Lecture 2 - Axiomatic Probability`

Defn: Sample Space

The "sample space" S is the set of possible outcomes for a random experiment.

Ex. Flip a coin

S = {H, T?

Ex. Rolling a six-sided die

 $S = \{1, 2, 3, 4, 5, 6\}$

Ex. Roll two six-sided dice

 $S = \{(1,1),(1,2),(5,3),\dots\}$

 $= \left\{ (i,j) \text{ when } 1 \leq i,j \leq 6 \right\}$ $1 \leq j \leq 6 \text{ and } 1 \leq i \leq 6$ $2 \times . \text{ Waiting time for a but to arrive:}$

 $S = (0, \infty)$

EX. Number of customers arriving at my restaurant

An event is a subset of the sample space:

Lectures 2 Page

ECS. Sample space ex. Poll a die: $S = \{1, 2, ..., 6\}$ E = {1,23 CS 2 rolling 1 or 2 We say an event E occurs if the observed atcome of ar experiment is in E. F= {3} event that I roll a 3. Ex. SCS, so S is an event. I the event that something happens &CS, so Sis an event. ?? weaning?? Axiometic Probability Given an experiment (a sample space S)

want: assign to each event a measure of its likelihood of occurring

Lectures 2 Page 3

its likelihood of occurring
> probability
no llama di add la carda EC S via want to
magnericans, for each LCS we want to
mathematically, for each ECS we want to assign a probability P(E).
What makes a valid prob. function IP.
Want to define P: prob. fn.
property,
(1) to be mathematically consistout
2) to present (some) of air intuitions about probability
asact probability
Defn: Probability Function P
Given a sample space S a prob. fu
Olver a sample space of a prob. Fa
Pis a function
, , , , , , , , , , , , , , , , , , , ,
$P: \mathcal{P}(s) \longrightarrow \mathcal{R}$
that satisfies the Kolmogora Axioms
(1) non-negativitez
0
$P(E) > 0 \forall ECS$
(2) unit measure

$$P(S) = 1$$

$$P(E) = \sum_{i=1}^{\infty} P(E_i)$$
for a partition $\{E_i\}_{i=1}^{\infty}$

$$of E.$$

$$E_3$$

$$E_5$$

AH. notice
$$E = \bigcup_{i=1}^{\infty} E_i$$
 so

$$P(E) = P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

basically: countable additivity is a distributive law (for disjoint sets)

1. e. Pis a valid prob. In if it satisfies the Rélimogoron Axiams.

What is a valid prob. for on S?

$$P(\{H\}) = \frac{1}{2}$$
 $P(\{H\}) = \frac{1}{2}$
 $P(\{H\}) = 1$ $P(\emptyset) = 0$

15 this valid? Check Kolungera axioms:

- () P(E)>0 /
- 2 P(S)=1
- (3) P(VEi) = ZP(Ei) for disjoint }Ei]

let E, = 3 H3, E2= ST3.

disjoint

 $P(E_1UE_2) = P(E_1) + P(E_2)$ $= \frac{1}{2} + \frac{1}{2}$

think about other cases at home.

Since P satisfies the Kolmgora axioms, it is a valid prob. fu.

Ex, Redefine P

$$P(SH) = .9$$
 and $P(ST3) = .1$
 $P(SH) = .9$ and $P(ST3) = .1$

Ex. Basket containing 3 ball

I roundomly draw a ball from this basket,

defn
$$P$$
: $P(513) = 1/2$
 $P(523) = P(533) = 1/4$

Clairm: this will define a valid prob. fn.

Theorem: Finite Sample Space Theorem

(et $S = \{s_1, d_2, d_3, ..., d_n\}$ i.e. |s| = nord Choose a set of numbers $P_1, P_2, P_3, ..., P_n$

So that
$$P_i \ge 0$$
 and $P_i = 1$. $P(SA,3 \cup SA,23)$
 $P(SA,3) + P(SA,3) + P(SA,3)$
 $P(SA,3) + P(SA,3) + P(SA,3)$
 $P(SA,3) = P_1 + P_2$
 $P(SA,3) = P_1 + P_3$
 $P(SA,3) = P_1 + P_2$
 $P(SA,3) = P_1 + P_2$

Lectures 2 Page 8

$$P(S) = \sum_{i:si\in S} P_i$$

$$= \sum_{i=1}^{n} P_i = 1.$$