Data Structures and Advanced Programming

Fu-Yin Cherng National Taiwan University

Balanced Search Tree

Outline

- □ Red-Black Trees
- □ AVL Trees

Red-Black Trees

- □ A 2-3-4 tree requires more storage than a binary search tree
- Use special binary search tree to represent a 2-3-4 tree
 - retains the advantages of a 2-3-4 tree
 - without the storage overhead
- □ How?
 - split 2-nodes from 3- or 4-nodes (insertion of 2-3-4 tree)

Red and Black Pointer

- to distinguish between original 2-nodes & 2-nodes generated from 3- and 4-nodes
- red & black child pointers
 - black: link the original 2-nodes
 - red: link the 2-nodes that now contain the values that were in a 3-node or a 4-node.

2-node generated from 4-node

Red and Black Pointer

- 2 possible way to represent a 3-node as a binary tree
- a red-black representation of a 2-3-4 tree is not unique

2-3-4 tree

A red-black tree that represents the 2-3-4 tree

2-3-4 tree

A red-black tree that represents the 2-3-4 tree

2-3-4 tree

A red-black tree that represents the 2-3-4 tree

2-3-4 tree

A red-black tree that represents the 2-3-4 tree

2-3-4 tree

A red-black tree that represents the 2-3-4 tree

2-3-4 tree

A red-black tree that represents the 2-3-4 tree

A node in red-black tree

 Although need to store pointer colors, red-black node still require less storage than a node in 2-3-4 tree

```
enum Color {RED, BLACK};

template<class ItemType>
class RedBlackNode : public BinaryNode<ItemType>{
    private:
        Color leftColor, rightColor;

    public:
        ...
}
```

Red-black tree: colored pointer or node?

- this textbook introduces red-black tree as the tree with colored pointer
- but if searching online (e.g., wiki), most tutorial introduce red-black tree as the tree with colored node
- \square Basically the same, the node with red pointer is the red node

Searching and Traversing a Red-Black Tree

- A red-black tree is a binary search tree
- Just use the search and traversal algorithms for a binary search tree (see previous video and slides)
- simply ignore the color of pointer

Insertion of Red-black Tree

- a red-black tree actually represents a 2-3-4 tree
- just need to some adjustment
- For inseration
 - For 2-3-4 tree, split 4-node when encountered it
 - For red-black tree,
 - □ identify 4-node by checking color of pointer (2 red pointers)
 - change color of pointers

For inseration, split 4-node with 2-node parent

P M P e S M L a b c d a b c d 2-3-4 tree: split 4-node

*M move up to parent <P>, so here is the 2-node representation of 3-node <M P> in red-black tree

For inseration, split 4-node with 3-node parent

?

red-black tree: split 4-node

2 kinds of representation of 3-node parent <P Q>

or

2 kinds of representation of 3-node parent <P Q>

- Why and How to do rotation?
 - Why: fix the structure and follow the rules of red-black tree
 - a node with red pointer to parent cannot have red pointer to child
- How? There are many online tutorial of how to do rotation for red-black tree (example)
 - left, right, right-left... rotation
 - can still try to learn these rules if you like
- But, as we know the rules of 4-nodes from 2-3-4 tree, we can apply it to understand rotation!

 split 4-node <S M L>: move up Middle value and split the Small and Large

split <S M L>
Move up M ans split S
and L (change color)

split 4-node <S M L>: move up Middle value and split the
 Small and Large

split <S M L>
Move up M ans split S
and L (change color)

after moved up M, the <M P Q> violate the rules and 2-node representation for 4-node in red-black tree

split 4-node <S M L>: move up Middle value and split the Small and Large

split <S M L> Move up M ans split S and L (change color)

after moved up M, the <M P Q> violate the rules and 2-node representation for 4-node in red-black tree change <M P Q> back to 4-node, and then follow rules and change to 2-node representation again

split 4-node <S M L>: move up Middle value and split the Small and Large

split <S M L>
Move up M ans split S
and L (change color)

after moved up M, the <M P Q> violate the rules and 2-node representation for 4-node in red-black tree change <M P Q> back to 4-node, and then follow rules and change to 2-node representation again

- other possibilities with different orders among M, P, Q
- □ please try by yourself to complete splitting 4-node <S M L> in red-black tree

Insertion and Removal of Red-black Tree

- since we split 4-node when searching location to sert new value
- we only need to insert new value to the leaf node by using the red point

□ This textbook

- didn't cover much more about insertion and removal of red-black tree (use similar methods from 2-3-4 tree)
- focus on transformation between 2-3-4 and red-black tree, and how to split 4-node in red-balck tree

Advantage of red-black tree

- insertion and removal operation often require only color changes
- more efficient than the same operations on a 2-3-4 tree

Other resources of red-black tree

- https://en.wikipedia.org/wiki/Red%E2%80%93black_tre
 e
- https://medium.com/swlh/red-black-tree-rotations-and-c olor-flips-10e87f72b142
- interactive website of red-black tree:
 https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
 .html

AVL Tree

- inventor: Adel'son-Vel'skii and Landis (invented in 1962)
- is a balanced binary search tree
- the heights of left and right subtree of any node differ by no more than 1
- as efficient as minimum-height binary search tree
- simply introduce the notion of AVL tree

AVL Tree

- □ How to rearrange binary search tree to get minimum possible height \(\Gamma\) log2(n + 1) \(\Gamma\) (n: node numbers)?
 - save tree's value to file and then construct from the same value to new tree of minimum height
 - but, too costly if rebuilding tree every time when an insertion or removal makes tree unbalanced!
- AVL algorithm is a compromise

AVL Algorithm

- Goal: maintains a binary search tree with a height close to the minimum
 - less work than keeping the height equal to minimum
- Basic Strategy
 - monitor the shape of the binary search tree
 - after each insertion or deletion, check the if the tree is still an AVL tree
 - check if any node has left and right subtrees whose heights differ more than 1

AVL Algorithm: example

after a sequence of insertion and removals, get this binary search tree

AVL Algorithm: example

after a sequence of insertion and removals, get this binary search tree

rearrange to restore balance and keep the ordering property

AVL Algorithm: example

after a sequence of insertion and removals, get this binary search tree

rearrange to restore balance and keep the ordering property

insert <40>, but still a legit AVL tree, so no need for rotation

- compute balance factor of a AVL tree to see if rotation is needed
- AVL tree allow the absolute value of balance factor up to 1

```
Balance Factor = height(right subtree) - height(left subtree)
```

- compute balance factor of a AVL tree to see if rotation is needed
- AVL tree allow the absolute value of balance factor up to 1

```
Balance Factor = height(right subtree) - height(left subtree)
```

balance factor of each node in previous example

- compute balance factor of a AVL tree to see if rotation is needed
- AVL tree allow the absolute value of balance factor up to 1

```
Balance Factor = height(right subtree) - height(left subtree)
```


- compute balance factor of a AVL tree to see if rotation is needed
- AVL tree allow the absolute value of balance factor up to 1

Balance Factor = height(right subtree) - height(left subtree)

- compute balance factor of a AVL tree to see if rotation is needed
- AVL tree allow the absolute value of balance factor up to 1

Balance Factor = height(right subtree) - height(left subtree)

AVL Algorithm: Single Rotation

right rotation

left rotation

Left-Right Rotation

<30> is a unbalanced node

first perform left rotation on left subtree of <30>

Left-Right Rotation

Left-Right Rotation

Right-left Rotation

<10> is a unbalanced node

first perform right rotation on right subtree of <30>

Right-left Rotation

Right-left Rotation

Summary of AVL Tree

- □ height of AVL tree always be very close to the theoretical minimum of [log2(n + 1)] (n: node numbers)
- more difficult to implement compare to 2-3-4 or red-black tree
- knowing how to count balance factor and perform different rotations to get a new balanced tree