Дискретна математика

проф. д-р Тодорка Глушкова, Катедра "Компютърни технологии", ФМИ

Съдържание

- Съждителна логика
- Синтаксис
- Семантика
- Теория на доказателствата
- Предикатна логика
- Приложения

- Математиката, за разлика от други научни дисциплини работи само с неоспорима истина.
- Една от основните цели на математиците е да определят кои твърдения са верни и кои -не.
- Изследването на съждения, начина им на конструиране, смисъла и доколко може да се докаже верността им е предмет на дисциплината "математическа логика"
- Логиката е научна дисциплина. Корените и можем да търсим в древна Гърция, а първия опит да се постави на научна основа принадлежи на Аристотел в книгата му "Аналитика".

- Логиката е необходимо средство и за математици и за компютърни специалисти. С нейна помощ един математик може да докаже верността на едно твърдение, а един компютърен специалист че една програма работи така както се очаква за всички възможни въвеждания на данни.
- Логически оператори така както операциите и релациите в математиката се използват за съставяне на по-сложни изрази, така и логическите оператори ще ни помогнат да образуваме съставни твърдения.

- Числовата алгебра използва за означаване на операции и релации символи (+,-,<,>...). Логиката също използва подобни символи, които съставляват нейния език.
- Алгебрата има свои закони асоциативен, комутативен, дистрибутивен и др.
- Логиката има също свои закони, подобни на алгебричните.
- Съждителната логика, разглеждана като аналог на алгебрата се нарича "Логическа алгебра" или "Съждително смятане".

Съждителна логика

- Най-простият вариант на математическата логика
 - Общо подмножество (най-малък общ делител) на всички останали логики.
- Предмет: атомарни съждения и връзките между тях
- Предимства:
 - Просто изграждане
 - Ясна структура
- Недостатък:
 - Недостатъчна изразителна сила
- Въпреки това, значението ѝ е огромно
 - Теоретична основа за разработване на хардуер и софтуер
 - Поведението на комбинаторни хардуерни схеми на логическо ниво може да се представи директно като логически формули

Логически съюзи и съставни съждения

Съждението е твърдение, за което със сигурност можем да кажем дали е вярно или не. От синтактична гледна точка то е просто изречение с подлог и сказуемо.

<u>Напр</u>.: "Иван е човек", "5 < 8" и т.н.

• Ако са дадени две съждения можем да ги свържем като използваме различни съюзи в съставно съждение.

Логически съюзи и съставни съждения

Съюзите за връзка могат да бъдат: "И", "ИЛИ", "АКО...ТО".

- <u>Напр</u>.: За простите съждения- "4<7"; "8 е четно число", можем да образуваме съставните съждения:
- "4<7 и 8 е четно число";
- "4<7 или 8 е четно число";
- "Ако 4<7, то 8 е четно число".

За всяко едно от получените съставни съждения можем да кажем дали е вярно или не, т.е. отново получаваме съждение

Следователно тези съюзи са затворени оператори в множеството на всички съждения

Логически съюзи и съставни съждения

За всяко съждение можем да получим неговото отрицание с помощта на частицата "не".

• <u>Пример:</u> "4 не е < 7"

Отрицанието е унарна логическа операция.

- **Въпрос:** Как можем да установим верността на съставните съждения?
- Отговор: С верностна таблица!

Логически оператори

- Нека е дадено съждението Р. Тогава **отрицанието** на Р ще записваме Р и ще казваме, че Р е вярно, когато Р е невярно и обратно.
- Верностната таблица на отрицанието е:

P	P
Т	F
F	Т

Т – истина

F – лъжа

Логически оператори

• <u>Забележка:</u> Отрицанието ими аналог в алгебрата – знакът "-".

Конюнкция

- **Конюнкция**: Нека са дадени две съждения Р и Q. Конюнкция на двете съждения Р ∧ Q е съждение, което е вярно само когато и Р и Q са верни.
- Верностната таблица:

P	Q	P \(\textbf{Q} \)
Т	Т	T
Т	F	F
F	Т	F
F	F	F

Конюнкция

- Конюнкцията има за аналог в говоримия език съюза "и", а в алгебрата умножението, поради което се нарича още логическо умножение.
- Пример: Съждението "(4<7) ∧ (8 е четно число)" е вярно съгласно първи ред от верностната таблица.

Дисюнкция

Дисюнкция: Нека са дадени две съждения Р и Q.
 Дисюнкцията на тези две съждения Р∨Q е съждение, което е вярно, когато поне едно от двете дадени съждения е вярно и грешно, ако и

• Верностната таблица:

двете са грешни.

P	Q	$P \vee Q$
Т	Τ	Τ
Т	F	Т
F	Т	Т
F	F	F

Дисюнкция

- Дисюнкцията има за аналог в говоримия език съюза "или", а в алгебрата събирането, поради което се нарича още логическо събиране.
- <u>Пример:</u> "(4<7) ∨ (8 е не четно число)" е вярно поради втори ред на верностната таблица.
- След като дефинирахме тези три логически оператора, можем да ги прилагаме в различни комбинации и да получаваме съставни съждения. Тяхната верностна стойност можем да получим чрез верностна таблица.
- Например: Ако P,Q и R са съждения да получим верностните стойности на съставното съждение: $R \land T$ (P \land Q).

P	Q	R	P \(\textbf{Q} \)	 (P ∧ Q)	R ∧ (P ∧ Q)
Т	Т	Т	Т	F	F
Т	Т	F	Т	F	F
Т	F	Т	F	Т	Т
Т	F	F	F	Т	F
F	Т	Т	F	Т	Т
F	Т	F	F	Т	F
F	F	Т	F	Т	Т
F	F	F	F	Т	F

Импликация

- Импликация: Ако Р и Q са две съждения импликация Р→ Q наричаме съждението, което е грешно, само когато Р е вярно, а Q- невярно и вярно във всички останали случаи.
- Ще наричаме Р-хипотеза, а Q- заключение.

В говоримия език импликацията се замества с "ако...тогава". В примера: " $(4<7) \rightarrow (8 \text{ е четно число})$ " е вярно, съгласно първи ред от верностната таблица.

P	Q	$P \rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Импликация

- В разговорния език можем да го кажем и по друг начин:
- √ " Ако Р, то Q";
- √ "Р само ако Q";
- ✓ "Ре достатъчно условие за Q";
- ✓ "Q е необходимо условие за Р".
- **Пример:** P="Вън вали."; Q="На небето има облаци." Тогава:
- √ "Ако вън вали, на небето има облаци."
- ✓ "Вън вали, само ако на небето има облаци."
- ✓ Вън да вали е достатъчно условие за това на небето да има облаци.
- ✓ На небето да има облаци е необходимо условие вън да вали.

Импликация

• Ще отбележим, че ако Q е вярно съждение, импликацията ${f P}$ $ightarrow {f Q}$ е винаги истина.

(напр. $X < 7 \rightarrow 2 + 2 = 4$ е вярно независимо от стойността на X.)

- Също, ако при дисюнкцията и конюнкцията реда на записване на съжденията е без значение ($P \land Q, Q \lor P$), то при импликацията той е много важен. Съждението $\mathbf{P} \to \mathbf{Q}$ не е еквивалентно на $\mathbf{Q} \to \mathbf{P}$.
- В горния пример съждението "Ако вън вали, то на небето има облаци" не е еквивалентно на "Ако на небето има облаци, то вън вали", тъй като денят може да е просто облачен.
- Когато, обаче, и двете съждения ${f P} o {f Q}$ и ${f Q} o {f P}$ са едновременно верни, тогава казваме, че съжденията ${f P}$ и ${f Q}$ са еквивалентни и записваме ${f P} \leftrightarrow {f Q}$.

Еквиваленция

- **Еквиваленцията** $P \leftrightarrow Q$ е вярна, когато P и Q получават еднакви верностни стойности и невярна в останалите случаи.
- Верностна таблица:

P	Q	$P \leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Еквиваленция

- В математиката еквивалентността се изговаря като "тогава и само тогава, когато" или като "Р е необходимо и достатъчно условие за Q".
- **Например:** Триъгълникът е правоъгълен тогава и само тогава, когато сборът от квадратите на катетите е равен на квадрата на хипотенузата.

Изключващо "Или"- XOR

- Изключващото "Или" Р ⊕ Q е вярна, само когато Р и Q получават различни верностни стойности и невярна в останалите случаи.
- Верностна таблица:Нарича се още "сума по модул 2" или

"изключващо ИЛИ".

Означава се с:

От верностната таблица се вижда, че XOR е противоположен на еквиваленцията и затова понякога се нарича антиеквиваленция и се бележи с ↔

P	Q	P Q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- За повечето хора това е все едно да ги попиташ каква е разликата между смесване и разбъркване.
- Кодът е свързване на някаква смислена единица като дума, изречение или фраза с нещо друго обикновено по-кратка група символи. Например можем да направим код, в който думата "apple" (ябълка) е записана като 67.
- Кодовата книга е списък от тези връзки.
- За да създаваме и разчитаме кодове се нуждаем от кодова книга или кодова формула.
- Тогава какво е шифър?

- Най-важното е, че шифрите не включват значение.
- Те са механични операции, познати като алгоритми, които се прилагат върху отделни букви или малки групи от тях.
- Например в Цезаровия шифър всяка буква от азбуката се превръща в друга буква. Например А→D, В→E и С→F, според някакво изместване, в този случай четири.
- Този вид шифър е познат като шифър с отместване.
- В този случай не ни трябва кодова книга.

- Вместо това следваме поредица от инструкции, познати още като **алгоритъм**, където преместваме всяка буква с някакъв брой позиции.
- Алгоритъмът изисква някаква споделена информация, позната като **ключ**.
- В горния пример, в който A→D, ключът е четири. Този споделен ключ се изисква от двете страни, за да кодират съобщения: HELLO → KHOOR, както и да декодират съобщения: KHOOR→HELLO.

- Да се върнем на въпроса: Каква е разликата между код и шифър?
- Кодовете се отнасят към *семантичното* значение, докато шифрите оперират със *синтаксиса*, символите.
- Кодът се запазва в кодова книга, докато шифрите превръщат отделните символи един в друг според някакъв алгоритъм.

- Най-добрият шифър с отместване е шифърът с еднократен код, при който всеки символ се шифрова с различно случайно отместване.
- Той се осъществява чрез прилагането на последователност от случайни замествания с дължина равна на дължината на съобщението.
- Този шифър е трудно пробиваем, тъй като всяка комбинация е равновероятна на останалите, а броят комбинации нараства експоненциално.

• Например при шифроване на думата КОД с възможно отместване 30 (колкото са буквите в българския език) получаваме

к о д

30* 30* 30=27000 различни равновероятни трибуквени комбинации.

- Причината за това е използването на побитовите побитовите операции **AND** (и), **OR** (или) и **XOR** (изключващо или).
- И най-вече, трябва да разберем защо XOR трябва да се използва, когато се използва шифър с еднократен код на компютри.
- **Побитово** просто означава, че работим с отделни битове или **двоични числа**.
- Във всяка съвременна компютъризирана схема за критиране ние представяме символите с 0 и 1.

- Всеки RGB цвят е комбинация от три осембитови числа. Например: (R) = 156, (G) = 161 и (B) = 58.
- Ако изразим числата двоично, получаваме: R=10011100, G=10110101, B=00111010.

100111001011010100111010

- Можем да ги представим заедно така: 10011100101101010111010
- Сега генерираме отместване с произволно число със същата дължина (напр. като хвърляме 24 пъти монета)
- За да извършим кодирането с еднократен случаен ключ, трябва да изберем правилната операция, така че получената последователност да може да е който и да е цвят с еднаква вероятност.
- Нека да разгледаме различните операции: AND, OR, XOR.

Логическо «И» (AND)

неговата таблица на истинност:

0 AND 0 = 0

1 AND 1 = 0

2 AND 0 = 0

1 AND 1 = 1

Нека опитаме:

100111001011010100111010 **AND** 010110100001101111011000 =

000110000001000100011000

Полученият цвят е много тъмно лилаво.

Когато прилагаме операцията **AND**, резултът **не може да е поголям от него**.

Логическо «Или» (OR)

0 OR 0 = 0

0 OR **1** = **1**

1 OR 0 = 1

1 OR 1 = 1

Нека опитаме:

100111001011010100111010 **OR** 010110100001101111011000

= 1101111010111111111111010

Резултатът е светло лилаво.

Когато прилагаме операцията **OR**, получената последователност **не може да е по-малка**.

Изключващо «Или» (XOR)

0 XOR 0 = 0

1 XOR 1 = 1

2 XOR 0 = 1

1 XOR 1 = 0

Нека опитаме:

100111001011010100111010 XOR 010110100001101111011000

- = 110001101010111011100010
- Резултатът е малко по-тъмно лилаво в сравнение с OR.
- Когато използваме операцията XOR, получената последователност може да бъде всяка възможна
- Ако вземем някакъв криптиран цвят, всичко което знаем е, че първоначалният цвят "е еднакво вероятно да бъде всеки цвят" и е необходимо сляпо отгатване (1/16 милиона).

110001101010111011100010

Попикселно криптиране на изображения

AND

Попикселно криптиране на изображения

OR

Попикселно криптиране на изображения

XOR

Тавтология и еквивалентност

Някои съставни съждения са винаги верни, а други – винаги неверни независимо от верностните стойности на съставляващите ги съждения.

- **Например:** $P \lor P$ е винаги вярно твърдение, докато $P \land P$ е винаги невярно.
- Това можем да видим от верностните им таблици:

Р	P	P √ P
Т	F	Т
F	Т	Т

Р	P	P ∧ P
Т	F	F
F	Т	F

Тавтология и противоречие

- **Тавтология**: Всяко съждение, което е винаги вярно, независимо от верностните стойности на съставляващите го съждения.
- **Противоречие:** Съждение, което е винаги невярно.(Второто съждение от горния пример.)
- Можем лесно да ги разпознаем, ако във верностната таблица получим само Т (тавтология) или само F (противоречие).

<u>Пример:</u> Да докажем, че $(P \lor Q) \to P \land Q$ е тавтология.

Р	Q] P		P ∨ Q	│ P ∧ │ Q	│ (P √ Q)	
Т	Т	F	F	Т	F	F	Т
Т	F	F	Т	Т	F	F	T
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	F	Т	Т	T

Тавтология и еквивалентност

- Нека S₁ и S₂ са две съждения. Казваме, че те са еквивалентни, когато двете колони във верностната таблица, в които те получават стойностите си са еднакви.
- В примера това са колоните за $P \land Q$ и $P \lor Q$. Тогава можем да кажем, че:

Логически твърдения

- В математическата логика съществуват два начина за доказване на логически еквивалентности:
 - дедуктивен
 - манипулативен (с верностна таблица).
- Често манипулативния подход води до бързи резултати, но при верностни таблици с много логически променливи, този подход е практически неприложим.
- Затова ще въведем някои базови еквивалентности, с чиято помощ чрез дедуктивни методи ще можем да докажем всяка друга еквивалентност.

<u>TEOPEMA 1.</u> Ако P, Q и R са твърдения, T е вярно твърдение, а F е грешно, следните двойки твърдения са логически еквивалентни:

1) Комутативни закони:

$$P \lor Q \Leftrightarrow Q \lor P$$

 $P \land Q \Leftrightarrow Q \land P$

2) Асоциативни закони:

$$P\lor(Q\lor R)\Leftrightarrow (P\lor Q)\lor R$$

 $P\land(Q\land R)\Leftrightarrow (P\land Q)\land R$

3) Дистрибутивни закони:

$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$$
$$P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$$

4) Комплиментарни закони:

$$P \lor P \Leftrightarrow T$$

 $P \land P \Leftrightarrow F$

5) Закони на идентитета:

$$P \wedge T \Leftrightarrow P$$

$$P \vee F \Leftrightarrow P$$

6) Доминантни закони:

$$P \vee T \Leftrightarrow T$$

$$P \wedge F \Leftrightarrow F$$

7) за идемпотентност:

$$P \wedge P \Leftrightarrow P$$

$$P \lor P \Leftrightarrow P$$

8) Закон за двойното отрицание:

$$\rceil(\rceil P)=P$$

9) Закони на Де Морган:

$$(P \lor Q) \Leftrightarrow P \land Q$$

$$\rceil (P \land Q) \Leftrightarrow \rceil P \lor \rceil Q$$

10) Закон за импликацията:
$$P \rightarrow Q \Leftrightarrow \ \ \ P \lor Q$$

11) Закон за отрицание на импликацията:

$$\rceil (P \rightarrow Q) \Leftrightarrow \rceil P \land Q$$

12) Закон за контрапозицията:

$$P {\rightarrow} Q \Leftrightarrow {\rceil} \, Q \to {\rceil} \, P$$

13) Закон за еквиваленцията:

$$P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$$

Логически изводи

- Логическите изводи ни позволяват да конструираме коректни доказателства.
- Дефиниция: Нека S1 и S2 са съставни съждения. Казваме, че S2 следва от S1, т.е. S1 ⇒ S2, ако за всяко разпределение на верностните стойности на съждителните променливи в S1 и S2, от верността на S1 следва верността на S2.

Пример

• **Пример:** За да докажем, че: $P_{\land}(P \rightarrow Q) \Rightarrow Q$, Конструираме верностната таблица и сравняваме колоната $P_{\land}(P \rightarrow Q)$ с колона Q.

Р	Q	P→Q	P∧(P→Q)
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	F
F	F	Т	F

Логически изводи

Теорема 2 Следващите логически изводи са верни. P,Q,R са някакви съждения, а T и F са вярно и невярно съждение:

- 1) $(P \rightarrow Q) P \land \Rightarrow Q$
- 2) $P \Rightarrow P \lor Q$
- 3) $P \land Q \Rightarrow P$
- 4) $\rceil P \rightarrow P \Rightarrow P$
- 5) $\rceil P \rightarrow F \Rightarrow P$
- 6) $F \Rightarrow P$
- 7) $P \Rightarrow T$
- 8) $(P \rightarrow Q) \land (Q \rightarrow R) \Rightarrow P \rightarrow R$

Импликация и логически извод

- Да отбележим връзката между импликацията (\rightarrow) и логическия извод (\Rightarrow) ; между еквиваленцията (\leftrightarrow) и логическата еквивалентност (\Leftrightarrow) .
- **Теорема 3.** Нека Р и Q са съждения. Тогава:
- 1) $P \Rightarrow Q$ тогава и само тогава, когато $P \rightarrow Q$;
- 2) $P \Leftrightarrow Q$ тогава и само тогава, когато $P \leftrightarrow Q$;

- D. W. Hoffmann, Theoretische Informatik, Hansen Verlag, 2009
- H. P. Gumm, M. Sommer, Einfuehrung in die Informatik, Oldenbourg Wissenschaftsverlag, 2004
- J. W. Grossman, Discrete Mathematics, Macmillan Pub. Co., 1990
- К. Манев, Увод в дискретната математика, КЛМН, 2005
- Й. Денев, Р. Павлов, Я. Демирович. Дискретна математика. Наука и изкуство, София, 1984.

- Д. Байнов, С. Костадинов, Р. Павлов, Л. Луканова. Ръководство за решаване на задачи по дискретна математика. Университетско издателство "Паисий Хилендарски", Пловдив, 1990.
- В.А. Успенский, Машина Поста, Москва, Наука, 1988, ISBN 5-02-013735-9.
- L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics – Elementary and Beyond, Springer Verlag, New York, 2003, ISBN 0-387-95584-4.

- E. Bender, S. Williamson, A Short Course in Discrete Mathematics, Dover, 2006, ISBN 0-486-43946-1.
- P. Linz, An Introduction to Formal Languages and Automata, Jones and Bartlett Publishers, 6-th edition, Jones & Bartlett Publishers, ISBN-13: 9781284077247, 2016
- Kenneth H. Rosen, Kamala Krithivasan, Discrete mathematics and its application, McGraw-Hill Companies, 7-th edition, ISBN 978-0-07-338309-5, 2012

- Owen D. Byer, Deirdre L. Smeltzer, Kenneth L. Wantz, Journey into Discrete Mathematics, AMS, MAA Press, Providence Rhode Island, ISBN 9781470446963, 2018
- Christopher Rhoades, Introductory Discrete Mathematics, Willford Press, ISBN 1682854922, 9781682854921, 2018
- David Liben-Nowell, Discrete Mathematics for Computer Science, Wiley, 2017, ISBN 1119397197, 9781119397199, 2017.
- http://www.jflap.org/ софтуерна среда