Sheet 7: Representations of SU(3) and beyond

J. Evans

Question 1.

Let \mathfrak{g} be the Lie algebra $\mathfrak{sl}(3,\mathbf{C})$ (this will work more generally for any complex semisimple Lie algebra). Suppose that $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V)$ and $\sigma \colon \mathfrak{g} \to \mathfrak{gl}(W)$ are irreducible representations of \mathfrak{g} both having highest weight λ .

- (a) Let v be a highest weight vector in V and w a highest weight vector in W. Show that $v \oplus w$ is a highest weight vector in $V \oplus W$.
- (b) Deduce that there is an irreducible subrepresentation $U \subset V \oplus W$ containing $v \oplus w$, and that the projections $U \to V$ and $U \to W$ are isomorphisms. Hence deduce that V is isomorphic to W. (*Hint: Use Schur's lemma*.)

Question 2.

Let $\rho \colon \mathfrak{su}(3) \to \mathfrak{gl}(V)$ be an irreducible representation of $\mathfrak{su}(3)$ and v be a highest weight vector. Let D be the set of words in $\rho(E_{21}), \rho(E_{31}), \rho(E_{32})$ and let $W \subset V$ be the subspace spanned by the subset $\{wv : w \in D\}$. By induction on the length of w, show that W is preserved by $\rho(E_{12}), \rho(E_{13}), \rho(E_{23})$.

Question 3.

Let \mathbb{C}^3 denote the standard representation of SU(3) and $\Gamma_{a,b}$ denote the unique irreducible representation with highest weight $aL_1 - bL_3$. We will see below that $\Gamma_{a,b}$ exists.

- (a) Show that $\operatorname{Sym}^a \mathbf{C}^3$ is $\Gamma_{a,0}$ and $\operatorname{Sym}^b(\mathbf{C}^3)^*$ is $\Gamma_{0,b}$ and draw the weight diagrams.
- (b) Prove that $\operatorname{Sym}^a \mathbf{C}^3 \otimes \operatorname{Sym}^b(\mathbf{C}^3)^*$ contains an irreducible summand isomorphic to $\Gamma_{a,b}$. This proves existence of an irreducible representation with given highest weight vector $aL_1 - bL_3$.
- (c) Decompose $\mathbb{C}^3 \otimes (\mathbb{C}^3)^*$ into irreducible subrepresentations.
- (d) Decompose $\operatorname{Sym}^2 \mathbf{C}^3 \otimes (\mathbf{C}^3)^*$ into irreducible subrepresentations.
- (e) Decompose $\mathbb{C}^3 \otimes \Gamma_{2,1}$ into irreducible subrepresentations.
- (f) Decompose $(\mathbf{C}^3)^{\otimes 3}$ into irreducible subrepresentations.
- (g) Decompose $\Gamma_{1,1} \otimes \Gamma_{1,2}$ into irreducible subrepresentations.

Question 4. Let $\mathfrak{so}(5, \mathbf{C})$ be the Lie algebra of antisymmetric complex 5-by-5 matrices (the complexification of $\mathfrak{so}(5)$). What is its dimension?

You may use a computer algebra system for the rest of this question.

Consider the abelian Lie subalgebra t spanned by elements

Let L_1 , L_2 be a **Z**-basis for the weight lattice $\mathfrak{t}_{\mathbf{Z}}^*$ given by

$$L_i(H_j) = \delta_{ij}.$$

By considering the adjoint action of H_1 and H_2 on the eight matrices

find the roots in terms of L_1 and L_2 and draw the root diagram in $\mathfrak{t}_{\mathbf{Z}}^*$.

You can think of $\mathfrak{t}_{\mathbf{Z}}^*$ as the usual square lattice in \mathbf{R}^2 .

Question 5. Let V denote the standard 4-dimensional complex representation of SU(4).

- (a) Decompose $V \otimes V$ into its irreducible pieces.
- (b) Decompose $V \otimes V^*$ into its irreducible pieces.