Градиентный спуск Нейронные сети

Теория игр, 2023

1 Машинное обучение с учителем

2 Градиентный спуск

3 Искусственная нейронная сеть

1 Машинное обучение с учителем

Градиентный спуск

3 Искусственная нейронная сеть

Используемая литература

- Christopher Bishop. Pattern Recognition and Machine Learning
- Shai Shalev-Shwartz, Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms
- Jorge Nocedal, Stephen J. Wright. Numerical Optimization

4 / 19

Машинное обучение с учителем

```
Множество объектов \mathcal{X}=\{\mathbf{x}\} , представленных вектором из d признаков \mathbf{x}=(x_1,\dots,x_d)
```

Множество значений зависимой переменой $\mathcal{Y} = \{y\}$

Множество моделей(гипотез) \mathcal{H} , описываемых в виде функции, которая каждому объекту ставит в соответствие одно значений зависимой переменой $h: \mathcal{X} \to \mathcal{Y}$.

Функция потерь $\ell:\mathcal{H}\times\mathcal{X}\times\mathcal{Y}\to\mathbb{R}_+$

Истинная ошибка

Множество объектов $\mathcal{X}=\{\mathbf{x}\}$, представленных вектором из d признаков $\mathbf{x}=(x_1,\ldots,x_d)$

Множество значений зависимой переменой $\mathcal{Y} = \{y\}$

Множество моделей (гипотез) \mathcal{H} , описываемых в виде функции, которая каждому объекту ставит в соответствие одно значений зависимой переменой $h: \mathcal{X} \to \mathcal{Y}$.

Функция потерь $\ell: \mathcal{H} imes \mathcal{X} imes \mathcal{Y}
ightarrow \mathbb{R}_+$

При заданном вероятностном распределении $\mathcal D$ над $\mathcal X imes \mathcal Y$ функция ℓ является случайной

Истинная ошибка модели $h \in \mathcal{H}$

математическое ожидание функции потери модели h:

$$L_D(h) = \underset{(\mathbf{x}, y) \sim \mathcal{D}}{\mathbb{E}} [\ell(h(\mathbf{x}), y)]$$

Эмпирическая ошибка

Множество объектов $\mathcal{X}=\{x\}$, представленных вектором из d признаков $\mathbf{x}=(x_1,\dots,x_d)$

Множество значений зависимой переменой $\mathcal{Y} = \{y\}$

Множество моделей(гипотез) \mathcal{H} , описываемых в виде функции, которая каждому объекту ставит в соответствие одно значений зависимой переменой $h: \mathcal{X} \to \mathcal{Y}$.

Функция потерь $\ell:\mathcal{H} imes\mathcal{X} imes\mathcal{Y} o\mathbb{R}_+$

Так как в большинстве случаев распределение \mathcal{D} неизвестно, то модель выбирается по имеющейся выборке из m объектов

$$S = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)}))$$

Эмпирическая ошибка модели $h \in \mathcal{H}$

$$L_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \ell(h(\mathbf{x}^{(i)}), y^{(i)})$$
 (1)

Задача регрессии

 $h, \mathbf{x}, \mathbf{y} \mapsto (h(\mathbf{x}) - \mathbf{y})^2$

Множество объектов $\mathcal{X} = \{\mathbf{x}\}$, представленных вектором из d признаков $\mathbf{x} = (x_1, \dots, x_d)$ Множество значений зависимой переменой $\mathcal{Y} = \mathbb{R}$ Множество моделей(гипотез) \mathcal{H} , описываемых в виде функции, которая каждому объекту ставит в соответствие одно значений зависимой переменой $h: \mathcal{X} \to \mathcal{Y}$. Функция потерь $\ell: \mathcal{H} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$

Пример задачи регрессии

Объект задается набором (вектором) d признаков $\mathbf{x}=(x_1,...,x_d)$ Модель - линейная функция от вектора параметров \mathbf{w}

$$h_{\mathbf{w}}(\mathbf{x}) = h(\mathbf{x}, \mathbf{w}) = w_0 + x_1 * w_1 + ... + x_d * w_d = \langle \mathbf{x}, \mathbf{w} \rangle$$

Задача классификации

Множество объектов $\mathcal{X}=\{x\}$, представленных вектором из d признаков $\mathbf{x}=(x_1,\dots,x_d)$

Множество значений зависимой переменой $\mathcal{Y} = y_1, \dots, y_n$ Множество моделей(гипотез) \mathcal{H} , описываемых в виде функции, которая каждому объекту ставит в соответствие одно значений зависимой переменой $h: \mathcal{X} \to \mathcal{Y}$.

Функция потерь $\ell: \mathcal{H} imes \mathcal{X} imes \mathcal{Y}
ightarrow \mathbb{R}_+$

$$\ell(h(\mathsf{x}),y)\mapsto egin{cases} 1, & \mathsf{если} \ h(\mathsf{x})
eq y \ 0, & \mathsf{иначе} \end{cases}$$

Пример задачи классификации

Объект задается набором (вектором) d признаков $\mathbf{x}=(x_1,...,x_d)$ Множество значений зависимой переменой - два класса $\mathcal{Y}=\{0,1\}$ Модель - логистическая функция от вектора параметров \mathbf{w}

$$h_{\mathbf{w}}(\mathbf{x}) = h(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{\langle \mathbf{x}, \mathbf{w} \rangle}}, \langle \mathbf{x}, \mathbf{w} \rangle = w_0 + x_1 * w_1 + ... + x_d * w_d$$

$$y^{ extsf{гипотеза}} = egin{cases} 1, & ext{если } h_{\mathbf{w}}(\mathbf{x}) > 0.5 \ 0, & ext{иначе} \end{cases}$$

1 Машинное обучение с учителем

2 Градиентный спуск

③ Искусственная нейронная сеть

Задача оптимизации

Минимизация эмпирической ошибки модели $h \in \mathcal{H}$

$$L_{\mathcal{S}}(h_{\mathbf{w}}) = L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(h(\mathbf{x}^{(i)}, \mathbf{w}), y^{(i)}) \to \min_{\mathbf{w}}$$
 (2)

Общая постановка задачи оптимизации для произвольной функции $f:\mathbb{R}^n o \mathbb{R}$

$$f(\mathbf{w}) \to \min_{\mathbf{w}}$$
 (3)

 $\mathbf{w}*$ - минимум функции f, если $\forall \mathbf{w} \ f(\mathbf{w}^*) \leq f(\mathbf{w})$

Градиент

$$f: \mathbb{R}^n \to \mathbb{R}$$

 $\mathbf{w} \mapsto f(\mathbf{w})$

Градиент функции f в точке p

$$\nabla f: \mathbb{R}^n \to \mathbb{R}^n$$

$$\nabla f_{\mathbf{w}}(p) = \begin{bmatrix} \frac{\partial f}{\partial w_1}(p) \\ \frac{\partial f}{\partial w_2}(p) \\ \vdots \\ \frac{\partial f}{\partial w_n}(p) \end{bmatrix}$$

Градиентный спуск

Нахождение локального минимуму функции $f:\mathbb{R}^n o\mathbb{R}$

Алгоритм

Инициализация \mathbf{w}^0 произвольно Для каждой итерации выбор шага обновления α

$$\mathbf{w}^{k+1} \leftarrow \mathbf{w}_k - \alpha \nabla f(\mathbf{w}_k)$$

Для минимума w^* верно $\nabla f(\mathbf{w}^*) = 0$

1 Машинное обучение с учителем

Прадиентный спуск

3 Искусственная нейронная сеть

Нейрон

https://cs231n.github.io

Нейронная сеть

hidden layer 1 hidden layer 2

Алгоритм обратного распространения

