Clase 27

- Definición: Pseudoprimo de Euler: Sea n un número compuesto e impar. Sea a coprimo con n. Decimos que n es Pseudoprimo de Euler respecto de la base a si: $a^{\frac{n-1}{2}} \equiv \left(\frac{a}{n}\right) \pmod{n}$.
- Observación: Tal como vimos durante la prueba del test de Solovay-Strassen, si n es Pseudoprimo de Euler respecto de a también es Pseudoprimo respecto de a, y no existen números que sean Pseudoprimos de Euler respecto a toda base a coprima con n.
- Definición: Sea n un número impar y compuesto, de donde n-1 = 2^e · t con t impar y e > 0. Sea a coprimo con n. Decimos que n es Pseudoprimo Fuerte respecto de a si se verifica que:
- o $a^{\dagger} \equiv 1 \pmod{n}$ o $a^{2^{i} \cdot t} \equiv -1 \pmod{n}$ para algún $i \in \{0, 1, ..., e-1\}$

- Proposición: Si n es Pseudoprimo Fuerte respecto de una base a, entonces es Pseudoprimo de Euler respecto de a.
- Demostración: Dividimos la prueba en 3 casos:
- (i) Supongamos que $a^{\dagger} \equiv 1 \pmod{n} \Rightarrow a^{\frac{n-1}{2}} \equiv a^{2^{e-1} \cdot t} \equiv 1 \pmod{n}$.
- Calculemos $\left(\frac{a}{n}\right)$: Sabemos que $\left(\frac{a^t}{n}\right) = \left(\frac{1}{n}\right) = 1$ y también que $\left(\frac{a^t}{n}\right) = \left(\frac{a}{n}\right)^t$ por lo tanto $\left(\frac{a}{n}\right)^t = 1$ y como t es impar $\Rightarrow \left(\frac{a}{n}\right) = 1$.
- Luego, tenemos: $a^{\frac{n-1}{2}} \equiv 1 \equiv \left(\frac{a}{n}\right) \pmod{n}$.

- (ii) Supongamos que $a^{2^{e-1}\cdot t}\equiv -1\ (mod\ n)\ \Rightarrow\ a^{\frac{n-1}{2}}\equiv a^{2^{e-1}\cdot t}\equiv -1\ (mod\ n).$
- Veamos ahora que $\left(\frac{a}{n}\right)$ = -1. Pero antes, unos preliminares:
- Sea p primo tal que p | n (por lo tanto, p impar) y escribamos: $p-1 = 2^{e'} \cdot s$ con s impar y e' > 0. Queremos ver que:
- (a) e' ≥ e
- (b) $\left(\frac{a}{p}\right) = \begin{cases} -1 & \text{si } e' = e \\ 1 & \text{si } e' > e \end{cases}$
- $(a) a^{2^{e-1} \cdot t} \equiv -1 \pmod{n} \Rightarrow a^{2^{e-1} \cdot t \cdot s} \equiv -1 \pmod{n} \Rightarrow a^{2^{e-1} \cdot t \cdot s} \equiv -1 \pmod{p}.$
- Supongamos que e' < e \Rightarrow e' \leq e-1 \Rightarrow $a^{2^{e'} \cdot t \cdot s} \not\equiv 1 \pmod{p}$ \Rightarrow $a^{p-1} \equiv a^{2^{e'} \cdot s} \not\equiv 1 \pmod{p}$ contradiciendo el Pequeño Teorema de Fermat. Luego e' \geq e.

- (b) Si e' = e: $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \equiv a^{2^{e'-1} \cdot s} \equiv a^{2^{e-1} \cdot s}$ (mod p). Como este símbolo de Legendre (siendo a coprimo con p) vale ± 1 , su valor no cambia si lo elevamos a la t (pues t es impar), luego: $\left(\frac{a}{p}\right) \equiv a^{2^{e-1} \cdot s} \equiv a^{2^{e-1} \cdot s \cdot t} \equiv -1$ (mod p) (la última congruencia ya fue probada en la parte (a)).
- Si e' > e: Como $a^{2^{e-1} \cdot t} \equiv -1 \pmod{p}$ elevamos a la s (y cambiamos el módulo por p): $a^{2^{e-1} \cdot s \cdot t} \equiv -1 \pmod{p} \Rightarrow a^{2^{e'-1} \cdot s \cdot t} \equiv 1 \pmod{p}$. Por el criterio de Euler $\left(\frac{a}{p}\right)$ $\equiv a^{\frac{p-1}{2}} \equiv a^{2^{e'-1} \cdot s} \pmod{p}$. Como $\left(\frac{a}{p}\right) = \pm 1$, su valor no cambia al elevarlo a la $t \Rightarrow \left(\frac{a}{p}\right) \equiv a^{2^{e'-1} \cdot s} \equiv a^{2^{e'-1} \cdot s \cdot t} \equiv 1 \pmod{p}$.

- Volvamos ahora sí al cálculo de $\left(\frac{a}{n}\right)$. Escribimos: $n = \prod_{p|n} p$ (primos no necesariamente distintos). Luego: $\left(\frac{a}{n}\right) = \prod_{p|n} \left(\frac{a}{p}\right) = (-1)^k$ donde k es el número de factores primos de n tales que $\left(\frac{a}{p}\right) = -1$, que por los resultados preliminares (a) y (b) sabemos que k es igual a la cantidad de factores primos de n con e' = e (siempre contando multiplicidades).
- Queremos probar que k es impar, y así: $\left(\frac{a}{n}\right) = (-1)^k = -1 \equiv a^{\frac{n-1}{2}} \pmod{n}$.
- Observemos que: e' > e \Rightarrow p = 1 (mod 2^{e+1}), y e' = e \Rightarrow p = 1 + 2^e (mod 2^{e+1}). Utilizando esto, nos queda:
- $1 + 2^{e} \equiv 1 + 2^{e} \cdot \dagger \equiv n \equiv \prod_{p|n} p \equiv (1 + 2^{e})^{k} \equiv 1 + k \cdot 2^{e} \pmod{2^{e+1}} \Rightarrow$
- o $2^{e} \cdot (k-1) \equiv 0 \pmod{2^{e+1}}$ ⇒ k-1 par ⇒ k impar, que es lo que queríamos.

Clase 28

- (iii) Supongamos que $a^{2^{i} \cdot t} \equiv -1 \pmod{n}$ con $i \in \{0, 1, ..., e-2\}$.
- Como i \leq e 2 < e 1 tenemos: $a^{\frac{n-1}{2}} \equiv a^{2^{e-1} \cdot t} \equiv 1 \pmod{n}$.
- Para calcular $\left(\frac{a}{n}\right)$, como en el caso (ii), son necesarios resultados preliminares. Si p primo (impar) que divide a n y p 1 = $2^{e'} \cdot s$, s impar y e' > 0, se puede ver que se cumplen:
- (a) e' ≥ i + 1
- (b) $\left(\frac{a}{p}\right) = \begin{cases} -1 & \text{si } e' = i+1\\ 1 & \text{si } e' > i+1 \end{cases}$
- La demostración de estas dos propiedades (que no haremos) utiliza argumentos similares a los vistos en el caso (ii).

- Escribamos n = $\prod_{p|n} p$ (primos no necesariamente distintos). Luego: $\left(\frac{a}{n}\right) = \prod_{p|n} \left(\frac{a}{p}\right) = (-1)^k$ donde k es el número de factores primos de n tales que $\left(\frac{a}{p}\right) = -1$, que por los resultados preliminares (a) y (b) sabemos que k es igual a la cantidad de factores primos de n con e' = i+1 (siempre contando multiplicidades).
- Queremos probar que k es par, y así: $\left(\frac{a}{n}\right) = (-1)^k = 1 \equiv a^{\frac{n-1}{2}} \pmod{n}$.
- Observemos que: e' > i+1 \Rightarrow p = 1 (mod 2ⁱ⁺²), y e' = i+1 \Rightarrow p = 1 + 2ⁱ⁺¹ (mod 2ⁱ⁺²).
- Como n = 1 + 2e · † y i+2 ≤ e ⇒ n ≡ 1 (mod 2i+2). Luego:
- 1 ≡ n ≡ $\prod_{p|n} p$ ≡ $(1 + 2^{i+1})^k$ ≡ 1 + k · 2ⁱ⁺¹ (mod 2ⁱ⁺²) ⇒
- $2^{i+1} \cdot k \equiv 0 \pmod{2^{i+2}}$ \Rightarrow k par, luego $\left(\frac{a}{n}\right) = 1$, que es lo que queríamos probar.

- Test de Miller-Rabin: Si n > 1 e impar que satisface la propiedad en la definición de Pseudoprimo Fuerte para toda base a coprima con n (excepto por la condición de ser compuesto). Entonces n es primo.
- Demostración: Por la proposición anterior, n cumple $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \pmod{n}$ para todo a coprimo con n, luego, por el test de Solovay-Strassen, n es primo.
- Observación: Es fácil ver que el recíproco es cierto, es decir, que un número primo cumple con las congruencias en la definición de Pseudoprimo Fuerte en base a para cualquier a coprimo con él. Esto se desprende del Pequeño Teorema de Fermat y de que la congruencia x² ≡ 1 (mod p) sólo posee las soluciones 1 y -1.

Gary Miller

Michael Rabin

Ternas Pitagóricas

- Veamos para acabar el curso un ejemplo de ecuación diofántica no lineal, en 3 variables, que puede resolverse con técnicas elementales:
- Nos proponemos hallar todas las soluciones en enteros positivos de la ecuación:

$$x^2 + y^2 = z^2$$

 Estas soluciones reciben el nombre de "Ternas Pitagóricas" pues por el Teorema de Pitágoras sabemos que dan lugar a un triángulo rectángulo de lados enteros. Un ejemplo es la solución (3, 4, 5) pues se tiene que:

$$3^2 + 4^2 = 9 + 16 = 25 = 5^5$$

Para comenzar observemos que si x, y, z son enteros positivos solución de $(\ensuremath{\overline{e}})$ y si d = mcd(x, y, z) entonces podemos escribir x = d · X, y = d · Y, z = d · Z con X, Y, Z enteros positivos tales que mcd(X, Y, Z) = 1 y vemos que:

o
$$(d \cdot X)^2 + (d \cdot Y)^2 = (d \cdot Z)^2 \Rightarrow X^2 + Y^2 = Z^2$$
.

- Por lo tanto para encontrar todas las soluciones de (©) está claro que es suficiente con hallar todas aquellas soluciones X, Y, Z con mcd(X, Y, Z) = 1, y a partir de ellas con tan sólo multiplicar a los tres enteros por un entero k arbitrario se obtienen todas las soluciones de la ecuación.
- A una solución (X, Y, Z) con la propiedad mcd(X, Y, Z) = 1 se la llama Solución Primitiva. A partir de ahora veremos como calcular todas las soluciones primitivas de (³). Sea por lo tanto (X, Y, Z) una tal solución.
- Veamos que se tiene que cumplir también que mcd(X, Y) = mcd(X, Z) = mcd(Y, Z) = 1. Probemos sólo mcd(X, Y) = 1, el resto se prueba con idéntico argumento. Si llamo d = mcd(X, Y) entonces de la ecuación (e) obtenemos que: $0 = X^2 + Y^2 = Z^2 \pmod{d}$, es decir que d también divide a Z^2 . Si suponemos que d > 1, entonces hay al menos un primo p que divide a d, y en particular vemos que p divide a X, Y y Z. Esto contradice la hipótesis de que la terna X, Y, Z es primitiva, con lo cual queda probado que mcd(X, Y) = 1.

- Por lo tanto en una solución primitiva X, Y, Z los elementos son coprimos dos a dos.
- Veamos ahora que X e Y tienen diferente paridad: no pueden ser ambos pares puesto que sabemos que son coprimos, y si fueran ambos impares podemos reducir la ecuación () módulo 4 y obtenemos:
- $2 \equiv X^2 + Y^2 \equiv Z^2 \pmod{4}$, lo cual es una contradicción puesto que un cuadrado módulo 4 sólo puede caer en la clase del 0 o en la del 1.
- Ahora que sabemos que X e Y tienen diferente paridad podemos suponer que X es par y que Y es impar (pues la ecuación es simétrica en X e Y), y evidentemente Z tiene que ser impar.
- Como Z Y y Z + Y son ambos pares, podemos introducir nuevas variables:
- $Z Y = 2 \cdot s$, $Z + Y = 2 \cdot r$ para r, s enteros.

Deshaciendo el cambio de variables, vemos fácilmente que se tiene:

 $Y = r - s, Z = r + s \tag{\#}$

- Veamos que estas nuevas variables r y s tiene que ser números coprimos y de diferente paridad: Si hubiera un divisor común d > 1 entre r y s vemos de las fórmulas (#) que d divide a Y y a Z, contradiciendo el hecho de que los elementos de la terna X, Y, Z son dos a dos coprimos. También se deduce de (#) que como Y y Z son impares r y s tienen diferente paridad.
- Como X es par, podemos escribir X = 2 · W, con W entero. Sustituyendo las variables X, Y, Z por las variables W, r y s en la fórmula (⑤) obtenemos:
- $X^2 = Z^2 Y^2$ ⇒ $4 \cdot W^2 = (Z Y) \cdot (Z + Y) = 4 \cdot r \cdot s$, de donde:
- W² = r · s. Como sabemos además que r y s son coprimos ⇒ Existen enteros u y v con: r = u², s = v² y W = u · v. Nótese que como r y s son de diferente paridad, u y v son de diferente paridad.

$$X = 2 \cdot \cup \cdot \vee, Y = \cup^2 - \vee^2, Z = \cup^2 + \vee^2$$
 (*)

- para enteros positivos u y v que son coprimos y de diferente paridad.
- Veamos finalmente que cualquier terna X, Y, Z obtenida como en (*) de una pareja de enteros positivos u y v coprimos y de diferente paridad, y tales que u > v, es una terna de enteros positivos que es solución primitiva de (***). Para probar que es solución basta con verificar la identidad:
- $(2 \cdot u \cdot v)^2 + (u^2 v^2)^2 = (u^2 + v^2)^2$, que sale fácilmente aplicando la fórmula del cuadrado de un binomio. Falta con verificar que es primitiva, y para ello veremos que no hay ningún factor primo p en común entre X, Y y Z.

- Supongamos (razonando por el absurdo) que existe un primo p que divide a X, Y y Z. Como Y y Z son impares, tenemos que p > 2. Por lo tanto, como p divide a X = $2 \cdot u \cdot v$ tenemos que p divide a u o a v. Supondremos que p divide a u (el otro caso es análogo). Como p divide a u y también divide a $Z = u^2 + v^2$ tenemos que p divide a $v^2 = Z u^2$ y por lo tanto que p divide a v. Pero u y v son coprimos, con lo cual no pueden ser ambos múltiplos de p. Esta contradicción prueba que ningún primo puede dividir a X, Y y Z, con lo cual la terna X, Y, Z como en (*) es una solución primitiva de (\overline{v}).
- Finalmente, recordemos que para obtener la solución general de ([©]), basta con multiplicar por un entero k > 0 a las soluciones primitivas. Por lo tanto, la solución general de ([©]) es:

$$X = 2 \cdot k \cdot u \cdot v, Y = k \cdot (u^2 - v^2), Z = k \cdot (u^2 + v^2)$$

o con k > 0 y u, v enteros coprimos y de diferente paridad, con u > v.