UFRGS - INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2024/1 Prova da área IIb

1	2	3	4	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- $\bullet\,$ Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet~$ Justifique to do procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

1.	Linearidade	Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}.$ $\mathcal{F}\{\alpha f(t) + \beta g(t)\} = \alpha \mathcal{F}\{f(t)\} + \beta \mathcal{F}\{g(t)\}$
		() () () () () () () () ()
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F}\left\{f'(t)\right\} = iw\mathcal{F}\left\{f(t)\right\}$
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$
		$(F * G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$
8.	Conjugação	$\overline{F(w)} = F(-w)$
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a } F\left(\frac{w}{a}\right), \qquad a \neq 0$
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$

Séries e transformadas	de Fourier:	
	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$
	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$

Integrais definidas

111	tegrais definidas		
1.	$\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2.	$\int_0^\infty e^{-ax} \operatorname{sen}(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3.	$\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{- m a} \qquad (a > 0)$	4.	$\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \begin{cases} \frac{\pi}{2} e^{-ma}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2} e^{ma}, & m < 0 \end{cases}$
5.	$\int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases}$	6.	$\int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases}$
7.	$\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8.	$\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9.	$\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10.	$\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
			$=\frac{m(a^2+m^2-n^2)}{(a^2+(m-n)^2)(a^2+(m+n)^2)} (a>0)$
11.	$\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12.	$\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13.	$\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14.	$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15.	$\int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases}$	16.	$\int_0^\infty \frac{\operatorname{sen}(mx)\operatorname{sen}(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases}$
17.	$\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18.	$\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19.	$\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20.	$\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21.	$\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma)e^{-ma} \begin{array}{l} (a > 0, \\ m \ge 0) \end{array}$	22.	$\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Identidades Trigonométricas:

$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$	$\operatorname{sen}(x)\operatorname{sen}(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$	$sen(x)cos(y) = \frac{sen(x+y) + sen(x-y)}{2}$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá #	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Integrais:

• Questão 1 (2.5 pontos) Considere os diagramas de espectro de uma função periódica dado pelos gráficos abaixo.

a) (1.0 ponto) Preencha a tabela abaixo.

n	0	1	2	3	4	5
w_n						
C_n						
a_n						
b_n						

b) (1.0 ponto) Escreva as formas trigonométrica e exponencial da série de Fourier abaixo:

Forma trigonométrica	
Forma exponencial	

c) (0.5 ponto) Calcule a potência média dada por

$$\frac{1}{T} \int_0^T |f(t)|^2 dt.$$

Solução:

20	Doraguo.							
	n	0	1	2	3	4	5	
	w_n	0	3	6	9	12	15	
a)	C_n	-1	0	-3i	$\sqrt{2} - \sqrt{2}i$	-1	0	
	a_n	-2	0	0	$2\sqrt{2}$	-2	0	
	b_n	0	0	6	$2\sqrt{2}$	0	0	

b) [Forma trigonométrica	$f(t) = -1 + 6\operatorname{sen}(6t) + 2\sqrt{2}\cos(9t) + 2\sqrt{2}\operatorname{sen}(9t) - 2\cos(12t)$	
D)	Forma exponencial	$f(t) = -e^{-12it} + (\sqrt{2} + i\sqrt{2})e^{-9it} + 3ie^{-6it} - 1 - 3ie^{6it} + (\sqrt{2} - i\sqrt{2})e^{9it} - e^{12it}$	

c)
$$\frac{1}{T} \int_0^T |f(t)|^2 dt = \sum_{i=-\infty}^{\infty} |C_n|^2 = (1^2 + 2^2 + 3^2 + 1^2 + 3^2 + 2^2 + 1^2) = 1 + 4 + 9 + 1 + 9 + 4 + 1 = 29.$$

• Questão 2 (2.0 pontos) Considere a função periódica dada por

$$f(t) = |1 + 2\cos(t)|$$

- a) (0.5 ponto) Esboce o gráfico da função $f(t). \label{eq:fitting}$
- b) (1.5 pontos) Calcule a_0 , a_1 e b_1 .

Dica: Observe que uma forma alternativa de escrever a função é dada por

$$f(t) = \begin{cases} 1 + 2\cos(t), & -\frac{2\pi}{3} < t < \frac{2\pi}{3} \\ -1 - 2\cos(t), & -\pi < t < -\frac{2\pi}{3} \text{ ou } \frac{2\pi}{3} < t < \pi \end{cases}$$

 $e f(t+2\pi) = f(t), t \in \mathbb{R}.$

Solução:

b) A função f(t) é par, portanto $b_1 = 0$.

$$a_{0} = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t)dt$$

$$= \frac{2}{\pi} \int_{0}^{\pi} f(t)dt$$

$$= \frac{2}{\pi} \left[\int_{0}^{2\pi/3} (1 + 2\cos(t))dt + \int_{2\pi/3}^{\pi} (-1 - 2\cos(t))dt \right]$$

$$= \frac{2}{\pi} \left[\frac{2\pi}{3} + 2\left[\sec(t) \right]_{0}^{2\pi/3} - \frac{\pi}{3} - 2\left[\sec(t) \right]_{2\pi/3}^{\pi} \right]$$

$$= \frac{2}{\pi} \left[\frac{\pi}{3} + 2\sqrt{3} \right]$$

$$= \frac{2}{3} + \frac{4\sqrt{3}}{\pi}$$

$$a_{1} = \frac{2}{2\pi} \int_{-\pi}^{\pi} f(t) \cos(t) dt$$

$$= \frac{2}{\pi} \int_{0}^{\pi} f(t) \cos(t) dt$$

$$= \frac{2}{\pi} \left[\int_{0}^{2\pi/3} (1 + 2 \cos(t)) \cos(t) dt + \int_{2\pi/3}^{\pi} (-1 - 2 \cos(t)) \cos(t) dt \right]$$

$$= \frac{2}{\pi} \left[\int_{0}^{2\pi/3} (\cos(t) + 2 \cos^{2}(t)) dt + \int_{2\pi/3}^{\pi} (-\cos(t) - 2 \cos^{2}(t)) dt \right]$$

$$= \frac{2}{\pi} \left[\int_{0}^{2\pi/3} (\cos(t) + 1 + \cos(2t)) dt + \int_{2\pi/3}^{\pi} (-\cos(t) - 1 - \cos(2t)) dt \right]$$

$$= \frac{2}{\pi} \left[\left[(\sin(t) + t + \frac{1}{2} \sin(2t)) \right]_{0}^{2\pi/3} + \left[(-\sin(t) - t - \frac{1}{2} \sin(2t)) \right]_{2\pi/3}^{\pi} \right]$$

$$= \frac{2}{\pi} \left[\frac{\sqrt{3}}{2} + \frac{2\pi}{3} - \frac{\sqrt{3}}{4} - \frac{\pi}{3} + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{4} \right]$$

$$= \frac{2}{\pi} \left[\frac{\sqrt{3}}{2} + \frac{\pi}{3} \right]$$

$$= \frac{\sqrt{3}}{\pi} + \frac{2}{3}.$$

 \bullet Questão 3 (2.5 pontos) Considere a função

$$F(w) = \left\{ \begin{array}{ll} 1, & -1100\pi \leq w \leq 1100\pi \\ 0, & \text{caso contrário} \end{array} \right.$$

e a função

$$g(t) = 4\cos(1568\pi t) + 2\cos(2352\pi t) + 3\cos(3136\pi t).$$

Neste exercício, as frequência estão dadas em radianos por segundo. Responda os itens.

- a) (0.5 ponto) Calcule $f(t) = \mathcal{F}^{-1}\{F(w)\}.$
- b) (0.25 ponto) Mostre que $\mathcal{F}^{-1}\{\pi\delta(w-w_0) + \pi\delta(w+w_0)\} = \cos(w_0t)$
- c) (0.75 ponto) Calcule $G(w) = \mathcal{F}\{g(t)\}.$
- d) (1.0 ponto) Marque em cada coluna quais são as notas g(t), f(t) * g(t) e f(t) * g(t/3).

(0.3 ponto) g(t)	(0.3 ponto) (f(t) * g(t))	(0.4 ponto) (f(t) * g(t/3))
() Sol na escala 3	() Sem som $((f * g)(t) = 0)$	() Sem som $(f(t) * g(t/3) = 0$
() Sol na escala 4	() Sol na escala 5	() Dó na escala 2
() Sol na escala 5	() Sol na escala 6	() Dó na escala 3
() Sol na escala 6	() Lá na escala 5	() Dó na escala 4
() Sol na escala 7	() Lá na escala 6	() Dó na escala 5
Solução:		

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{itw}dw$$

$$= \frac{1}{2\pi} \int_{-1100\pi}^{1100\pi} e^{itw}dw$$

$$= \frac{2}{2\pi} \int_{0}^{1100\pi} \cos(tw)dw$$

$$= \frac{1}{\pi} \left[\frac{\sin(tw)}{t} \right]_{0}^{1100\pi}$$

$$= \frac{\sin(1100\pi t)}{t}.$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} (\pi \delta(w - w_0) + \pi \delta(w + w_0)) e^{itw} dw = \frac{e^{iw_0 t} + e^{-iw_0 t}}{2}$$

$$= \cos(w_0 t).$$

$$G(w) = \mathcal{F}\{4\cos(1568\pi t) + 2\cos(2352\pi t) + 3\cos(3136\pi t)\}$$

$$= 4\mathcal{F}\{\cos(1568\pi t)\} + 2\mathcal{F}\{\cos(2352\pi t)\} + 3\mathcal{F}\{\cos(3136\pi t)\}$$

$$= 4\pi\delta(w - 1568\pi) + 4\pi\delta(w + 1568\pi) + 2\pi\delta(w - 2352\pi) + 2\pi\delta(w + 2352\pi) + 3\pi\delta(w - 3136\pi) + 3\pi\delta(w + 3136\pi)$$

d)

(0.3 ponto) g(t)

() Sol na escala 3

(X) Sol na escala 4 () Sol na escala 5

() Sol na escala 6) Sol na escala 7 (0.3 ponto) (f(t) * g(t))

(X) Sem som ((f * g)(t) = 0)

() Sol na escala 5

() Sol na escala 6

() Lá na escala 5

(0.4 ponto) (f(t) * g(t/3))

() Sem som (f(t) * g(t/3) = 0

() Dó na escala 2

(X) Dó na escala 3

() Dó na escala 4

() Dó na escala 5

() Lá na escala 6 • Questão 4 (3.0 pontos) Considere os diagramas de espectro de magnitudes de duas funções f(t) e g(t), respectivamente, dados nos gráficos abaixo.

- a) (0.8 ponto) Esboce o diagrama de espectro de magnitudes da função h(t) = f'(t).
- b) (0.8 ponto) Esboce o diagrama de espectro de magnitudes da função p(t) = g(2t).
- c) (0.9 ponto) Esboce o diagrama de espectro de magnitudes da função q(t) = f(t) * p(t).
- d) (0.5 ponto) Explique o motivo de não ser possível fazer o diagrama de magnitudes de $r(t) = h(t)\cos(t)$.

Solução:

d) Não é possível devido a sobreposição espectral.