ESE536/CSE626 Switching and Routing in Parallel and Distributed Systems

Assignment 1

Handed out: January 30, 2022 Due: February 13, 2022

- 1. Given $n/\log n$ processors, design an algorithm to find the maximum of n numbers in $O(\log n)$ time on an EREW-PRAM model. Assume that initially each shared memory location holds one input value. Give necessary explanation and analysis.
- 2. Given n processors and assume that initially each shared memory location $M(i)(1 \le i \le n)$ holds an input value a_i . Design an $O(\log n)$ time algorithm on a CREW-PRAM model such that at the end of the algorithm, $M(i) = \sum_{k=1}^{i} a_k$. Give necessary explanation and analysis.
- 3. Design an algorithm on a CRCW-PRAM model for fast multiplication of two $n \times n$ matrices for the following cases:
 - (a) The number of processors P(n) = n and the time complexity of the algorithm $T(n) = O(n^2)$.
 - (b) The number of processors $P(n) = n^2$ and the time complexity of the algorithm T(n) = O(n).

Give necessary explanation and analysis.

4. Prove that the best parallel algorithm written for an n- processor EREW-PRAM model can be no more than $O(\log n)$ times slower than any algorithm for a CRCW model of PRAM having the same number of processors.