Раздел 1. Теоретические основы численных методов.

Лекция 1. Теория погрешности

Виды погрешностей вычислительного эксперимента:

- 1. Погрешность математической модели.
- 2. Погрешность исходных данных.
- 3. Погрешность численного метода (дискретизации).
- 4. Погрешность вычислений.

Четыре простых примера

Пример 1.

$$|OO_2| = |OO_1| + (r+1), |OO_2| = \sqrt{2}, |OO_1| = r\sqrt{2}$$

$$r = \frac{\sqrt{2} - 1}{\sqrt{2} + 1}, \qquad V = \frac{4}{3}\pi r^3$$

$$r^3 = \frac{5\sqrt{2} - 7}{5\sqrt{2} + 7} \tag{1}$$

$$r^{3} = \frac{5\sqrt{2} - 7}{5\sqrt{2} + 7} \cdot \frac{5\sqrt{2} - 7}{5\sqrt{2} - 7} = \frac{50 - 70\sqrt{2} + 49}{50 - 49} = 99 - 70\sqrt{2}$$
 (2)

$$r^3 = \frac{1}{99 + 70\sqrt{2}}\tag{3}$$

Nº	$\approx \sqrt{2}$			
строки		Формула 1	Формула 2	Формула 3
1	1,4	0	1	0,005076142
2	1,41	0,003558719	0,3	0,005058169
3	1,414	0,004975124	0,02	0,005051015
4	1,4142	0,005045839	0,006	0,005050658
5	1,41421	0,005049374	0,0053	0,005050640
6	1,414214	0,005050789	0,00502	0,005050633
7	1,4142136	0,005050647	0,005048	0,005050634
8	1,41421356	0,005050633	0,0050508	0,005050634
9	1,414213562	0,005050634	0,00505066	0,005050634
10	1,4142135624	0,005050634	0,005050632	0,005050634
11	1,41421356237	0,005050634	0,005050634	0,005050634

Пример 2.

$$E_n = \int_0^1 x^n \cdot e^{x-1} dx, \quad u = x^n, \quad dv = e^{x-1} dx \implies$$
 $E_0 = 1 - e^{-1}, \quad E_n = 1 - n \cdot E_{n-1}, \quad n = 1, 2, \dots$ вариант 1.

Свойство:

$$0 < E_n < rac{1}{n+1}, \qquad \lim_{n o \infty} E_n = 0$$

$$E_{n-1} = rac{1-E_n}{n}, \quad n=N, N-1, \dots, 1, \quad E_N = 0$$
 N=20, вариант 2 N=200, вариант2'.

	Еп-вариант	Еп-вариант	Еп-вариант
N	1	2	2'
0	0,632120559	0,632120559	0,632120559
1	0,367879441	0,367879441	0,367879441
2	0,264241118	0,264241118	0,264241118
3	0,207276647	0,207276647	0,207276647
4	0,170893412	0,170893412	0,170893412
5	0,145532941	0,145532941	0,145532941
6	0,126802357	0,126802357	0,126802357
7	0,112383504	0,112383504	0,112383504
8	0,100931967	0,100931967	0,100931967
9	0,091612293	0,091612293	0,091612293
10	0,083877070	0,083877070	0,083877070
11	0,077352229	0,077352229	0,077352229
12	0,071773248	0,071773254	0,071773254
13	0,066947780	0,066947703	0,066947703
14	0,062731080	0,062732162	0,062732164
15	0,059033794	0,059017565	0,059017541
16	0,055459302	0,055718954	0,055719346
17	0,057191871	0,052777778	0,052771119
18	-0,029453671	0,05	0,050119855
19	1,559619744	0,05	0,047722756
20	-30,19239489	0	0,045544884

Пример 3. Численное дифференцирование

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\cos(x) \approx \frac{\sin(x + \Delta x) - \sin(x)}{\Delta x}, \quad x = 0.6,$$

$$\Delta x_0 = 1, \quad \Delta x_i = \frac{\Delta x_{i-1}}{2}, \quad i = 1, 2, \dots$$

Пример 4. Второй замечательный предел.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Ряд Тейлора

$$f(x) = f(x_0) + \frac{x - x_0}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots$$

$$+ \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + \frac{(\xi - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi) =$$

$$= \sum_{k=0}^n \frac{(x - x_0)}{k!} + \frac{(\xi - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi), \quad \xi \in (x_0, x)$$

тогда, при $x_0 = 0$, x = 1, $f(x) = \exp(x)$ получаем

$$e = \exp(1) = \sum_{k=0}^{n} \frac{1}{k!} + \frac{\xi^{n+1}}{(n+1)!} \exp(\xi)$$

Основные понятия теории погрешности

<u>Опр.1</u> Приближенным числом a называется число, незначительно отличающееся от точного A и заменяющего последнее в вычислениях.

<u>Опр.2</u> *Абсолютной погрешностью* Δ приближенного числа a называется

$$\Delta = |A - a|$$

<u>Опр.</u>3 Вместо неизвестной теоретической абсолютной погрешности Δ используют так называемую предельную абсолютную погрешность, определяемую как величина Δ_a , обладающую свойством

$$|A-a| \le \Delta_a$$

Очевидно

$$a - \Delta_a \le A \le a + \Delta_a$$

Краткая запись: $A=a \pm \Delta_a$

Пример 4. Для a=3,14, заменяющего число π имеем $3,14<\pi<3,15$ и $\Delta_a=0,01$.

Если учесть, что $3.14 < \pi < 3.142$, то $\Delta_a = 0.002$.

<u>Опр.5</u> Относительной погрешностью б приближенного числа а называется величина

$$\delta = \frac{\Delta}{|A|}$$

<u>Опр.6</u> Предельная относительная погрешность δ_a удовлетворяет соотношению

$$\Delta \leq \delta_a \cdot |A|$$

Тогда

$$\delta_a = \frac{\Delta_a}{|a|}$$

Очевидно

$$a \cdot (1 - \delta_a) \le A \le a \cdot (1 + \delta_a)$$

Пример 5. Пусть $x=100 \text{ км}, \Delta_x=10 \text{ м};$ $y=10 \text{ см}, \Delta_y=1 \text{мм}; z=500 \text{ г}, \Delta_z=5 \text{ г}.$

$$\delta_x = \frac{10 \text{ M}}{100*1000 \text{ M}} = 10^{-4}, \quad \delta_y = \frac{1 \text{ MM}}{10 \cdot 10 \text{ MM}} = 10^{-2}, \quad \delta_z = \frac{5 \text{ g}}{500 \text{ g}} = 10^{-2}$$

Пусть

$$a = \alpha_m \cdot 10^m + \alpha_{m-1} \cdot 10^{m-1} + ... + \alpha_{m-n+1} \cdot 10^{n-m+1}, \quad \alpha_m \neq 0$$

тогда, все n сохраняемых десятичных знаков числа α_i , (i=m,m-1,...,m-n+1) называются значащими цифрами приближенного числа a.

Пример 6.
$$a=3\cdot10^{-2}+0\cdot10^{-3}+5\cdot10^{-4}+2\cdot10^{-5}+0\cdot10^{-6},$$
 $a=0,030520$

Опр.7 Значащей цифрой приближенного числа называется всякая цифра в его десятичном изображении, отличная от нуля, и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда

Экспоненциальная форму представления числа:

$$a=3.0520\cdot10^{-2}$$
.

<u>Опр.8а.</u> Говорят, что n первых значащих цифр приближенного числа являются верными в узком смысле, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемой n-ой значащей цифрой считая слева направо.

Пример 7а. Пусть
$$A=39,98$$
 и $a=40,00$, тогда
$$\Delta = \left|A-a\right| = 0,02 < \frac{1}{2} \cdot 0,1$$

и a=40,0 или a=4,00·10¹

Пример 7б. Пусть $a=23.642(\pm0.015)$, тогда

$$\Delta_0 = 0.015 < \frac{1}{2} \cdot 0.1 = 0.05$$

То есть, предположительно верными в узком смысле являются цифры 2,3,6. Округлим до десятых долей, получим a_1 =23.6 и $\Delta_{o\kappa p}$ =0.042. Тогда

$$\frac{1}{2} \cdot 0.1 < \Delta = \Delta_0 + \Delta_{o\kappa p} = 0.015 + 0.042 = 0.057 < \frac{1}{2} \cdot 1$$

Следовательно, предположительно верными в узком смысле являются цифры 2 и 3. Округлим до целых, получим $a_2=24$ и $\Delta_{o\kappa p}=0.358$. Тогда

$$\Delta = \Delta_0 + \Delta_{o\kappa p} = 0.015 + 0.358 = 0.373 < \frac{1}{2} \cdot 1$$

и значит верными являются цифры 2 и 4.

<u>Пример 8а.</u> Пусть в числе $a=2,347\cdot10^{-4}$ все значащие цифры являются верными в узком смысле, то

$$\Delta_a \leq (0, 5 \cdot 10^{-3}) \cdot 10^{-4} = 0, 5 \cdot 10^{-7}.$$

<u>Опр.8б.</u> Говорят, что n первых значащих цифр приближенного числа являются верными в широком смысле, если абсолютная погрешность этого числа не превышает единицу разряда, выражаемой n-ой значащей цифрой считая слева направо.

Пример 7в. Пусть
$$a=23.642(\pm0.015)$$
, тогда $\Delta_0=0.015<0.1$

То есть, предположительно верными в широком смысле являются цифры 2,3,6. Округлим отбрасыва-

<u>нием</u> до десятых долей, получим a_1 =23.6 и $\Delta_{o\kappa p}$ =0.042. Тогда

$$0.1 > \Delta = \Delta_0 + \Delta_{ord} = 0.015 + 0.042 = 0.057$$

и значит верными в широком смысле являются цифры 2, 3 и 6.

<u>Пример 8б.</u> Пусть в числе $a=2,347\cdot10^{-4}$ все значащие цифры являются верными в широком смысле, то

$$\Delta_a \leq (10^{-3}) \cdot 10^{-4} = 10^{-7}$$
.

Погрешность выполнения арифметических операций (линейная теория).

Общий случай определения предельной абсолютной погрешности для $u = u(x_1,...,x_n)$

$$du = \sum_{i=1}^{n} \frac{\partial u}{\partial x_i} dx_i$$
$$\Delta_u = \sum_{i=1}^{n} \left| \frac{\partial u}{\partial x_i} \right| \cdot \Delta_{x_i}$$

Определение погрешностей арифметических операций.

Сложение

$$\left| (A+B) - (a+b) \right| = \left| (A-a) + (B-b) \right| \le \Delta_{a+b} \le \Delta_a + \Delta_b$$

Вычитание

$$\left| (A-B) - (a-b) \right| = \left| (A-a) - (B-b) \right| \le \Delta_{a-b} \le \Delta_a + \Delta_b$$

Таким образом

$$\Delta_{a\pm b} = \Delta_a + \Delta_b.$$

$$\mathcal{S}_{a\pm b} = \frac{\Delta_{a\pm b}}{\left|a\pm b\right|} = \frac{\Delta_a + \Delta_b}{\left|a\pm b\right|} = \frac{\Delta_a}{\left|a\pm b\right|} \cdot \frac{\left|a\right|}{\left|a\right|} + \frac{\Delta_b}{\left|a\pm b\right|} \cdot \frac{\left|b\right|}{\left|b\right|} = \frac{\left|a\right|}{\left|a\pm b\right|} \cdot \mathcal{S}_a + \frac{\left|b\right|}{\left|a\pm b\right|} \cdot \mathcal{S}_b$$

Таким образом

$$\delta_{a\pm b} = \frac{|a|}{|a\pm b|} \cdot \delta_a + \frac{|b|}{|a\pm b|} \cdot \delta_b.$$

Аналогично

$$\big|A\cdot B-a\cdot b\big|=\big|A\cdot B-a\cdot B+a\cdot B-a\cdot b\big|=\big|B\big(A-a\big)+a\cdot \big(B-b\big)\big|\leq \big|B\big|\Delta_a+\big|a\big|\Delta_b$$

$$|B| \le |b| + \Delta_b$$
, тогда $|B|\Delta_a + |a|\Delta_b \le |b|\Delta_a + |a|\Delta_b + \Delta_b \cdot \Delta_a$

Таким образом

$$\begin{split} & \Delta_{a \cdot b} = \left| b \right| \cdot \Delta_a + \left| a \right| \cdot \Delta_b, & \delta_{a \cdot b} = \delta_a + \delta_b, \\ & \Delta_{a / b} = \frac{\left| b \right| \cdot \Delta_a + \left| a \right| \cdot \Delta_b}{b^2}, & \delta_{a / b} = \delta_a + \delta_b \end{split}$$

<u>Пример 1.</u> Обозначим $a \approx \sqrt{2}$.

$$\delta \left(\frac{5 \cdot a - 7}{5 \cdot a + 7} \right) = \delta (5 \cdot a - 7) + \delta (5 \cdot a + 7) =$$

$$= \frac{5 \cdot a}{|5 \cdot a - 7|} \delta (5 \cdot a) + \frac{7}{|5 \cdot a - 7|} \delta (7) + \frac{5 \cdot a}{5 \cdot a + 7} \delta (5 \cdot a) + \frac{7}{5 \cdot a + 7} \delta (7) =$$

$$= \left(\frac{5 \cdot a}{|5 \cdot a - 7|} + \frac{5 \cdot a}{5 \cdot a + 7} \right) \delta_a = C_1 \cdot \delta_a$$

$$\delta(99 - 70 \cdot a) = \frac{99}{|99 - 70 \cdot a|} \delta(99) + \frac{70 \cdot a}{|99 - 70 \cdot a|} \delta(70 \cdot a) = \frac{70 \cdot a}{|99 - 70 \cdot a|} \delta(a) = C_2 \cdot \delta_a$$

$$\delta \left(\frac{1}{99 + 70 \cdot a} \right) = \delta(1) + \delta(99 + 70 \cdot a) = \frac{99}{|99 + 70 \cdot a|} \delta(99) + \frac{70 \cdot a}{|99 + 70 \cdot a|} \delta(70 \cdot a) = \frac{70 \cdot a}{99 + 70 \cdot a} \delta_a = C_3 \cdot \delta_a$$

а	δα	C ₁	C ₁ ·δ _a	C ₂	$C_2 \cdot \delta_a$	C ₃	$C_3 \cdot \delta_a$
1,4	1,0E-02	∞	∞	9,8E+01	9,9E-01	0,497	5,1E-03
1,41	3,0E-03	1,4E+02	4,2E-01	3,3E+02	9,8E-01	0,499	1,5E-03
1,414	1,5E-04	1,0E+02	1,5E-02	4,9E+03	7,5E-01	0,500	7,6E-05
1,4142	9,6E-06	1,0E+02	9,6E-04	1,6E+04	1,6E-01	0,500	4,8E-06
1,41421	2,5E-06	1,0E+02	2,5E-04	1,9E+04	4,7E-02	0,500	1,3E-06
1,414214	3,1E-07	1,0E+02	3,1E-05	2,0E+04	6,1E-03	0,500	1,5E-07
1,4142136	2,7E-08	1,0E+02	2,7E-06	2,0E+04	5,2E-04	0,500	1,3E-08
1,41421356	1,7E-09	1,0E+02	1,7E-07	2,0E+04	3,3E-05	0,500	8,4E-10
1,414213562	2,6E-10	1,0E+02	2,6E-08	2,0E+04	5,2E-06	0,500	1,3E-10
1,4142135624	1,9E-11	1,0E+02	1,9E-09	2,0E+04	3,7E-07	0,500	9,5E-12
1,41421356237	2,2E-12	1,0E+02	2,2E-10	2,0E+04	4,3E-08	0,500	1,1E-12

Пример 2.

Вариант 1.

$$\begin{split} &\Delta(E_n) = \Delta(1 - n \cdot E_{n-1}) = n \cdot \Delta(E_{n-1}) \implies \\ &\delta(E_n) = \frac{\Delta(E_n)}{E_n} = n \cdot \frac{\Delta(E_{n-1})}{E_n} \cdot \frac{E_{n-1}}{E_{n-1}} = n \cdot \frac{E_{n-1}}{E_n} \cdot \delta(E_{n-1}) \end{split}$$

Ho, $E_n < E_{n-1}$ отсюда

$$\delta(E_n) > n \cdot \delta(E_{n-1}) > n \cdot (n-1) \cdot \delta(E_{n-2}) > \dots > n! \cdot \delta(E_0)$$

Вариант 2.

$$\begin{split} &\Delta(E_{n-1}) = \Delta\left(\frac{1-E_n}{n}\right) = \frac{\Delta(E_n)}{n} \implies \\ &\delta(E_{n-1}) = \frac{\Delta(E_n)}{n \cdot E_{n-1}} = \frac{\Delta(E_n)}{n \cdot E_{n-1}} \cdot \frac{E_n}{E_n} = \frac{1}{n} \cdot \frac{E_n}{E_{n-1}} \cdot \delta(E_n) \end{split}$$

Откуда

$$\delta(E_0) < \frac{\delta(E_n)}{n!}$$

n	δ(E _n)(1)	δ(E _n)(2)
0	2,0E-17	3,0E-20
1	3,4E-17	5,1E-20
2	9,6E-17	1,4E-19
3	3,7E-16	5,4E-19
4	1,8E-15	2,6E-18
5	1,0E-14	1,5E-17
6	7,2E-14	1,1E-16
7	5,7E-13	8,4E-16
8	5,1E-12	7,5E-15
9	5,0E-11	7,4E-14
10	5,5E-10	8,1E-13
11	6,5E-09	9,7E-12
12	8,4E-08	1,2E-10
13	1,2E-06	1,7E-09
14	1,8E-05	2,6E-08
15	2,8E-04	4,1E-07
16	4,7E-03	7,0E-06
17	8,5E-02	1,3E-04
18	1,6E+00	2,4E-03
19	3,2E+01	4,8E-02
20	6,8E+02	1,0E+00

Пример 3.

$$\frac{\left(\sin(x+\Delta x)+\varepsilon_1\right)-\left(\sin(x)+\varepsilon_0\right)}{\Delta x}=\frac{\sin(x+\Delta x)-\sin(x)}{\Delta x}+\frac{\varepsilon_1-\varepsilon_0}{\Delta x}$$

Но

$$\left| \frac{\varepsilon_1 - \varepsilon_0}{\Delta x} \right| \le \frac{\left| \varepsilon_1 \right| + \left| \varepsilon_0 \right|}{\left| \Delta x \right|} \le 2 \frac{\varepsilon_M}{\left| \Delta x \right|},$$

где $\varepsilon_{\scriptscriptstyle M}$ - машинная точность компьютера.

Важнейшее свойство вычислительных алгоритмов — устойчивость к накоплению погрешности вычислений (вычислительная устойчивость)!

Понятие о вероятностной оценке погрешности

Пусть необходимо вычислить сумму:

$$u = x_1 + x_2 + ... + x_n$$

в которой все слагаемые заданы с погрешностями Δx_i соответственно. Тогда

$$\Delta_u = \Delta x_1 + \Delta x_2 + \ldots + \Delta x_n$$

и если

$$\Delta x_i \leq \Delta, \quad i = \overline{1, n}$$

TO

$$\Delta_{u} \leq n\Delta$$

На практике, фактические ошибки отдельных слагаемых, как правило имеет различные знаки и, следовательно, частично компенсируют друг друга. Поэтому наряду с теоретической предельной погрешностью суммы Δ_u используют *практическую предельную погрешность* Δ_u^* - реализуемой с некоторой мерой достоверности.

В простейшем случае можно предположить, что абсолютные погрешности слагаемых независимы и подчиняются нормальному закону (с нулевым математическим ожиданием) с одной и той же мерой точности.

Пусть

$$P(|\Delta x_i| \le \Delta) > \gamma$$

тогда можно доказать, что с той же мерой достоверности

$$\Delta_u \leq \Delta \sqrt{n}$$

Таким образом, за практическую предельную абсолютную погрешность суммы можно принять

$$\Delta_{u}^{*} = \Delta \sqrt{n}$$

В частности для

$$S = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \Delta_S = \frac{1}{n} n \Delta = \Delta, \quad \Delta_S^* = \frac{\Delta \sqrt{n}}{n} = \frac{\Delta}{\sqrt{n}}$$

И

$$\Delta_u^* \longrightarrow_{n \to \infty} 0$$
.

Аналогично, для случая умножения n сомножителей с одинаковой относительной предельной погрешностью δ можно доказать, что

$$\delta_u^* = \delta \sqrt{n}$$

Обратная задача теории погрешности

Задача. Какова должна быть абсолютная (относительная) погрешность аргументов функции, чтобы ее абсолютная (относительная) погрешность не превышала заданной величины.

Пусть

$$u = f(x_1, ..., x_n), \quad \Delta_u = \sum_{i=1}^n \left| \frac{\partial f}{\partial x_i} \right| \cdot \Delta_{x_i}$$

Принцип равного влияния:

$$\left| \frac{\partial f}{\partial x_i} \right| \cdot \Delta_{x_i} = const, \quad i = 1, ..., n$$

Тогда

$$\Delta_{u} = n \cdot \left| \frac{\partial f}{\partial x_{i}} \right| \cdot \Delta_{x_{i}} \quad \Rightarrow \quad \Delta_{x_{i}} = \frac{\Delta_{u}}{n \cdot \left| \frac{\partial f}{\partial x_{i}} \right|}, \quad \delta_{x_{i}} = \frac{\Delta_{u}}{n \cdot \left| \frac{\partial f}{\partial x_{i}} \right| \cdot \left| x_{i} \right|}$$

Пример 9.

$$V = \pi R^2 H$$
, $R = 2M$, $H = 3M$, $\Delta_V = 0.1M^3$, Δ_R , $\Delta_H = ?$

$$\frac{\partial V}{\partial R} = 2\pi RH \approx 12\pi, \quad \frac{\partial V}{\partial H} = \pi R^2 \approx 4\pi$$

$$\Delta_R = \frac{\Delta_V}{2 \cdot \left| \frac{\partial V}{\partial R} \right|} \approx \frac{0.1}{2 \cdot 12 \cdot \pi} \approx 0.0013, \quad \Delta_H = \frac{\Delta_V}{2 \cdot \left| \frac{\partial V}{\partial H} \right|} \approx \frac{0.1}{2 \cdot 4 \cdot \pi} \approx 0.0040$$

$$V \approx 12 \cdot \pi \approx 37.7$$
, $\delta_V = 0.27\%$,

$$\delta_R = \frac{0.0013}{2} \cdot 100\% = 0.065\%, \quad \delta_H = \frac{0.0040}{3} \cdot 100\% = 0.133\%$$

Особенности машинной real арифметики

士	мантисса	порядок
---	----------	---------

Внутренне представление – пара целых чисел.

Нарушение законов арифметики.

$$1. \, Accouuamuвный: (a+b)+c=a+(b+c)$$

Для мантиссы, содержащей два десятичных разряда.

$$a=1$$
, $b=0.04$, $c=0.04$, $a+b+c=1.08$
 $a=0.10\cdot10^{1}$, $b=0.40\cdot10^{-1}$, $c=0.40\cdot10^{-1}$

$$a+b=0.10\cdot 10^{1}+0.40\cdot 10^{-1}=0.10\cdot 10^{1}+0.0040\cdot 10^{1}=$$

=0.104\cdot 10^{1}\approx 0.10\cdot 10^{1}
(a+b)+c\approx 0.10\cdot 10^{1}, \(\Delta=0.08\)

$$b+c=0.40\cdot 10^{-1}+0.40\cdot 10^{-1}=0.80\cdot 10^{-1}$$

$$a+(b+c)=0.10\cdot 10^{1}+0.80\cdot 10^{-1}=0.10\cdot 10^{1}+0.008\cdot 10^{1}=$$

$$=0.\underline{10}8\cdot 10^{1}\approx 0.11\cdot 10^{1}, \ \Delta=0.02$$

Таким образом

$$(a+b)+c \neq a+(b+c)$$

2. Дистрибутивный

$$(a+b)\cdot c \neq a\cdot c+b\cdot c$$

Если порядок [9,-9], тогда ε_M =0.10·10⁻⁹.

Пусть

 M_R – множество чисел типа real,

R — множество рациональных чисел, D — множество действительных чисел.

Тогда

$$M_R \subset R \subset D$$

 M_R – конечное.

Литература

- 1. Демидович Б.П., Марон И.А. Основы вычислительной математики. Издание 7-ое. М., Лань, 2009-c.17-52.
- 2. Андреева Е.В., Босова Л.Л., Фалина И.Н. Математические основы информатики. Учебное пособие. М.: Бином. Лаборатория знаний, 2007 с.74-88.