

介绍

教程简介:

• 面向对象:量子计算初学者

• 依赖课程:线性代数,量子力学(非必需)

知乎专栏:

https://www.zhihu.com/column/c_1501138176371011584

Github & Gitee 地址:

https://github.com/mymagicpower/qubits https://gitee.com/mymagicpower/qubits

* 版权声明:

- 仅限用于个人学习
- 禁止用于任何商业用途

四元数是复数的拓展,性质相似。相当于一个四维向量,在作为算子操作时,相当于一个四维矩阵。有兴趣的话可以找相关资料深入学习,这里就不展开了。

四元数的表示:

$$q = a + bi + cj + dk$$

$$i^2 = j^2 = k^2 = ijk = -1$$

X	1	i	j	k
1	1	i	j	k
i	i	-1	k	− <i>j</i>
j	j	-k	-1	i
k	k	j	-i	-1

一个四元数q=a+bi+cj+dk的共轭为 $q^*=a-bi-cj-dk$ (q^* 读作 q star). 如果用标量向量有序对的形式来定义的话, $q=[s,\mathbf{v}]$ 的共轭为 $q^*=[s,-\mathbf{v}]$.

四元数 – 加法和减法

四元数:

$$q_1 = a + bi + cj + dk$$

$$q_2 = e + fi + gj + hk$$

四元数的加法:

$$q_1 + q_2 = a + bi + cj + dk + e + fi + gj + hk$$

= $(a + e) + (b + f)i + (c + g)j + (d + h)k$

四元数的减法:

$$q_1 - q_2 = (a - e) + (b - f)i + (c - g)j + (d - h)k$$

四元数 – 乘法

四元数:
$$q_1 = a + bi + cj + dk$$

 $q_2 = e + fi + gj + hk$

$$q_1 q_2 = (a + bi + cj + dk) (e + fi + gj + hk)$$

$$= ae + afi + agj + ahk +$$

$$bei - bf + bgk - bhj +$$

$$cej - cfk - cg + chi +$$

$$dek + dfj - dgi - dh$$

$$= (ae - bf - cg - dh) +$$

$$(be + af - dg + ch)i +$$

$$(ce + cf + ag - bh)j +$$

$$(de - df + bg + ah) k$$

左乘一个四元数等 =
$$\begin{bmatrix} a & -b & -c & -a \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} \begin{bmatrix} e \\ f \\ g \\ h \end{bmatrix}$$

$$q_{2}q_{1} = (e + fi + gj + hk) (a + bi + cj + dk)$$

$$= ea + ebi + ecj + edk +$$

$$fai - fb + fck - fdj +$$

$$gaj - gbk - gc + gdi +$$

$$hak + hbj - hci - hd$$

$$= (ea - fb - gc - hd) +$$

$$(eb + fa + gd - hc)i +$$

$$(ec - fd + ga + hb)j +$$

$$(ed + fc - gb + ha) k$$

$$= (ae - bf - cg - dh) +$$

$$(be + af + dg - ch)i +$$

$$(ce - df + ag + bh)j +$$

$$(de + cf - bg + ah) k$$

$$\begin{bmatrix} a - b - c - d \\ h - a - d - c \end{bmatrix} \begin{bmatrix} e \\ f \end{bmatrix}$$

右乘一个四元数等
$$= \begin{bmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{bmatrix} \begin{bmatrix} e \\ f \\ g \\ h \end{bmatrix}$$

3D 旋转公式

3D 旋转公式 (Rodrigues Rotation Formula):

3D 空间中任意一个
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
 沿着单位向量 \mathbf{u} 旋转 φ 角度之后的 \mathbf{v}' 为:

$$\mathbf{v}' = \cos(\varphi)\mathbf{v} + (1 - \cos(\varphi))(\mathbf{u} \cdot \mathbf{v})\mathbf{u} + \sin(\varphi)(\mathbf{u} \times \mathbf{v})$$

四维空间中旋转 - 四元数

四维空间中任意向量 $v=[0,\mathbf{v}]$,在三维子空间中的投影 \mathbf{v} 沿着单位向量 \mathbf{u} 旋 转 φ 度之后 ,有:

$$v' = qvq^* = qvq^{-1}$$

= $[0, \cos(\varphi)v + (1 - \cos(\varphi))(u \cdot v)u + \sin(\varphi)(u \times v)]$

其中: $q = a + bi + cj + dk = \left[\cos(\frac{\varphi}{2}) , \sin(\frac{\varphi}{2}) \mathbf{u}\right]$

*上述公式的证明,涉及到四元数。四元数是复数的拓展,性质相似。相当于一个四维向量,在作为算子操作时,相当于一个四维矩阵。

四维空间中的三维子空间

四维空间中旋转 - 矩阵形式

由于:

$$v' = qvq^{-1}$$
 $q = a + bi + cj + dk$

左乘一个四元数 q 等同于**左乘**下面这个矩阵:

右乘一个四元数 q 等同于**左乘**下面这个矩阵:

$$M_{1} = \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix}$$

$$M_{2} = \begin{bmatrix} a & -b & -c & -d \\ b & a & d & -c \\ c & -d & a & b \\ d & c & -b & a \end{bmatrix}$$

右乘一个四元数 q^{-1} 等同于**左乘** 矩阵 $M_3 = M_2^T(M_2$ 转置):

$$\mathbf{M}_{3} = \begin{bmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{bmatrix}$$

所以有:

$$\mathbf{v}' = q\mathbf{v}q^{-1} = M_1 M_3 \mathbf{v} = M_3 M_1 \mathbf{v}$$

四维空间中旋转 - 矩阵形式

$$v' = qvq^{-1} = M_1 M_2 v = M_2 M_1 v$$

$$= \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} \begin{bmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{bmatrix} v$$

$$=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1-2c^2-2d^2 & 2bc-2ad & 2ac+2bd \\ 0 & 2bc+2ad & 1-2b^2-2d^2 & 2cd-2ab \\ 0 & 2bd-2ac & 2ab+2cd & 1-2b^2-2c^2 \end{bmatrix} v \qquad (a^2+b^2+c^2+d^2=1)$$

这样我们就得到了四维空间里,三维子空间中的旋转的矩阵形式。

四维空间中旋转 - 矩阵形式

因为矩阵的最外层不对 v 进行任何变换 , 所以 4×4 矩阵可以压缩成 3×3 矩阵。于是得到四维空间中三维子空间的 3D 旋转公式 (矩阵型) :

四维空间中任意向量 $v = [0, \mathbf{v}]$, 在三维子空间中的投影 \mathbf{v} 沿着单位向量 \mathbf{u} 旋转 φ 度之后 \mathbf{v}' 为:

$$\mathbf{v}' = \begin{bmatrix} 1-2c^2 - 2d^2 & 2bc - 2ad & 2ac + 2bd \\ 2bc + 2ad & 1-2b^2 - 2d^2 & 2cd - 2ab \\ 2bd - 2ac & 2ab + 2cd & 1 - 2b^2 - 2c^2 \end{bmatrix} \mathbf{v}$$

$$\boldsymbol{v} = [0, \mathbf{v}] = \begin{bmatrix} 0 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix}, \ \boldsymbol{q} = [\cos(\frac{\varphi}{2}), \sin(\frac{\varphi}{2}) \mathbf{u}] = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} \cos(\frac{\varphi}{2}) \\ \sin(\frac{\varphi}{2}) u_x \\ \sin(\frac{\varphi}{2}) u_y \\ \sin(\frac{\varphi}{2}) u_z \end{bmatrix}$$

欧拉公式复数形式:

$$e^{ix} = \cos x + i \sin x$$

类似于欧拉公式复数形式,四元数也有一个类似的公式,如果 \mathbf{u} 是一个单位向量,那么对于单位四元数 $u=[0,\mathbf{u}]$,即 $u=\mathbf{u}=u_xi+u_yj+u_zk$,有(证明略):

$$e^{u\frac{\theta}{2}} = \cos\frac{\theta}{2} + u\sin\frac{\theta}{2} = \cos\frac{\theta}{2} + \mathbf{u}\sin\frac{\theta}{2}$$

将 $u = u_x i + u_y j + u_z k$, 代入公式可得:

$$e^{\frac{\theta}{2}(u_x i + u_y j + u_z k)} = \cos{\frac{\theta}{2}} + \sin{\frac{\theta}{2}}(u_x i + u_y j + u_z k)$$

这个公式为四维空间中三维子空间绕单位向量 \mathbf{u} 旋转 θ 角公式 (证明略)。

绕任意轴旋转 - 指数形式

根据公式:

$$U(\varphi) = e^{(-i\varphi A)} = \cos(\varphi) I - i \sin(\varphi) A$$

如果
$$\mathbf{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$
, $\vec{\sigma} = \begin{bmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$ 泡利矩阵组成的三维向量,

那么有:

$$A = \mathbf{u} \cdot \vec{\sigma} = u_x X + u_y Y + u_z Z$$

$$U(\varphi) = e^{(-i\varphi \mathbf{u} \cdot \vec{\sigma})} = \cos(\varphi) \ I - i \sin(\varphi) \mathbf{u} \cdot \vec{\sigma} = \cos(\varphi) \ I - i \sin(\varphi) (u_x \mathbf{X} + u_y \mathbf{Y} + u_z \mathbf{Z})$$
$$= \cos(\varphi) \ I + \sin(\varphi) (-u_x \mathbf{i} \mathbf{X} - u_y \mathbf{i} \mathbf{Y} - u_z \mathbf{i} \mathbf{Z})$$

如果以 $\{I, -iX, -iY, -iZ\}$ 为基,则 $U(\varphi)$ 与四元数同构,即(证明略):

这个公式为四维空间中三维子空间绕单位向量 u 旋转公式。

于是有 $\mathbf{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$ 是四维空间三维子空间中的实单位向量,那么在布洛赫球上绕 \mathbf{u} 旋转 φ 角度公式为(证明略):

$$R_{u}(\varphi) \equiv e^{(-i\varphi \mathbf{u} \cdot \vec{\sigma}/2)} \qquad 其中 \vec{\sigma} = \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

由于上述旋转,实质是四维空间中的旋转,所以需要乘以一个全局相位,以使 |0\的系数为实数,所以有任意幺正变换公式为:

$$U = e^{(i\alpha)} R_u(\varphi)$$

Thank

You