ECOi2222 – Fundamentos de Lógica de Programação

Prof: Rafael Francisco dos Santos

E-mail: rsantos@unifei.edu.br

Linguagem de Programação

- Python foi criada em 1990 por Guido Van Rossum no Centro de Matemática Stichting na Holanda.
- Guido é lembrado como o principal autor de Python, mas outros programadores ajudaram com muitas contribuições..

- Modo interativo
 - Digite cmd no menu pesquisa do windows

- Modo interativo
 - Digite python e <ENTER> para entrar

```
Prompt de Comando - python
                                                                      X
Microsoft Windows [versão 10.0.18363.1556]
(c) 2019 Microsoft Corporation. Todos os direitos reservados.
C:\Users\Rafael>python
Python 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bi
t (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
```

Modo interativo

- Agora basta digitar as instruções e apertar <ENTER> que elas serão executadas.
- Para sair digite <CTRL + Z > e <ENTER>

```
Microsoft Windows [versão 10.0.18363.1556]
(c) 2019 Microsoft Corporation. Todos os direitos reservados.

C:\Users\Rafael>python
Python 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> 5+4
9
>>> 3*8
24
>>> 2**10
1024
>>> print('Primeiro programa')
Primeiro programa
>>>
```

Modo script

- O modo interativo é mais utilizado para testes, enquanto que o modo script é mais comumente utilizado na hora de desenvolver.
- No modo script, colocamos o código Python em um arquivo com extensão .py.

Modo script

- Abra um editor de texto, exemplo "notepad".
- Salve o arquivo como prog1.py.
- Para executá-lo, abra o terminal, navegue até o diretório onde se encontra o arquivo prog1.py e digite: py prog1.py

Estrutura básica de um programa

Como utilizamos a memória?

Todos os dados utilizados no computador são armazenados em memórias.

Memória do Computador como uma planilha

	Α	В	С	D
1				
2		5		
3				
4				
5			Casa	

Como guardar estes endereços?

Não é necessário. Utilizamos para identificar os endereços variáveis e constantes.

Logo, uma variável ou constante representa uma posição na memória.

Variáveis e Constantes

- As variáveis e constantes só podem assumir um valor a cada instante.
- O conteúdo das variáveis podem mudar durante a execução do programa.
- O conteúdo da constante não podem ser modificados.
- Toda variável e constante possui um nome e um tipo.

Os tipos de dados mais utilizados

Numéricos

inteiros:

34

-15

reais:

23.45

-14.03

Lógicos

verdadeiro (true) falso (false)

Literais

Cadeia de caracteres:

"aluno"

"0.34"

'casa'

'legal'

Tipos de dados da biblioteca padrão (built-ins)

Números inteiros (int)

Exemplos: 5, -5, 6

Números reais (float)

Exemplos: 2.32, -5.0

Sequência de caracteres (str)

Exemplos: "casa", 'joão pedro'

Lógico (bool)

Exemplos: true, false

Linguagem de Programação

Identificadores

• São utilizados para dar nomes a variáveis, constantes, funções, etc.

Regras básicas para criar os identificadores:

- Podemos utilizar números, letras maiúsculas e minúsculas e o caractere sublinhado.
- O primeiro caractere deve ser uma letra ou sublinhado.
- Não são permitidos espaços em branco e caracteres especiais (#, @, %, +, ...)
- Não podemos utilizar palavras reservadas pela linguagem.

Identificadores válidos

Nota

N1

n2

casa

Nota 1

<u>Identificadores inválidos</u>

4a - começa com número

N 1 - contém espaço

n(2) - contém o caractere especial ()

if - palavra reservada

from - palavra reservada

Criando variáveis


```
>>> x = 323
>>> nome='rafael santos'
>>> Numero=5

Numero recebe 5
```

Criando constantes

Em Python não tem como criar constantes de forma nativa na linguagem.

A comunidade Python segue uma convenção para indicar que um identificador se refere a uma constante, usando letras maiúsculas e sublinhados para separar palavras.

Verificando tipo

Para verificar o tipo da variável utilizasse a função

type(variável)

```
>>> pi = 3.1415
>>> type(pi)
<class 'float'>
>>> nome='rafael santos'
>>> type(nome)
<class 'str'>
>>> n1=5
>>> type(n1)
<class 'int'>
```

Comando de entrada de dados

É utilizado para armazenar os dados digitados pelo usuário em variáveis na memória.

Comando input

<u>Sintaxe</u>

Variável = input()

Variável = input(str)

```
>>> x=input()
5
>>> nome=input('Digite seu nome: ')
Digite seu nome: Rafael
>>> n1=input('Digite um número: ')
Digite um número: 45
```

Comando de entrada de dados

A função input ao ler o dado sempre o armazena em uma "str" (cadeia de caracteres).

```
>>> x=input()
15
>>> x
'15'
>>> type(x)
<class 'str'>
```

Convertendo string para outros tipos

Utilizamos as funções

```
int() float()
```

```
>>> x=input()
5
>>> X
'5'
>>> int(x)
5
>>> x=int(x)
>>> X
```

```
>>> n=input('Digite um número: ')
Digite um número: 3.45
>>> n
'3.45'
>>> type(n)
<class 'str'>
>>> n=float(n)
>>> n
3.45
>>> type(n)
<class 'float'>
```

Comando de entrada de dados Entrada de dados + converter para o tipo

```
>>> n=int(input('Digite um número: '))
Digite um número: 45
>>> n
45
>>> type(n)
<class 'int'>
>>> pi=float(input('Digite o valor de PI: '))
Digite o valor de pi: 3.1415
>>> type(pi)
<class 'float'>
```

Comando de saída de dados

É utilizado para mostrar informações na tela (valores das variáveis e textos no formato de string (str)).

Comando print

<u>Sintaxe</u>

print (str, variável, variável, ...)

Exemplo

print('Meu nome é Rafael')
print ("Também funciona")

idade =5

print('Meu nome é Rafael e tenho ', idade, ' anos')

Saída na tela

Meu nome é Rafael Também funciona Meu nome é Rafael e tenho 5 anos

Comando de saída de dados

Comando print

Sintaxe

print (str, variável, variável, ...)

Exemplo Concatenado

idade =5

print('Meu nome é Rafael e tenho '+ str(idade)+ ' anos')

Saída na tela

Meu nome é Rafael e tenho 5 anos

Comando de saída de dados

Comando print

<u>Sintaxe</u>

print (f 'um texto com variáveis entre chaves')

O f antes da str (cadeia de caracteres) é para informar ao python para substituir as marcações {nome variável} pelo valor da variável na memória.

<u>Exemplo</u>

idade =5 nome='Rafael'

print(f 'Meu nome é {nome} e tenho {idade} anos')

Saída na tela

Meu nome é Rafael e tenho 5 anos

Comentários

São textos que podem ser inseridos nos programas com o objetivo de documentá-lo.

Comentário de uma única linha

comentário

Comentário de várias linhas

"

linhas de comentário linhas de comentário

Python Exemplo de entrada e saída

<u>Problema:</u> Implemente um programa que leia o nome e a idade de uma pessoa e apresente na tela a mensagem: "Bem vindo nome você tem idade anos".

<u>Algoritmo</u>

- 1 Solicitar o nome e a idade de uma pessoa
- 2 Ler o nome e a idade
- 3 Apresentar a mensagem informando o nome e a idade.

```
nome = input('Digite o seu nome: ')
idade= int( input('Digite a sua idade: ') )
print(f 'Bem vindo {nome} você tem {idade} anos')
```

Python Exemplo de entrada e saída

<u>Problema:</u> Implemente um programa que leia o nome e a idade de uma pessoa e apresente na tela a mensagem: "Bem vindo nome você tem idade anos".

idade= int(input('Digite a sua idade: '))

nome = input('Digite o seu nome: ')

print(f 'Bem vindo {nome} você tem {idade} anos')

memória

idade 23		
	nome Maria	

console

Digite o seu nome: Maria

Digite a sua idade : 23

Bem vindo Maria você tem 23 anos

Operador de atribuição

Atribui valores a variáveis. É representado pelo sinal de igualdade =

Operadores Aritméticos

Aritméticos			
+	Adição		
-	Subtração		
*	Multiplicação		
/	Divisão		
//	Divisão inteira		
%	Módulo (Resto da divisão)		
**	Exponenciação		

Operadores Aritméticos

Binários			
+	Adição		
-	Subtração		
*	Multiplicação		
/	Divisão		
//	Divisão inteira		
%	Resto da divisão inteira		

Resto da divisão inteira

$$x = 17/5$$

 $y = 17%5$

$$-\frac{17}{15} \quad \begin{array}{|c|c|} \hline 5 \\ \hline 2 \\ \end{array}$$

Resto da divisão inteira

Divisão de inteiros

Precedência entre os operadores aritméticos

Prioridade	Operador(es)
1 ^a	- (Menos unário), parênteses mais internos
2 ^a	*, /, %
3 ^a	+, -

Os operadores que possuem a mesma prioridade devem ser executados da esquerda para a direita. Para alterar a prioridade da tabela devem-se utilizar parênteses mais internos.

$$x = 3 + x/4*y$$
 $x = 3 + \frac{x}{4}*y$

$$x = (3 + x)/4*y$$
 $x = \frac{3+x}{4}*y$

$$x = (3 + x)/(4*y)$$
 $x = \frac{3+x}{4*y}$

Operadores de atribuição

São operadores que combinam as operações aritméticas com atribuição

Operador Aritmético de Atribuição	Operadores equivalentes
i += 2	i = i + 2
x *= y + 1	x = x * (y+1)
t /= 2.5	t = t / 2.5
p %= 5	p = p % 5
d -= 3	d = d - 3

<u>Problema:</u> Implemente um programa que leia 3 notas de um aluno e apresente a média aritmética calculada.

<u>Algoritmo</u>

- 1 Solicitar as 3 notas
- 2 Ler as 3 notas
- 3 Calcular a média
- 4 Apresentar a mensagem informando a média calculada.

```
print('Digite 3 notas:')
n1=float(input('Digite a nota 1: '))
n2=float(input('Digite a nota 2: '))
n3=float(input('Digite a nota 3: '))
media = ( n1 + n2 + n3)/3
print ('A media das notas e: ', media)
```

<u>Problema:</u> Implemente um programa que leia 3 notas de um aluno e apresente a média aritmética calculada.

```
print('Digite 3 notas:')
n1=float(input('Digite a nota 1: '))
n2=float(input('Digite a nota 2: '))
n3=float(input('Digite a nota 3: '))
media = ( n1 + n2 + n3)/3
print ('A media das notas e: ', media)
```

memória

		n1	6		
				n3 7	
n2	8				
				media 7	

console

Digite as 3 notas

6 8 7

A media das notas e: 7

<u>Problema:</u> Implemente um programa que leia 2 catetos de um triângulo retângulo e calcule a sua hipotenusa.

<u>Algoritmo</u>

- 1 Solicitar os 2 catetos
- 2 Ler os 2 catetos
- 3 Calcular a hipotenusa
- 4 Apresentar a mensagem informando o valor da hipotenusa.

```
c1=float(input('Digite o primeiro cateto: '))
c2=float(input('Digite o segundo cateto: '))
aux = (c1**2) + (c2**2)
hipotenusa = aux**0.5
print(f'O valor da hipotenusa e {hipotenusa}')
```

<u>Problema:</u> Implemente um programa que leia 2 catetos de um triângulo retângulo e calcule a sua hipotenusa.

c1=float(input('Digite o primeiro cateto: ')) c2=float(input('Digite o segundo cateto: ')) aux = (c1**2) + (c2**2) hipotenusa = aux**0.5 print(f'O valor da hipotenusa e {hipotenusa}')

memória

c1 9	aux 225		
hipotenus 15	a	c2 12	

console

Digite os 2 catetos 9 12 O valor da hipotenusa e: 15

Python - Exercícios

<u>Problema 1:</u> Uma empresa decide dar um aumento de 30% aos funcionários. Faça um programa em python que receba o salário do funcionário e mostre o valor do salário reajustado.

<u>Problema 2:</u> Sabe-se que para iluminar de maneira correta os cômodos de uma casa, para cada m², deve se usar 18 W de potência. Faça um programa que receba as duas dimensões de um cômodo (em metros), calcule e mostre a sua área (em m²) e a potência de iluminação que deverá ser utilizada.

Python- Exercícios

<u>Problema:</u> Implemente um programa que receba um inteiro N de quatro dígitos e apresente os 4 dígitos separados, cada um em uma variável.

Por exemplo, se N=2354, as variáveis d1=2, d2=3, d3=5 e d4=4.

Como resolver?

<u>Divisão de inteiros</u> y = 2548//1000 Resto da divisão inteira y = 2548 %1000

- 2548 1000 2000 2 548 Divis

Resto da divisão inteira

Divisão de inteiros

Python Exercícios

<u>Problema:</u> Implemente um programa que receba um inteiro N de quatro dígitos e apresente os 4 dígitos separados, cada um em uma variável.

Por exemplo, se N=2354, as variáveis d1=2,d2=3,d3=5 e d4=4.

<u>Problema:</u> Implemente um programa que receba um inteiro representando segundos e imprima a conversão deste tempo em horas minutos e segundos.

Python - Exercícios

Problema: Faça um programa que receba 2 pontos A e B no plano cartesiano e calcule a distância entre eles. Abaixo a fórmula da distância.

Distância entre dois pontos
$$A \in B$$
: $d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$