Assignment 2

September 12, 2022

Let A be a non-empty set of real numbers. Then the set A is countable iff there exists a one-to-one function $f:A\to N$ (not necessarily onto!).

- 1. The set of integers \mathbb{Z} is a countable set.
- 2. The set of rational numbers \mathbb{Q} is countable.
- 3. The set of real numbers is uncountable.
- 4. Prove that $\lim_{n\to\infty} \frac{b}{n^2} = 0$ for any rel number b.
- 5. Prove that $\lim_{n\to\infty} (\sqrt{n+1} \sqrt{n}) = 0$.
- 6. If $\lim_{n\to\infty} x_n = x > 0$, show that there exists a natural number k such that if $n \ge k$, then $\frac{x}{2} < x_n < 2x$.
- 7. Let $\{x_n\}$ be a sequence of real numbers and let $x \in \mathbb{R}$. If $\{a_n\}$ is a sequence of positive real numbers with $\lim_{n\to\infty} a_n = 0$ and if for some constant C > 0 and some $m \in \mathbb{N}$ we have

$$|x_n - x| < Ca_n \ \forall \ n \ge m$$

then it follows that $\lim_{n\to\infty} x_n = x$.

8. If c > 0, then $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$.

_