Homework 1

DATA604 Simulation and Modeling

Daniel Dittenhafer February 2, 2016

1.1

Name several entities, attributes, activities, events, and state variables for the following systems.

(a) A cafeteria

Entities

- Serving Line
- Food Servers
- Tables

Attributes

- Number of Food Servers
- Number of seats per table
- Rate of serving for Food Servers
- Time range for eating the meal

Activities

- Waiting in line
- Being served by a Food Server
- Waiting for a table to eat
- Eating at a table

Events

- Arrival of new person in serving line to be served
- Person leaving serving line
- Person waiting for seat at table to eat
- Person finishing eating and leaving table

State Variables

- Number of people eating at tables
- Number of people waiting in line to be served

(b) A grocery store

Entities

• Checkout lanes

Attributes

- Max number of items allowed in checkout lane
- Rate of checkout for cashier

Activities

- Customer shopping in the grocery store
- Customer checking out (paying for goods)

Events

- Arrival of customer at grocery store
- Arrival of customer at checkout lane
- Customer completing checkout
- Customer departing store without purchasing anything

State Variables

- Number of customers in grocery store
- Number of customers in checkout lane lines

(c) A laundromat

Entities

- Washing machines
- · Drying machines

Attributes

- Washing machine run time
- Drying machine run time
- Ratio of washing machine to drying machine capacity

Activities

- Washing clothes
- Drying clothes
- Loading washing machine
- Transfering from washing to drying machine
- Unloading from drying machine

Events

- Washing maching cycle starts
- Washing machine cycle stops
- Dryer cycle starts
- Dryer cycle stops

State Variables

- Number of busy washing machines
- Number of busy dryers

(d) A fast-food restaurant

Entities

- Cashiers
- Back-cooks (i.e. burger flippers)
- Fryers

Attributes

- Burgers per burger flipper
- Orders of frys per Fryer
- Cashier busy or not

Activities

- Cooking a burger
- Making french frys
- Cashier taking order, accepting payment

Events

- Order in
- Order ready for pickup
- French fries done cooking

State Variables

- Number of orders pending
- Number of burgers being cooked
- Orders of french frys cooked/ready for serving
- Number of bugers being ready for serving

(e) A hospital emergency room

Entities

- Doctors
- Beds
- Patients
- Admitting staff

Attributes

• Patients per Doctor

Activities

- Patient admitted
- Doctor take care of patient
- Patient discharged

Events

- Patient arrives
- Patient admitted
- Doctor discharges patient

State Variables

- Beds empty
- Patients awaiting addmission
- Paitents awaiting discharge

(f) A taxicab company with 10 taxis

Entities

- Taxis
- Dispatcher
- Customers

Attributes

- Taxi has customer
- Taxi enroute to customer
- Customer waiting for taxi

Activities

- Enroute to customer
- Transporting customer

Events

- Picking up custommer
- Dropping off customer

State Variables

- Taxis with customers
- Customers waiting for available taxi

(g) An automobile assembly line

Entities

- Parts
- Assembly machines
- Workers

Attributes

- Parts inventory
- Assembly machine rate of production
- Worker rate of production

Activities

- Machine assembling car
- Worker assembling car
- Staging parts for use by Machine or Worker

Events

- Car assembly started
- Car assembly completed
- Parts depleted
- Car assembly by machine X completed
- Car assembly by worker Y completed

State Variables

- Cars on assembly line
- Parts inventory level
- Workers out sick/vacation
- Machines broken down
- 2.1 Consider the following continuously operating job shop. Interarrival times of jobs are distributed as follows:

Time Between Arrivals (hours)	Probability
0	0.23
1	0.37
2	0.28
3	0.12

Processing times for jobs are normally distributed, with mean 50 minutes, and standard deviation 8 minutes. Construct a simulation table and perform a simulation for 10 new customers. Assume that, when the simulation starts, there is one job being processed (scheduled to be completed in 25 minutes) and there is one job with a 50-minute processing time in the queue.

```
existingJobs <- data.frame(customer=c(-2, -1),
                            interarrivalHrs=c(0,0),
                            interarrivalMins=c(0,0),
                            arrivalMins=c(0,0),
                            jobProcessingMins=c(25, 50))
newJobs <- data.frame(customer=seq(1, 10),</pre>
                        interarrivalHrs=sample(seq(0, 3),
                                                size=10,
                                                prob=c(.23, .37, .28, .12),
                                                replace=TRUE),
                        interarrivalMins=rep(NA, 10),
                        arrivalMins=rep(0, 10),
                        jobProcessingMins=rnorm(10, mean=50, sd=8))
newJobs$interarrivalMins <- newJobs$interarrivalHrs * 60
newJobs$arrivalMins <- cumsum(newJobs$interarrivalMins)</pre>
simTable <- rbind(existingJobs, newJobs)</pre>
simTable
```

##		customer	${\tt interarrivalHrs}$	${\tt interarrival Mins}$	${\tt arrivalMins}$	${\tt jobProcessingMins}$
##	1	-2	0	0	0	25.00000
##	2	-1	0	0	0	50.00000
##	3	1	3	180	180	44.57550
##	4	2	0	0	180	36.54425
##	5	3	1	60	240	44.80684
##	6	4	1	60	300	59.80041
##	7	5	2	120	420	73.62703
##	8	6	1	60	480	28.03371
##	9	7	1	60	540	49.21791
##	10	8	0	0	540	45.53814
##	11	9	2	120	660	60.17811
##	12	10	2	120	780	44.98210

- (a) What was the average time in the queue for the 10 new jobs?
- (b) What was the average processing time of the 10 new jobs? The average processing time is computed below:

mean(newJobs\$jobProcessingMins)

[1] 48.7304

(c) What was the maximum time in the system for the 10 new jobs?