Plant Layouts

END4650 – Material Handling Systems

Mehmet Güray Güler

Industrial Engineering Department

Yıldız Technical University

- Plant (tesis) layout is an important factor MHS design.
- In the case of a new facility,
 - the MHS design should be considered part of the layout design.
 - In this way, there is greater opportunity to create a layout that
 - optimizes material flow in the building and
 - utilizes the most appropriate type of MHS.
- In the case of an existing facility,
 - there is <u>less</u> flexibility in the design of the MHS.
 - Present arrangement usually <u>limits</u> the attainment of optimum flow patterns.

- Plant layout design should provide the following data:
 - Total area of the facility
 - Areas within specific departments in the plant (dimensions)
 - Arrangement of equipment in the layout
 - Locations where material must be
 - picked up (load stations)
 - delivered (unload stations)
 - possible routes between these locations
 - distances traveled

Fixed Position Layout

- The product
 - large and heavy,
 - does not move from one location to another.
- The processes and equipment are brought to the product itself.
- Handling systems used for moves are large and often mobile
- Cranes, hoists, and trucks are common

- For example
 - shipbuilding
 - aircraft manufacturing
 - Dam, road and house construction

Process (Job-Shop) Layout:

- Machines are arranged on the basis of processes they perform.
 - All milling machines → in one department,
 - All turning machines → in one department...
- Useful for companies that
 - manufacture or process a variety of products or
 - jobs in small quantities where each job is usually different from any other.
- The MHS must be flexible to deal with the variations
- Hand trucks, forklift trucks, AGVs are common

Product Layout:

- Aka assembly line layout or layout by product.
- production of
 - a standard or nearly identical types of product
 - in relatively high quantities.
- The machines and workstations are arranged along the product route in a sequence that corresponds to the sequence of operations the product undergoes.

- Adv:
 - Reduced material handling
 - Reduced processing time
 - Easier planning and control
- Disadv:
 - Less Flexilibity
- Final assembly plants for cars, trucks, and appliances
- Conveyor systems are common
- Delivery of <u>component parts</u> to the various assembly workstations along the flow path is accomplished by trucks and similar unit load vehicles.

Group Technology Based Layout

- The parts having similarities in geometry, manufacturing process and/or functions are assembled together
- Better control over operation and planning by dividing a large system into two or more much smaller, independent <u>subsystems</u>.
- Planners first identify the sets of machines and their corresponding parts (i.e., parts which are entirely processed by these sets of machines.
- Each machine set and corresponding part set form a manufacturing <u>cell</u> and a part <u>family</u>
- Hand trucks and forklift trucks are commonly used in process type layouts

Part number

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Α		i									}								
В	1									1						1			
С			1	1			1	1	1					1					
D	1	1	1	1		1	1	1	1	1	1	1		1	1			1	1
E						1						1							
F	1	1								1	1								
G					I							1	1				1		1
Н		1								1	1							1	
I			1	1		1						1		1					
J					1								1						
K					1								1				12		

Hybrid Layout:

- Used where
 - some production items may require a product layout,
 - others may call a fixed layout
- As a company expands by increasing its product lines and volume, it may find that none of the layout techniques meet its need.
- Some companies use hybrid layouts, a combination of the layouts discussed.