Health and Economic Factor Visualization

Nathaniel Barrington, Gabriela Guzman, Bryce Huffman, Zachery Key & Thomas Twomey

University of Virginia, Spring 2020 Professor Afsaneh Doryab SYS 2202 Final Project: Group 11

Objectives

Prior Art

Prior Art: Example 1 Gapminder

Figure 1: Gapminder Tool Screenshots

Pros:

- Extensive set of data from numerous sources
- Ability to filter countries and color code by region

Cons:

- One factor world map lacks meaningful visualization
- Plots can not be viewed simultaneously

Prior Art: Example 2

World Health Organization Interactive Visualizations

Pros:

- Numerous plot types
- Heavy use of statistical information

Cons:

- Visualizations are not user-friendly or easily understandable
- Lack of ability to examine multiple factors

Data Sourcing

Data Sourcing

Online Database and APIs

Data was imported from the **World Bank** and the **World Health Organization** using R's "WDI" and "url" function respectively. These data sources were selected on the basis of their **reliability**, **accessibility** and **preprocessing** that led to clean and understandable data formatting.

- World Bank
 - Selected Attributes: Literacy Rates (Male/Female over 15 years old),
 GDP per capita (2010 \$ US), Life expectancy (Male/Female), GDP % of
 Trade & GDP % of Services
- World Health Organization
 - Selected Attributes: Infant Mortality Rates (Male/Female/Overall, under 5 years old)

General Process Overview

- Import data from World Bank & WHO using APIs
- 2. Remove NA values and eliminate redundant columns
- 3. Join datasets with country codes (ISO3 standard)
- 4. Restructure data frames using "spread" function on years

Country	IS03	1980	1981	•••	2017	2018
Aruba	ARW	89	92		94	95
Afghanistan	AFG	92	87		90	92

Figure 3: Sample of Data Frame Post-Processing

World Map

- I. Merge cleaned data frames with Latitude and Longitude coordinates for each country by ISO3 country code.
- Create custom "fill" columns in the data frame for choropleth coloring.
- 3. Write algorithms for fill column to get ratio values for arguments to coloring the graph.

Long	Lat	Country	IS03	1980	1981	fill
-67.879	12.452	Aruba	ABW	89	92	.67
-70.832	12.528	Aruba	ABW	89	92	.67
74.892	37.361	Afghanistan	AFG	54	56	.5

Figure 4: World Map Data Frame for Literacy Rate Head

Fill = value / max (all values in attribute column)

InFill = min(log(1.5 + factors), .6)

Figure 5: Algorithm Used to Determine World Map Fill

Two-Factor Scatterplot

- Removed columns from each factor's data table that correspond to the selected year
- 2. Perform inner join to create data frame for plotting based on selected inputs
- Remove any records with NA values

i	x	у
Afghanistan	98.2	15600.14
Albania	86.3	10512.98
Zimbabwe	96.7	12415.19

Figure 6: Scatterplot Data Frame Head

Interface and Visualization

Interface and Visualization

R Shiny UI and Reactivity

- App is developed in R using Shiny and a reactive environment
 - Allows for visualizations to only update if input is changed
 - Enabled ability to have multiple plots interact with one another
- General data processing is conducted once at app run, including API queries
- World Map and Scatterplot are linked together through factor and year selection
- Dynamic text updating for data sources

Interface and Visualization

Interactive Plots

Choropleth World Map

- Uses "plotly" package with "ggplot" to create world map
- Allows for scaling, zooming, and country selection
- Ability to download the Choropleth map as a png

Two-factor Scatterplot

- Uses "ggvis" to create interactive scatterplot
- Conducts data merge for each plot selection
- Allows for scaling and plot download
- X-Axis corresponds to factor displayed in World Map
- Average trendline for visual relationship analysis

R Shiny Demonstration

GitHub Repository

Final Summary

Final Summary Reflection

- The final R Shiny App encompasses the desired goal from the objectives.
 - No sacrifices were made from original idea to end product
- Further improvements could be made to enhance experience
 - Dynamic year selection based on available data
 - Addition of country specific visualizations

References

References

- Gapminder. (2020). *Gapminder tools: maps*. Retrieved from https://www.gapminder.org/tools/#\$chart-type=bubbles
- GitHub. (2020). Sys_2202finalproject. Retrieved from https://github.com/brycehuffman/sys_2202_finalproject
- World Health Organization. (2020). Global Health Observatory (GHO) data: Interactive data visualizations. Retrieved from https://www.who.int/gho/health_equity/interactive_data_visualizations/en/