3.7.1 Скин-эффект в полом цилиндре

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Исследование проникновения переменного магнитного поля в медный полый цилиндр.

1.2 В работе используются

Генератор звуковой частоты, соленоид, намотанный на полый цилиндрический каркас из диэлектрика, медный экран в виде трубки, измерительная катушка, амперметр, вольтметр, осциллограф.

Рис. 1: Схема экспериментальной установки

2 Работа

2.1 Подготовка

Приняв проводимость меди для оценки равной $\sigma=5\cdot 10^7~S/m$ расчитаем частоту $\nu_h~Hz$, при которой толщина стенок экрана равна скиновой длине

 $\delta=h=1.5~mm$. По формуле:

$$\delta = \sqrt{\frac{2}{\omega \sigma \mu_0}} \Rightarrow \nu_h = \frac{1}{\pi \sigma \mu_0 h^2} = 2250 \ Hz$$

2.2 Измерения в диапазоне $(0.01\nu_h - 0.05\nu_h)$

Получим знависимость соотношения $\xi = U/(\nu I)$ от частоты ν :

ν , Hz	U, V	I, A	$\xi = U/(\nu I)$
22.5	0.195	0.461	0.0188
31.5	0.269	0.457	0.0187
40.5	0.338	0.453	0.0184
49.5	0.403	0.448	0.0182
58.5	0.463	0.442	0.0179
67.5	0.518	0.436	0.0176
76.5	0.569	0.43	0.0173
85.5	0.614	0.423	0.0170
94.5	0.654	0.418	0.0166
103.5	0.69	0.412	0.0162
112.5	0.723	0.406	0.0158

Рис. 2: график $\xi(\nu)$

Получена зависимость вида $\xi = ax + b$:

$$a = (-3.4 \cdot 10^{-5} \pm 1.2 \cdot 10^{-6})$$
$$b = (0.02 \pm 3.4 \cdot 10^{-5})$$

2.3 Измерения в диапазоне $(0.05\nu_h - 0.5\nu_h)$

Исследуем зависимости ξ и ψ от ν :

ν , Hz	U, V	I, A	ψ , rad	$\xi = U/(\nu I)$
112.5	0.721	0.404	3.70	0.0159
128.5	0.769	0.394	3.87	0.0152
144.5	0.809	0.386	4.06	0.0145
160.5	0.841	0.378	4.05	0.0139
176.5	0.868	0.371	4.04	0.0133
192.5	0.89	0.366	4.11	0.0126
208.5	0.908	0.361	4.06	0.0121
225	0.923	0.356	4.05	0.0115
315	0.967	0.338	4.32	0.0091
405	0.98	0.327	4.27	0.0074
495	0.979	0.318	4.29	0.0062
585	0.971	0.311	4.43	0.0053
675	0.959	0.304	4.61	0.0047
765	0.943	0.297	4.59	0.0042
855	0.927	0.291	4.68	0.0037
945	0.908	0.284	4.62	0.0034
1035	0.888	0.278	4.71	0.0031

Рис. 3: график $\xi(\nu)$

Опроксимируем многочленом 3 степени:

$$\xi = 0.02 - 5.6 \cdot 10^{-6} \nu + 6.4 \cdot 10^{-8} \nu^2 - 2.6 \cdot 10^{-11} \nu^3$$

Рис. 4: график $\psi(\nu)$

Опроксимируем многочленом 2 степени:

$$\psi = 3.7 + 0.002\nu - 8.4 \cdot 10^{-7}\nu^2 \ rad$$

2.4 Измерения в диапазоне $(0.5\nu_h - 15\nu_h)$

Исследуем зависимости ξ и ψ от ν :

ν , Hz	U, V	I, A	ψ , rad	$\xi = U/(\nu I)$
1125	0.867	0.271	4.71	0.00284
3330	0.468	0.148	5.02	0.0009
5535	0.288	0.095	5.41	0.00055
7740	0.197	0.068	5.80	0.0004
9945	0.143	0.053	6.03	0.0003
12150	0.106	0.041	6.13	0.00021
14355	0.081	0.034	6.28	0.00017
16560	0.062	0.028	6.70	0.00013
18765	0.049	0.023	6.75	0.00011
20970	0.039	0.019	7.07	9.8E-05
23175	0.031	0.015	7.14	8.9E-05
25380	0.026	0.012	4.55	8.5E-05
27585	0.023	0.008	8.37	0.00010
29790	0.022	0.006	8.50	0.00012
31995	0.023	0.003	9.22	0.00024

Опроксимируем многочленом 2 степени:

$$\xi = 21.4 - 0.0023\nu + 5.6 \cdot 10^{-8}\nu^2$$

Рис. 5: график $\xi(\nu)$

Опроксимируем прямой вида $\psi = a\nu + b$:

$$a = 1.3 \cdot 10^{-4} \pm 6.3 \cdot 10^{-6}$$

$$b = 4.55 \pm 0.06$$

Рис. 6: график $\psi(\nu)$

2.5 Зависимость L от ν

ν , Hz	$L, \mu H$
40	550
400	4300
750	3400
1000	3200
1500	3100
2000	3060
2500	3050

Опроксимируем многочленом 2 степени:

$$L = 4885 - 2.1\nu + 0.0006\nu^2$$

Рис. 7: график $L(\nu)$

3 Выводы