Massachusetts Institute of Technology

Instructors: Erik Demaine, Jason Ku, and Justin Solomon

July 11,2025 Problem Set 3

Problem Set 3

Name: Zunmi

Collaborators: None

Problem 3-1.

```
(a) 0:[36,92]
1:
2:
3:
4:[56]
5:[47,61,33]
6:[52]
```

(b) c = 13

Problem 3-2.

- (a) guarantee: $k_1 = 1, k_2 = n + 1$
- (b) guarantee:choose k_1, k_2 small enough so that $k_i n//u = 0$
- (c) the highest probability is $\frac{1}{n}$

Problem Set 3

Problem 3-3.

(a) word can be upper bounded by $128^{16logn*8} < n^{33}$, so radix sort.

- **(b)** direct access array of size 10^5
- (c) Multiplying by n^3 , so they are m in $[0, 4n^3]$, using radix sort.
- (d) merge sort using only comparisons, so O(nlogn).

Problem 3-4.

(a) build a hash table H,insert b_i into H mapped to i,for every b_i , check if $r - b_i$ exists in H in expected O(1) time,then check whether it is close.

(b) Replace each b_i , with tuple (b_i, i) , scan the B and remove all (b_i, i) that $b_i > r$, then use redix sort to an array A.

```
use two-pointer algorithm,
initialize i=0, j=|A|-1, if A[i][0] + A[j][0] ; r,then i++;
```

if
$$A[i][0] + A[j][0]$$
 ; r,then $j - -$;

if A[i][0] + A[j][0] = r, then return True.

Problem Set 3 5

Problem 3-5.

- (a)
- **(b)**
- (c) code in .python file