CPE 133 Final Exam Cheat Sheet v1.03

A	В	(NAND) ! (A•B)	(NOR)	(XNOR) !(A XOR B)
0	0	1	1	1
0	1	1	0	0
1	0	1	0	0
1	1	0	0	1

		(AND)	(OR)	(XOR)	
A	В	A•B	A+B	A XOR B	
0	0	0	0	0	
0	1	0	1	1	
1	0	0	1	1	
1	1	1	1	0	

$$F(A, B, C) = \overline{\overline{AC}} \overline{\overline{AB}}$$
 (reduced NAND/NAND)

$$F(A, B, C) = (A) + \overline{(B+C)}$$
 (reduced NOR/NOR)

	15a	$\overline{(x \cdot y)} = \overline{x} + \overline{y}$	15b	$\overline{(x+)}$	$\overline{(x-y)} = \overline{x} \cdot \overline{y}$	DeMorgan's
F	$A \oplus B =$	$\overline{AB} + A\overline{B}$ (XOR)			$\overline{A \oplus B} = \overline{AB} + AB$ (XNO	PR)

$$A(H) = \overline{A}(L)$$
 $A(L) = \overline{A}(H)$
Equivalent Signals

A	В	(AND) A•B	(OR) A+B	(XOR) A XOR B
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

A	В	(NAND) ! (A•B)	(NOR)	(XNOR) !(A XOR B)
0	0	1	1	1
0	1	1	0	0
1	0	1	0	0
1	1	0	0	1

7	
OR form of OR gate	
OR form of an AND gate	
OR form of NOR gate	
OR form of NAND gate	

$$T_{\min} = t_{NS_dec} + t_{slop} + t_{setup} + t_{pd_ff}$$

$$Frequency_{max} = \frac{1}{T_{min}}$$

 t_{NS_dec} : time delay in next state decoder t_{slop} : time delay for safety margin

t_{setup}: time delay for setup time

 $t_{\text{pd_ff}}$: time for propagation delay in flip-flop

