Macroeconomia Aberta e DSGE: Fundamentos, Estimação e Aplicações

Política monetária ótima em resposta a um choque tarifário

João Ricardo Costa Filho

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

Choques tarifários

 Choques tarifários são recessivos (Mundell 1961; Krugman 1982) e inflacionários (Barattieri, Cacciatore, and Ghironi 2021).

 Choques tarifários são recessivos (Mundell 1961; Krugman 1982) e inflacionários (Barattieri, Cacciatore, and Ghironi 2021). E, na melhor das hipóteses, possuem um efeito marginalmente positivo na balança comercial.

Choques tarifários são recessivos (Mundell 1961; Krugman 1982) e inflacionários (Barattieri, Cacciatore, and Ghironi 2021). E, na melhor das hipóteses, possuem um efeito marginalmente positivo na balança comercial. Por quê?

- Choques tarifários são recessivos (Mundell 1961; Krugman 1982) e inflacionários (Barattieri, Cacciatore, and Ghironi 2021). E, na melhor das hipóteses, possuem um efeito marginalmente positivo na balança comercial. Por quê?
- Deterioração dos termos de troca ⇒ queda na poupança e na renda real [efeito efeito Harberger-Laursen-Metzler; Mundell (1961); Barattieri, Cacciatore, and Ghironi (2021)].

- Choques tarifários são recessivos (Mundell 1961; Krugman 1982) e inflacionários (Barattieri, Cacciatore, and Ghironi 2021). E, na melhor das hipóteses, possuem um efeito marginalmente positivo na balança comercial. Por quê?
- Deterioração dos termos de troca

 queda na poupança e

 na renda real [efeito efeito Harberger-Laursen-Metzler; Mundell

 (1961); Barattieri, Cacciatore, and Ghironi (2021)].
- O efeito do aumento nos preços importados é maior do que a queda dos preços de produtos não transacionáveis, o que leva ao aumento da inflação ao consumidor (Barattieri, Cacciatore, and Ghironi 2021).

 Mais recursos s\(\tilde{a}\) alocados para empresas menos eficientes, diminuindo assim a produtividade total da economia (Barattieri, Cacciatore, and Ghironi 2021).

- Mais recursos são alocados para empresas menos eficientes, diminuindo assim a produtividade total da economia (Barattieri, Cacciatore, and Ghironi 2021).
- O investimento em capital físico é feito tanto com bens domésticos quanto com bens importados, portanto, ↑ preço do investimento ⇒ queda do investimento (Barattieri, Cacciatore, and Ghironi 2021).

- Mais recursos são alocados para empresas menos eficientes, diminuindo assim a produtividade total da economia (Barattieri, Cacciatore, and Ghironi 2021).
- O investimento em capital físico é feito tanto com bens domésticos quanto com bens importados, portanto, ↑ preço do investimento ⇒ queda do investimento (Barattieri, Cacciatore, and Ghironi 2021).
- O consumo também diminui (as famílias precisam utilizar uma parcela maior da sua renda para consumir a mesma quantidade de produtos importados) ⇒ ↓ número de empresas no mercado (Barattieri, Cacciatore, and Ghironi 2021).

Choques tarifários: oferta ou demanda?

Trabalhemos com um modelo macroeconômico simplificado que introduz uma regra de política monetária no arcabouço desenvolvido por Jones (2016):

Demanda (AD)

- Demanda (AD)
 - Mercado de bens e serviços (IS)

- Demanda (AD)
 - Mercado de bens e serviços (IS)
 - Regra de política monetária (MR)

- Demanda (AD)
 - Mercado de bens e serviços (IS)
 - Regra de política monetária (MR)
- Oferta (AS)

- Demanda (AD)
 - Mercado de bens e serviços (IS)
 - Regra de política monetária (MR)
- Oferta (AS)
 - Curva de Phillips (PC)

- Demanda (AD)
 - Mercado de bens e serviços (IS)
 - Regra de política monetária (MR)
- Oferta (AS)
 - Curva de Phillips (PC)
 - Lei de Okun

Equilíbrio no mercado de bens e serviços

$$\begin{split} Y_t &= C_t + I_t + G_t + X_t - M_t \\ Y_t &= c_0 + c \left(Y_t - T_t \right) + I_0 - b \left(R_t - r_t \right) + a_G \bar{Y}_t + \\ a_{NX} - b_{NX} \left(R_t - r_t \right) + b_{NX} \left(R_t^W + \rho_t - r_t - \tau \right) \\ Y_t &= c_0 + c \left(Y_t - a_T \bar{Y}_t \right) + I_0 - b \left(R_t - r_t \right) + a_G \bar{Y}_t + \\ a_{NX} - b_{NX} \left(R_t - r_t \right) + b_{NX} \left(R_t^W + \rho_t - r_t - \tau \right) \\ \vdots \\ \bar{Y}_t &= \bar{a} - \bar{b} \left(R_t - r \right) \\ \\ \text{onde } \bar{a} &= \frac{1}{1 - c} \frac{\left[c_0 + I_0 + a_{NX} + b_{NX} \left(R_t^W + \rho_t - r_t - \tau \right) + \bar{Y}_t \left(a_G - ca_T \right) \right]}{\bar{Y}_t} - 1 \text{ e} \\ \bar{b} &= \frac{b + b_{NX}}{1 - c} \frac{1}{\bar{Y}_c}. \end{split}$$

$$IS "+" MR = AD$$

Seguindo Jones (2016), temos:

$$\left. \begin{array}{ll} \text{IS:} & \tilde{Y}_t = \bar{a} - \bar{b} \left(R_t - r_t \right) \\ \text{MR:} & R_t - r_t = \bar{m} \left(\pi_t - \bar{\pi} \right) \end{array} \right\} \Rightarrow \text{ AD:} \; \tilde{Y}_t = \bar{a} - \bar{b} \bar{m} \left(\pi_t - \bar{\pi} \right).$$

7

PC "+" Okun = AS

$$\begin{array}{l} \text{PC:} \quad \pi_t = \pi_t^e - \kappa \left(U_t - U_t^N \right) + \bar{o}_t \\ \text{Okun:} \ Y_t - \bar{Y}_t = \lambda \left(U^N - U \right) \end{array} \right\} \Rightarrow \text{ AS: } \pi_t = \pi_t^e + \nu \tilde{Y}_t + \bar{o}_t. \\ \text{onde } \nu = -\kappa \left(\frac{-\bar{Y}_t}{\lambda} \right) \text{ e } \bar{o}_t = \omega \textit{cmg}_t + (1 - \omega)\tau. \\ \end{array}$$

AS-AD

AS:
$$\pi_t = \pi_t^e + \nu \tilde{Y}_t + \bar{o}_t$$

AD: $\tilde{Y}_t = \bar{a} - \bar{b}\bar{m}(\pi_t - \bar{\pi})$

Política monetária: como reagir à choques tarifários?

Política monetária: como reagir à choques tarifários?

 Na última aula, trabalhamos com o modelo desenvolvido por Gali and Monacelli (2005) (que possui uma versão simplificada no capítulo 8 de Galí (2008)).

Política monetária: como reagir à choques tarifários?

- Na última aula, trabalhamos com o modelo desenvolvido por Gali and Monacelli (2005) (que possui uma versão simplificada no capítulo 8 de Galí (2008)).
- Para respondermos à pergunta que motiva a aula, precisamos estender o modelo para incluir como em Bergin and Corsetti (2023).

Famílias

O consumo total (C) das famílias é resultado da combinação dos bens produzidos domesticamente ($c_t(h)$) por uma quantidade n_t de empresas

O consumo total (C) das famílias é resultado da combinação dos bens produzidos domesticamente $(c_t(h))$ por uma quantidade n_t de empresas e dos bens produzidos internacionalmente $(c_t(f))$ por uma quantidade n_t^* de empresas:

O consumo total (C) das famílias é resultado da combinação dos bens produzidos domesticamente ($c_t(h)$) por uma quantidade n_t de empresas e dos bens produzidos internacionalmente ($c_t(f)$) por uma quantidade n_t^* de empresas:

$$C_t \equiv \left(\int_0^{n_t} c_t(h)^{rac{\phi-1}{\phi}} dh + \int_0^{n_t^*} c_t(f)^{rac{\phi-1}{\phi}} df
ight)^{rac{\phi}{\phi-1}},$$

O consumo total (C) das famílias é resultado da combinação dos bens produzidos domesticamente ($c_t(h)$) por uma quantidade n_t de empresas e dos bens produzidos internacionalmente ($c_t(f)$) por uma quantidade n_t^* de empresas:

$$C_t \equiv \left(\int_0^{n_t} c_t(h)^{rac{\phi-1}{\phi}} \, dh + \int_0^{n_t^*} c_t(f)^{rac{\phi-1}{\phi}} \, df
ight)^{rac{\psi}{\phi-1}}$$
 ,

onde o índice correspondente ao custo de vidos agentes é dado por:

$$P_t = \left(n_t p_t(h)^{1-\phi} + n_t^* \left(p_t(f) T_t \right)^{1-\phi} \right)^{\frac{1}{1-\phi}},$$

com $\phi > 0$ representando a substituibilidade entre bens domésticos e importados e T_t a quantidade de "1+a tarifa ad valorem" imposta pela economia doméstica aos produtos importados.

Escolhas intertemporais

As famílias maximizam a utilidade intertemporal em relação ao consumo, às horas trabalhadas (I_t) e por moeda (M_t/P_t) ,

Escolhas intertemporais

As famílias maximizam a utilidade intertemporal em relação ao consumo, às horas trabalhadas (I_t) e por moeda (M_t/P_t) ,

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U\left(C_t, I_t, \frac{M_t}{P_t}\right),\,$$

Escolhas intertemporais

As famílias maximizam a utilidade intertemporal em relação ao consumo, às horas trabalhadas (I_t) e por moeda (M_t/P_t) ,

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U\left(C_t, I_t, \frac{M_t}{P_t}\right),$$

sujeita à seguinte restrução orçamentária:

$$P_tC_t + (M_t - M_{t-1}) + (B_{Ht} - B_{Ht-1}) + e_t(B_{Ft} - B_{Ft-1}) = W_tl_t + \Pi_t + i_{t-1}B_{Ht-1} + e_ti_{t-1}^*B_{Ft-1} - P_tAC_{Bt} + \Gamma_t$$
. onde os custos de ajustamento para induzir a estacionariedade são dados por:

$$AC_{Bt} = \frac{\psi_B \left(e_t B_{Ft} \right)^2}{2P_t p_{Ht} y_{Ht}},$$

Preferências

$$U_t = rac{1}{1-\sigma}C_t^{1-\sigma} + \ln\left(rac{M_t}{P_t}
ight) - rac{1}{1+\psi}I_t^{1+\psi},$$

onde σ é o coeficiente de aversão relativa ao risco e ψ o inverso da elasticidade-Frisch da oferta de trabalho.

Problema de maximização: duas partes

Dadas as escolhas das formas funcionais, podemos "quebrar" os problemas relacionados às escolhas das famílias em duas partes:

Problema de maximização: duas partes

Dadas as escolhas das formas funcionais, podemos "quebrar" os problemas relacionados às escolhas das famílias em duas partes:

 Parte 1: alocação intratemporal (quanto consumir de cada bem, dado o nível de consumo total);

Problema de maximização: duas partes

Dadas as escolhas das formas funcionais, podemos "quebrar" os problemas relacionados às escolhas das famílias em duas partes:

- Parte 1: alocação intratemporal (quanto consumir de cada bem, dado o nível de consumo total);
- Parte 2: alocação intertemporal (quanto consumir e trabalhar).

Parte 1: a alocação ótima e as curvas de demanada por bens individuais

As escolhas intratemporais sobre a quantidade de bens consumidos é dad por:

Parte 1: a alocação ótima e as curvas de demanada por bens individuais

As escolhas intratemporais sobre a quantidade de bens consumidos é dad por:

$$c_t(h) = \left(\frac{p_t(h)}{P_t}\right)^{-\phi} C_t; \quad c_t(f) = \left(\frac{p_t(f)T_t}{P_t}\right)^{-\phi} C_t$$

A equação de Euler é dada por:

A equação de Euler é dada por:

$$\frac{1}{P_t C_t^{\sigma}} = \beta (1 + i_t) \mathbb{E}_t \left[\frac{1}{P_{t+1} C_{t+1}^{\sigma}} \right],$$

Já a equação da oferta de trabalho pode ser escrita como:

A equação de Euler é dada por:

$$\frac{1}{P_t C_t^{\sigma}} = \beta (1 + i_t) \mathbb{E}_t \left[\frac{1}{P_{t+1} C_{t+1}^{\sigma}} \right],$$

Já a equação da oferta de trabalho pode ser escrita como:

$$\frac{W_t}{P_t} = I_t^{\psi} C_t^{\sigma},$$

E equação para a demanda por moeda é:

$$M_t = P_t C_t^{\sigma} \left(\frac{1 + i_t}{i_t} \right),$$

Paridade descoberta dos juros (UIP)

Ao permitirmos que as famílias invistam tanto em títulos domésticos (B_{Ht}) quanto em títulos estrangeiros (B_{Ft}) , as C.P.O em relação à eles resulta em:

$$\mathbb{E}_t \left[\tfrac{P_t C_t^\sigma}{P_{t+1} C_{t+1}^\sigma} \tfrac{e_{t+1}}{e_t} (1+i_t^*) \left(1+\psi_B \left(\tfrac{e_t B_{ft}}{P_{Ht} y_{Ht}} \right) \right) \right] = \mathbb{E}_t \left[\tfrac{P_t C_t^\sigma}{P_{t+1} C_{t+1}^\sigma} (1+i_t) \right].$$

Paridade descoberta dos juros (UIP)

Ao permitirmos que as famílias invistam tanto em títulos domésticos (B_{Ht}) quanto em títulos estrangeiros (B_{Ft}) , as C.P.O em relação à eles resulta em:

$$\mathbb{E}_t \left[\tfrac{P_t C_t^\sigma}{P_{t+1} C_{t+1}^\sigma} \tfrac{e_{t+1}}{e_t} (1+i_t^*) \left(1+\psi_B \left(\tfrac{e_t B_{ft}}{p_{Ht} y_{Ht}} \right) \right) \right] = \mathbb{E}_t \left[\tfrac{P_t C_t^\sigma}{P_{t+1} C_{t+1}^\sigma} (1+i_t) \right].$$

O problema e as C.P.O. da família representativa estrangeira é análogo.

Empresas

Empresa doméstica

A produção de cada bem do tipo h é dada por:

$$y_t(h) = \alpha_t \left[G_t(h) \right]^{\zeta} \left[I_t(h) \right]^{1-\zeta},$$

onde α_t representa a produtividade comum à todas as empresas doméstica e $G_t(h)$ é composto por todos os bens intermediários diferenciados utilizados na produção. Temos que $G_t = n_t G_t(h)$.

Rigidez nominal "à la" Rotemberg (1982)

As empresas definem o seu preço $p_t(h)$ sujeitas à um custo de ajustamento:

$$AC_{P,t}(h) = \frac{\psi_P}{2} \left(\frac{p_t(h)}{p_{t-1}(h)} - 1 \right)^2 \frac{p_t(h)y_t(h)}{P_t},$$

onde ψ_P é o parâmetro que representa o grau de rigidez dos preços.

Entrada e saída de empresas

As empresas possuem uma probabilidade δ de saírem do mercado. Junto à quantidade de novos entrantes, ne_t , a lei de movimento da quantidade de empresas domésticas é dado por:

$$n_{t+1} = (1 - \delta)(n_t + ne_t).$$

Custos fixos

Para criar uma empresa, os empresários em um custo afundado ("sunk cost") K_t e a empresa começa operar um período depois:

$$K_t = \left(\frac{ne_t}{ne_{t-1}}\right)^{\lambda} \overline{K}.$$

onde \overline{K} representa o valor de equilíbrio dos custos de entrada.

A demanda da empresa doméstica pode ser representada por:

$$d_t(h) = c_t(h) + d_{G_t}(h) + d_{K_t}(h) + d_{AC,P,t}(h) + d_{AC,B,t}(h),$$

A demanda da empresa doméstica pode ser representada por:

$$d_t(h) = c_t(h) + d_{G_t}(h) + d_{K_t}(h) + d_{AC,P,t}(h) + d_{AC,B,t}(h),$$
que é composta pelo consumo das famílias $c_t(h)$,

A demanda da empresa doméstica pode ser representada por:

$$d_t(h) = c_t(h) + d_{G_t}(h) + d_{K_t}(h) + d_{AC,P,t}(h) + d_{AC,B,t}(h),$$

que é composta pelo consumo das famílias $c_t(h)$, a demanda de outras empresas por bens intermediários $(d_{G_t}(h))$,

A demanda da empresa doméstica pode ser representada por:

$$d_t(h) = c_t(h) + d_{G_t}(h) + d_{K_t}(h) + d_{AC,P,t}(h) + d_{AC,B,t}(h),$$

que é composta pelo consumo das famílias $c_t(h)$, a demanda de outras empresas por bens intermediários $(d_{G_t}(h))$, o investimento associado aos custos de entrada $(d_{K_t}(h))$

A demanda da empresa doméstica pode ser representada por:

$$d_t(h) = c_t(h) + d_{G_t}(h) + d_{K_t}(h) + d_{AC,P,t}(h) + d_{AC,B,t}(h),$$

que é composta pelo consumo das famílias $c_t(h)$, a demanda de outras empresas por bens intermediários $(d_{G_t}(h))$, o investimento associado aos custos de entrada $(d_{K_t}(h))$ e os bens absorvidos como custos de ajustamento tanto dos preços $(d_{AC,P,t}(h))$,

A demanda da empresa doméstica pode ser representada por:

$$d_t(h) = c_t(h) + d_{G_t}(h) + d_{K_t}(h) + d_{AC,P,t}(h) + d_{AC,B,t}(h),$$

que é composta pelo consumo das famílias $c_t(h)$, a demanda de outras empresas por bens intermediários $(d_{G_t}(h))$, o investimento associado aos custos de entrada $(d_{K_t}(h))$ e os bens absorvidos como custos de ajustamento tanto dos preços $(d_{AC,P,t}(h))$,como dos títulos $(d_{AC,B,t}(h))$.

Equilíbrio

Ao considerarmos que há uma demanda externa $(d_t^*(h))$ cujo transporte de produtos está sujeito à custos do tipo "iceberg costs" (Samuelson 1954), o total produzido de uma variedade h é dado por:

Equilíbrio

Ao considerarmos que há uma demanda externa $(d_t^*(h))$ cujo transporte de produtos está sujeito à custos do tipo "iceberg costs" (Samuelson 1954), o total produzido de uma variedade h é dado por:

$$y_t(h) = d_t(h) + (1+\tau)d_t^*(h),$$

O lucro das empresas pode ser descrito como:

O lucro das empresas pode ser descrito como:

$$\pi_t(h) = [p_t(h)d_t(h) + e_t p_t^*(h)d_t^*(h)] \ T_{MU,t} - mc_t y_t(h) - P_t A C_{P,t}(h),$$

O lucro das empresas pode ser descrito como:

$$\pi_t(h) = [p_t(h)d_t(h) + e_t p_t^*(h)d_t^*(h)] T_{MU,t} - mc_t y_t(h) - P_t A C_{P,t}(h),$$

Assim, a empresa opera objetivando maximizar os seus lucros intertemporais, que podem ser definidos como:

O lucro das empresas pode ser descrito como:

$$\pi_t(h) = [p_t(h)d_t(h) + e_t p_t^*(h)d_t^*(h)] T_{MU,t} - mc_t y_t(h) - P_t A C_{P,t}(h),$$

Assim, a empresa opera objetivando maximizar os seus lucros intertemporais, que podem ser definidos como:

$$v_t(h) = \mathbb{E}_t \left\{ \sum_{s=0}^{\infty} (\beta(1-\delta))^s \frac{P_t C_t^{\sigma}}{P_{t+s} C_{t+s}^{\sigma}} \pi_{t+s}(h) \right\}.$$

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

$$v_t(h) = P_t K_t$$

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

$$v_t(h) = P_t K_t$$

Ao resolver o problema de minimização de custos, a demanda relativa por trabalho e bens intermediários é dada por:

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

$$v_t(h) = P_t K_t$$

Ao resolver o problema de minimização de custos, a demanda relativa por trabalho e bens intermediários é dada por:

$$\frac{P_t G_t(h)}{W_t I_t(h)} = \frac{\zeta}{1 - \zeta},$$

Escolhas ótimas

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

$$v_t(h) = P_t K_t$$

Ao resolver o problema de minimização de custos, a demanda relativa por trabalho e bens intermediários é dada por:

$$\frac{P_t G_t(h)}{W_t I_t(h)} = \frac{\zeta}{1 - \zeta},$$

Escolhas ótimas

A equação que dá a precificação ótima é:

Escolhas ótimas

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

$$v_t(h) = P_t K_t$$

Ao resolver o problema de minimização de custos, a demanda relativa por trabalho e bens intermediários é dada por:

$$\frac{P_t G_t(h)}{W_t I_t(h)} = \frac{\zeta}{1 - \zeta},$$

Escolhas ótimas

A equação que dá a precificação ótima é:

$$\rho_t(h) = \frac{\phi}{(\phi-1)T_{MU,t}} mc_t + \frac{\psi_p}{2} \left(\frac{\rho_t(h)}{\rho_{t-1}(h)} - 1\right)^2 \rho_t(h) + \frac{\psi_p}{\phi-1} \left(\frac{\Omega_{t+1}}{\Omega_t}\right) \mathbb{E}_t \left[\beta \left(\frac{\rho_{t+1}(h)}{\rho_t(h)} - 1\right) \frac{\rho_{t+1}(h)^2}{\rho_t(h)}\right],$$

Escolhas ótimas

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

$$v_t(h) = P_t K_t$$

Ao resolver o problema de minimização de custos, a demanda relativa por trabalho e bens intermediários é dada por:

$$\frac{P_t G_t(h)}{W_t I_t(h)} = \frac{\zeta}{1 - \zeta},$$

Escolhas ótimas

A equação que dá a precificação ótima é:

$$\rho_t(h) = \frac{\phi}{(\phi-1)T_{MU,t}} mc_t + \frac{\psi_p}{2} \left(\frac{\rho_t(h)}{\rho_{t-1}(h)} - 1\right)^2 \rho_t(h) + \frac{\psi_p}{\phi-1} \left(\frac{\Omega_{t+1}}{\Omega_t}\right) \mathbb{E}_t \left[\beta \left(\frac{\rho_{t+1}(h)}{\rho_t(h)} - 1\right) \frac{\rho_{t+1}(h)^2}{\rho_t(h)}\right],$$

Escolhas ótimas

Os novos entrantes vão invertir até o ponto no qual o valor da empresa for igual ao custo afundado (sunk cost):

$$v_t(h) = P_t K_t$$

Ao resolver o problema de minimização de custos, a demanda relativa por trabalho e bens intermediários é dada por:

$$\frac{P_t G_t(h)}{W_t I_t(h)} = \frac{\zeta}{1 - \zeta},$$

Escolhas ótimas

A equação que dá a precificação ótima é:

$$\rho_t(h) = \frac{\phi}{(\phi-1)T_{MU,t}} mc_t + \frac{\psi_p}{2} \left(\frac{\rho_t(h)}{\rho_{t-1}(h)} - 1\right)^2 \rho_t(h) + \frac{\psi_p}{\phi-1} \left(\frac{\Omega_{t+1}}{\Omega_t}\right) \mathbb{E}_t \left[\beta \left(\frac{\rho_{t+1}(h)}{\rho_t(h)} - 1\right) \frac{\rho_{t+1}(h)^2}{\rho_t(h)}\right],$$

Condicional à hipótese de que as empresas definem os preços em moeda doméstica, temos que:

Condicional à hipótese de que as empresas definem os preços em moeda doméstica, temos que:

$$p_t^*(h) = \frac{(1+\tau)p_t(h)}{e_t}.$$

Condicional à hipótese de que as empresas definem os preços em moeda doméstica, temos que:

$$p_t^*(h) = \frac{(1+\tau)p_t(h)}{e_t}.$$

Como as famílias são donas das empresas (novas e incumbentes), a renda líquida que elas recebem é dada por:

Condicional à hipótese de que as empresas definem os preços em moeda doméstica, temos que:

$$p_t^*(h) = \frac{(1+\tau)p_t(h)}{e_t}.$$

Como as famílias são donas das empresas (novas e incumbentes), a renda líquida que elas recebem é dada por:

$$\Pi_t = n_t \pi_t(h) - ne_t v_t(h),$$

A balança comercial pode ser definida como:

A balança comercial pode ser definida como:

$$TB_t = n_{t-1}p_t^*(h)d_t^*(h) - n_{t-1}^*p_t(f)d_t(f).$$

A balança comercial pode ser definida como:

$$TB_t = n_{t-1}p_t^*(h)d_t^*(h) - n_{t-1}^*p_t(f)d_t(f).$$

Assim, temos que:

A balança comercial pode ser definida como:

$$TB_t = n_{t-1}p_t^*(h)d_t^*(h) - n_{t-1}^*p_t(f)d_t(f).$$

Assim, temos que:

$$Y_t = C_t + ne_t K_t + TB_t,$$

Política monetária

Maximização de bem-estar social

$$\max \mathbb{E}_0 \textstyle \sum_{t=0}^\infty \beta^t \left(\frac{1}{2} \left(\frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{1}{1+\psi} \boldsymbol{I}_t^{1+\psi} \right) + \frac{1}{2} \left(\frac{1}{1-\sigma} C_t^{*1-\sigma} - \frac{1}{1+\psi} \boldsymbol{I}_t^{*1+\psi} \right) \right).$$

Ramsey;

- Ramsey;
- Crescimento constante: $\frac{M_t}{M_{t-1}} = \nu$;

- Ramsey;
- Crescimento constante: $\frac{M_t}{M_{t-1}} = \nu$;
- Regra de Taylor:

$$1 + i_t = (1 + i_{t-1})^{\gamma_i} \left[(1 + \overline{i}) \left(\frac{P_t}{P_{t-1}} \right)^{\gamma_\rho} \left(\frac{Y_t}{\overline{Y}} \right)^{\gamma_y} \right]^{1 - \gamma_i}.$$

Governo

Restrição orçamentária

Finalmente, a restrição orçamentária do governo é dada por:

$$\Gamma_t = \left(M_t - M_{t-1} \right) + \left(T_t - 1 \right) n_{t-1}^* d_t(f) + \left(1 - T_{MU,t} \right) \left(n_{t-1} d_t(h) + n_{t-1}^* d_t(f) \right).$$

Política monetária, equilíbrio geral e os mecanismos de um choque

tarifário

Tarifa sobre bens de consumo (Bergin and Corsetti 2023)

Tarifa sobre bens de consumo (Bergin and Corsetti 2023)

 Tarifa + rigidez nominal de preços: queda na demanda dos bens exportados (não é um choque no custo marginal).

Tarifa sobre bens de consumo (Bergin and Corsetti 2023)

- Tarifa + rigidez nominal de preços: queda na demanda dos bens exportados (não é um choque no custo marginal).
- Essa queda é ineficiente. O banco central deve realizar uma expansão monetária para dirimir as perdas de bem-estar social.

Bens intermediários importados (Bergin and Corsetti 2023)

Bens intermediários importados (Bergin and Corsetti 2023)

 Tarifas sobre os bens intermediários importados aumentam os custos de produção.

Bens intermediários importados (Bergin and Corsetti 2023)

- Tarifas sobre os bens intermediários importados aumentam os custos de produção.
- A política monetária só deve ser contracionista se a parcela de bens intermediários importados for muito alta.

Movimentos diametralmente opostos:

- Movimentos diametralmente opostos:
 - Aumento dos preços ao consumidor.

- Movimentos diametralmente opostos:
 - Aumento dos preços ao consumidor.
 - Queda dos preços ao produtos.

- Movimentos diametralmente opostos:
 - Aumento dos preços ao consumidor.
 - Queda dos preços ao produtos.

Bergin and Corsetti (2023) defendem que há três diferenças entre os choques tarifários e os choques nos markups:

 Tarifas são impostas apenas aos produtos que são exportados (choques nos markups ocorrem de maneira mais ampla).

- Tarifas são impostas apenas aos produtos que são exportados (choques nos markups ocorrem de maneira mais ampla).
- Receitas com as tarifas são auferidas pelo país que importa e não pelo país que exporta; quando os markups sobem, são as empresas produtoras que ficam com a receita unitária extra.

- Tarifas são impostas apenas aos produtos que são exportados (choques nos markups ocorrem de maneira mais ampla).
- Receitas com as tarifas são auferidas pelo país que importa e não pelo país que exporta; quando os markups sobem, são as empresas produtoras que ficam com a receita unitária extra.
- Tarifas são impostas ao importador e não à empresa que define o preço do produto exportado. (Em um choque de markups, o aumento seria nas empresas exportadoras).

- Tarifas são impostas apenas aos produtos que são exportados (choques nos markups ocorrem de maneira mais ampla).
- Receitas com as tarifas são auferidas pelo país que importa e não pelo país que exporta; quando os markups sobem, são as empresas produtoras que ficam com a receita unitária extra.
- Tarifas são impostas ao importador e não à empresa que define o preço do produto exportado. (Em um choque de markups, o aumento seria nas empresas exportadoras).
 - Surge uma cunha (wedge) entre os preços dos dois lados da fronteira, o que se traduz em uma queda na demanda das empresas que estão vendendo os produtos.

O papel da taxa de câmbio no ajuste:

O papel da taxa de câmbio no ajuste:

 Política monetária expansionista nos países cujas importações são taxadas;

O papel da taxa de câmbio no ajuste:

- Política monetária expansionista nos países cujas importações são taxadas;
- Política monetária contracionista no país que impôs as tarifas.

O papel da taxa de câmbio no ajuste:

- Política monetária expansionista nos países cujas importações são taxadas;
- Política monetária contracionista no país que impôs as tarifas.
- A taxa de câmbio deprecia e reajusta os preços relativos internacionais.

Referências i

- Barattieri, Alessandro, Matteo Cacciatore, and Fabio Ghironi. 2021. "Protectionism and the Business Cycle." *Journal of International Economics* 129: 103417. https://doi.org/https://doi.org/10.1016/j.jinteco.2020.103417.
- Bergin, Paul R, and Giancarlo Corsetti. 2023. "The Macroeconomic Stabilization of Tariff Shocks: What Is the Optimal Monetary Response?" *Journal of International Economics* 143: 103758.
- Gali, Jordi, and Tommaso Monacelli. 2005. "Monetary Policy and Exchange Rate Volatility in a Small Open Economy." *The Review of Economic Studies* 72 (3): 707–34.

Referências ii

- Galí, Jordi. 2008. *Monetary Policy, Inflation, and the Business Cycle*. Princeton University Press.
- Jones, Charles I. 2016. Macroeconomics. WW Norton & Company.
- Krugman, Paul. 1982. "The Macroeconomics of Protection with a Floating Exchange Rate." Carnegie-Rochester Conference Series on Public Policy 16: 141–82. https://doi.org/https: //doi.org/10.1016/0167-2231(82)90024-0.
- Mundell, Robert. 1961. "Flexible Exchange Rates and Employment Policy." *Canadian Journal of Economics and Political Science* 27 (4): 509–17. https://doi.org/10.2307/139437.
- Rotemberg, Julio J. 1982. "Sticky Prices in the United States." Journal of Political Economy 90 (6): 1187–1211.

Referências iii

Samuelson, Paul A. 1954. "The Transfer Problem and Transport Costs, II: Analysis of Effects of Trade Impediments." *The Economic Journal* 64 (254): 264–89.