

Практикум з математичного аналізу

для студентів спеціальності "Інженерія програмного забезпечення" факультету комп'ютерних наук та кібернетики

Семестр 2

Ляшко С. І., Аджубей Л. Т., Затула Д. В.

Зміст

Передмова	i
Розділ 5. Первісна та інтеграл Ньютона-Лейбніца	
Тема 11. Первісна. Елементарні методи інтегрування	4
Тема 12. Інтегрування раціональних функцій	9
Тема 13. Інтегрування ірраціональних функцій методом раціоналізації .	14
Тема 14. Інтегрування тригонометричних функцій та їх раціональних	
комбінацій	22
Розділ 6. Інтеграл Рімана	
Тема 15. Означення інтеграла Рімана та його зв'язок з інтегралом Ньютона—	
Лейбніца	
Тема 16. Основні теореми інтегрального числення	
Тема 17. Застосування інтеграла Рімана	40
Відповіді та вказівки	
Рекомендовані джерела	

Передмова

Курс математичного аналізу ϵ основою фундаментальної математичної підготовки для випускників природничих спеціальностей у класичних університетах.

Даний практикум з математичного аналізу призначений студентам спеціальності 121 "Інженерія програмного забезпечення" факультету комп'ютерних наук та кібернетики Київського національного університету імені Тараса Шевченка. Він відповідає програмі курсу, яка складається з 58 годин лекцій та 56 годин практичних занять. Практикум складається з двох частин, кожна з яких містить 14 практичних занять і відповідає матеріалу одного семестру.

Основною метою, яку переслідували автори, є забезпечення навчальним матеріалом практичних занять в рамках стислого курсу математичного аналізу. В посібнику кожна тема містить всі необхідні означення і твердження, що дозволяє розв'язувати запропоновані задачі без додаткової літератури. В якості основного теоретичного матеріалу і практичних завдань використані підручники і збірник задач з математичного аналізу авторів І.І. Ляшко, С.І. Ляшко, В.Ф. Ємельянов, О.К. Боярчук, І.М. Александрович, О.І. Молодцов, Д.А. Номіровський, Б.В. Рубльов та інші [?, 1, 3, 4].

Тематичний план практичних занять. Семестр 2

Первісна та інтеграл Ньютона-Лейбніца

- 15. Первісна. Елементарні методи інтегрування.
- 16. Інтегрування раціональних функцій.
- 17. Інтегрування ірраціональних функцій методом раціоналізації.
- 18. Інтегрування тригонометричних функцій та їх раціональних комбінацій.

Інтеграл Рімана

- 19. Означення інтеграла Рімана та його зв'язок з інтегралом Ньютона-Лейбніца.
- 20. Основні теореми інтегрального числення.
- 21. Застосування інтеграла Рімана.

Функції багатьох змінних

- 22. Простір т-вимірних функцій, їх границя та неперервність.
- 23. Похідна і диференціал функції багатьох змінних. Похідні та диференціали вищих порядків.
- 24. Екстремуми функцій багатьох змінних.

Числові та функціональні ряди. Невласні інтеграли

- 25. Ряди з невід'ємними членами. Ряди з членами довільного знаку.
- 26. Функціональні послідовності і ряди. Степеневі ряди.
- 27. Ряди Фур'є.
- 28. Невласні інтеграли.

Розділ 5. Первісна та інтеграл Ньютона-Лейбніца

Тема 11. Первісна. Елементарні методи інтегрування

Нехай $f: \mathbb{R} \to \mathbb{R}$. Функція $F: \mathbb{R} \to \mathbb{R}$ називається первісною функції f(x), якщо $D_f = D_F$ і $\forall x \in D_f$ виконується: F'(x) = f(x). Оскільки $\frac{dF}{dx} = f(x)$, dF = f(x) dx, то $F(x) = \int f(x) dx$ називається невизначеним інтегралом.

Теорема (про структуру первісної). Нехай $F: \mathbb{R} \to \mathbb{R}$ — первісна для функції $f: \mathbb{R} \to \mathbb{R}$. Тоді $\forall x \in D_f = D_F \colon F'(x) = f(x)$. Для того, щоб довільна функція $\Phi(x)$ була первісною для $f(x) \Leftrightarrow \Phi(x) - F(x) = C, C \in \mathbb{R}$.

Сукупність всіх первісних функцій для f(x) називається невизначеним інтегралом і $\int f(x) dx = \{F(x) + C \mid x \in D_f, C \in \mathbb{R}\}$, де F'(x) = f(x). Як правило, позначення множини опускають і пишуть F(x) + C.

Інтеграл Ньютона-Лейбніца

Інтеграл Ньютона—Лейбніца, який запроваджується до розгляду, заміняє собою невизначений інтеграл, який традиційно вивчають лише з точки зору правил та техніки його обчислення, не займаючись застосуваннями [1, с. 196].

Функція $f:\mathbb{R}\to\mathbb{R}$ називається *інтегровною в сенсі Ньютона-Лейбніца* на множині $X\subset D_f$, якщо $\forall x\in X$ вона має первісну, тобто

$$F(x) = \int_{-\infty}^{x} f(t) dt \stackrel{def}{\Leftrightarrow} \{F(a) = 0 \land \forall x \in X : F'(x) = f(x)\}.$$

Функція F(x) називається *інтегралом Ньютона-Лейбніца* з фіксованою нижньою межею a і змінною верхньою x. Її значення F(b) в точці $b \in X$ називається визначеним інтегралом Ньютона-Лейбніца і позначається $\int_a^b f(t) \, dt$, де t — змінна інтегрування, від вибору якої величина інтегралу не залежить. Якщо f інтегровна в сенсі Ньютона-Лейбніца на множині X і множина точок її розриву — не більш ніж зліченна, то F(x) — це первісна у широкому розумінні.

Теорема (формула Ньютона—**Лейбніца).** Якщо $f: \mathbb{R} \to \mathbb{R}$ інтегровна в сенсі Ньютона—Лейбніца на D_f і F — її первісна, то $\forall a \in D_f$ і $\forall b \in D_f$ існує $\int_a^b f(x) \, dx$, однозначно визначений, і має місце рівність:

$$\int_{a}^{b} f(x) dx = F(b) - F(a) \stackrel{def}{=} F(x) \Big|_{x=a}^{x=b}$$

Властивості інтеграла Ньютона-Лейбніца [1, с. 177-179]. Нехай функції $f:\mathbb{R} o \mathbb{R}$ та $g:\mathbb{R} o \mathbb{R}$ інтегровні в сенсі Ньютона–Лейбніца, $D_f = D_g$ та $a, b, c \in D_f$.

1. *Антисиметричність*:

$$\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx.$$

2. $A \partial umu$ B Hi Cm B:

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

3. Диференційовність: $\forall x \in D_f$

$$\left(\int_{a}^{x} f(t) dt\right)' = f(x); \quad \left(\int_{x}^{a} f(t) dt\right)' = -f(x).$$

4. Лінійність: $\forall \lambda, \mu \in \mathbb{R}$ функція $(\lambda f + \mu g)(x)$ також інтегровна в сенсі Ньютона-Лейбніца і

$$\int_a^b (\lambda f + \mu g)(x) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx.$$

2) $\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1;$

6) $\int \sin x \, dx = -\cos x + C;$

4) $\int a^x dx = \frac{a^x}{\ln a} + C, \ a > 0, a \neq 1;$

Таблиця основних інтегралів

$$1) \int 0 \, dx = C;$$

3)
$$\int \frac{1}{x} dx = \ln|x| + C;$$

5)
$$\int \cos x \, dx = \sin x + C;$$

7)
$$\int \frac{1}{\cos^2 x} \, dx = \operatorname{tg} x + C;$$

9)
$$\int \cosh x \, dx = \sinh x + C;$$

11)
$$\int \frac{1}{\cosh^2 x} \, dx = \tanh x + C;$$

13)
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C;$$

15)
$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C, \ a \neq 0;$$

16)
$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \, dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C.$$

$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C;$$

$$\int \operatorname{ch} x \, dx = \operatorname{sh} x + C;$$

$$10) \int \operatorname{sh} x \, dx = \operatorname{ch} x + C.$$

$$12) \int \frac{1}{\operatorname{sh}^2 x} dx = -\operatorname{cth} x + C.$$

$$12) \int \frac{1}{\operatorname{sh}^2 x} dx = -\operatorname{cth} x + C.$$

$$13) \int \frac{1}{\operatorname{sh}^2 x} dx = -\operatorname{cth} x + C.$$

$$14) \int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C;$$

Методи обчислення інтеграла Ньютона-Лейбніца

Теорема (метод заміни змінної). Нехай $f: \mathbb{R} \to \mathbb{R}$ і $\varphi: \mathbb{R} \to \mathbb{R}$, при цьому $\exists \varphi'(x) \, \forall x \in X, \, X = D_{f \circ \varphi}$. Якщо $f(\tau)$, де $\tau = \varphi(x)$, — інтегровна за Ньютоном-Лейбніцем функція на множині X, то функція $(f \circ \varphi) \cdot \varphi'$ також інтегровна та $\forall a, b \in X$ має місце формула заміни змінної в інтегралі:

$$\int_a^b f(\varphi(t)) \cdot \varphi'(t) \, dt = \int_{\varphi(a)}^{\varphi(b)} f(\tau) \, d\tau, \quad \tau = \varphi(x).$$

Зауваження. Якщо в інтегралі чисельник є похідною від знаменника, то

$$\int_{x_0}^x \frac{f'(t) dt}{f(t)} = \ln|f(t)| \Big|_{x_0}^x = \ln|f(x)| \quad \forall x : f(x) \neq 0.$$

Теорема (метод інтегрування частинами). Нехай $u: \mathbb{R} \to \mathbb{R}$ і $v: \mathbb{R} \to \mathbb{R}$, $D_u = D_v$, $\exists u'(x), v'(x)$ для довільного $x \in D_u$, і нехай існує первісна для функції $u'(x) \cdot v(x)$. Тоді існує первісна для $u(x) \cdot v'(x)$ і має місце формула інтегрування частинами:

$$d(u \cdot v) = u \, dv + v \, du, \quad u \, dv = d(u \cdot v) - v \, du \implies$$

$$\Rightarrow \int_a^b u \, dv = \int_a^b d(uv) - \int_a^b v \, du \implies \int_a^b u \, dv = (uv) \Big|_a^b - \int_a^b v \, du, \quad \forall (a, b) \in D_u.$$

Первісна у широкому розумінні

Функції $F: \mathbb{R} \to \mathbb{R}$ називається *первісною у широкому розумінні* для функції $f: \mathbb{R} \to \mathbb{R}$ на множині $X \subset D_F$, якщо F неперервна та існує F'(x) = f(x) для всіх точок множини X, можливо, за виключенням не більш ніж зліченної її підмножини.

Практичне заняття 15

Приклад 1. Обчислимо невизначений інтеграл $\int \frac{x^4 - 2x^3 + 4x^2 - 8x}{3x^3} \, dx$.

В результаті почленного ділення чисельника на знаменник отримуємо суму степеневих функцій:

$$\int \frac{x^4 - 2x^3 + 4x^2 - 8x}{3x^3} \, dx = \int \left(\frac{1}{3}x - \frac{2}{3} + \frac{4}{3x} - \frac{8}{3x^2}\right) \, dx.$$

Далі скористаємося лінійністю інтеграла і таблицею основних інтегралів:

$$\int \left(\frac{1}{3}x - \frac{2}{3} + \frac{4}{3x} - \frac{8}{3x^2}\right) dx = \frac{1}{3} \cdot \frac{x^2}{2} - \frac{2}{3} \cdot x + \frac{4}{3} \cdot \ln|x| - \frac{8}{3} \cdot \left(-\frac{1}{x}\right) + C =$$

$$= \frac{x^2}{6} - \frac{2}{3}x + \frac{4}{3}\ln|x| + \frac{8}{3x} + C, \quad x \neq 0.$$

┙

Приклад 2. Обчислимо невизначений інтеграл $\int \frac{e^{x+1}}{2^{x-1}} dx$.

Перетворимо підінтегральну функцію до зручного вигляду та скористаємося табличним інтегралом $\int a^x \, dx = \frac{a^x}{\ln a} + C$:

$$\int \frac{e^{x+1}}{2^{x-1}} dx = 2e \int \frac{e^x}{2^x} dx = 2e \int \left(\frac{e}{2}\right)^x dx = 2e \cdot \left(\frac{e}{2}\right)^x \left(\ln \frac{e}{2}\right)^{-1} + C.$$

Приклад 3. Обчислимо невизначений інтеграл $\int \frac{dx}{\cos^2\left(x+\frac{\pi}{6}\right)}$.

Зведемо інтеграл до табличного: $\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$. Для цього зробимо лінійну заміну змінної: $x + \frac{\pi}{6} = t$, dx = dt. Тоді $\forall x \notin \left\{ \frac{\pi}{3} + \pi k \mid k \in \mathbb{Z} \right\}$:

$$\int \frac{dx}{\cos^2\left(x + \frac{\pi}{6}\right)} = \int \frac{dt}{\cos^2 t} = \operatorname{tg} t + C = \operatorname{tg}\left(x + \frac{\pi}{6}\right) + C.$$

┙

┙

Приклад 4. Обчислимо невизначений інтеграл $\int \frac{dx}{a^2 + b^2 x^2}$.

Зведемо інтеграл до табличного: $\int \frac{dx}{1+x^2} = \arctan x + C$. Для цього винесемо сталу a з-під знаку інтеграла:

$$\int \frac{dx}{a^2 + b^2 x^2} = \int \frac{dx}{a^2 \left(1 + \frac{b^2}{a^2} x^2\right)} = \frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{b}{a} x\right)^2}.$$

Тепер зробимо лінійну заміну змінної: $t = \frac{b}{a}x$, $dx = \frac{a}{b}dt$. Тоді:

$$\frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{b}{a}x\right)^2} = \frac{1}{a^2} \int \frac{1}{1 + t^2} \cdot \frac{a}{b} dt = \frac{1}{ab} \operatorname{arctg} t + C = \frac{1}{ab} \operatorname{arctg} \frac{b}{a} x + C.$$

Приклад 5. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{t^7}{\sqrt{1-t^{16}}} dt$.

Функцію $f(t)=\frac{t^7}{\sqrt{1-t^{16}}}$ можна представити у вигляді $f(t)=g(\varphi(t))\cdot \varphi'(t),$ де $\varphi(t)=t^8.$ Тому зробимо раціональну підстановку $y=\varphi(t)$:

$$\int_{x_0}^x \frac{t^7}{\sqrt{1 - t^{16}}} dt = \left| t = \sqrt[8]{y}, \ dt = \frac{1}{8\sqrt[8]{y^7}} dy \right| = \int_{x_0^8}^{x^8} \frac{\sqrt[8]{y^7}}{\sqrt{1 - y^2}} \cdot \frac{dy}{8\sqrt[8]{y^7}} = \frac{1}{8} \arcsin y \Big|_{x_0^8}^{x^8} = \frac{1}{8} \arcsin x^8, \ |x| \leqslant 1.$$

Приклад 6. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{e^{\operatorname{tg} t} + \operatorname{ctg} t}{\cos^2 t} \, dt$.

Оскільки підінтегральна функція залежить лише від функції $\varphi(t)=\operatorname{tg} t$ та її похідної $\varphi'(t)=\frac{1}{\cos^2 t}$, то зробимо раціональну заміну змінної:

$$\int_{x_0}^x \frac{e^{\operatorname{tg} t} + \operatorname{ctg} t}{\cos^2 t} \, dt = \left| y = \operatorname{tg} t, \ dy = \frac{dt}{\cos^2 t} \right| = \int_{\operatorname{tg} x_0}^{\operatorname{tg} x} \left(e^y + \frac{1}{y} \right) \, dy =$$

$$= \left(e^y + \ln|y| \right) \Big|_{\operatorname{tg} x_0}^{\operatorname{tg} x} = e^{\operatorname{tg} x} + \ln|\operatorname{tg} x|, \quad x \notin \left\{ \frac{\pi}{2} + \pi k \mid k \in \mathbb{Z} \right\}.$$

Обчисліть невизначені інтеграли, використовуючи таблицю основних інтегралів:

15.1
$$\int \frac{x^5 + 2x^3 - 4x^2 - x + 11}{x^2} dx$$
; 15.2 $\int \frac{(1-x)^2}{x\sqrt{x}} dx$;
15.3 $\int \frac{(1+x)^2}{x(1+x^2)} dx$; 15.4 $\int 2\cos^2\frac{x}{2} dx$;
15.5 $\int (\cos 2x \sin x - \sin 2x \cos x) dx$; 15.6 $\int \operatorname{tg}^2 x dx$;
15.7 $\int \operatorname{sh} x \cdot \operatorname{ch} x dx$; 15.8 $\int \frac{3^{x+1} + e^{3x} - e^{x-1}}{e^x} dx$.

Обчисліть невизначені інтеграли, використовуючи лінійну заміну змінної:

15.9
$$\int \frac{dx}{(2x-3)^5}$$
; 15.10 $\int \sqrt[3]{(5-8x)^4} dx$;
15.11 $\int e^{-3x+1} dx$; 15.12 $\int \sin(2x-3) dx$;
15.13 $\int \frac{dx}{2x^2+9}$; 15.14 $\int \frac{dx}{\sqrt{4-9x^2}}$.

Обчисліть інтеграли Ньютона—Лейбніца, використовуючи раціональну заміну змінної:

Тема 12. Інтегрування раціональних функцій

Раціональна функція однієї змінної (або ж **дробово-раціональна функція**) — це алгебраїчний вираз, що є відношенням двох многочленів, коефіцієнти яких належать множині дійсних чисел, тобто має вигляд:

$$R(x) = \frac{P_m(x)}{Q_n(x)} = \frac{a_m x^m + \ldots + a_1 x + a_0}{b_n x^n + \ldots + b_1 x + b_0},$$

де $a_0, a_1, \ldots, a_m, b_0, b_1, \ldots, b_n$ — сталі, m та n — невід'ємні цілі числа.

Якщо $m\geqslant n$, то дріб неправильний. Кожен неправильний дріб може бути представлений у вигляді суми многочлена W(x) (ціла частина) та правильного дробу $\left(\frac{R}{Q}\right)$: $\frac{P(x)}{Q(x)}=W(x)+\frac{R(x)}{Q(x)}$. З класу правильних дробів виділяють 4 типи основних елементарних дробів: $\frac{A}{x-a}$, $\frac{A}{(x-a)^n}$, $\frac{Mx+N}{x^2+2px+q}$ та $\frac{Mx+N}{(x^2+2px+q)^n}$, де $a,p,q,M,N\in\mathbb{R}$, а n>1 — ціле число. При цьому $x^2+2px+q$ не має дійсних коренів у випадку, якщо дискримінант $D<0 \Leftrightarrow p^2-q<0 \Leftrightarrow q-p^2>0$.

Розвинення правильних дробів на прості

Вигляд розвинення правильних дробів на прості залежить від розвинення многочлена $Q_n(x)$ на множники. Кожен многочлен n-го степеня з дійсними коефіцієнтами і коефіцієнтом 1 при x^n можна однозначно представити у вигляді співмножників виду x-a та x^2+px+q . Якщо маємо співмножники, що співпадають, то:

$$Q_n(x) = (x - a_1)^{n_1} (x - a_2)^{n_2} \cdot \dots \cdot (x - a_k)^{n_k} \times (x^2 + p_1 x + q_1)^{m_1} (x^2 + p_2 x + q_2)^{m_2} \cdot \dots \cdot (x^2 + p_r x + q_r)^{m_r},$$

де $a_1,a_2,a_3,\ldots,a_k\in\mathbb{R}$ — корені многочлена $Q_n(x);\;n_i,\,i=\overline{1,k}$ — кратності коренів $a_i;\;p_j,q_j\in\mathbb{R},\;j=\overline{1,r}$ — коефіцієнти тричленів; $m_j,\,j=\overline{1,r}$ — кратності квадратичних тричленів. При цьому $\sum\limits_{i=1}^k n_i+2\sum\limits_{j=1}^r m_j=n.$

Будь-який правильний раціональний дріб єдиним способом розкладається на скінченне число елементарних дробів:

$$\frac{P_m(x)}{Q_n(x)} = \frac{A_1}{(x-a_1)^{n_1}} + \frac{A_2}{(x-a_1)^{n_1-1}} + \dots + \frac{A_{n_1}}{x-a_1} + \frac{B_1}{(x-a_2)^{n_2}} + \frac{B_2}{(x-a_2)^{n_2-1}} + \dots + \frac{B_{n_2}}{x-a_2} + \dots + \frac{K_1}{(x-a_k)^{n_k}} + \frac{K_2}{(x-a_k)^{n_k-1}} + \dots + \frac{K_{n_k}}{x-a_k} + \dots + \dots + \frac{M_1x+N_1}{(x^2+p_rx+q_r)^{m_r}} + \frac{M_2x+N_2}{(x^2+p_rx+q_r)^{m_r-1}} + \dots + \frac{M_rx+N_r}{x^2+p_rx+q_r}.$$
(1)

Для того, щоб визначити невідомі коефіцієнти, множимо обидві частини на Q(x). Із рівності многочленів у лівій і правій частинах (1) випливає рівність

коефіцієнтів при однакових степенях x. Прирівнюємо їх і отримуємо систему лінійних алгебраїчних рівнянь. Метод знаходження коефіцієнтів розвинення правильного раціонального дробу у суму простих дробів називається **методом** невизначених коефіцієнтів.

Практичне заняття 16

Приклад 1. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{A\,dt}{t-a},\ de\ a,A\in\mathbb{R}.$

Зведемо інтеграл до табличного лінійною заміною y = t - a:

$$\int_{x_0}^x \frac{A \, dt}{t - a} = \int_{x_0 - a}^{x - a} \frac{A \, dy}{y} = A \ln|y| \Big|_{x_0 - a}^{x - a} = A \ln|x - a|, \quad x \neq a.$$

Приклад 2. Обчислимо інтеграл Ньютона—Лейбніца $\int_{x_0}^x \frac{A\,dt}{(t-a)^n},\ de\ a,A\in\mathbb{R}$ та $n\in\mathbb{N}\setminus\{1\}$.

Зведемо інтеграл до табличного лінійною заміною $y=t-a \neq 0$:

$$\int_{x_0}^x \frac{A\,dt}{(t-a)^n} = \int_{x_0-a}^{x-a} \frac{A\,dy}{y^n} = A \int_{x_0-a}^{x-a} y^{-n}\,dy = A \cdot \frac{y^{1-n}}{1-n} \Big|_{x_0-a}^{x-a} = A \frac{(x-a)^{1-n}}{1-n}.$$

Приклад 3. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{(Mt+N)\,dt}{t^2+2pt+q}$, де $M,N,p,q\in\mathbb{R}$.

Позначимо $b^2=q-p^2>0$ та зробимо лінійну заміну змінної y=t+p:

$$\begin{split} &\int_{x_0}^x \frac{(Mt+N)\,dt}{t^2+2pt+q} = \int_{x_0}^x \frac{(Mt+N)\,dt}{(t+p)^2+q-p^2} = \left| \begin{array}{c} t=y-p\\ dy=dt \end{array} \right| = \\ &= \int_{x_0+p}^{x+p} \frac{(My-Mp+N)\,dy}{y^2+b^2} = M \int_{x_0+p}^{x+p} \frac{y\,dy}{y^2+b^2} + \int_{x_0+p}^{x+p} \frac{(N-Mp)\,dy}{y^2+b^2} = \\ &= \frac{M}{2} \int_{x_0+p}^{x+p} \frac{dy^2}{y^2+b^2} + (N-Mp) \int_{x_0+p}^{x+p} \frac{dy}{y^2+b^2} = \\ &= \frac{M}{2} \ln \left(y^2+b^2\right) \Big|_{x_0+p}^{x+p} + (N-Mp) \cdot \frac{1}{b} \operatorname{arctg} \frac{y}{b} \Big|_{x_0+p}^{x+p} = \\ &= \frac{M}{2} \ln \left| (x+p)^2+q-p^2 \right| + \frac{N-Mp}{\sqrt{q-p^2}} \operatorname{arctg} \frac{x+p}{\sqrt{q-p^2}} + C. \end{split}$$

Приклад 4. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{(Mt+N)\,dt}{((t+p)^2+b^2)^n},\ \partial e^{M}, N, p, b \in \mathbb{R}$ та $n \in \mathbb{N} \setminus \{1\}$.

Позначимо $b^2 = q - p^2 > 0$ та зробимо лінійну заміну змінної y = t + p:

$$\begin{split} \int_{x_0}^x \frac{(Mt+N)\,dt}{((t+p)^2+b^2)^n} &= \left| \begin{array}{c} t=y-p\\ dy=dt \end{array} \right| = \int_{x_0+p}^{x+p} \frac{(M(y-p)+N)\,dy}{(y^2+b^2)^n} = \\ &= \frac{M}{2} \int_{x_0+p}^{x+p} \frac{2y\,dy}{(y^2+b^2)^n} + (N-Mp) \int_{x_0+p}^{x+p} \frac{dy}{(y^2+b^2)^n}. \end{split}$$

Тоді:

$$\int_{x_0+p}^{x+p} \frac{2y \, dy}{(y^2+b^2)^n} = \int_{x_0+p}^{x+p} \frac{d(y^2+b^2)}{(y^2+b^2)^n} = \frac{(y^2+b^2)^{1-n}}{1-n} \bigg|_{x_0+p}^{x+p} = \frac{((x+p)^2+b^2)^{1-n}}{1-n}.$$

Позначимо другий інтеграл як $I_n = \int_{x_0+p}^{x+p} \frac{dy}{(y^2+b^2)^n}$ та запишемо для нього рекурентну формулу, використовуючи формулу інтегрування частинами:

$$I_{n} = \begin{vmatrix} u = \frac{1}{(y^{2} + b^{2})^{n}}, & du = \frac{-2ny}{(y^{2} + b^{2})^{n+1}} dy \\ dv = dy, & v = y \end{vmatrix} =$$

$$= \frac{y}{(y^{2} + b^{2})^{n}} \Big|_{x_{0}+p}^{x+p} + 2n \int_{x_{0}+p}^{x+p} \frac{y^{2} dy}{(y^{2} + b^{2})^{n+1}} =$$

$$= \frac{x+p}{((x+p)^{2} + b^{2})^{n}} + 2n \int_{x_{0}+p}^{x+p} \frac{y^{2} + b^{2} - b^{2}}{(y^{2} + b^{2})^{n+1}} dy =$$

$$= \frac{x+p}{((x+p)^{2} + b^{2})^{n}} + 2n \int_{x_{0}+p}^{x+p} \frac{dy}{(y^{2} + b^{2})^{n}} - 2nb^{2} \int_{x_{0}+p}^{x+p} \frac{dy}{(y^{2} + b^{2})^{n+1}} =$$

$$= \frac{x+p}{((x+p)^{2} + b^{2})^{n}} + 2nI_{n} - 2nb^{2}I_{n+1}.$$

Тобто

$$2nb^{2}I_{n+1} = \frac{x+p}{((x+p)^{2}+b^{2})^{n}} + (2n-1)I_{n};$$

$$I_{n+1} = \frac{1}{2nb^2} \left(\frac{x+p}{((x+p)^2+b^2)^n} + (2n-1)I_n \right), \quad I_1 = \frac{1}{b} \operatorname{arctg} \frac{x+p}{b}.$$

Приклад 5. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{2t^3 - 6t^2 - 11}{(1-t)^2(4+t^2)} dt$.

Оскільки підінтегральна функція є правильним раціональним дробом, то розкладемо її на прості дроби відповідно до формули (1):

$$\frac{2t^3 - 6t^2 - 11}{(1 - t)^2(4 + t^2)} = \frac{A}{1 - t} + \frac{B}{(1 - t)^2} + \frac{Ct + D}{t^2 + 4};$$
$$2t^3 - 6t^2 - 11 = A(1 - t)(t^2 + 4) + B(t^2 + 4) + (Ct + D)(1 - t)^2.$$

Прирівнюючи коефіцієнти при різних степенях t, отримаємо систему лінійних рівнянь, звідки знайдемо коефіцієнти A, B, C та D:

$$\begin{array}{l} t^3: \\ t^2: \\ t^1: \\ t^0: \\ \end{array} \left\{ \begin{array}{l} 2 = -A + C \\ -6 = A + B - 2C + D \\ 0 = -4A + C - 2D \\ -11 = 4A + 4B + D \end{array} \right. \Leftrightarrow \left. \begin{array}{l} A = 0 \\ B = -3 \\ C = 2 \\ D = 1 \end{array} \right.$$

Тоді

$$\int_{x_0}^x \frac{2t^3 - 6t^2 - 11}{(1 - t)^2 (4 + t^2)} dt = -3 \int_{x_0}^x \frac{dt}{(1 - t)^2} + \int_{x_0}^x \frac{2t + 1}{t^2 + 4} dt =$$

$$= 3 \int_{x_0}^x \frac{d(1 - t)}{(1 - t)^2} + \int_{x_0}^x \frac{d(t^2 + 4)}{t^2 + 4} + \int_{x_0}^x \frac{dt}{t^2 + 4} =$$

$$= \left(-\frac{3}{1 - t} + \ln(t^2 + 4) + \frac{1}{2} \arctan \frac{t}{2} \right) \Big|_{x_0}^x =$$

$$= \frac{3}{x - 1} + \ln(x^2 + 4) + \frac{1}{2} \arctan \frac{x}{2}, \quad x \neq 1.$$

Приклад 6. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \ln t \, dt$.

Застосуємо формулу інтегрування частинами для того, щоб отримати інтеграл від похідної функції $f(t) = \ln t$:

┙

$$\int_{x_0}^x \ln t \, dt = \begin{vmatrix} u = \ln t, & du = \frac{1}{t} \, dt \\ dv = dt, & v = t \end{vmatrix} = t \ln t \Big|_{x_0}^x - \int_{x_0}^x dt = x(\ln x - 1), \quad x > 0.$$

Приклад 7. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x e^{at} \cos bt \, dt$.

Двічі скористаємося формулою інтегрування частинами:

$$I = \int_{x_0}^{x} e^{at} \cos bt \, dt = \begin{vmatrix} u = \cos bt, & du = -b \sin bt \, dt \\ dv = e^{at} \, dt, & v = \frac{1}{a} e^{at} \end{vmatrix} =$$

$$= \frac{1}{a} e^{at} \cos bt \Big|_{x_0}^{x} + \frac{b}{a} \int_{x_0}^{x} e^{at} \sin bt \, dt =$$

$$= \begin{vmatrix} u = \sin bt, & du = b \cos bt \, dt \\ dv = e^{at} \, dt, & v = \frac{1}{a} e^{at} \end{vmatrix} =$$

$$= \frac{1}{a} e^{ax} \cos bx + \frac{b}{a^2} e^{at} \sin bt \Big|_{x_0}^{x} - \frac{b^2}{a^2} \int_{x_0}^{x} e^{at} \cos bt \, dt.$$

Тобто отримали рівність, з якої можна виразити значення інтеграла:

$$I = \frac{1}{a}e^{ax}\cos bx + \frac{b}{a^2}e^{ax}\sin bx - \frac{b^2}{a^2}I;$$

$$I = \frac{e^{ax}}{a^2 + b^2} (a\cos bx + b\sin bx).$$

Обчисліть інтеграли Ньютона—Лейбніца шляхом розкладу правильних дробів на прості:

$$\mathbf{16.1} \quad \int_{x_0}^{x} \frac{4t}{2t+1} \, dt; \qquad \qquad \mathbf{16.2} \quad \int_{x_0}^{x} \frac{t^2 - 1}{t^2 + 1} \, dt;$$

$$\mathbf{16.3} \quad \int_{x_0}^{x} \frac{3t^4}{t^2 + t - 2} \, dt; \qquad \qquad \mathbf{16.4} \quad \int_{x_0}^{x} \frac{t^4 + 1}{t^3 - t^2 + t - 1} \, dt;$$

$$\mathbf{16.5} \quad \int_{x_0}^{x} \frac{dt}{t^4 - 1}; \qquad \qquad \mathbf{16.6} \quad \int_{x_0}^{x} \frac{t^3 - 6t^2 + 9t + 7}{(t-2)^3(t-5)} \, dt;$$

$$\mathbf{16.7} \quad \int_{x_0}^{x} \frac{t^4 - 7t^3 - 8t^2 - 23t - 11}{(t^2 + 4t + 5)(t-3)^2(t+2)} \, dt; \qquad \mathbf{16.8} \quad \int_{x_0}^{x} \frac{4t^4 - t^3 + 7t^2 + 2}{(t-1)(t^2 + 1)^2} \, dt.$$

Обчисліть інтеграли Ньютона—Лейбніца за допомогою формули інтегрування частинами:

16.9
$$\int_{x_0}^{x} t \cos t \, dt;$$
16.10 $\int_{x_0}^{x} t e^{-t} \, dt;$
16.11 $\int_{x_0}^{x} e^{t} \sin t \, dt;$
16.12 $\int_{x_0}^{x} \operatorname{arctg} \sqrt{t} \, dt;$
16.13 $\int_{x_0}^{x} \operatorname{arccos} t \, dt;$
16.14 $\int_{x_0}^{x} (\operatorname{arcsin} t)^2 dt;$
16.15 $\int_{x_0}^{x} t \operatorname{tg}^2 t \, dt;$
16.16 $\int_{x_0}^{x} 3t^2 \ln(1+t) \, dt;$
16.17 $\int_{x_0}^{x} \sin \ln t \, dt;$
16.18 $\int_{x_0}^{x} \frac{t \operatorname{arctg} t}{\sqrt{1+t^2}} \, dt.$

Тема 13. Інтегрування ірраціональних функцій методом раціоналізації

Ірраціональна функція — це елементарна функція, побудована зі степеневих функцій з раціональними показниками, яка не зводиться до раціональної або дробово-раціональної функції. Основним методом інтегрування ірраціональних функцій є пошук підстановок, які дають змогу позбутися від ірраціональностей у підінтегральній функції та звести задачу до інтегрування раціональної або дробово-раціональної функції. Такі підстановки називаються раціоналізуючими.

Раціональна функція $R(x_1; x_2; ...; x_n)$ — це довільна функція, яка отримана в результаті скінченного числа арифметичних операцій (додавання, віднімання, множення та ділення) над змінними $x_1, x_2, ..., x_n$ і довільними числами.

Нехай k_1,k_2,\ldots,k_n та l_1,l_2,\ldots,l_n — деякі цілі числа, $n\in\mathbb{N},$ а r — спільне кратне чисел l_1,l_2,\ldots,l_n .

1. $\int_{x_0}^x R\left(t;t^{\frac{k_1}{l_1}};\dots;t^{\frac{k_n}{l_n}}\right)dt$ зводиться до інтеграла від дробово-раціональної функції за допомогою підстановки $t=y^r,\ dt=ry^{r-1}dy.$

$$\mathbf{2.} \int_{x_0}^x R\left(t; \left(\frac{at+b}{ct+s}\right)^{\frac{k_1}{l_1}}; \ldots; \left(\frac{at+b}{ct+s}\right)^{\frac{k_n}{l_n}}\right) dt$$
 зводиться до інтеграла від дро-

бово-раціональної функції підстановкою $y^r = \frac{at+b}{ct+s}, dt = d\left(\frac{sy^r-b}{a-cy^r}\right).$

Інтеграли, що містять квадратний тричлен

1. Для інтеграла вигляду $\int_{x_0}^x \frac{P_m(t)}{\sqrt{at^2+bt+c}} \, dt$, де $P_m(t)$ — многочлен степеня $m \geqslant 1$, має місце рівність:

$$\int_{x_0}^{x} \frac{P_m(t)}{\sqrt{at^2 + bt + c}} dt = Q_{m-1}(x)\sqrt{ax^2 + bx + c} + \lambda \int_{x_0}^{x} \frac{dt}{\sqrt{at^2 + bt + c}},$$

де $Q_{m-1}(x)$ — многочлен (m-1)-го степеня з невизначеними коефіцієнтами, λ — стала, що також є невизначеним коефіцієнтом. Диференціюючи це рівняння, маємо, що

$$P_m(x) = Q'_{m-1}(x) \cdot (ax^2 + bx + c) + Q_{m-1}(x) \cdot \frac{2ax + b}{2} + \lambda.$$

Прирівнюючи коефіцієнти при однакових степенях x, отримаємо систему лінійних рівнянь, з якої знаходяться всі невідомі коефіцієнти.

2.
$$\int_{x_0}^x \frac{dt}{(t-d)^n \cdot \sqrt{at^2+bt+c}}$$
, де $n \in \mathbb{N}$ та $d \notin [x_0,x]$, зводиться до інтеграла вигляду $\mathrm{sgn}\,(d-x) \int \frac{y^{n-1}\,dy}{\sqrt{a^*y^2+b^*y+c^*}}$ заміною $t-d=\frac{1}{y}$.

3. Інтеграл $\int_{x_0}^x R(t; \sqrt{at^2 + bt + c}) dt$ зводиться до інтеграла від дробово-раціональної функції при застосуванні однієї з nidemahosok Ейлера.

Перша підстановка Ейлера $\sqrt{at^2+bt+c}=y-\sqrt{a}t$ застосовується у випадку, якщо a>0. У такому разі $t=\frac{y^2-c}{2\sqrt{ay+b}}$ та

$$\sqrt{at^2+bt+c} = y - \sqrt{a} \cdot \frac{y^2-c}{2\sqrt{a}y+b} = \frac{\sqrt{a}y^2+by+c\sqrt{a}}{2\sqrt{a}y+b}.$$

Після інтегрування отриманого дробу повертаємось до змінної t підстановкою $y = \sqrt{at^2 + bt + c} + \sqrt{at}$.

 $m{\mathcal{A}}$ руга $nim{\partial} cm$ ановка $m{E}$ йлера $\sqrt{at^2+bt+c}=ty+\sqrt{c}$ застосовується у випадку, якщо c>0. У такому разі $t=rac{2\sqrt{cy-b}}{a-y^2}$ та

$$\sqrt{at^2+bt+c} = y \cdot \frac{2\sqrt{cy-b}}{a-y^2} + \sqrt{c} = \frac{\sqrt{cy^2-by+a\sqrt{c}}}{a-y^2}.$$

Третя підстановка Ейлера $\sqrt{at^2+bt+c}=y(t-t_1)$ застосовується у випадку, якщо квадратний тричлен at^2+bt+c має різні дійсні корені t_1,t_2 та коефіцієнт a>0. Тоді

$$\sqrt{at^2 + bt + c} = \sqrt{a(t - t_1)(t - t_2)} = \sqrt{a} |t - t_1| \sqrt{\frac{t - t_2}{t - t_1}} \implies y = \sqrt{\frac{a(t - t_2)}{t - t_1}}$$

і маємо інтеграл
$$\int_{x_0}^x R_1\left(t;\sqrt{rac{a(t-t_2)}{t-t_1}}
ight)dt.$$

Зазначимо, що застосування підстановок Ейлера призводить до громіздких обчислень. Тому, як альтернативу, використовують інші способи інтегрування. Зокрема, у тричлені можна виділити повний квадрат:

$$at^2+bt+c=a\left(\left(t+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a^2}\right).$$

Тоді інтеграл $\int_{x_0}^x R(t; \sqrt{at^2 + bt + c}) dt$ за допомогою заміни $y = t + \frac{b}{2a}$ в залежності від знаків a та $(4ac - b^2)$ зводиться до інтеграла одного з видів:

4.
$$\int R(y; \sqrt{q^2 - y^2}) dy$$
, що заміною $y = q \sin u$ зводиться до $\int R(\sin u, \cos u) du$.

5.
$$\int R\left(y;\sqrt{y^2+q^2}\right)dy$$
, що заміною $y=q$ tg u зводиться до $\int R(\sin u,\cos u)\,du$.

6.
$$\int R\left(y;\sqrt{y^2-q^2}\right)dy$$
, що заміною $y=\frac{q}{\cos u}$ зводиться до $\int R(\sin u,\cos u)\,du$.

Інтегрування диференціальних біномів

Вираз $x^m(a+bx^n)^p$, де m,n,p — раціональні числа, називається **диферен**ціальним біномом. **Теорема (Чебишева).** Первісна функції $x^m(a+bx^n)^p$ виражається через елементарні функції тільки в наступних трьох випадках: 1) p — ціле число; 2) $\frac{m+1}{n}$ — ціле; 3) $\frac{m+1}{n}$ + p — ціле.

Для зазначених випадків наведемо підстановки, які призводять до інтегрування раціональних функцій.

- **1.** Нехай p ціле число, $m=\frac{k}{l}$ та $n=\frac{r}{s}$, де k,l,r,s цілі. Інтеграл $\int x^m (a+bx^n)^p \, dx$ заміною $x=y^\lambda$, $dx=\lambda y^{\lambda-1} \, dy$, де λ найменше спільне кратне чисел l та s, зводиться до інтеграла від дробово-раціональної функції.
- **2.** Нехай $\frac{m+1}{n}$ ціле число, $p=\frac{\mu}{\lambda}$. Тоді інтеграл $\int x^m (a+bx^n)^p \, dx$ заміною $a+bx^n=y^\lambda$ зводиться до інтеграла від дробово-раціональної функції.
- **3.** Нехай $\frac{m+1}{n} + p$ ціле число, $p = \frac{\mu}{\lambda}$. Тоді інтеграл $\int x^m (a + bx^n)^p \, dx$ заміною $\frac{a + bx^n}{x^n} = y^\lambda$ зводиться до інтеграла від дробово-раціональної функції.

Практичне заняття 17

Приклад 1. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{\sqrt{t}+1}{t^2-\sqrt{t}}\,dt.$

Зведемо задачу до інтегрування дробово-раціональної функції за допомогою заміни $t=y^2,\,dt=2y\,dy$:

$$\int_{x_0}^x \frac{\sqrt{t}+1}{t^2-\sqrt{t}} \, dt = \int_{\sqrt{x_0}}^{\sqrt{x}} \frac{y+1}{y^4-y} \cdot 2y \, dy = 2 \int_{\sqrt{x_0}}^{\sqrt{x}} \frac{y+1}{y^3-1} \, dy.$$

Оскільки отримали правильний дріб під знаком інтеграла, то можемо розкласти його на прості дроби:

$$\frac{y+1}{y^3-1} = \frac{y+1}{(y-1)(y^2+y+1)} = \frac{A}{y-1} + \frac{By+C}{y^2+y+1};$$

$$y+1 = A(y^2+y+1) + (By+C)(y-1).$$

Прирівнюючи коефіцієнти при різних степенях y, отримаємо систему лінійних рівнянь, звідки знайдемо коефіцієнти A, B та C:

$$\begin{array}{l} y^2: \\ y^1: \\ y^0: \\ \end{array} \left\{ \begin{array}{l} 0 = A + B \\ 1 = A - B + C \\ 1 = A - C \end{array} \right. \Leftrightarrow \quad A = \frac{2}{3}, \; B = -\frac{2}{3}, \; C = -\frac{1}{3}. \end{array}$$

Тоді

$$\int_{x_0}^x \frac{\sqrt{t+1}}{t^2 - \sqrt{t}} dt = 2 \int_{\sqrt{x_0}}^{\sqrt{x}} \frac{\frac{2}{3} dy}{y-1} - 2 \int_{\sqrt{x_0}}^{\sqrt{x}} \frac{\frac{2}{3} y + \frac{1}{3}}{y^2 + y + 1} dy =$$

$$\begin{split} &=\frac{4}{3}\ln|y-1|\Big|_{\sqrt{x_0}}^{\sqrt{x}} - \frac{2}{3}\int_{\sqrt{x_0}}^{\sqrt{x}} \frac{2y+1}{\left(y+\frac{1}{2}\right)^2 + \frac{3}{4}} \, dy = \\ &=\frac{4}{3}\ln\left|\sqrt{x}-1\right| - \frac{2}{3}\int_{\sqrt{x_0}}^{\sqrt{x}} \frac{1}{\left(y+\frac{1}{2}\right)^2 + \frac{3}{4}} \, d\left(y+\frac{1}{2}\right)^2 = \\ &=\frac{4}{3}\ln\left|\sqrt{x}-1\right| - \frac{2}{3}\ln\left|\left(y+\frac{1}{2}\right)^2 + \frac{3}{4}\right|\Big|_{\sqrt{x_0}}^{\sqrt{x}} = \\ &=\frac{4}{3}\ln\left|\sqrt{x}-1\right| - \frac{2}{3}\ln\left|x+\sqrt{x}+1\right|, \ \ x \neq 1. \end{split}$$

Приклад 2. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \sqrt{\frac{t-1}{t+1}} \, dt$.

Зведемо задачу до інтегрування дробово-раціональної функції за допомогою заміни $\frac{t-1}{t+1}=y^2 \Rightarrow t=\frac{y^2+1}{1-y^2},\ dt=\frac{4y}{(y^2-1)^2}\,dy.$ Оскільки $D_f=(-\infty,-1)\cup\cup[1,+\infty),$ то позначимо g(x)=-1, якщо x<-1, та g(x)=1, якщо x>1. Тоді:

$$\int_{x_0}^x \sqrt{\frac{t-1}{t+1}} \, dt = \int_{\sqrt{\frac{x_0-1}{x_0+1}}}^{\sqrt{\frac{x-1}{x+1}}} |y| \cdot \frac{4y}{(y^2-1)^2} \, dy = g(x) \cdot \int_{\sqrt{\frac{x_0-1}{x_0+1}}}^{\sqrt{\frac{x-1}{x+1}}} \frac{4y^2}{(y^2-1)^2} \, dy.$$

Розкладемо правильний дріб під знаком інтеграла на прості дроби:

$$\frac{4y^2}{(y^2-1)^2} = \frac{4y}{(y-1)^2(y+1)^2} = \frac{A}{y-1} + \frac{B}{(y-1)^2} + \frac{C}{y+1} + \frac{D}{(y+1)^2};$$

$$4y^{2} = A(y-1)(y+1)^{2} + B(y+1)^{2} + C(y+1)(y-1)^{2} + D(y-1)^{2}.$$

Прирівнюючи коефіцієнти при різних степенях y, отримаємо систему лінійних рівнянь, звідки знайдемо коефіцієнти A,B,C та D:

$$\begin{array}{lll} y^3: & \begin{cases} 0 = A + C \\ y^2: & \\ 4 = A + B - C + D \\ 0 = -A + 2B - C - 2D \\ 0 = -A + B + C + D \end{cases} \Leftrightarrow \begin{cases} A = 1 \\ B = 1 \\ C = -1 \\ D = 1 \end{cases}$$

Тоді

$$\begin{split} \int_{x_0}^x \sqrt{\frac{t-1}{t+1}} \, dt &= g(x) \cdot \int_{\sqrt{\frac{x_0-1}{x_0+1}}}^{\sqrt{\frac{x-1}{x+1}}} \left(\frac{1}{y-1} + \frac{1}{(y-1)^2} - \frac{1}{y+1} + \frac{1}{(y+1)^2} \right) dy = \\ &= g(x) \cdot \left(\ln|y-1| - \frac{1}{y-1} - \ln|y+1| - \frac{1}{y+1} \right) \Big|_{\sqrt{\frac{x_0-1}{x_0+1}}}^{\sqrt{\frac{x-1}{x+1}}} = \\ &= g(x) \cdot \left(\ln\left| \frac{y-1}{y+1} \right| - \frac{2y}{y^2-1} \right) \Big|_{\sqrt{\frac{x_0-1}{x_0+1}}}^{\sqrt{\frac{x_0-1}{x+1}}} = \end{split}$$

$$= \ln \left| \frac{\sqrt{x-1} - \sqrt{x+1}}{\sqrt{x-1} + \sqrt{x+1}} \right| + (x+1)\sqrt{\frac{x-1}{x+1}}, \ x \in (-\infty, -1) \cup [1, +\infty).$$

Приклад 3. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^{x} \frac{6t^3-t-1}{\sqrt{t^2+2t+2}} dt$.

Підінтегральна функція має вигляд $\frac{P_3(t)}{\sqrt{at^2+bt+c}},$ тобто можемо представити інтеграл у вигляді

$$\int_{x_0}^x \frac{6t^3 - t - 1}{\sqrt{t^2 + 2t + 2}} dt = (Ax^2 + Bx + C)\sqrt{x^2 + 2x + 2} + \lambda \int_{x_0}^x \frac{dt}{\sqrt{t^2 + 2t + 2}}.$$

Після диференціювання даної рівності маємо:

$$6x^3 - x - 1 = (2Ax + B) \cdot (x^2 + 2x + 2) + (Ax^2 + Bx + C) \cdot (x + 1) + \lambda.$$

Прирівнюючи коефіцієнти при різних степенях x, отримаємо систему лінійних рівнянь, звідки знайдемо коефіцієнти A,B,C та λ :

$$\begin{array}{l} x^3: \\ x^2: \\ x^2: \\ x^1: \\ x^0: \\ \end{array} \begin{array}{l} 6 = 3A \\ 0 = 5A + 2B \\ -1 = 4A + 3B + C \\ -1 = 2B + C + \lambda \end{array} \quad \Leftrightarrow \quad \begin{cases} A = 2 \\ B = -5 \\ C = 6 \\ \lambda = 3 \end{cases}$$

Тоді

$$\int_{x_0}^{x} \frac{6t^3 - t - 1}{\sqrt{t^2 + 2t + 2}} dt = (2x^2 - 5x + 6)\sqrt{x^2 + 2x + 2} + 3\int_{x_0}^{x} \frac{dt}{\sqrt{t^2 + 2t + 2}} =$$

$$= (2x^2 - 5x + 6)\sqrt{x^2 + 2x + 2} + 3\int_{x_0}^{x} \frac{dt}{\sqrt{(t+1)^2 + 1}} =$$

$$= (2x^2 - 5x + 6)\sqrt{x^2 + 2x + 2} + 3\ln\left|t - 1 + \sqrt{(t+1)^2 + 1}\right|\Big|_{x_0}^{x} =$$

$$= (2x^2 - 5x + 6)\sqrt{x^2 + 2x + 2} + 3\ln\left|x - 1 + \sqrt{x^2 + 2x + 2}\right|.$$

Приклад 4. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{dt}{t^2\sqrt{t^2+t-1}}$.

Зведемо інтеграл до більш простого вигляду заміною $\frac{1}{t} = y, -\frac{1}{t^2} dt = dy$:

$$\int_{x_0}^x \frac{dt}{t^2 \sqrt{t^2 + t - 1}} = -\int_{\frac{1}{x_0}}^{\frac{1}{x}} \frac{dy}{\sqrt{\frac{1}{y^2} + \frac{1}{y} - 1}} = -\operatorname{sgn} x \int_{\frac{1}{x_0}}^{\frac{1}{x}} \frac{y \, dy}{\sqrt{1 + y - y^2}}.$$

Оскільки $1+y-y^2=\frac{5}{4}-\left(\frac{1}{4}-y+y^2\right)=\frac{5}{4}-\left(\frac{1}{2}-y\right)^2$, то лінійною заміною змінної $z=\frac{1}{2}-y$ зведемо інтеграл до двох табличних:

$$\begin{split} \int_{\frac{1}{x_0}}^{\frac{1}{x}} \frac{y \, dy}{\sqrt{1 + y - y^2}} &= \int_{\frac{1}{2} - \frac{1}{x_0}}^{\frac{1}{2} - \frac{1}{x}} \frac{\left(z + \frac{1}{2}\right) dz}{\sqrt{\frac{5}{4} - z^2}} = \\ &= -\frac{1}{2} \int_{\frac{1}{2} - \frac{1}{x_0}}^{\frac{1}{2} - \frac{1}{x}} \frac{d\left(\frac{5}{4} - z^2\right)}{\sqrt{\frac{5}{4} - z^2}} + \frac{1}{2} \int_{\frac{1}{2} - \frac{1}{x_0}}^{\frac{1}{2} - \frac{1}{x}} \frac{dz}{\sqrt{\frac{5}{4} - z^2}} = \\ &= -\sqrt{\frac{5}{4} - z^2} \bigg|_{\frac{1}{2} - \frac{1}{x_0}}^{\frac{1}{2} - \frac{1}{x}} + \frac{1}{2} \arcsin \frac{2z}{\sqrt{5}} \bigg|_{\frac{1}{2} - \frac{1}{x_0}}^{\frac{1}{2} - \frac{1}{x_0}} \end{split}$$

Отже,

$$\int_{x_0}^x \frac{dt}{t^2 \sqrt{t^2 + t - 1}} = \operatorname{sgn} x \cdot \sqrt{\frac{5}{4} - \left(\frac{1}{2} - \frac{1}{x}\right)^2} - \frac{\operatorname{sgn} x}{2} \arcsin \frac{2\left(\frac{1}{2} - \frac{1}{x}\right)}{\sqrt{5}} = \frac{1}{x} \sqrt{x^2 + x - 1} - \frac{\operatorname{sgn} x}{2} \arcsin \frac{x - 2}{\sqrt{5}x}, \quad x \neq 0.$$

Приклад 5. Обчислимо інтеграл Нъютона–Лейбніца $\int_{x_0}^x \frac{dt}{t-\sqrt{t^2+2t+4}}$.

Підінтегральна функція має вигляд $R(t;\sqrt{at^2+bt+c})$, причому у даному випадку a=1>0. Тож зручно буде застосувати першу підстановку Ейлера $\sqrt{t^2+2t+4}=y-t \Leftrightarrow t=\frac{y^2-4}{2(y+1)}$, в результаті чого отримаємо інтеграл від

дробово-раціональної функції: $\sqrt{t^2+2t+4}=\frac{y^2+2y+4}{2(y+1)};\ dt=\frac{y^2+2y+4}{2(y+1)^2}$ dy;

$$\int_{x_0}^{x} \frac{dt}{t - \sqrt{t^2 + 2t + 4}} = \int_{x_0 + \sqrt{x_0^2 + 2x_0 + 4}}^{x + \sqrt{x_0^2 + 2x_0 + 4}} \frac{1}{\frac{y^2 - 4}{2(y+1)} - \frac{y^2 + 2y + 4}{2(y+1)}} \cdot \frac{y^2 + 2y + 4}{2(y+1)^2} dy =$$

$$= -\int_{x_0 + \sqrt{x_0^2 + 2x_0 + 4}}^{x + \sqrt{x_0^2 + 2x_0 + 4}} \frac{y^2 + 2y + 4}{2(y+1)(y+4)} dy =$$

$$= -\frac{1}{2} \int_{x_0 + \sqrt{x_0^2 + 2x_0 + 4}}^{x + \sqrt{x_0^2 + 2x_0 + 4}} \left(1 - \frac{3y}{(y+1)(y+4)}\right) dy.$$

Оскільки отримали правильний дріб під знаком інтеграла, то можемо розкласти його на прості дроби:

$$\frac{3y}{(y+1)(y+4)} = \frac{A}{y+1} + \frac{B}{y+4} = \frac{(A+B)y + 4A + B}{(y+1)(y+4)}.$$

Прирівнюючи коефіцієнти при різних степенях y, отримаємо систему лінійних рівнянь, звідки знайдемо коефіцієнти A та B:

$$y^1: \begin{cases} 3 = A + B \\ y^0: \end{cases} \Leftrightarrow \begin{cases} A = -1 \\ B = 4 \end{cases}$$

Тоді

$$\begin{split} & \int_{x_0}^x \frac{dt}{t - \sqrt{t^2 + 2t + 4}} = \\ & = -\frac{1}{2} \left(x + \sqrt{x^2 + 2x + 4} \right) + \frac{1}{2} \int_{x_0 + \sqrt{x_0^2 + 2x_0 + 4}}^{x + \sqrt{x^2 + 2x + 4}} \left(\frac{-1}{y + 1} + \frac{4}{y + 4} \right) dy = \\ & = -\frac{1}{2} \left(x + \sqrt{x^2 + 2x + 4} \right) + \frac{1}{2} \left(-\ln|y + 1| + 4\ln|y + 4| \right) \Big|_{x_0 + \sqrt{x_0^2 + 2x_0 + 4}}^{x + \sqrt{x^2 + 2x + 4}} = \\ & = -\frac{1}{2} \left(x + \sqrt{x^2 + 2x + 4} + \ln\left|x + 1 + \sqrt{x^2 + 2x + 4}\right| \right) + \\ & + 2\ln\left|x + 4 + \sqrt{x^2 + 2x + 4}\right|. \end{split}$$

Приклад 6. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{\sqrt[3]{1+\sqrt{t}}}{t} dt$.

Оскільки вираз під знаком інтеграла $\frac{\sqrt[3]{1+\sqrt{t}}}{t}dt=t^{-1}\left(1+t^{\frac{1}{2}}\right)^{\frac{1}{3}}dt$ є диференціальним біномом, то застосуємо теорему Чебишева. Маємо, що $p=\frac{1}{3}\notin\mathbb{Z}$, але $\frac{m+1}{n}=\frac{-1+1}{\frac{1}{2}}=0\in\mathbb{Z}$, тому використаємо другу підстановку Чебишева: $y^3=1+t^{\frac{1}{2}}\Leftrightarrow t=(y^3-1)^2;\ dt=6y^2(y^3-1)\,dy$. Тоді:

$$\int_{x_0}^x \frac{\sqrt[3]{1+\sqrt{t}}}{t} \, dt = \int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} \frac{y}{(y^3-1)^2} \cdot 6y^2(y^3-1) \, dy = 6 \int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} \frac{y^3 \, dy}{y^3-1}.$$

Після виділення із неправильного дробу під знаком інтеграла цілої частини маємо:

$$6\int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} \frac{(y^3-1+1)\,dy}{y^3-1} = 6\int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} dy + \int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} \frac{6\,dy}{y^3-1}.$$

Отриманий правильний дріб у другому інтегралі розкладемо на прості дроби:

$$\frac{6}{y^3 - 1} = \frac{6}{(y - 1)(y^2 + y + 1)} =$$

$$= \frac{A}{y - 1} + \frac{By + C}{y^2 + y + 1} = \frac{(A + B)y^2 + (A - B + C)y + A - C}{(y - 1)(y^2 + y + 1)}.$$

Прирівнюючи коефіцієнти при різних степенях y, отримаємо систему лінійних рівнянь, звідки знайдемо коефіцієнти A, B та C:

$$\begin{array}{l} y^2: \\ y^1: \\ y^0: \\ \end{array} \left\{ \begin{array}{l} 0 = A + B \\ 0 = A - B + C \\ 6 = A - C \end{array} \right. \Leftrightarrow \quad A = 2, \; B = -2, \; C = -4. \end{array}$$

Тоді

$$\int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} \frac{6 \, dy}{y^3 - 1} = \int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} \frac{2 \, dy}{y - 1} - \int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x}}} \frac{(2y+4) \, dy}{y^2 + y + 1} =$$

$$= 2 \ln|y - 1| \Big|_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x_0}}} - \int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x_0}}} \frac{2y + 4}{\left(y + \frac{1}{2}\right)^2 + \frac{3}{4}} \, dy.$$

Оскільки

$$\int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x_0}}} \frac{2y+4}{\left(y+\frac{1}{2}\right)^2+\frac{3}{4}} \, dy = \int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x_0}}} \frac{d\left(\left(y+\frac{1}{2}\right)^2\right)}{\left(y+\frac{1}{2}\right)^2+\frac{3}{4}} + 3\int_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x_0}}} \frac{dy}{\left(y+\frac{1}{2}\right)^2+\frac{3}{4}} = \left(\ln\left|\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\right| + \frac{3\cdot 2}{\sqrt{3}} \arctan\left(\frac{2\left(y+\frac{1}{2}\right)}{\sqrt{3}}\right)\right|_{\sqrt[3]{1+\sqrt{x_0}}}^{\sqrt[3]{1+\sqrt{x_0}}},$$

то

$$\int_{x_0}^{x} \frac{\sqrt[3]{1+\sqrt{t}}}{t} dt = 6\sqrt[3]{1+\sqrt{x}} + 2\ln\left|\sqrt[3]{1+\sqrt{x}} - 1\right| - 2\sqrt{3}\arctan\frac{2\sqrt[3]{1+\sqrt{x}} + 1}{\sqrt{3}} - \ln\left|\sqrt[3]{(1+\sqrt{x})^2} + \sqrt[3]{1+\sqrt{x}} + 1\right|, \quad x \neq 0.$$

Обчисліть інтеграли Ньютона-Лейбніца:

$$17.1 \int_{x_0}^{x} \frac{\sqrt[3]{t^2} - \sqrt{t}}{\sqrt{t}} dt;$$

$$17.2 \int_{x_0}^{x} \frac{dt}{t(\sqrt{t} + \sqrt[5]{t^2})};$$

$$17.3 \int_{x_0}^{x} \frac{t^2}{\sqrt{t-1}} dt;$$

$$17.4 \int_{x_0}^{x} \frac{t^2 + \sqrt{t+1}}{\sqrt[3]{t+1}} dt;$$

$$17.5 \int_{x_0}^{x} \frac{t^{\sqrt[3]{2+t}}}{t + \sqrt[3]{2+t}} dt;$$

$$17.6 \int_{x_0}^{x} \sqrt{\frac{1-t}{1+t}} \cdot \frac{dt}{t};$$

$$17.7 \int_{x_0}^{x} \frac{3t^2 - 5t}{\sqrt{3 - 2t - t^2}} dt;$$

$$17.8 \int_{x_0}^{x} \frac{3t^3}{\sqrt{t^2 + 4t + 5}} dt;$$

$$17.9 \int_{x_0}^{x} \frac{dt}{t\sqrt{t^2 + 4t - 4}};$$

$$17.10 \int_{x_0}^{x} \frac{dt}{(t-1)\sqrt{t^2 + t + 1}};$$

$$17.11 \int_{x_0}^{x} \frac{dt}{1 + \sqrt{t^2 + 2t + 2}};$$

$$17.12 \int_{x_0}^{x} \frac{2 dt}{\sqrt{t^2 + t + 1} - t};$$

$$17.13 \int_{x_0}^{x} \frac{dt}{1 + \sqrt{1 - 2t - t^2}};$$

$$17.14 \int_{x_0}^{x} t^{-1} \left(1 + t^{\frac{1}{3}}\right)^{-3} dt;$$

$$17.15 \int_{x_0}^{x} \frac{t^5}{\sqrt{1 - t^2}} dt;$$

$$17.16 \int_{x_0}^{x} \frac{\sqrt[3]{1 + \sqrt[4]{t}}}{2t} dt;$$

$$17.17 \int_{x_0}^{x} \frac{dt}{t^{11}\sqrt{1 + t^4}};$$

$$17.18 \int_{x_0}^{x} \frac{\sqrt{1 + \sqrt[4]{t^3}}}{t^2 \cdot \sqrt[3]{t}} dt.$$

Тема 14. Інтегрування тригонометричних функцій та їх раціональних комбінацій

Інтеграли вигляду $\int_{x_0}^x R(\sin t;\cos t)\,dt$, де у загальному випадку R — деяка раціональна функція, зводяться до інтегралів від дробово-раціональних функцій за допомогою \pmb{y} ніверсальної \pmb{m} пигонометричної \pmb{n} підстановки $\mathop{\rm tg} \frac{t}{2} = y$. При цьому $t = 2 \arctan y, \ dt = \frac{2 \ dy}{1 + y^2};$

$$\sin t = 2\sin\frac{t}{2}\cos\frac{t}{2} = 2 \cdot \frac{\sin\frac{t}{2}}{\cos\frac{t}{2}} \cdot \cos^2\frac{t}{2} = 2\operatorname{tg}\frac{t}{2} \cdot \frac{1}{1 + \operatorname{tg}^2\frac{t}{2}} = \frac{2y}{1 + y^2};$$

$$\cos t = \cos^2\frac{t}{2} - \sin^2\frac{t}{2} = 2\cos^2\frac{t}{2} - 1 = \frac{1 - \operatorname{tg}^2\frac{t}{2}}{1 + \operatorname{tg}^2\frac{t}{2}} = \frac{1 - y^2}{1 + y^2}.$$

Зазначимо, що застосування підстановки $\operatorname{tg} \frac{t}{2} = y$ можливе лише при $t \in (-\pi + 2\pi k, \pi + 2\pi k)$, де k — довільне ціле число.

У деяких частинних випадках існують такі способи інтегрування $R(\sin t;\cos t)$.

- **1.** Якщо $R(\sin t;\cos t)$ непарна функція за змінною $\sin t$, тоді раціоналізація досягається заміною $y=\cos t$.
- **2.** Якщо $R(\sin t;\cos t)$ непарна функція за змінною $\cos t$, тоді раціоналізація досягається заміною $y=\sin t$.
- **3.** Якщо $R(-\sin t; -\cos t) = R(\sin t; \cos t)$, то заміна $y = \operatorname{tg} t$ призведе до інтегрування дробово-раціональної функції, при цьому застосування підстановки можливе при $t \in \left(-\frac{\pi}{2} + \pi k, \frac{\pi}{2} + \pi k\right)$, де $k \in \mathbb{Z}$. У такому разі: $\sin t = \frac{y}{\sqrt{1+y^2}}$, $\cos t = \frac{1}{\sqrt{1+y^2}}$ та $dt = \frac{dy}{1+y^2}$.
- 4. Інтеграл $\int_{x_0}^x \sin^n t \cos^m t \, dt$ у випадку раціональних m і n зводиться до інтегрування диференціального біному підстановкою $y=\sin^2 t,\ dy=2\sin t\cos t \, dt$:

$$\int_{x_0}^x \sin^n t \cos^m t \, dt = \frac{1}{2} \int_{x_0}^x \sin^{n-1} t \left(1 - \sin^2 t\right)^{\frac{m-1}{2}} \cdot 2 \sin t \cos t \, dt =$$

$$= \frac{1}{2} \int_{\sin^2 x_0}^{\sin^2 x} y^{\frac{n-1}{2}} (1 - y)^{\frac{m-1}{2}} \, dy.$$

Якщо m,n- парні натуральні числа, то використовуємо формули пониження степеня: $\sin^2 x = \frac{1-\cos 2x}{2},\ \cos^2 x = \frac{1+\cos 2x}{2}.$

Наведемо деякі інтеграли, що не обчислюються за допомогою елементарних функцій: $\int_{x_0}^x e^{-t^2} dt - iнтеграл \ \Pi yaccoha, \int_{x_0}^x \sin t^2 \ dt \ \text{та} \ \int_{x_0}^x \cos t^2 \ dt - iнтеграли \ \Phi penena, \int_{x_0}^x \frac{dt}{\ln t} - iнтегральний логарифм, \int_{x_0}^x \frac{\sin t}{t} \ dt - iнтеграл \ Діріхле.$

Практичне заняття 18

Приклад 1. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \cos^5 t \, dt$.

Γ

Оскільки підінтегральна функція є непарною по змінній $\cos t$, тобто виконується умова $R(\sin t; -\cos t) = -R(\sin t; \cos t)$, то застосуємо підстановку $y = \sin t$:

$$\int_{x_0}^x \cos^5 t \, dt = \int_{x_0}^x \cos^4 t \, d(\sin t) = \int_{x_0}^x (1 - \sin^2 t)^2 \, d(\sin t) = \int_{\sin x_0}^{\sin x} (1 - y^2)^2 \, dy =$$

$$= \left(y - \frac{2y^3}{3} + \frac{y^5}{5} \right) \Big|_{\sin x_0}^{\sin x} = \sin x - \frac{2\sin^3 x}{3} + \frac{\sin^5 x}{5}.$$

┙

Приклад 2. Обчислимо інтеграл Ньютона-Лейбніца $\int_{x_0}^x \frac{dt}{3\sin t + \cos t}$.

Оскільки підінтегральна функція не є непарною по змінним $\sin t$ та $\cos t$, а також не виконується умова $R(-\sin t; -\cos t) = R(\sin t; \cos t)$, то застосуємо універсальну тригонометричну підстановку $y = \operatorname{tg} \frac{t}{2}$:

$$\int_{x_0}^{x} \frac{dt}{3\sin t + \cos t} = \int_{\text{tg}\frac{x_0}{2}}^{\text{tg}\frac{x}{2}} \frac{1}{\frac{6y}{1+y^2} + \frac{1-y^2}{1+y^2}} \cdot \frac{2\,dy}{1+y^2} = -2\int_{\text{tg}\frac{x_0}{2}}^{\text{tg}\frac{x}{2}} \frac{d(y-3)}{(y-3)^2 - 10} =$$

$$= -2 \cdot \frac{1}{2\sqrt{10}} \ln \left| \frac{y-3-\sqrt{10}}{y-3+\sqrt{10}} \right| \Big|_{\text{tg}\frac{x}{2}}^{\text{tg}\frac{x}{2}} = -\frac{1}{\sqrt{10}} \ln \left| \frac{\text{tg}\frac{x}{2} - 3 - \sqrt{10}}{\text{tg}\frac{x}{2} - 3 + \sqrt{10}} \right|.$$

Приклад 3. Знайдемо рекурентну формулу для інтеграла Ньютона-Лейбніца $I_n = \int_{x_0}^x \frac{dt}{\cos^n t}, \ de \ n \in \mathbb{N} \backslash \{1,2\} \ ma \ [x_0,x] \cap \left\{ \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z} \right\} = \varnothing.$

Скористаємося формулою інтегрування частинами:

$$I_{n} = \int_{x_{0}}^{x} \frac{dt}{\cos^{n} t} = \begin{vmatrix} u = \frac{1}{(\cos t)^{n-2}}, & du = -\frac{n-2}{(\cos t)^{n-1}} \cdot (-\sin t) dt \\ dv = \frac{1}{\cos^{2} t} dt, & v = \operatorname{tg} t \end{vmatrix} =$$

$$= \frac{\operatorname{tg} t}{\cos^{n-2} t} \Big|_{x_{0}}^{x} - (n-2) \int_{x_{0}}^{x} \operatorname{tg} t \cdot \frac{\sin t}{\cos^{n-1} t} dt =$$

$$= \frac{\operatorname{tg} x}{\cos^{n-2} x} - (n-2) \int_{x_{0}}^{x} \left(\frac{1}{\cos^{n} t} - \frac{1}{\cos^{n-2} t} \right) dt =$$

$$= \frac{\operatorname{tg} x}{\cos^{n-2} x} - (n-2) \cdot (I_{n} - I_{n-2}).$$

Отримали рівність, з якої можна виразити значення інтеграла I_n через I_{n-2} :

$$I_n = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \cdot I_{n-2}.$$

┙

Приклад 4. Знайдемо первісну у широкому розумінні для функції

$$f(x) = \begin{cases} 1 - x^2, & |x| \le 1; \\ 1 - |x|, & |x| > 1. \end{cases}$$

Побудуємо графік функції f(x). На проміжках $(-\infty, -1)$, (-1, 1) та $(1, +\infty)$ функція f має первісну F, причому

$$F(x) = \begin{cases} \frac{x^2}{2} + x + C_1, & x < -1; \\ x - \frac{x^3}{3} + C_2, & x \in (-1, 1); \\ -\frac{x^2}{2} + x + C_3, & x > 1. \end{cases}$$

Співвідношення між сталими C_1 , C_2 та C_3 визначимо з умови неперервності первісної F на множині $D_f = \mathbb{R}$: F(-1-0) = F(-1+0), F(1-0) = F(1+0). Тому

$$\frac{1}{2} - 1 + C_1 = -1 + \frac{1}{3} + C_2, \quad 1 - \frac{1}{3} + C_2 = -\frac{1}{2} + 1 + C_3.$$

Отже, $C_1 = C_2 - \frac{1}{6}$ та $C_3 = C_2 + \frac{1}{6}$, звідки первісна функції f:

$$F(x) = \begin{cases} \frac{x^2}{2} + x - \frac{1}{6} + C, & x < -1; \\ x - \frac{x^3}{3} + C, & x \in [-1, 1]; \\ -\frac{x^2}{2} + x + \frac{1}{6} + C, & x > 1. \end{cases}$$

Обчисліть інтеграли Ньютона-Лейбніца:

$$\mathbf{18.1} \quad \int_{x_0}^{x} \sin^3 t \cdot \sin 4t \, dt; \qquad \qquad \mathbf{18.2} \quad \int_{x_0}^{x} \sin^2 t \cdot \cos^3 t \, dt;$$

$$\mathbf{18.3} \quad \int_{x_0}^{x} \frac{\sin^3 t}{\cos^4 t} \, dt; \qquad \qquad \mathbf{18.4} \quad \int_{x_0}^{x} \frac{dt}{\sin^4 t \cdot \cos^2 t};$$

$$\mathbf{18.5} \quad \int_{x_0}^{x} \frac{dt}{\sin 2t}; \qquad \qquad \mathbf{18.6} \quad \int_{x_0}^{x} \frac{dt}{\cos t};$$

$$\mathbf{18.7} \quad \int_{x_0}^{x} \frac{dt}{3 - 2\cos t}; \qquad \qquad \mathbf{18.8} \quad \int_{x_0}^{x} \frac{dt}{5 - 3\sin t};$$

$$\mathbf{18.9} \quad \int_{x_0}^{x} \frac{dt}{1 + 5\cos t}; \qquad \qquad \mathbf{18.10} \quad \int_{x_0}^{x} \frac{dt}{2\sin t - \cos t + 5};$$

18.11
$$\int_{x_0}^x \frac{8\cos^2 t \sin t}{\sin t + \cos t} dt;$$
 18.12
$$\int_{x_0}^x \frac{2\sin t \cos t}{1 + \sin^4 t} dt.$$

Знайдіть рекурентні формули для інтегралів Ньютона-Лейбніца:

18.13
$$I_n = \int_{x_0}^x \cos^n t \, dt, \ n \in \mathbb{N};$$
 18.14 $J_n = \int_{x_0}^x \frac{dt}{\sin^n t}, \ n \in \mathbb{N}.$

Знайдіть первісні у широкому розумінні для функцій:

18.15
$$f(x) = \operatorname{sgn} x, \ x \in \mathbb{R};$$

18.16
$$f(x) = \operatorname{sgn}(x^2 + x - 2), x \in \mathbb{R};$$

18.17
$$f(x) = [3x], x \in \left(0, \frac{4}{3}\right);$$

18.18
$$f(x) = \{x\}, x \in (-1, 2);$$

18.19
$$f(x) = \begin{cases} e^x, & x \leq 0; \\ x, & 0 < x \leq 1; \\ \sin \pi x, & x > 1. \end{cases}$$

$$\mathbf{18.19} \ \ f(x) = \begin{cases} e^x, & x \leqslant 0; \\ x, & 0 < x \leqslant 1; \\ \sin \pi x, & x > 1. \end{cases} \qquad \mathbf{18.20} \ \ f(x) = \begin{cases} \sin x, & x \leqslant \frac{\pi}{4}; \\ \cos x, & \frac{\pi}{4} < x < \frac{\pi}{2}; \\ 3\sin 3x, & x \geqslant \frac{\pi}{2}. \end{cases}$$

Розділ 6. Інтеграл Рімана

Тема 15. Означення інтеграла Рімана та його зв'язок з інтегралом Ньютона–Лейбніца

Сукупність точок
$$P=P([a,b])=ig\{x_k\,|\,k=\overline{0,n}ig\},\,[a,b]\subset\mathbb{R},$$
 таких, що
$$a=x_0\leqslant x_1\leqslant\ldots\leqslant x_n=b,$$

називається **розбиттям** відрізка [a,b]. Множина точок $\xi_P = \{\xi_k \mid k = \overline{0,n-1}\}$: $\forall k = \overline{0,n-1} \quad \xi_k \in [x_k,x_{k+1}]$ називається **сукупністю проміжених точок**, що відповідає розбиттю P. Величина $\|P\| = \max_{k=\overline{0,n-1}} \Delta x_k$, де $\Delta x_k = x_{k+1} - x_k$, називається **діаметром** (нормою) розбиття P.

Нехай $f:[a,b]\to\mathbb{R}$. Інтегральною сумою Рімана для функції f по розбиттю P=P([a,b]) і набору проміжних точок ξ_P називається число

$$S_P(f, \xi_P) = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k.$$

Число $I\in\mathbb{R}$ називається iнтегралом Pімана функції $f:[a,b]\to\mathbb{R},$ якщо $\forall \varepsilon>0 \ \exists \delta>0$:

$$\forall (P = P([a, b]), \xi_P), \|P\| < \delta \Rightarrow |I - S_P(f, \xi_P)| < \varepsilon.$$

При цьому зазвичай число I записують таким чином: $\int_a^b f(x) \, dx$.

Якщо існує скінченна границя $\lim_{\|P\|\to 0} S_P(f,\xi_P) = I$, яка не залежить ні від способу розбиття, ні від вибору сукупності проміжних точок, то f-iнтегровна за Pіманом функція, а сама границя $I=\int_a^b f(x)\,dx$. Множина функцій, інтегровних за Pіманом на відрізку [a,b], позначається як R([a,b]).

Теорема (про інтегральні суми для інтеграла Ньютона—Лейбніца). Нехай $f:[a,b]\to\mathbb{R}$ інтегровна в розумінні Ньютона—Лейбніца на [a,b] і $\int_a^b f(x)\,dx$ — інтеграл Ньютона—Лейбніца. Тоді $\forall P=P([a,b])$ існує така ξ_P , що виконується рівність:

$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} f(x) dx = \sum_{k=0}^{n-1} f(\xi_k) \cdot (x_{k+1} - x_k) = S_P(f, \xi_P).$$

Теорема (про зв'язок інтегралів Рімана та Ньютона—Лейбніца). Якщо інтеграли Рімана та Ньютона—Лейбніца функції $f:[a,b] \to \mathbb{R}$ існують одночасно, то вони рівні один одному.

Теорема (інтегровність неперервної функції). Якщо $f \in C([a,b])$, то f — інтегровна за Ріманом на відрізку [a,b]. Тобто $C([a,b]) \subset R([a,b])$.

Теорема (інтегровність функції зі скінченною множиною точок розриву). Якщо функція $f:[a,b]\to\mathbb{R}$ обмежена на [a,b] та $f\in C([a,b]\setminus A)$, де $A=\{z_1,z_2,\ldots,z_m\}\subset [a,b]$, то f— інтегровна за Ріманом на відрізку [a,b].

Нехай $f:[a,b] \to \mathbb{R}$ — обмежена на відрізку [a,b] функція. Для кожного $k \in \{0,1,\dots,n-1\}$ визначимо числа $m_k = \inf_{x \in [x_k,x_{k+1}]} f(x)$ та $M_k = \sup_{x \in [x_k,x_{k+1}]} f(x)$.

Тоді **нижньою** та **верхньою інтегральними сумами Дарбу** для функції f і розбиття P = P([a,b]) називаються, відповідно, числа

$$\underline{S_P}(f) = \sum_{k=0}^{n-1} m_k \Delta x_k, \quad \overline{S_P}(f) = \sum_{k=0}^{n-1} M_k \Delta x_k.$$

Числа $\underline{\int} f(x) dx = \sup_P \underline{S_P}(f)$ та $\overline{\int} f(x) dx = \inf_P \overline{S_P}(f)$ називаються, відповідно, нижнім та верхнім інтегралами Дарбу функції f на відрізку [a,b].

Лема (зв'язок між інтегралами Дарбу). Для будь-якої обмеженої функції $f \colon [a,b] \to \mathbb{R}$ виконується нерівність: $\int f(x) \, dx \leqslant \overline{\int} f(x) \, dx$.

Функція $f:[a,b]\to\mathbb{R}$ називається *інтегровною за Дарбу* на [a,b], якщо $\underline{\int} f(x)\,dx=\overline{\int} f(x)\,dx$. При цьому спільне значення верхнього та нижнього інтегралів називається *інтегралом Дарбу*, який співпадає з інтегралом Рімана і позначається $\int_a^b f(x)\,dx$.

Теорема (критерій інтегровності функції). Для того, щоб обмежена функція $f:[a,b] \to \mathbb{R}$ була інтегровною на [a,b], необхідно і достатньо, щоб

$$\forall \varepsilon > 0 \ \exists P = P([a, b]) : \ 0 \leqslant \overline{S_P}(f) - S_P(f) < \varepsilon.$$

Теорема (Дарбу). [9, с. 142] Нехай $f:[a,b]\to\mathbb{R}$, а також задано розбиття P=P([a,b]) та набір проміжних точок ξ_P . Якщо $\exists\lim_{\|P\|\to 0}S_P(f,\xi_P)=I$, то $f\in R([a,b])$ і при цьому $\int_a^b f(x)\,dx=I$.

Для формулювання критерію інтегровності за Ріманом (теорема Лебега) розглянемо деякі нові поняття.

 \pmb{Mipoo} сегмента[a,b] (інтервалу (a,b), півінтервалу [a,b) чи (a,b]) називають його довжину: $\mu([a,b]) = b-a$.

Множина $X \subset \mathbb{R}$ має **лебегову** (**жорданову**) **міру нуль**, якщо $\forall \varepsilon > 0$ існує зліченне покриття $(I_j)_{j \in \mathbb{N}}$ (скінченне покриття $(I_j)_{j=\overline{1,n}}$) інтервалами, сумарна

довжина яких не перевищує
$$\varepsilon$$
, тобто $\forall m \in \mathbb{N}$: $\sum_{j=1}^m \mu(I_j) < \varepsilon \left(\sum_{j=1}^n \mu(I_j) < \varepsilon\right)$.

Властивості множин лебегової та жорданової міри нуль.

- **1.** Якщо X має лебегову (жорданову) міру нуль, і $X_1 \subset X$, то й X_1 має лебегову (жорданову) міру нуль.
- **2.** Якщо $X = \bigcup_{j=1}^{\infty} X_j \left(X = \bigcup_{j=1}^n X_j \right)$ і кожна з множин X_j має лебегову (жорданову) міру нуль, то множина X також має лебегову (жорданову) міру нуль.

- **3.** Будь-яка множина жорданової міри нуль ϵ множиною лебегової міри нуль.
- **4.** Будь-яка зліченна (скінченна) множина точок має лебегову (жорданову) міру нуль.
- **5.** Існує більш ніж зліченна (більш ніж скінченна) множина, що має лебегову (жорданову) міру нуль.

Теорема (компакт лебегової міри нуль). Компакт $K \subset \mathbb{R}$ лебегової міри нуль є множиною жорданової міри нуль.

Теорема (Лебега). Нехай $f\colon [a,b]\to \mathbb{R}$ — обмежена функція і E — множина точок її розриву. Тоді $f\in R([a,b])\Leftrightarrow \mu(E)=0.$

Властивості інтегровних за Ріманом функцій [1, с. 250].

Нехай функції $f,g:[a,b]\to\mathbb{R}$ інтегровні за Ріманом на відрізку [a,b].

1. Лінійність: $\forall \lambda, \mu \in \mathbb{R}$ функція $(\lambda f + \mu g) \in R([a,b])$ та

$$\int_a^b (\lambda f + \mu g)(x) \, dx = \lambda \int_a^b f(x) \, dx + \mu \int_a^b g(x) \, dx.$$

- **2.** Інтегровність модуля: $|f| \in R([a,b])$.
- **3.** Інтегровність добутку: $f \cdot g \in R([a,b])$.
- **4.** Інтегровність звуження: $\forall [a^*, b^*] \subset [a, b] \ f \in R([a^*, b^*]).$
- **5.** Адитивність по області інтегрування: якщо $f:[a,b] \to \mathbb{R}, \ c \in (a,b), f \in R([a,c])$ та $f \in R([c,b])$, то $f \in R([a,b])$ і

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

6. Інтеграл Рімана з нерівними функціями: якщо $f(x) \leqslant g(x) \ \forall x \in [a,b]$, то

$$\int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} g(x) \, dx.$$

Наслідок (інтеграл від невід'ємної функції). Якщо $f \in R([a,b])$ та $f(x) \ge 0 \ \forall x \in [a,b]$, то $\int_a^b f(x) \, dx \ge 0$.

Наслідок (інтеграл Рімана від додатної функції). Якщо $f \in R([a,b])$, $f(x) \geqslant 0 \ \forall x \in [a,b]$, та $\exists x_0 \in (a,b)$, що f неперервна в точці x_0 і $f(x_0) > 0$, то $\exists c > 0$: $\int_a^b f(x) \, dx \geqslant c$.

Наслідок (двобічна оцінка інтеграла). Якщо $f \in R([a,b])$ та $\forall x \in [a,b]$ виконується нерівність $m \leqslant f(x) \leqslant M$, то $m(b-a) \leqslant \int_a^b f(x) \, dx \leqslant M(b-a)$.

Наслідок (модуль інтеграла). Якщо $f \in R([a,b])$, то

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| \, dx.$$

Практичне заняття 19

Приклад 1. Для функції f(x) = 2 - x, $x \in [a,b] = [-1,3]$, побудуємо нижню та верхню інтегральні суми Дарбу із розбиттям сегмента [a,b] на 4n рівних частин та обчислимо інтеграл $\int_a^b f(x) \, dx$ як границю інтегральних сум.

Відповідно до умови, $\Delta x_k = x_{k+1} - x_k = \frac{b-a}{4n} = \frac{1}{n} \ \forall k = \overline{0,4n-1}$. Тому маємо таке розбиття відрізка [a,b]: $x_0 = -1, \ x_1 = -1 + \frac{1}{n}, \ \dots, x_{4n} = -1 + \frac{4n}{n} = 3$.

Оскільки функція f(x)=2-x є монотонно спадною на відрізку [a,b], то $\forall k=\overline{0,4n-1}$:

$$m_k = \inf_{x \in [x_k, x_{k+1}]} f(x) = f(x_{k+1}) = 2 - x_{k+1} = 3 - \frac{k+1}{n};$$

$$M_k = \sup_{x \in [x_k, x_{k+1}]} f(x) = f(x_k) = 2 - x_k = 3 - \frac{k}{n}.$$

Обчислимо нижню та верхню інтегральні суми Дарбу:

$$\underline{S_{P_{4n}}}(f) = \sum_{k=0}^{4n-1} m_k \Delta x_k = \sum_{k=0}^{4n-1} \left(3 - \frac{k+1}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \cdot 12n - \frac{1}{n^2} \sum_{k=0}^{4n-1} (k+1) = 12 - \frac{4n(4n+1)}{2n^2} = 4 - \frac{2}{n};$$

$$\overline{S_{P_{4n}}}(f) = \sum_{k=0}^{4n-1} M_k \Delta x_k = \sum_{k=0}^{4n-1} \left(3 - \frac{k}{n}\right) \cdot \frac{1}{n} = \frac{1}{n} \cdot 12n - \frac{1}{n^2} \sum_{k=0}^{4n-1} k = 12 - \frac{(4n-1)4n}{2n^2} = 4 + \frac{2}{n}.$$

При цьому оскільки $\lim_{n\to\infty} \underline{S_{P_{4n}}}(f) = \lim_{n\to\infty} \overline{S_{P_{4n}}}(f) = 4$, то $\int_{-1}^3 (2-x)\,dx = 4$.

Приклад 2. Обчислимо інтеграл Рімана $\int_0^2 a^x \, dx$, де $a \in \mathbb{R}^+ \setminus \{0,1\}$, як границю інтегральних сум.

Функція $f(x)=a^x, x\in\mathbb{R},$ є неперервною і тому інтегровною за Ріманом на відрізку [0,2]. Тому існує границя інтегральних сум, що за теоремою Дарбу співпадає з інтегралом Рімана:

$$\lim_{\|P\| \to 0} S_P(f, \xi_P) = \int_0^2 a^x \, dx.$$

Для обчислення цієї границі розіб'ємо відрізок [0,2] на 2n рівних частин:

$$P_n = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{2n-1}{n}, 2\right\}, \ n \geqslant 1,$$

та оберемо набір проміжних точок

$$\xi_{P_n} = \left\{ \xi_k = \frac{k}{n} \in \left[\frac{k}{n}, \frac{k+1}{n} \right] \middle| k = \overline{0, 2n-1} \right\}, \ n \geqslant 1.$$

Тоді $\Delta x_k = \frac{1}{n} \ \forall k = \overline{0, 2n-1}$ та

$$S_{P_n}(f,\xi_{P_n}) = \sum_{k=0}^{2n-1} a^{\frac{k}{n}} \cdot \frac{1}{n} = \frac{a^2 - 1}{a^{\frac{1}{n} - 1}} \cdot \frac{1}{n} \to \frac{a^2 - 1}{\ln a} = \int_0^2 a^x \, dx, \ n \to \infty.$$

Приклад 3. Дослідимо інтегровність за Ріманом функції Діріхле на довільному відрізку $[a,b] \subset \mathbb{R}$:

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [a, b]; \\ 0, & x \in [a, b] \setminus \mathbb{Q}. \end{cases}$$

Множина точок розриву функції Діріхле — весь відрізок [a,b], тобто її мірою є довжина відрізка b-a. Звідси за теоремою Лебега маємо, що функція $D \notin R([a,b])$ для довільних $-\infty < a < b < +\infty$.

Також цей факт можна довести за означенням інтеграла Рімана як границі інтегральних сум. Для цього покажемо, що не існує границі інтегральних сум функції Діріхле. Оберемо довільне розбиття відрізка $P=P([a,b])=\{x_k\,|\,k=\overline{0},n\}.$ Для кожного проміжку розбиття $[x_k,x_{k+1}]$ існують точки $\xi_k\in\mathbb{Q}\cap[x_k,x_{k+1}]$ та $\theta_k\in[x_k,x_{k+1}]\setminus\mathbb{Q}.$ Складемо дві інтегральні суми Рімана для функції Діріхле по розбиттю P і наборів проміжних точок $\xi_P=\{\xi_k\,|\,k=\overline{0},n-1\}$ та $\theta_P=\{\theta_k\,|\,k=\overline{0},n-1\}:$

$$S_P(f,\xi_P) = \sum_{k=0}^{n-1} D(\xi_k) \Delta x_k = \sum_{k=0}^{n-1} 1 \cdot (x_{k+1} - x_k) = x_n - x_0 = b - a;$$

$$S_P(f,\theta_P) = \sum_{k=0}^{n-1} D(\theta_k) \Delta x_k = \sum_{k=0}^{n-1} 0 \cdot (x_{k+1} - x_k) = 0.$$

Очевидно, що не існує границі інтегральних сум функції Діріхле на довільному відрізку $[a,b]\subset \mathbb{R}$.

Приклад 4. Доведемо збіжність послідовності $a_n = \sum_{k=1}^n \frac{k^2}{n^3 + k^2 n}, \ n \geqslant 1, \ ma$ виразимо значення границі цієї послідовності через визначений інтеграл.

Перетворимо вираз із a_n так, щоб він набув вигляду, схожого до інтегральної суми Рімана:

$$a_n = \sum_{k=0}^{n-1} \frac{k^2}{n^2 + k^2} \cdot \frac{1}{n} + \frac{n^2}{n^3 + n^2 \cdot n} - \frac{0^2}{n^3 + 0^2 \cdot n} = \sum_{k=0}^{n-1} \frac{\left(\frac{k}{n}\right)^2}{1 + \left(\frac{k}{n}\right)^2} \cdot \frac{1}{n} + \frac{1}{2n}.$$

Розглянемо функцію $f(x) = \frac{x^2}{1+x^2}$, $x \in [0,1]$, значення якої присутні у сумі.

Оскільки $f \in C([0,1])$, то $f \in R([0,1])$. Таким чином, $a_n - \frac{1}{2n}$ є інтегральною сумою Рімана для функції f по рівномірному розбиттю

$$P_n = P_n([0,1]) = \left\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\right\}, \ n \geqslant 1,$$

відрізка [0, 1] та набору проміжних точок

$$\xi_{P_n} = \left\{ \frac{k}{n} \in \left[\frac{k}{n}, \frac{k+1}{n} \right] \middle| k = \overline{0, n-1} \right\}, \ n \geqslant 1.$$

Тобто $a_n = S_{P_n}(f, \xi_{P_n}) + \frac{1}{2n}$. Оскільки $\lim_{n \to \infty} \frac{1}{2n} = 0$, то

$$a_n \to \int_0^1 f(x) dx = \int_0^1 \frac{x^2 + 1 - 1}{x^2 + 1} dx = (x - \arctan x) \Big|_0^1 = 1 - \frac{\pi}{4}, \ n \to \infty.$$

Для заданої функції $f:[a,b]\to\mathbb{R}$ побудуйте нижню та верхню інтегральні суми Дарбу із розбиттям сегмента [a,b] на $mn,n\in\mathbb{N}$, рівних частин, якщо:

19.1
$$f(x) = x^2$$
, $[a, b] = [-1, 1]$, $m = 2$;

19.2
$$f(x) = x^3$$
, $[a, b] = [-2, 3]$, $m = 1$;

19.3
$$f(x) = \operatorname{sgn} x$$
, $[a, b] = [-2, 1]$, $m = 3$;

19.4
$$f(x) = |x|, [a, b] = [-3, 2], m = 5;$$

19.5
$$f(x) = [x], [a, b] = [-4, 0], m = 4;$$

19.6
$$f(x) = \{x\}, [a, b] = [1, 3], m = 2;$$

19.7
$$f(x) = \max\{x, 1-x\}, [a, b] = [-2, 2], m = 8.$$

Для заданої функції $f:[-1,1]\to\mathbb{R}$ оцініть різницю між верхньою та нижньою інтегральними сумами Дарбу для деякого розбиття P=P([-1,1]). Чи можливо за рахунок отриманої оцінки зробити висновок щодо інтегровності функції f за Ріманом на відрізку [-1,1]?

19.8
$$f(x) = x;$$
 19.9 $f(x) = -|x|.$

Обчисліть інтеграли Рімана, розглядаючи їх як границі інтегральних сум Рімана:

19.10
$$\int_0^3 \{x\} dx$$
;
19.11 $\int_{-3}^2 \operatorname{sgn} x dx$;
19.12 $\int_{-\frac{3}{2}}^1 [x] dx$;
19.13 $\int_{-1}^5 (1 + |x|) dx$;
19.14 $\int_0^{\pi/2} \sin x dx$;
19.15 $\int_1^4 \frac{dx}{x^2}$.

Знайдіть $\lim_{n\to\infty}a_n$ за допомогою інтегральних сум та інтеграла Рімана, де:

19.16
$$a_n = \sum_{k=1}^{n-1} \frac{k}{n^2};$$
 19.17 $a_n = \sum_{k=1}^{2n} \frac{1}{n+k};$

19.18
$$a_n = \sum_{k=1}^n \frac{(4k-3)^3}{k^4};$$
 19.19 $a_n = \frac{\sqrt[n]{n!}}{n};$

19.20
$$a_n = \sum_{k=1}^{n-1} \sin \frac{k}{n^2} \cdot \operatorname{arcctg} \frac{k}{n^3};$$
 19.21 $a_n = \sum_{k=1}^{n-1} \left(1 + \frac{k}{n}\right) \cdot \sin \frac{\pi k}{n^2};$

19.22
$$a_n = n \sum_{k=1}^n e^{\frac{k}{n^2}} \cdot \sin \frac{k}{n^2} \cdot \operatorname{tg} \frac{k^2}{n^3};$$
 19.23 $a_n = \left(\prod_{k=1}^{2^n-1} \left(1 + \frac{k}{2^n}\right)\right)^{\frac{1}{2^n}};$

19.24
$$a_n = n \sum_{k=1}^n \ln \left(1 + \frac{k}{n^2} \right) \cdot \operatorname{arctg} \frac{k^2}{n^3};$$

19.25
$$a_n = n \sum_{k=1}^n \frac{k^2}{n^4 + k^4} \cdot \operatorname{arctg} \frac{k}{n} \cdot \sin \frac{\sqrt{k}}{n\sqrt{n}}.$$

З'ясуйте, чи є функція $f\colon [a,b] \to \mathbb{R}$ інтегровною за Ріманом на [a,b], якщо:

19.26
$$f(x) = [x] \cdot x^{\alpha - 1}, \ \alpha > 0, \ [a, b] = \left[1, \frac{17}{2}\right];$$

19.27
$$f(x) = \left[\frac{1}{\sqrt{x}}\right], [a, b] = \left[\frac{1}{3}, 11\right];$$

19.28
$$f(x) = \begin{cases} \left[\frac{2}{x}\right] - 2\left[\frac{1}{x}\right], & x \neq 0; \\ 1, & x = 0, \end{cases}$$
 $[a, b] = [0, 1].$

Тема 16. Основні теореми інтегрального числення

Теорема (перша теорема про середнє). [1, с. 254] Якщо $\{f,g\} \subset R([a,b])$ та $\forall x \in [a,b] \ g(x) \ge 0 \ (g(x) \le 0)$, то існує таке $\mu \in \mathbb{R}$, що має місце рівність:

$$\int_{a}^{b} f(x)g(x) \, dx = \mu \int_{a}^{b} g(x) \, dx,\tag{2}$$

де $\inf_{x \in [a,b]} f(x) = m \leqslant \mu \leqslant M = \sup_{x \in [a,b]} f(x).$

Наслідок (для неперервної функції). Якщо в умовах першої теореми про середнє $f \in C([a,b])$, то існує $\xi \in [a,b]$ таке, що формула (2) набуває вигляду:

$$\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx.$$

Наслідок (формула середнього значення). Якщо $f \in C([a,b])$, то існує $\xi \in [a,b]$: $\int_a^b f(x) \, dx = f(\xi) \cdot (b-a)$.

Теорема (заміна змінної в інтегралі Рімана). Якщо $f:[a,b]\to\mathbb{R}$, $f\in C([a,b]);\ \varphi:[\alpha,\beta]\to\mathbb{R}$ є диференційовною на $[\alpha,\beta]$ і $\varphi'\in R([\alpha,\beta]),\ E_\varphi\subset D_f,$ $\varphi(\alpha)=a,\ \varphi(\beta)=b,$ тоді має місце рівність:

$$\int_{a}^{b} f(x) dx = \int_{0}^{\beta} (f \circ \varphi) \cdot \varphi'(t) dt,$$

Теорема (інтегрування частинами). Нехай $f,g:[a,b]\to \mathbb{R}$ — диференційовні функції та $f'\cdot g\in R([a,b])$. Тоді $f\cdot g'\in R([a,b])$ і виконується рівність:

$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x) \Big|_{x=a}^{x=b} - \int_{a}^{b} g(x)f'(x) \, dx,$$

Інтеграл Рімана як функція верхньої межі

Якщо $f\in R([a,b])$ та $x\in [a,b]$ — довільна точка, то за властивістю інтегровності звуження $f\in R([a,x])$. Таким чином, можемо визначити функцію $\Phi\colon [a,b]\to \mathbb{R},$ де

$$\Phi(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b].$$

 $\Phi(x)$ визначає інтеграл Рімана як функцію верхньої межі інтегрування.

Теорема (про неперервність $\Phi(x)$). Якщо $f \in R([a,b])$, то $\Phi \in C([a,b])$.

Теорема (основна теорема інтегрального числення). Якщо функція $f \in R([a,b])$, то функція $\Phi : [a,b] \to \mathbb{R}$, де $\Phi(x) = \int_a^x f(t) \, dt$, диференційовна в кожній точці $x \in [a,b]$, в якій функція f — неперервна і $\Phi'(x) = f(x)$.

Наслідок 1. Якщо $f \in C([a,b])$, то функція f має на сегменті [a,b] первісну Φ , де $\Phi(x) = \int_a^x f(t) dt$.

Наслідок 2. Якщо $f \in R([a,b])$ і множина точок розриву функції f не більш ніж зліченна, то функція $\Phi \colon [a,b] \to \mathbb{R}$, де $\Phi(x) = \int_a^x f(t) \, dt$, є *первісною* (у широкому розумінні) функції f на сегменті [a,b].

Теорема (основна формула інтегрального числення). Якщо функція $f \in R([a,b])$ і множина точок розриву функції f не більш ніж зліченна, а F — будь-яка первісна (у широкому розумінні) функції f на сегменті [a,b], то виконується рівність (формула Ньютона-Лейбніца):

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{x=a}^{x=b} \stackrel{def}{=} F(b) - F(a).$$

Теорема (друга теорема про середнє). [1, с. 257] Нехай $f:[a,b]\to \mathbb{R}$ є монотонною функцією, $g\in R([a,b])$. Тоді $\exists\,\xi\in[a,b]$, для якого виконується рівність:

$$\int_{a}^{b} f(x)g(x) \, dx = f(a) \int_{a}^{\xi} g(x) \, dx + f(b) \int_{\xi}^{b} g(x) \, dx.$$

Якщо при цьому f — незростаюча на [a,b] і $f(x)\geqslant 0 \ \forall x\in [a,b],$ то $\exists\,\xi\in [a,b]:$ $\int_a^b f(x)g(x)\,dx=f(a)\int_a^\xi g(x)\,dx.$ Якщо f — неспадна на [a,b] і $f(x)\geqslant 0 \ \forall x\in [a,b],$ то $\exists\,\xi\in [a,b]:\int_a^b f(x)g(x)\,dx=f(b)\int_{\xi}^b g(x)\,dx.$

Інтеграл Рімана як складна функція верхньої межі інтегрування

Нехай $f:[a,b]\to\mathbb{R},\ f\in C([a,b]),\ \varphi:[\alpha,\beta]\to\mathbb{R},\ E_\varphi\subset[a,b],$ існує похідна функції $\varphi'(x)\ \forall x\in[\alpha,\beta]\backslash X$ (за виключенням не більше, ніж зліченної множини точок $X\subset[\alpha,\beta]$). Розглянемо $\Phi(x)=\int_{\varphi(x_0)}^{\varphi(x)}f(y)\,dy,$ де $\varphi(x_0)=t_0\in[a,b].$ Можемо розглядати цей інтеграл як композицію $F\circ\varphi:\ F(t)=\int_{t_0}^tf(y)\,dy,\ t\in[a,b],$ $\Phi(x)=(F\circ\varphi)\,(x).$ За правилом знаходження похідної складної функції будемо мати $\Phi=F\circ\varphi,\ \Phi'(x)=F'(\varphi(x))\cdot\varphi'(x)=f(\varphi(x))\cdot\varphi'(x),$ тобто отримали, що $\frac{d}{dx}\Phi(x)=\frac{d}{dx}\int_{\varphi(x_0)}^{\varphi(x)}f(y)\,dy=f(\varphi(x))\cdot\varphi'(x).$

Якщо розглянути інтеграл Рімана як складну функцію нижньої межі інтегрування і об'єднати обидва випадки, то отримаємо:

$$\frac{d}{dx} \int_{\varphi(x)}^{\psi(x)} f(y) \, dy = f(\psi(x)) \cdot \psi'(x) - f(\varphi(x)) \cdot \varphi'(x). \tag{3}$$

Наближене обчислення інтеграла Рімана

Нехай $f:[a,b]\to\mathbb{R},\ f\in R([a,b]).$ Розіб'ємо відрізок [a,b] на n рівних проміжків: $[x_0,x_1],\ [x_1,x_2],\ \dots,\ [x_{n-1},x_n],$ де $a=x_0,\ b=x_n.$

1. Замінюючи площі криволінійних трапецій $\int_{x_{k-1}}^{x_k} f(x) dx$ на площі відповідних прямокутників шириною $(x_k - x_{k-1})$ та висотою $f(y_k)$, $y_k = \frac{1}{2}(x_{k-1} + x_k)$, отримаємо **формулу прямокутників** для наближеного обчислення інтеграла Рімана від функції f по проміжку [a,b]:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{n} \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_{k}}{2}\right) + R_{n} \approx \frac{b-a}{n} \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_{k}}{2}\right),$$

де R_n — залишковий член, значення якого визначає похибку обчислення. Зокрема, якщо $f\in C^{(2)}([a,b])$, то $\exists\,\xi\in[a,b]$: $R_n=\frac{(b-a)^3}{24n^2}\cdot f''(\xi)$. Тоді величина абсолютної похибки у формулі прямокутників оцінюється так:

$$|R_n| \leqslant \frac{(b-a)^3}{24n^2} \cdot \max_{x \in [a,b]} |f''(x)|.$$

2. Шляхом заміни $\int_{x_{k-1}}^{x_k} f(x) \, dx$ на площі відповідних трапецій, дістаємо **формулу трапеці**й:

$$\int_{a}^{b} f(x) dx = \frac{b-a}{2n} \sum_{k=1}^{n} \left(f(x_{k-1}) + f(x_{k}) \right) + R_{n} \approx \frac{b-a}{2n} \sum_{k=1}^{n} \left(f(x_{k-1}) + f(x_{k}) \right),$$

де R_n — залишковий член. За умови, що $f \in C^{(2)}([a,b])$, існує таке $\xi \in [a,b]$: $R_n = -\frac{(b-a)^3}{12n^2} \cdot f''(\xi)$. Тоді справедливою є така оцінка *абсолютної похибки* у формулі трапецій:

$$|R_n| \le \frac{(b-a)^3}{12n^2} \cdot \max_{x \in [a,b]} |f''(x)|.$$

Практичне заняття 20

Приклад 1. Оцінимо значення інтеграла $I = \int\limits_0^1 \frac{x^5\,dx}{1+x}$ за першою теоремою про середнє.

Позначимо $f_1(x)=x^5$ та $f_2(x)=\frac{1}{1+x}$ для $x\in[0,1]$. Оскільки $\forall x\in[0,1]:$ $f_i(x)\geqslant 0,\ i=\overline{1,2},$ та $\{f_1,f_2\}\subset R([0,1])$ то, згідно із першою теоремою про середнє, можемо оцінити значення інтеграла I двома способами.

1) Оберемо $f_1(x) = x^5$ в якості функції f у першій теоремі про середнє. Тоді існує таке $\mu_1 \in \mathbb{R}$, що має місце рівність:

$$I = \int_0^1 f_1(x) f_2(x) dx = \mu_1 \int_0^1 \frac{dx}{1+x} = \mu_1 \cdot \ln 2,$$

де $0 = \inf_{x \in [0,1]} x^5 \leqslant \mu_1 \leqslant \sup_{x \in [0,1]} x^5 = 1$. Тобто $I \in [0, \ln 2]$.

2) Тепер нехай f_2 буде в якості функції f у першій теоремі про середнє. Тоді $\exists \, \mu_2 \in \mathbb{R}$ таке, що:

$$I = \int_0^1 f_1(x) f_2(x) dx = \mu_2 \int_0^1 x^5 dx = \mu_2 \cdot \frac{1}{6},$$

де
$$\frac{1}{2}=\inf_{x\in[0,1]}\frac{1}{1+x}\leqslant \mu_1\leqslant \sup_{x\in[0,1]}\frac{1}{1+x}=1$$
. Тобто $I\in\left[\frac{1}{12},\frac{1}{6}\right]$. Порівнюючи

дві оцінки, можемо зробити висновок, що оцінка значення інтеграла I другим способом — більш точна.

Приклад 2. Оцінимо значення $I = \int\limits_0^1 \frac{e^x\,dx}{1+x^2}$ за другою теоремою про середне.

Позначимо $f_1(x) = e^x$ та $f_2(x) = \frac{1}{1+x^2}$ для $x \in [0,1]$. Так як обидві функції є монотонними на відрізку [0,1] та $\{f_1,f_2\} \subset R([0,1])$, то застосуємо другу теорему про середнє до оцінювання значення інтеграла I двома способами.

1) Оскільки f_1 зростає на [0,1] та $f_1(x) \ge 0 \ \forall x \in [0,1]$, то $\exists \xi_1 \in [0,1]$:

$$I = \int_0^1 f_1(x) f_2(x) dx = f_1(1) \int_{\xi_1}^1 f_2(x) dx = e \cdot \left(\frac{\pi}{4} - \arctan \xi_1\right).$$

Маємо, що $\arctan \xi_1 \in \left[0, \frac{\pi}{4}\right]$, звідки оцінка значення інтеграла: $0 \leqslant I \leqslant \frac{e\pi}{4}$.

2) Оскільки f_2 — спадна функція на [0,1] та $f_2(x)\geqslant 0 \;\; \forall x\in [0,1]$, то $\exists\, \xi_2\in [0,1]$:

$$I = \int_0^1 f_1(x) f_2(x) \, dx = f_2(0) \int_0^{\xi_2} f_1(x) \, dx = 1 \cdot \left(e^{\xi_2} - 1 \right).$$

Маємо, що $e^{\xi_2} \in [1,e]$, звідки оцінка значення інтеграла: $0 \leqslant I \leqslant e-1$. У підсумку, ця оцінка є більш точною.

Приклад 3. Обчислимо $\int\limits_0^3 \left[x\right]dx$.

На довільному проміжку (n, n+1), $n \in \mathbb{Z}$, функція f має первісну F:

$$F_{(n,n+1)}(x) = nx + C_n = [x] \cdot x + C_n.$$

Визначимо співвідношення між сталими ..., $C_{-2}, C_{-1}, C_0, C_1, C_2, \ldots$ з умови неперервності первісної F на множині $D_f = \mathbb{R}$:

$$F(n-0) = F(n+0), \ n \in \mathbb{Z}.$$

Тому

$$(n-1) \cdot n + C_{n-1} = n \cdot n + C_n \quad \Leftrightarrow \quad C_n = C_{n-1} - n.$$

Продовжуючи за індукцією, отримаємо $\forall n \in \mathbb{Z}$:

$$C_n = (C_{n-2} - (n-1)) - n = \dots = C_0 - \sum_{i=1}^n i = C_0 - \frac{n(n+1)}{2}.$$

Оскільки $\forall x \in [n,n+1), n \in \mathbb{Z}\colon n=[x],$ то остаточно маємо, що при $C_0=0$:

$$F(x) = [x] \cdot x - \frac{n(n+1)}{2} = [x] \cdot x - \frac{[x]([x]+1)}{2}$$

 ϵ первісною для f, неперервною $\forall x \in D_F = D_f$ і при цьому F'(x) = f(x) = [x]

 $\forall x \in D_f \backslash \mathbb{Z}$. Таким чином, за формулою Ньютона–Лейбніца:

$$\int_0^3 [x] \, dx = F(x) \Big|_{x=0}^{x=3} = \left([x] \cdot x - \frac{[x]([x]+1)}{2} \right) \Big|_{x=0}^{x=3} = 3.$$

Також цей результат можна отримати за допомогою властивості адитивності інтеграла Рімана: $f \in R([n, n+1]) \ \forall n \in \mathbb{Z}$, тому

$$\int_0^3 [x] \, dx = \int_0^1 [x] \, dx + \int_1^2 [x] \, dx + \int_2^3 [x] \, dx = 0 + 1 + 2 = 3.$$

┙

Приклад 4. Для функції $f = \int\limits_{xt}^{\sqrt{x^2+t^2}} \cos y^2 \, dy$ знайдемо похідні $\frac{df}{dx}$, вважаючи t фіксованим параметром, та $\frac{df}{dt}$, вважаючи x фіксованим параметром.

Розглянемо функцію f як складну функцію меж інтегрування і скористаємося формулою (3):

$$\frac{df}{dx} = \frac{d}{dx} \int_{xt}^{\sqrt{x^2 + t^2}} \cos y^2 \, dy = \cos\left(x^2 + t^2\right) \cdot \frac{x}{\sqrt{x^2 + t^2}} - t \cdot \cos\left(x^2 t^2\right);$$

$$\frac{df}{dt} = \frac{d}{dt} \int_{xt}^{\sqrt{x^2 + t^2}} \cos y^2 \, dy = \cos\left(x^2 + t^2\right) \cdot \frac{t}{\sqrt{x^2 + t^2}} - x \cdot \cos\left(x^2 t^2\right).$$

Приклад 5. Обчислимо наближене значення інтеграла $I=\int\limits_3^5 \frac{dx}{\ln x}$ за допомогою формул прямокутників/трапецій із точністю до $0{,}01$.

Позначимо $f(x) = \frac{1}{\ln x}$, x > 1. Первісна цієї функції визначається інтегральним логарифмом та не виражається у елементарних функціях. Для того, щоб застосувати формули наближеного обчислення інтеграла, визначимо необхідну кількість (n) відрізків розбиття проміжку інтегрування [3,5]. При x > 1:

$$f'(x) = -\frac{1}{x \ln^2 x}, \quad f''(x) = \frac{2 + \ln x}{x^2 \ln^3 x}, \quad f'''(x) = -2 \cdot \frac{\ln^2 x + 3 \ln x + 3}{x^3 \ln^4 x}.$$

Оскільки f''(x) є неперервно–диференційовною функцією на множині $(1, +\infty)$ і при цьому $f'''(x) < 0 \quad \forall x > 1$, то f''(x) монотонно спадає на $(1, +\infty)$. Таким чином, $f''(x) \leqslant f''(3) \quad \forall x \in [3, 5]$. Відповідно до оцінки абсолютної похибки у формулі прямокутників, маємо:

$$|R_n| \leqslant \frac{(5-3)^3}{24n^2} \cdot \max_{x \in [3,5]} |f''(x)| < 0.01 \iff n^2 > \frac{100 \cdot 2^3}{24} \cdot f''(3) \approx 8.66 \iff n \geqslant 3.$$

Тобто оптимальне значення n=3 для формули прямокутників та $n=5 \Rightarrow n^2 > 17,32$ для формули трапецій. Згідно із формулою прямокутників:

$$I = \int_3^5 \frac{dx}{\ln x} \approx \frac{5-3}{3} \cdot \left(f \left(\frac{10}{3} \right) + f(4) + f \left(\frac{14}{3} \right) \right) \approx 1{,}4674.$$

З іншого боку, за формулою трапецій отримуємо:

$$I \approx 0.2 \cdot (f(3) + 2 \cdot f(3.4) + 2 \cdot f(3.8) + 2 \cdot f(4.2) + 2 \cdot f(4.6) + f(5)) \approx 1.4736.$$

Справжнє значення $I \approx 1,471$ узгоджується із заданою точністю обчислення,

Доведіть рівності:

20.1
$$\int_0^{\frac{\pi}{2}} f(\sin x) \, dx = \int_0^{\frac{\pi}{2}} f(\cos x) \, dx, \text{ якщо } f \in C([0,1]);$$
20.2
$$\int_0^a x^3 f(x^2) \, dx = \frac{1}{2} \int_0^{a^2} t f(t) \, dt, \text{ якщо } a > 0 \text{ та } f \in C([0,a^2]);$$
20.3
$$\int_0^1 \frac{\arctan x}{x} \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{t \, dt}{\sin t}.$$

Обчисліть інтеграли Рімана:

$$20.4 \int_{-2}^{2} |x^{2} - 1| dx;$$

$$20.5 \int_{0}^{2} |1 - x| dx;$$

$$20.6 \int_{\frac{1}{e}}^{e} |\ln x| dx;$$

$$20.7 \int_{0}^{100\pi} \sqrt{1 - \cos 2x} dx;$$

$$20.8 \int_{0}^{100\pi} \sqrt{1 - \sin 2x} dx;$$

$$20.9 \int_{0}^{4} [x^{2}] dx;$$

$$20.10 \int_{-2\pi}^{8\pi} [\cos x] dx;$$

$$20.11 \int_{2}^{\pi - 1} \{x^{2} - 1\} dx;$$

$$20.12 \int_{1}^{2} \frac{dx}{x + x^{3}};$$

$$20.13 \int_{1}^{2} \frac{e^{1/x}}{x^{2}} dx.$$

Зробіть вказані заміни змінних у інтегралах (якщо це можливо):

20.14
$$\int_0^1 \sqrt{x^2 + 1} \, dx$$
, $x = \frac{1}{\cos t}$; 20.15 $\int_0^3 x \sqrt[3]{1 - x^2} \, dx$, $x = \sin t$;
20.16 $\int_0^{2\pi} \frac{dx}{12 - 5\cos x}$, $t = \operatorname{tg} \frac{x}{2}$;
20.17 $\int_0^{\pi} f(x)\cos x \, dx$, $f \in R([0, \pi])$, $t = \sin x$;
20.18 $\int_4^7 (x^2 - 6x + 13) \, dx$, $t = x^2 - 6x + 13$.

Чи справедливе формальне застосування формули Ньютона—Лейбніца у інтегралах:

20.19
$$\int_{-1}^{1} \frac{dx}{x^2};$$
 20.20 $\int_{0}^{2\pi} \frac{dx}{\cos^2 x (2 + \lg^2 x)};$ **20.21** $\int_{-1}^{1} \frac{d}{dx} \left(\operatorname{arctg} \frac{1}{x} \right) dx;$ **20.22** $\int_{-2}^{3} \operatorname{sgn} x \, dx ?$

Знайдіть на області визначення похідні $\frac{df}{dx}$, вважаючи t фіксованим параметром, та $\frac{df}{dt}$, вважаючи x фіксованим параметром, якщо:

20.23
$$f = \int_{t^2 \sin \sqrt{t}}^{x^2 t} \frac{e^y}{y} dy;$$
 20.24 $f = \int_{\sin(t+x)}^{\cos(t^2 + x^2)} y^2 \cos \sqrt{y} dy.$

Знайдіть границі:

$$\mathbf{20.25} \quad \lim_{x \to 0} \frac{1}{x} \int_{0}^{x} \cos t^{2} dt; \qquad \qquad \mathbf{20.26} \quad \lim_{x \to 0} \frac{\int_{0}^{x} \operatorname{arctg} t^{2} dt}{\int_{0}^{x^{5}} \operatorname{arctg} t dt};$$

$$\mathbf{20.27} \quad \lim_{x \to +\infty} \frac{\left(\int_{0}^{x} e^{t^{2}} dt\right)^{2}}{\int_{0}^{x} e^{2t^{2}} dt}; \qquad \qquad \mathbf{20.28} \quad \lim_{x \to 0} \frac{\int_{0}^{x^{3}} \operatorname{arctg} t^{2} dt}{\int_{0}^{x^{4}} \operatorname{sin} t^{\frac{3}{2}} dt}.$$

З'ясуйте, значення якого з двох інтегралів більше:

20.29
$$\int_{1}^{2} \ln^{2} x \, dx \, \text{чи} \int_{1}^{2} \ln x \, dx?$$
20.30
$$\int_{0}^{1} 2^{x^{2}} \, dx \, \text{чи} \int_{0}^{1} 2^{x^{3}} \, dx?$$
20.31
$$\int_{0}^{\pi} x \sin x \, dx \, \text{чи} \int_{\pi}^{2\pi} x \sin x \, dx?$$
20.32
$$\int_{0}^{\frac{\pi}{2}} \sin^{10} x \, dx \, \text{чи} \int_{0}^{\frac{\pi}{2}} \sin^{2} x \, dx?$$
20.33
$$\int_{0}^{\pi} e^{-x^{2}} \cos^{2} x \, dx \, \text{чи} \int_{\pi}^{2\pi} e^{-x^{2}} \cos^{2} x \, dx?$$

Оцініть значення інтегралів за допомогою теорем про середнє:

$$20.34 \int_{0}^{2} e^{x^{2}-x} dx;$$

$$20.35 \int_{0}^{100} \frac{e^{-x} dx}{x+100};$$

$$20.36 \int_{0}^{1} \frac{1+x^{20}}{1+x^{40}} dx;$$

$$20.37 \int_{0}^{1} \frac{x^{19} dx}{\sqrt[3]{1+x^{6}}};$$

$$20.38 \int_{\pi}^{2\pi} \sin x^{2} dx;$$

$$20.39 \int_{-1}^{1} \frac{\cos x dx}{1+x^{2}};$$

$$20.40 \int_{10}^{20} \frac{x^{2} dx}{x^{4}+x+1};$$

$$20.41 \int_{0}^{\sqrt{3}} (x-1) \operatorname{arctg} x dx.$$

Обчисліть наближені значення інтегралів за допомогою формул прямокутників/трапецій із точністю до 0,01:

20.42
$$\int_2^3 \frac{e^x}{x+1} dx;$$
 20.43 $\int_1^2 \sqrt{1+x^4} dx.$

Тема 17. Застосування інтеграла Рімана

Площа плоскої фігури в декартових прямокутних координатах. Нехай f(x) — неперервна невід'ємна на [a,b] функція. Площа S множини $\Phi = \{(x,y) | a \le x \le b, \ 0 \le y \le f(x)\}$ (криволінійної трапеції) дорівнює

$$S \stackrel{def}{=} S([a,b]) = \int_a^b f(x) \, dx. \tag{4}$$

Якщо $f(x)\leqslant 0$ на [a,b], то $\int_a^b f(x)\,dx\leqslant 0$ і за абсолютною величиною він дорівнює площі S відповідної криволінійної трапеції $-S=\int_a^b f(x)\,dx.$

Площа, обмежена кривими $y = f_1(x)$ та $y = f_2(x)$, ординатами x = a, x = b за умови $f_2(x) \geqslant f_1(x)$ обчислюється за формулою:

$$S = \int_{a}^{b} (f_2(x) - f_1(x)) dx.$$
 (5)

Випадок параметричної функції. Нехай функція $y=f(x), x\in [a,b],$ задана параметрично: $x=x(t), y=y(t), t\in [\alpha,\beta].$ При цьому функції x(t),y(t) неперервно—диференційовні та $x^2(t)+y^2(t)\neq 0 \ \forall t\in [\alpha,\beta],$ а також крива є замкненою: $x(\alpha)=x(\beta), y(\alpha)=y(\beta).$ Тоді:

$$S(\Phi) = \int_{\alpha}^{\beta} x(t) \cdot y'(t) dt. \tag{6}$$

Площа плоскої фігури в полярних координатах. Криволінійним сектором називається плоска фігура, що обмежена неперервною кривою і променями, які виходять з полюса O і утворюють з полярною віссю кути φ_1 та φ_2 : $\Phi = \left\{ (\rho, \varphi) \in \mathbb{R}^2 \,\middle|\, 0 \leqslant \rho \leqslant f(\varphi), \, \varphi_1 \leqslant \varphi \leqslant \varphi_2 \right\}$. Тоді:

$$S \stackrel{def}{=} S([\varphi_1, \varphi_2]) = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} f^2(\varphi) \, d\varphi = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} \rho^2 \, d\varphi. \tag{7}$$

Довжина дуги кривої. Нехай $f \in C^{(1)}([a,b])$ та крива задана рівнянням L = f(x) у прямокутних координатах. Довжина дуги AB кривої L, що міститься між вертикальними прямими x = a та x = b, визначається формулою

$$L_{AB} = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} \, dx. \tag{8}$$

Якщо крива γ задана у полярних координатах: $x=\rho(\varphi)\cos\varphi,\,y=\rho(\varphi)\sin\varphi,$ де $\varphi_1\leqslant\varphi\leqslant\varphi_2$, то її довжина визначається за формулою:

$$l = \int_{\varphi_1}^{\varphi_2} \sqrt{\rho^2(\varphi) + (\rho'(\varphi))^2} \, d\varphi. \tag{9}$$

Якщо крива γ задана параметрично, тобто $x=\varphi(t), \ y=\psi(t), \ t_1\leqslant t\leqslant t_2,$ і при цьому $\{\varphi,\psi\}\subset C^{(1)}([t_1,t_2]),$ то її довжина визначається за формулою:

$$l = \int_{t_1}^{t_2} \sqrt{1 + \left(\frac{\psi'(t)}{\varphi'(t)}\right)^2} \cdot \varphi'(t) dt. \tag{10}$$

Обчислення об'ємів. Якщо тіло T має об'єм і S = S(x), $x \in [a, b]$, де $S \in C([a, b])$ — площа перерізу тіла площиною, перпендикулярною до осі абсцис у точці x, то величина цього об'єму обчислюється за формулою

$$V = \int_{a}^{b} S(x) dx. \tag{11}$$

Якщо криволінійна трапеція $\Phi = \{(x,y) \in \mathbb{R}^2 \mid a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant f(x)\}$, де $f \in C([a,b])$, обертається навколо вісі Ox, то об'єм утвореного тіла обертання обчислюється за формулою:

$$V_x = \pi \int_a^b f^2(x) \, dx. \tag{12}$$

Також за умови, що f є однозначною функцією, об'єм тіла, утвореного обертанням криволінійної трапеції Φ навколо вісі Oy, обчислюється за формулою:

$$V_y = 2\pi \int_a^b x f(x) dx. \tag{13}$$

Практичне заняття 21

Приклад 1. Обчислимо площу фігури, обмеженої кривими $y=2-x^2,\ y=0$ та $y=\ln x+1$ у прямокутній декартовій системі координат.

Г

Позначимо функції $f_1(x)=2-x^2$ та $f_2(x)=\ln x+1$. Оскільки f_2 монотонно зростає на $D_{f_2}=(0,+\infty)$ і при цьому f_1 — монотонно спадна на тій же множині, то існує єдина точка перетину заданих кривих, абсциса якої дорівнює $x_0=1$.

Також можна визначити абсциси точок перетину кривих із віссю Ox:

$$2 - x^2 = 0 \Leftrightarrow x = \pm \sqrt{2};$$

 $\ln x + 1 = 0 \Leftrightarrow x = e^{-1}.$

 $\ln x + 1 = 0 \Leftrightarrow x = e^{-1}.$ Використовуючи формулу (4) та

властивість лінійності інтеграла Рімана, маємо:

$$S = \int_{\frac{1}{e}}^{1} (\ln x + 1) \, dx + \int_{1}^{\sqrt{2}} (2 - x^2) \, dx = x \ln x \Big|_{\frac{1}{e}}^{1} + \left(2x - \frac{x^3}{3}\right) \Big|_{1}^{\sqrt{2}} = \frac{1}{e} + \frac{5 + 4\sqrt{2}}{3}.$$

Приклад 2. Обчислимо площу фігури, обмеженої петлею лемніскати Бернуллі: $(x^2+y^2)^2=a^2(x^2-y^2)$, де a>0.

Перейдемо до полярної системи координат: $x=\rho\cos\varphi,\ y=\rho\sin\varphi.$ Тоді рівняння лемніскати можна переписати таким чином: $\rho^4=a^2\rho^2\cos2\varphi.$ Враховуючи

невід'ємність полярного радіуса, маємо таке рівняння кривої: $\rho = |a|\sqrt{\cos 2\varphi}$, де кут $\varphi \in \bigcup_{n \in \mathbb{Z}} \left[\frac{3\pi}{4} + \pi n, \frac{5\pi}{4} + \pi n \right] \cap \mathbb{R}^+$. Тоді, згідно із формулою (7), маємо:

$$S = \frac{1}{2} \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \rho^2 \, d\varphi = \frac{1}{2} \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} a^2 \cos 2\varphi \, d\varphi = \frac{a^2}{4} \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \cos 2\varphi \, d(2\varphi) = \frac{a^2}{4} \sin 2\varphi \bigg|_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} = \frac{a^2}{2}.$$

Приклад 3. Обчислимо довжину дуги кардіоїди: $\rho=1+\cos\varphi$.

Оскільки $\forall \varphi \geqslant 0 : \rho(\varphi) \geqslant 0$, а також за рахунок симетричності графіка кардіоїди відносно полярної вісі, досить обрати довільний проміжок $\varphi_1 \leqslant \varphi \leqslant \varphi_1 + \pi$ та застосувати формулу (9) для обчислення довжини дуги цієї кривої:

$$\begin{split} l &= 2 \int_0^\pi \sqrt{(1 + \cos \varphi)^2 + \sin^2 \varphi} \ d\varphi = \\ &= 2 \int_0^\pi \sqrt{2 + 2 \cos \varphi} \ d\varphi = 2 \int_0^\pi \sqrt{4 \cos^2 \frac{\varphi}{2}} \ d\varphi = \\ &= 8 \int_0^\pi \cos \frac{\varphi}{2} \ d\left(\frac{\varphi}{2}\right) = 8 \sin \frac{\varphi}{2} \Big|_0^\pi = 8. \end{split}$$

Приклад 4. Обчислимо довжину дуги однієї арки циклоїди: $x=a(t-\sin t),$ $y=a(1-\cos t),$ де a>0.

Зафіксуємо деяке початкове значення параметра t_1 . Враховуючи періодичність функції $\cos t$, маємо, що $y(t_1+2\pi n)=y(t_1),\ n\in\mathbb{Z}$. Тому одна арка циклоїди відповідає зміні параметра t на величину 2π . Нехай $t_1=0,\ t_2=2\pi$. При цьому маємо: $x(t_1)=y(t_1)=y(t_2)=0,\ x(t_2)=2a\pi$. Для обчислення довжини дуги застосуємо формулу (10):

$$l = \int_0^{2\pi} \sqrt{1 + \left(\frac{(a(1-\cos t))'}{(a(t-\sin t))'}\right)^2} \cdot \left(a(t-\sin t)\right)' dt =$$

$$= \int_0^{2\pi} \sqrt{1 + \frac{\sin^2 t}{(1-\cos t)^2}} \cdot a(1-\cos t) dt = a \int_0^{2\pi} \sqrt{2 - 2\cos t} dt =$$

$$= a \int_0^{2\pi} \sqrt{4\sin^2 \frac{t}{2}} dt = 4a \int_0^{2\pi} \sin \frac{t}{2} d\left(\frac{t}{2}\right) = -4a\cos \frac{t}{2} \Big|_0^{2\pi} = 8a.$$

Приклад 5. Знайдемо об'єм тіла, утвореного обертанням фігури навколо вісі Oy, що обмежена лініями $y=\arctan x,\ y=0$ та $y=\frac{\pi}{3}$.

Крива $y=\arctan x$ і пряма $y=\frac{\pi}{3}$ перетинаються у одній точці із абсцисою $x=\operatorname{tg}\frac{\pi}{3}=\sqrt{3}$. Застосуємо формулу (13):

$$V_{y} = 2\pi \int_{0}^{\sqrt{3}} x \cdot \arctan x \, dx =$$

$$= \begin{vmatrix} u = x, & du = dx \\ dv = \arctan x \, dx, & v = \frac{1}{1+x^{2}} \end{vmatrix} = \frac{x}{-\sqrt{3}}$$

$$= \frac{2\pi x}{1+x^{2}} \Big|_{0}^{\sqrt{3}} - 2\pi \int_{0}^{\sqrt{3}} \frac{dx}{1+x^{2}} = \frac{\sqrt{3}\pi}{2} - 2\pi \arctan x \Big|_{0}^{\sqrt{3}} = \pi \left(\frac{\sqrt{3}}{2} - \frac{2\pi}{3}\right).$$

Обчисліть площі фігур, обмежених кривими у прямокутній декартовій СК:

21.1
$$y = x^2, y = x^4;$$

21.2
$$x^2 + y^2 = 4x$$
, $y = x$;

21.3
$$y = \frac{1}{1+x^2}, \ y = \frac{x^2}{2};$$

21.4
$$y = \frac{16}{x^2}, y = 17 - x^2, x > 0;$$

21.5
$$xy = 20$$
, $x^2 + y^2 = 41$, $x \ge 0$;

21.6
$$y^2 = 2x$$
, $x^2 + y^2 = 8$;

21.7
$$y = \sin^3 x$$
, $y = \cos^3 x$, $x \in \left[0, \frac{\pi}{4}\right]$; **21.8** $y = 2^x$, $y = 2$, $x = 0$.

21.8
$$y = 2^x$$
, $y = 2$, $x = 0$.

Обчисліть площі фігур, обмежених кривими у полярній СК:

21.9
$$\rho = a \sin 3\varphi, \ a > 0, \ \varphi \in \left[0, \frac{\pi}{2}\right];$$

21.10
$$\rho = \sin^2 \frac{\varphi}{2}, \ \varphi \in \left[0, \frac{\pi}{2}\right];$$

21.11
$$\rho = a(1 + \cos \varphi), \ a > 0;$$

21.12
$$\rho = 2\cos\varphi, \ \rho \geqslant 1.$$

Обчисліть площі фігур, обмежених петлями кривих, що задані параметрично або неявно (параметр a > 0):

21.13
$$x = 2t - t^2$$
, $y = 2t^2 - t^3$:

21.14
$$x = \cos^3 t$$
, $y = \sin t$:

21.15
$$(x^2 + y^2)^2 = 2a^2xy;$$

21.16
$$x^4 + y^4 = a^2(x^2 + y^2)$$
.

Знайдіть довжини дуг кривих або петель кривих (параметр a > 0):

21.17
$$y = \ln x, \ x \in [\sqrt{3}, \sqrt{8}];$$

21.18
$$\rho = a \sin \varphi;$$

21.19
$$\rho = \frac{a}{1 + \cos \varphi}, \ \varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right];$$

21.20
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}};$$

21.21
$$x = \sqrt{3}t^2$$
, $y = t - t^3$;

21.22
$$x = e^t \cos t, \ y = e^t \sin t, \ t \in [0, \ln \pi].$$

Знайдіть об'єми тіл, обмежених поверхнями:

21.23
$$x^2 + y^2 = a^2$$
, $y^2 + z^2 = a^2$;

21.24
$$2z = \frac{x^2}{4} + \frac{y^2}{9}, \ z^2 = \frac{x^2}{4} + \frac{y^2}{9};$$

21.25
$$x + y + z^2 = 1$$
, $x = 0$, $y = 0$, $z = 0$.

Знайдіть об'єм тіла, утвореного обертанням фігури, обмеженої лініями

21.26
$$y = 2x - x^2$$
, $y = 0$, навколо: а) вісі Ox ; б) вісі Oy ;

21.27
$$xy = 4$$
, $x = 1$ та $y = 0$, навколо вісі Ox ;

21.28
$$y = e^x$$
, $x = 0$, $x = 2$ та $y = 0$, навколо: а) вісі Ox ; б) вісі Oy .

Відповіді та вказівки

15.1 $\frac{1}{4}x^4 + x^2 - 4x - \ln|x| - \frac{11}{x} + C$, $x \neq 0$; **15.2** $\frac{2x^2 - 12x - 6}{3\sqrt{x}} + C$; **15.3** $\ln|x| + 2 \arctan x + C$, $x \neq 0$; **15.4** $x + \sin x + C$; **15.5** $\cos x + C$; **15.6** $\tan x + C$; **15.7** $\frac{1}{4}$ ch 2x + C; **15.8** $3 \cdot \left(\frac{3}{e}\right)^x \cdot \left(\ln \frac{3}{e}\right)^{-1} + \frac{1}{2}e^{2x} - \frac{x}{e} + C$; **15.9** $-\frac{1}{8(2x-3)^4} + C$, $x \neq \frac{3}{2}$; **15.10** $\frac{3}{56} \sqrt[3]{(5-8x)^7} + C$; **15.11** $-\frac{1}{3}e^{-3x+1} + C$; **15.12** $-\frac{1}{2}\cos(2x-3) + C$; **15.13** $\frac{1}{3\sqrt{2}}$ arctg $\frac{\sqrt{2}}{3}x + C$; **15.14** $\frac{1}{3}$ arcsin $\frac{3x}{2} + C$, $|x| \leq \frac{2}{3}$; **15.15** $\frac{1}{2}x^2 + 2\ln|x^2 - 4|$, $x \neq \pm 2$; **15.16** $\frac{1}{h^2}\sqrt{b^2x^2+a^2}$; **15.17** $-\frac{1}{5}\cos(x^5+3)$; **15.18** $\frac{1}{3h^2}(b^2x^2+a^2)^{\frac{3}{2}}$; **15.19** $\frac{1}{2}e^{-\frac{1}{x^2}}$, $x \neq 0$; **15.20** $e^{\sin x}$; **15.21** $\ln |\ln x|$, x > 0; **15.22** $\ln |\ln \ln x|$, x > e. **16.1** $2x - \ln|2x + 1|$, $x \neq -\frac{1}{2}$; **16.2** $x - 2 \arctan x$; **16.3** $x^3 - \frac{3}{2}x^2 + 9x + \ln|x - 1| - \frac{1}{2}x^2 + \frac{1}$ $-16\ln|x+2|,\,x\notin\{-2,1\};\,\,\mathbf{16.4}\,\,\tfrac{(x+1)^2}{2}+\ln\tfrac{|x-1|}{\sqrt{x^2+1}}-\arctan x,\,x\neq1;\,\,\mathbf{16.5}\,\,\tfrac{1}{4}\ln\left|\tfrac{x-1}{x+1}\right| -\frac{1}{2} \operatorname{arctg} x, \ x \neq \pm 1; \ \mathbf{16.6} \ \frac{3}{2(x-2)^2} + \ln|x-5|, \ x \notin \{2,5\}; \ \mathbf{16.7} \ \frac{2}{x-3} + 3\ln|x+2| - \frac{1}{2} + \frac{1}{2}$ $-3 \arctan(x+2) - \ln(x^2+4x+5), \ x \notin \{-2,3\}; \ \mathbf{16.8} \ 3 \ln|x-1| + \ln\sqrt{x^2+1} + \ln(x^2+4x+5), \ x \notin \{-3,3\}; \ \mathbf{16.8} \ 3 \ln|x-1| + \ln\sqrt{x^2+1} + \ln(x^2+4x+5), \ \mathbf{16.8} \ \mathbf{1$ $+\frac{1}{2}\left(\frac{x}{x^2+1}+\arctan x\right), \ x\neq 1; \ \mathbf{16.9} \ x\sin x+\cos x; \ \mathbf{16.10} \ -e^{-x}(x+1); \ \mathbf{16.11} \ \frac{1}{2} \ e^x$ $\cdot (\sin x - \cos x); \ \mathbf{16.12} \ (x+1) \operatorname{arctg} \sqrt{x} - \sqrt{x}, \ x \geqslant 0; \ \mathbf{16.13} \ x \operatorname{arccos} x - \sqrt{1-x^2},$ $|x| \le 1$; **16.14** $x \cdot (\arcsin x)^2 + 2\arcsin x \cdot \sqrt{1 - x^2} - 2x$, $|x| \le 1$; **16.15** $x \operatorname{tg} x - \frac{x^2}{2} + 2x$ $+\ln|\cos x|, \ x \notin \{\frac{\pi}{2} + \pi k \mid k \in \mathbb{Z}\}; \ \mathbf{16.16} \ (x^3 + 1) \cdot \ln(1 + x) - \frac{x^3}{3} + \frac{x^2}{2} - x, \ x > -1;$ **16.17** $\frac{x}{2} (\sin \ln x - \cos \ln x), \ x > 0; \$ **16.18** $\sqrt{1+x^2} \cdot \arctan x - \ln (x + \sqrt{1+x^2}).$ $\mathbf{17.1} \,\, \tfrac{3}{2} \, \sqrt[6]{x^4} + 2 \, \sqrt[6]{x^3} + 3 \, \sqrt[6]{x^2} + 6 \, \sqrt[6]{x} + 6 \ln |\sqrt[6]{x} - 1|, \, x \notin \{0, 1\}; \,\, \mathbf{17.2} \, \ln \tfrac{|x|}{(1 + \frac{10}{2}x)^{10}} + \frac{1}{2} \, \sqrt[6]{x^4} + 2 \, \sqrt[6]{x^3} + 3 \, \sqrt[6]{x^2} + 6 \, \sqrt[6]{x} + 6 \ln |\sqrt[6]{x} - 1|, \, x \notin \{0, 1\}; \,\, \mathbf{17.2} \, \ln \tfrac{|x|}{(1 + \frac{10}{2}x)^{10}} + \frac{1}{2} \, \sqrt[6]{x^4} + 2 \, \sqrt[6]{x^3} + \frac{1}{2} \, \sqrt[6]{x^2} + \frac{1}{2}$ $+\frac{10}{\sqrt[10]{x}} - \frac{5}{\sqrt[5]{x}} + \frac{10}{3\sqrt[10]{x^3}} - \frac{5}{2\sqrt[5]{x^2}}, \ x \neq 0; \ \mathbf{17.3} \ \frac{2}{5}\sqrt{(x-1)^5} + \frac{4}{3}\sqrt{(x-1)^3} + 2\sqrt{x-1},$ $x \neq 1$; 17.4 $6\sqrt[3]{(x+1)^2} \cdot \left(\frac{(x+1)^2}{16} - \frac{x+1}{5} + \frac{\sqrt{x+1}}{7} + \frac{1}{4}\right)$, $x \neq -1$; 17.5 $\frac{3}{4}y^4 - \frac{3}{2}y^2 - \frac{3}{4}y^4 - \frac{$ $-\frac{3}{4}\ln|y-1|+\frac{15}{8}\ln(y^2+y+2)-\frac{27}{8\sqrt{7}}\arctan\frac{2y+1}{\sqrt{7}}$, $\text{de }y=\sqrt[3]{2+x},\ x\neq -1;\ 17.6$ $\ln\left|\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right| + 2\arctan\sqrt{\frac{1-x}{1+x}}, \ x \in (-1,0) \cup (0,1]; \ \mathbf{17.7} - \frac{1}{2}(3x-19)\sqrt{3-2x-x^2} + \frac{1}{2}(3x-19)\sqrt{3-2x +14 \arcsin \frac{x+1}{2}, \ x \in (-3,1); \ \mathbf{17.8} \ -15 \ln \left| x+2+\sqrt{x^2+4x+5} \right| + (x^2-5x+20) \cdot$ $\sqrt{x^2+4x+5}$; 17.9 $\frac{\operatorname{sgn} x}{2}$ $\arctan \frac{x-2}{x\sqrt{2}}$, $x \in \mathbb{R} \setminus [-2-2\sqrt{2}, -2+2\sqrt{2}]$; 17.10 $\frac{\operatorname{sgn}(x-1)}{\sqrt{3}}$ $\cdot \left(\ln \left(2\sqrt{3}|x-1| \right) - \ln \left| \sqrt{3}(x+1) \cdot \operatorname{sgn}(x-1) + \sqrt{x^2 + x - 1} \right| \right), \ x \neq 1; \ \mathbf{17.11} \ \ln \left| x + 1 + \frac{1}{2} \right|$ $+\sqrt{x^2+2x+2}\Big|+\frac{1}{x+1}\cdot(1-\sqrt{x^2+2x+2});$ **17.12** $-4\ln|y|+3\ln|2y-1|+\frac{3}{2y-1},$ де $y = \sqrt{x^2 + x + 1} - x$, $x \neq -1$; 17.13 $\ln \left| \frac{y-1}{y} \right| - 2 \operatorname{arctg} y$, де $y = \frac{1+\sqrt{1-2x-x^2}}{x}$; **17.14** $3 \cdot \left(\ln \left| \frac{\sqrt[3]{x}}{1 + \sqrt[3]{x}} \right| + \frac{2\sqrt[3]{x} + 3}{2(1 + \sqrt[3]{x})^2} \right), \ x \notin \{-1, 0\}; \ \mathbf{17.15} \ -\sqrt{1 - x^2} + \frac{2}{3} \sqrt{(1 - x^2)^3} - \frac{1}{3} \sqrt{(1 - x^2)^3} \right)$ $-\frac{1}{5}\sqrt{(1-x^2)^5}$, $x \neq \pm 1$; **17.16** $3y + \ln \frac{|y-1|}{\sqrt{y^2+y+1}} - \sqrt{3} \operatorname{arctg} \frac{2y+1}{\sqrt{3}}$, де $y = \sqrt[3]{1+\sqrt{x}}$, $x \neq 0; \ \mathbf{17.17} - \frac{1}{10} \left(\frac{1+x^4}{x^4} \right)^{\frac{5}{2}} + \frac{1}{3} \left(\frac{1+x^4}{x^4} \right)^{\frac{3}{2}} - \frac{1}{2} \sqrt{\frac{1+x^4}{x^4}}, \ x \neq 0; \ \mathbf{17.18} - \frac{8}{9} \sqrt{(1+x^{-3/4})^3},$ $x \neq 0$.

18.1 $\frac{4}{5}\sin^5 x - \frac{8}{7}\sin^7 x$; **18.2** $\frac{1}{3}\sin^3 x - \frac{1}{5}\sin^5 x$; **18.3** $-(\cos x)^{-1} + \frac{1}{3}(\cos x)^{-3}$, $x \notin \left\{ \frac{\pi}{2} + \pi k \mid k \in \mathbb{Z} \right\}$; **18.4** $\operatorname{tg} x - 2\operatorname{ctg} x - \frac{1}{3}\operatorname{ctg}^3 x$, $x \notin \left\{ \frac{\pi k}{2} \mid k \in \mathbb{Z} \right\}$; **18.5** $\frac{1}{2}\ln|\operatorname{tg} x|$,

 $x\notin \left\{\frac{\pi k}{2} \mid k\in \mathbb{Z}\right\}; \ \mathbf{18.6} \ \frac{1}{2} \ln \left|\frac{1+\sin x}{1-\sin x}\right|, \ x\notin \left\{\frac{\pi}{2}+\pi k \mid k\in \mathbb{Z}\right\}; \ \mathbf{18.7} \ \frac{2}{\sqrt{5}} \operatorname{arctg}\left(\sqrt{5} \operatorname{tg}\frac{x}{2}\right), \ x\notin \left\{\pi+2\pi k \mid k\in \mathbb{Z}\right\}; \ \mathbf{18.8} \ \frac{1}{2} \operatorname{arctg}\left(\frac{5}{4} \operatorname{tg}\frac{x}{2}-\frac{3}{4}\right), \ x\notin \left\{\pi+2\pi k \mid k\in \mathbb{Z}\right\}; \ \mathbf{18.9} \ \frac{1}{2\sqrt{6}} \ln \left|\frac{2\operatorname{tg}\frac{x}{2}+\sqrt{6}}{2\operatorname{tg}\frac{x}{2}-\sqrt{6}}\right|, \ x\notin \left\{\pi+2\pi k \mid k\in \mathbb{Z}\right\} \ \bigcup \ \left\{2\cdot \left(\pm \operatorname{arctg}\frac{\sqrt{6}}{2}+\pi k\right) \mid k\in \mathbb{Z}\right\}; \ \mathbf{18.10} \ \frac{1}{\sqrt{5}} \operatorname{arctg}\left(\frac{3\operatorname{tg}\frac{x}{2}+1}{\sqrt{5}}\right), \ x\notin \left\{\pi+2\pi k \mid k\in \mathbb{Z}\right\}; \ \mathbf{18.11} \ -2\ln|\operatorname{tg}x+1|-\ln\cos^2 x-2\cos^2 x+\sin 2x, \ x\notin \left\{-\frac{\pi}{4}+\pi k \mid k\in \mathbb{Z}\right\} \ \bigcup \left\{\frac{\pi}{2}+\pi k \mid k\in \mathbb{Z}\right\}; \ \mathbf{18.12} \ \operatorname{arctg}\left(\sin^2 x\right); \ \mathbf{18.13} \ I_1=\sin x, \ I_2=\frac{x}{2}+\frac{1}{4}\sin 2x \ \operatorname{ta} \ \forall n\geqslant 3: \ I_n=\frac{1}{n}\cos^{n-1}x \cdot \sin x+\frac{n-1}{n}\cdot I_{n-2}; \ \mathbf{18.14} \ J_1=\ln|\operatorname{tg}\frac{x}{2}|, \ J_2=-\operatorname{ctg}x \ \operatorname{ta} \ \forall n\geqslant 3: \ J_n=-\frac{\cos x}{(n-1)\sin^{n-1}x}+\frac{n-2}{n-1}\cdot J_{n-2}; \ \mathbf{18.15} \ |x|+C; \ \mathbf{18.16} \ x+4+C \ \operatorname{при} \ x<-2, \ -x+C \ \operatorname{при} \ x\in [-2,1] \ \operatorname{ta} \ x-2+C \ \operatorname{при} \ x>1; \ \mathbf{18.17} \ \frac{1}{3}+C \ \operatorname{при} \ x\in \left(0,\frac{1}{3}\right), \ x+C \ \operatorname{при} \ x\in \left[\frac{1}{3},\frac{2}{3}\right), \ 2x-\frac{2}{3}+C \ \operatorname{при} \ x\in \left[\frac{2}{3},1\right) \ \operatorname{ta} \ 3x-\frac{5}{3}+C \ \operatorname{при} \ x\in \left[1,\frac{4}{3}\right]; \ \mathbf{18.18} \ \frac{x^2}{2}+x+C \ \operatorname{при} \ x\in (-1,0), \ \frac{x^2}{2}+C \ \operatorname{при} \ x\in \left[0,1\right) \ \operatorname{ta} \ \frac{x^2}{2}-x+1+C \ \operatorname{при} \ x\in \left[1,2\right); \ \mathbf{18.19} \ e^x+C \ \operatorname{прu} \ x\leqslant 0, \ \frac{x^2}{2}+1+C \ \operatorname{пpu} \ x\leqslant 0, \ \frac{x^2}{2}+1+C \ \operatorname{npu} \ x\leqslant 0, \ \frac{x^2}{2}+1+C \ \operatorname{n$

 $\begin{array}{c} \mathbf{19.1} \ ; \ \mathbf{19.2} \ \underline{S_{P_n}}(f) = 16\frac{1}{4} - \frac{175}{2n} + \frac{125}{4n^2}, \ \overline{S_{P_n}}(f) = 16\frac{1}{4} + \frac{175}{2n} + \frac{125}{4n^2}; \ \mathbf{19.3} \ ; \ \mathbf{19.4} \ ; \\ \mathbf{19.5} \ ; \ \mathbf{19.6} \ ; \ \mathbf{19.7} \ ; \ \mathbf{19.8} \ ; \ \mathbf{19.9} \ ; \ \mathbf{19.10} \ \frac{3}{2}; \ \mathbf{19.11} \ -1; \ \mathbf{19.12} \ -2; \ \mathbf{19.13} \ 19; \ \mathbf{19.14} \\ 2; \ \mathbf{19.15} \ \frac{3}{4}; \ \mathbf{19.16} \ \frac{1}{2}; \ \mathbf{19.17} \ \ln 3; \ \mathbf{19.18} \ ; \ \mathbf{19.19} \ \frac{1}{e}; \ \mathbf{19.20} \ ; \ \mathbf{19.21} \ \frac{5}{6}\pi; \ \mathbf{19.22} \ ; \\ \mathbf{19.23} \ ; \ \mathbf{19.24} \ ; \ \mathbf{19.25} \ ; \ \mathbf{19.26} \ - \ \mathbf{19.28} \ \mathrm{Tak.} \end{array}$

20.4 4; **20.5** 1; **20.6** $\frac{2(e-1)}{e}$; **20.7** $200\sqrt{2}$; **20.8** $200\sqrt{2}$; **20.9** $5-\sqrt{2}-\sqrt{3}$; **20.10** -5π ; **20.11** $9-3\pi-\pi^2+\frac{\pi^3}{3}$; **20.12** $\frac{1}{2}\ln\frac{8}{5}$; **20.13** $e-\sqrt{e}$; **20.14** - **20.16** заміну зробити неможливо; **20.17** $\int_0^1 \left(f(\arcsin t)-f(\pi-\arcsin t)\right)dt$; **20.18** $\int_5^{20}\frac{t\,dt}{2\sqrt{t-4}}$; **20.19** - **20.21** ні; **20.22** так, 1; **20.23** ; **20.24** ; **20.25** 1; **20.26** $-\frac{2}{3}$; **20.27** 0; **20.28** ∞ ; **20.29** другого; **20.30** першого; **20.31** першого; **20.32** другого; **20.33** першого; **20.34** $\left[\frac{2}{\sqrt[4]{e}}, 2e^2\right]$ за 1-ою теор. про середне; **20.35** $\left[\frac{1-e^{-100}}{200}, \frac{1}{100}\right]$ за 2-ою теор. про середне; **20.40** ; **20.41** $\left[\frac{\pi(3-2\sqrt{3})}{6}, \frac{\pi(2-\sqrt{3})}{3}\right]$ за 2-ою теор. про середне; **20.42** $I\approx 3,5618$ за формулою прямокутників при n=4, $I\approx 3,5723$ за формулою трапецій (n=6); **20.43** $I\approx 2,5576$ за формулою прямокутників при n=4, $I\approx 2,5723$ за формулою трапецій (n=5).

Рекомендовані джерела

- [1] Ляшко І. І., Ємельянов В. Ф., Боярчук О. К. Математичний аналіз. Частина 1.- К: Вища школа, 1992.-495 с.
- [2] Ляшко І.І., Ємельянов В.Ф., Боярчук О.К. Математичний аналіз. Частина 2.- К: Вища школа, 1993. 375 с.
- [3] Ляшко И. И., Боярчук А. К., Гай Я. Г. и др. Справочное пособие по математическому анализу. Часть 1. Введение в анализ, производная, интеграл. — К.: Вища школа, 1978. — 696 с.
- [4] Ляшко С. И., Боярчук А. К. и др. *Сборник задач и упражнений по матема-тическому анализу.* Москва-Санкт-Петербург-Киев: Диалектика, 2001. 432 с.
- [5] Дороговцев А. Я. Математический анализ. Краткий курс в современном изложении. К.: Факт, 2004. 560 с.
- [6] Фихтенгольц Г. М. Основы математического анализа. Том 1. М.: Наука, 1968. 440 с.
- [7] Фихтенгольц Г. М. Основы математического анализа. Том 2. М.: Наука, 1968. 464 с.
- [8] Демидович Б. П. Сборник задач и упраженений по математическому анализу. М.: Наука, 1977. 528 с.
- [9] Денисьєвський М. О., Курченко О. О., Нагорний В. Н., Нестеренко О. Н., Петрова Т. О., Чайковський А. В. Збірник задач з математичного аналізу. Частина І. Функції однієї змінної. К.: ВПЦ "Київський університет", 2005. 257 с.
- [10] Денисьєвський М. О., Чайковський А. В. Збірник задач з математичного аналізу. Функції кількох змінних. К.: ВПЦ "Київський університет", 2012.-276 с.