

Text Classification & Named Entity Recognition

From Feelings to Facts

ITAI 2373 – Module 08

Building on Module 7 Emotion Detection

Learning Outcomes

What You'll Master Today

By the end of this module, you will be able to:

- **Generalize** sentiment analysis into a broad text classification framework.
- Implement a complete text classification pipeline.
- Q Identify and extract key entities from text using NER.
- Apply these techniques to spoken language and audio transcripts.
- Analyze the ethical implications of automated classification and extraction.

Today's Agenda

Our Investigation Roadmap

- Text Classification Overview
- Classification Pipeline
- Named Entity Recognition
- Real-World Applications
- Ethics of Automated Labeling

From Sentiment to Classification

Same Techniques, Different Labels

Sentiment Analysis

- Focus on opinions and emotions
- ★ Subjective evaluation

Text Classification

- Labels: Any categories (Sports, Politics, etc.)
- Focus on content and topics
- Can be objective or subjective

The Text Classification Pipeline

A Systematic Approach to Classification

- Problem Definition
 Define categories and success criteria
- Preprocessing
 Clean, normalize, and tokenize text
- Model Training
 Train and tune classification algorithms
- Deployment & Monitoring Integrate and track performance

- Data Collection
 Gather and label representative examples
- Feature Extraction
 Convert text to numerical features
- **Evaluation**Measure performance with metrics

Classification Algorithms Choosing the Right Tool for the Job

Naive Bayes

- Fast training and prediction
- Works well with small datasets
- Good for short texts (emails, tweets)
- × Assumes word independence

Logistic Regression

- Provides probability estimates
- Easy to interpret feature weights
- Handles feature correlation well
- × Can overfit with many features

Support Vector Machines

- Handles high-dimensional data well
- Effective with clear boundaries
- Good with medium-sized datasets
- × Slower training than Naive Bayes

Feature Engineering for Classification

Turning Text into Numbers

Basic Features

- Bag-of-Words Count word occurrences, ignore order
- Weight by term frequency and document rarity
- N-grams
 Capture word sequences (2-3 words)

Advanced Features

- POS Tags Include part-of-speech information
- Word Embeddings
 Dense vectors capturing semantic meaning
- Syntactic Features
 Parse trees, dependency relations

Multi-Class vs Multi-Label Classification One Label or Many?

Multi-Class Classification

Example:

A news article belongs to exactly ONE category: Sports, Politics, Business, or Entertainment

- Each document has exactly one label
- Classes are mutually exclusive
- Standard algorithms work directly

Multi-Label Classification

Example:

A movie can have MULTIPLE genres: Action, Comedy, Romance, Sci-Fi

- Each document can have multiple labels
- Labels can co-occur
- Requires specialized approaches

Evaluation Metrics Deep Dive

Measuring Classification Success

Basic Metrics

Accuracy

Correct / Total

Overall correctness, misleading with imbalanced data

Precision

iĩ CĂIĨ Ą ĞĨÅ

When we predict positive, how often are we correct?

Q Recall

iĩ CĂIĨ Ą ĞÍÅ

Of all positive cases, how many did we catch?

Advanced Metrics

00

F1-Score

Harmonic mean of precision and recall Č Á ĂĨ ØÑNOŒŎŌ Á Ī ÑŃMOà ČÃĨ ØÑNOŒŎŌ Ą Ī ÑŃMOÃ

•

Macro-Averaging

Calculate metrics for each class, then average (equal weight)

E

Micro-Averaging

Calculate metrics globally (weight by class frequency)

The Confusion Matrix Understanding Classification Errors

What It Shows

- Actual vs. predicted class counts
- Diagonal shows correct predictions
- Off-diagonal shows errors

How To Use It

- Identify commonly confused classes
- Detect class imbalance issues
- Guide feature engineering efforts

Named Entity Recognition - NER

Finding the Facts in Text

Named Entity Recognition (NER) is the task of identifying and categorizing specific entities in text, such as names of people, organizations, locations, dates, and monetary values.

Common Entity Types

- PERSON
 "Elon Musk", "Barack Obama"
- ORGANIZATION "Apple Inc.", "United Nations"
- LOCATION
 "San Francisco", "Mount Everest"
- DATE/TIME
 "January 15, 2023", "next Monday"
- **\$ MONEY** "\$50 million", "€100"

NER Approaches

From Rules to Deep Learning

Rule-Based

- Regular expressions and pattern matching
- Gazetteers (lists of known entities)
- Fast but limited coverage

Machine Learning**⊅**

- Sequence labeling with features
- Learns patterns from annotated data
- Better generalization

Modern Approaches

- Pre-trained models (spaCy, BERT)
- Transfer learning from large datasets
- State-of-the-art performance

NER in Action with spaCy

Seeing Entities in Real Text

Apple Inc. was founded by Steve Jobs in Cupertino in California 1976

spaCy Output

- Apple In ©RG (Organization)
- Steve JobBERSON
- Cupertin6PE (Geopolitical Entity)
- California PE
- **D 1976** DATE

How It Works

- ♥Uses context to disambiguate entities
- Recognizes multi-word entities as single units
- Handles capitalization and other signals

Challenge:

"Apple" could be a fruit or a company - context matters!

Custom NER Training

Building Domain-Specific Entity Recognizers

Domain-Specific Entities

- **Medical:** Diseases, medications, procedures
- Legal: Citations, statutes, case names
- **Scientific:** Genes, proteins, chemical compounds
- **Technical:** Part numbers, error codes, specifications

Best Practices

- Start with pre-trained models when possible
- Use annotation tools (Prodigy, Doccano)
- Ensure consistent annotation guidelines
- Iterate based on error analysis

Audio and Speech Applications

From Voice to Structured Data

Voice Assistant Applications

- **Intent Classification:**
 - "Play music" vs. "Set timer"
- Entity Extraction: "Navigate to [location]"
- **Slot Filling:**
 - "Schedule meeting with [person]at [time]"
- **Execution:**
 - "Order [product] from [store]"

Challenges & Solutions

- Background Noise: Noise filtering, robust models
- Accents & Dialects: Diverse training data
- **ASR Errors:** Error-tolerant classification
- Real-time Processing: Optimized pipelines

Real-World Applications

Classification & NER Across Industries

- Customer Service
- **Ticket Routing:**
- Chatbots:
- Feedback Analysis:
- **W** Healthcare
- Clinical Document Classification
- **Medical NER:**
- Clinical Trial Matching:

- News & Media
- Content Categorization:
- **Entity Tracking:**
- Content Filtering:

- △ Legal
- **Document Classification:**
- Legal NER:
- Q Due Diligence:

Ethics of Automated Classification

Responsible AI in Text Analysis

- Potential Harms
- **®** Bias Amplification: Reinforces existing biases
- ▲ Misclassification Impact: Real-world harm to people
- for Privacy Risks: Exposes personal data
- Black Box Models: Hard to understand decisions
- Responsible Practices
- **III** Diverse Data: Multiple perspectives
- Bias Testing: Regular fairness checks
- Human Review: Critical decision oversight
- Clear Documentation: Model cards & use cases

Lab Preview

Hands-On Classification & NER

E Classification Tasks

- **News Categorization:** Classify Reuters news articles into topics
- **Review Analysis:** Predict ratings from Amazon product reviews
- Voice Command Classification: Identify intents in spoken requests

X Tools & Libraries

- **scikit-learn:** For traditional ML classifiers
- spaCy: For NER and text processing
- Matplotlib/SeabornFor visualizing results

- NER Tasks
- General Entity Recognition: Identify standard entities with spaCy
- **Custom Entity Training:**Train a model to recognize technical terms
- Performance Evaluation:
 Measure precision, recall, and F1-score

Example 2 Learning Objectives

- ✓ Implement complete classification pipeline
- Compare performance of different algorithms
- Train and evaluate custom NER models

Performance Optimization

Making Systems Fast, Accurate, and Scalable

▼ Feature Selection:

Use key features only

o Dimensionality

Reduction:

PCA or truncated SVD

Model Distillation:

Smaller models mimic

larger ones

Hardware

Acceleration:

GPU/TPU for inference

More Training Data:

Focus on edge cases

Hyperparameter

Tuning:

Grid or random search

© Ensemble Methods:

Combine multiple models

Error Analysis:

Target specific errors

Scalability Optimization

Batch Processing:

Process inputs in batches

// Caching:

Store common results

Distributed

Processing:

Split work across machines

Cloud Deployment:

Auto-scaling resources

Model Deployment and Monitoring

From Development to Production

Deployment Strategies:

- REST APIs for real-time predictions
- Batch processing for large-scale analysis
- Edge deployment for low-latency applications

Monitoring Essentials:

- **Performance drift:** Accuracy degradation over time
- Data drift: Changes in input data

distribution

 Concept drift: Changes in the relationship between features and labels

Maintenance:

- Regular retraining with new data
- A/B testing for model updates
- Rollback procedures for failed deployments

Integration with Other NLP Tasks

Building Comprehensive Text Processing Pipelines

- ♣ Dependency Parsing: Understand grammatical structure
- Coreference Resolution: Connect pronouns to entities
- Dialogue Systems: Maintain context in conversations
- Machine Translation: Preserve entities across languages

T Knowledge Graph Applications

- Semantic Search: Find content by meaning, not just keywords
- Question Answering: Extract precise answers from text
- Recommendation Systems: Connect related content
- **Reasoning Systems:** Draw inferences from extracted

facts

Future Directions

Emerging Trends in Classification & NER

Emerging Trends

- Few-shot learning: Good performance with minimal training data
- Cross-lingual models: Work across multiple languages
- Multimodal integration: Combine text, images, and audio

Advanced Techniques:

- Transformer-based models: BERT, RoBERTa for better context understanding
- **Zero-shot classification:** Classify without training examples
- Continual learning: Models that adapt continuously

Key Takeaways Essential Concepts & Skills

- Classification operates at document level, NER at word/phrase level Feature engineering is crucial for model performance
- Different metrics measure different aspects of performance
- Domain adaptation bridges general models to specific applications
- Classification and NER as building blocks for complex NLP systems
- Human-Al collaboration for optimal results

Connection to Module 9

From Classification to Topic Modeling

Module 8

Text Classification & Named Entity Recognition

Building on foundations

Module 9

Topic Modeling & Advanced Text Analysis

From Supervised to Unsupervised

- Classification: Predefined categories with labeled data
- **Topic Modeling:**Discovering themes without labels
- **Shared Foundation:** Vector representations of text

New Techniques You'll Learn

- **LDA & NMF:**Statistical topic modeling approaches
- **Word & Document Embeddings:** Dense vector spaces
- # Hierarchical Clustering: Organizing content by similarity

How They Work Together

- Pre-filtering:Classify documents before topic modeling
- **Enrichment:** Add entity information to topic models
- **Q Exploration:** Discover topics within specific categories

Real-World Applications

- **Content Analysis:** Understand themes across documents
- Customer Feedback: Identify emerging issues
- **Research:** Discover patterns in scientific literature

Module Summary

From Feelings to Facts

We've explored transforming unstructured text into structured information through classification and entity extraction, building complete pipelines from data collection to deployment.

X Tools & Techniques

We've worked with feature engineering approaches, algorithms from traditional ML to deep learning, and libraries like scikit-learn and spaCy.

Why It Matters

These techniques are fundamental building blocks of modern NLP systems, bridging the gap between human language and machine processing.

Looking Ahead

Next, we'll explore topic modeling and advanced text analysis, moving from supervised to unsupervised learning to discover latent patterns in text.