1. Translate the following C codes into the MIPS assembly code.

(10, 15 pts)

2. We have two processors CPU1 and CPU2, which have different parameters as shown in the following table.

Processor	Clock rate	Integer CPI	Floating Point CPI
CPU1	2.4GHz	0.8	4
CPU2	2GHz	0.6	2

- (a) Now we have a program A which contains 40% integer instructions and 60% floating-point instructions. Is it true that CPU1 has a higher clock rate, so it is faster than CPU2 for program A? Explain your answer. (算式) (10 pts)
- (b) Now we have a new hardware to execute floating-point operations, which has 2 times speedup, compared with the old floating-point version. We implement this new hardware only on CPU1, and let "New CPU1" execute program A again. Which CPU is faster for program A, "New CPU1" or "CPU2"? By how much speedup? (算式) (10 pts)
- 3. A MIPS processor has three different control instructions: (assume "Label" is the position of an instruction)

```
beq $t1, $t2, offset;

Jal Label;
```

Explain how to calculate their "target addresses" (i.e., the address of branch or jump) for each of them? (Hint. Reference the value of "PC")

(15 pts)

- 4. Fig. 1 shows a design for the multiplication operations. (10 pts, 10 pts)
 - (a) Draw the flowchart to illustrate how the multiplication can be performed on Fig. 1
 - (b) Use the design of Fig. 1 to compute 5*4. (Trace 418 Cycles)

 (Assume that we use four bits to represent the multiplicand and the multiplier.)

Fig. 1

- 5. Explain the following questions based on your understanding. (10 pts, 10 pts)
 - (a) List at least two different features between the MIPS ISA and the Intel ISA.
 - (b) A typical compiler will have two compiling phases, front-end and back-end. Explain the major differences between these two phases.

長庚大學期中、期末考試答案用紙

科目」計算機架構(光3)

	<u> </u>	英等
1. 設定 n 信着存在\$50 , return 值信者?		
(a) Test: slt \$t0, \$zero, \$so	/ 判斷 n 是歪大於 o	
beg \$ to, \$zero, Else	1 苦否,则是此至Else	
slt \$t1, \$50, 5	11 判斷 n 是否小於 5	
	11 若否,则跳至日50	
	11 return 0	
Else: SW \$51, 1	11 return 1	
(b) fab: slt \$to, \$50,3	/ 判斷の是子小於3	
beg \$to, \$zero, Else	川若る、則是北至Else	9
SW \$ 51, 1	// return I	
Else: addi \$50, \$50, -1	// n=n-1	sw \$t2,\$s1/// (精存fab(n-2)
Jr fab		add \$t3, \$t1, \$t2 // \$t3 = fab(n-1)
SW \$t1 (\$51)	// 信括存 fab(n-1)	SW \$51 \$t3 // return fab(n-1)
		(deth 2)

```
fab
                   JY
2. CPU Time = IC × CPI × Clock Rate
   (a) CPU Time 1 = Instruction Count 1 × (0.8×0.4+4×0.6) × 1 = (8.5×10 × Instruction Count 1)
       CPU Time 2 = Instruction Count 2 x (0.6x04+2x0.6) x 1 = 7.2 x 10 to x (Instruction Count 2)
       No, 計算後發現 CPU Time 1 > CPU Time 2 , i CPU 2 is faster!
   (b) CPU Time 1N = Instruction Count 1 × (0.8x0.4+ \frac{1}{2}x0.6) × \frac{1}{2.4x109} = 6.3x10 x Instruction Count 1
        11 CPU Time IN < CPU Time 2 7.2 × 10 10 = 8 = 1.14
        D New CPU1 is faster, Ht CPU2快約114倍
            # target address = PC + offset x4
                                                    (PC+4+ offset x4)
                                                    (PCAy 4bits + Label shift 2 bits)
            > target address = PC
      Jal > target address = PC+ $ra
```

\$50, \$50, -1 // h=h-2

(請翻面繼續作答)

長庚大學期中、期末考試答案用紙

學年度 第 學期 老	W 姓名 學
4. (a) Start (Product = 0)	(b) Multiplicand = Olol, Multiplier = 0100
	Cycle 1: 乘數最左邊的bit為o
篇0 乘散最大息的 bit	Product = 0 Multiplier = 100X
为 为 1	尚未shīft
	Cycle 2: 苹果大量的比為工
Product = Product + 本皮来事故	Product = 0000 +0101 = 0101
	Product = 0101, Multiplier = 00xx
Product >> 主 章 Le 1	尚未新任党
	Cycle 3: 乘數最左邊的bit為o
表查乘數是Tashift完了(東完了)不	Product = 00101, Multiplier = 0xxx
B A	尚未shift克
Done	Cycle 4: 乘载最左鼍的时息。
	Product = 000101 Multiplier=xxxx
	shift 2#

5. (a) MIDS 分成 3种 type by Instructions, Intel 则是将 32 bit 指至tn成一类(&16 bit)
Intel 篇 4 bits -單位、MIPS 则不一定 (5006 bits)
(b) Phase I parsing
Phase II optimization
code generation V
(a) ① 長度不同 ② 格式不同 ③ 複雜度不同
(b) (High-level code)
Front-End parsing (把程式作為篇譯). Symbol table
(Phase I) 最佳化 (Machine Independent / 看logic)
Back-End
(Phase I) code generation
Machine Code (ac 編 個 響 標 生 物)