Effect of Parameters in a Two Country Trade Model

Erin Eidschun

University of Chicago

19 February 2020

Research Question

- What are the effects of shocks to consumer demand, sectoral productivity, and trade costs in a two-country trade model? How do these effects vary with model parameters?
 - Based on Eaton, Kortum, Neiman (2016) methodology
 - This model uses weak calibration for its parameters. How do the estimates from this model change if the parameters are estimated using strong calibration?

The Model

- N countries, indexed by n
- Differentiated goods within two sectors, Durables and Services
 - Durables output used for investment, traded
 - Services output used for consumption, non-traded
 - ► CRS Production function $y_{n,t}^j(z) = a_{n,t}^j(z)B(L_{n,t}^j(z))^{\beta_L}(K_{n,t}^j(z))^{\beta_k}$
 - $ightharpoonup a_{n,t}^j$ drawn from a Type II extreme value distribution, dependent on θ
- K LOM: $K_{n,t+1} = \chi_{n,t} (I_{n,t})^{\alpha} (K_{n,t})^{1-\alpha} + (1-\delta) K_{n,t}$
 - $ightharpoonup \alpha$: adjustment costs
- Utility function: $U_n = \sum \rho_t \phi_{n,t} ln C_{n,t}$

Solving the Model

- ► Formulate Lagrangian, use FOC's to back out shadow values of consumption and investment, and to generate EE
- lacksquare Calculate trade shares $\pi_{ni,t} = (\frac{b_{i,t}d_{ni,t}}{\lambda_{n,t}^D A_{i,t}^D})^{-\theta}$
- Computing the Competitive Equilibrium
 - ► Take shadow prices as prices
 - ▶ Given *weakly calibrated* parameters α , β _L, δ , σ , θ , ρ , ω _n
 - ▶ Given exogenous variables $K_{n,0}$, $L_{n,t}$, $A_{n,t}^J$, $\phi_{n,t}$, $\chi_{n,t}$, $d_{ni,t}$
 - Can back out path of factor prices, sector prices, trade shares, value of outputs in each sector
 - Assumes evolution to steady state
- I will use a simplified two-country version of the model for my project

Data and Estimation Strategy

- EKNR (2016) uses data from WIOD, IMF NFA, OECD and CEPII BACI.
- I will use data on GDP components, and BEA NIPA data on capital.
- ► Parameters are weakly calibrated
 - Adjustment costs $\alpha = 0.55$
 - ▶ C-D Labor coefficient $\beta^L = 2/3$
 - ightharpoonup Investment depreciation rate δ
 - ightharpoonup Elasticity of substitution σ
 - Parameter for T2EV: $\theta = 0.1$
 - ▶ Discount rate $\rho = 0.95$
- ▶ Focus on estimation of β^L , δ , and θ through GMM
 - β_L : Production data, perhaps apply Ackerberg, Caves, Frazer (2006) methodology with CRS
 - \triangleright δ : Standard investment depreciation
 - \triangleright θ : If possible

Proposal Conclusion

- Unclear on direction of how strong calibration will compare to EKNR methodology
- ▶ If β_L is lower than in EKNR, can affect price of sectoral goods in either direction, depending on magnitude of difference
- lacktriangle If δ increases, capital decreases at a faster rate
 - Perhaps increases in consumer demand lead to more exaggerated decreases in capital stock in future periods
- An interesting counterfactual:
 - ▶ If Coronavirus reduces productivity and leads to negative consumer demand shocks, what is the effect on endogenous variables? How does the outcome differ with parameters?