## **METODE SMART**

(Simple Multi Attribute Rating Technique)



Saifur Rohman Cholil, S.Kom., M.Kom.

- □ Metode SMART merupakan metode pengambilan keputusan banyak atribut yang dikembangkan oleh Edward pada tahun 1977.
   □ Teknik pembuatan keputusan banyak atribut
- ☐ Teknik pembuatan keputusan banyak atribut ini digunakan untuk mendukung pembuat keputusan dalam memilih antara beberapa alternatif.
- ☐ Setiap pembuat keputusan harus memilih sebuah alternatif yang sesuai dengan tujuan yang telah dirumuskan.

- Setiap alternatif terdiri dari sekumpulan atribut dan setiap atribut mempunyai nilai.
   Setiap atribut mempunyai bobot yang
- Setiap atribut mempunyai bobot yang menggambarkan seberapa penting dibandingkan dengan atribut lain.
- ☐ Pembobotan dan pemberian peringkat ini digunakan untuk menilai setiap alternatif agar diperoleh alternatif terbaik.



#### ☐ Tahapan metode SMART :

- 1. Menentukan kriteria dan alternatif.
  - 2. Memberikan bobot kepada setiap alternatif berdasarkan setiap kriteria dan menghitung nilai normalisasi bobot.
    - 3. Memberikan nilai kriteria untuk setiap alternatif.
  - 4. Menghitung normalisasi data nilai kriteria untuk setiap alternatif.
- 5. Menghitung nilai utiliti terhadap setiap alternatif.



- 1. Menentukan kriteria dan alternatif yang digunakan dalam menyelesaikan masalah pengambilan keputusan.
- 2. Memberikan bobot pada masing-masing kriteria dengan menggunakan interval 0 100 dengan memperhatikan prioritas terpenting.

Selanjutnya menghitung normalisasi dari setiap kriteria dengan membandingkan nilai bobot kriteria dengan jumlah bobot kriteria, menggunakan persamaan :

Normalisasi = 
$$\frac{w_j}{\sum_{j=1}^m w_m}$$

dimana:

w<sub>i</sub> = nilai bobot kriteria ke-j

m = jumlah kriteria

 $w_m$  = bobot kriteria ke-m



3. Memberikan nilai kriteria untuk setiap alternatif, nilai dapat berbentuk data kuantitatif (angka) atau kualitatif.

Apabila nilai kriteria berbetuk kualitatif, maka dilakukan perubahan ke data kuantitatif dengan membuat parameter nilai kriteria, misalkan:

sangat lengkap = 3 lengkap = 2

kurang lengkap = 1

4. Menghitung normalisasi data nilai kriteria untuk setiap alternatif.

Proses normalisasi diperlukan untuk mengubah nilai data yang berbeda pada masing-masing kriteria supaya menjadi comparable (sebanding).

$$R_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}}$$
 untuk 1, 2, 3, .....m dan j= 1, 2, 3, .....n

#### Contoh data asli:

|            | Kr               | iteria C1                    | Kriteria C2           | Krite                           | ria C3                        |                              | Kriteria C4           |                          | Kriteria C5           | Kriteria C6               |
|------------|------------------|------------------------------|-----------------------|---------------------------------|-------------------------------|------------------------------|-----------------------|--------------------------|-----------------------|---------------------------|
| Alternatif | Korban<br>(jiwa) | Jumlah<br>Penduduk<br>(jiwa) | Perumahan<br>(rupiah) | Air dan<br>Sanitasi<br>(rupiah) | Stuktur<br>Sungai<br>(rupiah) | Tempat<br>Ibadah<br>(rupiah) | Kesehatan<br>(rupiah) | Panti Sosial<br>(rupiah) | UKM<br>(rupiah)       | Lintas Sektor<br>(rupiah) |
| A1         | 19168            | 1281061                      | 1.517.935.000.<br>000 | 33.506.160.0<br>00              | 5.600.000.00<br>0             | 13.589.000.0<br>00           | 15.291.295.0<br>00    | 8.084.070.000            | 697.200.000.0<br>00   | 75.458.900.0<br>00        |
| A2         | 34               | 1158138                      | 11.100.000.00<br>0    | 99.120.000                      | 0                             | 0                            | 0                     | 0                        | 0                     | 350.900.000               |
| А3         | 304              | 941808                       | 14.965.000.00<br>0    | 178.800.000                     | 0                             | 0                            | 0                     | 0                        | 0                     | 701.525.000               |
| A4         | 68               | 817108                       | 14.190.000.00<br>0    | 553.200.000                     | 0                             | 0                            | 0                     | 0                        | 0                     | 0                         |
| A5         | 4                | 1125246                      | 745.000.000           | 8.400.000                       | 0                             | 0                            | 0                     | 0                        | 0                     | 6.932.125.00<br>0         |
| A6         | 5                | 718513                       | 5.620.000.000         | 77.760.000                      | 0                             | 0                            | 0                     | 0                        | 0                     | 0                         |
| A7         | 16147            | 800569                       | 938.030.000.0<br>00   | 24.745.200.0<br>00              | 7.700.000.00<br>0             | 139.508.000.<br>000          | 418.380.000.<br>000   | 4.419.150.000            | 1.443.100.000.<br>000 | 2.866.600.00<br>0         |
| A8         | 4032             | 895408                       | 387.960.000.0<br>00   | 7.343.760.00<br>0               | 500.000.000                   | 7.686.000.00<br>0            | 198.237.000.<br>000   | 11.602.950.00<br>0       | 178.200.000.0<br>00   | 543.400.000               |
| A9         | 513              | 515976                       | 91.925.000.00<br>0    | 2.008.320.00<br>0               | 1.500.000.00<br>0             | 2.787.000.00<br>0            | 604.400.000.<br>000   | 9.365.550.000            | 142.100.000.0<br>00   | 34.464.100.0<br>00        |
| A10        | 2201             | 447695                       | 156.955.000.0<br>00   | 2.954.880.00                    | 3.800.000.00<br>0             | 2.442.000.00<br>0            | 17.927.384.0<br>00    | 2.580.990.000            | 105.400.000.0<br>00   | 490.600.000               |
| A11        | 1167             | 747782                       | 361.810.000.0<br>00   | 4.004.400.00<br>0               | 5.600.000.00<br>0             | 14.720.000.0<br>00           | 169.115.000.<br>000   | 5.020.890.000            | 102.200.000.0<br>00   | 5.203.000.00<br>0         |



#### Setelah dilakukan proses normalisasi

|            | Krite            | ria C1                       | Kriteria C2           | Krite                           | ria C3                        |                              | Kriteria C4           |                          | Kriteria C5     | Kriteria C6                  |
|------------|------------------|------------------------------|-----------------------|---------------------------------|-------------------------------|------------------------------|-----------------------|--------------------------|-----------------|------------------------------|
| Alternatif | Korban<br>(jiwa) | Jumlah<br>Penduduk<br>(jiwa) | Perumahan<br>(rupiah) | Air dan<br>Sanitasi<br>(rupiah) | Stuktur<br>Sungai<br>(rupiah) | Tempat<br>Ibadah<br>(rupiah) | Kesehatan<br>(rupiah) | Panti Sosial<br>(rupiah) | UKM<br>(rupiah) | Lintas<br>Sektor<br>(rupiah) |
| A1         | 0,751275         | 0,432140                     | 0,811473              | 0,785813                        | 0,539886                      | 0,096241                     | 0,019598              | 0,439006                 | 0,428924        | 0,904084                     |
| A2         | 0,001333         | 0,390674                     | 0,005934              | 0,002325                        | 0,000000                      | 0,000000                     | 0,000000              | 0,000000                 | 0,000000        | 0,004204                     |
| A3         | 0,011915         | 0,317700                     | 0,008000              | 0,004193                        | 0,000000                      | 0,000000                     | 0,000000              | 0,000000                 | 0,000000        | 0,008405                     |
| A4         | 0,002665         | 0,275635                     | 0,007586              | 0,012974                        | 0,000000                      | 0,000000                     | 0,000000              | 0,000000                 | 0,000000        | 0,000000                     |
| A5         | 0,000157         | 0,379579                     | 0,000398              | 0,000197                        | 0,000000                      | 0,000000                     | 0,000000              | 0,000000                 | 0,000000        | 0,083055                     |
| A6         | 0,000196         | 0,242376                     | 0,003004              | 0,001824                        | 0,000000                      | 0,000000                     | 0,000000              | 0,000000                 | 0,000000        | 0,000000                     |
| A7         | 0,632869         | 0,270056                     | 0,501462              | 0,580344                        | 0,742343                      | 0,988037                     | 0,536211              | 0,239982                 | 0,887809        | 0,034345                     |
| A8         | 0,158031         | 0,302048                     | 0,207400              | 0,172232                        | 0,048204                      | 0,054435                     | 0,254068              | 0,630098                 | 0,109630        | 0,006511                     |
| A9         | 0,020107         | 0,174054                     | 0,049142              | 0,047101                        | 0,144612                      | 0,019738                     | 0,774621              | 0,508596                 | 0,087421        | 0,412920                     |
| A10        | 0,086266         | 0,151021                     | 0,083907              | 0,069300                        | 0,366351                      | 0,017295                     | 0,022976              | 0,140161                 | 0,064843        | 0,005878                     |
| A11        | 0,045740         | 0,252249                     | 0,193420              | 0,093914                        | 0,000000                      | 0,104251                     | 0,216744              | 0,272660                 | 0,062874        | 0,062338                     |



#### Kriteria C1 Korban jiwa

$$A1 = 19168$$

$$= \sqrt{\sum_{i=1}^{m} x_{ij}^2} \text{ (penjumlahan A1 s.d A11)}$$

$$= \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x_{ij}^2}} = \frac{19168}{25513,9678}$$

Dengan proses normalisasi menjadi :

0,751275

| 1000       | Krite            | ria C1                       | Kriteria C2           |
|------------|------------------|------------------------------|-----------------------|
| Alternatif | Korban<br>(jiwa) | Jumlah<br>Penduduk<br>(jiwa) | Perumahan<br>(rupiah) |
| A1         | 0,751275         | 0,432140                     | 0,811473              |
| A2         | 0,001333         | 0,390674                     | 0,005934              |
| АЗ         | 0,011915         | 0,317700                     | 0,008000              |
| A4         | 0,002665         | 0,275635                     | 0,007586              |
| A5         | 0,000157         | 0,379579                     | 0,000398              |
| A6         | 0,000196         | 0,242376                     | 0,003004              |
| A7         | 0,632869         | 0,270056                     | 0,501462              |
| A8         | 0,158031         | 0,302048                     | 0,207400              |
| A9         | 0,020107         | 0,174054                     | 0,049142              |
| A10        | 0,086266         | 0,151021                     | 0,083907              |
| A11        | 0,045740         | 0,252249                     | 0,193420              |

4. Mencari nilai rata-rata nilai sub kriteria (jika ada sub kriteria) dengan menggunakan rata-rata geometrik untuk memberikan kemudahan dan konsistensi dalam mengambil nilai dari himpunan.

$$G = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \dots x_n}$$

dimana:

n = jumlah sub kriteria dalam satu kriteria

x = nilai

#### Kriteria C1 Korban jiwa

Jml penduduk = 0,432140

$$= \sqrt{0,751275 \times 0,432140}$$

| Al-a        | Kriteria |       |       |       |       |       |  |  |
|-------------|----------|-------|-------|-------|-------|-------|--|--|
| Alaternatif | C1       | C2    | СЗ    | C4    | C5    | C6    |  |  |
| A1          | 0,570    | 0,811 | 0,651 | 0,094 | 0,429 | 0,904 |  |  |
| A2          | 0,023    | 0,006 | 0,002 | 0,000 | 0,000 | 0,004 |  |  |
| АЗ          | 0,062    | 0,008 | 0,004 | 0,000 | 0,000 | 0,008 |  |  |
| A4          | 0,027    | 0,008 | 0,013 | 0,000 | 0,000 | 0,000 |  |  |
| A5          | 0,008    | 0,000 | 0,000 | 0,000 | 0,000 | 0,083 |  |  |
| A6          | 0,007    | 0,003 | 0,002 | 0,000 | 0,000 | 0,000 |  |  |
| A7          | 0,413    | 0,501 | 0,656 | 0,503 | 0,888 | 0,034 |  |  |
| A8          | 0,218    | 0,207 | 0,091 | 0,206 | 0,110 | 0,007 |  |  |
| A9          | 0,059    | 0,049 | 0,083 | 0,198 | 0,087 | 0,413 |  |  |
| A10         | 0,114    | 0,084 | 0,159 | 0,038 | 0,065 | 0,006 |  |  |
| A11         | 0,107    | 0,193 | 0,094 | 0,183 | 0,063 | 0,062 |  |  |

|           | Krite            | ria C1                       | Kriteria C2           |
|-----------|------------------|------------------------------|-----------------------|
| Alternati | Korban<br>(jiwa) | Jumlah<br>Penduduk<br>(jiwa) | Perumahan<br>(rupiah) |
| A1        | 0,751275         | 0,432140                     | 0,811473              |
| A2        | 0,001333         | 0,390674                     | 0,005934              |
| АЗ        | 0,011915         | 0,317700                     | 0,008000              |
| A4        | 0,002665         | 0,275635                     | 0,007586              |
| A5        | 0,000157         | 0,379579                     | 0,000398              |
| A6        | 0,000196         | 0,242376                     | 0,003004              |
| A7        | 0,632869         | 0,270056                     | 0,501462              |
| A8        | 0,158031         | 0,302048                     | 0,207400              |
| A9        | 0,020107         | 0,174054                     | 0,049142              |
| A10       | 0,086266         | 0,151021                     | 0,083907              |
| A11       | 0,045740         | 0,252249                     | 0,193420              |

# 5. Menentukan nilai utiliti dengan mengkonversikan nilai kriteria pada masing-masing kriteria menjadi nilai kriteria data baku.

Jika nilai kriteria benefit:

$$u_i$$
 (ai) =  $\left(\frac{c_{out} - c_{min}}{c_{max} - c_{min}}\right) \times 100\%$ 

dimana:

$$u_i(a_i)$$
 = nilai utiliti kriteria ke i

#### Jika nilai kriteria cost:

$$u_i$$
 (ai) =  $\left(\frac{c_{max} - c_{out}}{c_{max} - c_{min}}\right) \times 100\%$ 

#### dimana:

 $u_i(a_i)$  = nilai utiliti kriteria ke i

c<sub>max</sub> = nilai kriteria maksimal

c<sub>min</sub> = nilai kriteria minimal

c<sub>out</sub> = nilai kriteria ke i



5. Selanjutnya menentukan nilai akhir dengan mengalikan angka yang didapat dari normalisasi nilai kriteria data baku dengan nilai normalisasi bobot kriteria dan menjumlahkan nilai dari perkalian tersebut.

$$u (ai) = \sum_{j=1}^{m} w_j u_i(a_i)$$

dimana:

$$u(a_i)$$
 = nilai total alternatif

w<sub>i</sub> = hasil dari normalisasi bobot kriteria

u<sub>i</sub> (a<sub>i</sub>) = hasil penentuan nilai utiliti

#### Contoh:

- ☐ Sebuah perusahaan akan melakukan rekrutmen kerja terhadap 5 calon pekerja untuk posisi operator mesin.
- □ Posisi yang dibutuhkan hanya 2 orang.
- Kriteria :
  - ✓ Pengalaman kerja (disimbolkan C1)
  - ✓ Pendidikan (C2)
  - ✓ Usia (C3)
  - ✓ Status perkawinan (C4)
  - ✓ Alamat (C5)



- □ Ada lima orang yang menjadi kandidat (alternatif) yaitu :
  - ✓ Doni Prakosa (disimbolkan A1)
  - ✓ Dion Pratama (A2)
  - ✓ Dina Ayu Palupi(A3)
  - ✓ Dini Ambarwati (A4)
  - ✓ Danu Nugraha (A5)



#### Jawab:

Sebelum kita melakukan perhitungan, kita tentukan dulu mana yang menjadi kriteria benefit dan kriteria cost

- 1. Kriteria benefit-nya adalah:
- Pengalaman kerja (disimbolkan C1)
- Pendidikan (C2)
- Usia (C3)

Sedangkan kriteria cost-nya adalah:

- Status perkawinan (C4)
- ➤ Alamat (C5)



#### 2. Pembobotan (w)

Pembobotan ini ialah pembobotan tiap-tiap kriteria.

| Kriteria | Bobot |
|----------|-------|
| C1       | 0,3   |
| C2       | 0,2   |
| C3       | 0,2   |
| C4       | 0,15  |
| C5       | 0,15  |
| Total    | 1     |



#### 3. Mengisi nilai masing-masing kriteria

Tahap ini dilakukan pengisian nilai dari masing-masing kriteria. nilai berdasarkan data yang diperoleh. Pengisian pembobotan disi dari 0 – 1.

| Altornotif            | Kriteria       |                |                |                |                       |  |
|-----------------------|----------------|----------------|----------------|----------------|-----------------------|--|
| Alternatif            | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | <b>C</b> <sub>5</sub> |  |
| $A_1$                 | 0,5            | 1              | 0,7            | 0,7            | 0,8                   |  |
| A <sub>2</sub>        | 0,8            | 0,7            | 1              | 0,5            | 1                     |  |
| A <sub>3</sub>        | 1              | 0,3            | 0,4            | 0,7            | 1                     |  |
| A <sub>4</sub>        | 0,2            | 1              | 0,5            | 0,9            | 0,7                   |  |
| <b>A</b> <sub>5</sub> | 1              | 0,7            | 0,4            | 0,7            | 1                     |  |



- 4. Menghitung normalisasi data nilai kriteria untuk setiap alternatif.
- 5. Menentukan nilai utiliti dengan mengkonversikan nilai kriteria pada masing-masing kriteria menjadi nilai kriteria data baku.

Benefit 
$$\rightarrow$$
 u<sub>i</sub> (ai) =  $\left(\frac{c_{out} - c_{min}}{c_{max} - c_{min}}\right) \times 100\%$ 

Cost 
$$\rightarrow$$
 u<sub>i</sub> (ai) =  $\left(\frac{c_{max} - c_{out}}{c_{max} - c_{min}}\right) \times 100\%$ 

C1(11) = 
$$\left(\frac{0,5-0,2}{1-0,2}\right) x 100\% = 0,375$$
  
C1(21) =  $\left(\frac{0,8-0,2}{1-0,2}\right) x 100\% = 0,75$ 

C1(31) = 
$$\left(\frac{1-0.2}{1-0.2}\right) x 100\% = 1$$
  
C1(41) =  $\left(\frac{0.2-0.2}{1-0.2}\right) x 100\% = 0$ 

C1(51) = 
$$\left(\frac{1-0.2}{1-0.2}\right) \times 100\% = 1$$



C<sub>5</sub> 8,0

8,0 0,7 Jika nilai kriteria benefit:

A<sub>1</sub> 0,5 1 0,7 0,7 0,8 A<sub>2</sub> 0,8 0,7 1 0,5 1 A<sub>3</sub> 1 0,3 0,4 0,7 1 A<sub>4</sub> 0,2 1 0,5 0,9 0,7 A<sub>5</sub> 1 0,7 0,4 0,7 1

Jika nilai kriteria benefit:
$$u_{i} (ai) = \left(\frac{c_{out} - c_{min}}{c_{max} - c_{min}}\right) x 100\%$$

Alternatif 
$$c_1$$
  $c_2$   $c_3$   $c_4$   $c_5$   $c_5$   $c_5$   $c_6$   $c_7$   $c_8$   $c_8$   $c_8$   $c_8$   $c_8$   $c_8$   $c_9$   $c_9$ 

$$= 0,3$$
Kriteria C2:
$$C2(12) = \left(\frac{1-0,3}{1-0,3}\right) \times 100\% = 1$$

$$C2(22) = \left(\frac{0,7-0,3}{1-0,3}\right) \times 100\% = 0,571$$

$$C2(32) = \left(\frac{0,3-0,3}{1-0,3}\right) \times 100\% = 0$$

$$C2(42) = \left(\frac{1-0,3}{1-0,3}\right) \times 100\% = 1$$

$$C2(52) = \left(\frac{0,7-0,3}{1-0,3}\right) \times 100\% = 0,571$$

 $= \{1; 0,7; 0,3; 1; 0,7\}$ 

 $= \{1; 0,7; 0,3; 1; 0,7\}$ 

Max C2

Min C2

## Kriteria C3:

C3(13) = 
$$\left(\frac{0.7 - 0.4}{1 - 0.4}\right) \times 100\% = 0.5$$

C3(23) = 
$$\left(\frac{1-0.4}{1-0.4}\right) \times 100\% = 1$$

C3(33) = 
$$\left(\frac{0,4-0,4}{1-0,4}\right) \times 100\% = 0$$

C3(43) = 
$$\left(\frac{0.5 - 0.4}{1 - 0.4}\right) \times 100\% = 0.167$$

C3(53) = 
$$\left(\frac{0.4 - 0.4}{1 - 0.4}\right) \times 100\% = 0$$

$$A_4$$
 0,2 1 0,5 0,9 0,7 A<sub>s</sub> 1 0,7 0,4 0,7 1

Jika nilai kriteria benefit :

Jika nilai kriteria benefit :

$$(ai) = \begin{pmatrix} c_{out} - c_{min} \\ c_{out} - c_{min} \\ c_{out} \end{pmatrix} \times 100\%$$





C4(14) = 
$$\left(\frac{0.9-0.7}{0.9-0.5}\right) \times 100\% = 0.5$$

C4(24) = 
$$\left(\frac{0.9 - 0.5}{0.9 - 0.5}\right) \times 100\% = 1$$

C4(34) = 
$$\left(\frac{0.9-0.3}{0.9-0.5}\right) \times 100\% = 0.5$$

C4(44) = 
$$\left(\frac{0.9 - 0.5}{0.9 - 0.5}\right) \times 100\% = 0$$

C4(44) = 
$$\left(\frac{0.9 - 0.5}{0.9 - 0.5}\right) \times 100\% = 0$$
  
C4(54) =  $\left(\frac{0.9 - 0.7}{0.9 - 0.5}\right) \times 100\% = 0.5$ 

Jika nilai kriteria cost :
$$u_{i} (ai) = \left(\frac{c_{max} - c_{out}}{c_{max} - c_{min}}\right) x 100\%$$



Max C5 = 
$$\{0,8;1;1;0,7;1\}$$
  
= 1  
=  $\{0,8;1;1;0,7;1\}$   
=  $0.7$ 

### Kriteria C5:

## C5(15) = $\left(\frac{1-0.8}{1-0.7}\right) \times 100\% = 0.667$

C5(25) = 
$$\left(\frac{1-1}{1-0.7}\right) \times 100\% = 0$$

C5(35) = 
$$\left(\frac{1-1}{1-0.7}\right) \times 100\% = 0$$

C5(45) = 
$$\left(\frac{1-0.7}{1-0.7}\right) x 100\% = 1$$
  
C5(55) =  $\left(\frac{1-1}{1-0.7}\right) x 100\% = 0$ 



#### Perhitungan nilai utiliti

| Alternatif | C1    | C2    | <b>C3</b> | <b>C4</b> | <b>C5</b> |
|------------|-------|-------|-----------|-----------|-----------|
| <b>A1</b>  | 0,375 | 1     | 0,5       | 0,5       | 0,667     |
| A2         | 0,75  | 0,571 | 1         | 1         | 0         |
| А3         | 1     | 0     | 0         | 0,5       | 0         |
| <b>A4</b>  | 0     | 1     | 0,167     | 0         | 1         |
| <b>A5</b>  | 1     | 0,571 | 0         | 0,5       | 0         |
| Bobot      | 0,3   | 0,2   | 0,2       | 0,15      | 0,15      |



### Menentukan nilai akhir

**C2** 

0,2

0,114

0,114

**C3** 

0,1

0,2

0

0

$$u (ai) = \sum_{i=1}^{m} w_i u_i(a_i)$$

**C4** 

0,075

0,15

0,075

0,075

0

| $u (ai) = \sum_{j=1}^{m} u$ | $w_j u_i(a_i)$ |
|-----------------------------|----------------|
|-----------------------------|----------------|

**C5** 

0,1

0

0

0

0,15

**Total** 

0,587

0,489

Rangking

2

| Alternati |
|-----------|
| A1        |
| A2        |
| А3        |
| A4        |
|           |

Bobot



**C3** 

0,2

C4

0,15

**C5** 

0,667

0,15

|a×p



C2

0,2

**C1** 

0,3

| natif |
|-------|

**A1** 

**A4** 

**A5** 

## **C1** 0,112







0,689 1 5 0,375 0,383 4



0,3

- □ Nilai terbesar ada pada A2 = 0,689 dan A1 = 0,587 sehingga Dion Pratama dan Doni Prakosa adalah alternatif yang terpilih sebagai alternatif terbaik.
- □ Dengan kata lain, Dion Pratama dan Doni Prakosa terpilih untuk posisi operator mesin.

#### Soal:

- □ PT. ABC adalah perusahan yang bergerak dibidang cunsomer good yang akan menginvestasikan sisa usahanya dalam satu tahun.
- ☐ Beberapa alternatif investasi telah akan diidentifikasi. Pemilihan alternatif terbaik ditujukan selain untuk keperluan investasi, juga dalam rangka meningkatkan kinerja perusahaan ke depan.



☐ Ada 5 kriteria yang dijadikan acuan dalam pengambilan keputusan, yaitu :

C1 = Harga (Cost)

C2 = Nilai investasi 10 tahun ke depan (Benefit)

C3 = Daya dukung terhadap produktivitas perusahaan (Benefit)

1= kurang mendukung, 2 = cukup mendukung; 3 = mendukung dan 4 = sangat mendukung

C4 = Prioritas kebutuhan (Cost)

1=kurang berprioritas, 2 =cukup berprioritas; 3 = berprioritas dan 4 = sangat berprioritas

C5 = Ketersediaan atau kemudahan (Benefit)

1= sulit diperoleh, 2 = cukup mudah diperoleh; dan 3 =sangat mudah diperoleh



- Pengambil keputusan memberikan bobot preferensi sebagai :
- C1 = 25%; C2 =15%; C3 = 30%; C4 = 25%; dan C5 = 5%
- ☐ Ada empat alternatif yang diberikan, yaitu :
  - A1 = Membeli mobil box untuk distribusi barang ke gudang;
  - A2 = Membeli tanah untuk membangun gudang baru;
  - A3 = Maintenance sarana teknologi informasi;
  - A4 = Pengembangan produk baru.

### ☐ Nilai setiap alternatif di setiap kriteria :

|                | Kriteria       |                |                |                |                       |
|----------------|----------------|----------------|----------------|----------------|-----------------------|
| Alternatif     | C <sub>1</sub> | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | <b>C</b> <sub>5</sub> |
|                | (juta Rp)      | (%)            |                |                |                       |
| $A_1$          | 150            | 15             | 2              | 2              | 3                     |
| A <sub>2</sub> | 500            | 200            | 2              | 3              | 2                     |
| $A_3$          | 200            | 10             | 3              | 1              | 3                     |
| A <sub>4</sub> | 350            | 100            | 3              | 1              | 2                     |

