UNIVERSITE BADJI MOKHTAR DEPARTEMENT DE M.I

SEMESTRE 1 - 2017-2018

1er EXAMEN - ALGEBRE 1

Janvier 2018

Durée: 1h30m

Exercice 1: (6 points) Soient $f: \mathbb{R} \to \mathbb{R}$ l'application définie par $f(x) = x^3 - 3x + 2$

- 1. Soient les ensembles: $A = \{-2, -1, 0, 1, 2\}$ et $B = \{2\}$
 - a) Déterminer f(A).
 - b) En déduire que f n'est pas injective, justifier.
 - c) Déterminer $f^{-1}(B)$.
- 2. On désigne par R, la relation binaire définie sur R par

$$\forall (x,y) \in \mathbb{R}^2 : x \Re y \Leftrightarrow f(x) = f(y).$$

- a) Montrer que \Re est une relation d'équivalence sur $\mathbb R$.
- b) Déterminer la classe d'équivalence de 0 et -2.

Exercice 2: (7 points)

Soit $G = \mathbb{R} - \{-2\}$, on définit sur G la loi de composition interne * par

$$\forall (x,y) \in G^2, x * y = xy + 2(x+y) + 2.$$

- Montrer que (G,*) est un groupe abélien.
- 2. Soit $H = \{x \in \mathbb{R}, x > -2\}$. Montrer que (H, *) est un sous-groupe de (G, *).
- 3. On considère l'application f du groupe (G,*) dans le groupe multiplicatif $(\mathbb{R} \{0\}, \times)$ f(x) = x + 2
 - a) Montrer que f est un isorphisme de groupes.
 - b) Déterminer le noyau de f (kerf).

Questions indépendante: (3 points)

- 1. Est-ce que l'anneau Z/6Z est intègre? (Justifier).
- 2. Est-ce que $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$? (Justifier).
- 3. Est-ce que $2\mathbb{Z}$ est un sous-anneau de $(\mathbb{Z}, +, \times)$? (Justifier).

Exercice 3: (4 points)

1. Déterminer le pgcd des polynômes A et B suivants

$$A(X) = X^3 - X^2 - 4X + 4$$
 et $B(X) = X^2 + 2X - 3$.

2. Pour $n \in \mathbb{N}^*$, quel est le reste de la division euclidienne du polynôme $P(X) = (X+1)^n + X^n + 1$ par Q(X) = X(X+1).