

第 11 章 外部设备中断

汪辰

本章内容

- ➤ RISC-V 中断 (Interrupt) 的分类
- > RISC-V 中断编程中涉及的寄存器
- > RISC-V 中断处理流程
- > PLIC 介绍

- ➤ 【参考 1】: The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document Version 20191213
- ➤ 【参考 2】: The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version 20190608-Priv-MSU-Ratified
- > 【参考 3】: SiFive FU540-C000 Manual, v1p0
- ➤ 【参考 4】: RISC-V Platform-Level Interrupt Controller Specification: https://github.com/riscv/riscv-plic-spec

- ➤ RISC-V 中断 (Interrupt) 的分类
- > RISC-V 中断编程中涉及的寄存器
- > RISC-V 中断处理流程
- > PLIC 介绍

RISC-V 中断(Interrupt)的分类

ISCAS MIST

- ➤ 本地 (Local) 中断
 - software interrupt
 - timer interrupt
- ➢ 全局 (Global) 中断
 - externel interrupt

──M mode Software Interrupt	
———M mode Timer Interrupt—	
——M and S mode External Interrupt→	034
	Hart1

Interrupt	Exception Code	Description
1	0	User software interrupt
1	1	Supervisor software interrupt
1	2	Reserved for future standard use
1	3	Machine software interrupt
1	4	User timer interrupt
1	5	Supervisor timer interrupt
1	6	Reserved for future standard use
1	7	Machine timer interrupt
1	8	User external interrupt
1	9	Supervisor external interrupt
1	10	Reserved for future standard use
1	11	Machine external interrupt
1	12-15	Reserved for future standard use
1	≥16	Reserved for platform use

【参考 2】 Table 3.6: Machine cause register (mcause) values after trap.

【参考 3】Figure 3: FU540-C000 Interrupt Architecture Block Diagram.

- ➤ RISC-V 中断 (Interrupt) 的分类
- > RISC-V 中断编程中涉及的寄存器
- ➤ RISC-V 中断处理流程
- > PLIC 介绍

RISC-V Trap (中断) 处理中涉及的寄存器

寄存器	用途说明
mtvec (Machine Trap-Vector Base-Address)	它保存发生异常时处理器需要跳转到的地址。
mepc (Machine Exception Program Counter)	当 trap 发生时,hart 会将发生 trap 所对应的指令的地址值(pc)保存在 mepc 中。
mcause (Machine Cause)	当 trap 发生时,hart 会设置该寄存器通知我们 trap 发生的原因。
mtval (Machine Trap Value)	它保存了 exception 发生时的附加信息:譬如访问地址出错时的地址信息、或者执行非法指令时的指令本身,对于其他异常,它的值为0。
mstatus (Machine Status)	用于跟踪和控制 hart 的当前操作状态(特别地,包括关闭和打开全局中断)。
mscratch (Machine Scratch)	Machine 模式下专用寄存器,我们可以自己定义其用法,譬如用该寄存器保存当前在 hart 上运行的 task 的上下文(context)的地址。
mie (Machine Interrupt Enable)	用于进一步控制(打开和关闭)software interrupt/timer interrupt/external interrupt
mip (Machine Interrupt Pending)	它列出目前已发生等待处理的中断。

寄存器 mie、mip

mie(Machine Interrupt Enable): 打开(1)或者关闭(0) M/S/U 模式下对应的 External/Timer/Software 中断

[参考 2] Figure 3.12: Machine interrupt-enable register (mie).

➤ mip(Machine Interrupt Pending): 获取当前 M/S/U 模式 下对应的 External/Timer/Software 中断是否发生

[参考 2] Figure 3.11: Machine interrupt-pending register (mip).

本章内容

- ➤ RISC-V 中断 (Interrupt) 的分类
- > RISC-V 中断编程中涉及的寄存器
- > RISC-V 中断处理流程
- **▶ PLIC 介绍**

中断发生时 Hart 自动执行如下状态转换

- 把 mstatus 的 MIE 值复制到 MPIE 中,清除 mstatus 中的 MIE 标志位,效果是中断被禁止。
- 当前的 PC 的下一条指令地址被复制到 mepc 中,同时 PC 被设置为mtvec。注意如果我们设置 mtvec.MODE = vetcored, PC = mtvec.BASE + 4 × exception-code。
- 根据 interrupt 的种类设置 mcause, 并根据需要为 mtval 设置附加信息。

> 将 trap 发生之前的权限模式保存在 mstatus 的 MPP 域中,再把

hart 权限模式更改为 M。

Interrupt

退出 trap:编程调用 MRET 指令

- > 以在 M 模式下执行 mret 指令为例,会执行如下操作:
 - 当前 Hart 的权限级别 = mstatus.MPP; mstatus.MPP= U (如果 hart 不支持 U 则为 M)
 - mstatus.MIE = mstatus.MPIE; mstatus.MPIE = 1
 - pc = mepc

本章内容

- ➤ RISC-V 中断 (Interrupt) 的分类
- > RISC-V 中断编程中涉及的寄存器
- > RISC-V 中断处理流程
- **PLIC 介绍**

外部中断 (external interrupt)

Platform-Level Interrupt Controller

PLIC Interrupt Source

https://github.com/qemu/qemu/blob/master/include/hw/riscv/virt.h

```
enum {
    UARTO_IRQ = 10,
    RTC_IRQ = 11,
    VIRTIO_IRQ = 1, /* 1 to 8 */
    VIRTIO_COUNT = 8,
    PCIE_IRQ = 0x20, /* 32 to 35 */
    VIRTIO_NDEV = 0x35 /* Arbitrary maximum number of interrupts */
};
```

- ➢ Interrupt Source ID 范围: 1 ~ 53 (0x35)
- ▶ 0 预留不用

PLIC 编程接口 - 寄存器

- RISCV 规范规定、PLIC 的寄存器编址采用内存映射 (memory map)方式。每个寄存器的宽度为 32-bit。
- ▶ 具体寄存器编址采用 base + offset 的格式,且 base 由各个特定 platform 自己定义。针对 QEMU-virt,其 PLIC 的设计参考了 FU540-C000, base 为 0x0c000000。

可编程寄存器	功能描述	内存映射地址
Priority	设置某一路中断源的优先级。	BASE + (interrupt-id) * 4
Pending	用于指示某一路中断源是否发生。	BASE + 0x1000 + ((interrupt-id) / 32)
Enable	针对某个 hart 开启或者关闭某一路中断源。	BASE + 0x2000 + (hart) * 0x80
Threshold	针对某个 hart 设置中断源优先级的阈值。	BASE + $0x200000 + (hart) * 0x1000$
Claim/Complete	对该寄存器执行读操作称之为 Claim,即获取当前发生的最高优先级的中断源 ID 对该寄存器执行写操作称之为 Complete。所谓 Complete 指的是通知 PLIC 对改路中断的处理已经结束。	BASE + 0x200004 + (hart) * 0x1000

PLIC 编程接口 - 操作流程

访访 欢迎交流合作