Unit 12: Line Bisectors and Angle Bisectors

Overview

Right Bisector of a line segment:

Right bisection of a line segment means to draw a perpendicular at the mid-point of line segment.

Bisector of an angle:

Bisection of an angle means to draw a ray to divide the given angle into two equal parts.

Theorem 12.1.1

Statement:

Any point on the right bisector of a line segment is equidistant from its end points.

Given

A line \overrightarrow{LM} intersects the line segment AB at the point C Such that $\overrightarrow{LM} \perp \overline{AB}$ and $\overline{AC} \cong \overline{BC}$. P is a point on \overrightarrow{LM}

$$\overline{PA} \simeq \overline{PB}$$

Construction

Join P to the point A and B

Proof

Statements	Reasons
In $\triangle ACP \leftrightarrow \triangle BCP$	
$\overline{AC} \cong \overline{BC}$	Given
$\angle ACP \cong \angle BCP$	Given $\overline{PC} \perp \overline{AB}$, so that each \angle at $C = 90^{\circ}$
$\overline{PC} \cong \overline{PC}$	Common
$\therefore \Delta ACP \cong \Delta BCP$	S.A.S Postulate
Hence $\overline{PA} \cong \overline{PB}$	(Corresponding sides of congruent triangles)

Theorem 12.1.2

{Converse of Theorem 12.1.1}

Any point equidistant from the end points of a line segment is on the right bisector of it.

Given

 \overline{AB} is a line segment. Point P is such that $\overline{PA} \cong \overline{PB}$

[WEBSITE: WWW.FREEILM.COM]

[EMAIL: FREEILM786@GMAIL.COM]

To prove

The point P is the on the right bisector of \overline{AB}

Construction

Join P to C, the midpoint of \overline{AB}

Proof

Statements	Reasons
In $\triangle ACP \leftrightarrow \triangle BCP$	
$\overline{PA} \cong \overline{PB}$	Given
$\overline{PC} \cong \overline{PC}$	Common
$\overline{AC} \cong \overline{BC}$	Construction
$\therefore \Delta ACP \cong \Delta BCP$	$S.S.S \cong S.S.S$
$\angle ACP \cong \angle BCP$ (i)	Corresponding angles of congruent triangles
But $m\angle ACP + m\angle BCP = 180^{\circ}$ (ii)	Supplementary angles
$\therefore m \angle ACP = m \angle BCP = 90^{\circ}$	From (i) and (ii)
i.e $\overline{PC} \perp \overline{AB}$ (iii)	$m \angle ACP = 90^{\circ} (Proved)$
Also $\overline{CA} \cong \overline{CB}$ (iv)	Construction
$\therefore \overline{PC}$ is a right bisector of \overline{AB}	from (iii) and (iv)
i.e. the point P is on the right bisector of \overline{AB}	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 2 OF 2]