MICHAELIS-MENTEN STEADY STATE DERIVATION

$$E + S \stackrel{\mathbf{k}_1}{\Longrightarrow} ES \stackrel{\mathbf{k}_2}{\Longrightarrow} EP \stackrel{\mathbf{k}_3}{\Longrightarrow} E + P \qquad (8.17)$$

Assuming Transformation of ES to EP is Rate Limiting:

aka: k_1, k_{-1} , and $k_3 >> k_2$

 k_{cat} = rate constant of rate-determining step (substrate to product)

$$E + S \stackrel{\mathrm{k_1}}{\rightleftharpoons} ES \stackrel{\mathrm{k_{\mathrm{cat}}}}{\longrightarrow} E + P$$
 (8.18)

$$\therefore Velocity = k_{cat} * [ES]$$
 (8.19)

When $k_{cat} << k_{-1}$,

Equalibrium Dissociation Constant:

$$K_S = rac{k_{-1}}{k_1} = rac{[E] * [S]}{[ES]}$$

VARIABLES

E+S	Enzyme + Substrate
ES	Enzyme-Substrate Complex
EP	Enzyme-Product Complex
E+P	Enzyme + Product
k ₁	Rate Constant of Forward Direction of Enzyme-Substrate Complex Formation
k ₋₁	Rate Constant of Reverse Direction of Enzyme-Substrate Complex Disassociation
k ₂	Rate Constant of Forward Direction of Enzyme-Product Complex Formation
k ₋₂	Rate Constant of Reverse Direction of Enzyme-Product Complex Disassociation
k ₃	Rate Constant of Forward Direction of Enzyme + Product Formation
k ₋₃	Rate Constant of Reverse Direction of Enzyme + Product Disassociation
k _{cat}	"Turn Over" of One Substrate Molecule ; Number of Substrate Molecules Turned Over per Enzyme Molecule per Unit Time
K _M	Michaelis Constant ; Affinity of Enzyme for Substrate ; Ratio of Rate Constants for A Specific Reaction
Ks	Equilibrium Dissociation Constant