НМУ Алгебра I Константин Логинов

Потошин Георгий

2024

Глава 1

Векторные пространства

1.1 Жорданова нормальная форма

Матрица называется жордановым блоком, если она имеет вид

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix}$$

Болок размера $k \times k$ с λ на диагонали и с 1 над диагональю. В прошлый раз мы доказали, что для любого линейного эндоморфизма векторных конечномерных пространств над алгебраически замкнутым полем есть базис, в котором матрица имеет блочно диагональный вид, с жордановыми блоками.

Поле называется алгебраически замкнутым, если каждый многочлен над этим полем положительной степени имеет корень.

$$\begin{pmatrix} J_{k_1}(\lambda_1) & 0 \\ J_{k_2}(\lambda_2) & \\ & \ddots & \\ 0 & J_{k_n}(\lambda_n) \end{pmatrix}$$

Стоит отметить, что λ_i и k_i

Пример: Пусть полем будет $\mathbb{k} = \mathbb{R}$, а пространством $V = \mathbb{R}^2$. Заметим, что $x^2 + 1$ неприводим в этом поле. Тогда возьмём оператор поворота на 90 градусов.

$$A = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

Для неё нет жордановой нормальной формы над \mathbb{R} , так как у неё нет собственных значений. Если бы они были, то были бы корнем характеристического многочлена $\chi_A(t)=t^2+1$, а у него корней нет. Над \mathbb{C} , наш оператор приводим, так как $\pm \sqrt{-1}$ его собственные значения, а тогда

$$A = \left(\begin{array}{cc} \sqrt{-1} & 0\\ 0 & -\sqrt{-1} \end{array}\right)$$

Заметим, что по жордановой нормальной форме легко вычислять инварианты, так как след – сумма диагональных элементов, $\operatorname{tr}(A) = \sum k_i \lambda_i$.

Замечание: базис, в котором оператор имеет жорданову нормальную форму, вообще говоря не единственен, например тривиальный оператор I.

Тем не менее кое-что определено канонически. Давайте означим за $n_{\lambda,k}$ – количество клеток вида $J_k(\lambda)$ в нашей матрице.

Утверждение:

$$\sum_{p=1}^{k} p n_{\lambda,p} + \sum_{p=k+1}^{\inf} k n_{\lambda,p} = \dim \operatorname{Ker}(A - \lambda \operatorname{Id})^{k}, \ \forall \lambda, k$$

Следовательно, $n_{\lambda,k}$ – инварианты A.

Для доказательства, давайте запишем матрицу в жордановой нормальной форме и посчитаем ядро dimKer $(A-\mathrm{Id})^\lambda$. В таком виде нас будут интересовать только клетки, в которых стоит λ . Тогда можно предполагать, что оператор состоит только из клеток с λ . Если посмотреть на то, что происходит с клетками, то мы увидим

$$J_k(\lambda) - \lambda \operatorname{Id} = \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}$$

И если мы возведем в степень такие клетки, то равенство станет очевидным.

Замечание: Пусть $A \in \operatorname{End}(V)$. Заметим, что задать оператор A, равносильно заданию на V структуры $\mathbb{k}[t]$ -модуля. Структура $\mathbb{k}[t]$ -модуля это в точности \mathbb{k} -модуль с действием t. Зададим это действие следующим образом $t^l \cdot v = A^l(v)$, $v \in V$ и продолжим его по линейности. В обратную сторону, мы зададим оператор через действие t, то есть $A(v) = t \cdot v$. И это также эквивалентно заданию гомоморфизма (колец?) $\phi : \mathbb{k}[t] \to \operatorname{End}(V)$, где образ t будет оператором A. (Скорее всего это работает только в коммутативном случае, когда на $\operatorname{End}(V)$ Есть структура модуля и я бы брал гомоморфизмы модулей!).

Например если $A = J_k(\lambda)$, то $V \cong \mathbb{k}[t]/(t-\lambda)^k$. Давайте поймём почему этот изоморфизм имеет место. Нам нужно во первых убедится, что они изоморфны как \mathbb{k} -векторные пространства, а во вторых, что A действует в V также как t умножением в $\mathbb{k}[t]/(t-\lambda)^k$. Первое верно из наблюдения размерности, в обоих случаях она k. Для второго, нужно понять как $A-\lambda$ Id действует на базисные вектора, а именно $e_1\mapsto 0$ и $e_{i+1}\mapsto e_i$ для $1\le i\le k$. Заметим, что $\{(t-\lambda)^i\}_{0\le i\le k}$ \mathbb{k} -базис фактор кольца, и в нём $t-\lambda$ умножением действует точно также на элементы кольца, а значит у нас есть изоморфизм $\mathbb{k}[t]$ -модулей.

Следствие (из теоремы о существовании ЖНФ) Для $A \in \operatorname{End}(V)$, $V - \Bbbk[t]$ -модуль. То $V \cong_{\Bbbk[t]} \bigoplus_{i=1}^N \Bbbk[t]/(t-\lambda_i)^{k_i}$, где действие A соответствует действию t, а сумма идёт по жордановым блокам. Это верно, так как матрица оператора блочно диагональная, а значит пространство раскладывается в прямую сумму подпространств, так, что на каждом подпространстве наш оператор действует как жорданов блок, а тогда применив предыдущий результат, мы получаем искомое. Такая формулировка теоремы о жордановой нормальной форме более правильная, так как она имеет обобщения, то есть на классификацию конечно порожденных модулей. В частности классификация конечных и конечно порожденных абелевых групп.

Определение: $A \in \operatorname{End}(V)$ называется полупростым, если существует базис, в котором матрица A диагональна. A называется нильпотентом, если $A^m = 0$ для m > 1.

Следствие (из ЖНФ): $A \in \text{End}(V)$, то $A = A_{ss} + A_n$, где A_{ss} – полупрост, а A_n – нильпотент. И эти два оператора коммутируют.

$$J_k(\lambda) = \lambda \operatorname{Id} + \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \ddots \\ & & \ddots & 1 \\ 0 & & & 0 \end{pmatrix}$$

Теорема (Гамильтона-Кэли): $A \in \operatorname{End}(V) \Rightarrow \chi_A(A) = 0$. Поле не обязательно алгебраически замкнуто. $\chi_{J_k(\lambda)}(t)|_{t=a} = (t-\lambda)^k|_{t=A} = (A-\lambda)^k = 0$. А значит в каждом блоке будет 0, теорему доказали, но жульничество в том, что нам необходима алгебраическая замкнутость поля, но жульничество можно обойти, показав, что каждое поле вложено в алгебраически замкнутое.

Доказательство:

 $(tE-A)(t\widehat{E-A})=(t\widehat{E-A})(tE-A)=\chi_A(t)$ Іd в кольце $\mathcal{M}at_{n\times n}(\Bbbk[t])=(\mathcal{M}at_{n\times n}(\Bbbk))[t].$ Определим отображение

$$\phi: R \to \mathcal{M}at_{n \times n}(\mathbb{k}),$$

где $R = Z_A(\mathcal{M}at_{n\times n}(K)[t])$, а устроено оно вычислением в A, то есть $\phi(\sum B_i t^i) = \sum B_i A^i$, где $B_i \in \mathcal{M}at_{n\times n}(\mathbb{k})$. Заметим, что ϕ является гомоморфизмом.

$$\chi_A(A) = \phi(\chi_A(t)E) = \phi((tE-A)(tE-A)) = \phi(tE-A\phi(tE-A)) = \phi(tE-A)(A-A) = 0.$$

Замечание: $A \in \operatorname{End}(V)$ задание эндоморфизма эквивалентно заданию гомоморфизма $\phi : \mathbb{k}[t] \to \operatorname{End}(V)$. По теореме Гамильтона-Кэли мы знаем, что $\chi_A(t) \in \operatorname{Ker}(\phi)$. С другой стороны $\operatorname{Ker}(\phi) = (m_A(t))$, тогда можно определить m_A минимальный многочлен оператора A, минимальный многочлен оператора A, он определен однозначно, если старший коэффициент брать за 1. Заметим, что минимальны многочлен делит характеристический.

Упражнение: Существует N, что $\chi_a(t) \mid m_a(t)^N$. **Пример:**

- $m_A(t) = t \lambda$, для $A = \lambda E$. Тогда $\chi_A(t) = (t \lambda)^k$.
- $m_A(t) = t^k$, тогда $A \mathbf{u} \chi_A(t) = t^n$. Можно взять нулевой жордановый блок и нулевую матрицу и соединить их в блочно диагональной манере.
- Если $m_A(t) = (t-1)^k$, то A называется унипотентом.
- Если $m_A(t) = t(t-1)$, то A проектор, идемпотентен

Глава 2

Поля и их расширения

Пусть \mathbb{k} – поле. Тогда можно рассмотреть гомоморфизм $\mathcal{U}: \mathbb{Z} \to \mathbb{k}$, $1 \mapsto 1$, у него есть ядро $\mathrm{Ker}(\mathcal{U}) \subseteq \mathbb{Z}$, это идеал в \mathbb{Z} , он главный, так как идеал кольца главных идеалов, пусть он равен (d).

Утверждение: d – простое число или 0.

Доказательство: Ядро – прообраз простого идеала, а значит ядро просто.

Определение: d – характеристика \mathbb{k} , её мы обозначаем char(\mathbb{k}) = d, то есть простое число или 0, которое однозначно определяется по полю.

- $char(\mathbb{Q}) = 0$
- $\operatorname{char}(\mathbb{Z}/p\mathbb{Z}) = p$

Напоминание: Если $f: \mathbb{K} \to \mathbb{L}$ гомоморфизм полей, то он инъективен. Так как несобственный идеал только 0.

 $A = \text{Im}(\mathcal{H})$ – область целостности. Тогда можно рассмотреть поле частных $\text{Frac}(A) \leq \mathbb{k}$, подполе в \mathbb{k} , оно называется простым подполем.

$$\operatorname{Frac}(A) \cong \left\{ \begin{array}{cc} \mathbb{Q} & \operatorname{char}(\mathbb{k}) = 0 \\ \mathbb{Z}/p\mathbb{Z} & \operatorname{char}(\mathbb{k}) = p \end{array} \right.$$

Простое подполе определено однозначно, так как гомоморфизм \varkappa определен однозначно, канонически. Оно называется простым, так как в нём нет собственных подполей.

Утверждение: Пусть $f: \mathbb{K} \to \mathbb{L}$ – гомоморфизм полей. Тогда char(\mathbb{K}) = char(\mathbb{L}) и f индуцирует изоморфизм простых подполей в \mathbb{K} и \mathbb{L} .

Доказательство:

$$\mathbb{Z} \xrightarrow{\varkappa_K} \mathbb{K} \xrightarrow{f} \mathbb{L}$$

Давайте тогда заметим, что композиция является гомоморфизмом \varkappa для \mathbb{L} , так как композиция переводит единицу в единицу. Отсюда следует, что ядро \varkappa_L равно ядру \varkappa_K , так как f вложение. Более того $\operatorname{Im}(\varkappa_K) \cong_f \operatorname{Im}(\varkappa_L)$, а значит простые подполя изоморфны, а характеристики равны.

Определение: $K \leq L$ называется расширением полей, если $K \hookrightarrow L$, то есть следующий набор данных, поле K, поле L и вложение. Иногда это обозначается (L/K) и черта читается как "над".

Если $K \leq L$, то L является векторным пространством над K. Тогда можно говорить о размерности L над K и если $\dim_K L \leq \infty$, то расширение мы называем конечным, а размерность мы будем писать чуть иначе $\dim_K L = [L:K]$.

 $K_1 \leq K_2 \leq ... \leq K_S$ мы называем башней полей, а расширение $K_i \leq K_{i+1}$ – этаж этой башни.

Пример: $\mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ в этой башне только второй этаж конечен.

Утверждение: Если $F \le K \le L$, то [L:F] = [L:K][K:L]

Доказательство: Пусть $K = \langle x_i \rangle_F$, $x_i \in K$, где $\{x_i\}$ базис K над L и пусть $L = \langle y_j \rangle_K$, $y_j \in L$, где $\{y_j\}$ базис L над F. Тогда мы можем построить базис L над F, а именно $L = \langle x_i y_j \rangle_F$ поверим это. Пусть $a \in L$, тогда его можно разложить над $\{y_j\}$, то есть $a = \sum a_j y_j$, $a_j \in K$. Но тогда a_j можно разложить над $\{x_i\}$, то есть $a_j = \sum a_{i,j} x_i$, $a_{i,j} \in F$, а тогда $a_j \in L$ ито означает $\{x_i y_j\}$ порождает L над F.

Пусть теперь $\sum a_{i,j}x_iy_j=0$, пойдя в обратную сторону и положив $a_j=\sum a_{i,j}x_i\in K$, мы получи $\sum a_jy_j=0$, а тогда по свойству базиса $\{y_j\}$ получим $a_j=0$, но тогда и $\sum a_{i,j}x_i=0$, и по свойству базиса $\{x_i\}$ получим $a_{i,j}=0$, что означает линейную независимость $\{x_iy_j\}$, тогда это и вправду базис и его кардинал равен произведению кардиналов базисов $\{x_i\}$ и $\{y_j\}$.

Следствие: Для конечной башни полей $K_1 \leq K_2 \leq ... \leq K_s$ расширение $K_1 \leq K_s$ конечно, ттогда $K_i \leq K_{i+1}$ конечны $\forall i$.

Определение: Пусть $K \leq L$ расширение полей, элемент $0 \neq \alpha \in L$ называется алгебраичным, что $f(\alpha) = 0$ для некоторого $0 \neq f(x) \in K[x]$. Расширение $K \leq L$ называется алгебраичным, если $\forall \alpha \in L$ оно либо нуль либо алгебраично.

Утверждение: Для любого конечного расширения $K \leq L$ известно, что оно алгебраично.

Доказательство: Для ненулевого $\alpha \in L$ элементы 1, α , α^2 , ..., α^n , где n = [L:K], линейно зависимы, а значит найдутся коэффициенты $a_i \in L$, что $a_0 + a_1\alpha + ... + a_n\alpha^n = 0$, а тогда можно положить $f(x) = a_0 + a_1x + ... + a_nx^n \in K[x]$ и расширение алгебраично.

Обратное не верно, так как бывают бесконечные алгебраические расширения.

Пусть $K \leq L$ – расширение полей, тогда для любого $\alpha \in L$ можно устроить гомоморфизм колец

$$\phi_{\alpha}: K[x] \to L$$
$$g(x) \mapsto g(\alpha)$$

Тогда обозначим целостное кольцо $K[\alpha] = \operatorname{Im} \phi_{\alpha} \leq L$, а его поле частных мы обозначим за $K(\alpha) = \operatorname{Frac} K[\alpha]$.

Заметим, что если α алгебраичен, то ϕ_{α} не вложение. Действительно, ядро не будет тривиальным по определению алгебраичного элемента. Тогда $\operatorname{Ker} \phi_{\alpha} \leq K[x]$ является нетривиальным идеалом, но как мы уже обсуждали многочлены над полем образуют кольцо главных идеалов, а значит $\operatorname{Ker} \phi_{\alpha} = (p(x))$ и $p(x) \neq 0$ и можем считать, что старший коэффициент единица. Будем называть p(x) минимальным многочленом α или неприводимый, то есть $\operatorname{Irr}_{\alpha}^{K}(x)$.

Утверждение: Если $\alpha \in L$ алгебраичен над K, то $K(\alpha) = K[\alpha]$, а также степень расширения полей равна $[K(\alpha):K] = \deg \operatorname{Irr}_{\alpha}^{K}(x)$.

Доказательство: Обозначим $f(x) = \operatorname{Irr}_{\alpha}^{K}(x)$. Пусть есть некий ненулевой элемент $\beta \in K[\alpha]$, тогда мы найдем $g(x) \in K[x]$, что $\beta = g(\alpha)$. Заметим, что f(x) неприводим, так как прост. Тогда (f(x), g(x)) = 1, так как f(x) не может делить g(x), в противном случае мы бы имели $\beta = g(\alpha) = kf(\alpha) = 0$. Тогда мы можем найти соотношение Безу f(x)h(x) + g(x)s(x) = 1, подставим в него α , тогда останется $g(\alpha)s(\alpha) = 0$, а значит $\beta s(\alpha) = 1$ обратим, из этого заключаем, что $K[\alpha]$ - поле и совпадает со своим полем частных $K(\alpha)$.

Заметим, что в $K(\alpha) = K[\alpha] = \langle 1, \alpha, ..., \alpha^{n-1} \rangle_K$ есть базис. Он порождает, так как старшие степени α могут быть вычислены из тех, что мы выписали по минимальному многочлену и он линейно независим, так как иначе мы бы нашли меньший многочлен, зануляющий α , а у нас уже наименьший.

С расширениями полей такая история, что начав изучать, невозможно остановиться

Следствие: Пусть $K \leq L$, $\alpha_i \in L$ – алгебраичны над K и $L = K(\alpha_1, ..., \alpha_n)$, тогда степень расширения $[L:K] < \infty$. Под $K(\alpha_1, ..., \alpha_n)$ можно понимать как минимальное поле, содержащее все элементы в скобках, так и значения рациональных дробей многих переменных, выичсленных в тех же элементах, без обращения знаменателя в ноль.

Доказательство: Рассмотрим башню

$$K \le K(\alpha_1) \le K(\alpha_1, \alpha_2) \le \dots \le K(\alpha_1, \dots, \alpha_n)$$

Заметим, что α_{i+1} алгебраичен над $K(\alpha_1, ..., \alpha_i)$, а значит каждый этаж башни конечен, а тогда и L/K конечно.

Утверждение: Пусть $F \le K \le L$ – башня полей, тогда L/F алгебраично равносильно тому, что K/F и L/K алгебраичны.

Доказательство Если L/F алгебраично, то для любого $\alpha \in K$, по включению $\alpha \in L$, а значит α – корень некого многочлена $f(x) \in F[x]$ и K/F алгебраично. Точно также так как для любого $\alpha \in L$, есть его зануляющий многочлен $f(x) \in F[x]$, то так как $F[x] \subseteq K[x]$, он же является многочленом над K, а заначит L/K алгебраично. Покажем теперь импликацию в обратную стороную. Пусть K/F и L/K алгебраичны, тогда для $\alpha \in L$ мы найдем зануляющий многочлен $f(x) = x^n + a_n x^{n-1} + ... + a_1$ с коэффициентами в K. Тогда построим башню $F \leq F(a_n, ..., a_1) \leq F(a_n, ..., a_1)(\alpha)$, здесь каждый этаж башни конечен, тогда конечна и вся башня, а тогда $F(a_n, ..., a_1)(\alpha)/F$ конечно, а значит алгебраично, а тогда a алгебраично над a, а тогда и расширение a

Определение: Поле L алгебраически замкнуто, если для любого $f(x) \in L[x]$ есть корень.

Пример: ℂ

Утверждение: Любое поле можно вложить в алгебраически замкнутое.

План: Пусть удалось построить башню полей

$$K \leq K_1 \leq K_2 \leq K_2 \leq \dots$$

с условием, что любой многочлен $f(x) \in K_i[x]$ имеет корень в K_{i+1} . Тогда можно взять объединение $L = \bigcup_{i=1}^{\infty} K_i$. Это поле, так как если $\alpha, \beta \in L$, то мы найдем $\alpha \in K_i$ и $\beta \in K_j$, то можно выбрать номер побольше, что $\alpha, \beta \in K_{\max(i,j)}$ и там их уже можно сложить, умножить, поделить, взять обратные, и так далее. Это поле будет алгебраически замкнутым, так как если $f(x) = x^n + b_1 x^{n-1} + ... + b_n \in L[x]$, то найдутся индексы, что $b_j \in K_{i_j}$, тогда обозначим за $K_l = K_{\max_j(i_j)}$ и $f(x) \in K_l[x]$, а значит имеет корень в K_{l+1} .

Теперь давайте явно построим такую башню. Для этого опишем как по полю F построить поле \widetilde{F} , что для любого многочлена над $F, f(x) \in F[x]$ найдется корень в \widetilde{F} , тогда применяя бесконечное число раз эту конструкцию можно построить эту башню. Рассмотрим $\Lambda = F[\{t_f\}_{f \in F[x]}]$ кольцо многочленов от бесконечного числа переменных, заиндексированных многочленами от x над F.

Давайте построим идеал $I=(f(t_f))_{f\in F[x]\backslash F}$. Покажем, что он собственный, то есть что $\Lambda\neq I$. Если бы $I=\Lambda$, то $1\in I$, и $g_1f_1(t_{f_1})+g_2f_2(t_{f_2})+...+g_nf_n(t_{f_n})=1$

Лемма: Если K поле и $f(x) \in K[x] \setminus K$, то всегда есть расширение L, что $f(\alpha) = 0$, $\alpha \in L$ многочлен в нем имеет корень.

Можно профакторизовать по неприводимому множителю.

Тогда по лемме есть поле L в котором найдутся $\alpha_1, ..., \alpha_n \in L$, что $f_i(\alpha_i) = 0$, тогда подставив $t_{f_i} = \alpha_i$ мы слева получим 0, а справа 1. Значит I собственный, а значит он вложен в некий максимальный идеал m. Тогда можно положить $\widetilde{F} = F[t_f]/m$. В этом поле любой многочлен f(x) имеет корень $[t_f]$. Поэтому у любого поля есть алгебраически замкнутое надполе.

Определение: $K \leq \overline{K}$ называется алгебраическим замыканием, если \overline{K} алгебраически замкнуто и любой $\alpha \in \overline{K}$ алгебраичен ($K \leq \overline{K}$ алгебраическое расширение).

Утверждение: \overline{K} существует (но и единственно)

Доказательство: $K \leq L$, где L - алгебраически замкнуто, тогда положим $\overline{K} = \{$ Все элементы $\alpha \in L$, что α алгебраичен над $K \}$. Проверим, что \overline{K} - поле. Пусть $\alpha, \beta \in \overline{K}$. Можно посмотреть на расширение $K \leq K(\alpha, \beta)$ оно конечно, а значит алгебраично, это значит, что $\alpha + \beta, \alpha\beta, \alpha/\beta$ алгебраичны над K, а значит лежат в \overline{K} . Теперь давайте увидим, что \overline{K} замкнуто, тогда пусть $f(x) \in \overline{K}[x]$ и мы хотим найти у него корень в \overline{K} , но на него можно посмотреть как на многочлен над L и в L у него есть корень α , но $f = x^k + a_1 x^{n-1} + ... + a_n$ и в нём a_i алгебраичны над K. Тогда можно посмотреть на следующую башню

$$K \le K(a_1, \dots, a_n) \le K(a_1, \dots, a_n)[\alpha]$$

В этой башне первый этаж конечен, второй тоже, так как α зануляет f(x), а значит вся башня тоже конечна, а тогда $K(a_1, ..., a_n)[\underline{\alpha}]/K$ конечно, а значит алгебраично, а тогда алгебраичен и α , то есть $\alpha \in \overline{K}$ и \overline{K} алгебраически замкнуто.

Примеры: $\mathbb{C}=\overline{\mathbb{R}}, \overline{\mathbb{Q}}=\{a\in\mathbb{C}\,|\,a$ алгебраичен над $\mathbb{Q}\}$, а что можно сказать о $\overline{\mathbb{F}_p}$?

2.1 Поле разложения многочлена

Определение: L называется полем разложения многочлена $f(x) \in K[x]$, если $K \le L$, $f(x) = c \prod_{i=1}^{n} (x - \alpha_i)$, $\alpha_i \in L$ и $K(\alpha_1, ..., \alpha_n) = L$.

Поле L строится по полю K и $f(x) \in K[x]$.

Поле L существует, так как мы можем например найти все корни в \overline{K} , выпишем эти корни $\alpha_i \in \overline{K}$. Тогда $L = K(\alpha_1, ..., \alpha_n)$. Проверим однозначность конструкции, пусть $L' = K(\alpha'_1, ..., \alpha'_n)$ где $\alpha'_i \in L'$ лежат в каком-то другом поле. Тогда можно устроить морфизм $\sigma: L' \mapsto \overline{K}$, $\sigma(\alpha'_i) = \alpha_i$. Проверим, что это корректно [..?].

Пусть \mathbb{F}_q – конечное поле с q элементами, его характеристика может быть равна только простому числу p, а тогда мы имеем вложение $\mathbb{F}_p \hookrightarrow$

 \mathbb{F}_q и \mathbb{F}_q будет векторным пространством над \mathbb{F}_p , а тогда $q=p^n$ может равняться только степени p. Пусть теперь есть поле \mathbb{F}_q и посмотрим на многочлен $p(x)=x^q-x\in \mathbb{F}_p[x]$. Пусть \mathbb{F}_q^{\times} – мультипликативная группа, её порядок $|\mathbb{F}_q^{\times}|=q-1$, а это означает, что для любого $\alpha\in \mathbb{F}_q^{\times}$, $\alpha^{q-1}-1=0$. А тогда нетрудно видеть, что любой $\alpha\in \mathbb{F}$ является корнем p(x). Тогда по теореме Безу p(x) раскладывается на множители степени 1 над \mathbb{F}_q

$$x^q - x = \prod_{\alpha_i \in \mathbb{F}_q} (x - \alpha_i),.$$

Тогда можно посмотреть на вложение $\mathbb{F}_p(\alpha_1,...,\alpha_q) \leq \mathbb{F}_q$ и оно тривиально является равенством, а тогда \mathbb{F}_q – поле разложения многочлена $x^q - x$.

Чем конечные поля замечательны, в теории полей, если есть расширение $K \leq L$, основной объект, который обычно изучают, это $\mathrm{Aut}_K(L)$ автоморфизмы L над K, те изоморфизмы поля L, что они сохраняют поле K. в конечном случае автоморфимы легко посчитать $\mathrm{Aut}_{\mathbb{F}_q}(\mathbb{F}_{p^n}) = \mathbb{Z}/n\mathbb{Z}$ циклическая группа, с образующей $\phi: \mathbb{F}_q \to \mathbb{F}_q = x \mapsto x^p$.

Утверждение: ϕ - гомоморфизм (Фробениуса).

Пусть есть алгебраическое замыкание $\mathbb{F}_p \leq \overline{\mathbb{F}_p}$. Возьмём многочлен $x^{p^n}-x$, у него есть $\alpha_i \in \overline{\mathbb{F}_p}$ все корни, тогда мы возьмём $\mathbb{F}_p(\alpha_1,...,\alpha_{p^n})$. Осталось проверить, что в $\mathbb{F}_q = \mathbb{F}_p(\alpha_1,...,\alpha_p^n)$ q элементов, для этого перепишем многочлен через фробениуса $\phi(x) = x^p$, а тогда $\phi^n(x) = x^{p^n}$. Тогда видно, что если α,β корни x^q-x , то $\alpha+\beta$, $\alpha\beta$ и α/β корни, так как оперции пропускаются через гомоморфизм Фробениуса. Единственная проблема, что в $\overline{\mathbb{F}_p}$ может быть кратные корни, но кратность корня эквивалентна тому, что это корень производнойб. но $(x^(p^n)-x)'=-1$ корней нет, а значит всего p^n различных корней.

Можно пойти по иному пути и факторизовать многочлены, но как бы мы не старались, поле всегда будет полем разложения полинома $x^q - x$.

Давайте теперь убедимся, что автоморфизмы $\mathrm{Aut}_{\mathbb{F}_p}(\mathbb{F}_{p^n})$ порождены автоморфизмом Фробениуса. То есть группа Галуа очень просто устроена. Про \mathbb{F}_q^{\times} известно, что она циклическая. Пусть $f:\mathbb{F}_q\mapsto \mathbb{F}_q$ автоморфизм поля, тогда он в частности является автоморфизмом циклической мультипликативной группы, а они устроены как возведение в некую степень, но и ноль в некоторой степени тоже ноль. Тогда $f(x)=x^n$. В частности это верно для $f(x+1)=(x+1)^n=x^n+1$, а это означает, что x должен быть корнем $\sum_{i=1}^{n-1} C_k^i x^i$...