CLAIMS

1	1.	A pixel comprising:
2	a)	a substrate having a photodiode, said photodiode having a light
3	receiving a	rea;
4	b)	a color filter array (CFA) material of a first color disposed above said
5	substrate, s	aid pixel having a first relative responsivity; and
6	c)	a light shield disposed above the substrate, said light shield forming
7	an aperture	, said aperture having an area substantially equal to the light
8	receiving ar	ea adjusted by a reduction factor, said reduction factor being a result
9	of an arithn	netic operation between the first relative responsivity and a second
10	relative resp	consivity associated with a second pixel of a second color.
1	2.	The pixel of claim 1 wherein the reduction factor is the result of the
2	first relative	e responsivity divided by the second relative responsivity.
1	3.	The pixel of claim 1 wherein the light shield includes a metal layer.
		o metal layer.
1	4.	The pixel of claim 1 wherein the light shield includes an opaque
2	material.	

9

1 5. The pixel of claim 4 wherein the opaque material is a dielectric 2 material. 1 6. The pixel of claim 5 wherein the dielectric material includes a 2 silicon dioxide. 1 7. The pixel of claim 1 wherein the pixel is a green pixel and the 2 second pixel is a blue pixel. The pixel of claim 1 wherein the pixel is a red pixel and the second 8. 1 pixel is a blue pixel. 9. A method comprising the steps of: 1 determining a relative responsivity (S1) for a pixel of a first color; 2 a) determining a relative responsivity (S2) for a pixel of a second color; 3 b) 4 determining whether the relative responsivity (S₁) for the first pixel c) 5 is more than the relative responsivity (S_2) of the second pixel; if yes, forming a mask opening above the first pixel, said mask 6 opening having an area substantially equal to the light receiving area 7

042390.P4290 - 27 - September 26, 1997 Express Mail No.: EM502292185US

adjusted by a reduction factor, said reduction factor being a result of an

arithmetic operation between the relative responsivity of the first pixel

	10	and t	the relative responsivity of the second pixel; and forming a mask
	11	open	ing above the second pixel, said mask opening having an area
	12	subst	antially equal to the light receiving area;
	13		else,
	14		forming a mask opening above the first pixel, said mask
	15		opening having an area substantially equal to the light receiving
	16		area; and
	17		forming a mask opening above the second pixel, said mask
	18		opening having an area substantially equal to the light receiving
	19		area adjusted by a reduction factor, said reduction factor being a
1	20		result of an arithmetic operation between the relative responsivity
	21		for a second pixel and the relative responsivity of the first pixel.
		10	
12	1	10.	The method of claim 9 wherein the light receiving area is
	2	multiplied b	by the reduction factor.
	1	11.	The method of claim 9 wherein the arithmetic operation is a
	2	division op	eration.
	1	12.	A method to pattern an array comprising the steps of:

September 26, 1997 Express Mail No.: EM502292185US

a)

b)

2

3

determining a relative responsivity (S_1) for pixels of a first color;

determining a relative responsivity (S2) for pixels of a second color;

4	c)	determining a relative responsivity (S ₃) for pixels of a third color;
5	d)	determining whether the relative responsivity (S ₁) for pixels of the
6	first color is	s lower than the relative responsivity (S2) of pixels of the second color
7	and the rela	ative responsivity (S ₃) of pixels of a third color;
8	e)	if yes,
9		forming a mask opening above the pixels of the first color,
10		said mask opening having an area substantially equal to the
11		predetermined light receiving area;
12		forming a mask opening above the pixels of the second color,
13		said mask opening having an area substantially equal to the
14		predetermined light receiving area adjusted by a reduction factor,
15		said reduction factor being a result of an arithmetic operation
16		between S ₁ and S ₂ ; and
17		forming a mask opening above the pixels of a third color, said
18		mask opening having an area substantially equal to the
19		predetermined light receiving area adjusted by a reduction factor,
20		said reduction factor being a result of an arithmetic operation
21		between S_1 and S_3 .

1 13. The method of claim 12 wherein the mask opening formed above 2 the pixels of the second color has an area substantially equal to the 3 predetermined light receiving area multiplied by (S_1/S_2) ; and the mask opening 4 formed above the pixels of a third color has an area substantially equal to the 5 predetermined light receiving area multiplied by (S_1/S_3) .

ı	14.	The method of claim 12 further comprising the steps of:
2	a)	determining whether the relative responsivity (S2) for pixels of the
3	second colo	or is less than the relative responsivity (S1) of pixels of a first color and
4	the relative	responsivity (S_3) of pixels of a third color;
5	b)	if yes,
6		forming a mask opening above the pixels of the second color,
7		said mask opening having an area substantially equal to the
8		predetermined light receiving area;
9		forming a mask opening above the pixels of the first color,
10 11 12 13 13		said mask opening having an area substantially equal to the
13 11		predetermined light receiving area adjusted by a reduction factor,
<u>12</u>		said reduction factor being a result of an arithmetic operation
<u>=</u> 13		between S ₂ and S ₁ ; and
14 15 16		forming a mask opening above the pixels of a third color, said
15		mask opening having an area substantially equal to the
16		predetermined light receiving area adjusted by a reduction factor,
17		said reduction factor being a result of an arithmetic operation
18		between S ₂ and S ₃ .

1 15. The method of claim 12 wherein the mask opening formed above
2 the pixels of the second color has an area substantially equal to the
3 predetermined light receiving area multiplied by (S₂/S₁); and the mask opening
4 formed above the pixels of a third color has an area substantially equal to the
5 predetermined light receiving area multiplied by (S₂/S₃).

1	16.	The method of claim 12 further comprising the steps of:
2	a)	determining whether the relative responsivity (S ₃) for pixels of a
3	third color	less than the relative responsivity (S1) for pixels of a first color and
4	the relative	responsivity (S ₂) for pixels of a second color;
5	b)	if yes,
6		forming a mask opening above the pixels of a third color, said
7		mask opening having an area substantially equal to the
8		predetermined light receiving area;
9		forming a mask opening above the pixels of a first color, said
10		mask opening having an area substantially equal to the
11		predetermined light receiving area adjusted by a reduction factor,
12		said reduction factor being a result of an arithmetic operation
13		between S ₃ and S ₁ ; and
14		forming a mask opening above the pixels of a second color,
15		said mask opening having an area substantially equal to the
16		predetermined light receiving area adjusted by a reduction factor,
17		said reduction factor being a result of an arithmetic operation
18		between S_3 and S_2 .

18

The method of claim 12 wherein the mask opening formed above 17. 1 2 the pixels of the second color has an area substantially equal to the predetermined light receiving area multiplied by (S_3/S_1) ; and the mask opening 3 formed above the pixels of a third color has an area substantially equal to the 4 predetermined light receiving area multiplied by (S_3/S_2) . 5

042390.P4290 - 31 -

1	18.	The method of claim 12 wherein the step of determining the
2	relative res	sponsivity (S ₁) for pixels of a first color includes the steps of:
3	a)	determining an input photodiode responsivity;
4	b)	determining an input color filter array transmittance for the first
5	color;	
6	c)	determining an input IR blocking filter characteristic;
7	d)	computing a net response by multiplying the input photodiode
28	responsivit	y, the input color filter array transmittance for the first color, and the
9	input IR blo	ocking filter characteristics;
9 9 10 11 10 11 11 11 11 11 11 11 11 11 11	e)	determining an input light source spectral characteristic; and
11	f)	convolving the net response and the light source spectral
12	characterist	ics to generate the relative responsivity (S_1) for the first color.
1	19.	The method of claim 12 wherein the step of determining the
2	relative resp	consivity (S ₂) for pixels of a second color includes the steps of:
3	a)	determining an input photodiode responsivity;
4	b)	determining an input color filter array transmittance for the second
5	color;	·

042390.P4290

c)

6

- 32 -

determining an input IR blocking filter characteristic;

September 26, 1997 Express Mail No.: EM502292185US

- d) computing a net response by multiplying the input photodiode responsivity, the input color filter array transmittance for the second color, and the input IR blocking filter characteristics;
- 10 e) determining an input light source spectral characteristic; and
- 11 f) convolving the net response and the light source spectral 12 characteristics to generate a relative responsivity (S₂) for the second color.
 - 20. The method of claim 12 wherein the step of determining the relative responsivity (S_3) for pixels of a third color includes the steps of:
 - a) determining an input photodiode responsivity;
 - b) determining an input color filter array transmittance for the third color;
 - c) determining an input IR blocking filter characteristic;
- d) computing a net response by multiplying the input photodiode responsivity, the input color filter array transmittance for the third color, and the input IR blocking filter characteristics;
- 10 e) determining an input light source spectral characteristic; and
- f) convolving the net response and the light source spectral characteristics to generate a relative responsivity (S₃) for the third color.

1

10

11

12

13

14

15

16

17

18

19

- 1 21. The method of claim 12 wherein the first color is red, the second 2 color is green and the third color is blue.
- 1 22. A method for manufacturing an improved pixel cell that employs a 2 first metal layer as a light shield comprising the steps of:
- a) forming a substrate having active devices, said active devices
 4 including a photodiode;
- 5 b) depositing a dielectric layer on the substrate;
- 6 c) performing via lithography and etch on the dielectric layer;
- 7 d) depositing a metal in the via;
- 8 e) polishing the metal;
- 9 f) depositing a metal layer on the dielectric layer; and
 - g) performing lithography and etch on the metal layer by employing a metal mask, said metal mask having a plurality of openings; wherein the mask opening above pixels of a first color having a lowest responsivity is equal to the area of the predetermined light receiving area; wherein the mask opening above pixels of a second color having a responsivity greater than the responsivity of pixels of the first color is equal to the predetermined light receiving area multiplied by S_1 divided by S_2 where S_1 is the relative responsivity of the first color and S_2 is the relative responsivity of the second color; and
 - wherein the mask openings above the pixels of a third color having a responsivity greater than the responsivity of pixels of the second color is equal to

September 26, 1997 Express Mail No.: EM502292185US

- 20 the predetermined light receiving area multiplied by S_1 divided by S_3 where S_3 is
- 21 the relative responsivity of the third color.