MU5IN075 Network Analysis and Mining 11. Recommendation Algorithms

Esteban Bautista-Ruiz, Lionel Tabourier

LIP6 - CNRS and Sorbonne Université

first_name.last_name@lip6.fr

December 14, 2021

Implementing recommendation systems

The recommendation problem Recommendation approaches

Outline

- Introduction
 - The recommendation problem
 - Recommendation approaches
- Implementing recommendation systems
 - An approach to content-based filtering
 - An approach to collaborative filtering
 - Evaluate recommendations
- Conclusion and perspectives

Introduction plementing recommendation systems Conclusion and perspectives The recommendation problem Recommendation approaches

An information filtering problem

Main source: Mining Massive Datasets - J.Leskovec, A.Rajaraman, J.D.Ullman

From "scarcity" to "abundance"

- Physical retailer (Leclerc, Lidl, Walmart, ...):
 limited shelf space ⇒ limited number of products
- Web era (Amazon, Google news, Netflix, ...):
 ⇒ commodities at dissemination cost ≈ 0
 - ⇒ paradigm shift

Introduction
Implementing recommendation systems
Conclusion and perspectives

The recommendation problem Recommendation approaches

An information filtering problem

Reaching the "long-tail"

Ordering items by preference:

 \bullet limited shelf space \Rightarrow cut-off in the distribution

unlimited shelf space ⇒ access to items in the long-tail
 example: "Touching the Void" (La mort suspendue) phenomenon

see https://www.wired.com/2004/10/tail/

3/28

The recommendation problem
Recommendation approaches

Introduction
Implementing recommendation systems
Conclusion and perspectives

The recommendation problem Recommendation approaches

An information filtering problem

Also new challenges and questions to solve: how to guide users browsing large catalogs?

Functions

- primary: information filtering, bring more relevant information for less research time
- secondary: bring serendipity to users "happy discoveries"

Difference with search engines

- searching (with a query) is active
- being recommended is passive

but the frontier can be thin

O/ E

Introduction

Conclusion and perspectives

The recommendation problem Recommendation approaches

Some historical elements

- First appearance of the term associated with Gerry Salton (80s) Salton and McGill - Introduction to modern Information Retrieval System. 1980
- First implementations (in today's sense) in the 90s:
 - spam filter Tapestry (@Xerox, Palo Alto): uses annotations from other users to evaluate relevance Goldberg et al. - 1992
 - document search by GroupLens (@University Minnesota): uses comments for news selection on UseNet Resnick et al. -1994
 - musical album search Ringo (@MIT): thresholding based on social similarity Shardanand and Maes - 1995
- More recent interesting examples:
 - Amazon shopping collaborative filtering system
 - Pandora vs Last.fm (webradios in the 2000's)

Some historical elements

- First appearance of the term associated with Gerry Salton (80s) Salton and McGill - Introduction to modern Information Retrieval System. 1980
- First implementations (in today's sense) in the 90s:
 - spam filter Tapestry (@Xerox, Palo Alto): uses annotations from other users to evaluate relevance Goldberg et al. - 1992
 - document search by GroupLens (@University Minnesota): uses comments for news selection on UseNet Resnick et al. 1994
 - musical album search Ringo (@MIT): thresholding based on social similarity Shardanand and Maes - 1995
- More recent interesting examples:
 - Amazon shopping collaborative filtering system
 - Pandora vs Last.fm (webradios in the 2000's)

Introduction

Implementing recommendation systems

Conclusion and perspectives

The recommendation problem Recommendation approaches

Some historical elements

- First appearance of the term associated with Gerry Salton (80s) Salton and McGill - Introduction to modern Information Retrieval System. 1980
- First implementations (in today's sense) in the 90s:
 - spam filter Tapestry (@Xerox, Palo Alto): uses annotations from other users to evaluate relevance Goldberg et al. - 1992
 - document search by GroupLens (@University Minnesota): uses comments for news selection on UseNet Resnick et al. -1994
 - musical album search Ringo (@MIT): thresholding based on social similarity Shardanand and Maes - 1995
- More recent interesting examples:
 - Amazon shopping collaborative filtering system
 - Pandora vs Last.fm (webradios in the 2000's)

4/2

The recommendation problem
Recommendation approaches

Recommendation systems in machine learning

Recommendation systems are now deeply related to the machine learning field

Reformulating the recommendation task

- either to predict a score (eg., user rating)
- or to predict if a user clicks or buys, ...

From a machine learning perspective:

- a regression task (predicting a score)
- a classification task (predicting if an interaction happens)

Both are supervised learning tasks

Introduction Implementing recommendation system

The recommendation problem Recommendation approaches

Recommendation approaches

From basic

- top-5 more popular products, ...
 - \rightarrow typically on website frontpages
- but does not help reaching the long-tail, no personalization

To personalization: useful information

- 1. Knowledge of the user's tastes
- 2. User relatively to other users

 Very niche tastes more informative than very usual tastes
- 3. Knowledge of the items to recommend ex of a movie: director, actors, genre, year . .
- 4. Item relatively to other items

 Very niche genre more informative than very popular genre

Introduction ndation systems

The recommendation problem Recommendation approaches

Conclusion and perspectives

Recommendation approaches

From basic

- top-5 more popular products, ...
 - \rightarrow typically on website frontpages
- but does not help reaching the long-tail, no personalization

To personalization: useful information

- 1. Knowledge of the user's tastes
- 2. User relatively to other users Very niche tastes more informative than very usual tastes
- 3. Knowledge of the items to recommend ex of a movie: director, actors, genre, year . . .
- 4. Item relatively to other items

 Very niche genre more informative than very popular genre

Introduction
Implementing recommendation systems
Conclusion and perspectives

The recommendation problem Recommendation approaches

Two main recommendation families

Content-based filtering

- identify the features in an item that a user likes
- uses factors 1, 3 and 4 but not 2
- example: Pandora and the Music Genome Project

Collaborative filtering

- identify users who have similar tastes
- uses factors 1, 2 but not 3 and 4
- a lot of them...
 examples: Tapestry, Ringo, Amazon, Last.fm

Two main recommendation families

Content-based filtering

- identify the features in an item that a user likes
- uses factors 1, 3 and 4 but not 2
- example: Pandora and the Music Genome Project

Collaborative filtering

- identify users who have similar tastes
- uses factors 1, 2 but not 3 and 4
- a lot of them... examples: Tapestry, Ringo, Amazon, Last.fm

Outline

- Introduction
 - The recommendation problem
 - Recommendation approaches
- 2 Implementing recommendation systems
 - An approach to content-based filtering
 - An approach to collaborative filtering
 - Evaluate recommendations
- Conclusion and perspectives

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

A baseline recommendation

Illustration on a rating problem, we want to predict r(u, i)

A standard baseline score

$$r_B(u,i) = \overline{r} + (\overline{r(u)} - \overline{r}) + (\overline{r(i)} - \overline{r})$$

where

- \bullet \bar{r} is the average rating of the dataset
- $\overline{r(u)}$ is the average rating of user u in the dataset
- $\overline{r(i)}$ is the average rating of item i in the dataset

minimal level of personalization, how can we improve that?

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

A baseline recommendation

Illustration on a rating problem, we want to predict r(u, i)

A standard baseline score:

$$r_B(u,i) = \overline{r} + (\overline{r(u)} - \overline{r}) + (\overline{r(i)} - \overline{r})$$

where

- \bullet \bar{r} is the average rating of the dataset
- $\overline{r(u)}$ is the average rating of user u in the dataset
- $\overline{r(i)}$ is the average rating of item *i* in the dataset

minimal level of personalization, how can we improve that?

A baseline recommendation

Illustration on a rating problem, we want to predict r(u, i)

A standard baseline score:

$$r_B(u,i) = \overline{r} + (\overline{r(u)} - \overline{r}) + (\overline{r(i)} - \overline{r})$$

where

- \bullet \bar{r} is the average rating of the dataset
- $\overline{r(u)}$ is the average rating of user u in the dataset
- $\overline{r(i)}$ is the average rating of item *i* in the dataset

minimal level of personalization, how can we improve that?

0/28

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Vectorial approach to content-based filtering (1)

First step: item as a vector of features

Listing relevant features \rightarrow associate score to each item *Examples:*

- movie → genre scores (given by expert)
 Back to the Future: 2 Sci-Fi, 3 Action, 2 Comedy, 0 Romance, 0 Drama
- document → set of words with a score of importance (tf-idf)

Limitations

- Assumes an expertise of the field
- Loss of information
 ex: set of words → no idea of context, of order

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Vectorial approach to content-based filtering (1)

First step: item as a vector of features

Listing relevant features \rightarrow associate score to each item *Examples:*

- movie → genre scores (given by expert)
 Back to the Future: 2 Sci-Fi, 3 Action, 2 Comedy, 0 Romance, 0 Drama
- ullet document o set of words with a score of importance (tf-idf)

Limitations

- Assumes an expertise of the field
- Loss of information
 ex: set of words → no idea of context, of order

Implementing recommendation systems

Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Vectorial approach to content-based filtering (2)

Second step: user profiling

Using formerly selected items

 \longrightarrow profile: $\begin{bmatrix} \frac{2}{3} & 2 & \frac{2}{3} & 0 & \frac{2}{3} & 0 \end{bmatrix}$

Option: give weights according to feedbacks

ex: item1 disliked (weight = -1); i2 liked (+1); i3 neutral (0)

 \longrightarrow profile: $\begin{bmatrix} \frac{1}{2} & \frac{3}{2} & -\frac{1}{2} & 0 & -1 & 0 \end{bmatrix}$

Implementing recommendation systems

An approach to content-based filtering An approach to collaborative filtering

Evaluate recommendations

Vectorial approach to content-based filtering (3)

one example of similarity measurement but many others available ...

Cosine similarity

$$cos(\vec{u}, \vec{i}) = \frac{\vec{u} \cdot \vec{i}}{||u|| \cdot ||i||} = \frac{\sum_{k} u_{k} \cdot i_{k}}{\sqrt{\sum_{k} u_{k}^{2}} \sqrt{\sum_{k} i_{k}^{2}}}$$

Implementing recommendation systems

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Vectorial approach to content-based filtering (3)

one example of similarity measurement but many others available ...

Cosine similarity

$$cos(\vec{u}, \vec{i}) = \frac{\vec{u} \cdot \vec{i}}{||u|| \cdot ||i||} = \frac{\sum_{k} u_{k} \cdot i_{k}}{\sqrt{\sum_{k} u_{k}^{2}} \sqrt{\sum_{k} i_{k}^{2}}}$$

Recommend items most similar to the user

Implementing recommendation systems

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Further analysis of content-based filtering

Advantages

- Personalized
- Explanatory: we know why an item is recommended
- Independent of other users tastes
 - → allows to recommend new or unpopular items

- Expert knowledge needed → manual feature definition and
- Do not use feedback from other users
- Overspecialization: tends to recommend specific items

Implementing recommendation systems

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Further analysis of content-based filtering

Advantages

- Personalized
- Explanatory: we know why an item is recommended
- Independent of other users tastes
 - → allows to recommend new or unpopular items

Drawbacks

- Expert knowledge needed → manual feature definition and processing (ex: how to define a film plot?)
- Do not use feedback from other users
- Overspecialization: tends to recommend specific items similar to those already selected by a user

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Further analysis of content-based filtering

Advantages

- Personalized
- Explanatory: we know why an item is recommended
- Independent of other users tastes
 - → allows to recommend new or unpopular items

Drawbacks

- Expert knowledge needed → manual feature definition and processing (ex: how to define a film plot?)
- Do not use feedback from other users
- Overspecialization: tends to recommend specific items similar to those already selected by a user

Content-based filtering tends to disappear

3/28

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering

An approach to collaborative filtering

Evaluate recommendations

Neighborhood approach to collaborative filtering (1)

Case-study: users give explicit feedback on items via rating

	Α	В	С	D	Е
Blade Runner	5	3	4	1	2
Back to the Future	4	3	5	1	-
Pride & Prejudice	1	3	2	4	-
Inception	-	4	2	5	4
Shrek	-	4	-	-	-

First step: find neighborhood

• neighborhood = group of users with similar tastes

How to find neighborhood?

Neighborhood approach to collaborative filtering (1)

Case-study: users give explicit feedback on items via rating

	Α	В	С	D	Е
Blade Runner	5	3	4	1	2
Back to the Future	4	3	5	1	-
Pride & Prejudice	1	3	2	4	-
Inception	-	4	2	5	4
Shrek	-	4	-	-	-

First step: find neighborhood

neighborhood = group of users with similar tastes

How to find neighborhood?

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering (1)

Cosine similarity

$$cos(\vec{A}, \vec{B}) = rac{\vec{A} \cdot \vec{B}}{||A|| \cdot ||B||} = rac{\sum_i A_i \cdot B_i}{\sqrt{\sum_i A_i^2} \sqrt{\sum_i B_i^2}}$$

Here, \vec{X} is the vector of ratings of user X

But two major limitations in this context:

- unrated items seen as 0
- humans have different types of rating behaviors:

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Introduction Implementing recommendation systems Conclusion and perspectives An approach to content-based filtering

An approach to collaborative filtering

Evaluate recommendations

Neighborhood approach to collaborative filtering (1)

Cosine similarity

$$cos(\vec{A}, \vec{B}) = rac{\vec{A} \cdot \vec{B}}{||A|| \cdot ||B||} = rac{\sum_i A_i \cdot B_i}{\sqrt{\sum_i A_i^2} \sqrt{\sum_i B_i^2}}$$

Here, \vec{X} is the vector of ratings of user X

But two major limitations in this context:

- unrated items seen as 0
- humans have different types of rating behaviors:

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering (1)

Centered cosine similarity

• compute rating - average rating (centering)

	Α	В	С	D	Е
Blade Runner	+5/3	-2/5	+3/4	-7/4	-2/2
Back to the Future	+2/3	-2/5	+7/4	-7/4	-
Pride & Prejudice	-7/3	-2/5	-5/4	+5/4	-
Inception	-	+3/5	-5/4	+9/4	+2/2
Shrek	-	+3/5	-	-	-
cent. average	0	0	0	0	0

- missing rating → average rating
- $sim(A,B) = cos(\vec{A'},\vec{B'}) = \frac{\sum_i (A_i \overline{A}).(B_i \overline{B})}{\sqrt{\sum_i (A_i \overline{A})^2} \sqrt{\sum_i (B_i \overline{B})^2}}$

Neighborhood approach to collaborative filtering (1)

Centered cosine similarity

compute rating - average rating (centering)

	Α	В	С	D	Е
Blade Runner	5	3	4	1	2
Back to the Future	4	3	5	1	-
Pride & Prejudice	1	3	2	4	-
Inception	-	4	2	5	4
Shrek	-	4	-	-	-
average	10/3	17/5	13/4	11/4	6/2

- missing rating → average rating
- $sim(A, B) = cos(\vec{A'}, \vec{B'}) = \frac{\sum_i (A_i \overline{A}) \cdot (B_i \overline{B})}{\sqrt{\sum_i (A_i \overline{A})^2} \sqrt{\sum_i (B_i \overline{B})^2}}$

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering (1)

Centered cosine similarity

• compute rating - average rating (centering)

	Α	В	С	D	Е
Blade Runner	+5/3	-2/5	+3/4	-7/4	-2/2
Back to the Future	+2/3	-2/5	+7/4	-7/4	-
Pride & Prejudice	-7/3	-2/5	-5/4	+5/4	-
Inception	-	+3/5	-5/4	+9/4	+2/2
Shrek	-	+3/5	-	-	-
cent. average	0	0	0	0	0

- ullet missing rating o average rating
- $sim(A, B) = cos(\vec{A'}, \vec{B'}) = \frac{\sum_{i}(A_{i} \overline{A}) \cdot (B_{i} \overline{B})}{\sqrt{\sum_{i}(A_{i} \overline{A})^{2}}\sqrt{\sum_{i}(B_{i} \overline{B})^{2}}}$ = Pearson coefficient (A, B)

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

collaborative filtering Implementing recommendation systems Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering (2)

Score prediction

Predict score between user *u* and item *i*:

- select N_u: k users most similar to u who have selected i
- prediction $r^*(u, i)$ is the average score over N_u :

$$r^*(u,i) = \frac{1}{k} \sum_{x \in N_u} r(x,i)$$

• (more elaborate) weighted average score over N_u :

$$r^*(u,i) = \frac{\sum_{x \in N_u} sim(u,x).r(x,i)}{\sum_{x \in N_u} sim(u,x)}$$

User-based collaborative filtering

Score prediction

Predict score between user *u* and item *i*:

• select N_u: k users most similar to u who have selected i

Neighborhood approach to collaborative filtering (2)

• prediction $r^*(u, i)$ is the average score over N_u :

$$r^*(u,i) = \frac{1}{k} \sum_{x \in N_u} r(x,i)$$

• (more elaborate) weighted average score over N_u :

$$r^*(u,i) = \frac{\sum_{x \in N_U} sim(u,x).r(x,i)}{\sum_{x \in N_U} sim(u,x)}$$

User-based collaborative filtering

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering (2)

Score prediction

Predict score between user *u* and item *i*:

- select N_u : k users most similar to u who have selected i
- prediction $r^*(u, i)$ is the average score over N_u :

$$r^*(u,i) = \frac{1}{k} \sum_{x \in N_u} r(x,i)$$

• (more elaborate) weighted average score over N_u :

$$r^*(u,i) = \frac{\sum_{x \in N_u} sim(u,x).r(x,i)}{\sum_{x \in N_u} sim(u,x)}$$

User-based collaborative filtering

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering: Item-based CF (1)

Similar principle, but based on item similarity

Centered cosine similarity

User-item rating matrix

	Α	В	С	D	Е	avg
B. R.	5	3	4	1	2	15/5
B. to the F.	4	3	5	1	-	13/4
P. & P.	1	3	2	4	-	10/4
Inc.	-	4	2	5	4	15/4
Shrek	-	4	-	-	-	4/1

similarity score

$$sim(I,J) = \frac{\sum_{x}(I_{x}-\bar{I}).(J_{x}-\bar{J})}{\sqrt{\sum_{x}(I_{x}-\bar{I})^{2}}\sqrt{\sum_{x}(J_{x}-\bar{J})^{2}}}$$

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering: Item-based CF (1)

Similar principle, but based on item similarity

Centered cosine similarity

User-item rating matrix

	Α	В	С	D	E	c. av.
B. R.	+10/5	0	+5/5	-10/5	-5/5	0
B. to the F.	+3/4	-1/4	+7/4	-9/4	-	0
P. & P.	-6/4	+2/4	-2/4	+6/4	-	0
Inc.	-	+1/4	-7/4	+5/4	+5/4	0
Shrek	-	0	-	-	-	0

similarity score

$$sim(I,J) = rac{\sum_{x}(I_x-ar{I}).(J_x-ar{J})}{\sqrt{\sum_{x}(I_x-ar{I})^2}\sqrt{\sum_{x}(J_x-ar{J})^2}}$$

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Neighborhood approach to collaborative filtering: Item-based CF (2)

Score prediction

Predict score between *u* and *i*:

- select N_i: k items most similar to i which have been selected by u
- average score:

$$r^*(u,i) = \frac{1}{k} \sum_{j \in N_i} r(u,j)$$

or weighted average score:

$$r^*(u,i) = \frac{\sum_{j \in N_j} sim(i,j).r(u,j)}{\sum_{i \in N_i} sim(i,j)}$$

Item-based CF is more efficient than User-based CF in many practical applications

Linden et al. - Amazon.com recommendations, 2003.

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Neighborhood approach to collaborative filtering: Item-based CF (2)

Score prediction

Predict score between *u* and *i*:

- select N_i: k items most similar to i which have been selected by u
- average score:

$$r^*(u,i) = \frac{1}{k} \sum_{j \in N_i} r(u,j)$$

or weighted average score:

$$r^*(u,i) = \frac{\sum_{j \in N_i} sim(i,j).r(u,j)}{\sum_{j \in N_i} sim(i,j)}$$

Item-based CF is more efficient than User-based CF in many practical applications

Linden et al. - Amazon.com recommendations, 200

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Further analysis of collaborative filtering

Advantages

- Personalized
- No expert knowledge needed, works on any item
 very popular because feature selection is hard
- Use feedback from other users

Drawbacks

- Not explanatory (no other information than users tastes)
- Does not allow to recommend new or unpopular items
- Need a lot of users (the critical mass)
- Tendency to popularity bias (the Harry Potter effect): popular items are often in a neighborhood

An approach to content-based filtering

An approach to collaborative filtering

Evaluate recommendations

Further analysis of collaborative filtering

Advantages

- Personalized
- No expert knowledge needed, works on any item
 very popular because feature selection is hard
- Use feedback from other users

Drawbacks

- Not explanatory (no other information than users tastes)
- Does not allow to recommend new or unpopular items
- Need a lot of users (the critical mass)
- Tendency to popularity bias (the Harry Potter effect): popular items are often in a neighborhood

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

How to set the method parameters?

Prediction methods have many parameters:

- Content-based: what are the significant features? ...
- Collaborative: neighborhood size? similarity measure? ...

How to set these parameters in the "best" way?

Need an evaluation methodology:

- score to measure efficiency
- measure efficiency on known data
- ullet compare scores o best parameters for predictions

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

How to set the method parameters?

Prediction methods have many parameters:

- Content-based: what are the significant features? ...
- Collaborative: neighborhood size? similarity measure? ...

How to set these parameters in the "best" way?

Need an evaluation methodology:

- score to measure efficiency
- measure efficiency on known data
- compare scores → best parameters for predictions

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Evaluation scores

Depending on the problem (classification, regression) a lot of evaluation scores are available

Regression problems (our example)

Comparing the actual rating (r_i) to the predicted rating (r_i^*) :

 Root Mean Square Error racine de l'erreur quadratique moyen

$$RMSE = \sqrt{\frac{\sum_{i=1}^{K} (r_i^* - r_i)^2}{K}}$$

Rk: Relevant to give the same importance to all scores? \rightarrow e.g. just focus on top-5,...

20/2

Evaluation scores

Depending on the problem (classification, regression) a lot of evaluation scores are available

Regression problems (our example)

Comparing the actual rating (r_i) to the predicted rating (r_i^*) :

Root Mean Square Error
 racine de l'erreur quadratique moyenne

$$RMSE = \sqrt{\frac{\sum_{i=1}^{K} (r_i^* - r_i)^2}{K}}$$

Rk: Relevant to give the same importance to all scores? \rightarrow e.g. just focus on top-5,...

Evaluation scores

Depending on the problem (classification, regression) a lot of evaluation scores are available

Regression problems (our example)

Comparing the actual rating (r_i) to the predicted rating (r_i^*) :

 Root Mean Square Error racine de l'erreur quadratique moyenne

$$RMSE = \sqrt{\frac{\sum_{i=1}^{K} (r_i^* - r_i)^2}{K}}$$

Rk: Relevant to give the same importance to all scores?

 \rightarrow e.g. just focus on top-5,...

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Split-Predict

A framework for learning problems:

	u_1	u_2	u_3	U_4	<i>u</i> ₅	<i>u</i> ₆	u_7	<i>u</i> ₈	<i>U</i> 9	<i>u</i> ₁₀
i ₁	2	4	-	-	-	4	1	3	2	-
i ₂	2	5	5	-	-	-	4	5	2	1
<i>i</i> ₃	-	-	2	-	-	-	3	3	-	1
<i>i</i> ₄	-	5	5	5	-	5	-	2	-	-
<i>i</i> 5	-	-	1	2	4	4	-	-	1	-
<i>i</i> ₆	-	-	-	1	4	5	-	-	-	-
<i>i</i> ₇	-	5	4	5	-	-	4	4	3	5
i ₈	-	-	1	2	-	-	-	-	1	5

Splitting matrix: learning set vs test set (blue cells)

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Split-Predict

A framework for learning problems:

	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	<i>U</i> ₄	<i>u</i> ₅	<i>u</i> ₆	U 7	<i>u</i> ₈	U 9	<i>u</i> ₁₀
<i>i</i> ₁	2	4	-	-	-	4	1	3	2	-
i_2	2	5	5	-	-	-	4	5	2	1
<i>i</i> ₃	-	-	2	-	-	-	3	3	-	1
<i>i</i> ₄	-	5	5	5	-	5	-	2	-	-
<i>i</i> 5	-	-	1	2	4	4	-	-	1	-
<i>i</i> ₆	-	-	-	1	4	5	-	-	-	-
<i>i</i> ₇	-	5	4	5	-	-	4	4	3	5
i ₈	-	-	1	2	-	-	-	-	1	5

Splitting matrix: learning set vs test set (blue cells)

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

h to collaborative filtering Implementing recommendation systems

Conclusion and perspectives

Conclusion and perspectives

An approach to content-based filtering An approach to collaborative filtering Evaluate recommendations

Split-Predict

A framework for learning problems:

	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	<i>U</i> ₄	<i>U</i> 5	<i>и</i> ₆	<i>U</i> ₇	<i>u</i> ₈	U 9	<i>u</i> ₁₀
i ₁	1	4	-	-	-	4	1	3	2	-
i_2	2	5	4	-	-	-	4	5	2	1
i ₃	-	-	2	-	-	-	3	3	-	1
<i>i</i> ₄	-	5	3	5	-	5	-	2	-	-
<i>i</i> ₅	-	-	1	2	4	4	-	-	1	-
<i>i</i> ₆	-	-	-	2	4	5	-	-	-	-
<i>i</i> ₇	-	5	4	5	-	-	3	4	3	4
i ₈	-	-	1	2	-	-	-	-	2	5

Prediction: on the test set (orange cells) using the learning set

22/28

Introduction
Implementing recommendation systems
Conclusion and perspectives

An approach to content-based filtering
An approach to collaborative filtering
Evaluate recommendations

Collaborative Filtering in practice

A standard implementation of a user-based CF

- Split: select x% of ratings randomly (\equiv test set), remaining (100 x%) ratings \equiv learning set
- Predict: for each rating r(u, i) of the test set:
 - \bullet find users in the learning set who have rated the item i
 - compute their similarities to user *u* (in the learning set)
 - select the k most similar
 - compute predicted score and compare to the actual score

For more accurate parameters: repeat the split *X* times and compute average predictions

Collaborative Filtering in practice

A standard implementation of a user-based CF

- Split: select x% of ratings randomly (\equiv test set), remaining (100 x%) ratings \equiv learning set
- Predict: for each rating r(u, i) of the test set:
 - find users in the learning set who have rated the item i
 - compute their similarities to user *u* (in the learning set)
 - select the *k* most similar
 - compute predicted score and compare to the actual score

For more accurate parameters: repeat the split *X* times and compute average predictions

Implementing recommendation systems

Conclusion and perspectives

Outline

- Introduction
 - The recommendation problem
 - Recommendation approaches
- 2 Implementing recommendation systems
 - An approach to content-based filtering
 - An approach to collaborative filtering
 - Evaluate recommendations
- 3 Conclusion and perspectives

23/28

Recommendation seen as a graph

Recommendation based on user-item matrix and a matrix can be seen as a bipartite graph...

	u_1	<i>u</i> ₂	<i>u</i> ₃	<i>u</i> ₄	<i>u</i> ₅
<i>i</i> ₁	2	4	-	-	-
i ₂	2	5	5	-	-
i ₃	-	-	2	-	-
<i>i</i> ₄	-	5	5	5	-
<i>i</i> 5	-	-	1	2	4
<i>i</i> ₆	-	-	-	1	4

Introduction
Implementing recommendation systems
Conclusion and perspectives

Recommendation seen as a graph

Notion of neighborhood: community of users around a user

	u_1	<i>u</i> ₂	<i>u</i> ₃	u_4	U 5
i ₁	2	4	-	-	-
i ₂	2	5	5	-	-
i ₃	-	-	2	-	-
<i>i</i> ₄	-	5	5	5	-
<i>i</i> 5	-	-	1	2	4
i ₆	-	-	-	1	4
	i ₂ i ₃ i ₄ i ₅	 i₁ 2 i₂ 2 i₃ - i₄ - i₅ - 	i1 2 4 i2 2 5 i3 - - i4 - 5 i5 - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Introduction ementing recommendation systems Conclusion and perspectives

Recommendation seen as a graph

How to represent content information? $ex: t_1 \text{ is } SF, t2 \text{ is comedy, } t_3 \text{ is drama}$

	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	<i>U</i> ₄	<i>u</i> ₅
<i>i</i> ₁	2	4	-	-	-
i_2	2	5	5	-	-
<i>i</i> 3	-	-	2	-	-
<i>i</i> ₄	-	5	5	5	-
<i>i</i> 5	-	-	1	2	4
<i>i</i> 6	-	-	-	1	4

Heterogeneous Information Network

Introduction
Implementing recommendation systems
Conclusion and perspectives

Recommendation seen as a graph

How to represent content information? ex: t_1 is SF, t_2 is comedy, t_3 is drama

	<i>u</i> ₁	<i>u</i> ₂	и3	<i>U</i> ₄	<i>u</i> ₅
i ₁	2		-	-	-
<i>i</i> ₂	2	5	5	-	-
<i>i</i> 3	-	-	2	-	-
<i>i</i> ₄	-	5	5	5	-
<i>i</i> 5	-	-	1	2	4
<i>i</i> ₆	-	-	-	1	4

Heterogeneous Information Networks

Reliance on data

Both content-based and collab, methods need data to work

When is recommendation hard?

- Both content-based and collaborative filtering: cold start
 - user is new to the platform (no user profile)
- Content-based filtering:
 - user never selected/rated an item of a given type
 - item profile not expert-evaluated yet
- Collaborative filtering:
 - item is new to the platform (first rater problem)
 - no critical mass of ratings for a user and for an item
 - → need enough users rating a product (sparsity problem)

data available is a severely limiting factor

⇒ importance of the data market...

26/28

Introduction
Implementing recommendation systems
Conclusion and perspectives

Reliance on data (2)

How to temper these problems?

- User: look for any information available to get a profile ex: self-reported info, language, IP address, browser, OS, incoming website, . . .
- Item: look for content information about new items

Combine content to collaborative information

→ leads to hybrid recommender systems

Introduction
Implementing recommendation systems
Conclusion and perspectives

Reliance on data

Both content-based and collab, methods need data to work

When is recommendation hard?

- Both content-based and collaborative filtering: cold start
 - user is new to the platform (no user profile)
- Content-based filtering:
 - user never selected/rated an item of a given type
 - item profile not expert-evaluated yet
- Collaborative filtering:
 - item is new to the platform (first rater problem)
 - no critical mass of ratings for a user and for an item
 - → need enough users rating a product (sparsity problem)

data available is a severely limiting factor
⇒ importance of the data market...

26/

Introduction
Implementing recommendation systems
Conclusion and perspectives

Reliance on data (2)

How to temper these problems?

- User: look for any information available to get a profile ex: self-reported info, language, IP address, browser, OS, incoming website, . . .
- Item: look for content information about new items

Combine content to collaborative information

→ leads to hybrid recommender systems

27/28

Do we answer the actual problem?

What is satisfaction?

Replace *satisfaction* with *a score prediction*But is it legitimate?

- Depending on the context a recommendation does not have the same value
- User u rated high Harry Potter 3 and 4 ⇒ predicting high score for Harry Potter 5 is easy but useless
 - → there is no serendipity here

Introduction plementing recommendation systems Conclusion and perspectives

Do we answer the actual problem?

Humans are unreliable raters

- Depending on the moment, evaluations fluctuate
- Human have biases in their evaluation ex: aspiration bias
- In anyway few ratings even for very active users

From active to passive data collection

- More info from activity than from rating
 - \rightarrow measure clicks, watch time, time spent on the platform
- ...but harder to get dislike information
 - ⇒ Combine active and passive feedback

Covington et al. - Deep Neural Networks for YouTube Recommendations, 2016

Introduction
Implementing recommendation systems
Conclusion and perspectives

Do we answer the actual problem?

Humans are unreliable raters

- Depending on the moment, evaluations fluctuate
- Human have biases in their evaluation ex: aspiration bias
- In anyway few ratings even for very active users

From active to passive data collection

- More info from activity than from rating
- → measure clicks, watch time, time spent on the platform
- ... but harder to get dislike information
 - ⇒ Combine active and passive feedback

Covington et al. - Deep Neural Networks for YouTube Recommendations, 2016