INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Dept:Mathematics, Mid Autumn Semester-2023, Time: 2 Hrs. Full Marks:30 No. of Students 82, Sub: No.MA61061/MA60269, Sub. Name: Optimization Methods in Finance

Instruction: Answer all questions. No queries will be entertained during the examination.

Consider the following optimization problem,

$$\min \quad 3x^3 + 2y^3 + x^2 - xy$$
s.to $x^2 + 2y \le 10$, $x^3 + y^3 \le 5$, $x + 2y = 3$.

Verify all the necessary and sufficient optimality conditions at (1,1) for the above problem. [5]

2. A portfolio has two risky assets A_1 and A_2 with expected returns μ_1 and μ_2 respectively, Ω the corresponding covariance matrix. Derive the minimum variance point if their correlation lies in (-1,1). [5]

3. A portfolio P has three risky assets A_1 and A_2 and A_3 , with expected returns 2% and 3% and 4% respectively. Short selling is allowed. The investor wants to invest Rs 10000 in this portfolio. Given that $\sigma_{12} = \sigma_{13} = 0.1$, $\sigma_{23} = 0.2$, $\sigma_1^2 = 0.3$, $\sigma_2^2 = 0.4$, $\sigma_3^2 = 0.3$.

Using KKT optimality conditions find the amount of investment in these assets at minimum variance point if the investor wants to achieve exactly 4% return of the portfolio.

- 4. Construct the Markowitz model for the portfolio P with data from Question 3 if the investor wants to achieve an expected return between 3% to 4%. Convert this model to a linear programming problem with a restricted basis using KKT optimality conditions.
- 5. Suppose the investor wants to add a risk-free asset A_f with fixed return 3% in the portfolio P of Question 3 and the investor wants to invest a total of Rs 20000/ in the new portfolio (A_1, A_2, A_3, A_f) , out of which 80% will be invested in A_1, A_2, A_3 and the rest part will be invested in A_f . In this case, determine (do not derive the theory)
 - (a) equation of the capital market line,
 - (b) market portfolio,
 - (c) amount of investment in each risky asset at market point,
 - (d) equation of security market line and the Beta ratio of each risky asset,
 - (e) maximum Sharpe ratio.

[2+2+2+2+2]

[5]

[5]