Insumo-Produto*

2ª Lista de Exercícios

Alberson da Silva Miranda

14 de maio de 2024

 $^{{\}rm *C\'odigo~dispon\'ivel~em~https://github.com/albersonmiranda/insumo_produto.}$

Índice

1	Dad	os	3
2	Q1 2.1 2.2	Dados e cômputo da inversa de Leontief	
3	Q2 3.1 3.2 3.3	Multiplicadores para importações	8
4	Q3		11
5	Q4 5.1 5.2	Impacto de exportações de petróleo	
	5.3	Impacto da FBCF	

1 Dados

Escolha das matrizes vetores:

- 1. Z: matriz de consumo intermediário: D6:BB56
- 2. f: matriz de consumo final: BD6:BJ56
- 3. x: vetor de produção total: D79:BB79
- 4. v: vetor de valor adicionado: D78:BB78
- 5. r: vetor de remuneração: D69:BB69. Aqui, optei por apenas as remunerações do fator trabalho, pois será endogeneizado o consumo das famílias. Não considerei a alínea Excedente Operacional Bruto e Rendimento Misto Bruto por estarem associadas ao investimento (representada pela proxy Formação Bruta de Capital Fixo)
- 6. e: vetor de ocupações: D80:BB80
- 7. C: vetor de consumo das famílias: BH6:BH56
- 8. m: vetor de importações: D58:BB58
- 9. E: vetor de exportações: BD6:BD56
- 10. taxes: vetor de impostos: D59:BB59
- 11. fcbf: vetor de Formação Bruta de Capital Fixo: D60:BB60

Esses dados foram importados utilizando as primeiras funções do pacote {fio}, disponível em https://github.com/albersonmiranda/fio, que incluem a função import_element() para importar elementos de uma matriz insumo-produto (ex.: matriz de transações intermediárias, Z), e as funções tecnical_coef() e leontief_inverse() para calcular os coeficientes técnicos e a inversa de Leontief, respectivamente.

Calcule os multiplicadores da produção do tipo I e tipo II para cada setor de atividade e decomponha os efeitos direto, indireto e renda. Após, identifique os 5 setores com maior efeito indireto e efeito-renda. Esses setores são os mesmos? Quais fatores poderiam explicar as diferenças entre os setores segundo o tipo de multiplicador?

2.1 Dados e cômputo da inversa de Leontief

```
mip = fio::iom_br_2020_51
   A = mip ▷
      fio::tecnical_coef()
   B = A >
     fio::leontief_inverse()
10
11
   n = nrow(B)
13
14
   # coeficientes do modelo fechado
15
   coef_consumo_familias = mip[["C"]] / sum(mip[["r"]])
16
   coef_remuneracoes = mip[["r"]] / mip[["x"]]
17
18
19
   A_fechado = rbind(
20
     cbind(A, coef_consumo_familias),
21
      cbind(coef_remuneracoes, 0))
22
23
24
   B_fechado = solve(diag(n + 1) - A_fechado)
25
```

Tabela 2.1: Top 5 setores com maior efeito indireto

setores	efeito_total_aberto	efeito_total_fechado	efeito_direto	efeito_indireto	efeito_renda
Refino de petróleo e coque	2.546	3.301	2.546	0.848	0.756
Automóveis camionetas caminhões e ônibus	2.379	3.831	2.379	0.684	1.453
Alimentos e Bebidas	2.418	3.604	2.418	0.664	1.186
Fabricação de aço e derivados	2.362	3.447	2.362	0.640	1.085
Metalurgia de metais não-ferrosos	2.246	3.265	2.246	0.627	1.019

2.2 Multiplicadores

Para a comparação dos multiplicadores, no modelo fechado optei por usar o efeito total truncado, ou seja, sem considerar o coeficiente de consumo das famílias no somatório, deixando apenas os setores produtivos, assim como no cômputo do efeito total do modelo aberto.

```
# top 5 setores com maior efeito renda
sort_by(
multiplicadores,
multiplicadores$efeito_renda,
decreasing = TRUE
```

Tabela 2.2: Top 5 setores com maior efeito renda

setores	efeito_total_aberto	efeito_total_fechado	efeito_direto	efeito_indireto	efeito_renda
Serviços domésticos	1.000	4.789	1.000	0.000	3.789
Educação pública	1.218	4.532	1.218	0.092	3.314
Administração pública e seguridade social	1.378	4.069	1.378	0.152	2.691
Educação mercantil	1.436	4.120	1.436	0.162	2.683
Saúde pública	1.538	4.213	1.538	0.233	2.676

```
head(5) >
kableExtra::kbl(booktabs = TRUE, digits = 3) >
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
```

Não, não são os mesmos setores. O efeito indireto é maior em setores que possuem maior impacto na cadeia produtiva daquela economia. Faz sentido que a indústria de transformação lidere esse tipo de efeito. Já o efeito-renda nos diz a taxa em que os benefícios dos efeitos diretos e indiretos são transformados em consumo das famílias, resultando novamente em demanda para os diversos setores. Setores de maior propenção ao consumo tendem a liderar esse tipo de efeito.

Dúvida: faz sentido o modelo fechado (consumo e renda das famílias) para a análise dos multiplicadores de importações e exportações? Ou será que a forma de fechar é diferente? Vou deixar o cálculo para facilitar o acerto depois, mas acredito que apenas o multiplicador do tipo I será corretamente calculado para essas variáveis.

3.1 Multiplicadores para importações

```
coef_import = mip[["m"]] / mip[["x"]]
   coef_import = as.vector(coef_import)
   # matriz geradora de import
   coef_import_hat = diag(coef_import)
   M = coef_import_hat %*% B
   M_fechado = coef_import_hat %*% B_fechado[1:n, 1:n]
10
   multiplicadores_import = tibble::tibble(
11
     setores = rownames(A),
      simples = colSums(M),
13
     tipo_I = colSums(M) / coef_import,
14
     totais = colSums(M_fechado),
15
      tipo_II = colSums(M_fechado) / coef_import
16
17
18
19
   sort_by(
20
     multiplicadores_import,
21
     multiplicadores_import$tipo_I,
22
     decreasing = TRUE
23
   ) >
24
     head(5) ▷
25
```

Tabela 3.1: Top 5 setores com maior multiplicador de importação

setores	simples	tipo_I	totais	tipo_II
Álcool	0.113	4.807	0.163	6.939
Alimentos e Bebidas	0.124	3.433	0.183	5.074
Serviços de alojamento e alimentação	0.073	2.951	0.144	5.835
Produtos do fumo	0.133	2.822	0.185	3.918
Refino de petróleo e coque	0.168	2.584	0.206	3.162

```
kableExtra::kbl(booktabs = TRUE, digits = 3) ▷
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
```

3.2 Multiplicadores para impostos

```
# coeficiente de impostos
   coef_taxes = mip[["m"]] / mip[["x"]]
   coef_taxes = as.vector(coef_taxes)
   # matriz geradora de impostos
   coef_taxes_hat = diag(coef_taxes)
   taxes = coef_taxes_hat %*% B
   taxes_fechado = coef_taxes_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de impostos
10
   multiplicadores_taxes = tibble::tibble(
11
    setores = rownames(A),
     simples = colSums(taxes),
13
     tipo_I = colSums(taxes) / coef_taxes,
14
     totais = colSums(taxes_fechado),
15
     tipo_II = colSums(taxes_fechado) / coef_taxes
16
17
   sort_by(
20
     multiplicadores_taxes,
21
     multiplicadores_taxes$tipo_I,
22
     decreasing = TRUE
23
24
```

Tabela 3.2: Top 5 setores com maior multiplicador de impostos

setores	simples	tipo_I	totais	tipo_II
Álcool	0.113	4.807	0.163	6.939
Alimentos e Bebidas	0.124	3.433	0.183	5.074
Serviços de alojamento e alimentação	0.073	2.951	0.144	5.835
Produtos do fumo	0.133	2.822	0.185	3.918
Refino de petróleo e coque	0.168	2.584	0.206	3.162

```
head(5) >
kableExtra::kbl(booktabs = TRUE, digits = 3) >
kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
```

3.3 Multiplicadores para emprego

```
# coeficiente de emprego
   coef_emprego = mip[["e"]] / mip[["x"]]
   coef_emprego = as.vector(coef_emprego)
   # matriz geradora de emprego
   coef_emprego_hat = diag(coef_emprego)
   E = coef_emprego_hat %*% B
   E_fechado = coef_emprego_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de emprego
10
   multiplicadores_emprego = tibble::tibble(
11
     setores = rownames(A),
12
     simples = colSums(E),
     tipo_I = colSums(E) / coef_emprego,
14
     totais = colSums(E_fechado),
15
     tipo_II = colSums(E_fechado) / coef_emprego
16
17
18
19
   sort_by(
     multiplicadores_emprego,
     multiplicadores_emprego$tipo_II,
22
     decreasing = TRUE
23
```

Tabela 3.3: Top 5 setores com maior multiplicador de emprego

setores	simples	tipo_I	totais	tipo_II
Refino de petróleo e coque	4.788	95.571	10.639	212.358
Petróleo e gás natural	5.490	25.258	13.264	61.023
Minério de ferro	4.219	24.044	8.994	51.251
Defensivos agrícolas	5.406	17.673	12.248	40.039
Fabricação de resina e elastômeros	4.978	11.570	11.631	27.034

```
# média multiplicadores de emprego
medias_emprego = sapply(multiplicadores_emprego[, sapply(multiplicadores_emprego, is.numeric)], fur
mean(multiplicador, na.rm = TRUE)
}

# investimento necessário
3350000 / medias_emprego
```

```
simples tipo_I totais tipo_II 248731.4 535278.7 137608.0 244200.8
```

O multiplicador ideal seria o tipo I. Isso porque o posto de trabalho, sendo uma unidade física, não pode ser fracionada. O multiplicador do tipo I nos dá a quantidade de empregos gerados direto e indireto, que são as possibilidades de empregos que podem ser gerados.

Para cada um dos cenários abaixo, calcule o impacto sobre a produção de cada setor:

- 1. Um aumento de 15,65% nas exportações de petróleo
- 2. Um aumento de 0.36% no consumo das famílias
- 3. Um aumento nos investimentos (FBCF) equivalente a R\$ 8 bilhões

5.1 Impacto de exportações de petróleo

```
# coeficiente de exportações
   coef_export = mip[["E"]] / t(mip[["x"]])
2
   coef_export = as.vector(coef_export)
4
   # matriz geradora de exportações
   coef_export_hat = diag(coef_export)
   X = coef_export_hat %*% B
   X_fechado = coef_export_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de exportações
10
   multiplicadores_export = tibble::tibble(
11
     setores = rownames(A),
12
     simples = colSums(X),
13
     tipo_I = colSums(X) / coef_export,
14
     totais = colSums(X_fechado),
     tipo_II = colSums(X_fechado) / coef_export
16
17
18
19
   choque_petroleo = 1.1565 * mip[["E"]]
20
21
22
   multiplicadores_export = multiplicadores_export >
     dplyr::mutate(
24
       impacto_tipo_I = choque_petroleo / tipo_I,
25
```

Tabela 5.1: Top 5 setores com maior impacto de exportações de petróleo, tipo I

setores	simples	tipo_I	totais	tipo_II	impacto_tipo_I	impacto_tipo_II
Agricultura silvicultura exploração florestal	0.416	1.130	0.454	1.231	216672.18	198825.55
Minério de ferro	0.825	1.082	0.866	1.135	127514.35	121498.45
Comércio	0.110	1.431	0.213	2.782	86905.66	44717.33
Alimentos e Bebidas	0.325	2.044	0.404	2.538	86464.66	69646.96
Petróleo e gás natural	0.465	1.231	0.532	1.407	84742.66	74143.40

```
impacto_tipo_II = choque_petroleo / tipo_II
26
27
28
   multiplicadores_export ▷
30
   sort_by(
31
     multiplicadores_export$impacto_tipo_I,
32
     decreasing = TRUE
33
   ) >
34
     head(5) ▷
35
     kableExtra::kbl(booktabs = TRUE, digits = 3) ▷
     kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
```

5.2 Impacto do consumo das famílias

```
# coeficiente de consumo
   coef_consumo = mip[["C"]] / t(mip[["x"]])
   coef_consumo = as.vector(coef_consumo)
4
   # matriz geradora de consumo
   coef_consumo_hat = diag(coef_consumo)
   consumo = coef_consumo_hat %*% B
   consumo_fechado = coef_consumo_hat %*% B_fechado[1:n, 1:n]
   multiplicadores_consumo = tibble::tibble(
11
     setores = rownames(A),
12
     simples = colSums(consumo),
13
     tipo_I = colSums(consumo) / coef_consumo,
14
     totais = colSums(consumo_fechado),
15
```

Tabela 5.2: Top 5 setores com maior impacto do consumo das famílias, tipo I

setores	simples	tipo_I	totais	tipo_II	impacto_tipo_I	impacto_tipo_II
Atividades imobiliárias e aluguéis	0.885	1.040	0.946	1.111	584552.0	547279.80
Comércio	0.607	1.351	1.273	2.832	469123.9	223751.73
Alimentos e Bebidas	0.927	1.690	1.433	2.613	312743.8	202299.58
Intermediação financeira seguros e previdência complementar e serviços relacionados	0.622	1.315	1.232	2.603	253188.8	127890.86
Saúde mercantil	0.932	1.370	1.690	2.483	158284.5	87348.27

```
tipo_II = colSums(consumo_fechado) / coef_consumo
17
18
19
   choque_consumo = 1.0036 * mip[["C"]]
20
21
22
   multiplicadores_consumo = multiplicadores_consumo ▷
^{23}
     dplyr::mutate(
        impacto_tipo_I = choque_consumo / tipo_I,
25
        impacto_tipo_II = choque_consumo / tipo_II
26
27
28
29
   multiplicadores_consumo ▷
   sort_by(
31
     multiplicadores_consumo$impacto_tipo_I,
     decreasing = TRUE
33
   ) >
34
     head(5) ▷
35
     kableExtra::kbl(booktabs = TRUE, digits = 3) ▷
36
     kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
37
```

5.3 Impacto da FBCF

```
# coeficiente de investimento
coef_investimento = mip[["fbcf"]] / t(mip[["x"]])
coef_investimento = as.vector(coef_investimento)

# matriz geradora de investimento
coef_investimento_hat = diag(coef_investimento)
investimento = coef_investimento_hat %*% B
```

Tabela 5.3: Top 5 setores com maior impacto de investimento, tipo I

setores	simples	tipo_I	totais	tipo_II	impacto_tipo_I	impacto_tipo_II
Construção civil	0.931	1.152	0.982	1.215	6944.020	6582.550
Automóveis camionetas caminhões e ônibus	0.528	1.170	0.583	1.294	6836.409	6184.479
Outros equipamentos de transporte	0.567	1.238	0.614	1.341	6463.866	5966.784
Pecuária e pesca	0.124	1.282	0.156	1.620	6239.142	4939.405
Máquinas e equipamentos inclusive manutenção e reparos	0.495	1.306	0.548	1.446	6123.323	5533.548

```
investimento_fechado = coef_investimento_hat %*% B_fechado[1:n, 1:n]
   # multiplicadores de exportações
10
   multiplicadores investimento = tibble::tibble(
11
     setores = rownames(A),
12
     simples = colSums(investimento),
13
     tipo_I = colSums(investimento) / coef_investimento,
14
     totais = colSums(investimento_fechado),
     tipo_II = colSums(investimento_fechado) / coef_investimento
16
17
18
19
   choque_investimento = 8000
20
^{21}
22
   multiplicadores_investimento = multiplicadores_investimento >
     dplyr::mutate(
^{24}
        impacto_tipo_I = choque_investimento / tipo_I,
25
        impacto_tipo_II = choque_investimento / tipo_II
26
27
28
29
   multiplicadores_investimento ▷
   sort by(
     multiplicadores_investimento$impacto_tipo_I,
32
     decreasing = TRUE
33
   ) ▷
34
     head(5) ▷
35
     kableExtra::kbl(booktabs = TRUE, digits = 3) ▷
36
     kableExtra::kable_styling(latex_options = c("striped", "scale_down"))
37
```