TD6 - Cinématique du point matériel

Exercice 1 - Changement de coordonnées

1. Schéma:

2.
$$\overrightarrow{e_r} = \cos\theta \overrightarrow{e_x} + \sin\theta \overrightarrow{e_y}$$
 et $\overrightarrow{e_\theta} = -\sin\theta \overrightarrow{e_x} + \cos\theta \overrightarrow{e_y}$.

3.
$$\frac{d\overrightarrow{e_r}}{dt} = -\dot{\theta}\sin\theta\overrightarrow{e_x} + \dot{\theta}\cos\theta\overrightarrow{e_y} = \dot{\theta}\overrightarrow{e_\theta}.$$
$$\frac{d\overrightarrow{e_\theta}}{dt} = -\dot{\theta}\cos\theta\overrightarrow{e_x} - \dot{\theta}\sin\theta\overrightarrow{e_y} = -\dot{\theta}\overrightarrow{e_r}.$$

Exercice 2 - Course de voitures radio-télécommandées

1. En posant v la vitesse maximale d'une voiture et a son accélération, la durée Δt nécessaire pour parcourir $d=15\,\mathrm{m}$ est :

$$\Delta t = \frac{v}{2a} + \frac{d}{v}.$$

AN : $\Delta t_A = 5.33\,\mathrm{s}$ et $\Delta t_B = 5.86\,\mathrm{s}$. Anatole l'emporte.

2. La distance d^\prime est par courue en une durée identique par les deux voitures si :

$$d' = \frac{1}{2} \left(\frac{v_B}{a_B} - \frac{v_A}{a_A} \right) \frac{v_A v_B}{v_B - v_A} = 6.2 \,\mathrm{m}.$$

Barnabé doit choisir une distance inférieure à d' pour gagner.

Exercice 3 – May the force be with you

1.
$$v_0 = \frac{6L}{\Delta t} = 100 \,\mathrm{m \cdot s^{-1}}.$$

- 2. L'amplitude Y_0 de la sinusoïde doit rester inférieure à $\frac{10gL^2}{\pi^2v_0^2}$.
- 3. Déterminer l'amplitude de la sinusoïde pour que l'accélération du véhicule reste inférieure à 10g en valeur absolue, avec $g = 9.81 \,\mathrm{m\cdot s^{-2}} = 40 \,\mathrm{m}$. Il passe proche des poteaux, mais c'est un Jedi!

Exercice 4 - Satellite géostationnaire

1. Schéma:

2.
$$v = \frac{2\pi r}{T}$$
.

3.
$$r = \left(\frac{g_0 R^2 T^2}{4\pi^2}\right)^{\frac{1}{3}} = 42.4 \,\mathrm{km}, \,\mathrm{donc} \,h = r - R = 36 \,\mathrm{km}.$$

4.
$$v = 3.1 \,\mathrm{km \cdot s^{-1}}$$
.

Exercice 5 - Mouvement elliptique

1.
$$\alpha = a$$
, $\beta = b$, $\varphi = 0$ et $\psi = -\frac{\pi}{2}$.

2.
$$\overrightarrow{OM} = a \cos \omega t \overrightarrow{e_x} + b \sin \omega t \overrightarrow{e_y}$$
.
 $\overrightarrow{v} = -a\omega \sin \omega t \overrightarrow{e_x} + b\omega \cos \omega t \overrightarrow{e_y}$.
 $\overrightarrow{a} = -a\omega^2 \cos \omega t \overrightarrow{e_x} + -b\omega^2 \sin \omega t \overrightarrow{e_y}$.

- 3. $\overrightarrow{a} = -\omega^2 \overrightarrow{OM}$: \overrightarrow{a} et \overrightarrow{OM} sont colinéaires mais de sens opposés.
- 4. \overrightarrow{OM} , \overrightarrow{v} , \overrightarrow{a} :

Exercice 6 - Ballon sonde

1.
$$\dot{z} = v_0, z(t) = v_0 t.$$

2.
$$\dot{x} = \frac{v_0 t}{\tau}$$
, $x(t) = \frac{v_0 t^2}{2\tau}$.

3.
$$z(x) = \sqrt{2v_0\tau x}$$
.

4.
$$\overrightarrow{OM}$$
, \overrightarrow{v} , \overrightarrow{a} :

5.
$$\ddot{x} = \frac{v_0}{\tau}$$
 et $\ddot{z} = 0$.