Diszkrét matematika 1

3. előadás Relációk II.

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2024 tavasz

Relációk II.

Kompozíció tulajdonságai 1

Tétel

Legyenek R, S, T relációk. Ekkor

• $(R \circ S) \circ T = R \circ (S \circ T)$ (a kompozíció asszociatív).

Bizonyítás.

- Legyen $(x, y) \in (R \circ S) \circ T$.
- Ekkor $\exists z \in \operatorname{rng}(T) \cap \operatorname{dmn}(R \circ S) :$ $(x, z) \in T \land (z, y) \in R \circ S$
- Ekkor $\exists w \in \operatorname{rng}(S) \cap \operatorname{dmn}(R) :$ $(z, w) \in S \wedge (w, y) \in R$
- Ekkor $(x, z) \in T \land (z, w) \in S \Rightarrow (x, w) \in (S \circ T)$
- Ha $(x, w) \in S \circ T \land (w, y) \in R \Rightarrow (x, y) \in R \circ (S \circ T)$

Kompozíció tulajdonságia 2

Tétel

Legyenek R, S relációk. Ekkor

 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

Bizonyítás.

- Legyen $(x, y) \in (R \circ S)^{-1} \iff (y, x) \in R \circ S$.
- $\bullet \iff \exists z : (y,z) \in S \land (z,x) \in R$
- $\bullet \iff (z,y) \in S^{-1} \land (x,z) \in R^{-1}$
- $\bullet \iff (x,y) \in S^{-1} \circ R^{-1}$

Relációk tulajdonságai 1/4.

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

Példa

- \bullet =, \leq , < relációk \mathbb{R} -en
- c halmazokon
- | oszthatóság Z-en
- $K = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x y| \le 1\}$ ("közelségi reláció")

Definíció (szimmetrikusság)

- R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$ Példa: =, K, ellenpélda: $\leq, <, \subset, |$
- R reláció antiszimmetrikus, ha $\forall x,y \in X: (xRy \land yRx) \Rightarrow x = y$ Példa: $=, \leq, \subset$ ellenpélda: K
- R reláció szigorúan antiszimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow \neg(yRx)$ Példa: < ellenpélda: $=, \leq, K$

Relációk tulajdonságai 2/4.

Definíció (reflexivitás)

- R reláció reflexív, ha $\forall x \in X : xRx$ Példa: $=, \leq, \subset, |, K$ ellenpélda: <
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ Példa: < ellenpélda: $=, \leq, \subset, |, K$

irreflexív

Definíció (tranzitivitás)

• R reláció tranzitív, ha $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$ Példa: $=, \leq, \subset, |, <$ ellenpélda: K

Relációk tulajdonságai 3/4.

Elemek összehasoníthatósága:

Definíció

• R reláció dichotóm, ha $\forall x, y \in X$ esetén $xRy \lor yRx$ (megengedő "vagy"!) Példa: < ellenpélda: \subset ,

Relációk tulajdonságai 4/4.

Elemek összehasoníthatósága:

Definíció

• R reláció trichotóm, ha $\forall x,y \in X$ esetén x=y, xRy és yRx közül pontosan egy teljesül Példa: < ellenpélda: $=, \leq, K$

Relációk tulajdonságai, példa

Legyen *R* a következő reláció:

szimmetrikus	×	aRb , $\neg(bRa)$	reflexív	×	$\neg(bRb)$
antiszimmetrikus	\checkmark		irreflexív	×	aRa
szig. antiszimmetrikus	×	aRa	tranzitív	×	$aRb, bRc, \neg(aRc)$
dichotóm	×	$\neg(cRc)$	trichotóm	×	aRa

Relációk tulajdonságai, összefoglalás.

Legyen R egy reláció X-en, azaz $R \subset X \times X$.

- R reláció szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx$ (Példa: =, K)
- R reláció antiszimmetrikus, ha $\forall x, y \in X : (xRy \land yRx \Rightarrow x = y \text{ (Példa: =, <, <)})$
- R reláció szigorúan antiszimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow \neg(yRx)$ (Példa: <)
- R reláció reflexív, ha $\forall x \in X : xRx$ (Példa: =, <, \subset , |, K)
- R reláció irreflexív, ha $\forall x \in X : \neg(xRx)$ (Példa: <)
- R reláció tranzitív, ha $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$ (Példa: =, \leq , \subset , |)
- R reláció dichotóm, ha $\forall x, y \in X$ esetén $xRy \lor yRx$ (megengedő "vagy"!) (Példa: \leq)
- R reláció trichotóm, ha $\forall x, y \in X$ esetén x = y, xRy és yRx közül pontosan egy teljesül (Példa: <)

Speciális relációk

Ekvivalencia reláció, osztályozás 1

Halmaz elemeit csoportosítjuk, a csoporton belül az elemeket azonosnak tekintjük

Példa

- egyetemi hallgatók osztályozása évfolyam szerint
- cég dolgozói osztályozása beosztás szerint
- sík egyeneseit irányonként osztályozzuk

Definíció

Egy *R* reláció ekvivalencia reláció, ha reflexív; tranzitív és szimmetrikus.

Példa

- $H_1 \sim H_2$, ha H_1 és H_2 évfolyamtársak
- $M_1 \sim M_2$, ha M_1 és M_2 beosztása megegyezik
- $\ell_1 \sim \ell_2$, ha ℓ_1 és ℓ_2 párhuzamosak

d

R reláció hurokélek nélkül

Ekvivalencia reláció, osztályozás 2

Definíció

Egy *X* halmaz részhalmazainak *O* rendszerét osztályozásnak nevezzük, ha

- O elemei páronként diszjunkt nemüres halmazok;
- $\bullet \cup \mathcal{O} = X$.

Példa

- hallgatók:
 - {1. évf. hallgatók, 2. évf. hallgatók, 3. évf. hallgatók}
- $\bullet \ \, \text{dolgoz\'ok:} \ \{\text{fejleszt\'ok}, \text{marketing}, \text{tesztel\'ok}, \text{HR}, \dots \}$
- egyenesek lehetséges irányai

R reláció hurokélek nélkül

Ekvivalencia reláció és osztályozás 3

Definíció

Legyen \sim egy ekvivalencia reláció az X halmazon. Tetszőleges $x \in X$ esetén legyen

$$\tilde{x} = [x] = \{ y \in X : y \sim x \}$$

az x ekvivalencia osztályának nevezzük.

Példa

• $\{[\ell] : \ell \text{ a sík egyenese}\}$ az irányok halmaza.

Tétel

- Egy X halmazon értelmezett \sim ekvivalencia reláció esetén $\{[x]: x \in X\}$ egy osztályozás.
- Tekintsük egy X halmaz \mathcal{O} osztályozását. Ekkor az $R = \{(x,y): x \text{ \'es } y \text{ ugyanazon } \mathcal{O} \text{ osztályban vannak}\}$ egy ekvivalencia reláció.

Ekvivalencia reláció ⇒ osztályozás

Bizonyítás. Legyen $\mathcal{O} = \{[x] : x \in X\}$ ahol $[x] = \{y \in X : y \sim x\}$

- 1. feltétel: $\cup \mathcal{O} = X$. Mivel $\sim \text{reflex}(v \Rightarrow x \in [x] \Rightarrow \cup \{[x] : x \in X\} = X$.
- 2. feltétel: ∪Ø elemei páronként diszjunktak.
 - Tegyük fel hogy $[x] \cap [y] \neq \emptyset$. Megmutatjuk, hogy [x] = [y].
 - Legyen $z \in [x] \cap [y]$. Akkor (definíció szerint) $z \sim x$ és $z \sim y$.
 - Mivel \sim szimmetrikus $\Rightarrow x \sim z$.
 - Mivel \sim tranzitív, ezért $x \sim z$ és $z \sim y \implies x \sim y$, azaz $x \in [y]$.
 - Ha $x' \in [x]$, akkor $x' \sim x$ és a tranzitivitás miatt $\Rightarrow x' \sim y$, azaz $x' \in [y]$.
 - Tehát $[x] \subset [y]$.
 - x és y szerepének felcserélésével $[y] \subset [x]$, azaz [x] = [y].