CS2500 Homework 2

Evan Wilcox

Due Feburary 7, 2019

1. **2.2-2**

```
selectionSort(A)
    for i = 1 to A.length-1
        min = i
3
4
        for j = i+1 to A.length
5
             if A[j] < A[min]
6
                min = j
7
8
        swap A[i] with A[min]
9
10
   return A
```

The subarray A[1...i-1] consists of the smallest elements in sorted order. After the first n-1 elements, the subarray A[1...n-1] contains the smallest n-1 elements so the nth element is the largest element. The running time of the algorithm is $\Theta(n^2)$ for all cases.

2.2 - 3

Average case would be $\Theta(n)$ because the average search time is $\frac{n}{2}$. Worst case would be $\Theta(n)$ because the worst case search time is n, or when n is not found.

2. **2.3-4**

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1, \\ T(n-1) + D(n) + C(n) & \text{otherwise.} \end{cases}$$

Where D(n) is the time taken to divide the problem and C(n) is the time taken to combine the sub problems.

2.3-5

```
binarySearch(v, A):
    if A.length == 0:
2
        return -1
3
4
    1 = 1
5
    m = A.length/2
6
   h = A.length
7
    while(1 < m)
        if v < A[m]
8
9
            h = m
10
        else
11
            1 = m
12
13
        m = (h+1)/2
14
    if A[m] != v
15
16
        return -1
17
18
   return m
```

The algorithm splits the range in half based on the comparison of the middle element to v. The recurrence for this is $T(n) = T(n/2) + \Theta(1)$, whose solution is $T(n) = \Theta(\lg n)$.

3. **2-2**

d) Bubblesort's worst-case running time is $\Theta(n^2)$ which is the same as insertion sort.

4. **3-1**

- a) $0 \le p(n) \le n^k$ for all $n \ge n_0$
- b)
- c)
- d)
- e)

5. **3-2**

	A	B	O	0	Ω	ω	Θ
a.	$\lg^k n$	n^{\in}					
b.	n^k	c^n					
d.	2^n	$2^{n/2}$					
е.	$n^{\lg c}$	$c^{\lg n}$					
f.	$\lg(n!)$	$\lg(n^n)$					

6. a)
$$5n^2 - 6n = \Theta(n^2)$$

There exist positive constants c_1, c_2 , and n_0 such that

$$0 \le c_1 n^2 \le 5n^2 - 6n \le c_2 n^2$$
 for all $n \ge n_0$

Simplified,

$$0 \le c_1 \le 5 - \frac{6}{n} \le c_2$$

With constants $c_1 = 2, c_2 = 8, n = 12$

$$0 \le 2 \le 5 - \frac{6}{12} \le 8$$

$$0 \le 2 \le 4\frac{1}{2} \le 8$$

b)
$$n^3 + 10^6 n^2 = \Theta(n^3)$$

There exist positive constants c_1, c_2 , and n_0 such that

$$0 \le c_1 n^3 \le n^3 + 10^6 n^2 \le c_2 n^3$$
 for all $n \ge n_0$

Simplified,

$$0 \le c_1 \le 1 + \frac{10^6}{n} \le c_2$$

With constants $c_1 = 2, c_2 = 2, n = 10^6$,

$$0 \le 2 \le 1 + \frac{10^6}{10^6} \le 2$$

$$0 \le 2 \le 2 \le 2$$

c)
$$6(2^n) + n^2 = O(2^n)$$

There exist positive constants c and n_0 such that

$$0 \le 6(2^n) + n^2 \le c2^n$$
 for all $n \ge n_0$

Simplified,

$$0 \le 6 + \frac{n^2}{2^n} \le c$$

With constants c = 8, n = 4,

$$0 \le 6 + \frac{4^2}{2^4} \le 8$$

7. a) $10n^2 + 9 \neq \Theta(n)$ There exist positive constants c_1, c_2 , and n_0 such that

$$0 \le c_1 n \le 10n^2 + 9 \le c_2 n$$
 for all $n \ge n_0$

Simplified,

$$0 \le c_1 \le 10n + \frac{9}{n} \le c_2$$

There is no value for constant c_2 large enough to always be greater than $10n + \frac{9}{n}$ for all $n \ge n_0$.

b) $n^2 lgn \neq \Theta(n^2)$

There exist positive constants c_1, c_2 , and n_0 such that

$$0 \le c_1 n^2 \le n^2 lgn \le c_2 n^2$$
 for all $n \ge n_0$

Simplified,

$$0 \le c_1 \le lgn \le c_2$$

There is no value for constant c_2 large enough to always be greater than lgn for all $n \geq n_0$.

- 8. $\sum_{i=0}^{n} 2^{i}$ for n = 31 equals 2,147,483,648.
- 9. $\log_2 1024 = 10$
- 10. $a^{\log_b c} = b^{(\log_b a)(\log_b c)} = (b^{\log_b (c)})^{\log_b (a)} = c^{\log_b a}$