Machine Learning HW7 Report

學號:R07922134 系級:資工碩一 姓名:陳紘豪

1. PCA of color faces:

a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces,也就是對應到前五大 Eigenvalues 的 Eigenvectors。

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

<u>0.jpg</u>

<u>69.jpg</u>

87.jpg

<u>111.jpg</u>

414.jpg

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

Eigenface 1	Eigenface 2	Eigenface 3	Eigenface 4	Eigenface 5
4.1%	2.9%	2.4%	2.2%	2.1%

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。(不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

註: Reconstruction loss 統一都用 MSE 去計算,pixel 值範圍是在 [-1, 1] 之間

方法一: Autoencoder 降到 64 維, 再用 t-SNE 降到 2 維, 最後用 K-means 分 2 群

Reconstruction loss	Public Accuracy	Private Accuracy
0.03070498320754546	0.96974	0.96935

(方法一的成績是 kaggle 上較好的成績,但考慮到執行時間,在 cluster.sh 中我 reproduce 的結果是另外一個 public 為0.96766 的分數)

方法二: PCA 降到 10 維, 再用 K-means 分 2 群

Reconstruction loss	Public Accuracy	Private Accuracy
0.08372610062360764	0.50096	0.50019

在進行降維前,我都有把圖片 normalize 到 [-1, 1] 之間,所以算出來的 MSE loss 才會是小於 1 的小數,由這兩個方法的結果看來,單純只用 PCA 降維的 accuracy 只有 0.5, 跟亂猜沒什麼兩樣,但是若是使用 autoencoder + t-SNE 可以達到相當高的 accuracy, 相較於傳統的 PCA,autoencoder 學出來的 latent features 比較能完整的表達出兩個 dataset 的相異性

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維2的 feature)

其中visualization.npy 中前 2500 個 images 來自 dataset A, 後 2500 個 images 來自 dataset B, 比較和自己預測的 label 之間有何不同。

這兩張圖的結果,是先經由 Autoencoder 降到 64 維再用 TSNE 降到 2 維後可視化的結果,其中上圖是利用 Ground-truth labels 所畫出的圖,下圖是利用 kmeans 分 2 群後所預測出 labels 所構成的圖。

可以觀察到 kmeans 做分群會根據點彼此的距離分成兩個 clusters,但是如果遇到像 ground-truth 中的情形,也就是兩個不同 label 的點距離很近,那 kmeans 可能就無法分 得很完美,如果我 autoencoder 的 features 取的更完美些,那麼可能就可再得到更高的 準確率。

c. 請介紹你的model架構(encoder, decoder, loss function...), 並選出任意 32張圖片, 比較原圖片以及用decoder reconstruct的結果。

Loss function: MSE loss

Encoder architecture:

前面是 4 大層的 Conv layer 所組成,經過降維後再經過 Linear 最終降成 64 維的 latent vector

Layer (type)	Output Shape	Param #
Conv2d-1 LeakyReLU-2 Conv2d-3 BatchNorm2d-4 LeakyReLU-5 Conv2d-6 BatchNorm2d-7 LeakyReLU-8 Conv2d-9 BatchNorm2d-10 LeakyReLU-11 Linear-12	[-1, 16, 16, 16] [-1, 16, 16, 16] [-1, 32, 8, 8] [-1, 32, 8, 8] [-1, 32, 8, 8] [-1, 64, 4, 4] [-1, 64, 4, 4] [-1, 64, 4, 4] [-1, 128, 2, 2] [-1, 128, 2, 2] [-1, 128, 2, 2] [-1, 128, 2, 2]	784 0 8,224 64 0 32,832 128 0 131,200 256 0 65,664
BatchNorm1d-13 LeakyReLU-14 Linear-15 ====================================		256 0 8,256 ======

Decoder architecture:

採用和 Encoder 完全相反且對稱的架構,最後一層會過 Tanh 使得 output image 的範圍是 [-1, 1],和當初 input image 的範圍是一樣的。

Layer (type)	Output Shape	Param #
======================================	 [-1, 128]	 8,320
ReLU-2	[-1, 128]	0
Linear-3	[-1, 512]	66,048
BatchNorm1d-4	[-1, 512]	1,024
ReLU-5	[-1, 512]	0
ConvTranspose2d-6	[-1, 64, 4, 4]	131,136
BatchNorm2d-7	[-1, 64, 4, 4]	128
ReLU-8	[-1, 64, 4, 4]	0
ConvTranspose2d-9	[-1, 32, 8, 8]	32,800
BatchNorm2d-10	[-1, 32, 8, 8]	64
ReLU-11	[-1, 32, 8, 8]	0
ConvTranspose2d-12	[-1, 16, 16, 16]	8,208
BatchNorm2d-13	[-1, 16, 16, 16]	32
ReLU-14	[-1, 16, 16, 16]	0
ConvTranspose2d-15	[-1, 3, 32, 32]	771
Tanh-16	[-1, 3, 32, 32]	0
======================================		

Input size (MB): 0.00

Forward/backward pass size (MB): 0.22

Params size (MB): 0.95

Estimated Total Size (MB): 1.17

Reconstruct:

Original image:

Reconstructed image:

