- 1. Let $f(x, y, z) = z + \sin \frac{z}{y} \ln(x^2 xy + y^2)$.
 - (a) Find the partial derivatives f_x , f_y and f_z .

(b) Find the linear approximation of f nearby the point $(1, 1, \pi/2)$ and estimate value of $f(1.01, 1.02, \pi/2 + 0.03)$.

- 2. Let z = f(x, y) be the function implicitly defined by the equation $e^z + z + xy = 3$.
 - (a) Find the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ [Hint: use Implicit Function Theorem].

(b) First verify that z = 0 when x = 2 and y = 1. Then find the linear approximation of z = f(x, y) nearby the point (2, 1).

3. Let D be a closed bounded set in xOy plane defined by $\{(x,y) \in \mathbb{R}^2 \mid x^2 - 4 \le y \le 4 - x^2\}$ and $f(x,y) = x^2 + y^2 - 6y + 4$ Find the maximum and minimum value of f on D.

4. Let R be the rectangular region $D = [0,1] \times [0,2] = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \ 0 \le y \le 2\}$. Estimate the integral $\iint_R \ln(x^2 + y^2 + 1) \, dx dy$ using double Riemann sum. Divide R into 8 0.5 by 0.5 squares and choose the sample point to be the upper right corner of each square.