IMO 2017 RIO DE JANEIRO - BRAZIL 58th International Mathematical Olympiad

Indonesian (ind), day 1

Selasa, 18 Juli 2017

Soal 1. Untuk setiap bilangan bulat $a_0 > 1$, definisikan barisan a_0, a_1, a_2, \ldots melalui:

$$a_{n+1} = \begin{cases} \sqrt{a_n} & \text{jika } \sqrt{a_n} \text{ merupakan bilangan bulat,} \\ a_n + 3 & \text{selain di atas,} \end{cases}$$
 untuk setiap $n \ge 0$.

Tentukan semua nilai a_0 sehingga terdapat bilangan A yang memenuhi $a_n = A$ untuk takberhingga banyaknya n.

Soal 2. Misalkan \mathbb{R} menyatakan himpunan bilangan real. Tentukan semua fungsi $f: \mathbb{R} \to \mathbb{R}$ sehingga untuk semua bilangan real x dan y,

$$f(f(x)f(y)) + f(x+y) = f(xy).$$

- **Soal 3.** Seorang pemburu dan seekor kelinci gaib melakukan permainan pada bidang Euclid. Titik permulaan kelinci adalah A_0 , titik permulaan pemburu adalah B_0 , dan keduanya adalah titik yang sama. Setelah ronde ke n-1 dari permainan, kelinci berada di titik A_{n-1} dan pemburu di titik B_{n-1} . Pada ronde ke n dari permainan, tiga hal berikut terjadi secara berurutan.
 - (i) Kelinci bergerak secara tidak kasat mata ke titik A_n sehingga jarak A_{n-1} dan A_n tepat 1.
 - (ii) Sebuah alat pelacak melaporkan sebuah titik P_n kepada pemburu. Satu-satunya jaminan yang diberikan oleh alat pelacak kepada pemburu adalah jarak antara P_n dan A_n paling jauh 1.
 - (iii) Pemburu bergerak secara kasat mata ke titik B_n sehingga jarak antara B_{n-1} dan B_n tepat 1.

Apakah selalu mungkin, takpeduli bagaimanapun kelinci bergerak dan apapun titik yang dilaporkan oleh alat pelacak, pemburu dapat memilih langkah-langkahnya sehingga setelah 10⁹ ronde, dia dapat memastikan bahwa jarak antara dirinya dan kelinci paling jauh 100?

Language: Indonesia Waktu: 4 jam 30 menit Setiap soal bernilai 7 angka

Indonesian (ind), day 2

Rabu, 19 Juli 2017

Soal 4. Misalkan R dan S dua titik berbeda pada lingkaran Ω sehingga RS bukan diameter. Misalkan garis ℓ menyinggung Ω di R. Diberikan titik T sehingga S merupakan titik tengah segmen RT. Titik J dipilih pada busur RS yang lebih pendek pada Ω sehingga lingkaran luar Γ dari segitiga JST memotong ℓ di dua titik yang berbeda. Misalkan A titik potong Γ dan ℓ yang lebih dekat ke R. Garis AJ memotong Ω lagi di K. Buktikan bahwa garis KT menyinggung Γ .

Soal 5. Diberikan bilangan bulat $N\geqslant 2$. Sekumpulan N(N+1) pemain sepak bola, yang semuanya memiliki tinggi yang berbeda, berdiri pada satu barisan. Sir Alex ingin mengeluarkan N(N-1) pemain dari barisan menyisakan 2N pemain sehingga pada barisan baru ini memenuhi N kondisi berikut :

- (1) tidak ada pemain lain berdiri di antara dua pemain tertinggi,
- (2) tidak ada pemain lain berdiri di antara pemain tertinggi ketiga dan tertinggi keempat,

:

(N) tidak ada pemain lain berdiri di antara dua pemain terpendek.

Tunjukkan bahwa hal ini selalu dapat dilakukan.

Soal 6. Suatu pasangan terurut bilangan bulat (x, y) merupakan *titik primitif* jika pembagi sekutu terbesar dari x dan y adalah 1. Diberikan S, himpunan berhingga titik-titik primitif. Buktikan bahwa terdapat bilangan asli n dan bilangan bulat a_0, a_1, \ldots, a_n , sehingga untuk setiap (x, y) di S berlaku

$$a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + \dots + a_{n-1}xy^{n-1} + a_ny^n = 1.$$

Language: Indonesia

Waktu: 4 jam dan 30 menit Setiap soal bernilai 7 angka