QUÍMICA

As questões numéricas devem ser desenvolvidas sequencialmente até o final.

Constantes

Constante de Avogadro (N_A) = $6.02 \times 10^{23} \text{ mol}^{-1}$

Constante de Faraday (F) = $9.65 \times 10^4 \text{ C mol}^{-1} = 9.65 \times 10^4 \text{ A s mol}^{-1} = 9.65 \times 10^4 \text{ J V}^{-1} \text{ mol}^{-1}$

Carga elementar = $1,60 \times 10^{-19}$ C

Constante dos gases (R) = $8.21 \times 10^{-2} \text{ atm L K}^{-1} \text{ mol}^{-1} = 8.31 \text{ J K}^{-1} \text{ mol}^{-1} = 1.98 \text{ cal K}^{-1} \text{ mol}^{-1}$

Constante de Planck (h) = $6.63 \times 10^{-34} \text{ J s}$ Velocidade da luz no vácuo = $3.0 \times 10^8 \text{ m s}^{-1}$

Número de Euler (e) = 2,72

Definições

Pressão: 1 atm = $760 \text{ Torr} = 1,01325 \times 10^5 \text{ N m}^{-2} = 1,01325 \text{ bar}$

Energia: $1 \text{ J} = 1 \text{ N m} = 1 \text{ kg m}^2 \text{ s}^{-2} = 6.24 \times 10^{18} \text{ eV}$

Condições normais de temperatura e pressão (CNTP): 0 °C e 1 atm, equivalente a um volume de um gás in a la $^{\circ}$ 0 e $^{\circ}$ 1 atm, equivalente a um volume de um gás

ideal de 22,4 L.

Condições ambientes: 25 °C e 1 atm

Condições padrão: 1 bar; concentração das soluções = 1 mol L^{-1} (rigorosamente: atividade unitária das espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) = sólido. (ℓ) = líquido. (g) = gás. (aq) = aquoso. (conc) = concentrado. (ua) = unidades arbitrárias. u.m.a. = unidade de massa atômica. [X] = concentração da espécie química X em mol L⁻¹ ln X = 2,3 log X

Massas Molares

Elemento	Número	Massa Molar	_	Elemento	Número	Massa Molar
Químico	Atômico	$(g \text{ mol}^{-1})$	_	Químico	Atômico	$(g \text{ mol}^{-1})$
Н	1	1,01		S	16	32,06
Li	3	6,94		Cl	17	35,45
\mathbf{C}	6	12,01		Ca	20	40,08
N	7	14,01		Cu	29	63,55
O	8	16,00		Zn	30	65,38
Na	11	22,99		Br	35	79,90
Mg	12	24,31		Os	76	190,23
Al	13	26,98	_	Sg	106	269

Questão 1. Considere dois líquidos voláteis, A e B, que são completamente miscíveis entre si e que formam uma solução ideal em toda a amplitude de concentrações. Esses líquidos são adicionados a um tanque fechado, inicialmente sob vácuo, e mantido em temperatura constante (T), na proporção molar 1:1. Considere que a mistura causa um abaixamento na pressão de vapor do líquido A igual a 40 Torr e que a pressão de vapor do líquido B puro é igual a 20 Torr.

Determine os valores numéricos:

- a) da pressão de vapor do líquido A puro na temperatura T;
- b) da pressão de vapor da solução, depois de atingido o equilíbrio do sistema;
- c) da composição molar da fase vapor em equilíbrio com a fase líquida presente no tanque.

Questão 2. O ácido fórmico pode ser obtido por meio de uma reação de duas etapas. Na primeira etapa, em temperatura de 200 °C e pressão de 10 atm, monóxido de carbono e hidróxido de sódio reagem. Na segunda, o produto dessa primeira etapa reage com ácido sulfúrico, formando-se o ácido fórmico. Sobre esse processo, apresente:

- a) a fórmula estrutural do produto gerado na primeira etapa;
- b) a equação química balanceada da primeira etapa;
- c) a equação química balanceada da segunda etapa.

Questão 3. Um determinado sistema consiste em dois sólidos, A e B, cada qual com uma quantidade igual a 1 mol. Considere que os sólidos estão fisicamente separados, mas em contato térmico por meio de uma parede condutora de calor, a qual garante que estejam em equilíbrio térmico em todos os instantes. A temperatura inicial desse sistema é igual a -10 °C. O sistema é aquecido até atingir a temperatura de 20 °C. A temperatura de fusão de A é igual a 0 °C e a de B é igual a 10 °C. Considere ainda os dados a seguir.

- $\textbf{I.} \qquad \text{Variação de entalpia de fusão, de A, } \Delta H_{\text{fusão}}(A) = 1 \text{ kJ mol}^{-1}, \text{ e de B, } \Delta H_{\text{fusão}}(B) = 2 \text{ kJ mol}^{-1};$
- II. Capacidade calorífica molar sob pressão constante, de A sólido, $C_{p,sólido}(A) = 30 \text{ J mol}^{-1} \text{ K}^{-1}$, e de B sólido, $C_{p,sólido}(B) = 20 \text{ J mol}^{-1} \text{ K}^{-1}$;
- III. Capacidade calorífica molar sob pressão constante, de A líquido, $C_{p,liquido}(A) = 50 \text{ J mol}^{-1} \text{ K}^{-1}$, e de B líquido, $C_{p,liquido}(B) = 100 \text{ J mol}^{-1} \text{ K}^{-1}$.

Desenhe um gráfico da temperatura do sistema, em °C, em função da quantidade de calor fornecida, em kJ, indicando o fenômeno físico e o valor numérico da quantidade de calor fornecida em cada etapa do processo de aquecimento, até a temperatura final ser atingida.

Questão 4. Duas soluções aquosas, contendo os cátions genéricos, A^+ e B^+ , são preparadas com as concentrações iniciais descritas a seguir.

Solução 1:
$$[A^+] = 2 \times 10^{-2} \text{ mol } L^{-1} \text{ e } [B^+] = 1 \times 10^{-4} \text{ mol } L^{-1}$$
.

Solução 2:
$$[A^+] = 5 \times 10^{-2} \text{ mol } L^{-1} \text{ e } [B^+] = 1 \times 10^{-3} \text{ mol } L^{-1}.$$

A cada uma dessas soluções são adicionadas quantidades progressivas de um ânion C⁻, sem variação significativa do volume das soluções. Considere que os produtos de solubilidade dos sólidos AC(s) e BC(s) são iguais a 1×10^{-7} e 1×10^{-9} , respectivamente.

Com base nessas informações, determine o que se pede para a solução 1 e para a solução 2.

- a) Qual sólido será formado primeiro com a adição progressiva de C⁻ a cada uma das soluções? Justifique a sua resposta.
- b) Conforme C⁻ é progressivamente adicionado, o segundo sólido começa a se formar. Nesse momento, qual é a concentração em solução do cátion desse primeiro sólido precipitado em cada solução?

Questão 5. Uma amostra de 5,480 g de uma mistura de óxido e carbonato de um mesmo metal (com um estado de oxidação igual a +2 nesses compostos) é completamente dissolvida em excesso de ácido clorídrico. Nesse processo, 0,448 L (condições normais) de gás são liberados.

Com base nessas informações, determine os valores numéricos

- a) da composição da mistura, em frações mássicas, se a quantidade em mol de carbonato na mistura é duas vezes maior do que a quantidade do óxido;
- b) da concentração molar do sal formado na solução resultante, se o volume final da dissolução é igual a 200 mL.

Questão 6. Suponha que, em medições experimentais realizadas no espaço sideral, foi descoberto um sistema formado de gás hidrogênio atômico excitado. A energia desse hidrogênio excitado é igual a $-0.34~\rm meV$, fazendo com que o sistema emita um espectro de ondas eletromagnéticas de forma aparentemente contínua. Considere o modelo do átomo proposto por Bohr para descrever esse sistema. Considere, ainda, que a energia do átomo de hidrogênio no estado fundamental é $-13.6~\rm eV$ e que o raio do átomo de hidrogênio no estado fundamental é igual a 53 pm.

Acerca desse sistema, determine o que se pede a seguir.

- a) Qual é o nível de energia no qual os átomos de hidrogênio excitados se encontram?
- b) Qual é o raio da órbita do elétron ao redor do próton nesses átomos de hidrogênio?
- c) Qual é a razão entre a velocidade do elétron do átomo de hidrogênio no estado fundamental e no estado excitado?

Questão 7. A primeira determinação experimental do tamanho de um núcleo foi feita a partir dos resultados do espalhamento de Rutherford de partículas α . Os resultados evidenciaram uma dependência entre o raio nuclear (R) e o número de massa (A), através da relação:

$$R = R_0 A^{1/3}$$
,

em que R_0 é uma constante.

Com base nessas informações, calcule o valor numérico:

- a) da densidade nuclear para o $_{29}\mathrm{Cu}^{63}$, considerando que o raio para $_{30}\mathrm{Zn}^{64}$ é $_{4,8}\times10^{-15}$ m;
- b) da razão entre os raios nucleares do isótopo de magnésio 12Mg²⁴ e do isótopo de ósmio 76Os¹⁹²;
- c) da densidade nuclear para o seabórgio $_{106}\mathrm{Sg^{271}},$ comparando-a com o valor da densidade nuclear do $_{29}\mathrm{Cu^{63}}$ obtida no item (a) acima.

Questão 8. O método de obtenção de magnésio metálico consiste nas seguintes etapas:

- I. Uma amostra de carbonato de cálcio sólido é aquecida a altas temperaturas, formando um produto sólido A e um gasoso B.
- II. Em seguida, o sólido A é tratado com água do mar, formando-se um hidróxido pouco solúvel que se ioniza formando os produtos C e D.
- III. Os ânions D reagem com cátions Mg²⁺ da água do mar. O resultado é um precipitado E.
- IV. O composto E é separado por filtração e dissolvido por meio da adição de uma solução aquosa de ácido clorídrico.
- V. A seguir, o solvente da solução é evaporado, obtendo-se o sal iônico F seco.
- VI. Finalmente, o sal F é submetido a uma eletrólise ígnea.

Determine o que se pede.

- a) Apresente as equações químicas balanceadas que representam as reações, identificando os produtos A, B, C, D, E e F formados.
- b) Em relação à eletrólise ígnea, mostre as semi-equações que representam as semi-reações que ocorreram no anodo e no catodo, assim como a reação global.

Questão 9. Apresente os compostos orgânicos formados a partir das reações do etanoato de metila com os seguintes reagentes:

- I. solução aquosa de ácido clorídrico.
- II. solução aquosa de hidróxido de sódio.
- III. amônia gasosa.
- IV. Li(AlH₄) dissolvido em dietil éter, seguido da adição de uma solução aquosa ácida.

Questão 10. Considere o composto de fórmula C₄H₈.

Apresente:

- a) os seis isômeros estruturais e geométricos;
- b) a fórmula estrutural dos produtos dibromados formados nas reações de cada um desses seis isômeros com Br_2 . Considere que as condições das reações são adequadas para que ocorram de forma completa e produtos dibromados sejam gerados.