FACULTAD DE INGENIERÍA-UBA ÁLGEBRA II. Primer cuatrimestre del 2022 28 de mayo de 2022

Apellido y nombres: Número de padrón: Curso:

Los razonamientos que utilice para resolver cada ejercicio deben constar en el escrito.

1. Sean S_1 y S_2 los subespacios de \mathbb{R}^4 definidos por

$$S_1 = gen\{(1 \ 0 \ 2 \ 1)^T, (1 \ 1 \ 1 \ 1)^T\}$$

$$S_2 = gen\{(2 \ 1 \ 1 \ 0)^T, (1 \ 0 \ 1 \ 0)^T\}$$

Construir un subespacio \mathbb{T} de \mathbb{R}^4 tal que $S_1 \oplus \mathbb{T} = S_2 \oplus \mathbb{T} = S_1 + S_2$. ¿Es único? Si la respuesta es negativa, construir otro.

2. Sea $T: \mathbb{R}_2[x] \to \mathbb{R}^3$ la transformación lineal definida por

$$[T]_{\mathcal{B}}^{\mathcal{C}} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

donde \mathcal{B} y \mathcal{C} son las bases de $\mathbb{R}_2[x]$ y \mathbb{R}^3 , respectivamente, definidas por

$$\mathcal{B} = \{1 + x, 1 - x, 1 - x + x^2\},$$

$$\mathcal{C} = \{(1 \quad 0 \quad 2)^T, (0 \quad 1 \quad -1)^T, (1 \quad 0 \quad 1)^T\}$$

Hallar el conjunto solución de la ecuación $T(p) = (6 \quad 6 \quad 6)^T$.

- 3. Sea Σ la simetría de \mathbb{R}^3 con respecto al plano $\{x \in \mathbb{R}^3 : 2x_1 + x_2 2x_3 = 0\}$ en la dirección de la recta generada por $(0 \ 1 \ -1)^T$. Hallar la imagen por Σ del subespacio $\{x \in \mathbb{R}^3 : x_3 = 0\}$.
- **4.** Se considera el espacio euclídeo (\mathbb{R}^3 , $\langle \cdot, \cdot \rangle$) con el producto interno definido por

$$\langle x, y \rangle = y^T \begin{pmatrix} 3 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix} x,$$

Calcular la distancia del vector $(3 \ 3 \ 1)^T$ al subespacio $\mathbb{S} = \{x \in \mathbb{R}^3 : x_1 + x_2 - x_3 = 0\}.$

5. Usando la técnica de mínimos cuadrados, ajustar los siguientes datos

Mediante una recta y = mx + b.