THUSC2017-dls

n+e

Tsinghua University

2017年5月21日

n+e Tsinghua University

- 1 题意简述
- 2 得分情况
- 3 算法分析

- 题面是真实的, dls 的确甩锅跑路了。
- 求 L 到 R 这 R L + 1 个数中,一共有多少个子集,满足子集中的数的乘积是完全平方数。
- 多组数据, $1 \le L \le R \le 10^7$, $T \le 100$

- 题意简述
- 2 得分情况
- 3 算法分析

■ 有效样本数: 168

■ 平均分: 23.125

■ 最高分: 70

图: 分数分布情况

THUSC2017-dls

- 1 题意简述
- 2 得分情况
- 3 算法分析

算法二

算法三

算法四

算法五

算法六

- 算法一
 - 1 题意简述
 - 2 得分情况
 - 算法分析算法一算法二算法三算法五算法六

■ 对于测试点 1,2, R ≤ 30

- 对于测试点 1,2, R ≤ 30
- 写个 $O(2^{R-L+1})$ 的暴力,打个表就能过。

■ 对于测试点 5,6, R-L ≤ 22

- 对于测试点 5,6, R-L ≤ 22
- 很遗憾,出题人的暴力只能够通过 R-L ≤ 21 的数据,因此 这部分数据不是给纯暴力的

- ① 题意简述
- 2 得分情况
- 算法分析 算法一 算法二 算法三 算法四 算法五 算法五 算法六

算法二

■ 对于测试点 3,7,8, 保证答案不会太大。

算法二

- 对于测试点 3,7,8, 保证答案不会太大。
- 只要在暴力的基础上加一个剪枝:按照最大素因子从大到小排序,按照这个顺序搜索,如果有一个素因子不满足就 break, 这样即可通过 3,5,6,7,8 这几个测试点,得到 35 分。

- ① 题意简述
- 2 得分情况
- 3 算法分析

算法二

算法三

算法四

算法五

算法六

算法三

■ 对于前 10 个测试点,满足 R ≤ 10³

- 对于前 10 个测试点,满足 R ≤ 10³
- 设 x; 表示第 i 个数是否需要取,以 L = 1, R = 12 为例:

对于质数 2 x_2 xor x_6 xor x_8 xor $x_{10} = 0$

对于质数 3 x_3 xor x_6 xor $x_{12} = 0$

对于质数 5 x_5 xor $x_{10} = 0$

对于质数 $7 x_7 = 0$

对于质数 $11 x_{11} = 0$

- 解这个异或方程组,可以发现只有7个自由元,因此答案是 2⁷ = 128。
- 因此可得出结论:若这个异或方程组的秩为 r,则答案为 $2^{R-L+1-r}$ 。
- 现在问题就转化为如何快速求出 r。如果直接暴力高斯消元的话,是可以拿到这部分分数的。

- 1 题意简述
- 2 得分情况
- 3 算法分析

算法二

算法三

算法四

算法五

算法六

■ 对于测试点 11~14, 满足 R ≤ 10⁶

- 对于测试点 11 ~ 14, 满足 R ≤ 10⁶
- 首先有一个显然的结论:对于任何一个数 k 而言,至多只有一个素因子大等于 \sqrt{k} 。
- 利用这个结论,对于最大素因子为 d,并且 $d \ge \sqrt{\max(R_i)}$ 的数,在它们之间取一个数 a,再将所有的数的状态与 a 的状态进行异或,这样异或出的结果一定只有小等于 $\sqrt{\max(R_i)}$ 的数。再将这个新的状态扔进之前的状态中进行高斯消元即可。显然,答案还要扣去 1——因为这些数要被答案是 d^2 的倍数这个条件所约束。
- 这么做就能通过这些测试点。时间复杂度为 O(预处理 $+\sum (R_i L_i + 1)*$ 小于 $\sqrt{\max(R_i)}$ 的素因子个数 /32), 其中 除以 32 是因为使用 bitset 进行高斯消元运算。

15 / 19

- ① 题意简述
- 2 得分情况
- 3 算法分析

算法二

算法三

算法四

算法五

算法六

算法五

■ 对于测试点 11,12, 满足 R ≤ 10⁶ 并且 R – L ≥ 999990

算法五

- 对于测试点 11,12,满足 $R \le 10^6$ 并且 $R-L \ge 999990$
- 显然 r=2~R中质数个数。直接统计就好了。

- 算法六
 - 1 题意简述
 - 2 得分情况
 - 3 算法分析

算法二

算法三

算法四

算法五

算法六

算法六

• 对于测试点 $15 \sim 20$, 满足 $R \leq 10^7$

算法六

- 对于测试点 15~20, 满足 R<10⁷
- 瓶颈卡在消元上。这个时候需要仔细分析一下什么时候算法五 的结论会成立。
- 经过研究,可得出当 $R-L \ge 6000$ 的时候,算法五的结论一定成立。这是因为当 $R=10^7$ 时,小于 \sqrt{R} 的质数个数只有不到 500 个。再考虑上素数分布,可以估算出这个结论。
- 因此只要当 $R-L \ge 6000$ 时直接 for 一遍有出现在 $L \sim R$ 之间的素数 (而不是 $1 \sim R$ 中的素数个数),计算 r 即可。时间复杂度为 O(预处理 $+\sum (R_i L_i + 1) + \gamma(L_i, R_i))$,其中

$$\gamma(L,R) = \begin{cases} 0, & \text{if } R - L + 1 \ge 6000\\ 446/32 * (R - L + 1) & \text{if } R - L + 1 < 6000 \end{cases}$$