

Training robust neural networks

Problem Definition

Objective:

- Add small **perturbations** to fool the classification system (**attack**).
- Implement strategies to avoid these attacks (defense).

Dataset: CIFAR10

- 60,000 images (50K-10K train-test split) belonging to 10 different classes.

Base model:

- Add Dropout and used SGD with learning-rate scheduler to optimize classification.
- Data Normalization and Augmentation (horizontal flip and random crops) on training data.
- Obtained accuracy of 87.75% over test data.

Attacks: FGSM v/s PGD

- Perturbations on the gradient direction.
- Constrained amplitude to make **imperceptible perturbations**.
- PGD is an **iterative version** of the FGSM.

$$\begin{cases} x_0 = x \\ x_{t+1} = \prod_{\mathbf{B}(0,\epsilon)} (x_t + \eta \operatorname{sign}(\nabla_x L_{\theta}(x, y))) \end{cases}$$

Attacks: FGSM v/s PGD

Adversarial Training Defense

- Defense system that aims at **improving neural network robustness** against adversarial attacks by **training it with adversarial examples**.

$$\min_{\theta} \mathbb{E}_{(x,y)} \left(\max_{\|\tau\| \le \epsilon} L_{\theta} \left(x + \tau, y \right) \right)$$

Attack	Defense	$\varepsilon = 0.01$	$\varepsilon = 0.05$
FGSM	Without Defense Adversarial Training (vs FGSM) Adversarial Training (vs PGD)	47.95% 68.53% 68.74%	7.31% 43.15% 16.92%
PGD	Without Defense Adversarial Training (vs FGSM) Adversarial Training (vs FGSM) Adversarial Training (vs PGD)	57.99% 88.32% 91.28%	0% 3.55% 13.33%

Defense based on contrastive loss

- **Possible defense**: create **clusters** in the feature space, so that a small perturbation won't lead to misclassification.
- This is enabled by the use of **contrastive loss.**

-
$$CL(1,2) = 1_{z_1=z_2} \cdot d(y_1,y_2)^2 + 1_{z_1
eq z_2} \cdot max(0,lpha-d(y_1,y_2))^2$$

PCA without defense

PCA with contrastive loss applied

Conclusions

- **PGD attack is more powerful than FGSM attack** since it computes a new perturbation at each iteration to fool the misclassification.

- Adversarial defense improves the robustness of the model, but it's still prone to fail.
- Defense system built on the contrastive loss principle:
 - lower accuracy than adversarial training
 - need further work on this defense system

Merci pour votre attention