Branch- and-bound

W 2 5 10 5 P 40 30 50 [10]

2.10.2017

Knapsack problem

N=4 W=16

item	profit	weight	Pi/wi
1	\$40	2	\$20
2	\$ 30	5.	\$6
3	\$50	\0:	\$5
4	\$10	5	\$ 2

-assume that the items are sorted in decreasing order of Pi/wi - for each node in the search tree:

(weight - total weight of the items selected so far profit - total profit of the items selected so for

bound-function which computes an upperbound of the profit that can be obtained with this partial solution maxprofit - best profit so for

-if bound < maxprofit, then the node is nonpromising

How do we compute the bound?

Assume that (- current node is at level i - item k would bring the weight above W

Knapsack with BreadthFS w/ Branch-and-Bound pruning (n,p[],w[],W,maxprofit)

$$Q = \emptyset$$

r.level = 0; r.profit = 0; r.weight = 0

maxprofit = 0

ENQUEUE(Q,r)

while Q ≠ Ø

v = DEQUEUE(Q)

u.level = v.level +1

u.weight = v.weight + w[u.level]

u.profit = v.profit + p[u.level]

if (u.weight ≤ W and u.profit > maxprofit)

maxprofit = u.profit

if bound(u) > maxprofit

ENQUEUE(Q,u)

u.weight = v.weight

u.profit = v.profit

if bound(u) > maxprofit

ENQUEUE(Q,u)

level i stemi

-set u as the child of v that includes the next item

set u as the child of v that does not include the next item

RT analysis

The number of nodes is: $\frac{1}{2}$ geometric series

The number of nodes is: $\frac{1}{2}$ $\frac{1}{$

Total RT = O(n.2")

max-priority gueue -implemented using a max-heap CLRS chapter 6.5 page 162

· insert() and remove() operations take O(gn) for an n-element queue

example

Max-heap

2
40
30
45
28
5
7

max-heap => height= (gn)

A = 50 45 30 15 40 5 7 6 10 9 28

A= 45 40 30 15 28 5 7 6 10 9

$$RT = O(n \cdot 2^n)$$

Solution = (item, item 3)

3