Abdullah Salah

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 1 Datensatz Nr. 1.141

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·					
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,230 \pm 0,016$ $b = 0,5671 \pm 0,0030$ $x = 1,123 \pm 0,030$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1 255	1,243	1 225	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 01 von 452

Aladi Hendrik

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 2 Datensatz Nr. 1.98

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,230 \pm 0,016$	$b = 0.7196 \pm 0.0030$	$x = 1,073 \pm 0,029$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 234	1,246	1 255	1 252	1,249	1 235	1,262	1 238
<i>d</i> / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 02 von 452

Amza Andrei-Alexandru

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 3 Datensatz Nr. 1.190

NAME VORNAME

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,390 \pm 0,018$	$b = 0.9531 \pm 0.0040$	$x = 0.949 \pm 0.026$
Wiessweite.	u 1,000 ± 0,010	0 0,5551 ± 0,0010	x 0,515 ± 0,020

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	hale mit 6 Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 03 von 452

Aschwanden Andreas

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 4 Datensatz Nr. 1.105

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,420 \pm 0,018$	$b = 0.9127 \pm 0.0040$	$x = 0.943 \pm 0.026$
MICSSWCI tc.	u 1,420 ± 0,010	0 0,7127 ± 0,0040	x 0,745 ± 0,020

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	mit 7 Kugeln Wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1 224	1 225	1,246	1,243	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe		2. Abgabe	
Radius einer Kugel	±		±	
Masse einer Kugel	±		±	
Höhe des Gefäßes	±		±	
Fallzeit der Kugel	±		±	
Dichte der Flüssigkeit	±		±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 04 von 452

Awerjanow Alex

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 5 Datensatz Nr. 1.6

Bewertung: Aufgabe 1)	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Iesswerte: $a = 1,330 \pm 0,017$	$b = 0,6833 \pm 0,0040$	$x = 1,236 \pm 0,033$
---	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9,810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 235	1,234	1 255	1 252
d / mm	1,240	1,230	1,202	1,247	1,273	1,233	1,237	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 05 von 452

Ayman Fatih

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 6 Datensatz Nr. 1.11

	1. Abgabe (27.11.2023 14:00 Uhr)					2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,600 \pm 0,021$ $b = 0,5903 \pm 0,0040$ $x =$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 225	1,262	1,249	1 255	1 252	1,243	1,234
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 06 von 452

Bartenstein Jakob

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 7 Datensatz Nr. 1.188

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·					·		
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 225	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
 - Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 07 von 452

Beck
NAME
VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 8 Datensatz Nr. 1.70

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhi			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,420 \pm 0,018$ $b = 0,6344 \pm 0,0040$ $x = 1,055 \pm 0,029$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,\!2308 \pm 0,\!0094$	$4,0724 \pm 0,0027$	37,48 ± 0,38	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 08 von 452

Bekemen De Sil Steve Ledoux

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 9 Datensatz Nr. 1.95

	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)				·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,310 \pm 0,017$ $b = 1,0029 \pm 0,0040$ $x = 0,937 \pm 0,025$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1,243	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 09 von 452

Bergmeister Celina

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 10 Datensatz Nr. 1.186

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·	·		
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,520 \pm 0,020$	$b = 0.5816 \pm 0.0040$	$x = 1,097 \pm 0,030$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ho / g/cm ³
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1 234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,236	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 10 von 452

Beuscher Konstantin

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 11 Datensatz Nr. 1.163

NAME

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)						·		•	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,340 \pm 0,017$ $b = 0,8762 \pm 0,0040$ $x = 1,3$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 249	1,234	1 252	1,238	1 235	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,233	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 11 von 452

Blien David

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 12 Datensatz Nr. 1.68

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)					
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)			
Bemerkung: Aufgabe 1)			·	·		·					
Bewertung: Aufgabe2)											
Bemerkung: Aufgabe2)											

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,270 \pm 0,017$ $b = 0,7269 \pm 0,0040$ $x = 1,290 \pm 0,035$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,\!5840 \pm 0,\!0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,234	1,255	1,243	1,235	1,246	1,252	1,249	1,238	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 12 von 452

Bregulla Felix

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 13 Datensatz Nr. 1.152

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·		•
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,330 \pm 0,017$	$b = 0.6988 \pm 0.0040$	$x = 1,047 \pm 0,028$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 13 von 452

Büttner Maximilian

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 14 Datensatz Nr. 1.120

	1.	Abgabe (27	be (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,360 \pm 0,018$	$b = 0.9925 \pm 0.0040$	$x = 1,152 \pm 0,031$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1 220	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 14 von 452

BüttnerNicoNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 15 Datensatz Nr. 1.68

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,520 \pm 0,020$	$b = 0.9930 \pm 0.0040$	$x = 0.937 \pm 0.025$
Messwerte:	$a = 1,520 \pm 0,020$	$b = 0.9930 \pm 0.0040$	$x = 0.937 \pm 0.025$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 15 von 452

Busch Jonathan

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 16 Datensatz Nr. 1.52

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,520 \pm 0,020$	$b = 0.6300 \pm 0.0040$	$x = 1,085 \pm 0,029$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ho / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1 224	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 16 von 452

Cimala Marko

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 17 Datensatz Nr. 1.49

NAME VORNAME

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,480 \pm 0,019$	$b = 0.5717 \pm 0.0040$	$x = 1,079 \pm 0,029$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	e ohne Kugeln Höhe des Gefäßes		Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$26,\!5042 \pm 0,\!0093$	$2,3458 \pm 0,0032$	35,82 ± 0,26	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d/mm	1,238	1,246	1,235	1,262	1,249	1,255	1,252	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 17 von 452

DausackerMariusNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 18 Datensatz Nr. 1.119

Bewertung: Aufgabe 1)	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,330 \pm 0,017$ $b = 0,7938 \pm 0,0040$ $x = 1,329 \pm 0,033$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	$ ho$ / g/cm 3
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 235	1 252	1 255	1,246	1,234	1 238	1,249	1,262
<i>d</i> / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,238	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 18 von 452

Dietrich Tim

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 19 Datensatz Nr. 1.166

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,570 \pm 0,020$	$b = 1,0518 \pm 0,0040$	$x = 1,209 \pm 0,033$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1 249	1,243	1,238	1 255	1 252	1,246	1 235	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 19 von 452

Dill Julius

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 20 Datensatz Nr. 1.152

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)				·				·	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,290 \pm 0,017$	$b = 0.8286 \pm 0.0040$	$x = 1,195 \pm 0,032$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,252	1,243	1,262	1,235	1,249	1,238	1,255	1,234	1,246

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 20 von 452

Dreist Julia

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 21 Datensatz Nr. 1.154

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	Abgabe (01	1.12.2023 16	:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·		•
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,350 \pm 0,018$	$b = 0.8623 \pm 0.0040$	$x = 1,129 \pm 0,031$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,238	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 21 von 452

Dunschen Frederik

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 22 Datensatz Nr. 1.66

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,620 \pm 0,021$	$b = 0.5632 \pm 0.0040$	$x = 1,227 \pm 0,033$
MICSSWCITC.	$u = 1,020 \pm 0,021$	D = 0,5052 ± 0,0040	$x = 1,227 \pm 0,033$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	e ohne Kugeln Höhe des Gefäßes		Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1,235	1,246	1,262	1 255	1,243
d / mm	1,217	1,231	1,232	1,230	1,233	1,210	1,202	1,233	1,213

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 22 von 452

Eberlein Philipp

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 23 Datensatz Nr. 1.81

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

]	Messwerte:	$a = 1,230 \pm 0,016$	$b = 0.7007 \pm 0.0030$	$x = 1,187 \pm 0,032$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale mit 7 Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1 255	1,243	1 225	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 23 von 452

Egner Jonathan
NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 24 Datensatz Nr. 1.50

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale mit 6 Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 234	1,246	1 255	1 252	1,249	1 235	1,262	1 238
<i>d</i> / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 24 von 452

Eisfeld Jan

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 25 Datensatz Nr. 1.1

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,480 \pm 0,019$ $b = 0,7565 \pm 0,0040$	$x = 1,235 \pm 0,033$
--	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 25 von 452

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 26 Datensatz Nr. 1.152

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,670 \pm 0,022$ $b = 0,6338 \pm 0,0050$ $x = 0,987 \pm 0,0000$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	35,49 ± 0,34	$80,37 \pm 0,74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 26 von 452

Erz Julius

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 27 Datensatz Nr. 1.138

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·		•	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,480 \pm 0,019$ $b = 0,6647 \pm 0,0040$ $x = 1,096 \pm 0,030$	Messwerte:	$a = 1,480 \pm 0,019$	$b = 0,6647 \pm 0,0040$	$x = 1,096 \pm 0,030$
--	------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	
D:		Ablaitungan ist night arfordarligh S	 dan ahanyan dan Kannalitaninan	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 235	1 23/	1 255	1 252
<i>d</i> / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 27 von 452

Esterl Paul

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 28 Datensatz Nr. 1.29

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·			·	·	·	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,640 \pm 0,021$	$b = 1,0105 \pm 0,0040$	$x = 1,337 \pm 0,036$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit	
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³	
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	35,82 ± 0,26	$81,45 \pm 0,38$	0,975	

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d/mm	1,238	1,246	1,235	1,262	1,249	1,255	1,252	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 28 von 452

Faulhaber Hanna

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 29 Datensatz Nr. 1.163

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,240 \pm 0,016$	$b = 0.6948 \pm 0.0030$	$x = 0.980 \pm 0.027$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 225	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 29 von 452

Fechner Liz

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 30 Datensatz Nr. 1.43

	1. Abgabe (27.11.2023 14:00 Uhr)					2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,370 \pm 0,018$	$b = 0.8241 \pm 0.0040$	$x = 1,001 \pm 0,027$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 30 von 452

Fehse Emilia-Sofie

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 31 Datensatz Nr. 1.73

	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung:								

Aufgabe 1) Bemerkung: Aufgabe 1) Bewertung: Aufgabe2) Bemerkung:

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Aufgabe2)

Wägeschale mit 7 Kugeln	eschale mit 7 Kugeln Wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 243	1,262	1 235	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 31 von 452

Fenu Juri

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 32 Datensatz Nr. 1.173

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,670 \pm 0,022$	$b = 0.6564 \pm 0.0050$	$x = 1,168 \pm 0,032$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,255	1,238	1,234	1,246	1,262	1,243	1,235	1,252	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 32 von 452

Finkelmann Robin

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 33 Datensatz Nr. 1.78

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·			·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,270 \pm 0,017$	$b = 0.9377 \pm 0.0040$	$x = 1,033 \pm 0,028$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

A y =	$= 13ax + 14bax^2 + 21ab^3$			
	- 15ux 11bux 21ub	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,9829 \pm 0,0092$ $6,8245 \pm 0,0035$		$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1 235	1,246	1,262	1 255	1,243
d / mm	1,277	1,237	1,232	1,230	1,233	1,240	1,202	1,233	1,273

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
 - Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe		2. Abgabe	
Radius einer Kugel	±		±	
Masse einer Kugel	±		±	
Höhe des Gefäßes	±		±	
Fallzeit der Kugel	±		±	
Dichte der Flüssigkeit	±		±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 33 von 452

Fischer Barbara

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 34 Datensatz Nr. 1.143

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)					
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,450 \pm 0,019$ $b = 1,0402 \pm 0$	$0,0040 x = 1,079 \pm 0,029$
---	--------------------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1 255	1,243	1 225	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
 - Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe		2. Abgabe	
Radius einer Kugel	±		±	
Masse einer Kugel	±		±	
Höhe des Gefäßes	±		±	
Fallzeit der Kugel	±		±	
Dichte der Flüssigkeit	±		±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 34 von 452

Fleisch Falk **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 35 Datensatz Nr. 1.143

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)					
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)			
Bemerkung: Aufgabe 1)			·	·		·					
Bewertung: Aufgabe2)											
Bemerkung: Aufgabe2)											

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{\rm mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1,255	1,252	1,249	1,235	1,262	1,238
d / mm	1,2 .0	1,20	1,2 .0	1,200	1,202	1,>	1,200	1,202	1,200

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 35 von 452

Frank David

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 36 Datensatz Nr. 1.122

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,580 \pm 0,021$	$b = 1,0015 \pm 0,0040$	$x = 1,275 \pm 0,035$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1 220	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 36 von 452

Frank Kira **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 37 Datensatz Nr. 1.49

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,600 \pm 0,021$	$b = 1,0080 \pm 0,0040$	$x = 0.931 \pm 0.025$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1 224	1 225	1,246	1,243	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 37 von 452

Franssen Liam

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 38 Datensatz Nr. 1.108

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.202			3 16:00 Uhr)	
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,660 \pm 0,022$	$b = 0.7050 \pm 0.0050$	$x = 1,366 \pm 0,037$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1 224	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 38 von 452

Friess

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 39 Datensatz Nr. 1.76

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·		•	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1 23/
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 39 von 452

Frohnhöfer Hannes **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 40 Datensatz Nr. 1.68

	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)				·				
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwer	rte:	$a = 1,660 \pm 0,022$	$b = 1,0308 \pm 0,0050$	$x = 1,215 \pm 0,033$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30{,}1339 \pm 0{,}0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 225	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 40 von 452

Galmbacher Joshua

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 41 Datensatz Nr. 1.58

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,590 \pm 0,021$	$b = 0.7042 \pm 0.0040$	$x = 1,215 \pm 0,033$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1,235	1,262
d / mm	1,234	1,249	1,273	1,230	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 41 von 452

ViktorNAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 42 Datensatz Nr. 1.173

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)					
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)			
Bemerkung: Aufgabe 1)											
Bewertung: Aufgabe2)											
Bemerkung: Aufgabe2)											

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,530 \pm 0,020$	$b = 0,6639 \pm 0,0040$	$x = 1,343 \pm 0,036$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe		2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±		±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±		±	
C	$y = b \sin(ax)$	±		±	
D	$y = \frac{x - a}{b + x}$	±		±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 2/12	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 42 von 452

Gerhäußer Theo

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 43 Datensatz Nr. 1.122

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·	·	
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,238	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe		
Zähigkeit	±	±		

Formelapparat zu Aufgabe 2:

Seite 43 von 452

Göbel Daniel

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 44 Datensatz Nr. 1.141

1. Abgabe (27.11.2023 14:00 Uhr)			:00 Uhr)	2.	Abgabe (01	1.12.2023 16	2023 16:00 Uhr)		
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)	Bewertung:								
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,250 \pm 0,016$	$b = 0.7442 \pm 0.0030$	$x = 1,381 \pm 0,037$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

	Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$		m_{So}/mg	H/cm	t/s	ho / g/cm ³
	$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1 225	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,235	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe		2. Abgabe	
Zähigkeit	±		±	

Formelapparat zu Aufgabe 2:

Seite 44 von 452

Görlich Benedict

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 45 Datensatz Nr. 1.23

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)	Bewertung:								
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,\!5840 \pm 0,\!0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1 255	1,243	1 235	1,246	1 252	1,249	1 238	1,262
<i>d</i> / mm	1,234	1,233	1,273	1,233	1,270	1,232	1,27	1,238	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
 - Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 45 von 452

Golze Julius

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 46 Datensatz Nr. 1.175

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·				·	·	
Bewertung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,610 \pm 0,021$ $b = 1,0335 \pm 0,0040$	$0 x = 1,016 \pm 0,028$
--	---------------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Bemerkung:

Aufgabe2)

Wägeschale mit 6 Kugeln	Vägeschale mit 6 KugelnWägeschale ohne KugelnHöhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 46 von 452

Gritsch Sebastian

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 47 Datensatz Nr. 1.7

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·	·		
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,680 \pm 0,022$	$b = 0,6331 \pm 0,0050$	$x = 1,382 \pm 0,037$
Wiessweite.	$u = 1,000 \pm 0,022$	<i>b</i> - 0,0331 ± 0,0030	x - 1,502 ± 0,057

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{\rm mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,236	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 47 von 452

Groß

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 48 Datensatz Nr. 1.107

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·		·						
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,460 \pm 0,019$	$b = 0,6138 \pm 0,0040$	$x = 1,238 \pm 0,034$
Wiess werte.	u 1,400 ± 0,017	0 0,0150 ± 0,0040	x 1,250 ± 0,054

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	35,49 ± 0,34	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 48 von 452

Günther Jonas

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 49 Datensatz Nr. 1.13

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,340 \pm 0,017$	$b = 0.6284 \pm 0.0040$	$x = 1,083 \pm 0,029$
1110551101	 1,0 10 = 0,017	0 0,0201 = 0,0010	1,000 = 0,025

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1,234	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 49 von 452

Helbig
NAME
VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 50 Datensatz Nr. 1.195

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,710 \pm 0,022$	$b = 0.8167 \pm 0.0050$	$x = 1,043 \pm 0,028$
Messwerte:	$a = 1,710 \pm 0,022$	$b = 0.8167 \pm 0.0050$	$x = 1,043 \pm 0,028$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$26,\!5042 \pm 0,\!0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1,234
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 50 von 452

Held Leonhard

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 51 Datensatz Nr. 1.65

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·	·		
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,500 \pm 0,020$	$b = 0.8673 \pm 0.0040$	$x = 1,381 \pm 0,037$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	$ ho$ / g/cm 3
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 225	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 51 von 452

Henn **Felix NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 52 Datensatz Nr. 1.68

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 52 von 452

Heptner Florian

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 53 Datensatz Nr. 1.54

NAME

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr 1A) 1B) 1C) 1D				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,240 \pm 0,016$	$b = 0.6246 \pm 0.0030$	$x = 1,059 \pm 0,029$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1,243	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 53 von 452

Herberger Leonie

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 54 Datensatz Nr. 1.3

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1$	$,530 \pm 0,020$ $b =$	= 0,6911 ± 0,0040	$x = 1,109 \pm 0,030$
--------------------	------------------------	-------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1 234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,236	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
 - Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 54 von 452

Herzog

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 55 Datensatz Nr. 1.70

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1,235	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,233	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 55 von 452

Hohmann Jannik

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 56 Datensatz Nr. 1.136

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,\!5840 \pm 0,\!0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,234	1,255	1,243	1,235	1,246	1,252	1,249	1,238	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 01 von 452

Homm Tschaske

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 57 Datensatz Nr. 1.49

	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 235	1,262	1,238
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 02 von 452

Humenny Martin

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 58 Datensatz Nr. 1.42

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·		·						
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

sswerte: $a = 1,520 \pm 0,020$	$b = 0.9381 \pm 0.0040$	$x = 1,034 \pm 0,028$
--------------------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,236	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 03 von 452

Jansen Theodor

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 59 Datensatz Nr. 1.73

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)						·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1 224	1 225	1,246	1,243	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 04 von 452

Kämpf Robert

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 60 Datensatz Nr. 1.197

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,280 \pm 0,017$ $b = 0,8597 \pm 0,0040$ $x = 1,093 \pm 0,0040$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9,810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1 224	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 05 von 452

Keiderling Till

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 61 Datensatz Nr. 1.168

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1 234
d / mm	1,238	1,270	1,233	1,202	1,27	1,233	1,232	1,273	1,237

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 06 von 452

KirchnerMarieNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 62 Datensatz Nr. 1.19

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,240 \pm 0,016$	$b = 0,6419 \pm 0,0030$	$x = 1,013 \pm 0,027$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 235	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe		2. Abgabe		
Radius einer Kugel	±		±		
Masse einer Kugel	±		±		
Höhe des Gefäßes	±		±		
Fallzeit der Kugel	±		±		
Dichte der Flüssigkeit	±		±		

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 07 von 452

Klebes

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 63 Datensatz Nr. 1.132

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,600 \pm 0,021$	$b = 0.9324 \pm 0.0040$	$x = 1,330 \pm 0,036$
Messwerte:	$u = 1,000 \pm 0,021$	$b = 0.9324 \pm 0.0040$	$x = 1,330 \pm 0,030$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Tägeschale mit 7 KugelnWägeschale ohne KugelnHöhe des Gefäßes			Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

	Messung	1	2	3	4	5	6	7	8	9
Du	rchmesser der Kugel d / mm	1,234	1,249	1,243	1,238	1,255	1,252	1,246	1,235	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe		2. Abgabe	
Radius einer Kugel	±		±	
Masse einer Kugel	±		±	
Höhe des Gefäßes	±		±	
Fallzeit der Kugel	±		±	
Dichte der Flüssigkeit	±		±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 08 von 452

Kleinau Julius

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 64 Datensatz Nr. 1.135

NAME VORNAME

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,252	1,243	1,262	1,235	1,249	1,238	1,255	1,234	1,246

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 09 von 452

Klein

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 65 Datensatz Nr. 1.67

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				Abgabe (01	1.12.2023 16	:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)						·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,410 \pm 0,018$	$b = 0.6176 \pm 0.0040$	$x = 0.935 \pm 0.025$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,238	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 10 von 452

Klotz

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 66 Datensatz Nr. 1.120

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr) 1A)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	ale mit 7 Kugeln Wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1 234	1 252	1,238	1 235	1,246	1,262	1 255	1,243
<i>d</i> / mm	1,249	1,234	1,232	1,236	1,233	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 11 von 452

KoberitzMarcelNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 67 Datensatz Nr. 1.97

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,330 \pm 0,017$ $b = 1,0560 \pm 0,0040$	$x = 1,385 \pm 0,038$
--	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	ale mit 7 Kugeln Wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kug d/mm	gel 1,234	1,255	1,243	1,235	1,246	1,252	1,249	1,238	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 12 von 452

KolbNicolasNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 68 Datensatz Nr. 1.51

	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe		2. Abgabe	
Radius einer Kugel	±		±	
Masse einer Kugel	±		±	
Höhe des Gefäßes	±		±	
Fallzeit der Kugel	±		±	
Dichte der Flüssigkeit	±		±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 13 von 452

Kraus

NAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 69 Datensatz Nr. 1.118

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·	·		
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,270 \pm 0,017$	$b = 0.8324 \pm 0.0040$	$x = 0.991 \pm 0.027$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe		2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±		±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±		±	
C	$y = b \sin(ax)$	±		±	
D	$y = \frac{x - a}{b + x}$	±		±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9,810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	36,78 ± 0,43	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,236	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 14 von 452

Kretschmer Luis

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 70 Datensatz Nr. 1.183

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,570 \pm 0,020$	$b = 0.8135 \pm 0.0040$	$x = 1,292 \pm 0,035$
		· · · · · · · · · · · · · · · · · · ·	

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1,243	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 15 von 452

Kristen Ole

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 71 Datensatz Nr. 1.125

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,270 \pm 0,017$	$b = 0.6860 \pm 0.0040$	$x = 1,332 \pm 0,036$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln Wägeschale ohne Kugeln		Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 235	1,234	1 255	1 252
d / mm	1,240	1,230	1,202	1,247	1,273	1,233	1,237	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 16 von 452

Krotsch Julius

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 72 Datensatz Nr. 1.45

NAME VORNAME

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·	·		·	·			
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1 23/
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 17 von 452

KümmerlingLillyNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 73 Datensatz Nr. 1.93

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uh		
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,370 \pm 0,018$ $b = 0,5716 \pm 0,0040$ $x = 1,124 \pm 0,030$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 225	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 18 von 452

Lang Alexandra

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 74 Datensatz Nr. 1.32

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uh			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·		·
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,610 \pm 0,021$	$b = 0,6279 \pm 0,0040$	$x = 1,114 \pm 0,030$
----------------------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 19 von 452

Lang

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 75 Datensatz Nr. 1.99

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,340 \pm 0,017$	$b = 0.5657 \pm 0.0040$	$x = 1,278 \pm 0,035$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	t 7 Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1,243	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 20 von 452

Lang

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 76 Datensatz Nr. 1.184

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,290 \pm 0,017$	$b = 1,0293 \pm 0,0040$	$x = 0.984 \pm 0.027$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,236	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 21 von 452

Lang Dominik

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 77 Datensatz Nr. 1.131

	1. A	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,700 \pm 0,022$ $b = 0,6456 \pm 0,0050$	$x = 1,410 \pm 0,038$
--	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$30,\!9829 \pm 0,\!0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1 225	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,235	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 22 von 452

LangerMoritzNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 78 Datensatz Nr. 1.47

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	Abgabe (01	1.12.2023 16	:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,320 \pm 0,017$ $b = 0,8158 \pm 0,0040$	$x = 1,366 \pm 0,037$
--	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1 255	1,243	1 225	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe		2. Abgabe	
Zähigkeit	±		±	

Formelapparat zu Aufgabe 2:

Seite 23 von 452

Leibold Nina

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 79 Datensatz Nr. 1.35

	1. Abgabe (27.11.2023 14:00 Uhr)					Abgabe (01	.12.2023 16	:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,690 \pm 0,022$	$b = 0.9192 \pm 0.0050$	$x = 1,307 \pm 0,035$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 24 von 452

Lenk Pirmin

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 80 Datensatz Nr. 1.191

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)						·	·	·
Bewertung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,700 \pm 0,022$ $b = 0,6177 \pm 0,0050$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Bemerkung:

Aufgabe2)

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 25 von 452

Leppich Paul

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 81 Datensatz Nr. 1.124

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,690 \pm 0,022$	$b = 0.7192 \pm 0.0050$	$x = 1,193 \pm 0,032$
	, , ,	, ,	, ,

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	$ ho$ / g/cm 3
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 26 von 452

NAME Nensi

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 82 Datensatz Nr. 1.85

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,230 \pm 0,016$ $b = 1,0550 \pm 0,0030$ $x = 1,294 \pm 0,035$	Messwerte:	$a = 1,230 \pm 0,016$	$b = 1,0550 \pm 0,0030$	$x = 1,294 \pm 0,035$
--	------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1,234	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 27 von 452

Marbaise Sonja

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 83 Datensatz Nr. 1.140

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,660 \pm 0,022$ $b = 0,8241 \pm 0,0050$ $x = 1,158 \pm 0,031$	Messwerte:	$a = 1,660 \pm 0,022$	$b = 0.8241 \pm 0.0050$	$x = 1,158 \pm 0,031$
--	------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1 234
d / mm	1,238	1,270	1,233	1,202	1,27	1,233	1,232	1,273	1,237

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
 - Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 28 von 452

Markiewicz Lukas **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 84 Datensatz Nr. 1.19

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,460 \pm 0,019$	$b = 0,6423 \pm 0,0040$	$x = 1,068 \pm 0,029$
Messwerte:	$a = 1,460 \pm 0,019$	$b = 0.6423 \pm 0.0040$	$x = 1,068 \pm 0,029$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
С	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30{,}1339 \pm 0{,}0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 243	1 235	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,270	1,237	1,230	1,27	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 29 von 452

Mass Agnessa

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 85 Datensatz Nr. 1.24

Bewertung: Aufgabe 1)	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	37,48 ± 0,38	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

1. Abgabe		2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 30 von 452

Meinzinger Anna

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 86 Datensatz Nr. 1.188

Bewertung: Aufgabe 1)	1.	. Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte	$a = 1,710 \pm 0,022$	$b = 0.7815 \pm 0.0050$	$x = 1,180 \pm 0,032$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe		2. Abgabe								
A	$y = 13ax + 14bax^2 + 21ab^3$	±		±								
В	$y = exp\left(\frac{a-x}{x}\right)$	±		±								
C	$y = b \sin(ax)$	±		±								
D	$y = \frac{x - a}{b + x}$	±		±								
Dia	Angaha day jawailigan nautiallan	Ablaitungan ist night aufandauligh S	:	Die Angebe der jeweiligen nertiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren								

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	chale mit 7 Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	$m_{\rm Sm}/{\rm mg}$ $m_{\rm So}/{\rm mg}$		<i>t</i> / s	ρ / g/cm ³
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Ku d / mm	gel 1,252	1,243	1,262	1,235	1,249	1,238	1,255	1,234	1,246

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 31 von 452

Meurer Nils

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 87 Datensatz Nr. 1.186

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·		·					
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,680 \pm 0,022$	$b = 0.6101 \pm 0.0050$	$x = 1,149 \pm 0,031$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,238	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 32 von 452

Müller Finja

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 88 Datensatz Nr. 1.77

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·	·	
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,410 \pm 0,018$	$b = 0,7051 \pm 0,0040$	$x = 0.933 \pm 0.025$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,249	1,234	1,252	1,238	1,235	1,246	1,262	1,255	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 33 von 452

Müller Lorena

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 89 Datensatz Nr. 1.171

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1 255	1,243	1 225	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
 - Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 34 von 452

Müller Louis

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 90 Datensatz Nr. 1.29

NAME VORNAME

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·	·		·	·			
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,240 \pm 0,016$	$b = 0.6508 \pm 0.0030$	$x = 1,065 \pm 0,029$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln Wägeschale ohne Kugeln		Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 35 von 452

Müller Simone

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 91 Datensatz Nr. 1.176

NAME VORNAME

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·		·						
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d/mm	1,252	1,235	1,255	1,246	1,234	1,262	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 36 von 452

Nassar Ali

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 92 Datensatz Nr. 1.74

	1.	1. Abgabe (27.11.2023 14:00 Uhr) 2. Abg			Abgabe (01	bgabe (01.12.2023 16:00 Uhr)		
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)						·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

|--|

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	35,49 ± 0,34	$80,37 \pm 0,74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1 234	1 235	1,246	1 2/13	1 238	1 255
<i>d</i> / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,238	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 37 von 452

Naun Lukas

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 93 Datensatz Nr. 1.46

	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·		·				
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,690 \pm 0,022$	$b = 0.8791 \pm 0.0050$	$x = 1,037 \pm 0,028$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,246	1,238	1,262	1,249	1,243	1,235	1,234	1,255	1,252

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 38 von 452

Neumair Korbinian

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 94 Datensatz Nr. 1.131

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,640 \pm 0,021$ $b = 0,8553 \pm 0,0040$ $x = 0,957 \pm 0,026$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9,810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 225	1,262	1,249	1 255	1 252	1,243	1,234
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 39 von 452

Niehues Lena Marie

NAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 95 Datensatz Nr. 1.78

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·		•
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,510 \pm 0,020$	$b = 0,5901 \pm 0,0040$	$x = 1,055 \pm 0,029$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30{,}1339 \pm 0{,}0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 225	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 40 von 452

ÖdemisSimgeNAMEVORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 96 Datensatz Nr. 1.17

	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,420 \pm 0,018$	$b = 0.8695 \pm 0.0040$	$x = 1,378 \pm 0,037$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 41 von 452

Ortlauf Andreas

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 97 Datensatz Nr. 1.89

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·	·		·	·	·		
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,640 \pm 0,021$	$b = 0.6593 \pm 0.0040$	$x = 1,329 \pm 0,036$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	ale mit 7 Kugeln Wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1,243	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 42 von 452

Peci

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 98 Datensatz Nr. 1.133

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1$	$,300 \pm 0,017$ $b = 0.017$	$= 1,0395 \pm 0,0040$	$x = 1,110 \pm 0,030$
--------------------	------------------------------	-----------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	ohne Kugeln Höhe des Gefäßes		Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,236	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 43 von 452

Pfaff
NAME
VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 99 Datensatz Nr. 1.175

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1,235	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,233	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 44 von 452

Pfeifer Joel **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 100 Datensatz Nr. 1.173

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,420 \pm 0,018$	$b = 1,0500 \pm 0,0040$	$x = 1.315 \pm 0.036$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	chale mit 7 Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1 255	1,243	1 235	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 45 von 452

Regele Dominik

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 101 Datensatz Nr. 1.62

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 235	1,262	1,238
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 46 von 452

Reifschneider Melanie

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 102 Datensatz Nr. 1.75

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)								•		
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,490 \pm 0,019$ $b = 0,9144 \pm 0,0040$ $x = 0,950 \pm 0,026$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 47 von 452

Reisert Luca **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 103 Datensatz Nr. 1.101

	1.	. Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)					
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)								·		
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1 234	1 235	1,246	1 2/13	1 238	1 255
<i>d</i> / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,238	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 48 von 452

Reis **Felix NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 104 Datensatz Nr. 1.23

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,670 \pm 0,022$	$b = 0.7509 \pm 0.0050$	$x = 0.986 \pm 0.027$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ho / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1 224	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe		2. Abgabe	
Zähigkeit	±		±	

Formelapparat zu Aufgabe 2:

Seite 49 von 452

Reuß

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 105 Datensatz Nr. 1.155

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	0 Uhr) 2. Abgabe (01.12.2023 16:00			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,470 \pm 0,019$	$b = 0.9669 \pm 0.0040$	$x = 0.967 \pm 0.026$
Messwerte:	$a = 1,470 \pm 0,019$	$b = 0.9669 \pm 0.0040$	$x = 0.967 \pm 0.026$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe		2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±		±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±		±	
C	$y = b \sin(ax)$	±		±	
D	$y = \frac{x - a}{b + x}$	±		±	
D:	A l l	hlaitungan ist night aufaudauligh C	•	J., .l., IV.,	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 225	1,262	1,249	1 255	1 252	1,243	1,234
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 50 von 452

Riegel Jakob
NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 106 Datensatz Nr. 1.133

Bewertung: Aufgabe 1)	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·	·		·		•		
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,490 \pm 0,019$	$b = 0.8979 \pm 0.0040$	$x = 1,064 \pm 0,029$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30{,}1339 \pm 0{,}0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,243	1,235	1,252	1,255	1,246	1,234	1,238	1,249	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 51 von 452

Rix

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 107 Datensatz Nr. 1.113

Bewertung: Aufgabe 1)	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)				·			·	·		
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 52 von 452

Röpke Ludwig

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 108 Datensatz Nr. 1.165

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)								•	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,470 \pm 0,019$	$b = 0.6445 \pm 0.0040$	$x = 1,310 \pm 0,036$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 243	1,262	1 235	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 53 von 452

Rösner Kai

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 109 Datensatz Nr. 1.91

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	Abgabe (01	.12.2023 16:	:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·	·	
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,490 \pm 0,019$	$b = 1,0201 \pm 0,0040$	$x = 1,178 \pm 0,032$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 235	1 252	1,249
d / mm	1,233	1,236	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 54 von 452

Rößner Giulia

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 110 Datensatz Nr. 1.76

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·		·					
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,390 \pm 0,018$	$b = 0.7715 \pm 0.0040$	$x = 1,130 \pm 0,031$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	7 Kugeln Wägeschale ohne Kugeln Höhe des Gefäße		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{\rm mg}$	m_{So}/mg	H/cm	<i>t</i> / s	$ ho$ / g/cm 3
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 249	1,234	1 252	1,238	1 235	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,233	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 55 von 452

Rohde Johannes

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 111 Datensatz Nr. 1.57

Bewertung:	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{\rm mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1 255	1,243	1 225	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 01 von 452

Rothbauer Jasmin

NAME VORNAME

Downstungs	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·	·		
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 112 Datensatz Nr. 1.125

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,310 \pm 0,017$	$b = 0.7128 \pm 0.0040$	$x = 1,235 \pm 0,033$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
m_{Sm} / mg	m_{So}/mg	H/cm	<i>t</i> / s	ho / g/cm ³
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 235	1,262	1,238
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 02 von 452

Rott Paul

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 113 Datensatz Nr. 1.16

Bewertung: Aufgabe 1)	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: a =	= 1,700 ± 0,022	$b = 0.8127 \pm 0.0050$	$x = 1,361 \pm 0,037$
----------------	-----------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,236	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 03 von 452

Rühr

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 114 Datensatz Nr. 1.41

Bewertung: Aufgabe 1)	1. Abgabe (27.11.2023 14:00 Uhr)					2. Abgabe (01.12.2023 16:00 Uhr) 1A) 1B) 1C) 1D)		00 Uhr)
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,37 \pm 0,74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1 224	1 225	1,246	1,243	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 04 von 452

Ryzhykh Daria
NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 115 Datensatz Nr. 1.178

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,440 \pm 0,019$ $b = 0,6791 \pm 0,0040$ $x = 0,931 \pm 0,025$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1,234	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 05 von 452

Name Nicole Vorname

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 116 Datensatz Nr. 1.66

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

A $y = 13ax + 14bax^2 + 21ab^3$ \pm \pm \pm \pm \pm \pm \pm \pm \pm	2. Abgabe	1. Abgabe		
	±	±	$y = 13ax + 14bax^2 + 21ab^3$	A
	±	±	$y = exp\left(\frac{a-x}{x}\right)$	В
$C \qquad y = b \sin(ax) \qquad \pm \qquad $	±	±	$\mathbf{C} \qquad \qquad y = b \sin(ax)$	
$\mathbf{D} \qquad \qquad y = \frac{\mathbf{x} - \mathbf{a}}{\mathbf{b} + \mathbf{x}} \qquad \qquad \pm \qquad \qquad \pm$	±	±	$y = \frac{x - a}{b + x}$	D

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1 23/
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 06 von 452

Scherbantin Adrian

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 117 Datensatz Nr. 1.116

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte	$a = 1,250 \pm 0,016$	$b = 0.8208 \pm 0.0030$	$x = 1,385 \pm 0,038$
		· · · · · · · · · · · · · · · · · · ·	

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 235	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 07 von 452

Schillinger Sebastian

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 118 Datensatz Nr. 1.11

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,590 \pm 0,021$	$b = 0.7083 \pm 0.0040$	$x = 1,006 \pm 0,027$
Micss werte.	u 1,570 ± 0,021	b 0,7005 ± 0,0040	x 1,000 ± 0,027

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 08 von 452

Schlensok David

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 119 Datensatz Nr. 1.59

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

esswerte: $a = 1,430 \pm 0,019$	$b = 0.6938 \pm 0.0040$	$x = 1,144 \pm 0,031$
---------------------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1,243	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 09 von 452

Schreyer Jonas-Dominik

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 120 Datensatz Nr. 1.70

NAME VORNAME

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,630 \pm 0.0$	$b = 0,5946 \pm 0,0040$	$x = 1,183 \pm 0,032$
--------------------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,236	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 10 von 452

NAME Nico
VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 121 Datensatz Nr. 1.123

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16			5:00 Uhr)	
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,630 \pm 0,021$	$b = 0,6649 \pm 0,0040$	$x = 1,376 \pm 0,037$
----------------------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	ugeln Wägeschale ohne Kugeln Höhe des Gefäßes		ägeschale mit / Kugeln Wägeschale ohne Kugeln		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3		
$30,\!9829 \pm 0,\!0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962		

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1,235	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,233	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 11 von 452

Schütte Ole

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 122 Datensatz Nr. 1.65

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16			:00 Uhr)	
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,390 \pm 0,018$	$b = 0.9785 \pm 0.0040$	$x = 1,396 \pm 0,038$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	ln Wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1 255	1,243	1 225	1,246	1 252	1,249	1,238	1,262
d / mm	1,234	1,233	1,243	1,233	1,240	1,232	1,249	1,236	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 12 von 452

Schuhmann Vera

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 123 Datensatz Nr. 1.16

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·		•	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,250 \pm 0,016$	$b = 1,0481 \pm 0,0030$	$x = 1,118 \pm 0,030$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 13 von 452

Schultheiß Mika

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 124 Datensatz Nr. 1.130

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,270 \pm 0,017$	$b = 0,6923 \pm 0,0040$	$x = 1,182 \pm 0,032$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d/mm	1,252	1,235	1,255	1,246	1,234	1,262	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 14 von 452

Schulze Leo

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 125 Datensatz Nr. 1.109

	1.	. Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)				·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,350 \pm 0,018$	$b = 0.8981 \pm 0.0040$	$x = 0.974 \pm 0.026$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	schale ohne Kugeln Höhe des Gefäßes		Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	35,49 ± 0,34	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 15 von 452

Secgin Mirac VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 126 Datensatz Nr. 1.31

	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)					
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugelr	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 235	1 23/	1 255	1 252
<i>d</i> / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 16 von 452

Sparwasser Richard

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 127 Datensatz Nr. 1.103

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

]	Messwerte:	$a = 1,350 \pm 0,018$	$b = 0.9102 \pm 0.0040$	$x = 1,195 \pm 0,032$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d/mm	1,238	1,246	1,235	1,262	1,249	1,255	1,252	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 17 von 452

Stang Carolin Via Division

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 128 Datensatz Nr. 1.53

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,570 \pm 0,020$ $b = 1,0318 \pm 0,0040$ $x = 1,057 \pm 0,029$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 243	1 235	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,270	1,237	1,230	1,27	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 18 von 452

Stankovic Mirco **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 129 Datensatz Nr. 1.86

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,540 \pm 0,020$	$b = 1,0036 \pm 0,0040$	$x = 1,338 \pm 0,036$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 19 von 452

Steinecke Jon

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 130 Datensatz Nr. 1.149

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1,243	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 20 von 452

Stöhr Sarah

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 131 Datensatz Nr. 1.43

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:0			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								·
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,220 \pm 0,016$ $b = 0,6553 \pm 0,0030$ $x = 1,362 \pm 0,037$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1,234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,238	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 21 von 452

Strugies Jan Philipp

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 132 Datensatz Nr. 1.75

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,230 \pm 0,016$	$b = 0,6799 \pm 0,0030$	$x = 1,397 \pm 0,038$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,9829 \pm 0,0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 249	1,234	1 252	1,238	1 235	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,233	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 22 von 452

Stüwe Jan

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 133 Datensatz Nr. 1.156

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)										
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,430 \pm 0,019$	$b = 0.9250 \pm 0.0040$	$x = 1,291 \pm 0,035$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,5840 \pm 0,0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

	Messung	1	2	3	4	5	6	7	8	9
D	urchmesser der Kugel d/mm	1,234	1,255	1,243	1,235	1,246	1,252	1,249	1,238	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 23 von 452

Sturm

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 134 Datensatz Nr. 1.86

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,490 \pm 0,019$	$b = 1,0287 \pm 0,0040$	$x = 1,162 \pm 0,031$
----------------------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 24 von 452

Suppes Maxim

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 135 Datensatz Nr. 1.101

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1 220	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 25 von 452

Tan Jun Wei

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 136 Datensatz Nr. 1.157

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)									
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ρ / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 26 von 452

Thomas Maximilian

NAME VORNAME

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·	·		
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 137 Datensatz Nr. 1.160

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,410 \pm 0,018$ $b = 0,8469 \pm 0,0040$ $x = 1,208 \pm 0,033$	M	esswerte:	$a = 1,410 \pm 0,018$	$b = 0.8469 \pm 0.0040$	$x = 1,208 \pm 0,033$
--	---	-----------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 225	1,234	1 255	1 252
d / mm	1,240	1,236	1,202	1,249	1,243	1,233	1,234	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 27 von 452

Thullner Leander

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 138 Datensatz Nr. 1.124

Bewertung: Aufgabe 1)	1.	. Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·			·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,380 \pm 0,018$	$b = 0.7245 \pm 0.0040$	$x = 1,200 \pm 0,033$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1,234
d / mm	1,230	1,240	1,233	1,202	1,27	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 28 von 452

Tober Andreas **NAME**

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 139 Datensatz Nr. 1.94

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)					
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)			
Bemerkung: Aufgabe 1)											
Bewertung: Aufgabe2)											
Bemerkung: Aufgabe2)											

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,570 \pm 0,020$ $b = 1,0382 \pm 0,0040$ $x = 1,231 \pm 0,033$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9,810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,243	1,235	1,252	1,255	1,246	1,234	1,238	1,249	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 29 von 452

Trabert Marius

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 140 Datensatz Nr. 1.88

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,650 \pm 0,021$	$b = 0.7568 \pm 0.0040$	$x = 1,210 \pm 0,033$
	, , ,	·	, , ,

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{\rm mg}$	m_{So}/mg	H/cm	<i>t</i> / s	$ ho$ / g/cm 3
$28,2308 \pm 0,0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 30 von 452

Troidl Clarissa
NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 141 Datensatz Nr. 1.119

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,670 \pm 0,022$	$b = 0.6685 \pm 0.0050$	$x = 0.995 \pm 0.027$
	, , ,	, ,	, , ,

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,7929 \pm 0,0092$	$8,6345 \pm 0,0035$	$39,85 \pm 0,59$	$89,51 \pm 0,54$	0,945

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1,243	1,262	1 225	1,249	1,238	1 255	1,234	1,246
d / mm	1,232	1,243	1,202	1,233	1,249	1,236	1,233	1,234	1,240

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 31 von 452

Vialle

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 142 Datensatz Nr. 1.159

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,500 \pm 0,020$	$b = 0.5575 \pm 0.0040$	$x = 1,245 \pm 0,034$
------------	-----------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$23,6214 \pm 0,0070$	$2,9142 \pm 0,0046$	$30,53 \pm 0,49$	$69,40 \pm 0,66$	0,974

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 255	1,238	1 234	1,246	1,262	1,243	1 225	1 252	1,249
d / mm	1,233	1,236	1,234	1,240	1,202	1,243	1,233	1,232	1,249

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 32 von 452

Völker Waldemar

NAME VORNAME

Übungen zu: Auswertung Von Messungen: Fehlerrechnung WS2023/24 Blatt 06/A 143 Datensatz Nr. 1.183

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								•
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,470 \pm 0,019$	$b = 0.6504 \pm 0.0040$	$x = 1,091 \pm 0,030$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$30,\!9829 \pm 0,\!0092$	$6,8245 \pm 0,0035$	$33,75 \pm 0,37$	$76,34 \pm 0,74$	0,962

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,249	1,234	1 252	1,238	1 225	1,246	1,262	1 255	1,243
d / mm	1,249	1,234	1,232	1,236	1,235	1,240	1,202	1,233	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 33 von 452

Vörg

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 144 Datensatz Nr. 1.134

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,530 \pm 0,020$	$b = 0.5804 \pm 0.0040$	$x = 1,306 \pm 0,035$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

A y =	$= 13ax + 14bax^2 + 21ab^3$			
	- 15ux 11bux 21ub	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,\!5840 \pm 0,\!0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d / mm	1,234	1,255	1,243	1,235	1,246	1,252	1,249	1,238	1,262

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 34 von 452

VorbruggNAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 145 Datensatz Nr. 1.151

	1. Abgabe (27.11.2023 14:00 Uhr) 2. Abgabe (01.12.202					.12.2023 16:	23 16:00 Uhr)		
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)		·	·	·		·	·		
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,350 \pm 0,018$	$b = 0.7062 \pm 0.0040$	$x = 1,065 \pm 0,029$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	ut 6 Kugeln – Wägeschale ohne Kugeln –		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1,234	1,246	1 255	1 252	1,249	1 225	1,262	1 228
d / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 35 von 452

Voß Ole

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 146 Datensatz Nr. 1.25

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr			:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·		·		
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,390 \pm 0,018$	$b = 0.9847 \pm 0.0040$	$x = 1,239 \pm 0,034$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	geln Wägeschale ohne Kugeln Höhe des Gefäßes		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1,238	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 36 von 452

Wagner Madelaine

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 147 Datensatz Nr. 1.117

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)								·	
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}$ / mg	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	$35,49 \pm 0,34$	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 37 von 452

Wandersee Malte

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 148 Datensatz Nr. 1.79

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)							·	
Bewertung: Aufgabe2)								
Bemerkung:								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

	Messwerte:	$a = 1,600 \pm 0,021$	$b = 0.7293 \pm 0.0040$	$x = 1,196 \pm 0,032$
- 1				

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Aufgabe2)

Wägeschale mit 7 Kugeln	igeschale mit 7 Kugeln Wägeschale ohne Kugeln Höhe des Gefäße		Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 235	1,234	1,255	1 252
d / mm	1,210	1,230	1,202	1,217	1,213	1,233	1,23	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 38 von 452

Winkler Hannes

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 149 Datensatz Nr. 1.40

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	Abgabe (01	.12.2023 16	:00 Uhr)
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)		·	·	·		·	·	
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,480 \pm 0,019$	$b = 0.9957 \pm 0.0040$	$x = 1,259 \pm 0,034$
Messwerte.	u = 1,400 ± 0,019	<i>v</i> = 0,3337 ± 0,0040	x - 1,239 ± 0,034

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel d/mm	1,238	1,246	1,235	1,262	1,249	1,255	1,252	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 39 von 452

Wojtyniak Raphael

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 150 Datensatz Nr. 1.119

	1.	Abgabe (27	7.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 243	1 235	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,270	1,237	1,230	1,27	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 40 von 452

Wolf Benedict

NAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 1 Datensatz Nr. 1.59

	1. Abgabe (27.11.2023 14:00 Uhr)			2.	2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)								
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

N	Aesswerte:	$a = 1,230 \pm 0,016$	$b = 0,5671 \pm 0,0030$	$x = 1,123 \pm 0,030$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,\!5840 \pm 0,\!0092$	$3,4256 \pm 0,0034$	$33,24 \pm 0,51$	$75,59 \pm 0,58$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 234	1 255	1,243	1 235	1,246	1 252	1,249	1 238	1,262
<i>d</i> / mm	1,234	1,233	1,273	1,233	1,270	1,232	1,27	1,238	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 01 von 452

Wolf

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 2 Datensatz Nr. 1.5

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,230 \pm 0,016$ $b = 0,7196 \pm 0,0030$ $x = 1,073 \pm 0,029$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{\rm mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$27,9453 \pm 0,0080$	$7,2381 \pm 0,0027$	$35,64 \pm 0,62$	$81,21 \pm 0,70$	0,980

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 234	1,246	1 255	1 252	1,249	1 235	1,262	1 238
<i>d</i> / mm	1,243	1,234	1,240	1,233	1,232	1,249	1,233	1,202	1,236

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 02 von 452

Wolff

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 3 Datensatz Nr. 1.127

	1. Abgabe (27.11.2023 14:00 Uhr)				2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)				·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,390 \pm 0,018$	$b = 0.9531 \pm 0.0040$	$x = 0.949 \pm 0.026$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit	
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³	
$23,3244 \pm 0,0078$	$2,6172 \pm 0,0031$	$36,78 \pm 0,43$	$84,26 \pm 0,42$	0,993	

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1 252	1 225	1 255	1,246	1,234	1,262	1 220	1,249	1,243
d / mm	1,232	1,233	1,233	1,240	1,234	1,202	1,238	1,249	1,243

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 03 von 452

Wozny Paulina

NAME VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 4 Datensatz Nr. 1.87

	1.	Abgabe (27	.11.2023 14	:00 Uhr)	2.	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)		·	·			·	·	·		
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte:	$a = 1,420 \pm 0,018$	$b = 0.9127 \pm 0.0040$	$x = 0.943 \pm 0.026$

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,9096 \pm 0,0089$	$4,7512 \pm 0,0042$	35,49 ± 0,34	$80,\!37 \pm 0,\!74$	0,965

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,262	1,249	1 252	1,234	1 225	1,246	1 2/12	1,238	1 255
d / mm	1,202	1,249	1,232	1,234	1,233	1,240	1,243	1,236	1,233

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 04 von 452

Wundling Sandra NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 5 Datensatz Nr. 1.167

	1.	. Abgabe (27	7.11.2023 14	:00 Uhr)	2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)	
Bemerkung: Aufgabe 1)			·			·			
Bewertung: Aufgabe2)									
Bemerkung: Aufgabe2)									

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,330 \pm 0,017$ $b = 0,6833$	\pm 0,0040 $x = 1,236 \pm 0,033$
---	------------------------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	<i>t</i> / s	ho / g/cm ³
$32,1396 \pm 0,0094$	$7,9812 \pm 0,0029$	$37,88 \pm 0,55$	$86,03 \pm 0,56$	0,972

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,246	1,238	1,262	1,249	1,243	1 235	1,234	1 255	1 252
d / mm	1,240	1,230	1,202	1,247	1,273	1,233	1,237	1,233	1,232

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 05 von 452

Wurster
NAME
VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 6 Datensatz Nr. 1.3

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,600 \pm 0,021$	$b = 0.5903 \pm 0.0040$	$x = 1,041 \pm 0,028$
----------------------------------	-------------------------	-----------------------

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$26,5042 \pm 0,0093$	$2,3458 \pm 0,0032$	$35,82 \pm 0,26$	$81,45 \pm 0,38$	0,975

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,238	1,246	1 235	1,262	1,249	1 255	1 252	1,243	1 23/
d / mm	1,236	1,240	1,233	1,202	1,249	1,233	1,232	1,243	1,234

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 06 von 452

Zeiser

NAME

VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 7 Datensatz Nr. 1.174

	1.	1. Abgabe (27.11.2023 14:00 Uhr)			2. Abgabe (01.12.2023 16:00 Uhr)			
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)
Bemerkung: Aufgabe 1)			·	·				·
Bewertung: Aufgabe2)								
Bemerkung: Aufgabe2)								

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $a = 1,250 \pm 0,016$ $b = 0,7072 \pm 0,0030$ $x = 1,160 \pm 0,031$
--

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 6 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	$ ho$ / g/cm 3
$30,1339 \pm 0,0075$	$9,4267 \pm 0,0038$	$36,81 \pm 0,17$	$84,05 \pm 0,30$	0,985

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,243	1 225	1 252	1 255	1,246	1,234	1,238	1,249	1,262
d / mm	1,243	1,233	1,232	1,233	1,240	1,234	1,236	1,249	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 07 von 452

Ziegler
NAME
VORNAME

Übungen zu: AUSWERTUNG VON MESSUNGEN: FEHLERRECHNUNG WS2023/24 Blatt 06/A 8 Datensatz Nr. 1.60

	1.	1. Abgabe (27.11.2023 14:00 Uhr)				2. Abgabe (01.12.2023 16:00 Uhr)				
Bewertung: Aufgabe 1)	1A)	1B)	1C)	1D)	1A)	1B)	1C)	1D)		
Bemerkung: Aufgabe 1)			·	·		·				
Bewertung: Aufgabe2)										
Bemerkung: Aufgabe2)										

AUFGABE 1) Allgemeine Fehlerrechnungsprobleme (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

	Messwerte:	$a = 1,420 \pm 0,018$	$b = 0.6344 \pm 0.0040$	$x = 1,055 \pm 0,029$
- 1				

Geben Sie für folgende Auswertegleichungen die Messergebnisse y inklusive Standardfehler Δy an, wenn Sie obige fehlerbehaftete Messwerte verwenden (zwei signifikante Stellen beim Fehler).

		1. Abgabe	2. Abgabe	
A	$y = 13ax + 14bax^2 + 21ab^3$	±	±	
В	$y = exp\left(\frac{a-x}{x}\right)$	±	±	
C	$y = b \sin(ax)$	±	±	
D	$y = \frac{x - a}{b + x}$	±	±	

Die Angabe der jeweiligen partiellen Ableitungen ist nicht erforderlich. Sie werden aber von den Korrekteuren überprüft, wenn die partiellen Ableitungen sauber und lesbar auf diesem Blatt (RÜCKSEITE) aufgelistet sind.

AUFGABE 2) Fehlerfortpflanzungsgesetz zu: Messung der Zähigkeit nach Stokes (Verwenden Sie Gauß'sche Fehlerfortpflanzung!)

Messwerte: $g = 9.810 \text{ m/s}^2 \text{ (fehlerfrei)}$

Wägeschale mit 7 Kugeln	Wägeschale ohne Kugeln	Höhe des Gefäßes	Fallzeit der Kugel	Dichte der Flüssigkeit
$m_{\rm Sm}/{ m mg}$	m_{So}/mg	H/cm	t/s	ρ / g/cm ³
$28,\!2308 \pm 0,\!0094$	$4,0724 \pm 0,0027$	$37,48 \pm 0,38$	$85,83 \pm 0,82$	0,992

Messung	1	2	3	4	5	6	7	8	9
Durchmesser der Kugel	1,234	1,249	1,243	1,238	1 255	1 252	1,246	1 225	1,262
d / mm	1,234	1,249	1,243	1,236	1,233	1,232	1,240	1,233	1,202

Schreiben Sie den Formelapparat für die Fehlerrechnung von Aufgabe 2 auf die RECHTE SEITE dieses Blattes. Hierzu gehört:

- die Gleichung nach der ausgewertet wird
- die Aufzählung der fehlerbehafteten Messgrößen
- der Ansatz für das Fehlerfortpflanzungsgesetz
- alle evtl. notwendigen partiellen Ableitungen
- Auswertegleichung von η mit Werten in SI-Einheiten

Geben Sie die folgende Zwischenergebnisse inklusive Standardfehler (zwei signifikante Stellen) an und verwenden Sie SI-Einheiten.

	1. Abgabe	2. Abgabe	
Radius einer Kugel	±	±	
Masse einer Kugel	±	±	
Höhe des Gefäßes	±	±	
Fallzeit der Kugel	±	±	
Dichte der Flüssigkeit	±	±	

Berechnen Sie die Zähigkeit η mit ihrem absoluten Fehler.

Verwenden Sie dazu nicht die oben niedergeschriebenen gerundeten Zwischenergebnisse, sondern die Ausgangswerte mit möglichst großer Stellenzahl.

	1. Abgabe	2. Abgabe	
Zähigkeit	±	±	

Formelapparat zu Aufgabe 2:

Seite 08 von 452