Universidad Nacional de San Agustín de Arequipa

Domus Sapientiæ

Facultad de Producción y servicios

Escuela profesional de Ingeniería en Telecomunicaciones

Tráfico Telefónico

Jose Antonio Hancco Mamani

Estudiante de Ingeniería en Telecomunicaciones

Mg. Romel Montes de Oca

Docente del curso de Sistemas de Telefonía

Arequipa 2021

1. Problemas propuestos

1.1. Una oficina realiza un promedio de 43 llamadas al día, cada llamada tiene una duración en promedio de 8 minutos, si el horario de oficina es de 8:00 am a 4:00 pm y se asume que las llamadas se realizan de manera proporcional en todo el horario, calcular la intensidad de tráfico.

Datos:

Número de llamadas(n): 43 llamadas/dia

Tiempo promedio (t_p) : 8min

Tiempo de observación (t_0) =8 horas

Resolución

$$V_{t} = n * t$$

$$V_{t} = 43 * 8$$

$$V_{t} = 344min$$

$$I_{t} = \frac{V_{t}}{t_{o}}$$

$$I_{t} = \frac{344min}{8hours} * \frac{1hour}{60min}$$

$$I_{t} = 0.716E$$

$$(2)$$

1.2. Determinar la intensidad de tráfico, si una línea está ocupada durante una hora y 100 usuarios solicitan una llamada con una duración promedio de 3 minutos.

Datos:

Número de llamadas(n): 100 llamadas

Tiempo promedio (t_p) : 3min

Tiempo de observación $(t_0)=1$ horas

Resolución

$$V_t = n * t$$

$$V_t = 100 * 3$$

$$V_t = 300min$$
(3)

$$I_{t} = \frac{V_{t}}{t_{o}}$$

$$I_{t} = \frac{300min}{1hours} * \frac{1hour}{60min}$$

$$I_{t} = 5Erlangs \tag{4}$$

1.3. Consideremos un centro de atención al cliente ONLINE vía telefónica. El tiempo completo de la fase de marcado se asume a ser de 20 s, incluye la invitación a marcar y el anuncio de todas las opciones. Se esperan 10.000 llamadas en la hora pico. Calcular la intensidad de tráfico.

Datos:

Número de llamadas(n): 10000 llamadas

Tiempo promedio (t_p) : 20 seg

Tiempo de observación $(t_0)=1$ horas

Resolución

$$V_{t} = n * t$$

$$V_{t} = 10000 * 20seg * \frac{1min}{60seg}$$

$$V_{t} = 3333,3min$$

$$I_{t} = \frac{V_{t}}{t_{o}}$$

$$I_{t} = \frac{3333,3min}{1hours} * \frac{1hour}{60min}$$

$$I_{t} = 55,555Erlangs$$
(6)

1.4. En un grupo de 25 líneas se cursaron 150 llamadas en media hora, con un promedio de duración de 3 minutos. Calcular el tráfico total y por línea.

Datos:

Número de llamadas(n): 150 llamadas

Tiempo promedio (t_p) : 3min

Tiempo de observación $(t_0)=0.5$ horas

Lineas: 5

Resolución

$$V_t = n * t$$

$$V_t = 150 * 3$$

$$V_t = 450min (7)$$

$$I_t = \frac{V_t}{t_o}$$

$$I_t = \frac{450min}{0.5hours} * \frac{1hour}{60min}$$

$$I_t = 15E \tag{8}$$

$$Traffic_{line} = \frac{I_t}{N_l}$$

$$Traffic_{line} = \frac{15E}{25} \tag{9}$$

$$Traffic_{line} = 0.6E (10)$$