#### Lecture 3

#### **Hough transform**

# Original space



Given points in the vector space, find (m,n) in the parameter space

## Hough space



The intersection in the parameter space is (m, n)

### **RANSAC vs. Hough transform**

### **RANSAC**

Single mode: robust for outliers

## **Hough Transform**

- Less robust compared to RANSAC (spurious peak)
- Can handle multiple modes well

Hough transform image









Parsa, Younes, Hasan Hosseinzadeh, and Mehdi Effatparvar. "Development Hough transform to detect straight lines using pre-processing filter." *International Journal of Information, Security and Systems Management* 4.2 (2015): 448-456.

**Batch Gradient Descent vs. Stochastic Gradient Descent** 

Batch Gradient Descent

Stochastic Gradient Descent (SGD)

Take all data and label pairs in the training set to calculate the gradient. Randomly sample N pairs from the training data

Compute the average gradient from them and use it to update.

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W)$$

**Negative Log Likelihood** 

$$\mathcal{L}(\theta) = -\log p(Y|X;\theta)$$

$$= -\sum_{i=1}^{n} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

### **Convolution parameters**

# Convolution layer: summary

Common settings:

- F = 3, S = 1, P = 1

- F = 1. S = 1. P = 0

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 5, S = 2, P = ? (whatever fits)

Let's assume input is W<sub>1</sub> x H<sub>1</sub> x C

Conv layer needs 4 hyperparameters:  $\frac{1}{100} = \frac{1}{100} = \frac{1}$ 

- Number of filters K

- The filter size **F**
- The stride S
- The zero padding P

This will produce an output of W<sub>2</sub> x H<sub>2</sub> x K where:

$$-W_2 = (W_1 - F + 2P)/S + 1$$

- 
$$H_2^2 = (H_1 - F + 2P)/S + 1$$

Number of parameters: F2CK and K biases