Machine Learning

Assignment 1

Prepared By

Amanul Rahiman Attar 1002071319

1. Linear Regression:

In this assignment, I have implemented Linear Regression from scratch in Python without using pre-existing packages.

Here are the graphs for models plotting no of steps vs mean square loss.

Model 1.1: Comparing Sepal Length, Sepal Width and calculating error without regularization

Mean Squared Error: 0.8356492906388883

Model 1.2: Comparing Sepal Length, Sepal Width and calculating error with regularization 0.2

Mean Squared Error: 0.8656393099995793

Model 1.3: Comparing Petal Length, Petal Width and calculating error without regularization

Mean Squared Error: 0.3107241703275187

Model 1.4: Comparing Petal Length, Petal Width and calculating error with regularization 0.2

Mean Squared Error: 0.31756194455440784

Model 1.5: Comparing Sepal Length and Sepal Width , Petal Width and calculating error without regularization

Mean Squared Error: 0.21296932327993845

Model 1.6: Comparing Sepal Length and Sepal Width , Petal Width and calculating error with regularization 0.2

Mean Squared Error: 0.22222719143124248

Model 1.7: Comparing Petal Length and Petal Width, Sepal Length and calculating error without regularization

Mean Squared Error: 5.3221129224726935

Model 1.8: Comparing Petal Length and Petal Width, Sepal Length and calculating error with regularization 0.2

Mean Squared Error: 5.291541908915519

Summarize results in table:

Model	Without Regularization	With Regularization 0.2	
Sepal Length, Sepal Width	0.8356492906388883	0.8656393099995793	
Petal Length, Petal Width	0.3107241703275187	0.31756194455440784	
Sepal Length, Sepal Width	0.21296932327993845	0.22222719143124248	
and Petal Width			
Petal Length, Petal Width	5.3221129224726935	5.291541908915519	
and Sepal Length			

2. Logistic Regression and Linear Discriminant Analysis:

In this assignment, I have implemented Logistic Regression and Linear Discriminant Analysis from scratch in Python without using pre-existing packages.

Visualization for above:

Model 2.1: Visualization Petal Length, Petal Width for Logistic Regression with Learning Rate 0.3

Model 2.2: Visualization Sepal Length, Sepal Width for Logistic Regression with Learning Rate 0.3

Accuracy for sepal data: 0.8

Model 2.3: Visualization Petal Length, Petal Width for Logistic Regression with Learning Rate 0.7

Accuracy for petal data: 0.8666666666666667

Model 2.4: Visualization Sepal Length, Sepal Width for Logistic Regression with Learning Rate 0.7

Model 2.6: Visualization Sepal Length, Sepal Width for Linear Discriminant Regression

Accuracy for sepal data: 0.8

Summarize results in table:

	Sepal Length/width	Petal Length/width	All
Logistic Regression,	0.8	0.93333	0.86667
Lr= 0.3			
Logistic Regression,	0.66666	0.86667	0.86667
Lr = 0.7			
LDA	0.8	0.93333	1.0