

PORTLAND STATE UNIVERSITY

Project Report

ECE_586_WINTER2023

RISC-V Instruction Set Architecture Simulator

By:

Adithya Rajesh Sanket Patil Viraj Pashte Zoheb Mohammed Anis Mir

Introduction

RISC-V is an open-source, modular Instruction Set Architecture (ISA) that is gaining significant attention in the computing industry. It is designed to be simple, elegant, and extensible, allowing for customization and specialization for different applications. The RISC-V 32I base integer instruction set architecture is the most fundamental version of the RISC-V ISA, providing a basic set of instructions for implementing a general-purpose computer. This instruction set includes 32 registers, basic arithmetic, logical, and memory instructions, and control transfer instructions. The simplicity and flexibility of the RISC-V 32I make it an ideal choice for embedded systems, microcontrollers, and other low-power devices.

In addition to the base integer instruction set architecture (32I), RISC-V also includes M and F type instructions. The M extension adds integer multiplication and division operations, while the F extension adds support for single-precision floating-point operations. These extensions are optional and can be added to the base integer instruction set as needed for specific applications. The M and F type instructions expand the capabilities of RISC-V, making it suitable for a wider range of applications, including scientific computing, graphics processing, and signal processing. The modularity of the RISC-V ISA allows for custom instruction sets to be designed and added, which can provide significant performance gains for specific tasks.

Specifications:

Base ISA:

RV32I

31	27	26	25	24		20	19	1.	5 14	1	12	11	7	6		0	
	funct7				rs2		r	s1	fu	nc	t3	1	.d	ор	code		R-type
	im	m[1	1:0]			r	s1	fu	nc	t3	1	.q	ор	code		I-type
	imm[11:5]				rs2		r	s1	fu	nc	t3	imm	ո[4:0]	ор	code		S-type
	imm[12 10:	5]			rs2		r	s1	fu	nc	t3	imm[4:1 11]	ор	code		B-type
				im	m[31:	12]						1	'd	ор	code		U-type
		i	mn	า[20	10:1	11 19	1:12]					1	.q	ор	code		J-type

RV32I Base Instruction Set

	KV321 Base Instru	iction Set		0110111	1
imm[3			rd	0110111	LUI
imm[3			rd	0010111	AUIPC
imm[20 10:	<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>		rd	1101111	JAL
imm[11:0]	rs1	000	rd	1100111	JALR
imm[12 10:5] rs2		000	imm[4:1 11]	1100011	BEQ
imm[12 10:5] rs2		001	imm[4:1 11]	1100011	BNE
imm[12 10:5] rs2		100	imm[4:1 11]	1100011	BLT
imm[12 10:5] rs2	2 rs1	101	imm[4:1 11]	1100011	BGE
imm[12 10:5] rs2	2 rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5] rs2	2 rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:0]	rs1	000	rd	0000011	LB
imm[11:0]	rs1	001	rd	0000011	LH
imm[11:0]	rs1	010	rd	0000011	LW
imm[11:0]	rs1	100	rd	0000011	LBU
imm[11:0]	rs1	101	rd	0000011	LHU
imm[11:5] rs2	2 rs1	000	imm[4:0]	0100011	SB
imm[11:5] rs2	2 rs1	001	imm[4:0]	0100011	SH
imm[11:5] rs2	2 rs1	010	imm[4:0]	0100011	SW
imm[11:0]	rs1	000	rd	0010011	ADDI
imm[11:0]	rs1	010	rd	0010011	SLTI
imm[11:0]	rs1	011	rd	0010011	SLTIU
imm[11:0]	rs1	100	rd	0010011	XORI
imm[11:0]	rs1	110	rd	0010011	ORI
imm[11:0]	rs1	111	rd	0010011	ANDI
0000000 shar	nt rs1	001	rd	0010011	SLLI
0000000 shar	nt rs1	101	rd	0010011	SRLI
0100000 shar	nt rs1	101	rd	0010011	SRAI
0000000 rs2	2 rs1	000	rd	0110011	ADD
0100000 rs2	2 rs1	000	rd	0110011	SUB
0000000 rs2	2 rs1	001	rd	0110011	SLL
0000000 rs2	2 rs1	010	rd	0110011	SLT
0000000 rs2	2 rs1	011	rd	0110011	SLTU
0000000 rs2	2 rs1	100	rd	0110011	XOR
0000000 rs2	2 rs1	101	rd	0110011	SRL
0100000 rs2		101	rd	0110011	SRA
0000000 rs2	2 rs1	110	rd	0110011	OR
0000000 rs2	2 rs1	111	rd	0110011	AND
fm pred s	succ rs1	000	rd	0001111	FENCE
00000000000	00000	000	00000	1110011	ECALL
00000000001	00000	000	00000	1110011	EBREAK

RV32M

RV32M Standard Extension

0000001	rs2	rs1	000	rd	0110011	MUL
0000001	rs2	rs1	001	rd	0110011	MULH
0000001	rs2	rs1	010	rd	0110011	MULHSU
0000001	rs2	rs1	011	rd	0110011	MULHU
0000001	rs2	rs1	100	rd	0110011	DIV
0000001	rs2	rs1	101	rd	0110011	DIVU
0000001	rs2	rs1	110	rd	0110011	REM
0000001	rs2	rs1	111	rd	0110011	REMU

RV32F

31	27	26	25	24	20	19	15	14	12	11	7	6	0	
	funct7	7			rs2	rs	s1	fun	ct3	r	d	opo	code	R-type
rs	:3	fur	nct2		rs2	rs	s1	fun	ct3	r	d	орс	code	R4-type
	i	mm	[11:0]		rs	s1	fun	ct3	r	d	opo	code	l-type
	imm[11	:5]			rs2	rs	s1	fun	ct3	imm	[4:0]	орс	code	S-type

RV32F Standard Extension

	mm[11:0]	rs1	010	rd	0000111	FLW
imm[11:	:5]	rs2	rs1	010	imm[4:0]	0100111	FSW
rs3	00	rs2	rs1	rm	rd	1000011	FMADD.S
rs3	00	rs2	rs1	rm	rd	1000111	FMSUB.S
rs3	00	rs2	rs1	rm	rd	1001011	FNMSUB.S
rs3	00	rs2	rs1	rm	rd	1001111	FNMADD.S
000000	0	rs2	rs1	rm	rd	1010011	FADD.S
000010		rs2	rs1	rm	rd	1010011	FSUB.S
000100	0	rs2	rs1	rm	rd	1010011	FMUL.S
000110	00	rs2	rs1	rm	rd	1010011	FDIV.S
010110	0	00000	rs1	rm	rd	1010011	FSQRT.S
001000	0	rs2	rs1	000	rd	1010011	FSGNJ.S
001000	00	rs2	rs1	001	rd	1010011	FSGNJN.S
001000	0	rs2	rs1	010	rd	1010011	FSGNJX.S
001010		rs2	rs1	000	rd	1010011	FMIN.S
001010	0	rs2	rs1	001	rd	1010011	FMAX.S
110000	0	00000	rs1	rm	rd	1010011	FCVT.W.S
110000	00	00001	rs1	rm	rd	1010011	FCVT.WU.S
111000	00	00000	rs1	000	rd	1010011	FMV.X.W
101000	00	rs2	rs1	010	rd	1010011	FEQ.S
101000	0	rs2	rs1	001	rd	1010011	FLT.S
101000	0	rs2	rs1	000	rd	1010011	FLE.S
111000	0	00000	rs1	001	rd	1010011	FCLASS.S
110100	00	00000	rs1	rm	rd	1010011	FCVT.S.W
110100	00	00001	rs1	rm	rd	1010011	FCVT.S.WU
111100	00	00000	rs1	000	rd	1010011	FMV.W.X

32-bits integer & floating point registers

	x0 / zero	
	x0 / Zero	
	x2	
	x2 x3	
	x4	
	x5	
	x6	
	x7	
	x8	
	х9	
	x10	
	x11	
	x12	
	x13	
	x14	
	x15	
	x16	
	x17	
	x18	
	x19	
	x20	
	x21	
	x22	
	x23	
	x24	
	x25	
	x26	
	x27	
	x28	
	x29	
	x30	
	x31 XLEN	
XLEN-1	ALEN	
VFEIA-T	рс	0

FLEN-1		0
	f0	
	f1	
	f2	
	f3	
	f4	
	f5	
	f6	
	f7	
	f8	
	f9	
	f10	
	f11	
	f12	
	f13	
	f14	
	f15	
	f16	
	f17	
	f18	
	f19	
	f20	
	f21	
	f22	
	f23	
	f24	
	f25	
	f26	
	f27	
	f28	
	f29	
	f30	
	f31	
	FLEN	
31		0
	fcsr	
	32	

									3	2-bit	RIS	C-VI	nstru	ictio	n Fo	rma	ts														
Instruction Formats	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14 13 12 11 10			9	8	7	6	6 5 4 3 2 1		1 0				
Register/register	ster/register funct7							rs2					rs1			funct3			rd				opcode								
Immediate						imm	[11:0]]							rs1			f	unct	3			rd				opcode				
Upper Immediate									i	mm[3	31:1	2]										rd					op	cod	9		
Store			imr	n[11	:5]					rs2					rs1			f	unct	3	imm[4:0]			opcode							
Branch	[12] imm[10:5] rs2									rs1			f	unct	3	İ	mm[4:1]	1] [11] opcode												
Jump	ump [20] imm[10:1]				[11]			ir	mm[19:12	2]					rd					op	cod	9								

- opcode (7 bit): partially specifies which of the 6 types of instruction formats
- funct7 + funct3 (10 bit): combined with opcode, these two fields describe what operation to perform
- rs1 (5 bit): specifies register containing first operand
- rs2 (5 bit): specifies second register operand
- rd (5 bit):: Destination register specifies register which will receive result of computation

Modes:

Normal Mode:

It is the PC and hexadecimal value of each instruction as it's fetched along with the contents (in hexadecimal) of each register after the instruction's execution.

Silent Mode:

It prints the PC of the final instruction and hexadecimal value of each register by the end of the simulation.

• Debug Mode:

Provides the ability to single step and print contents of register, memory, display current instruction and move forward one by one.

Design:

Github repository link:

https://github.com/adrajesh/ece526_finalproj_g2.git

Execution commands:

- 1) rvgcc -S -fpic -march=rv32g -mabi=ilp32 prog.c (here we use the rv32g to indicate general. This will run the M and F instructions and compile the assembly using correct instructions. If you want to run only the I instructions, use rv32i)
- 2) rvas -ahld prog.s -o prog.o
- 3) rvobjdump -d prog.o | grep -o
 ^[[:blank:]]*[[:xdigit:]]*' > prog.mem
- 4) g++ riscv_simul.cpp -o riscv_simul

Test Plan

1. AddSubAndOrXor.mem

The above memory image file tests the following instructions

- ADD
- SUB
- AND
- OR
- XOR

For the ADD instruction we check the result when we add

- 2 positive integers
- 2 negative integers
- 1 positive integer and 1 negative integer

For the SUB instruction we check the result when we subtract

- 2 positive integers
- 2 negative integers
- 1 positive integer and 1 negative integer

For AND,OR and XOR - since it is a bitwise operator, we just check the result for various values.

2. SLL SRL SRA SLT SLTU.mem

The above memory image file tests the following instructions

- SLL
- SRL
- SRA
- SLT
- SLTU

For the SLL instruction we check the shift left for a

- positive integer (6 < 1 is 12)
- negative integer (-6 < 1 is -12)

For the SRL instruction we check the logical shift right for a

- Positive integer (6 > 1 is 3)
- Negative integer (-6 > 1 is 7FFFFFD) as logical shift does not preserve sign

For the SRA instruction we check the arithmetic shift right for a

- Positive integer (6 > 1 is 3)
- Negative integer (-6 > 1 is FFFFFFD) as arithmetic shift preserves sign

For the SLT instruction we check if rs1 < rs2 for

- 2 positive integers
- 2 negative integers
- 1 positive integer and 1 negative integer

For the SLTU instruction we check if rs1 < rs2 for

- 2 positive integers
- 2 negative integers (here even though we load -ve integers, would be treated as +ve)
- 1 positive integer and 1 negative integer (negative number would be treated as +ve)

3. SW LW.mem

The above memory image file tests the following instructions

- SW
- LW

We check if SW stores the contents of registers to the memory location specified. We also check if LW retrieves the correct contents from memory If we give an unaligned reference to memory during LW, the program execution stops

4. SH LH LHU.mem

The above memory image file tests the following instructions

- SH
- LH
- LHU

We check if SH stores the contents of registers to the memory location specified.

We also check if LH and LHU retrieve the correct contents from memory.

In case of LH, it is sign extended.

In case of LHU, it is zero extended.

If we give an unaligned reference to memory during LH or LHU, the program execution stops

5. SB LB LBU.mem

The above memory image file tests the following instructions

- SB
- LB
- LBU

We check if SB stores the contents of registers to the memory location specified.

We also check if LB and LBU retrieve the correct contents from memory.

In the case of LB, it is sign extended.

In the case of LBU, it is zero extended.

6. ADDI_ANDI_ORI_XORI.mem

The above memory image file tests the following instructions

- ADDI
- ANDI
- ORI
- XOR

For all the above instructions we check with result with immediates which is

- Positive integer
- Negative integer
- Extreme values in the range

7. SLLI SRLI SRAI SLTI SLTIU.mem

The above memory image file tests the following instructions

- SLLI
- SRLI
- SRAI
- SLTI
- SLTIU

For the SLLI, SRLI and SRAI instruction we check the shift left for a

- positive integer
- negative integer

For SLTI and STLIU instructions we check the result when comparing

- 2 positive integers
- 2 negative integers
- 1 positive and 1 negative integer
- same integers

In case of SLTIU, even though we load -ve integers, it would be treated as positive.

8. JALR.mem

The above memory image file tests the JALR and AUIPC instruction. We create a nested function and make the main function call function1, which in turn calls function2 and then we check if it executes both the functions properly and returns the execution back to the main.

9. loop.mem

A simple for loop to iterate through and check if it jumps to the correct location every time. Once the loop is done executing, it finishes the rest and stops program execution.

10. BEQ.mem

This memory image file tests the BEQ instruction. We load 2 registers a4 and a5 with 2 values and check the branching as below

- Branch taken when 2 values are equal (positive integers)
- Branch taken when 2 values are equal (negative integers)
- Branch not taken when 2 values are not equal

11. **BNE.mem**

This memory image file tests the BNE instruction. We load 2 registers a4 and a5 with 2 values and check the branching as below

- Branch taken when 2 values are not equal (positive integers)
- Branch taken when 2 values are not equal (negative integers)
- Branch not taken when 2 values are equal

12. <u>BLT.mem</u>

This memory image file tests the BLT instruction. We load 2 registers a4 and a5 with 2 values and check the branching as below

- Branch taken when a4 < a5
- Branch not taken when a4 > a5
- Branch not taken when a4 == a5

13. **BGE.mem**

This memory image file tests the BGE instruction. We load 2 registers a4 and a5 with 2 values and check the branching as below

- Branch taken when a4 > a5
- Branch not taken when a4 < a5
- Branch taken when a4 == a5

14. BLTU.mem

This memory image file tests the BLTU instruction. We load 2 registers a4 and a5 with 2 values and chek the branching as below

- Branch taken when a4<a5 (for same and different MSB)
- Branch not taken when a4>a5 (for same and different MSB)
- Branch not taken when a4 == a5

15. BGEU.mem

This memory image file tests the BGEU instruction. We load 2 registers a4 and a5 with 2 values and check the branching as below

- Branch taken when a4 > a5 (for same and different MSB)
- Branch not taken when a4 < a5 (for same and different MSB)
- Branch taken when a4 == a5

This also tests the LUI instruction as we try to load the max value possible and check if it stores properly in the destination registers

RISC-V Instruction Set Architecture Simulator

Instr	Opcode values in hex (decimal)	Testing (Y/N)	Test file
LUI	37 (55)	Υ	BGEU.mem
AUIPC	17 (23)	Υ	JALR.mem
JAL	6F (111)	Υ	loop.mem
JALR	67 (103)	Υ	JALR.mem
BEQ	63 (99)	Υ	BEQ.mem
BNE	63 (99)	Υ	BNE.mem
BLT	63 (99)	Υ	BLT.mem
BGE	63 (99)	Υ	BGE.mem
BLTU	63 (99)	Υ	BLTU.mem
BGEU	63 (99)	Υ	BGEU.mem
LB	3 (3)	Υ	SB_LB_LBU.mem
LH	3 (3)	Υ	SH_LH_LHU.mem
LW	3 (3)	Υ	SW_LW.mem
LBU	3 (3)	Υ	SB_LB_LBU.mem
LHU	3 (3)	Υ	SH_LH_LHU.mem

SB	23 (35)	Y	SB_LB_LBU.mem
SH	23 (35)	Υ	SH_LH_LHU.mem
SW	23 (35)	Υ	SW_LW.mem
ADDI	13 (19)	Υ	ADDI_ANDI_ORI_XORI.mem
SLTI	13 (19)	Υ	SLLI_SRLI_SRAI_SLTI_SLTIU.mem
SLTIU	13 (19)	Υ	SLLI_SRLI_SRAI_SLTI_SLTIU.mem
XORI	13 (19)	Υ	ADDI_ANDI_ORI_XORI.mem
ORI	13 (19)	Υ	ADDI_ANDI_ORI_XORI.mem
ANDI	13 (19)	Υ	ADDI_ANDI_ORI_XORI.mem
SLLI	13 (19)	Υ	SLLI_SRLI_SRAI_SLTI_SLTIU.mem
SRLI	13 (19)	Υ	SLLI_SRLI_SRAI_SLTI_SLTIU.mem
SRAI	13 (19)	Υ	SLLI_SRLI_SRAI_SLTI_SLTIU.mem
ADD	33 (51)	Υ	AddSubAndOrXor.mem
SUB	33 (51)	Υ	AddSubAndOrXor.mem
SLL	33 (51)	Υ	SLL_SRL_SRA_SLT_SLTU.mem
SLT	33 (51)	Υ	SLL_SRL_SRA_SLT_SLTU.mem
SLTU	33 (51)	Υ	SLL_SRL_SRA_SLT_SLTU.mem
XOR	33 (51)	Υ	AddSubAndOrXor.mem
SRL	33 (51)	Υ	SLL_SRL_SRA_SLT_SLTU.mem
SRA	33 (51)	Υ	SLL_SRL_SRA_SLT_SLTU.mem
OR	33 (51)	Υ	AddSubAndOrXor.mem
AND	33 (51)	Υ	AddSubAndOrXor.mem
ECALL	73 (115)		

Output:

1. Silent Mode

```
ypashte@fab07:-/ece520_finalproj_g2$ ./riscv_simul rvn.men 0 65536
file exists

MELCOME TO RISC-V SIMULATOR**

pc: 0 instr: 417
pc: 4 instr: 417
pc: 4 instr: 417
pc: 8 instr: 0
Ending simulation !!! (all 0 instr)

**Registers**

x[0] 0 x[1] 0 x[2] - 00010000 x[3] 0 x[4] 0 x[5] 0 x[6] 0 x[7] 0
x[8] - 00000004 x[9] 0 x[10] 0 x[10] 0 x[11] 0 x[12] 0 x[13] 0 x[14] 0 x[15] 0
x[6] 0 x[2] 0
x[24] 0 x[25] 0 x[25] 0 x[26] 0 x[27] 0 x[28] 0 x[29] 0 x[29] 0 x[30] 0 x[31] 0

**Possible@fab07:-/ece520_finalproj_g2$
```

```
Vipashte@fab07:-/ece52e_ftnaiproj_g25 ./rtscv_stmul rvm.mem 9 65536
File exists

#ELCOME TO RISC-V SIMULATOR***

#PECOME TO R
```


2. Normal Mode

vpashte@fab07:~/ece52 File exists Normal Mode enabled	26_finalproj_g2\$./riscv_	_simul rvn.mem 0	65536 no	ormal										
**********************WEL pc: 0 instr: 417 AUIPC detected	COME TO RISC-V	SIMULATOR	*******												
x[0] - 0 x[8] - 0 x[16] - 0 x[24] - 0	x[1] - x[9] - x[17] - x[25] -	0 0 0	x[2] - 00010 x[10] - x[18] - x[26] -	0 0 0 0	x[3] - x[11] - x[19] - x[27] -	0 0 0	x[4] - x[12] - x[20] - x[28] -	0 0 0	x[5] - x[13] - x[21] - x[29] -	0 0 0	x[6] - x[14] - x[22] - x[30] -	0 0 0	x[7] - x[15] - x[23] - x[31] -	0 0 0	
pc: 4 instr: 417 AUIPC detected															
X[0] - 0 X[8] - 00000004 X[16] - 0 X[24] - 0	x[1] - x[9] - x[17] - x[25] -	0 0 0	x[2] - 00010 x[10] - x[18] - x[26] -	0 0 0 0	x[3] - x[11] - x[19] - x[27] -	0 0 0	x[4] - x[12] - x[20] - x[28] -	0 0 0	x[5] - x[13] - x[21] - x[29] -	0 0 0	x[6] - x[14] - x[22] - x[30] -	0 0 0	x[7] - x[15] - x[23] - x[31] -	0 0 0	
pc: 8 instr: 0 Ending simulation !!!	**********														
x[0] - 0	x[1] -	0	x[2] - 00010		x[3] -	0	x[4] -	0	x[5] -	0	x[6] -	0	x[7] -	θ	
x[8] - 00000004 x[16] - 0 x[24] - 0	x[9] - x[17] - x[25] -	0 0	x[10] - x[18] - x[26] -	0 0 0	x[11] - x[19] - x[27] -	0 0 0	x[12] - x[20] - x[28] -	0 0 0	x[13] - x[21] - x[29] -	0 0 0	x[14] - x[22] - x[30] -	0 0 0	x[15] - x[23] - x[31] -	0 0 0	
**************************************			******	*****	*****										

pc: 688 instr: 100313 ADDI detected							
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	X[2] - 0000FFFC X[10] - 0 X[18] - 00000680 X[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0 x[27] - 0	X[4] - θ X[12] - θ X[20] - θ X[28] - θ	X[5] - 0 X[13] - 0 X[21] - 0 X[29] - FF00F80F	x[6] - 00000001 x[14] - 0 x[22] - 0 x[30] - 0	x[7] - FFFFFFFF x[15] - 0 x[23] - 0 x[31] - 0
pc: 68C instr: 997 AUIPC detected							
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	X[2] - 0000FFFC X[10] - 0 X[18] - 00000680 X[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - 0 x[12] - 0 x[20] - 0 x[28] - 0	X[5] - 0 X[13] - 0 X[21] - 0 X[29] - FF00F80F	x[6] - 00000001 x[14] - 0 x[22] - 0 x[30] - 0	x[7] - FFFFFFFF x[15] - 0 x[23] - 0 x[31] - 0
pc: 690 instr: 1098967 JALR detected							
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	X[2] - 0000FFFC X[10] - 0 X[18] - 00000694 X[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - 0 x[12] - 0 x[20] - 0 x[28] - 0	X[5] - 0 X[13] - 0 X[21] - 0 X[29] - FF00F80F	x[6] - 00000001 x[14] - 0 x[22] - 0 x[30] - 0	x[7] - FFFFFFFF x[15] - 0 x[23] - 0 x[31] - 0
pc: 69C instr: 313 ADDI detected							
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	x[2] - 0000FFFC x[10] - 0 x[18] - 00000694 x[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	X[4] - θ X[12] - θ X[20] - θ X[28] - θ	X[5] - 0 X[13] - 0 X[21] - 0 X[29] - FF00F80F	x[6] - 0 x[14] - 0 x[22] - 0 x[30] - 0	x[7] - FFFFFFFF x[15] - 0 x[23] - 0 x[31] - 0
pc: 6A0 instr: 90067 JALR detected							
x[0] - 000006A4 x[8] - 00000684 x[16] - 0 x[24] - 0	X[1] - 0 X[9] - 0000FFE8 X[17] - 0 X[25] - 0	X[2] - 0000FFFC X[10] - 0 X[18] - 00000694 X[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - 0 x[12] - 0 x[20] - 0 x[28] - 0	X[5] - 0 X[13] - 0 X[21] - 0 X[29] - FF00F80F	x[6] - 0 x[14] - 0 x[22] - 0 x[30] - 0	x[7] - FFFFFFFF x[15] - 0 x[23] - 0 x[31] - 0
pc: 694 instr: 31263 BNE detected							
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	X[2] - 0000FFFC X[10] - 0 X[18] - 00000694 X[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	X[4] - 0 X[12] - 0 X[20] - 0 X[28] - 0	X[5] - 0 X[13] - 0 X[21] - 0 X[29] - FF00F80F	x[6] - 0 x[14] - 0 x[22] - 0 x[30] - 0	x[7] - FFFFFFFF x[15] - 0 x[23] - 0 x[31] - 0
pc: 698 instr: 0 Ending simulation !!! (a	ll 0 instr)		****				
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	x[2] - 0000FFFC x[10] - 0 x[18] - 00000694 x[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - 0 x[12] - 0 x[20] - 0 x[28] - 0	x[5] - 0 x[13] - 0 x[21] - 0 x[29] - FF00F80F	x[6] - 0 x[14] - 0 x[22] - 0 x[30] - 0	x[7] - FFFFFFFF x[15] - 0 x[23] - 0 x[31] - 0
**************************************		*****	***				

3. Debug Mode

```
VERSIANCE (AND TO ACCOUNT ON THE CONTROL TO AND THE CONTROL OF THE
```

Opcode: 67 funct3: 0 fun rd: 12 rs1: 13 rs2: 10 I-type Instruction I-immediate: 10 JALR detected	nct7: 0									
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	X[1] - 0 X[9] - 0000FFEB X[17] - 0 X[25] - 0	x[2] - 0000FFFC x[10] - 0 x[18] - 00000694 x[26] - 0	X[3] - 0 X[11] - 0 X[19] - 0000068C X[27] - 0	x[4] - x[12] - x[20] - x[28] -	0 0	x[5] - 0 x[13] - 0 x[21] - 0 x[29] - FF00F80F	x[22] -	0 0	x[7] - FFFFFFF x[15] - x[23] - x[31] -	FF 0 0 0
pc: 69C instr: 313 Opcode: 13 funct3: 0 fun rd: 6 rs1: 0 rs2: 0 I-type Instruction I-immediate: 0 ADDI detected										
X[0] - 0 X[8] - 00000684 X[16] - 0 X[24] - 0	X[1] - 0 X[9] - 0000FFE8 X[17] - 0 X[25] - 0	x[2] - 0000FFFC x[10] - 0 x[18] - 00000694 x[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - x[12] - x[20] - x[28] -	0 0 0	x[5] - 0 x[13] - 0 x[21] - 0 x[29] - FF00F80F	x[22] -	0 0	x[7] - FFFFFFF x[15] - x[23] - x[31] -	FF 0 0 0
pc: 6A0 instr: 90067 Opcode: 67 funct3: 0 fun rd: 0 rs1: 12 rs2: 0 I-type Instruction I-immediate: 0 JALR detected										
x[0] - 000006A4 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	x[2] - 0000FFFC x[10] - 0 x[18] - 00000694 x[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - x[12] - x[20] - x[28] -	0 0 0	x[5] - 0 x[13] - 0 x[21] - 0 x[29] - FF00F80F	x[22] -	0 0	x[7] - FFFFFFF x[15] - x[23] - x[31] -	FF 0 0 0
pc: 994 instr: 3128 gcode: 63 funct3: 1 funct7: 0 rd: 4 rsi: 6 rs2: 0 8-type Instruction 8-inmediate: 4 8R6 detected										
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	x[2] - 0000FFFC x[10] - 0 x[18] - 00000694 x[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - x[12] - x[20] - x[28] -	0 0 0	x[5] - 0 x[13] - 0 x[21] - 0 x[29] - FF00F80F	x[22] -	0 0	x[7] - FFFFFFF x[15] - x[23] - x[31] -	FF 0 0 0
pc: 698 instr: 0 Ending simulation !!! (a	oll 0 instr)	******	****							
Last PC : 698										
x[0] - 0 x[8] - 00000684 x[16] - 0 x[24] - 0	x[1] - 0 x[9] - 0000FFE8 x[17] - 0 x[25] - 0	x[2] - 0000FFFC x[10] - 0 x[18] - 00000694 x[26] - 0	x[3] - 0 x[11] - 0 x[19] - 0000068C x[27] - 0	x[4] - x[12] - x[20] - x[28] -	0 0 0	x[5] - 0 x[13] - 0 x[21] - 0 x[29] - FF00F80F	x[22] -	0 0	x[7] - FFFFFFF x[15] - x[23] - x[31] -	FF 0 0 0
vpashte@fab07:-/ece526_finalproj_g25										

4. Step execution

```
| Fig. 10 | State | Fig. 12 | Fig. 12 | Fig. 12 | Fig. 12 | Fig. 13 | Fig. 13 | Fig. 13 | Fig. 14 | Fig. 1
```

```
pashtegfade7:_feexi2x_fishalproj_g25 .//isev_stell_rom.mem c 65356 debug 1
file exists supplemental of supplem
```


END