Análisis de Sistemas Lineales

Modelado de sistemas electromecánicos

Contenido

- Motor CD controlado por armadura
- Motor CD controlado por campo
- Generador de CD
- Ejemplos
- Ejercicios

MOTOR CD CONTROLADO POR ARMADURA

Motor CD con campo constante controlado por armadura

En un motor controlado por armadura, la corriente de campo i_e se mantiene constante y el motor se controla variando la tensión de armadura u_a

Ecuaciones del motor de CD con campo constante

Con un campo constante las ecuaciones del motor se simplifican

$$u_i = K' \cdot \varphi_e \cdot \omega(t)$$

$$u_i = K_1 \cdot \omega(t)$$

$$M_{M} \propto i_{a}$$

$$M_{M} = K'' \cdot N \cdot B \cdot i_{a} L \cdot b$$

$$M_{M} = K'' \cdot \varphi_{e} \cdot i_{a}$$

$$M_{M} = K_{2} \cdot i_{a}$$

Motor de CD controlado por armadura

$$R_a \cdot i_a + L_a \cdot \frac{di_a}{dt} = u_a - u_i$$

Creando bloques para el motor controlado por armadura (1)

$$[s \cdot L_a + R_a] \cdot I_a(s) = U_a(s) - U_i(s)$$

$$M_{M}(s) = K_{2} \cdot I_{a}(s)$$

$$I_{a}(s)$$

$$K_{2}$$

$$M_{M}(s)$$

Creando bloques para el motor controlado por armadura (2)

$$[s \cdot J + B] \cdot \Omega(s) = M_M(s)$$

$$U_{i}(s) = K_{1} \cdot \Omega(s)$$

$$U_{i}(s)$$

$$K_{1}$$

$$\Omega(s)$$

Diagrama de bloques del motor de CD controlado por armadura

¿Cuál es la función de transferencia?

MOTOR CD CONTROLADO POR CAMPO

Motor CD con U de armadura constante controlado por campo

 En un motor controlado por campo, se mantiene constante la corriente de armadura

Ecuaciones del motor de CD con tensión de armadura constante

Con la corriente de armadura constante la ecuación del torque del motor se convierte en

$$M_{M} = K'' \cdot N \cdot B \cdot i_{a} L \cdot b$$

$$M_{M} = K'' \cdot \varphi_{e} \cdot i_{a}$$

$$M_{M} = K'' \cdot K_{e} \cdot i_{e} \cdot i_{a}$$

$$M_{M} = K_{3} \cdot i_{e}$$

Transformando las ecuaciones para el motor controlado por campo

$$M_M = K_3 \cdot i_e$$

$$M_M(s) = K_3 \cdot I_e(s)$$

$$R_e \cdot I_e(s) + L_e \cdot s \cdot I_e(s) = U_e(s)$$

$$[s \cdot L_e + R_e] \cdot I_e(s) = U_e(s)$$

$$J \cdot s \cdot \Omega(s) + B \cdot \Omega(s) = M_M(s)$$

$$[s \cdot J + B] \cdot \Omega(s) = M_M(s)$$

Creando bloques para el motor controlado por campo (1)

$$[s \cdot L_e + R_e] \cdot I_e(s) = U_e(s)$$

$$M_{M}(s) = K_{3} \cdot I_{e}(s)$$

$$I_{e}(s)$$

$$K_{3}$$

$$M_{M}(s)$$

Creando bloques para el motor controlado por campo (2)

$$[s \cdot J + B] \cdot \Omega(s) = M_M(s)$$

Diagrama de bloques del motor de CD controlado por campo

$$\frac{\Omega(s)}{U_e(s)} = \frac{K_3}{JL_e} \frac{1}{\left(s + \frac{B}{J}\right)\left(s + \frac{R_e}{L_e}\right)}$$

GENERADOR DE CD

Generador de CD a \omega cte.

Transformando las ecuaciones del generador de CD

$$R_e \cdot I_e(s) + s \cdot L_e \cdot I_e(s) - U_e(s) = 0$$

$$[R_e + s \cdot L_e] \cdot I_e(s) = U_e(s)$$

$$\Phi_e(s) = K_e \cdot I_e(s)$$

$$U_g(s) = K_4 \cdot \Phi_e(s)$$

$$R_g \cdot I_g(s) + s \cdot L_g \cdot I_g(s) + R_L \cdot I_g(s) = U_g(s)$$

$$[R_g + R_L + s \cdot L_g] \cdot I_g(s) = U_g(s)$$

Creando bloques para el generador de CD (1)

$$I_e(s) = U_e(s) \cdot \frac{1}{[R_e + s \cdot L_e]}$$

$$\Phi_e(s) = K_e \cdot I_e(s)$$

Creando bloques para el generador de CD (2)

$$U_g(s) = K_4 \cdot \Phi_e(s)$$

$$U_g(s) = [R_g + R_L + s \cdot L_g] \cdot I_g(s)$$

$$U_s(s) = R_L I_g(s)$$

Diagrama de bloques para el generador de CD

$$\frac{U_s(s)}{U_e(s)} = \frac{K_e K_4}{L_e} \cdot \frac{R_L}{L_g} \cdot \frac{1}{\left(s + \frac{R_e}{L_e}\right)\left(s + \frac{R_g + R_L}{L_g}\right)}$$

Ejercicio 1: Tacogenerador

Para el generador de CD, suponga que el campo es constante, por ejemplo de imán permanente; pero, la velocidad es variable y la carga despreciable. Encuentre el nuevo modelo para el llamado tacogenerador.

Ejemplo 1: Motor con caja reductora visto desde el eje de salida

Ejemplo 1: Estructura del modelo del motor-reductor, desde el eje de salida

Ejercicio 2: ¿Cómo es el modelo visto desde el eje del motor?

Ejemplo 1: Motor con caja reductora visto desde el eje del motor

Ejemplo 1: Estructura del modelo del motor-reductor, desde el eje del motor

Ejemplo 2: Levitador magnético

- Si consideramos que la influencia de L es despreciable, entonces la corriente es proporcional solamente a u(t).
- Note que el modelo para simulación es no lineal.

Ejercicio 3: Barra y bola

Consideraciones

- La bola NO rueda, sino, simplemente se desliza SIN fricción por la barra.
- El ángulo α es pequeño
- El motor de CD de imanes permanentes se acopla directamente al eje de la barra y tiene una fricción B.
- El momento de la bola es despreciable comparado al de la barra

Ejercicio 4: Servo de posición

Ejercicio 5: Servoválvula

Encuentre el modelo para el sistema mostrado. Condiciones: La inductancia L = 100 mH, la constante del motor Km = 20 N-m/A, la constante de f.e.m. Kb = 0.0706 V-s/rad, la fricción B del motor es = 0.2 N-s, La inercia del motor y la válvula es J = 0.006 N-s², el área del tanque A = 50 m², La resistencia de armadura R = 10 Ω . Suponga que $q_i = 80\theta$, donde θ es el ángulo del eje. El flujo de salida es $q_0 = 50$ *h.

Referencias

- Kuo, Benjamin C.. "Sistemas de Control Automático", Ed. 7, Prentice Hall, 1996, México.
- Bolton, William. Mecatrónica: Sistemas de Control Electrónico en Ingeniería Mecánica y Eléctrica. 2ª Ed., Alfaomega, México, 2001.
- Dorf, Richard, Bishop Robert. "Sistemas de control moderno", 10^a Ed., Prentice Hall, 2005, España.