OBETA Script: ETL Implementation

1. Univariate Analysis	1.1 Overview of Each Variable and Define Key Variables with Statistical Description	
2. Staging Phase	2.1 Create Tables in Database (MySQL)	
3. Transformation Phase	 3.1 Import Product Data and Pick Data from MySQL 3.2 Merge the Product and Pick Tables 3.3 Identify Dirty Data: <i>duplicated, missing, inconsistent values and outliers</i> 3.4 Clean the Data 	
4. Production DB	4.1 Create Dimensions Based on ER Model4.2 Load Dimensions Tables Back to Production Database4.3 Connect Production Database with Tableau	
5. KPIs calculation	5.1 Update KPIs	
6.1 Create Dashboards Based on BI and KPIs 6.2 Create Tableau Story for Final Presentation		

1.1 OVERVIEW OF EACH VARIABLE AND DEFINE KEY VARIABLES WITH STATISTICAL DESCRIPTION

Column Name	Variable Type	Key Variable	Statistical Description
product_id	Nominal	$\sqrt{}$	Count: 33493460 Unique Count: 97211
			Top: 109910 Freq: 170062
description	Nominal		
product group	Nominal	\checkmark	Count: 33493460 Unique Count: 15
			Top:. 31_ install. Freq: 8,760,367
product_id	Nominal		
warehouse	Nominal	$\sqrt{}$	Count:33493460 Unique Count:5
section			Top: SHL Freq: 14421610
origin (46:store,	Dichotomous	$\sqrt{}$	Count:33493460 Unique Count:2
48:customer)			Top: "48" Freq: 217458068
order_no	Nominal	$\sqrt{}$	Count: 33493460 Unique Count: 9344863
			Top: 201604055714 Freq: 371
position	Ordinal		
pick volume	Metric		Count: 33493460 Mean: 45.93 Median: 5 Mode: 1
			SD: 127.42 Min: -200 Max: 1160
qty_unit	Nominal		
date	Ordinal	-	

2.1 CREATE TABLES IN DATABASE (MySQL)

Purpose	Query
Create product table in "OBETA" schema	Creation of Product data Table
	CREATE TABLE product_data (productid INT,
	product_name VARCHAR (50) NULL,
	product_group VARCHAR (100) NULL);
Create pick table in "OBETA" schema	Create schemas

CDE ATTE COVED (A.)	
CREATE SCHEMA `staging_data` ;	
CREATE TABLE product_pick (productid VARCHAR (100) NULL,	
warehouse_area VARCHAR (100) NULL,	
order_origin VARCHAR (100) NULL,	
order_number VARCHAR (100) NULL,	
position_in_order VARCHAR (100) NULL,	
volume_of_order INT NULL,	
quantity unit VARCHAR (50) NULL,	
date_of_order DATETIME);	
LOAD DATA local INFILE	
"C:\\ProgramData\\MySQL\\MySQL Server 8.0\\Uploads\\product data.csv"	
INTO TABLE product data	
CHARACTER SET latin1	
FIELDS TERMINATED BY ','	
ENCLOSED BY "	
LINES TERMINATED BY '\n'	
IGNORE 1 ROWS;	
set global local infile=1;	
LOAD DATA local INFILE	
"C:\\ProgramData\\MySQL\\MySQL Server 8.0\\Uploads\\pick data.csv"	
INTO TABLE pick data	
FIELDS TERMINATED BY ','	
ENCLOSED BY ""	
LINES TERMINATED BY '\n';	
set global local infile=1;	

3.1 IMPORT PRODUC DATA AND PICK DATA FROM MySQL

Purpose	Platform/Libraries	Query
Connect Rstudio to MySQL (Database)	Rstudio/DBI, RMySQL, dplyr	# connect to staging data Schema
and Copy Datasets		pro_con<-
		dbConnect(RMySQL::MySQL(),

dbname="staging_data", host='localhost', port=3306, user='root', password='mysql')
dbListTables(pro_con, 'product_data') #call product data from mysql prod_d <- tbl(pro_con, "product_data")
#copy product data to R global env't prod_df <- collect(prod_d)
#call pick data from mysql pick_d <- tbl(pro_con, "pick_data") #copy pick data to R global env't pick_df <- collect(pick_d)

3.2 MERGE THE PRODUCT AND PICK TABLES WITH RSTUDIO

Purpose	Query
Join the Product and Pick datasets	joined_table <- inner_join (pick_df, prod_df, by = "product_id")

3.3 IDENTIFY DIRTY DATA WITH RSTUDIO

Purpose	Query
Find duplicated rows	#Create a DF and flag for duplicated rows
	joined_df_dupli <- joined_df %>%
	group_by_all() %>%

	$mutate(is_duplicate = n() > 1)$
	mutate(1s_dupricate = II() > 1)
	4-1.1-(:-:1.46 41:6:4)
	table(joined_df_dupli\$is_duplicate)
	# filter duplicate rows
	<u> </u>
	only_dupli_rows <- joined_df %>%
	group_by_all() %>%
	filter(n() > 1)
Find missing values	missing_values <- joined_df %>%
	summarise_all(~ sum(is.na(.)))
	#Find missing strings in all columns
	missing strings <- joined df %>%
	summarise_all(~ sum(. == ""))
Find duplicated order IDs (more than one order year)	#Create a order year column
, ,	joined_table\$order_year <- year(joined_table\$date_of_order)
	J
	#filter out order IDs which duplicate themselves in more than
	one order year
	duplicated_orderid <- joined_table %>%
	group by(order number) %>%
	filter(n_distinct(order_year) > 1) %>%
	ungroup()
	table()
Find rows with zero order volumes	#Filter rows with zero order volumes
Find fows with zero order volumes	
	zero_values<- filter(joined-table, volume_of_order == 0)
Find rows with negative order volumes	#Filter rows with negative order volumes
	negative_values<- filter(joined-table, volume_of_order < 0)
	table(zero_values)
Detect outliers	# Create outlier flag function
	outlier.create.flag<-function(x)
	{hist(x)

summary(x)
using here the z values flag<- ifelse(test = scale(x) > 3 scale(x)<-3, yes = 1, no = 0) # number of outlier table(flag)
return the vector representing the flag variable flag}
Create outlier column for joined data and add to the dataframe join_non_zero\$volume.outlier.flag<-outlier.create.flag(join_non_zero\$volume_of_order)
table(join_non_zero\$volume.outlier.flag)
#create only outlier table on R
only outlier table <- filter(joined df, volume.outlier.flag ==1)

3.4 CLEAN THE DATA WITH RSTUDIO

Purpose	Query
Remove duplicated rows	join_df_unique <- joined_df %>% distinct()
Remove rows with zero value	join_non_zero <- join_df_unique %>%
	filter(volume_of_order != "0")
Create unique order ID for duplicated values	#Merge year of order and order ID
	join_non_zero\$orderid_unique<- do.call(paste, c(join_non_zero
	[column_merge], sep=""))
Create a filtered table to exclude outliers	join clean df <- filter(join non zero, volume.outlier.flag ==0)

4.1 CREATE DIMENSIONS BASED ON ER MODEL

Purpose	Platform/Libraries	Query
Create Warehouse	Rstudio/dplyr	#create warehouse name and column
Section Dimension		join_facts <- join_facts %>%
Table		mutate(section_name = case_when(
		grepl("AKL", warehouse_area, ignore.case = TRUE) ~ "Automated Small-
		Parts Warehouse",
		grepl("HRL", warehouse_area, ignore.case = TRUE) ~ "High Bay Storage for
		Pallets",
		grepl("SHL", warehouse_area, ignore.case = TRUE) ~ "Shuttle house",
		grepl("Kabellager", warehouse_area, ignore.case = TRUE) ~ "Cable Storage",
		grepl("Manuell", warehouse_area, ignore.case = TRUE) ~ "Manual
		Warehouse",
		TRUE ~ "Other"))
Create Product	Rstudio	<pre>product_dim <- join_facts[,c("product_id", "description", "product_group",</pre>
Dimension Table		"quantity_unit")]
		#remove duplicated rows
		product_dim <- product_dim %>% distinct()
Create Order	Rstudio	#Create Order dimension table
Dimension Table		
		order_dim <- join_facts[,c("orderid_unique", "order_number", "order_origin",
		"position_in_order", "date_of_order")]
		#remove duplicated rows
		order_dim <- order_dim %>% distinct()
Create Time Dimension	Rstudio/lubridate	#Create Time Dimension
Table		time_dim <- join_facts[,c("date_of_order", "order_year")]
		# Extract day
		time_dim\$day <- day(time_dim\$date_of_order)

		#extract_month time_dim\$month <- month(time_dim\$date_of_order)
Create Facts Table	Rstudio	#Create Facts Table
		facts_table <- join_facts[,c("warehouse_area","orderid_unique", "product_id",
		"date_of_order", "position_in_order",
		"volume_of_order", "pick_efficiency")]

4.2 LOAD DIMENSION TABLES BACK TO PRODUCTION DATABASE

Purpose	Platform/Libra	Query	
	ries		
Connect Rstudio to	Rstudio/DBI,	# connect to production data Schema	
Production Schema on	RMySQL, dplyr	prod_con<- dbConnect(RMySQL::MySQL(),	
MySQL		dbname="production_data", host='localhost',	
		port=3306,	
		user='root',	
		password='mysql')	
Copy Warehouse Section	Rstudio/DBI,	dbWriteTable(prod_con,"warehouse_section_dim",warehouse_section_dim,row.na	
Dimension Table into	RMySQL, dplyr	mes=FALSE)	
MySQL's			
Schema_Production Data			
Copy Product Dimension	Rstudio/DBI,	dbWriteTable(prod_con,"product_dim",product_dim,row.names=FALSE)	
Table into MySQL's	RMySQL, dplyr		
Schema_Production Data			
Copy Order Dimension	Rstudio/DBI,	dbWriteTable(prod_con,"order_dim",order_dim,row.names=FALSE)	
Table into MySQL's	RMySQL, dplyr		
Schema_Production Data			
Copy Time Dimension	Rstudio/DBI,	dbWriteTable(prod_con,"time_dim",time_dim,row.names=FALSE)	
Table into MySQL's	RMySQL, dplyr		
Schema_Production Data			

5.1 UPDATE KPIs

Purpose	Query
Pick Efficiency per Product	facts_table <- facts_table %>%
	arrange(orderid_unique, date_of_order) %>%
	group_by(orderid_unique) %>%
	mutate(effi2 = as.numeric(difftime(date_of_order,
	lag(date_of_order,
	default = first(date_of_order)), units = "mins")))
Pick Efficiency per Order	Create a calculated field for sum of Group Efficiency Sum
	{ FIXED [orderid_unique] : SUM([Pick Efficiency Kpi]) }
	create a calculated field for Average pick efficiency
	WINDOW_AVG([Group Efficiency Sum])