Generierung des Eingangssingals für Barrier Bucket RF Systeme and der GSI

Jonas Christ, Artem Moskalew, Maximilian Nolte Jens Harzheim, M.Sc.

Projektseminar Beschleunigertechnik

Outline

- 1 Einführung
 - Problemstellung
 - Zielsetzung
 - Gegeben
- 2 Erreichtes
 - Gerätekommunikation
 - Code
- 3 Evaluierung
 - Gerätekommunikation
 - Code
- 4 Ausblick

Problemstellung

Zielsetzung

 $\mathsf{MLBS}.\mathsf{py}$

FFT.py

 $\mathsf{MLBS}.\mathsf{py}$

FFT.py

MLBS.py

getH.py

FFT.py

MLBS.py

getH.py

computeUin.py

FFT.py

MLBS.py

getH.py

computeUin.py

runme_compute.py

Erreichtes: das VISA-Handbuch

Uout_ideal = generate_BBsignal (fq_rep , fq_bb , vpp)


```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )
H = measure_H ( )
Uin = Uquest_ideal = compute_Uquest ( Uout_ideal , H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured , H )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute K ( a )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )

H = measure_H ( )

Uquest_ideal = compute_Uquest ( Uout_ideal, H )

Uin = Uquest_ideal

Uout_measured = measure_Uout ( Uin )

Uquest_measured = compute_Uquest ( Uout_measured, H )

a = compute_a ( Uin, Uquest_measured, N )

K = compute_K ( a )

Uin = compute_Uin ( Uquest_ideal, K )
```



```
Uout_ideal = generate_BBsignal ( fq_rep , fq_bb , vpp )

H = measure_H ( )

Uquest_ideal = compute_Uquest ( Uout_ideal , H )

Uin = Uquest_ideal

Uout_measured = measure_Uout ( Uin )

Uquest_measured = compute_Uquest ( Uout_measured , H )

a = compute_a ( Uin , Uquest_measured , N )

K = compute_K ( a )

Uin = compute_Uin ( Uquest_ideal , K )
```



```
Uout_ideal = generate_BBsignal ( fq_rep, fq_bb, vpp )
H = measure_H ( )
Uin = Uquest_ideal = compute_Uquest ( Uout_ideal, H )
Uin = Uquest_ideal
Uout_measured = measure_Uout ( Uin )
Uquest_measured = compute_Uquest ( Uout_measured, H )
a = compute_a ( Uin, Uquest_measured, N )
K = compute_K ( a )
Uin = compute_Uin ( Uquest_ideal, K )
Uout = measure_Uout ( Uin )
```

Evaluierung: Gerätekommunikation

Ausblick