

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia Mecânica

MECÂNICA GERAL

PROFESSOR: IGOR DOS SANTOS GOMES

E-MAIL: IGOR.GOMES@ITEC.UFPA.BR

UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA MECÂNICA

PLANO DE AULA

PROFESSOR | IGOR DOS SANTOS GOMES

DISCIPLINA

MECÂNICA GERAL

Objetivos

Esta disciplina tem como objetivo desenvolver competências para que o aluno seja capaz de **aplicar métodos e técnicas para estudar e avaliar o comportamento dos materiais** a partir do conhecimento relacionado à:

- a) Equações de equilíbrio;
- b) Estruturas isostáticas;
- c) Forças distribuídas;
- d) Atrito;
- e) Momento de inércia de áreas;

Conteúdo Programático

- 1. Cálculo vetorial e equilíbrio de partículas
- 2. Força, momento e sistemas equivalentes
- 3. Sistemas simples de cargas distribuídas
- 4. Equilíbrio de corpos rígidos, treliças planas e esforços internos
- 5. Atrito
- 6. Centro de gravidade, centro de massa e centro geométrico
- 7. Momento de inércia de área e momento de inércia de massa

Cronograma das aulas – 35 Aulas

Março	14	16	21	23	28	30				
Abril	04	06	11	13	18	20	25	27		
Maio	02	04	09	11	16	18	23	25	30	
Junho	01	06	08	13	15	20	22	27	29	
Julho	04	06	11							

Recursos didáticos

- Aulas expositivas;
- Exercícios propostos e listas de exercícios;
- Recursos audiovisuais;
- Abordagem de situações problemas para o desenvolvimento de estudos de caso.

Metodologia de ensino

- Aulas expositivas, para estimular a concepção visual das situações abordadas;
- Exercícios propostos, para a fixação da abordagem sequencial dos problemas;
- Participação do aluno, para estimular uma atitude proativa do aluno na busca e na partilha do conhecimento;
- Listas de exercícios, para aplicar os conhecimentos teóricos e entender a importância dos mesmos no entendimento do conteúdo aplicado em situações reais;
- > Recursos audiovisuais, de modo a possibilitar a visualização, dos temas abordados em aula, aplicados na prática, facilitando inserção e evolução técnica dentro dos conteúdos trabalhados.

Critérios e instrumentos de avaliação

- Frequência e participação do aluno;
- Lista de exercícios;

Avaliações

Serão três avaliações ao longo do curso:

- > 1ª Avaliação: Lista de exercícios;
- ➤ 2ª Avaliação: Lista de exercícios;
- 3ª Avaliação: Lista de exercícios.

Critério de aprovação

▶ Para fins de avaliação qualitativa e quantitativa dos conhecimentos serão atribuídos aos estudantes os seguintes conceitos, equivalentes às notas: EXC – Excelente (9,0 - 10,0); BOM – Bom (7,0 - 8,9); REG – Regular (5,0 - 6,9); INS – Insuficiente (0 - 4,9);

Observações importantes

- > Eventualmente, as avaliações de aprendizagem poderão ser feitas por meio de trabalhos individuais ou em grupo;
- Atividades adicionais para composição da nota poderão ser realizadas;
- Será considerado aprovado o discente que obtiver o conceito REG, BOM ou EXC e pelo menos setenta e cinco por cento (75%) de frequência nas atividades programadas: aulas remotas e presenciais;
- O discente que, por impedimento legal, doença atestada por serviço médico de saúde ou motivo de força maior, devidamente comprovado, faltar a um momento de verificação de aprendizagem, poderá realizá-la sob a forma de segunda chamada;
- A avaliação substitutiva poderá ser aplicada, a critério do professor da turma. O conceito final deverá ser substituído pelo novo conceito obtido na avaliação substitutiva;
- Serão desconsiderados e receberão nota 0 (zero) os trabalhos e provas que apresentarem sinais de cópias de outros trabalhos, contiverem evidências de material literalmente copiado ou traduzido de livros ou internet;

Bibliografia Básica

- 1. HIBBELER, R. C. Estática: mecânica para engenharia. São Paulo: Pearson Education do Brasil, 2011.
- 2. HIBBELER, R. C. Mecânica: dinâmica. Rio de Janeiro: Livros Técnicos e Científicos, 1999.
- 3. BEER, F. P.; JOHNSTON, E. R. Mecânica vetorial para engenheiros: estática. São Paulo: Makron Books, 1999.

Bibliografia Complementar

- 1. MERIAM, J. L.; KRAIGE, L. G. Mecânica: estática. 5.ed. Rio de Janeiro: Livros Técnicos e Científicos, 2004.
- 2. KAMINSKI, P. C. Mecânica geral para engenheiros. São Paulo: Edgard Blücher, 2000.
- 3. FRANÇA, L. N. F. Mecânica geral. São Paulo: Edgard Blücher, 2001.
- 4. WICKERT, J. Introdução à engenharia mecânica. São Paulo: Thomson Learning, 2007.

CONTEÚDOS DA DISCIPLINA

Grupos de disciplinas da área de sistemas mecânicos e mecânica aplicada

DELINEAMENTO DA DISCIPLINA

- > Horários;
- Desenvolvimento das aulas;
- Disponibilização das aulas gravadas e dos materiais;
- > Frequência;
- > Formas de avaliação;
- > Formas de contato professor/estudante;

ATÉ A PRÓXIMA!