Milestone Report

Franziska Schwaiger

Matriculation number: 03658670

Thomas Brunner

Matriculation number: 03675118

DATASET

METHODS

Conditional Variational Autoencoder Invertible Neural Network

EXPERIMENTAL EVALUATION

Evaluation protocol

Results

DoF	$e_{posterior}$	e_{resim}	Trainable Parameters	Model
2	0.077	0.003	164,808	
3	0.045	0.045	370,214	cVAE
4	0.063	0.006	373,220	
2	0.061	0.012	169,632	
3	0.066	0.036	369,660	INN
4	0.044	0.075	374,960	

TABLE I CAPTION TO COME

NEXT STEPS

REFERENCES

- [1] L. Ardizzone, J. Kruse, S. J. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe, "Analyzing inverse problems with invertible neural networks," *CoRR*, vol. abs/1808.04730, 2018. [Online]. Available: http://arxiv.org/abs/1808.04730
- [2] K. Sohn, H. Lee, and X. Yan, "Learning structured output representation using deep conditional generative models," in *Advances in Neural Information Processing Systems*, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates, Inc., 2015, pp. 3483–3491.
- [3] M. Mirza and S. Osindero, "Conditional generative adversarial nets," *CoRR*, vol. abs/1411.1784, 2014. [Online]. Available: http://arxiv.org/abs/1411.1784
- [4] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola, "A kernel method for the two-sample problem," *CoRR*, vol. abs/0805.2368, 2008. [Online]. Available: http://arxiv.org/abs/0805.2368
- [5] Y. Zhou, C. Barnes, L. Jingwan, Y. Jimei, and L. Hao, "On the continuity of rotation representations in neural networks," in *The IEEE Conference* on Computer Vision and Pattern Recognition (CVPR), June 2019.
- [6] J. Kruse, L. Ardizzone, C. Rother, and U. Köthe, "Benchmarking invertible architectures on inverse problems," Tech. Rep. i, 2019.
- [7] B. Choi and C. Lawrence, "Inverse kinematics problem in robotics using neural networks," Tech. Rep., 1992.
- [8] L. Dinh, J. Sohl-Dickstein, and S. Bengio, "Density estimation using real NVP," CoRR, vol. abs/1605.08803, 2016. [Online]. Available: http://arxiv.org/abs/1605.08803

Fig. 1. Illustration of datasets used during training of models. Only a subset of the samples contained in the datasets is shown here. One configuration in the dataset is highlighted to illustrate the configuration of the robot arm.

Fig. 2. Arm configuration of a planar manipulator with 3 revolute joints and end-effector position at (x,y) = [1.83, -0.57]. 100 samples are drawn from each model's predicted posterior $\tilde{p}(x|y_{qt})$, one random sample configuration is highlighted.

Fig. 3. Arm configuration of a planar manipulator with 4 revolute joints and end-effector position at (x,y) = [2.44,0.35]. 100 samples are drawn from each model's predicted posterior $\tilde{p}(x|y_{gt})$, one random sample configuration is highlighted.