

Drone meshnetwerk simulatie

Software Requirements Specification

HAN Arnhem

561399

MWJ.Berentsen@student.han.nl

Versie 1

Alten Nederland B.V.

Docent: J. Visch, MSc

Assessor: ir. C.G.R. van Uffelen

M.W.J. Berentsen

9 mei 2019

In houd sop gave

1	Inle	eiding		4
	1.1	Algeme	ene beschrijving	. 4
	1.2	Doel va	an dit document	. 4
	1.3	Actore	en en hun eigenschappen	. 4
		1.3.1	Dronecontroller	. 4
		1.3.2	Netwerkgebruiker	. 4
		1.3.3	Algoritmetester	. 4
	1.4	Werko	mgeving	. 5
		1.4.1	Ubuntu 18.04.2 LTS	. 5
		1.4.2	Arduino UNO	. 5
		1.4.3	NRF24	. 5
		1.4.4	Drone	. 5
		1.4.5	ROS	. 6
		1.4.6	Gazebo	. 6
	1.5	Ontwe	rp en implementatie beperkingen	. 6
	1.6	Produc	et Functies	. 6
2	Dor	nein M	lodel	8
	2.1	Beschr	ijving domeinmodel	. 9
3	$\mathbf{U}\mathbf{se}$	-case o	mschrijvingen	10
	3.1	Simule	ren dronenetwerk	. 10
		3.1.1	Fully-dressed usecase description	. 10
		3.1.2	Basic Flow	. 10
		3.1.3	System Sequence Diagram	. 11
	3.2	Simule	ren drone	. 11
		3.2.1	Fully-dressed usecase description	. 11
		3.2.2	Basic Flow	. 11
		3.2.3	Alternative Flows	. 12
		3.2.4	System Sequence Diagram	. 12

	3.3	Simule	eren draadloze communicatie	12
		3.3.1	Fully-dressed usecase description	12
		3.3.2	Basic Flow	13
		3.3.3	Alternative Flows	13
		3.3.4	System Sequence Diagram	13
	3.4	Comm	nuniceren data	13
		3.4.1	Fully-dressed usecase description	13
		3.4.2	Basic Flow	14
		3.4.3	Alternative Flows	14
		3.4.4	System Sequence Diagram	14
	3.5	Opbou	ıwen meshnetwerk	15
		3.5.1	Fully-dressed usecase description	15
		3.5.2	Basic Flow	15
		3.5.3	Alternative Flows	15
		3.5.4	System Sequence Diagram	16
	3.6	Uitvo	eren noodprotocol bij geen verbinding	16
		3.6.1	Fully-dressed usecase description	16
		3.6.2	Basic Flow	16
		3.6.3	Alternative Flows	17
		3.6.4	System Sequence Diagram	17
	3.7	Ontple	ooien dronenetwerk	18
		3.7.1	Fully-dressed usecase description	18
		3.7.2	Basic Flow	18
		3.7.3	Alternative Flows	18
		3.7.4	System Sequence Diagram	19
	3.8	Verzoe	eken droneverplaatsing	19
		3.8.1	Fully-dressed usecase description	19
		3.8.2	Basic Flow	19
		3.8.3	Alternative Flows	20
		3.8.4	System Sequence Diagram	20
	3.9	Aanst	uren drone	20
		3.9.1	Fully-dressed usecase description	20
		3.9.2	Basic Flow	21
		3.9.3	Alternative Flows	21
		3.9.4	System Sequence Diagram	21
4	Oth	er fun	ctional requirements	22

5	Non	i-functional Requirements	23
	5.1	Performance Efficiency	23
	5.2	Security	23
	5.3	Reliability (and so on)	23
Li	terat	uur	24

1 — Inleiding

1.1 Algemene beschrijving

Het volgende verslag betreft de Software Requirements Specification voor de afstudeerstage van Maurice Berentsen (hierna: student). Dit document volgt het document: "Software Requirements Specification Template" (Van Heesch, 2016)

1.2 Doel van dit document

Het doel is dat de lezer aan het einde van dit document begrijpt hoe de functionaliteit geïmplementeerd zal worden in het op te leveren product. Het document laat zien hoe de flow van het programma loopt en welke classes in de software worden gebruikt. Een lezer van dit document zou met de juiste technische kennis de volledige applicatie moeten kunnen maken zoals het bedacht is door de ontwerper.

1.3 Actoren en hun eigenschappen

In dit deel worden de actoren van het systeem omschreven. Elke actor wordt kort omgeschreven per paragraaf

1.3.1 Dronecontroller

Een drone controller is de gebruiker die het systeem wil gebruiken om drones naar plekken toe te kunnen sturen. Hij wil hiermee een netwerk van onderling verbonden drones kunnen ontplooien

1.3.2 Netwerkgebruiker

Een netwerkgebruiker wil het netwerk gebruiken om data te kunnen versturen naar een andere punt binnen of buiten het netwerk.

1.3.3 Algoritmetester

Een algoritmetester wil het netwerk gebruiken om de verdeling van drones te kunnen analyseren om tot een optimaal verdeel algoritme te komen.

1.4 Werkomgeving

Deze paragraaf omschrijft zowel de hardware- als softwareomgeving waarin dit project wordt uitgevoerd.

1.4.1 Ubuntu 18.04.2 LTS

In het project wordt gebruik gemaakt van Ubuntu 18.04.2 LTS dit omdat er ondersteuning nodig is voor ROS. Hoewel er een versie van ros opkomend is voor Windows zal hier op het moment geen rekening mee gehouden worden. De opgeleverde code wordt ontwikkeld en gecompileerd op een Ubuntu machine.

1.4.2 Arduino UNO

De Arduino UNO is gekozen als ontwikkelbord die gebruikt wordt in het opzetten van de onderlinge communicatie. Deze Arduino is gekozen omdat deze gemakkelijk leent voor het bouwen van prototype. Dit doet de Arduino door zijn aanbod van 14 I/O poorten waarvan er zes bruikbaar zijn als analoge poort en het aanbieden van zowel 3.3 als 5 volt lijnen Hierop kan de NRF24 aangesloten worden waarna er nog genoeg poorten overblijven voor andere hardware zoals sensoren of een internetverbinding.

De aanwezigheid van een 16MHz kristaloscillator geeft de UNO de eigenschap om accuraat genoeg een verschil in tijd te schatten. Dit belangrijk voor het systeem aangezien het beslissingen moet kunnen nemen op basis van een verstreken tijd.

De Arduino voorzien van een ATmega328P die snel genoeg is voor het doorgeven van het communicatieverkeer en het nemen van beslissingen. De ATmega328P heeft 32KB flash geheugen en 1KB EEPROM beschikbaar.

Verder is de Arduino gekozen omdat deze via een USB aansluiting makkelijk geflasht kan worden en gedeeltelijk ondersteuning heeft voor C++

1.4.3 NRF24

De NRF24 is gekozen door zijn prestaties ten opzichte van afstand. De mogelijkheid om een snelheid aan te kunnen bieden van minimaal 250 kbps op een afstand van 500 meter maakt deze module het meest geschikt voor dit project. Daarnaast kan de NRF24 tot zes kanalen tegelijk open houden die kunnen schakelen tussen zenden en ontvangen. De NRF24 is in staat om per payload tot 32 bytes te versturen. Tenslotte is de NRF24 een transciever die werkt op een voltage van 3.3 volt waarbij de I/O pinnen 5 volt tolerant zijn wat het compatibel maakt met de Arduino UNO.

1.4.4 Drone

Hoewel in dit project drones een essentieel onderdeel zijn wordt er niet gesproken over een specifiek merk of type drone. De reden hiervoor is omdat er geen focus ligt op een specifieke drone en de student ook niet gecertificeerd is om te vliegen met zakelijke drones. Er zal dus gewerkt worden met gesimuleerde drones. Deze hebben een interface die in staat is om een drone te laten vliegen naar een specifiek coördinaat en kan de huidige locatie aangeven.

1.4.5 ROS

ROS is middleware software die gebruikt wordt voor de aansturing en simulatie van robotica. In het geval van dit project wordt ROS gebruikt voor de communicatie naar de Drone toe, maar ook voor het simuleren van de NRF24 communicatie tussen de drones.

1.4.6 Gazebo

Gazebo is een opensource robot simulatie framework bijzonder geschikt voor het simuleren van robotica in outdoor omgevingen door de uitgebreide Physics Engine Support. In dit project wordt momenteel geen gebruik gemaakt van de physics engine maar doordat de onderdelen als virtuele onderdelen beschikbaar zijn in gazebo kunnen ze zo aangesloten worden op een beter gesimuleerde drone. Deze mogelijkheid was daarom ook een hoofdreden om Gazebo te gebruiken.

1.5 Ontwerp en implementatie beperkingen

De software wordt ontwikkelt in ROS omgeving hiervoor zijn de volgende eisen:

- Zie http://wiki.ros.org/ROS/Introduction#Operating_Systems voor ondersteuning van platformen. ROS draait op een Unix-based platform.
- De software dat voor het project is ontwikkelt, is op Ubuntu 18.04 gemaakt, aangeraden is dus ook om dit te gebruiken.

Om de drones te kunnen simuleren is er voor gekozen om gebruik te maken van Gazebo hierbij worden de volgende hardware eisen gesteld

- Een GPU die werkt met OpenGL 3D accelerated driver.
- Een CPU dat op z'n minst Intel i5 is of vergelijkbaar. (bron)
- Op z'n minst 500 MB vrije opslag ruimte.

1.6 Product Functies

In het onderstaande diagram 1.1 is te zien wie er betrokken is bij het systeem(actoren) en hoe zij het systeem gebruiken om hun doel te gebruiken. Een netwerkgebruiker is maar geïnteresseerd in één usecase, hij wil namelijk alleen gebruik maken van het netwerk om zijn data te versturen. De dronecontroller wil een dronenetwerk kunnen ontplooien en drone verzoeken om te verplaatsen. Een algoritme tester wil het dronenetwerk simuleren en wil daarom alleen die usecase uitvoeren deze usecase kan wel gebruik maken van dezelfde usecases als een dronecontroller.

Figuur 1.1: Usecase diagram

Usecase	Beschrijving
Simuleren dronenetwerk	Een actor wil een dronenetwerk simuleren hiervoor moeten
Simuleren dronenetwerk	drones en draadloze communicatie gesimuleerd worden.
Simuleren drone	Het systeem gaat een drone simuleren.
Simuleren draadloze	Het systeem gaat draadloze communicatie simuleren.
communicatie	Hiermee kan het data communiceren.
Communiceren data	Een actor geeft aan dat hij data wil communiceren via het
Communiceren data	netwerk.
Opbouwen meshnetwerk	Het systeem gaat een mesh netwerk opbouwen tussen
Opbouwen mesimetwerk	aanwezige nodes.
Uitvoeren noodprotocol	Het systeem gaat wanneer er een bepaalde tijd geen
bij geen verbinding	verbinding is met een gateway een noodprotocol uitvoeren
bij geen verbinding	om het meshnetwerk te herstellen.
Ontplooien dronenetwerk	Een actor wil een dronenetwerk ontplooien over een gebied
Ontproblem drohenetwerk	hiervoor worden drones aangestuurd.
Verzoeken droneverplaatsing	Een actor stuurt een verzoek tot het verplaatsen van een drone.
Aansturen drone	Het systeem stuurt een drone aan om zich te verplaatsen naar
Aansturen drone	een locatie.

Tabel 1.1: Korte toelichting usecases

2 — Domein Model

Aan de hand van een domeinmodel wordt de samenhang van de te ontwikkelen software in kaart gebracht. In de hier opvolgende Beschrijving domeinmodel wordt per class toelichting gegeven.

Figuur 2.1: Domeinmodel

2.1 Beschrijving domeinmodel

Naam	Beschrijving
gazebo	Gazebo is de simulatie omgeving voor physics
Drone	Een drone kan zichzelf verplaatsen in een ruimte
Dione	met een DroneEngine
DroneEngine	Een drone engine wordt gebruikt door de drone
DroneEngine	voor verplaatsing
RouterDrone	Een RouterDrone is een drone voorzien van een
RouterDrone	ArduinoRouter
GatewayDrone	Een RouterGateway is een drone voorzien van
GatewayDione	een ArduinoGateway
Arduino	Een arduino is een mircocontrollerbord
ArduinoRouter	Is een arduino voorzien van MeshnetworkRouter
Ardumortouter	software
ArduinoGateway	Is een arduino voorzien van MeshnetworkGateway
ArdumoGateway	software
MeshnetworkComponent	Is een onderdeel binnen een meshnetwerk
MeshnetworkRouter	Is een meshcomponent in staat berichten binnen het
Weshiletworkitouter	netwerk door te sturen
MeshnetworkGateway	Is een meshcomponent met een verbinding extern
MesimetworkGateway	van het netwerk
InternetConnection	Is een verbinding naar het wereldwijde web
DroneManager	Een manager voor het aansturen van drones
mod	Middleware voor het aansturen van fysieke of
ros	gesimuleerde drones
Message	Een bericht gebruikt voor communicatie
WirelessCommunication	Communicatie type die door de lucht verloopt
NRF24	Een radio transceiver bruikbaar voor communicatie

Tabel 2.1: Toelichting domeinmodel

3 — Use-case omschrijvingen

3.1 Usecase: Simuleren dronenetwerk

3.1.1 Fully-dressed usecase description

Usecase: Simuleren dronenetwerk

Doel: De actor wil een dronenetwerk simuleren om algritmes te testen zonder fysieke drones Beschrijving van de usecase: De usecase start een simulatie op waarin een instelbaar aantal drones gesimuleerd worden welke onderling kunnen communiceren via een gesimuleerde draadloze communicatieweg. Hiermee creëren zij een meshnetwerk.

Primary actor: Algoritmetester

Preconditions: Er is aangegeven hoeveel routers en gateway gesimuleerd moeten worden.

Postconditions: De simulatie van de drones en de communicatie is opgestart

3.1.2 Basic Flow

Actor actie	System responsibility
1. Start de applicatie.	2. Leest het configuratie bestand uit.
	3. Start de wereld simulatie.
	4. Start de communicatie simulatie.
	5. Laadt het opgegeven aantal gatewaydrones de simulatie in.
	6. Laadt opgegeven aantal routerdrones de simulatie in.
	7. Start de dronemanager.

3.1.3 System Sequence Diagram

Figuur 3.1: System sequence diagram opstarten simulatie

3.2 Usecase: Simuleren drone

3.2.1 Fully-dressed usecase description

Usecase: Simuleren drone.		
Doel: Het creëren van een virtuele representatie van een drone.		
Beschrijving van de usecase: In de simulatie wil een actor een drone simuleren.		
Door het uitvoeren van deze usecase wordt er een drone in de simulatie geladen		
welke de rol van gateway of router kan hebben.		
Primary actor: Simuleren dronenetwerk		
Preconditions: Er is een simulatiewereld aanwezig.		
Postconditions: Een drone is ingeladen in de simulatiewereld.		

3.2.2 Basic Flow

Actor action	System responsibility
1. Leest configuratie uit.	
2. Verzoekt het injecteren van een gatewaydrone.	3. Leest de drone parameters uit.
	4. Koppelt een motor aan de gesimuleerde drone.
	5. Koppelt een gatewaycomponent aan de
	gesimuleerde drone.
	6. Injecteert de drone de gesimuleerde wereld in.

3.2.3 Alternative Flows

Actor action	System responsibility
2. Verzoekt het injecteren van een routerdrone.	3. Leest de drone parameters uit.
	5. Koppelt een router component aan de
	gesimuleerde drone.

3.2.4 System Sequence Diagram

Figuur 3.2: System sequence diagram opstarten drone simulatie

3.3 Usecase: Simuleren draadloze communicatie

3.3.1 Fully-dressed usecase description

Use Case: Simuleren draadloze communicatie.		
Doel: Het nabootsen van draadloze communicatie in een simulator.		
Beschrijving van de usecase: In de simulatie wil een actor gebruik maken van		
draadloze communicatie. Om dit realistisch na te bootsen loopt elk bericht langs		
de draadloos simulator die bepaalt wat er met het bericht gebeurd.		
Primary actor: Simuleren dronenetwerk.		
Preconditions:		
Postconditions: Er is een simulator aanwezig die Communiceren data mogelijk		
maakt voor gesimuleerde NRF24's.		

3.3.2 Basic Flow

Actor action	System responsibility
1. Start applicatie met	2. Stelt de meegegeven waarde in voor de
maximale afstand parameter.	maximale communicatie afstand.
	3. Start draadloze simulator.

3.3.3 Alternative Flows

Actor action	System responsibility
1. Start applicatie zonder	2. Stelt de standaard waarde in voor de
parameters.	maximale communicatie afstand.

3.3.4 System Sequence Diagram

Figuur 3.3: System sequence diagram opstarten draadloze communicatie simulatie

3.4 Use case: Communiceren data

3.4.1 Fully-dressed usecase description

Use Case: Communiceren data.
Purpose: Deze usecase wordt gebruiken om data uit te wisselen tussen componenten
Beschrijving van de usecase: In het netwerk zullen componenten met elkaar willen
communiceren. Deze usecase zal de data proberen te versturen.
Primary actor: Netwerkgebruiker, Simuleren draadloze communicatie, Opbouwen meshnetwerk
Preconditions: Communicatiemiddel van de zender is opgestart, de te versturen data is bekend,
en het adres van de ontvanger is bekend.
Postconditions: Er is data verstuurd van een component naar een andere component.

3.4.2 Basic Flow

Actor action	System responsibility
1. Geeft bericht om te verzenden	2. Zet bericht om in overdraagbare data
	3. Opent verbinding met ontvanger
	4. Verstuurd bericht naar ontvanger
5. Krijgt notificatie van slagen	6. Ontvangend syteem zet data terug naar bericht
	7. Ontvanger ontvangt bericht

3.4.3 Alternative Flows

Actor action	System responsibility
	3. Kan geen verbinding openen met ontvanger
4. Krijgt notificatie van het niet s	slagen

3.4.4 System Sequence Diagram

Figuur 3.4: System sequence diagram opstarten draadloze communicatie simulatie

3.5 Usecase: Opbouwen meshnetwerk

3.5.1 Fully-dressed usecase description

Usecase: Opbouwen meshnetwerk

Doel: Het uitvoeren van de usecase zal een netwerk opzetten van onderling verbonden meshnetwerkcomponenten.

Beschrijving van de usecase: Na het uitvoeren van de usecase moeten alle meshnetwerkcomponenten een verbinding hebben met de netwerkcomponenten die binnen hun bereik zijn. De componenten staan klaar om berichten door te sturen naar elkaar of naar een gateway voor externe adressen.

Primary actor: Ontplooien dronenetwerk

Preconditions: Componenten zijn binnen bereik van elkaar, er is minstens één gateway aanwezig.

Postconditions: Er is een onderling verbonden netwerk opgebouwd.

3.5.2 Basic Flow

Actor action	System responsibility
1. Start applicatie.	2. Start communicatie methode.
	3. Componenten maken verbinding met elkaar.
	4. Componenten berekenen verbindingspaden
	5. Maak contact met extern adres.

3.5.3 Alternative Flows

Actor action	System responsibility	
	3. Componenten maken geen directe of indirecte verbinding met een gateway.	
	4. Componenten starten Uitvoeren noodprotocol bij geen verbinding.	

3.5.4 System Sequence Diagram

Figuur 3.5: System sequence diagram opzetten meshnetwerk.

3.6 Use case: Uitvoeren noodprotocol bij geen verbinding

3.6.1 Fully-dressed usecase description

Use Case: Uitvoeren noodprotocol bij geen verbinding
Doel: Door het uitvoeren van een noodprotocol zijn één of meerdere drones in staat
de verbinding te herstellen met een gateway. Hiervoor kan het gebruik maken van
Aansturen drone.
Beschrijving van de usecase: Deze usecase is de uiterste stap die een meshcomponent.
Primary actor: Opbouwen meshnetwerk
Preconditions: Elke drone heeft ooit direct of indirect verbinding gehad met een gateway.
Postconditions: Drone(s) is/zijn herplaatst naar een positie in verbinding met een gateway.

3.6.2 Basic Flow

Actor action	System responsibility
1. Start noodprotocol.	2. Kijkt of node alleen is of samen.
	3. Drones bepalen verplaatsing.
	4. Drones herpositioneren zich.
	5. Alle drones hebben direct of indirect verbinding met een gateway.

3.6.3 Alternative Flows

Actor action	System responsibility
	3. Enkele drone bepaalt verplaatsing.
	4. Enkele drones herpositioneert zich.

Actor action	System responsibility
	5. Drone(s) heeft/hebben nog geen verbinding met gateway.
	6. Drone(s) verplaatst/verplaatsen zich terug naar positie van gateway.

3.6.4 System Sequence Diagram

Figuur 3.6: System sequence diagram noodprotocol.

3.7 Usecase: Ontplooien dronenetwerk

$3.7.1 \quad \text{Fully-dressed use} \ \text{description}$

Use Case:Ontplooien dronenetwerk
Doel: Het doel van deze usecase is het ontplooien van een dronenetwerk, met
een casus zal worden aangegeven waar naartoe te verplaatsen, ze moeten
zelfstandig een netwerk opzetten.
Beschrijving van de usecase: Deze usecase zal alle drones aansturen om naar
een vooraf bepaalde posities te vliegen. De drones zullen een meshnetwerk
opbouwen waarover gecommuniceerd kan worden.
Primary actor: Dronecontroller, Simuleren dronenetwerk
Preconditions: Drones zijn voorzien van meshcomponenten en kunnen zich
verplaatsen. Er zijn genoeg drones aanwezig voor de casus.
Postconditions: Drones zijn verplaatst naar ingestelde positie en hebben
een onderling netwerk opgebouwd.

3.7.2 Basic Flow

Actor action	System responsibility
1. Start alle netwerkdrones op.	
2. Geeft posities door voor de drones.	3. Stuurt elke individuele drone aan naar positie.
	4. Meshcomponenten bouwen netwerk op.

3.7.3 Alternative Flows

Actor action	System responsibility
	3. Er zijn niet genoeg drones voor de casus aanwezig of binnen bereik
	4. De drones die wel bereikbaar zijn verplaatsen zich.

3.7.4 System Sequence Diagram

Figuur 3.7: System sequence diagram noodprotocol.

3.8 Usecase: Verzoeken droneverplaatsing

3.8.1 Fully-dressed usecase description

Usecase: Verzoeken droneverplaatsing		
Doel: Deze usecase dient voor het verzoeken tot een verplaatsing van een drone.		
Beschrijving usecase: Door deze usecase te gebruiken kan een individuele		
drone verzocht worden zich te verplaatsen.		
Primary actor: Dronecontroller, Simuleren dronenetwerk, Ontplooien dronenetwerk.		
Preconditions: Communicatieweg beschikbaar tot aan drone.		
Postconditions: Drone gaat zich verplaatsen naar verzoeklocatie.		

3.8.2 Basic Flow

Actor action	System responsibility
1. Verstuurt verzoek voor verplaatsing.	2. Verstuurt verzoek naar drone.
	3. Stuurt drone aan.

3.8.3 Alternative Flows

Actor action	System responsibility	
	2. Drone is niet bereikbaar.	

3.8.4 System Sequence Diagram

Figuur 3.8: System sequence verzoeken verplaatsing.

3.9 Usecase: Aansturen drone

3.9.1 Fully-dressed usecase description

Use Case: Aansturen drone
Purpose: Het aansturen van een drone wordt gebruikt om een drone te verplaatsen.
Beschrijving van de usecase: Elke drone kan aangestuurd worden om zicht te verplaatsen.
Die wordt altijd uitgevoerd vanaf het aangesloten netwerkcomponent. Daarom moet er vanuit een extern punt altijd een verzoek gestuurd worden voor een verplaatsing of vanaf de aangesloten module zelf komen.
Primary actor: Verzoeken droneverplaatsing, Uitvoeren noodprotocol bij geen verbinding.
Preconditions: Drone is in staat zich te verplaatsen
Postconditions: Drone heeft zich verplaatst naar de verzochte positie.

3.9.2 Basic Flow

Actor action	System responsibility
1. Stuurt doellocatie	2. Berekend pad naar locatie
	3. Start motor
	4. Verplaatst zich naar locatie
	5. Stopt motor

3.9.3 Alternative Flows

Actor action	System responsibility	
	3. Geen pas mogelijk naar locatie	
	4. Blijft op huidige locatie	

3.9.4 System Sequence Diagram

Figuur 3.9: System sequence aansturen drone.

— Other functional requirements

Naam	Beschrijving	
SIM1	Heeft ondersteuning voor UAV (unmanned air vehicle) ook wel drone genoemd	
SIM2	Ondersteunt de simulatie van locatie bepaling sensoren zoals GPS.	
SIM3	Heeft een kant en klare oplossing voor simulatie van externe krachten zoals wind.	

Tabel 4.1: Functionele requirements

- 5 Non-functional Requirements
- 5.1 Performance Efficiency
- 5.2 Security
- 5.3 Reliability (and so on)

Literatuur

Van Heesch, U. (2016, 21 september). Software requirements specification template.