Network Security Protocols

Iterated Hash Function

Merkle Damgard Scheme

Multiple chained compression functions

Rabin Scheme

Each message block is used as K for each encrypt block

Davies-Meyer Scheme

Output (Ciphertext) of each encrypt block is XORed with input plaintext

Matyas-Meyer Oseas Scheme

P and K are switched in each block. K is XORed with C

Miyaguchi-Preneel Scheme

XOR is done with K and P to C

Cryptographic Hash Functions

SHA-512 (Secure Hash Algorithm)

- Based on Merkle-Damgard Scheme
- ullet Creates hash of 512 bits out messages less than 2^128
- Structure:

• Padding:

• Compression Function:

Round Structure:

Word Expansion:

Whirpool

- Based on Miyaguchi-Preneel
- Modified AES cipher

• Hash function:

• Whirpool cipher:

Round structure:

Key expansion:

- Round constants:
 - $ullet \ RC_{round}[row,column] = SubBytes(8(round-1)+column) \ ext{if} \ row = 0$
 - $ullet \ RC_{round}[row,column]=0 \ ext{if} \ row
 eq 0$
- Properties:

Block size: 512 bits
Cipher key size: 512 bits
Number of rounds: 10
Key expansion: using the cipher itself with round constants as round keys
Substitution: SubBytes transformation
Permutation: ShiftColumns transformation
Mixing: MixRows transformation
Round Constant: cubic roots of the first eighty prime numbers

Entity Authentication

Passwords

Fixed Passwords Approaches

- User ID and Password File
 - Attacks:
 - Eavesdropping
 - Stealing

- Accessing Password file
- Guessing
- Hashing the Password
 - Attacks:
 - Dictionary Attack
- Salting the Password
- Combining Multiple Identification Techniques

One Time Password

- Pre agreed list of passwords for user and system to use
- Sequential update of passwords
- Sequential update using hash function
 - Lamport OTP:

Challenge Response

Symmetric Key Cipher

Nonce challenge:

• Timestamp:

• Bidirectional Authentication:

Keyed Hash Functions

Assymetric Key Cipher

• Unidirectional, assymetric key authentication:

• Bidirectional, assymetric key authentication:

Digital Signature

• Unidirectional, Digital Signature authentication:

• Bidirectional, Digital Signature authentication:

Zero Knowledge

• Fiat Shamir:

• Fiege Fiat Shamir:

• Guillou Quisquater:

Symmetric Key Agreement

- Diffie Hellman
 - Structure:
 - Attack:
 - Discrete Logarithm
 - Man in the middle
- Station to station

KDC (Key Distribution Center)

Certificates

CA (Certificate Authority)

Certificate Format

"./pictures" is not created yet. Click to create.

- Version number
- Serial Number
- Signature Algorithm ID
- Issuer Name of CA
- Validity Period
- Subject Name
- Subject Public Key

- Issuer Unique Identifier
- Subject Unique Identifier
- Extensions
- Signature

Certificate Renewal Certificate Revocation

• Format:

Delta Revocation

Kereberos

