

AI Planning Hatem A. Rashwan

Graphplan and Advanced Heuristics

Graphplan

Graph Plan

A propositional planner, that is, there are no variables

assertions Simpler – don't have to worry about matching

• Bigger – if you have six blocks, you need 36 propositions to

represent all On(x,y)

1. Make a plan graph of depth k

- 2. Search for a solution
- 3. If succeed, return a plan
- 4. Else k=k+1
- 5. Go to 1.

GraphPlan centres work on a data structure called a plan graph. A plan graph looks like this in the figure. You have a bunch of levels. You start with level zero, level one, level two.

MESIIA – MIA

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Graphplan properties

Example: Simplified DWR Problem

- robots can load and unload autonomously
- locations may contain unlimited number of robots and containers
- problem: swap locations of containers

Simplified DWR Problem: STRIPS Operators

- move(*r*,*l*,*l*')
 - precond: at(r,l), adjacent(l,l')
 - effects: at(r,l'), ¬at(r,l)
- load(*c*,*r*,*l*)
 - precond: at(r,l), in(c,l), unloaded(r)
 - effects: loaded(r,c), $\neg in(c,l)$, $\neg unloaded(r)$
- unload(*c,r,l*)
 - precond: at(r,l), loaded(r,c)
 - effects: unloaded(r), in(c,l), \neg loaded(r,c)

Simplified DWR Problem: State Proposition Symbols

• robots:

- r1 and r2: at(robr,loc1) and at(robr,loc2)
- q1 and q2: at(robq,loc1) and at(robq,loc2)
- ur and uq: unloaded(robr) and unloaded(robq)

containers:

- a1, a2, ar, and aq: in(conta,loc1), in(conta,loc2), loaded(conta,robr), and loaded(conta,robq)
- *b1*, *b2*, *br*, and *bq*: in(contb,loc1), in(contb,loc2), loaded(contb,robr), and loaded(contb,robq)

Initial state: {*r*1, *q*2, *a*1, *b*2, *ur*, *uq*}

MESIIA – MIA

Simplified DWR Problem: Propositions Action Symbols

move actions:

 Mr12: move(robr,loc1,loc2), Mr21: move(robr,loc2,loc1), Mq12: move(robq,loc1,loc2), Mq21: move(robq,loc2,loc1)

load actions:

 Lar1: load(conta,robr,loc1); Lar2, Laq1, Laq2, Lbr1, Lbr2, Lbq1, and Lbq2 correspondingly

unload actions:

 Uar1: unload(conta,robr,loc1); Uar2, Uaq1, Uaq2, Ubr1, Ubr2, Ubq1, and Ubq2 correspondingly

MESIIA – MIA

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Graphplan properties

Planning Graph: Nodes

- layered directed graph *G*=(*N*,*E*):
 - $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup ...$
 - state proposition layers: P_0 , P_1 , ...
 - action layers: A₁, A₂, ...
- first proposition layer P_0 :
 - propositions in initial state s_i : $P_0 = s_i$
- action layer A_i:
 - all actions a where: precond(a) $\subseteq P_{i-1}$
- proposition layer P_i :
 - all propositions p where: $p \in P_{j-1}$ or $\exists a \in A_j$: $p \in effects(a)$

Planning Graph: Edges

- from proposition $p \in P_{j-1}$ to action $a \in A_j$:
 - if: $p \in \text{precond}(a)$
- from action $a \in A_i$ to layer $p \in P_i$:
 - positive arc if: $p \in effects^+(a)$
 - negative arc if: $p \in effects^{-}(a)$

Graph Plan Example

At the even- numbered levels you have propositions, which they draw as a little dot.

Graph Plan Example

- Three proposition levels (levels 0, 2, and 4) and two action levels (levels 1 and 3).
- To encode depth-two plans (because there are two layers of actions).
 - Action level 1 has the actions that we might choose to do on the first step,
 - Action level 3 has the actions we might choose to do on the second step.

Graph Plan Example

- Start by making a graph with levels 0 through 2, corresponding to a depth 1 plan,
- Search for a satisfactory plan within that graph. If we can't find one,
- Extend the graph out by two more layers (an action layer and a proposition layer),
- Then find a depth 2 plan.

Planning Graph Example

The goal is to swap the containers: {a2, q1}

Reachability in the Planning Graph

- reachability analysis:
 - if a goal g is reachable from initial state s_i
 - then there will be a proposition layer P_g in the planning graph such that $g \subseteq P_g$
- necessary condition, but not sufficient
- low complexity:
 - planning graph is of polynomial size and
 - can be computed in polynomial time

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Graphplan properties

Independent Actions: Examples

- Mr12 and Lar1:
 - cannot occur together
 - Mr12 deletes precondition r1 of Lar1
- Mr12 and Mr21:
 - cannot occur together
 - Mr12 deletes positive effect r1 of Mr21
- Mr12 and Mq21:
 - may occur in same action layer

Independent Actions

- Two actions a_1 and a_2 are independent iff:
 - effects⁻ $(a_1) \cap (\operatorname{precond}(a_2) \cup \operatorname{effects}^+(a_2)) = \{\}$ and
 - effects⁻ $(a_2) \cap (precond(a_1) \cup effects^+(a_1)) = \{\}.$
- A set of actions π is independent iff every pair of actions $a_1, a_2 \in \pi$ is independent.
- The final solution Π is $\{\pi 1, \pi 2, \pi 3,, \pi k\}$

Pseudo Code: independent

```
function independent(a_1, a_2)
 for all p \in effects^{-}(a_1)
    if p \in precond(a_2) or p \in effects^+(a_2) then
      return false
 for all p \in effects^{-}(a_2)
    if p \in precond(a_1) or p \in effects^+(a_1) then
      return false
 return true
```

Layered Plans

- Let $P = (A, s_i, g)$ be a statement of a propositional planning problem and G = (N, E), $N = P_0 \cup A_1 \cup P_1 \cup A_2 \cup P_2 \cup ...$, the corresponding planning graph.
- A <u>layered plan</u> over *G* is a sequence of sets of actions: $| \ | = \langle \pi_1, ..., \pi_k \rangle$ where, k is the graph depth, and:
 - $\pi_i \subseteq A_i \subseteq A$,
 - π_i is applicable in state P_{i-1} , and
 - the actions in π_i are independent.

Layered Solution Plan

- A layered plan $\prod = \langle \pi_1, ..., \pi_k \rangle$ is a solution to a to a planning problem $P = (A, s_i, g)$ iff:
 - π_1 is applicable in s_i ,
 - for $j \in \{2...k\}$, π_j is applicable in state $\gamma(...\gamma(\gamma(s_i,\pi_1),\pi_2),...\pi_{j-1})$, and
 - $g \subseteq \gamma(...\gamma(\gamma(s_i,\pi_1),\pi_2),...,\pi_k).$

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Graphplan properties

Problem: Dependent Propositions: Example

• *r2* and *ar*:

- r2: positive effect of Mr12
- ar: positive effect of Lar1
- but: Mr12 and Lar1 not independent
- hence: r2 and ar incompatible in P_1

• *r1* and *r2*:

- positive and negative effects of same action: Mr12
- hence: r1 and r2 incompatible in P_1

No-Operation Actions

- No-Op for proposition p:
 - name: Ap
 - precondition: p
 - effect: p
- *r1* and *r2*:
 - r1: positive effect of Ar1
 - *r2*: positive effect of Mr12
 - but: Ar1 and Mr12 not independent
 - hence: r1 and r2 incompatible in P₁

Mutex Propositions

- Two propositions p and q in proposition layer P_i are mutex (mutually exclusive) if:
 - every action in the preceding action layer A_j that has p as a positive effect (incl. no-op actions) is mutex with every action in A_j that has q as a positive effect, and
 - there is no single action in A_j that has both, p and q, as positive effects.
- notation: $\mu P_j = \{ (p,q) \mid p,q \in P_j \text{ are mutex} \}$

Pseudo Code: mutex for Propositions

```
function mutex(p_1, p_2, \mu A_i)
 for all a_1 \in p_1.producers()
   for all a_2 \in p_2.producers()
     if (a_1,a_2)\notin \mu A_i then
       return false
 return true
```

Mutex Actions

- Two actions a_1 and a_2 in action layer A_j are mutex if:
 - a_1 and a_2 are dependent, or
 - a precondition of a_1 is mutex with a precondition of a_2 .
- notation: $\mu A_j = \{ (a_1, a_2) \mid a_1, a_2 \in A_j \text{ are mutex} \}$

Mutex Actions: Example

- r1 and r2 are mutex in P₁
- r1 is precondition for Lar1 in A₂
- *r2* is precondition for Mr21 in A₂
- hence: Lar1 and Mr21 are mutex in A₂

Pseudo Code: mutex for Actions

```
function mutex(a_1, a_2, \mu P)
 if \negindependent(a_1, a_2) then
    return true
 for all p_1 \in \text{precond}(a_1)
    for all p_2 \in \text{precond}(a_2)
      if (p_1,p_2)\in\mu P then return true
  return false
```

Overview

- A Propositional DWR Example
- The Basic Planning Graph (No Mutex)
- Layered Plans
- Mutex Propositions and Actions
- Graphplan properties

Graphplan Properties

- **Proposition**: The Graphplan algorithm is sound, complete, and always terminates.
 - It returns failure iff the given planning problem has no solution;

 Graphplan is orders of magnitude faster than previous techniques!

Advanced Heuristics

Overview

- Simple Planning Graph Heuristics
- The FF Planner

Forward State-Space Search with A*

 A* is optimally efficient: For a given heuristic function, no other algorithm is guaranteed to expand fewer nodes than A*.

room for improvement: use better heuristic function!

Planning Graph Heuristics

- basic idea: use reachability graph analysis as a heuristic for forward search
 - $P = (A, s_i, g)$ be a propositional planning problem and G = (N, E) the corresponding planning graph
 - $g = \{g_1, ..., g_n\}$
 - g_k , $k \in [1,n]$, is reachable from s_i if there is a proposition layer P_g such that $g_k \in P_g$
 - in proposition layer P_m : if g_k not in P_m then g_k not reachable in m steps
- define (admissible) $h_{PG}(g_k) = m$ for reachable $\{g_k\}$

Graphplan: Heuristic

Overview

- Simple Planning Graph Heuristics
- The FF (Fast Forward) Planner

The FF Planner

- performs forward state-space search (A*)
- relaxed problem heuristic (h^{FF})
 - construct relaxed problem: ignore delete lists
 - solve relaxed problem (in polynomial time)
 - chain forward to build a relaxed planning graph
 - chain backward to extract a relaxed plan from the graph
 - use length of relaxed plan as heuristic value

Relaxed Planning Problem: Example

- move(*r*,*l*,*l*′)
 - precond: at(*r*,*l*), adjacent(*l*,*l*')
 - effects: at(*r*,/'), ¬at(*r*,/)
- load(*c*,*r*,*l*)
 - precond: at(r,l), in(c,l), unloaded(r)
 - effects: loaded(r,c), $\neg in(c,l)$, $\neg unloaded(r)$
- unload(*c,r,l*)
 - precond: at(*r*,*l*), loaded(*r*,*c*)
 - effects: unloaded(r), in(c,l), ¬loaded(r,c)

Computing h^{FF}: Relaxed Planning Graph

```
function computeRPG(A,s_i,g)
   F_0 \leftarrow s_i; t \leftarrow 0
   while g \not\subseteq F_t do
        t \leftarrow t+1
        A_t \leftarrow \{a \in A \mid \mathsf{precond}(a) \subseteq F_{t-1}\}
        F_t \leftarrow F_{t-1}
        for all a \in A_t do
             F_t \leftarrow F_t \cup \text{effects}^+(a)
        if F_t = F_{t-1} then return failure
    return [F_0, A_1, F_1, ..., A_t, F_t]
```

Computing h^{FF} : Extracting a Relaxed Plan

```
function extractRPSize([F_0, A_1, F_1, ..., A_k, F_k], g)
   if g \nsubseteq F_k then return failure
   M \leftarrow \max\{\text{firstlevel}(g_i, [F_0, ..., F_k]) \mid g_i \in g\}
   for t \leftarrow 0 to M do
         G_t \leftarrow \{g_i \in g \mid \text{firstlevel}(g_i, [F_0, ..., F_k]) = t\}
   for t \leftarrow M to 1 do
         for all g_t \in G_t do
             select a: firstlevel(a, [A_1,...,A_t]) = t and g_t \in effects^+(a)
             for all p \in \text{precond}(a) do
                  G_{\text{firstlevel}(p, [F0, \dots, Fk])} \leftarrow G_{\text{firstlevel}(p, [F0, \dots, Fk])} \cup \{p\}
   return number of selected actions
```

End

