Simulating Self-driving Cars: Traffic Sign Recognition

Francis Anthony Leung, Matthew McElhaney, Swati Akella
Robot Overlords
April 15, 2020

Team Introduction

Please welcome your new Robot Overlords

Francis Anthony Leung

Venture Capital

Swati Akella:

Managed Services

Matt McElhaney:

Data Science / Innovation O&G

Motivation For Project

- Tremendous efforts by companies to make self-driving cars operational
- Autonomous cars should:
 - Accurately detect and identify a traffic sign
 - Make suitable decision
- We wanted to be a part of this effort!

Dataset

German Traffic Sign Recognition Benchmark

- European traffic signs
- Size: 422 mb
- More than 39,000 images
- 42 classes
- Single image multi-class image classification

△ Mapillary Traffic Sign Dataset

- Traffic signs across the globe
- Size: 47.1 gb
- More than 52,000 images
- 312 classes
- Object detection

Object Detection

Object detection training on Mapillary dataset

- Uploading the dataset to Object Storage took a while
- Not all images had annotations and vice versa
- Annotated objects boundary outside image size
- Self annotated a subset of images
- While training, Tensorflow Object Detection model encountered multiple deprecation issues

Dataset Preprocessing and Augmentation

Variation in Training Data

- Shortlisted 10 classes for training
 - Speed limit signs, stop sign and yield
- Images taken in variety of lighting and weather conditions
 - Images taken at a distance
 - Images taken in poor lighting

- Dataset Augmentation
 - Cropped Images from Mapillary dataset
 - Added translations, rotations
 (clockwise/counterclockwise), noise and blurring
- Training 17,250 images
- Validation 4,310 images

Model Selection

- Approach:
 - Transfer learning with Google's pre-trained models
- Candidates:
 - Inception V3
 - ResNet V2 (101 Layers)
 - Inception-ResNet
- Methods:
 - Keras Feature Extractor
 - Keras Data Generator

Training in the Cloud

Validation Results

Executing on the Edge

End to End Architecture

Executing on the Edge

Creating a Car Class

Test Results

- "Test Route" of 18 images unseen by model
- Video Recording: <u>Inference On Jetson</u>

Takeaways and Future Scope

- 39% accuracy not good enough
- Having enough high quality training data is very important
- Another attempt at object detection

Questions?

