Topology Qualifying Exam Spring 1992

Work 6 of the following problems. Start each problem on a new sheet of paper. Do not turn in more than six problems.

- **1.** For a topological space (X, τ) define $I : \mathcal{P}(X) \to \mathcal{P}(X)$ by $I(A) = A^{\circ}$ and $C : \mathcal{P}(X) \to \mathcal{P}(X)$ by $C(A) = \overline{A}$. For a set A of X, consider the sequence A, I(A), CI(A), ICI(A), CICI(A), ...
 - a) For any space what is the largest number of distinct sets that this sequence can contain?
 - b) Find $A \subseteq \mathbb{R}$ for which this largest number is obtained (where \mathbb{R} has the usual topology).
- **2.** Prove that the projection of $[0,1] \times \mathbb{R}$ onto \mathbb{R} is a closed map, where both have their usual topologies.
- **3.** Prove that if $A \subseteq X \times X$, then there is a maximal subset Y of X with $Y \times Y \subseteq A$.
- **4.** For any topological space X, define an equivalence relation \sim on X by $x \sim y$ iff $\overline{\{x\}} = \overline{\{y\}}$. Prove that the resulting quotient space X/\sim is T_0 .
- **5.** Let \mathbb{E} denote the set of real numbers with the Sorgenfrey topology, which has basis consisting of all half-open intervals of the form [x, y). Prove that $\mathbb{E} \times \mathbb{E}$ is not normal.
- **6.** Let $f_i: [-1,1] \to \mathbb{R}$ be the function defined by $f_i(x) = (i+x)^2, i = -1, 0, 1$. Prove or disprove that the (unique) evaluation map $f: [-1,1] \to \mathbb{R}^3$ with the property that $\pi_i \circ f = f_i$ is an embedding.
- 7. Prove that if ρ is a metric on M, then $\rho_1: M \times M \to R$ defined by $\rho_1(x,y) = \frac{\rho(x,y)}{1+\rho(x,y)}$ is a metric on M which is equivalent to ρ .
- **8.** Prove that if $\{A_{\lambda} | \lambda \in \Lambda\}$ is locally finite system of sets, then $\overline{\bigcup_{\lambda \in \Lambda} A_{\lambda}} = \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}$.
- **9.** Let f be a one-to-one onto function from the real line with the usual topology itself. If f and f^{-1} map connected subsets onto connected subsets, prove that f is a homeomorphism.
- 10. Let Ω_0 be the set of all ordinals less than the first uncountable ordinal with the order topology. We know that Ω_0 is T_4 and every continuous real-valued function on Ω_0 is constant on some tail. Find the Stone- Čech compactification of Ω_0 . (Justify your answer!)
- 11. Let \mathbb{P} be the irrational numbers with the usual (subspace) topology. Show that the intersection of any countable family of dense open subsets of \mathbb{P} is dense in \mathbb{P} .
- 12. Let X be a locally compact Hausdorff space and let C(X,Y) be the space of all continuous functions from X into Y with the compact-open topology. Prove that the map $P:C(X,Y)\times X\to Y$ defined by P(f,x)=f(x) is continuous.