Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) A compound having the formula:

where Y_1 and Y_2 , which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, R_6 and R_8 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group $-(CH_2)_x$ — where x is an integer from 2 to 5, and where the group R is represented by the structure:

where the stereochemical center at carbon 20 may have the R or S configuration, and where Z is selected from Y, -OY, -CH₂OY, -C \equiv CY and -CH \equiv CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$-(CH_2)_m$$
 $-(CH_2)_n$ $-(CH$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, = CR^2R^3 , or the group - $(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group - $(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups - $CH(CH_3)$ -,

-(CH₂)m-, -(CH₂)n-, or -(CR₁R₂)- at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

2. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

- 3 -

3. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

4. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

5. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

6. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

7. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

8. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

9. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

10. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

11. (Currently Amended) The compound of claim 1 where R is a side chain of the formula

- 12. (Original) (20S)-2-methylene-18,19-dinor- 1α ,25-dihydroxyvitamin D₃.
- 13. (Original) A pharmaceutical composition containing an effective amount of at least one compound as claimed in claim 1 together with a pharmaceutically acceptable excipient.
- 14. (Original) The pharmaceutical composition of claim 13 wherein said effective amount comprises from about 0.01μg to about 100μg per gram of composition.
- 15. (Original) The pharmaceutical composition of claim 13 wherein said effective amount comprises from about 0.1μg to about 50μg per gram of composition.
- 16. (Original) The pharmaceutical composition of claim 13 containing (20S)-2-methylene-18,19-dinor-1 α ,25-dihydroxyvitamin D_3 in an amount from about 0.01 μ g to about 100 μ g.
- 17. (Original) The pharmaceutical composition of claim 13 containing (20S)-2-methylene-18,19-dinor- 1α ,25-dihydroxyvitamin D_3 in an amount from about 0.1µg to about 50µg.

18.-21.(Cancelled)

22. (Original) A method of treating metabolic bone disease where it is desired to maintain or increase bone mass comprising administering to a patient with said disease an effective amount of a compound having the formula:

$$Y_2O_{1}$$
 R_6
 R_8

where Y_1 and Y_2 , which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, R_6 and R_8 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group $-(CH_2)_x$ — where x is an integer from 2 to 5, and where the group R is represented by the structure:

where the stereochemical center at carbon 20 may have the R or S configuration, and where Z is selected from Y, -OY, -CH₂OY, -C \equiv CY and -CH=CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$-(CH_2)_m$$
 $-(CH_2)_n$ $-(CH$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-

hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, = CR^2R^3 , or the group - $(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group - $(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups - $CH(CH_3)$ -,

- $(CH_2)_m$ -, - $(CH_2)_n$ - or - (CR_1R_2) - at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

- 23. (Original) The method of claim 22 where the disease is senile osteoporosis.
- 24. (Original) The method of claim 22 where the disease is postmenopausal osteoporosis.
- 25. (Original) The method of claim 22 where the disease is steroid-induced osteoporosis.
- 26. (Original) The method of claim 22 where the disease is low bone turnover osteoporosis.
 - 27. (Original) The method of claim 22 where the disease is osteomalacia.
 - 28. (Original) The method of claim 22 where the disease is renal osteodystrophy.
- 29. (Original) The method of claim 22 wherein the compound is administered orally.
- 30. (Original) The method of claim 22 wherein the compound is administered parenterally.
- 31. (Original) The method of claim 22 wherein the compound is administered transdermally.
- 32. (Original) The method of claim 22 wherein the compound is administered in a dosage of from $0.01\mu g$ to $100\mu g$ per day.

- 33. (Original) The method of claim 22 wherein the compound is (20S)-2-methylene-18,19-dinor- 1α ,25-dihydroxyvitamin D₃.
- 34. (Original) A method of treating psoriasis comprising administering to a patient with psoriasis an effective amount of a compound having the formula:

where Y_1 and Y_2 , which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, R_6 and R_8 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group $-(CH_2)_x$ — where x is an integer from 2 to 5, and where the group R is represented by the structure:

where the stereochemical center at carbon 20 may have the R or S configuration, and where Z is selected from Y, -OY, -CH₂OY, -C \equiv CY and -CH=CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$R^{1}$$
 R^{2} R^{3} $-(CH_{2})_{m}$ $-(CH_{2})_{n}$ $-(CH$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, = CR^2R^3 , or the group - $(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group - $(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups - $CH(CH_3)$ -,

- $(CH_2)_m$ -, - $(CH_2)_n$ - or (CR_1R_2) - at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

- 35. (Original) The method of claim 34 wherein the compound is administered orally.
- 36. (Original) The method of claim 34 wherein the compound is administered parenterally.
- 37. (Original) The method of claim 34 wherein the compound is administered transdermally.
- 38. (Original) The method of claim 34 wherein the compound is administered topically.
- 39. (Original) The method of claim 34 wherein the compound is (20S)-2-methylene-18,19-dinor- 1α ,25-dihydroxyvitamin D₃.

- 40. (Original) The method of claim 34 wherein said effective amount comprises about $0.01\mu g/day$ to about $100\mu g/day$ of said compound.
- 41. (Original) A method of treating leukemia, colon cancer, breast cancer, skin cancer or prostate cancer comprising administering to a patient an effective amount of a compound having the formula:

where Y_1 and Y_2 , which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, R_6 and R_8 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group $-(CH_2)_x$ — where x is an integer from 2 to 5, and where the group R is represented by the structure:

where the stereochemical center at carbon 20 may have the R or S configuration, and where Z is selected from Y, -OY, -CH₂OY, -C \equiv CY and -CH \equiv CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$-(CH_2)_m - C - (CH_2)_n - C - R^5$$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, = CR^2R^3 , or the group - $(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group - $(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups - $CH(CH_3)$ -,

- $(CH_2)_m$ -, - $(CH_2)_n$ - or (CR_1R_2) - at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

- 42. (Original) The method of claim 41 wherein the compound is administered orally.
- 43. (Original) The method of claim 41 wherein the compound is administered parenterally.
- 44. (Original) The method of claim 41 wherein the compound is administered transdermally.
- 45. (Original) The method of claim 41 wherein the compound is administered in a dosage of from about $0.01\mu g/day$ to about $100~\mu g/day$.
- 46. (Original) The method of claim 41 wherein the compound is (20S)-2-methylene-18,19-dinor-1 α ,25-dihydroxyvitamin D₃.

47. (Original) A method of increasing the strength of a bone comprising administering to a patient in need of such treatment an effective amount of a compound having the formula:

$$Y_2O_{1}$$
 R_6
 R_8

where Y_1 and Y_2 , which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, R_6 and R_8 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group $-(CH_2)_x$ where X is an integer from 2 to 5, and where the group R is represented by the structure:

where the stereochemical center at carbon 20 may have the R or S configuration, and where Z is selected from Y, -OY, -CH₂OY, -C \equiv CY and -CH \equiv CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$-(CH_2)_m$$
 $-(CH_2)_m$ $-(CH_2)_n$ $-(CH_2)_m$ $-(CH$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, = CR^2R^3 , or the group - $(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group - $(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups - $CH(CH_3)$ -,

- $(CH_2)_m$ -, - $(CH_2)_n$ - or (CR_1R_2) - at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

- 48. (Original) The method of claim 47 wherein the bone strength is cortical strength.
- 49. (Original) The method of claim 47 wherein the bone strength is trabecular strength.
- 50. (Original) The method of claim 47 wherein the compound is administered orally.
- 51. (Original) The method of claim 47 wherein the compound is administered parenterally.
- 52. (Original) The method of claim 47 wherein the compound is administered transdermally.
- 53. (Original) The method of claim 47 wherein the compound is administered in a dosage of from 0.01μg to 100μg per day.

- 54. (Original) The method of claim 47 wherein the compound is (20S)-2-methylene-18,19-dinor-1 α ,25-dihydroxyvitamin D₃.
- 55. (Currently Amended) A method of treating an autoimmune disease selected from a group consisting of multiple sclerosis, diabetes mellitus, lupus, host versus graft reaction, rejection of transplants, rheumatoid arthritis, and inflammatory bowel disease, the method comprising administering to a patient with said disease an effective amount of a compound having the formula

where Y_1 and Y_2 which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, R_6 and R_8 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group $-(CH_2)_x$ — where x is an integer from 2 to 5, and where the group R is represented by the structure:

where the stereochemical center at carbon 20 may have the R or S configuration, and where Z is selected from Y, -OY, -CH₂OY, -C \equiv CY and -CH=CHY, where the double bond may

have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$-(CH_2)_m$$
 $-(CH_2)_n$ $-(CH$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, = CR^2R^3 , or the group - $(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group - $(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups - $CH(CH_3)$ -,

-(CH₂)m-, -(CH₂)n-, or -(CR₁R₂)- at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

- 56. (Original) The method of claim 55 where the disease is multiple sclerosis.
- 57. (Original) The method of claim 55 where the disease is diabetes mellitus.
- 58. (Original) The method of claim 55 where the disease is lupus.
- 59. (Original) The method of claim 55 wherein the compound is administered orally.
- 60. (Original) The method of claim 55 wherein the compound is administered parenterally.

- 61. (Currently Amended) Them The method of claim 55 wherein the compound is administered transdermally.
- 62. (Original) The method of claim 55 wherein the compound is administered in a dosage of from about $0.01 \,\mu\text{g/day}$ to about $100 \,\mu\text{g/day}$.
- 63. (Original) The method of claim 55 wherein the compound is (20S)-2-methylene-18,19-dinor-1 α ,25-dihydroxyvitamin D_3 .
- 64. (Original) A method of treating an inflammatory bowel disease comprising administering to a patient with said disease an effective amount of a compound having the formula

where Y_1 and Y_2 which the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group, R_6 and R_8 , which may be the same or different, are each selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and fluoroalkyl, or, when taken together represent the group $-(CH_2)_x$ — where x is an integer from 2 to 5, and where the group R is represented by the structure:

where the stereochemical center at carbon 20 may have the R or S configuration, and where Z is selected from Y, -OY, $-CH_2OY$, -CECY and -CH=CHY, where the double bond may

have the cis or trans geometry, and where Y is selected from hydrogen, methyl, -COR⁵ and a radical of the structure:

$$-(CH_2)_m$$
 $-(CH_2)_m$ $-(CH_2)_n$ $-(CH_2)_m$ $-(CH$

where m and n, independently, represent the integers from 0 to 5, where R^1 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C_{1-5} -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R^2 , R^3 , and R^4 , independently, is selected from deuterium, deuteroalkyl, hydrogen, fluoro, trifluoromethyl and C_{1-5} alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R^1 and R^2 , taken together, represent an oxo group, or an alkylidene group, = CR^2R^3 , or the group - $(CH_2)_p$ -, where p is an integer from 2 to 5, and where R^3 and R^4 , taken together, represent an oxo group, or the group - $(CH_2)_q$ -, where q is an integer from 2 to 5, and where R^5 represents hydrogen, hydroxy, protected hydroxy, or C_{1-5} alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups - $CH(CH_3)$ -,

- $(CH_2)m$ -, - $(CH_2)n$ -, or - (CR_1R_2) - at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.

- 65. (Original) The method of claim 64 wherein the disease is Crohn's disease.
- 66. (Original) The method of claim 64 wherein the disease is ulcerative colitis.
- 67. (Original) The method of claim 64 wherein the compound is administered orally.
- 68. (Original) The method of claim 64 wherein the compound is administered parenterally.
- 69. (Original) The method of claim 64 wherein the compound is administered transdermally.

- 70. (Original) The method of claim 64 wherein the compound is administered in a dosage of from about 0.01 $\mu g/day$ to about 100 $\mu g/day$.
- 71. (Original) The method of claim 64 wherein the compound is (20S)-2-methylene-18,19-dinor-1 α ,25-dihydroxyvitamin D_3 .