Sarvajanik College of Engineering and Technology

Department of Information Technology

Cryptography and Network Security (3161606)

Practical List

Sr.	Practical Statements
No.	
1	Implement Ceasar and Hill cipher. Both are substitution cipher. Analyze the strength
	of the cipher in terms of brute force attack and cryptanalysis attack. Suggest one way
	to improve and strengthen the cipher and analyze with respect to cryptanalysis
	attack.
	Ceasar cipher -
	Your plaintext is Hello, Welcome. The key used is 3. How Ceaser cipher will work?
	Test case :
	A B C
	DEF
	Hill Cipher -
	$Key K = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{bmatrix}$
	Plaintext = pay
	Ciphertext = RRL
2	Implement rail Fence and transposition cipher. Both are permutation cipher.
	Analyze the strength of the cipher in terms of cryptanalysis.
	Rail fence.
	Test case : Meetme
	Ciphertext : MEMETE
	Transposition
	Key: 4312567
	Plaintext: attackpostponeduntiltwoam
	Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
3	Implement Playfair Cipher. The plaintext is paired in two characters. Discuss the
	advantage of polyalphabetic cipher over monoalphabetic cipher.

	Key = MONARCHY
	Plaintext = ar mu hs ea Ciphertext = RM CM BP IM
4	Write a program to implement Vigenere Cipher.
5	Write a program to implement Vernam Cipher.
6	Implement Euclid algorithm to find GCD.
	GCD(16,12) = 4
	GCD(12,4) = 0
	Then 4 is the GCD(16,12)
7	Implement Euler's totient function $\not\!\!\!\!/ p(n)$. It is defined as the number of positive
	integers less than n and relatively prime to n. Find $\phi^{(35)}$
	and $\phi(\beta^7)$. Observe the value and analyze the behavior of totient function.
8	Implement extended Euclidean Algorithm for finding inverse.
9	Implement RSA algorithm.
	Take two prime numbers p, q
	n=pxq
	Initially take encryption key such that it is relatively prime with $\phi(n)$.
	Find out decryption key.
	Take plaintext message M, Ciphertext C=Me mod n.
	To get plaintect from ciphertext M=Cd mod n.
	Test case:
	Two prime numbers 17,11
	Encryption key = 7
	Decryption key = 23
	M=88
	C=11
10	Implement encryption and decryption using Simplified-DES scheme.
11	Implement encryption and decryption using AES scheme.
12	Implement Diffie-Hellman Key Exchange algorithm.
13	Write a program to implement two Digital Signature Algorithms: DSA.
14	Write a program to implement two Digital Signature Algorithms: Elgamal.