Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como Herramienta para la Ingeniería

Bases de datos relacionales

Profesora: Francesca Lucchini

Prof. Coordinador: Hans Löbel

DBMS (Database Management System) ¿Qué es una base de datos?

- 1. Corresponde a un conjunto de datos de un mismo contexto y almacenados bajo cierta lógica/estructura e indexados para su posterior uso eficiente.
- 2. En el caso de una base **relacional**, es una colección de una o más relaciones entre entidades, donde cada relación es una tabla con filas y columnas. Ej:
 - Entidades: estudiantes, profesores, cursos y salas
 - Relaciones: registro de matrícula, clases inscritas, uso de salas, etc...
- 3. Es un software diseñado para ayudar a mantener y utilizar grandes volúmenes de datos.

RELATIONAL DATABASE

Diagrama de una Base de Datos

Esquema de una relación: define el nombre de una relación y, nombres y tipos de dato de sus campos (columnas)

Tabla (Table): instancia de una relación que contiene registros (filas)

Esquema de BD (Database Schema): colección de esquemas para las relaciones en la base de datos

Base de datos (Database)

Esquema (Schema) de la base de datos

Tabla

Columna: Guarda un tipo específico de datos

CHAR(N) VARCHAR(N) INTEGER REAL

. . .

Fila:
Corresponde a
un registro o
instancia

Num_Emp	Nombre	Edad	Department_id	Salario
001	Alex S.	26	1	700000
002	Gerardo C.	32	2	1200000
003	Regina G.	31	2	1200000
004	Juana R.	26	3	520000

Empleados (Emp No: STRING, Name: STRING, Age: INTEGER, Department: STRING, Salary: REAL)

Operaciones principales

Operaciones sobre una tabla

- 1. Selección: filtrar filas
- 2. Proyección: filtrar columnas

(c) Cartesian product

Operaciones entre dos tablas

- Producto Cartesiano: obtener todas las combinaciones entre tuplas
- 2. Unión: juntar dos tablas
- 3. Intersección: buscar elementos comunes
- 4. Diferencia: sacar valores que una tabla tiene en común con otra

La combinación de estas operaciones lleva a operaciones complejas, como un join

Num_Emp	Nombre	Edad	Department_id	Salario
001	Alex S.	26	1	700000
002	Gerardo C.	32	2	1200000
003	Regina G.	31	2	1200000
004	Juana R.	26	3	520000

JOIN
Producto
Cartesiano
+
Selección

IN ucto	Id	Departamento
siano	1	Ventas
ción	2	Marketing
	3	Seguridad

Num_Emp	Nombre	Edad	Department_id	Salario	Departamento
001	Alex S.	26	1	700000	Ventas
002	Gerardo C.	32	2	1200000	Marketing
003	Regina G.	31	2	1200000	Marketing
004	Juana R.	26	3	520000	Seguridad

Referencias entre tablas

Llaves primarias y secundarias (primary keys y foreign keys)

PK (llave primaria)

FK (llave foránea)

Restricciones de Integridad

Restricciones de Dominio

Se relaciona al esquema:

- 1. Tipo de datos
- 2. Campos

Restricciones de Integridad

Delimitan de forma más específica los datos, por ejemplo, rango de valores.

Restricciones de Llave

Cada tabla debe tener un campo como llave primaria y restringe a que sean valores únicos

Restricciones de Llave Foránea

Si un campo es una llave foránea, sus valores deben aparecer en la relación a la que se hace referencia

Structured Query Language (SQL)

Tiene dos componentes principales

- Lenguaje de definición de datos (DDL)
 - Creación de tablas (CREATE)
 - Eliminación detablas (DROP)
 - Modificación de definiciones de tablas (ALTER)

*Las restricciones de integridad se pueden definir en tablas, ya sea cuando se crea la tabla o posteriormente.

Lenguaje de manipulación de datos (DML)

- Data Manipulation Language
- Consultas (SELECT)
- Inserción de datos (INSERT)
- Actualización datos (UPDATE)
- Eliminar datos (DELETE)

Creación

CREATE TABLE [IF NOT EXISTS] table_name (column_1 data_type, column_2 data_type, ...)

Num_Emp	Nombre	Edad	Departmento	Salario

CREATE TABLE Empleados (Num_Emp CHAR(3), Nombre VARCHAR(20), Edad INTEGER, Departamento VARCHAR(10), Salario REAL)

Se crea la tabla vacía, sin filas...

Inserción

Ejemplo de agregar la 4ta fila

INSERT INTO table_name (column1,column2,...) VALUES(value1, value2,...)

Num_Emp	Nombre	Edad	Departmento	Salario
001	Alex S.	26	Ventas	700000
002	Gerardo C.	32	Marketing	1200000
003	Regina G.	31	Marketing	1200000
004	Juana R.	26	Seguridad	520000

INSERT INTO Empleados (Num_Emp, Nombre, Edad, Departamento, Salario) VALUES ('004', 'Juana R.', 26, 'Seguridad', 520000)

Modificación

UPDATE table_name SET column_1 = new_value_1, column_2 = new_value_2
WHERE search_condition

Num_Emp	Nombre	Edad	Departmento	Salario
001	Alex S.	26	Marketing	700000
002	Gerardo C.	32	Marketing	1200000
003	Regina G.	31	Marketing	1200000
004	Juana R.	26	Seguridad	520000

UPDATE Empleados E **SET** E.Departamento = 'Marketing' **WHERE** E.Emp_No = '001'

Eliminación

DELETE FROM table_name **WHERE** search_condition;

Num_Emp	Nombre	Edad	Departmento	Salario
001	Alex S.	26	Ventas	700000
002	Gerardo C.	32	Marketing	1200000
003	Regina G.	31	Marketing	1200000

DELETE FROM Empleados E **WHERE** E.Num_Emp = '004'

Creación de tablas con *Primary Key* y *Foreign Key*

Num_Emp	Nombre	Edad	Departmento_Id	Salario
001	Alex S.	26	1	700000
002	Gerardo C.	32	2	1200000
003	Regina G.	31	2	1200000
004	Juana R.	26	3	520000

ld	Departamento
1	Ventas
2	Marketing
3	Seguridad

CREATE TABLE Departamentos (Id INTEGER, Departmento VARCHAR(20), PRIMARY KEY(Id))

CREATE TABLE Empleados (Num_Emp CHAR(3), Nombre VARCHAR(20), Edad INTEGER,
Departamento_id INTEGER, Salario REAL, PRIMARY KEY(Num_Emp), FOREING KEY (Departamento_id)
REFERENCES Departamentos.Id)

Uso en Python: DDL

```
import sqlite3
connection = sqlite3.connect('ejemplo.db')
cursor = connection.cursor()
sqlStatement = 'CREATE TABLE Empleados (Num_Emp CHAR(3), Nombre VARCHAR(20), Edad INTEGER, Departamento
VARCHAR(10), Salario REAL)'
cursor.execute(sqlStatement)
Sq12 = 'INSERT INTO Empleados (Num Emp, Nombre, Edad, Departamento, Salario) VALUES ('004', 'Juana R.', 26, 'Seguridad', 520000)'
cursor.execute(Sql2)
connection.commit()
connection.close()
```

Manejo de errores

Al desarrollar este capítulo, se encontrarán dos tipos de errores:

- Errores de Python (de los que ya están familiarizados)
- Errores de la sintaxis de la base de datos (SQL)

CONSEJO: Pueden testear sus consultas directamente en la base de datos (p.ej., con SQLiteStudio) y luego utilizarla en Python

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC2115 - Programación como Herramienta para la Ingeniería

Bases de datos relacionales

Profesora: Francesca Lucchini

Prof. Coordinador: Hans Löbel