0.1 Diff. ekvationer

Vi kommer att titta på (LTIC-)system som beskrivs med Q(D)y = P(D)x eller Q[E]y = P[E]x i det diskreta fallet där $D = \frac{\mathrm{d}}{\mathrm{d}t}$ och Ef[k] = f[k+1]. Systemen är kausala, d.v.s. alltid = 0 för t < 0 eller k < 0. Alltså har vi ett begynnelsetillstånd. Den allmänna lösningen är $y = y_0 + y_i$ där y_0 är zerostate och y_i är zeroinput. Vanligtvis är $y_0 = h * x$, d.v.s. någon slags faltning.

Notation: $Q(D) = D^m + a_{m-1}D^{m-1} + \dots + a_1D + a_0 \text{ där } m = ord(Q)$

0.1.1 Kontinuerliga fallet

Q(D)y = P(d)x och $y^{(k)}(0)$ är givna för $k = 0, \dots, \operatorname{ord}(Q) - 1$.

Först löser vi $Q(D)y_0 = P(D)f$ för $y^{(k)}(0) = 0$. Sedan löser vi $Q(D)y_i = 0$ givet $y_i^{(k)}(0) = y^{(k)}(0)$. Detta är partikulär- och homogenlösningar i "vanliga" termer. $y_0 = h * x$ där h är impulssvaret.

Ex. 1. Anta
$$y' + ay = x$$
, $y(0) = b$, $Q(D) = D + a$ och $P(D) = 1$.

Eftersom systemet är tidsinvariant är a en konstant. Först löser vi $y'_0 + ay_0 = x$ givet $y_0(0) = 0$. Sedan komemr vi att lösa $y'_i + ay_i = 0$ givet $y_i(0) = b$. Vi använder integrerande faktor, d.v.s. $(e^g y)' = (y' + g'y)e^g$ men eftersom vi veta har vi $g' = a \implies g = at$. Alltså är $e^{at}(y'_0 + ay_0) = (e^{at}y_0)'$ och därmed

$$(e^{at}y_0)' = xe^{at} \implies e^{at}y_0(t) = e^{a0}y_0(0) + \int_0^t x(s)e^{as}ds = \int_0^t x(s)e^{as}ds \implies$$

$$y_0(t) = \int_0^t x(s)e^{a(s-t)} ds = \int_0^t x(s)e^{-a(t-s)} ds = x * h_{-a}(t) \text{ där } h_{-a}(t) = e^{at}u(t).$$

Alltså $y_0 = x * h_{-a}(t)$. Nu kollar vi om y_0 är en lösning vårt inledande problem. Först kollar vi om $y_0(0) = 0$ och det är fine eftersom det då blir en integral från 0 till 0, vilket är 0. Nu kollar vi om $y_0' + ay_0 = x$. $y_0' = x(t)e^{-a(t-t)}$

$$a \int_{0}^{t} x(s)e^{-a(t-s)} ds = x(t) - ay_0(t)$$

Nu löser vi för y_i . $y_i' + ay_i = 0 \iff (e^{at}y_i) = 0 \iff e^{at}y_i(t) = y_i(0) = b \iff y_i(t) = be^{-at}$.

Alltså är $y(t) = be^{-at} + x * h_{-a}(t)$

"Det verkar trivialt att t - t = 0 men det är det som räddar oss."

- Mattesnubben

0.1.2 Stabilitet i kausala fall

$$\operatorname{Om} \int\limits_{0}^{\infty} |h(t)| \mathrm{d}t < \infty. \ h(t) = h_{-a}(t) = e^{-at} u(t). \int\limits_{0}^{\infty} |h(t)| \mathrm{d}t = \int\limits_{0}^{\infty} e^{-\operatorname{Re}\{a\}t} \ \text{vilket}$$

är ändligt om $Re\{a\} > 0$ och oändligt annars.

Ex. 2. Lös $y'' + a_1 y' + a_0 y = x$ där y(0) och y'(0) givna. Vi vet att P(D) = 1 och $Q(D) = D^2 + a_1 D + a_0$.

Vi börjar med att lösa ekvationen $Q(\lambda) = \lambda^2 + a_1\lambda + a_0 = 0$. Lösningarna till

$$Q(\lambda) = 0 \text{ är } \lambda_{\pm} = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_0} \implies Q(\lambda) = (\lambda - \lambda_+)(\lambda - \lambda_-).$$

Några exempel, om $a_1=0$ får vi $\lambda_{\pm}=\pm\sqrt{-a_0} \implies \lambda^2+a_0=(\lambda-\sqrt{-a_0})(\lambda+\sqrt{-a_0}),$ om $a_0=0$ får vi $\lambda_{\pm}=0$ eller $-a_1 \implies \lambda(\lambda 2+a_1).$

Vi börjar med att lösa zeroinput-lösningen. Observera att $D^n(e^{\lambda t}) = \lambda^n e^{\lambda t} \implies Q(D)e^{\lambda t} = Q(\lambda)e^{\lambda t} \implies Q(D)(\mu_1 e^{\lambda_+ t} + \mu_2 e^{\lambda_- t}) = 0$. Om $\lambda_+ \neq \lambda_-$ hittar vi y_i genom ansatsen $y_i(t) = \mu_1 e^{\lambda_+ t} + \mu_2 e^{\lambda_- t}$ så att $y_i(0) = \mu_1 + \mu_2$ och $y_i'(0) = \mu_1 \lambda_+ + \mu_2 \lambda_-$.

Observera nu också att $Q(D)(te^{\lambda t}) = Q'(\lambda)e^{\lambda t} + Q(\lambda)te^{\lambda t}$. Om $\lambda_+ = \lambda_-$, d.v.s. att $Q(\lambda) = (\lambda - \lambda_+)^2$ gäller $Q(D)(\mu_1 e^{\lambda_+ t} + \mu_2 te^{\lambda_+ t}) = 0$. Ansätt $y_i(t) = \mu_1 e^{\lambda_+ t} + \mu_2 te^{\lambda_- t}$ och finn μ_1 och μ_2 från $y_i(0) = \mu_1$ och $y_i'(0) = \lambda_+ \mu_+ + \mu_2$.

Nu löser vi zerostate: $Q(D) = (D - \lambda_+)(D - \lambda_-)$. Notera att $D^n(h * f) = (D^n h) * f$, vilket går att bevisa relativt lätt. Eftersom faltning är kommutativt kan vi även derivera f.

$$Q(D)(h * f) = (Q(D)h) * f$$
. Ansätt $h = h_{\lambda_{\perp}} * h_{\lambda_{\perp}}$.

Ansätt också $y_0 = h * f$, då är $(D - \lambda_-)y_0 = h_{\lambda_+} * f$ och $h_{\lambda_+} * f(0) = 0$.

Jag orkade inte anteckna här, massa steg typ. Det blir enklare med Laplace.

– Person som frågade och mattesnubben

- Mattesnubben

0.2 Diskreta fallet

I det diskreta fallet har vi ekvationen Q(E)y = P(E)x där E(f[k]) = f[k+1] och har y[-k] givna för $k = 0, \ldots, ord(Q) - 1$. Funkar annars på samma sätt förutom att D ersätts med E och y(0) med y[-k].

I kontinuerliga fall har vi $D(e^{\lambda}t)=\lambda e^{\lambda t}$ som genom $e_a[k]=a^k$ motsvaras av $E(e_a[k])=e_a[k+1]=a^{k+1}=a\cdot a^k=ae_a.$

[&]quot;Vad kom μ ifrån?"
"Från ovan!"

[&]quot;Om vi nu delar den här skiten."

Ex. 3. Vi löser y[k+1] + ay[k] = x[k] där y[0] är given.

Vi har Q(E) = E + a. Vi börjar med att lösa y_i , d.v.s. $Q(E)y_i = 0$ och $y_i[0] = y[0]$. Ansätt $y_i = ce_{-a}$ så att $(E+a)e_{-a} = 0$. Då har vi $y_i[0] = ce_{-a}[0] = c = y[0]$ och därmed $y_i[k] = y_i[0]a^k$.

Nu löser vi för y_0 , då börjar vi med att ansätta $h[k] = h_{-a}[k] = e_a[k]u[k]$ och $y_0 = h * x$.

$$E(h * x[m]) = \sum_{l=1}^{m+1} h[l]x[m+1-l] = \sum_{l=1}^{m} h[l+1]x[m-l] + h[1]x[m] \text{ eftersom}$$

h*x= (om båda är kausala) $=\sum_{l=0}^m h[l]x[m-l]=\sum_{l=1}^m h[l]x[m-l]$. Allt som allt gäller E(h*x)=ah*x+ax. Alltså $y_0=\frac{1}{a}h*x$ vilket löser det ville innan.

"Det kommer bara bli blodsspillan om vi har k där"

- Mattesnubben

"Vad gör vi nu, vad gör vi här, vem är jag?"

- Mattesnubben

"Nu börjar det lukta fågel"

– Mattesnubben

"När jag var i Tyskland var jag tvungen att dra bajsskämt för att det skulle gå, men här verkar det funka ändå."

- Mattesnubben

"Fourier-serier är något extremt vackert, tårar kommer att fällas."

- Mattesnubben