

Principles of Digital Signal Processing

Dr. B. Niranjana Krupa

Department of Electronics and Communication.

DSP

Discrete Fourier Transform

Dr. B. Niranjana Krupa

Department of Electronics and Communication.

DFT and IDFT expressed as

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn} \qquad k = 0, 1, \dots, N-1$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn} \qquad n = 0, 1, \dots, N-1$$

Where,
$$W_N = e^{-j2\pi/N}$$

The Nth root of unity

DFT

Lineas toansformation equations

DFT $\Rightarrow \chi(n)$ $\chi_N = W_N \chi_N$ $\chi_N = \chi_N \chi_N$ $\chi_N = \chi_N \chi_N \chi_N$

XN -> Vector -DFT coefficients

XN -> i/p vector

Wh -> NXN +randomation

Nation.

DFT

$$X(n) = [0,1,2,3] - D - DFT$$

$$X_{H} = D_{H} X_{H} X_{H}$$

$$= [2,1,2,3] - D_{H} - DFT$$

$$= [2,1,2,3] - D_{H} - DTT$$

DFT

DFT

(d) find the # of Complex Hulliplications and Complex Additions for N=8. $X(K) = \sum_{k=0}^{N-1} x(n) h_N^{kn} x = 0 \cdots N-1.$ $\chi(n) = \frac{1}{N} \sum_{N=0}^{N-1} \chi(k) h_N^{-1} n = 0 - - \cdot N - 1$ Complex Hultiplications $-N^2 = 8^2 = 64$ Complex Additions $-N(N-1) = 8\times7 = 56$

THANK YOU

Dr. B. Niranjana Krupa

Department of Electronics and Communication

bnkrupa@pes.edu

+91 80 6666 3333 Ext 777