PROCESOS ESTOCÁSTICOS - CADENA DE MARKOV

V. Arunachalam (Arun) varunachalam@unal.edu.co

Universidad Nacional de Colombia

Agosto 2022

EJEMPLO

Sea $(X_n)_{n\in\mathbb{N}}$ una caminata aleatoria en \mathbb{Z} , es decir,

$$X_0 := 0 \text{ y } X_n := \sum_{j=1}^n Y_j$$

siendo $Y_1, Y_2, ...$ variables aleatorias independientes e igualmente distribuidas con

$$P(Y_1 = 1) = p = 1 - q = P(Y_1 = -1)$$

siendo 0 .

Es claro que $(X_n)_{n\in\mathbb{N}}$ es una cadena de Markov con conjunto de estados $S=\mathbb{Z}$

Tenemos que para todo $i, j \in S$ se tiene que $i \leftrightarrow j$. Por lo tanto, $(X_n)_{n \in \mathbb{N}}$ es una cadena de Markov irreducible.

Ahora bien:

$$P_{00}^{(2n)} = \binom{2n}{n} p^n q^n$$
 y $P_{00}^{(2n+1)} = 0$, para todo $n \ge 1$

La formula de Stirling (ver [?]) afirma que:

$$n! \sim n^{n+\frac{1}{2}} e^{-n} \sqrt{2P}$$

donde $a_n \sim b_n$ significa $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$. Por lo tanto.

$$P_{00}^{(2n)} \sim (pq)^n \frac{(2n)^{2n+\frac{1}{2}} e^{-2n} \sqrt{2P}}{n^{2n+1} e^{-2n} 2P}$$
$$= \frac{1}{\sqrt{Pn}} (4pq)^n$$

Tenemos que si $p \neq q$ entonces 4pq < 1 y por consiguiente $\mathbf{P}_{00}^* < \infty$, es decir, si $p \neq q$, la cadena es transitoria. Mientras que si $p = q = \frac{1}{2}$ entonces $\mathbf{P}_{00}^* = \infty$, esto es, si $p = q = \frac{1}{2}$, la cadena es recurrente.

3/21

Una caminata aleatoria en Z para $p=0,3,\,0,5$ y 0,7. Las gráficas fueron generadas en R con el siguiente código:

rw<-function(p,Te) rw<-sample(c(-1,1), size = Te, prob = c(1-p,p), replace = TRUE) return(cumsum(c(0,rw)))plot(rw(0.3,1000),cex=0.1)

FIGURA: Caminata aleatoria con p = 0.5

FIGURA: Caminata aleatoria con p = 0.7

OBSERVACIONES

Observamos que del teorema se deduce además que si j es transitorio entonces $\lim_{n\to\infty}p_{ij}^{(n)}=0$.

Toda cadena de Markov con conjunto de estados finito S tiene al menos un estado recurrente.

En efecto, si todos los estados de la cadena son transitorios entonces se tendría que:

$$1 = \lim_{n \to \infty} \sum_{j \in S} pi_{ij}^{(n)}$$
$$= \sum_{i \in S} \lim_{n \to \infty} pi_{ij}^{(n)} = 0$$

¿qué pasa con $\lim_{n\to\infty}p_{ij}^{(n)}$ cuando j es un estado recurrente?. Para responder esa pregunta requerimos de los siguientes conceptos:

DEFINITION

Sea $i \in S$ un estado recurrente. Se define $\mu_i = \sum_{n=1}^{\infty} n f_{ii}^n$ Esto es, μ_i representa el tiempo esperado del primer retorno de la cadena al estado i dado que había partido de i.

DEFINITION

Un estado recurrente i se llama *recurrente positivo* si $\mu_i < \infty$ y recurrente nulo si $\mu_i = \infty$.

Es claro a partir de la definición de $F_{ii}(s)$ que

$$\mu_{i} = \frac{dF(s)}{ds} \mid_{s=1} = F'_{ii}(1).$$

¿qué pasa con $\lim_{n\to\infty}p_{ij}^{(n)}$ cuando j es un estado recurrente?. Para responder esa pregunta requerimos de los siguientes conceptos:

DEFINITION

Sea $i \in S$ un estado recurrente. Se define $\mu_i = \sum_{n=1}^{\infty} n f_{ii}^n$ Esto es, μ_i representa el tiempo esperado del primer retorno de la cadena al estado i dado que había partido de i.

DEFINITION

Un estado recurrente i se llama recurrente positivo si $\mu_i < \infty$ y recurrente nulo si $\mu_i = \infty$.

Es claro a partir de la definición de $F_{ii}(s)$ que

$$\mu_{i} = \frac{dF(s)}{ds} \mid_{s=1} = F'_{ii}(1).$$

EXAMPLE

Consideremos el ejemplo de la caminata aleatoria simétrica. En este caso sabemos que:

$$p_{00}^{(2n)} = {2n \choose n} \left(\frac{1}{2}\right)^{2n} = (-1)^n {-\frac{1}{2} \choose n} 2^{2n} \left(\frac{1}{2}\right)^{2n}$$

Por lo tanto,

$$\mathbf{p}_{00}(s) = \sum_{n=0}^{\infty} {\binom{-\frac{1}{2}}{n}} (-1)^n s^{2n} = (1 - s^2)^{-\frac{1}{2}}$$

En consecuencia,

$$F_{00}(s) = 1 - \sqrt{1 - s^2}$$

y de ahi se deduce que 0 es un estado recurrente nulo.

THEOREM

Sea
$$i \in S$$
 un estado recurrente con $\lambda(i) = 1$ entonces $\lim_{n \to \infty} p_{ii}^{(n)} = \frac{1}{\mu_i}$

Observamos que si $i \in S$ es un estado recurrente nulo con $\lambda(i) = 1$ entonces

$$\lim_{n\to\infty}p_{ii}^{(n)}=0.$$

THEOREM

 $Sij \mapsto i \ yj$ es recurrente entonces se satisface:

a) $f_{ii}^* = 1$.

 $b)\mathbf{p}_{ii}^{*}=\infty.$

THEOREM

Sea
$$i \in S$$
 un estado recurrente con $\lambda(i) = 1$ entonces $\lim_{n \to \infty} p_{ii}^{(n)} = \frac{1}{\mu_i}$

Observamos que si $i \in S$ es un estado recurrente nulo con $\lambda(i) = 1$ entonces

$$\underset{n\to\infty}{\lim}p_{ii}^{(n)}=0.$$

THEOREM

 $Sij \mapsto i \ yj$ es recurrente entonces se satisface:

a)
$$f_{ij}^* = 1$$
.

$$(b)\mathbf{p}_{ii}^{*}=\infty.$$

Supongamos que $p_{ji}^{(r)}>0$ siendo $r\in\mathbb{N}$ el menor r con esa propiedad. Se tiene que:

$$f_{ij}^* = P(X_n = j \text{ para algún } n \mid X_0 = i)$$

Por lo tanto:

$$0_{ji}^{(r)}(1-f_{ij}^*) \leq P(X_n \neq j \text{ para todo } n \mid X_0 = j) = 0$$

esto es,

$$p_{ii}^{(r)}(1 - f_{ij}^*) = 0$$

como $p_{ji}^{(r)} > 0$ entonces $f_{ij}^* = 1$.

Además se obtiene que:

$$\mathbf{p}_{ij}^* = f_{ij}^* \mathbf{p}_{jj}^* = \infty$$

pues $\mathbf{p}_{ii}^* = \infty$.

THEOREM

Sea $(X_n)_{n\in\mathbb{N}}$ una cadena de Markov irreducible, no periódica y recurrente. Entonces

$$\lim_{n\to\infty} p_{ij}^{(n)} = \frac{1}{\mu_j}$$

independientemente del estado de partida i.

MEDIDA INVARIANTE

DEFINITION

Sea $(X_n)_{n\in\mathbb{N}}$ una cadena de Markov con conjunto de estados S. Una medida de probabilidad $\rho=(\rho_h)_{h\in S}$ sobre S se llama *invariante o estacionaria* si

$$\rho_j = \sum_{i \in S} \rho_i p_{ij} (*)$$

para todo $j \in S$. En otras palabras, ρ es invariante si $\rho = \rho P$.

EJEMPLO

Sea $(X_n)_{n\in\mathbb{N}}$ una cadena de Markov con conjunto de estados $S=\{a,b\}$ y matriz de transición

$$P = \left(\begin{array}{cc} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{5} & \frac{3}{5} \end{array}\right)$$

Se tiene que $\rho = \left(\frac{6}{11}, \frac{5}{11}\right)$ es el vector invariante para la matriz P.

La distribución estacionaria de una cadena de Markov puede no existir y, en caso de que exista, puede no ser única.

EXAMPLE

Sea $(X_n)_n$ una cadena de Markov con conjunto de estados $S = \{a, b, c\}$ y matriz de transición P dada por:

$$P = \left(\begin{array}{ccc} 1 & 0 & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & 0 & 1 \end{array}\right)$$

Se tiene que para cada α entre 0 y 1, el vector $\rho=(1-\alpha,0,\alpha)$ es invariante sobre S.

DEFINITION

Sea $(X_n)_{n\in\mathbb{N}}$ una cadena de Markov con conjunto de estados S. Una medida de probabilidad $\rho=(\rho_k)_{k\in S}$ sobre S se llama invariante o estacionaria si

$$\rho_j = \sum_{i \in S} \rho_i p_{ij}$$

para todo $j \in S$.

En otras palabras, ρ es invariante si $\rho = \rho P$.

DEFINITION

Un proceso estocástico para el cual existe una medida de probabilidad invariante se llama proceso ergódico.

DEFINITION

Sea $(X_n)_{n\in\mathbb{N}}$ una cadena de Markov con conjunto de estados S. Una medida de probabilidad $\rho=(\rho_k)_{k\in S}$ sobre S se llama invariante o estacionaria si

$$\rho_j = \sum_{i \in S} \rho_i p_{ij}$$

para todo $j \in S$.

En otras palabras, ρ es invariante si $\rho = \rho P$.

DEFINITION

Un proceso estocástico para el cual existe una medida de probabilidad invariante se llama proceso ergódico.

THEOREM

Sea $(X_n)_{n\in\mathbb{N}}$ una cadena de Markov irreducible y no periódica con conjunto de estados S, entonces existe una medida de probabilidad sobre S invariante, si y sólo si, la cadena es recurrente positiva. Esa medida de probabilidad está determinada de manera única.

PROOF

Sin pérdida de generalidad podemos suponer que $S=\mathbb{N}$. \Longrightarrow) Supóngase que existe una medida de probabilidad ρ sobre S invariante. Como $\rho=\rho P$, entonces $\rho=\rho P^n$, esto es,

$$\rho_j = \sum_{i \in S} \rho_i p_{ij}^n$$

Si la cadena es transitoria o recurrente nula, entonces

$$\lim_{n\to\infty}p_{ij}^n=0$$

y por lo tanto $\rho_j=0$ para todo j, lo cual es absurdo pues $\sum\limits_j \rho_j=1.$

PROOF

Supóngase que la cadena es recurrente positiva y sea

$$\rho_j:=\frac{1}{M_{jj}},\ j\in S$$

De las ecuaciones de Chapman Kolmogorov se deduce que

$$p_{ij}^{n+1} \ge \sum_{k=0}^{m} p_{ik}^n p_{kj}$$

Por lo tanto,

$$\rho_j \ge \sum_{k=0}^m \rho_k p_{kj}$$

para todo m. En consecuencia,

$$\sum_{k=0}^{\infty} \rho_k p_{kj} \le \rho_j$$

para todo $i \in S$.

EXAMPLE

Sea $(X_n)_{n\in\mathbb{N}}$ una cadena de Markov con espacio de estados $S=\{1,2,3\}$ y matriz de transición

$$P = \left(\begin{array}{ccc} 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{array}\right)$$

 $(X_n)_{n\in\mathbb{N}}$ es una cadena de Markov irreducible y no periódica, como además S es finito entonces la cadena es positiva recurrente y en consecuencia existe una medida de probabilidad estacionaria $\rho=(\rho_j)_{j\in S}$ sobre S.

Veamos a que es igual ρ : Como = ρ entonces obtenemos el sistema:

$$\begin{cases} \rho_1 + \rho_2 + \rho_3 = 1\\ \rho_1 = \frac{1}{2}\rho_2 + \rho_3\\ \rho_2 = \frac{3}{4}\rho_1\\ \rho_3 = \frac{1}{4}\rho_1 + \frac{1}{2}\rho_2 \end{cases}$$

Al resolver el sistema se obtiene: $\rho_1 = \frac{8}{19}, \rho_2 = \frac{6}{19}, \rho_3 = \frac{5}{19}.$ Sabemos que

$$\lim_{n\to\infty}p_{ij}^{(n)}=\rho_j$$

para j=1,2,3 independientemente de i, esto implica en particular, que la probabilidad de que para n suficientemente grande, la cadena se encuentre en 1 dado que partió de i es igual a $\frac{8}{19}$, independientemente del estado de partida i.