Credit Risk Prediction

Classification Project

GROUP MEMBER

- 1. ARYAN VAKHARIA
- 2. D.BHARATH
- 3. A.VASUDEV
- 4. K.MANIKANTA
- 5. A.AAKASH

AURORA'S DEGREE AND P.G. COLLEGE (B.SC. COMPUTER SCIENCE & DATA SCIENCE)

Content	Slide Numbers
Project Background/Introduction	3
Objective	4
Data	5
Data Cleaning	6
Exploratory Data Analysis (EDA)	7
Dummy Variable	13
Machine Learning Algorithms	14
Appendix	25
Conclusion	35

Project Background/Introduction

Credit risk prediction is crucial for financial institutions to assess the likelihood of borrowers defaulting on their loans. This section will explore the importance and challenges of credit risk prediction.

Data:

 Structured and Unstructured Data Credit risk prediction involves leveraging both structured data, such as financial statements, and unstructured data, such as customer behavior patterns.

External Data Sources

Additional data sources like credit bureaus and economic indicators complement internal data to enhance the accuracy of credit risk prediction models.

Big Data Processing

Dealing with large volumes of data requires efficient processing techniques, such as distributed computing or cloud-based solutions.

The data consists of 21 columns and 1000 observations.

Data Cleaning:

- Removal of unwanted observations
- Fixing Structural errors
- Managing Unwanted outliers
- Handling missing data

0 Status 1000 non-null object 1 Duration 1000 non-null int64 2 Credit History 1000 non-null object 3 Purpose 1000 non-null int64 5 Savings 1000 non-null object 6 Employment Duration 1000 non-null object 7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null object 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	#	Column	Non-Null Count	Dtype
1 Duration 1000 non-null int64 2 Credit History 1000 non-null object 3 Purpose 1000 non-null object 4 Amount 1000 non-null int64 5 Savings 1000 non-null object 6 Employment Duration 1000 non-null object 7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object				
2 Credit History 1000 non-null object 3 Purpose 1000 non-null object 4 Amount 1000 non-null int64 5 Savings 1000 non-null object 6 Employment Duration 1000 non-null object 7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	0	Status	1000 non-null	object
3 Purpose 1000 non-null object 4 Amount 1000 non-null int64 5 Savings 1000 non-null object 6 Employment Duration 1000 non-null object 7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	1	Duration	1000 non-null	int64
4 Amount 1000 non-null int64 5 Savings 1000 non-null object 6 Employment Duration 1000 non-null object 7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	2	Credit History	1000 non-null	object
5 Savings 1000 non-null object 6 Employment Duration 1000 non-null object 7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	3	Purpose	1000 non-null	object
6 Employment Duration 1000 non-null object 7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	4	Amount	1000 non-null	int64
7 Installment Rate 1000 non-null object 8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	5	Savings	1000 non-null	object
8 Personal Status Sex 1000 non-null object 9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	6	Employment Duration	1000 non-null	object
9 Other Debtors 1000 non-null object 10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	7	Installment Rate	1000 non-null	object
10 Present Residence 1000 non-null object 11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	8	Personal Status Sex	1000 non-null	object
11 Property 1000 non-null object 12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	9	Other Debtors	1000 non-null	object
12 Age 1000 non-null int64 13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	10	Present Residence	1000 non-null	object
13 Other Installment Plans 1000 non-null object 14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	11	Property	1000 non-null	object
14 Housing 1000 non-null object 15 Number Credits 1000 non-null object	12	Age	1000 non-null	int64
15 Number Credits 1000 non-null object	13	Other Installment Plans	1000 non-null	object
ū	14	Housing	1000 non-null	object
46 - 1	15	Number Credits	1000 non-null	object
16 Job 1000 non-null object	16	Job	1000 non-null	object
17 People Liable 1000 non-null object	17	People Liable	1000 non-null	object
18 Telephone 1000 non-null object	18	Telephone	1000 non-null	object
19 Foreign Worker 1000 non-null object	19	Foreign Worker	1000 non-null	object
20 Credit Risk 1000 non-null int64	20	Credit Risk	1000 non-null	int64

prediction Classification using EDA.

Scatter Plot of Duration and Amount

Scatter Plot of Amount and Age

HEAT MAP:

10 20 30 40 50 60 70 Duration

Duration plot

Box plot

Amount plot

Age plot

Interpretation from pair plot and heat map

- Age is highly positively correlated with the target variable.
- Duration is highly negatively correlated with the target variable.
- Duration has a strong correlation with Credit Risk.
- Duration and Amount are negatively correlated with the target variable (Credit Risk).
- Age is positively correlated with the target variable (Credit Risk).

Applying Dummy Variable

- 1) Dummy variables are used in statistical analysis, particularly in regression analysis, to handle categorical data or factors.
- 2) Categorical data represents categories, groups, or labels, rather than numerical values.
- These variables need to be converted into a format that can be used in regression models, and this
 is where dummy variables come into play.

Purpose_car (new)	Purpose _furniture/equipment	Purpose_repairs
Purpose_car (used)	Purpose_others	Purpose_retraining
Purpose_domestic appliances	Purpose_radio/television	Purpose_vacation

Machine Learning Algorithms

Logistic regression

Logistic regression aims to solve classification problems. It does this by predicting categorical outcomes, unlike linear regression that predicts a continuous outcome

Random forest +

Random forest is a commonly-used machine learning algorithm, which combines the output of multiple decision trees to reach a single result.

1

─── Decision tree

A decision tree is a non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks.

4 K-Nearest neighbour

The k-nearest neighbors, also known as KNN, is a non-parametric, supervised learning classifier, which uses proximity to make classifications or predictions about the grouping of an individual data point.

Ridge Regression adds a penalty term proportional to the square of the coefficients

XG Boost ◆

XG Boost, which stands for Extreme
Gradient Boosting, is a scalable, distributed
gradient-boosted decision tree (GBDT)
machine learning library

5

K-Means Clustering

k-means clustering tries to group similar kinds of items in form of clusters.

Support Vector Machine

A support vector machine (SVM) is a type of supervised learning algorithm used in machine learning to solve classification and regression tasks

Logistic regression

Train test ratio	Accuracy
65-35	71.14%
70-30	70%
70-25	70%
80-20	70.5%

Decision tree

	Train test ratio	Accuracy
	65-35	66.7%
	70-30	66%
AND THE PERSON NAMED IN	70-25	68%
	80-20	67%

Random forest

Train test ratio	Accuracy
65-35	70.28%
70-30	70.33%
70-25	72.4%
80-20	74.5%

K – Nearest Neighbour (KNN)

	Train test ratio	Accuracy
A A	65-35	66.86%
	70-30	66.86%
100	70-25	66%
	80-20	66%

Ridge Logistic Regression

Train test ratio	Accuracy
65-35	66.86%
70-30	67%
70-25	66%
80-20	66%

K – Means Clustering

T	rain test ratio	Accuracy
	65-35	66.86%
	70-30	66.33%
	70-25	66%
	80-20	66%

XG Boost

Train test ratio	Accuracy
65-35	69.71%
70-30	68.67%
70-25	73.2%
80-20	71.5%

Support Vector Machine(SVM)

Train test ratio	Accuracy
65-35	70.29%
70-30	69.67%
70-25	69.6%
80-20	69.5%

A comparison between the implemented models

MODEL	ACCURACY
Logistic regression	71.14%
Decision tree	68%
Random forest	74.5%
K – Nearest Neighbour (KNN) (65-30)	66.86%
K – Nearest Neighbour (KNN) (70-30)	66.86%
Ridge Logistic Regression	67%
K – Means Clustering	66.86%
XG Boost	73.2%
Support Vector Machine(SVM)	70.29%

Applying Dummy Variable

Elements = ['Purpose']
df = pd.get_dummies(df, columns = Elements, drop_first = True)
df.head()

											_			_		_						
Status	Duration H	Credit Listory Am	nount	Savings	mployment Ins Duration	tallment Rate	Personal Status Sex		Present Residence	Credit Risk	Purpose_car (new)	Purpose_car (used)	Purpose_domestic appliances	Purpose_fi	urniture/equipment	Purpose_others	s Purpose_radio	o/television	Purpose_repair	rs Purpose_retra	ining Purpose	_vacation
no Checking account	18	all credits at this bank paid back duly	un 1049	known/no savings account	<u><1 yr</u>	< 20	female : non- single or male : single	none	>= 7 yrs	1		0			0)					
no 1 checking account		all credits at this bank paid back duly	un 2799	known/no savings account	1 <= < 4 yrs 25 ·	<= < 35 r	male : married/widowed	none	1 <= < 4 yrs						0		1					
2 < 0 DM	ta	no credits aken/all credits paid back duly	841	< 100 DM	4 <= < 7 yrs 25 ·	<= < 35	female : non- single or male : single	none	>= 7 yrs						0							
no 3 checking account		all credits at this bank paid back duly	un 2122	known/no savings account	1 <= < 4 yrs 20 ·	<= < 25 r	male : married/widowed	none	1 <= < 4 yrs						0		1					
no 4 checking account	12	all credits at this bank 21 paid back duly	171 :	own/no savings account	<= < 4 yrs	< 20 mar	male : ried/widowed	none ;	>= 7 yrs	1	0	0	0	0	1		0)	0		0 6	0

Logistic Regression

0.705

Accuracy:

```
model = LogisticRegression()
model.fit(xtrain, ytrain)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)
```

Decision Tree

```
model = DecisionTreeClassifier()
model.fit(xtrain, ytrain)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)
Accuracy: 0.63
```

Random Forest

Accuracy: 0.745

```
model = RandomForestClassifier(n_estimators = 100, random_state = 42)
model.fit(xtrain,ytrain)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)
```

K-Nearest Neighbour (KNN)

```
k = 3
model = KNeighborsClassifier(n_neighbors = k)
model.fit(xtrain, ytrain)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)
Accuracy: 0.66
```

Ridge Logistic Regression

Accuracy: 0.66

```
ridge_model = LogisticRegression(penalty = 'l2', C = 1.0)
ridge_model.fit(xtrain, ytrain)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)
```

31

K-Means Clustering

```
k = 3
kmeans = KMeans(n_clusters = k)
clusters = kmeans.fit_predict(xtest)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)
Accuracy: 0.66
```

XG Boost

```
model = XGBClassifier()
model.fit(xtrain, ytrain)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)
Accuracy: 0.715
```

Support Vector Machine (SVM)

```
model = SVC(kernel='linear')
model.fit(xtrain, ytrain)
ypred = model.predict(xtest)
accuracy = accuracy_score(ytest, ypred)
mae = mean_absolute_error(ytest, ypred)
print('Accuracy: ', accuracy)

Accuracy: 0.695
```

CONCLUSION

- Eight machine learning algorithms were used for the Credit risk Prediction dataset: Logistic Regression, Decision Tree, Random Forest, K Nearest Neighbour (KNN), Ridge Logistic Regression, K Means Clustering, XG Boost, and Support Vector Machine (SVM).
- After conducting various analyses and implementing different algorithms, we discovered that the Random Forest Regression Algorithm yielded the best results. Specifically, when using an 80-20 train-test ratio, we obtained a Accuracy of 74.5%, which is the Highest Accuracy value compared to all the other errors we encountered.
- After analyzing the Credit Risk dataset, we can conclude that the Random Forest Regression Algorithm is the most effective model.

