Documents autorisés: cours, TD, notes manuscrites, calculatrice. Barème indicatif: 4+6+4+6 Durée: 1h 30.

Les résultats sont présentés avec trois chiffres significatifs.

Exercice 1

Calcul intégral

On note f la fonction définie sur \mathbb{R} par $f(x) = xe^{-x}$ sur $[0, +\infty[$ et f(x) = 0 sinon.

f est une densité de probabilité (démontré en TD).

On note X une variable aléatoire absolument continue de densité f.

On souhaite calculer $E\left(X\right)=\int_{-\infty}^{+\infty}xf(x)\,dx.$

- 1. En utilisant une intégration par parties, exprimer $F(x) = \int_0^x t^2 e^{-t} dt$ en fonction de $\int_0^x t e^{-t} dt$.
- 2. En déduire $\int_0^{+\infty} x^2 e^{-x} dx$ puis E(X).

Indications

(a)
$$\lim_{x \to +\infty} x^2 e^{-x} = 0$$
,

(b)
$$\int_0^{+\infty} xe^{-x} dx = 1.$$

3. La médiane de X est le nombre M vérifiant $P(x \leq M) = P(x \geq M)$.

Déterminer graphiquement une valeur approchée de M.

Indication

On a représenté la fonction f ainsi que la fonction F en annexe à rendre : préciser les traits de construction.

Exercice 2

Loi binomiale et loi normale

Un producteur de pommes a fait une étude statistique sur le diamètre de l'ensemble des pommes produites. Cette étude conduit au résultat suivant : le diamètre en centimètres d'une pomme est une variable aléatoire X suivant la loi normale de moyenne $\mu=7$ et d'écart-type $\sigma=0,5$: $X \sim \mathcal{N}(7;0,5)$.

Par ailleurs, on dit qu'une pomme est de catégorie \mathcal{C} si son diamètre est compris entre 6, 3 cm et 7, 7 cm.

- 1. Calculer $p = P(6, 3 \le X \le 7, 7)$, probabilité qu'une pomme prise au hasard dans la production soit de calibre C.
- 2. Le producteur conditionne ses pommes par cageots de 36 pommes. On note Y la variable aléatoire égale au nombre de pommes de catégorie \mathcal{C} dans un cageot. Y suit la loi binomiale de paramètres n=36 et $p:Y\sim\mathcal{B}\left(n,p\right)$.

- (a) Quel est le nombre moyen m de pommes de catégorie \mathcal{C} dans un cageot ? Indication: m = E(Y).
- (b) On souhaite calculer la probabilité d'avoir au moins 28 pommes dans un cageot $P(Y \ge 28)$. Pour simplifier le calcul on envisage d'utiliser une autre loi.
 - i. Est-ce qu'il est envisageable d'utiliser une loi de Poisson ? Indication

L'approximation de la loi binomiale $\mathcal{B}(n, p)$ par la loi de Poisson $\mathcal{P}(\lambda)$ avec $\lambda = np$ est envisageable pour n assez grand $(n \ge 30), p \le 0, 1$ et $np \le 10$.

ii. Est-ce qu'il est envisageable d'utiliser une loi de normale ? Indication

D'après le théorème central limite, l'approximation de la loi binomiale $\mathcal{B}(n,p)$ par la loi normale $\mathcal{N}(m,\sigma)$ avec m=np et $\sigma^2=np(1-p)$ est envisageable pour n assez grand $(n \geq 30), np \geq 5$ et $n(1-p) \geq 5$.

- (c) Pour calculer $P(Y \ge 28)$ on décide d'utiliser la loi normale de paramètres m = np et $\sigma = \sqrt{np(1-p)}$. On considère alors une variable aléatoire $Y' \sim \mathcal{N}(m, \sigma)$.
 - i. Préciser m et σ .
 - ii. Calculer $P(Y \ge 28) \approx P(Y' \ge 27, 5)$.

Exercice 3

Intervalle de confiance pour une moyenne; pour un écart-type

À la réception de colis, un responsable doute de l'exactitude des masses affichées sur les boîtes. Il prélève au hasard n=25 boîtes qu'il pèse. On note x_i la réalisation de la variable aléatoire X_i , masse de la boîte i en kg $(1 \le i \le 25)$. Les variables X_i sont indépendantes selon une loi $\mathcal{N}(\mu, \sigma)$.

Il obtient
$$\sum_{i=1}^{25} x_i = 49,5 \text{ kg et } \sum_{i=1}^{25} x_i^2 = 98,3 \text{ kg}^2.$$

Ayant choisi a priori un seuil de $\alpha=5$ %, il s'agit de construire des intervalles de confiance à $1-\alpha=95$ % pour μ .

1. Préciser une estimation ponctuelle de μ , puis une estimation de σ^2 . Indication

Les estimateurs de la moyenne μ et de la variance σ^2 sont respectivement $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ et

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right), \text{ avec } n = 25.$$

- 2. Intervalle de confiance I pour μ de niveau de confiance 95 %
 - (a) Donner un intervalle de confiance I pour μ de niveau de confiance 95 %. Indication

La variance n'étant pas connue, elle doit être estimée. On utilise l'estimation s^2 trouvée ci-dessus et $\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim \mathcal{T}_{n-1}$, loi de Student à n-1 degrés de liberté (n=25).

On peut alors écrire
$$P\left(\left|\frac{\overline{X}-\mu}{S/\sqrt{n}}\right| \le t_{n-1;1-\alpha/2}\right) = 1-\alpha.$$

(b) Sachant que la masse affichée sur chaque boîte est de 2 kg, les doutes du responsable sont-ils justifiés au risque de 5 %?

Indication

On précisera si $2 \in I$ et on conclura.

3. Intervalle de confiance I' pour σ de niveau de confiance 95 \% Donner un intervalle de confiance I' pour σ de niveau de confiance 95 %. Indication

La moyenne
$$\mu$$
 n'étant pas connue, $\frac{n-1}{\sigma^2}S^2 \sim \chi^2_{n-1}$ $(n=25)$.
On utilise alors $P\left(\chi_{n-1;\alpha/2} \leq (n-1)\frac{S^2}{\sigma^2} \leq \chi_{n-1;1-\alpha/2}\right) = 1-\alpha$.

Exercice 4

Test pour une moyenne (σ connu)

Dans une usine, un procédé de fabrication produit des équipements informatiques dont la durée de vie X en heures est une variable aléatoire qui suit la loi normale $\mathcal{N}(\mu_0, \sigma)$, avec $\mu_0 = 10\,000$ heures et $\sigma = 1200$ heures.

Un nouveau procédé est mis en place sur une autre chaîne de production. On admet que la durée de vie suit aussi une loi normale. Sur un échantillon de n=100 équipements issus de cette nouvelle chaîne, la durée de vie moyenne est de $\overline{x} = 10300$ heures.

On se demande si on peut affirmer au niveau 5 % que ce nouveau procédé est différent de l'ancien en terme de durée de vie de l'équipement informatique. On veut donc tester l'hypothèse nulle $H_0: \mu = \mu_0$, contre l'hypothèse alternative $H_1: \mu \neq \mu_0$ au niveau 5 %.

En notant X_i la durée de vie d'un équipement informatique donné i, on peut supposer que $X_i \sim \mathcal{N}(\mu, \sigma)$ et les X_i indépendantes.

Sous l'hypothèse nulle $H_0: \mu = \mu_0, T = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0; 1)$ avec $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

- 1. Préciser le nombre u vérifiant $P(-u \le T \le u) = 0,95$ avec $T \sim \mathcal{N}(0,1)$.
- 2. En déduire $P(|T| \ge u)$, puis la région de rejet.
- 3. Est-ce que \overline{x} appartient à la région de rejet?
- 4. En déduire la décision. Expliquer.
- 5. Préciser la p-value $P_c(\overline{x}) = P_{H_0}(|\overline{X} \mu_0| \ge |\overline{x} \mu_0|)$.
- 6. En déduire le degré de signification du test (test significatif, très significatif, hautement significatif). Indication

Degré de signification	p-value	Notation
Test significatif	$0,01 < P_c \le 0,05$	*
Test très significatif	$0,001 < P_c \le 0,01$	**
Test hautement significatif	$P_c \le 0,001$	***

Annexe 1 à rendre

Nom: _____