Continuité d'une fonction

Chapitre 4

I. Continuité de la fonction en a

f n'est pas continue en a signifie que

$$\exists \ e > 0, \forall \ h \in \mathbb{R}_+^*, \exists \ x \in]a - h; a + h[\cap D_f | f(x) - f(a) | > e$$

f est continue en a signifie que

$$\forall e > 0, \exists h \in \mathbb{R}_+^*, \forall x \in]a - h; a + h[\cap D_f | f(x) - f(a) | \le e$$

II. Propriétés

- Toute fonction dérivable en a est continue en a.
- La somme ou le produit de fonctions continues en a est une fonction continue en a.

III. Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle I, et soit a et b 2 réels de I,

$$\forall k \in]f(a); f(b)[, \exists c \in]a; b[t.q.f(c) = k]$$

IV. Théorème des bijections

Soit f une fonction définie, continue et strictement monotone sur un intervalle I, et soit $(a,b) \in I^2$, $\forall k \in [f(a), f(b)], \exists ! c \in [a,b] \ t.q. \ f(c) = k$