

Polar3[™] HiPerFET[™] Power MOSFET

IXFN210N30P3

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	300	V	
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	300	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	T _C = 25°C	192	A	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	550	Α	
I _A E _{AS}	T _c = 25°C T _c = 25°C	105 4	A J	
dv/dt	$I_{S} \le I_{DM}, V_{DD} \le V_{DSS}, T_{J} \le 150^{\circ}C$	35	V/ns	
$\overline{\mathbf{P}_{D}}$	T _c = 25°C	1500	W	
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	
V _{ISOL}	50/60 Hz, RMS, $t = 1$ minute $I_{ISOL} \le 1$ mA, $t = 1$ s	2500 3000	V~ V~	
$\overline{\mathbf{M}_{d}}$	Mounting Torque for Base Plate Terminal Connection Torque	1.5/13 1.3/11.5	Nm/lb.in Nm/lb.in	
Weight		30	g	

		cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	300			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		5.0	V
I _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ Note 2, $T_{J} = 12$	25°C			μ A mA
R _{DS(on)}	V _{GS} = 10V, I _D = 105A, Note 1			14.5	mΩ

 $\begin{array}{lll} \textbf{V}_{\text{DSS}} & = & 300 \textbf{V} \\ \textbf{I}_{\text{D25}} & = & 192 \textbf{A} \\ \textbf{R}_{\text{DS(on)}} & \leq & 14.5 \textbf{m} \Omega \\ \textbf{t}_{\text{rr}} & \leq & 250 \textbf{ns} \end{array}$

miniBLOC E153432

G = Gate D = DrainS = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Dynamic dv/dt Rating
- Avalanche Rated
- Fast Intrinsic Rectifier
- Low R_{DS(on)}
- Low Drain-to-Tab Capacitance
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- Uninterrupted Power Supplies
- AC Motor Drives
- High Speed Power Switching Applications

Symbol	Test Conditions	cteristic Values		
$(T_{J} = 25^{\circ})$	C Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 10V$, $I_{D} = 60A$, Note 1	60	100	S
C _{iss})		16.2	nF
\mathbf{C}_{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2550	pF
C _{rss}	J		42	pF
R_{g_i}	Gate Input Resistance		1.0	Ω
$\mathbf{t}_{d(on)}$	Resistive Switching Times		46	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 105A$		25	ns
$\mathbf{t}_{d(off)}$	30 20 20 2		94	ns
t _f	$\int R_{\rm g} = 1\Omega \text{ (External)}$		13	ns
$\mathbf{Q}_{g(on)}$			268	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 105A$		80	nC
\mathbf{Q}_{gd})		72	nC
R _{thJC}				0.083 °C/W
R _{thCS}			0.05	°C/W

Source-Drain Diode

		Chara Min.	acteristic Values Typ. Max.		
I _s	$V_{GS} = 0V$			210	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			840	Α
V _{SD}	I _F = 100A, V _{GS} = 0V, Note 1			1.5	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 105A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		4.1 28	250	ns μC Α

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Part must be heatsunk for high-temp $\mathbf{I}_{\mathrm{DSS}}$ measurement.

IXFN210N30P3

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

IXFN210N30P3

SOT-227 Outline M4-7 NUT (4 PLACES) |--- B ---| INCHES MILLIMETERS SYM MAX MIN MAX 32.00 1.224 1.260 31.10 Α B C D 7.70 4.10 .303 .327 8.30 .161 .173 4.40 .173 .161 4.10 4.40 С .161 .587 .173 4.10 14.90 15.20 1.181 1.201 1.508 30.00 37.80 11.70 G S Н 1.488 .484 12.30 .461 .033 0.75 12.50 .030 0.85 L M .492 .984 .075 25.00 1.90 25.50 2.20 0 .087 S .193 4.90 .181 4.60 U .000 .005 0.00 0.13 NUT MATERIAL: STANDARD — Low carbon steel with Ni plating. OPTIONAL: — Brass Nut is available. PART NUMBER—BN TABLE AN DIATED EXCEPT. 2. ALL METAL SURFACE ARE PRE NI PLATED EXCEPT TRIM AREA.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.