VMware Greenplum 소개

Greenplum Data Federation

Tanzu Data VMware Korea

April 7, 2021

1. Greenplum Data Federation

멀티 소스 데이터 통합 분석

፫ 문의 사항

- 1) 다양한 데이터 소스로부터 분석을 해야 하는 요건이 발생되고 있습니다. Greenplum에서 다양한 소소의 시스템과 연동이 가능한가요?
- 2) HDFS, Hive, Hbase와 같은 **Hadoop 시스템**과 MinIO, S3, GCP와 같은 **오브젝트 스토리지 연동**이 가능한가요?
- 3) ETL 없이 타 DBMS와 Greenplum 간의 데이터 통신이 가능한가요?

፫ 답변

- 1) Greenplum은 다양한 소스 시스템과 연동을 하기 위해서 PXF(Platform Extension Framework) 를 지원하고 있습니다.
 - Greenplum External Table로 데이터 소스는 원격지에 있으며, 데이터 연산을 Greenplum에서 수행하는 구조입니다.
 - Greenplum에서 쿼리가 실행하는 시점에서 원격지에 있는 데이터를 가져와서 수행합니다.
 - 소스 시스템에서 파티션, 인덱스를 지원하는 경우, 모든 데이터를 가져오지 않고, 소스 시스템에서 필터링한 데이터만 가져오기 때문에 원격지의 시스템의 리소스를 최소화 합니다.
- 2) HDFS, Hive, Hbase와 같은 **Hadoop 시스템**과 MinIO, S3, GCP와 같은 **오브젝트 스토리지 연동**이 가능한가요?
 - 예. 지원됩니다. HDFS, HiveOrc, Hbase와도 연동이 되며, MinIO, S3, GCP와 같은 오브젝트 스토리지와도 연동이 됩니다. Greenplum 세그먼트(데이터) 인스턴스에서 병렬로 데이터를 가져오기 빠른 속도로 연동(Read/Write)을 할 수 있습니다.
- 3) ETL 없이 타 DBMS와 Greenplum 간의 데이터 통신이 가능한가요?
 - 예. 지원됩니다. JDBC를 이용하여 Greenplum의 External Table로 타 DBMS의 데이터를 조회할 수 있습니다.
 - 원천 소스 DBMS의 파티션, 인덱스를 사용할 수 있기 때문에, 원격지 소스 시스템의 리소스를 최소로 사용할 수 있습니다.
 - JDBC가 지원되는 RDBMS는 모두 지원되며, Oracle, DB2, Greenpum과의 POC를 통하여 검증되었습니다.

Data Federation: 이기종 시스템의 고속 SQL Interface

다양한 외부 시스템의 데이터 소스를 Greenplum에서 one SQL으로 연계 시스템 분석 기능 제공

Greenplum Data Federation

- 데이터는 원천 시스템에 저장, 연산은 Greenplum에서 수행
- 이기종 Data (database, hadoop, IMDG, 오브젝트 스토리지, DBMS 등)를 ETL과 같이 데이터 이관 없이 Greenplum에서 연산 수행
- Greenplum에서 one SQL으로 연계 시스템 분석 기능 제공

Greenplum Platform Extension Framework (PXF)

- 연동 편의성 제공: External Table의 기능으로 쉬운 Interface 제공
- 최상의 성능 제공: 고속의 병렬 Interface 기능 제공

Data Federation: Data Flow

Configurations – Parallel ETL

Configurations - PXF

Configurations - GPSS

Configurations

Data Federation: PXF - Hadoop 연동 요약

Greenplum과 Hadoop 연동 및 사용성이 편리하며, 병렬 인터페이스를 활용하여 Read/Write 성능이 극대화 됨. 외부의 데이터 소스를 Greenplum에 가져오는 것이 아니라 소스 시스템의 필요데이터만 전송, 소스 시스템 영향 최소화

🧲 Greenplum – Hadoop 연동 편의성

- □ 연동 편의성
 - Hadoop: 권한 설정
 - * Hive / HDFS에 권한 추가
 - * Proxy user 설정(core-site.xml)
 - Greenplum: Hadoop의 Config 파일 복사
 - * core-site.xml, hdfs-site.xml
 - * mapred-site.xml, yarn-site.xml, hive-site.xml
 - → 별도 모듈 설치 없이 설정만으로 연동
 - → 1일 만에 Greenplum Hadoop 연동
- □ 사용 편의성
 - Greenplum에서 Hadoop의 Hive, HDFS의 경로를 External Table화 하여 사용
 - → Greenplum에서 Internal Table 처럼 사용

☐ Greenplum – Hadoop 연동 성능

- □ Greenplum Hadoop Hive/HDFS 전송/수신 성능
 - HiveORC Read: 408,263 ~ 2,266,310 건/sec
 - HDFS Read : 3,502,450 ~ 4,000,980 건/sec
 - HDFS Write : 1,834,632 ~ 2,353,518 건/sec
 - → 분당 1억 ~ 2억건 처리

- ☐ Hive Table & Greenplum Table 조인
 - Hive Table : 260 GB, 47억건
 - Greenplum Table : 4,000 건
 - HiveORC 필터링 기능 제공 (1일 데이터 필터링)
 - → 조인 및 연산 결과: 60 만건, 3초 소요

Data Federation: PXF - Hadoop 조인 성능

외부 시스템의 데이터 소스와 Greenplum 내부의 테이블을 조인하여 one SQL으로 분석 기능 제공

PXF – Data Federation

Hadoop HiveORC 데이터와 Greenplum Internal Table 조인 소요시간

데이터 소스 위치	테이블명	건수	Size	결과	비고	
Hive ORC	hiveorc_data	47 억건	260 GB	소요 시간: 3 sec	Hive 3년 데이터 중 1일 필터링	
Greenplum	gpdb_tb	4,000	1 MB	결과 건수: 60 만건		

External Table & Internal Table 조인

PXF Filter Pushdown

- PXF에서는 filter pushdown 기능 제공
- 외부 데이터소스의 데이터 전송 최소화
- 연동시 EDAP 시스템의 부하 감소

PXF Filter Pushdown 지원 소스 유형

Profile	<, >, <=, >=, =,<>	LIKE	IS [NOT] NULL	IN	AND	OR	NOT
Jdbc	Y	Υ	Y	Υ	Υ	Υ	Υ
*:parquet	Y	N	Y	N	Υ	Υ	Υ
s3:parquet s3:text with S3- Select	Y	N	Y	Y	Y	Y	Y
HBase	Y	N	Y	N	Υ	Υ	N
Hive	Y	N	N	N	Υ	Υ	N
HiveText	Y	N	N	N	Υ	Υ	N
HiveRC	Y	N	N	N	Υ	Y	N
HiveORC	Y	N	Y	Υ	Υ	Υ	Υ
HiveVectori zedORC	Y	N	Y	Υ	Y	Y	Υ

Data Federation: PXF - 타DBMS 연동

Greenplum에서 JDBC를 통하여 External Table로 타DBMS의 테이블 조회

■ 테스트 환경

- □ Greenplum 시스템
 - Greenplum 6.5.0
 - Master Node: 1 EA, Data (Segment) Node: 4 EA
- □ 타 DBMS 시스템
 - Oracle 12
 - DB 2
 - Greenplum
- ☐ Greenplum FDBMS Connector
 - Greenplum PXF(Platform Extension Framework (PXF) 6.5.0
 - Greenplum의 확장 패키지, 병렬 Interface 제공
- □ POC 시나리오
 - Greenplum에서 타DBMS Read (with Index scan, Partition scan)
 - Greenplum Internal Table과 타 DBMS Table 조인


```
CREATE EXTERNAL TABLE EXT_R_EMP
EMPNO
                NUMERIC(4),
               VARCHAR(10),
ENAME
               VARCHAR(9),
JOB
               NUMERIC(4),
MGR
HIRFDATE
               DATE,
               NUMERIC(7,2),
SAL
COMM
               NUMERIC(7,2),
                NUMERIC(2)
DEPTNO
```

LOCATION ('pxf://scott.emp?PROFILE=Jdbc&SERVER=oracle_s1') FORMAT 'CUSTOM' (FORMATTER='pxfwritable_import');

gpadmın=> SELECI	* FROM EXI_	_R_EMP;				
empno ename	j ob	mgr	hiredate	sal	comm	deptno
	}	-+	}	+	+	+
•		•	1980-12-17	-	-	20
7499 ALLEN	SALESMAN	7698	1981-02-20	1600.00	300.00	30
7521 WARD	SALESMAN	7698	1981-02-22	1250.00	500.00	30
7566 JONES	MANAGER	7839	1981-04-02	2975.00		20
7654 MARTIN	SALESMAN	7698	1981-09-28	1250.00	1400.00	30
7698 BLAKE	MANAGER	7839	1981-05-01	2850.00		30
7782 CLARK	MANAGER	7839	1981-06-09	2450.00		10

Time: 165.690 ms

2. 실시간 스트리밍 데이터 적재

실시간 스트리밍 데이터 적재

፫ 문의 사항

- 1) 최근 들어 실시간 분석 요건이 많아 지고 있습니다. 일별 배치/시간 배치도 하고 있지만, 배치 주기를 더 줄여야 합니다. 근본적으로 시간을 줄일 수 있는 방안이 있을까요?
- 2) 센서와 같은 대용량의 이력 데이터를 거의 실시간으로 신속하게 적재하고 싶습니다. 방법이 있을까요?
- 3) 기간계 Database에서 분석 시스템 Greenplum으로 실시간 Data 복제가 가능한가요?

🧲 답변

- 1) 실시간 데이터 처리를 위하여 Greenplum에서는 2가지 형태로 기술을 지원하고 있습니다.
 - 대용량 Message Queue인 Kafka 를 이용한 실시간 고속 데이터 적재
 - 3th Party CDC Tool (R2B Xlog)를 활용한 CDC 데이터 적재
- 2) 센서와 같은 대용량의 이력 데이터를 거의 실시간으로 신속하게 적재하고 싶습니다. 방법이 있을까요?
 - Greenplum에서는 Kafka 커넥터를 제공합니다. **Kafka에 실시간으로 데이터 적재를 하면, Greenplum에 자동으로 실시간 데이터가 적재**됩니다. (100만 TPS)
- 3) 기간계 Database에서 분석 시스템 Greenplum으로 실시간 Data 복제가 가능한가요?
 - 기간계 시스템에서 소~중용량의 트랜잭션이 발생되는 경우(1~2만 TPS) 3th party CDC 툴을 이용하여 데이터 복제를 할 수 있습니다.
 - 기간계 시스템에서 대용량의 트랜잭션이 발생되거나 여러 개의 Database로부터 데이터 복제가 필요한 경우(10~20만 TPS) 에는 Kafka를 이용하여 데이터 복제를 할 수 있습니다.

실시간 스트리밍 데이터 적재

Greenplum은 실시간 스트리밍 데이터 처리를 위하여 Kafka를 지원, Database 실시간 복제를 위하여 CDC 툴 지원

Greenplum 에서 실시간 데이터 처리 방법

- 스트리밍 데이터 실시간 적재 : Kafka를 이용한 데이터 처리
- CDC Tool(R2B Solution X-LOG) 를 이용한 실시간 Database 데이터 동기화

Greenplum Database Stream Server (GPSS)

- ☐ GPSS
 - 스트리밍 데이터를 데이터 적재하기 위한 ETL툴
- □ 다양한 유형의 Stream 데이터 적재
 - Json, csv, avro, binary, delimited
- □ 데이터 병렬 적재
 - 개별 세그먼트 인스턴스에서 병렬 데이터 적재
- □ 다양한 옵션 지원
 - MAX_ROW: 한번에 처리하는 Max row 수 설정, Default: 0
 - MINIMAL_INTERVAL: POLL 최소시간 설정
 - * 최소 시간 : 0.1 초, Default: 1초

실시간 스트리밍 데이터 적재: Kafka 연동 사례

Kafka 를 이용하여 실시간 스트리밍 데이터 적재로 실시간 쿼리 처리 지원으로 업무 개선 효과 발생

🦰 국내 스트리밍 데이터 처리 사례

- □ 배치 잡에서 스트리밍으로 적재 방식 변경
 - 초기 : PXF를 이용한 INSERT 데이터 적재(30분 주기)
 - 현재 : Kafka를 이용한 실시간 데이터 적재(1~2초 내에 데이터 적재)
- □ 실시간 데이터 적재 유형
 - 현재 N개의 이력성 테이블 스트리밍 방식으로 데이터 적재
 - 소량 테이블 : X,000만건/Day - 대량 테이블 : X0억건/day

[소스시스템] [데이터 저장/전송] [Greenplum]

🦰 해외 금융사 스트리밍 데이터 처리 사례

- □ Kafka 메시지 처리 환경 및 결과
 - 데이터 노드 : 18 대(SSD 디스크)
 - 테이블 4개 / Index 12개
 - 테스트 Row수: 10억 rows
 - 적재 Intervals : 500 ms
 - Max Latency: 1100 ms
 - Concurrency: 16
 - Throughput : 3백만/sec - Loading 속도: 1.5 GB/sec
- □ Kafka 적재 동안 실시간 쿼리 처리 평균 응답 시간

쿼리 유형	동시성	TPS	평균 응답 시간	비고
simple query	20	550	30 ms	1 table scan using btree index
medium query	10	156	63 ms	2~3 tables using nestloop index scan join
complex query	5	0.5	10 sec	2~3 tables using full table scan hash join

감사합니다

18