# LAPORAN PRAKTIKUM MODUL 8 QUEUE



## Nama:

Fajar Budiawan (2311104039)

### Dosen:

Yudha Islami Sulistya S.Kom, M.Cs

## PROGRAM STUDI S1 REKAYASA PERANGKAT LUNAK FAKULTAS INFORMATIKA TELKOM UNIVERSITY PURWOKERTO

2024

#### Unguided

1. Ubahlah penerapan konsep queue pada bagian guided dari array menjadi linked list

```
. .
           Node* front; // Pointer ke depan antrian
Node* back; // Pointer ke belakang antrian
                  // Konstruktor, inisialisasi queue dengan f
Queue() : front(nullptr), back(nullptr) {}
                 // Cek apakah antrian kosong
bool isEmpty() {
   return front == nullptr;
}
                   // Menambahkan elemen ke dalam antrian (enqueue)
void enqueue(const string& data) {
   Node* newNode = new Node{data, nullptr}; // Buat node baru
                          if (isEmpty()) {
    front = back = newNode; // Jika kosong, front dan back menunjuk ke node baru
                          } else {
   back->next = newNode; // Sambungkan node baru di belakang antrian
   back = newNode; // Update pointer back ke node baru
                  // Menghapus elemen dari antrian (dequeue)
void dequeue() {
   if (isEmpty()) {
      cout << "Antrian Kosong" << endl;
      return;
}</pre>
                          Node* temp = front; // Simpan node depan sementara
front = front->next; // Pindahkan front ke node berikutnya
if (front == nullptr) {
   back = nullptr; // Jika antrian kosong, back juga null
                   // Menghitung jumlah elemen dalam antrian
int count() {
   int count = 0;
   Node* current = front;
   while (current != nullptr) {
                           count++;
current = current->next;
}
return count;
                  // Menghapus semua elemen dalam antrian
void clear() {
  while (!isEmpty()) {
    dequeue(); // Dequeue hingga antrian kosong
                   // Menampilkan elemen-elemen dalam antrian
void view() {
   if (isEmpty()) {
      cout << "Antrian Kosong" << endl;</pre>
                          cout << "Data antrian teller:" << endl;
Node* current = front;
int position = 1;
while (current != nullptr) {
    cout << position << "." << current->data << endl;
    current = current->next;
                                    position++;
                   q.enqueue("Andi");
q.enqueue("Maya");
q.enqueue("Maya");
cout << "Jumlah Antrian = " << q.count() << endl;
                   // Menghapus elemen dari antrian
q.dequeue();
q.view(); // Menampilkan antrian setelah dequeue
cout << "Jumlah Antrian = " << q.count() << endl;
                  // Mengrapus Semua Element datas and tem
q.clear();
q.view(); // Menampilkan antrian setelah clear
cout << "Jumlah Antrian = " << q.count() << endl;
```

# Output PS D:\Praktikum Struktur n\_8\Ungudied\" ; if (\$?) Data antrian teller: 1. Andi 2. Maya Jumlah Antrian = 2 Data antrian teller: 1. Maya Jumlah Antrian = 1 Antrian Kosong Jumlah Antrian = 0 PS D:\Praktikum Struktur

2. Dari nomor 1 buatlah konsep antri dengan atribut Nama mahasiswa dan NIM Mahasiswa

```
3. #include <iostream>
4. using namespace std;
5.
6. // Definisikan struktur Node untuk linked list
7. struct Node {
8.
       string nama; // Nama mahasiswa
9.
       string nim;
10.
       Node* next;
                     // Pointer ke node berikutnya dalam list
11.};
12.
13.// Definisikan kelas Queue untuk mengelola antrian berbasis linked list
14.class Queue {
15.private:
16.
       Node* front; // Pointer ke depan antrian
17.
       Node* back;
                     // Pointer ke belakang antrian
18.
19. public:
20.
       // Konstruktor, inisialisasi queue dengan front dan back null
21.
       Queue() : front(nullptr), back(nullptr) {}
22.
23.
       // Cek apakah antrian kosong
24.
       bool isEmpty() {
25.
           return front == nullptr;
26.
27.
28.
29.
       void enqueue(const string& nama, const string& nim) {
30.
           Node* newNode = new Node{nama, nim, nullptr}; // Buat node baru
31.
32.
           if (isEmpty()) {
               front = back = newNode; // Jika kosong, front dan back
33.
  menunjuk ke node baru
34.
           } else {
35.
               back->next = newNode; // Sambungkan node baru di belakang
   antrian
36.
                                      // Update pointer back ke node baru
               back = newNode;
37.
38.
```

```
39.
40.
       // Menghapus elemen dari antrian (dequeue)
41.
       void dequeue() {
42.
           if (isEmpty()) {
43.
                cout << "Antrian Kosong" << endl;</pre>
44.
                return;
45.
46.
47.
           Node* temp = front; // Simpan node depan sementara
48.
           front = front->next; // Pindahkan front ke node berikutnya
49.
            if (front == nullptr) {
50.
                back = nullptr; // Jika antrian kosong, back juga null
51.
52.
           delete temp; // Hapus node lama (node yang terdepan)
53.
54.
55.
       // Menghitung jumlah elemen dalam antrian
56.
       int count() {
57.
           int count = 0;
58.
           Node* current = front;
59.
           while (current != nullptr) {
60.
                count++;
61.
                current = current->next;
62.
63.
           return count;
64.
65.
66.
       // Menghapus semua elemen dalam antrian
67.
       void clear() {
68.
           while (!isEmpty()) {
69.
                dequeue(); // Dequeue hingga antrian kosong
70.
71.
72.
73.
       // Menampilkan elemen-elemen dalam antrian
74.
       void view() {
75.
           if (isEmpty()) {
76.
                cout << "Antrian Kosong" << endl;</pre>
77.
                return;
78.
79.
80.
           cout << "Data Antrian Mahasiswa:" << endl;</pre>
81.
           Node* current = front;
82.
           int position = 1;
           while (current != nullptr) {
83.
84.
                cout << position << ". Nama: " << current->nama << ", NIM: "</pre>
   << current->nim << endl;
85.
                current = current->next;
86.
                position++;
87.
88.
89.};
```

```
91.int main() {
       Queue q; // Membuat objek Queue
92.
       int pilihan;
94.
       string nama, nim;
95.
96.
       do {
97.
            cout << "\nMenu Antrian Mahasiswa:" << endl;</pre>
98.
            cout << "1. Tambah Mahasiswa ke Antrian (Enqueue)" << endl;</pre>
99.
            cout << "2. Hapus Mahasiswa dari Antrian (Dequeue)" << endl;</pre>
100.
                   cout << "3. Lihat Daftar Antrian Mahasiswa" << endl;</pre>
101.
                   cout << "4. Hapus Semua Antrian" << endl;</pre>
                  cout << "5. Keluar" << endl;</pre>
102.
103.
                  cout << "Pilih opsi: ";</pre>
104.
                  cin >> pilihan;
105.
106.
                  switch (pilihan) {
107.
                       case 1:
108.
                            cout << "Masukkan Nama Mahasiswa: ";</pre>
109.
                            cin.ignore(); // Mengabaikan newline tersisa dari
  input sebelumnya
110.
                            getline(cin, nama);
111.
                            cout << "Masukkan NIM Mahasiswa: ";</pre>
112.
                            getline(cin, nim);
113.
                            q.enqueue(nama, nim);
114.
                            cout << "Mahasiswa berhasil ditambahkan ke</pre>
   antrian." << endl;</pre>
115.
                            break;
116.
117.
                       case 2:
118.
                            q.dequeue();
119.
                            cout << "Mahasiswa di depan antrian telah</pre>
   dihapus." << endl;</pre>
120.
                            break;
121.
122.
                       case 3:
123.
124.
                            cout << "Jumlah Antrian = " << q.count() << endl;</pre>
125.
                            break;
126.
127.
                       case 4:
128.
                            q.clear();
129.
                            cout << "Semua antrian telah dihapus." << endl;</pre>
130.
                            break;
131.
132.
                       case 5:
133.
                            cout << "Keluar dari program." << endl;</pre>
134.
                            break;
135.
136.
                       default:
137.
                            cout << "Pilihan tidak valid. Silakan coba lagi."</pre>
   << endl;
```

#### Output

```
Menu Antrian Mahasiswa:
1. Tambah Mahasiswa ke Antrian (Enqueue)
2. Hapus Mahasiswa dari Antrian (Dequeue)
3. Lihat Daftar Antrian Mahasiswa
4. Hapus Semua Antrian
5. Keluar
Pilih opsi: 1
Masukkan Nama Mahasiswa: jidan
Masukkan NIM Mahasiswa: 232323
Mahasiswa berhasil ditambahkan ke antrian.
Menu Antrian Mahasiswa:

    Tambah Mahasiswa ke Antrian (Enqueue)

2. Hapus Mahasiswa dari Antrian (Dequeue)
3. Lihat Daftar Antrian Mahasiswa
4. Hapus Semua Antrian
5. Keluar
Pilih opsi: 5
Keluar dari program.
PS D:\Praktikum Struktur Data\08 Pengenalan CPP Bagian 8\Ungudied>
```

3. Modifikasi program pada soal 1 sehingga mahasiswa dapat diprioritaskan berdasarkan NIM (NIM yang lebih kecil didahulukan pada saat output).

```
4. #include <iostream>
using namespace std;
6.
8. struct Node {
9.
       string nama; // Nama mahasiswa
10.
       string nim; // NIM mahasiswa
11.
       Node* next;
                    // Pointer ke node berikutnya dalam list
12.};
13.
14.// Definisikan kelas Queue untuk mengelola antrian berbasis linked list
15.class Queue {
16.private:
17.
       Node* front; // Pointer ke depan antrian
18.
       Node* back;
                    // Pointer ke belakang antrian
19.
20. public:
       // Konstruktor, inisialisasi queue dengan front dan back null
21.
22.
       Queue() : front(nullptr), back(nullptr) {}
23.
24.
      // Cek apakah antrian kosong
25.
       bool isEmpty() {
26.
          return front == nullptr;
```

```
27.
28.
29.
30.
       void enqueue(const string& nama, const string& nim) {
31.
           Node* newNode = new Node{nama, nim, nullptr}; // Buat node baru
32.
33.
           if (isEmpty()) {
34.
               front = back = newNode; // Jika kosong, front dan back
  menunjuk ke node baru
           } else {
35.
36.
               back->next = newNode; // Sambungkan node baru di belakang
   antrian
37.
               back = newNode;
                                       // Update pointer back ke node baru
38.
39.
40.
41.
       // Menghapus elemen dari antrian (dequeue)
42.
       void dequeue() {
43.
           if (isEmpty()) {
44.
               cout << "Antrian Kosong" << endl;</pre>
45.
               return;
46.
47.
48.
           Node* temp = front; // Simpan node depan sementara
49.
           front = front->next; // Pindahkan front ke node berikutnya
50.
           if (front == nullptr) {
51.
               back = nullptr; // Jika antrian kosong, back juga null
52.
           }
53.
           delete temp; // Hapus node lama (node yang terdepan)
54.
55.
56.
       // Menghitung jumlah elemen dalam antrian
57.
       int count() {
58.
           int count = 0;
59.
           Node* current = front;
60.
           while (current != nullptr) {
61.
               count++;
62.
               current = current->next;
63.
64.
           return count;
65.
66.
67.
       // Menghapus semua elemen dalam antrian
68.
       void clear() {
           while (!isEmpty()) {
69.
70.
               dequeue(); // Dequeue hingga antrian kosong
71.
72.
73.
74.
       // Menampilkan elemen-elemen dalam antrian
75.
       void view() {
76.
           if (isEmpty()) {
```

```
77.
                cout << "Antrian Kosong" << endl;</pre>
78.
                return;
79.
80.
            cout << "Data Antrian Mahasiswa:" << endl;</pre>
81.
82.
            Node* current = front;
83.
            int position = 1;
84.
            while (current != nullptr) {
85.
                cout << position << ". Nama: " << current->nama << ", NIM: "</pre>
   << current->nim << endl;
86.
                current = current->next;
87.
                position++;
88.
89.
90.};
91.
92.int main() {
93.
       Queue q; // Membuat objek Queue
94.
       int pilihan;
95.
       string nama, nim;
96.
97.
       do {
98.
            cout << "\nMenu Antrian Mahasiswa:" << endl;</pre>
99.
            cout << "1. Tambah Mahasiswa ke Antrian (Enqueue)" << endl;</pre>
100.
                   cout << "2. Hapus Mahasiswa dari Antrian (Dequeue)" <<</pre>
   endl;
101.
                   cout << "3. Lihat Daftar Antrian Mahasiswa" << endl;</pre>
102.
                   cout << "4. Hapus Semua Antrian" << endl;</pre>
                   cout << "5. Keluar" << endl;</pre>
103.
104.
                  cout << "Pilih opsi: ";</pre>
105.
                  cin >> pilihan;
106.
107.
                  switch (pilihan) {
108.
                       case 1:
109.
                            cout << "Masukkan Nama Mahasiswa: ";</pre>
110.
                            cin.ignore(); // Mengabaikan newline tersisa dari
   input sebelumnya
111.
                            getline(cin, nama);
112.
                            cout << "Masukkan NIM Mahasiswa: ";</pre>
113.
                            getline(cin, nim);
114.
                            q.enqueue(nama, nim);
115.
                            cout << "Mahasiswa berhasil ditambahkan ke</pre>
   antrian." << endl;</pre>
116.
                            break;
117.
118.
                       case 2:
119.
                            q.dequeue();
120.
                            cout << "Mahasiswa di depan antrian telah</pre>
   dihapus." << endl;</pre>
121.
                            break;
122.
123.
                       case 3:
```

```
124.
                           q.view();
125.
                            cout << "Jumlah Antrian = " << q.count() << endl;</pre>
126.
                           break;
127.
128.
                       case 4:
129.
                           q.clear();
130.
                           cout << "Semua antrian telah dihapus." << endl;</pre>
131.
                           break;
132.
133.
                       case 5:
134.
                           cout << "Keluar dari program." << endl;</pre>
135.
                           break;
136.
137.
                       default:
                           cout << "Pilihan tidak valid. Silakan coba lagi."</pre>
138.
   << endl;
139.
140.
              } while (pilihan != 5);
141.
142.
              return 0;
143.
144.
```

#### Output

```
Menu Antrian Mahasiswa:
1. Tambah Mahasiswa ke Antrian (Enqueue)
2. Hapus Mahasiswa dari Antrian (Dequeue)
3. Lihat Daftar Antrian Mahasiswa
4. Hapus Semua Antrian
5. Keluar
Pilih opsi: 1
Masukkan Nama Mahasiswa: jidan
Masukkan NIM Mahasiswa: 232323
Mahasiswa berhasil ditambahkan ke antrian.
Menu Antrian Mahasiswa:

    Tambah Mahasiswa ke Antrian (Enqueue)

2. Hapus Mahasiswa dari Antrian (Dequeue)
3. Lihat Daftar Antrian Mahasiswa
4. Hapus Semua Antrian
5. Keluar
Pilih opsi: 5
Keluar dari program.
PS D:\Praktikum Struktur Data\08_Pengenalan_CPP_Bagian_8\Ungudied>
```