Question 2

The solution to our problem involves a greedy algorithm.

We know that opponent will throw Rock in R_A rounds, Scissors in S_A rounds and Paper in P_A rounds.

We know that:

- Paper beats Rock
- Rock beats Scissors
- Scissors beats Paper

Since we can throw our rock R_B times, scissors S_B times and paper P_B times in whichever order we like, knowing **when**, **what** and **how many** our opponents will throw, we will attempt to assign the maximum amount of 'wins' we can achieve to our opponents throw.

If we have <u>excess</u> or throws of that 'win', we assign it to the throw which would result in a <u>draw</u>. Alternatively, if we have <u>insufficient</u> throws, we assign the remaining throws which would result in a <u>draw</u>.

Let's take an example to portray this idea

- Our opponents' throws are $R_A = 5$, $S_A = 5$ and $P_A = 5$ (we know when this will be)
- Our throws are $R_B=3$, $S_B=7$ and $P_B=5$
- 1. For each rock throw of our opponent, R_A = 5, we assign P_B paper throws during those rounds

We have $P_B = 5$ matching exactly, so we assign it to those rounds and win **5 points**.

2. For each scissor throw of our opponent, $S_A = 5$, we assign R_B rock throws during those rounds.

We have $R_B = 3$ throws, so we assign these, winning **3 points**, and the remaining $S_A - R_B$ throws to what would result in a draw, i.e. 2 of our S_B throws and so **0 points**

(In the above case our only choice of extra throws were the scissor, but if this occurs in the case where we have 2 kinds of throws to choose from, we choose the throws which would result in a draw)

3. And finally, we assign the remaining throws we have to our opponents P_A paper throws, which is the remaining 5 of our S_B throws $(S_B - (S_A - R_B))$, resulting in **5 points.**

And so, by this **greedy method** of playing we will **maximise** the number of points achievable.