CS F364 Design & Analysis of Algorithms

PROBLEM DOMAIN - NUMBER THEORY

Basic Problems and Algorithms:

- Euclid's algorithm for gcd:
 - Correctness and Time Complexity
- Extended Euclidean / Aryabhatia's algorithm:
 - Correctness

GREATEST COMMON DIVISOR

- O Notation:
 - a divides b (i.e. b is divisible by a): a | b
 - a does not divide b: a ∤ b
- Euclid's Algorithm: (given a and b s.t. a > b > 0)
 - $r_0 = a$; $r_1 = b$
 - i = 2
 - repeat

```
r_i = r_{i-2} \mod r_{i-1};
q_i = r_{i-2} \dim r_{i-1}
until (r_{i-1} \mod r_i == 0)
```

return r_i

EUCLID'S ALGORITHM - CORRECTNESS

- Theorem:
 - If Euclid's algorithm returns r_k, then r_k is gcd(a,b)
- Proof:
 - Let g = gcd(a,b).
 - We claim: $r_k \mid g$ and $g \mid r_k$
 - o and hence the conclusion.

EUCLID'S ALGORITHM - CORRECTNESS

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a; r_1 = b$
 - i = 2
 - repeat

```
r_i = r_{i-2} \mod r_{i-1};
q_i = r_{i-2} \dim r_{i-1}
until (r_{i-1} \mod r_i == 0)
```

return r_i// returns r_k

• Proof of $\mathbf{r}_{\mathbf{k}} | \mathbf{g}$:

- Observe that $\mathbf{r}_{k} \mid \mathbf{r}_{k-1}$ and $\mathbf{r}_{k-2} = \mathbf{r}_{k-1}^* \mathbf{q}_k + \mathbf{r}_k$ • Implication: $\mathbf{r}_{k} \mid \mathbf{r}_{k-2}$
- Since $\mathbf{r}_{k} \mid \mathbf{r}_{k-1}$ and $\mathbf{r}_{k} \mid \mathbf{r}_{k-2}$ and $\mathbf{r}_{k-3} = \mathbf{r}_{k-2} * \mathbf{q}_{k-1} + \mathbf{r}_{k-1}$ or $\mathbf{r}_{k} \mid \mathbf{r}_{k-3}$
- Inductively, we can show that $\mathbf{or_k} \mid \mathbf{r_i}$ and $\mathbf{r_k} \mid \mathbf{r_{i-1}}$ implies $\mathbf{r_k} \mid \mathbf{r_{i-2}}$ for all \mathbf{i}
- Then $\mathbf{r}_k \mid \mathbf{r}_1 = \mathbf{b}$ and $\mathbf{r}_k \mid \mathbf{r}_0 = \mathbf{a}$. • i.e. $\mathbf{r}_k \mid \mathbf{g}$

EUCLID'S ALGORITHM — CORRECTNESS [CONTD.]

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a; r_1 = b$
 - i = 2
 - repeat

```
r_i = r_{i-2} \mod r_{i-1};
q_i = r_{i-2} \dim r_{i-1}
until (r_{i-1} \mod r_i == 0)
```

return r_i// returns r_k

- Proof of **g | r**_k:
 - Observe that $\mathbf{g} \mid \mathbf{r_0}$ and $\mathbf{g} \mid \mathbf{r_1}$
 - Since $\mathbf{r}_i = \mathbf{r}_{i-2} \mathbf{q}_i * \mathbf{r}_{i-1}$ for all \mathbf{i}
 - o if $g \mid r_{i-2}$ and $g \mid r_{i-1}$
 - then $g \mid r_i$ for all $i \ge 2$
 - Inductively,
 - $og | r_k$

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a; r_1 = b$
 - i = 2
 - repeat

```
r_i = r_{i-2} \mod r_{i-1};
q_i = r_{i-2} \dim r_{i-1}
until (r_{i-1} \mod r_i == 0)
```

return r_i// returns r_k

- Time Complexity is O(k*f(a,b))
 - where k is the (worst case)
 number of iterations
 - and f(a,b) is the cost of basic operations div or mod which is
 - **O(1)** assuming <u>uniform cost</u> <u>model</u>
 - >??

otherwise

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a; r_1 = b$
 - i = 2
 - repeat

```
r_i = r_{i-2} \mod r_{i-1};
q_i = r_{i-2} \dim r_{i-1}
until (r_{i-1} \mod r_i == 0)
```

• return r_i

// returns r_k

- When does the worst case happen?
 - Consider the case: a ≈ b
 Then (a mod b) << b
 - Consider the case: a >> b,
 o(a mod b) ≈ b << a
 - <u>Either case will lead to quick convergence</u>:
 - oi.e. they will not result in worst case behavior

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a; r_1 = b$
 - i = 2
 - repeat

```
r_i = r_{i-2} \mod r_{i-1};
q_i = r_{i-2} \dim r_{i-1}
until (r_{i-1} \mod r_i == 0)
```

return r_i// returns r_k

- The worst case behavior will not be exhibited
 - if a ≈ b or if a >> b
- The worst case will happen when
 - neither of the above (conditions) is true for a and b
 - oi.e. !(a ≈ b) and !(a >> b)
 - and that is also the case for r_i and r_{i-1} in each iteration

```
oi.e. !(r_{i-1} \approx r_i) and !(r_{i-1} >> r_i) for each i
```

- Algorithm gcd(a,b):
- //Precondition:(a > b > 0)
 - $r_0 = a; r_1 = b$
 - i = 2
 - repeat

$$r_i = r_{i-2} \mod r_{i-1};$$
 $q_i = r_{i-2} \dim r_{i-1}$
until $(r_{i-1} \mod r_i == 0)$

return r_i

// returns r_k

• When does the worst case happen?

- Fibonacci numbers fit the bill:
 - Consider $a==F_m$ and $b==F_{m-1}$
 - Then the sequence is:

$$or_0 = F_m$$

 $or_1 = F_{m-1}$
 $or_2 = F_m - F_{m-1} = F_{m-2}$
 $or_3 = F_{m-1} - F_{m-2} = F_{m-3}$
 $o\dots$

In each iteration, the reduction in size is not significant: the quotient q_i is 1 and the remainder r_i is comparable to r_{i-1}

- When does the worst case happen?
- Fibonacci numbers fit the bill for the worst case behavior:
 - If a = F_{m+1} b = F_m
 then gcd(a,b) will take m steps
 - $F_m \approx ((1 + \sqrt{5})/2)^m$ • i.e. $m = \Theta(\log(F_m))$
- •Time Complexity of **gcd** is $\Theta(\log(N))$, where **N** is the larger of the two inputs, assuming **the uniform cost model**

- •Time Complexity of gcd is $\Theta(\log(N))$, where N is the larger of the two inputs, assuming **the uniform cost model**
- •What if we use the logarithmic cost model?
 - •<u>Division operation</u> would take time that is dependent on the size of the input values:
 - it could cost as much as b*b time for b bits.
 - in which case, the time complexity of gcd is $\Theta((log(N))^3)$

EXTENDED EUCLID'S THEOREM

- Theorem:
 - 1. For all a > b > 0, there exist integers x and y such that

$$gcd(a,b) = a*x + b*y$$

Proof : Consider Euclid's algorithm,

oLoop Invariant:

$$or_{i} = r_{i-2} - q_{i} * r_{i-1}$$

So, if gcd(a,b) returns r_k

$$or_k = r_{k-2} - q_k * r_{k-1}$$

$$= r_{k-2} - q_k * (r_{k-3} - q_{k-1} * r_{k-2})$$

o = ...

$$= x*r_0 + y*r_1$$

```
gcd(a,b)
r_0 = a; r_1 = b
i = 2
repeat
r_i = r_{i-2} \mod r_{i-1};
q_i = r_{i-2} \operatorname{div} r_{i-1}
until (r_{i-1} \mod r_i == 0)
return r_i
```

ARYABHATIA'S ALGORITHM

- Theorem:
 - 1. For all a > b > 0, there exist integers x and y such that gcd(a,b) = a*x + b*y
 - 2. Moreover, x and y can be computed in polynomial time.
- Proof of 2 (Algorithm):

```
gcdAB(a,b): //Precondition:(a > b > 0)
  if (b=0) return (a, 1, 0);
  else {
      (d, x1, y1) = gcdAB(b, a mod b)
      // i.e. d = gcd(a, b) = gcd(b, a mod b) = b*x1 + (a mod b)*y1
      // i.e. d = gcd(a,b) = b*x1 + a*y1 - (a div b)*b*y1
      return (d, y1, x1 - (a div b)*y1);
    }
```