APPLICATION CERTIFICATION

On Behalf of Shenzhen Leader Digital-tech Weitong Co., Ltd.

MID Model No.: GN3X

FCC ID: ZDYGN3X

Prepared for : Shenzhen Leader Digital-tech Weitong Co., Ltd. Address : 4 Floor, Dongjiang Environmental Building, Central

Nanshan District, Shenzhen, China

Prepared by : ACCURATE TECHNOLOGY CO. LTD

Address : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20120033

Date of Test : January 9-February 2, 2012

Date of Report : February 9, 2012

TABLE OF CONTENTS

Description	Page
-------------	------

Test Report	Certification
I COL IXODOIL	Columbia

		1	
1.	\mathbf{G}	ENERAL INFORMATION	5
	1.1.	Description of Device (EUT)	5
	1.2.	Accessory and Auxiliary Equipment	
	1.3.	Description of Test Facility	
	1.4.	Measurement Uncertainty	
2.	M	EASURING DEVICE AND TEST EQUIPMENT	
3.		PERATION OF EUT DURING TESTING	
٥.			
	3.1. 3.2.	Operating Mode	
		Configuration and peripherals	
4.	TI	EST PROCEDURES AND RESULTS	9
5.	20	DB BANDWIDTH TEST	10
	5.1.	Block Diagram of Test Setup	10
	5.2.	The Requirement For Section 15.247(a)(1)	10
	5.3.	EUT Configuration on Measurement	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	11
	5.6.	Test Result	11
6.	\mathbf{C}	ARRIER FREQUENCY SEPARATION TEST	15
	6.1.	Block Diagram of Test Setup	15
	6.2.	The Requirement For Section 15.247(a)(1)	15
	6.3.	EUT Configuration on Measurement	
	6.4.	Operating Condition of EUT	
	6.5.	Test Procedure	
	6.6.	Test Result	
7.	N	UMBER OF HOPPING FREQUENCY TEST	20
	7.1.	Block Diagram of Test Setup	20
	7.2.	The Requirement For Section 15.247(a)(1)(iii)	20
	7.3.	EUT Configuration on Measurement	
	7.4.	Operating Condition of EUT	
	7.5.	Test Procedure	
	7.6.	Test Result	21
8.	D	WELL TIME TEST	25
	8.1.	Block Diagram of Test Setup	
	8.2.	The Requirement For Section 15.247(a)(1)(iii)	25
	8.3.	EUT Configuration on Measurement	25
	8.4.	Operating Condition of EUT	
	8.5.	Test Procedure	
	8.6.	Test Result	
9.	\mathbf{M}	AXIMUM PEAK OUTPUT POWER TEST	30
	9.1.	Block Diagram of Test Setup	30
	9.2.	The Requirement For Section 15.247(b)(1)	
	9.3.	EUT Configuration on Measurement	
	9.4.	Operating Condition of EUT	30

9.5.	Test Procedure	31
9.6.	Test Result	31
10. BA	ND EDGE COMPLIANCE TEST	35
10.1.	Block Diagram of Test Setup	35
10.2.	The Requirement For Section 15.247(d)	
10.3.	EUT Configuration on Measurement	35
10.4.	Operating Condition of EUT	36
10.5.	Test Procedure	36
10.6.	Test Result	37
11. RA	DIATED SPURIOUS EMISSION TEST	48
11.1.	Block Diagram of Test Setup	48
11.2.	The Limit For Section 15.247(d)	49
11.3.	Restricted bands of operation	49
11.4.	Configuration of EUT on Measurement	
11.5.	Operating Condition of EUT	50
11.6.	Test Procedure	
11.7.	The Field Strength of Radiation Emission Measurement Results	51
12. CC	ONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	72
12.1.	Block Diagram of Test Setup	72
12.2.	The Requirement For Section 15.247(d)	72
12.3.	EUT Configuration on Measurement	72
12.4.	Operating Condition of EUT	
12.5.	Test Procedure	
12.6.	Test Result	73
13. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)	
13.1.	Block Diagram of Test Setup	77
13.2.	The Emission Limit	77
13.3.	Configuration of EUT on Measurement	78
13.4.	Operating Condition of EUT	78
13.5.	Test Procedure	
13.6.	Power Line Conducted Emission Measurement Results	
14. AN	TENNA REQUIREMENT	82
14.1.	The Requirement	82
14.2	Antenna Construction	82

Test Report Certification

Applicant : Shenzhen Leader Digital-tech Weitong Co., Ltd.

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

EUT Description : MID

(A) MODEL NO.: GN3X(B) SERIAL NO.: N/A

(C) POWER SUPPLY: DC 7.4V (Li-polymer battery);

AC 120V/60Hz (Adaptor input)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	January 9-February 2, 2012	
Prepared by:	Apple Lu	
	(Engineer)	
Approved & Authorized Signer :	Searle)	
	(Manager)	

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : MID

Model Number : GN3X

(Note: X=1-9

These samples are same except for the appearance is difference. So we prepare the GN32 for FCC test.)

Frequency Band

(Bluetooth)

: 2402MHz-2480MHz

Frequency Band

(Wifi)

2412-2462MHz

Number of Channels : 79

Antenna Gain : 0dBi

Power Supply : DC 7.4V (Li-polymer battery);

AC 120V/60Hz (Adaptor input)

Adapter : Model number: FLD181-120150-11B25B

Input: AC 100-240V; 50/60Hz 0.5A

Output: DC 12V; 1.5A

Output line: Non-shielded, Non-detachable, 1.4m

Applicant : Shenzhen Leader Digital-tech Weitong Co., Ltd.

Address : 4 Floor, Dongjiang Environmental Building, Central

Nanshan District, Shenzhen, China

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

Address : 4 Floor, Dongjiang Environmental Building, Central

Nanshan District, Shenzhen, China

Date of sample received: January 9, 2012

Date of Test : January 9-February 2, 2012

1.2. Accessory and Auxiliary Equipment

Notebook PC : Manufacturer: SONY

M/N: PCG-663P

S/N: 28123170 7202526

1.3.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 7, 2012	Jan. 7, 2013
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 7, 2012	Jan. 7, 2013
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 7, 2012	Jan. 7, 2013
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 7, 2012	Jan. 7, 2013
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 7, 2012	Jan. 7, 2013
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 7, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 7, 2012	Jan. 7, 2013
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 7, 2012	Jan. 7, 2013
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 7, 2012	Jan. 7, 2013

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping Charging

3.2.Configuration and peripherals

Figure 1 Setup: Transmitting mode

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX(Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 5.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30kHz and VBW to 100kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

PASS.

Date of Test:January 14, 2012Temperature:25°CEUT:MIDHumidity:50%Model No.:GN32Power Supply:AC 120V/60HzTest Mode:TXTest Engineer:Kai

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
Low	2402	0.918	N/A
Middle	2441	0.978	N/A
High	2480	0.978	N/A

Note: N/A: 1) The 20 dB bandwidth of the hopping channel is not limit.

2) The data of 20 dB bandwidth of the hopping channel is limit of carrier frequencies separated

"Spectrum analyzer" is R/S

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz. Adjust Span to 3 MHz.
- 6.5.3. Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

PASS.

Date of Test: January 14, 2012

EUT: MID

Model No.: GN32

Temperature: 25°C

Humidity: 50%

Power Supply: AC 120V/60Hz

Test Mode: Hopping

Test Engineer: Kai

	Channel Frequency	Channel separation	
Channel			Limit
	(MHz)	(MHz)	
Low	2402	1.002	> the 20dB Bandwidth or 25kHz
LOW	2402	1.002	(whichever is greater)
Middle	2441	1.002	> the 20dB Bandwidth or 25kHz
Middle	2 44 1	1.002	(whichever is greater)
Lligh	2480	1.002	> the 20dB Bandwidth or 25kHz
High	Z46U	1.002	(whichever is greater)

"Spectrum analyzer" is R/S

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=30MHz, RBW=300kHz, VBW=300kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

PASS.

Date of Test:January 14, 2012Temperature:25°CEUT:MIDHumidity:50%Model No.:GN32Power Supply:AC 120V/60HzTest Mode:HoppingTest Engineer:Kai

Total number of	Measurement result (CH)	Limit (CH)
hopping channel	79	>15

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=100kHz, VBW=300kHz, Span=0Hz, Adjust Sweep=31.6s.
- 8.5.4.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=3ms. Get the pulse time.
- 8.5.5.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

PASS.

Date of Test:January 14, 2012Temperature:25°CEUT:MIDHumidity:50%Model No.:GN32Power Supply:AC 120V/60HzTest Mode:HoppingTest Engineer:Kai

A period transmit time = $0.4 \times 79 = 31.6$					
Dwell time = p	ulse time × burst (in 31	.6 sec.)			
Channel	Channel Frequency	Pulse Time	Burst	Dwell Time	Limit
	(MHz)	(ms)	(in 31.6	(ms)	(ms)
			sec.)		
Low	2402	0.246	96	23.616	400
Middle	2441	0.252	104	26.208	400
High	2480	0.270	91	24.570	400

"Spectrum analyzer" is R/S

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz.
- 9.5.3.Measurement the maximum peak output power.

9.6.Test Result

PASS.

Date of Test: January 14, 2012 Temperature: 25°C

EUT: MID Humidity: 50%

Model No.: GN32 Power Supply: AC 120V/60Hz

Test Mode: TX Test Engineer: Kai

Channel	Frequency (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	Limits dBm/W
Low	2402	-3.68	0.429	30 dBm / 1 W
Middle	2441	-3.74	0.423	30 dBm / 1 W
High	2480	-4.39	0.364	30 dBm / 1 W

"Spectrum analyzer" is R/S

10.BAND EDGE COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The following equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

10.5.Test Procedure

Conducted Band Edge:

- 10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

- 10.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 10.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 10.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 10.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

10.5.7. The band edges was measured and recorded.

10.6.Test Result

Pass

Conducted test

Date of Test: January 14, 2012 Temperature: 25°C

EUT: MID Humidity: 50%

Model No.: GN32 Power Supply: AC 120V/60Hz

Test Mode: TX (Hopping off) Test Engineer: Kai

Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)		
2402	41.19	> 20dBc
2480	41.40	> 20dBc

Date of Test: January 14, 2012

EUT: MID

Model No.: GN32

Temperature: 25°C

Humidity: 50%

Power Supply: DC 7.4V

Test Mode: TX (Hopping on)

Test Engineer: Kai

Conducted test

Frequency	Result of Band Edge (dBc)	Limit of Band Edge (dBc)
(MHz)	, , ,	, ,
2402	41.16	> 20dBc
2480	40.94	> 20dBc

Date: 22.NOV.2011 18:12:29

Date: 22.NOV.2011 18:15:42

Date: 22.NOV.2011 18:27:52

Date: 22.NOV.2011 18:30:50

Radiated Band Edge Result

Date of Test:	January 18, 2012	Temperature:	25°C
EUT:	MID	Humidity:	50%
Model No.:	GN32	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2402MHz)	Test Engineer:	Kai

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	_	_	-	-	-	_	_	-	_	Vertical
-	_	_	-	-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Date of Test:	January 18, 2012	Temperature:	25°C
EUT:	MID	Humidity:	50%
Model No.:	GN32	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2480MHz)	Test Engineer:	Kai

Frequency	Reading	(dBµV/m)	Factor(dB)	Result(dBµV/m)		Limit(dBµV/m)		Margin(dB)		Polarization
(MHz)	AV	PEAK	Corr.	AV	PEAK	AV	PEAK	AV	PEAK	
-	-	-	-	-	-	ı	-	ı	-	Vertical
-	-	-	-	-	-	-	-	-	-	Horizontal

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

 Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #601

Standard: FCC Part 15 PEAK 2.4G

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT:

MID

Mode: TX 2402MHz

Model: GN32

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 6/38/47

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #600

Standard: FCC Part 15 PEAK 2.4G

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID Mode: TX 2402MHz Model: GN32

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 6/36/51

Engineer Signature: Bob

Distance:

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #602

Standard: FCC Part 15 PEAK 2.4G

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID Mode: TX 2480

Model: GN32

Manufacturer: Leader Digital-tech Weitong

MID TX 2480MHz

Distance:

Polarization: Horizontal

Engineer Signature: Bob

Date: 2012/01/18

Time: 6/40/43

Power Source: AC 120V/60Hz

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #603

Standard: FCC Part 15 PEAK 2.4G

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2480MHz

Model: GN32

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 6/43/14

Engineer Signature: Bob

Distance:

11. RADIATED SPURIOUS EMISSION TEST

11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and simulators

(EUT: MID)

11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: MID)

11.2.The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

²Above 38.6

11.4.Configuration of EUT on Measurement

The following equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

11.5. Operating Condition of EUT

- 11.5.1.Setup the EUT and simulator as shown as Section 11.1.
- 11.5.2. Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver (R&S ESI26) is set at 120kHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

11.7.The Field Strength of Radiation Emission Measurement Results **PASS.**

Date of Test:	January 20, 2012	Temperature:	25°C
EUT:	MID	Humidity:	50%
Model No.:	GN32	Power Supply:	AC 120V/60Hz
Test Mode:	TX (2402MHz)	Test Engineer:	Kai

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Corrected 1 actor = 7 internal 1 actor Capie Loss 7 infpiriter Gain								
Frequency	Reading	Factor	Result	Limit	Margin	Polarization		
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	$(dB\mu V/m)$ (dB)				
	QP	(dB)	QP	QP	QP			
153.9254	25.27	14.56	39.83	43.50	-3.67			
218.1194	24.12	16.63	40.75	46.00	-5.25	Vertical		
500.1302	17.20	23.99	41.19	46.00	-4.81			
153.9254	24.19	14.56	38.75	43.50	-4.75			
192.9837	22.62	16.04	38.66	43.50	-4.84	Horizontal		
278.3546	21.98	18.28	40.26	46.00	-5.74			

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading(dBµV/m) Factor		Result(dBµV/m) Limit(dB		BμV/m) Margin(c		dBμV/m)	Polarizati		
(MHz)	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
-	-	-	-	-	-	-	-	-	-	Vertical
-	-	-	-	-	-	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test:January 20, 2012Temperature:25°CEUT:MIDHumidity:50%Model No.:GN32Power Supply:AC 120V/60HzTest Mode:TX (2441MHz)Test Engineer:Kai

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Confederal actor - 7 intermal ractor + Cable Loss - 7 impiriter Gain								
Frequency	Reading	Factor	Result	Limit	Margin	Polarization		
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)			
	QP	(dB)	QP	QP	QP			
168.0540	24.53	14.70	39.23	43.50	-4.27			
182.9379	24.25	15.87	40.12	43.50	-3.38	Vertical		
694.4763	15.08	26.44	41.52	46.00	-4.48			
208.4701	23.70	16.29	39.99	43.50	-3.51			
218.1194	24.21	16.63	40.84	46.00	-5.16	Horizontal		
236.3095	23.18	16.80	39.98	46.00	-6.02			

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequenc	Reading(dBμV/m)	Factor			Limit(dBµV/m)		Margin(dBμV/m)		Polarizati
у	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
(MHz)										
-	-	-	-	-	-	-	-	-	-	Vertical
-	-	-	-	-	-	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

Date of Test: January 20, 2012 Temperature: 25°C

EUT: MID Humidity: 50%

Model No.: GN32 Power Supply: AC 120V/60Hz

Test Mode: TX (2480MHz) Test Engineer: Kai

For 30MHz-1000MHz

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

Frequency	Reading	Factor	Result	Limit	Margin	Polarization
(MHz)	(dBµV/m)	Corr.	(dBµV/m)	(dBµV/m)	(dB)	
	QP	(dB)	QP	QP	QP	
172.1887	23.26	15.17	38.43	43.50	-5.07	
236.3095	21.73	16.50	38.23	46.00	-7.77	Vertical
555.2269	14.27	25.33	39.60	46.00	-6.40	
183.9379	24.02	15.98	40.00	43.50	-3.50	
218.1194	23.35	16.63	39.98	46.00	-6.02	Horizontal
694.4763	14.18	26.44	40.62	46.00	-5.38	

For 1GHz-25GHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Frequenc	Reading(dBμV/m)	Factor	Result(c	lBμV/m)	Limit(d	BμV/m)	Margin(dBμV/m)	Polarizati
у	AV	PEAK	Corr. (dB)	AV	PEAK	AV	PEAK	AV	PEAK	on
(MHz)										
-	-	-	-	-	-	-	-	-	-	Vertical
-	-	-	-	-	-	-	-	-	-	Horizontal

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

2. *: Denotes restricted band of operation.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1484

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2402MHz

Model: GN32

Manufacturer: Leader Digital-tech Weitong

e: Report No.:ATE20120035

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/20 Time: 8/41/12

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1485

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C/48 %

EUT: MID

Mode: TX 2402MHz

Model: GN32

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/20 Time: 8/44/25

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #612

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2402MHz

Model: GN32

Manufacturer:Leader Digital-tech Weitong

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 16:03:19

Engineer Signature: Bob

Distance: 3m

Note:Report NO.:ATE20120035

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #611

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2402MHz Model: GN32

Manufacturer:Leader Digital-tech Weitong

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 16:01:56

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #901

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID Mode: TX 2402 Model: GN3X

Manufacturer: Leader Digital-tech Weitong

Note:Report No.:ATE20120035

Polarization: Horizontal Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 11:52:09

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #902

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID Mode: TX 2402

Model: GN3X

Manufacturer: Leader Digital-tech Weitong

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 11:56:43

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1487

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2441MHz **GN32** Model:

Manufacturer: Leader Digital-tech Weitong

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/20 Time: 8/53/47

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1486

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2441MHz

Model: GN32

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/20 Time: 8/49/35

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #617

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2441MHz Model: GN32

Manufacturer:Leader Digital-tech Weitong

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 16:24:28

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #618

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2441MHz

Model: GN32

Manufacturer:Leader Digital-tech Weitong

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 16:25:59

Engineer Signature: Bob

Distance: 3m

Note:Report NO.:ATE20120035

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #904

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID Mode: TX 2441 Model: GN3X

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Horizontal Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 12:05:30

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #903

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID Mode: TX 2441

Model: GN3X

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 12:01:19

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1488

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2480MHz

Model: GN32

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/20 Time: 8/56/48

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #1489

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID Mode: TX 2480MHz Model: GN32

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/20 Time: 8/59/56

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #622

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: N

Mode: TX 2480MHz

Model: GN32

Manufacturer:Leader Digital-tech Weitong

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 16:31:20

Engineer Signature: Bob

Distance: 3m

Note:Report NO.:ATE20120035

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #621

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 24 C / 48 %

EUT: MID

Mode: TX 2480MHz

Model: GN32

Manufacturer:Leader Digital-tech Weitong

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 16:29:46

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #905

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID

Mode: TX 2480 Model: GN3X

Manufacturer: Leader Digital-tech Weitong

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 12:10:41

Engineer Signature: Bob

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 966 chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Bob #906

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 50 %

EUT: MID Mode: TX 2480 Model: GN3X

Manufacturer: Leader Digital-tech Weitong

Note: Report No.:ATE20120035

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2012/01/18 Time: 12:15:08

Engineer Signature: Bob

12. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

12.1.Block Diagram of Test Setup

12.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

12.3.EUT Configuration on Measurement

The following equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

12.4. Operating Condition of EUT

- 12.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2.Turn on the power of all equipment.
- 12.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, 2480MHz TX frequency to transmit.

12.5.Test Procedure

- 12.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 12.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- 12.5.3. The Conducted Spurious Emission was measured and recorded.

12.6.Test Result

Pass.

The spectrum analyzer plots are attached as below.

"Spectrum analyzer" is Agilent

TX 2402GHz (30MHz-1GHz)

TX 2402GHz (1GHz-25GHz)

TX 2441GHz (30MHz-1GHz)

TX 2441GHz (1GHz-25GHz)

TX 2480GHz (30MHz-1GHz)

TX 2480GHz (1GHz-25GHz)

13.AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15.207(A)

13.1.Block Diagram of Test Setup

13.1.1.Block diagram of connection between the EUT and simulators

13.1.2. Shielding Room Test Setup Diagram

(EUT: MID)

13.2. The Emission Limit

13.2.1.Conducted Emission Measurement Limits According to Section 15.207(a)

Frequency	Limit $dB(\mu V)$				
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 - 56.0 *	56.0 – 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

^{*} Decreases with the logarithm of the frequency.

13.3.Configuration of EUT on Measurement

The following equipment are installed on the Conducted Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

13.3.1.MID (EUT)

Model Number : GN32 Serial Number : N/A

Manufacturer : Shenzhen Leader Digital-tech Weitong Co., Ltd.

13.4. Operating Condition of EUT

13.4.1. Setup the EUT and simulator as shown as Section 13.1.

13.4.2. Turn on the power of all equipment.

13.4.3.Let the EUT work in (Charging) mode measure it.

13.5.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2003 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

13.6.Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Date of Test: January 19, 2012 Temperature: 25°C

EUT: MID Humidity: 50%

Model No.: GN32 Power Supply: AC 120V/60Hz
Test Mode: Charging Test Engineer: Kai

Frequency	Result	Limit	Margin	Detector	Line
(MHz)	(dBµV)	(dBµV)	(dB)		
0.338664	36.30	59	22.7	QP	
0.606584	34.60	56	21.4	QP	
1.419618	31.20	56	24.8	QP	
4.393517	30.90	56	25.1	QP	
12.305810	41.80	60	18.2	QP	
12.503887	37.10	60	22.9	QP	NI41
0.337314	35.80	49	13.2	AV	Neutral
0.405309	36.20	48	11.8	AV	
2.025219	24.10	46	20.9	AV	
4.323918	23.20	46	22.8	AV	
11.966695	30.00	50	20.0	AV	
12.503887	27.70	50	22.3	AV	
0.334632	36.70	59	22.3	QP	
0.604167	34.50	56	21.5	QP	_
2.082610	24.10	56	31.9	QP	
2.150194	24.50	56	31.5	QP	
12.256783	35.30	60	24.7	QP	
12.654535	34.50	60	25.5	QP	T :
0.334632	35.10	49	13.9	AV	Live
0.402085	35.10	48	12.9	AV	
1.144329	29.00	46	17.0	AV	
3.362432	13.10	46	32.9	AV	
11.777127	21.60	50	28.4	AV	
12.654535	25.90	50	24.1	AV	

^{25.90}Emissions attenuated more than 20 dB below the permissible value are not reported. The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:GN32

Manufacturer: Leader Digital-tech Weitong

Operating Condition: Charging

Test Site: 1#Shielding Room

Operator: Bob

Test Specification: L 120V/60Hz Comment: Mains port

Mains port Report NO.:ATE20120035

SCAN TABLE: "V 150K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "WK-1215-01 fin"

1/19/2012 10:	07AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.334632	36.70	11.7	59	22.3	QP	L1	GND
0.604167	34.50	12.0	56	21.5	QP	L1	GND
2.082610	24.10	11.7	56	31.9	QP	L1	GND
2.150194	24.50	11.6	56	31.5	QP	L1	GND
12.256783	35.30	11.2	60	24.7	QP	L1	GND
12.654535	34.50	11.2	60	25.5	QP	L1	GND

MEASUREMENT RESULT: "WK-1215-01 fin2"

1/19/2012 10	:07AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.334632	35.10	11.7	49	13.9	AV	L1	GND
0.402085	35.10	11.8	48	12.9	AV	L1	GND
1.144329	29.00	11.8	46	17.0	AV	L1	GND
3.362432	13.10	11.5	46	32.9	AV	L1	GND
11.777127	21.60	11.2	50	28.4	AV	L1	GND
12.654535	25.90	11.2	50	24.1	AV	L1	GND

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: MID M/N:GN32

Manufacturer: Leader Digital-tech Weitong

Operating Condition: Charging

Test Site: 1#Shielding Room

Operator: Bob

Test Specification: N 120V/60Hz Comment: Mains port

Report NO.: ATE20120035

SCAN TABLE: "V 150K-30MHz fin"
Short Description: SUB STD VTERM2 1.70

Voltage QP Voltage AV

IF Start Stop Step Detector Meas. Transducer Frequency Frequency 150.0 kHz 30.0 MHz Width Time Bandw. 0.8 % QuasiPeak 1.0 s 9 kHz NSLK8126 2008 Average

Level [dBµV] 80 70 60 50 40 20 10 150k 300k 400k 500k ЗМ 4M 5M 6M 7M 10M 20M 30M Frequency [Hz] x x MES WK-1215-02 fin + + + MES WK-1215-02 fin2 MES WK-1215-02 pre - MES WK-1215-02 pre2 - LIM FCC 15B V QV

MEASUREMENT RESULT: "WK-1215-02 fin"

1/19/2012 10	:10AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.338664	36.30	11.7	59	22.7	QP	N	GND
0.606584	34.60	12.0	56	21.4	QP	N	GND
1.419618	31.20	11.7	56	24.8	QP	N	GND
4.393517	30.90	11.5	56	25.1	QP	N	GND
12.305810	41.80	11.2	60	18.2	QP	N	GND
12.503887	37.10	11.2	60	22.9	QP	N	GND

MEASUREMENT RESULT: "WK-1215-02 fin2"

1/19/2012 10 Frequency MHz	:10AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.337314	35.80	11.7	49	13.2	AV	N	GND
0.405309	36.20	11.8	48	11.8	AV	N	GND
2.025219	25.10	11.7	46	20.9	AV	N	GND
4.323918	23.20	11.5	46	22.8	AV	N	GND
11.966695	30.00	11.2	50	20.0	AV	N	GND
12.503887	27.70	11.2	50	22.3	AV	N	GND

14.ANTENNA REQUIREMENT

14.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.2. Antenna Construction

Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

Antenna