

VISUAL PROGRAMMING BASICS 23/24 WS SAGE GATESHEAD DESIGN

FIDEL GATIMU AKARANGA

individualized production

RWTHAACHEN UNIVERSITY

Introduction and Overview

The Sage Gateshead, crafted by the renowned architect Norman Foster, showcases an enchanting curved roof made of glass and stainless steel, resulting in a visually striking and iconic edifice. Its elegant and contemporary architectural style effortlessly harmonizes with the natural environment, establishing it as a notable landmark along the River Tyne's shores.

Analysis

- Consists of 3 concert halls whose position and size can be adjusted parametrically
- 1 Shell structure that covers the 3 concert halls. The structure has:
 - Main beams, secondary beams diagonal braces, glass and stainless stell panels and horizontal beams
- Shape changes based on the shape of the concert hall

Reference: https://divisare.com/projects/286961foster-partners-nigel-young-the-sage-gateshead

3D Model in Rhino

Overview of the Grasshopper script

1.Input Parameters

2. Parametric 3D-modeling

There are 3 main parts in the script:

- The editable input parameters(Concert halls)
- Parametric 3D model of the shell structure
- And the 2D fabrication data

3. 2D fabrication plans

Parametric Design Process: Input parameters

Parametric Design Process: Modelling the shell

To generate the shell contour lines we:

- Expand the bottom edge line of the concert halls
- Cut line edges
- Pick up the relevant lines to get outer contour lines of the shells

To generate the shell frame, we:

- Rotate the bottom edge to generate a curved and reference points
- Generate intersection points based on the reference points
- Connect the points to form the outer frame of the shell

Parametric Design Process: Arch beams and secondary arch beams

To generate the main and secondary beams:

- Filter the beams with Boolean operations
- Put the correct dimensions

Parametric Design Process: Horizontal beams and diagonal braces

To generate diagonal braces:

- Diagonally link the intersections of the beams to form the diagonal frame
- Put the correct dimensions

To generate horizontal beams:

- Filter out the horizontal beams
- Put the correct dimensions

Parametric Design Process: 3D modelling, baking and rendering

5 Glass and stainless steel panels

To generate the glass and stainless-steel panels:

- Expand the arch frame and generate panels at corner points
- Link the corner points to form the panels frame
- Generate the panels entities

To render the material in Rhino:

- Bake the models in Rhino separating components into layers
- Define the material of each layer
- Render

Generating 2D fabrication plans

To generate the 2D fabrication plans:

- Extract the data from the main beams and the secondary beams
- Layout to top view

The 3 types of design variations based on the 2D fabrication data

Type 1 Type 2 Type 3