Géométrie Différentielle, TD 3 du 22 février 2019

1. Questions diverses- A FAIRE AVANT LE TD

- 1– Peut on plonger \mathbb{S}^n dans \mathbb{R}^n ?
- 2– La composée de deux applications de rang constant est elle nécessairement de rang constant?
- 3- Une morphisme injectif de groupes des Lie est il nécessairement une immersion? un plongement?
- 4- Montrer qu'une application continue entre variétés topologiques est propre si et seulement elle est fermée et l'image réciproque de tout point est compacte.

Solution:

- 1– Non, on ne peut même pas immerger \mathbb{S}^n dans \mathbb{R}^n . En effet, par égalité des dimensions, une telle immersion serait aussi une submersion donc d'image ouverte, contredisant la compacité de \mathbb{S}^n .
- 2- Non, la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ est de rang non constant, mais s'écrit comme composée d'une immersion $i: \mathbb{R} \to \mathbb{R}^2, x \mapsto (x,0)$ et d'une submersion $s: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + y$.
- 3– Oui pour l'immersion. En effet, soit $f:G\to G'$ un morphisme de groupes de Lie. On vérifie d'abord que f est de rang constant. Pour $g\in G$, on note $L_g:G\to G,h\mapsto gh$. C'est un C^∞ -difféomorphisme de G, de même pour G'. Le fait que f soit un morphisme donne $f\circ L_g=L_{f(g)}\circ f$ donc en différentiant : $T_gf\circ T_eL_g=T_{f(e)}L_{f(g)}\circ T_ef$ d'où $\operatorname{rg}(T_gf)=\operatorname{rg}(T_ef)$. L'injectivité de f implique finalement que f est une immersion par le théorème du rang.
 - Non pour le plongement. Soit $\alpha \in \mathbb{R} \mathbb{Q}$ un nombre irrationnel. \mathbb{R} s'immerge dans le tore $\mathbb{T}^2 = \mathbb{Z}^2 \backslash \mathbb{R}^2$ via $t \mapsto (t, t\alpha)$ mais l'image n'est pas une sous-variété car dense dans \mathbb{T}^2 .
- 4- On se donne $f: X \to Y$ continue entre variétés topologiques.
 - Montrons le sens direct. Il s'agit de prouver le premier point. Soit $F \subseteq X$ un fermé, $(x_n) \in F^{\mathbb{N}}$ une suite d'éléments de F telle que la suite $(f(x_n))_{n\geqslant 0}$ coverge dans N, vers un point $y \in Y$. Le point limite y admet un voisinage compact V dont la préimage $f^{-1}(V)$ est compacte et contient les termes de la suite (x_n) à partir d'un certain rang. On a $f^{-1}(V) \cap F$ compact donc il existe une extraction σ telle que $(x_{\sigma(n)})_{n\geqslant 0}$ converge. Si on note x_{∞} la limite, alors on a $x_{\infty} \in F$, $f(x_{\infty}) = y$ d'où $y \in f(F)$. Cela montre le sens direct.
 - Pour la réciproque, soit $K \subseteq Y$ un compact. On montre que $f^{-1}(K) \subseteq X$ est compact. Soit $(x_n) \in f^{-1}(K)^{\mathbb{N}}$. Quitte à extraire, on peut supposer que la suite $(f(x_n)) \in K^{\mathbb{N}}$

converge vers un point $y \in K$. Les hypothèses sur f impliquent que $f^{-1}(y)$ est compact non vide. Soit $V \subseteq X$ un voisinage de $f^{-1}(y)$. Alors pour n assez grand, on a $x_n \in V$ (en effet, soit $U \subseteq V$ un sous voisinage ouvert de $f^{-1}(y)$, comme f est fermée, on a f(X - U) fermé dans Y et ne rencontrant pas y, donc à partir d'un certain rang $(f(x_n))$ est dans Y - f(X - U) puis x_n dans U). Comme X est localement compact, on peut supposer V compact, donc (x_n) admet une sous-suite convergente, d'où la compacté de $f^{-1}(K)$.

2. Exemples de quotients

On considère les actions suivantes du groupe \mathbb{Z} sur une variété X, engendrées par le difféomorphisme f de X. Déterminer dans quels cas l'action est libre et proprement discontinue. Identifier le quotient quand c'est le cas.

Dans le cas contraire, le quotient est-il séparé? Localement homéomorphe à un ouvert de \mathbb{R}^N ?

- $1-X=\mathbb{R}^{+*}$ et f est l'homothétie de rapport 2.
- $2-X=\mathbb{R}$ et f est l'homothétie de rapport 2.
- $3-X=\mathbb{R}^N\setminus\{0\}$ et f est l'homothétie de rapport 2.
- 4- $X = \mathbb{R}^2 \setminus \{(0,0)\}\$ et f(x,y) = (2x, y/2).

Solution:

- 1- L'application logarithme $X = \mathbb{R}^{+*} \to \mathbb{R}$, $x \mapsto \ln(x)$ montre que cet exemple est isomorphe à l'action de \mathbb{Z} sur \mathbb{R} par translation de $\ln(2)$. L'action est donc libre et proprement discontinue, et le quotient est difféomorphe à \mathbb{S}^1 .
- 2- L'action n'est ni libre ni proprement discontinue : 0 est un point fixe. Notons π l'application quotient. Soit $U \subseteq \pi(\mathbb{R})$ un ouvert contenant contenant $\pi(0)$. Alors par défintion de la topologie quotient, on a $\pi^{-1}(U) \subseteq \mathbb{R}$ voisinage ouvert de 0. Or l'orbite sous f de tout $x \in \mathbb{R}$ rencontre $\pi^{-1}(U)$ (car pour $k \in \mathbb{N}$ assez grand, on a $\frac{x}{2^k} \in \pi^{-1}(U)$). Ainsi, $U = \pi(\pi^{-1}(U)) = \pi(R)$. Le point $\pi(0)$ n'a donc qu'un voisinage, égal au quotient tout entier. Cette bizarrerie montre que le quotient n'est pas séparé et ne peut être localement homéomorphe à un ouvert de \mathbb{R}^N .
- 3– L'application $\psi: \mathbb{R}^N \setminus \{(0,0)\} \to \mathbb{R}^{+*} \times \mathbb{S}^{N-1}$ telle que $\psi(x) = (||x||, \frac{x}{||x||})$ est un difféomorphisme, car c'est une bijection \mathcal{C}^{∞} de réciproque $\mathcal{C}^{\infty}: (x,y) \mapsto xy$. En transportant l'action de \mathbb{Z} par ce difféomorphisme, on se ramène au cas où $X = \mathbb{R}^{+*} \times \mathbb{S}^{N-1}$ et f est une homothétie de rapport 2 sur la première coordonnée. En utilisant la première question, on voit que l'action est libre et proprement discontinue et que le quotient est difféomorphe à $\mathbb{S}^1 \times \mathbb{S}^{N-1}$ (ça marche même pour N=1).
- 4- On vérifie aisément que l'action est libre. En revanche, si K est le segment joignant (0,1) à (1,0), $f^{(n)}(K)$ est le segment joignant $(0,\frac{1}{2^n})$ à $(2^n,0)$. Un dessin (ou un

calcul facile) montre que ces deux segments s'intersectent toujours : le compact K est d'intersection non vide avec tous ses conjugués. Par conséquent l'action n'est pas proprement discontinue.

On note toujours π l'application quotient. Le quotient n'est pas séparé : comme les points $(\frac{1}{2^n}, 1)$ et $(1, \frac{1}{2^n})$ sont dans la même orbite, on voit que les points $\pi(0, 1)$ et $\pi(1, 0)$ ne sont pas séparés dans le quotient.

En revanche le quotient est localement homéomorphe à un ouvert de \mathbb{R}^2 . En effet, on vérifie que tout point $x = (x_1, x_2)$ de $\mathbb{R}^2 \setminus \{(0, 0)\}$ a un voisinage U qui n'intersecte aucun de ses conjugués : on peut prendre par exemple $U = B(x, \max(|x_1|/4, |x_2|/4))$. Ainsi, le voisinage $\pi(U)$ de $\pi(x)$ dans le quotient est isomorphe à U, donc à un ouvert de \mathbb{R}^2 .

3.	Application	C^1	injective

Considérons une application f de classe C^1 de \mathbb{R}^m dans \mathbb{R}^n qui est injective.

- 1- Montrer que la différentielle de f est de rang m sur un ouvert dense de \mathbb{R}^m .
- 2– En déduire que $m \leq n$.
- 3– La différentielle de f est-elle nécessairement de rang m partout?

Solution:

- 1- On raisonne par l'absurde : supposons qu'il existe un ouvert U de \mathbb{R}^m sur lequel la différentielle de f est de rang inférieur à m, et qu'en un certain point $a \in U$ le rang atteint son maximum sur U, noté r. Alors, par semi-continuité du rang, sur un ouvert $V \subset U$ contenant a, df est de rang $\geq r$. Par maximalité, sur tout V, df est de rang r. Alors, d'après le théorème du rang, et quitte à changer de coordonnées, on écrit pour $a + x \in V$: $f(a + x) = f(a) + (x_1, \ldots, x_r, 0, \ldots 0)$. Mais alors f n'est pas injective.
- 2- La différentielle de f est de rang m en un point; on a donc nécessairement $n \ge m$.
- 3- Non : considérer la fonction $x \to x^3$ de \mathbb{R} dans \mathbb{R} .

4. L'image d'une variété est-elle une sous-variété?

Soient M et N deux variétés et $f: M \to N$ une application C^{∞} .

- 1– Donner des contre-exemples au fait que l'image d'une variété par une immersion injective propre est une sous-variété si l'on supprime "immersion", "injective" ou "propre".
- 2- On suppose que f est une immersion propre et que le cardinal de $f^{-1}(f(x))$ est fini constant. Montrer que f(M) est une sous-variété de N.
- 3- On suppose que f est propre de rang constant et que le nombre de composantes connexes de $f^{-1}(f(x))$ est fini constant. Montrer que f(M) est une sous-variété de N.

Solution:

1– Les trois dessins qui suivent donnent trois contre-exemples :

2- Soit k le cardinal des fibres de f. Soient $y \in f(M)$ et x_1, \ldots, x_k ses préimages dans M. Pour chaque i, il existe un voisinage B_i de x_i sur lequel f est un plongement, d'après le théorème des immersions. Quitte à réduire les B_i , on peut supposer que leurs adhérences sont disjointes.

On va démontrer le fait suivant : pour tout ε assez petit, $f^{-1}(B(y,\varepsilon)) \subset B_1 \cup \ldots \cup B_k$. Si ce fait n'était pas vrai, il existerait une suite x_n de $M \setminus \bigcup B_i$ telle que $f(x_n) \to y$. Comme f est propre, la suite x_n appartient à un compact, et on peut donc supposer qu'elle converge quitte à extraire. Sa limite x est alors un antécédent de y différent des x_i , ce qui est absurde.

Soit ε assez petit pour que les conclusions du fait soient satisfaites. Montrons alors que $f(B_i) \cap B(y, \varepsilon)$ est indépendant de i. Soit $x \in f(B_i) \cap B(y, \varepsilon)$. Alors x a exactement k antécédents. Mais il en a au plus un dans chaque B_j , et il ne peut en avoir à l'extérieur des B_j . Ainsi, il en a exactement un dans chaque B_j . En particulier, $f(B_i) \cap B(y, \varepsilon) \subset f(B_j) \cap B(y, \varepsilon)$. La situation étant symétrique, on obtient l'égalité recherchée.

Finalement, $f(M) \cap B(y, \varepsilon) = f(B_1) \cap B(y, \varepsilon)$ est bien une sous-variété au voisinage de y, puisque f est un plongement sur B_1 .

3- On note n la dimension de N, p le rang de f et p+q la dimension de M.

Soit k le nombre de composantes connexes des fibres de f. Soient $y \in f(M)$ et X_1, \ldots, X_k les composantes connexes de $f^{-1}(y)$. Quitte à prendre une carte au voisinage de y, on peut supposer que $y \in \mathbb{R}^n$, et même que y = 0. Soit X l'un des X_i , on va étudier le comportement de f au voisinage de X.

Fixons un point de référence $x_0 \in X$. En appliquant le théorème du rang constant au voisinage de x_0 , on obtient que l'image par f d'un voisinage de x_0 est une sousvariété de \mathbb{R}^n . Quitte à composer par un difféomorphisme de \mathbb{R}^n , on peut supposer que l'image d'un voisinage de x_0 est incluse dans $\mathbb{R}^p \times \{0\}$.

Première étape : il existe un voisinage U de X tel que $f(U) \subset \mathbb{R}^p \times \{0\}$.

On définit une relation d'équivalence sur X, par $x \sim y$ si, pour tout voisinage U de x, il existe un voisinage V de y tel que $f(V) \subset f(U)$, et inversement. D'après le théorème du rang constant, les classes d'équivalence sont ouvertes. Comme X est connexe, il y a donc une seule classe d'équivalence, c'est-à-dire celle de x_0 .

Ainsi, tout point x a un voisinage U_x tel que $f(U_x) \subset \mathbb{R}^p \times \{0\}$. On prend $U = \bigcup U_x$. Deuxième étape : pour tout $a \in \mathbb{R}^p \times \{0\}$ assez petit, $f^{-1}(a) \cap U$ est connexe non vide.

Pour tout $x \in X$, il existe un difféomorphisme φ_x entre un voisinage U_x de x (inclus dans U) et un ouvert $]-\varepsilon_x, \varepsilon_x[^p \times]-r_x, r_x[^q$ tel que $f \circ \varphi_x^{-1}$ soit la projection sur les p premières variables, d'après le théorème du rang constant. Par compacité, on peut recouvrir X par un nombre fini de tels ouverts U_1, \ldots, U_n .

On notera $i \to j$ si $U_i \cap U_j \cap X$ est non vide. Montrons qu'il existe alors ε_{ij} tel que, pour tout $a \in \mathbb{R}^p$ avec $||a|| \le \varepsilon_{ij}$, $f^{-1}(a) \cap (U_i \cup U_j)$ est connexe. Les "tranches" $f^{-1}(a) \cap U_i$ et $f^{-1}(a) \cap U_j$ sont toutes deux connexes non vides si a est assez petit, par définition de U_i et U_j . Soit $x \in U_i \cap U_j \cap X$. Alors l'image de tout voisinage de x contient un voisinage de x dans x par le théorème du rang constant appliqué en x. En particulier, si x est assez petit, x est non vide. Cela implique que x est x connexe comme réunion de deux connexes qui s'intersectent.

Pour tous $1 \leq i, j \leq n$, il existe une suite i_1, \ldots, i_r telle que $i \to i_1, i_j \to i_{j+1},$ $i_r \to j$: cela provient de la connexité de X. On en déduit que, pour tout $a \in \mathbb{R}^p$ avec $||a|| \leq \min(\varepsilon_{ij}), f^{-1}(a) \cap U$ est connexe.

Troisième étape : conclusion

On peut ensuite procéder exactement comme dans la question précédente, en remplaçant les arguments portant sur des points par des arguments portant sur des composantes connexes.

5. Algèbre de Lie et Théorème de Von Neumann

Dans cet exercice, on prouve le théorème suivant :

Théorème (Von Neumann). Un sous groupe $G \subseteq GL_n(\mathbb{R})$ est un sous groupe de Lie si et seulement s'il est fermé dans $GL_n(\mathbb{R})$

- 1- Vérifier qu'un sous groupe de Lie de $GL_n(\mathbb{R})$ est fermé dans $GL_n(\mathbb{R})$
- 2- Donner des exemples de sous groupes de $GL_n(\mathbb{R})$ qui ne sont pas des sous-variétés.

On va maintenant prouver le sens réciproque. On se donne $G \subseteq GL_n(\mathbb{R})$ un sous-groupe fermé.

3- Montrer que si G est une sous-variété de $\mathcal{M}_n(\mathbb{R})$ au voisinage de l'identité, alors G est un sous groupe de Lie de $GL_n(\mathbb{R})$.

On cherche une paramétrisation de G au voisinage de l'identité. Pour cela on introduit un sous-espace vectoriel \mathcal{L}_G de $\mathcal{M}_n(\mathbb{R})$ (qui s'avèrera être l'espace tangent en l'élément neutre de G) et on montre que l'exponentielle envoie \mathcal{L}_G dans G est réalise une telle paramétrisation.

4– Montrer que pour
$$(A, B) \in \mathcal{M}_n(\mathbb{R})$$
, on a
$$e^A e^B = e^{A+B+o(||A||,||B||)}$$

5- On pose $\mathcal{L}_G = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \forall t \in \mathbb{R}, e^{tA} \in G\}$. Montrer que \mathcal{L}_G est une sous-algèbre de Lie de $\mathcal{M}_n(\mathbb{R})$, i.e. un sev de $\mathcal{M}_n(\mathbb{R})$ stable par $(A, B) \mapsto [A, B] = AB - BA$.

Soit F supplémentaire de \mathcal{L}_G dans $\mathcal{M}_n(\mathbb{R})$. On définit

$$\varphi: \left\{ \begin{array}{ll} \mathcal{M}_n(\mathbb{R}) = \mathcal{L}_G \times F & \to & GL_n(\mathbb{R}) \\ (A, M) & \mapsto e^A e^M \end{array} \right.$$

- 6- Montrer que pour $M \in F \setminus \{0\}$ assez proche de 0, on a $e^M \notin G$.
- 7- Montrer qu'il existe un voisinage ouvert U de 0 dans \mathcal{L}_G et un voisinage ouvert V de I_n dans $GL_n(\mathbb{R})$ tel que $\varphi|_U$ soit un C^{∞} -difféomorphisme de U sur $V \cap G$, ce qui achève la preuve du théorème de Von Neumann.

En particulier, \mathcal{L}_G est l'espace tangent à G en I_n et l'exponentielle réalise localement un difféomorphisme entre \mathcal{L}_G et G.

Solution:

- 1– Soit $G \subseteq GL_n(\mathbb{R})$ un sous-groupe de Lie. Soit $(g_n)_{n \in \mathbb{N}} \in G^{\mathbb{N}}$ une suite dans G convergeant vers un élément $h \in GL_n(\mathbb{R})$. On montre que $h \in G$. Comme G est une sous-variété de $GL_n(\mathbb{R})$, il existe un ouvert U de $GL_n(\mathbb{R})$ contenant I_n tel que $U \cap G$ est fermé dans U. On a alors pour tout $n \in \mathbb{N}$ que $g_nU \cap G$ est fermé dans g_nU . Or il existe un rang n_0 tel que pour $n \geqslant n_0$, on a $g_n \in g_{n_0}U$, et $h \in g_{n_0}U$. On en déduit que $h \in G$.
- 2- $GL_n(\mathbb{Q})$ n'est pas une sous-variété car non fermé dans $GL_n(\mathbb{R})$. On peut aussi le voir directement en remarquant qu'une sous-variété dense d'une variété est necessairement un ouvert de cette variété, ou bien qu'une sous-variété dénombrable est nécessairement discrète. Un autre exemple est un sous groupe dense du tore \mathbb{T}^2 obtenu comme orbite d'un flot de translation de pente irrationnelle. On peut réaliser un tel sous groupe comme sous-groupe de $S^1 \times S^1 \equiv SO_2(\mathbb{R}) \times SO_2(\mathbb{R}) \subseteq GL_4(\mathbb{R})$.
- 3– Supposons que G soit une sous variété de $\mathcal{M}_n(\mathbb{R})$ en I_n : il existe une voisinage ouvert $U \subseteq \mathcal{M}_n(\mathbb{R})$ de I_n et une $\varphi: U \to \mathbb{R}^{n^2}$ difféomorphisme sur son image ouverte tels que $\varphi(U \cap G) = \varphi(U) \cap \mathbb{R}^p \times \{0\}^{n^2-p}$ pour un certain $p \in \{1, \ldots, n^2\}$. Soit $g \in G$ un autre élément de G. On pose $U' := gU, \varphi': U' \to \mathbb{R}^{n^2}, h \mapsto \varphi(g^{-1}h)$. Le couple (U', φ') est une carte de sous variété G en g.
- 4- Remarquons que $T_0 \exp = Id_{M_n(\mathbb{R})}$ donc la fonction exponentielle est un difféomorphisme local en 0. L'application $f: A, B \mapsto \exp^{-1}(\exp(A)\exp(B))$ est ainsi bien définie pour A, B assez proches de 0. On a par développement limité : $f(A, B) = f(0,0) + Tf_{(0,0)}(A, B) + o(||A||, ||B||)$ (indépendamment du choix de la norme), ce qui se réécrit f(A, B) = 0 + A + B + o(||A||, ||B||) et ainsi $e^A e^B = e^{A+B+o(||A||, ||B||)}$.

- 5- L'homogénéité est immédiate par reparamétrisation. Soit $A, B \in \mathcal{L}_G$, $t \in \mathbb{R}$. On a $\exp(t(A+B)) = \lim_{k \to +\infty} (\exp(tA/k) \exp(tB/k))^k$ d'après la question précédente. Or chaque terme de cette suite est dans G. Comme G est fermé, on a donc que la limite $\exp(t(A+B)) \in G$. Ainsi \mathcal{L}_G est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Pour la stabilité par crochet, remarquons que $[A,B] = \frac{d}{dt}_{|s=0} \exp(sA)B \exp(-sA)$. Il suffit donc de vérifier que $\exp(sA)B \exp(-sA) \in \mathcal{L}_G$ pour tout $s \in \mathbb{R}$. Mais $\exp(t(\exp(sA)B \exp(-sA))) = \exp(sA) \exp(tB) \exp(-sA) \in G$ car $A, B \in \mathcal{L}_G$, ce qui conclut.
- 6- Pour alléger les notations, on prouve un résultat plus abstrait qui implique celui qu'on veut démontrer. On montre que si E est un espace euclidien, et $P\subseteq E$ est un sous ensemble fermé stable sous l'action de \mathbb{Z} par multiplication scalaire et admettant 0pour point d'accumulation, alors P contient une droite. Cela permet de répondre à la question en posant $F = E, P := \{M \in F, e^M \in G\}$ fermé de E et stable par \mathbb{Z} . En effet, P n'admet pas 0 comme point d'accumulation, sinon il contiendrait une droite, contredisant l'égalité $F \cap \mathcal{L}_G = \{0\}$. Pour prouver le fait abstrait, on se donne une suite $(x_k)_{k\in\mathbb{N}}$ d'éléments de P non nuls tendant vers 0. On note $x_k'\in P$ le premier multiple entier positif de x_k de norme ≥ 1 . La suite (x'_k) admet un point d'accumulation sur la sphère unité S de E, on en choisit un que l'on note y. On va voir que la droite $\mathbb{R}y\subseteq P$. Il suffit de prouver que $[0,1].y\subseteq P$. Soit $r\in[0,1]$, on pose $x_k'' \in P$ le premier multiple entier positif de x_k de norme $\geqslant r$. Alors la suite (x_k'') admet ry comme point d'accumulation (sinon, il existe $\varepsilon > 0$ tel que pour k assez grand on a $d(x''_k, ry) > \varepsilon$, i.e. $d(\frac{1}{r}x''_k, y) > \frac{\varepsilon}{r}$ puis $d(x'_k, y) > \frac{\varepsilon}{r}$ à partir d'un certain rang car $d(\frac{1}{r}x_k'', x_k') \to_k 0$, d'où une contradiction). Comme P est fermé, on en déduit que $ry \in P$, ce qui conclut.
- 7- On a $T_{0,0}\varphi(A,M)=A+M$ donc $T_{(0,0)}\varphi=Id_{\mathcal{M}_n(\mathbb{R})}$ est inversible. L'application φ est donc un C^{∞} -difféomorphisme local en (0,0). On se donne $U\subseteq \mathcal{L}_G$ voisinage ouvert de 0, $W\subseteq F$ voisinage ouvert de 0 tels que $\varphi(U\times W):=V$ est ouvert et $\varphi:U\to V$ un C^{∞} -difféomorphisme. Montrons que $\varphi(U)=V\cap G$. Il s'agit de vérifier l'inclusion réciproque. Si $e^Ae^M\in V\cap G$, avec $A\in U,M\in W$, on a $e^M\in e^{-A}G=G$. D'après la question 6, on peut choisir au préalable W assez petit pour que cela implique M=0. On a alors l'inclusion réciproque.