1. Let function f be defined by the polynomial below:

$$f(x) = 7x^4 + 4x^3 + 5x^2 - 2x - 8$$

Draw lines that match each function reflection with its polynomial:

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\overline{x}	f(x)	a(x)	h(x)
	f(x)	g(x)	h(x)
_1	2	$\begin{array}{ c c } g(x) \\ \hline 5 \\ \end{array}$	7
2	5	4	9
3	4	1	2
4	1	8	3
5	9	3	8
6	6	9	1
7	3	2	5
8	7	6	6
9	8	7	4

3. Evaluate h(7).

$$h(7) = 5$$

4. Evaluate $g^{-1}(1)$.

$$g^{-1}(1) = 3$$

5. By filling more rows of the table, it is possible to make function f even. If that were done, what would be the value of f(-4)?

If function f is even, then

$$f(-4) = 1$$

6. By filling more rows of the table, it is possible to make function h **odd**. If that were done, what would be the value of h(-8)?

If function h is odd, then

$$h(-8) = -6$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = x^2 + 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = (-x)^2 + 1$$

 $p(-x) = x^2 + 1$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^2 + 1)$$

 $-p(-x) = -x^2 - 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 8x - 7$$

a. Evaluate f(9).

step 1: multiply by 8 step 2: subtract 7

$$f(9) = 8(9) - 7$$
$$f(9) = 65$$

b. Evaluate $f^{-1}(17)$.

step 1: add 7 step 2: divide by 8

$$f^{-1}(x) = \frac{x+7}{8}$$
$$f^{-1}(17) = \frac{(17)+7}{8}$$
$$f^{-1}(17) = 3$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(5).

$$b(5) = 6$$

b. Evaluate $b^{-1}(8)$.

$$b^{-1}(8) = 1$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	6	-6	-6	6
-1	-7	7	7	-7
0	0	0	0	0
1	7	-7	-7	7
2	-6	6	6	-6

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.