Mobile Nets

Enabling Computer Vision on the Web

Mobile Nets

Enabling Computer Vision on the Web

Let's assume we need to serve a (CV) model

in some sort of application!

Let's assume we do image classification in a web application.

your app is going to be a Web App running on a browser (client).

Model on Server

- Inference is done on a server
- The client is thin i.e. only for I/O

Model on Client

- The server provides a model
- The client is thick, i.e., does inference as well

Mobile Nets

Bringing Computer Vision to the Web

Key Questions

- 1. Why should I run a model on the browser?
- 2. How do Mobile Nets work and how are they helpful?
- 3. How do I run a model on the browser? (DEMO)

Server

time

Pros/Cons for a browser-based application

Server-based Model

URL entered DNS Lookup etc

load thin client	query static storage
send image	inference
display result	

Client

Pros/Cons for a browser-based application

Pros/Cons for a browser-based application

Server-based Model

10 Users

Pros/Cons for a browser-based application

Server-based Model Cache Cloud Storage Compute with autoscaling 10000 Users \$\$\$ Cloud DNS Load Balancing

Pros/Cons for a browser-based application

Server-based Model

+	_	
unlimited memory and compute**	high sustained network traffic	
	privacy	
	needs reliable connection	
	cost scales with no. predictions	
	architecture complexity scales	

+	_
low latency	slow initial load
privacy	memory limitations
cost hardly scales	compute limitations
simple architecture	

Pros/Cons for a browser-based application

Server-based Model

+	_	
unlimited memory and compute**	high sustained network traffic	
	privacy	
	needs reliable connection	
	cost scales with no. predictions	
	architecture complexity scales	

+	_
low latency	slow initial load
privacy	memory limitations
cost hardly scales	compute limitations
simple architecture	

If size and complexity of the model allow it, why NOT run it on the browser?

What problem do Mobile Nets address?

- CV models are large and computationally complex
- This makes them hard to run on the client side.
- In "MobileNets: Efficient
 Convolutional Neural Networks for
 Mobile Vision Applications"
 Howard et al. aim to develop SOA
 Classifiers which can run on the
 client
- They observed: Models make heavy use of convolutional operations

Mobile Nets use depthwise separable convolutions to reduce size & complexity

Mobile Nets introduce model shrinking parameters to fine-tune size & complexity

Depth-Wise Separable Convolutions

Depth-Wise Separable Convolutions

Depth-Wise Separable Convolutions

Lets assume:

- Image size of 8x8
- padding of 1
- stride of 1
- ► 3 input channels
- kernel size 3x3
- N output channels

Parameters:

$$3 \times 3 \times 3 = 27$$

Depth-Wise Separable Convolutions

Depth-Wise Separable Convolutions

Depth-Wise Separable Convolutions

Limitation:

Our filters cannot mix input channels!

It seems to have little effect in practice:

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
Conv MobileNet	71.7%	4866	29.3
MobileNet	70.6%	569	4.2

2]

[1]

Model Scaling Parameters

- In addition to depth-wise separable convolutions, two model scaling parameters are introduced.
- \bullet α , set in (0,1] scales the number of input and output channels in each layer.
- Reduces the number of parameters and reduces computational cost by roughly α^2
- p set in (0,1], scales the resolution of the images and subsequently the resolution of each internal representation (between the layers).
- Reduces computational cost by ρ^2

Layer/Modification	Million	Million
	Mult-Adds	Parameters
Convolution	462	2.36
Depthwise Separable Conv	52.3	0.27
$\alpha = 0.75$	29.6	0.15
$\rho = 0.714$	15.1	0.15

Mobile nets are competitive, efficient CNNs, which can easily be scaled down in terms of size and complexity.

DEMO

Any Questions?

Sources

- [1] A really great blog post about depth-separable convolutions:
 https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/
- ► [2] The Mobile Nets paper: https://arxiv.org/pdf/1704.04861.pdf

Further Reading:

- A basic tutorial on how to set up an inference backend using python, FastAPI and Tensorflow: https://towardsdatascience.com/image-classification-api-with-tensorflow-and-fastapi-fc85dc6d39e8
- A tutorial on handling image uploads in react via drag and drop: https://medium.com/@650egor/simple-drag-and-drop-file-upload-in-react-2cb409d88929
- ► A tutorial on using TFJS with react: https://levelup.gitconnected.com/build-ad-dog-classifier-with-react-and-tensorflow-js-in-minutes-f08e98608a65

Additional Slides

Model Scaling Parameters

Overview

Server-based Model

Thin Client

58.80 %

24.43 %

83.68 % 5.88 %

99.74 % hook

0.06 %

Client-based Model

Thick Client

Upload files here!

0.29

kelpie 0.11

Eskimo dog, husky

Persian cat

0.84

nipple 0.14

spaghetti squash

Overview

1

Write Application (I/O, Presentation, etc.)

2

Implement Model
(Backend, Parameter
Loading, Inference, etc.)
on the client

3

Make the app available to the user

Overview

Write Application (I/O, Presentation, etc.)

Implement Model (Parameter Loading, Inference, etc.) on the client

Make the app available to the user

Writing a browser application

- The app has to be able to upload dropped images and display them.
- There are many viable options to build an application in the browser (for example React, Vue, Angular, native Javascript + HTML + CSS, Typescript, etc...)
- I used React.js to write the UI.


```
{ useState } from "react";
       import { Upload } from "./upload";
        import ImageViewer from "./image-viewer";
       const useImgs = (initialState : any[] = [], maxFiles : number = 3) => {
               [state, setstate] = useState(initialState);
          const addImgs = (newDrops) => {
            const newImgs = newDrops
              .map((file) => {
               if (file.type.includes( value: "image")) {
                 file.preview = URL.createObjectURL(file);
                 return file;
              return null;
             .filter((elem) => elem !== null);
           setstate([...newImgs, ...state].slice(0, maxFiles));
         return [state, addImgs];
       const ImageClassifier = () => {
               [imgs, addImgs] = useImgs(initialState: []);
               onFileDrop = (files) => {
           console.log(files);
           if (files.length > 0) {
             addImgs([...files]);
29
             <h2>Thin Client</h2>
             <Upload onDrop={onFileDrop} />
             <ImageViewer files={imgs} />
37
        export default ImageClassifier;
```

How do I run a model on the browser? Integrating a model

- TFJS(Tensorflow JS)
- "TensorFlow.js is an open-source hardwareaccelerated JavaScript library for training and deploying machine learning models." https://github.com/tensorflow/tfjs
- ► To run a mobile net in tfjs requires 2 lines of code


```
import * as mobilenet from "@tensorflow-models/mobilenet";
import * as tf from "@tensorflow/tfjs";
```

```
const App = () => {
  const [model, setModel] = useState(initialState: null);
  useEffect( effect: () => {
    const getModel = async () => {
        const m = await mobilenet.load();
        setModel(m);
    };
    getModel();
}, deps: []);
```

```
const PredictionDisplay = ({ model, img }) => {
  const [predictions, setPrediction] = useState(initialState: null);
  useEffect( effect: () => {
    const fetchClassification = async () => {
        const pred = await model.classify(img);
        setPrediction(pred);
    };
    setPrediction( value: null);
    fetchClassification();
}, deps: [img]);

return (
    <PredictionList>
```

Serving a browser CV application

- Since all dynamic data (i.e. the images to classify) remain at the client, only static data needs to be served.
- There are lots of Cloud Providers with really affordable (or free) offers for static hosting
- Examples include Github Pages, Firebase Hosting, ...

What if I want to use a thin client?

We need to add a request middleware to the web app ...

```
import ovicorn
from fastapi import FastAPI, File, UploadFile
from serve_model import predict, read_imagefile

app = FastAPI()
gapp.post("/predict/image")
saync def predict_api(file: UploadFile = File(...)):
print(file.filename)
image = read_imagefile(await file.read())
prediction = predict(image)
return prediction

if __name__ == "__main__":
uvicorn.run(app, debug=True)
```

..., which calls the API endpoint of a python-based server.

