Priority Quenes No nulls are allowed, but duplicates one ok.

Elements: value, priority Convention: smaller the printy, more important ; it is. Operations: std operations: clear(), is Empty() size (), 1. add(x) = offer(x): (Traditional name: insert(x))
adding a new element x to the printy que me. 2. remove () or poli(): (Traditional name: Delete Min()
or Extract Min() remove and return element with smallest privity (ix, not important element) Tie breaks - arbitrary. Prienty Queue abstract data type does not support remove (x) or contains (x) spendious. or iterator() Ly but Javar implementation supports these operations, badly - Don't wie these ofs. 3. peck(): vetur (vithout vemoviz) element
with smallest prints
(ie. most important)

Common usage: Priority Quene (Integer) 9 = new Priority Quene (>(); 1 using natural ordery. — compare to method. Privity Quene (Vertex) ?= new Iricity Queue <> (42, comp); Initial size of Q = 42.

Comparator (Vertex)

comp = object that extends

(or implements) interface. Comparator interfee: one wethord

public int compare (Vertex one, Vertex two) 4 retur negative no if one < two o if one = two positive no if one > two. Comparator - user-defined ordernj. public class Vertex implements Composator (take) Example: public int compare (Vertex A, Vertex 6) } if (a.dist < b.dist) vehin - li

eke if (a.dist == b.dist) returo;
else retur 1;
Priority Queu (vertex) 9 = new Priority Que (>(9.5721); new Vertex)

: q.add(x); while (! q. is Engly (1) { $X = d \cdot \text{Nemone()}; \text{ } \{a \mid X = d \cdot \text{loll()};$ q.add(y): Implementation of Privity Queues: Binary Heaps. Binary Heap: a binary tree with one element per node, salistying the following constraints: 1. Ordery conchant: Privity of rode & Privity of its children. 2. Structure constraint: tree = conglete binary tree.

close to a full binary tree es possible.

Leaves have to packed to the left. Array implementation of Binary Heaps: (Reality) (M:nd) $\frac{2}{4}$ $\frac{2}{5}$ $\frac{2}{4}$ $\frac{4}{7}$ $\frac{5}{9}$ $\frac{9}{8}$ $\frac{16}{12}$ $\frac{2}{3}$ $\frac{4}{5}$ $\frac{5}{6}$ $\frac{5}{$

Priority Queues: Each element has a priority. Elements are removed in the order of their priorities. Traditionally, smaller the value of priority, higher its priority. Duplicates are allowed, but not null values.

Operation	Traditional name	Java method
Insert a new element	Insert (x)	add (x) , offer (x)
Remove element with maximum priority	DeleteMin (), ExtractMin ()	remove (), poll ()
Element with maximum priority	Min ()	peek ()

Java's PriorityQueue is iterable, but the iteration order is not in order of priority. The operations contains(x) and remove(x) are inefficient, O(n). If they are needed, use a TreeMap/TreeSet instead. Implementation of priority queues: Binary heaps (usually stored in arrays).

Array implementation:

2	4	7	5	9	8	16	12
0	1	2	3	4	5	6	7

Root is stored at index 0.

For a node at index *i*:

Parent's index: (i - 1)/2.

Index of Children: $\{2i+1, 2i+2\}$.

Heaps are binary trees in which each node stores one element, satisfying the following properties:

- 1. Order property: priority of node ≤ priority of its children, i.e., it has higher priority than its children,
- 2. Structure property: complete binary trees (all but last levels are full; last level is packed from left). Operations will restore structure property first, and then ensure order property, using percolate Up/Down.

```
Let n = size. Heap occupies pq[0..n-1]. Height of
tree is ceil(\log(n)). RT of each operation: O(\log(n)).
parent (i): return (i-1)/2
firstChild (i): return 2 * i + 1
add (x):
  if size = pq.length then // can resize pq here
     throw Exception "Priority queue is full"
    pq[size] \leftarrow x // rewrite using move ()
  percolateUp ( size )
   size ++
percolateUp (i):
   x \leftarrow pq[i]
  while i > 0 and x < pq[parent(i)] do
      pq[i] \leftarrow pq[parent(i)]
      i \leftarrow parent(i)
   pq[i] \leftarrow x
```

```
remove ( ):
   min \leftarrow pq[0]
   pq[0] \leftarrow pq[--size]
   percolateDown (0)
   return min
percolateDown (i):
   x \leftarrow pq[i]
   c \leftarrow firstChild(i)
   while c \le size - 1 do
       if c+1 < size and pq[c] > pq[c+1] then
           c \leftarrow c + 1 // right child has higher priority
       if x \le pq[c] then break
       pq[i] \leftarrow pq[c]
       i \leftarrow c
       c \leftarrow firstChild(i)
   pq[i] \leftarrow x
peek ( ): return pq[0]
move (i, x): pq[i] \leftarrow x //override in indexed heap
```

Applications of priority queues:

Huffman coding

Prim's algorithm for MST

Dijkstra's algorithm for shortest paths

Select algorithm (*k* largest elements of a large array or stream)

Process scheduling, interrupt handling in operating systems

Heapsort

Heuristics for memory management, bin packing

Discrete event simulations, computer games: (randomly generated) events are processed in temporal order A* search in AI

Reduce round-off errors in floating point computations: best way to find sum of A[i], i = 1..n? Is $1 + \varepsilon = 1$? Merge sort using k-way merge

Find perfect powers (numbers of the form a^b , b > 1) in increasing order, up to some n (say, 10^{18}).

Enumerate numbers whose prime factors are only from a given set (e.g., $\{3, 5, 7\}$), in sorted order.

Pairing buy/sell orders in the stock market by market makers

<u>Huffman coding</u> (application of priority queues):

Input: Alphabet Σ , and a frequency function $f: \Sigma \to \mathbb{R}^+$. Example: $\Sigma = \{A, C, G, T\}, f = \{.5, .25, .1, .15\}$. In the given input file with n characters, $c \in \Sigma$ occurs $f(c) \cdot n$ times.

Output: A binary code for Σ that minimizes the total length of the file. It is required that no character's code is a proper prefix of another character's code. Such codes are called *prefix* codes, and no boundary markers are needed when a file is encoded with prefix codes.

	A: 0.5	C: 0.25	G: 0.1	T: 0.15	Weighted average of bits per character
Fixed length code	00	01	10	11	2 * .5 + 2 * .25 + 2 * .1 + 2 * .15 = 2
Variable length code	0	10	110	111	1 * .5 + 2 * .25 + 3 * .1 + 3 * .15 = 1.75

Huffman's algorithm to compute an optimal prefix code:

Create a priority queue $\,q\,$ with the characters of $\Sigma,$ where $\,c \in \Sigma\,$ has priority $f(c)\,.$

while q has more than one node do

$$x \leftarrow q.remove()$$

$$y \leftarrow q.remove()$$

Create a new node z with frequency f(z) = f(x) + f(y).

Attach nodes x and y as the 2 children of z, along edges labeled 0 and 1.

The single node in q contains a tree that is an optimal coding tree for the given problem.

Code for $c \in \Sigma$ is obtained by concatenating the labels along the edges from the root of the tree to the leaf node corresponding to c.

Huffman coding example: $\Sigma = \{a, b, c, d, e\}, f = \{.2, .1, .15, .3, .25\}$

