Algèbre linéaire et bilinéaire I

 TD_{11} : Révision chap. 1 et 2

Exercice 1

Soit E un \mathbb{K} -espace vectoriel, $(f,g) \in (\mathcal{L}(E))^2$ et H un supplémentaire de $\mathrm{Ker}(f)$ dans E. On considère $h: H \to E$ la restriction de $g \circ f$ à H.

1. Montrer, par double inclusion, que

$$Ker(g \circ f) = Ker(h) + Ker(f)$$

On a $\operatorname{Ker}(f) \subset \operatorname{Ker}(g \circ f)$ et $\operatorname{Ker}(h) \subset \operatorname{Ker}(g \circ f)$, donc $\operatorname{Ker}(h) + \operatorname{Ker}(f) \subset \operatorname{Ker}(g \circ f)$

Soit $x \in \text{Ker}(q \circ f)$.

Comme $E = H \oplus \operatorname{Ker}(f)$ alors il existe $u \in H$ et $v \in \operatorname{Ker}(f)$ tel que x = u + v.

Comme $g \circ f(x) = 0_E$, alors $h(u) = g \circ f(u) = 0_E$ et donc $x \in \text{Ker}(h) + \text{Ker}(f)$.

D'où l'inclusion

$$\operatorname{Ker}(g \circ f) \subset \operatorname{Ker}(h) + \operatorname{Ker}(f).$$

Finalement

$$\operatorname{Ker}(g \circ f) = \operatorname{Ker}(h) + \operatorname{Ker}(f)$$

2. Montrer que

$$rang(h) \ge rang(f) - \dim Ker(g)$$

f réalise une bijection de H vers Im(f) donc $\text{rang}(h) = \text{rang}(g|_{\text{Im}(f)})$. Ainsi, par le théorème du rang,

$$\operatorname{rang}(g|_{\operatorname{Im}(f)}) + \dim \operatorname{Ker}(g|_{\operatorname{Im}(f)}) = \operatorname{rang}(f)$$

On en déduit que

$$\operatorname{rang}(h) = \operatorname{rang}(f) - \dim \operatorname{Ker}(g|_{\operatorname{Im}(f)}) \ge \operatorname{rang}(f) - \dim \operatorname{Ker}(g)$$

3. En déduire que

$$\dim \operatorname{Ker}(g \circ f) \leq \dim \operatorname{Ker}(g) + \dim \operatorname{Ker}(f)$$

On a $\dim \operatorname{Ker}(g \circ f) \leq \dim \operatorname{Ker}(h) + \dim \operatorname{Ker}(f)$ d'après la question 1. Par le théorème du rang,

$$\dim \operatorname{Ker}(h) = \dim H - \operatorname{rang}(h)$$

$$= \dim E - \dim \operatorname{Ker}(f) - \operatorname{rang}(h)$$

$$= \operatorname{rang}(f) - \operatorname{rang}(h)$$

$$\leq \operatorname{rang}(f) - (\operatorname{rang}(f) - \dim \operatorname{Ker}(g))$$

$$\leq \dim \operatorname{Ker}(g)$$

D'où l'inégalité

$$\dim \operatorname{Ker}(g \circ f) \leq \dim \operatorname{Ker}(g) + \dim \operatorname{Ker}(f)$$

Exercice 2

Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq b$, on pose \mathcal{S} l'ensemble des solutions sur \mathbb{R}_+^* de :

$$x^2 \times y'' + (1 - a - b) \times x \times y' + a \times b \times y = 0. \tag{1}$$

On admet que les solutions de l'équation différentielle (1) sont de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*} et on pose $E = \mathcal{C}^{\infty}(\mathbb{R}_{+}^{*}, \mathbb{R})$.

1. Montrer que S est un sous-espace vectoriel de E.

Pour $f \in E$, on définit :

$$\Phi(f) : \left\{ \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ x & \mapsto & x \times f'(x) \end{array} \right.$$

2. Montrer que $\Phi: f \mapsto \Phi(f)$ est un endomorphisme de E.

On pose également :

$$\Phi_a = \Phi - a. \operatorname{id}_E \quad \text{et} \quad \Phi_b = \Phi - b. \operatorname{id}_E.$$

3. Montrer que $\Phi_a \in \mathcal{L}(E)$, que $\Phi_b \in \mathcal{L}(E)$ et que :

$$\Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$$
.

On pose donc $\Psi = \Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$.

- 4. Montrer que $S = \text{Ker } \Psi$ et retrouver le résultat de la question 1.
- 5. Montrer que $S = \text{Ker}(\Phi_a) \oplus \text{Ker}(\Phi_b)$.
- 6. En déduire la forme générale des solutions de (1).
- 1. Soit $(f, g) \in \mathcal{S}^2$, soit $\lambda \in \mathbb{R}$, pour tout $x \in \mathbb{R}^*$, on a :

$$x^{2}(\lambda f + g)''(x) + (1 - a - b)x(\lambda f + g)'(x) + abf(x)$$

$$= x^{2}\lambda f''(x) + (1 - a - b)x\lambda f'(x) + ab\lambda f(x) + x^{2}g''(x) + (1 - a - b)xg'(x) + abg(x)$$

$$= 0.$$

De plus, 0_E est solution évidente de S et $S \subset E$.

Donc S est un sous-espace vectoriel de E.

- 2. Par définition, trivial
- 3. Comme E est un \mathbb{R} -espace vectoriel et id_E, Φ_a et Φ_b sont endomorphismes de E. Alors on a $\Phi_a \in \mathcal{L}(E)$ et $\Phi_b \in \mathcal{L}(E)$
 - Soit $f \in E$, on a

$$\Phi_a \circ \Phi_b(f) = \Phi \circ \Phi(f) - (a+b)\Phi(f) + abf.$$

Puisque a et b jouent des rôles symétriques, pour tout $f \in E$,

$$\Phi_b \circ \Phi_a(f) = \Phi \circ \Phi(f) - (a+b)\Phi(f) + abf.$$

Donc
$$\Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$$
.

- 4. On montre par double inclusion.
 - Soit $f \in \mathcal{S}$, alors $x^2 \times f''(x) + (1-a-b) \times x \times f'(x) + a \times b \times f(x) = \Phi(\Phi(f)) (a+b)\Phi(f) + abf = 0$. D'après les calculs effectués à la question 1., on a $f \in \text{Ker } \Psi$, donc $\mathcal{S} \subset \text{Ker } \Psi$.

— Soit $f \in \text{Ker } \Psi$, alors $\Psi(f) = 0_E$, c'est-à-dire, pour tout $x \in \mathbb{R}^*$, on a:

$$\Phi_{a} \circ \Phi_{b}(f)(x)
= x^{2}(\lambda f + g)''(x) + (1 - a - b)x(\lambda f + g)'(x) + abf(x)
= x^{2}\lambda f''(x) + (1 - a - b)x\lambda f'(x) + ab\lambda f(x) + x^{2}g''(x) + (1 - a - b)xg'(x) + abg(x)
= 0.$$

alors, on a $f \in \mathcal{S}$, donc Ker $\Psi \subset \mathcal{S}$.

— Finalement, on a $S = \text{Ker } \Psi$

En tant que noyaux, S est un sous-espace vectoriel de E.

5. (a) Montrons que $\operatorname{Ker} \Phi_a \cap \operatorname{Ker} \Phi_b = \{0_E\}.$

Soit $f \in \text{Ker } \Phi_a \cap \text{Ker } \Phi_b$. On a donc $\Phi_a(f) = \Phi(f) - a \cdot f = 0_E$ et $\Phi_b(f) = \Phi(f) - b \cdot f = 0_E$. Donc $a \cdot f = b \cdot f$. Si f prenait une valeur non nulle, on aurait a = b, contradiction. Donc $f = 0_E$.

On a aussi $\{0_E\} \subset \operatorname{Ker} \Phi_a \cap \operatorname{Ker} \Phi_b$,

Donc, $\operatorname{Ker} \Phi_a \cap \operatorname{Ker} \Phi_b = \{0_E\}$

- (b) Montrons que $\operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b = \mathcal{S}$.
 - Montrons que $\operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b \subset \mathcal{S}$. En fait, or $\Psi = \Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$, on a $\operatorname{Ker} \Phi_a \circ \Phi_b = \operatorname{Ker} \Phi_b \circ \Phi_a = \operatorname{Ker} \Psi = \operatorname{S}$, Donc $\operatorname{Ker} \Phi_b \subset \mathcal{S}$ et $\operatorname{Ker} \Phi_a \subset \mathcal{S}$ On a donc $\operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b \subset \mathcal{S}$
 - Montrons que $\mathcal{S} \subset \operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b$ Soit $f \in S$. Alors $f \in \operatorname{Ker} \Psi$, donc $\Psi(f) = \Phi_a \circ \Phi_b(f) = 0_E$, ainsi, $\Phi_b(f) \in \operatorname{Ker} \Phi_a$. De même , $\Phi_a(f) \in \operatorname{Ker} \Phi_b$. Par définition de Φ_a et Φ_b , on obtient $f = \frac{1}{b-a}\Phi_a(f) - \frac{1}{b-a}\Phi_b(f)$, comme $\frac{1}{b-a}\Phi_a(f) \in \operatorname{Ker} \Phi_b$ et $\frac{1}{b-a}\Phi_b(f) \in \operatorname{Ker} \Phi_a$, donc $f \in \operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b$, d'où $\mathcal{S} \subset \operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b$.
- (c) Finalement, on a $\mathcal{S} = \operatorname{Ker}(\Phi_a) \oplus \operatorname{Ker}(\Phi_b)$

Méthode 2 : Montrons la première inclusion :

$$S = \operatorname{Ker} \Psi \text{ et } \Psi = \Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$$

Donc
$$\operatorname{Ker} \Phi_a \subset \operatorname{Ker} \Psi = S$$
 et $\operatorname{Ker} \Phi_b \subset \operatorname{Ker} \Psi = S$.

Par linéarité $\operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b \subset S$

Montrons la seconde inclusion.

Soit $f \in S$. Par définition de Φ_a et Φ_b , $\frac{1}{b-a}\Phi_a(f) - \frac{1}{b-a}\Phi_b(f) = f$.

Et comme $f \in S = \operatorname{Ker} \Psi = \operatorname{Ker} \Phi_a \circ \Phi_b = \operatorname{Ker} \Phi_b \circ \Phi_a$

Soit
$$\Psi(f) = \Phi_a \circ \Phi_b(f) = \Phi_b \circ \Phi_a(f) = 0$$

Donc $\Psi_a(f) \in \operatorname{Ker} \Phi_b$ et $\Psi_b(f) \in \operatorname{Ker} \Phi_a$.

Donc $f \in \operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b$ et $S \subset \operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b$.

Méthode 2 bis :

Montrons la première inclusion :

$$S = \operatorname{Ker} \Psi \text{ et } \Psi = \Phi_a \circ \Phi_b = \Phi_b \circ \Phi_a$$

Donc
$$\operatorname{Ker} \Phi_a \subset \operatorname{Ker} \Psi = S$$
 et $\operatorname{Ker} \Phi_b \subset \operatorname{Ker} \Psi = S$.

Par linéarité $\operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b \subset S$

Montrons la seconde inclusion.

Soit $f \in S = \operatorname{Ker} \Psi$

Alors $\Phi_a \circ \Phi_b(f) = 0$

Donc $\Phi_b(f) \in \operatorname{Ker} \Phi_a$

Soit $g \in \operatorname{Ker} \Phi_a, \forall x \in \mathbb{R}_+^*$

$$xg'(x) - ag(x) = 0$$

Soit $g'(x) = \frac{a}{x}g(x)$.

Donc il existe $\lambda \in \mathbb{R}$ tels que $\forall x \in \mathbb{R}_+^*$, $g(x) = \lambda e^{a \ln(x)} = \lambda x^a$.

On en déduit donc qu'il existe $\lambda \in \mathbb{R}$ tel que

$$x \in \mathbb{R}_+^*, \quad \Phi_b(f)(x) = \lambda x^a$$

Soit

$$xf'(x) - bf(x) = \lambda x^a \Leftrightarrow f'(x) - \frac{b}{x}f(x) = \lambda x^{a-1}$$

La fonction $x \mapsto \lambda \frac{x^a}{a-b}$ est une solution particulière évidente (vérification ou méthode de variation de la constante Y1).

Ainsi $f(x) = \lambda_1 x^b + \lambda \frac{x^a}{a-b}$ où $\lambda_1 \in \mathbb{R}$

 $x \mapsto \lambda_1 x^b \in \operatorname{Ker} \Phi_b \text{ et } x \mapsto \lambda_{a-b}^{x^a} \in \operatorname{Ker} \Phi_a$

D'où $S \subset \operatorname{Ker} \Phi_a + \operatorname{Ker} \Phi_b$.

6. Soit $y \in \text{Ker}(\Phi_a)$, on a aussi $y \in \mathcal{S}$. Les solutions de $\Phi_a(y) = 0_E$ d'inconnue $y \in E$ sont les fonctions de la forme $x \mapsto \lambda x^a$ avec $x \in \mathbb{R}^*$, $\lambda \in \mathbb{R}$.

En effet, $\Phi_a(y) = 0_E$ représente, pour tout $x \in \mathbb{R}^*$, on a

$$xy' - ay = 0$$

D'où $y: x \mapsto \lambda x^a$ avec $x \in \mathbb{R}^*$.

De même, les solutions de $\Phi_b(y) = 0_E$ d'inconnue $y \in E_1$ sont les fonctions de la forme $x \mapsto \mu x^b$ avec $x \in \mathbb{R}^*$, $\mu \in \mathbb{R}$.

Or, $S = \text{Ker}(\Phi_a) \oplus \text{Ker}(\Phi_b)$

Finalement, $S = \{x \longmapsto \lambda x^a + \mu x^b, x \in \mathbb{R}^* (\lambda, \mu) \in \mathbb{R}^2\}$

Exercice 3

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.

1. Soit F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$, on note $r = \dim F$ et :

$$\mathcal{A} = \{ u \in \mathcal{L}(E), \ u(F) \subset F \text{ et } u|_G = 0 \}.$$

- (a) Montrer que \mathcal{A} est un sous-espace vectoriel de $\mathscr{L}(E)$.
- (b) Soit \mathcal{B} une base de E adaptée à la somme directe $E=F\oplus G$. Montrer que :

$$u \in \mathcal{A} \iff \exists M_1 \in \mathcal{M}_r(\mathbb{R}), \, \operatorname{Mat}_{\mathcal{B}}(u) = \begin{bmatrix} M_1 & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{bmatrix}$$
 (matrice par blocs).

- (c) En déduire dim \mathcal{A} .
- 2. Soit \mathcal{L}_1 et \mathcal{L}_2 deux sous-espaces vectoriels de $\mathcal{L}(E)$ tels que :

$$\mathscr{L}(E) = \mathscr{L}_1 \oplus \mathscr{L}_2$$
 et, pour tout $(u_1, u_2) \in \mathscr{L}_1 \times \mathscr{L}_2$, $u_1 \circ u_2 + u_2 \circ u_1 = 0_{\mathscr{L}(E)}$.

- (a) Montrer l'existence de $p_1 \in \mathcal{L}_1$ et $p_2 \in \mathcal{L}_2$ deux projecteurs de E tels que $\mathrm{id}_E = p_1 + p_2$. On note $F = \mathrm{Im}\, p_1$, $G = \mathrm{Ker}\, p_1$ et $r = \mathrm{dim}\, F$.
- (b) Démontrer que dim $\mathcal{L}_1 \leq r^2$ et dim $\mathcal{L}_2 \leq (n-r)^2$.
- (c) Conclure que $\mathcal{L}_1 = \{0_{\mathcal{L}(E)}\}\$ ou $\mathcal{L}_2 = \{0_{\mathcal{L}(E)}\}.$
- 1. (a) Clairement, $0_E \in \mathcal{A}$.
 - Soit $(u, v) \in \mathcal{A}^2$, soit $\lambda \in \mathbb{R}$. Alors pour tout $x \in F$, on a $(u(x), v(x)) \in F^2$ et comme F est un sous-espace vectoriel de E, on a : $u(x) + \lambda . v(x) \in F$.

Donc $(u + \lambda . v)(F) \subset F$. Par ailleurs, pour tout $x \in G$, comme u(x) = 0 et v(x) = 0 donc $u(x) + \lambda . v(x) = 0$. Donc $(u + \lambda . v)|_{G} = 0$.

Finalement, $u + \lambda . v \in \mathcal{A}$.

- On en déduit que \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$.
- (b) Comme $F \cap G = \{0_E\}$, la concaténation d'une base (e_1, \dots, e_r) de F et d'une base (e_{r+1}, \dots, e_n) de G est une base de F + G.

Comme F + G = E, on en déduit que (e_1, \ldots, e_n) est une base de E.

Par ailleurs, on sait qu'une application linéaire qui envoie tout élément d'une base sur 0 est identiquement nulle.

On en déduit que Φ est injective. Comme $\dim(\mathcal{L}(E)) = \dim(E^n)$, on en déduit que Φ est un isomorphisme d'espaces vectoriels.

• Soit $u \in \mathcal{L}(E)$. $u \in \mathcal{A}$

$$\begin{cases} u(e_1), \dots, u(e_r) \in F \\ u(e_{r+1}) = \dots = u(e_n) = 0 \end{cases}$$

 $\Phi(u) \in F^r \times \{0\}^{n-r}$. Donc $\Phi(\mathcal{A}) = F^r \times \{0\}^{n-r}$

- (c) Puisque \mathcal{A} est un sous-espace vectoriel de $\mathscr{L}(E)$ et que Φ est un isomorphisme d'espaces vectoriels, on a : $\dim(\Phi(\mathcal{A})) = \dim(\mathcal{A})$. Or, $\dim(\Phi(\mathcal{A})) = \dim(F^r \times \{0\}^{n-r}) = r\dim(F) + (n-r)\dim(\{0\}) = r^2$. D'où finalement $\dim(\mathcal{A}) = r^2$.
- 2. (a) Par hypothèse, $\mathcal{L}(E) = \mathcal{L}_1 + \mathcal{L}_2$, et comme $\mathrm{id}_E \in \mathcal{L}(E)$, il existe $(p_1, p_2) \in \mathcal{L}_1 \times \mathcal{L}_2$ tel que $\mathrm{id}_E = p_1 + p_2$. Montrons que p_1 est un projecteur (un raisonnement analogue montrerait que p_2 est aussi un projecteur).

Comme $id_E = p_1 + p_2$, on a, en composant à gauche par p_1 , $p_1 = (p_1)^2 + p_1 p_2$.

En composant à droite par p_1 , on obtient : $p_1 = (p_1)^2 + p_2 p_1$.

En sommant ces deux égalités, il vient : $2p_1 = 2(p_1)^2 + (p_1p_2 + p_2p_1)$, et comme $(p_1, p_2) \in \mathcal{L}_1 \times \mathcal{L}_2$, l'hypothèse assure que $p_1p_2 + p_2p_1 = 0$.

D'où finalement $p_1 = (p_1)^2$ et p_1 est un projecteur.

- (b) On sait que $p_2 = id_E p_1$ est le projecteur sur G parallèlement à F.
- (c) On va appliquer la question 1). Comme p_1 est le projecteur sur F parallèlement à G, on sait que $E = F \oplus G$.

On en déduit, d'après la question 1), que, en posant $\mathcal{A} = u \in \mathcal{L}(E)$, $u(F) \subset F$ et $u|_G = 0$, on a : $\dim(\mathcal{A}) = r^2$.

Montrons donc que $\mathcal{L}_1 \subset \mathcal{A}$.

• Soit $u \in \mathcal{L}_1$.

 \diamond Montrons que $u(F) \subset F$.

Soit $x \in F$. Comme $id_E = p_1 + p_2$, on a : $u = p_1 u + p_2 u$, et comme $(u, p_2) \in \mathcal{L}_1 \times \mathcal{L}_2$, on a : $p_2 u = -u p_2$. Donc $u = p_1 u - u p_2$ et $u(x) = p_1 (u(x)) - u(p_2(x))$.

Or, comme $x \in F$, $p_2(x) = 0$, donc $u(x) = p_1(u(x))$.

D'où $u(x) \in \operatorname{im}(p_1), \ u(x) \in F.$

Finalement, on a bien : $u(F) \subset F$.

 \diamond Montrons que $u|_G = 0$.

Soit $x \in G$. Comme $id_E = p_1 + p_2$, on a : $u = up_1 + up_2$, et comme $(u, p_2) \in \mathcal{L}_1 \times \mathcal{L}_2$, on a : $up_2 = -p_2u$. Donc $u = up_1 - p_2u$ et $u(x) = u(p_1(x)) - p_2(u(x))$.

Or, comme $x \in G$, $p_1(x) = 0$, donc $u(x) = -p_2(u(x))$.

D'où $u(x) \in \text{Im}(p_2)$, $u(x) \in G$. On en déduit que $p_2(u(x)) = u(x)$. Se souvenant que $u(x) = -p_2(u(x))$, on en déduit que u(x) = -u(x) et u(x) = 0.

Finalement, on a bien : $u|_G = 0$.

- \diamond On en déduit que $u \in \mathcal{A}$.
- Finalement $\mathcal{L}_1 \subset \mathcal{A}$. Donc $\dim(\mathcal{L}_1) \leq \dim(\mathcal{A})$, et comme $\dim(\mathcal{A}) = r^2$, on en déduit finalement que $\dim(\mathcal{L}_1) \leq r^2$.
- Pour montrer que $\dim(\mathcal{L}_2) \leq (n-r)^2$, il suffit de remarquer que \mathcal{L}_2 est inclus dans $\{u \in \mathcal{L}(E), \ u(G) \subset G \text{ et } u|_F = 0\}.$

On établit ce fait comme précédemment et on conclut aussi comme précédemment.

(d) • Par hypothèse, $\mathcal{L}(E) = \mathcal{L}_1 \oplus \mathcal{L}_2$ donc $\dim(\mathcal{L}) = \dim(\mathcal{L}_1) + \dim(\mathcal{L}_2)$. D'après la question 4), on en déduit que $n^2 \leq r^2 + (n-r)^2$, $n^2 \leq r^2 + n^2 - 2nr + r^2$, donc $nr \leq r^2$, $r(n-r) \leq 0$.

Or, comme $r \ge 0$ et $n-r \ge 0$, on a : $r(n-r) \ge 0$. On en déduit que r(n-r) = 0, d'où r = 0 ou r = n.

- Si r = 0. D'après la question 4), on en déduit que dim $\mathcal{L}_1 \leq 0$, donc $\mathcal{L}_1 = \{0_{\mathcal{L}(E)}\}$.
- Si r = n. D'après la question 4), on en déduit que dim $\mathcal{L}_2 \leq 0$, donc $\mathcal{L}_2 = \{0_{\mathcal{L}(E)}\}$.
- Finalement, $\mathcal{L}_1 = \{0_{\mathcal{L}(E)}\}$ ou $\mathcal{L}_2 = \{0_{\mathcal{L}(E)}\}.$

Exercice 4

Soit E un \mathbb{R} -espace vectoriel de dimension 3 et $\mathscr{B} = (b_1, b_2, b_3)$ une base de E. Soit f l'endomorphisme de E dont la matrice dans \mathscr{B} est

$$A = \text{Mat}_{\mathscr{B}}(f) = \begin{bmatrix} 3 & -2 & 2 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

1. Montrer qu'il existe une base $\mathscr{E} = (e_1, e_2, e_3)$ de E dans laquelle la matrice représentative de f est une matrice diagonale D, où

$$D = \mathrm{Mat}_{\mathscr{E}}(f) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

D'après $Mat_{\mathscr{E}}(f)$, on a alors

$$f(e_1) = e_1, \ f(e_2) = 2e_2, \ f(e_3) = 3e_3$$

C'est-à-dire,

$$e_1 \in \operatorname{Ker}(f - \operatorname{id}_E), \ e_2 \in \operatorname{Ker}(f - 2\operatorname{id}_E), \ e_3 \in \operatorname{Ker}(f - 3\operatorname{id}_E)$$

D'après $Mat_{\mathscr{B}}(f)$, on peut par résoudre 3 systèmes d'équations linéaires, on obtient

$$Ker(f-id_E) = Vect((1,-1,-2)), Ker(f-2id_E) = Vect((0,1,1)), Ker(f-3id_E) = Vect((1,1,1)),$$

On choisit donc $e_1 = b_1 - b_2 - 2b_3$, $e_2 = b_2 + b_3$, et $e_3 = b_1 + b_2 + b_3$

Comme la famille (e_1, e_2, e_3) est libre et E de dimension 3, donc la famille (e_1, e_2, e_3) forme une base de E

Conclusion, il existe une base $\mathscr{E} = (e_1, e_2, e_3)$ de E dans laquelle la matrice représentative de f est une matrice diagonale D.

2. Déterminer la matrice de passage $P_{\mathscr{B}}^{\mathscr{E}}$ de \mathscr{B} à \mathscr{E} . Calculer $\left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1}$.

D'après la question 1, On a

$$P_{\mathscr{B}}^{\mathscr{E}} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ -2 & 1 & 1 \end{bmatrix}$$

Comme $P_{\mathscr{B}}^{\mathscr{E}}$ est une matrice de passage, elle est inversible. Donc

$$\left(P_{\mathscr{B}}^{\mathscr{E}} \right)^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 3 & -2 \\ 1 & -1 & 1 \end{bmatrix}$$

3. Quelle relation a-t-on entre les matrices $A, D, P_{\mathscr{B}}^{\mathscr{E}}$ et $\left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1}$?

$$A = \left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1}.D.P_{\mathscr{B}}^{\mathscr{E}}$$

4. Calculer A^n pour tout $n \in \mathbb{N}^*$.

Comme

$$\left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1}.P_{\mathscr{B}}^{\mathscr{E}}=I_{3}$$

Donc

$$A^n = \left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1}.D^n.P_{\mathscr{B}}^{\mathscr{E}} = \left(P_{\mathscr{B}}^{\mathscr{E}}\right)^{-1} \begin{bmatrix} 1^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{bmatrix} P_{\mathscr{B}}^{\mathscr{E}}$$

Donc

$$A^{n} = \begin{bmatrix} 3^{n} & 1 - 3^{n} & 3^{n} - 1 \\ -2^{n} + 3^{n} & 3 \times 2^{n} - 3^{n} - 1 & -2 \times 2^{n} + 3^{n} + 1 \\ -2^{n} + 3^{n} & 3 \times 2^{n} - 3^{n} - 2 & -2 \times 2^{n} + 3^{n} + 2 \end{bmatrix}$$