PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07K 14/00, A61K 39/00

A2

(11) International Publication Number: WO 98/37093

(43) International Publication Date: 27 August 1998 (27.08.98)

(21) International Application Number: PCT/US98/03492

(21) International Application Number: PCT/US98/03492

(22) International Filing Date: 25 February 1998 (25.02.98)

(23) International Filing Date: 25 February 1998 (25.02.98)

(24) International Publication Number: WO 98/37093

(27) Usual States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, PO, PH, SD, SE, SG, SL, SK, ST, TI

(30) Priority Data:

 08/806,099
 25 February 1997 (25.02.97)
 US

 08/904,804
 1 August 1997 (01.08.97)
 US

 09/020,956
 9 February 1998 (09.02.98)
 US

- (71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).
- (72) Inventors: XU, Jiangchun; 15805 Southeast 43rd Place, Bellevue, WA 98006 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US).
- (74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds and methods for treating prostate cancer are provided. The inventive compounds include polypeptides containing at least a portion of a prostate tumor protein. Vaccines and pharmaceutical compositions for immunotherapy of prostate cancer comprising such polypeptides, or DNA molecules encoding such polypeptides, are also provided, together with DNA molecules for preparing the inventive polypeptides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

			,				
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÚ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	$\mathbf{U}\mathbf{G}$	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	. NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		•
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE CANCER AND METHODS FOR THEIR USE

TECHNICAL FIELD

The present invention relates generally to compositions and methods for the treatment of prostate cancer. The invention is more particularly related to polypeptides comprising at least a portion of a prostate protein and to DNA molecules encoding such polypeptides. Such polypeptides may be used in vaccines and pharmaceutical compositions for treatment of prostate cancer.

BACKGROUND OF THE INVENTION

Prostate cancer is the most common form of cancer among males, with an estimated incidence of 30% in men over the age of 50. Overwhelming clinical evidence shows that human prostate cancer has the propensity to metastasize to bone, and the disease appears to progress inevitably from androgen dependent to androgen refractory status, leading to increased patient mortality. This prevalent disease is currently the second leading cause of cancer death among men in the U.S.

In spite of considerable research into therapies for the disease, prostate cancer remains difficult to treat. Commonly, treatment is based on surgery and/or radiation therapy, but these methods are ineffective in a significant percentage of cases. Two previously identified prostate specific proteins - prostate specific antigen (PSA) and prostatic acid phosphatase (PAP) - have limited therapeutic and diagnostic potential. For example, PSA levels do not always correlate well with the presence of prostate cancer, being positive in a percentage of non-prostate cancer cases, including benign prostatic hyperplasia (BPH). Furthermore, PSA measurements correlate with prostate volume, and do not indicate the level of metastasis.

Accordingly, there remains a need in the art for improved vaccines and treatment methods for prostate cancer.

SUMMARY OF THE INVENTION

The present invention provides compounds and methods for immunotherapy of prostate cancer. In one aspect, polypeptides are provided comprising at least an immunogenic portion of a prostate tumor protein or a variant of said protein that differs only in conservative substitutions and/or modifications, wherein the prostate tumor protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209-211, 220, 222-224, the complements of said nucleotide sequences and variants thereof.

In related aspects, DNA molecules encoding the above polypeptides are provided. In specific embodiments, such DNA molecules include sequences provided in SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209-211, 220 and 222-224. The present invention further provides expression vectors comprising the above DNA molecules and host cells transformed or transfected with such expression vectors. In preferred embodiments, the host cells are selected from the group consisting of *E. coli*, yeast and mammalian cells.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known prostate antigen.

The present invention also provides pharmaceutical compositions comprising one or more of the above polypeptides, or a DNA molecule encoding such polypeptides, and a physiologically acceptable carrier, together with vaccines comprising one or more of such polypeptide or DNA molecules in combination with a non-specific immune response enhancer.

In related aspects, pharmaceutical compositions for the treatment of prostate cancer comprising one or more polypeptides and a physiologically acceptable carrier are provided, wherein the polypeptide comprises an immunogenic portion of a prostate tumor protein or of a variant of said protein that differs only in conservative substitutions and/or modifications, the prostate tumor protein being encoded by a DNA molecule having a

sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NO: 5-7, 30-40, 46, 53, 66-69, 71, 72, 75-78, 80, 82-86, 88, 89, 91, 94-96, 98-102, 105, 106 and 161-170, 179, 180, 182-187, 189, 190, 192, 195-197, 199-202, 205, 206, 208, 212-219, 221, the complements of said nucleotide sequences and variants thereof. The invention also provides vaccines for the treatment of prostate cancer comprising such polypeptides in combination with a non-specific immune response enhancer, together with pharmaceutical compositions and vaccines comprising one or more DNA molecules having a sequence provided in SEQ ID NO: 5-7, 30-40, 46, 53, 66-69, 71, 72, 75-78, 80, 82-86, 88, 89, 91, 94-96, 98-102, 105, 106 and 161-170, 179, 180, 182-187, 189, 190, 192, 195-197, 199-202, 205, 206, 208, 212-219 and 221. Pharmaceutical compositions and vaccines comprising one or more of the above fusion proteins are also provided.

In yet another aspect, methods are provided for inhibiting the development of prostate cancer in a patient, comprising administering an effective amount of at least one of the above pharmaceutical compositions and/or vaccines.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the immunotherapy of prostate cancer. The inventive compositions are generally polypeptides that comprise at least a portion of a prostate tumor protein. Also included within the present invention are molecules (such as an antibody or fragment thereof) that bind to the inventive polypeptides. Such molecules are referred to herein as "binding agents."

In particular, the subject invention discloses polypeptides comprising at least a portion of a human prostate tumor protein, or a variant of such a protein that differs only in conservative substitutions and/or modifications, wherein the prostate tumor protein includes an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NO: 2, 3, 8-29, 41-45, 47-52, 54-

4

65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 181, 188, 191, 193, 194, 198, 203, 204, and 207-224, the complements of said nucleotide sequences and variants thereof. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising a portion of one of the above prostate proteins may consist entirely of the portion, or the portion may be present within a larger polypeptide that contains additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may be immunoreactive and/or antigenic.

As used herein, an "immunogenic portion" of a human prostate tumor protein is a portion that is capable of eliciting an immune response in a patient inflicted with prostate cancer and as such binds to antibodies present within sera from a prostate cancer patient. Immunogenic portions of the proteins described herein may thus be identified in antibody binding assays. Such assays may generally be performed using any of a variety of means known to those of ordinary skill in the art, as described, for example, in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. For example, a polypeptide may be immobilized on a solid support (as described below) and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A. Alternatively, a polypeptide may be used to generate monoclonal and polyclonal antibodies for use in detection of the polypeptide in blood or other fluids of prostate cancer patients.

The compositions and methods of the present invention also encompass variants of the above polypeptides and DNA molecules. A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic, antigenic and/or immunogenic properties of the polypeptide are retained. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity to the identified polypeptides. For prostate tumor polypeptides with immunoreactive properties, variants may, alternatively, be identified by modifying the amino acid sequence of

one of the above polypeptides, and evaluating the immunoreactivity of the modified polypeptide. For prostate tumor polypeptides useful for the generation of diagnostic binding agents, a variant may be identified by evaluating a modified polypeptide for the ability to generate antibodies that detect the presence or absence of prostate cancer. Such modified sequences may be prepared and tested using, for example, the representative procedures described herein.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity to the recited sequence. Such variant nucleotide sequences will generally hybridize to the recite nucleotide sequence under stringent conditions. As used herein, "stringent conditions" refers

to prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65 °C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1X SSC, 0.1% SDS at 65 °C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65 °C.

"Polypeptides" as used herein also include combination, or fusion, polypeptides. A "combination polypeptide" is a polypeptide comprising at least one of the above immunogenic portions and one or more additional immunogenic prostate tumor-specific sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (*i.e.*, with no intervening amino acids) or may be joined by way of a linked sequence (*e.g.*, Gly-Cys-Gly) that does not significantly diminish the immunogenic properties of the component polypeptides.

The prostate tumor proteins of the present invention, and DNA molecules encoding such proteins, may be isolated from prostate tumor tissue using any of a variety of methods well known in the art. DNA sequences corresponding to a gene (of a portion thereof) encoding one of the inventive prostate tumor proteins may be isolated from a prostate tumor cDNA library using a subtraction technique as described in detail below. Examples of such DNA sequences are provided in SEQ ID NOS: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Partial DNA sequences thus obtained may be used to design oligonucleotide primers for the amplification of full-length DNA sequences in a polymerase chain reaction (PCR), using techniques well known in the art (see, for example, Mullis et al., *Cold Spring Harbor Symp. Quant. Biol.*, 51:263, 1987; Erlich ed., *PCR Technology*, Stockton Press, NY, 1989). Once a DNA sequence encoding a polypeptide is obtained, any of the above modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (*DNA*, 2:183, 1983).

The prostate tumor polypeptides disclosed herein may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a

growing amino acid chain (see, for example, Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963). Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Alternatively, any of the above polypeptides may be produced recombinantly by inserting a DNA sequence that encodes the polypeptide into an expression vector and expressing the protein in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as CHO cells. The DNA sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form (*i.e.*, the polypeptides are homogenous as determined by amino acid composition and primary sequence analysis). Preferably, the polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. In certain preferred embodiments, described in more detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known prostate antigen, together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end

of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

Polypeptides of the present invention that comprise an immunogenic portion of a prostate tumor protein may generally be used for immunotherapy of prostate cancer, wherein the polypeptide stimulates the patient's own immune response to prostate tumor cells. In further aspects, the present invention provides methods for using one or more of the

WO 98/37093 PCT/US98/03492

9

immunoreactive polypeptides encoded by a DNA molecule having a sequence provided in SEQ ID NOS: 1-107, 109-111, 115-171, 173-175, 177 and 179-224 (or fusion proteins comprising one or more such polypeptides and/or DNA encoding such polypeptides) for immunotherapy of prostate cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease. Accordingly, the above immunoreactive polypeptides (or fusion proteins or DNA molecules encoding such polypeptides) may be used to treat prostate cancer or to inhibit the development of prostate cancer. The polypeptides may be administered either prior to or following surgical removal of primary tumors and/or treatment by administration of radiotherapy and conventional chemotherapeutic drugs.

In these aspects, the polypeptide or fusion protein is generally present within a pharmaceutical composition and/or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. The vaccines may comprise one or more of such polypeptides and a non-specific immune response enhancer, such as an adjuvant, biodegradable microsphere (e.g., polylactic galactide) or a liposome (into which the polypeptide is incorporated). Pharmaceutical compositions and vaccines may also contain other epitopes of prostate tumor antigens, either incorporated into a combination polypeptide (i.e., a single polypeptide that contains multiple epitopes) or present within a separate polypeptide.

Alternatively, a pharmaceutical composition or vaccine may contain DNA encoding one or more of the above polypeptides, such that the polypeptide is generated *in situ*. In such pharmaceutical compositions and vaccines, the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter). Bacterial delivery systems involve the administration of a bacterium (such as *Bacillus-Calmette-Guerrin*) that expresses an epitope of a prostate cell antigen on its cell surface. In a preferred embodiment, the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the

use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., *PNAS* 86:317-321, 1989; Flexner et al., *Ann. N.Y. Acad. Sci.* 569:86-103, 1989; Flexner et al., *Vaccine* 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, *Biotechniques* 6:616-627, 1988; Rosenfeld et al., *Science* 252:431-434, 1991; Kolls et al., *PNAS* 91:215-219, 1994; Kass-Eisler et al., *PNAS* 90:11498-11502, 1993; Guzman et al., *Circulation* 88:2838-2848, 1993; and Guzman et al., *Cir. Res.* 73:1202-1207, 1993. Techniques for incorporating DNA into such expression systems are well known to those of ordinary skill in the art. The DNA may also be "naked," as described, for example, in published PCT application WO 90/11092, and Ulmer et al., *Science* 259:1745-1749, 1993, reviewed by Cohen, *Science* 259:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunotherapy of other diseases. In general, the pharmaceutical compositions and vaccines may be administered by injection (*e.g.*, intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (*e.g.*, by aspiration) or orally. Between 1 and 10 doses may be administered over a 3-24 week period. Preferably, 4 doses are administered, at an interval of 3 months, and booster administrations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or DNA that is effective to raise an immune response (cellular and/or humoral) against prostate tumor cells in a treated patient. A suitable immune response is at least 10-50% above the basal (*i.e.*, untreated) level. In general, the amount of polypeptide present in a dose (or produced *in situ* by the DNA in a dose) ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 µg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.01 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary

depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax and/or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and/or magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic glycolide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a nonspecific stimulator of immune response, such as lipid A, Bordella pertussis or Mycobacterium tuberculosis. Such adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ).

Polypeptides disclosed herein may also be employed in *ex vivo* treatment of prostate cancer. For example, cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as CellPro Incorporated's (Bothell, WA) CEPRATETM system (see U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells. The population of tumor antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

Polypeptides of the present invention may also, or alternatively, be used to generate binding agents, such as antibodies or fragments thereof, that are capable of detecting metastatic human prostate tumors. Binding agents of the present invention may generally be prepared using methods known to those of ordinary skill in the art, including the representative procedures described herein. Binding agents are capable of differentiating between patients with and without prostate cancer, using the representative assays described

WO-98/37093 PCT/US98/03492

12

herein. In other words, antibodies or other binding agents raised against a prostate tumor protein, or a suitable portion thereof, will generate a signal indicating the presence of primary or metastatic prostate cancer in at least about 20% of patients afflicted with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without primary or metastatic prostate cancer. Suitable portions of such prostate tumor proteins are portions that are able to generate a binding agent that indicates the presence of primary or metastatic prostate cancer in substantially all (*i.e.*, at least about 80%, and preferably at least about 90%) of the patients for which prostate cancer would be indicated using the full length protein, and that indicate the absence of prostate cancer in substantially all of those samples that would be negative when tested with full length protein. The representative assays described below, such as the two-antibody sandwich assay, may generally be employed for evaluating the ability of a binding agent to detect metastatic human prostate tumors.

The ability of a polypeptide prepared as described herein to generate antibodies capable of detecting primary or metastatic human prostate tumors may generally be evaluated by raising one or more antibodies against the polypeptide (using, for example, a representative method described herein) and determining the ability of such antibodies to detect such tumors in patients. This determination may be made by assaying biological samples from patients with and without primary or metastatic prostate cancer for the presence of a polypeptide that binds to the generated antibodies. Such test assays may be performed, for example, using a representative procedure described below. Polypeptides that generate antibodies capable of detecting at least 20% of primary or metastatic prostate tumors by such procedures are considered to be useful in assays for detecting primary or metastatic human prostate tumors. Polypeptide specific antibodies may be used alone or in combination to improve sensitivity.

Polypeptides capable of detecting primary or metastatic human prostate tumors may be used as markers for diagnosing prostate cancer or for monitoring disease progression in patients. In one embodiment, prostate cancer in a patient may be diagnosed by evaluating a biological sample obtained from the patient for the level of one or more of the above polypeptides, relative to a predetermined cut-off value. As used herein, suitable "biological samples" include blood, sera, urine and/or prostate secretions.

The level of one or more of the above polypeptides may be evaluated using any binding agent specific for the polypeptide(s). A "binding agent," in the context of this invention, is any agent (such as a compound or a cell) that binds to a polypeptide as described above. As used herein, "binding" refers to a noncovalent association between two separate molecules (each of which may be free (*i.e.*, in solution) or present on the surface of a cell or a solid support), such that a "complex" is formed. Such a complex may be free or immobilized (either covalently or noncovalently) on a support material. The ability to bind may generally be evaluated by determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind" in the context of the present invention when the binding constant for complex formation exceeds about 10³ L/mol. The binding constant may be determined using methods well known to those of ordinary skill in the art.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome with or without a peptide component, an RNA molecule or a peptide. In a preferred embodiment, the binding partner is an antibody, or a fragment thereof. Such antibodies may be polyclonal, or monoclonal. In addition, the antibodies may be single chain, chimeric, CDR-grafted or humanized. Antibodies may be prepared by the methods described herein and by other methods well known to those of skill in the art.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding partner to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In a preferred embodiment, the assay involves the use of binding partner immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a second binding partner that contains a reporter group. Suitable second binding partners include antibodies that bind to the binding partner/polypeptide complex. Alternatively, a competitive assay may be utilized, in which a

polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding partner after incubation of the binding partner with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding partner is indicative of the reactivity of the sample with the immobilized binding partner.

The solid support may be any material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 μg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20™ (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with prostate cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

WO-98/37093 PCT/US98/03492

16

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of prostate cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without prostate cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for prostate cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for prostate cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibodypolypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of prostate cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the antigens or antibodies of the present invention. The above descriptions are intended to be exemplary only.

In another embodiment, the above polypeptides may be used as markers for the progression of prostate cancer. In this embodiment, assays as described above for the diagnosis of prostate cancer may be performed over time, and the change in the level of reactive polypeptide(s) evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, prostate cancer is progressing in those patients in whom the level of polypeptide detected by the binding agent increases over time. In contrast, prostate cancer is not progressing when the level of reactive polypeptide either remains constant or decreases with time.

Antibodies for use in the above methods may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield,

such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Monoclonal antibodies of the present invention may also be used as therapeutic reagents, to diminish or eliminate prostate tumors. The antibodies may be used on their own (for instance, to inhibit metastases) or coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the

catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, *e.g.*, U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing

nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify prostate tumor-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a prostate tumor protein of the present invention. The presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a prostate tumor protein of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule having a sequence selected from SEQ ID NOS: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule having a sequence provided in SEQ ID NOS: 1-107, 109-111, 115-171, 173-175, 177 and 179-224. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis *et al. Ibid*; Ehrlich, *Ibid*). Primers or probes may

thus be used to detect prostate tumor-specific sequences in biological samples, including blood, semen, prostate tissue and/or prostate tumor tissue.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

Example 1

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES

This Example describes the isolation of prostate tumor polypeptides from a prostate tumor cDNA library.

A human prostate tumor cDNA expression library was constructed from prostate tumor poly A⁺ RNA using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, prostate tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A⁺ RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the Notl/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BAXI adaptors (Invitrogen, San Diego, CA) and digested with Notl. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA 94303), the cDNA was ligated into the EcoRI/NotI site of pCDNA3.1 (Invitrogen) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human pancreas cDNA expression library was prepared from a pool of six tissue specimens (Clontech). The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The prostate tumor

library contained 1.64 x 10⁷ independent colonies, with 70% of clones having an insert and the average insert size being 1745 base pairs. The normal pancreas cDNA library contained 3.3 x 10⁶ independent colonies, with 69% of clones having inserts and the average insert size being 1120 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination.

cDNA library subtraction was performed using the above prostate tumor and normal pancreas cDNA libraries, as described by Hara *et al.* (*Blood*, *84*:189-199, 1994) with some modifications. Specifically, a prostate tumor-specific subtracted cDNA library was generated as follows. Normal pancreas cDNA library (70 μ g) was digested with EcoRI, NotI, and SfuI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 μ l of H₂O, heat-denatured and mixed with 100 μ l (100 μ g) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (50 μ l) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 μ l H₂O to form the driver DNA.

To form the tracer DNA, 10 μg prostate tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 μl H₂O. Tracer DNA was mixed with 15 μl driver DNA and 20 μl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 μl H₂O, mixed with 8 μl driver DNA and 20 μl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into

BamHI/XhoI site of chloramphenicol resistant pBCSK⁺ (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a prostate tumor specific subtracted cDNA library (prostate subtraction 1).

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted prostate tumor specific library and grouped based on insert size. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Six cDNA clones, hereinafter referred to as F1-13, F1-12, F1-16, H1-1, H1-9 and H1-4, were shown to be abundant in the subtracted prostate-specific cDNA library. The determined 3' and 5' cDNA sequences for F1-12 are provided in SEQ ID NO: 2 and 3, respectively, with determined 3' cDNA sequences for F1-13, F1-16, H1-1, H1-9 and H1-4 being provided in SEQ ID NO: 1 and 4-7, respectively.

The cDNA sequences for the isolated clones were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). Four of the prostate tumor cDNA clones, F1-13, F1-16, H1-1, and H1-4, were determined to encode the following previously identified proteins: prostate specific antigen (PSA), human glandular kallikrein, human tumor expression enhanced gene, and mitochondria cytochrome C oxidase subunit II. H1-9 was found to be identical to a previously identified human autonomously replicating sequence. No significant homologies to the cDNA sequence for F1-12 were found.

Subsequent studies led to the isolation of a full-length cDNA sequence for F1-12. This sequence is provided in SEQ ID NO: 107, with the corresponding predicted amino acid sequence being provided in SEQ ID NO: 108.

To clone less abundant prostate tumor specific genes, cDNA library subtraction was performed by subtracting the prostate tumor cDNA library described above with the normal pancreas cDNA library and with the three most abundant genes in the previously subtracted prostate tumor specific cDNA library: human glandular kallikrein, prostate specific antigen (PSA), and mitochondria cytochrome C oxidase subunit II. Specifically, 1 µg each of human glandular kallikrein, PSA and mitochondria cytochrome C oxidase subunit II cDNAs in pCDNA3.1 were added to the driver DNA and subtraction was

performed as described above to provide a second subtracted cDNA library hereinafter referred to as the "subtracted prostate tumor specific cDNA library with spike".

Twenty-two cDNA clones were isolated from the subtracted prostate tumor specific cDNA library with spike. The determined 3' and 5' cDNA sequences for the clones referred to as J1-17, L1-12, N1-1862, J1-13, J1-19, J1-25, J1-24, K1-58, K1-63, L1-4 and L1-14 are provided in SEQ ID NOS: 8-9, 10-11, 12-13, 14-15, 16-17, 18-19, 20-21, 22-23, 24-25, 26-27 and 28-29, respectively. The determined 3' cDNA sequences for the clones referred to as J1-12, J1-16, J1-21, K1-48, K1-55, L1-2, L1-6, N1-1858, N1-1860, N1-1861, N1-1864 are provided in SEQ ID NOS: 30-40, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to three of the five most abundant DNA species, (J1-17, L1-12 and N1-1862; SEQ ID NOS: 8-9, 10-11 and 12-13, respectively). Of the remaining two most abundant species, one (J1-12; SEQ ID NO:30) was found to be identical to the previously identified human pulmonary surfactant-associated protein, and the other (K1-48; SEQ ID NO:33) was determined to have some homology to R. norvegicus mRNA for 2-arylpropionyl-CoA epimerase. Of the 17 less abundant cDNA clones isolated from the subtracted prostate tumor specific cDNA library with spike, four (J1-16, K1-55, L1-6 and N1-1864; SEQ ID NOS:31, 34, 36 and 40, respectively) were found to be identical to previously identified sequences, two (J1-21 and N1-1860; SEQ ID NOS: 32 and 38, respectively) were found to show some homology to non-human sequences, and two (L1-2 and N1-1861; SEQ ID NOS: 35 and 39, respectively) were found to show some homology to known human sequences. No significant homologies were found to the polypeptides J1-13, J1-19, J1-24, J1-25, K1-58, K1-63, L1-4, L1-14 (SEQ ID NOS: 14-15, 16-17, 20-21, 18-19, 22-23, 24-25, 26-27, 28-29, respectively).

Subsequent studies led to the isolation of full length cDNA sequences for J1-17, L1-12 and N1-1862 (SEQ ID NOS: 109-111, respectively). The corresponding predicted amino acid sequences are provided in SEQ ID NOS: 112-114.

In a further experiment, four additional clones were identified by subtracting a prostate tumor cDNA library with normal prostate cDNA prepared from a pool of three normal prostate poly A+ RNA (prostate subtraction 2). The determined cDNA sequences for these clones, hereinafter referred to as U1-3064, U1-3065, V1-3692 and 1A-3905, are

WO 98/37093 PCT/US98/03492

provided in SEQ ID NO: 69-72, respectively. Comparison of the determined sequences with those in the gene bank revealed no significant homologies to U1-3065.

A second subtraction with spike (prostate subtraction spike 2) was performed by subtracting a prostate tumor specific cDNA library with spike with normal pancreas cDNA library and further spiked with PSA, J1-17, pulmonary surfactant-associated protein, mitochondrial DNA, cytochrome c oxidase subunit II, N1-1862, autonomously replicating sequence, L1-12 and tumor expression enhanced gene. Four additional clones, hereinafter referred to as V1-3686, R1-2330, 1B-3976 and V1-3679, were isolated. The determined cDNA sequences for these clones are provided in SEQ ID NO:73-76, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to V1-3686 and R1-2330.

Further analysis of the three prostate subtractions described above (prostate subtraction 2, subtracted prostate tumor specific cDNA library with spike, and prostate subtraction spike 2) resulted in the identification of sixteen additional clones, referred to as 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1G-4734, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4810, 1I-4811, 1J-4876, 1K-4884 and 1K-4896. The determined cDNA sequences for these clones are provided in SEQ ID NOS: 77-92, respectively. Comparison of these sequences with those in the gene bank as described above, revealed no significant homologies to 1G-4741, 1G-4734, 1I-4807, 1J-4876 and 1K-4896 (SEQ ID NOS: 79, 81, 87, 90 and 92, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4736, 1G-4738, 1G-4741, 1G-4744, 1H-4774, 1H-4781, 1H-4785, 1H-4787, 1H-4796, 1I-4807, 1J-4876, 1K-4884 and 1K-4896, provided in SEO ID NOS: 179-188 and 191-193, respectively, and to the determination of additional partial cDNA sequences for 1I-4810 and 1I-4811, provided in SEQ ID NOS: 189 and 190. respectively.

An additional subtraction was performed by subtracting a normal prostate cDNA library with normal pancreas cDNA (prostate subtraction 3). This led to the identification of six additional clones referred to as 1G-4761, 1G-4762, 1H-4766, 1H-4770, 1H-4771 and 1H-4772 (SEQ ID NOS: 93-98). Comparison of these sequences with those in the gene bank revealed no significant homologies to 1G-4761 and 1H-4771 (SEQ ID NOS:

WO-98/37093 PCT/US98/03492

27

93 and 97, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1G-4761, 1G-4762, 1H-4766 and 1H-4772 provided in SEQ ID NOS: 194-196 and 199, respectively, and to the determination of additional partial cDNA sequences for 1H-4770 and 1H-4771, provided in SEQ ID NOS: 197 and 198, respectively.

Subtraction of a prostate tumor cDNA library, prepared from a pool of polyA+ RNA from three prostate cancer patients, with a normal pancreas cDNA library (prostate subtraction 4) led to the identification of eight clones, referred to as 1D-4297, 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280 (SEO ID NOS: 99-107). These sequences were compared to those in the gene bank as described above. No significant homologies were found to 1D-4283 and 1D-4304 (SEQ ID NOS: 103 and 104, respectively). Further analysis of the isolated clones led to the determination of extended cDNA sequences for 1D-4309, 1D.1-4278, 1D-4288, 1D-4283, 1D-4304, 1D-4296 and 1D-4280, provided in SEQ ID NOS: 200-206, respectively.cDNA clones isolated in prostate subtraction 1 and prostate subtraction 2, described above, were colony PCR amplified and their mRNA expression levels in prostate tumor, normal prostate and in various other normal tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Two novel clones (referred to as P509S and P510S) were found to be over-expressed in prostate tumor and normal prostate and expressed at low levels in all other normal tissues tested (liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon). The determined cDNA sequences for P509S and P510S are provided in SEO ID NO: 223 and 224, respectively. Comparison of these sequences with those in the gene bank as described above, revealed some homology to previously identified ESTs.

Example 2

DETERMINATION OF TISSUE SPECIFICITY OF PROSTATE TUMOR POLYPEPTIDES

Using gene specific primers, mRNA expression levels for the representative prostate tumor polypeptides F1-16, H1-1, J1-17, L1-12, F1-12 and N1-1862 were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 1-2 μ g of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 $^{\circ}$ C for one hour. The cDNA was then amplified by PCR with gene-specific primers. To ensure the semi-quantitative nature of the RT-PCR, β -actin was used as an internal control for each of the tissues examined. First, serial dilutions of the first strand cDNAs were prepared and RT-PCR assays were performed using β -actin specific primers. A dilution was then chosen that enabled the linear range amplification of the β -actin template and which was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in four different types of tumor tissue (prostate tumor from 2 patients, breast tumor from 3 patients, colon tumor, lung tumor), and sixteen different normal tissues, including prostate, colon, kidney, liver, lung, ovary, pancreas, skeletal muscle, skin, stomach, testes, bone marrow and brain. F1-16 was found to be expressed at high levels in prostate tumor tissue, colon tumor and normal prostate, and at lower levels in normal liver, skin and testes, with expression being undetectable in the other tissues examined. H1-1 was found to be expressed at high levels in prostate tumor, lung tumor, breast tumor, normal prostate, normal colon and normal brain, at much lower levels in normal lung, pancreas, skeletal muscle, skin, small intestine, bone marrow, and was not detected in the other tissues tested. J1-17 and L1-12 appear to be specifically over-expressed in prostate, with both genes being expressed at high levels in

prostate tumor and normal prostate but at low to undetectable levels in all the other tissues examined. N1-1862 was found to be over-expressed in 60% of prostate tumors and detectable in normal colon and kidney. The RT-PCR results thus indicate that F1-16, H1-1, J1-17, N1-1862 and L1-12 are either prostate specific or are expressed at significantly elevated levels in prostate.

Further RT-PCR studies showed that F1-12 is over-expressed in 60% of prostate tumors, detectable in normal kidney but not detectable in all other tissues tested. Similarly, R1-2330 was shown to be over-expressed in 40% of prostate tumors, detectable in normal kidney and liver, but not detectable in all other tissues tested. U1-3064 was found to be over-expressed in 60% of prostate tumors, and also expressed in breast and colon tumors, but was not detectable in normal tissues.

RT-PCR characterization of R1-2330, U1-3064 and 1D-4279 showed that these three antigens are over-expressed in prostate and/or prostate tumors.

Northern analysis with four prostate tumors, two normal prostate samples, two BPH prostates, and normal colon, kidney, liver, lung, pancrease, skeletal muscle, brain, stomach, testes, small intestine and bone marrow, showed that L1-12 is over-expressed in prostate tumors and normal prostate, while being undetectable in other normal tissues tested. J1-17 was detected in two prostate tumors and not in the other tissues tested. N1-1862 was found to be over-expressed in three prostate tumors and to be expressed in normal prostate, colon and kidney, but not in other tissues tested. F1-12 was found to be highly expressed in two prostate tumors and to be undetectable in all other tissues tested.

The micro-array technology described above was used to determine the expression levels of representative antigens described herein in prostate tumor, breast tumor and the following normal tissues: prostate, liver, pancreas, skin, bone marrow, brain, breast, adrenal gland, bladder, testes, salivary gland, large intestine, kidney, ovary, lung, spinal cord, skeletal muscle and colon. L1-12 was found to be over-expressed in normal prostate and prostate tumor, with some expression being detected in normal skeletal muscle. Both J1-12 and F1-12 were found to be over-expressed in prostate tumor, with expression being lower or undetectable in all other tissues tested. N1-1862 was found to be expressed at high levels in prostate tumor and normal prostate, and at low levels in normal large intestine and normal

colon, with expression being undetectable in all other tissues tested. R1-2330 was found to be over-expressed in prostate tumor and normal prostate, and to be expressed at lower levels in all other tissues tested. 1D-4279 was found to be over-expressed in prostate tumor and normal prostate, expressed at lower levels in normal spinal cord, and to be undetectable in all other tissues tested.

Example 3

ISOLATION AND CHARACTERIZATION OF PROSTATE TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTION

A cDNA subtraction library, containing cDNA from normal prostate subtracted with ten other normal tissue cDNAs (brain, heart, kidney, liver, lung, ovary, placenta, skeletal muscle, spleen and thymus) and then submitted to a first round of PCR amplification, was purchased from Clontech. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the vector pT7 Blue T-vector (Novagen, Madison, WI) and transformed into XL-1 Blue MRF' *E. coli* (Stratagene). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

Fifty-nine positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the gene bank, as described above, revealed no significant homologies to 25 of these clones, hereinafter referred to as P5, P8, P9, P18, P20, P30, P34, P36, P38, P39, P42, P49, P50, P53, P55, P60, P64, P65, P73, P75, P76, P79 and P84. The determined cDNA sequences for these clones are provided in SEQ ID NO:41-45, 47-52 and 54-65, respectively. P29, P47, P68, P80 and P82 (SEQ ID NO:46, 53 and 66-68, respectively) were found to show some degree of homology to previously identified DNA sequences. To the best of the inventors' knowledge, none of these sequences have been previously shown to be present in prostate.

Further studies using the PCR-based methodology described above resulted in the isolation of more than 180 additional clones, of which 23 clones were found to show no significant homologies to known sequences. The determined cDNA sequences for these clones are provided in SEQ ID NO: 115-123, 127, 131, 137, 145, 147-151, 153, 156-158 and 160. Twenty-three clones (SEQ ID NO: 124-126, 128-130, 132-136, 138-144, 146, 152, 154, 155 and 159) were found to show some homology to previously identified ESTs. An additional ten clones (SEQ ID NO: 161-170) were found to have some degree of homology to known genes. An additional clone, referred to as P703, was found to have five splice variants. The determined DNA sequence for the variants referred to as DE1, DE13 and DE14 are provided in SEQ ID NOS: 171, 175 and 177, respectively, with the corresponding predicted amino acid sequences being provided in SEQ ID NO: 172, 176 and 178, respectively. The DNA sequences for the splice variants referred to as DE2 and DE6 are provided in SEQ ID NOS: 173 and 174, respectively.

mRNA Expression levels for representative clones in tumor tissues (prostate (n=5), breast (n=2), colon and lung) normal tissues (prostate (n=5), colon, kidney, liver, lung (n=2), ovary (n=2), skeletal muscle, skin, stomach, small intestine and brain), and activated and non-activated PBMC was determined by RT-PCT as described above. Expression was examined in one sample of each tissue type unless otherwise indicated.

P9 was found to be highly expressed in normal prostate and prostate tumor compared to all normal tissues tested except for normal colon which showed comparable expression. P20 was found to be highly expressed in normal prostate and prostate tumor, compared to all twelve normal tissues tested. A modest increase in expression of P20 in breast tumor (n=2), colon tumor and lung tumor was seen compared to all normal tissues except lung (1 of 2). Increased expression of P18 was found in normal prostate, prostate tumor and breast tumor compared to other normal tissues except lung and stomach. A modest increase in expression of P5 was observed in normal prostate compared to most other normal tissues. However, some elevated expression was seen in normal lung and PBMC. Elevated expression of P5 was also observed in prostate tumors (2 of 5), breast tumor and one lung tumor sample. For P30, similar expression levels were seen in normal prostate and prostate tumor, compared to six of twelve other normal tissues tested. Increased expression was seen in breast tumors, one lung tumor sample and one colon tumor sample, and also in normal PBMC. P29 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5

of 5) compared to the majority of normal tissues. However, substantial expression of P29 was observed in normal colon and normal lung (2 of 2). P80 was found to be over-expressed in prostate tumor (5 of 5) and normal prostate (5 of 5) compared to all other normal tissues tested, with increased expression also being seen in colon tumor.

Further studies using the above methodology resulted in the isolation of twelve additional clones, hereinafter referred to as 10-d8, 10-h10, 11-c8, 7-g6, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3, 8-h11, g-f12 and g-f3. The determined DNA sequences for 10-d8, 10-h10, 11-c8, 8-d4, 8-d9, 8-h11, g-f12 and g-f3 are provided in SEQ ID NO: 207, 208, 209, 216, 217, 220, 221 and 222, respectively. The determined forward and reverse DNA sequences for 7-g6, 8-b5, 8-b6 and 8-g3 are provided in SEQ ID NO: 210 and 211; 212 and 213; 214 and 215; and 218 and 219, respectively. Comparison of these sequences with those in the gene bank revealed no significant homologies to the sequences of 7-g6 and g-f3. The clones 10-d8, 11-c8 and 8-h11 were found to show some homology to previously isolated ESTs, while 10-h10, 8-b5, 8-b6, 8-d4, 8-d9, 8-g3 and g-f12 were found to show some homology to previously identified genes.

Example 4 SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following

lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANTS: Xu, Jiangchun Dillin, Davin C.
 - (ii) TITLE OF INVENTION: COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE CANCER AND METHODS FOR THEIR USE
 - (iii) NUMBER OF SEQUENCES: 224
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center, 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98104
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 23-FEB-1998
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Maki, David J.
 - (B) REGISTRATION NUMBER: 31,392
 - (C) REFERENCE/DOCKET NUMBER: 210121.427C3
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (206) 622-4900
 - (B) TELEFAX: (206) 682-6031
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTTTTTTTTT	TTTTTCACAG	TATAACAGCT	CTTTATTTCT	GTGAGTTCTA	CTAGGAAATC	60
ATCAAATCTG	${\tt AGGGTTGTCT}$	GGAGGACTTC	AATACACCTC	CCCCCATAGT	GAATCAGCTT	120
CCAGGGGGTC	CAGTCCCTCT	CCTTACTTCA	TCCCCATCCC	ATGCCAAAGG	AAGACCCTCC	180
CTCCTTGGCT	CACAGCCTTC	TCTAGGCTTC	CCAGTGCCTC	CAGGACAGAG	TGGGTTATGT	240
${\tt TTTCAGCTCC}$	ATCCTTGCTG	TGAGTGTCTG	GTGCGTTGTG	CCTCCAGCTT	CTGCTCAGTG	300
CTTCATGGAC	AGTGTCCAGC	ACATGTCACT	CTCCACTCTC	TCAGTGTGGA	TCCACTAGTT	360
CTAGAGCGGC	CGCCACCGCG	GTGGAGCTCC	AGCTTTTGTT	CCCTTTAGTG	AGGGTTAATT	420

GCGCGCTTGG	CGTAATCATG	GTCATAACTG	TTTCCTGTGT	GAAATTGTTA	TCCGCTCACA	480
ATTCCACACA	ACATACGAGC	CGGAAGCATA	AAGTGTAAAG	CCTGGGGTGC	CTAATGAGTG	540
ANCTAACTCA	CATTAATTGC	GTTGCGCTCA	CTGNCCGCTT	TCCAGTCNGG	AAAACTGTCG	600
TGCCAGCTGC	ATTAATGAAT	CGGCCAACGC	NCGGGGAAAA	GCGGTTTGCG	TTTTGGGGGC	660
TCTTCCGCTT	CTCGCTCACT	NANTCCTGCG	CTCGGTCNTT	CGGCTGCGGG	GAACGGTATC	720
ACTCCTCAAA	GGNGGTATTA	CGGTTATCCN	NAAATCNGGG	GATACCCNGG	TTTNAAAAAA	780
AACAAAAGGG	CANCAAAGGG	CNGAAACGTA	AAAA			814

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 816 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY; linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ACAGAAATGT	${\tt TGGATGGTGG}$	AGCACCTTTC	TATACGACTT	ACAGGACAGC	AGATGGGGAA	60
TTCATGGCTG	TTGGAGCAAT	AGAACCCCAG	TTCTACGAGC	TGCTGATCAA	AGGACTTGGA	. 120
CTAAAGTCTG	ATGAACTTCC	CAATCAGATG	AGCATGGATG	ATTGGCCAGA	AATGAAGAAG	180
AAGTTTGCAG	ATGTATTTGC	AAAGAAGACG	AAGGCAGAGT	GGTGTCAAAT	CTTTGACGGC	240
ACAGATGCCT	GTGTGACTCC	GGTTCTGACT	TTTGAGGAGG	TTGTTCATCA	TGATCACAAC	300
AAGGAACGGG	GCTCGTTTAT	CACCAGTGAG	GAGCAGGACG	TGAGCCCCCG	CCCTGCACCT	360
CTGCTGTTAA	ACACCCCAGC	CATCCCTTCT	TTCAAAAGGG	ATCCACTAGT	TCTAGAAGCG	420
GCCGCCACCG	CGGTGGAGCT	CCAGCTTTTG	TTCCCTTTAG	TGAGGGTTAA	TTGCGCGCTT	480
GGCGTAATCA	TGGTCATAGC	TGTTTCCTGT	GTGAAATTGT	TATCCGCTCA	CAATTCCCCC	540
AACATACGAG	CCGGAACATA	AAGTGTTAAG	CCTGGGGTGC	CTAATGANTG	AGCTAACTCN	600
CATTAATTGC	GTTGCGCTCA	CTGCCCGCTT	TCCAGTCGGG	AAAACTGTCG	TGCCACTGCN	660
TTANTGAATC	NGCCACCCC	CGGGAAAAGG	CGGTTGCNTT	TTGGGCCTCT	TCCGCTTTCC	720
TCGCTCATTG	ATCCTNGCNC	CCGGTCTTCG	GCTGCGGNGA	ACGGTTCACT	CCTCAAAGGC	780
GGTNTNCCGG	TTATCCCCAA	ACNGGGGATA	CCCNGA			816

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 773 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTTTTGAAAG AAGGGATGGC TGGGGTGTTT AACAGCAGAG GTGCAGGGCG GGGGCTCACG	60
TCCTGCTCCT CACTGGTGAT AAACGAGCCC CGTTCCTTGT TGTGATCATG ATGAACAACC	120
TCCTCAAAAG TCAGAACCGG AGTCACACAG GCATCTGTGC CGTCAAAGAT TTGACACCAC	180
TCTGCCTTCG TCTTCTTTGC AAATACATCT GCAAACTTCT TCTTCATTTC TGGCCAATCA	240
TCCATGCTCA TCTGATTGGG AAGTTCATCA GACTTTAGTC CANNTCCTTT GATCAGCAGC	300
TCGTAGAACT GGGGTTCTAT TGCTCCAACA GCCATGAATT CCCCATCTGC TGTCCTGTAA	360
GTCGTATAGA AAGGTGCTCC ACCATCCAAC ATGTTCTGTC CTCGAGGGGG GGCCCGGTAC	420
CCAATTCGCC CTATANTGAG TCGTATTACG CGCGCTCACT GGCCGTCGTT TTACAACGTC	480
GTGACTGGGA AAACCCTGGG CGTTACCAAC TTAATCGCCT TGCAGCACAT CCCCCTTTCG	540
CCAGCTGGGC GTAATANCGA AAAGGCCCGC ACCGATCGCC CTTCCAACAG TTGCGCACCT.	600
GAATGGGNAA ATGGGACCCC CCTGTTACCG CGCATTNAAC CCCCGCNGGG TTTNGTTGTT	660
ACCCCACNT MNACCGCTTA CACTTTGCCA GCGCCTTANC GCCCGCTCCC TTTCNCCTTT	720
CTTCCCTTCC TTTCNCNCCN CTTTCCCCCG GGGTTTCCCC CNTCAAACCC CNA	773

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 828 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CCTCCTGAGT	CCTACTGACC	TGTGCTTTCT	GGTGTGGAGT	CCAGGGCTGC	TAGGAAAAGG	60-
AATGGGCAGA	${\tt CACAGGTGTA}$	TGCCAATGTT	TCTGAAATGG	GTATAATTTC	GTCCTCTCCT	120
TCGGAACACT	${\tt GGCTGTCTCT}$	${\tt GAAGACTTCT}$	CGCTCAGTTT	CAGTGAGGAC	ACACACAAAG	180
${\tt ACGTGGGTGA}$	${\tt CCATGTTGTT}$	TGTGGGGTGC	AGAGATGGGA	GGGGTGGGGC	CCACCCTGGA	240
AGAGTGGACA	GTGACACAAG	GTGGACACTC	TCTACAGATC	ACTGAGGATA	AGCTGGAGCC	300
ACAATGCATG	AGGCACACAC	ACAGCAAGGA	TGACNCTGTA	AACATAGCCC	ACGCTGTCCT	360
GNGGGCACTG	GGAAGCCTAN	ATNAGGCCGT	GAGCANAAAG	AAGGGGAGGA	TCCACTAGTT	420
CTANAGCGGC	CGCCACCGCG	GTGGANCTCC	ANCTTTTGTT	CCCTTTAGTG	AGGGTTAATT	480
GCGCGCTTGG	CNTAATCATG	GTCATANCTN	TTTCCTGTGT	${\tt GAAATTGTTA}$	TCCGCTCACA	540
ATTCCACACA	ACATACGANC	CGGAAACATA	AANTGTAAAC	CTGGGGTGCC	TAATGANTGA	600
CTAACTCACA	TTAATTGCGT	TGCGCTCACT	GCCCGCTTTC	CAATCNGGAA	ACCTGTCTTG	660
CCNCTTGCAT	TNATGAATCN	GCCAACCCCC	GGGGAAAAGC	GTTTGCGTTT	TGGGCGCTCT	720
TCCGCTTCCT	CNCTCANTTA	NTCCCTNCNC	TCGGTCATTC	CGGCTGCNGC	AAACCGGTTC	780
ACCNCCTCCA	AAGGGGGTAT	TCCGGTTTCC	CCNAATCCGG	GGANANCC		828

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 834 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTTTTTTTTT	TTTTTACTGA	TAGATGGAAT	TTATTAAGCT	TTTCACATGT	GATAGCACAT	60
AGTTTTAATT	GCATCCAAAG	TACTAACAAA	AACTCTAGCA	ATCAAGAATG	GCAGCATGTT	120
ATTTTATAAC	AATCAACACC	TGTGGCTTTT	AAAATTTGGT	TTTCATAAGA	TAATTTATAC	180
TGAAGTAAAT	CTAGCCATGC	AAAAAATTTT	TGCTTTAGGT	CACTCCAAGC	TTGGCAGTTA	240
ACATTTGGCA	TAAACAATAA	TAAAACAATC	ACAATTTAAT	AAATAACAAA	TACAACATTG	300
TAGGCCATAA	TCATATACAG	TATAAGGAAA	${\tt AGGTGGTAGT}$	${\tt GTTGAGTAAG}$	CAGTTATTAG	360
AATAGAATAC	CTTGGCCTCT	ATGCAAATAT	${\tt GTCTAGACAC}$	TTTGATTCAC	TCAGCCCTGA	420
CATTCAGTTT	TCAAAGTAGG	AGACAGGTTC	TACAGTATCA	TTTTACAGTT	TCCAACACAT	480
TGAAAACAAG	TAGAAAATGA	TGAGTTGATT	TTTATTAATG	CATTACATCC	TCAAGAGTTA	540
TCACCAACCC	CTCAGTTATA	AAAAATTTTC	AAGTTATATT	AGTCATATAA	CTTGGTGTGC	600
${\tt TTATTTTAAA}$	TTAGTGCTAA	ATGGATTAAG	TGAAGACAAC	AATGGTCCCC	TAATGTGATT	660
${\tt GATATTGGTC}$	ATTTTTACCA	GCTTCTAAAT	CTNAACTTTC	AGGCTTTTGA	ACTGGAACAT	720
${\tt TGNATNACAG}$	TGTTCCANAG	TTNCAACCTA	CTGGAACATT	ACAGTGTGCT	TGATTCAAAA	780
TGTTATTTTG	ATTAAAAATTA	AATTTTAACC	TGGTGGAAAA	ATAATTTGAA	ATNA	834

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 818 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

${\bf TTTTTTTTT}$	$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$	AAGACCCTCA	TCAATAGATG	GAGACATACA	GAAATAGTCA	60
AACCACATCT	ACAAAATGCC	AGTATCAGGC	GGCGGCTTCG	AAGCCAAAGT	GATGTTTGGA	120
${\tt TGTAAAGTGA}$	AATATTAGTT	GGCGGATGAA	GCAGATAGTG	AGGAAAGTT'G	AGCCAATAAT	180
${\tt GACGTGAAGT}$	CCGTGGAAGC	CTGTGGCTAC	AAAAAATGTT	GAGCCGTAGA.	TGCCGTCGGA	240
${\tt AATGGTGAAG}$	GGAGACTCGA	AGTACTCTGA	GGCTTGTAGG	${\tt AGGGTAAAAT}$	AGAGACCCAG	300
${\tt TAAAATTGTA}$	ATAAGCAGTG	CTTGAATTAT	TTGGTTTCGG	TTGTTTTCTA	TTAGACTATG	360
${\tt GTGAGCTCAG}$	GTGATTGATA	CTCCTGATGC	GAGTAATACG	${\tt GATGTGTTTA}$	GGAGTGGGAC	420
TTCTAGGGGA	TTTAGCGGGG	TGATGCCTGT	TGGGGGCCAG	TGCCCTCCTA	GTTGGGGGGT	480
AGGGGCTAGG	CTGGAGTGGT	AAAAGGCTCA	GAAAAATCCT	GCGAAGAAAA	AAACTTCTGA	54.0
GGTAATAAAT	AGGATTATCC	CGTATCGAAG	GCCTTTTTGG	ACAGGTGGTG	TGTGGTGGCC	600
TTGGTATGTG	CTTTCTCGTG	TTACATCGCG	CCATCATTGG	TATATGGTTA	GTGTGTTGGG	660
TTANTANGGC	CTANTATGAA	GAACTTTTGG	ANTGGAATTA	AATCAATNGC	TTGGCCGGAA	720
GTCATTANGA	NGGCTNAAAA	GGCCCTGTTA	NGGGTCTGGG	CTNGGTTTTA	CCCNACCCAT	780
GGAATNCNCC	CCCCGGACNA	NTGNATCCCT	ATTCTTAA			818

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 817 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

TTTTTTTTT	${\bf TTTTTTTTTT}$	TGGCTCTAGA	GGGGGTAGAG	GGGGTGCTAT	AGGGTAAATA	60
CGGGCCCTAT	TTCAAAGATT	TTTAGGGGAA	TTAATTCTAG	GACGATGGGT	ATGAAACTGT	120
GGTTTGCTCC	ACAGATTTCA	GAGCATTGAC	CGTAGTATAC	CCCCGGTCGT	GTAGCGGTGA	180
AAGTGGTTTG	GTTTAGACGT	CCGGGAATTG	CATCTGTTTT	TAAGCCTAAT	GTGGGGACAG	240
${\tt CTCATGAGTG}$	CAAGACGTCT	TGTGATGTAA	${\tt TTATTATACN}$	AATGGGGGCT	TCAATCGGGA	300
${\tt GTACTACTCG}$	ATTGTCAACG	TCAAGGAGTC	GCAGGTCGCC	TGGTTCTAGG	AATAATGGGG	360
${\tt GAAGTATGTA}$	${\tt GGAATTGAAG}$	ATTAATCCGC	CGTAGTCGGT	GTTCTCCTAG	GTTCAATACC	420
${\tt ATTGGTGGCC}$	AATTGATTTG	ATGGTAAGGG	GAGGGATCGT	TGAACTCGTC	TGTTATGTAA	480
AGGATNCCTT	NGGGATGGGA	AGGCNATNAA	GGACTANGGA	TNAATGGCGG	GCANGATATT	540
${\tt TCAAACNGTC}$	TCTANTTCCT	GAAACGTCTG	AAATGTTAAT	AANAATTAAN	TTTNGTTATT	600
${\tt GAATNTTNNG}$	GAAAAGGGCT	TACAGGACTA	GAAACCAAAT	ANGAAAANTA	ATNNTAANGG	660
${\tt CNTTATCNTN}$	AAAGGTNATA	ACCNCTCCTA	TNATCCCACC	CAATNGNATT	CCCCACNCNN	. 720
${\tt ACNATTGGAT}$	NCCCCANTTC	CANAAANGGC	CNCCCCCGG	TGNANNCCNC	CTTTTGTTCC	780
CTTNANTGAN	GGTTATTCNC	CCCTNGCNTT	ATCANCC			817

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

CATTTCCGGG	TTTACTTTCT	AAGGAAAGCC	GAGCGGAAGC	TGCTAACGTG	GGAATCGGTG	60
CATAAGGAGA	ACTTTCTGCT	GGCACGCGCT	AGGGACAAGC	GGGAGAGCGA	CTCCGAGCGT	120

				and the second s		
CTGAAGCGCA	CGTCCCAGAA	GGTGGACTTG	GCACTGAAAC	AGCTGGGACA	CATCCGCGAG	180
TACGAACAGC	GCCTGAAAGT	GCTGGAGCGG	GAGGTCCAGC	AGTGTAGCCG	CGTCCTGGGG	240
TGGGTGGCCG	ANGCCTGANC	CGCTCTGCCT	TGCTGCCCCC	ANGTGGGCCG	CCACCCCCTG	300
ACCTGCCTGG	GTCCAAACAC	TGAGCCCTGC	TGGCGGACTT	CAAGGANAAC	CCCCACANGG	360
GGATTTTGCT	CCTANANTAA	GGCTCATCTG	GGCCTCGGCC	CCCCCACCTG	GTTGGCCTTG	420
TCTTTGANGT	GAGCCCCATG	TCCATCTGGG	CCACTGTCNG	GACCACCTTT	NGGGAGTGTT	480
CTCCTTACAA	CCACANNATG	CCCGGCTCCT	CCCGGAAACC	ANTCCCANCC	TGNGAAGGAT	540
CAAGNCCTGN	ATCCACTNNT	NCTANAACCG	GCCNCCNCCG	CNGTGGAACC	CNCCTTNTGT	600
TCCTTTTCNT	TNAGGGTTAA	TNNCGCCTTG	GCCTTNCCAN	NGTCCTNCNC	NTTTTCCNNT	660
GTTNAAATTG	TTANGCNCCC	NCCNNTCCCN	CNNCNNCNAN	CCCGACCCNN	ANNTTNNANN	720
NCCTGGGGGT	NCCNNCNGAT	TGACCCNNCC	NCCCTNTANT	TGCNTTNGGG	NNCNNTGCCC	780
CTTTCCCTCT	NGGGANNCG					799

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 801 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACGCCTTGAT	CCTCCCAGGC	TGGGACTGGT	TCTGGGAGGA	GCCGGGCATG	CTGTGGTTTG	60
TAANGATGAC	ACTCCCAAAG	${\tt GTGGTCCTGA}$	CAGTGGCCCA	GATGGACATG	GGGCTCACCT	120
CAAGGACAAG	GCCACCAGGT	GCGGGGGCCG	AAGCCCACAT	GATCCTTACT	CTATGAGCAA	180
AATCCCCTGT	GGGGGCTTCT	CCTTGAAGTC	CGCCANCAGG	$\tt GCTCAGTCTT$	TGGACCCANG	240
CAGGTCATGG	GGTTGTNGNC	${\tt CAACTGGGGG}$	CCNCAACGCA	AAANGGCNCA	GGGCCTCNGN	300
	ANGACGCGGC					360
TTCNTACCCG	CGNATNTGTC	CCANCTGTTT	CNGTGCCNAC	TCCANCTTCT	NGGACGTGCG	420
CTACATACGC	CCGGANTCNC	NCTCCCGCTT	TGTCCCTATC	CACGTNCCAN	CAACAAATTT	480
CNCCNTANTG	CACCNATTCC	CACNTTTNNC	AGNTTTCCNC	NNCGNGCTTC	CTTNTAAAAG	540
GGTTGANCCC	CGGAAAATNC	CCCAAAGGGG	GGGGGCCNGG	TACCCAACTN	CCCCCTNATA	600
GCTGAANTCC	CCATNACCNN	GNCTCNATGG	ANCONTCONT	TTTAANNACN	TTCTNAACTT	660
GGGAANANCC	CTCGNCCNTN	CCCCCNTTAA	TCCCNCCTTG	CNANGNNCNT	CCCCCNNTCC	720
NCCCNNNTNG	GCNTNTNANN	CNAAAAAGGC	CCNNNANCAA	TCTCCTNNCN	CCTCANTTCG	780
CCANCCCTCG	AAATCGGCCN	C				801

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 789 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

•	CAGTCTATNT	GGCCAGTGTG	GCAGCTTTCC	CTGTGGCTGC	CGGTGCCACA	TGCCTGTCCC	60
	ACAGTGTGGC	CGTGGTGACA	GCTTCAGCCG	CCCTCACCGG	${\tt GTTCACCTTC}$	TCAGCCCTGC	120
	AGATCCTGCC	CTACACACTG	GCCTCCCTCT	ACCACCGGGA	GAAGCAGGTG	TTCCTGCCCA	180
			GGTGCTAGCA				240
	CAGGCCCTAA	GCCTGGAGCT	CCCTTCCCTA	ATGGACACGT	GGGTGCTGGA	GGCAGTGGCC	300
	TGCTCCCACC	TCCACCCGCG	CTCTGCGGGG	CCTCTGCCTG	TGATGTCTCC	GTACGTGTGG	360
	TGGTGGGTGA	GCCCACCGAN	GCCAGGGTGG	TTCCGGGCCG	GGGCATCTGC	CTGGACCTCG	420
	CCATCCTGGA	TAGTGCTTCC	TGCTGTCCCA	NGTGGCCCCA	TCCCTGTTTA	TGGGCTCCAT	480
	TGTCCAGCTC	AGCCAGTCTG	TCACTGCCTA	TATGGTGTCT	GCCGCAGGCC	TGGGTCTGGT	540

CCCATTTACT TTGCTACACA	GGTANTATTT	GACAAGAACG	ANTTGGCCAA	ATACTCAGCG	600
TTAAAAAATT CCAGCAACAT	TGGGGGTGGA	AGGCCTGCCT	CACTGGGTCC	AACTCCCCGC	660
TCCTGTTAAC CCCATGGGGC	TGCCGGCTTG	GCCGCCAATT	TCTGTTGCTG	CCAAANTNAT	720
GTGGCTCTCT GCTGCCACCT	GTTGCTGGCT	GAAGTGCNTA	CNGCNCANCT	NGGGGGGTNG	780
GGNGTTCCC					789

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 772 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCCACCCTAC	CCAAATATTA	GACACCAACA	CAGAAAAGCT	AGCAATGGAT	TCCCTTCTAC	60
TTTGTTAAAT	AAATAAGTTA	AATATTTAAA	TGCCTGTGTC	TCTGTGATGG	CAACAGAAGG	120
ACCAACAGGC	CACATCCTGA	TAAAAGGTAA	$\tt GAGGGGGGTG$	GATCAGCAAA	AAGACAGTGC	180
TGTGGGCTGA	GGGGACCTGG	TTCTTGTGTG	${\tt TTGCCCCTCA}$	GGACTCTTCC	CCTACAAATA	240
ACTTTCATAT	GTTCAAATCC	CATGGAGGAG	TGTTTCATCC	TAGAAACTCC	CATGCAAGAG	300
CTACATTAAA	CGAAGCTGCA	GGTTAAGGGG	CTTANAGATG	GGAAACCAGG	TGACTGAGTT	360
TATTCAGCTC	CCAAAAACCC	TTCTCTAGGT	GTGTCTCAAC	TAGGAGGCTA	GCTGTTAACC	420
CTGAGCCTGG	GTAATCCACC	TGCAGAGTCC	CCGCATTCCA	GTGCATGGAA	CCCTTCTGGC	480
CTCCCTGTAT	AAGTCCAGAC	TGAAACCCCC	TTGGAAGGNC	TCCAGTCAGG	CAGCCCTANA	540
AACTGGGGAA	AAAAGAAAAG	GACGCCCCAN	CCCCCAGCTG	TGCANCTACG	CACCTCAACA	600
GCACAGGGTG	GCAGCAAAAA	AACCACTTTA	CTTTGGCACA	AACAAAAACT	NGGGGGGCA	660
ACCCCGGCAC	CCCNANGGGG	GTTAACAGGA	ANCNGGGNAA	CNTGGAACCC	AATTNAGGCA	720
GGCCCNCCAC	CCCNAATNTT	GCTGGGAAAT	TTTTCCTCCC	CTAAATTNTT	TC	772

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GCCCCAATTC	CAGCTGCCAC	ACCACCCACG	GTGACTGCAT	TAGTTCGGAT	GTCATACAAA	60
AGCTGATTGA	AGCAACCCTC	TACTTTTTGG	TCGTGAGCCT	${\tt TTTGCTTGGT}$	GCAGGTTTCA	120
TTGGCTGTGT	TGGTGACGTT	GTCATTGCAA	CAGAATGGGG	GAAAGGCACT	GTTCTCTTTG	180
AAGTANGGTG	AGTCCTCAAA	ATCCGTATAG	TTGGTGAAGC	CACAGCACTT	GAGCCCTTTC	240
ATGGTGGTGT	TCCACACTTG	AGTGAAGTCT	TCCTGGGAAC	CATAATCTTT	CTTGATGGCA	300
GGCACTACCA	GCAACGTCAG	GGAAGTGCTC	AGCCATTGTG	GTGTACACCA	AGGCGACCAC	360
AGCAGCTGCN	ACCTCAGCAA	TGAAGATGAN	GAGGANGATG	AAGAAGAACG	TCNCGAGGGC	420
ACACTTGCTC	TCAGTCTTAN	CACCATANCA	GCCCNTGAAA	ACCAANANCA	AAGACCACNA	480
CNCCGGCTGC	GATGAAGAAA	TNACCCCNCG	TTGACAAACT	TGCATGGCAC	TGGGANCCAC	540
AGTGGCCCNA	AAAATCTTCA	AAAAGGATGC	CCCATCNATT	GACCCCCCAA	ATGCCCACTG	600
CCAACAGGGG	CTGCCCCACN	CNCNNAACGA	TGANCCNATT	GNACAAGATC	TNCNTGGTCT	660
TNATNAACNT	GAACCCTGCN	TNGTGGCTCC	TGTTCAGGNC	CNNGGCCTGA	CTTCTNAANN	720
AANGAACTCN	GAAGNCCCCA	CNGGANANNC	G		•	751

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 729 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCCAGGCG TCCCTCTGCC	${\tt TGCCCACTCA}$	GTGGCAACAC	CCGGGAGCTG	TTTTGTCCTT	60
TGTGGANCCT CAGCAGTNCC	CTCTTTCAGA	ACTCANTGCC	AAGANCCCTG	AACAGGAGCC	120
ACCATGCAGT GCTTCAGCTT	CATTAAGACC	ATGATGATCC	TCTTCAATTT	GCTCATCTTT	180
CTGTGTGGTG CAGCCCTGTT	GGCAGTGGGC	ATCTGGGTGT	${\tt CAATCGATGG}$	GGCATCCTTT	240
CTGAAGATCT TCGGGCCACT	GTCGTCCAGT	GCCATGCAGT	TTGTCAACGT	GGGCTACTTC	300
CTCATCGCAG CCGGCGTTGT	GGTCTTAGCT	CTAGGTTTCC	TGGGCTGCTA	TGGTGCTAAG	. 360
ACTGAGAGCA AGTGTGCCCT	CGTGACGTTC	TTCTTCATCC	TCCTCCTCAT	CTTCATTGCT	420
GAGGTTGCAA TGCTGTGGTC	GCCTTGGTGT	ACACCACAAT	GGCTGAGCAC	TTCCTGACGT	480
TGCTGGTAAT GCCTGCCATC	AANAAAAGAT	TATGGGTTCC	CAGGAANACT	TCACTCAAGT	540
GTTGGAACAC CACCATGAAA	GGGCTCAAGT	GCTGTGGCTT	CNNCCAACTA	TACGGATTTT	600
GAAGANTCAC CTACTTCAAA	GAAAANAGTG	CCTTTCCCCC	ATTTCTGTTG	CAATTGACAA	660
ACGTCCCCAA CACAGCCAAT	TGAAAACCTG	CACCCAACCC	AAANGGGTCC	CCAACCANAA	720
ATTNAAGGG					729

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 816 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TGCTCTTCCT	CAAAGTTGTT	CTTGTTGCCA	TAACAACCAC	CATAGGTAAA	GCGGGCGCAG	60
TGTTCGCTGA	${\tt AGGGGTTGTA}$	GTACCAGCGC	GGGATGCTCT	CCTTGCAGAG	TCCTGTGTCT	120
GGCAGGTCCA	CGCAGTGCCC	TTTGTCACTG	$\tt GGGAAATGGA$	TGCGCTGGAG	CTCGTCAAAG	180
CCACTCGTGT	ATTTTTCACA	GGCAGCCTCG	TCCGACGCGT	CGGGGCAGTT	GGGGGTGTCT	240
TCACACTCCA	GGAAACTGTC	NATGCAGCAG	CCATTGCTGC	AGCGGAACTG	GGTGGGCTGA	300
CANGTGCCAG	AGCACACTGG	ATGGCGCCTT	TCCATGNNAN	GGGCCCTGNG	GGAAAGTCCC	360
TGANCCCCAN	ANCTGCCTCT	CAAANGCCCC	ACCTTGCACA	CCCCGACAGG	CTAGAATGGA	420
ATCTTCTTCC	CGAAAGGTAG	TTNTTCTTGT	TGCCCAANCC	ANCCCCNTAA	ACAAACTCTT	480
GCANATCTGC	TCCGNGGGGG	TCNTANTACC	ANCGTGGGAA	AAGAACCCCA	GGCNGCGAAC	540
CAANCTTGTT	TGGATNCGAA	GCNATAATCT	NCTNTTCTGC	TTGGTGGACA	GCACCANTNA	600
CTGTNNANCT	TTAGNCCNTG	GTCCTCNTGG	GTTGNNCTTG	AACCTAATCN	CCNNTCAACT	660
GGGACAAGGT	AANTNGCCNT	CCTTTNAATT	CCCNANCNTN	CCCCCTGGTT	TGGGGTTTTN	720
CNCNCTCCTA	CCCCAGAAAN	NCCGTGTTCC	CCCCCAACTA	GGGGCCNAAA	CCNNTTNTTC	780
CACAACCCTN	CCCCACCCAC	GGGTTCNGNT	GGTTNG			816

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 783 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CCAAGGCCTG	GGCAGGCATA	NACTTGAAGG	TACAACCCCA	GGAACCCCTG	GTGCTGAAGG	60
ATGTGGAAAA	CACAGATTGG	CGCCTACTGC	GGGGTGACAĆ	GGATGTCAGG	GTAGAGAGGA	120
AAGACCCAAA	CCAGGTGGAA	CTGTGGGGAC	TCAAGGAANG	CACCTACCTG	TTCCAGCTGA	180
CAGTGACTAG	CTCAGACCAC	CCAGAGGACA	CGGCCAACGT	CACAGTCACT	GTGCTGTCCA	240
CCAAGCAGAC	AGAAGACTAC	TGCCTCGCAT	CCAACAANGT	$\tt GGGTCGCTGC$	CGGGGCTCTT	300
TCCCACGCTG	GTACTATGAC	CCCACGGAGC	AGATCTGCAA	GAGTTTCGTT	TATGGAGGCT	360
GCTTGGGCAA	CAAGAACAAC	TACCTTCGGG	AAGAAGAGTG	CATTCTANCC	TGTCNGGGTG	420
TGCAAGGTGG	GCCTTTGANA	NGCANCTCTG	GGGCTCANGC	GACTTTCCCC	CAGGGCCCCT	480
CCATGGAAAG	GCGCCATCCA	NTGTTCTCTG	GCACCTGTCA	GCCCACCCAG	TTCCGCTGCA	5.40
NCAATGGCTG	CTGCATCNAC	ANTTTCCTNG	AATTGTGACA	ACACCCCCA	NTGCCCCCAA	600
CCCTCCCAAC	AAAGCTTCCC	TGTTNAAAAA	TACNCCANTT	GGCTTTTNAC	AAACNCCCGG	660
CNCCTCCNTT	TTCCCCNNTN	AACAAAGGGC	NCTNGCNTTT	GAACTGCCCN	AACCCNGGAA	720
TCTNCCNNGG	AAAAANTNCC	CCCCCTGGTT	CCTNNAANCC	CCTCCNCNAA	ANCTNCCCCC	780
CCC						783

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 801 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GCCCCAATTC	CAGCTGCCAC	ACCACCCACG	GTGACTGCAT	TAGTTCGGAT	GTCATACAAA	60
AGCTGATTGA	AGCAACCCTC	${\tt TACTTTTTGG}$	TCGTGAGCCT	TTTGCTTGGT	GCAGGTTTCA	120
TTGGCTGTGT	TGGTGACGTT	${\tt GTCATTGCAA}$	CAGAATGGGG	${\tt GAAAGGCACT}$	GTTCTCTTTG	180
AAGTAGGGTG	AGTCCTCAAA	${\tt ATCCGTATAG}$	TTGGTGAAGC	CACAGCACTT	GAGCCCTTTC	240
ATGGTGGTGT	TCCACACTTG	AGTGAAGTCT	TCCTGGGAAC	CATAATCTTT	CTTGATGGCA	300
GGCACTACCA	GCAACGTCAG	GAAGTGCTCA	GCCATTGTGG	TGTACACCAA	GGCGACCACA	360
GCAGCTGCAA	CCTCAGCAAT	GAAGATGAGG	${\tt AGGAGGATGA}$	AGAAGAACGT	CNCGAGGGCA	420
CACTTGCTCT	CCGTCTTAGC	ACCATAGCAG	CCCANGAAAC	CAAGAGCAAA	GACCACAACG	480
CCNGCTGCGA	ATGAAAGAAA	NTACCCACGT	TGACAAACTG	CATGGCCACT	GGACGACAGT	540
TGGCCCGAAN	ATCTTCAGAA	AAGGGATGCC	CCATCGATTG	AACACCCANA	TGCCCACTGC	600
CNACAGGGCT	GCNCCNCNCN	GAAAGAATGA	GCCATTGAAG	AAGGATCNTC	NTGGTCTTAA	660
TGAACTGAAA	CCNTGCATGG	TGGCCCCTGT	TCAGGGCTCT	TGGCAGTGAA	TTCTGANAAA	720
AAGGAACNGC	NTNAGCCCCC	CCAAANGANA	AAACACCCCC	GGGTGTTGCC	CTGAATTGGC	780
GGCCAAGGAN	CCCTGCCCCN	G .				801

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 740 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GTGAGAGCCA	GGCGTCCCTC	TGCCTGCCCA	CTCAGTGGCA	ACACCCGGGA	GCTGTTTTGT	60
CCTTTGTGGA	GCCTCAGCAG	$\mathtt{TTCCCTCTT}$	CAGAACTCAC	TGCCAAGAGC	CCTGAACAGG	120
AGCCACCATG	CAGTGCTTCA	GCTTCATTAA	GACCATGATG	${\tt ATCCTCTTCA}$	ATTTGCTCAT	180
CTTTCTGTGT	GGTGCAGCCC	TGTTGGCAGT	${\tt GGGCATCTGG}$	${\tt GTGTCAATCG}$	ATGGGGCATC	240
CTTTCTGAAG	ATCTTCGGGC	CACTGTCGTC	CAGTGCCATG	CAGTTTGTCA	ACGTGGGCTA	300
CTTCCTCATC	GCAGCCGGCG	TTGTGGTCTT	TGCTCTTGGT	TTCCTGGGCT	GCTATGGTGC	360

TAAGACGGAG	AGCAAGTGTG	CCCTCGTGAC	GTTCTTCTTC	ATCCTCCTCC	TCATCTTCAT	420
TGCTGAAGTT	GCAGCTGCTG	TGGTCGCCTT	GGTGTACACC	ACAATGGCTG	AACCATTCCT	480
GACGTTGCTG	GTANTGCCTG	CCATCAANAA	AGATTATGGG	TTCCCAGGAA	AAATTCACTC	540
AANTNTGGAA	CACCNCCATG	AAAAGGGCTC	CAATTTCTGN	TGGCTTCCCC	AACTATACCG	600
GAATTTTGAA	AGANTCNCCC	TACTTCCAAA	AAAAAANANT	${\tt TGCCTTTNCC}$	CCCNTTCTGT	660
TGCAATGAAA	ACNTCCCAAN	ACNGCCAATN	AAAACCTGCC	CNNNCAAAAA	GGNTCNCAAA	720
CAAAAAAANT	NNAAGGGTTN		•			740

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 802 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

	•					
CCGCTGGTTG	CGCTGGTCCA	GNGNAGCCAC	GAAGCACGTC	AGCATACACA	GCCTCAATCA	. 60
CAAGGTCTTC	CAGCTGCCGC	ACATTACGCA	GGGCAAGAGC	CTCCAGCAAC	ACTGCATATG	120
GGATACACTT	TACTTTAGCA	GCCAGGGTGA	CAACTGAGAG	GTGTCGAAGC	TTATTCTTCT	180
GAGCCTCTGT	TAGTGGAGGA	AGATTCCGGG	CTTCAGCTAA	GTAGTCAGCG	TATGTCCCAT	240
AAGCAAACAC	TGTGAGCAGC	CGGAAGGTAG	AGGCAAAGTC	ACTCTCAGCC	AGCTCTCTAA	300
CATTGGGCAT	GTCCAGCAGT	TCTCCAAACA	CGTAGACACC	AGNGGCCTCC	AGCACCTGAT	360
GGATGAGTGT	GGCCAGCGCT	GCCCCTTGG	CCGACTTGGC	TAGGAGCAGA	AATTGCTCCT	420
GGTTCTGCCC	TGTCACCTTC	ACTTCCGCAC	TCATCACTGC	ACTGAGTGTG	GGGGACTTGG	480
GCTCAGGATG	TCCAGAGACG	TGGTTCCGCC	CCCTCNCTTA	ATGACACCGN	CCANNCAACC	540
GTCGGCTCCC	GCCGANTGNG	TTCGTCGTNC	CTGGGTCAGG	GTCTGCTGGC	CNCTACTTGC	. 600
AANCTTCGTC	NGGCCCATGG	AATTCACCNC	ACCGGAACTN	GTANGATCCA	CTNNTTCTAT	660
AACCGGNCGC	CACCGCNNNT	GGAACTCCAC	TCTTNTTNCC	TTTACTTGAG	GGTTAAGGTC	720
ACCCTTNNCG	TTACCTTGGT	CCAAACCNTN	CCNTGTGTCG	ANATNGTNAA	TCNGGNCCNA	780
TNCCANCONC	ATANGAAGCC	NG				802

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 731 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CNAAGCTTCC	AGGTNACGGG	CCGCNAANCC	TGACCCNAGG	TANCANAANG	CAGNCNGCGG	60
GAGCCCACCG	${\tt TCACGNGGNG}$	GNGTCTTTAT	NGGAGGGGC	GGAGCCACAT	CNCTGGACNT	120
CNTGACCCCA	ACTCCCCNCC	NCNCANTGCA	GTGATGAGTG	CAGAACTGAA	GGTNACGTGG	180
CAGGAACCAA	GANCAAANNC	TGCTCCNNTC	CAAGTCGGCN	NAGGGGGCGG	GGCTGGCCAC	240
GCNCATCCNT	CNAGTGCTGN	AAAGCCCCNN	CCTGTCTACT	${\tt TGTTTGGAGA}$	ACNGCNNNGA	300
CATGCCCAGN	GTTANATAAC	NGGCNGAGAG	TNANTTTGCC	TCTCCCTTCC	GGCTGCGCAN	360
CGNGTNTGCT	TAGNGGACAT	AACCTGACTA	CTTAACTGAA	CCCNNGAATC	TNCCNCCCCT	420
CCACTAAGCT	CAGAACAAAA	AACTTCGACA	CCACTCANTT	GTCACCTGNC	TGCTCAAGTA	480
AAGTGTACCC	CATNCCCAAT	GTNTGCTNGA	NGCTCTGNCC	${\tt TGCNTTANGT}$	TCGGTCCTGG	540
GAAGACCTAT	CAATTNAAGC	TATGTTTCTG	ACTGCCTCTT	GCTCCCTGNA	ACAANCNACC	600
CNNCNNTCCA	AGGGGGGGNC	GGCCCCCAAT	CCCCCCAACC	NTNAATTNAN	TTTANCCCCN	660
CCCCCNGGCC	CGGCCTTTTA	CNANCNTCNN	NNACNGGGNA	AAACCNNNGC	TTTNCCCAAC	720
NNAATCCNCC	T					731

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 754 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

TTTTTTTTT	TTTTTTTTTT	TAAAAACCCC	CTCCATTNAA	TGNAAACTTC	CGAAATTGTC	60
CAACCCCCTC	NTCCAAATNN	CCNTTTCCGG	GNGGGGGTTC	CAAACCCAAN	TTANNTTTGG	120
ANNTTAAATT	AAATNTTNNT	TGGNGGNNNA	ANCCNAATGT	NANGAAAGTT	NAACCCANTA	180
TNANCTTNAA	TNCCTGGAAA	CCNGTNGNTT	CCAAAAATNT	TTAACCCTTA	ANTCCCTCCG	240
${\tt AAATNGTTNA}$	NGGAAAACCC	AANTTCTCNT	AAGGTTGTTT	${\tt GAAGGNTNAA}$	TNAAAANCCC	300
NNCCAATTGT	TTTTNGCCAC	${\tt GCCTGAATTA}$	ATTGGNTTCC	GNTGTTTTCC	NTTAAAANAA	360
GGNNANCCCC	GGTTANTNAA	TCCCCCCNNC	CCCAATTATA	CCGANTTTTT	TTNGAATTGG	420
GANCCCNCGG	GAATTAACGG	GGNNNNTCCC	TNTTGGGGGG	CNGGNNCCCC	CCCCNTCGGG	480
GGTTNGGGNC	AGGNCNNAAT	TGTTTAAGGG	TCCGAAAAAT	CCCTCCNAGA	AAAAANCTC	540
CCAGGNTGAG	NNTNGGGTTT	NCCCCCCCC	CANGGCCCCT	CTCGNANAGT	TGGGGTTTGG	600
GGGGCCTGGG	ATTTTTTTC	CCCTNTTNCC	TCCCCCCCC	CCNGGGANAG	AGGTTNGNGT	660
TTTGNTCNNC	GGCCCCNCCN	AAGANCTTTN	CCGANTTNAN	TTAAATCCNT	GCCTNGGCGA	720
AGTCCNTTGN	AGGGNTAAAN	GGCCCCTNN	CGGG		•	754

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 755 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATCANCCCAT	GACCCCNAAC	NNGGGACCNC	TCANCCGGNC	NNNCNACCNC	CGGCCNATCA	60
NNGTNAGNNC	ACTNCNNTTN	NATCACNCCC	CNCCNACTAC	GCCCNCNANC	CNACGCNCTA	120
NNCANATNCC	ACTGANNGCG	CGANGTNGAN	${\tt NGAGAAANCT}$	NATACCANAG	NCACCANACN	180
CCAGCTGTCC	NANAANGCCT	NNNATACNGG	${\tt NNNATCCAAT}$	NTGNANCCTC	CNAAGTATTN	240
NNCNNCANAT	GATTTTCCTN	ANCCGATTAC	CCNTNCCCCC	TANCCCCTCC	CCCCCAACNA	300
${\tt CGAAGGCNCT}$	GGNCCNAAGG	NNGCGNCNCC	CCGCTAGNTC	CCCNNCAAGT	CNCNCNCCTA	360
AACTCANCCN	NATTACNCGC	TTCNTGAGTA	TCACTCCCCG	AATCTCACCC	TACTCAACTC	420
${\tt AAAAANATCN}$	GATACAAAAT	AATNCAAGCC	TGNTTATNAC	ACTNTGACTG	GGTCTCTATT	480
${\tt TTAGNGGTCC}$	NTNAANCNTC	CTAATACTTC	CAGTCTNCCT	TCNCCAATTT	CCNAANGGCT	540
CTTTCNGACA	GCATNTTTTG	GTTCCCNNTT	GGGTTCTTAN	NGAATTGCCC	TTCNTNGAAC	600
GGGCTCNTCT	TTTCCTTCGG	TTANCCTGGN	TTCNNCCGGC	CAGTTATTAT	TTCCCNTTTT	660
AAATTCNTNC	CNTTTANTTT	TGGCNTTCNA	AACCCCCGGC	CTTGAAAACG	GCCCCTGGT	720
AAAAGGTTGT	TTTGANAAAA	TTTTTTTTT	GTTCC			755

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 849 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

TTTTTTTTTT	TTTTTANGTG	TNGTCGTGCA	GGTAGAGGCT	TACTACAANT	GTGAANACGT	60
ACGCTNGGAN	TAANGCGACC	CGANTTCTAG	GANNCNCCCT	AAAATCANAC	TGTGAAGATN	120
ATCCTGNNNA	CGGAANGGTC	ACCGGNNGAT	NNTGCTAGGG	TGNCCNCTCC	CANNNCNTTN	180
CATAACTCNG	NGGCCCTGCC	CACCACCTTC	GGCGGCCCNG	NGNCCGGGCC	CGGGTCATTN	240
GNNTTAACCN	CACTNNGCNA	NCGGTTTCCN	NCCCCNNCNG	ACCCNGGCGA	TCCGGGGTNC	300
TCTGTCTTCC	CCTGNAGNCN	${\tt ANAAANTGGG}$	CCNCGGNCCC	${\tt CTTTACCCCT}$	NNACAAGCCA	360
CNGCCNTCTA	NCCNCNGCCC	CCCCTCCANT	NNGGGGGACT	GCCNANNGCT	CCGTTNCTNG	420
NNACCCCNNN	GGGTNCCTCG	${\tt GTTGTCGANT}$	CNACCGNANG	CCANGGATTC	CNAAGGAAGG	480
TGCGTTNTTG	GCCCCTACCC	TTCGCTNCGG	NNCACCCTTC	CCGACNANGA	NCCGCTCCCG	540
CNCNNCGNNG	CCTCNCCTCG	CAACACCCGC	NCTCNTCNGT	NCGGNNNCCC	CCCCACCCGC	600
NCCCTCNCNC	NGNCGNANCN	CTCCNCCNCC	GTCTCANNCA	CCACCCCCCC	CCGCCAGGCC	660
NTCANCCACN	GGNNGACNNG	NAGCNCNNTC	GCNCCGCGCN	GCGNCNCCCT	CGCCNCNGAA	720
CTNCNTCNGG	CCANTNNCGC	TCAANCCNNA	CNAAACGCCG	CTGCGCGGCC	CGNAGCGNCC	780
NCCTCCNCGA	GTCCTCCCGN	CTTCCNACCC	ANGNNTTCCN	CGAGGACACN	NNACCCCGCC	840
NNCANGCGG						849

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 872 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GCGCAAACTA	TACTTCGCTC	GNACTCGTGC	GCCTCGCTNC	TCTTTTCCTC	CGCAACCATG	60
TCTGACNANC	CCGATTNGGC	NGATATCNAN	AAGNTCGANC	AGTCCAAACT	GANTAACACA	120
CACACNCNAN	AGANAAATCC	NCTGCCTTCC	ANAGTANACN	ATTGAACNNG	AGAACCANGC	180
NGGCGAATCG	TAATNAGGCG	TGCGCCGCCA	ATNTGTCNCC	GTTTATTNTN	CCAGCNTCNC	240
CTNCCNACCC	TACNTCTTCN	NAGCTGTCNN	ACCCCTNGTN	CGNACCCCCC	NAGGTCGGGA	300
TCGGGTTTNN	NNTGACCGNG	CNNCCCCTCC	CCCCNTCCAT	NACGANCONO	CCGCACCACC	360
NANNGCNCGC	NCCCCGNNCT	CTTCGCCNCC	CTGTCCTNTN	CCCCTGTNGC	CTGGCNCNGN	420
ACCGCATTGA	CCCTCGCCNN	CTNCNNGAAA	NCGNANACGT	CCGGGTTGNN	ANNANCGCTG	480
TGGGNNNGCG	TCTGCNCCGC	GTTCCTTCCN	NCNNCTTCCA	CCATCTTCNT	TACNGGGTCT	540
${\tt CCNCGCCNTC}$	TCNNNCACNC	CCTGGGACGC	TNTCCTNTGC	CCCCCTTNAC	TCCCCCCTT	600
${\tt CGNCGTGNCC}$	CGNCCCCACC	NTCATTTNCA	NACGNTCTTC	ACAANNNCCT	GGNTNNCTCC	. 660
CNANCNGNCN	GTCANCCNAG	GGAAGGGNGG	GGNNCCNNTG	NTTGACGTTG	NGGNGANGTC	720
${\tt CGAANANTCC}$	TCNCCNTCAN	CNCTACCCCT	CGGGCGNNCT	CTCNGTTNCC	AACTTANCAA	780
NTCTCCCCG	NGNGCNCNTC	TCAGCCTCNC	CCNCCCCNCT	CTCTGCANTG	TNCTCTGCTC	840
TNACCNNTAC	GANTNTTCGN	CNCCCTCTTT	CC	•		872

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 815 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GCATGCAAGC TTGAGTATTC TATAGNGTCA CCTAAATANC TTGGCNTAAT CATGGTCNTA 60 NCTGNCTTCC TGTGTCAAAT GTATACNAAN TANATATGAA TCTNATNTGA CAAGANNGTA 120

TCNTNCA	TTA	GTAACAANTG	TNNTGTCCAT	CCTGTCNGAN	CANATTCCCA	TNNATTNCGN	1,80
CGCATTC	NCN	GCNCANTATN	${\tt TAATNGGGAA}$	NTCNNNTNNN	NCACCNNCAT	CTATCNTNCC	240
GCNCCCT	GAC	TGGNAGAGAT	GGATNANTTC	TNNTNTGACC	${\tt NACATGTTCA}$	TCTTGGATTN	300
AANANCC	CCC	CGCNGNCCAC	CGGTTNGNNG	CNAGCCNNTC	CCAAGACCTC	CTGTGGAGGT	3,60
AACCTGC	GTC	AGANNCATCA	AACNTGGGAA	ACCCGCNNCC	ANGTNNAAGT	NGNNNCANAN	420
GATCCCG	TCC	AGGNTTNACC	ATCCCTTCNC	AGCGCCCCCT	${\tt TTNGTGCCTT}$	ANAGNGNAGC	480
GTGTCCN	ANC	CNCTCAACAT	GANACGCGCC	${\tt AGNCCANCCG}$	CAATTNGGCA	CAATGTCGNC	540
GAACCCC	CTA	GGGGGANTNA	TNCAAANCCC	CAGGATTGTC	CNCNCANGAA	ATCCCNCANC	600
CCCNCCC	TAC	CCNNCTTTGG	GACNGTGACC	AANTCCCGGA	GTNCCAGTCC	GGCCNGNCTC	660
CCCCACC	GGT	NNCCNTGGGG	GGGTGAANCT	CNGNNTCANC	CNGNCGAGGN	NTCGNAAGGA	720
ACCGGNC	CTN	GGNCGAANNG	ANCNNTCNGA	AGNGCCNCNT	CGTATAACCC	CCCCTCNCCA	780
NCCNACN	GNT	AGNTCCCCCC	CNGGGTNCGG	AANGG			815

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 775 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

					· ·	
CCGAGATGTC	TCGCTCCGTG	GCCTTAGCTG	TGCTCGCGCT	ACTCTCTCTT	TCTGGCCTGG	60
AGGCTATCCA	GCGTACTCCA	AAGATTCAGG	TTTACTCACG	TCATCCAGCA	GAGAATGGAA	120
AGTCAAATTT	CCTGAATTGC	TATGTGTCTG	GGTTTCATCC	ATCCGACATT	GAANTTGACT	180
TACTGAAGAA	${\tt TGGANAGAGA}$	${\tt ATTGAAAAAG}$	TGGAGCATTC	AGACTTGTCT	TTCAGCAAGG	240
ACTGGTCTTT	CTATCTCNTG	TACTACACTG	AATTCACCCC	CACTGAAAAA	GATGAGTATG	300
CCTGCCGTGT	${\tt GAACCATGTG}$	ACTTTGTCAC	AGCCCAAGAT	${\tt AGTTAAGTGG}$	GATCGAGACA	360
TGTAAGCAGN	CNNCATGGAA	GTTTGAAGAT	GCCGCATTTG	GATTGGATGA	ATTCCAAATT	420
CTGCTTGCTT	GCNTTTTAAT	ANTGATATGC	NTATACACCC	TACCCTTTAT	GNÇCCCAAAT	480
TGTAGGGGTT	ACATNANTGT	TCNCNTNGGA	CATGATCTTC	CTTTATAANT	CCNCCNTTCG	540
AATTGCCCGT	CNCCCNGTTN	NGAATGTTTC	CNNAACCACG	GTTGGCTCCC	CCAGGTCNCC	60 <i>0</i>
TCTTACGGAA	GGGCCTGGGC	CNCTTTNCAA	GGTTGGGGGA	ACCNAAAATT	TCNCTTNTGC	660
CCNCCCNCCA	CNNTCTTGNG	NNCNCANTTT	GGAACCCTTC	CNATTCCCCT	TGGCCTCNNA	720
NCCTTNNCTA	ANAAAACTTN	AAANCGTNGC	NAAANNTTTN	ACTTCCCCCC	TTACC	775

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 820 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ANATTANTAC	AGTGTAATCT	TTTCCCAGAG	GTGTGTANAG	GGAACGGGGC	CTAGAGGCAT	60
CCCANAGATA	NCTTATANCA	ACAGTGCTTT	GACCAAGAGC	TGCTGGGCAC	ATTTCCTGCA	120
GAAAAGGTGG	CGGTCCCCAT	CACTCCTCCT	CTCCCATAGC	CATCCCAGAG	GGGTGAGTAG	180
CCATCANGCC	${\tt TTCGGTGGGA}$	${\tt GGGAGTCANG}$	GAAACAACAN	ACCACAGAGC	ANACAGACCA	240
NTGATGACCA	TGGGCGGGAG	CGAGCCTCTT	CCCTGNACCG	${\tt GGGTGGCANA}$	NGANAGCCTA	300
NCTGAGGGGT	CACACTATAA	ACGTTAACGA	CCNAGATNAN	CACCTGCTTC	AAGTGCACCC	360
TTCCTACCTG	ACNACCAGNG	ACCNNNAACT	GCNGCCTGGG	GACAGCNCTG	GGANCAGCTA	420
ACNNAGCACT	CACCTGCCCC	CCCATGGCCG	TNCGCNTCCC	TGGTCCTGNC	AAGGGAAGCT	480
CCCTGTTGGA	ATTNCGGGGA	NACCAAGGGA	NCCCCCTCCT	CCANCTGTGA	AGGAAAAANN	540
${\tt GATGGAATTT}$	TNCCCTTCCG	GCCNNTCCCC	TCTTCCTTTA	CACGCCCCCT	NNTACTCNTC	600

TCCCTCTNTT	NTCCTGNCNC	ACTTTTNACC	CCNNNATTTC	CCTTNATTGA	TCGGANNCTN	660
GANATTCCAC	TNNCGCCTNC	CNTCNATCNG	NAANACNAAA	NACTNTCTNA	CCCNGGGGAT	720
GGGNNCCTCG	NTCATCCTCT	CTTTTTCNCT	ACCNCCNNTT	CTTTGCCTCT	CCTTNGATCA	780
TCCAACCNTC	GNTGGCCNTN	CCCCCCNNN	TCCTTTNCCC			820

- (2) INFORMATION FOR SEQ ID NO:27:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 818 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

	TCTGGGTGAT	GGCCTCTTCC	TCCTCAGGGA	CCTCTGACTG	CTCTGGGCCA	AAGAATCTCT	60
	TGTTTCTTCT	CCGAGCCCCA	GGCAGCGGTG	ATTCAGCCCT	GCCCAACCTG	ATTCTGATGA	120
	CTGCGGATGC	TGTGACGGAC	CCAAGGGGCA	AATAGGGTCC	CAGGGTCCAG	GGAGGGGCGC	180
	CTGCTGAGCA	CTTCCGCCCC	TCACCCTGCC	CAGCCCCTGC	CATGAGCTCT	GGGCTGGGTC	240
	TCCGCCTCCA	GGGTTCTGCT	CTTCCANGCA	NGCCANCAAG	TGGCGCTGGG	CCACACTGGC	300
	TTCTTCCTGC	CCCNTCCCTG	GCTCTGANTC	TCTGTCTTCC	TGTCCTGTGC	ANGCNCCTTG	360
	GATCTCAGTT	TCCCTCNCTC	ANNGAACTCT	GTTTCTGANN	TCTTCANTTA	ACTNTGANTT	420
	TATNACCNAN	TGGNCTGTNC	TGTCNNACTT	TAATGGGCCN	GACCGGCTAA	TCCCTCCCTC	480
	NCTCCCTTCC	ANTTCNNNNA	ACCNGCTTNC	CNTCNTCTCC	CCNTANCCCG	CCNGGGAANC	540
	CTCCTTTGCC	CTNACCANGG	GCCNNNACCG	CCCNTNNCTN	GGGGGGCNNG	GTNNCTNCNC	600
	CTGNTNNCCC	CNCTCNCNNT	TNCCTCGTCC	CNNCNNCGCN	NNGCANNTTC	NCNGTCCCNN	660
•	TNNCTCTTCN	NGTNTCGNAA	NGNTCNCNTN	TNNNNNGNCN	NGNTNNTNCN	TCCCTCTCNC	720
	CNNNTGNANG	TNNTTNNNNC	NCNGNNCCCC	NNNNCNNNNN	NGGNNNTNNN	TCTNCNCNGC	780
•	CCCNNCCCCC	NGNATTAAGG	CCTCCNNTCT	CCGGCCNC			818

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 731 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

AGGAAGGGCG	GAGGGATATT	GTANGGGATT	GAGGGATAGG	AGNATAANGG	GGGAGGTGTG	60
TCCCAACATG	ANGGTGNNGT	TCTCTTTTGA	ANGAGGGTTG	NGTTTTTANN	CCNGGTGGGT	120
GATTNAACCC	CATTGTATGG	AGNNAAAGGN	TTTNAGGGAT	TTTTCGGCTC	TTATCAGTAT	180
NTANATTCCT	GTNAATCGGA	AAATNATNTT	TCNNCNGGAA	AATNTTGCTC	CCATCCGNAA	240
ATTNCTCCCG	GGTAGTGCAT	NTTNGGGGGN	CNGCCANGTT	TCCCAGGCTG	CTANAATCGT	300
ACTAAAGNTT	NAAGTGGGAN	TNCAAATGAA	AACCTNNCAC	AGAGNATCCN	TACCCGACTG	360
TNNNTTNCCT	TCGCCCTNTG	ACTCTGCNNG	AGCCCAATAC	CCNNGNGNAT	GTCNCCCNGN	420
NNNGCGNCNC	TGAAANNNNC	TCGNGGCTNN	GANCATCANG	GGGTTTCGCA	TCAAAAGCNN	48.0
CGTTTCNCAT	NAAGGCACTT	TNGCCTCATC	CAACCNCTNG	CCCTCNNCCA	TTTNGCCGTC	540
NGGTTCNCCT	ACGCTNNTNG	CNCCTNNNTN	GANATTTTNC	CCGCCTNGGG	NAANCCTCCT	600
GNAATGGGTA	GGGNCTTNTC	TTTTNACCNN	GNGGTNTACT	AATCNNCTNC	ACGCNTNCTT	66.0
TCTCNACCCC	CCCCCTTTTT	CAATCCCANC	GGCNAATGGG	GTCTCCCCNN	CGANGGGGGG	720
NNNCCCANNC	C					731

- (2) INFORMATION FOR SEQ ID NO:29:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 822 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

ACTAGTCCAG	TGTGGTGGAA	TTCCATTGTG	TTGGGGNCNC	${\tt TTCTATGANT}$	ANTNTTAGAT	60
CGCTCANACC	TCACANCCTC	CCNACNANGC	CTATAANGAA	NANNAATAGA	NCTGTNCNNT	120
ATNTNTACNC	${\tt TCATANNCCT}$	CNNNACCCAC	$\mathtt{TCCCTCTTAA}$	CCCNTACTGT	GCCTATNGCN	180
TNNCTANTCT	NTGCCGCCTN	CNANCCACCN	GTGGGCCNAC	CNCNNGNATT	CTCNATCTCC	240
TCNCCATNTN	GCCTANANTA	NGTNCATACC	CTATACCTAC	NCCAATGCTA	NNNCTAANCN	300
TCCATNANTT	ANNNTAACTA	CCACTGACNT	${\tt NGACTTTCNC}$	ATNANCTCCT	AATTTGAATC	360
TACTCTGACT	CCCACNGCCT	ANNNATTAGC	ANCNTCCCCC	NACNATNTCT	CAACCAAATC	420
NTCAACAACC	TATCTANCTG	TTCNCCAACC	NTTNCCTCCG	ATCCCCNNAC	AACCCCCCTC	480
CCAAATACCC	NCCACCTGAC	NCCTAACCCN	CACCATCCCG	GCAAGCCNAN	GGNCATTTAN	540
CCACTGGAAT	CACNATNGGA	NAAAAAAAAC	CCNAACTCTC	TANCNCNNAT	CTCCCTAANA	600
AATNCTCCTN	NAATTTACTN	NCANTNCCAT	CAANCCCACN	TGAAACNNAA	CCCCTGTTTT	660
TANATCCCTT	CTTTCGAAAA	CCNACCCTTT	ANNNCCCAAC	CTTTNGGGCC	CCCCCNCTNC	720
CCNAATGAAG	GNCNCCCAAT	CNANGAAACG	NCCNTGAAAA	ANCNAGGCNA	ANANNNTCCG	780
CANATCCTAT	CCCTTANTTN	GGGGNCCCTT	NCCCNGGGCC	CC '		822

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CGGCCGCCTG	CTCTGGCACA	TGCCTCCTGA	ATGGCATCAA	AAGTGATGGA	CTGCCCATTG		60
CTAGAGAAGA	CCTTCTCTCC	TACTGTCATT	ATGGAGCCCT	GCAGACTGAG	GGCTCCCCTT	:	120
GTCTGCAGGA	TTTGATGTCT	${\tt GAAGTCGTGG}$	AGTGTGGCTT	GGAGCTCCTC	ATCTACATNA	:	180
GCTGGAAGCC	CTGGAGGGCC	TCTCTCGCCA	GCCTCCCCCT	TCTCTCCACG	CTCTCCANGG	:	240
ACACCAGGGG	CTCCAGGCAG	CCCATTATTC	CCAGNANGAC	ATGGTGTTTC	TCCACGCGGA	. :	300
CCCATGGGGC	CTGNAAGGCC	AGGGTCTCCT	TTGACACCAT	CTCTCCCGTC	CTGCCTGGCA		360
$\tt GGCCGTGGGA$	TCCACTANTT	CTANAACGGN	CGCCACCNCG	GTGGGAGCTC	CAGCTTTTGT		420
TCCCNTTAAT	GAAGGTTAAT	TGCNCGCTTG	GCGTAATCAT	NGGTCANAAC	TNTTTCCTGT		480
GTGAAATTGT	TTNTCCCCTC	NCNATTCCNC	NCNACATACN	AACCCGGAAN	CATAAAGTGT		540
TAAAGCCTGG	GGGTNGCCTN	NNGAATNAAC	TNAACTCAAT	TAATTGCGTT	GGCTCATGGC		600
CCGCTTTCCN	TTCNGGAAAA	CTGTCNTCCC	CTGCNTTNNT	GAATCGGCCA	CCCCCCNGGG		660
AAAAGCGGTT	TGCNTTTTNG	GGGGNTCCTT	CCNCTTCCCC	CCTCNCTAAN	CCCTNCGCCT		720
CGGTCGTTNC	NGGTNGCGGG	GAANGGGNAT	NNNCTCCCNC	NAAGGGGGNG	AGNNNGNTAT		780
CCCCAAA							7 87

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TTTTTTTTT	${\tt TTTTTTTGGC}$	GATGCTACTG	TTTAATTGCA	GGAGGTGGGG	GTGTGTGTAC	60
CATGTACCAG	${\tt GGCTATTAGA}$	AGCAAGAAGG	AAGGAGGGAG	GGCAGAGCGC	CCTGCTGAGC	120
AACAAAGGAC	TCCTGCAGCC	TTCTCTGTCT	GTCTCTTGGC	GCAGGCACAT	GGGGAGGCCT	180
CCCGCAGGGT	GGGGGCCACC	AGTCCAGGGG	TGGGAGCACT	ACANGGGGTG	GGAGTGGGTG	240
GTGGCTGGTN	${\tt CNAATGGCCT}$	GNCACANATC	CCTACGATTC	TTGACACCTG	GATTTCACCA	300
GGGGACCTTC	TGTTCTCCCA	NGGNAACTTC	NTNNATCTCN	AAAGAACACA	ACTGTTTCTT	360
CNGCANTTCT	GGCTGTTCAT	GGAAAGCACA	GGTGTCCNAT	${\tt TTNGGCTGGG}$	ACTTGGTACA	420
TATGGTTCCG	GCCCACCTCT	CCCNTCNAAN	AAGTAATTCA	CCCCCCCCN	CCNTCTNTTG	480
CCTGGGCCCT	TAANTACCCA	CACCGGAACT	CANTTANTTA	TTCATCTTNG	GNTGGGCTTG	540
${\tt NTNATCNCCN}$	CCTGAANGCG	CCAAGTTGAA	AGGCCACGCC	${\tt GTNCCCNCTC}$	CCCATAGNAN	600
${\tt NTTTTNNCNT}$	CANCTAATGC	CCCCCCNGGC	AACNATCCAA	TCCCCCCCCN	TGGGGGCCCC	660
${\tt AGCCCANGGC}$	CCCCGNCTCG	GGNNNCCNGN	CNCGNANTCC	CCAGGNTCTC	CCANTCNGNC	720
CCNNNGCNCC	CCCGCACGCA	GAACANAAGG	NTNGAGCCNC	CGCANNNNN	NGGTNNCNAC	780
CTCGCCCCCC	CCNNCGNNG					799

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 789 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TTTTTTTTT	TTTTTTTTTT	TTTTTTTTT	${\tt TTTTTTTTT}$	$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$	TTTTTTTTTT	60
TTTTNCCNAG	GGCAGGTTTA	TTGACAACCT	CNCGGGACAC	AANCAGGCTG	GGGACAGGAC	120
GGCAACAGGC	TCCGGCGGCG	GCGGCGGCGG	CCCTACCTGC	GGTACCAAAT	NTGCAGCCTC	180
CGCTCCCGCT	TGATNTTCCT	CTGCAGCTGC	AGGATGCCNT	AAAACAGGGC	CTCGGCCNTN	240
GGTGGGCACC	CTGGGATTTN	AATTTCCACG	GGCACAATGC	GGTCGCANCC	CCTCACCACC	300
NATTAGGAAT	AGTGGTNTTA	CCCNCCNCCG	TTGGCNCACT	CCCCNTGGAA	ACCACTINTC	360
GCGGCTCCGG	CATCTGGTCT	TAAACCTTGC	AAACNCTGGG	GCCCTCTTTT	TGGTTANTNT	420
NCCNGCCACA	ATCATNACTC	AGACTGGCNC	GGGCTGGCCC	CAAAAAANCN	CCCCAAAACC	480
GGNCCATGTC	TTNNCGGGGT	TGCTGCNATN	TNCATCACCT	CCCGGGCNCA	NCAGGNCAAC	540
CCAAAAGTTC	TTGNGGCCCN	CAAAAAANCT	CCGGGGGGNC	CCAGTTTCAA	CAAAGTCATC	600
CCCCTTGGCC	CCCAAATCCT	CCCCCGNTT	NCTGGGTTTG	GGAACCCACG	CCTCTNNCTT	660
TGGNNGGCAA	GNTGGNTCCC	CCTTCGGGCC	CCCGGTGGGC	CCNNCTCTAA	NGAAAACNCC	720
NTCCTNNNCA	CCATCCCCC	NNGNNACGNC	TANCAANGNA	TCCCTTTTTT	TANAAACGGG	780
CCCCCCNCG					* . * . * . * . * . * . * . * . * . * .	789

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 793 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GACAGAACAT GTTGG	ATGGT GGAGCACCT	TT TCTATACGA	C TTACAGGACA	GCAGATGGGG	60
AATTCATGGC TGTTG	GAGCA ATANAACCO	CC AGTTCTACG	A GCTGCTGATC	AAAGGACTTG	120
GACTAAAGTC TGATG	AACTT CCCAATCAC	GA TGAGCATGG	A TGATTGGCCA	GAAATGAANA	180
AGAAGTTTGC AGATG	TATTT GCAAAGAAG	GA CGAAGGCAG	A GTGGTGTCAA	ATCTTTGACG	240
GCACAGATGC CTGTG	TGACT CCGGTTCTC	GA CTTTTGAGG	A GGTTGTTCAT	CATGATCACA	300

ACAANGAACG GGGCTCGTTT	ATCACCANTG	AGGAGCAGGA	CGTGAGCCCC	CGCCCTGCAC	360
CTCTGCTGTT AAACACCCCA	GCCATCCCTT	${\tt CTTTCAAAAG}$	GGATCCACTA	CTTCTAGAGC	420
GGNCGCCACC GCGGTGGAGC	TCCAGCTTTT	GTTCCCTTTA	GTGAGGGTTA	ATTGCGCGCT	480
TGGCGTAATC ATGGTCATAN	CTGTTTCCTG	TGTGAAATTG	TTATCCGCTC	ACAATTCCAC	540
ACAACATACG ANCCGGAAGC	ATNAAATTTT	AAAGCCTGGN	GGTNGCCTAA	TGANTGAACT	600
NACTCACATT AATTGGCTTT	GCGCTCACTG	CCCGCTTTCC	AGTCCGGAAA	ACCTGTCCTT	660
GCCAGCTGCC NTTAATGAAT	CNGGCCACCC	CCCGGGGAAA	AGGCNGTTTG	CTTNTTGGGG	720
CGCNCTTCCC GCTTTCTCGC	TTCCTGAANT	CCTTCCCCCC	GGTCTTTCGG	CTTGCGGCNA	780
ACGGTATCNA CCT			•		793

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 756 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

GCCGCGACCG	GCATGTACGA	GCAACTCAAG	$\tt GGCGAGTGGA$	ACCGTAAAAG	CCCCAATCTT	60)
ANCAAGTGCG	GGGAANAGCT	GGGTCGACTC	AAGCTAGTTC	TTCTGGAGCT	CAACTTCTTG	120	С
CCAACCACAG	GGACCAAGCT	GACCAAACAG	CAGCTAATTC	TGGCCCGTGA	CATACTGGAG	180	Э
ATCGGGGCCC	AATGGAGCAT	CCTACGCAAN	GACATCCCCT	CCTTCGAGCG	CTACATGGCC	240	О
CAGCTCAAAT	GCTACTACTT	TGATTACAAN	GAGCAGCTCC	CCGAGTCAGC	CTATATGCAC	300	С
CAGCTCTTGG	GCCTCAACCT	CCTCTTCCTG	CTGTCCCAGA	${\tt ACCGGGTGGC}$	TGANTNCCAC	. 360	О
ACGGANTTGG	ANCGGCTGCC	TGCCCAANGA	CATACANACC	AATGTCTACA	TCNACCACCA	420	0
${\tt GTGTCCTGGA}$	GCAATACTGA	TGGANGGCAG	CTACCNCAAA	GTNTTCCTGG	CCNAGGGTAA	480	0
CATCCCCCGC	CGAGAGCTAC	ACCTTCTTCA	TTGACATCCT	GCTCGACACT	ATCAGGGATG	540	0
AAAATCGCNG	GGTTGCTCCA	GAAAGGCTNC	AANAANATCC	TTTTCNCTGA	AGGCCCCCGG	60	0
ATNCNCTAGT	NCTAGAATCG	GCCCGCCATC	GCGGTGGANC	CTCCAACCTT	TCGTTNCCCT	660	0
TTACTGAGGG	TTNATTGCCG	CCCTTGGCGT	TATCATGGTC	ACNCCNGTTN	CCTGTGTTGA	72	O
${\tt AATTNTTAAC}$	CCCCCACAAT	TCCACGCCNA	CATTNG			75	6

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 834 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GGGGATCTCT	ANATCNACCT	GNATGCATGG	TTGTCGGTGT	GGTCGCTGTC	GATGAANATG	60
AACAGGATCT	TGCCCTTGAA	GCTCTCGGCT	GCTGTNTTTA	AGTTGCTCAG	TCTGCCGTCA	120
TAGTCAGACA	CNCTCTTGGG	CAAAAAACAN	CAGGATNTGA	GTCTTGATTT	CACCTCCAAT	180
AATCTTCNGG	GCTGTCTGCT	CGGTGAACTC	GATGACNANG	GGCAGCTGGT	TGTGTNTGAT	240
AAANTCCANC	ANGTTCTCCT	TGGTGACCTC	${\tt CCCTTCAAAG}$	TTGTTCCGGC	CTTCATCAAA	300
CTTCTNNAAN	ANGANNANCC	CANCTTTGTC	GAGCTGGNAT	TTGGANAACA	CGTCACTGTT	360
GGAAACTGAT	CCCAAATGGT	${\tt ATGTCATCCA}$	TCGCCTCTGC	TGCCTGCAAA	AAACTTGCTT	420
GGCNCAAATC	CGACTCCCCN	${\tt TCCTTGAAAG}$	${\tt AAGCCNATCA}$	CACCCCCTC	CCTGGACTCC	480
NNCAANGACT	CTNCCGCTNC	CCCNTCCNNG	CAGGGTTGGT	GGCANNCCGG	GCCCNTGCGC	540
TTCTTCAGCC	AGTTCACNAT	NTTCATCAGC	CCCTCTGCCA	GCTGTTNTAT	TCCTTGGGGG	600
GGAANCCGTC	TCTCCCTTCC	TGAANNAACT	TTGACCGTNG	GAATAGCCGC	GCNTCNCCNT	66.0
ACNTNCTGGG	CCGGGTTCAA	ANTCCCTCCN	TTGNCNNTCN	CCTCGGGCCA	TTCTGGATTT	720
NCCNAACTTT	TTCCTTCCCC	CNCCCCNCGG	NGTTTGGNTT	TTTCATNGGG	CCCCAACTCT	780

GCTNTTGGCC ANTCCCCTGG GGGCNTNTAN CNCCCCCTNT GGTCCCNTNG GGCC

834

- (2) INFORMATION FOR SEQ ID NO:36:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 814 base pairs(B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CGGNCGCTTT	CCNGCCGCGC	CCCGTTTCCA	TGACNAAGGC	TCCCTTCANG	TTAAATACNN	60
CCTAGNAAAC	ATTAATGGGT	TGCTCTACTA	ATACATCATA	CNAACCAGTA	AGCCTGCCCA	120
NAACGCCAAC	TCAGGCCATT	CCTACCAAAG	GAAGAAAGGC	TGGTCTCTCC	ACCCCCTGTA	180
GGAAAGGCCT	GCCTTGTAAG	ACACCACAAT	NCGGCTGAAT	CTNAAGTCTT	GTGTTTTACT	240
AATGGAAAAA	AAAAATAAAC	${\tt AANAGGTTTT}$	${\tt GTTCTCATGG}$	${\tt CTGCCCACCG}$	CAGCCTGGCA	300
CTAAAACANC	CCAGCGCTCA	CTTCTGCTTG	${\tt GANAAATATT}$	${\tt CTTTGCTCTT}$	TTGGACATCA	360
GGCTTGATGG	TATCACTGCC	ACNTTTCCAC	CCAGCTGGGC	NCCCTTCCCC	CATNTTTGTC	420
ANTGANCTGG	AAGGCCTGAA	NCTTAGTCTC	CAAAAGTCTC	NGCCCACAAG.	ACCGGCCACC	480
AGGGGANGTC	NTTTNCAGTG	GATCTGCCAA	ANANTACCCN	TATCATCNNT	GAATAAAAAG	540
GCCCCTGAAC	GANATGCTTC	CANCANCCTT	TAAGACCCAT	AATCCTNGAA	CCATGGTGCC	600
CTTCCGGTCT	GATCCNAAAG	GAATGTTCCT	GGGTCCCANT	CCCTCCTTTG	TTNCTTACGT	660
TGTNTTGGAC	CCNTGCTNGN	ATNACCCAAN	TGANATCCCC	NGAAGCACCC	TNCCCCTGGC	720
ATTTGANTTT	CNTAAATTCT	CTGCCCTACN	NCTGAAAGCA	CNATTCCCTN	GGCNCCNAAN	780
GGNGAACTCA	AGAAGGTCTN	NGAAAAACCA	CNCN			814

- (2) INFORMATION FOR SEQ ID NO:37:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 760 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

GCATGCTGCT	${\tt CTTCCTCAAA}$	GTTGTTCTTG	TTGCCATAAC	AACCACCATA	GGTAAAGCGG	60
GCGCAGTGTT	CGCTGAAGGG	GTTGTAGTAC	CAGCGCGGGA	TGCTCTCCTT	GCAGAGTCCT	120
GTGTCTGGCA	GGTCCACGCA	ATGCCCTTTG	TCACTGGGGA	AATGGATGCG	CTGGAGCTCG	180
TCNAANCCAC	TCGTGTATTT	TTCACANGCA	GCCTCCTCCG	AAGCNTCCGG	GCAGTTGGGG	240
GTGTCGTCAC	${\tt ACTCCACTAA}$	ACTGTCGATN	CANCAGCCCA	${\tt TTGCTGCAGC}$	GGAACTGGGT	300
GGGCTGACAG	GTGCCAGAAC	ACACTGGATN	GGCCTTTCCA	TGGAAGGGCC	TGGGGGAAAT	360
CNCCTNANCC	CAAACTGCCT	CTCAAAGGCC	ACCTTGCACA	CCCCGACAGG	CTAGAAATGC	420
ACTCTTCTTC	CCAAAGGTAG	TTGTTCTTGT	TGCCCAAGCA	NCCTCCANCA	AACCAAAANC	480
TTGCAAAATC	TGCTCCGTGG	GGGTCATNNN	TACCANGGTT	GGGGAAANAA	ACCCGGCNGN	540
GANCCNCCTT	GTTTGAATGC	NAAGGNAATA	ATCCTCCTGT	CTTGCTTGGG	TGGAANAGCA	600
CAATTGAACT	${\tt GTTAACNTTG}$	GGCCGNGTTC	CNCTNGGGTG	GTCTGAAACT	AATCACCGTC	660
ACTGGAAAAA	GGTANGTGCC	TTCCTTGAAT	TCCCAAANTT	CCCCTNGNTT	TGGGTNNTTT	720
CTCCTCTNCC	CTAAAAATCG	TNTTCCCCCC	CCNTANGGĊG			760

- (2) INFORMATION FOR SEQ ID NO:38:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 724 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

${\tt TTTTTTTTT}$	${\bf TTTTTTTTTT}$	${\bf TTTTTTTTTT}$	${\tt TTTTTAAAAA}$	CCCCCTCCAT	TGAATGAAAA	.60
CTTCCNAAAT	TGTCCAACCC	CCTCNNCCAA	ATNNCCATTT	CCGGGGGGGG	GTTCCAAACC	120
${\tt CAAATTAATT}$	TTGGANTTTA	AATTAAATNT	TNATTNGGGG	AANAANCCAA	ATGTNAAGAA	180
AATTTAACCC	ATTATNAACT	TAAATNCCTN	GAAACCCNTG	${\tt GNTTCCAAAA}$	ATTTTTAACC	240
CTTAAATCCC	TCCGAAATTG	NTAANGGAAA	ACCAAATTCN	CCTAAGGCTN	TTTGAAGGTT	300
NGATTTAAAC	CCCCTTNANT	TNTTTTNACC	CNNGNCTNAA	${\tt NTATTTNGNT}$	TCCGGTGTTT	360
TCCTNTTAAN	CNTNGGTAAC	TCCCGNTAAT	GAANNNCCCT	AANCCAATTA	AACCGAATTT	420
TTTTTGAATT	GGAAATTCCN	NGGGAATTNA	CCGGGGTTTT	TCCCNTTTGG	GGGCCATNCC	480
CCCNCTTTCG	${\tt GGGTTTGGGN}$	NTAGGTTGAA	TTTTTNNANG	NCCCAAAAAA	NCCCCCAANA	540
AAAAAACTCC	CAAGNNTTAA	TTNGAATNTC	CCCCTTCCCA	${\tt GGCCTTTTGG}$	GAAAGGNGGG	600
TTTNTGGGGG	CCNGGGANTT	CNTTCCCCCN	TTNCCNCCCC	CCCCCCNGGT	AAANGGTTAT	660
NGNNTTTGGT	TTTTGGGCCC	CTTNANGGAC	CTTCCGGATN	GAAATTAAAT	CCCCGGGNCG	720
GCCG						724

- (2) INFORMATION FOR SEQ ID NO:39:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 751 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

TTTTTTTTTT TTTT	TTCTTTG CTCACATTTA	ATTTTTATTT	TGATTTTTT	TAATGCTGCA	60
CAACACAATA TTT	ATTTCAT TTGTTTCTTT	TATTTCATTT	TATTTGTTTG	CTGCTGCTGT	120
TTTATTTATT TTT	ACTGAAA GTGAGAGGG	ACTTTTGTGG	CCTTTTTTCC	TTTTTCTGTA	180
GGCCGCCTTA AGC	TTTCTAA ATTTGGAACA	TCTAAGCAAG	CTGAANGGAA	AAGGGGGTTT	240
CGCAAAATCA CTC	GGGGGAA NGGAAAGGTT	GCTTTGTTAA	TCATGCCCTA	TGGTGGGTGA	300
TTAACTGCTT GTAG	CAATTAC NTTTCACTT	TAATTAATTG	TGCTNAANGC	TTTAATTANA	360
CTTGGGGGTT CCC	TCCCCAN ACCAACCCC	CTGACAAAAA	GTGCCNGCCC	TCAAATNATG	420
TCCCGGCNNT CNT	TGAAACA CACNGCNGAA	NGTTCTCATT	NTCCCCNCNC	CAGGTNAAAA	480
TGAAGGGTTA CCA	TNTTTAA CNCCACCTC	ACNTGGCNNN	GCCTGAATCC	TCNAAAANCN	540
CCCTCAANCN AAT	TNCTNNG CCCCGGTCN	C GCNTNNGTCC	CNCCCGGGCT	CCGGGAANTN	600
CACCCCCNGA ANNO	CNNTNNC NAACNAAAT	CCGAAAATAT	TCCCNNTCNC	TCAATTCCCC	660
CNNAGACTNT CCT	CNNCNAN CNCAATTTT	TTTTNNTCAC	GAACNCGNNC	CNNAAAATGN	720
NNNNCNCCTC CNC	TNGTCCN NAATCNCCAL	1 C .			751

- (2) INFORMATION FOR SEQ ID NO:40:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

GTGGTATTTT	CTGTAAGATC	AGGTGTTCCT	CCCTCGTAGG	${\tt TTTAGAGGAA}$	ACACCCTCAT	60
AGATGAAAAC	CCCCCGAGA	CAGCAGCACT	GCAACTGCCA	AGCAGCCGGG	GTAGGAGGG	120
CGCCCTATGC	ACAGCTGGGC	CCTTGAGACA	GCAGGGCTTC	GATGTCAGGC	TCGATGTCAA	180

TGGTCTGGAA GCGGCGGCTG TACCTGCGTA GGGGCACACC GTCAGGGCCC ACCAGGAACT	240
TCTCAAAGTT CCAGGCAACN TCGTTGCGAC ACACCGGAGA CCAGGTGATN AGCTTGGGGT	300
CGGTCATAAN CGCGGTGGCG TCGTCGCTGG GAGCTGGCAG GGCCTCCCGC AGGAAGGCNA	360
ATAAAAGGTG CGCCCCGCA CCGTTCANCT CGCACTTCTC NAANACCATG ANGTTGGGCT	420
CNAACCCACC ACCANNCCGG ACTTCCTTGA NGGAATTCCC AAATCTCTTC GNTCTTGGGC	480
TTCTNCTGAT GCCCTANCTG GTTGCCCNGN ATGCCAANCA NCCCCAANCC CCGGGGTCCT	540
AAANCACCCN CCTCCTCNTT TCATCTGGGT TNTTNTCCCC GGACCNTGGT TCCTCTCAAG	600
GGANCCCATA TCTCNACCAN TACTCACCNT NCCCCCCCNT GNNACCCANC CTTCTANNGN	660
TTCCCNCCG NCCTCTGGCC CNTCAAANAN GCTTNCACNA CCTGGGTCTG CCTTCCCCCC	720
TNCCCTATCT GNACCCCNCN TTTGTCTCAN TNT	753
(2) INFORMATION FOR SEQ ID NO:41:	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 341 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(AAA) MOT BOUT TO THE TOTAL	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(A) OKGANISM: HOMO SAPIEMS	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
(MI) DEGOLACE DESCRIPTION. SEQ ID NO.41.	
ACTATATCCA TCACAACAGA CATGCTTCAT CCCATAGACT TCTTGACATA GCTTCAAATG	60
AGTGAACCCA TCCTTGATTT ATATACATAT ATGTTCTCAG TATTTTGGGA GCCTTTCCAC	120
TTCTTTAAAC CTTGTTCATT ATGAACACTG AAAATAGGAA TTTGTGAAGA GTTAAAAAGT	180
TATAGCTTGT TTACGTAGTA AGTTTTTGAA GTCTACATTC AATCCAGACA CTTAGTTGAG	240
TGTTAAACTG TGATTTTTAA AAAATATCAT TTGAGAATAT TCTTTCAGAG GTATTTTCAT	300
TTTTACTTTT TGATTAATTG TGTTTTATAT ATTAGGGTAG T	341
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 101 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(wi) OBJETNAL COUNCE	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
(XI) BEQUEACE DESCRIPTION: SEQ ID NO:42:	
ACTTACTGAA TTTAGTTCTG TGCTCTTCCT TATTTAGTGT TGTATCATAA ATACTTTGAT	60
GTTTCAAACA TTCTAAATAA ATAATTTTCA GTGGCTTCAT A	101
orania indication of the state	101
(2) INFORMATION FOR SEQ ID NO:43:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 305 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

53

- (vi) ORIGINAL SOURCE: (A) ORGANISM: Homo spiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ACATC	TTTGT	TACAGTCTAA	${\tt GATGTGTTCT}$	${\tt TAAATCACCA}$	TTCCTTCCTG	GTCCTCACCC	60
TCCAG	GGTGG	TCTCACACTG	TAATTAGAGC	${\tt TATTGAGGAG}$	TCTTTACAGC	AAATTAAGAT	120
TCAGA	TGCCT	TGCTAAGTCT	${\tt AGAGTTCTAG}$	AGTTATGTTT	CAGAAAGTCT	AAGAAACCCA	180
CCTCT	TGAGA	GGTCAGTAAA	GAGGACTTAA	TATTTCATAT	CTACAAAATG	ACCACAGGAT	240
TGGAT	ACAGA	ACGAGAGTTA	TCCTGGATAA	CTCAGAGCTG	AGTACCTGCC	CGGGGGCCGC	300
TCGAA				•			305

- (2) INFORMATION FOR SEQ ID NO:44:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 852 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

ACATAAATAT	CAGAGAAAAG	TAGTCTTTGA	AATATTTACG	TCCAGGAGTT	CTTTGTTTCT	60
GATTATTTGG	TGTGTGTTTT	GGTTTGTGTC	${\tt CAAAGTATTG}$	GCAGCTTCAG	TTTTCATTTT	120
CTCTCCATCC	TCGGGCATTC	TTCCCAAATŢ	TATATACCAG	${\tt TCTTCGTCCA}$	TCCACACGCT	180
CCAGAATTTC	TCTTTTGTAG	TAATATCTCA	TAGCTCGGCT	${\tt GAGCTTTTCA}$	TAGGTCATGC	240
TGCTGTTGTT	$\mathtt{CTTCTTTTTA}$	CCCCATAGCT	${\tt GAGCCACTGC}$	${\tt CTCTGATTTC}$	AAGAACCTGA	300
AGACGCCCTC	AGATCGGTCT	TCCCATTTTA	TTAATCCTGG	GTTCTTGTCT	GGGTTCAAGA	360
GGATGTCGCG	GATGAATTCC	CATAAGTGAG	TCCCTCTCGG	GTTGTGCTTT	TTGGTGTGGC	420
ACTTGGCAGG	GGGGTCTTGC	TCCTTTTTCA	TATCAGGTGA	CTCTGCAACA	GGAAGGTGAC	480
TGGTGGTTGT	CATGGAGATC	TGAGCCCGGC	AGAAAGTTTT	GCTGTCCAAC	AAATCTACTG	540
TGCTACCATA	GTTGGTGTCA	TATAAATAGT	TCTNGTCTTT	CCAGGTGTTC	ATGATGGAAG	. 600
GCTCAGTTTG	TTCAGTCTTG	ACAATGACAT	TGTGTGTGGA	CTGGAACAGG	TCACTACTGC	660
ACTGGCCGTT	CCACTTCAGA	TGCTGCAAGT	TGCTGTAGAG	GAGNTGCCCC	GCCGTCCCTG	720
CCGCCCGGGT	GAACTCCTGC	AAACTCATGC	TGCAAAGGTG	CTCGCCGTTG	ATGTCGAACT	780
CNTGGAAAGG	GATACAATTG	GCATCCAGCT	GGTTGGTGTC	CAGGAGGTGA	TGGAGCCACT	840
CCCACACCTG	GT					852

- (2) INFORMATION FOR SEQ ID NO:45:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 234 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

ACAACAGACC	CTTGCTCGCT	AACGACCTCA	TGCTCATCAA	GTTGGACGAA	TCCGTGTCCG	60
AGTCTGACAC	CATCCGGAGC	ATCAGCATTG	CTTCGCAGTG	CCCTACCGCG	GGGAACTCTT	120
GCCTCGTTTC	TGGCTGGGGT	CTGCTGGCGA	ACGGCAGAAT	GCCTACCGTG	CTGCAGTGCG	180

TGAACGTGTC GGTGGTGTCT GAGGAGGTCT GCAGTAAGCT CTATGACCCG CTGT

234

- (2) INFORMATION FOR SEQ ID NO:46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 590 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

ACTTTTTATT	TAAATGTTTA	TAAGGCAGAT	CTATGAGAAT	GATAGAAAAC	ATGGTGTGTA	60
ATTTGATAGC	${\tt AATATTTTGG}$	${\tt AGATTACAGA}$	${\tt GTTTTAGTAA}$	${\tt TTACCAATTA}$	CACAGTTAAA	120
AAGAAGATAA	TATATTCCAA	GCANATACAA	AATATCTAAT	GAAAGATCAA	GGCAGGAAAA	180
TGANTATAAC	TAATTGACAA	TGGAAAATCA	${\tt ATTTTAATGT}$	GAATTGCACA	TTATCCTTTA	240
AAAGCTTTCA	AAAAAAAAAA	TTATTGCAGT	CTANTTAATT	CAAACAGTGT	TAAATGGTAT	300
CAGGATAAAN	AACTGAAGGG	CANAAAGAAT	TAATTTTCAC	TTCATGTAAC	NCACCCANAT	360
TTACAATGGC	TTAAATGCAN	GGAAAAAGCA	GTGGAAGTAG	${\tt GGAAGTANTC}$	AAGGTCTTTC	420
TGGTCTCTAA	TCTGCCTTAC	TCTTTGGGTG	TGGCTTTGAT	CCTCTGGAGA	CAGCTGCCAG	480
GGCTCCTGTT	ATATCCACAA	TCCCAGCAGC	AAGATGAAGG	${\tt GATGAAAAAG}$	GACACATGCT	540
GCCTTCCTTT	GAGGAGACTT	CATCTCACTG	GCCAACACTC	AGTCACATGT		590

- (2) INFORMATION FOR SEQ ID NO:47:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 774 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

ACAAGGGGGC	ATAATGAAGG	AGTGGGGANA	GATTTTAAAG	AAGGAAAAA	AACGAGGCCC	60
TGAACAGAAT	TTTCCTGNAC	AACGGGGCTT	CAAAATAATT	TTCTTGGGGA	GGTTCAAGAC	120
GCTTCACTGC	TTGAAACTTA	AATGGATGTG	GGACANAATT	TTCTGTAATG	ACCCTGAGGG	180
CATTACAGAC	GGGACTCTGG	GAGGAAGGAT	AAACAGAAAG	GGGACAAAGG	CTAATCCCAA	240
AACATCAAAG	AAAGGAAGGT	GGCGTCATAC	CTCCCAGCCT	ACACAGTTCT	CCAGGGCTCT	300
CCTCATCCCT	GGAGGACGAC	AGTGGAGGAA	CAACTGACCA	TGTCCCCAGG	CTCCTGTGTG	360
$\mathtt{CTGGCTCCTG}$	GTCTTCAGCC	CCCAGCTCTG	GAAGCCCACC	CTCTGCTGAT	CCTGCGTGGC	420
CCACACTCCT	TGAACACACA	TCCCCAGGTT	ATATTCCTGG	ACATGGCTGA	ACCTCCTATT	480
CCTACTTCCG	AGATGCCTTG	CTCCCTGCAG	CCTGTCAAAA	TCCCACTCAC	CCTCCAAACC	540
ACGGCATGGG	AAGCCTTTCT	GACTTGCCTG	ATTACTÇCAG	CATCTTGGAA	CAATCCCTGA	600
${\tt TTCCCCACTC}$	CTTAGAGGCA	AGATAGGGTG	GTTAAGAGTA	GGGCTGGACC	ACTTGGAGCC	660
${\tt AGGCTGCTGG}$	CTTCAAATTN	TGGCTCATTT	ACGAGCTATG	GGACCTTGGG	CAAGTNATCT.	720
TCACTTCTAT	GGGCNTCATT	TTGTTCTACC	TGCAAAATGG	GGGATAATAA	TAGT	774

- (2) INFORMATION FOR SEQ ID NO:48:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 124 base pairs

(B) TYPE: nucleic acid

					ESS: sin linear	gle							
•	(ii)	MOLEC	CULE '	TYPE:	CDNA								
	(vi)			SOURCE NISM:	E: Homo sa	piens							
	(xi)	SEQUE	ENCE	DESCR	PTION:	SEQ II	D NO:48:		٠				
	AANTA							TCCATAAAA AATTACAGO				1:	60 20 24
(2)	INFOR	ITAMS	ON FO	R SEQ	ID NO:4	9:							
	(i)	(A) (B) (C)	LENG TYPE STRA	TH: 14 : nuc NDEDNI	CTERISTI 17 base leic aci ESS: sin linear	pairs d							
	(ii)	MOLE	CULE.	TYPE:	CDNA								٠.
	٠,	(A)	ORGA		Homo sa	_	-	. •					
					IPTION:	_		-	•				
TGTC	GCTA	CA GG	TGGTG	TCT G				TATTATTC' TACGGGTG				1	60 20 47
(2)	INFO	RMATI	ON FO	R SEQ	ID NO:5	0:							
	(i)	(A) (B) (C)	LENG TYPE STRA	TH: 1 : nuc NDEDN	CTERISTI 07 base leic aci ESS: sir linear	pairs .d .gle							
	(ii)	MOLE	CULE	TYPE:	cDNA								
	(vi)			SOURC	E: Homo sa	piens							
	(xi)	SEQU	ENCE	DESCR	IPTION:	SEQ I	D NO:50	:	•			٠	
								CACATGGC GAGGGGT	TT GA	TATAT	rgc		60 L07
(2)	INFO	RMATI	ON FO	R SEQ	ID NO:5	51:							. •
	(i)	(A) (B) (C)	LENC TYPE STRA	TH: 2 E: nuc ANDEDN	CTERIST 04 base leic ac: ESS: sin linear	pairs id	;						

(ii) MOLECULE TYPE: CDNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GTCCTAGGAA	GTCTAGGGGA	CACACGACTC	TGGGGTCACG	GGGCCGACAC	ACTTGCACGG	. 60
CGGGAAGGAA	AGGCAGAGAA	GTGACACCGT	CAGGGGGAAA	TGACAGAAAG	GAAAATCAAG	120
GCCTTGCAAG	GTCAGAAAGG	GGACTCAGGG	CTTCCACCAC	AGCCCTGCCC	CACTTGGCCA	180
CCTCCCTTTT	GGGACCAGCA	ATGT				204

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 491 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ACAAAGATAA	CATTTATCTT	ATAACAAAAA	TTTGATAGTT	${\tt TTAAAGGTTA}$	GTATTGTGTA	60
GGGTATTTTC	CAAAAGACTA	AAGAGATAAC	TCAGGTAAAA	AGTTAGAAAT	GTATAAAACA	120
CCATCAGACA	${\tt GGTTTTTAAA}$	AAACAACATA	${\tt TTACAAAATT}$	AGACAATCAT	CCTTAAAAAA	180
AAAACTTCTT	${\tt GTATCAATTT}$	CTTTTGTTCA	AAATGACTGA	${\tt CTTAANTATT}$	TŢATAAATTT	240
TCANAAACAC	TTCCTCAAAA	ATTTTCAANA	${\tt TGGTAGCTTT}$	${\tt CANATGTNCC}$	CTCAGTCCCA	300
ATGTTGCTCA	GATAAATAAA	TCTCGTGAGA	ACTTACCACC	CACCACAAGC	TTTCTGGGGC	360
ATGCAACAGT	GTCTTTTCTT	TNCTTTTTCT	$\mathtt{TTTT}\mathtt{T}\mathtt{T}\mathtt{T}\mathtt{T}\mathtt{T}\mathtt{T}\mathtt{T}\mathtt{T}\mathtt$	TTACAGGCAC	AGAAACTCAT	420
CAATTTTATT	TGGATAACAA	AGGGTCTCCA	AATTATATTG	TAAAAATAAAAT	CCAAGTTAAT	480
ATCACTCTTG	T		1.1	*		491

- (2) INFORMATION FOR SEQ ID NO:53:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 484 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

ACATAATTTA	GCAGGGCTAA	TTACCATAAG	ATGCTATTTA	TTAANAGGTN	TATGATCTGA	60
GTATTAACAG	TTGCTGAAGT	TTGGTATTTT	TATGCAGCAT	${\tt TTTCTTTTTG}$	CTTTGATAAC	120
ACTACAGAAC	CCTTAAGGAC	ACTGAAAATT	AGTAAGTAAA	GTTCAGAAAC	ATTAGCTGCT	180
CAATCAAATC	TCTACATAAC	ACTATAGTAA	TTAAAACGTT	AAAAAAAGT	GTTGAAATCT	240
GCACTAGTAT	ANACCGCTCC	TGTCAGGATA	ANACTGCTTT	GGAACAGAAA	GGGAAAAANC	300
AGCTTTGANT	TTCTTTGTGC	TGATANGAGG	AAAGGCTGAA	TTACCTTGTT	GCCTCTCCCT	360
AATGATTGGC	AGGTCNGGTA	AATNCCAAAA	CATATTCCAA	CTCAACACTT	CTTTTCCNCG	420
TANCTTGANT	CTGTGTATTC	CAGGANCAGG	CGGATGGAAT	GGGCCAGCCC	NCGGATGTTC	480
CANT						484

(2) INFORMATION FOR SEQ ID NO:54:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 151 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	,
ACTAAACCTC GTGCTTGTGA ACTCCATACA GAAAACGGTG CCATCCCTGA ACACGGCTGG CCACTGGGTA TACTGCTGAC AACCGCAACA ACAAAAACAC AAATCCTTGG CACTGGCTAG TCTATGTCCT CTCAAGTGCC TTTTTGTTTG T	60 120 151
(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 91 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
ACCTGGCTTG TCTCCGGGTG GTTCCCGGCG CCCCCACGG TCCCCAGAAC GGACACTTTC GCCCTCCAGT GGATACTCGA GCCAAAGTGG T	60 91
(2) INFORMATION FOR SEQ ID NO:56:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 133 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
GGCGGATGTG CGTTGGTTAT ATACAAATAT GTCATTTTAT GTAAGGGACT TGAGTATACT TGGATTTTTG GTATCTGTGG GTTGGGGGGA CGGTCCAGGA ACCAATACCC CATGGATACC AAGGGACAAC TGT	60 120 133
(2) INFORMATION FOR SEO ID NO:57:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 147 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(B) TYPE: nucleic acid

(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
ACTCTGGAGA ACCTGAGCCG CTGCTCCGCC TCTGGGATGA GGTGATGCAN GCNGTGGCGC GACTGGGAGC TGAGCCCTTC CCTTTGCGCC TGCCTCAGAG GATTGTTGCC GACNTGCANA TCTCANTGGG CTGGATNCAT GCAGGGT	60 120 147
(2) INFORMATION FOR SEQ ID NO:58:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 198 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	e e
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
ACAGGGATAT AGGTTTNAAG TTATTGTNAT TGTAAAATAC ATTGAATTTT CTGTATACTC TGATTACATA CATTTATCCT TTAAAAAAGA TGTAAATCTT AATTTTTATG CCATCTATTA ATTTACCAAT GAGTTACCTT GTAAATGAGA AGTCATGATA GCACTGAATT TTAACTAGTT TTGACTTCTA AGTTTGGT	60 120 180 198
(2) INFORMATION FOR SEQ ID NO:59:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 330 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
ACAACAAATG GGTTGTGAGG AAGTCTTATC AGCAAAACTG GTGATGGCTA CTGAAAAGAT CCATTGAAAA TTATCATTAA TGATTTTAAA TGACAAGTTA TCAAAAAACTC ACTCAATTTT CACCTGTGCT AGCTTGCTAA AATGGGAGTT AACTCTAGAG CAAATATAGT ATCTCTGAA TACAGTCAAT AAATGACAAA GCCAGGGCCT ACAGGTGGTT TCCAGACTTT CCAGACCCAG CAGAAGGAAT CTATTTATC ACATGGATCT CCGTCTGTGC TCAAAATACC TAATGATATT TTTCGTCTTT ATTGGACTTC TTTGAAGAGT	60 120 180 240 300 330
(2) INFORMATION FOR SEQ ID NO:60:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 175 base pairs	

-		
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:60:	
STCGTGGGC	TG CCTTCTACAT TCCTGACGGC TCCTTCACCA ACATCTGGTT CTACTTCGGC TC CCTTCCTCTT CATCCTCATC CAGCTGGTGC TGCTCATCGA CTTTGCGCAC TC AGCGGTGGCT GGGCAAGGCC GAGGAGTGCG ATTCCCGTGC CTGGT	60 120 175
(2) INFOR	RMATION FOR SEQ ID NO:61:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 154 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:61:	
GGTTGTTG	TT TCCTCCTGTG AGCAGTCTGG ACTTCTCACT GCTACATGAT GAGGGTGAGT CT CTTCAACAGT ATCCTCCCCT TTCCGGATCT GCTGAGCCGG ACAGCAGTGC AC AGCCCCGGGG CTCCACATTG CTGT	6(12(154
(2) INFO	RMATION FOR SEQ ID NO:62:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	
(vi)	ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:62:	
CGCTCGAG	CC CTATAGTGAG TCGTATTAGA	3
(2) INFO	RMATION FOR SEQ ID NO:63:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)	MOLECULE TYPE: cDNA	

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens		,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:		
ACAAGTCATT TCAGCACCCT TTGCTCTTCA AAACTGACCA TCTTTTATAT CTGTATGAAT AAAAATGGTT ATGTCAAGT	TTAATGCTTC	60 89
(2) INFORMATION FOR SEQ ID NO:64:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 97 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	:	
(ii) MOLECULE TYPE: cDNA		
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:		,
ACCGGAGTAA CTGAGTCGGG ACGCTGAATC TGAATCCACC AATAAATAAA AATCAGTGCA TCCAGGATTG GTCCTTGGAT CTGGGGT	GGTTCTGCAG	60 97
(2) INFORMATION FOR SEQ ID NO:65:		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
(ii) MOLECULE TYPE: CDNA		
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:		
ACAACAANAA NTCCCTTCTT TAGGCCACTG ATGGAAACCT GGAACCCCCT GCATGGCGTC CTAGGCCTTG ACACAGCGGC TGGGGTTTGG GCTNTCCCAA CCCAACCCTGG TCTACCCACA NTTCTGGCTA TGGGCTGTCT CTGCCACTGA TCGGTCATAA NATGAAATCC CAANGGGGAC AGAGGTCAGT AGAGGAAGCT GGTGCTGTTT GCTCAGCCAG AAAACAGCTG CCTGGCATTC GCCGCTGAAC TGGGGGTGAA CTACCCCCAN GAGGAATCAT GCCTGGGCGA TGCAANGGTG GGGCGGGAGG AGCATGT	ACCGCACACC ACATCAGGGT CAATGAGAAA TATGAACCCG	60 120 180 240 300 360 377
(2) INFORMATION FOR SEQ ID NO:66: .		
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 305 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 		
(ii) MOLECULE TYPE: cDNA		
(vi) ORIGINAL SOURCE:		

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
ACGCCTTTCC CTCAGAATTC AGGGAAGAGA CTGTCGCCTG CCTTCCTCCG TTGTTGCGTG AGAACCCGTG TGCCCCTTCC CACCATATCC ACCCTCGCTC CATCTTTGAA CTCAAACACG AGGAACTAAC TGCACCCTGG TCCTCCCC AGTCCCCAGT TCACCCTCCA TCCCTCACCT TCCTCCACTC TAAGGGATAT CAACACTGCC CAGCACAGGG GCCCTGAATT TATGTGGTTT TTATATATTT TTTAATAAGA TGCACTTTAT GTCATTTTTT AATAAAGTCT GAAGAATTAC TGTTT	60 120 180 240 300 305
(2) INFORMATION FOR CEO ID NO. CZ	
(2) INFORMATION FOR SEQ ID NO:67:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 385 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
ACTACACAC CTCCACTTG CCTTGTGAGA CACTTTGTCC CAGCACTTTA GGAATGCTGA GGTCGGACCA GCCACATCTC ATGTGCAAGA TTGCCCAGCA GACATCAGGT CTGAGAGTTC CCCTTTTAAA AAAGGGGACT TGCTTAAAAA AGAAGTCTAG CCACGATTGT GTAGAGCAGC TGTGCTGTGC TGGAGATTCA CTTTTGAGAG AGTTCTCCTC TGAGACCTGA TCTTTAGAGG CTGGGCAGTC TTGCACATGA GATGGGGCTG GTCTGATCTC AGCACTCCTT AGTCTGCTTG CCTCTCCCAG GGCCCCAGCC TGGCCACACC TGCTTACAGG GCACTCTCAG ATGCCCATAC CATAGTTTCT GTGCTAGTGG ACCGT	60 120 180 240 300 360 385
(2) INFORMATION FOR SEQ ID NO:68:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 73 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
ACTTAACCAG ATATATTTTT ACCCCAGATG GGGATATTCT TTGTAAAAAA TGAAAATAAA GTTTTTTTAA TGG	60 73
(2) INFORMATION FOR SEQ ID NO:69:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 536 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

ACTAGTCCAG TGTGGTGGAA	TTCCATTGTG	TTGGGGGCTC	TCACCCTCCT	CTCCTGCAGC	60
TCCAGCTTTG TGCTCTGCCT	CTGAGGAGAC	CATGGCCCAG	CATCTGAGTA	CCCTGCTGCT	120
CCTGCTGGCC ACCCTAGCTG	TGGCCCTGGC	CTGGAGCCCC	AAGGAGGAGG	ATAGGATAAT	180
CCCGGGTGGC ATCTATAACG	CAGACCTCAA	TGATGAGTGG	GTACAGCGTG	CCCTTCACTT	240
CGCCATCAGC GAGTATAACA	AGGCCACCAA	AGATGACTAC	TACAGACGTC	CGCTGCGGGT	300
ACTAAGAGCC AGGCAACAGA	CCGTTGGGGG	GGTGAATTAC	TTCTTCGACG	TAGAGGTGGG	360
CCGAACCATA TGTACCAAGT	CCCAGCCCAA	CTTGGACACC	TGTGCCTTCC	ATGAACAGCC	,420
AGAACTGCAG AAGAAACAGT	TGTGCTCTTT	CGAGATCTAC	GAAGTTCCCT	GGGGAGAACA	480
GAANGTCCCT GGGTGAAATC	CAGGTGTCAA	GAAATCCTAN	GGATCTGTTG	CCAGGC	536

(2) INFORMATION FOR SEQ ID NO:70:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (\dot{C}) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

ATGACCCCTA	ACAGGGCCC	TCTCAGCCCT	CCTAATGACC	TCCGGCCTAG	CCATGTGATT.	60
TCACTTCCAC	TCCATAACGC	TCCTCATACT	AGGCCTACTA	ACCAACACAC	TAACCATATA	120
CCAATGATGG	CGCGATGTAA	CACGAGAAAG	CACATACCAA	GGCCACCACA	CACCACCTGT	180
CCAAAAAGGC	CTTCGATACG	GGATAATCCT	ATTTATTACC	TCAGAAGTTT	TTTTCTTCGC	240
AGGGATTTTT	CTGAGCCTTT	TACCACTCCA	GCCTAGCCCC	TACCCCCCAA	CTAGGAGGGC	300
ACTGGCCCCC	AACAGGCATC	ACCCCGCTAA	ATCCCCTAGA	AGTCCCACTC	CTAAACACAT	360
CCGTATTACT	CGCATCAGGA	GTATCAATCA	CCTGAGCTCA	CCATAGTCTA	ATAGAAAACA	420
ACCGAAACCA	AATTATTCAA	AGCACTGCTT	ATTACAATTT	TACTGGGTCT	CTATTTT	477.

(2) INFORMATION FOR SEQ ID NO:71:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 533 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

AGAGCTATAG	GTACAGTGTG	ATCTCAGCTT	TGCAAACACA	TTTTCTACAT	AGATAGTACT	60
AGGTATTAAT	AGATATGTAA	AGAAAGAAAT	CACACCATTA	ATAATGGTAA	GATTGGTTTA	120
TGTGATTTTA	${\tt GTGGTATTTT}$	TGGCACCCTT	ATATATGTTT	TCCAAACTTT	CAGCAGTGAT	180
ATTATTTCCA	TAACTTAAAA	AGTGAGTTTG	AAAAAGAAAA	TCTCCAGCAA	GCATCTCATT	240
TAAATAAAGG	${\tt TTTGTCATCT}$	TTAAAAATAC	AGCAATATGT	GACTTTTTAA	AAAAGCTGTC	300
AAATAGGTGT	${\tt GACCCTACTA}$	ATTATTA	GAAATACATT	TAAAAACATC	GAGTACCTCA	360
AGTCAGTTTG	CCTTGAAAAA	TATCAAATAT	AACTCTTAGA	GAAATGTACA	TAAAAGAATG	420
CTTCGTAATT	TTGGAGTANG	AGGTTCCCTC	CTCAATTTTG	TATTTTTAAA	AAGTACATGG	480

	•
TAAAAAAAA AATTCACAAC AGTATATAAG GCTGTAAAAT GAAG	AATTCT GCC 533
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 511 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
	•
(ii) MOLECULE TYPE: cDNA	
	÷.
(vi) ORIGINAL SOURCE:	•
(A) ORGANISM: Homo sapiens	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
TATTACGGAA AAACACACCA CATAATTCAA CTANCAAAGA ANAC	TGCTTC AGGGCGTGTA 60
AAATGAAAGG CTTCCAGGCA GTTATCTGAT TAAAGAACAC TAAA	AGAGGG ACAAGGCTAA 120
AAGCCGCAGG ATGTCTACAC TATANCAGGC GCTATTTGGG TTGG	CTGGAG GAGCTGTGGA 180
AAACATGGAN AGATTGGTGC TGGANATCGC CGTGGCTATT CCTC	ATTGTT ATTACANAGT 240
GAGGTTCTCT GTGTGCCCAC TGGTTTGAAA ACCGTTCTNC AATA	-
CACATGAGAA CTGAAATGGC CCAAACCCAG AAAGAAAGCC CAAC	•
GCTTCTAGGG ACAATAACCG ATGAAGAAAA GATGGCCTCC TTGT	
ATTTCTCTCC ATTGCAGCNA NAAACCCGTT CTTCTAAGCA AACN	
AAATACACCC CCTCTTGAAG NACCNGGAGG A	511
AVAIACACCE CEICIIGAAG NACCNGGAGG A	311
(2) INFORMATION FOR SEQ ID NO:73:	
(2) Infoldation for DDQ 12 No. 73.	. *
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 499 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	•
(D) TOPOLOGY: linear	
(b) TOPOLOGI: Tilleal	
(ii) MOLECULE TYPE: cDNA	•
(II) MODECOBE IIPE: CDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(wi) CECURAGE DECERTORION GEO ID NO 20	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
	ACTUACIA CTACCACACA
CAGTGCCAGC ACTGGTGCCA GTACCAGTAC CAATAACAGT GCCA	
CAGTGGTGGC TTCAGTGCTG GTGCCAGCCT GACCGCCACT CTC	
TGGCCTTGGT GGAGCTGGTG CCAGCACCAG TGGCAGCTCT GGTG	
CAAGTGAGAT TTTAGATATT GTTAATCCTG CCAGTCTTTC TCT	
CTCAGAAACC TACTCAACAC AGCACTCTAG GCAGCCACTA TCA	
CTCTGCATTA AATCTATTTG CCATTTCTGA AAAAAAAAA AAA	
ANTCTAGAGG GCCCGTTTAA ACCCGCTGAT CAGCCTCGAC TGT	
CATCTGTTGT TTGCCCCTCC CCCGNTGCCT TCCTTGACCC TGG	AAAGTGC CACTCCCACT 480
GTCCTTTCCT AANTAAAAT	499

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 537 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

TTTCATAGGA	GAACACACTG	AGGAGATACT	TGAAGAATTT	${\tt GGATTCAGCC}$	GCGAAGAGAT	60
TTATCAGCTT	AACTCAGATA	AAATCATTGA	AAGTAATAAG	GTAAAAGCTA	GTCTCTAACT	120
TCCAGGCCCA	CGGCTCAAGT	GAATTTGAAT	ACTGCATTTA	CAGTGTAGAG	TAACACATAA	180
CATTGTATGC	ATGGAAACAT	GGAGGAACAG	TATTACAGTG	TCCTACCACT	CTAATCAAGA	240
AAAGAATTAC	AGACTCTGAT	TCTACAGTGA	TGATTGAATT	${\tt CTAAAAATGG}$	TAATCATTAG	300
GGCTTTTGAT	TTATAANACT	TTGGGTACTT	ATACTAAATT	${\tt ATGGTAGTTA}$	TACTGCCTTC	360
CAGTTTGCTT	GATATATTTG	TTGATATTAA	GATTCTTGAC	TTATATTTTTG	AATGGGTTCT	420
ACTGAAAAAN	GAATGATATA	TTCTTGAAGA	CATCGATATA	${\tt CATTTATTTA}$	CACTCTTGAT	480
TCTACAATGT	AGAAAATGAA	GGAAATGCCC	CAAATTGTAT	GGTGATAAAA	GTCCCGT	537

- (2) INFORMATION FOR SEQ ID NO:75:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 467 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

CAAANACAAT	TGTTCAAAAG	ATGCAAATGA	TACACTACTG	CTGCAGCTCA	CAAACACCTC	60
TGCATATTAC	ACGTACCTCC	TCCTGCTCCT	CAAGTAGTGT	GGTCTATTTT	GCCATCATCA	120
CCTGCTGTCT	GCTTAGAAGA	ACGGCTTTCT	GCTGCAANGG	AGAGAAATCA	TAACAGACGG	180
TGGCACAAGG	AGGCCATCTT	TTCCTCATCG	GTTATTGTCC	CTAGAAGCGT	CTTCTGAGGA	240
TCTAGTTGGG	CTTTCTTTCT	GGGTTTGGGC	CATTTCANTT	CTCATGTGTG	TACTATTCTA	300
TCATTATTGT	ATAACGGTTT	TCAAACCNGT	GGGCACNCAG	AGAACCTCAC	TCTGTAATAA	360
CAATGAGGAA	TAGCCACGGT	GATCTCCAGC	ACCAAATCTC	TCCATGTTNT	TCCAGAGCTC	420
CTCCAGCCAA	CCCAAATAGC	CGCTGCTATN	GTGTAGAACA	TCCCTGN	•	467

- (2) INFORMATION FOR SEQ ID NO:76:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

AAGCTGACAG	CATTCGGGCC	GAGATGTCTC	GCTCCGTGGC	CTTAGCTGTG	CTCGCGCTAC	60
TCTCTCTTTC	TGGCCTGGAG	GCTATCCAGC	GTACTCCAAA	${\tt GATTCAGGTT}$	TACTCACGTC	120
ATCCAGCAGA	GAATGGAAAG	TCAAATTTCC	TGAATTGCTA	TGTGTCTGGG	TTTCATCCAT	180
CCGACATTGA	AGTTGACTTA	CTGAAGAATG	GAGAGAGAAT	TGAAAAAGTG	GAGCATTCAG	240
ACTTGTCTTT	CAGCAAGGAC	TGGTCTTTCT	ATCTCTTGTA	CTACACTGAA	TTCACCCCCA	300
CTGAAAAAGA	TGAGTATGCC	TGCCGTGTGA	ACCATGTGAC	TTTGTCACAG	CCCAAGATNG	360

RNSDOCID -WO 983709342 1 5

TTNAGTGGGA TCGANACATG TAAGCAGCAN CATGGGAGGT	400
(2) INFORMATION FOR SEQ ID NO:77:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 248 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo Sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
CTGGAGTGCC TTGGTGTTTC AAGCCCCTGC AGGAAGCAGA ATGCACCTTC TGAGGCACCT CCAGCTGCCC CGGCGGGGA TGCGAGGCTC GGAGCACCCT TGCCCGGCTG TGATTGCTGC CAGGCACTGT TCATCTCAGC TTTTCTGTCC CTTTGCTCCC GGCAAGCGCT TCTGCTGAAA GTTCATATCT GGAGCCTGAT GTCTTAACGA ATAAAGGTCC CATGCTCCAC CCGAAAAAAA AAAAAAAAA	60 120 180 240 248
(2) INFORMATION FOR SEQ ID NO:78:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 201 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
ACTAGTCCAG TGTGGTGGAA TTCCATTGTG TTGGGCCCAA CACAATGGCT ACCTTTAACA TCACCCAGAC CCCGCCCTGC CCGTGCCCCA CGCTGCTGCT AACGACAGTA TGATGCTTAC TCTGCTACTC GGAAACTATT TTTATGTAAT TAATGTATGC TTTCTTGTTT ATAAATGCCT GATTTAAAAA AAAAAAAAAA A	60 120 180 201
(2) INFORMATION FOR SEQ ID NO:79:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 552 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
TCCTTTTGTT AGGTTTTGA GACAACCCTA GACCTAAACT GTGTCACAGA CTTCTGAATG TTTAGGCAGT GCTAGTAATT TCCTCGTAAT GATTCTGTTA TTACTTTCCT ATTCTTTATT CCTCTTTCTT CTGAAGATTA ATGAAGTTGA AAATTGAGGT GGATAAATAC AAAAAGGTAG	60 120 180

TGTGATAGTA	TAAGTATCTA	AGTGCAGATG	AAAGTGTGTT	ATATATATCC	ATTCAAAATT	240
ATGCAAGTTA	GTAATTACTC	AGGGTTAACT	$\cdot AAATTACTTT$	AATATGCTGT	TGAACCTACT	300
CTGTTCCTTG	GCTAGAAAAA	ATTATAAACA	GGACTTTGTT	AGTTTGGGAA	GCCAAATTGA	360
TAATATTCTA	TGTTCTAAAA	GTTGGGCTAT	ACATAAANTA	TNAAGAAATA	TGGAATTTTA	420
TTCCCAGGAA	TATGGGGTTC	ATTTATGAAT	ANTACCCGGG	ANAGAAGTTT	TGANTNAAAC	480
CNGTTTTGGT	TAATACGTTA	ATATGTCCTN	AATNAACAAG	GCNTGACTTA	TTTCCAAAAA	540
AAAAAAAA	AA					552

- (2) INFORMATION FOR SEQ ID NO:80:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 476 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

ACAGGGATTT	GAGATGCTAA	GGCCCCAGAG	ATCGTTTGAT	CCAACCCTCT	TATTTTCAGA	60
GGGGAAAATG	GGGCCTAGAA	GTTACAGAGC	ATCTAGCTGG	TGCGCTGGCA	CCCCTGGCCT	120
CACACAGACT	CCCGAGTAGC	TGGGACTACA	GGCACACAGT	CACTGAAGCA	GGCCCTGTTT	180
${\tt GCAATTCACG}$	TTGCCACCTC	${\tt CAACTTAAAC}$	ATTCTTCATA	TGTGATGTCC	TTAGTCACTA	240
${\tt AGGTTAAACT}$	TTCCCACCCA	GAAAAGGCAA	CTTAGATAAA	ATCTTAGAGT	ACTTTCATAC	300
TCTTCTAAGT	CCTCTTCCAG	CCTCACTTTG	AGTCCTCCTT	GGGGGTTGAT	AGGAANTNTC	360
TCTTGGCTTT	CTCAATAAAA	TCTCTATCCA	TCTCATGTTT	AATTTGGTAC	GCNTAAAAAT	420
GCTGAAAAAA	TTAAAATGTT	CTGGTTTCNC	TTTAAAAAAA	AAAAAAAA	AAAAA	476

- (2) INFORMATION FOR SEQ ID NO:81:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 232 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

TTTTTTTTTG	TATGCCNTCN	CTGTGGNGTT	ATTGTTGCTG	CCACCCTGGA	GGAGCCCAGT	. 60
TTCTTCTGTA	TCTTTCTTTT	CTGGGGGATC	TTCCTGGCTC	TGCCCCTCCA	TTCCCAGCCT	120
CTCATCCCCA	TCTTGCACTT	TTGCTAGGGT	TGGAGGCGCT	TTCCTGGTAG	CCCCTCAGAG	180
ACTCAGTCAG	CGGGAATAAG	TCCTAGGGGT	GGGGGGTGTG	GCAAGCCGGC	CT	232

- (2) INFORMATION FOR SEQ ID NO:82:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 383 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

AGGCGGGAGC	AGAAGCTAAA	GCCAAAGCCC	AAGAAGAGTG	GCAGTGCCAG	CACTGGTGCC	60
AGTACCAGTA	CCAATAACAT	GCCAGTGCCA	GTGCCAGCAC	CAGTGGTGGC	TTCAGTGCTG	120
GTGCCAGCCT	GACCGCCACT	CTCACATTTG	GGCTCTTCGC	TGGCCTTGGT	GGAGCTGGTG	180
CCAGCACCAG	TGGCAGCTCT	GGTGCCTGTG	GTTTCTCCTA	CAAGTGAGAT	TTTAGATATT	240
GTTAATCCTG	CCAGTCTTTC	TCTTCAAGCC	AGGGTGCATC	CTCAGAAACC	TACTCAACAC	300
AGCACTCTNG	GCAGCCACTA	TCAATCAATT	GAAGTTGACA	CTCTGCATTA	AATCTATTTG	360
CCATTTCAAA	AAAAAAAAA	AAA				383

(2) INFORMATION FOR SEQ ID NO:83:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 494 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

ACCGAA	TTGG	GACCGCTGGC	TTATAAGCGA	TCATGTCCTC	CAGTATTACC	TCAACGAGCA	60
					GGACAACAGA		120
CCATCC	TGCT	CGGTTCTCCC	CAGATGACAA	ATACTCTCGA	CACCGAATCA	CCATCAAGAA	180
ACGCTT	'CAAG	GTGCTCATGA	CCCAGCAACC	GCGCCCTGTC	CTCTGAGGGT	CCTTAAACTG	240
ATGTCT	TTTC	TGCCACCTGT	TACCCCTCGG	AGACTCCGTA	ACCAAACTCT	TCGGACTGTG	300
AGCCCT	GATG	CCTTTTTGCC	AGCCATACTC	TTTGGCNTCC	AGTCTCTCGT	GGCGATTGAT	360
TATGCT	TGTG	TGAGGCAATC	ATGGTGGCAT	CACCCATNAA	GGGAACACAT	TTGANTTTTT	420
TTTCNC	TATA	TTTAAATTAC	NACCAGAATA	NTTCAGAATA	AATGAATTGA	AAAACTCTTA	480
AAAAA	AAAA	AAAA			• •		494

(2) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

CCTCCTACCC	TATCCCCTCC	CCACGGANGG	CCTCCTCACC	CACGGGACAG	TGACTTCCCA	60
			i i			
AGTATCCTGC	GCCGCGTCTT	CTACCGTCCC	TACCTGCAGA	TCTTCGGGCA	GATTCCCCAG	120
GAGGACATGG	ACGTGGCCCT	CATGGAGCAC	AGCAACTGCT	CGTCGGAGCC	CGGCTTC T GG	180
GCACACCCTC	CTGGGGCCCA	GGCGGGCACC	TGCGTCTCCC	AGTATGCCAA	CTGGCTGGTG	240
GTGCTGCTCC	TCGTCATCTT	CCTGCTCGTG	GCCAACATCC	TGCTGGTCAC	TTGCTCATTG	300
CCATGTTCAG	TTACACATTC	GGCAAAGTAC	AGGGCAACAG	CNATCTCTAC	TGGGAAGGCC	360
AGCGTTNCCG	CCTCÁTCCGG					380

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 481 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

	CTCCACAACC					60
TNCCATCGTC	ATACTGTAGG	TTTGCCACCA	CCTCCTGCAT	CTTGGGGCGG	CTAATATCCA	120
GGAAACTCTC	AATCAAGTCA	CCGTCNATNA	AACCTGTGGC	TGGTTCTGTC	TTCCGCTCGG	180
TGTGAAAGGA	TCTCCAGAAG	GAGTGCTCGA	TCTTCCCCAC	ACTTTTGATG	ACTTTATTGA	240
	CATGTCCAGC					300
CTATCATGCC	NTTGAACGTG	CCGAAGAACA	CCGAGCCTTG	TGTGGGGGGT	GNAGTCTCAC	360
CCAGATTCTG	CATTACCAGA	NAGCCGTGGC	AAAAGANATT	GACAACTCGC	CCAGGNNGAA	420
AAAGAACACC	TCCTGGAAGT	GCTNGCCGCT	CCTCGTCCNT	TGGTGGNNGC	GCNTNCCTTT	480
T	•					481

- (2) INFORMATION FOR SEQ ID NO:86:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 472 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

AACATCTTCC	TGTATAATGC	TGTGTAATAT	CGATCCGATN	TTGTCTGCTG	AGAATTCATT	60
ACTTGGAAAA	GCAACTTNAA	GCCTGGACAC	TGGTATTAAA	ATTCACAATA	TGCAACACTT	120
TAAACAGTGT	GTCAATCTGC	TCCCTTACTT	TGTCATCACC	AGTCTGGGAA	TAAGGGTATG	180
CCCTATTCAC	ACCTGTTAAA	AGGGCGCTAA	GCATTTTTGA	TTCAACATCT	TTTTTTTGA	240
CACAAGTCCG	AAAAAAGCAA	AAGTAAACAG	TTNTTAATTT	GTTAGCCAAT	TCACTTTCTT	300
CATGGGACAG	AGCCATTTGA	TTTAAAAAGC	AAATTGCATA	ATATTGAGCT	TTGGGAGCTG	360
ATATNTGAGC	GGAAGANTAG	CCTTTCTACT	TCACCAGACA	CAACTCCTTT	CATATTGGGA	420
TGTTNACNAA	AGTTATGTCT	CTTACAGATG	GGATGCTTTT	GTGGCAATTC	TG	472

- (2) INFORMATION FOR SEQ ID NO:87:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 413 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

AGAAACCA	\GT	ATCTCTNAAA	ACAACCTCTC	ATACCTTGTG	GACCTAATTT	TGTGTGCGTG	60
TGTGTGTC	GCG	CGCATATTAT	ATAGACAGGC	ACATCTTTTT	TACTTTTGTA	AAAGCTTATG	120
CCTCTTTC	GT	ATCTATATCT	GTGAAAGTTT	${\tt TAATGATCTG}$	CCATAATGTC	TTGGGGACCT	180
TTGTCTTC	CTG	TGTAAATGGT	ACTAGAGAAA	ACACCTATNT	TATGAGTCAA	TCTAGTTNGT	240
TTTATTCO	AC	ATGAAGGAAA	TTTCCAGATN	ACAACACTNA	CAAACTCTCC	CTTGACTAGG	300
GGGGACA	AAG	AAAAGCANAA	CTGAACATNA	GAAACAATTN	CCTGGTGAGA	AATTNCATAA	360
ACAGAAA	ľTG	GGTNGTATAT	TGAAANANNG	CATCATTNAA	ACGTTTTTTT	TTT	413

(2) INFORMATION FOR SEQ ID NO:88:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 448 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

CGCAGCGGGT	CCTCTCTATC	TAGCTCCAGC	CTCTCGCCTG	CCCCACTCCC	CGCGTCCCGC	60
GTCCTAGCCN	ACCATGGCCG	GGCCCCTGCG	CGCCCCGCTG	CTCCTGCTGG	CCATCCTGGC	120
CGTGGCCCTG	GCCGTGAGCC	CCGCGGCCGG	CTCCAGTCCC	GGCAAGCCGC	CGCGCCTGGT	180
GGGAGGCCCA	TGGACCCCGC	GTGGAAGAAG	AAGGTGTGCG	${\tt GCGTGCACTG}$	GACTTTGCCG	240
TCGGCNANTA	CAACAAACCC	GCAACNACTT	TTACCNAGCN	CGCGCTGCAG	GTTGTGCCGC	300
CCCAANCAAA	TTGTTACTNG	GGGTAANTAA	TTCTTGGAAG	TTGAACCTGG	GCCAAACNNG	360
TTTACCAGAA	CCNAGCCAAT	TNGAACAATT	NCCCCTCCAT	AACAGCCCCT	TTTAAAAAGG	420
GAANCANTCC	TGNTCTTTTC	CAAATTTT				448

(2) INFORMATION FOR SEQ.ID NO:89:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 463 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

GAATTTTGTG	CACTGGCCAC	TGTGATGGAA	CCATTGGGCC	AGGATGCTTT	GAGTTTATCA	60
GTAGTGATTC	TGCCAAAGTT	GGTGTTGTAA	CATGAGTATG	TAAAATGTCA	AAAAATTAGC	120
AGAGGTCTAG	GTCTGCATAT	CAGCAGACAG	TTTGTCCGTG	TATTTTGTAG	CCTTGAAGTT	180
CTCAGTGACA	AGTTNNTTCT	GATGCGAAGT	TCTNATTCCA	GTGTTTTAGT	CCTTTGCATC	240
TTTNATGTTN	AGACTTGCCT	CTNTNAAATT	GCTTTTGTNT	TCTGCAGGTA	CTATCTGTGG	300
TTTAACAAAA	TAGAANNACT	TCTCTGCTTN	GAANATTTGA	ATATCTTACA	TCTNAAAATN	360
AATTCTCTCC	CCATANNAAA	ACCCANGCCC	TTGGGANAAT	TTGAAAAANG	GNTCCTTCNN	420
AATTCNNANA	ANTTCAGNTN	TCATACAACA	NAACNGGANC	CCC		463

(2) INFORMATION FOR SEQ ID NO:90:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

AGGGATTGAA	GGTCTNTTNT	ACTGTCGGAC	TGTTCANCCA	CCAACTCTAC	AAGTTGCTGT	60
CTTCCACTCA	CTGTCTGTAA	GCNTNTTAAC	CCAGACTGTA	TCTTCATAAA	TAGAACAAAT	120
TCTTCACCAG	TCACATCTTC	TAGGACCTTT	${\tt TTGGATTCAG}$	${\tt TTAGTATAAG}$	CTCTTCCACT	180
TCCTTTGTTA	AGACTTCATC	TGGTAAAGTC	${\tt TTAAGTTTTG}$	TAGAAAGGAA	TTTAATTGCT	240
CGTTCTCTAA	CAATGTCCTC	TCCTTGAAGT	${\tt ATTTGGCTGA}$	ACAACCCACC	TNAAGTCCCT	300
TTGTGCATCC	ATTTTAAATA	TACTTAATAG	${\tt GGCATTGGTN}$	CACTAGGTTA	AATTCTGCAA	360
GAGTCATCTG	TCTGCAAAAG	TTGCGTTAGT	ATATCTGCCA			400

- (2) INFORMATION FOR SEQ ID NO:91:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 480 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

GAGCTCGGAT	CCAATAATCT	TTGTCTGAGG	GCAGCACACA	TATNCAGTGC	CATGGNAACT	60
GGTCTACCCC	ACATGGGAGC	AGCATGCCGT	AGNTATATAA	GGTCATTCCC	TGAGTCAGAC	120
ATGCCTCTTT	GACTACCGTG	TGCCAGTGCT	GGTGATTCTC	ACACACCTCC	NNCCGCTCTT	180
TGTGGAAAAA	CTGGCACTTG	NCTGGAACTA	GCAAGACATC	ACTTACAAAT	TCACCCACGA	240
GACACTTGAA	AGGTGTAACA	AAGCGACTCT	TGCATTGCTT	TTTGTCCCTC	CGGCACCAGT	300
TGTCAATACT	AACCCGCTGG	TTTGCCTCCA	TCACATTTGT	GATCTGTAGC	TCTGGATACA	360
TCTCCTGACA	GTACTGAAGA	ACTTCTTCTT	TTGTTTCAAA	AGCAACTCTT	GGTGCCTGTT	420
NGATCAGGTT	CCCATTTCCC	AGTCCGAATG	TTCACATGGC	ATATNTTACT	TCCCACAAAA	480

- (2) INFORMATION FOR SEQ ID NO:92:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

360

420

480

495

ATACAGCCCA NATCCCACCA CGAAGATGCG CTTGTTGACT GAGAACCTGA TGCGGTCACT	
GGTCCCGCTG TAGCCCCAGC GACTCTCCAC CTGCTGGAAG CGGTTGATGC TGCACTCCTT	60
CCCACGCAGG CAGCAGCGGG GCCGGTCAAT GAACTCCACT CGTGGCTTGG GGTTGACGGT	120 180
TAANTGCAGG AAGAGGCTGA CCACCTCGCG GTCCACCAGG ATGCCCGACT GTGCGGGACC	
TGCAGCGAAA CTCCTCGATG GTCATGAGCG GGAAGCGAAT GANGCCCAGG GCCTTGCCCA	240
GAACCTTCCG CCTGTTCTCT GGCGTCACCT GCAGCTGCTG CCGCTNACAC TCGGCCTCGG	300
	360
ACCAGCGGAC AAACGGCGTT GAACAGCCGC ACCTCACGGA TGCCCANTGT GTCGCGCTCC	420
AGGAACGGCN CCAGCGTGTC CAGGTCAATG TCGGTGAANC CTCCGCGGGT AATGGCG	477
(2) INFORMATION FOR SEQ ID NO:93:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 377 base pairs	•
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) Topologi: Timear	
(ii) MOLECULE TYPE: cDNA	*
(II) MODECULE IIPE: CONA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(II) OKOANTONI. HOMO SAPTEMS	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
GAACGGCTGG ACCTTGCCTC GCATTGTGCT GCTGGCAGGA ATACCTTGGC AAGCAGCTCC	60
AGTCCGAGCA GCCCCAGACC GCTGCCGCCC GAAGCTAAGC CTGCCTCTGG CCTTCCCCTC	120
CGCCTCAATG CAGAACCANT AGTGGGAGCA CTGTGTTTAG AGTTAAGAGT GAACACTGTN	180
TGATTTTACT TGGGAATTTC CTCTGTTATA TAGCTTTTCC CAATGCTAAT TTCCAAACAA	240
CAACAACAA ATAACATGTT TGCCTGTTNA GTTGTATAAA AGTANGTGAT TCTGTATNTA	300
AAGAAATAT TACTGTTACA TATACTGCTT GCAANTTCTG TATTTATTGG TNCTCTGGAA	360
ATAAATATAT TATTAAA	377
	3//
(2) INFORMATION FOR SEQ ID NO:94:	
(a) Interest for Edg 15 No. 51.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 495 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) 10102001. Tindar	
(ii) MOLECULE TYPE: cDNA	•
(III)	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
, and a suppose of the suppose of th	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	•
	•
CCCTTTGAGG GGTTAGGGTC CAGTTCCCAG TGGAAGAAAC AGGCCAGGAG AANTGCGTGC	60
CGAGCTGANG CAGATTTCCC ACAGTGACCC CAGAGCCCTG GGCTATAGTC TCTGACCCCT	120
CCAAGGAAAG ACCACCTTCT GGGGACATGG GCTGGAGGGC AGGACCTAGA GGCACCAAGG	180
GAAGGCCCCA TTCCGGGGCT GTTCCCCGAG GAGGAAGGGA AGGGGCTCTG TGTGCCCCCC	240
110000001 0110000010 GAGGAAGGAA AGGGGCTCTG TGTGCCCCCC	240

ACGAGGAANA GGCCCTGANT CCTGGGATCA NACACCCCTT CACGTGTATC CCCACACAAA

TGCAAGCTCA CCAAGGTCCC CTCTCAGTCC CTTCCCTACA CCCTGAACGG NCACTGGCCC

ACACCCACCC AGANCANCCA CCCGCCATGG GGAATGTNCT CAAGGAATCG CNGGGCAACG

TGGACTCTNG TCCCNNAAGG GGGCAGAATC TCCAATAGAN GGANNGAACC CTTGCTNANA

(2) INFORMATION FOR SEQ ID NO:95:

AAAAAAAAAA AAAAAA

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 472 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

GGTTACTTGG	TTTCATTGCC	ACCACTTAGT	GGATGTCATT	TAGAACCATT	TTGTCTGCTC	60
CCTCTGGAAG	CCTTGCGCAG	AGCGGACTTT	GTAATTGTTG	GAGAATAACT	GCTGAATTTT	120
TAGCTGTTTT	GAGTTGATTC	GCACCACTGC	ACCACAACTC	AATATGAAAA	CTATTTNACT	180
TATTTATTAT	CTTGTGAAAA	GTATACAATG	AAAATTTTGT	TCATACTGTA	TTTATCAAGT	240
ATGATGAAAA	GCAATAGATA	TATATTCTTT	TATTATGTTN	AATTATGATT	GCCATTATTA	300
ATCGGCAAAA	TGTGGAGTGT	ATGTTCTTTT	CACAGTAATA	TATGCCTTTT	GTAACTTCAC	360
TTGGTTATTT	TATTGTAAAT	GAATTACAAA	ATTCTTAATT	TAAGAAAATG	GTANGTTATA	420
TTTANTTCAN	TAATTTCTTT	CCTTGTTTAC	GTTAATTTTG	AAAAGAATGC	AT	472

- (2) INFORMATION FOR SEQ ID NO:96:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 476 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CTGAAGCATT	TCTTCAAACT	TNTCTACTTT	TGTCATTGAT	ACCTGTAGTA	AGTTGACAAT	60
GTGGTGAAAT	TTCAAAATTA	TATGTAACTT	${\tt CTACTAGTTT}$	TACTTTCTCC	CCCAAGTCTT	120
TTTTAACTCA	TGATTTTTAC	ACACACAATC	CAGAACTTAT	TATATAGCCT	CTAAGTCTTT	180
ATTCTTCACA	GTAGATGATG	AAAGAGTCCT	CCAGTGTCTT	GNGCANAATG	TTCTAGNTAT	240
AGCTGGATAC	ATACNGTGGG	AGTTCTATAA	ACTCATACCT	CAGTGGGACT	NAACCAAAAT	300
TGTGTTAGTC	TCAATTCCTA	CCACACTGAG	GGAGCCTCCC	AAATCACTAT	ATTCTTATCT	360
GCAGGTACTC	CTCCAGAAAA	ACNGACAGGG	CAGGCTTGCA	TGAAAAAGTN	ACATCTGCGT	420
TACAAAGTCT	ATCTTCCTCA	NANGTCTGTN	AAGGAACAAT	TTAATCTTCT	AGCTTT	476

- (2) INFORMATION FOR SEQ ID NO:97:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 479 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

ACTCTTTCTA ATGCTGATAT GATCTTGAGT ATAAGAATGC ATATGTCACT AGAATGGATA

461

73	
AAATAATGCT GCAAACTTAA TGTTCTTATG CAAAATGGAA CGCTAATGAA ACACAGCTTA	120
CAATCGCAAA TCAAAACTCA CAAGTGCTCA TCTGTTGTAG ATTTAGTGTA ATAAGACTTA	180
GATTGTGCTC CTTCGGATAT GATTGTTTCT CANATCTTGG GCAATNTTCC TTAGTCAAAT	240
CAGGCTACTA GAATTCTGTT ATTGGATATN TGAGAGCATG AAATTTTTAA NAATACACTT	300
GTGATTATNA AATTAATCAC AAATTTCACT TATACCTGCT ATCAGCAGCT AGAAAAACAT	360
NTNNTTTTTA NATCAAAGTA TTTTGTGTTT GGAANTGTNN AAATGAAATC TGAATGTGGG	420
TTCNATCTTA TTTTTCCCN GACNACTANT TNCTTTTTTA GGGNCTATTC TGANCCATC	479
/2) INFORMATION FOR ORD IN NO 00	
(2) INFORMATION FOR SEQ ID NO:98:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 461 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(=)	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
AGTGACTTGT CCTCCAACAA AACCCCTTGA TCAAGTTTGT GGCACTGACA ATCAGACCTA	60
TGCTAGTTCC TGTCATCTAT TCGCTACTAA ATGCAGACTG GAGGGGACCA AAAAGGGGCA	120
TCAACTCCAG CTGGATTATT TTGGAGCCTG CAAATCTATT CCTACTTGTA CGGACTTTGA	180
AGTGATTCAG TTTCCTCTAC GGATGAGAGA CTGGCTCAAG AATATCCTCA TGCAGCTTTA	240
TGAAGCCACT CTGAACACGC TGGTTATCTA GATGAGAACA GAGAAATAAA GTCAGAAAAT	300
TTACCTGGAG AAAAGAGGCT TTGGCTGGGG ACCATCCCAT TGAACCTTCT CTTAAGGACT	360

TTAAGAAAAA CTACCACATG TTGTGTATCC TGGTGCCGGC CGTTTATGAA CTGACCACCC

(2) INFORMATION FOR SEQ ID NO:99:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 171 base pairs

TTTGGAATAA TCTTGACGCT CCTGAACTTG CTCCTCTGCG A

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single .
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

GTGGCCGCGC	GCAGGTGTTT	CCTCGTACCG	CAGGGCCCCC	TCCCTTCCCC	AGGCGTCCCT	60
CGGCGCCTCT	GCGGGCCCGA	GGAGGAGCGG	CTGGCGGGTG	GGGGGAGTGT	GACCCACCCT	120
CGGTGAGAAA	AGCCTTCTCT	AGCGATCTGA	GAGGCGTGCC	TTGGGGGTAC	C	171

- (2) INFORMATION FOR SEQ ID NO:100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 269 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

CGGCCGCAAG	TGCAACTCCA	GCTGGGGCCG	TGCGGACGAA	GATTCTGCCA	GCAGTTGGTC	60
CGACTGCGAC	GACGGCGGCG	GCGACAGTCG	CAGGTGCAGC	GCGGGCGCCT	GGGGTCTTGC	120
AAGGCTGAGC	TGACGCCGCA	GAGGTCGTGT	CACGTCCCAC	GACCTTGACG	CCGTCGGGGA	180
CAGCCGGAAC	AGAGCCCGGT	GAAGCGGGAG	GCCTCGGGGA	GCCCCTCGGG	AAGGCCGCC	240
CGAGAGATAC	GCAGGTGCAG	GTGGCCGCC				269

- (2) INFORMATION FOR SEQ ID NO:101:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 405 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

${\tt TTTTTTTTT}$	TTTTGGAATC	TACTGCGAGC	ACAGCAGGTC	AGCAACAAGT	TTATTTTGCA	60
GCTAGCAAGG	TAACAGGGTA	GGGCATGGTT	ACATGTTCAG	GTCAACTTCC	TTTGTCGTGG	120
TTGATTGGTT	TGTCTTTATG	GGGGCGGGT	GGGGTAGGGG	AAACGAAGCA	AATAACATGG	180
AGTGGGTGCA	CCCTCCCTGT	AGAACCTGGT	TACAAAGCTT	GGGGCAGTTC	ACCTGGTCTG	240
TGACCGTCAT	TTTCTTGACA	TCAATGTTAT	TAGAAGTCAG	GATATCTTTT	AGAGAGTCCA	300
CTGTTCTGGA	GGGAGATTAG	GGTTTCTTGC	CAAATCCAAC	AAAATCCACT	GAAAAAGTTG	360
GATGATCAGT	ACGAATACCG	AGGCATATTC	TCATATCGGT	GGCCA		405

- (2) INFORMATION FOR SEQ ID NO:102:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 470 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

TTTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	${\tt TTTTTTTTT}$	TTTTTTTTT	60
GGCACTTAAT	CCATTTTTAT	TTCAAAATGT	CTACAAATTT	AATCCCATTA	TACGGTATTT	120
TCAAAATCTA	AATTATTCAA	ATTAGCCAAA	TCCTTACCAA	ATAATACCCA	AAAATCAAAA	180
ATATACTTCT	TTCAGCAAAC	TTGTTACATA	AATTAAAAAA	ATATATACGG	CTGGTGTTTT	240
CAAAGTACAA	TTATCTTAAC	ACTGCAAACA	TTTTAAGGAA	CTAAAATAAA	AAAAAACACT	300
CCGCAAAGGT	TAAAGGGAAC	AACAAATTCT	TTTACAACAC	CATTATAAAA	ATCATATCTC	360
AAATCTTAGG	GGAATATATA	CTTCACACGG	GATCTTAACT	TTTACTCACT	TTGTTTATTT	420
TTTTAAACCA	TTGTTTGGGC	CCAACACAAT	GGAATCCCCC	CTGGAĊTAGT		470

- (2) INFORMATION FOR SEQ ID NO:103:
 - (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 581 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE: '
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

TTTTTTTTT	TTTTTTTTGA	CCCCCCTCTT	ATAAAAAACA	AGTTACCATT	TTATTTTACT	60
TACACATATT	TATTTTATAA	${\tt TTGGTATTAG}$	ATATTCAAAA	GGCAGCTTTT	AAAATCAAAC	120
TAAATGGAAA	CTGCCTTAGA	TACATAATTC	TTAGGAATTA	GCTTAAAATC	TGCCTAAAGT	180
GAAAATCTTC	TCTAGCTCTT	TTGACTGTAA	ATTTTTGACT	CTTGTAAAAC	ATCCAAATTC.	240
ATTTTTCTTG	TCTTTAAAAT	TATCTAATCT	TTCCATTTTT	TCCCTATTCC	AAGTCAATTT	300
GCTTCTCTAG	CCTCATTTCC	TAGCTCTTAT	CTACTATTAG	TAAGTGGCTT	TTTTCCTAAA	- 360
AGGGAAAACA	GGAAGAGAAA	TGGCACACAA	AACAAACATT	TTATATTCAT	ATTTCTACCT	420
ACGTTAATAA	AATAGCATTT	TGTGAAGCCA	GCTCAAAAGA	AGGCTTAGAT	CCTTTTATGT	480
CCATTTTAGT	CACTAAACGA	TATCAAAGTG	CCAGAATGCA	AAAGGTTTGT	GAACATTTAT	540
TCAAAAGCTA	ATATAAGATA	TTTCACATAC	TCATCTTTCT	G		581

- (2) INFORMATION FOR SEQ ID NO:104:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 578 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

TTTTTTTTT	TTTTTTTTTT	TTTTTCTCTT	CTTTTTTTT	GAAATGAGGA	TCGAGTTTTT	60
CACTCTCTAG	ATAGGGCATG	AAGAAAACTC	ATCTTTCCAG	$\mathtt{CTTTAAAATA}$	ACAATCAAAT	120
CTCTTATGCT	ATATCATATT	TTAAGTTAAA	${\tt CTAATGAGTC}$	ACTGGCTTAT	CTTCTCCTGA	180
AGGAAATCTG	TTCATTCTTC	TCATTCATAT	${\tt AGTTATATCA}$	AGTACTACCT	TGCATATTGA	240
GAGGTTTTTC	TTCTCTATTT	ACACATATAT	TTCCATGTGA	${\tt ATTTGTATCA}$	AACCTTTATT	300
TTCATGCAAA	CTAGAAAATA	ATGTTTCTTT	${\tt TGCATAAGAG}$	AAGAGAACAA	TATAGCATTA	360
CAAAACTGCT	CAAATTGTTT	GTTAAGTTAT	CCATTATAAT	TAGTTGGCAG	GAGCTAATAC	420
AAATCACATT	TACGACAGCA	ATAATAAAAC	${\tt TGAAGTACCA}$	GTTAAATATC	CAAAATAATT	480
AAAGGAACAT	TTTTAGCCTG	GGTATAATTA	GCTAATTCAC	TTTACAAGCA	TTTATTAGAA	540
TGAATTCACA	TGTTATTATT	CCTAGCCCAA	CACAATGG	•		578

- (2) INFORMATION FOR SEQ ID NO:105:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 538 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

TT T	TTTTTCAGTA	ATAATCAGAA	CAATATTTAT	TTTTATATTT	AAAATTCATA	60
GAAAAGTGCC	TTACATTTAA	TAAAAGTTTG	TTTCTCAAAG	TGATCAGAGG	AATTAGATAT	120
GTCTTGAACA	${\tt CCAATATTAA}$	TTTGAGGAAA	ATACACCAAA	ATACATTAAG	TTTATTTAAAT	180
AAGATCATAG	$\mathbf{AGCTTGTAAG}_{\scriptscriptstyle{\zeta}}$	TGAAAAGATA	AAATTTGACC	TCAGAAACTC	TGAGCATTAA	240
AAATCCACTA	TTAGCAAATA	AATTACTATG	GACTTCTTGC	TTTAATTTTG	TGATGAATAT	300
GGGGTGTCAC	TGGTAAACCA	ACACATTCTG	AAGGATACAT	TACTTAGTGA	TAGATTCTTA	360
TGTACTTTGC	${\tt TAATACGTGG}$	ATATGAGTTG	${\tt ACAAGTTTCT}$	$\mathtt{CTTTCTTCAA}$	TCTTTTAAGG	420
GGCGAGAAAT	GAGGAAGAAA	AGAAAAGGAT	TACGCATACT	${\tt GTTCTTTCTA}$	TGGAAGGATT	480
AGATATGTTT	${\tt CCTTTGCCAA}$	TATTAAAAAA	ATAATAATGT	TTACTACTAG	TGAAACCC	538

(2) INFORMATION FOR SEQ ID NO:106:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 473 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

TTTTTTTTT	TTTTTTAGTC	AAGTTTCTAT	TTTTATTATA	ATTAAAGTCT	TGGTCATTTC	60
ATTTATTAGC	TCTGCAACTT	${\tt ACATATTTAA}$	ATTAAAGAAA	${\tt CGTTTTAGAC}$	AACTGTACAA	120
TTTATAAATG	TAAGGTGCCA	${\tt TTATTGAGTA}$	ATATATTCCT	CCAAGAGTGG	ATGTGTCCCT	180
TCTCCCACCA	ACTAATGAAC	AGCAACATTA	${\tt GTTTAATTTT}$	ATTAGTAGAT	ATACACTGCT	240
GCAAACGCTA	ATTCTCTTCT	CCATCCCCAT	GTGATATTGT	${\tt GTATATGTGT}$	GAGTTGGTAG	300
AATGCATCAC	AATCTACAAT	CAACAGCAAG	ATGAAGCTAG	GCTGGGCTTT	CGGTGAAAAT	360
AGACTGTGTC	TGTCTGAATC	AAATGATCTG	ACCTATCCTC	GGTGGCAAGA	ACTCTTCGAA	420
CCGCTTCCTC	AAAGGCGCTG	CCACATTTGT	GGCTCTTTGC	ACTTGTTTCA	AAA	473

- (2) INFORMATION FOR SEQ ID NO:107:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1621 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CGCCATGGCA	CTGCAGGGCA	TCTCGGTCAT	GGAGCTGTCC	GGCCTGGCCC	CGGGCCCGTT	60
CTGTGCTATG	GTCCTGGCTG	ACTTCGGGGC	GCGTGTGGTA	CGCGTGGACC	GGCCCGGCTC	120
CCGCTACGAC	GTGAGCCGCT	TGGGCCGGGG	CAAGCGCTÇG	CTAGTGCTGG	ACCTGAAGCA	180
GCCGCGGGGA	GCCGCCGTGC	TGCGGCGTCT	GTGCAAGCGG	TCGGATGTGC	TGCTGGAGCC	240
CTTCCGCCGC	GGTGTCATGG	AGAAACTCCA	GCTGGGCCCA	GAGATTCTGC	AGCGGGAAAA	300
TCCAAGGCTT	ATTTATGCCA	GGCTGAGTGG	ATTTGGCCAG	TCAGGAAGCT	TCTGCCGGTT	3.60
AGCTGGCCAC	GATATCAACT	ATTTGGCTTT	GTCAGGTGTT	CTCTCAAAAA	TTGGCAGAAG	420
TGGTGAGAAT	CCGTATGCCC	CGCTGAATCT	CCTGGCTGAC	TTTGCTGGTG	GTGGCCTTAT	480
GTGTGCACTG	GGCATTATAA	TGGCTCTTTT	TGACCGCACA	CGCACTGACA	AGGGTCAGGT	540

CATTGATGCA	AATATGGTGG	AAGGAACAGC	ATATTTAAGT	${\tt TCTTTTCTGT}$	GGAAAACTCA	600
GAAATCGAGT	CTGTGGGAAG	CACCTCGAGG	ACAGAACATG	${\tt TTGGATGGTG}$	GAGCACCTTT	660
CTATACGACT	TACAGGACAG	CAGATGGGGA	ATTCATGGCT	GTTGGAGCAA	TAGAACCCCA	720
GTTCTACGAG	CTGCTGATCA	AAGGACTTGG	ACTAAAGTCT	GATGAACTTC	CCAATCAGAT	780
GAGCATGGAT	GATTGGÇCAG	AAATGAAGAA	${\tt GAAGTTTGCA}$	GATGTATTTG	CAAAGAAGAC	840
GAAGGCAGAG	TGGTGTCAAA	TCTTTGACGG	CACAGATGCC	TGTGTGACTC	CGGTTCTGAC	900
TTTTGAGGAG	GTTGTTCATC	ATGATCACAA	CAAGGAACGG	${\tt GGCTCGTTTA}$	TCACCAGTGA	.960
GGAGCAGGAC	GTGAGCCCCC	GCCCTGCACC	TCTGCTGTTA	AACACCCCAG	CCATCCCTTC	1020
TTTCAAAAGG	GATCCTTTCA	TAGGAGAACA	CACTGAGGAG	ATACTTGAAG	AATTTGGATT	1080
CAGCCGCGAA	GAGATTTATC	AGCTTAACTC	AGATAAAATC	ATTGAAAGTA	ATAAGGTAAA	1140
AGCTAGTCTC	TAACTTCCAG	GCCCACGGCT	CAAGTGAATT	TGAATACTGC	ATTTACAGTG	1200
TAGAGTAACA	CATAACATTG	TATGCATGGA	AACATGGAGG	AACAGTATTA	CAGTGTCCTA	1260
CCACTCTAAT	CAAGAAAAGA	ATTACAGACT	CTGATTCTAC	AGTGATGATT	GAATTCTAAA	1320
AATGGTTATC	ATTAGGGCTT	TTGATTTATA	AAACTTTGGG	TACTTATACT	AAATTATGGT	1380
AGTTATTCTG	CCTTCCAGTT	TGCTTGATAT	ATTTGTTGAT	ATTAAGATTC	TTGACTTATA	1440
${\tt TTTTGAATGG}$	GTTCTAGTGA	AAAAGGAATG	ATATATTCTT	GAAGACATCG	ATATACATTT	1500
ATTTACACTC	TTGATTCTAC	AATGTAGAAA	ATGAGGAAAT	GCCACAAATT	GTATGGTGAT	1560
AAAAGTCACG	TGAAACAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	1620
A			,			1621

(2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 382 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:
- Met Ala Leu Gln Gly Ile Ser Val Met Glu Leu Ser Gly Leu Ala Pro 10 Gly Pro Phe Cys Ala Met Val Leu Ala Asp Phe Gly Ala Arg Val Val 20 25 Arg Val Asp Arg Pro Gly Ser Arg Tyr Asp Val Ser Arg Leu Gly Arg 40 Gly Lys Arg Ser Leu Val Leu Asp Leu Lys Gln Pro Arg Gly Ala Ala 55 60 Val Leu Arg Arg Leu Cys Lys Arg Ser Asp Val Leu Leu Glu Pro Phe 75 70 Arg Arg Gly Val Met Glu Lys Leu Gln Leu Gly Pro Glu Ile Leu Gln 85 90 Arg Glu Asn Pro Arg Leu Ile Tyr Ala Arg Leu Ser Gly Phe Gly Gln 105 Ser Gly Ser Phe Cys Arg Leu Ala Gly His Asp Ile Asn Tyr Leu Ala 120 Leu Ser Gly Val Leu Ser Lys Ile Gly Arg Ser Gly Glu Asn Pro Tyr 135 140 Ala Pro Leu Asn Leu Leu Ala Asp Phe Ala Gly Gly Leu Met Cys 150 155 Ala Leu Gly Ile Ile Met Ala Leu Phe Asp Arg Thr Arg Thr Asp Lys 165 170 Gly Gln Val Ile Asp Ala Asn Met Val Glu Gly Thr Ala Tyr Leu Ser 185 190 Ser Phe Leu Trp Lys Thr Gln Lys Ser Ser Leu Trp Glu Ala Pro Arg 200 205

```
Gly Gln Asn Met Leu Asp Gly Gly Ala Pro Phe Tyr Thr Thr Tyr Arg
 210 215 220
Thr Ala Asp Gly Glu Phe Met Ala Val Gly Ala Ile Glu Pro Gln Phe
225 · 230 235
Tyr Glu Leu Leu Ile Lys Gly Leu Gly Leu Lys Ser Asp Glu Leu Pro
           245
                           250.
Asn Gln Met Ser Met Asp Asp Trp Pro Glu Met Lys Lys Phe Ala
                        265
Asp Val Phe Ala Lys Lys Thr Lys Ala Glu Trp Cys Gln Ile Phe Asp
                     280
Gly Thr Asp Ala Cys Val Thr Pro Val Leu Thr Phe Glu Glu Val Val
        295
                      . 300
His His Asp His Asn Lys Glu Arg Gly Ser Phe Ile Thr Ser Glu Glu
       310 315
Gln Asp Val Ser Pro Arg Pro Ala Pro Leu Leu Asn Thr Pro Ala
         325 330 335
Ile Pro Ser Phe Lys Arg Asp Pro Phe Ile Gly Glu His Thr Glu Glu
        340 345 350
Ile Leu Glu Glu Phe Gly Phe Ser Arg Glu Glu Ile Tyr Gln Leu Asn
  355 360
                         365
Ser Asp Lys Ile Ile Glu Ser Asn Lys Val Lys Ala Ser Leu
                  375
```

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1524 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

GGCACGAGGC	TGCGCCAGGG	CCTGAGCGGA	GGCGGGGCA	GCCTCGCCAG	CGGGGGCCCC	60
GGGCCTGGCC	ATGCCTCACT	GAGCCAGCGC	CTGCGCCTCT	ACCTCGCCGA	CAGCTGGAAC	120
CAGTGCGACC	TAGTGGCTCT	CACCTGCTTC	CTCCTGGGCG	TGGGCTGCCG	GCTGACCCCG	180
GGTTTGTACC	ACCTGGGCCG	CACTGTCCTC	TGCATCGACT	TCATGGTTTT	CACGGTGCGG	240
CTGCTTCACA	TCTTCACGGT	CAACAAACAG	CTGGGGCCCA	AGATCGTCAT	CGTGAGCAAG	300
ATGATGAAGG	ACGTGTTCTT	$\mathtt{CTTCCTCTTC}$	TTCCTCGGCG	TGTGGCTGGT	AGCCTATGGC	360
GTGGCCACGG	AGGGGCTCCT	GAGGCCACGG	GACAGTGACT	TCCCAAGTAT	CCTGCGCCGC	420
GTCTTCTACC	GTCCCTACCT	GCAGATCTTC	GGGCAGATTC	CCCAGGAGGA	CATGGACGTG	480
GCCCTCATGG	AGCACAGCAA	CTGCTCGTCG	GAGCCCGGCT	TCTGGGCACA	CCCTCCTGGG	540
GCCCAGGCGG	GCACCTGCGT	CTCCCAGTAT	GCCAACTGGC	TGGTGGTGCT	GCTCCTCGTC	600
ATCTTCCTGC	TCGTGGCCAA	CATCCTGCTG	GTCAACTTGC	TCATTGCCAT	GTTCAGTTAC	660
ACATTCGGCA	AAGTACAGGG	CAACAGCGAT	CTCTACTGGA	AGGCGCAGCG	TTACCGCCTC	720
ATCCGGGAAT	TCCACTCTCG	GCCCGCGCTG	GCCCCGCCCT	TTATCGTCAT	CTCCCACTTG	780
CGCCTCCTGC	TCAGGCAATT	GTGCAGGCGA	CCCCGGAGCC	CCCAGCCGTC	CTCCCCGGCC	840
CTCGAGCATT	TCCGGGTTTA	CCTTTCTAAG	GAAGCCGAGC	GGAAGCTGCT	AACGTGGGAA	900
TCGGTGCATA	AGGAGAACTT	TCTGCTGGCA	CGCGCTAGGG	ACAAGCGGGA	GAGCGACTCC	960
GAGCGTCTGA	AGCGCACGTC	CCAGAAGGTG	GACTTGGCAC	TGAAACAGCT	GGGACACATC	1020
CGCGAGTACG	AACAGCGCCT	GAAAGTGCTG	GAGCGGGAGG	TCCAGCAGTG	TAGCCGCGTC	1080
CTGGGGTGGG	TGGCCGAGGC	CCTGAGCCGC	TCTGCCTTGC	TGCCCCCAGG	TGGGCCGCCA	1140
CCCCCTGACC	TGCCTGGGTC	CAAAGACTGA	GCCCTGCTGG	CGGACTTCAA	GGAGAAGCCC	1200
CCACAGGGGA	TTTTGCTCCT	AGAGTAAGGC	TCATCTGGGC	CTCGGCCCCC	GCACCTGGTG	1260
GCCTTGTCCT	TGAGGTGAGC	CCCATGTCCA	TCTGGGCCAC	TGTCAGGACC	ACCTTTGGGA	1320
GTGTCATCCT	TACAAACCAC	AGCATGCCCG	GCTCCTCCCA	GAACCAGTCC	CAGCCTGGGA	1380

GGATCAAGGC	CTGGATCCCG	GGCCGTTATC	CATCTGGAGG	CTGCAGGGTC	CTTGGGGTAA	1440
CAGGGACCAC	AGACCCCTCA	CCACTCACAG	ATTCCTCACA	CTGGGGAAAT	AAAGCCATTT	1500
CAGAGGAAAA	AAAAAAAA	AAAA				1524

(2) INFORMATION FOR SEQ ID NO:110:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3410 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

GGGAACCAGC	CTGCACGCGC	TGGCTCCGGG	TGACAGCCGC	GCGCCTCGGC	CAGGATCTGA	60
GTGATGAGAC	GTGTCCCCAC	TGAGGTGCCC	CACAGCAGCA	GGTGTTGAGC	ATGGGCTGAG	120
AAGCTGGACC	GGCACCAAAG	GGCTGGCAGA	AATGGGCGCC	TGGCTGATTC	CTAGGCAGTT	180
GGCGGCAGCA	AGGAGGAGAG	GCCGCAGCTT	CTGGAGCAGA	GCCGAGACGA	AGCAGTTCTG	240
GAGTGCCTGA	ACGGCCCCCT	GAGCCCTACC	CGCCTGGCCC	ACTATGGTCC	AGAGGCTGTG	300
GGTGAGCCGC	CTGCTGCGGC	ACCGGAAAGC	CCAGCTCTTG	CTGGTCAACC	TGCTAACCTT	360
TGGCCTGGAG	GTGTGTTTGG	CCGCAGGCAT	CACCTATGTG	CCGCCTCTGC	TGCTGGAAGT	420
GGGGGTAGAG	GAGAAGTTCA	TGACCATGGT	GCTGGGCATT	GGTCCAGTGC	TGGGCCTGGT	480
CTGTGTCCCG	CTCCTAGGCT	CAGCCAGTGA	CCACTGGCGT	GGACGCTATG	GCCGCCGCCG	540
GCCCTTCATC	TGGGCACTGT	CCTTGGGCAT	CCTGCTGAGC	CTCTTTCTCA	TCCCAAGGGC	600
CGGCTGGCTA	GCAGGGCTGC	TGTGCCCGGA	TCCCAGGCCC	CTGGAGCTGG	CACTGCTCAT	660
CCTGGGCGTG	GGGCTGCTGG	ACTTCTGTGG	CCAGGTGTGC	TTCACTCCAC	TGGAGGCCCT	720
GCTCTCTGAC	CTCTTCCGGG	ACCCGGACCA	CTGTCGCCAG	GCCTACTCTG	TCTATGCCTT	780
CATGATCAGT	CTTGGGGGCT	GCCTGGGCTA	CCTCCTGCCT	GCCATTGACT	GGGACACCAG	840
TGCCCTGGCC	CCCTACCTGG	GCACCCAGGA	GGAGTGCCTC	TTTGGCCTGC	TCACCCTCAT	900
CTTCCTCACC	TGCGTAGCAG	CCACACTGCT	GGTGGCTGAG	GAGGCAGCGC	TGGGCCCCAC	960
	GAAGGGCTGT					1020
CCGCTTGGCT	TTCCGGAACC	TGGGCGCCCT	GCTTCCCCGG	CTGCACCAGC	TGTGCTGCCG	1080
CATGCCCCGC	ACCCTGCGCC-	GGCTCTTCGT	GGCTGAGCTG	TGCAGCTGGA	TGGCACTCAT	1140
GACCTTCACG	CTGTTTTACA	CGGATTTCGT	GGGCGAGGG	CTGTACCAGG	GCGTGCCCAG	1200
AGCTGAGCCG	GGCACCGAGG	CCCGGAGACA	CTATGATGAA	GGCGTTCGGA	TGGGCAGCCT	1260
GGGGCTGTTC	CTGCAGTGCG	CCATCTCCCT	GGTCTTCTCT	CTGGTCATGG	ACCGGCTGGT	1320
GCAGCGATTC	GGCACTCGAG	CAGTCTATTT	GGCCAGTGTG	GCAGCTTTCC	CTGTGGCTGC	1380
CGGTGCCACA	TGCCTGTCCC	ACAGTGTGGC	CGTGGTGACA	GCTTCAGCCG	CCCTCACCGG	1440
GTTCACCTTC	TCAGCCCTGC	AGATCCTGCC	CTACACACTG	GCCTCCCTCT	ACCACCGGGA	1500
GAAGCAGGTG	TTCCTGCCCA	AATACCGAGG	GGACACTGGA	GGTGCTAGCA	GTGAGGACAG	1560
CCTGATGACC	AGCTTCCTGC	CAGGCCCTAA	GCCTGGAGCT	CCCTTCCCTA	ATGGACACGT	1620
GGGTGCTGGA	GGCAGTGGCC	TGCTCCCACC	TCCACCCGCG	CTCTGCGGGG	CCTCTGCCTG	1680
	GTACGTGTGG	•				1740
GGGCATCTGC	CTGGACCTCG	CCATCCTGGA	TAGTGCCTTC	CTGCTGTCCC	AGGTGGCCCC	1800
ATCCCTGTTT	ATGGGCTCCA	TTGTCCAGCT	CAGCCAGTCT	GTCACTGCCT	ATATGGTGTC	1860
TGCCGCAGGC	CTGGGTCTGG	TCGCCATTTA	CTTTGCTACA	CAGGTAGTAT	TTGACAAGAG	1920
CGACTTGGCC	AAATACTCAG	CGTAGAAAAC	TTCCAGCACA	TTGGGGTGGA	GGGCCTGCCT	1980
CACTGGGTCC	CAGCTCCCCG	CTCCTGTTAG	CCCCATGGGG	CTGCCGGGCT	GGCCGCCAGT	2040
TTCTGTTGCT	GCCAAAGTAA	TGTGGCTCTC	TGCTGCCACC	CTGTGCTGCT	GAGGTGCGTA	2100
GCTGCACAGC	TGGGGGCTGG	GGCGTCCCTC	TCCTCTCTCC	CCAGTCTCTA	GGGCTGCCTG	2160
ACTGGAGGCC	TTCCAAGGGG	GTTTCAGTCT	GGACTTATAC	AGGGAGGCCA	GAAGGGCTCC	2220
ATGCACTGGA	ATGCGGGGAC	TCTGCAGGTG	GATTACCCAG	GCTCAGGGTT	AACAGCTAGC	2280
CTCCTAGTTG	AGACACACCT	AGAGAAGGGT	TTTTGGGAGC	TGAATAAACT	CAGTCACCTG	2340
GTTTCCCATC	TCTAAGCCCC	TTAACCTGCA	GCTTCGTTTA	ATGTAGCTCT	TGCATGGGAG	2400
	GAAACACTCC					2460
GTCCTGAGGC	GCAACACACA	AGAACCAGGT	CCCCTCAGCC	CACAGCACTG	TCTTTTTGCT	2520

GATCCACCC CCTCTT	ACCT TTTATCAGG	A TGTGGCCTGT	TGGTCCTTCT	GTTGCCATCA	2580
CAGAGACACA GGCATT	TAAA TATTTAACT	AATTTATTTA 1	CAAAGTAGAA	GGGAATCCAT	2640
TGCTAGCTTT TCTGTG	TTGG TGTCTAATA	TTGGGTAGGG	TGGGGGATCC	CCAACAATCA	2700
GGTCCCCTGA GATAGC	TGGT CATTGGGCT	3 ATCATTGCCA	GAATCTTCTT	CTCCTGGGGT	2760
CTGGCCCCC AAAATG	CCTA ACCCAGGAC	C TTGGAAATTC	TACTCATCCC	AAATGATAAT	2820
TCCAAATGCT GTTACC	CAAG GTTAGGGTG	T TGAAGGAAGG	TAGAGGGTGG	GGCTTCAGGT	2880
CTCAACGGCT TCCCTA	ACCA CCCCTCTTC	r cttggcccag	CCTGGTTCCC	CCCACTTCCA	2940
CTCCCCTCTA CTCTCT	CTAG GACTGGGCT	G ATGAAGGCAC	TGCCCAAAAT	TTCCCCTACC	3000
CCCAACTTTC CCCTAC	CCCC AACTTTCCC	C ACCAGCTCCA	CAACCCTGTT	TGGAGCTACT	3060
GCAGGACCAG AAGCAC	AAAG TGCGGTTTC	C CAAGCCTTTG	TCCATCTCAG	CCCCCAGAGT	3120
ATATCTGTGC TTGGGG	AATC TCACACAGA	A ACTCAGGAGC	ACCCCCTGCC	TGAGCTAAGG	3180
GAGGTCTTAT CTCTCA	.GGGG GGGTTTAAG	I GCCGTTTGCA	ATAATGTCGT	CTTATTTATT	3240
TAGCGGGGTG AATATT	TTAT ACTGTAAGT	G AGCAATCAGA	GTATAATGTT	TATGGTGACA	3300
AAATTAAAGG CTTTCT	TATA TGTTTAAAA	AAAAAAAA	AAAAAAAAA	AAAAAAAAA	3360
AAAAAAAARA AAAAAA	AAAAAAAA AAAA	AAAAAAAAA	AAAAAAAAA		3410

(2) INFORMATION FOR SEQ ID NO:111:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1289 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

AGCCAGGCGT	CCCTCTGCCT	GCCCACTCAG	TGGCAACACC	CGGGAGĊTGT	TTTGTCCTTT	60
GTGGAGCCTC	AGCAGTTCCC	TCTTTCAGAA	CTCACTGCCA	AGAGCCCTGA	ACAGGAGCCA	120
CCATGCAGTG	CTTCAGCTTC	ATTAAGACCA	TGATGATCCT	${\tt CTTCAATTTG}$	CTCATCTTTC	180
TGTGTGGTGC	AGCCCTGTTG	GCAGTGGGCA	TCTGGGTGTC	AATCGATGGG	GCATCCTTTC	240
TGAAGATCTT	CGGGCCACTG	TCGTCCAGTG	CCATGCAGTT	TGTCAACGTG	GGCTACTTCC	300
TCATCGCAGC	CGGCGTTGTG	GTCTTTGCTC	TTGGTTTCCT	GGGCTGCTAT	GGTGCTAAGA	360
CTGAGAGCAA	GTGTGCCCTC	GTGACGTTCT	TCTTCATCCT	CCTCCTCATC	TTCATTGCTG	420
AGGTTGCAGC	TGCTGTGGTC	GCCTTGGTGT	ACACCACAAT	GGCTGAGCAC	TTCCTGACGT	480
TGCTGGTAGT	GCCTGCCATC	AAGAAAGATT	ATGGTTCCCA	GGAAGACTTC	ACTCAAGTGT	540
GGAACACCAC	CATGAAAGGG	CTCAAGTGCT	GTGGCTTCAC	CAACTATACG	GATTTTGAGG	600
ACTCACCCTA	CTTCAAAGAG	AACAGTGCCT	TTCCCCCATT	CTGTTGCAAT.	GACAACGTCA	660
CCAACACAGC	CAATGAAACC	TGCACCAAGC	AAAAGGCTCA	CGACCAAAAA	GTAGAGGGTT	720
GCTTCAATCA	GCTTTTGTAT	GACATCCGAA	CTAATGCAGT	CACCGTGGGT	GGTGTGGCAG	780
CTGGAATTGG	GGGCCTCGAG	CTGGCTGCCA	TGATTGTGTC	CATGTATCTG	TACTGCAATC	840
TACAATAAGT	CCACTTCTGC	CTCTGCCACT	ACTGCTGCCA	CATGGGAACT	GTGAAGAGGC	900
ACCCTGGCAA	GCAGCAGTGA	TTGGGGGAGG	GGACAGGATC	TAACAATGTC	ACTTGGGCCA	960
GAATGGACCT	GCCCTTTCTG	CTCCAGACTT	GGGGCTAGAT	AGGGACCACT	CCTTTTAGCG	1020
ATGCCTGACT	TTCCTTCCAT	TGGTGGGTGG	ATGGGTGGGG	GGCATTCCAG	AGCCTCTAAG	1080
GTAGCCAGTT	CTGTTGCCCA	TTCCCCCAGT	CTATTAAACC	CTTGATATGC	CCCCTAGGCC	1140
TAGTGGTGAT	CCCAGTGCTC	TACTGGGGGA	TGAGAGAAAG	GCATTTTATA	GCCTGGGCAT	1200
AAGTGAAATC	AGCAGAGCCT	CTGGGTGGAT	GTGTAGAAGG	CACTTCAAAA	TGCATAAACC	1260
TGTTACAATG	TTAAAAAAAA	AAAAAAA			i i	1289

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 315 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:
- Met Val Phe Thr Val Arg Leu Leu His Ile Phe Thr Val Asn Lys Gln 1 5 10 15
- Leu Gly Pro Lys Ile Val Ile Val Ser Lys Met Met Lys Asp Val Phe 20 25 30
- Phe Phe Leu Phe Phe Leu Gly Val Trp Leu Val Ala Tyr Gly Val Ala 35 40 45
- Thr Glu Gly Leu Leu Arg Pro Arg Asp Ser Asp Phe Pro Ser Ile Leu 50 60
- Arg Arg Val Phe Tyr Arg Pro Tyr Leu Gln Ile Phe Gly Gln Ile Pro 65 70 75 80
- Gln Glu Asp Met Asp Val Ala Leu Met Glu His Ser Asn Cys Ser Ser 90 95
- Glu Pro Gly Phe Trp Ala His Pro Pro Gly Ala Gln Ala Gly Thr Cys 100 105 110
- Val Ser Gln Tyr Ala Asn Trp Leu Val Val Leu Leu Val Ile Phe 115 120 125
- Leu Leu Val Ala Asn Ile Leu Leu Val Asn Leu Leu Ile Ala Met Phe 130 140
- Ser Tyr Thr Phe Gly Lys Val Gln Gly Asn Ser Asp Leu Tyr Trp Lys 145 150 155 160
- Ala Gln Arg Tyr Arg Leu Ile Arg Glu Phe His Ser Arg Pro Ala Leu 165 170 175
- Ala Pro Pro Phe Ile Val Ile Ser His Leu Arg Leu Leu Leu Arg Gln 180 185 190
- Leu Cys Arg Arg Pro Arg Ser Pro Gln Pro Ser Ser Pro Ala Leu Glu 195 200 205
- His Phe Arg Val Tyr Leu Ser Lys Glu Ala Glu Arg Lys Leu Leu Thr 210 215 220
- Trp Glu Ser Val His Lys Glu Asn Phe Leu Leu Ala Arg Ala Arg Asp 225 230 235 240
- Lys Arg Glu Ser Asp Ser Glu Arg Leu Lys Arg Thr Ser Gln Lys Val
 245 250 255
- Asp Leu Ala Leu Lys Gln Leu Gly His Ile Arg Glu Tyr Glu Gln Arg
 260 265 270
- Leu Lys Val Leu Glu Arg Glu Val Gln Gln Cys Ser Arg Val Leu Gly 275 280 285

Trp Val Ala Glu Ala Leu Ser Arg Ser Ala Leu Leu Pro Pro Gly Gly
290 295 300

Pro Pro Pro Pro Asp Leu Pro Gly Ser Lys Asp 305 310 315

- (2) INFORMATION FOR SEQ ID NO:113:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 553 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

Met Val Gln Arg Leu Trp Val Ser Arg Leu Leu Arg His Arg Lys Ala

1 10 15

Gln Leu Leu Val Asn Leu Leu Thr Phe Gly Leu Glu Val Cys Leu 20 25 30

Ala Ala Gly Ile Thr Tyr Val Pro Pro Leu Leu Leu Glu Val Gly Val 35 40 45

Glu Glu Lys Phe Met Thr Met Val Leu Gly Ile Gly Pro Val Leu Gly 50 60

Leu Val Cys Val Pro Leu Leu Gly Ser Ala Ser Asp His Trp Arg Gly 65 70 75 80

Arg Tyr Gly Arg Arg Pro Phe Ile Trp Ala Leu Ser Leu Gly Ile 85 90 95

Leu Leu Ser Leu Phe Leu Ile Pro Arg Ala Gly Trp Leu Ala Gly Leu 100 105 110

Leu Cys Pro Asp Pro Arg Pro Leu Glu Leu Ala Leu Leu Ile Leu Gly
115 120 125

Val Gly Leu Leu Asp Phe Cys Gly Gln Val Cys Phe Thr Pro Leu Glu 130 135 140

Ala Leu Leu Ser Asp Leu Phe Arg Asp Pro Asp His Cys Arg Gln Ala 145 150 155 160

Tyr Ser Val Tyr Ala Phe Met Ile Ser Leu Gly Gly Cys Leu Gly Tyr
165 170 175

Leu Leu Pro Ala Ile Asp Trp Asp Thr Ser Ala Leu Ala Pro Tyr Leu 180 185 190

Gly Thr Gln Glu Glu Cys Leu Phe Gly Leu Leu Thr Leu Ile Phe Leu 195 200 205

Thr	Cys 210	Val	Ala	Ala	Thr	Leu 215	Leu	Val	Ala	Glu	Glu 220	Ala	Ala	Leu	Gly
Pro 225	Thr	Glu	Pro	Ala	Glu 230	Glý	Leu	Ser	Ala	Pro 235	Ser	Leu	Ser	Pro	His 240
Сув	Cys	Pro	Cys	Arg 245	Ala	Arg	Leu	Ala	Phe 250	Arg	Asn	Leu	Gly	Ala 255	Leu
Leu	Pro	Arg	Leu 260	His	Gln	Leu	Cys	Cys 265	Arg	Met	Pro	Arg	Thr 270	Leu	Arg
Arg	Leu	Phe 275	Val	Ala	Glu	Leu	Cys 280	Ser	Trp	Met	Ala	Leu 285	Met	Thr	Phe
Thr	Leu 290	Phe	Tyr	Thr	Asp	Phe 295	Val	Gly	Glu	Gly	Leu 300	Tyr	Gln	Gly	Val
Pro 305	Arg	Ala	Glu	Pro	Gly 310	Thr	Glu	Ala	Arg	Arg 315	His	Tyr	Asp	Glu	Gly 320
Val	Arg	Met	Gly	Ser 325	Leu	Gly	Leu	Phe	Leu 330	Gln	Cys	Ala	Ile	Ser 335	Leu
Val	Phe	Ser	Leu 340	Val	Met	Asp	Arg	Leu 345	Val	Gln	Arg	Phe	Gly 350	Thr	Arg
Ala	Val	Tyr 355	Leu	Ala	Ser	Val	Ala 360	Ala	Phe	Pro	Val	Ala 365	Ala	Gly	Ala
Thr	Cys 370	Leu	Ser	His	Ser	Val 375	Ala	Val	Val	Thr	Ala 380	Ser	Ala	Ala	Leu
Thr 385	Gly	Phe	Thr	Phe	Ser 390	Ala	Leu	Gln	Ile	Leu 395	Pro	Tyr	Thr	Leu	Ala 400
Ser	Leu	Tyr	His	Arg 405	Glu	Lys	Gln	Val	Phe 410	Leu	Pro	Lys	Tyr	Arg 415	Gly
Asp	Thr	Gly	Gly 420		Ser	Ser	Glu	Asp 425	Ser	Leu	Met	Thr	Ser 430	Phe	Leu
Pro	Gly	Pro 435	_	Pro	Gly	Ala	Pro 440		Pro	Asn	Gly	His 445	Val	Gly	Ala
Gly	Gly 450		Gly	Leu	Leu	Pro 455		Pro	Pro	Ala	Leu 460	_	Gly	Ala	Ser
Ala 465	_	Asp	Val	Ser	Val 470	_	Val	Val	Val	Gly 475		Pro	Thr	Glu	Ala 480
Arg	Val	. Val	Pro	Gly 485	_	Gly	'Ile	Cys	Leu 490	_	Leu	Ala	Ile	Leu 495	_
Ser	Ala	Phe	Leu 500		Ser	Gln	val	Ala 505		Ser	Leu	Phe	Met 510	_	Ser
Ile	val	. Gln 515		Ser	Gln	Ser	Val		Ala	a Tyr	Met	Val 525	Ser	: Ala	Ala

Gly Leu Gly Leu Val Ala Ile Tyr Phe Ala Thr Gln Val Val Phe Asp

530 535 540

Lys Ser Asp Leu Ala Lys Tyr Ser Ala 545 550

- (2) INFORMATION FOR SEQ ID NO:114:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

Met Gln Cys Phe Ser Phe Ile Lys Thr Met Met Ile Leu Phe Asn Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Ile Phe Leu Cys Gly Ala Ala Leu Leu Ala Val Gly Ile Trp Val 20 25 30

Ser Ile Asp Gly Ala Ser Phe Leu Lys Ile Phe Gly Pro Leu Ser Ser 35 40 45

Ser Ala Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly 50 55 60

Val Val Phe Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr 65 70 75 80

Glu Ser Lys Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Ile 85 90 95

Phe Ile Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr 100 105 110

Met Ala Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys 115 120 125

Asp Tyr Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met 130 135 140

Lys Gly Leu Lys Cys Cys Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp \cdot 150 155 160

Ser Pro Tyr Phe Lys Glu Asn Ser Ala Phe Pro Pro Phe Cys Cys Asn 165 170 175

Asp Asn Val Thr Asn Thr Ala Asn Glu Thr Cys Thr Lys Gln Lys Ala 180 185 190

His Asp Gln Lys Val Glu Gly Cys Phe Asn Gln Leu Leu Tyr Asp Ile 195 200 205

Arg Thr Asn Ala Val Thr Val Gly Gly Val Ala Ala Gly Ile Gly Gly 210 215 220

Leu Glu Leu Ala Ala Met Ile Val Ser Met Tyr Leu Tyr Cys Asn Leu 225 230 235 240

Gln

- (2) INFORMATION FOR SEQ ID NO:115:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 366 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo Sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GCTCTTTCTC	TCCCCTCCTC	TGAATTTAAT	TCTTTCAACT	TGCAATTTGC	AAGGATTACA	60
CATTTCACTG	TGATGTATAT	TGTGTTGCAA	AAAAAAAAA	${\tt GTGTCTTTGT}$	TTAAAATTAC	120
TTGGTTTGTG	AATCCATCTT	$\tt GCTTTTTCCC$	CATTGGAACT	AGTCATTAAC	CCATCTCTGA	180
ACTGGTAGAA	AAACATCTGA	AGAGCTAGTC	TATCAGCATC	TGACAGGTGA	ATTGGATGGT	240
TCTCAGAACC	ATTTCACCCA	${\tt GACAGCCTGT}$	TTCTATCCTG	TTTAATAAAT	TAGTTTGGGT	300
TCTCTACATG	CATAACAAAC	CCTGCTCCAA	TCTGTCACAT	AAAAGTCTGT	GACTTGAAGT	360
TTAGTC						366

- (2) INFORMATION FOR SEQ ID NO:116:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 282 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

ACAAAGATGA	ACCATTTCCT	ATATTATAGC	AAAATTAAAA	TCTACCCGTA	TTCTAATATT	60
GAGAAATGAG	ATNAAACACA	ATNTTATAAA	${\tt GTCTACTTAG}$	AGAAGATCAA	GTGACCTCAA	120
AGACTTTACT	ATTTTCATAT	${\tt TTTAAGACAC}$	ATGATTTATC	${\tt CTATTTTAGT}$	AACCTGGTTC	180
ATACGTTAAA	CAAAGGATAA	TGTGAACAGC	AGAGAGGATT	TGTTGGCAGA	AAATCTATGT	240
TCAATCTNGA	ACTATCTANA	TCACAGACAT	TTCTATTCCT	TT		282

- (2) INFORMATION FOR SEQ ID NO:117:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 305 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

-	(11) MOLECULE TYPE: CDNA	•
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:	
TATI AATI TACI	CATGTCG CTTCACTGCC TTCTTAGATG CTTCTGGTCA ACATANAGGA ACAGGGACCA TTATCCT CCCTCCTGAA ACAATTGCAA AATAANACAA AATATATGAA ACAATTGCAA AAGGCAA AATATATGAA ACAACAGGTC TCGAGATATT GGAAATCAGT CAATGAAGGA IGATCCC TGATCACTGT CCTAATGCAG GATGTGGGAA ACAGATGAGG TCACCTCTGT IGCCCCA GCTTACTGCC TGTAGAGAGT TTCTANGCTG CAGTTCAGAC AGGGAGAAAT GT	.60 120 180 240 300 305
(2)	INFORMATION FOR SEQ ID NO:118:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
÷	(ii) MOLECULE TYPE: cDNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	
	AAGGTGT NTGAATCTCT GACGTGGGGA TCTCTGATTC CCGCACAATC TGAGTGGAAA	60 71
(2)	INFORMATION FOR SEQ ID NO:119:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 212 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	,
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
GAA AGT	PCCGGTTG GTGTCAGCAG CACGTGGCAT TGAACATNGC AATGTGGAGC CCAAACCACA AAATGGGG TGAAATTGGC CAACTTTCTA TNAACTTATG TTGGCAANTT TGCCACCAAC PAAGCTGG CCCTTCTAAT AAAAGAAAAT TGAAAGGTTT CTCACTAANC GGAATTAANT PGGANTCA AGANACTCCC AGGCCTCAGC GT	60 120 180 212
(2)	INFORMATION FOR SEQ ID NO:120:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 90 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	

(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
ACTCGTTGCA NATCAGGGGC CCCCCAGAGT CACCGTTGCA GGAGTCCTTC TGGTCTTGCC CTCCGCCGGC GCAGAACATG CTGGGGTGGT	60 90
(2) INFORMATION FOR SEQ ID NO:121:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 218 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	•
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
TGTANCGTGA ANACGACAGA NAGGGTTGTC AAAAATGGAG AANCCTTGAA GTCATTTTGA GAATAAGATT TGCTAAAAGA TTTGGGGCTA AAACATGGTT ATTGGGAGAC ATTTCTGAAG ATATNCANGT AAATTANGGA ATGAATTCAT GGTTCTTTTG GGAATTCCTT TACGATNGCC AGCATANACT TCATGTGGGG ATANCAGCTA CCCTTGTA	60 120 180 218
(2) INFORMATION FOR SEQ ID NO:122:	•
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 171 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
TAGGGGTGTA TGCAACTGTA AGGACAAAAA TTGAGACTCA ACTGGCTTAA CCAATAAAGG CATTTGTTAG CTCATGGAAC AGGAAGTCGG ATGGTGGGGC ATCTTCAGTG CTGCATGAGT CACCACCCCG GCGGGGTCAT CTGTGCCACA GGTCCCTGTT GACAGTGCGG T	60 120 171
(2) INFORMATION FOR SEQ ID NO:123:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 76 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
TGTAGCGTGA AGACNACAGA ATGGTGTGTG CTGTGCTATC CAGGAACACA TTTATTATCA TTATCAANTA TTGTGT	60 76
(2) INFORMATION FOR SEQ ID NO:124:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 131 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	•
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens (vi) GEOVENCE DESCRIPTION GROUP NO 124	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:	
ACCTTTCCCC AAGGCCAATG TCCTGTGTGC TAACTGGCCG GCTGCAGGAC AGCTGCAATT CAATGTGCTG GGTCATATGG AGGGGAGGAG ACTCTAAAAT AGCCAATTTT ATTCTCTTGG TTAAGATTTG T	60 120 131
(2) INFORMATION FOR SEQ ID NO:125:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 432 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:	
ACTTTATCTA CTGGCTATGA AATAGATGGT GGAAAATTGC GTTACCAACT ATACCACTGG CTTGAAAAAG AGGTGATAGC TCTTCAGAGG ACTTGTGACT TTTGCTCAGA TGCTGAAGAA CTACAGTCTG CATTTGGCAG AAATGAAGAT GAATTTGGAT TAAATGAGGA TGCTGAAGAT TTGCCTCACC AAACAAAAGT GAAACAACTG AGAGAAAATT TTCAGGAAAA AAGACAGTGG CTCTTGAAGT ATCAGTCACT TTTGAGAATG TTTCTTAGTT ACTGCATACT TCATGGATCC CATGGTGGGG GTCTTGCATC TGTAAGAATG GAATTGATTT TGCTTTTGCA AGAATCTCAG CAGGAAACAT CAGAACCACT ATTTCTAGC CCTCTGTCAG AGCAAACCTC AGTGCCTCTC CTCTTTGCTT GT	60 120 180 240 300 360 420 432
(2) INFORMATION FOR SEQ ID NO:126:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 112 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA 	

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	٠
ACACAACTTG AATAGTAAAA TAGAAACTGA GCTGAAATTT CTAATTCACT TTCTAACCAT AGTAAGAATG ATATTTCCCC CCAGGGATCA CCAAATATTT ATAAAAATTT GT	60 112
(2) INFORMATION FOR SEQ ID NO:127:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
ACCACGAAAC CACAAACAAG ATGGAAGCAT CAATCCACTT GCCAAGCACA GCAG	54
(2) INFORMATION FOR SEQ ID NO:128:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 323 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
ACCTCATTAG TAATTGTTTT GTTGTTTCAT TTTTTCTAA TGTCTCCCCT CTACCAGCTC ACCTGAGATA ACAGAATGAA AATGGAAGGA CAGCCAGATT TCTCCTTTGC TCTCTGCTCA TCTCTCTCTGA AGCTCAGGTT ACCCATTTTG GGGACCCATT ATAGGCAATA AACACAGTTC CCAAAGCATT TGGACAGTTT CTTGTTGTGT TTTAGAATGG TTTTCCTTTT TCTTAGCCTT TCCCTGCAAA AGGCTCACTC AGTCCCTTGC TCCCTTCAGTG GACTGGGCTC CCCAGGGCCT AGGCCTGCTT CTTTCCATG TCC	60 120 180 240 300 323
(2) INFORMATION FOR SEQ ID NO:129:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 192 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:	
ACATACATGT GTGTATATTT TTAAATATCA CTTTTGTATC ACTCTGACTT TTTAGCATAC TGAAAACACA CTAACATAAT TTNTGTGAAC CATGATCAGA TACAACCCAA ATCATTCATC	60 120

TAGCACATTC ATCTGTGATA NAAAGATAGG TGAGTTTCAT GATAAACAAA GT	TTCCTTCACG	TTGGCCAATG	180 192
(2) INFORMATION FOR SEQ ID NO:130:			
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 362 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 			
(ii) MOLECULE TYPE: cDNA			
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>			
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13	0:		
CCCTTTTTTA TGGAATGAGT AGACTGTATG TTTGAANATT TATAATGACG CAACAAAAAG GTGCTGTTTA GTCCTATGGT GTTTCCATTG TGTTTTGCCG ATCTTCTGGC TAATCGTGGT TTCTGTATTC CATTTTGTTA ACGCCTGGTA GATGTAACCT CTTATTTAAA AGCTCTTATT TTGTGGTCAT TAAAATGGCA TGCAGCAGGA AGCACGTGTG GGTTGGTTGT AAAGCTCTTT GG	TCAGTTTATG ATCCTCCATG GCTANGAGGC ATTTATGTGC	CCCCTGACAA TTATTAGTAA TAACTTTATA AGCACTTTAT	60 120 180 240 300 360 362
(2) INFORMATION FOR SEQ ID NO:131:			
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 332 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear			
(ii) MOLECULE TYPE: cDNA			
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>		•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13	1:		
CTTTTTGAAA GATCGTGTCC ACTCCTGTGG ACATCTTGTT GTANGACTGG TATGGTTGCA GCTGTCCAGA TAAAAACATT GTTCTCCCAG GTTCGCCCTG CTGCTCCAAG TCTCAGCAGC TTCTGAACTA GATTAAGGCA GCTTGTAAAT CTGATGTGAT CTTCCATCTG TTATCACTGG AGAAAGCCCA GACTCCCCAN ATANAAGGAT TGGGTGAAGC TGGCGTTGTG GT	TGAAGAGCTC AGCCTCTTTT TTGGTTTATT	CAAAATGAGA AGGAGGCATC ATCCAACTAA	60 120 180 240 300 332
(2) INFORMATION FOR SEQ ID NO:132:			
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 322 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear			
(ii) MOLECULE TYPE: cDNA			

(vi) ORIGINAL SOURCE:
 (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:	
ACTTTTGCCA TTTTGTATAT ATAAACAATC TTGGGACATT CTCCTGAAAA CTAGGTGTCC AGTGGCTAAG AGAACTCGAT TTCAAGCAAT TCTGAAAGGA AAACCAGCAT GACACAGAAT CTCAAATTCC CAAACAGGGG CTCTGTGGGA AAAATGAGGG AGGACCTTTG TATCTCGGGT TTTAGCAAGT TAAAATGAAN ATGACAGGAA AGGCTTATTT ATCAACAAAG AGAAGAGTTG GGATGCTTCT AAAAAAAACT TTGGTAGAGA AAATAGGAAT GCTNAATCCT AGGGAAGCCT GTAACAATCT ACAATTGGTC CA	60 120 180 240 300 322
(2) INFORMATION FOR SEQ ID NO:133:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 278 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
ACAAGCCTTC ACAAGTTTAA CTAAATTGGG ATTAATCTTT CTGTANTTAT CTGCATAATT CTTGTTTTTC TTTCCATCTG GCTCCTGGGT TGACAATTTG TGGAAACAAC TCTATTGCTA CTATTTAAAA AAAATCACAA ATCTTTCCCT TTAAGCTATG TTNAATTCAA ACTATTCCTG CTATTCCTGT TTTGTCAAAG AAATTATATT TTTCAAAATA TGTNTATTTG TTTGATGGGT CCCACGAAAC ACTAATAAAA ACCACAGAGA CCAGCCTG	60 120 180 240 278
(2) INFORMATION FOR SEQ ID NO:134:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 121 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
GTTTANAAAA CTTGTTTAGC TCCATAGAGG AAAGAATGTT AAACTTTGTA TTTTAAAACA TGATTCTCTG AGGTTAAACT TGGTTTTCAA ATGTTATTTT TACTTGTATT TTGCTTTTGG T	60 120 121
(2) INFORMATION FOR SEQ ID NO:135:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 350 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

ACTTANAACC ATGCCTAG	GCA CATCAGAATC	CCTCAAAGAA	CATCAGTATA	ATCCTATACC	60
ATANCAAGTG GTGACTG	TT AAGCGTGCGA	CAAAGGTCAG	CTGGCACATT	ACTTGTGTGC	120
AAACTTGATA CTTTTGT	CT AAGTAGGAAC	TAGTATACAG	TNCCTAGGAN	TGGTACTCCA	180
GGGTGCCCCC CAACTCC	TGC AGCCGCTCCT	CTGTGCCAGN	CCCTGNAAGG	AACTTTCGCT	240
CCACCTCAAT CAAGCCC	rgg gccatgctac	CTGCAATTGG	CTGAACAAAC	GTTTGCTGAG	300
TTCCCAAGGA TGCAAAG	CCT GGTGCTCAAC	TCCTGGGGCG	TCAACTCAGT		350

(2) INFORMATION FOR SEQ ID NO:136:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 399 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single.
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

TGTACCGTGA	AGACGACAGA.	AGTTGCATGG	CAGGGACAGG	GCAGGGCCGA	GGCCAGGGTT	60
GCTGTGATTG	TATCCGAATA	NTCCTCGTGA	${\tt GAAAAGATAA}$	TGAGATGACG	TGAGCAGCCT	120
GCAGACTTGT	GTCTGCCTTC	AANAAGCCAG	ACAGGAAGGC	CCTGCCTGCC	TTGGCTCTGA	180
CCTGGCGGCC	AGCCAGCCAG	CCACAGGTGG	$\tt GCTTCTTCCT$	TTTGTGGTGA	CAACNCCAAG	240
AAAACTGCAG	AGGCCCAGGG	TCAGGTGTNA	GTGGGTANGT	GACCATAAAA	CACCAGGTGC	300
TCCCAGGAAC	CCGGGCAAAG	GCCATCCCCA	CCTACAGCCA	GCATGCCCAC	TGGCGTGATG	360
GGTGCAGANG	GATGAAGCAG	CCAGNTGTTC	TGCTGTGGT			399

- (2) INFORMATION FOR SEQ ID NO:137:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 165 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

ACTGGTGTGG	TNGGGGGTGA	TGCTGGTGGT	ANAAGTTGAN	GTGACTTCAN	GATGGTGTGT	60
GGAGGAAGTG	TGTGAACGTA	GGGATGTAGA	NGTTTTGGCC	GTGCTAAATG	AGCTTCGGGA	120
TTGGCTGGTC	CCACTGGTGG	TCACTGTCAT	TGGTGGGGTT	CCTGT		165

- (2) INFORMATION FOR SEQ ID NO:138:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 338 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

ACTCACTGGA	ATGCCACATT	CACAACAGAA	TCAGAGGTCT	GTGAAAACAT	TAATGGCTCC	60
TTAACTTCTC	CAGTAAGAAT	CAGGGACTTG	AAATGGAAAC	GTTAACAGCC	ACATGCCCAA	120
TGCTGGGCAG	TCTCCCATGC	CTTCCACAGT	GAAAGGGCTT	GAGAAAAATC	ACATCCAATG	180
TCATGTGTTT	CCAGCCACAC	CAAAAGGTGC	TTGGGGTGGA	GGGCTGGGGG	CATANANGGT	240
CANGCCTCAG	GAAGCCTCAA	GTTCCATTCA	GCTTTGCCAC	TGTACATTCC	CCATNTTTAA	300
AAAAACTGAT	GCCTTTTTTT	TTTTTTTTTG	TAAAATTC			338

- (2) INFORMATION FOR SEQ ID NO:139:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 382 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

GGGAATCTTG	GTTTTTGGCA	TCTGGTTTGC	CTATAGCCGA	GGCCACTTTG	ACAGAACAAA	60
GAAAGGGACT	TCGAGTAAGA	AGGTGATTTA	CAGCCAGCCT	AGTGCCCGAA	GTGAAGGAGA	120
ATTCAAACAG	ACCTCGTCAT	TCCTGGTGTG	AGCCTGGTCG	GCTCACCGCC	TATCATCTGC	180
ATTTGCCTTA	CTCAGGTGCT	ACCGGACTCT	GGCCCCTGAT	${\tt GTCTGTAGTT}$	TCACAGGATG	240
CCTTATTTGT	CTTCTACACC	CCACAGGGCC	CCCTACTTCT	TCGGATGTGT	TTTTAATAAT	300
GTCAGCTATG	TGCCCCATCC	TCCTTCATGC	CCTCCCTCCC	TTTCCTACCA	CTGCTGAGTG	360
GCCTGGAACT	TGTTTAAAGT	GT				382

- (2) INFORMATION FOR SEQ ID NO:140:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 200 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

ACCAAANCTT	CTTTCTGTTG	TGTTNGATTT	TACTATAGGG	GTTTNGCTTN	TTCTAAANAT	60
ACTTTTCATT	${\tt TAACANCTTT}$	TGTTAAGTGT	CAGGCTGCAC	TTTGCTCCAT	ANAATTATTG	120
TTTTCACATT	TCAACTTGTA	${\tt TGTGTTTGTC}$	TCTTANAGCA	TTGGTGAAAT	CACATATTTT	180
ATATTCAGCA	TAAAGGAGAA		•			200

- (2) INFORMATION FOR SEQ ID NO:141:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 335 base pairs
 - (B) TYPE: nucleic acid

·	
<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
(ii) MOLECULE TYPE: CDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:	
ACTTTATTT CAAAACACTC ATATGTTGCA AAAAACACAT AGAAAAATAA AGTTTGGTGG GGGTGCTGAC TAAACTTCAA GTCACAGACT TTTATGTGAC AGATTGGAGC AGGGTTTGTT ATGCATGTAG AGAACCCAAA CTAATTTATT AAACAGGATA GAAACAGGCT GTCTGGGTGA AATGGTTCTG AGAACCATCC AATTCACCTG TCAGATGCTG ATANACTAGC TCTTCAGATG TTTTTCTACC AGTTCAGAGA TNGGTTAATG ACTANTTCCA ATGGGGAAAA AGCAAGATGG ATTCACAAAC CAAGTAATTT TAAACAAAGA CACTT	60 120 180 240 300 335
(2) INFORMATION FOR SEQ ID NO:142:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 459 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
ACCAGGTTAA TATTGCCACA TATATCCTTT CCAATTGCGG GCTAAACAGA CGTGTATTTA GGGTTGTTTA AAGACAACCC AGCTTAATAT CAAGAGAAAT TGTGACCTTT CATGGAGTAT CTGATGGAGA AAACACTGAG TTTTGACAAA TCTTATTTTA TTCAGATAGC AGTCTGATCA CACATGGTCC AACAACACTC AAATAATAAA TCAAATATNA TCAGATGTTA AAGATTGGTC TTCAAACACTC ATAGCCAATG ATGCCCCGCT TGCCTATAAT CTCTCCGACA TAAAACCACA TCAACACCTC AGTGGCCACC AAACCATTCA GCACAGCTTC CTTAACTGTG AGCTGTTTGA AGCTACCAGT CTGAGCACTA TTGACTATNT TTTTCANGCT CTGAATAGCT CTAGGGATCT CAGCANGGGT GGGAGGAACC AGCTCAACCT TGGCGTANT	60 120 180 240 300 360 420 459
(2) INFORMATION FOR SEQ ID NO:143:	v
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 140 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
ACATTTCCTT CCACCAAGTC AGGACTCCTG GCTTCTGTGG GAGTTCTTAT CACCTGAGGG AAATCCAAAC AGTCTCTCCT AGAAAGGAAT AGTGTCACCA ACCCCACCCA TCTCCCTGAG ACCATCCGAC TTCCCTGTGT	60 120 140
(2) INFORMATION FOR SEQ ID NO:144:	

. •	(i)	(A) I (B) 7 (C) 8	LENGTH: TYPE: nue STRANDED	ACTERISTICS 164 base pa cleic acid NESS: singl : linear	irs			
((ii)	MOLECT	JLE TYPE	: cDNA				
ï	(vi)		NAL SOUR DRGANISM	CE: : Homo sapi	ens.			
,	(xi)	SEQUE	ICE DESC	RIPTION: SE	EQ ID NO:144	1:		
ATCT	ATACO	CA CTC	rcccttc	TGAAAACAAN		TGCCATCTTT CAATCACTTA ATGT		60 120 164
(2)	INFO	RMATIO	N FOR SE	Q ID NO:145	5:			
	(i)	(A) (B) (C)	LENGTH: TYPE: nu STRANDED	ACTERISTICS 303 base pa cleic acid NESS: singl : linear	airs			
	(ii)	MOLEC	ULE TYPE	: cDNA				
	(vi)		NAL SOUR ORGANISM	CE: : Homo sap:	iens			
	(xi)	SEQUE	NCE DESC	RIPTION: SI	EQ ID NO:14	5:		
ACTG GCAG GTAG	GAGG(GACA(GGGA(AAAA)	GT ATT GC TAT GT CCA	TATACCC CATAAGT TCCAAGT	AATTATCCCA CGGCCCAGGC GACAGGTCTA	TTCATTAACA ATCCAGATAC ATCAAAGGAG	TGCCCTCCTC TACCATTTGT GAAATGGAAC	TCCTAAACAA CTCAGGCTAT ATAAACTTCA ATAAGCCCAG TGATTACCAT	60 120 180 240 300 303
(2)	INFO	RMATIO	N FOR SE	Q ID NO:14	6 :			
	(i)	(A) (B) (C)	LENGTH: TYPE: nu STRANDEI	ACTERISTIC 327 base paceleic acid ONESS: sing 7: linear	airs			
	(ii)	MOLEC	ULE TYPE	E: cDNA				•
	(vi)		NAL SOUR ORGANISM	RCE: M: Homo sap	iens			
	(xi)	SEQUE	NCE DESC	CRIPTION: S	EQ ID NO:14	6:		
ACTO CCAA CCTO AGAO	GCCT GTCA BAACA CTTGC	TGG AGT TGG GCT GG GAC CCC CTG	GACTCAT GGGATTT GGTGGGA GGCCTGT	TGCTCTGGTT GTTTCCTTTC GGAGCCAGCA	GGTTGAGAGA CACATTCTAG TGGAACAAGC	GCTCCTTTGC CAACAATATC TGCCACTTTC	GCTCCATGAC CAACAGGCCT CTGGCCACTT TAAAGTAGCC GGATGGAATG	120 180 240

(2)	INFORMATION	FOR	SEQ	ID	NO:147:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 173 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

ACATTGTTTT	TTTGAGATAA	AGCATTGANA	GAGCTCTCCT	TAACGTGACA	CAATGGAAGG	60
ACTGGAACAC	ATACCCACAT	CTTTGTTCTG	AGGGATAATT	TTCTGATAAA	GTCTTGCTGT	120
ATATTCAAGC	ACATATGTTA	TATATTATTC	AGTTCCATGT	TTATAGCCTA	GTT	173

- (2) INFORMATION FOR SEQ ID NO:148:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 477 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

ACAACCACTT	TATCTCATCG	AATTTTTAAC	CCAAACTCAC	TCACTGTGCC	TTTCTATCCT	60
ATGGGATATA	TTATTTGATG	CTCCATTTCA	TCACACATAT	ATGAATAATA	CACTCATACT	120
GCCCTACTAC	CTGCTGCAAT	AATCACATTC	CCTTCCTGTC	CTGACCCTGA	AGCCATTGGG	180
GTGGTCCTAG	TGGCCATCAG	TCCANGCCTG	CACCTTGAGC	CCTTGAGCTC	CATTGCTCAC	240
NCCANCCCAC	CTCACCGACC	CCATCCTCTT	ACACAGCTAC	CTCCTTGCTC	TCTAACCCCA	300
TAGATTATNT	CCAAATTCAG	TCAATTAAGT	TACTATTAAC	ACTCTACCCG	ACATGTCCAG	360
CACCACTGGT	AAGCCTTCTC	CAGCCAACAC	ACACACACAC	ACACNCACAC	ACACACATAT	420
CCAGGCACAG	GCTACCTCAT	CTTCACAATC	ACCCCTTTAA	TTACCATGCT	ATGGTGG	477

- (2) INFORMATION FOR SEQ ID NO:149:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 207 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

ACAGTTGTAT TATAATATCA AGAAATAAAC TTGCAATGAG AGCATTTAAG AGGGAAGAAC 60
TAACGTATTT TAGAGAGCCA AGGAAGGTTT CTGTGGGGAG TGGGATGTAA GGTGGGGCCT 120

97 .

GATGATAAAT AAGAGTCAGC CAGGTAAGTG GGTGGTGTGG TATGGGCACA GTGAAGAACA TTTCAGGCAG AGGGAACAGC AGTGAAA	180 207
(2) INFORMATION FOR SEQ ID NO:150:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 111 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:	
ACCTTGATTT CATTGCTGCT CTGATGGAAA CCCAACTATC TAATTTAGCT AAAACATGGG CACTTAAATG TGGTCAGTGT TTGGACTTGT TAACTANTGG CATCTTTGGG T	60 111
(2) INFORMATION FOR SEQ ID NO:151:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens</pre>	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:	
AGCGCGGCAG GTCATATTGA ACATTCCAGA TACCTATCAT TACTCGATGC TGTTGATAAC AGCAAGATGG CTTTGAACTC AGGGTCACCA CCAGCTATTG GACCTTACTA TGAAAACCAT GGATACCAAC CGGAAAACCC CTATCCCGCA CAGCCCACTG TGGTCCCCAC TGTCTACGAG GTGCATCCGG CTCAGT	60 120 180 196
(2) INFORMATION FOR SEQ ID NO:152:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:	
ACAGCACTTT CACATGTAAG AAGGGAGAAA TTCCTAAATG TAGGAGAAAG ATAACAGAAC CTTCCCCTTT TCATCTAGTG GTGGAAACCT GATGCTTTAT GTTGACAGGA ATAGAACCAG GAGGGAGTTT GT	60 120 132
(2) INFORMATION FOR SEQ ID NO:153:	

/ A CROUDING CUARA CORREST CO.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 285 base pairs	
(B) TYPE: nucleic acid	,
(C) STRANDEDNESS: single	
_	
(D) TOPOLOGY: linear	
·	
(ii) MOLECULE TYPE: cDNA	
·	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:	
CAANACCCA NGANAGGCCA CTGGCCGTGG TGTCATGGCC TCCAAACATG AAAGTGTCAG	60
TTCTGCTCT TATGTCCTCA TCTGACAACT CTTTACCATT TTTATCCTCG CTCAGCAGGA	
	120
CACATCAAT AAAGTCCAAA GTCTTGGACT TGGCCTTGGC TTGGAGGAAG TCATCAACAC	180
CTGGCTAGT GAGGGTGCGG.CGCCGCTCCT GGATGACGGC ATCTGTGAAG TCGTGCACCA	240
PCTGCAGGC CCTGTGGAAG CGCCGTCCAC ACGGAGTNAG GAATT	285
2) INFORMATION FOR SEQ ID NO:154:	
INTOMMITTON FOR SEQ ID NO.134.	
All and the second	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 333 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(D) 10POLOGY: IIRear	
	-
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:	
CCACAGTCC TGTTGGGCCA GGGCTTCATG ACCCTTTCTG TGAAAAGCCA TATTATCACC	60
CCCCAAATT TTTCCTTAAA TATCTTTAAC TGAAGGGGTC AGCCTCTTGA CTGCAAAGAC	120
·	
CTAAGCCGG TTACACAGCT AACTCCCACT GGCCCTGATT TGTGAAATTG CTGCTGCCTG	180
TTGGCACAG GAGTCGAAGG TGTTCAGCTC CCCTCCTCCG TGGAACGAGA CTCTGATTTG	240
GTTTCACAA ATTCTCGGGC CACCTCGTCA TTGCTCCTCT GAAATAAAAT CCGGAGAATG	300
TCAGGCCTG TCTCATCCAT ATGGATCTTC CGG	333
	555
2) INFORMATION FOR SEQ ID NO:155:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 308 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
. , , , , , , , , , , , , , , , , , , ,	
(wi) ODIGINAL GOUDGE	
(vi) ORIGINAL SOURCE:	
(A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:	
ACTICALLER ATTAILS AGAIN AND ACTION OF THE STREET	
ACTGGAAATA ATAAAACCCA CATCACAGTG TTGTGTCAAA GATCATCAGG GCATGGATGG	. 60
JAAAGTGCTT. TGGGAACTGT AAAGTGCCTA ACACATGATC GATGATTTTT GTTATAATAT	120
TTGAATCACG GTGCATACAA ACTCTCCTGC CTGCTCCTCC TGGGCCCCAG CCCCAGCCCC	180
ATCACAGCTC ACTGCTCTGT TCATCCAGGC CCAGCATGTA GTGGCTGATT CTTCTTGGCT	240

GCTTTTAGCC TCCANAAGTT TCTCTGAAGC CAACCAAACC TCTANGTGTA AGGCATGCTG GCCCTGGT	300 308
(2) INFORMATION FOR SEQ ID NO:156:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 295 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:	
ACCTTGCTCG GTGCTTGGAA CATATTAGGA ACTCAAAATA TGAGATGATA ACAGTGCCTA TTATTGATTA CTGAGAGAC TGTTAGACAT TTAGTTGAAG ATTTTCTACA CAGGAACTGA GAATAGGAGA TTATGTTTGG CCCTCATATT CTCTCCTATC CTCCTTGCCT CATTCTATGT CTAATATATT CTCAATCAAA TAAGGTTAGC ATAATCAGGA AATCGACCAA ATACCAATAT AAAACCAGAT GTCTATCCTT AAGATTTCA AATAGAAAAC AAATTAACAG ACTAT	60 120 180 240 295
(2) INFORMATION FOR SEQ ID NO:157:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 126 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:	
ACAAGTTTAA ATAGTGCTGT CACTGTGCAT GTGCTGAAAT GTGAAATCCA CCACATTTCT GAAGAGCAAA ACAAATTCTG TCATGTAATC TCTATCTTGG GTCGTGGGTA TATCTGTCCC CTTAGT	60 120 126
(2) INFORMATION FOR SEQ ID NO:158:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 442 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:	
ACCCACTGGT CTTGGAAACA CCCATCCTTA ATACGATGAT TTTTCTGTCG TGTGAAAATG AANCCAGCAG GCTGCCCCTA GTCAGTCCTT CCTTCCAGAG AAAAAGAGAT TTGAGAAAGT GCCTGGGTAA TTCACCATTA ATTTCCTCCC CCAAACTCTC TGAGTCTTCC CTTAATATTT	60 120 180

CTGGTGGTTC	TGACCAAAGC	AGGTCATGGT	TTGTTGAGCA	TTTGGGATCC	CAGTGAAGTA	240
NATGTTTGTA	${\tt GCCTTGCATA}$	CTTAGCCCTT	CCCACGCACA	AACGGAGTGG	CAGAGTGGTG	300
CCAACCCTGT	${\tt TTTCCCAGTC}$	CACGTAGACA	GATTCACAGT	GCGGAATTCT	GGAAGCTGGA	360
NACAGACGGG	${\tt CTCTTTGCAG}$	AGCCGGGACT	CTGAGANGGA	CATGAGGGCC	TCTGCCTCTG	420
TGTTCATTCT	CTGATGTCCT	GT				442

- (2) INFORMATION FOR SEQ ID NO:159:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 498 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

ACTTCCAGGT	AACGTTGTTG	${\tt TTTCCGTTGA}$	$\tt GCCTGAACTG$	ATGGGTGACG	TTGTAGGTTC	60
TCCAACAAGA	ACTGAGGTTG	CAGAGCGGGT	${\tt AGGGAAGAGT}$	GCTGTTCCAG	TTGCACCTGG	120
GCTGCTGTGG	ACTGTTGTTG	ATTCCTCACT	ACGGCCCAAG	GTTGTGGAAC	TGGCANAAAG	180
GTGTGTTGTT	GGANTTGAGC	TCGGGCGGCT	${\tt GTGGTAGGTT}$	GTGGGCTCTT	CAACAGGGGC	240
TGCTGTGGTG	CCGGGANGTG	AANGTGTTGT	GTCACTTGAG	CTTGGCCAGC	TCTGGAAAGT	300
ANTANATTCT	TCCTGAAGGC	CAGCGCTTGT	GGAGCTGGCA	NGGGTCANTG	TTGTGTGTAA	360
CGAACCAGTG	CTGCTGTGGG	TGGGTGTANA	TCCTCCACAA	AGCCTGAAGT	TATGGTGTCN	420
TCAGGTAANA	ATGTGGTTTC	AGTGTCCCTG	GGCNGCTGTG	GAAGGTTGTA	NATTGTCACC	480
AAGGGAATAA	GCTGTGGT					498

- (2) INFORMATION FOR SEQ ID NO:160:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 380 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

ACCTGCATCC	AGCTTCCCTG	CCAAACTCAC	AAGGAGACAT	${\tt CAACCTCTAG}$	ACAGGGAAAC	60
AGCTTCAGGA	TACTTCCAGG	AGACAGAGCC	ACCAGCAGCA	AAACAAATAT	TCCCATGCCT	120
GGAGCATGGC	ATAGAGGAAG	CTGANAAATG	TGGGGTCTGA	${\tt GGAAGCCATT}$	TGAGTCTGGC	180
CACTAGACAT	CTCATCAGCC	ACTTGTGTGA	AGAGATGCCC	CATGACCCCA	GATGCCTCTC	240
CCACCCTTAC	CTCCATCTCA	CACACTTGAG	CTTTCCACTC	TGTATAATTC	TAACATCCTG	300
GAGAAAAATG	GCAGTTTGAC	CGAACCTGTT	CACAACGGTA	GAGGCTGATT	TCTAACGAAA	360
CTTGTAGAAT	GAAGCCTGGA					380

- (2) INFORMATION FOR SEQ ID NO:161:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 114 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA	•
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:161:	
ACTCCACATC CCCTCTGAGC AGGCGGTTGT CGTTCAAGGT GTATTTGGCC TTGCCTGTCA CACTGTCCAC TGGCCCCTTA TCCACTTGGT GCTTAATCCC TCGAAAGAGC ATGT	60 114
(2) INFORMATION FOR SEQ ID NO:162:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 177 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:	
ACTTTCTGAA TCGAATCAAA TGATACTTAG TGTAGTTTTA ATATCCTCAT ATATATCAAA GTTTTACTAC TCTGATAATT TTGTAAACCA GGTAACCAGA ACATCCAGTC ATACAGCTTT TGGTGATATA TAACTTGGCA ATAACCCAGT CTGGTGATAC ATAAAACTAC TCACTGT	60 120 177
(2) INFORMATION FOR SEQ ID NO:163:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 137 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:	
CATTTATACA GACAGGCGTG AAGACATTCA CGACAAAAAC GCGAAATTCT ATCCCGTGAC CANAGAAGGC AGCTACGGCT ACTCCTACAT CCTGGCGTGG GTGGCCTTCG CCTGCACCTT CATCAGCGGC ATGATGT	60 120 137
(2) INFORMATION FOR SEQ ID NO:164:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 469 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: CDNA	

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

CTTATCACAA	${\tt TGAATGTTCT}$	CCTGGGCAGC	GTTGTGATCT	TTGCCACCTT.	CGTGACTTTA	60
TGCAATGCAT	CATGCTATTT	CATACCTAAT	GAGGGAGTTC	CAGGAGATTC	AACCAGGAAA	120
TGCATGGATC	TCAAAGGAAA	CAAACACCCA	ATAAACTCGG	AGTGGCAGAC	TGACAACTGT	180
GAGACATGCA	CTTGCTACGA	AACAGAAATT	TCATGTTGCA	CCCTTGTTTC	TACACCTGTG	240
GGTTATGACA	AAGACAACTG	CCAAAGAATC	TTCAAGAAGG	AGGACTGCAA	GTATATCGTG	300
GTGGAGAAGA	AGGACCCAAA	AAAGACCTGT	TCTGTCAGTG	AATGGATAAT	CTAATGTGCT	360
TCTAGTAGGC	ACAGGGCTCC	CAGGCCAGGC	CTCATTCTCC	TCTGGCCTCT	AATAGTCAAT	420
GATTGTGTAG	CCATGCCTAT	CAGTAAAAAG	ATNTTTGAGC	AAACACTTT		469

(2) INFORMATION FOR SEQ ID NO:165:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 195 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

ACAGTTTTTT	ATANATATCG	ACATTGCCGG	CACTTGTGTT	CAGTTTCATA	AAGCTGGTGG	60
ATCCGCTGTC	ATCCACTATT	CCTTGGCTAG	AGTAAAAATT	ATTCTTATAG	CCCATGTCCC	120
TGCAGGCCGC	CCGCCCGTAG	TTCTCGTTCC	${\bf AGTCGTCTTG}$	GCACACAGGG	TGCCAGGACT	180
TCCTCTGAGA	TGAGT		•			195

- (2) INFORMATION FOR SEQ ID NO:166:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 383 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

ACATCTTAGT	AGTGTGGCAC	-ATCAGGGGGC	CATCAGGGTC	ACAGTCACTC	ATAGCCTCGC	60
CGAGGTCGGA	GTCCACACCA	CCGGTGTAGG	TGTGCTCAAT	CTTGGGCTTG	GCGCCCACCT	120
TTGGAGAAGG	GATATGCTGC	ACACACATGT	CCACAAAGCC	TGTGAACTCG	CCAAAGAATT	180
TTTGCAGACC	AGCCTGAGCA	AGGGGCGGAT	${\tt GTTCAGCTTC}$	AGCTCCTCCT	TCGTCAGGTG	240
GATGCCAACC	TCGTCTANGG	TCCGTGGGAA	GCTGGTGTCC	ACNTCACCTA	CAACCTGGGC	. 300
GANGATCTTA	TAAAGAGGCT	CCNAGATAAA	CTCCACGAAA	CTTCTCTGGG	AGCTGCTAGT	360
NGGGGCCTTT	TTGGTGAACT	TTC				383

- (2) INFORMATION FOR SEQ ID NO:167:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 247 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

300

360

420

431

(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:	
ACAGAGCCAG ACCTTGGCCA TAAATGAANC AGAGATTAAG ACTAAACCCC AAGTCGANAT TGGAGCAGAA ACTGGAGCAA GAAGTGGGCC TGGGGCTGAA GTAGAGACCA AGGCCACTGC TATANCCATA CACAGAGCCA ACTCTCAGGC CAAGGCNATG GTTGGGGCAG ANCCAGAGAC TCAATCTGAN TCCAAAGTGG TGGCTGGAAC ACTGGTCATG ACANAGGCAG TGACTCTGAC TGANGTC	60 120 180 240 247
(2) INFORMATION FOR SEQ ID NO:168:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 273 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:	
ACTTCTAAGT TTTCTAGAAG TGGAAGGATT GTANTCATCC TGAAAATGGG TTTACTTCAA AATCCCTCAN CCTTGTTCTT CACNACTGTC TATACTGANA GTGTCATGTT TCCACAAAGG GCTGACACCT GAGCCTGNAT TTTCACTCAT CCCTGAGAAG CCCTTTCCAG TAGGGTGGGC AATTCCCAAC TTCCTTGCCA CAAGCTTCCC AGGCTTTCTC CCCTGGAAAA CTCCAGCTTG AGTCCCAGAT ACACTCATGG GCTGCCCTGG GCA	60 120 180 240 273
(2) INFORMATION FOR SEQ ID NO:169:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 431 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE: (A) ORGANISM: Homo sapiens	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:	
ACAGCCTTGG CTTCCCCAAA CTCCACAGTC TCAGTGCAGA AAGATCATCT TCCAGCAGTC AGCTCAGACC AGGGTCAAAG GATGTGACAT CAACAGTTTC TGGTTTCAGA ACAGGTTCTA CTACTGTCAA ATGACCCCCC ATACTTCCTC AAAGGCTGTG GTAAGTTTTG CACAGGTGAG	60 120 180

GGCAGCAGAA AGGGGGTANT TACTGATGGA CACCATCTTC TCTGTATACT CCACACTGAC

CTTGCCATGG GCAAAGGCCC CTACCACAAA AACAATAGGA TCACTGCTGG GCACCAGCTC

ACGCACATCA CTGACAACCG GGATGGAAAA AGAANTGCCA ACTTTCATAC ATCCAACTGG

AAAGTGATCT GATACTGGAT TCTTAATTAC CTTCAAAAGC TTCTGGGGGC CATCAGCTGC

(2) INFORMATION FOR SEQ ID NO:170:

TCGAACACTG A

(i)	SEQUENCE	CHARACTERISTICS	:
-----	----------	-----------------	---

- (A) LENGTH: 266 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

ACCTGTGGGC	TGGGCTGTTA	TGCCTGTGCC	GGCTGCTGAA	AGGGAGTTCA	GAGGTGGAGC	60
TCAAGGAGCT	CTGCAGGCAT	TTTGCCAANC	CTCTCCANAG	CANAGGGAGC	AACCTACACT	120
CCCCGCTAGA	AAGACACCAG	ATTGGAGTCC	TGGGAGGGG	AGTTGGGGTG	GGCATTTGAT	180
GTATACTTGT	CACCTGAATG	AANGAGCCAG	AGAGGAANGA	GACGAANATG	ANATTGGCCT	240
TCAAAGCTAG	GGGTCTGGCA	GGTGGA				266

(2) INFORMATION FOR SEQ ID NO:171:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1248 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

GGCAGCCAAA	TCATAAACGG	CGAGGACTGC	AGCCCGCACT	CGCAGCCCTG	GCAGGCGGCA	60
$\mathtt{CTGGTCATGG}$	AAAACGAATT	GTTCTGCTCG	GGCGTCCTGG	TGCATCCGCA	GTGGGTGCTG	120
${\tt TCAGCCGCAC}$	ACTGTTTCCA	GAAGTGAGTG	CAGAGCTCCT	ACACCATCGG	GCTGGGCCTG	180
${\tt CACAGTCTTG}$	AGGCCGACCA	AGAGCCAGGG	AGCCAGATGG	TGGAGGCCAG	CCTCTCCGTA	240
CGGCACCCAG	AGTACAACAG	ACCCTTGCTC	GCTAACGACC	TCATGCTCAT	CAAGTTGGAC	300
${\tt GAATCCGTGT}$	CCGAGTCTGA	CACCATCCGG	AGCATCAGCA	${\tt TTGCTTCGCA}$	GTGCCCTACC	360
GCGGGGAACT	CTTGCCTCGT	TTCTGGCTGG	GGTCTGCTGG	CGAACGGCAG	AATGCCTACC	420
GTGCTGCAGT	GCGTGAACGT	GTCGGTGGTG	TCTGAGGAGG	TCTGCAGTAA	GCTCTATGAC	480
CCGCTGTACC	ACCCCAGCAT	GTTCTGCGCC	$\tt GGCGGAGGGC$	AAGACCAGAA	GGACTCCTGC	540
AACGGTGACT	CTGGGGGGCC	CCTGATCTGC	AACGGGTACT	TGCAGGGCCT	TGTGTCTTTC	600
GGAAAAGCCC	CGTGTGGCCA	AGTTGGCGTG	CCAGGTGTCT	ACACCAACCT	CTGCAAATTC	660
ACTGAGTGGA	TAGAGAAAAC	CGTCCAGGCC	${\tt AGTTAACTCT}$	GGGGACTGGG	AACCCATGAA	720
ATTGACCCCC	AAATACATCC	TGCGGAAGGA	ATTCAGGAAT	ATCTGTTCCC	AGCCCCTCCT	780
CCCTCAGGCC	CAGGAGTCCA	GGCCCCCAGC	CCCTCCTCCC	TCAAACCAAG	GGTACAGATC	840
CCCAGCCCCT	CCTCCCTCAG	ACCCAGGAGT	CCAGACCCCC	CAGCCCCTCC	TCCCTCAGAC	900
CCAGGAGTCC	AGCCCCTCCT	CCCTCAGACC	CAGGAGTCCA	GACCCCCCAG	CCCCTCCTCC	960
CTCAGACCCA	GGGGTCCAGG	CCCCCAACCC	CTCCTCCCTC	AGACTCAGAG	GTCCAAGCCC	1020
CCAACCCNTC	ATTCCCCAGA	CCCAGAGGTC	CAGGTCCCAG	CCCCTCNTCC	CTCAGACCCA	1080
GCGGTCCAAT	GCCACCTAGA	CTNTCCCTGT	ACACAGTGCC	CCCTTGTGGC	ACGTTGACCC	1140
AACCTTACCA	GTTGGTTTTT	CATTTTTNGT	CCCTTTCCCC	TAGATCCAGA	AATAAAGTTT	1200
AAGAGAAGNG	САААААААА	AAAAAAAAA	AAAAAAAAA	AAAAAAA	•	1248

(2) INFORMATION FOR SEQ ID NO:172:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 159 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

Met Val Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro 1 5 10 15

Leu Leu Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser 20 25 30

Glu Ser Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr
35 40 45

Ala Gly Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Gly 50 55 60

Arg Met Pro Thr Val Leu Gln Cys Val Asn Val Ser Val Val Ser Glu 65 70 75 80

Glu Val Cys Ser Lys Leu Tyr Asp Pro Leu Tyr His Pro Ser Met Phe 85 90 95

Cys Ala Gly Gly Gln Xaa Gln Xaa Asp Ser Cys Asn Gly Asp Ser 100 105 110

Gly Gly Pro Leu Ile Cys Asn Gly Tyr Leu Gln Gly Leu Val Ser Phe 115 120 125

Gly Lys Ala Pro Cys Gly Gln Val Gly Val Pro Gly Val Tyr Thr Asn 130 135 140

Leu Cys Lys Phe Thr Glu Trp Ile Glu Lys Thr Val Gln Ala Ser 145 150 155

- (2) INFORMATION FOR SEQ ID NO:173:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1265 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

GGCAGCCCGC ACTCGCAGCC CTGGCAGGCG GCACTGGTCA TGGAAAACGA ATTGTTCTGC 60
TCGGGCGTCC TGGTGCATCC GCAGTGGGTG CTGTCAGCCG CACACTGTTT CCAGAACTCC 120
TACACCATCG GGCTGGGCCT GCACAGTCTT GAGGCCGACC AAGAGCCAGG GAGCCAGATG 180
GTGGAGGCCA GCCTCTCCGT ACGGCACCCA GAGTACAACA GACCCTTGCT CGCTAACGAC 240

BNSDOCID: <WO_____9837093A2_I_>

CTCATGCTCA	TCAAGTTGGA	CGAATCCGTG	TCCGAGTCTG	ACACCATCCG	GAGCATCAGC	300
ATTGCTTCGC	AGTGCCCTAC	CGCGGGGAAC	${\tt TCTTGCCTCG}$	TTTCTGGCTG	GGGTCTGCTG	360
GCGAACGGTG	AGCTCACGGG	TGTGTGTCTG	CCCTCTTCAA	GGAGGTCCTC	TGCCCAGTCG	420
CGGGGGCTGA	CCCAGAGCTC	TGCGTCCCAG	GCAGAATGCC	TACCGTGCTG	CAGTGCGTGA	. 480
ACGTGTCGGT	${\tt GGTGTCTGAG}$	GAGGTCTGCA	GTAAGCTCTA	TGACCCGCTG	TACCACCCCA	540
GCATGTTCTG	CGCCGGCGGA	GGGCAAGACC	AGAAGGACTC	CTGCAACGGT	GACTCTGGGG	600
GGCCCCTGAT	CTGCAACGGG	TACTTGCAGG	GCCTTGTGTC	TTTCGGAAAA	GCCCCGTGTG	660
GCCAAGTTGG	CGTGCCAGGT	GTCTACACCA	ACCTCTGCAA	ATTCACTGAG	TGGATAGAGA	720
AAACCGTCCA	GGCCAGTTAA	CTCTGGGGAC	TGGGAACCCA	TGAAATTGAC	CCCCAAATAC	780
ATCCTGCGGA	AGGAATTCAG	GAATATCTGT	TCCCAGCCCC	TCCTCCCTCA	GGCCCAGGAG	840
TCCAGGCCCC	CAGCCCCTCC	TCCCTCAAAC	CAAGGGTACA	GATCCCCAGC	CCCTCCTCCC	900
TCAGACCCAG	GAGTCCAGAC	CCCCCAGCCC	CTCCTCCCTC	AGACCCAGGA	GTCCAGCCCC	960
TCCTCCNTCA	GACCCAGGAG	TCCAGACCCC	CCAGCCCCTC	CTCCCTCAGA	CCCAGGGGTT	1020
GAGGCCCCCA	ACCCCTCCTC	CTTCAGAGTC	AGAGGTCCAA	GCCCCCAACC	CCTCGTTCCC	1080
CAGACCCAGA	GGTNNAGGTC	CCAGCCCCTC	TTCCNTCAGA	CCCAGNGGTC	CAATGCCACC	1140
TAGATTTTCC	CTGNACACAG	TGCCCCCTTG	TGGNANGTTG	ACCCAACCTT	ACCAGTTGGT	1200
TTTTCATTTT	TNGTCCCTTT	CCCCTAGATC	CAGAAATAAA	GTTTAAGAGA	NGNGCAAAAA	1260
AAAA						1265

(2) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1459 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

GGTCAGCCGC	ACACTGTTTC	CAGAAGTGAG	TGCAGAGCTC	CTACACCATC	GGGCTGGGCC	60
TGCACAGTCT	TGAGGCCGAC	CAAGAGCCAG	GGAGCCAGAT	GGTGGAGGCC	AGCCTCTCCG	120
TACGGCACCC	AGAGTACAAC	AGACCCTTGC	TCGCTAACGA	CCTCATGCTC	ATCAAGTTGG	180
${\tt ACGAATCCGT}$	GTCCGAGTCT	GACACCATCC	GGAGCATCAG	CATTGCTTCG	CAGTGCCCTA	240
CCGCGGGGAA	CTCTTGCCTC	GTTTCTGGCT	GGGGTCTGCT	GGCGAACGGT	GAGCTCACGG	300
GTGTGTGTCT	GCCCTCTTCA	AGGAGGTCCT	CTGCCCAGTC	GCGGGGGCTG	ACCCAGAGCT	360
CTGCGTCCCA	GGCAGAATGC	CTACCGTGCT	GCAGTGCGTG	AACGTGTCGG	TGGTGTCTGA	420
NGAGGTCTGC	ANTAAGCTCT	ATGACCCGCT	GTACCACCCC	ANCATGTTCT	GCGCCGGCGG	480
AGGGCAAGAC	CAGAAGGACT	CCTGCAACGT	GAGAGAGGGG	AAAGGGGAGG	GCAGGCGACT	540
CAGGGAAGGG	TGGAGAAGGG	GGAGACAGAG	ACACACAGGG	CCGCATGGCG	AGATGCAGAG	600
ATGGAGAGAC	ACACAGGGAG	ACAGTGACAA	CTAGAGAGAG	AAACTGAGAG	AAACAGAGAA	660
ATAAACACAG	GAATAAAGAG	AAGCAAAGGA	AGAGAGAAAC	AGAAACAGAC	ATGGGGAGGC	720
AGAAACACAC	ACACATAGAA	ATGCAGTTGA	CCTTCCAACA	GCATGGGGCC	TGAGGGCGGT	780
GACCTCCACC	CAATAGAAAA	TCCTCTTATA	ACTTTTGACT	CCCCAAAAAC	CTGACTAGAA	840
ATAGCCTACT	GTTGACGGGG	AGCCTTACCA	ATAACATAAA	TAGTCGATTT	ATGCATACGT	900
TTTATGCATT	CATGATATAC	CTTTGTTGGA	ATTTTTTGAT	ATTTCTAAGC	TACACAGTTC	960
GTCTGTGAAT	TTTTTTAAAT	TGTTGCAACT	CTCCTAAAAT	TTTTCTGATG	TGTTTATTGA	1020
AAAAATCCAA	$\cdot \texttt{GTATAAGTGG}$	ACTTGTGCAT	TCAAACCAGG	GTTGTTCAAG	GGTCAACTGT	1080
GTACCCAGAG	GGAAACAGTG	ACACAGATTC	ATAGAGGTGA	AACACGAAGA	GAAACAGGAA	1140
AAATCAAGAC	TCTACAAAGA	GGCTGGGCAG	GGTGGCTCAT	GCCTGTAATC	CCAGCACTTT	1200
GGGAGGCGAG	GCAGGCAGAT	CACTTGAGGT	AAGGAGTTCA	AGACCAGCCT	GGCCAAAATG	1260
GTGAAATCCT	GTCTGTACTA	AAAATACAAA	AGTTAGCTGG	ATATGGTGGC	AGGCGCCTGT	1320
AATCCCAGCT	ACTTGGGAGG	CTGAGGCAGG	AGAATTGCTT	GAATATGGGA	GGCAGAGGTT	1380
GAAGTGAGTT	GAGATCACAC	CACTATACTC	CAGCTGGGGC	AACAGAGTAA	GACTCTGTCT	1440
CAAAAAAAAA	AAAAAAAA		,		•	1459

(2) INFORMATION FOR SEQ ID NO:175:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1167 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GCGCAGCCCT GGCAGGCGGC	ACTGGTCATG	GAAAACGAAT	TGTTCTGCTC	GGGCGTCCTG	60
GTGCATCCGC AGTGGGTGCT	GTCAGCCGCA	CACTGTTTCC	AGAACTCCTA	CACCATCGGG	120
CTGGGCCTGC ACAGTCTTGA	GGCCGACCÁA	GAGCCAGGGA	GCCAGAŤGGT	GGAGGCCAGC	180
CTCTCCGTAC GGCACCCAGA	GTACAACAGA	CTCTTGCTCG	CTAACGACCT	CATGCTCATC	240
AAGTTGGACG AATCCGTGTC	CGAGTCTGAC	ACCATCCGGA	GCATCAGCAT	TGCTTCGCAG	300
TGCCCTACCG CGGGGAACTC	TTGCCTCGTN	TCTGGCTGGG	GTCTGCTGGC	GAACGGCAGA	360
ATGCCTACCG TGCTGCACTG	CGTGAACGTG	TCGGTGGTGT	CTGAGGANGT	CTGCAGTAAG	420
CTCTATGACC CGCTGTACCA	CCCCAGCATG	TTCTGCGCCG	GCGGAGGGCA	AGACCAGAAG	480
GACTCCTGCA ACGGTGACTC	TGGGGGGCCC	CTGATCTGCA	ACGGGTACTT	GCAGGGCCTT	540
GTGTCTTTCG GAAAAGCCCC	GTGTGGCCAA	CTTGGCGTGC	CAGGTGTCTA	CACCAACCTC	600
TGCAAATTCA CTGAGTGGAT	AGAGAAAACC	GTCCAGNCCA	GTTAACTCTG	GGGACTGGGA	660
ACCCATGAAA TTGACCCCCA	AATACATCCT	GCGGAANGAA	TTCAGGAATA	TCTGTTCCCA	720
GCCCCTCCTC CCTCAGGCCC	AGGAGTCCAG	GCCCCCAGCC	CCTCCTCCCT	CAAACCAAGG	780
GTACAGATCC CCAGCCCCTC	CTCCCTCAGA	CCCAGGAGTC	CAGACCCCCC	AGCCCCTCNT	840
CCNTCAGACC CAGGAGTCCA	GCCCCTCCTC	CNTCAGACGC	AGGAGTCCAG	ACCCCCAGC	900
CCNTCNTCCG TCAGACCCAG	GGGTGCAGGC	CCCCAACCCC	TCNTCCNTCA	GAGTCAGAGG	960
TCCAAGCCCC CAACCCCTCG	. TTCCCCAGAC	CCAGAGGTNC	AGGTCCCAGC	CCCTCCTCCC	1020
TCAGACCCAG CGGTCCAATC	CCACCTAGAN	TNTCCCTGTA	CACAGTGCCC	CCTTGTGGCA	1080
NGTTGACCCA ACCTTACCAC	TTGGTTTTTC	ATTTTTTGTC	CCTTTCCCCT	AGATCCAGAA	1140
ATAAAGTNTA AGAGAAGCGC	AAAAAA !		•		1167

- (2) INFORMATION FOR SEQ ID NO:176:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 205 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp 1 5 10 15

Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu 20 25 30 .

Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val 35 40 45

Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Leu Leu 50 55 60

(2) INFORMATION FOR SEQ ID NO:177:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1119 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

GCGCACTCGC AGCCCTGGC	GGCGGCACTG	GTCATGGAAA	ACGAATTGTT	CTGCTCGGGC	60
GTCCTGGTGC ATCCGCAGTC	GGTGCTGTCA	GCCGCACACT	${\tt GTTTCCAGAA}$	CTCCTACACC	120
ATCGGGCTGG GCCTGCACAC	TCTTGAGGCC	GACCAAGAGC	CAGGGAGCCA	GATGGTGGAG	180
GCCAGCCTCT CCGTACGGC	CCCAGAGTAC	AACAGACCCT	${\tt TGCTCGCTAA}$	CGACCTCATG	240
CTCATCAAGT TGGACGAATO	CGTGTCCGAG	TCTGACACCA	TCCGGAGCAT	CAGCATTGCT	300
TCGCAGTGCC CTACCGCGG	GAACTCTTGC	CTCGTTTCTG	$\tt GCTGGGGTCT$	GCTGGCGAAC	360
GATGCTGTGA TTGCCATCC	A GTCCCAGACT	GTGGGAGGCT	$\tt GGGAGTGTGA$	GAAGCTTTCC	420
CAACCCTGGC AGGGTTGTAG	CATTTCGGCA	ACTTCCAGTG	CAAGGACGTC	CTGCTGCATC	480
CTCACTGGGT GCTCACTACT	GCTCACTGCA	TCACCCGGAA	CACTGTGATC	AACTAGCCAG	540
CACCATAGTT CTCCGAAGT	C AGACTATCAT	GATTACTGTG	TTGACTGTGC	TGTCTATTGT	600
ACTAACCATG CCGATGTTT	A GGTGAAATTA	GCGTCACTTG	GCCTCAACCA	TCTTGGTATC	• 660
CAGTTATCCT CACTGAATT	AGATTTCCTG	CTTCAGTGTC	AGCCATTCCC	ACATAATTTC	720
TGACCTACAG AGGTGAGGG	A TCATATAGCT	CTTCAAGGAT	GCTGGTACTC	CCCTCACAAA	780
TTCATTTCTC CTGTTGTAG	r gaaaggtgcg	CCCTCTGGAG	CCTCCCAGGG	TGGGTGTGCA	840
GGTCACAATG ATGAATGTA	GATCGTGTTC	CCATTACCCA	AAGCCTTTAA	ATCCCTCATG	900
CTCAGTACAC CAGGGCAGG	r ctagcatttc	TTCATTTAGT	GTATGCTGTC	CATTCATGCA	960
ACCACCTCAG GACTCCTGG	A TTCTCTGCCT	AGTTGAGCTC	CTGCATGCTG	CCTCCTTGGG	1020
GAGGTGAGGG AGAGGGCCC	A TGGTTCAATG	GGATCTGTGC	AGTTGTAACA	CATTAGGTGC	1080

TTAATAAACA GAAGCTGTGA TGTTAAAAAA AAAAAAAAA

1119

- (2) INFORMATION FOR SEQ ID NO:178:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

Met Glu Asn Glu Leu Phe Cys Ser Gly Val Leu Val His Pro Gln Trp 1 $$ 5 $$ 10 $$ 15

Val Leu Ser Ala Ala His Cys Phe Gln Asn Ser Tyr Thr Ile Gly Leu 20 25 30

Gly Leu His Ser Leu Glu Ala Asp Gln Glu Pro Gly Ser Gln Met Val 35 40 45

Glu Ala Ser Leu Ser Val Arg His Pro Glu Tyr Asn Arg Pro Leu Leu 50 60

Ala Asn Asp Leu Met Leu Ile Lys Leu Asp Glu Ser Val Ser Glu Ser 65 70 75 80

Asp Thr Ile Arg Ser Ile Ser Ile Ala Ser Gln Cys Pro Thr Ala Gly
85 90 95

Asn Ser Cys Leu Val Ser Gly Trp Gly Leu Leu Ala Asn Asp Ala Val

Ile Ala Ile Gln Ser Xaa Thr Val Gly Gly Trp Glu Cys Glu Lys Leu 115 120 125

Ser Gln Pro Trp Gln Gly Cys Thr Ile Ser Ala Thr Ser Ser Ala Arg 130 135 140

Thr Ser Cys Cys Ile Leu Thr Gly Cys Ser Leu Leu Leu Thr Ala Ser 145 150 155

Pro Gly Thr Leu

- (2) INFORMATION FOR SEQ ID NO:179:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 250 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

CTGGAGTGCC TTGGTGTTTC AAGCCCCTGC AGGAAGCAGA ATGCACCTTC TGAGGCACCT

		•		
CCAGCTGCCC CCGGCCGGGG GATGCG	SAGGC TCGGAGCACC	CTTGCCCGGC :	TGTGATTGCT	120
GCCAGGCACT GTTCATCTCA GCTTTT	CTGT CCCTTTGCTC	CCGGCAAGCG (CTTCTGCTGA	. 180
AAGTTCATAT CTGGAGCCTG ATGTCT	TAAC GAATAAAGGT	CCCATGCTCC A	ACCCGAAAAA	240
AAAAAAAA				250
(2) INFORMATION FOR	SEQ ID NO:180:			
		•		
(i) SEQUENCE CHARACTER	RISTICS:	,		
(A) LENGTH: 202 base	pairs ·			
(B) TYPE: nucleic ac	id			
(C) STRANDEDNESS: si	ngle			
(D) TOPOLOGY: linear				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

ACTAGTCCAG TO	GTGGTGGAA	TTCCATTGTG	TTGGGCCCAA	CACAATGGCT	ACCTTTAACA	60
TCACCCAGAC CO	CCGCCCCTG	CCCGTGCCCC	ACGCTGCTGC	TAACGACAGT	ATGATGCTTA	120
CTCTGCTACT CC	GGAAACTAT	TTTTATGTAA	TTAATGTATG	${\tt CTTTCTTGTT}$	TATAAATGCC	180
TGATTTAAAA AA	AAAAAAAA	AA	•			202

- (2) INFORMATION FOR SEQ ID NO:181:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 558 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

TCCYTTTGKT	NAGGTTTKKG	AGACAMCCCK	AGACCTWAAN	CTGTGTCACA	GACTTCYNGG	60
AATGTTTAGG	CAGTGCTAGT	AATTTCYTCG	TAATGATTCT	GTTATTACTT	TCCTNATTCT	120
TTATTCCTCT	TTCTTCTGAA	GATTAATGAA	GTTGAAAATT	GAGGTGGATA	AATACAAAAA	180
GGTAGTGTGA	TAGTATAAGT	ATCTAAGTGC	AGATGAAAGT	GTGTTATATA	TATCCATTCA	240
AAATTATGCA	AGTTAGTAAT	TACTCAGGGT	TAACTAAATT	ACTTTAATAT	GCTGTTGAAC	. 300
CTACTCTGTT	CCTTGGCTAG	AAAAAATTAT	AAACAGGACT	TTGTTAGTTT	GGGAAGCCAA	360
ATTGATAATA	TTCTATGTTC	TAAAAGTTGG	GCTATACATA	AATTATTAAG	AAATATGGAW	420
TTTTATTCCC	AGGAATATGG	KGTTCATTTT	ATGAATATTA	CSCRGGATAG	AWGTWTGAGT	480
AAAAYCAGTT	TTGGTWAATA	YGTWAATATG	TCMTAAATAA	ACAAKGCTTT	GACTTATTTC	540
CAAAAAAAAA	AAAAAAA				•	558

- (2) INFORMATION FOR SEQ ID NO:182:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 479 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

${\tt ACAGGGWTTK}$	GRGGATGCTA	AGSCCCCRGA	RWTYGTTTGA	TCCAACCCTG	GCTTWTTTTC	60
AGAGGGGAAA	${\tt ATGGGGCCTA}$	GAAGTTACAG	MSCATYTAGY	TGGTGCGMTG	GCACCCCTGG	120
CSTCACACAG	ASTCCCGAGT	AGCTGGGACT	ACAGGCACAC	AGTCACTGAA	GCAGGCCCTG	180
TTWGCAATTC	ACGTTGCCAC	CTCCAACTTA	AACATTCTTC	ATATGTGATG	TCCTTAGTCA	240
CTAAGGTTAA	ACTTTCCCAC	CCAGAAAAGG	CAACTTAGAT	AAAATCTTAG	AGTACTTTCA	300
TACTMTTCTA	AGTCCTCTTC	CAGCCTCACT	KKGAGTCCTM	CYTGGGGGTT	GATAGGAANT	360
NTCTCTTGGC	TTTCTCAATA	AARTCTCTAT	YCATCTCATG	TTTAATTTGG	TACGCATARA	420

AWTGSTGARA AAATTAAAAT GTTCTGGTTY MACTTTAAAA ARAAAAAAA AAAAAAAAA 479 (2) INFORMATION FOR SEQ ID NO:183: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 384 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

AGGCGGGAGC AGAAGCTAA	GCCAAAGCCC	AAGAAGAGTG	GCAGTGCCAG	CACTGGTGCC	60
AGTACCAGTA CCAATAACAC	TGCCAGTGCC	AGTGCCAGCA	CCAGTGGTGG	CTTCAGTGCT	120
GGTGCCAGCC TGACCGCCAC	TCTCACATTT	GGGCTCTTCG	CTGGCCTTGG	TGGAGCTGGT	180
GCCAGCACCA GTGGCAGCT	TGGTGCCTGT	GGTTTCTCCT	ACAAGTGAGA	TTTTAGATAT	240
TGTTAATCCT GCCAGTCTT	CTCTTCAAGC	CAGGGTGCAT	CCTCAGAAAC	CTACTCAACA	3.00
CAGCACTCTA GGCAGCCAC	TATCAATCAAT	TGAAGTTGAC	ACTCTGCATT	ARATCTATTT	360
GCCATTTCAA AAAAAAAAA	AAAA A				384

(2) INFORMATION FOR SEQ ID NO:184:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 496 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

ACCGAATTGG	GACCGCTGGC	TTATAAGCGA	TCATGTYYNT	CCRGTATKAC	CTCAACGAGC	60
AGGGAGATCG	AGTCTATACG	CTGAAGAAAT	TTGACCCGAT	GGGACAACAG	ACCTGCTCAG	120
CCCATCCTGC	TCGGTTCTCC	CCAGATGACA	AATACTCTSG	ACACCGAATC	ACCATCAAGA	180
AACGCTTCAA	GGTGCTCATG	ACCCAGCAAC	CGCGCCCTGT	CCTCTGAGGG	TCCCTTAAAC	240
TGATGTCTTT	TCTGCCACCT	GTTACCCCTC	GGAGACTCCG	TAACCAAACT	CTTCGGACTG	300
TGAGCCCTGA	TGCCTTTTTG	CCAGCCATÁC	TCTTTGGCAT	CCAGTCTCTC	GTGGCGATTG	360
ATTATGCTTG	TGTGAGGCAA	TCATGGTGGC	ATCACCCATA	AAGGGAACAC	ATTTGACTTT	420
TTTTTCTCAT	ATTTTAAATT	ACTACMAGAW	TATTWMAGAW	WAAATGAWTT	GAAAAACTST	480
TAAAAAAAAA	AAAAA		•			496

(2) INFORMATION FOR SEQ ID NO:185:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 384 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

GCTGGTAGCC	TATGGCGKGG	CCCACGGAGG	GGCTCCTGAG	GCCACGGRAC	AGTGACTTCC	60
CAAGTATCYT	GCGCSGCGTC	TTCTACCGTC	CCTACCTGCA	GATCTTCGGG	CAGATTCCCC	120
AGGAGGACAT	GGACGTGGCC	CTCATGGAGC	ACAGCAACTG	YTCGTCGGAG	CCCGGCTTCT	180
GGGCACACCC	TCCTGGGGCC	CAGGCGGGCA	CCTGCGTCTC	CCAGTATGCC	AACTGGCTGG	240
TGGTGCTGCT	CCTCGTCATC	TTCCTGCTCG	TGGCCAACAT	CCTGCTGGTC	AACTTGCTCA	300
TTGCCATGTT.	CAGTTACACA	TTCGGCAAAG	TACAGGGCAA	CAGCGATCTC	TACTGGGAAG	360
GCGCAGCGTT	ACCGCCTCAT	CCGG				384

(2) INFORMATION FOR SEQ ID NO:186:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 577 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

GAGTTAGCTC	CTCCACAACC	TTGATGAGGT	CGTCTGCAGT	GGCCTCTCGC	TTCATACCGC	60
TNCCATCGTC	ATACTGTAGG	TTTGCCACCA	CYTCCTGGCA	TCTTGGGGCG	GCNTAATATT	120
CCAGGAAACT	CTCAATCAAG	TCACCGTCGA	${\tt TGAAACCTGT}$	$\tt GGGCTGGTTC$	TGTCTTCCGC	180
TCGGTGTGAA	AGGATCTCCC	AGAAGGAGTG	${\tt CTCGATCTTC}$	CCCACACTTT	TGATGACTTT	240
ATTGAGTCGA	TTCTGCATGT	CCAGCAGGAG	GTTGTACCAG	CTCTCTGACA	GTGAGGTCAC	300
CAGCCCTATC	${\tt ATGCCGTTGA}$	MCGTGCCGAA	GARCACCGAG	CCTTGTGTGG	GGGKKGAAGT	360
CTCACCCAGA	TTCTGCATTA	CCAGAGAGCC	GTGGCAAAAG	ACATTGACAA	ACTCGCCCAG	420
GTGGAAAAAG	AMCAMCTCCT	GGARGTGCTN	GCCGCTCCTC	GTCMGTTGGT	GGCAGCGCTW	480
TCCTTTTGAC	ACACAAACAA	GTTAAAGGCA	TTTTCAGCCC	CCAGAAANTT	GTCATCATCC	540
AAGATNTCGC	ACAGCACTNA	TCCAGTTGGG	TAAAT			577

(2) INFORMATION FOR SEQ ID NO:187:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 534 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

AACATCTTCC	TGTATAATGC	TGTGTAATAT	CGATCCGATN	TTGTCTGSTG	AGAATYCATW	60
ACTKGGAAAA	GMAACATTAA	AGCCTGGACA	CTGGTATTAA	${\tt AATTCACAAT}$	ATGCAACACT	120
TTAAACAGTG	TGTCAATCTG	CTCCCYYNAC	TTTGTCATCA	${\tt CCAGTCTGGG}$	AAKAAGGGTA	180
TGCCCTATTC	ACACCTGTTA	AAAGGGCGCT	AAGCATTTTT	${\tt GATTCAACAT}$	CTTTTTTTT	240
GACACAAGTC	CGAAAAAAGC	AAAAGTAAAC	AGTTATYAAT	TTGTTAGCCA	ATTCACTTTC	300
TTCATGGGAC	AGAGCCATYT	GATTTAAAAA	GCAAATTGCA	TAATATTGAG	CTTYGGGAGC	360
TGATATTTGA	GCGGAAGAGT	AGCCTTTCTA	CTTCACCAGA	CACAACTCCC	TTTCATATTG	420
GGATGTTNAC	NAAAGTWATG	TCTCTWACAG	ATGGGATGCT	TTTGTGGCAA	TTCTGTTCTG	480
AGGATCTCCC	AGTTTATTTA	CCACTTGCAC	AAGAAGGCGT	TTTCTTCCTC	AGGC	534

- (2) INFORMATION FOR SEQ ID NO:188:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 761 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

AGAAACCAGT	ATCTCTNAAA	ACAACCTCTC	ATACCTTGTG	GACCTAATTT	TGTGTGCGTG	60
TGTGTGTGCG	CGCATATTAT	ATAGACAGGC	ACATCTTTTT	TACTTTTGTA	AAAGCTTATG	120
CCTCTTTGGT	ATCTATATCT	GTGAAAGTTT	TAATGATCTG	CCATAATGTC	TTGGGGACCT	180
TTGTCTTCTG	TGTAAATGGT	ACTAGAGAAA	ACACCTATNT	TATGAGTCAA	TCTAGTTNGT	240
TTTATTCGAC	ATGAAGGAAA	TTTCCAGATN	ACAACACTNA	CAAACTCTCC	CTKGACKARG	300
GGGGACAAAG	AAAAGCAAAA	CTGAMCATAA	RAAACAATWA	CCTGGTGAGA	ARTTGCATAA	360
ACAGAAATWR	GGTAGTATAT	TGAARNACAG	CATCATTAAA	RMGTTWTKTT	WTTCTCCCTT	420

113	
, 113	
GCAAAAAACA TGTACNGACT TCCCGTTGAG TAATGCCAAG TTGTTTTTT TATNATAAAA	480
CTTGCCCTTC ATTACATGTT TNAAAGTGGT GTGGTGGGCC AAAATATTGA AATGATGGAA	540
CTGACTGATA AAGCTGTACA AATAAGCAGT GTGCCTAACA AGCAACACAG TAATGTTGAC	. 600
ATGCTTAATT CACAAATGCT AATTTCATTA TAAATGTTTG CTAAAATACA CTTTGAACTA	660
TTTTTCTGTN TTCCCAGAGC TGAGATNTTA GATTTTATGT AGTATNAAGT GAAAAANTAC	720
GAAAATAATA ACATTGAAGA AAAANANAAA AAANAAAAAA A	761
(2) INFORMATION FOR SEQ ID NO:189:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 482 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
	•
/ · · · · · · · · · · · · · · · · · · ·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:	
TTTTTTTTT TTTGCCGATN CTACTATTTT ATTGCAGGAN GTGGGGGTGT ATGCACCGCA	60
CACCGGGGCT ATNAGAAGCA AGAAGGAAGG AGGGAGGGCA CAGCCCCTTG CTGAGCAACA	120
AAGCCGCCTG CTGCCTTCTC TGTCTGTCTC CTGGTGCAGG CACATGGGGA GACCTTCCCC	180
AAGCCAGGGG CCACCAGTCC AGGGGTGGGA ATACAGGGGG TGGGANGTGT GCATAAGAAG	240
TGATAGGCAC AGGCCACCCG GTACAGACCC CTCGGCTCCT GACAGGTNGA TTTCGACCAG	300
GTCATTGTGC CCTGCCCAGG CACAGCGTAN ATCTGGAAAA GACAGAATGC TTTCCTTTTC	360
AAATTTGGCT NGTCATNGAA NGGGCANTTT TCCAANTTNG GCTNGGTCTT GGTACNCTTG	420
GTTCGGCCCA GCTCCNCGTC CAAAAANTAT TCACCCNNCT CCNAATTGCT TGCNGGNCCC	420
CC CC	482
	402
(2) INFORMATION FOR SEQ ID NO:190:	
(2) INFORMATION FOR SEQ ID NO: 190:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 471 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(c) bildipelous. Singic	

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

TTTTTTTTTT	TTTTAAAACA	GTTTTTCACA	ACAAAATTTA	TTAGAAGAAT	AGTGGTTTTG	60
AAAACTCTCG	CATCCAGTGA	GAACTACCAT	ACACCACATT	ACAGCTNGGA	ATGTNCTCCA	120
AATGTCTGGT	CAAATGATAC	AATGGAACCA	TTCAATCTTA	CACATGCACG	AAAGAACAAG	180
CGCTTTTGAC	ATACAATGCA	CAAAAAAAAA	AGGGGGGGG	GACCACATGG	TTTAAAATTA	240
TAAGTACTCA	TCACATACAT	TAAGACACAG	TTCTAGTCCA	GTCNAAAATC	AGAACTGCNT	300
TGAAAAATTT	CATGTATGCA	ATCCAACCAA	AGAACTTNAT	TGGTGATCAT	GANTNCTCTA	360
CTACATCNAC	CTTGATCATT	GCCAGGAACN	AAAAGTTNAA	ANCACNCNGT	ACAAAANAA	420
TCTGTAATTN	ANTTCAACCT	CCGTACNGAA	AAATNTTNNT	TATACACTCC	C .	471

- (2) INFORMATION FOR SEQ ID NO:191:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 402 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

GAGGGATTGA	AGGTCTGTTC	TASTGTCGGM	CTGTTCAGCC	ACCAACTCTA	ACAAGTTGCT	60
CTCTTCCACT	$C\Delta$ CTCTCTCT	$\Delta \Delta CCTTTTT\Delta$	ACCCAGACWG	TATCTTCATA	AATAGAACAA	120

ATTCTTCACC	AGTCACATCT	TCTAGGACCT	TTTTGGATTC	AGTTAGTATA	AGCTCTTCCA	180
$\mathtt{CTTCCTTTGT}$	TAAGACTTCA	TCTGGTAAAG	TCTTAAGTTT	TGTAGAAAGG	AATTYAATTG	240
CTCGTTCTCT	AACAATGTCC	TCTCCTTGAA	${\tt GTATTTGGCT}$	GAACAACCCA	CCTAAAGTCC	300
CTTTGTGCAT	CCATTTTAAA	TATACTTAAT	${\tt AGGGCATTGK}$	TNCACTAGGT	TAAATTCTGC	360
AAGAGTCATC	TGTCTGCAAA	AGTTGCGTTA	${\tt GTATATCTGC}$	CA		402

(2) INFORMATION FOR SEQ ID NO:192:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

GAGCTCGGAT CCAATAATCT TTGTCTGAGG GCAGCACAC TATNCAGTGC CATGGNAACT GGTCTACCCC ACATGGGAGC AGCATGCCGT AGNTATATAA GGTCATTCCC TGAGTCAGAC 120 ATGCYTYTTT GAYTACCGTG TGCCAAGTGC TGGTGATTCT YAACACACYT CCATCCCGYT 180 CTTTTGTGGA AAAACTGGCA CTTKTCTGGA ACTAGCARGA CATCACTTAC AAATTCACCC 240 ACGAGACACT TGAAAGGTGT AACAAAGCGA YTCTTGCATT GCTTTTTGTC CCTCCGGCAC 300 CAGTTGTCAA TACTAACCCG CTGGTTTGCC TCCATCACAT TTGTGATCTG TAGCTCTGGA 360 TACATCTCCT GACAGTACTG AAGAACTTCT TCTTTTGTTT CAAAAGCARC TCTTGGTGCC 420 TGTTGGATCA GGTTCCCATT TCCCAGTCYG AATGTTCACA TGGCATATTT WACTTCCCAC 480 AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600 G	GA COMOCOA M	CCAAMAAMCM	mmamama i aa			G1 mg G111 1 G	
ATGCYTYTTT GAYTACCGTG TGCCAAGTGC TGGTGATTCT YAACACACYT CCATCCCGYT 180 CTTTTGTGGA AAAACTGGCA CTTKTCTGGA ACTAGCARGA CATCACTTAC AAATTCACCC 240 ACGAGACACT TGAAAGGTGT AACAAAGCGA YTCTTGCATT GCTTTTTGTC CCTCCGGCAC 300 CAGTTGTCAA TACTAACCCG CTGGTTTGCC TCCATCACAT TTGTGATCTG TAGCTCTGGA 360 TACATCTCCT GACAGTACTG AAGAACTTCT TCTTTTGTTT CAAAAGCARC TCTTGGTGCC 420 TGTTGGATCA GGTTCCCATT TCCCAGTCYG AATGTTCACA TGGCATATTT WACTTCCCAC 480 AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCCACCAGC AGCAGAAGCA 600	GAGCICGGAT	CCAATAATCT	TTGTCTGAGG	GCAGCACACA	TATNCAGTGC	CATGGNAACT	60
CTTTTGTGGA AAAACTGGCA CTTKTCTGGA ACTAGCARGA CATCACTTAC AAATTCACCC 240 ACGAGACACT TGAAAGGTGT AACAAAGCGA YTCTTGCATT GCTTTTTGTC CCTCCGGCAC 300 CAGTTGTCAA TACTAACCCG CTGGTTTGCC TCCATCACAT TTGTGATCTG TAGCTCTGGA 360 TACATCTCCT GACAGTACTG AAGAACTTCT TCTTTTGTTT CAAAAGCARC TCTTGGTGCC 420 TGTTGGATCA GGTTCCCATT TCCCAGTCYG AATGTTCACA TGGCATATTT WACTTCCCAC 480 AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600	GGTCTACCCC	ACATGGGAGC	AGCATGCCGT	${\tt AGNTATATAA}$	GGTCATTCCC	TGAGTCAGAC	120
ACGAGACACT TGAAAGGTGT AACAAAGCGA YTCTTGCATT GCTTTTTGTC CCTCCGGCAC 300 CAGTTGTCAA TACTAACCCG CTGGTTTGCC TCCATCACAT TTGTGATCTG TAGCTCTGGA 360 TACATCTCCT GACAGTACTG AAGAACTTCT TCTTTTGTTT CAAAAGCARC TCTTGGTGCC 420 TGTTGGATCA GGTTCCCATT TCCCAGTCYG AATGTTCACA TGGCATATTT WACTTCCCAC 480 AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600	ATGCYTYTTT	GAYTACCGTG	TGCCAAGTGC	${\tt TGGTGATTCT}$	YAACACACYT	CCATCCCGYT	180
CAGTTGTCAA TACTAACCCG CTGGTTTGCC TCCATCACAT TTGTGATCTG TAGCTCTGGA 360 TACATCTCCT GACAGTACTG AAGAACTTCT TCTTTTGTTT CAAAAGCARC TCTTGGTGCC 420 TGTTGGATCA GGTTCCCATT TCCCAGTCYG AATGTTCACA TGGCATATTT WACTTCCCAC 480 AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600	CTTTTGTGGA	${\tt AAAACTGGCA}$	CTTKTCTGGA	ACTAGCARGA	CATCACTTAC	AAATTCACCC	240
TACATCTCCT GACAGTACTG AAGAACTTCT TCTTTTGTTT CAAAAGCARC TCTTGGTGCC 420 TGTTGGATCA GGTTCCCATT TCCCAGTCYG AATGTTCACA TGGCATATTT WACTTCCCAC 480 AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600	ACGAGACACT	TGAAAGGTGT	AACAAAGCGA	YTCTTGCATT	$\tt GCTTTTTGTC$	CCTCCGGCAC	300
TGTTGGATCA GGTTCCCATT TCCCAGTCYG AATGTTCACA TGGCATATTT WACTTCCCAC 480 AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600	CAGTTGTCAA	TACTAACCCG	CTGGTTTGCC	TCCATCACAT	TTGTGATCTG	TAGCTCTGGA	360
AAAACATTGC GATTTGAGGC TCAGCAACAG CAAATCCTGT TCCGGCATTG GCTGCAAGAG 540 CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600	TACATCTCCT	GACAGTACTG	AAGAACTTCT	TCTTTTGTTT	CAAAAGCARC	TCTTGGTGCC	420
CCTCGATGTA GCCGGCCAGC GCCAAGGCAG GCGCCGTGAG CCCCACCAGC AGCAGAAGCA 600	TGTTGGATCA	GGTTCCCATT	TCCCAGTCYG	AATGTTCACA	TGGCATATTT	WACTTCCCAC	480
	AAAACATTGC	GATTTGAGGC	TCAGCAACAG	CAAATCCTGT	TCCGGCATTG	GCTGCAAGAG	540
G 601	CCTCGATGTA	GCCGGCCAGC	GCCAAGGCAG	GCGCCGTGAG	CCCCACCAGC	AGCAGAAGCA	600
	G		•				601

(2) INFORMATION FOR SEQ ID NO:193:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 608 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

ATACAGCCCA	NATCCCACCA	CGAAGATGCG	CTTGTTGACT	GAGAACCTGA	TGCGGTCACT	60
GGTCCCGCTG	TAGCCCCAGC	GACTCTCCAC	CTGCTGGAAG	CGGTTGATGC	TGCACTCYTT	120
CCCAACGCAG	GCAGMAGCGG	GSCCGGTCAA	TGAACTCCAY	TCGTGGCTTG	GGGTKGACGG	180
TKAAGTGCAG	GAAGAGGCTG	ACCACCTCGC	GGTCCACCAG	GATGCCCGAC	TGTGCGGGAC	240
CTGCAGCGAA	ACTCCTCGAT	GGTCATGAGC	GGGAAGCGAA	TGAGGCCCAG	GGCCTTGCCC	300
AGAACCTTCC	GCCTGTTCTC	TGGCGTCACC	TGCAGCTGCT	GCCGCTGACA	CTCGGCCTCG	360
GACCAGCGGA	CAAACGGCRT	TGAACAGCCG	CACCTCACGG	ATGCCCAGTG	TGTCGCGCTC	420
CAGGAMMGSC	ACCAGCGTGT	CCAGGTCAAT	GTCGGTGAAG	CCCTCCGCGG	GTRATGGCGT	480
CTGCAGTGTT	TTTGTCGATG	TTCTCCAGGC	ACAGGCTGGC	CAGCTGCGGT	TCATCGAAGA	540
GTCGCGCCTG	CGTGAGCAGC	ATGAAGGCGT	TGTCGGCTCG	CAGTTCTTCT	TCAGGAACTC	600
CACGCAAT	•					608

(2) INFORMATION FOR SEQ ID NO:194:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 392 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

GAACGGCTGG	ACCTTGCCTC	GCATTGTGCT	TGCTGGCAGG	GAATACCTTG	GCAAGCAGYT	60
CCAGTCCGAG	CAGCCCCAGA	CCGCTGCCGC	CCGAAGCTAA	GCCTGCCTCT	GGCCTTCCCC	120
TCCGCCTCAA	TĢCAGAACCA	${\tt GTAGTGGGAG}$	CACTGTGTTT	AGAGTTAAGA	GTGAACACTG	180
TTTGATTTTA	CTTGGGAATT	TCCTCTGTTA	TATAGCTTTT	CCCAATGCTA	ATTTCCAAAC	240
AACAACAACA	AAATAACATG	TTTGCCTGTT	AAGTTGTATA	${\tt AAAGTAGGTG}$	ATTCTGTATT	300
TAAAGAAAAT	ATTACTGTTA	CATATACTGC	TTGCAATTTC	TGTATTTATT	GKTNCTSTGG	360
TATAAATAAA	AGTTATTAAA	GGTTGTCANT	CC	•		392

(2) INFORMATION FOR SEQ ID NO:195:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 502 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

CCSTTKGAGG	GGTKAGGKYC	CAGTTYCCGA	GTGGAAGAAA	CAGGCCAGGA	GAAGTGCGTG	60
	GCAGATGTTC			*		120
CCTCNÇAAGG	AAAGACCACS	${\tt TTCTGGGGGA\dot{C}}$	ATGGGCTGGA	GGGCAGGACC	TAGAGGCACC	180
AAGGGAAGGC	CCCATTCCGG	GGSTGTTCCC	CGAGGAGGAA	GGGAAGGGGC	TCTGTGTGCC	240
CCCCASGAGG	AAGAGGCCCT	GAGTCCTGGG	ATCAGACACC	CCTTCACGTG	TATCCCCACA	300
CAAATGCAAG	CTCACCAAGG	TCCCCTCTCA	GTCCCCTTCC	STACACCCTG	AMCGGCCACT	360
GSCSCACACC	CACCCAGAGC	ACGCCACCCG	CCATGGGGAR	TGTGCTCAAG	GARTCGCNGG	420
GCARCGTGGA	CATCTNGTCC	CAGAAGGGGG	CAGAATCTCC	AATAGANGGA	CTGARCMSTT	480
GCTNANAAAA	AAAAANAAAA	AA	•			502

(2) INFORMATION FOR SEQ ID NO:196:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 665 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

					,	
GGTTACTTGG	TTTCATTGCC	ACCACTTAGT	GGATGTCATT	TÄGAACCATT	TTGTCTGCTC	60
CCTCTGGAAG	CCTTGCGCAG	AGCGGACTTT	GTAATTGTTG	GAGAATAACT	GCTGAATTTT	120
WAGCTGTTTK	GAGTTGATTS	GCACCACTGC	ACCCACAACT	TCAATATGAA	AACYAWTTGA	180
${\tt ACTWATTTAT}$	TATCTTGTGA	AAAGTATAAC	AATGAAAATT	${\tt TTGTTCATAC}$	TGTATTKATC	240
AAGTATGATG	AAAAGCAAWA	GATATATATT	CTTTTATTAT	${\tt GTTAAATTAT}$	GATTGCCATT	300
ATTAATCGGC	AAAATGTGGA	GTGTATGTTC	TTTTCACAGT	AATATATGCC	TTTTGTAACT	360
TCACTTGGTT	ATTTTATTGT	AAATGARTTA	CAAAATTCTT	AATTTAAGAR	AATGGTATGT	420
WATATTTATT	TCATTAATTT	CTTTCCTKGT	TTACGTWAAT	TTTGAAAAGA	WTGCATGATT	480
TCTTGACAGA	AATCGATCTT	GATGCTGTGG	AAGTAGTTTG	ACCCACATCC	CTATGAGTTT	540
TTCTTAGAAT	GTATAAAGGT	TGTAGCCCAT	CNAACTTCAA	AGAAAAAAAT	GACCACATAC	600
TTTGCAATCA	GGCTGAAATG	TGGCATGCTN	TTCTAATTCC	AACTTTATAA	ACTAGCAAAN	660
AAGTG						665

(2) INFORMATION FOR SEQ ID NO:197:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 492 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

TTTTNTTTTT	TTTTTTTTGC	AGGAAGGATT	CCATTTATTG	TGGATGCATT	TTCACAATAT	60
ATGTTTATTG	GAGCGATCCA	TTATCAGTGA	AAAGTATCAA	GTGTTTATAA	NATTTTTAGG	120
AAGGCAGATT	CACAGAACAT	GCTNGTCNGC	TTGCAGTTTT	ACCTCGTANA	GATNACAGAG	180
AATTATAGTC	NAACCAGTAA	ACNAGGAATT	TACTTTTCAA	AAGATTAAAT	CCAAACTGAA	240
CAAAATTCTA	CCCTGAAACT	TACTCCATCC	AAATATTGGA	ATAANAGTCA	GCAGTGATAC	300
ATTCTCTTCT	GAACTTTAGA	TTTTCTAGAA	AAATATGTAA	TAGTGATCAG	GAAGAGCTCT	360
TGTTCAAAAG	TACAACNAAG	CAATGTTCCC	TTACCATAGG	CCTTAATTCA	AACTTTGATC	420
${\tt CATTTCACTC}$	CCATCACGGG	AGTCAATGCT	ACCTGGGACA	$\mathtt{CTTGTATTTT}$	GTTCATNCTG	480
ANCNTGGCTT	AA					492

(2) INFORMATION FOR SEQ ID NO:198:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 478 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

TTTNTTTTGN	ATTTCANTCT	GTANNAANTA	TTTTCATTAT	GTTTATTANA	AAAATATNAA	60
TGTNTCCACN	ACAAATCATN	TTACNTNAGT	AAGAGGCCAN	CTACATTGTA	CAACATACAC	120
TGAGTATATT	TTGAAAAGGA	CAAGTTTAAA	GTANACNCAT	ATTGCCGANC	ATANCACATT	180
TATACATGGC	TTGATTGATA	TTTAGCACAG	CANAAACTGA	GTGAGTTACC	AGAAANAAAT	240.
NATATATGTC	AATCNGATTT	AAGATACAAA	ACAGATCCTA	TGGTACATAN	CATCNTGTAG	300
GAGTTGTGGC	TTTATGTTTA	CTGAAAGTCA	ATGCAGTTCC	TGTACAAAGA	GATGGCCGTA	360
AGCATTCTAG	TACCTCTACT	CCATGGTTAA	GAATCGTACA	CTTATGTTTA	CATATGTNCA	420
GGGTAAGAAT	TGTGTTAAGT	NAANTTATGG	AGAGGTCCAN	GAGAAAAATT	TGATNCAA	478

- (2) INFORMATION FOR SEQ ID NO:199:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 482 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

AGTGACTTGT	CCTCCAACAA	AACCCCTTGA	TCAAGTTTGT	GGCACTGACA	ATCAGACCTA	60
TGCTAGTTCC	TGTCATCTAT	TCGCTACTAA	ATGCAGACTG	GAGGGGACCA	AAAAGGGGCA	120
TCAACTCCAG	CTGGATTATT	TTGGAGCCTG	CAAATCTATT	${\tt CCTACTTGTA}$	CGGACTTTGA	180
AGTGATTCAG	TTTCCTCTAC	GGATGAGAGA	CTGGCTCAAG	${\tt AATATCCTCA}$	TGCAGCTTTA	240
TGAAGCCNAC	TCTGAACACG	CTGGTTATCT	NAGATGAGAA	NCAGAGAAAT	AAAGTCNAGA	300
AAATTTACCT	GGANGAAAAG	AGGCTTTNGG	CTGGGGACCA	TCCCATTGAA	CCTTCTCTTA	360
ANGGACTTTA	AGAANAAACT	ACCACATGTN	TGTNGTATCC	TGGTGCCNGG	CCGTTTANTG	420
AACNTNGACN	NCACCCTTNT	GGAATANANT	CTTGACNGCN	TCCTGAACTT	GCTCCTCTGC	480
GA						482

(2) INFORMATION FOR SEQ ID NO:200:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 270 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:200:

CGGCCGCAAG TO	GCAACTCCA (GCTGGGGCCG	TGCGGACGAA	GATTCTGCCA	GCAGTTGGTC	60
CGACTGCGAC GA	ACGGCGGCG	GCGACAGTCG	CAGGTGCAGC	GCGGGCGCCT	GGGGTCTTGC	120
AAGGCTGAGC TO	GACGCCGCA	GAGGTCGTGT	CACGTCCCAC	GACCTTGACG	CCGTCGGGGA	180
CAGCCGGAAC AC	GAGCCCGGT +	GAANGCGGGA	GGCCTCGGGG	AGCCCCTCGG	GAAGGGCGGC	240
CCGAGAGATA CO	GCAGGTGCA	GGTGGCCGCC				270

- (2) INFORMATION FOR SEQ ID NO:201:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 419 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:

TTTTTTTTTT	TTTTGGAATC	TACTGCGAGC	ACAGCAGGTC	AGCAACAAGT	TTATTTTGCA	60
GCTAGCAAGG	TAACAGGGTA	GGGCATGGTT	ACATGTTCAG	GTCAACTTCC	TTTGTCGTGG	120
TTGATTGGTT	TGTCTTTATG	GGGGCGGGT	GGGGTAGGGG	AAANCGAAGC	ANAANTAACA	180
TGGAGTGGGT	GCACCCTCCC	TGTAGAACCT	GGTTACNAAA	$\tt GCTTGGGGCA$	GTTCACCTGG	240
TCTGTGACCG	TCATTTTCTT	GACATCAATG	TTATTAGAAG	TCAGGATATC	TTTTAGAGAG	3 0 0
TCCACTGTNT	CTGGAGGGAG	ATTAGGGTTT	CTTGCCAANA	TCCAANCAAA	ATCCACNTGA	360
AAAAGTTGGA	TGATNCANGT	ACNGAATACC	GANGGCATAN	TTCTCATANT	ĊGGTGGCCA	419

- (2) INFORMATION FOR SEQ ID NO:202:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 509 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:

TTTNTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	60
TGGCACTTAA	TCCATTTTTA	TTTCAAAATG	TCTACAAANT	TTNAATNCNC	CATTATACNG	120
GTNATTTTNC	AAAATCTAAA	NNTTATTCAA	ATNTNAGCCA	AANTCCTTAC	NCAAATNNAA	180
TACNCNCAAA	AATCAAAAAT	ATACNTNTCT	TTCAGCAAAC	TTNGTTACAT	AAATTAAAA	240
AATATATACG	GCTGGTGTTT	TCAAAGTACA	ATTATCTTAA	CACTGCAAAC	ATNTTTNNAA	300
GGAACTAAAA	TAAAAAAAAA	CACTNCCGCA	AAGGTTAAAG	GGAACAACAA	ATTCNTTTTA	360
CAACANCNNC	NATTATAAAA	ATCATATCTC	AAATCTTAGG	GGAATATATA	CTTCACACNG	420
GGATCTTAAC	TTTTACTNCA	CTTTGTTTAT	TTTTTTANAA	CCATTGTNTT	GGGCCCAACA	480
CAATGGNAAT	NCCNCCNCNC	TGGACTAGT				509

- (2) INFORMATION FOR SEQ ID NO:203:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 583 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

TTTTTTTTTTT	TTTTTTTGA	CCCCCCTCTT	ATAAAAAAACA	AGTTACCATT	TTATTTTACT	60
TACACATATT	TATTTTATAA	TTGGTATTAG	ATATTCAAAA	GGCAGCTTTT	AAAATCAAAC	120
TAAATGGAAA	CTGCCTTAGA	TACATAATTC	TTAGGAATTA	GCTTAAAATC	TGCCTAAAGT	180
GAAAATCTTC	TCTAGCTCTT	TTGACTGTAA	ATTTTTGACT	CTTGTAAAAC	ATCCAAATTC	240
ATTTTTCTTG	TCTTTAAAAT	TATCTAATCT	TTCCATTTTT	TCCCTATTCC	AAGTCAATTT	300
GCTTCTCTAG	CCTCATTTCC	TAGCTCTTAT	CTACTATTAG	TAAGTGGCTT	TTTTCCTAAA	3.60
AGGGAAAACA	GGAAGAGANA	ATGGCACACA	AAACAAACAT	TTTATATTCA	TATTTCTACC	420
TACGTTAATA	AAATAGCATT	TTGTGAAGCC	AGCTCAAAAG	AAGGCTTAGA	TCCTTTTATG	480
	TCACTAAACG				GTGAACATTT	540
ATTCAAAAGC	TAATATAAGA	TATTTCACAT	ACTCATCTTT	CTG		583

(2) INFORMATION FOR SEQ ID NO:204:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 589 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

TTTTTTTTTTT	TTTTTTTTT	TTTTTTTNCTC	TTCTTTTTTT	TTGANAATGA	GGATCGAGTT	60
TTTCACTCTC	TAGATAGGGC	ATGAAGAAAA	CTCATCTTTC	CAGCTTTAAA	ATAACAATCA	120
AATCTCTTAT	GCTATATCAT	ATTTTAAGTT	AAACTAATGA	${\tt GTCACTGGCT}$	TATCTTCTCC	180
TGAAGGAAAT	CTGTTCATTC	TTCTCATTCA	TATAGTTATA	TCAAGTACTA	CCTTGCATAT	240
TGAGAGGTTT	TTCTTCTCTA	TTTACACATA	TATTTCCATG	TGAATTTGTA	TCAAACCTTT	300
ATTTTCATGC	AAACTAGAAA	ATAATGTNTT	CTTTTGCATA	AGAGAAGAGA	ACAATATNAG	360
CATTACAAAA	CTGCTCAAAT	TGTTTGTTAA	GNTTATCCAT	TATAATTAGT	TNGGCAGGAG	420
CTAATACAAA	TCACATTTAC	NGACNAGCAA	TAATAAAACT	GAAGTACCAG	TTAAATATCC	480
ATTAATAAAA	AAGGAACATT	TTTAGCCTGG	GTATAATTAG	CTAATTCACT	TTACAAGCAT	540
TTATTNAGAA	TGAATTCACA	TGTTATTATT	CCNTAGCCCA	ACACAATGG		589

- (2) INFORMATION FOR SEQ ID NO:205:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 545 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

TTTTTTTTT	TTTTTTCAGT	AATAATCAGA	ACAATATTTA	TTTTTTATATT	TAAAATTCAT	60
AGAAAAGTGC	${\tt CTTACATTTA}$	ATAAAAGTTT	GTTTCTCAAA	GTGATCAGAG	GAATTAGATA	120
TNGTCTTGAA	CACCAATATT	AATTTGAGGA	AAATACACCA	AAATACATTA	AGTAAATTAT	180
TTAAGATCAT	AGAGCTTGTA	AGTGAAAAGA	TAAAATTTGA	CCTCAGAAAC	TCTGAGCATT	240
AAAAATCCAC	TATTAGCAAA	TAAATTACTA	TGGACTTCTT	GCTTTAATTT	TGTGATGAAT	300
ATGGGGTGTC	ACTGGTAAAC	CAACACATTC	TGAAGGATAC	ATTACTTAGT	GATAGATTCT	360
TATGTACTTT	GCTANATNAC	GTGGATATGA	GTTGACAAGT	TTCTCTTTCT	TCAATCTTTT	420
${\tt AAGGGGCNGA}$	NGAAATGAGG	AAGAAAAGAA	AAGGATTACG	CATACTGTTC	TTTCTATNGG	480
AAGGATTAGA	TATGTTTCCT	TTGCCAATAT	TAAAAAAATA	ATAATGTTTA	CTACTAGTGA	540
AACCC		•				545

- (2) INFORMATION FOR SEQ ID NO:206:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 487 base pairs

524

119

	(B)	TYPE: nucl	eic acid			•	
		STRANDEDNE					,
		TOPOLOGY:	_			•	
	,						
	(ii)	MOLECULE TY	PE: cDNA				
	(xi)	SEQUENCE DE	ESCRIPTION:	SEQ ID NO:2	206:		
	PTTTTTTTT	TTTTTTAGTC	AAGTTTCTNA	TATTATTAT	AATTAAAGTC	TTGGTCATTT	60
(CATTTATTAG	CTCTGCAACT	TACATATTTA	AATTAAAGAA	ACGTTNTTAG	ACAACTGTNA	120
(AATTTAAA	ATGTAAGGTG	CCATTATTGA	GTANATATAT	TCCTCCAAGA	GTGGATGTGT	180
(CCCTTCTCCC	ACCAACTAAT	GAANCAGCAA	CATTAGTTTA	ATTTTATTAG	TAGATNATAC	240
Ž	ACTGCTGCAA	ACGCTAATTC	TCTTCTCCAT	CCCCATGTNG	ATATTGTGTA	TATGTGTGAG	300
		TGCATCANCA	•	•			360
		TAGACTGTGT					420
		ACCGCTTCCT	CAAAGGCNGC	TGCCACATTT	GTGGCNTCTN	TTGCACTTGT	480
,	TTCAAAA						487
	,	_,					
	(2) INFORMAT	ION FOR SEQ	ID NO:207:			
					•		
		SEQUENCE CH					
) LENGTH: 3:	-	rs			
	•) TYPE: nucl					
) STRANDEDN:) TOPOLOGY:	–			•	
	(D	/ TOPOLOGI:	TIMEAL				
	(ii)	MOLECULE T	VDF - CDMA				
	. (11)	MODECODE 1	IFE. CDNA				
	(xi)	SEQUENCE D	ESCRIPTION:	SEO ID NO:	207:		
	,,						
	TGAATTGGCT	AAAAGACTGC	ATTTTTANAA	CTAGCAACTC	TTATTTCTTT	CCTTTAAAAA	60
	TACATAGCAT	TAAATCCCAA	ATCCTATTTA	AAGACCTGAC	AGCTTGAGAA	GGTCACTACT	120
	GCATTTATAG	GACCTTCTGG	TGGTTCTGCT	GTTACNTTTG	AANTCTGACA	ATCCTTGANA	180
	ATCTTTGCAT	GCAGAGGAGG	TAAAAGGTAT	TGGATTTTCA	CAGAGGAANA	ACACAGCGCA	240
	GAAATGAAGG	GGCCAGGCTT	ACTGAGCTTG	TCCACTGGAG	GGCTCATGGG	TGGGACATGG	300
	AAAAGAAGGC	AGCCTAGGCC	CTGGGGAGCC	CA			332
	(2) INFORMAT	ION FOR SEQ	ID NO:208:			
		•					
		SEQUENCE CH					
		L) LENGTH: 5	-	rs			
	· ·	3) TYPE: nuc					
		C) STRANDEDN	_				
	. (E) TOPOLOGY:	linear				
	. (11)	MOLECULE T	YPE: CDNA				
	(anormian n	HOOD I DOLLAR	900 TD NO	200		
	(X1)	SEQUENCE D	ESCRIPTION:	SEC ID NO:	208:	•	
	A CCCCCCCCCCCC				ר א חוד א א חוד א רי	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	_
		CCCCCCATCC	•				13
						AGTGACTGAT	
		C ATGGAGCTTG A TTCACATTTA					18 24
		A TACTTNTTGA					30
		A GTGGGTCATA		•			36
						CAGTCTGTCC	

(2) INFORMATION FOR SEQ ID NO:209:

AAACCATTAC CTGATCCACT TCCGGTAATG CACCACCTTG GTGA

TGTCATCAGA CAGGAGGCTG TCACCTTGAC CAAATTCTCA CCAGTCAATC ATCTATCCAA

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 159 base pairs

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

120

(C) S	TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear				
(ii) M	OLECULE TYPE: cDNA				
(xi) SI	EQUENCE DESCRIPTION:	SEQ ID NO:2	209:	. •	
TGGCCCTCTC C	CCCAGAGTT GCCATGGAGA PACACTCTG GCCAGAGATA CGACCCAAA CTGCCCCAGA	CCACAGTCAA			60 120 159
(2)	INFORMATION FOR SEQ	ID NO:210:			
(A) : (B) : (C) :	QUENCE CHARACTERISTIC LENGTH: 256 base pai: TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear				,
(ii) M	OLECULE TYPE: cDNA				
(xi) S	EQUENCE DESCRIPTION:	SEQ ID NO:2	210:		
ACTGAATTTC T TGGGGAGATT T	GACAAAGGC AGAGGAGAGA TTCCACTTG GACTATTACA TANCCAATT TANGTNTGTA AAATGGGAN GGCTGGTTTG AATCA	TGCCANTTGA AATGGGGAGA	GGGACTAATG CTGGGGCAGG	GAAAAACGTA CGGGAGAGAT	60 120 180 240 256
(2)	INFORMATION FOR SEQ	ID NO:211:			
(A) (B) (C) (D)	QUENCE CHARACTERISTI LENGTH: 264 base pai TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear	rs			
	OLECULE TYPE: CDNA				
(xi) S	SEQUENCE DESCRIPTION:	SEQ ID NO:	211:		
ACTGGAACAC A ATATTCAAGC A GGGGAGATAC A	TTTGAGATAA AGCATTGAGA ATACCCACAT CTTTGTTCTG ACATATGTTA TATATTATTC ATTCNGAAAG AGGACTGAAA CAAATGAGAA GCCT	AGGGATAATT AGTTCCATGT	TTCTGATAAA TTATAGCCTA	GTCTTGCTGT GTTAAGGAGA	60 120 180 240 264
(2)	INFORMATION FOR SEC) ID NO:212:		٠	
(A) (B) (C)	EQUENCE CHARACTERISTI LENGTH: 328 base pai TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear	irs			

ACCCAAAAAT	CCAATGCTGA	ATATTTGGCT	${\tt TCATTATTCC}$	CANATTCTTT	GATTGTCAAA	60
GGATTTAATG	TTGTCTCAGC	TTGGGCACTT	CAGTTAGGAC	${\tt CTAAGGATGC}$	CAGCCGGCAG	120
GTTTATATAT	GCAGCAACAA	TATTCAAGCG	CGACAACAGG	${\tt TTATTGAACT}$	TGCCCGCCAG	1,80
TTNAATTTCA	${\tt TTCCCATTGA}$	CTTGGGATCC	TTATCATCAG	CCAGAGAGAT	TGAAAATTTA	240
CCCCTACNAC	TCTTTACTCT	CTGGANAGGG	CCAGTGGTGG	TAGCTATAAG	CTTGGCCACA	300
TTTTTTTTC	CTTTATTCCT	TTGTCAGA				328
		*				•

- (2) INFORMATION FOR SEQ ID NO:213:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 250 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

ACTTATGAGC	AGAGCGACAT	ATCCNAGTGT	AGACTGAATA	AAACTGAATT	CTCTCCAGTT	60
${\tt TAAAGCATTG}$	${\tt CTCACTGAAG}$	GGATAGAAGT	GACTGCCAGG	AGGGAAAGTA	AGCCAAGGCT	120
CATTATGCCA	AAGGANATAT	ACATTTCAAT	TCTCCAAACT	TCTTCCTCAT	TCCAAGAGTT	180
TTCAATATTT	GCATGAACCT	GCTGATAANC	CATGTTAANA	AACAAATATC	TCTCTNACCT	240
TCTCATCGGT						250

- (2) INFORMATION FOR SEQ ID NO:214:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 444 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

٠	ACCCAGAATC	CAATGCTGAA	TATTTGGCTT	CATTATTCCC	AGATTCTTTG	ATTGTCAAAG	60
	GATTTAATGT	TGTCTCAGCT	TGGGCACTTC	AGTTAGGACC	TAAGGATGCC	AGCCGGCAGG	120
	TTTATATATG	CAGCAACAAT	ATTCAAGCGC	GACAACAGGT	TATTGAACTT	GCCCGCCAGT	180
	TGAATTTCAT	TCCCATTGAC	TTGGGATCCT	TATCATCAGC	CANAGAGATT	GAAAATTTAC	240
	CCCTACGACT	CTTTACTCTC	TGGAGAGGGC	CAGTGGTGGT	AGCTATAAGC	TTGGCCACAT	300
	TTTTTTTCC	TTTATTCCTT	TGTCAGAGAT	GCGATTCATC	CATATGCTAN	AAACCAACAG	360
•	AGTGACTTTT	ACAAAATTCC	TATAGANATT	GTGAATAAAA	CCTTACCTAT	AGTTGCCATT	.420
	ACTTTGCTCT	CCCTAATATA	CCTC				444

- (2) INFORMATION FOR SEQ ID NO:215:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 366 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

ACTTATGAGC AGAGCGACAT ATCCAAGTGT ANACTGAATA AAACTGAATT CTCTCCAGTT 60 TAAAGCATTG CTCACTGAAG GGATAGAAGT GACTGCCAGG AGGGAAAGTA AGCCAAGGCT 120

166	
CATTATGCCA AAGGANATAT ACATTTCAAT TCTCCAAACT TCTTCCTCAT TCCAAGAGTT	180
TTCAATATTT GCATGAACCT GCTGATAAGC CATGTTGAGA AACAAATATC TCTCTGACCT	240
TCTCATCGGT AAGCAGAGGC TGTAGGCAAC ATGGACCATA GCGAANAAAA AACTTAGTAA	300
TCCAAGCTGT TTTCTACACT GTAACCAGGT TTCCAACCAA GGTGGAAATC TCCTATACTT	360
GGTGCC	366
(2) INFORMATION FOR SEQ ID NO:216:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 260 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) forohodi. linear	
(ii) MOLECULE TYPE: cDNA	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:216:	
CTGTATAAAC AGAACTCCAC TGCANGAGGG AGGGCCGGGC CAGGAGAATC TCCGCTTGTC	60
CAAGACAGGG GCCTAAGGAG GGTCTCCACA CTGCTNNTAA GGGCTNTTNC ATTTTTTAT	120
TAATAAAAAG TNNAAAAGGC CTCTTCTCAA CTTTTTTCCC TTNGGCTGGA AAATTTAAAA	180
ATCAAAAATT TCCTNAAGTT NTCAAGCTAT CATATATACT NTATCCTGAA AAAGCAACAT	240
AATTCTTCCT TCCCTCTTT	260
(2) INFORMATION FOR SEQ ID NO:217:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 262 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:	
ACCTACGTGG GTAAGTTTAN AAATGTTATA ATTTCAGGAA NAGGAACGCA TATAATTGTA	60
TCTTGCCTAT AATTTTCTAT TTTAATAAGG AAATAGCAAA TTGGGGTGGG GGGAATGTAG	120
GGCATTCTAC AGTTTGAGCA AAATGCAATT AAATGTGGAA GGACAGCACT GAAAAATTTT	180
ATGAATAATC TGTATGATTA TATGTCTCTA GAGTAGATTT ATAATTAGCC ACTTACCCTA	240
ATATCCTTCA TGCTTGTAAA GT	262
(2) INFORMATION FOR GRO ID NO 212	
(2) INFORMATION FOR SEQ ID NO:218:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 205 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	٠.
(D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:	
The state of the s	
ACCAAGGTGG TGCATTACCG GAANTGGATC AANGACACCA TCGTGGCCAA CCCCTGAGCA	60
CCCCTATCAA CTCCCTTTTG TAGTAAACTT GGAACCTTGG AAATGACCAG GCCAAGACTC	120
AGGCCTCCCC AGTTCTACTG ACCTTTGTCC TTANGTNTNA NGTCCAGGGT TGCTAGGAAA	180
ANAAATCAGC AGACACAGGT GTAAA	205

(2) INFORMATION FOR SEQ ID NO:219:

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 114 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(5) Tolighooti Hindu	
	(ii) MOLECULE TYPE: cDNA	
	(II) Moddeodd IIII. Chwa	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:	
	(XI) SECOLACE DESCRIPTION. SEQ ID NO.219.	
	TACTGTTTTG TCTCAGTAAC AATAAATACA AAAAGACTGG TTGTGTTCCG GCCCCATCCA	<i>c</i> 0
		60
	ACCACGAAGT TGATTTCTCT TGTGTGCAGA GTGACTGATT TTAAAGGACA TGGA	114
	(2) INFORMATION FOR CHO TO NO 220	
	(2) INFORMATION FOR SEQ ID NO:220:	
	(i) OPOVIDNOS GUADA OPPOZACIO	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 93 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:	
	ACTAGCCAGC ACAAAAGGCA GGGTAGCCTG AATTGCTTTC TGCTCTTTAC ATTTCTTTTA	60
	AAATAAGCAT TTAGTGCTCA GTCCCTACTG AGT	93
	(2) INFORMATION FOR SEQ ID NO:221:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 167 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	, , , , , , , , , , , , , , , , , , ,	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:	
	(III) Dayonica Dabbattition Bay is not 221.	
	ACTANGTGCA GGTGCGCACA AATATTTGTC GATATTCCCT TCATCTTGGA TTCCATGAGG	60
	TCTTTTGCCC AGCCTGTGGC TCTACTGTAG TAAGTTTCTG CTGATGAGGA GCCAGNATGC	120
	CCCCCACTAC CTTCCCTGAC GCTCCCCANA AATCACCCAA CCTCTGT	167
	CCCCCACTAC CITCCCTGAC GCTCCCCANA AATCACCCAA CCTCTGT	101
	(2) INFORMATION FOR SEQ ID NO:222:	
	(2) INFORMATION FOR SEQ 1D NO:2222:	
	(i) CROUDING GUIDE GREET GO	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 351 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
•	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:	
	AGGGCGTGGT GCGGAGGGCG GTACTGACCT CATTAGTAGG AGGATGCATT CTGGCACCCC	60
	GTTCTTCACC TGTCCCCCAA TCCTTAAAAG GCCATACTGC ATAAAGTCAA CAACAGATAA	120
	ATGTTTGCTG AATTAAAGGA TGGATGAAAA AAATTAATAA TGAATTTTTG CATAATCCAA	180
	TTTTCTCTTT TATATTTCTA GAAGAAGTTT CTTTGAGCCT ATTAGATCCC GGGAATCTTT	240
•	TAGGTGAGCA TGATTAGAGA GCTTGTAGGT TGCTTTTACA TATATCTGGC ATATTTGAGT	300

CTCGTATCAA AACAATAGAT TGGTAAAGGT GGTATTATTG TATTGATAAG T	351
(2) INFORMATION FOR SEQ ID NO:223	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 383 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(D) TOPOLOGY: Timear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:	
AAAACAAACA AACAAAAAAA ACAATTCTTC ATTCAGAAAA ATTATCTTAG GGACTGATAT	60
TGGTAATTAT GGTCAATTTA ATWRTRTTKT GGGGCATTTC CTTACATTGT CTTGACAAGA	120
TTAAAATGTC TGTGCCAAAA TTTTGTATTT TATTTGGAGA CTTCTTATCA AAAGTAATGC	180
TGCCAAAGGA AGTCTAAGGA ATTAGTAGTG TTCCCMTCAC TTGTTTGGAG TGTGCTATTC	240
TAAAAGATTT TGATTTCCTG GAATGACAAT TATATTTTAA CTTTGGTGGG GGAAANAGTT	300
ATAGGACCAC AGTCTTCACT TCTGATACTT GTAAATTAAT CTTTTATTGC ACTTGTTTTG	. 360
ACCATTAAGC TATATGTTTA AAA	383
(2) INFORMATION FOR SEQ ID NO:224	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 320 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:224	
CCCCTGAAGG CTTCTTGTTA GAAAATAGTA CAGTTACAAC CAATAGGAAC AACAAAAAGA	60
AAAAGTTTGT GACATTGTAG TAGGGAGTGT GTACCCCTTA CTCCCCATCA AAAAAAAAA	120
GGATACATGG TTAAAGGATA RAAGGGCAAT ATTTTATCAT ATGTTCTAAA AGAGAAGGAA	180
GAGAAAATAC TACTTTCTCR AAATGGAAGC CCTTAAAGGT GCTTTGATAC TGAAGGACAC	240
AAATGTGGCC GTCCATCCTC CTTTARAGTT GCATGACTTG GACACGGTAA CTGTTGCAGT	300
TTTARACTCM GCATTGTGAC	320

CLAIMS

- 1. A polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NOS: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209-211, 220, 222-224, the complements of said nucleotide sequences and variants of said nucleotide sequences.
- 2. A DNA molecule comprising a nucleotide sequence encoding the polypeptide of claim 1.
- 3. A DNA molecule having a sequence provided in SEQ ID NOS: 2, 3, 8-29, 41-45, 47-52, 54-65, 70, 73-74, 79, 81, 87, 90, 92, 93, 97, 103, 104, 107, 109-111, 115-160, 171, 173-175, 177, 181, 188, 191, 193, 194, 198, 203, 204, 207, 209-211, 220 and 222-224.
 - 4. An expression vector comprising the DNA molecule of claims 2 or 3.
 - 5. A host cell transformed with the expression vector of claim 4.
- 6. The host cell of claim 5 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cell lines.
- 7. A pharmaceutical composition comprising the polypeptide of claim 1 and a physiologically acceptable carrier.
- 8. A vaccine comprising the polypeptide of claim 1 and a non-specific immune response enhancer.

- 9. The vaccine of claim 8 wherein the non-specific immune response enhancer is an adjuvant.
- 10. A vaccine comprising the DNA molecule of claims 2 or 3 and a non-specific immune response enhancer.
- 11. The vaccine of claim 10 wherein the non-specific immune response enhancer is an adjuvant.
- 12. A pharmaceutical composition for the treatment of prostate cancer comprising a polypeptide and a physiologically acceptable carrier, the polypeptide comprising an immunogenic portion of a prostate protein or of a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 5-7, 30-40, 46, 53, 66-69, 71, 72, 75-78, 80, 82-86, 88, 89, 91, 94-96, 98-102, 105, 106, 161-170, 179, 180, 182-187, 189, 190, 192, 195-197, 199-202, 205, 206, 208, 212-219 and 221, the complements of said nucleotide sequences and variants of said nucleotide sequences.
- 13. A vaccine for the treatment of prostate cancer comprising a polypeptide and a non-specific immune response enhancer, said polypeptide comprising an immunogenic portion of a prostate protein or a variant thereof, wherein said protein comprises an amino acid sequence encoded by a DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 5-7, 30-40, 46, 53, 66-69, 71, 72, 75-78, 80, 82-86, 88, 89, 91, 94-96, 98-102, 105, 106, 161-170, 179, 180, 182-187, 189, 190, 192, 195-197, 199-202, 205, 206, 208, 212-219, 221, the complements of said nucleotide sequences and variants of said nucleotide sequences
- 14. The vaccine of claim 13 wherein the non-specific immune response enhancer is an adjuvant.

- 15. A vaccine for the treatment of prostate cancer comprising a DNA molecule and a non-specific immune response enhancer, the DNA molecule having a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID Nos: 5-7, 30-40, 46, 53, 66-69, 71, 72, 75-78, 80, 82-86, 88, 89, 91, 94-96, 98-102, 105, 106, 161-170, 179, 180, 182-187, 189, 190, 192, 195-197, 199-202, 205, 206, 208, 212-219, 221, the complements of said nucleotide sequences and variants of said nucleotide sequences.
- 16. The vaccine of claim 15 wherein the non-specific immune response enhancer is an adjuvant.
- 17. A method for inhibiting the development of prostate cancer in a patient, comprising administering to the patient an effective amount of the pharmaceutical composition of claims 7 or 12.
- 18. A method for inhibiting the development of prostate cancer in a patient, comprising administering to the patient an effective amount of the vaccine of any one of claims 8, 10, 13 or 15.
- A fusion protein comprising two or more polypeptides according to claim 1.
- 20. A fusion protein comprising a polypeptide according to claim 1 and a known prostate antigen.
- 21. A pharmaceutical composition comprising a fusion protein according to any one of claims 19-20 and a physiologically acceptable carrier.
- 22. A vaccine comprising a fusion protein according to any one of claims 19-20 and a non-specific immune response enhancer.
- 23. The vaccine of claim 22 wherein the non-specific immune response enhancer is an adjuvant.

- 24. A method for inhibiting the development of prostate cancer in a patient, comprising administering to the patient an effective amount of the pharmaceutical composition of claim 21.
- 25. A method for inhibiting the development of prostate cancer in a patient, comprising administering to the patient an effective amount of the vaccine of claim 22.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12N 15/12, C07K 14/705, C12N 5/10,	A3	(11) International Publication Number: WO 98/37093
1/21, A61K 38/17, C12N 1/19, A61K 39/00, C12N 15/62	710	(43) International Publication Date: 27 August 1998 (27.08.98)
(21) International Application Number: PCT/US		CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH,
(22) International Filing Date: 25 February 1998 (2	25.02.9	LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
(30) Priority Data: 08/806,099	ι	TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(71) Applicant: CORIXA CORPORATION [US/US]; S 1124 Columbia Street, Seattle, WA 98104 (US).	uite 20	
(72) Inventors: XU, Jiangchun; 15805 Southeast 43r Bellevue, WA 98006 (US). DILLON, Davin, C N.E. 24th Street, Redmond, WA 98053 (US).		
(74) Agents: MAKI, David, J. et al.; Seed and Ber 6300 Columbia Center, 701 Fifth Avenue, Sea 98104–7092 (US).		

(54) Title: COMPOUNDS FOR IMMUNOTHERAPY OF PROSTATE CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds and methods for treating prostate cancer are provided. The inventive compounds include polypeptides containing at least a portion of a prostate tumor protein. Vaccines and pharmaceutical compositions for immunotherapy of prostate cancer comprising such polypeptides, or DNA molecules encoding such polypeptides, are also provided, together with DNA molecules for preparing the inventive polypeptides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria.	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin .	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA :	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL ·	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ.	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		

INTERNATIONAL SEARCH REPORT

Interr mai Application No PCT/US 98/03492

4 01 400			703 30/03432
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/12		A61K38/17
According to	o International Patent Classification (IPC) or to both national classific	ation and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	cumentation searched (classification system followed by classificati CO7K C12N A61K	on symbols)	
Documental	tion searched other than minimum documentation to the extent that s	(-1	
	O STORE WIGH	uch documents are included in tr	e fields searched
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search t	erms used)
			,
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
A	WO 95 04548 A (JENNER TECHNOLOGI February 1995 see the whole document	ES) 16	
A	WO 93 25224 A (VETROGEN CORP) 23 1993 see the whole document	December	
Α	WO 95 30758 A (MAYO FOUNDATION ; INC (US); TINDALL DONALD J (US); November 1995 see the whole document	HYBRITECH YOUNG) 16	
A	EP 0 652 014 A (NAT INST IMMUNOL May 1995 see the whole document	OGY) 10	
		-/	
	ner documents are listed in the continuation of box C.	X Patent family members	are listed in annex.
° Special ca	tegories of cited documents :	"T" later document published aft	er the international filing date
consid	ent defining the general state of the art which is not lered to be of particular relevance document but published on or after the international	or priority date and not in co	onflict with the application but ciple or theory underlying the
"L" docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered nove	or cannot be considered to hen the document is taken alone
citatio	no cited to examinan trie publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" document of particular releva	ance; the claimed invention
otner i	means .	ments, such combined with	one or more other such docu- eing obvious to a person skilled
later ti	ent published prior to the international filing date but an the priority date claimed	in the art. "&" document member of the sai	
Date of the	actual completion of the international search	Date of mailing of the interna	ational search report
3	0 July 1998	0 3	. 11. 1998
Name and r	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Oderwald, H	

3

Form PCT/ISA/210 (second sneet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/US 98/03492

C (Come)	DOCUMENTS COMMENTS	PCT/US 9	8/03492
Category "	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		
y	Onation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	SHORT J M ET AL: "LAMBDA ZAP: A BACTERIOPHAGE LAMBDA EXPRESSION VECTOR WITH IN VIVO EXCISION PROPERTIES" NUCLEIC ACIDS RESEARCH, vol. 16, no. 15, 1988, pages 7583-7600, XP002007597 see the whole document & "AC No. AA453562" EMBL SEQUENCE DATABASE, 10 May 1990, HEIDELBERG, GERMANY, see nucleotides 398-765		2,4-6
X,P	HILLIER L ET AL: "Homo sapiens cDNA clone 788180 (AC No. AA453562)" EMBL SEQUENCE DATABASE, 11 June 1997, HEIDELBERG, GERMANY, XP002073072 see the whole document		2,4-6
	·		
		•	
			_
		•	

INTERNATIONAL SEARCH REPORT

lr. iational application No.

PCT/US 98/03492

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reas	ons:
1. X Claims Nos.:	
because they relate to subject matter not required to be searched by this Authority, namely:	
Remark: Although claims 17, 18, 24 and 25 are directed to a method of treatment of the human/animal body, the search has been carried	
out and based on the alleged effects of the compound/composition	on.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such	
an extent that no meaningful International Search can be carried out, specifically:	
3. Claims Nos.:	
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a	1).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first chart)	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	<u>,-</u> .
This International Searching Authority found multiple inventions in this international application, as follows:	
see further information sheet	
	•
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all	
searchable claims.	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	t .
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report	
covers only those claims for which fees were paid, specifically claims Nos.:	
4. X No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is	
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
see further information sheet, subject 1.	
	•
Remark on Protest	·
The additional search fees were accompanied by the applicant's pro	otest.
No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. Claims: 1-11 and 17-25 all partially

A polypeptide comprising an immunogenic portion or a variant of a prostate protein encoded by SEQ ID NO:2, DNA molecules related to said protein, expression vectors comprising said DNA molecules, hosts transformed with said vectors, fusion proteins comprising said polypeptide, pharmaceutical compositions and vaccines comprising said polypeptide, fusion proteins and DNA.

- Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 3.
- Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 8.
- Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 9.
- 5. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 10.
- Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 11.
- Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 12.
- 8. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 13.
- Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 14.
- 10. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 15.

- 11. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 16.
- 12. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 17.
- 13. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 18.
- 14. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 19.
- 15. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 20.
- 16. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 21.
- 17. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 22.
- 18. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 23.
- 19. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 24.
- 20. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 25.
- 21. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 26.

- 22. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 27.
- 23. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 28.
- 24. Claims: .1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 29.
- 25. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 41.
- 26. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 42.
- 27. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 43.
- 28. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 44.
- 29. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 45.
- 30. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 47.
- 31. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 48.
- 32. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 49.

- 33. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 50.
- 34. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 51.
- 35. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 52.
- 36. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 54.
- 37. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 55.
- 38. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 56.
- 39. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 57.
- 40. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 58.
- 41. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 59.
- 42. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 60.
- 43. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 61.

- 44. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 62.
- 45. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 63.
- 46. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 64.
- 47. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 65.
- 48. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 70.
- 49. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 73.
- 50. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 74.
- 51. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 79.
- 52. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 81.
- 53. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 87.
- 54. Claims: 1-11 and 17-25 all partially

- same as invention 1 but for SEQ ID NO: 90.
- 55. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 92.
- 56. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 93.
- 57. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 97.
- 58. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 103.
- 59. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 104.
- 60. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 107.
- 61. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 109.
- 62. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 110.
- 63. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 111.
- 64. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 115.
- 65. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 116.

- 66. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 117.
- 67. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 118.
- 68. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 119.
- 69. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 120.
- 70. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 121.
- 71. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 122.
- 72. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 123.
- 73. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 124.
- 74. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 125.
- 75. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 126.
- 76. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 127.

- 77. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 128.
- 78. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 129.
- 79. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 130.
- 80. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 131.
- 81. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 132.
- 82. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 133.
- 83. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 134.
- 84. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 135.
- 85. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 136.
- 86. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 137.
- 87. Claims: 1-11 and 17-25 all partially

- same as invention 1 but for SEQ ID NO: 138.
- 88. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 139.
- 89. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 140.
- 90. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 141.
- 91. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 142.
- 92. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 143.
- 93. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 144.
- 94. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 145.
- 95. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 146.
- 96. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 147.
- 97. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 148.
- 98. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 149.

- 99. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 150.
- 100. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 151.
- 101. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 152
- 102. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 153.
- 103. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 154.
- 104. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 155.
- 105. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 156.
- 106. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 157.
- 107. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 158.
- 108. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 159.
- 109. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 160.

- 110. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 171.
- 111. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 173.
- 112. Claims: 1-11 and 17-25
 same as invention 1 but for SEQ ID NO: 174.
- 113. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 175.
- 114. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 177.
- 115. Claims: 1-11 and 17-25
 same as invention 1 but for SEQ ID NO: 181.
- 116. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 188.
- 117. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 191.
- 118. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 193.
- 119. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 194.
- 120. Claims: 1-11 and 17-25 all partially

same as invention 1 but for SEQ ID NO: 198.

- 121. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 203.
- 122. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 204.
- 123. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 207.
- 124. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 209.
- 125. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 210.
- 126. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 211.
- 127. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 220.
- 128. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 222.
- 129. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 223.
- 130. Claims: 1-11 and 17-25 all partially same as invention 1 but for SEQ ID NO: 224.
- 131. Claims: 12-18 all partially

Pharmaceutical compositions and a vaccines comprising an immunogenic portion or a variant of a prostate-specific polypeptide and related DNA sequences, said DNA sequences recited in SEQ ID NO: 5.

- 132. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 6.
- 133. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 7.
- 134. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 30.
- 135. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 31.
- 136. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 32.
- 137. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 33.
- 138. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 34.
- 139. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 35.
- 140. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 36.
- 141. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 37.

- 142. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 38.
- 143. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 39.
- 144. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 40.
- 145. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 46.
- 146. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 53.
- 147. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 66.
- 148. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 67.
- 149. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 68.
- 150. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 69.
- 151. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 71.
- 152. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 72.

- 153. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 75.
- 154. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 76.
- 155. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 77.
- 156. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 78.
- 157. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 80.
- 158. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 82.
- 159. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 83.
- 160. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 84.
- 161. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 85.
- 162. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 86.
- 163. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 88.

- 164. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 89.
- 165. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 91.
- 166. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 94.
- 167. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 95.
- 168. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 96.
- 169. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 98.
- 170. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 99.
- 171. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 100.
- 172. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 101.
- 173. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 102.
- 174. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 105.

- 175. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 106.
- 176. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 161.
- 177. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 162.
- 178. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 163.
- 179. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 164.
- 180. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 165.
- 181. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 166.
- 182. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 167.
- 183. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 168.
- 184. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 169.
- 185. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 170.

- 186. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 179.
- 187. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 180.
- 188. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 182.
- 189. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 183.
- 190. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 184.
- 191. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 185.
- 192. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 186.
- 193. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 187.
- 194. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 189.
- 195. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 190.
- 196. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 192.

- 197. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 195.
- 198. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 196.
- 199. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 197.
- 200. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 199.
- 201. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 200.
- 202. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 201.
- 203. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 202.
- 204. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 205.
- 205. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 206.
- 206. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 208.
- 207. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 212.

- 208. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 213.
- 209. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 214.
- 210. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 215.
- 211. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 216.
- 212. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 217.
- 213. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 218.
- 214. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 219.
- 215. Claims: 12-18 all partially same as invention 131 but for SEQ ID NO: 221.

INTERNATIONAL SEARCH REPORT

mation on patent family members

Inter. Inal Application No PCT/US 98/03492

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9504548	A	16-02-1995	EP	686660 B 7631294 A 0721345 A 9504000 T	12-02-1998 28-02-1995 17-07-1996 22-04-1997
WO 9325224	A	23-12-1993	AU AU CA EP	5428011 A 683841 B 4304593 A 2138122 A 0648126 A 7506113 T	27-06-1995 27-11-1997 04-01-1994 23-12-1993 19-04-1995 06-07-1995
WO 9530758	A .	16-11-1995	CA EP JP 1 ZA AU CA EP	2639095 A 2189774 A 0804593 A 0500294 T 9503727 A 5788996 A 2219876 A 0826056 A 9634964 A	29-11-1995 16-11-1995 05-11-1997 13-01-1998 07-08-1996 21-11-1996 07-11-1996 04-03-1998 07-11-1996
EP 0652014	Ą	10-05-1995	NONE		