Slides with subtitle

Bogdan Purcareata

April 25, 2013

Why?

What?

Virtualization LinuX Containers

How?

SO Concepts Control Groups Namespaces

Usage

Schematics

Demo

Benchmarks

IT trends

- more resources
 - high performance technology available at lower costs
 - software optimizations for resource usage
- more users
 - devices are everywhere
 - · shared access
- data consolidation
 - · rise of data centers
 - · cloud computing
 - data belonging to different accounts in the same place
- increased flexibility
 - · easier to access
 - · easier to configure
 - · easier to use

Embedded World

- Networking
 - traffic belonging to different departments on the same device
 - QoS policy for each container
- Smartphones
 - separate RTOS (Real Time OS) from HLOS (High Level OS)
 - run legacy applications
 - separate account privileges

Network

- device delegation move one interface to another namespace
- create virtual device inside that namespace
 - veth virtual ethernet tunnel
 - vlan
 - 802.1Q dedicated VLAD ID in packet header
 - MAC VLAN uses VLAN device MAC as ID

References

- why network namespace sucks and how to make it suck faster
- Performance Evaluation of Container-based Virtualization for High Performance Computing Environments

Sample Process Hierarchy

```
init(1)-+-dnsmasq(2162)
        |-klogd(2175)
        |-lxc-start(2964)---init(2966)---+-init(2972)
                                            1-sh(2971)
                                            '-syslogd(2969)
        |-lxc-start(2974)---init(2976)---+-init(2982)
                                            1-sh(2981)
                                            '-syslogd(2979)
        |-netserver(2167)
        |-sh(2179)|
        |-syslogd(2173)
        '-udevd(962)-+-udevd(1189)
                      '-udevd(1190)
```

Process IDs

```
init(1)-+-dnsmasq(2162)
        |-k\log d(2175)|
        |-1xc-start(2964)---init(2966)(1)-+-init(2972)(7)
                                             |-sh(2971)(6)
                                             '-syslogd(2969)(4)
         |-lxc-start(2974)---init(2976)(1)-+-init(2982)(7)
                                             |-sh(2981)(6)
                                             '-syslogd(2979)(4)
        |-netserver(2167)
        |-sh(2179)|
        |-syslogd(2173)|
        '-udevd(962)-+-udevd(1189)
                      '-udevd(1190)
```

Namespace Segregation

```
init(1)-+-dnsmasq(2162)
        |-k\log d(2175)|
        |-1xc-start(2964)---init(2966)(1)-+-init(2972)(7)
                                             |-sh(2971)(6)
                                             '-syslogd(2969)(4)
                             PID Namespace 1
        |-lxc-start(2974)--- init(2976)(1)-+-init(2982)(7)
                                             |-sh(2981)(6)|
                                             '-syslogd(2979)(4)
                             PID Namespace 2
        |-netserver(2167)
        |-sh(2179)|
        |-syslogd(2173)
        '-udevd(962)-+-udevd(1189)
                      '-udevd(1190)
```

Filesystem Segregation

"chroot on steroids"

```
init(1)-+-dnsmasq(2162)
        |-klogd(2175)
                        root: /var/lib/lxc/foo1/rootfs/
        |-1xc-start(2964)---init(2966)(1)-+-init(2972)(7)
                                            |-sh(2971)(6)
                                            '-syslogd(2969)(4)
                            PID Namespace 1
                            root: /var/lib/lxc/foo1/rootfs/
        |-1xc-start(2974)---init(2976)(1)-+-init(2982)(7)
                                            |-sh(2981)(6)
                                            '-syslogd(2979)(4)
                            PID Namespace 2
        |-netserver(2167)
        |-sh(2179)|
        |-syslogd(2173)
        '-udevd(962)-+-udevd(1189)
                     '-udevd(1190)
```

CPU Partitioning

```
init(1)-+-dnsmasq(2162)
        |-klogd(2175) root: /var/lib/lxc/foo1/rootfs/
  ,----|-1xc-start(2964)---init(2966)(1)-+-init(2972)(7)
                25%
                                            |-sh(2971)(6)
                                            '-syslogd(2969)(4)
                            PID Namespace 1
                            root: /var/lib/lxc/foo1/rootfs/
1 core
        |-1xc-start(2974)---init(2976)(1)-+-init(2982)(7)
                                            |-sh(2981)(6)|
                75%
                                            '-syslogd(2979)(4)
                            PID Namespace 2
        |-netserver(2167)
        |-sh(2179)|
        |-syslogd(2173)
        '-udevd(962)-+-udevd(1189)
                     '-udevd(1190)
```

Demo

- 1. start 2 containers
- 2. check PIDs
- 3. assign them a single core on the host
- 4. balance CPU usage 25% 75%

Usage

System Performance

Networking Performance

Usage

Isolation

PERFORMANCE ISOLATION FOR LU APPLICATION. THE RESULTS REPRESENT HOW MUCH THE APPLICATION PERFORMANCE IS IMPACTED BY DIFFERENT STRESS TESTS IN ANOTHER VM/CONTAINER. DNR MEANS THAT APPLICATION WAS NOT ABLE TO RUN.

	LXC	OpenVZ	VServer	Xen
CPU Stress	0	0	0	0
Memory	88.2%	89.3%	20.6%	0.9%
Disk Stress	9%	39%	48.8%	0
Fork Bomb	DNR	0	0	0
Network Receiver	2.2%	4.5%	13.6%	0.9%
Network Sender	10.3%	35.4%	8.2%	0.3%