Klasyfikacja wieloetykietowa (Mutlilabel classification)

Paweł Teisseyre

SER 2014

Overview

- Introduction
 - Examples
 - Loss functions
- Methods
 - Binary Relevance
 - Label Powerset
 - Classifier chains
 - Ising Model
- 3 Experiments on real datasets in R.

Binary classification:

X_2		X_p	Y
2.2		4.2	1
1.3		3.1	1
1.4		3.2	0
		:	:
3.5		4.2	0
2.5		4.1	?
	2.2 1.3 1.4	2.2 1.3 1.4	2.2 4.2 1.3 3.1 1.4 3.2 : 3.5 4.2

Tabela: Binary classification.

- We consider one target variable.
- Prediction: predict y for a new instance x (2 possible values).

Multilabel binary classification:

X_1	X_2	 X_p	<i>Y</i> ₁	<i>Y</i> ₂	 $\overline{Y_K}$
1.0	2.2	 4.2	1	0	 1
2.4	1.3	 3.1	1	0	 1
0.9	1.4	 3.2	0	0	 1
÷		÷	:		:
1.7	3.5	 4.2	0	1	 0
3.9	2.5	 4.1	?	?	 ?

Tabela: Multilabel classification.

- We consider many target variables simultaneously.
- Prediction: predict vector y for a new instance x (2^K possible values).

Example: (image annotation)

- Y_1 : grass (presence (1) or absence (0)),
- Y_2 : snow (presence (1) or absence (0)),
- Y_3 : rocks (presence (1) or absence (0)),
- *Y*₄: sky (presence (1) or absence (0)).

Other examples: Target variables Y_1, \ldots, Y_K can refer to:

- Text categorization: different topics (policy, war, Wladimir Putin, research, biology).
- Ecology: presence or absence of species in the ecosystem.
- Medicine: presence or absence of diseases.

Some remarks:

- It is worthwile to take into account dependences between targets.
- In real data examples: p, n, K can be large.

Hamming loss:

•

$$L_H(\mathbf{y}, h(\mathbf{x})) := \frac{1}{K} \sum_{k=1}^{K} 1[y_k \neq h_k(\mathbf{x})].$$
 (1)

- Fraction of labels whose relevance is incorrectly predicted.
- Risk (1) minimizer is obtained by:

$$h_{H}^{*}(\mathbf{x}) = (h_{H_{1}}(\mathbf{x}), \dots, h_{H_{K}}(\mathbf{x})),$$

(marginal mode) where:

$$h_{H_k}^*(\mathbf{x}) = \arg\max_{y \in \{0,1\}} P(Y_k = y|\mathbf{x}).$$

Subset 0/1 loss:

•

$$L_s(y, h(x)) := 1[y = h(x)].$$
 (2)

- It generalizes the well-known 0/1 loss from the conventional to the multi-label setting.
- Risk (2) minimizer is obtained by:

$$h_s^*(\mathbf{x}) = \arg\max_{\mathbf{y} \in \{0,1\}^K} P(\mathbf{y}|\mathbf{x})$$

(mode of the joint distribution).

Binary relevance (BR)

- Train a separate binary classifier $h_k(\cdot)$ for each label k = 1, ..., K using e.g. logistic regression or decission tree.
- Learning is performed independently for each label, ignoring all other labels.
- Well-tailored for Hamming loss minimization.
- Not suitable for 0/1 subset loss.

Methods optimal w.r.t. subset 0/1 loss

We describe some methods that are optimal w.r.t. subset 0/1 loss.

- Label powerset (LP),
- Classifier chains (CC),
- Ising Model.

The last two methods seek to estimate the joint distribution $P(Y_1, ..., Y_K | x)$:

Label Powerset (LP)

- Proposed by Tsoumakas and Katakis (2007).
- This approach reduces the MLC problem to multi-class classification, considering each label subset as a distinct meta-class.
- The number of these meta-classes may become large (2^K) .
- Since prediction of the most probable meta-class is equivalent to prediction of the mode of the joint label distribution, LP is tailored for the subset 0/1 loss.
- Main drawback: large number of classes produced by this reduction and very few training examples for each class.

Label Powerset (LP)

X_1	Y_1	<i>Y</i> ₂
1	0	0
2	0	0
2 3 4 5	1	0
4	1	0
5	1	1

Tabela: Before reducion.

X_1	Y
1	1
2	1
3	2
4	2 3
4 5	3

Tabela: After reducion.

- Proposed by Dembczynski et al (2010).
- Product rule of probability:

$$P(Y_1, \dots, Y_K | \mathbf{x}) = \prod_{k=1}^K P(Y_k | Y_1, \dots, Y_{k-1}, \mathbf{x}).$$
 (3)

- To estimate (3) we build binary classification models in which:
 - Y_k is class variable,
 - $\mathbf{x}, Y_1, \dots, Y_{k-1}$ are attributes,

$$k = 1, \ldots, K$$
.

Prediction:

- Exhaustive search requires 2^K operations.
- Greedy search:
 - Find: $y_1^* = \arg\max_{y \in \{0,1\}} P(Y_1 = y | \mathbf{x}).$
 - Find: $y_2^* = \arg\max_{y \in \{0,1\}} P(Y_2 = y | y_1^*, \mathbf{x}).$
 - Find: $y_3^* = \arg\max_{y \in \{0,1\}} P(Y_3 = y | y_1^*, y_2^*, \mathbf{x}).$
 - . . .

requires K operations.

• Other possibilities: beam search (Kumar et al. 2013).

- Theoretically, the result of the product rule does not depend on the order of the variables. Practically, however, two different classifier chains will produce different results.
- Example:
 - We generate data from CC.
 - Ordering in data generation: Y_1, Y_2, Y_3 .
 - Paramters: $\beta_k = (0.3, \dots, 0.3)'$, $\alpha_k = (0.5, \dots, 0.5)'$.
 - Test set: 50 observations, number of simulations: 50.

Ensembles of classifier chains (ECC)

- Proposed by Read (2009).
- Average the multi-label predictions of CC over a (randomly chosen) set of permutations.

Ising Model

• Ising model: Ising model with covariates:

$$P(y_1, \ldots, y_K | \mathbf{x}) = \frac{1}{Z(\theta(\mathbf{x}))} \exp \left[\sum_j \theta_{jj}(\mathbf{x}) y_j + \sum_{j < k} \theta_{jk}(\mathbf{x}) y_j y_k \right].$$

- the natural choice: $\theta_{ij}(\mathbf{x}) = \theta_{ij0} + \theta'_{ij}\mathbf{x}$.
- Z(θ) is the normalization function ensuring that 2^K probabilities sum up to 1.
- We assume: $\theta_{ik} = \theta_{ki}$.
- There are K(K+1)/2 parameters.

Ising Model with covariates

• Ising model is associated with LOGISTIC REGRESSION:

$$\log \left[\frac{P(y_j = 1 | \mathbf{y}_{-j}, \mathbf{x})}{P(y_j = 0 | \mathbf{y}_{-j}, \mathbf{x})} \right] = \theta_{jj0} + \theta'_{jj} \mathbf{x} + \sum_{k: k \neq j} [\theta_{jk0} + \theta'_{jk} \mathbf{x}] y_k,$$
 (4)

where
$$\mathbf{y}_{-j} = (y_1, \dots, y_{j-1}, y_{j+1}, \dots, y_K)$$
.

- Ising Model is an example of Markov Network:
 - $\theta_{ij} = 0$: no edge between y_i and y_j .
 - $\theta_{ij} = 0 \iff y_i \perp \!\!\!\perp y_j | \mathbf{y}_{-\{i,j\}}, \mathbf{x}$.

Multilabel Learning Software

- MULAN- java library for multilabel learning, http://mulan.sourceforge.net/
- Multilabel learning in R...???

source: r4stats.com

Experiments

Emotions dataset (n = 593, p = 72, K = 6):

Method	1-01	1-Hamming	Recall	Precision
BR	0.21	0.78	0.47	0.53
PCC ISING	0.28	0.77	0.64	0.62
ISING	0.21	0.70	0.51	0.53

Flags dataset (n = 194, p = 19, K = 7):

Method	1-01	1-Hamming	Recall	Precision
BR	0.06	0.68	0.71	0.65
PCC	0.14	0.66	0.64	0.62
ISING	0.14	0.69	0.67	0.68

Experiments

Mediamil dataset top 10 (n = 978, p = 1449, K = 45):

Method	1-01	1-Hamming	Recall	Precision
BR	0.17	0.82	0.59	0.74
PCC ISING	0.21	0.81	0.59	0.69
ISING	0.20	0.81	0.54	0.69

Scene dataset (n = 2407, p = 294, K = 6):

Method	1-01	1-Hamming	Recall	Precision
BR	0.43	0.88	0.49	0.49
PCC ISING	0.65	0.89	0.69	0.71
ISING	0.52	0.85	0.55	0.58

Experiments

Yeast dataset top 10 (n = 2417, p = 103, K = 14):

Method	1-01	1-Hamming	Recall	Precision
BR	0.06	0.60	0.63	0.50
PCC ISING	0.20	0.72	0.66	0.64
ISING	0.06	0.51	0.59	0.43

Dziękuje za uwagę!!!

Literature

- Dembczynski, et. al. (2010), On label dependence and loss minimization in multi-label classification, Machine Learning.
- Tsoumakas, Katakis, (2007), Multi-label classification: An overview, International Journal of Data Warehousing and Mining.