PROJECT ASSIGNMENT -2 REPORT

MATH-6601

MUHAMMED EMIN OZTURK

Pseudo code of Jacobi and Gauss-Seidel Algorithm

1 algorithm

1.1 Jacobi

input
$$A, b, x^{(0)}, TOL$$
 $m = 0$

while $\frac{\|x^{(m+1)} - x^{(m)}\|_2}{\|x^{(0)}\|_2} \ge TOL$

for $i = 1$ to n
 $x_i^{(m+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j \neq i} a_{ij} x_j^{(m)}\right)$

end for

 $m = m + 1$

end while

output $x^{(m)}, m$

1.2 Gauss-Seidel

$$\begin{split} & \text{input } A, \ b, \ x^{(0)}, \ TOL \\ & m = 0 \\ & \text{while } \frac{\left\| x^{(m+1)} - x^{(m)} \right\|_2}{\left\| x^{(0)} \right\|_2} \geq TOL \\ & \text{ for } i = 1 \text{ to } n \\ & x_i^{(m+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_j^{(m+1)} - \sum_{j > i} a_{ij} x_j^{(m)} \right) \\ & \text{ end for } \\ & m = m + 1 \\ & \text{end while } \\ & \text{output } x^{(m)}, \ m \end{split}$$

In our assignment we just use $||r^m||_F / ||r^0||_F$ for checking convergence

```
function \ [x\,,\!m] \ = \, SD(A,b\,,x0\,,\!TOL)
```

1

```
x=x0;
m=0;
tol=1; % you can set initial tol to be any large number
{\rm w\,hile\ tol}\,>={\rm TOL}
    if m==0
         r=b-A*x0;
         r0=r;
    end
    alpha=r '* r /( r '*A* r );
    x=x+alpha*r;
    r=b-A*x;
    tol=norm(r)/norm(r0);
    m=m+1;
end
1.4 CG
function [x,m] = CG(A,b,x0,TOL)
x=x0;
m=0;
tol=1; % you can set initial tol to be any large number
while tol >= TOL
    if m==0
         r=b-A*x0;
         r0=r;
         p=r;
    end
    alpha=r'*r/(p'*A*p);
    x=x+alpha*p;
    r=r-alpha*A*p;
    beta=-r '*A*p/(p '*A*p);
    p=r+beta*p;
    tol=norm(r)/norm(r0);
    m=m+1;
end
```

Jacobi

According to question we should not generate A matrix instead we modify algorithm to get rid of explicit A matrix calculation.

```
Iteration=[]
x_previous=np.zeros(N)
norm=0
for j in range(100000):
   print(linalg.norm(R) / normfirst)
           x[i] = (b[i] + x_previous[i-1])/2
           R[i] = b[i] + x[i-1] -2*x[i]
plt.xlabel('Iteration')
```

Jacobi Solution For question 1 when N=20 and N=40

Iteration Number for when N is 20 = 2043


```
def gaussseidel( b ,R, N , x=None ):
   x_previous=np.zeros(N)
   normfirst= linalg.norm(R)
   Iteration=[]
   for j in range(100000):
           x_previous[m]= x[m]
           break;
               x[i] = (b[i] + x_previous[i+1])/2
           elif i == N-1:
               x[i] = (b[i] + x[i-1])/2
           elif i == N-1:
```

Gauss- Seidel Solution For question 1 when N=20 and N=40

Iteration Number for when N is 20 = 1023

Steepest Descent

```
error =[]
Iteration=[]
    if m == 0 :
            elif i==N-1 :
                R[i] = b[i] - 2*x[i] + x[i-1]
        elif i==N-1:
           Ar[i] = 2*R[i] - R[i-1]
    alpha = np.dot(np.transpose(R), R) / np.dot(np.transpose(R), Ar)
    x = x + alpha* R
plt.ylabel('log10(||r^m||)')
plt.xlabel('Iteration')
```

Steepest – Descent Solution For question 1 when N=20 and N=40

Iteration Number for when N is 20 = 2034

Conjugate Gradient

```
m= 0
Ap = np.zeros(N)
p = np.zeros(N)
error =[]
Iteration=[]
    if m == 0:
        for i in range(N):
                R[i] = b[i] - 2*x[i] + x[i+1]
            elif i==N-1:
        for i in range(N):
            p[i] = R[i]
        normfirst=linalg.norm(R)
    for i in range(N):
            Ap[i] = 2*p[i] - p[i+1]
            Ap[i] = 2*p[i] - p[i-1]
            Ap[i] = 2*p[i] - p[i-1] - p[i+1]
    alpha = np.dot(np.transpose(R), R) / np.dot(np.transpose(p) , Ap )
    x = x + alpha* p
    R = R - alpha * Ap
    beta = np.dot(-np.transpose(R),Ap) / np.dot(np.transpose(p), Ap)
    p = R+ beta*p
```

Conjugate Gradient Solution For question 1 when N=20 and N=40

Iteration Number for when N is 20 = 9

Jacobi Solution For question 2 when N=16 and N=32

Iteration Number for when N is 32 = 4792


```
x_previous=np.zeros((N+2,N+2))
```

Gauss-Seidel Solution For question 2 when N=16 and N=32

Iteration Number for when N is 16 = 635

Steepest Descent for Question 2 (without generating A Matrix explicitly)

```
Ar = np.zeros((N+2,N+2))
part1=0
            elif j==0:
Ar[i][j] = 0
    for j in range(1,N+1):
        for i in range(1,N+1):
    for j in range(1,N+1):
                x[i][j] = 0
```

Steepest Descent for Question 2 (without generating A Matrix explicitly)

```
while tol >= 10**-10:
               Ar[i][j] = 0
        for i in range(1,N+1):
                x[i][j] = x[i][j] + alpha* R[i][j]
               R[i][j] =b[i][j]
```

Steepest Descent Solution For question 2 when N=16 and N=32

Iteration Number for when N is 32 = 4741


```
while tol >= 10**-10:
        for i in range(N+2):
                    R[i][j]=R[i][j]
                    R[i][j] = R[i][j] - ((4 + h**2)*x[i][j] - x[i-1][j] - x[i][j-1] - x[i+1][j] - x[i][j+1])
        for i in range(N+2):
        for j in range(0,N+2):
            for i in range(1,N+2):
        v=partv
                elif i==N+1:
```

```
for j in range(0,N+2):
    for i in range(0,N+2):
       partMu = partMu + (p[i][j]*q[i][j])
Mu=partMu
partMu=0
alpha= v/Mu
            x[i][j] = x[i][j] + alpha* p[i][j]
            R[i][j] = R[i][j] -alpha*q[i][j]
v_plus=partvp
partvp=0
beta=v_plus / v
           p[i][j] = 0
           p[i][j] = 0
            p[i][j] = R[i][j] + beta*p[i][j]
v=v_plus
```

Conjugate Gradient Solution For question 2 when N=16 and N=32

Iteration Number for when N is 32 = 66

Conclusion

Results for Question 1

	Jacobi	GS	SD	CG
N=20	2043	1023	2034	9
N=40	7805	3904	7862	19

According to this table above, it can easily be observed that best method is Conjugate Gradient since it take smallest iteration number. Gauss-Seidel is approximately half of Jacobi method. Interestingly steepest descent is almost same with Jacobi.

Result for Question 2

	Jacobi	GS	SD	CG
N=16	1268	635	1292	31
N=32	4792	2397	4741	66

According to second table above, it can also observed that CG is best in terms of iteration rate. When we increase N, in all method iteration number also is increased.