A) Amendments to the Claims: This listing will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (original) A compound of formula IIc:

or a pharmaceutically acceptable derivative or prodrug thereof, wherein;

R^x and R^y are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-7 membered ring having 0-3 ring heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;

 R^1 is T-(Ring D);

Ring D is a 5-7 membered monocyclic ring or 8-10 membered bicyclic ring selected from aryl, heteroaryl, heterocyclyl or carbocyclyl, said heteroaryl or heterocyclyl ring having 1-4 ring heteroatoms selected from nitrogen, oxygen or sulfur, wherein Ring D is substituted at any substitutable ring carbon by oxo, T-R⁵, or V-Z-R⁵, and at any substitutable ring nitrogen by -R⁴:

T is a valence bond or a C₁₋₄ alkylidene chain;

Z is a C₁₋₄ alkylidene chain;

L is
$$-O$$
-, $-S$ -, $-SO$ -, $-SO_2$ -, $-N(R^6)SO_2$ -, $-SO_2N(R^6)$ -, $-N(R^6)$ -, $-CO$ -, $-CO_2$ -, $-N(R^6)CO$ -, $-N(R^6)CO)(R^6)$ -, $-N(R^6)SO_2N(R^6)$ -, $-N(R^6)N(R^6)$ -, $-C(O)N(R^6)$ -,

- $OC(O)N(R^6)_{-}, -C(R^6)_2O_{-}, -C(R^6)_2S_{-}, -C(R^6)_2SO_{-}, -C(R^6)_2SO_{2^-}, -C(R^6)_2SO_2N(R^6)_{-}, -C(R^6)_2N(R^6)_{-}, -$
- R² and R² are independently selected from -R, -T-W-R⁶, or R² and R² are taken together with their intervening atoms to form a fused, 5-8 membered, unsaturated or partially unsaturated, ring having 0-3 ring heteroatoms selected from nitrogen, oxygen, or sulfur, wherein each substitutable carbon on said fused ring formed by R² and R² is substituted by halo, oxo, -CN, -NO₂, -R⁷, or -V-R⁶, and any substitutable nitrogen on said ring formed by R² and R² is substituted by R⁴;
- R^3 is selected from -R, -halo, -OR, -C(=O)R, -CO₂R, -COCOR, -COCH₂COR, -NO₂, -CN, -S(O)R, -S(O)₂R, -SR, -N(R⁴)₂, -CON(R⁷)₂, -SO₂N(R⁷)₂, -OC(=O)R, -N(R⁷)COR, -N(R⁷)CO₂(C₁₋₆ aliphatic), -N(R⁴)N(R⁴)₂, -C=NN(R⁴)₂, -C=N-OR, -N(R⁷)CON(R⁷)₂, -N(R⁷)SO₂N(R⁷)₂, -N(R⁴)SO₂R, or -OC(=O)N(R⁷)₂;
- each R is independently selected from hydrogen or an optionally substituted group selected from C_{1-6} aliphatic, C_{6-10} aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 5-10 ring atoms;
- each R^4 is independently selected from $-R^7$, $-COR^7$, $-CO_2$ (optionally substituted $C_{1.6}$ aliphatic), $-CON(R^7)_2$, or $-SO_2R^7$;
- each R^5 is independently selected from -R, halo, -OR, -C(=O)R, -CO₂R, -COCOR, -NO₂, -CN, -S(O)R, -SO₂R, -SR, -N(R^4)₂, -CON(R^4)₂, -SO₂N(R^4)₂, -OC(=O)R, -N(R^4)COR, -N(R^4)CO₂(optionally substituted C₁₋₆ aliphatic), -N(R^4)N(R^4)₂, -C=NN(R^4)CON(R^4)₂, -N(R^4)SO₂N(R^4)₂, -N(R^4)SO₂R, or -OC(=O)N(R^4)₂;
- $V \text{ is } -O-, -S-, -SO-, -SO_2-, -N(R^6)SO_2-, -SO_2N(R^6)-, -N(R^6)-, -CO-, -CO_2-, -N(R^6)CO-, -N(R^6)C(O)O-, -N(R^6)CON(R^6)-, -N(R^6)SO_2N(R^6)-, -N(R^6)N(R^6)-, -C(O)N(R^6)-, -C(CO)N(R^6)-, -C(C^6)_2SO-, -C(C^6)_2SO-, -C(C^6)_2SO_2-, -C(C^6)_2SO_2N(C^6)-, -C(C^6)_2N(C^6)-, -C(C^6)_2N(C^6)-,$
- $W \text{ is } -C(R^6)_2O_-, -C(R^6)_2S_-, -C(R^6)_2SO_-, -C(R^6)_2SO_2-, -C(R^6)_2SO_2N(R^6)_-, -C(R^6)_2N(R^6)_-, -CO_-, -CO_2-, -C(R^6)OC(O)_-, -C(R^6)OC(O)_-, -C(R^6)_2N(R^6)_-, -C(R^$

- each R⁶ is independently selected from hydrogen or an optionally substituted C₁₋₄ aliphatic group, or two R⁶ groups on the same nitrogen atom are taken together with the nitrogen atom to form a 5-6 membered heterocyclyl or heteroaryl ring; and
- each R⁷ is independently selected from hydrogen or an optionally substituted C₁₋₆ aliphatic group, or two R⁷ on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring.
- 2. (currently amended) The compound according to claim 1, wherein one or more compound variables are said compound has one or more features selected from the group consisting of:
 - (a) R^x and R^y are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-6 membered ring having 0-2 heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;
 - (b) R¹ is T-(Ring D), wherein T is a valence bond or a methylene unit;
 - (c) Ring D is a 5-7 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
 - (d) R² is -R or -T-W-R⁶ and R^{2'} is hydrogen; or R² and R^{2'} are taken together to form an optionally substituted benzo ring; and
 - (e) R^3 is selected from -R, -halo, -OR, or -N(R^4)₂.
- 3. (original) The compound according to claim 2, wherein:
 - (a) R^x and R^y are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-6 membered ring having 0-2 heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;
 - (b) R¹ is T-(Ring D), wherein T is a valence bond or a methylene unit;
 - (c) Ring D is a 5-7 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;

- (d) R² is -R or -T-W-R⁶ and R² is hydrogen; or R² and R² are taken together to form an optionally substituted benzo ring; and
- (e) R³ is selected from -R, -halo, -OR, or -N(R⁴)₂.
- 4. (currently amended) The compound according to claim 2, wherein one or more compound variables are said compound has one or more features selected from the group consisting of:
 - (a) R^x and R^y are taken together to form a benzo, pyrido, cyclopento, cyclohexo, cyclohepto, thieno, piperidino, or imidazo ring;
 - (b) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
 - (c) R² is -R and R² is hydrogen, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
 - (d) R^3 is selected from -R, -halo, -OR, or -N(R^4)₂, wherein R is selected from hydrogen, C_{1-6} aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -N(R^4)-.
- 5. (original) The compound according to claim 4, wherein:
 - (a) R^x and R^y are taken together to form a benzo, pyrido, cyclopento, cyclohexo, cyclohepto, thieno, piperidino, or imidazo ring;
 - (b) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
 - (c) R² is -R and R² is hydrogen, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
 - (d) R^3 is selected from -R, -halo, -OR, or $-N(R^4)_2$, wherein R is selected from hydrogen, C_{1-6} aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is $-O_7$, $-S_7$, or $-N(R^4)_7$.
- 6. (currently amended) The compound according to claim 4, wherein one or more compound variables are said compound has one or more features selected from the group consisting of:

- (a) R^x and R^y are taken together to form a benzo, pyrido, piperidino, or cyclohexo ring;
- (b) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
- (c) R² is hydrogen or C₁₋₄ aliphatic and R² is hydrogen;
- (d) R³ is selected from -R, -OR, or -N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
- (e) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂, -N(R⁴)₂, optionally substituted C₁₋₆ aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R⁴), -N(R⁴)COR, -N(R⁴)CO₂R, -SO₂N(R⁴)₂, -N(R⁴)SO₂R, -N(R⁶)COCH₂N(R⁴)₂, -N(R⁶)COCH₂CH₂N(R⁴)₂, or -N(R⁶)COCH₂CH₂CH₂N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring.
- 7. (original) The compound according to claim 6, wherein:
 - (a) R^x and R^y are taken together to form a benzo, pyrido, piperidino, or cyclohexo ring;
 - (b) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
 - (c) R² is hydrogen or C₁₋₄ aliphatic and R² is hydrogen;
 - (d) R^3 is selected from -R, -OR, or -N(R^4)₂, wherein R is selected from hydrogen, C_{1-6} aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
 - (e) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂, -N(R⁴)₂, optionally substituted C₁₋₆ aliphatic group, -OR, -C(O)R, -CO₂R, -CONH(R⁴), -N(R⁴)COR, -N(R⁴)CO₂R, -SO₂N(R⁴)₂, -N(R⁴)SO₂R, -N(R⁶)COCH₂N(R⁴)₂, -N(R⁶)COCH₂CH₂N(R⁴)₂, or -N(R⁶)COCH₂CH₂CH₂N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring.

- 8. (original) The compound according to claim 1, wherein R^x and R^y are taken together with their intervening atoms to form a fused benzo ring, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by T-R³, or L-Z-R³.
- 9. (original) The compound according to claim 8, wherein:
 - (a) R¹ is T-(Ring D), wherein T is a valence bond or a methylene unit;
 - (b) Ring D is a 5-7 membered monocyclic or an 8-10 membered bicyclic aryl or heteroaryl ring;
 - (c) R² is -R or -T-W-R⁶ and R² is hydrogen; or R² and R² are taken together to form an optionally substituted benzo ring; and
 - (d) R³ is selected from -R, -halo, -OR, or -N(R⁴)₂.
- 10. (original) The compound according to claim 9, wherein:
 - (a) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
 - (b) R² is -R and R² is hydrogen, wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
 - (c) R³ is selected from -R, -halo, -OR, or -N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -N(R⁴)-.
- 11. (original) The compound according to claim 10, wherein:
 - (a) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
 - (b) R² is hydrogen or C_{1.4} aliphatic and R² is hydrogen;
 - (c) R³ is selected from -R, -OR, or -N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
 - (d) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂, -N(\mathbb{R}^4)₂, optionally substituted C₁₋₆ aliphatic group, -OR, -C(O)R, -CO₂R, -

$$\begin{split} & \text{CONH}(R^4), \text{-N}(R^4)\text{COR}, \text{-N}(R^4)\text{CO}_2R, \text{-SO}_2N(R^4)_2, \text{-N}(R^4)\text{SO}_2R, \\ & \text{-N}(R^6)\text{COCH}_2N(R^4)_2, \text{-N}(R^6)\text{COCH}_2\text{CH}_2N(R^4)_2, \text{ or -N}(R^6)\text{COCH}_2\text{CH}_2\text{CH}_2N(R^4)_2, \\ & \text{wherein } R \text{ is selected from hydrogen, } C_{1-6} \text{ aliphatic, phenyl, a 5-6 membered} \\ & \text{heteroaryl ring, or a 5-6 membered heterocyclic ring.} \end{split}$$

- 12. (original) The compound according to claim 1, wherein R^x and R^y are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-7 membered ring having 0-3 ring heteroatoms selected from oxygen, sulfur, or nitrogen, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴; provided that said fused ring formed by R^x and R^y is other than benzo.
- 13. (original) The compound according to claim 12, wherein:
 - (a) R^x and R^y are taken together with their intervening atoms to form a fused, unsaturated or partially unsaturated, 5-6 membered ring having 1-2 heteroatoms selected from oxygen, sulfur, or nitrogen, or a partially unsaturated 6-membered carbocyclo ring, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;
 - (b) R¹ is T-(Ring D), wherein T is a valence bond or a methylene unit, and Ring D is a 5-7 membered monocyclic or an 8-10 membered bicyclic aryl or heteroaryl ring;
 - (c) R² is -R or -T-W-R⁶ and R² is hydrogen; or R² and R² are taken together to form an optionally substituted benzo ring; and
 - (d) R³ is selected from -R, -halo, -OR, or -N(R⁴)₂.
- 14. (currently amended) The compound according to claim 13, wherein:
 - (a) R^x and R^y are taken together to form a benzo, pyrido, cyclopento, cyclohexo, cyclohepto, thieno, piperidino, or imidazo ring, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;

- (b) R¹ is T-(Ring D), wherein T is a valence bond and Ring D is a 5-6 membered monocyclic ring or an 8-10 membered bicyclic ring selected from an aryl or heteroaryl ring;
- (c) R² is -R and R² is hydrogen, wherein R is selected from hydrogen, C_{1.6} aliphatic, phenyl, a 5-6 membered heteroaryl ring, or a 5-6 membered heterocyclic ring; and
- (d) R^3 is selected from -R, -halo, -OR, or -N(R^4)₂, wherein R is selected from hydrogen, C_{1-6} aliphatic, or 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -N(R^4)-.
- 15. (original) The compound according to claim 14, wherein:
 - (a) R^x and R^y are taken together to form a pyrido, piperidino, or cyclohexo ring, wherein any substitutable carbon on said fused ring formed by R^x and R^y is substituted by oxo, T-R³, or L-Z-R³, and any substitutable nitrogen on said ring formed by R^x and R^y is substituted by R⁴;
 - (b) R¹ is T-Ring D, wherein T is a valence bond and Ring D is a 5-6 membered aryl or heteroaryl ring;
 - (c) R² is hydrogen or C₁₋₄ aliphatic and R² is hydrogen;
 - (d) R³ is selected from -R, -OR, or -N(R⁴)₂, wherein R is selected from hydrogen, C₁₋₆ aliphatic, 5-6 membered heterocyclyl, phenyl, or 5-6 membered heteroaryl, and L is -O-, -S-, or -NH-; and
 - (e) Ring D is substituted by up to three substituents selected from -halo, -CN, -NO₂,
 -N(R⁴)₂, optionally substituted C₁₋₆ aliphatic group, -OR, -C(O)R, -CO₂R, CONH(R⁴), -N(R⁴)COR, -N(R⁴)CO₂R, -SO₂N(R⁴)₂, -N(R⁴)SO₂R,
 -N(R⁶)COCH₂N(R⁴)₂, -N(R⁶)COCH₂CH₂N(R⁴)₂, or -N(R⁶)COCH₂CH₂CH₂N(R⁴)₂,
 wherein R is selected from hydrogen, C₁₋₆ aliphatic, phenyl, a 5-6 membered
 heteroaryl ring, or a 5-6 membered heterocyclic ring.
- 16. (original) A compound selected from the group consisting of: {2-[(2-Hydroxyethyl)phenylamino]-quinazolin-4-yl}-(5-methyl-2*H*-pyrazol-3-yl)-amine; [2-(Methylphenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;

- (5-methyl-2*H*-pyrazol-3-yl)-{2-[N-methyl-N-(pyridin-3-ylmethyl)amino]-quinazolin-4-yl}-amine:
 - (5-Methyl-2H-pyrazol-3-yl)-(2-phenylamino-quinazolin-4-yl)-amine;
 - (2-Benzylamino-quinazolin-4-yl)-(5-methyl-2H-pyrazol-3-yl)-amine;
 - (2-Cyclohexylamino-quinazolin-4-yl)-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(2,3-Dihydrobenzo[1,4]dioxin-6-ylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
 - (2-Cyclohexylmethylamino-quinazolin-4-yl)-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(1H-Indazol-6-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - (5-Methyl-2H-pyrazol-3-yl)-[2-(pyridin-3-ylmethylamino)-quinazolin-4-yl]-amine;
 - [2-(3-Chlorophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(4-Chlorophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(4-Fluorobenzylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - {2-[2-(2-Hydroxyethyl)phenylamino]-quinazolin-4-yl}-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(3-Hydroxymethylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(3-Hydroxyphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-(2-phenylamino-quinazolin-4-yl)-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-methylphenylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(6-methoxypyridin-3-ylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(indan-5-ylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(1H-indol-6-ylamino)-quinazolin-4-yl]-amine;
- [2-(4-Acetamido-3-methylphenylamino)-quinazolin-4-yl]-(5-cyclopropyl-2*H*-pyrazol-3-yl)-amine;
- [2-(4-Chloro-3-methylphenylamino)-quinazolin-4-yl]-(5-cyclopropyl-2*H*-pyrazol-3-yl)-amine:
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(4-ethylphenylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2*H*-pyrazol-3-yl)-[2-(4-propylphenylamino)-quinazolin-4-yl]-amine;
- (5-Cyclopropyl-2*H*-pyrazol-3-yl)-{2-[4-(2-hydroxyethyl)phenylamino]-quinazolin-4-yl}-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-(2-phenetylamino-quinazolin-4-yl)-amine;

- [2-(2-Cyclohexylethylamino)-quinazolin-4-yl]-(5-cyclopropyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Carboxymethoxyphenylamino)-quinazolin-4-yl]-(5-cyclopropyl-2*H*-pyrazol-3-yl)-amine:
 - [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(5-cyclopropyl-2H-pyrazol-3-yl)-amine;
 - [2-(Benzothiazol-6-ylamino)-quinazolin-4-yl]-(5-cyclopropyl-2H-pyrazol-3-yl)-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3,4-dimethylphenylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(2-phenoxyethylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(thiophen-2-methylamino)-quinazolin-4-yl]-amine;
 - [2-(4-Carboxymethylphenylamino)-quinazolin-4-yl]-(5-cyclopropyl-2H-pyrazol-3-yl)-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(1H-indazol-5-ylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(pyridin-3-ylmethylamino)-quinazolin-4-yl]-amine;
- (5-Cyclopropyl-2*H*-pyrazol-3-yl)-[2-(3-methoxycarbonylphenylamino)-quinazolin-4-yl]-amine;
 - [2-(3-Carboxyphenylamino)-quinazolin-4-yl]-(5-cyclopropyl-2H-pyrazol-3-yl)-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-ethylphenylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(2,3-dimethylphenylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3,4-dimethoxyphenylamino)-quinazolin-4-yl]-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-methoxyphenylamino)-quinazolin-4-yl]-amine;
 - (5-Methyl-2H-pyrazol-3-yl)-(2-phenylamino-5,6,7,8-tetrahydroquinazolinin-4-yl)-amine;
 - [2-(Biphenyl-3-ylamino)-quinazolin-4-yl]-(5-cyclopropyl-2H-pyrazol-3-yl)-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(3-phenylprop-1-ylamino)-quinazolin-4-yl]-amine;
 - [2-(4-acetamido-3-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - (5-Cyclopropyl-2H-pyrazol-3-yl)-[2-(indan-2-ylamino)-quinazolin-4-yl]-amine;
 - [2-(3-Methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(2-Chloro-5-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-Cyclopropyl-2*H*-pyrazol-3-yl)-{2-[4-(morpholin-1-yl)phenylamino]-quinazolin-4-yl}-amine;
 - [2-(Benzothiazol-6-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(3,4-Dimethylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(3-Ethylphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(3-Methoxyphenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;

- [2-(4-Acetamido-3-cyanophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(2-Methoxybiphenyl-5-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Acetamidophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-tert-Butoxycarbonylamino-phenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine:
 - [2-(4-Cyanophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- (5-Methyl-2*H*-pyrazol-3-yl)-[2-(6-oxo-6,10b-dihydro-4a*H*-benzo[c]chromen-2-ylamino)-quinazolin-4-yl]-amine;
 - [2-(Biphenyl-3-ylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
- [2-(4-Methoxycarbonylmethyl-3-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [2-(4-Carboxymethyl-3-methylphenylamino)-quinazolin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine:
 - [2-(4-Aminophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(4-Bromophenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - [2-(4-Isobutyrylamino-phenylamino)-quinazolin-4-yl]-(5-methyl-2H-pyrazol-3-yl)-amine;
 - (5-Ethyl-2H-pyrazol-3-yl)-[2-(5-ethyl-2H-pyrazol-3-ylamino)-quinazolin-4-yl]-amine;
 - (1H-Indazol-3-yl)-(2-phenylamino-quinazolin-4-yl)-amine;
 - (1H-Indazol-3-yl)-[2-(3-trifluoromethylphenylamino)-quinazolin-4-yl]-amine;
 - (1H-Indazol-3-yl)-[2-(4-trifluoromethylphenylamino)-quinazolin-4-yl]-amine;
 - [2-(Adamantan-2-ylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine;
 - (1H-Indazol-3-yl)-(2-methyl-phenyl-amino-quinazolin-4-yl)-amine;
 - [2-(2-Chloro-phenyl)-amino-quinazolin-4-yl]-(1H-indazol-3-yl)-amine;
 - (1H-Indazol-3-yl)-[2-(2-trifluoromethylphenylamino)-quinazolin-4-yl]-amine;
 - [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine;
- [2-(4-Chlorophenylamino)-5,6,7,8-tetrahydroquinazolinin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine:
- (5-Methyl-2*H*-pyrazol-3-yl)-(2-phenylamino-6,7,8,9-tetrahydro-5*H*-cycloheptapyrimidin-4-yl)-amine;
- [2-(Benzimidazol-2-ylamino)-7-benzyl-5,6,7,8-tetrahydro-pyrido[3,4-d]pyrimidin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;

- (7-Benzyl-2-phenylamino-5,6,7,8-tetrahydro-pyrido[3,4-d]pyrimidin-4-yl)-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [6-Benzyl-2-(4-chlorophenylamino)-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- [2-(Benzimidazol-2-ylamino)-6-benzyl-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidin-4-yl]-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- (6-Benzyl-2-phenylamino-5,6,7,8-tetrahydro-pyrido[4,3-d]pyrimidin-4-yl)-(5-methyl-2*H*-pyrazol-3-yl)-amine;
- (5-Methyl-2*H*-pyrazol-3-yl)-(2-phenylamino-5,6,7,8-tetrahydro-pyrido[3,4-d]pyrimidin-4-yl)-amine;
 - [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(1H-pyrazolo[3,4-b]pyridin-3-yl)-amine;
 - [2-(4-Cyanobenzylamino)-quinazolin-4-yl]-(1H-pyrazolo[3,4-b]pyridin-3-yl)-amine;
 - [2-(4-Cyanomethylphenylamino)-quinazolin-4-yl]-(4-fluoro-1H-indazol-3-yl)-amine;
 - [2-(4-Cyanophenylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine; and
 - [2-(4-Cyanobenzylamino)-quinazolin-4-yl]-(1H-indazol-3-yl)-amine.
- 17. (original) A composition comprising a compound according to any one of claims 1-16, and a pharmaceutically acceptable carrier.
- 18. (currently amended) The composition according to claim 17, further comprising an additional therapeutic agent formulated with the compound according to any one of claims 1-16 and the pharmaceutically acceptable carrier.
- 19. (original) A method of inhibiting Aurora-2, GSK-3, Src, ERK-2, or AKT activity in a biological sample comprising the step of contacting said biological sample with a compound according to any one of claims 1-16.
- 20. (original) A method of inhibiting Aurora-2 activity in a patient comprising the step of administering to said patient a composition according to claim 17.

- 21. (original) A method of inhibiting Aurora-2 activity in a patient comprising the step of administering to said patient a composition according to claim 18.
- 22. (cancelled).
- 23. (currently amended) The method according to claim 22, wherein said disease is A method of treating a disease selected from colon, breast, stomach, or ovarian cancer comprising administering to a patient in need of such treatment a therapeutically effective amount of a composition according to claim 17.
- 24. (original) The method according to claim 23, wherein said method further comprises administering an additional therapeutic agent.
- 25. (original) The method according to claim 24, wherein said additional therapeutic agent is a chemotherapeutic agent.
- 26. (original) A method of inhibiting GSK-3 activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 27. (original) A method of inhibiting GSK-3 activity in a patient comprising the step of administering to said patient a composition according to claim 18.
- 28. (cancelled).
- 29. (currently amended) The method according to claim 28, wherein said GSK-3 mediated disease is A method of treating a disease selected from diabetes, Alzheimer's disease, Huntington's Disease, Parkinson's Disease, AIDS-associated dementia, amyotrophic lateral sclerosis (AML), multiple sclerosis (MS), schizophrenia, cardiomycete hypertrophy, reperfusion/ischemia, or baldness comprising administering to a patient in need of such treatment a therapeutically effective amount of a composition according to claim 18.

- 30. (currently amended) The method according to claim 29, wherein said GSK-3 mediated the disease is diabetes.
- 31. (original) A method of enhancing glycogen synthesis or lowering blood levels of glucose in a patient in need thereof, which method comprises administering to said patient a therapeutically effective amount of a composition according to claim 17.
- 32. (original) A method of inhibiting the production of hyperphosphorylated Tau protein in a patient, which method comprises administering to a patient in need thereof a therapeutically effective amount of a composition according to claim 17.
- 33. (original) A method of inhibiting the phosphorylation of β -catenin, which method comprises administering to a patient in need thereof a therapeutically effective amount of a composition according to claim 17.
- 34. (original) A method of inhibiting Src activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 35. (currently amended) A method of treating a Src mediated disease, a disease selected from hypercalcemia, osteoporosis, osteoarthritis, cancer, or Paget's disease, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim 17.
- 36. (original) A method of inhibiting ERK-2 activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 37. (currently amended) A method of treating an ERK 2 mediated disease a disease selected from cancer, stroke, diabetes, hepatomegaly, cardivascular disease, Alzheimer's disease, cystic fibrosis, viral disease, autoimmune disease, atherosclerosis, restenosis, psoriasis, an allergic disorder, or a hormone-related disease, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim

17.

- 38. (original) A method of inhibiting AKT activity in a patient comprising the step of administering to said patient a composition according to claim 17.
- 39. (currently amended) A method of treating an AKT modiated disease, a disease selected from a cancer or a neurodegenerative disorder, which method comprises administering to a patient in need of such a treatment a therapeutically effective amount of a composition according to claim 17.