Osea

2023-12-10

Theorem 0.1: THEOREMONE

Il teorema di Lebesgue

Proof. Si può dimostrare per ovvietà,

Let $f: \mathbb{R} \to \mathbb{C}$ la funzione definita da $x \mapsto x^2$ Il miglior risultato che si può ottenere al momento è 12+4

Sia $f:\mathbb{R}\to\mathbb{R}$ definita da $a\mapsto a_{11}^2$ possiamo calcolare il kernel della funzione f come ker $f = \{0\}$ ottenendo quindi che la funzione deve essere iniettiva. Dovrà esserlo sempre iniettiva per ogni $a \in \mathbb{R}$ e quindi f è iniettiva.

Theorem 0.2: Iniettività $\iff \ker = \{1\}$

Sia $f: G \to H$ un omomorfismo di gruppi da G ad H. Allora f è iniettivo se e solo se ker $f = \{1\}$.

Proof. Sia $f: G \to H$ un omomorfismo di gruppi da G a H allora:

- Se f è iniettava supponiamo che $a \in \ker f$ allora f(a) = 0 ma dato che f è un omomorfismo allora f(0)=0 quindi per l'iniettività a=0 e quindi $\ker f = \{1\}$
- Se ker $f = \{1\}$ allora f è iniettiva. Infatti se f(a) = f(b) allora f(a b) = 0e quindi a-b=0 e quindi a=b

Radice di 2 è irrazionale 1

Theorem 1.1

 $\sqrt{2}$ è irrazionale

Proof. Supponiamo per assurdo che $\sqrt{2}$ sia razionale, allora $\sqrt{2} = \frac{a}{b}$ con $a, b \in \mathbb{Z}$ e

Possiamo supporre che $\frac{a}{b}$ sia ridotta ai minimi termini, cioè che a e b siano coprimi.

Allora $\sqrt{2}=\frac{a}{b}$ e quindi $2=\frac{a^2}{b^2}$ e quindi $a^2=2b^2.$ Quindi a^2 è pari e quindi a è pari.

1

Figure 1: test picture

Allora a=2k con $k\in\mathbb{Z}$ e quindi $2b^2=4k^2$ e quindi $b^2=2k^2$ e quindi b^2 è pari e quindi b è pari.

Ma questo è assurdo dato che abbiamo supposto che a e b fossero coprimi. Quindi $\sqrt{2}$ è irrazionale.

Figure 2: faccia

let $f: \mathbb{R} \to \mathbb{R}$

$$\prod_{i \in I} ds^2 = -c dt^2 + dx^2 + dy^2 + dz^2$$

$$f: \mathbb{R} \longrightarrow \mathbb{C}$$

 $x \longmapsto f(x) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - x} dz$

so we know that $e^{2x^2}=A\subset B24$ quindi otteniamo alla fine che $A^{\mathcal I}=\varnothing\subset$ everything so also $B^{\mathcal I}$

Il migliore risultato che fosse mai stato trovato so:

$$a=b+c$$

$$\iff a-b=c$$
 da cui otteniamo che $\implies a-b=c$ e a sua volta $a-c=b$ \iff

