## Linear Independence

Definition: (Linear Independence and Dependence)

Let  $S = \{V_1, V_2, --, V_m\}$  be a non-empty set of vectors in a vector space V.

If there exist some non-zero dis, 1515 m such that  $\left| \frac{1}{\sqrt{1+4}} \right| \sqrt{1+4} + \sqrt{1+4} = 0$ 

Then the Set 'S" is called a "Linearly Dependent set".

Otherwise, the set S is called "lineary independent.

Example: - The most basic linearly Independent set in IRM is the set of standard unit vectors

e\_=(1,0,--10), e\_=(0,1,0,0,--), ---, en=(0,0,--, 1)

Solo diet de 2 ez + -- du en = Or vector mi IR"

$$\Rightarrow$$
  $(d_1, d_2, --, d_n) = (0, 0, --, 0)$ 

$$\Rightarrow \alpha_1 = 0, \quad \alpha_2 = 0, \quad ---, \quad \alpha_n = 0$$

Thus, e., e., --, en are linearly independent.

The set {[00], [00], [00], [01]} le linearly independent

Solve 
$$x_1 \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \alpha_1^\circ = 0 \quad \forall \quad 1 \leq i \leq 4.$$

The set {1, t, t2, --, tr} is a linearly independent set. 3) Jn. Pn(+), Soli- do. 1+dittoz t² + x3 t³ + - + xnt" = 0: zero polynomial. ie do + dit + d2 t2 + d3 t3+ --- + dnt = 0.1 + 0.t + -- + 0.t" comparing the like powers of t, we obtain.

 $d_0 = 0$ ,  $d_1 = 0$ ,  $d_2 = 0$ , ---,  $d_n = 0$ 

Thus the set &1, t, t2, --; t ngt is linearly independent.

4) Determine whether the vectors  $V_1=(1,-2,3)$ ,  $V_2=(5,6,-1)$ ,  $V_3=(3,2,1)$  are linearly indepenent or linearly dependent in  $IR^3$ .

Sol":- Comider  $x_1 v_1 + x_2 v_2 + x_3 v_3 = 0$ d, (1,-2,3) + d2 (5,6,-1) + d3 (3,2,1) = 0

 $x_1 + 5x_2 + 3x_3 = 0$  $-2d_1 + 6d_2 + 2d_3 = 0$   $3d_1 - d_2 + d_3 = 0$ 

whether the given system have Thus, we need to check that thivial solver or not.

One can easily that the system has non-trivial solm ie  $x_1 = -\frac{t}{2}$ ,  $x_2 = -\frac{t}{2}$ ,  $x_3 = t$ 

This means that the vectors &V1, V2, V3 & are linearly dependent.

# Determine whether the vectors

$$V_1 = (1, 2, 2, +1)$$
,  $V_2 = (4, 9, 9, -4)$ ,  $V_3 = (5, 8, 9, -5)$   
in IR4 are linearly dependent or linearly independent.

Sol": Consider

$$\Rightarrow \frac{1}{2} x_1 + 9x_2 + 5x_3 = 0$$

$$\frac{2}{4} x_1 + 9x_2 + 8x_3 = 0$$

$$\frac{2}{4} x_1 + 9x_2 + 9x_3 = 0$$

$$-x_1 - 4x_2 - 5x_3 = 0$$

$$R_3 \rightarrow R_3 - R_2 \sim \begin{bmatrix} 1 & 4 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, we obtain  $d_1 = 0 = d_2 = d_3$ 

Hence {V1, V2, V3} are direasly independent.

 $\Rightarrow \frac{\alpha_1 + 5\alpha_2 + \alpha_3 = 0}{-\alpha_1 + 3\alpha_2 + 3\alpha_3 = 0}$   $-2\alpha_2 - \alpha_3 = 0.$ 

We note that linearly indepdente or linearly dependence hinges on whether the above system has a trivial solw.

We can easily see that the system has non-terval sol.

(: det of coefficient materia is zero).

Thus, { h, h2, h2 } is linearly dependent.

- D Let S= {u, u2, --, um} CIR and consider the nxm matur  $A = [u_1 \quad u_2 \quad -- \quad u_m]$ .
- Then S is Linearly independent aff the system AX = 0has trivial solution.
- 2) A set S with two or more vector is (a) linearly dependent iff at least one of the vectors in S is expressible as a linear combination of the other vectors in S.
  - (b) Linearly independent of no vector in S is expressible as a linear combination of the other vectores in S.
- 3) A set that contains "O" is linearly dependent.
- 4) A set with exactly one vector is linearly independent iff that vector is not 0.
- 5) A set with exactly two vectors is loi. Aff neither vector is a scalar multiple of other.
- 6) det S= &V1, V2, --, Nr } be a set of vectors mil?". H 87n, the S is lod.

Geometric Interpretation of Linear Independence Dependence





Linearly independent.

# Three vectors in IR3 are l.i iff they don't lie in the same plane when they have their initial pts at origin Otherwise, at least one would be a linear at origin combination of other two.





## BASIS OF A VECTOR SPACE .

Definition - If V is any vector space and S = & V1, V2, --, Vn } is a finite set of vectors in V.

Then S is called a basis for V if the following two conditions hold:

(1') S is linearly independent.

Dimension: No. of vectors in a basis for V denoted by dim(v)

Example: The standard Basis for IR":

 $e_1 = (1,0,--,0)$ ,  $e_2 = (0,1,--,0)$ , ---,  $e_n = (0,0,--,1)$ The standard unit vectors

span IRM and are linearly independent.

(span) (As, V=(x1, x2,-,xn) = x1 e1+x2e2+--+xnen

d1 12+ d2 12+ -- + dnen = 0

 $\Rightarrow$   $(\alpha_1, \alpha_2, --, \alpha_n) = (0, 0, --, 0)$ 

=)  $\alpha_1 = 0 = \alpha_2 = - - = \alpha_n$ 

Thus er, ez, -- en are loi)

[ called standard Hence Sei, ez, --, en j form a basis of IR". basis of 1R")

2) Show that {(1,1), (1,0)} form a bousis of 12.

«((1,1) + «2 (1,0) = 0 301: Check linearly independent? => <1+42 =0, d2=0

= = 0 , d2 = 0

Spaning - (a, b) = x (1, 1) + B(1,0)

ie (a,b) = (a-b) (1,0) + b(1,1) ⇒ b= x, 8= a-b

a basis of IR. Thus & (1,1), (1,0) form

Show that the vectors  $V_1 = (1,2,1)$ ,  $V_2 = (2,9,0)$  &  $V_3 = (3,3,4)$ form a basis of IR3. Sol's We must show that the vectors Vi, V2, V3 are linearly independent and span IR3. (i) To prove linear independence, we must show that d1 V1 + d2 V2 + d3 V3 = 0. has only the trivial sol<sup>n</sup> i.e  $\alpha_1 = 0 = \alpha_2 = \alpha_3$ . «((1,2,1) + «2 (2,9,0) + «3 (3,3,4) = (0,0,0)  $\alpha_{1} + 2\alpha_{2} + 3\alpha_{1} = 0$   $2\alpha_{1} + 9\alpha_{2} + 3\alpha_{3} = 0$   $\alpha_{1} + 4\alpha_{3} = 0$  $A^{2}\begin{bmatrix}1&2&3\\2&9&3\\1&0&4\end{bmatrix}$ Solve the above system, we obtain  $x_1 = x_2 = d_3 = 0$ (11) & V1, V2, V3 & span IR3. ie let  $(a,b,c) \in \mathbb{R}^3$  then  $(a,b,c) = \alpha_1 V_1 + \alpha_2 V_2 + \alpha_3 V_3$ 

(ii) ?  $\lor$ 1,  $\checkmark$ 2,  $\checkmark$ 3 ) 1

i.e. let  $(a,b,c) \in IR^3$  Then  $(a,b,c) = \alpha_1 \lor_1 + \alpha_2 \lor_2 + \alpha_3 \lor_3$ i.e. we need to sinkere,  $(a,b,c) = \alpha_1 (1,2,1) + \alpha_2 (2,9,0) + \alpha_3 (3,3,9)$ golve the system of eqn  $\alpha_1 + 2\alpha_2 + 3\alpha_3 = \alpha$   $\alpha_1 + 2\alpha_2 + 3\alpha_3 = \alpha$   $\alpha_1 + 2\alpha_2 + 3\alpha_3 = \alpha$   $\alpha_1 + \alpha_2 + \alpha_3 = \alpha$ The can check that the above system have a unique soft.

Thus, the vectors  $\{V_1, V_2, V_3\}$  form a basis for  $IR^3$ .

dim  $(IR^3) = 3$ .

Ex: The Standard Basis for Pn. Show that  $S=$1, x, x_3^2 - -1 x^n$  is a basis for the vector Space Pn of polynomials of degree less than or equal to 'n'. Find the dimension of Pn. S'ol : Clearly S span Pn as p(x) EPn can be written as

P(x) = ao + a<sub>1</sub> xt - - + a<sub>n</sub> x<sup>n</sup>. Then  $a_0 + a_1 x + - + a_n x^n = a_{0.1} + a_1 x + - - + a_n x^n$ Then S span Pn. (11) Sis l.i. For this, consider autaixt -- +anx" = 0= rero polynomical Comparing the like powers of 2, we obtain  $a_0 = 0 = a_1 = -- = a_n$ . dim Pn = No. of elements (vectors) mi S = m+1. Ex: Show that the matrices  $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ form a basis for the vector space M22 of 2A2 matuces Sol": clearly [ab] = aM, + bM2 + cM3 + dM4 i'e & M, M2, M3; My3 span M22. For loi, consider de Mit de Me t de Ma + de Mu = 0  $\Rightarrow \begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ >> <1°=0 > 1312 4. & dim(\$M1,M21M3,M1) = 4. Thus, SMI, M2, M3, My juli.