ECUACIONES DIFERENCIALES

SEGUNDO PARCIAL SERIE 2

a) Obtener la transformada de Laplace o la transformada inversa de Laplace aplicando el segundo teorema de traslación o la formula de una función multiplicada por tⁿ

1)
$$f(t) = (t-4)U(t-1)$$

$$2) f(t) = \cos 2t U(t - \pi)$$

3)
$$f(t) = (t-3)^3 e^{t-3} U(t-3)$$

$$4) f(t) = t^2 semh4t$$

$$5) f(t) = te^{2t} sen6t$$

6)
$$F(s) = \frac{e^{-2s}}{s^3}$$

7)
$$F(s) = \frac{e^{-\pi s}}{s^2 + 1}$$

6)
$$F(s) = \frac{e^{-2s}}{s^3}$$

7) $F(s) = \frac{e^{-\pi s}}{s^2 + 1}$
8) $F(s) = \frac{e^{-s}}{s(s+1)}$

- b) Obtener la transformada de Laplace o la transformada inversa de Laplace aplicando **el teorema de convolución**
 - 1) $\int_0^t e^{ au} d au$
 - 2) $\int_0^t e^{-\tau} cos\tau d\tau$
 - 3) $t \int_0^t sen \tau d\tau$
 - 4) $t^2 * t^4$
 - 5) $e^{-t} * e^t \cos t$
 - $6) \ \frac{1}{s(s+1)}$
 - 7) $\frac{1}{(s+1)(s-2)}$
 - 8) $\frac{s}{(s^2+4)^2}$