ESTATÍSTICA

Michelle Hanne Soares de Andrade

michellehanne.andrade@gmail.com

Intervalo de Confiança

Elementos

- \bar{x} Média Amostral
- μ Média Populacional
- lacksquare Desvio Padrão Populacional
- s Desvio Padrão Amostral
- S² Variância Amostral
- σ^2 Variância Populacional
- n Tamanho da Amostra
- α Nível de Confiança
- g.l. Graus de Liberdade
- IC Intervalo de Confiança
- E Margem de erro

O que é Intervalo de Confiança?

- Intervalos de confiança são intervalos aleatórios que se alteram a cada diferente amostra retirada da variável de interesse X.
- Entretanto, ha uma proporção esperada γ de vezes que estes intervalos contém o verdadeiro valor do parâmetro de interesse.

Nível de Confiança

- A ideia é construir um intervalo de confiança para o parâmetro com uma probabilidade de $1-\alpha$ (nível de confiança) de que o intervalo contenha o verdadeiro parâmetro.
- α é o nível de significância, isto é, o erro que estaremos cometendo. Ex: 95% das vezes o intervalo $\widehat{\theta_1} < \theta < \widehat{\theta_2}$ contém θ . Nesse caso o erro seria de 5%

IC para a Média Populacional

- A situação mais comum e aquela em que o interesse recai sobre a estimação da média populacional (μ)
- O processo vai depender do conhecimento da Variância populacional σ^2
- Caso 1 Variância Populacional Conhecida
- Caso 2 Variância Populacional Desconhecida

Variância Populacional (σ^2)

■ A variância da população é uma variável aleatória.

$$\sigma^2 = \frac{\sum\limits_{i=1}^{N}{(x_i - \mu)^2}}{N}$$

Consideremos uma amostra aleatória simples $X_1, X_2 \dots X_n$ obtida de uma população com distribuição normal, com média μ e variância σ^2 conhecida. Desta forma, a distribuição amostral da média também é Normal com média μ e variância σ^2/n , ou seja,

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

Assim temos que:

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

- isto é, a variável Z tem distribuição normal padronizada.
- Consideremos que a probabilidade da variável Z tomar valores entre $-Z_{\alpha/2}$ e $Z_{\alpha/2}$ é $1-\alpha$.Os valores $-Z_{\alpha/2}$ e $Z_{\alpha/2}$ são obtidos na tabela da distribuição normal.

Como Z tem destruição normal padrão

$$P\left(-z_{1-\frac{\alpha}{2}} \leq \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq z_{1-\frac{\alpha}{2}}\right) = 1-\alpha$$

• Onde $Z_{1-\alpha/2}$ é obtido a partir da tabela do

Normal padrão de modo que

$$P(-z_{1-\frac{\alpha}{2}} \le Z \le z_{1-\frac{\alpha}{2}}) = 1 - \alpha$$

Podemos isolar o u

$$P\left(\bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

Com isso, o intervalo de confiança da média é dado por

$$IC(\mu, 1 - \alpha) = \left(\overline{X} - Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \overline{X} + Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

- Os valores L é o limite inferior do intervalo
- E *U* é o **limite superior** do intervalo.

$$L = \bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$
 $U = \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

• O projetista de uma indústria tomou uma amostra de 36 funcionários para verificar o tempo médio gasto para montar um determinado produto. Lembrando que foi verificado que $\bar{x} = 19,9$ e $\sigma = 5,73$, construir um intervalo de confiança de 95% para μ .

Temos: $Z_{0.025}$ =1,96, \bar{x} =19,9 e σ =5,73 e n=36

Substituindo na fórmula:

$$19, 9 - 1, 96\frac{5,73}{\sqrt{36}} \le \mu \le 19, 9 + 1, 96\frac{5,73}{\sqrt{36}}$$

$$IC(\mu, 0, 95) = (18, 02; 21, 77)$$

- São feitas medidas de energia de impacto em 10 corpos de prova.
- Os valores observados são

- Suponha que a energia de impacto é normalmente distribuída com variância 1J.
- Querermos encontrar o IC de 95% de confiança para μ .

Exemplo2 (Solução)

Temos que

$$Z_{1-\frac{\alpha}{2}} = Z_{0,975} = 1,96$$
 $n = 10$ $\sigma = 1$ $\bar{x} = 64,46$.

O intervalo com 95% de confiança é

$$\bar{x} - z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{1 - \frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

$$64, 46 - 1, 96 \frac{1}{\sqrt{10}} \le \mu \le 64, 46 + 1, 96 \frac{1}{\sqrt{10}}$$

$$63, 84 \le \mu \le 65, 08.$$

 Uma faixa de valores altamente plausíveis para μ é [63,84; 65,08]J.

Interpretação do IC para a Média

- Considere um intervalo de confiança $100(1-\alpha)\%$
- Se repetíssemos o experimento um número infinito de vezes
- Se para cada um desses experimentos calculássemos o IC
- 100(1- α)% deles iriam conter o verdadeiro valor de μ

Confiança vs Precisão

- Se quisermos uma confiança de 99% ao invés de 95%.
- Devemos aumentar o comprimento do intervalo.
- O comprimento com 95% é *Z*=1,96 e com 99% é *Z*=2, 58
- O comprimento do intervalo mede a precisão da estimativa.
- Se quisermos ter muita confiança teremos um intervalo menos preciso.
- A precisão é inversamente relacionada com o nível de confiança.

Confiança vs Precisão

Níveis de Confiança mais usados

Nível de confiança	α	α/2	$Z_{\alpha/2}$	
90%	0,10	0,05	1,65	
95%	0,05	0,025	1,96	
99%	0,01	0,005	2,58	

Tamanho da Amostra

 Podemos escolher um tamanho de amostra n dependendo do erro máximo (margem de erro) que queremos cometer

Tamanho da Amostra

Escolhemos n tal que o erro máximo cometido é

$$E = z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$

• com $100(1 - \alpha)$ % de confiança. Isolando o *n* temos que

$$n = \left(\frac{Z_{1-\frac{\alpha}{2}}\sigma}{E}\right)^2$$

- Considere o exemplo das energias medidas em corpos de prova: 64, 1;
 64, 7; 64, 5; 64, 6; 64, 5; 64, 3; 64, 6;
- 64, 8; 64, 2 e 64,3.
- Queremos construir um intervalo com 95% de confiança para energia média μ.
- O intervalo deve ter variância de 1J. O erro de estimação máximo é 1/2J.
- Temos então que

$$n = \left(\frac{Z_{1-\frac{\alpha}{2}}\sigma}{E}\right)^2 \Rightarrow n = \left(\frac{(1,96)(1)}{0,5}\right)^2 = 15,37$$

O tamanho da amostra mínimo é 16

IC para μ com Amostras Grandes

- Suponha que temos uma amostra de tamanho grande (pelo menos 40).
- As variáveis não tem distribuição normal e nem que a variância é conhecida.
- lacktriangle Temos uma amostra X_1,\ldots,X_n com uma média μ e variância σ^2 desconhecidas

IC para μ com Amostras Grandes

• Mesmo não sabendo a distribuição da população podemos usar o Teorema Central do Limite, que garante a distribuição de \overline{X} se aproxima de uma normal padrão. O valor de σ pode ser estimado:

$$S = \sqrt{\frac{\sum_{i}(X_{i} - \bar{X})^{2}}{n-1}}$$

IC para μ com Amostras Grandes

- Queremos estimar μ.
- A estimativa pontual é \overline{X} .
- Não sabemos o valor de σ^2 .
- Se *n* é grande

$$Z = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

Tem uma distribuição que se aproxima da normal padrão.

• O intervalo com $100(1 - \alpha)\%$ de confiança é dado por

$$\bar{x} - z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

- Uma amostra de 53 peixes é selecionada de um lago no Amazonas.
 Mediu-se a concentração de mercúrio no tecido muscular. A figura abaixo mostra o gráfico de probabilidade para essa amostra.
- A distribuição não é normal!

- Queremos um intervalo de confiança para μ com 95% de
- confiança.
- n > 40 a distribuição não é normal
- Os dados são:
- n = 53
- $\overline{X} = 0.5250$
- s=0,3486
- $z_{0,975} = 1,96$

Exemplo (Resolução)

O intervalo para μ é:

$$\bar{x} - z_{0,975} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{0,975} \frac{s}{\sqrt{n}}$$

$$\bar{x} - 1,96 \frac{0,3486}{\sqrt{53}} \le \mu \le \bar{x} + 1,96 \frac{0,3486}{\sqrt{53}}$$

$$0,4311 \le \mu \le 0,6189.$$

- Vamos agora considerar casos em que:
 - a amostra é pequena;
 - a população é normalmente distribuída;
 - a variância é desconhecida.
- Muitas populações encontradas na prática são bem aproximadas pela normal.

- Seja $X_1, X_2 \dots X_n$ uma amostra aleatória de X.
- X tem distribuição normal com média μ e variância σ^2 .
- $\mu e \sigma^2$ são desconhecidos.
- Seja S o desvio padrão amostral

$$S = \sqrt{\frac{\sum_{i}(X_{i} - \bar{X})^{2}}{n-1}}$$

■ E a variável aleatória T (distribuição t-student com n – 1 graus de liberdade.) $T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$

 As distribuições t são parecidas com a normal, porém tem mais probabilidade na calda.

Figure 8-4 Probability density functions of several t distributions.

Figure 8-5 Percentage points of the t distribution.

• O valor $t_{\alpha;k}$ é o ponto da distribuição t com k graus de liberdade que deixa uma área acima dele.

$$P(T_{10} > t_{0,05;10}) = P(T_{10} > 1,812) = 0,05$$

Table IV Percentage Points $t_{\alpha,\nu}$ of the t-Distribution

να	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	.265	.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	.262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	.260	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
	200	507	1 2 6 2	1.700	2.201	0.710	2 100	2 407	1.005	4 400

■ A distribuição *t* é simétrica em torno do zero

Figure 8-5 Percentage points of the *t* distribution.

 quando os graus de liberdade crescem a distribuição t se aproxima da Normal.

Cálculo de IC

Sabemos que

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

- tem uma distribuição t com n 1 graus de liberdade
- Encontramos $T_{\alpha/2;n-1}$ tal que

$$P(-t_{\alpha/2;n-1} \le T \le t_{\alpha/2;n-1}) = 1 - \alpha$$

■ Ou sois:

$$P\left(-t_{\alpha/2;n-1} \le \frac{X-\mu}{S/\sqrt{n}} \le t_{\alpha/2;n-1}\right) = 1 - \alpha$$

Cálculo de IC

Isolamos μ

$$P(\bar{X} - t_{\alpha/2;n-1}S/\sqrt{n} \le \mu \le \bar{X} + t_{\alpha/2;n-1}S/\sqrt{n}) = 1 - \alpha$$

Entao temos ις para a μ com variancia desconnecida:

$$\bar{x} - t_{\alpha/2;n-1} s / \sqrt{n} \le \mu \le \bar{x} + t_{\alpha/2;n-1} s / \sqrt{n}$$

Cálculo de IC - Exemplo

- 22 corpos de prova são analisados.
- São registradas as cargas no ponto de falha.

 O gráfico de probabilidade abaixo mostra que a distribuição é próxima da normal.

- Os dados são:
- $\overline{X} = 13,71$
- s = 3,55
- n = 22
- Os graus de liberdade são n 1 = 21
- Queremos um intervalo com 95% de confiança.

Cálculo de IC – Exemplo (Resolução)

α	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.92
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	.265	.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.95
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.40
8	.262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.04
9	.261	.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.78
10	.260	.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.58
11	.260	.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.43
12	.259	.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.31
13	.259	.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.22
14	.258	.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.14
15	.258	.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.07
16	.258	.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.01
17	.257	.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.96
18	.257	.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.92
19	.257	.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.88
20	.257	.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.85
21	.257	.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.81

Cálculo de IC – Exemplo (Resolução)

Resolução:

$$ar{x}-t_{lpha/2;n-1}s/\sqrt{n}\leq\mu\leqar{x}+t_{lpha/2;n-1}s/\sqrt{n}$$

$$13,71-2,080(3,55)/\sqrt{22}\leq\mu\leq13,71+2,080(3,55)/\sqrt{22}$$

$$12,14\leq\mu\leq15,28\ .$$

 O intervalo é razoavelmente amplo por causa da variabilidade dos dados.

Exercício

- O tempo de reação de um novo medicamento pode ser considerado como tendo distribuição normal com média e variância desconhecidas. Vinte pacientes foram sorteados, receberam o medicamento e tiveram seu tempo de reação anotado. Os dados foram os seguintes (em minutos): 2,9; 3,4; 3,5; 4,1; 4,6; 4,7; 4,5; 3,8; 5,3; 4,9; 4,8; 5,7; 5,8; 5,0; 3,4; 5,9; 6,3; 4,6; 5,5 e 6,2.
- Obtenha um intervalo de 95% de confiança para o tempo médio de reação populacional.
- Graus de liberdade = n-1
- O valor da media amostral e \overline{X} = 4,745 e a variância amostral e S^2 = 0,9921.
- $t_{0,025:19} = 2,093$

Resumo

- n<30 conhece S -> tabela t
- n< 30 conhece σ > tabela Z
- $n \ge 30$ -> tabela Z

Intervalo de Confiança para a Proporção Populacional

■ A construção do intervalo de confiança para a proporção p em uma população é feita de forma análoga ao que e feito para a média amostral μ . Lembremos que a proporção é o valor médio encontrado em uma variável binaria $X \in \{0,1\}$.

$$IC(p,\gamma) = \hat{p} \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

Intervalo de Confiança para a Proporção Populacional

- A margem de erro no intervalo de confiança depende da quantidade p a ser estimada. Para resolver $e^{z_{\alpha/2}}\sqrt{\frac{p(1-p)}{n}}$ propostas duas abordagens:
- Abordagem Conservadora: considera a maior margem de erro possível, ou seja, fixa o valor p=0.5.
- Abordagem Otimista: calcula a margem de erro explorando o que ocorreu na amostra $p=\hat{p}$

Antes de uma eleição, um determinado partido está interessado em estimar a probabilidade p de eleitores favoráveis a seu candidato. Em uma amostra com 480 eleitores, encontramos 180 eleitores favoráveis ao candidato. Construa um intervalo com $\gamma=0,90$ para p, a verdadeira proporção de eleitores favoráveis ao candidato deste partido.

$$IC(p,\gamma) = \hat{p} \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

$$IC (p, 0,9) = \frac{180}{480} \pm 1,65 \sqrt{\frac{0,9(1-0,9)}{480}}$$

$$(0,3524; 0,3976)$$

• IC Conservadora
$$(p, 0, 9) = \frac{180}{480} \pm 1,65 \sqrt{\frac{0,5(1-0,5)}{480}}$$

(0,3373; 0,4127)

• IC Otimista
$$(p, 0,9) = \frac{180}{480} \pm 1,65 \sqrt{\frac{0,4(1-0,4)}{480}}$$

(0,3381; 0,4119)

Intervalo de Confiança para a Variância Populacional

Consideremos uma amostra aleatória de tamanho x_1, \ldots, x_n , de uma população n com distribuição normal com média μ e variância σ^2 . Um estimador para σ^2 é a variância amostral S^2 . Assim, sabemos que a quantidade pivotal:

Seja
$$1-\alpha$$
 a proposition of $n-1$ graus de liberdade, tomar valores entre $Q_{\infty/2}$ e $Q_{1-\infty/2}$, valores obtidos na tabela da distribuição Qui-quadrado tais que $P[Q>Q_{\alpha/2}]=P[Q< Q_{1-\alpha/2}]=\alpha/2$

Intervalo de Confiança para a Variância Populacional

Observando a equação

$$Q_{\alpha/2} \le Q \le Q_{1-\alpha/2}$$

 $Q_{\alpha/2} \le Q \le Q_{1-\alpha/2}$ Vernos que pouemos substituir Q

$$Q_{\alpha/2} \le \frac{(n-1)s^2}{\sigma^2} \le Q_{1-\alpha/2}.$$

Obtemos o intervalo de confiança

$$IC(\sigma^2, 1 - \alpha) = \left(\frac{(n-1)s^2}{Q_{1-\alpha/2}}, \frac{(n-1)s^2}{Q_{\alpha/2}}\right)$$

Distribuição Qui-quadrado

 A distribuição Quiquadrado é modificada de acordo com o número de graus de liberdade.

Cálculo para a Tabela Qui-quadrado

Se o tamanho da amostra é n, pode-se usar uma distribuição c2 com n-1 g.l. para formar um intervalo de confiança para a variância e o desvio padrão populacional.

Cálculo para a Tabela Qui-quadrado

Para
$$c = 95\%$$
 e $n=17$, temos

Área acumulada a direita de
$$\chi^2$$

$$=\frac{(1-c)}{2} = \frac{(1-0.95)}{2} = 0.025$$

Área acumulada a direita de
$$\chi_L^2$$

$$=\frac{(1+c)}{2}=\frac{(1+0.95)}{2}=0.975$$

Com o auxílio da Tabela obtemos os valores críticos

Tabela obtemos os valores críticos
$$\chi_L^2 = 6,908 \qquad \chi_R^2 = 28,845$$

Distribuição Qui-Quadrado

ν \ α	0,995	0,99	0,975	0,95	0,90	0,75	0,50	0,25	0,10	0,05	0,025	0,01	0,005	0,001
1	0,0004	0,002	0,001	0,004	0,016	0,102	0,455	1,323	2,706	3,841	5,024	6,635	7,879	10,828
2	0,010	0,020	0,051	0,103	0,211	0,575	1,386	2,773	4,605	5,991	7,378	9,210	10,597	13,816
3	0,072	0,115	0,216	0,352	0,584	1,213	2,366	4,108	6,251	7,815	9,348	11,345	12,838	16,266
4	0,207	0,297	0,484	0,711	1,064	1,923	3,357	5,385	7,779	9,488	11,143	13,277	14,860	18,467
5	0,412	0,554	0,831	1,145	1,610	2,675	4,351	6,626	9,236	11,071	12,833	15,086	16,750	20,515
6	0,676	0,872	1,237	1,635	2,204	3,455	5,348	7,841	10,645	12,592	14,449	16,812	18,548	22,458
7	0,989	1,239	1,690	2,167	2,833	4,255	6,346	9,037	12,017	14,067	16,013	18,475	20,278	24,322
8	1,344	1,646	2,180	2,733	3,490	5,071	7,344	10,219	13,362	15,507	17,535	20,090	21,955	26,125
9	1,735	2,088	2,700	3,325	4,168	5,899	8,343	11,389	14,684	16,919	19,023	21,666	23,589	27,877
10	2,156	2,558	3,247	3,940	4,865	6,737	9,342	12,549	15,987	18,307	20,483	23,209	25,188	29,588
11	2,603	3,053	3,816	4,575	5,578	7,584	10,341	13,701	17,275	19,675	21,920	24,725	26,757	31,264
12	3,074	3,571	4,404	5,226	6,304	8,438	11,340	14,845	18,549	21,026	23,337	26,217	28,299	32,909
13	3,565	4,107	5,009	5,892	7,042	9,299	12,340	15,984	19,812	22,362	24,736	27,688	29,819	34,528
14	4,075	4,660	5,629	6,571	7,790	10,165	13,339	17,117	21,064	23,685	26,119	29,141	31,319	36,123
15	4,601	5,229	6,262	7,261	8,547	11,036	14,339	18,245	22,307	24,996	27,488	30,578	32,801	37,697
16	5,142	5,812	6,908	7,962	9,312	11,912	15,338	19,369	23,542	26,296	28,845	32,000	34,267	39,252
17	5,697	6,408	7,564	8,672	10,085	12,792	16,338	20,489	24,769	27,587	30,191	33,409	35,718	40,790
18	6,265	7,015	8,231	9,390	10,865	13,675	17,338	21,605	25,989	28,869	31,526	34,805	37,156	43,312
19	6,844	7,633	8,907	10,117	11,651	14,562	18,338	22,718	27,204	30,144	32,852	36,191	38,582	43,820
20	7,434	8,260	9,591	10,851	12,443	15,452	19,337	23,828	28,412	31,410	34,170	37,566	39,997	45,315
21	8,034	8,897	10,283	11,591	13,240	16,344	20,337	24,935	29,615	32,671	35,479	38,932	41,401	46,797

Exemplo 1:

- O peso de componentes mecânicos produzidos por uma determinada empresa é uma variável aleatória que se supõe ter distribuição normal. Pretende-se estudar a variabilidade do peso dos referidos componentes. Para isso, uma amostra de tamanho 11 foi obtida, cujos valores em grama são:
- **98**, 97, 102, 100, 98, 101, 102, 105, 95, 102, 100

 Construa um intervalo de confiança para a variância do peso, com um grau de confiança igual a 95%.

Exemplo 1:

• Temos que n=11 e $\bar{x}=100$ e

$$s^{2} = \sum_{i=1}^{1} 1 \frac{(x_{i} - \overline{x})^{2}}{10} = \frac{4 + 9 + \dots + 25 + 4 + 0}{10} = 8.$$

Pela tabela da distribuição qui-quadrado com 10 graus de liberdade de $Q_{0\,025}=3,25~e~Q_{0\,975}=20,483$. Assim:

$$IC(\sigma^2, 1 - \alpha) = \left(\frac{10 \times 8}{20, 48}, \frac{10 \times 8}{3, 25}\right) = (3, 90; 24, 61).$$

Distribuição Qui-Quadrado

ν \ α	0,995	0,99	0,975	0,95	0,90	0,75	0,50	0,25	0,10	0,05	0,025	0,01	0,005	0,001
1	0,0004	0,002	0,001	0,004	0,016	0,102	0,455	1,323	2,706	3,841	5,024	6,635	7,879	10,828
2	0,010	0,020	0,051	0,103	0,211	0,575	1,386	2,773	4,605	5,991	7,378	9,210	10,597	13,816
3	0,072	0,115	0,216	0,352	0,584	1,213	2,366	4,108	6,251	7,815	9,348	11,345	12,838	16,266
4	0,207	0,297	0,484	0,711	1,064	1,923	3,357	5,385	7,779	9,488	11,143	13,277	14,860	18,467
5	0,412	0,554	0,831	1,145	1,610	2,675	4,351	6,626	9,236	11,071	12,833	15,086	16,750	20,515
6	0,676	0,872	1,237	1,635	2,204	3,455	5,348	7,841	10,645	12,592	14,449	16,812	18,548	22,458
7	0,989	1,239	1,690	2,167	2,833	4,255	6,346	9,037	12,017	14,067	16,013	18,475	20,278	24,322
8	1,344	1,646	2,180	2,733	3,490	5,071	7,344	10,219	13,362	15,507	17,535	20,090	21,955	26,125
9	1,735	2,088	2.700	3,325	4,168	5,899	8,343	11,389	14,684	16,919	19,023	21,666	23,589	27,877
10	2,156	2,558 (3,247	3,940	4,865	6,737	9,342	12,549	15,987	18,307	20,483	23,209	25,188	29,588
11	2,603	3,053	3,816	4,575	5,578	7,584	10,341	13,701	17,275	19,675	21,920	24,725	26,757	31,264
12	3,074	3,571	4,404	5,226	6,304	8,438	11,340	14,845	18,549	21,026	23,337	26,217	28,299	32,909
13	3,565	4,107	5,009	5,892	7,042	9,299	12,340	15,984	19,812	22,362	24,736	27,688	29,819	34,528
14	4,075	4,660	5,629	6,571	7,790	10,165	13,339	17,117	21,064	23,685	26,119	29,141	31,319	36,123
15	4,601	5,229	6,262	7,261	8,547	11,036	14,339	18,245	22,307	24,996	27,488	30,578	32,801	37,697
16	5,142	5,812	6,908	7,962	9,312	11,912	15,338	19,369	23,542	26,296	28,845	32,000	34,267	39,252
17	5,697	6,408	7,564	8,672	10,085	12,792	16,338	20,489	24,769	27,587	30,191	33,409	35,718	40,790
18	6,265	7,015	8,231	9,390	10,865	13,675	17,338	21,605	25,989	28,869	31,526	34,805	37,156	43,312
19	6,844	7,633	8,907	10,117	11,651	14,562	18,338	22,718	27,204	30,144	32,852	36,191	38,582	43,820
20	7,434	8,260	9,591	10,851	12,443	15,452	19,337	23,828	28,412	31,410	34,170	37,566	39,997	45,315
21	8,034	8,897	10,283	11,591	13,240	16,344	20,337	24,935	29,615	32,671	35,479	38,932	41,401	46,797

Foram selecionadas aleatoriamente 30 amostras de um determinado antialérgico. O desvio padrão da amostra é de 1,2 miligrama. Supondo que os pesos tenham uma distribuição normal, construa um intervalo de confiança de 99% para a variância e o desvio padrão populacionais

Solução:

$$\chi_R^2 = \frac{1-c}{2}$$

$$= \frac{1-0.99}{2} = 0.005$$
 $\chi_L^2 = \frac{1+c}{2}$

$$= \frac{1+0.99}{2} = 0.995.$$

Usando os valores de n = 30, g.l. = 29, c = 0,99, os valores críticos encontrados na tabela são:

$$\chi_R^2 = 52,366$$
 e $\chi_L^2 = 13,121$.

Usando estes valores e s = 1,2, teremos

Extremo esquerdo Extremo direito
$$\frac{(n-1)s^2}{\chi_R^2} = \frac{(30-1)(1,2)^2}{52,336} \approx 0,798 \qquad \frac{(n-1)s^2}{\chi_L^2} = \frac{(30-1)(1,2)^2}{13,121} \approx 3,183$$

$$0,798 < \sigma^2 < 3,183$$

O intervalo de confiança para
$$\sigma$$
 é $\sqrt{0.798} < \sigma < \sqrt{3.183}$ $0.98 < \sigma < 1.78$.

Portanto, pode-se afirmar com 99% de confiança que a variância populacional está entre 0,798 e 3,183. e que o desvio padrão populacional está entre 0,98 e 1,78.

Resumo

Média com Variância Conhecida

- Média com Variância Desconhecida
- Proporção $\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\overline{x} \pm t_{(n-1);\alpha/2} \frac{s}{\sqrt{n}}$$

Resumo

IC para a Variância e Desvio Padrão da População

Obtenha os extremos esquerdo e direito e forme o intervalo de confiança para a variância populacional.

Obtenha o intervalo de confiança para o desvio padrão populacional populacional extraindo a raiz quadrada de cada extremo. Extremo esquerdo Extremo direito $\frac{(n-1)s^2}{\chi_R^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2}$

$$\sqrt{\frac{(n-1)s^2}{\chi_R^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}$$