EEE205 – Digital Electronics (II) Lecture 11

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Design of Synchronous Counters

1

General Model of Sequential Circuits

- A sequential circuit consists of a combinational logic section and a memory section (flip-flops).
- To design a sequential circuit (**state machine**) is to decide the combinational logic.

Design of Synchronous Counters

Step 1: State Diagram

• A **state diagram** shows the progression of states when the counter is clocked.

Example: a 3-bit **Gray code counter**,
which exhibits only a
single bit change from
one code number to
the next.

2

4

Step 2: Next-State Table

• A **next-state table** lists the present state along with the corresponding next state of the counter.

Present State			Next State			
Q_2	Q_1	Q_o	Q_2	Q_1	Qo	
0	0	0	0	0	1	
0	0	1	0	1	1	
0	1	1	0	1	0	
0	1	0	1	1	0	
1	1	0	1	1	1	
1	1	1	1	0	1	
1	0	1	1	. 0	0	
1	0	0	0	0	0	

Design of Synchronous Counters

Step 3: Flip-Flop Transition Table

• A transition table lists all possible output transitions and the corresponding inputs.

JK flip flop state dlagram.

Output T	Cransitions	Flip-Flop Inpu		
Q_N	Q_{N+1}	\boldsymbol{J}	K	
0 —	→ 0	0	X	
0	\rightarrow 1	1	\mathbf{X}^{-1}	
1	\rightarrow 0	X	1	
1 -	→ 1	X	0	

(

Design of Synchronous Counters

More flip-flop transition tables (q* for next states)

JK flip flop state dlagram.

JK flip flop design table.

q	q*		J	K
0	0		0	Х
0	1		1	X
1	0	ĺ	X	1
1	1		Χ	0

D flip flop design table.

- 10-1		-
	1	
	D	1)1
	0	

D flip flop state diagram

q	<i>q</i> **	D
0	0	0
0 0	1	1
1	0	0
1	1	1

Design of Synchronous Counters

More flip-flop transition tables (q* for next states)

SR flip flop state diagram

SR flip flop design table

q	q*	s	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Ιx	0

T flip flop state diagram

T flip flop design table

q	q*	T_
0	0	0
0	1	1
1	0	1
1	1	Ιo

5

Design of Synchronous Counters

Design of Synchronous Counters

Step 5: Logic Expressions for Flip-Flop Inputs

$$J_0 = Q_2Q_1 + \overline{Q}_2\overline{Q}_1 = \overline{Q_2 \oplus Q_1}$$

$$K_0 = Q_2\overline{Q}_1 + \overline{Q}_2Q_1 = Q_2 \oplus Q_1$$

$$J_1 = \overline{Q}_2Q_0$$

$$K_1 = Q_2Q_0$$

$$J_2 = Q_1\overline{Q}_0$$

$$K_2 = \overline{Q}_1\overline{Q}_0$$

Design of Synchronous Counters

Step 6: Counter Implementation
$$J_0 = Q_2Q_1 + \overline{Q}_2\overline{Q}_1 = \overline{Q_2 \oplus Q_1} \\ K_0 = Q_2\overline{Q}_1 + \overline{Q}_2Q_1 = Q_2 \oplus Q_1 \\ J_1 = \overline{Q}_2Q_0 \\ K_1 = Q_2Q_0 \\ J_2 = Q_1\overline{Q}_0 \\ K_2 = \overline{Q}_1\overline{Q}_0 \\ K_2 = \overline{Q}_1\overline{Q}_0$$

Example: Design a counter with **missing states**, as shown in the state diagram. Use J-K flip-flops.

State Diagram

Next-State Table

Pro Q2	esent St Q1	ate Qo	Q ₂	lext Stat Q1	e <i>Q</i> ₀
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1

The next state for an invalid state (0, 3, 4 or 6) is "don't care". The J and K inputs are also "don't cares"

Design of Synchronous Counters

14

Design of Synchronous Counters

$$J_0 = 1, K_0 = \overline{Q}_2$$

 $J_1 = K_1 = 1$
 $J_2 = K_2 = Q_1$

Design of Synchronous Counters

Example: Design a 3-bit up/down counter. Use J-K flip-flops.

x	С	B	A	C*	B^{it}	<i>A</i> *
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	1
0	0	1	I	1	0	0
0	1	0	0	1	0	1
0	1	0	1	1	1	0
0	1	1	0	1	1	1
0	1	1	1	0	0	0
1	0	0	0	1	1	1
1	0	0	1	0	0	0
1	0	1	0	0	0	- 1
1	0	1	1	0	1	0
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	i	0	1	0	i
1	1	1	1	1	1	0

x is up/down control, 0 for up and 1 for down.

$$J_C = K_C = x'BA + xB'A'$$

Design of Synchronous Counters

Design of Synchronous Counters

$$J_{\scriptscriptstyle A}=K_{\scriptscriptstyle A}=1$$

Design of Synchronous Counters

3-bit up/down counter

$$J_C = K_C = x'BA + xB'A'$$

$$J_B = K_B = x'A + xA'$$

$$J_A = K_A = 1$$