Homework Assignment 7

Zhaoyang Xu

November 1, 2020

Contents

1	1 CMA-ES for Reinforcement Learning (50 points)	1
	1.1	
	1.2	
	1.3	
2	2 UCLR2 Revisited (30 points)	2
3	3 Computing Diameter (20 points)	2

1 CMA-ES for Reinforcement Learning (50 points)

1.1

```
function value axis ratio sigma min&max std t[m:s]
          15 -2.0000000000000000e+02 1.0e+00 9.50e-03 9e-03 1e-02 0:00.2
          30 -1.090000000000000e+02 1.0e+00 9.10e-03
                                                           9e-03
                                                                  9e-03 0:00.3
          45 -1.5900000000000000e+02 1.0e+00 8.80e-03
                                                          9e-03
                                                                  9e-03 0:00.4
          75 -1.0000000000000000e+03 1.1e+00 8.57e-03 9e-03
termination on ftarget=-999.9 (Sun Nov 1 14:31:29 2020) final/bestever f-value = -8.900000e+01 -1.000000e+03
incumbent solution: [-0.01608988 -0.01919164 -0.00680728 0.01004572
0.02937099 -0.0082997
  0.01206515 -0.00917344 ...]
std deviations: [0.00854533 0.00854307 0.00853354 0.00855662 0.00857953
0.00856339
 0.00853891 0.00851933 ...]
```


Figure 1: Figure of "Neuroevolution Strategies" approach

1.2

For RNN, we have an initial parameter a_1 . By given weight for a_1 and x_1 separately, we can have $w_a a_1$ and $w_x x_1$. Then by function tanh, we can have the next parameter a_2 .

```
p_1 = np.matmul(w_a,a_1)
p_2 = np.matmul(w_x,x_1)
a_2 = np.tanh(p_1+p_2)
```

Then, repeat the steps, we can get a_3 as the action.

1.3

If have bias, the learning will become more difficult. Like for 1.1, if we add bias, it will iterate more times to get the answer.

2 UCLR2 Revisited (30 points)

Figure 2: UCRL2-L of 6-states

3 Computing Diameter (20 points)

$$D := \max_{s \neq s'} \min_{\pi} \mathbb{E}[T^{\pi}(s', s)] = \sum_{\delta} \frac{1}{\delta}$$

$$L = 6$$
 $D = 14.72$ $L = 12$ $D = 34.72$ $L = 25$ $D = 78.06$