2023·秋·数理逻辑 平时作业汇总 大家辛苦啦! **■**~~ (中文参考答案 + 作业反馈)

hw-1 (2023/09/12)

p3: 1-(h) If y is an integer then z is not real, provided that x is a rational number.

Answer:

p: y is an integer

q: z is a real number

r: x is a rational number

因此我们可得 $r \to (p \to \neg q)$ or $(r \land p) \to \neg q$.

......hw-1: feedback

- 1. 没有把"z is not real"中的**否定联结词**提取出,进而翻译为公式时缺少否定符号 \neg 。
- 2. 对英语的语序产生了错误的判断,将"provided that x is a rational number"这个句子的成分放置到了错误的地方。
- 3. 一些同学额外做了教材 p.3 第一题中的 (a) (h),但没有注意到 (c),(e),(g) 中的"either ... or ..."表达的是 **不兼容析取**,从而对句子产生了不当的翻译。

hw-2 (2023/09/19)

p10: (7) Show that the statement form $(((\sim p) \to q) \to (p \to (\sim q)))$ is not a tautology. Find statement forms $\mathscr A$ and $\mathscr B$ such that $(((\sim \mathscr A) \to \mathscr B) \to (\mathscr A \to (\sim \mathscr B)))$ is a contradiction.

Answer:

方法一:

下面的真值表表明公式 $(((\sim p) \rightarrow q) \rightarrow (p \rightarrow (\sim q)))$ 不是一个重言式:

当 \mathscr{A} 和 \mathscr{B} 都是重言式 (tautology) 时, $(((\sim \mathscr{A}) \to \mathscr{B}) \to (\mathscr{A} \to (\sim \mathscr{B})))$ 将变成一个矛盾式。例如,让 $\mathscr{A} = \mathscr{B} = (p \to p)$ 抑或令 $\mathscr{A} = \mathscr{B} = (p \vee \neg p)$ 。

方法二:

(除了用真值表这种比较直观的手段外,还有诸多方法。以下答案来自黄程同学,经其授权后分享给大家,感谢黄程同学!)

假设 $(((\sim p) \to q) \to (p \to (\sim q)))$ 是重言式。那么在任意的赋值(valuation)下,将永远不出现 $(\sim p) \to q$ 为 T 且 $p \to (\sim q)$ 为 F 的情况。但是如果令 q = T 且 p = T, 则 $p \to (\sim q)$ 的真值为 T。矛盾!因此 $(((\sim p) \to q) \to (p \to (\sim q)))$ 不是重言式。

根据上述回答,当 \mathscr{A} 和 \mathscr{B} 永远为 T 的时候, $(((\sim\mathscr{A})\to\mathscr{B})\to(\mathscr{A}\to(\sim\mathscr{B})))$ 会是一个矛盾式。换而言之,此时 \mathscr{A} 和 \mathscr{B} 都是重言式即可,比如 $\mathscr{A}=(p\vee(\sim p))$ 且 $\mathscr{B}=p\to(q\to p)$ 。 \square

......hw-2: feedback

- 1. 本次作业一共有两问,但存在同学只回答第一问的情况,请大家以后细心。
- 2. 用 0 和 1 来替代 F 和 T 是可以的,有时这样会更为简洁。
- 3. 第一问有同学用一种「简化真值表」来回答,如

这是可行且正确的。不过建议还是把 p 和 q 的真值单独列在表前,这样在画真值表找「析取范式」的时候不容易眼花,不过这不是强制性的。

4. 第二问要求大家确实为 Ø 和 Ø 找到某种「命题形式」,很多同学只是声明其为重言式而没有找出具体的「命题形式」,严格来说这是不够的,不过默认大家都掌握了。

hw-3 (2023/09/26)

p15: 11-(a) Show, using **Proposition 1.14** and **1.17**, that the statement form $((\neg (p \lor (\neg q))) \to (q \to r))$ is logically equivalent to each of the following.

(a)
$$((\neg(q \to p)) \to ((\neg q) \lor r))$$

Recall that

- **Proposition 1.14**: If \mathscr{B}_1 is a statement form arising from the statement form \mathscr{A} by substituting the statement form \mathscr{B} for one or more occurrences of the statement form \mathscr{A} in \mathscr{A}_1 , and if \mathscr{B} is logically equivalent to \mathscr{A} , then \mathscr{B}_1 is logically equivalent to \mathscr{A}_1 .
- Proposition 1.17 (De Morgan's Laws): Let $\mathscr{A}_1, \mathscr{A}_2, \cdots \mathscr{A}_n$ be any statement forms. Then:
 - 1. $(\bigvee_{i=1}^{n} (\neg \mathscr{A}_i))$ is logically equivalent to $(\neg(\bigwedge_{i=1}^{n} \mathscr{A}_i))$.
 - 2. $(\bigwedge_{i=1}^{n} (\neg \mathscr{A}_i))$ is logically equivalent to $(\neg(\bigvee_{i=1}^{n} \mathscr{A}_i))$.

 $\mathbf{Answer} \colon \diamondsuit \varphi = ((\neg (p \lor (\neg q))) \to (q \to r)) \ \boxminus \ \chi = ((\neg (q \to p)) \to ((\neg q) \lor r)).$

据教材 **Prop. 1.14**, 我们只需要说明: $\neg(p \lor (\neg q))$ 逻辑等值 (logically equivalent) 于 $(\neg(q \to p))$ 且 $(q \to r)$ 逻辑等值于 $(\neg q) \lor r$), 那么就有 φ 逻辑等值 χ 。

不过很容易验证(比如说用真值表),

$$\neg (p \lor (\neg q)) \leftrightarrow (\neg (q \to p)) \qquad \text{fl}$$
$$(q \to r) \leftrightarrow (\neg q) \lor r)$$

都是重言式,这也意味着 $(\neg(p \lor (\neg q)))$ 和 $(\neg(q \to p))$, $(q \to r)$ 和 $(\neg q) \lor r)$ 互相逻辑等值。 \Box

...... no feedback for hw-3

hw-4 (2023/10/10)

p.19: 13-(a) Find statement forms in **conjunctive normal form** which are logically equivalent to the following:

$$(a) \qquad (((\neg p) \lor q) \to r)$$

Answer: 下面我们将用 3 种方法来寻找公式 $(\neg p \lor q) \to r$ 的合取范式 (**conjunctive normal forms**, CNF),前两种可以在教材上找的,而后一种是额外的补充内容。

不过首先,令

$$\varphi = (\neg p \lor q) \to r.$$

方法一

首先我们画出公式 φ 否定 (即 $\neg \varphi$) 的真值表:

p	q	r	¬ ((¬ 1	o V ($q) \rightarrow$	r)
1	1	1	0	0	1	1	
<u>1</u>	<u>1</u>	0	1	0	1	0	
1	0	1	0	0	0	1	
1	0	0	0	0	0	1	
0	1	1	0	1	1	1	
0	1	0	1	1	1	0	
0	0	1	0	1	1	1	
0	0	0	1	1	1	0	

由上表可知,使得 $\neg \varphi$ 为 1 的真值组合分别是 110、010 以及 000。因此 $\neg \varphi$ 的一个析取范式 (disjunctive normal form) 是

$$\chi = (p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$$

显然 χ 逻辑等值于 $\neg \varphi$,因此 $\neg \chi$ 逻辑等值于 $\neg \neg \varphi$,即 φ 。

由德摩根律 (the De Morgan's laws) 有

$$\neg \chi = \neg [(p \land q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)]
\equiv \neg (p \land q \land \neg r) \land \neg (\neg p \land q \land \neg r) \land \neg (\neg p \land \neg q \land \neg r)
\equiv (\neg p \lor \neg q \lor \neg \neg r) \land (\neg \neg p \lor \neg q \lor \neg \neg r) \land (\neg \neg p \lor \neg \neg q \lor \neg \neg r)
\equiv (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$$

因此 $(\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$ 是一个 φ 的合取范式。

(**注意**: 此处我们使用符号" $\alpha \equiv \beta$ " 来表示公式 α 和 β 是逻辑等值的)

方法二

$$\varphi = (\neg p \lor q \to r)$$
 $\equiv \neg(\neg p \lor q) \lor r$ (由实质蕴含 material implication 的含义, cf. p.7: Example 1.4-(a))
 $\equiv (\neg \neg p \land \neg q) \lor r$ (由德摩根律(the **De Morgan's laws**))
 $\equiv (p \land \neg q) \lor r$
 $\equiv (p \lor r) \land (\neg q \lor r)$ (\lor - \land 间的分配 , cf. p.10, Exercises-6-(b))

因此 $(p \lor r) \land (\neg q \lor r)$ 是一个 φ 的合取范式。

方法三

类似地,我们画出 φ 的真值表 (注意哟,不是 φ 否定的真值表):

p	q	r	(\neg	p	\vee	q)	\rightarrow	r
1	1	1		0	1	1	1	1	1
<u>1</u>	1	0		0	1	1	1	0	0
1	0	1		0	1	0	0	1	1
1	0	0		0	1	0	0	1	0
0	1	1		1	0	1	1	1	1
0	1	0		1	0	1	1	0	0
0	0	1		1	0	1	0	1	1
0	0	0		1	0	1	0	0	0

令 φ 为 0 的真值组合分别是 110、010 和 000。随后根据这些真值组合,可以构造出如下 3 个析取公式:

$$\varphi_1 = (\neg p \lor \neg q \lor r)$$

$$\varphi_2 = (p \lor \neg q \lor r)$$

$$\varphi_3 = (p \lor q \lor r)$$

接下来,我们将上面这三个公式合取起来,

$$\varphi_1 \land \varphi_2 \land \varphi_3 = (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor r)$$

容易验证 $\varphi_1 \wedge \varphi_2 \wedge \varphi_3$ 是一个 φ 的合取范式。 [ps. 正如我们所见,方法一和方法三所得的合取范式是相同的]

p.26: 21 Suppose that $\mathscr{A}_1, \mathscr{A}_2, \dots, \mathscr{A}_n$; : \mathscr{A} is a valid argument form. Prove that $\mathscr{A}_1, \mathscr{A}_2, \dots, \mathscr{A}_{n-1}$; : $(\mathscr{A}_n \to \mathscr{A})$ is also a valid argument form.

Proof:

首先, 假设 $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_n$; $\therefore \mathscr{A}$ 是有效的 (valid) 论证形式, 但 $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_{n-1}$; $\therefore (\mathscr{A}_n \to \mathscr{A})$ 不是。

那么存在一个真值指派,使得 $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_{n-1}$ 为 T 而 $(\mathscr{A}_n \to \mathscr{A})$ 为 F,即 \mathscr{A}_n 为 T 且 \mathscr{A} 为 F。然而,这同我们的假设 — $\mathscr{A}_1, \mathscr{A}_2, \ldots, \mathscr{A}_n$; $\therefore \mathscr{A}$ 是有效的论证形式 — 矛盾!

- 1. 还是有同学少写题目呀,题目少写的话想给你们找分都很难了。考试的时候也差不多,尽量不要空题不做呀 **②**
- 2. 还有很多同学写证明的时候,一句话中往往不写「定语」和「状语」,比如会出现如下情况:

所以 φ 什么呢? φ 是重言式? φ 是矛盾式? 这些都是需要额外加以说明的。

hw-5 (2023/10/17)

p.36: 1-(c) Write out proofs in L for the following wfs.

(c)
$$(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2)$$

Proof:

方法一

1.
$$(p_1 \to (p_1 \to p_2)) \to ((p_1 \to p_1) \to (p_1 \to p_2))$$
 (instance of L2)

2.
$$[(p_1 \to (p_1 \to p_2)) \to ((p_1 \to p_1) \to (p_1 \to p_2))] \to$$

 $[((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1)) \to ((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2))]$ (instance of L2)

3.
$$((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1)) \to ((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2))$$
 $(1 + 2, MP)$

4.
$$p_1 \to ((p_1 \to p_2) \to p_1)$$
 (instance of $L1$)

5.
$$[p_1 \to ((p_1 \to p_2) \to p_1)] \to [(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1)]$$
 (instance of $L2$)

6.
$$(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1)$$
 $(4+5, MP)$

7.
$$(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2)$$
 (3+6, MP)

当然 (c) 的证明不是唯一的。

方法二

1.
$$p_1 \rightarrow ((p_1 \rightarrow p_1) \rightarrow p_1)$$
 (instance of L1)

2.
$$(p_1 \to ((p_1 \to p_1) \to p_1)) \to ((p_1 \to (p_1 \to p_1)) \to (p_1 \to p_1))$$
 (instance of L2)

3.
$$(p_1 \to (p_1 \to p_1)) \to (p_1 \to p_1)$$
 $(1+2, MP)$

4.
$$p_1 \to (p_1 \to p_1)$$
 (instance of $L1$)

5.
$$(p_1 \to p_1)$$

6.
$$(p_1 \to p_1) \to ((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1))$$
 (instance of L1)

7.
$$(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1)$$
 (5+6, MP)

8.
$$(p_1 \to (p_1 \to p_2)) \to ((p_1 \to p_1) \to (p_1 \to p_2))$$
 (instance of L2)

9.
$$[(p_1 \to (p_1 \to p_2)) \to ((p_1 \to p_1) \to (p_1 \to p_2))] \to$$

 $[((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1)) \to ((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2))]$ (instance of L2)

10.
$$((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_1)) \to ((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2))$$
 (8 + 9, MP)

11.
$$(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2)$$
 $(7+10, MP)$

方法三

1.
$$\{(p_1 \to p_2) \to [((p_1 \to p_2) \to (p_1 \to p_2)) \to (p_1 \to p_2)]\} \to$$

 $\{[(p_1 \to p_2) \to ((p_1 \to p_2) \to (p_1 \to p_2))] \to [(p_1 \to p_2) \to (p_1 \to p_2)]\}$ (instance of $L2$)

2.
$$(p_1 \to p_2) \to [((p_1 \to p_2) \to (p_1 \to p_2)) \to (p_1 \to p_2)]$$
 (instance of L1)

3.
$$[(p_1 \to p_2) \to ((p_1 \to p_2) \to (p_1 \to p_2))] \to [(p_1 \to p_2) \to (p_1 \to p_2)]$$
 $(1+2, MP)$

4.
$$(p_1 \to p_2) \to ((p_1 \to p_2) \to (p_1 \to p_2))$$
 (instance of L1)

5.
$$(p_1 \to p_2) \to (p_1 \to p_2)$$
 $(3+4, MP)$

6.
$$[(p_1 \to p_2) \to (p_1 \to p_2)] \to [((p_1 \to p_2) \to p_1) \to ((p_1 \to p_2) \to p_2)]$$
 (instance of $L2$)

7.
$$((p_1 \to p_2) \to p_1) \to ((p_1 \to p_2) \to p_2)$$
 (5+6, MP)

8.
$$[((p_1 \to p_2) \to p_1) \to ((p_1 \to p_2) \to p_2)] \to$$

 $[p_1 \to (((p_1 \to p_2) \to p_1) \to ((p_1 \to p_2) \to p_2))]$ (instance of L1)

9.
$$p_1 \to (((p_1 \to p_2) \to p_1) \to ((p_1 \to p_2) \to p_2))$$
 (7 + 8, MP)

10.
$$[p_1 \to (((p_1 \to p_2) \to p_1) \to ((p_1 \to p_2) \to p_2))] \to$$

 $[(p_1 \to ((p_1 \to p_2) \to p_1)) \to (p_1 \to ((p_1 \to p_2) \to p_2))]$ (instance of L2)

11.
$$(p_1 \to ((p_1 \to p_2) \to p_1)) \to (p_1 \to ((p_1 \to p_2) \to p_2))$$
 (9 + 10, MP)

12.
$$p_1 \to ((p_1 \to p_2) \to p_1)$$
 (instance of $L1$)

13.
$$p_1 \to ((p_1 \to p_2) \to p_2)$$
 (11 + 12, MP)

14.
$$[p_1 \to ((p_1 \to p_2) \to p_2)] \to [(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2)]$$
 (instance of $L2$)

15.
$$(p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2)$$
 (13 + 14, MP)

(ps. 上面公式中的 中括号 [] 和 花括号 {} 是起辅助作用的,为的是方便大家观看。但应注意的是,其本身不是命题逻辑公理系统 L 中的符号!!!)

p.37: 5 The rule HS is an example of a legitimate additional rule of deduction for L. Is the following rule legitimate in the same sense: from the wfs. \mathscr{B} and $(\mathscr{A} \to \mathscr{C})$, deduce $(\mathscr{A} \to \mathscr{C})$?

Answer:

方法一(不用**演绎定理** (Deduction Theorem))

$$1. \mathscr{B}$$
 (假设)

$$2. (\mathscr{A} \to (\mathscr{B} \to \mathscr{C})) \tag{假设}$$

3.
$$(\mathscr{A} \to (\mathscr{B} \to \mathscr{C})) \to ((\mathscr{A} \to \mathscr{B}) \to (\mathscr{A} \to \mathscr{C}))$$
 (L2)

4.
$$((\mathscr{A} \to \mathscr{B}) \to (\mathscr{A} \to \mathscr{C}))$$
 $(2+3, MP)$

5.
$$(\mathscr{B} \to (\mathscr{A} \to \mathscr{B}))$$
 (L1)

6.
$$(\mathscr{A} \to \mathscr{B})$$

7.
$$(\mathscr{A} \to \mathscr{C})$$

因此该规则对于系统 L 来说是合法的。

方法二(使用**演绎定理** (Deduction Theorem))

首先我们表明

$$\{\mathscr{B}, (\mathscr{A} \to (\mathscr{B} \to \mathscr{C}))\} \cup \{\mathscr{A}\} \vdash_L \mathscr{C}.$$

下面是其一个演绎:

$$1. \mathscr{B}$$
 (假设)

$$2. (\mathscr{A} \to (\mathscr{B} \to \mathscr{C})) \tag{假设}$$

4.
$$(\mathscr{B} \to \mathscr{C})$$
 $(2+3, MP)$

5.
$$\mathscr{C}$$
 (1+4, MP)

因此,由 演绎定理可知
$$\{\mathscr{B}, (\mathscr{A} \to (\mathscr{B} \to \mathscr{C}))\} \vdash_L \mathscr{A} \to \mathscr{C}.$$

......hw-5: feedback

• 很多同学都误解了什么是一个「L 中的证明」,在其中,是不能出现"假设"、"因为-所以"这样的字眼的。因此 p.36 1-(c) 的证明也不能用「演绎定理」,这个是内定理证明,证明的序列中出现的只能是公理或者由前面的公式使用 MP 得到。还请大家特别要注意这点!

hw-6 (2023/10/31) 期中作业

p.44: (8) Let \mathscr{A} be a wf. $((\neg p_1 \to p_2) \to (p_1 \to \neg p_2))$. Show that L^+ , obtained by including this \mathscr{A} as a new axiom, has a larger set of theorems than L. Is L^+ a consistent extension of L? (注意: 此题有两问)

Proof:

一:

据上面的真值表,显然 $\mathscr{A} = ((\neg p_1 \to p_2) \to (p_1 \to \neg p_2))$ 不是重言式。因此由 **可靠性** (Soundness Theorem), \mathscr{A} 不是 L 的定理(theorem),而它却是 L^+ 的定理。因此 L^+ 的定理集比 L 的大。

二:

 L^+ 是一致的(consistent)。假设 L^+ 不一致,则存在公式 \mathscr{B} 使得 $\vdash_{L^+} \mathscr{B}$ 且 $\vdash_{L^+} \neg \mathscr{B}$ 。因为 L^+ 是在 L 的基础上添加额外的公理 $\mathscr{A} = ((\neg p_1 \to p_2) \to (p_1 \to \neg p_2))$ 而得到的,因此可得(注意 \vdash 的下标)

$$\mathscr{A} \vdash_{L} \mathscr{B}$$
 and $\mathscr{A} \vdash_{L} \neg \mathscr{B}$.

由演绎定理 (Deduction Theorem),

$$\vdash_L \mathscr{A} \to \mathscr{B}$$
 and $\vdash_L \mathscr{A} \to \neg \mathscr{B}$,

由**可靠性**(Soundness Theorem), 这意味着 ($\mathscr{A} \to \mathscr{B}$) 和 ($\mathscr{A} \to \neg \mathscr{B}$) 都是重言式。由定义,对任意的赋值 v, $v(\mathscr{A} \to \mathscr{B}) = T$ 且 $v(\mathscr{A} \to \neg \mathscr{B}) = T$, 这表明 $v(\mathscr{A}) = F$, 即 \mathscr{A} 是**矛盾式** (contradiction)。但由上面 \mathscr{A} 的真值表我们知道这是不可能的。矛盾!

p.44: (10) Let L^{++} be the extension of L obtained by including as a fourth axiom scheme:

$$((\neg \mathscr{A} \to \mathscr{B}) \to (\mathscr{A} \to \neg \mathscr{B})).$$

Show that L^{++} is inconsistent. (Hint: see Chapter 1 exercise 7 (p.10))

Proof:

方法一

令 $\top = (p \to p)$ 且 $\varphi = (\neg \top \to \top) \to (\top \to \neg \top)$ 。显然 $\vdash_{L^{++}} \varphi$ (即令 $\mathscr{A} = \mathscr{B} = \top$). 容易验证, φ 是一个矛盾式,因此 $\neg \varphi$ 是重言式。由 **完全性(Completeness Theorem**), $\vdash_L \neg \varphi$,因为 L^{++} 是一个 L 的扩张,因此 $\vdash_{L^{++}} \neg \varphi$ 。

但此时我们同时有 $\vdash_{L^{++}} \varphi$ 且 $\vdash_{L^{++}} \neg \varphi$,据定义, L^{++} 不一致。

方法二

(下面这个证明来自 吴家儒 同学,这种证明很直接且颇具暴力美学,再次感谢家儒同学为我们带来如此精彩的证明!)

因为 $\vdash_L (p \to p)$ (参见 Example 2.7-(a) in page 31), 故 $\vdash_{L^{++}} (p \to p)$ 。令 (L4) 表示 L^{++} 的 第四条公式模式 (the fourth axiom scheme) , 即

$$(L4)$$
 $((\neg \mathscr{A} \to \mathscr{B}) \to (\mathscr{A} \to \neg \mathscr{B})).$

考虑如下 L^{++} 中的证明:

1.
$$[\neg(p \to p) \to (p \to p)] \to [(p \to p) \to \neg(p \to p)]$$
 (L4 的实例)

2.
$$[(\neg(p \to p) \to (p \to p)) \to ((p \to p) \to \neg(p \to p))] \to$$

 $[((\neg(p \to p) \to (p \to p)) \to (p \to p)) \to ((\neg(p \to p) \to (p \to p)) \to \neg(p \to p))]$ (L2 的实例)

$$3. \ ((\neg(p \to p) \to (p \to p)) \to (p \to p)) \to ((\neg(p \to p) \to (p \to p)) \to \neg(p \to p)) \tag{$1+2, MP$}$$

$$4. (p \to p) \to [(\neg(p \to p) \to (p \to p)) \to (p \to p)]$$
 (L1 的实例)

5.
$$(p \rightarrow p)$$
 是 L^{++} 的定理)

6.
$$(\neg(p \to p) \to (p \to p)) \to (p \to p)$$
 $(4+5, MP)$

7.
$$(\neg(p \to p) \to (p \to p)) \to \neg(p \to p)$$
 (6+3, MP)

8.
$$(p \to p) \to (\neg(p \to p) \to (p \to p))$$
 (L1 的实例)

9.
$$\neg (p \to p) \to (p \to p)$$
 (5 + 8, MP)

10.
$$\neg (p \to p)$$
 (9 + 7, MP)

因此 $\vdash_{L^{++}} \neg (p \to p)$,这和 $\vdash_{L^{++}} (p \to p)$ 共同说明了 L^{++} 是不一致的。

......hw-6: feedback

- 1. 大部分人还是没有区分「元语言」和「对象语言」,所以严格来说很多人的回答都是不合法的 甚至是错误的。不过改作业的时候已经采取十分宽容的态度了,还希望大家一定要重视这点, 这对后续的逻辑学习是十分重要的。
- 2. 依旧强烈建议不要使用「简化真值表」,这并不是说「简化真值表」是什么洪水猛兽大家碰不得,只不过照现在的作业来看,一画「简化真值表」就容易画错。
- 3. 虽然很多同学借鉴了教材 p.205 的提示,但这种提示往往省略了超多细节,这些细节应该要补充完整的,直接抄书行不得! 一个证明首先要说服自己才能说服别人!

- 4. 建议用黑笔! 黑笔! 黑笔! 作答,期末考试时也是一样的。
- 5. 很多同学都误用了 $(L3): (\neg \mathscr{A} \to \neg \mathscr{B}) \to (\mathscr{B} \to \mathscr{A})$ 公理,如下的公式并不是 (L3) 公理的一个实例:

$$(p \to q) \to (\neg q \to \neg p)$$
 $\vec{\boxtimes}$ $(p \to \neg q) \to (q \to \neg p)$

单单只使用公理模式 (L3) 得不到上述公式是 L 的定理的, 注意否定符号的位置。

6. 同样容易误用的是 Proposition 2.19:

Let L^* be a consistent extension of L and let φ be a formula which is not a theorem of L^* . Then L^{**} is also consistent, where L^{**} is the extension of L obtained from L^* by including $(\neg \varphi)$ as an additional axiom. (p. 40)

显然 L 是其本身的一个一致扩张,并且很多人做第 8 题第二问的时候,确实证明了 $\forall_L \neg A$,然后直接运用 **Prop. 2.19** 就说 L^+ 是 L 的一致扩张,这中间其实还有一个 gap 要补充的。

根据 **Prop. 2.19** 和 $\forall_L \neg \mathscr{A}$ 我们只能得到 $L \cup \{\neg \neg \mathscr{A}\}$ 是一致的(注意否定的个数),而题目中的是 $L^+ = L \cup \{\mathscr{A}\}$ 。虽然语义直观上 \mathscr{A} 和 $\neg \neg \mathscr{A}$ 是一个意思,但是仅仅作为字符串来说二者是完全不同的东西。因此,如果硬是要用 **Prop. 2.19** 的话,我们就必须还得论证: $L \cup \{\neg \neg \mathscr{A}\}$ 和 $L \cup \{\mathscr{A}\}$ 是同一个系统。然而这在教材中是没有明确说明的。

7. 抄作业的情况有点严重呀! 虽然鼓励同学们相互讨论,但写作业的时候也别直接抄呀,都做对就还好啦,错都错一样的话就很难说过去了:(

hw-7 (2023/11/07)

p.49: 2-(c) Translate each of the following statements into symbols, first using no existential quantifiers, and second using no universal quantifiers.

(c) No mouse is heavier than any elephant.

(注意: 题目要求大家要分别用"全称量词"和"存在量词"符号化句子,因此你的翻译至少有两句)

Answer:

令

M(x): x is a mouse

E(x): x is an elephant

H(x,y): x is heavier than y

不使用**存在量词**(existential quantifier):

- 1. $(\forall x)(\forall y)(M(x) \land E(y) \rightarrow \neg H(x,y))$, $\vec{\boxtimes}$
- 2. $(\forall x)(\forall y)(M(x) \to (E(y) \to \neg H(x,y)))$, $\vec{\boxtimes}$
- 3. $(\forall x)(M(x) \to (\forall y)(E(y) \to \neg H(x,y)))$, 或

4. 其余任何合理的答案。

不使用全称量词 (universal quantifier):

- 1. $\neg(\exists x)(\exists y)(M(x) \land E(y) \land H(x,y))$, 或
- 2. $\neg(\exists x)(M(x) \land (\exists y)(E(y) \land H(x,y)))$, 或
- 3. 其余任何合理的答案。

......hw-7: feedback

这次作业大部分人都写得很好,但有两点还请大家要尤其注意下:

1. 对谓词的拆解不完全。有人的用诸如 D(x) 这样的符号来表示谓词 "x 比老鼠重",便会有如下的翻译(E(x) 表示 "x 是大象"):

$$(\forall x)(E(x) \to D(x))$$

这种翻译就没有把谓词"... 比 ... 重"符号化。

2. 如果用 H(x,y) 表示 "x 比 y 重",有些同学会把 H(y,x) 理解为 H(x,y) 的否定,即认同 $H(y,x) = \neg H(x,y)$,进而有如下的翻译:

$$(\forall x)(\forall y)(M(x) \land E(y) \to H(y,x)) \tag{*}$$

这种翻译直观上好像可以,但仔细想想,如果我们令 x = y,就会产生下面的问题

$$H(x,x) = \neg H(x,x)$$

采用这种翻译的同学其实在脑海中预设了 H(x,y) 是一个严格偏序关系(即"反自反 + 传递"),但这就需要<mark>额外的</mark>一阶公式来说明 H 是一个严格偏序关系,因此严格来说上面的翻译(*)是不符合题意的。不过改作业还是采取了宽容的态度,但这并不说明这种答案可行,请特别注意这点!

hw-8 (2023/11/14)

p.56: 9-(d) In each case below, let $\mathscr{A}(x_1)$ be the given wf, and let t be the term $f_1^2(x_1, x_3)$. Write out the wf. $\mathscr{A}(t)$ and hence decide in each case whether t is free for x_1 in the given wf.

(d)
$$(\forall x_2)A_1^3(x_1, f_1^1(x_1), x_2) \to (\forall x_3)A_1^1(f_1^2(x_1, x_3)).$$

Recall that

- $\mathscr{A}(t)$: if x_i does occur free in $\mathscr{A}(x_1)$, then $\mathscr{A}(t)$ denotes the result of substituting term t for every free occurrence of x_i . (cf. p.54)
- t is free for x in a wf. ϕ :

定义 3.11*. (Revised defintion) 当一个项 t 可以替换 \mathscr{A} 中变元 x_i 的所有自由出现,且不会使得 t 中任何变元与 \mathscr{A} 的其他部分相互作用,我们就称 t 对 \mathscr{A} 中 x_i 是自由的。

(注意此题有两问: 你需要 1) 写出 $\mathscr{A}(t)$, 且 2) 回答 t 在 $\mathscr{A}(x_1)$ 中是否对 x_1 自由)

Answer:

注意到在

(d)
$$(\forall x_2)A_1^3(\mathbf{x_1}, f_1^1(\mathbf{x_1}), x_2) \to (\forall x_3)A_1^1(f_1^2(\mathbf{x_1}, x_3)).$$

中 x_1 有 三处出现是自由的 (free), 因此

$$\mathscr{A}(t) = (\forall x_2) A_1^3(f_1^2(x_1, x_3), f_1^1(f_1^2(x_1, x_3)), x_2) \to (\forall x_3) A_1^1(f_1^2(f_1^2(x_1, x_3), x_3))$$

显然 t 对 (d) 中的 x_1 不是自由的。

......hw-8: feedback

1. 关于代入后的结果。对 x_1 的自由出现代入 t 后,一定得在所得的公式中把 t 展开了,仅仅写成

$$(\forall x_2) A_1^3(t, f_1^1(t), x_2) \to (\forall x_3) A_1^1(f_1^2(t, x_3))$$

这个样子是不可行滴,且就定义而言,上面这个符号串也不是一个合式公式(因为一阶语言的字母表中并没有 t 这样的符号,t 只是元语言中的符号)。

2. 关于符号的写法。对于全称量词或存在量词,可以采取书上的写法,即 $\forall x_i$ 和 $\exists x_i$ 外面有对括号: $(\forall x_i)\varphi$ 、 $(\exists x_i)\varphi$ 。比较现代的记法一般省略会这对括号,直接写作: $\forall x_i\varphi$, $\exists x_i\varphi$ 。但有些同学会在把变元用括号括起来,从而有形如

$$\forall (x_i)\varphi \qquad \exists (x_i)\varphi$$

这样的写法。不过这种写法既不太美观也不通用,有时还会让人看得比较困惑,所以还是建议不要自创记法为好。

3. 关于代入自由。一个项 t 对于某个公式 φ 中的变元 x 是自由的,一定是相对于整个公式 φ 来说的,当 φ 是一个蕴含式(或者其他复合公式)时,没有「t 对 φ 的前件代入自由」或者 「t 对 φ 的后件不是代入自由」这类说法。

hw-9 (2023/11/21)

p.59: 11 Let \mathscr{L} be the first order language which includes (besides variables, punctuation, connectives and quantifier) the individual constant a_1 , the function letter f_1^2 and the predicate letter A_2^2 . Let \mathscr{A} denote the wf.

$$(\forall x_1)(\forall x_2)(A_2^2(f_1^2(x_1, x_2), a_1) \to A_2^2(x_1, x_2)).$$

Define an interpretation I of \mathscr{A} as follows. D_I is \mathbb{Z} , \bar{a}_1 is 0, $\bar{f}_1^2(x,y)$ is x-y, $\bar{A}_2^2(x,y)$ is x < y. Write down the interpretation of \mathscr{A} in I. Is this a true statement or a false one? Find another interpretation in which \mathscr{A} is interpreted by a statement with the opposite truth value.

(注意此题有三问: 1) 用自然语言 (中文/英语) 写出 $\mathscr A$ 在 I 下的直观含义; 2) 回答在 I 下 $\mathscr A$ 是

为真还是为 $(\mathbf{g}; 3)$ 基于你对第二问的回答,为公式 $\mathscr A$ 找一个新的解释,且在这个新解释中, $\mathscr A$ 的 真值与你第二问的答案恰好相反)[所以你对第二问的回答很重要]

Answer:

- (1) 公式 \mathscr{A} 在解释 I 中的直观含义如下: 对于任意整数 x_1, x_2 : 如果 $(x_1 x_2) < 0$ 那么 $x_1 < x_2$.
- (2) 上面对 \mathscr{A} 在 I 中的解释显然是**真的** (true)。
- (3) 令 $D_I = \mathbb{N}$, \bar{a}_1 指代 0, $\bar{f}_1^2(x,y)$ 意指 $x \times y$, $\bar{A}_2^2(x,y)$ 是 x > y。自然,《 在这个新解释中为假 (false)。

1. 对于第三问,当规定了论域 D_I ,一定要小心对常元 a_1 和函数符号 $f_1^2(x_1, x_2)$ 的解释是否对论域 D_I **封闭**! 比如:若我们规定 D_I 为所有**正整数**,那么就不能让 $\bar{a}_1 = 0$,因为 0 不是正整数! 同理此时不能把 $f_1^2(x_1, x_2)$ 解释为 $x_1 - x_2$,因为正整数不对(通常意义上的)减法封闭!我们当然可以重新定义那种对正整数封闭的"减法运算",不过这就得额外给出明确的形式定义。因此,当考虑为一个一阶语言中的公式寻找解释的时候,一定要注意对非逻辑符号的解释是否**对论域封闭**的问题。

hw-10 (2023/12/13)

p. 70: 22-(a) Show that none of the following wfs. is logically valid.

(a)
$$(\forall x_1)(\exists x_2)A_1^2(x_1, x_2) \to (\exists x_2)(\forall x_1)A_1^2(x_1, x_2).$$

Proof:

只需要找到一个翻译 I 使得 $I \not\models (\forall x_1)(\exists x_2)A_1^2(x_1, x_2) \to (\exists x_2)(\forall x_1)A_1^2(x_1, x_2)$ 即可。 令 $D_I = \mathbb{N}$, $\bar{A}_1^2(x, y)$ 表示 'x < y'。

显然闭公式(close wf.)($\forall x_1$)($\exists x_2$) $A_1^2(x_1, x_2)$ 在这个解释中为**真**,而 ($\exists x_2$)($\forall x_1$) $A_1^2(x_1, x_2)$ 在这个解释中为**假**。因此,每个满足前件的赋值都不满足后件。因此不存在解释 I 上的赋值满足 (a) 中的公式。进而该公式不是逻辑有效的。

1. 在找反例的时候,建议大家多找找数学上的例子。日常生活中的很多现象,比如"朋友关系"等都有很大的模糊性,不同人对这些观念的理解可能相差甚大。