CS 188: Artificial Intelligence Fall 2010

Lecture 16: Bayes' Nets III – Inference 10/19/2010

Dan Klein - UC Berkeley

Announcements

- Midterm on 10/26
 - One page (2 sides) of notes & basic calculator ok
 - Review sessions: Thursday, Sunday, info on web
 - Topic-themed OHs listed on midterm prep page

2

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability:

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$$

4

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:

$$P(+b|+j,+m) = \frac{P(+b,+j,+m)}{P(+j,+m)}$$

Example: Enumeration

 In this simple method, we only need the BN to synthesize the joint entries

$$P(+b,+j,+m) =$$

$$P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a)+$$

 $P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a)+$
 $P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a)+$
 $P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$

6

Inference by Enumeration? The second of th

Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
 - You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

Factor Zoo I

P(T,W)

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

W	Р			
sun	0.4			
rain	0.1			
sun	0.2			
rain	0.3			
	sun rain sun			

- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

P(cold, W)				
Т	W	Р		
cold	sun	0.2		
cold	rain	0.3		

9

Factor Zoo II

- Family of conditionals: P(X |Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, ySums to |Y|
- $\begin{array}{c|cccc} P(W|T) \\ \hline T & W & P \\ \hline hot & sun & 0.8 \\ hot & rain & 0.2 \\ \hline cold & sun & 0.4 \\ \hline cold & rain & 0.6 \\ \hline \end{array}$

P(W|hot)

P(W|cold)

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1

P(W|cold)

Т	W	Р
cold	sun	0.4
cold	rain	0.6

10

Factor Zoo III

P(rain|T)

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

T	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)

- In general, when we write P(Y₁ ... Y_N | X₁ ... X_M)
 - It is a "factor," a multi-dimensional array
 - Its values are all P($y_1 \dots y_N \mid x_1 \dots x_M$)
 - Any assigned X or Y is a dimension missing (selected) from the array

11

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!
- First query: P(L)
- \mathbb{R}
 - P(T|R)+r +t 0.8
 +r -t 0.2
 -r +t 0.1

P(R)

 $\begin{array}{c|cccc} P(L|R) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ -t & +l & 0.1 \\ -t & -l & 0.9 \\ \hline \end{array}$

Variable Elimination Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

- Any known values are selected
 - \bullet E.g. if we know $\,L=+\ell$, the initial factors are

VE: Alternately join factors and eliminate variables

. . .

Operation 2: Eliminate

 $\mathsf{sum}\ R$

P(T)

+t 0.17

-t 0.83

Second basic operation: marginalization

Take a factor and sum out a variable

· Shrinks a factor to a smaller one

A projection operation

P(R,T)

+r +t 0.08

+r -t 0.02

Example:

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we'd end up with:

$$\begin{array}{c|cccc} P(+r,L) & \text{Normalize} & P(L|+r) \\ \hline \begin{array}{c|cccc} \hline +r & +1 & 0.026 \\ \hline +r & -1 & 0.074 \\ \hline \end{array} & \begin{array}{c|cccc} \hline +1 & 0.26 \\ \hline -1 & 0.74 \\ \hline \end{array}$$

- To get our answer, just normalize this!
- That's it!

23

General Variable Elimination

- Query: $P(Q|E_1=e_1,\ldots E_k=e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

24

Variable Elimination Bayes Rule Start / Select Join on B Normalize P(B)*a, B* 0.1 P(a, B)P(B|a)В В $P(A|B) \rightarrow P(a|B)$ 8/17 0.08 +b +b 9/17 +a 0.1 25

Variable Elimination

- What you need to know:

 - Should be able to know.

 Should be able to run it on small examples, understand the factor creation / reduction flow.

 Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end.
- We will see special cases of VE later
 - On tree-structured graphs, variable elimination runs in polynomial time, like tree-structured CSPs
 - You'll have to implement a tree-structured special case to track invisible ghosts (Project 4)