Построение всех тупиковых ДНФ заданной функции (на примере функции от $4\ B\Pi$).

Дана функция (в виде сокращенной ДН Φ) четырех переменных, необходимо построить все её тупиковые ДН Φ .

Алгоритм решения с помощью карты Карно:

- (1) Изобразить множество N_f на карте Карно. Важно помнить, что порядок столбцов и строк не лексикографический.
- (2) Каждой грани K_i поставить в соответствие новую переменную y_i .
- (3) Записать КНФ B следующим образом. Для каждой единичной точки $\alpha \in N_f$ найти грани, которые через нее проходят грани K_{i_1}, \ldots, K_{i_t} и добавить в КНФ множитель $(y_{i_1} \lor \ldots \lor y_{i_t})$.
- (4) В полученной КНФ B раскрыть скобки, привести подобные, используя, в частности, тождества $x \lor xy = x$ и $(x \lor y)(x \lor z) = x \lor yz$.
- (5) Записать ответ. Каждой конъюнкции вида $y_{j_1}y_{j_2}\dots y_{j_p}$ в полученной ДНФ соответствует тупиковая ДНФ $K_{j_1}\vee K_{j_2}\vee\ldots\vee K_{j_p}$.

Пример. Дана сокращенная ДНФ функции f:

$$\bar{x}_1\bar{x}_3 \vee \bar{x}_1x_4 \vee \bar{x}_2x_4 \vee \bar{x}_1x_2 \vee x_2x_3\bar{x}_4 \vee x_1x_3\bar{x}_4 \vee x_1\bar{x}_2x_3$$
.

Построить все тупиковые ДНФ Φ АЛ f.

Решение.

(1) Изобразим последовательно грани на карте Карно. Первая ЭК — $K_1 = \bar{x}_1\bar{x}_3$ равна единице на наборах вида (0-0-). Следовательно, соответствующая ей грань:

Следующая ЭК — $K_2 = \bar{x}_1 x_4$ равна единице на наборах вида (0 - -1), соответствующая грань:

Следующая ЭК — $K_3 = \bar{x}_2 x_4$ равна единице на наборах вида (-0-1), соответствующая грань:

Следующая ЭК — $K_4 = \bar{x}_1 x_2$ равна единице на наборах вида (01 - -), соответствующая грань:

1

	0	0	1	1	x_3
$x_1 x_2$	0	1	1	0	x_4
0 0	1	1	1		
0 1	1	1	1	1	
1 1					
10		1	1		

Следующая ЭК — $K_5 = x_2 x_3 \bar{x}_4$ равна единице на наборах вида (-110), соответствующая грань:

	0	0	1	1	x_3
$x_1 x_2$	0	1	1	0	x_4
0 0	1	1	1		
0 1	1	1	1	1	
1 1				1	
1 0		1	1		

Следующая ЭК — $K_6 = x_1 x_3 \bar{x}_4$ равна единице на наборах вида (1-10), соответствующая грань:

Последняя ЭК — $K_7 = x_1 \bar{x}_2 x_3$ равна единице на наборах вида (101—), соответствующая грань:

	0	0	1	1	x_3
$x_1 x_2$	0	1	1	0	x_4
0 0	1	1	1		
0 1	1	1	1	1	
1 1				1	
1 0		1	1	1	

Таким образом, построено множество N_f на карте Карно:

Рис. 1. $\Phi A \Pi f$ в виде граней на карте Карно.

- (2) Теперь каждой ЭК K_i поставим в соответствие булеву переменную y_i .
- (3) Построим КН Φ B.

Рассмотрим каждую единичную точку функции f.

- Первая единичная точка $\alpha_1 = (0000)$ принадлежит только грани K_1 . Тогда первый множитель $KH\Phi y_1$.
- Вторая единичная точка $\alpha_2=(0001)$ принадлежит граням $K_1,\ K_2$ и $K_3,$ потому второй множитель КНФ $(y_1\vee y_2\vee y_3).$
- Следующая единичная точка $\alpha_3 = (0011)$ принадлежит граням K_2 и K_3 , соответствующий множитель КНФ $(y_2 \lor y_3)$.
- Следующая единичная точка $\alpha_4 = (0100)$ принадлежит граням K_1 и K_4 , соответствующий множитель КНФ $(y_1 \vee y_4)$.
- Следующая единичная точка $\alpha_5 = (0101)$ принадлежит граням K_1, K_2 и $K_4,$ соответствующий множитель КНФ $(y_1 \lor y_2 \lor y_4)$.
- Следующая единичная точка $\alpha_6 = (0111)$ принадлежит граням K_2 и K_4 , соответствующий множитель $KH\Phi (y_2 \vee y_4)$.
- Следующая единичная точка $\alpha_7 = (0110)$ принадлежит граням K_4 и K_5 , соответствующий множитель КНФ $(y_4 \lor y_5)$.
- Следующая единичная точка $\alpha_8=(1110)$ принадлежит граням K_5 и K_6 , соответствующий множитель КНФ $(y_5\vee y_6)$.
- Следующая единичная точка $\alpha_9 = (1001)$ принадлежит только грани K_3 , соответствующий множитель КНФ y_3 .
- Следующая единичная точка $\alpha_{10} = (1011)$ принадлежит граням K_7 и K_3 , соответствующий множитель КНФ $(y_7 \vee y_3)$.
- Последняя единичная точка $\alpha_{11} = (1010)$ принадлежит граням K_6 и K_7 , соответствующий множитель $KH\Phi (y_6 \vee y_7)$.

Таким образом,

$$B = y_1(y_1 \lor y_2 \lor y_3)(y_2 \lor y_3)(y_1 \lor y_4)(y_1 \lor y_2 \lor y_4)(y_2 \lor y_4)(y_4 \lor y_5)(y_5 \lor y_6)y_3(y_7 \lor y_3)(y_6 \lor y_7).$$

(4) Раскроем скобки КНФ и приведем подобные. Сразу воспользуемся тем, что $a(a \lor b) = a$:

$$B = y_1(y_2 \vee y_4)(y_4 \vee y_5)(y_5 \vee y_6)y_3(y_6 \vee y_7).$$

Теперь воспользуемся тем, что $(a \lor b)(a \lor c) = a \lor bc$, тогда

$$B = y_1 y_3 (y_4 \lor y_2 y_5) (y_6 \lor y_5 y_7) = y_1 y_3 (y_4 y_6 \lor y_4 y_5 y_7 \lor y_2 y_5 y_6 \lor y_2 y_5 y_7) =$$

= $y_1 y_3 y_4 y_6 \lor y_1 y_3 y_4 y_5 y_7 \lor y_1 y_2 y_3 y_5 y_6 \lor y_1 y_2 y_3 y_5 y_7.$

(5) Каждое слагаемое получившейся ДН Φ соответствует тупиковой ДН Φ исходной функции:

Это ответ к задаче — все тупиковые ДНФ $D_{\rm T1},\,D_{\rm T2},\,D_{\rm T3},\,D_{\rm T4}.$

 $\it Ядровой точкой функции f$ называется точка из N_f , которая покрывается только одной максимальной гранью. Соответствующая грань называется ядровой. **Ядровые грани входят в каждую тупиковую ДНФ**. В рассмотренном примере ядровые точки — (0000) и (1001), поэтому грани K_1 и K_3 ядровые.

Для ускорения решения задачи можно было написать в КНФ множители y_1y_3 и не рассматривать те точки, которые покрываются ядровыми гранями (остальные точки K_1 , K_3), нетрудно видеть, что соответствующие им слагаемые сократились за счет тождества $a(a \lor b) = a$.

Итак, **алгоритм** решения задачи: построить карту Карно \to выделить ядро и построить КНФ \to раскрыть скобки \to поставить в соответствие каждому слагаемому тупиковую ДНФ.

При решение этой задачи часто используется т. н. maблица Keaйнa. Это таблица, строки которой соответствуют максимальным граням, а столбцы — точкам множества N_f . В ячейку этой таблицы, соответствующей строке K и столбцу α ставится 1, если α принадлежит грани K и 0 иначе. Для примера выше эта таблица имеет вид:

	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	α_{11}
$\overline{K_1}$	1	1	0	1	1	0	0	0	0	0	0
K_2	0	1	1	0	1	1	0	0	0	0	0
K_3	0	1	1	0	0	0	0	0	1	1	0
K_4	0	0	0		1	1	1	0	0	0	0
K_5	0	0	0	0	0	0	1	1	0	0	0
K_6	0	0	0	0	0	0	0	1	0	0	1
K_7	0	0	0	0	0	0	0	0	0	1	1

По этой таблице можно строить ядро, находить ядровые грани и все тупиковые ДНФ. В терминологии таблицы Квайна:

- Точка α ядровая, если в соответствующем ей столбце таблицы Квайна стоит ровно одна единица (см. точки α_1 , α_9).
- Ядровые грани в этой терминологии соответствуют строкам, в которых хотя бы в одном «ядровом» столбце стоит единица (это грани K_1 и K_3). Тогда для построения всех тупиковых ДНФ можно вычеркнуть столбцы α_1 , α_9 , строки K_1 и K_3 , и те столбцы, в которых в вычеркнутых строках стоят единицы то есть α_2 , α_4 , α_5 , α_3 , α_{10} .

Рис. 2. Упрощение таблицы Квайна.

- Точка $\alpha \in N_f$ называется регулярной, если существует точка $\beta \in N_f$ такая, что множество максимальных граней f, проходящих через точку β строго содержится во множестве максимальных граней f, проходящих через точку α . В терминах таблицы Квайна столбец α соответствует регулярной точке, если есть столбец β такой, что в каждой строке, где есть единица в столбце β , есть единица и в столбце α , и при этом столбцы α и β различны. Например, точка α_2 является регулярной, так как есть точка α_3 , через которую проходят грани $\{K_2, K_3\} \subset \{K_1, K_2, K_3\}$ ($\{K_1, K_2, K_3\}$ проходят через α_2).
- Максимальная грань называется *регулярной*, если она состоит из регулярных точек. Таким граням соответствуют строки, в которых единицы стоят только в столбцах, соответствующих регулярным точкам.

По таблице Квайна снова можно записать КНФ B, в которой каждому оставшемуся столбцу будет соответствовать дизъюнкт из тех переменных y_i , для которых в этом

столбце в строках K_i стоят единицы, например, для столбца α_6 это будет $(y_2 \vee y_4)$. Далее нужно раскрыть скобки, привести подобные, получить ДНФ, но не забыть про вычеркнутые строки, которые входят в любую тупиковую ДНФ. Это второй способ решения данной задачи.

Важные факты

- (1) ДН $\Phi \cap T$ (то есть дизъюнкция всех тех простых импликант, которые входят в любую тупиковую ДН Φ) состоит из всех тех простых импликант, которым соответствуют ядровые грани.
- (2) ДН $\Phi\Sigma T$ (то есть дизъюнкция всех тех простых импликант, которые входят в хотя бы одну тупиковую ДН Φ) состоит из всех тех простых импликант, которым соответствуют грани, НЕ являющиеся регулярными.
- (3) ДНФ Квайна ДНФ, полученная из сокращенной ДНФ удалением тех неядровых граней, которые покрываются ядром (то есть каждая точка любой удаляемой грани принадлежит какой-нибудь ядровой грани). В примере выше ни одна из неядровых граней не покрывается ядром, и потому ДНФ Квайна совпадает с сокращенной ДНФ.