UNIT 8: Infectious disease

Outline

Introduction

Rate of spread

Single-epidemic mode

Recurrent epidemic models

Infectious disease

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - ► How many people are there?
 - ► How many influenza viruses are there?
 - ► How do they find each other?

Disease agents

- ▶ Name an infectious agent that causes disease in humans.
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * influenza virus, Ebola virus, HIV, SARS-CoV-2
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Tuberculosis, anthrax, pertussis
 - Eukaryotic pathogens are nucleated cells who are more closely related to you than they are to bacteria
 - * Malaria, various worms

Influenza virus (present)

Tuberculosis bacilli (present)

Malaria sporozoite (present)

Microparasites

- ▶ For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected (infected but not yet infectious)
 - Infectious
 - Recovered

Microparasite models

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - ▶ Infectious individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models include other states:
 - * Not yet infectious
 - * Severe infections
 - * Asymptomatic but infectious

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

Measles reports from England and Wales

Outline

Introduction

Rate of spread

Single-epidemic mode

Recurrent epidemic models

COVID in Ontario (repeat)

COVID in Ontario (repeat)

COVID in Ontario

COVID in Ontario (repeat)

COVID in Ontario (repeat)

COVID in Ontario

Scales

- Which scale should we look at?
 - * Log scale is better for looking at trends
 - * Linear scale is better for looking at impacts

Population biology

- ▶ What quantities do we want to look at?
 - ► * Speed of exponential growth *r*
 - \blacktriangleright * Finite rate of increase λ
 - * Skipped this year
 - * Lifetime reproduction

Instantaneous rate of growth *r*

- ► What are the components?
 - ▶ * Birth rate
 - * Instantaneous rate of a case producing new cases
 - ▶ * [case/(case · time]
 - * Death rate
 - * Virus-centered!
 - * Rate of death, recovery, or effective quarantine
- How do you think we estimate?
 - ▶ * We estimate *r* from the population-level increase in disease
 - ▶ * Then using that to estimate b
 - * Models go both directions!
 - ▶ Individuals ↔ Populations

Reproductive number \mathcal{R}

- ► What is it?
 - * Expected number of new cases per case over the lifetime of a case
- ► Why do we want this?
 - * An important measure of how hard the epidemic will be to stop
- ► How do we calculate it?
 - * $\mathcal{R} = b/d$; if we can estimate those

Example

- $r \approx 0.14/\text{day}$
- \triangleright What is our estimate of \mathcal{R} ?
 - ▶ When average length of infection $L = 5 \,\text{day}$?
 - ▶ When average length of infection $L = 10 \,\mathrm{day}$?

Generation intervals

- Researchers try to estimate the proportion of transmission that happens for different ages of infection
- How long from the time you are infected to the time you infect someone else?
- Analogous to a life table
- ► The effective generation time Ĝ has units of time
 - And is hard to calculate, like λ in a structured model

Generation intervals

Approximate generation intervals

Speed and risk

- ▶ Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - What do we already know?

Fighting Ebola (present)

Generation time and risk

- ▶ If we know \mathcal{R} , what does the generation time tell us about r?
 - ▶ * The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- ▶ If we know r, what does the generation time tell us about R?
 - * The faster the generations (small \hat{G}), the the *smaller* the strength of the epidemic (small reproductive number \mathcal{R})
- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$

Generation time and risk (repeat)

Generation time and risk (repeat)

Generation time and risk

Generation time and risk

- $ightharpoonup \mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - ightharpoonup Epidemic speed = Generation strength imes Generation speed
 - Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- ▶ If we know generation speed, then a faster epidemic speed means:
 - ▶ * More strength required (greater R)
- ▶ If we know epidemic speed, a faster generation speed means
 - ► * Less strength required (smaller R)

Outline

Introduction

Rate of spread

Single-epidemic model

Recurrent epidemic models

Single-epidemic model

- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- ▶ We also use *N* to mean the total population

Transition rates

- What factors govern movement through the boxes?
 - ► People get better independently
 - People get infected by infectious people

Conceptual modeling

- What happens in the long term if we introduce an infectious individual?
 - ► * The may be an epidemic
 - an outbreak of disease
 - * Disease burns out
 - * Everyone winds up either recovered . . .
 - * or susceptible!

Interpreting

- Why might there not be an epidemic?
 - ▶ * If the disease can't spread well enough in the population
 - ▶ * Could depend on season, or immunity . . .
 - ► * Demographic stochasticity: if we only start with one individual, we expect an element of chance
- ▶ Why doesn't everyone get infected?
 - ► * NOANS

Quantities

State variables

 \triangleright S, I, R, N: [people] or [people/ha]

Quantities

Parameters

- Susceptible people have **potentially effective** contacts at rate β (units [1/time])
 - ► These are contacts that would lead to infection if the person contacted is infectious
 - ▶ Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- ▶ Infectious people recover at *per capita* rate γ (units [1/time])
 - ▶ Total recovery rate is γI
 - Mean time infectious is $D=1/\gamma$ (units [time])

Simulating the model (repeat)

Simulating the model

Basic reproductive number

- ▶ What *unitless* parameter can you make from the model above?
 - * $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number
 - * The potential number of infections caused by an average infectious individual
 - * That is: the number they would cause on average if everyone else were susceptible
 - ▶ * The product of the rate β (units [1/t]) and the duration D ([t])

Basic reproductive number

- ▶ What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - * Number of infected individuals grows exponentially
- ▶ What happens early in the epidemic if $\mathcal{R}_0 < 1$?
 - * Number of infected individuals does not grow (disease cannot invade)

Effective reproductive number

The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:

$$\blacktriangleright$$
 * $\mathcal{R}_e = \mathcal{R}_0 S/N$

- Is the disease increasing or decreasing?
 - ▶ * It will increase when $\mathcal{R}_e > 1$ (more than one case per case)
 - ▶ * This happens when $S/N > 1/\mathcal{R}_0$
- ▶ Why doesn't everyone get infected?
 - lacktriangle * When susceptibles are low enough $\mathcal{R}_e < 1$
 - ▶ * When $\mathcal{R}_e < 1$, the disease dies out on its own (less than one case per case)

Outline

Introduction

Rate of spread

Single-epidemic mode

Recurrent epidemic models

Recurrent epidemic models

- ▶ If epidemics tend to burn out, why do we often see repeated epidemics?
 - * People might lose immunity
 - * Births and deaths; newborns are susceptible

Measles reports from England and Wales

Recurrent epidemics

Measles reports from England and Wales

Closing the circle

* Loss of immunity

Closing the circle

- ▶ * Births and deaths
 - ▶ * Effect on dynamics is similar to loss of immunity

Equilibrium

- ▶ At equilibrium, we know that $\mathcal{R}_e = 1$
 - One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance
 - $ightharpoonup S/N = 1/\mathcal{R}_0$
- ► What does this remind you of?
 - * Reciprocal control!

Equilibrium

- Number of infectious individuals determined by number required to keep susceptibles in balance.
- As susceptibles go up, what happens?
 - Rate of susceptible increase goes down
 - per capita, at least
 - Infections required goes down

Reciprocal control

- ▶ What happens to *equilibrium* if we protect susceptibles (move them to *R* class)?
 - ▶ * Equation for dI/dt does not change
 - ▶ * Number of susceptibles at equilibrium does not change
 - * Fewer susceptibles removed by infection (some are removed by us)
 - * Less disease
- What else could happen?
 - ► * If we remove susceptibles fast enough, infection could go extinct
 - ▶ * If we keep increasing the rate . . .
 - * Number of susceptibles goes down

Reciprocal control

- ► What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - \blacktriangleright * We need more susceptibles to balance dI/dt
 - * If we have more susceptibles, then per capita replenishment goes down
 - * So the number of infectious individuals required for balance goes down
 - ► * If we remove infectious individuals fast enough, the infection could go extinct

Tendency to oscillate

Tendency to oscillate

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - ► Tend to show damped oscillations
 - ► System reaches an **endemic** equilibrium disease persists

Source of oscillations

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - ► * There will be a big epidemic
 - ▶ * ...then a very low number of susceptibles
 - ▶ * ... then a very low level of disease
 - * ... then an increase in the number of susceptibles

Persistent oscillations

- If oscillations tend to be damped in simple models, why do they persist in real life?
 - * Weather
 - * Both seasonal effects and Environmental stochasticity
 - * School terms
 - * Demographic stochasticity
 - * Changes in Behaviour
 - * People are more careful when disease levels are high

Measles reports from England and Wales

