1 Extra practice (try on own at home)

1. Calculate the truth value of $p \lor (q \to (\neg r \& p))$ by supplying a tree, assuming that \underline{p} is true, \underline{q} is false, and r is false.

2. Construct the truth table for $q \to ((p \leftrightarrow \neg q) \lor \neg (q \& p))$.

p	q	$\neg q$	$p \leftrightarrow \neg q$	q & p	$\neg(q\& p)$	$(p \leftrightarrow \neg q) \lor \neg (q \& p)$	$q \to ((p \leftrightarrow \neg q) \lor \neg (q \& p))$
$\overline{\mathrm{T}}$	Τ	F	F	T	F	F	F
${ m T}$	\mathbf{F}	T	${ m T}$	\mathbf{F}	${f T}$	${f T}$	${f T}$
\mathbf{F}	${ m T}$	F	${ m T}$	\mathbf{F}	${ m T}$	${f T}$	${f T}$
\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}	\mathbf{F}	${ m T}$	${f T}$	T

3. Show that each of the following pairs of formulas are equivalences by showing the truth table for each one.

(a)
$$p$$
 and $\neg \neg p$

$$\begin{array}{c|cc}
p & \neg p & \neg \neg p \\
\hline
T & F & T \\
F & T & F
\end{array}$$

(b)
$$\neg p$$
 and $p \rightarrow (q \& \neg q)$

$$p \neg p$$

(this one is called De Morgan's Law)

(c) $\neg (p \lor q)$ and $\neg p \& \neg q$

(d) $\neg(\neg p \& \neg q)$ and $(p \rightarrow q) \rightarrow q$

 $\begin{array}{c|ccccc} p & q & p \rightarrow q & (p \rightarrow q) \rightarrow q \\ \hline T & T & T & T \\ T & F & F & T \\ F & T & T & T \\ F & F & T & F \\ \end{array}$