微分方程

孙天阳

	目录		4
	0.1	绪论	5
		0.1.1 参考书	6
		0.1.2 记号	6
1	调和	函数	7
	1.1	平均值公式	7
	1.2	平均值公式的应用	9
		1.2.1 强极值原理	9
		1.2.2 梯度内估计	9
	1.3	定理另证	10
		1.3.1 弱极值原理	10
		1.3.2 整体梯度估计约化到边界梯度估计	11
		1.3.3 梯度内估计	11
		1.3.4 对数梯度估计与 Liouville 定理	12
		1.3.5 Harnack 不等式与强极值原理	12
	1.4	基本解	14
	1.5	Green 表示	15
	1.6	调和函数的奇点可去定理	18
2	椭圆	方程 I	19

3	Sob	olev 空间	f 42
		2.13.2 开集上的单位分解	41
		2.13.1 紧集上的单位分解	41
	2.13	单位分解	41
		Neumann 边值问题的整体梯度估计	39
		2.11.2 Baby 版本的 Poisson 方程	38
		2.11.1 Laplace 方程	38
	2.11	Robin 边值问题的有界估计	38
		Poisson 方程经典解的梯度内部有界估计	37
		2.9.4 Poisson 方程经典解的高阶内估计	36
		2.9.3 Poisson 方程经典解的能量估计	35
		$2.9.2 \Delta u + u^{\alpha} = 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	34
		$2.9.1$ 不存在非常值 L^2 调和函数 \ldots	34
	2.9	截断函数的应用	34
	2.8	截断函数的构造	33
	2.7	卷积与光滑子	31
	2.6	强极值原理的应用	28
	2.5	Hopf 引理与一般椭圆方程的强极值原理	27
	2.4	Dirichlet 边值问题的边界梯度估计	26
		2.3.2 一般椭圆方程	25
		2.3.1 Poisson 方程	24
	2.3	整体梯度估计约化到边界梯度估计	24
		2.2.3 一般椭圆方程	22
		2.2.2 Poisson 方程	22
	2.2	2.2.1 Baby 版本	22
	2.2	Dirichlet 边值问题的有界估计	22
		$2.1.2 c \leq 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	20
	2.1	双相因为性的羽板阻尿垤	20
	2.1	一般椭圆方程的弱极值原理	20

6	习题	课	84
5	抛物	与双曲方程	82
	4.13	Stampacchia 迭代	81
	4.12	弱解的 L^{∞} 估计(Moser 迭代)	80
	4.11	特征值与特征函数	79
	4.10	上下解方法	76
		4.9.3 title	75
		4.9.2 title	74
	-	4.9.1 9.5.1	74
	4.9	复杂的例子	74
	4.8	边界正则性	73
	4.7	Cacciopolli 不等式和 Widman 填洞技巧	72
	4.6	散度型椭圆方程弱解的内部 H^2 正则性	70
	4.4	应用	70
	4.4	Fredholm 理论	67
		Lax-Milgram 定理	66
	4.1	田 (<i>O</i>)	65
4	作用四。 4.1	方程 ${f II}$ $H^{-1}(U)$	63
4	批同	수 # 1 1 1	eo
		Poisson 方程弱解的内部正则性	62
		差商	60
		Pohozaev 恒等式	59
		Poincaré-Wirtinger 不等式	58
	3.9	紧嵌入定理	57
	3.8	边値为零的 Poisson 方程弱解的存在唯一性	55
	3.7	Morrey 不等式	53
	3.6	Sobolev 不等式	40 51
	3.5	限制和延拓	48
		3.4.3 反例	40
		3.4.2 光滑到边函数的整体逼近	45 46
	3.4	3.4.1 光滑函数的整体逼近	45 45
	3.3 3.4	Sobolev 空间	44 45
	3.2	弱导数	43
	3.1	Hölder 空间	42
	0.1	II:11 房间	40

	6.1	第一次	习题课 2.27 V	ariation	nal p	rinc	iple		 	 				 				 84
	6.2	第二次	习题课						 	 				 				 88
		6.2.1	Harnack 不等	式					 	 				 				 88
	6.3	第四次	习题课						 	 				 				 89
		6.3.1	作业1						 	 				 				 89
		6.3.2	作业 2						 	 				 				 89
		6.3.3	作业 3						 	 				 				 89
		6.3.4	Hadamard \equiv	圆定理					 	 				 				 89
		6.3.5	Pohozaev 恒台	等式					 	 				 				 89
		6.3.6	活动标架法						 	 				 				 89
		6.3.7	补充习题 .						 	 				 				 89
7	一些	总结																90
	7.1	$(-\Delta)^-$	1						 	 				 				 90
\mathbf{A}	不等	式																92
	A.1	初等不	等式						 	 				 				 92
	A.2		不等式															93
		_101401	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•		•	 	 	•	•	•	 	•	•	•	
\mathbf{B}	实分	析																94

0.1 绪论

• f(t) 在 $t_0 \in I$ 达到最大值 $\Longrightarrow f'(t_0) = 0, f''(t_0) \le 0$ f(x) 在 $x_0 \in \Omega \subset \mathbb{R}^n$ 达到最大值,则 $g(t) = f(x_0 + tv)$ 在 t = 0 处达到最大值 $0 = g'(0) = \frac{\partial f}{\partial x_i}(x_0)v_i \stackrel{\text{th}v \in \mathbb{R}^d}{\Longrightarrow} \nabla f(x_0) = 0$ $0 \geqslant g''(0) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)v_i v_j \Longrightarrow D^2 f(x_0) \le 0$ 找 f, 占百分之五十

•
$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$
$$\Omega \subset \mathbb{R}^{n}, \partial \Omega \in C^{1}, \int_{\Omega} \operatorname{div} \vec{X} dx = \int_{\partial \Omega} \vec{X} \cdot \nu d\sigma$$

定义 0.1.1. 任意 $x_0\in\Omega,\partial\Omega\cap B_{\varepsilon}(x_0)$ 可以写成 $x_n=\varphi(x'),x'\in\mathbb{R}^{n-1},|x'|<\frac{\varepsilon}{2},\varphi\in C^1$

找 \vec{X} , 另外百分之五十

• 找到 $f, \vec{X} \Longrightarrow$ 解的估计 $\stackrel{\text{ind} f}{\Longrightarrow}$ 解的存在性和性质

讲课计划

- 1-4 周
 - 分析准备: 初步不等式, 卷积, 截断函数, 单位分解
 - 回忆调和函数: 平均值性质(含参变量积分),Green 表示(Ω 为球)(处理奇点),梯度估计(来自平均值公式的梯度内估计,对数梯度估计,边界梯度估计(助教讲))(⇒ 调和函数实解析)
 - 线性椭圆方程的极值原理(弱;强:在内部达到极大则为常值)

但在数学分析的框架中, 存在性的要求很高: $\partial \Omega \in C^{2,\alpha}, f \in C^{\alpha}$

• 5-8 周,Sobolev 空间

为了处理

$$\begin{cases} \Delta u = f & \text{in } \Omega \subset \mathbb{R}^n \\ u = \varphi & \text{on } \partial \Omega \end{cases}$$

其中 Ω 为有界区域, $f \in L^2(\Omega), \varphi, \Omega$ 没有好的光滑性

可以"求导"的 L^p 空间, L^p 足够大,可以求导足够小,所以刚好能证明弱解的存在唯一性

逼近: $C_0^{\infty}(\Omega)$ (卷积), $C^{\infty}(\Omega)$ (单位分解), $\mathbb{C}^{\infty}(\overline{\Omega})$ (单位分解)

延拓: 能否延拓到边界上

限制: 需要赋予限制的意义

Sobolev 不等式、Morrey 不等式 (都是由牛顿莱布尼茨公式来证)

紧嵌入定理

差商

- 9-14 周, 散度型(线性)椭圆方程
 - 存在性(变分法,下半连续性; Lax-Milgram,Fredholm 二择一)
 - 正则性, 找 \vec{X} (能量法) 特征值, 特征函数, 紧算子的 Hilbert-Schmidt 定理
- 15-16 周, 抛物方程
 - 存在性,Galerkin 逼近, 收敛性

双曲方程

0.1.1 参考书

- 准备工作
 - DiBenedetto 分析学: 实变函数,Sobolev 空间
 - Tartar: Sobolev 空间
- Han-Lin ch1-ch2: 调和函数 + 极值原理, 如何找 f(x)
- 椭圆方程
 - 偏微分方程的 L^2 理论
 - Evans ch6: 找 \vec{X}
 - Han-Lin ch4: 找 \vec{X}
- 抛物方程: 陈亚浙
- 双曲方程: Alinal
- M.Taylor 偏微分方程 I

0.1.2 记号

本笔记中约定若说 $u \neq 0$, 意思是 u 处处不为零. $C_0^{\infty}(U)$, 紧支集包含在 U 中的光滑函数.

Chapter 1

调和函数

1.1 平均值公式

定理 1.1.1. 设 $u \in C^2(U), \Delta u = 0, U \subset \mathbb{R}^n$ 为有界区域. 那么对任意 $x_0 \in U, B_{\varepsilon}(x_0) \subset U$, 满足

$$u(x) = \frac{1}{|B_{\varepsilon}(x_0)|} \int_{B_{\varepsilon}(x_0)} u(x) dx = \int_{\partial B_{\varepsilon}(x_0)} u(x) d\sigma.$$

证明.

$$\int_{B_r(x_0)} f(x) dx \xrightarrow{z \in \partial B_t(0)} \int_0^r \int_{\partial B_t(0)} f(x_0 + z) d\sigma_{\partial B_t} dt$$

$$\xrightarrow{z=t\omega} \int_{d\sigma_{\partial B_t} = t^{n-1} d\sigma_{S^{n-1}}} \int_0^r t^{n-1} \int_{\partial B_1(0)} f(x_0 + t\omega) d\sigma_{S^{n-1}} dt$$

$$\frac{d}{dr} \int_{B_r(x_0)} f(x) dx = r^{n-1} \int_{\partial B_1(0)} f(x_0 + r\omega) d\sigma_{S^{n-1}} = \int_{\partial B_r(x_0)} f(x) d\sigma$$

设 $\Omega \subset \mathbb{R}^n, u \in C^2(\Omega), \Delta u = 0, B_r(x_0) \subset \Omega, 0 < \rho < r.$

$$(1) \frac{\partial u}{\partial \nu} = \frac{\partial u}{\partial x_{i}} \nu_{i} = \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x_{i}} \cdot \frac{(x - x_{0})_{i}}{\rho} \stackrel{(2)}{=} \frac{\partial u}{\partial \rho}$$

$$(2) \rho^{2} = (x - x_{0})^{2} \Longrightarrow 2\rho \frac{\partial \rho}{\partial x_{i}} = 2(x - x_{0})_{i} \Longrightarrow \frac{\partial \rho}{\partial x_{i}} = \frac{(x - x_{0})_{i}}{\rho}$$

$$0 = \int_{\partial B_{1}(0)} \frac{\partial u}{\partial \rho} (x_{0} + \rho \omega) d\sigma_{S^{n-1}} = \frac{\partial}{\partial \rho} \int_{\partial B_{1}(0)} u(x_{0} + \rho \omega) d\sigma_{S^{n-1}}, \forall 0 < \rho < r$$

$$\Longrightarrow \int_{\partial B_{1}(0)} u(x_{0} + \rho \omega) d\sigma_{S^{n-1}} \stackrel{\mathbb{R}\rho = 0}{=} \int_{\partial B_{1}(0)} u(x_{0}) d\sigma = |S^{n-1}| u(x_{0})$$

$$\Longrightarrow u(x_{0}) = \frac{1}{|S^{n-1}|} \int_{\partial B_{1}(0)} u(x_{0} + \rho \omega) d\sigma = \frac{1}{|\partial B_{\rho}(x_{0})|} \int_{\partial B_{\rho}(x_{0})} u(x) d\sigma$$

$$\Longrightarrow \rho^{n-1} u(x_{0}) |S^{n-1}| = \int_{\partial B_{1}(x_{0})} u(x) d\sigma$$

$$\stackrel{\text{\tiny θ}}{\Longrightarrow} \frac{r^n}{n} u(x_0) |S^{n-1}| = \int_{B_r(x_0)} u(x) \mathrm{d}x$$

$$\Longrightarrow u(x_0) = \int_{B_r(x_0)} u(x) \mathrm{d}x$$

注记. 20 世纪 60 年代知道热方程 $u_t = \Delta u$ 也有平均值性质.

2月21日42分48秒

作业 1.1.2. 设 $U \subset \mathbb{R}^m, u \in C^3(U) \cap C^1(\overline{U}), \Delta u = 0$,

$$(1) ~ \textit{若} ~ u \neq 0, ~ \textrm{设} ~ \varphi = \frac{|\nabla u|^2}{u^p}, ~ \textrm{其中} ~ p = \frac{2(n-1)}{n-2}, n \geqslant 3, ~ 证明 ~ \Delta \varphi \geqslant 0.$$

(2) 若
$$|\nabla u| \neq 0$$
, 设 $\varphi = \frac{2u_1u_2u_{12} - u_2^2u_{11} - u_1^2u_{22}}{|\nabla u|^4}$, 证明 $\Delta \varphi \equiv 0$.

等温面的曲率

例 1.1.3.
$$D(r) = \int_{B_{\sigma}(0)} |\nabla u|^2 dx$$
, 那么

$$rD'(r) = (n-2) \int_{B_r(0)} |\nabla u|^2 dx + 2r \int_{\partial B_r(0)} \left(\frac{\partial u}{\partial r}\right)^2 d\sigma.$$

证明.
$$D'(r) = \int_{\partial B_r(0)} |\nabla u|^2 d\sigma$$

$$rD'(r) = r \int_{\partial B_r(0)} |\nabla u|^2 d\sigma \xrightarrow{\frac{\nu_i = \frac{x_i}{r}}{r^2 = \sum x_i^2}} \int_{\partial B_r(0)} x_i \nu_i |\nabla u|^2 d\sigma \xrightarrow{\frac{\vec{X} = |\nabla u|^2 x}{m}} \int_{B_r(0)} \operatorname{div}(|\nabla u|^2 x) dV$$

$$(|\nabla u|^2 x_i)_i = (|\nabla u|^2)_i x_i + n|\nabla u|^2 = 2x_i u_j u_{ij} + n|\nabla u|^2$$

$$2x_i u_j u_{ij} = 2(x_i u_j u_i)_j - 2\delta_{ij} u_j u_i - 2x_i u_{jj} u_i \xrightarrow{\Delta u = 0} 2(x_i u_i u_j)_j - 2|\nabla u|^2$$

$$rD'(r) = \int_{B_r(0)} (|\nabla u|^2 x_i)_i dV = n \int_{B_r(0)} |\nabla u|^2 dV + 2 \int_{B_r(0)} (x_i u_i u_j)_j dV - 2 \int_{B_r(0)} |\nabla u|^2 dV$$

$$= (n-2) \int_{B_r(0)} |\nabla u|^2 dV + 2 \int_{\partial B_r(0)} x_i u_i u_j \nu_j d\sigma_r \xrightarrow{\underline{x_i = r\nu_i}} (n-2) \int_{B_r(0)} |\nabla u|^2 dx + 2r \int_{\partial B_r(0)} \left(\frac{\partial u}{\partial \nu}\right)^2 d\sigma_r$$

例 1.1.4.
$$H(r) = \int_{B_r(0)} u^2 d\sigma_r = r^{n-1} \int_{\partial B_1(0)} u^2(r\omega) d\sigma_1$$

$$H'(r) = (n-1)r^{n-2} \int_{\partial B_1(0)} u^2(r\omega) d\sigma_1 + r^{n-1} \int_{\partial B_1(0)} 2u \frac{\partial u(r\omega)}{\partial r} d\sigma_1$$
$$= (n-1)r^{n-2} \int_{\partial B_1(0)} u^2(r\omega) d\sigma_1 + 2r^{n-1} \int_{\partial B_1(0)} uu_{\nu} d\sigma_1$$
$$= \frac{n-1}{r} \int_{\partial B_r(0)} u^2 d\sigma_r + 2 \int_{\partial B_r(0)} uu_{\nu} d\sigma_r$$

作业:
$$N(r) = \frac{rD(r)}{H(r)}, H'(r) \geqslant 0$$
Algrem 频率函数
作业: $\Delta u = 0, |\nabla u| \neq 0, 0 < u < 1, u = 1\partial\Omega, \Sigma_t = \{u = t\}, 0 < t < 1$
 $\varphi(t) = t^{-2} \int_{u=t} |\nabla u|^2 d\sigma$ 证单增
 Ω 任意有界区域

11 压心 自力 区场

u 是静电场的电势, Ω 是带电导体

提示, $u = |x|^{-1}$,

平均值公式的应用 1.2

设 $\Omega \subset \mathbb{R}^n$ 是区域, $u \in C(\overline{\Omega})$, $\Delta u = 0$, $B_r(x_0) \subset \Omega$,

$$u(x_0) = \int_{\partial B_r(x_0)} u(x) d\sigma = \int_{B_r(x_0)} u(x) dx.$$

1.2.1 强极值原理

定理 1.2.1 (强极值原理). 如果 u 在 $x_0 \in \Omega$ 达到最大(小)值 M,则 $u \equiv M$.

证明. 连通性论证.

梯度内估计 1.2.2

$$\begin{split} \Delta u &= 0 \Longrightarrow \Delta u_i = 0 \Longrightarrow u_i(x_0) = \int_{B_r(x_0)} u_i(x) \mathrm{d}x = \frac{1}{|B_r(x_0)|} \int_{\partial B_r(x_0)} u \nu_i \mathrm{d}\sigma_r \\ |u_i|(x_0) &\leqslant \frac{|\partial B_r(x_0)|}{|B_r(x_0)|} \sup_{\partial B_r(x_0)} |u| \stackrel{(1)}{=} \frac{n}{r} \sup_{\partial B_r(x_0)} |u| \\ (1) |B_r(x_0)| &= \frac{r^n}{n} |S^{n-1}|, |\partial B_r(x_0)| = r^{n-1} |S^{n-1}| \\ |\nabla u|^2(x_0) &= \sum |u_i|^2(x_0) \leqslant n \left(\frac{n}{r} \sup_{\partial B_r(x_0)} |u|\right)^2 \\ |\nabla u|(x_0) &\leqslant \frac{1}{r} n^{\frac{3}{2}} \sup_{\partial B_r(x_0)} |u| = \frac{1}{r} n^{\frac{3}{2}} \sup_{B_r(x_0)} |u| \\ \not\equiv u \geqslant 0, |u_i|(x_0) &\leqslant \frac{1}{|B_r(x_0)|} \int_{\partial B_r(x_0)} u \mathrm{d}\sigma_r = \frac{n}{r} u(x_0) \end{split}$$

推论 1.2.2 (Liouville 定理). 若 u 为 \mathbb{R}^n 上的上(下)有界调和函数,则 u 为常数.

证明. 不妨设 u 为下有界调和函数, 否则考虑 -u.

不妨设 u > 0, 否则考虑 u + c, 其中 c 为充分大的一个常数.

由梯度内估计, 任意固定 $x_0 \in \mathbb{R}^n$, 由梯度内估计,

$$|u_i|(x_0) \leqslant \frac{n}{r}u(x_0), \quad 1 \leqslant i \leqslant n, \forall \ r > 0.$$

令 $r \to +\infty$, 知 $\nabla u(x_0) = 0$. 由 x_0 任意性, $\nabla u \equiv 0$. 所以 u 为常数.

1.3 定理另证

为了将上述三个定理:梯度内估计、Liouville 定理和极值原理推广到平均值公式不适用的一般情形,我们寻求不依赖于平均值公式的其他证法.

1.3.1 弱极值原理

引理 1.3.1.

设 $\Omega \subset \mathbb{R}^n$ 为区域, $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\Delta u > 0$,则u的最大值不可能在内部达到,特别地,

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

证明. 设 $x_0 \in \Omega$ 为最大值点, 进而为极大值点, 所以 $\Delta u(x_0) \leq 0$, 矛盾.

当我们将条件修改为 $\Delta u \geqslant 0$ 时,很明显我们不能再直接通过相同的论证得到 "u 的最大值不可能在内部达到"的结果,但在附加上 Ω 有界的条件后,我们仍能得到 $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$.

定理 1.3.2 (弱极值原理).

设 $\Omega \subset \mathbb{R}^n$ 为有界区域, $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\Delta u \geqslant 0$, 则

$$\max_{\overline{\Omega}} u = \max_{\partial \Omega} u.$$

证明. 我们的思路是构造一个辅助函数 φ , 满足

- (1) $\Delta \varphi > 0$, 从而我们可以用上面的引理得到 $\max_{\overline{\Omega}} \varphi = \max_{\partial \Omega} \varphi$.
- (2) φ 得跟 u 扯上点关系,使得我们能够借助 φ 为桥梁建立起 $\max_{\partial\Omega} u \geqslant \max_{\overline{\Omega}} u$.

乍一看这似乎有些矛盾, 满足 $\max_{\overline{\Omega}} \varphi \geqslant \max_{\overline{\Omega}} u$ 或 $\max_{\partial \Omega} \varphi \leqslant \max_{\partial \Omega} u$ 的 φ 都不难构造, 但若想 φ 同时满足这两个条件, 就得要求 $\max_{\partial \Omega} u = \max_{\partial \Omega} \varphi, \max_{\overline{\Omega}} \varphi = \max_{\overline{\Omega}} u$, 这太苛刻了.

我们的做法是以退为进,给不等式一个 ε 容度,再令 ε 趋近于零,迂回实现我们的目的. 设 $\varphi = u + \varepsilon x_1^2$,让我们看看这个辅助函数.

- 首先, $\Delta \varphi = \Delta u + 2\varepsilon \ge 2\varepsilon > 0$,满足我们的第一条要求.
- 其次, 在 $\overline{\Omega}$ 上有 $\varphi \geqslant u$, 这建立了 $\max_{\overline{\Omega}} \varphi \geqslant \max_{\overline{\Omega}} u$.
- $\overline{\exists} \chi, \max_{\partial\Omega} \varphi = \max_{\partial\Omega} (u + \varepsilon x_1^2) \leqslant \max_{\partial\Omega} u + \varepsilon \max_{\partial\Omega} x_1^2.$
- 最后, 合并两个不等式, 得到 $\max_{\partial\Omega} u + \varepsilon \max_{\partial\Omega} x_1^2 \geqslant \max_{\overline{\Omega}} u$, 令 $\varepsilon \to 0^+$, 得证.

虽然我们已经证完了, 但请容许我再啰嗦两句, 让我们再仔细看看为了实现我们的目的 $f=x_1^2$ 必须满足什么样的要求

- $\bullet \quad f\geqslant 0 \Longrightarrow \max_{\overline{\Omega}} \varphi\geqslant \max_{\overline{\Omega}} u$
- $\bullet \ \Delta f > 0 \Longrightarrow \max_{\overline{\Omega}} \varphi = \max_{\partial \Omega} \varphi$
- $\max_{\partial\Omega}f$ 有限 + ε 技巧 $\Longrightarrow \max_{\partial\Omega}\varphi\leqslant \max_{\partial\Omega}u+\varepsilon c$

CHAPTER 1. 调和函数 11

其中第三条实际上不是对 f 的要求, 而是对 Ω 的要求 (这也是我们用到条件中 Ω 有界的地方), 因为连续函数一定能够在紧集上达到最值.

因此我想说, 只要 f 满足 $f\geqslant 0$ 和 $\Delta f>0$, 构造出来的 $\varphi=u+\varepsilon f$ 都能够作为辅助函数. $\ \square$

1.3.2 整体梯度估计约化到边界梯度估计

设
$$u \in C^1(\overline{\Omega}) \cap C^3(\Omega), \Delta u = 0.$$
 则 $\Delta |\nabla u|^2 = 2\sum u_{ij}^2 + 2\sum u_j u_{jii} \xrightarrow{\Delta u = 0} 2\sum u_{ij}^2 \geqslant 0 \Longrightarrow |\nabla u|$ 最大值在 $\partial \Omega$ 达到.

1.3.3 梯度内估计

令
$$\xi = r^2 - |x|^2, \varphi = \xi^2 |\nabla u|^2 + \alpha u^2$$
, 其中 α 为待定系数.
$$\xi_i = -2x_i, \Delta \xi = -2n.$$

$$\varphi_i = (\xi^2)_i |\nabla u|^2 + \xi^2 (|\nabla u|^2)_i + 2\alpha u u_i$$

$$\Delta \varphi = \xi^2 \Delta |\nabla u|^2 + \Delta (\xi^2) |\nabla u|^2 + 2(\xi^2)_i (|\nabla u|^2)_i + 2\alpha |\nabla u|^2 + 2\alpha u \Delta u$$

•
$$\xi^2 \Delta |\nabla u|^2 = 2\xi^2 \sum u_{ij}^2$$

•
$$\Delta(\xi)^2 = (2\xi\xi_i)_i = 2|\nabla\xi|^2 + 2\xi\Delta\xi = 8|x|^2 - 4n\xi = 8|x|^2 - 4n(r^2 - |x|^2) = (4n + 8)|x|^2 - 4nr^2$$

•
$$2(\xi^2)_i(|\nabla u|^2)_i = 8\xi \xi_i u_j u_{ij} = 8(\xi u_{ij})(\xi_i u_j)$$

• $8(\xi u_{ij})(\xi_i u_j) = 4 \cdot 2(-\xi u_{ij})(\xi_i u_j) \le 4 \cdot \left(\frac{1}{\varepsilon} \xi^2 \sum u_{ij}^2 + \varepsilon |\nabla \xi|^2 |\nabla u|^2\right) = 2\xi^2 \sum u_{ij}^2 + 8|\nabla \xi|^2 |\nabla u|^2$
 $2\xi^2 \sum u_{ij}^2 \ge -8(\xi u_{ij})(\xi_i u_j) - 8|\nabla \xi|^2 |\nabla u|^2$

目标: 找 α 充分大使得 $\Delta \varphi \geqslant 0$, 从而 φ 的最大值可在 $\partial B_r(x_0)$ 达到,

$$\alpha \sup_{\partial B_r(0)} |u|^2 = \sup_{\partial B_r(0)} \varphi = \sup_{B_r(0)} \varphi \geqslant \varphi(0) \geqslant r^4 |\nabla u(0)|^2.$$

$$\begin{split} &\Delta\varphi\geqslant \left(2\alpha+\Delta(\xi^2)-8|\nabla\xi|^2\right)|\nabla u|^2\geqslant 0\\ &2\alpha+8|x|^2-4n\xi-32|x|^2=2\alpha-4n(r^2-|x|^2)-24|x|^2=2\alpha+4(n-6)|x|^2-4nr^2\geqslant 0\\ &\alpha\geqslant -2(n-6)|x|^2+2nr^2\leqslant 12|x|^2+2nr^2\leqslant 12r^2+2nr^2=2(n+6)r^2, \ \ \, \mbox{ If } \ \, \alpha =2(n+6)r^2\\ &\mbox{ 所以 } \ \, r^4|\nabla u(0)|^2\leqslant 2(n+6)r^2\sup_{\partial B_r(0)}|u|^2\Longrightarrow |\nabla u(0)|\leqslant \frac{\sqrt{2(n+6)}}{r}\sup_{B_r(0)}|u| \end{split}$$

1.3.4 对数梯度估计与 Liouville 定理

命题 1.3.3.
$$\Omega \subset \mathbb{R}^n, u \in C^2(\Omega) \cap C^1(\overline{\Omega}), \Delta u = 0, u > 0, B_r(0) \subset\subset \Omega.$$
 目标: 证明
$$\sup_{B_{\frac{r}{n}}(0)} |\nabla \log u| \leqslant \frac{c_n}{r}.$$

证明. 令
$$v = \log u, u = e^v, u_i = e^v v_i, \Delta u = e^v (|\nabla v|^2 + \Delta v) = 0 \Longrightarrow \Delta v = -|\nabla v|^2 (*)$$
 令 $\varphi = \xi^2 |\nabla v|^2$. 设 φ 在 x_0 处达到极大, 要利用 $\varphi_i(x_0) = 0$ 和 $\Delta \varphi(x_0) \leq 0$ 给出 $\varphi(x_0)$ 的估计.

•
$$\varphi_i = 2\xi \xi_i |\nabla v|^2 + \xi^2 (|\nabla v|^2)_i = 0 \Longrightarrow \xi (|\nabla v|^2)_i = -2\xi_i |\nabla v|^2 (\star)$$

推论 1.3.4 (Liouvill 定理).

证明. 在 Liouville 定理中, $\Omega = \mathbb{R}^n$, 令 $r \to +\infty$, 即得证.

1.3.5 Harnack 不等式与强极值原理

u 在 $x_0 \in \Omega$ 达到极大 M, 证 $u \equiv u(x_0) = Min\Omega$

引理 1.3.5 (Harnack 不等式). 设 $\Delta u = 0, u > 0$, 任意 $x, y \in B_{\frac{r}{2}(0)}$ 有, $u(x) \leqslant c_n u(y)$. 证明.

$$\log u(x) - \log u(y) = \log u(tx + (1-t)y) \Big|_{t=0}^{t=1}$$
$$= \int_0^1 \frac{\mathrm{d} \log u(tx + (1-t)y)}{\mathrm{d}t} \mathrm{d}t$$

$$= \int_0^1 \frac{\partial \log u(tx + (1-t)y)}{\partial x_i} (x-y)_i dt$$

$$|\log u(x) - \log u(y)| \le \int_0^1 \left| \frac{\partial \log u(tx + (1-t)y)}{\partial x_i} (x-y)_i \right| dt$$

$$\le \sup_{B_{\frac{r}{2}(0)}} |\nabla \log u| |x-y|$$

$$\le \frac{c_n}{r} \cdot r = c_n$$

$$u(x) \le e^{c_n} u(y)$$

注记. 若 $u\geqslant 0$, 令 $v=u+\varepsilon$, 则 $\Delta v=0$ 且 v>0, 满足上述定理条件, 再令 $\varepsilon\to 0$.

$$v = M - u, v(x_0) = 0, v \ge 0, \Delta v = 0.$$

2 月 24 日 18 分 56 秒

作业 1.3.6. 设 $\Omega \subset \mathbb{R}^2, u$ 满足

$$\begin{cases} \Delta u = -2 & x \in \Omega \\ u = 0 & x \in \partial \Omega \end{cases}.$$

读 $\varphi = 2u \det u_{ij} + 2u_1u_2u_{12} - u_2^2u_{11} - u_1^2u_{22}$, 证明 $\Delta \varphi \leqslant 0$.

1.4 基本解

我们寻求 Laplace 方程 $\Delta u = 0$ 的径向对称解 u(x) = v(r(x)).

因为r本身在原点处是不可微的,所以其实我们没有理由去希望一个 \mathbb{R}^n 上的解.

$$\stackrel{\text{def}}{=} x \neq 0 \ \forall \exists x \neq 0 \ \forall u_i = v'(r) \frac{x_i}{r}, u_{ii} = v''(r) \frac{x_i^2}{r^2} + v'(r) \left(\frac{1}{r} - \frac{x_i^2}{r^3}\right).$$

因此 $\Delta u = 0 \Longleftrightarrow v'' + \frac{n-1}{r}v' = 0.$

得到基本解

$$\Gamma(x) = \begin{cases} \frac{1}{2\pi} \ln|x| & n = 2\\ \frac{1}{(2-n)\omega_n} |x|^{2-n} & n \geqslant 3 \end{cases}$$

注意, 基本解满足的方程是 $\Delta\Gamma = \delta_0, x \in \mathbb{R}^n$.

事实上, 我们是存在一些在全空间上调和的函数的, 比如 n=2 时可以借助全纯函数构造.

但我们马上会发现, 反而是这个不在全空间上调和的函数 Γ , 会在我们后面建立理论时提供更大的帮助.

 $rac{1}{2}x$

$$u(x) = \int_{\Omega} u(y)\Gamma(y-x)dy$$

1.5 Green 表示

回答:

$$\begin{cases} \Delta u = f & \text{in } \Omega \subset \mathbb{R}^n \\ u = \varphi & \text{on } \partial \Omega \end{cases}$$

 $u \in C^2(\Omega) \cap C(\overline{\Omega})$

注记. Green 表示的目的: 如果有解, 解的表达式

唯一的,
$$w = u_1 - u_2$$
,

$$\begin{cases} \Delta w = 0 & \text{in } \Omega \subset \mathbb{R}^n \\ w = 0 & \text{on } \partial \Omega \end{cases} \Longrightarrow w \equiv 0$$

存在性?

- 经典解 $u \in C^2(\Omega) \cap C(\overline{\Omega}), f, \varphi, \Omega$ 都要加条件
- 弱解, 任意 Ω 解是存在的, 与实际吻合

注记. 1925, Wiener, Ω 加什么条件当且仅当存在经典解. 弱解, 1910-20

找经典解问题转化成 Green 函数存在性 $\Omega = B_R(0)$, Green 函数(Kelvin 变换上半空间也有)理论上来说, 平面情形下, 由共性变换, 都能找到

$$\begin{cases} \Delta u = f & \text{in } B_R(0) \\ u = \varphi & \text{on } \partial B_R(0) \end{cases}$$

球上 Dirichlet 问题可解. $\varphi \in C^0(\partial\Omega), f \in C(\overline{\Omega})$

$$\Longrightarrow \begin{cases} \Delta u = 0 & \text{in } \Omega \subset \mathbb{R}^n \\ u = \varphi & \text{on } \partial \Omega \end{cases}$$

找解, $u \in C^2(\Omega) \cap C(\overline{\Omega})$,Perron 过程(不讲)难, 对 Ω 加条件.

即使找不出显式的 Green 函数,Green 函数的存在性也重要 \Longrightarrow 解的性质 Green 表示: 散度定理: $\partial\Omega\in C^1,\Omega$ 有界区域 $\subset\mathbb{R}^n,\vec{X}\in C^1(\overline{\Omega})$ 向量场

$$\int_{\Omega} \operatorname{div} \vec{X} dV = \int_{\partial \Omega} \vec{X} \cdot \nu d\sigma$$

$$\begin{cases} \Delta u = f & \text{in } \Omega \subset \mathbb{R}^n \\ u = \varphi & \text{on } \partial \Omega \end{cases}$$

Green 函数目的: 写出解的表达式

$$u, v \in C^2(\Omega) \cap C^1(\overline{\Omega})$$

$$\int_{\Omega} (u\Delta v - v\Delta u) dV = \int_{\Omega} (uv_i - vu_i)_i dV = \int_{\partial\Omega} \left(u\frac{\partial v}{\partial \nu} - v\frac{\partial u}{\partial \nu} \right) d\sigma$$
技巧: 如何处理有奇点的式子? $\Omega \backslash B_{\varepsilon}(x)$

本节要求解 Dirichlet 条件下的 Poisson 问题

$$\begin{cases} \Delta u = f \\ u = g \end{cases}$$

我们要做的事情大致是, 如何利用手头的信息, 即 Δu 在 Ω 上的值和 u 在边界上的值, 来把 u 在 Ω 上的值表示出来.

不严格地说, 我们有

$$u(x) = \int_{\Omega} u(y) \Delta_y \Gamma(y - x) dy$$

但这个式子其实对我们没用,因为我们不知道 u 在 Ω 上的信息,但结合第二格林公式

$$\int_{\Omega} u \Delta_y \Gamma(y-x) - \Delta u \Gamma(y-x) dy = \int_{\partial \Omega} u(y) \frac{\partial \Gamma(y-x)}{\partial \nu} - \Gamma(y-x) \frac{\partial u}{\partial \nu} d\sigma_y$$

定理 1.5.1. $\partial \Omega \in C^1$ 有界,

$$u(x) = \int_{\Omega} \Gamma(x - y) \Delta_y u(y) dy - \int_{\partial \Omega} \left(\Gamma(x - y) \frac{\partial u}{\partial \nu}(y) - u(y) \frac{\partial \Gamma}{\partial \nu}(x - y) \right) d\sigma_y, \quad \forall \ x \in \Omega$$

证明. x 固定

令
$$v(y) = \Gamma(x - y)$$
,
在 $\Omega \backslash B_{\varepsilon}(x)$ 上做

$$\int_{\Omega} \{u\Delta\Gamma(u - y) - \Gamma(x - y)\Delta u\} \, dV = \int_{\partial(\Omega \backslash B_{\varepsilon}(x))} \left[u\frac{\partial\Gamma}{\partial\nu}(x - y) - \Gamma(x - y)\frac{\partial u}{\partial\nu}\right] \, d\sigma_y = x_0$$
 $\nu \not \ni \partial(\Omega \backslash B_{\varepsilon}(x)) \not \mapsto \not \not \ni \partial_{\varepsilon}(x) \not \vdash \partial_{\varepsilon}(x) \not \vdash \partial_{\varepsilon}(x) = -\frac{x}{\varepsilon}$

$$\int_{\partial(\Omega \backslash B_{\varepsilon}(x))} \left[|d\sigma = \int_{\partial\Omega} (*)d\sigma + \int_{\partial B_{\varepsilon}(x)} \left[u\frac{\partial\Gamma}{\partial\nu}(x - y) - \Gamma(x - y)\frac{\partial u}{\partial\nu}\right] \, d\sigma$$

$$i \not \models g$$

$$(1) = \int_{\partial B_{\varepsilon}(x)} u\frac{\partial\Gamma}{\partial\nu}(x - y) \, d\sigma_y$$

$$\frac{\partial\Gamma}{\partial\nu}(x - y) = c_n \frac{\partial(|x - y|^{2-n})}{\partial y_i} \left(\frac{-(y - x)_i}{\varepsilon}\right)|_{|x - y| = \varepsilon}$$

$$\frac{\partial}{\partial y}(|x - y|^2)^{\frac{2-n}{n}} = \frac{2-n}{2}|x - y|^{-n}2(y - x)_i$$

$$c_n(2-n)|x - y|^{-n}(y - x)_i \left(-\frac{(y - x)_i}{\varepsilon}\right)$$

$$= c_n(n-2)|x - y|^{1-n} = (n-2)c_n\varepsilon^{1-n}$$

$$(1) = (n-2)c_n\varepsilon^{1-n} \int_{\partial B_{\varepsilon}(x)} u(y) \, dy \xrightarrow{\varepsilon \to 0^+} (n-2)c_n\varepsilon^{1-n}u(x)\varepsilon^{n-1}\omega_n = -u(x)$$

$$(2) = \int_{\partial B_{\varepsilon}(x)} \Gamma(x - y)\frac{\partial u}{\partial \gamma} \, d\sigma = c_n\varepsilon^{2-n} \int_{\partial B_{\varepsilon}} \frac{\partial u}{\partial\nu} \, d\sigma \leqslant c_n\varepsilon \cdot \varepsilon^{n-1}\omega_n \sup_{\partial \partial B_{\varepsilon}(x)} |\nabla u| \to 0$$

$$\vdash \underline{\mathbf{m}} - \overleftarrow{\tau}_{\mathbf{m}} \Gamma \not \oplus \mathcal{M} \not \oplus$$

$$- \int_{\Omega} \Gamma(x - y)\Delta u(y) \, dV = \int_{\partial\Omega} \left(u\frac{\partial\Gamma}{\partial\nu}(x - y) - \Gamma(x - y)\frac{\partial u}{\partial\nu}\right) \, d\sigma + u(x)$$

$$u(x) = \int_{\Omega} \Gamma(x - y)\Delta u(y) \, dV - \int_{\partial\Omega} \left(\Gamma(x - y)\frac{\partial u}{\partial\nu} - u\frac{\partial\Gamma}{\partial\nu}(x - y)\right) \, d\sigma(1)$$

但我们仍觉得这个不够好

引进 $\Phi(x,y)$,

$$\begin{cases} \Delta_y \Phi(x - y) = 0 & \text{in } \Omega \\ \Phi(x - y) = \Gamma(x - y) & y \in \partial \Omega \end{cases}$$

$$\Leftrightarrow v = \Phi(x, y),$$

$$\int_{\Omega} -\Phi(x, y) \Delta u dV = \int_{\partial \Omega} \left(u \frac{\partial \Phi}{\partial \nu} - \Phi(x, y) \frac{\partial u}{\partial \nu} \right) d\sigma(2)$$

$$(1) - (2)$$

$$\begin{split} &\int_{\Omega}\Gamma(x,y)\Delta u(x) - \int_{\partial\Omega}\left(u\frac{\partial\nu}{\partial\nu} - \Gamma(x,y)\frac{\partial\nu}{\partial\nu}\right)dv \\ & u(x) = \int_{\Omega}\left[\Gamma(x-y) - \Phi(x-y)\right]\Delta u(y)dV + \int_{\partial\Omega}\left[u\frac{\partial(\Gamma-\Phi)}{\partial\nu} - (\Gamma-\Phi)\frac{\partial u}{\partial\nu}\right]d\sigma \\ & G(x-y) = \Gamma(x-y) - \Phi(x-y) \Longrightarrow u(x) = \int_{\Omega}G(x,y)\Delta u(y)dV + \int_{\partial\Omega}u\frac{\partial G}{\partial\nu}(x,y)d\sigma_y \\ & \text{任意 法知道 }\Phi(x,y)\text{ 法法性} \end{split}$$

定理 **1.5.2.** $\Omega = B_R(0)$,

$$G(x,y) = \frac{1}{(2-n)\omega_n} \left(|y-x|^{2-n} - \left| \frac{|x|}{R} y - \frac{R}{|x|} x \right|^{2-n} \right)$$

$$G(x,y) = \frac{1}{2\pi} \left(\log|y - x| - \log\left(\frac{|x|}{R}y - \frac{R^2}{|x|^2}x\right) \right)$$

证明.

结论:

$$\begin{cases} \Delta u = 0 & \text{in } B_R(0) \\ u = \varphi & \text{on } \partial B_R(0) \end{cases}$$
$$u(x) = \int_{\partial B_R(0)} \varphi(y) \frac{\partial G}{\partial \nu}(x - y) d\sigma_y$$

作业:
$$\begin{split} & \frac{\partial G}{\partial \nu}(x-y) = \frac{\partial G}{\partial y_i}(x-y)\frac{y_i}{R}\big|_{|y|=R} \\ & \frac{\partial}{\partial y_i}|y-x|^{2-n} = (2-n)|y-x|^{-n}(y-x)_i \\ & \frac{\partial}{\partial y_i}\left|\frac{|x|}{R}y - \frac{R}{|x|}x\right|^{2-n} = ? \\ & \text{解存在前提下得到, 作业 2: 验证它} \in C^2(B_R) \cap C(\overline{B_R(0)}) \end{split}$$

作业 3, n = 2.

调和函数的奇点可去定理 1.6

$$\Delta u = 0, B_R(0) \setminus \{0\}$$

$$u(x) = \begin{cases} o\left(|x|^{2-n}\right), & n \geqslant 3 \\ o(\log|x|) & n = 2 \end{cases}$$
则 u 在 0 处能定义,使得 $\Delta u = 0, B_R(0)$

$$\sum_{i=1}^n \left(\frac{u_i}{\sqrt{1+|\nabla u|^2}}\right)_i = 0$$

$$H(u): B_R(0) \setminus \{0\} \ \text{奇点可去}$$

$$n \geqslant 3, v = \begin{cases} \Delta v = 0 & \text{in } B_R(0) \\ v = \end{cases}$$

$$w = v - u, M = \sup_{\partial B_R} |u|, M_r = \sup_{\partial B_r(0)} |u|$$

$$-M_r \frac{r^{n-2}}{|x|^{n-2}} \leqslant W \leqslant M_r \frac{r^{n-2}}{|x|^{n-2}} \leqslant W \leqslant M_r \frac{r^{n-2}}{|x|^{n-2}}, \partial B_R \setminus B_r(0)$$

$$\implies -M_r \frac{r^{n-2}}{|x|^{n-2}} \leqslant w \leqslant M_r \frac{r^{n-2}}{|x|^{n-2}}$$

$$\implies M_r = \sup_{\partial B_r} |w| \leqslant \sup_{\partial B_r} |u| + \sup_{\partial B_r} |v|$$

$$|w(x)| \leqslant \frac{(M + \sup_{\partial B_r} |u|)r^{n-2}}{|x|^{n-2}} \to 0 \implies w \equiv 0$$

$$\text{Foll } 3, n = 2$$

Chapter 2

椭圆方程I

极值原理的一些陈述的比较

- u 不可能在内部达到极大值 $\overset{\text{区域有界+连续到边}}{\Longrightarrow} u$ 的最大值在边界达到
- u 的最大值在边界达到 $\Longrightarrow u$ 在 $\partial\Omega$ 上的上界估计能给出 u 在 $\overline{\Omega}$ 上的上界估计.
- u 的非负最大值在边界达到
 - -u 可以取不到最大值 (当然在 Ω 有界的情况下,u 能达到在 $\overline{\Omega}$ 上的最大值)
 - 假如 u 取的到最大值
 - * 最大值可能为负, 此时我对它在哪点取到最大值没有限制, 但天然地有上界估计
 - * 最大值可能非负, 此时必定**能**在边界取到(注意不是**只能**在边界取到), 从而 u 在 $\partial\Omega$ 上的上界估计能给出 u 在 $\overline{\Omega}$ 上的上界估计
- u 的非负最大值只能在边界达到,除非 u 为常数/若 u 在内部达到非负极大值,则 u 为常数
- и 不可能在内部达到非负极大值

模长估计当然既是上界估计又是下界估计!

极值原理的一些条件的比较

• 给一个 $\mathcal{L}u \ge 0$ 的 u, 那 $\tilde{u} = -u$ 便满足 $\mathcal{L}\tilde{u} \le 0$.

2.1 一般椭圆方程的弱极值原理

引理 **2.1.1.** $A \ge 0, B \le 0, tr(AB) \le 0.$

2.1.1 $c \equiv 0$

引理 2.1.2. 设 $\Omega \subset \mathbb{R}^n$ 为区域, $u \in C^2(\Omega)$, $\mathcal{L}u = a_{ij}u_{ij} + b_iu_i > 0$, $\forall x \in \Omega$, 其中 a_{ij} 处处为半正定矩阵,则 u 不可能在内部达到极大值.

注记. 解析一下条件: $u \in C^2(\Omega)$ 是为了在经典的意义下 $\mathscr L$ 能作用到 u 上.

命题 **2.1.3.** 设 $\Omega \subset \mathbb{R}^n$ 为有界区域, $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\mathcal{L}u = a_{ij}u_{ij} + b_iu_i \geqslant 0$, $\forall x \in \Omega$, 其中 $a_{ij} \geqslant \lambda I$ 处处成立, $\lambda > 0$, $||b||_{C_0(\Omega)} = \Lambda$, 那么 u 的最大值在边界达到.

证明. 考察 $\varphi = u + \varepsilon e^{\beta x_1}$, 其中 $\varepsilon > 0$ 为任意常数, β 为待定系数.

如果能选取合适的 $\beta = \beta_0$ 使得 $\mathcal{L}\varphi > 0, \forall x \in \Omega$, 则 φ 的最大值在边界达到, 那么

$$\sup_{\overline{\Omega}} u \leqslant \sup_{\overline{\Omega}} \varphi = \sup_{\partial \Omega} \varphi \leqslant \sup_{\partial \Omega} u + \varepsilon C.$$

令 $\varepsilon \to 0$ 即得 $\sup u = \sup u$. 下寻找合适的 $\beta = \beta_0$.

$$\overline{\Omega} \quad \partial \overline{\Omega}
\varphi_i = u_i + \varepsilon \beta e^{\beta x_1} \delta_{i1}
\varphi_{ij} = u_{ij} + \varepsilon \beta^2 e^{\beta x_1} \delta_{i1} \delta_{j1}
\mathscr{L} \varphi = a_{ij} \varphi_{ij} + b_i \varphi_i = \mathscr{L} u + \varepsilon \beta e^{\beta x_1} (\beta a_{11} + b_1)
取 \beta = \beta_0 使得 \lambda \beta_0 a_{11} + b_1 \geqslant 0.$$

注记. 解析一下条件:

- Ω 有界 \Longrightarrow $e^{\beta_0 x_1}$ 有界
- Ω 有界 $+ u \in C(\overline{\Omega}) \Longrightarrow u \Rightarrow \alpha \subseteq \overline{\Omega}$ 上能取到最大值.
- a_{ij} 和 b_i 的控制 \Longrightarrow 能取到合适的 $\beta = \beta_0$

2.1.2 $c \leq 0$

引理 **2.1.4.** 设 $\Omega \subset \mathbb{R}^n$ 为区域, $u \in C^2(\Omega)$, $\mathcal{L}u = a_{ij}u_{ij} + b_iu_i + cu > 0$, $\forall x \in \Omega$, 其中 a_{ij} 处处为半正定矩阵, $c \leq 0$, 则 u 不可能在内部达到非负极大值.

注记. 不管是什么版本的极值原理, 我们的终极目标是给出 u 的估计.

因此不妨从 u 取到最大值的情形出发去理解结论:

- u 在边界 $\partial\Omega$ 上取到最大值 此时皆大欢喜,u 在边界 $\partial\Omega$ 上的上界估计能给出 u 在整体 $\overline{\Omega}$ 上的上界估计.
- u 在内部 Ω 中取到最大值

这也没有问题, 因为引理告诉我们这个最大值必须是负的, 从而天然地有上界估计 u < 0.

将这两种情形合并起来, 还是"u 在边界 $\partial\Omega$ 上的上界估计能给出 u 在整体 $\overline{\Omega}$ 上的上界估计".

命题 2.1.5. 设 $\Omega \subset \mathbb{R}^n$ 为有界区域, $u \in C^2(\Omega) \cap C(\overline{\Omega})$, $\mathcal{L}u = a_{ij}u_{ij} + b_iu_i + cu \geqslant 0$, $\forall x \in \Omega$, 其中 $a_{ij} \geqslant \lambda I$ 处处成立, $\lambda > 0$, $||b||_{C_0(\Omega)} = \Lambda$, $c \leqslant 0$, 那么 u 的非负最大值在边界达到.

证明.
$$\varphi = u + \varepsilon e^{\alpha x_1}$$
.
$$\mathcal{L}\varphi = \mathcal{L}u + \varepsilon e^{\alpha x_1}(\alpha^2 a_{11} + \alpha b_1 + c)$$
 取 $\alpha = \alpha_0$
$$\alpha_0^2 \lambda - (\alpha_0 + 1)\Lambda = 1 \Longrightarrow \mathcal{L}\varphi > 0$$
 取 $\alpha = \alpha_0, \alpha_0^2 \lambda - (1 + \alpha_0)\Lambda = 1$, 此时, $\mathcal{L}\varphi > 0in\Omega$ 由 Step2 知, φ 的非负最大值在 $\partial\Omega$ 达到.
$$\sup_{\Omega} u \leqslant \sup_{\partial\Omega} \varphi \leqslant \sup_{\partial\Omega} (u + \varepsilon e^{\alpha_0 x^1})^+ \leqslant \sup_{\partial\Omega} u^+ + \varepsilon \sup_{\partial\Omega} e^{\alpha_0 x^1}$$
 $\Longrightarrow \sup_{\Omega} u \leqslant \sup_{\partial\Omega} u^+$

注记. 还是从 u 取到最大值的情形出发理解结论

- 如果 u 的最大值是非负的, 命题告诉我们该最大值在边界取到, 从而 u 在边界 $\partial\Omega$ 上的上界估计能给出 u 在整体 $\overline{\Omega}$ 上的上界估计.
- 如果 u 的最大值是负的, 天然地有上界估计 u < 0.

将这两种情形合并起来, 还是"u 在边界 $\partial\Omega$ 上的上界估计能给出 u 在整体 $\overline{\Omega}$ 上的上界估计".

例 2.1.6.
$$\Omega = [0, \pi] \times [0, \pi]$$

$$\begin{cases} \Delta u + 2u = 0 \\ u|_{\partial\Omega} = 0 \end{cases}$$

Dirichlet 边值问题的有界估计 2.2

3月3日1小时05分52秒

所谓有界估计是指对 $\|u\|_{C^0(\overline{\Omega})}$ 的估计.

对于 Dirichlet 边值的 Laplace 方程 $\begin{cases} \Delta u=0 & x\in\Omega\\ u=\varphi & x\in\partial\Omega \end{cases},$ 由弱极值原理我们知道 u 在 Ω 上的

大小被 u 在 $\partial\Omega$ 上的大小控制, 即有 $\|u\|_{C^0(\overline{\Omega})} \leq \|\varphi\|$

注意此时 $||u||_{C^0(\overline{\Omega})}$ 与区域 Ω 的大小无关.

2.2.1 Baby 版本

接下来我们问 $\begin{cases} \Delta u = 1 & x \in \Omega \\ u = 0 & x \in \partial \Omega \end{cases}$ 的情形如何. 更一般情形的想法完全体现在这个简单例子中.

为了得到另一侧的估计, 我们的思路是找到一个合适的函数 v, 它在边界上能控制住 u, 再利用

弱极值原理来说明它在整体上都能控制住 u.

这个论证可抽象为如下的

引理 **2.2.1** (比较定理). 设 $\Omega \subset \mathbb{R}^n$ 是有界区域, $u,v \in C^2(\Omega) \cap C(\overline{\Omega})$, $\mathcal{L}u = a_{ij}u_{ij} + b_iu_i + cu$, 其中 $c\leqslant 0,\ \ \, \stackrel{\textstyle \star}{\mathcal E} \ \left\{ \begin{array}{ll} \mathscr L u\geqslant \mathscr L v & x\in\Omega\\ u\leqslant v & x\in\partial\Omega \end{array},\ \, \underset{\textstyle V}{\mathbb M} \ \, u\leqslant v,x\in\Omega. \right.$

下面来找合适的 v. 当 $\Omega=B_R(0)$ 时,我们能直接写出这个方程的解 $\frac{|x|^2-R^2}{2n}$. 对于一般的有界区域 Ω ,总能找到 x_0 和 R 使得 $\Omega\subset B_R(x_0)$. 令 $v=\frac{|x-x_0|^2-R^2}{2n}$,则 $\Delta v=1,v\big|_{\partial\Omega}<0$,满足条件 \Longrightarrow 在 Ω 中 v<u. 则 $\frac{|x-x_0|^2-R^2}{2n}\leqslant u\leqslant 0$

2.2.2 Poisson 方程

考虑 Poisson 方程
$$\begin{cases} \Delta u = f & x \in \Omega \\ u = \varphi & x \in \partial \Omega \end{cases}, \text{ 其中 } \Omega \subset B_R(x_0), F = \|f\|_{C^0(\overline{\Omega})}, \Phi = \|\varphi\|_{C^0(\partial \Omega)}.$$
 令 $v = -\Phi + \left(\frac{|x - x_0|^2 - R^2}{2n}\right) F$, 容易验证 $v \leqslant u \leqslant -v$.

2.2.3 一般椭圆方程

3月3日1小时31分07秒

$$c(x) \le 0, \mathcal{L}u = \sum_{i=1}^{n} a_{ij}u_{ij} + \sum_{i=1}^{n} b_{i}u_{i} + cu = f$$
 求 $\|u\|_{C^{0}}$ 先验估计 $\Omega \subset \{0 < x_{1} < d\}$.

$$v = \Phi + (e^{\mu d} - e^{\mu x_1})F$$
, 其中 μ 待定

$$\begin{aligned} v\big|_{\partial\Omega} \geqslant \Phi \geqslant u\big|_{\partial\Omega} \\ v_i &= -\mu F \mathrm{e}^{\mu x_1} \delta_{i1} \\ v_{ij} &= -\mu^2 F \mathrm{e}^{\mu x_1} \delta_{1i} \delta_{j1} \\ \mathscr{L}v &= \sum a_{ij} v_{ij} + \sum b_i v_c v = \mu F \mathrm{e}^{\mu x_1 (-\mu a_{11} - b_1)} + c(x) \Phi + c(x) \left(\mathrm{e}^{\mu d} - \mathrm{e}^{\mu x_1} \right) F \end{aligned}$$

整体梯度估计约化到边界梯度估计 2.3

3月3日1小时50分8秒

回忆: $\Delta u = 0$, 令 $\varphi = |\nabla u|^2$, $\Delta \varphi = 2 \sum u_{ij}^2 \ge 0 \Longrightarrow |\nabla u|$ 的最大值在边界达到.

2.3.1 Poisson 方程

 $\Delta u = f, f \in C^1(\overline{\Omega}), u \in C^3(\Omega) \cap C^1(\overline{\Omega}), \|u\|_{C^0(\overline{\Omega})} \leqslant M, \Omega \subset \{0 < x_1 < d\}.$ 要构造一个含 $|\nabla u|^2$ 的 φ 使得 $\Delta \varphi \geqslant 0$.

 $\Delta |\nabla u|^2 = 2u_{ij}^2 + 2u_j f_j.$

 $2u_{ij}^2$ 是个平民项. 首先, 它大于等于零, 与我们的目标一致; 其次, 它不足以用来控制坏项.

 $2u_j f_j \geqslant -2|\nabla u||\nabla f| \geqslant -2||\nabla f||_{C^0(\overline{\Omega})}|\nabla u|$ 是个坏项, 我们必须引入好项来控制它!

尝试一

3月3日1小时52分42秒

 $\varphi = |\nabla u|^2 + \alpha u^2$, 其中 α 为待定系数.

 $\varphi_i = 2u_i u_{ii} + 2\alpha u u_i$

 $\Delta \varphi = \varphi_{ii} = 2u_{ji}^2 + 2u_j u_{jii} + 2\alpha u_i^2 + 2\alpha u u_{ii} = 2u_{ij}^2 + 2u_j f_j + 2\alpha |\nabla u|^2 + 2\alpha u f.$

 $2\alpha |\nabla u|^2$ 是好项! 作为 $|\nabla u|$ 的二次项, 它能够用来控制 $|\nabla u|$ 的一次项 $-2||\nabla f||_{C^0(\overline{\Omega})}|\nabla u|$, 即

$$2\alpha |\nabla u|$$
 是好项: 作为 $|\nabla u|$ 的二次项, 它能够用来控制 $|\nabla u|$ 的一次项 $-2\|\nabla u\|$ $2\alpha |\nabla u|^2 - 2\|\nabla f\|_{C^0(\overline{\Omega})} |\nabla u| \geqslant -\frac{\|\nabla f\|_{C^0(\overline{\Omega})}}{2\alpha}$. (用到了 $ax^2 + bx \geqslant -\frac{b^2}{4a}$, 其中 $a > 0$) 但这并没有完全达到我们的目的.

一方面, 二次项在干掉一次项时, 还留下了残党常数项 $-\frac{\|\nabla f\|_{C^0(\overline{\Omega})}}{2}$ 需要控制. 另一方面, 为了 引入二次项这个好项, 我们也做出了一些牺牲, 即同时引入了常数项 $2\alpha uf \ge -2\alpha M \|f\|_{C^0(\Omega)}$.

尝试二

3月3日1小时57分10秒

$$\varphi = |\nabla u|^2 + e^{\beta x_1}$$
, 其中 β 为待定系数.

$$\varphi_i = 2u_i u_{ii} + \beta e^{\beta x_1} \delta_{i1}$$

$$\Delta \varphi = \varphi_{ii} = 2u_{ji}^2 + 2u_j u_{jii} + \beta^2 e^{\beta x_1} \delta_{i1} = 2u_{ij}^2 + 2u_j f_j + \beta^2 e^{\beta x_1}$$

 $\beta^2 e^{\beta x_1}$ 对于 $2u_i f_i$ 无能为力, 但我们注意到它能够用来控制常数项!

尝试三

3月3日1小时58分59秒

$$\varphi = |\nabla u|^2 + \alpha u^2 + e^{\beta x_1}$$

$$\Delta \varphi = 2u_{ij}^2 + 2u_j f_j + 2\alpha |\nabla u|^2 + 2\alpha u f + \beta^2 e^{\beta x_1}$$

$$\begin{split} &\Delta\varphi\geqslant 2u_{ij}^2+\beta^2-\frac{\|\nabla f\|_{C^0(\overline{\Omega})}}{2\alpha}-2\alpha M\|f\|_{C^0(\overline{\Omega})}.\\ &\Leftrightarrow\alpha=1,\; \mathfrak{N}\;\beta=\beta_0\; 充分大使得\;\Delta\varphi\geqslant0.\; 从而 \end{split}$$

$$\sup_{\Omega} |\nabla u|^2 \leqslant \sup_{\Omega} \varphi \leqslant \sup_{\partial \Omega} \varphi \leqslant \sup_{\partial \Omega} |\nabla u|^2 + M^2 + e^{\beta_0 d}.$$

2.3.2 一般椭圆方程

3月3日第二段4分27秒

3月3日第二段23分5秒——30分42秒

作业 2.3.1. 证明一般情形.

Dirichlet 边值问题的边界梯度估计 2.4

3月7日6分7秒,前情回顾及内容提要 3月7日16分33秒

定义 2.4.1. 称 $\Omega \subset \mathbb{R}^n$ 满足外球条件, 如果

$$d(x) =$$
 从x到 $\partial B_R(y)$ 的距离 $= |x - y| - R$

定理 2.4.2. 设 $u \in C^2(\Omega) \cap C(\overline{\Omega}), \mathscr{L}u = a_{ij}u_{ij} + b_iu_i + cu$, 其中 $a_{ij}, b_i, c \in C(\overline{\Omega}), a_{ij} \geqslant \lambda I$. 设 $\varphi \in C(\overline{\Omega})$ 及证 2.4.2. 及 $u \in C$ (u), $v \in C$ (v), $v \in C$ (v) $v \in C$ (v)

证明.
$$\tilde{L}u = \sum a_{ij}u_{ij} + b_iu_i = f - cu = \tilde{f}$$

 $\Leftrightarrow v = u - \varphi, \tilde{L}v = Lu - L\varphi = f - L\varphi$

$$\begin{cases} \tilde{L}v = \tilde{L}u - \tilde{L}\varphi = \tilde{f} - \tilde{L}\varphi \\ v = 0 \end{cases}$$

$$\begin{cases} Lu = \tilde{f} \\ u = 0 \end{cases}$$

如果存在 w(x) 使得 $\tilde{L}w \leq -F, F = \|\tilde{f}\|_{C^0(\Omega)}$

$$w(x_0) = 0, w(x) \geqslant 0in\Omega$$

$$\Longrightarrow -w\leqslant u\leqslant w\mathrm{in}\Omega$$

$$v = w - u, \tilde{L}v = \tilde{L}w - \tilde{L}u \leqslant -F - \tilde{f} \leqslant 0$$

$$v = w - u, Lv = Lw - Lu \leqslant -F - f \leqslant 0$$

$$\Leftrightarrow w = \psi(d), d(x) = |x - y| - R, \psi(0) = 0, \psi'(d) > 0$$

$$\tilde{L}w = \sum_{i} a_{ij} \psi_{ij} + \sum_{i} b_{i} \psi_{i}$$

$$|x - y|_{i} = (|x - y|^{2})^{\frac{1}{2}}$$

$$\psi_{i} = \psi' d_{i}$$

$$\psi_{ij} = \psi'' d_{i} d_{j} = \psi' d_{ij}$$

$$d_{ij}$$

$$|\nabla d|^{2} = 1$$

$$\tilde{L}w = \psi'' \sum_{i} a_{ij} d_{i} d_{j} + \psi' \sum_{i} a_{ij} d_{ij} + \psi' \sum_{i} b_{i} d_{i} \leqslant -F$$

$$a_{ij} d_{ij} \geqslant \lambda |\nabla d|^{2} = \lambda$$

$$a_{ij} d_{ij} = \frac{\sum_{i} a_{ij}}{|x - y|} - \frac{\sum_{i} a_{ij} (x - y)}{|x - y|^{3}} \leqslant \frac{n\Lambda}{|x - y|} - \frac{\lambda}{|x - y|} = \frac{n\Lambda - \lambda}{R}$$

$$\begin{cases} \psi'' < 0, \lambda \psi; ; + \frac{n\Lambda - \lambda}{R} \psi' + \Lambda \leqslant -F \\ psi(0) = 0 \end{cases}$$

2.5 Hopf 引理与一般椭圆方程的强极值原理

- 3月7日1小时7分13秒——1小时10分22秒,Hopf引理陈述
- 3 月 7 日 1 小时 10 分 23 秒——1 小时 13 分 15 秒, 简单情形+内球条件 \Longrightarrow 一般情形
- 3月7日1小时13分16秒——1小时31分6秒,简单情形的证明
- 3月7日1小时31分12秒——1小时33分31秒,回顾

 $Lu = a_{ij}u_{ij} + b_iu_i + cu.$

定理 2.5.1 (Hopf 引理). 设 $\Omega = B_R(0), u \in C^2(\Omega) \cap C^1(\overline{\Omega})$. 设 $\mathcal{L}u \geqslant 0$, 其中 $c \leqslant 0$. 若 u 在 $x_0 \in \partial B_R(0)$ 处取到最大值 $u(x_0) \geqslant 0$, 那么 $\frac{\partial u}{\partial n}(x_0) > 0$.

注记. 若 u 在 $x_0 \in \partial B_R(0)$ 处取到最大值, 那么 $\frac{\partial u}{\partial n}(x_0) \geqslant 0$.

证明. 设 $\widetilde{\Omega} = B_R(0) \setminus \overline{B_{\frac{R}{2}}(0)}$. 令 $\psi(x) = \mathrm{e}^{-\mu|x|^2} - \mathrm{e}^{-\mu R^2}$, $\varphi(x) = u(x) - u(x_0) + \varepsilon \psi(x)$. 假设可取 $\mu = \mu_0$ 充分大使得 $\mathcal{L}\psi \geqslant 0$, 那么 $\mathcal{L}\varphi = \mathcal{L}u - c(x_0)u(x_0) + \varepsilon \mathcal{L}\psi \geqslant 0$. 取定 $\mu = \mu_0$, 容易验证可选取 $\varepsilon = \varepsilon_0$ 充分小使得 φ 在 $\partial \widetilde{\Omega}$ 上小于等于零. 因此 φ 在 $\widetilde{\Omega}$ 上的最大值在 x_0 处达到, 从而 $\frac{\partial \varphi}{\partial n}(x_0) = \frac{\partial u}{\partial n}(x_0) + \varepsilon_0 \frac{\partial \psi}{\partial n}(x_0) \geqslant 0$.

- 3月7日1小时34分44秒——1小时37分58秒,强极值原理陈述
- 3月7日1小时38分17秒——1小时41分44秒,强极值原理证明

定理 2.5.2 (强极值原理). $Lu=\sum a_{ij}u_{ij}+\sum b_iu_i+cu\geqslant 0$ $c(x)\leqslant 0\Longrightarrow u$ 的非负最大值一定在 $\partial\Omega$ 达到, 否则 $u\equiv const$

证明.

3月7日1小时41分45秒——1小时45分44秒,布置作业

作业 2.5.3.

证明. 见第 6 次习题课第一题

作业 2.5.4.

证明. 见第 5 次习题课第一题

- 3月10日6分15秒——12分41秒,内容提要与前情回顾
- 3 月 10 日 14 分 32 秒, 去掉 $c(x) \leq 0$ 的条件
- 3月10日16分45秒——21分2秒,证明

定理 2.5.5. 设 $u \in C^2(\Omega) \cap C(\overline{\Omega})$ 满足 $Lu \geqslant 0$. 如 $u \leqslant 0$ 在 Ω , 则 u < 0 在 Ω 或 $u \equiv 0$ 在 Ω .

证明. 记 $c(x) = c^+(x) - c^-(x)$, 其中 $c^+(x)$ 为 c(x) 的正部, $c^-(x)$ 为 c(x) 的负部.

 $Lu \geqslant 0 \Longrightarrow a_{ij}u_{ij} + b_iu_i - c^-(x)u \geqslant -c^+(x)u \geqslant 0, \ x \in \Omega.$

由强极值原理, 若存在一点 $x_0 \in \Omega$ 使得 $u(x_0) = 0$, 则 $u \equiv 0$.

强极值原理的应用 2.6

3月10日27分30秒 回忆作业1.3.6, 设 $\Omega \subset \mathbb{R}^2$, u 满足

$$\begin{cases} \Delta u = -2 & x \in \Omega \\ u = 0 & x \in \partial \Omega \end{cases}.$$

设 $\varphi = 2u \det u_{ij} + 2u_1u_2u_{12} - u_2^2u_{11} - u_1^2u_{22}$, 我们证明了 $\Delta \varphi \leqslant 0$. 由强极值原理,u > 0in Ω ; 由 Hopf 引理, $\frac{\partial u}{\partial n}\Big|_{\partial\Omega} < 0$. 3 月 10 日 29 分 28 秒, 附加 $\Omega \subset \mathbb{R}^2$ 为有界凸区域. 设 $v = -\sqrt{u}$, 我们要证 v 严格凸.

- $u = v^2, v < 0$
- $u_i = 2vv_i, \Delta u = 2|\nabla v|^2 + 2v\Delta v = -2$

所以 v 满足

$$\begin{cases} v\Delta v = -(1+|\nabla v|^2) \\ v\big|_{\partial\Omega} = 0 \\ v < 0 \end{cases}.$$

 $\varphi = 2u \det u_{ii} + 2u_1u_2u_{12} - u_1^2u_{22} - u_2^2u_{11}$ 设 $\psi = 8v^4 \det v_{ij}$

- $v_i = -\frac{1}{2}u^{-\frac{1}{2}}u_i$
- $v_{ij} = \frac{1}{4}u^{-\frac{3}{2}}u_iu_j \frac{1}{2}u^{-\frac{1}{2}}u_{ij} = \frac{1}{4}u^{-\frac{3}{2}}(u_iu_j 2uu_{ij})$

$$\psi = 8v^4 \cdot \frac{u^{-3}}{16} \begin{vmatrix} u_1^2 - 2uu_{11} & u_1u_2 - 2uu_{12} \\ u_1u_2 - 2uu_{12} & u_2^2 - 2uu_{22} \end{vmatrix}$$

$$= u_1^2 u_2^2 - 2uu_1^2 u_{22} - 2uu_{11} u_2^2 + 4u^2 u_{11} u_{22} - u_1^2 u_2^2 - 4u^2 u_{12} + 4uu_1 u_2 u_{12}$$

$$= \frac{1}{2u} \left(4u^2 \det u_{ij} + 2u(u_1 u_2 u_{12} - u_2^2 u_{11} - u_1^2 u_{22}) \right) = \varphi$$

注记.
$$3$$
 月 10 日 40 分 5 秒, ψ 怎么想到的.
$$\frac{\partial u}{\partial n} < 0 \Longrightarrow u \sim c_0 d(x)$$

$$-c_1 \leqslant \frac{\partial u}{\partial n} \leqslant -c_2$$

$$x \in \Omega, d(x) = dist(x, \partial\Omega)$$

$$\frac{\partial d}{\partial v} = -1$$

$$u \sim d^{\alpha}$$

$$u_i \sim d^{\alpha-1}$$

$$u_{ij} \sim d^{\alpha-2}$$

$$-\Delta u \sim d^{\alpha-2} = -2 = d^0$$

$$\alpha - 2 = 0, \alpha = 2$$

陈书例题,
$$\Omega$$
 为等边三角形, $\frac{1}{2}$ 最佳.
 3 月 10 日 45 分 32 秒
$$\varphi\big|_{\partial\Omega} = 2u_1u_2u_{12} - u_2^2u_{11} - u_1^2u_{22}$$

$$u(x_1,x_2) \equiv const$$
 曲率
$$\frac{2u_1u_2u_{12} - u_2^2u_{11} - u_1^2u_{22}}{|\nabla u|^2}$$

$$\varphi\big|_{\partial\Omega} = (k|\nabla u|^3)\big|_{\partial\Omega}$$

$$|\nabla u|^2 = u_T^2 + u_v^2 \geqslant 0$$

$$\varphi\big|_{\partial\Omega} \geqslant 0$$

$$\begin{cases} \Delta\varphi \leqslant 0in\Omega \\ \varphi\big|_{\partial\Omega\geqslant 0} \end{cases} \Longrightarrow \varphi > 0in\Omega$$

$$\varphi\big|_{\partial\Omega\geqslant 0}$$
 $v = -\sqrt{u}$ 严格凸函数 $(v$ 的特征值加起来乘起来都大于零)

title

3月30日53分1秒

命题 **2.6.1.** 方程
$$v\Delta v = -(1+|\nabla v|^2)$$
 如 $\varphi = \det v_{ij} \geqslant 0$ 则 $\varphi \equiv 0 in\Omega$ 或 $\varphi > 0 in\Omega$

证明. 记 $E = \{x \in \Omega \mid \varphi(x) = 0\}$. 假设 $\exists x_0 \in \Omega, \varphi(x_0) = 0$, 则 $E \neq \varnothing$. 因为 $v \in C^3(\Omega)$, 所以 $E \neq \Omega$ 中的相对闭集. 下证 E 相对 Ω 为开. 即证若 $x_1 \in E$, 那么存在 $\varepsilon > 0$ 使得 $\varphi(x) \equiv 0$ 在 $B_{\varepsilon}(x_1)$ 上. 由强极值原理及 $\varphi \geqslant 0$, 只需证明 $\Delta \varphi \leqslant c_1 |\nabla \varphi| + c_2 \varphi$ 在某个 $B_{\varepsilon}(x_1)$ 上成立. $\varphi = \det v_{ij} = v_{11}v_{22} - v_{12}^2$ $\varphi(x_1) = 0, v_{11} + v_{22} > 0$ 对 \bar{x} 在 x_1 的小邻域上,旋转坐标系使得 $v_{11}(\bar{x}) \geqslant v_{22}(\bar{x}), v_{12}(\bar{x}) = 0 \Longrightarrow v_{11}(\bar{x}) \geqslant c_0 > 0$

•
$$\varphi(\bar{x}) = v_{11}(\bar{x})v_{22}(\bar{x}) \Longrightarrow v_{22}(\bar{x}) = \frac{\varphi(\bar{x})}{v_{11}(\bar{x})}$$

•
$$\varphi_i = v_{11i}v_{22} + v_{11}v_{22i} - 2v_{12}v_{12i} \Longrightarrow \varphi_i(\bar{x}) = v_{11i}(\bar{x})v_{22}(\bar{x}) + v_{11}(\bar{x})v_{22i}(\bar{x})$$

$$v_{22i}(\bar{x}) = \frac{\varphi_i(\bar{x}) - v_{11i}(\bar{x})v_{22}(\bar{x})}{v_{11}(\bar{x})} = \frac{\varphi_i(\bar{x})}{v_{ii}(\bar{x})} - \frac{v_{11i}(\bar{x})}{v_{11}(\bar{x})} \cdot \frac{\varphi(\bar{x})}{v_{11}(\bar{x})}$$

•
$$\Delta \varphi = v_{11ii}v_{22} + 2v_{11i}v_{22i} + v_{11}v_{22ii} - 2v_{12i}^2 - 2v_{12}v_{12ii}$$

$$\Delta v = -\frac{1 + |\nabla v|^2}{v} =: f(v, |\nabla v|^2)$$

$$\Delta v_1 = f_v v_1 + f_{p_i} v_{i_1}$$

$$v_{111} + v_{221} + f_v v_1 + f_{p_i} v_{i_1}$$

$$\bullet = (D_{11}f)\frac{\varphi}{v_{11}}$$

$$\begin{split} \bullet &= 2v_{111}v_{221} + 2v_{112}v_{222} \\ &= 2v_{111}\left(\frac{\varphi_1}{v_{11}} - \frac{v_{11i}\varphi}{v_{11}^2}\right) + 2v_{112}\left(\frac{\varphi_2}{v_{11}} - \frac{v_{112}\varphi}{v_{11}^2}\right) \end{split}$$

$$\Delta v_{22} = f_{vv}v_2^2 + f_{v_{p_i}}v_2v_{2i} + f_vv_{22}$$

$$+ f_{p_iv}v_{i2}v_2 + f_{p_ip_j}v_{i2}v_{j2} + f_{p_i}v_{i22}$$

$$v_{11} = f - v_{22} = f - \frac{\varphi}{v_{11}}$$

•
$$ff_{vv}v_2^2 + O(\varphi) + O(|\nabla \varphi|)$$

$$\bullet = -2v_{112}^2 - 2v_{122}^2$$

$$- v_{112} + v_{222} = f_v v_2 + f_{p_i} v_{i2}$$

$$v_{112} = f_v v_2 + f_{p_i} v_{i2} - v_{222} = f_v v_2 + o(\varphi + |\nabla \varphi|)$$

$$= -2v_{112}^2 = -2f_v^2 v_2^2 + o(\varphi + |\nabla \varphi|)$$

$$\Delta \varphi \leqslant f f_{vv} v_2^2 - 2f_v^2 v^2 + c_1 \varphi + c_2 |\nabla \varphi|^2$$

$$f = -\frac{1 + |\nabla v|^2}{v}, f_v = \frac{1 + |\nabla v|^2}{v^2}, f_{vv} =$$

$$\frac{2(1 + |\nabla v|^2)}{v^4} - \frac{2(1 + |\nabla v|^2)^2}{v^2}$$

3月10日1小时16分50秒——1小时18分53秒,布置作业

作业 2.6.2.

证明. 见第五次习题课第二题

2.7 卷积与光滑子

定义 2.7.1. 设 f 和 g 是 \mathbb{R}^n 上的可测函数, 若积分

$$\int_{\mathbb{R}^n} f(x-y)g(y)\mathrm{d}y$$

存在, 则称此积分为 f 与 g 的卷积, 记为 (f*g)(x).

定义 2.7.2. 称 $\varphi \in C_0^\infty(\mathbb{R}^n)$ 为一个光滑子, 如果它满足

$$(1) \int_{\mathbb{R}^n} \varphi(x) \mathrm{d}x = 1$$

(2)
$$\lim_{\varepsilon \to 0} \varphi_{\varepsilon}(x) = \lim_{\varepsilon \to 0} \varepsilon^{-n} \varphi\left(\frac{x}{\varepsilon}\right) = \delta(x).$$

例 2.7.3. 定义

$$\eta(x) = \begin{cases}
Ce^{\frac{1}{|x|^2 - 1}} & |x| < 1 \\
0 & |x| \ge 1
\end{cases}$$

其中选取常数 C 使得 $\int_{B_1(0)} \eta(x) \mathrm{d}x = 1$.

定义 2.7.4. 设 $f \in L^1_{loc}(U)$, 定义

$$f^{\varepsilon}(x) = (\eta_{\varepsilon} * f)(x) = \varepsilon^{-n} \int_{\mathbb{R}^n} \eta\left(\frac{x-y}{\varepsilon}\right) f(y) dy.$$

容易验证

(1) $f^{\varepsilon} \in C^{\infty}(U_{\varepsilon}), U_{\varepsilon} = \{x \in U \mid \operatorname{dist}(x, \partial U) > \varepsilon\}.$

(2)
$$\not\equiv f \in C^{\infty}(U), \ \mathbb{N} \ \frac{\partial f^{\varepsilon}}{\partial x_i}(x) = (\eta_{\varepsilon} * \frac{\partial f}{\partial x_i})(x).$$

命题 2.7.5. 若 $f \in C(U)/L^p_{loc}(U)/W^{k,p}_{loc}(U)$,则 $f^{\varepsilon} \xrightarrow{\mathscr{I}_{c.c.}/L^p_{loc}(U)/W^{k,p}_{loc}(U)} f$,其中 $1 \leqslant p < \infty$.

证明. (i) 即证对于任意 $V \subset U$, 成立 $\lim_{\varepsilon \to 0} \sup_{x \in V} |f^{\varepsilon}(x) - f(x)| = 0$. 直接计算即可.

$$\begin{split} |f^{\varepsilon}(x) - f(x)| &= \left| \int_{B(0,1)} \eta(z) \left(f(x - \varepsilon z) - f(x) \right) \mathrm{d}z \right| \leqslant \int_{B(0,1)} |f(x - \varepsilon z) - f(x)| \mathrm{d}z \\ \sup_{x \in V} |f^{\varepsilon}(x) - f(x)| &\leqslant C \sup_{x \in V} \sup_{y \in B(x,\varepsilon)} |f(x) - f(y)| \to 0, \varepsilon \to 0. \end{split}$$

- (ii) 即证对于任意 $V \subset U$,成立 $\lim_{\varepsilon \to 0} \|f^{\varepsilon} f\|_{L^{p}(V)} = 0$. 取 $V \subset W \subset U$. 由周民强引理 6.6,对于 $\forall \ \delta > 0$,存在 $g \in C_{0}(\mathbb{R}^{n})$ 满足 $\|f g\|_{L^{p}(V)} \leqslant \|f g\|_{L^{p}(W)} < \delta$. $\|f^{\varepsilon} f\|_{L^{p}(V)} \leqslant \|(f g)^{\varepsilon}\|_{L^{p}(V)} + \|g^{\varepsilon} g\|_{L^{p}(V)} + \|g f\|_{L^{p}(V)}$
 - 由 (i), 对于 $\forall \ \delta > 0$, 存在 ε 使得 $\|g^{\varepsilon} g\|_{L^p(V)} < \delta$.

 $||f^{\varepsilon}||_{L^{p}(V)} \leqslant ||f||_{L^{p}(W)}$

(iii) 3月24日1小时3分15秒

按定义, 需要验证对任意紧集 $V \subset U$, 有 $u^{\varepsilon} \stackrel{W^{k,p}(V)}{\longrightarrow} u$. $\|u^{\varepsilon} - u\|_{W^{k,p}(V)}^{p} \stackrel{\triangle}{=} \sum_{|\alpha| \leq k} \|D^{\alpha}u^{\varepsilon} - D^{\alpha}u\|_{L^{p}(V)}^{p} \stackrel{(*)}{=} \sum_{|\alpha| \leq k} \|\eta_{\varepsilon} * D^{\alpha}u - D^{\alpha}u\|_{L^{p}(V)}^{p} \to 0$ $(*): D_{x}^{\alpha}u^{\varepsilon}(x) = D_{x}^{\alpha} \int_{\mathbb{R}^{n}} \varepsilon^{-n} \eta \left(\frac{x - y}{\varepsilon}\right) u(y) \mathrm{d}y \stackrel{LDT}{=} \int_{\mathbb{R}^{n}} \varepsilon^{-n} D_{x}^{\alpha} \eta \left(\frac{x - y}{\varepsilon}\right) u(y) \mathrm{d}y$ $= (-1)^{|\alpha|} \int_{\mathbb{R}^{n}} \varepsilon^{-n} D_{y}^{\alpha} \eta \left(\frac{x - y}{\varepsilon}\right) u(y) \mathrm{d}y \stackrel{\triangle}{=} \int_{\mathbb{R}^{n}} \varepsilon^{-n} \eta \left(\frac{x - y}{\varepsilon}\right) D^{\alpha}u \mathrm{d}y = (\eta_{\varepsilon} * D^{\alpha}u)(x)$

作业: $f^{\varepsilon} \to f$ 几乎处处

2.8 截断函数的构造

3月14日24分10秒

命题 2.8.1. 任意 $\Omega^1 \subset \Omega$, 存在 $\xi \in C_0^\infty(\Omega)$, 满足

$$0 \leqslant \xi \leqslant 1, \quad \xi \equiv \begin{cases} 1 & \Omega' \\ 0 & \Omega^c \end{cases}, \quad |D^{\alpha}\xi| \leqslant \frac{c_{n,|\alpha|}}{dist(\Omega',\partial\Omega)^{|\alpha|}}.$$

注记. 以前用 $\xi = R^2 - |x|^2$.

证明. 令
$$d=\frac{1}{3}dist(\Omega',\partial\Omega), \Omega''=\{x\in\Omega\mid dist(x,\partial\Omega)>2d\}$$
. 断言 $\xi(x)=\int_{\Omega}\eta^{\varepsilon}(x-y)\chi_{\Omega''}(y)\mathrm{d}y$ 满足要求, 其中 $0<\varepsilon< d,\chi_{\Omega''}$ 为特征函数. 下验证满足要求:

- $\xi \in C_0^\infty(\Omega), x \in \Omega'$
- $\left| \frac{x y}{\varepsilon} \right| \le 1 \Longrightarrow y \in \Omega'' \Longrightarrow \chi(y) = 1 \Longrightarrow \xi(x) \equiv 1$
- $\xi \equiv 1, x \in \Omega'$
- $x \in \tilde{\Omega}^c, \frac{|x-y|}{\varepsilon} < 1, y \in (\Omega'')^c, \chi_{\Omega''}(y) = 0$
- $0 \le \xi \le 1$

•
$$\frac{\partial \xi}{\partial x_{i}}(x) = \varepsilon^{-n} \int_{\Omega} \frac{\partial \eta}{\partial x_{i}} \left(\frac{x-y}{\varepsilon}\right) \chi_{\Omega''}(y) dy$$

$$\eta(x) = \eta(|x|)$$

$$r = \frac{|x-y|}{\varepsilon}, \frac{\partial \eta}{\partial x_{i}} \left(\frac{x-y}{\varepsilon}\right) = \frac{\partial \eta}{\partial r} \frac{\partial r}{\partial x_{i}} = \frac{1}{\varepsilon} \frac{(x-y)_{i}}{|x-y|} \frac{\partial \eta}{\partial r}$$

$$= \varepsilon^{-n} \varepsilon^{-1} \int_{\Omega} \frac{(x-y)_{i}}{|x-y|} \frac{\partial \eta}{\partial r} \chi_{\Omega''}(y) dy$$

$$\left| \frac{\partial \xi(x)}{\partial x_{i}} \right| = \varepsilon^{-1} \int_{\Omega} \left| \varepsilon^{-n} \frac{\partial \eta}{\partial r} \chi_{\Omega''}(y) \frac{(x-y)_{i}}{|x-y|} dy \right| \leqslant \varepsilon^{-n-1} \int_{\Omega} \left| \frac{\partial \eta}{\partial r} \left(\frac{x-y}{\varepsilon} \right) \right| dy$$

$$z = \frac{y-x}{\varepsilon}, dy = \varepsilon^{n} dz$$

$$= \varepsilon^{-1} \int_{\Omega} \left| \frac{\partial \eta}{\partial z}(z) \right| dz \leqslant c_{n} \frac{1}{d}$$

$$\left| \frac{\partial^{\alpha} \xi(x)}{\partial x^{\alpha}} \right| \leqslant \frac{c_{n,|\alpha|}}{d^{\alpha}}$$

2.9 截断函数的应用

2.9.1 不存在非常值 L^2 调和函数

3 月 14 日 42 分 34 秒 $\Delta u = 0$ 在 L^2 中不存在非常数解.

证明. 取截断函数
$$\xi(x) = \begin{cases} 1 & x \in B_{\frac{R}{2}}(0) \\ 0 & x \in B_R(0)^c \end{cases}$$
,有估计 $|\nabla \xi|^2 + |\nabla^2 \xi| \leqslant \frac{c_n}{R^2}$.

方程两边同乘 $\xi^2 u$,得
$$0 = \int_{B_R} \xi^2 u \Delta u \mathrm{d}x = \int_{B_R} (\xi^2 u u_i)_i - (\xi^2 u)_i u_i \mathrm{d}x \xrightarrow{\frac{\text{NBE}}{2}} - \int_{B_R} (\xi^2 u)_i u_i \mathrm{d}x$$

$$\Longrightarrow \int_{B_R} \xi^2 |\nabla u|^2 \mathrm{d}x \leqslant 2 \int_{B_R} |\xi u_i \xi_i u| \mathrm{d}x \leqslant \frac{1}{2} \int_{B_R} \xi^2 |\nabla u|^2 \mathrm{d}x + 2 \int_{B_R} u^2 |\nabla \xi|^2 \mathrm{d}x$$

$$\Longrightarrow \int_{B_R} \xi^2 |\nabla u|^2 \mathrm{d}x \leqslant 4 \int_B u^2 |\nabla \xi|^2 \mathrm{d}x \leqslant \frac{4c_n}{R^2} \int_{B_R} u^2 \mathrm{d}x \overset{u \in L^2}{\leqslant} \frac{C_0}{R^2}$$

$$\Leftrightarrow R \to \infty |\nabla u| = 0$$

2.9.2 $\Delta u + u^{\alpha} = 0$

3 月 14 日 49 分 30 秒 $\Delta u + u^{\alpha} = 0, u \geqslant 0, 1 < \alpha < \frac{n+2}{n-2} \Longrightarrow u \equiv 0.$ 我们只做 $1 < \alpha < \frac{n}{n-2}$ 的情形.

方程两边同时乘 ξ^p , 其中 ξ 同应用 1,p 为待定系数. $\int_{B_R} \xi^p u^{\alpha} dx = -\int_{B_R} \xi^p \Delta u dx \frac{\partial^{\beta RR} \partial m \partial m}{\partial x} - \int_{B_R} u \Delta \xi^p dx$ $\Delta \xi^p = p(p-1)\xi^{p-2}|\nabla \xi|^2 + p\xi^{p-1}\Delta \xi$ $\leqslant \frac{c_p}{R^2} \int_{B_R} \xi^{p-2} u dx$ 56 分 55 秒由 Holder 不等式, $\int_{B_R} \xi^p u^{\alpha} dx \leqslant \frac{c_p}{R^2} \int_{B_R} \xi^{p-2} u dx$ $ab \leqslant \varepsilon \frac{a^p}{p} + \frac{b^q}{q} \varepsilon^{-\frac{p}{q}}$ $p = \alpha, q = \frac{\alpha}{\alpha - 1}$ $\frac{\xi^{p-2}u}{R^2} = \frac{\xi^{\frac{p}{\alpha}}u}{a} \frac{\xi^{p-2-\frac{p}{\alpha}}}{R^2}$ $\leqslant \frac{1}{2} \int_{B_R} \xi^p u^{\alpha} dx + C_{n,|\alpha|} \left(\frac{\int_{B_R} \xi^{(p-2-\frac{p}{\alpha})\frac{\alpha-1}{\alpha}}}{R^2} \right)$ $p = \frac{2\alpha}{\alpha - 1} + 1$ $\leqslant \frac{1}{2} \int_{B_R} \xi^p u^{\alpha} dx + c_{n,\alpha} dx + c_{n,\alpha} R^{-\frac{2\alpha}{\alpha-1}} \int_{B_R} \xi^{p-\frac{2\alpha}{\alpha-1}} dx$

作业 2.9.1.
$$\Delta u + u^{\frac{n}{n-2}} = 0\mathbb{R}^n, u \geqslant 0 \Longrightarrow u \equiv 0$$

证明. 第五次习题课第三题

2.9.3 Poisson 方程经典解的能量估计

3月 14日 1 小时 11 分 40 秒 设 $\Omega \subset \mathbb{R}^n$ 为有界区域, $f \in C(\overline{\Omega})$, 考虑方程

$$-\Delta u = f, \quad x \in \Omega.$$

命题 2.9.2. 设 $\Omega' \subset \Omega$. 那么存在常数 C, 对任意 $u \in C^2(\Omega)$ 是方程 (*) 的解, 成立

$$\|\nabla u\|_{L^2(\Omega')}^2 \leqslant C\left(\|u\|_{L^2(\Omega)}^2 + \|f\|_{L^2(\Omega)}^2\right).$$

证明. 设 ξ 为 $\Omega' \subset \Omega$ 的截断函数.

- 方程两边同乘 $\xi^2 u$, 得到 $-\int_{\Omega} \xi^2 u \Delta u dx = \int_{\Omega} \xi^2 u f dx$.
- 对左侧分部积分, 得到想要的项 $\int_{\Omega} \xi^2 |\nabla u|^2 dx$:

$$-\int_{\Omega} \xi^2 u \Delta u dx = -\int_{\Omega} \xi^2 u u_{ii} dx \xrightarrow{\frac{\hbar \xi \mathbb{E}^2}{\Pi}} \int_{\Omega} (\xi^2 u)_i u_i dx = 2 \int_{\Omega} \xi \xi_i u u_i dx + \int_{\Omega} \xi^2 |\nabla u|^2 dx.$$

若是 Poisson 方程弱解的能量估计, 便是直接从分部积分后的式子

$$\int_{\Omega} u_i v_i dx = \int_{\Omega} f v dx, \quad \forall \ v \in H_0^1(\Omega)$$

出发, 取测试函数 $v = \xi^2 u$, 得到相同的式子.

- 将想要的项放到左边, 其余的项的甩到右边, 并用右侧替换左侧, 得到 $\int_{\Omega} \xi^2 |\nabla u|^2 dx = \int_{\Omega} \xi^2 u f dx 2 \int_{\Omega} \xi \xi_i u u_i dx.$
- 逐项估计:

1. 第一项
$$\leq \int_{\Omega} |\xi^2 u f| dx \leq \frac{1}{2} \int_{\Omega} \xi^2 u^2 + \xi^2 f^2 dx \leq \frac{1}{2} \int_{\Omega} u^2 + f^2 dx = \frac{1}{2} ||u||_{L^2(\Omega)}^2 + \frac{1}{2} ||f||_{L^2(\Omega)}^2.$$

2. 第二项
$$\leq 2 \int_{\Omega} |\xi \xi_i u u_i| dx \leq \int_{\Omega} \varepsilon \xi^2 |\nabla u|^2 dx + \frac{1}{\varepsilon} |\nabla \xi|^2 u^2 dx$$

•
$$\int_{\Omega} \xi^2 |\nabla u|^2 dx \leqslant \int_{\Omega} \varepsilon \xi^2 |\nabla u|^2 dx + \left(\frac{1}{2} + \frac{\|\nabla \xi\|_{L^{\infty}(\Omega)}^2}{\varepsilon}\right) \|u\|_{L^2(\Omega)}^2 + \frac{1}{2} \|f\|_{L^2(\Omega)}^2.$$

取
$$\varepsilon = \frac{1}{2}$$
,得 $\int_{\Omega'} |\nabla u|^2 dx \leqslant \int_{\Omega} \xi^2 |\nabla u|^2 dx \leqslant C \left(\|u\|_{L^2(\Omega)}^2 + \|f\|_{L^2(\Omega)}^2 \right)$.

作业 2.9.3. 将上述结论推广到方程 $-\Delta u + b_i u_i + cu = f$, 其中 $b_i, c, f \in C(\overline{\Omega})$.

证明.
$$\int_{\Omega} \xi^2 |\nabla u|^2 dx = \int_{\Omega} \xi^2 u f dx - 2 \int_{\Omega} \xi \xi_i u u_i dx - \int_{\Omega} \xi^2 b_i u u_i dx - \int_{\Omega} \xi^2 c u^2 dx$$

2.9.4 Poisson 方程经典解的高阶内估计

命题 2.9.4. 设 $\Omega' \subset \Omega$. 那么存在常数 C, 对任意 $u \in C^2(\Omega)$ 是方程 (*) 的解, 成立

$$\|\nabla u\|_{L^2(\Omega')}^2 \le C \left(\|u\|_{L^2(\Omega)}^2 + \|f\|_{L^2(\Omega)}^2\right).$$

证明. 设 $\Omega' \subset \Omega'' \subset \Omega, \xi \in \Omega' \subset \Omega''$ 的截断函数.

注记. 为什么要在中间插一层 Ω'' ? 这里先剧透一下, 到后面估计的时候会出现 $\|\nabla u\|_{L^2}^2$ 这种项, 上一小节告诉我们, 对于任意 $\Omega'' \subset \Omega$, $\|\nabla u\|_{L^2(\Omega'')}^2$ 可以被 $\|u\|_{L^2(\Omega)}^2 + \|f\|_{L^2(\Omega)}^2$ 控制住; 但对于 $\|\nabla u\|_{L^2(\Omega)}^2$ 就没有这样的控制了, 为此我们要在中间插一层 Ω'' .

- 方程两边同乘 $\xi^2 u_{11}$, 得到 $-\int_{\Omega''} \xi^2 u_{11} \Delta u dx = \int_{\Omega''} \xi^2 u_{11} f dx$.
- 对左侧分部积分两次,得到想要的项 $\int_{\Omega''} \xi^2 |\nabla u_1|^2 dx$

第一次:
$$-\int_{\Omega''} \xi^2 u_{11} u_{ii} dx = \int_{\Omega''} (\xi^2 u_{11})_i u_i dx = 2 \int_{\Omega''} \xi \xi_i u_{11} u_i dx + \int_{\Omega''} \xi^2 u_{11i} u_i dx$$
第二次:
$$\int_{\Omega''} \xi^2 u_i u_{11i} dx = -\int_{\Omega''} (\xi^2 u_i)_1 u_{1i} dx = -2 \int_{\Omega''} \xi \xi_1 u_i u_{1i} dx - \int_{\Omega''} \xi^2 |\nabla u_1|^2 dx$$

• 将想要的项放到左边, 其余的项的甩到右边, 并用右侧替换左侧, 得到

$$\int_{\Omega''} \xi^2 |\nabla u_1|^2 dx = -\int_{\Omega''} f \xi^2 u_{11} dx - 2 \int_{\Omega''} \xi \xi_1 u_i u_{1i} dx + 2 \int_{\Omega''} \xi \xi_i u_i u_{11} dx$$

若两次分部积分的顺序不同, 会得到

$$\int_{\Omega''} \xi^2 |\nabla u_1|^2 \mathrm{d}x = -\int_{\Omega''} f \xi^2 u_{11} \mathrm{d}x - 2 \int_{\Omega''} \xi \xi_i u_1 u_{1i} \mathrm{d}x + 2 \int_{\Omega''} \xi \xi_1 u_1 u_{ii} \mathrm{d}x$$

• 对右边的项进行逐个估计:

1. 第一项
$$\leq \frac{1}{4} \int_{\Omega''} \xi^2 u_{11}^2 dx + \int_{\Omega''} \xi^2 f^2 dx$$

2. 第二项
$$\leq \frac{1}{4} \int_{\Omega''} \xi^2 |\nabla u_1|^2 dx + 4 \int_{\Omega''} |\nabla u|^2 \xi_1^2 dx \leq \frac{1}{4} \int_{\Omega''} \xi^2 |\nabla u_1|^2 dx + 4 \int_{\Omega''} |\nabla u|^2 |\nabla \xi|^2 dx$$

3. 第三项
$$\leq \frac{1}{4} \int_{\Omega''} \xi^2 u_{11}^2 dx + 4 \int_{\Omega''} |\nabla u|^2 |\nabla \xi|^2 dx$$

注记. 1 和 3 貌似用不到 ε 调.

$$\Longrightarrow \int_{\Omega} \xi^{2} |\nabla u_{1}|^{2} dx \leqslant c \left(\int_{\Omega''} |\nabla u|^{2} dx + \int_{\Omega} f^{2} dx \right) \leqslant c \left(\int |u|^{2} dx + \int |f|^{2} dx \right)$$

2.10 Poisson 方程经典解的梯度内部有界估计

3月17日6分35秒

设 $\Omega \subset \mathbb{R}^n$ 为有界区域, $u \in C^3(\Omega) \cap C(\overline{\Omega})$, $\Delta u = f, f \in C^1(\overline{\Omega})$, $||u||_{L^{\infty}(\Omega)} \leq M$.

问:给定 $\Omega' \subset \Omega, u$ 在 Ω' 上的振动幅度的大小能不能得到控制?

结论: $\|\nabla u\|_{L^{\infty}(\Omega')} \leq c$, 其中 $c \sim (\Omega', \Omega, \|f\|_{C^{0}(\overline{\Omega})}, M)$.

注记. 回首过去(1.3.3节)

- 以前的 $\xi = R^2 |x|^2$, 我们只会处理 Ω' 为球的情形.
- 有调和函数情形的经验, 所以知道辅助函数 φ 该怎么找.

证明. 设
$$\Omega \subset \{0 < x_1 < d\}$$
. 令 $\varphi = \xi^2 |\nabla u|^2 + \alpha u^2 + e^{\beta x_1}$.

如果能选取合适的 $\alpha = \alpha_0$ 和 $\beta = \beta_0$ 使得 $\Delta \varphi \ge 0$, 则 φ 在 $\partial \Omega$ 达到最大值, 那么

$$\sup_{\Omega'} |\nabla u|^2 \overset{\xi \equiv 1, x \in \Omega'}{\leqslant} \sup_{\Omega'} \varphi \leqslant \sup_{\Omega} \varphi \xrightarrow{\underline{\Delta \varphi} \geqslant 0} \sup_{\partial \Omega} \varphi \overset{\xi \equiv 0, x \in \partial \Omega}{\leqslant} \alpha_0 M^2 + \mathrm{e}^{\beta_0 d}.$$

$$\varphi_{i} = (\xi^{2})_{i} |\nabla u|^{2} + \xi^{2} (|\nabla u|^{2})_{i} + 2\alpha u u_{i} + \beta e^{\beta x_{1}} \delta_{i1}.$$

$$\Delta \varphi = \varphi_{ii} = \Delta(\xi^{2}) |\nabla u|^{2} + 2(\xi^{2})_{i} (|\nabla u|^{2})_{i} + \xi^{2} \Delta(|\nabla u|^{2}) + 2\alpha |\nabla u|^{2} + 2\alpha u \Delta u + \beta^{2} e^{\beta x_{1}}.$$

- $\Delta(\xi^2)|\nabla u|^2 = (2\xi\Delta\xi + 2|\nabla\xi|^2)|\nabla u|^2$
- $2(\xi^2)_i(|\nabla u|^2)_i = 8\xi\xi_i u_j u_{ji} \geqslant -2\xi^2|\nabla^2 u|^2 8|\nabla\xi|^2|\nabla u|^2$
- $\xi^2 \Delta(|\nabla u|^2) = 2\xi^2 |\nabla^2 u|^2 + 2\xi^2 \nabla u \cdot \nabla f \geqslant 2\xi^2 |\nabla^2 u|^2 |\nabla u|^2 |\nabla f|^2$
- $2\alpha |\nabla u|^2 = 2\alpha |\nabla u|^2$
- $2\alpha u \Delta u = 2\alpha u f \geqslant -2\alpha M \|f\|_{C^0(\overline{\Omega})}$
- $\beta^2 e^{\beta x_1} \geqslant \beta^2$

$$\begin{split} &\Delta\varphi\geqslant (2\xi\Delta\xi+2|\nabla\xi|^2-8|\nabla\xi|^2-1+2\alpha)|\nabla u|^2-|\nabla f|^2-2\alpha M\|f\|_{C^0(\overline{\Omega})}+\beta^2\\ &\mathrm{取定}\ \alpha=\alpha_0\ \text{充分大使得}\ 2\xi\Delta\xi+2|\nabla\xi|^2-8|\nabla\xi|^2-1+2\alpha\geqslant 0.\\ &\mathrm{再取定}\ \beta=\beta_0\ \text{充分大使得}\ \beta^2-2\alpha_0 M\|f\|_{C^0(\overline{\Omega})}-|\nabla f|^2\geqslant 1. \end{split}$$

注记. 展望未来: $\Delta u = f$ 会做, 一般的线性椭圆方程也会做.

Robin 边值问题的有界估计 2.11

2.11.1 Laplace 方程

3月17日35分25秒

设
$$\Omega \subset \mathbb{R}^n$$
 为有界区域,考虑 Robin 边值的 Laplace 方程
$$\begin{cases} \Delta u = 0 & x \in \Omega \\ \frac{\partial u}{\partial n} = -u + \varphi(x) & x \in \partial \Omega \end{cases}.$$

我们希望给出解的有界估计.

因为
$$\Delta u = 0$$
, 所以 u 在某点 $x_0 \in \partial \Omega$ 达到最大值, 从而 $\frac{\partial u}{\partial n}(x_0) \geqslant 0$.
由 $\partial \Omega$ 上满足的方程知 $-u(x_0) + \varphi(x_0) \geqslant 0 \Longrightarrow u(x_0) \leqslant \varphi(x_0) \leqslant \sup_{\partial \Omega} \varphi$.

因为
$$\Delta u = 0$$
, 所以 u 在某点 $x_1 \in \partial \Omega$ 达到最小值, 从而 $\frac{\partial u}{\partial n}(x_0) \leq 0$.
由 $\partial \Omega$ 上满足的方程知 $-u(x_1) + \varphi(x_1) \leq 0 \Longrightarrow u(x_1) \geqslant \varphi(x_1) \geqslant \inf_{\partial \Omega} \varphi$.
综上所述 $\inf_{\partial \Omega} \varphi \leq u \leq \sup_{\partial \Omega} \varphi$.

2.11.2 Baby 版本的 Poisson 方程

3月17日40分50秒

3月 17日 40分 50 秒 设
$$\Omega \subset \mathbb{R}^n$$
 为有界区域,考虑 Robin 边值的 Poisson 方程
$$\begin{cases} \Delta u = 1 & x \in \Omega \\ \frac{\partial u}{\partial n} = -u + \varphi(x) & x \in \partial \Omega \end{cases}.$$

因为 $\Delta u \equiv 1 > 0$, 由相同论证可知 $\sup_{\Omega} u \leqslant \sup_{\partial \Omega} \varphi$.

下面来处理 u 的下界估计.

$$\Leftrightarrow \Phi = u - \alpha |x|^2.$$

$$\Delta \Phi = \Delta u - 2n\alpha_0$$

$$\mathbb{R} \ \alpha_0 = \frac{|f|_{C^0(\overline{\Omega})}}{2n}$$

$$\Delta \Phi \leq 0$$

Φ 的最小值在 $x_0 \in \partial \Omega$ 达到,

$$0 \geqslant \frac{\partial \Phi}{\partial n}(x_0) = -u(x_1) + \varphi(x_1) - 2\alpha_0 \left\langle x_1, \frac{1}{n} \right\rangle$$

 $\Phi(x_1) \geqslant \min u - \alpha_0 \max |x|^2$

$$\min u \geqslant \min \Phi + \alpha_0 \max_{\overline{\Omega}} |x|^2 = \Phi(x_1) + \alpha_0 \max |x|^2$$

$$= u(x_1) - \alpha_0 |x_1|^2 + \alpha_0 \min |x|^2 \geqslant \varphi(x_1) - 2\alpha_0 \langle x_1, \vec{n} \rangle - \alpha_0 |x_1|^2 + \alpha_0 \min |x|^2 \geqslant \inf \varphi - c_0(\Omega)$$
 作业 1: 命题 2.16

$$\begin{cases} \Delta u = f \\ \frac{\partial u}{\partial n} = -u + \varphi(x) \end{cases}$$

2.12 Neumann 边值问题的整体梯度估计

3月17日55分28秒

$$\begin{cases} \Delta u = f(x) \\ \frac{\partial u}{\partial n} = \varphi(x) \end{cases}$$

若
$$|u|_{L^{\infty(\Omega)}}M_0$$
 如 $\partial\Omega\in C^2, \exists d_0>0$ such that

$$d(x) = dist(x, \partial\Omega)$$

在
$$\Omega_{d_0}$$

$$|\nabla d|^2 = 1$$

$$|\nabla^2 d| \leqslant C$$

$$w := u - \varphi d$$

$$w_n|_{\partial\Omega} = u_n + (\varphi_n d + \varphi d_n)$$

$$= u_n - \varphi \equiv 0$$

$$\Phi = \log |\nabla w|^2 + h(u) + \alpha_0 d$$

$$0 \leqslant \frac{\partial \Phi}{\partial n}(x_0)$$
如 Φ 在 $\partial\Omega$ 上达到最大值
$$h(u) = -\log(1 + M_n - u)$$

• 对相应
$$\Phi(x)$$
 在 $x_1 \in \Omega_{d_0}$ 达到极大
$$\Phi_i = \frac{|\nabla u|_i^2}{|\nabla w|^2} + h'u_i + \alpha_0 d_i$$

$$\frac{|\nabla w|_i^2}{|\nabla w|^2} = -(h'u_i + \alpha_0 d_i)$$

$$\Delta \Phi = \frac{\Delta |\nabla w|^2}{|\nabla w|^2} - \frac{|\nabla |\nabla w|^2|^2}{|\nabla w|^4} + h'' |\nabla u|^2 + h' \Delta u + \alpha_0 \Delta d$$

$$\Delta |\nabla u|^2 = 2(w_j w_{ji})_i = 2\sum w_{ij}^2 + 2\sum w_j (\Delta w)_j$$

$$\frac{2\sum w_{ij}^2}{|\nabla w|^2} + \frac{2\sum w_j(\Delta w)_j}{|\nabla w|^2}$$
$$(\sum a_i b_i)^2 \leqslant |a|^2 |b|^2$$
$$|\sum_j w_j w_{ji}|^2 \leqslant |\nabla w|^2 |\nabla^2 w|^2$$

3月17日1小时41分40秒 回顾:

应用

3月21日4分18秒

应用: Dirichlet 问题、Neumann 问题经典解的存在性 但这个学期我们不关心经典解的存在性 Neumann 问题, 内部与近边 Dirichlet 问题, 整体约化到边界与边界 展望一下未来, 同样要问广义解的梯度估计.

- 内估计
- 整体约化到边界

2.13 单位分解

2.13.1 紧集上的单位分解

3月17日1小时55分11秒

应用:证明散度定理、用光滑函数逼近 Sobolev 空间中的函数(处理 $\partial\Omega \in C^1$ 的情形).

定理 2.13.1. 设 $\{\Omega_i\}_{i=1}^N$ 为紧集 $K \subset \mathbb{R}^n$ 的开覆盖,则存在开集 $\Omega \supset K$ 和一组函数 $\{\xi_i\}_{i=1}^N$ 满足 $(1)\xi_i \in C_0^\infty(\Omega_i); (2)0 \leqslant \xi_i \leqslant 1; (3) \sum_{i=1}^N \xi_i(x) = 1, \forall x \in \Omega.$

证明. 3 月 17 日 1 小时 59 分 10 秒--3 月 17 日第二段 9 分 28 秒.

散度定理

2.13.2 开集上的单位分解

3月17日第二段13分34秒——16分8秒,18分23秒——19分36秒

应用:用光滑函数逼近 Sobolev 空间中的函数 (处理 $\partial\Omega \notin C^1$ 的情形).

- 3月17日第二段16分9秒——18分5秒: 定理陈述.
- 3月17日第二段19分37秒——25分7秒和3月21日12分26秒——20分12秒:证明

定理 2.13.2.

证明.
$$\Omega$$
: $\bigcup_{i=1}^{+\infty} \Omega_i, \Omega_i \subset \Omega, B_1 = \Omega_1 \setminus \bigcup_{i=2}^{+\infty} \Omega_i \subset \Omega_1$

$$O_1 = \left\{ x \in \Omega_1 \mid dist(x, B_1) < \frac{d}{2} \right\}$$

$$d = dist(B_1, \partial \Omega_1)$$

$$B_1 \subset O_1 \subset \Omega_1$$

$$O_1 \cup \bigcup_{i=2}^{+\infty} \Omega_i \text{ 仍为 } \Omega \text{ 的开覆盖}$$

$$B_2 = \Omega_2 \setminus O_1 \cup \bigcup_{i=3}^{+\infty} \Omega_i, \text{ 闭}, B_2 \subset \Omega_2, \text{ 取 } O_2 = \left\{ x \in \Omega_2 \mid dist(x, B_r) < \frac{d_2}{2} \right\}$$

$$d_2 = dist(B_2, \partial \Omega_2)$$

$$B_2 \subset O_2 \subset \Omega_2$$

$$\bigcup_{i=1}^{+\infty} \cup \bigcup_{i=3}^{+\infty} \Omega_i \text{ 仍为 } \Omega \text{ 的开覆盖}$$

$$0 \leqslant \xi_i \leqslant 1, \xi_i \in C_0^{\infty}(\Omega_i)$$

$$\varphi_i = \frac{\xi_i}{\sum_{i=1}^{+\infty} \xi_i} \Longrightarrow \sum_{i=1}^{+\infty} \varphi_i \equiv 1$$

$$\text{由 } \Omega \text{ 的任—紧集只与有限多个 } \Omega_i \text{ 相交.}$$

$$\xi_i \equiv 1, O_i$$

$$0 \leqslant \xi_i \leqslant 1, \Omega_i$$

Chapter 3

Sobolev 空间

3.1 Hölder 空间

3月21日23分56秒

定义 3.1.1. 如果
$$|u|_{\alpha,U}=\sup_{x\neq y} rac{|u(x)-u(y)|}{|x-y|^{lpha}}<+\infty, 則称 \ u\in C^{0,lpha}(U).$$

作业 1: 验证 $f(x) = |x|^{\alpha} \in C^{0,\alpha}(-1,+1)$.

为什么要学习 Hölder 空间:

- 在研究经典解时,Hölder 空间是最有用的函数空间.
 - $-C^k(U)$ 不好. 对于 Dirichlet 边值的 Possion 方程, 即使 $f\in C(U)$, 也不能保证 $u\in C^2(U)$. 有一个所谓 Dini 连续的条件, 能够保证 $u\in C^2(U)$, 但它用起来不方便.
 - $-C^{k,\alpha}(U)$ 好. $f \in C^{0,\alpha}(U) \Longrightarrow u \in C^{2,\alpha}(U)$.
- Sobolev 空间通过 Hölder 空间与经典解联系起来: Sobolev 嵌入定理.

3.2 弱导数

定义 3.2.1. 设 $u,v \in L^1_{loc}(U)$. 称 v 为 u 的 α 阶弱导数, 如果对任意的 $\varphi \in C_0^\infty(U)$ 成立

$$\int_{U} u D^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{U} v \varphi \, dx.$$

 $\stackrel{\text{def}}{=} u \in C^{\infty}(U), \alpha = (0, \dots, 1, \dots, 0),$

$$\int_{U} u\varphi_{i} dx = \int_{U} (u\varphi)_{i} - u_{i}\varphi dx = -\int_{U} u_{i}\varphi dx.$$

所以弱导数为普通意义下导数的推广.

弱导数的唯一性

命题 3.2.2. 设 $u, v_1, v_2 \in L^1_{loc}(U)$, 如果 v_1, v_2 都为 u 的 α 阶弱导数, 那么 $v_1 \stackrel{a.e.}{=\!=\!=\!=} v_2$.

证明. 令
$$v = v_1 - v_2$$
, 那么对于任意 $\varphi \in C_0^{\infty}(U)$, 成立 $\int_U v \varphi dx = 0$.

$$\mathfrak{P}(x) = \eta^{\varepsilon}(x), v^{\varepsilon}(x) = (\eta^{\varepsilon} * v)(x) \xrightarrow{L_{loc}^{1}} v.$$

弱导数的存在性

3月21日56分59秒

例 3.2.3. 计算 $f(x) = |x|, x \in (-1,1)$ 的弱导数.

例 3.2.4.
$$f(x) = \begin{cases} x & 0 < x \le 1 \\ 1 & 1 < x < 2 \end{cases}$$
 存在弱导数,但 $g(x) = \begin{cases} x & 0 < x \le 1 \\ 2 & 1 < x < 2 \end{cases}$ 不存在弱导数.

证明. 见 Evans.

注记. 间断点导致弱导数不存在.

注记. 这很奇怪,g(x) 在实分析的意义下应该是存在导数的,这样看来弱导数不完全是导数的推广.

例 3.2.5. 设 $u(x) = |x|^{\alpha}, x \in B_1(0)$. 找 α 的范围使得 u 的一阶弱导数存在.

解.

3.3 Sobolev 空间

定义 3.3.1. 设 $1 \leq p \leq \infty$. 设 $U \subset \mathbb{R}^n$ 为开集, $u \in L^1_{loc}(U)$. 称 $u \in W^{k,p}(U)$, 如果 u 的直到第 k 阶弱导数都存在, 且对任意 α 满足 $|\alpha| \leq k$, 有 $D^{\alpha}u \in L^p(U)$. 容易验证 $W^{k,p}(U)$ 构成线性空间.

•
$$\exists 1 \leqslant p < +\infty \ \forall n, \ \|u\|_{W^{k,p}(U)}^p := \sum_{|\alpha| \leqslant k} \int_U |D^{\alpha}u|^p \mathrm{d}x.$$

• 当
$$p=+\infty$$
 时, $\|u\|_{W^{k,p}(U)}:=\sum_{|\alpha|\leqslant k}\mathrm{esssup}_U\,|D^{\alpha}u|.$

命题 3.3.2. $W^{k,p}(U)$ 在上述范数下成为赋范线性空间.

定理 3.3.3. $W^{k,p}(U)$ 是 Banach 空间.

作业 3.3.4. Evans 书 306 页的 2,3.

命题 3.3.5. 可分性与自反性

命题 3.3.6.

命题 3.3.7. \mathbb{R}^n 上的 $W^{k,p}$ 应该也是 U 上的 $W^{k,p}$

命题 3.3.8. $W^{k,p}$ 中收敛应该蕴含 $D^{\alpha}u$ 在 L^{p} 中收敛.

定义 3.3.9. 记 $W_0^{k,p}(U)$ 为 $C_c^{\infty}(U)$ 在 $W^{k,p}(U)$ 中的闭包.

命题 3.3.10. 当 p=2 时, 定义

$$\langle u, v \rangle = \sum_{|\alpha| \le k} \int_U D^{\alpha} u \cdot D^{\alpha} v dx.$$

容易验证 $\langle \cdot, \cdot \rangle$ 是 $W^{k,2}(U)$ 上的内积,并且诱导的范数正是上文定义的范数. 因为 $W^{k,2}(U)$ 是 Hilbert 空间,因此常记作 $H^k(U)$.

3.4 逼近

3.4.1 光滑函数的整体逼近

3月24日10分11秒

定理 3.4.1. 设 $U \subset \mathbb{R}^n$ 是有界开集, $u \in W^{k,p}(U)$, 其中 $1 \leqslant p < \infty$. 那么存在函数 $u_m \in C^\infty(U) \cap W^{k,p}(U)$ 满足 $u_m \xrightarrow{W^{k,p}(U)} u$.

证明.

1. 记
$$U_i = \left\{ x \in U \mid \frac{1}{i+3} < \operatorname{dist}(x, \partial U) < \frac{1}{i+1} \right\}, W_i = \left\{ x \in U \mid \frac{1}{i+4} < \operatorname{dist}(x, \partial U) < \frac{1}{i} \right\}.$$
 选取开集 $U_0 \subset U$ 使得 $\{U_i\}_{i=0}^{\infty}$ 成为 U 的开覆盖. 或许可取 $U_0 = \left\{ x \in U \mid \operatorname{dist}(x, \partial U) > \frac{1}{3} \right\}.$ 由定理2.13.2, 存在从属于 $\{U_i\}_{i=0}^{\infty}$ 的单位分解 $\{\xi_i\}_{i=0}^{\infty}$, 即 $\{\xi_i\}_{i=0}^{\infty}$ 满足

- $0 \le \xi_i \le 1$
- $\xi_i \in C_0^\infty(U_i)$

•
$$\sum_{i=0}^{\infty} \xi_i(x) = 1, \forall \ x \in U$$

任取函数 $u \in W^{k,p}(U)$, 由命题3.3.6, 我们有 $\xi_i u \in W^{k,p}(U)$, supp $\xi_i u \subset U_i$.

2. 固定 $\delta > 0$. 选取

3.

3月24日29分16秒

作业 3.4.2.
$$\Delta u + b_i u_i + cu = f$$
 $\frac{\partial u}{\partial n}$

3.4.2 光滑到边函数的整体逼近

3 月 24 日 1 小时 14 分 5 秒 平面几何 $\partial U \in C^1$ 或 Lip 边界最差形状也没有 cusp 优点

引理 3.4.3.

定理 3.4.4. 设 $U\subset\mathbb{R}^n$ 有界区域, $\partial U\in C^1$. 设 $u\in W^{k,p}(U)$, 其中 $1\leqslant p<\infty$, 那么存在 $u_m\in C^\infty(\overline{U})$ 满足 $u_m\overset{W\to (U)}{\longrightarrow} u$.

3.4.3 反例

3月24日38分25秒

心里想证明: 如果 $\forall U \subset \mathbb{R}^n$, 其中 U 有界, 不可能都有到 \mathbb{R}^n 的延拓.

再回过头来说明延拓要对U加条件

逼近也要加条件

存在有界 $U \subset \mathbb{R}^n$, 使得 $W^{1,p}(U)$ 不能延拓到 $W^{1,p}(\mathbb{R}^n)$

如果 $u \in W^{1,p}(\mathbb{R}^n)$, 则 Sobolev 嵌入定理 $u \in L^q(\mathbb{R}^n), 1 < q < \frac{2n}{n-2}$

目标: 找到区域
$$u \in W^{1,2}(U)$$
 但 $u \notin L^p(\mathbb{R}^2)$
$$U = \left\{ x > 0. - x^{1/\theta < y < x^{1/\theta}} \right\}, 其中 \theta 待定$$

 $u(x,y) = x^{\alpha} \varphi(x,y)$, 其中 φ 是截断函数.

$$supp \varphi \subset B_1(0) \subset \mathbb{R}^n, \varphi \equiv 1, B_{1/\psi}(0), 0 \leqslant \leqslant 1$$

$$u(x,y) = x^{\alpha} \varphi(x,y), u \in C^2, \int_0^1 x^{2\alpha} x^{\frac{1}{\theta}} dx < +\infty$$

$$Du \in L^2, D_x u \in L^2 \iff \int_0^1 x^{2(\alpha-1)} x^{\frac{1}{\theta}} dx < +\infty$$

$$2(\alpha - 1) + \frac{1}{\theta} > -1$$

$$2\alpha + \frac{1}{\theta} > 1$$

$$u \in L^p(\mathbb{R}^2), \int_0^1 x^{\alpha p} x^{\frac{1}{\theta}} dx < +\infty$$

$$\alpha p + \frac{1}{\theta} > -1$$

$$\alpha < 0$$

$$\alpha < 0$$

$$0 > 2\alpha > 1 - \frac{1}{\theta}$$

$$0 < \theta < 1$$

任意 1 成立, 矛盾

3.5 限制和延拓

引理 3.5.1. 设 X 是赋范线性空间,A 是 X 的稠密子空间,Y 是完备赋范线性空间. 设 $T: A \rightarrow Y$ 是线性映射, 并且存在 C 使得

(*)
$$\sup_{x \in A \setminus \{0\}} \frac{\|Tx\|_Y}{\|x\|_X} \leqslant C.$$

那么存在唯一的有界线性映射 \widetilde{T} , 满足

- (1) $\widetilde{T}|_A = T$.
- (2) $||T|| \leq C$.

本节的限制定理3.5.2和延拓定理3.5.3本质上就是如上引理及对其条件的满足.

我们先来讲讲较为简单的限制定理: 我们经常对方程加 Dirichlet 边值条件, 在经典的意义下, 即 $u \in C(\overline{U})$ 时, $u|_{\partial U}$ 是有意义的; 现在问在 $u \in W^{1,p}(U)$ 的情形下该如何理解 $u|_{\partial U} = \varphi$? 限制定理给了这个问题一个回答. 在 $\partial U \in C^1$ 时, $C^\infty(\overline{U})$ 在 $W^{1,p}(U)$ 中稠密, 后者就是引理3.5.1中的 X, 前者是 A, 这里 Y 取为 $L^p(\partial U)$,T 是经典意义下的限制. 在验证了条件 (*) 之后(通过紧集上单位分解+拉平),Tu 就是我们想要的 $u|_{\partial U}$.

再来说说延拓定理:对于定义在 U 上的 L^p 函数,我们常通过零延拓来将其变为整个 \mathbb{R}^n 上的 L^p 函数;但这个办法对于 $W^{1,p}$ 函数失效,因为我们已经在弱导数一节中看到,本质(无法通过修改零测集上的值来挽救)的不连续性会导致弱导数不存在.为此我们得找一个合理的延拓方式,延拓定理就算是为了达到这个目的.对应到引理3.5.1,延拓定理的 X,A 与限制定理是相同的,它的复杂之处在于,我们没有一个天然的 T,也就是说对于 $C^\infty(\overline{U})$ 中的函数,我们并没有一个典范的将其延拓到 \mathbb{R}^n 上的方式,为此我们必须先给出这样的一个方式(同样是通过紧集上单位分解+拉平)并验证条件 (*). 值得注意的是,因为 T 不是典范的,从而延拓方式其实不是唯一的.

定理 3.5.2. 设 $U \subset \mathbb{R}^n$ 为有界区域, $\partial U \in C^1$. 存在线性算子 $T: W^{1,p}(U) \to L^p(\partial U)$ 满足

- (1) $Tu = u|_{\partial U}$ 如果 $u \in W^{1,p}(U) \cap C(\overline{U})$.
- (2) T 是有界线性算子, 即存在不依赖于 u 的常数 c 使得 $||Tu||_{L^p(\partial U)} \leq c||u||_{W^{1,p}(U)}$.

证明. 由上面的讨论, 我们只需证明, 存在常数 C, 使得对任意的 $u \in C^{\infty}(\overline{U})$,

$$\int_{\partial U} |u|^p d\sigma \leqslant C ||u||_{W^{1,p}(U)}.$$

$$\int_{U} dive \vec{X} dx = \int_{\partial u} |u|_{x_{n}}^{p} = (|u|^{2})_{x_{n}}^{\frac{p}{2}} = p|u|^{2}$$

$$1 \leq c \int_{U} |u|^{p} dx$$

$$2 \leq p|u|^{p-1}|\nabla u| \leq c_{p}|u|^{p} + |\nabla u|^{p} \leq c \int_{U} |u|^{p} dx$$

$$\leq c \int_{U} (|u|^{p} + |\nabla u|^{p}) dx$$
第二步紧集覆盖

定理 3.5.3. 设 $U \subset \mathbb{R}^n$ 为有界区域, $\partial U \in C^1$. 给定一个开集 V 使得 $U \subset V$, 那么存在线性算子 $E \colon W^{1,p}(U) \to W^{1,p}(\mathbb{R}^n)$ 满足

- (1) $\not = U + Eu \stackrel{a.e.}{===} u;$
- (2) supp $Eu \subset\subset V$;
- (3) E 是有界线性算子, 即存在不依赖于 u 的常数 c 使得 $\|Eu\|_{W^{1,p}(\mathbb{R}^n)} \leqslant c\|u\|_{W^{1,p}(U)}$. 证明.
 - 1. 因为 ∂U 是 C^1 的, 所以对任意 $x \in \partial U$, 存在邻域 W 和 C^1 映射 $\Phi: W \to B(0,r)$, 满足
 - $\Phi \in C^1$ 微分同胚, 且 det $J\Phi \equiv 1$.
 - $\Phi(W \cap \overline{U}) = B_+(0,r)$

可要求 $W \subset \widetilde{V} \subset V$, 否则取 \widetilde{r} 充分小使得 $\widetilde{W} := \Phi^{-1}(B(0,\widetilde{r})) \subset \widetilde{V}$, 统统替换之.

- 2. 因为 ∂U 是紧集, 所以存在 $\{(x_i, W_i, \Phi_i)\}_{i=1}^N$ 如上, 并且 $\partial U \subset \bigcup_{i=1}^N W_i$.
- 3. 任取 $u \in C^1(\overline{U})$, 记 $u_i = u \big|_{W_i \cap \overline{U}}, 1 \leqslant i \leqslant N$. 定义 $u_i' \colon B_+(0, r_i) \to \mathbb{R}, y \mapsto u_i(\Phi_i^{-1}(y))$. 定义

$$\bar{u}'_i = \begin{cases} u'_i(y) & y \in B_+(0, r_i) \\ -3u'_i(y^1, \dots, y^{n-1}, -y^n) + 4u'_i(y^1, \dots, y^{n-1}, -\frac{y^n}{2}) & y \in B_-(0, r_i) \end{cases}.$$

容易验证

- $\bar{u}_i' \in C^1(B(0, r_i))$
- 存在常数 c_i , 使得对任意 $u \in C^1(\overline{U}), \|\bar{u}_i'\|_{W^{1,p}(B(0,r_i))} \leq c_i \|u_i'\|_{W^{1,p}(B_+(0,r_i))}$.
- 4. 定义 $\bar{u}_i = \bar{u}_i'(\Phi(x))$, 容易验证, 存在常数 \tilde{c}_i , 使得对任意 $u \in C^1(\overline{U})$,

$$\|\bar{u}_i\|_{W^{1,p}(W_i)} \leqslant \tilde{c}_i\|u\|_{W^{1,p}(U)}.$$

5. 取 $W_0 \subset U$ 使得 $U \subset \bigcup_{i=0}^N W_i$, 记 $u_0 = u \big|_{W_0}$.

取
$$U \subset \bigcup_{i=0}^{N} W_i$$
 的一个单位分解 $\{\xi_i\}_{i=0}^{N}$,记 $\bar{u} = \sum_{i=0}^{N} \xi_i \bar{u}_i$,则 \bar{u} 满足

•
$$\bar{u}(x) = u(x), \forall x \in U$$

• supp $\bar{u} \subset \widetilde{V}$

并且存在常数 c,使得对任意 $u \in C^1(\overline{U}), \|\bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leqslant c \|u\|_{W^{1,p}(U)}.$ 这样我们就对于 $u \in C^1(\overline{U})$ 定义好了 $Eu := \bar{u}.$

- 6. 因为 $\partial U \in C^1$,由定理3.4.4,对任意 $u \in W^{1,p}(U)$,存在 $u^m \in C^\infty(\overline{U})$ 使得 $u^m \overset{W^{1,p}(U)}{\longrightarrow} u$. 因为 $\{u^m\}$ 是 Cauchy 列, $\|Eu\|_{W^{1,p}(\mathbb{R}^n)} \leqslant c\|u\|_{W^{1,p}(U)}$,所以 $\{Eu^m\}$ 也是 Cauchy 列. 定义 $\bar{u} = \lim_{m \to \infty} Eu^m$. 易知 \bar{u} 不依赖于 $\{u^m\}$ 的选取. 定义 $Eu = \bar{u}$.
 - $\|\bar{u} u\|_{W^{1,p}(U)} = \lim_{m \to \infty} \|Eu^m u^m\|_{W^{1,p}(U)} = \lim_{m \to \infty} 0 = 0 \Longrightarrow$ 在U中 $\bar{u} \stackrel{a.e.}{===} u.$
 - $\operatorname{supp} Eu^m \subset \widetilde{V} \Longrightarrow \operatorname{supp} \bar{u} \subset \overline{\widetilde{V}} \subset V.$
 - $||Eu^m||_{W^{1,p}(\mathbb{R}^n)} \le c||u^m||_{W^{1,p}(U)} \Longrightarrow ||\bar{u}||_{W^{1,p}(\mathbb{R}^n)} \le c||u||_{W^{1,p}(U)}.$

作业 3.5.4. 验算一般 n 维

$$\tilde{u}(x) = \begin{cases} u(x', x_n), x_n \ge 0\\ \sum_{j=1}^{m+1} c_j u(x', -\frac{x_n}{j}), x_n < 0 \end{cases}$$

其中
$$\sum_{i=1}^{m_1} c_j(-\frac{1}{j})^k = 0, k = 0, 1, \cdots, m$$

3.6 Sobolev 不等式

3月31日1小时33分21秒

定理 3.6.1. 设 $1 \leq p < n$. 存在常数 C 使得

$$||u||_{L^{p^*}(\mathbb{R}^n)} \leqslant C||\nabla u||_{L^p(\mathbb{R}^n)}$$

对任意 $u \in C_0^1(\mathbb{R}^n)$ 成立, 其中 $p^* = \frac{np}{n-p}$.

证明.

1. 先证明 p=1 的情形, 即

$$\left(\int_{\mathbb{D}^n} |u|^{\frac{n}{n-1}}\right)^{\frac{n-1}{n}} \leqslant C \int_{\mathbb{D}^n} |\nabla u| \mathrm{d}x.$$

2.

定理 3.6.2. 设 $U \subset \mathbb{R}^n$ 为有界区域, $\partial U \in C^1$. 设 $1 \leq p < n$, 那么存在常数 C, 成立

$$||u||_{L^{p^*}(U)} \leqslant C||u||_{W^{1,p}(U)}, \quad \forall \ u \in W^{1,p}(U).$$

证明.

- 1. 因为 $\partial U \in C^1$, 由定理3.5.3, 存在延拓 $\bar{u} \in W^{1,p}(\mathbb{R}^n)$.
- 2. 因为 \bar{u} 具有紧支集, 由定理??, 存在 $u_m \in C_0^\infty(\mathbb{R}^n)$ 满足 $u_m \overset{W^{1,p}(\mathbb{R}^n)}{\longrightarrow} \bar{u}$.
- 3. 由定理3.6.1, ||u_m u_l||_{L^{p*}(ℝⁿ)} ≤ C||Du_m Du_l||_{L^p(ℝⁿ)}.
 因为 u_m ^{W^{1,p}(ℝⁿ)} ū, 所以 {Du_m} 为 L^p(ℝⁿ) 中 Cauchy 列.
 从而 {u_m} 为 L^{p*}(ℝⁿ) 中 Cauchy 列, 记 u_m ^{L^{p*}(ℝⁿ)} ũ. 易知 ū a.e. ũ, x ∈ ℝⁿ.
- 4. 由定理3.6.1, $\|u_m\|_{L^{p^*}(\mathbb{R}^n)} \leqslant C\|Du_m\|_{L^p(\mathbb{R}^n)}$. 令 $m \to \infty$ 得 $\|\bar{u}\|_{L^{p^*}(\mathbb{R}^n)} \leqslant C\|D\bar{u}\|_{L^p(\mathbb{R}^n)} \leqslant C\|\bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leqslant C\|u\|_{W^{1,p}(U)}$.

注记. 由定理3.5.3, 我们知道 $\|\bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leq C\|u\|_{W^{1,p}(U)}$. 但我们不知道 $\|D\bar{u}\|_{L^p(\mathbb{R}^n)}$ 与 $\|Du\|_{L^p(\mathbb{R}^n)}$ 的关系. 所以必须来一步平凡的 $\|D\bar{u}\|_{L^p(\mathbb{R}^n)} \leq \|\bar{u}\|_{W^{1,p}(\mathbb{R}^n)}$, 所以命题右边必须是 $\|u\|_{W^{1,p}(U)}$.

5. $||u||_{L^{p^*}(U)} \leq ||\bar{u}||_{L^{p^*}(\mathbb{R}^n)} \leq C||u||_{W^{1,p}(U)}$.

定理 3.6.3 (Poincaré). 设 $U \subset \mathbb{R}^n$ 为有界区域. 设 $1 \leq p < n$, 那么存在常数 C, 成立

$$||u||_{L^{p^*}(U)} \leqslant C||Du||_{L^p(U)}, \quad \forall \ u \in W_0^{1,p}(U).$$

注记. $u \in W_0^{1,p}(U)$ 的优越之处在于不必延拓便直接有光滑函数逼近. 当然为了用定理3.6.1, 光滑函数还是要延拓成 \mathbb{R}^n 上的函数, 但因为它们是紧支撑的, 所以直接零延拓即可.

证明.

- 1. 因为 $u \in W_0^{1,p}(U)$, 按定义存在 $u_m \in C_0^\infty(U)$ 满足 $u_m \stackrel{W^{1,p}(U)}{\longrightarrow} u$.
- 2. 将 u_m 零延拓, 仍记作 u_m , 此时 $u_m \in C_0^{\infty}(\mathbb{R}^n)$.
- 3. 由定理3.6.1, $\|u_m u_l\|_{L^{p^*}(\mathbb{R}^n)} \leqslant C\|Du_m Du_l\|_{L^p(\mathbb{R}^n)} = C\|Du_m Du_l\|_{L^p(U)}$. 因为 $u_m \overset{W^{1,p}(U)}{\longrightarrow} u$, 所以 $\{Du_m\}$ 为 $L^p(U)$ 中 Cauchy 列. 从而 $\{u_m\}$ 为 $L^{p^*}(\mathbb{R}^n)$ 中 Cauchy 列, 记 $u_m \overset{L^{p^*}(\mathbb{R}^n)}{\longrightarrow} \tilde{u}$. 易知 $u \overset{a.e.}{\Longrightarrow} \tilde{u}, x \in U$.
- 4. 由定理3.6.1, $\|u_m\|_{L^{p^*}(\mathbb{R}^n)} \leqslant C\|Du_m\|_{L^p(\mathbb{R}^n)} = C\|Du_m\|_{L^p(U)}$. 令 $m \to \infty$ 得 $\|\tilde{u}\|_{L^{p^*}(\mathbb{R}^n)} \leqslant C\|Du\|_{L^p(U)}$.
- 5. $||u||_{L^{p^*}(U)} \le ||\tilde{u}||_{L^{p^*}(\mathbb{R}^n)} \le C||Du||_{L^p(U)}$.

3.7 Morrey 不等式

引理 3.7.1 (微积分基本定理). 存在常数 C, 使得对于任意 $u \in C^1(\mathbb{R}^n)$, 成立

$$\int_{B(x,r)} |u(y) - u(x)| \mathrm{d}y \leqslant C \int_{B(x,r)} \frac{|\nabla u(y)|}{|x - y|^{n-1}} \mathrm{d}y.$$

证明. 固定某点 $\omega \in \partial B(0,1)$. 那么对于 0 < s < r, 我们有

$$|u(x+s\omega)-u(x)| = \left| \int_0^s \frac{\mathrm{d}}{\mathrm{d}t} u(x+t\omega) \mathrm{d}t \right| = \left| \int_0^s \nabla u(x+t\omega) \cdot \omega \mathrm{d}t \right| \leqslant \int_0^s |\nabla u(x+t\omega)| \mathrm{d}t.$$
对 积分得
$$\int_{\partial B(0,1)} |u(x+s\omega)-u(x)| \mathrm{d}\sigma(1) \leqslant \int_{\partial B(0,1)} \int_0^s |\nabla u(x+t\omega)| \mathrm{d}t \mathrm{d}\sigma(1)$$

$$\mathrm{RHS} = \int_0^1 \int_{\partial B(0,1)} |\nabla u(x+t\omega)| \mathrm{d}\sigma(1) \mathrm{d}t = \int_0^s \int_{\partial B(x,t)} \frac{|\nabla u(y)|}{t^{n-1}} \mathrm{d}\sigma(t) \mathrm{d}t = \int_{B(x,s)} \frac{|\nabla u(y)|}{|x-y|^{n-1}} \mathrm{d}y$$

$$\mathrm{LHS} = \frac{1}{s^{n-1}} \int_{\partial B(x,s)} |u(z)-u(x)| \mathrm{d}(s) \leqslant \mathrm{RHS} \leqslant \int_{B(x,r)} \frac{|\nabla u(y)|}{|x-y|^{n-1}} \mathrm{d}y.$$
移项并对 s 积分有
$$\int_{B(x,r)} |u(y)-u(x)| \mathrm{d}y \leqslant \frac{r^n}{n} \int_{B(x,r)} \frac{|\nabla u(y)|}{|x-y|^{n-1}} \mathrm{d}y.$$

定理 3.7.2. 设 1 . 存在常数 <math>C, 使得对于任意 $u \in C^1(\mathbb{R}^n)$, 成立

$$||u||_{C^{0,\alpha}(\mathbb{R}^n)} \leqslant C||u||_{W^{1,p}(\mathbb{R}^n)}.$$

证明.

1.
$$|u(x)| \le \int_{B(x,1)} |u(y) - u(x)| dy + \int_{B(x,1)} |u(y)| dy$$

• 第二项 $\leq C \|u\|_{L^p(\mathbb{R}^n)}$

• 第一项
$$\leqslant C_n \int_{B(x,1)} \frac{|\nabla u(y)|}{|x-y|^{n-1}} dy \stackrel{\text{H\"older}}{\leqslant} C_n \left(\int_{B(x,1)} |\nabla u(y)|^p dy \right)^{1/p} \left(\int_{B(x,1)} \frac{1}{|x-y|^{(n-1)\frac{p}{p-1}}} dy \right)^{\frac{p-1}{p}} -$$

$$- 前 - 项 \leqslant \|\nabla u\|_{L^p(\mathbb{R}^n)}$$

$$- 后 - 项 = \left(\int_0^r \rho^{(1-n)\frac{p}{p-1}} \rho^{n-1} d\rho \right)^{\frac{p-1}{p}} \bigg|_{r=1} = \left(\int_0^r \rho^{\frac{1-n}{p-1}} d\rho \right)^{\frac{p-1}{p}} \bigg|_{r=1} = \left(\frac{p-1}{p-n} \rho^{\frac{p-n}{p-1}} \bigg|_0^1 \right)^{\frac{p-1}{p}}$$

 $|u(x)| \le c(||u||_{L^p(B(x,1))} + ||Du||_{L^p(B(x,1))}) \le C||u||_{W^{1,p}(\mathbb{R}^n)}$

2. 任取
$$x, y \in \mathbb{R}^n$$
, 记 $r = |x - y|, W = B(x, r) \cap B(y, r)$
$$|u(x) - u(y)| \leqslant \int_W |u(z) - u(x)| dz + \int_W |u(y) - u(z)| dz$$

$$\int_W |u(z) - u(x)| dz \leqslant \frac{Vol(B(x, r))}{Vol(W)} \int_{B(x, r)} |u(z) - u(x)| dz \leqslant Cr^{\frac{p-n}{p}} \|\nabla u\|_{L^p(\mathbb{R}^n)}$$

定义 3.7.3. 我们称 u^* 是给定函数 u 的一个 version 如果 $u^* \stackrel{a.e.}{===} u$.

定理 3.7.4. 设 $U \subset \mathbb{R}^n$ 是有界开集, $\partial U \in C^1$. 设 n , 那么存在常数 <math>C, 成立

$$||u^*||_{C^{0,\alpha}(\overline{U})} \leqslant C||u||_{W^{1,p}(U)}.$$

其中 u^* 是 u 的一个 $version, \alpha = 1 - \frac{n}{p}$.

证明.

- 1. 因为 $\partial U \in C^1$, 由定理3.5.3, 存在延拓 $\bar{u} \in W^{1,p}(\mathbb{R}^n)$.
- 2. 因为 \bar{u} 具有紧支集, 由定理??, 存在 $u_m \in C_0^{\infty}(\mathbb{R}^n)$ 满足 $u_m \overset{W^{1,p}(\mathbb{R}^n)}{\longrightarrow} \bar{u}$.
- 3. 由定理3.7.2, $\|u_m u_l\|_{C^{0,\alpha}(\mathbb{R}^n)} \leqslant C \|u_m u_l\|_{W^{1,p}(\mathbb{R}^n)}$.

 因为 $u_m \overset{W^{1,p}(\mathbb{R}^n)}{\longrightarrow} \bar{u}$, 所以 $\{u_m\}$ 为 $W^{1,p}(\mathbb{R}^n)$ 中 Cauchy 列.

 从而 $\{u_m\}$ 为 $C^{0,\alpha}(\mathbb{R}^n)$ 中 Cauchy 列, 记 $u_m \overset{C^{0,\alpha}(\mathbb{R}^n)}{\longrightarrow} u^*$. 易知 $\bar{u} \overset{a.e.}{\longrightarrow} u^*, x \in U$.
- 4. 由定理3.7.2, $\|u_m\|_{C^{0,\alpha}(\mathbb{R}^n)} \leqslant C\|u_m\|_{W^{1,p}(\mathbb{R}^n)}$. $\Leftrightarrow m \to \infty \ \mbox{β} \ \ \|u^*\|_{C^{0,\alpha}(\mathbb{R}^n)} \leqslant C\|\bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leqslant C\|u\|_{W^{1,p}(U)}.$
- 5. $||u^*||_{C^{0,\alpha}(\overline{U})} \le ||u^*||_{C^{0,\alpha}(\mathbb{R}^n)} \le C||u||^{W^{1,p}(U)}$.

3.8 边值为零的 Poisson 方程弱解的存在唯一性

设 $U \subset \mathbb{R}^n$ 为有界区域, $f \in L^2(U)$, 考虑方程

(*)
$$\begin{cases} -\Delta u = f & x \in U \\ u = 0 & x \in \partial U \end{cases}.$$

定义 3.8.1. 称 $u \in W_0^{1,2}(U)$ 为 (*) 的弱解, 如果对任意的 $\varphi \in W_0^{1,2}(U)$, 成立

$$\int_{U} \nabla u \cdot \nabla \varphi dx = \int_{U} f \varphi dx.$$

定理 3.8.2. (*) 的弱解存在唯一.

存在性证明一.

- (0) 考虑以 (*) 为 Euler-Lagrange 方程的泛函 $J: W_0^{1,2}(U) \to \mathbb{R}, J(u) = \frac{1}{2} \int_U |\nabla u|^2 dx + \int_U fu dx.$
- (1) 证明 J 是下有界的.

$$\begin{split} & \left| \int_{U} f u \mathrm{d}x \right| \overset{\text{H\"older}}{\leqslant} \|f\|_{L^{2}(U)} \|u\|_{L^{2}(U)} \overset{\text{Poincar\'e}}{\leqslant} c \|f\|_{L^{2}(U)} \|\nabla u\|_{L^{2}(U)} \overset{\text{Sj\'et}}{\leqslant} \frac{1}{4} \|\nabla u\|_{L^{2}(U)}^{2} + c' \|f\|_{L^{2}(U)}^{2} \\ & J(u) \geqslant \frac{1}{2} \|\nabla u\|_{L^{2}(U)}^{2} - \left(\frac{1}{4} \|\nabla u\|_{L^{2}(U)}^{2} + c' \|f\|_{L^{2}(U)}^{2}\right) \geqslant \frac{1}{4} \|\nabla u\|_{L^{2}(U)}^{2} - c' \|f\|_{L^{2}(U)}^{2} > -\infty \end{split}$$

(2) 由确界原理, 存在下确界 J_0 . 由定义知, 对任意 $k \in \mathbb{N}, \exists u_k \in W_0^{1,2}(U)$ 使得 $J_0 \leqslant J(u_k) \leqslant J_0 + \frac{1}{k}$. 称 $\{u_k\}$ 为极小化序列, 下证其为 $W_0^{1,2}(U)$ 中 Cauchy 列.

由 Poincaré 不等式, 只需证 $\{Du_k\}$ 为 $L^2(U)$ 中 Cauchy 列.

$$\int_{U} |Du_{k} - Du_{l}|^{2} dx = \int_{U} 2|Du_{k}|^{2} + 2|Du_{l}|^{2} - |D(u_{k} + u_{l})|^{2} dx$$

$$\int_{U} |Du_{k}|^{2} dx = 2J(u_{k}) - 2\int_{U} fu_{k} dx$$

$$\int_{U} |Du_{k} - Du_{l}|^{2} dx = 4J(u_{k}) + 4J(u_{l}) - 4\int_{U} f(u_{k} + u_{l}) dx - 2J(u_{k} + u_{l}) + 2\int_{U} f(u_{k} + u_{l}) dx$$

$$\int_{U} |Du_{k} - Du_{l}|^{2} dx = 4J(u_{k}) + 4J(u_{l}) - 8J\left(\frac{u_{k} + u_{l}}{2}\right) \leqslant 4(J_{0} + \frac{1}{k}) + 4(J_{0} + \frac{1}{l}) - 8J_{0} \to 0.$$

(3) 记 $u_k \stackrel{W_0^{1,2}(U)}{\longrightarrow} u$, 那么 $\lim_{k \to \infty} J(u_k) = J(u) = J_0$. u 即为弱解.

作业 3.8.3.
$$\begin{cases} -\Delta u + c(x)u = f \in L^2(u) \\ u\big|_{\partial u} = 0 \end{cases}, c(x) \geqslant 0, c(x) \in L^2(U), \exists ! u \in W_0^{1,2}(U) \end{cases}$$

$$\begin{cases} -\Delta u + b_i u_i + c(x)u = f \\ u\big|_{\partial U} = 0 \end{cases}$$
 这个方程一般做不出,才学 Lax-Milgram 定理,思考题

存在性另证二. 同样得到极小化序列
$$\{u_k\}$$
, 但不必证明其为 Cauchy 列, 只证明其为有界列.
$$\frac{1}{2}\int_U |Du_k|^2\mathrm{d}x = J(u_k) - \int_U fu_k\mathrm{d}x \leqslant J_0 + 1 + \frac{1}{4}\|\nabla u\|_{L^2(U)}^2 + c'\|f\|_{L^2(U)}^2$$

$$\int_{U}^{2} |Du_{k}|^{2} dx \leq 4(J_{0} + 1 + c' ||f||_{L^{2}(U)}^{2}) < +\infty$$

由 Poincaré 不等式, $\{u_{k}\}$ 为 $W_{0}^{1,2}(U)$ 中有界列.

由张恭庆定理 2.5.28, 存在子列(仍记作
$$\{u_k\}$$
)弱收敛于 $u \in W_0^{1,2}(U)$. 由周民强定理 $6.27, \int_U |Du|^2 \mathrm{d}x \leqslant \liminf_{k \to \infty} \int_U |Du_k|^2 \mathrm{d}x$.

由弱收敛的定义,
$$\lim_{k\to\infty}\int_U fu_k dx = \int_U fu dx$$
.

$$J_0 \leqslant J(u) \leqslant \lim_{k \to \infty} \inf J(u_k) \leqslant J_0.$$
 u 即为弱解.

存在性证明三.

唯一性证明. 如果有两个解
$$u,v\in W_0^{1,2}(U),$$
 令 $w=u-v,$ 得到
$$\begin{cases} -\Delta w=0\\ w|_{c}=0 \end{cases}$$

$$\begin{split} &\int_{U}\nabla w\nabla\varphi\mathrm{d}x=0, \forall\varphi\in W_{0}^{1,2}(U)\\ &\varphi=w, \int_{U}|\nabla w|^{2}\mathrm{d}x=0\\ &\text{再有 P307,11 即得证.} \end{split}$$

作业 3.8.4. P307,11

3.9 紧嵌入定理

定理 **3.9.1.** 设 $U \subset \mathbb{R}^n$ 是有界开集, $\partial U \in C^1$. 设 $1 \leq p < n, 1 \leq q < p^*$, 那么

$$W^{1,p}(U) \subset\subset L^q(U).$$

证明. 即证若 $\{u_m\}_{m=1}^{\infty}$ 为 $W^{1,p}(U)$ 中的有界列, 那么存在 $L^q(U)$ 中的收敛子列 $\{u_{m_j}\}_{j=1}^{\infty}$.

(0) 找 $\{u_{m_i}\}$. 对角线法

对任意
$$\delta = \frac{1}{i}, i \in \mathbb{N}$$

$$||u_{m_{i}} - u_{m_{j}}||_{L^{p}(U)} = ||u_{m_{i}} - u_{m_{i}}^{\varepsilon} + u_{m_{i}}^{\varepsilon} - u_{m_{j}}^{\varepsilon} + u_{m_{j}}^{\varepsilon} - u_{m_{j}}||_{L^{p}(U)}$$

$$\leq ||u_{m_{i}} - u_{m_{i}}^{\varepsilon}||_{L^{p}(U)}$$

- 1+2:N-L+Holder+Sobolev
- 3:Arzela-Ascoli 定理
- (1) 收敛速度的一致控制. 收敛是肯定会收敛的,之所以能知道以一致的速度收敛,是因为我们还额外知道 $\{u_m\} \subset W^{1,p}(U)$ 并且其范数有一个一致的上界.

首先由插值不等式,

$$||u_m^{\varepsilon} - u_m||_{L^q(V)} \le ||u_m^{\varepsilon} - u_m||_{L^1(V)}^{\theta} ||u_m^{\varepsilon} - u_m||_{L^{p^*}(V)}^{1-\theta}.$$

由 Sobolev 不等式和对 $W^{1,p}$ 范数的一致上界,有

$$||u_m^{\varepsilon} - u_m||_{L^q(V)} \leqslant C||u_m^{\varepsilon} - u_m||_{L^1(V)}^{\theta}.$$

从而问题转化到对 L^1 范数的估计.

••

- (2) 对任意固定的 $\varepsilon > 0, \{u_m^{\varepsilon}\}$ 为一致有界, 等度连续.
 - 一致有界.

$$|u_m^{\varepsilon}(x)| \leqslant \int_{B(x,\varepsilon)} \eta_{\varepsilon}(x-y)|u_m(y)| dy = \varepsilon^{-n} \int_{B(x,\varepsilon)} \eta\left(\frac{x-y}{\varepsilon}\right) |u_m(y)| dy| \leqslant \varepsilon^{-n} \|\eta\|_{L^{\infty}(\mathbb{R}^n)} \|u_m\|_{L^{1}(V)}$$

• 等度连续

$$|D_{x_i} u_m^{\varepsilon}(x)| = \varepsilon^{-n-1} |\int_{B(x,\varepsilon)} \frac{\partial \eta}{\partial x_i} \left(\frac{x-y}{\varepsilon} \right) u_m(y) dy| \leqslant c_0 \varepsilon^{-n-1} ||u_m||_{W^{1,p}(U)}$$

为什么要延拓?因为要用卷积逼近.

为什么要用卷积逼近而不直接用光滑函数逼近?因为要对逼近的速度有一致的控制.

为什么要对逼近的速度有一致的控制?因为我们是在选定一个 ε 后,再在 $\{u_m^\varepsilon\}$ 中挑收敛子列. 为什么用卷积逼近就得延拓?因为如果不延拓,对 $u\in L^p(U)$,我们只能做到 $u^\varepsilon \xrightarrow{L^p_{loc}(U)} u$.

3.10 Poincaré-Wirtinger 不等式

4月11日1小时30分21秒
$$\partial U \in C^{1}, U \subset \mathbb{R}^{n}, u \in W^{1,p}(U), \quad \text{则}$$

$$\left(\int_{U} |u - u_{U}|^{p} dx\right)^{1/p} \leqslant c_{0} \|Du\|_{L^{p}(U)}$$
 反证法:若不成立, $v_{k} := \frac{u_{k} - u_{U}}{\|u_{k} - u_{U}\|_{L^{p}(U)}}$ 有 $u_{k} \in W^{1,p}$ 使得
$$\int_{U} |u - u_{U}|^{1/p} dx \geqslant k \|Du^{p}$$

3.11 Pohozaev 恒等式

命题 3.11.1. 设 $U \subset \mathbb{R}^n$ 为星形区域, 设 u 满足方程

$$\begin{cases} -\Delta u = u^{\frac{n+2}{n-2}} + \lambda u & x \in U \\ u = 0 & x \in \partial U \end{cases}.$$

当 $\lambda \leqslant 0, n \geqslant 3$ 时, $u \equiv 0$.

证明. 设
$$f(t) = t^{\frac{n+2}{n-2}} + \lambda t, F(t) = \int_0^t f(s) ds = \frac{1}{2^*} t^{2^*} + \frac{\lambda}{2} t^2$$

• 方程两边同乘
$$u$$
, 得到 $-\int_{U} u\Delta u \, dx = \int_{U} uf(u)dx$
$$LHS = -\int_{U} uu_{ii}dx = -\int_{U} (uu_{i})_{i} - |\nabla u|^{2}dx \xrightarrow{\frac{hgcru}{U}} \int_{U} |\nabla u|^{2}dx$$

• 方程两边同乘
$$x \cdot \nabla u$$
, 得到 $-\int_{U} x \cdot \nabla u \Delta u dx = \int_{U} x \cdot \nabla u f(u) dx$.

RHS $=\int_{U} x_{i} D_{i} F(u) dx = \int_{U} (x_{i} F(u))_{i} - nF(u) dx \frac{\text{散度定理}}{\text{世 DEP}} - \int_{U} nF(u) dx$

LHS $=-\int_{U} u_{i} x_{i} u_{ll} dx = -\int_{U} (u x_{i} u_{ll})_{i} - nu \Delta u - u x_{i} u_{ill} dx \frac{\text{散度定理}}{\text{total DEP}} \int_{U} nu \Delta u + u x_{i} u_{ill} dx$
 $=-\int_{U} nu f(u) dx + \int_{U} (u x_{i} u_{il})_{l} - u_{l} x_{i} u_{il} - u \Delta u dx \frac{\text{散度定理}}{\text{total DEP}} - \int_{U} (n-1) u f(u) + \frac{1}{2} x_{i} (|\nabla u|^{2})_{i} dx$
 $=(1-n)\int_{U} u f(u) dx - \frac{1}{2}\int_{\partial U} |\nabla u|^{2} (x \cdot \nu) d\sigma + \frac{n}{2}\int_{U} |\nabla u|^{2} dx$
 $=(1-\frac{n}{2})\int_{U} u f(u) dx - \frac{1}{2}\int_{U} |\nabla u|^{2} (x \cdot \nu) d\sigma$

$$\left(1 - \frac{n}{2}\right) \int_{U} u f(u) dx + n \int_{U} F(u) dx = \frac{1}{2} \int_{\partial U} |\nabla u|^{2} (x \cdot \nu) d\sigma$$

$$\left(1 - \frac{n}{2}\right) \int_{U} u \left(u^{\frac{n+2}{n-2}} + \lambda u\right) dx + n \int_{U} \left(\frac{n-2}{2n} u^{\frac{2n}{n-2}} + \frac{\lambda}{2} u^{2}\right) dx = \frac{1}{2} \int_{\partial U} |\nabla u|^{2} < x \cdot v > d\sigma$$

$$LHS = \left(1 - \frac{n}{2} + n \cdot \frac{n-2}{2n}\right) \int_{U} u^{\frac{2n}{n-2}} dx + \left(1 - \frac{n}{2} + \frac{n}{2}\right) \int_{U} \lambda u^{2} dx = \lambda \int_{U} u^{2} dx$$

$$\lambda \int_{U} u^{2} dx = \frac{1}{2} \int_{\partial U} |\nabla u|^{2} < x, \nu > d\sigma$$

作业 3.11.2. 平均曲率

证明. 第十次习题课最后

3.12 差商

定义 3.12.1. 设 $u: U \to \mathbb{R}$ 局部可积, $V \subset U$.

(2)
$$\Delta^h u := (\Delta_1^h u, \cdots, \Delta_n^h u).$$

引理 3.12.2.

$$(1) \int_{U} u \Delta_{i}^{h} \varphi dx = -\int_{U} \Delta_{i}^{-h} u \varphi dx$$

(2) 4月14日1小时51分17秒

命题 3.12.3.

(1) 设 $1 \leq p < \infty, u \in W^{1,p}(U)$. 那么对任意 $V \subset U$, 存在常数 C, 成立

$$\|\Delta^h u\|_{L^p(V)} \le C\|Du\|_{L^p(U)}, \quad \forall \ 0 < |h| < \frac{1}{2}\operatorname{dist}(V, \partial U).$$

(2) 设 1 . 若存在常数 <math>C 使得

$$\|\Delta^h u\|_{L^p(V)} \leqslant C, \quad \forall \ 0 < |h| < \frac{1}{2}\operatorname{dist}(V, \partial U),$$

那么 $u \in W^{1,p}(V)$, 并且

$$||Du||_{L^p(V)} \leqslant C.$$

证明.

(1) 由定理3.4.1, 存在 $u_m \in C^{\infty}(U) \cap W^{1,p}(U)$ 使得 $u_m \to u$ 在 $W^{1,p}(U)$ 中. 因此我们只须对 $u \in C^{\infty}(U) \cap W^{1,p}(U)$ 做. 由 N-L 公式, $u(x + he_i) - u(x) = u(x + the_i) \Big|_{t=0}^{t=1} = h \int_0^1 \frac{\partial u(x + the_i)}{\partial x_i} dt$, $|h| < \text{dist}(V, \partial U)$. 两边同除 h, 得到 $(*): |\Delta_i^h u(x)| \le \int_0^1 |D_i u(x + the_i)| dt \le \int_0^1 |Du(x + the_i)| dt$ $\|\Delta^h u\|_{L^p(V)}^p \triangleq \int_V \left(\sum_{i=1}^n |\Delta_i^h u(x)|^2\right)^{\frac{p}{2}} dx \overset{A.1.1}{\le} C \int_V \sum_{i=1}^n |\Delta_i^h u(x)|^p dx$ $\stackrel{(*)}{\le} C \sum_{i=1}^n \int_V \left(\int_0^1 |Du(x + the_i)| dt\right)^p dx \overset{H\"{o}lder}{\le} C \sum_{i=1}^n \int_V \int_0^1 |Du(x + the_i)|^p dt dx$ $\stackrel{\text{Fubini}}{=} C \sum_{i=1}^n \int_V |Du(x + the_i)|^p dx dt \le C \|Du\|_{L^p(U)}^p$

(2) 由周民强定理 6.28, $\Delta_i^h u$ 在 $L^p(V)$ 中有弱收敛子列 $\Delta_i^{h_{\alpha}} u \to \tilde{u}_i$.

由周民强定理
$$6.27, \|\tilde{u}_i\|_{L^p(V)} \leqslant \liminf_{\alpha \to +\infty} \|\Delta_i^{h_\alpha}\|_{L^p(V)} \leqslant c_0.$$
 按定义验证 \tilde{u}_i 是 u 的弱导数: 任取 $\varphi \in C_0^\infty(V)$,

$$\int_V u\varphi_i \mathrm{d}x = \lim_{h \to 0} \int_V u\Delta_i^h \varphi \mathrm{d}x = -\lim_{h \to 0} \int_V \Delta_i^{-h} u\varphi \mathrm{d}x = -\int_V \tilde{u}_i \varphi \mathrm{d}x.$$

3.13 Poisson 方程弱解的内部正则性

4月14日1小时34分38秒 设 $U \subset \mathbb{R}^n$ 为有界区域, $f \in L^2(U)$,考虑方程

$$\begin{cases}
-\Delta u = f & x \in U \\
u = 0 & x \in \partial U
\end{cases}$$

由边值为零的 Poisson 方程弱解的存在唯一性知, 存在唯一的弱解 $u \in W_0^{1,2}(U)$.

定理 3.13.1.
$$u \in W^{2,2}_{loc}(U)$$
.

要证
$$\nabla_i^h(D_j u) \in L^2(V), \forall V \subset U$$
 $\Longrightarrow D_{ij} u \in L^2_{loc}(U), i.e.u \in W^{2,2}_{loc}(U)$

方程两边同乘 $\xi^2 u_{ii}$
 $\int_U -\xi^2 u_{ii} \Delta u dx = \int f \xi^2 u_{ii} dx$
 $\overline{\Delta} = \int f \Delta_i^{-h} (\xi^2 \Delta_i^h u) dx$
 $\Longrightarrow \int_U \xi^2 |\Delta_i^h D u|^2 dx = -\int f \Delta_i^{-h} (\xi^2 \Delta_i^h u) dx - 2\int \xi D \xi \Delta_i^h u \Delta_i^h D u dx$
 $\leqslant \frac{1}{4} \int_U \xi^2 |\nabla_i h D u|^2 dx + 4 \int_U |\nabla \xi|^2 |\Delta_i^h u|^2 dx$
 $\leqslant \frac{1}{4} \int_U \xi^2 |\nabla_i h D u|^2 dx + 4 \int_U |\nabla \xi|^2 |\Delta_i^h u|^2 dx$

Chapter 4

椭圆方程 II

4.1 $H^{-1}(U)$

注记. (0) 回忆 $H_0^1(U)$ 是 $H^1(U)$ 的闭子空间, 因此继承了 $H^1(U)$ 的内积

$$(u,v)_{H^1(U)} = \int_U uv + \sum_{i=1}^n u_i v_i dx, \quad \forall \ u,v \in H^1_0(U).$$

但 $H^1_0(U)$ 也是 $L^2(U)$ 的闭子空间, 也可以继承 $L^2(U)$ 的内积

$$(u,v)_{L^2(U)} = \int_U uv dx, \quad \forall \ u,v \in H_0^1(U).$$

容易看出, 恒同映射不是二者之间的同构映射.

将 $H_0^1(U)$ 在 $H^1(U)$ 诱导的内积下的对偶空间记作 $H^{-1}(U)$, 将 $H_0^1(U)$ 在 $L^2(U)$ 诱导的内积下的对偶空间记作 $L^{-1}(U)$. ($L^{-1}(U)$ 是本笔记中的临时记号.)

(1) 给定 $v \in H_0^1(U)$, 可决定 $H_0^1(U)$ 上的两个线性函数

$$\varphi_v(u) = (u, v)_{H^1(U)}, \quad \psi_v(u) = (u, v)_{L^2(U)}.$$

由 Riesz 表示引理, $\varphi_v \in H^{-1}(U)$, $\psi_v \in L^{-1}(U)$. 有趣的是,由于 $\|u\|_{L^2(U)} \leq \|u\|_{H^1(U)}$,所以 $\psi_v \in H^{-1}(U)$,即 $L^{-1}(U) \subset H^{-1}(U)$. 但一般来说, $H^{-1}(U) \nsubseteq L^{-1}(U)$. 为了看到这一点,我们只需要找到一串 u^m , $\|u^m\|_{L^2(U)} \equiv 1$,但 $\|u_i^m\|_{L^2(U)} \geqslant m$. 我相信这样的 u^m 是存在的.

- (2) 一般地,设 X 是 Hilbert 空间, X_1 是其闭子空间(心中想着 $X = L^2(U), X_1 = H_0^1(U)$). 由 Riesz 表示引理, $X_1 \cong X_1^*, v \mapsto f_v := (\cdot, v)$. 但对于 $v \in X$,我们同样可以定义 f_v , f_v 同样 落在 X_1^* . 此时这个映射 $X \to X_1^*$ 就不是单射了, $f_v = f_{\tilde{v}}$,其中 \tilde{v} 是直和分解 $X = X_1 \oplus X_2$ 中 v 的第一分量.
- (3) 让我感到比较诡异的现象是,给定 $v \in L^2(U)$,存在 $w \in H^1(U)$,使得对任意 $u \in H^1(U)$,

$$\int_{U} uv dx = \int_{U} uw + u_i w_i dx.$$

w 的存在性是知道的,但似乎很难由 v 显式表达出来. 如果能的话我会舒服一点.

诡异的本质是 $H^1(U)$ 上有一个内积在 $L^2(U)$ 上没有定义?

(4) 至于为什么要采取这种诡异的观点,或许看看弱解的定义就搞懂了,特别是,我们是如何将 Lu 视作线性泛函的,也就是 B(u,v) 是如何定义的.

命题 **4.1.1.**
$$||f||_{H^{-1}(U)}^2 = \int_U (|u|^2 + |Du|^2) dx$$

证明. 我想可能用下 Hahn-Banach 定理很快就出来了.

4.2 散度型椭圆方程弱解的定义

设 $U \subset \mathbb{R}^n$ 为有界区域. 给定 $u \in H_0^1(U)$, 定义

$$Lu = -\left(a_{ij}u_i\right)_i + b_iu_i + cu.$$

其中 a_{ij}, b_i, c 都是 U 上的函数,我们暂时不管要往上面加什么条件.

 u_i 当然是指 u 的弱导数;但 u 没有两阶弱导数,不管 a_{ij} 条件加得多好,Lu 都不是 U 上函数. 但是,我们可以将 Lu 视作 $H^1_0(U)$ 上的线性泛函,形式上

$$\langle Lu, v \rangle = \int_{U} -(a_{ij}u_i)_j v + b_i u_i v + cuv \, dx = \int_{U} a_{ij}u_i v_j + b_i v + cuv \, dx =: B(u, v).$$

定义 4.2.1. 设 $f \in H^{-1}(U)$, 称 $u \in H_0^1(U)$ 是方程

$$Lu = f$$

的弱解,如果两侧作为 $H^{-1}(U)$ 中的元素相等.

4.3 Lax-Milgram 定理

定理 4.3.1 (Lax-Milgram). 设 H 为 Hibert 空间, $B: H \times H \to \mathbb{R}$ 为双线性映射, 满足

- (1) 存在常数 $\alpha > 0$ 使得 $|B(u,v)| \leq \alpha ||u|| ||v||, \forall u, v \in H$
- (2) 存在常数 $\beta > 0$ 使得 $\beta ||u||^2 \leqslant B(u, u), \forall u \in H$

若 $f \in H^*$, 则存在唯一 $u \in H$ 使得 $B(u,v) = \langle f,v \rangle := f(v)$.

例 4.3.2.

•
$$-\Delta u = f, B(u, v) = \int_{U} \nabla u \cdot \nabla v dx, H = H_0^1(U)$$

•
$$-\Delta u + cu = f$$
, $B(u, v) = \int_U \left[\nabla u \nabla v + cuv\right] dx$, $W_0^{1,2}(U)$

$$-c \ge 0$$
,(2) 满足

$$-$$
 Riesz 表示定理能够用. $||u||_H := \int_U \left[|\nabla u|^2 + cu^2 \right] \mathrm{d}x, c \geqslant 0$

对于一般的 L, 条件 (2) 难满足, 但我们有如下的

定理 4.3.3 (能量估计). 存在常数 $\alpha, \beta > 0, \gamma \geqslant 0$ 使得,

$$(1) |B(u,v)| \leqslant \alpha ||u||_{H_1^0(U)} ||v||_{H_1^0(U)}, \forall u, v \in H_0^1(U)$$

(2)
$$\beta \|u\|_{H_0^1(U)}^2 \leq B(u, u) + \gamma \|u\|_{L^2(U)}^2, \forall u \in H_0^1(U)$$

证明. (1) 由 Hölder 不等式显然.

(2)
$$B(u,u) = \int_{U} a_{ij} u_i u_j dx + \int_{U} b_i u_i u dx + \int_{U} cu^2 dx$$

• 第一项
$$\geqslant \lambda \int_{U} |\nabla u|^{2} dx$$

• |第二项|
$$\leq C \int_{U} |\nabla u| |u| dx \leq \frac{\lambda}{2} \int_{U} |\nabla u|^{2} dx + C \int_{U} |u|^{2} dx$$

第二项 $\geq -\frac{\lambda}{2} \int_{U} |\nabla u|^{2} dx - C \int_{U} |u|^{2} dx$

• 第三项
$$\geqslant -C \int_U |u|^2 dx$$

注记. $L_{\mu}u=Lu+\mu u\mu\geqslant\gamma$,则 $B_{\mu}(u,v)=B(u,v)+\mu(u,v)_{L^{2}(U)}$ 满足 Lax-Milgram 定理的条件.

4.4 Fredholm 理论

 $\lambda_k = (k\pi)^2$

关于 Fredholm 理论,请参阅http://home.ustc.edu.cn/~tysun/Functional_Analysis.pdf. 在我们的问题中, $H = L^2(U), K = ?, K^* = ?$ 现在来找 K. 令 $\mu = \gamma$, 在上面的"已知"处. $\mathcal{L}_{\gamma} u = \mathcal{L} u + \gamma u$ $\diamondsuit K = (\mathscr{L}_{\gamma})^{-1}$ 问 K 是否是 $L^2(U)$ 到 $L^2(U)$ 的紧算子. K 线性 $u = K f = (L_{\gamma})^{-1} f$ 给定 $c_1f_1 + c_2f_2$, 问解是否是 $c_1u_1 + c_2u_2$, 这是由存在唯一行保证的。 我想逆映射的良定性也是由存在唯一性保证的. $K: L^2(U) \to L^2(U)$ \(\sum_{\text{\tiny{\tiny{\tiny{\tilt{\text{\tilt{\text{\tilt{\text{\tilt{\tilt{\tilt{\texitilt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texitilt{\text{\tilt{\texitil{\tilt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilt{\text{\tilt{\tilt{\text{\text{\text{\text{\text{\tetx{\tiltileft{\text{\text{\text{\text{\text{\text{\text{\text{\tilt{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiltil\tilt{\tiltit{\text{\tilit{\tiltit{\text{\tiltit{\text{\tiltit{\tiltit{\text{\text{\tiltit{\tiltit{\text{\tiltit{\text{\tiltit{\tiltit{\tiltit{\text{\tiltit{\tiltit{\tiltit{\tiltit{\texi{\til\tii}}\tiltit{\tiltit{\tiin}\tiltit{\tiltit{\tii}\tiltit{\tii}\tiltit{\tiii}\tiltit{\tiltit{\tiltit{\tiil\tiii}\tiltit{\tiii}\titit{\tiil\tii}}\tiii}\tiii}\tiintit{\tiii}\tiltit{\tiiit}\tiii}}\ $u = K f, L^2(U) \rightarrow L^2(U)$ $\mathcal{L}_{\gamma}u = \mathcal{L}u + \gamma u = f$ 令测试函数 $v = u \in H_0^1(U)$ $B(u,u) + \gamma \|u\|_{L^2}^2 = (f,u)_{L^2(U)} \leqslant \|f\|_{L^2} \|u\|_{L^2} \leqslant c_0 \|f\|_{L^2} \|u\|_{H^1_x(U)}$ $B(u,v) + \gamma(u,v)_{L^2} = (f,v)_{L^2}$ $\implies ||u||_{H^1_o(U)} ≤ c_1||f||_{L_2}$ 有界 紧性 $u: H^1_0(U) \to L^2(U)$ 紧, $K: L^2(U) \to H^1_0(U) \hookrightarrow L^2(U)$ 有界线性算子复合紧算子是紧算子. $K^* \colon H \to H$ $\mathscr{L} \to \mathscr{L}^*, \mathscr{L}^*_{\gamma}u := \mathscr{L}^*u + \gamma u, K^* := (\mathscr{L}_{\gamma})^{-1} : L^2(U) \to L^2(U)$ 紧线性 $\mathcal{L}^*, b_i \in C^1(U), B(u, v) = \int_U \left[a_{ij}(x)u_iv_j + b_iu_iv + cuv \right] dx = B^*(v, u), \forall u, v \in H_0^1(U)$ $b_i u_i v = (b_i v u)_i - b_i v_i u - b_i$ $\int \left[a_{ij}u_iv_j - b_iv_iu + (c - \sum b_{i,i})vu \right] dx =: B(v,u)$ 对应的 $\mathcal{L}^*v = -\sum_i (a_{ij}(x)v_i)_j - b_iv_i + (c - \sum_{i=1}^n b_{i,i})v_i$ 存在唯一性, 因此 $B(u,u) = B^*(u,u)$ $\begin{cases} L + \gamma^* v := \mathcal{L}u + \gamma v = f \in L^2(U) \\ v|_{-v} = 0 \end{cases}$ 与以前同, 存在唯一解 $v \in H_0^1(U)$ $\beta \|v\|_{H_0^1(U)}^2 \leqslant B_{\gamma}^*(v,v) = B^*(v,v) + \gamma \|v\|_{L^2}^2$ $K^*f := (L^*_{\gamma})^{-1}(f)$ $(kf, v)_{L^2(q)} = (f, K^*g)_{L^2(U)}$ 例题 $\begin{cases} x''(t) + \lambda x(t) = 0, t \in [0, 1] \\ x(0) = x(1) = 0 \end{cases}$ $x(t) = c_1 \sin(\sqrt{\lambda}t) + c_2 \cos(\sqrt{\lambda}t)$ $x(0) = 0 \Longrightarrow c_2 = 0$ $x(1) = 0 \Longrightarrow \sqrt{\lambda} = k\pi, k \in \mathbb{N}^+$

方程有非零解的充分必要条件是
$$\lambda_k = (k\pi)^2$$

如
$$\lambda \neq \lambda_k$$
, 只有零解.

$$\begin{cases} x''(t) + \lambda x(t) = f \\ x(0) = x(1) = 0 \end{cases}$$
 任意 f 存在唯一解.

$$\lambda_1 = \pi^2, x(t) = \sin(\pi t), x''(t) + \pi^2 x(t) = f(t), x(0) = x(1) = 0$$

如果能解, 方程两边同乘 $\sin \pi(t)$

$$\Xi = \int_0^1 \sin(\pi t) x''(t) dt + \pi^2 \int_0^1 \sin(\pi t) x(t) dt$$

$$\gamma = 1 + \lambda$$

$$L_{\gamma}u = -u'' - \lambda u + \gamma u$$

$$\begin{cases} L_{\gamma}u = f & \text{存在唯一解 } u \in H_0^1(0,1) \\ u(0) = u(1) = 0 \\ L^*v = -v'' - \lambda v, (L_{\gamma}^*)^{-1} = K^* \end{cases}$$

$$L^*v = -v'' - \lambda v, (L_{\gamma}^*)^{-1} = K^*$$

$$L_{\gamma}u = -u'' - \lambda u + \gamma u$$

$$L_{\gamma}u = f + \gamma u$$
 两边作用 L_{γ}^{-1}

$$u = (L_{\gamma})^{-1}(f) + \gamma (\mathcal{L}\gamma)^{-1}u$$

$$h = (\mathcal{L}_{\gamma})^{-1}(f) \in L^{2}(0,1)$$

$$u = Ku + h, K := \gamma (L\gamma)^{-1}$$

$$N(I-K)$$
 有限维

$$u - Ku = 0 \Longleftrightarrow \begin{cases} -u'' - \lambda u = -1 \\ u(0) = u(1) = 0 \end{cases}$$

由 Fredholm 二择一, 翻译出来,

(3) N(I-K) 有限维

$$u - Ku = 0 \iff \begin{cases} Lu = 0 \\ u|_{\partial U} = 0 \end{cases}$$
 ,解空间有限维

$$K \colon L^2 \to H^1_0(U) \hookrightarrow L^2(U)$$

(4) 如果
$$N(I - K) = 0$$
, 即
$$\begin{cases} \mathcal{L}u = 0 \\ u|_{\partial U} - 0 \end{cases}$$
 只有零解.

$$\begin{cases} \mathcal{L}u = f \\ u|_{\partial U} = 0 \end{cases}$$
存在唯一解 $u \in L^2$

(5)
$$\dim N(I-K) = \dim N(I-K^*)$$
, 引进 K, K^*, H

$$\mathscr{L}u=0,u\big|_{\partial U}=0$$

$$\mathscr{L}^*v = 0$$

解空间维数相等

$$(2)$$
 $R(I-K)$ 闭 $\Longleftrightarrow K$ 紧

$$(1) \ (N(I - K^*))^{\mid} = R(I - K)$$

$$u - Ku = h \in R(I - K)$$

$$v \in N(I - K^*), i.e.v - K^*v = 0$$

$$\begin{cases} \mathscr{L}^*v = 0 \\ v|_{\partial U} = 0 \\ (h, v)_{L^2} = ((L_{\gamma})^{-1}(f), v)_{L^2} \end{cases}$$

4.5 应用

$$\begin{cases} \mathscr{L}u = \lambda u + f & inU, f \in L^2(U) \\ u|_{\partial U} = 0 \end{cases}$$
 存在至多可数集 $\Sigma \subset \mathbb{R}$ 使得边值问题存在唯一弱解当且仅当 $\lambda \notin \Sigma$ 如果 Σ 无限, 则 $\lambda)k \to +\infty$

${f 4.6}$ 散度型椭圆方程弱解的内部 ${f H}^2$ 正则性

回忆Poisson 方程弱解的内部正则性

准备工作

4月25日20分32秒

证明. 4月25日35分11秒

4.7 Cacciopolli 不等式和 Widman 填洞技巧

4月28日31分13秒——1小时1分34秒

4.8 边界正则性

4月28日1小时2分3秒4月28日第2段28分25秒

作业 4.8.1.

证明.
$$\tilde{\varphi} = |x|^{n-1}x \cdot \nabla u, \Delta \tilde{\varphi} \equiv 0 \mod (\nabla \tilde{\varphi})$$

$$\tilde{\varphi} = (|x|^2)^{a/2}x \cdot \nabla u, \tilde{\varphi}_i = |x|_i^a x \cdot \nabla u + |x|^a (x \cdot \nabla u)_i$$

$$\Delta \varphi = \Delta |x|^a (x \cdot \nabla u) + 2|x|_i^a (x \cdot \nabla u) + |x|^a \Delta (x \cdot \nabla u) = 0$$

$$(|x|^2)_i^{\frac{a}{2}} = \frac{a}{2} (|x|^2)^{\frac{a}{2}-1} |x|_i^2 = a(|x|^2)^{\frac{a}{2}-1}$$

$$\Delta |x|^a = na|x|^{a-2} + a \cdot (\frac{a}{2} - 1)(|x|^2)^{\frac{a}{2}-2} 2x_i^2$$

$$= [na + a(a-2)]|x|^{a-2}$$

$$1 = a(n+a-2)|x|^{a-2}x \cdot \nabla u$$

$$\tilde{\varphi}_i \equiv 0 \Longrightarrow a|x|^{a-2}x_i = -|x|^a (x \cdot \nabla u)_i \Longrightarrow |x|^2 (x, \nabla u)_i = -ax_i$$

$$2 = 2a|x|^{a-2}x_i \langle x, \nabla u \rangle_i = 2a|x|^{a-4}x_i|x|^2 \langle x, \nabla u \rangle_i = -2a^2|x|^{a-2} \langle x, \nabla u \rangle$$

$$\Delta \tilde{\varphi} = a|x|^{a-2} \langle x, \nabla u \rangle [n+a-2-2a] = a(n-2-a)\frac{\tilde{\varphi}}{|x|^2}$$

$$\Re a = n-2$$

作业 4.8.2.

因为所有计算固定在某一点

$$\Delta \varphi \leqslant c_1 |\nabla \varphi| + c_2 \varphi$$
 在 $B_{\varepsilon}(x_0)$ 中, $\varphi(x_1) = 0 \Longrightarrow \varphi \equiv 0$ 若存在 $x_0 \in U$ 使得 $\varphi(x_0) = 0$, 目标 $\varphi \equiv 0$ 在某个邻域 $B_{\varepsilon}(x_0)$

那么
$$E = \{x \in U \mid \varphi(x) = 0\}$$
 即开又闭.

在
$$x_1$$
 做计算, 取坐标使得 $|\nabla u| = u_1 > 0$

$$\varphi(x_1) = u_{22}u_1^2 \Longrightarrow u_{22} = \frac{\varphi}{u_1^2}$$

$$\varphi_i = -2u_{1i}u_2u_{12} - 2u_1u_{2i}u_{12} + u_{11i}u_2^2 + 2u_{11}u_2u_{2i} + u_{22i}u_1^2 + 2u_{22}u_1u_{1i} \, \, \text{\'et} \, \, x_1 \, \, \text{\'et}$$

$$\varphi_i = -2u1u_{2i}u_{12} + u_{22i}u_1^2 + 2u_{22}u_1u_{1i}$$

$$\varphi_1 = -2u_1u_{12}^2 + u_{221}u_1^2 + 2u_1u_{11}u_{22}$$

$$\varphi_2 = -2u_1u_{22}u_{12} + u_{222}u_1^2 + 2u_1u_{12}u_{22} = u_{222}u_1^2$$

作业 4.8.3.

4.9 复杂的例子

5月5日第十一周周四
作业 1:
近边估计
$$\int_{U\cap B(0,r)} |\nabla u|^2 \mathrm{d}x \leqslant c_0 \left(\|u\|_{L^2(U)}^2 + \|f\|_{L^2(U)}^2 \right)$$

 $\xi^2 u$ 代入即可.
内估计 $\int_W |\nabla u|^2 \mathrm{d}x \leqslant c_0 \left(\|u\|_{L^2(U)}^2 + \|f\|_{L^2(U)}^2 \right)$
336 页 51 式.

4.9.1 9.5.1

$$\begin{cases} \Delta u = 0 \\ u\big|_{\partial U_0} = 0 \\ u\big|_{\partial U_1} = 0 \\ U_0, U_1$$
 凸的有界区域
$$\varphi = x \cdot \nabla u, \Delta \varphi \equiv 0 \\ \varphi\big|_{\partial U} < 0 \longleftarrow \text{Hopf 引理} + U 星形 \end{cases}$$

4.9.2 title

5月5日24分11秒 U_0, U_1 有界凸区域 $\Longrightarrow u$ 的等高线为凸曲线(将用两个办法来证明)

方法一

已知
$$|\nabla u| \neq 0$$
 在 U 中(之前用了两个办法证明) 那么我怎么去证等高线是凸曲线呢?我们找到了这样一个辅助函数(回忆作业1.1.2)
$$\varphi = \frac{u_{11}u_{2}^{2} + u_{22}u_{1}^{2} - 2u_{1}u_{2}u_{12}}{|\nabla \varphi|^{4}}, \Delta \varphi = 0, \varphi|_{\partial U} = \frac{k}{|\nabla u|} > 0$$
 $u(x_{1}, x_{2}) = \frac{1 - |x|^{2}}{2}$ 在 $B_{1}(0) \subset \mathbb{R}^{2}$ 中 规定: $\nu = \frac{\nabla u}{|\nabla u|}$ 为计算曲率的方向.
$$k = \frac{2u_{1}u_{2}u_{12} - u_{11}u_{2}^{2} - u_{22}u_{1}^{2}}{|\nabla u|^{3}}$$
 $u = \frac{1 - |x|^{2}}{2}, k = \frac{1}{|x|}$

方法二

5月5日40分5秒 怎么用强极大值原理来证明u的等高线是凸的. 5月5日1小时14分29秒

作业 4.9.1. 内容...

5月5日1小时24分10秒现在来证明等高线为凸 证明. 5月5日1小时27分43秒

- (1) \tilde{U}_0, \tilde{U}_1 为圆盘, 等高线为圆盘 调和函数解唯一, 用径向函数直接把解找出啦
- (2) 一般情形

$$B_0 \supset U_0, B_1 \subset U_1$$

$$U_0^t = (1-t)B_0 + tU_0$$

$$U_1^t = (1-t)B_1 + tU_1$$

$$U^t = U_0^t \setminus U_1^t$$

若 $0 < t_0 < 1$ 为 u^t 的等高线曲率第一次出现零点. 由引理等高线曲率恒为零.

4.9.3 title

1 小时 52 分 21 秒

注记. 原始论文

是. 原始论文
$$v = -\sqrt{u} \text{ 严格凸}$$

$$\begin{cases} v \Delta v = -(1 + |\nabla v|^2) \\ v|_{\partial U} = 0 \end{cases}$$
 在 $U \subset \mathbb{R}^2$ 中凸,证明 v 严格凸
$$v < 0$$

$$v_i = -\frac{1}{2}u^{-\frac{1}{2}}u_i$$

$$|\nabla u|^2 = \frac{|\nabla u|^2}{4u}$$

引理 4.9.2. $\varphi=v_{11}v_{22}-v_{12}^2$ 则 $\varphi\equiv 0$ 或 $\varphi>0$, 一致估计.

4.10 上下解方法

5月9日第十二周周一 内容提要

- 弱解的极值原理及应用 为什么要讲这个
 - 估计 ⇒ 存在性
 - 理论完整性

这两个方程,sin u,|u| 都用不来.

还可以看看
$$\begin{cases} -\Delta u = u(a-u) \\ u=0 \end{cases}, u>0,u$$
有界 (通常可以去掉),存在唯一解当且仅当 $a>\lambda_1$,其中 $\lambda_1=\inf\frac{\int_U |\nabla u|^2\mathrm{d}x}{\int_U u^2\mathrm{d}x}.$

这节课的目的就是这三个非线性的例题会做

• 一线性:
$$\begin{cases} \Delta u = f \\ u = 0 \end{cases}$$
- 拟线性:
$$* \begin{cases} \sum_{i=1}^{n} D_{i} \left(\frac{u_{i}}{\sqrt{1 + |\nabla u|^{2}}} \right) = f(x) \\ u = \varphi \end{cases}$$

$$a_{ij}(x) = \delta_{ij} + \frac{u_{i}u_{j}}{1 + |\nabla u|^{2}}$$
- 引进 $v = \sqrt{1 + |\nabla u|^{2}}$
- 方程变为 $a^{ij}(\nabla u)u_{ij} = v^{3}f(x)$
- 梯度出现在 a^{ij} 里, 叫做拟线性
$$* \sum_{i=1}^{n} (|\nabla u|^{p-2}u_{i})_{i} = f(x)$$
- 回忆 Sobolev 不等式
$$\int |u|^{\frac{np}{n-p}} \leqslant c_{n,p} \int |\nabla u|^{p} dx$$
- 的极值函数
$$\Delta_{p}u + u^{p^{*}-1} = 0$$

- * 调和映照方程组(林芳华) $\Delta u = |\nabla u|^2 u$
- * Yang-Mills 方程组(田刚)
- 半线性(今天研究的都是半线性)

$$\Delta u = f(x, u).$$

- * p=2, 临界指标 $\Delta u + u^{\frac{n+2}{n-2}}$, 太难, 要用极小曲面来做
- * 不是临界指标(今天的都是)的都好办

回忆

• 经典解, 上调和函数, $\Delta u \leq 0$

引进上解(有边值),
$$\begin{cases} \Delta u \leqslant 0 \\ u \geqslant \varphi \end{cases} \quad \text{称它为} \; \begin{cases} \Delta v = 0 \\ v = \varphi \end{cases} \quad \text{的上解, 指 } u \geqslant v$$

- 弱解时, 上(下)解如何定义
 - $-\Delta u \leq 0$ 换成

$$\int \nabla \varphi \nabla u \mathrm{d}x \geqslant 0, \forall \varphi \geqslant 0, \varphi \in H_0^1(U)$$

 $-u \geqslant \varphi$, 迹意义下

定义 4.10.1. 称 $\bar{u}\in H^1(U)$ 为方程 $\begin{cases} -\Delta u = f(u) \\ u=0 \end{cases}$ 的弱上解, 如果

$$\int_{U} D\bar{u}Dv dx \geqslant \int_{U} f(\bar{u})v dx, \forall v \in H_{0}^{1}(U), v \geqslant 0$$

弱下解, \underline{u} , 指 $\underline{u} \in H^1(U)$ 且

$$\int_{U} D\underline{u} Dv dx \leqslant \int_{U} f(\underline{u}) v dx \forall v \in H_{0}^{1}(U), v \geqslant 0$$

定理 **4.10.2.** 若方程 (1) 存在弱上解 \bar{u} 和弱下解 \underline{u} , 且 $\underline{u} \leqslant 0, \bar{u} \geqslant 0 \partial U, \underline{u} \leqslant \bar{u}$ 则方程 (1) 存在弱解 u 且 $u \leqslant u \leqslant \bar{u}$

工具:

- 弱解的极值原理
- 控制收敛
- 能量估计(弱收敛子列,子列极限就是弱解)

弱解的极值原理

$$\begin{cases}
-\Delta u \geqslant 0 \\
u \geqslant 0 \\
\int \nabla u \nabla u dx \geqslant 0
\end{cases}$$

$$\forall v \geqslant 0, v \in H_0^1(U)$$
 要证 $u \geqslant 0$
$$308 \ \overline{\bigcirc} \ 18 \ \overline{\bigcirc} \ \mathbb{H} \ \mathbb{$$

证明. $|f'(t)| \leq \lambda \Longrightarrow f(t) + \lambda t$ 单调递增

(1) 弱解的极值原理
$$\Longrightarrow \underline{u} = u_0 \leqslant u_1 \leqslant \cdots \leqslant u_k \leqslant u_{k+1} \leqslant \cdots \leqslant \overline{u}$$
, 即存在 $\{u_k\}$ 单调递增
$$\int \nabla v \nabla \underline{u} dx \leqslant \int_U f(\underline{u}) v dx, \forall v \geqslant 0, v \in H^1_0(U)$$
 找 u_1 : $-\Delta u_1 + \lambda u_1 = f(u_0) + \lambda u_0, u_1 \big|_{\partial U} = 0$ 由线性方程理论存在唯一解 $u_1 \in H^1_0(U)$

(上下解办法)

下证
$$u_0 \leqslant u_1$$

弱解定义:
$$\int DvDu_1 + \lambda u_1v dx = \int_U f(u_0)v + \lambda u_0v dx$$
相减得,
$$\int_U \nabla u \nabla (u_0 - u_1) dx \leqslant \int_U \lambda v (u_1 - u_0) dx$$
令 $v = (u_0 - u_1)^+$
$$\int_{U^+} [|\nabla (u_0 - u_1)|^2 + \lambda (u_0 - u_1)^2] dx \leqslant 0$$
$$u_0 \leqslant u_1$$

类似
$$-\Delta u_{k+1} + \lambda u_{k+1} = f(u_k) + \lambda u_k$$
, 己知 u_k

同理(这里要用到 $f(t) + \lambda t$ 单调递增)可知 $u_k \leq u_{k+1}$.

$$\begin{cases} -\Delta u_k + \lambda u_k = f(u_{k-1}) + \lambda u_{k-1} \\ u_k \end{cases}$$

$$\int_U \left[\nabla u_k \nabla v + \lambda u_k v \right] dx = \int_U \left(f(u_{k-1}) + \lambda u_{k-1} \right) v dx, v \geqslant 0, v \in H_0^1(U)$$

$$\int_U \left[\nabla u_{k+1} \nabla v + \lambda u_{k+1} v \right] dx = \int_U \left[f(u_k) + \lambda u_k \right] v dx$$

$$\int_U \left[\nabla (u_k - u_{k+1}) \nabla v + \lambda (u_k - u_{k+1}) v \right] dx = \int_U \left[f(u_{k-1} + \lambda u_{k-1}) - (f(u_k) + \lambda u_k) \right] v dx$$

$$\mathfrak{M} \not\cong \mathfrak{U} \quad u_k \leqslant \bar{u} \Longrightarrow u_{k+1} \leqslant \bar{u}$$

$$\int_U \nabla \bar{u} \nabla v dx \geqslant \int_U f(\bar{u}) v dx, \forall v \geqslant \in H_0^1(U)$$

$$\int_U \left[\nabla (u_{k+1-\bar{u}}) \nabla v + \lambda u_{k+1} v \right] dx \leqslant \int_U \left[f(u_k) + \lambda u_k - f(\bar{u}) \right] v dx$$

(2) $\underline{u}, \bar{u} \in H^1(U),$

4.11 特征值与特征函数

- 5月12日第十二周周四内容提要
- 特征值、特征函数
 - 自然: [0,1] 上的 Fourier 级数展开: sin nπx, cos nπx
 问题: [0,1] → 有界区域,是否有完备正交系?
 如果有,任一函数都可以做 Fourier 展开.
 办法: 有界区域上配上一个对称椭圆算子. (zgq 定理 4.4.7Hilbert-Schmidt 定理)
 - 抛物方程: $u_t = \Delta u$ 双曲方程: $u_{tt} = \Delta u$ 回忆正交系用处: 近似计算

定理 4.11.1.

注记. SL 定理, 有条件, 给定边值条件保证算子对称.

Hilbert-Schmidt 定理是 Sturm-Liouville 型定理的推广.

$$Lu = -\sum (a_{ij(x)}u_i)_j$$

$$\begin{cases}
Lu = f \\
u = 0
\end{cases}$$
令 $u = Sf = L^{-1}f$

$$S: L^2(U) \to L^2(U),$$
 断言 S 是紧对称算子.

对称

$$(Sf,g)_{L^2} = (f,Sg)$$

证明.

1. 由定理 4.4.7 知, 对任一 $u \in L^2(U)$, $||u||_{L^2(U)}^2 = 1$, 存在 d_k , 使得 $u = \sum_{k=1}^{\infty} d_k w_k$, 这里 $w_k \in L^2(U)$ 为 S 对应的完备正交系

$$d_k = (u, w_k), 1 = ||u||_{L^2(U)}^2 = \sum_{k=1}^{\infty} d_k^2$$

 $Lw_k = \lambda_k w_k$,所以 $w_k \in H_0^1(U)$

在 H^1_0 中引进等价范数, $\|u\|^2_{H^1_0(U)}\int_U a_{ij}(x)u_iu_j\mathrm{d}x$

断言 w_k 为 H_0^1 中的完备正交系.

4.12 弱解的 L^{∞} 估计(Moser 迭代)

回忆:

• 经典意义下

最大值原理,
$$\begin{cases} \Delta u = f & x \in U \\ u = \varphi & x \in \partial U \end{cases}, \Phi = \frac{F(|x|^2 - d^2)}{2n}, G = \frac{|x|^2}{2n} \pm |\varphi|_{C_0}$$
 $a_{ij}u_{ij}$

• 弱解意义下

注记. 1957-62, Degiorgi, nash, moser

$$-(a_{ij}u_i)_j = f, u \in W_0^{1,2}(U)$$

办法: 分部积分

找测试函数

经验: $\xi^2 u$ 做近边与内部的梯度估计, 即能量估计, 相当于同乘 u

$$\Delta_k^{-h}(\xi^2\Delta_k^h u), D^2 u$$
 的 L^2 内估计, 相当于同乘 u_{kk}

方程求导后, $-\Delta u_i = f_i, Du$ 的 L^{∞} 估计

$$-(a_{ij}u_i)_j = 0, u \in W_0^{1,2}(U)$$
 为其弱解, $a_{ij} \in L^{\infty}, \lambda |\xi|^2 \leqslant a_{ij}\xi_i\xi_j \leqslant \Lambda |\xi|^2$

目的: sup

为什么要讲 L^{∞} 估计

命题 4.12.1. $\Phi(s) \in C^{0,1}_{loc}(\mathbb{R})$, 凸函数

(1) 若 u 为

证明. 令
$$\Phi \in C^2_{loc}(\mathbb{R}), \Phi'(s) \geqslant 0, \Phi''(s) \geqslant 0, v = \Phi(u), \forall \varphi \in C_0^{\infty}(U), \varphi \geqslant 0$$

$$0 \geqslant \int a^{ij} D_i v D_i \varphi dx = \int a_{ij} \Phi'(u) u_i \varphi_{ij} \int a_{ij} (\Phi'(u) \varphi)_j u_i - \Phi''(u) a_{ij} u_i u_j \varphi dx \qquad \Box$$

作业 4.12.2. 证明上述命题

分析:
$$-(a_{ij}u_i)_i = 0$$

4.13 Stampacchia 迭代

结论:
$$\left\{ ... \\ n \geq 2, U \subset \mathbb{R}^n \text{ 有界区域, 简单 } 0 \leq a(x) \leq \Lambda \right.$$
 $f_0 \in L^q, \frac{1}{q} = \frac{1}{p} + \frac{1}{n}, f_i \in L^p(U), p > n > 2, 则 u^+ \leq C \left(\|f_0\|_{q,U} + \|f\|_{p,U} \right)$

作业 4.13.1. 内容...

推论 4.13.2. 如
$$u$$
 为方程 $-\sum_{ij}(a_{ij}(x)u_i)_j + a(x)u = f_0 + \sum_{ij} \frac{\partial f}{\partial x_i}, u \in H^1_0(U)$ 则 $u \in L^\infty(U)$ 且 $\|u\|_{L^\infty} \leqslant C\left(\|f_0\|_q + \|f\|_p\right) |U|^{\frac{1}{n} - \frac{1}{p}}$

引理 **4.13.3.** $\Phi: [0, +\infty] \to \mathbb{R}^+$ 非增函数,

$$\Phi(h) \leqslant \left(\frac{c}{h-k}\right)^{\alpha} \Phi(k)^{\beta}, h > k$$

证明. 内容...

$$\begin{split} &\Phi(h) = |\left\{x \in U \mid u(x) > h\right\}| \\ &\Phi(h) \leqslant C \left[\frac{\|f_0\|_q + \|f\|_p}{h - k}\right]^{p'^*} \Phi(k)^{p'^*(\frac{2}{p'} - 1)} \\ &\circlearrowleft \mathfrak{H}$$
 只须证

$$||F_k(u)||_{p'^*} \le c_0 (||f_0||_q + ||f||_p) \Phi^{\frac{1}{p'}-1}$$

Chapter 5

抛物与双曲方程

前情回顾与内容提要

- Moser 迭代(ch5 第 17 题, $u \in H_0^1(U)F'(t)$ 有界, $F(u) \in H_0^1(U)$) $\xi^2(u+)^{p-1}$
- Stampacchia 迭代,De Giorgi 迭代
 前者只需要用 Sobolev 不等式 +Holder 不等式 + 弱解定义,φ = (u k)⁺
 后者要用到等周不等式 +Sobolev+Holder (但等周不等式与 Sobolev 等价)
- 抛物方程

$$Lu = -\sum (a_{ij}u_i)_j + b_iu_i + cu$$
 $u_t + Lu = f$
 $u|_{t=0} = g$
弱解定义
能量估计

存在性定理, 函数项级数收敛到解.

定义 5.0.1.
$$\begin{cases} u_t + Lu = f \\ u\big|_{t=0} = g \\ u\big|_{\partial U} = 0 \end{cases}$$

$$Lu = -\sum_{} (a_{ij}u_i)_j + b_iu_i + cu \\ a_{ij}, b_i, c \in L^{\infty}(U_T), U_T = U \times (0, T) \\ f \in L^2(U_T), g \in L^2(U) \\ U \subset \mathbb{R}^n \ \mathsf{有界区域} \\ a^{ij} = a^{ji}, a_{ij}\xi_i\xi_j \geqslant \theta |\xi|^2 \\ B(u, v, t) = \int_{U} a_{ij}u_iv_j + b_iu_iv + cuv\mathrm{d}x, \forall \ u, v \in H^1_0(U), 0 \leqslant t \leqslant T \ \text{称} \ u \in L^2((0, T); H^1_0(U)), u' \in L^2(0, T; H^{-1}(U)) \ \text{为方程} \ (1) \ \text{的弱解, 如果}$$

(1)

$$\begin{split} L^2(0,T;H^1_0(U)), \ \mathrm{对于几乎处处的} \ t \in [0,T], &u(0,t) \in H^1_0(U), \int_0^T \|u\|_{H^1_0(U)}^2 \mathrm{d}t < +\infty \\ u' \in L^2(0,T,H^{-1}(U)), &H^{-1}(U) \ \mathrm{)} \ H^1_0(U) \ \mathrm{\bot} \\ \mathrm{f} \ \mathrm{\mathbb{R}} \\ \mathrm{State} \end{split}$$

要证明存在唯一性

第一步, 近似解存在

第二步, 近似解收敛到弱解

第三步, 弱解唯一性

近似解, $w_k(x) \in L^2(U)$ 为相对于 $-\Delta$ 的完备正交系也为 $H^1_0(U)$

Chapter 6

习题课

6.1 第一次习题课 2.27 Variational principle

参考: Evans 2.2.6 Energy method

$$\begin{cases} \Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

$$I[u] = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - fu\right) \mathrm{d}x$$

$$\mathcal{A} = \left\{ u \in C^2(\Omega) \cap^0(\overline{\Omega}) \mid u = g \text{on} \partial \Omega \right\}$$

$$\not \in \mathcal{C}_0^\infty(\Omega), \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} I[u + t\varphi] = \int_{\Omega} (-\Delta u - f) \varphi \mathrm{d}x = 0 \Longrightarrow -\Delta u = f.$$

引理 **6.1.1.** $u \in C^0(\Omega)$, 任意 $\varphi \in C_0^{\infty}(\Omega)$,

$$\int_{\Omega} u\varphi dx = 0 \Longrightarrow u \equiv 0 in\Omega$$

证明. Elementary analysis.

Dirichlet problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on} \partial \Omega \end{cases}$$

Neumann problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = g & \text{on } \partial \Omega \end{cases}$$

Robin problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} + \alpha(x)u = g & \text{on } \partial \Omega \end{cases}$$

注记. Neumann 问题的解加一个常数仍是解, 因此我们常另加

$$\int_{\Omega} u \mathrm{d}x = 0$$

使得解唯一.

1. Find appropriate admissible function space \mathcal{A} and functional $I[\cdot]$ for the Neumann and Robin problem.

证明.

$$I[u] = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 - uf \right) dx$$
$$\mathcal{A}_D = \left\{ u \in C^2(\Omega) \cap C(\overline{\Omega}) \mid u = g \right\}$$

 \longleftarrow If u is critical point of $I[\cdot]$, then $-\Delta u = f$

 \Longrightarrow If u is a solution to Dirichlet problem,

 $\forall v \in \mathcal{A}_D, I[u] \leqslant I[v]$?

$$\begin{split} \int_{\Omega} \langle \nabla u, \nabla (u-v) \rangle &= \int_{\Omega} -(u-v) \Delta u \\ &= \frac{-\Delta u = f}{2} \int_{\Omega f u} - \int_{\Omega f v} \\ &\int_{\Omega} \langle \nabla u, \nabla (u-v) \rangle = \int_{\Omega} |\nabla u|^2 - \int_{\Omega} \langle \nabla u, \nabla v \rangle \\ &\geqslant \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \int \frac{1}{2} |\nabla v|^2 \\ &\Longrightarrow I[u] \leqslant I[v] \end{split}$$

 $\mathcal{A}_N = \left\{ u \in C^2(\Omega) \cap C^1(\overline{\Omega}) \right\}$

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} J(u+t\varphi), \forall \varphi \in W_0^{1,2}(U)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{1}{2} \int_U |D(u_k) + tD\varphi|^2 \mathrm{d}x + \int_U f(u+t\varphi) \mathrm{d}x \right] \Big|_{t=0}$$

$$= \int \nabla u \nabla \varphi \mathrm{d}x + \int_U f \varphi \mathrm{d}x$$

2. Find the Euler-Lagrange equation for the following variation problem: $\mathcal{A} = \{c \in C^2(\Omega) \mid u = 0 \text{ on } \partial B_2(0)\}, \Omega = B_2(0) \setminus \overline{B_1(0)} \subset \mathbb{R}^n$,

$$I[u] = \int_{\Omega} (|\nabla u|^2 + 2u) dx + \int_{\partial B_1(0)} u^2 dA.$$

证明.

3.

(1) Suppose: $u: U \to \mathbb{R}$ is a minimizer of the area functional

$$I[u] = \int_U \sqrt{1 + |\nabla u|^2}, \mathcal{A} = \left\{ u \in C^2(U) \cap C(\overline{U}) \mid \int_U u = 1, u = g \text{ on } \partial U \right\}, U \subset \mathbb{R}^2.$$

Prove that Graph u is a surface of constant mean curvature.

(2) Suppose that u is a solution of $\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0$ in $U\subset\mathbb{R}^2$, then for any surface $\Sigma \subset U \times \mathbb{R}, \partial \Sigma = \partial Graph u$, then

$$Area(Graph_u) \leqslant Area(\Sigma).$$

证明. $\varphi \in C_0^{\infty}(\Omega)$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} I[u+t\varphi] &= \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} \int_{\Omega} \sqrt{1+|\nabla u+t\nabla\varphi|^2} \\ &= \int_{\Omega} \frac{\langle \nabla u, \nabla \varphi \rangle}{\sqrt{1+|\nabla u|^2}} \\ &= \int_{\Omega} \left\langle \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}, \nabla \varphi \right\rangle \\ &= -\int_{\Omega} \varphi \operatorname{div} \left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}} \right) \end{split}$$

(1) $\forall \lambda \in \mathbb{R}$,

$$E[u] = \int_{\Omega} (\sqrt{1 + |\nabla u|^2} + \lambda u) dx = I[u] + \lambda$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}E[u+t\varphi] = \int -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)$$

$$(2) N_1 = \frac{(-u_x, -u_y, 1)}{\sqrt{1 + |\nabla u|^2}}$$

$$\int_M \operatorname{div} N_1 = \int_{Graph_u} \langle N_1, N_1 \rangle - \int_{\Sigma} \langle N_1, N_2 \rangle$$

$$\operatorname{div}_{\mathbb{R}^3} \left(\frac{(-u_x, -u_y, 1)}{\sqrt{1 + |\nabla u|^2}} \right) = \operatorname{div} \left(-\frac{\nabla u}{\sqrt{1 + |\nabla u|^2}} \right) = 0$$

- 4. Suppose (M,g) to be a Riemannian manifold, $g=g_{ij}\mathrm{d}x^i\otimes\mathrm{d}x^j$ in local coordinates. Calculate the:
 - (1) geodesic equation(the Euler-Lagrange equation of the variational problem: $I[\gamma] = \frac{1}{2} \int_{-\infty}^{\infty} (g_{ij} \circ g_{ij}) ds$ $\gamma)\dot{x}^i(t)\dot{x}^j(t)\mathrm{d}t.$

$$\mathcal{A} = \{ \gamma : [a, b] \to M \text{ to be a smooth curve} \}.$$

In local coordinate $(U, \varphi, V), \varphi(\gamma(t)) = (x^1(t), x^2(t), \dots, x^n(t)).$

(2) Suppose (N,h) to be another Riemannian manifold, calculate the harmonic map equation (the Euler-Lagrange equation of the variational problem: $I[f] = \frac{1}{2} \int_{M} g^{ij} \frac{\partial f^{\alpha}}{\partial x^{i}} \frac{\partial f^{\beta}}{\partial x^{j}} h_{\alpha\beta} \circ f \sqrt{\det[g_{ij}]} dx^{1} \wedge \cdots \wedge dx^{n}$) $\mathcal{A} = \{f : M \to N \text{ to be a smooth map}\}.$

(3) What is the relationship between the geodesic equation and the harmonic map equation?

证明. (1)
$$l(\gamma) = \int_a^b |\dot{\gamma}| \Longleftrightarrow E(\gamma) = \frac{1}{2} \int_a^b \langle \dot{\gamma}, \dot{\gamma} \rangle = \frac{1}{2} \int_a^b \dot{x}^i(t) \dot{x}^j(t) g_{ij} \mathrm{d}t$$
 可以利用单位分解把问题化归到一个邻域中

$$0 = \frac{\mathrm{d}}{\mathrm{d}\varepsilon}\big|_{\varepsilon=0}$$

- 6.2 第二次习题课
- 6.2.1 Harnack 不等式

6.3 第四次习题课

- 6.3.1 作业 1
- 6.3.2 作业 2
- 6.3.3 作业 3
- 6.3.4 Hadamard 三圆定理
- 6.3.5 Pohozaev 恒等式

参考 evans553 页到 554 页

- 6.3.6 活动标架法
- 6.3.7 补充习题

Chapter 7

一些总结

7.1 $(-\Delta)^{-1}$

4月7日7分33秒---33分23秒

回忆: 有界数列有收敛子列

连续函数空间中一致有界 + 等度连续 ⇒ 有收敛子列

泛函分析: 紧性 $G: L^2(U) \to L^2(U)$ 有界线性算子, 如何得到 G 为紧算子?

Riesz-Shauder 理论

Hilbert-Schmidt: 得到完备正交系

Fredholm 二择一: Banach 空间版本(zgq 第四章第一节)和 Hilber 空间版本(Evans 附录)

具体例子: $L = (-\Delta)^{-1}$: $L^2(U) \to L^2(U)$

没有内积分部积分用不来

$$\begin{cases} -\Delta u = f \in L^2(U) \\ u|_{\partial U} = 0 \end{cases}$$

$$L=(-\Delta)^{-1}\colon f\to u, L^2(U)\to L^2(U)$$

L 有界线性算子

$$u \in W_0^{1,2}(U)$$

 $||u||_{L^2(U)} \leqslant c_{n,U} ||Du||_{L^2(U)}$ 上节 Poincare 不等式(蕴含 L 有界且紧)

$$u$$
 为方程之解是指任意 $\varphi \in W_0^{1,2}(U)$ 有 $\int_U \nabla u \nabla \varphi dx = \int_U f \varphi dx$

取
$$\varphi = u$$
, 那么 $\int_{U} |\nabla u|^{2} dx = \int f u dx \leqslant ||f||_{L^{2}} ||u||_{L^{2}} \leqslant c ||f||_{L^{2}} ||\nabla u||_{L^{2}}$

$$||Du||_{L^2(U)}^2 \leqslant \frac{1}{2} ||\nabla u||_{L^2(U)}^2 + c_0 ||f||_{L^2(U)}^2$$

 $||Du||_{L^2(U)} \leqslant \bar{c_0} ||f||_{L^2(U)}$

 $||u||_{W^{1,2}(U)} \le c_0 ||f||_{L^2(U)}$

$$u := (-\Delta)^{-1} f$$

$$(-\Delta u)^{-1}: f \to u, L^2(U) \to W_0^{1,2}(U)$$

我们要证明, $W_0^{1,2} \hookrightarrow L^2(U)$ 紧嵌入

从而 $(-\Delta)^{-1}$: $L^2(U) \to L^2(U)$ 是紧算子.

上节课讲了 $W_0^{1,p}$ 情形下的 Poincare 不等式, 现在做到 $W^{1,p}(U)$

$$\begin{cases} \Delta u = f \in L^2(U) \\ u = 0 \end{cases}$$

 $\begin{cases} u|_{\partial U} = 0 \\ \text{上节课知道存在唯一 } u \in W_0^{1,2}, \ \text{学了差商立刻知道 } u \in W_{loc}^{2,2}(U') \end{cases}$

附录 A

不等式

A.1 初等不等式

命题 A.1.1.

命题 **A.1.2** (Young).

附录 A. 不等式 93

A.2 Hölder 不等式

附录 B

实分析