Programmation Fonctionnelle Projet

Michele Pagani

Université Paris Diderot
UFR Informatique
Laboratoire Preuves, Programmes et Systèmes

michele.pagani@pps.univ-paris-diderot.fr

19 octobre 2015

Automates cellulaires bidimensionnels

- le plateau du jeu est une grille
- une cellule est une case de la grille
 - deux états: vivante ou morte
- une génération est un ensemble finis de cellules vivantes
- un automate est un ensemble des règles faisant évoluer les générations
 - une règle dit si une cellule mort ou vit en fonction de son voisinage

Example (Jeu de la vie)

- une cellule morte possédant exactement trois voisines vivantes devinet vivante (elle naît);
- une cellule vivante possédant deux ou trois voisines vivantes le reste, sinon elle morts.

Automates cellulaires bidimensionnels

- le plateau du jeu est une grille
- une cellule est une case de la grille
 - deux états: vivante ou morte
- une génération est un ensemble finis de cellules vivantes
- un automate est un ensemble des règles faisant évoluer les générations
 - une règle dit si une cellule mort ou vit en fonction de son voisinage

Example (Jeu de la vie)

- une cellule morte possédant exactement trois voisines vivantes devinet vivante (elle naît);
- une cellule vivante possédant deux ou trois voisines vivantes le reste, sinon elle morts.

Voisinage

(jeu de la vie)

voisinage de Von Neumann rayon 1

voisinage de Von Neumann rayon 2

Il y a plusieurs types différent de voisinage:

- le projet minimal: voisinage de Von Neumann de rayon 1
- états possibles des voisinages : $2^5 = 32$
- un automate est une partition de ces états entre
 - ceux qui rend la cellule au milieu vivante;
 - ceux qui rend la cellule au milieu morte.

Un example d'automate

• les états du voisinage qui rendent la cellule au milieu vivante:

tout autre état du voisinage rend la cellule au milieu morte.

Cet automate donne l'évolution suivante

Un example d'automate

• les états du voisinage qui rendent la cellule au milieu vivante:

• tout autre état du voisinage rend la cellule au milieu morte.

Cet automate donne l'évolution suivante:

Intérêt automates cellulaires

- examples de système dynamique discret
 - évolutions chaotiques, dépeuplement, réversibilité, ...
 - générations périodiques, stables, attractives, . . .
- modèle de calcul parallel (Turing-complet)
 - les règles sont appliquées simultanément à toutes les cellules de la grille
 - Attention à votre implémentation !

Projet minimal

Il est obligatoire de :

- 1 mettre en ouvre un simulateur des automates cellulaires à la Von Neumann de rayon 1
- 2 mettre en ouvre une fonction qui trouve toute génération stable d'un automate
 - 1 étant donné une grille trouver ensemble des variables telle que
 - assignation ⇔ génération
 - 2 traduire automate dans formule propositionnelle P telle que: assignation satisfaisable ⇔ génération stable
 - 3 donner P à minisat et lire la solution

Definition

Une génération stable d'un automate est une génération qui évolue dans elle même en une étape.

Auch, un problème!

Trouver les générations stables est un problème très difficile:

- état chaque cellule interfère avec état cellules voisines
- problème NP-complet (pour grilles de dimension quelconque)
 - possible vérifier une solution "efficacement" (temps polynomial)
 - mais on ne sait pas trouver une solution "efficacement"

La solution

Traduire notre problème dans un autre problème équivalent mais avec résolveurs (solvers en anglais) déjà implémentés avec de bonnes heuristiques

SAT: étant donnée une formule propositionnelle, trouver une assignation des variables rendant la formule vrai.

Plein de SAT-solvers, nous utiliserons:

http://minisat.se

Auch, un problème!

Trouver les générations stables est un problème très difficile:

- état chaque cellule interfère avec état cellules voisines
- problème NP-complet (pour grilles de dimension quelconque)
 - possible vérifier une solution "efficacement" (temps polynomial)
 - mais on ne sait pas trouver une solution "efficacement"

La solution

Traduire notre problème dans un autre problème équivalent mais avec résolveurs (solvers en anglais) déjà implémentés avec de bonnes heuristiques

SAT: étant donnée une formule propositionnelle, trouver une assignation des variables rendant la formule vrai.

Plein de SAT-solvers, nous utiliserons:

http://minisat.se

Auch, un problème!

Trouver les générations stables est un problème très difficile:

- état chaque cellule interfère avec état cellules voisines
- problème NP-complet (pour grilles de dimension quelconque)
 - possible vérifier une solution "efficacement" (temps polynomial)
 - mais on ne sait pas trouver une solution "efficacement"

La solution!

Traduire notre problème dans un autre problème équivalent mais avec résolveurs (solvers en anglais) déjà implémentés avec de bonnes heuristiques

SAT : étant donnée une formule propositionnelle, trouver une assignation des variables rendant la formule vrai.

Plein de SAT-solvers, nous utiliserons:

http://minisat.se

Auch, un problème!

Trouver les générations stables est un problème très difficile:

- état chaque cellule interfère avec état cellules voisines
- problème NP-complet (pour grilles de dimension quelconque)
 - possible vérifier une solution "efficacement" (temps polynomial)
 - mais on ne sait pas trouver une solution "efficacement"

La solution!

Traduire notre problème dans un autre problème équivalent mais avec résolveurs (solvers en anglais) déjà implémentés avec de bonnes heuristiques

SAT : étant donnée une formule propositionnelle, trouver une assignation des variables rendant la formule vrai.

Plein de SAT-solvers, nous utiliserons:

```
http://minisat.se
```


Projet minimal

Il est obligatoire de :

- 1 mettre en ouvre un simulateur des automates cellulaires à la Von Neumann de rayon 1
- 2 mettre en ouvre une fonction qui trouve toute génération stable d'un automate
 - 1 étant donné une grille trouver ensemble des variables telle que
 - assignation ⇔ génération
 - 2 traduire automate dans formule propositionnelle *P* telle que:
 - 3 donner *P* à minisat et lire la solution

Definition

Une génération stable d'un automate est une génération qui évolue dans elle même en une étape.

Projet minimal

Il est obligatoire de :

- 1 mettre en ouvre un simulateur des automates cellulaires à la Von Neumann de rayon 1
- 2 mettre en ouvre une fonction qui trouve toute génération stable d'un automate
 - 1 étant donné une grille trouver ensemble des variables telle que:

assignation ⇔ génération

- 2 traduire automate dans formule propositionnelle *P* telle que:
 - assignation satisfaisable ⇔ génération stable
- 3 donner P à minisat et lire la solution

Definition

Une génération stable d'un automate est une génération qui évolue dans elle même en une étape.

Attention!

- plagiats = 0
 (en plus: on se rappelle bien de vos noms...)
- à rendre sur Didel au plus tard le mercredi 30 décembre à 23h59
 (pensez bien à rendre une première version en avance...)
- à faire en binôme = 2, deux, two, due, 雨 ...