Tentamen i Elkretsanalys för EI1110 del 2

Datum/tid: 2014-03-21, kl 08-13.

Hjälpmedel: Papper och penna. Namn och personnummer på varje blad.

Endast en uppgift per blad. Skriv tydligt och läsbart så att dina lösningar kan rättas.

Godkänt för EI1110 del 2 vid 15p eller högre. Erhållna tentapoäng från KSen högre än 5p kan ersätta uppgifterna 1) och 2).

Lärare: Andrés Alayón Glazunov

- 1) [5p] Här är U_0 en likspänningskälla. Vid tiden t=0 öppnas kontakten A. Stationärt tillstånd råder för t<0.
- a) Bestäm $i_1(t)$ som funktion av tiden, $t \ge 0$.
- b) Bestäm kvoten mellan den totala lagrade energin i spolarna vid t=0 och vid $t\to\infty$.

2) [5p] Spänningskällan avger signalen $u(t) = U_0 \cos(\omega t + \alpha)$. $U_0, \, \omega, \, \alpha, \, L_1, \, L_2$ och kopplingsfaktorn k är givna storheter. Bestäm en tvåpolsekvivalent med avseende på ab. Använd j ω -metoden. Ange svaret på polär form i de givna storheterna. $(Ledning: k = \frac{M}{\sqrt{L_1 L_2}})$

3) [5p] En spole kan modelleras med hjälp av en induktans L i serie med en resistans R_L . För att bestämma hur mycket effekt förbrukas i spolen när en tidsharmonisk ström går genom den kan vi ta hjälp av kretsen till höger. Mätvärdena U_0 , U_1 och U_2 samt resistansen R är kända storheter men inte L och R_L . En voltmeter anger effektivvärdet för spänningen. Voltmetrarna är ideala.

- a) Bestäm effektivvärdet för strömmen som går genom resistorn R.
- b) Bestäm den aktiva effekten som förbrukas i spolen uttryckt i de kända storheterna.

(Ledning: $(a+b)^2 - a^2 - b^2 = 2ab$.)

- 4) [5p] Kretsen till höger innehåller en operationsförstärkare som kan antas vara ideal.
- a) Bestäm överföringsfunktionen $H(\omega)$.
- b) Ange filtrets gain i dB.
- c) Ange typ av filter. Förklara.

Var god vänd.

5) [5p] En tidsharmonisk spänningskälla $u_S(t) = U_0 \cos(\omega t)$ kopplas till en ideal transformator enligt figuren till höger. Den sekundära kretsen belastas med en kapacitans parallellkopplad med en induktans. U_0, ω, n, L och C är kända storheter.

- a) Bestäm strömmen I. Ange svaret på polär form.
- b) Bestäm frekvensen för vilken lastens ekvivalenta admittans är lika med noll.
- 6) [5p] En symmetrisk, Δ -kopplad belastning matas från ett tre-fasnät med fasspänningar som förhåller sig till varandra som $U_1 = U_2 \mathrm{e}^{j\frac{2\pi}{3}} = U_3 \mathrm{e}^{j\frac{4\pi}{3}} = U$. Ledningsimpedanserna och lastimpedanserna är lika med $Z_l = R + j\omega L$ respektive $Z_L = 3R + j3\omega L$. Bestäm spänningen U_{Bn} i nod B relativt nod n i figuren. Ange svaret på polär form. (Ledning: ΔY transformation)

Tentamen: Elketsanalys soi EI1110 del 2.

Lösningsforslag

a) Vi vidor om lætsem sir t=0 och t70 och t > 0 t > 0 t > 0

Viseralt 1,10) = 200 R

Vicer attifor) = Vo

b)
$$W_0 = \frac{1}{2} L_1(0)$$

 $W_0 = \frac{1}{2} L_1(0)$

Vo-Ldy-Pij=0. Vishiveron

$$\frac{2i_1(a)}{R} = \frac{V_0}{R} \left(1 + e^{-\frac{Rt}{L}}\right)$$

$$= \frac{W_0}{W_0} = \left(\frac{i(0)}{i(0)}\right)^2 = 4 \left[\frac{W_0}{W_0} = 4\right]$$

osningspirsly

Vi går över till exeleurs bonnn.

ull) = Vo cos(wt tal) = (Reflee)

= The Luceia ejuty

= IRe { Us ejut }

Us = Voeid

Samuelende flöden

马. ... 元。 《(4) \$ 43 En Vab=Voc

på primär leets |ZTh = Voc Us = jalII+jwMI2

KVL på primär hets. Us = jwl, I, + jwhtz

KVL på selunder hets ger

+jWMI1 Voc = jwlz = 2

, M=KV462.1 Voc = M Us

Voc = KVII Voela

= jwhIz+jwMI1 $=-\frac{L_2}{M}I_2$

Isc = K Voeid-T) all1/2 (1-k2)

 $8\pi = \omega L_2(1-k^2) e^{j\pi}$

Lösnings pirslay

$$(P3)_a)$$
 $I = \frac{V_2}{R}$

Eftelettværde jor skrimen som grægenom senstanen R.

b)
$$V_0 = \sqrt{(\omega L)^2 + (R + R_L)^2} T$$

$$V_1 = \sqrt{(\omega L)^2 + R_L^2} T$$

$$V_2 = R T$$

I shøimen som gårgenn spolen (L,RL) och vesishon R.

$$V_0^2 = ((\omega L)^2 + (R + KL)^2) I^2$$

$$V_1^2 = ((\omega L)^2 + R_L^2) I^2$$

$$V_2^2 = R^2 I^2$$

Vi anvinder (a+b)2-a2-62=203

$$V_0^2 - V_1^2 - V_2^2 = 2RR_L T^2$$

$$Akhv effect$$

$$P = R_L T^2$$

$$P = V_0^2 - V_1^2 - V_2^2$$

$$L$$

E I gelenensdromån.

Ideal OP-AMD

$$I_-=I_+=0$$
 $V_--V_+=0$

$$-\frac{I}{\frac{1}{p}+Jwc}-Vut=0.$$

$$V_{ut} = - IR$$

$$\frac{1}{1 + jwrc}$$

b)
$$\left[|H(\omega)|_{dB} = 20 \log |H(\omega)| = -10 \log \left(1 + \left(\frac{\omega_B}{\omega}\right)^2\right) \right]$$

ösningsfirslag

Transformation ar ideal.

$$T = nV_{s}(1-\omega^{2}L^{c})e^{i\frac{\pi}{2}}$$

$$= -\omega^{2}L^{c}+1$$

$$= (1-\omega^{2}L^{c})e^{-i\frac{\pi}{2}}$$

$$= (1-\omega^{2}L^{c})e^{-i\frac{\pi}{2}}$$

$$=-\omega^2LC+1$$

$$= (1 - \omega^2 L L) e^{-j\frac{\pi}{2}}$$

$$\left(1-\omega^2LC\right)e^{-j\frac{\pi}{2}}=0$$
 $\omega=\frac{1}{\sqrt{LC}}$

$$w = \frac{1}{\sqrt{LC}}$$

Lisning stoirslay

(PB) Vi har en symmertisk last men knillomen år odså balan sende.

Vi gor om Dtill Y

ZD = Z = R+JWL

Esterior mide lasten och linkom in symmetisk lean vi genom jobs per-fas analys.

Spinnigs deligen on

VBn = ZA U2= R+JUL Ve 3. Zet ZD Rtjal+Rtjal.

VBn = 12 0-52#