Tarea 1

Fecha de publicación: Agosto 28, 2020

Fecha de entrega: Domingo 6 de septiembre de 2020.

Indicaciones para el envío de las respuestas:

- 1. Crea un archivo en el que puedas agregar texto e imágenes, y que después lo puedas exportar a PDF.
- 2. Comienza escribiendo tu nombre y el número de la tarea.
- 3. Antes de poner la respuesta, escribe a qué ejercicio corresponde.
- 4. Para los ejercicios teóricos, puedes escribir directamente la respuesta en el archivo o puedes poner una foto de las hojas en donde escribiste tu respuesta. Sólo cuida que se vean claras las imágenes.
- 5. Para los ejercicios de programación:
 - (a) Escribe el nombre del archivo que se tiene que pasar al interprete de Python, o en el caso de C/C++, el archivo que se tiene que compilar. Si requiere alguna instrucción especial para compilarlo, agrega el comando.
 - (b) Si el programa recibe parámetros, indica en que orden se tienen que proporcionar.
 - (c) Da al menos un ejemplo de la manera en que se tiene que ejecutar tu programa y agrega la salida del programa, poniendo directamente el texto que imprime tu programa o poniendo una imagen.
 - (d) Si se te pide generar una gráfica de algún resultado, agrégala al archivo de respuestas.
 - (e) Si tiene algun comentario, agrégalo también al documento de respuestas.
- 6. Trata de dejar algún espacio en blanco entre los ejercicios, por si el revisor quiere poner comentarios.

- 7. Si hay ejercicios de programación, sube los códigos en un archivo ZIP para que no tengas que subir archivo por archivo. Recuerda no adjuntar los executables.
- 8. Convierte el archivo de respuestas a un PDF y súbelo a la tarea que corresponda. Revisa que estén los archivos que quieres enviar antes de presiona el botón para enviar tu trabajo.

Ejercicio 1 (5 puntos).

Supongamos que una computadora tiene 8 dígitos para representar la parte fraccionaria de un número de punto flotante.

- Calcule el valor del épsilon de máquina.
- Dé la represención en notación científica (la mantisa en base 2, multiplicada por 2 elevada al exponente correspondiente) del número 5.
- Dé la representación en notación científica del número consecutivo a 5 en la computadora. Escriba el valor de la distancia d_c entre 5 y su consecutivo. Exprese d_c en términos del épsilon de la máquina.
- Tenemos que el consecutivo de 5 lo podemos expresar como $5 + d_c$. Si tenemos un número real $x \in (5, 5 + d_c)$, entonces la representación en la computadora de x es fl(x) = 5 o $fl(x) = 5 + d_c$. Escriba una cota para el error relativo

$$\left| \frac{fl(x) - x}{x} \right| \tag{1}$$

para las dos posibles representaciones de x.

• Explique si los siguientes números tienen representación exacta en la computada, es decir, si $fl(a_i) = a_i$.

$$a_1 = \epsilon_m/2,$$
 $a_2 = 1 + \epsilon_m/2,$ $a_3 = 1 - \epsilon_m,$ $a_4 = 1 - \epsilon_m/2,$ $a_5 = 1 - \epsilon_m/4,$ $a_6 = \epsilon_m^2,$ $a_7 = 0.125,$ $a_8 = 2^{-10}.$

• Dé una cota para el error relativo de las restas fl(0.9) - fl(0.5) y fl(0.9) - fl(0.895), respecto al verdadero valor. Suponga que fl(x) se obtiene por redondeo hacia abajo (truncamiento de los decimales).

Ejercicio 2 (5 puntos).

Programe la función epsilonFloat que devuelve el épsilon de la máquina ϵ_m para números de simple precisión (32 bits) y la función epsilonDouble para números de doble precisión (64 bits), siguiendo el algoritmo visto en clase:

```
epsilon = 1.0;
unidad = 1.0;
valor = unidad + epsilon;
while valor > unidad,
    epsilon = epsilon/2;
    valor = unidad + epsilon;
end
epsilon = epsilon*2;
```

Usando simple y doble precisión, escriba un programa que haga lo siguiente:

- Imprimir en la consola el valor ϵ_m .
- Para cada una de las filas de la siguiente tabla, asigne los valores a dos variables x_1 y x_2 del tipo que se está trabajando (float o double). Prueba si ese par de valores son iguales, y haga que el programa imprima el resultado de la comporación. Por ejemplo:

1+epsilon y 1 son RESPUESTA, donde RESPUESTA debe ser iguales o diferentes.

x_1	x_2
$1 + \epsilon_m$	1
$\epsilon_m/2$	0
$1 + \epsilon_m/2$	1
$1 - \epsilon_m/2$	1
$1 - \epsilon_m/4$	1
ϵ_m^2	0
$\epsilon_m + \epsilon_m^2$	ϵ_m
$\epsilon_m - \epsilon_m^2$	ϵ_m