Traffic Sign detection

卢博 11849159

HOG+SVM

HOG: Extract features

SVM: Classifier(Optimize here)

HOG

HOG: (Histogram of Oriented Gradient)

Divide image into small connected areas, which we call cell. A gradient or edge direction histogram of each pixel in the cell is then acquired. These histograms can be combined to form a feature descriptor.

SVM

$$\min \frac{1}{2} ||w||^2$$

$$s.t \quad y_i(w^T \times x_i + b) \ge 1$$

$$\min_{w,b} L(w,b,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{m} \alpha_i [y_i(w^T x_i + b) - 1]$$

$$\frac{\partial L}{\partial w} = 0 \to w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial b} = 0 \to \sum_{i=1}^{m} \alpha_i y_i = 0$$

$$\max_{\alpha} \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j x_i^T x_j$$

s.t $\sum \alpha_i y_i = 0$, $\alpha_i \ge 0$

So we need to get the α_i , then w will be solved.

HOG+SVM

HOG: Extract features

Each image: $\{x_1, x_2, ..., x_i\}$, donate the image to be 1 or -1;

.....

Samples: we get a matrix

$$\begin{bmatrix} x_{11}, x_{12}, \dots, x_{1l}, 1 \\ x_{21}, x_{22}, \dots, x_{2l}, -1 \\ \dots \\ x_{n1}, x_{n2}, \dots, x_{nl}, -1 \text{ or } 1 \end{bmatrix}$$

SVM: Classifier

Put the multidimensional matrix into SVM, we get the *support vector*, *alpha* and *rho*.

Classifier = [alpha* support vector, rho]

Project-train

Positive samples(1980): Mark as +1

Negative samples(1980): Mark as -1

Use HOG extract features:

For these 8 images, resize these images to 64×64 , each cell have 9 feature, each block have 4 cell. If the sliding window moves every 8 pixels, then we get 7×7 windows. The number of the features is $9 \times 4 \times 7 \times 7 = 1764$.

pos feature

$$\begin{bmatrix} x_{1,1}, x_{1,2}, \dots, x_{1,1764}, 1 \\ x_{2,1}, x_{2,2}, \dots, x_{2,1764}, 1 \\ \dots \\ x_{8,1}, x_{8,2}, \dots, x_{8,1764}, 1 \end{bmatrix}$$

neg feature

$$\begin{bmatrix} x_{1,1}, x_{1,2}, \dots, x_{1,1764}, -1 \\ x_{2,1}, x_{2,2}, \dots, x_{2,1764}, -1 \\ \dots \\ x_{8,1}, x_{8,2}, \dots, x_{8,1764}, -1 \end{bmatrix}$$

Project-train

Mix these features and split it into 2 parts: train set and test set

train set

test set

$$\begin{bmatrix} x_{1,1}, x_{1,2}, \dots, x_{1,1764}, +1 \\ x_{2,1}, x_{2,2}, \dots, x_{2,1764}, -1 \\ \dots \\ x_{8,1}, x_{8,2}, \dots, x_{8,1764}, -1 \end{bmatrix}$$

$$\begin{bmatrix} x_{1,1}, x_{1,2}, \dots, x_{1,1764}, -1 \\ x_{2,1}, x_{2,2}, \dots, x_{2,1764}, +1 \\ \dots \\ x_{8,1}, x_{8,2}, \dots, x_{8,1764}, -1 \end{bmatrix}$$

$$min_{\alpha} \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j x_i^T x_j - \sum \alpha_i$$

s.t $\sum \alpha_i y_i = 0$, $\alpha_i \ge 0$

Quadratic Problem: quadprog function. Then

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$b = y_i - w^T \times x_i$$

 y_i : Only the value of support vector can be used here. We donate the image to +1 or -1, but not all the true value of image equal to +1 or -1.

Project-test

Use the test set to get the accuracy of this model. The scale of this model is too small, so the accuracy is high.

My SVM

```
classes =

struct with fields:

Y: [1×1980 double]
accuracy: 1

fx >>
```

Matlab SVM

```
accuracy = 1
fx >>
```

Project-predict

9

My SVM Matlab SVM

Project-summary

1. The sliding window's size?

In different images: $1023 \times 728,427 \times 640$

The signs have different pixel sizes, how to design the window's size.

2. Wrong detection.

Both My SVM and Matlab SVM have wrong detection.

My SVM

Matlab SVM

Reference

- 1. Zhao J D , Bai Z M , Chen H B . Research on Road Traffic Sign Recognition Based on Video Image[C]// International Conference on Intelligent Computation Technology & Automation. 2017.
- 2. Garrido M Á G, Sotelo M Á, Martíngorostiza E. Traffic sign detection in static images using Matlab[C]// Emerging Technologies & Factory Automation, Etfa 03 IEEE Conference. 2003.
- 3. 凸优化-对偶问题 http://www.hanlongfei.com/convex/2015/11/05/duality/

Gantt Chart

Student Name	卢博		
Student ID	11849159		
Task Name	Start	End	Duration
			(days)
Data collect	2018/11/20	2018/11/25	5
Data Process	2018/11/26	2018/12/2	6
Sample Training	2018/12/3	2018/12/9	6
Test Data	2018/12/10	2018/12/16	6
Fix bug	2018/12/17	2018/12/23	6
Report	2018/12/24	2018/12/27	3

