A.U. : 2021-2022 Section :LGL 1

Série d'exercices : Espaces vectoriels - Applications linéaires

Exercice 1:

Dans chacun des cas suivants, montrer que le sous ensemble V est un sous espace vectoriel de \mathbb{R}^3

- a) $V = \{(x, y, z) \in \mathbb{R}^3, x + z = 0 \text{ et } x y = 0\}, \text{ b) } V = \{(x, y, z) \in \mathbb{R}^3, x y 2z = 0\}$
- c) $V = \{(x, y, z) \in \mathbb{R}^3, x y + z = 0 \text{ et } x 2y = 0\}.$

Exercice 2:

Dans \mathbb{R}^3 muni de sa base canonique (e_1, e_2, e_3) , on considère les vecteurs $v_1 = (-1, -1, 0)$, $v_2 = (0, 2, 2)$ et $v_3 = (1, 0, 1)$.

- 1. Montrer que les vecteurs (v_1, v_2, v_3) forment une base de \mathbb{R}^3 .
- 2. Exprimer les vecteurs e_1 , e_2 , e_3 dans cette base.
- 3. Déterminer les coordonnées de x = (1, -1, 2) dans la base (v_1, v_2, v_3) .

Exercice 3:

On se place dans l'espace vectoriel $E = \mathbb{R}_2[X]$ et on note \mathcal{B} la famille $(X^2 + 1; X + 1; 2X^2 - X)$.

- 1. Vérifier que \mathcal{B} est une base de $\mathbb{R}_2[X]$.
- 2. Déterminer les coordonnées du polynôme $P = X^2 X + 2$ dans la base \mathcal{B} .

Exercice 4:

Dans \mathbb{R}^3 , on considère les vecteurs $v_1=(1,1,a), v_2=(1,a,1)$ et $v_3=(a,1,1)$. Discuter suivant le paramètre $a\in\mathbb{R}$:

- a) La dépendance des vecteurs v_1, v_2 et v_3 .
- b) la dimension du sous espace vectoriel engendré par les vecteurs v_1, v_2 , et v_3 .

Exercice 5:

Dans chacun des cas suivants, montrer que les ensembles F et G sont des sous-espaces vectoriels de E, et qu'ils sont supplmentaires.

- 1) $E = \mathbb{R}^2$; $F = \{(x, y) \mid x + y = 0\}$ et $G = \{(x, y) \mid x y = 0\}$
- 2) $E = \mathbb{R}^3$; $F = \{(x, y, z) \mid x y + z = 0\}$ et G = vect((3, 2, 1)).
- 3) $E = \mathbb{R}_2[X]$; $F = vect(X, X^2)$ et $G = \{P \mid P' = 0\}$.
- 4) $E = \mathbb{R}_6[X]$; $F = \{P \in E \mid P \text{ est une fonction paire}\}$ et $G = \{P \in E \mid P \text{ est une fonction impaire}\}$.

Exercice 6:

Soient les vecteurs suivants de \mathbb{R}^4 : u = (-1,0,3,-9), v = (3,-4,3,7), w = (7,-12,15,3), a = (1,-1,0,4) et b = (1,0,3,-1).

- 1. Montrer que v (resp. w) appartient au sous-espace vectoriel de \mathbb{R}^4 engendré par $\{a,u\}$ (resp. $\{u,v\}$).
- 2. Notons F (resp. G) le sous-espace vectoriel de \mathbb{R}^4 engendré par $\{u, v, w\}$ (resp. $\{a, b\}$). Déterminer la dimension et une base des sous-espaces F, G, $F \cap G$ et F + G
- 3. Montrer que la droite H de \mathbb{R}^4 engendré par le vecteur t = (1, -1, 1, 1) est un supplémentaire de F + G. En déduire un supplémentaire de chacun des sous-espaces $F \cap G$, F et G.