CS461 – RECITATION 01 MACHINE LEARNING PRINCIPLES

Daize Dong 2025-09-15

CONTACT

- Teaching Assistant
- Email: daize.dong@rutgers.edu
- Office (Hours):
 - Not Yet

BACKGROUND

- First-year PhD
- Deep Learning
- Neural Network Efficiency
- High Performance Computation

TODAY'S CONTENT

Recap what you have learned before

- Common Distributions
 - Continuous
 - Discrete
- Hypothesis Testing
 - P-values
 - χ^2 Test

NOISE

- $Y = \beta_0 + \beta_1 x + \epsilon_i$
- Data points are noised
- How to model it?

DISTRIBUTIONS

Continuous

Discrete

CONTINUOUS DISTRIBUTIONS

Source: https://en.wikipedia.org/wiki/Distribution_(mathematics)

UNIFORM DISTRIBUTION

$$f(x) = egin{cases} rac{1}{b-a} & ext{for } a \leq x \leq b, \ 0 & ext{for } x < a ext{ or } x > b. \end{cases}$$

- Perfectly smooth tabletop
- numpy.random.uniform(low, high)

GAUSSIAN DISTRIBUTION

$$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}\,.$$

- Exam scores
- Heights and weights

STUDENT'S T DISTRIBUTION

$$f(t) = rac{\Gamma\!\left(rac{
u+1}{2}
ight)}{\sqrt{\pi
u}\,\Gamma\!\left(rac{
u}{2}
ight)} \left(1+rac{t^2}{
u}
ight)^{-(
u+1)/2},$$

- Gaussian distribution w/ fatter tails
- Financial modeling (asset returns)
- numpy.random.student_t(nu)

 $f(t) \rightarrow N(0,1)$ as $v \rightarrow \infty$

v: degrees of freedom

Number of data points left after estimating parameters

LAPLACE DISTRIBUTION

$$f(x \mid \mu, b) = rac{1}{2b} \expigg(-rac{|x - \mu|}{b}igg),$$

- Sharper peak at the center
- Heavier tails
- Signal processing (spiky noise)
- numpy.random.laplace(mu, b)

COIN TOSS

- Head=1, Tail=0
- Not all randomness is continuous
- How to measure?

DISCRETE DISTRIBUTIONS

Bernoulli

Binomial

BERNOULLI DISTRIBUTION

$$f(k;p) = \left\{egin{array}{ll} p & ext{if } k=1, \ q=1-p & ext{if } k=0. \end{array}
ight.$$

- Tossing a coin → heads/tails
- Light bulb test → work/fail
- numpy.random.binomial(n=1, p)

BINOMIAL DISTRIBUTION

$$f(k,n,p) = \Pr(X=k) = inom{n}{k} p^k (1-p)^{n-k}$$
 $inom{n}{k} = rac{n!}{k!(n-k)!}$

- Combination of Bernoulli
- Number of heads in 20 tosses
- numpy.random.binomial(n, p)

SO FAR

- Modeling continuous noise —— how much
 - Uniform (all values equally likely)
 - Gaussian (bell curve)
 - Student's t (bell curve with heavy tails)
 - Laplace (sharp peak, heavy tails)
- Modeling discrete noise —— how many
 - Bernouli (single trial)
 - Binomial (number of successes in n trials)

HYPOTHESIS TESTING

How to verify the significance/goodness of our model?

- Question:
 - Is this coin fair?
- Hypothesis:
 - H_0 : p = 0.5
 - H_1 : $p \neq 0.5$
- Data:
 - Head=1, Tail=0
 - 010111010110010101 (eight 0s, ten 1s)

P-VALUES

- The probability of observing data at least as extreme as what we saw, under the **null hypothesis** H_0
- $p = P(\text{Test statistic} \ge \text{observed value} \mid H_0)$
 - Small $p \rightarrow$ evidence against H_0
 - Large $p \rightarrow$ evidence consistent with H_0
- Decide whether observed results are "too extreme" under H_0

P-VALUES

- H_0 : p = 0.5
- X: 010111010110010101 (eight 0s, ten 1s)
 - X~Binomial(n=18, p=0.5)

•
$$p = P(X \ge 10 \text{ or } X \le 8 \mid H_0)$$

 $= 1 - P(X = 9 \mid H_0)$
 $= 1 - {18 \choose 9} 0.5^{18}$
 $\approx 1 - 0.1854$
 $= 0.8146$

P-VALUES

- Common conventions
 - p > 0.1: Data are very consistent with H_0
 - 0.05 : Borderline case
 - $0.01 : Moderate evidence against <math>H_0$
 - p < 0.01: Strong evidence against H_0 .
- By convention, people use 0.05 as a threshold
- $p = 0.8146 > 0.05 \rightarrow \text{significant}$

 Whether observed data frequencies match the expected frequencies predicted under the null hypothesis H₀

•
$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

- Observed counts: O_1, O_2, \dots, O_k
- Expected counts: $E_1, E_2, ..., E_k$
- Small $\chi^2 \rightarrow \text{good fit under } H_0$
- Large $\chi^2 \rightarrow \text{bad fit under } H_0$
- Degree of freedom: df = k 1 r Number of estimated parameters Number of classes e.g. μ , σ

χ^2 TEST

- H_0 : p = 0.5
- X: 010111010110010101 (eight 0s, ten 1s)
 - Observed: $O_1 = 8$, $O_2 = 10$
 - Expected: $E_1 = 9$, $E_2 = 9$

•
$$\chi^2 = \sum_{i=1}^2 \frac{(O_i - E_i)^2}{E_i}$$

= $\frac{(8-9)^2}{9} + \frac{(10-9)^2}{9}$
= $\frac{2}{9}$
 ≈ 0.2222 $df = 2 - 1 - 0 = 1$

χ^2 TEST

• Reference values for χ^2 with df = 1

Significance level (α)	Critical value (χ^2 cutoff)
0.10	2.71
0.05	3.84
0.01	6.63

- By convention, people use 0.05 as a threshold
- $\chi^2 = 0.2222 \text{ (df=1)} < 3.84$
- Very significant

χ^2 TEST

Chi Square Table & Chi Square Calculator

	P										
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
7	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322
8	1.344	2.180	11.030	13.362	15.507	17.535	18.168	20.090	21.955	24.352	26.124
9	1.735	2.700	12.242	14.684	16.919	19.023	19.679	21.666	23.589	26.056	27.877
10	2.156	3.247	13.442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588

SO FAR

- P-values
 - Are the results extreme under H_0 ?
 - Bigger is better
- χ^2 Test
 - Do observed results match expected ones?
 - Smaller is better

Q&A