Set Theory

What is Set?

Set

• sets inside **curly brackets** like this:

{hat, shirt, jacket, pants, ...}

- Set of whole numbers: {0, 1, 2, 3, ...}
- Set of prime numbers: {2, 3, 5, 7, 11, 13, 17, ...}

Set is just things grouped together with a certain property in common.

Set:- The collection of well-defined distinct objects is known as a set

Notation

 $A=\{a,b,c,d\}$

- •We simply list each element (or "member") separated by a comma, and then put some curly brackets around the whole thing:
- a,b,c,d are elements of sets
- A is name of set
- when we say an element \mathbf{a} is in a set \mathbf{A} , we use the symbol \mathbf{E} to show
- it. And if something is not in a set use
 - a ϵ A, bur e $\stackrel{\not}{=}$ A

Set Representation

Roster Notation

we enumerate or list all the element.

Examples:

1) A is a set of whole numbers less than 6.

$$A = \{ 0,1,2,3,4,5 \}$$

2) C is the set of letters in the word excellent .

$$C = \{ e, x, c, l, n, t \}$$

Set Representation

Set-builder form (Rule method)

In this method, we specify the rule or property or statement.

 $A = \{ x \mid x \text{ has a property of p} \}$

This is read as A is the set of elements x such that(|) x has a property p.

Examples:

1) Given : $A = \{2,4,6,8,10,12\}$ Solution : In set A all the elements are even natural number up to 12.So this is the rule for the set A So set builder notation will be $A = \{x \mid x \text{ is an even natural number, } x \le 12\}$ or $A = \{x \mid x \in \mathbb{N}, x \text{ is even number and } x \le 12\}.$ 2) $B = \{4,5,6,7\}$

Solution:

In set B all the elements are natural numbers between 3 and 8. This is the rule.

So set builder notation will be

 $B = \{ x \mid x \text{ is a natural number, } 3 < x < 8 \} \text{ Or }$

B = $\{x \mid x \in \mathbb{N}, 3 < x < 8\}.$

Natural Numbers : ${\bf N}$ The whole numbers from 1 upwards. (Or from 0 upwards in some fields of mathematics).

The set is $\{1,2,3,...\}$ or $\{0,1,2,3,...\}$

Integers : **Z**

The whole numbers, $\{1,2,3,...\}$ negative whole numbers $\{..., -3, -2, -1\}$ and zero $\{0\}$. So the set is $\{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Rational Numbers : **Q**

The numbers you can make by dividing one integer by another (but not dividing by zero). In other words fractions

Examples: 3/2 (=1.5), -1/1000 (=-0.001)

Write following sets in set bulder form

$$D=\{a,e,i,o,u\}$$

 $A = \{ x / x \ge -6, x \text{ is an integer } \}$

 $B = \{x / x \text{ is an natural}, x \ge 1\}$

 $C = \{x \mid x \text{ is an integer and- } 1 \le x < 5\}$

 $D = \{x/x \text{ is an vowel alphbet}\}\$

Set Equality

Two sets are equal if they have precisely the same members

$$A = \{1, 2, 3\} B = \{3, 1, 2\}, A = B$$

$$\{a, c, t\} = \{c, a, t\} = \{t, a, c\}, but \{a, c, t\} \neq \{a, c, t, o, r\}$$

$$\{b, o, o, k\} = \{b, o, k\}$$

$$A = \{f,o,l,l,o,w\}$$

$$B = \{w,o,l,f\}$$

Empty Set

The *empty set* is a set that has no members. It can also called void set or null set.

Notation: The symbol \varnothing is used to represent the empty set, $\{\ \}$.

$$\emptyset = \{ \}$$

 $\{\varnothing\}$ does **not** symbolize the empty set; it represents a set that contains an empty set as an element

Singleton Set

These are those sets that have only a single element.

Ex: A= {A number which is prime and even both}

Equivalent Sets

Equivalent sets are those which have an equal number of elements irrespective of what the elements are.

$$A = \{1, 2, 3, 4, 5\}$$

B = {set of vowel letter}

A and B sets are equivalent sets because both these sets have 5 elements each.

Finite Sets

Any set which is empty or contains a definite and countable number of elements is called a finite set.

 $A = \{a, e, i, o, u\}$ is a finite set

Infinite Sets

Any set which contains a indefinite and uncountable elements is called a Infinite set.

A = {prime numbers}

Subset

If A and B are two sets, and every element of set A is also an element of set B, then A is called a subset of B and we write it as $A \subseteq B$ or $B \supseteq A$

Every set is a subset of itself, i.e.,

$$A = \{2, 4, 6\}$$

$$B = \{6, 4, 8, 2\}, A \subseteq B$$

A is a subset of B, all the elements of set A are contained in set B. But B is not the subset of A. Since, all the elements of set B are not contained in set A.

Set Operations

- Set Union
- Set Intersection
- Set Difference
- Complement of Set
- Cartesian Product.

Union of sets

A and B (denoted by $A \cup B$) is the set of elements that are in A, in B, or in both A and B.

Hence,
$$A \cup B = \{ x \mid x \in A \text{ OR } x \in B \}.$$

Example – If $A = \{ 10, 11, 12, 13 \}$ and $B = \{ 13, 14, 15 \}$, then

$$A \cup B = \{ 10, 11, 12, 13, 14, 15 \}.$$

(The common element occurs only once)

Properties of union of sets

$$A \cup B = B \cup A$$

$$A \cup \emptyset = A$$

$$A \cup A = A$$

Set Intersection

The intersection of sets A and B (denoted by A \cap B) is the set of elements which are in both A and B.

Hence, $A \cap B = \{ x \mid x \in A \text{ AND } x \in B \}.$

Example – If $A = \{ 11, 12, 13 \}$ and $B = \{ 13, 14, 15 \}$,

then $A \cap B = \{ 13 \}.$

Properties of Intersection of sets

$$A \cap B = B \cap A$$
.

$$\phi \cap A = \phi$$

$$U \cap A = A$$

$$A \cap A = A$$

Universal Set

A Universal Set is the set of all elements under consideration, denoted by capital U . All other sets are subsets of the universal set.

Ex: U={Set of natural numbers}

Complement of a Set

The complement of a set A (denoted by A') is the set of elements which are not in set A.

The complement of a set can be represented with several different notations.

The complement of set A can be written as:

$$A^{c}$$
 or A' or \overline{A} or $\sim A$

Hence, $A' = \{ x \mid x \notin A \}.$

Example of Complement of a Set

Example: Let $U = \{1, 2, 3, 4, 5, 6\}$ and $A = \{1, 3, 5\}$.

Complement of a Set $A' = \{2, 4, 6\}$.

 $U = \{a, b, c, ..., x, y, z\},\$

 $P = \{a, b, c, d, e\}$ and

 $Q = \{x, y, z\}$, find P'AND Q'.

Set Difference

The relative complement or set difference of sets A and B, denoted A - B, is the set of all elements in A that are not in B.

In set-builder notation, $A - B = \{ x \in A \text{ and } x \notin B \} = A \cap B'$.

Example: Let $A = \{a, b, c, d\}$ and $B = \{b, d, e\}$. Then $A - B = \{a, c\}$ and $B - A = \{e\}$.

Let $G = \{t, a, n\}$ and $H = \{n, a, t\}$. Then $G - H = \emptyset$.

Symmetric Difference of sets

The symmetric difference of set A with respect to set B is the set of elements which are in either of the sets A and B, but not in their intersection. This is denoted as $A \triangle B$

$$A \triangle B = (A \cup B) - (A \cap B)$$

or

$$A \triangle B = (A - B) \cup (B - A)$$

Properties

$$A \triangle \emptyset = A$$

$$A \triangle A = \emptyset$$

$$A \triangle B = B \triangle A$$

If $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $B = \{1, 3, 5, 6, 7, 8, 9\}$, then $A - B = \{2, 4\}$, $B - A = \{9\}$ (A-B)U(B-A)= $\{2, 4, 9\}$. $A \triangle B = \{2, 4, 9\}$.

If A = $\{1, 2, 4, 7, 9\}$ and B = $\{2, 3, 7, 8, 9\}$ then A-B= $\{1,4\}$ B-A= $\{3,8\}$ A \triangle B = (A-B) U (B-A) = $\{1,3,4,8\}$

Cartesian Product

The Cartesian product of two sets A and B, denoted $A \times B$, is the set of all possible ordered pairs where the elements of A are first and the elements of B are second. ...

 $A = \{x,y,z\}$ and $B = \{1,2,3\}$

 $A \times B = \{(x,1),(x,2),(x,3),$

Cartesian Product

It is interesting to know that (a1,b1) will be different from (b1,a1).

If either of the two sets is a null set, i.e., either $A = \Phi$ or $B = \Phi$, then, $A \times B = \Phi$

If $A = \{7, 8\}$ and $B = \{2, 4, 6\}$, find $A \times B$.

If $A = \{1, 3, 5\}$ and $B = \{2, 3\}$, then

Find: (i) A × B

(ii) $B \times A$

(iii) $A \times A$

(iv) $(B \times B)$

$$A \times B = \{(7, 2); (7, 4); (7, 6); (8, 2); (8, 4); (8, 6)\}$$

$$A \times B = \{1, 3, 5\} \times \{2,3\} = \{\{1, 2\}, \{1, 3\}, \{3, 2\}, \{3, 3\}, \{5, 2\}, \{5, 3\}\}$$

$$B \times A = \{2, 3\} \times \{1, 3, 5\} = [\{2, 1\}, \{2, 3\}, \{2, 5\}, \{3, 1\}, \{3, 3\}, \{3, 5\}]$$

$$A \times A = \{1, 3, 5\} \times \{1, 3, 5\} = [\{1, 1\}, \{1, 3\}, \{1, 5\}, \{3, 1\}, \{3, 3\}, \{3, 5\}, \{5, 1\}, \{5, 3\}, \{5, 5\}]$$

$$B \times B = \{2, 3\} \times \{2, 3\} = [\{2, 2\}, \{2, 3\}, \{3, 2\}, \{3, 3\}]$$

Example: The shop has banana, chocolate and lemon ice cream.

What do you order?

Nothing at all: {}

Or maybe just banana: {banana}. Or just {chocolate} or just {lemon}

Or two together: {banana,chocolate} or {banana,lemon} or {chocolate,lemon}

Or all three! {banana, chocolate,lemon}

Power Set

The power set is a set which includes all the subsets including the empty set and the original set itself. Represented by P(A).

If set $A = \{x,y,z\}$ is a set, then all its subsets $\{x\}$, $\{y\}$, $\{z\}$, $\{x,y\}$, $\{y,z\}$, $\{x,y\}$, $\{x,y,z\}$ and $\{\}$ are the elements of powerset.

How is Power set Calculated?

If the given set has n elements, then its Power Set will contain 2ⁿ elements. It also represents the cardinality of powerset.

Example

Let us say Set A = { a, b, c } The power set P(A) = { { }, { a }, { b }, { c }, { a, b }, { b, c }, { c, d }, { a, b, c } } Number of elements: 3 Therefore, the subsets of the set are: $2^3 = 8$ { } which is the null or the empty set { a } { b } { b } { c } { c, c } { a, b } { b, c } { c, a } { a, b, c }

Disjoint

Set

When the intersection of two sets is a null or empty set, then they are called disjoint sets. Hence, if A and B are two disjoint sets, then;

$$A \cap B = \phi$$

Example: The shop has banana, chocolate and lemon ice cream. A={chocolate, banana, lemon}

What do you order?

Nothing at all: {}

Or maybe just banana: {banana}. Or just {chocolate} or just {lemon}

Or two together: {banana,chocolate} or {banana,lemon} or {chocolate,lemon}

Or all three! {banana, chocolate,lemon}

Venn Diagram

The english mathematician John Venn began usng diagrams to represent set. That diagrams are called venn diagram