

Tiesinių lygčių sistemų sprendimas:

- Iteraciniai metodai
- Sprendinio tikslumas

Temoje aiškinama:

- TLS tiesioginių sprendimo metodų santrauka. Iteracinių sprendimo metodų poreikis;
- Paprastųjų iteracijų algoritmas TLS sprendimui;
- Gauso-Zeidelio algoritmas;
- TLS laisvųjų narių vektoriaus paklaidos įtaka sprendinio paklaidai. Matricos sąlygotumo skaičius;

TLS tiesioginių sprendimo metodų santrauka. Iteracinių sprendimo metodų poreikis

Prisiminkime:

0 1 0 0

 $|x \ x \ x \ x| | 0 \ 0 \ 1 \ 0 |$

 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ \end{bmatrix} x & x & x & x \\ \end{bmatrix}$

tiesioginiai (kintamųjų eliminavimu paremti) algoritmai

Prisiminkime:

tik šie algoritmai veikia, esant singuliariai koeficientų matricai

QR skaida

Prisiminkime: skaitiniai tiesinių algebrinių lygčių sistemų sprendimo algoritmai

- Tiesioginiai sprendinys gaunamas algebriškai pertvarkant lygčių sistemą (t.y.koeficientų matrica skaičiuojant pertvarkoma)
- Iteraciniai koeficientų matrica išlieka nepakitusi. Sprendinį apskaičiuojame nuosekliaisiais artiniais

Iteraciniai TLS sprendimo metodai ypač svarbūs, kai TLS matricos yra retosios (sparse)

 Pasitaiko, kad koeficientų matricoje yra daug nulinių koeficientų. Tokias matricas vadiname *retosiomis*. Jas saugant stačiakampiame pavidale, kompiuterio atmintis būtų panaudojama labai neekonomiškai. Joms saugoti naudojami specialūs kompiuterio atmintį taupantys

duomenų formatai;

- Taikant tiesioginius TLS sprendimo algoritmus, sprendimo metu koeficientų matricos retoji struktūra gali pasikeisti ir užimti žymiai daugiau atminties, nei pradinė matrica;
- Srendžiant TLS iteraciniais metodais, koeficientų matrica nekinta. Pakanka turėti našų algoritmą, kuris padaugina retąją matricą iš vektoriaus

Paprastųjų iteracijų algoritmo taikymas tiesinių lygčių sistemai (1)

$$[\mathbf{A}] \quad \{\mathbf{x}\} = \{\mathbf{b}\}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{cases} b_1 \\ b_2 \\ b_3 \end{pmatrix};$$
 reikia sukeisti vietomis lygtis arba kintamuosius. Pavyzdžiui, sukeitus vietomis kintamuosius x2 ir x3, susikeičia vietomis 2-as ir 3-ias matricos A stulpeliai

Jeigu įstrižainėje yra "0" reikšmė, reikia sukeisti vietomis lygtis ir 3-ias matricos A stulpeliai

$$\begin{bmatrix} 1 & \frac{a_{12}}{a_{11}} & \frac{a_{23}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 1 & \frac{a_{23}}{a_{22}} \\ \frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{33}} & 1 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{Bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_1}{a_{22}} \\ \frac{b_1}{a_{33}} \end{Bmatrix};$$

Metodas konverguoja greičiau, kai įstrižainėje yra absoliutiniu dydžiu didesni koeficientai

Paprastųjų iteracijų algoritmo taikymas tiesinių lygčių sistemai (2)_{Laisvai parinkti skaičiai, nuo kurių}

galėtų priklausyti konvergavimo sparta. Pradžioje dažniausiai imama α =1

$$\begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} + \begin{bmatrix} 1 - \alpha_1 & \frac{a_{12}}{a_{11}} & \frac{a_{23}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & 1 - \alpha_2 & \frac{a_{23}}{a_{22}} \\ \frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{33}} & 1 - \alpha_3 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \\ x_3 \end{Bmatrix} = \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_1}{a_{22}} \\ \frac{b_1}{a_{33}} \end{bmatrix};$$

$$\left[\boldsymbol{\alpha} \right] \left\{ \mathbf{x} \right\} \quad + \quad \left[\tilde{\mathbf{A}} \right] \quad \left\{ \mathbf{x} \right\} \quad = \quad \left\{ \tilde{\mathbf{b}} \right\}$$

$$\left\{\mathbf{x}\right\}^{(k+1)} = \left[\boldsymbol{\alpha}\right]^{-1} \left(\left\{\tilde{\mathbf{b}}\right\} - \left[\tilde{\mathbf{A}}\right] \left\{\mathbf{x}\right\}^{(k)}\right)$$
Paprastųjų iteracijų algoritmas

$$\left\{\mathbf{x}\right\}^{(0)}$$
 - pradinis artinys

Iteracijų pabaigos sąlyga:

$$\frac{\left\|\left\{\mathbf{x}\right\}^{(k+1)} - \left\{\mathbf{x}\right\}^{(k)}\right\|}{\left\|\left\{\mathbf{x}\right\}^{(k+1)}\right\| + \left\|\left\{\mathbf{x}\right\}^{(k)}\right\|} < \varepsilon$$

Suprastintas vektorių ir matricų žymėjimas

$$\left\{ \mathbf{x} \right\}^{(k+1)} = \left[\boldsymbol{\alpha} \right]^{-1} \left(\left\{ \tilde{\mathbf{b}} \right\} - \left[\tilde{\mathbf{A}} \right] \left\{ \mathbf{x} \right\}^{(k)} \right)$$

$$\mathbf{x}^{(k+1)} = \left[\boldsymbol{\alpha} \right]^{-1} \left(\tilde{\mathbf{b}} - \tilde{\mathbf{A}} \quad \mathbf{x}^{(k)} \right)$$

$$\left[\boldsymbol{\alpha} \right] = \begin{bmatrix} \alpha_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{bmatrix}$$

- Dažniausiai vektorius žymimas riestiniais { }, ø matrica laužtiniais [] skliausteliais;
- Siekiant mažesnio simbolių skaičiaus formulėse, vektoriai ir matricos gali būti žymimi be skliaustelių, t.y. vien tik storesnių linijų (Bold) šriftu. Jų elementai žymimi įprastiniu šriftu;
- Vektorius dažniausiai žymimas mažaja, o matrica didžiaja raide. Esant suprastintam žymėjimui, tik taip juos galime atskirti vieną nuo kito;
- Pagal reikalą, papildomai galima panaudoti ir skliaustelius. Taip pabrėžiame, kad dydis yra matrica arba vektorius

Paprastųjų iteracijų algoritmas MATLAB

Pvz_SMA_4_1_Paprastuju_iteraciju_ir_Gauso_Zeidelio_algoritmai.m

```
A = [ 1 -1 0 0;
         \begin{bmatrix} \mathbf{1} & \mathbf{2} & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{2} & -\mathbf{1} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1} & \mathbf{2} \end{bmatrix}
\begin{bmatrix} \frac{1}{a_{11}} & 0 & 0 \\ 0 & \frac{1}{a_{22}} & 0 \\ 0 & 0 & \frac{1}{a_{32}} \end{bmatrix}
\begin{bmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}
\begin{bmatrix} \mathbf{1} - \boldsymbol{\alpha}_1 & \frac{a_{12}}{a_{11}} & \frac{a_{23}}{a_{11}} \\ \frac{a_{21}}{a_{22}} & \mathbf{1} - \boldsymbol{\alpha}_2 & \frac{a_{23}}{a_{22}} \\ \frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{33}} & \mathbf{1} - \boldsymbol{\alpha}_3 \end{bmatrix}
size (A,1)
b=[2;0;0;0]
n=size(A,1)
alpha=[1,1,1,1];  % metodo parametrai
Atld=diag(1./diag(A))*A-diag(alpha);
btld=diag(1./diag(A))*b;
                                                                                                                                       nitmax=1000; eps=1e-12;
x=zeros(n,1); %pradinis artinys
for it=1:nitmax
                                                                                                                                           \{\mathbf{x}\}^{(k+1)} = [\boldsymbol{\alpha}]^{-1} (\{\tilde{\mathbf{b}}\} - [\tilde{\mathbf{A}}] \{\mathbf{x}\}^{(k)})
      x1=(btld-Atld*x)./alpha; <
      tikslumas=norm(x1-x)/(norm(x)+norm(x1));
                                                                                                                                                                        \frac{\left\|\left\{\mathbf{x}\right\}^{(k+1)} - \left\{\mathbf{x}\right\}^{(k)}\right\|}{\left\|\left\{\mathbf{x}\right\}^{(k+1)}\right\| + \left\|\left\{\mathbf{x}\right\}^{(k)}\right\|} < \varepsilon
       if tikslumas < eps, break, end
      x=x1:
end
```

Paprastųjų iteracijų algoritmas Python

Pvz_SMA_4_01_Paprastuju_iteraciju_ir_Gauso_Zeidelio_algoritmai.py

```
 \begin{bmatrix} 1, -1, & 0, & 0 \end{bmatrix}, \\ [-1, & 2, & -1, & 0 \end{bmatrix}, \\ [0, & -1, & 2, & -1 \end{bmatrix}, \\ [0, & 0, & -1, & 2 \end{bmatrix}]).astype(np.float) \begin{bmatrix} \frac{1}{a_{11}} & 0 & 0 \\ 0 & \frac{1}{a_{22}} & 0 \\ 0 & 0 & \frac{1}{a_{33}} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\ \begin{bmatrix} a_{21} & 1 - \alpha_2 & \frac{a_{23}}{a_{22}} \\ \frac{a_{31}}{a_{33}} & \frac{a_{32}}{a_{22}} & 1 - \alpha_3 \\ \end{bmatrix}   \begin{bmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{22} \\ \end{bmatrix}   \begin{bmatrix} a_{21} & 1 - \alpha_2 & \frac{a_{23}}{a_{22}} \\ a_{31} & a_{32} & 1 - \alpha_3 \\ \end{bmatrix}   \begin{bmatrix} a_{31} & a_{32} & a_{32} \\ a_{33} & a_{32} & 1 - \alpha_3 \\ \end{bmatrix}   \begin{bmatrix} a_{11} & a_{12} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{33} & a_{32} & 1 - \alpha_3 \\ \end{bmatrix} 
A=np.matrix([[ 1, -1, 0, 0],
b=np.array([[2],[0],[0],[0]]).astype(np.float)
n=np.shape(A)[0]
alpha=np.array([1, 1, 1, 1]) # laisvai parinkti metodo parametrai
Atld=np.diag(1./np.diag(A)).dot(A)-np.diag(alpha)
btld=np.diag(1./np.diag(A)).dot(b)
                                                                                                                                                           \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha \end{bmatrix}
nitmax=1000; eps=1e-12;
x=np.zeros(shape=(n,1)); x1=np.zeros(shape=(n,1));
         for it in range (0,nitmax):
```


Paprastųjų iteracijų metodo konvergavimo sparta esant skirtingoms α reikšmėms

Gauso-Zeidelio algoritmas

Gauso-Zeidelio iteracijų algoritmo taikymas tiesinių lygčių sistemai

$$\mathbf{x}^{(k+1)} = \mathbf{\alpha}^{-1} \left(\tilde{\mathbf{b}} - \tilde{\mathbf{A}} \mathbf{x}^{(k)} \right)$$

Paprastųjų iteracijų algoritmas

$$x_i^{(k+1)} = \frac{1}{\alpha_i} \left(\tilde{b}_i - \sum_{j=1}^{i-1} \tilde{a}_{ij} x_j^{(k+1)} - \sum_{j=i}^{n} \tilde{a}_{ij} x_j^{(k)} \right), \quad i = 1:n$$

Gauso-Zeidelio iteracijų algoritmas

Gauso-Zeidelio iteracijų algoritmas MATLAB

Pvz_SMA_4_1_Paprastuju_iteraciju_ir_Gauso_Zeidelio_algoritmai.m

```
A = [ 1 -1 0 0;
    -1 2 -1 0;
     0 -1 2 -1;
     0 0 -1 21
b=[2;0;0;0]
n=size(A,1)
alpha=[1,1,1,1]; % metodo parametrai
                                                   x_i^{(k+1)} = \frac{1}{\alpha_i} \left( \tilde{b}_i - \sum_{i=1}^{i-1} \tilde{a}_{ij} x_j^{(k+1)} - \sum_{i=i}^{n} \tilde{a}_{ij} x_j^{(k)} \right), \quad i = 1:n
Atld=diag(1./diag(A))*A- diag(alpha);
btld=diag(1./diag(A))*b;
nitmax=1000; eps=1e-12;
x=zeros(n,1);x1=x; %pradinis artinys
for it=1:nitmax
   for 1=1:n
     x1(i) = (btld(i) - Atld(i,:) *x1) / alpha(i);
  end
  tikslumas=norm(x1-x)/(norm(x)+norm(x1));
   if tikslumas < eps, break, end
  x=x1;
end
```

Gauso-Zeidelio iteracijų algoritmas Python

Pvz_SMA_4_01_Paprastuju_iteraciju_ir_Gauso_Zeidelio_algoritmai

```
A=np.matrix([[1, -1, 0, 0],
               [-1, 2, -1, 0],
               [0, -1, 2, -1],
                [ 0, 0, -1, 2]]).astype(np.float)
b=np.array([[2],[0],[0],[0]]).astype(np.float)
n=np.shape(A)[0]
alpha=np.array([1, 1, 1, 1]) # metodo parametrai
Atld=np.diag(1./np.diag(A)).dot(A)-np.diag(alpha)
btld=np.diag(1./np.diag(A)).dot(b)
                                                         x_{i}^{(k+1)} = \frac{1}{\alpha_{i}} \left( \tilde{b}_{i} - \sum_{j=1}^{i-1} \tilde{a}_{ij} x_{j}^{(k+1)} - \sum_{j=i}^{n} \tilde{a}_{ij} x_{j}^{(k)} \right), \quad i = 1:n
nitmax=1000; eps=1e-12
x=np.zeros(shape=(n,1));x1=np.zeros(shape=(n,1));
for it in range (0, nitmax):
     for i in range (0,n) : x1[i]=(btld[i]-Atld[i,:].dot(x1))/alpha[i];
     prec=(np.linalg.norm(x1-x)/(np.linalg.norm(x)+np.linalg.norm(x1)))
     if prec < eps : break</pre>
     x[:]=x1[:]
```


Paprastųjų iteracijų ir Gauso-Zeidelio metodai:

konvergavimo sparta

Pvz_SMA_4_2_Paprastuju_iteraciju_ir_Gauso_Zeidelio_algoritmai_su_alpha _ciklu.m

Iteraciniai tiesinių lygčių sistemų sprendimo metodai – apibendrinimas (1)

- Svarbiausias iteracinių metodų privalumas, kad vykdant algoritmą koeficientų matrica nekinta. Tai patogu, kai matrica saugoma <u>retuoju pavidalu</u>;
- Iteracinių metodų TLS spręsti yra ir daugiau: jungtinių gradientų(funkcija cgs), mažiausių kvadratų (funkcija Isqr) ir kt. Jie paremti funkcijos minimizavimo algoritmais. Dėl ribotos kurso apimties jų nenagrinėsime

Iteraciniai tiesinių lygčių sistemų sprendimo metodai – apibendrinimas (2)

- Iteraciniais metodais sprendžiant singuliarią TLS, kartais sprendinys gali konverguoti į vieną iš be galo daugelio sprendinių. Tačiau negalėsime padaryti išvados, ar sprendinių be galo daug, ar šis sprendinys vienintelis;
- Jeigu sprendinys nekonverguoja, gali būti, kad sistema neturi sprendinių. Tačiau taip pat gali būti, kad nekonverguoja tik dėl nesėkmingai parinktų alfa koeficientų, nors TLS turi vienintelį sprendinį;
- Dažniausiai iteraciniais metodais sprendžiame nesinguliarias sistemas, kurios turi vienintelį sprendinį

TLS laisvųjų narių vektoriaus paklaidos įtaka sprendinio paklaidai. Matricos sąlygotumo skaičius

Laisvųjų narių vektoriaus paklaidos įtaka sprendinio paklaidai

$$\mathbf{A}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{b} + \Delta \mathbf{b}$$

$$\mathbf{A} \cdot \Delta \mathbf{x} = \Delta \mathbf{b}$$

- Nepalanku, jeigu mažos laisvųjų narių vektoriaus paklaidos galėtų sukurti ženklias sprendinio paklaidas;
- Nustatysime skaliarinį įvertį, kaip laisvųjų narių vektoriaus paklaidos įtakoja sprendinio paklaidas;
- Panaudosime matricos ir vektoriaus normų sąvokas

Vektorių ir matricų normos

Pagal apibrėžimą, *norma yra matricą ar vektorių apibūdinantis neneigiamas skaičius*, tenkinantis tokias sąlygas:

$$\|\mathbf{A}\| \ge 0;$$

$$\|\alpha \mathbf{A}\| = \alpha \|\mathbf{A}\|;$$

$$\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|;$$

$$\|\mathbf{A} \cdot \mathbf{B}\| \le \|\mathbf{A}\| \cdot \|\mathbf{B}\|;$$

Naudosime Euklido normas:

$$\|[\mathbf{A}]\| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^2}; \qquad \|\{\mathbf{x}\}\| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

MATLAB-e: norm(A) norm(x)

Python-e: np.linalg.norm(A) np.linalg.norm(x)

Laisvųjų narių ir sprendinio santykinių paklaidų tarpusavio priklausomybė

Matricos sąlygotumo skaičiaus apskaičiavimas

[A] lormulę taikyti nėra racionalu dėl didelio veiksmų skaičiaus;

Greičiau skaičiuojama, matricos sąlygotumo skaičių išreiškiant per *matricos tikrines reikšmes:*

$$\det\left(\begin{bmatrix}\mathbf{A}\end{bmatrix} - \sigma\begin{bmatrix}\mathbf{E}\end{bmatrix}\right) = 0 \qquad \Rightarrow \qquad \sigma_1, \sigma_2, ..., \sigma_n$$

$$\|\begin{bmatrix}\mathbf{A}\end{bmatrix}\| \cdot \|\begin{bmatrix}\mathbf{A}\end{bmatrix}^{-1}\| = \frac{\max\limits_{1 \leq i \leq n} \sigma_i}{\min\limits_{1 \leq i \leq n} \sigma_i}$$

MATLAB: $norm(A)^* norm(inv(A))$ cond(A)

Python: Ainv= np.linalg.inv(A)

Matricų sąlygotumo skaičių pavyzdžiai

Pvz_SMA_4_3_Jautrumas_paklaidoms.m

CondNumb=cond(A)

$$\frac{\left\|\Delta\left\{\mathbf{x}\right\}\right\|}{\left\|\left\{\mathbf{x}\right\}\right\|} \leq \left\|\left[\mathbf{A}\right]\right\| \cdot \left\|\left[\mathbf{A}\right]^{-1}\right\| \frac{\left\|\Delta\left\{\mathbf{b}\right\}\right\|}{\left\|\left\{\mathbf{b}\right\}\right\|}$$

$$CondNumb = 1$$

$$CondNumb = 6.9511$$

$$CondNumb = 1.9890e + 0.03$$

$$CondNumb = 9$$

$$CondNumb = 70.7940$$

$$CondNumb = 1.9850e + 005$$

$$5x + 7y = 12; \\ 7x + 10y = 17$$

$$3 \\ 2.5 \\ 1.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 1.5$$

- Lygčių sistemą apytiksliai tenkina ir kitos skaičių poros, gana skirtingos nuo tikrojo sprendinio;
- Priežastis yra <u>didelė matricos sąlygotumo skaičiaus reikšmė</u>. Ši situacija žodžiais įvardinama įvairiai : *matrix close to singular; ill-conditioned; poorly(badly) defined,* ir pan.

x=1; *y*=1

SMA_04_Klausimai savikontrolei:

- Koks yra esminis tiesioginių ir iteracinių tiesinėms algebrinių lygčių sistemoms taikomų metodų skirtumas;
 Kaip reikia pertvarkyti lygčių sistemos koeficientų matricą, prieš pradedant taikyti Paprastųjų iteracijų algoritmą;
- Kokį vaidmenį atlieka koeficientai "alpha" Paprastųjų iteracijų algoritme.
 Ką jie įtakoja?
- 3. Kas yra sprendimo proceso konvergavimas arba divergavimas. Kokia jų sąsaja su koeficientų "alpha" reikšmėmis;
- Pagal kokias sąlygas stabdomas sprendimo Paprastųjų iteracijų metodu procesas;
- Paaiškinkite, kuo Gauso-Zeidelio algoritmas skiriasi nuo Paprastųjų iteracijų algoritmo;
- Kaip nustatoma lygčių sistemos dešiniosios pusės vektoriaus santykinės paklaidos įtaka gauto sprendinio reikšmei;
- Kas yra matricos sąlygotumo skaičius. Kaip jį apskaičiuoti, taikant MATLAB arba Python funkcijas