Lezione 31

Saverio Salzo*

22 Novembre 2022

1 Derivate di ordine superiore

Definizione 1.1. Sia $A \subset \mathbb{R}$ un'unione di intervalli^a di \mathbb{R} e sia $f: A \to \mathbb{R}$. Supponiamo che f sia derivabile in tutti i punti di A con derivata $f': A \to \mathbb{R}$. Se f' è derivabile in un punto $x_0 \in A$, allora f di dice derivabile due volte in x_0 e la derivata di f' in x_0 si chiama derivata seconda di f in x_0 e si indica in uno dei seguenti modi

$$f''(x_0), \quad f^{(2)}(x_0), \quad D^2 f(x_0), \quad \frac{d^2 f}{dx^2}(x_0), \quad \ddot{f}(x_0).$$

Se poi f è derivabile due volte in tutti i punti di A, allora la funzione $x \mapsto f''(x)$ si chiama derivata seconda di f e si indica con uno dei simboli

$$f'', f^{(2)}, D^2 f, \frac{d^2 f}{dx^2}, \ddot{f}.$$

Osservazione 1.2. In accordo alla Definizione 1.1 si ha

$$\lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0)}{h} = f''(x_0) \in \mathbb{R}.$$

Esempio 1.3.

(i) La funzione potenza con esponente $n \in \mathbb{N}^*$,

$$p_n \colon \mathbb{R} \to \mathbb{R}, \quad p_n(x) = x^n$$

è derivabile con derivata

$$p'_n \colon \mathbb{R} \to \mathbb{R}, \quad p'_n(x) = nx^{n-1}.$$

 $[^]a$ E' sufficiente che tutti i punti di A siano di accumulazione per A e questo è verificato se A è una unione di intervalli di \mathbb{R} .

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

Allora è chiaro che la funzione p'_n è a sua volta derivabile. Perciò p_n è due volte derivabile e risulta

$$\forall x \in \mathbb{R} \colon p_n''(x) = n(n-1)x^{n-2}.$$

(ii) Consideriamo le funzioni seno e coseno

sen:
$$\mathbb{R} \to \mathbb{R}$$
 e cos: $\mathbb{R} \to \mathbb{R}$.

Abbiamo visto che entrambe sono derivabili e le derivate sono rispettivamente

$$\cos : \mathbb{R} \to \mathbb{R} \quad e \quad -\sin : \mathbb{R} \to \mathbb{R}.$$

Chiaramente queste funzioni sono ancora derivabili e perciò le funzioni seno e coseno sono derivabili due volte e risulta

$$D^2 \operatorname{sen} x = -\operatorname{sen} x$$
 e $D^2 \cos x = -\cos x$.

Più in generale si possono definire le derivate di qualsiasi ordine per ricorrenza.

Definizione 1.4. Sia $A \subset \mathbb{R}$ un'unione di intervalli di \mathbb{R} e sia $f: A \to \mathbb{R}$. Sia $n \in \mathbb{N}^*$ e supponiamo che f sia derivabile n volte in tutti i punti di A con derivata $f^{(n)}: A \to \mathbb{R}$. Se $f^{(n)}$ è derivabile in un punto $x_0 \in A$, allora f di dice derivabile n+1 volte in x_0 e la derivata di $f^{(n)}$ in x_0 si chiama derivata n+1-esima di f in x_0 e si indica in uno dei seguenti modi

$$f^{(n+1)}(x_0), \quad D^{n+1}f(x_0), \quad \frac{d^{n+1}f}{dx^{n+1}}(x_0).$$

Se poi f è derivabile n+1 volte in tutti i punti di A, allora la funzione $x \mapsto f^{(n+1)}(x)$ si chiama derivata n+1-esima di f e si indica con uno dei simboli

$$f^{(n+1)}$$
, $D^{n+1}f$, $\frac{d^{n+1}f}{dx^{n+1}}$.

Osservazione 1.5. Sia $A \subset \mathbb{R}$ un'unione di intervalli di \mathbb{R} e $n \in \mathbb{N}^*$. Per induzione su n si prova che se $f, g \colon A \to \mathbb{R}$ sono funzioni n volte derivabili in A, allora f + g e $f \cdot g$ sono n volte derivabili in A e, per ogni $x \in A$, risulta

$$(f+g)^{(n)}(x) = f^{(n)}(x) + g^{(n)}(x)$$
 e $(f \cdot g)^{(n)}(x) = f^{(n)}(x)g^{(n-1)}(x) + f^{(n-1)}(x)g^{(n)}(x)$. (1)

L'insieme delle funzioni definite in A, derivabili n volte in A e con derivata n-esima continua si indica con

$$\mathscr{C}^n(A)$$
.

Questo insieme è un'algebra di funzioni, cioè

$$\forall f, g \in \mathscr{C}^n(A), \forall \alpha \in \mathbb{R}: f + g, \alpha f, f \cdot g \in \mathscr{C}^n(A).$$

Dalla seconda di (1), per induzione, si ricava la seguente $regola\ di\ Leibniz$ per il calcolo della derivata n-esima del prodotto di due funzioni n volte derivabili

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}(x) \cdot g^{(k)}(x),$$

dove si è posto $f^{(0)} = f$ e $g^{(0)} = g$.