FICHA 6 Novembro

Primitivas imediatas

1. Usando a fórmula $Pf'(x).f^n(x) = \frac{f^{n+1}(x)}{n+1} + C, n \neq -1$ e as propriedades das primitivas, determine a família de primitivas das funções, válidas no seu domínio:

a)
$$x + \sqrt{x}$$

a)
$$x + \sqrt{x}$$
 b) $\frac{3}{\sqrt{x}} + \frac{x\sqrt[3]{x}}{4}$

c)
$$\left(\frac{1}{x^2} + \frac{1}{x\sqrt{x}}\right)^2$$
 d) $(x^2 + 1)^3$

d)
$$(x^2+1)^3$$

e)
$$(-5x-1)^6$$
 f) $\sqrt[3]{-5x-1}$

f)
$$\sqrt[3]{-5x-1}$$

g)
$$\frac{1}{(2x-1)^2}$$
 h) $\frac{1}{\sqrt[5]{1-2x}}$

h)
$$\frac{1}{\sqrt[5]{1-2x}}$$

i)
$$\frac{3}{\sqrt[5]{(-5x-1)^3}}$$
 j) $x\sqrt{x^2+1}$

$$j) x\sqrt{x^2+1}$$

k)
$$x^3(5x^4-1)^6$$

k)
$$x^3(5x^4-1)^6$$
 l) $\frac{\exp x}{(3-\exp x)^3}$

m)
$$\sin x \cos^7 x$$

n)
$$\cosh(2x+1)\sinh(2x+1)$$
 o) $\frac{\tan x}{\cos^2 x}$

o)
$$\frac{\tan x}{\cos^2 x}$$

p)
$$\frac{\cos x}{\sin^3 x}$$

q)
$$\sin x \sqrt{1 - \cos x}$$
 r) $\frac{3}{x(\ln x + 5)^8}$

s)
$$\frac{\arctan^5 x}{1+x^2}$$

2. Usando a fórmula $P\frac{f'(x)}{f(x)} = \ln|f(x)| + C$, e as propriedades das primitivas, determine a a família de primitivas das funções, válidas no seu domínio:

a)
$$\frac{1}{9x-5}$$

a)
$$\frac{1}{9x-5}$$
 b) $\frac{3x}{9x^2-5}$

c)
$$\frac{\exp x}{3 - \exp x}$$
 d) $\frac{\cos(2x)}{4\sin(2x)}$

d)
$$\frac{\cos(2x)}{4\sin(2x)}$$

e)
$$\frac{\cos(1-5x)}{\sin(1-5x)}$$
 f) $\tan x$

g)
$$\frac{\tan\sqrt{x}}{\sqrt{x}}$$

g)
$$\frac{\tan\sqrt{x}}{\sqrt{x}}$$
 h) $\frac{3}{x(\ln x + 5)}$

$$i) \ \frac{1}{x(\ln x^2)}$$

i)
$$\frac{1}{x(\ln x^2)}$$
 j) $\frac{3}{(1+x^2)(\arctan x+10)}$

3. Usando a fórmula $P\frac{f'(x)}{1+f^2(x)}=\arctan f(x)+C$, e as propriedades de primitivas, determine a família de primitivas das funções, válidas no seu domínio:

a)
$$\frac{1}{1+9x^2}$$

b)
$$\frac{1}{5+x^2}$$

a)
$$\frac{1}{1+9x^2}$$
 b) $\frac{1}{5+x^2}$ c) $\frac{1}{4+9x^2}$ d) $\frac{3x}{1+x^4}$

$$d$$
) $\frac{3x}{1+x^4}$

e)
$$\frac{x^3}{x^8 + 1}$$

f)
$$P \frac{\sin x}{1 + \cos^2 x}$$

e)
$$\frac{x^3}{x^8+1}$$
 f) $P\frac{\sin x}{1+\cos^2 x}$ g) $\frac{3}{x(1+\ln^2 x)}$ h) $\frac{3\exp x}{1+\exp(2x)}$

$$h) \frac{3\exp x}{1 + \exp(2x)}$$

$$i) \frac{\exp x}{4 + \exp(2x)}$$

4. Usando a fórmula $P\frac{f'(x)}{\sqrt{1-f^2(x)}} = \arcsin f(x) + C$, e as propriedades das primitivas, determine a família de primitivas das funções, válidas no seu domínio:

a)
$$\frac{1}{\sqrt{1-9x^2}}$$
 b) $\frac{1}{\sqrt{4-x^2}}$ c) $\frac{1}{\sqrt{4-9x^2}}$ d) $\frac{x}{\sqrt{1-2x^4}}$

e)
$$\frac{3x}{\sqrt{1-x^4}}$$
 f) $\frac{\sin x}{\sqrt{1-\cos^2 x}}$ g) $\frac{3}{x\sqrt{1-\ln^2 x}}$ h) $\frac{3\exp x}{\sqrt{1-\exp(2x)}}$

5. Usando a fórmula $P\frac{f'(x)}{\sqrt{f^2(x)+1}} = \operatorname{argsh} f(x) + C$, e as propriedades das primitivas, determine a família de primitivas das funções, válidas no seu domínio:

a)
$$\frac{1}{\sqrt{1+9x^2}}$$
 b) $\frac{1}{\sqrt{4+x^2}}$ c) $\frac{1}{\sqrt{4+9x^2}}$ d) $\frac{x}{\sqrt{2x^4+1}}$

e)
$$\frac{3x}{\sqrt{x^4 + 1}}$$
 f) $\frac{\sin x}{\sqrt{1 + \cos^2 x}}$ g) $\frac{3}{x\sqrt{1 + \ln^2 x}}$ h) $\frac{3 \exp x}{\sqrt{1 + \exp(2x)}}$

6. Determinar a família de primitivas das seguintes funções, válidas no seu domínio:

1) 4 2)
$$2x + 3$$
 3) $6x^4 + 4 - 5x$ 4) $2x^{-4}$, $x \neq 0$

5)
$$x^{1/2} - \frac{2}{\sqrt[3]{x^2}} + \frac{2}{5x^3}$$
 6) $\frac{ax^2 + bx + c}{dx^2}$, $a, b, c, d \in \mathbb{R} \setminus \{0\}$ 7) $\sqrt{7 - 8x}$ 8) $x(\sqrt{x} + x)$

9)
$$\frac{1}{2x^3}$$
 10) $\frac{1}{2x}$ 11) $\frac{x}{\sqrt{2-5x^2}}$ 12) $x\sqrt{1-x^2}$

$$13)x^3(1-5x^4)^7$$
 $14)$ $\frac{2}{3x-1}$ $15)$ $\frac{4x^2}{1-5x^3}$ $16)$ $\frac{x}{x+5}$

17)
$$3\exp(x)$$
 18) $5\exp(-3x+8)$ 19) $x \cdot \exp(3x^2-5)$ 20) $\frac{\exp^{\sqrt{x}}}{\sqrt{x}}$

21)
$$x^2 e^{-2x^3 - 7}$$
 22) $\sin x e^{\cos x}$ 23) $\frac{1}{x^2} e^{\frac{1}{x}}$ 24) $\frac{\ln x}{x}$

25)
$$\frac{1}{x \ln x}$$
 26) $\sin(5x)$ 27) $3\cos(1-x)$ 28) $\tan x$

29)
$$\cos x \sin^5 x$$
 30) $\frac{1}{\cos^2 x}$ 31) 2^x 32) $3^{\sin^2 x} \sin(2x)$

$$33)e^{x+3}$$
 $34) x. \sin x^2$ $35)x^2. \sinh(x^3+5)$ $36) \frac{\sin \sqrt{x}}{\sqrt{x}}$

37)
$$\cos(-2x)$$
 38) $\cosh(3x+4)$ 39) $\frac{\cos(\ln x)}{\pi}$ 40) $\sinh(-2x)$

41)
$$x^2 \cosh(-2x^3)$$
 42) $\frac{1}{\sqrt{1+x^2}}$ 43) $\frac{x+1}{1+x^2}$ 44) $\frac{1}{\sin^2(2x)}$

45)
$$\frac{x^2}{x^2+2}$$
 46) $\frac{2x^4-3x^2+x-1}{x^2}$ 47) $\frac{2x+3}{2x+1}$

- 7. Determine a família de primitivas das seguintes funções, usando a substituição indicada:

 - a) $\frac{\sqrt{x}}{1+\sqrt[3]{x}}$, subst: $x=t^6$ b) $x\sqrt{4-x}$, subst: $\sqrt{4-x}=t$ c) $\frac{x}{\sqrt{1+x}}$, subst: $\sqrt{1+x}=t$ d) $\sqrt{9-x^2}$, subst: $x=3\sin t$ e) $\frac{x^2}{\sqrt{4-x^2}}$, subst: $x=2\sin t$ f) $\sqrt{1+4x^2}$, subst: $x=\frac{1}{2}\sin t$

- g) $\frac{1}{\sqrt{1+x^2}}$, subst: $x = \sinh t$
- 8. Resolva os seguintes problemas de valores iniciais (determinar a função f que satisfaz as condições indicadas):

 - a) f'(x) = 4, f(1) = -1 b) f'(x) = 2x + 3, f(-3) = 8

 - c) f'(x) = 4 5x, f(2) = 6 d) $f'(x) = 2x^{-4}$, $x \neq 0$, f(1) = 6
 - e) $f'(x) = 3x^2 7$, f(2) = -1
- 9. Determina F tal que F'(x) = 1 4x e F(1) = 0.
 - Esboça os gráficos de y = F(x), y = F(x) 2 e y = F(x) + 4.
- 10. Um carro quando trava efectua uma desaceleração constante de $22m/s^2$. Supondo que o carro quando começou a travar ia a uma velocidade de 88m/s, que distância percorreu o carro até travar completamente?
- 11. Supõe que a taxa de crescimento populacional numa determinada cidade é de $4 + 5t^{2/3}$ por mês t. Se neste momento, a cidade tem 2000 pessoas, quantas terá daqui a 8 meses?

Primitivação por partes

- 1. Determine a família de primitivas das seguintes funções:

 - a) $f(x) = x \exp(-x)$ b) $f(x) = x \sin(2x)$ c) $f(x) = x^2 \sin x$

- d) $f(x) = x \ln x$ e) $f(x) = x^2 \ln x$ f) $f(t) = \exp t \sin t$
- g) $f(t) = \exp(2t)\sin(3t)$ h) $f(x) = \arcsin x$

Primitivas de potências de funções trigonométricas

- 1. Determinar a família de primitivas das seguintes funções:
 - a) $\sin x \cdot \cos^2 x$ b) $\sin^2 x$ c) $\cos^3 x$ d) $\sin^2 x \cdot \cos^3 x$ e) $\sin^2 x \cdot \cos^2 x$

- f) $\frac{\tan^3 x}{\cos^2 x}$ g) $\frac{1}{\cos x}$ h) $\frac{1}{\cos^4 x}$ i) $\tan^2 x$
- j) $\tan^3 x$

Primitivas de funções racionais

- 1. Divida os polinómios das seguintes funções racionais:
 - a) $\frac{x}{x+2}$ b) $\frac{x^2}{x^2-3x+2}$ c) $\frac{x^3}{x^2-4}$ d) $\frac{x^6+1}{x^2+2x+1}$ e) $\frac{x^4+x^2+2}{x^2(x+2)(x+3)}$
- 2. Decomponha as seguintes funções racionais em elementos simples:

- a) $\frac{x}{x^2-4}$ b) $\frac{x^2+1}{x^3-9x}$ c) $\frac{x+1}{(x-1)^2(x-2)}$ d) $\frac{1}{x^2(x^2+1)(x-1)}$

3. Determinar a família de primitivas das seguintes funções:

a)
$$\frac{x}{x^2 + 2}$$

b)
$$\frac{4x-1}{x+2}$$

c)
$$\frac{x-1}{x^2-5x-6}$$

a)
$$\frac{x}{x^2+2}$$
 b) $\frac{4x-1}{x+2}$ c) $\frac{x-1}{x^2-5x-6}$ d) $\frac{x^2+2}{(x-1)^2(x+2)}$ e) $\frac{2x^3-2x^2+11x}{x^2+4}$

e)
$$\frac{2x^3 - 2x^2 + 11x}{x^2 + 4}$$

f)
$$\frac{1}{(x^2+1)(x-1)}$$
 g) $\frac{1}{x^2+2x+2}$ h) $\frac{x}{x^2+2x+2}$

g)
$$\frac{1}{x^2 + 2x + 2}$$

h)
$$\frac{x}{x^2 + 2x + 2}$$

Soluções de alguns exercícios

1.

a)
$$\frac{x^2}{2} + \frac{2}{3}\sqrt{x^3} + C$$

b)
$$6\sqrt{x} + \frac{3\sqrt[3]{x^7}}{21} + 6$$

a)
$$\frac{x^2}{2} + \frac{2}{3}\sqrt{x^3} + C$$
 b) $6\sqrt{x} + \frac{3\sqrt[3]{x^7}}{21} + C$ c) $-\frac{1}{3x^3} - \frac{4}{5\sqrt{x^5}} - \frac{1}{2x^2} + C$ d) $\frac{x^7}{7} + \frac{3x^5}{5} + x^3 + x + C$

d)
$$\frac{x^7}{7} + \frac{3x^5}{5} + x^3 + x + C$$

e)
$$\frac{1}{35}(5x+1)^7 + C$$

f)
$$-\frac{3}{20}\sqrt[3]{(5x+1)^4} + C$$

g)
$$-\frac{1}{2(2x-1)} + C$$

e)
$$\frac{1}{35}(5x+1)^7 + C$$
 f) $-\frac{3}{20}\sqrt[3]{(5x+1)^4} + C$ g) $-\frac{1}{2(2x-1)} + C$ h) $-\frac{5}{8}\sqrt[5]{(1-2x)^4} + C$

i)
$$-\frac{3}{2}\sqrt[5]{(5x+1)^2} + C$$

j)
$$\frac{1}{3}\sqrt{(x^2+1)^3}+C$$

k)
$$\frac{1}{140}(5x^4-1)^7+C$$

i)
$$-\frac{3}{2}\sqrt[5]{(5x+1)^2} + C$$
 j) $\frac{1}{3}\sqrt{(x^2+1)^3} + C$ k) $\frac{1}{140}(5x^4-1)^7 + C$ l) $\frac{1}{2(3-\exp x)^2} + C$

m)
$$-\frac{1}{8}\cos^8 x + C$$

m)
$$-\frac{1}{8}\cos^8 x + C$$
 n) $\frac{1}{4}\sinh^2(2x+1) + C$ o) $\frac{\tan^2 x}{2} + C$

p)
$$-\frac{1}{2\sin^2 x} + C$$

q)
$$\frac{2}{3}\sqrt{(1-\cos x)^3} + C$$

q)
$$\frac{2}{3}\sqrt{(1-\cos x)^3} + C$$
 r) $-\frac{3}{7(\ln x + 5)^7} + C$ s) $\frac{\arctan^6 x}{6} + C$

s)
$$\frac{\arctan^6 x}{6} + C$$

2.

a)
$$\frac{1}{9} \ln |9x - 5| + C$$

b)
$$\frac{1}{6} \ln|9x^2 - 5| + C$$

a)
$$\frac{1}{9}\ln|9x-5|+C$$
 b) $\frac{1}{6}\ln|9x^2-5|+C$ c) $-\ln|3-\exp x|+C$ d) $\frac{1}{8}\ln|\sin(2x)|+C$

d)
$$\frac{1}{8} \ln|\sin(2x)| + C$$

e)
$$-\frac{1}{5}\ln|\sin(1-5x)| + C$$
 f) $-\ln|\cos x| + C$ g) $-2\ln|\cos\sqrt{x}| + C$ h) $3\ln|\ln x + 5| + C$

f)
$$-\ln|\cos x| + C$$

$$g$$
) $-2 \ln |\cos \sqrt{x}| + C$

h)
$$3 \ln |\ln x + 5| + C$$

i)
$$\frac{1}{2} \ln |\ln x^2| + C$$

j)
$$3 \ln |\arctan x + 10| + C$$

3.

a)
$$\frac{1}{3}\arctan(3x)+C$$
 b) $\frac{\sqrt{5}}{5}\arctan(\frac{\sqrt{5}}{5}x)+C$ c) $\frac{1}{6}\arctan(\frac{3}{2}x)+C$ d) $\frac{3}{2}\arctan(x^2)+C$

c)
$$\frac{1}{6}\arctan(\frac{3}{2}x) + C$$

$$d)\frac{3}{2}\arctan(x^2) + C$$

e)
$$\frac{1}{4}\arctan(x^4)+C$$
 f) $P-\arctan(\cos x)+C$ g) $3\arctan(\ln x)+C$ h) $3\arctan(e^x)+C$

f)
$$P - \arctan(\cos x) + C$$

$$3\arctan(\ln x) + C$$

h)
$$3\arctan(e^x) + C$$

i)
$$\frac{1}{2}\arctan(\frac{e^x}{2}) + C$$

4.

a)
$$\frac{1}{3}\arcsin(3x) + C$$

b)
$$\arcsin(\frac{x}{2}) + C$$

c)
$$\frac{3}{2}\arcsin(x^2) + C$$

a)
$$\frac{1}{3}\arcsin(3x)+C$$
 b) $\arcsin(\frac{x}{2})+C$ c) $\frac{3}{2}\arcsin(x^2)+C$ d) $\frac{\sqrt{2}}{4}\arctan(\sqrt{2}x^2)+C$

e)
$$\frac{3}{2}\arcsin(x^2) + C$$
 f) $P - \arcsin(\cos x) + C$ g) $3\arcsin(\ln x) + C$ h) $3\arcsin(e^x) + C$

f)
$$P - \arcsin(\cos x) + C$$

g)
$$3\arcsin(\ln x) + C$$

h)
$$3\arcsin(e^x) + 6$$

i)
$$\frac{1}{2}\arctan(\frac{e^x}{2}) + C$$

6.

1)
$$4x + C$$

2)
$$x^2 + 3x + C$$

3)
$$\frac{6}{5}x^5 + 4x - \frac{5}{2}x^2 + C$$

$$4) - \frac{2}{3}x^{-3} + C, \ x \neq 0$$

5)
$$\frac{2}{3}x^{3/2} - 6\sqrt[3]{x} - \frac{1}{5}x^{-2} + C$$

6)
$$\frac{a}{d}x + \frac{b}{d}\ln|x| - \frac{c}{dx} + C ,$$

7)
$$-\frac{1}{12}\sqrt{(7-8x)^3} + C$$

8)
$$\frac{2}{5}x^{5/2} + \frac{x^3}{3} + C$$

9)
$$-\frac{1}{4x^2} + C$$

10)
$$\frac{1}{2} \ln |x| + C$$

11)
$$-\frac{1}{5}\sqrt{2-5x^2}$$

12)
$$-\frac{1}{3}\sqrt{(1-x^2)^3} + C$$

$$(13) - \frac{1}{160}(1 - 5x^4)^8 + C$$

14)
$$\frac{2}{3} \ln |3x - 1|$$

15)
$$-\frac{4}{15}\ln|1 - 5x^3| + C$$

16)
$$x - 5 \ln|x + 5| + C$$

17)
$$3\exp(x) + C$$

18)
$$-\frac{5}{3}\exp(-3x+8)+C$$

19)
$$\frac{1}{6} \exp(3x^2 - 5) + C$$

20)
$$2 \exp(\sqrt{x}) + C$$

21)
$$-\frac{1}{6}e^{-2x^3-7} + C$$

22)
$$-e^{\cos x} + C$$

23)
$$-e^{\frac{1}{x}} + C$$

24)
$$\frac{\ln^2 x}{2}$$

25)
$$\ln |\ln x| + C$$

26)
$$-\frac{1}{5}\cos(5x) + C$$

27)
$$-3\sin(1-x) + C$$

28)
$$-\ln|\cos x| + C$$

29)
$$\frac{\sin^6 x}{6} + C$$

30)
$$\tan x + C$$

31)
$$\frac{2^x}{2} + C$$

32)
$$\frac{3^{\sin^2 x}}{\ln 3} + C$$

$$33)e^{x+3} + C$$

34)
$$-\frac{1}{2}\cos x^2 + C$$

$$35)\frac{1}{3}\operatorname{ch}(x^3+5)+C$$

$$36) -2\cos\sqrt{x} + C$$

37)
$$-\frac{1}{2}\sin(-2x) + C$$

38)
$$\frac{1}{3} \sinh(3x+4) + C$$

$$39)\sin(\ln x) + C$$

$$40$$
) $-\frac{1}{2}\cosh(-2x) + C$

$$41) -\frac{1}{6}\sinh(-2x^3) + C$$

42)
$$\operatorname{argsh}(x) + C$$

43)
$$\frac{1}{2}\ln(x^2+1) + \arctan x + C$$
 44) $-\frac{1}{2}\cot(2x) + C$

44)
$$-\frac{1}{2}\cot(2x) + C$$

$$45) x - \sqrt{2}\arctan(\frac{\sqrt{2}}{2}x) + C$$

46)
$$\frac{2}{3}x^3 - 3x + \ln|x! + \frac{1}{x} + C$$

45) $x - \sqrt{2}\arctan(\frac{\sqrt{2}}{2}x) + C$ 46) $\frac{2}{3}x^3 - 3x + \ln|x! + \frac{1}{x} + C|$ 47) $x + \ln|2x + 1| + C$

a)
$$6\left(\frac{\sqrt[6]{x^7}}{7} - \frac{\sqrt[6]{x^5}}{5} + \frac{\sqrt[6]{x^3}}{3} - \sqrt[6]{x} + \arctan(\sqrt[6]{x})\right) + C$$

b)
$$-2\left(\frac{4}{3}\sqrt{(4-x)^3} - \frac{1}{5}\sqrt{(4-x)^5}\right) + C$$

c)
$$2\left(\frac{1}{3}\sqrt{(1+x)^3} - \sqrt{(1+x)}\right) + C$$

d)
$$\frac{9}{2} \left(\arcsin(\frac{x}{3}) + \frac{x}{3} \sqrt{1 - \frac{x^2}{9}} \right) + C$$

e)
$$2\left(\arcsin\left(\frac{x}{2}\right) + x\sqrt{1 - \frac{x^2}{4}}\right) + C$$

g) $-\frac{\sqrt{1 + x^2}}{x}$

f)
$$\frac{x}{2}\sqrt{1+4x^2} + \frac{1}{4}\operatorname{argsh}(2x) + C$$

8.

a)
$$f(x) = 4x + 3$$

a)
$$f(x) = 4x + 3$$
 b) $f(x) = x^2 + 3x + 8$

c)
$$f(x) = 4x - \frac{5}{2}x^2 + 8$$
 d) $f(x) = \frac{2}{3}(-\frac{1}{x^3} + 10)$

d)
$$f(x) = \frac{2}{3} \left(-\frac{1}{x^3} + 10 \right)$$

e)
$$f(x) = x^3 - 7x + 5$$

9.
$$F(x) = -2x^2 + x + 1$$

10. A função que descreve a distância percorrida pelo carro ao fim de t segundos é r(t) = -11t(t-t)8) metros. O carro percorreu 176m até parar completamente.

11. A função que descreve o número de pessoas da cidade aos t meses é $C(t) = 4t + 3t^{5/3} + 2000$. Daqui a 8 meses a cidade terá 2128 pessoas.

Primitivação por partes

a)
$$-x \exp(-x) - \exp(-x) + C$$

b)
$$-\frac{x}{2}\cos(2x) + \frac{1}{4}\sin(2x) + C$$

b)
$$-\frac{x}{2}\cos(2x) + \frac{1}{4}\sin(2x) + C$$
 c) $-x^2\cos x + x\sin x + \cos x + C$

d)
$$\frac{x^2}{2} \ln x - \frac{x^2}{4} + C$$

e)
$$\frac{x^3}{3} \ln x - \frac{x^3}{9} + C$$

e)
$$\frac{x^3}{3} \ln x - \frac{x^3}{9} + C$$
 f) $\frac{\exp t}{2} (\sin t - \cos t) + C$

g)
$$f(t) = \frac{2}{13} \exp(2t)(\sin(3t) - \frac{3}{2}\cos(3t)) + C$$
 h) $x \arcsin x + \sqrt{1 - x^2} + C$

Primitivas de potências de funções trigonométricas

1.

a)
$$-\frac{\cos^3 x}{3} + C$$
 b) $\frac{x}{2} - \frac{1}{4}\sin(2x) + C$ c) $\sin x - \frac{\sin^3 x}{3} + C$ d) $\frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C$ e) $\frac{x}{8} - \frac{1}{32}\sin(4x) + C$

c)
$$\sin x - \frac{\sin^3 x}{3} + C$$

d)
$$\frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C$$

e)
$$\frac{x}{8} - \frac{1}{32}\sin(4x) + C$$

f)
$$\frac{\tan^4 x}{4} + C$$

g)
$$\ln(\tan x + \frac{1}{\cos x}) + C$$

$$\text{f)} \ \ \frac{\tan^4 x}{4} + C \qquad \text{g)} \ \ \ln(\tan x + \frac{1}{\cos x}) + C \quad \text{h)} \ \ \tan x + \frac{\tan^3 x}{3} + C \quad \text{i)} \\ \tan x - x + C \qquad \qquad \text{j)} \ \ \frac{\tan^2 x}{2} + \ln|\cos x| + C = 0$$

j)
$$\frac{\tan^2 x}{2} + \ln|\cos x| + C$$

Primitivas de funções racionais

1.

a)
$$1 - \frac{2}{x+2}$$

b)
$$1 + \frac{3x-2}{x^2-3x+2}$$

c)
$$x + \frac{4x}{x^2 - 4}$$

a)
$$1 - \frac{2}{x+2}$$
 b) $1 + \frac{3x-2}{x^2 - 3x + 2}$ c) $x + \frac{4x}{x^2 - 4}$ d) $x^4 - 2x^3 + 3x^2 - 4x - 11 + \frac{26x + 12}{x^2 + 2x + 1}$ e) $1 + \frac{-5x^3 - 7x^2 + 2}{x^2(x+2)(x+3)}$

e)
$$1 + \frac{x^3 - 7x^2 + 2}{x^2(x+2)(x+3)}$$

a)
$$\frac{1/2}{x-2} + \frac{1/2}{x+2}$$

b)
$$-\frac{1/9}{m} + \frac{5/9}{m-2} + \frac{5/9}{m+3}$$

a)
$$\frac{1/2}{x-2} + \frac{1/2}{x+2}$$
 b) $-\frac{1/9}{x} + \frac{5/9}{x-3} + \frac{5/9}{x+3}$ c) $-\frac{1}{x-1} - \frac{2}{(x-1)^2} + \frac{3}{x-2}$

d)
$$\frac{-1}{x} - \frac{-1}{x^2} + \frac{1/2}{x-1} + \frac{1}{2} \frac{x+1}{x^2+1}$$

a)
$$\frac{1}{2}\ln(x^2+2) + C$$

b)
$$4x - 9\ln(x+2) + C$$
 c)

b)
$$4x - 9\ln(x+2) + C$$
 c) $\frac{2}{7}\ln|x+1| + \frac{5}{7}\ln|x-6| + C$

f)
$$-\frac{1}{4}\ln(x^2+1) - \frac{1}{2}\arctan x + C$$

g)
$$\arctan(x+1) + C$$

$$\text{f) } -\frac{1}{4}\ln(x^2+1) - \frac{1}{2}\arctan x + C \qquad \text{g) } \arctan(x+1) + C \qquad \text{h) } \frac{1}{2}\ln(x^2+2x+2) + \arctan(x+1) + C$$