Εργασία εργαστηρίου 4 – Δίκτυα Υπολογιστών

Όνομα: Ζήνα Γκούμα

АМ: П20048

Μέρος Α

Αρχικά, τοποθετούμε τους κόμβους και τα μέσα σύνδεσης όπως φαίνονται στο διάγραμμα τοπολογίας. Έτσι, το δίκτυο έχει την παρακάτω μορφή:

Έπειτα, προχωράμε στην κατανομή των διευθύνσεων IP, η οποία θα γίνει με την εύρεση των υποδικτύων του δικτύου 192.169.200.0 . Αυτό θα γίνει με την μέθοδο VLSM, σύμφωνα με τους πίνακες της εκφώνησης.

Μέθοδος VLSM

Δίκτυο LAN

Απαιτούμενοι αριθμοί κόμβων σε φθίνουσα σειρά: 1024, 100, 64, 30, 9

Ξεκινώντας απ' το δίκτυο με τον μεγαλύτερο αριθμό κόμβων, θα συνεχίζουμε σε αυτό με τον αμέσως μικρότερο αριθμό κόμβων.

1° υποδίκτυο (R4 -> Fa0/0)

Ο αριθμός των κόμβων στο δίκτυο είναι: 1024

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 1024 + 2 = 1026

 $1026 < 2^{11} = 2048$, η δύναμη του 2 που βρέθηκε είναι η 11.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111000. 00000000 ή 255.255.248.0

NetID-1: 192.169.200.0 AND 255.255.248.0 = 192.169.200.0

Broadcast IP-1: 192.169.200.0 OR (NOT 255.255.248.0) =

192.169.200.00000000 OR 0.0.00000111.11111111 = 192.169.200.11111111 = 192.169.207.255

2° υποδίκτυο (R3 -> Fa0/0)

Ο αριθμός των κόμβων στο δίκτυο είναι: 100

Ο αριθμός των IP που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 100 + 2 = 102

 $102 < 2^7 = 128$, η δύναμη του 2 που βρέθηκε είναι η 7.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111111.10000000 ή 255.255.255.128

NetID-2: = 192.169.207.255 +1 = 192.169.208.0

Broadcast IP-2: 192.169.208.0 OR (NOT 255.255.255.128) =

192.169.208.00000000 OR 0.0.0.01111111 = 192.169.208.127

3° υποδίκτυο (R1 -> Fa0/0)

Ο αριθμός των κόμβων στο δίκτυο είναι: 64

Ο αριθμός των IP που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 64 + 2 = 66

 $66 < 2^7 = 128$, η δύναμη του 2 που βρέθηκε είναι η 7.

Άρα, η νέα μάσκα είναι: 11111111.1111111.11111111.10000000 ή 255.255.255.128

NetID-3: 192.169.208.127 +1 = 192.169.208.128

Broadcast IP-3: 192.169.208.128 OR (NOT 255.255.255.128) =

192.169.208.10000000 OR 0.0.0.01111111 = 192.169.208.255

4° υποδίκτυο (R2 -> Fa0/1)

Ο αριθμός των κόμβων στο δίκτυο είναι: 30

Ο αριθμός των IP που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 30 + 2 = 32

 $32 = 2^5$, η δύναμη του 2 που βρέθηκε είναι η 5.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111111.11100000 ή 255.255.255.224

NetID-4: 192.169.208.255 + 1 = 192.169.209.0

Broadcast IP-4: 192.169.209.0 OR (NOT 255.255.255.224) =

192.169.209.00000000 OR 0.0.0.00011111 = 192.169.209.31

5° υποδίκτυο (R2 -> Fa0/0)

Ο αριθμός των κόμβων στο δίκτυο είναι: 9

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 9 + 2 = 11

 $11 < 2^4 = 16$, η δύναμη του 2 που βρέθηκε είναι η 4.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111111.11110000 ή 255.255.250.240

NetID-5: 192.169.209.32

Broadcast IP-5: 192.169.209.0 OR (NOT 255.255.255.240) =

192.169.209.00100000 OR 0.0.0.00001111 = 192.169.209.00101111 $\dot{\eta}$ 192.169.209.47

Δίκτυο WAN

Απαιτούμενοι αριθμοί κόμβων: 2, 2, 2, 2

6ο υποδίκτυο (R1-R2)

Ο αριθμός των κόμβων στο δίκτυο είναι: 2

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 2 + 2 = 4

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111111.11111100 ή 255.255.255.252

NetID-6: 192.169.209.47 +1 = 192.169.209.48

BroadcastIP-6: 192.169.209.48 OR (NOT 255.255.255.252) = 192.169.209.51

7ο υποδίκτυο (R1-R3)

Ο αριθμός των κόμβων στο δίκτυο είναι: 2

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 2 + 2 = 4

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

Η νέα μάσκα είναι: 11111111.11111111.11111111.11111100 ή 255.255.255.252

NetID-7: 192.169.209.52

BroadcastIP-7: 192.169.209.52 OR (NOT 255.255.255.252) = 192.169.209.55

8ο υποδίκτυο (R2-R3)

Ο αριθμός των κόμβων στο δίκτυο είναι: 2

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 2 + 2 = 4

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

Η νέα μάσκα είναι: 11111111.11111111.11111111.11111100 ή 255.255.255.252

NetID-8: 192.169.209.56

BroadcastIP-8: 192.169.209.56 OR (NOT 255.255.255.252) = 192.169.209.59

9ο υποδίκτυο (R3-R4)

Ο αριθμός των κόμβων στο δίκτυο είναι: 2

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 2 + 2 = 4

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

Η νέα μάσκα είναι: 11111111111111111111111111111111100 ή 255.255.255.252

NetID-9: 192.169.209.60

BroadcastIP-9: 192.169.209.60 OR (NOT 255.255.255.252) = 192.169.209.63

Αφού έχουμε βρει και τα 9 υποδίκτυα, φτιάχνουμε το παρακάτω σχήμα διευθυνσιοδότησης:

		Number			Network	Lowest Host	Highest	Broadcast
Hostname	Interface	of IPs	Prefix	Mask	Address	Address	Host	Address
							Address	
R1	Fa0/0	128	/25	255.255.255.128	192.169.208.128	192.169.208.129	192.169.208.254	192.169.208.255
R2	Fa0/0	16	/28	255.255.255.240	192.169.209.32	192.169.209.33	192.169.209.46	192.169.209.47
	Fa0/1	32	/27	255.255.255.224	192.169.209.0	192.169.209.1	192.169.209.30	192.169.209.31
R3	Fa0/0	128	/25	255.255.255.128	192.169.208.0	192.169.208.1	192.169.208.126	192.169.208.127
R4	Fa0/0	2048	/21	255.255.248.0	192.169.200.0	192.169.200.1	192.169.207.254	192.169.207.255
R1 - R2	R1-1st host address	4	/30	255.255.255.252	192.169.209.48	192.169.209.49	192.169.209.50	192.169.209.51
R1 - R3	R1-1st host address	4	/30	255.255.255.252	192.169.209.52	192.169.209.53	192.169.209.54	192.169.209.55
R2 - R3	R1-1st host address	4	/30	255.255.255.252	192.169.209.56	192.169.209.57	192.169.209.58	192.169.209.59
R3 - R4	R1-1st host address	4	/30	255.255.255.252	192.169.209.60	192.169.209.61	192.169.209.62	192.169.209.63

Έπειτα, βασιζόμενοι στο σχήμα διευθυνσιοδότησης αλλά και στους παρακάτω κανόνες για την ανάθεση διευθύνσεων ΙΡ, φτιάχνουμε το εξής πίνακα διευθύνσεων.

- Τα PC λαμβάνουν τη πρώτη ωφέλιμη IP διεύθυνση του υποδικτύου και ο server τη προτελευταία ωφέλιμη αντίστοιχα. PC IP Address = Network Address + 1 και server IP Address = Broadcast IP 2
- Όλες οι FastEthernet θύρες ενός router λαμβάνουν τη τελευταία ωφέλιμη IP του αντίστοιχου υποδικτύου. IP Address = Broadcast IP 1

Device	Interface	IP Address	Subnet Mask	Default Gateway
	Fa0/0	192.169.208.254	255.255.255.128	-
R1	S0/0/0	192.169.209.49	255.255.255.252	-
	S0/0/1	192.169.209.53	255.255.255.252	-
	Fa0/0	192.169.209.46	255.255.255.240	-
R2	Fa0/1	192.169.209.30	255.255.255.224	-
	S0/0/0	192.169.209.50	255.255.255.252	-
	S0/0/1	192.169.209.57	255.255.255.252	-
	Fa0/0	192.169.208.126	255.255.255.128	-
R3	SO/0/0	192.169.209.58	255.255.255.252	-
	S0/0/1	192.169.209.54	255.255.255.252	-
	SO/1/0	192.169.209.61	255.255.255.252	-
R4	Fa0/0	192.169.207.254	255.255.248.0	-
	SO/0/0	192.169.209.62	255.255.255.252	-
PC-1A	NIC	192.169.208.129	255.255.255.128	192.169.208.254
PC-1B	NIC	192.169.209.33	255.255.255.240	192.169.209.46
PC-1C	NIC	192.169.208.1	255.255.255.128	192.169.208.126
PC-1D	NIC	192.169.200.1	255.255.248.0	192.169.207.254
Eagle_Server	NIC	192.169.209.29	255.255.255.224	192.169.209.30

Επίσης, ρυθμίζουμε τα ρολόγια στις DCE διεπαφές των R1 και R2 να έχουν ρυθμό 56000.

Στην συνέχεια, αφού αποδώσουμε διευθύνσεις ΙΡ στις διεπαφές του δικτύου σύμφωνα με τον πίνακα διευθυνσιοδότησης, οι συνδέσεις του δικτύου στεθεροποιούνται.

Με την χρήση της εντολής ping, ελέγχουμε την σύνδεση των υπολογιστών με το gateway τους, τον Eagle Server και τους υπόλοιπους υπολογιστές.

Για το PC-1Α είναι:

Gateway

```
C:\> ping 192.169.208.254

Pinging 192.169.208.254 with 32 bytes of data:

Reply from 192.169.208.254: bytes=32 time=40ms TTL=255

Reply from 192.169.208.254: bytes=32 time<1ms TTL=255

Reply from 192.169.208.254: bytes=32 time=1ms TTL=255

Reply from 192.169.208.254: bytes=32 time<1ms TTL=255

Ping statistics for 192.169.208.254:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 40ms, Average = 10ms
```

Eagle_Server

```
C:\> ping 192.169.209.29

Pinging 192.169.209.29 with 32 bytes of data:

Reply from 192.169.208.254: Destination host unreachable.

Ping statistics for 192.169.209.29:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Υπόλοιποι υπολογιστές

```
C:\> ping 192.169.209.33

Pinging 192.169.209.33 with 32 bytes of data:

Request timed out.

Reply from 192.169.208.254: Destination host unreachable.

Request timed out.

Reply from 192.169.208.254: Destination host unreachable.

Ping statistics for 192.169.209.33:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

```
C:\> ping 192.169.208.1

Pinging 192.169.208.1 with 32 bytes of data:

Reply from 192.169.208.254: Destination host unreachable.
Reply from 192.169.208.254: Destination host unreachable.
Request timed out.
Reply from 192.169.208.254: Destination host unreachable.

Ping statistics for 192.169.208.1:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

```
C:\> ping 192.169.200.1

Pinging 192.169.200.1 with 32 bytes of data:

Reply from 192.169.208.254: Destination host unreachable.

Ping statistics for 192.169.200.1:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Για το PC-1Β είναι:

Gateway

```
C:\>ping 192.169.209.46

Pinging 192.169.209.46 with 32 bytes of data:

Reply from 192.169.209.46: bytes=32 time<lms TTL=255
Reply from 192.169.209.46: bytes=32 time=lms TTL=255
Reply from 192.169.209.46: bytes=32 time<lms TTL=255
Reply from 192.169.209.46: bytes=32 time<lms TTL=255
Ping statistics for 192.169.209.46:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = lms, Average = 0ms</pre>
```

Eagle_Server

```
C:\>ping 192.169.209.29

Pinging 192.169.209.29 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.169.209.29:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Υπόλοιποι υπολογιστές

```
C:\>ping 192.169.208.1
C:\>ping 192.169.208.129
Pinging 192.169.208.129 with 32 bytes of data:
                                                            Pinging 192.169.208.1 with 32 bytes of data:
Reply from 192.169.209.46: Destination host unreachable.
                                                            Reply from 192.169.209.46: Destination host unreachable.
Reply from 192.169.209.46: Destination host unreachable.
                                                            Reply from 192.169.209.46: Destination host unreachable.
Request timed out.
                                                            Reply from 192.169.209.46: Destination host unreachable.
Reply from 192.169.209.46: Destination host unreachable.
                                                            Reply from 192.169.209.46: Destination host unreachable.
Ping statistics for 192.169.208.129:
                                                            Ping statistics for 192.169.208.1:
   Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
                                                                 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)
```

```
C:\>ping 192.169.200.1
Pinging 192.169.200.1 with 32 bytes of data:
Reply from 192.169.209.46: Destination host unreachable.
Reply from 192.169.209.46: Destination host unreachable.
Reply from 192.169.209.46: Destination host unreachable.
Request timed out.
Ping statistics for 192.169.200.1:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Μέρος Β

Αρχικά, θα φτιάξουμε ένα σχήμα διευθυνσιοδότησης. Γι' αυτό, βρίσκουμε τα υποδίκτυα που ανήκουν στην περιοχή 1 και στην περιοχή 2 αντίστοιχα.

Περιοχή 1

Αρχικά, βρίσκουμε τις διευθύνσεις τον δρομολογητών με την μέθοδο VLSM.

Το εύρος διευθύνσεων είναι το: 10.168.0.0 /14

Απαιτούμενοι αριθμοί κόμβων σε φθίνουσα σειρά: 131.070, 32.752, 16.384

1° υποδίκτυο (B2-R1)

Ο αριθμός των κόμβων στο δίκτυο είναι: 131.070

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 131.070 +2 = 131.072

 $131.072 = 2^{17}$, η δύναμη του 2 που βρέθηκε είναι η 17.

Άρα, η μάσκα είναι: 11111111.11111110.00000000.00000000 ή 255.254.0.0

NetID-1: 10.168.0.0 AND 255.254.0.0 = 10.168.0.0

BroadcastIP-1: 10.168.0.0 OR (NOT 255.254.0.0) =

10.168.0.00000000 OR 00000000.00000001.111111111111111111 = 10.169.255.255

2° υποδίκτυο (B1-R1)

Ο αριθμός των κόμβων στο δίκτυο είναι: 32.752

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 32.752 +2 = 32.754

 $32.754 < 2^{15} = 32.768$, η δύναμη του 2 που βρέθηκε είναι η 15.

Άρα, η μάσκα είναι: 11111111.11111111.1<mark>0000000.00000000</mark> ή 255.255.128.0

NetID-2: 10.169.255.255 + 1 = 10.170.0.0

BroadcastIP-2: 10.170.0.0 OR (NOT 255.255.128.0) =

10.170.0.0000000 OR 00000000.0000000.01111111.1111111 = 10.170.127.255

3° υποδίκτυο (B3-R1)

Ο αριθμός των κόμβων στο δίκτυο είναι: 16.384

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 16.384 +2 = 16.386

 $16.386 < 2^{15} = 32.768$, η δύναμη του 2 που βρέθηκε είναι η 15.

Άρα, η μάσκα είναι: 11111111.11111111.1<mark>.10000000.00000000</mark> ή 255.255.128.0

NetID-3: 10.170.127.255 +1 = 10.170.128.0

BroadcastIP-3: 10.170.128.0 OR (NOT 255.255.128.0) =

10.170.128.00000000 OR 00000000.00000000.01111111.11111111 = 10.170.255.255

Οπότε, ο κάθε δρομολογητής έχει το παρακάτω εύρος ΙΡ:

B1-R1: 10.170.0.1 – 10.170.127.254

B2-R1: 10.168.0.1 – 10.169.255.254

B3-R1: 10.170.128.1 – 10.170.255.254

Στην συνέχεια, θα βρούμε τις διευθύνσεις των υποδικτύων κάθε router από τα προηγούμενα με την μέθοδο FLSM.

Για το Β1-R1

Θα δημιουργηθούν 4 υποδίκτυα.

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111111.111000000 ή 255.255.255.192

NetID: 10.170.0.00000000 AND 255.255.255.11000000 = 10.170.0.000000000

Άρα, είναι:

Router	Subnet Number	Subnet Address
B1-R1 Fa0/0	0	10.170.0.00000000
B1-R1 Fa0/1	1	10.170.0.01000000
B1-R1 Fa1/0	2	10.170.0.10000000
B1-R1 Fa1/1	3	10.170.0. <mark>11</mark> 000000

Για το Β2-R1

Θα δημιουργηθούν 4 υποδίκτυα.

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

Άρα, η νέα μάσκα είναι: 11111111.111111111.111111111. $\frac{11}{11000000}$ ή 255.255.255.192

NetID: 10.168.0.0000000 AND 255.255.255.11000000 = 10.168.0.000000000

Άρα, είναι:

Router	Subnet Number	Subnet Address
B2-R1 Fa0/0	0	10.168.0.00000000
B2-R1 Fa0/1	1	10.168.0.01000000
B2-R1 Fa1/0	2	10.168.0.10000000
B2-R1 Fa1/1	3	10.168.0.11000000

Για το Β3-R1

Θα δημιουργηθούν 4 υποδίκτυα.

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

NetID: 10.170.128.00000000 AND 255.255.255.11000000 = 10.170.128.00000000

Άρα είναι:

Router	Subnet Number	Subnet Address
B3-R1 Fa0/0	0	10.170.128 <mark>.00</mark> 000000
B3-R1 Fa0/1	1	10.170.128. <mark>01</mark> 000000
B3-R1 Fa1/0	2	10.170.128. <mark>10</mark> 000000
B3-R1 Fa1/1	3	10.170.128.11000000

Επιπλέον, για να βρούμε τις IP των σειριακών συνδέσεων του router R1, θα υποδικτυώσουμε το

10.168.240.240 /28

Θα δημιουργηθούν 3 υποδίκτυα.

 $3 < 2^2 = 4$, η δύναμη του 2 που βρέθηκε είναι η 2.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111111.111000000 ή 255.255.255.192

NetID: 10.168.240.11110000 AND 255.255.255.11000000 = 10.168.240.11000000

Άρα, είναι:

Router	Subnet Number	Subnet Address
B1-R1 <> R1	0	10.168.240. <mark>01</mark> 000000
B2-R1 <> R1	1	10.168.240.10000000
B3-R1 <> R1	2	10.168.240.11000000

Περιοχή 2

Αρχικά, βρίσκουμε τις διευθύνσεις τον δρομολογητών με την μέθοδο VLSM.

Το εύρος διευθύνσεων είναι το: 172.240.0.0 /18

Απαιτούμενοι αριθμοί κόμβων σε φθίνουσα σειρά: 8.092, 4.090, 2.038

1° υποδίκτυο (Β1-R2)

Ο αριθμός των κόμβων στο δίκτυο είναι: 8.092

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 8.092 +2 = 8.094

 $8.094 < 2^{13} = 8.192$, η δύναμη του 2 που βρέθηκε είναι η 13.

Άρα, η μάσκα είναι: 11111111.11111111.11100000.00000000 ή 255.255.224.0

```
NetID-1: 172.240.0.0 AND 255.255.224.0 = 172.240.0.0

BroadcastIP-1: 172.240.0.0 OR (NOT 255.255.224.0) =

172.240.00000000.00000000 OR 0.0.00011111.1111111 = 172.240.31.255
```

2° υποδίκτυο (B2-R2)

Ο αριθμός των κόμβων στο δίκτυο είναι: 4.090

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 4.090 +2 = 4.092

 $4.092 < 2^{12} = 4.096$, η δύναμη του 2 που βρέθηκε είναι η 12.

Άρα, η μάσκα είναι: 11111111.11111111.11110000.0000000 ή 255.255.240.0

NetID-2: 172.240.31.255 +1 = 172.240.32.0

BroadcastIP-2: 172.240.32.0 OR (NOT 255.255.240.0) =

172.240.32.0 OR 0.0.00001111.11111111 = 172.240.47.255

3° υποδίκτυο (B3-R2)

Ο αριθμός των κόμβων στο δίκτυο είναι: 2.038

Ο αριθμός των ΙΡ που χρειάζεται το δίκτυο ώστε να είναι λειτουργικό, είναι: 2.038 +2 = 2.040

 $2.040 < 2^{11} = 2.048$, η δύναμη του 2 που βρέθηκε είναι η 11.

Άρα, η μάσκα είναι: 11111111.11111111.11111000.0000000 ή 255.255.248.0

NetID-3: 172.240.47.255 +1 = 172.240.48.0

BroadcastIP-3: 172.240.48.0 OR (NOT 255.255.248.0) =

172.240.48.0 OR 0.0.00000111.11111111 = 172.240.55.255

Οπότε, ο κάθε δρομολογητής έχει το παρακάτω εύρος ΙΡ:

B1-R2: 172.240.0.1 – 172.240.31.254

B2-R2: 172.240.32.1 – 172.240.47.254

B3-R2: 172.240.48.1 - 172.240.55.254

Στην συνέχεια, θα βρούμε τις διευθύνσεις των υποδικτύων κάθε router από τα προηγούμενα με την μέθοδο FLSM.

Για το Β1-R2

Θα δημιουργηθούν 4 υποδίκτυα.

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

NetID: 172.240.0.00000000 AND 255.255.255.11000000 = 172.240.0.00000000

Άρα, είναι:

Router	Subnet Number	Subnet Address
B1-R2 Fa0/0	0	172.240.0. <mark>00</mark> 000000
B1-R2 Fa0/1	1	172.240.0. <mark>01</mark> 000000
B1-R2 Fa1/0	2	172.240.0.10000000
B1-R2 Fa1/1	3	172.240.0. <mark>11</mark> 000000

Για το Β2-R2

Θα δημιουργηθούν 4 υποδίκτυα.

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

Άρα, η νέα μάσκα είναι: 11111111.11111111.11111111.111000000 ή 255.255.255.192

NetID: 172.240.32.00000000 AND 255.255.255.11000000 = 172.240.32.000000000

Άρα, είναι:

Router	Subnet Number	Subnet Address
B2-R2 Fa0/0	0	172.240.32. <mark>00</mark> 000000
B2-R2 Fa0/1	1	172.240.32. <mark>01</mark> 000000
B2-R2 Fa1/0	2	172.240.32. <mark>10</mark> 000000
B2-R2 Fa1/1	3	172.240.32. <mark>11</mark> 000000

Για το Β3-R2

Θα δημιουργηθούν 4 υποδίκτυα.

 $4 = 2^2$, η δύναμη του 2 που βρέθηκε είναι η 2.

NetID: 172.240.48.00000000 AND 255.255.255.11000000 = 172.240.48.000000000

Άρα, είναι:

Router	Subnet Number	Subnet Address
B3-R2 Fa0/0	0	172.240.48. <mark>00</mark> 000000
B3-R2 Fa0/1	1	172.240.48 <mark>.01</mark> 000000
B3-R2 Fa1/0	2	172.240.48.10000000
B3-R2 Fa1/1	3	172.240.48.11000000