Practice: Area Between Curves

For the problems below, set up the integral(s) that represent the area bounded by the curves. Evaluate the integrals "by hand".

1.
$$f(x) = x^2 - x$$
 $g(x) = 2x$ for [-2, 3]

2.
$$f(x) = e^x - 2$$
 $g(x) = 0$ for [-2, 0]

3.
$$f(x) = x^2 - 1$$
 $g(x) = 0$ for [-1, 3]

For the problems below, set up the integral(s) that represent the area bounded by the curves. Evaluate the integrals using the functions (calc intersect, fnInt-under the math button) on your calculator.

$$\circ \int_a^b (f(x) - g(x)) dx \longrightarrow \text{fnInt}(f(x)-g(x), x, a, b)$$

4.
$$f(x) = 2x^3 - x^2 - 14x$$
 $g(x) = 4x - x^2$

5.
$$f(x) = (x-1)^3$$
 $g(x) = x-1$

6.
$$f(x) = \frac{x^2}{2} - 2x$$
 $g(x) = \frac{-x}{2} + 2$

4.
$$f(x) = 2x^3 - x^2 - 14x$$
 $g(x) = 4x - x^2$
5. $f(x) = (x - 1)^3$ $g(x) = x - 1$
6. $f(x) = \frac{x^2}{2} - 2x$ $g(x) = \frac{-x}{2} + 2$
7. $f(x) = \frac{x^2}{2} - 2x$ $g(x) = \frac{-x}{2} + 2$ for [2, 6]
8. $f(x) = 2\sqrt{x}$ $g(x) = \frac{x^2}{4}$
9. $f(x) = x^3 - 9x$ $g(x) = 9 - x^2$
10. $f(x) = \frac{-x^3}{2} + 2x^2$ $g(x) = -x^2 + 4x$
11. $f(x) = 2x^2 - 8x + 10$ $g(x) = \frac{x^2}{2} - 2x - 1$ for [1,3]
12. $f(x) = -2x^2 - 1$ $g(x) = -x + 3$ for [0,1]
13. $f(x) = -x^3 + 6x$ $g(x) = -x^2$

8.
$$f(x) = 2\sqrt{x}$$
 $g(x) = \frac{x^2}{4}$

9.
$$f(x) = x^3 - 9x$$
 $g(x) = 9 - x^2$

10.
$$f(x) = \frac{-x^3}{2} + 2x^2$$
 $g(x) = -x^2 + 4x$

11.
$$f(x) = 2x^2 - 8x + 10$$
 $g(x) = \frac{x^2}{2} - 2x - 1$ for [1,3]

12.
$$f(x) = -2x^2 - 1$$
 $g(x) = -x + 3$ for [0,1]

13.
$$f(x) = -x^3 + 6x$$
 $g(x) = -x^2$