ELO Learning

THE ELO ALGORITHM

A ZERO DAY

Last updated: 19 August 2025 University of Pretoria

Name	Student number
RM (Rene) Brancon	u22556771
NF (Nigel) Mofati	u22528084
TM (Tukelo) Mokwena	u22536800
S (Saskia) Steyn	u17267162
NG (Ntokozo) Tonga	u22506773

Team contact:

ZeroDay0D4y@gmail.com

Contents

1. Single Player Mode	3
XP Implementation:	3
Overview	3
Core Functions	3
calculateTimeReward(actualTimeSeconds)	3
calculateLevelReward(currentLevel)	3
calculateGateKeepingComponent(currentXP, nextLevelXP)	
calculateSinglePlayerXP()	
ELO Rating Implementation:	
Overview	
How it works:	4
Core Functions:	5
Parameters:	
Formula:	
deltaP = playerK * (score - expectedP) / totalNumberOfQuestions	
Benefits:	6
2. Multiplayer Mode	6
Overview	6
Core Functions:	6
calculateExpected(p1,p2)	6
• calculateMultiplayerXP(xpTotal, expected1, expected2, score1)	
o Parameters:	
Benefits:	
Tuning Constants	
Single-Player XP:	
Single-Player ELO:	
Multiplayer:	8

1. Single Player Mode

XP Implementation:

The single player XP algorithm is designed to calculate xp for a user after completing a question or a set of questions.

It rewards:

- Correctness (whether the answer was right)
- Speed (bonus for faster completion)
- Level scaling (higher levels yield proportionally less XP)
- Gatekeeping (more XP if the user is further from their next level)

The final XP is designed to be positive, fair, and scalable with user progress.

Core Functions

calculateTimeReward(actualTimeSeconds)

Provides a bonus proportionate to how quickly the player answered compared to maxTimeSeconds.

Formula:

```
Time\ Reward = max(0, maxTime - actualTime)/maxTime
```

Range:

```
0 (slowest) to 1 (fastest)
```

calculateLevelReward(currentLevel)

Adjusts XP to make leveling harder at higher levels.

Formula:

```
Level Reward = 1/(1 + \alpha * currentLevel)
 \alpha \rightarrow turnable constant
```

calculateGateKeepingComponent(currentXP, nextLevelXP)

Provides bonus XP when the player is far from the next level.

Formula:

```
Gatekeeper = \beta * ((nextLevelXP - currentXP)/nextLevelXP)
\beta \rightarrow Gate keeping scaling constant
```

calculateSinglePlayerXP()

The main function that combines all the components.

Formula:

```
XP = CA * ((XPGain * CA) + (XPGain * TimeReward) + (XPGain * levelReward) + (XPGain * Gatekeeper)) * 0.3
```

Where:

- CA = Correctness (0 or 1)
- XPGain = base XP for the question
- scalingFactor =

ELO Rating Implementation:

In single-player mode, questions act as "opponents" with their own ELO ratings. When a player answers a question, both the player's and question's ELO rating are updated based on the outcome.

How it works:

- 1. Question Difficulty: Each question has an ELO rating representing its difficulty.
- 2. Expected Outcome: System calculates probability of player getting question correct.
- 3. Actual Outcome: Player either gets it right or wrong.
- 4. Rating Update: Both player and question ratings adjust accordingly.

Core Functions:

- calculateExpectedRating(ratingA, ratingB, alpha = 400)
 - Calculates the expected win probability for ratings A vs ratingsB

o Formula:

```
Expected = 1/(1 + 10^{((ratingsA - ratingsB)/alpha)})
```

- o Returns: Probability between 0 and 1
- updateEloRating({ rating, expected, actual, kFactor = 40})
 - Updates a single ELO rating based on expected vs actual outcome
 - o Formula:

```
delta = kFactor * (actual - expected)
newRating = max(0, round(rating + change * scalingFactor))
```

- Returns: Updated rating (minimum 0)
- updateSinglePlayerEloPair({ playerRating, questionRating, isCorrect, })
 - Updates both player and question ELO ratings simultaneously
 - o Returns:

```
{
   "newPlayerElo": number,
   "newQuestionElo": number,
   "playerEloChange": number,
   "questionEloChange": number,
}
```

Parameters:

- playerRating : Current player ELO
- questionRating: Current question difficulty ELO
- isCorrect: Boolean outcome
- alpha = 400: ELO scaling constant
- playerK = 40: Player rating change sensitivity
- questoinK = 24: Question rating change sensitivity
- totalNumberOfQuestions = 2: Scaling divisor

Formula:

```
expectedP = 1/(1 + 10^{((questionRating - playerRating)/400)})
```

```
deltaP = playerK * (score - expectedP) / totalNumberOfQuestions
deltaQ = questionK * ((1 - score) - expectedQ) / totalNumberOfQuestions
newPlayerElo = clamp(playerRating + deltaP, minRating, maxRating)
newQuestionElo = clamp(questionRating + deltaQ, minRating, maxRating)
```

Benefits:

- Questions become more accurately rated over time.
- Players face appropriately challenging content.
- Automatic difficulty balancing.
- Separate K-factors allow different adaptation rates.

2. Multiplayer Mode

Overview

This ELO XP algorithm combines:

- ELO rating expectations (how strong players are relative to each other)
- Actual performance (how well players did in a specific match)

The goal is to distribute XP fairly:

- Players gain more XP when they beat stronger opponents.
- Players gain less XP when they underperform against weaker opponents.
- Minimum XP protection ensures fair gameplay

Core Functions:

- calculateExpected(p1,p2)
 - Uses the same `calculateExpectedRating` function as single-player mode.Calculates the expected win probabilities based on player ratings.
 - o Formula:

$$p1_{expected} = 1/1 + 10^{(p2-p1)/\alpha}$$

$$p2_{expected} = 1 - p1_{expected}$$

■ Where p1 is player 1's rating, p2 is player 2's rating, $\alpha = 400$ is the ELO scaling constant

- calculateMultiplayerXP(xpTotal, expected1, expected2, score1)
 - Distributes XP between two players based on ELO expectations and match outcome.
 - Parameters:
 - xpTotal: Total XP pool to distribute
 - expected1, expected2: Expected win probabilities for each player
 - Score1: Match outcome (1= player1 wins, 0.5 = draw, 0 = player2 wins)
 - Formula:

```
xp1 = scaledTotal * (score1 - expected1)

xp2 = scaledTotal * (score2 - expected2)

if xp1 <= 0 : xp1 = scaledTotal * minXPFraction & xp2 = scaledTotal - xp1

if xp2 <= 0 : xp2 = scaledTotal * minXPFraction & xp1 = scaledTotal - xp2
```

- Returns:
 - [Math.round(xp1), Math.round(xp2)]

Benefits:

- Players gain more XP when beating stronger opponents
- Players lose less XP when losing to stronger opponents
- Encourages playing against higher-rated opponents
- Guaranteed minimum XP prevents frustration

Tuning Constants

Single-Player XP:

- α (alpha) = 0.1 Level scaling sensitivity
- β (beta) = 0.05 Gatekeeping bonus scaling
- maxTimeSeconds = 30 Maximum time for questions
- Final Scaling = 0.3 XP reduction factor

Single-Player ELO:

- α (alpha) = 400 ELO scaling constant
- playerK = 40 Player rating change factor
- questionK = 24 Question rating change factor

- scalingFactor = 1.0 Overall scaling multiplier
- totalNumberOfQuestions = 2 Scaling divisor
- minRating = 0, maxRating = Infinity

Multiplayer:

- α (alpha) = 400 ELO scaling constant
- K-factor = 40 Rating change sensitivity
- multiplayerScalingFactor = 0.4 Base XP scaling
- minXPFraction = 0.15 Minimum XP protection (15% of total)