

Linear Algebra 2

Assignments 3: Direct Sums, Equivalence Classes, Quotient Spaces, and Linear Transformations (§2.5, 3.1-3.2)

Alexander Heinlein

Q1 2022/2023

Delft University of Technology

Direct Sums (§2.5)

Assignment 3.1

Show that $\mathbb{R}_2[t]$ is the internal direct sum of the polynomials that vanish at t=0 and the span of t^2+2t+1 .

Assignment 3.2

Exercise (3) from page 34 of the book:

Show that $M_{3,3}$, the space of 3×3 real matrices, is the direct sum of the subspace of symmetric matrices $A^{\top} = A$, and the subspace of antisymmetric matrices $A^{\top} = -A$. What are the dimensions of these subspaces? What is the dimension of $M_{3,3}$?

Assignment 3.3

Exercise (4) from page 34 of the book:

Let
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
. In the decomposition of the previous exercise, what is P_1A and P_2A ?

Direct Sums (§2.5)

Assignment 3.4 (extra)

Let L(x) = Ax define a linear operator on the vector space $V = \mathbb{R}^n$ with $n \times n$ matrix A. Show that A is diagonalizable if and only if V is the direct sum of the eigenspaces of A. For each eigenvalue λ_i of the matrix A the associated eigenspace is defined as follows:

$$E_{\lambda_i} = \{x \in V : Ax = \lambda_i x\}$$

Equivalence Classes and Quotient Spaces (§2.5)

Assignment 3.5

Exercise (6) from page 35 of the book:

Show that, for general V and W, the addition operation [x] + [y] = [x + y] as it is defined in the definition of the quotient space is well defined. That is, show that, if x and x' are both in [x], and if y and y' are both in [y], then [x + y] = [x' + y'].

Assignment 3.6

Exercise (7) from page 35 of the book:

Let $V = \mathbb{R}[t]$, and let W be the subspace consisting of all polynomials divisible by $(t-1)^2$.

Show that W is a subspace of V and that V/W is 2-dimensional, and exhibit a basis for V/W.

[Hint: A point in V/W is the set of all polynomials that have a specific value and derivative at t=1.]

Assignment 3.7 (for submission)

Let V be a vector space and let W be a subspace. Show that the equivalence class of $\mathbf{x} \in V$

$$[\mathbf{x}] = \{\mathbf{y} \in V : \mathbf{x} \sim \mathbf{y}\}$$

forms an **affine subspace** of V, which is defined as the subspace W translated by the vector $\mathbf{x} \in V$ (Think about how an affine subspaces differs from a regular one!). We denote affine subspaces as $U = \mathbf{x} + W$. In essence, you have to show that $[\mathbf{x}] = \mathbf{x} + W$, which we will use from now on as an alternative notation.

Quotient Spaces (§2.5)

Assignment 3.8 (for submission)

With the notation from Assignment 3.7, we can express the quotient space, which is the set of all equivalence classes of \sim , as follows

$$V/W = \{ \boldsymbol{x} + W : \boldsymbol{x} \in V \}.$$

Define the addition and multiplication with a scalar operations in V/W such that the canonical mapping

$$\sigma: V \to V/W, \qquad \mathbf{x} \mapsto \sigma(\mathbf{x}) = \mathbf{x} + W$$

is linear. Compare your answer to the result in Assignment 3.5.

Assignment 3.9 (for submission)

We know that V/W being a vector space has to satisfy the eight axioms of a vector space. Give the zero vector (additive identity) of V/W and the additive inverse of an arbitrary element of V/W.

Linear Transformations (§3.1-3.2)

Assignment 3.10

Exercise (3) from page 47 of the book:

On $\mathbb{R}_3[t]$ with basis $\mathcal{B}=(1,t,t^2,t^3)$, compute the matrix form of the linear transformation d^2/dt^2 and compare it to the square of the matrix

$$[d/dt]_{\mathcal{BB}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Assignment 3.11

Exercises (4) and (6) from page 47 of the book:

Let V be a vector space with basis $\mathcal B$ and let L and M be operators on V. Show that the composition $L\circ M$ defined by $L\circ M(\mathbf v)=L(M(\mathbf v))$ is also an operator on V. Prove that

$$[L\circ M]_{\mathcal{B}}=[L]_{\mathcal{B}}[M]_{\mathcal{B}}.$$

In other words, show that compositions of operators in V correspond to multiplications of square matrices (matrix forms of linear operators).

We now extend the above result to multiple vector spaces and linear transformations: Let U, V and W be vector spaces, with bases \mathcal{B}, \mathcal{C} and $\mathcal{D},$ respectively. Let $L_1: U \to V$ and $L_2: V \to W$ be linear transformations. We can define the composition $L_2 \circ L_1: U \to W$ by $L_2 \circ L_1(\boldsymbol{u}) = L_2(L_1(\boldsymbol{u}))$. Show that $L_2 \circ L_1$ is a linear transformation from U to W. Show that the matrix of $L_2 \circ L_1$ is given by

$$[L_2 \circ L_1]_{\mathcal{DB}} = [L_2]_{\mathcal{DC}}[L_1]_{\mathcal{CB}}.$$

Assignment 3.12 (extra)

Let T be a linear operator on the vector space V and let W be a T-invariant subspace of V. That is, $T(x) \in W$ for all $x \in W$, or $T(W) \subseteq W$.

Let us define the mapping

$$\bar{T}: V/W \to V/W$$

by

$$\bar{T}(x+W) = T(x) + W$$
 for any $x + W \in V/W$.

Prove that the mapping \bar{T} is well-defined and that it is a linear operator on the vector space V/W. Moreover, show that $\sigma \circ T = \bar{T} \circ \sigma$ with $\sigma : V \to V/W$ being the mapping defined in Assignment 3.8. Sketch the commuting diagram.