Block Ciphers & DES Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabancı University

October 10, 2019

Block Cipher: Definition

- A family of functions which maps n-bit plaintext blocks to n-bit ciphertext blocks;
 - -n is called the block-length.
- The function is parameterized by a k-bit key K.
- It may be viewed as a simple substitution cipher with a large character size.

Modes of Operations

• Electronic Codebook:

- The plaintext P is broken into n-bit blocks, i.e. $P = P_1 P_2 \dots P_L$
- The ciphertext consists of the blocks $C = C_1 C_2 \dots C_L$ where $C_i = E_K(P_i)$ for $i = 1, 2, \dots, L$.
- Identical plaintext blocks (under the same key) result in identical ciphertext blocks. (substitution cipher)
- Each block is encrypted independently of other blocks.
- Errors in a single block do not propagate to other blocks.
- Malicious block substitutions does not affect decryption of other blocks.

Image Encryption with ECB

Plaintext Image

Ciphertext with ECB

Modes of Operations

- Cipher Block Chaining (CBC):
 - $C_i = E_K(P_i \oplus C_{i-1})$
 - $-P_i =$

- Encryption of a block depends on the encryption of previous blocks.
- Self-synchronizing

Modes of Operations

- Cipher Feedback (CFB) mode:
 - Stream cipher mode
 - A single 8-bit character can be encrypted without having to wait for entire block of data to be available.

Output Feedback Mode

Image Encryption with Different Modes

Plaintext Image

Ciphertext with ECB

Ciphertext with other modes

Evaluating Block Ciphers

Historical strength:

 The longer it is exposed to public scrutiny, the higher the confidence level

• Key Size:

- Effective key size defines an upper bound on the level of security of the cipher
- While longer keys provides more security, they also impose additional implementation costs.

Complexity:

- Complexity of the mapping is good for the security
- May be restrictive in terms of the efficiency.

Evaluating Block Ciphers

- Block Size:
 - The larger the block size the higher the security
 - Performance implications.
- Throughput:
 - Fast and easy to implement in hardware and software.
- Data Expansion:
 - Encryption should not increase the size of plaintext data.
- Error propagation:
 - Decrypting the ciphertext containing bit errors may result in various effects on the recovered plaintext.

DES Algorithm

- In 1976, the NBS (later NIST) released DES and a free license for its use.
- NSA reviewed and modified the original "Lucifer" which was an IBM design to make the DES.
- Became a standard in 1977 (replaced in 2001).
- Widely used especially in banking industry since.
- Biham & Shamir in 1990, showed an efficient cryptanalysis method (differential) to attack DES.
 - The attack is more efficient for DES variants with fewer number of rounds.

DES & Feistel Ciphers

- System parameters
 - 64 bit input/output bits (block length)
 - -56 bits of key
- Principle: 16 round of Feistel system

16 Rounds of DES

Decryption of DES

- DES decryption function is the same as the DES encryption function
 - except the round keys are applied in the reverse order.

The Avalanche Effect in DES 1/2

- Avalanche Effect:
 - A small change either in the plaintext or the key should produce a significant change in the ciphertext.
- DES exhibits a strong avalanche effect.
- Example: Two plaintext which differs by one bit:

 - $P_2 : 10000000 \ 00000000 \dots$
 - $-\ Key: 0000001\ 1001011\ 0100100\ 1100010$ $0011100\ 0011000\ 0011100\ 0110010$

The Avalanche Effect in DES 2/2

Round	# of bits that	Round	# of bits that
	differ		differ
0	1	6	32
1	6	7	31
2	21	8	29
3	35	9	42
4	39	10	44
5	34	11	32

DES Properties

- A DES weak key is a key K such that
 - $E_K(E_K(x)) = x$ for all x.
 - There are four DES weak keys.
 - For each of the four DES weak keys K, there exists 2^{32} fixed points of E_K (i.e. plaintexts x such that $E_K(x)=x$)
- A pair of DES semi-weak keys is a pair (K_1,K_2) with $E_{K_2}(E_{K_1}(x))=x.$
 - six pairs of semi-weak keys
- Is DES a group?
 - Given any two keys K_1 , K_2 , does there exist a third key K_3 such that $E_{K_3}(x) = E_{K_2}(E_{K_1}(x))$?
 - Is multiple encryption equivalent to a single encryption?

Attacks to DES

- Exhaustive Search:
 - Known: X and Y (known plaintext attack)
 - Unknown: K such that $Y = DES_K(X)$
 - Idea: test all possible keys.
 - Key size (56 bits) is too small
- Differential Cryptanalysis:
 - Proposed by Biham & Shamir in 1990.
 - Principle:
 - Analyze the differences in ciphertexts for suitably chosen plaintext pairs and deduce the likelihood of certain keys.

Differential Cryptanalysis

- Requirements for 16-round DES
 - With chosen plaintext $2^{47}(X,Y)$ pairs are needed.
 - With known plaintext $2^{55}(X,Y)$ pairs are needed.
 - -2^{37} arithmetic operations are needed.
 - High storage requirement for the pairs makes the attack highly impractical.
- <u>Remark</u>: DES s-boxes are optimized for differential cryptanalysis (i.e. the designers were aware of this attack)

Linear Cryptanalysis

- Proposed by Matsui in 1993 & presented at CRYPTO'94
 - 2^{43} known plaintexts with complexity 2^{43} with success rate 85%.
- The actual attack is implemented
 - Using 12 HP RISC workstations running at 99 MHz
 - With 2^{47} known plaintexts, the key was discovered in 50 days.
- Remark: DES s-boxes are not optimized against this attack.

History of Attacks Against DES

Date	Proposed/implemented attack	
1977	Diffie&Hellman, estimates the cost of key search engine (\$20m)	
1990	Biham&Shamir proposes differential cryptanalysis (2^{47} chosen ciphertext)	
1993	Michael Wiener proposes a detailed hw design for key search engine; average	
	search time: 3.5 hours @ less than \$1m	
1993	Matsui proposes linear cryptanalysis (243 known ciphertext)	
Jun. 1997	DES Challenge I broken, distributed effort took 96 days	
Feb. 1998	DES Challenge II-1 broken, distributed effort (distributed.net) took 41 days	
July 1998	DES Challenge II-2 broken, key search machine deepcrack built by Electronic	
	Frontier Foundation (EFF), 1800 ASICs, each with 24 search units (deepcrack) ,	
	\$250K, 15 days average, (actual time 56 hours)	
Jan. 1999	DES Challenge III broken, distributed.net + EFF's deepcrack, it took 22 hours	
	and 15 minute	

Final Results

COPACOBANA

- Cost-Optimized PArallel COde Breaker
- 120 FPGA @ 100 MHz
- Each FPGA can check four keys every 10 ns.
- 120 FPGA can check 48 billion keys per second.
- 8.7 days to break DES, on average
- Material Cost : ~ US\$ 10K

"In 2008 their COPACOBANA RIVYERA reduced the time to break DES to less than one day, using 128 Spartan-3 5000's" http://www.sciengines.com/copacobana/

DES Alternatives

- Double DES:
 - $C = E_{K_2}(E_{K_1}(P))$ and $P = D_{K_1}(D_{K_2}(C))$, where $K_1 \neq K_2$.
- Double DES is vulnerable to meet-in-the-middle attack by Merkle and Hellman.
- Meet-in-the-middle attack
 - Assume we have P and C where $C = E_{K_2}(E_{K_1}(P))$
 - $-d = E_{K_1}(P)$
 - $D_{K_2}(C) = D_{K_2}(E_{K_2}(E_{K_1}(P))) = E_{K_1}(P) = d$

Double DES

- Meet-in-the middle attack
 - Eve intercepts P and $C = E_{K_2}(E_{K_1}(P))$.
 - She computes $E_K(P)$ for all possible K and stores them.
 - She computes $D_K(C)$ for all possible K and stores them.
 - Finally, she compares the two lists.
 - If there are N keys the storage requirement is 2N.
 - $-\ N$ encryption and N decryption operations and comparisons.
 - Effective key length of Double DES is 57 bits.
 - Storage requirement:

•
$$N = 2^{56}, 2N = 2^{57} \rightarrow 2N \times 8 = 2^{57} * 2^3 = 2^{60}$$
 B

Other Alternatives

- Triple DES:
 - $C = E_{K_3}(E_{K_2}(E_{K_1}(P)))$ provides ?-bit security.
 - $C = E_{K_1}(D_{K_2}(E_{K_1}(P)))$ provides ?-bit security.
- DESX:
 - $-C = K_3 \oplus E_{K_2}(K_1 \oplus P)$
 - Fairly secure
- Rijndael was elected as the Advanced Encryption Standard (AES) out of 15 candidate algorithms in 2000.