Homework 07 CSCI 036 Solutions

Lucas Welch

Due: Friday, 2022-10-28

Instructions

Please box your answers. For numerical answers, this can be done using something like $\boxed{34}$. For text answers, this can be done using something like $\boxed{My \ answer}$. The output of a code chunk is automatically boxed, so no need to do more.

Consider the regular expression $34 \cdot [a-g]$. Which of the following strings does this pattern match?

- a. "345b"
- b. "34b5"
- **C.** "435b"
- d. "34gb"

A and D

Write down a regular expression that matches a digit, followed by any character, followed by the letter $\, a \,$, followed by any lowercase letter.

"[0-9].a[a-z]"

Consider the mtcars dataset. The row_names_to_columns function can be used to make the row names the first columns of data.

```
mtcars |>
  rownames_to_column() |>
  head()
```

```
##
              rowname mpg cyl disp hp drat
                                               wt qsec vs am gear carb
## 1
                                160 110 3.90 2.620 16.46
            Mazda RX4 21.0
        Mazda RX4 Wag 21.0
                               160 110 3.90 2.875 17.02
                                                            1
                                                                 4
                                                                      4
## 2
           Datsun 710 22.8
                             4 108 93 3.85 2.320 18.61
## 3
                                                           1
                                                                      1
## 4
       Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44
                                                                 3
                                                                      1
## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
                                                                      2
                                                                 3
## 6
              Valiant 18.1
                             6 225 105 2.76 3.460 20.22 1 0
                                                                      1
```

- a. Using str detect and filter, find all the observations with car names that start with "Merc".
- b. Using str_detect and filter, find all the observations with car names that have at least one digit in them.

a.

```
mtcars |>
  rownames_to_column() |>
  filter(str_detect(rowname, "^Merc"))
```

```
##
        rowname mpg cyl disp hp drat
                                         wt qsec vs am gear carb
## 1
      Merc 240D 24.4
                       4 146.7
                               62 3.69 3.19 20.0
                                                               2
## 2
       Merc 230 22.8
                      4 140.8 95 3.92 3.15 22.9
                                                               2
## 3
       Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1
                                                               4
                                                     0
## 4
      Merc 280C 17.8 6 167.6 123 3.92 3.44 18.9 1
     Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.4
## 5
## 6 Merc 450SL 17.3 8 275.8 180 3.07 3.73 17.6 0
                                                          3
                                                              3
## 7 Merc 450SLC 15.2 8 275.8 180 3.07 3.78 18.0 0 0
                                                          3
                                                               3
```

```
mtcars |>
  rownames_to_column() |>
  filter(str_detect(rowname, "[0-9]"))
```

##		rowname	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
##	1	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
##	2	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
##	3	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
##	4	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
##	5	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
##	6	Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
##	7	Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
##	8	Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
##	9	Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
##	10	Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
##	11	Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
##	12	Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
##	13	Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
##	14	Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
##	15	Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1
##	16	Porsche 914-2	26.0	4	120.3	91	4.43	2.140	16.70	0	1	5	2
##	17	Volvo 142E	21.4	4	121.0	109	4.11	2.780	18.60	1	1	4	2

Consider the USArrests dataset.

- a. Use str_detect and filter to find all the observations from states that begin with the letter A .
- b. Use str_detect and filter to find all the observations from states that end with the letter a.
- c. Use str_detect and filter to find all the observations from states that begins with a and ends with a.

USArrests

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8
##	Hawaii	5.3	46	83	20.2
##	Idaho	2.6	120	54	14.2
##	Illinois	10.4	249	83	24.0
##	Indiana	7.2	113	65	21.0
##	Iowa	2.2	56	57	11.3
##	Kansas	6.0	115	66	18.0
##	Kentucky	9.7	109	52	16.3
##	Louisiana	15.4	249	66	22.2
##	Maine	2.1	83	51	7.8
##	Maryland	11.3	300	67	27.8
##	Massachusetts	4.4	149	85	16.3
##	Michigan	12.1	255	74	35.1
##	Minnesota	2.7	72	66	14.9
##	Mississippi	16.1	259	44	17.1
##	Missouri	9.0	178	70	28.2
##	Montana	6.0	109	53	16.4
##	Nebraska	4.3	102	62	16.5
##	Nevada	12.2	252	81	46.0
##	New Hampshire	2.1	57	56	9.5
##	New Jersey	7.4	159	89	18.8
##	New Mexico	11.4	285	70	32.1
##	New York	11.1	254	86	26.1
##	North Carolina	13.0	337	45	16.1
##	North Dakota	0.8	45	44	7.3
##	Ohio	7.3	120	75	21.4
##	Oklahoma	6.6	151	68	20.0
##	Oregon	4.9	159	67	29.3
##	Pennsylvania	6.3	106	72	14.9
##	Rhode Island	3.4	174	87	8.3
##	South Carolina	14.4	279	48	22.5
	South Dakota	3.8	86	45	12.8
##	Tennessee	13.2	188	59	26.9
	Texas	12.7	201		25.5
##	Utah	3.2	120	80	22.9
	Vermont	2.2	48	32	11.2
	Virginia	8.5	156	63	20.7
##	Washington	4.0	145	73	26.2
	West Virginia	5.7	81	39	9.3
	Wisconsin	2.6	53		10.8
##	Wyoming	6.8	161	60	15.6

a.

```
USArrests |>
  rownames_to_column() |>
  filter(str_detect(rowname, "^A"))
```

```
##
      rowname Murder Assault UrbanPop Rape
## 1
                13.2
                          236
                                    58 21.2
      Alabama
                10.0
                                    48 44.5
## 2
       Alaska
                          263
## 3 Arizona
                 8.1
                          294
                                    80 31.0
## 4 Arkansas
                 8.8
                          190
                                    50 19.5
```

b.

```
USArrests |>
  rownames_to_column() |>
  filter(str_detect(rowname, "a$"))
```

```
##
             rowname Murder Assault UrbanPop Rape
## 1
             Alabama
                       13.2
                                236
                                           58 21.2
## 2
                       10.0
                                263
                                           48 44.5
              Alaska
## 3
             Arizona
                       8.1
                                294
                                           80 31.0
## 4
          California
                       9.0
                                276
                                           91 40.6
             Florida
                                           80 31.9
## 5
                       15.4
                                335
## 6
             Georgia
                       17.4
                                211
                                           60 25.8
## 7
             Indiana
                       7.2
                                113
                                           65 21.0
## 8
                Iowa
                       2.2
                                 56
                                          57 11.3
                                          66 22.2
## 9
           Louisiana 15.4
                                249
## 10
           Minnesota
                       2.7
                                72
                                           66 14.9
                                          53 16.4
## 11
             Montana
                       6.0
                                109
## 12
            Nebraska
                       4.3
                                102
                                           62 16.5
## 13
              Nevada
                       12.2
                                252
                                          81 46.0
## 14 North Carolina
                      13.0
                                337
                                           45 16.1
        North Dakota
## 15
                       0.8
                                           44 7.3
                                 45
## 16
            Oklahoma
                       6.6
                                           68 20.0
                                151
## 17
        Pennsylvania
                       6.3
                                106
                                          72 14.9
## 18 South Carolina
                      14.4
                                279
                                           48 22.5
        South Dakota
## 19
                                           45 12.8
                        3.8
                                 86
## 20
            Virginia
                                           63 20.7
                       8.5
                                156
## 21 West Virginia
                        5.7
                                 81
                                           39 9.3
```

C.

```
USArrests |>
  rownames_to_column() |>
  filter(str_detect(rowname, "^A")) |>
  filter(str_detect(rowname, "a$"))
```

##		rowname	Murder	Assault	UrbanPop	Rape
##	1	Alabama	13.2	236	58	21.2
##	2	Alaska	10.0	263	48	44.5
##	3	Arizona	8.1	294	80	31.0

Consider the following code.

- a. Describe in words what the regular expression [a-zA-z]+\$ is trying to find.
- b. Describe in words what the regular expression $^{[a-zA-z]+}$ is trying to find.
- c. Describe in words what the regular expression [^a-zA-z]+ is trying to find.

```
\boxed{\text{It's extracting} letters(a-z(A-Z)) from code after the first word then adding the second a. word since the $ }}
```

- b. It's extracting letters(a-zA-Z) from the first words since the ^
- c. It's extracting any letters from the whole line because the ^ is in the brackets | :::: {.solution data-latex=""}

::::

Consider the dataset painters from the MASS library. First, load in the library.

```
##
## Attaching package: 'MASS'

## The following object is masked from 'package:dplyr':
##
## select
```

Then the dataset looks as follows.

```
painters |> head()
```

```
##
                   Composition Drawing Colour Expression School
                             10
                                      8
                                             16
                                                           3
## Da Udine
                                                                   Α
## Da Vinci
                             15
                                      16
                                              4
                                                          14
                                                                   Α
## Del Piombo
                              8
                                      13
                                             16
                                                           7
                                                                   Α
## Del Sarto
                                               9
                                                           8
                             12
                                      16
                                                                   Α
## Fr. Penni
                              0
                                      15
                                               8
                                                           0
                                                                   Α
## Guilio Romano
                             15
                                      16
                                               4
                                                          14
                                                                   Α
```

- a. Find the observations where the painter name has at least one space in it.
- b. Using your tibble from part a., create a column after_space which lists the part of the painters name after the last space in the name.

```
painters
```

·					
##	Composition	Drawing	Colour	Expression	School
## Da Udine	10	8	16	3	Α
## Da Vinci	15	16	4	14	А
## Del Piombo	8	13	16	7	А
## Del Sarto	12	16	9	8	А
## Fr. Penni	0	15	8	0	А
## Guilio Romano	15	16	4	14	А
## Michelangelo	8	17	4	8	А
## Perino del Vaga	15	16	7	6	А
## Perugino	4	12	10	4	А
## Raphael	17	18	12	18	Α
## F. Zucarro	10	13	8	8	В
## Fr. Salviata	13	15	8	8	В
## Parmigiano	10	15	6	6	В
## Primaticcio	15	14	7	10	В
## T. Zucarro	13	14	10	9	В
## Volterra	12	15	5	8	В
## Barocci	14	15	6	10	С
## Cortona	16	14	12	6	С
## Josepin	10	10	6	2	С
## L. Jordaens	13	12	9	6	С
## Testa	11	15	0	6	С
## Vanius	15	15	12	13	С
## Bassano	6	8	17	0	D
## Bellini	4	6	14	0	D
## Giorgione	8	9	18	4	D
## Murillo	6	8	15	4	D
## Palma Giovane	12	9	14	6	D
## Palma Vecchio	5	6	16	0	D
## Pordenone	8	14	17	5	D
## Tintoretto	15	14	16	4	D
## Titian	12	15	18	6	D
## Veronese	15	10	16	3	D
## Albani	14	14	10	6	E
## Caravaggio	6	6	16	0	E
## Corregio	13	13	15	12	E
## Domenichino	15	17	9	17	Е
## Guercino	18	10	10	4	E
## Lanfranco	14	13	10	5	E
## The Carraci	15	17	13	13	E
## Durer	8	10	10	8	F
## Holbein	9	10	16	13	F
## Pourbus	4	15	6	6	F
## Van Leyden	8	6	6	4	F
## Diepenbeck	11	10	14	6	G
## J. Jordaens	10	8	16	6	G
## Otho Venius	13	14	10	10	G
## Rembrandt	15	6	17	12	G
## Rubens	18	13	17	17	G
## Teniers	15	12	13	6	G
## Van Dyck	15	10	17	13	G
## Bourdon	10	8	8	4	Н

```
## Le Brun
                                16
                                         16
                                                              16
                                                                        Η
## Le Suer
                                15
                                         15
                                                   4
                                                              15
                                                                        Н
## Poussin
                                15
                                         17
                                                   6
                                                              15
                                                                        Η
```

a.

```
painters |>
  rownames_to_column() |>
  filter(str_detect(rowname, " "))
```

```
##
               rowname Composition Drawing Colour Expression School
## 1
              Da Udine
                                             8
                                   10
                                                    16
                                                                         Α
                                            16
                                                                14
## 2
              Da Vinci
                                   15
                                                     4
                                                                         Α
## 3
            Del Piombo
                                    8
                                            13
                                                    16
                                                                 7
                                                                         Α
## 4
             Del Sarto
                                   12
                                            16
                                                     9
                                                                 8
                                                                         Α
                                                     8
                                                                 0
## 5
             Fr. Penni
                                    0
                                            15
                                                                         Α
## 6
                                   15
                                            16
                                                     4
                                                                14
         Guilio Romano
                                                                         Α
## 7
      Perino del Vaga
                                   15
                                            16
                                                     7
                                                                 6
                                                                         Α
## 8
            F. Zucarro
                                   10
                                            13
                                                     8
                                                                 8
                                                                         В
## 9
          Fr. Salviata
                                   13
                                            15
                                                     8
                                                                 8
                                                                         В
## 10
            T. Zucarro
                                                    10
                                                                 9
                                   13
                                            14
                                                                         В
## 11
           L. Jordaens
                                   13
                                            12
                                                     9
                                                                 6
                                                                         С
## 12
         Palma Giovane
                                             9
                                                    14
                                                                 6
                                   12
                                                                         D
        Palma Vecchio
                                    5
                                                                 0
## 13
                                             6
                                                    16
                                                                         D
## 14
           The Carraci
                                   15
                                            17
                                                    13
                                                                13
                                                                         Е
## 15
            Van Leyden
                                                     6
                                                                 4
                                                                         F
                                    8
                                             6
## 16
           J. Jordaens
                                   10
                                             8
                                                    16
                                                                 6
                                                                         G
           Otho Venius
                                                                         G
## 17
                                   13
                                            14
                                                    10
                                                                10
## 18
              Van Dyck
                                   15
                                            10
                                                    17
                                                                13
                                                                         G
                                                     8
                                                                         Н
## 19
               Le Brun
                                   16
                                            16
                                                                16
## 20
               Le Suer
                                   15
                                            15
                                                     4
                                                                15
                                                                         Η
```

```
painters |>
  rownames_to_column() |>
  filter(str_detect(rowname, " ")) |>
  mutate(after_space = str_extract(rowname, "[a-zA-Z]+$"))
```

##		rowname	Composition	Drawing	Colour	Expression	School	after_space
##	1	Da Udine	10	8	16	3	A	Udine
##	2	Da Vinci	15	16	4	14	Α	Vinci
##	3	Del Piombo	8	13	16	7	A	Piombo
##	4	Del Sarto	12	16	9	8	A	Sarto
##	5	Fr. Penni	0	15	8	0	A	Penni
##	6	Guilio Romano	15	16	4	14	A	Romano
##	7	Perino del Vaga	15	16	7	6	A	Vaga
##	8	F. Zucarro	10	13	8	8	В	Zucarro
##	9	Fr. Salviata	13	15	8	8	В	Salviata
##	10	T. Zucarro	13	14	10	9	В	Zucarro
##	11	L. Jordaens	13	12	9	6	С	Jordaens
##	12	Palma Giovane	12	9	14	6	D	Giovane
##	13	Palma Vecchio	5	6	16	0	D	Vecchio
##	14	The Carraci	15	17	13	13	E	Carraci
##	15	Van Leyden	8	6	6	4	F	Leyden
##	16	J. Jordaens	10	8	16	6	G	Jordaens
##	17	Otho Venius	13	14	10	10	G	Venius
##	18	Van Dyck	15	10	17	13	G	Dyck
##	19	Le Brun	16	16	8	16	Н	Brun
##	20	Le Suer	15	15	4	15	Н	Suer

Suppose you have a vector of strings in s.

- a. Write code to detect for each string in the vector if it contains the letter a followed by a digit at least once.
- b. Write code that matches the pattern given in part a, but instead of returning true or false, returns the two characters that match the pattern if it exists in the string.

a.

```
t <- c("aww", "a43", "hfi2")
s_detect <- str_detect(t, "a[0-9]")
s_detect</pre>
```

```
## [1] FALSE TRUE FALSE
```

```
t <- c("jdne", "a898", "vdw3")
s_extract <- str_extract(t, "a[0-9]")
s_extract</pre>
```

```
## [1] NA "a8" NA
```

Consider a tibble:

The area code for a U.S. phone number consists of the first three digits.

- a. Write code to add a column area_code to the tibble which consists of the first three digits of the phone number.
- b. Write code to filter phone numbers to only include numbers where the middle three digits are 555.

a.

```
phone_numbers |>
  mutate(area_code = str_extract(Phone, "^[0-9][0-9][0-9]"))
```

```
phone_numbers |>
  filter(str_detect(Phone,"-555-"))
```

- a. Give a regular expression that matches one or more digits at the beginning of a string.
- b. Give a regular expression that matches zero or more digits at the end of a string.
- a. "^[0-9]+"
- b. ["[0-9]*\$"]

Consider the following tibble.

```
data <-
  tibble(
    s = c("blue141car", "red314159truck", "yellow2718airplane")
)</pre>
```

Using the separate command, use a regular expression for the sep parameter to separate the s variable into $before_number$ and $after_number$.

```
data
```

```
## # A tibble: 3 × 1
## s
## <chr>
## 1 blue141car
## 2 red314159truck
## 3 yellow2718airplane
```

```
data |>
  separate(s, into = c("before_number", "after_number"), sep = ("[0-9]+"))
```