

Lecture 26

Linear Contrasts

STAT 8010 Statistical Methods I October 23, 2019

Whitney Huang Clemson University

Facebook Friends Example Revisited

Too Much of a Good Thing? The Relationship Between Number of Friends and Interpersonal Impressions on Facebook

Stephanie Tom Tong Brandon Van Der Heide Lindsey Langwell

Department of Communication

Joseph B. Walther

Departments of Communication and Telecommunication, Information Studies & Media Michigan State University

A central feature of the online social networking system, Facebook, is the connection to and links among friends. The sum of the number of one's friends is a feature displayed on users' profiles as a vestige of the friend connections a user has accrued. In contrast to offline social networks, individuals in online network systems frequently accrue friends numbering several hundred. The uncertain meaning of friend status in these systems raises questions about whether and how sociometric popularity conveys attractiveness in non-traditional, non-linear ways. An experiment examined the relationship between the number of friends a Facebook profile featured and observers' ratings of attractiveness and extraversion. A curvilinear effect of sociometric popularity and social attractiveness emerged, as did a quartic relationship between friend count and perceived extraversion. These results suggest that an overabundance of friend connections raises doubts about Facebook users' popularity and desirability.

Facebook Friends Example

There are 5 "treatment groups" in this study:

Participants examined one of five stimuli, each containing a Facebook profile mockup. Elements of these stimuli (e.g. photographs, wall posts, etc.) remained constant over the five versions, with the exception of the number of friends which appeared on the profile as 102, 302, 502, 702, or 902.... – Tong et al., 2008

Facebook Friends Example

There are 5 "treatment groups" in this study:

Participants examined one of five stimuli, each containing a Facebook profile mockup. Elements of these stimuli (e.g. photographs, wall posts, etc.) remained constant over the five versions, with the exception of the number of friends which appeared on the profile as 102, 302, 502, 702, or 902.... – Tong et al., 2008

Facebook Friends Example: Descriptive Statistics

	Score						
	102	302	502	702	902		
Valid	24	33	26	30	21		
Missing	0	0	0	0	0		
Mean	3.817	4.879	4.562	4.407	3.990		
Std. Deviation	0.999	0.851	1.070	1.428	1.023		
Minimum	2.200	2.600	2.000	1.000	1.600		
Maximum	6.000	6.400	6.800	7.000	5.200		

Facebook Friends: Overall F-Test

Question: Are Facebook attractiveness affected by # of friends?

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_5$$

 H_a : At least one group mean is different from others

Facebook Friends: Overall F-Test

Question: Are Facebook attractiveness affected by # of friends?

```
H_0: \mu_1=\mu_2=\cdots=\mu_5
```

 H_a : At least one group mean is different from others

Analysis of Variance Table

Response: Score

Df Sum Sq Mean Sq F value

Friends 4 19.89 4.9726 4.142

Residuals 129 154.87 1.2005

Pr(>F)

Friends 0.00344 **

Residuals

Facebook Friends: Overall F-Test

Question: Are Facebook attractiveness affected by # of friends?

$$H_0: \mu_1 = \mu_2 = \cdots = \mu_5$$

 H_a : At least one group mean is different from others

Analysis of Variance Table

Response: Score

Df Sum Sq Mean Sq F value

Friends 4 19.89 4.9726 4.142

Residuals 129 154.87 1.2005

Pr(>F)

Friends 0.00344 **

Residuals

Next, we need to figure out where these differences oc-

Facebook Example: Fisher's LSD

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Facebook Example: Fisher's LSD

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

> LSD_none\$groups

Score groups
302 4.878788 a
502 4.561538 ab
702 4.406667 abc
902 3.990476 bc
102 3.816667 c

Facebook Example: Fisher's LSD

We conclude that μ_i and μ_j differ at α level if $|\bar{X}_i - \bar{X}_j| > LSD$, where

$$LSD = t_{\alpha/2, df=N-J} \sqrt{\mathsf{MSE}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

> LSD_none\$g	<pre>> LSD_bon\$groups</pre>			
Score	groups		Score	groups
302 4.878788	а	302	4.878788	а
502 4.561538	ab	502	4.561538	ab
702 4.406667	abc	702	4.406667	ab
902 3.990476	bc	902	3.990476	b
102 3.816667	С	102	3.816667	b

Me and the significant boys

Facebook Example: Tukey's HSD Test

Yet there is another method to deal with multiple testing: Tukey's Honest Significant Difference (HSD) test. We conclude that μ_i and μ_j differ at α familywise level if $|\bar{X}_i - \bar{X}_j| > \omega$, where

$$\omega = q_{\alpha}(J, N - J)\sqrt{rac{\mathsf{MSE}}{n}},$$

 $q_{\alpha}(J, N-J)$ can be obtained from the studentized range table

Critical Values of Studentized Range Distribution(q) for Familywise ALPHA = .05.

Denominator	Number of Groups (a.k.a. Treatments)							
DF	3	4	5	6	7	8	9	10
51	3.414	3.756	3.999	4.187	4.340	4.469	4.580	4.677
52	3.412	3.753	3.996	4.184	4.337	4.465	4.576	4.673
53	3.410	3.751	3.994	4.181	4.334	4.462	4.572	4.669
54	3.408	3.749	3.991	4.178	4.331	4.459	4.569	4.666
55	3.406	3.747	3.989	4.176	4.328	4.455	4.566	4.662
56	3.405	3.745	3.986	4.173	4.325	4.452	4.562	4.659
57	3.403	3.743	3.984	4.170	4.322	4.449	4.559	4.656
58	3.402	3.741	3.982	4.168	4.319	4.447	4.556	4.652
59	3.400	3.739	3.979	4.165	4.317	4.444	4.553	4.649
60	3.399	3.737	3.977	4.163	4.314	4.441	4.550	4.646

Facebook Example: Tukey's HSD Test

	diff	lwr	upr	p adj
302-102	1.0621212	0.2488644	1.87537798	0.003889635
502-102	0.7448718	-0.1132433	1.60298691	0.121456224
702-102	0.5900000	-0.2402014	1.42020143	0.288431585
902-102	0.1738095	-0.7320145	1.07963355	0.984016816
502-302	-0.3172494	-1.1121910	0.47769215	0.804080046
702-302	-0.4721212	-1.2368466	0.29260420	0.432633745
902-302	-0.8883117	-1.7345313	-0.04209203	0.034535577
702-502	-0.1548718	-0.9671402	0.65739661	0.984391504
902-502	-0.5710623	-1.4604793	0.31835479	0.391768065
902-702	-0.4161905	-1.2787075	0.44632652	0.669927748

Linear Contrasts

Suppose we have J populations (e.g. response for J different treatments) of interest. We have seen how to perform multiple comparisons. For example, the comparison between μ_1 and μ_2 can be conducted using the test: $H_0: \mu_1 - \mu_2 = 0$ vs.

 $H_a: \mu_1 - \mu_2 \neq 0$. This comparison is actually a special case of linear contrasts

Linear Contrasts

Let c_1, c_2, \cdots, c_J are constants where $\sum_{j=1}^J c_j = 0$, then $\sum_{j=1}^J c_j \mu_j$ is called a **linear contrast** of the population means.

Example: Suppose J = 4

Inferences for Linear Contrasts

If we want to make a inference about $L = \sum_{i=1}^{J} c_{i}\mu_{j}$. Then we use

$$\hat{L} = \sum_{j=1}^{J} c_j \bar{X}_j$$

as the point estimate. Furthermore, we can construct a $100(1-\alpha)\%$ CI for L:

$$(\hat{L} - t_{(\alpha/2, df=N-J)} \hat{se}_{\hat{L}}, \hat{L} + t_{(\alpha/2, df=N-J)} \hat{se}_{\hat{L}}),$$

where
$$\hat{se}_{\hat{L}} = \sqrt{\mathsf{MSE}\left(\frac{c_1^2}{n_1} + \dots + \frac{c_J^2}{n_J}\right)}$$

To test whether L is significantly different from 0, we can conduct the following test:

$$H_0: \sum_{j=1}^J c_j \mu_j = 0 \text{ vs. } H_a: \sum_{j=1}^J c_j \mu_j \neq 0$$

Hypothesis Testing for Linear Contrasts

Null and Alternative Hypotheses:

$$H_0:\sum_{j=1}^J c_j\mu_j=0$$
 vs. $H_a:\sum_{j=1}^J c_j\mu_j
eq 0$

Test Statistic:

$$t_{obs} = rac{\hat{L} - 0}{\hat{se}_{\hat{L}}} = rac{\sum_{j=1}^{J} c_j \bar{X}_j}{\sqrt{\mathsf{MSE}\left(rac{c_1^2}{n_1} + \dots + rac{c_j^2}{n_J}
ight)}}$$

Decision:

Reject
$$H_0$$
 if $|t_{obs}| > t_{\alpha/2, df=N-J}$ (or p-value $< \alpha$)

Facebook Example: Linear Contrast

Linear Contrasts

CLEMSEN

UNIVERSITY

Suppose we'd like to compare μ_1 vs. $\frac{\mu_3 + \mu_4}{2}$. Let $L = 1\mu_1 - \frac{1}{2}\mu_3 - \frac{1}{2}\mu_4$. Then the above comparison is equivalent to test whether L is different from 0

- $igoplus H_0: L = 0 \text{ vs. } H_a: L \neq 0$
- ② $t_{obs} = \frac{\hat{L}}{\hat{se}_{\hat{L}}} = \frac{1 \times 3.817 0.5 \times 4.562 0.5 \times 4.407}{\sqrt{1.2005 \times (\frac{1^2}{24} + \frac{0.5^2}{26} + \frac{0.5^2}{30})}} = \frac{-0.6674}{0.2675} = -2.495$
- Since $|t_{obs}| = |-2.495| = 2.495 > t_{0.025,df=129} = 1.9785$. We reject H_0 at 0.05 level

Note: If we are performing several tests for different linear contrasts simultaneously, we'll need to adjust α level accordingly to control the FWER