For Whom the Bell Tolls

Sergey Feranchuk

(self-employed; residence: Smolensk, Russia; e-mail: feranchuk@gmail.com)

January 14, 2021

to my mother

1 Abstract

Речь в работе идет о соотношении периодических ритмов с нерегулярными. Более узко, для микро-экосистем почвы, периодические пожары приводят к обновлению экосистем, как и намеренное регулярное освобождение от посевов, для сельскохозяйстенных земель. Образцы почвы, и из человека - посмотрели состав микроорганизмов. Смотрели "по крупному", обзорно.

В таком взгляде много общего, между разными сообществами микроорганизмов. То что бы можно было тут увидеть - признаки нестабильности, скрытой накопившейся нестабильности вследствии изменений режима периодичных воздействий на микросообщества в последние десятиления.

2 Введение

- "прорыв" в микробиологии позволил увидеть больше в том что относися к микроорганизмам, акценты в описаниии причин и следствий привычных явлений в этом свете другие.
- в микробных сообществах есть общее, прагматически, микроорганизмы с земли, микроорганизмы с растений и животных переносятся легко и адаптируются быстрее чем "хозяева".
- что касается "пахотного цикла", эффект от его прекращения и сокращения, сказался бы на том общем, что есть во всех вышеупомянутых тиах сообществ.

3 Методы

Подробности в приложении 1.

Таблица 1: перечислены шесть использованных образцов

Порядковый номер	Описание		
1	Англия	2003	почва
2	Канада	2013	почва
3	Израиль	2014	human/feces
4	Англия	2015	human/lung
5	Израиль	2015	soil/desert
6	Израиль	2019	soil/sandy

4 Results

На рисунке 1 - соотношение крупных групп организмов, состав более детально групп описан в таблице ниже.

Рис. 1 Cоотношение состава групп организмов, по образцам - колонки соответстуют образцам

На рисунке выделены красным и в таблице перечислены группы, включающие паразитические организмы, потенциально вызывающие хронические трудно излечимые расстройства здоровья. Их присутствие в почве невелико.

Габлица 2	2.
-----------	----

т и отпъщи 🕳 .		
Обозначение	Состав, как характеристика	Классы патогенов, по образца
Animals	Mollusca, Arthopoda	1,6-Nematoda,4-Platyhelmintes
Plants	Chlorophyta, Streptophyta	
Fungi	95% - 100% Saccharomycotina (yeast)	1,2-Microsporidia
Unicellular 1	Euglenozoa, Rhodophyta, Haptophyta, Glaucophyta, Cryptophyta	
Unicellular 2	Cercozoa, Strametopiles, Alveolata	1-Apicomplexa,6-Haplosporida,

5 Discussion

Так называемые "распределения численности видов", в экологии, - по сравнению их формы можно выявить особенности экосистем, хотя из моделей для описания их формы, никакая не универсальна, как это обсуждалось в [1]. Кривые распределения численности для разных групп, по всем образцам совместно, показаны на рис. 2,

и то что при этом интересует - как форма кривой соотносится с потенциальной неустойчивостью экосистемы.

Рис. 2 Слева - кривые распределения численности, по группам организмов; Справа - интерпретация, смещение частоты колебаний и смещение модельных распределений численности, в модели Ципфа-Парето (обведено рамкой) и модели Больцмана, при разных знаках коэффициента λ в ан-гармоническом осцилляторе. внизу, розовые линии - мыши на голодном пайке, по сравнению с контролем, по распределению генов

В форме кривых распределения численности, в болшей или меньшей степени, применимы как модель "закона Ципфа-Парето", так и модель распределения Больцмана. Обе модели, которые в других ситуациях применимы вполне явно, выражают соотношение между линейным возрастанием "энергии" системы, от уровня к уровню, и экспоненциальным убыванием "заселенности" уровней; в распределении Ципфа-Парето "энергия" вводится неявно и выражается по логарифмическому закону.

Сводя вопрос сравнения численности видов к сравнению неустойчивости групп при сменах времен года, месяцев, дней и ночей, сменах дождей и яснй погоды, сменах полноводных паводков на маловодные при разливах рек - то что и определяет избыток питания в экологических нишах и под-группах, и "заселенность" в этих нишах - признаки искажения такой периодичности, индуцируимые через обратную связь, были бы признаком неусточивости.

Для минимально простого описания искажений периодичности, подойдет модель осциллятора с малым дополнением, внесенным в закон движения, так что в колебаниях такого "не-гармонического" осциллятора проявляются отклонения от гармонического закона - то что может являеться признаком потенциальной неустойчивости.

В квантовом описании, уровни энергии такого осциллятора зависят от квантового

числа не вполне линейно. Используя формулу для расчета уровней энергии, предложенную в [2], через поправки к модели Ципфа-Парето и модели Больцмана на рис. 2 показано, как отклонения от периодичности проявлялись бы в кривых распределения видов.

Нарастающая периодичность соответствует положительному знаку в не-гармоничной поправке в модели осциллятора ($\hat{H}=p^2+x^2+\lambda x^4$), замедляющаяся перидичность - отрицательному знаку. Само событие кризиса в этой модели не описывается и не предсказывается. Эмпирически, колебания с нарастающим периодом - это признак риска кризиса [3]. В рамках самой модели квантового ангармонического осциллятора, "сбой" его движения возможен при отрицательном λ , через тоннельный переход в один из двух сегментов с отрицательной энергией за пределами области колебаний.

6 References

- Feranchuk, S., Belkova, N., et al., Evaluating the use of diversity indices to distinguish between microbial communities with different traits. Res. Microbiol., 2018
- 2. Feranchuk, I., Komarov, L., et al., Operator method in the problem of quantum unharmonic oscillator, Annals of Phys., 1995
- 3. Nottale, L., Scale relativity and fractal space-time: theory and applications, arxiv.org, 2008

7 Supplement 1

Брали образцы где эксперимент был поставлен как полно-геномное секвенирование микробного сообщества, на секвенаторах одной и той же торговой марки. Смотрели на состав сообщества по рибосомной РНК, кроме бактерий у которых эта РНК отличается. Обработку делали в два приема - отбирали из общего пула фрагмены искомой РНК, и аккуратно сравнивали их с базой рРНК организмов, отнесенных каждый к какой-либо такономической категории согласно принятой классиификации.

Таблица S1: перечислены шесть использованных образцов

	* '						
	Sample ID	Bases	Reads	Location	Date	type	18S RRNAs
1	ERR981203	5.3G	10M	51.83N 0.21E	2002.06.23	soil/meadow	1517(*)
2	SRR6030929	2.4G	6.1M	42.98N 81.24W	2013	soil/agricultural	125002(*)
3	ERR588716	8.2M	159K	Israel	2014 or earlier	human/feces	848
4	ERR970400	4.2G	13M	51.61N 3.95E	2015.01.01	human/lung	18747 (*)
5	SRR7642476	77M	128K	30.78N 34.76E	2015.08.20	soil/desert	4231
6	SRR12806764	48M	97K	31.86N 34.72E	2019.02.25	soil/sandy	116666

Таблица S2: Количество аннотированных фрагментов рРНК по группам в каждом из образцов

Taxonomy(*)	1	2	3	4	5	6
Acanthamoebidae Acanthamoeba	2	4		1		
Alveolata Apicomplexa	12			14		
Alveolata Ciliophora				2	9	1
Alveolata Haplosporida		4				5406
Cercozoa Cercomonadida		2				
Cercozoa Chlorarachniophyceae	4307	197	5	108	876	14637
Cryptophyta Cryptomonadaceae	91			9	389	382
Cryptophyta Teleaulax		2				
Diplomonadida Hexamitidae	19	5		2		
environmental samples	357	50	35	25	1206	1490
Euglenozoa Euglenida	407	84		46		1
Euglenozoa Kinetoplastida	2072	785	4	270	1206	5343
Fungi Ascomycota	3343	1044		347	11860	60992
Fungi Basidiomycota			48	3	4	
Fungi Chytridiomycota				1		
Fungi Microsporidia	1	12		3	2	12
Fungi Zygomycota	5	8			1	
Glaucocystophyceae Glaucocystales	77	56		12	2890	5020
Glaucocystophyceae Gloeochaetales	244	8	8	9	5042	1845
Granuloreticulosea Foraminifera	3					
Haptophyceae Isochrysidales	317	103	11	24	33	19
Haptophyceae unclassified Haptophyceae	17	2		1	32	24
Metazoa Acanthocephala						1
Metazoa Arthropoda	382	12		13	2424	627
Metazoa Chordata		2		5		
Metazoa Cnidaria						6
Metazoa Mollusca	475	91		22	8907	3641
Metazoa Myxozoa				8		2
Metazoa Nematoda		15				38
Metazoa Platyhelminthes	26					13
Metazoa Porifera					6	
Parabasalidea Trichomonadida	2			1		
Rhodophyta Bangiophyceae	2962	541	43	175	714	801
Rhodophyta Florideophyceae	232	227	16	88	148	110
stramenopiles Bacillariophyta	125	47	3	10	3091	312
stramenopiles Chrysophyceae	41	10	1	1	3	3
stramenopiles Olisthodiscus	379	29		17	28	78
stramenopiles Oomycetes		2				
stramenopiles Phaeophyceae	33	6			1	
stramenopiles Placididea	303	136	57	48	33139	17046
Viridiplantae Chlorophyta	1636	401	478	139	1563	2569
Viridiplantae Streptophyta	876	315	137	113	7886	4583
(#) TE	2 %				,	

^(*) Таксономия согласно версии ЕВІ, 2-й и 3-й уровни.

8 Supplement 2

команды консоли unix, использованные для обработки данных

8.1 18S RRNA reference base

 $\begin{array}{l} cat\ ssu_jan03.tsv\mid bash\ -c\ 'while\ read\ line;\ do\ if\ [\ "\$\{line:0:4\}"=="tax,"\];\ then\ if\ [\ "\$\{line:5:5\}"="Eukar"\];\ then\ if\ [\ "\$f"=="2"\];\ then\ echo\ "\$i"\ "\$\{line:5\};\ i='echo\ \$i+1\mid bc';\ f="1";\ fi;\ fi;\ else\] \\ \end{array}$

```
if [ "$f" == "1" ]; then if [ "${line:5}" != "" ]; then echo ${line:5}; f="2"; fi; fi; fi; done; '| awk '{ if ( $2 == "Eukaryota;" || ( p == "Eukaryota;" && length( $0 ) > 100 ) ) { print $0 }; p = $2 }' | awk '{ if ( p != $2 ) { print $0 }; p = $2 } '>rrna_euk.fa
```

cat \$sample | awk '{ print substr(\$1, 1, length(\$1) - 1) }' | bash -c 's="";c=0;while read line; do if ["\$line"!= "\$s"]; then if ["\$s"!= ""]; then echo ""\$s': \$c,"; fi; s=\$line; c=1; else c='echo "\$c+1" | bc'; fi; done;

 $sort \$sample \mid bash -c 's='''; c=0; while read line; do if ["\$line" != "\$s"]; then if ["\$s" != ""]; then echo "\$s $c"; fi; s=$line; c=1; else c='echo "$c+1" \mid bc'; fi; done; ' lawk ' { print $3 " " $(NF-1) " " $NF }' | sort - | bash -c 's=''''; c=0; while read line; do if ["${line:0:5}" != "${s:0:5}"]; then h='echo $s | lawk """"{print $1}""""; echo "$h $b"; c=0; s=${line}; else n='echo $line | awk """"{print $NF}"""; if [$n -gt $c]; then c=$n; b='echo $line | awk """"{ print $(NF-1) }""""; fi; fi; done; h='echo $s | lawk """"{print $1}""""; echo "$h $b""$

8.2 Processing of a sample

8.3 Rank-abundance

done; echo " '\$s' : \$c";';

e.g, SAR:

grep -E 'Cercozoalstrametopiles|Alveolata|Acanthamoeba' test*.txt | sort | awk '{ print \$1 }' | bash -c 's="";c=0;while read line; do if ["\$line" != "\$s"]; then if ["\$s" != ""]; then echo \$c; fi; s=\$line; c=1; else c='echo "\$c+1" | bc'; fi; done; echo \$c' | sort -g | awk '{ s = \$0 "" s } END { print s }' | awk '{ s = ""; for (i=1; i <= NF; i++) { s = s "" log(i)/log(NF) "," log(\$i)/log(\$1) }; print s }'

8.4 Unharmonic oscillator

8.5 Rna-seq

fractal dimension:

```
awkcmd= \begin{tabular}{l} awkcmd= \begin{tabu
```

fdim='awk "\$awkcmd" | sort -g | head -n \$median | tail -n 1'