Project: Final presentation /

Eric Berenguer, Anna Maria Llopart, Laura Montserrat

1 Introduction

- **2** RVOT-LVOT classification
- 3 Our SOO
- Wavelets
- 5 SOO classification

RVOT Free Wall Anterior RVOT Posterior RVOT **'RVOT Septal LVOT Summit** LVOT AMC NCC

Figure 1: Representation of SOO [1]

INTRODUCTION

0T: Outflow tract

VT: Ventricular tachycardia

C-AMP: Cycled Adenosine Monophosphate

80% arise from **RVOT**, while 12% from **LVOT** [2]

[2] Reviriego, S. M., & Merino, J. L. (2009). Ventricular tachycardia in patients without apparent structural hear disease; focus on ventricular outflow tract tachycardia. ESC Council for cardiology practice e-journal. 2009; 8, 11.

^[1] Zheng, J., Fu, G., Anderson, K., Chu, H., & Rakovski, C. (2020). A 12-Lead ECG database to identify origins of idiopathic ventricular arrhythmia containing 334 patients. *Scientific Data*, 7(1), 98. https://doi.org/10.1038/s41597-020-0440-8

Dataset

Original Dataset: 143 patients

New Combined Dataset: 620 patients

Δ

Combined Dataset

New Combined Dataset: 620 patients

Features:

'I', 'II', 'III', 'AVR', 'AVL', 'AVF', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'Sex', 'Age', 'Weight', 'Height', 'HTA', 'Smoker', 'PVC_transition', 'Simplified'

QRS of PVC:

Manually segmented taking as reference R peak in 2 s

- 1 Introduction
- 2 RVOT-LVOT classification
- **3** Our SOO
- 4 Wavelets
- 5 SOO classification

Model Core Idea:

Training of Network 1: RNN with LSTM modules

ORS of PVC data as a series

CLASSIFICATION RVOT-LVOT (previous)

Data Used in first Models:

180 patients \rightarrow 143 (removal of empty and undefined SOO)

- Replaced empty values of age, weight and height for mean values

Previous models

Model 0:

- RNN: 5 features extraction
- Input: raw leads

CLASSIFICATION RVOT-LVOT (previous)

Model 1:

- RNN
- Input: QRS from V2 -100
- Accuracy 0.69

Model 2:

- RNN
- Input: QRS from V2 & V3 -100
- Accuracy 0.72

Dataset change

Original Dataset: 143 patients

- With heavy bias on RVOT

New Combined Dataset: 620 patients

- Also with heavy bias on RVOT: 355 RVOT, 124 LVOT

Balanced Training Set

- 114 RVOT
- 104 LVOT

Testing Set

- 28 RVOT
- 20 LVOT

Model 3.0: RNN + MLP

Input Data: concatenation of v2 & v3 QRS

RNN

Input: 1D

Embedding: 5D

BMLP

Input: 8D

Hidden s.: [8, 8]

Features: [Age, Height, Weight]

Precision

LVOT: 57.1%

RVOT: 67.9%

Recall

LVOT: 60.0%

RVOT: 67.9%

Accuracy:

training: 0.6513

testing: 0.6458

Model 3.2: RNN + MLP

Input Data: 2-D vector v2 & v3 QRS

RNN

Input: 2D

Embedding: 3D

BLMP

Input: 6D

Hidden s.: [5, 5]

Idea not continued:

- QRS complexes may not be synchronized
- Accuracy on training data is low and not improving

Accuracy:

training: 0.564

Features: [Age, Height, Weight]

Model 3.3: RNN + MLP

Input Data: Only v2 QRS

RNN

Input: 1D

Embedding: 5D

BLMP

Input: 8D

Hidden s.: [10, 10]

Idea not continued:

 Accuracy on training data is low and not improving

Accuracy:

training: 0.591

Features: [Age, Height, Weight]

Model 3.4: RNN + MLP

Input Data: concatenation of v2 & v3 QRS

RNN

Input: 1D

Embedding: 10D

BLMP

Input: 16D

Hidden s.: [20, 5, 5]

Features:

[Age, Height, Weight, Smoker, HTA, PVC Transition]

Precision

LVOT: 60.0%

RVOT: 71.1%

Recall

LVOT: 60.0%

RVOT: 71.1%

Accuracy:

training: 0.7064 **testing**: 0.7083

Model 3.5: RNN + MLP

Input Data: concatenation of v2 & v3 QRS

RNN

Input: 1D

Embedding: 10D

BLMP

Input: 13D

Hidden s.: [11, 5, 5]

Features:

[Age, HTA, PVC Transition]

Confusion Matrix from testing results

Precision

LVOT: 59.0%

RVOT: 73.1%

Recall

LVOT: 65.0%

RVOT: 67.9%

Accuracy:

training: 0.6605

testing: 0.6666

Accuracy 3.0:

training: 0.6513 **testing**: 0.6458

Accuracy 3.2:

training: 0.564

Accuracy 3.3:

training: 0.591

Accuracy 3.4:

training: 0.7064 **testing**: 0.7083

Accuracy 3.5:

training: 0.6605

testing: 0.6666

Balanced Training Set

- 114 RVOT
- 104 LVOT

Testing Set

- 28 RVOT
- 20 LVOT

1 Introduction

- **2** RVOT-LVOT classification
- 3 Our \$00
- **4** Wavelets
- 5 SOO classification

OUR SOO

LVOT SUMMIT

- Triangular area
- 14.5% of LV VAs [3]

LCC

- Left Coronary Cusp
- 64.3% of LVOT Arrhythmias [4]

Figure 2: Schematic representation of SOO, Extracted from [5]

Figure 3: Anatomical position of SOO, extracted from [6]

[3] Yamada T, McElderry HT, Doppalapudi H, Okada T, Murakami Y, Yoshida Y, Yoshida N, Inden Y, Murohara T, Plumb VJ, Kay GN. Idiopathic ventricular arrhythmias originating from the left ventricular summit: anatomic concepts relevant to ablation. Circ Arrhythm Electrophysiol 2010;3:616–623.

[4] Tovia-Brodie, O., Michowitz, Y., Glick, A., Rosso, R., & Belhassen, B. (2016). Left ventricular outflow tract arrhythmias: clinical characteristics and site of origin. Dep. Cardiol, 18, 114-18. [5] Candemir, B., Baskovski, E., Duzen, V., Coskun, F., Vurgun, K., Goksuluk, H., ... & Erol, C. (2019). Late elimination of challenging idiopathic ventricular arrhythmias originating from left ventricular summit by anatomical ablation. *Indian Pacing and Electrophysiology Journal*, 19(3), 114-118.

[6] Candemir, B., Baskovski, E., Duzen, V., Coskun, F., Vurgun, K., Goksuluk, H., Ozyuncu, N., Kurklu, S. T., Altin, T., Akyurek, O., & Erol, C. (2019). Late elimination of challenging idiopathic ventricular arrhythmias originating from left ventricular summit by anatomical ablation. *Indian Pacing and Electrophysiology Journal*, 19(3), 114–118. https://doi.org/10.1016/j.ipej.2019.02.001

OUR SOO

LVOT SUMMIT

 ECG: RBBB or LBBB pattern, early PVC transition (V2-3) [7]

Figure 4: RBBB and LBBB ECG pattern, taken from [9]

LCC

ECG: qrS pattern V1-V3 [8]

Figure 5: ECG of PVC originating from LCC, taken from [8]

1 Introduction

- **2** RVOT-LVOT classification
- 3 Our SOO
- **4** Wavelets
- 5 SOO classification

OUR APPROACH

Figure 7: Fourier Transform representation [11]

Figure 9: Wavelet convolution [13]

Figure 6: Block diagram of reference [10]

[10] Paper: Mohonta, S. C., Motin, M. A., & Kumar, D. K. (2022). Electrocardiogram based arrhythmia classification using wavelet transform with deep learning model. Sensing and Bio-Sensing Research, 37(100502), 100502.

$$CWT(a,b) = \langle f, \psi_{a,b} \rangle = \frac{1}{\sqrt{a}} \int_{-\infty}^{+\infty} f(t). \ \psi^* \left(\frac{t-b}{a}\right) dt$$

Inner product \rightarrow wavelet coefficients in function of a (scale) and b (position)

Figure 9: Wavelet convolution [13]

^[13] Menassa, D. (2013). Magnetoencephalography and neuropathological studies of autism spectrum disorders and the comorbidity with epilepsy (Doctoral dissertation, Oxford University, UK).

OUR APPROACH: USE OF WAVELETS

SCALOGRAM

Labelling:

- LVS [1, 0, 0]
- LCC [0, 1, 0]
- Others [0, 0, 1]

Function using scipy.signal.cwt [15]

CNN for SOO Classification

CLASSIFICATION LVS-LCC-OTHERS

From the original dataset:

- **Approach 1:** Unbalanced data from V2-3
- **Approach 2:** Balanced data from V1-6
- **Approach 3:** Unbalanced data from 12 leads

From the combined dataset:

- **Approach 1:** Balanced data from V2-3
- Approach 2: Balanced data from V1-6 (only LVS and LCC classification)

1 Introduction

- **2** RVOT-LVOT classification
- 3 Our SOO
- 4 Wavelets
- **5** S00 classification

Approach 1: Unbalanced data from V2-3

18 LVS / 44 LCC / 300 others

Training: 10 LVS / 30 LCC / 250 others

	Learning rate	Batch size, epochs	Optimizer	Accuracy
Attempt 1	5e-4	20, 70	Adam	0.93
Attempt 2	1e-4	15, 60	Adam	0.97
Attempt 3	1e-3	15, 60	Adam	1

Approach 2: Balanced data from V1-6

Only 54 LVS

Training: 40 LVS / LCC / oth

Testing: 6 LVS / LCC / oth

Validation: 8 LVS / LCC / oth

		Learning rate	Batch size, epochs	Optimizer	Accuracy
	Attempt 1	5e-4	10, 30	Adam	0.73
Weights	Attempt 2	8e-4	15, 40	Adam	0.8
Weights	Attempt 3	8e-3	15, 40	Adagrad	0.87

Approach 3: Unbalanced data from 12 leads

Training: 80 LVS / 120 LCC / 170 oth

Testing: 9 LVS / 30 LCC / 30 oth

Validation: 9 LVS / 50 LCC / oth

		Learning rate	Batch size, epochs	Optimizer	Accuracy
Weights	Attempt 1	8e-4	10, 60	Adam	0.63
	Attempt 2	8e-4	15, 40	Adam	0.57
Weights	Attempt 3	8e-3	15, 40	Adadelta	0.43

Approach 1: Balanced data from V2-3

Training: 40 LVS / LCC / others

Testing: 7 LVS / LCC / others

Validation: 7 LVS / LCC / others

	Learning rate	Batch size, epochs	Optimizer	Accuracy	Precision
Attempt 1	8e-4	20, 70	Adam	0.88	81.25%
Attempt 2	5e-4	15, 45	Adam	0.89	81.94%

Approach 1: Balanced data from V2-3

	Learning rate	Batch size, epochs	Optimizer	Accuracy	Precision
Attempt 1	8e-4	20, 70	Adam	0.88	81.25%
Attempt 2	5e-4	15, 45	Adam	0.89	81.94%

Approach 2: Balanced data from V1-6

135 LVS

Training: 110 LVS / LCC

Testing: 15 LVS / LCC

Validation: 8 LVS / LCC

	Learning rate	Batch size, epochs	Optimizer	Accuracy	Precision
Attempt 1	5e-4	10, 40	Adam	0.87	90%

```
Ground truth
['lcc', 'lcc', 'lcc', 'lcc', 'lcc', 'lcc', 'lcc', 'lcc', 'lcc', 'lcc', 'lvs', 'l
```

CONCLUSION

- V2 & V3 leads: enable a good classification
- LVS as the limitant

→ Frequency and time unfolding + CNN for extracting features

Future work:

- SAK implementation for more accurate QRS segments.
- Other metrics for evaluating unbalanced attempts

Thank you for your attention