Prototype Exercise 3

Exercises 11, 12, 13 CSC872

Pattern Analysis and Machine Intelligence

https://bidal.sfsu.edu/~kazokada/csc872/ FaceClassification_Data.zip

Downland it

CSC872: PAMI - Kazunori Okada

1

Fast Prototyping Exercise

- Fast Prototyping
 - Learn how to do a quick proof of concept by building a prototype
 - Correctness matters (no sloppy algorithm!)
 - Speed matters (no beautification!)
 - No perfect SE necessary
 - No copying of codes online.
 - Parameterization/Visualization/Experimentation
 - Find out what are free parameters in your algorithm whose value must be hand-picked by you
 - Learn how to view internal variable's current values
 - Learn how to visualize your prototype's results in plots/images etc
 - Tweak the parameter values and study your prototype's behavior to understand the how algorithm works
- Group Work
 - You are encouraged to freely exchange ideas and codes
 - Contributions to others are as valuable as making your own work

CSC872: PAMI – Kazunori Okada

Fast Prototyping Exercise

- Please upload your matlab codes thru iLearn forum for my grading and your playing!
 - First two exercises: Due on midnight of the day (just what you did during the exercise)
 - Third last exercise: Due on midnight next day (complete version with some doc/screen shots of running the code)
- Your grade on FP exercise will be partly based on these submitted codes and what I observe during the in-class exercises.
- If received helps from others and/or used codes from others, please credit the person who helped you.

CSC872: PAMI – Kazunori Okada

2

Platforms

- MATLAB
 - MathWorks: http://www.mathworks.com/
 - http://en.wikipedia.org/wiki/MATLAB
- MATLAB @ SFSU
 - https://at.sfsu.edu/at-mathworks-matlab
- Various tutorials available online
 - https://matlabacademy.mathworks.com/?s_tid=acb_tut

CSC872: PAMI – Kazunori Okada

Public Libraries

- OpenCV (Computer Vision)
 - http://www.intel.com/technology/computing/opencv/overview.htm
- ITK (Medical Imaging)
 - http://www.itk.org/
- WEKA (Machine Learning)
 - http://www.cs.waikato.ac.nz/~ml/weka/index.html

CSC872: PAMI – Kazunori Okada

5

Classification of Facial Gender

- Learn an LDA classifier that classify input image to either female or male (binary classification)
- Smaller sized images are provided

CSC872: PAMI – Kazunori Okada

Paper 3

- Swets and Weng
- Using Discriminant Eigenfeatures for Image Retrieval
- PAMI, 18(8): (1996)
- A.M. Martinez, A.C. Kak,
- PCA versus LDA, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2): 228-233 (2001)
- http://www2.ece.ohio-state.edu/~aleix/

CSC872: PAMI – Kazunori Okada

7

Data

- The same but reorganized data from the FP#1 for face recognition
- https://bidal.sfsu.edu/~kazokada/csc872/FaceClassification_ Data.zip
- Images are organized in 2 folders
- Female: 54 32x32 8bit facial images
- Male: 45 32x32 8bit facial images

CSC872: PAMI – Kazunori Okada

Linear Discriminant Analysis

- Supervised learning for classification
- Input: Grayscale Image
 - 8bit (0-255) grayscale images of 32x32 size
- LDA projection: linear transformation to a 1D space
- Threshold-based Classification: find the Bayes optimal threshold for the data after projection.
- · Output: binary class labels
 - E.g., female (+1), male (-1)

CSC872: PAMI – Kazunori Okada

9

LDA Setting

- Feature extraction (projection): $y = w^T x$
- LDA: Find \boldsymbol{w} such that within-class scatter (\boldsymbol{S}_w) is minimized and between-class scatter (\boldsymbol{S}_b) is maximized.
- LDA solution is given by solving a generalized eigen-value problem
 - $-S_b w = \lambda S_w w$
 - $[V D] = eig(S_b, S_w)$

CSC872: PAMI – Kazunori Okada

LDA Limitations

- You get only K-1 non-zero eigen-vectors where K is the # of classes
- You need at least K+d samples to have nonsingular S_w where d is the dimensionality of inputs
 - Singular matrix cannot be inverted!!!

CSC872: PAMI – Kazunori Okada

11

PCA+LDA Solution

- Because S_w is singular you cannot solve the generalized eigenvalue problem
- · Soln:
 - First Perform PCA on the entire data set
 - Find a subset with K top PCs that capture most of data variance
 - Project all the input data points to the PCA subspace
 - Compute the S_w and S_b with the projected datapoints in the PCA space (low-dimensional space)
 - Perform LDA
 - Compute the slope and intercept of the discriminant function from the LDA results

CSC872: PAMI – Kazunori Okada

Formulae

$$X = \{X_1, X_2, ..., X_k, ..., X_K\}$$
 $M_k = |X_k|$: the number of sampels in k —th class
 $\mu_k = \frac{1}{M_k} \sum_{i=1}^{M_k} x_i$: mean of k —th class
 $\mu = \frac{1}{|X|} \sum_{k=1}^{K} M_k \mu_k$: mean of X

$$\mu = \frac{1}{|X|} \sum_{k=1}^{K} M_k \mu_k$$
: mean of X

$$\underline{K} \quad \underline{M_k}$$

$$S_{w} = \sum_{k=1}^{K} \sum_{i=1}^{M_{k}} (x_{i} - \mu_{k})(x_{i} - \mu_{k})^{t}$$

$$S_{b} = \sum_{k=1}^{K} M_{k}(\mu_{k} - \mu)(\mu_{k} - \mu)^{t}$$
IDA: find we that maximizes $I(w)$

$$S_b = \sum_{k=1}^{K} M_k (\boldsymbol{\mu}_k - \boldsymbol{\mu}) (\boldsymbol{\mu}_k - \boldsymbol{\mu})^t$$

LDA: find w that maximizes $J(w) = \frac{w^t S_b w}{w^t S_{\cdots} w}$

13

Formulae

LDA: find w that maximizes $J(w) = \frac{w^t S_b w}{w^t S_{...} w}$

$$S_b w_m = \lambda_m S_w w_m$$

$$(S_w^{-1}S_b)w_m = \lambda_m w_m$$

Algorithm

- 1) Given labeled data $X = \{Xp, Xn\}$: female (p), male (n)
- 2) Do PCA CV = VD $V = \{PC_1, ..., PC_N\}$ $D = \text{diag}(ev_1, ..., ev_N)$
- 3) Find top K PCs that cover 9X% of the variance
- 4) Form PCA model F $F = \{PC_1, ..., PC_K\}^t$
- 5) Project all data points to FX={Pp,Pn}:
- 6) Compute S_w and S_b from $\{Pp,Pn\}$ $p_i = F * (x_i \mu)$
- 7) Solve a generalized eigen-value problem with S_w and S_b
- 8) This results in a single PC: v
- 9) Compute discriminant slope w = v' * F
- 10) Compute discriminant intercept **b** = **v**'*(**meanPp+meanPn**)/2
- 11) The result if $w^*(x-\mu)-b$ is positive then (+1) otherwise (-1), (check if the sign is right)

CSC872: PAMI – Kazunori Okada

15

Useful MATLAB Codes

For LDA

- Set X as a matrix with each row is a vectorized face
- m = mean(X): sampel mean of X
- S = cov(X): covariance matrix (mean removed)
- Scatter matrix = cov(X).*(N-1) N: # of samples in X
- [V D]=eig(A,B): generalized eigenvalue problem solver
- hist (projected X1 and X2): create a histogram

CSC872: PAMI – Kazunori Okada