Factor Graphs

Discussion: Practice with Factor Graphs and Belief Propagation

ECE/CS 498 DS University of Illinois

Agenda

- Conversion of Bayesian network to factor graph (FG)
- Calculating joint probability in a FG
- Calculating marginal probability with belief propagation
- Calculating conditional probability with belief propagation

Converting Bayesian Network to Factor Graph

Bayesian Network Example

- Suppose that we have a Bayesian network as shown to the left
- Every variable is binary, and takes on a value from {0, 1}
- How can we convert this to a factor graph?

Conversion to FG: Draw Variables

First, we need to identify all the variables that will be drawn in the FG

Conversion to FG: Identify Factor Functions

- Next, we need to identify what the factor functions will be
- To do this, think about the CPTs of the Bayesian network - how do we encode the variable dependencies?
 - CPTs describe dependencies of a node on its parents

Conversion to FG: CPTs

CPTs

A	P(B=0 A)	A	P(C=0 A)
0	0.6	0	0.8
1	0.3	1	0.5

A	С	P(D=0 A,C)
0	0	0.1
0	1	0.4
1	0	0.2
1	1	0.7

Conversion to FG: CPTs

Using the CPTs, we can create factor functions

 f_1 represents a prior probability (P(A))

	A	P(A)
	0	0.9
S		•
	A	$f_1(A)$
	0	9
	1	1
	-	-

- Note that while CPTs only list the required/independent parameters, factor functions should consider all possible parameters (even dependent ones)
- We multiply by probabilities by 10 for convenience in calculations

 f_2 represents a conditional probability (P(B|A))

A	P(B=0 A)	
0	0.6	
1	0.3	

A	В	$f_2(A,B)$
0	0	6
0	1	4
1	0	3
1	1	7

A	P(C=0 A)	
0	0.8	
1	0.5	

 f_3 represents a conditional probability (P(C|A))

A	С	$f_3(A,C)$
0	0	8
0	1	2
1	0	5
1	1	5

A	С	D	$f_4(A,C,D)$
0	0	0	1
0	0	1	9
0	1	0	4
0	1	1	6
1	0	0	2
1	0	1	8
1	1	0	7
1	1	1	3

Final Factor Graph

A	$f_1(A)$	
0	9	
1	1	

A	В	$f_2(A,B)$
0	0	6
0	1	4
1	0	3
1	1	7

A	C	$f_3(A,C)$
0	0	8
0	1	2
1	0	5
1	1	5

С	D	$f_4(A,C,D)$
0	0	1
0	1	9
1	0	4
1	1	6
0	0	2
0	1	8
1	0	7
1	1	3
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Calculating Joint Probability in a Factor Graph

Calculating Joint Probability

- Given the factor graph to the left, how do we calculate the joint probability P(A = 1, B = 0, C = 1, D = 1)?
- We need to multiply the factor functions together, and then normalize the result

Multiplying Factor Functions

$$P(A = 1, B = 0, C = 1, D = 1)$$

$$\propto f_1(A = 1)f_2(A = 1, B = 0)f_3(A = 1, C = 1)f_4(A = 1, C = 1, D = 1)$$

$$= (1) * (3) * (5) * (3)$$

$$= 45$$

Calculating Partition Function

- The partition function Z is simply the sum of all possible joint factor products
- Since the factor functions represent affinities (and not necessarily probabilities), we need to normalize their product to calculate the joint probability
- Refer to "additional slides" section for how we calculated Z below

$$Z = \sum_{a,b,c,d \in \{0,1\}} f_1(A=a) f_2(A=a,B=b) f_3(A=a,C=c) f_4(A=a,C=c,D=d)$$
$$= 10,000$$

Reporting Joint Probability

Thus,

$$P(A = 1, B = 0, C = 1, D = 1)$$

$$=\frac{45}{Z}$$

$$=\frac{45}{10000}$$

$$=$$
0.0045

Calculating Marginal Probability using Belief Propagation

Motivation: Why Belief Propagation?

- Belief propagation can greatly reduce the number of required computations for calculating marginal and conditional probabilities with a factor graph
- Calculating all the joint probabilities grows exponentially with the number of variables
 - Refer to the tables in the "Additional Slides" section for an example of this!
- By passing messages across variables and factors, we can save time by not performing any redundant calculations
- We will demonstrate using a slightly modified version of our earlier factor graph (without loops...)

Belief Propagation – Message Passing

Message from Factor to Variable

$$\mu_{f\to C}(C) = \sum_{X_1, X_2, \dots, X_m} f(C, X_1, \dots, X_m) \prod_{i=1}^m \mu_{X_i \to f}(X_i)$$

Message from factor to variable: Product of all incoming messages and factor, sum out previous variables

Message from Variable to Factor

$$\mu_{X\to f}(X) = \prod_{i=1}^n \mu_{f_i\to X}(X)$$

Message from variable to factor: Product of all incoming messages

New Factor Graph

A	$f_1(A)$
0	9
1	1

A	В	$f_2(A,B)$
0	0	6
0	1	4
1	0	3
1	1	7

A	C	D	$f_3(A,C,D)$
0	0	0	1
0	0	1	9
0	1	0	4
0	1	1	6
1	0	0	2
1	0	1	8
1	1	0	7
1	1	1	3

- Given the factor graph to the left, how do we calculate the marginal probability P(D=0)?
- The first step is to identify all messages that are being sent to D.

$$f_{1} \qquad \mu_{B \to f_{2}}(B) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} B = 0 \\ (B = 1) \end{bmatrix}$$

$$\mu_{f_{1} \to A}(A) \qquad \mu_{f_{2} \to A}(A) = \sum_{B \in \{0,1\}} f_{2}(A,B) \times \mu_{B \to f_{2}}(B)$$

$$\mu_{A \to f_{3}}(A) \qquad = \int_{B \in \{0,1\}} f_{2}(A,B) \times \mu_{B \to f_{2}}(B)$$

$$= f_{2}(A,B = 0) \times \mu_{B \to f_{2}}(B = 0) + f_{2}(A,B = 1) \times \mu_{B \to f_{2}}(B = 1)$$

$$= \begin{bmatrix} 6 \\ 3 \end{bmatrix} \begin{bmatrix} A = 0 \\ (A = 1) \end{bmatrix} \times 1 + \begin{bmatrix} 4 \\ 7 \end{bmatrix} \begin{bmatrix} A = 0 \\ (A = 1) \end{bmatrix} \times 1$$

$$= \begin{bmatrix} 10 \\ 10 \end{bmatrix} \begin{bmatrix} A = 0 \\ (A = 1) \end{bmatrix}$$

$$\mu_{f_{1} \to A}(A) = \begin{bmatrix} 9 \\ 1 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix}$$

$$\mu_{f_{1} \to A}(A) = \mu_{f_{2} \to A}(A) \times \mu_{f_{1} \to A}(A)$$

$$\mu_{A \to f_{3}}(A) = \mu_{f_{2} \to A}(A) \times \mu_{f_{1} \to A}(A)$$

$$= \begin{bmatrix} 10 \\ 10 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix} \odot \begin{bmatrix} 9 \\ 1 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix}$$

$$= \begin{bmatrix} 90 \\ 10 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix}$$

$$= \begin{bmatrix} 90 \\ 10 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix}$$

$$\mu_{f_{3} \to D}(D)$$

$$\mu_{C \to f_{3}}(C) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{pmatrix} C = 0 \\ (C = 1) \end{pmatrix}$$

$$\begin{array}{ll}
\mu_{f_{3}\to D}(D) \\
= \sum_{A\in\{0,1\},C\in\{0,1\}} f_{3}(A,C,D) \times \mu_{A\to f_{3}}(A) \times \mu_{C\to f_{3}}(C) \\
= f_{3} (A=0,C=0,D) \times \mu_{A\to f_{3}}(A=0) \times \mu_{C\to f_{3}}(C=0) \\
+ f_{3}(A=0,C=1,D) \times \mu_{A\to f_{3}}(A=0) \times \mu_{C\to f_{3}}(C=1) \\
+ f_{3}(A=1,C=0,D) \times \mu_{A\to f_{3}}(A=1) \times \mu_{C\to f_{3}}(C=0) \\
+ f_{3}(A=1,C=1,D) \times \mu_{A\to f_{3}}(A=1) \times \mu_{C\to f_{3}}(C=1) \\
= \begin{bmatrix} 1\\ 9 \end{bmatrix} \begin{pmatrix} D=0\\ (D=1) \end{pmatrix} \times 90 \times 1 + \begin{bmatrix} 4\\ 6 \end{bmatrix} \begin{pmatrix} D=0\\ (D=1) \end{pmatrix} \times 90 \times 1 \\
+ \begin{bmatrix} 2\\ 8 \end{bmatrix} \begin{pmatrix} D=0\\ (D=1) \end{pmatrix} \times 10 \times 1 + \begin{bmatrix} 7\\ 3 \end{bmatrix} \begin{pmatrix} D=0\\ (D=1) \end{pmatrix} \times 10 \times 1 \\
= \begin{bmatrix} 540\\ 1460 \end{bmatrix} \begin{pmatrix} D=0\\ (D=1) \end{pmatrix}
\end{array}$$

Calculating Conditional Probability using Belief Propagation

• Given the factor graph to the right, how do we calculate the conditional probability P(A=0|D=0)?

On observing Node D, we are going to make corresponding changes in the factor graph:

- Remove node D from factor graph
- Modify the factor function connecting to node D (i.e. factor function f_3)

On observing Node D=0, We reserve the entries with D=0in factor function f_3

A	C	D	$f_3(A,C,D)$
0	0	0	1
0	0	1	9
0	1	0	4
0_	1	1	6
1	0	0	2
1	0	1	8
1	1	0	7
1	1	1	3

On observing Node D=0, We reserve the entries with D=0 in factor function f_3 and obtain new ${f_3}^{\prime}$ to the right

A	С	(D)	$f_3{}'(A,C)$
0	0	0	1
0	1	0	4
1	0	0	2
1	1	0	7

On observing Node D=0, We reserve the entries with D=0 in factor function f_3 and obtain new ${f_3}^{\prime}$ to the right

A	С	$f_3'(A,C)$
0	0	1
0	1	4
1	0	2
1	1	7

(1) —	[9]	(A=0)
$\mu_{f_1 \to A}(A) =$	$\lfloor 1 \rfloor$	(A = 1)

A	$f_1(A)$
0	9
1	1

A	В	$f_2(A,B)$
0	0	6
0	1	4
1	0	3
1	1	7

$$\mu_{B \to f_2}(B) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{pmatrix} B = 0 \\ B = 1 \end{pmatrix}$$

$$\mu_{f_2 \to A}(A) = \sum_{B \in \{0,1\}} f_2(A,B) \times \mu_{B \to f_2}(B)$$

$$= f_2(A,B=0) \times \mu_{B \to f_2}(B=0) + f_2(A,B=1) \times \mu_{B \to f_2}(B=1)$$

$$= \begin{bmatrix} 6 \\ 3 \end{bmatrix} \begin{pmatrix} A=0 \\ (A=1) \end{pmatrix} \times 1 + \begin{bmatrix} 4 \\ 7 \end{bmatrix} \begin{pmatrix} A=0 \\ (A=1) \end{pmatrix} \times 1$$

$$= \begin{bmatrix} 10 \\ 10 \end{bmatrix} \begin{pmatrix} A=0 \\ (A=1) \end{pmatrix}$$

A	С	$f_3'(A,C)$
0	0	1
0	1	4
1	0	2
1	1	7

$$\mu_{C \to f_3}{}'(C) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{pmatrix} C = 0 \end{pmatrix}$$

$$\mu_{f_3' \to A}(A) = \sum_{C \in \{0,1\}} f_3'(A,C) \times \mu_{C \to f_3'}(C)$$

$$= f_3'(A,C = 0) \times \mu_{C \to f_3'}(C = 0)$$

$$+ f_3'(A,C = 1) \times \mu_{C \to f_3'}(C = 1)$$

$$= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix} \times 1 + \begin{bmatrix} 4 \\ 7 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix} \times 1$$

$$= \begin{bmatrix} 5 \\ 9 \end{bmatrix} \begin{pmatrix} A = 0 \\ (A = 1) \end{pmatrix}$$

$$P(A|D = 0) = \frac{1}{Z} (\mu_{f_1 \to A} \times \mu_{f_2 \to A} \times \mu_{f'_3 \to A})$$

$$= \frac{1}{Z} (\begin{bmatrix} 9 \\ 1 \end{bmatrix} \odot \begin{bmatrix} 10 \\ 10 \end{bmatrix} \odot \begin{bmatrix} 5 \\ 9 \end{bmatrix})$$

$$= \frac{1}{Z} \begin{bmatrix} 450 \\ 90 \end{bmatrix}$$

$$= \frac{1}{540} \begin{bmatrix} 450 \\ 90 \end{bmatrix}$$

$$= \begin{bmatrix} 5/6 \\ 1/6 \end{bmatrix} (A = 0)$$

$$(A = 1)$$

Therefore,
$$P(A=0|D=0)=\frac{5}{6}$$

Additional Slides

Calculating Partition Function

A	В	С	D	$f_1(A=a)f_2(A=a,B=b)f_3(A=a,C=c)f_4(A=a,C=c,D=d)$
0	0	0	0	9*6*8*1 = 432
0	0	0	1	9*6*8*9 = 3888
0	0	1	0	9*6*2*4 = 432
0	0	1	1	9*6*2*6 = 648
0	1	0	0	9*4*8*1 = 288
0	1	0	1	9*4*8*9 = 2592
0	1	1	0	9*4*2*4 = 288
0	1	1	1	9*4*2*6=432

Calculating Partition Function

A	В	С	D	$f_1(A=a)f_2(A=a,B=b)f_3(A=a,C=c)f_4(A=a,C=c,D=d)$
1	0	0	0	1*3*5*2=30
1	0	0	1	1*3*5*8 = 120
1	0	1	0	1*3*5*7 = 105
1	0	1	1	1*3*5*3=45
1	1	0	0	1*7*5*2=70
1	1	0	1	1*7*5*8 = 280
1	1	1	0	1*7*5*7 = 245
1	1	1	1	1*7*5*3 = 105