Clasificación de imágenes usando Transfer Learning con Data customizada

Leonardo Leon V.

Outline

- Estado del arte
- Teoría
- Arquitecturas
- Transfer Learning
- Notebook

Deep Learning in One Slide

- What is it:
 - Extract useful patterns from data.
- How:
 - Neural network + optimization
- How (Practical):
- Python + TensorFlow & friends
- Hard Part:
 - Good Questions + Good Data
- Why now:
- Data, hardware, community, tools, investment
- Where do we stand?
 Most big questions of intelligence have not been answered nor properly formulated

Exciting progress:

- Face recognition
- Image classification
- Speech recognition
- Text-to-speech generation
- Handwriting transcription
- Machine translation
- Medical diagnosis
- · Cars: drivable area, lane keeping
- Digital assistants
- Ads, search, social recommendations
- Game playing with deep RL

History of Deep Learning Ideas and Milestones*

Perspective:

- Universe created
 13.8 billion years ago
- Earth created
 4.54 billion years ago
- Modern humans 300,000 years ago
- Civilization 12,000 years ago
- Written record 5,000 years ago

- 1943: Neural networks
- 1957: Perceptron
- 1974-86: Backpropagation, RBM, RNN
- 1989-98: CNN, MNIST, LSTM, Bidirectional RNN
- 2006: "Deep Learning", DBN
- 2009: ImageNet
- 2012: AlexNet, Dropout
- 2014: GANs
- 2014: DeepFace
- 2016: AlphaGo
- 2017: AlphaZero, Capsule Networks
- 2018: BERT

^{*} Dates are for perspective and not as definitive historical record of invention or credit

Deep Learning Frameworks

Factors to consider:

- · Learning curve
- · Speed of development
- · Size and passion of community
- Number of papers implemented in framework
- Likelihood of long-term growth and stability
- · Ecosystem of tooling

- 1. TensorFlow
- 2. K Keras
- 3. O PyTorch
- Caffe
- 5. theano
- 6. **Maxnet**
- 7. CNTK
- 8. **DL4.**
- 9. 💆 Caffe2
- ^{10.} 砕 Chainer
- 11. **fast.ai**

Why Deep Learning? Scalable Machine Learning

Interpretability of Deep Learning: https://www.youtube.com/watch?v=93Xv8vJ2 acl

Learning of object parts

Examples of learned object parts from object categories

The Challenge of Deep Learning: Efficient Teaching + Efficient Learning

- Humans can learn from very few examples
- Machines (in most cases) need thousands/millions of examples

First Steps: **Start Simple**

predictions = model.predict(test images)

(with 87% confidence)

Network

Model:

Output:

Convolutional Layer

Pooling Layer

Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Fully Connected Layer

Convolution 1x1

Regularization: Dropout

How can this possibly be a good idea?

Forces the network to have a redundant representation; Prevents co-adaptation of features

Regularization: Data Augmentation

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

SOFTMAX

PROBABILITIES

$$y \begin{bmatrix} 2.0 - \\ 1.0 - \\ 0.1 \end{bmatrix}$$

$$S(y_i) = \frac{e^{y_i}}{\sum e^{y_j}}$$

$$D(S,L) = -\frac{L_i}{i} \log_2$$

$$D(s,L) \neq D(L,S)$$

Arquitecturas

- LeNet
- AlexNet
- ZFNet
- VGG
- GoogleNet
- ResNet
- InceptionResNet
- NASNet
- Xception
- MobileNet
- SeNet

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Modelos CNN Clasificación

Human error (5.1%) surpassed in 2015

- AlexNet (2012): First CNN (15.4%)
 - 8 layers
 - 61 million parameters
- ZFNet (2013): 15.4% to 11.2%
 - 8 layers
 - · More filters. Denser stride.
- VGGNet (2014): 11.2% to 7.3%
 - Beautifully uniform:
 3x3 conv, stride 1, pad 1, 2x2 max pool
 - 16 layers
 - · 138 million parameters
- GoogLeNet (2014): 11.2% to 6.7%
 - Inception modules
 - 22 layers
 - 5 million parameters (throw away fully connected layers)
- ResNet (2015): 6.7% to 3.57%
 - More layers = better performance
 - 152 layers
- CUImage (2016): 3.57% to 2.99%
 - Ensemble of 6 models
- SENet (2017): 2.99% to 2.251%
 - Squeeze and excitation block: network is allowed to adaptively adjust the weighting of each feature map in the convolutional block.

Object Detection / Localization

Region-Based Methods | Shown: Faster R-CNN


```
ROIs = region_proposal(image)
for ROI in ROIs
    patch = get_patch(image, ROI)
    results = detector(patch)
```


Object Detection / Localization

Single-Shot Methods | Shown: SSD

Semantic Segmentation

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

"You need a lot of a data if you want to train/(se CNNs"

Transfer Learning

- Fine-tune a pre-trained model
- Effective in many applications: computer vision, audio, speech, natural language processing

Guide for How to Use Transfer Learning

Pre-trained Convolutional Neural Network

Case: Small Data Set, Similar Data

Case: Small Data Set, Similar Data

- Quitar la parte final de la red, la última FC. Agregar un FC que matchee con la cantidad de clases e inicializar pesos random. Entrenar solo los pesos de la última FC.
- Congelar los pesos de las capas anteriores para evitar overfitting. Ya que son datasets similares, las imágenes de cada uno van a tener similares high level features. Además, las capas de la red pre-entrenada contiene información relevante y debe mantenerse.

Case: Small Data Set, Different Data

Case: Small Data Set, Different Data

- Quitar la mayoría de capas pre-entrenadas hasta llegar a las características de bajo nivel .
 Agregar un FC que matchee con la cantidad de clases e inicializar pesos random. Entrenar solo los pesos de la última FC.
- Debido a que el dataset es pequeño existe la posibilidad de overfitting. Para ello se congelan los pesos.
- Al ser diferente data, no comparten características de alto nivel. Por lo que solo usaremos de bajo nivel.

Case: Large Data Set, Similar Data

Case: Large Data Set, Similar Data

- Quitar la parte final de la red, la última FC. Agregar un FC que matchee con la cantidad de clases e inicializar pesos random. Entrenar solo los pesos de la última FC.
- Inicializa los pesos de las capas de red pre-entrenada con los pesos pre-entrenados sin congelarlos y re-entrenar el modelo.
- Debido a que los datasets son de clases similares y comparten los mismo high level features, se usa toda la red.

Case: Large Data Set, Different Data

Case: Large Data Set, Different Data

- Quitar la parte final de la red, la última FC. Agregar un FC que matchee con la cantidad de clases e inicializar pesos random. Entrenar solo los pesos de la última FC.
- Inicializa los pesos de las capas de red pre-entrenada con pesos pre-entrenados como el caso anterior. En caso no fuera exitoso, iniciar los pesos en random y re-entrenar el modelo.

Notebook

https://github.com/leo2105/Keras_Introduction/blob/master/5_ CustomClassifier.ipynb

Issues:

- Usar python 3.6, pip install python=3.6
- Instalar matplotlib, pip install matplotlib
- Crear file data2

Referencias:

- http://cs231n.stanford.edu/
- https://deeplearning.mit.edu/
- https://www.udacity.com/course/deep-learning--ud730

Gracias!