

MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia

© 2009 – IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização por escrito dos autores e do detentor dos direitos autorais.

CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

L55m

Leite, Olímpio Rudinin Vissoto.

Matemática elementar II: situações de matemática do ensino médio no dia a dia. / Olímpio Rudinin Vissoto Leite, Marcelo Gorges. - Curitiba, PR: IESDE, 2009.

444 p.

Sequência de: Matemática elementar I

ISBN 978-85-387-0414-0

1. Matemática (Ensino médio). I. Gorges, Marcelo. II. Inteligência Educacional e Sistemas de Ensino. III. Título.

09-3612. CDD: 510

CDU: 51

Capa: IESDE Brasil S.A. Imagem da capa: Júpiter Images/DPI Images

Todos os direitos reservados.

IESDE Brasil S.A.

Al. Dr. Carlos de Carvalho, 1.482. CEP: 80730-200 Batel - Curitiba - PR Ad Haiora Seuger! 0800 708 88 88 - www.iesde.com.br

Esse material é parte integrante do Aulas Particulares on-line do IESDE BRASIL S/A, mais informações www.aulasparticularesiesde.com.br

Olímpio Rudinin Vissoto Leite

Mestre em Gestão de Negócios pela Universidade Católica de Santos. Graduado em Licenciatura em Matemática pela USP.

Marcelo Gorges

Licenciado em Matemática pela Pontifícia Universidade Católica do Paraná.

Sumário

Números e operações | 11

- Números naturais | 11
- Números inteiros | 14
- Números racionais | 17
 - Números reais | 20
 - Porcentagem | 24
- Fator de aumento | 26
- Fator de redução | 27

Geometria e medidas | 33

- Comprimento e massa | 33
- Área, volume e capacidade | 37
 - Volume e capacidade | 42
- Estimativas e arredondamentos | 46
 - Teorema de Tales | 51
 - Teorema de Pitágoras | 58

Gráficos | 65

Tipos de gráficos | 65

Introdução às funções | 83

- Conceito intuitivo de função | 83
 - Gráfico cartesiano | 85
- Domínio e imagem de uma função | 88
 - Uma nova notação para função | 89

Função afim | 97

Gráfico da função afim | 97
Função linear | 98
Função identidade | 98
Função constante | 99
Coeficientes da função afim | 100
Interseção da reta com eixo x (raiz da função afim) | 101
Equações da reta | 108

Função quadrática | 115

Gráfico de uma função quadrática | 115 Domínio e imagem da função quadrática | 126 Máximo ou mínimo de uma função quadrática | 127

Tópicos complementares de funções | 135

Função definida por várias sentenças | 135 Estudo da variação das funções | 139 Valores extremos de uma função | 141 Estudo do sinal de uma função | 147 Inequação | 149

Funções exponenciais | 155

Potenciação | 155 Propriedades das potências | 156 Notação científica | 157 Função exponencial | 163 Equações exponenciais | 169

Função logarítmica | 175

O que é logaritmo? | 175

Propriedades dos logaritmos | 178

Função logarítmica | 186

Equação logarítmica | 190

A função exponencial de base 'e' e de base $\frac{1}{e}$ | 192

Logaritmo natural | 193

Introdução à trigonometria | 197

As razões trigonométricas | 197

Como calcular o seno, o cosseno e a tangente de um ângulo agudo? | 199

Seno, cosseno e tangente de um ângulo obtuso | 211

Lei dos senos | 219

Lei dos cossenos | 219

Progressão Aritmética (P.A.) | 225

Sequência numérica | 225

Progressão Aritmética (P.A.) | 228

Progressão Geométrica (P.G.) | 241

Progressão Geométrica | 241

Classificação de P.G. | 242

Sistemas lineares | 259

Matrizes | 259

Determinantes | 265

Sistemas lineares | 269

Princípio fundamental da contagem | 279

Princípio fundamental da contagem | 279 Tipos de agrupamentos | 281

Análise combinatória | 287

Fatorial | 287
Permutação simples | 288
Permutação com repetição | 289
Arranjo simples | 292
Combinação simples | 295

Noções de probabilidade | 299

Experimentos aleatórios | 299 Probabilidade | 300 Probabilidade condicional | 306

Matemática Financeira | 313

Porcentagem | 313
Porcentagem de uma quantia | 314
Porcentagem de um número em relação a outro | 314
Aumento | 315
Desconto | 317
Juros | 320

Geometria espacial | 327

Prismas | 327

Paralelepípedo reto-retângulo | 329

Cubo | 330

Pirâmides | 334

Cilindro | 339

Cone | 341

Esfera | 342

Estatística | 345

Notações | 345

Tipos de variáveis | 345

Medidas de tendência central | 346

Medidas de dispersão | 350

Apresentação de dados estatísticos | 353

Frequências | 354

Circunferência trigonométrica | 359

Circunferência trigonométrica | 359

Relações trigonométricas | 363

Progressão Geométrica (P.G.)

Marcelo Gorges

■I Progressão Geométrica

Em uma Progressão Geométrica (P.G.), a partir do segundo termo, cada termo é igual ao anterior, multiplicado por uma constante denominada de razão.

Representação

Onde, a razão (q) é o quociente entre um termo e o seu termo antecessor, a partir do segundo termo, isto é:

$$q = \frac{a_2}{a_1} = \frac{a_3}{a_2} ...$$

Em que:

a, é o primeiro elemento na sequência (lê-se: a índice 1);

 a_2 é o segundo elemento (lê-se: a índice 2);

a, é o terceiro elemento (lê-se: a índice 3);

.

 a_{n-1} é o termo que antecede o enésimo termo da sequência.

a_n é o enésimo termo na sequência (lê-se: a índice n), lembrando que n sempre será um número pertencente ao conjunto dos números naturais não nulos.

Exemplos:

Qual a razão da P.G. de sequência:

$$q = \frac{a_2}{a_1} = \frac{6}{2} = 3$$

$$q = \frac{a_3}{a_2} = \frac{12}{-6} = -2$$

$$q = \frac{a_2}{a_1} = \frac{16}{64} = \frac{1}{4}$$

Classificação de P.G.

Progressão Geométrica crescente

Uma Progressão Geométrica é crescente se, cada termo, a partir do segundo, é maior que o termo precedente.

Exemplos:

(3, 6, 12, 24, ...) é uma P.G. crescente de razão q = 2.

$$(-6, -2, -\frac{2}{3}, -\frac{2}{9}, ...)$$
 é uma P.G. crescente de razão $q = \frac{1}{3}$.

Progressão Geométrica decrescente

Uma Progressão Geométrica é decrescente se, cada termo, a partir do segundo, é menor que o termo precedente.

Exemplos:

(48, 24, 12, 6, 3, ...) é uma P.G. decrescente de razão $q = \frac{1}{2}$. (-1, -10, -100, -1 000, ...) é uma P.G. decrescente de razão q = 10.

Progressão Geométrica constante

Uma Progressão Geométrica é constante se todos os termos forem iguais entre si.

Exemplos:

(6, 6, 6, ...) é uma P.G. de razão 1 (zero).

(0, 0, 0, ...) é uma P.G. de razão indeterminada.

Progressão Geométrica oscilante

Uma Progressão Geométrica é oscilante se dois termos consecutivos quaisquer tiverem sinais opostos.

Exemplos:

(3, -6, 12, -24, ...) é uma P.G. oscilante de razão q = -2.

 $(-24, 12, -6, 3, -\frac{3}{2}, ...)$ é uma P.G. oscilante de razão $q = -\frac{1}{2}$.

Expressão do termo geral de uma P.G.

Qualquer termo de uma P.G. pode ser obtido, em função do primeiro termo e da razão, pela fórmula:

$$a_n = a_1 \cdot q^{n-1}$$

Em que:

a, é o enésimo termo, ou termo geral.

a, é o primeiro termo;

n é o número de termos até a ";

q á a razão da P.G.

Exemplos:

1. Dada a P.G. = (3, 6, 12, ...). Determine a expressão do termo geral e o 12.º termo.

Solução:

Para esta sequência temos:

$$a_1 = 3$$

$$q = \frac{6}{3}$$

$$q = 2$$

A expressão para o termo geral é:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_n = 3 \cdot 2^{n-1}$$

Para determinar o 12.º, basta utilizar a expressão do termo geral, então:

$$a_{12} = 3 \cdot 2^{12-1}$$

$$a_{12} = 6144$$

2. Dada a fórmula do termo geral $a_n = 3 \cdot 5^{n-2}$, de uma P.G., encontre o quinto termo.

Solução:

$$a_n = 3.5^{n-2}$$

Encontrar o quinto termo, portanto n = 5. Assim:

$$a_5 = 3.5^{5-2}$$

$$a_5 = 3.125$$

$$a_5 = 375$$

Portanto o quinto termo da P.G. será 375.

3. Encontrar o termo geral da P.G. (3, 9,...)

Solução:

$$a_1 = 3$$

$$q = \frac{a_2}{a_1} = \frac{9}{3} = 3$$

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

Substituindo os termos conhecidos:

$$a_n = 3 \cdot (3)^{n-1}$$

$$a_n = 3^{1+(n-1)}$$

 $a_n = 3^n$, este é o termo geral.

4. Qual é o quinto termo da P.G. (2, 6, ...)?

Solução:

$$a_{1} = 2$$

$$a_{2} = 6$$

$$n = 5$$

$$q = \frac{a_2}{a_1} = \frac{6}{2} = 3$$

Substituindo os termos conhecidos:

$$a_5 = 2 \cdot (3)^{5-1}$$

$$a_5 = 2 \cdot (3)^4$$

$$a_5 = 2.81$$

$$a_5 = 162$$

Portanto, o quinto termo será igual a 162.

5. Determine o primeiro termo de uma P.G. onde $a_7 = 2$ e q = 2.

Solução:

Como:

$$a_n = a_1 \cdot q^{n-1}$$

Substituindo os termos conhecidos:

$$a_7 = a_1 \cdot (q)^{7-1}$$

$$2 = a_1 \cdot (2)^6$$

$$2 = a_1 . 64$$

$$a_1 = \frac{2}{64}$$

$$a_1 = \frac{1}{32}$$

6. Determine o número de termos de uma P.G. com razão q = 4, $a_1 = 2$, e último termo igual a 8 192.

Solução:

Como:

$$a_n = a_1 \cdot q^{n-1}$$

Substituindo os termos conhecidos:

$$a_n = 2 \cdot (4)^{n-1}$$

$$8\ 192 = 2 \cdot (4)^{n-1}$$

$$\frac{8192}{2} = (4)^{n-1}$$

$$4096 = 4^{n-1}$$

$$4^{6} = 4^{n-1}$$

$$6 = n - 1$$

$$n = 7$$

Portanto a P.G. terá 7 termos.

7. Um automóvel, que valia R\$32.000,00 no início de janeiro de 2001, desvaloriza-se 6% ao ano, isto é, em cada ano ele perde 6% do valor que tinha ao início do ano. Qual será o valor do carro no início de janeiro de 2010?

Solução:

Sendo
$$a_1 = 32.000 e q = 1 - 0.06 = 0.94$$
.

Como:

$$a_n = a_1 \cdot q^{n-1}$$

Substituindo os termos conhecidos:

$$a_{10} = 32.000 \cdot (0,94)^{10-1}$$

$$a_{10} = 32.000 \cdot (0.94)^9$$

$$a_{10} = 18.335,83$$

Portanto, em janeiro de 2010 o valor do carro será aproximadamente R\$18.335,83.

Exercícios

- 1. Qual a razão da P.G. de sequência:
 - a) (2, 4, 8...)

b) (36, 12, 4, ...)

c) (8, -24, 72, ...)

- **2.** Dada a P.G. (1, 5,...), responda:
 - a) Qual o seu termo geral?

b) Qual o valor do oitavo termo?

3. Determine o termo geral da P.G. (6, 2,...) e em seguida qual o valor do seu décimo termo.

4. Em uma P.G. de razão 2, o primeiro termo é 7. Determine o quinto termo.

5. Encontre o primeiro termo de uma P.G., sabendo que a razão é 2 e o décimo primeiro termo é 3 072.

6. O número das casas de uma determinada rua foi dado respeitando a seguinte formação em P.G. (1, 3,..., 2 187), desta maneira, qual o número de casas desta rua?

7. Numa P.G. crescente, temos onde $a_1 = 7$ e $a_5 = 70$ 000. Qual é a razão desta P.G.?

Aplicações das Progressões Geométricas

Uma das aplicações das Progressões Geométricas é no cálculo de Juros Compostos. Mas o que são Juros?

Juro é a importância que se paga pelo empréstimo de certa quantia de dinheiro, chamada de capital, durante algum tempo.

Os juros podem ser classificados em:

Juro simples – é calculado tendo como base o capital inicial, período a período. O valor do juro é constante nos períodos de tempo considerados.

Juro composto – um capital está aplicado a juro composto quando, após cada período pré-fixado do prazo do investimento, os juros são incorporados ao capital, passando a render juros.

Exemplo:

- 1. Um capital de 10 mil reais foi investido, no sistema de juros compostos, à taxa de 10 por cento ao mês. Determine o montante desse capital:
 - a) Depois de um mês;
 - b) Depois de dois meses.

Solução:

a)

Primeiro, vamos determinar o fator de aumento(F):

Nesse caso, a taxa (i) é 10%. Sendo assim, temos:

F = 1 + i

i = 10% = 0.10

F = 1 + 0.10

F = 1,10

Depois de um mês o montante será dado por:

 $M_1 = 1,10 . 10.000,00 = 11.000,00.$

Ou seja, após 1 mês o montante será de R\$11.000,00.

b)

Para determinar o montante depois do segundo mês, devemos multiplicar o montante do período anterior, no caso R\$11.000,00, pelo fator de aumento.

 $M_2 = 1,10 . 11.000,00 = 12.100,00$

O montante, após 2 meses, será de R\$12.100,00.

O montante formado mês a mês pode ser determinado da seguinte forma:

Montante inicial: 10.000,00 . 1,10

Montante após 1 mês: 11.000,00 . 1,10

Montante após 2 meses: 12.100,00

.

Percebemos então que se trata de uma sequência em que cada termo, a partir do segundo termo, é igual ao termo precedente multiplicado por uma razão, portanto esta sequência é uma progressão geométrica.

Onde:

 $a_1 = R$10.000,00$ e a razão dessa P.G. é representada pelo fator de aumento, que para este exemplo é q = 1,10.

A partir disso, podemos calcular o montante em qualquer momento. Por exemplo:

Se quisermos calcular o montante após 10 meses, basta calcularmos o décimo termo dessa P.G.

Exercício

8. Determine o valor do montante de um capital de R\$5.500,00, aplicado no sistema de juros compostos, à taxa de 5% a.m., ao final de 5 meses de aplicação.

Interpolação geométrica

Interpolar (ou inserir) k meios geométricos entre dois extremos a e b, nesta ordem, significa determinar a P.G. de k + 2 termos onde a é o primeiro termo e b é o último termo.

Exemplo:

No primeiro semestre de 2009, a produção mensal de uma indústria cresceu em Progressão Geométrica, da seguinte maneira:

Em janeiro produziu 50 unidades e, em junho, produziu 12 150 unidades. Qual foi a produção desta indústria nos meses de fevereiro, março, abril e maio?

Solução:

Precisamos interpolar os meios geométricos entre os extremos dados da P.G., ou seja,

50, __, __, 12 150.

Sabendo que:

 $a_1 = 50$, $a_6 = 12\,150$ e n = 6, podemos então determinar a razão da progressão da sequinte forma:

 $a_n = a_1 \cdot q^{n-1}$

Substituindo os termos conhecidos temos:

 $12\ 150 = 50 \cdot (q)^{6-1}$

 $243 = q^5$

q = 3

Desta maneira, a progressão será:

fevereiro, 50.3 = 150 unidades;

março, 150.3 = 450 unidades;

abril, 450.3 = 1350 unidades;

maio, 1350 . 3 = 4050 unidades.

Ou seja, a P.G. é (50, 150, 450, 1350, 4050, 12 150).

Exercícios

9. Interpolando três meios geométricos entre 3 e 48, escreva a(s) P.G(s). encontrada(s).

10. Inserindo-se quatro meios geométricos entre *a* e 9 375, obtém-se uma P.G. cuja razão é 5. Qual o valor de *a*?

Fórmula da soma dos n primeiros termos de uma P.G. finita

Podemos obter a soma dos n primeiros termos da P.G. $(a_1, a_2, a_3, a_4, ..., a_{n-1}, a_n, ...)$, através da fórmula:

$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$
, sendo $q \ne 1$

Em que:

S_n é a soma dos n primeiros termos;

a, é o primeiro termo;

q é a razão da P.G.;

n é o número de termos até a_n.

Exemplos:

- 1. Dada a Progressão Geométrica (1, 2, 4, 8, ...), calcular:
 - a) a soma dos 6 primeiros termos;

Solução:

$$a_1 = 1$$

$$q = 2$$

Como,
$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$
, então:
 $S_6 = \frac{1 \cdot (2^6 - 1)}{2 - 1} = \frac{64 - 1}{1}$
 $S_6 = 63$

b) o valor de n para que a soma dos n primeiros termos seja 262 143.

Solução:

$$a_1 = 1$$
 $S_n = 262 \ 143$
 $q = 2$
 $n = ?$
 $Como, S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}, então:$
 $262 \ 143 = \frac{1 \cdot (2^n - 1)}{2 - 1}$
 $262 \ 143 = 2^n - 1$
 $262 \ 144 = 2^n$
 $2^{18} = 2^n$
 $n = 18$

Portanto, a sequência deverá ter 18 termos, para que a soma seja 262 143.

2. Em um certo tipo de jogo, o prêmio pago a cada acertador é 10 vezes o valor de sua aposta. Certo apostador resolve manter o seguinte esquema de jogo: aposta R\$1,00 na primeira tentativa e, nas seguintes, aposta sempre o dobro do valor anterior. Na 7.ª tentativa ele acertou. Quanto o apostador recebeu de lucro ao receber o prêmio?

Solução:

A P.G. é (1, 2, 4, 8, 16,...). Assim na 7.ª tentativa ele apostou:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_7 = 1.2^{7-1}$$

$$a_7 = 2^6$$

$$a_7 = 64$$

Logo, nesta aposta ganhou: 64 . 10 = 640,00 reais.

Como $S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$, então o apostador gastou:

$$S_7 = \frac{1 \cdot (2^7 - 1)}{2 - 1} = \frac{128 - 1}{1}$$

$$S_7 = 127$$

Desta forma, seu lucro foi de: 640 - 127 = 513,00 reais.

Fórmula da soma dos termos de uma P.G. infinita

Soma dos termos de uma P.G. infinita de razão q, tal que $1 < |{\bf q}| < 0$, pode ser determinada por:

$$S_{\infty} = \frac{a_1}{1 - q}, 1 < |q| < 0$$

Em que:

 ${\rm S}_{\infty}$ é a soma dos infinitos termos;

a, é o primeiro termo;

q é a razão da P.G.

Exemplo:

Dada a progressão geométrica (10, 5, $\frac{5}{2}$,...), calcule a soma dos seus termos.

Solução:

$$a_1 = 10$$

$$q = \frac{5}{10} = \frac{1}{2}$$

Como,
$$S_n = \frac{a_1}{1-q}$$
, então:

$$S_n = \frac{10}{1 - \frac{1}{2}} = \frac{10}{\frac{1}{2}} = 10 \cdot \frac{2}{1}$$

$$S_{n} = 20$$

Exercícios

11. Calcule a soma dos 7 primeiros termos da P.G. (5, 10, 20,...).

12. Determine a soma dos 10 primeiros termos de uma P.G. em que $a_1 = 1$ e q = 3.

13. Em uma P.G. onde $S_8 = 1530 e q = 2$. Determine o valor de $a_1 + a_6$.

14. Quantos termos devemos considerar na P.G. (3, 6,...) para obter a soma de 189?

15. Dada a P.G. (– 40, – 20, – 10,...), calcule a soma dos seus termos.

16. Dado um quadrado Q_1 cujo lado tem comprimento L = 1, considere a sequência infinita de quadrados Q_1 , Q_2 , Q_3 ,... onde cada quadrado é obtido unindo-se os pontos médios dos lados do quadrado anterior. A soma das áreas de todos os quadrados da sequência será?

17.	Você quer renegociar uma dívida feita com um amigo e, na ocasião, ele ofe-
	rece parcelas mensais que equivalem sempre a 15% da dívida restante. Após
	quanto tempo o valor devido será menor do que 50% da dívida inicial?

18. Conforme o inverno chega e as temperaturas caem, um lojista de artigos de couro aumenta o preço das jaquetas, devido à grande procura por elas. Se a cada semana que passa ele aumenta em 5% o preço das jaquetas, qual é a razão entre o preço final e o preço inicial ao final de 2 meses?

Observação: para este exercício, considere 1 mês = 4 semanas.

Gabarito

Progressão Geométrica (P.G.)

a)
$$q = \frac{a_2}{a_1} = \frac{4}{2} = 2$$

b)
$$q = \frac{a_2}{a_1} = \frac{12}{36} = \frac{1}{3}$$

c)
$$q = \frac{a_2}{a_1} = -\frac{24}{8} = -3$$

2.

a)
$$a_1 = 1 e a_2 = 5$$

$$q = \frac{a_2}{a_2} = \frac{5}{1} = 5$$

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_n = 1.5^{n-1}$$

$$a_n = 5^{n-1}$$

b)
$$a_g = 5^{8-1}$$

$$a_{\circ} = 5^{7}$$

$$a_8 = 78 \ 125$$

3.
$$a_1 = 6 e a_2 = 2$$

$$q = \frac{2}{6} = \frac{1}{3}$$

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_n = 6 \cdot \left(\frac{1}{3}\right)^{n-1}$$

$$a_n = 6 \cdot \left(\frac{1}{3}\right)^n \cdot \left(\frac{1}{3}\right)^{-1}$$

$$a_n = 6 \cdot \left(\frac{1}{3}\right)^n \cdot 3$$

$$a_n = 18 \cdot \left(\frac{1}{3}\right)^n$$

$$a_{10} = 18 \cdot \left(\frac{1}{3}\right)^{10}$$

$$a_{10} = 18 \cdot \left(\frac{1}{59.049} \right)$$

$$a_{10} = \frac{2}{6.561}$$

4.
$$a_1 = 7 e q = 2$$

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_5 = 7 \cdot (2)^{5-1}$$

$$a_5 = 7 \cdot (2)^4$$

$$a_5 = 7.(16)$$

$$a_5 = 112$$

5.
$$a_{11} = 3072 eq = 2$$

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_{11} = a_1 \cdot q^{11-1}$$

$$3\ 072 = a_1 \cdot 2^{10}$$

$$3072 = a_1 \cdot 1024$$

$$\frac{3072}{1024} = a_1$$

6.
$$a_1 = 1; a_2 = 3 e a_n = 2 187$$

$$q = \frac{3}{1} = 3$$

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$2.187 = 1.(3)^{n-1}$$

$$2\ 187 = (3)^n \cdot (3)^{-1}$$

$$2 \ 187 = (3)^n \cdot \frac{1}{3}$$

$$2.187 3 = 3^{n}$$

$$6.561 = 3^{n}$$

$$3^8 = 3^n$$

$$n = 8$$

7. $a_1 = 7$; $a_5 = 70000$

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$70\ 000 = 7 \cdot q^{5-1}$$

$$\frac{70\,000}{7} = q^4$$

$$10\ 000 = q^4$$

$$q = \pm \sqrt[4]{10\ 000}$$

$$q = \pm 10$$

Como a P.G. é crescente, portanto a razão é q = +10.

8. Como se trata de uma Progressão Geométrica temos que:

$$a_1 = 5500$$

q = Fator de aumento (F)

Como F = 1 + i, então;

$$F = 1 + 5\%$$

$$F = 1 + 0.05$$

$$F = 1.05$$

$$Logo q = 1,05$$

Utilizando a fórmula do termo geral temos:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_c = 5500 \cdot 1,05^{5-1}$$

$$a_s = 5500 \cdot 1,054$$

$$a_{s} \cong 6 685,28$$

Portanto ao final do quinto mês o montante é de R\$6.680.00.

P.G. (3, ___, ___, 48) 9.

$$a_1 = 3$$
; $a_2 = 48$ e n = 5

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$48 = 3 \cdot q^{5-1}$$

$$\frac{48}{3} = q^4$$

$$16 = a^4$$

$$q = \pm \sqrt[4]{16}$$

$$q = \pm 2$$

Desta forma, para q = +2, teremos:

E para q = -2, teremos:

P.G. (a, ___, ___, ___, 9 375) 10.

$$a_1 = a$$
; $a_2 = 9375$ e n = 6

Assim, como:

$$a_n = a_1 \cdot q^{n-1}$$

$$9.375 = a_1 . 5^{6-1}$$

$$9.375 = a_1 . 5^5$$

$$9375 = a_1 . 3125$$

$$\frac{9375}{3125} = a_1$$

$$a_1 = 3$$

 $a_1 = 5$; $a_2 = 10 e n = 7$ $q = \frac{10}{5} = 2$ 11.

$$q = \frac{10}{5} = 2$$

Assim, como:

$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$

$$S_7 = \frac{5 \cdot (2^7 - 1)}{2 - 1}$$

$$S_7 = \frac{5 \cdot (128 - 1)}{1}$$

$$S_7 = 5.127$$

$$S_{7} = 635$$

12.
$$a_1 = 1$$
; $q = 3$ e $n = 10$

Assim, como:

$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$

$$S_{10} = \frac{1 \cdot (3^{10} - 1)}{3 - 1}$$

$$S_{10} = \frac{(59\ 049 - 1)}{2}$$

$$S_{10} = \frac{59048}{2}$$

$$S_{10} = 29524$$

13.
$$S_8 = 1530; q = 2en = 8$$

Assim, como:

$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$

$$1530 = \frac{a_1 \cdot (2^8 - 1)}{2 - 1}$$

$$1530 = \frac{a_1 \cdot (256 - 1)}{1}$$

$$1530 = a_1 . 255$$

$$\frac{1530}{255} = a_1$$

$$a_1 = 6$$

Desta forma:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_6 = 6.2^{6-1}$$

$$a_6 = 6.2^5$$

$$a_6 = 6.32$$

$$a_6 = 192$$

Assim:

$$a_1 + a_6 = 6 + 192 = 198$$

Resposta: 198

14.
$$a_1 = 3$$
; $a_2 = 6$ e $S_n = 189$
 $q = \frac{6}{3} = 2$

Assim, como:

$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$

$$189 = \frac{3 \cdot (2^{n} - 1)}{2 - 1}$$

$$189 = 3 \cdot (2^{n} - 1)$$

$$\frac{189}{3} = 2^n - 1$$

$$63 = 2^n - 1$$

$$63 + 1 = 2^n$$

$$64 = 2^{n}$$

$$2^6 = 2^n$$

$$n = 6$$

Resposta: 6 termos.

15.
$$a_1 = -40 \text{ e } a_2 = -20$$

$$q = \frac{-20}{-40} = \frac{1}{2}$$

Assim, como:

$$S_n = \frac{a_1}{1 - q}$$

$$S_n = \frac{-40}{1 - \frac{1}{2}} = \frac{-40}{\frac{1}{2}} = -40 \cdot \frac{2}{1}$$

$$S_{n} = -80$$

16. Unindo os pontos médios dos lados de um quadrado, obtemos um quadrado cuja área é a metade da área do quadrado original. Q1 tem área 1, o quadrado Q2 tem área $\frac{1}{2}$, o quadrado Q3 tem área $\frac{1}{4}$ e assim sucessivamente. Representando a seguinte P.G:

$$\left(1,\frac{1}{2},\frac{1}{4},...\right)$$

Observe a figura que representa esta situação:

Portanto, a soma de todas as áreas será um valor que tenderá a:

$$S_n = \frac{a_1}{1 - q}$$

$$S_n = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 1 \cdot \frac{2}{1}$$

$$S_n = 2$$

17. Como a dívida se reduz a uma taxa de 15% a cada mês. Utilizaremos a fórmula do termo geral de uma P.G.:

$$a_n = a_1 \cdot q^{n-1}$$

Onde:

 $a_n \rightarrow Valor da dívida após os pagamentos;$

 $a_1 \rightarrow \acute{e}$ o valor inicial da dívida;

q → fator de redução.

A razão é igual ao fator de redução. Assim:

$$F = 1 - 15\%$$

$$F = 0.85$$
, $logo q = 0.85$

Substituindo na fórmula do termo geral temos:

$$a_n = a_1 \cdot q^{n-1}$$

$$a_n = a_1 \cdot (0.85)^{n-1}$$

O valor da dívida deve ser menor que 50% do valor inicial. Vamos calcular o valor para que a dívida seja igual à metade da dívida. Assim:

$$a_n = 0.5 \cdot a_1$$

Logo:

$$a_n = a_1 \cdot q^{n-1}$$

$$0.5 \cdot a_1 = a_1 \cdot (0.85)^{n-1}$$

$$0.5 = (0.85)^{n-1}$$

Aplicando logaritmo nos dois membros da equação anterior temos:

$$\log 0.5 = \log(0.85)^{n-1}$$

$$\log 0.5 = (n - 1) \log (0.85)$$

$$n-1=\frac{log0,5}{log0,85}$$

$$n - 1 \cong 4,26$$

$$n \approx 5,26$$

Sendo assim após o 5.º mês a dívida atingirá menos da metade do valor inicial.

18. Para resolver este problema de aumentos sucessivos vamos utilizar as Progressões Geométricas. Assim:

$$a_n = a_1 \cdot q^{n-1}$$

Onde:

 $a_n \rightarrow \acute{e}$ o preço final;

 $a_1 \rightarrow \acute{e}$ o preço inicial;

$q \rightarrow \acute{e}$ o fator de aumento. Observação: o valor de n é igual a 9, pois o acréscimo ocorreu em 8 semanas a partir do valor inicial. Substituindo temos: $a_g = a_1 \cdot (1,15)^{g-1}$ $a_g \cong a_1 \cdot 1,477$ $\frac{a_g}{a_1} \cong 1,477$	
a ₁ Aproximadamente 1,48.	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

 -

Matemática Elementar II: situações de matemática do ensino médio no dia a dia