CSE 417T Introduction to Machine Learning

Lecture 3

Instructor: Chien-Ju (CJ) Ho

Logistics

- Course website and Piazza
 - Website: http://chienjuho.com/courses/cse417t/
 - Piazza: http://piazza.com/wustl/fall2022/cse417t
 - Make sure you follow both regularly
- Office hours
 - Will be announced later this week
 - Will start next week
- Homework 1
 - Will be announced later this week
 - A mixture of math questions and programming questions
 - Programming language: Python (We won't teach you how to program Python)

Recap

 \mathcal{H}

 $(set\ of\ candidate\ formulas)$

Given by the learning problem

learning model (example:

H: Perceptron

A: PLA)

Goal of Learning: Generalization

• Given training data, find $g \approx f$ on the unseen test data.

This goal is generally impossible without assumptions.

Key assumption of ML

Training data points and test data points are i.i.d. drawn from the same (unknown) distribution

A Thought Experiment about Probability

What can we say about μ from ν ?

Law of large numbers

• When $N \to \infty$, $\nu \to \mu$

Hoeffding's Inequality

• $\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$ for any $\epsilon > 0$

Connection to Learning

- Let each marble represent a point \vec{x} , drawn from unknown $P(\vec{x})$
 - Dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
 - Recall that $y_n = f(\vec{x}_n)$ (will discuss noisy target function f later in the semester)
- "Fix" a hypothesis h
 - For each marble \vec{x} , color it as below
 - If $h(\vec{x}) = f(\vec{x})$, color it as green marble [h is correct on \vec{x}]
 - If $h(\vec{x}) \neq f(\vec{x})$, color it as red marble $[h \text{ is wrong on } \vec{x}]$

With the above coloring

$$\mu = \Pr_{\vec{x} \sim P(\vec{x})} [h(\vec{x}) \neq f(\vec{x})]$$

$$\stackrel{\text{def}}{=} E_{out}(h) \quad \text{[Out-of-sample error of } h \text{]}$$

$$\nu = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$$

$$\stackrel{\text{def}}{=} E_{in}(h) \quad \text{[in-sample error of } h\text{]}$$

Connection to Learning

- $E_{out}(h)$: What we really want to know but unknown to us
- $E_{in}(h)$: What we can calculate from dataset

• Fixed a h, What can we say about $E_{out}(h)$ from $E_{in}(h)$?

Hoeffding's Inequality

$$\Pr[|E_{out}(h) - E_{in}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

• This is verification, not learning!

Verification vs. Learning

Verification

- I have a hypothesis h
- I know $E_{in}(h)$, i.e., how well h performs in my dataset
- I can infer what $E_{out}(h)$ (how well h will perform for unseen data) might be

Learning

- Given a dataset D and hypothesis set H
- Apply some learning algorithm, that outputs a $g \in H$
- Know $E_{in}(g)$
- Want to infer $E_{out}(g)$

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
 - Will discuss the infinite case in the next few lectures.
- Apply some learning algorithm on D, output a $g \in H$
 - For example, choosing the hypothesis that minimizes in-sample error
 - $g = argmin_{h \in H} E_{in}(h)$
- Can we apply Hoeffding's inequality and claim

$$\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

No!

Today's Lecture

The notes are not intended to be comprehensive. Let me know if you spot errors.

- Three fair coins, numbered by 1, 2, 3. Flip each 10 times.
- Question: (choosing from >5, =5, or <5)
- Ans: = 5 For coin 1, what's the expected number of heads among 10 flips?
- Ans: = 5 Randomly choose a coin, what's the expected number of heads for this coin?
- Ans: >5 Look at the realized flips and choose the coin with the largest number of heads. What is the expected number of heads for the coin?
- Ans: = 5 Without observing the flips, choose the coin anyway you like, what is the expected number of heads of the 10 flips for this coin?
 - You will simulate this process (with 1,000 coins) in HW1.

• If you toss a fair coin 10 times, the prob that you get heads 10 times is

$$2^{-10} = \frac{1}{1024}$$

• If you toss 1000 fair coins 10 times each, the probability that at least one coin comes up heads 10 times is

$$1 - \left(\frac{1023}{1024}\right)^{1000} \approx 62.36\%$$

- If each hypothesis is doing random guessing (i.e., tossing a fair coin), if we have 1000 hypothesis with 10 data points, more than 60% chance there will be at least one hypothesis with zero in-sample error
 - But that hypothesis is still random guessing and has 50% out-of-sample error

- Connects to learning
 - Coin -> Hypothesis
 - Coin flips -> Performance of hypothesis in training data D
- Choosing the hypothesis "before" or "after" looking at the data (knowing the realization of the data drawing) makes a big difference!

Hoeffding's Inequality

• $\Pr[|\mu - \nu| > \epsilon] \le 2e^{-2\epsilon^2 N}$ for any $\epsilon > 0$

Some graphical explanations

WE FOUND NO LINK BETWEEN PURPLE JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BROWN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P > 0.05),

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05).

JE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND AONE (P>0.05),

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P > 0.05),

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P > 0.05).

What Can We Do?

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
 - For example, choosing the hypothesis that minimizes in-sample error
 - $g = argmin_{h \in H} E_{in}(h)$
- Question: What can we say about $E_{out}(g)$ from $E_{in}(g)$?

Derivations

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
 - Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

For each fixed $h \in H$, we have $\Pr[B(h)] \leq 2e^{-2\epsilon^2 N}$

- Recall g is selected from H (it could be any $h \in H$)
- What can we say about Pr[B(g)]?

Derivations

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
 - Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

For each fixed $h \in H$, we have $\Pr[B(h)] \leq 2e^{-2\epsilon^2 N}$

- Recall g is selected from H (it could be any $h \in H$)
- What can we say about Pr[B(g)]?

```
If g is selected from \{h_1, h_2\} B(g) \subseteq B(h_1) \cup B(h_2) \Pr[B(g)] \leq \Pr[B(h_1) \text{ or } B(h_2)] \leq \Pr[B(h_1)] + \Pr[B(h_2)] (Union Bound)
```

Derivations

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
 - Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

For each fixed $h \in H$, we have $\Pr[B(h)] \leq 2e^{-2\epsilon^2 N}$

- Recall g is selected from H (it could be any $h \in H$)
- What can we say about Pr[B(g)]?

$$\Pr[B(g)] \le \Pr[B(h_1) \text{ or } B(h_2) \text{ or } \dots \text{ or } B(h_M)]$$

 $\le \Pr[B(h_1)] + \Pr[B(h_2)] + \dots + \Pr[B(h_M)]$
 $\le M \ 2e^{-2\epsilon^2 N}$

Connection to "Real" Learning

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- Question: What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$$
 for any $\epsilon > 0$

- M can be considered as a proxy of the "complexity" of the hypothesis set
 - Will talk about what happens when $M \to \infty$ in the next few lectures

Interpreting $\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$

Interpreting $\Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2 N}$

- Playing around with the math
 - Define $\delta = \Pr[|E_{out}(g) E_{in}(g)| > \epsilon]$
 - We have $\delta \le 2Me^{-2\epsilon^2N} \implies \epsilon \le \sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}}$
- This means, with probability at least $1-\delta$

•
$$E_{out}(g) \le E_{in}(g) + \epsilon \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}$$

More Discussion

• With probability at least $1-\delta$

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N}} \ln \frac{2M}{\delta}$$

Consider M as a proxy measure on the "complexity" of H

- Our ultimate goal is to have a small $E_{out}(g)$
 - There is a tradeoff of choosing M (what "learning model" to use)
 - Increase $M \rightarrow \text{Smaller } E_{in}(g)$ (more hypothesis to "fit" the training data)
 - Increase $M \rightarrow Larger \epsilon$
 - It also depends on N, the number of data points you have
 - A small number of data points => use simple models (e.g., linear models)
 - Complex models (e.g., deep learning) work when you have a lot of data

Revisit the Learning Problem

Goal: $g \approx f$

- A general approach:
 - Define an error function E(h, f) that quantify how far away h is to f
 - choose $g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E(h, f)$
- E is usually defined in terms of a pointwise error function $e(h(\vec{x}), f(\vec{x}))$
 - Binary error (classification): $e(h(\vec{x}), f(\vec{x})) = \mathbb{I}[h(\vec{x}_n) \neq f(\vec{x}_n)]$
 - Squared error (regression): $e(h(\vec{x}), f(\vec{x})) = (f(\vec{x}) h(\vec{x}))^2$

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(\vec{x}_n), f(\vec{x}_n))$$

$$E_{out}(h) = \mathbb{E}_{\vec{x}}[e(h(\vec{x}), f(\vec{x}))]$$

The discussion on the Hoeffding's inequality applies for general (bounded) error functions.

How to choose the error function?

- Consideration 1: Properties of domain applications
- Example: Fingerprint recognition
 - Input: fingerprints
 - Outputs: whether the person is authorized

		$f(\overrightarrow{x})$		
		+1	-1	
$h(\vec{x})$	+1	No error	False positive	
	-1	False negative	No error	

Supermarket		$f(\vec{x})$	
		+1	-1
$h(\vec{x})$	+1	0	Small
	-1	Large	0

FBI		$f(\vec{x})$	
		+1	-1
b(♂)	+1	0	Large
$h(\vec{x})$	-1	Small	0

How to choose the error function?

Consideration 1: Properties of application problems

- Consideration 2: Computation
 - ML Algorithm is essentially doing optimization (finding g with smallest error)

$$g = \underset{h \in \mathcal{H}}{\operatorname{argmin}} E(h, f)$$

- Choosing the error that is "easier" to optimize
 - e.g., if the error function is convex, continuous, differentiable, we usually have efficient algorithms

How to choose the error function?

Consideration 1: Properties of application problems

Consideration 2: Computation

- Specifying the error function is part of setting up the learning problem
 - It impacts what you eventually learn

Noisy Target

- What if there doesn't exist f such that $y = f(\vec{x})$?
 - f is stochastic instead of deterministic

- Common approach
 - Instead of a target function, define a target <u>distribution</u>
 - Instead of $y = f(\vec{x})$, y is drawn from a conditional distribution $P(y|\vec{x})$
 - $y = f(\vec{x}) + \epsilon$ where ϵ is zero-mean noise

The discussion on the Hoeffding's inequality applies for noisy targets.

General Setup of (Supervised) Learning

Theory of Generalization

Revisit the "Multi-Hypothesis" Bound

- Given a finite hypothesis set $H = \{h_1, ..., h_M\}$
- Apply some learning algorithm on D, output a $g \in H$
- What can we say about $E_{out}(g)$ from $E_{in}(g)$?

$$Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$$
 for any $\epsilon > 0$

What if *M* is infinite?

 $Pr[|E_{out}(g) - E_{in}(g)| > \epsilon] \le 2Me^{-2\epsilon^2N}$ don't seem to carry any meanings

Key Intuitions in the Multi-Hypothesis Analysis

- Define "bad event of h" B(h) as $|E_{out}(h) E_{in}(h)| > \epsilon$
- If g is selected from $\{h_1, h_2\}$
 - $B(g) \subseteq B(h_1) \cup B(h_2)$
 - $\Pr[B(g)] \le \Pr[B(h_1) \text{ or } B(h_2)]$ $\le \Pr[B(h_1)] + \Pr[B(h_2)]$ (Union Bound)

 $B(h_1)$ $B(h_2)$

Union bound considers the worst case: Bad events don't overlap

Do Bad Events Overlap?

Oftentimes, they overlap a lot!

The two linear separators on the left make the same predictions for most points.

If it's a bad event for one, it's likely to be a bad event for the other.

"bad event of h" B(h): $|E_{out}(h) - E_{in}(h)| > \epsilon$

Recall: Informally, you can interpret "bad event of h" as the event that we draw a "unrepresentative dataset D" that makes the in-sample errors of h to be far away from out-of-sample error of h

What Can We Do?

Any difference between A and B?

For this dataset, probably not.

They make the same predictions for every data point in this dataset.

What Can We Do?

• Let's define "data-dependent" hypothesis, call it dichotomy.

- A hypothesis $h: X \to \{-1, +1\}$
- A dichotomy for a set of data points $(\vec{x}_1, ..., \vec{x}_N)$:
 - Assign either +1 or -1 for each of the data points (divide the data points into two groups)
- Why dichotomies?
 - It helps us count "effective number of hypothesis" (to replace M)

More Formal Definitions

Dichotomies

- Informally, consider a dichotomy as "data-dependent" hypothesis
- Characterized by both hypothesis set H and N data points $(\vec{x}_1, ..., \vec{x}_N)$

$$H(\vec{x}_1, ... \vec{x}_N) = \{h(\vec{x}_1), ..., h(\vec{x}_N) | h \in H\}$$

• The set of possible prediction combinations $h \in H$ can induce on $\vec{x}_1, \dots, \vec{x}_N$

Growth function

• Largest number of dichotomies H can induce across all possible data sets of size N

$$m_H(N) = \max_{(\vec{x}_1, ..., \vec{x}_N)} |H(\vec{x}_1, ..., \vec{x}_N)|$$