① Solve the eqn dy +
$$3x^2$$
 y = $5x^2x$

$$dx = 1+x^3$$

$$5x^2 + x^2 + x^3$$

$$3x^2 + x^2 + x^3$$

$$y(1+x^3) = \int \frac{1}{5}x^2 + x^3 + x^3$$

$$y(1+x^3) = \int \frac{1}{5}x^2 + x^3 + x^3$$

$$y(1+x^3) = \int \frac{1}{5}x^2 + x^3 + x^3$$

$$y(1+x^3) = \int \frac{1}{5}(1-\cos 2x) dx$$

$$y(1+x^3) = \int (x-\cos 2x) d$$

$$q \cdot f = e^{\int p \, dx} = e^{\int s \, r \, r^2 \, x \, dx} = e^{\int s \, r \, r^2 \, x \, dx}$$

$$y \cdot e^{\int s \, r \, r^2 \, x \, dx} = \int f \, dx + \int f \, dx + \int f \, dx$$

$$y \cdot e^{\int s \, r \, r \, dx} = \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx$$

$$= \int f \, dx + \int f \, dx$$

$$= \int f \, dx$$

Scanned by TapScanner

*	pegoice of differential Equations! The degoice of afficiential Equation is the degoice of highest ovider
	state force undical sign and function powers.
	From example: Deguee of $\left(\frac{d^2y}{dx^2}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^3$, is 2
	pegure of dy = co+x is 1
	pegare of $\frac{dy}{dx} = \cot x$, is 1 Find degoice of $\frac{d^2y}{dx^2} + \sqrt{1+(\frac{dy}{dx})^3} = 0$
	$\frac{dx^2}{dx^2} = -\sqrt{1+(dx)^3}$
	$\frac{(d^2y)^2}{(d^2y)^2} = 1 + (dx)^3$
	Degue e is 211
	Find degoice of $f = SI + (dv)^2 \frac{2^3}{2}$
	$\frac{d^2y}{\int d^2y} = \int +/dy ^{\frac{2}{2}} \frac{d^2x^2}{3}$
	$\frac{d^2}{dx^2} = \frac{d^2y}{dx^2} = \frac{1+(dx)^2}{dx} = \frac{3}{4}$
	Deguee is 2 Ovident is 2