CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-TAGUS, LERCI, LEGI E LEE – 1º SEM. 2006/07 3º FICHA DE EXERCÍCIOS

I. Continuidade de Funções.

1) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} k + e^{-\frac{1}{x}}, & x > 0 \\ x(2-x), & x < 0. \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 2) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x \sin \frac{1}{x} &, x > 0 \\ (k - x)(2 + x) &, x < 0 \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 3) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x \cos \frac{1}{x} &, x > 0\\ (x+k)(2+x) &, x < 0 \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.

4) Considere a função $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \log\left(2 + \frac{k}{x}\right) &, x > 1 \\ 1 - x^2 &, x < 1 \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto 1.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 5) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{\sin^2(x)}{x^2} &, x > 0\\ k(x+1)^2 &, x < 0 \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- **6)** Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \tan\left(\frac{\pi x}{2(1+x)}\right) &, x > 0\\ (x+1)^2 - k &, x < 0. \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 7) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} k \frac{\sin(3x)}{x} & , x > 0 \\ 1 - x^2 & , x < 0 \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.

- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 8) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 4 \sin\left(\frac{\pi}{2+x^2}\right) & , \ x > 0 \\ (k-x)(2+x) & , \ x < 0 \end{cases}.$$

onde $k \in \mathbb{R}^+$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}^+$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 9) Considere a função $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} e^{-\frac{1}{x-1}} &, x > 1\\ (k-x)(1+x) &, x < 1 \end{cases}$$

onde $k \in \mathbb{R}^+$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}^+$ para o qual a função f é prolongável por continuidade ao ponto um.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- **10)** Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 2\cos\left(\frac{\pi}{2+x^2}\right) & , \ x > 0 \\ (k-x)(2+x) & , \ x < 0 \end{cases}.$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 11) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} 3\cos\left(\frac{\pi}{1+x^2}\right) & , \ x > 0 \\ (k-x)(x+1) & , \ x < 0 \end{cases}.$$

onde $k \in \mathbb{R}$ é uma constante.

(a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.

- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 12) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \log\left(\frac{k}{2+x^2}\right) & , \ x > 0 \\ -x(2+x) & , \ x < 0 \ . \end{cases}$$

onde $k \in \mathbb{R}^+$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}^+$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- 13) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x > 0\\ (k-x)(x+1), & x < 0. \end{cases}$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F:\mathbb{R}\to\mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- **14)** Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \log\left(\frac{2}{2+x^2}\right) &, x > 0\\ (k-x)(2+x) &, x < 0. \end{cases}$$

onde $k \in \mathbb{R}^+$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}^+$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.

15) Considere a função $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} k \sin\left(\frac{\pi}{2+x}\right) & , \ x > 0 \\ (x-1)^2 & , \ x < 0 \end{cases}.$$

onde $k \in \mathbb{R}$ é uma constante.

- (a) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$.
- (b) Determine o valor da constante $k \in \mathbb{R}$ para o qual a função f é prolongável por continuidade ao ponto zero.
- (c) Denotando por $F: \mathbb{R} \to \mathbb{R}$ esse prolongamento por continuidade, indique justificando o contradomínio de F.
- **16)** Considere as funções $f \in g$ definidas em $\mathbb{R} \setminus \{0\}$ por

$$f(x) = e^{-\frac{1}{x^2}}$$

 $g(x) = x \sin \frac{1}{x} - \cos \frac{1}{x}$.

- (a) Estude as funções no que respeita à continuidade.
- (b) Indique, justificando, se são prolongáveis por continuidade ao ponto 0.
- (c) Mostre que são funções limitadas.
- 17) Considere as funções f e g definidas em $]0, +\infty[$ por

$$f(x) = \log \log(1+x)$$

$$g(x) = \sqrt{x} \operatorname{sen} \frac{1}{x^2}.$$

- (a) Estude as funções no que respeita à continuidade.
- (b) Calcule $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to+\infty} g(x)$.
- (c) Indique, justificando, se são prolongáveis por continuidade ao ponto 0.
- (d) Indique, justificando, o contradomínio de f.

II. Axioma de Supremo

- 1) Seja A um subconjunto de \mathbb{R} majorado e não-vazio, com supremo $s = \sup A$. Mostre que para qualquer $\epsilon > 0$ existe $a \in A$ tal que $a > s \epsilon$.
- 2) Seja A um subconjunto de \mathbb{R} majorado e não-vazio, com supremo $s = \sup A$. Seja ainda $m \in \mathbb{R}$ um majorante de A distinto de s. Mostre que existe $\epsilon > 0$ tal que $a < m \epsilon$ para todo o $a \in A$.
- 3) Sejam $A \in B$ dois subconjuntos de \mathbb{R} .
 - (a) Prove que se sup $A < \inf B$ então $A \in B$ são disjuntos.
 - (b) Mostre por meio de exemplos que se $\sup A \ge \inf B$ então A e B podem ser ou não disjuntos.
- 4) Sejam A e B dois subconjuntos não-vazios de \mathbb{R} . Considere o subconjunto $C \subset \mathbb{R}$ definido por

$$C = A + B \stackrel{\text{def}}{=} \{x \in \mathbb{R} : x = a + b \text{ com } a \in A, b \in B\}.$$

Mostre que:

- (a) Se A e B têm supremo, então C também tem supremo e sup $C = \sup A + \sup B$.
- (b) Se $A \in B$ têm ínfimo, então C também tem ínfimo e inf $C = \inf A + \inf B$.
- 5) Sejam A e B dois subconjuntos não-vazios de \mathbb{R} , tais que

$$a \leq b$$
, para quaisquer $a \in A$ e $b \in B$.

Mostre que existem o supremo de A e o ínfimo de B, e que sup $A \leq \inf B$.

6) Sejam $A \in B$ dois subconjuntos de \mathbb{R} , limitados e não-vazios, tais que

$$\inf A < \sup B$$
.

Mostre que existem $a \in A$ e $b \in B$ com a < b.

- 7) Sejam A e B dois subconjuntos de \mathbb{R} , não-vazios e limitados, tais que sup $A = \inf B$. Mostre que existem $a \in A$ e $b \in B$ tais que |a - b| < 1.
- 8) Sejam A e B dois subconjuntos de \mathbb{R} , não-vazios e limitados, tais que sup $A = \inf B$. Mostre que para qualquer $\varepsilon > 0$, existem $a \in A$ e $b \in B$ tais que $|a - b| < \varepsilon$.
- 9) Sejam $A, B \subset \mathbb{R}$ dois subconjuntos não-vazios e limitados, tais que inf $B \sup A = 1$. Mostre que existem $a \in A$ e $b \in B$ tais que $1 \le b a < 2$.
- **10)** Sejam $A, B \subset \mathbb{R}$ dois subconjuntos não-vazios e limitados, tais que sup $A \inf B = 1$. Mostre que existem $a \in A$ e $b \in B$ tais que $0 < a b \le 1$.
- 11) Seja A um subconjunto de \mathbb{R} , limitado e não-vazio, tal que sup A inf A=2. Mostre que existem $a_1, a_2 \in A$ tais que $1 < a_2 - a_1 \le 2$.
- 12) Seja A um subconjunto não-vazio de \mathbb{R} , tal que $|a_1 a_2| < 1$ para quaisquer $a_1, a_2 \in A$. Mostre que A tem supremo.
- 13) Sejam A e B dois subconjuntos de \mathbb{R} , não-vazios e majorados, tais que sup $A \leq \sup B$. Mostre que o conjunto $C = A \cup B$ tem supremo e que sup $C = \sup B$.
- **14)** Sejam A e B dois subconjuntos não-vazios de \mathbb{R} , tais que B é majorado e $A \subset B$. Mostre que A e B têm supremo e que sup $A \leq \sup B$.
- **15)** Seja A um subconjunto de \mathbb{R} , não-vazio e majorado, tal que sup A = 1. Mostre que $A \cap [0,1] \neq \emptyset$.

III. Propriedades Globais das Funções Contínuas

- 1) Seja f uma função contínua no intervalo limitado e fechado [0,1], tal que $0 \le f(x) \le 1$ para todo o $x \in [0,1]$. Prove que f tem um ponto fixo, i.e. que existe um ponto $c \in [0,1]$ com f(c) = c. [Sugestão: aplique o teorema de Bolzano a g(x) = f(x) x.]
- 2) Seja f uma função contínua no intervalo limitado e fechado [a,b] (com $a,b \in \mathbb{R}$ e a < b), tal que $f(a) \le a$ e $f(b) \ge b$. Prove que f tem um ponto fixo em [a,b].
- 3) Seja $f: [-1,1] \to \mathbb{R}$ uma função contínua tal que

$$f(-1) = 0 = f(1).$$

Prove que f tem um ponto fixo, i.e. que existe um ponto $c \in [-1, 1]$ com f(c) = c.

4) Seja $f:]-1, 1[\to \mathbb{R}$ uma função contínua tal que

$$\lim_{x \to -1^+} f(x) = -\infty$$
 e $\lim_{x \to 1^-} f(x) = +\infty$.

Prove que f tem um ponto fixo, i.e. que existe um ponto $c \in [-1, 1]$ com f(c) = c.

- 5) Seja $f: [0, +\infty[\to \mathbb{R} \text{ uma função contínua e suponha que existe } b > 0 \text{ tal que } f(b) < f(x) \text{ para todo o } x > b.$ Mostre que f tem mínimo em $[0, +\infty[$.
- **6)** Seja $f:[0,+\infty[\to\mathbb{R}]$ uma função contínua e suponha que existe b>0 tal que f(0)>f(x) para todo o x>b. Prove que f tem máximo em $[0,+\infty[$.
- 7) Dada uma função $g:[0,+\infty[\to\mathbb{R},$ considere a função f que é definida em [-1,1] por $f(x)=g(1-x^2)$.
 - (a) Supondo que g é contínua em todo o seu domínio, mostre que f tem máximo e mínimo.
 - (b) Supondo apenas que g é contínua em $]0, +\infty[$, poderemos garantir a existência de máximo e mínimo de f? Justifique.
- 8) Considere uma função f, contínua em \mathbb{R} , e suponha que existem e são finitos os limites de f quando $x \to +\infty$ e $x \to -\infty$.
 - (a) Prove que f é limitada.
 - (b) Prove que f tem um ponto fixo, i.e. que existe um ponto $c \in \mathbb{R}$ com f(c) = c.
 - (c) Supondo que o produto dos dois limites indicados é negativo, indique, justificando, o máximo da função

$$g(x) = \frac{1}{1 + [f(x)]^2} .$$

- 9) Seja f uma função contínua em \mathbb{R} , com limites positivos quando $x \to +\infty$ e $x \to -\infty$, e tal que f(0) < 0. Mostre que:
 - (a) A equação f(x) = 0 tem pelo menos duas soluções reais.
 - (b) f tem mínimo em \mathbb{R} .
- 10) Seja f uma função contínua em \mathbb{R} , tal que

$$\lim_{x \to -\infty} f(x) = \alpha \quad \text{e} \quad \lim_{x \to +\infty} f(x) = \beta,$$

com $\alpha, \beta \in \mathbb{R}$ e $\alpha < \beta$. Prove que o contradomínio de f contém o intervalo $]\alpha, \beta[$.

11) Seja $f:]-1,1[\to \mathbb{R}$ uma função contínua tal que

$$\lim_{x \to -1^+} f(x) = -\infty = \lim_{x \to 1^-} f(x).$$

Prove que f tem máximo no intervalo]-1,1[.

12) Seja $f:]-1,1[\to \mathbb{R}$ uma função contínua tal que

$$\lim_{x \to -1^+} f(x) = +\infty = \lim_{x \to 1^-} f(x).$$

Prove que f tem mínimo no intervalo]-1,1[.

13) Sejam f e g duas funções contínuas em \mathbb{R} , e considere os conjuntos $A = \{x \in \mathbb{R} : f(x) < g(x)\}$, $B = \{x \in \mathbb{R} : f(x) > g(x)\}$ e $C = \{x \in \mathbb{R} : f(x) = g(x)\}$. Prove que se A e B são não-vazios, então C também é não-vazio.

14) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e positiva (i.e. f(x) > 0, $\forall x \in \mathbb{R}$), tal que

$$\lim_{x \to -\infty} f(x) = 0 = \lim_{x \to +\infty} f(x).$$

Prove que f tem máximo.

15) Seja $f:[0,+\infty[\to\mathbb{R}]$ uma função contínua tal que

$$f(0) > 0$$
 e $\lim_{x \to +\infty} f(x) = 0$.

Prove que f tem máximo no intervalo $[0, +\infty[$.

IV. Cálculo de Derivadas de Funções.

1) Calcule f'(x), sempre que exista, nos casos em que a função f é definida pela expressão:

(a)
$$f(x) = x^2 + 3x + 2$$
 (b) $f(x) = x^4 + \operatorname{sen}(x)$ (c) $f(x) = x^4 \operatorname{sen}(x)$ (d) $f(x) = \frac{1}{x+1}$ (e) $f(x) = \frac{x}{x-1}$ (f) $f(x) = \frac{1}{2 + \cos(x)}$ (g) $f(x) = \frac{x + \cos(x)}{1 - \sin(x)}$ (h) $f(x) = \frac{x \operatorname{sen}(x)}{1 + x^2}$ (i) $f(x) = \operatorname{senh}(x) \cosh(x)$

- 2) (a) A área de uma círculo de raio $r \in \pi r^2$ e o seu perímetro é $2\pi r$. Mostre que a taxa de variação da área em relação ao raio é igual ao perímetro.
 - (b) O volume de uma esfera de raio $r \in 4\pi r^3/3$ e a área da sua superfície é $4\pi r^2$. Mostre que a taxa de variação do volume em relação ao raio é igual à área da superfície.
- 3) Calcule f'(x), sempre que exista, nos casos em que a função f é definida pela expressão:

(a)
$$f(x) = \sqrt{x}$$
 (b) $f(x) = \frac{1}{1 + \sqrt{x}}$ (c) $f(x) = x^{3/2}$ (d) $f(x) = x^{-3/2}$ (e) $f(x) = x^{1/3} + x^{-1/4}$ (f) $f(x) = \frac{\sqrt{x}}{1 + x}$

4) Calcule f'(x), sempre que exista, nos casos em que a função f é definida pela expressão:

(a)
$$f(x) = \tan(x) - x$$
 (b) $f(x) = x \tan(x)$ (c) $f(x) = \cot(x) + x$ (d) $f(x) = \frac{\cot(x)}{x}$ (e) $f(x) = \frac{\tan(x)}{\cot(x)}$ (f) $f(x) = \tan^2(x)$

5) Considere as funções $f \in g$ definidas em \mathbb{R} por

$$f(x) = x|x|$$
 e $g(x) = e^{-|x|}$.

Para cada uma destas funções,

- (a) mostre que é diferenciável em $\mathbb{R} \setminus \{0\}$ e calcule a derivada;
- (b) estude a diferenciabilidade no ponto 0.

6) Calcule, se existirem, as derivadas laterais no ponto 0 da função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

7) Calcule f'(x), sempre que exista, nos casos em que a função f é definida pela expressão:

(a)
$$f(x) = \cos(2x) - 2\sin(x)$$
 (b) $f(x) = \sin(e^x)$ (c) $f(x) = \tan(x/2) - \cot(x/2)$

(d)
$$f(x) = \text{sen}(\cos^2(x))\cos(\sin^2(x))$$
 (e) $f(x) = \frac{\sin^2(x)}{\sin(x^2)}$ (f) $f(x) = \sqrt{1+x^2}$

(g)
$$f(x) = (2-x^2)\cos(x^2) + 2x\sin(x^3)$$
 (h) $f(x) = \frac{x}{\sqrt{4-x^2}}$ (i) $f(x) = \left(\frac{1+x^3}{1-x^3}\right)^{1/3}$ (j) $f(x) = \cos^2(\sqrt{x}) + \sin^2(1/x)$ (k) $f(x) = x(\sin(\sqrt{x}) + \cos(1/x))$

8) Determine a derivada q' em termos de f' se:

(a)
$$g(x) = f(x^2)$$
 (c) $g(x) = f[f(x)]$

(b)
$$g(x) = f(\sin^2(x)) + f(\cos^2(x))$$
 (d) $g(x) = (f \circ f \circ f)(x)$

- 9) Sendo $f: \mathbb{R} \to \mathbb{R}$ a função definida por $f(x) = x^4 e^{-x}$, e sendo $g: \mathbb{R} \to \mathbb{R}$ uma função diferenciável, calcule $(g \circ f)'(x)$ em termos da função g'.
- 10) Sendo $q:\mathbb{R}\to\mathbb{R}$ uma função duas vezes diferenciável, considere a função ϕ : $[0,+\infty[\to\mathbb{R}$ definida por $\phi(x)=e^{g(\log x)}$. Supondo conhecidos os valores de q,q' e g'' em pontos convenientes, determine $\phi'(1)$ e $\phi''(e)$.
- 11) Calcule f'(x), sempre que exista, nos casos em que a função f é definida pela expressão:

(a)
$$f(x) = \log(1+x^2)$$
 (b) $f(x) = x^2(1+\log x)$ (c) $f(x) = \log(\log x)$

(d)
$$f(x) = \log(1 + \sqrt{x})$$
 (e) $f(x) = \log(1 + \sin^2 x)$ (f) $f(x) = \log(1 + \cos^2 x)$

(g)
$$f(x) = e^{\log x}$$
 (h) $f(x) = e^{\sqrt{x}}$ (i) $f(x) = e^{1/x}$ (j) $f(x) = e^{1/\sqrt{x}}$

(g)
$$f(x) = \log(1 + \sqrt{x})$$
 (e) $f(x) = \log(1 + \sin x)$ (f) $f(x) = \log(1 + \cos x)$ (g) $f(x) = e^{\log x}$ (h) $f(x) = e^{\sqrt{x}}$ (i) $f(x) = e^{1/x}$ (j) $f(x) = e^{1/\sqrt{x}}$ (k) $f(x) = e^{\sin^2 x}$ (l) $f(x) = e^{\cos^2 x}$ (m) $f(x) = x^2 e^x$ (n) $f(x) = x e^{x^2}$ (o) $f(x) = 2^{\log x}$ (p) $f(x) = 2^{\sqrt{x}}$ (q) $f(x) = 2^{1/x}$ (r) $f(x) = 2^{1/\sqrt{x}}$ (s) $f(x) = 2^{\sin^2 x}$ (t) $f(x) = 2^{\cos^2 x}$ (u) $f(x) = x^2 2^x$ (v) $f(x) = x 2^{x^2}$ (w) $f(x) = x^x$ (x) $f(x) = x^{\log x}$ (y) $f(x) = (\log x)^x$ (z) $f(x) = x^{1/x}$

(o)
$$f(x) = 2^{\log x}$$
 (p) $f(x) = 2^{\sqrt{x}}$ (q) $f(x) = 2^{1/x}$ (r) $f(x) = 2^{1/\sqrt{x}}$

(s)
$$f(x) = 2^{-x}$$
 (t) $f(x) = 2^{-x}$ (u) $f(x) = x^{-2}$ (v) $f(x) = x2^{-x}$

(w)
$$f(x) = x^x$$
 (x) $f(x) = x^{\log x}$ (y) $f(x) = (\log x)^x$ (z) $f(x) = x^{1/x}$