Useful Combinations of Constants

$$\hbar = h/2\pi = 1.0546 \times 10^{-34} \,\text{J} \cdot \text{s} = 6.5821 \times 10^{-16} \,\text{eV} \cdot \text{s}$$

$$hc = 1.9864 \times 10^{-25} \,\text{J} \cdot \text{m} = 1239.8 \,\text{eV} \cdot \text{nm}$$

$$\hbar c = 3.1615 \times 10^{-26} \,\text{J} \cdot \text{m} = 197.33 \,\,\text{eV} \cdot \text{nm}$$

$$\frac{1}{4\pi\epsilon_0} = 8.9876 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2 \cdot \mathrm{C}^{-2}$$

Compton wavelength
$$\lambda_c = \frac{h}{m_e c} = 2.4263 \times 10^{-12} \text{ m}$$

$$\frac{e^2}{4\pi\epsilon_0} = 2.3071\times 10^{-28}\,\mathrm{J\cdot m} = 1.4400\times 10^{-9}\,\mathrm{eV\cdot m}$$

Fine structure constant
$$\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} = 0.0072974 \approx \frac{1}{137}$$

Bohr magneton
$$\mu_{\rm B}=\frac{e\hbar}{2m_{\rm e}}=9.2740\times 10^{-24}{\rm J/T}=5.7884\times 10^{-5}{\rm \,eV/T}$$

Nuclear magneton
$$\mu_{\rm N} = \frac{e\hbar}{2m_p} = 5.0508 \times 10^{-27} \,{\rm J/T}$$

= 3.1525 × 10⁻⁸ eV/T

Bohr radius
$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_e^2} = 5.2918 \times 10^{-11} \,\mathrm{m}$$

Hydrogen ground state
$$E_0 = \frac{e^2}{8\pi\epsilon_0 a_0} = 13.606 \text{ eV} = 2.1799 \times 10^{-18} \text{ J}$$

Rydberg constant
$$R_{\infty} = \frac{\alpha^2 m_e c}{2h} = 1.09737 \times 10^7 \,\text{m}^{-1}$$

Hydrogen Rydberg
$$R_{\rm H}=\frac{\mu}{m_e}R_{\infty}=1.09678\times 10^7\,{\rm m}^{-1}$$
 Gas constant $R=N_{\rm A}k=8.3145\,{\rm J\cdot mol^{-1}\cdot K^{-1}}$

Gas constant
$$R = N_A k = 8.3145 \text{ I} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$

Magnetic flux quantum
$$\Phi_0 = \frac{h}{2e} = 2.0678 \times 10^{-15} \,\mathrm{T} \cdot \mathrm{m}^2$$

Classical electron radius
$$r_e = \alpha^2 a_0 = 2.8179 \times 10^{-15} \text{ m}$$

$$kT = 2.5249 \times 10^{-2} \text{ eV} \approx \frac{1}{40} \text{ eV} \text{ at } T = 293 \text{ K}$$

Note: The latest values of the fundamental constants can be found at the National Institute of Standards and Technology website at http://physics.nist.gov/cuu/Constants

Table 3.3 Work Functions

Element	φ (eV)	Element	φ (eV)	Element	φ (eV)
Ag	4.64	K	2.29	Pd	5.22
Al	4.20	Li	2.93	Pt	5.64
С	5.0	Na	2.36	W	4.63
Cs	1.95	Nd	3.2	Zr	4.05
Cu	4.48	Ni	5.22		
Fe	4.67	Pb	4.25		

From Handbook of Chemistry and Physics, 90th ed. Boca Raton, Fla.: CRC Press (2009–10), pp. 12-114.

Quantity	Symbol	Value(s)
Elementary charge	e	$1.6022 \times 10^{-19}\mathrm{C}$
Speed of light in vacuum	c	$2.9979 \times 10^{8} \mathrm{m/s}$
Permeability of vacuum (magnetic constant)	μ_0	$4\pi imes 10^{-7} \mathrm{N} \cdot \mathrm{A}^{-2}$
Permittivity of vacuum (electric constant)	€0	$8.8542 \times 10^{-12} \mathrm{F} \cdot \mathrm{m}^{-1}$
Gravitation constant	G	$6.6738 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2 \cdot \mathrm{kg}^3$
Planck constant	h	$6.6261 \times 10^{-34} \mathrm{J\cdot s}$
		$4.1357 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Avogadro constant	N_{Λ}	$6.0221 \times 10^{23} \mathrm{mol^{-1}}$
Boltzmann constant	k	$1.3807 \times 10^{-23} \mathrm{J\cdot K^{-1}}$
Stefan-Boltzmann constant	σ	$5.6704 \times 10^{-8} \mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mathrm{K}^{-2}$
Atomic mass unit	u	$1.66053886 \times 10^{-27} \text{ kg}$ $931.494061 \text{ MeV}/c^2$

Conversion Factors	
1 y = 3.156×10^{7} s 1 lightyear = 9.461×10^{15} m 1 cal = 4.186 J 1 MeV/ c = 5.344×10^{-22} kg·m/s	1 T = 10^4 G 1 Ci = 3.7×10^{10} Bq 1 barn = 10^{-28} m ² 1 u = 1.66054×10^{-27} kg
$1 \text{ eV} = 1.6022 \times 10^{-19} \text{ J}$ Particle Masses	1 ti = 1.00054 × 10 ··· kg

		Mass in units o	f
Particle	kg	MeV/c^2	u
Electron	9.1094×10^{-31}	0.51100	5.4858×10^{-4}
Muon	1.8835×10^{-28}	105.66	0.11343
Proton	1.6726×10^{-27}	938.27	1.00728
Neutron	1.6749×10^{-27}	939.57	1.00866
Deuteron	3.3436×10^{-27}	1875.61	2.01355
α particle	6.6447×10^{-27}	3727.38	4.00151

Table 3.4 Results of Compto	n Scattering	
Energy or Momentum	Initial System	Final System
Photon energy	hf	hf'
Photon momentum in x direction (p_x)	$rac{h}{\lambda}$	$\frac{h}{\lambda'}\cos\theta$
Photon momentum in y direction (p_y)	0	$\frac{h}{\lambda'}\sin heta$
Electron energy	mc^2	$E_e = mc^2 + \text{K.E.}$
Electron momentum in x direction (p_x)	0	$p_e \cos \phi$
Electron momentum in y direction (p_y)	0	$-p_e \sin \phi$

Table 3.2 Hydrogen Series of Spectral Lines			
Discoverer (year)	Wavelength	n	\boldsymbol{k}
Lyman (1916)	Ultraviolet	1	>1
Balmer (1885)	Visible, ultraviolet	2	>2
Paschen (1908)	Infrared	3	>3
Brackett (1922)	Infrared	4	>4
Pfund (1924)	Infrared	5	>5