- Основные определения;
- Способы задания;
- Операции над бинарными отношениями;
- Свойства бинарных отношений;
- Отношения порядка;
- Диаграмма Хассе.

Соответствие между двумя объектами

Примеры:

 $R = \{(a,b)\}$, то это означает, что а уважает b. Отношение $R_1 = \{(a,b),(b,a)\}$ означает, что а уважает b и b уважает a.

Нетрудно интерпретировать также другие отношения «уважать» между интересующими нас лицами:

$$R_2 = \{(a,b),(a,a)\}, R_3 = \{(a,a),(b,b)\}$$
 и т. д.

Если два элемента a, b находятся в данном отношении R, то этот факт записывают

 $(a,b) \in R$ или aRb.

Если эти элементы не находятся в отношении R, то это записывают так:

 $(a,b) \notin R$, или $a \overline{R} b$.

Эквивалентность (\Leftrightarrow), отношение порядка(>) или(<), равенство(=), параллельность(||), перпендикулярность ($\stackrel{\perp}{\bot}$) и т. д.

- $R \subseteq A \times B$,
- $R_{-} = \{a | (a,b) \in R\}, (левая)$
- $R_+ = \{b | (a, b) \in R\}. (правая)$

ПРИМЕР: Пусть
$$R = \{(1,1), (1,2), (1,3), (3,3)\}.$$
 Тогда $R_{-} = \{1,3\},$ $R_{+} = \{1,2,3\}.$

Поле: $F(R) = R_{-} \cup R_{+}$.

Бинарное отношение R^{-1} называют **обратным к отношению** R, если $(b,a) \in R^{-1}$ тогда и только тогда, когда $(a,b) \in R$, то есть $R^{-1} = \{(b,a) | (a,b) \in R\}$.

ПРИМЕР:

$$R = \{(1,1), (1,2), (1,3), (3,4)\},$$

 $\text{то } R^{-1} = \{(1,1), (2,1), (3,1), (4,3)\}.$

Пересечением бинарного отношения R по элементу $a \in F(R)$ называют совокупность всех вторых (различных) компонентов упорядоченных пар, составляющих данное отношение, и таких, у которых первой компонентой есть элемент a. Обозначение: R_a .

Например, для предыдущего бинарного отношения R имеем:

$$R_1 = \{1,2,3\}, R_2 = \emptyset, R_3 = \{4\}, R_4 = \emptyset.$$

Способы задания бинарных отношений

1) Перечислением

Например: $R_1 = \{(1,1), (2,2), (3,3), (4,4)\}.$

2) Формулой

Например: $S = \{(a,b)|(a-b) = 0 \bmod 3;$ $a,b \in \{0...10\}\}.$

3) Графическое задание бинарного отношения.

Пример отношения

$$S = \{(a, b), (a, c), (b, c), (b, d)\}$$

4) В табличной форме

a	b	С	d
$S_a = \{b, c\}$	$S_b = \{c, d\}$	$S_c = \emptyset$	$S_d = \emptyset$

5) Матрицей $||a_{i,j}||$

	а	b	С	d
a	0	1	1	0
b	0	0	1	1
С	0	0	0	0
d	0	0	0	0

Операции над бинарными отношениями

$$U = F(R) \times F(R)$$
,

 $U = A \times A$, где A есть объединение полей каждого из рассматриваемых отношений.

ПРИМЕР: Пусть $R = \{(1,1), (1,2), (1,3), (3,3)\}$ и $S = \{(1,1), (2,2), (3,3)\}$. В этом случае универсальное множество имеет вид:

$$U = \{ (1,1), (1,2), (1,3), (2,1), \\ (2,2), (2,3), (3,1)(3,2), (3,3) \}.$$

Примеры

Тогда результаты некоторых теоретико-множественных операций будут следующими:

$$\bar{R} = \{(2,1), (2,2), (2,3), (3,1), (3,2)\};$$
 $\bar{S} = \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\}.$
 $R \setminus S = \{(1,2), (1,3)\};$
 $R \cap S = \{(1,1), (3,3)\}.$

Композиция бинарных отношений

Композицией бинарных отношений R и S называют бинарное отношение T, состоящее из всех упорядоченных пар (a,b), для каждой из которых существует элемент $c \in R_+ \cap S_-$ такой, что $(a,c) \in R$, $(c,b) \in S$ (то есть aRc,cSb). Операцию композиции записывают так:

$$T = R \circ S$$
.

Например, пусть

$$R = \{(1,1), (1,2), (2,3), (3,3)\},$$
 $S = \{(2,4), (2,5), (3,2), (5,5)\}.$
Тогда $R \circ S = \{(1,4), (1,5), (2,2), (3,2)\},$
 $S \circ R = \{(3,3)\}.$

Бинарное отношение называют рефлексивным, если для любого элемента $a \in F(R)$ имеет место aRa.

- Отношение подобия (~),
- отношение параллельности (||),
- Отношение равенства (=).

Бинарное отношение называют антирефлексивным, если для любого элемента поля $a \in F(R)$ имеет место $a\bar{R}a$.

- отношения порядка (<), (>),
- отношение перпендикулярности ($^{\perp}$).

Если задано бинарное отношение

$$R_1 = \{(a,a), (a,b), (b,b), (a,c), (c,c)\}$$
, то это отношение *рефлексивно*, а бинарное отношение $R = \{(a,b), (b,c), (b,b), (a,c)\}$ – нет.

Бинарное отношение

$$R_3 = \{(a,b), (b,c), (a,c)\}$$
 антирефлексивно.

Бинарное отношение называют симметричным, если из aRb следует bRa.

- отношение равенства (=),
- подобия(~),
- отношение перпендикулярности ($^{\perp}$),
- отношение параллельности (||).

Бинарное отношение R асимметрично, если из aRb следует $b \bar{R} a$.

Асимметричными являются отношения порядка (<), (>).

Бинарное отношение называют **антисимметричным**, если из aRb и bRa следует, что a=b. Заметим, что антисимметричное отношение отличается от асимметричного лишь тем, что в антисимметричном отношении допускается существование упорядоченной пары с одинаковыми компонентами.

Примеры

Так, заданные бинарные отношения

$$S_1 = \{(a,a),(b,b),(c,c)\}$$
 и $S_2 = \{(a,a),(a,b),(a,c),(b,a),(c,a)\}$ симметричны.

С другой стороны, бинарные отношения

$$S_1 = \{(a,a),(b,b),(c,c)\},$$

 $S_3 = \{(a,b),(a,c),(a,a),(b,c)\}$
антисимметричны.

Бинарное отношение называют **транзитивным**, если из aRb и bRc следует aRc.

- отношение равенства (=),
- отношение подобия (~),
- отношения порядка,
- отношение параллельности (||).

Примерами транзитивных отношений также могут служить отношения S_1 и S_3 .

В противном случае отношение R называют нетранзитивным.

Отношение эквивалентности

Бинарное отношение называют *отношением эквивалентности,* если оно рефлексивно, симметрично и транзитивно.

- отношение равенства(=),
- отношение параллельности (||).

Классом эквивалентности Ra называют множество всех вторых компонентов упорядоченных пар отношения эквивалентности R, у которых первой компонентой является элемент a:

$$R_a = \{b | (a, b) \in R\}.$$

Отношение эквивалентности

$$S_1(a) = \{a\}, S_1(b) = \{b\} \text{ if } S_1(c) = \{c\}.$$

Пусть имеется бинарное отношение

$$= \{(a,a),(a,b),(b,a),(b,b),(c,c),(d,d)(d,e)(e,d)(e,e)\}$$

Нетрудно видеть, что данное отношение рефлексивно, симметрично и транзитивно. Следовательно, отношение S есть отношение эквивалентности.

Имеем классы эквивалентности:

$$Sa = \{a, b\}, Sb = \{a, b\}, Sc = \{c\}, Sd = \{d, e\},$$

 $Se = \{d, e\}.$

Отношение порядка

Бинарное отношение R называют отношением порядка, если оно антисимметрично и транзитивно. Если к тому же оно антирефлексивно, то называется отношением строгого порядка. (пример — «быть потомком»).

Отношение порядка часто обозначают упорядоченной парой (R, >), (R, <=) и т.д. В этом случае R называется упорядоченным множеством.

Бинарное отношение R называют отношением частичного порядка, если для некоторых a, b ∈ F(R) нет ни aRb, ни bRa. Тогда F(R) называют частично упорядоченным множеством.

Любые два элемента $a, b \in F(R)$ называют сравнимыми, если aRb, или bRa.

Диаграмма Хассе

aRb

$$a,b \in F(R), \overline{\exists}c \in F(R)$$
 такого, что aRc и cRb .

$$R = \begin{cases} (1,2), (1,3), (1,4), \\ (1,5), (1,6), (1,7), \\ (1,8), (2,5), (2,7), \\ (2,8), (3,5), (3,6), \\ (3,8), (4,6), (4,7), \\ (4,8), (5,8), (6,8), \\ (7,8) \end{cases}$$

