Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved. Figures reproduced with permission from Princeton University Press.

6.1: Learning

•

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Outline

- Bayesian learning
 - repeated actions, observe each other
- DeGroot model
 - repeated communication, ``naïve'' updating

Bayesian Learning

- Will society converge
- Will they aggregate information properly? ...

Bala Goyal 98

- n players in an undirected component g
- Choose action A or B each period
- A pays 1 for sure, B pays 2 with probability p and 0 with probability 1-p

Learning

- Each period get a payoff based on choice
- Also observe neighbors' choices
- Maximize discounted stream of payoffs $E \left[\; \Sigma_t \; \delta^t \; \pi_{it} \; \right]$
- p is unknown takes on finite set of values

Challenges Bayesian Learning:

Proposition

If p is not exactly 1/2, then with probability 1 there is a time such that all agents in a given component play just one action (and all play the same action) from that time onward

Sketch of Proof

- Suppose contrary
- Some agent in some component plays B infinitely often
- That agent will converge to true belief by the law of large numbers
- Must be that belief converges to p > 1/2, or that agent would stop playing B

Proof continued

- With probability 1, all agents who see B played infinitely often converge to a belief that B pays 2 with prob p>1/2
- Neighbors of agent must play B, after some time, and so forth
- All agents must play B from some time on

Play the right action?

- If B is the right action then play the right action if converge to it, but might not
- If A is the right action, then must converge to right action

Probability of Converging to "correct" action

 Arbitrarily high if each action has some agent who initially has arbitrarily high prior that the action is the best one

Conclusions

Consensus action chosen

Not necessarily consensus belief

Speed of convergence?

Limitations

- Homogeneity of actions and payoffs across players
- What if heterogeneity?
- Repeated actions over time
- Stationarity
- Networks are not playing role here!

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

6.2:DeGroot Model

Outline

- Bayesian learning
 - repeated actions, observe each other

- DeGroot model
 - repeated communication, ``naïve'' updating

Outline: DeGroot Model

Basic Definitions

- When is there convergence?
- When is there a consensus?
- Who has influence?
- When is the consensus accurate?

Network Structure and Learning

- Repeated communication
- Information comes only once
- See how information disseminates
- Who has influence, convergence speed, network structure impact...

Bounded Rationality Model

- Repeatedly average beliefs of self with neighbors
- Non-Bayesian if weights do not adjust over time
- Can under-weight neighbors (just as in experiments)

DeGroot (1974) Social Interaction Model

- Individuals {1, ... n}
- **T** weighted directed network, stochastic matrix
- Start with beliefs, attitude, etc. b_i(0) in [0,1]
 - can also have these be vectors...
- Updating: $b_i(t) = \sum_i T_{ii} b_i(t-1)$

Example

Example

Other interpretations

Social influence on actions

Random actions (Markov process...)

Page ranks...

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

6.3: Convergence in DeGroot Model

Outline: DeGroot Model

- When is there convergence?
- When is there a consensus?
- Who has influence?
- When is the consensus accurate?

$$T = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad b(1) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} b(1) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/2 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 3/4 \\ 1/2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/4 \\ 3/4 \\ 1/2 \end{pmatrix} \dots + \begin{pmatrix} 2/5 \\ 2/5 \\ 2/5 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad b(1) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad b(1) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$b(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad b(1) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \dots \rightarrow$$

Convergence

• T converges if lim Tt b exists for all b

• T is *aperiodic* if the greatest common divisor of its cycle lengths is one

Theorem

Suppose T is strongly connected.

T is convergent if and only if it is aperiodic.

T is convergent if and only if: $\lim T^t = (1,1,...,1)^Ts$ where s is the unique lhs eigenvector with eigenvalue 1

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

6.4: Proof of Convergence Theorem

Theorem

Suppose T is strongly connected.

T is convergent if and only if it is aperiodic.

T is convergent if and only if: $\lim T^t = (1,1,...,1)^Ts$ where s is the unique lhs eigenvector with eigenvalue 1

Proof:

Defn: T is primitive if T^t_{ij}>0 for all ij after some t

- If T is strongly connected and stochastic then it is aperiodic if and only if it is primitive. (Perkins (1961))
- If T is strongly connected and primitive then lim T^t = (1,1,...,1)^Ts

where s is the unique lhs eigenvector with eigenvalue 1 (e.g., see Meyer (2000))

Proof Cont'd

- So, strongly connected and aperiodic implies convergence.
- Converse comes from showing:

If T is strongly connected, stochastic and convergent, then it is primitive.

Proof Cont'd

• Show:

If T is strongly connected, stochastic and convergent, then it is primitive.

Let S=lim T^t by convergence

Then $ST = \lim_{t \to \infty} T^t T = S$

So each row is a lhs eigenvector with eigenvalue 1: it is a positive vector by Perron-Frobenius theorem (An eigenvector of an irreducible nonnegative matrix is strictly positive *if* (and only if) it is associated with its largest eigenvalue. This vector is unique if the matrix is primitive)

So since S is all positive, T is primitive.

Since, T is primitive then Perron-Frobenius implies the eigenvector is unique, and all rows of S are the same s

Aperiodicity Easy

Aperiodicity is easy to satisfy:

- Have some agent weight him or herself
- Or have at least one communicating dyad and a transitive triple...

Outline: DeGroot Model

Basic Definitions

- When is there convergence?
- When is there a consensus? Just answered: convergence is sufficient, aperiodicity (see G&J11 for details more generally)
- Who has influence?
- When is the consensus accurate?

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

6.5: Influence

•

Outline: DeGroot Model

Basic Definitions

- When is there convergence?
- When is there a consensus?
- Who has influence?
- When is the consensus accurate?

Consensus

 Converge to (normalized) eigenvector weighted sum of original beliefs.

Consensus

$$T = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad T^2 = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{pmatrix}$$

$$T^3 = \begin{pmatrix} 1/2 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \end{pmatrix} \qquad T^4 = \begin{pmatrix} 1/4 & 1/2 & 1/4 \\ 1/2 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 \end{pmatrix}$$

$$T^5 = \begin{pmatrix} 1/2 & 3/8 & 1/8 \\ 1/4 & 1/2 & 1/4 \\ 1/2 & 1/4 & 1/4 \end{pmatrix} \qquad T^\infty = \begin{pmatrix} 2/5 & 2/5 & 1/5 \\ 2/5 & 2/5 & 1/5 \\ 2/5 & 2/5 & 1/5 \end{pmatrix}$$

Consensus

What are Limiting beliefs?

- When group reaches a consensus, what is it?
- Who are the influential agents in terms of steering the limiting belief?
- Must be that the rows of T^t converge to same thing since beliefs converge to same thing for all initial vectors

Influence:

Limit
$$\begin{pmatrix}
1/3 & 1/3 & 1/3 & 1\\
1/2 & 1/2 & 0 & 0\\
0 & 1/4 & 3/4 & 0
\end{pmatrix} = \begin{pmatrix}
3/11 \\
3/11 \\
3/11
\end{pmatrix}$$
Limit
$$\begin{pmatrix}
1/3 & 1/3 & 1/3 & 1\\
1/2 & 1/2 & 0 & 0\\
0 & 1/4 & 3/4 & 0
\end{pmatrix} = \begin{pmatrix}
4/11 \\
4/11 \\
4/11
\end{pmatrix}$$
Limit
$$\begin{pmatrix}
1/3 & 1/3 & 1/3 & 1\\
0 & 1/4 & 3/4 & 0
\end{pmatrix} = \begin{pmatrix}
4/11 \\
4/11 \\
4/11
\end{pmatrix}$$
Limit
$$\begin{pmatrix}
1/3 & 1/3 & 1/3 & 1\\
1/2 & 1/2 & 0 & 0\\
0 & 1/4 & 3/4 & 1
\end{pmatrix} = \begin{pmatrix}
4/11 \\
4/11 \\
4/11
\end{pmatrix}$$

Influence Measure

- What do rows of T^t converge to?
- Look for a row vector s indicating the relative influence each agent has limit belief is s b
- Note that s b = s T b
- So, s = s T : s is the left unit eigenvector

Who has Influence

- $s_i = \sum_j T_{ji} s_j$
- High influence from being paid attention to by people with high influence...
- Power measures, Google Page Ranks
- Related to eigenvector centrality...

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

6.6: Examples of Influence

Outline: DeGroot Model

Basic Definitions

- When is there convergence?
- When is there a consensus?
- Who has influence?
- When is the consensus accurate?

Stubborn Agents

- An agent who places high weight on self will maintain belief while others converge to that agent's belief
- Groups that are highly introspective will have substantial influence.

Another Example: Influence

- Suppose equally weight connections
- Suppose also that $T_{ij}>0$ if and only if $T_{ji}>0$
- d_i is i's out degree
- So, T_{ij}=1/d_i for each i and j that i has a (directed) link to: so weight friends and weight them all equally

Example: Influence

Let D =
$$\sum_k d_k$$

Claim:
$$s_i = d_i/D$$
 for each i

• Recall s is unit eigenvector: $s_i = \sum_j T_{ji} s_j$

• Verify that $s_i = \sum_j T_{ji} s_j$

Example: Influence

Claim: $s_i = d_i/D$ for each i

- Recall s is unit eigenvector: $s_i = \sum_j T_{ji} s_j$
- Verify that $s_i = \sum_j T_{ji} s_j$
- $s_i = \sum_j T_{ji} s_j = \sum_{j: Tij>0} (1/d_j) d_j/D = d_i/D$

Krackardt's (1987) advice network:

label	s	level	dept.	age	tenure
1	0.048	3	4	33	9.3
2	0.132	2	4	42	19.6
3	0.039	3	2	40	12.8
4	0.052	3	4	33	7.5
5	0.002	3	2	32	3.3
6	0.000	3	1	59	28
7	0.143	1	О	55	30
8	0.007	3	1	34	11.3
9	0.015	3	2	62	5.4
10	0.024	3	3	37	9.3
11	0.053	3	3	46	27
12	0.051	3	1	34	8.9
13	0.000	3	2	48	0.3
14	0.071	2	2	43	10.4
15	0.015	3	2	40	8.4
16	0.000	3	4	27	4.7
17	0.000	3	1	30	12.4
18	0.106	2	3	33	9.1
19	0.002	3	2	32	4.8
20	0.041	3	2	38	11.7
21	0.201	2	1	36	12.5

Influence

- Provides foundation for eigenvector-based centrality or power measures
- Saw relation of eigenvector to walks g^t gives measure of all walks of length t...

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

6.7: Information Aggregation

٨

Outline: DeGroot Model

- When is there convergence?
- When is there a consensus?
- Who has influence?
- When is the consensus accurate?

When is Information Aggregation Accurate:

- How does this depend on network structure?
- How does it depend on influence?
- How does it relate to speed of convergence

Uncertainty Structure

- Suppose true state is μ
- Agent i sees $b_i(0) = \mu + \varepsilon_i$
- ϵ_i has 0 mean and finite variance, bounded below and above,
- signal distributions may differ across agents, but are independent conditional on μ

Wise Crowds

- Consider large societies
- If they pooled their information, they would have an accurate estimate of μ
- For what sequences of societies indexed by n does

Prob $\lim_{t} [|b_{j}^{n}(t) - \mu| > \delta] \rightarrow_{n} 0 \text{ for all } \delta, j$?

A Weak Law of Large Numbers:

Let ε_i 's be independent, zero mean, and each have finite variance (bounded below). Then:

plim
$$\sum s_i^n \varepsilon_i = 0$$
 iff $\max_i s_i^n \to 0$

Wise crowds iff max influence vanishes

A Weak Law of Large Numbers:

Let ε_i 's be independent, zero mean, and each have finite variance (bounded below). Then:

plim
$$\sum s_i^n \varepsilon_i = 0$$
 iff $\max_i s_i^n \to 0$

Wise crowds iff max influence vanishes: recall that

$$\lim_{t} b_{j}^{n}(t) = \sum_{i} s_{i}^{n} b_{i}^{n}(0)$$
$$= \sum_{i} s_{i}^{n} (\mu + \epsilon_{i})$$
$$= \mu + \sum_{i} s_{j}^{n} \epsilon_{j}$$

So: plim $(\lim_t b_j^n(t)) = \mu$ iff plim $(\sum s_j^n \epsilon_j) = 0$, iff max_i $s_i^n \to 0$

Reciprocal Attention:

Suppose that T is column stochastic (so each agent receives weight one). Then s=(1/n,...1/n) is a unit lhs eigenvector, and so T is wise.

So, reciprocal trust implies wisdom.

But that is a very strong condition...

No Opinion Leaders

- $s_i = \sum_j T_{ji} s_j$
- If there is some i with T_{ji}> a >0 for all j, then s_i >a
- So clearly cannot have too strong an "opinion leader"

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

6.8: Learning Summary

Summary

Convergence/Consensus if and only if aperiodicity

 Limiting influence related to eigenvectors and weights from influential neighbors

• Wise crowds: nobody retains too much influence

Learning Models

- Bayesian is computationally demanding in network settings
- Restricted Bayesian gives consensus network not much of a role
- DeGroot and other myopic models bring network into play
- Can reach consensus, can be wise
- Influence and speed are tractable...

To do list:

- Between myopic and rational?
- Richer settings with strategic considerations (political...)
- Translate social structure to learning conclusions: homophily, etc.

Week 6 Wrap

- Rational/Bayesian learning: complex but leads to consensus actions if: homogeneous, repeated observations, stationary
- Network Structure: DeGroot model
 - tractable repeated discussions
 - eventual consensus for many structures (speed depends on homophily)
 - influence depends on how much listened to rationalizes eigenvector-style centrality measures
 - accurate beliefs depend on balance

Week 6: References in order mentioned

- Bala, V., and S. Goyal (1998) "Learning from Neighbors," Review of Economic Studies 65:595–621.
- Acemoglu D, Dahleh M, Lobel I, Ozdaglar A. 2011. Bayesian learning in social networks., Review of Economic Studies, 78:4, 1201-1236.
- DeGroot, M.H. (1974) "Reaching a Consensus," Journal of the American Statistical Association 69:118–121.
- French, J. (1956): A Formal Theory of Social Power, Psychological Review, 63: 181-194.
- Harary F. 1959. "Status and Contrastatus." Sociometry, 22(1): 23–43.
- Friedkin, Noah E., and Eugene C. Johnsen. 1997. "Social Positions in Influence Networks." Social Networks, 19(3): 209–22
- DeMarzo, Peter M., Dimitri Vayanos, and Jeffrey Zwiebel. 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions." *Quarterly Journal of Economics*, 118(3): 909–68.
- Golub B, Jackson MO. 2010. "Naive learning and influence in social networks: convergence and wise crowds," the *American Economic Journal: Microeconomics*, 2(1): 112-49,
- Golub B, Jackson MO. 2012 "How Homophily affects the Speed of Learning and Best Response Dynamics, *Quarterly Journal of Economics* Vol. 127, Iss. 3, pp 1287—1338
- Jackson, M.O. (2008) Social and Economic Networks, Princeton University Press, Princeton NJ.
- Krackhardt, D. (1987) "Cognitive Social Structures," Social Networks 9:109–134.

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved. Figures reproduced with permission from Princeton University Press.