Notes on the Tensor Product of Axiomatized Algebraic Theories and their Stability

Cédric HT

Contents

1	The category of an algebraic theory				
	1.1	Construction	1		
	1.2	Structure of $T(\mathscr{C})$	2		
	1.3	Functoriality	4		
2	Ten	sor product	4		
	2.1	Categorical motivation	4		
	2.2	Stability	6		
3	The	$arepsilon arepsilon_1$ ring	6		
4	Firs	t results about the (un)stability of classical algebraic thes	9		

1 The category of an algebraic theory

1.1 Construction

Let $\mathfrak L$ be a first order langage, and denote by $c\mathfrak L=f^{(0)}\mathfrak L$ the set of its constant symbols, $f^{(n)}\mathfrak L$ the set of its function symbols of arity n, $f\mathfrak L=\bigcup_{n\in\mathbb N}f^{(n)}\mathfrak L$, and define $t^{(n)}\mathfrak L$, $t\mathfrak L$ similarity for terms.

An *identity* is a formula ϕ of \mathfrak{L} of the following form

$$\phi = [\forall \overrightarrow{x_i} \ t(\overrightarrow{x_i}) = u(\overrightarrow{x_i})],$$

which we'll more compactly denote $\phi = [t = u]$, where $t, u \in t\mathfrak{L}$. An algebraic theory is a pair $T = (\mathfrak{L}, T)$, where T is a theory only containing identities. We will use the notations $f^{(n)}T$ instead of $f^{(n)}\mathfrak{L}$, and similarity for terms.

We now create a category that describe T. The first step is to describe its langage \mathfrak{L} . Consider $\mathbb N$ the category of finite cardinals and set maps. Then the usual addition + is a product in the opposite category $\mathbb N^{\mathrm{op}}$. Endow it with an additional morphism $f:n\longrightarrow 1$ for each function symbol $f\in f^{(n)}\mathsf{T}$ and complete it so as it still has finite products. Denote by $\mathscr L$ the resulting category.

Each term $t \in t^{(n)}T$ defines a morphism $t: n \longrightarrow 1$. Define \sim to be the smallest congruence relation on \mathfrak{L} such that t = u in \mathscr{L}/\sim whenever there is an axiom $\phi \in T$ of the form $\phi = [t = u]$. We abuse notations and denote by T the quotient category.

Let $\mathscr A$ be the category of algebraic theories and finite product preserving functors that are identity on objects, i.e. a morphism $F: T \longrightarrow \mathtt U$ is a product preserving functor such that the following diagram commutes .

1.2 Structure of $T(\mathscr{C})$

Take \mathscr{C} a category with finite product, and define a T-model in \mathscr{C} to be a product preserving functor $X: T \xrightarrow{\times} \mathscr{C}$. We abuse notations further and denote $X = X1 \in \text{ob}\,\mathscr{C}$, $f = Xf: X^n \longrightarrow X$ for all $f \in f^{(n)}T$. Take Y another model, and $\alpha: X \longrightarrow Y$ is a natural transformation. Remark that $\alpha_n = \alpha_1^n: X^n \longrightarrow Y^n$. Hence, we identify α with α_1 . Denote by $T(\mathscr{C})$ to be the category of such models and natural transformations. If $\mathscr{C} = \mathscr{S}et$, denote $T = T(\mathscr{S}et)$.

Take $X, Y : \mathscr{L} \xrightarrow{\times} \mathscr{C}$, and define

$$\begin{split} X\times Y: \mathscr{L} &\longrightarrow \mathscr{C} \\ n &\longmapsto (X\times Y)^n \\ f &\longmapsto (X\times Y)f, \end{split} \qquad \forall f \in f^{(n)}\mathbf{T} \end{split}$$

where $(X \times Y)f$ is the following composite:

$$(X \times Y)^n \xrightarrow{\tau_{2,n}} X^n \times Y^n \xrightarrow{f \times f} X \times Y.$$

Proposition 1.1. 1. This operation defines a product on the category of finite product preserving functors $\mathscr{L} \xrightarrow{\times} \mathscr{C}$.

2. If $X, Y \in \text{ob} T(\mathscr{C})$, then so does $X \times Y$. Hence, $T(\mathscr{C})$ is a category with finite products.

Proof. Define $(\text{proj}_X)_n$ as being the composite

$$(X \times Y)^n \xrightarrow{\tau_{2,n}} X^n \times Y^n \xrightarrow{\text{proj}} X^n.$$

If $f \in f^{(n)}T$, then the following diagram commutes by definition :

$$(X \times Y)^n \xrightarrow{\tau_{2,n}} X^n \times Y^n$$

$$(X \times Y)f \int \qquad \qquad \downarrow f \times f$$

$$X \times Y \xrightarrow{\tau_{1,1} = \text{id}} X \times Y.$$

Take $w: p \longrightarrow q$ be a morphism in \mathcal{L} , and consider

$$(X \times Y)^{p} \xrightarrow{\tau_{2,p}} X^{p} \times Y^{p} \xrightarrow{\operatorname{proj}} X^{p}$$

$$(X \times Y)w \downarrow \qquad \qquad w \times w \downarrow \qquad \qquad \downarrow w$$

$$(X \times Y)^{q} \xrightarrow{\tau_{2,p}} X^{q} \times Y^{q} \xrightarrow{\operatorname{proj}} X^{q}.$$

The left square commutes by the previous remark whereas the right square commutes by the definition of the product in \mathscr{C} . Therefore, the outer square commutes, and we can define a natural transformation $\operatorname{proj}_X = (\operatorname{proj}_X)_{\bullet} : X \times Y \longrightarrow X$, and similarly for Y.

Take $Z: \mathscr{L} \xrightarrow{\times} \mathscr{C}$ and two natural transformations $X \xleftarrow{\alpha} Z \xrightarrow{\beta} Y$. Using the same argument as before, we obtain a well defined natural transformation $\gamma: Z \longrightarrow X \times Y$ having components $\tau_{n,2}\langle \alpha^n, \beta^n \rangle: Z \longrightarrow (X \times Y)^n$, where $\langle \alpha^n, \beta^n \rangle$ is the morphism induced by the universal property of the product. Clearly, the flowing diagram commutes

Showing that γ is unique with this property is routine verification. From the definition of $(X \times Y)f$, for f a function symbol, one can show that if X and

Y factor through T, then so does $X \times Y$. The terminal object of $T(\mathscr{C})$ is given by the composite $\mathscr{L} \xrightarrow{!} \star \xrightarrow{!} \mathscr{C}$, where \star is the terminal category endowed with the trivial (and only possible) product.

1.3 Functoriality

Take $T \in \text{ob } \mathscr{A}$, and a finite product preserving functor $F : \mathscr{C} \longrightarrow \mathscr{D}$, where \mathscr{C} and \mathscr{D} have finite products. Define

$$T(F): T(\mathscr{C}) \longrightarrow T(\mathscr{D})$$

$$X \longmapsto FX$$

$$(X \xrightarrow{m} Y) \longmapsto (FX \xrightarrow{\mathrm{id}_F * m} FY),$$

where * stands for the Godment product. It is routine verification to show that T(F) preserve products, and hence T induces a functor

$$T(-): \mathscr{C}at_{\times} \longrightarrow \mathscr{C}at_{\times},$$

where $\mathscr{C}at_{\times}$ is the (meta)category of categories with finite product. Let $\alpha: F \longrightarrow G$ be a natural transformation, and define $T(\alpha)_X = \alpha * \mathrm{id}_X : FX \longrightarrow GX$. If $m: X \longrightarrow Y$ is a morphism, then the following diagram commutes:

$$FX \xrightarrow{\mathsf{T}(\alpha)_X = \alpha * \mathrm{id}_X} GX$$

$$\mathsf{T}(F)m = \mathrm{id}_F * m \int_{FY} \xrightarrow{\mathsf{T}(\alpha)_Y = \alpha * \mathrm{id}_Y} \int_{GY} \mathsf{T}(G)m = \mathrm{id}_G * m$$

making $T(\alpha): T(F) \longrightarrow T(G)$ a natural transformation. Moreover, composition of natural transformations is preserved under this operation. Finally, we obtain that T(-) is a 2-functor.

2 Tensor product

2.1 Categorical motivation

Take $n, m \in \mathbb{N}$ two integers, and define the *shuffle operation* $\tau_{n,m} \in \mathfrak{S}_{nm}$ to be such that $\tau_{n,m}((i-1)m+j)=(j-1)n+i$, for $1 \leq i \leq n$ and $1 \leq j \leq m$. In other word, it "rearranges m tuples of n elements each into n tuples of m elements each".

Take $T \in \text{ob} \mathscr{A}$, and $f \in f^{(n)}T$, $g \in f^{(m)}T$ two function symbols. We say that f distributes over g if

$$f \boxtimes g := [fg^n = gf^m \tau_{m,n}]$$

is true in $T_{\rm T}$.

Take another $U \in \text{ob} \mathscr{A}$ and define the *tensor product* of T and U, denoted by $T \otimes U$, to be

- $f^{(n)}(T \otimes U) = f^{(n)}T \cup f^{(n)}U$, where we implicitely distinguish symbols from T and U;
- $\bullet \ T_{\mathtt{T} \otimes \mathtt{U}} = T_{\mathtt{T}} \cup T_{\mathtt{U}} \cup \{ f \boxtimes g \mid f \in f\mathtt{T}, g \in f\mathtt{U} \}.$

Remark that $f \boxtimes g \iff g \boxtimes f$. Hence \otimes is an associative and commutative operation. It can moreover be seen as functorial in each variable.

Theorem 2.1. There is a finite product preserving isomorphism of categories $U(T(\mathscr{C})) \cong (U \otimes T)(\mathscr{C})$.

Proof. Take $X \in \text{ob} U(T(\mathscr{C}))$ and define

$$\begin{split} \check{X}: \mathbf{U} \otimes \mathbf{T} &\longrightarrow \mathscr{C} \\ n &\longmapsto (X1)n \\ f &\longmapsto (Xf)_1 \qquad \qquad \forall f \in f\mathbf{U} \\ g &\longmapsto (X1)g \qquad \qquad \forall g \in f\mathbf{T}. \end{split}$$

Define the so called deflation functor:

$$(\check{-}): \mathtt{U}(\mathtt{T}(\mathscr{C})) \longrightarrow \mathtt{U} \otimes \mathtt{T}(\mathscr{C})$$

$$X \longmapsto \check{X}$$

$$(X \xrightarrow{\alpha} X') \longmapsto (\check{X} \xrightarrow{\alpha_1} \check{X}').$$

Conversely, take $Y \in \text{ob } U \otimes T(\mathscr{C})$. Define

$$\begin{split} \hat{Y} : \mathbf{U} &\longrightarrow \mathbf{T}(\mathscr{C}) \\ n &\longmapsto Y^n \iota \\ f &\longmapsto (Yf)^{\bullet} \end{split} \qquad \forall f \in f\mathbf{U}, \end{split}$$

Where ι is the canonical functor $T \longrightarrow U \otimes T$, and $(Yf)^{\bullet}$ is the natural transformation with components $(Yf)^n$. Define the so called *inflation functor*:

$$(\hat{-}): \mathbf{U} \otimes \mathbf{T}(\mathscr{C}) \longrightarrow \mathbf{U}(\mathbf{T}(\mathscr{C}))$$

$$Y \longmapsto \hat{Y}$$

$$(Y \xrightarrow{\beta} Y') \longmapsto (\hat{Y} \xrightarrow{\beta^{\bullet}} \hat{Y}').$$

Then one can check that (-) and (-) are indeed finite product preserving and mutually inverse.

Corollary 2.2. There is a natural isomorphism $U(T(-)) \cong T(U(-))$.

2.2 Stability

Take $T \in \text{ob} \mathscr{A}$, denote by $\eta_k : T^{\otimes k} \longrightarrow T^{\otimes k+1}$ the canonical morphism, and $U_k = \eta_k^* : \underline{T^{\otimes k}} \longrightarrow \underline{T^{\otimes k+1}}$ the forgetful functor.

The theory T is said syntactically stable at $k \in \mathbb{N}$ if η_k is an isomorphism. It is said semantically stable at k if U_k is an equivalence of categories.

Proposition 2.3. If T is syntactically (resp. semantically) stable at k, then it remains so at k + 1.

Proof. Remark that the following diagram commute:

Hence, η_{k+1} (resp. U_{k+1}) is an isomorphism (resp. equivalence of categories) whenever η_k (resp. U_k) is.

Define $\|\mathbf{T}\|$ to be the smallest k such that \mathbf{T} is syntactically stable at k, or ∞ if stability never occurs. Define $|\mathbf{T}|$ similarly for semantics. Clearly, if it is syntactically stable, then it is semantically stable at the same k, and hence $|\mathbf{T}| \geq \|\mathbf{T}\|$.

3 The ε_1 ring

Take $T, U \in \text{ob} \mathcal{A}$, and consider $T \otimes U$. Then every function symbol of T distributes over every function symbol of U, which we shall conveniently denote by $fT \boxtimes fU$.

Proposition 3.1. $tT \boxtimes tU$.

Proof. • We first show that $fT \boxtimes tU$. Take $f \in f^{(n)}T$ and $u \in tU$. If u is a function symbol, then $f \boxtimes u$ by hypothesis. If $u : \text{dom } u \longrightarrow 1$ is a projection, then a short computation shows that the result also hold. Proceed now by induction on the height of u, and write $u = g(\overrightarrow{u_i})$, where $g \in f^{(m)}U$, $u_i \in tU$. Then by induction hypothesis, $f \boxtimes u_i$, and

$$fu^{n} = fg^{n} \left(\prod_{i} u_{i} \right)^{n} = gf^{m} \tau_{m,n} \left(\prod_{i} u_{i} \right)^{n} = gf^{m} \left(\prod_{i} u_{i}^{n} \right) \tau_{m,n}$$
$$= g \left(\prod_{i} fu_{i}^{n} \right) \tau_{m,n} = g \left(\prod_{i} u_{i} f \right) \tau_{m,n} = uf^{m} \tau_{m,n}.$$

• Take $t \in tT$ and $u \in t^{(m)}U$. If t is a function symbol or a projection, then $t \boxtimes u$. Proceed now by induction on the height of t and write $t = f(\overrightarrow{t_i})$, where $f \in f^{(n)}T$, $t_i \in tT$. Then by induction hypothesis, $t_i \boxtimes u$, and

$$tu^{n} = f \prod_{i} t_{i}u = f \prod_{i} ut_{i}^{m} = uf^{m}\tau_{m,n} \prod_{i} t_{i}^{m}$$
$$= uf^{m} \left(\prod_{i} t_{i}\right)^{m} \tau_{m,n} = ut^{m}\tau_{m,n}.$$

Consider CMon the algebraic theory of commutative monoids, with constant symbol 0 and multiplication $\lambda = \lambda_2$. We shall yet again abuse notation and allow 0 to also denote the composite $1 \stackrel{!}{\longrightarrow} 0 \stackrel{0}{\longrightarrow} 1$. Denote by λ_m the m-fold multiplication term, for $m \geq 2$.

Take T, V \in ob \mathscr{A} such that V extends CMon, and consider V \otimes T. Take $t \in t^{(n)}$ T, $n \geq 1$, and define its i-th axis, for $1 \leq i \leq n$, by

$$t^{[i]} = t(0^{i-1} \times id \times 0^{n-i}).$$

In other words, $t^{[i]}(x) = t(\underbrace{0, \cdots, 0}_{i-1}, x, \underbrace{0, \cdots, 0}_{n-i}).$

Theorem 3.2 (Boardman-Vogt decomposition). Let $t \in t^{(n)}T$. Then

$$t = \lambda_n \prod_{i=1}^n t^{[i]}.$$

Moreover this decomposition is unique in the following sense: if $t = \lambda_n \prod_{i=1}^n t_i$ for $t_i \in t^{(1)}(V \otimes T)$, then $t_i = t^{[i]}$.

Proof. We have

$$t = t \prod_{i=1}^{n} \lambda_n (0^{i-1} \times id \times 0^{n-i}) = t \lambda_n^n \tau_{n,n} \prod_{i=1}^{n} (0^{i-1} \times id \times 0^{n-i})$$
$$= \lambda_n^n t^n \prod_{i=1}^{n} (0^{i-1} \times id \times 0^{n-i}) = \lambda_n \prod_i t^{[i]}.$$

To prove uniqueness, remark that every term $u \in t^{(n)}(V \otimes T)$ distributes over 0, i.e. $u0^n = 0$. Then $\forall 1 \leq k \leq n$ we have :

$$\lambda_n \prod_{i=1}^n t^{[i]} = \lambda_n \prod_{i=1}^n t_i$$

$$\Longrightarrow \underbrace{\lambda_n \left(\prod_{i=1}^n t^{[i]} \right) (0^{k-1} \times \operatorname{id} \times 0^{n-k})}_{=t^{[i]}} = \underbrace{\left(\lambda_n \prod_{i=1}^n t_i \right) (0^{k-1} \times \operatorname{id} \times 0^{n-k})}_{=t_i}.$$

Corollary 3.3. If $U \in \text{ob} \mathscr{A}$ is another theory, then $V \otimes T = V \otimes U$ if and only if $\text{end}_{V \otimes T} 1 = \text{end}_{V \otimes U} 1$ as monoids with respect to composition.

Consider now the case V = Ab, the theory of abelian groups, and denote by ι the unary function symbol of inversion. Define $\varepsilon_1 T = \operatorname{end}_{Ab \otimes T} 1$. Take $x, y \in \varepsilon_1 T$, and define

$$x + y = \lambda_2(x \times y)\Delta_2$$
$$-x = \iota x.$$

Then $\varepsilon_1 T$, together with those operations and 0 form an abelian group. Endow it further with the composition and id_1 , and it becomes a (unitary) ring. Moreover, if $F: T \longrightarrow U$ is a morphism of theories, then $Ab \otimes F: Ab \otimes T \longrightarrow Ab \otimes U$ induces a ring homomorphism $\varepsilon_1 F: \varepsilon_1 T \longrightarrow \varepsilon_1 U$. This gives rise to a functor

$$\varepsilon_1: \mathscr{A} \longrightarrow \mathscr{R}ing.$$

Take R a ring, and consider Mod_R the theory of left R-modules, which extends Ab with a unary function symbol r, for each element $r \in R$, and with the appropriate axioms. It is routine verifications to show that $\operatorname{Mod}_R \otimes \operatorname{Mod}_S \cong \operatorname{Mod}_{R \otimes S}$, where R and S are tensored as \mathbb{Z} -algebras. We will abuse notation and allow R to represent its module theory Mod_R . Remark that the notation $R \otimes S$ leaves no ambiguity then.

Returning to ε_1 , remark that $Ab \otimes T \cong \varepsilon_1 T$, and so surprisingly enough, tensoring by Ab result in module theories.

Proposition 3.4. The functor ε_1 is monoidal.

Proof. Take $x \in \varepsilon_1 T$ and $y \in \varepsilon_1 U$. Then by distributivity, xy = yx in $\varepsilon_1(T \otimes U)$. Hence, every element $t \in \varepsilon_1(T \otimes U)$ decomposes uniquely as $t = \sum_i x_i y_i$, where $x_i \in \varepsilon_1 T$ and $y_i \in \varepsilon_1 U$. One can show that the following map is an isomorphism:

$$\begin{array}{ccc}
\varepsilon_1(\mathsf{T}\otimes\mathsf{U}) &\longrightarrow \varepsilon_1\mathsf{T}\otimes\varepsilon_1\mathsf{U} \\
\sum_i x_iy_i &\longmapsto \sum_i x_i\otimes y_i.
\end{array}$$

Theorem 3.5. If T is syntactically stable at k, then the canonical ring inclusion $\tilde{\eta}_k : \varepsilon_1 T^{\otimes k} \hookrightarrow \varepsilon_1 T^{\otimes k+1}$ is an isomorphism. In particular, $|\varepsilon_1 T| \leq |T|$.

4 First results about the (un)stability of classical algebraic theories

T	$\ \mathtt{T}\ _{\mathscr{S}et}$	T	$arepsilon_1$ T
${\tt Mag}_0$	1	1	\mathbb{Z}
\mathtt{Mag}_1	∞	∞	$\mathbb{Z}[X]$
$Mag_n, n \geq 1$?	∞	$\mathbb{Z}\langle X_1,\ldots,X_n\rangle$
$CMag_n, n \geq 1$?	∞	$\mathbb{Z}[X]$
SGrp	?	∞	$\frac{\mathbb{Z}[X,Y]}{\langle X(X-1),Y(Y-1)\rangle}$
CSGrp	?	∞	$\frac{\mathbb{Z}[X]}{\langle X(X-1)\rangle}$
Mon	2	2	\mathbb{Z}
CMon	1	1	\mathbb{Z}
Grp	2	2	\mathbb{Z}
Ab	1	1	\mathbb{Z}
Mod_R	?	(*)	R
Alg_R	2	2	R

where (*) means the number depends on the ring R.

For the rest of this section, let λ , ι and 0 be respectively the (binary) multiplication, inversion and unit of Ab.

Mon, CMon, Grp, and Ab. Take T to be one of those theories. By the Heckmann-Hilton argument, $Ab \otimes T = Ab$. We then have an isomorphism $\varepsilon_1 T \xrightarrow{\cong} \mathbb{Z}$ mapping id to 1.

 Mag_0 . Let c be the unique constant symbol of Mag_0 . In $\operatorname{Ab} \otimes \operatorname{Mag}_0$ we have c = 0 since $c \boxtimes 0$. Hence $\operatorname{Ab} \otimes \operatorname{Mag}_0 = \operatorname{Ab}$ and $\varepsilon_1 \operatorname{Mag}_0 = \mathbb{Z}$.

Then, in $\operatorname{Mag}_0^{\otimes k}$ with $k \geq 1$, all constant symbols are equal, so $\operatorname{Mag}_0^{\otimes k} = \operatorname{Mag}_0$ and $|\operatorname{Mag}_0| = |\operatorname{Mag}_0| = 1$.

 Mag_n , with $n \ge 1$. For f the unique n-ary function symbol of Mag_1 we have a ring isomorphism

$$\begin{split} \varepsilon_1 \mathtt{Mag}_n &\longrightarrow \mathbb{Z}\langle X_1, \dots, X_n \rangle \\ & \mathrm{id} \longmapsto 1 \\ f^{[i]} &\longmapsto X_i & 1 < i < n. \end{split}$$

 \mathtt{CMag}_n , with $n \geq 1$. For $\sigma \in \mathfrak{S}_n$ we have $f = f\sigma$, so in term of axes

$$\lambda_n \prod_i f^{[i]} = \lambda_n \prod_i f^{[\sigma(i)]}, \quad \forall \sigma \in \mathfrak{S}_n.$$

By uniqueness of axes, $f^{[i]} = f^{[j]}$, $\forall i, j$, and so $\varepsilon_1 \text{CMag}_n \cong \mathbb{Z}[X]$.

SGrp. Let m be the binary multiplication symbol of SGrp. Since $m \boxtimes 0$ we have $m(0 \times 0) = 0$. This theory extends Mag_2 only by the associativity axiom $m(m \times \mathrm{id}) = m(\mathrm{id} \times m)$. In term of axes we have

Axis	$m(m \times id)$	$m(\operatorname{id} \times m)$
1	$m^{[1]}m^{[1]}$	$m^{[1]}$
2	$m^{[1]}m^{[2]}$	$m^{[2]}m^{[1]}$
3	$m^{[2]}$	$m^{[2]}m^{[2]}$

Hence,

$$\begin{split} \varepsilon_1 \mathbf{SGrp} &= \frac{\varepsilon_1 \mathbf{Mag}_n}{\langle m^{[1]}(m^{[1]}-1), m^{[2]}(m^{[2]}-1), m^{[1]}m^{[2]}-m^{[2]}m^{[1]}\rangle} \\ &= \frac{\mathbb{Z}[X,Y]}{\langle X(X-1), Y(Y-1)\rangle}. \end{split}$$

CSGrp. This theory extends SGrp only by the symmetry axiom, so

$$\varepsilon_1 \mathtt{CSGrp} = \frac{\mathbb{Z}[X]}{\langle X(X-1) \rangle}.$$

Mod_R. Let a, i and o be respectively the addition, inversion and zero of Mod_R. By the Heckmann-Hilton argument, $\lambda = a, \ \iota = i$ and 0 = o in $\mathsf{Ab} \otimes \mathsf{Mod}_R$. Let f_r be the r-action unary function symbol, for $r \in R$. In Mod_R, f_r already distributes over a, i and o, so tensoring with Ab doesn't change the underlying Mod_R , and $\varepsilon_1 \mathsf{Mod}_R = R$.

For the syntactical rank, remark that $\operatorname{Mod}_R^{\otimes k+1} = \operatorname{Mod}_R^{\otimes k} \iff R^{\otimes k+1} = R^{\otimes k}$.

Alg_R. This theory extends Mod_R only by the multiplication m, the one l and the related axioms. Then in $Ab \otimes Alg_R$, o = 0 = l by distributivity. Then,

$$m^{[1]} = m(\operatorname{id} \times 0) = m(\operatorname{id} \times o) = o,$$

and similarly for $m^{[2]}$. Hence $\mathtt{Ab} \otimes \mathtt{Alg}_R = \mathtt{Mod}_R$ and $\varepsilon_1 \mathtt{Alg}_R = R$.

Consider now $\mathtt{Alg}_R^{\otimes k}$ with $k \geq 2$. There, all constants are equal, all additions are equal (by Heckmann-Hilton), and all multiplications are identically o, so equal as well. Hence $|\mathtt{Alg}_R| = 2$. Furthermore, for $k \geq 2$, models of $\mathtt{Alg}_R^{\otimes k}$ are such that the additive and multiplicative units are equal, which only allows for the trivial model, and $\|\mathtt{Alg}_R\| = 2$.

References

- [Buc08] M. Buckley. Lawvere theories. http://maths.mq.edu.au/street/MitchB.pdf, 2008.
- [BV79] J. M. Boardman and R. M. Vogt. Tensor products of theories, application to infinite loop spaces. J. Pure Appl. Algebra, 14(2):117–129, 1979.
- [HP07] Martin Hyland and John Power. The category theoretic understanding of universal algebra: Lawvere theories and monads. In Computation, meaning, and logic: articles dedicated to Gordon Plotkin, volume 172 of Electron. Notes Theor. Comput. Sci., pages 437–458. Elsevier, Amsterdam, 2007.
- [MT08] P.A. Melliès and N Tabareau. Free models of t-algebraic theories computed as kan extensions. Hal, 14(hal-00339331), 2008.