Matematiksel Modelleme ve Bulanık Mantık Açıklamaları

1. Bulanık Mantık Nedir?

Bulanık mantık (Fuzzy Logic), klasik mantığın (0 ya da 1) keskin sınırlarını aşarak, belirsizlik içeren durumları modellemeye yarayan bir sistemdir. Lotfi Zadeh tarafından 1965'te tanıtılmıştır.

Geleneksel sistem:

"Sıcaklık 35°C ise sulama başlasın."

Bulanık sistem:

"Sıcaklık 35°C **yüksek**, nem %40 **orta**, bitki domatesse → sulama **orta düzeyde** olsun."

2. Girdi ve Çıktı Değişkenleri

Girdi Değişkenleri:

Girdi Aralık	Üyelik Fonksiyonları
--------------	----------------------

Hava Sıcaklığı 10 – 45 °C low, optimal, high

Nem Oranı 20 – 100 % low, medium, high

Toprak Nemliliği 0 – 100 % dry, moist, wet

Saat 0-24 night, morning, afternoon, evening

Bitki Türü (kodu) 1 – 3 cactus, tomato, lettuce

Çıktı Değişkenleri:

Çıktı Aralık Üyelik Fonksiyonları

Sulama Süresi 0 – 30 dakika short, medium, long

Fan Gücü (%) 0 – 100 % low, medium, high

3. Üyelik Fonksiyonları

Tüm değişkenler için **üçgen (trimf)** üyelik fonksiyonu kullanılmıştır:

Örnek: Hava Sıcaklığı

- $low \rightarrow trimf(10, 10, 20)$
- optimal → trimf(18, 25, 32)
- high → trimf(30, 45, 45)

Matematiksel form:

Üçgen üyelik fonksiyonu $\mu_A(x)$:

$$\mu_A(x) = egin{cases} 0 & ext{if } x \leq a \ rac{x-a}{b-a} & ext{if } a < x \leq b \ rac{c-x}{c-b} & ext{if } b < x < c \ 0 & ext{if } x \geq c \end{cases}$$

4. Kural Tabanı (Rule Base)

Toplamda 10 adet çok kriterli bulanık kural tanımlanmıştır.

Örnek Kural:

csharp

KopyalaDüzenle

IF temperature is high AND humidity is low THEN

water time is long AND fan power is high

Matematiksel olarak:

$$R_1: \text{IF } T_{air} \in \text{high} \land H_{air} \in \text{low} \Rightarrow W \in \text{long}, F \in \text{high}$$

Kullanılan Operatörler:

- AND → minimum (min)
- OR → maksimum (max)

5. Çıkarım (Inference)

Kullanılan çıkarım yöntemi: **Mamdani inference** Aşamalar:

- 1. Fuzzification (Bulanıklaştırma): Girdiler bulanık kümelere dönüştürülür.
- 2. Rule Evaluation (Kural değerlendirme): Uygun kurallar seçilir.
- 3. **Aggregation (Birleştirme)**: Aynı çıktı için birden çok kuralın etkisi toplanır.
- 4. **Defuzzification (Durulaştırma)**: Sonuç tek bir sayıya dönüştürülür.

6. Durulaştırma (Defuzzification)

Kullanılan yöntem: Ağırlıklı Ortalama (Center of Gravity)

$$z = \frac{\int z \cdot \mu(z) \, dz}{\int \mu(z) \, dz}$$

Bu formül ile kesin (crisp) çıktılar elde edilir.

7. Örnek Hesaplama

Girdi:

Sıcaklık: 42°C → high

• Nem: 25% → low

• Saat: 15 → afternoon

• Toprak: 20% → dry

• Bitki: Marul → lettuce

Tetiklenen kurallar:

• R1: temp=high ∧ hum=low → fan=high, water=long

• R2: temp=high ∧ soil=dry → fan=medium, water=long

R4: lettuce ∧ soil=dry → water=long

Çıktı:

Sulama Süresi: 28.30 dakika

Fan Gücü: 91.20 %

8. Yorumlar

✓ Sistem, sabit eşiklerle değil, **dinamik koşullarla** çalışır.

√ Kurallar insan sezgisine yakın kararlar üretir.

√ Kullanıcı arayüzü üzerinden canlı test yapılabilir.

✓ Sisteme daha fazla bitki türü ve sensör entegre edilebilir (örneğin ışık, CO₂).

9. Genişletilebilirlik

Genişletme	Açıklama
Sensör bağlantısı	Gerçek zamanlı sıcaklık/nem okuma
Bitki veri tabanı	Bitki türlerine özel kurallar
IoT entegrasyonu	Uzaktan kontrol, veri kaydı

Zaman serisi analizi Günlük/haftalık verilerin analizi