

Modern Control Theory

Ding Jie 2019-2020-2

Email: dingjie@njupt.edu.cn

Tel: 13813845623

Course Goals

This course focuses on linear system theory of the conventional approaches of state-space equations and the polynomial fraction method of transfer matrices. The course deals with

- State-space representations and solutions
- Controllability and observability, feedback, pole placement, observers
- Analysis of Lyapunov stability
- Optimal control and linear quadratic control

A better understanding of the basic concepts and analysis methods for linear multivariable control systems, and firm grasp of design methods for linear time-invariant systems.

Course Requirement

Prerequisites:

- Linear Algebra
- Differential Equations
- Theory of Matrices
- Principles of Automatic Control

Book: Modern Control Theory and Engineering

Reference book: Automatic Control Theory

(自动控制原理第六版:第9章和第10章)

Course Requirement

Course duration: 40 hours (2.5 credits)

Lab Experiment: Simulation twice (reports included)

Assignments: once every two weeks

Evaluation includes:

Attendance (10%) +Assignment (20%)+Exam (70%)

Introduction

- Problem Formulation
- History & Development of Control Theory
- Basic concepts and methods of Modern Control Theory
- Preliminaries

Industrial process control: velocity, temperature, flow, pressure, etc.

Robot control Network control Aerospace control

Rocket control system: Navigator Attitude control

. . .

SpaceX launches Falcon Heavy, the world's most powerful rocket

Falcon Heavy took flight Tuesday around 3:45 pm ET from Kennedy Space Center in Florida

Controlling Unmanned vehicles can make them in

Consensus

Coordination

Positioning

• • • • •

Controlling the Electric power vehicles can make them work in best condition.

But how?

Two important concepts in control

- Feedback control
 - -- Closed loop (error input)
 - -- Meet the requirements with uncertainty
- Optimal control
 - --Minimize or maximize the cost function over a period
 - -- Pre-regulation and open loop control

Connection: Optimal control can be integrated into a closed loop

1769, James Watt's steam engine and governor-Flying Ball

1875, 1895, Routh and Hurwitz developed stability analysis

1932, Nyquist developed a method for system stability analy

1948, Norbert Wiener-`Cybernetics: or Control and Comm

Animal and the Machine'

(1954, 钱学森发表《工业控制论》,形成了国内控制研究热

1957, Richard Ernest Bellman, 1920-1984, published 'Dynamic Programming'

1960, Rudolf Emil Kalman, 1930-2016 On the General Theory of Control Systems

2, Lev Pontryagin propo

ptimal Processes'

Rudolf Kalman

How to build Your Flyball Governor

https://makezine.com/pr ojects/remaking-historyjames-watt-and-theflyball-governor/

Three Development Periods of Control Theory

Stage 1 Classical Control Theory (From 1868 to 1960's)

- --Mathematical Methods: differential equations, Laplace transform, transfer function
- -- Analysis: time and frequency domain, root locus method
- -- Main problem: stability and accuracy

Limitations

- --Linear time invariant system—LTI:
- --Single input-output systems
 - . Ignore the internal characteristics of systems
- --Suboptimal solution to control system design
 - The solutions depend on engineers' experience
 - PID control

Three Development Periods of Control Theory

Stage 2 Modern Control Theory (1960's)

- --Mathematical Methods: first order differential equations, theory of matrices
- -- Analysis: State-Space Model
- -- Main problem: Stability, Controllability and Observability

Advantages

- Multiple Input-Output Systems
- Time Variant Systems
- Time Domain: State-space Model
- Optimal Design of Control System

Three Development Periods of Control Theory

Stage 3 Large System (complex network) Control Theory (1970's--present)

- -- Analysis: Fuzzy control, artificial neuro network control, etc.
- -- Main problem: Stability, Controllability and Observability

Basic methods of Modern Control Theory

1. Linear system theory

```
Mathematical model — linear system state-space model
Core content— Controllability and Observability
Application— State feedback and observer design
Analysis— Lyapunov stability
```

- 2. Optimal control theory
- 3. System identification
- 4. Adaptive control
- 5. Intelligent control

Schedule of the course

- **Chapter 1. Introduction**
- Chapter 2. State-space Model of Linear System
- **Chapter 3. Controllability and Observability**
- Chapter 4. Analysis of Lyapunov Stability
- **Chapter 5. Feedback and State Observer**
- **Chapter 6. Optimal Control Theory**

Matrix:

• **Determinant** of *A*: **det**(*A*)

$$det[A] \neq 0$$

- > A is Nonsingular Matrix
- > A is invertible
- \triangleright A is full rank, rank[A] = n
- \triangleright For Homogeneous equation Ax=0, x=0
- > For equation Ax=b, $x=A^{-1}b$

• Transpose matrix A^T

• Inverse matrix
$$A^{ ext{-1}}$$
, $AB=BA=I_n$ $B=A^{-1}$ $[A\mid I]$ $[I\mid A^{-1}]$ $AX=B$ $X=A^{-1}B$ $[A,B]$ $[I_n,A^{-1}B]$

Adjoint matrix adj(A)

$$\mathbf{A}^{-1} = \frac{\mathrm{adj}[\mathbf{A}]}{\det[\mathbf{A}]},$$

• Diagonal matrix diag(A)

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

Eigenvalues of matrix eig(A)

$$Ax = \lambda x$$

 λ is one of the eigenvalues, x is eigenvector according to λ

$$|\lambda I - A| = 0$$

Left side of the equation is called eigen-polynomial

$$tr[A] := \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn} = \lambda_1[A] + \lambda_2[A] + \dots + \lambda_n[A]$$

• Symmetric Matrix
$$A = [a_{ij}] \in \mathbb{F}^{n \times n}$$

$$a_{ij} = a_{ji}, \ i = 1, 2, \cdots, n, \ j = 1, 2, \cdots, n.$$

Obviously,
$$A^{\scriptscriptstyle
m T}=A_{\scriptscriptstyle
m I}$$

• Positive Definite Matrix:

For symmetric matrix
$$\mathbf{A}$$
 $\mathbf{A} = [a_{i\,i}] \in \mathbb{R}^{n \times n}$ $\mathbf{eig}(\mathbf{A}) > \mathbf{0}$ or $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} > 0$

Positive definite Matrix

Orthogonal Matrix:

$$Q^{-1} = Q^{\mathrm{T}}, \quad QQ^{\mathrm{T}} = I$$

$$\det[\mathbf{Q}] = \pm 1$$