Wstęp do systemu Linux / Mac

v3.1

Plan

- Nauka obsługi systemu Linux / terminala Mac
- Wprowadzenie do systemów Unix
- Poruszanie się po konsoli, system plików
- Użytkownicy
- Dostęp do plików

- Instalowanie nowych programów
- > Tematy zaawansowane
- Różnorodność w systemach Linux

Nauka obsługi systemu Linux / terminala Mac

Obsługa systemu Linux / terminala Mac

Prawie cały Internet jest oparty o systemy typu Linux. Dlatego musisz nauczyć się chociaż podstaw korzystania z tego systemu (i to używając tylko konsoli):

Obejrzyj wideotutoriale:

Najłatwiej Ci będzie nauczyć się pracy w konsoli Linuxowej patrząc jak ktoś z niej korzysta. Dlatego obejrzyj https://goo.gl/C0z6KD

Jeśli korzystasz z Maca – nie zrażaj się i również obejrzyj ten poradnik. Prawie wszystkie komendy zadziałają również u Ciebie! Informacje o różnicach znajdziesz podczas przerabiania prezentacji "Podstawy Linuxa / Mac".

Przeczytaj prezentację i zrób ćwiczenia do niej

Wprowadzenie do systemów Unix

Krótko o Linuksie

- GNU/Linux (dalej będziemy go nazywać Linux) to rodzina uniksopodobnych systemów operacyjnych.
- Linux jest jednym z przykładów wolnego i otwartego oprogramowania.
- Jego kod źródłowy może być dowolnie wykorzystywany, modyfikowany i rozpowszechniany.
- Systemy operacyjne Maców są oparte na podobnej rodzinie – stąd większość komend będzie działać dokładnie tak samo.

Co to jest shell?

- Shell jest najniższą powłoką interfejsu użytkownika typową dla systemów uniksowych.
- Jest to część systemu odpowiedzialna za podstawową interakcję z użytkownikiem.
- Każdy z shelli musi implementować podstawową liczbę komend wymaganych przez standard.
- Najczęściej każdy z nich usprawnia standard przez rozszerzenie liczby poleceń.

Przydatne skróty

CTRL + C	Przerywa pracę procesu.	
CTRL + D	Wysyła sygnał EOF (end-of-file).	
CTRL + R	Przeszukuje historię pod względem podanych liter.	
CTRL + Z	Zatrzymuje proces.	
CTRL + A	TRL + A Przenosi kursor na początek linii.	

Wprowadzenie do systemów Unix

Historia poleceń

Powłoka shell zapamiętuje ostatnio używane komendy (domyślnie – 1000):

- history pokazuje listę używanych komend,
- !! wykonuje ostatnią komendę,
- !-3 wykonuje trzecią komendę od końca z listy,
- > !5 wykonuje piątą komendę z listy,
- !grep wywołuje ostatnią komendę zaczynającą się od grep,

W nowszych shellach do wywołania historii poleceń służy skrót klawiszowy: **CTRL** + **R**.

Edytor tekstu

- Gedit podstawowy (zainstalowany od początku) edytor tekstu w Ubuntu. Ma wspomaganie dla systemu kodowania UTF-8.
- Vi podstawowy edytor tekstu w konsoli. Nieporęczny i trudny, ale użyteczny. Warto jednak nauczyć się jego obsługi, jeżeli pracujemy przez SSH. Niezastąpiony przy pracy z wielkimi plikami.
- Geany słynny multiplatformowy edytor tekstu. Bogata liczba opcji czyni go jednym z lepszych edytorów dla programistów.

Edytor Vi

Podstawy użytkowania Vi

Vi działa w dwóch trybach:

- komend tryb, w którym wpisujemy komendy programu (takie jak: zapisz plik, zamknij program itp.). Żeby z niego przejść do trybu edycji należy wcisnąć klawisz I (od słowa "insert").
- edycji tryb, w którym mamy możliwość edycji pliku. Żeby z niego przejść do trybu komend wciskamy klawisz ESC.

Podstawowe komendy Vi

:30	Przesuwa kursor do wskazanej linii
/ <ciąg_znaków></ciąg_znaków>	Wyszukuje dany napis (np. /anything)
? <ciąg_znaków></ciąg_znaków>	Wyszukuje dany napis wstecz (od końca pliku)
n	Znajduje następne wystąpienie danego wyszukiwania
N	Znajduje poprzednie wystąpienie danego wyszukiwania
:e <nazwa_pliku></nazwa_pliku>	Otwiera nowy plik o podanej nazwie
: W	Zapisuje plik
: w!	Zapisuje plik, nadpisując pozwolenia danego pliku (zdejmuje read-only)
:w <nazwa_pliku></nazwa_pliku>	Zapisuje do nowego pliku o podanej nazwie
: q	Wychodzi z programu

9

Struktura katalogów w systemie Linux

/	Główny katalog w systemie (wszystkie katalogi są podkatalogami /)
/dev	Katalog, w którym znajdują się wszystkie urządzenia.
/proc	Katalog wymiany danych komunikacji międzyprocesowej. Zawiera też szczególne informacje na temat systemu. Nie zawiera w sobie żadnego "realnego" pliku.
/etc	Katalog zawiera w sobie pliki konfiguracyjne, pliki używane przez podsystemy Uniksa (np. bazy danych).
/sbin	Katalog zawierający podstawowe pliki binarne potrzebne do działania systemu.
/lib	Katalog zawierający biblioteki zainstalowane w systemie.
/mnt	Katalog, w którym montowane są wszystkie dyski.
/bin	Katalog zawierający programy.

/etc/init.d	Katalog zawierający skrypty uruchamiane podczas startu systemu.
/etc/profile.d	Katalog uruchamiający skrypty uruchamiane przy logowaniu danego użytkownika.
/home	Katalog domowy użytkownika.
/root	Katalog domowy użytkownika root (głównego użytkownika systemu).
/tmp	Katalog zawierający pliki chwilowe potrzebne do działania programów i systemu.
/usr	Katalog zawierający pliki wykonywalne programów, kod źródłowy, biblioteki i dokumentacje.

Struktura katalogów w systemie Mac

/	Główny katalog w systemie (wszystkie katalogi są podkatalogami /).
/Applications	Katalog, w którym instalowane są aplikacje.
/Volumes	Katalog, w którym montowane są wszystkie dyski (w tym pliki dmg z aplikacjami) np. CD-ROM.
/etc	Katalog zawierający pliki konfiguracyjne, pliki używane przez podsystemy Maca (np. bazy danych).
/sbin	Katalog zawierający podstawowe pliki binarne potrzebne do działania systemu.
/Library	Katalog zawierający biblioteki zainstalowane w systemie.
/bin	Katalog zawierający programy.

/dev	Katalog, w którym znajdują się wszystkie urządzenia.
/etc/profile	Katalog uruchamiający skrypty uruchamiane przy logowaniu danego użytkownika.
/Users	Katalog domowy użytkownika.
/System	Katalog zawierający pliki systemowe.
/tmp	Katalog zawierający pliki chwilowe potrzebne do działania programów i systemu.
/usr	Katalog zawierający pliki wykonywalne programów, kod źródłowy, biblioteki i dokumentacje.

Podstawowe komendy – pliki i katalogi

ls	Wyświetla wszystkie pliki.	ls -la ls -l	wyświetla także pliki ukryte, wyświetla dodatkowe informacje.
mkdir <dirname></dirname>	Tworzy katalog		
cd <dirname></dirname>	Przechodzi do wskazanego katalogu.	cd . cd . cd ~	obecny katalog, katalog bezpośrednio wyżej, katalog domowy.
pwd	Wyświetla ścieżkę do katalogu, w którym się znajdujemy.		
cp <file1> <file2></file2></file1>	Kopiuje <file1></file1> na miejsce <file2></file2> .		
mv <file1> <file2></file2></file1>	Przenosi <file1></file1> na miejsce <file2></file2> .		

Podstawowe komendy – pliki i katalogi

rm <file></file>	Usuwa plik <file></file> .	rm -r	Usuwa także katalogi.
rmdir <dirname></dirname>	Usuwa katalog		
cat <file></file>	Wyświetla wskazany plik.		
less <file></file>	Wyświetla wskazany plik strona po stronie.		
head <file></file>	Wyświetla pierwsze 10 linii pliku.	head -n	Wyświetla pierwsze n linii.
tail <file></file>	Wyświetla ostatnie 10 linii pliku.	tail -n	Wyświetla ostatnie n linii.
wc <file></file>	Podaje liczbę słów, znaków, linii lub bajtów w pliku (lub potoku).	wc -l wc -c wc -w wc -m	liczba linii, liczba linii, liczba słów, liczba znaków.
touch <file></file>	Tworzy pusty plik o podanej nazwie.		

Podręczniki systemowe

man <nazwa_komendy> - otwiera podręcznik pomocy danej komendy np. man ls.

Komenda z jednym z tych parametrów wyświetla dodatkowe instrukcje:

```
<nazwa_komendy> --help
```

<nazwa_komendy> -h

apropos com – wyświetla wszystkie komendy mające słowo **com** w nagłówku swojego podręcznika.

Podstawowe komendy – grep

- Grep służy do wyszukiwania danego ciągu znaków w podanych plikach. Podstawowym użyciem jest: grep "wyszukiwana fraza" plik.
- W takim przypadku wynikiem są wszystkie linie zawierające daną frazę w podanym pliku.

Przykład:

grep -i "lorem" readme.txt

Podstawowe opcje komendy grep

-i	Wyszukuje, nie zważając na wielkość znaków.
-w	Wyszukuje tylko pełne słowo.
- A <n></n>	Pokazuje n linii po wyszukanym słowie.
-B <n></n>	Pokazuje n linii przed wyszukanym słowem.
- r	Wyszukuje rekursywnie we wszystkich plikach podanego katalogu.
- v	Wyszukuje wszystkie linijki niezawierające podanego słowa.
- C	Podaje liczbę linii, które pasują do wzorca.
-1	Wypisuje nazwy plików, w których znalazł dane słowo.
- n	Dodaje numer linii, w której znalazł słowo.

Podstawowe komendy

find

Komenda wyszukująca pliki to **find**. Jej ogólna forma to:

find <katalog_startowy> <kryteria>
<akcje>

Przykład:

find . -name "pattern" -print

Podstawowe opcje komendy find

-atime n	Plik, który został otwarty n dni temu. Np. +7 – otwarty dawniej, niż 7 dni temu.
-mtime n	Plik, który został zmodyfikowny n dni temu. Np. -7 – zmodyfikowany nie później, niż 5 dni temu.
-size n	Plik ma n bloków wielkości (blok to 512 bajtów). Np. + 100 – plik większy niż 100 bloków (50kB).
-type f	Wyszukuje po typie pliku. Np. $\mathbf{f} = \text{plik tekstowy (w przykładzie), } \mathbf{d} = \text{katalog.}$
-name nam	Wyszukuje plik wg nazwy (w tym przypadku nam).

-user usr	Nazwa właściciela pliku to usr .	
-group grp	Właściciel pliku należy do grupy grp .	
-perm p	Typ dostępu do pliku to p (gdzie p to liczba).	
-print	Wyświetla ścieżkę do pliku.	
-exec cmd Wykonuję komendę cmd na pliku.		

Potok

Potok

Potok (pipe) – jeden z mechanizmów komunikacji międzyprocesowej, umożliwiający wymianę danych pomiędzy dwoma procesami. Odbywa się to najczęściej przez połączenie **STDOUT** z **STDIN** innego procesu, na przykład:

ps aux | less
cat plik | grep -i a

command > file	Przekierowuje STDOUT z komendy command do pliku file, nadpisując go.
command >> file	Przekierowuje STDOUT z komendy command do pliku file, rozszerzając go.
command < file	Przekierowuje STDIN z pliku file do komendy command .
cat file1 file2 > file0	Skleja file1 i file2 , wynik zapisując do file0 .

Rodzaje użytkowników w systemach Unix

Oto trzy główne typy użytkowników:

- root tak zwany superuser ma całkowity dostęp do maszyny, może wywoływać każdą komendę,
- konta systemowe potrzebne do działania systemu i krytycznych dla niego procesów,
- konta użytkowników konto normalnego użytkownika.

Podstawowe komendy w systemie Linux

adduser <username></username>	Dodaje użtkownika do systemu	 -d homedir – wskazuje na, już istniejący, katalog domowy. -g groupname – podczas tworzenia, dodaje użytkownika
usermod <username></username>	Zmienia atrybuty użytkownika	do podanej grupy. -m - tworzy nowy katalog domowy -l - zmienia nazwę użytkownika (tylko dla usermod).
deluser <username></username>	Usuwa użytkownika	- r – niszczy katalog danego użytkownika.

Coders Lab

Podstawowe komendy

Grupy

addgroup <groupname></groupname>	Dodaje grupę do systemu	 -g id - numer id grupy, -o - daje możliwość użycia zajętego już numeru id, -r - dodaje konto systemowe
groupmod <groupname></groupname>	Zmienia opcje grupy	do grupy, -f - opcja ta powoduje, że funkcja zwróci success, jeżeli grupa już istnieje, -n - zmienia nazwę grupy (tylko groupmod).
delgroup <groupname></groupname>	Usuwa grup	oę

sudo

- sudo nazwa_komendy wywołuje daną komendę na poziomie administratora systemu (podobne możliwości jak root).
- sudo su otwiera nową powłokę, w której działamy jako admin.
- visudo pozwala na bezpieczną konfigurację pliku sudoers (oznaczającego, kto ma prawa do używania komendy sudo).

Zarządzanie użytkownikami w systemie Mac

W systemie Mac zarządzanie użytkownikami odbywa się przez dedykowany ekran w preferencjach systemowych nazywany "użytkownicy i grupy".

Oprócz tego polecenia sudo i visudo działają dokładnie tak samo jak w systemie Linux.

Edycja użytkowników w systemie Mac

Użytkownicy i grupy Q Szukaj Logowanie Bieżący użytkownik Piotr Szmielew Najpierw odblokuj ▼ Inni użytkownicy Użytkownik Gość Wyłączone możliwość edycji ▶ Grupy użytkowników Wizytówka Kontaktów: Otwórz... (podaj w następnym ✓ Użytkownik może administrować komputerem Opcje logowania Włącz nadzór rodzicielski Nadzór rodzicielski... okienku swoje hasło) Aby dokonać zmian, kliknij w kłódkę Potem możesz już dodać

Możesz również zmienić swoje hasło

użytkownika (lub grupę) klikając znak +

Prawa dostępu

Po wpisaniu komendy: ls -lg

- przykładowy output jest następujący:

drwxr-xr-x 9 Agata 4096 kwi 9 14:22 M_00_S_07_Podstawy_Linuxa_lub_Maca

- Pierwszy symbol (w tym zapisie drwxrxr-x) oznacza, czy dany element jest katalogiem czy nie (czyli d oznacza katalog, plik jest określany kreską -).
- Następne 9, to opis praw dostępu.
- Dalej jest nazwa grupy, do której należy plik, wielkość, data utworzenia i nazwa pliku (lub katalogu).

Opis rwx

- Pierwsze trzy znaki oznaczają możliwości dostępu dla właśnie zalogowanego użytkownika (r - read, w - write, x - execute).
- Dalsze trzy oznaczają dostęp dla grupy, do której należy dany plik.
- Ostatnie trzy prawa dostępu dla wszystkich innych.

Zmiana praw dostępu do pliku

chmod – komenda zmieniająca uprawnienia dostępu do pliku.

Przykład:

chmod a=rw file.txt

- a oznacza wszystkich użytkownikow systemu,
- → rw oznacza odczyt i zapis,
- file.txt nazwa pliku, któremu zmieniamy uprawnienia.

Zapis ten oznacza, że użytkownikom zdefiniowanym przed znakiem = przyporządkowujemy prawa zdefiniowane po znaku. Szczegóły w tabelce obok.

	Hiżytkownik
u	Użytkownik
g	Grupa
0	Inni
a	Wszyscy (to samo co połączenie u , g , o)
r	Odczyt
W	Zapis (i usunięcie)
X	Uruchomienie (w przypadku katalogu dostęp)
+	Dodanie uprawnień
_	Zabranie uprawnień

Coders Lab

Zmiana grupy, do której należy plik

chgrp

chgrp – komenda zmieniająca grupę pliku tylko do takiej grupy, do której użytkownik sam należy.

chgrp nazwa_grupy plik1 plik2

Nazwa grupy

Przykład

chgrp CodersLab cwiczenie1.txt

chown

chown – komenda służąca do zmiany właściciela pliku (co zmienia też grupę). Może być wywoływana tylko przez administratora systemu (poprzez sudo).

Instalowanie menedżera pakietów na MacOs

- System operacyjny MacOs nie ma domyślnie menedżera pakietów.
- Aby zainstalować najpopularniejszego managera wejdź na stronę http://brew.sh i wpisz w terminal podaną tam komendę instalacyjną.

Uwaga! Brew nigdy nie powinno być używane z sudo!

Jeśli użyłeś naszego programu instalacyjnego będziesz już mieć zainstalowane Homebrew.

Zarządzanie pakietami

Zarządzanie pakietami (apt)

Aktualizowanie listy pakietów:

- Linux
 sudo apt-get update
- MacOs
 brew upgrade

Instalacja pakietu:

- Linux
 sudo apt-get install
 nazwa_pakietu
- MacOs
 brew install nazwa pakietu

Kasowanie pakietów:

- Linux:
 sudo apt-get remove nazwa_pakietu
- MacOs: brew uninstall nazwa_pakietu

Kasowanie pakietu z zależnościami:

- Linux:
 sudo apt-get --purge remove
 nazwa_pakietu
- MacOs: brew uninstall nazwa_pakietu

Zarządzanie pakietami

Pobieranie kodów źródłowych:

- Linux
 sudo apt-get source nazwa_pakietu
- MacOs niezaimplementowane

Wyszukiwanie pakietu:

- Linux
 sudo apt-cache search
 nazwa_pakietu
- MacOs
 brew search nazwa_pakietu

Aktualizowanie wszystkich pakietów:

sudo apt-get upgrade

Aktualizowanie dystrybucji:

sudo apt-get dist-upgrade

Kasowanie wszystkich pobranych plików:

sudo apt-get clean

Zarządzanie pakietami

Zarządzanie pakietami (Debian, Ubuntu, Mint)

Polecenie dpkg służy do instalacji pobranych plików .deb.

- Instalacja pakietu:
 sudo dpkg -i nazwa_pakietu
- Kasowanie pakietu: sudo dpkg -r nazwa pakietu

Procesy

- ps komenda wypisująca wszystkie procesy.
- Użyteczna w połączeniu z grep, poniższa komenda pokaże wszystkie procesy, które w nazwie mają "chrome":

ps aux | grep chrome

pstree – pokazuje procesy (tylko te należące do użytkownika) w formie drzewa procesów.

Opcje komendy ps

-a	Pokazuje procesy innych użytkowników
-e	Pokazuje rozszerzone informacje
- u	Pokazuje dodatkowe informacje (jak opcja - f)
- X	Pokazuje informacje o procesach nieznajdujących się w terminalu

Procesy

Informacje wyświetlane przez PS

UID	ID użytkownika, który stworzył proces	
PID	ID procesu	
PPID	ID procesu rodzica	
C	Procent CPU, jaki pochłania proces	
STIME	Czas startu procesu	
TTY	Terminal, na którym działa proces	
TIME	Czas CPU, jaki proces zużył	
CMD	Komenda, która wystartowała proces	

Procesy

Typy procesów

- Zombie proces, który nadal jest widoczny w tabeli procesów, choć się skończył. Stan taki może nastąpić, jeżeli proces rodzic został zamknięty niepoprawnie. Często opisywany też jako defunct.
- Orphan działający proces, którego rodzic został zniszczony. Proces taki może cały czas poprawnie się zamknąć.
- Deamon proces systemowy działający w tle bez podpiętego terminala. Zazwyczaj celem demona jest ciągłe lub okresowe powtarzanie jakiegoś działania.

Niszczenie procesów

- kill [sygnał] [PID] komenda wysyłająca sygnał do procesu. Sygnały niszczące (zabijające) procesy:
 - -SIGTERM (-15)
 - -SIGKILL (-9)
- killall [nazwa-procesu] Wysyła sygnał do wszystkich procesów o danej nazwie.
- Obie komendy wyślą SIGTERM, jeżeli nie zostanie podany żaden sygnał.
- Żeby zabić proces zombie najczęściej trzeba zabić proces jego rodzica (PPID).

Praca ze zdalną konsolą

Praca ze zdalną konsolą

- SSH skrót od secure shell. Protokół pozwalający na bezpieczne zalogowanie się do komputera przez sieć.
- Logujemy się poprzez komendę: ssh user@host.pl
- Przydatne komendy podczas używania SSH:
 - → w lista zalogowanych osób,
 - whoami pokazuje login aktualnie zalogowanego użytkownika,
 - uptime pokazuje, ile czasu upłynęło od startu systemu.

Komenda screen

- screen program pozwalający na tworzenie wirtualnych sesji. Sesje te działają do czasu wyłączenia systemu lub ręcznego ich zamknięcia. Bardzo przydatne przy uruchamianiu skryptów przez SSH.
- screen -S nazwa_sesji tworzy sesję o podanej nazwie.
- > screen -d -R nazwa_sesji przywraca sesję.
- CTRL+A+D odłącza sesję (nie zamykając jej).
- CTRL+A+K zamyka sesję.

Harmonogram zadań

- cron demon (proces działający w tle), którego praca polega na okresowym wywoływaniu innych programów.
- crontab tabela zadań, które cron ma uruchamiać, z dokładnym określeniem czasu, w którym mają być uruchomione.

Opcje

-е	edycja
- V	wyświetlanie czasu ostatniej edycji
-1	wyświetlenie
-r	usunięcie całego pliku crontab

Przykładowy wygląd pliku crontab

Aby dodać zadanie, które będzie uruchomione co określony czas, musimy dodać */<odstęp czasu> w odpowiednim polu.

Przykład

*/5 * * * * /backup.sh - uruchomi skrypt co pięć minut.

```
# For details see man 4 crontabs

# Example of job definition:

# .------ minute (0 - 59)

# | .----- hour (0 - 23)

# | | .---- day of month (1 - 31)

# | | | .---- month (1 - 12) OR jan, feb, mar, apr ...

# | | | | .--- day of week (0 - 6) (Sunday=0 or 7) OR sun, mon, tue, wed, thu, fri, sat

# | | | | | |

# * * * * user-name command to be executed
```

Zmienne systemowe

- Zmienne środowiska shell zmienne krótkoterminowe, czyszczone pod koniec działania powłoki.
- Zmienne systemowe zmienne długoterminowe, zapamiętywane między sesjami użytkownika.
- Wypisanie zmiennej:
 echo \$<nazwa_zmiennej>
- Nastawienie zmiennej:
 set <nazwa_zmiennej>=wartość

Zmienne systemowe			Zmienne shella	
USER	Nazwa zalogowanego użytkownika	cwd	Ścieżka, w której się znajdujesz	
HOME	Ścieżka do katalogu domowego	home	Ścieżka katalogu domowego	
HOST	Nazwa komputera	path	Katalogi, w których shell szuka programu do wywołania.	
ARCH	Architektura procesora			
DISPLAY	Nazwa środowiska graficznego			
PATH	Katalogi, w których shell szuka programów do wywołania.			

Symlinki i hardlinki

- symlink wskaźnik na plik znajdujący się w innym miejscu. Jeżeli zmienimy nazwę pliku lub przeniesiemy go, symlink zostanie zepsuty. Jeżeli plik zostanie podmieniony, symlink zacznie wskazywać na nowy plik.
- hardlink wskaźnik na docelowe miejsce na dysku (inode). W chwili przeniesienia pliku hardlink będzie poprawnie na niego wskazywał. Może być utworzony tylko na tym samym systemie plików.

Tworzenie

hardlink:

ln /root/file1 /root/file2

> symlink:

ln -s /root/file1 /root/file2

Najpopularniejsze wersje Linuksa

- > Ubuntu
 - jedna z najpopularniejszych dystrybucji Linuksa,
 - > ma wiele własnych dystrybucji.
- Linux Mint
 - user experience bardzo podobny do systemu Windows,
 - system działający na zasadzie out of the box.

- Debian
 - > jedna ze starszych dystrybucji,
 - > służył jako baza m.in. dla Ubuntu,
 - czysty system operacyjny.

Najpopularniejsze wersje Linuksa

> Fedora

- system wprowadzający najwięcej zmian, ciągle dodający najnowsze udogodnienia,
- bardziej problematyczna instalacja systemu, mniejsza stabilność.

OpenSUSE

- alternatywa dla Mint, Ubuntu i podobnych systemów,
- łatwy w instalacji i użytkowaniu.

> Arch

- system dla zaawansowanych użytkowników,
- Daje możliwość stworzenia całkowicie spersonalizowanego systemu.

Najpopularniejsze typy shelli

Bourne Shell (sh)

- Dostępna na każdym systemie typu Unix (wyznacza standard)
- Druga powłoka używana w systemach Unix (stworzona w 1977 roku).
- Główne ograniczenie to niemożliwość działania na liczbach całkowitych bez tworzenia nowego procesu.
- Można go zidentyfikować podczas używania po znaku \$ znajdującym się na początku linii.

Bash

- > Akronim od Bourne-Again Shell.
- Domyślna powłoka w większości systemów typu Linux oraz w systemie Mac OS X (wersie 10.3+).
- Pozwala na pracę w trybie konwersacyjnym (interaktywne wprowadzanie poleceń) i wsadowym (poprzez skrypty).
- Rozszerza standard sh np. przez:
 - > działania na liczbach całkowitych,
 - > przekierowywanie wejścia i wyjścia,
 - > wyrażenia regularne (Bash 3.0+).

Najpopularniejsze typy shelli

Z shell (zsh)

- Potężne rozwinięcie standardu sh dla zaawansowanych użytkowników zawierające m.in.:
 - programowalne autouzupełnianie komend,
 - współdzielenie historii komend pomiędzy działającymi powłokami,
 - rozbudowane wyszukiwanie plików (nieopierające się na programach typu **find**), autokorektę,
 - całkowitą kompatybilność z sh (może się podszywać pod powłokę sh).

C shell (csh)

- Powłoka stworzona dla systemu BSD.
- Główna zmiana polega na stworzeniu języka podobnego do C jako języka głównego powłoki.
- Pomimo dodania wielu usprawnień do standardu powłoka nie przyjęła się i jest uważana za problematyczną.

Coders Lab

Najlepsze emulatory terminalu

Terminator

- Zaawansowany i uznawany za jeden z najlepszych emulatorów.
- Główne jego funkcjonalności to:
 - różne schematy kolorystyczne (także user defined),
 - możliwość doinstalowania różnych pluginów,
 - dodatkowe skróty klawiszowe dla najczęstszych komend,
 - dzielenie okna na pomniejsze wirtualne terminale i możliwość zmiany ich wielkości.

Guake

- Emulator całkowicie napisany w Pythonie.
- ➤ Jako jeden z pierwszych wprowadził ukrywanie emulatora pod górnym paskiem systemowym (bazowane na emulatorach z gier FPS).
- Stworzony dla środowiska graficznego GNOME.

Najlepsze emulatory terminalu

Yakuake

- Emulator podobny do Guake, przeznaczony dla systemów opartych na środowisku graficznym KDE.
- > Główne cechy:
 - konfigurowalna wielkość i animacja opadania,
 - > interfejs tabelkowy.

"GADAĆ JEST ŁATWO, POKAŻCIE MI KOD."

— L. TORVALDS