

Sarvajanik College of Engineering and Technology Artificial Intelligence and Data Science Subject: Project-I Code: BTAI16701

Age Progression using xAI-CPAVAE

Presented By:

- 1. ET21BTAI007 Tisha Choksi
- 2. ET21BTAI021 Jashn Jain
- 3. ET21BTAI026 Taashna Jariwala
- 4. ET21BTAI041 Pranavi Mehta

Supervised By:

Prof. (Dr.) Dhruti Sharma

Introduction

Overview of the project:

Global Challenge:

- Annually, 60,000 children go missing in India, with many falling victim to trafficking or exploitation.
- Globally, minors account for 28% of trafficking victims, with a gender disparity—girls are disproportionately targeted.

Current Solutions:

- o **TrackChild Database (India):** Features a Facial Recognition System (FRS) enabling law enforcement to trace thousands of missing children.
 - Example: Delhi Police identified 3,000 children using FRS.
- o Darpan System (Telangana): Another successful technological initiative.

Introduction

Limitations of Traditional Methods:

- Dependence on outdated photographs for age progression.
- Manual techniques (e.g., forensic sketches) lack scalability and efficiency.

Hybrid Framework- Combines:

- **CPAVAE (Conditional Perceptual Adversarial Variational Autoencoder):** Generates high-quality conditional outputs.
- **xAI-GAN (Explainable AI Generative Adversarial Network):** Adds interpretability to the generative process.

Key Features:

- Enables identity tracking over time despite facial changes.
- Provides reliable, efficient, and transparent tools for law enforcement and social welfare organizations.

Introduction

Objective:

O Primary Goals:

- Create an interpretable, robust model for age progression.
- Enable **feature-level insights** to build trust and refine outputs.

• Applications:

- Forensics (missing person identification).
- Healthcare (age-related predictions).

Challenges Faced

Problems Encountered:

Complexity in Gradient Refinement

Difficulty in integrating the explainable matrix M into generator updates.

Ensuring Explainability

Selecting the most effective xAI technique (e.g., Saliency Maps, LIME, DeepSHAP).

Maintaining Image Quality

Struggles with retaining stylistic and textural details during adversarial learning.

Balancing Loss Functions

Challenges in balancing adversarial loss, perceptual loss, and KL divergence.

Computational Overhead

High resource requirements for training with VGG19 and multiple xAI methods.

Challenges Faced

How We Addressed the Challenges:

- Gradient Refinement
 - Adjusted the generator's gradient update mechanism by careful tuning
- Optimizing Explainability
 - Enhanced model interpretability through xAI tools (e.g., saliency maps).
- Loss Function Tuning
 - o Iteratively tuned the weights of loss components to ensure balanced model performance.
- Managing Computational Resources
 - Used hardware accelerators (GPUs/TPUs) and efficient data pipelines to reduce training overhead.
- Improved image quality with perceptual loss.
- Leveraged pre-trained models like VGG19 for efficient processing.

Project Timeline

• The proposed xAI-CPAVAE approach:

- **O Framework Architecture:**
 - Encoder, Generator, two Discriminators, Explainable Loss Network,
 Perceptual Loss Network.
 - Adversarial Learning ensures the generator produces realistic outputs.

o Process Flow:

Dataset Details:

Multi-Racial Child Dataset (MRCD):

Characteristic	Description
Dataset name	Multi-Racial-Child-Dataset(MRCD)
Number of images	64,965
Race groups	Asian (17,221 images), Black (13,354 images), White (19,297 images), Indian (15,103 images)
Age range	0-20 years

Pre-processing Steps:

- Resizing all images to 64x64 pixels.
- Center cropping for symmetry.
- Normalization using values tuned for pre-trained models (e.g., VGG19).

Tools and Techniques:

- Development Environment:
 - o PyTorch 2.5, NVIDIA GeForce GPU with CUDA 11.7.
- Explainability Frameworks:
 - Captum, Saliency Maps, LIME, SHAP.
- Optimization Strategies:
 - o Loss Functions: Perceptual Loss, Adversarial Loss, and KL Divergence.
 - o Optimizers: Adam

Mathematical Formulations:

- Key Equations:
 - o **Perceptual Loss**: Measures spatial discrepancies for high-frequency detail retention.
 - o **Adversarial Loss**: Ensures realistic image generation.
 - Explainability Matrix (M): Offers gradient-based insights for interpretability.

Table: Results of the proposed approach and its comparison with the existing models

Parameters	CAAE	CPAVAE	XAI-GAN	XAI-CPAVAE
Generator_loss	0.9877	0.9999	3.4478	0.9888
Discriminator_loss	0.5866	0.0234	0.6171	0.0142

Figure: Visualization of the results of xAI-CPAVAE for Age Progression

Figure: Visualization of the results of CPAVAE

Figure: Visualization of the results of xAI-GAN

Figure: Visualization of results of CAAE

Key Findings

- **CAAE** generates visually appealing images but struggles with age transitions and facial feature preservation.
- **CPAVAE** improves feature preservation and smoother age transitions but faces occasional inconsistencies.
- xAI-GAN integrates explainability but compromises image realism.
- xAI-CPAVAE achieves the best balance of realism, accuracy, and explainability.

Quantitative Insights

- xAI-CPAVAE:
 - Lowest Discriminator Loss (0.0142)
 - competitive Generator Loss (0.9888).

Visual Comparisons

- **xAI-CPAVAE** excels in:
 - Preserving facial features.
 - Delivering realistic, smooth age transitions.

Future Work

1. Age Rejuvenation & Prediction

- Predict facial changes for forensics, healthcare (e.g., aging diseases), and entertainment (e.g., movies, style simulations).
- Simulate customer appearances with cosmetics and accessories for fashion & retail.

2. Cross-Domain Applications

- **Healthcare**: Facial predictions for health conditions, surgery planning, and ageing diseases (e.g., progeria).
- Education: Visualizing ageing processes in biology/anatomy classes.

Future Work

3. User-Friendly Interface for Identification

- Platforms for governments and NGOs to assist in missing person identification.
- Multi-language support for broader adoption.

4. Collaboration & Scaling

- Partner with International Organizations (e.g., Interpol, UNICEF) for broader impact.
- Public-private partnerships for resource-limited settings, enhancing global deployment.

Conclusion

Key Takeaways:

- Innovation Highlight:
 - xAI-CPAVAE merges explainability with generative strength to set a new benchmark in facial age progression.
- Real-World Applications:
 - Potential for transforming forensics, healthcare, and identity management industries.

Final Thoughts:

- Impact:
 - Bridges the gap between performance and transparency in generative modelling.
 - Scalable for broader datasets and cross-domain tasks.

Acknowledgements

- We sincerely thank **Prof. (Dr.) Dhruti Sharma** for the invaluable guidance and support throughout this project.
- Our immense gratitude also goes to **Prof. (Dr.) Praveen K. Chandaliya** (DoAI, SVNIT) for the mentorship and providing the resources necessary for this work.
- We appreciate this opportunity provided by the Department of AI and Data Science at Sarvajanik University.
- Finally, we thank our team members for their dedication and collaboration.

THANK YOU!