东南大学考试卷(A卷)

迎 :	课程名称通信原理						考试学期					07-	-00	_2	ζE	得分				
																_ `				/\ <u>}</u>
适用专业				信息工程 									卷 考试时间长			可大	<u>医</u> —	120 :	分刊	
(开	卷	•	半	开	卷	请	在	此	写	明	考	试	미	带	哪	些	资	料)
Sec	etion	A (30%	%): T	rue (or Fa	ilse (Give	you	r rea	son	if Fa	lse,	_3%	for (each	ques	tion)	
1.	Ifa	Gau	ıssia	ın pro	cess	is sta	tion	ary, t	hen t	he pr	oces	s is a	lso s	trict	ly sta	tiona	ry.		()
2.	Co	mpa	red 1	to a u	nifor	m qı	antiz	zer, a	non	unifo	rm q	uant	izer	follo	wing	the	μ-lav	v ha	s a la	rger
	SN	R fo	r lo	w-lev	el sig	nals	and	the s	ame	SNR	for l	nigh-	level	sign	nals,	thus	the o	vera	ll SN	R is
	inc	rease	ed b	y usin	ng the	e non	unifo	orm ı	ı-law	quai	ntize	r.							(()
3.	Co	Correlative-level coding uses a partial-response signaling method to avoid ISI.)								
4,	An	An FDM-based ADSL system uses the same frequency band for both downstream and										and								
	ups	strea	m da	ata tra	ınsm	issio	ns, ar	nd a	liffer	ent f	reque	ency	band	l for	telep	hone	serv	ice.	()
5.	If two random variables are uncorrelated, they are also statistically independent. ()									
6.	Considering DSB modulation, its figure of merit is determined by bandwidth. (()									
7.	A PLL can be used for frequency demodulation in an FM system. ()								
8.	In coherent detection of signal in additive white Gaussian noise, the maximum likelihood										nood									
	(M	L) n	ule a	lways	s equ	als tl	ne ma	axim	um a	post	erior	i pro	babil	ity (MAF) rul	e.		()
9.	DN	A rec	quire	es a sa	mpli	ng ra	ite m	uch l	highe	r tha	n the	Nyo	quist	Rate					()
10.	In a	a QF	SK	syste	m, bi	t erro	or rat	e equ	ials s	ymbo	ol en	or ra	ite.						()

Section B(30%): Fill in the Blanks (3% for each question)

1.	Suppose the highest frequency component of a message signal m(t) is 200 Hz, the Nyquist rate of this signal is samples per second.
2.	The matched filter of $g(t) = \cos(\frac{\pi t}{2T})$, $0 \le t \le T$ is $h(t) = $
3.	A random process $X(t)$ is applied to a linear time-invariant filter of frequency response $H(t)$, the output process is $Y(t)$. If the power spectral density of $X(t)$ is $S_X(t)$, then the power spectral density of $Y(t)$ is
4.	12 different message signals, each with a bandwidth of 10 kHz, are to be multiplexed and transmitted. If the multiplexing and modulation methods are FDM and SSB, respectively, then the minimum bandwidth required is kHz; if the multiplexing and modulation methods are TDM and PAM, then the minimum bandwidth required is kHz.
5.	A signal $s(t) = 2\cos(10\pi t)$ V is quantized by a uniform quantizer, the step size of the
	quantizer is 0.1V, then the minimal number of quantization level is $L_{min} = $, the number of bits per sample is at least $R_{min} = $, and the variance of the quantization error is
6.	A narrowband signal is $X(t) = 10\cos(2\pi f_c t + 0.5)$, where f_c is carrier frequency and $f_c = 10$ MHz, the in-phase component of $X(t)$ is
7.	The basic data rate of a digital hierarchy iskb/s.
8.	Basic operations performed in the transmitter of a PCM system are,, and
9.	Bandwidth efficiency of QPSK is bits/s/Hz, bandwidth efficiency of BFSK (Sunde's FSK) is bits/s/Hz, and bandwidth efficiency of 16-QAM is bits/s/Hz.
10	and the state of t

Section C(40%): Calculations (10% for each question)

- 1. (a) Compare the bandwidth efficiency of 16-QAM and 16-PSK;
 - (b) If the maximum power is the same, compare the noise performance of 16-QAM and 16-PSK schemes;
 - (c) If the average power is the same, compare the noise performance of 16-QAM and 16-PSK schemes again.

2. In an MSK system, the modulated signal is

$$s(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t + \theta(t))$$

$$= \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t + \theta(0) \pm \frac{\pi h}{T_b} t), 0 \le t \le T_b$$
(C-1)

where $T_b = 10^{-3}$ sec., $E_b = 10^{-3}$ J, and $f_c = 2000$ Hz.

- (a) Determine the value of h;
- (b) Give a set of orthonormal basis functions to represent the message signals in (C-1);
- (c) If $\theta(t) = \theta(0) + \frac{\pi h}{T_b}t$ and $\theta(t) = \theta(0) \frac{\pi h}{T_b}t$ represent symbols "1" and "0",

respectively, and assuming $\theta(0) = 0$, plot the phase trellis representing the sequence 11101101;

(d) Plot waveform of the modulated MSK signal corresponding to the transmitted sequence 11101101.

第 4 页

- 3. Consider the signal s(t) shown in Fig. C-1,
- (a) Assuming h(t) is the matched filter of s (t), plot the impulse response of h(t);
- (b) When s(t) is applied to h(t), plot the matched filter output in the time domain.

Fig. C-1

4. A communication system has three message signals

$$\begin{cases} s_1(t) = \cos(2\pi \times 9.9 \times 10^6 \times t) \\ s_2(t) = -\cos(2\pi \times 9.9 \times 10^6 \times t) & 0 \le t \le 5 \times 10^{-3} \text{ sec} \\ s_3(t) = \cos(2\pi \times 10.1 \times 10^6 \times t) \end{cases}$$
 (C-2)

They are transmitted with equal probability. Assume the communication channel is an AWGN channel.

- (a) Give a set of orthonormal basis functions to represent the message signals in (C-2);
- (b) Plot the signal-space diagram of the message signals in (C-2);
- (c) If a coherent receiver is used, determine the average probability of symbol error Pe. (Express the result using complementary error function erfc(·) and the ratio of symbol energy to noise power spectral density (Es/N0)).