

Conceptual and Logical Database Design

Abdu Alawini

University of Illinois at Urbana-Champaign

CS411: Database Systems

Overview of Database Design

- Conceptual design: (ER & UML Models are used for this.)
 - What are the entities and relationships we need?
- Logical design:
 - Transform ER design to Relational Schema
- Schema Refinement: (Normalization) <-next lecture</p>
 - Check relational schema for redundancies and related anomalies.
- Physical Database Design and Tuning:
 - Consider typical workloads; (sometimes) modify the database design; select file types and indexes.

Conceptual Database Design

From user/application requirements to Entity-Relationship Diagrams OR
Unified Modeling Language design

Entity-Relationship Model is a different model than the Relational Model

- Relational model has:
 - tables (relations) with attributes, keys, foreign keys, domain definitions for attributes
- Entity-Relationship model has:
 - Entities and entity sets with attributes, keys, and domain definitions for attributes
 - Relationships among entities and relationship sets with uniqueness or cardinality constraints

Entity Relationship Model Unified Modeling Language

ER Model

- Proposed by Peter Chen in 1976
- Gives us a language to specify
 - What information the database must hold
 - How the bits of information relate to one another

UML Model

- UML is a standard language for designing software systems
 - also used for DB design
- created by the Object Management Group (OMG)
- UML 1.0 specification draft was proposed to the OMG in early 1997.

Entity-Relationship Diagram (original syntax)

Definitions

- *Entity*: Real-world object distinguishable from other objects. An entity is described using a set of *attributes*.
- Entity Set: A collection of similar entities. E.g., all employees.
 (often referred to as just entity, which blurs the distinction between type and collection)
- <u>Relationship</u>: Association among 2 or more entities. E.g., Kristin's home department is Research & Development.
- <u>Relationship Set</u>: Collection of similar relationships. E.g., Home (often referred to as just relationship)

Relationships

- Formal definition:
 - if A, B are sets, then a relation R is a subset of A x B

•
$$A = \{1,2,3\}, B = \{a,b,c,d\},$$

 $R = \{(1,a), (1,c), (3,b)\}$

 $A = \begin{pmatrix} 1 & & \\ 2 & & \\ 3 & & \\ B = \begin{pmatrix} c \\ d \end{pmatrix}$

Same story w/ entity sets

sponsor is a subset of **Project** x **Department**:

Multiplicity of ER Relationships

• one-one:

One on LHS/RHS connected to at most one on RHS/LHS

• many-one:

One on LHS connected to at most one on RHS

• many-many:

No constraints

- Multiplicity can be shown with arrows
- \square Arrow = at most 1

UML version of the same E-R Diagram

Cardinality Constraints on Relationship sets: How many entities can participate?

Relationship sets can have attributes

Relationship sets can have role names

(in addition to the name of the relationship set)

Example: reading role names

Same entity sets can participate in different "roles" for the same relationship set

E-R notation

ssn title
Employee
supervisor subordinate

UML notation

Constraints in ER diagram

 Recall that a constraint is an assertion about the database that must be true at all times

Part of the database schema = structure(so it must be part of the ER diagram)

Very important in database design

Modeling Constraints

Finding constraints is part of the modeling process. Commonly used constraints:

- Keys: attributes that identify entities in an entity set
 e.g., social security number uniquely identifies a person.
- Referential integrity constraints: relationship-based constraints
 - e.g., if you work for a company, it must exist in the database.
- Domain constraints: peoples' ages are between 0 and 150.
- General constraints: all others (at most 50 students enroll in a class)

Keys in E/R Diagrams

Referential Integrity Constraints

Recall: the arrow meant "at most one".

Each Product must be related to ("made by") at most one Company

Wouldn't it be weird if a product was not associated with any company?

This says "exactly one".

Each Product must be related to ("made by") exactly one Company in the database.

Arrow = at most 1

Semicircle = exactly 1

Referential Integrity Constraints UML: Aggregation

UML Notation

Referential Integrity Constraints UML: Composition

UML Notation

Weak Entity Sets

- Occasionally, entities of an entity set need "help" to identify them uniquely.
- Entity set *E* is *weak* if in order to identify entities of *E* uniquely, we need to follow one or more many-one relationships from *E* and include the key of the related entity sets.
- Note: not an is-a relationship because *E* is not a "subclass" of *F*: Univ and Team

Notations for weak entity set

- "University" is a "supporting entity set" for "Team".
- "Affiliation" is a "supporting relationship".

Weak entity set in UML

Logical Database Design

From Entity-Relationship Diagrams OR Unified Modeling Language design to Relational Database Schema

Converting ER to Relational Schema

Translate each entity set into a table, with keys.

• Entity set:

 can be represented as a table in the relational model

 has a key ... which becomes a key for the table

CREATE TABLE Employee
(SSN CHAR(11) NOT NULL,
E-Name CHAR(20),
Office INTEGER,
PRIMARY KEY (SSN))

Translate each many-to-many relationship set into a table

What are the attributes and what is the key for Assignment?

Project(<u>P-number</u>, P-name, Due-Date) Employee(<u>SSN</u>, E-Name, Office)

Translate each many-to-many relationship set into a table

Answer: Assignment(P-Number, SSN)

P-Number is a foreign key for Project SSN is a foreign key for Employee

Project(<u>P-Number</u>, P-Due-Date)

Employee(<u>SSN</u>, E-Name, Office)

What should we do with each one-to-many relationship set?

Manager (?)

Project(<u>P-number</u>, P-name, Due-Date) Employee(<u>SSN</u>, E-Name, Office)

Create a foreign key for a 1-to-many relationship set.

Project(<u>P-number</u>, P-name, Due-Date, <u>MgrSSN</u>) Employee(<u>SSN</u>, E-Name, Office)

MgrSSN is a foreign key (referencing the Employee relation)

value of Manager must match an SSN

Create a foreign key for a 1-to-many relationship set.

Project(<u>P-number</u>, P-name, Due-Date, MgrSSN) Employee(<u>SSN</u>, E-Name, Office)

VS.

Project(<u>P-number</u>, P-name, Due-Date) Employee(<u>SSN</u>, E-Name, Office) Manager(<u>P-number</u>, SSN)

What are the tradeoffs between these two?

Note:
P-number
is the key
for Manager

What do we do when a many-to-many relationship set has an attribute?

Assignment(<u>P-number, SSN</u>)
Project(<u>P-number, P-name, Due-Date</u>)
Employee(<u>SSN</u>, E-Name, Office)

What do we do when a many-to-many relationship set has an attribute?

Assignment(<u>P-number, SSN</u>, role, start-date, end-date)
Project(<u>P-number</u>, P-name, Due-Date)
Employee(<u>SSN</u>, E-Name, Office)

What do we do when a 1-to-many relationship set has an attribute?

Project(<u>P-number</u>, P-name, Due-Date, MgrSSN) Employee(<u>SSN</u>, E-Name, Office)

What do we do when a 1-to-many relationship set has an attribute?

Project(<u>P-number</u>, P-name, Due-Date, MgrSSN, start-date, end-date)

Employee(SSN, E-Name, Office)

Weak Entity Sets

supporting entity set

supporting relationship set

weak
Entity set

Translating Weak Entity Sets

- Weak entity sets and supporting relationship sets are translated into a single table. Must include key of supporting entity set, as a foreign key.
- When the owner entity is deleted, all owned weak entities must also be deleted.

```
CREATE TABLE Insurance_Policy (
dep-name CHAR(20),
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (dep-name, ssn),

FOREIGN KEY (ssn) REFERENCES Employee,
ON DELETE CASCADE)
```