Puzle para niños

Probablemente conozcan este tipo de puzle:

Dada una instancia, ¿cuáles son los pasos que llevan a la solución?

Formalmente: El "puzle de 15"

Este puzle consta de 15 piezas con números en una grilla de 4×4

La idea es deslizar las piezas hasta dejar los números en orden

Las cuatro operaciones posibles

1. Deslizar hacia arriba

Las cuatro operaciones ...

2. Deslizar hacia la derecha

Las cuatro ...

3. Deslizar hacia abajo

Las ...

4. Deslizar hacia la izquierda

Entonces ... ¿cómo lo resolvemos?

Planteamiento del problema como un problema de búsqueda en un grafo

Podríamos hacer lo siguiente:

- 1. Construir un grafo que represente el problema
- 2. Utilizar DFS para buscar el camino a la solución

¿Cómo hacemos esto?

Primero, el paso 1

Podríamos hacer lo siguiente:

- 1. Construir un grafo que represente el problema
- 2. Utilizar DFS para buscar el camino a la solución

¿Cómo hacemos esto?

Grafo de estados y sus transiciones

Un grafo de estados G(V, E) se define de la siguiente manera:

Cada nodo en V es una **configuración** (estado) distinta del problema

Hay una arista (hay una **transición**) de u a v si se puede pasar de u a v en un paso.

En el caso del puzle de 15

¡Cuidado con el uso de memoria!

¿Qué tamaño tiene el grafo de estados del puzle de 15?

¿Hay algún problema con eso?

Diccionarios al rescate

Los problemas de este tipo suelen tener *muchos* estados

Hay que generar el grafo a medida que se exploran los estados

Se necesita un diccionario para no generar estados repetidos

Veamos ahora el paso 2

Podríamos hacer lo siguiente:

- 1. Construir un grafo que represente el problema
- 2. Utilizar DFS para buscar el camino a la solución

¿Cómo hacemos esto?

```
buscar dfs(D, s, g):
     if s \in D, return false
     Insertar s en D
     if s = g, return true
     foreach operation op:
            t \leftarrow op(s)
            t.parent \leftarrow s, t.operation \leftarrow op
            if buscar dfs(D, t, g):
                    return true
     return false
```

El "puzle de 15++"

Dada una configuración del puzle de 15

... ¿cuáles son los pasos necesarios para llegar a la solución

... de modo que la ruta desde la partida a la solución sea la más corta posible?

Ruta más corta

Si la distancia entre dos nodos es el largo de la ruta más corta entre ellos,

... ¿está la solución a distancia 1 del nodo de partida, u origen? ¿y a distancia 2?

¿Cómo podemos responder esa pregunta para una distancia n?

Tenemos depth first search

... y queremos breadth first search

La idea del algoritmo de BFS

Partiendo de i = 1:

- 1. Generar los estados a distancia i del origen
- 2. Si alguno de esos es el destino, estamos listos
- 3. Si no, incrementar i en 1 y volver a 1.

¿Cómo hacemos esto eficientemente?

```
buscar bfs(D, s, g):
      Open ← una cola vacía. D ← un diccionario vacío.
      Insertar s en Open y en D
      while Open \neq \emptyset:
              s \leftarrow el siguiente elemento de Open
              foreach operation op:
                       t \leftarrow op(s)
                       t.parent \leftarrow s, t.operation \leftarrow op
                       if t = g, return true
                       if t \notin D, Insertar t en D y en Open
```

return false

Relación entre DFS y BFS

Si reemplazamos la cola en BFS por un stack, tenemos DFS

Sería una forma de implementar DFS de manera iterativa

La complejidad de ambos algoritmos es la misma

```
bfs(s): —s es el vértice de partida
for each u in V-\{s\}:
   u.color = white; u.\delta = \infty; \pi[u] = null
s.color = gray; s.\delta = 0; \pi[s] = null
q = Queue(); q.enqueue(s)
while !q.empty():
   u = q.dequeue()
   for each v in \alpha[u]:
       if v.color == white:
          v.color = gray; v.\delta = u.\delta+1
          \pi[v] = u; q.enqueue(v)
   u.color = black
```

BFS a partir del vértice s = 1: Vértices a distancia $\delta = 0$ de s

BFS a partir del vértice s = 1: Vértices a distancias $\delta = 0$ y 1 de s

BFS a partir del vértice s = 1: Vértices a distancias $\delta = 0$, 1 y 2 de s

