Let $\hat{\theta}$ be an estimator to θ .

Suppose $E(\hat{\theta}) = \theta^*$ $\theta - \theta^* = b$ is as of $\hat{\theta}$ MSE($\hat{\theta}$) = $E[\hat{\theta} - \theta]^2 = E[\hat{\theta} - \theta^* + \theta^* - \theta]^2$ = $E[\hat{\theta} - \theta]^2 + [\theta^* - \theta]^2 - 2(\theta^* - \theta)E[\hat{\theta} - \theta^*]$ = $E[\hat{\theta} - \theta]^2 + (bias(\hat{\theta}))^2$ = $Var(\hat{\theta}) + [bias(\hat{\theta})]^2$

IC & is an unbiased estimater them bias = 0.

MSE(B) = VollB)

unbiasedness is a "nice" property

even better: unbiased trainimum variance among unbiased estimators

However, some bias & smaller variance than an unbiased estimator is also attractive.

Example: Ridge estimator for the "right" 1.