An exploratory data science approach:
Understanding the OMOP data for use as phenotype in genotype-phenotype association studies

by Xinlu Shi

supervisor: Alexander Hauser, Jakob Madsen

UK Biobank

Motivation: drug use pattern → phenotype → genotype

Related Works

- Troels Siggaard et al. "Disease trajectory browser for exploring temporal, population-wide disease progression patterns in 7.2 million Danish patients". In: Nature Communications 11.1 (2020), p. 4952. merge linear trajectories into disease trajectory networks; exploring patterns of disease progression
- Tuomo Kiiskinen, Pyry Helkkula, Kristi Krebs, et al. "Genetic predictors of lifelong medication-use patterns in cardiometabolic diseases". In: Nature Medicine 29.1 (2023), pp. 209-218. genetic associations with drug adherence and switching patterns in cardiometabolic diseases
- Bjarni V. Halldorsson, Hannes P. Eggertsson, Kristjan H. S. Moore, et al. "The sequences of 150,119 genomes in the UK Biobank". In:
 Nature 607.732 (2022), pp. 732-740.

 rare and common genetic variants influencing drug response → refined models of pharmacogenomics and personalized medicine

Motivation: drug use pattern → phenotype → genotype

UK Biobank

ATC code

In the Anatomical Therapeutic Chemical (ATC) classification system, the active substances are divided into different groups according to the organ or system on which they act and their therapeutic, pharmacological and chemical properties. Drugs are classified in groups at five different levels.

ATC 1st level

The system has fourteen main anatomical or pharmacological groups (1st level). The ATC 1st levels are shown in the figure.

ATC 2nd level

Pharmacological or Therapeutic subgroup

ATC 3rd& 4th levels

Chemical, Pharmacological or Therapeutic subgroup

e.g.

- N NERVOUS SYSTEM
- N06 PSYCHOANALEPTICS
- N06A ANTIDEPRESSANTS
- N06AA Non-selective monoamine reuptake inhibitors
- N06AA01 desipramine

Drug Information

UpSet plot of drugs with Ingredients, ATC, DrugBank, and ChEBI

Observation:

- lacking CHEBI/Ingredient: very rare cases, mainly due to dataset error
- lacking ATC code/DrugBank: sometimes, mainly due to non-therapeutic ingredients or non-therapeutic ingredients e.g. Influenza A virus

Individual-Level Drug Era

Individual Drug Era

Drug Era Data Structure

- drug exposure: a strictly continous period of using one drug (same active substance)
- drug era: a period of drug use for a person (allowing short gaps ≤ 30 days)
- **component of a drug era**: which person, what drug, from when to when, how many times (exposures), total gap days within in the drug era

Drug Switch Pattern

defining drug switch (drug era A → drug era B):

- after stopping drug era A, what drug era did the person first begin?

- for each drug era A, we find its closest subsequent drug era: the drug era

that first started after A ends

switch pattern: drug A → drug B

Drug Switch Pattern

- number of drug eras: approx. 20 million (44% of them have multiple switches)
- total number of drug switches founded approx. 37 million

Drug Switch Pattern

- number of **drug eras**: approx. 20 million (44% of them have multiple switches)
- total number of drug switches approx. 37 million

an example on A → multiple B

treat pain & inflammatory diseases		Drug Era ID	Drug Name	ATC Code	Start Date	End Date
	4	438086668536	naproxen	G02CC02,M01AE02,M02AA12	2011-03-18	2011-04-14

it has 3 closest subsequent drug eras (switch interval = 244 days):

	Drug Name	ATC Code	Start Date	End Date
treat anxiety disorders -	— diazepam	N05BA01	2011-12-14	2011-12-19
treat mild to moderate pain 🚤	acetaminophen	N02BE01	2011-12-14	2012-01-12
treat moderate to severe pain -	dihydrocodeine	N02AA08	2011-12-14	2012-01-12

how significant/meaningful is a drug switch pattern drug A → drug B?

- unique drug switch pattern (drug A, drug B): approx. 400k
 - we can compare to find what switch happened most frequently;
 - biased

use PMI score to determine whether a switch happens by chance

- use PMI score to determine whether a switch happens by chance
- PMI: Pointwise Mutual Information

$$PMI(x, y) = \log \frac{p(x, y)}{p(x)p(y)}$$

```
p(x,y) = p(x)p(y), PMI = 0, indenpendent, co-occur by chance p(x,y) < p(x)p(y), PMI < 0, co-occur less than by chance p(x,y) > p(x)p(y), PMI > 0, co-occur more than by chance
```

• use PMI score to determine whether a switch happens by chance

• use PMI score to determine whether a switch happens by chance

 too uncommon switches can have misleading high PMI values → filtered out

76,152 distinct drug switch patterns after filtering

an example:

oxycodone → naloxone

PMI score: 11.522 (really high)

oxycodone being source: 4910 times

naloxone being destination: 251 times

oxycodone → naloxone: 105 times

naloxone → oxycodone

PMI score: 11.255 (really high)

naloxone being source: 212 times

oxycodone being destination: 7061 times

naloxone → oxycodone: 106 times

Oxycodone: opioid, treating pain

Naloxone: treating opioid overdose and respiratory or mental depression due to opioids

an example:

oxycodone → naloxone

PMI score: 11.522 (really high)

oxycodone being source: 4910 times

naloxone being destination: 251 times

oxycodone → naloxone: 105 times

naloxone → oxycodone

PMI score: 11.255 (really high)

naloxone being source: 212 times

oxycodone being destination: 7061 times

naloxone → oxycodone: 106 times

PMI on switch pattern 1 & switch pattern 2

Is drug switch pattern $A \rightarrow B$ related to pattern $C \rightarrow D$?

- only drug switches between drugs under ATC code category "N" (Nervous System)
- 1,875 kinds of switches after filtering
- Combination (1875, 2) = 1,756,875 switch pairs

• use PMI score to determine whether a person have two switches by chance

Is drug switch $A \rightarrow B$ related to $C \rightarrow D$? Combination (1875, 2) = 1,756,875 switch pairs

very small epsilon is used; p(x,y) = 0 vs. 1e-6 can make huge difference in PMI score

- drug switch A → B and C→D tend to co-occur
- possible underlying factors

example:

Switch 1: ergotamine → amitriptyline

Switch 2: amitriptyline → caffeine

PMI score: 11.316

- **Ergotamine**: treat migraines
- Amitriptyline: treat chronic pain; preventive treatment for migraines
- Caffeine: sometimes used to enhance the effects of pain relievers or manage certain headaches

might indicates a fine-tuning of migraine treatment or managing side effects of amitriptyline (e.g., fatigue or sedation).

Graph

Nodes: 1875 switches;

Undirected Edges;

Weight: PMI scores

Drug Switch Communities 1860 nodes, 133506 edges, 9 communities

PMI on switch 1 & switch 2

- Community 0
- Community 1
- Community 2
- Community 3
- Community 4
- Community 5
- Community 6
- Community 7
- Community 8
- Nodes closed together: strongly connected nodes (high PMI)
- Nodes farther apart: weak connection

gap: the patient's adherence to the treatment

- what drug causes people to have more gaps?
- can we predict the number of gap days given what drug it is and the drug era's duration?

f(drug, duration) = gap days

clean dataset (16 drugs, excluding outliers); zero-inflated model; two-stage approach

, one hot encoding for different drugs: [0, 1, 0, 0, ...]

```
\log(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \log(duration)

\mu : E(gap days)
```

- small LLR (Log-Likelihood Ratio) p-value
- pseudo R-square (11.09%): limited predictive power

one hot encoding for different drugs: [0, 1, 0, 0, ...]

```
\log(\mu) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \log(duration)

\mu : E(gap days)
```

- small LLR (Log-Likelihood Ratio) p-value
- pseudo R-square (11.09%): limited predictive power

- gap is affected by drug (and duration); but not fully
 population-level factors
- different drugs may affect gap days in different ways

drug's impact on gap gap rate = gap days / duration

gap rate for all drug eras

gap rate for drug eras with **N06** (psychoanaleptics)

drug's impact on gap

gap rate = gap days / duration

4 kinds of antidepressant (N06):

less gap, more adherence; probably less side effect

Thank you for listening