Baye's Theoriem

Find Probability of event A Given that B even has already occured,

$$P(AIB) = \frac{P(AIB)}{P(B)} - 0$$

Giventhat
$$P(B|A) = \frac{P(B|A)}{P(A)}$$

From Dand (1)

Bayes Theonem

$$P(A1B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Naive Bages

P(91x,...xn)

 $= \frac{P(x_{1}|y) p(x_{2}|y) \dots p(x_{n}|y) \times Py}{P(x_{1}) p(x_{2}) \dots p(x_{n})}$

= (01A)9 =

(Hypothisis)

Red = R Sports = Sp

Su = SUV I = Imponted D = Domestic Y=Yellow

		1 -121000		
40	alolon XI	TypeXL	Onigin	stoleng
_1	so Red Bris	Sports	D Noob	lyes
2	R	Sp	D	No
4	(Rrist)	Spl	Dala	Yes
5	Yellow	Sp	D	No
6	Y .	Sp	I	yes
7	Y	SUV	I	No
8	Y	SU	1	Yes
5	R	SU	D	00
10	R	Sp	エ	40
			I	Yes

Prequist

- .: Each Feature must Independent
- .. all Feature must contribute Equally

troge 3907

100

Hene (8)

Now Find if can has teatone Red, SUV and domenstic. Is it stolen on not?

Ans:-Step-1 F neavency and likelihood table's of color

thequency Table		Stolen		Likelihood Table		8	stolen		
			Yes	40				P(Yes)	P(NO)
	0	Red	3	2	\rightarrow	100	Red	3/5	215
colo		Yellow	2	3		-colon	Yellow	2 3	3/5

	Yes = 5] cane dividing we are dividing						
	step-3	Frequence	en Table	+ Li	kelihood Fon Type	Table	oles
		Yes	110			P(Yes)	b(ue)
Type	Spont	4	2	7	spont	4/5	2/5
	SUV	1.	3		SUV	1 ×	3/5

Step-3	Frequency	51	Lillihood Table	onigin
--------	-----------	----	-----------------	--------

700 00	Stolen			
noton	Yes	И0		
Domestic	2	3		
Imponfed	3	2		
Prvs) pr				

origin

P(Yes)	P(NO)
215	315
3/5	2/5
	3/5

Now

Snelote = L

stenemob stolen

From Table's Found

$$P(Red | Yes) = 31s$$

$$P(SUV | Yes) = 1/5$$

$$P(suv | Yes) = 1/5$$

$$P(comestic) = 21s$$

$$P(yes) = \frac{5}{16} = .5$$

Naive Bages Formula

$$V_{NB}(y) = V_{NB} = \underset{\times}{angmaxy} P(y) \prod_{i=1}^{n} P(x_i|y)$$

$$P(y_1 \times 1 \dots \times n) = \underset{\times}{angmaxy} P(y) \prod_{i=1}^{n} P(x_i|y)$$

$$P(yes|X) = P(yes) \times P(Red|yes) \times P(suv|yes)$$

 $\times P(Domenstic|yes)$

Probability of can is not stolen

P(NO | Red, sov, Domenstic)

... Probability of stolen yes if can is Red, sur and domenstic = 0.24

$$P(NO) = 3/5$$
 $P(SUVINO) = 3/5$
 $P(NO) = 3/5$
 $P(NO) = 3/5$
 $P(NO) = 3/5$

P(NO | Red, SUV, Domenstic)

= (0x 1x1E) 91

Probabibility of can is not stolen if Red, sov. pomenstic = 0.072

· Probability of stolen yes if can is Red

P(No | Red, SUV, Domenstic) > P(Jes | Red, SUV Domenstic)

if we get this situation like in Proequency .. if can is Red, suv, Domenstic

.: can is not stolen

Problem of Naive Bages

Zeno Frequency problem

suppose if p (Red INO) = 0

then P(NO I Red, SUV, Domenstic)

30110m 120 = 3th =

#How to solve Zeno frequency Problem

if we get this situation like in Frequency Table

	Yes	No
Red	O ***	3 !
Jellow	2	3

Solution: - increase all value by 1 to moldon?

and get nid of o

0 =	yes	9 100
Red	0+1 = 1	3+1=3
gellow	2+1 = 3	3+1 = 4

hen