Álgebra Linear - Lista de Exercícios 5

Iara Cristina Mescua Castro

06/09/2021

- 1. Explique porque essas afirmações são falsas
 - (a) A solução completa é qualquer combinação linear de x_p e x_n .

Resolução:

Para ser uma solução completa Ax = b.

$$x = x_p + x_n$$

Seja x solução completa, onde $x = x_p + x_n$

Isto é,

$$A \cdot x_p = b$$

$$A \cdot x_n = 0$$

Com a combinação linear $0 \cdot x_p + \alpha x_n \Rightarrow A(x_n + \alpha \cdot x_p) = A \cdot x_n + \alpha \cdot A \cdot x_p = \alpha \cdot b \neq b$

Logo, $x_n + \alpha \cdot x_p$ não é solução completa.

(b) O sistema Ax = b tem no máximo uma solução particular.

Resolução:

Seja x_p uma solução particular e $x_n \in N(A)$ tal que, $x_n \neq 0$

$$A \cdot x_p = b$$

$$A \cdot x_n = 0$$

Defino $x_{p_2}=x_p+x_n$. Logo, x_{p_2} é outra solução particular:

$$A \cdot x_{p_2} = A(x_p + x_n) = b$$

(c) Se A é inversível, não existe nenhuma solução x_n no núcleo.

Resolução:

Se $A \notin \text{inversivel} \Rightarrow N(A) = \emptyset$

Seja
$$x_n \in N(A)$$
, tal que $A \cdot x_n = 0$

Para A inversível, então:

$$A^{-1} \cdot A \cdot x_n = A^{-1} \cdot 0$$

$$x_n = 0$$

0 pertence ao núcleo.

2. Sejam

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} e c = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Use a eliminação de Gauss-Jordan para reduzir as matrizes $[U\ 0]$ e $[U\ c]$ para $[R\ 0]$ e $[R\ d]$. Resolva Rx=0 e Rx=d

1

Resolução:

Primeira Parte:

$$[U\ 0] = \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 0 & 0 & 4 & | & 0 \end{pmatrix}$$

$$L_2 \leftrightarrow L_2 \div 4$$

$$[U\ 0] = \begin{pmatrix} 1 & 2 & 3 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

$$L_1 \leftrightarrow L_1 - 3 \cdot L_2$$

$$[U \ 0] = \begin{pmatrix} 1 & 2 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} = [R \ 0]$$

$$\begin{cases} x_1 = -2 \cdot x_2 \\ x_2 \in R \\ x_3 = 0 \end{cases}$$

Visto isso x_2 é uma variável livre então uma solução especial pode ser:

$$x = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$

 $R \cdot x = 0$:

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-2) + 2 \cdot 1 + 0 \cdot 0 \\ 0 \cdot (-2) + 0 \cdot 1 + 1 \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Segunda Parte:

$$[U\ c] = \begin{pmatrix} 1 & 2 & 3 & | & 5 \\ 0 & 0 & 4 & | & 8 \end{pmatrix}$$

$$L_2 \leftrightarrow L_2 \div 4$$

$$[U\ c] = \begin{pmatrix} 1 & 2 & 3 & | & 5 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

$$L_1 \leftrightarrow L_1 - 3 \cdot L_2$$

$$[U\ c] = \begin{pmatrix} 1 & 2 & 0 & | & -1 \\ 0 & 0 & 1 & | & 2 \end{pmatrix} = [R\ d]$$

$$\begin{cases} x_1 = -1 - 2 \cdot x_2 = -1 \\ x_2 = 0 \\ x_3 = 2 \end{cases}$$

Então a solução é:

$$x = \begin{bmatrix} -1\\0\\2 \end{bmatrix}$$

 $R \cdot x = d$:

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 1 + 0 \cdot 2 \\ 0 \cdot (-1) + 0 \cdot 0 + 1 \cdot 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

3. Suponha que Ax = b e Cx = b tenham as mesmas soluções (completas) para todo b. Podemos concluir que A = C?

Resolução:

Sim.

Pelo fato das soluções serem completas então $x \neq 0$,

Para verificar que A = C como matrizes, é suficiente verificar que Ay = Cy pois para todos os vetores y do tamanho correto (ou apenas para os vetores de base padrão, uma vez que a multiplicação por eles "escolhe as colunas").

Portanto, seja y qualquer vetor de tamanho correto e definindo b = Ay. Então y é uma solução para $A \cdot x = b$, e assim, também deve ser uma solução para $C \cdot x = b$. Em outras palavras, Cy = b = Ay e A = C.

4. Ache o maior número possível de vetores linearmente independentes dentre os vetores:

$$\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} e \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$$

Resolução:

O maior número possível de vetores linearmente independentes dentre os vetores é 3, pois: Checando v_1 e v_2 :

$$\begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} c_1 + c_2 = 0 \\ -c_1 = 0 \to c_1 = 0 \\ -c_2 = 0 \to c_2 = 0 \end{cases}$$

Já que $c_1 = c_2 = 0$, v_1 e v_2 são LI.

Adicionando v_3 :

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

3

$$\begin{cases} c_1 + c_2 + c_3 = 0 \\ -c_1 = 0 \to c_1 = 0 \\ -c_2 = 0 \to c_2 = 0 \\ -c_3 = 0 \to c_3 = 0 \end{cases}$$

Já que $c_1 = c_2 = c_3 = 0$, v_1 , v_2 e v_3 são LI.

Adicionando v_4 :

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} c_1 + c_2 + c_3 = 0 \to c_1 = -c_2 \\ -c_1 + c_4 = 0 \to c_1 = c_4 \\ -c_2 - c_4 = 0 \to c_2 = -c_4 \\ -c_3 = 0 \to c_3 = 0 \end{cases}$$

Essa solução não é válida **apenas** para $c_1 = c_2 = c_3 = c_4 = 0$ então podemos concluir que v_1 , v_2 , v_3 e v_4 não são LI.

Adicionando v_5 à v_1 , v_2 e v_3 :

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} c_1 + c_2 + c_3 = 0 \to c_1 = -c_3 \\ -c_1 + c_4 = 0 \to c_1 = c_4 \\ -c_2 = 0 \to c_2 = 0 \\ -c_3 - c_4 = 0 \to c_3 = c_4 \end{cases}$$

Essa solução não é válida **apenas** para $c_1 = c_2 = c_3 = c_4 = 0$ então podemos concluir que v_1, v_2, v_3 e v_5 não são LI.

Adicionando v_6 à v_1 , v_2 e v_3 :

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} c_1 + c_2 + c_3 = 0 \to c_2 = -c_3 \\ -c_1 = 0 \to c_1 = 0 \\ -c_2 + c_4 = 0 \to c_2 = c_4 \\ -c_3 - c_4 = 0 \to c_3 = -c_4 \end{cases}$$

Essa solução não é válida **apenas** para $c_1 = c_2 = c_3 = c_4 = 0$ então podemos concluir que v_1, v_2, v_3 e v_6 não são LI.

Sendo assim, o maior número de vetores LI entre eles é 3.

5. Ache uma base para o plano x - 2y + 3z = 0 em \mathbb{R}^3 . Encontre então uma base para a interseção desse plano com o plano xy. Ache ainda uma base para todos os vetores perpendiculares a esse plano.

Resolução:

Vamos chamar:

$$P = \{(x, y, z)/x - 2y + 3z = 0\}$$

$$x = 2y - 3z, \text{ então:}$$

$$P = \{(2y - 3z, y, z)/y, z \in R\}$$

$$P = \{(2y,y,0) + (-3z,0,1)/y, z \in R\}$$

$$P = \{y(2, 1, 0) + z(-3, 0, 1)/y, z \in R\}$$

$$P = span\{(2,1,0), (-3,0,1)\}$$

$$(2,1,0),(-3,0,1)$$

é LI pois:

$$\theta(2,1,0) + \beta(-3,0,1) = 0$$

$$\beta = 0$$

$$\theta = 0$$

$$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

Uma base para a interseção desse plano com o plano xy:

z = 0, então agora:

$$P = \{(x, y)/x - 2y = 0\}$$

Por isso, x = 2y

$$P = \{y(2,1,0)/y \in R\}$$

 $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

Por último, uma base para todos os vetores perpendiculares a esse plano:

Usamos a normal N = (1, -2, 3) como base.

$$\begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$

6. Ache (na sua forma mais simples) a matriz que é o produto das matrizes de posto 1 $\mathbf{u}\mathbf{v}^T$ e $\mathbf{w}\mathbf{z}^T$? Qual seu posto?

Resolução:

Sabendo que $A = \mathbf{u}\mathbf{v}^T$ e $B = \mathbf{w}\mathbf{z}^T$

$$(u \cdot v^T)(w \cdot z^T) = u \cdot z^T \cdot \mathbf{v^T} \cdot \mathbf{w}$$

$$\mathbf{E} \ \mathbf{v}^T \cdot \mathbf{w} \ \text{\'e} \ \mathrm{escalar},$$

Então vemos que a matriz AB tem posto 1 a menos que o produto interno $v^T \cdot w = 0$

7. Suponha que a coluna j de B é uma combinação linear das colunas anteriores de B. Mostre que a coluna j de AB é uma combinação linear das colunas anteriores de AB. Conclua que posto $(AB) \leq \text{posto}(B)$.

Resolução:

Podemos pensar na matriz AB como:

$$AB = \begin{bmatrix} a_1 \cdot B \\ a_2 \cdot B \\ \vdots \\ a_m \cdot B \end{bmatrix} \begin{bmatrix} A \cdot b_1 & A \cdot b_2 & \cdots & A \cdot b_n \end{bmatrix}$$

Onde $a_i = 1, ..., m$ e $a_j = 1, ..., n$ Então, toda coluna de AB é combinação linear das colunas de A e toda linha de AB é combinação linear das linhas de B.

Por isso, a dimensão do espaço feito pela combinação linear de vetores **coluna** de A não pode ser maior do que a dimensão do espaço feito pela combinação linear desses mesmos vetores em AB, logo: $p(AB) \le p(A)$

Paralelamente, a dimensão do espaço feito pela combinação linear de vetores **linha** de B não pode ser maior do que a dimensão do espaço feito pela combinação linear desses mesmos vetores em AB, logo: $p(AB) \le p(B)$

5

8. O item anterior nos dá $posto(B^TA^T) \leq posto(A^T)$. É $possível concluir que <math>posto(AB) \leq posto(A)$?

Resolução:

Sim, se sabemos que $posto(B^T \cdot A^T) \leq posto(A^T)$, sabendo que o posto permanece para as transpostas, temos $posto(AB) \leq posto(A)$.

9. Suponha que A e B são matrizes quadradas e AB = I. Prove que posto(A) = n. Conclua que B precisa ser a inversa (de ambos lados) de A. Então, BA = I.

Resolução:

AB = I, que tem posto n. Então sabendo que $posto(AB) \leq posto(A)$, logo posto(A) = n. A é uma matriz n x n então o posto não pode ser maior que n: $posto(A) \leq n$.

Assim, A é invertível e tem inverso único, e já que AB = I também é válido e o inverso é B. O B inverso à direita também é inverso à esquerda: BA = I e $B = A^{-1}$

10. $(B\hat{o}nus)$ Dado um espaço vetorial real V, definimos o conjunto

$$V^* := \{ f : V \to \mathbb{R} \mid f \text{ \'e linear} \}.$$

Ou seja, V^* é o conjunto de todas as funções lineares entre V e \mathbb{R} . Relembramos que uma função $f: E \to F$, onde E e F são espaços vetoriais, é dita *linear* se para todos $\mathbf{v}, \mathbf{w} \in E$ e $\alpha \in \mathbb{R}$ temos $f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$ e $f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$. Chamamos V^* de espaço dual de V.

(a) Mostre que V^* é um espaço vetorial.

Resolução:

(b) Agora, seja $V=\mathbb{R}^n$. Mostre que existe uma bijeção $\varphi:V^*\to V$ tal que , para toda $f\in V^*$ e para todo $\mathbf{v}\in V$, tenhamos

$$f(\mathbf{v}) = \langle \varphi(f), \mathbf{v} \rangle.$$

Dica: Utilize a dimensão finita de \mathbb{R}^n para expandir \mathbf{v} como uma combinação linear dos vetores da base canônica e aplique a linearidade de f.

Resolução:

Em dimensão infinita, esse resultado é conhecido como Teorema da Representação de Riesz.