

Colloids and Surfaces
A: Physicochemical and Engineering Aspects 87 (1994) 277

COLLOIDS AND SURFACES

A

Author Index

Airoldi, C. 33	Infante, M.R. 117 Ivanov, I.B. 81	Rachlin, A.L. 197 Raikar, G.N. 151 Riffle, J.S. 25
Bergeron, C. 213	Jandt, K.D. 235	
Borwankar, R.P. 81	Jonstromer, M. 133	
	Juhué, d. 177	Scheutjens, J.M.H.M. 15
		Schönherr, H. 263
Chang, CH. 117	Khristov, Kh.R. 125	Semlyen, J.A. 15
Cosgrove, T. 15	Kunitake, T. 101	Senden, T.J. 217
		Smith, P. 263
	Lang, J. 177	Snétivy, D. 257, 263
Davis D.M. 25	Lenhoff, A.M. 49	Somasundaran, P. 79
Davis, R.M. 25 Drummond, C.J. 217	Li, D. 93	
	Lin, F.Y.H. 93	Stähler, K. 143
de Freitas, J.M.P. 33	Lindman, B. 133	
de Oliveira, S.F. 33	Litton, G.M. 39	
	Lucas, L.C. 151	Uriev, N.B. 1
Eby, R.K. 197	Makievski, A.V. 61	
Espínola, J.G.P. 33	Małysa, K. 125	Vancso, G.J. 257, 263
	Markiewicz, P. 213	Vrdoljak, G.A. 187, 197
	McMaster, T.J. 235	von Berlepsch, H. 143
Fainerman, V.B. 61	Miles, M.J. 235	
Flinn, D.H. 163	Miller, R. 61	
Franses, E.I. 117	Mizes, H.A. 245	Watakabe, A. 101
110000, 2.1.		Webster, J.R.P. 15
	Nagpal, V.J. 25	Weimer, J.J. 151
Cashal V II 142	Ng, C. 263	Wicks, F.J. 197
Goebel, KH. 143	Nisman, R. 263	
Goh, M.C. 213		Williamson, R.L. 235
Gregory, J.C. 151	Olson, T.M. 39	
Gurkov, T.D. 81	Ong, J.L. 151	
Guzonas, D.A. 163	Ott, M.L. 245	Yang, H. 263
		Yoon, R.H. 163
	Patel, A. 15	
Henderson, G.S. 187, 197	Pinazo, A. 117	
Horozov, T.S. 81	Pollanen, M.S. 213	Zhang, K. 133

Colloids and Surfaces
A: Physicochemical and Engineering Aspects 87 (1994) 278–279

Subject Index

Absorption spectra, 101
Adhesion, 245
Adsorption, 15, 187
Adsorption kinetic theory, 61
Alumina, 15
Alzheimer's disease, 213
Amorphization, 197
Atomic force microscope, 187, 197, 217, 245
Atomic force microscopy, 151, 213, 235, 257, 263
Attachment efficiency, 39
Auger electron spectroscopy, 151

Calcium phosphate coatings, 151
Cesium, 187
Chemisorption, 33
Chlorite, 187
Concentrated disperse systems, 1
Concentrated polymer–surfactant systems, 133
π-Conjugated monolayers, 101
Contact angles, 93
Critical micelle concentration, 143
Cyclohexane, 163

Disulfur betaine derivatives, 117 Dithiocarbamate, 33 Dry film surfaces, 177 Dynamic adsorption, 117 Dynamic conditions, 1 Dynamic surface tension, 61, 117

Electrical conductivity, 125, 143 Electrostatic repulsion, 39 Epitaxy, 235

Fluorescence microscopy, 101
Folds, 235
Fourier transform infrared spectroscopy, 15, 151
FT-IR spectroscopy, 163
Functional end groups, 15

Granular quartz filters, 39

Hexadecyltrimethylammonium bromide, 217 Hydrophobicity, 163

Immobilization, 33 Inclination, 93 Inorganic support, 33

Krafft discontinuity, 143

Lamellar crystals, 263 Latex dispersions, 177 Latex microspheres, 39 Line tension, 93 Liquid contents, 125 Loops, 15

Macromolecules, 257 Mixed adsorption layers, 81 α-Modification of Eagle's Medium, 151

Non-ionic surfactants, 81

Octadecyltrichlorosilane, 163 Oil/water interfaces, 81 Oligo(phenylenevinylene) derivatives, 101 Oriented films, 235 Oscillating bubble surfactometry, 117

Paired helical filaments, 213
Particle deposition, 39
Perturbation method, 49
Poisson-Boltzmann equation, 49
Poly(butylmethacrylate), 177
Polymer crystals, 235
Polyoxymethylene, 257, 263
Polypropylene, 257, 263
Pressure-area isotherms, 101

Rheological properties, 1 Rough particle, 49 Scheutjens-Fleer model, 15 Self-assembly, 133 Self-diffusion study, 133 Silica, 15 Silica gel, 33

Silica gel, 33 Silica surfaces, 163 Silicate, 197 Silicon nitride, 217 Sol–gel process, 25

Solid surface, 93 Spherulites, 263 Stability, 1

Stability, 1 Steady-state foams, 125 Steric stabilization, 25 Structural properties, 1 Surface, 197 Surface additives, 245 Surface morphology, 177 Surface potential, 49 Surface tension, 143 Surface-active contaminants, 61 Surfactants, 61 Synthesis, 25

Tip-sample interaction, 217 Titanium dioxide particles, 25 Toner, 245

Ultrastructure, 213

X-ray photoelectron spectroscopy, 151, 187 Xerographic performance, 245