MA 562 - Introduction to Differential Geometry and Topology Introduction to Smooth Manifolds by John M. Lee

Student: Ralph Razzouk

Homework 3

Problem 3-1

Suppose M and N are smooth manifolds with or without boundary, and $F: M \to N$ is a smooth map. Show that $\mathrm{d}F_p: T_pM \to T_{F(p)}N$ is the zero map for each $p \in M$ if and only if F is constant on each component of M.

Solution. \implies Suppose $dF_p: T_pM \to T_{F(p)}N$ is the zero map for each $p \in M$. We need to show that the anti-derivative is constant on each component of M. The coordinate representation of a function can be taken as the total derivative, which means all the partial derivatives are zero. If, for every $U \in M$ containing p, we have that the total derivative is zero, then its anti-derivative is going to be a constant, and that is for every point p and the small coordinate chart around p in the manifold. Since its constant around every coordinate chart around M then it will be constant around every component in M since connected components are path-connected components. Thus, F is constant on each component of M.

Employee that F is constant on each component of M. The derivative of F at p, by definition, only depends on F in a neighborhood of p, which means that dF_p will be the derivative of a constant for each component of M, which is zero. Thus, dF_p is the zero map for each $p \in M$.

Therefore, $dF_p: T_pM \to T_{F(p)}N$ is the zero map for each $p \in M$ if and only if F is constant on each component of M.

Problem 3-4

Show that $T\mathbb{S}^1$ is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$.

Solution. Take the tangent bundle $T\mathbb{S}^1$, which is the disjoint union of all the tangent spaces to the unit circle \mathbb{S}^1 . Take the rotation of each tangent space from $T\mathbb{S}^1$ to, say, $(T\mathbb{S}^1)'$, by $\frac{\pi}{2}$. The rotation applied is clearly a diffeomorphism, since the rotation of every coordinate chart, for every point p, is equivalent to just changing the representation of the variables. By definition of a tangent bundle, the tangent space to every point p on the manifold \mathbb{S}^1 is isomorphic to \mathbb{R} since it is one-dimensional. After rotating and equating every tangent space to \mathbb{R} , what we get is $\mathbb{S}^1 \times \mathbb{R}$. Geometrically, this is a cylinder of infinite height.

Therefore, $T\mathbb{S}^1$ is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$.

Problem 3-5

Let $\mathbb{S}^1 \subseteq \mathbb{R}^2$ be the unit circle, and let $K \subseteq \mathbb{R}^2$ be the boundary of the square of side 2 centered at the origin: $K = \{(x,y) : \max(|x|,|y|) = 1\}$. Show that there is a homeomorphism $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that $F(\mathbb{S}^1) = K$, but there is no diffeomorphism with the same property. [Hint: let γ be a smooth curve whose image lies in \mathbb{S}^1 , and consider the action of $dF(\gamma'(t))$ on the coordinate functions x and y.] (Used on p. 123.)

Solution. Consider the following figure

We define four curves $C_i \in \mathbb{S}^1 \subseteq \mathbb{R}^2$, for i=1,2,3,4, as follows

$$C_{1} = \left\{ (x,y) \mid |y| \le \frac{\sqrt{2}}{2} \text{ and } x = +\sqrt{1-y^{2}} \right\},$$

$$C_{2} = \left\{ (x,y) \mid |x| \le \frac{\sqrt{2}}{2} \text{ and } y = +\sqrt{1-x^{2}} \right\},$$

$$C_{3} = \left\{ (x,y) \mid |y| \le \frac{\sqrt{2}}{2} \text{ and } x = -\sqrt{1-y^{2}} \right\},$$

$$C_{4} = \left\{ (x,y) \mid |x| \le \frac{\sqrt{2}}{2} \text{ and } y = -\sqrt{1-x^{2}} \right\},$$

and the four sides of the square with side length 2 centered at the origin $K_i \in K \subseteq \mathbb{R}^2$, for i = 1, 2, 3, 4, as

$$K_1 = \{(1, y) \mid -1 \le y \le 1\},$$

$$K_2 = \{(x, 1) \mid -1 \le x \le 1\},$$

$$K_3 = \{(-1, y) \mid -1 \le y \le 1\},$$

$$K_4 = \{(x, -1) \mid -1 \le x \le 1\}.$$

We aim to find four functions that map each one of those arcs on \mathbb{S}^1 to their respective sides on the boundary of a square of side length 2 centered at the origin. We define our function F as

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x, y) \in C_i \mapsto F_i(x, y) \in K_i,$$

where

$$F_1(x,y) = \frac{\sqrt{x^2 + y^2}}{|x|}(x,y),$$

$$F_2(x,y) = \frac{\sqrt{x^2 + y^2}}{|y|}(x,y),$$

$$F_3(x,y) = -\frac{\sqrt{x^2 + y^2}}{|x|}(x,y),$$

$$F_4(x,y) = -\frac{\sqrt{x^2 + y^2}}{|y|}(x,y).$$

Notice that the four curves C_i trace out the entirety of \mathbb{S}^1 , *i.e.*

$$\bigcup_{i=1}^{4} C_i = \mathbb{S}^1,$$

and the four sides K_i trace out our square

$$\bigcup_{i=1}^{4} K_i = K.$$

By construction, we have that $F(\mathbb{S}^1) = K$. Since the four functions agree on their overlaps, then by the pasting lemma, we see that F is continuous on all the C_i 's. We now have to show that the inverse is also continuous. We define the inverse of the F_i 's as

$$\begin{split} F_1^{-1}(x,y) &= \frac{|x|}{\sqrt{x^2 + y^2}}(x,y), \\ F_2^{-1}(x,y) &= \frac{|y|}{\sqrt{x^2 + y^2}}(x,y), \\ F_3^{-1}(x,y) &= -\frac{|x|}{\sqrt{x^2 + y^2}}(x,y), \\ F_4^{-1}(x,y) &= -\frac{|y|}{\sqrt{x^2 + y^2}}(x,y). \end{split}$$

Likewise, we have that the functions F_i^{-1} are also continuous. Thus, there is a homeomorphism $F: \mathbb{R}^2 \to \mathbb{R}^2$ such that $F(\mathbb{S}^1) = K$.

We will show that there is no diffeomorphism with the property $F(\mathbb{S}^1) = K$ by contradiction. Suppose F is a diffeomorphism. Let γ be a smooth curve whose image lies in \mathbb{S}^1 , *i.e.*

$$\gamma: \mathbb{R} \to \mathbb{S}^1$$
.

Now, $\frac{d\gamma}{dt} \equiv \gamma'(t)$ will be a vector on \mathbb{S}^1 . Let $\gamma(t_0)$ be the point at which $F(\gamma(t_0)) = (1,1)$. Consider the action of $dF(\gamma'(t))$ to the coordinate function x. For $t < t_0$, $dF(\gamma'(t))x = 0$. For $t > t_0$, $dF(\gamma'(t))x =$ constant $\neq 0$. Thus, there was a discontinuous jump at $t = t_0$. But we know that F, γ , and the coordinate function x are smooth, and the action of a the derivative on a smooth function is smooth, then we have reached a contradiction.

Therefore, there is no diffeomorphism $F: \mathbb{R}^2 \to \mathbb{R}^2$ such that $F(\mathbb{S}^1) = K$.

Problem 3-8

Let M be a smooth manifold with or without boundary and $p \in M$. Let $\mathcal{V}_p M$ denote the set of equivalence classes of smooth curves starting at p under the relation $\gamma_1 \sim \gamma_2$ if $(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$ for every smooth real-valued function f defined in a neighborhood of p. Show that the map $\Psi : \mathcal{V}_p M \to T_p M$ defined by $\Psi[\gamma] = \gamma'(0)$ is well-defined and bijective. (Used on p. 72.)

Solution. Let

$$\Psi: \mathcal{V}_p M \to T_p M$$
$$[\gamma] \mapsto \gamma'(0).$$

Note that, by the derivative of the composition, we have $(f \circ \gamma)'(0) = df(\gamma(0))\gamma'(0) = \gamma'(0)f$.

• Well-defined:

Let $[\gamma_1] = [\gamma_2]$, then

$$(f \circ \gamma_1)'(0) = (f \circ \gamma_2)'(0)$$

 $\gamma'_1(0)f = \gamma'_2(0)f$
 $\gamma'_1(0) = \gamma'_2(0),$

since the action of a differential operator on f is equal to the action of another differential operator on f, for all f, then the differential operators must be the same.

Thus, $\gamma'_1(0) = \gamma'_2(0)$.

Therefore, $\Psi[\gamma_1] = \Psi[\gamma_2]$ and Ψ is well-defined.

• Bijective:

- **Injective:** Let $\Psi[\gamma_1] = \Psi[\gamma_2]$. Then, $\gamma'_1(0) = \gamma'_2(0)$, and we can apply both to the same function f, and, by definition, we will get the same value. We have

$$\gamma'_{1}(0)f = \gamma'_{2}(0)f$$

 $(f \circ \gamma_{1})'(0) = (f \circ \gamma_{2})'(0),$

and by the definition of the equivalence relation on γ , we have that $\gamma_1 \sim \gamma_2$, *i.e.* $[\gamma_1] = [\gamma_2]$. Thus, Ψ is injective.

- Surjective: We need to show that, for all $v \in T_pM$, there exists $\gamma_v \in \mathcal{V}_pM$ such that $\Psi[\gamma_v] = v$. Let $\gamma_v \in \mathcal{V}_pM$ such that $\gamma_v(0) = p$ and $\gamma_v'(0) = v$. The curve γ_v has an equivalence class, and the image of the equivalence under the map Ψ is equal to $\gamma_v'(0)$, which is v. Thus, Ψ is surjective.

Therefore, Ψ is bijective.

Therefore, Ψ is dijective