#### The Bootstrap

#### Probability and Statistics for Data Science

Carlos Fernandez-Granda





These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

# Random sampling

Sample mean = 175.5 ( $\mu_{\mathsf{pop}} = 175.6$ )



## 400 random samples

Sample mean = 175.2 ( $\mu_{pop} = 175.6$ )



## 400 random samples

Sample mean = 176.1 ( $\mu_{pop} = 175.6$ )



# Sample means of 10,000 subsets of size 400

Goal: Quantify uncertainty from available data



#### Confidence interval

Main idea: Report a range of values that contain parameter with high probability (e.g. 95%)



#### Standard error

We need to estimate standard error

For sample mean

$$\operatorname{se}\left[\widetilde{m}\right] = \frac{\sigma_{\mathsf{pop}}}{\sqrt{n}}$$

We use sample standard deviation to estimate  $\sigma_{pop}$ 

What if we don't know the formula?

# Challenge

 $How \ to \ estimate \ standard \ error \ computationally?$ 

If we can sample more data, this is easy

# We sample n data points

Sample mean: 175.5



#### and *n* more

Sample mean: 175.2



#### and *n* more

Sample mean: 176.1



# Distribution of sample means

Standard error = standard deviation = 0.343



#### **Problem**

We only have n data points



Idea: Sample from the *n* data as if they were the population

# The bootstrap

Samples:  $x_1, \ldots, x_n$ 

Bootstrap indices:  $\tilde{k}_1$ ,  $\tilde{k}_2$ , ...,  $\tilde{k}_n$ 

Sampled independently and uniformly with replacement

$$P\left(\tilde{k}_j=i\right)=\frac{1}{n}$$
  $1\leq i,j\leq n$ 

Bootstrap samples:  $\tilde{b}_1, \ldots, \tilde{b}_n$ 

$$\tilde{b}_j = x_{\tilde{k}_j} \qquad 1 \le j \le n$$

# The bootstrap



# Bootstrap standard error

Samples:  $x_1, \ldots, x_n$ 

Estimator:  $h(x_1, \ldots, x_n)$ 

Bootstrap samples:  $\tilde{b}_1$ ,  $\tilde{b}_2$ , ...,  $\tilde{b}_n$ 

The bootstrap standard error of h is

$$\mathsf{se}_\mathsf{bs} = \sqrt{\mathrm{Var}\left[h(\tilde{b}_1, \tilde{b}_2, \dots, \tilde{b}_n)\right]}$$

# Monte Carlo approximation

(1) Generate K batches, 
$$b_i^{[k]}$$
,  $1 \le j \le n$ ,  $1 \le k \le K$ 

(2) Compute parameter estimates

$$W := \{w_1, w_2, \dots, w_K\}, \qquad w_k := h(b_1^{[k]}, b_2^{[k]}, \dots, b_n^{[k]})$$

(3) Bootstrap standard error: Sample standard deviation of W

## Bootstrap samples

Bootstrap sample mean: 175.3



## Bootstrap samples

Bootstrap sample mean: 176.6



## Bootstrap samples

Bootstrap sample mean: 176.2



# Distribution of bootstrap samples

Bootstrap standard error: 0.339 (True standard error: 0.343)



#### Traditional standard-error estimate

$$\sqrt{\frac{v(X)}{n}} = 0.340$$
 (Bootstrap estimate: 0.339)



# Bootstrap standard error of the sample mean

Samples  $X := \{x_1, \dots, x_n\}$  are the "population"

$$\widetilde{m}_{\mathsf{bs}} := \frac{1}{n} \sum_{k=1}^{n} \widetilde{b}_{k}$$

$$\mathrm{E}\left[\widetilde{m}_{\mathsf{bs}}\right] = \text{"Population" mean}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i} = m(X)$$

$$se_{bs}^{2} = Var\left[\widetilde{m}_{bs}\right] = \frac{\text{"Population" variance}}{n}$$
$$= \frac{\frac{1}{n} \sum_{j=1}^{n} (x_{j} - m(X))^{2}}{n}$$
$$= \frac{n-1}{n^{2}} v(X)$$

# Distribution of bootstrap samples

Bootstrap standard error: 0.339 ( $\sqrt{\frac{v(X)}{n}} = 0.340$ )





## Confidence interval for a Gaussian

Let  $\tilde{a}$  be Gaussian with mean  $\mu$  and variance  $\sigma^2$ 

$$\widetilde{\mathcal{I}}_{1-lpha} := \left[ \widetilde{\mathsf{a}} - \mathsf{c}_lpha \sigma, \widetilde{\mathsf{a}} + \mathsf{c}_lpha \sigma 
ight] \qquad \mathsf{c}_lpha := \mathsf{F}_{\widetilde{\mathsf{z}}}^{-1} \left( 1 - rac{lpha}{2} 
ight)$$

$$\widetilde{\mathcal{I}}_{0.95} := [\widetilde{a} - 1.96\sigma, \widetilde{a} + 1.96\sigma]$$

# Bootstrap Gaussian confidence interval

Samples: 
$$X := \{x_1, \dots, x_n\}$$

Estimator: 
$$h(X)$$

Bootstrap standard error: sebs

1- $\alpha$  bootstrap Gaussian confidence interval

$$\mathcal{I}_{1-\alpha}^{\mathsf{BSG}} := [h(X) - c_{\alpha} \mathsf{se}_{\mathsf{bs}}, h(X) + c_{\alpha} \mathsf{se}_{\mathsf{bs}}] \qquad c_{\alpha} := F_{\tilde{z}}^{-1} \left(1 - \frac{\alpha}{2}\right)$$

$$\widetilde{\mathcal{I}}_{0.95} := \left[ h(X) - 1.96 \operatorname{\mathsf{se}}_{\mathsf{bs}}, h(X) + 1.96 \operatorname{\mathsf{se}}_{\mathsf{bs}} \right]$$

## Population correlation coefficient: 0.718



# 100 samples



Sample correlation coefficient:  $\rho_{\text{sample}} = 0.727$ 

Confidence interval?

# Distribution of sample correlation coefficient

True standard error: 0.051



## Bootstrap standard error $se_{bs} = 0.056$



# Bootstrap Gaussian confidence interval

$$\begin{split} \mathcal{I}_{1-\alpha}^{\mathsf{BSG}} &:= [\rho_{\mathsf{sample}} - c_{\alpha} \, \mathsf{se}_{\mathsf{bs}}, \rho_{\mathsf{sample}} + c_{\alpha} \, \mathsf{se}_{\mathsf{bs}}] \\ \\ \mathcal{I}_{0.95}^{\mathsf{BSG}} &:= [\rho_{\mathsf{sample}} - 1.96 \, \mathsf{se}_{\mathsf{bs}}, \rho_{\mathsf{sample}} + 1.96 \, \mathsf{se}_{\mathsf{bs}}] \\ &= [0.617, 0.837] \end{split}$$

# Bootstrap Gaussian confidence intervals

Coverage: 93.7% (out of 10<sup>4</sup>)



What have we learned

Definition of the bootstrap

Bootstrap standard error

Bootstrap Gaussian confidence interval