Lineare Algebra II Repetitorium

Jendrik Stelzner

16. September 2016

Inhaltsverzeichnis

1	Jordannormalform		
	1.1	Nilpotente Endomorphismus	2
	1.2	Allgemeine Jordannormalform	3
	1.3	Existenz der Hauptraumzerlegung	4
2	2 Skalarprodukträume		6

1 Jordannormalform

1.1 Nilpotente Endomorphismus

Definition 1.1. Ein Endomorphismus $f\colon V\to V$ eines K-Vektorraums V heißt nilpotent, falls es ein $n\in\mathbb{N}$ mit $f^n=0$ gibt. Eine Matrix $A\in\mathrm{M}_n(K)$ heißt nilpotent, falls es ein $n\in\mathbb{N}$ mit $A^n=0$ gibt.

Lemma 1.2. Ist $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so ist f genau dann nilpotent, wenn für jede geordnete Basis $\mathcal B$ von V die Matrix $\mathrm M_{\mathcal B}(f)$ nilpotent ist.

Notation 1.3. Für alle $n \ge 1$ sei

$$J_n := \begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix} \in \mathcal{M}_n(K).$$

Theorem 1.4. Es sei V ein endlichdimensionaler K-Vektorraum und $f\colon V\to V$ ein nilpotenter Endomorphismus.

i) Es gibt eine geordnete Basis \mathcal{B} von V und $n_1, \ldots, n_s \geq 1$, so dass

$$\mathbf{M}_{\mathcal{B}}(f) = \begin{pmatrix} J_{n_1} & & \\ & \ddots & \\ & & J_{n_s} \end{pmatrix}.$$

- ii) Die Zahlen n_1, \ldots, n_s sind eindeutig bis auf Permutation.
- iii) Ist $f^N = 0$ für ein $N \ge 1$, so ist $n_i \le N$ für alle $i = 1, \dots, s$.

Korollar 1.5. Ist $A \in M_n(K)$ nilpotent, so gibt es $S \in GL_n(K)$ und $n_1, \ldots, n_s \ge 1$ mit

$$SAS^{-1} = \begin{pmatrix} J_{n_1} & & \\ & \ddots & \\ & & J_{n_s} \end{pmatrix}.$$

Dabei sind die Zahlen n_1, \ldots, n_s eindeutig bis auf Permutation, und ist $A^N = 0$ für ein $N \ge 1$, so ist $n_i \le N$ für alle $i = 1, \ldots, s$.

Lemma 1.6. Ist V ein endlichdimensionaler K-Vektorraum, und sind $U,W,\subseteq V$ zwei Untervektorräume mit $U\cap W=0$, so gibt es einen Untervektorraum $\overline{W}\subseteq V$ mit $W\subseteq \overline{W}$ und $V=U\oplus \overline{W}$.

1.2 Allgemeine Jordannormalform

Definition 1.7. Für einen Endomorphismus $f \colon V \to V$ und einen Skalar $\lambda \in K$ ist

$$V_{\lambda}^{\sim}(f)\coloneqq \{v\in V\mid \text{es gibt } n\geq 1 \text{ mit } (f-\lambda\operatorname{id}_V)^n(v)=0\}$$

der *Hauptraum* von f zu λ .

Lemma 1.8. Es sei $f: V \to V$ und $\lambda \in K$.

- i) Der Hauptraum $V_{\lambda}^{\sim}(f)$ ist ein Untervektorraum von V.
- ii) Es gilt $V_{\lambda}(f) \subseteq V_{\lambda}^{\sim}(f)$.
- iii) Es ist genau dann $V_{\lambda}^{\sim}(f) \neq 0$, wenn λ ein Eigenwert von f ist.
- iv) Der Hauptraum $V_{\lambda}^{\sim}(f)$ ist f-invariant.
- v) Ist V endlichdimensional, so gibt es $N \geq 1$ mit $(f \lambda \operatorname{id}_V)^N(v) = 0$ für alle $v \in V$, $\text{ und es gilt } V_{\lambda}^{\sim}(f) = \ker(f - \lambda \operatorname{id}_V)^N.$

Lemma 1.9. Es sei $f \colon V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V.

Notation 1.10. Für alle $n \geq 1$ und $\lambda \in K$ ist

$$J(n,\lambda) \coloneqq \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{pmatrix} \in \mathcal{M}_n(K)$$

der Jordanblock von Größe n zu
(m Eigenwert) λ

Theorem 1.11. Es sei $f: V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so dass $V=V_{\lambda_1}^{\sim}(f)\oplus\cdots\oplus V_{\lambda_t}^{\sim}(f)$ für die Eigenwerte $\lambda_1,\ldots,\lambda_t\in K$ von f.

i) Es gibt eine geordnete Basis \mathcal{B} von V und $n_1^{(1)}, \ldots, n_{s_1}^{(1)}, \ldots, n_1^{(t)}, \ldots, n_{s_t}^{(t)} \geq 1$, so dass

s gibt eine geordnete Basis
$$\mathcal B$$
 von V und $n_1^{(r)},\dots,n_{s_1}^{(r)},\dots,n_1^{(r)},\dots,n_{s_t}^{(r)}\geq 1$, so date
$$J(n_1^{(1)},\lambda_1)$$

$$\vdots$$

$$J(n_{s_1}^{(1)},\lambda_1)$$

$$\vdots$$

$$J(n_1^{(t)},\lambda_1)$$

$$\vdots$$

$$\vdots$$

$$J(n_{s_t}^{(t)},\lambda_1)$$

- ii) Die Zahlen $(n_1^{(1)},\dots,n_{s_1}^{(1)}),\dots,(n_1^{(t)},\dots,n_{s_t}^{(t)})$ sind jeweils eindeutig bis auf Permu-
- iii) Es gilt $n_1^{(i)} + \cdots + n_{s_i}^{(i)} = \dim V_{\lambda}^{\sim}(f)$ für alle $i = 1, \ldots, t$.

1.3 Existenz der Hauptraumzerlegung

Lemma 1.12. Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V.

- i) Für alle $\lambda,\mu\in K$ mit $\lambda\neq\mu$ ist die Einschränkung $(f-\lambda\operatorname{id}_V)|_{V_\mu^\sim(f)}$ invertierbar.
- ii) Für alle $\lambda_1, \ldots, \lambda_t \in K$ ist die Summe $V_{\lambda_1}^{\sim}(f) + \cdots + V_{\lambda_t}^{\sim}(f)$ direkt.

Lemma 1.13. Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen Vektorraums V und $\lambda\in K$. Ferner sei $U\subseteq V$ ein f-invarianter Untervektorraum mit $V=V_\lambda^\sim(f)\oplus U$. Dann ist λ kein Eigenwert von $f|_U$, und es gilt

$$\chi_f(T) = (T - \lambda)^{\dim V_{\lambda}^{\sim}(f)} \cdot \chi_{f|_U}(T).$$

Lemma 1.14 (Fitting). Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Für alle $k\ge 0$ sei

$$N_k \coloneqq \ker f^k \quad \text{und} \quad R_k \coloneqq \operatorname{im} f^k.$$

i) Es gilt

$$0 = N_0 \subseteq N_1 \subseteq N_2 \subseteq N_3 \subseteq \cdots$$

und

$$V = R_0 \supseteq R_1 \supseteq R_2 \supseteq R_3 \supseteq \cdots$$

- ii) Für $k \ge 0$ sind die folgenden Bedingungen äquivalent:
 - a) $N_{k+1} = N_k$,
 - b) $N_l = N_k$ für alle $l \ge k$,
 - c) $R_{k+1} = R_k$,
 - d) $R_l = R_k$ für alle $l \ge k$.

(Wenn also eine der beiden Ketten einmal stabiliert, so sind beide Ketten von dort an stabil.)

iii) Die beiden Teilmengen $N\coloneqq\bigcup_{k\geq 0}N_k$ und $R\coloneqq\bigcap_{k\geq 0}R_k$ sind f-invariante Untervektorräume von V, und es gilt $V=N\oplus R$.

Theorem 1.15 (Existenz der Hauptraumzerlegung). Es sei $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Dann gibt es genau dann eine Hauptraumzerlegung von V bezüglich f, wenn das charakteristische Polynom $\chi_f(T)$ in Linearfaktoren zerfällt.

Korollar 1.16. Ist K ein algebraisch abgeschlossener Körper und $f: V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so ist $V = \bigoplus_{\lambda \in K} V_{\lambda}^{\sim}(f)$.

Korollar 1.17. Ist K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V (bzw. $A\in \mathrm{M}_n(K)$), so ist $\chi_f(f)=0$ (bzw. $\chi_A(A)=0$).

Korollar 1.18 (Abstrakte Jordanzerlegung). Ist K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V, so gibt es eindeutige Endomorphismen $d,n\colon V\to V$, so dass

- a) f = d + n,
- b) d ist diagonalisierbar und n ist nilpotent,
- c) d und n kommutieren

2 Skalarprodukträume

Definition 2.1. i) Eine Abbildung $b\colon V\times W\to Z$ mit K-Vektorräumen V,W,Z heißt K-bilinear, falls

$$b(v_1 + v_2, w) = b(v_1, w) + b(v_2, w),$$

$$b(v, w_1 + w_2) = b(v, w_1) + b(v, w_2),$$

$$b(\lambda v, w) = \lambda b(v, w) = b(v, \lambda w)$$

für alle $v,v_1,v_2\in V,$ $w,w_1,w_2\in W$ und $\lambda\in K.$ Ist zusätzlich Z=K, so ist b eine Bilinearform. Gilt außerden noch V=W und

$$b(v_1, v_2) = b(v_2, v_1)$$
 für alle $v_1, v_2 \in V$,

so ist b eine symmetrische Bilinearform.

ii) Eine Abbildung $s \colon V \times W \to Z$ mit \mathbb{C} -Vektorräumen V, W, Z heißt sesquilinear, falls

$$b(v_1 + v_2, w) = b(v_1, w) + b(v_2, w),$$

$$b(v, w_1 + w_2) = b(v, w_1) + b(v, w_2),$$

$$b(\lambda v, w) = \lambda b(v, w) \text{ und } b(v, \lambda w) = \overline{\lambda}(w)$$

für alle $v,v_1,v_2\in V,\,w,w_1,w_2\in W$ und $\lambda\in\mathbb{C}.$ Ist zusätzlich $Z=\mathbb{C},$ so ist s eine Sesquilinearform. Gilt außerdem noch V=W und

$$s(v_1, v_2) = \overline{s(v_2, v_1)}$$
 für alle $v_1, v_2 \in V$,

so heißt s heißt hermitsch.

Lemma 2.2. Ist $s \colon V \times V \to \mathbb{C}$ eine hermitsche Bilinearform, so ist $s(v,v) \in \mathbb{R}$ für alle $v \in V$.

Notation 2.3. Es ist $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Definition 2.4. Eine Bilinearform (bzw. Sesquilinearform) $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$ heißt

- i) positiv definit, falls $\langle v, v \rangle > 0$ für alle $v \in V$ mit $v \neq 0$,
- ii) positiv semidefinit, falls $\langle v, v \rangle \geq 0$ für alle $v \in V$,
- iii) negativ definit, falls $\langle v,v \rangle < 0$ für alle $v \in V$ mit $v \neq 0$,
- iv) negativ semidefinit, falls $\langle v,v \rangle \leq 0$ für alle $v \in V$, und
- v) indefinit, wenn sie keine der obigen Bedingungen erfüllt.

Definition 2.5. Ein *Skalarprodukt* auf einem \mathbb{K} -Vektorraum V ist eine positiv definite, symmetrische (bzw. hermitsche) Bilinearform (bzw. Sesquilinearform) $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$.

Ein Skalarproduktraum ist ein Tupel $(V,\langle\cdot,\cdot\rangle)$ bestehend aus einem Vektorraum V und einem Skalarprodukt $\langle\cdot,\cdot\rangle$ auf V.

Bemerkung 2.6. Man spricht meist nur von einem Skalarproduktraum V, nennt das Skalarprodukt also nicht explizit mit. Im Falle $\mathbb{K}=\mathbb{R}$ spricht man auch von einem euklidischen Vektorraum, und im Falle $\mathbb{K}=\mathbb{C}$ von einem unitären Vektorraum

Definition 2.7. Für einen Skalarproduktraum V und $v \in V$ ist $||v|| := \sqrt{\langle v, v \rangle}$. Der Vektor v heißt normiert, wenn ||v|| = 1.

Proposition 2.8 (Cauchy-Schwarz). Ist V ein Skalarproduktraum, so ist

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||$$
 für alle $v, w \in V$,

und Gleichheit gilt genau dann, wenn v und w linear abhängig sind.

Korollar 2.9. Ist V ein Skalarproduktraum, so ist die Abbildung $\|\cdot\|:V\to\mathbb{R}$ eine Norm auf V.

Bemerkung 2.10. Ist $v \in V$ mit $v \neq 0$, so ist der Vektor $v/\|v\|$ normiert. Man sagt, dass man v normiert.

Definition 2.11. Es sei V ein Skalarproduktraum.

- i) Zwei Vektoren $u,w\in V$ heißen orthogonal (zueinander), geschrieben als $u\perp w$, wenn $\langle u,w\rangle=0.$
- ii) Zwei Untervektorräume $U,W\subseteq V$ heißen orthogonal (zueinander), wenn $u\perp w$ für alle $u\in U$ und $w\in W$.
- iii) Für jeden Untervektorraum $U \subseteq V$ ist

$$U^{\perp} := \{ v \in V \mid \langle u, v \rangle = 0 \text{ für alle } u \in U \}$$

das orthogonale Komplement von U (in V).

Lemma 2.12. Es sei V ein Skalarproduktraum.

- i) Ist ein Vektor $v \in V$ zu jedem Vektor $w \in V$ orthogonal, so gilt bereits v = 0.
- ii) Für jeden Untervektorraum $U\subseteq V$ ist $U\cap U^\perp=0.$

Definition 2.13. Es sei V ein Skalarproduktraum.

- i) Eine Familie $(v_i)_{i\in I}$ von Vektoren $v_i\in V$ heißt *orthogonal*, wenn $v_i\perp v_j$ für all $i\neq j$. Die Familie heißt *nomiert*, falls v_i für alle $i\in I$ normiert ist. Ist die Familie orthogonal und normiert, so heißt sie *orthonormal*.
- ii) Eine Teilmenge $S\subseteq V$ heißt orthogonal, wenn $v\perp w$ für alle $v,w\in S$ mit $v\neq w$. Die Teilmenge heißt nomiert, falls jeder Vektor $v\in S$ normiert ist. Ist S orthogonal und normiert, so heißt S orthonormal.

Lemma 2.14. Es sei V ein Skalarproduktraum.

- 1. Eine Familie $(v_i)_{i\in I}$ von Vektoren $v_i\in V$ ist genau dann orthonormal, wenn $\langle v_i,v_j\rangle=\delta_{ij}$ für alle $i,j\in I$.
- 2. Eine Teilmenge $S \subseteq V$ ist genau dann orthonormal, wenn $\langle v, w \rangle = \delta_{v,w}$ für alle $v, w \in S$.

Lemma 2.15. Es sei V ein Skalarproduktraum und $(v_i)_{i\in I}$ eine orthogonale Familie von Vektoren $v_i \in V$ mit $v_i \neq 0$ für alle $i \in I$. Dann ist $(v_i)_{i\in I}$ linear unabhängig. Insbesondere ist jede orthonormale Familie linear unabhängig.

Definition 2.16. Eine orthonormale Basis eines Skalarproduktraums V heißt Orthonormal-basis von V.

Proposition 2.17. Es sei $(v_i)_{i \in I}$ eine Orthonormalbasis eines Skalarproduktraums V.

1. Für jedes $v \in V$ ist $\langle v, v_i \rangle = 0$ für fast alle $i \in I$, und es gilt

$$v = \sum_{i \in I} \langle v, v_i \rangle v_i$$
 sowie $\|v\|^2 = \sum_{i \in I} \langle v, v_i \rangle^2$.

2. Für alle $v, w \in V$ gilt

$$\langle v, w \rangle = \sum_{i \in I} \langle v, v_i \rangle \langle w, v_i \rangle.$$

Theorem 2.18 (Gram-Schmidt). Es sei V ein Skalarproduktraum und (v_1,\ldots,v_n) eine linear unabhängige Familie von Vektoren $v_1,\ldots,v_n\in V$. Iterativ seien die Familien $(\tilde{w}_1,\ldots,\tilde{w}_n)$ und (w_1,\ldots,w_n) durch $\tilde{w}_1\coloneqq v_1,w_i\coloneqq \tilde{w}_i/\|\tilde{w}_i\|$ und

$$\tilde{w}_i \coloneqq v_i - \langle v_i, w_1 \rangle w_1 - \dots - \langle v_i, w_{i-1} \rangle w_{i-1}$$

definiert. Dann ist die Familie (w_1, \ldots, w_n) orthonormal, und es gilt

$$\langle w_1, \dots, w_i \rangle = \langle v_1, \dots, v_i \rangle$$
 für alle $i = 1, \dots, n$.

Korollar 2.19. Es sei V ein endlichdimensionaler Skalarproduktraum.

- 1. Ist $U \subseteq V$ ein Untervektorraum, und $\mathcal{B} = (v_1, \dots, v_m)$ eine Orthonormalbasis von U, so lässt sich \mathcal{B} zu einer Orthonormalbasis $\mathcal{C} = (v_1, \dots, v_m, v_{m+1}, \dots, v_n)$ von V ergänzen.
- 2. Es gibt eine Orthonormalbasis von V.
- 3. Für jeden Untervektorraum $U \subseteq V$ ist $V = U \oplus U^{\perp}$.

Proposition 2.20. Ist V ein Skalar
produktraum, so ist die Abbildung

$$\Phi \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

injektiv und \mathbb{R} -linear (bzw. \mathbb{C} -antilinear). Ist V endlichdimensional, so ist Φ ein Isomorphismus von \mathbb{R} -Vektorräumen (bzw. Antiisomorphismus von \mathbb{C} -Vektorräumen).