資料科學 期末專題

Transfer Learning for Host-based Intrusion Detection System

309513041 蔡政勳 309513121 李偉齊

1.Introduction

在現在這個網路發達的時代,資訊安全的問題層出不窮的出現在我們生活 問 遭,許多病毒以及駭客攻擊往往在我們沒有發覺時侵入我們的電腦,為 了改 善此現象,我們希望能開發出一套入侵偵測系統,有別於一般的防毒 軟體, 這套系統能更強力的偵測出許多未知的攻擊。

我們打算使用 user 的 short range system calls,編碼後當成 training data 來訓 練出一個 normal behaviors 的 model 可以偵測出與其不同行為的活動,用來 當作入侵偵測的一種方式。再利用 transfer learning 來使其可應用到其他 user 的 stations,目標是降低判斷錯誤率以及盡可能的在 realtime 實行。

2.Data Pre-Processing

我們使用 hw1 的對 ptt 爬蟲程式,在他進行時的 short range system calls 來當作正常行為的 training data, 使用的編碼方式是直接拿 system code 在 系統中的編號,此為第一種編碼方式。

但這種方法可能沒辦法完全表示資料的分布特性與他們之間的關係,我們想試 試第二種方式:

使用 one-hot encoding 來做為資料的前處理方式

若有N種system calls, 每一種system calls 則做成N維的向量來表示

EX: 1 = [1000000.....]

其中,使用 One Hot Encoding 的好處有:

- 1.離散特徵的取值之間沒有大小的意義,比如 color: [red,blue],那麼就使用 one-hot 編碼
- 2.使用 one-hot 編碼,將離散特徵通過 one-hot 編碼對映到歐式空間,是因為,在迴歸,分類,聚類等機器學習演算法中,特徵之間距離的計算或相似度的計算是非常重要的,而我們常用的距離或相似度的計算都是在歐式空間的相似度計算,計算餘弦相似性,基於的就是歐式空間。

Source Domain

 Only contains normal sequences.
 Collected the system calls which generated from python grayller. **Target Domain**

ADFA dataset

time	seconds	usecs/call	calls	errors	syscall
42.31	0.010337		3664	504	read
21.09	0.005152		3839	1097	stat
10.06	0.002457		961		poll
9.49	0.002319		917		write
4.52	0.001104		493	24	ioctl
2.91	0.000710		500		open
2.91	0.000710		815		fstat
1.88	0.000460		482		close
1.39	0.000340		435		mmap
1.29	0.000314		360		lseek
0.70	0.000171		94		getdents
0.47	0.000115		452		select
0.41	0.000101		135		munmap
0.23	0.000057		81		mprotect
0.23	0.000056				brk
0.07	0.000016		24		futex
0.03	0.000007				socket
0.02	0.000004				bind
0.00	0.000000				lstat
0.00	0.000000		68		rt_sigaction
0.00	0.000000				rt sigprocmask

Data Type	Trace Count	
Normal Training Data	833	
Normal Validation Data	4373	
Attack Data	10 Attack per Vector, 60 totally	

而目標之一是在別的 host,甚至是系統都要可以運作,因此我們需要做 transfer learning(後面會說明)。

選用剛剛提到的爬蟲資料的 system call 作為 source domain 的資料,另外選用 ADFA 的 data 作為 target domain,詳細資料如上圖。

3. Model Structure

上圖整體架構是學長跟老師研究提出的碩士論文,將一段一段的 system code 送進 Auto Encoder 進行訓練,以 decoder 後與 input 資料的 mean square error 做為 loss function,訓練完成後及產生了一個異常偵測模型,接下來在對行為進行預測時,只要該行為與訓練資料中正常行為差異甚大時, 產生的 loss 也會過大,我們就能依此判斷出哪些行為是異常行為。

本篇論文使用 Auto Encoder 的方式來做異常偵測,我們提出以下不同的架構來偵測,比較跟原本的差異並期待降低偵測錯誤的情況,使這個 model 效果更好:

(1.)Auto Encoder(AE)

Auto encoder 會學習到 input data 的表示方式,並在輸出的地方盡可能還原成 input vector。

系統中的 system calls 共有 340 種,所以在有使用 one hot encoding 的部分,系統輸入是 340 維。

(2.)LSTM-AE

將 AE 中的 layer 替換成 lstm,期望可以因為有短記憶功能的 lstm 而表現好。而此架構下沒有使用 one hot encoding 是因為 input 的維度太高程式跑不動,之後發現了可以使用 PCA 來降維,是其中一個以後實驗改善的方向。

(3.)LSTM-VAE

(4.)CNN+AE

實驗結果:

(1.)Test Source Domain

AE:

LSTM-AE

Without OneHot AUC value=0.77

LSTM-VAE

Without OneHot AUC value=0.77

CNN-AE

(2.)Test Target Domain

ΑE

LSTM-AE

ROC Curve

0.4 0.6 False Positive Rate

Without OneHot AUC value=0.78

LSTM-VAE

CNN-AE

(3.)實驗結果比對

Test Source Domain	With OneHot ACC	Without OneHot ACC
Auto Encoder	0.550	0.835
LSTM-VAE	-	0.770
CNN-AE	0.895	0.830
LSTM-AE	-	0.770

Test Target Domain	With OneHot ACC	Without OneHot ACC
Auto Encoder	0.550	0.780
LSTM-VAE	-	0.780
CNN-AE	0.300	0.535
LSTM-AE	-	0.780

從上圖可以初步看出,在沒有使用 transfer learning 下,target domain 下的表現都很差。所以我們需要繼續將這部分的成果延續到 transfer learning。 而我們決定採用表現最好最穩定的 LSTM-AE,跟論文採取的方式一樣。

4.Transfer Learning

The normal trace in Trace B will be considered as attack by HIDS A.

如同前面所提到的,我們希望在各個不同的 host 之間都可以使用我們的偵測系統,所以使用 transfer learning。

DANN

使用 Domain-Adversarial Training of Neural Networks(DANN)的模型來進行。

(圖片來源: https://zhuanlan.zhihu.com/p/51499968)

DANN 主要分成三個部分:

- (1.)Feature Extractor:前面幾層的特徵萃取我們可以視為一個空間轉換,將 Source Data 與 Target Data map 到一個新的特徵空間中。
- (2.)Domain Classifier :Domain Classifier 用來確認特徵空間中的點是來自 Source Domain 還是 Target Domain。
- (3.)Label Predictor: Label Predictor 則是對特徵空間中的點進行分類。(也就是根

據特徵萃取後的特徵來決定要怎麼分類資料)

所以整個 DANN 在做的事情就是,資料進入 Feature Extractor 後,先要將來自 Source Domain 及 Target Domain 的資料分布讓其盡量相似。但 Domain Classifier 本來是希望能將 Domain 分得越開越好,因此必須在 Domain Classifier 與 Feature Extractor 之間加一個梯度反轉層 (Gradient reversal layer)便可以達到相反的效果。

(Domain Classifier 架構:)

整個使用 DANN 流程:

實驗結果

DANN AUC value=0.9784004269594389

可以看到,在使用 DANN 後整個模型的判斷正確率是相當高的。

5. Conclusion and Future Work

在加入了 DANN 的模型後,整個入侵偵測系統在不同主機下的運行似乎變得可行,不過還有很多可以努力的方向,也想到了幾個可以接下去做的地方:

(1.) GAN increase attack data

我們在攻擊部分的測試資料比較少,因此可以使用 Cycle GAN 來生成攻擊的資料來使用。這部分在網路上已經有看到論文發表,細節的部份我們之後的實驗去詳細了解。

(2.) One Hot Encoding and PCA

前面有提到 one hot encoding 下作為有些模型的 input 維度會太高,因此可以使用 PCA 的方法來降維,大致上意思就是取最大特徵值所對應的特徵向量來做為代表。

而 one hot 加上 PCA 的好成效也廣為流傳。

(3.) Meta-learning-MAML

Meta-Learning 是一種讓機器學習學習方法的方式,在此模型下可以給予機器不同 task 使其改善學習的方法。並且幾乎可以適用在任何類神經網路的模型,期待在 target domain 的表現會更快好。詳細過程以及實作也是我們日後努力的目標。

6.Reference

- A High-Performance Deep Learning Architecture for HIDS Tsern-Huei Lee,
 James C. Juang
- Ganin, Y., and Lempitsky, V. Unsupervised domain adaptation by backpropagation.

ICML'15: Proceedings of the 32nd International Conference on International

- Conference on Machine Learning (Jul. 2015), 1180–1189
- W. M. Kouw, M. Loog." An introduction to domain adaptation and transfer learning." arXiv preprint arXiv:1812.11806, 2018
- F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. arXiv preprint arXiv:1503.03832, 2015
- A. Hermans, L. Beyer, and B. Leibe. In defense of the triplet loss for person reidentification. arXiv preprint arXiv:1703.07737, 2017
- E Hoffer and N Ailon. Deep metric learning using triplet network. Similarity-Based Pattern Recognition, 2015