Lineare Algebra

Matrizen

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix}$$

Addition und Subtraktion

Matrizenmultiplikation

Quadratische Matrizen

Inverse Matrix

Eine Matrix A ist invertierbar / regulär, wenn es eine Matrix A^{-1} gibt, so dass $A \cdot A^{-1} = I$, wobei I die Einheitsmatrix ist. Andernfalls ist sie singulär.

2x2 Matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Restliche Matrizen

Eine Matrix A ist invertierbar, wenn ihr Determinant $det(A) \neq 0$. Die Inverse kann mit dem Gauß-Jordan-Verfahren oder der adjungierten Matrix gefunden werden.

Eigenschaften der Determinanten

- $\det(A^T) = \det(A)$
- $\det(cA) = c^n \cdot \det(A)$ (für eine $n \times n$ Matrix)
- $det(AB) = det(A) \cdot det(B)$
- $\det(A^{-1}) = \frac{1}{\det(A)}$
- $\det(A+B) \neq \det(A) + \det(B)$ (im Allgemeinen)
- det(A) = 0 wenn A singulär ist (d.h. nicht invertierbar).

Transponierte Matrix

$$A^T = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

Multiplikation mit Skalar

$$cA = 2 \cdot A = \begin{pmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18 \end{pmatrix}$$

Determinante

Die Determinante einer Matrix A ist ein Skalar. Sie gibt an, ob die Matrix invertierbar ist und beschreibt das Volumen des von den Spaltenvektoren aufgespannten Parallelepipeds.

2x2 Matrix und 3x3 Matrix

Allgemeine $n \times n$ -Matrix

Die Determinante einer $n \times n$ Matrix kann durch Laplace-Entwicklung (für n > 3) berechnet werden.

ſ		Entwicklung nach der j-ten Spalte
	$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$	$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$

Die folgenden Aussagen sind äquivalent:

- $det(A) \neq 0$
- Die Spaltenvektoren von A sind linear unabhängig.
- Die Zeilenvektoren von A sind linear unabhängig.
- rq(A) = n
- A ist invertierbar.
- Das LGS $A \cdot \vec{x} = \vec{b}$ hat eine eindeutige Lösung.

Lineare Gleichungssysteme

Zeilenstufenform

Die Matrix ist in Zeilenstufenform, wenn:

- Alle Zeilen, die nur Nullen enthalten, stehen am Ende der Matrix.
- Die erste Nicht-Null-Zahl in jeder Zeile (der sogenannte Pivot) ist 1 (führende Eins).
- Der Pivot jeder Zeile steht weiter rechts als der Pivot der vorherigen Zeile.

Reduzierte Zeilenstufenform (RREF) ist erreicht, wenn:

• Jede Spalte, die eine führende Eins enthält, hat nur Nullen in allen anderen Zeilen.

Beispiel

$$\begin{pmatrix} 1 & -2 & 0 & 3|5 \\ 0 & 0 & 1 & 1|3 \end{pmatrix}$$

In diesem Beispiel sind x_1 und x_3 die führenden Unbekannten, während x_2 und x_34 freie Unbekannte sind. Die Lösung kann in Parameterform dargestellt werden:

In Vektorform:

Parameterdarstellung

Gleichungen abgelesen werden.

führende Unbekannte

freie Unbekannte

nehmen.

$$x_4 = \mu \quad (\mu \in \mathbb{R})$$

Erste Zeile: $x_1 - 2x_2 + 3x_4 = 5$, daraus $x_1 = 5 + 2\lambda - 3\mu$

 $x_2 = \lambda \quad (\lambda \in \mathbb{R})$

Zweite Zeile:
$$x_3 + x_4 = 3$$
, daraus $x_3 = 3 - \mu$

$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ 0 \\ -1 \\ 1 \end{pmatrix}$

Die führenden Unbekannten sind die Variablen, die in der

Zeilenstufenform der Matrix als Pivot-Elemente auftreten.

Sie sind eindeutig bestimmt und können direkt aus den

Die freien Unbekannten sind die Variablen, die nicht als Pivot-Elemente auftreten. Sie können beliebige Werte an-

Lösbarkeit von LGS

- Eindeutige Lösung: Wenn die Matrix in Zeilenstufenform keine freien Unbekannten hat. (rg(A) = Anzahl der Unbekannten (n))
- Unendlich viele Lösungen: Wenn die Matrix in Zeilenstufenform mindestens eine freie Unbekannte hat. (rg(A) < n)
- Keine Lösung: Wenn die Matrix in Zeilenstufenform eine Zeile der Form $0 = c \pmod{c \neq 0}$ enthält. $(rg(A) \neq rg(A|\vec{c}))$

Vektorgeometrie

Einheitsvektor

Ein Einheitsvektor ist ein Vektor mit der Länge/Betrag 1.

Koliniare Vektoren

Zwei Vektoren \vec{a} und \vec{b} sind kolinear, wenn sie in die gleiche Richtung zeigen oder entgegengesetzt sind, bzw. das Vektorprodukt 0 ergibt. Mathematisch ausgedrückt: $\vec{a} = k \cdot \vec{b}$ für ein Skalar k. Der Nullvektor ist kolinear zu jedem Vektor. $\vec{a} \times \vec{b} = \vec{0}$

Komplanare Vektoren

Drei Vektoren $\vec{a}, \vec{b}, \vec{c}$ sind komplanar, wenn sie in einer Ebene liegen. Dies ist der Fall, wenn das Skalarprodukt der Kreuzprodukte Null ist: $\vec{a} \times \vec{b} \cdot \vec{c} = 0$.

Orthogonale Projektion

Die orthogonale Projektion eines Vektors \vec{a} auf einen Vektor \vec{b} wird berechnet als:

$$\vec{b}_{\vec{a}} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a} \quad \Leftrightarrow \quad |\vec{b}_{\vec{a}}| = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}|}$$

Die Projektion gibt den Anteil von \vec{a} in Richtung von \vec{b} an.

Vektorprodukt

Das Vektorprodukt (Kreuzprodukt) zweier Vektoren $\vec{a} = (a_1, a_2, a_3)$ und $\vec{b} = (b_1, b_2, b_3)$ wird berechnet als:

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_1 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\theta)$$

Das Vektorprodukt ist ein Vektor, der orthogonal zu beiden Ausgangsvektoren steht. Die Länge des Vektorprodukts entspricht der Fläche des Parallelogramms, das von den beiden Vektoren aufgespannt wird.

Eigenschaften des Vektorprodukts

- $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ (Antisymmetrie)
- Distributivität: $\vec{a}\times(\vec{b}+\vec{c})=\vec{a}\times\vec{b}+\vec{a}\times\vec{c}$
- Gemischtes Assoziativ-Gesetz: $\lambda \cdot (\vec{a} \times \vec{b}) = (\lambda \cdot \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \cdot \vec{b})$

Betrag eines Vektors

Der Betrag eines Vektors $\vec{a} = (a_1, a_2, a_3)$ wird berechnet als:

 $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

Basisvektoren

Eine Basis eines Vektorraums ist eine Menge von Vektoren, die linear unabhängig sind und den gesamten Raum aufspannen. Jeder Vektor im Raum kann als Linearkombination dieser Basisvektoren dargestellt werden.

Skalarprodukt

Das Skalarprodukt zweier Vektoren $\vec{a}=(a_1,a_2,a_3)$ und $\vec{b}=(b_1,b_2,b_3)$ wird berechnet als:

$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$$

Das Skalarprodukt ist ein Maß für die Ähnlichkeit zweier Vektoren. Es ist null, wenn die Vektoren orthogonal zueinander sind.

Winkel zwischen Vektoren

Der Winkel θ zwischen zwei Vektoren \vec{a} und \vec{b} kann mit dem Skalarprodukt berechnet werden:

$$\cos(\theta) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \quad \Leftrightarrow \quad \theta = \arccos\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}\right)$$

Gegenseitige Lage von Geraden im Raum

		Gibt es einen gemeinsamen Punkt?	
	ja	nein	
Sind die Richtungsvektoren kollinear?	ja	identisch	echt parallel
	nein	schneidend	windschief

Abstand zwischen einer Geraden und einem Punkt

Der Abstand d zwischen einer Geraden g und einem Punkt P kann mithilfe der Fläche des Parallelogramms berechnet werden, das von den Richtungsvektoren der Geraden und dem Vektor vom Punkt auf die Gerade aufgespannt wird:

$$\overrightarrow{PA} = \overrightarrow{P} - \overrightarrow{A}$$

$$F = |\overrightarrow{PA} \times \overrightarrow{a}| \quad \text{(Fläche des Parallelogramms)}$$

$$l = \frac{F}{|\overrightarrow{a}|} \quad \text{(Länge der Geraden)}$$

Koordinatendarstellung von Geraden in der Ebene

Eine Gerade in der Ebene kann durch die Gleichung

$$g: ax + by + c = 0$$

dargestellt werden.

$\label{eq:conditional} \mbox{Umrechnung Parameter darstellung} \ \rightarrow \ \mbox{Koordinatendarstellung}$

$$\vec{r}(A) = \begin{pmatrix} x \\ y \end{pmatrix} = \vec{r}(P) + \lambda \cdot \vec{a}$$

Daraus lässt sich ein Gleichungssystem ableiten

Ebenen

Parameterdarstellung

Eine Ebene im Raum kann durch die Gleichung

$$E: \vec{r}(P) + \lambda_1 \cdot \vec{a} + \lambda_2 \cdot \vec{b}$$

dargestellt werden, wobei $\vec{r}(P)$ ein Punkt auf der Ebene ist und \vec{a} und \vec{b} zwei Richtungsvektoren der Ebene sind.

Koordinatendarstellung

Eine Ebene kann auch in der Koordinatendarstellung angegeben werden:

$$E: ax + by + cz + d = 0$$

Hierbei sind a, b, c die Komponenten des Normalenvektors der Ebene und d eine Konstante.

Abstand zwischen einer Ebene und einem Punkt

Um den Abstand l zu berechnen, gehen wir folgendermassen vor: Wir wählen einen beliebigen Punkt P der Ebene E (rechts "im Profil" abgebildet). Dann projizieren wir den Verbindungsvektor \overrightarrow{PA} auf den Normalenvektor \overrightarrow{n} der Ebene. Die Länge dieser Projektion ist gerade der gesuchte Abstand l.

$$l = \frac{|ax_A + by_A + cz_A + d|}{|\vec{n}|}$$

$\begin{tabular}{ll} Umrechnung & Koordinatendarstellung \\ \hline \rightarrow & Parameter darstellung \\ \hline \end{tabular}$

Wir bestimmen zwei beliebige Punkte auf g, indem wir die x-Koordinaten frei wählen und die zugehörigen y-Koordinaten aus der Koordinatendarstellung von g berechnen. Aus diesen beiden Punkten können wir dann eine Parameterdarstellung von g gewinnen.

Schnittpunkt Ebene und Gerade

Der Schnittpunkt einer Ebene E und einer Geraden g kann mithilfe eines LGS gefunden werden.

$$E: \begin{pmatrix} 1\\0\\-2 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3\\-2\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 0\\4\\3 \end{pmatrix}$$

$$g: \begin{pmatrix} 1\\-3\\-4 \end{pmatrix} + v \cdot \begin{pmatrix} -2\\1\\-1 \end{pmatrix}$$

Um den Schnittpunkt zu finden, setzen wir die Ebene und die Gerade gleich und lösen das entstehende LGS

Gegenseitige Lage von Ebenen

identisch

Zwei Ebenen sind identisch, wenn sie die gleiche Normalenvektor und den gleichen Stützpunkt haben.

echt parallel

Zwei Ebenen sind echt parallel, wenn ihre Normalenvektoren kollinear sind, aber sie nicht identisch sind.

schneidend

In allen anderen Fällen schneiden sich die Ebenen. Der Schnittpunkt kann durch das Lösen eines LGS gefunden werden.