- 1. Consider the polar point $\left(-2, \frac{21\pi}{4}\right)$, $\left(-2, \frac{5\pi}{4}\right)$
- a) Plot the point

b) Find 3 different polar coordinates for this point in the domain $-2\pi \le \theta \le 2\pi$ Give all answers in radians. [1 pt each] $(2, \frac{\pi}{4})$, $(-2, \frac{5\pi}{4})$, $(-2, \frac{5\pi}{4})$

c) Convert the point to rectangular coordinates. [1 point]

2. Write the corresponding letter that matches each rectangular equations on the left with the corresponding polar equations on the right. [6 pts]

$x^2 + y^2 = 25 \underline{\text{E}}$	A. $r = 10sec\theta$
$y = 10$ _C	B. $r = 6sin\theta$
x = 6y	C. $r = 10csc\theta$
$x^2 + (y - 3)^2 = 9 \underline{\beta}$	D. $\theta = tan^{-1} \left(\frac{1}{6}\right)$
$(x-3)^2 + y^2 = 9$	E. $r=5$
x = 10_A_	F. $r = 6\cos\theta$

3. Convert the equation to rectangular form.

Write your answer in the form
$$Ax^2 + Bx + Cy^2 + Dy + E = 0$$
 [4 pts]

$$r = \frac{3}{1 - 2\cos\theta}$$

4. Graph each function. Then name each graph according to its most specific name. [4 pts each]

a)
$$r = 4 - 6\sin\theta$$

c)
$$r = 7 + 3\cos\theta$$

Name: limagon w inver loop

b)
$$r = 7sin3\theta$$

Name: convex limaçon

d)
$$\theta = \pi r$$
 $= \frac{\Phi}{\pi}$

Name: sin rose curve w/ 3 petals

Name: Spiral