

Ejercicios prácticos

Unidades: 4

Guía

- La primera parte de esta práctica consta de la preparación del entorno de trabajo, realizando una instalación del servidor y el uso de un cliente.
- La segunda parte consta de ejercicios prácticos para la creación de la estructura de la base de datos (base de datos, tablas, índices, ...).
- Los ejercicios planteados pueden contener un enunciado descriptivo o un modelo físico.
- El modelo físico esta representado de la siguiente forma,

Nombre tabla (CAMPOS)

Los campos pueden ir con el siguiente formato:

- o Subrayado. Indica que es una clave primaria
- o Subrayado discontinuo. Indica que es una clave única o alternativa
- o Negrita. Indica que es un campo obligatorio
- o Sin formato. Indica que es un campo opcional.

Las claves foráneas irán después de la tabla con la siguiente forma,

(campo) es clave foránea de TABLA

Las claves únicas o alternativas se añadirán después de la tabla con la siguiente forma.

(campo) es clave alternativa

Ejemplo

A partir del siguiente modelo físico sobre una tienda de productos. Realiza la estructura de la base de datos.

```
CLIENTES (cliente id, nombre, apellido, email, teléfono, dirección)

CATEGORIAS (categoria id, nombre, descripción)

PRODUCTOS (producto id, nombre, descripción, precio, stock, categoria_id) {categoria_id} es clave foránea de CATEGORIAS

PEDIDOS (pedido id, cliente_id, fecha, total) {cliente_id} es clave foránea de CLIENTES

LINEAS_PEDIDOS (linea_pedido id, pedido id, producto id, cantidad, precio_unitario, descuento, total) {pedido_id} es clave foránea de PEDIDOS
```

{producto id} es clave foránea de PRODUCTOS

Solución

```
CREATE DATABASE tienda;
USE tienda;
CREATE TABLE CLIENTES (
    cliente id INT AUTO INCREMENT PRIMARY KEY,
    nombre VARCHAR(255) NOT NULL,
    apellido VARCHAR(255) NOT NULL,
    email VARCHAR(255) UNIQUE NOT NULL,
    telefono VARCHAR(20),
    direccion VARCHAR(255)
);
CREATE TABLE CATEGORIAS (
    categoria_id INT AUTO_INCREMENT PRIMARY KEY,
    nombre VARCHAR(255) NOT NULL,
    descripcion TEXT
);
CREATE TABLE PRODUCTOS (
    producto_id INT AUTO_INCREMENT PRIMARY KEY,
    nombre VARCHAR(255) NOT NULL,
    descripcion TEXT,
    precio DECIMAL(10,2) NOT NULL,
    id categoria INT,
    FOREIGN KEY (id_categoria) REFERENCES Categorias(categoria_id)
);
CREATE TABLE PEDIDOS (
    pedido_id INT AUTO_INCREMENT PRIMARY KEY,
    cliente id INT NOT NULL,
    fecha DATETIME NOT NULL,
    total DECIMAL(10,2),
    FOREIGN KEY (cliente_id) REFERENCES Clientes(cliente_id)
);
CREATE TABLE LINEAS PEDIDOS (
    linea pedido id INT,
    pedido_id INT,
    producto_id INT,
    cantidad INT NOT NULL,
    precio_unitario DECIMAL(10,2) NOT NULL,
    descuento DECIMAL(10,2) NOT NULL,
    total DECIMAL(10,2) NOT NULL,
    PRIMARY KEY (linea_pedido_id, pedido_id, producto_id),
    FOREIGN KEY (pedido_id) REFERENCES Pedidos(pedido_id),
    FOREIGN KEY (producto_id) REFERENCES Productos(producto_id)
);
```


Ejercicio 1.

Realiza la instalación de un servidor de base de datos relacional (MySQL o MariaDB) y contesta a las siguiente preguntas:

- a) Explica todo el proceso de instalación que has realizado
- b) Accede a la consola o terminal de la base de datos y procede a logearte. Ejecuta el siguiente comando: *select version()* y muestra una captura de pantalla.
- c) ¿Para qué sirve el usuario "root"?
- d) Si quisiéramos tener más un servidor de base de datos del mismo tipo activo en nuestro sistema operativo. ¿Qué necesitamos modificar para que no tengamos ningún problema?

Ejercicio 2.

Realiza la instalación de un cliente de base de datos gráfico (SQLDeveloper, HeidiSQL, MySQL Workbench, Dbeaver, etc.).

- a) Explica todo el proceso de instalación que has realizado.
- b) Accede mediante el cliente y conéctate. Ejecuta el siguiente comando: *select version()* y muestra una captura de pantalla.
- c) ¿Por qué es necesario un cliente para conectarse a la base de datos?
- d) Describe las ventajas e inconvenientes de utilizar un cliente de consola o terminal a uno gráfico.

Ejercicio 3.

A partir del siguiente modelo físico sobre animales y cuidadores procede a crear la estructura de la base de datos mediante sentencias DML

```
ESPECIES (<u>idEspecie</u>, nombre, nombreCientifico, familia)

HABITATS (idHabitat, nombre, descripcion, capacidad)

ANIMALES (<u>idAnimal</u>, nombre, fechaNacimiento, genero, idEspecie, idHabitat)

{idEspecie} es clave foránea de ESPECIES
{idHabitat} es clave foránea de HABITATS

CUIDADORES (<u>idCuidador</u>, nombre, apellidos, <u>email</u>, teléfono)
{email} es clave alternativa

ASIGNACIONES (<u>idAnimal</u>, <u>idCuidador</u>, fechaInicio, fechaFin)
```


Ejercicio 4.

A partir del siguiente modelo físico sobre películas e integrantes que participan en una película procede a crear la estructura de la base de datos mediante sentencias DML.

```
INTEGRANTES (idIntegrante, documentoIdentidad, nombre, apellido,
fechaNacimiento, nacionalidad)
      {documentoIdentidad} es clave alternativa
ACTORES (idActor, tematicaPreferida, numeroOscars)
      {idActor} es clave foránea de INTEGRANTES
DIRECTORES (idDirector, numeroPeliculasFilmadas)
      {idDirector} es clave foránea de INTEGRANTES
PELICULAS (idPelicula, titulo, añoPublicación, idDirector, duración)
      {idDirector} es clave foránea de DIRECTORES
GENEROS (idGenero, nombre, descripción)
PELICULA_ACTORES (idPelicula, idActor)
      {idPelicula} es clave foránea de PELICULAS
      {idActor} es clave foránea de ACTORES
PELICULA_GENEROS (idPelicula, idGenero)
      {idPelicula} es clave foránea de PELICULAS
      {idGenero} es clave foránea de GENEROS
```

Consideramos que se van a realizar muchas búsquedas por el campo nombre de los integrantes y por los nombres de los géneros.

Ejercicio 5.

Diseñar una base de datos para gestionar una biblioteca. La información que se necesita almacenar incluye datos sobre autores, libros, editores, categorías, copias de libros, usuarios y préstamos. A continuación, se describen los requerimientos y las relaciones entre las distintas entidades:

- Un autor tiene un identificador único, documento de identidad, nombre, apellido, fecha de nacimiento y nacionalidad. El documento de identidad es una clave alternativa.
- Un libro tiene un identificador único, título, año de publicación, identificador del autor y número de páginas. Cada libro está asociado a un autor.
- Un editor tiene un identificador único, nombre, dirección y teléfono.
- Un libro puede estar asociado a varios editores y un editor puede estar asociado a varios libros.
- Una categoría tiene un identificador único, nombre y descripción.

- Un libro puede pertenecer a varias categorías y una categoría puede contener varios libros.
- Una copia de un libro tiene un identificador único, identificador del libro, ubicación y estado. Cada copia está asociada a un libro.
- Un usuario tiene un identificador único, documento de identidad, nombre, apellido, fecha de nacimiento y nacionalidad. El documento de identidad es una clave alternativa.
- Un préstamo tiene un identificador único, identificador del usuario, identificador de la copia, fecha de préstamo y fecha de devolución. Cada préstamo está asociado a un usuario y a una copia del libro.

Realiza el modelo físico y la estructura de la base de datos mediante sentencias DML