Assignment Statistical Inference - Part 1

OscarAMtz

8 de abril de 2019

Part 1

- 1. A simulation exercise
- 2. Basic inferential data analysis

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

```
set.seed(215)
lambda <- 0.2; obs <- 40; sims <- 1000 ## var simulations
exp.sims <- NULL ## var used to store exponential simulations
for (i in seq(sims)) exp.sims <- c(exp.sims, mean(rexp(obs, lambda)))
exp.sims.mean <- mean(exp.sims)
round(exp.sims.mean, 3)</pre>
```

[1] 5.008

The mean of the 1000 simulations is 5.008, meanwhile the theorical mean is 5 and can be compared in the following histogram.

1000 simulations of exponential distribution means

See code here

Distributions comparison

Compare how variable the sample is vs the expected distribution via variance

Expected variance

See code here

```
## Expected Sample
## Mean 5.000 5.0081038
## Variance 0.625 0.6602019
```

Showing distributions approximately to the normal

1000 simulations of exponential distribution means

See code here

Normal distribution approximation

```
qqnorm(exp.sims)
qqline(exp.sims)
```

Normal Q-Q Plot

Appendix

Appendix 1

Code used in plot 1

Appendix 2

Code used in plot 2

Appendix 3

Code used for the matrix