Machine Learning and Financial Applications

Lecture 9 Robust Portfolio Optimization

Liu Peng liupeng@smu.edu.sg

Robust Portfolio Optimization

Key Benefits:

- Enhanced Stability: Provides portfolios that are less sensitive to errors in parameter estimation, ensuring stable performance across different scenarios.
- Improved Risk Management: Offers protection against worst-case outcomes by incorporating parameter uncertainties directly into the optimization process.
- **Flexibility**: Adaptable to different types of uncertainty sets and levels of investor risk aversion.

Concept Overview:

- Robust Portfolio Optimization seeks to construct portfolios that are less sensitive to uncertainties in the input parameters, such as asset returns (μ), covariance matrices (Σ), and risk aversion levels (λ).
- The objective is to optimize the portfolio performance under worst-case scenarios, considering different types of uncertainties in these parameters.

Mathematical Formulation:

• The goal is to maximize the worst-case performance of the portfolio when there is uncertainty in the model parameters:

$$\max_{\mathbf{w}} \min_{oldsymbol{\mu} \in \mathcal{U}_{\mu}, \Sigma \in \mathcal{U}_{\Sigma}, \lambda \in \mathcal{U}_{\lambda}} \left(\mathbf{w}^T oldsymbol{\mu} - rac{1}{2} \lambda \mathbf{w}^T \Sigma \mathbf{w}
ight)$$

• Here, \mathcal{U}_{μ} , \mathcal{U}_{Σ} , and \mathcal{U}_{λ} represent the uncertainty sets for the expected returns, covariance matrix, and risk aversion coefficient, respectively.

• Assuming uncertainty only in μ , the problem simplifies to:

$$\max_{\mathbf{w}} \left(\min_{oldsymbol{\mu} \in \mathcal{U}_{\mu}} \mathbf{w}^T oldsymbol{\mu} - rac{1}{2} \lambda \mathbf{w}^T \Sigma \mathbf{w}
ight)$$

• This can be solved using robust optimization techniques that convert the problem into a convex optimization problem under ellipsoidal or polyhedral sets.

Uncertainty in Expected Return

- Ellipsoidal Uncertainty: $\mathcal{U}_\mu=\{m{\mu}:(m{\mu}-m{\mu}_0)^T\Psi^{-1}(m{\mu}-m{\mu}_0)\leq
 ho^2\}$
 - This set captures uncertainty within a confidence region centered around μ_0 , the estimated returns.
- Polyhedral Uncertainty: $\mathcal{U}_{\mu} = \{oldsymbol{\mu}: \|oldsymbol{\mu} oldsymbol{\mu}_0\|_{\infty} \leq
 ho\}$
 - This set allows for bounded deviations from μ_0 in all directions, representing worst-case scenarios with maximum deviation ρ .

Uncertainty in Covariance Matrix

When only Σ is uncertain:

$$\max_{\mathbf{w}} \left(\mathbf{w}^T oldsymbol{\mu} - rac{1}{2} \lambda \max_{\Sigma \in \mathcal{U}_\Sigma} \mathbf{w}^T \Sigma \mathbf{w}
ight)$$

This problem is addressed by robust quadratic programming techniques, which handle uncertainties in the covariance matrix to maintain portfolio robustness.

Spectral Norm Uncertainty: $\mathcal{U}_{\Sigma} = \{\Sigma: \|\Sigma - \Sigma_0\|_2 \leq \eta\}$

• This set constrains the covariance matrix to lie within an ellipsoidal region around the estimated covariance Σ_0 , using spectral norm η as the measure of uncertainty.

Component-wise Uncertainty:
$$\mathcal{U}_{\Sigma} = \{\Sigma: |\Sigma_{ij} - \Sigma_{0,ij}| \leq \eta_{ij}, \, orall i, j \}$$

• Each element of the covariance matrix can vary within a specified range $[\Sigma_{0,ij}-\eta_{ij},\Sigma_{0,ij}+\eta_{ij}]$, allowing for more granular control over the uncertainty.

Case Study

- Returns and Risk:
 - ullet Mean returns: $\mu_i=1.15+rac{i\cdot 0.05}{150}$
 - Standard deviations: $\sigma_i = rac{0.05}{450} \cdot (2i \cdot n \cdot (n+1))^{0.5}$
 - Covariance matrix Σ : Diagonal with variances, assuming no correlation.
- Revised MVO Model:

$$egin{aligned} ext{maximize} & \sum_{i=1}^n \mu_i w_i - \lambda \sum_{i=1}^n \sigma_i^2 w_i^2 \ ext{subject to} & \sum_{i=1}^n w_i = 1, \ w_i \geq 0 \quad orall i. \end{aligned}$$

• Practical Note: Parameters typically estimated from historical data or financial models.

Robust MVO Formulation

Problem Setup:

- In Robust MVO, the mean return vector μ and the covariance matrix Σ are uncertain and belong to uncertainty sets U_{μ} and U_{Σ} , respectively.
- Uncertain parameters:

$$\mu \in U_{\mu}, \quad \Sigma \in U_{\Sigma}$$

Robust Optimization Formulation:

• The goal is to optimize the portfolio weights **w** for the **worst-case** scenarios of expected returns and risks:

$$egin{aligned} & \min_{\mathbf{w}} \ \mu^T \mathbf{w} - \lambda \!\!\! \max_{\Sigma \in U_\Sigma} \mathbf{w}^T \Sigma \mathbf{w} \ & ext{subject to} & \mathbf{w}^T \mathbf{1} = 1, \ & w_i \geq 0 \, orall i \in \{1, \dots, n\}. \end{aligned}$$

Key Considerations:

- 1. Choosing Uncertainty Sets:
 - U_{μ} : Sets for mean returns (e.g., ellipsoidal, polyhedral).
 - U_{Σ} : Sets for covariance matrices (e.g., spectral norm, component-wise).

2. Solving the Optimization:

- Convert the robust MVO into a tractable convex optimization problem.
- Use techniques like robust quadratic programming and duality theory.

Objective:

• Find a portfolio allocation that maximizes the worst-case return while minimizing the worst-case risk, ensuring stability and robustness against parameter uncertainties.

Robust MVO with Box Uncertainty for Expected Returns

Uncertainty Set for Mean Returns:

• Assume a fixed covariance matrix $\hat{\Sigma}$ and define the **box uncertainty set** for the mean return vector μ :

$$U_{\mu} = \{\mu \mid -\delta \leq \mu - \bar{\mu} \leq \delta\}$$

- · Parameters:
 - $\bar{\mu}$: Center of the uncertainty set (pre-defined mean vector).
 - δ : Size of the uncertainty set (range of possible deviations).

Robust MVO Formulation:

• The goal is to optimize portfolio weights ${\bf w}$ considering the worst-case scenario for μ U_{μ} :

$$egin{array}{ll} ext{maximize} & \min_{\mu \in U_{\mu}} \mu^T \mathbf{w} - \lambda \mathbf{w}^T \hat{\Sigma} \mathbf{w} \ ext{subject to} & \mathbf{w}^T \mathbf{1} = 1 \end{array}$$

Inner Minimization Problem:

The worst-case expected return simplifies to:

$$\min_{\mu \in U_{\mu}} \mu^T \mathbf{w} = ar{\mu}^T \mathbf{w} - \delta |\mathbf{w}|$$

• This expression reflects the worst-case return, occurring at the boundaries of the uncertainty set U_{μ} , based on the sign of each w_i .

Reformulating and Solving the Robust MVO Problem

(optional)

Equivalent Reformulation:

Replace the inner minimization with its closed-form solution:

$$\begin{array}{ll} \underset{\mathbf{w}}{\text{maximize}} & \bar{\mu}^T \mathbf{w} - \delta |\mathbf{w}| - \lambda \mathbf{w}^T \hat{\Sigma} \mathbf{w} \\ \text{subject to} & \mathbf{w}^T \mathbf{1} = 1 \end{array}$$

Handling Absolute Value with Auxiliary Variables:

• Introduce auxiliary variables $\psi \in \mathbb{R}^N$ to replace $|\mathbf{w}|$:

$$\underset{\mathbf{w},\psi}{\text{maximize}} \quad \bar{\mu}^T \mathbf{w} - \delta \psi - \lambda \mathbf{w}^T \hat{\Sigma} \mathbf{w}$$
 (1)

subject to
$$\mathbf{w}^T \mathbf{1} = 1$$
, (2)

$$\psi_i \geq w_i, \quad \psi_i \geq -w_i, \quad i \in \{1,...,N\}$$

Optimization Strategy:

- Convert the robust optimization problem to a standard quadratic program using auxiliary variables, increasing the dimensionality of the decision variables but enabling efficient solving.
- For a long-only portfolio ($w_i \geq 0$), directly incorporate $|\mathbf{w}|$ for a simpler formulation.

Uncertainty in the Covariance Matrix

(optional)

Concept: Incorporate uncertainty in the covariance matrix Σ of asset returns to account for estimation errors and improve portfolio robustness.

Nominal Covariance Matrix: $\bar{\Sigma}$ (estimated from historical data).

Perturbation Matrix: Δ is a symmetric matrix that represents uncertainty in Σ .

Constraint on Δ :

$$|\Delta_{ij}| \leq \kappa (ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}}, \quad orall i,j$$

• Interpretation: The deviation Δ_{ij} is bounded by a scaled geometric mean of variances $(\bar{\Sigma}_{ii}\bar{\Sigma}_{jj})^{1/2}$, where κ controls the level of uncertainty (e.g., $\kappa=0.02$ or 0.05).

Uncertainty Set for Σ :

$$U_{\Sigma} = \left\{ \Sigma \left| egin{array}{l} ar{\Sigma}_{ij} - \kappa (ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}} \leq \Sigma_{ij} \leq ar{\Sigma}_{ij} + \kappa (ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}}, \ orall i,j \end{array}
ight.
ight.$$

Reformulating the MVO Problem with Covariance Uncertainty

Revised MVO Formulation:

$$egin{aligned} & \mathbf{\mu}^T \mathbf{w} - \lambda \max_{\Sigma \in U_\Sigma} \mathbf{w}^T \Sigma \mathbf{w} \ & ext{subject to} & \mathbf{w}^T \mathbf{1} = 1, \ & w_i \geq 0, \, orall i. \end{aligned}$$

Inner Maximization:

$$egin{aligned} \max_{\Sigma \in U_{\Sigma}} \mathbf{w}^T \Sigma \mathbf{w} &= \max_{|\Delta_{ij}| \leq \kappa(ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}}} \mathbf{w}^T (ar{\Sigma} + \Delta) \mathbf{w} \ &= \mathbf{w}^T ar{\Sigma} \mathbf{w} + \max_{|\Delta_{ij}| \leq \kappa(ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}}} \mathbf{w}^T \Delta \mathbf{w} \end{aligned}$$

(optional)

Simplification of the Inner Maximization Problem

(optional)

Inner Maximization Simplified:

$$egin{aligned} \max_{|\Delta_{ij}| \leq \kappa(ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}}} \mathbf{w}^T \Delta \mathbf{w} &= \max_{|\Delta_{ij}| \leq \kappa(ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}}} \sum_{ij} w_i w_j \Delta_{ij} \ &= \kappa \sum_{ij} |w_i w_j| (ar{\Sigma}_{ii}ar{\Sigma}_{jj})^{rac{1}{2}} \ &= \kappa \left(\sum_i |w_i| (ar{\Sigma}_{ii})^{1/2}
ight)^2 \end{aligned}$$

Final MVO Formulation with Covariance Uncertainty:

$$\max_{\mathbf{w}} \left(oldsymbol{\mu}^T \mathbf{w} - \lambda \left(\mathbf{w}^T ar{\Sigma} \mathbf{w} + \kappa \left(\sum_i |w_i| (ar{\Sigma}_{ii})^{1/2}
ight)^2
ight)
ight)$$

Interpretation: The robust MVO model accounts for maximum possible variance due to covariance estimation errors, enhancing portfolio resilience against estimation errors by considering the worst-case scenario of Σ within the defined uncertainty set U_{Σ} .

Elliptical Uncertainty Over Mean Return

(optional)

Motivation: The expected returns μ are often estimated with error. To account for this uncertainty, we introduce an elliptical uncertainty set around the nominal estimates $\hat{\mu}$.

Elliptical Uncertainty Set:

$$U_{oldsymbol{\mu}} = \left\{ oldsymbol{\mu} \mid (oldsymbol{\mu} - oldsymbol{\hat{\mu}})^T oldsymbol{S}^{-1} (oldsymbol{\mu} - oldsymbol{\hat{\mu}}) \leq \delta^2
ight\}$$

• Interpretation: ${m S}^{-1}$ shapes the ellipsoid; δ controls the radius, reflecting the degree of uncertainty in ${m \mu}$.

Geometric Representation:

$$U_{oldsymbol{\mu}} = \left\{ oldsymbol{\mu} = \hat{oldsymbol{\mu}} + \delta oldsymbol{S}^{1/2} \mathbf{u} \mid \|\mathbf{u}\|_2 \leq 1
ight\}$$

- Key Components:
 - **u** is a unit vector defining the direction of deviation.
 - $m{S}^{1/2}$ scales this deviation according to the uncertainty in asset returns (e.g., $m{S}=\hat{m{\Sigma}}$, the covariance matrix).

Robust MVO Formulation with Elliptical Uncertainty

(optional)

Robust MVO Problem:

$$egin{array}{ll} ext{maximize} & \min_{oldsymbol{\mu} \in U_{oldsymbol{\mu}}} \left(\mathbf{w}^T oldsymbol{\mu} - \lambda \mathbf{w}^T \mathbf{\hat{\Sigma}} \mathbf{w}
ight) \ ext{subject to} & \mathbf{1}^T \mathbf{w} = 1, \quad \mathbf{w} \geq \mathbf{0} \end{array}$$

Inner Minimization Simplification:

$$\min_{oldsymbol{\mu} \in U_{oldsymbol{\mu}}} \mathbf{w}^T oldsymbol{\mu} = \mathbf{w}^T oldsymbol{\hat{\mu}} - \delta \| (oldsymbol{S}^{1/2})^T \mathbf{w} \|_2$$

• **Key Insight**: The worst-case expected return within the uncertainty set is the nominal return minus a risk adjustment term $-\delta \|(\mathbf{S}^{1/2})^T \mathbf{w}\|_2$.

Final Robust MVO Formulation:

$$egin{aligned} & \mathbf{w}^T \hat{oldsymbol{\mu}} - \lambda \mathbf{w}^T \mathbf{\hat{\Sigma}} \mathbf{w} - \delta \| (oldsymbol{S}^{1/2})^T \mathbf{w} \|_2 \ & \text{subject to} \quad \mathbf{1}^T \mathbf{w} = 1, \quad \mathbf{w} \geq \mathbf{0} \end{aligned}$$

Interpretation: This formulation hedges against the risk of return underestimation by optimizing for the worst-case scenario within the uncertainty ellipsoid, enhancing portfolio robustness.

Frobenius Norm and Uncertainty in the Design Matrix

(optional)

Frobenius Norm: Measures the size of a matrix as the square root of the sum of the squares of its elements, encapsulating the matrix within a spherical boundary.

Uncertainty in Design Matrix $m{X}$:

$$oldsymbol{X} = oldsymbol{\hat{X}} + \Delta$$

- $\hat{m{X}}$: Nominal design matrix.
- Δ : Perturbation matrix representing uncertainty.

Frobenius Norm Constraint:

$$\|\Delta\|_F \leq \delta_{m{X}}$$

• Defines a spherical uncertainty set around $\hat{m{X}}$.

Uncertainty Set:

$$U_{oldsymbol{X}} = \{oldsymbol{X} \mid \|oldsymbol{X} - oldsymbol{\hat{X}}\|_F \leq \delta_{oldsymbol{X}}\}$$

• $\delta_{\pmb{X}}$: Radius controlling the level of uncertainty.

Impact on the Covariance Matrix and Risk Term

Covariance Matrix Σ Relation:

$$oldsymbol{\Sigma} = rac{1}{T} oldsymbol{X}^T oldsymbol{X}$$

• Uncertainty in $oldsymbol{X}$ directly affects $oldsymbol{\Sigma}$.

Revised Risk Component:

$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} = rac{1}{T} \| oldsymbol{X} \mathbf{w} \|_2^2 = rac{1}{T} \| (oldsymbol{\hat{X}} + \Delta) \mathbf{w} \|_2^2$$

Worst-Case Risk Maximization:

$$\max_{oldsymbol{X} \in U_{oldsymbol{X}}} \lVert oldsymbol{X} \mathbf{w}
Vert_2^2 = \max_{\lVert \Delta
Vert_F \leq \delta_{oldsymbol{X}}} \lVert (oldsymbol{\hat{X}} + \Delta) \mathbf{w}
Vert_2^2$$

(optional)

Reformulating the Robust MVO Problem

(optional)

Applying the Triangular Inequality:

$$\|(\boldsymbol{\hat{X}} + \Delta)\mathbf{w}\|_2 \leq \|\boldsymbol{\hat{X}}\mathbf{w}\|_2 + \|\Delta\mathbf{w}\|_2$$

Bounding the Norm:

$$\|\Delta \mathbf{w}\|_2 \leq \|\Delta\|_F \|\mathbf{w}\|_2 \leq \delta_{\boldsymbol{X}} \|\mathbf{w}\|_2$$

Simplified Worst-Case Risk Expression:

$$\max_{\|\Delta\|_F \leq \delta_{oldsymbol{X}}} \lVert (\hat{oldsymbol{X}} + \Delta) \mathbf{w}
Vert_2^2 = (\lVert \hat{oldsymbol{X}} \mathbf{w}
Vert_2 + \delta_{oldsymbol{X}} \lVert \mathbf{w}
Vert_2)^2$$

Final Robust MVO Formulation:

$$egin{align} ext{maximize} & oldsymbol{\mu}^T \mathbf{w} - \lambda (\|\hat{oldsymbol{X}} \mathbf{w}\|_2 + \delta_{oldsymbol{X}} \|\mathbf{w}\|_2)^2 \ ext{subject to} & \mathbf{w}^T \mathbf{1} = 1, \ w_i \geq 0, \quad orall i. \end{aligned}$$

Conclusion: This SOCP (Second-Order Cone Problem) formulation robustly addresses portfolio optimization by considering worst-case deviations in the design matrix, enhancing the model's resilience to uncertainty.

Coding session