# UOttawa ITI1100X Summer 2016 Digital Systems I

Professor Qi Hao

Final Answers to Midterm Examination

This document is for the internal use only for the students of ITI 1100X summer 2016, University of Ottawa. Further distribution or reproduction is strictly prohibited.

## **Answer to Question 1 (Total 40 points)**

(a) Convert the following numbers from one radix to another. Show your work. [20] (i)

| A = 13.25 |         |     |        |     |   |  |
|-----------|---------|-----|--------|-----|---|--|
| Integ     | er      |     | Fracti | ion |   |  |
|           | /2      | Rem |        | X 2 |   |  |
| 13        | 6       | 1   | 0.25   | 0.5 | 0 |  |
| 6         | 3       | 0   | 0.5    | 0   | 1 |  |
| 3         | 1       | 1   |        |     |   |  |
| 1         | 0       | 1   |        |     |   |  |
| A = 1     | 101.012 | -   |        |     |   |  |

(ii)

Separate bits in groups of 4:

10.111111 = 0010.111111000

Convert each group into hexadecimal equivalents: 2.F8<sub>16</sub>

(iii)

| A = 8.04 |     | •   | •      |     |   |
|----------|-----|-----|--------|-----|---|
| Integer  | •   | 1   | Fracti | on  |   |
|          | /5  | Rem |        | X 5 |   |
| 8        | 1   | 3   | 0.04   | 0.2 | 0 |
| 1        | 0   | 1   | 0.2    | 0.0 | 1 |
|          | 9   |     |        |     |   |
|          |     |     |        |     |   |
| A = 13.  | 015 |     |        |     |   |

#### (b) [10]

8 bits to represent unsigned binary numbers.  $A=(110101)_2$  and  $B=(10001101)_2$ .

| Α                          | 00110101                |                         |
|----------------------------|-------------------------|-------------------------|
| [A] <sub>2</sub>           | 11001011                |                         |
| В                          | 10001101                |                         |
|                            |                         |                         |
| Sum=B+[A] <sub>2</sub>     | 101011000               | End carry produced      |
|                            |                         | End carry<br>discarded. |
| Result                     | (1011000)2              | Positive value          |
| Result in signed magnitude | <mark>0</mark> _1011000 | 0,                      |
| Result in decimal          | (88)10                  |                         |

#### (c) [10]

| (-17) <sub>10</sub> -(33) <sub>10</sub> = (-17) <sub>10</sub> +(-33) <sub>10</sub> |                           |                                     |
|------------------------------------------------------------------------------------|---------------------------|-------------------------------------|
| +17                                                                                | 0_0010001                 |                                     |
| -17 in signd 2's comp.                                                             | <b>1</b> _1101111         |                                     |
| +33                                                                                | 0_0100001                 |                                     |
| -33 in signed 2's comp.                                                            | <b>1</b> _1011111         |                                     |
| -17 in signd 2's comp.                                                             | <b>1</b> _1101111         |                                     |
| Sum= (-17)+(-33)                                                                   | 1 <mark>1</mark> _1001110 | End carry                           |
|                                                                                    |                           | End carry<br>discarded.<br>Negative |
| Results in signed 2's comp.                                                        | <b>1</b> _1001110         | value.                              |
| Results                                                                            | -(110010)                 |                                     |
| Results in signed magnitude                                                        | <b>1</b> _0110010         |                                     |
| Results in decimal                                                                 | -(50)10                   |                                     |

#### **Answers to Question 2 (Total 30 points)**

$$F(A, B, C, D) = \sum m(0,7,8,12) + \sum d(2,3,4,10,13)$$

(i)

| + |    |     |            |            |                       |
|---|----|-----|------------|------------|-----------------------|
|   | CD |     |            |            |                       |
|   | AB | 00  | 01         | 11         | 10                    |
|   | 00 | mo  | xm1        | m3         | <i>m</i> <sub>2</sub> |
|   | 00 | 1   | 0          | X          | X                     |
|   | 01 | m4  | m5         | <b>m</b> 7 | m6                    |
|   | 01 | х   | 0          | 1          | 0                     |
|   | 11 | m12 | m13        | m15        | m14                   |
|   | 11 | 1   | х          | 0          | 0                     |
|   | 10 | m8  | <b>m</b> 9 | m11        | m10                   |
|   | 10 | 1   | 0          | 0          | X                     |
|   |    |     |            |            |                       |

(ii)

| CD  |     |            |     |                |
|-----|-----|------------|-----|----------------|
| AB  | 00  | 01         | 11  | 10             |
| 00  | mo  | $m_I$      | m3  | m <sub>2</sub> |
| 00  | 1   | 0          | X   | X              |
| 0.1 | m4  | m5         | m7  | m6             |
| 01  | X   | 0          | 1   | 0              |
| 1.1 | m12 | m13        | m15 | m14            |
| 11  | 1   | X          | 0   | 0              |
| 10  | m8  | <b>m</b> 9 | m11 | m10            |
| 10  | 1   | 0          | 0   | L X            |

$$F'=C'D+CD'+AD \qquad ov$$

$$T'=C'D+CD'+AC.$$

$$F=(c+D')\cdot(c'+D)\cdot(A'+D')$$

$$ov$$

$$F=(c+D')\cdot(c'+D)\cdot(A'+C')$$

(iii)

$$F = (c'+b) \cdot (c+b') \cdot (A'+b')$$

$$F = \mathcal{F}'' = \left( (c'+b) \cdot (c+b') \cdot (A'+b') \right)'$$

$$= \left( (c'+b)' + (c+b')' + (A'+b')' \right)'$$



Alternatively:

$$F = F'' = (((c'+D)(c+D')\cdot(A'+c'))')'$$

$$= ((c'+D)' + (c+D')' + (A'+c')')$$



# **Answers to Question 3 (total 30 points)**

(i) [10]

$$T = (A+B) * (A+c) * (A+B'+c)$$

$$= (A+B) * (A+c)$$

$$= A+Bc$$

$$0 0 0 0 0$$

$$0 0 1 0$$

$$0 1 0 0$$

$$0 1 1 1 1$$

$$1 0 0 1$$

(ii) [10]

| _ |    |   |   |
|---|----|---|---|
| A | В  | C | F |
| 0 | 0  | 0 | 0 |
| 0 | 0  | 1 | 0 |
| 0 | 1  | 0 | 0 |
| 0 | 1  | 1 | 1 |
| 1 | 0  | 0 | 1 |
| 1 | 0  | 1 | 1 |
| 1 | 1  | 0 | 1 |
| 1 | 10 | 1 | 1 |
|   |    |   |   |



### **Question 4\* (Optional with bonus 30 points)**

(Note: bonus marks will not bring a total mark to more than 100)

i) [6] Transmitted Data

| D | P | Q |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 0 |

ii) [6]

Logic circuit for generating transmitted parity bits



iii) [10]

| 111) [10]        |                     |    |              |                                |
|------------------|---------------------|----|--------------|--------------------------------|
| Reco             | eived Bit at Receiv | er | Parity Check | Recovered or<br>Corrected Data |
| D                | Р                   | Q  | С            | R                              |
| 0                | 0                   | 0* | 1            | 0                              |
| 0                | 0                   | 1  | 0            | 0                              |
| 0*               | 1                   | 0  | 1            | 1                              |
| 0                | 1*                  | 1  | 1            | 0                              |
| 1                | 0*                  | 0  | 1            | 1                              |
| *1               | 0                   | 1  | 1            | 0                              |
| 1                | 1                   | 0  | 0            | 1                              |
| 1                | 1                   | 1* | 1            | 1                              |
| * Corrupted data |                     |    |              |                                |

v) [8]

$$C = (D + P + Q')(D' + P' + Q)$$
  
 $R = D'PQ' + DP'Q' + DPQ' + DPQ$ 

# **Optional:**

| PQ |       |       |   |            |   |                |
|----|-------|-------|---|------------|---|----------------|
| D  | 00    | 01    |   | 11         |   | 10             |
| 0  | mo    | $m_I$ |   | m3         |   | m <sub>2</sub> |
| 0  | 0     | 0     |   | 0          |   | 1              |
|    | -1114 | m5    | 1 | <b>m</b> 7 | , | mc             |
| 1  | 1     | 0     |   | 1          |   | 1              |
|    |       |       | - |            | 7 |                |

$$R = DQ' + DP + PQ'$$

$$\frac{10}{m_2}$$

$$1$$

$$\frac{m_6}{0}$$

|       | 01             |                                                 |                                                                |
|-------|----------------|-------------------------------------------------|----------------------------------------------------------------|
| 00    |                | 11                                              | 10                                                             |
| $m_0$ | $m_I$          | m3                                              | <i>m</i> 2                                                     |
| 1     | 0              | 1                                               | 1                                                              |
| m4    | <b>m</b> 5     | <b>m</b> 7                                      | m <sub>6</sub>                                                 |
| 1     | 1              | 1                                               | 0                                                              |
|       | m <sub>0</sub> | $\begin{array}{c c} 00 \\ m_0 \\ 1 \end{array}$ | 00 11<br>m <sub>0</sub> m <sub>1</sub> m <sub>3</sub><br>1 0 1 |

$$C' = D'P'Q + DPQ'$$
  
 $C = (D + P + Q')(D' + P' + Q)$ 

