Homework 3 problem 6, presentation

January 2023

- 1. Prove the following statements.
 - (a) If $a \in \mathbb{Z}_n$ is a unit, then a is not a divisor of zero.

Let a be a unit of \mathbb{Z}_n , and assume a is a divisor of zero.

Because a is a unit there exists $b \in \mathbb{Z}_n$ such that ab = 1. And because a is a divisor of zero there exists $c \in \mathbb{Z}_n$ such that ac = 0 where $c \neq 0$.

$$[0] = [0 * b]$$

$$0 = b(ac)$$

$$0 = (ba)c$$

$$0 = (1)c$$

$$0 = c$$

Which is a contradiction. Therefore, a is not a divisor of zero.

(b) If $a \in \mathbb{Z}_n$ is not a divisor of zero, then a is a unit.

Contrapositive of the previous statement. If a is not a unit, then a is a divisor of zero.

If a is not a unit of \mathbb{Z}_n , then $gcd(a, n) = k \neq 1$.

Then let
$$c = \frac{n}{k}$$
, $c \in \mathbb{Z}$, and so $0 < c < n$ and $b \in \mathbb{Z}_n$.

$$ac = a(\frac{n}{k}) = (\frac{a}{k})n$$

Since $k \mid a$, ac is equal to an integer times n Therefore ac = 0. Meaning a is a divisor of zero.

Because the contrapositive is true, the original statement is true.