

Limites Assintóticos Propriedades

Disciplina: Estrutura de dados II

Prof. Fermín Alfredo Tang Montané

Curso: Ciência da Computação Universidade Estadual do Norte Fluminense

Propriedades do O(.)

Teorema I:

Sejam duas funções com comportamento assintótico conhecido:

$$f_1(n) = O(g_1(n))$$
$$f_2(n) = O(g_2(n))$$

• então temos: $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$

Interpretação:

- As funções podem representar tempo computacional ou consumo de memória de 2 blocos de código consecutivos.
- A soma das funções representaria então, o tempo total ou consumo total de ambos blocos.
- O resultado afirma que a complexidade de pior caso, do código inteiro, equivale a complexidade de pior caso do bloco de maior complexidade.

Propriedades de O(.)

- Exemplo Teor. I:
- O resultado do teorema pode ser generalizado para mais de duas funções (Blocos de código).
- A complexidade de pior caso, do código inteiro, equivale a complexidade de pior caso do bloco de maior complexidade.

Propriedades de O(.)

- Prova Teor.I: Aplica-se a definição do O(.) as duas funções.
- Temos assim, dois inteiros n_1 e n_2 e duas constantes c_1 e c_2 tais que:

$$f_1(n) \le c_1 g_1(n)$$
 para $n \ge n_1$,

$$f_2(n) \le c_2 g_2(n)$$
 para $n \ge n_2$

• Considera-se a soma de f_1 e f_2 , valida apenas para n_0 = max(n_1 , n_2):

$$f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n)$$
 para $n \ge n_0$,

• Fazendo $c_0 = \max(c_1, c_2)$, temos:

$$f_1(n) + f_2(n) \le c_1 g_1(n) + c_2 g_2(n) \le c_0 (g_1(n) + g_2(n))$$
 para $n \ge n_0$,

$$f_1(n) + f_2(n) \le c_0(g_1(n) + g_2(n))$$
 para $n \ge n_0$,

Propriedades de O(.)

Prova Teor. I (Continuação):

$$f_1(n) + f_2(n) \le 2c_0(g_1(n) + g_2(n))/2$$
 para $n \ge n_0$,

Considerando o fato de que:

$$|(g_1(n) + g_2(n))|/2 \le \max(g_1(n), g_2(n)) \le g_1(n) + g_2(n)|$$

Temos que:

$$f_1(n) + f_2(n) \le 2c_0 \max(g_1(n), g_2(n))$$
 para $n \ge n_0$,

• Finalizamos a prova fazendo $c=2c_0$, onde $c_0=2max(c_1,c_2)$

$$f_1(n) + f_2(n) \le c \max(g_1(n), g_2(n))$$
 para $n \ge n_0$,

$$f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

Propriedades de O(.)

- Exemplo Teor. I (Máximo de funções):
- Considere: $g_1(n) = 1$ $g_2(n) = 2\cos^2(n\pi/2)$

O exemplo mostra que o máximo de duas funções não corresponde necessariamente a uma delas.

$$h(n) = \max(g_1(n), g_2(n)) = \max(1, 2\cos^2(n\pi/2))$$

= $\begin{cases} 1, & \text{n \'e par} \\ 2, & \text{n \'e \'impar} \end{cases}$

Propriedades de O(.)

Teorema 2:

• Sejam duas funções não negativas $f_1(n)$ e $f_2(n)$ para n>0,

Se for verificado que:
$$\lim_{n\to\infty} \frac{f_2(n)}{f_1(n)} = L$$
, onde $L \ge 0$

então:
$$f_1(n) + f_2(n) = O(f_1(n))$$

• Prova Teor. 2: Aplica-se a definição de limite de funções.

O limite existe se, para um valor $\varepsilon>0$ suficientemente pequeno, é possível achar um n_0 , tal que:

$$\left| \frac{f_2(n)}{f_1(n)} - L \right| \le \varepsilon$$
, para n>n₀

Propriedades de O(.)

Prova Teor. 2 (cont.):

Escolhendo um valor $\varepsilon = \varepsilon_0$, temos:

$$\frac{f_2(n)}{f_1(n)} - L \le \varepsilon_0, \text{ para n > n_0}$$

Re-escrevendo: $f_2(n) \le (\varepsilon_0 + L) f_1(n)$

Por outro lado, temos: $f_1(n) + f_2(n) \le c_1 f_1(n) + c_2 f_2(n)$

Substituindo $f_2(n)$: $\leq c_1 f_1(n) + c_2 (\varepsilon_0 + L) f_1(n)$

Fatorando: $c_1 f_1(n) + c_2(\varepsilon_0 + L) f_1(n) = (c_1 + c_2(\varepsilon_0 + L)) f_1(n)$

Finalizamos a prova fazendo $c = c_1 + c_2(\epsilon_0 + L)$: $f_1(n) + f_2(n) \le cf_1(n)$

 $f_1(n) + f_2(n) = O(f_1(n))$

Propriedades de O(.)

- Interpretação:
- O resultado mostra que é possível calcular o limite assintótico de $f_1 + f_2$ sem não conhecer os limites assintóticos de f_1 e f_2 .

Exemplo Teor. 2:

$$f_2(n) = 3n^2$$
Bloco 1
$$f_1(n) = 6n^3$$
Bloco 2
$$\lim_{n \to \infty} \frac{n^2}{2n^3} = 0$$

Propriedades de O(.)

- Teorema 3:
- Sejam duas funções com comportamento assintótico conhecido:

$$f_1(n) = O(\mathbf{g}_1(n))$$

$$f_2(n) = O(g_2(n))$$

então temos:

$$f_1(n) \times f_2(n) = O(\mathbf{g}_1(n) \times \mathbf{g}_2(n))$$

 Obs: Lembre que o produto de funções acontece em blocos aninhados ou recursivos.

Propriedades de O(.)

Exemplo Teor. 3:

• Considere:
$$f_1(n) = n^3 + n^2 + n + 1$$
 $f_2(n) = n^2 + n + 1$

Sabe-se que:
$$f_1(n) = O(n^3)$$
 $f_2(n) = O(n^2)$

Pelo Teor. 3:
$$f_1(n) \times f_2(n) = O(n^3 \times n^2) = O(n^5)$$

Propriedades de O(.)

- Prova Teor. 3: Aplica-se a definição de O(.).
- Temos assim, dois inteiros n_1 e n_2 e duas constantes c_1 e c_2 tais que:

$$f_1(n) \le c_1 g_1(n)$$
 para $n \ge n_1$,

$$f_2(n) \le c_2 g_2(n)$$
 para $n \ge n_2$

• Considere o produto de f_1 e f_2 , que é válido para n_0 = max(n_1 , n_2):

$$f_1(n) \times f_2(n) \le c_1 g_1(n) \times c_2 g_2(n)$$
 para $n \ge n_0$,

• Finaliza-se a prova fazendo, $c = c_1 c_2$:

$$f_1(n) \times f_2(n) \le c \ (g_1(n) \times g_2(n))$$
 para $n \ge n_0$,

$$f_1(n) \times f_2(n) = O(g_1(n) \times g_2(n))$$

Propriedades de O(.)

- Teorema 4:
- Seja uma função com comportamento assintótico conhecido:

$$f_1(n) = O(g_1(n))$$

e outra função $f_2(n) \ge 0$, para todo $n \ge 0$, sem conhecimento de O(.)

- prova-se que: $f_1(n) \times f_2(n) = O(g_1(n) \times f_2(n))$
- **Prova Teor. 4:** Aplica-se a definição do O(.).
- Temos assim, uma constante c e um inteiro n_0 , tal que:

$$f_1(n) \le cg_1(n)$$
 para $n \ge n_0$,

• Multiplicando a ambos lados da desigualdade por $f_2(n)$, temos:

$$f_1(n) \times f_2(n) \le cg_1(n) \times f_2(n)$$
 para $n \ge n_1$,

$$f_1(n) \times f_2(n) = O(g_1(n) \times f_2(n))$$

Propriedades de O(.)

- Teorema 5 (Propriedade Transitiva):
- Sejam duas funções com comportamento assintótico conhecido:

$$f(n) = O(g(n))$$
$$g(n) = O(h(n))$$

• prova-se que: f(n) = O(h(n))

Propriedades de O(.)

- Prova Teor. 5: Aplica-se a definição do O(.).
- Temos assim, duas constantes c_1 e c_2 e dois inteiros n_1 e n_2 , tais que:

$$f(n) \le c_1 g(n)$$
 para $n \ge n_1$,
 $g(n) \le c_2 h(n)$ para $n \ge n_2$

• Substituindo g(n), a relação resultante é válida para $n_0 = \max(n_1, n_2)$:

$$f(n) \le c_1 c_2 h(n)$$
 para $n \ge n_0$

• Finaliza-se a prova fazendo, $c = c_1 c_2$, assim:

$$f(n) \le c \ h(n) \ \text{para } n \ge n_0$$

$$f(n) = O(h(n))$$

Propriedades de O(.)

Exemplo Teor. 2 e 5:

• Considere:
$$f_1(n) = 5n^3$$
 $f_2(n) = 3n^2$

onde:
$$f_1(n) \notin O(n^3)$$
 $f_2(n) \notin O(n^2)$

Como verifica-se que:
$$\lim_{n \to \infty} = \frac{f_2(n)}{f_1(n)} = \frac{3n^2}{5n^3} = \frac{3}{5n} = 0$$

Pelo Teor. 2, do limite:
$$f_1(n) + f_2(n) = O(f_1(n)) = O(5n^3)$$

Pela prop. transitiva, Teor. 5:
$$f_1(n) + f_2(n) = O(5n^3) = O(n^3)$$

Convenções

- As seguintes convenções são adotadas quanto a notação O(.):
 - 1. Os termos menos significantes (menor ordem) são desconsiderados.

$$O(n^2 + n \log n + n)$$
 é escrito como $O(n)$

2. Os coeficientes constantes são desconsiderados.

$$O(3n^2)$$
 é escrito como $O(n^2)$

No caso de funções constantes considera-se O(1).

O(1024) é escrito como O(1)

Referências

Bruno R. Preiss. Estrutura de Dados e Algoritmos. Capítulo 3. 3ª Edição.
 2001. Editora Elsevier