

1ª Trabalho de Sistemas Embarcados C213

<u>Docente:</u> Samuel Baraldi Mafra <u>PED:</u> Vinicius Bottini Jardim
Alunos:
A função "help" do matlab pode ser utilizada como auxílio no software. Todos os gráficos devem ser salvos em .pdf para garantia da resolução.
Rons Estudos!!!

Resposta Típica de 1ª Ordem

A partir de um modelo de matemático é possível analisar o desempenho do sistema. Aplicando um sinal na entrada do sistema esperasse uma resposta. Esta é constituída de duas partes, sendo a resposta transitória e estacionária.

- Resposta transitória: refere-se ao estado inicial indo ao estado final.
- Resposta estacionária: comportamento do sistema do sinal de saída em que não se altera com a variação de tempo.

O modelo matemático do sistema pode ser representado através de uma função de transferência por uma equação diferencial linearmente invariável no tempo, esta é a relação de entre a transformada de Laplace da saída e a transformada de Laplace da entrada.

O comportamento do sistema pode ser previsto, como sua estabilidade e erro.

O sistema de primeira ordem mais simples é um circuito RC, um sistema térmico ou algo semelhante.

A função de transferência de um sistema de primeira ordem (forma canônica) é dada por:

$$H(s) = \frac{v_o(s)}{v_i(s)} = \frac{K}{\tau s + 1}$$

 $K \rightarrow \text{ganho estático em malha aberta.}$

 $\tau \rightarrow \text{constante de tempo}$

Nota:

Na transformada de Laplace tem-se as seguintes mudanças:

- Capacitor $X_C = \frac{1}{sC}$ Indutor $X_L = sL$

O sistema entra em regime permanente quando a saída atinge 98% do valor final, ou seja, com 47. No gráfico abaixo é possível visualizar o comportamento de um sistema de primeira ordem.

Em uma constante de tempo, a curva da resposta exponencial vai de 0% a 63,2% do valor final. Em duas constantes de tempo, a resposta atinge 86,5% da resposta final. Para t = 3T, 4T e 5T, a resposta alcança 95%, 98,2% e 99,3%, respectivamente, da resposta final. Assim, para $t \ge$ 4T, a resposta se mantém a 2% do valor final.

Para calcular o valor em regime permanente pode ser calculado pelo teorema do valor final onde temos:

$$v_o(s) = \lim_{s \to 0} s \cdot H(s) \cdot v_i(s)$$

Malha Aberta

Os chamados sistemas de controle de malha aberta são aqueles em que o sinal de saída não exerce nenhuma ação de controle no sistema. Isso quer dizer que, em um sistema de controle de malha aberta, o sinal de saída não é medido nem realimentado para comparação com a entrada. Um exemplo prático é o da máquina de lavar roupas. As operações de colocar de molho, lavar e enxaguar em uma lavadora são executadas em uma sequência baseada em tempo. A lavadora não mede o sinal de saída, isto é, não verifica se as roupas estão bem lavadas.

$$\frac{SP(s)}{H(s) = \frac{K}{\tau s + 1}} \quad \frac{PV(s)}{s}$$

Malha Fechada

Um sistema de controle com realimentação estabelece uma relação de comparação entre a saída e a entrada de referência, utilizando a diferença como meio de controle. Um exemplo poderia ser o sistema de controle de temperatura de um ambiente. Medindo-se a temperatura ambiente real e comparando-a com a temperatura de referência (temperatura desejada), o termostato ativa ou desativa o equipamento de aquecimento ou resfriamento, de modo que assegure que a temperatura ambiente permaneça em um nível confortável, independentemente das condições exteriores.

Os sistemas de controle com realimentação são, com frequência, denominados também sistemas de controle de malha fechada.

Atraso de transporte

O atraso de transporte, que também é chamado tempo morto ou retardo de transporte, tem comportamento de fase não mínima e apresenta um atraso de fase excessivo, sem atenuação nas altas frequências. Esses retardos de transporte normalmente existem nos sistemas térmicos, hidráulicos e pneumáticos.

Considere que o retardo de transporte é dado por:

$$G(s)=e^{-sT}\to G(j\omega)=e^{-j\omega T}$$

Este faz com que o sistema funcione após um tempo.

$$H(s) = \frac{k * e^{-\theta S}}{ts + 1}$$

Exemplo:

Do circuito RC tem-se que a função de transferência é a seguinte:

$$v_o(s) = \frac{1}{s+1}$$

É inserido um atraso de transporte de 10 segundos, plote a resposta do sistema na *Command Window* e no Simulink considerando o sistema em malha aberta.

.

>> step(sys_sem_atraso,sys_com_atraso)

Sintonia de Controladores

Ziegler Nichols Malha Aberta

Curva de Reação

Na prática, o método de sintonia de Ziegler Nichols em malha fechada pode levar o processo industrial a variar em uma região não segura. Desta forma, Ziegler Nichols propuseram um segundo método para sintonia de controladores PID utilizando a resposta ao degrau de um sistema em malha aberta (forma canônica), e a partir desta resposta, os parâmetros são calculados utilizando a Tabela 1.

$$H(s) = \frac{Ke^{-\theta}}{\tau s + 1}$$

Tabela 1 - Ziegler Nichols Malha Aberta

Controlador	K_p	T_i	T_d
P	$\frac{\tau}{K\theta}$	-	-
PI	$\frac{0.9\tau}{K\theta}$	3,33θ	-
PID	$\frac{1,2\tau}{K\theta}$	2θ	$0,5\theta$

Algumas considerações gerais a respeito da sintonia de controladores PID podem ser feitas a partir dos resultados de Ziegler Nichols.

- O ganho proporcional do controlador K_p é inversamente proporcional ao ganho do processo.
- O ganho proporcional do controlador também é inversamente proporcional à razão entre o tempo morto e a constante de tempo do sistema (θ/τ) . Esta razão é conhecida como fator de incontrolabilidade e quanto maior esse fator, mais difícil se torna controlar o processo.
- O tempo de integral do controlador T_i está relacionado com a dinâmica do processo θ . Quanto mais lento o processo maior deve ser o tempo de Integral, ou seja, maior deve ser o tempo para o controlador repetir a ação proporcional.

Método do Modelo Interno (IMC)

O método IMC (Internal Model Control) foi proposto por Rivera et al (1986). Neste método o controlador possui um modelo interno do processo no qual utiliza a função de transferência da planta para determinar o ajuste dos parâmetros PID.

Para um processo de baixa ordem sem tempo morto (atraso de resposta) o trabalho propõe as regras de ajuste dos parâmetros do controlador PID, dado como uma função de um parâmetro ajustável λ , o qual determina a velocidade da resposta. Quanto menor o valor de λ mais rápida a resposta e melhor o desempenho. No entanto, a resposta será mais sensível às perturbações do processo (RIVERA et al, 1986). As regras IMC de sintonia de controladores PID são apresentadas na Tabela 2.

Tabela 2 – IMC

Controlador	K _p	T_i	T_d	Sugestão de desempenho
PI	$\frac{2\tau + \theta}{2K\lambda}$	$\tau + \frac{\theta}{2}$	-	$\frac{\lambda}{\theta} > 0.8$
PID	$\frac{2\tau + \theta}{K(2\lambda + \theta)}$	$\tau + \frac{\theta}{2}$	$\frac{\tau\theta}{2\tau+\theta}$	$\frac{\lambda}{\theta} > 1.7$

Método CHR

O método CHR proposto por [Chien, Hrones e Reswick, 1952] propõe dois critérios de desempenho:

- A resposta mais rápida do sistema sem sobrevalor
- A resposta mais rápida do sistema com 20% de sobrevalor.

 As sintonias são obtidas tanto para o problema servo (mudança de valor do setpoint) como para o problema regulatório (perturbação de carga com setpoint constante).

A Tabela 3 abaixo apresenta a sintonia proposta pelo método CHR para o critério de desempenho "**resposta mais rápida possível sem sobrevalor**" supondo que o problema de controle é servo (mudança no setpoint).

Controlador K_p T_i T_d 0.3τ P Κθ 0.35τ PΙ 1.16τ Κθ 0.6τ PID 0.5θ τ Κθ

Tabela 3 – CHR sem Sobrevalor (Problema Servo)

Para o critério de desempenho "**a resposta mais rápida possível com 20% de sobrevalor**", os parâmetros do controlador PID para o problema de controle servo, podem ser calculados utilizando a Tabela 4.

Tabela 4 - CHR com 20% de Sobrevalor (Problema Servo)

Controlador	K_p	T_i	T_d
P	$\frac{0.7\tau}{K\theta}$	-	-
PI	$\frac{0.6\tau}{K\theta}$	τ	-
PID	$\frac{0.95\tau}{K\theta}$	1.357 au	0.473θ

Método Cohen e Coon para Curva de Reação

Tipo de Controlador	K_c	$ au_I$	$ au_D$
Р	$\frac{1}{k} \left(\frac{\tau}{\theta} \right) \left[1 + \frac{1}{3} \left(\frac{\theta}{\tau} \right) \right]$		
PI	$\frac{1}{k} \left(\frac{\tau}{\theta} \right) \left[.9 + \frac{1}{12} \left(\frac{\theta}{\tau} \right) \right]$	$\theta \left[\frac{30 + 3(\frac{\theta}{\tau})}{9 + 20(\frac{\theta}{\tau})} \right]$	
PID	$\frac{1}{k}(\frac{\tau}{\theta})[\frac{4}{3} + \frac{1}{4}(\frac{\theta}{\tau})]$	$\theta \left[\frac{32 + 6(\frac{\theta}{\tau})}{13 + 8(\frac{\theta}{\tau})} \right]$	$\theta \left[\frac{4}{11+2(\frac{\theta}{\tau})} \right]$

Método da Integral do Erro - IAE

Lembrando que os valores obtidos pela tabela não são as variáveis Kp, Ti e Td isoladas

Fator Adimensional	IAE
$K_P \times K =$	$1/(\theta/\tau) + 0.2$
$\frac{T_1}{\theta}$ =	$ \begin{pmatrix} 0.3 \times \left(\frac{\theta}{\tau}\right) + 1.2 \\ \left(\left(\frac{\theta}{\tau}\right) + 0.08\right) \end{pmatrix} $
$\frac{T_{D}}{\theta}$ =	$1/(90 \times (9/\tau))$

Considerando a planta de temperatura abaixo

Cuja função de transferência é dada por:

$$H(s) = \frac{k * e^{-\theta S}}{\tau s + 1}$$

- 1) Levante a função de transferência da planta destinada ao seu grupo. Para carregar os dados no matlab, rodar os seguintes comandos:
- load('dadosgrupo1.mat')
- Irão aparecer as variáveis **saída**, **degrau** e **t** (tempo)

 Existem 7 arquivos, considere dadosgrupo**x**, com x sendo o número do grupo de acordo com oarquivo excel, exemplo acima para o grupo 1.
- 2) Escolha o método de identificação da planta e com isso encontre os valores de k, θ e τ.
- 3) Plote a resposta original em relação a estimada e verifique se a aproximação foi satisfatória.
- 4) Levante os valores de erro da planta em malhar aberta e fechada, fazendo comentários sobre os resultados.
- 5) Nesta etapa, você deve comparar um dos métodos tradicionais citados acima, com os métodos de sintonia **Cohen e Coon Para Curva de Reação** e o método da **Integral do Erro.** Realize a simulação e fale sobre o que aprendeu sobre a história e teoria do método novo em comparação com o clássico, de acordo com a seguinte orientação:

GRUPO	MÉTODO CLASSICO	MÉTODO NOVO
1	IMC	COHEN E COON
2	CHR 1	COHEN E COON
3	CHR 2	COHEN E COON
4	ZN	COHEN E COON
5	IMC	INTEGRAL DO ERRO
6	CHR 1	INTEGRAL DO ERRO
7	CHR 2	INTEGRAL DO ERRO

- 6) Realize o ajuste fino se necessário, comentando o que foi feito e qual o reflexo desse ajustena resposta do sistema.
- 7) Ao comparar os métodos, você identificou alguma desvantagem no método tradicional? Caso sim, o novo método resolveu o problema? Explique!
- 8) Extra Crie uma interface que permita com que o usuário entre com os dados os parâmetros do PID e do Setpoint.

Espaço para os parâmetros do Controlador PID pelas técnicas de sintonía de cada grupo:

- /	17.	 ·	T .1
i Lecnica	l Kn	11	In

Obs: É necessário apresentar todos os cálculos e gráficos das respostas aos sinais de entradapara validar o trabalho.