

Συμμετέχοντες:

Παναγιώτης Παζιώνης (Α.Μ.: 03120852) Ιωάννης Τσαντήλας (Α.Μ.: 03120883)

<u>Πείραμα 4:</u> <u>Βασικά Χαρακτηριστικά Τελεστικών</u> <u>Ενισχυτών και Συγκριτών</u>

Ο Τελεστικός Ενισχυτής ως Συγκριτής

Ζήτημα 7

Η σχέση που συνδέει την τάση V_{ID} με τις τάσεις V_{IN} και V_{REF} είναι η εξής: $V_{ID} = V_{IN} - V_{REF}$. Ο τελεστικός ενισχυτής ενισχύει την τάση V_{ID} κατά τρόπο $V_{OUT} = A * V_{ID} \approx \left|V_{cc}\right|$, όπου A ένας συντελεστής ανάλογος του ενισχυτή. Ωστόσο ισχύει η σχέση $-V_{cc} < V_{OUT} < V_{cc}$. Έτσι εάν: α) $V_{IN} > V_{REF}$ τότε $V_{ID} < 0$ και άρα $V_{OUT} \approx -V_{cc}$. β) $Av V_{IN} > V_{REF}$ τότε $V_{ID} > 0$ και άρα $V_{OUT} \approx V_{cc}$. Ας σημειωθεί ότι επειδή ενισχυτής 741 μπορεί να έχει κάποιο ελάττωμα οι τιμές της τάσης V_{OUT} μπορεί να μην προσεγγίζουν την τάση $|V_{cc}|$.

Ζήτημα 8

Κατασκευάζουμε το κύκλωμα του ΣΧ. 6. |Vcc| = 5V

Vin	V _{оит}
0V	-3,16V
1V	-3,15V
2,1V	4,53V
3V	4,54V
2V	4,6V

V _{IN}	Vоит
0V	-3,15V
1V	-3,15V
2V	4,7V
3V	4,74V

Πίνακες 4.1, 4.2: Με σταθερή V_{REF}, αυξάνουμε σταδιακά την V_{IN} και παρατηρούμε την V_{OUT}. (Αριστερά) V_{REF} = 2V, και παρατηρούμε ότι για V_{IN} = V_{REF} = 2V, η V_{OUT} ≠0 (διότι πρακτικά λόγω σφάλματος V_{IN} ≠ V_{REF}.
(Δεξιά) V_{REF} = 1,5V.

Σχήμα 4.1: Κύκλωμα Ζητήματος 8.

Οι μετρήσεις μας βρίσκονται σε συμφωνία με τις παρατηρήσεις μας. Υπενθυμίζουμε ότι ο λόγος που η τάση V_{OUT} δεν προσεγγίζει αρκετά την τιμή $|V_{\text{cc}}|$ είναι επειδή ο ενισχυτής έχει κάποια ελαττώματα.

Λήψη Οπτικής Ένδειξης

Ζήτημα 9

Συνδέουμε το κύκλωμα του Σχήματος 4.3. Η αντίσταση έχει τιμή $R=3,88k\Omega$, ενώ $V_{cc}=5V$ (σταθερή). Θεωρητικά, θα πρέπει ώστε όταν $V_{IN}>V_{REF}$ να ανάβει το LED, ενώ όταν $V_{IN}<V_{REF}$ να μην ανάβει το LED. Πράγματι, εάν:

- $V_{IN} = 4,2V$, $V_{REF} = 3V$, $\delta \eta \lambda \alpha \delta \dot{\eta} V_{IN} > V_{REF}$, to LED $\alpha v \dot{\alpha} \beta \epsilon i$.
- $V_{IN} = 2,7V$, $V_{REF} = 3,1V$, $\delta \eta \lambda \alpha \delta \dot{\eta} V_{IN} < V_{REF}$, to LED παραμένει κλειστό.

Σχήματα 4.2, 4.3: (Αριστερά) Πάνω όψη του ενισχυτή. (Δεξιά) Κύκλωμα Ζητήματος 9, στο οποίο συνδέουμε το κύκλωμα του Σχήματος 4.3'.

Σχήμα 4.3': Συμπληρωματικό Κύκλωμα Ζητήματος 9 στο Σχήμα 4.3.

Ζήτημα 10

Αλλάζουμε τη συνδεσμολογία ώστε η V_{REF} να πηγαίνει στην είσοδο (3) του ενισχυτή (+IN) και η V_{IN} στην είσοδο (2) του ενισχυτή (-IN), με σκοπό να αντιστρέψουμε την λειτουργία του κυκλώματος. Πράγματι:

- Vin = 2,7V, Vref = 1,1V, δηλαδή Vin > Vref, το LED παραμένει κλειστό.
- $V_{IN} = 2.7V$, $V_{REF} = 3.1V$, $\delta \eta \lambda \alpha \delta \dot{\eta} V_{IN} < V_{REF}$, to LED $\alpha v \dot{\alpha} \beta \epsilon i$.

Ο Συγκριτής με ΑC Είσοδο

Ζήτημα 11

Η FG αντικαθιστά την V_{IN}, παράγοντας αντί για DC τάση, μια ημιτονοειδή. Για τις χρονικές στιγμές που το ημιτονοειδές σήμα έχει τιμή V_{SIG} < V_{REF}, στον παλμογράφο θα υπάρχει μια οριζόντια συνιστώσα DC με τιμή που θα προσεγγίζει τη -V_{CC}. Αντίθετα, εάν V_{SIG} > V_{REF}, στον παλμογράφο θα υπάρχει μια οριζόντια συνιστώσα DC με τιμή που θα προσεγγίζει τη V_{CC}.

Ζήτημα 12

Κατασκευάζουμε το κύκλωμα του Σχήματος 4.5, βάζουμε συχνότητα 100Hz, V = 1V. Η εκτροπή στην FG είναι μηδενική και θέτουμε $V_{REF} = 0.5V$, παρατηρώντας την έξοδο στον παλμογράφο, $V_{CC} = 5V$ (Εικόνες 4.1, 4.2).

Σχήμα 4.5: Κύκλωμα Ζητήματος 12. Συνδέσαμε την Γεννήτρια Συναρτήσεων (FG) στον ενισχυτή.

Εικόνες 4.1, 4.2: (Δεξιά) Έξοδος παλμογράφου. (Αριστερά) Οι τιμές στα δύο τροφοδοτικά.

Ζήτημα 13

Παραθέτουμε τις Εικόνες 4.3 έως και 4.6. με τις ανάλογες μετρήσεις/πειραματισμούς.

Εικόνα 4.3: Τριγωνική κυματομορφή.

Εικόνα 4.4: Τετραγωνική κυματομορφή.

Εικόνα 4.5: Πλάτος κυματομορφής: 1 V.

Εικόνα 4.6: Πλάτος κυματομορφής: 1V, τετραγωνική κυματομορφής.

Τα εικονικά αποτελέσματα βρίσκονται εν συμφωνία με τις παρατηρήσεις μας.

Περιορισμοί Ταχύτητας του Τελεστικού Ενισχυτή

Ζήτημα 14

Pυθμίζουμε την V_{REF} = 0V, το πλάτος στα 1V. Παραθέτονται οι Εικόνες 4.7, 4.8 με τις αντίστοιχες συχνότητες:

Εικόνα 4.7: Συχνότητα: 7kHz.

Εικόνα 4.8: Συχνότητα 1ΜΗz.