Sea-level change: Why seasons matter!

Tim Hermans (Postdoc @ IMAU)

Institute for Marine and Atmospheric research Utrecht

NASA Sea-level tool

Climate model simulations

x 30! Global climate model

Scenario Horizontal Grid (Latitude-Longitude) Simulations of sea level Vertical Grid (Height or Pressure) (among others!) Physical Processes in a Model

Projected 'ocean dynamic' sea-level change

Mean of all models

How much more/less in seasons?

Mean of all models

Additional change in winter:

Isolating effect of the wind

Conclusions

- Sea-level rise in Europe differs between seasons
 - Higher in winter & spring
 - Lower in summer & autumn
- Causes:
 - Winter & summer: wind-stress change
 - Spring & autumn: density changes?
- Relevant for instance for intertidal ecosystems

Topics for MSc thesis

Global climate models

- Seasonal changes in sea level
- Performance

Regional ocean modeling

- Downscaling global models
- Changes in storm surges & tides

Extra

What satellites see:

(PS: same data as in python assignment 7.2! 1995-2015)

0.0