The Open-Duct PRIME model is provided in two file formats compatible with many popular commercial CAD software.

Additionally, 13 triangular surface meshes (coarsest to finest mesh: $\sim 1.2 \times 10^5$ to $\sim 4.9 \times 10^7$ elements) are provided in two file formats.

All model and mesh file are that of the full-scale model ($L \approx 48.45$ ft, the largest size in the problem set).

Model File: IGES Format

IGES or IGS file is a standard text-based graphics file based on the Initial Graphics Exchange Specification (IGES). The Open-Duct PRIME model in IGS format is contained in the file "Open-Duct_PRIME_model_s7.igs". The geometry coordinates in the IGES model are specified in units of inches.

Model File: STL Format

STL is a commonly used file format for additive manufacturing. The Open-Duct PRIME model in STL format is contained in the file "Open-Duct_PRIME_model_s7.stl". This file was used to additively manufacture the scale models measured in [1]. The geometry coordinates in the STL model are specified in units of inches.

Mesh Files: File Names

	Mesh AA	Mesh AB	Mesh BB	Mesh BC	Mesh CC	Mesh CD	Mesh DD
Average Edge	2.010	1.451	1.011	7.302	5.076	3.645	2.549
Length (m)	× 10 ⁻¹	× 10 ⁻¹	$\times 10^{-1}$	$\times 10^{-2}$	$\times 10^{-2}$	× 10 ⁻²	× 10 ⁻²
Maximum Edge	3.011	2.151	1.523	1.090	7.593	5.353	3.808
Length (m)	$\times 10^{-1}$	× 10 ⁻¹	$\times 10^{-1}$	$\times 10^{-1}$	$\times 10^{-2}$	$\times 10^{-2}$	$\times 10^{-2}$
Minimum Edge	1.431	1.210	1.083	1.210	9.580	9.957	5.787
Length (m)	$\times 10^{-2}$	$\times 10^{-2}$	$\times 10^{-2}$	$\times 10^{-2}$	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$
Number of	12 236	23 626	48 284	92 764	191 074	371 302	758 014
Triangles							
				N4 I- EE	N4 I- EC	N4I- CC	
	Mesh DE	Mesh EE	Mesh EF	Mesh FF	Mesh FG	Mesh GG	
Average Edge	1.824	1.271	9.038	6.475	4.521	3.160	
Average Edge Length (m)							
	1.824 × 10 ⁻² 2.696	1.271×10^{-2} 1.903	9.038 $\times 10^{-3}$ 1.325	6.475 $\times 10^{-3}$ 9.512	4.521×10^{-3} 6.603	3.160×10^{-3} 5.087	
Length (m)	1.824 × 10 ⁻²	1.271 × 10 ⁻²	9.038 × 10 ⁻³	6.475 × 10 ⁻³	4.521 × 10 ⁻³	3.160 × 10 ⁻³	
Length (m) Maximum Edge	$ \begin{array}{c} 1.824 \\ \times 10^{-2} \\ 2.696 \\ \times 10^{-2} \\ 5.095 \end{array} $	1.271 $\times 10^{-2}$ 1.903 $\times 10^{-2}$ 2.952	9.038 $\times 10^{-3}$ 1.325 $\times 10^{-2}$ 2.304	6.475 $\times 10^{-3}$ 9.512 $\times 10^{-3}$ 1.815	4.521 $\times 10^{-3}$ 6.603 $\times 10^{-3}$ 1.277	3.160×10^{-3} 5.087×10^{-3} 8.892	
Length (m) Maximum Edge Length (m)	$ \begin{array}{c} 1.824 \\ \times 10^{-2} \\ 2.696 \\ \times 10^{-2} \end{array} $	$ \begin{array}{c} 1.271 \\ \times 10^{-2} \\ 1.903 \\ \times 10^{-2} \end{array} $	9.038 × 10 ⁻³ 1.325 × 10 ⁻²	6.475 $\times 10^{-3}$ 9.512 $\times 10^{-3}$	$ 4.521 \times 10^{-3} $ $ 6.603 \times 10^{-3} $	3.160 × 10 ⁻³ 5.087 × 10 ⁻³	
Length (m) Maximum Edge Length (m) Minimum Edge	$ \begin{array}{c} 1.824 \\ \times 10^{-2} \\ 2.696 \\ \times 10^{-2} \\ 5.095 \end{array} $	1.271 $\times 10^{-2}$ 1.903 $\times 10^{-2}$ 2.952	9.038 $\times 10^{-3}$ 1.325 $\times 10^{-2}$ 2.304	6.475 $\times 10^{-3}$ 9.512 $\times 10^{-3}$ 1.815	4.521 $\times 10^{-3}$ 6.603 $\times 10^{-3}$ 1.277	3.160×10^{-3} 5.087×10^{-3} 8.892	

Mesh Files: INP Format

13 triangular surface meshes are provided in INP format. The first line contains the number of nodes, *Nnodes*, and triangles, *Ntris*, in the mesh. The next *Nnodes* lines contain the x,y,z coordinates of each node in the mesh. The final *Ntris* lines of the file contain the connections for each triangular element in the mesh. The node coordinates in the INP files are specified in units of meters.

Mesh Files: UNV Format

13 triangular surface meshes are provided in Universal File (UNV) format. <u>The node coordinates</u> in the UNV files are specified in units of inches.

Uncompressing Mesh Files

Due to Github's intrinsic file size limit (100 MB), all mesh files were zipped. They can be uncompressed using standard zip programs.

The finest mesh files "Open-Duct_PRIME_model_meshEF", "Open-Duct_PRIME_model_meshFF", "Open-Duct_PRIME_model_meshFG", and "Open-Duct_PRIME_model_meshGG" were split into 2, 4, 7 and 14 files, respectively, and then separately zipped.

The finest UNV format mesh files "Open-Duct_PRIME_model_meshEF", "Open-Duct_PRIME_model_meshFG", and "Open-Duct_PRIME_model_meshG", and "Open-Duct_PRIME_model_meshGG" were split into 4, 7, 13, and 27 files, respectively, and then separately zipped.

After uncompressing, the files should be concatenated into a single file; e.g., the following linux command will concatenate the files:

cat Open-Duct_PRIME_model_meshGG.inp0* > Open-Duct_PRIME_model_meshGG.inp cat Open-Duct_PRIME_model_meshGG.unv* > Open-Duct_PRIME_model_meshGG.unv

References

[1] A. Maicke *et al.*, "A benchmark airplane model with ducts," in *Proc. USNC-URSI Radio Science Meeting*, July 2022.