Efficient Loss-Based Decoding on Graphs for Extreme Classification

Itay Evron, Edward Moroshko, and Koby Crammer

Extreme multiclass classification

- Tasks with an extremely large number of classes K.
- Time and space complexities during training and inference become critical.
- Datasets are typically sparse, i.e. samples have on average only $d_{nnz} \ll d$ nonzero features.
- We propose a graph-based classification scheme with time and space complexities logarithmic in K.

One vs Rest – Simple but expensive

Error Correcting Output Coding

Training:

- Get a coding matrix $M \in \{-1,1\}^{K \times \ell}$
- Map each codeword to a class (e.g. arbitrarily)
- Learn ℓ binary classifiers $f_1, ..., f_\ell \colon \mathcal{X} \to \mathbb{R}$

Loss based decoding

 Instead of minimizing the Hamming distance, predict $\hat{y} = \arg\min_{k} \sum_{j=1}^{\ell} \mathcal{L}\left(M_{k,j} \times f_{j}(x)\right)$

 An upper bound of the training multiclass error is proportional to:

Number of predictors — $\ell \times \varepsilon$ — Average binary loss Minimum row distance — ρ

Inference time

 $O(\underbrace{d_{nnz}\ell}_{score} + \underbrace{d_{nnz}\ell}_{l})$

The decoding loss function matters.

Inference for $x \in \mathcal{X}$:

- Score all: $f(x) = [f_1(x), ..., f_{\ell}(x)]$
- Predict: $\hat{y} = \arg\min_{k} d_{Hamm}(M_k, sign(f(x)))$

compute

$\mathcal{L}(z) = \max_{m_{ax}\{0,1-z\}}^{e.g}$ Overcoming binary mistakes: 6 6.5 7 10.5 8 5.2 $f_5 = 0.9$ $f_6 = 0.3$

Our model – Wide-LTLS

- Based on LTLS [Jasinska and Karampatziakis 2016].
- Build a trellis graph with exactly K paths.
- Map each path to a class (e.g. arbitrarily).
- For each edge $e \in E$:
 - Train a classifier $f_{\rm e}\colon \mathcal{X} \to \mathbb{R}$ on the entire training set:
 - Separate classes (=paths) that use this edge,

Inference for $x \in \mathcal{X}$:

- Set all edge weights: $w(e) = f_e(x)$.

Find the heaviest path and predict its class.

Graph width controls complexity

• The following graphs have K=64 paths (=classes), but different graph widths b

- The number of edges / classifiers is: $|E| = O\left(\frac{b^2}{\log b} \cdot \log K\right)$.
- Therefore,

TECHNION of Technology

Graph width controls performance

• Our model offers a tradeoff between accuracy and model size.

l am not

a neural network

The binary problems are $\frac{1}{4}K$ vs rest

W-LTLS as loss-based decoding

- We prove that W-LTLS performs loss-based decoding with the squared loss $\mathcal{L}(z) = (1-z)^2$.
- We show how to generalize W-LTLS to any loss function \mathcal{L} , and perform loss based decoding in time logarithmic in K.
- The decoding loss function matters!
- The loss function can be chosen <u>quickly</u> after training.

Wider graph – Easier binary problems

• The subproblems are $\frac{1}{h^2}K$ -vs-rest, thus get <u>easier</u>.

