18MAB102T-CLAT3 - B SLOT - Advanced Calculus and Complex Analysis

Date of Examination: 29/07/2021

Time: 9.00 am - 10.40 am

* Required

Max. Mark: 50 Max. time:100 Min

The respondent's email (null) was recorded on submission of this form.

1.	Email *
2.	Name of the Student *
3.	Registration Number *
4.	Department *

18MAB102T-CLAT3 - B SLOT -Advanced Calculus and Complex Analysis

MCQ Questions Each question carry one mark

A single valued continuous function f(z) = u + iv is analytic in a region R if it satisfy the C-R equations at each point and also possess one of the following

- a. $u_x = v_y$
- b. $v_x = u_y$
- c. continuous u_x , u_y in a region R
- d. continuous u_x , u_y , v_x , v_y at each point of the region R Mark only one oval.
- () b
- \bigcirc c
- \bigcirc c

If $f(z) = r^2(\cos 2\theta + i\sin p\theta)$ is analytic, then the value of p is

- a. $\frac{1}{2}$
- b. 0
- c. 2
- d. 1

- () a

- \bigcirc c

$$f(z) = |z|^2$$
 is analytic at

- a. at the origin
- b. at infinity
- c. at all points of z-plane
- d. nowhere

- () a
- () k
- \bigcirc c
- O d

If f(z) = u + iv is an analytic function of z then the Cauchy Riemann equations is

a.
$$u_x = v_{y}, u_y = v_x$$

b.
$$u_x = v_{y, u_y} = -v_x$$

c.
$$u_x = -v_{y}, u_y = -v_x$$

d.
$$u_x = -v_{y_x} u_y = v_x$$

- \bigcirc d

If
$$w = z + \frac{1}{z}$$
 then $\frac{dw}{dz}$ is

$$a.1 + \frac{1}{z^2}$$

b.
$$1 - \frac{1}{z^2}$$

c.
$$1 + \frac{1}{z}$$

d.
$$1 - \frac{1}{z}$$

- () a
- () b
- \bigcirc c

If f(z) is analytic with the real part $e^x \cos y$ then f'(z) is equal to

- a. cosz
- $b. e^z$
- c. e^z
- d. sinz

- () a
- () b
- () c
- O d

The mapping w = z + c gives

- a. Translation
- b. Rotation
- c. inversion
- d. reflection

- _____ a
- _____ b
- _____ c
- O d

Under the mapping $w = \frac{1}{z}$, the image of $|z| \le 1$ is

a.
$$|w| \ge 1$$

b.
$$|w| = 1$$

d.
$$|w - 1| = 1$$

- () a
- () b
- _____ c

Critical point of the map $w^2 = (z - \alpha)(z - \beta)$ are

a.
$$z = \frac{1}{2}(\alpha + \beta)$$

b.
$$z = \frac{\alpha\beta}{2}$$

c.
$$z = (\alpha + \beta)$$

d.
$$z = \frac{1}{2}(\alpha - \beta)$$

- () a
- _____ c

If u + iv is analytic then v - iu is

- a. analytic
- b. not analytic
- c. analytic only at the origin
- d. analytic expect at the origin

- _____ a
- b
- \bigcirc c
- O d

Construction of an analytic functions f(z) when real part is given using Milne's Thomson method $u_x = \phi_1(x, y)$, $u_y = \phi_2(x, y)$,

$$v_x = \Psi_2(x, y), v_y = \Psi_1(x, y)$$

a.
$$f(z) = \int [\phi_1(z, 0) - i\phi_2(z, 0)]dz + c$$

b.
$$f(z) = \int [\phi_1(z, 0) + i\phi_2(z, 0)]dz + c$$

c.
$$f(z) = \int [\Psi_1(z, 0) + i\Psi_2(z, 0)]dz + c$$

d.
$$f(z) = \int [\Psi_1(z, 0) - i\Psi_2(z, 0)]dz + c$$

- () a
- \bigcirc b
- () c

$$\nabla^2 \{ \log |f(z)| \} =$$

- a. 2
- b.0
- c. 1
- d. 3

- _____ a
- _____ b
- _____ c
- \bigcirc d

The region in which $f(z) = (x - y)^2 + 2i(x + y)$ is analytic

- a. x + y = 1
- b. x = 1
- c. x y = 1
- d. y = 1

- ____ a
- () c

Find an analytic function f(z) whose real part is $u = e^x \sin y$

a.
$$e^z + c$$

b.
$$-e^{z} + c$$

c.
$$-(1+i)e^z + c$$

$$d \cdot -ie^z + c$$

- _____ a
- () b

Find the analytic function f(z) where $v = x^4 - 6x^2y^2 + y^4$

- a. $iz^4 + c$
- b. $iz^{3} + c$
- $c. -iz^4 + c$
- $d. -iz^3 + c$

- () a
- _____ c

If u(x, y) is a real part of analytic function and satisfies $u_{xx} + u_{yy} = 0$, then u is

- a. Harmonic
- b. Analytic
- c. Differentiable
- d. continuous

- \bigcirc d

The invariant point of the transformation $w = \frac{1}{z+2i}$ is

- a. z = i
- b. z = -i
- c. z = 1
- d. z = -1

- () a
- () b
- _____ c
- \bigcirc d

The points at which the function $f(z) = \frac{1}{1+z^2}$ fails to be analytic are

- a. $z = \pm 1$
- b. $z = \pm i$
- c. $z = \pm 2$
- d. z = 1

- ____ a
- () b
- \bigcirc c
- O d

The critical points of the transformation $w = \frac{1}{2} \left(z + \frac{1}{z}\right)$

a.
$$z = \pm 1$$

b.
$$z = \pm i$$

c.
$$z = \pm 2$$

$$d. z = 1$$

- () a
- () b
- () d

The bilinear transformation that maps the points $z = 0,1, \infty$ into the points w = -5, -1,3 respectively is

a.
$$w = \frac{3z-5}{z-1}$$

b.
$$w = \frac{3z-5}{z+1}$$

c.
$$w = \frac{2z+5}{z+1}$$

d.
$$w = \frac{z-5}{z+1}$$

- () a
- () b
- \bigcirc c
- \bigcirc c

The invariant points of the transformation $w = \frac{2z-5}{z+4}$ are

- a. $z = \pm i$
- b. $-1 \pm 2i$
- c. $1 \pm 2i$
- $d. -1 \pm i$

- () b

An analytic function with constant modulus is

- a. Zero
- b.constant
- c. Analytic
- d.harmonic

Mark only one oval.

1	_
- 1	-
	_

	L
ノ	L

 \bigcirc d

w = log z is

- a. analytic at all points
- b. not analytic at the origin
- c. nowhere analytic
- d. analytic at infinity

- ______ a
- () b
- \bigcirc c

If f(z) = u + iv is analytic at a point then which of the following is not true?

- a. $u_x = v_y$ at the point
- b. $u_v = -v_x$ at the point
- c. $u_{xx} + u_{yy} \neq 0$ at the point
- d. u_x , u_y , v_x , v_y are continuous at the point

- () a
- _____b
- \bigcirc d

The bilinear transformation which maps the points ∞ , i, 0 into 0, i, ∞ respectively is

- a. w = z
- b. w = -z
- c. $w = -\frac{1}{z}$
- d. $w = \frac{1}{z}$

- () a
- \bigcirc b
- _____ c

A continuous curve which does not have a point of self-intersection is called

- a
- a. Curve
- b. Closed curve
- c. Simple closed curve
- d. Multiple curve

- \bigcirc d

The zero's of $f(z) = \frac{z^2+1}{1-z^2}$ are

- a. 0
- b. ±*i*
- c. ±1
- d. 1

- _____ a
- () b
- () c
- \bigcirc d

If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{z-a} dz$, where C is the simple closed curve and a is any point within C is

- a. f(a)
- b. $2\pi i f(a)$
- c. $\pi i f(a)$
- d. 0

- ____ a
- () b
- ____ c
- \bigcirc d

If f(z) is analytic inside and on C, then the value of $\oint_C \frac{f(z)}{(z-a)^5} dz$, where C is the simple closed curve and a is any point within C is

- a. $2\pi i \frac{f^{v}(a)}{5!}$
- b. $2\pi i f(a)$
- c. $2\pi i \frac{f^{iv}(a)}{4!}$
- d. 0

- () a
- (b
- _____ c
- b \bigcirc

The value of $\oint_C \frac{e^{-z}}{z+1} dz$ where C is the circle $|z| = \frac{1}{3}$ is

- a. 0
- b. $2\pi ie$
- c. $\frac{\pi}{2}ie$
- d. πie

- () a
- () b
- _____ c
- \bigcirc d

The value of $\oint_C \frac{e^{2z}}{(z+1)^3} dz$ where C is the circle |z| = 2 is

- a. 0
- b. $2\pi i e^{-2}$
- c. $8\pi i e^{-2}$
- d. $4\pi i e^{-2}$

- () a
- () b
- \bigcirc c
- \bigcirc d

The value of $\oint_C \frac{1}{2z-3} dz$ where C is the circle |z| = 1 is

- a. 0
- b. $2\pi i$
- c. $\frac{\pi}{2}i$
- d. πi

- () a
- \bigcirc t

The value of $\oint_C \frac{z^2}{(z-2)^2} dz$ where C is the circle |z| = 3 is

- a. 0
- b. $2\pi i$
- c. 4πi
- d. $8\pi i$

- () b
- _____ c
- \bigcirc d

Let $C_1: |z-a| = R_1$ and $C_2: |z-a| = R_2$ be two concentric circles $(R_2 < R_1)$, the annular region is defined as

- a. Within C_1
- b. Within C_2
- c. Within C_2 and outside C_1
- d. Within C_1 and outside C_2

- _____ a
- \bigcirc c
- () d

The part $\sum_{n=1}^{\infty} b_n (z-a)^{-n}$ consisting of negative integral powers of (z-a) is called as

- a. The analytic part of the Laurent's series
- b. The principal part of the Laurent's series
- c. The real part of the Laurent's series
- d. The imaginary part of the Laurent's series

Mark only one oval.

- \bigcirc k
- _____ c

40.

Let C: |z - a| = r be a circle, the f(z) can be expanded as a Taylor's series if

- a. f(z) is a function on C
- b. f(z) is an analytic function within C
- c. f(z) is not an analytic function within C
- d. f(z) is an analytic function outside C

- _____ a
- ____ b
- \bigcirc

Expansion of $\frac{\sin z}{(z-\pi)}$ in Taylor's series about $z=\pi$ is

a.
$$\frac{(z-\pi)}{1!} - \frac{(z-\pi)^3}{3!} + \frac{(z-\pi)^5}{5!} - \dots$$

b.
$$\frac{(z-\pi)^2}{2!} - \frac{(z-\pi)^4}{4!} + \frac{(z-\pi)^6}{6!} - \dots$$

c.
$$-1 + \frac{(z-\pi)^2}{3!} - \frac{(z-\pi)^4}{5!} + \dots$$

d.
$$\frac{(z-\pi)}{2!} + \frac{(z-\pi)^3}{4!} - \frac{(z-\pi)^5}{6!} + \dots$$

- () a
- () b
- ____ c
- () d

The annular region for the function $f(z) = \frac{1}{z^2 - z - 6}$ is

- a. 0 < |z| < 1
- b. 1 < |z| < 2
- c. 2 < |z| < 3
- d. |z| < 3

- \bigcirc c

The Laurent's series expansion $-\frac{1}{2}\sum \frac{(z+2)^n}{4^n} - \sum \frac{3^n}{(z+2)^n}$ for the function

 $f(z) = \frac{z}{(z-1)(z-2)}$ is valid in the region

- a. |z+2| < 3
- b. 1 < |z+2| < 2
- c. 3 < |z+2| < 4
- d. |z+2| > 4

Mark only one oval.

- () b
- \bigcirc c
- \bigcirc d

44.

If f(z) is not analytic at $z = z_0$ and there exists $\lim_{z \to z_0} f(z)$ and is finite then

- a. The point $z = z_0$ is isolated singularity of f(z)
- b. The point $z = z_0$ is a removable singularity of f(z)
- c. The point $z = z_0$ is essential singularity of f(z)
- d. The point $z = z_0$ is non isolated singularity of f(z)

- ____ a
- ____ b
- _____ c
- \bigcirc d

Let z = a is a simple pole for f(z) and $b = \lim_{z \to a} (z - a) f(z)$, then

- a. b is a simple pole
- b. b is removable singularity
- c. b is a residue at a of order n
- d. b is a residue at z = a

Mark only one oval.

46.

Let z = a is a pole of order m for f(z), then the residue is

- a. $\lim_{z \to a} [(z a)f(z)]$
- b. $\lim_{z \to a} [(z a)f''(z)]$
- c. $\lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)]$ d. $\lim_{z \to a} \frac{1}{m!} \frac{d^m}{dz^m} [(z-a)^m f(z)]$

The residue of $f(z) = \frac{z}{(z-1)^2}$ at z = 1 is

- a. π
- b. 1
- c. -1
- d. 0

- () a
- _____ c

The residue of $f(z) = \frac{z}{z^2 + 1}$ at z = i is

- a. 1
- b. -1
- c. 0
- d. 1/2

- () a
- () b
- _____ c
- O d

If
$$f(z) = \frac{\sin z}{z}$$
, then

- a. z = 0 is a simple pole
- b. z = 0 is a pole of order 2
- c. z = 0 is a removable singularity
- d. z = 0 is a zero of f(z)

- _____ a
- () b
- ____ c
- () d

The value of the integral $\oint_C e^z dz$ where |z| = 1 is

- a. $2\pi i$
- b. $\frac{\pi}{2}i$
- c. *πi*
- d. 0

- ______ a
- () b

If $f(z) = \frac{-1}{(z-1)} - 2[1 + (z-1) + (z-1)^2 + ...]$ then the residue of f(z) at z = 1 is

- a. 1
- b. -1
- c. 0
- d. -2

- () b
- _____ c
- () d

If the integral $\oint_0^{2\pi} \frac{d\theta}{5+3\cos\theta} = \oint_C^{\Box} f(z)dz$, C is |z| = 1, then

- (A) $z = -\frac{1}{3}$ lies inside C and
- (B) z = 3 lies outside C. Which of the following is true.
 - a. Both A and B
 - b. Only A
 - c. Only B
 - d. Neither A nor B

- _____ a
- ____ b
- _____ c
- O d

In Cauchy's Lemma for contour integration, if f(z) be continuous function such that $|zf(z)| \to 0$ as $|z| \to \infty$, for C is the circle |z| = R, then

- a. $\oint_C f(z)dz \to \infty$ as $R \to \infty$.
- b. $\oint_C f(z)dz \to 0 \text{ as } R \to \infty.$
- c. $\oint_C f(z)dz \to 0$ as $R \to 0$. d. $\oint_C f(z)dz \to \infty$ as $R \to 0$.

If
$$\oint_C \frac{e^z}{z^2} dz = 0$$
, then C is

- a. |z| = 1
- b. |z 1| = 2
- c. |z 2| = 1
- d. |z| = 2

Mark only one oval.

- () a
- \bigcirc b
- () c
- \bigcirc d

This content is neither created nor endorsed by Google.

Google Forms