Supervised Contrastive Learning Approach for Contextual Ranking

Abhijit Anand, Jurek Leonhardt, Koustav Rudra, Avishek Anand

Motivation

Contextual Models have impressive performance vs classical models.

But have following drawbacks:

- Training data requirement is large
- Fine-tuning with small amount of data does not generalise

How to use contextual model in low data regime?

Problem Statement

Approach

To improve <u>document ranking</u> performance for <u>smaller</u> <u>dataset</u> we use <u>data augmentation</u>(to increase dataset size) coupled with <u>supervised contrastive</u>

| learning | learn

Research Questions

RQ1: Does <u>Data Augmentation</u> or <u>Supervised Contrastive</u>
<u>Learning</u> help to improve document re-ranking performance for smaller datasets?

RQ2: Does the <u>augmentation</u>
style impact the ranking performance?

RQ3: How does <u>training data size</u> impact ranking performance?

Questions

Data Augmentation

Why do data augmentation?

To increase the <u>training</u> data without collecting more data

How to do data augmentation?

Create modified <u>copies</u> of existing data or create <u>synthetic data</u>

Data Augmentation

Why do data augmentation?

To increase the <u>training</u> data without collecting more data

How to do data augmentation?

Create modified <u>copies</u> of existing data or create <u>synthetic data</u>

- Relevance of a document is query specific
- Positive labels are <u>sparse</u> in most ranking datasets

Data Augmentation

Query

Is september a good time to go to aruba?

Positive Document

The Best Time to Travel to Aruba "Catch sunsets from a private beach palapa year-round in Aruba. In Aruba one can almost always count on sunny skies and calm seas. The best time to visit the island depends on the type of vacation. If looking for the cheapest hotel rooms and best travel deals, go when the trade winds stop blowing.

Query

What is a parenthesis phrase?

Positive Document

Algebraic expressions Mathematical phrases Mathematical phrases can be written as verbal sentences You should be able to:- translate verbal sentences into algebraic expressions, - translate algebraic expressions into phrases. Example: The product of two and three. Word " product " indicates, that there should be multiplication of these numbers ("product" is a result of multiplication).

Query

Is september a good time to go to aruba?

Positive Document(D⁺)

The Best Time to Travel to Aruba "Catch sunsets from a private beach palapa year-round in Aruba. In Aruba one can almost always count on sunny skies and calm seas. The best time to visit the island depends on the type of vacation. If looking for the cheapest hotel rooms and best travel deals, go when the trade winds stop blowing.

The Best Time to Travel to Aruba "Catch sunsets from a private beach palapa year-round in Aruba.

In Aruba one can almost always count on sunny skies and calm seas.

The best time to visit the island depends on the type of vacation.

If looking for the cheapest hotel rooms and best travel deals, go when the trade winds stop blowing.

P1

P2

P3

P4

11

Supervised Contrastive Learning

Supervised Contrastive Learning

Supervised Contrastive Learning

Ranking Supervised Contrastive Loss

Supervised Contrastive Loss

Ranking Supervised Contrastive Loss

$$\mathcal{L}_{\text{SCL}} = \sum_{i=1}^{N} -\frac{1}{N_{+}} \sum_{j=1}^{N_{+}} \mathbf{1} \underset{i \neq j, \\ y_{i} = y_{j} = 1}{\text{log}} \frac{\exp(\Phi(x_{i}) \cdot \Phi(x_{j}) / \tau)}{\sum_{k=1}^{N} \mathbf{1}_{i \neq k} \exp(\Phi(x_{i}) \cdot \Phi(x_{k}) / \tau)}$$

$$\mathcal{L}_{\mathtt{RankingSCL}} = (1 - \lambda) \mathcal{L}_{\mathtt{Ranking}} + \lambda \mathcal{L}_{\mathtt{SCL}}$$

Augmented Datasets and Models

Large Experimental Space

3 Models X 3 Augmentation X 3 Loss functions X 4 datasets

BERT RoBERTa DistillBERT BM25 GloVe Random Pointwise Loss
Pairwise Loss
SCL Ranking Loss

MsMarco Doc ROBUST FiQA SciFact

RQ I. Does data augmentation or Supervised Contrastive Learning help to improve document re-ranking performance for smaller datasets?

RQ I. Does <u>data augmentation</u> or <u>Supervised Contrastive Learning</u> help to improve document re-ranking performance for smaller datasets?

RQ I. Does <u>data augmentation</u> or <u>Supervised Contrastive Learning</u> help to improve document re-ranking performance for smaller datasets?

Dataset Size

RQ I. Does <u>data augmentation</u> or <u>Supervised Contrastive Learning</u> help to improve document re-ranking performance for smaller datasets?

Dataset Size

RQ II. Does the augmentation style impact the ranking performance?

RQ II. Does the <u>augmentation style</u> impact the ranking performance?

RQ II. Does the <u>augmentation style</u> impact the ranking performance?

RQ II. Does the augmentation style impact the ranking performance?

RQ II. Does the augmentation style impact the ranking performance?

Simple data augmentation strategies do not have a big impact on the ranking performance

Augmented Datasets and Models

BERT: Pointwise vs Pairwise

BERT: Pointwise SCL vs Pairwise SCL

BERT: Pairwise vs Pairwise SCL

RankingSCL has the highest marginal utility when the dataset sizes are small

The utility diminishes with increasing dataset size

BERT: All Losses

RankingSCL has the highest marginal utility when the dataset sizes are small

The utility diminishes with increasing dataset size

Conclusion

- Data augmentation is useful only when a <u>proper loss function</u> is used in conjugation, i.e.Pointwise RankingSCL or Pairwise RankingSCL loss
- Choice of simple <u>data augmentation strategies do not have a big impact</u> on the ranking performance when using RankingSCL (Pointwise or Pairwise).
- RankingSCL has the <u>highest marginal utility</u> when the dataset sizes are <u>small</u>. The utility diminishes with increasing dataset size.
- RankingSCL results in <u>large performance gains</u> on a variety of <u>small ranking datasets</u>.

Thank You SIGIR for the Student Travel Grant

Experiments Conducted

For 1 dataset(Doc'19): 3 Models * 4 datasizes * 3 Augmentation type * 2 Loss function = 72 models combination

Fach combination has varying lambda and Tamparature

Each combination has varying lambda and Temperature

Total model combination: 72 + 72 + 18+ 18 + 18 (robust, fiqa,scifact) = 198 + (24+24+6+6) baselines = 258

Total experiments = 198*25+60 = 5010

Results shown for = 78 models

	Doc'19			Doc'20			Robust04			
	AP	RR	nDCG ₁₀	AP	RR	nDCG ₁₀	AP	RR	nDCG ₁₀	
BERT						<u> </u>				
Baseline	0.244	0.834	0.592	0.373	0.891	0.547	0.264	0.763	0.506	
Sampling	0.253(43.8%)	0.886(46.3%)	0.617(44.3%)	0.391(44.8%)	0.941(45.6%)	0.594(48.6%)*	0.276(44.7%)	0.797(44.5%)	0.537(46%)	
BM25	0.258(45.8%)	0.924(410.8%)	0.617(44.3%)	0.378(41.3%)	0.944(46.0%)	0.562(42.8%)	0.273(43.1%)	0.793(43.9%)	0.533(45.3%)	
GloVe	$0.253 \scriptscriptstyle (\texttt{\blacktriangle}4.0\%)$	0.898(47.7%)	0.626(45.8%)	0.387(43.8%)	0.940(45.6%)	0.566(43.5%)	0.278(45.2%)	0.799(4.7%)	0.541(46.8%)	
RoBERTA		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					1 (7)	D.		
Baseline	0.243	0.812	0.557	0.307	0.725	0.470	0.205	0.594	0.378	
SAMPLING	0.245(41.0%)	0.878(44.1%)	0.583(44.6%)	0.365(418.8%)	0.922(427.2%)	0.557(418.5%)*	0.257(425.8%)	0.746(425.5%)	0.496(437.4%)	
BM25	0.257(46.0%)	0.873(47.5%)	0.597(47.1%)*#	0.362(418.1%)	0.922(427.2%)	0.548(416.7%)*	0.265(429.7%)	0.766(428.8%)	0.509(434.9%)	
GLOVE	0.259(46.8%)	0.863(46.3%)	0.596(47.0%)*#	0.354(15.3%)	0.870(420.0%)	0.550(417%)*	0.267(430.4%)	0.787(432.4%)	0.519(437.3%)	
DISTILBE	?T									
Baseline	0.244	0.843	0.565	0.322	0.849	0.515	0.201	0.614	0.395	
SAMPLING	0.253 (44%)	0.883(44.7%)	0.591(44.6%)#	0.350(48.8%)	0.919(48.2%)	0.557(48.1%)	0.213 (46.3%)	0.713(416.2%)	0.480(421.6%)	
BM25	0.248(42.0%)	0.909(47.8%)	0.573(41.3%)#	0.346(47.6%)	0.915(47.7%)	0.538(44.4%)	0.211(45.3%)	0.704(414.7%)	0.505(427.8%)	

0.907($^{6.8}$ %)

0.505(v-1.9%)

0.210(43.9%)

0.338(45.1%)

GloVe

0.250(42.5%)

0.872(43.8%)

0.583(43.1%)

 $0.681 \scriptstyle{(\text{\&}11.0\%)} \quad 0.509 \textstyle{52.9\%} \\$

		Pointwise		Pairwise			
Ranking Models	AP	RR	nDCG ₁₀	AP	RR	nDCG ₁₀	
BERT					Д		
1k	0.237(41.5%)	0.868(43.7%)	0.551(43.1%)	0.239(44.3%)	0.851(46.2%)	0.576(45.7%)	
2k	0.241(41.9%)	0.916(412.9%)	0.592(45.2%)	0.248(43.6%)	0.892(v - 0.4%)	0.603(41.5%) *	
10k	0.258(45.8%)	0.924(*10.8%)	0.617(44.3%)	0.264(43.1%)	0.926(43.9%)	0.627(47.5%)*	
100k	0.260(41.8%)	0.942(44.3%)	0.653(46.3%)	0.270(\$0.6%)	0.959(42.7%)	0.666(43.4%)	
RoBERTA							
1k	0.170(42.3%)	0.697(425.9%)	0.319(47.4%)	0.228(425.9%)	0.803(415.7%)	0.533(459.8%)	
2k	0.171(*1%)	0.670(412.4%)	0.322(49.5%)	0.236(44.4%)	0.871(44.7%)	0.587(47.4%)	
10k	0.257(46%)	0.873(47.5%)	0.597(47.1%)*#	0.261(43.5%)	0.914(43.8%)	0.633(43.5%)*	
100k	0.263(42.9%)	0.946(44.7%)	0.646(411.7%)	0.270(41.2%)	0.955(41.4%)	0.6667(40.3%)	
DistilBERT							
1k	0.150(40%)	0.553(414.3%)	0.239(49.2%)	0.208(433.9%)	0.802(435.8%)	0.471(461.4%)	
2k	0.164(42.3%)	0.589(40.6%)	0.304(49.2%)	0.231(415%)	0.862(413.1%)	0.526(*19.4%)	
10k	0.248(42.0%)	0.909(47.8%)	0.573(41.3%) #	0.253(45.1%)	0.893(43.9%)	0.613(47.7%)*	
100k	0.255(41.1%)	0.942(43.1%)	0.641(45.7%)	0.270(43.3%)	0.927(42.9%)	0.645(1.5%)*	

	Robust04			SciFact			FrQA		
	AP	RR	nDCG ₁₀	AP	RR	nDCG ₁₀	AP	RR	nDCG ₁₀
BERT				78					
Base-pointwise	0.264	0.763	0.506	0.312	0.32	0.383	0.140	0.221	0.187
Pointwise	0.276(44.7%)	0.797(44.5%)	0.537(46%)	0.434(439%)	0.448(40%)	0.466(422%)	0.141(40.8%)	0.221(43.4%)	0.187(-1.5%)
Base-pairwise	0.195	0.599	0.382	0.454	0.466	0.504	0.136	0.205	0.174
Pairwise	0.200(42.7%)	0.601(40.4%)	0.388(41.6%)	0.562(433.6%)	0.575(423.5%)	0.616(29%)*	0.221(463%)	0.343(467%)	0.277(459%)
RoBERTA									
Base-pointwise	0.205	0.594	0.3776	0.615	0.626	0.668	0.113	0.173	0.146
Pointwise	0.258(426%)	0.746(\$25.5%)	0.496(437.4%)	0.638(43.7%)	0.649(43.7%)	0.687(42.8%)*	0.240(4112%)	0.365(4111%)	0.300(4108%)
Base-pairwise	0.250	0.762	0.460	0.641	0.652	0.685	0.255	0.382	0.316
Pairwise	0.277(413.9%)	0.529(411.65%)	0.766(46.1%)*	0.668(44.2%)	0.681(44.5%)	0.712(43.8%)*	0.274(47.6%)	0.412(47.9%)	0.339(47.4%)*
DISTILBERT									
Base-pointwise	0.201	0.614	0.395	0.551	0.567	0.595	0.111	0.188	0.132
Pointwise	0.258(428.5%)	0.688(412.1%)	0.480(421.6%)	0.532(▼-3.5%)	0.558(-3.3%)	0.574(▼-3.6%)	0.170(454%)	0.269(43%)	0.216(464%)*
Base-pairwise	0.186	0.372	0.576	0.538	0.554	0.577	0.235	0.362	0.288
Pairwise	0.182(-1.9%)	0.617(47%)	0.375(40.7%)*	0.558(43.8%)	0.573(43.4%)	0.599(43.8%)	0.238(41.2%)	0.366(41.2%)	0.319(*16.8%)

Supervised Contrastive loss

$$\mathcal{L}_{\text{SCL}} = \sum_{i=1}^{N} -\frac{1}{N_{+}} \sum_{j=1}^{N_{+}} \mathbf{1} \underset{\substack{i \neq j, \\ y_{i} = y_{i} = 1}}{\text{10g}} \frac{\exp(\Phi(x_{i}) \cdot \Phi(x_{j}) / \tau)}{\sum_{k=1}^{N} \mathbf{1}_{i \neq k} \exp(\Phi(x_{i}) \cdot \Phi(x_{k}) / \tau)}$$

$$\mathcal{L}_{\text{Point}} = -\frac{1}{N} \sum_{i=1}^{N} (y_i \cdot \log \hat{y}_i + (1 - y_i) \cdot \log(1 - \hat{y}_i))$$

$$\mathcal{L}_{Pair} = \frac{1}{N} \sum_{i=1}^{N} \max \{0, m - \hat{y}_{i}^{+} + \hat{y}_{i}^{-}\}$$

Future Work

Datasets

Queries: **367K**Corpus: **3.2 million**

Document ranking dataset with long documents.

Used as a Dev and training set. TrecDL'19 & TrecDL'20 used as test sets.

ROBUST

Queries: 250

Corpus: 528K

News related dataset with long documents.

We focus on the re-ranking scenario

Datasets

Queries: **367K** Corpus: **3.2 million**

FiQA

Queries: 6650 Corpus: 57K Question Answering

dataset over Financial

text.

ROBUST

Queries: **250**

Corpus: 528K

SciFact

Queries: 1110

Corpus: 5K

Fact checking dataset.