V₁₅

The find operation in Union-Find distinguishes Union-Find from Union-by-rank since path-compression occur in the find operation.

Now, as shown in class the running time for Union-by-Rank is $O(m \log n)$.

P. 3

See below.

Problem 3: The changes I made are underlined.

Let e₁, e₂, e₃, . . . denote the sequence of edges taken by the algorithm.

<u>Assume that all edges have distinct edges as given in the hypothesis of the problem.</u>

Claim: for each i, there exists an <u>unique</u> optimal spanning tree that contains e₁, e₂, . . . , e_i.

We use induction on i.

For i = 0, the claim is obvious.

Assume that the claim holds for i and let us prove it for i + 1.

By induction hypothesis, there exists an <u>unique</u> optimal spanning tree that contains e_1, e_2, \ldots, e_i .

Let T_- denote such a tree. If T_- also contains e_{i+1} , then the claim holds for T_- and i+1. Else, adding e_{i+1} to T_- creates a cycle C. There is at least one other edge e of C that is not e_1, e_2, \ldots, e_i (because by construction, $e_1, e_2, \ldots, e_{i+1}$ does not have any cycle). Then $T_0 = T_- - e + e_{i+1}$ is still a spanning tree, and its cost differs from the cost of T_- by $w_{e_{i+1}} - w_e$.

Since T_{-} is optimal, T_{0} has weight greater than or equal to the weight of T_{-} , so $w_{e_{i+1}} > = w_{e_{i+1}}$. There are two cases: either $w_{e_{i+1}}$, or $w_{e_{i+1}}$.

In the first case, e would have been considered before e_{i+1} by the algorithm, and it does not create a cycle with e₁, . . . , e_i, so it would have been taken by the algorithm: contradiction.

In the second case, T_0 has cost equal to that of T_- , so it is an optimal tree containing $e_1, \ldots, e_i, e_{i+1}$, as desired.

However, now note that by assumption that all edges have distinct weights weilt >weil, and ei+1 is unique since any other edges not in the tree must have weight greater than ("not equal to") ei+1. This proves the claim, hence the tree output by Kruskal's algorithm has minimum weight and is unique if all edges have distinct weights.

P-4

The idea is that

-) Take the activities that starts closect to but also before the previous end time.
- 2) Take the longest (one that ends the latest) among the activities selected by []
- 3) repeat

Here's implementation.

Let $a_{i} = (S_{i}, t_{i})$ the start time and the end time $a_{i}(s) = S_{i}$, $a_{i}(t) = t_{i}$

S = the output set.

Sort {a, 3 by the ascending order of the start time.

i.e) a (s) & a 2 (s) & --- & d (s).

 $S := \emptyset$ $a := a_1$

For $i \leftarrow 1$ to (n-1)| if $a(s) = a_i(s)$ & $a(t) \land a_i(t)$ | if $a(s) \neq a_i(s)$ & $a_{i+1}(s) \Rightarrow a(t)$ | add a to s| a \lefta a_i(t) \geq a(t)