Functional Analysis Assignment 3

Ashish Kujur

Note

A checkmark \checkmark indicates the question has been done.

Contents

1	Question 1	2
2	Question 2	3

1 Question 1

Let V and W be two NLS and $T:V\to W$ be a linear map. Show that T is continuous if and only if T maps every Cauchy sequence of V to a Cauchy sequence of W.

Proof. Let V, W be two NLS and let $T: V \to W$ be a linear map.

 (\Longrightarrow) Suppose that T is continuous. Let $\{x_n\}$ be a Cauchy sequence in X. We want to show that $\{Tx_n\}$ is Cauchy sequence in Y. To do so, let $\varepsilon > 0$ be given. By the continuity of T, there is some k > 0 such that

$$||Tx|| \le k ||x|| \text{ for every } x \in X. \tag{1.0.1}$$

Since $\{x_n\}$ is Cauchy, there is some $N \in \mathbb{N}$ such that

$$||x_n - x_m|| < \frac{\varepsilon}{k} \text{ for every } n, m \ge N$$
 (1.0.2)

Thus, for every $n, m \geq N$, we have that

$$||Tx_n - Tx_m|| \le k ||x_n - x_m||$$
 from 1.0.1
 $< \varepsilon$ from 1.0.2

This shows that $\{Tx_n\}$ is Cauchy in Y.

 (\Leftarrow) We prove it by contrapostitively. Suppose that T is not continuous. Then for every k > 0,

$$||Tx|| > k ||x||$$
 for some $x \in X$.

Thus, for each $n \in \mathbb{N}$, we can find some $x_n \in X$ such that $||Tx_n|| > n^2 ||x_n||$. Consider the sequence $\{y_n\}$ in V defined by

$$y_n = \frac{x_n}{n \|x_n\|}$$
 for each $n \in \mathbb{N}$

We now show that $\{y_n\}$ is Cauchy. Let $\varepsilon > 0$ be given. Select $N \in \mathbb{N}$ such that $\frac{2}{N} < \varepsilon$. For $k \in \mathbb{N}$ and $n \geq N$, we have that

$$||y_{n+k} - y_m|| = \left\| \frac{x_{n+k}}{(n+k) ||x_{n+k}||} - \frac{x_n}{n ||x_n||} \right\|$$

$$\leq \frac{1}{n+k} + \frac{1}{n}$$

$$= \frac{2}{n} \leq \frac{2}{N} < \varepsilon$$

This shows that $\{y_n\}$ is Cauchy but on the other hand, we have that

$$||Ty_n|| = \left| \left| T\left(\frac{x_n}{n ||x_n||}\right) \right| > n$$

This shows that $\{Ty_n\}$ is unbounded, a property which Cauchy sequences cannot have. \Box

2 Question 2

Let X be a real NLS and $T: X \to \mathbb{R}$ be a non continuous linear functional. Then show that $T(U) = \mathbb{R}$ for any non empty open subset $U \subseteq X$.

Proof. We first show that $T(B_X(0,1)) = \mathbb{R}$ and we will show that this is all we need. First, suppose that T is not continuous. Therefore, for every k > 0,

$$|Tx| > k \text{ for some } x \in \overline{B_X(0,1)}.$$
 (2.0.1)

It is clear that $T(B_X(0,1)) \subset \mathbb{R}$. To show the reverse inclusion, let $\alpha \in \mathbb{R}$ then by 2.0.1, we have that there is some $x \in X$ with $||x|| \le 1$ and $|Tx| > |\alpha| + 1$. Now, now define the vector $y = \frac{\alpha}{Tx}x$. Observe that

$$Ty = \alpha \frac{Tx}{Tx} = \alpha$$

and

$$||y|| = \left|\frac{\alpha}{Tx}\right| ||x||$$

$$< \frac{\alpha}{|\alpha| + 1} ||x||$$

$$\leq ||x|| = 1$$

Hence, we have that $\alpha \in T(B(0,1))$. It remains to show that it suffices to work on the unit ball.

Let U be any nonempty open set in X. Then there is some point $x_0 \in U$ and some r > 0 such that $B(x_0, r) \subset U$. Observe that

$$T(B(x_0, r)) = T(x_0 + rB(0, 1))$$

= $T(x_0) + rB(0, 1)$

Since by the previous argument, we have $B(0,1) = \mathbb{R}$. Hence, we have that $\mathbb{R} \subset U$ and thus, we are done.