Übungsblatt 4 – Cerberus

Aufgabe 2

a)

Es soll das elektrostatsische Potential auf der x-Achse gemäß

$$\Phi(x) = \frac{1}{4\pi\varepsilon_0} \int \int \int \frac{\rho(x', y', z')}{((x - x')^2 + y'^2 + z'^2)^{1/2}} dx' dy' dz'$$
(1)

mit einer homogenen Ladungsverteilung

$$\rho(x, y, z) = \begin{cases} \rho_0 & |x|, |y|, |z| < a \\ 0 & \text{sonst} \end{cases}$$

berechnet werden.

Das gegebene Integral wird dafür zunächst einheitenlos gemacht. Dafür werden folgende Ersetzungen vorgenommen:

$$\tilde{x} = \frac{x}{a}$$

$$\tilde{\Phi} = \frac{4\pi\varepsilon_0}{\rho_0 a^2} \Phi.$$

Zusätzlich wird a = 1 gesetzt. Damit ergibt sich

$$\tilde{\Phi}(x) = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \frac{1}{((x-x')^2 + y'^2 + z'^2)^{1/2}} \mathrm{d}x' \mathrm{d}y' \mathrm{d}z'.$$

Das Potential außerhalb des Würfels kann mithilfe einer Multipolentwicklung zur ersten nicht verschwindenden Ordnung, also dem Monopol-Moment, genähert werden

$$\tilde{\Phi}(x) \propto \frac{1}{\rho_0|x|} \int \int \int \rho(x', y', z') dx' dy' dz' = \frac{1}{|x|}.$$

In Abbildung 1b sind $\tilde{\Phi}(x)$ sowie die Näherung aufgetragen. Daran ist zu sehen, dass die Näherung den Trend der Werte sehr gut abbildet. In Abbildung 1a ist das Potential innerhalb des Würfels aufgetragen.

b)

Nun soll das elektrostatsische Potential (1) mit der Ladungsverteilung

$$\rho(x, y, z) = \begin{cases} \rho_0 \frac{x}{a} & |x|, |y|, |z| < a \\ 0 & \text{sonst} \end{cases}$$

- (a) Potential innerhalb des Würfels.
- (b) Potential außerhalb des Würfels.

Abbildung 1: Berechnung von $\tilde{\Phi}(x)$.

bestimmt werden. Dax und a die gleiche Einheit besitzen, können dieselben Ersetzungen wie in a) verwendet werden, um das Integral einheitenlos zu machen. Auch hier wird a=1 gesetzt. Damit ergibt sich

$$\tilde{\Phi}(x) = \int_{-1}^1 \int_{-1}^1 \int_{-1}^1 \frac{x}{((x-x')^2 + y'^2 + z'^2)^{1/2}} \mathrm{d}x' \mathrm{d}y' \mathrm{d}z'.$$

Die erste nicht verschwindende Ordnung der Multipolentwicklung stellt dieses Mal das Dipol-Moment dar. Das Potential außerhalb des Würfels kann damit als

$$\tilde{\Phi}(x) \propto \frac{\vec{e}_{\rm r}}{\rho_0 x^2} \int \int \int \vec{r}' \rho(x', y', z') \mathrm{d}x' \mathrm{d}y' \mathrm{d}z' = \frac{1}{x^2}$$

genähert werden. In Abbildung 2b sind $\tilde{\Phi}(x)$ und die Näherung aufgetragen. Dieses Mal beschreibt die Näherung die tatsächlichen Werte nur sehr schlecht.

- (a) Potential innerhalb des Würfels.
- (b) Potential außerhalb des Würfels.

Abbildung 2: Berechnung von $\tilde{\Phi}(x)$.