南京航空航天大学

研究生考试参考答案及评分标准

共4页 第1页

	六4 贝 甲 1 リ
二00 八 ~二00 九 学年 第1 学期	
课程名称:矩阵论 A 卷 课程编号	1. A000003
参考答案及评分标准制定人:《矩阵论》课程组 考试日期	月: 2009年1月13 日
一、(20分)	
(1) 特征值多项式为 $f(\lambda) = \lambda I - A = \lambda(\lambda + 1)^2$ 3	
特征值为 0, 一1 (二重)3	
(2) 不变因子1,1, $\lambda(\lambda+1)^2$ 6	
初等因子 λ , $(\lambda+1)^2$ 2	
最小多项式 $m(\lambda) = \lambda(\lambda+1)^2$ 2	
(3) Jordan 标准形 $ \begin{bmatrix} -1 & 1 & \\ & -1 & 0 \\ & & 0 \end{bmatrix}$	4
二、(20分)	
(1) $\ A\ _{1} = 3; \ A\ _{2} = \sqrt{3}; \ A\ _{\infty} = 2; \ A\ _{F} = \sqrt{5}$	2' *4 = 8
(2) 证明:	
(i) 因为 A 可逆,则 A 的特征值均非零。设 λ 是 A 的任一特征	E值, x 是相应的特征向量,
则	
$Ax = \lambda x, A^{-1}x = \lambda^{-1}x$	
因为 $\ .\ $ 是 $C^{n\times n}$ 上的相容矩阵范数,则存在与 $\ .\ $ 相容的向量落	范数∭ _a ,从而
$\ \lambda\ \ x\ _{a} = \ \lambda x\ _{a} = \ Ax\ _{a} \le \ A\ \ x\ _{a}, \ \lambda^{-1}\ \ x\ _{a} \le \ A^{-1}\ \ x\ _{a}$	
因为 $\ x\ _a > 0$,则 $\ A^{-1}\ ^{-1} \le \lambda \le \ A\ $ 。	6
(ii) 容易验证: $\ A\ _{p} = \ P^{-1}AP\ $ 满足相容矩阵范数的四个条件	+ 6

三、(20分)

(1) A的满秩分解为

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 -----5

$$A^{+} = C^{T} (CC^{T})^{-1} (B^{T}B)^{-1}B^{T} = \begin{bmatrix} -\frac{1}{4} & 0 & \frac{1}{4} \\ 0 & 1 & 0 \\ \frac{1}{4} & 0 & -\frac{1}{4} \end{bmatrix}$$
 -----5

(2) 因为
$$AA^+b = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \neq b$$
; 所以不相容的。 ------3

其极小最小二乘通解为
$$x = A^+b = \begin{pmatrix} \frac{1}{4} \\ 2 \\ -\frac{1}{4} \end{pmatrix}$$
 ------3

(3) 因为x是不相容线性方程组Ax = b的最小二乘解当且仅x是如下相容线性方程组 $A^T Ax = A^T b$

的解,所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 A^TA 非奇异,即 $rank(A^TA) = n$ 。因为 $rank(A^TA) = rank(A)$,所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 A 列满秩。 --------4

四、(20分)

$$(1) \dim(V)=3,$$
 -----2

V 的一组基为
$$\varepsilon_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \varepsilon_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \varepsilon_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 -----3

(2) 因为

$$T(\varepsilon_1) = \varepsilon_1 + \varepsilon_2, T(\varepsilon_2) = 2\varepsilon_2, T(\varepsilon_3) = -\varepsilon_2 + \varepsilon_3$$

则线性变换T在基 $\epsilon_1,\epsilon_2,\epsilon_3$ 下的矩阵为

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$
 -----5

- (3) 因为T在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的矩阵 A 非奇异, $Ker(T) = N(T) = \{0\}, \dim(N(T)) = 0$ 。---2 $R(T) = span(T(\varepsilon_1), T(\varepsilon_2), T(\varepsilon_3)) = span(\varepsilon_1 + \varepsilon_2, 2\varepsilon_2, -\varepsilon_2 + \varepsilon_3) = V$,则 $\dim(R(T)) = 3$ 。----3
- (4) 因为矩阵 A 的初等因子为 $\lambda-2$, $\lambda-1$, $\lambda-1$, 所以矩阵 A 可对角化。因为线性变换在不同基下的矩阵是相似的,因此存在一组基使得(2)中线性变换T在所取基下的矩阵为对角矩阵。

因为矩阵 A 对应于特征值
$$\lambda_1=1, \lambda_2=2, \lambda_3=1$$
 的特征向量为 $\begin{pmatrix}1\\-1\\0\end{pmatrix}, \begin{pmatrix}0\\1\\0\end{pmatrix}, \begin{pmatrix}1\\0\\1\end{pmatrix}$,则取 V 的

一组基为
$$\alpha_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, T 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 ------5

五、(20分)

(1) 因为A为n阶 Hermite 矩阵,则存在n阶酉矩阵 U,使得

$$A = U\Lambda U^H$$
,

其中 $\Lambda = diag(\lambda_1, \dots, \lambda_n)$,并且 $\lambda_1 \ge \dots \ge \lambda_n$ 。令

$$B = Udiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})U^H,$$

则 B 是 n 阶 Hermite 矩阵, 并且 $A = B^3$ 。

-----8

设有另一个 n 阶 Hermite 矩阵 E, 使得 $A = E^3$, 则 E 有谱分解

$$E = V diag(\mu_1, \dots, \mu_n)V^H$$

其中 $\mu_1 \ge \cdots \ge \mu_n$ 。因为 $A = E^3$,则 $\mu_i^3 = \lambda_i (i = 1, \cdots, n)$, $E = V diag(\lambda_1^{\frac{1}{3}}, \cdots, \lambda_n^{\frac{1}{3}}) V^H$ 。由 $A = B^3 = E^3$,有

$$Udiag(\lambda_1, \dots, \lambda_n)U^H = Vdiag(\lambda_1, \dots, \lambda_n)V^H$$
.

记 $P = U^H V = (p_{ij})$,则 $diag(\lambda_1, \dots, \lambda_n)P = Pdiag(\lambda_1, \dots, \lambda_n)$,从而

$$\lambda_i p_{ij} = \lambda_j p_{ij} \quad (i, j = 1, \dots, n)$$
,

于是

$$\lambda_i^{\frac{1}{3}} p_{ij} = \lambda_j^{\frac{1}{3}} p_{ij} \quad (i, j = 1, \dots, n) ,$$

即

$$diag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})P = Pdiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}}),$$

因此
$$B = Udiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})U^H = Vdiag(\lambda_1^{\frac{1}{3}}, \dots, \lambda_n^{\frac{1}{3}})V^H = E$$
。

(2) 因为 $A \ge 0$,所以 A 的特征值均非负。设 A 的特征值为 $\lambda_1, \dots, \lambda_n$,且 $\lambda_1 \ge \dots \ge \lambda_n \ge 0$,则 A^2 的特征值为 $\lambda_1^2, \dots, \lambda_n^2$,于是

$$(tr(A))^2 = (\lambda_1 + \dots + \lambda_n)^2 \ge \lambda_1^2 + \dots + \lambda_n^2 = tr(A^2)$$
 . ------4

(3) 因为A>0,则A可逆,并且 $A^{-1}>0$ 。由 $I=AA^{-1}$,可得

$$n = tr(I) = tr(AA^{-1}) = tr(A^{H}A^{-1}) \le \left[tr(A^{H}A)tr(A^{-H}A^{-1})\right]^{\frac{1}{2}} = \left[tr(A^{2})tr(A^{-2})\right]^{\frac{1}{2}}$$

由 (2) 知
$$\sqrt{tr(A^2)} \le tr(A), \sqrt{tr(A^{-2})} \le tr(A^{-1})$$
,因此 $n \le tr(A)tr(A^{-1})$ 。 ------4