Technical Annex

1 Full Results

The complete table of results of explanation-redundancy evaluation is shown in Table 1 and the complete table of results of runtime assessment for computing AXp's are reported in Table 2. Besides, Table 3 summarizes results on path explanation redundancy for DTs included in representative bibliography on DTs, namely textbooks and surveys [14, 6, 16, 7, 8, 17, 4, 19, 3, 9, 26, 12, 1, 20, 11, 2, 22, 15, 24, 5, 25]. Table 4 shows results for DTs learned with recently proposed algorithm that specifically target the learning of optimal (and so indirectly *interpretable*) DTs, concretely [10, 13, 18] and also [23]. Table 5 shows results for DTs learned on more complex datasets (which are also publicly available).

References

- [1] E. Alpaydin. Introduction to machine learning. MIT press, 2014.
- [2] E. Alpaydin. Machine Learning: The New AI. MIT Press, 2016.
- [3] M. R. Berthold, C. Borgelt, F. Höppner, and F. Klawonn. Guide to Intelligent Data Analysis How to Intelligently Make Sense of Real Data, volume 42 of Texts in Computer Science. Springer, 2010.
- [4] C. Bessiere, E. Hebrard, and B. O'Sullivan. Minimising decision tree size as combinatorial optimisation. In *CP*, pages 173–187, 2009.
- [5] M. Bramer. *Principles of Data Mining, 4th Edition*. Undergraduate Topics in Computer Science. Springer, 2020.
- [6] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.
- [7] L. A. Breslow and D. W. Aha. Simplifying decision trees: A survey. *Knowledge Eng. Review*, 12(1):1–40, 1997.
- [8] S. Džeroski and N. Lavrač, editors. Relational data mining. Springer, 2001.
- [9] P. A. Flach. Machine Learning The Art and Science of Algorithms that Make Sense of Data. CUP, 2012.
- [10] X. Hu, C. Rudin, and M. I. Seltzer. Optimal sparse decision trees. In *NeurIPS*, pages 7265–7273, 2019.

- [11] J. D. Kelleher, B. Mac Namee, and A. D'arcy. Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. 2020.
- [12] S. B. Kotsiantis. Decision trees: a recent overview. Artif. Intell. Rev., 39(4):261–283, 2013.
- [13] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. I. Seltzer. Generalized and scalable optimal sparse decision trees. In *ICML*, pages 6150–6160, 2020.
- [14] B. M. E. Moret. Decision trees and diagrams. ACM Comput. Surv., 14(4):593–623, 1982.
- [15] D. Poole and A. K. Mackworth. Artificial Intelligence Foundations of Computational Agents. CUP, 2017.
- [16] J. R. Quinlan. C4.5: programs for machine learning. Morgan-Kaufmann, 1993.
- [17] L. Rokach and O. Z. Maimon. *Data mining with decision trees: theory and applications*. World scientific, 2008.
- [18] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong. Interpretable machine learning: Fundamental principles and 10 grand challenges. *CoRR*, abs/2103.11251, 2021.
- [19] S. J. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Pearson Education, 2010.
- [20] S. Shalev-Shwartz and S. Ben-David. *Understanding Machine Learning From Theory to Algorithms*. Cambridge University Press, 2014.
- [21] G. Valdes, J. M. Luna, E. Eaton, C. B. Simone, L. H. Ungar, and T. D. Solberg. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. *Scientific reports*, 6(1):1–8, 2016.
- [22] G. Valdes, J. M. Luna, E. Eaton, C. B. Simone II, L. H. Ungar, and T. D. Solberg. MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. *Nature Scientific reports*, 6:37854, 2016.
- [23] S. Verwer and Y. Zhang. Learning optimal classification trees using a binary linear program formulation. In AAAI, pages 1625–1632, 2019.
- [24] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining. Morgan Kaufmann, 2017.
- [25] Z. Zhou. Machine Learning. Springer, 2021.
- [26] Z.-H. Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

Dataset	IAI										ITI							
Dataset	D	#N	%A	#P	%R	%C	%m	%M	%avg	D	#N	%A	#P	%R	%C	%m	%M	%avg
IndiansDiabetes	6	33	67	17	35	2	20	25	21	21	67	60	34	38	22	20	33	26
adult	6	83	78	42	33	25	20	40	25	17	509	73	255	75	91	10	66	22
allhyper	6	47	95	24	25	2.5	20	33	23	14	49	96	25	64	25	12	50	35
ann-thyroid anneal	6	61 29	97 99	31 15	$\frac{25}{26}$	30 16	20 16	50 33	$\frac{36}{21}$	48 9	223 31	93 100	112 16	$\frac{65}{25}$	46 4	$\frac{11}{12}$	$\frac{75}{20}$	22 16
annear	2	7	68	4	0	0				3	7	81	4	50	3	50	66	58
australian	6	45	61	23	17	8	20	33	23	7	33	82	17	35	51	16	33	26
auto	6	33	53	17	23	1	16	33	23	10	47	75	24	33	53	14	40	26
backache	4	17	72	9	33	39	25	33	30	3	9	91	5	80	87	50	66	54
balance	6	93	81	47	61	41	25	50	27	12	105	81	53	50	62	25	50	26
bank	6	113	88	57	5	12	16	20	18	19	1467	86	734	69	64	7	63	27
banknote	3	9	67	5	20	0	66	66	66	35	71	54	36	83	2	33	50	43
biodegradation	5	19	65	10	30	1	25	50	33	8	71	76	36	50	8	14	40	21
biomed	3	9	66	5	20	1	50	50	50	8	33	64	17	29	9	25	50	33
breast-cancer	6	61	74	31	41	13	16	33	20	7	25	70	13	23	33	25	33	30
bupa	6	47	62	24	29	5	20	33	25	24	49	59	25	64	25	16	50	25
cancer	6	37	87	19	36	9	20	25	21	5	21	84	11	54	10	25	50	37
car	6	43	96	22	86	89	20	80	45	11	57 65	98	29	65	41	16	50 40	30
cleveland coil2000	6	81 99	31 92	41 50	24 18	15 9	16 16	33 33	20 18	7 12	$65 \\ 177$	31 91	33 89	33 79	71 98	16 9	40 77	$\frac{30}{42}$
co112000 colic	6	99 55	92 81	50 28	18 46	6	16 16	33 33	20	12 4	177	91 80	89 9	79 33	98 27	9 25	25	$\frac{42}{25}$
compas	6	55 77	34	39	40 17	8	16	20	20 17	15	183	37	92	ээ 66	43	12	60	25 27
compas contraceptive	6	99	49	59 50	8	2	20	60	37	17	385	48	193	27	45 32	12	66	21
dermatology	6	33	90	17	23	3	16	33	21	7	17	95	9	22	0	14	20	17
divorce	5	15	90	8	50	19	20	33	24	2	5	96	3	33	16	50	50	50
ecoli	6	45	75	23	4	5	20	20	20	53	109	59	55	25	19	20	66	36
fars	6	75	79	38	10	86	33	66	52	60	9969	76	4985	35	90	6	50	12
german	6	25	61	13	38	10	20	40	29	10	99	72	50	46	13	12	40	22
heart-c	6	43	65	22	36	18	20	33	22	4	15	75	8	87	81	25	50	34
heart-h	6	37	59	19	31	4	20	40	24	8	25	77	13	61	60	20	50	32
heart-statlog	6	33	55	17	29	5	20	33	30	4	13	81	7	71	31	25	50	35
hepatitis	5	17	77	9	33	6	20	33	24	3	11	80	6	33	14	33	33	33
house-votes-84	6	49	91	25	68	67	16	50	27	3	9	90	5	80	75	33	50	41
hungarian	6	33	69	17	29	2	25	40	31	4	19	77	10	40	30	33	33	33
ionosphere 	4	9	70	5	60	3	33	50	38	5	17	80	9	33	0	33	60	47
iris · · · ı	5	23	90	12	41	25	25	33	30	10	21	63	11	36	13	50	50	50
irish Irddaun	4 6	13 91	97 99	7 46	$71 \\ 0$	54 0	33	50	36	3 29	7 269	100 99	$\frac{4}{135}$	$\frac{0}{22}$	0 0.9	6	20	9
kddcup kr-vs-kp	6	49	96	25	80	75	16	60	33	13	67	99	34	79	43	7	70	35
lending	6	45	73	23	73	80	16	50	25	14	507	65	254	69	80	12	75	25
letter	6	127	58	64	1	0	20	20	20	46	4857	68	2429	6	7	6	25	9
lymphography	6	61	76	31	35	25	16	33	21	6	21	86	11	9	0	16	16	16
messidor	3	7	50	4	50	1	50	66	58	22	107	52	54	88	99	10	57	28
promoters	6	17	86	9	33	19	16	33	23	3	9	81	5	20	14	33	33	33
mushroom	6	39	100	20	80	44	16	33	24	5	23	100	12	50	31	20	40	25
mux6	6	55	61	28	85	78	20	50	37	4	15	46	8	37	31	25	33	30
new-thyroid	3	11	95	6	33	4	33	33	33	14	29	79	15	26	5	20	50	30
pendigits	6	121	88	61	0	0	_	_	_	38	937	85	469	25	86	6	25	11
postoperative	6	43	50	22	59	44	16	50	25	6	15	56	8	75	25	16	50	36
primary-tumor	6	55	71	28	35	21	16	33	21	6	21	82	11	54	31	16	50	31
promoters	1	3	90	2	0	0	_	_	_	3	9	81	5	20	14	33	33	33
recidivism	6	105	61	53	28	22	16	33	18	15	611	51	306	53	38	9	44	16
schizo	6	17	55	9	55	5	50	66	58	13	51	52	26	30	64	20	25	21
segmentation	4	15	38	8	0	0				27	57	23	29	48	2	11	71	39
seismic_bumps	6	37	89	19	42	19	20	33	24	8	39	93	20	60	79	20	60	42
shuttle soybean	6	63 63	99 88	$\frac{32}{32}$	28 9	7 5	20 25	$\frac{33}{25}$	$\frac{23}{25}$	23 16	159 71	99 89	80 36	$\frac{33}{22}$	9 1	14 9	$\frac{50}{12}$	30 10
soybean spambase	6	63	75	$\frac{32}{32}$	9 37	12	25 16	33	25 19	15	143	91	72	76	98	9 7	58	25
spambase spect	6	45	82	23	60	51	20	50	35	6	145	86	8	87	98	50	83	65
splice	3	7	50	4	0	0	_			88	177	55	89	0	0			
student-mat	6	109	35	55	9	3	20	25	21	22	177	25	89	6	6	11	20	15
student-mat student-por	6	119	30	60	1	0	20	20	20	22	259	26	130	9	5	7	20	10
tram_2000	1	3	100	2	0	0	_	_	_	1	3	100	2	0	0	_	_	_
uci_mammo	6	53	11	27	51	43	16	40	24	9	23	38	12	66	25	25	55	39
vehicle	6	79	49	40	10	0	16	20	19	24	141	58	71	45	54	9	41	23
wdbc	2	7	87	4	0	0	_	_	_	57	115	61	58	94	10	14	73	49
yeast	6	45	49	23	4	0	25	25	25	64	493	37	247	14	0	11	25	16

Table 1: Path explanation redundancy in decision trees obtained with IAI and ITI. The table shows tree statistics for IAI and ITI, namely, tree depth \mathbf{D} , number of nodes $\#\mathbf{N}$, test accuracy $\%\mathbf{A}$ and number of paths $\#\mathbf{P}$. The percentage of explanation-redundant paths (XRP's) is given as $\%\mathbf{R}$ while the percentage of data instances (measured for the *entire* feature space) covered by XRP's is $\%\mathbf{C}$. Bocusing solely on the XRP's, the average (min. or max., resp.) percentage of explanation-redundant features per path is denoted by $\%\mathbf{avg}$ ($\%\mathbf{m}$ and $\%\mathbf{M}$, resp.).

				T.	ΑI			ITI								
Dataset		Trav	ersal			Н	orn			Trav	versal			H	orn	
		M	avg	Tot	m	M	avg	Tot	m	M	avg	Tot	m	M	avg	Tot
IndiansDiabetes	0.001	0.003	0.001	0.73	0.001	0.002	0.001	0.63	0.001	0.003	0.002	1.19	0.001	0.002	0.001	1.02
adult	0.001	0.059	0.002	3.52	0.001	0.005	0.002	2.93	0.005	0.065	0.008	0.93	0.008	0.071	0.013	1.53
allhyper	0.001	0.006	0.002	1.88	0.001	0.005	0.001	1.23	0.001	0.004	0.002	2.39	0.001	0.002	0.001	1.20
ann-thyroid	0.001	0.005	0.002	3.67 1.22	0.001	0.005	0.001	2.85	0.002	0.041	0.006	12.14 0.96	0.004	0.029	0.005	9.64
anneal appendicitis	0.001 0.000	0.005 0.000	0.001 0.000	0.029	0.001 0.000	0.003 0.000	0.001 0.000	0.75 0.032	0.001 0.000	0.006 0.001	0.001 0.000	0.96	0.001 0.000	0.004 0.001	0.001 0.000	$0.70 \\ 0.033$
australian	0.000	0.003	0.000	0.93	0.001	0.002	0.000	0.71	0.001	0.004	0.000	0.94	0.001	0.001	0.000	0.61
auto	0.001	0.005	0.001	0.22	0.001	0.005	0.001	0.18	0.001	0.005	0.002	0.33	0.001	0.005	0.001	0.24
backache	0.001	0.001	0.001	0.13	0.000	0.001	0.001	0.094	0.000	0.001	0.000	0.077	0.000	0.001	0.000	0.065
balance	0.001	0.004	0.001	0.82	0.002	0.005	0.002	1.15	0.001	0.057	0.001	0.86	0.002	0.006	0.002	1.23
bank	0.002	0.062	0.003	34.45	0.002	0.008	0.002	25.53	0.013	0.090	0.027	19.64	0.025	0.092	0.033	24.21
banknote biodegradation	0.000 0.000	0.001 0.003	0.000 0.001	$0.12 \\ 0.21$	0.000 0.000	0.001 0.002	0.000 0.001	0.14 0.18	0.001 0.002	0.002 0.007	0.001 0.003	$0.47 \\ 0.98$	0.001 0.001	0.003 0.003	$0.001 \\ 0.002$	$0.54 \\ 0.48$
biomed	0.000	0.003	0.001	0.064	0.000	0.002	0.001	0.073	0.002	0.002	0.003	0.17	0.001	0.003	0.002	0.16
breast-cancer	0.001	0.003	0.002	0.42	0.001	0.004	0.001	0.35	0.000	0.001	0.001	0.19	0.001	0.001		0.17
bupa	0.001	0.003	0.001	0.33	0.001	0.002	0.001	0.34	0.001	0.002	0.001	0.33	0.001	0.005	0.001	0.35
cancer	0.001	0.003	0.001	0.53	0.001	0.003	0.001	0.39	0.001	0.004	0.001	0.32	0.001	0.002	0.001	0.26
car	0.001	0.004	0.001	0.52	0.001	0.002	0.001	0.48	0.001	0.002	0.001	0.47	0.001	0.002	0.001	0.59
cleveland coil2000	0.001	0.005	0.001	0.25	0.001	0.004	0.002	0.31	0.001	0.002	0.001 0.018	0.23	0.001 0.003	0.002	0.001 0.004	0.25
colic	0.003 0.001	0.036 0.005	0.009 0.002	21.56 0.71	0.002 0.001	0.009 0.002	0.002 0.001	5.77 0.43	0.004 0.000	0.044 0.001	0.018	44.26 0.24	0.003	0.029 0.001		11.02 0.18
compas	0.001	0.004	0.002	0.66	0.001	0.002	0.001	0.52	0.002	0.065	0.001	1.37	0.003	0.001	0.004	1.28
contraceptive	0.001	0.005	0.002	0.70	0.002	0.004	0.002	0.78	0.003	0.064	0.006	2.64	0.006	0.012		2.87
dermatology	0.001	0.005	0.001	0.50	0.001	0.002	0.001	0.31	0.000	0.001	0.001	0.27	0.000	0.001	0.001	0.19
divorce	0.000	0.002	0.001	0.10	0.000	0.001	0.001	0.076	0.000	0.001	0.000	0.033	0.000	0.002		0.041
ecoli	0.001	0.003	0.001	0.25	0.001	0.002	0.001	0.32	0.001	0.057	0.001	0.46	0.002	0.004	0.002	0.62
fars	0.001 0.001	0.004 0.004	0.002 0.001	$3.26 \\ 0.76$	0.001 0.001	0.004 0.002	0.002 0.001	$2.86 \\ 0.65$	0.066 0.002	0.18 0.007	0.093 0.003	172.34 3.19	0.19 0.002	0.32 0.003	0.20 0.002	374.52 2.03
german heart-c	0.001	0.004 0.003	0.001	0.42	0.001	0.002	0.001	0.30	0.002	0.007	0.003	0.19	0.002	0.003		0.14
heart-h	0.001	0.004	0.001	0.39	0.001	0.005	0.001	0.27	0.001	0.001	0.001	0.21	0.001	0.001	0.001	0.18
heart-statlog	0.001	0.003	0.001	0.26	0.001	0.002	0.001	0.23	0.000	0.001	0.001	0.14	0.000	0.001	0.000	0.11
hepatitis	0.001	0.002	0.001	0.12	0.000	0.002	0.001	0.084	0.000	0.001	0.000	0.064	0.000	0.002	0.000	0.062
house-votes-84	0.001	0.006	0.002	0.56	0.001	0.002	0.001	0.32	0.000	0.000	0.000	0.10	0.000	0.001	0.000	0.100
hungarian	0.001	0.003	0.001	$0.27 \\ 0.15$	0.001	0.005	0.001	0.24 0.18	0.001	0.002	0.001	$0.23 \\ 0.36$	0.000	0.002	0.001	0.18 0.26
ionosphere iris	0.000 0.000	0.001 0.003	0.000 0.001	0.15	0.000 0.001	0.002 0.001	0.001 0.001	0.18	0.001 0.000	0.003 0.001	0.001 0.000	0.30	0.000 0.000	0.002 0.001	0.001 0.001	0.20
irish	0.000	0.002	0.001	0.20	0.001	0.001	0.001	0.21	0.000	0.001	0.000	0.092	0.000	0.001	0.000	0.14
kddcup	0.002	0.032	0.003	9.54	0.002	0.007	0.002	5.69	0.003	0.045	0.011	31.00	0.005	0.010	0.006	16.17
kr-vs-kp	0.001	0.008	0.002	2.17	0.001	0.004	0.001	1.22	0.001	0.009	0.004	3.41	0.001	0.003	0.002	1.49
lending	0.001	0.003	0.001	1.99	0.001	0.003	0.001	1.51	0.004	0.065	0.007	0.73	0.008	0.069	0.011	1.12
letter	0.002	0.062	0.002	13.36	0.002	0.007	0.003	14.30	0.034	0.11	0.052	19.50	0.078	0.16	0.11	40.77
lymphography messidor	0.001 0.000	0.007 0.001	0.002 0.000	0.32 0.096	0.001 0.000	0.003 0.001	0.001 0.000	$0.20 \\ 0.11$	0.000 0.001	0.002 0.006	0.001 0.003	0.13 1.06	0.001 0.002	0.001 0.004	0.001	0.090 0.74
promoters	0.000	0.001		0.090		0.001	0.000	0.11	0.001	0.000	0.003	0.046		0.004 0.001		0.74
mushroom		0.004		3.11		0.002		2.20		0.003		2.46		0.002		1.54
mux6		0.002					0.001			0.001		0.040		0.002		0.035
new-thyroid	0.000	0.002	0.000	0.078	0.000	0.001	0.000	0.086	0.000	0.001	0.001	0.17	0.001	0.001	0.001	0.15
pendigits		0.063				0.007		8.45		0.093		3.11		0.089		4.81
postoperative	0.001		0.001					0.077			0.001	0.048		0.002		0.040
primary-tumor promoters	0.001	0.005 0.000	0.002 0.000	0.47 0.017		0.004 0.000	0.001	0.28 0.024		0.001 0.001		$0.17 \\ 0.039$	0.001	0.001 0.001		0.13 0.037
recidivism		0.061		3.65		0.006		2.59		0.001		11.69		0.001		18.26
schizo	0.000			0.22		0.001	0.001	0.17		0.003	0.002	0.58		0.002		0.37
segmentation	0.000	0.001	0.000	0.098	0.000	0.001	0.000	0.096	0.001	0.002	0.001	0.30	0.001	0.002	0.001	0.25
$seismic_bumps$		0.003		1.08		0.002		0.68		0.004		1.83	0.001	0.002		0.69
shuttle		0.006					0.001			0.061		2.85		0.060		3.56
soybean		0.058		1.17		0.005	0.001	0.82		0.005		1.65		0.003		0.95
spambase spect		0.008 0.006		3.43 0.52		0.003 0.004		1.81 0.24		0.069 0.001		$11.20 \\ 0.17$	0.003	0.062 0.001		4.18 0.11
splice		0.000		0.32		0.004		0.24		0.064		1.48		0.069		3.43
student-mat		0.061		1.14		0.007		0.92		0.058		1.98		0.060		1.56
student-por		0.059		1.94		0.004		1.53		0.062		5.05		0.072		3.63
tram_2000	0.000			0.10		0.001		0.15		0.001		0.10	0.000	0.001		0.15
uci_mammo		0.003		0.23		0.002		0.15		0.002		0.12		0.001		0.079
vehicle		0.008		1.74		0.006		1.52		0.060		2.81		0.061		2.51
wdbc yeast	0.000 0.001	0.001 0.002		$0.16 \\ 0.33$		0.001 0.002		$0.18 \\ 0.42$	0.002 0.004	0.062 0.10	0.007 0.007	$\frac{3.85}{3.06}$		0.004 0.072		$1.41 \\ 5.04$
June	0.001	0.002	0.001	0.00	0.001	0.002	0.001	0.44	0.004	0.10	0.007	5.00	0.000	0.012	0.011	0.04

Table 2: Assessing runtimes of the tree traversal algorithm and the propositional horn encoding approach for extracting one AXp. The table reports the results for DTs trained with ITI and IAI learning tools. Columns m, M and avg report, respectively, the minimal, maximal and average runtime (in second) to compute an AXp, while column Tot reports the total runtime (in second) of all tested instances in a dataset.

DT Ref	D	#N	#P	%R	%C	%m	% M	%avg
[1, Ch. 09, Fig. 9.1]	2	5	3	33	25	50	50	50
[2, Ch. 03, Fig. 3.2]	2	5	3	33	25	50	50	50
[5, Ch. 01, Fig. 1.3]	4	9	5	60	25	25	50	36
[7, Figure 1]	3	12	7	14	8	33	33	33
[3, Ch. 08, Fig. 8.2]	3	7	4	25	12	50	50	50
[6, Ch. 01, Fig. 1.1]	3	7	4	50	25	33	33	33
[8, Ch. 01, Fig. 1.2a]	2	5	3	33	25	33	33	33
[8, Ch. 01, Fig. 1.2b]	2	5	3	33	25	33	33	33
[11, Ch. 04, Fig. 4.14]	3	7	4	25	12	50	50	50
[11, Sec. 4.7, Ex. 4]	2	5	3	33	25	50	50	50
[16, Ch. 01, Fig. 1.3]	3	12	7	28	17	33	50	41
[17, Ch. 01, Fig. 1.5]	3	9	5	20	12	33	33	33
[17, Ch. 01, Fig. 1.4]	3	7	4	50	25	33	33	33
[24, Ch. 01, Fig. 1.2]	3	7	4	25	12	50	50	50
[21, Figure 4]	6	39	20	65	63	20	40	33
[9, Ch. 02, Fig. 2.1(right)]	2	5	3	33	25	50	50	50
[12, Figure 1]	3	10	6	33	11	33	33	33
[14, Figure 1]	3	9	5	80	75	33	50	41
[15, Ch. 07, Fig. 7.4]	3	7	4	50	25	33	33	33
[19, Ch. 18, Fig. 18.6]	4	12	8	25	6	25	33	29
[20, Ch. 18, Page 212]	2	5	3	33	25	50	50	50
[26, Ch. 01, Fig. 1.3]	2	5	3	33	25	33	33	33
[4, Figure 1b]	4	13	7	71	50	33	50	36
[25, Ch. 04, Fig. 4.3]	4	14	9	11	2	25	25	25

Table 3: Results on path explanation redundancy for example DTs found in the literature. Columns **D**, #**N**, #**P** and %**A** denote, resp. depth, number of nodes, number of paths and accuracy of the DT. Columns %**R** reports the percentage of explanation-redundant paths (XRP's) and %**C** shows the percentage of data instances covered by XRP's. Finally, columns %avg (%m and %M report, resp., the average, min. and max. percentage of explanation-redundant features (XRF's) per path.

Dataset	Tool	D	#N	% A	#P	%R	%C	%m	$\%\mathbf{M}$	%avg
monk1	BinOCT	3	13	91	7	28	11	66	66	66
	OSDT	5	13	100	7	57	41	33	33	33
tic-tac-toe	BinOCT	4	15	77	8	75	75	33	33	33
	OSDT	5	15	83	8	75	37	25	60	43
compas	OSDT	4	9	67	5	60	37	33	33	33
monk2	CART	6	31	69	16	62	22	20	66	33
	GOSDT	6	17	73	9	55	48	16	40	31

Table 4: Additional results on path explanation redundancy in (optimal) DTs, trained with different training tools: BinOCT [23], CART [6], OSDT [10] and GOSDT [13], that have been presented in [10, 18]. The results for CART are solely included for completeness. Columns **D**, #**N**, #**P** and %**A** denote, resp. depth, number of nodes, number of paths and accuracy of the DT. Columns %**R** reports the percentage of explanation-redundant paths (XRP's) and %**C** shows the percentage of data instances covered by XRP's. Finally, columns %avg (%m and %M report, resp., the average, min. and max. percentage of explanation-redundant features (XRF's) per path.

Dataset		DT		Path		A	Хp	
Baraser	D	#N	% A	$\overline{\mathbf{L}}$	m	\mathbf{M}	avg	n
				16	8	8	8	2
adult	17	509	73	14	5	6	5.5	2
				16	5	5	5	1
				14	4	5	4.6	6
allhyper	14	49	96	9	4	5	4.5	8
				14	4	5	4.6	6
				40	5	6	5.6	3
ann-thyroid	48	222	93	36	5	6	5.6	3
				20	5	6	5.5	2
				10	2	4	3.8	39
coil2000	12	177	91	10	2	4	3.8	39
				10	2	4	3.8	30
				29	11	11	11	2
fars	60	9969	76	42	10	14	12.3	9
				48	9	9	9	1
				23	11	12	11.5	16
kddcup	29	269	99	23	11	12	11.5	16
				27	12	13	12.5	8

Table 5: Examples of 6 real-world datasets highlighting computed path AXp's (APXp's) in DTs learned with ITI, that require deep trees. For each dataset, the table displays 3 tested paths. Columns \mathbf{D} , $\#\mathbf{N}$ and $\%\mathbf{A}$ denote, resp. depth, number of nodes and accuracy of the DT. Next, column \mathbf{L} reports the path's length. Then, the average (min. or max., resp.) length of the computed APXp's, is denoted by \mathbf{avg} (\mathbf{m} and \mathbf{M} , resp.). Finally, the total number of APXp's is shown in column \mathbf{n} .