ECE368: Probabilistic Reasoning

Aman Bhargava

January-April 2021

Contents

	0.1	Introduction and Course Information	1
1	Rev	view Topics Review of Probability Functions	2 2
	$1.1 \\ 1.2$	Expectation, Correlation, and Independence	3
	1.3	Laws of Large Numbers	4
2	Par	ameter Estimation	5
	2.1	Estimation Terminology	5
	2.2	Maximum Likelihood Estimation	5
	2.3	Frequentist vs. Bayesian Statistics	6
	2.4	Maximum a Posteri Estimation (MAP)	6
		2.4.1 Picking a Prior Distribution	7
	2.5	Conditional Expectation Estimator	7
	2.6	Bayesian Least Mean Square Estimator (LMS)	8
	2.7	LMS with Observations	8
0	.1	Introduction and Course Information	
\mathbf{C}	ourse	e Information	
	• P	rofessors: Prof. Saeideh Parsaei Fard and Prof. Foad Sohrabi	
	• C	ourse: Engineering Science, Machine Intelligence Option	
	• Te	erm: 2021 Winter	
M	ain (Course Topics	
	• Ve	ector, temporal, and spatial models.	
	• C	lassification and regression model training.	

 \bullet Bayesian statistics, frequent ist statistics.

Chapter 1

Review Topics

See ECE286 notes for further reference

1.1 Review of Probability Functions

Probability Mass Function: For discrete random variables, $P_X(x)$ denotes the probability that random variable X takes on value x.

Probability Density Function: For continuous random variables, the probability $\Pr\{X \in [x_1, x_2]\}$ is given by $\int_{x_1}^{x_2} f_X(x) dx$. Joint PMF's and PDF's are similarly defined.

Marginal Probability Distributions: Given joing PMF $P_{X,Y}(x,y)$ or PDF $f_{X,Y}(x,y)$, we can marginalize them as follows:

$$P_X(x) = \sum_{y \in Y} P_{X,Y}(x,y)$$
 (1.1)

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$
 (1.2)

Conditional Probability Functions:

$$P_{Y|X}(y,x) = \frac{P_{X,Y}(x,y)}{P_X(x)}$$
 (1.3)

Prior Probability: Probability **before** an additional observation is made (hence prior). Example: $P_X(x)$.

Posterior Probability: Probability **after** an observation is made (hence posterior). Example: $P_{X|Y}(x,y)$.

Bayes Rule:

$$P(B|A) = P(A|B)\frac{P(B)}{P(A)}$$
(1.4)

1.2 Expectation, Correlation, and Independence

Expectation Value: $\mathbb{E}[x] = \sum_{x \in X} P_X(x) = \int_{-\infty}^{\infty} x f_X(x) dx$

Law or Large Numbers: $\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^N x_i = \mathbb{E}[X]$

Variance:

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[x])^2]$$

$$= \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
(1.5)

Covariance:

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

$$= \mathbb{E}_{XY}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
(1.6)

Correlation Coefficient:

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)}\sqrt{\text{Var}(Y)}}$$
(1.7)

- $\bullet \ \rho_{XY} \in [-1,1]$
- $\rho > 0$ indicates positive correlation (line of best fit has positive slope).
- $\rho < 0$ indicates negative correlation.
- $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ iff X, Y are uncorrelated.

Independence

Theorem 1 Independence Random variables X, Y are independent iff

$$P_{XY}(x,y) = P_X(x) \cdot P_Y(y) \tag{1.8}$$

This also means that $\rho_{XY} = 0$, P(X|Y) = P(X), etc.

1.3 Laws of Large Numbers

Weak Law: Sample mean converges to the mean.

Strong Law: If $\{x_i\}$ are independent, identically distributed (i.i.d.) random variables with mean μ , then the **probability of** the sample mean $= \mu$ is 1 as $n \to \infty$.

Chapter 2

Parameter Estimation

2.1 Estimation Terminology

- $\hat{\theta}_n$ is an **estimator** of some unknown parameter θ .
- Estimation Error: $\hat{\theta}_n \theta$
- Bias of estimator: $\mathbb{E}[\hat{\theta}_n] \theta$
 - **Unbiased** estimator: Bias= $0 = \mathbb{E}[\hat{\theta}_n] \theta$.
 - Asymptotically Unbiased: $\lim_{n\to\infty} \mathbb{E}[\hat{\theta}_n] = \theta$ for all θ .
- Consistency: Estimator is consistent if $\lim_{n\to\infty} \hat{\theta}_n = \theta$.

2.2 Maximum Likelihood Estimation

Framing: Let random variable $\vec{X} = [X_1, X_2, ..., X_n]$ be defined by either

- 1. Joint PMF $P_{\vec{X}}(\vec{x}; \theta)$
- 2. Joint PDF $f_{\vec{X}}(\vec{x}; \theta)$

 \vec{x} is a series of measurements.

Maximum Likelihood Estimation: The ML estimate of model parameter θ is

$$\hat{\theta}_n = \operatorname{argmax}_{\theta} P_{\vec{X}}(\vec{x}; \theta) \tag{2.1}$$

Independent, identically distributed case: If each $x_i \in \vec{x}$ are independent and identically distributed, then

$$P_{\vec{X}}(\vec{x};\theta) = \prod_{i=1}^{n} P_X(x_i;\theta)$$
(2.2)

Which we can convert to a summation by taking the **log-likelihood** (recall that logarithm is monotonically increasing, so maximizing log-likelihood is equialent to maximizing likelihood).

$$\hat{\theta}_n = \arg\max_{\theta} \left(\sum_{i=1}^n \log P_X(x_i; \theta) \right) \tag{2.3}$$

2.3 Frequentist vs. Bayesian Statistics

Frequentist: In **classical statistics**, probability is taken to be approximately equal to the **frequency of events**. Model parameters are assumed to have some deterministic, fixed value (even though they might be unknown).

Bayesian Statistics: Model parameters are treated as random variables with their own distributions.

- Generally the more modern approach.
- We are most interested in the **joint probability distribution** of model parameters and model arguments (e.g., $f_x(x, \theta)$).
- Main criticism: probabilities are assigned to unrepeatable events (arguably violates the definition of probability as the limit of event frequency).

2.4 Maximum a Posteri Estimation (MAP)

$$\hat{\theta}_{map} = \arg \max_{\theta} f_{\theta|x}(\theta|x)$$

$$= \arg \max_{\theta} f_{X|\theta}(x|\theta) \frac{f_{\theta}(\theta)}{f_{X}(x)}$$
(2.4)

Where $f_{\theta}(\theta)$ is the **prior distribution** of model parameter.

• If $f_{\theta}(\theta)$ is uniform, we will still get the same answer as a **maximum** likelihood estimation.

2.4.1 Picking a Prior Distribution

Best Practice: Pick a distribution of the same form as $f_{X|\theta}(x|\theta)$ (called "conjugate pair").

Beta Distribution: Used for binomial distribution.

• Binomial distribution:

$$P_{X=k|\theta} = \binom{n}{k} \theta^k (1-\theta)^{n-k} \tag{2.5}$$

where

 $-\theta$: Probability of success on each Bernoulli trial.

-n: Total number of trials.

-k: Total number of successful trials.

• Beta Distribution:

$$f_{\theta}(\theta; \alpha, \beta) = \begin{cases} c\theta^{\alpha - 1} (1 - \theta)^{\beta - 1} & \text{for } \theta \in [0, 1] \\ 0 & \text{else} \end{cases}$$
 (2.6)

Where

 $-\alpha, \beta$ are customizable parameters.

$$-c = [\Gamma(\alpha + \beta)]/[\Gamma(\alpha)\Gamma(\beta)]$$

$$-\Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} du$$

$$-\Gamma(x+1) = x\Gamma(x)$$
 for all $x \in \mathbb{R}$.

$$-\Gamma(n+1) = n!$$
 for integer n .

$$- : c = \frac{(\alpha+\beta-1)!}{(\alpha-1)!(\beta-1)!}$$
 for integer α, β .

$$-\mu_f = \mathbb{E}[f_\theta(\theta)] = \frac{\alpha}{\alpha + \beta}$$

– Maximum likelihood $\arg \max_{\theta} f_{\theta}(\theta) = \frac{\alpha - 1}{\alpha + \beta - 2}$

2.5 Conditional Expectation Estimator

Key Idea: Find the **expected value** for the estimator given your observations.

$$\hat{\theta}_{conditional expectation} = \mathbb{E}[\theta | \vec{X} = \vec{x}] = \int_{-\infty}^{\infty} \theta f_{\theta | \vec{x}}(\theta | \vec{x})$$
 (2.7)

2.6 Bayesian Least Mean Square Estimator (LMS)

Key Idea: To estimate random variable model parameter θ , we find

$$\hat{\theta}_{LMS} = \arg\min_{\hat{\theta}} \mathbb{E}[(\theta - \hat{\theta})^2]$$
 (2.8)

- $\hat{\theta}_{LMS} = \mathbb{E}[\theta]$ achieves the goal.
- Equivalently: We can also find

$$\hat{\theta}_{LMS} = \arg\min_{\hat{\theta}} (\mathbb{E}[\theta - \hat{\theta}])^2$$
 (2.9)

2.7 LMS with Observations

...