

#### **Voice over IP**

#### Grundlagen und Einsatzmöglichkeiten

Karsten Wemheuer



#### Was erwartet uns heute?



- Vorstellung
- Telefonie, analog und digital
- Voice over IP
- SIP
- Einsatzszenarien
- Fallstricke
- (Open Source) Software
- Q&A

# DTAM

#### Karsten Wemheuer



- Studium Elektrotechnik/TI
  - TU Hannover, RWTH Aachen
- Mehr als 15 Jahre Telekommunikation
  - Software-Entwicklung, Produktmanagement, System-Ingenieur
- Geschäftsführer IPTAM GmbH
  - k.wemheuer at iptam.com



# Telefonie (analog)



- Wahl durch Impulse (Wählscheibe)
- Klingeln durch Anlegen der Rufspannung
- Schalten des Weges, Ende-zu-Ende





# Analoge Übertragung



- Leitungsweg wird exklusiv genutzt
- Störungen
  - Einkopplung
  - Hall
  - Übersprechen
  - Fehlschaltung (mechanische Vermittlung)
- Heute noch stark verbreitet (Endgeräte)
- Pulswahl durch Mehrfrequenzwahlverfahren (DTMF) abgelöst

# DTAM

#### **ISDN**



- Integrated Services Digital Network
- Ziel: Viele Dienste über ein einheitliches Netz
  - Telefonie, Fernschreiben, Datex-L, Datex-P, Teletex, ...
- Leitungsvermittelt
- Signalisierung und Daten getrennt (D- und B-Kanal)
- Standardisierung durch ETSI und ITU-T
  - E-DSS1, I.430/431, Q.921, Q.931
- Sprache: Strom von Abtastwerten
  - 8 kHz, 8 Bit, PCM, log. Kennlinie (A-law)





#### ע | |

### Sprache in Datennetzen



- Sprache: Kontinuierliches Signal
- Digitalisierte Sprache: Kontinuierlicher Strom von Abtastwerten (isochron)



- Datennetze: Paket-orientiert
- IP-Netzwerke:
  - Best-Effort
  - Keine garantierte Ankunft
  - Keine Echtzeitfähigkeit
  - Keine Garantie über die Reihenfolge



# PTAM

# Sprache in Datennetzen (2)





# PTAM

# Sprachqualität

G

- Laufzeit (Latenz)
- Laufzeitschwankungen (Jitter)
  - Puffer gleicht Jitter aus
  - Größere Puffer vergrößern Latenz
  - Zu kleine Puffer führen zu "Aussetzern"
- Auswahl des Codec
  - Kompression spart Bandbreite
  - Kompression ist verlustbehaftet
  - Kompression erhöht Latenz
- Paketgröße
  - Bessere Nutzung des Netzes vs. Latenz
- Echo
  - Rückkopplung in Verbindung mit Laufzeit
  - Echo-Kompensation in den Endgeräten (DSP)





## Codecs



|              | Bitstream-Codecs              | Frame orientierte Codecs                   |  |
|--------------|-------------------------------|--------------------------------------------|--|
| Verarbeitung | Samples fließen direkt ein    | Bestimmte Anzahl Samples => Datenframe     |  |
| Latenz       | Durch Sample-Rate<br>bestimmt | Durch Algorithmus bestimmt                 |  |
| Paketgröße   | variabel                      | abhängig vom Algorithmus                   |  |
| Beispiele    | CD, G.711, G.726              | MP3, G.729, G.723.1, Speex, iLBC, GSM, AMR |  |

| Konstante Bitrate         | Variable Bitrate                           |
|---------------------------|--------------------------------------------|
| G.711, G.726, G.729, iLBC | G.711.1, G.722.2, G.729.1, Speex, GSM, AMR |

| Frei                             | Patentiert, Kostenlos | Patentiert, kostenpflichtig |
|----------------------------------|-----------------------|-----------------------------|
| G.711, G.722, G.726, iLBC, Speex | G.722.1               | G.722.2, G.729, AMR         |

http://en.wikipedia.org/wiki/Comparison\_of\_audio\_codecs



#### **IP-Telefonie: Standards**



- Offene Standards
  - H.323 (ITU-T ab 1996)
  - MGCP
  - SIP (IETF ab 1999)
  - IAX (Gemeinsamer Datenstrom)
  - Jingle (Google)
  - SDP (IETF)
  - RTP (IETF)
- Proprietäre Verfahren
  - Skype
  - Skinny (Cisco Systems)



# Einsatzgebiete (1)



- Ergänzung/Ablösung des Telefons
  - IP-Telefon, Softphone
  - DSL-Anschluss
  - Account bei einem Provider





# Einsatzgebiete (2)



- IP-Telefonanlage
  - IP-Telefon oder Softphone je Arbeitsplatz
  - IP-PBX ersetzt klassische System TK-Anlage
  - ISDN und/oder Account(s) bei einem Provider





# Einsatzgebiete (3)



- IP-Centrex
  - IP-Telefon oder Softphone je Arbeitsplatz
  - Vermittlungsleistung (auch lokal) durch Dienstanbieter





# SIP (Session Initiation Protocol)



- Steuerung von Multimedia Sitzungen
  - Beliebige Medien
  - Benötigt weitere Dienste/Protokolle (DNS, SDP, ...)
- Adressen der Anwender in Form user@domain
  - URI z.B. sip:alice@wonderland.com
  - Einsatz von DNS SRV Records
- Text-basiertes Protokoll
  - Ähnlichkeiten zu HTTP und SMTP
- Transport
  - SIP via UDP (optional TCP)
  - TLS möglich
- SDP (Session Description Protocol)
  - Beschreibt die Medienströme

# DTAM

#### SIP Architekturelemente



- Registrar
  - Anmeldung der Nutzer
  - Lokalisierung: Registrar "kennt" Nutzer
- Proxy
  - Vermittlung von Gesprächen (Sitzungen)
  - Aufbau von Verbindungen mit Hilfe fremder Proxys (vgl. MTA)
- Endgerät: SIPUA (SIP User Agent)
  - Anmeldung am Registrar
  - Aufbau von Verbindungen über einen Proxy
  - Codierung/Decodierung der Sprache
  - Übertragung der Sprache als IP-Datenstrom

# DTAM

#### SIP Architekturelemente



#### Gateway

- Realisiert Übergang zwischen IP-Netz und "klassischem" Telefonnetz (PSTN), analog oder digital (ISDN)
- Übersetzung der Signalisierung zwischen SIP und analoger oder digitaler Signalisierung
- Verpacken des Sprachdatenstroms aus dem Telefonnetz in Datenpakete
- Entpacken der aus dem IP-Netz kommenden Daten in einen Audiodatenstrom

# PTAM

#### Aufbau einer Session







#### SIP-Paket im Detail



INVITE sip:bob@realworld.com SIP/2.0

Via: SIP/2.0/UDP pc-alice.wonderland.com;branch=z9hG4bK7

Max-Forwards: 70

To: Bob <sip:bob@realworld.com>

From: Alice <sip:alice@wonderland.com>;tag=8g4mK6ptte50H

Call-ID: 3c2670172e42-hbjlkd57yg80@pc-alice.wonderland.com

CSeq: 102 INVITE

Contact: <sip:alice@pc-alice.wonderland.com>

Content-Type: application/sdp

Content-Length: 142

- To- und From-Tags kennzeichnen mit Call-ID diesen Dialog eindeutig
- Via kennzeichnet Ziel für Antworten zu einem Request
- Contact kennzeichnet Ziel für zukünftige Requests
- Content-Type gibt den (hier nicht gezeigten) "message body" an.
- Details: RFC 3261



#### SIP-Antwort im Detail



SIP/2.0 200 Ok

Via: SIP/2.0/UDP server10.realword.com;branch=z9hG4bK06da10c6

Via: SIP/2.0/UDP box.wonderland.com;branch=4bK77ef4c2312983

Via: SIP/2.0/UDP pc-alice.wonderland.com;branch=z9hG4bK7

To: Bob <sip:bob@realworld.com>;tag=a6c85cf

From: Alice <sip:alice@wonderland.com>;tag=8g4mK6ptte50H

Call-ID: 3c2670172e42-hbjlkd57yg80@pc-alice.wonderland.com

CSeq: 102 INVITE

Contact: <sip:bob@192.0.2.4>
Content-Type: application/sdp

Content-Length: 131

- 3-stelliger Status mit Textbeschreibung
- Via-Header beschreiben den Weg
- Antwort für INVITE: SDP als Content







```
v=0
o=root 5287 5287 IN IP4 10.10.129.10
s=session
c=IN IP4 10.10.129.10
t=0 0
m=audio 10762 RTP/AVP 8 0 101
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=silenceSupp:off - - - -
a=ptime:20
a=sendrecv
```

- Reihenfolge der Attribute ist wichtig
- m-Attribut und folgende a-Attribute können mehrfach auftreten
- c-Attribut kann auch im Media-Bereich auftreten
- Details: RFC 4566 (Nachfolger von RFC 2327)

# DTAM

# Registrierung (Lokalisierung)



- SIP-Clients senden regelmäßig "REGISTER"-Requests
- Register-Requests haben eine Lebensdauer
- Contact-Header enthält Lokalisierungs-Informationen
- Registrar: Datenbank zur Abbildung SIP-URI <=> Location (IP, Port)
- Mehrfache Registrierung eines Anwenders möglich
- Mehrere Anwender an einem Gerät möglich
- Registrar und Proxy co-located oder separat



### SIP-Requests



#### • REGISTER

- Registrierung von Lokalisierungs-Informationen
- INVITE
  - Rufaufbau und Änderungen während eines Dialogs
- ACK
  - Abschließende Bestätigung (Rufaufbau)
- CANCEL
  - Beenden eines Requests (INVITE, der noch nicht erfolgreich war)
- BYE
  - Beenden eines Gesprächs
- OPTIONS
  - Ermitteln der Fähigkeiten der Gegenseite
- SUBSCRIBE (RFC 3265)
  - Status-Meldungen abonnieren
- NOTIFY (RFC 3265)
  - Status-Meldungen

# PTAM

## SIP-Responses



- Antwort auf Request: numerischer Wert plus beschreibender Text
- Code differenziert Ursache (vgl. HTTP)
  - 1xx Informelle Meldungen (Trying, Ringing)
  - 2xx Positive Bestätigung (200 OK)
  - 3xx Redirection (301 Moved permanently)
  - 4xx Fehler (401 Auth. required, 404 not found)
  - 5xx Server Fehler (500 Server error)
  - 6xx Globale Fehler (603 Decline)

#### Firewalls und NAT



- SIP nutzt UDP/TCP Port 5060 sowie 5061 (TLS)
- Probleme bereiten:
  - Contact-Header enthält u.U. private Adressen (RFC 1918)
  - Dynamisch vergebene RTP-Ports für Medienströme
- Firewalls und NAT häufig ein Problem beim Einsatz von SIP
- Keine generelle immer funktionierende Lösung verfügbar
- Lösungsmöglichkeiten:
  - Application Level Gateways (ALG)
  - STUN (Simple Traversal of UDP through NAT, Session Traversal Utilities for NAT), RFC 3489 bzw. RFC 5389
  - ICE (Interactive Connectivity Establishment), RFC 5245
  - Manuelle Konfiguration in Endgeräten
  - Port-Weiterleitung

# PTAM

### Firewalls und NAT: ALG





# PTAM

### Firewalls und NAT: STUN







# Quality of Service (QoS)



- Anforderungen für Medien-Ströme
  - Geringe Fehlerrate (Paketverlust)
  - Geringe Latenz, geringer Jitter
- Latenz:
  - Warteschlangen in Netzkomponenten
- Paketverlust:
  - Störungen (z.B. CRC-Fehler)
  - Verwerfen durch Überlast in Netzkomponenten
- QoS Mechanismen
  - Markieren der Pakete hinsichtlich ihrer Klasse
  - Steuerung der Warteschlangen anhand der Markierungen
- QoS ist eine "Mangelverwaltung"
  - Genügend Bandbreite macht QoS überflüssig
- LAN: In der Regel genügend Reserve.
- WAN: I.d.R nur begrenzter Einfluss (Upstream)



# QoS (2)



- Markierung erfolgt sinnvollerweise im Endgerät
- Markierung auf Layer 2 Ebene
  - IEEE 802.1p und IEEE 802.1Q
  - Wird nur von L2-Switches ausgewertet
- Markierung auf Layer 3 Ebene
  - TOS-Feld (veraltet)
  - DiffServ (RFC 2474)
  - Auswertung durch Router und L3 Switches
- Netzwerkkomponenten steuern Warteschlangen
  - Unterschiedliche Queueing-Strategien
  - Priority Queueing (PQ), Class-Based Queueing (CBQ),
     Weighted Fair Queueing (WFQ), Weighted Round-Robin (WRR)



## Praxis: Endgeräte



- IP-Telefone
  - Tastenfeld und Displaygröße
  - Leistungsmerkmale
    - Halten, Makeln, Verbinden
    - Konferenzen
    - Anzeige für vorhandene Benachrichtigungen (MWI)
    - Besetztlampenfeld
  - LAN-Anschluss
    - Integrierter Switch: 100MBit/s oder 1GBit/s
  - Stromversorgung
    - PoE oder Steckernetzteil



# Praxis: Endgeräte (2)



- Softphones mit Headset
  - Für alle gängigen Betriebssysteme
  - Kostenlose und kostenpflichtige Software
  - Leistungsmerkmale wie bei IP-Telefonen variabel
  - Auch via Smartphone (UMTS oder WLAN)
- Analoge Telefone mit ATA
  - Leistungsmerkmale wie Makeln etc kompliziert
  - Fehlanpassungen und Verkabelungsfehler führen zu akustischen Problemen
- Mobile Lösungen
  - DECT mit SIP via Basis-Station
  - DECT über SIP auch mit Handover und Roaming
  - WLAN: Komplex wg. QoS, Handover nur mit gemanagten Access Points



#### Praxis: Beachtenswert



- Absenderrufnummer bei Internet-Telefonie
  - In der Regel (frei) wählbar
  - Keine Anonymität!
- Notruf
  - Notrufe gelangen automatisch zur zuständigen Stelle
  - Vorsicht bei nomadischer Nutzung von Internet-Telefonie!
- Fax
  - Fax im PSTN: T.30 (Modemsignale 2.400 bis 33.600 Bit/s)
  - T.30 via VoIP: Geringe Störungen führen zum Abbruch
    - Im LAN kann T.30 mit Codec G.711 funktionieren
    - Via Internet: nur T.38 einsetzen (Fax als Datensignal)
  - Provider bieten Fax als Dienstleistung (Web/E-Mail)



# Praxis: DTMF-Behandlung



- DTMF: Zwei überlagerte Töne
- Einsatz: Sprachmenüs, Authentifizierung
- Übertragung von DTMF als Ton via VoIP unzuverlässig
- Übertragung als SIP-INFO Nachricht
  - Tasteninformation ohne Dauer des Tastendrucks
- Übertragung als RTP-Daten (RFC 2833, RFC 4733)
  - Taste und Dauer des Tastendrucks
- Endgeräte erlauben häufig mehrere Einstellungen, die dann zu doppelter Übertragung führen können!



# Software: Clients (Auswahl)



| Name     | Betriebssysteme                                | Lizenz/Kosten                               |
|----------|------------------------------------------------|---------------------------------------------|
| Bria     | Windows, Mac OS, Ubuntu, Android, iPad, iPhone | Closed Source / kostenlos<br>u. kommerziell |
| Linphone | Windows, Mac OS, Linux, Android, iPhone        | GPL                                         |
| Ninja    | Windows                                        | Closed Source / kostenlos<br>u. kommerziell |
| Twinkle  | Linux                                          | GPL                                         |
| xlite    | Windows, Mac OS                                | Closed Source / kostenlos<br>u. kommerziell |





|   | Name             | Betriebssysteme                          | Lizenz                 | Bemerkungen                                                      |
|---|------------------|------------------------------------------|------------------------|------------------------------------------------------------------|
|   | Asterisk PBX     | Unix, BSD, Mac OS<br>X, Solaris          | GPL und<br>Kommerziell | Vollständige PBX, SIP, IAX,<br>H.323, ISDN, Erweiterbar          |
|   | FreeSWITCH       | Unix, BSD, Mac OS<br>X, Solaris, Windows | MPL                    | Vollständige PBX, SIP, IAX,<br>H.323, ISDN, Erweiterbar          |
|   | GNU Gatekeeper   | Linux, FreeBSD, Mac<br>OSX, Windows      | GPL                    | Gatekeeper Funktion des H.323                                    |
| / | OPAL             | Unix, BSD, Mac OS<br>X, Solaris, Windows | MPL                    | Bibliothek für<br>Telefonapplikationen (C++),<br>H.323, SIP, IAX |
|   | OpenSER/Kamailio | Unix                                     | GPL                    | SIP Proxy und Registrar,<br>Erweiterbar                          |
|   | OpenSIPS         | Unix                                     | GPL                    | SIP Proxy und Registrar,<br>Erweiterbar                          |
|   | SER              | Unix                                     | GPL                    | SIP Proxy und Registrar,<br>Erweiterbar                          |
|   | Yate             | Linux, Mac OS,<br>Windows                | GPL                    | Vollständige PBX, SIP, IAX,<br>H.323, ISDN, Erweiterbar          |

PTAM®



### Linksammlung



- Standards
  - IETF: http://www.rfc-editor.org/
  - ITU-T: http://www.itu.int/itu-t/recommendations/index.aspx
- Bandbreiten-Kalkulator http://www.bandcalc.com/
- QoS mit Linux
  - Zeitschrift ADMIN 02/2011: "Schnell sein, Held sein"
  - Wondershaper: http://lartc.org/wondershaper
- Audio-Konvertierung
  - audacity: http://audacity.sourceforge.net/?lang=de
  - SoX: http://sox.sourceforge.net/
- Netzwerk-Analyse
  - Wireshark: http://www.wireshark.org/
  - Ngrep: http://ngrep.sourceforge.net/
  - SIPp (Test-Tool, Traffic-Generator): http://sipp.sourceforge.net/
  - SIPSAK SIP swiss army knife: http://sipsak.org/



# Fragen und Antworten



Danke für die Aufmerksamkeit!