Appl. No.

: 10/785,446

Filed

February 23, 2004

AMENDMENTS TO THE SPECIFICATION

Please amend Paragraph [0010] of the specification as follows:

[0010] The AA₁RA used in the pharmaceutical compositions or methods disclosed herein may be a xanthine-derivative compound. The xanthine-derivative compound may be a compound of Formula I or a pharmaceutically acceptable salt thereof,

$$(I) \qquad \xrightarrow[R_1]{X_2} \xrightarrow[R_3]{R_3} \qquad \xrightarrow[R_2]{X_2} \xrightarrow[R_3]{X_2} \xrightarrow[R_3]{X_3} \xrightarrow[R_3]{X_2} \xrightarrow[R_3]{X_3} \xrightarrow[R_3]{X$$

where

each of X_1 and X_2 independently represents oxygen or sulfur;

Q represents:

$$-Y = \begin{pmatrix} (CH_2)_n \\ -Y = \begin{pmatrix} (CH_2)_n \\ R_5 \end{pmatrix}, \text{ or } \begin{pmatrix} (CH_2)_n \\ -Y = (CH_2)_n \\ -Y = \begin{pmatrix} (CH_2)_n \\ -Y$$

where Y represents a single bond or alkylene having 1 to 4 carbon atoms, n represents 0 or 1;

each of R_1 and R_2 independently represents hydrogen, lower alkyl, allyl, propargyl, or hydroxy-substituted, oxo-substituted or unsubstituted lower alkyl, and R_3 represents hydrogen or lower alkyl, or

 R_4 and R_5 are the same or different and each represent hydrogen or hydroxy, and when both R_4 and R_5 are hydrogen, at least one of R_1 and R_2 is hydroxy-substituted or oxo-substituted lower alkyl,

provided that when Q is

then R₁, R₂ and R₃ are not simultaneously methyl.