# Playing Jenga with Infinite Cardinals

Richard Matthews

University of Leeds

R.M.A.Matthews@leeds.ac.uk

LMS Virtual Graduate Student Meeting

# Jenga

# Consider a proof to be a jenga tower...

- Maybe an axiom only appears once and can be easily removed.
- Maybe an axiom appears as an important bedrock to the proof.
- Maybe one axiom could be removed or another axiom, but not both.
- Maybe one axiom seems to be an important part of the proof but can be replaced by another.



### **Cardinals**

- We want to generalise properties of the natural numbers  $(\mathbb{N})$ . For example:
  - 1. If  $m \in \mathbb{N}$  then so is every (natural) number less than m,
  - N is linearly ordered with no infinite decreasing chain,
  - 3. No element of  $\mathbb{N}$  is bijective with  $\mathbb{N}$ .
- A set X is *transitive* if for every  $y \in X$ ,  $y \subseteq X$ .
- A set is an *ordinal* if it is transitive, linearly ordered (by ∈) and has no infinite decreasing chain.
- A *cardinal* is an ordinal which is not bijective with any element of itself.



# What makes them large?

- Properties of the natural numbers  $(\mathbb{N})$  and real numbers  $(\mathbb{R})$ .
  - 1. No element of  $\mathbb{N}$  can be mapped cofinally onto  $\mathbb{N}$  and for any  $m \in \mathbb{N}$ ,  $2^m$  or the *power set* of m is still strictly smaller than  $\mathbb{N}$ .
  - 2. Lebesgue measurability on  $\mathbb{R}$  ( $\mathcal{P}(\omega)$ ).  $(\mu(\bigcup_n X_n) = \sum_n \mu(X_n))$
- A cardinal  $\kappa$  is *inaccessible* if no element of  $\kappa$  can be mapped cofinally onto  $\kappa$  and for any  $\alpha \in \kappa$ , the power set of  $\alpha$  is still strictly smaller than  $\kappa$ .
- A cardinal  $\kappa$  is *measurable* if there is a  $\kappa$ -additive, non-trivial 0 1 measure on  $\mathcal{P}(\kappa)$ .
- The existence of inaccessible or measurable cardinals proves the consistency of ZFC (standard set theory) and therefore we can't prove they exist!



# Elementarity

#### Definition

An elementary embedding between structures N and M is an injection  $j: N \to M$  such that for any formula  $\varphi(v)$  and  $a \in N$ 

N believes  $\varphi(a)$  is true  $\iff$  M believes  $\varphi(j(a))$  is true.



#### **Fact**

A cardinal  $\kappa$  is measurable if and only if there exists some class  $M \subseteq V^{-1}$  and an elementary embedding  $j : V \to M$  such that

- Anything hereditarily of size smaller than  $\kappa$  is fixed by j.
- The size of  $j(\kappa)$  is strictly bigger than that of  $\kappa$ .

<sup>&</sup>lt;sup>1</sup>Where V denotes the mathematical universe

## How close can M be to V?

- If  $\kappa$  is the least measurable cardinal then M will not be closed under arbitrary sequences indexed by subsets of  $\kappa$ . In particular  $\{j(x): x \subseteq \kappa\} \notin M$ .
- Asserting that  $\kappa$  is the smallest set moved by some embedding j with M close to V can add significant strength:
- Say that  $\kappa$  is X-strong if there is some  $j: V \to M$  with  $X \subseteq M$
- Say that κ is α-supercompact if there is some j: V → M which is closed under sequences of length α.
- Say that  $\kappa$  is *n-huge* if M is closed under sequences of length  $j^n(\kappa)$ .

## Question (Reinhardt)

Can we have an elementary embedding  $j: V \to V$ ?



# Jenga with Reinhardt

# Theorem (Kunen 1971)

Under ZFC there is no elementary embedding  $j: V \to V!$ 

# Fact (Kunen 1971)

There exists some set W such that there is no non-trivial elementary embedding  $j: W \to W$ .

## But if we weaken the theory an embedding could exist...

- If  $V = \{a, b\}$  then the map swapping a and b is an embedding
  - For example  $x = a \& x \neq b$  becomes  $x = b \& x \neq a$ .
- If the theory is just the theory of some group G then the map  $j: g \mapsto g^{-1}$  is an embedding.
  - For example, given x the statement  $\exists g \ x \circ g = e$  becomes  $\exists g \ x^{-1} \circ g = e$  which is clearly true.

# The Naive Approach

## Theorem (Suzuki, 1999)

There is no formula  $\varphi(v)$  and "set of rules" p such that  $\varphi(p)$  defines an elementary embedding  $j: V \to V$ .

#### Sketch

- Suppose there was such a formula  $\varphi(v)$  and set p.
- Then there is a formula  $\psi(v)$  such that  $\psi(p)$  defines an elementary embedding j satisfying that there is some cardinal  $\kappa$  such that
  - 1.  $\kappa$  has size less than  $j(\kappa)$ ,
  - 2. Everything smaller than  $\kappa$  is fixed by j,
  - 3.  $\kappa$  is least such that such an embedding exists.
- Since this is a formula, by elementarity  $\psi(j(p))$  must also define an elementary embedding  $k: V \to V$ .
- But the smallest cardinal moved by k is  $j(\kappa)$  which contradicts the third point.

# Removing the Power Set

# Theorem (M., 2020)

There is no non-trivial elementary embedding  $j: V \to V$  where V satisfies ZFC without power set<sup>2</sup>.

#### Basic Idea

There are two possible scenarios:

- 1. W exists in which case Kunen's result can be proved.
- 2. j is definable from some formula with parameters in V.



<sup>&</sup>lt;sup>2</sup>Under the right assumptions / formalisations

# Removing the Power Set

## Theorem (M., 2020)

There is no non-trivial elementary embedding  $j: V \to V$  where V satisfies ZFC without power set<sup>2</sup>.

#### Basic Idea

There are two possible scenarios:

- 1. W exists in which case Kunen's result can be proved.
- 2. j is definable from some formula with parameters in V.

#### Thanks!



<sup>&</sup>lt;sup>2</sup>Under the right assumptions / formalisations