

Unidade 1 - Introdução à Análise de Algoritmos Modelo de Knuth

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecidovfreitas@gmail.com

Bibliografia

- Algorithm Design and Applications Michael T. Goodrich, Roberto Tamassia, Wiley, 2015
- Introduction to the Design and Analysis of Algorithms Anany Levitin, Pearson, 2012
- The Algorithm Design Manual Steven S. Skiena, Springer, 2008
- Complexidade de Algoritmos Série Livros Didáticos UFRGS
- Algorithms Design and Analysis Harsh Bhasin Oxford University Press 2015

Em primeiro lugar...

O que é Algoritmo?

O que são Estruturas de Dados?

Algoritmo

- Procedimento passo-a-passo para a execução de alguma tarefa em uma quantidade finita de tempo;
- O Uma estrutura de dados é uma forma organizada de acessar dados;
- o Esses conceitos são <u>fundamentais</u> para a Computação.

Análise de Algoritmos

- Dado um algoritmo, podemos executá-lo em uma dada máquina para um determinado conjunto de dados;
- o Porém, tal conhecimento é restrito e válido apenas para aquela situação;
- Para avaliarmos o comportamento do algoritmo precisamos analisá-lo nos casos gerais (para várias instâncias)...

Análise de Algoritmos

Em geral, o programador ao terminar o teste de um algoritmo em um programa fica feliz pois o programa pode ter executado bem e com bom desempenho!

Mas ...

Será que o comportamento do programa será satisfatório para outras instâncias do problema?

Eficiência de um Algoritmo

- Apesar de haver várias questões importantes para se analizar em um algoritmo, em geral interessa-se mais pelo seu desempenho.
- Isto particularmente se aplica à problemas que tem <u>alta</u> complexidade computacional.

O que se pode analisar?

- Desempenho
- Espaço ocupado de memória
- Comprimento total do código
- Corretismo
- Legibilidade
- Robustez

Como se avalia o desempenho de um algoritmo?

Medição de Algoritmos

Será que a medição direta é viável?

Medição de Algoritmos

- Dependência do compilador;
- Dependência de Hardware;
- Dependência do Sistema Operacional;
- Quantidade de memória disponível;
- Espaço disponível em disco.

Desempenho de Algoritmos

 Em geral, o tempo de execução de um algoritmo <u>aumenta</u> com o tamanho da entrada (<u>instância</u>);

Fonte: Algorithm, Design and Applications, Tamassia, Goodrich, 2015

Experimentar (executar) algoritmos e obter os tempos de execução são úteis, <u>mas pode haver limitações</u>?

Limitações do método experimental

- Experimentos podem ser feitos em um <u>conjunto</u> <u>limitado</u> de entradas e podem não ser <u>representativos</u>;
- É difícil comparar-se algoritmos sem que os <u>ambientes</u> de <u>software</u> e <u>hardware</u> sejam idênticos;
- É necessário implementar e <u>executar</u> um algoritmo para se obter o tempo de execução de forma experimental.

Método Analítico

- Embora o método experimental tem um importante papel em análise de algoritmos, quando tratado de forma isolada não é suficiente;
- É necessário um método analítico que:
 - ✓ Considere <u>todas</u> as entradas possíveis;
 - ✓ Seja <u>independente</u> de ambientes de hardware e software;
 - ✓ Seja obtido <u>sem</u> a execução do algoritmo.

Modelo de Knuth

- Modelo matemático, desenvolvido por <u>Donald Knuth</u>, Stanford University, 1968;
- Baseia-se na contabilização do conjunto de operações executadas pelo algoritmo;
- Associa-se um custo à cada operação executada;
- Em geral, ignora-se o custo de algumas operações e se contabiliza apenas as operações mais significativas;
- As operações mais significativas são denominadas operações básicas;

17

Modelo Detalhado

- O tempo de execução de um algoritmo será calculado pela somatória do tempo necessário para a execução das operações básicas;
- O tempo de processamento das operações básicas é definido por um conjunto de <u>axiomas</u>.

Axioma 1

Os tempos requeridos para recuperar um operando da memória e para armazenar o resultado na memória são constantes: σ_{rec} , σ_{arm} , respectivamente.

Exemplo - Axioma 1

Qual o tempo de processamento da atribuição?

$$y = x$$
;

- Será necessário recuperar-se em memória o conteúdo da variável x. Este tempo é σ_{rec} .
- ullet O tempo requerido para se armazenar o valor na variável y é $oldsymbol{\sigma}_{\sf arm}$.

Resposta: $\sigma_{rec} + \sigma_{arm}$

Outro Exemplo - Axioma 1

Qual o tempo de processamento do comando ?

$$y = 1$$
;

- ✓ A constante 1 (chamada de literal numérico) também precisa ser armazenada na memória (tabela de literais gerada pelo compilador).
- \checkmark Assim, o custo para se recuperar em memória a constante 1 também será $\sigma_{
 m rec}$.
- \checkmark O tempo requerido para se armazenar o valor na variável y é σ_{arm}

Resposta: $\sigma_{rec} + \sigma_{arm}$

Axioma 2

- ✓ Os tempos necessários para se realizar operações aritméticas elementares, tais como: adição, subtração, multiplicação, divisão e comparação são todos constantes.
- ✓ Estes tempos são denotados por: \mathbf{O}_+ , \mathbf{O}_- , \mathbf{O}_\times , $\mathbf{O}_/$, \mathbf{O}_\le , respectivamente.

Exemplo - Axioma 2

Qual o tempo de processamento da atribuição ?

$$y = y + 1;$$

- ✓ Neste caso, temos a necessidade de recuperar dois valores em memória: y e 1.
- \checkmark Assim, o tempo para se recuperar estes valores será dado por: $2\sigma_{\rm rec}$
- ✓ O tempo para se efetuar a soma é σ₊ ■
- ✓ O tempo requerido para se armazenar o resultado na variável y é σ_{arm}.

Resposta: $2\sigma_{rec} + \sigma_{+} + \sigma_{arm}$

Axioma 3

- O tempo necessário para se chamar um método é constante: $\sigma_{chamada}$ e o tempo necessário para se retornar de um método é constante: $\sigma_{retorno}$.
- Quando um método é chamado, algumas operações de bastidores são necessárias: save de endereços de retorno, chaveamento de contexto, etc.
- Estas operações são desfeitas no momento de retorno.

24

Axioma 4

- O tempo necessário para se passar um parâmetro a um método é o mesmo tempo para se armazenar um valor em memória: σ_{arm} .
- Conceitualmente, o esforço computacional necessário para o tratamento da passagem de parâmetros é o mesmo que se atribuir ao parâmetro formal do método o valor do argumento.

Operações com índices de Arrays

- o Em geral, os elementos de um array são armazenados em locais contíguos de memória.
- Assim, dado o endereço do primeiro elemento do array, uma simples operação de adição é suficiente para se determinar o endereço de um elemento arbitrário do array.

Axioma 5

- O tempo requerido para o cálculo do endereço advindo de uma operação de índice de um array, por exemplo, a[i], é constante: σ.;
- Esse tempo não inclui o tempo para calcular a expressão do índice, nem inclui o tempo de acesso (ou seja, o tempo de recuperação ou armazenamento) ao elemento do array;
- Exemplo: y = a[i] = > Tempo: $3\sigma_{rec} + \sigma_{rec} +$
- Serão necessárias três recuperações: a primeira para recuperar a (o endereço base do array), a segunda para recuperar i e a terceira para recuperar o elemento a[i].

Modelo Simplificado de KNUTH

Modelo Simplificado

- O modelo detalhado fornece uma boa previsão do desempenho de execução de um algoritmo;
- No entanto, tal modelo é oneroso e trabalhoso;
- No modelo simplificado, eliminamos a dependência de tempo, considerando-se um tempo constante e igual ao ciclo do processador (T=1);
- Assim, neste modelo contabiliza-se apenas a quantidade de operações efetuadas pelo algoritmo.

 O total de ciclos de processador requeridos para recuperar um operando da memória e para armazenar o resultado na memória são constantes (1 ciclo = 1 operação para recuperar e 1 ciclo = 1 operação para armazenar)

Exemplo: Qual o total de operações para executar a atribuição?

$$y = x$$
; $(\sigma_{rec} + \sigma_{arm})$

Resposta: 1 + 1 = 2 operações

 As operações necessárias para se realizar operações aritméticas elementares, tais como: adição, subtração, multiplicação, divisão e comparação são todas constantes e iguais a 1 ciclo cada (1 operação).

Exemplo: Qual o total de operações para processar a atribuição?

$$y = y + 1$$
; $(2\sigma_{rec} + \sigma_{+} + \sigma_{arm})$

Resposta: 4 operações

Gasta-se 1 ciclo de processador (1 operação) para se chamar um método e 1 ciclo (1 operação) para se providenciar o retorno do método.

Resposta: 2 operações

Modelo Simplificado - Axioma 4

o Gasta-se 1 ciclo de processador (1 operação) para se passar um parâmetro a um método.

Resposta: 1 operação

- o $y = a[i] = Tempo: 3\sigma_{rec} + \sigma_{.} + \sigma_{arm}$
- Serão necessárias três recuperações: a primeira para recuperar a (o endereço base do array), a segunda para recuperar i e a terceira para recuperar o elemento a[i];
- Teremos, portanto um total de 5 operações básicas.

Função de Complexidade

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade f;
- Função de complexidade de tempo: f(n) mede o tempo necessário para executar um algoritmo em um problema de tamanho n;
- Função de complexidade de espaço: f(n) mede a memória necessária para executar um algoritmo em um problema de tamanho n;
- A complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação, considerada relevante, é executada.

Exemplo

Usando o modelo simplificado, apresente a equação que define o tempo de processamento do algoritmo que calcula a somatória de uma série aritmética simples:

$$\sum_{i=1}^{n} i$$

Exemplo

O algoritmo pode ser implementado pelo código abaixo:

```
package maua;
import java.util.Scanner;
public class Somatoria {
          public static int Soma (int n) {
              int resultado = 0;
              for (int i = 1; i \le n; ++i)
                resultado += i;
               return resultado;
          public static void main(String[] args) {
                Scanner Input = new Scanner (System.in);
                System.out.print("Entre com o valor de n: ");
                int n = Input.nextInt();
                int resposta = Soma(n) ;
                System.out.println("Soma(" + n + ") = " + Soma(n));
```



```
public static int Soma (int n) {
   int resultado = 0;
   for (int i = 1; i \le n; ++i)
     resultado += i;
    return resultado;
public static void main(String[] args) {
    int resposta = Soma(n) ;
```


- * |
-]
-]
- Σ op Soma(n)
- •
- · Ισ_{arm}

- operação para se recuperar a variável n
- operação para passagem do argumento n à função Soma
- operação para chamada da função Soma
- total de operações do método Soma
- operação de retorno da função Soma
- operação de armazenamento na variável resposta

5 +
$$\Sigma$$
 op $Soma(n)$


```
public static int Soma (int n) {

int resultado = 0;
for (int i = 1; i <= n; ++i)
    resultado += i;
    return resultado;
}</pre>
```

2 operações


```
public static int Soma (int n) {
    int resultado = 0;
    for (int i = 1; i <= n; ++i)
        resultado += i;
        return resultado;
    }</pre>
```

Código	Tempo	
int i = 1	2 operações	

- Este tempo corresponde à primeira parte do código for que representa a etapa de inicialização;
- É executado uma única vez antes da primeira iteração do loop.


```
public static int Soma (int n) {
    int resultado = 0;
}

for (int i = 1; i <= n; ++i)
    resultado += i;
    return resultado;
}</pre>
```

Código	Tempo
i <= n	3 x (n+1) operações

- Este tempo corresponde ao teste de término do loop;
- É executado antes do início de cada iteração do loop;
- O número de vezes em que o teste de término do loop é feito é um a mais que o número de vezes em que o corpo do loop é executado.


```
public static int Soma (int n) {
    int resultado = 0;
    for (int i = 1; i <= n; ++i)
        resultado += i;
        return resultado;
    }</pre>
```

Código	Tempo
++i	4 x (n) operações

- Este tempo corresponde ao terceiro elemento do for, o passo de incremento do contador do loop. Equivale a i = i +1;
- o É executado uma vez a cada iteração do loop. Portanto, n vezes.


```
public static int Soma (int n) {
    int resultado = 0;
    for (int i = 1; i <= n; ++i)
    resultado += i;
    return resultado;
}</pre>
```

Código	Tempo	
resultado += i	4 x (n) operações	

- Este tempo corresponde ao corpo do loop;
- É executado n vezes.


```
public static int Soma (int n) {
    int resultado = 0;
    for (int i = 1; i <= n; ++i)
        resultado += i;
    return resultado;
}</pre>
```

Código	Tempo
return resultado;	2 operações

- Este tempo corresponde ao retorno da variável resultado;
- A variável é lida na memória e armazenada na pilha (registro de ativação).

Contagem Total de Operações

Contagem Total de Operações

Função de Complexidade

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade f.
- Função de complexidade de tempo: f(n) mede o tempo necessário para executar um algoritmo em um problema de tamanho n.
- Função de complexidade de espaço: f(n) mede a memória necessária para executar um algoritmo em um problema de tamanho n.
- A complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada.

• Seja V um array de n elementos inteiros, n >= 1.

```
public class Max {
   public static void main(String[] args) {
         int[] V = \{ 2,5,6,4,2,10,2,3,5,8,1,2 \};
         // vetor tem 12 elementos
         int Max=V[0],contador = 0;
         for (int i=1; i< V.length; i++) {
                  if (V[i] > Max) Max = V[i]; contador++;
         System.out.println("Maior Valor do Vetor V = " + Max);
         System.out.println("Contador = " + contador );
   }
```


Trace de Execução

Maior Valor do Array V = 10 Contador = 11

- ✓ O vetor tem **12** elementos e foram executadas **11** comparações
- ✓ Assim, se o array tiver n elementos, serão executadas n-1 comparações . . .

- Seja f um função de complexidade tal que f(n) corresponda ao número de comparações entre os elementos de V, considerando V com n elementos;
- o f(n) = n 1, para n > 0;
- Logo, n − 1 comparações são necessárias.

Função de Complexidade

n	f(n) = n- 1
1	0
2	1
3	2
4	3
10	9
20	19

Tamanho da entrada de dados (Instância)

- A medida do custo de execução de um algoritmo depende principalmente do tamanho da entrada dos dados;
- É comum considerar o tempo de execução de um programa como uma função do tamanho da entrada.

Tamanho da entrada de dados

- No caso do método max do programa do exemplo, o custo é proporcional à entrada de dados submetida ao algoritmo;
- Já para um algoritmo de ordenação isso não ocorre: se os dados de entrada já estiverem quase ordenados, então o algoritmo irá trabalhar menos.

Atividade 1

Considere dois algoritmos **A** e **B** com complexidades respectivamente iguais a 8n² e n³. Qual o maior valor de n, para o qual o algoritmo B é mais eficiente que o algoritmo A?

Função de Complexidade 8n2

n	8n ²
1	8
2	32
3	72
4	128
5	200
6	288
7	392
8	512
9	648
10	800
11	968
12	1152

Função de Complexidade n³

n	n³
1	1
2	8
3	27
4	64
5	125
6	216
7	343
8	512
9	729
10	1000
11	1331
12	1728

Análise Gráfica

Atividade 1

- ✓ Até um determinado valor de instância de entrada, o algoritmo B é melhor.
- ✓ A partir de um certo valor de n, o algoritmo A passa a ser melhor.
- ✓ O ponto de equilíbrio ocorre quando: $n^3 = 8n^2 = n^3 8n^2 = 0 = n^2$ (n 8) = 0
- ✓ Assim, n = 0 ou n-8 = 0. Portanto, o ponto de equilíbrio é n = 8
- ✓ Assim, o algoritmo B é mais eficiente até n = 7.

Atividade - 2

- a) Um algoritmo tem complexidade 2n². Num certo computador, num tempo t, o algoritmo resolve um problema de tamanho 25. Imagine agora que se tenha disponível um computador 100 vezes mais rápido. Qual o tamanho máximo de problema que o mesmo algoritmo resolve no mesmo tempo t no computador mais rápido ?
- b) Considere o mesmo problema para um algoritmo de complexidade 2ⁿ.

Atividade - 2a

Função de Complexidade 2n²

n	2n ²
1	2
2	8
3	18
4	32
5	50
10	200
25	1250

Qtde. de Operações

Instância de Entrada (n)

Atividade - 2a

- ✓ Analisando-se o comportamento da função de complexidade, pode-se afirmar que para n=25, são necessárias 1250 operações;
- ✓ Estas operações são executadas no computador antigo em um determinado tempo t;
- ✓ No computador novo as operações são executadas 100 vezes mais rápidas ;
- ✓ Assim, no computador novo (no mesmo tempo t) pode-se executar 1250*100 =
 125.000 operações.

Atividade - 2a

- Como o algoritmo é o mesmo (tanto no computador novo quando no antigo), a função de complexidade é a mesma ($f(n) = 2n^2$).
- ✓ Assim, no mesmo tempo t, o computador novo executa 125.000 operações, o que representa (certamente) uma instância maior.
- ✓ Teremos então: $f(n) = 2n^2 => 125000 = 2n^2$

$$=> 62500 = n^2$$

- ✓ Resposta: O tamanho máximo de problema que o mesmo algoritmo resolve no tempo t (no computador mais rápido) é 250.
- ✓ Observação: Embora o computador mais novo seja 100 vezes mais rápido, o tamanho do problema aumentou apenas 10 vezes (de 25 para 250).

Atividade - 2b

Função de Complexidade 2ⁿ

n	2 ⁿ
1	2
2	4
3	8
4	16
5	32
10	1024
25	33554432

Qtde. de Operações

Instância de Entrada (n)

Atividade - 2b

- ✓ Analisando-se o comportamento da função de complexidade, podemos afirmar que para n=25, são necessárias 33.554.432 operações.
- ✓ Estas operações são executadas no computador antigo em um determinado tempo t.
- ✓ No computador novo as operações são executadas 100 vezes mais rápidas.
- ✓ Assim, no computador novo (no mesmo tempo t) podem-se executar 33.554.432 *100 = 3.355.443.200 operações.

Atividade - 2b

- Como o algoritmo é o mesmo (tanto no computador novo quando no antigo), a função de complexidade é a mesma ($f(n) = 2^n$).
- ✓ Assim, no mesmo tempo t, o computador novo executa 3.355.443.200 operações, o que representa (certamente) uma instância maior.
- ✓ Teremos então: $f(n) = 2^n => 2^n = 3355443200$

$$\log_2 2^n = \log_2 3355443200$$

$$n = 31$$

- ✓ Resposta: O tamanho máximo de problema que o mesmo algoritmo resolve no tempo t (no computador mais rápido) é 31.
- ✓ Observação: Embora o computador mais novo seja 100 vezes mais rápido, o tamanho do problema aumentou apenas 1,24 vezes (de 25 para 31) .

Atividade - 3

- a) Suponha que uma empresa utiliza um algoritmo de complexidade n² que, em um tempo t, na máquina disponível, resolve um problema de tamanho x. Suponha que o tamanho do problema a ser resolvido aumentou em 20%, mas o tempo de resposta deve ser mantido. Para isso, a empresa pretende trocar a máquina por uma mais rápida. Qual percentual de melhoria no tempo de execução das operações básicas é necessário para atingir sua meta?
- b) Suponha que no problema anterior, ainda se queira reduzir em 50% o tempo de resposta. Qual a melhoria esperada para a nova máquina?

Atividade – 3a

Qtde. de Operações	Tempo de cada Operação	Tempo Total
X ²	t_v	$tt_v = x^2.\ t_v$

	Máquina Nova	
Qtde. de Operações	Tempo de cada Operação	Tempo Total
$(1.2x)^2$	t _n	$tt_n = 1.44x^2. t_n$

Atividade - 3a

- ✓ O problema afirma que o tempo total da máquina nova deve ser igual ao tempo total da máquina velha;
- \checkmark Assim, $tt_n = tt_v$
- ✓ Portanto, como: $tt_v = x^2$. t_v e $tt_n = 1.44.x^2$. t_n
- ✓ Teremos: x^2 . $t_v = 1.44 . x^2 . t_n$
- ✓ Portanto: $t_v = 1.44 \cdot t_n$
- ✓ Assim: $t_v = 1.44 \cdot t_n \implies t_v = 1.t_n + 0.44 t_n \implies t_v = t_n + 44/100 \cdot t_n$

A máquina velha é 44% mais lenta que a nova, ou A máquina nova é 44% mais rápida que a velha

Atividade - 3b

B 4				\ / _	11
M	ad	u	na	ve	ına

Qtde. de Operações Tempo de cada Operação

Tempo Total

 $\mathbf{X}^{\mathbf{2}}$

 t_v

$$tt_v = x^2$$
. t_v

Máquina Nova

Qtde. de Operações

Tempo de cada Operação

Tempo Total

 $(1.2x)^2$

 t_n

 $tt_n = 1.44x^2. t_n$

Atividade - 3b

- ✓ O problema afirma que o tempo total da máquina nova deve ser 50% inferior ao tempo total da máquina velha.
- ✓ Assim, $tt_n = (50\%) tt_v => tt_n = 0.5 tt_v$
- \checkmark Portanto, como: $tt_v = x^2$. t_v e $tt_n = 1,44.x^2$. t_n
- ✓ Teremos: 1,44 . x^2 . $t_n = 0.5$. x^2 . t_v
- ✓ Portanto: 1,44 . $t_n = 0.5$. t_v
- Assim: 2,88 . $t_n = t_v => t_v = t_n + 1,88$. $t_n => t_v = t_n + 188/100$. t_n

A máquina velha é 188% mais lenta que a nova, ou A máquina nova é 188% mais rápida que a velha

Melhor Caso, Pior Caso e Caso Médio

- ✓ Melhor caso: menor tempo de execução sobre todas as entradas de tamanho n.
- ✓ Pior caso: maior tempo de execução sobre todas as entradas de tamanho n.
- ✓ <u>Caso médio</u> (ou caso esperado): média dos tempos de execução de todas as entradas de tamanho n.

