See back cover for an English translation of this cover

91166M

Te Mātauranga Matū, Kaupae 2, 2014

91166M Te whakaatu māramatanga ki te tauhohehohe matū

2.00 i te ahiahi Rātū 11 Whiringa-ā-rangi 2014 Whiwhinga: Whā

Paetae	Kaiaka	Kairangi
Te whakaatu māramatanga ki te tauhohehohe matū.	Te whakaatu māramatanga hōhonu ki te tauhohehohe matū.	Te whakaatu māramatanga matawhānui ki te tauhohehohe matū.

Tirohia mehemea e ōrite ana te Tau Ākonga ā-Motu (NSN) kei tō pepa whakauru ki te tau kei runga ake nei.

Whakautua e koe ngā pātai KATOA kei roto i te pukapuka nei.

He taka pūmotu kua whakaritea ki te Rau Rauemi L2-CHEMMR.

Ki te hiahia koe ki ētahi atu wāhi hei tuhituhi whakautu, whakamahia te (ngā) whārangi kei muri i te pukapuka nei, ka āta tohu ai i ngā tau pātai.

Tirohia mehemea kei roto nei ngā whārangi 2–19 e raupapa tika ana, ā, kāore hoki he whārangi wātea.

HOATU TE PUKAPUKA NEI KI TE KAIWHAKAHAERE HEI TE MUTUNGA O TE WHAKAMĀTAUTAU.

TAPEKE

PĀTAI TUATAHI

- (a) Ka memeha te haukini, NH₃, ki te wai ka puta tētahi mehanga whai pH o te 11.3.
 - (i) Whakaotihia te whārite mā te tuhi i ngā ture tātai o ngā hua e rua.

 $\mathrm{NH_{3}}(\textit{waiwai}) + \mathrm{H_{2}O}(\ell) \Longrightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

(ii) Whakamāramahia mai kei te aha i te wā o tēnei tauhohenga.

I tō whakautu, me:

- tautohu i te waikawa me tana pāpāhua haumi
- tautohu i te pāpāhua me tana waikawa haumi
- whakaahua i te whakawhiti iraoho ka pā.

(b) (i) I roto i tētahi mehanga o te konurehu waihā, KOH, ka kitea ko te pH he 12.8.

Tātaitia te kukūtanga katote hauwai honowai, $[H_3O^+]$, me te kukūtanga katote waihā, $[OH^-]$, i roto i te mehanga.

 $[H_3O^+] =$

[OH⁻] =

QUESTION ONE

ASSESSOR'S USE ONLY

- (a) Ammonia, NH₃, is dissolved in water and the resulting solution has a pH of 11.3.
 - (i) Complete the equation by writing the formulae of the two products.

 $NH_3(aq) + H_2O(\ell) \rightleftharpoons \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

(ii) Explain what is occurring during this reaction.

In your answer you should:

- identify the acid and its conjugate base
- identify the base and its conjugate acid
- describe the proton transfer that occurs.

(b)	(i)	In a solution of potassium hydroxide, KOH, the pH is found to be 12.8.

Calculate the hydronium ion concentration, $[H_3O^+]$, and the hydroxide ion concentration, $[OH^-]$, in the solution.

$$[H_3O^+] =$$

MĀ TE KAIMĀKA ANAKE

whakaatu ana te tūtohi i rite, me te tae o ngā pepa	_	-	-	rima o te kuk	kūtanga
Mehanga	A	В	C	D	E
Kawenga hiko	koretake	pai	pai	koretake	pai
Pepa tohu waikawa whero	huri kikorangi	noho whero	noho whero	noho whero	huri kikorang
Pepa tohu waikawa kikorangi	noho kikorangi	huri whero	noho kikorangi	huri whero	noho kikorang
roto i tō whakautu, me pa	nrahau ō kōwhirii	nga mā te k	ōrero mō ngā	āhuatanga o	ngā mehan
roto i tō whakautu, me pa	ırahau ö köwhirii	nga mā te k	ōrero mō ngā	āhuatanga o	ngā mehan
roto i tō whakautu, me pa	nrahau ō kōwhirii	nga mā te k	ōrero mō ngā	āhuatanga o	ngā mehan
roto i tō whakautu, me pa	nrahau ō kōwhirin	nga mā te k	ōrero mō ngā	āhuatanga o	ngā mehan
e tūtohi i runga ake. roto i tō whakautu, me pa tautohua.	nrahau ō kōwhirii	nga mā te k	ōrero mō ngā	āhuatanga o	ngā mehan

(c)

¹ kawakore

(c)

ASSESSOR'S USE ONLY

oncentration, and the color olution.	relative electric our of pieces of		which have	been dipped	into each
Solution	A	В	C	D	E
Electrical conductivity	poor	good	good	poor	good
Red litmus paper	turns blue	stays red	stays red	stays red	turns blue
Blue litmus paper	stays blue	turns red	stays blue	turns red	stays blue
Dlutions.	ustify your cho	oices by refer	ring to the pr	operties of the	ne identified
olutions.	ustify your cho	olces by refer	ring to the pr	operties of the	ne identified
plutions.	ustify your cho	olces by refer	ring to the pr	operties of the	ne identified
plutions.	ustify your cho	olces by refer	ring to the pr	operties of the	ne identified

PĀTAI TUARUA

MĀ TE KAIMĀKA

Ka taea te waihanga hauwai ahumahitia mā te whakahohe i te mewaro ki te wai. Ka taea te whakaatu i tētahi whārite mō tēnei tauhohenga mā te:

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

$$K_{\rm c} = 4.7 \text{ i te } 1127^{\circ}\text{C}$$

(a) (i) Whakaotihia te kīanga aumou taurite mō tēnei tauhohe:

$$K_{\rm c} =$$

(ii) Ko ngā kukūtanga o ngā haurehu e whā i roto i tētahi ranunga tauhohe i te 1127°C ka kitea ko:

Haurehu	CH ₄	H ₂ O	CO	H_2
Kukūtanga/mol L ⁻¹	0.0300	0.0500	0.200	0.300

Whakamahia ēnei uara ki te whakahaere i tētahi tātaitanga hei whakatau mēnā kei te taurite te tauhohenga.

Kei te taurite te ranunga?	Ae	Kāo	(porohitatia te mea tika)
Tātaitanga:			

QUESTION TWO

ASSESSOR'S USE ONLY

Hydrogen can be produced industrially by reacting methane with water. An equation for this reaction can be represented by:

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$

$$K_{\rm c} = 4.7 \text{ at } 1127^{\circ}\text{C}$$

(a) (i) Complete the equilibrium constant expression for this reaction:

K _c =			

(ii) The concentrations of the four gases in a reaction mixture at 1127°C are found to be:

Gas	CH ₄	H ₂ O	CO	H_2
Concentration/mol L ⁻¹	0.0300	0.0500	0.200	0.300

Use these values to carry out a calculation to determine if the reaction is at equilibrium.

Mixture at equilibrium?

Yes

No

(circle correct option)

Calculation:			

	MĀ TE KAIMĀKA ANAKE
_	

(b) Kei te taurite te tauhohenga e whakaaturia ana i te whārite i raro.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

Whakaahuahia te pānga o ia huringa e whai ake ki te kukūtanga taurite o te waihā mewaro (piki, heke, noho ōrite).

Parahautia ō whakautu mā te whakamahi i ngā mātāpono taurite.

Ka tāpirihia he whākōkī konukura ōkai, CuO.

Ko te rahi o te $CH_3OH(g)$:

ka piki	TĒRĀ RĀNEI	ka heke	TĒRĀ RĀNEI	ka noho ōrite
(porohitat	ia te whakautu tika)		
Pūtake:				
Ka tangol	hia te $H_2(g)$.			
Ko te rahi	o te $CH_3OH(g)$:			
ka piki	TĒRĀ RĀNEI	ka heke	TĒRĀ RĀNEI	ka noho ōrite
(porohitat	ia te whakautu tika)		
Pūtake:				

ASSESSOR'S USE ONLY

(b)

The reaction shown in the equation	on below is at	equilibr	ium.		
$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH_3$	I(g)				
Describe the effect of each of the methanol (increase, decrease, stay		nges on	the equilibriu	ım conc	entration of
Justify your answers using equilib	orium principl	es.			
A copper oxide, CuO, catalyst is a	added.				
Amount of CH ₃ OH(g) would: (circle correct answer)	increase	OR	decrease	OR	stay the same
Reason:					
$H_2(g)$ is removed.					
Amount of CH ₃ OH(g) would: (circle correct answer)	increase	OR	decrease	OR	stay the same
Reason:					

(c)

	ana te whārite mō tēnei tauhohenga i raro nei:	
	$NO_2(g)$ \rightleftharpoons $N_2O_4(g)$ haurehu kanokore	
E whakaatu ar	na te tūtohi i raro i ngā kitenga ina pā ngā huringa ki te pūr	naha.
Huringa		Ngā kitenga
Dahanga	piki (mā te whakaheke i te rōrahi o te ipu)	Mōnehu te tae
Pēhanga	heke (mā te whakapiki i te rōrahi o te ipu)	Kaha ake te tae
Pāmahana	ka raua te ipu me te ranunga tauhohe ki te wai wera	Kaha ake te tae
Pamanana	ka raua te ipu me te ranunga tauhohe ki te wai tio	Mōnehu te tae
	ngā kitenga katoa ki ngā mātāpono taurite	ata kā ara mus ha
_	mēnā ko te putanga o te hauota-rua ōkai-whā mai i te hau i, putawera rānei.	ota haora-rua he
paawera	s, patawora ranor.	

11 (c) In a reaction, the brown gas nitrogen dioxide, $NO_2(g)$, exists in equilibrium with the ASSESSOR'S USE ONLY colourless gas dinitrogen tetroxide, $N_2O_4(g)$. The equation for this reaction is represented by: $2NO_2(g) \rightleftharpoons N_2O_4(g)$ colourless gas brown gas The table below shows the observations when changes were made to the system. **Observations** Change increased (by decreasing the volume of the container) Colour faded Pressure decreased (by increasing the volume of the container) Colour darkened Colour darkened container with reaction mixture put into hot water Temperature Colour faded container with reaction mixture put into ice water Analyse these experimental observations. In your answer you should: link all of the observations to equilibrium principles justify whether the formation of dinitrogen tetroxide from nitrogen dioxide is endothermic or exothermic.

PĀTAI TUATORU

MĀ TE KAIMĀKA ANAKE

(a) E whakaaturia ana te whārite mō tēnei tauhohenga i waenga i ngā pata konutea (ngā pōkurukuru), Zn(s), me te waikawa pungatara, $H_2SO_4(waiwai)$, e te:

$$\mathsf{Zn}(s) + \mathsf{H}_2 \mathsf{SO}_4(waiwai) \to \mathsf{ZnSO}_4(waiwai) + \mathsf{H}_2(g)$$

E whakaatu ana te kauwhata i raro i te huringa o te rōrahi haurehu hauwai ka puta i roto i te wā, ina whakahohea te konutea ki te waikawa pungatara inati i te 20°C.

Whakamāramahia ngā huringa i te pāpātanga tauhohenga i roto i ngā wā **A**, **B** me **C**. I tō whakautu me kōrero koe mō te ariā tukinga.

A:			
n.			
B :			
C:			
·			

QUESTION THREE

ASSESSOR'S USE ONLY

(a) The equation for the reaction between zinc granules (lumps), Zn(s), and sulfuric acid, $H_2SO_4(aq)$, is represented by:

$$Zn(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + H_2(g)$$

The graph below shows how the volume of hydrogen gas produced changes with time, when zinc is reacted with excess sulfuric acid at 20° C.

Explain the changes in the reaction rate during the periods A, B and C.

In your answer you should refer to collision theory.

A:			
B.			
D .			
C :			
C			

MĀ TE KAIMĀKA ANAKE

	akamāramahia te ma te waikawa pungatar	ahi a te whākōkī konukura i roto i t ra.	te tauhohen	ga i waenga i te konute
		o koe mō te ariā tukinga.		
E w	hakaaturia ana ki te	tūtohi i raro ko ngā uara pH o ngā	mehanga 0	$0.100~{ m mol~L^{-1}}$ o ngā
	hakaaturia ana ki te kawa e rua, HA me I	tūtohi i raro ko ngā uara pH o ngā HB.	mehanga 0	$0.100~{ m mol}~{ m L}^{-1}~{ m o}~{ m ng}$ ā
			mehanga 0	$0.100~{ m mol}~{ m L}^{-1}~{ m o}~{ m ng}$
		HB.	-	$0.100~{ m mol~L^{-1}}~{ m o}~{ m ng}$
		HB. Mehanga	pН	$0.100~{ m mol~L^{-1}}~{ m o}~{ m ng}$
	kawa e rua, HA me I	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai)	pH 1.0 2.2	
	kawa e rua, HA me I Whakatauritea nga	HB. Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	HB. Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	
wail	kawa e rua, HA me I Whakatauritea nga te whakamahi i ng	Mehanga 0.100 mol L ⁻¹ HA(waiwai) 0.100 mol L ⁻¹ HB(waiwai) ā kaha rerekē o ngā waikawa e rua gā mōhiohio i runga ake.	pH 1.0 2.2	

sma.	ne rate of the reaction between zinc and sulfuric acid can be changed by the addition of nall pieces of copper, $Cu(s)$, as a catalyst.					
	plain the role of the copper catalyst in the reaction between zinc and sulfuric acid.					
	our answer you shou	ld refer to collision theory.				
		1 I =11-4: 64: 4- :	HA and HB	are given in t	he table	
	pH values of 0.100 r ow.	noi L' solutions of two acids,		, w. v	110 14010	
The belo		Solution	рН]		
		Solution 0.100 mol L ⁻¹ HA(aq)	pH 1.0]		
		Solution	рН	, was gar oan and		
belo	OW.	Solution $0.100 \text{ mol } \text{L}^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } \text{L}^{-1} \text{ HB}(aq)$ we strengths of the two acids, H	pH 1.0 2.2			
	Compare the relative information given a	Solution $0.100 \text{ mol } \text{L}^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } \text{L}^{-1} \text{ HB}(aq)$ we strengths of the two acids, H	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			
belo	Compare the relative information given a	Solution $0.100 \text{ mol } L^{-1} \text{ HA}(aq)$ $0.100 \text{ mol } L^{-1} \text{ HB}(aq)$ we strengths of the two acids, Habove.	pH 1.0 2.2 A(aq) and H			

e HB inati.			

chips, $CaCO_3(s)$, are re		

AU PĀTAI		He puka anō mēnā ka hiahiatia. Tuhia te (ngā) tāu pātai mēnā e hāngai ana.	
	'		

	Extra paper if required.	
QUESTION NUMBER	Write the question number(s) if applicable.	

English translation of the wording on the front cover

Level 2 Chemistry, 2014

91166 Demonstrate understanding of chemical reactivity

2.00 pm Tuesday 11 November 2014 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of chemical reactivity.	Demonstrate in-depth understanding of chemical reactivity.	Demonstrate comprehensive understanding of chemical reactivity.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L2–CHEMMR.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–19 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.