an. US 35 44,514

60 Int. OI.

砂日本分類

日本国特許庁

O 08 g

26(5) D 211

28(5) D 212

①特許出願公告

昭47-23918

网公告 昭和47年(1972)7月8日

発明の数 1

(全6頁)

❷高分子で可溶性の熱可塑性ポリカーポネートの 製造方法

6D4

昭41-2551

魯出

顧 昭41(1966)1月17日

優先権主張 201965年1月15日39ドイツ

国创F44978

FA46-1520 窖 41

⑦発 ヘルマン・シユネル

ゲン・フランツ シエトルウエルク・

シュトラーセ15

a

ルードウイツヒ・ポツテンプ ルー

ウエーラ・シュトラーセ5

クルト・ワイラウフ

ドイツ国クレフエルト・プレスラ

ウアー・シュトラーセ81

冏

ドイツ国ク レフエルトポツクム・

ポーデルシユウイング・シュトラ

-t12

フーゴー・シユトライプ

アム・ヘッケルホーフ 5 6

グルハルト・フリツツ

F

ドイツ国ク レフエルト ポツクム・

ポーデルシュウイング・シュトラ

-t26

砂出 順 人 フアルペンファブリケン・バイエ

ル・アクチェンゲゼルシヤフト ドイツ国 レーフエルーク ーゼン・

パイエルウエルク

代 理 人 弁理士 宮村震

発明の詳細な説明

例えばドイツ特許明細書第971790、 971777, 959497, 1007996, 1081512、1046811、1047430号 5 によりピスフェノールとポリカーポネートを生ず る炭酸の誘導体とからそれ自体は公知な方法でポ リカーポネートを生ずる反応により高分子で直鎖 的な可溶性の熱可醛性ポリカーポネートを製造す ることは直鎖状のポリカーポネートの代りにある ドイツ国クレフエルトユルデイン 10 程度の分枝度は有するが著しい架橋は有しない物 を作れば有利に改良できそれにより 固頭において 性質の劣化を示すことなしに溶融物が大きい変形 耐力を有し使つて押出成型には特に適する生成物 が得られることが発明された。

2

ドイツ国クレフエルトボツクム・ 15 本発明によるとピスプエノールに対しそれぞれ 分枝したフエノールの 0、0 1 乃至 2. 0、ことに 0.25乃至1.5モル%の存在と同時に0.5万 辛8、特に1、0万至6%モル%のモノフエノール との存在下にピスフェノールを炭酸の誘導体と反 ウイルヘルム・ヘツヘルハムマー 20 応させればとのととが実現される。

とのようにすれば比粘度が、0.5gの生成物 を100m1の塩化メチレンに磨した液につき 25℃で側ると約1.20と約1.55の中間にあ り、その平均分子量は光の散乱方法で刺ると約 ドイツ国クレフエルトポツクム ・ 25 80000と約100000との中間にありその 溶験体粘度は280℃で測ると約20000と約 800000ポイズとの中間にあるが密触体は特 に形が崩れないような熱可塑性で普通の溶媒には まだ完全に可溶なポリカーポネートが生ずる。

> との方法に適当な、8価以上のフェノールを下 記に例示する:フロログリシン、4・6ージメチ ルー2・4・6ートリー(4ーヒドロオシフエニ ル)ーヘブタンー2(8量体のイソプロペニルフ エノール、例えばドイツ特許明細書第

35 1112980号によつて得られる、Fp227 -228℃)、4・6ージメチルー2・4・6ートリー(4ーヒドロキシフェニル)ーへブタン

-221-

30

符公 昭47-28918

3

(水楽添加された8量体のイソプロペニルフェノ ール、水素感加触媒の存在下に120−140℃ で200気圧の水素圧を加えながら8量体のイン プロペニルフェノールを水素磊加して得られる、 Fp199-200°), 1 · 3 · 6-+1-(4ーヒドロキシフエニル)ーペンゾール、1・ 1・1ートリー(4ーヒドロヤシフェニル)ーエ タンおよび2・2ーピスー(4・4ー(4・4* ージヒドロキシジフエニル)ーシクロヘキシル】 ープロパン。

適当なモノフエノールとは石炭酸それ自体の他 に例えばメチルフエノール、エチルフエノール、 プロビルーおよびイソプロビルフエノールおよび プチルフエノール、ことにpー第8プチルフエノ ールである。

「ヒトロキシ化合物とフオスゲンまたはヒスクロ ル炭酸エステルとの溶媒中における反応ないしは 2種の密媒間の約80℃までに至る界面反応によ りポリカーポネートを作る際には顕初に述べた本 ルに加えてモノフエノールも反応混合体に霧加せ ねばならぬに反しエステル交換反応すなわちビス フエノールと炭酸ジアリルエステルとの痞敵体に おける反応では場合により8価以上のフェノール の上記に示した量の認加だけが必要であるに反し 25 a) 激詰押出機または更に簡単に真空乾燥箱中に 反応によりジアリルカーポネートから遊離するモ ノフェノールを反応退合体から残らず除去すると となく、最初に必要とされた量がその中に残留し 従つて必然的にポリカーポネートの構成に関与す るように取り計らうならばモノフエノールを特に 30 c)クロルペンゾールの飯加と塩化メチレンの蒸 添加するととは必要でない。

この場合の方法においても普通のように総ての 種類の蘇加物を製造過程の最中またはその後に加 えることができる。これに関しては例えば染料、 顔料、湿気一熱および紫外線の作用に対する安定 35 化剤、平滑剤、ガラス粉末、石英製品、黒鉛、二 確化モリプテン、金属粉末、例えばポリテトラフ ルオルエテ レンの粉末のように高温 で磨ける人造 材料の粉末、木綿、シサルおよび石綿の様な平然 横維、更にはまた、各種のガラス機維、金属糸な 40 (2. 82モル%)のp-第8プチルフエノール、 らびにポリカーポネートの薔薇中に帯留しても安 定でありポリカーポネートを大いにそとなうこと はない微能のような充填材を挙げよう。

下記の実施例に示される製品の比粘度は100

m l の塩化メテレン中に 0.5gの製品を溶した 液につき25℃で飼り、溶融体粘度は280℃で 測つたものである。

実施例 1

187.6重量部の2・2-(4・4′-ジヒ ドロキシジフエニル)—ブロパン、2.55重量 部(2、8 2 モル%)のpー第 8 プチルフエノー ル、0.605重量部(0.25モル%)の3量体 のイソプロペニルフエノール、45%の水酸化ナ 10 トリウム溶液112.6重量部 、700重量部の 蒸溜水および1886重量部の塩化メチレンを登 素気圏中で20-25℃で機搾しながら78重量 - 部のフォスゲンを2時間以内に吹込むと同時に 80分間目に到るまでに追加分として46%の水 15 酸化ナトリウム溶液の48 重量部を添加する。フ オスゲンの吹込み後に 0. 24重量部のトリエデル アミンを添加する。添加物は粘性が大きくなる。 1時間の後に沈降させ、ポリカーボネートを含む 有機相を分離しそれを遂次に2%の燐酸、2%の 発明の反応事情を実現するために2価のフェノー 20 水酸化ナトリウム液。それからまた2回だけ2% の燐酸で、そして最後に蒸溜水で1.0回だけ洗い 落液が中性の反応を示すようにする。 塩化メチレ ン帝族は硫酸ナトリウムで乾燥した後は下記のよ うに加工できる:

- おける溶族の蒸発。
 - b) 例えばアセトン、アルコールまたは脂肪族な いしは選式脂肪族の炭化水素による重合体の沈 殿。
 - 発除去、タロルペンゾール溶液の冷却に瞬しと れはゲル化し造粒機の中で粉粒混合物に仕上げ られる。得られた粉粒混合体は水流ポンプによ る減圧下に120℃で48時間乾燥される。溶 族の蒸発除去によって得られた製品の比粘度は 1,841である。

実施例 2

187,6重量部の2・2~(4・4′~ジヒド ロキシジフエニル) ープロパン、 2.55 重量部 1.21重量部(0.5モル%)の3量体のイソブ ロペニルフエノール、45%の水酸化ナトリウム 南液112.5 重量部、700重量部の蒸程水お よび1886重量部の塩化メチレンを窒素気圏中

5

で20-250℃で提伸しながら78重量部のフ オスゲンを2時間以内に吹込むと間時に80分間 目に到るまでに追加分として4 5%の水酸化ナト リウム溶液の48重量部を添加する。フオスゲン を添加する。添加体は粘性が大きくなる。

1時間の後に有機相を分離し実施例1に述べ たようにすればポリカーボネートが得られる。 比粘度は1.885である。

実施例 8

187.6重量部の2・2-(4・4'-ジヒド ロキシジフエニル)—ブロパン、 2.5 5 重量部 (2.82モル%) のp-第8プチルフエノール。 8量体のイソプロペニルフエノール1.694重 量部(0.7モル%)、45%の水酸化ナトリウ 15 部(8.06モル%)のp - 解 8ブチルフェノー ム溶液112.5 度量部、700重量部の蒸溜水 および1886重量部の塩化メチレン窒素気圏中 で88℃で攪拌しながら78重量部のフォスゲン を2時間以内に吹込むと同時に80分間目に到る までに追加分として4.5%の水酸化ナトリウム溶 の ンを窒素気圏中で2.0~2.5℃で慢伴しながら 液の48重量部を添加する。フオスゲンの吹込み 袋に 0・2 4 重量部のトリエチルアミンを添加する。 それから 0・2 4 重量部のトリエチルアミンを添加 添加体は粘性が大きくなる。仕上げは実施例1 k 述べたように行う。

比粘度は 1.481 である。

実施例 4

187.6重量部の2・2-(4・4′ージヒ ドロキシジフエニル)ープロパン、2.65 重量 郎(2.82 モル%)のpm箅3プチルフエノー ル、8 豊体のイソプロペニルフエノール 2・4 2 30 量部(8・0 6 モル%)のp-第 8 プチルフエノー 重量部(1・0 モル%)、4 6%の水酸化ナトリウ ム溶液112.5重量部、700重量部の蒸溜水 および1886重量部の塩化メチレンを窒素気圧 中で20-26℃で撹拌しながら78重量部のフ オスグンを2時間以内に吹込むと同時に80分間 35 中で60℃で攪拌しながら73.5 重量部のフォ 目に到るまでに追加分として4.5%の水酸化ナト リウム溶液の48重量部を添加する。フォスゲン の飲込み後に0.24 重量部のトリエチルアミン を添加する。添加体は粘性が大きくなる。

仕上げは実施例1に述べたように行う。 比粘度は 1.539 である。

実施例 5

161.5重量部の1・1-(4・4'-ジヒド ロキシジフエニル)ーシクロヘキサン、27重量

部(8.06モル%)のロー第8ブチルフェノー ル: 8量体のイソプロペニルフエノール 2.42 **貫量部(1.0 モル%)、45%の水酸化ナトリウ** △溶液164.5重量部、700重量部の蒸溜水 の吹込み後に0.24重量部のトリエチルアミン 5 および1886重量部の塩化メチレンを窒素気圧 中で20-25℃で攪拌しながら78重量部のフ オスゲンを2時間以内に吹込む。それから0.24 重量部のトリエチルアミンを抵加する。 1 時間後 に沈降させポリカーポネートを含む有機相を分離 10 し実施例1に述べたように仕上げる。

比粘度は1,522である。

実施例 6

161.5 宣量部の 1・1-(4・4'ージヒド ロ中シフエニル)ーシクロヘキサン、2.7重量 ル、水業級加された8畳体のイソプロペニルフェ ノール1.22重量部(0.5モル%)、45%の 水酸化ナトリウム溶液164.6重量部、700重 量部の蒸溜水および1886重量部の塩化メテレ 78重量部のフォスゲンを2時間以内に吹込む。

1時間後に沈降させポリカーポネートを含む有 25 機相を分離し実施例1に述べたように仕上げる。 比粘度は1.821である。

実施例 7

181.5重量部の1・1-(4・41-ジヒド ロキシジフエニル) ーシクロヘキサン、2.7 重 ル、8量体のイソプロペニルフエノール1.22重 量部 (0.5モル%)、4.6%の水酸化ナトリウム 梅液 1 6 6 重量部、700 重量部の蒸溜水および 18000重量部のクロルペンゾールを窒素気圧 スゲンセ2時間以内に吹込む。それから 0.24章 量部のトリエチルアミンを添加する。1時間後に 沈降 させポリカーボネートを含む有機相を分離し 実施例1に述べたように仕上げる。

40 比粘度は1.825である。

実施例 8

187.6重量部の2・2-(4・4'-ジヒド ロキンジフエニル)ープロパン、2.85重量部 (8.16%)のp-第8プチルフエノール、

(4)

特公 昭47-28918

1.067重量部(0.5 モル%)の1.8.5-トリー(4ーヒドロキシフエニル)ーペンゾール、 4 5%の水酸化ナトリウム溶液 1 1 2.5 重量部、 700重量部の蒸溜水および1886重量部の塩 化メテレンを窒素気圏中で約20−25℃で攪拌 ε る。1時間の後死攪拌を行う。重合体を粒状に仕 しながら78重量部のフォスゲンを2時間以内に 吹込むと同時に80分間目に到るまでK追加分と して4 5%の水酸化ナトリウム溶液の 5 2 重量部 を添加する。それから 0.24 重量部のトリエチル アミンを緑加する。1時間後に沈降させ有機相を 10 実施例 11 分離し実施例1に述べたようにそとからポリカー ポネートを抽出する、その比粘度は 1.8 2 8 で ある。

実施例 9

ロキシジフエニル)ープロパン、82.5重量部 (8.67モル%)のp-第8ブチルフエノール、 60.5.重量部(1.0モル%)の8重体のイソブ ロペニルフエノール、4 5%の水酸化ナトリウム および88130重量部の塩化メチレンを窒素気 圏中で24-26℃で攪拌しながら1825重量 部のフォスゲンを2時間の内に吹込む。

それから6重量部のトリエチルアミンを添加す る。 1時間の径続機件の後に有機相を分離し2% 25 実施例10 および11に従つて得られた室合体 の水酸化ナトリウム溶液、2%燐酸および蒸溜水 を用いて何回も洗い最後に実施例1の方法cによ つて仕上げる。このポリカーポネートは1.382 の比粘度を有し軽融体粘度は129500ポイメ であり光散風によつて側定した平均分子量は **66700である。**

実施例 10

8440重量部の2・2-(4・4'-ジェドロ キシジフエニル)ープロパン、71.25重量部 (8. 1 5 モル%) の p 一第 8 プチルフエノール、 95 実例 c) による**重合体**はエステル交換により、 80.25重量部(0.5モル%)の3量体のイン プロペニルフエノール、45%の水酸化ナトリウ ム溶液4118重量部、17500重量部の蒸溜

水および88180重量部の塩化メテレンを窒素 気圏中で24-25℃で境押しながら1825重 量部のフオスゲンを 2 時間の内に吹込む。

それから6重量部のトリエチルアミンを添加す 上げることは煮詰押出機を用いて行う。薔薇の比 粘度は1.822である。 密触体粘度は59870で ある。

平均分子量(光散風)は48200である。

3440重量部の2・2-(4・4′ --ジェド ロキシジフエニル)ープロパン、60重量部 (2. 6 7 モル%)のp -第 8 プチルフェノール、 2 1. 2 重量部(0. 8 5 モル%)の 8 量体のイソ 8440重量部の2・2-(4・4′ージヒド 15 プロベニルフェノール、45%の水酸化ナトリウ ム磨液 4 1 1 8 重量部、17500重量部の蒸溜 水および38180重量部の塩化メチレンを窒素 気圏中で24-25℃で攪拌しながら1825重 量部のフォスゲンを2時間の内に吹込む。それか 榕阪4118重量部、17500重量部の蒸溜水 20 ら6重量部のトリエチルアミンを懸加する。1時 間の後続境件を行う。重合体を粒状に仕上げるこ とは煮詰押出機を用いて行う。溶液の比粘度は 1.859である。平均分子量(光散乱)は 47000である。(榕融体粘度)

> は110℃で真空乾燥器中で6時間の乾燥後は公 知のように螺旋プレス(加熱帯:290、290、 290、220℃、18回転/1分間、電流入力 8. 5 Amp) 中で啓融され、均質化され紐として 30押出される。

唇融押出紐につき性状を試験した。結果は下記 の一覧表のa)とb)に示される。比較のためc) とd)の下にはビスフエノールAだけに基づいて 作られた従来のポリカーポネート 2種を示す。

実例d)によるものは相間の界面縮合により公知 のようにして作られたものである。

d

(5)

停公 昭47-23918

y	á
出発原料の比粘度	_
(C=5g/1、塩化メチレン中で25℃	
において)	1.82

ò

長さ50㎝の紐の押出し

時間(秒) 重量 (g)

提力腐蝕

(洛射標準体、細型、4×10×120mm, 9 0 mmの距離にある廻転可能な 2 個の枕 上にのせ中央に4760gの荷重を加え、 m ーキシロール/n ープロパンノールの重 量比85:65の湿液を簡下) 測 定 値(秒)

曲げ強さ(kp/cm²)

溶射機について側つた曲げ

角度

a)とb)に記された新しいポリカーボネート は本質的に粘度が大きな溶触袋を作りうることが 判る。その上にa)とb)から密射された試験棒 はと)とも)に較べて張力腐蝕に対し感受性が低 40

更にまたa)とb)で作つた試験棒はc)とd) のものよりも可燃性が低い。

実施例10と11によつて作られた製品は大き な容器と瓶の製造に優れて適する。重量が約1.8 kgの1.8 / 容の容器が困難なしに作られた。 突施例 12

8440重量部の2・2-(4・41-ジヒドロ

キシジフエニル)ープロパン、88.5重量部 (8.94モル%)のp-第8プチルフエノール。 イソプロペニルフエノール、46%の水酸化ナト リウム路液4118重量部、17500重量部の 蒸溜水および88180重量部の塩化メチレンを 蜜素気圏中で24−26℃で攪拌しながら 1.825重量部のフォスゲンを2時間の内に吹 込む。それから6重量部のトリエチルアミンを蘇 加する。1時間の後続攪拌ののちに有機相を分離 し2%の水酸化ナトリウム榕液、2%燐酸および 蒸溜水を用いて何回も洗い最後に煮詰押出機で仕 10

28 1.859 1.825 1.860

6 2 8 6 48 2 9 58 7 5 8 0

474 78 156 109 979 1000 1082 9 9 8

8 8° 8 7° 880 8 70

上げる。

このポリカーポネートは1.816の粘度を有し 溶融体粘度は97800ポイズであり光散乱分子 量は57800である。

25 実施例 18

不銹鋼製で2 5 4 容の攪拌式オートクレーヴ中 で7000重量部の2・2-(4・41-ジヒド ロキシフエニル)ープロパン、6770重量部の ジフエニルカーボネートおよび 0・0 1 重量部の 30 ピスフエノールのジナトリウム塩を窒素下に溶融 する。次に攪拌しながら100トールの圧力で 1 8 0°から 2 1 0 ℃まで溶融温度が徐々に上昇す る内に約4000重量部のフェノールを蒸溜し去 る。それから圧力を徐々に2トールまで下げる温 75.625重量部(1.25モル%) の8量体の35 度は280℃に昇げる。この時1700重量部の フェノールが更に蒸溜し去る。この時点において 92.5重量部(=0.75モル%)の8量体のイ ソプロペニルフエノールを搭触体の中に入れるり 分間にわたり50トールの圧力下で攪拌する。次 め に圧力を0.8 トールまで下げ800ー805℃ の溶融温度において約150分間の内に重縮合を 完了させる。

黄色に着色した츔融体をオートクレーグから剛 毛として紡ぎ出し粒状にする。このポリカーポネ (6)

特公 昭47-28918

11

ートは1.820の比粘度(溶触体粘度)を有し、1.48重量%のフェニール最終基が発見された。 特許請求の範囲

I ビスフエノールが、それぞれビスフエノールのモル数に対し0.01万至2.0殊に0.25万 5 至1.5モル%の8価以上のフエノールと0.5万至8特に1.0万至6.0モル%のモノフエノールとの同時的な存在下に、ポリカーポネートを生ず

12

る等量の炭酸誘導体とポリカーボネートを生する 反応条件で反応させられることを特徴とする高分 子で可溶性の熱可塑性ポリカーボネートの製造方法。

9|用文献 特 公 昭 8 4 ~ 5 5 9 2 英国特許 9 2 8 8 6 8