CALORIMETRIA E TERMODINAMICA

La termodinamica studia gli scambi di energia meccanica e termica.

CALORE

Il **calore** è una forma energia che viene scambiata fra corpi a temperature diverse. La quantità di calore si indica con il simbolo Q e ha come unità di misura la caloria.

Una caloria è l'energia necessaria per innalzare di un grado la temperatura di un grammo di acqua.

Il calore non è una caratteristica propria dei corpi.

PRINCIPIODI EQUIVALENZA TRA CALORE E LAVORO

Tramite l'esperienza di joule si è visto che il rapporto tra il lavoro e la quantità di energia è costante e vale 4.186 Joule/cal. Questo valore è l'equivalente meccanico della caloria.

$$\frac{L}{Q}$$
 = costante = 4,186 $\frac{\text{joule}}{\text{cal}}$

Da quanto si è appena affermato si può dire che 1 cal = 4.186 joule.

Proprio per quanto espresso in precedenza si definisce il calore come forma di energia e di conseguenza possiede nel SI l'unità di misura della cal. Solo nel calcolo del valore energetico si utilizza la caloria.

PROPAGAZIONE DEL CALORE

Il calore si propaga da un corpo a un altro in tre modi:

- 1. Conduzione: è una forma di propagazione del calore dei corpi solidi. Non è accompagnata da spostamento di materia. Se si mettono a contatto due corpi con temperature diverse, si ha un passaggio di calore per conduzione tra calore. La velocità del passaggio di calore è direttamente proporzionale alla differenza di temperatura e all'area delle superfici.
- 2. Convenzione: è una forma di propagazione del calore caratteristico dei fluidi. È accompagnato da spostamento di materia.
- 3. Irraggiamento: propagazione del calore mediante onde elettromagnetiche.

CALORE SPECIFICO E CAPACITA' TERMICA

La **capacità termica di un corpo** è la quantità di calore che esso deve assorbire affinché la sua temperatura aumenti di un grado.

$$C = \frac{\Delta Q}{\Delta T}$$
 (si misura in $\frac{J}{K}$)

Il **calore specifico di una sostanza** è la quantità di calore necessaria per elevare di un 1° la temperatura dell'unità di massa di quella sostanza.

$$c = \frac{\Delta Q}{m \cdot \Delta T}$$
 (si misura in $\frac{J}{\text{kg} \cdot \text{K}}$)

Valgono inoltre le seguenti relazione:

$$C = c \cdot m$$
 $\Delta Q = c \cdot m \cdot \Delta T$ $\Delta Q = C \cdot \Delta T$

Nei gas si parla, a seconda della trasformazione, di: calore specifico a volume costante (C_v) e a pressione costante (C_o).

Nei liquidi e nei solidi si ha che $C_p = C_v = C$ mentre nei gas perfetti vale la relazione di Mayer: $C_p - C_v = R$.

Variazioni del calore specifico con la temperatura

Il calore specifico varia per ogni sostanza e dipende anche dalla temperatura anche se per alcuni intervalli può essere definito costante. Varia inoltre a seconda dello stato di aggregazione.

EQUILIBRIO TERMICO

Se due corpi con massa m_1 e m_2 , calore specifico c_1 e c_2 e temperature T_1 e T_2 . Se queste vengono poste a contatto, si ha un passaggio dalla più caldo alla più fredda fino a raggiungere la temperatura di equilibrio T_e . La quantità di calore ceduta è:

$$\Delta Q = m_1 \cdot c_1 \cdot (T_1 - T_e)$$

Il più freddo assorbe la quantità di calore:

$$\Delta Q = m_2 \cdot c_2 \cdot (T_e - T_2)$$

Se due oggetti con temperature diverse la temperatura di equilibrio avrà valore:

$$T_e = \frac{T_1 \cdot m_1 \cdot c_1 + T_2 \cdot m_2 \cdot c_2}{m_1 \cdot c_1 + m_2 \cdot c_2}$$

Nel caso i due oggetti abbiano la stessa natura ($c_1 = c_2$) la formulo può essere semplificata in:

$$T_e = \frac{T_1 \cdot m_1 + T_2 \cdot m_2}{m_1 + m_2}$$

SISTEMA TERMODINAMICO E FUNZIONI DI STATO

Un sistema termodinamico è costituito da una quantità fissata di un fluido omogeneo. Lo **stato termodinamico** del sistema è uno stato di equilibrio determinato dai valori di pressione, volume e temperatura, dette anche funzioni di stato.

Un sistema termodinamico può essere:

- Isolato: non scambia materia ed energia con l'ambiente
- Chiuso: scambia energia ma non materia con l'ambiente
- Aperto: scambia energia e materia con l'ambiente

Se in un sistema non avviene nessun cambiamento esso si dice in equilibrio termodinamico.

TRASFORMAZIONI TERMODINAMICHE

Un sistema termodinamico subisce una **trasformazione termodinamica** quando scambia calore e lavoro con l'ambiente esterno. Tuttavia è necessario fissare dei segni:

- Calore: positivo se il calore viene acquisito dal sistema, negativo se questo viene ceduto all'ambiente
- Lavoro: negativo se viene acquisito dal sistema, positivo se viene ceduto all'ambiente.

RAPPRESENTAZIONE NEL PIANO PV

Le distribuzione disegnate nel sistema di assi cartesiani ha come variabili pressione e volume: si tratta del piano PV o di Clapeyron.

Le trasformazioni possono essere:

- **Isoterme:** avvengono a temperatura costante. In questo caso P*V = costante. Nel piano vengono rappresentate da iperboli equilatere
- **Isobare:** avvengono a pressione costante. Sono rappresentate da rette orizzontali
- Isocore: avvengono a volume costante. Sono rappresentate da rette verticali
- **Adiabatiche:** avvengono senza scambio di calore con l'esterno. Sono iperboli simili alle isoterme ma più ripide.

PRIMO PRINCIPIO DELLA TERMODINAMICA

Il primo principio della termodinamica afferma che l'energia, in natura, non si crea e non si distrugge ma può solo trasformarsi da una forma all'altra. Questo estende il principio di conservazione dell'energia meccanica anche all'energia termica.

L'energia interna è la somma dell'energia cinetica e potenziale delle singole molecole.

Il primo principio della termodinamica si esprime tramite la relazione: $\Delta U = Q - L$

dove:

- U è l'energia interna del sistema; è una funzione di stato
- Q è il calore che il sistema assorbe dall'ambiente; non è una funzione di stato
- Lè il lavoro che il sistema cede all'ambiente; non è una funzione di stato

Nei gas perfetti l'energia interna dipende esclusivamente dal gas.

Il lavoro compiuto da un gas per una trasformazione a pressione costante è uguale al prodotto tra la pressione e la variazione di volume: $L = P \cdot \Delta V$

A seconda della trasformazione la relazione $\Delta U = Q - L$ può assumere forme diverse:

- Isoterma: Lo stato energetico è determinato unicamente dalla temperatura. Se la temperatura è costante lo è anche l'energia interna e si ha: $\Delta U = 0 \implies Q = L$
- Adiabatica: $Q = 0 \Rightarrow \Delta U + L = 0$
- Isocora: $\Delta V = 0$; $L = P \cdot \Delta V = 0 \implies \Delta U = Q$
- Adiabatica (Q = 0) e senza lavoro (L = 0): $Q = L = 0 \implies \Delta U = 0$

RENDIMENTO DI UNA MACCHINA TERMICA

Una macchina termica è un dispositivo in grado di trasformare l'energia termica in meccanica o viceversa. La trasformazione della macchina deve essere ciclica. Il ciclo avviene tra due sorgenti di calore alla temperatura T_f e T_c : Indicando con Q_f e Q_c il calore ceduto dal sistema alla sorgente fredda e del calore ceduto dalla sorgente calda al sistema è possibile definire il **rendimento** η come il rapporto fra il lavoro della macchina e il calore Q assorbito.

$$\eta = \frac{L}{Q} = \frac{Q_c - Q_f}{Q_c} = 1 - \frac{Q_f}{Q_c}$$

Poiché Q_f < Q_c il lavoro è sempre positivi e il rendimento è sempre positivo e minore o uguale a uno.

Il massimo valore di rendimento si ottiene quanto tutto il calore assorbito viene trasformato in lavoro, tuttavia questo non è possibile

CICLO DI CARNOT

Il massimo rendimento raggiungibile da una macchina termica è quello che si ottiene **dal ciclo di Carnot**. È costituito da due trasformazione isoterme e due adiabatiche. Il lavoro prodotto è quello racchiuso dall'area della figura chiusa. Si ha inoltre:

$$\frac{T_f}{T_c} = \frac{Q_f}{Q_c} \quad \Rightarrow \quad \eta = 1 - \frac{Q_f}{Q_c} = 1 - \frac{T_f}{T_c}$$

Con la temperatura espressa in kelvin.

Il rendimento di una macchina che segue il ciclo di Carnot dipende dalle temperature dei due termostati.

Poiché la temperatura è sempre diverso da 0. Il rendimento è sempre minore di 1.

TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI

Una trasformazione si dice reversibile quando:

- Le cause che provocano la trasformazione sono entità piccole.
- La trasformazione può essere vista come una successione di stati di equilibrio.
- La trasformazione può avvenire in entrambi i versi.

Se in una trasformazione sono presenti attrici, la trasformazione è non reversibile o irreversibile.

ENTROPIA E MOTO PERPETUO

L'entropia, indicato con il simbolo S, è una funzione di stato che ammette due definizioni.

Entropia termica

La variazione di entropia di un sistema subisce una trasformazione isoterma reversibile dallo stato A allo stato B è uguale al rapporto fra il calore scambiato con l'esterno e la temperatura. A seconda che la trasformazione sia reversibile o irreversibili si ha:

$$\Delta S = S_B - S_A = \frac{\Delta Q_{rev}}{T}$$
 oppure $\Delta S = S_B - S_A > \frac{\Delta Q_{irr}}{T}$

L'evoluzione di un sistema isolato è spontanea quando avviene con un aumento di entropia

Entropia configurazionale

L'entropia S di un sistema è una misura del disordine: $S = k \cdot \ln W$

Dove W è la probabilità associata alla configurazione termodinamica.

Se il disordine aumenta, aumenta W.

SECONDO PRINCIPIO DELLA TERMODINAMICA

Il primo principio della termodinamica consiste nella legge di conservazione dell'energia totale: per compiere lavoro una macchina deve prendere calore dall'ambiente. Viene così negato la possibilità di un moto perpetuo di prima specie cioè senza assorbire colore.

Il primo non è in disaccordo con il fatto che una macchina termica può sfruttare in maniera ciclica con il calore. Si tratta del moto perpetuo di seconda specie. Tuttavia è necessario aver più sorgenti di calore a temperatura diversa. Questo è affermato con la teoria dell'entropia e il secondo principio della termodinamica.

Il secondo principio può essere enunciato in tre modi:

Enunciato secondo Kelvin: È impossibile far compiere a una macchina una trasformazione il cui unico risultato sia quello di trasformare integralmente in lavoro il calore assorbito da una sola sorgente. Dunque $\eta < 1$

Enunciato secondo Clausius: Il calore passa spontaneamente dai corpi caldi a quelli freddi e non viceversa.

Terzo enunciato: In un sistema ogni trasformazione spontanea comporta un aumento dell'entropia.