Introdução aos Processos Estocásticos - Desigualdades e Convergência

Eduardo M. A. M. Mendes

DELT - UFMG

Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br

Introdução

- A seguir serão descritas as várias desigualdades usadas no contexto de probabilidade e processos estocásticos.
- Serão mencionadas também as definições de convergência.

Desigualdade de Hölder

• Se p e q são número reais maiores do que 1 com $\frac{1}{p} + \frac{1}{q} = 1$ e se as variáveis aleatórias X, Y e $|X|^p$, $|Y|^q$ são integráveis, então

$$E(|XY|) \le (E(|X|^p))^{\frac{1}{p}} (E(|Y|^q))^{\frac{1}{q}}$$

• Prova: Seja x um número positivo e considere a função $\phi(x) = \frac{x^p}{p} + \frac{x^{-q}}{q}$. Suponha que essa função tenha um mínimo em x=1 com $\phi(1)=1$.

Substituindo $x = \frac{b^{\frac{1}{q}}}{a^{\frac{1}{p}}} = b^{\frac{1}{q}}a^{-\frac{1}{p}}$ com a, b > 0, então

$$\phi(x) = (ap)^{-1}b^{\frac{p}{q}} + (bq)^{-1}a^{\frac{q}{p}} \ge 1$$
$$= p^{-1}b^{\frac{(p+q)}{q}} + q^{-1}a^{\frac{(p+q)}{p}} \ge ab$$

Desigualdade de Hölder (cont.)

Como
$$\frac{1}{p}+\frac{1}{q}=1$$
 ou $\frac{(p+q)}{pq}=1$, temos $\frac{(p+q)}{q}=p$ e $\frac{(p+q)}{p}=q$ e
$$ab\leq \frac{b^p}{p}+\frac{a^q}{q}$$

Substituindo

$$b = \frac{|X|}{(E(|X|^p))^{\frac{1}{p}}} e a = \frac{|Y|}{(E(|Y|^q))^{\frac{1}{q}}}$$

na expressão logo acima, temos:

$$\frac{|X||Y|}{(E(|X|^{p}))^{\frac{1}{p}}(E(|Y|^{q}))^{\frac{1}{q}}} \leq \frac{\left(\frac{|X|}{(E(|X|^{p}))^{\frac{1}{p}}}\right)^{p}}{p} + \frac{\left(\frac{|Y|}{(E(|Y|^{q}))^{\frac{1}{q}}}\right)^{q}}{q} \\
\leq \frac{\frac{|X|^{p}}{E(|X|^{p})}}{p} + \frac{\frac{|Y|^{q}}{E(|Y|^{q})}}{q}$$

Desigualdade de Hölder (cont.)

Tomando o valor esperado obtemos

$$\frac{E(XY)}{(E(|X|^p))^{\frac{1}{p}}(E(|Y|^q))^{\frac{1}{q}}} \leq \frac{1}{p} + \frac{1}{q} = 1$$

a desigualdade segue direto da relação acima.

Desigualdade de Schwartz

Fazendo p = q = 2 na desigualdade de Hölder, obtemos

$$E(|XY|) \le \sqrt{E(|X|^2)E(|Y|^2)}$$

Desigualdade de Minkowski

• Se p é um número real com $p \ge 1$ e se as variáveis aleatórias X, Y e $|X|^p$, $|Y|^p$ são integráveis, então

$$(E(|X+Y|^p))^{\frac{1}{p}} \le (E(|X|^p))^{\frac{1}{p}} + (E(|Y|^p))^{\frac{1}{p}}$$

- Prova: Se p = 1 o resultado segue da desigualdade referente ao triângulo.
- Para p > 1

$$E(|X + Y|^{p}) = E(|X + Y||X + Y|^{p-1})$$

$$\leq E(|X||X + Y|^{p-1}) + E(|Y||X + Y|^{p-1})$$

Usando a desigualdade de Hölder e $\frac{1}{q}=1-\frac{1}{p}$, temos

$$E(|X+Y|^p) \le (E(|X|^p)^{\frac{1}{p}} (E(|X+Y|)^p)^{1-\frac{1}{p}} + (E(|Y|^p)^{\frac{1}{p}} (E(|X+Y|)^p)^{1-\frac{1}{p}})^{\frac{1}{p}} (E(|X+Y|)^p)^{1-\frac{1}{p}})^{\frac{1}{p}}$$

dividindo por $(E(|X+Y|)^p)^{1-\frac{1}{p}}$ resulta na desigualdade.

Desigualdade de Jensen

• Se ϕ é uma função convexa e contínua e se ambos X e $\phi(X)$ são integráveis, então

$$\phi(E(X)) \leq E(\phi(X))$$

• Prova: Se ϕ é uma função convexa, podemos construir uma corda $a_i + b_i x$ tal que

$$a_i + b_i x \leq \phi(x)$$

e

$$\sup_{x}(a_{i}+b_{i}x)=\phi(x)$$

logo

$$a_i + b_i X \leq \phi(X)$$

e

$$a_i + b_i E(X) \leq E(\phi(X))$$

Desigualdade de Jensen (cont.)

ou

$$sup(a_i + b_i E(X)) = \phi(E(X)) \le E(\phi(X))$$

Desigualdade de Chebyshev

Objetivo: Achar um limite para a probabilidade a partir da variância

$$P(|X - E(X)| > \gamma)$$

O que pode ser dito se $p_X(x)$ não pode ser integrada ou não é conhecida?

• Podemos estimar E(X) e Var(X), então

$$P(|X - E(X)| > \gamma) \le B$$

onde

$$B = \frac{Var(X)}{\gamma^2}$$

Desigualdade de Chebyshev (cont.)

Exemplo: $X \sim N(0,1), \quad E(X) = 0, \quad Var(X) = 1$. Supondo $\gamma = 3$, temos

$$P(|X - 0| > 3) \le \frac{1}{3^2} = \frac{1}{9} \approx 0,11$$

Calculando

$$P(|X| > 3) = 2P(X > 3) \approx 0,0027 < 0,11$$

limite muito conservador!

Exemplo: PDF Laplaciano com $\sigma^2 = 1 = Var(X)$

$$P(|X-0|>3) \le \frac{1}{9} \approx 0,11$$

Conclusão: Mesmo limite para todas as PDFs com Var(X) = 1.

Desigualdade de Chebyshev (cont.)

• Se $Var(X) \rightarrow 0$, então

$$P(|X - E(X)| > \gamma) \rightarrow 0$$

para qualquer $\gamma > 0$.

Prova:

$$Var(X) = \int_{-\infty}^{\infty} (x - E(X))^{2} p_{X}(x) dx$$

$$= \int_{\{x:|x - E(X)| > \gamma\}} (x - E(X))^{2} p_{X}(x) dx$$

$$+ \int_{\{x:|x - E(X)| \le \gamma\}} (x - E(X))^{2} p_{X}(x) dx$$

$$\geq \int_{\{x:|x - E(X)| > \gamma\}} (x - E(X))^{2} p_{X}(x) dx$$

$$\geq \int_{\{x:|x - E(X)| > \gamma\}} \gamma^{2} p_{X}(x) dx = \gamma^{2} P(|x - E(X)| > \gamma)$$

Desigualdade de Chebyshev (cont.)

o que conclui a nossa prova.

Teorema de Markov e Desigualdade de Chebyshev

Teorema: Se X é uma variável aleatória e g(X) é uma transformação de X tal que g(X)>0, então, para qualquer K>0

$$P(g(X) \ge K) \le \frac{E(g(X))}{K}$$

Prova: Usando a função indicadora, ou seja

$$I(g(X)) = \begin{cases} 1 & \text{se } g(X) \ge K, \\ 0 & \text{caso contrário} \end{cases}$$

Se $g(X) \ge 0$ e $I(g(X)) \le 1$, podemos escrever para a primeira condição

$$I(g(X)) \leq \frac{g(X)}{K}$$

Tomando o valor esperado

Teorema de Markov e Desigualdade de Chebyshev (cont.)

$$E(I(g(X))) \leq \frac{E(g(X))}{K}$$

$$\sum_{x} I(g(X)) \times p(x) \leq$$

$$[1 \times P(I(g(X)) = 1)] + [0 \times P(I(g(X)) = 0)] \leq$$

$$[1 \times P(g(X) \geq K)] + [0 \times P(g(X) < K)] \leq$$

$$P(g(X) \geq K) \leq \frac{E(g(X))}{K}$$

Teorema de Markov e Desigualdade de Chebyshev (cont.)

• Repare que se fizermos $g(X) = (X - \mu)^2$ e $K = k^2 \sigma^2$, temos

$$P\left((X-\mu)^2 \ge k^2\sigma^2\right) \le \frac{E\left((X-\mu)^2\right)}{k^2\sigma^2} = \frac{\sigma^2}{k^2\sigma^2}$$

Podemos usar $(X - \mu)^2 \ge k^2 \sigma^2$ da seguinte maneira

$$(X - \mu)^2 \ge k^2 \sigma^2 \rightarrow (X - \mu \ge \sqrt{k^2 \sigma^2}) \text{ ou } (X - \mu \le -\sqrt{k^2 \sigma^2})$$

 $\rightarrow (|X - \mu| \ge \sqrt{k^2 \sigma^2})$
 $\rightarrow (|X - \mu| \ge k\sigma)$

Logo

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

que é a desigualdade de Chebyshev para $k = \frac{\gamma}{\sigma}$. Lembrando que σ^2 nada mais é do que $Var(\bullet)$.

Limites de Chernoff

- Fornece um limite menos conservador comparado com Markov e Chebyshev.
- É aplicado quando a variável aleatória é a soma de várias variáveis aleatórias mutuamente independentes.
- É o limite na probabilidade de se desviar da média.
- Não se aplica a todas as distribuições. Só aplicável a soma de VAs definidas no intervalo [0,1].
- Não depende diretamente do número de variáveis somadas.

Teorema: Seja X_1, X_2, \ldots, X_N variáveis aleatórias mutuamente independentes definidas no intervalo [0,1]. Seja $X=\sum_{j=1}^N X_j$, então para qualquer c>1

$$P(X \ge cE(X)) \le e^{-\alpha E(X)}$$

onde $\alpha = c \ln(c) + 1 - c > 0$.

Prova: Definindo $R_j = X_j - E(X_j)$ para j = 1, 2, ..., N, temos

$$-E(X_j) \leq R_j \leq 1 - E(X_j)$$

e $E(R_j) = 0$. Logo

$$P(X \ge cE(X)) = P(R \ge (c-1)E(X))$$

= $P\left(c^R \ge c^{(c-1)E(X)}\right)$
 $\le \frac{E(c^R)}{c^{(c-1)E(X)}}$ Usando o Teorema de Markov

Sabemos

$$E(c^R) = E(c^{R_1 + R_2 + \dots + R_N})$$

$$= E\left(\prod_{j=1}^N c^{R_j}\right)$$

$$= \prod_{i=1}^N E(c^{R_i}) \quad \text{independência}$$

Precisamos

1) Se $-m \le z \le 1 - m$, então

$$c^{z} \leq c^{-m}(1+m(c-1))+z(c^{1-m}-c^{-m})$$

Repare que o lado direito descreve uma equação de uma reta que corta a curva c^z em dois pontos: -m e 1-m. Como c^z é convexa, neste intervalo, a curva se encontra abaixo da reta.

2) $1 + m(c-1) \le e^{m(c-1)}$ que é consequência direta da expansão em séries de Taylor $(1 + x \le e^x)$.

Podemos continuar com a prova fazendo $m = E(X_j)$ e $z = R_j$

$$E(c^{R_j}) \leq E(c^{-m}e^{m(c-1)} + (c^{1-m} - c^{-m})R_j)$$

$$\leq c^{-m}e^{m(c-1)} \text{ pois } E(R_j) = 0$$

$$\leq e^{m(c-1-\ln(c))}$$

Assim

$$\prod E(c^{R_j}) \leq \prod e^{E(X_j)(c-1-\ln(c))}$$

$$\leq e^{(c-1-\ln(c))\sum E(X_j)}$$

$$\leq e^{(c-1-\ln(c))E(X)}$$

Finalmente

$$P(X \ge cE(X)) \le \frac{e^{(c-1-\ln(c))E(X)}}{c^{(c-1)E(X)}}$$

$$\le e^{E(X)(c-1-\ln(c)-c\ln(c)+\ln(c))}$$

$$\le e^{E(X)(-c\ln(c)-1+c)}$$

$$\le e^{-\alpha E(X)}$$

onde $\alpha = cln(c) + 1 - c$.

Limites de Chernoff - Outra Visão

Figura 1: Mostra que $I_{[a,\infty)}(x)$ é um limite para $e^{s(x-a)}$.

Logo se tomarmos a esperança matemática de

$$I_{[a,\infty)}(X) \geq e^{s(X-a)}$$

temos

$$E\left(I_{[a,\infty)}(X)\right) \geq E\left(e^{s(X-a)}\right)$$

$$= e^{-sa}E\left(e^{sX}\right)$$

$$= e^{-sa}\phi(s)$$

Limites de Chernoff - Outra Visão (cont.)

onde $\phi(s)$ é função característica.

Usando o fato que toda probabilidade pode ser escrita como uma esperança matemática

$$P(X \ge A) = E\left(I_{[a,\infty)}X\right)$$

podemos escrever que

$$P(X \ge A) \ge e^{-sa}\phi(s)$$

que é válida para todo s > 0.

O limite de Chernoff é dado por

$$P(X \ge A) \ge \min_{s \ge 0} \left(e^{-sa} \phi(s) \right)$$

Exemplo

Seja X uma variável aleatória contínua com distribuição exponencial e $\lambda=1$. Determine $P(X\geq 7)$ e os limites de Markov, Chebyshev and Chernoff.

Solução: Sabemos que $E(X)=\frac{1}{\lambda}$, $E(X^2)=\frac{2}{\lambda^2}$, $Var(X)=\frac{1}{\lambda^2}$ e $\phi(s)=\frac{\lambda}{(\lambda-s)}$. Logo:

Exemplo (cont.)

$$P(X \ge 7) = \int_{7}^{\infty} e^{-x} dx = e^{-7} = 0,00091$$

$$\le \frac{E(X)}{7} = \frac{1}{7} = 0,144 \quad \text{Markov}$$

$$\le \frac{Var(X)}{7^2} = \frac{1}{7^2} = 0,0204 \quad \text{Chebyshev}$$

$$\le \min_{s \ge 0} \frac{e^{-7s}}{1-s} = \frac{e^{-7s}}{1-s} \Big|_{s=6/7} = 7e^{-6} = 0.017 \quad \text{Chernoff}$$

Estimação da Média e da Variância

Nas desigualdades propostas, como por exemplo a de Chebyshev, usa-se a variância. Logo seria interessante achar uma estimativa para ela quanto para o valor esperado.

Média

$$\hat{E}(X) = \frac{1}{M} \sum_{i=1}^{M} x_i$$
 Média Amostral

Em geral

$$\hat{E}(g(x)) = \frac{1}{M} \sum_{i=1}^{M} g(x_i)$$

• Para a variância, temos:

$$\hat{Var}(X) = \frac{1}{M} \sum_{i=1}^{M} x_i^2 - \left(\frac{1}{M} \sum_{i=1}^{M} x_i\right)^2$$

Convergência Pointwise

• Definição: Uma sequência $\{X_n\}$ converge para um limite X se e somente se, para qualquer $\epsilon>0$ por menor que seja, podemos encontrar um inteiro n_o tal que

$$|X_n - X| < \epsilon$$

para todo $n > n_o$.

Considere agora uma sequência de variáveis aleatórias

$$\{X_1,X_2,\ldots,X_n,\ldots\}$$

e a definição de convergência pointwise para outra variável X, então é necessário ter para todo ω -ponto em Ω a seguinte sequência

$$X_1(\omega), X_2(\omega), \ldots, X_n(\omega)$$

convergindo para $X(\omega)$. Este tipo de convergência é chamada everywhere convergence - altamente restritiva. Devemos olhar para sub-conjuntos de Ω .

Convergência Almost Sure

• Definição: Um sequência de variáveis aleatórias $\{X_n\}$ converge almost sure (a.s.) para X se para cada ω -ponto não pertencente ao evento nulo A,

$$\lim_{n\to\infty}|X_n(\omega)-X(\omega)|=0$$

• Este tipo de convergência é também conhecida como convergência com probabilidade 1 e possui a seguinte notação

$$X_n(\omega) \xrightarrow[n \to \infty]{a.s.} X(\omega)$$
 ou $X(\omega) = \lim_{n \to \infty} X_n(\omega)$ (a.s.)

 Se o limite de X não é conhecido a priori, podemos definir a convergência almost sure mutual. A sequência X_n converge mutualmente almost sure se

$$\sup_{m\geq n} |X_m - X_n| \xrightarrow[n\to\infty]{a.s.} 0$$

Convergência Almost Sure (cont.)

 Uma maneira alternativa de se testar a convergência quase certamente é olhar para

$$P(\{\omega: X_n(\omega) \to X(\omega)\}) = 1$$
 quando $n \to \infty$

ou

$$\lim_{n \to \infty} P\left(sup_{m \ge n} | X_m - X| > \epsilon\right) = 0$$
 para todo $\epsilon > 0$

ou

$$\lim_{n \to \infty} P\left(\sup_{m \ge n} |X_m - X| \le \epsilon\right) = 1$$
 para todo $\epsilon > 0$

• A convergência quase certamente põe restrições no comportamento conjunto de todos elementos aleatórios na sequência $|X_n - X|$, $|X_{n+1} - X|$, . . .

Convergência em Probabilidade

• Definição: A sequência de variáveis aleatórias $\{X_n\}$ converge em probabilidade para X se para $\epsilon > 0$ pequeno

$$\lim_{n\to\infty} P(|X_n - X| \ge \epsilon) = 0$$

ou

$$\lim_{n\to\infty}P\left(|X_n-X|<\epsilon\right)=1$$

• A notação usada é a seguinte

$$X_n(\omega) \xrightarrow[n \to \infty]{l.i.p} X(\omega)$$
 ou $X(\omega) = l.i.p X_n(\omega)$

A convergência em probabilidade mutual é definida como

$$\lim_{n\to\infty}\sup_{m>n}P\left(\left|X_{m}-X_{n}\right|\geq\epsilon\right)\to0$$

Convergência em Probabilidade (cont.)

- A convergência em probabilidae olha para a distribuição marginal de $|X_n-X|$ quando $n\to\infty$.
- O conceito de convergência em probabilidade será uma importante ferramenta quando estudarmos a convergência de estimadores e a lei Fraca dos Grandes Números.
- Algums resultados importantes:
 - Se a sequência de variáveis aleatórias {X_n} converge almost sure para X, então converge em probabilidade para o mesmo limite. O contrário não é verdadeiro.
 - Se $\{X_n\}$ converge em probabilidade para X, então existe uma sub-sequência $\{X_{nk}\}$ de $\{X_n\}$ que converge almost sure para o mesmo limite.
 - $\{X_n\}$ converge em probabilidade se e somente se converge mutualmente em probabilidade.

Diferença entre a convergência quase certamente e em probabilidade

Primeira maneira de olhar

- Convergência em probabilidade A chance de ter algum ponto fora dos limites vai para zero quando o $n \to \infty$.
- Convergência quase certamente É mais forte! O número de pontos fora do limite é finito (countável?). Ou seja, à medida que n aumenta, o número de pontos fora dos limites se esgota → tudo funciona perfeitamente. Infelizmente não se sabe quando isso acontece.

Na prática não há diferença entre os dois modos de convergência.

Segunda maneira de olhar

Diferença entre a convergência quase certamente e em probabilidade (cont.)

- Convergência em probabilidade A probabilidade da sequência de variáveis aleatórias alcançar o alvo decresce exponencialmente e aproxima de zero mas não é zero.
- Convergência quase certamente Algo irá acontecer (o alvo será alacançado) mas não sabemos quando.

Convergência na Média

• Definição: Uma sequência de variáveis aleatórias $\{X_n\}$ converge na p-ésima média (p > 0) para X se

$$\lim_{n\to\infty} E(|X_n-X|^p)\to 0$$

que também por ser escrito como

$$X_n(\omega) \xrightarrow[n \to \infty]{l.i.p.m} X(\omega)$$
 ou $X(\omega) = l.i.p.m X_n(\omega)$

Podemos também definir a convergência na p-ésima média mutual

$$\lim_{n\to\infty}\sup_{m>n}E(|X_m-X_n)^p)\to 0$$

Convergência na Média (cont.)

• Um conceito importante é a convergência na média quadrada no qual p=2

$$\lim_{n\to\infty} E(|X_n-X|)^2\to 0$$

ou de maneira equivalente, no caso da convergência em média quadrada mutual

$$\lim_{n\to\infty}\sup_{m\geq n}E(|X_m-X_n)^2)\to 0$$

A notação usada é

$$X_n(\omega) \xrightarrow[n \to \infty]{l.i.q.m} X(\omega)$$
 ou $X(\omega) = l.i.q.m X_n(\omega)$

 Mesmo a convergência sendo mais restritiva (forte) do que a convergência em probabilidade, não implica ou não é implicada pela convergência almost sure.

Convergência na Média (cont.)

- Alguns resultados importantes são:
 - Se a sequência de variáveis aleatórias $\{X_n\}$ converge na p-ésima média, então converge em probabilidade para o mesmo limite.
 - $\{X_n|\}$ converge na p-ésima média se e somente se converge mutualmente na p-ésima média.

Em probabilidade mas não quase certamente

Exemplo: Seja $X \sim U[0,1]$ e os intervalos binários $I_1 = [0,1]$, $I_2 = \left[0,\frac{1}{2}\right]$, $I_3 = \left[\frac{1}{2},1\right]$, $I_4 = \left[0,\frac{1}{4}\right]$, ..., $I_7 = \left[\frac{3}{4},1\right]$, $I_8 = \left[0,\frac{1}{8}\right]$ e assim por diante tal que

$$I_{2^m+i} = \left[\frac{i}{2^m}, \frac{i+1}{2^m}\right]$$

para $m=0,1,2,\ldots$ e $i=0,1,\ldots,2^m-1$. Logo, os 2^m intervalos de tamanho 2^{-m} cobrem o intervalo [0,1].

• Seja $Y_n=1$ se $X\in I_n$ e $Y_n=0$, caso contrário. A sequência $Y_1,\ Y_2,$... converge *em probabilidade* para Y=0 pois, para todo $0<\epsilon\leq 1$, $P(|Y_n-0|\geq \epsilon)=P(Y_n=1)=P(X\in I_n)=$ tamanho do intervalo $I_n\to 0$, quando $n\to \infty$.

Em probabilidade mas não quase certamente (cont.)

• Y_n não converge quase certamente para zero pois qualquer X está somente em um dos 2^n intervalos de tamanho 2^{-n} . Ou seja, para todo $\omega \in \Omega$, $Y(\omega)$ assume o valor 1 para um número infinito de n's e assume o valor 0 para um número infinito de n's. Logo, para cada $\omega \in \Omega$, $Y(\omega)$ não converge.

a) Considere a variável aleatória X_n tal que $P(X_n = 0) = 1 - \frac{1}{n}$ e $P(X_n = n) = \frac{1}{n}$. Neste exemplo pode-se ver que $X_n \stackrel{P}{\to} 0$ pois

$$P(|X_n| > \epsilon) = P(X_n = n)$$

= $\frac{1}{n}$
 $\rightarrow 0$

Entretanto

$$E(X_n)=1$$

e consequentemente X_n não converge em média para zero.

b) Suponha o modelo para X_n do exemplo anterior mas com ω colhido de uma distribuição uniforme em [0,1], ou seja

$$X_n(\omega) = \left\{ \begin{array}{ll} n, & \omega \in \left[0, \frac{1}{n}\right), \\ 0, & \omega \in \left[\frac{1}{n}, 1\right] \end{array} \right.$$

tal que $P(X_n = 0) = 1 - \frac{1}{n}$ e $P(X_n = n) = \frac{1}{n}$ como antes. Para mostrar convergência quase certamente vamos utilizar a seguinte expressão

$$\lim_{n\to\infty} P(\sup_{m\geq n} |X_m-X_n|\leq \epsilon)=1 \quad \text{para todo } \epsilon>0$$

Temos o seguinte com o limite X = 0

$$\lim_{n \to \infty} P(\sup_{m \ge n} |X_m - X_n| \le \epsilon) = \lim_{n \to \infty} P(\sup_{m \ge n} |X_m| \le \epsilon)$$

$$= \lim_{n \to \infty} P(|X_n| \le \epsilon, |X_{n+1}| \le \epsilon, \ldots)$$

$$\ge \lim_{n \to \infty} P(X_n = 0, X_{n+1} = 0, \ldots)$$

$$= \lim_{n \to \infty} P\left(\omega \ge \frac{1}{n}, \omega \ge \frac{1}{n+1}, \ldots\right)$$

$$= \lim_{n \to \infty} P\left(\omega \ge \frac{1}{n}\right)$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)$$

$$= 1$$

portanto converge quase certamente.

c) Suponhamos que os elementos de X_n sejam independentes. Para todos os valores positivos inteiros de n, temos

$$P(X_n = 0, X_{n+1} = 0, \dots) = \prod_{m=n}^{\infty} \left(1 - \frac{1}{m}\right)$$

$$= \lim_{N \to \infty} \prod_{m=n}^{N} \left(1 - \frac{1}{m}\right)$$

$$= \lim_{N \to \infty} \prod_{m=n}^{N} \frac{m-1}{m}$$

$$= \lim_{N \to \infty} \frac{n-1}{n} \frac{n}{n+1} \dots \frac{N-2}{N-1} \frac{N-1}{N}$$

$$= \lim_{N \to \infty} \frac{n-1}{N}$$

$$= 0$$

e portanto, para todo $\epsilon>0$

$$\lim_{n\to\infty} P(\sup_{m\geq n} |X_m| \leq \epsilon) = 0$$

que viola a condição, ou seja, a convergência quase certamente de X_n para zero falha, assim como a convergência na média. Assim mesmo temos a convergência em probabilidade.

Convergência em Distribuição

Seja X_n uma sequência de variáveis aleatórias e seja X uma variável aleatória. Suponha que X_n tenha distribuição F_n e que X tenha distribuição F. X_n converge em distribuição para a variável X se

$$\lim_{n\to\infty}F_n(t)=F(t)$$

para cada valor de t onde F é contínua. Notação: $X_n \stackrel{d}{\to} X$.

Exemplo: Seja $X_n = 1 + \frac{1}{n}$ uma variável aleatória constante. Podemos facilmente ver que a distribuição de X_n é

$$F_n(t) = \left\{ egin{array}{ll} 0, & ext{se } t < 1 + rac{1}{n} \ 1, & ext{se } t \geq 1 + rac{1}{n} \end{array}
ight.$$

Convergência em Distribuição (cont.)

Note que $\lim_n F_n(t) = \tilde{F}(t)$ onde

$$\tilde{F}(t) = \left\{ \begin{array}{ll} 0, & \text{se } t \leq 1 \\ 1, & \text{se } t > 1 \end{array} \right.$$

que não é uma distribuição, pois não é contínua a direita. Podemos, entretanto, definir

$$F(t) = \left\{ egin{array}{ll} 0, & ext{se } t < 1 \ 1, & ext{se } t \geq 1 \end{array}
ight.$$

que é uma distribuição para a variável X=1. Logo $X_n\stackrel{d}{\to} X$, mesmo que $F_n(1) \nrightarrow F(1)$.