Lösungen zum Skript Schaltalgebra

Aufgabe Seite 2:

Charakterisieren Sie mit Wahrheitstabellen alle (anderen) unären Schaltfunktionen.

X	У	X	У	X	У	X	У
0 1		0		0		0 1	1 1

Hinweis:

Bei gegebenem Eingangswerten x werden alle möglichen Wahrheitstabellen gefunden, indem die Werte der y-Spalten permutiert werden.

Am Beispiel hier:

$$\begin{array}{c|cccc} x & y \\ \hline 0 & 0 & \longrightarrow & y_0 & \text{mit } Y = (y_1, y_0) \text{ als 2-Bit-Wort verstanden also} \\ 1 & 0 & \longrightarrow & y_1 & Y = 00, 01, 10 \text{ und } 10 \\ \end{array}$$

Mit 2 Eingangsvariablen sind insgesamt 16 unterschiedliche Wahrheitstabellen möglich, mit 3 Eingangsvariablen 256 etc.

Fragen Seite 4:

Wie viele mögliche binäre Verknüpfungen gibt es insgesamt? Oder anders gefragt: Mit 2 Eingangsvariablen können wie viele unterschiedliche Wahrheitstabellen produziert werden?

Vgl. oben, letzter Absatz.

Kennen Sie die Namen einiger dieser binären Verknüpfungen nebst AND und OR?

NAND, NOR, EXOR, EXNOR

Aufgabe Seite 5:

Erstellen Sie Wahrheitstabelle, Symbole etc. für das NOR-Gatter.

X ₁	x ₀	у
0	0	1
0	1	0
1	0	0
1	1	0

f: nor

$$\overline{x_1 + x_0} = y$$
 logische Summe invertiert.
 $nor(x_0, x_1) = not(or(x_0, x_1) = y$ Funktionsschreibweise

Frage Seite 6:

Das EXOR-Gatter kann mit den sog. Grund-Gattern AND, OR und NOT aufgebaut werden. Wie?

Z.B.:

Aufgabe Seite 7:

Notieren Sie analog dem EXOR die Wahrheitstabelle des EXNOR (Aequivalenz) etc.

x ₁	$\mathbf{x_0}$	У
0	0	1
0	1	0
1	0	0
1	1	1

Der alternative Name Aequivalenz wiedergibt die Werte des Ausgangsvektors:

Der Ausgangwert von y ist nur dann 1, wenn beide Eingänge gleiche Werte aufweisen. (entweder der eine - oder der andere)

f: exnor

Schaltsymbol für die exnor-Verknüpfung

$$\overline{\mathbf{x}_1 \oplus \mathbf{x}_0} = \mathbf{y}$$

EXNOR (bevorzugte Schreibweise)

$$x_1 \equiv x_0 = y, x_1 \leftrightarrow x_0 = y$$

Weitere EXNOR-Operatoren-Schreibweisen

$$xnor(x_0, x_1) = y$$

Funktionsschreibweise

A(B + C)

Aufgabe Seite 8:

Zeichnen Sie die Schaltungen mit den eingeführten Schaltsymbolen zu den gegebenen Gleichungen.

Aufgabe Seite 11:

Bilden Sie die KKNF der Tabelle auf Seite 11. Formulieren Sie die Vorgehensweise zur Findung der KKNF wie dies für die KDNF formuliert wurde.

Hinweis¹

Ihre Lösung sollte die Form $y = M_0 \cdot M_3 \cdot M_4 \cdot M_5 \cdot M_6$ aufweisen.

Vorgehen zum Bilden der KKNF der Tabelle

- Betrachten aller Eingangsvektoren (jeder Zeile) X_i , für die die Funktion $y=f(X_i)$ den Wert 0 annimmt.

In unserem Beispiel sind dies X_0, X_3, X_4, X_5 und X_6 .

- Für jeden oben gefundenen Eingangsvektor wird eine Disjunktion mit den Eingangsvariablen \mathbf{x}_i (beachte: klein \mathbf{x}) gebildet, die sog. Maxterme \mathbf{M}_i . In unserem Beispiel:

 $\begin{array}{lll} \text{Für } X_0 \text{:} & M_0 = x_2 + x_1 + x_0 \; , \\ \text{für } X_3 \text{:} & M_3 = x_2 + \overline{x_1} + \overline{x_0} \; , \\ \text{für } X_4 \text{:} & M_4 = \overline{x_2} + x_1 + x_0 \; , \\ \text{für } X_5 \text{:} & M_5 = \overline{x_2} + x_1 + \overline{x_0} \; , \\ \text{für } X_6 \text{:} & M_6 = \overline{x_2} + \overline{x_1} + x_0 \end{array}$

Die x_i werden invertiert notiert, wenn sie den Wert 1 aufweisen, sonst werden sie nicht-invertiert notiert.

- Zur Bildung der KKNF werden die Maxterme konjunktiv verknüpft und mit y gleich gesetzt. Hier:

$$y = M_0 M_3 M_4 M_5 M_6 = (x_2 + x_1 + x_0)(x_2 + \overline{x_1} + \overline{x_0})(\overline{x_2} + x_1 + x_0)(\overline{x_2} + x_1 + \overline{x_0})(\overline{x_2} + \overline{x_1} + x_0)$$

Frage Seite 12:

Wann ist welche Normalform für einen kleineren Realisierungsaufwand vorteilhafter?

KDNF, falls die y-Spalte weniger 1 als 0 aufweist; KKNF, falls die y-Spalte weniger 0 als 1 aufweist

Aufgaben Seite 13:

Zeichnen Sie die minimierte Schaltung für ACD + BD = y.

Was bewirkt das Ausklammern bezüglich der Realisierung der Schaltung?

$$ACD + BD = D(AC + B)$$

Die Schaltung vereinfacht sich in der Breite, vergrössert sich aber in der Tiefe (eine weitere Stufe wird nötig).

Manchmal stehen nur 2-Input-Gatter zur Verfügung. Wie müsste dann die Schaltung realisiert werden?

Vgl. oben als eine mögliche Lösung.

Wie sieht die Schaltung aus, wenn entweder nur 2-Inpt-NOR oder nur 2-Input-NAND zur Verfügung stehen?

Lösung mit 2-Input-NOR:

Mehrfache Anwendung der De Morgan'schen Regel führt zur Lösung. Inverter werden mit 2-Input-NOR gebildet.

$$ACD + BD = \overline{\overline{AC} + \overline{D}} + BD = \overline{\overline{\overline{A} + \overline{C}} + \overline{D}} + \overline{\overline{B} + \overline{D}} = \overline{\overline{\overline{A} + \overline{C}} + \overline{D}} + \overline{\overline{B} + \overline{D}}$$

Lösung mit 2-Input-NAND:

Mehrfache Anwendung der De Morgan'schen Regel führt zur Lösung. Inverter werden mit 2-Input-NAND gebildet.

$$ACD + BD = \overline{\overline{AC}} D + \overline{\overline{BD}} = \overline{\overline{\overline{AC}} D} + \overline{\overline{BD}} = \overline{\overline{\overline{AC}} D} \overline{\overline{BD}}$$

Aufgaben Seite 17:

Ein Superfeld der Dimension 2 x 2.

Wie lautet die vereinfachte Funktion?

$$y = \overline{x_2} \, \overline{x_0}$$

Ein weiteres Superfeld der Dimension 2 x 2.

Wie lautet die vereinfachte Funktion?

$$y = x_2 \overline{x_0}$$

Aufgabe Seite 18:

Für untenstehende Tabelle sind die Werte für "0" und alle Don't cares eingetragen. Ergänzen Sie alle fehlenden Werte (vgl. Vereinbarung).

BCD	x_3	x ₂	x ₁	x ₀	a	b	С	d	e	f	g	Ziffer
·												
0	0	0	0	0	1	1	1	1	1	1	0	" 0 "
1	0	0	0	1	0	1	1	0	0	0	0	"1"
2	0	0	1	0	1	1	0	1	1	0	1	"2"
3	0	0	1	1	1	1	1	1	0	0	1	"3"
4	0	1	0	0	0	1	1	0	0	1	1	"4"
5	0	1	0	1	1	0	1	1	0	1	1	"5"
6	0	1	1	0	1	0	1	1	1	1	1	"6"
7	0	1	1	1	1	1	1	0	0	0	0	"7"
8	1	0	0	0	1	1	1	1	1	1	1	"8"
9	1	0	0	1	1	1	1	0	0	1	1	"9"
-	1	0	1	0	X	X	X	X	X	X	X	
-	1	0	1	1	X	Х	X	Х	X	X	X	
-	1	1	0	0	X	X	X	X	X	X	X	
-	1	1	0	1	X	X	X	X	X	X	X	
-	1	1	1	0	x	X	X	X	X	X	X	
-	1	1	1	1	l _X	X	X	X	X	X	X	

Vereinbarung: 1 am Ausgang soll bedeuten: Segment der Anzeige leuchtet; 0 am Ausgang: Segment leuchtet nicht.