Computabilità 16 luglio 2021

Esercizio 1

Enunciare il teorema smn. Utilizzarlo per dimostrare che esiste una funzione calcolabile totale $s: \mathbb{N}^2 \to \mathbb{N}$ tale che per ogni $x, y \in \mathbb{N}$ vale $|W_{s(x,y)}| = x * y$.

Soluzione: Si definisca la funzione $f: \mathbb{N}^3 \to \mathbb{N}$ come segue:

$$f(x, y, z) = \begin{cases} 0 & \text{se } z < x * y \\ \uparrow & \text{altrimenti} \end{cases}$$

La funzione è calcolabile dato che $f(x, y, z) = \mu w. z + 1 - x * y$ e quindi, per il teorema smn esiste $s : \mathbb{N}^2 \to \mathbb{N}$ tale che $f(x, y, z) = \varphi_{s(x,y)}(z)$. Pertanto $|W_{s(x,y)}| = |\{z \mid z < x * y\}| = x * y$ come desiderato.

Esercizio 2

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} \mid E_x \subseteq W_x \cup \{0\}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: Si osserva che l'insieme A è saturato, dato che $A = \{x \in \mathbb{N} \mid \varphi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \mid cod(f) \subseteq dom(f) \cup \{0\}\}$.

Concludiamo che \overline{A} e \overline{A} sono non r.e. per Rice-Shapiro.

- Si consideri la funzione $f = sc_{\overline{\{0,1\}}}$, calcolabile in quanto $\{0,1\}$ è finito e quindi ricorsivo, pertanto lo è anche $\overline{\{0,1\}}$ che quindi è anche r.e.
 - Vale che $f \notin \mathcal{A}$, dato che $cod(f) = \{1\} \nsubseteq dom(f) \cup \{0\} = \mathbb{N} \setminus \{1\}$. Inoltre, la funzione sempre indefinita, $\theta = \emptyset$, è tale che $\theta \subseteq f$ e $cod(\theta) = \emptyset \subseteq dom(\theta) \cup \{0\} = \emptyset \cup \{0\} = \{0\}$, quindi $\theta \in \mathcal{A}$. Pertanto, per Rice-Shapiro, A non r.e.
- La funzione $\overline{sg}(x) = 1$ se x = 0 e $\overline{sg}(x) = 0$, altrimenti, è tale che $cod(\overline{sg}) = \{0, 1\} \subseteq dom(\overline{sg}) \cup \{0\} = \mathbb{N}$, quindi $\overline{sg} \notin \overline{\mathcal{A}}$. Se si considera $\theta(x) = 1$ se x = 0 e $\theta(x) \uparrow$ altrimenti, vale $\theta \subseteq \overline{sg}$ e $cod(\theta) = \{1\} \nsubseteq dom(\theta) \cup \{0\} = \{0\} \cup \{0\} = \{0\}$, quindi $\theta \in \overline{\mathcal{A}}$. Pertanto, per Rice-Shapiro, \overline{A} non r.e.

Esercizio 3

Studiare la ricorsività dell'insieme $B = \{x \in \mathbb{N} \mid x+1 \in W_x\}$, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme B non è ricorsivo dato che $K \leq_m B$. Per mostrarlo si può considerare la funzione g(x,y)=1 se $x\in K$ e indefinita altrimenti. Tale funzione è calcolabile, dato che $g(x,y)=sc_k(x)$. Quindi per il teorema smn, esiste una funzione calcolabile totale $s: \mathbb{N} \to \mathbb{N}$ tale che $\varphi_{s(x)}(y)=g(x,y)$ per ogni $x,y\in \mathbb{N}$. Si vede dunque che s è funzione di riduzione di K a B. Infatti

- Se $x \in K$ allora $g(x,y) = \varphi_{s(x)}(y) = 1$ per ogni $y \in \mathbb{N}$. Quindi $W_{s(x)} = \mathbb{N}$ e pertanto $s(x) + 1 \in W_{s(x)}$. Quindi $s(x) \in B$.
- Se $x \notin K$ allora $g(x,y) = \varphi_{s(x)}(y) \uparrow$ per ogni $y \in \mathbb{N}$. Quindi $W_{s(x)} = \emptyset$ e pertanto certamente non può essere $s(x) + 1 \in W_{s(x)}$. Quindi $s(x) \notin B$.

L'insieme B è r.e., infatti la sua funzione semi-caratteristica

$$sc_B(x) = \begin{cases} 1 & \text{se } x + 1 \in W_x \\ \uparrow & \text{altrimenti} \end{cases} = \mathbf{1}(\varphi_x(x)) = \mathbf{1}(\Psi_U(x, x + 1))$$

è calcolabile.

Dato che B è r.e., ma non ricorsivo, il suo complementare \bar{B} non r.e. (altrimenti entrambi sarebbero ricorsivi), e quindi \bar{B} non è neppure ricorsivo.