- I - Polynômes d'interpolation de Fejér-Hermite

1. On désigne par $(T_n)_{n\in\mathbb{N}}$ la suite des polynômes de Tchebychev définie sur l'intervalle I=[-1,1] par :

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ T_n(x) = \cos(n\arccos(x))$$

- (a) Déterminer T_0 , T_1 et T_2 .
- (b) Montrer que, pour tout entier $n \geq 1$, on peut exprimer T_{n+1} en fonction de T_n et T_{n-1} .
- (c) En déduire que, pour tout entier naturel n, T_n est un polynôme dont on déterminera le degré et le coefficient dominant.
- (d) Déterminer, pour tout entier $n \geq 1$, les racines du polynôme T_n . On rangera ces racines dans l'ordre décroissant en les notant $x_1 > x_2 > \cdots > x_n$.
- 2. Soient f une fonction continue de I dans \mathbb{R} et n un entier naturel non nul. On note N=2n-1 et on cherche un polynôme P_N de degré inférieur ou égal à N tel que :

$$P_N(x_i) = f(x_i), P'_N(x_i) = 0 \ (1 \le i \le n)$$

(a) Montrer que si ce polynôme existe, il est alors unique. En déduire l'existence de ce polynôme.

On note, pour tout $n \ge 1$, tout $x \in I$:

$$\pi_n(x) = \prod_{i=1}^n (x - x_i)$$

et pour tout entier i compris entre 1 et n:

$$L_i(x) = \prod_{\substack{j=1\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

- (b) Pour tout entier i compris entre 1 et n, exprimer $\pi'_n(x_i)$ en fonction de $\prod_{\substack{j=1\\j\neq i}}^n (x_i-x_j)$.
- (c) Montrer que, pour tout $x \in I$, si l'on note pour i compris entre 1 et n:

$$F_i(x) = \left(1 - \frac{\pi''_n(x_i)}{\pi'_n(x_i)}(x - x_i)\right) L_i^2(x)$$

on a:

$$P_N(x) = \sum_{i=1}^n f(x_i) F_i(x)$$

- (d) Montrer que la famille $\mathcal{H}_n = \{L_i^2 \mid 1 \leq i \leq n\} \cup \{(x x_i) L_i^2 \mid 1 \leq i \leq n\}$ est une base de l'espace vectoriel $\mathbb{R}_{2n-1}[X]$.
- (e) En utilisant la base \mathcal{H}_n , retrouver le résultat de **I.2.c.**
- 3. Montrer que, pour tout entier i compris entre 1 et n et tout $x \in I$, on a :

$$L_i(x) = \frac{(-1)^{i-1}\sqrt{1-x_i^2}}{n}\frac{T_n(x)}{x-x_i}$$

et:

$$F_i(x) = (1 - x_i x) \left(\frac{T_n(x)}{n(x - x_i)}\right)^2$$

4. Montrer que, pour tout $x \in I$, on a :

$$|f(x) - P_N(x)| \le \sum_{i=1}^n |f(x) - f(x_i)| F_i(x)$$

- 5. Soit $\varepsilon > 0$ fixé.
 - (a) Montrer qu'il existe $\eta > 0$ tel que pour tous x, x' dans I vérifiant $|x x'| \leq \eta$, on ait $|f(x) f(x')| \leq \varepsilon$.
 - (b) On note $\|f\|_{\infty} = \sup_{x \in I} |f(x)|$. Montrer que, pour tout $x \in I$, on a :

$$|f(x) - P_N(x)| \le \varepsilon + \frac{4 ||f||_{\infty}}{n\eta^2}$$

- (c) En déduire que la suite de polynômes $(P_{2n-1})_{n\geq 1}$ converge uniformément vers f sur I.
- 6. Plus généralement, pour n entier naturel non nul, on note $(x_{i,n})_{1 \leq i \leq n}$ une suite de n réels distincts de I. Montrer que la fonction f peut être approchée uniformément sur I par une suite de polynômes $(P_n)_{n \in \mathbb{N}}$ satisfaisant :

$$P_n(x_{i,n}) = f(x_{i,n}) \ (1 \le i \le n)$$

Exemples de calculs de la norme d'une application linéaire continue

Exercice 1 E et F sont des espaces vectoriels réels de dimensions respectives $n \ge 1$ et $m \ge 1$. Étant données une base $\mathcal{B} = (e_i)_{1 \le i \le n}$ de E et une base $\mathcal{B}' = (e_i')_{1 \le i \le n}$ de F, on munit ces espaces de la norme $\|\cdot\|_{\infty}$, soit :

$$\forall x = \sum_{k=1}^{n} x_k e_k \in E, \ \|x\|_{\infty} = \max_{1 \le k \le n} |x_k|$$

$$\forall y = \sum_{k=1}^{m} y_k e'_k \in F, \ \|y\|_{\infty} = \max_{1 \le k \le m} |y_k|$$

Soit $u \in \mathcal{L}(E, F)$ de matrice $A = ((a_{ij}))_{\substack{1 \leq im \\ 1 \leq j \leq n}}$ dans les bases \mathcal{B} et \mathcal{B}' . Montrer que :

$$||u||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$$

Les deux exercices qui suivent sont analogues au précédent, mais en dimension infinie.

Exercice 2 L'espace $E = \ell^{\infty}$ des suites réelles bornées est normé par $x \mapsto ||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$. On se donne une suite $\varphi = (\varphi_n)_{n \in \mathbb{N}} \in E$ telle que la série $\sum \varphi_n$ soit absolument convergente et $u \in \mathcal{L}(E, \mathbb{R})$ est définie par :

$$\forall x \in E, \ u(x) = \sum_{n=0}^{+\infty} x_n \varphi_n$$

Montrer que u est continue de $(E, ||f\cdot||_{\infty})$ dans $(\mathbb{R}, |\cdot|)$, avec :

$$||u||_{\infty} = \sum_{n=0}^{+\infty} |\varphi_n|$$

Exercice 3 $E = \mathcal{C}^0([0,1],\mathbb{R})$ est normé par $f \mapsto \|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$. On se donne $\varphi \in E$ et $u \in \mathcal{L}(E,\mathbb{R})$ est définie par :

$$\forall f \in E, \ u(f) = \int_{0}^{1} f(t) \varphi(t) dt$$

Montrer que u est continue de $(E, \|\cdot\|_{\infty})$ dans $(\mathbb{R}, |\cdot|)$, avec :

$$\|u\|_{\infty} = \int_{0}^{1} |\varphi(t)| dt$$

Exercice 4 E et F sont des espaces vectoriels réels de dimensions respectives $n \ge 1$ et $m \ge 1$. Étant données une base $\mathcal{B} = (e_i)_{1 \le i \le n}$ de E et une base $\mathcal{B}' = (e_i')_{1 \le i \le n}$ de F, on munit ces espaces de la norme $\|\cdot\|_1$, soit :

$$\forall x = \sum_{k=1}^{n} x_k e_k \in E, \ \|x\|_1 = \sum_{k=1}^{n} |x_k|$$

$$\forall y = \sum_{k=1}^{m} y_k e_k' \in F, \ \|y\|_1 = \sum_{k=1}^{m} |y_k|$$

Soit $u \in \mathcal{L}(E, F)$ de matrice $A = ((a_{ij}))_{\substack{1 \leq im \\ 1 \leq j \leq n}}$ dans les bases \mathcal{B} et \mathcal{B}' . Montrer que :

$$||u||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|$$

L'exercice qui suit est analogue au précédent, mais en dimension infinie.

Exercice 5 $E = \mathcal{C}^0([0,1],\mathbb{R})$ est normé par $f \mapsto ||f||_1 = \int_0^1 |f(t)| dt$. On se donne $\varphi \in E$ et $u \in \mathcal{L}(E)$ est définie par :

$$\forall f \in E, \ u(f) = \int_0^1 f(t) \varphi(t) dt$$

Montrer que u est continue de $(E, \|\cdot\|_1)$ dans $(\mathbb{R}, |\cdot|)$, avec :

$$||u||_{1} = ||\varphi||_{\infty} = \sup_{t \in [0,1]} |\varphi(t)|$$

Exercice 6 $(E, \langle \cdot | \cdot \rangle)$ est un espace euclidien de dimension $n \geq 1$. On note $\|\cdot\|_2$ la norme associée. Soit $u \in \mathcal{L}(E)$ et u^* son adjoint défini par :

$$\forall (x, y) \in E^2, \langle u(x) \mid y \rangle = \langle x \mid u^*(y) \rangle$$

On désigne par $\operatorname{sp}(u)$ l'ensemble des valeurs propres de u et par $\rho(u) = \max_{\lambda \in \operatorname{sp}(u)} |\lambda|$ le rayon spectral de u.

1. Montrer que si u est symétrique (i. e. $u^* = u$), on a alors :

$$\left\| u \right\|_2 = \rho \left(u \right)$$

- 2. Montrer que $||u^*||_2 = ||u||_2$.
- 3. Montrer que :

$$\|u\|_{2} = \sqrt{\|u^{*} \circ u\|_{2}} = \sqrt{\rho(u^{*} \circ u)}$$

4. Soient u et v deux endomorphismes symétriques. Montrer que :

$$\rho(u \circ v) < \rho(u) \rho(v)$$

Exercice 7 $(E, \langle \cdot | \cdot \rangle)$ est un espace préhilbertien (de dimension finie ou non) et $\|\cdot\|_2$ est la norme associée.

1. Montrer que si u est continue, on a alors :

$$||u|| = \sup_{\|x\|_2 = \|y\|_2 = 1} |\langle u(x) | y \rangle|$$

2. On dit que $u \in \mathcal{L}(E)$ est symétrique si :

$$\forall (x, y) \in E^2, \langle u(x) | y \rangle = \langle x | u(y) \rangle$$

Montrer que si u est continue et symétrique, on a alors :

$$||u|| = \sup_{||x||_2=1} |\langle u(x) | x \rangle|$$

Exercice 8 Soient $E = \mathcal{C}^0([0,1],\mathbb{R})$, $\varphi \in E$ et $u \in \mathcal{L}(E)$ définie par :

$$\forall f \in E, \ u(f) = \int_0^1 f(t) \varphi(t) dt$$

1. En munissant E de la norme $f \mapsto \|f\|_2 = \sqrt{\int_0^1 f^2(t) dt}$, montrer que u est continue de $(E, \|\cdot\|_2)$ dans $(\mathbb{R}, |\cdot|)$, avec :

$$\|u\|_2 = \|\varphi\|_2$$

2. On suppose que φ est à valeurs positives et on se donne un réel p > 1.

En munissant E de la norme $f \mapsto \|f\|_p = \sqrt[p]{\int_0^1 |f(t)|^p} dt$, montrer que u est continue de $\left(E, \|\cdot\|_p\right) dans\left(\mathbb{R}, |\cdot|\right)$, avec :

$$||u||_p = ||\varphi||_q$$

$$où q > 1$$
 est tel que $\frac{1}{p} + \frac{1}{q} = 1$.

Exercice 9 Soient I = [a, b] un intervalle réel fermé borné avec a < b et $\mathcal{C}(I)$ l'algèbre des fonctions continues de I dans \mathbb{R} muni de la norme $\|\cdot\|_{\infty}$.

1. Pour tout entier naturel non nul n, on se donne une suite $(x_{n,i})_{0 \leq i \leq n}$ de réels deux à deux distincts dans I et une suite $(\lambda_k)_{0 \leq k \leq n}$ de fonctions dans C(I). Montrer que l'opérateur u définie sur C(I) par :

$$\forall f \in \mathcal{C}(I), \ \forall x \in [a, b], \ u(f)(x) = \sum_{k=0}^{n} f(x_k) \lambda_k(x)$$

est continue avec :

$$||u|| = \sup_{x \in I} \sum_{k=0}^{n} |\lambda_k(x)|.$$

2. Pour tout fonction f appartenant à C(I), on note $L_n(f)$ le polynôme d'interpolation de Lagrange défini par :

$$\begin{cases} L_n(f) \in \mathbb{R}_n[x] \\ L_n(f)(x_{n,i}) = f(x_{n,i}) & (0 \le i \le n) \end{cases}$$

(a) Montrer que :

$$L_n(f) = \sum_{i=0}^{n} f(x_{n,i}) L_{n,i},$$

avec:

$$L_{n,i}(x) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_{n,j}}{x_{n,i} - x_{n,j}} \ (0 \le i \le n).$$

puis que l'opérateur linéaire L_n est un continu de C(I) dans $\mathbb{R}_n[x]$ avec :

$$||L_n|| = \sup_{x \in I} \sum_{i=0}^n |L_{n,i}(x)|$$

La suite $(\lambda_n)_{n\geq 1} = (\|L_n\|)_{n\geq 1}$ est la suite des constantes de Lebesgue associées à la suite double $(x_{n,i})_{0\leq i\leq n<+\infty}$.

(b) On note $E_n(f) = d(f, \mathbb{R}_n[x]) = \inf_{P \in \mathbb{R}_n[x]} \|f - P\|_{\infty}$ le degré d'approximation uniforme par des polynômes de degré au plus n d'une fonction $f \in \mathcal{C}(I)$. Montrer que, pour toute fonction f dans $\mathcal{C}(I)$, on a:

$$\forall n \ge 1, \ E_n(f) \le ||f - L_n(f)||_{\infty} \le (1 + \lambda_n) E_n(f)$$

- (c) Montrer que $\lim_{n\to+\infty} E_n(f) = 0$.
- (d) Montrer que si f est une fonction appartenant à $\mathcal{C}(I)$ telle $\lim_{n \to +\infty} \lambda_n E_n(f) = 0$, alors la suite $(L_n(f))_{n \in \mathbb{N}}$ des polynômes d'interpolation de Lagrange de f converge uniformément vers f sur I.
- (e) Montrer que pour des points d'interpolation équidistants dans I, on a :

$$\forall n \ge 1, \ \frac{2^n}{4n^2} \le \lambda_n \le 2^n.$$