	rês tipos de vírus diferentes (A, B, C e seu		nete a espécie humana há milênios, com alguns dos primeiros registros de uma epic os sintomas a depender do tipo de vírus infectado e de sua carga viral.
Modelagem Para modelar a Influenza, usaremos de frequência em épocas de inverno, quan	base o modelo SIR (Suscetível, Infectado, do por diminuição da temperatura, uma i	, Removido), com algumas alterações. A primeira maior quantidade de poluição e patógenos se as na tradicional variável de transmissão, eta , que co	a todas as idades, apesar de perder eficiência em idosos. alteração levará em conta a sazonalidade do vírus, que tende a incidir com maior essentam perto da superfície, causando queda de imunidade e problemas respiratórientará com um comportamento gaussiano periódico do seguinte formato:
Sendo cada parâmetro: • B : Amplitude da transmissão • C : Rapidez da transmissão • ω : Frequência anual • ϕ : Estado inicial da transmissão • D : Valor base de transmissão		$eta(t) = Be^{-Csen(\omega t + \phi)^2} + D$	
<pre>import numpy as np import matplotlib.pyplot as plt def beta(t, b, c, d, omega, offset return b*np.exp(-c*(np.sin(ome T = 3*np.pi Tn = np.linspace(0.0, T, 10000)</pre>			
<pre>plt.figure(figsize = (10, 5)) plt.ylim(0.0, 1.0) plt.plot(Tn, beta(Tn, 0.5, 4.0, 0.]: [<matplotlib.lines.line2d 0x21c="" 1.0<="" at="" pre=""></matplotlib.lines.line2d></pre>			
0.8 -			
0.2 - 0.0 2	4	6 8	
escapamento dos mesmos dos mecanis	ma taxa de perda de imunidade δ à popusmos de defesa anteriormente desenvolvides, o modelo SIR para a Influenza se torna	idos pelo corpo dos infectados. $\frac{dS(t)}{dt} = -\beta(t)SI + \delta R$	oossíveis mutações dos vírus, um fenômeno extremamente comum, que poderão lev
• S : Suscetíveis • I : Infectados		$rac{dI(t)}{dt} = eta(t)SI - \gamma I$ $rac{dR(t)}{dt} = \gamma I - \delta R$	
	dos a imunidade que estamos trabalhando com uma pop	oulação constante, ou seja $rac{dS(t)}{dt}+rac{dI(t)}{dt}+rac{dR(t)}{dt}$	=0, que se traduz em $S+I+R=N$.
Condição para Epidem Para que uma epidemia aconteça, $\frac{dI}{dt} >$	0, ou seja:	$eta(t)SI - \gamma I > 0$ $eta(t)SI > \gamma I$ $S > rac{\gamma}{eta(t)}$	
Pontos fixos e estabilio Para analisar os pontos fixos, devemos a		ões diferenciais são iguals a zero:	
Para $rac{dS(t)}{dt}$:		$egin{aligned} rac{dS(t)}{dt} &= -eta(t)SI + \delta R = 0 \ & rac{dI(t)}{dt} = eta(t)SI - \gamma I = 0 \ & rac{dR(t)}{dt} = \gamma I - \delta R = 0 \end{aligned}$	
		$egin{split} rac{dS(t)}{dt} &= -eta(t)SI + \delta R = 0 \ -eta(t)S^*I^* &= -\delta R^* \ S^* &= rac{\delta R^*}{eta(t)I^*} \end{split}$	
Para $\frac{dI(t)}{dt}$:		$rac{dI(t)}{dt}=eta(t)S^*I^*-\gamma I^*=0 \ (eta(t)S^*-\gamma)I^*=0$	
dt		$rac{dR(t)}{dt} = \gamma I - \delta R = 0$ $\delta R^* = \gamma I^*$ $R^* = rac{\gamma I^*}{\delta}$	
A resolução dessas três equações nos re $S^*=rac{\gamma}{eta(t)}$ • $(eta(t)S^*-\gamma)I^*=0$ • $R^*=rac{\gamma I^*}{\delta}$			
Sendo assim, encontramos dois pontos $1.~(S^*=\frac{\gamma}{\beta(t)},0,0)$ $2.~(S^*=\frac{\gamma}{\beta(t)},I^*,\frac{\gamma I^*}{\delta})$ Percebe-se que $S^*=\frac{\gamma}{\beta(t)}$ é um valor fi para qualquer valor de $I*$, $R=\frac{\gamma I^*}{\delta}$.		e equilíbrio possíveis. Com relação ao primeiro, t	temos $I^st=0$, portanto, não há espalhamento da doença. Já, no segundo, há equilí
<pre>Implementação Implementando as equações acima, obt : from scipy.integrate import odeint : def SIRt(y, t, beta, gamma, delta,</pre>			
Sn, In, Rn = y dS = - beta(t, *args)*Sn*In + dI = beta(t, *args)*Sn*In -gam dR = gamma*In - delta*Rn return dS, dI, dR	ma*In	om variação temporal.	lguns casos. Para o caso de
$ullet S_0=0.9 \ ullet I_0=0.1 \ ullet R_0=0.0 \ $ E demais parâmetros de $igl Beta(t)$: $ullet \gamma=0.19 \ ullet \delta=0.05 \ $			
• $\omega=\frac{2}{365}$ (Pico duas vezes por ano) • $b=0.5$ • $c=1.0$ • $d=0.1$ • $\phi=1.0$, Temos, nos primeiros 365 dias:			
]: S0 = 0.9 I0 = 0.1 R0 = 0.0 T = 365 y0 = S0, I0, R0 gamma = 0.19 delta = 0.05 omega = 2.0/365.0			
<pre>b = 0.5 c = 1.0 d = 0.1 offset = 1.0 Tn = np.linspace(0.0, T, 1000) r = odeint(SIRt, y0, Tn, args = (b) S, I, R = r.T</pre>	eta, gamma, delta, b, c, d, omega,	offset))	
<pre>]: plt.plot(Tn, S, label = "S") plt.plot(Tn, I, label = "I") plt.plot(Tn, R, label = "R") plt.xlabel("Dias") plt.ylabel("População") plt.grid() plt.legend() plt.show()</pre>			
0.8 0.6 0.0 0.0		- S - I - R	
0.4 0.2			
	150 200 250 300 3 Dias	350	
<pre>l: r = odeint(SIRt, y0, Tn, args = (b S, I, R = r.T l: plt.plot(Tn, S, label = "S") plt.plot(Tn, I, label = "I") plt.plot(Tn, R, label = "R") plt.xlabel("Dias") plt.ylabel("População")</pre>	eta, gamma, delta, b, c, d, omega,	offset))	
plt.grid() plt.legend() plt.show()		- S - I - R	
0.6 Obnlação 0.4 O.2			
	00 800 1000 1200 140 Dias erceber que o modelo com esses parâme	etros encontra certa estabilidade de comportame	ento após determinado tempo:
Pelo seu diagrama de fase, é possível per plt.plot(S, I) plt.xlabel("S") plt.ylabel("I") plt.show()	2.2.2 com esses parâme	2.2.2.maaue ue comportame	
0.16 - 0.14 - - _{0.12} -			
0.10 - 0.08 - 0.06 - 0.3 0.4 0.5	0.6 0.7 0.8 S	0.9	
Para a mesma distribuição inicial de pop S0 = 0.9 I0 = 0.1 R0 = 0.0 T = 1000 y0 = S0, I0, R0		transmissão $b=0.9$ e um valor base $d=0.3$, te	emos:
gamma = 0.19 delta = 0.05 omega = 2.0/365.0 b = 0.9 c = 1.0 d = 0.3 offset = 1.0			
<pre>Tn = np.linspace(0.0, T, 1000) 1: r = odeint(SIRt, y0, Tn, args = (b) S, I, R = r.T 1: plt.plot(Tn, S, label = "S") plt.plot(Tn, I, label = "I") plt.plot(Tn, R, label = "R") plt.xlabel("Dias")</pre>	eta, gamma, delta, b, c, d, omega,	offset))	
<pre>plt.xlabel("Dias") plt.ylabel("População") plt.grid() plt.legend() plt.show()</pre>		- S - I - R	
0.8			
0.6 Annação Propries de 10 de			
0.6 Oğumlarção 0.4 O.2 O.0	00 600 800 Dias	1000	
0.6 Oğumlar (200) 0.4 O.2 O.0		1000	
0.6 0.2 0.0 0.0 0.2 0.0 0.1 plt.plot(S, I) plt.xlabel("S") plt.ylabel("I") plt.show()		1000	