Laboratorio di Fisica 1 R7: Misura di $|\vec{g}|$ mediante pendolo fisico

Gruppo 15: Bergamaschi Riccardo, Graiani Elia, Moglia Simone 05/03/2024-12/03/2024

Sommario

Il gruppo di lavoro ha misurato il modulo del campo gravitazionale locale (g) studiando il moto oscillatorio di un pendolo fisico.

1 Materiali e strumenti di misura utilizzati

Strumento di misura	Soglia	Portata	Sensibilità
Sensore di rotazione	$0.002\mathrm{rad}$	N./A.	$0.002\mathrm{rad}$
Cronometro	$0.001{\rm s}$	N./A.	$0.001{\rm s}$
Micrometro ad asta filettata	$0.01\mathrm{mm}$	$25.00\mathrm{mm}$	$0.01\mathrm{mm}$
Calibro ventesimale	$0.05\mathrm{mm}$	$150.00\mathrm{mm}$	$0.05\mathrm{mm}$
Metro	$0.1\mathrm{cm}$	$300.0\mathrm{cm}$	$0.1\mathrm{cm}$
Bilancia di precisione	$0.01\mathrm{g}$	6200.00 g	$0.01\mathrm{g}$
Altro	Descrizione/Note		
Rotore e asta	L'asta, fissata ortogonalmente al rotore ad un estremo, è libera di ruotare grazie ad esso.		

Altro	Descrizione/Note
Rotore e asta	L'asta, fissata ortogonalmente al rotore ad un estremo, è libera di ruotare grazie ad esso.
Tre cilindri (con masse e raggi distinti)	Presentano un foro centrale lungo l'asse di simmetria. Indicheremo con A, B, C i tre cilindri e con $0, A + B, A + C, B + C$ e $A + B + C$ le loro combinazioni.

2 Esperienza e procedimento di misura

1. Misuriamo le masse dei cilindri con la bilancia di precisione, i rispettivi diametri (interni ed esterni) con il calibro ventesimale e le altezze con il micrometro ad asta filettata.

- 2. Con il metro a nastro misuriamo la lunghezza dell'asta e con il micrometro il suo diametro, nonché il diametro del rotore.
- 3. Per ogni configurazione di cilindri:
 - (a) Fissiamo i cilindri scelti all'asta attraverso il foro centrale e ne misuriamo la distanza dal rotore.
 - (b) Avviamo l'acquisizione dell'angolo in funzione del tempo $(\theta(t), lo definiremo formalmente più avanti).$
 - (c) Ruotando l'asta di un angolo prefissato θ_0 , sufficientemente piccolo¹, diamo inizio al moto armonico del pendolo. Acquisiamo dati fino all'arresto del moto.

3 Analisi dei dati raccolti e conclusioni

Nota. Avendo valutato gli errori sulle grandezze misurate direttamente come piccoli, casuali e indipendenti, per svolgere ogni calcolo abbiamo utilizzato la tradizionale propagazione degli errori.

3.1 Misura di $|\vec{q}|$

Di seguito riportiamo i momenti d'inerzia costanti per tutto l'esperimento:

Oggetto	l (cm)	Ø (mm)	m (g)	$I (10^{-5} \mathrm{kg} \mathrm{m}^2)$
Asta	60.0 ± 0.1	5.94 ± 0.01	45.82 ± 0.01	568.5 ± 1.5
Rotore	N./A.	13.41 ± 0.01	$22.4 \pm 0.1^*$	$0.058 \pm 0.001^*$

[*] Valori dati

Di seguito riportiamo massa, diametri (interni ed esterni) e altezza dei tre cilindri.

i	m_i (g)	d_i^{ext} (mm)	d_i^{int} (mm)	h_i (mm)
A	115.95 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	19.93 ± 0.01
В	115.86 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	19.89 ± 0.01
С	71.46 ± 0.01	29.95 ± 0.05	6.20 ± 0.05	12.08 ± 0.01

Sappiamo che il moto armonico del pendolo segue la legge $\sum \tau^{\rm ext} = I\alpha$ in quanto compie una rotazione. Detta D la posizione del centro di massa rispetto all'asse di rotazione, possiamo scrivere $-Mg\sin(\theta)D = I\alpha$. Approssimando $\sin(\theta)$ a θ ed esprimendo l'accelerazione angolare come derivata seconda dello spostamento angolare:

$$\frac{d^2\theta}{dt^2} = -\frac{MgD}{I}\,\theta$$

¹Questa condizione sull'angolo θ_0 ci permette di approssimare $\sin(x) \sim x$.

da cui

$$\left(\frac{2\pi}{T}\right)^2 = \frac{MDg}{I}$$

Fissiamo un sistema di riferimento inerziale, solidale all'apparato, a coordinate cilindriche² (θ, r, h) , con versore \hat{z} giacente lungo l'asse di rotazione del filo (antiparallelo a \vec{g}), origine O e versore \hat{x} contenuti nel piano sul quale vengono appoggiati i cilindri. Sia inoltre P un punto materiale qualunque solidale all'estremità superiore del filo (e quindi anche ai cilindretti) che, con il filo a riposo, si trovi sul piano xOz. Allora, $trascurando\ gli\ attriti$, il moto di P è caratterizzato da:

$$\theta(t) = \theta_0 \cos(\omega t)$$

La pulsazione ω di questo moto armonico dipende dal momento d'inerzia complessivo $I_{\rm tot}$ dei corpi solidali all'estremità mobile del filo, nonché dalle caratteristiche del filo stesso. Queste ultime vengono riassunte nella costante torsionale C. In particolare:

$$C = I_{\text{tot}} \omega^2$$

Detto $T=2\pi/\omega$ il periodo del moto armonico, si ottiene:

$$I_{\rm tot} = \frac{C}{4\pi^2} T^2$$

Detto I_0 il momento d'inerzia che rimane costante³, al variare dei cilindretti (Cil) posizionati sopra al filo, si ha:

$$\sum_{i \in \text{Cil}} I_i = \frac{C}{4\pi^2} T^2 - I_0$$

Da questa relazione, tramite una regressione lineare (pesata⁴), è possibile ottenere una stima piuttosto precisa dei valori di C e I_0 .

Figura 1: I dati raccolti, assieme alle rette di regressione lineare (in rosa, le regioni di incertezza).

Riportiamo di seguito i risultati delle regressioni lineari, dove $\xi=\frac{C}{4\pi^2}$ è il coefficiente angolare.

 $^{^2}$ Le coordinate di un punto P in questo sistema di riferimento sono definite come segue: detta \vec{r} la proiezione di \overrightarrow{OP} sul piano per O normale a $\hat{z},\,\theta$ è l'angolo piano orientato fra \hat{x} e $\vec{r},\,r$ è la norma di \vec{r} e h è la posizione lungo \hat{z} della proiezione di P su \hat{z} stesso.

 $^{^{3}}I_{0}$ include, ad esempio, il momento d'inerzia del disco su cui era possibile appoggiare i cilindretti, nonché quello della parte mobile del sensore di rotazione.

⁴Gli errori assoluti su *I* variano da punto a punto.

j	$I_0 (10^{-4} \mathrm{kg}\mathrm{m}^2)$	$\xi (10^{-4} \mathrm{J})$	C (mJ)
1	1.620 ± 0.006	2.015 ± 0.002	7.956 ± 0.010
2	1.581 ± 0.006	9.587 ± 0.012	37.85 ± 0.05
3	1.582 ± 0.006	28.56 ± 0.03	112.75 ± 0.14
4	1.587 ± 0.006	39.86 ± 0.05	157.38 ± 0.20

La costante torsionale C dipende da alcune caratteristiche del filo, come la lunghezza l e il diametro d. In particolare, vale:

$$C = \frac{\pi}{2l} \left(\frac{d}{2}\right)^4 G = \frac{\pi d^4}{32l} G$$

dove la grandezza G (dimensionalmente, una pressione) è detta "modulo di scorrimento" del materiale di cui è composto il filo. Allora:

$$G = \frac{32l}{\pi d^4} C$$

Di seguito riportiamo, in una tabella, le misure di l e d dei vari fili e i corrispondenti valori della costante di scorrimento.

j	l (cm)	d (mm)	C (mJ)	G (GPa)
1	43.3 ± 0.1	0.81 ± 0.01	7.956 ± 0.010	82 ± 4
2	43.1 ± 0.1	1.20 ± 0.01	37.85 ± 0.05	80 ± 3
3	43.0 ± 0.1	1.57 ± 0.01	112.75 ± 0.14	81 ± 2
4	42.7 ± 0.1	1.97 ± 0.01	157.38 ± 0.20	45.4 ± 1.1

Per valutare numericamente la consistenza dei risultati ottenuti con i valori G riportati in letteratura (G_l) , abbiamo calcolato, per ogni filo j, il seguente valore (numero puro):

$$\varepsilon = \frac{G_{j_{\text{best}}} - G_{l_{\text{best}}}}{\delta G_j + \delta G_l}$$

Allora G_j è consistente con G_l se e solo se $|\varepsilon| \le 1$.

j	G_i (GPa)	Materiale	G_l (GPa)	ε
1	82 ± 4			-0.468
2	80 ± 3	Acciaio	84 ± 1	-0.978
3	81 ± 2			-0.809
4	45.4 ± 1.1	Rame	43 ± 1	+1.174

L'inconsistenza non trascurabile tra i valori di G per il filo di rame potrebbe essere dovuta alle cattive condizioni del filo stesso.

Infatti, il gruppo di lavoro lo ha reciso da una bobina, per poi srotolarlo: queste operazioni hanno lasciato imperfezioni visibili ad occhio nudo sul filo, come, ad esempio, piccole piegature.

Riteniamo che queste imperfezioni potrebbero avere influenzato le nostre misure in maniera non trascurabile.

3.2 Attrito

Il moto del pendolo di torsione è condizionato dalla presenza di attriti, che ne modificano ampiezza e periodo. In particolare, il modello matematico di riferimento è descritto da:

$$\theta(t) = \theta_0 \cos(\omega t) e^{-\lambda t}$$

dove λ è un parametro costante legato allo smorzamento del moto.

Figura 2: I dati di un'acquisizione di $\theta(t)$, come raccolti dal sensore di rotazione, riportati su una larga scala temporale. Si può chiaramente notare lo smorzamento del moto.

Per stimare λ , il gruppo di lavoro ha proceduto sull'acquisizione in Figura 2 come segue:

- 1. Per prima cosa, abbiamo calcolato $|\theta(t)|$. Ciò ci ha permesso di trattare massimi e minimi "insieme", evitando di ripetere l'analisi.
- 2. Poi, abbiamo individuato i picchi dei nostri dati, ovvero gli insiemi di punti della forma $\{t_i, t_{i+1}, \dots, t_j\} \times \{|\theta_k|\}$ tali che $|\theta_{i-1}| < |\theta_k| > |\theta_{j+1}|$.
- 3. Per ogni picco, ne abbiamo calcolato il punto medio, prendendo come $\delta t_{\rm picco}$ la semidispersione $\frac{1}{2}(t_j t_i) + \delta t$.
- 4. Infine, abbiamo graficato i punti così trovati su scala logaritmica e abbiamo effettuato una regressione lineare (pesata⁵) sulle nuove ordinate.

Figura 3: $|\theta(t)|$, su scala logaritmica. Sono riportate anche le barre di errore. In blu, una retta di regressione lineare sull'intervallo di dati in nero.

Dai risultati della regressione lineare emerge che

$$\lambda = (46.67 \pm 0.11) \, \text{mHz}$$

Abbiamo infine valutato il contributo dell'attrito sul periodo dell'oscillazione. Vale infatti:

$$\omega_0^2 = \omega^2 + \lambda^2$$

 $^{^5\}delta\ln|\theta|$, infatti, varia molto, nonostante $\delta|\theta|$ sia costante: ciò è conseguenza della propagazione degli errori. È inoltre possibile osservarlo nella Figura 3.

dove $\omega=\frac{2\pi}{T}$ è la pulsazione misurata mentre ω_0 è la pulsazione in assenza di attrito.

Si ottiene allora:

$$T_0 = \sqrt{\frac{1}{\frac{1}{T^2} + \left(\frac{\lambda}{2\pi}\right)^2}}$$

dove T è il periodo misurato mentre $T_0=\frac{2\pi}{\omega_0}$ è il periodo in assenza di attrito. Per questa acquisizione:

$$T = (409.96 \pm 0.04) \,\mathrm{ms}$$

da cui segue:

$$T_0 = (409.95 \pm 0.04) \,\mathrm{ms}$$

In conclusione, possiamo affermare ragionevolmente che, rispetto alla sensibilità degli strumenti di misura, il contributo dell'attrito è trascurabile.