Rohit Tripathy

#5 225 South River Road West Lafayette, IN, USA

+1-765-476-6988 rtripath@purdue.edu , rohitkt10@gmail.com

EDUCATION

Purdue University

West Lafayette, IN

PhD., Mechanical Engineering; GPA - 3.8/4.0

January. 2016 - May 2020 (expected)

- Advisor: Prof. Ilias Bilionis
- Research focused on surrogate modeling for high-dimensional and multifidelity uncertainty quantification using deep neural networks and Gaussian-processes.
- Currently working on physics-informed machine learning.

Purdue University

West Lafayette, IN

MS., Mechanical Engineering; GPA - 3.61/4.0

 $August\ 2014\text{-}December\ 2015$

VIT University
B. Tech., Mechanical Engineering; GPA - 9.04/10.0.

July 2010-May 2014

WORK EXPERIENCE

Math and CS division, Argonne National Laboratory

Lemont, IL

Vellore, India

Givens Associate (PhD intern)

May 2017 - August 2017

- Recurrent deep neural network architectures (RNNs/LSTMs) for wind-speed forecasting.

QR Commodities, JPMorgan Chase & Co.

New York City, NY

Quantitative Research-Machine Learning Summer Associate

May 2018 - August 2018

- Deep neural networks for pricing spread options in the high-correlation limit.

QR Spread (EMM), JPMorgan Chase & Co.

New York City, NY

Quantitative Research-Machine Learning Summer Associate

May 2019 - August 2019

- Machine learning based alpha signal generation model for investment grade US corporate bonds.

PUBLICATIONS AND PREPRINTS

- Rohit Tripathy, Ilias Bilionis, and Marcial Gonzalez. Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagation. Journal of Computational Physics 321 (2016): 191-223.
- Rohit Tripathy, Ilias Bilionis. Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification. Journal of Computational Physics 375 (2018): 565-588.
- Rohit Tripathy, Ilias Bilionis. Deep active subspaces—a scalable method for high-dimensional uncertainty propagation. arXiv preprint arXiv:1902.10527 (2019) (accepted for publication at ASME IDETC 2019 conference).
- Sharmila Karumuri, **Rohit Tripathy**, Ilias Bilionis, Jitesh Panchal, Simulator-free Solution of High-Dimensional Stochastic Elliptic Partial Differential Equations using Deep Neural Networks., ArXiv preprint arXiv:1902.05200 (2019) (under review at the Journal of Computational Physics).

SELECTED TALKS / PRESENTATIONS

ASME IDETC-CIE 2019

Anaheim, CA

Deep active subspaces for high-dimensional uncertainty quantification.

March~2019

SIAM CSE 2019

Spokane, WA

DNN response surfaces for multifidelity information fusion.

March 2019

SIAM UQ 2018 Garden Grove, CA

Learning deep neural network (DNN) surrogate models for uncertainty quantification.

April 2018

SIAM CSE 2017

Atlanta, GA

Learning multiscale stochastic FEM basis functions with deep neural networks.

March 2017

ASME Verification and Validation (V&V) Symposium

Las Vegas, NV

Probabilistic Active subspaces.

May 2016

TEACHING EXPERIENCE

ME 597 - Uncertainty Quantification

Purdue University

Teaching Assistant

January 2018 - May 2018

- Helped instructor (Prof. Ilias Bilionis) prepare lecture material and homework problem sets.
- Conducted in-class hands-on tutorial sessions and weekly office hours.
- Graded all assignments and projects.

MENTORING EXPERIENCE

- Mentored NCN-SURF student interns in the Predictive Science Lab in 2015 and 2016.
- Mentored junior students at the Predictive Science Lab (2018 Present).

PROFESSIONAL MEMBERSHIPS

- Academic and Professional Development (APD) Committee of Purdue Graduate Student Government (PGSG) [September 2014 - April 2015].
- Society of Industrial and Applied Mathematics (SIAM) student member [August 2015- present].
- SIAM Purdue chapter Treasurer [August 2016 May 2017].

SKILLS

- Languages (In order of comfort): Python, R, MATLAB.
- Machine Learning/Data Analysis techniques: Linear models, Kernel methods, Deep learning, Bayesian data analysis, Latent Variable models, generative models, Time series analysis.
- Deep Learning frameworks: PyTorch, tensorflow, keras,
- Probabilistic programming: Edward, pyMC, pyMC3, Pyro

SELECTED OTHER PROJECTS

Finite element solver for a plane stress hypoelasticity problem

Finite Element Methods course, ME 681.

Jan. 2015 - May 2015

- Implemented in Python from scratch a nonlinear finite element solver for 2D hypoelasticity problem for a square plate.

2-D Incompressible Navier Stokes solver

Computational Fluid Dynamics course, ME 614

Jan. 2015 - May 2015

- Implemented, in Python, from scratch, a fully conservative finite difference solver with a staggered grid formulation to solve the lid driven cavity problem.