

Lecture Knowledge-based Systems

Part 4 – Pre-trained Language Models

Dr. Mohsen Mesgar

**Universität Duisburg-Essen** 

## **Exam**



Offen im Denken

- In total 21 students have participated in the survey.
- The exam date is 01.08.2022 16:00 -18:00.
- Die globale Anmeldephase läuft vom 02.05.2022 bis 13.05.2022
- Where? I'll update you

#### Pooling exam date

Check all dates in which you can take the exam. The exam is schriftlich and takes 2 hours.

| Response                    | Average | Total |
|-----------------------------|---------|-------|
| 01.08.2022 16:00-18:00      | 62%     | 13    |
| 02.08.2022 16:00-18:00      | 57%     | 12    |
| 03.08.2022 10:00-12:00      | 48%     | 10    |
| Total responses to question | 100%    | 21/21 |

## Recall ...



- What is (artificial) intelligence? The ability to acquire and apply knowledge and skills to achieve complex goals.
- Symbolic: Knowledge is encoded by symbols that refer to the knowledge.
- connectionist: Knowledge is embedded in parameters of a model.



# Any other open questions?





# In this lecture, you learn about ...



- Pretrained language models (LMs)
  - Unidirectional
  - Bidirectional
- LMs as knowledge base
  - LMs and factual knowledge
  - LMs and linguistic knowledge
  - LMs and word sense knowledge





- Given an input sequence of tokens  $\mathbf{w} = [w_1, w_2, ..., w_N]$ , unidirectional language models assign a probability  $p(\mathbf{w})$  to the sequence.
- This probability is calculated as follows

$$p(\mathbf{w}) = \prod_{t} p(w_t | w_{t-1}, \dots, w_1).$$

# **Example**



**Offen** im Denken

$$P_{(w_1,w_2,...,w_n)} = p(w_1)p(w_2|w_1)p(w_3|w_1,w_2)...p(w_n|w_1,w_2,...,w_{n-1})$$
$$= \prod_{i=1}^n p(w_i|w_1,...,w_{i-1})$$



 $P(S) = P(Where) \times P(are \mid Where) \times P(we \mid Where are) \times P(going \mid Where are we)$ 

https://thegradient.pub/understanding-evaluation-metrics-for-language-models/

# How to get the probability?



- There are different ways to define the probability function
  - p(w\_t|w\_(t\_1),...w\_1)
- State-of-the-art LMs use deep neural models and softmax to estimate the probability



# More formally



**Offen** im Denken



output vector of a neural network at position t

## **Softmax**



$$\sigma(\vec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$



# Knowledge is embedded



**Offen** im Denken

 The knowledge about words and their relations in a language is encoded in the parameters (connections) of the neural language model



# Knowledge is embedded



**Offen** im Denken

 The knowledge about words and their relations in a language is encoded in the parameters (connections) of the neural language model



Today, we assume that the model already knows the knowledge. The model is **pretrained.** "How to train LMs" is what we discuss in next lectures.

# **Architecture of Neural Language Models**



- The difference in the neural language models is in how they compute h\_t
- Different architectures have been explored
  - Multi-layer-perceptron
  - Convolutional layers
  - Recurrent neural networks
  - Transformers (self-attention mechanism)

# **Examples of unidirectional LM**



- Fairseq-fconv (http://proceedings.mlr.press/v70/ dauphin17a.html)
  - Convolutional neural model
- Transformer-XL (<a href="https://arxiv.org/abs/1901.02860">https://arxiv.org/abs/1901.02860</a>)
  - Transformer-based model

# **Bidirectional Language Models**



- •In many downstream applications we mostly care about having access to contextual representations of words,
- word representations are a function of the entire context of a unit of text such as a sentence or paragraph, and not only conditioned on previous words.

$$p(w_i) = p(w_i | w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_N)$$

# **Examples of Bidirectional LM**



**Offen** im Denken

- ELMo (https://allenai.org/allennlp/software/elmo)
  - Deep RNN-based LM



#### BERT

- Transformer-based LM
- Uses self-attention mechanism to condition representations of a word on its leand right context

#### BART

Transformer-based LM

#### RoBERTa

Transformer-based LM

#### GPT

Transformer-based LM



#### **Practice I**



- Use google Colab (<a href="https://colab.research.google.com">https://colab.research.google.com</a>)
  - More information (<a href="https://huggingface.co/course/chapter0/1">https://huggingface.co/course/chapter0/1</a>)
- Try out 20 different contexts to see what words BERT suggests for the next word
  - https://rb.gy/3k5bsc

# World Knowledge



- We observed that symbolic KB can give us factual knowledge about world
- Google RE: place\_of\_death, date\_of\_birth, education\_degree, place\_of\_birth (https://code.google.com/archive/p/ relation- extraction-corpus/)



# LM and factual knowledge



**Offen** im Denken

- Define a template to query LMs
  - place\_of\_death —> [S] died in [O]

•

```
result = unmasker(" Diego de Arroyo died in [MASK].")
print([r["token_str"] for r in result])
```

['madrid', 'manila', 'lima', 'seville', 'barcelona']

#### **Practice II**



- Use your notebook in Google Colab (<a href="https://colab.research.google.com">https://colab.research.google.com</a>)
- Download the Google RE dataset (https://code.google.com/archive/p/relation-extraction-corpus/)
  - Focus on "place of birth", "date of birth" and "place of death" relations
  - How many facts do exist for each relation?
- Define a template for each relation to query a LM
- Select a LM, e.g. BERT, RoBERTA, ELMo, ...
- For how many facts does the selected LM return the correct value?
  - compute P@1
  - P@k: Is the correct value among the k top outputs that the LM returns?
- Write a report in overleaf without screen shots

# LMs and commonsense relationships between words



**Offen** im Denken

## ConceptNet

- a multi- lingual knowledge base,
- built on top of Open Mind Common Sense (OMCS) sentences
- OMCS represents commonsense relationships be- tween words and/or phrases
- English part of ConceptNet has single-token objects covering 16 relations
- For this knowledge source there is no explicit alignment of facts to Wikipedia sentences.

# LMs and commonsense relationships between words



**Offen** im Denken

# ConceptNet

•

|            | AtLocation      | You are likely to find a overflow in a | drain     | sewer [-3.1], canal [-3.2], toilet [-3.3], stream [-3.6], <b>drain [-3.6</b> ]          |
|------------|-----------------|----------------------------------------|-----------|-----------------------------------------------------------------------------------------|
|            | CapableOf       | Ravens can                             | fly       | fly [-1.5], fight [-1.8], kill [-2.2], die [-3.2], hunt [-3.4]                          |
|            | CausesDesire    | Joke would make you want to            | laugh     | cry [-1.7], die [-1.7], laugh [-2.0], vomit [-2.6], scream [-2.6]                       |
| ConceptNet | Causes          | Sometimes virus causes                 | infection | disease [-1.2], cancer [-2.0], infection [-2.6], plague [-3.3], fever [-3.4]            |
|            | HasA            | Birds have                             | feathers  | wings [-1.8], nests [-3.1], <b>feathers</b> [-3.2], died [-3.7], eggs [-3.9]            |
|            | HasPrerequisite | Typing requires                        | speed     | patience [-3.5], precision [-3.6], registration [-3.8], accuracy [-4.0], speed [-4.1]   |
|            | HasProperty     | Time is                                | finite    | short [-1.7], passing [-1.8], precious [-2.9], irrelevant [-3.2], gone [-4.0]           |
|            | MotivatedByGoal | You would celebrate because you are    | alive     | happy [-2.4], human [-3.3], alive [-3.3], young [-3.6], free [-3.9]                     |
|            | ReceivesAction  | Skills can be                          | taught    | acquired [-2.5], useful [-2.5], learned [-2.8], combined [-3.9], varied [-3.9]          |
|            | UsedFor         | A pond is for                          | fish      | swimming [-1.3], fishing [-1.4], bathing [-2.0], <b>fish [-2.8]</b> , recreation [-3.1] |

## **Practice III**



```
result = unmasker("Birds have [MASK].")
print([r["token_str"] for r in result])

['wings', 'eyes', 'feathers', 'nectar', 'nests']
```



Offen im Denken

subject-verb agreement in English

```
result = unmasker("the game that the guard hates [MASK] bad .")
print([r["token_str"] for r in result])

['is', 'was', 'the', 'goes', 'sounds']
```

24

#### **Practice IV**



- How to get dataset for subject-verb agreement?
  - Go to wikipedia or any other textual corpus in NLTK
  - Extract 1000 sentences
  - Mask all verbs
    - How to automatically find which word is a verb? Use NLTK or SpaCy
- https://github.com/BeckyMarvin/LM\_syneval
- For how many sentences your LM returns a verb that is in agreement with its subject? Report P@1
- Write a paragraph about this experiment in overleaf.



**Offen** im Denken

#### Anaphora

- "Tina went to bed as soon as she reached home",
  - both Tina and she refer to the same person.
  - Tina is called an "antecedent" and she an "anaphor".



**Offen** im Denken

#### Reflexive anaphora

- are those that use reflexive pronouns, i.e., pronouns that end in –
   self or –selves.
- When a sentence's subject and object refers to the same individual, we use reflexive anaphora
  - "Peter shot himself in the foot."
  - "Peter bounced the ball to himself."
  - "Amy and Lizzie cried themselves to sleep."



Offen im Denken

Reflexive Anaphora

```
result = unmasker("Amy and Lizzie cried [MASK] to sleep.")

print([r["token_str"] for r in result])

['themselves', 'herself', 'me', 'them', 'him']
```

28

# LMs and word sense knowledge



Offen im Denken

 The word sense disambiguation (WSD) task is typically formulated as labeling words in context with their senses as defined by a dictionary or other lexical resource.

"The *bank* will not be accepting cash on Saturdays."





# LMs and word sense knowledge



Offen im Denken

Many resources exist to support work on word senses.

#### WordNet

- Provides a fine-grained and comprehensive inventory of words and their senses for English.
- Several large annotated corpora have been constructed using WordNet senses,
  - SemCor
  - OntoNotes: has sense annotations for nouns and verbs,
  - Pattern Dictionary of English Prepositions (PDEP) corpus

# LMs and word sense knowledge



```
[58] result = unmasker("The bank will not be accepting cash on Saturdays. bank is a [MASK].")
print([r["token_str"] for r in result])

['bank', 'failure', 'banks', 'mistake', 'business']

result = unmasker("The river overflowed the bank. bank is a [MASK].")
print([r["token_str"] for r in result])

□ ['river', 'bank', 'lake', 'pond', 'wall']
```

# **Summary**



- Pretrained language models (LMs)
  - Unidirectional
  - Bidirectional
- LMs as knowledge base
  - LMs and factual knowledge
  - LMs and linguistic knowledge
  - LMs and word sense knowledge

# Readings



Offen im Denken

## **Mandatory**

- https://aclanthology.org/D19-1250.pdf
- https://arxiv.org/pdf/1901.05287.pdf
- <a href="https://aclanthology.org/2021.blackboxnlp-1.43.pdf">https://aclanthology.org/2021.blackboxnlp-1.43.pdf</a>



#### **Practice V**



- Use your notebook in Google Colab (<a href="https://colab.research.google.com">https://colab.research.google.com</a>)
- Play with embeddings of some words
  - https://www.shanelynn.ie/word-embeddings-in-python-with-spacyand-gensim/
  - Check the relation between countries and cities
  - The word representation of which word is the nearest to the output vector of v(king) - v(man) + v(woman)?
  - Relations between words in a language can be mapped to mathematical relations between their embeddings in an embedding space

#### **Practice VI**



- Open GPT-3 playground: <a href="https://beta.openai.com/playground">https://beta.openai.com/playground</a>
- Give it some hints (a.k.a prompts) and let it complete the rest of the text?
  - "This is a text about knowledge base systems. We aim at "
- Does it look knowledgeable?
- Test it for various properties of knowledge bases
  - "Tail is part of a cat. Is this claim valid?"
  - "Birds can fly. is it correct?" Vs "Birds cannot fly. is it correct?"
  - "Musician is part of orchestra. Arm is par of a musician. Can we claim that arm is part of orchestra?"
  - Find an example that GPT-3 does not have any knowledge about?