Geometry and the Kato square root problem

Lashi Bandara

Centre for Mathematics and its Applications Australian National University

29 July 2014

Geometric Analysis Seminar
Beijing International Center for Mathematical Research

History of the problem

In the 1960's, Kato considered the following abstract evolution equation

$$\partial_t u(t) + A(t)u(t) = f(t), \quad t \in [0, T].$$

on a Hilbert space \mathcal{H} .

This has a unique strict solution u=u(t) if

$$\mathcal{D}(A(t)^{\alpha}) = \mathsf{const}$$

for some $0<\alpha\leq 1$ and A(t) and f(t) satisfy certain smoothness conditions.

Typically A(t) is defined by an associated sesquilinear form

$$J_t: \mathcal{W} \times \mathcal{W} \to \mathbb{C}$$

where $\mathcal{W} \subset \mathscr{H}$.

Suppose $0 \le \omega \le \pi/2$. Then J_t is ω -sectorial means that

- (i) $\mathcal{W} \subset \mathcal{H}$ is dense.
- (ii) $J_t[u,u] \in S_{\omega+} = \{\zeta \in \mathbb{C} : |\arg \zeta| \le \omega\} \cup \{0\}$, and
- (iii) ${\cal W}$ is complete under the norm

$$||u||_{\mathcal{W}}^2 = ||u||^2 + \text{Re } J_t[u, u].$$

 $T:\mathcal{D}(T)\to\mathscr{H}$ is called ω -accretive if

- (i) T is densely-defined and closed,
- (ii) $\langle Tu,u \rangle \in S_{\omega+}$ for $u \in \mathcal{D}(T)$, and
- (iii) $\sigma(T) \subset S_{\omega+}$.

A 0-accretive operator is non-negative and self-adjoint.

Let $A(t):\mathcal{D}(A(t))\to \mathscr{H}$ be defined as the operator with largest domain such that

$$J_t[u,v] = \langle A(t)u,v \rangle \qquad u \in \mathcal{D}(A(t)), \ v \in \mathcal{W}.$$

The theorem of Lax-Milgram guarantees that

$$J_t$$
 is ω -sectorial $\Longrightarrow A(t)$ is ω -accretive.

In 1962, Kato showed in [Kato] that for $0 \le \alpha < 1/2$ and $0 \le \omega \le \pi/2$,

$$\begin{split} \mathcal{D}(A(t)^{\alpha}) &= \mathcal{D}(A(t)^{*\alpha}) = \mathcal{D} = \text{const}, \text{ and} \\ \|A(t)^{\alpha}u\| &\simeq \|A(t)^{*\alpha}u\|, \quad u \in \mathcal{D}. \end{split} \tag{K_{α}}$$

Counter examples were known for $\alpha>1/2$ and for $\alpha=1/2$ when $\omega=\pi/2$.

Kato asked two questions. For $\omega < \pi/2$,

- (K1) Does (K_{α}) hold for $\alpha = 1/2$?
- (K2) For the case $\omega=0,$ we know $\mathcal{D}(\sqrt{A(t)})=\mathcal{W}$ and (K1) is true, but is

$$\|\partial_t \sqrt{A(t)}u\| \lesssim \|u\|$$

for $u \in \mathcal{W}$?

In 1972, McIntosh provided a counter example in [Mc72] demonstrating that (K1) is false in such generality.

In 1982, McIntosh showed that (K2) also did not hold in general in [Mc82].

The Kato square root problem then became the following. Set

$$J[u, v] = \langle A \nabla u, \nabla v \rangle \quad u, v \in W^{1,2}(\mathbb{R}^n),$$

where $A\in L^\infty$ is a pointwise matrix multiplication operator satisfying the following ellipticity condition:

$$\operatorname{Re} J[u,u] \geq \kappa \|\nabla u\|, \quad \text{for some } \kappa > 0.$$

Under these conditions, is it true that

$$\mathcal{D}(\sqrt{\operatorname{div} A \nabla}) = \mathbf{W}^{1,2}(\mathbb{R}^n)$$
$$\|\sqrt{\operatorname{div} A \nabla} u\| \simeq \|\nabla u\|. \tag{K1}$$

This was answered in the positive in 2002 by Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh and Phillipe Tchamitchian in [AHLMcT].

Kato square root problem for functions and forms

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure μ_g .

Write $\operatorname{div}_g = -\nabla^*$ in L^2 .

Let $\Omega(\mathcal{M})$ denote the algebra of differential forms over \mathcal{M} .

Let d be the exterior derivative as an operator on $L^2(\mathbf{\Omega}(\mathcal{M}))$ and d^* its adjoint, both of which are *nilpotent* operators.

The Hodge-Dirac operator is then the self-adjoint operator $D=d+d^*.$ The Hodge-Laplacian is then $D^2=d\,d^*+d^*\,d.$

Let $S = (I, \nabla)$.

Assume $a \in L^{\infty}(\mathcal{M})$ and $A = (A_{ij}) \in L^{\infty}(\mathcal{M}, \mathcal{L}(L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})).$

Consider the following second order differential operator $L_A: \mathcal{D}(L_A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M})$ defined by:

$$L_A u = aS^* A S u = -a \operatorname{div}(A_{11} \nabla u) - a \operatorname{div}(A_{10} u) + a A_{01} \nabla u + a A_{00} u.$$

The Kato square root problem for functions is then to determine:

$$\mathcal{D}(\sqrt{L_A}) = W^{1,2}(\mathcal{M})$$
 and $\|\sqrt{L_A}u\| \simeq \|\nabla u\| + \|u\| = \|u\|_{W^{1,2}}$ for all $u \in W^{1,2}(\mathcal{M})$.

For an invertible $A \in L^{\infty}(\mathcal{L}(\Omega(\mathcal{M})))$, we consider perturbing D to obtain the operator $D_A = d + A^{-1}d^*A$.

The Kato square root problem for forms is then to determine the following whenever $0 \neq \beta \in \mathbb{C}$:

$$\begin{split} \mathcal{D}(\sqrt{\mathrm{D}_A^2 + |\mathbf{\beta}|^2}) &= \mathcal{D}(\mathrm{D}_A) = \mathcal{D}(\mathrm{d}) \cap \mathcal{D}(\mathrm{d}^*A) \text{ and} \\ \|\sqrt{\mathrm{D}_A^2 + |\mathbf{\beta}|^2}u\| &\simeq \|\,\mathrm{D}_A\,u\| + \|u\|. \end{split}$$

Axelsson (Rosén)-Keith-McIntosh framework

- (H1) The operator $\Gamma: \mathcal{D}(\Gamma) \subset \mathscr{H} \to \mathscr{H}$ is a closed, densely-defined and nilpotent operator, by which we mean $\mathcal{R}(\Gamma) \subset \mathcal{N}(\Gamma)$,
- (H2) $B_1, B_2 \in \mathcal{L}(\mathscr{H})$ and there exist $\kappa_1, \kappa_2 > 0$ satisfying the accretivity conditions

$$\operatorname{Re} \langle B_1 u, u \rangle \geq \kappa_1 \|u\|^2 \text{ and } \operatorname{Re} \langle B_2 v, v \rangle \geq \kappa_2 \|v\|^2,$$
 for $u \in \mathcal{R}(\Gamma^*)$ and $v \in \mathcal{R}(\Gamma)$, and (H3) $B_1 B_2 \mathcal{R}(\Gamma) \subset \mathcal{N}(\Gamma)$ and $B_2 B_1 \mathcal{R}(\Gamma^*) \subset \mathcal{N}(\Gamma^*)$.

Let us now define $\Pi_B = \Gamma + B_1 \Gamma^* B_2$ with domain $\mathcal{D}(\Pi_B) = \mathcal{D}(\Gamma) \cap \mathcal{D}(B_1 \Gamma^* B_2)$.

Quadratic estimates

To say that Π_B satisfies quadratic estimates means that

$$\int_0^\infty ||t\Pi_B(I + t^2\Pi_B^2)^{-1}u||^2 \frac{dt}{t} \simeq ||u||^2,$$
 (Q)

for all $u \in \overline{\mathcal{R}(\Pi_B)}$.

This implies that

$$\mathcal{D}(\sqrt{\Pi_B^2}) = \mathcal{D}(\Pi_B) = \mathcal{D}(\Gamma) \cap \mathcal{D}(\Gamma^* B_2)$$
$$\|\sqrt{\Pi_B^2} u\| \simeq \|\Pi_B u\| \simeq \|\Gamma u\| + \|\Gamma^* B_2 u\|$$

The main theorem on manifolds

Theorem (B.-Mc, 2012)

Let \mathcal{M} be a smooth, complete Riemannian manifold with $|\mathrm{Ric}| \leq C$ and $\mathrm{inj}(M) \geq \kappa > 0$. Suppose the following ellipticity condition holds: there exists $\kappa_1, \kappa_2 > 0$ such that

$$\operatorname{Re} \langle av, v \rangle \ge \kappa_1 ||v||^2$$
$$\operatorname{Re} \langle ASu, Su \rangle \ge \kappa_2 ||u||_{W^{1,2}}^2$$

for
$$v \in L^2(\mathcal{M})$$
 and $u \in W^{1,2}(\mathcal{M})$. Then, $\mathcal{D}(\sqrt{L_A}) = \mathcal{D}(\nabla) = W^{1,2}(\mathcal{M})$ and $\|\sqrt{L_A}u\| \simeq \|\nabla u\| + \|u\| = \|u\|_{W^{1,2}}$ for all $u \in W^{1,2}(\mathcal{M})$.

Lipschitz estimates

Since we allow the coefficients a and A to be *complex*, we obtain the following stability result as a consequence:

Theorem (B.-Mc, 2012)

Let \mathcal{M} be a smooth, complete Riemannian manifold with $|\mathrm{Ric}| \leq C$ and $\mathrm{inj}(\mathcal{M}) \geq \kappa > 0$. Suppose that there exist $\kappa_1, \kappa_2 > 0$ such that $\mathrm{Re}\, \langle av, v \rangle \geq \kappa_1 \|v\|^2$ and $\mathrm{Re}\, \langle ASu, Su \rangle \geq \kappa_2 \|u\|^2_{\mathrm{W}^{1,2}}$ for $v \in \mathrm{L}^2(\mathcal{M})$ and $u \in \mathrm{W}^{1,2}(\mathcal{M})$. Then for every $\eta_i < \kappa_i$, whenever $\|\tilde{a}\|_{\infty} \leq \eta_1$, $\|\tilde{A}\|_{\infty} \leq \eta_2$, the estimate

$$\|\sqrt{\mathcal{L}_A}\,u-\sqrt{\mathcal{L}_{A+\tilde{A}}}\,u\|\lesssim (\|\tilde{a}\|_{\infty}+\|\tilde{A}\|_{\infty})\|u\|_{\mathcal{W}^{1,2}}$$

holds for all $u \in W^{1,2}(\mathcal{M})$. The implicit constant depends in particular on A, a and η_i .

Curvature endomorphism for forms

Let $\{\theta^i\}$ be an orthonormal frame at x for $\Omega^1(\mathcal{M}) = \mathrm{T}^*\mathcal{M}$.

Denote the components of the curvature tensor in this frame by Rm_{ijkl} . The curvature endomorphism is then the operator

$$R \omega = Rm_{ijkl} \theta^i \wedge (\theta^j \perp (\theta^k \wedge (\theta^l \perp \omega)))$$

for $\omega \in \Omega_x(\mathcal{M})$.

This can be seen as an extension of Ricci curvature for forms, since $g(R \omega, \eta) = Ric(\omega^{\flat}, \eta^{\flat})$ whenever $\omega, \eta \in \Omega^1_x(\mathcal{M})$ and where $\flat : T^*\mathcal{M} \to T\mathcal{M}$ is the flat isomorphism through the metric g.

The Weitzenböck formula then asserts that $D^2 = \operatorname{tr}_{12} \nabla^2 + R$.

Theorem (B., 2012)

Let \mathcal{M} be a smooth, complete Riemannian manifold and let $\beta \in \mathbb{C} \setminus \{0\}$. Suppose there exist $\eta, \kappa > 0$ such that $|\mathrm{Ric}| \leq \eta$ and $\mathrm{inj}(\mathcal{M}) \geq \kappa$. Furthermore, suppose there is a $\zeta \in \mathbb{R}$ satisfying $\mathrm{g}(\mathrm{R}\,u,u) \geq \zeta \,|u|^2$, for $u \in \Omega_x(\mathcal{M})$ and $A \in \mathrm{L}^\infty(\mathcal{L}(\Omega(\mathcal{M})))$ and $\kappa_1 > 0$ satisfying

$$\operatorname{Re}\langle Au, u \rangle \geq \kappa_1 ||u||^2.$$

Then,
$$\mathcal{D}(\sqrt{D_A^2 + |\beta|^2}) = \mathcal{D}(D_A) = \mathcal{D}(d) \cap \mathcal{D}(d^*A)$$
 and $\|\sqrt{D_A^2 + |\beta|^2}u\| \simeq \|D_A u\| + \|u\|$.

The Kato problem for functions are captured in the AKM framework on letting $\mathscr{H} = L^2(\mathcal{M}) \oplus (L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M}))$ and letting

$$\Gamma = \begin{pmatrix} 0 & 0 \\ S & 0 \end{pmatrix}, \ \Gamma^* = \begin{pmatrix} 0 & S^* \\ 0 & 0 \end{pmatrix}, \ B_1 = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \ B_2 = \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix}.$$

For the case of forms, the setup takes the form,

$$\mathscr{H}=\mathrm{L}^2(\mathbf{\Omega}(\mathcal{M}))\oplus\mathrm{L}^2(\mathbf{\Omega}(\mathcal{M}))$$
 and

$$\Gamma = \begin{pmatrix} \mathbf{d} & \mathbf{0} \\ \beta & -\mathbf{d} \end{pmatrix}, \ \Gamma^* = \begin{pmatrix} \delta & \overline{\beta} \\ \mathbf{0} & -\delta \end{pmatrix}, \ B_1 = \begin{pmatrix} A-1 & \mathbf{0} \\ \mathbf{0} & A^{-1} \end{pmatrix}, \ B_2 = \begin{pmatrix} A & \mathbf{0} \\ \mathbf{0} & A \end{pmatrix}.$$

Geometry and harmonic analysis

Harmonic analytic methods are used to prove quadratic estimates (Q).

The idea is to reduce the quadratic estimate (Q) to a *Carleson measure* estimate. This is achieved via a *local* T(b) argument.

Geometry enters the picture precisely in the harmonic analysis. We need to perform harmonic analysis on vector fields, not just functions.

One can show that this is *not* artificial - the Kato problem on functions immediately provides a solution to the dual problem on vector fields.

Elements of the proofs

Similar in structure to the proof of [AKMc] which is inspired from the proof in [AHLMcT].

- A dyadic decomposition of the space
- A notion of averaging (in an integral sense)
- Poincaré inequality on both functions and vector fields
- Control of ∇^2 in terms of Δ .

Rough metrics

Definition (Rough metric)

Let g be a (2,0) symmetric tensor field with measurable coefficients and that for each $x \in \mathcal{M}$, there is some chart (U,ψ) near x and a constant C > 1 such that

$$C^{-1} |u|_{\psi^* \delta(y)} \le |u|_{g(y)} \le C |u|_{\psi^* \delta(y)},$$

for almost-every $y\in U$ and where δ is the Euclidean metric in $\psi(U)$. Then we say that g is a rough metric, and such a chart (U,ψ) is said to satisfy the *local comparability condition*.

Metric perturbations

Definition

We say that two rough metrics g and \tilde{g} are C-close if

$$C^{-1} |u|_{\tilde{g}(x)} \le |u|_{g(x)} \le C |u|_{\tilde{g}(x)}$$

for almost-every $x \in \mathcal{M}$ where $C \ge 1$. Two such metrics are said to be C-close everywhere if this inequality holds for every $x \in \mathcal{M}$.

We also say that g and \tilde{g} are close if there exists some $C \geq 1$ for which they are C-close.

For two continuous metrics, C-close and C-close everywhere coincide.

Proposition

Let g and \tilde{g} be two rough metrics that are C-close. Then, there exists $B \in \Gamma(T^*\mathcal{M} \otimes T\mathcal{M})$ such that it is symmetric, almost-everywhere positive and invertible, and

$$\tilde{g}_x(B(x)u, v) = g_x(u, v)$$

for almost-every $x \in \mathcal{M}$. Furthermore, for almost-every $x \in \mathcal{M}$,

$$C^{-2} |u|_{\tilde{g}(x)} \le |B(x)u|_{\tilde{g}(x)} \le C^2 |u|_{\tilde{g}(x)},$$

and the same inequality with \tilde{g} and g interchanged. If $\tilde{g} \in C^k$ and $g \in C^l$ (with $k, l \geq 0$), then the properties of B are valid for all $x \in \mathcal{M}$ and $B \in C^{\min\{k,l\}}(T^*\mathcal{M} \otimes T\mathcal{M})$.

The measure $\mu_{\rm g}(x)=\theta(x)\ d\mu_{\tilde{\rm g}}(x)$, where $\theta(x)=\sqrt{\det B(x)}$. Consequently,

(i) whenever
$$p \in [1, \infty)$$
, $L^p(\mathcal{T}^{(r,s)}\mathcal{M}, g) = L^p(\mathcal{T}^{(r,s)}\mathcal{M}, \tilde{g})$ with
$$C^{-\left(r+s+\frac{n}{2p}\right)}\|u\|_{p,\tilde{g}} \leq \|u\|_{p,g} \leq C^{r+s+\frac{n}{2p}}\|u\|_{p,\tilde{g}},$$

(ii) for
$$p=\infty$$
, $L^{\infty}(\mathcal{T}^{(r,s)}\mathcal{M}, \mathbf{g}) = L^{\infty}(\mathcal{T}^{(r,s)}\mathcal{M}, \tilde{\mathbf{g}})$ with
$$C^{-(r+s)}\|u\|_{\infty,\tilde{\mathbf{g}}} \leq \|u\|_{\infty,\mathbf{g}} \leq C^{r+s}\|u\|_{\infty,\tilde{\mathbf{g}}},$$

(iii) the Sobolev spaces
$$W^{1,p}(\mathcal{M},g)=W^{1,p}(\mathcal{M},\tilde{g})$$
 and $W^{1,p}_0(\mathcal{M},g)=W^{1,p}_0(\mathcal{M},\tilde{g})$ with

$$C^{-\left(1+\frac{n}{2p}\right)} \|u\|_{\mathbf{W}^{1,p},\tilde{\mathbf{g}}} \le \|u\|_{\mathbf{W}^{1,p},\mathbf{g}} \le C^{1+\frac{n}{2p}} \|u\|_{\mathbf{W}^{1,p},\tilde{\mathbf{g}}},$$

(iv) the Sobolev spaces $W^{d,p}(\mathcal{M},g)=W^{d,p}(\mathcal{M},\tilde{g})$ and $W^{d,p}_0(\mathcal{M},g)=W^{d,p}_0(\mathcal{M},\tilde{g})$ with

$$C^{-\left(n+\frac{n}{2p}\right)} \|u\|_{\mathbf{W}^{\mathbf{d},p},\tilde{\mathbf{g}}} \le \|u\|_{\mathbf{W}^{\mathbf{d},p},\mathbf{g}} \le C^{n+\frac{n}{2p}} \|u\|_{\mathbf{W}^{\mathbf{d},p},\tilde{\mathbf{g}}},$$

(v) the divergence operators satisfy $\operatorname{div}_{D,\mathrm{g}} = \theta^{-1} \operatorname{div}_{D,\tilde{\mathrm{g}}} \theta B$ and $\operatorname{div}_{N,\tilde{\mathrm{g}}} = \theta^{-1} \operatorname{div}_{N,\tilde{\mathrm{g}}} \theta B$.

Case of functions

Theorem (B, 2014)

Let \tilde{g} be a smooth, complete metric and suppose that there exists $\kappa>0$ and $\eta>0$ such that

- (i) $\operatorname{inj}(\mathcal{M}, \tilde{g}) \geq \kappa$ and,
- (ii) $|\operatorname{Ric}(\tilde{g})| \leq \eta$.

Then, for any rough metric g that is close, the Kato square root problem for functions has a solution on (\mathcal{M}, g) .

Case of forms

Theorem (B, 2014)

Let g be a rough metric close to $\tilde{g},$ a smooth, complete metric, and suppose that:

- (i) there exists $\kappa > 0$ such that $\operatorname{inj}(\mathcal{M}, \tilde{g}) \geq \kappa$,
- (ii) there exists $\eta > 0$ such that $|Ric(\tilde{g})| \leq \eta$, and
- (iii) there exists $\zeta \in \mathbb{R}$ such that $\tilde{g}(R \omega, \omega) \geq \zeta |\omega|_{\tilde{g}}^2$.

Then, the Kato square root problem for forms has a solution on (\mathcal{M}, g) .

Compact manifolds with rough metrics

Theorem (B, 2014)

Let $\mathcal M$ be a smooth, compact manifold and g a rough metric. Then, the Kato square root problem (on functions and forms, respectively) has a solution.

Cones and induced metrics

Let $C_{r,h}^n$ be the n-cone of height h>0 and radius r>0. The cone can be realised as the image of the graph function

$$F_{r,h}(x) = \left(x, h\left(1 - \frac{|x|}{r}\right)\right).$$

Let U be an open set in \mathbb{R}^n such that $B_r(0) \subset U$. Then, define $G_{r,h}: U \to \mathbb{R}^{n+1}$ as the map $F_{r,h}$ whenever $x \in B_r(0)$ and (x,0) otherwise.

Then we obtain that the map $G_{r,h}$ satisfies

$$|x-y| \le |G_{r,h}(x) - G_{r,h}(y)| \le \sqrt{1 + (hr^{-1})^2} |x-y|.$$

Proposition

Let $\gamma: I \to U$ be a smooth curve such that $\gamma(0) \notin \{0\} \cup \partial B_r(0)$. Then,

$$\left|\gamma'(0)\right| \le \left| (G_{r,h} \circ \gamma)'(0) \right| \le \sqrt{1 + \frac{h^2}{r^2}} \left| \gamma'(0) \right|.$$

Moreover, for $u \in T_xU$, $x \notin \{0\} \cup \partial B_r(0)$ (and in particular for almost-every x),

$$|u|_{\delta} \leq |u|_{\mathrm{g}} \leq \sqrt{1 + \frac{h^2}{r^2}} \, |u|_{\delta} \,,$$

where δ is the usual inner product on U induced by \mathbb{R}^n .

A particular consequence is that the metrics $g=G^*_{r,h}\delta_{\mathbb{R}^{n+1}}$ and $\delta_{\mathbb{R}^n}$ are $\sqrt{1+(hr^{-1})^2}$ -close on U.

Lemma

Given $\varepsilon>0$, there exists two points x,x' and distinct minimising smooth geodesics $\gamma_{1,\varepsilon}$ and $\gamma_{2,\varepsilon}$ between x and x' of length ε . Furthermore, there are two constants $C_{1,r,h,\varepsilon},C_{2,r,h,\varepsilon}>0$ depending on $h,\ r$ and ε such that the geodesics $\gamma_{1,\varepsilon}$ and $\gamma_{2,\varepsilon}$ are contained in $G_{r,h}(A_{\varepsilon})$ where A_{ε} is the Euclidean annulus

$$\{x \in B_r(0) : C_{1,r,h,\varepsilon} < |x| < C_{2,r,h,\varepsilon} \}.$$

Theorem (B., 2014)

For any C>1, there exists a smooth metric g which is C-close to the Euclidean metric δ for which $\operatorname{inj}(\mathbb{R}^2,g)=0$. Furthermore, the Kato square root problem for functions can be solved for (\mathbb{R}^2,g) under the.

In higher dimensions, we obtain a similar result since the 2-dimensional cone can be realised as a totally geodesic submanifold.

Theorem (B., 2014)

Let \mathcal{M} be a smooth manifold of dimension at least 2 and g a continuous metric. Given C > 1, and a point $x_0 \in \mathcal{M}$, there exists a rough metric h such that:

- (i) it induces a length structure and the metric d_g preserves the topology of \mathcal{M} ,
- (ii) it is smooth everywhere except x_0 ,
- (iii) the geodesics through x_0 are Lipschitz,
- (iv) it is C-close to g,
- (v) $\operatorname{inj}(\mathcal{M} \setminus \{x_0\}, h) = 0.$

References I

- [AHLMcT] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph. Tchamitchian, *The solution of the Kato square root problem for second order elliptic operators on* \mathbb{R}^n , Ann. of Math. (2) **156** (2002), no. 2, 633–654.
- [AKMc-2] Andreas Axelsson, Stephen Keith, and Alan McIntosh, *The Kato square root problem for mixed boundary value problems*, J. London Math. Soc. (2) **74** (2006), no. 1, 113–130.
- [AKMc] _____, Quadratic estimates and functional calculi of perturbed Dirac operators, Invent. Math. **163** (2006), no. 3, 455–497.
- [Christ] Michael Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. **60/61** (1990), no. 2, 601–628.

References II

- [Kato] Tosio Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274. MR 0138005 (25 #1453)
- [Mc72] Alan McIntosh, On the comparability of $A^{1/2}$ and $A^{*1/2}$, Proc. Amer. Math. Soc. **32** (1972), 430–434. MR 0290169 (44 #7354)
- [Mc82] _____, On representing closed accretive sesquilinear forms as $(A^{1/2}u,\,A^{*1/2}v)$, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981), Res. Notes in Math., vol. 70, Pitman, Boston, Mass., 1982, pp. 252–267. MR 670278 (84k:47030)