1	CLAIN	ns ··
2	OLAIN	
3 .		We claim:
		vve claim.
4	4	A manalithia antical counting module comprising:
5	1.	A monolithic optical coupling module comprising:
6		a light beam input portion;
7		a light beam output portion; and
8		at least one integrally formed light beam attenuator located in an optical
9		path between the light beam input portion and the light beam output portion.
10		
11	2.	A monolithic optical coupling module according to Claim 1, wherein the light
12		output portion comprises an outlet adapted to couple to at least one optical
13	fiber.	
14		
15	3.	A monolithic optical coupling module according to Claim 1, wherein the light
16	beam	input portion comprises an inlet adapted to couple to at least one optical fiber.
17		
18	4.	A monolithic optical coupling module according to Claim 1, wherein the at least
19	one in	tegrally formed light beam attenuator comprises at least one light reflective
20	portio	n that is disposed in the optical path to reflect at least some incident light away
21	theref	rom.
22		
23	5.	A monolithic optical coupling module according to Claim 1, wherein the at least
24	one in	tegrally formed light beam attenuator comprises a laser ablated portion.
25		
26	6.	A monolithic optical coupling module according to Claim 1, wherein the at least
27	one in	stegrally formed light beam attenuator comprises a roughened surface portion
28	that h	as a predetermined degree of roughness;

1	wherein during use, the roughened surface portion partially scatters		
2	incident light away therefrom to attenuate the incident light by a degree of		
3 .	attenuation corresponding to the predetermined degree of roughness.		
4			
5			
6	7. A monolithic optical coupling module according to Claim 6, wherein the		
7	roughened surface portion comprises a surface having molded surface irregularities;		
8	wherein during use, the molded surface irregularities partially scatter		
9	incident light away therefrom.		
10			
11	8. A monolithic optical coupling module according to Claim 6, further comprising		
12	another surface portion opposite the roughened surface portion, the roughened		
13	surface portion and the another surface portion being arranged to define a gap in the		
14	monolithic optical coupling module.		
15			
16	9. A monolithic optical coupling module according to Claim 6, wherein the		
17	roughened surface portion comprises one of a sand-blasted, an electro-discharge		
18	machined, a turned, a face-milled, a charged particle-etched and a ground surface		
19	portion.		
20			
21	10. A monolithic optical coupling module according to Claim 6, wherein the		
22	roughened surface portion comprises a plurality of light reflective portions.		
23			
24	11. A monolithic optical coupling module according to Claim 10, wherein the		
25	plurality of light reflective portions are disposed to form a pattern.		
26			
27	12. A monolithic optical coupling module comprising:		
28	a first surface portion and a second surface portion opposite the first		
29	surface portion, wherein the first surface portion and the second surface		
30	portion define a gap in the monolithic optical coupling module; and		

Attorney Docket No.: 70030251

	I O		
1	wherein at least one of the first surface portion and the second surface	се	
2	portion comprises an integrally-formed light beam attenuator that attenuates a lig	jht	
3 .	beam propagating therethrough to provide an attenuated light beam.		
4			
5	13. A monolithic optical coupling module according to Claim 12, wherein the	at	
6	least one of the first surface portion and the second surface portion is roughened to	a	
7	degree of roughness to define the integrally-formed light beam attenuator, the light		
8	beam attenuator being able to attenuate the light beam by a level of attenuation	on	
9	corresponding to the degree of roughness.		
10			
11	14. A monolithic optical coupling module according to Claim 12, further comprising	ηg	
12	a total internal reflection optical turn interface portion that turns a lig	jht	
13	beam incident on the optical turn interface portion towards the gap;		
14	a third surface portion through which the attenuated light beam exits the	he	
15	monolithic optical coupling module; and		
16	a fourth surface portion through which the light beam enters th	he	
17	monolithic optical coupling module;		
18	wherein at least one of the optical turn interface portion, the thi	ird	
19	surface portion and the fourth surface portion comprises another integrall	ly-	
20	formed light beam attenuator.		
21			
22	15. A method for forming a monolithic optical coupling module, wherein the		
23	monolithic optical coupling module has a light beam input portion and a light bea	ım	
24	output portion, the method comprising:		
25	integrally forming a light beam attenuator in a light path between the	he	
26	light beam input portion and the light beam output portion.		
27			
28	16. A method according to Claim 15, wherein integrally forming the light bea	ım	

29

attenuator comprises:

1

2	portion, the input light beam propagating through the monolithic optical
3 .	coupling module to exit the module via the light beam output portion as an
4	output light beam;
5	measuring the intensity of the output light beam to determine an
6	attenuation of the input light beam; and
7	integrally forming at least one light reflective portion to further attenuate
8	the input light beam to thereby attain a predetermined attenuation relative to
9	the intensity of the input light beam.
10	
11	17. A method according to Claim 15, wherein the monolithic optical coupling
12	module is mounted adjacent a light source of an optical coupling assembly, and
13	wherein integrally forming the light beam attenuator comprises:
14	providing an input light beam from the light source to the light beam
15	input portion, the input light beam propagating through the monolithic optical
16	coupling module to exit the module via the light beam output portion as an
17	output light beam;
18	measuring the intensity of the output light beam; and
19	integrally forming at least one light reflective portion to attenuate the
20	input light beam to have the measured intensity of the output light beam at a
21	predetermined level.
22	
23	18. A method according to Claim 15, wherein integrally forming the light beam
24	attenuator comprises laser ablating an internal portion of the monolithic optical
25	coupling module.
26	
27	19. A method according to Claim 15, wherein integrally forming the light beam
28	attenuator comprises roughening a surface of the monolithic optical coupling module.
29	

- 1 20. A method according to Claim 19, wherein roughening a surface comprises one
- 2 of sand-blasting, electro-discharge machining, turning, face-milling, charged particle
- 3 etching and grinding the surface.

4