Math 116 Homework 5

Jerry Liu, 404474229

February 24, 2016

1 Homework Problems

Problem 1.

Proof.

Want to show that $(1) \Rightarrow (2)$ and $(2) \Rightarrow (1)$. $(1) \Rightarrow (2)$ Suppose (1) is true. Let ab = ac for some $a, b, c \in \mathbb{R}$. Assume $a \neq 0$. $ab = ac \Leftrightarrow ab - ac = 0 \Leftrightarrow a(b - c) = 0$. By (1), since $a \neq 0$, $b - c = 0 \Leftrightarrow b = c$.

(2) \Rightarrow (1) Assume (2) is true. Suppose $\exists a, b \in \mathbb{R}, a \neq 0, b \neq 0$ such that ab = 0. Then $a \cdot b = 0 = a \cdot 0 \Rightarrow a \cdot b = a \cdot 0$. By (2), since $a \neq 0$, b = 0. Contradiction. Similarly, since $b \neq 0$, By (2), a = 0. Contradiction. Therefore $\forall a, b \in \mathbb{R}$, if ab = 0 then a = 0 or b = 0.

Problem 2.

Proof.

Reflexivity: $P(X) \mid 0 \Leftrightarrow P(X) \mid (A(X) - A(X)) \Leftrightarrow A(X) \equiv A(X) \pmod{P(X)}$ Symmetry: Suppose $A(X) \equiv B(X) \pmod{P(X)}$, $\Leftrightarrow P(X) \mid (A(X) - B(X))$ $\Leftrightarrow \exists Q(X) \in F[X]$ such that Q(X)P(X) = (A(X) - B(X)). Let R(X) = -Q(X), then R(X)P(X) = -Q(X)P(X) = -(A(X) - B(X)) = (B(X) - A(X)) $\Leftrightarrow P(X) \mid (B(X) - A(X)) \Leftrightarrow B(X) \equiv A(X) \pmod{P(X)}$ Transitivity: Suppose $A(X) \equiv B(X) \pmod{P(X)}$ and $B(X) \equiv C(X) \pmod{P(X)}$ $\Leftrightarrow P(X) \mid (A(X) - B(X))$ and $P(X) \mid (B(X) - C(X))$ $\Leftrightarrow P(X) \mid (A(X) - B(X))$ and $P(X) \mid (B(X) - C(X))$ $\Leftrightarrow \exists M(X), N(X) \in F[X]$ s.t. M(X)P(X) = A(X) - B(X) and N(X)P(X) = B(X) - C(X)Add two equations: $(M(X) + N(X))P(X) = A(X) - C(X) \Leftrightarrow P(X) \mid (A(X) - C(X))$ $\Leftrightarrow A(X) \equiv C(X) \pmod{P(X)}$ Therefore it is an equivalence relation.

Problem 3.

Proof.

We know $A_1(X) \equiv A_2(X) \pmod{P(X)}$ and $B_1(X) \equiv B_2(X) \pmod{P(X)}$ $\Rightarrow \exists M(X), N(X) \in F[X]$ such that:

$$M(X)P(X) = A_1(X) - A_2(X)$$
(1)

$$N(X)P(X) = B_1(X) - B_2(X)$$
 (2)

(a).
$$A_1(X) + B_1(X) \equiv A_2(X) + B_2(X) \pmod{P(X)}$$

(1) + (2): $M(X)P(X) + N(X)P(X) = A_1(X) - A_2(X) + B_1(X) - B_2(X)$
 $\Leftrightarrow (M(X) + N(X))P(X) = (A_1(X) + B_1(X)) - (A_2(X) + B_2(X))$
 $\Leftrightarrow P(X) \mid ((A_1(X) + B_1(X)) - (A_2(X) + B_2(X)))$
 $\Leftrightarrow A_1(X) + B_1(X) \equiv A_2(X) + B_2(X) \pmod{P(X)}$

$$\begin{array}{l} (b). \ A_1(X) \cdot B_1(X) \equiv A_2(X) \cdot B_2(X) \pmod{P(X)} \\ \text{Want to show that } A_1(X) \cdot B_1(X) - A_2(X) \cdot B_2(X) \text{ is a multiple of } P(X). \\ A_1(X) \cdot B_1(X) - A_2(X) \cdot B_2(X) \\ = A_1(X) \cdot B_1(X) - A_2(X) \cdot B_2(X) + A_1(X) \cdot B_2(X) - A_1(X) \cdot B_2(X) \\ = A_1(X) \cdot B_1(X) - A_1(X) \cdot B_2(X) + A_1(X) \cdot B_2(X) - A_2(X) \cdot B_2(X) \\ = A_1(X)(B_1(X) - B_2(X)) + B_2(X)(A_1(X) - A_2(X)) = A_1(X)N(X)P(X) + B_2(X)M(X)P(X) \\ = (A_1(X)N(X) + B_2(X)M(X)) \cdot P(X) \\ \Rightarrow P(X) \mid (A_1(X) \cdot B_1(X) - A_2(X) \cdot B_2(X)) \\ \Leftrightarrow A_1(X) \cdot B_1(X) \equiv A_2(X) \cdot B_2(X) \pmod{P(X)} \end{array}$$

Problem 4.

Solution.

Use Euclidean Algorithm to find out the greatest common divisor Let $A(X) = 8X^4 - 12X^3 + 8X - 3$ and $B(X) = 4X^3 - 4X^2 - 3X + 2$ in $\mathbb{R}[X]$. Note: $\deg(A(X)) > \deg(B(X))$.

$$8X^{4} - 12X^{3} + 8X - 3 = (4X^{3} - 4X^{2} - 3X + 2)(2X - 1) + (2X^{2} + X - 1)$$
$$4X^{3} - 4X^{2} - 3X + 2 = (2X^{2} + X - 1)(2X - 3) + (2X - 1)$$
$$2X^{2} + X - 1 = (2X - 1)(X + 1) + 0$$

So $gcd = X - \frac{1}{2}$ since the leading coefficient needs to be monic

Problem 5.

Solution.

We know $A(X) = X^3 + 2X + 2$ and $B(X) = X^2 + 3X + 4$ in $\mathbb{F}_5[X]$. By Extended Euclidean Algorithm:

$$X^{3} + 2X + 2 = (X^{2} + 3X + 4)(X + 2) + (2X + 4)$$
$$X^{2} + 3X + 4 = (2X + 4)(3X + 3) + (2)$$
$$3X + 3 = (2)(4X + 4) + 0$$

So we can construct backwards:

$$\begin{aligned} 2 \cdot 3 &= 1 = 3((X^2 + 3X + 4) - (2X + 4)(3X + 3) = B(X) - (3X + 3)(A(X) - (X + 2)B(X))) \\ &= 3((2X + 2)A(X) + (1 + 3X^2 + X + 3X + 1)B(X)) \\ &= 3((2X + 2)A(X) + (3X^2 + 4X + 2)B(X)) \\ &= (X + 1)A(X) + (4X^2 + 2X + 1)B(X) \end{aligned}$$

So when P(X) = X + 1 and $Q(X) = 4X^2 + 2X + 1$, A(X)P(X) + B(X)Q(X) = 1.

2 Book Problems

Problem. 21.

We know that 601 is a prime.

Part. a.

Proof.

Since r < 600 divides 600, $r = 2^a \cdot 3^b \cdot 5^c$ with $a \le 3, b \le 1, c \le 2$ and these three can't be equal at the same time, otherwise r = 600. So we can split this in 3 cases: If $a \le 2$, then $r = 2^a \cdot 3^b \cdot 5^c$ with $a \le 2, b \le 1, c \le 2 \Rightarrow r \mid 2^2 \cdot 3 \cdot 5^2 = 300$; Similarly, if b = 0, $r \mid 2^3 \cdot 5^2 = 200$ and if c < 1, $r \mid 2^3 \cdot 3 \cdot 5 = 120$.

Part. b.

Proof.

By 20(e), we know $\operatorname{ord}_{601}(7) \mid \phi(601) = 600 \Rightarrow \text{ by } part \ a, \operatorname{ord}_{601}(7) \text{ divides one of } 300, 200, 120.$

Part. c.

Proof.

From 20(d), we know $a^t \equiv 1 \pmod{601}$ if and only if $r = \operatorname{ord}_{601}(7) \mid t$. $7^{300}, 7^{200}, 7^{120}$ all do not congruent to $1 \pmod{601} \Rightarrow \operatorname{ord}_{601}(7) \not\mid t$, where $t \in \{300, 200, 120\}$

Part. d.

Proof.

By part b, part c, we know that $\operatorname{ord}_{601}(7) \ge 600$. By 20(a), $\operatorname{ord}_{601}(7) \le \phi(601) = 600$. $\Rightarrow \operatorname{ord}_{601}(7) = 600 \Rightarrow 7^n \not\equiv 1 \pmod{601} \ \forall \ n < 600$. $\Rightarrow \exists \ 600 \ \text{distinct elements} \in \left\{1 = 7^{600}, 7^1, 7^2, ..., 7^{599}\right\} \pmod{601}$ $\Rightarrow 7 \ \text{is a primitive root} \pmod{601}$.

Part. e.

Solution.

If we want to check whether g is a primitive root \pmod{p} , we just check if:

$$g^{\frac{n}{q_1}} \not\equiv 1 \pmod{p}$$

$$g^{\frac{n}{q_2}} \not\equiv 1 \pmod{p}$$

$$\dots$$

$$g^{\frac{n}{q_s}} \not\equiv 1 \pmod{p}$$

where n = p - 1. If all the above holds, g is a primitive root (mod p).

Problem. 22.

We know that $2^{32} \equiv 1 \pmod{65537}$, $2^{16} \not\equiv 1 \pmod{65537}$, $3^n \equiv 1 \pmod{65537}$ iff $65536 \mid n$.

Part. a.

Solution.

Want to find $k \in \mathbb{Z}$ such that $3^k \equiv 2 \pmod{65537}$. First raise both sides by a power of 16: $3^{16k} \equiv 2^{16} \not\equiv 1 \pmod{65537}$ Then we raise both sides by a power of 32: $3^{32k} \equiv 2^{32} \equiv 1 \pmod{65537}$ $\Rightarrow 65536 \mid 32k$ but $65536 \not\mid 16k \Rightarrow 2048 \mid k$ but $4096 \not\mid k$

Part. b.

Solution.

 $2048 \mid k$ and $4096 \not\mid k$, and k < 65536. We know there are 65536/2048 = 32 multiples of 2048 and all even multiples of 2048, multiples of 4096, is discarded.

 \Rightarrow There are 16 numbers that need to be tested.

We test 3^{2048i} for i = 1, 3, 5, ..., 31 such that $3^{2048i} \equiv 2 \pmod{65537}$.

After plugging into my computer program, when i = 27, $3^{2048 \cdot 27} \equiv 3^{55296} \equiv 2 \pmod{65537}$.

Problem. 33.

Part. a.

Proof.

For degree 1, X, X + 1 are the only polynomials of degree 1 in $\mathbb{Z}_2[X]$.

It suffices to show that they are irreducible.

For degree 2, possible polynomials are: $X^2, X^2 + 1, X^2 + X, X^2 + X + 1$,

but $X \cdot X \equiv X^2$, $(X+1)^2 \equiv X^2+1$, and $X \cdot (X+1) \equiv X^2+X$. So only X^2+X+1 is irreducible.

Therefore, the only irreducible polynomials with degree < 2 in $\mathbb{Z}_2[X]$ are: $X, X+1, X^2+X+1$.

Part. b.

Proof.

If $P(X) = X^4 + X + 1$ factors, it must have at least one factor of degree at most 2. It suffices to show that $X \not\mid P(X)$, and it can be shown that $X + 1 \not\mid P(X)$ and remainder is 1; $X^2 + X + 1 \not\mid P(X)$ and the remainder is 1. Therefore P(X) cannot be factored in $\mathbb{Z}_2[X]$.

Part. c.

Proof.

$$\begin{array}{l} X^4 - (X+1) = X^4 + X + 1 \Leftrightarrow (X^4 + X + 1) \mid (X^4 - (X+1)) \Leftrightarrow X^4 \equiv X + 1 \pmod{X^4 + X + 1} \\ \Rightarrow (X^4)^2 \equiv (X+1)^2 \pmod{X^4 + X + 1} \Leftrightarrow X^8 \equiv X^2 + 2X + 1 \equiv X^2 + 1 \pmod{X^4 + X + 1} \\ \Rightarrow (X^8)^2 \equiv (X^2 + 1)^2 \pmod{X^4 + X + 1} \Leftrightarrow X^{16} \equiv X^4 + 2X^2 + 1 \equiv X^4 + 1 \equiv X \pmod{X^4 + X + 1} \end{array} \quad \Box$$

Part. d.

Proof.

Since
$$X^4 + X + 1$$
 is irreducible in $\mathbb{Z}_2[X]$, and $\deg(X) < \deg(X^4 + X + 1)$, we can divide both sides by X : $X^{16} \equiv X \pmod{X^4 + X + 1} \Rightarrow X^{15} \equiv 1 \pmod{X^4 + X + 1}$.

Problem. 34.

Part. a.

Proof.

Assume $X^2 + 1$ factors in $Z_3[X]$. $X^2 + 1$ has to have two factors of degree 1 polynomials. In $Z_3[X]$, degree 1 polynomials are: X, X + 1, X + 2, but it suffices to show that none of them divides $X^2 + 1$. Therefore it is irreducible in $Z_3[X]$.

Part. b.

Solution.

Use Euclidean Algorithm:

$$X^{2} + 1 = (2X + 1) \cdot (2X + 2) + 2$$
$$2X + 2 = 2 \cdot (X + 1) + 0$$

Then we construct back:

$$2 = (X^{2} + 1) \cdot 1 - (2X + 1) \cdot (2X + 2)$$
$$2 = (X^{2} + 1) \cdot 1 + (2X + 1) \cdot (X + 1)$$
$$1 = 2 \cdot 2 = (X^{2} + 1) \cdot 2 + (2X + 1) \cdot (2X + 2)$$

Therefore the multiplicative inverse of 1 + 2X is 2X + 2.

3 Source Code

https://github.com/jerrylzy/Math116