VOICE PACKET MULTIPLEXING SYSTEM

Patent number:

JP1300738

Publication date:

1989-12-05

Inventor:

SUZUKI TAKAO; NOGUCHI OSAMU; YOKOTA

KIYOSHI; EGUCHI KOHEI

Applicant:

OKI ELECTRIC IND CO LTD

Classification:

- international:

H04L11/20; H04Q11/04

- european:

Application number: JP19880130446 19880530 Priority number(s): JP19880130446 19880530

Report a data error here

Abstract of JP1300738

PURPOSE:To preferentially process a voice call in corresponding to the tentative congesting state of a line by providing a voice operation rate detecting means so that an increase in the voice operating factor of a tentative voice call can be coped with by means of a change in compression ratio of the call and, at the same time, a line utilizing rate detecting means. CONSTITUTION:An assignment processor 52 controls a preferential packet processing section 38 so that data preferential allocation can be performed when a line utilizing rate inputted from the line utilizing rate detecting section 58 does not exceeds a specific value (beta) and voice preferential allocation can be performed when the rate exceeds the value (beta). Moreover, the processor 52 receives the voice operating factor of signals received in voices from the n-channel voice operating factor detecting section 44 and designates a coding controlling section 40 to make the conversion of ADPCM 3-bit information when the voice operating rate of a trunk channel within a fixed time TA exceeds a specific value (alpha) and of ADPCM 4-bit information when the rate does not exceed the value (alpha). Then the processor 52 controls a coding section 34 to convert the PCM 8-bit signals of the truck channel number into ADPCM 3 bit or 4-bit information.

Data supplied from the esp@cenet database - Worldwide

⑩ 公 開 特 許 公 報 (A) 平1-300738

⑤Int. Cl. ⁴

識別記号 庁内整理番号 43公開 平成1年(1989)12月5日

H 04 L 11/20 H 04 Q 11/04 1 0 2

A - 7830 - 5K

R - 8226 - 5K

審查請求 請求項の数 4 (全12頁)

の発明の名称 音声パケット多重化システム

> 願 昭63-130446 ②)特

22出 頭 昭63(1988) 5月30日

孝 夫 @発 明 者 鈴 木 修 @発 明 野 者 @発 潔 明 者 \blacksquare 棤 平 @発 明 者 江 沖電気工業株式会社 の出 頭

東京都港区虎ノ門1丁目7番12号 東京都港区虎ノ門1丁目7番12号

東京都港区虎ノ門1丁目7番12号

東京都港区虎ノ門1丁目7番12号

沖電気工業株式会社内 沖電気工業株式会社内 沖電気工業株式会社内

冲電気工業株式会社内

東京都港区虎ノ門1丁目7番12号

外1名

人 個代 理 人 弁理士 香取 孝雄

1. 発明の名称

音声パケット多重化システム

2. 特許請求の範囲

1. 複数の入力トランクチャネルより音声呼およ びデータ呼の音声帯域内信号を入力し、該音声帯 域内信号の有意な信号を音声パケットとして伝送 路に送出する音声パケット多重化送信例装置と、 該 伝 送 路 を 介 し 該 送 信 側 装 置 に 対 向 し て 設 け ら れ、前記音声パケットを受信した後、前記音声帯 域内信号に復元する音声パケット多重化受信側装 置より構成される音声パケット多重化システムに おいて、 該送信例装置は、

前記音声帯域内信号の中から有意な信号を識別 する有音検出手段と、

該有音検出手段により検出された前記有意な信 号が前記音声呼による信号か前記データ呼による 信号かを識別するデータ検出手段と、

前記音声呼およびデータ呼の音声帯域内信号を 別々に書積する記憶部を有する記憶手段と、

前記音声呼およびデータ呼のうちいずれかの音 声帯域内信号を優先的に出力する優先パケット処 理手段と、

該優先パケット処理手段より入力した前記音声 帯域内信号にヘッダを付加し、前記音声パケット として前記伝送路を介し前記音声パケット多重化 受信仰装置に送出するパケット組立手段と、

前記音声パケットが該伝送路の回線容量を占め る割合を示す回線使用率を、第1の所定の時間毎 に第1·の規定値を越えているかどうかを判断する 回線使用事検出手段と、・

前記有音検出手段、データ検出手段および回線 使用率検出手段からの検出情報に基づいて、前記 記憶手段および優先パケット処理手段を制御する 処理手段とを有し、

該処理手段は、前記回線使用率が第1の規定値 以上の検出情報を前記回線使用率検出手段より受 信すると、前記音声呼の音声帯域内信号を前記 データ呼の音声帯域内信号よりも優先処理するよ う前記優先パケット処理手段を制御することを特

位とする音声パケット多重化システム。
2. 複数の入力トランクチャネルより音声呼およびデータ呼の音声が域内信号を入力し、該音声帯域内信号の有意な信号を音声パケットとして送出する音声パケット多重化送信側装置において、該送信側装置は、

前記音声帯域内信号の中から有意な信号を識別する有音検出手段と、

該有音検出手段により検出された前記有意な信号が前記音声呼による信号が前記データ呼による 信号かを識別するデータ検出手段と、

前記音声呼およびデータ呼の音声帯域内信号を別々に蓄積する記憶部を有する記憶手段と、

前記音声呼およびデータ呼のうちいずれかの音声帯域内信号を優先的に出力する優先パケット処理手段と、

該優先パケット処理手段より入力した前記音声 帯域内信号にヘッダを付加し、前記音声パケット として送出するパケット組立手段と、

前記音声パケットが該伝送路の回線容量を占め

. 前記音声帯域内信号を高能率符号化方式により 圧縮する符号化手段とを有し、

前記処理手段は、前記音声動作率が第2の規定 値以下の場合には前記音声呼を第1の所定のビット数に圧縮するよう前記符号化手段を制御し、前記音声動作率が第2の規定値を越えた場合には前記音声呼を第2の所定のビット数に圧縮するよう前記符号化手段を制御することを特徴とする音声パケット多重化送信仰装置。

4. 請求項3に記載の送信側装置において、前記 処理手段は、前記データ呼を第3の所定のピット 数に圧縮するよう前記符号化手段を制御すること を特徴とする音声パケット多重化送信側装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は音声パケット多重化システム、たとえば高速ディジタル回線などの高価な専用回線に有利に適用される音声パケット多重化システムに関するものである。

る割合を示す回線使用率を、第1の所定の時間毎に第1の規定値を越えているかどうかを判断する回線使用率検出手段と、

前記有音検出手段、データ検出手段および回線 使用率検出手段からの検出情報に基づいて、前記 記憶手段および優先パケット処理手段を制御する 処理手段とを有し、

該処理手段は、前記回線使用率が第1の規定値以上の検出情報を前記回線使用率検出手段より受信すると、前記音声呼の音声帯域内信号を前記データ呼の音声帯域内信号よりも優先処理するよう前記優先パケット処理手段を制御することを特徴とする音声パケット多重化送信側装置。

3. 請求項1または2に記載の送信例装置において、該送信例装置は、

前記有音検出手段の検出結果に基づいて、前記音声帯域内信号のうち前記有意な信号の割合を示す音声動作率を、第2の所定の時間毎に第2の規定値を越えているかどうかを判断する音声動作率検出手段と、

(従来の技術)

パケット音声通信に関しては、たとえば津田透 による「パケット音声通信」電子通信学会誌、第 62巻、第2号、第182 ~ 184 頁 (1979年2月) に 記載されている。パケット音声通信の送信側装置 は、入力した音声の原信号をたとえば 8 KHz (標 本化周期: 125 μs) などの周波数で標本化し、 PCN 8ビット符号化後、所定の情報量になるまで これを一時蓄積する。蓄積された音声情報が所定 の情報量になると、着信先情報および発信元情報 などをヘッダとして付加し、音声情報のパケット 化を行なう。音声情報の符号化速度はこの場合に は64Kbit/sである。このためパケット化された音 声情報、すなわち音声パケットは、64Kbit/s以上 のたとえば PCN第1次群の高速ディジタル回線な どの高速伝送路上に送出される。音声パケットは 伝送路を介し受信伽装置に送られる。受信伽装置 は、音声パケットを受信すると、パケット化され た音声情報を復号し、125 µs 毎の標本値に戻

回線交換による電話会話は通話路が固定されて、いるため、音声信号の伝送遅延時間は一定で無視できるが、音声パケット通信はデータパケット通信と同様に通話路が固定されていないため、伝送遅近時間がパケットにより異なる。このため伝送遅近時間を最終的に一定にするとともに、音声品質上問題にならない値に抑える必要がある。

また、通常の電話会話は双方同時に話すことは ほとんどないため、会話音かって、音声パケット化 を有意に他の情報を送ることができ、伝送路の利用 の上させることができ、伝送路の利用 の上させることができるの方式には の上させることができるができるができたは できることがなったは に他の情報を できるができるがないますがある。 にはディジタル音声挿入(Digital Speech Interpolation:以下DSI と称す)方式がある。 このDSI 方式は、ある一定以上の回線を取り、のことによる大群化効果に依存しており、の 切の回線数がたとえば60以上あれば送り側の のの論理的数はその半分以下にすること

音検出部42によりチャネル毎に有意な音声信号を 検出を行なう。有音検出部42は、音声信号を検出 すると、入力トランクチャネル番号を翻当当 状 を内蔵し、有音検出の通知を受けると割当 状状の 表を内蔵し、有音検出の通知を受けると割当 状状の 表に入力トランクチャネル番号を登録する。これ により割当状態表には、発信トランクチャネル番 号との対応関係、および有音検出の有無が記憶される。

部当状態要に記憶された内容は割当状態制御部54および割当へッグ符号化部56に通知される。割当状態制御部54は、この通知によりメモリ制御部50を制御し、有意な音声信号をバッファメモリ82に密積する。また割当ヘッダを作成し、パケット組立部40に送る。内容の大きさになる立部40に出立まれる。パケット組立部40に出力する。パケット組立部40は、受信した音声情報にヘッダを付加し、音声によりには、受信した音声情報にヘッダを付加し、音声

る。したがって、この方式による利得、すなわち DSI 利得がたとえば2.5 であれば、24チャネル伝 送可能な伝送路で60チャネル伝送可能となり、受 け 側 回 線 数 6 0 の 伝 送路 を 確 保 することが でき る。

このトランク信号には有意な音声信号の他に無 通話時の信号も含まれているため、 n チャネル有

ケットを作成する。音声パケットは、パケット組立部40より出力ペアラ信号として伝送路102 に送出される。対向する受信側装置は、伝送路102 を介して送信卿装置から送られてきた音声パケットを、そのヘッダから着信先の出力トランクチャネルに送る。

よる信号を音声信号と称し、アナログの音声帯域、 データに変換したディジタル信号をVBD 信号と称 する。

(発明が解決しようとする課題)

しかしながらこのような従来技術では、無音圧 縮によるDSI 方式のみで情報圧縮を行なってったの。 ため、伝送路チャネル数に対する入力トラシクチャネル数の利得は2.5 倍程度である。したがって、この利得を越えてトランクチャネル数を行ったのがケット待ちでいると、バッファメモリのパケットがオーバフローは大に伴なう遅延時間のパケットがオーバフローすることによるパケット廃棄の増大が発生し、過間が劣化するという問題点があった。

また、従来技術では VBD 信号を音声信号と同等に扱っているので、音声動作率が一時的に増加したいわゆる一時過負荷の場合、バッファメモリのパケット待ち行列の増大による遅延時間の増大と変動および有限バッファメモリのパケットオーバ

を提供することを目的とする。

(課題を解決するための手段)

本発明は上述の課題を解決するために、複数の 入力トランクチャネルより音声呼およびデータ呼 の音声帯域内信号を入力し、音声帯域内信号の有 意な信号を音声パケットとして伝送路に送出する 音声パケット多重化送信仰装置と、伝送路を介し 送信側装置に対向して設けられ、音声パケットを 受信した後、音声帯域内信号に復元する音声パ ケット多重化受信側装置より構成される音声パ ケット多重化システムにおいて、送信側装置は、 音声帯域内信号の中から有意な信号を識別する有 音検出手段と、有音検出手段により検出された有 意な信号が音声呼による信号かデータ呼による信 号かを識別するデータ検出手段と、音声呼および データ呼の音声帯域内信号を別々に蓄積する記憶 部を有する記憶手段と、音声呼およびデータ呼の うちいずれかの音声帯域内信号を優先的に出力す る優先パケット処理手段と、優先パケット処理手 ・段より入力した音声帯域内信号にヘッダを付加・ フローによるパケット廃棄の増大により、VBD 信号の欠損増大を招き、VBD 信号によるデータ通信が品質劣化するという問題点があった。

本発明はこのような従来技術の欠点を解消し、 DSI 利得を越えたチャネル数を確保可能であり、 またデータ通信による一時的な音声動作率の増加 に即座に対応可能であり、さらに短期間に発呼が 集中した場合でも音声会話が通信困難になること を未然に回避可能な音声パケット多重化システム

また本発明によれば、複数の入力トランクチャネルより音声呼およびデータ呼の音声帯域内信号を入力し、音声帯域内信号の有意な信号を音のパケットとして送出する音声パケット多重化送信仰装置は、音声帯域内信号の中から有意な信号を識別する有音検出手段と、有音検出手段により使出された有意な信号が音声呼による信号かデータ呼

による信号かを識別するデータ検出手段と、音声 呼およびデータ呼の音声帯域内信号を別々に蓄積 する記憶部を有する記憶手段と、音声呼および データ呼のうちいずれかの音声帯域内信号を優先 的に出力する優先パケット処理手段と、優先パ ケット処理手段より入力した音声帯域内信号に ヘッダを付加し、音声パケットとして送出するパ ケット組立手段と、音声パケットが伝送路の回線 容量を占める割合を示す回線使用率を、第1の所 定の時間毎に第1の規定値を越えているかどうか を判断する回線使用率検出手段と、有音検出手 段、データ検出手段および回線使用率検出手段か らの検出情報に基づいて、記憶手段および優先パ ケット処理手段を制御する処理手段とを有し、処 理手段は、回線使用率が第1の規定値以上の検出 情報を回線使用率検出手段より受信すると、音声 呼の音声帯域内信号をデータ呼の音声帯域内信号 よりも優先処理するよう優先パケット処理手段を 削御する。

(実施例)

次に添付図面を参照して本発明による音声パケット多重化システムの実施例を詳細に説明する。

第4図を参照すると、本実施例による音声パケット多重化システムのシステム構成例が示されている。同構成例では、音声パケット多重化送信側装置32がディジタル電子交換機20/22のトランク側に接続されている。電子交換機20/22には、電話機10、モデム14を介してパーソナル・オフィスコンピュータもしくはワードプロセッサなどの情報機器12、およびファクシミリ15などが端末装置として収容されている。

電子交換機20は、これら端末装置から送られてくる音声呼およびデータ呼のアナログ信号を、コーデックによりたとえば8ビットのPCM デジタル信号に符号化し、入力トランクチャネル100 を介し音声パケット多重化送信 偏装置30に送る。

(作用)

本発明によれば、処理手段は、有音検出手段より有意な音声帯域内信号の情報を、データ検出手段より音声呼またはデータ呼のいずれであるかを示す識別情報をそれぞれ受信する。これにより処理手段は、有意な音声帯域内信号を音声にはない。 回線使用を放ける のででの記憶手段の記憶部に記憶する のでいまた 処理手段は、回線を出するの情報を受信し、この情報によりデータを制御する。 では音声呼のいずれかを優先のは、処理する。

送信卿装置30は、チャネル100 より入力したデジタル信号を、多重化し、後述する適応差分PCM方式(Adaptive Differential Pulse Code Modulation:以下ADPCMと称する)により圧縮し、ヘッダを付加して音声パケットとして伝送路102 を介し音声パケット多重化受信卿装置32に送る。受信卿装置32は、受信した音声パケットを8ビットのPCM デジタル信号に伸長・分離し、そのパケットのヘッダが示す出力トランクチャネル104 より電子交換機22に送る。電子交換機22は、トランクチャネル104 を介して受信したデジタル信号を、コーデックによりアナログ信号に変換して端末装置に送る。

本お、同図では理解を容易にするために交換機20に送信側装置30を、また交換機22に受信側装置32をそれぞれ接続したが、通常はこれら交換機には送信側装置30および受信偶装置32がそれぞれ接続され、双方向通信が行なわれる。また、同図では音声パケット多重化装置を電子交換機に接続した例を示したが、PCN 符号回路およびPCN 復号回

路をそれぞれ音声パケット多重化装置に設けることにより、端末装置を直接接続することも可能で ある。

第1図には、本実施例における音声パケット多 重化送信傅装置30の機能プロック図が示されてい る。マルチプレクサ32は、チャネルCH1 ~CHn で 構成される入力トランクチャネル100 に接続され ている。マルチプレクサ32は、チャネルCH1 ~ CHn のそれぞれのチャネルから入力したPCM 8 ビットのデジタル信号を、時分割多重し、シリア ルな入力トランク信号として出力200 に出力する 多重化回路である。

出力200 には n チャネル有音検出部 42が接続されている。有音検出部 42は、入力トランク信号として入力されたチャネル CH1 ~ CHn に含まれる有意な音声信号を、チャネル毎に検出する検出部である。有音検出部 42により、DSI 方式による無音圧縮が可能となり、有意音声のみに対して音声パケット化が行なわれる。有音検出部 42は、有意音声を検出すると、検出した入力トランクチャネル

に、またVBD 信号を識別できないときはデータ検 出なしの出力を入力トランクチャネル番号ととも に出力212 を介して割当プロセッサ52に出力する。

ADPCM 符号化部34は、出力200 に接続され、多 重化されたシリアルなデジタル信号を入力する. ADPCM 符号化部34は、入力したデジタル信号の情 報量を帯域圧縮効果により圧縮する符号化部であ る。すなわちADPCN 符号化部34は、たとえば適 応差分PCN 方式などの高能率音声符号化方式によ り帯域圧縮を行なう。このADPCN 方式を用いれ ば、PCN 8ピットの情報をADPCN 4ビットの情報 に無理なく圧縮することができ、また音声信号で あればADPCN 3ビットまで圧縮することが可能で ある。このためADPCN 符号化部34は、符号化制御 部48の制御出力により入力した音声信号をADPCN 4ビットまたは3ビットに、VBD 信号をADPCN 4 ビットにそれぞれ圧縮する。なお、これら圧縮は 入力チャネル毎に行なわれる。また、VBD 信号を ADPCM 4ビットに固定したのは、たとえばファク 番号を、出力208 を介して割当プロセッサ52に出力するとともに、出力209 を介してnチャネル音 声動作率検出部44に出力する。

音声動作率検出部44は入力トランクチャネルに毎年動作率を調べる検出部である。音声動作率を調べる検出部である。音声動作を調べる検出部である。後出的である。とえば10秒程度の一定時間TA内におおける。その地域があらかに対して対してがある。なり、近近に通知する。なり、通常の会にはいるにはいる。なり、通常ののでは50%程度である。

出力200 にはまた、nチャネルデータ検出部46が接続されている。データ検出部46は、出力200の入力トランク信号から音声信号とVBD 信号とを入力トランクチャネル毎に識別する検出部である。データ検出部46はVBD 信号を識別すると、データ検出有りの出力を入力トランクチャンル番号とともに出力212 を介して割当プロセッサ52

シミリ通信の実用性を考慮して、8600bit/s の情報量を伝送可能としたためである。ADPCM 符号化部34は、圧縮した情報を出力202 を介しバッファメモリバンク部36に出力する。

パッファメモリバンク部36は、ADPCN 方式により圧縮されたディジタル信号を蓄積する記憶である。第2図にはメモリバンク部38のブロック部36は、音声信号を記憶する音声情報用バッファメモリ60、およびVBD 信号を記憶するデータ情報ンク・お36は、メモリ制御部50からのメモリ蓄積より入いったのうち有意な信号を、符号化部34より入いったのかまたはデータ情報用バックトのたちである。バンク部36は著積に出する。バナカに記憶する。バンク部36は著積したこれら信号を出力204を介し優先パケット処理部38に出力する。

優先パケット処理部38は、後述する回線使用率 に応じたパケットの優先順位により、優先パケッ トを先に出力する処理部であり、優先順位割付表 84および出力パケットバッファメモリ 86により構成されている。優先割付表 84は、割当状態制御部 54の制御により、音声情報バッファメモリ 80およびデータ情報用バッファメモリ 82より受信した情報のうち、優先順位の高い情報を出力パケットバッファメモリ 66に出力する。バッファメモリ 66は、割付表 64から受信した情報を一旦審積し、これを出力 206 を介し第1図に示すパケット組立部 40に出力する。

パケット組立部40は、パケット処理部38より信号情報を、割当ヘッダ符号化部56よりヘッダをそれぞれ入力し、これらを結合して音声パケットとして出力するパケット組立部である。パケット組立部40からは複数のチャネルの音声パケットがパケット多重されて出力ベアラ信号として伝送路102 上に出力される。

パケット組立部40には回線使用率検出部58が接続されている。回線使用率検出部58は、回線使用 状況を監視してパケット組立部40から送信される

ル番号毎に音声動作事情報を入力すると、割当状態表より対応するトランクチャネルの種別が音声信号がどうかを調べ、音声信号の場合にはそのADPCM変換ピット数を割当状態表に記憶する。また、プロセッサ52は回線使用率情報を入力する度に、音声信号またはVBD信号のいずれかを優先的に処理するかを決定し、これを割当状態表に記憶する。

プロセッサ52は、割当状態表に記憶されたトランクチャネル毎のADPCM 変換情報を符号化制御部48は符号化部34を制御する。これにより符号化制御部48は符号化部34を制御する。プロセッサ52はまた、割割当状態制御部54に、割割当状態制御部54に、外間の優先順位を割当状態制御部54は、メモリ制御部50に有意な信号の書込タイミング情報および信号を開発を開始を表現の書話を開始を表現した。ともに、優先パケット処理部38を制御する。プロセッサ52はさらに、発信トランクチャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と論理チャネル番号と

出力ベアラ信号が、伝送路102 の回線容量に占める割合である回線使用率を検出する検出部である。すなわち検出部58は、たとえば1分単位で回線使用率を算出し、この結果回線使用率があらかじめ決めておいた所定の規定値分を越えた場合には、一時的な輻輳状態に対処するためVBD 信号に対し音声信号に高い優先権を割当プロセッサ52に指示する。なお、規定値分はたとえば80%などの値である。

割当プロセッサ52は、割当状態表を内蔵し、ここに各種制御情報が記憶される。すなわち割当れの間になわち割されたトランクチャネル番号を入力すると、割当状態表に発信トランクチャネル番号とお信トランクチャネル番号との対応関係および有音検出のの有無を登録する。またプロセッサ52は、有音をの対応に登して、割当状態表の対応に音をを発している。またの信号を入力すると、割当状態表の対応のにのによりを表している。このは、プロセッサ52はトランクチャネル番号に音声信号がVBD 信号かを登録する。さらに、プロセッサ52はトランクチャネ

号の対応関係、ADPCM 変換情報を割当ヘッダ符号 化部58に通知する。ヘッダ符号化部58はこれら情 報により音声パケットのヘッダを作成する。

第3A図および第3B図には本実施例による送信仰装置30のチャネル割当制御フローが示されている。第3A図、第3B図および第1図を用いチャネル割当制御動作を説明する。nチャネル有音検出部42が入力200の有音を検出すると(500)、検出部42は有音検出したトランクチャネル番号を出力208を介し割当プロセッサ52には、この通知を受けると、割当状態表に発信トランクチャネル番号と適対に関係および有音検出されたことを登録する。

また、プロセッサ52には一定時間TB内で更新される回線使用率情報が出力230を介し回線使用率情報が出力230を介し回線使用率情報により割当プロセッサは、回線使用率が規定値 8を越え回線が一時的な輻輳状態であるかどうかを認識する(504)。そして、回線使用率が規定値 8を

越えていない場合には、データ優先割付が行なわれるよう、優先パケット処理部38の優先順位割付表84を更新する(508,510)。また、回線使用率が規定値β以上のときには、音声優先割付が行なわれるよう、優先順位割付表84を更新する(508,510)。この優先順位割付表84の更新によって、バッファメモリバンク部38より受信した音声信号またはVBD 信号のいずれかが、優先的に出力パケットバッファメモリ88に出力される。

データ検出部48は、プロセッサ52の割当状態表に登録されたトランクチャネルの信号がVBD 信号であることを検出すると、データ検出ありを割当プロセッサ52はこのデータ検出ありの通知を受けると、このトランクチャネルの信号がVBD 信号であることを認識し、割当状態表に登録する。そして、プロセッサ52は、このトランクチャネルの信号であるこのトランクチャネルの信号であるこのトランクチャネルの信号であるこのトランクチャネルの信号であるこのトランクチャネルの信号であるこのトランクチャネルの信号であるこのトランクチャネルの信号であるこのトランクチャネルの信号ではない。

トランクチャネルの音声動作率が規定値 αを越えている場合、ADPCN 3ビットの変換情報を割当ないまた、音声動作率が規定値 αを越えていな登録する。また、音声動作率が規定値 αを越えていな登録でいた。 プロセッサ52はこのADPCN 変換情報を符号には ADPCN 4 ビットの変換情報を符号に 3 ビットまたは 4 ビットのいずれた変換するよう ADPCN 符号化部34を制御に従って音に なりトランクチャネル毎に、ADPCN 3ビットまたは 4 ビットのいずれかに変換する(516,518)。

符号化部34でADPCM 3ピットまたは4ピットに変換された有意な音声信号は、メモリ制御部50の制御によりバッファメモリバンク部36の音声情報用バッファメモリ60に書込まれる(522)。バッファメモリ80に書込まれた情報は、優先パケット処理部38の優先順位割付表64に入力される。そして前述の処理510の新規割当の更新に従って、信

を、ADPCN 4 ビットに変換するようADPCN 符号化部34を制御する。ADPCM 符号化部34は、符号化制御部48の制御により入力したトランクチャネルのPCN 8 ビット情報をADPCN 4 ビットに変換されたVBD 信号は、メモリ制御部50の制御により、VBD 信号のうち有意な情報がバッファメモリ部36のデータ情報用バッファメモリ62に貫込まれる(524)。 そして前述の処理510 の新規割当の更新に従って、信号の優先順位が決定され、出力パケットバッファメモリ66に出力される(528)。

データ検出部46はまた、プロセッサ52の割当状態表に登録されたトランクチャネルの信号が音声信号であることを検出すると、これをプロセッサ52は、このトランクチャネルの信号が音声信号であることを認識し、割当状態表に登録する。プロセッサ52は、有音検出された信号の音声動作率をロチャネル音声動作率検出部44より受信する。これによりプロセッサ52は、一定時間1A内における

号の優先順位が決定され、出力パケットバッファ メモリ88に出力される(528)。

出力パケットバッファメモリ 6 8 は入力した信号をパケット 組立部 4 0 に出力する。パケット組立部 4 0 は、入力した信号のヘッダを割当ヘッダ符号化部 5 6 より入力し、これらを結合して音声パケットを 5 6 より入力し、これらを 音声パケットの へと 登信 個装置 3 2 に送る。 なお、音声パケットのへこ グ で に ADPCM の で で で で で で な は 4 ビットのいずれかの 伸長により 信号を 復元することができる。

このように本実施例によれば、多重化されたディジタル信号を無音圧縮効果を用いて有意音声のみを圧縮するとともに、ADPCM 方式により圧縮したため、伝送路回線を有効に利用することが可能となる。また本実施例によれば、入力200 に伝送される用途の異なる音声信号とVBD 信号とを区別し、回線使用率に応じて優先順位を決定する。

このため音声信号の実時間性が確保され、また・VBD 信号の欠損増大によるデータ通信の通信困難を回避することができる。さらに本実施例によれば、音声信号の音声動作率によりADPCX の圧縮比を変えるため、一時的な過負荷の状態を未然に防ぐこともできる。

なお、木実施例ではメモリ制御部50およびバッファメモリバンク部36により有意な信号を選択するとしたが、たとえば符号化制御部48およびADPCM 符号化部34により有意な信号を選択し、その後ADPCM 方式による圧縮を行なうとしてもよい。

(発明の効果)

このように本発明によれば、有音検出された信号が音声呼かデータ呼かを識別するデータ検出手段を設け、これにより呼の種別に応じて状況に適した圧縮処理および優先処理を実現することが可能となる。すなわち本発明は、音声動作率検出手段を設けることにより、一時的な音声呼の音声動

第5図は従来技術による音声パケット多重化送 信仰装置を示した機能ブロック図である。

主要部分の符号の説明

30...音声パケット多重化送信側装置

32...マルチプレクサ

34. . . ADPCN 符号化装置

38. . . . バッファメモリバンク部

38...優先パケット処理部

40...パケット組立部

42. . . n チャネル有音検出部

44...カチャネル音声動作率検出部

46. . . n チャネルデータ検出部

48. . . 符号化制御部

50...メモリ制御部

52...割当プロセッサ

54...割当状態制御部

58... 割当ヘッダ符号化部

58. . . 回線使用率検出部

作率の増大に対して音声呼の圧縮比を変えることにより対応可能となり、重た回線使用率検出手段を設けることにより、回線の一時的な輻輳状態に応じて音声呼を優先的に処理することがかっため、音声呼のパケットの廃棄および実時間性が損なわれることがなくなるとともに、データ呼のパケット廃棄による通信困難を回避することができる。

4. 図面の簡単な説明

第1図は本発明による音声パケット多重化システムにおける音声パケット多重化送信側装置の実施例を示す機能プロック図、

第2図は、第1図に示されたバッファメモリバ ンク部および優先パケット処理部の構成例を示す 機能ブロック図、

第3A図および第3B図は本実施例におけるチャネル製当制御フローの一例を示したフロー図、

第4図は本発明における音声パケット多重化システムにおけるシステム構成の一例を示したシステム構成の。

62. . . データ情報用バッファメモリ

84... 優先順位割付表

68. . . 出力パケットバッファメモリ

特許出願人 沖電気工業株式会社

代理 人 香取 孝雄

丸山 隆夫

音声パケット多重化送信側表置の実施例 第 1 図

バッファメモリバンク部および優先バケット処理部の実施例 第7回

チャネル割当制御フロー 第 3A 図

チャネル割当制御フロー第3日日

音声パケット多量化システムのシステム構成例 第 4 回

従来の音声パケット多重化送信側装置 第 5 図