Higher Dimensional Visualisations

(1) PCA - Principle Component Analysis

2) TSNE - T- distributed Stochastic Neighbour Embedding.

Weight	Age	Dialretes
_	-	7
_	-	~
-	-	4
_	_	N
_	J	Y

100% winant (90% -95% Variana) m featres P(A) m PCs Retain m'PC (m' << m) Why are reducing dimension? (1) Visualisation => help me tale better deinon is Business 6 (EDA) 2 Compression 3 Faster Training.

Conduner: -(1) Find new anis dimension where man infor is fresent.

=) information can be stored with less #0) featurer. There is always some loss of information.

PCA

explained variona by Top 3

bained varional by Top 3 =
$$\frac{10+7+6}{10+7+6+3+1} = \frac{850}{10+7+6+3+1}$$

75 Nt: l'reserve spatial arrangement of datapoint in Love dimension.

I you are my 3°d nearest neighbour in a dimension I want you to be my 3°d nearest neighbour in d' dimension dimension

What do we do?

How do we define probability that point no is in neighbourhood of foother no.

Pij
$$\sqrt{\frac{1}{\text{dist}(x_{i,1})}}$$
 = $\frac{1}{\|x_{i}-x_{j}\|_{2}}$
 $\|x_{i}-x_{j}\|_{2}$ = $\frac{1}{\|x_{i}-x_{j}\|_{2}}$