Computer Labs: Project – Specification 2° MIEIC

Pedro F. Souto (pfs@fe.up.pt)

November 18, 2019

Contents

Project Specification

Additional Devices

Grading Criteria

Project Specification

Google Form

- Fill Google form for the project proposal/specification
 - Provide a somewhat detailed description of your project
 - Many groups usually provide a one line description: this is not enough
 - Provide information regarding each device you plan to use Role of the device in your project
 - ► E.g. the mouse buttons are used for menu selection Functionality used of the device
 - ► E.g. mouse buttons and movement.
 - ► Fill in a field with the URL of a PDF file (see next bullet) in the Documents module of your Redmine project

PDF File

- Containing:
 - 1. A list of the modules that you plan to implement
 - 2. A development plan
- ➤ You must upload this document in PDF to the Documents module of your Redmine project

Modules

- ► Most likely, one per device
 - Although you could use one further module for the KBC
- Other modules will depend on the project. Possible modules:
 - Dispatcher, which processes events and invokes the corresponding handlers
 - Graphics module
 - Menu module
 - Sound/music module (if you'd like to use sound but check it first)
 - Program logic
 - Serial port protocol
 - ▶ Timers module

Plan

► The previous sections described the what, this will describe the:

When? Who?

- ► Each module must have one student that is responsible for it
- You must specify who did what in the final report
- Use the demo on the last lab class to guide your plan
 - You are supposed to use the 3 mandatory devices
 - Should show something specific to your project rather than something generic, such as a menu
- Suggestion:

1st week Graphics 2nd week Add animation (timer) 3rd week Add user input (keyboard)

- ▶ Be aware of the 90-10 rule:
 - ▶ 10% of the work takes 90% of the time
 - ► The remaining 90% take ... 90% of the time

I.e. implementation takes at least twice as much as we expect

Possible Paths

Bottom Up

► Complete the functionalities that you'll need from each device

Top Down

May be not that suited for this course

Both

One member starts at the bottom and the other at the top, and meet somewhere in the middle

Whichever

Test thoroughly as you develop

Grading

- Project specification is 5% of the project grade
 - We will apply its own difficulty/originality factor

Difficulty Factor

- Number, type and features used of I/O devices
- Number and detail of the modules. For example:
 - Is every module assigned to a group member?
- Quality of the plan
 - Is it execution/demo oriented?
 - Is it reasonable
 - We will grade the specification only after the submission of the project.

Originality Factor

Contents

Project Specification

Additional Devices

Grading Criteria

Additional Devices

- ► For project grades above 85% (17/20) you are required to use:
 - RTC Real-Time Counter
 - UART Serial port communication

You must use the mouse, to score any points from the use of these devices.

- We will cover these devices in future lectures (one per lecture)
 - Grading of the specification will not consider them
- Nevertheless, if you plan to use them, you are advised to try to include them also in your specification:
 - Of course, we do not expect you to be as detailed
 - In spite of all the limitations, your plan will be more realistic

The Real Time Clock (RTC)

- Integrated circuit that maintains:
 - ▶ The date and
 - ► The time of the day

even when the PC is switched-off and unplugged

- In addition, it:
 - Includes alarm functionality and can generate interrupts at specified times of the day;
 - Can generate interrupts periodically
 - Includes at least 50 non-volatile one-byte registers, which are usually used by the BIOS to store PC's configuration

Serial Port (UART)

- Akin to a network card, i.e. it allows communication between PCs
- ➤ But:
 - ► Only, point-to-point, i.e. between two PCs
 - ► Much slower (forget about sending video using the UART)

Contents

Project Specification

Additional Devices

Grading Criteria

Final Project Grading (1/2) (From 1st lecture)

Execution: 35% + 10%

10% for demo in the last lab class

Code: 20%

Structure and Modularity

Documentation (use Doxygen)

Readability

Names and comments

Indentation

Compilation warnings

Final Report: 20%

Summary of what is and what is not implemented;

Usage instructions (with images)

Description of the program's architecture

Relevant implementation aspects (grades above 18)

Function call diagram

Video: 5% A short video with a demo of your project

Tools: 5% (SVN) (We expect you to commit to the SVN repository at least once a week, and to log messages then)

Project Specification: 5%

Final Project Grading (2/2) (From 1st lecture)

► To the grade obtained by applying the above criteria, we'll apply:

Difficulty Factor

- number and type of I/O devices
- features used of the I/O devices
- I/O techniques used (interrupt vs. polling)
- use and extent of assembly programming

Originality Factor

Team Management Factor

load share among group members

Marketing Bonus

- of 1 valor for the participation in the Semana Profissão Engenheiro (SPE), 15, 16 and 17 of April (it used to be in March)
- in recent years, we have selected 3 or 4 projects per year

