CSE 5370: Bioinformatics Homework-2

Divya Boggavarapu(102086719)

October 2022

Collaboration Statement

I have collaborated with Vijitha Kotapati(1001860730) and Tulasi Sridevi Navuluru(1002010740) to do the programming questions in 2,3 and 4 by understanding the Needleman-Wunsch, Smith-Waterman algorithms.

1 Substitution Matrices

Suppose that transition mutations (A \longleftrightarrow G and T \longleftrightarrow C) are less common than transersions (A \longleftrightarrow T , A \longleftrightarrow C, G \longleftrightarrow T , and G \longleftrightarrow C). Following is the substitution matrix that reflects this.

	\overline{A}	G	T	C
\overline{A}	1	-5	-1	-1
G	-5	1	-1	-1
T	-1	-1	1	-5
C	-1	-1	-5	1

2 Global Alignment

we have conducted global alignment with the Needleman-Wunsch algorithm and implemented it in a single python file called ${\bf 1002086719_NW.py}$

The global alignment function in the file will take in sequence A and sequence B as strings to be aligned (assume that these strings only contain the chars "acgt"), a gap penalty, and a substitution matrix and returns a list of tuples representing possible alignments.

2.1 An example

In **1002086719_NW.py**, we executed the global alignment function with input strings "GATA" and "CTAC", substitution matrix d and gap penalty as parameters which returned the tuples ("GATA", "-CTAC"), ("GATA-", "C-TAC").

3 Local Alignment

we have conducted local alignment with the Smith-Waterman algorithm and implemented it in a single python file called $1002086719_SW.py$

The local_alignment function in the file will take in sequence A and sequence B as the strings to be aligned (assume that these strings only contain the chars "acgt"), a gap penalty, and a substitution matrix and returns a list of tuples representing possible alignments.

4 A Custom Alignment

- I have taken my first name **divya**, last name **boggavarapu** in lowercase and concatenated them to be 'divyaboggavarapu'.
- I have written code to create a custom substitution dict to substitute all the 26 English alphabets as characters and included code for this problem in the file "1002086719_CUSTOM.py"

The file "1002086719_S.txt" will provide the output of my pretty matrix.

• I ran "local_alignment" function from Problem 3 with the custom S defined by my name, a gap penalty of -2, my concatenated name (i.e. "divyaboggavarapu") as the first string, and the pangram "thequickbrownfoxjumpsoverthelazydog" as the second string. Following are the output tuples:

('____ggavarapu', 'thequicwnfoxjump'), ('___arapu', 'thequickobvroerthe')

• The file "1002086719_D.txt" will provide the output of my pretty matrix.

5 Difficulty Adjustment

Please find my feedback below:

- How long did this assignment take you to complete?
 - I completed my assignment in 14 hours.
- If the assignment took you longer than the 10 hours, which parts were overly difficult?
 - Faced difficulty in understanding the First and Custom alignment questions.