H1 Probe Design Documentation

Jiahao Huang

Find shortest isoform for each gene in CCDS and Whole transcriptome dataset

- 1. Download corresponding FASTA files from NCBI FTP website
 - Human(H_sapiens) -- CCDS / Whole transcriptome
 - Mouse(M_musculus) -- <u>CCDS</u> / <u>Whole transcriptome</u>
 - Marmosets -- GCF_000004665.1_Callithrix_jacchus-3.2_rna.fna.gz
- 2. Find the shortest isoform for each gene
 - find_shortest_isoforms_ccds.R
 - find_shortest_isoforms_rna.R
 - find_shortest_isoforms_rna_marmosets.R (for marmosets only)
- 3. Output
 - H_sapiens_ccds_shortest_isoforms_10_21_19.fa
 - H_sapiens_rna_shortest_isoforms_10_21_19.fa
 - M_musculus_ccds_shortest_isoforms_10_21_19.fa
 - M_musculus_rna_shortest_isoforms_10_21_19.fa
 - Marmosets_rna_shortest_isoforms_10_21_19.fa

H2 PICKY 2.0

- 1. Input target sequence is each output FASTA file from last step (*load single file for each computation round*)
- 2. Parameters wt/ alternatives
 - Maximum oligo size: 46
 - Minimum oligo size: 40
 - Maximum GC content: 70
 - Minimum GC content: 30
 - Number of probes per gene: 5
 - Salt Concentration (milliM): 300
- 3. Parameters w/ alternatives
 - 1. [Maximum match length: 15 / Minimum match length: 10]
 - 2. [Maximum match length: 18 / Minimum match length: 15]
 - 3. [Maximum match length: 20 / Minimum match length: 15]
- 4. Output (for each species)

- Species_ccds_max_min.picky (ie. H_sapiens_ccds_15_10.picky)
- Species_rna_max_min.picky (ie. Marmosets_rna_15_10.picky)

noted that Marmosets does not have CCDS dataset

H2 Filtration w/ Python scripts & BBmap (Dedupe.sh)

- 1. probe_test_multi.py
 - Input should be a folder containning all the .pciky files of each species
 - This script will first parse each .picky file based on the following order

CCDS Max: 15 Min: 10 #1	RNA Max: 15 Min: 10 #2
CCDS Max: 18 Min: 15 #3	RNA Max: 18 Min: 15 #4
CCDS Max: 20 Min: 15 #5	RNA Max: 20 Min: 15 #6

- Then drop all duplicated records (will keep first one)
- Remove all the records with ReverseComplement field containing continous single nucleotide sequence longer than 5bp (ie. 'CCCC')
- Output (for each species)
 - a log.txt file with all script running info
 - a .fa file with all probes
 - a .fq file with all probes
 - a .xlsx file with all probe records

2. dedupe.sh in=path/to/.fa out=out.fa outd=dup.fa s=1 k=20 sort=id

- This script tool from BBmap will identify duplicated probes (in this case, two probes are complementary with each other), containment probes (probe pairs where shorter one has a full length exact match with the longer one), and overlaps (in this case, minimum length of overlap is 20bp)
- In this step, every duplicated or containment probes will be stored in the dup.fa file
- 3. dedupe.sh in=path/to/.fa pattern=clust/cluster_%.fa fo c pto pc cc s=1 k=20 mo=20 mcs=2
 - This step will generate a cluster_%.fa file for each probe set containing overlap sequence longer than 20bp
- 4. rm_overlap.py
 - Using all the cluster_%.fa files and dup.fa file to filter the .xlsx file which contains all the probe records

- Because the probes in the original file are ordered based on their source/quality, in each overlap cluster we will keep the one with smallest index
- Output (for each species)
 - Species_filtered_probe.xlsx

5. head_3.py

- Pick first **3** probes for each gene in previous table
- Output (for each species)
 - Species_filtered_probe_head3.xlsx