Problem Set 2 CHEM 26200

2 The First and Second Laws of Thermodynamics

2/8: 1. Consider the following experiment with an ideal gas, and derive the relation between γ , h, and h'.

Let the system sit at P_0, T_0 where h = 0. Pump a little gas in (add Δn) and wait so that T is back to T_0 ; measure h. Open the valve to air quickly to P_0 and close again. Justify why this can be considered a reversible adiabatic expansion. Wait so that T is back to T_0 ; measure h'.

- 2. (a) n moles of an ideal gas with a given γ undergo an adiabatic expansion from V_a to V_b . Calculate the work done and the total energy change.
 - (b) n moles of an ideal gas with a given γ undergo an isobaric expansion from V_a to V_b . Calculate the work done and the total energy change.
- 3. (a) Consider a Carnot cycle for an ideal gas. Derive the relation $Q_1/T_1 + Q_2/T_2 = 0$ where Q_1, Q_2 are the heat transferred to the system along the isotherms at T_1, T_2 .
 - (b) Consider an ideal gas going from V_1, T_1 to V_2, T_2 . Calculate the entropy change in terms of V_1, V_2, T_2, T_2 .
- 4. Practicing with partial derivatives.

By expressing the internal energy state function U in terms of V and T variables and alternatively with P and T variables, show that

$$\left(\frac{\partial U}{\partial P} \right)_T = \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial P} \right)_T \qquad \qquad \left(\frac{\partial U}{\partial T} \right)_P = \left(\frac{\partial U}{\partial T} \right)_V + \left(\frac{\partial V}{\partial T} \right)_P \left(\frac{\partial U}{\partial V} \right)_T$$

Then derive that

$$C_P - C_P = \left[P + \left(\frac{\partial U}{\partial V}\right)_T\right] \left(\frac{\partial V}{\partial T}\right)_P$$

Show that

$$\left(\frac{\partial U}{\partial V}\right)_T = 0$$

for an ideal gas. And then show that

$$C_P - C_P = nR$$

5. Write that dU = T dS - P dV and derive the following two relations.

$$\left(\frac{\partial S}{\partial T} \right)_V = \frac{C_V}{T} \qquad \qquad \left(\frac{\partial S}{\partial V} \right)_T = \frac{1}{T} \left[P + \left(\frac{\partial U}{\partial V} \right)_T \right]$$

6. Problem 21-10. Show your work.

It has been found experimentally that $\Delta_{\rm vap} \overline{S} \approx 88\,{\rm J\,K^{-1}\,mol^{-1}}$ for many nonassociated liquids. This rough rule of thumb is called **Trouton's rule**. Use the following data to test the validity of Trouton's rule.

Problem Set 2 CHEM 26200

Substance	$t_{\rm fus}/^{\circ}{\rm C}$	$t_{\rm vap}/^{\circ}{\rm C}$	$\Delta_{\mathrm{fus}}\overline{H}/\mathrm{kJ}\mathrm{mol}^{-1}$	$\Delta_{ m vap}\overline{H}/{ m kJmol^{-1}}$
Pentane	-129.7	36.06	8.42	25.79
Hexane	-95.3	68.73	13.08	28.85
Heptane	-90.6	98.5	14.16	31.77
Ethylene oxide	-111.7	10.6	5.17	25.52
Benzene	5.53	80.09	9.95	30.72
Diethyl ether	-116.3	34.5	7.27	26.52
Tetrachloromethane	-23	76.8	3.28	29.82
Mercury	-38.83	356.7	2.29	59.11
Bromine	-7.2	58.8	10.57	29.96

7. Problem 21-37. Show your reasoning.

Given that $\tilde{\nu}_1=1321.3\,\mathrm{cm}^{-1}$, $\tilde{\nu}_2=750.8\,\mathrm{cm}^{-1}$, $\tilde{\nu}_3=1620.3\,\mathrm{cm}^{-1}$, $\tilde{A}_0=7.9971\,\mathrm{cm}^{-1}$, $\tilde{B}_0=0.4339\,\mathrm{cm}^{-1}$, and $\tilde{C}_0=0.4103\,\mathrm{cm}^{-1}$, calculate the standard molar entropy of NO_{2(g)} at 298.15 K. (Note that NO_{2(g)} is a bent triatomic molecule.) How does your value compare with that in Table 21.2?

8. Problem 19-55.

Use the rigid rotator-harmonic oscillator model and the data in Table 18.2 to plot $\overline{C}_P(T)$ for $CO_{(g)}$ from 300 K to 1000 K. Compare your result with the expression given in Problem 19-43.