Intercepts of the Quadratic

Casel: $\Delta>0$ $k_{1,2}=\frac{-b\pm\sqrt{b^2-4\,ac}}{2a} \text{ computes the } k-\text{intercepts of multiplicity 1.}$ $g\left(0\right)=c \text{ computes the single } g-\text{intercept.}$

Given a quadratic $g(k) = a k^2 + b k + c$ compute its discriminant \triangle :

g(0) = c computes the k-intercepts of muttiplicity 1. g(0) = c computes the single g-intercept. Example 1.

$g(k) = -2 k^2 + 16 k + 18$ compute its discriminant \triangle : $\triangle = 400 > 0$

Example 2.

g(0) = 108 g-intercept.

no k-intercepts.

g(0) = -810 g-intercept.

Example 3.

 $\triangle = \sqrt{b^2 - 4ac}$

 $k_{1,2}=-1,9$ g(0)=18 g-intercept.

$$(0) = 18$$
 g-intercept.

 $k_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single k-intercept of multiplicity 2.

$$g(k) = 3 k^2 - 36 k + 108$$
 compute its discriminant \triangle : $\triangle = 0$ $k_{1,2} = 6,6$

 $\sqrt{\,\mathsf{b}^2\,_-\,\mathsf{4}\,\mathsf{ac}}$ has no value in Real Numbers. Therefore there are

$g(k) = -9 k^2 - 162 k - 810$ compute its discriminant \triangle : $\triangle = -2916 < 0$

However there is a g-intercept.

