Stanislas Adjoint d'un endomorphisme Thème

PSI 2021-2022

_ _ _

Soient E un espace vectoriel euclidien (de dimension finie). Soient $(u,v)\in \mathscr{L}(E)^2$. L'endomorphisme v est adjoint de u si

$$\forall (x,y) \in E^2, \langle u(x), y \rangle = \langle x, v(y) \rangle.$$

1. Montrer que tout endomorphisme admet un unique adjoint, noté u^* , puis que $(u^*)^* = u$.

2. Soit $\mathscr{B} = (e_1, \dots, e_n)$ une base orthonormée de E. Exprimer la matrice de u^* dans la base \mathscr{B} en fonction de celle de u.

3. Le cas de la dimension infinie.

a) Dans $\mathbb{R}[X]$ muni du produit scalaire qui rend la base canonique orthonormée, déterminer l'adjoint de l'opérateur de dérivation.

b) On considère, dans $\mathscr{C}([0,1],\mathbb{R})$ muni du produit scalaire $(f,g)\mapsto \int_0^1 f(t)g(t)\,\mathrm{d}t$ l'endomorphisme $u:f\mapsto f(0)$. Montrer que u n'admet pas d'adjoint.

4. Montrer que $\psi: u \mapsto u^*$ est un automorphisme.

5. Exprimer $(u \circ v)^*$ en fonction de u^* et de v^* .

6. Soit F un sous-espace vectoriel de E. Montrer que F est stable par u si et seulement si F^{\perp} est stable par u^* .

7. Montrer les égalités :

$$\operatorname{Im} u^* = (\operatorname{Ker} u)^{\perp} \text{ et } \operatorname{Ker} u^* = (\operatorname{Im} u)^{\perp}.$$

L'endomorphisme u est autoadjoint si $u^* = u$.

8. Montrer que p est un projecteur orthogonal si et seulement si $p^2 = p$ et $p^* = p$.

9. Montrer que l'ensemble des endomorphismes autoadjoints forme un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\frac{n(n+1)}{2}$.

Soit u un endomorphisme autoadjoint. L'endomorphisme u positif (resp. défini positif) si pour tout $x \in E$, $\langle u(x), x \rangle \ge 0$ (resp. >).

10. Montrer que les valeurs propres d'un endomorphisme positif sont réelles positives. En déduire que son polynôme caractéristique est scindé.

11. Pour tout $u \in \mathcal{L}(E)$, montrer que $u \circ u^*$ et $u^* \circ u$ sont autoadjoints positifs.

L'endomorphisme u est dit antisymétrique si $u^* = -u$.

12. Monter que u est antisymétrique si et seulement si pour tout $x \in E$, $\langle x, u(x) \rangle = 0$.

13. En dimension 3, montrer que, si u est antisymétrique, il existe $\omega \in E$ tel que $u(x) = t \wedge x$.