CHAPTER 8: OTHER ALGORITHMS FOR LINEAR PROGRAMMING

8.1-1.

(a), (c)

(b) Optimal Solution: $(x_1, x_2) = (1, 3), Z = -4$

Iteration	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	RS
0	Z	0	1	1	1	0	0	0	0
	x_3	1	0	1	1	1	0	0	8
	x_4	2	0	0	-1	0	1	0	-3
	x_5	3	0	-1	1	0	0	1	2
1	Z	0	1	0	0	0	1	0	-3
	x_3	1	0	1	0	1	1	0	5
	x_2	2	0	0	1	0	-1	0	3
	x_5	3	0	-1	0	0	1	1	-1
2	Z	0	1	0	0	0	2	1	-4
	x_3	1	0	0	0	1	2	1	4
	x_2	2	0	0	1	0	-1	0	3
	x_1	3	0	1	0	0	-1	-1	1

8.1-2.

Iteration	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	RS
0	Z	0	-1	5	2	4	0	0	0
	x_4	1	0	-3	-1	-2	1	0	-4
	x_5	2	0	-6	-3	-5	0	1	-10
1	Z	0	-1	1	0	$\frac{2}{3}$	0	$\frac{2}{3}$	$-\frac{20}{3}$
	x_4	1	0	-1	0	$-\frac{1}{3}$	1	$-\frac{1}{3}$	$-\frac{2}{3}$
	x_2	2	0	2	1	$\frac{5}{3}$	0	$-\frac{1}{3}$	$\frac{10}{3}$
2	Z	0	-1	0	0	$\frac{1}{3}$	1	$\frac{1}{3}$	$-\frac{22}{3}$
	x_1	1	0	1	0	$\frac{1}{3}$	-1	$\frac{1}{3}$	$\frac{2}{3}$
	x_2	2	0	0	1	1	2	-1	2

Optimal Solution: $(x_1, x_2, x_3) = (2/3, 2, 0), Z = 22/3$

8.1-3.

Iteration	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RS
0	Z	0	-1	7	2	5	4	0	0	0	0
	x_5	1	0	-2	-4	-7	-1	1	0	0	-5
	x_6	2	0	8	-4	-6	-4	0	1	0	-8
	x_7	3	0	-3	-8	-1	-4	0	0	1	-4
1	Z	0	-1	3	0	2	2	0	$\frac{1}{2}$	0	-4
	x_5	1	0	6	0	-1	3	1	-1	0	3
	x_2	2	0	2	1	$\frac{3}{2}$	1	0	$-\frac{1}{4}$	0	2
	x_7	3	0	13	0	11	4	0	-2	1	12

Optimal Solution: $(x_1, x_2, x_3, x_4) = (0, 2, 0, 0), Z = 4$

8.1-4.

(a) Optimal Solution: $(x_1, x_2) = (3, 3), Z = 15$

Iter.	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	RS	Primal Solution	Dual Solution
0	Z	0	1	-3	-2	0	0	0	0	(0,0,12.6,27)	(0,0,0,-3,-2)
	x_3	1	0	3*	1	1	0	0	12		
	x_4	2	0	1	1	0	1	0	6		
	x_5	3	0	5	3	0	0	1	27		
1	Z	0	1	0	-1	1	0	0	12	(4,0,0,2,7)	(1,0,0,0,-1)
	x_1	1	0	1	$\frac{1}{3}$	$\frac{1}{3}$	0	0	4		
	x_4	2	0	0	$\frac{2}{3}^{*}$	$-\frac{1}{3}$	1	0	2		
	x_5	3	0	0	$\frac{4}{3}$	$-\frac{5}{3}$	0	1	7		
2	Z	0	1	0	0	$\frac{1}{2}$	$\frac{3}{2}$	0	15	(3,3,0,0,3)	$(\frac{1}{2}, \frac{3}{2}, 0, 0, 0)$
	x_1	1	0	1	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	3		
	x_2	2	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	3		
	x_5	3	0	0	0	-1	-2	1	3		

(b) The dual problem is:

Iter.	BV	Eq. #	Z	y_1	y_2	y_3	y_4	y_5	RS	Primal Solution	Dual Solution
0	Z	0	-1	12	6	27	0	0	0	(0,0,12,6,27)	(0,0,0,-3,-2)
	y_4	1	0	-3^{*}	-1	-5	1	0	-3		
	y_5	2	0	-1	-1	-3	0	1	-2		
1	Z	0	-1	0	2	7	4	0	12	(4,0,0,2,7)	(1,0,0,0,-1)
	y_1	1	0	1	$\frac{1}{3}$	$\frac{2}{3}$	$-\frac{1}{3}$	0	1		
	y_5	2	0	0	$-\frac{2}{3}$	$-\frac{4}{3}$	$-\frac{1}{3}$	1	-1		
2	Z	0	-1	0	0	3	3	3	15	(3,3,0,0,3)	$(\frac{1}{2}, \frac{3}{2}, 0, 0, 0)$
	y_1	1	0	1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$		
	y_2	2	0	0	1	2	-2	$-\frac{3}{2}$	$\frac{3}{2}$		

Optimal Solution: $(y_1, y_2, y_3) = (\frac{1}{2}, \frac{3}{2}, 0), Z = 15.$

The sequence of basic and complementary basic solutions is identical to that in part (a).

8.1-5.

Iteration	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	RS
0	Z	0	1	0	0	0	$\frac{3}{2}$	1	54
	x_3	1	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	6
	x_2	2	0	0	1	0	$\frac{1}{2}$	0	12
	x_1	3	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	-2
1	Z	0	1	$\frac{3}{2}$	0	0	0	$\frac{5}{2}$	45
	x_3	1	0	1	0	1	0	0	4
	x_2	2	0	$\frac{3}{2}$	1	0	0	$\frac{1}{2}$	9
	x_4	3	0	-3	0	0	1	-1	6

Optimal Solution: $(x_1, x_2, x_3, x_4, x_5) = (0, 9, 4, 6, 0), Z = 45$

8.1-6.

Iteration	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	RS
0	Z	0	1	0	0	2	5	0	150
	x_2	1	0	-1	1	3	1	0	30
	x_5	2	0	16	0	-2	-4	1	-30
1	Z	0	1	16	0	0	1	1	120
	x_2	1	0	23	1	0	-5	$\frac{3}{2}$	-15
	x_3	2	0	-8	0	1	2	$-\frac{1}{2}$	15
2	Z	0	1	$\frac{103}{5}$	$\frac{1}{5}$	0	0	$\frac{13}{10}$	117
	x_4	1	0	$-\frac{23}{5}$	$-\frac{1}{5}$	0	1	$-\frac{3}{10}$	3
	x_3	2	0	$\frac{6}{5}$	$\frac{2}{5}$	1	0	$\frac{1}{10}$	9

Optimal Solution: $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 9, 3, 0), Z = 117$

8.2-1.

(a)

The solution (0,5) is optimal with Z=120. It remains optimal as long as

$$-\frac{8+\theta}{24-2\theta} \le -\frac{1}{2} \Leftrightarrow \theta \le 2,$$

at which point (10/3,10/3) becomes optimal. In turn, this solution remains optimal until

$$-\frac{8+\theta}{24-2\theta} \le -2 \Leftrightarrow \theta \le 8,$$

at which point (5,0) becomes optimal.

θ	(x_1^*,x_2^*)	$Z^*(\theta)$
$0 \le \theta \le 2$	(0, 5)	$120-10\theta$
$2 \le \theta \le 8$	(10/3, 10/3)	$(320 - 10\theta)/3$
$8 \le \theta \le 10$	(5,0)	$40 + 5\theta$

(b)

Iteration	BV	Eq. #	Z	x_1	x_2	x_3	x_4	RS
0	Z	0	1	$-8-\theta$	$-24+2\theta$	0	0	0
	x_3	1	0	1	2	1	0	10
	x_4	2	0	2	1	0	1	10
1	Z	0	1	$4-2\theta$	0	$12-\theta$	0	$120-10\theta$
	x_2	1	0	$\frac{1}{2}$	1	$\frac{1}{2}$	0	5
	x_4	2	0	$\frac{3}{2}$	0	$-\frac{1}{2}$	1	5
2	Z	0	1	0	0	$\frac{40-5\theta}{3}$	$\frac{8-4\theta}{3}$	$\frac{320-10\theta}{3}$
	x_2	1	0	0	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{10}{3}$
	x_1	2	0	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{10}{3}$
3	Z	0	1	0	$\frac{-40+5\theta}{2}$	0	$\frac{8+\theta}{2}$	$40 + 5\theta$
	x_3	1	0	0	$\frac{3}{2}$	1	$-\frac{1}{2}$	5
	x_1	2	0	1	$\frac{1}{2}$	0	$\frac{1}{2}$	5

The solutions found in iterations 1, 2 and 3 are optimal for $0 \le \theta \le 2$, $2 \le \theta \le 8$ and $8 \le \theta \le 10$ respectively.

(c) The graph in part (b) suggests that $\theta=0$ is optimal. Since $Z(\theta)$ is convex in θ , the maximum is attained at $\theta=0$ or $\theta=10$. Thus, only the linear programming problems corresponding to $\theta=0$ and $\theta=10$ need to be solved.

8.2-2.

Iteration	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	x_6	RS
0	Z	0	1	$-20-4\theta$	$-30+3\theta$	-5	0	0	0	0
	x_4	1	0	3	3*	1	1	0	0	30
	x_5	2	0	8	6	4	0	1	0	75
	x_6	3	0	6	1	1	0	0	1	45
1	Z	0	1	$10-7\theta$	0	$5-\theta$	$10 - \theta$	0	0	$300-30\theta$
	x_2	1	0	1	1	$\frac{1}{3}$	$\frac{1}{3}$	0	0	10
	x_5	2	0	2	0	2	-2	1	0	15
	x_6	3	0	5*	0	$\frac{2}{3}$	$-\frac{1}{3}$	0	1	35
2	Z	0	1	0	0	$\frac{10-\theta}{15}$	$\frac{160-22\theta}{15}$	0	$\frac{-10+7\theta}{5}$	$230 + 19\theta$
	x_2	1	0	0	1	$\frac{1}{5}$	2* 5	0	$-\frac{1}{5}$	3
	x_5	2	0	0	0	$\frac{26}{15}$	$-\frac{28}{15}$	1	$-\frac{2}{5}$	1
	x_1	3	0	1	0	$\frac{2}{15}$	$-\frac{1}{15}$	0	$\frac{1}{5}$	7
3	Z	0	1	0	$\frac{-80+11\theta}{3}$	$\frac{-14+2\theta}{3}$	0	0	$\frac{10+2\theta}{3}$	$150 + 30\theta$
	x_4	1	0	0	$\frac{5}{2}$	$\frac{1}{2}$	1	0	$-\frac{1}{2}$	$\frac{15}{2}$
	x_5	2	0	0	$\frac{14}{3}$	$\frac{8}{3}$	0	1	$-\frac{4}{3}$	15
	x_1	3	0	1	$\frac{1}{6}$	$\frac{1}{6}$	0	0	$\frac{1}{6}$	$\frac{15}{2}$

θ	(x_1^*, x_2^*, x_3^*)	$Z^*(\theta)$
$0 \leq \theta \leq \frac{10}{7}$	(0, 10, 0)	$300-30\theta$
$\frac{10}{7} \le \theta \le \frac{80}{11}$	(7, 3, 0)	$230 + 19\theta$
$\frac{80}{11} \leq \theta$	$(\frac{15}{2},0,0)$	$150 + 30\theta$

8.2-3.

(a) Starting with the optimal tableau for $\theta=0$, after two iterations, we get:

Iter.	BV	Eq. #	Z	x_1	x_2	x_3	x_4	x_5	RS
0	Z	0	1	0	0	$5-\theta$	$2+2\theta$	$8-3\theta$	220
	x_2	1	0	0	1	1	1	-1	10
	x_1	2	0	1	0	0	-1	2	10
1	Z	0	1	$\frac{-8+3\theta}{2}$	0	$5-\theta$	$\frac{12+\theta}{2}$	0	$180 + 15\theta$
	x_2	1	0	$\frac{1}{2}$	1	1	$\frac{1}{2}$	0	15
	x_5	2	0	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	1	5
2	Z	0	1	$\frac{-13+4\theta}{2}$	0	0	$\frac{7+2\theta}{2}$	0	$105 + 30\theta$
	x_3	1	0	$\frac{1}{2}$	$-5+\theta$	1	$\frac{1}{2}$	0	15
	x_5	2	0	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	1	5

θ	(x_1^*, x_2^*, x_3^*)	$Z^*(\theta)$		
$0 \leq \theta \leq 8/3$	(10, 10, 0)	220		
$8/3 \le \theta \le 5$	(0, 15, 0)	$180 + 15\theta$		
$5 \leq \theta$	(0, 0, 15)	$105 + 30\theta$		

(b) The dual problem is:

$$\begin{array}{lll} \text{minimize} & 30y_1 + 20y_2 \\ \text{subject to} & y_1 + & y_2 & \geq 10 - \theta \\ & 2y_1 + & y_2 & \geq 12 + \theta \\ & 2y_1 + & y_2 & \geq 7 + 2\theta \\ & & y_1, y_2 & \geq 0. \end{array}$$

Starting with the optimal tableau for $\theta = 0$, after two iterations, we get:

Iter.	BV	Eq. #	Z	y_1	y_2	y_3	y_4	y_5	RS
0	Z	0	-1	0	0	10	10	0	-220
	y_2	1	0	0	1	-2	1	0	$8-3\theta$
	y_1	2	0	1	0	1	-1	0	$2+2\theta$
	y_5	3	0	0	0	0	-1	1	$5-\theta$
1	Z	0	-1	0	5	0	15	0	$-180 - 15\theta$
	y_3	1	0	0	$-\frac{1}{2}$	1	$-\frac{1}{2}$	0	$-4+1.5\theta$
	y_1	2	0	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$6 + 0.5\theta$
	y_5	3	0	0	0	0	-1	1	$5-\theta$
2	Z	0	-1	0	5	0	0	15	$-105 - 30\theta$
	y_3	1	0	0	$-\frac{1}{2}$	1	0	$-\frac{1}{2}$	$-6.5 + 2\theta$
	y_1	2	0	1	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	$3.5 + \theta$
	y_4	3	0	0	0	0	1	-1	$-5+\theta$

θ	(y_1^st,y_2^st)	$Z^*(heta)$
$0 \leq \theta \leq 8/3$	$(2+2\theta,8-3\theta)$	220
$8/3 \le \theta \le 5$	$(6+0.5\theta,0)$	$180 + 15\theta$
$5 \leq \theta$	$(3.5 + \theta, 0)$	$105 + 30\theta$

The basic solutions are the same as those in part (a).

 $\begin{array}{ll} 0 \leq \theta \leq 8/3 & :y^* \text{ from } (2,8) \text{ to } (22/3,0) \\ 8/3 \leq \theta \leq 5 & :y^* \text{ from } (22/3,0) \text{ to } (17/2,0) \end{array}$

 $5 \le \theta$: $y^* = (3.5 + \theta, 0)$

8.2-4.

Bas	Eq	1		C	oefficient	of		Right
Var	No		ΧI	X2	Х3	х4	X5	side
Z	0	1	-2	-1	0	0	0	0
ХЗ	1	٥	1	ò		0	0	10+20
XÝ	2	0	1+	ï	ó	ĭ	0	25-0
X5	3	0	0	',	Ö	0	1	10+20
Bas	Eq	1			Coefficient	of		Right
Var	No	z	Χl	X2	Х3	XΥ	X5	side
Z	0	1	٥	1	0	2	0	50-20
ΧЗ	1	0	0	-1*	1	-1	0	15+3€
ΧI	2	0	1	1	0	1	0	25-0
X5	3	٥	0	1	0	0	,	10+20
Bas	Eq			C	oefficient	of	,	Right
Var	26	z	X1	X2	X3	X4	X5	side
z	0	1	0	0	ī	1	0	35+0
X2	1	0	0	1	-1	1	0	15-30
χį	2	0	1	0	1	0	0	10+28
X5	3	اه	0	0	(- 1	1	-5+50
Bas				С	oefficient	of	,	Right
Var	8 2 28	z	_XI_	XZ	×3	X4	X5	side
z	0	1	0	0	2	0	1	30+60
X2	1	0	0	1	0	0	1	10+20
Χı	2	0	1	0	1	0	•	1
X41	3	٥l	0	0	-1	-		10+20
				_	- 1	1	-1	5- <i>50</i>

θ	(x_1^*, x_2^*)	$Z^*(\theta)$
$0 \le \theta \le 1$	$(10+2\theta,10+2\theta)$	$30 + 6\theta$
$1 \le \theta \le 5$	$(10+2\theta,15-3\theta)$	$35 + \theta$
$5 \le \theta \le 25$	(25- heta,0)	$50-2\theta$

8.2-5. Starting with the optimal tableau for $\theta = 0$, after two iterations, we get:

Bas	Eq	_			Co	efficier	nt óf			Right
<u>Var</u>	No	Z	<u> </u>	X2	. X3	X4	<u> X5</u>	X6	X7	side
Z	0	1	0	4	1	3	0	0	5	150+50
X5	1	0	0	-8	-2	-3	1	0	-3	45-50
X6	2	0	0	0	-3 [*]	-2	0	i	-2	18-30
χĪ	3	0		2	1	Ð	O	0	1	30+0
Bas	Eq				Co	efficie	nt of			Right
<u>Var</u>	No	Z	XΙ	X2	X3	X4	X5	X6	<i>x</i> 7	side
Z	0	1	0	4	0	7/3	0	1/3	13/3	144+40
X5	1	0	0	-8	0	-5/3	1	-2/3"	-5/3	33-30
Х3	2	0	0	0	100	2/3	0	-1/3	² /3	-6+0
ΧI	3	0	1	2	0	4/3	0	1/3	13	36
Bas	E q		•		Co	efficien	it of		-	Right
Var	No	Z	Χl	XZ	Х3	<u> </u>	X5	X6	X7	side
Z	0	1	0	0	0	3/2	1/2	0	7/2	160 1 + 50
X6	1	0	0	12	0	5/2	-3/2	1	5/2	-49 + 90
X3	2	0	0	4	1	$\frac{3}{2}$	1/2	0	3/2	22 2+50
χı	3	0	1	-2	0	1/2	1/2	0	3/2	1
. •										1521-30

θ	$(x_1^*, x_2^*, x_3^*, x_4^*)$	$Z^*(heta)$
$0 \leq \theta \leq 6$	$(30 + \theta, 0, 0, 0)$	$150 + 5\theta$
$6 \leq \theta \leq 11$	$(36,0,-6+\theta,0)$	$144 + 4\theta$
$11 \le \theta \le 35$	$(52.5 - 1.5\theta, 0, -22.5 + 2.5\theta, 0)$	$160.5 + 2.5\theta$

 $\theta=30$ provides the largest value of the objective function: $x^*(30)=(7.5,0,52.5,0),$ $Z^*(30)=235.5.$

8.2-6.

Bas	E0	ıl_		Coefficient of							
Var	No	Z	_X/_	X2	X.3	X4	X5	Right side			
z	0	1	0	0	2	5	0	100+100			
ΧZ	1	0	-1	1	3	1	0	20+20			
X5	2	0	16	0	-2*	-4	/	10-90			
Bas	Eq	ĺ	ĺ	C	oefficier	nt of		Right			
Var		z	X/	X2	χ3	XY	X5	side			
Z	0	1	16	0	0	1	1	110+0			
X2	1	0	23	1	0	-5 *	3/2	35 - 23 0			
Х3	2	0	-8	0	1	2	-1/2	-5+90			
Bas	E q	l		Co	efficien	t of		Right			
Var		z	χI	X2	X.3	_X4	X5	side			
z	0	1	103/	1/5	0	0	13/10	117-13日			
X4	1	0	-23	-1/5	0	, .	3/10	-7+ 330			
x.3	2	0	6/5	2/5	-1	0	1/10	, ,			
		•					, -	9-8			

θ	(x_1^*, x_2^*, x_3^*)	$Z^*(\theta)$
$0 \leq \theta \leq 10/9$	$(0,20+2\theta,0)$	$100 + 10\theta$
$10/9 \le \theta \le 70/23$	$(0,35-11.5\theta,-5+4.5\theta)$	$110 + \theta$
$70/23 \le \theta \le 90$	$(0,0,9-0.1\theta)$	$117 + 1.3\theta$

8.2-7.

(a) Let $x^{(k)}$ be the kth optimal solution obtained as θ is increased from 0. Each $x^{(k)}$ is optimal for some θ -interval, say $\theta_k \leq \theta \leq \theta_{k+1}$, and the objective function value $Z(\theta) = \alpha_k + \beta_k \theta$ for some α_k and β_k , so $Z(\theta)$ is linear in this interval. As the interval changes, α_k and β_k change so that a different linear function is obtained for each interval.

(b) The problem is:

maximize
$$Z(\theta) = \sum_{j=1}^{n} (c_j + \alpha_j \theta) x_j$$
 subject to
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, i = 1, 2, \dots, m$$

$$x_j \geq 0, j = 1, 2, \dots, n.$$

Note that the feasible region does not depend on θ . Consider $\theta_1 < \theta_2$ and let $\theta_3 = \lambda \theta_1 + (1-\lambda)\theta_2$ for some $0 \le \lambda \le 1$. Let $x_j^{(1)}$, $x_j^{(2)}$ and $x_j^{(3)}$ be the optimal values of x_j $(j=1,2,\ldots,n)$ for θ_1 , θ_2 and θ_3 respectively. Let $Z(\theta,x) = \sum_{j=1}^n (c_j + \alpha_j \theta) x_j$.

$$Z^*(\theta_1) = Z(\theta_1, x^{(1)}) \ge Z(\theta_1, x^{(3)}) \Rightarrow \lambda Z^*(\theta_1) \ge \lambda Z(\theta_1, x^{(3)})$$
$$Z^*(\theta_2) = Z(\theta_2, x^{(2)}) \ge Z(\theta_2, x^{(3)}) \Rightarrow (1 - \lambda) Z^*(\theta_2) \ge (1 - \lambda) Z(\theta_2, x^{(3)})$$

$$\Rightarrow \lambda Z^{*}(\theta_{1}) + (1 - \lambda)Z^{*}(\theta_{2}) \geq \lambda Z(\theta_{1}, x^{(3)}) + (1 - \lambda)Z(\theta_{2}, x^{(3)})$$

$$= \lambda \sum_{j=1}^{n} (c_{j} + \alpha_{j}\theta_{1})x_{j}^{(3)} + (1 - \lambda)\sum_{j=1}^{n} (c_{j} + \alpha_{j}\theta_{2})x_{j}^{(3)}$$

$$= \sum_{j=1}^{n} [c_{j} + \alpha_{j}(\lambda\theta_{1} + (1 - \lambda)\theta_{2})]x_{j}^{(3)}$$

$$= \sum_{j=1}^{n} (c_{j} + \alpha_{j}\theta_{3})x_{j}^{(3)} = Z(\theta_{3}, x^{(3)}) = Z^{*}(\theta_{3})$$

Hence, $Z^*(\theta)$ is convex in θ .

8.2-8.

- (a) The same argument as in part (a) of problem 8.2-7 holds.
- (b) The problem is:

maximize
$$Z(\theta) = \sum_{j=1}^n c_j x_j$$
 subject to
$$\sum_{j=1}^n a_{ij} x_j \leq b_i + \alpha_i \theta, \ i=1,2,\ldots,m$$

$$x_j \geq 0, \ j=1,2,\ldots,n.$$

Consider $\theta_1 < \theta_2$ and let $\theta_3 = \lambda \theta_1 + (1 - \lambda)\theta_2$ for some $0 \le \lambda \le 1$. Let $x_j^{(1)}$, $x_j^{(2)}$ and $x_j^{(3)}$ be the optimal values of x_j (j = 1, 2, ..., n) for θ_1 , θ_2 and θ_3 respectively.

$$\lambda Z^*(\theta_1) + (1 - \lambda) Z^*(\theta_2) = \lambda \sum_{j=1}^n c_j x_j^{(1)} + (1 - \lambda) \sum_{j=1}^n c_j x_j^{(2)}$$
$$= \sum_{j=1}^n c_j (\lambda x_j^{(1)} + (1 - \lambda) x_j^{(2)})$$

If
$$x'_j = \lambda x_j^{(1)} + (1 - \lambda) x_j^{(2)}$$
 $(j = 1, 2, ..., n)$, then x' is feasible for $\theta = \theta_3$, since
$$\sum_{j=1}^n a_{ij} x'_j = \lambda \sum_{j=1}^n a_{ij} x_j^{(1)} + (1 - \lambda) \sum_{j=1}^n a_{ij} x_j^{(2)} = \lambda (b_i + \alpha_i \theta) + (1 - \lambda) (b_i + \alpha_i \theta)$$
$$= b_i + \alpha_i \theta, i = 1, 2, ..., m.$$

Since $x^{(3)}$ is optimal for θ_3 ,

$$\sum_{j=1}^{n} c_j (\lambda x_j^{(1)} + (1 - \lambda) x_j^{(2)}) \le \sum_{j=1}^{n} c_j x_j^{(3)} = Z^*(\theta_3).$$

Hence, $Z^*(\theta)$ is concave in θ .

8.2-9.

From duality theory,

$$Z^{**}=$$
 minimum $\sum\limits_{i=1}^m (b_i+k_i)y_i$ subject to $\sum\limits_{i=1}^m a_{ij}y_i\geq c_j,\,j=1,2,\ldots,n$ $y_i\geq 0,\,i=1,2,\ldots,m.$

 $(y_1^*,y_2^*,\dots,y_m^*)$ is feasible for this problem, so

$$Z^{**} \le \sum_{i=1}^{m} (b_i + k_i) y_i^* = Z^* + \sum_{i=1}^{m} k_i y_i^*.$$

8.3-1.

(a) Optimal Solution: $(x_1^*, x_2^*) = \ (10, 10)$ and $Z^* = 30$

(b) $(x_1, x_2) = (10, 10)$ is optimal with Z = 30.

) Bas	1	z		efficient		Right	
Var	No	1-	LXL.	<u> X2</u>	_X3	side	
Z	0	1	-2	-1	0	0	X1 ≤ 10
X <i>3</i>	1	0	1*	-1	1	5	X1 ≤ 5
Bas Var	Eq No	z	Co XI	efficient XZ	of X3	Right side	
z	0	1	0	- 3	2	10	XZEID
ΧI	1	0	1	-1	1	5	x2 ≤5
Bas Var	8 B	z	YI	efficient XZ	of X <i>3</i>	Right side	
Z	0	1	0	- 3	2	10	X2 8 10
УІ	1	0	1	1*	-/	5	X2≤5
Bas Var	E9	z	У _]	efficient X2	of X <i>3</i>	Right side	
z	0	1	3	0	-1	25	V2 . F
xa	1	o	1	1	-1	5	X3 €5
BV	681	ट्	41	γl	x 3	Rs	
2	0	1	3	0	-1	25	
45	1	0	-1	1	1*	5	x, 45
)v	EQI	15	71	y 2	K3	29	
2	٥	1	2	(0	30	
*3	1	٥	-1	1	1	5	

(c) The upper-bound technique goes from (0,0) to (5,0) to (10,5) to (10,10).

8.3-2.

BV	Eq.	Z	x_1	x_2	x_3	x_4	x_5	RS	
Z	0	1	-1	-3	2	0	0	0	$x_2 \leq 3$
x_4	1	0	0	1	-2	1	0	1	$x_2 \leq 1$
x_5	2	0	2	1	2	0	1	8	$x_2 \leq 8$
BV	Ea	7	<i>m</i>	m	<i>m</i>		<i>m</i>	DC	
	Eq.	Z	x_1	x_2	x_3	x_4	x_5	RS	
Z	0	1	-1	0	-4	3	0	3	$x_3 \leq 2$
x_2	1	0	0	1	-2	1	0	1	$x_3 \leq 1$
x_5	2	0	2	0	4	-1	1	7	$x_3 \le 1\frac{3}{4}$
DII	-		ı	1			1	D.C.	1
BV	Eq.	Z	x_1	y_2	x_3	x_4	x_5	RS	
Z	0	1	-1	0	-4	3	0	3	$x_3 \leq 2$
y_2	1	0	0	1	2	-1	0	2	$x_3 \leq 1$
x_5	2	0	2	0	4	-1	1	7	$x_3 \le 1\frac{3}{4}$
DI	Г	77	ı	ı			ı	DC	
BV	Eq.	Z	x_1	y_2	x_3	x_4	x_5	RS	
Z	0	1	-1	2	0	1	0	7	
x_3	1	0	0	$\frac{1}{2}$	1	$-\frac{1}{2}$	0	1	$x_1 \leq 1$
x_5	2	0	2	-2	0	1	1	3	$x_1 \le 1\frac{1}{2}$
DIZ	-						1	DC	 ו
BV	Eq.	Z	y_1	y_2	x_3	x_4	x_5	RS]
Z	0	1	-1	2	0	1	0	8	
x_3	1	0	0	$\frac{1}{2}$	1	$-\frac{1}{2}$	0	1	
x_5	2	0	2	-2	0	1	1	1]

 $(x_1, x_2, x_3) = (1, 3, 1)$ is optimal with Z = 8.

8.3-3.

Initial Tableau

BV	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	RS
Z	0	1	-2	-3	2	-5	0	0	0
x_5	1	0	2	2	1	2	1	0	5
x_6	2	0	1	2	-3	4	0	1	5

Final Tableau (after five iterations)

BV	Eq.	Z	x_1	y_2	x_3	y_4	x_5	x_6	RS
Z	0	1	0	$\frac{1}{7}$	0	$\frac{3}{7}$	$\frac{4}{7}$	$\frac{6}{7}$	$\frac{54}{7}$
x_1	1	0	1	$-\frac{8}{7}$	0	$-\frac{10}{7}$	$\frac{3}{7}$	$\frac{1}{7}$	$\frac{2}{7}$
x_3	2	0	0	$\frac{2}{7}$	1	$\frac{6}{7}$	$\frac{1}{7}$	$-\frac{2}{7}$	$\frac{3}{7}$

 $(x_1, x_2, x_3, x_4) = (2/7, 1, 3/7, 1)$ is optimal with Z = 54/7.

8.3-4. Initial Tableau

BV	Eq.	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RS
Z	0	1	-2	-5	-3	-4	-1	0	0	0
x_6	1	0	1	3	2	3	1	1	0	6
x_7	2	0	4	6	5	7	1	0	1	15

Final Tableau (after seven iterations)

BV	Eq.	Z	y_1	y_2	y_3	y_4	x_5	x_6	x_7	RS
Z	0	1	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{4}{3}$	0	10
y_4	1	0	$\frac{1}{3}$	1	$\frac{2}{3}$	1	$-\frac{1}{3}$	$-\frac{1}{3}$	0	1
x_7	2	0	$-\frac{5}{3}$	1	$-\frac{1}{3}$	0	$-\frac{4}{3}$	$-\frac{7}{3}$	1	0

 $(x_1, x_2, x_3, x_4, x_5) = (1, 1, 1, 0, 0)$ is optimal with Z = 10.

7.3-5.

Bas Var	E0	L			oefficient	of	-	Right	
Var	No	Z_	X)	X2	X3	XH	X5	Right side	
-z	0	1	3	4	2	0	0	0	X, £ 25
X4	1	0	-1*	-1	0	1	0	-15	X 5 15
-z X4 X5	2	0	0	-1	-1	0	1	-10	.,

Ras	ΙFα		ı	C	oefficient	of		Diabe	
Var	No	z	XI	X2	_ X3	X4	X5	Right	
-Z	0	1	0	1	a	3	0	-45	X2 = 5
-z XI <i>X</i> 5	1	٥	ı	1	0	1	0	15	X2 ≤ 15
X5	2	0	0	-1	1	0	1	-10	X2 5 10

Bas	Eq	1	I	Co	Right				
Bas Var	No	z	_X.t.	Y2	X.3	24	7.5	side	
~ Z	0	1	0	-1	2	3	0	-50	X3 ± 15
-z X <i>I</i> X5	1	0	1	-1	0	1	0	10	
X5	2	0	0	ł	-1*	0	1	-5	X3 ≤5

Ras	 Eq	1	Coefficient of					
Bas Var	No	z	_XI_	<i>Y2</i>	Х3	X4	Χ5	Right side
-z	0	1	0	1	0	3	2	-60
χ١	1	0	1	-1	0	1	0	10
X3	2	٥	0	-1	1	0	-1	5

 $(x_1, x_2, x_3) = (10, 5, 5)$ is optimal with Z = 60.

8.4-1.

It.	X_1	X_2	X_3
0	1	3	7
1	1.04605	4.95395	10.9539
2	0.93406	6.06594	13.0659

8.4-2.

(a)

The feasible corner point solutions are $(0,0),\,(0,4)$ and (4,0). The last one is optimal with Z=12.

(b)

Iter.	x_1	x_2	Z
0	1	1	4
1	1.875	1.125	6.75
2	2.6981	0.8019	8.89621
3	3.34396	0.40095	10.4328
4	3.6671	0.20047	11.2018

(c)

8.4-3.

(a)

Iter.	x_1	x_2	Z
0	4	4	12
1	2	6	14
2	1	7	15
3	0.5	7.5	15.5
4	0.25	7.75	15.75
5	0.125	7.875	15.875
6	0.0625	7.9375	15.9375
7	0.03125	7.96875	15.9688
8	0.01562	7.98438	15.9844
9	0.00781	7.99219	15.9922

(b) The value of x_1 is halved at each step so subsequent trial solutions should be of the form $(x_1,x_2)=(2^{-i},8-2^{-i})$ for $i=1,2,\ldots$

(c) The smallest integer i such that $2^{-i} - 2^{-(i+1)} = 2^{-(i+1)} \le 0.01$ is 6, so $(x_1, x_2) = (2^{-7}, 8 - 2^{-7}) = (0.0078, 7.9922)$ in iteration 9.

8.4-4.

(a) Optimal Solution: $(x_1, x_2) = (3, 3), Z = 6$

(b) The gradient is (1,1). Moving from the origin in the direction (1,1), the first boundary point encountered is the optimal solution (3,3).

(c)
$$\alpha = 0.5$$

It.	x ₁	x ₂	z
0 1 2 3 4 5 6 7 8 9	1 2 2.5 2.75 2.875 2.9375 2.96875 2.98437 2.99219 2.99609 2.99805	1 2 2.5 2.75 2.875 2.9375 2.96875 2.98438 2.99219 2.99609 2.99805	2 4 5 5.5 5.75 5.875 5.9375 5.96875 5.98438 5.99219 5.99609

(d) $\alpha = 0.9$

It.	х ₁	х2	Z
0	1	1	2
1	2.8	2.8	5.6
2	2.98	2.98	5.96
3	2.998	2.998	5.996
4	2.998	2.9998	5.9996
5	2.99998	2.9998	5.99996
6	3	2.99998	6
7	3	3	6
8	3	3	6
9	3	3	6
10	3		6

8.4-5.

(a)

(b) Gradient: (2 5 7)

Projected Gradient:
$$P \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} = \begin{bmatrix} I - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} (1 & 2 & 3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} - \frac{1}{14} \begin{pmatrix} 33 \\ 66 \\ 99 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} -5 \\ 4 \\ -1 \end{pmatrix}$$

(c) - (d)

Iter.	x_1	x_2	x_3	Z
0	1	1	1	14
1	0.5	1.4	0.9	14.3
2	0.25969	2.19516	0.45	14.6452
3	0.17947	2.57276	0.225	14.7978
4	0.1069	2.7778	0.1125	14.8903
5	0.05595	2.88765	0.05625	14.9439
6	0.0281	2.94376	0.02812	14.9719
7	0.01406	2.97188	0.01406	14.9859
8	0.00703	2.98594	0.00703	14.993
9	0.00352	2.99297	0.00352	14.9965
10	0.00176	2.99648	0.00176	14.9982

8.4-6.

Iter.	x_1	x_2	Z
0	2	2	16
1	2.336	3.496	24.488
2	2.23067	4.65399	29.962
3	2.03597	5.32699	32.7429
4	1.95211	5.6635	34.1738
5	1.95054	5.83175	35.0104
6	1.97169	5.91587	35.4944
7	1.98588	5.95788	35.7471
8	1.99296	5.97891	35.8734
9	1.99648	5.98945	35.9367
10	1.99824	5.99473	35.9684
11	1.99912	5.99736	35.9842
12	1.99956	5.99868	35.9921
13	1.99978	5.99934	35.996
14	1.99989	5.99967	35.998
15	1.99995	5.99984	35.999

