Introduction to Data Visualization STAT 133

Gaston Sanchez

Department of Statistics, UC-Berkeley

gastonsanchez.com

github.com/gastonstat/stat133

Course web: gastonsanchez.com/teaching/stat133

Graphics

A key component of computing with data consists of **Data Visualization**

Google "data visualization"

Using only numerical reduction methods in data analyses is far too limiting

Consider some data (four pairs of variables)

```
##
                 x2
                           xЗ
      x1
             y1
                       y2
                                  yЗ
                                      x4
                                           y4
                     9.14 10
## 1
      10
           8.04
                 10
                               7.46
                                       8
                                          6.58
## 2
      8
           6.95
                 8
                     8.14
                            8 6.77
                                       8
                                          5.76
## 3
      13
           7.58
                 13
                    8.74 13
                               12.74
                                       8
                                          7.71
## 4
       9
           8.81
                 9
                     8.77
                            9
                                7.11
                                       8
                                          8.84
## 5
      11
           8.33
                 11
                     9.26
                           11 7.81
                                       8
                                          8.47
## 6
      14
           9.96
                                       8
                                          7.04
                 14
                    8.10 14
                               8.84
## 7
       6
           7.24
                 6
                    6.13
                            6
                               6.08
                                       8
                                          5.25
## 8
       4
           4.26
                     3.10
                            4
                                         12.50
                 4
                                5.39
                                      19
## 9
      12
          10.84
                 12
                           12
                               8.15
                                       8
                                          5.56
                     9.13
## 10
       7
           4.82
                    7.26
                            7
                               6.42
                                       8
                                          7.91
                 7
       5
                  5
                            5
                                5.73
                                       8
                                          6.89
## 11
           5.68
                     4.74
```

What things would like to calculate for each variable?

```
x2
##
       x1
                                x3
                                            x4
   Min. : 4.0
               Min. : 4.0
                           Min. : 4.0
                                        Min. : 8
   1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8
##
   Median: 9.0 Median: 9.0 Median: 9.0
                                       Median: 8
##
##
   Mean : 9.0 Mean : 9.0 Mean : 9.0
                                        Mean: 9
   3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5
                                       3rd Qu.: 8
##
##
   Max. :14.0 Max. :14.0 Max. :14.0
                                        Max. :19
```

```
##
        v1
                        y2
                                      yЗ
                                                     v4
   Min. : 4.260
                  Min. :3.100
                                 Min. : 5.39
                                               Min. : 5.250
##
##
   1st Qu.: 6.315
                  1st Qu.:6.695    1st Qu.: 6.25
                                               1st Qu.: 6.170
##
   Median : 7.580
                 Median: 8.140 Median: 7.11 Median: 7.040
   Mean : 7.501
                 Mean :7.501 Mean : 7.50 Mean
##
                                                      : 7.501
##
   3rd Qu.: 8.570 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
   Max. :10.840
                                 Max. :12.74
##
                  Max. :9.260
                                               Max.
                                                      :12.500
```

What things would like to calculate for each pair of variables (e.g. x1, y1)?

```
cor(anscombe$x1, anscombe$y1)
## [1] 0.8164205
cor(anscombe$x2, anscombe$y2)
## [1] 0.8162365
cor(anscombe$x3, anscombe$y3)
## [1] 0.8162867
cor(anscombe$x4, anscombe$y4)
## [1] 0.8165214
```

- \blacktriangleright Mean of x values = 9.0
- \blacktriangleright Mean of y values = 7.5
- least squares equation: y = 3 + 0.5x
- ▶ Sum of squared errors: 110
- Correlation coefficient: 0.816

Are you able to see any patterns, associations, relations?

```
##
             x2
                  v2
                     xЗ
                         v3
                                 v4
     x1
          v1
                              x4
                9.14 10
## 1
     10
       8.04
             10
                         7.46 8 6.58
## 2
    8
       6.95 8
                8.14 8
                         6.77 8 5.76
## 3
    13 7.58 13 8.74 13 12.74 8 7.71
## 4
    9
        8.81 9
                8.77 9 7.11 8 8.84
## 5
    11
       8.33
            11
                9.26 11
                         7.81 8 8.47
             14 8.10 14
                         8.84 8 7.04
## 6
    14 9.96
## 7
    6 7.24 6 6.13 6
                         6.08
                             8 5.25
## 8
    4 4.26 4 3.10 4
                         5.39
                              19 12.50
     12 10.84 12
                9.13 12
                         8.15
                             8 5.56
## 9
## 10
     7 4.82 7 7.26 7
                         6.42
                              8 7.91
## 11
      5 5.68 5 4.74 5
                         5.73
                                 6.89
```

Famous dataset "anscombe" (four data sets)

Our eyes are not very good at looking at numbers

Our eyes are not very good at looking at numbers

But they are great for looking at shapes and detecting patterns

Using only numerical reduction methods in data analyses is far too limiting

Visualization provides insight that cannot be appreciated by any other approach to learning from data. (W. S. Cleveland)

Data Visualization

- Computer Graphics?
- ► Infographics?
- ► Data Art?
- ► Computer Vision?

Infographic

Scientific Imaging

Data Art

April 01, 2012

11:00 am EDT (time of forecast download)

top speed: 28.5 mph average: 9.2 mph

Things commonly said about statistical graphics

- ▶ The data should stand out
- Story telling
- ▶ Big Picture
- "The purpose of visualization is insight, not pictures" (Ben Shneiderman)

We'll focus on statistical graphics and other visual displays of data in science and technology

Graphics for

Exploration & Communication

Graphics for Exploration

- graphics for understanding data
- the analyst is the main (and usually only) consumer
- typically quick & dirty (not much care about visual appearance and design principles)
- lifespan of a few seconds

Graphics for Exploration

Graphics for Communication

- graphics for presenting data
- ▶ to be consumed by others
- must care about visual appearance and design
- require a lot of iterations in order to get the final version
- what's the message?
- who's the audience?
- on what type of media / format?

Graphics for Communication

Graphics (Part I)

In this first part of the course we'll focus on:

- graphics for exploration
- types of statistical graphics
- understanding graphics system in R
- traditional R graphics and graphics with "ggplot2"

Graphics (Part II)

Later in the course we'll talk about:

- graphics for communication
- design principles
- color theory and use of color
- guidelines and good practices
- "shiny" and interactive graphics

Considerations

Number of Variables

Type of Variables

How many variables?

Variables in datasets:

- ▶ 1 univariate data
- 2 bivariate data
- 3 trivariate data
- multivariate data

What type of variables?

- Quantitative -vs- Qualitative
- Continuous -vs- Discrete

Univariate

Quantitative variable:

- Distribution
- How values are distributed
- max, min
- central values
- areas of concentration
- outliers
- patterns

Univariate

Qualitative variable:

- Counts and proportions
- Common values
- Most typical value
- Distribution of proportions

Bivariate

- Quantitative-Quantitative
- Qualitative-Quantitative
- Qualitative-Qualitative

In general we care about association (correlation, relationships)

Multivariate

- Quantitative
- Qualitative
- Mixed

In general we care about association (correlation, relationships)

What about individuals?

- ► Resemblance
- Similarities and disimilarities
- ▶ Typologies