Méthodes de prévision - M1 MBFA

F. SEYTE. M. AWADA

TD 2023/2024

I/ Prévision d'une série chronologique avec les méthodes de prévision traditionnelles

Exercice 1:

Soit la série trimestrielle représentant le chiffre d'affaires (en milliers d'euros) d'uneentreprise de 2018 à 2021 :

- 1. Donner la représentation graphique de la chronique. Analyser
- 2. Constituer les tableaux de Buys-Ballot et Buys-Ballot classé.
- 3. Effectuer l'analyse de la variance.
- 4. Faire le test de Fisher. Conclure.
- 5. Calculer les coefficients d'autocorrélation d'ordre 1, 2. Tester la significativité de ces coefficients d'autocorrélation et conclure. Commenter le corrélogramme.
- 6. Effectuer le test de Buys-Ballot.

Exercice 2:

Analyser les spectres suivants.

Graphiques de x y z

X est un bruit-blanc gaussien centré-réduit Y est une série saisonnière de période 4 Z est une série avec une tendance linéaire

Spectre lissé de x

Spectrum of x

Soit la Y une série mensuelle, son spectre et son spectre lissé :

Graphs of y monthly

Soit W une série mensuelle et son spectre:

Graphs of W monthly

Spectrum of W

Exercice 3:

Soit la série des ventes d'un produit Xt. Les valeurs sont consignées dans le tableau de Buys-Ballot incomplet:

Dates	T1	T2	T3	T4	$x_{i.}$	σ_{i}
2019	124	177	223	173	174,25	40,46
2020	114	170	215	164	165,75	
2021	102	156	202	150		40,90
$x_{.j}$	113, 33	167,67	213,33		<i>x</i>	$\sigma_{}$
$\sigma_{j.}$		10,693	10,599	11,590		

On donne par ailleurs:

$$3 \sum (x_i - x_i)^2 = 15051$$

$$V_R = 0.583$$

$$3 \sum (x_{.j} - x_{..})^2 = 15051$$
 $V_R = 0.583$ $\sum \sum (x_{ij} - x_{..})^2 = 16015.7$ $F_{0.95}(3.6) = 4.757$ $F_{0.95}(2.6) = 5.143$ $t_{0.975}(1) = 12.706$

$$F_{0.95}(3,6) = 4.757$$

$$F_{0.95}(2,6) = 5.143$$

$$t_{0.975}(1) = 12.706$$

$$\hat{\sigma}_{\hat{h}} = 0.03652$$

$$\hat{\sigma}_{\hat{b}} = 0.03652$$
 $\hat{b} = -0.01579$ (avec b la pente du modèle utilisé).

VENTES

Sample: 2019Q1 2021Q4 Included observations: 12

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	.] .]	1	-0.001	-0.001	1.E-05	0.997
***** .	***** .	2	-0.818	-0.818	11.233	0.004
. .	. .	3	-0.006	-0.026	11.234	0.011
. ****	. * .	4	0.629	-0.120	19.545	0.001
. .	. * .	5	-0.014	-0.084	19.550	0.002
**** -	. .	6	-0.484	-0.023	26.114	0.000
. [. [. * .	7	-0.014	-0.149	26.120	0.000
. ** .	. ** .	8	0.281	-0.312	29.426	0.000
. .	. ** .	9	-0.001	-0.205	29.426	0.001
. * .	. .	10	-0.106	-0.049	30.374	0.001
. .	. .	11	0.036	-0.047	30.586	0.001

1) Analyser la chronique Xt à partir des informations données.

2) Désaisonnaliser la chronique en employant la méthode des moyennes mobiles. Vous complèterez le tableau suivant. (précision à 10⁻³ près dans vos calculs)

		 ı	
	Xt		
2019 T1	124		
2019 T2	177		
2019 T3	223		
2019 T4	173		
2020 T1	114		
2020 T2	170		
2020 T3	215		
2020 T4	164		
2021 T1	102		
2021 T2	156		
2021 T3	202		
2021 T4	150		

3) Utiliser un LES avec une constante de lissage λ = 0.8 afin de prévoir les valeurs de la série Xt pour l'année 2022 (précision à 10^{-3}). Commenter la valeur de λ .

	I	I	<u> </u>	
2019 T1				
2017 11				
2019 T2				
2019 T3				
2019 T4				
2020 T1				
2020 11				
2020 T2				
2020 ТЗ				
2020 T4				
2021 T1				
2021 T2				
2021 T3				
2021 T4				
2022 T3				
2022 T4				

4) Utiliser un LED avec une constante de lissage λ = 0.8 afin de prévoir les valeurs de la série Xt pour l'année 2022 (précision à 10^{-3}). Cette méthode est –elle appropriée pour la chronique Xt ?

	mque zet	1	Г	ı	1
2019 T1					
2019 T2					
2019 T3					
2019 T4					
2019 14 2020 T1					
2020 T2					
2020 T3					
2020 T4					
2021 T1					
2021 T2					
2021 T3					
2021 T4					
2022 T3					
2022 T4					

Periodogram of y

Periodogram of x

Exercice 4:

Soit le cours de la série trimestrielle X_t de l'énergie électrique disponible pour un marché européen donné en Tera Watt Heures :

Année	Trimestre	$\mathbf{X_t}$
2019	T1	162
2019	T2	118
2019	T3	107
2019	T4	141
2020	T1	146
2020	T2	111
2020	T3	106
2020	T4	135
2021	T1	157
2021	T2	113
2021	Т3	109
2021	T4	134

Sample: 2019Q1 2021Q4 Included observations: 12

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat
. * .	. * .	1	-0.069	-0.069	0.0718
**** .	*****	2	-0.747	-0.755	9.4344
. [. [. * .	3	0.074	-0.158	9.5358
. ****	. .	4	0.576	0.011	16.493
. [.]	. * .	5	-0.044	0.081	16.540
.*** .	. .	6	-0.462	-0.010	22.512
. [. [. .	7	0.025	-0.017	22.533
. ***.	. .	8	0.360	-0.034	27.965
. * .	. ** .	9	-0.098	-0.215	28.505
. * .	. * .	10	-0.158	0.205	30.613
. .	. * .	11	0.043	-0.097	30.929

On donne par ailleurs:

$$\hat{\sigma}i = -60.79 + 0.0622 Xi.$$
 (0.035)

$$t_{0.975}(1) = 12.706$$

1) Désaisonnaliser la chronique en employant la méthode de désaisonnalisation par régression. Vous complèterez le tableau suivant. (Précision à 10⁻³)

	Г	Г		
	$\mathbf{X_t}$			
2019 T1	162		27,885	
2019 T2	118			
2019 T3	107		- 24,983	
2019 T4	141			
2029 T1	146			
2020 T2	111			
2020 T3	106			
2020 T4	135			
2021 T1	157			
2021 T2	113			
2021 T3	109			
2021 T4	134			

2) Prévoir le cours pour l'année 2022 en utilisant la méthode de l'extrapolation d'une droite de tendance. (Précision à 10^{-3}). On donne : $\bar{t}=6.5$ et $\Sigma t^2=650$

	1		
2019 T1			
2019 T2			
2019 T3			
2019 T4			
2020 T1			
2020 T2			
2020 T3			
2020 T4			
2021 T1			
2021 T2			
2021 T3			
2021 T4			
2022 T2			
2022 T3			

3) Utilisez la méthode de Holt et Winter afin de prévoir les valeurs du cours de l'énergie électrique pour 2022 sachant que $\alpha=0.4$, $\beta=0.1$, $\gamma=0.3$. Vous complèterez le tableau suivant. NB: Vous prendrez tous les chiffres après la virgule dans vos calculs.

2019 T1					
2019 T2					
2019 T3					
2019 T4					
2020 T1	125,6	-0,64	27,12		162
2020 T2	124,976	-0,64	-13,99		110.96
2020 T3	127,0025	-0,37		-23.3555625	
2020 T4		-0,40	8,89		135.6325
2021 T1	127.5397		27,82		153.5446875
2021 T2		-0,26		-13,8400764	113,7509075
2021 T3	129.2706339				103.5616607
2021 T4	127.5938597	-0,19	8,14	8.349795258	
2022 T2					
2022 T3					

4) Quelle est la meilleure méthode de prévision parmi les 2 méthodes utilisées ? Vous utiliserez le critère du MAE. Commenter.

	Xt		
2022 T2	114		
2022 T3	105		

Exercice 5:

On considère une chronique mensuelle de 36 observations, allant de janvier de l'année 2017 et s'achevant en décembre de l'année 2019. Cette chronique est caractérisée par une saisonnalité rigide. La série mensuelle Y_t des huit dernières valeurs est donnée dans le tableau suivant :

t	Y_t
29	11
30	15
31	17
32	18
33	17
34	19
35	21
36	23

$$\hat{\sigma} = 0.75\bar{X} - 2.5$$
 (0.05) (.) = écart-type

$$t_{.95}(1) = 12,706$$

Les coefficients saisonniers **provisoires** (S_j) de la désaisonnalisation sont :

S janvier	S février	S mars	S avril	S mai	S juin
1,06	0,91	1,17	1,33	1,05	1,42
S juillet	S août	S septembre	S octobre	S novembre	S décembre
1,60	1,74	1,54	1,77	1,79	1,61

- 1) Analyser la chronique Y_t :
- Test de la bande.

• Test de Buys-Ballot

2) Compléter le tableau suivant. (précision à 10^{-2} près).

Périodes	Y_t	S_j^*	YtCVS

3) Calculer une prévision pour les 4 premiers mois de l'année 2020, en utilisant la méthode de l'extrapolation de la droite de tendance. (précision à 10⁻² près). On donne :

$$\widehat{Y}_{\mathbf{t}}^{\text{CVS}} = 0,0031t + 15,7827$$

Périodes	\widehat{Y}_{t}^{CVS}	S _j *	Y _t ^P

4) Utiliser un LED afin de prévoir les valeurs des 4 premiers mois pour l'année 2020 sachant que $\bar{\lambda} = 1,5$ (précision à 10^{-2} près).

<u>Périodes</u>				

Exercice 6:

Soit la série Yt de l'énergie électrique disponible pour le marché intérieur français donné en Tera Watt Heure dont les valeurs sont consignées dans le tableau de Buys-Ballot suivant :

Dates	T1	T2	Т3	T4	Moyenne	Ecart-type
2013	151,99	108,13	97,11	131,28	122,13	21,20
2014	136,30	101,30	95,66	125,47	114,68	16,77
2015	146,64	103,06	99,05	124,30	118,26	18,99
Moyenne	144,98	104,16	97,27	127,02	Moyenne totale	Ecart-type total
Ecart-type	6,51	2,89	1,39	3,05	118,36	19,31

Somme des carrés :
$$S_A$$
=110.84 ; S_P =4288.64 ; S_R =56.88 $\hat{\sigma} = -51.46 + 0.05952 \, \overline{X}$

$$0.03932 \text{ A}$$
 (0.0141) (.)= ecart-type

La valeur tabulée de Student pour un risque de 5% est la suivante: t.975(1)=12.705.

$$F_{.95}(3,6) = 4,76$$

$$F_{.95}(2,6) = 5,14$$

On donne:

1) Analyser la chronique Yt.

2) On appelle la chronique Zt la série désaisonnalisée en utilisant la méthode des variables indicatrices. Trouvez Zt sachant que nous supposons le modèle :

$$Y_t \!\!= B_0. \; T \!\!+\! B_1 + \!\! B_2. \; IND_1 \!\!+\! B_3. \; IND_2 + B_4. IND_3 + \!\! B_5. IND_4$$

0,0078125	-0,05078125	0,01171875	0,00390625	-0,00390625
-0,05078125	0,41341146	-0,07617188	-0,02539063	0,02539063
0,01171875	-0,07617188	0,26757813	-0,07747396	-0,08919271
0,00390625	-0,02539063	-0,07747396	0,25195315	-0,08528646
-0,00390625	0,02539063	-0,08919271	-0,08528646	0,25195313

9078,807
1420,284
53,875
-68,563
-89,232
$(X'X)^{-1} =$

(X'Y) =

<u>Date</u>	Yt	
T1 2013		
T2 2013		
T3 2013		
T4 2013		
T1 2014		
T2 2014		
T3 2014		
T4 2014		
T1 2015		
T2 2015		
T3 2015		
T4 2015		

3) Utiliser un LED avec une constante de lissage λ = 0.5 afin de prévoir les valeurs de la série Yt pour l'année 2016 (précision à 10^{-2}). Vous compléterez le tableau suivant.

<u>Date</u>				
T1 2013				
T2 2013				
T3 2013				
T4 2013				
T1 2014				
T2 2014				
T3 2014				
T4 2014				
T1 2015				
T2 2015				
T3 2015				
T4 2015				
T1 2016				
T3 2016				

4) Calculer une prévision pour 2016 en utilisant la méthode de l'extrapolation d'une droite de tendance (précision à 10⁻²). Vous compléterez le tableau suivant.

	ince (precision a 1	· /· · · · · · · · · · · · · · · · · ·		•	_
<u>Date</u>					
T1 2013					
T2 2013					
T3 2013					
T4 2013					
T1 2014					
T2 2014					
T3 2014					
T4 2014					
T1 2015					
T2 2015					
T3 2015					
T4 2015					
T1 2016					
T3 2016					

5) Quelle est la meilleure méthode de prévision parmi les 2 méthodes utilisées ? Vous utiliserez le critère du MSE. Commenter.

Date	Yt	LED	Extrapolation	
T1 2016	143,8			
T3 2016	99,58			

Exercice 7:

Soit la série journalière Y_t des ventes de baguettes pour la boulangerie « Du coin ». Celle-ci fait appel à vous afin d'optimiser son gain en prévoyant le nombre de baguettes vendues pour la semaine prochaine. Les valeurs sont consignées dans le tableau de Buys-Ballot suivant :

Semaine	lundi	Mardi	Mercredi	Jeudi	Vendredi	Moyenne	Ecart-type
Semaine 1	102	315	168	152	109	169,2	86,16
Semaine 2	153	472	252	228	163	253,6	129,12
Semaine 3	183	567	302	273	196	304,2	155,27
Moyenne	146,00	451,33	240,67	217,67	156,00	Moyenne Totale	Ecart-type Total
Ecart-type	40,95	127,26	67,72	61,16	43,92	242,33	130,75

Somme des carrés : S_A =65116,3012; S_P =183077,333; S_R =9741,46667

$$\hat{\sigma} = -0.4696$$

$$+ \qquad 0.5116 \ \ \overline{X}$$

(.)= écart-type

On donne:

$$F_{.95}(4.8) = 3.84$$

$$F_{.95}(2,8) = 4.46$$

$$t.95(1)=12.705$$
.

1) Analyser la chronique Yt.

2) Désaisonnaliser Yt en utilisant la méthode de la moyenne mobile simple. Dans le cas d'une saisonnalité multiplicative, utilisez la transformation adéquate pour vous ramener à un schéma additif.

Date			
S1 Lundi			
Mardi			
Mercredi			
Jeudi			
Vendredi			
S2 Lundi			
Mardi			
Mercredi			
Jeudi			
Vendredi			
S3 Lundi			
Mardi			
Mercredi			
Jeudi Vondradi			
Vendredi			

3) Utiliser un LES avec une constante de lissage λ = 0.7 afin de prévoir les valeurs de la série Yt pour la semaine 4 (précision à 10^{-2}) sachant que le nombre de baguettes vendues le vendredi de la semaine 0 est de 94. Compléter le tableau suivant :

Jour			
S1 Lundi			
Mardi			
Mercredi			
Jeudi			
Vendredi			
S2 Lundi			
Mardi			
Mercredi			
Jeudi			
Vendredi			
S3 Lundi			
Mardi			
Mercredi			
Jeudi			
Vendredi			
S4 Mercredi			
Jeudi			
Vendredi			

4) Calculer une prévision pour la semaine 4 en utilisant la méthode de l'extrapolation d'une droite de tendance (précision à 10⁻²).

Date				
S1 Lundi				
Mardi				
Mercredi				
Jeudi				
Vendredi				
S2 Lundi				
Mardi				
Mercredi				
Jeudi				
Vendredi				
S3 Lundi				
Mardi				
Mercredi				
Jeudi				
Vendredi				
S4 Mercredi				
Jeudi				
Vendredi				

5) Quelle est la meilleure prévision ?

Semaine 4	Yt		
Mercredi	320		
Jeudi	280		
Vendredi	200		