

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Primer Semestre de 2019

Tarea 4

Introducción a la Geometría Algebraica — MAT 2335 Fecha de Entrega: 2019/05/10

${\bf \acute{I}ndice}$

Problema 3.1	2
Problema 3.4	2
Problema 3.9	2
Problema 3.10	3
Problema 3.14	3
Problema 3.15	3
Problema 3.19	4
Problema 3.21	4
Problema 4.1	4
Problema 4.3	4
Problema 4.4	5
Problema 4.9	5
Problema 4.14	5
Problema 4.15	6
Problema 4.23	6
Problema 4.25	6
Problema 4.28	6

Notas

En esta tarea se usará la notación $\overline{a} = (a_1, \dots, a_n)$

Problema 3.1:

Prove that in the above examples P = (0,0) is the only multiple point on the curves C, D, E, and F.

Solución problema 3.1: Se recuerda que $C = \{(x,y) : y^2 - x^3 = 0\}, D = \{(x,y) : y^2 - x^3 - x^2 = 0\}, E = \{(x,y) : (x^2 + y^2)^2 + 3x^2y - y^3 = 0\}, F = \{(x,y) : (x^2 + y^2)^3 - 4x^2y^2 = 0\}.$ Luego se sabe que si la derivada respecto a y y la derivada respecto x es cero en un punto de la curva, entonces es un punto multiple. Viendo cada curva:

- C La derivada respecto a y es 2y, y respecto a x es $-3x^2$, claramente el único punto donde ambas son cero, es el (0,0).
- D La derivada respecto a y es 2y, y respecto a x es $-3x^2 2x$, claramente los puntos donde ambas son cero, son (0,0) y $(\sqrt{2/3},0)$, se nota que el segundo punto no está en la curva, por lo que se tiene lo pedido.
- E La derivada respecto a y es $4y(x^2+y^2)+3x^2-3y^2$, y respecto a x es $4x(x^2+y^2)+6xy$,
- F La derivada respecto a y es $6y(x^2+y^2)-8x^2y$, y respecto a x es $6x(x^2+y^2)-8xy^2$,

Problema 3.4:

Let P be a double point on a curve F. Show that P is a node if and only if $F_{xy}(P)^2 \neq F_{xx}(P)F_{yy}(P)$

Solución problema 3.4:

Problema 3.9:

Let $F \in k[x_1, \ldots, x_n]$ define a hypersurface $V(F) \subset \mathbb{A}^n$. Let $P \in \mathbb{A}^n$.

- (a) Define the multiplicity $m_P(F)$ of F at P.
- (b) If $m_P(F) = 1$, define the tangent hyperplane to F at P.
- (c) Examine $F = x^2 + y^2 z^2$, P = (0,0). Is it possible to define tangent hyperplanes at multiple points?

Solución problema 3.9:

- (a) Para definir la multiplicidad, primero se nota que F(P) = 0, donde F es el polinomio asociado. Por lo que si se aplica la traslación T(x) = x P, el $\overline{0}$ en la curva trasladada tendría la misma multiplicidad que P, además el polinomio correspondiente se puede escribir como suma de polinomios homogéneos. Dado esto, naturalmente se define la multiplicidad de P como el menor grado de los polinomios homogéneos de la curva trasladada.
- (b) Naturalmente se tiene que las rectas tangentes a F en P están bien definidas, por lo que estás abarcan todo el hiperplano tangente. Con lo que la definición sería la unión de todos las rectas tangentes en el punto.
- (c) Se nota que $m_{(0,0)}(F) = 2$, por lo que no hay un solo hiperplano tangente en el punto. Ahora, definir hiperplanos tangentes en múltiples puntos es imposible para el caso general, porque a priori no se puede saber si es que dado un punto P de F y un hiperplano tangente H en P, $\#F \cap H > 1$.

Problema 3.10:

Show that an irreducible plane curve has only finite number of multiple points. Is this true for hypersurfaces?

Solución problema 3.10:

Problema 3.14:

Let $V = V(x^2 - y^3, y^2 - z^3) \subset \mathbb{A}^3, P = (0, 0, 0), \mathfrak{m} = \mathfrak{m}_p(V)$. Find $\dim_k(\mathfrak{m}/\mathfrak{m}^2)$.

Solución problema 3.14:

Problema 3.15:

- (a) Let $\mathcal{O} = \mathcal{O}_P(\mathbb{A}^2)$ for some $p \in \mathbb{A}^2$, $\mathfrak{m} = \mathfrak{m}_P(\mathbb{A}^2)$. Calculate $\chi(n) = \dim_k(\mathcal{O}/\mathfrak{m}^n)$.
- (b) Let $\mathcal{O} = \mathcal{O}_P(\mathbb{A}^r(k))$. Show that $\chi(n)$ es a polynomial of degree r in n, with leading coefficient 1/r!.

Solución problema 3.15:

Problema 3.19:

A line L es tangent to a curve F at a point P if and only if $I(P, F \cap L) > m + P(F)$.

Solución problema 3.19:

Problema 3.21:

Let F be an affine plane curve. Let L be a line that is not a component of F. Suppose $L = \{(a+tb,c+td): t \in k\}$. Define G(T) = F(a+Tb,c+Td). Factor $G(T) = \epsilon \prod (T-\lambda_i)^{e_i}$, λ_i distinct. Show that there is a natural one-to-one correspondence between the λ_i and the points $P_i \in L \cap F$. Show that under this correspondence, $I(P_i, L \cap F) = e_i$. In particular, $\sum I(P, L \cap F) \leq \deg(F)$.

Solución problema 3.21:

Problema 4.1:

What points in \mathbb{P}^2 do not belong to two of the three set U_1, U_2, U_3 ?

Solución problema 4.1: Los puntos de U_i son los $[x_1 : x_2 : x_3]$ tal que $x_i \neq 0$, por lo que si $x \notin U_i \cup U_j$ entonces $x_i = x_j = 0$, por lo que son los puntos [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1].

Problema 4.3:

- (a) Show that the definitions of this section carry over without change to the case where k is an arbitrary field.
- (b) If k_0 is a subfield of k, show that $\mathbb{P}^n(k_0)$ may be identified with a subset of $\mathbb{P}^n(k)$.

Solución problema 4.3:

4

Problema 4.4:

Let I be a homogeneous ideal in $k[x_1, \ldots, x_{n+1}]$. Show that I is prime if and only if the following condition is satisfied; for any forms $F, G \in k[x_1, \ldots, x_{n+1}]$, if $FG \in I$, then $F \in I$ or $G \in I$.

Solución problema 4.4: Se nota que si I es primo las condiciones trivialmente se cumplen. Sea I homogéneo tal que para polinomios homogéneos $F,G \in k[x_1,\ldots,x_{n+1}]$, si $FG \in I$ entonces $F \in I$ o $G \in I$. Sean F,G polinomios tales que $FG \in I$, y $F,G \notin I$, luego se puede escribir $F = \sum F_i$ y $G = \sum G_j$ con los F_i,G_j polinomios homogéneos, luego $FG = \sum \sum F_iG_j$ se sabe que la multiplicación de polinomios homogéneos es un polinomio homogéneo, entonces se pueden agrupar los polinomios homogéneos por grado de la siguiente forma:

$$FG = \sum_{d=0}^{\deg(FG)} \left(\sum_{i+j=d} F_i G_j \right)$$

Por lo que se recuerda la definición de ideal homogéneo, con lo que se tiene que $\sum_{i+j=d} F_i G_j \in I$.

Ahora, se tiene la propiedad de que $I = (P_1, \ldots, P_m)$ con P_i polinomios homogéneos, sean $\{P_k, \ldots, P_l\} \subset \{P_1, \ldots, P_m\}$ de grado d, luego se recuerda que los polinomios homogéneos de grado d son l.i. por lo que $F_iG_j \in I$, luego sea $F_i \notin I$, para un $F_iG_j \in I$, por lo que para todo j $G_j \in I$, por lo que $G \in I$, análogamente, sea $G_j \notin I$ entonces $F_iG_j \in I$, por lo que para todo i $F_i \in I$, con lo que $F \in I$. Que es lo que se buscaba.

Problema 4.9:

Let I be homogeneous ideal in $k[x_1, \ldots, x_{n+1}]$, and $\Gamma = k[x_1, \ldots, x_{n+1}]/I$. Show that the forms of degree d in Γ form a finite-dimensional vector space over k.

Solución problema 4.9:

Problema 4.14:

Let P_1, P_2, P_3 (resp. Q_1, Q_2, Q_3) be three points in \mathbb{P}^2 not lying on a line. Show that there is projective change of coordinates $T: \mathbb{P}^2 \to \mathbb{P}^2$ such that $T(P_i) = Q_i, i = 1, 2, 3$. Extend this to n+1 points in \mathbb{P}^n , not lying on a hyperplane.

Solución problema 4.14:

Problema 4.15:

Show that any two distinct lines in \mathbb{P}^2 intersect in one point.

Solución problema 4.15:

Problema 4.23:

Describe all subvarieties in \mathbb{P}^1 and in \mathbb{P}^2 .

Solución problema 4.23:

Problema 4.25:

Let $P = [x : y : z] \in \mathbb{P}^2$.

- (a) Show that $\{(a, b, c) \in \mathbb{A}^3 : ax + by + cz = 0\}$ is hyperplane in \mathbb{A}^3 .
- (b) Show that for any finite set of points in \mathbb{P}^2 , there is a line not passing through any of them.

Solución problema 4.25:

(a) Se recuerda la definición de hiperplano; V(F) es un hiperplano ssi deg F=1. Luego, sea F(a,b,c)=ax+by+cz, F es de grado 1 ya que no todos los x,y,z son iguales a cero. Entonces, claramente $V(F)=\{(a,b,c)\in\mathbb{A}^3:ax+by+cz=0\}$, por lo que es un hiperplano.

(b)

Problema 4.28:

For simplicity of notation, in this problem we let x_0, \ldots, x_n be coordinates for \mathbb{P}^n , y_0, \ldots, y_m coordinates for \mathbb{P}^m , and $T_{00}, T_{01}, \ldots, T_{0m}, T_{10}, \ldots, T_{nm}$ coordinates for \mathbb{P}^N , where N = (n + 1)(m+1) - 1 = n + m + nm). Define $S : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ by the formula:

$$S([x_0:\cdots:x_n],[y_0:\cdots:y_m])=[x_0y_0:x_0y_1:\cdots:x_ny_m]$$

S is called the Segre embedding of $\mathbb{P}^n \times \mathbb{P}^m$ in \mathbb{P}^{n+m+mn} .

- (a) Show that S is a well-defined, one-to-one mapping.
- (b) Show that if W is an algebraic subset of \mathbb{P}^N , then $S^{-1}(W)$ is an algebraic subset of $\mathbb{P}^n \times \mathbb{P}^m$.
- (c) Let $V = V(\{T_{ij}T_{kl} T_{il}T_{kj} : i, k = 0, ..., n; j, l = 0, ..., m\}) \subset \mathbb{P}^N$. Show that $S(\mathbb{P}^n \times \mathbb{P}^m) = V$. In fact, $S(U_i \times U_j) = V \cap U_{ij}$, where $U_{ij} = \{[t] : t_{ij} \neq 0\}$.
- (d) Show that V is a variety.

Solución problema 4.28:

(a) Claramente, S esta bien definido, ya que si todos los $x_i y_j = 0$ entonces $x_i = 0 \forall i$ o $y_j = 0 \forall j$, ya que la imagen tiene todas las posibles multiplicaciones de pares (x_i, y_j) . Sea S(a, b) = S(c, d) donde $a, c \in \mathbb{P}^n$ $b, d \in \mathbb{P}^m$, entonces $a_i b_j = c_i d_j$ donde no todos son cero, por lo que