Università degli Studi di Milano Facoltà di Scienze e Tecnologie Corso di Laurea in informatica

TECNICHE DI MACHINE LEARNING PER LA CLASSIFICAZIONE DI REPERTI ARCHEOLOGICI

Relatore: Prof.ssa Anna Maria Zanaboni

Correlatore: Prof. Dario Malchiodi

Tesi di:

Pietro Scuttari Matricola: 922822

Anno Accademico 2020-2021

dedicato a ...

Prefazione

hkjafgyruet.

0.1 Organizzazione della tesi

La tesi è organizzata come segue:

- Nel capitolo 1 viene introdotto il progetto indicando lo scopo del lavoro e introducendo i concetti principali
- Nel capitolo 2

Ringraziamenti

asdjhgftry.

Indice

Pre	efazi	one	
	0.1	Organizzazione della tesi	
Rin	ıgra	ziamenti	
.]	Introduzione		
-	1.1	Descrizione	
-	1.2	Cos'è il machine learning	
-	1.3	Cosa sono i problemi di classificazioni	
:]	Prir	ncipali modelli per la classificazione	
	2.1	Network neurali	
6	2.2	K-nearest neighbors	
6	2.3	Macchine a vettori di supporto	
6	2.4	Alberi di decisione	
4	2.5	K-means	
3]	Il p	roblema affrontato	
•	3.1	Descrizione dei dati	
•	3.2	Ambiente software	
•	3.3	Schema delle prove	
		3.3.1 Repeted hold out	
		3.3.2 Convalida incrociata	
		3.3.3 Griglia di ricerca	
[]	Risı	ıltati	
4	4.1	Valutazione combinata	
	Con	dusioni	

Introduzione

1.1 Descrizione

Il progetto consiste nel classificare un database di analisi di composizioni eseguite su dei reperti archeologici. La classificazione è stata eseguita in base all'origine geografica distinguendo i reperti originari di Tarquinia, luogo dove sono stati ritrovati, da quelli di origine diversa. I classificatori sono per lo più supervisionati e allenati su una porzione dei reperti di cui conoscevamo in partenza l'origine.

1.2 Cos'è il machine learning

Machine learning è un nome che include una varietà di algoritmi che, al contrario di algoritmi tradizionali, non specificano passo per passo come risolvere un certo problema ma migliorano gradualmente imparando da dati fino a risolvere correttamente il problema.

Questo approccio ha origini storiche già negli anni cinquanta, già Alan Turing propone un'ipotetica macchina in grado di imparare e diventare intelligente. Negli ultimi anni abbiamo visto realizzare il vero potenziale di questo approccio: con l'aumento esponenziale della potenza dei calcolatori e l'enorme quantità di dati oggi disponibili il machine learning è applicato a sempre più problemi, dai veicoli autonomi, agli algoritmi per la selezione della pubblicità a microscopi in grado di identificare cellule cancerogene.

1.3 Cosa sono i problemi di classificazioni

La classificazione è un sottoinsieme del machine learning, l'obbiettivo è costruire un modello in grado di mappare un oggetto in ingresso con una categoria. I classificatori

si distinguono in due macro categorie quelli a apprendimento supervisionato e quelli a apprendimento non supervisionato: i primi imparano a classificare correttamente a partire da un database di dati etichettati ovvero dove è specificata la categoria corretta, nel secondo caso i dati di addestramento non hanno memorizzato le etichette. Evidentemente il secondo caso è più complesso sia per l'addestramento del modello sia per misurare la sua correttezza. In questo progetto sono stati utilizzati principalmente algoritmi di apprendimento supervisionato.

Principali modelli per la classificazione

- 2.1 Network neurali
- 2.2 K-nearest neighbors
- 2.3 Macchine a vettori di supporto
- 2.4 Alberi di decisione
- 2.5 K-means

Il problema affrontato

- 3.1 Descrizione dei dati
- 3.2 Ambiente software
- 3.3 Schema delle prove
- 3.3.1 Repeted hold out
- 3.3.2 Convalida incrociata
- 3.3.3 Griglia di ricerca

Risultati

4.1 Valutazione combinata

Conclusioni

Bibliografia

- [1] M. Gotti, I linguaggi specialistici, Firenze, La Nuova Italia, 1991.
- [2] D. Kriesel, A brief introduction to neural networks, available at http://www.dkriesel.com, 2007.