Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Основы дискретной математики Курсовая работа. Часть №1 Синтез комбинационных схем Вариант №99

Выполнил: студент группы Р3108 Васильев Никита

Проверил: Поляков Владимир Иванович, доцент факультета ПИиКТ, кандидат технических наук

No	Условия, при которых	Условия, при которых
	f=1	f=d
99	$0 < x_1 x_2 x_4 - x_3 x_5 \le 2$	$ x_1 x_2 x_4 - x_3 x_5 = 4$

Таблица истинности

№	X 1	X2	X3	X4	X 5	X ₁ X ₂ X ₄	$(x_1x_2x_4)_{10}$	X3X5	$(x_3x_5)_{10}$	-	F
1	0	0	0	0	0	000	0	00	0	0	0
2	0	0	0	0	1	000	0	01	1	1	1
3	0	0	0	1	0	001	1	00	0	1	1
4	0	0	0	1	1	001	1	01	1	0	0
5	0	0	1	0	0	000	0	10	2	2	1
6	0	0	1	0	1	000	0	11	3	3	0
7	0	0	1	1	0	001	1	10	2	1	1
8	0	0	1	1	1	001	1	11	3	2	1
9	0	1	0	0	0	010	2	00	0	2	1
10	0	1	0	0	1	010	2	01	1	1	1
11	0	1	0	1	0	011	3	00	0	3	0
12	0	1	0	1	1	011	3	01	1	2	1
13	0	1	1	0	0	010	2	10	2	0	0
14	0	1	1	0	1	010	2	11	3	1	1
15	0	1	1	1	0	011	3	10	2	1	1
16	0	1	1	1	1	011	3	11	3	0	0
17	1	0	0	0	0	100	4	00	0	4	D
18	1	0	0	0	1	100	4	01	1	3	0
19	1	0	0	1	0	101	5	00	0	5	0
20	1	0	0	1	1	101	5	01	1	4	D
21	1	0	1	0	0	100	4	10	2	2	1
22	1	0	1	0	1	100	4	11	3	1	1
23	1	0	1	1	0	101	5	10	2	3	0
24	1	0	1	1	1	101	5	11	3	2	1
25	1	1	0	0	0	110	6	00	0	6	0
26	1	1	0	0	1	110	6	01	1	5	0
27	1	1	0	1	0	111	7	00	0	7	0
28	1	1	0	1	1	111	7	01	1	6	0

29	1	1	1	0	0	110	6	10	2	4	D
30	1	1	1	0	1	110	6	11	3	3	0
31	1	1	1	1	0	111	7	10	2	5	0
32	1	1	1	1	1	111	7	11	3	4	D

Представление булевой функции в аналитическом виде КДНФ:

$$f = \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \vee \overline{x_1$$

ККНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5})(x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$$

$$\lor x_5)(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})(\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

Минимизация методом Квайна-Мак-Класки

Нахождение простых импликант

№	$K^0(f) \cup N(f)$		Nº	K	C ¹ (f)	№	K ² (f) =	= Ø	No	Z(f)
1	00001	ν	1	0X001	1-7	-	-	-	1	0X001
2	00010	ν	2	00X10	2-4				2	00X10
3	00100	ν	3	001X0	3-4				3	001X0
4	00110	ν	4	X0100	3-13				4	X0100
5	00111	٧	5	0011X	4-5				5	0011X
6	01000	ν	6	0X110	4-10				6	0X110
7	01001	٧	7	X0111	5-15				7	X0111
8	01011	٧	8	0100X	6-7				8	0100X
9	01101	٧	9	010X1	7-8				9	010X1
10	01110	٧	10	01X01	7-9				10	01X01
11	10000	ν	11	10X00	11-13				11	10X00
12	10011	ν	12	10X11	12-15				12	10X11
13	10100	٧	13	1010X	13-14				13	1010X

14	10101	ν	14	1X100	13-16			14	1X100
15	10111	ν	15	101X1	14-15			15	101X1
16	11100	ν	16	1X111	15-17			16	1X111
17	11111	ν							

Составление импликантной таблицы

нты (бы)		0-кубы												
Простые импликанты (максимальные кубы)	10000	01000	00100	00110	00111	01000	01001	01011	01101	01101	01110	10100	10101	10111
-0X001	*						*		\perp					
00X10		*		*					+		+			
-00A10														
001X0			*	*										
X0100			*									*		
0011X				*	*									
-0X110				*					+		*			
X0111					*									*
0100X						*	*		\Box					
010X1							*	*						
01X01							*		,	:				
10X00												*		
10X11														*
1010X												*	*	
1X100												*		
101X1													*	*
1X111														*

Определение существенных импликант

Импликанты 1, 2, 6, 8, 9, 10 – существенные, так как они покрывают вершины 1, 2, 6, 8, 9 и 10 соответственно, не покрытые другими импликантами. Вычеркнем из таблицы строки, соответствующие этим импликантам, а также столбцы, соответствующие вершинам,

покрываемым существенными импликантами. Это вершины 1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 15, 16 и 17. В результате получаем упрощенную импликантную таблицу.

Простые импликанты		0-кубы								
(максимальн	ные	00100	00111	10100	10101	10111				
кубы)		a	b	с	d	e				
001X0	A	*								
X0100	В	*		*						
0011X	С		*							
X0111	D		*			*				
10X00	Е			*						
10X11	F					*				
1010X	G			*	*					
1X100	Н			*						
101X1	I				*	*				
1X111	J					*				

Множество существенных импликант (максимальных кубов) образует ядро покрытия как его обязательную часть:

$$T = \begin{cases} 0100X \\ 00X10 \\ 0X110 \\ 0X001 \\ 01X01 \\ 010X1 \end{cases}$$

Определение минимального покрытия

Выпишем булево выражение Y, определяющее условие покрытия всех 0-кубов (существенных вершин), не покрываемых существенными импликантами.

$$Y = (A \lor B)(C \lor D)(B \lor E \lor G \lor H)(G \lor I)(D \lor F \lor I \lor J)$$

Применим закон поглощения к дизъюнктивным термам, в результате чего в выражении остаются только двухбуквенные термы.

$$Y = (A \lor B)(C \lor D)(G \lor I)$$

Выполняя операции попарного логического умножения применительно к термам, содержащим одинаковые буквы, с последующим применением закона поглощения, приведем исходную конъюнктивную форму Y к дизъюнктивной.

 $Y = (ACEI) \lor (ACFG) \lor (ACGI) \lor (ACGJ) \lor (ACHI) \lor (ADEI) \lor (ADG) \lor (ADHI) \lor (BCFG)$ $\lor (BCGJ) \lor (BCI) \lor (BDG) \lor (BDI)$

$$C_{min_{1}} = \begin{cases} T \\ A \\ C \\ E \\ I \end{cases} \qquad C_{min_{2}} = \begin{cases} T \\ A \\ C \\ F \\ G \end{cases} \qquad C_{min_{3}} = \begin{cases} T \\ A \\ C \\ G \\ I \end{cases} \qquad C_{min_{4}} = \begin{cases} T \\ A \\ C \\ G \\ J \end{cases} \qquad C_{min_{5}} = \begin{cases} T \\ A \\ C \\ H \\ I \end{cases}$$

$$S_{a} = 40 \qquad S_{a} = 40 \qquad S_{b} = 50 \qquad S_{b} = 45 \qquad S_{b} =$$

Минимальными являются покрытия 7, 11, 12 и 13

$$C_{min}(f) = \begin{cases} 0100X \\ 00X10 \\ 0X110 \\ 0X001 \\ 01X01 \\ 010X1 \\ X0100 \\ X0111 \\ 1010X \end{cases}$$

$$S_a = 36$$

$$S_b = 45$$

МДНФ: $\overline{x_1}x_2\overline{x_3}x_4 \vee \overline{x_1}x_2x_4\overline{x_5} \vee \overline{x_1}x_3x_4\overline{x_5} \vee \overline{x_1}x_3\overline{x_4}x_5 \vee \overline{x_1}x_2\overline{x_3}x_5 \vee \overline{x_1}x_2\overline{x_4}x_5 \vee \overline{x_2}x_3\overline{x_4}x_5 \vee \overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}$

Минимизация на картах Карно

Определение МДНФ

	X4X5									
		00	01	11	10					
	00	d	0	d	0					
X2X3	01		1	(1)	0					
	11	d	0	d	0					
	10	0	0	0	0					
	$x_1 = 1$									

$$C_{min}(f) = \begin{cases} 0100X \\ 00X10 \\ 0X110 \\ 0X001 \\ 01X01 \\ 010X1 \\ X0100 \\ X0111 \\ 1010X \end{cases}$$

$$S_a = 36$$

$$S_b = 45$$

МДНФ: $\overline{x_1}x_2\overline{x_3}x_4 \vee \overline{x_1}x_2x_4\overline{x_5} \vee \overline{x_1}x_3x_4\overline{x_5} \vee \overline{x_1}x_3\overline{x_4}x_5 \vee \overline{x_1}x_2\overline{x_3}x_5 \vee \overline{x_1}x_2\overline{x_4}x_5 \vee \overline{x_2}x_3\overline{x_4}x_5 \vee \overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}x_3\overline{x_2}$

Определение МКНФ

	X4X5									
		00	01	11	10					
	00	0	1	$\begin{pmatrix} 0 \end{pmatrix}$	1					
X2X3	01	1	0	1	1					
	11	(0)	1	0	1					
	10	1	1	1	0					
	$x_1 = 0$									

$$C_{min}(f) = \begin{cases} 1X0XX \\ 11XXX \\ 1XX10 \\ X1010 \\ X1100 \\ X1111 \\ X0000 \\ X0011 \\ 00101 \end{cases}$$

$$S_A = 32$$

$$S_B = 41$$

MKH Φ : $(\overline{x_1} \lor x_3)(\overline{x_1} \lor \overline{x_2})(\overline{x_1} \lor \overline{x_4} \lor x_5)(\overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)(\overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)(\overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})(\overline{x_2} \lor x_3 \lor x_4 \lor x_5)(\overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$

Преобразование минимальных форм булевой функции

Факторное преобразование для МДНФ

$$f = \overline{x_1}x_2\overline{x_3x_4} \vee \overline{x_1x_2}x_4\overline{x_5} \vee \overline{x_1}x_3x_4\overline{x_5} \vee \overline{x_1x_3x_4}x_5 \vee \overline{x_1}x_2\overline{x_3}x_5 \vee \overline{x_1}x_2\overline{x_4}x_5 \qquad S_q = 45$$

$$\vee \overline{x_2}x_3\overline{x_4x_5} \vee \overline{x_2}x_3x_4x_5 \vee x_1\overline{x_2}x_3\overline{x_4} =$$

$$= (\overline{x_1} \vee x_2)(\overline{x_1x_3x_4} \vee \overline{x_2}x_4\overline{x_5}) \vee (\overline{x_1} \vee x_2)(x_3x_4\overline{x_5} \vee \overline{x_1x_3}x_5) \vee (\overline{x_1} \vee x_2)(\overline{x_3x_4}x_5$$

$$\vee \overline{x_1x_4}x_5) \vee \overline{x_2}x_3\overline{x_4x_5} \vee \overline{x_2}x_3x_4x_5 \vee x_1\overline{x_2}x_3\overline{x_4} =$$

$$= \varphi(\overline{x_1x_3x_4} \vee \overline{x_2}x_4\overline{x_5}) \vee \varphi(x_3x_4\overline{x_5} \vee \overline{x_1x_3}x_5) \vee \varphi(\overline{x_3x_4}x_5 \vee \overline{x_1x_4}x_5) \vee \overline{x_2}x_3\overline{x_4x_5} \qquad S_q = 37$$

$$\vee \overline{x_2}x_3x_4x_5 \vee \overline{\varphi}x_3\overline{x_4}$$

Решим задачу декомпозиции применительно к полученной форме. Для этого введем вспомогательную функцию.

$$\varphi = \varphi(x_1, x_2) = \overline{x_1} \vee x_2$$

Инверсия этой функции имеет вид

$$\bar{\varphi} = x_1 \overline{x_2}$$

Факторное преобразование для МКДФ

$$f = (\overline{x_1} \vee x_3)(\overline{x_1} \vee \overline{x_2})(\overline{x_1} \vee \overline{x_4} \vee x_5)(\overline{x_2} \vee x_3 \vee \overline{x_4} \vee x_5)(\overline{x_2} \vee \overline{x_3} \vee x_4 \vee x_5)(\overline{x_2} \qquad S_q = 41$$

$$\vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5})(x_2 \vee x_3 \vee x_4 \vee x_5)(x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5})(\overline{x_1} \vee \overline{x_2} \vee x_3$$

$$\vee \overline{x_4} \vee x_5) =$$

$$= (\overline{x_1} \vee x_3) \cdot (\overline{x_1} \vee \overline{x_2}) \cdot (\overline{x_1} \vee \overline{x_4} \vee x_5) \cdot ((\overline{x_2} \vee x_5)x_3 \vee \overline{x_4}) \cdot ((\overline{x_2} \vee x_5)\overline{x_3} \vee x_4)$$

$$\cdot (\overline{x_2} \vee \overline{x_3} \vee \overline{x_4} \vee \overline{x_5}) \cdot (x_2 \vee x_3 \vee x_4 \vee x_5) \cdot (x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5})$$

$$\cdot ((\overline{x_2} \vee x_5)\overline{x_1} \vee x_3) =$$

$$= (\overline{x_1} \vee x_3) \cdot (\overline{x_1} \vee \overline{x_2}) \cdot (\overline{x_1} \vee \overline{x_4} \vee x_5) \cdot (\varphi \cdot x_3 \vee \overline{x_4}) \cdot (\varphi \cdot \overline{x_3} \vee x_4) \cdot (\overline{x_2} \vee \overline{x_3} \qquad S_q = 39$$

$$\vee \overline{x_4} \vee \overline{x_5}) \cdot (x_2 \vee x_3 \vee x_4 \vee x_5) \cdot (x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \cdot (\varphi \cdot \overline{x_1} \vee x_3)$$

Решим задачу декомпозиции применительно к полученной форме. Для этого введем вспомогательную функцию.

$$\varphi = \varphi(x_2, x_3) = \overline{x_2} \vee x_5$$

Инверсия этой функции имеет вид

$$\bar{\varphi} = x_2 \overline{x_5}$$

Синтез схем

Синтез комбинационных схем в булевом базисе

$$S_q = 37$$

$$T = 4\tau$$

Синтез комбинационных схем в универсальном базисе ИЛИ-НЕ

$$f = (\overline{x_1} \downarrow x_3) \downarrow (\overline{x_1} \downarrow \overline{x_2}) \downarrow (\overline{x_1} \downarrow \overline{x_4} \downarrow x_5) \downarrow ((\overline{\varphi} \downarrow \overline{x_3}) \downarrow \overline{x_4}) \downarrow ((\overline{\varphi} \downarrow x_3) \downarrow x_4) \downarrow (\overline{x_2} \downarrow \overline{x_3} \downarrow \overline{x_4}$$

$$\downarrow \overline{x_5}) \downarrow (x_2 \downarrow x_3 \downarrow x_4 \downarrow x_5) \downarrow (x_2 \downarrow x_3 \downarrow \overline{x_4} \downarrow \overline{x_5}) \downarrow ((\overline{\varphi} \downarrow x_1) \downarrow x_3)$$

$$S_q = 40$$

$$T = 4\tau$$

Синтез комбинационных схем в универсальном базисе И-НЕ, 2 входа

$$f = \left((x_1|\overline{x_2}) \middle| \left((\overline{x_1}|\overline{x_3}|\overline{x_4}) \middle| (\overline{x_2}|x_4|\overline{x_5}) \right) \middle| \left((x_1|\overline{x_2}) \middle| \left((x_3|x_4|\overline{x_5}) \middle| (\overline{x_1}|\overline{x_3}|x_5) \right) \right) \middle|$$

$$\left| \left((x_1|\overline{x_2}) \middle| \left((\overline{x_3}|\overline{x_4}|x_5) \middle| (\overline{x_1}|\overline{x_4}|x_5) \right) \right) \middle| (\overline{x_2}|x_3|\overline{x_4}|\overline{x_5}) \middle| (\overline{x_2}|x_3|x_4|x_5) \middle| (x_1|\overline{x_2}|x_3|\overline{x_4}) \right)$$

$$S_q = 56$$

$$T = 5\tau$$

Анализ схем

Анализ произведен на наборах:

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$