Yakeen NEET 2.0 2026

Physical Chemistry By Amit

Mahajan Sir Solutions

DPP: 5

- $\mbox{\bf Q1}$ The Van't Hoff's factor (i) for a dilute aqueous Solution of Na_2SO_4 is
 - (A) $1+\alpha$
 - (B) $1-\alpha$
 - (C) $1 + 2\alpha$
 - (D) $1-2\alpha$
- **Q2** The van't Hoff's factor of K_4 $[Fe(CN)_6]$ assuming 100% dissociation is:
 - (A)5

(B)4

(C) 11

- (D)6
- **Q3** For the given electrolyte $X_m Y_n$, the degree of dissociation ' α ' is given by (' i ' is the Van't Hoff factor

(A)
$$lpha=rac{i-1}{m+n-1}$$

(B)
$$\mathbf{i} = (1 - \alpha) + m\alpha + n\alpha$$

(C)
$$\alpha = \frac{1-i}{1-m-n}$$

- (D) All of these
- Q4 0.04 M Na₂SO₄ solution is isotonic with 0.1M glucose at the same temperature. What is the apparent degree of dissociation of Na₂SO₄?
 - (A) 0.25
- (B) 0.50
- (C) 0.75
- (D) 0.85
- $\bf Q5$ A 0.001 molal solution of $[Pt\,(NH_3)_4Cl_4]$ in water had a freezing point depression of $0.0054^{\circ}\,C.$ If K_f for water is 1.80 , the correct formula for the above compound assuming its complete dissociation is
 - (A) $[Pt(NH_3)_4Cl_3]Cl$
 - (B) $[Pt(NH_3)_4Cl_2]Cl_2$
 - (C) $[Pt(NH_3)_4Cl]Cl_3$

- (D) $[Pt(NH_3)_4Cl_4]$
- **Q6** The degree of dissociation (α) of a weak electrolyte A_xB_y is related to van't Hoff factor (i) by the expression

(A)
$$lpha=rac{i-1}{(x+y-1)}$$

(B)
$$\alpha = \frac{i-1}{(x+y+1)}$$

(C)
$$\alpha=rac{(x+y-1)}{i-1}$$

(D)
$$\alpha = \frac{(x+y+1)}{i-1}$$

- Q7 Calculate the apparent degree of ionization of an electrolyte MX_2 in water, if the observed molar mass of the solute by measuring elevation in boiling point is 65.6 (Normal molar mass of the solute =164)
 - (A) 75%

(B) 85%

- (C) 65%
- (D) 25%
- Q8 Observe the following abbreviations $\pi_{\rm obs}=$ observed colligative property $\pi_{\rm cal}=$ theoretical colligative property assuming normal behaviour of solute.

Van't Hoff factors (i) is given by

(A)
$$\mathrm{i} = \pi_{\mathrm{obs}} imes \pi_{\mathrm{cal}}$$

(B)
$$\mathrm{i} = \pi_{\mathrm{obs}} + \pi_{\mathrm{cal}}$$

(C)
$$\mathrm{i} = \pi_{\mathrm{obs}} - \pi_{\mathrm{cal}}$$

(D)
$$i=\pi_{\rm obs}/\pi_{\rm cal}$$

- **Q9** Phenol dimerises in benzene having van't Hoff factor 0.54. What is the degree of association?
 - (A) 1.92
- (B) 0.98
- (C) 1.08
- (D) 0.92

- **Q10** Van't hoff factor of $Ca(NO_3)_2$ is
 - (A) 1

(B) 2

(C) 3

- (D) 4
- Q11 The vant's Hoff factor for $0.1~\mathrm{M~Ba(NO_3)_2}$ solution is 2.74. The degree of dissociation is
 - (A) 91.3%
- (B) 87%
- (C) 100%
- (D) 74%
- Q12 The freezing point depression of $0.001~\mathrm{m}$, $\mathrm{K_x}~[\mathrm{Fe}(\mathrm{CN})_6]$ is $7.4 \times 10^{-3}~\mathrm{K}$. The value of x is: (Assuming complete dissociation, $(K_f = 1.85 \mathrm{K}~\mathrm{kgmol}^{-1}~\mathrm{for~water})$
 - $(\mathbf{A}_f \mathbf{1}.6)$
- (B) 3

(C) 2

- (D) 1
- Q13 The molecular weight of NaCl determined by studying freezing point depression of its 0.5% aqueous solution is 30 . The apparent degree of dissociation of NaCl is
 - (A) 0.60
- (B) 0.50
- (C) 0.30
- (D) 0.95
- Q14 What is the freezing point of a solution containing 8.1~g~HBr in 100~g water assuming the acid to be 90% ionized (k_f for water $= 1.86^{\circ} Ckgmol^{-1}$)?
 - = 1.00 Ckgmor(A) -0.35°C
 - (B) $-1.35^{\circ}\mathrm{C}$
 - (C) $-2.35^{\circ}\mathrm{C}$
 - (D) $-3.53^{\circ}\mathrm{C}$

Answer I	Key
-----------------	------------

Q1	(C)	Q8	(D)
Q2	(A)	Q9	(D)
Q3	(D)	Q10	(C)
Q4	(C)	Q11	(B)
Q5	(B)	Q12	(B)
Q6	(A)	Q13	(D)
Q7	(A)	Q14	(D)

Master NCERT with PW Books APP