

BBC4923 A

Joint Programme Examinations 2021/22

BBC4923 Physics D

Paper A

Time allowed 2 hours

Answer ALL questions

Complete the information below about yourself very carefully.

QM student number		
BUPT student number		
Class number		

NOT allowed: electronic dictionaries.

INSTRUCTIONS

- 1. You must NOT take answer books, used or unused, from the examination room.
- 2. Write only with a black or blue pen and in English.
- 3. Do all rough work in the answer book do not tear out any pages.
- 4. If you use Supplementary Answer Books, tie them to the end of this book.
- 5. Write clearly and legibly.
- 6. Read the instructions on the inside cover.

Copyright © Beijing University of Posts and Telecommunications & © Queen Mary University of London 2021

Filename: 2122_BBC4923_A No answer book required

For examiners' use only

1	
2	
3	
4	
5	
6	
Total	

Question 1 (30 marks)

For each of following questions, write down the choice of letter in the **I** I (Single letter choice).

- The velocity of a particle is given by $\vec{v} = -18\sin(3t)\hat{i} + 18\cos(3t)\hat{j}$ (SI), the path of the particle
 - (A) $x^2 + y^2 = 324$; (B) $x^2 + y^2 = 9$; (C) $x^2 + y^2 = 36$; (D) $x^2 + y^2 = 6$

[] (3 marks)

2) A person stands at the side of the cliff with height 50m, who throw a stone with speed of 20m/s and in horizontal direction, so the stone has a projectile motion. At t=1.5s, the magnitude of stone's tangential acceleration is? (here, $g=10 \text{ m/s}^2$)

- (A) 6 m/s^2 ; (B) 10 m/s^2 ; (C) 8 m/s^2 ; (D) 13.3 m/s^2

1 (3 marks)

A disk with moment of inertia I rotates about a fixed axis with an initial angular velocity $U = V \cup W$. Suppose the blocked torque is proportional to the rotational angular velocity $W = -k\omega$ (k is a positive constant). The time required for the angular velocity change from ω_0 to $\omega_0/2$ is ?

(A) I/2;

- (B) I/k;

- (C) $(I/k)\ln 2$; (D) I/2k $t = -\lfloor Lw = \rfloor d$ $d = -\frac{kw}{\rfloor}$ (3 marks)

A horizontal circular platform can rotate without friction about the fixed perpendicular axis through its center. A child stands on it. At the beginning, the system of platform and child are at $\frac{dw}{dt} = \frac{dw}{dt}$ rest. Then the child starts to walk randomly on it. During the whole procedure for the system, i the whole procedure for the system, i the whole procedure for the system. which quantities are conserved?

- (A) only the momentum is conserved;
- (B) only the mechanical energy is conserved;
- (C) only the angular momentum about the rotational axis is conserved;
- (D) momentum, mechanical energy and angular momentum about the rotational axis are all conserved.

1 (3 marks)

- Two sinusoidal waves travel in the same direction and have the same frequency. Their amplitudes are y_{1m} and y_{2m} . The smallest possible amplitude of the resultant wave is?
 - (A) $y_{1m} + y_{2m}$ and occurs when they are out of phase;
 - (B) $|y_{1m} y_{2m}|$ and occurs when they are out of phase;
 - (C) $y_{1m} + y_{2m}$ and occurs when they are in phase;
 - (D) $|y_{1m} y_{2m}|$ and occurs when they are in phase;

1 (3 marks) An oscillator in simple harmonic motion moves in x-axis. The parameters for this oscillator are: at t = 0, $x_0 = -0.01$ m, $v_0 = 0.03$ m/s, $\omega = \sqrt{3}$ rad/s. Which of the following expression for the $V = \frac{dx}{dt} = -0.02 \left[3 \left(\frac{1}{3} \sin \left(\frac{1}{3} t + \phi \right) \right) \right]$

displacement of the oscillator is correct.

- (C) $x = 0.01\cos\left(\sqrt{3}t + \frac{2\pi}{3}\right)$ (SI); (D) $x = 0.01\cos\left(\sqrt{3}t + \frac{4\pi}{3}\right)$ (SI).

1 (3 marks)

Three equal charges are located at the corners of an equilateral triangle. If each of the charges were 7) F= KQ16/2 to be doubled, then the resulting force on each of the charges is?

- (A) Remains the same;
- (B) Doubles:
- (C) Triples;
- (D) Quadruples

1 (3 marks)

- Displacement current exists wherever there is? 8)
 - (A) a magnetic field;

- (C) an electric field

- **1** (3 marks)
- In the figure 1, a full Gaussian surface encloses two of the four positively point charges. Which of the point charges contribute to the electric field at point P on the surface?

- (B) Only q_1, q_2 ;
- (C) Only q_3, q_4
- (D) None of point charge.

Figure 1

- **1** (3 marks)
- 10) A conductor consists of a circular loop of radius R and two straight, long sections. The wire lies in the plane of the paper and carries a current I. What is the vector magnetic field at the center of the loop?

- (A) $\frac{\mu_0 I}{2\pi R}$; (B) $\frac{\mu_0 I}{2R} (1 + \frac{1}{\pi})$; (C) $\frac{\mu_0 I}{4R} (1 + \frac{1}{\pi})$; (D) $\frac{\mu_0 I}{4R}$
- B= MOI 27LR.

Figure 2

1 (3 marks)

A parallel-plate capacitor is connected to an ideal battery, which provides a fixed potential difference. Originally the energy) stored in the capacitor is U_0 . If the distance between the plates is doubled, then the new energy stored in the capacitor will be $\frac{1}{2}$ $\frac{1}{2}$

An infinite plane sheet is with a uniform surface charge density σ , as shown in figure 5. The points a and b both with distance h from the surface of the sheet, the potential difference between the points a and b is

9) A long solenoid of radius R has n turns of wire per unit length and carries a time-varying current as $I = I_m \cos \omega t$, as shown in figure 6. The magnitude of the induced electric field) outside the solenoid (a distance r > R from its long central axis) is NWMO Ims mwt

10) Write down Gauss's law for electricity on the following line. 24

A uniform thin rod of length L and mass M can rotate freely in the vertical plane about a smooth horizontal axis passing through point O (shown in Fig. 7). The thin rod falls from the horizontal position without initial velocity. When the rod swings to the vertical position, the end B of the thin rod has an elastic collision with the stationary object A with mass m on the horizontal plane. After the collision, the thin rod is stationary, and the object A slides along the horizontal plane with friction coefficient of

T=(3/ML2) &= Mg = case . = 2= 39 case . μ . Find:

(1) The angular acceleration of the rod as the function of θ .

(2) The angular velocity of the thin rod just before it collides with the object A. $d = \frac{dw}{d\theta} = \frac{dw}{d\theta} = \frac{35 \text{ Cas}\theta}{3}$ (3) The distance that the object A slides along the horizontal plane.

function
$$y = A\cos\left(\frac{2\pi}{\lambda}ut\right)$$
 (SI), $A\cos\left(\frac{2\pi}{\lambda}ut + \frac{2\pi}{\lambda}(x - \frac{2\pi}{4})\right) = A\cos\left(\frac{2\pi}{\lambda}ut + \frac{2\pi}{\lambda}x - \frac{\pi}{2}\right)$

(1) Write the wave function describing the wave.

(2) Draw the waveform graph at time t=T (T is the period of the wave).

Ougstion 5. (10 mostler)

Question 5 (10 marks)

In Fig.8, a sphere, of radius a and charge +q uniformly distributed throughout its volume, is concentric with a spherical conducting shell of inner radius b and outer radius c. This shell has a net charge of -q. Find expressions for the electric field, as a function of the radius r, (1) within the sphere (r < a), (2) between the sphere and the shell (a < r < b), (3) inside the shell (b < r < c), and (4) outside the shell (r > c) (5) What are the

Question 6 (10 marks)

In Fig.9, a rectangular loop of wire with length a, width b and resistance R is placed near an infinitely long wire carrying current I, the distance between the wire and the nearest edge of the loop is c. Find:

- (1) the magnitude of the magnetic flux through the loop;
- (2) the induced current i_{ind} in the loop as it moves away from the long wire

Figure 8

2021-2022 Rough Working Page 6 of 6