

One Dimensional (1D) and Two-Dimensional (2D) Spring Mass Chains

Massimo Ruzzene

D. Guggenheim School of Aerospace Engineering
G. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA

Wave Propagation in Linear and Nonlinear Periodic Media:

Analysis and Applications

June 21-25, 2010

6/7/10 M. Ruzzene – Lecture 2

Configuration

Coarse approximation of a uniform rod:

$$\rho, E, A$$

- Rod is discretized into N elements of length a;
- Mass and stiffness distributions are described as lumped parameters;

$$k = \frac{EA}{a}$$
 $m = \rho Aa$

• Location of *n*-th mass:

$$x_n = na$$

Notes

- System under consideration is the first, simplest example of a PERIODIC structure:
 - Here obtained considering a "dumb" discretization of a continuous rod;
 - Can be considered as a simple academic exercise
 - System initially studied by Newton (1686) to calculate the speed of sound in air:
 - Newton, Principia, Book II, 1686.
 - System is used by John Bernoulli and son Daniel (1727) to demonstrate that a system of N masses is characterized by N modes of vibration and associated frequencies
 - Configuration considered by Baden-Powell (1841) to calculate the velocity of wave propagation along one axis of a cubic lattice structure
 - Results later corrected and expanded by Lord Kelvin (1881)
 - Popular Lecture, Vol. I, p. 185.
 - Detailed discussions can be found in:
 - L. Brillouin, Wave Propagation In Periodic Structures, Dover 1946.
 - C. Kittel, *Introduction to Solid Sate Physics*, 8th ed. John Wiley & Sons, Inc., 2005.

Governing equations & wave solution

• System's behavior is governed by N equations of the kind:

$$m\ddot{u}_n + 2ku_n - k(u_{n+1} + u_{n-1}) = 0 n = 1, ..., N$$

Impose a harmonic solution

$$m$$
 k

$$u(x_n, t) = u_n(t) = u_n(\omega)e^{-j\omega t}$$

Impose a wave solution

$$u_n(\omega)=u_0[\kappa(\omega)]e^{j\kappa x_n}$$
 where
$$u_n(\omega)=u_0[\mu(\omega)]e^{j\mu n} \qquad \qquad \mu(\omega)=\kappa(\omega)a$$

- Under the assumption that no external forces are applied:
 - Free wave propagation

Dispersion relations

• Substitute wave solution at frequency ω in *n*-th equation:

$$[(-\omega^{2}m + 2k)e^{i\mu n} - k(e^{i\mu(n-1)} + e^{i\mu(n+1)})]u_{0}(\mu) = 0$$

$$[(-\omega^{2}m + 2k) - k(e^{-i\mu} + e^{i\mu})]u_{0}(\mu) = 0$$

$$[-\omega^{2}m + 2k(1 - \cos\mu)]u_{0}(\mu) = 0$$

$$(1)$$

$$\neq 0 \quad \text{Non-trivial solutions}$$

• Dispersion relation (frequency – wavenumber relations):

$$\frac{-\omega^2 m + 2k(1 - \cos \mu) = 0}{\omega_0^2 = \frac{k}{m}}$$

$$\Omega^2 = 2(1 - \cos \mu)$$

$$\Omega = \frac{\omega}{\omega_0}$$

$$\omega = \omega(\mu)$$
 :direct solution

- Continuous rod vs. discrete:
 - Discretization process can be described in terms of FINITE DIFFERENCE formalism

$$2u_n - u_{n+1} - u_{n-1} \approx a^2 \frac{\partial^2 u(x)}{\partial x^2}$$

- This approximation is used in deriving equivalent continuum systems for discrete assemblies
- Discretization causes the system to be dispersive

$$\frac{\partial \omega}{\partial k} \neq \frac{\omega}{k}$$
 $c_g \neq c_p$

cture 2

Notes

• Dispersion relation is PERIODIC in the wavenumber space:

$$\Omega(\mu) = \Omega(\mu + 2\pi p)$$
 p integer
$$\omega(\kappa) = \omega(\kappa + p\frac{2\pi}{q})$$

- k-space is periodic of period 2p/a
- As a result, displacements are also periodic in the wavenumber space

$$\underbrace{\left[-\omega^{2}m + 2k(1 - \cos(\mu + 2\pi p))\right]}_{\underline{p}} u_{0}(\mu + 2\pi p) = 0$$

$$\underbrace{\left[-\omega^{2}m + 2k(1 - \cos\mu)\right]}_{\underline{p}} u_{0}(\mu + 2\pi p) = u_{0}(\mu)$$

Notes

• Result is due to the SAMPLING of a continuous system:

$$u(x) \to u(na)$$

Spatial sampling occurs at a frequency

$$\kappa_s = \frac{2\pi}{a}$$

The result

$$u_0(\mu + 2\pi p) = u_0(\mu)$$

$$u_0(\kappa + p\frac{2\pi}{a}) = u_0(\kappa)$$

is an expression of the Sampling Theorem (Shannon) theorem, for a system sampled in space

 A single period of the wavenumber/frequency relation for a periodic system is called:

FIRST BRILLOUIN ZONE

M. Ruzzene – Lecture 2

6/7/10

Notes

- Analogy with time-domain signals can be used to obtain a good guess about the NATURAL FREQUENCIES of a FINITE PERIODIC system with N masses (free-free for simplicity):
 - Finite system can be considered as a truncation of an infinite one
 - Truncation causes the system to be DISCRETE instead of continuous

$$u_0(\kappa) \to u_0(p\Delta\kappa)$$

where wavenumber resolution is:

and

$$\Delta \kappa = \frac{\pi}{Na}$$

$$p = -N, -N + 1,N - 1, N$$

- Discrete wavenumber values correspond to N values of frequencies
- Natural frequencies can be read directly on the dispersion curve, given the number of masses and boundary conditions

 $\mu = \mu(\omega)$: inverse solution

Alternatively, the solution of the dispersion relation:

$$\Omega^2 = 2(1 - \cos \mu)$$

can be found by imposing frequency:

where

$$\mu = \cos^{-1}(1 - \frac{\Omega^2}{2})$$

 μ is real for $\Omega \leq 2$ μ is imaginary for $\Omega > 2$

The wave solution to the governing equation:

$$m\ddot{u}_n + 2ku_n - k(u_{n+1} + u_{n-1}) = 0$$

should be expressed as follows

$$u_n(\omega) = u_0(\omega)e^{j\mu n}$$

 $Im[\mu]$ Attenuation constant

Harmonic response of a finite system (N=100 masses)

$$\Omega=1.5$$

6/7/10

M. Ruzzene – Lecture 2

6/7/10

M. Ruzzene – Lecture 2

Wave speeds

Phase velocity:

$$c_{ph} = \frac{\omega}{\kappa} = a\omega_0 \frac{|\sin \mu/2|}{|\mu/2|}$$

Group velocity:

$$c_g = \frac{\partial \omega}{\partial \kappa} = a \frac{\partial \omega}{\partial \mu}$$
$$c_g = a\omega_0 \cos \frac{\mu}{2}$$

Average Energy

- Average energy density: sum of average potential and kinetic energy of the unit cell:

- Average potential energy
$$< U> = \frac{U}{a} = \frac{1}{2a}k\mathcal{R}e[(u_n-u_{n-1})^2]$$

$$u_n-u_{n-1} = A\mathcal{R}e[1-e^{j\mu}]$$

$$< U> = \frac{1}{2a}A^2k(1-e^{j\mu})(1+e^{-j\mu})$$

$$< U> = A^2\frac{k}{a}\sin^2\frac{\mu}{2}$$

Average kinetic energy

$$\langle K \rangle = \frac{K}{a} = \frac{1}{2a} m \mathcal{R} e[\dot{u}_n^2]$$

$$\langle K \rangle = \frac{mA^2}{4a} \omega^2 \qquad \dot{u}_n = \mathcal{R} e[j\omega u_n]$$

$$\langle K \rangle = A^2 \frac{k}{a} \sin^2 \frac{\mu}{2} = \langle U \rangle$$

Total energy

$$<\mathcal{E}> = < K> + < U>$$

$$<\mathcal{E}> = 2A^2 \frac{k}{a} \sin^2 \frac{\mu}{2}$$

6/7/10

Energy flow

Energy flow from one cell to the next is the AVERAGE POWER flowing from one cell to the next

Energy velocity: rate at which energy flows along the lattice

$$c_{\mathcal{E}} = \frac{\Phi}{\langle \mathcal{E} \rangle}$$
 $c_{\mathcal{E}} = \frac{A^2 k \omega_0 \sin \mu \sin \frac{\mu}{2}}{\frac{2kA^2}{a} \sin^2 \frac{\mu}{2}}$

$$c_{\mathcal{E}} = a\omega_0 \cos\frac{\mu}{2}$$

The energy velocity equals the group velocity

$$c_{\mathcal{E}} = c_g$$

Diatomic lattice

System is representative of:

• Bi-material rod:

$$E_2$$
, r_2

Governing equations

Governing equations for 2n and (2n+1) masses:

Impose a solution of the kind:

$$-\omega^{2} m_{a} u_{2n} + 2k u_{2n} - k(u_{2n+1} + u_{2n-1}) = 0$$

$$-\omega^{2} m_{b} u_{2n+1} + 2k u_{2n+1} - k(u_{2n+2} + u_{2n}) = 0$$

$$u_{2n}(\omega) = u_{a}(\omega) e^{j\kappa x_{2n}} = u_{a}(\omega) e^{j2a\kappa n}$$

$$u_{2n+1}(\omega) = u_{b}(\omega) e^{j\kappa x_{2n+1}} = u_{b}(\omega) e^{j(2n+1)a\kappa}$$

This solution describes waves propagating only through particles (a) and (b). Wavelength and frequencies are the same, but the amplitudes of the two waves are not equal

Dispersion relations

Substituting gives:

$$(2k - \omega^2 m_a) u_a - k(e^{j\kappa a} + e^{-j\kappa a}) u_b = 0$$

$$(2k - \omega^2 m_b) u_b - k(e^{j\kappa a} + e^{-j\kappa a}) u_a = 0$$

In matrix form:

$$\begin{pmatrix} -\omega^2 m_a + 2k & -2k\cos\kappa a \\ -2k\cos\kappa a & -\omega^2 m_b + 2k \end{pmatrix} \begin{pmatrix} u_a \\ u_b \end{pmatrix} = 0$$

• Characteristic equation

$$\omega^4 - 2k(\frac{1}{m_a} + \frac{1}{m_b})\omega^2 + 4\frac{k^2}{m_a m_b}\sin^2 \kappa a = 0$$

Solution identifies TWO BRANCHES:

$$\omega = \omega_1(\kappa)$$
 and $\omega = \omega_2(\kappa)$

Dispersion relations

where:

$$\omega_1^2(\kappa) = k(\frac{1}{m_a} + \frac{1}{m_b}) - \sqrt{(\frac{1}{m_a} + \frac{1}{m_b})^2 - \frac{4}{m_a m_b} \sin^2 \kappa a}$$

ACOUSTIC BRANCH

$$\omega_2^2(\kappa) = k(\frac{1}{m_a} + \frac{1}{m_b}) + \sqrt{(\frac{1}{m_a} + \frac{1}{m_b})^2 - \frac{4}{m_a m_b} \sin^2 \kappa a}$$

OPTICAL BRANCH

Both branches are PERIODIC in the wavenumber domain:

$$\kappa a \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

6/7/10

$$\omega = \omega(\kappa)$$
 Direct solution

$$m_a = m_b$$

Band-gap disappears

6/7/10 M. Ruzzene – Lecture 2 24

First Brillouin zone

Period of wavenumber/frequency domain is:

Single mass system

$$\kappa a \in [-\pi, +\pi]$$

Two-mass system

$$\kappa a \in \left[-\frac{\pi}{2}, +\frac{\pi}{2} \right] \longrightarrow 2\kappa a \in \left[-\pi, +\pi \right]$$

• The period of the dispersion relation is always given by:

where:

$$\kappa d \in [-\pi, +\pi]$$

– Single mass system:

$$d = a$$

– Two mass system:

$$d = 2a$$

First Brillouin zone

• For any 1D periodic system, the frequency/wavenumber spectrum is periodic in the domain:

where

$$\kappa d \in [-\pi, +\pi]$$

d - Spatial period of the structure

Propagation constant:

$$\mu = \kappa d$$

• First Brillouin zone:

$$\mu \in [-\pi, +\pi]$$

The definition of the Brillouin zone can be used to define unequivocally the SPATIAL PERIOD of the system

6/7/10

6/7/10

M. Ruzzene – Lecture 2

27

Response of a system of N=200 masses

$$\Omega = 1.6$$

$\Omega = 1.83$

6/7/10

M. Ruzzene – Lecture 2

30

Spring Mass System

Unit Cell:

Governing equations & wave solution

Equation of harmonic motion for mass n,m:

$$-\omega^2 m u_{n,m} + (2k_x + 2k_y) u_{n,m} \dots$$

... - $k_x (u_{n+1,m} + u_{n-1,m}) - k_y (u_{n,m+1} + u_{n,m-1}) = 0$

Wave propagation solution:

$$u_{n,m}(\omega) = u_0[\kappa(\omega)]e^{j\boldsymbol{\kappa}\cdot\boldsymbol{r}}$$

where

$$egin{aligned} oldsymbol{\kappa} &= \kappa_x oldsymbol{i} + \kappa_y oldsymbol{j} \ oldsymbol{r} &= x oldsymbol{i} + y oldsymbol{j} \ oldsymbol{r} &= n a_x oldsymbol{i} + m a_y oldsymbol{j} \end{aligned}$$

Note

Direction of wave propagation

Wave propagation solution

Rewrite solution as:

$$u_{n,m}(\omega) = u_0[\kappa(\omega)]e^{j\boldsymbol{\kappa}\cdot\boldsymbol{r}}$$

$$= u_0[\kappa(\omega)]e^{j(\kappa_x a_x n + \kappa_y a_y m)}$$

$$= u_0[\kappa(\omega)]e^{j(\mu_x n + \mu_y m)}$$

and

$$u_{n\pm 1,m\pm 1} = u_0[\kappa(\omega)]e^{j(\mu_x(n\pm 1) + \mu_y(m\pm 1))}$$

$$u_{n\pm 1,m\pm 1} = u_{n,m}(\omega)e^{j(\pm \mu_x \pm \mu_y)}$$

Dispersion relation

Substituting in governing equation leads to:

$$[(-\omega^2 m + 2k_x + 2k_y) - k_x(e^{-j\mu_x} + e^{j\mu_x}) - k_y(e^{-j\mu_y} + e^{j\mu_y})]u_0(\mu_x, \mu_y) = 0$$
$$[-\omega^2 m + 2k_x(1 - \cos\mu_x) + 2k_y(1 - \cos\mu_y)]u_0(\mu_x, \mu_y) = 0$$

• 2D dispersion relation

$$-\omega^2 m + 2k_x(1 - \cos \mu_x) + 2k_y(1 - \cos \mu_y) = 0$$

$$\omega = \omega(\mu_x, \mu_y)$$

Surface in the wavenumber domain

6/7/10

2D Dispersion relation

$$k_x = k_y = 1$$
$$m = 1$$

2D Dispersion relation

$$k_x = k_y = 1$$
$$m = 1$$

Group velocity

According to definition:

$$\boldsymbol{c}_g = \boldsymbol{\nabla}\omega(\mu_x, \mu_y)$$

Where

$$oldsymbol{c}_g = c_{g_x} oldsymbol{i} + c_{g_y} oldsymbol{j}$$

$$c_{g_x} = \frac{\partial \omega}{\partial \kappa_x} = a_x \frac{\partial \omega}{\partial \mu_x}$$

$$c_{g_y} = \frac{\partial \omega}{\partial \kappa_y} = a_y \frac{\partial \omega}{\partial \mu_y}$$

- Recall that:
 - Velocity of energy flow equals the group velocity
 - Energy flows in the direction corresponding to the group velocity

Group velocity

In this case:

$$c_{g_x} = a_x \frac{\partial \omega}{\partial \mu_x} = \frac{a_x}{2} \frac{k_x / m \sin \mu_x}{[k_x / m(1 - \cos \mu_x) + k_y / m(1 - \cos \mu_y)]^{1/2}}$$

$$c_{g_x} = a_y \frac{\partial \omega}{\partial \mu_y} = \frac{a_y}{2} \frac{k_y / m \sin \mu_y}{[k_x / m(1 - \cos \mu_x) + k_y / m(1 - \cos \mu_y)]^{1/2}}$$

$$\frac{k_y \sin \mu_y}{k_x \sin \mu_x} = \tan \phi$$

Assume

$$a_y = a_x$$

Contour of dispersion surface

Contour at a single frequency

$$\omega_0 = 1$$

From dispersion relations:

$$\frac{\partial \mu_y}{\partial \mu_x} = -\frac{a_x k_x \sin \mu_x}{a_y k_y \sin \mu_y} = \tan \psi$$

Direction of energy flow at a given frequency and direction is perpendicular to isofrequency contour

$$k_x = k_y = 1 \qquad m = 1$$

$$\omega_0 = 0.1$$

$$k_x = k_y = 1 \qquad m = 1$$

$$\omega_0 = 0.5$$

$$k_x = k_y = 1 \qquad m = 1$$

$$\omega_0 = 1.2$$

$$k_x = k_y = 1 \qquad m = 1$$

$$\omega_0 = 1.4$$

$$k_x = k_y = 1 \qquad m = 1$$

$$\omega_0 = \sqrt{2}$$

Notes

- Propagation of waves is strongly directional at specified frequency
- At those frequencies, waves propagate only in certain directions

BEAMING PHENOMENA

 For considered configuration beaming is a very focused, but very narrow-band phenomenon

Example: 2D spring-mass lattice

Harmonic response of 40*40 lattice:

Time domain response

Time domain simulations Input modulated sine burst at various frequencies w_e

Time domain response

$$\omega_0 = 0.5$$

$$\omega_0 = \sqrt{2}$$

Anisotropic lattice

$$k_x \neq k_y$$

$$k_x = 1, k_y = 1.2$$

Anisotropic lattice

$$k_x \neq k_y$$

$$k_x = 1, k_y = 1.5$$

Anisotropic lattice

$$k_x \neq k_y$$

$$k_x = 1, k_y = 2$$

Note

"Forbidden propagation" zone

$$k_x = 1, k_y = 2$$
$$\omega_0 = 1.6$$

Waves do not propagate along the x direction

6/7/10

M. Ruzzene – Lecture 2

53

Example: 2D spring-mass lattice

Harmonic response of 40*40 lattice:

$$k_x = 2, k_y = 1$$

6/7/10

M. Ruzzene – Lecture 2