### PROJECT PRESENTATION

GREY WATER MANAGNMENT SYSTEM
BY RANJITHA P

#### Introduction

- Industrial wastewater pollution is a major environmental issue.
- Traditional treatment methods are costly and lack real-time monitoring.
- Our work offers a low-cost, automated grey water management solution.





#### **Problem Statement**

- Industries produce large volumes of wastewater, leading to pollution and resource depletion.
- Current treatment methods are costly, energy-intensive, and lack real-time monitoring.
- This offers a cost-effective, sensor-based IoT solution for efficient grey water recycling and sustainable management.

### **Objectives**

- Develop a low-cost, real-time grey water management system using BOD, pH, turbidity, and gas sensors.
- Automate filtration with migration and soil filters along with UV treatment for effective purification.



# **Literature Survey**

| S.NO | YEAR   | AUTHOR                                                                                                                                               | TITLE                                                                                                        | DESCRIPTION                                                                                                                                                         |
|------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | (2021) | Shindhal, Toral, Parita<br>Rakholiya, Sunita<br>Varjani, Ashok Pandey,<br>Huu Hao Ngo, Wenshan<br>Guo, How Yong Ng, and<br>Mohammad J.<br>Taherzadeh | A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater | Discusses advancements in dye industry wastewater treatment. Focuses on biological and chemical processes, which can be adapted to industrial wastewater treatment. |
| 2    | (2022) | Jan, Farmanullah,<br>Nasro Min-Allah, Saqib<br>Saeed, Sardar Zafar<br>Iqbal, and Rashad<br>Ahmed                                                     | IoT-based solutions to<br>monitor water level,<br>leakage, and motor<br>control for smart water<br>tanks     | Explores IoT solutions for water level monitoring and leakage detection in smart water tanks. Focuses on smart motor control for efficient water usage.             |

| 3 | (2022) | Manoj, M., V. Dhilip<br>Kumar, Muhammad Arif,<br>Elena-Raluca Bulai, Petru<br>Bulai, and Oana Geman                     | State of the art techniques for water quality monitoring systems for fish ponds using IoT and underwater sensors: A review | Reviews IoT-based water quality monitoring for fish ponds, highlighting underwater sensors for parameter tracking. Relevant to the development of sensor-based water treatment systems. |
|---|--------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | (2023) | Ranganathan, Chitra<br>Sabapathy, Virendra<br>Singh Thakur,<br>Ramakrishnan Raman, S.<br>Sujatha, and Swapnil<br>Parikh | IoT and Real-time Data<br>Analytics Optimize<br>Greywater Recycling                                                        | Examines IoT and data analytics to optimize greywater recycling systems. Emphasizes real-time monitoring and smart systems for efficient water reuse.                                   |

## **Proposed System**

- Real-time monitoring of pH, turbidity, and temperature ensures automated water quality control.
- IoT integration enables remote monitoring, control, and realtime alerts via a centralized platform.
- The system ensures continuous water purification with minimal manual intervention.



## Proposed System (contd...)

| Parameter          | Existing<br>System | Proposed System                                         |
|--------------------|--------------------|---------------------------------------------------------|
| рН                 | 6.2 - 9.4          | 6.5 – 8.5 ( More controlled through sensors )           |
| Turbidity<br>(NTU) | 20 - 444<br>NTU    | <5 NTU ( Due to filtration & UV radiation )             |
| BOD (mg/L)         | 42.1-6250<br>mg/L  | <30 mg/L (Strict threshold with automated flow control) |

## **System Architecture**



# **System Modules**

| Module | <b>Module Name</b>      | Description                                                                                       | Key Components             |
|--------|-------------------------|---------------------------------------------------------------------------------------------------|----------------------------|
| No     |                         |                                                                                                   |                            |
| 1      | Water Input & Detection | Initiates the system by detecting incoming industrial grey water and monitoring basic parameters. | 1                          |
| 2      | Filtration &            | Filters solid waste and detects                                                                   | Migration filter, Soil     |
|        | Gas Detection           | harmful gases in the water.                                                                       | filter, MQ-3 Gas<br>Sensor |
| 3      | Chemical                | Monitors pH level and turbidity of                                                                | pH Sensor, Turbidity       |
|        | Parameter<br>Monitoring | treated water to ensure chemical safety.                                                          | Sensor                     |
| 4      | Disinfection &          | Final treatment using UV light and                                                                | UV Radiation Light,        |
|        | Flow Control            | motor driver to control flow based on all sensor feedback.                                        | Motor Driver               |
| 5      | Smart                   | Real-time monitoring and                                                                          | Mobile App, IoT            |
|        | Monitoring &            | reporting via application; alerts                                                                 | server, Wi-                |
|        | Alerts                  | maintenance team when any                                                                         | Fi/Bluetooth Module        |
|        |                         | abnormal condition is detected.                                                                   |                            |

## Methodology / Technology Used

| Category        | Technology / Tool       | Purpose                             |
|-----------------|-------------------------|-------------------------------------|
| Sensors         | pH Sensor               | Monitors acidity/alkalinity         |
|                 | Turbidity Sensor        | Measures water clarity              |
|                 | MQ-3 Gas Sensor         | Detects harmful gases               |
| Microcontroller | Arduino / ESP32         | Controls sensors and processes data |
| Software Tools  | Arduino IDE             | Sensor programming and interfacing  |
| IoT Platforms   | Firebase                | Real-time monitoring                |
| Mobile App      | MIT App Inventor        | Displays sensor data and alerts     |
| Other Hardware  | UV Disinfection         | Kills bacteria and pathogens        |
|                 | Motor & Flow<br>Control | Regulates water flow                |

## **Results and Testing**





## Results and Testing (contd...)





## **Challenges Faced**

- Ensuring accurate sensor readings
   (BOD, pH, turbidity, gas) required
   repeated calibration and testing.
- IoT integration faced challenges with real-time data transmission and app synchronization.
- Consistent filtration using migration and soil filters needed iterative design enhancements.



#### **Future Enhancements**

- Advanced Filters: Utilize nano-materials or bio-filters for higher efficiency and durability.
- AI Monitoring: Apply machine learning to predict contamination and optimize treatment in real time.
- Remote Diagnostics: Use IoT analytics for predictive maintenance and fault detection.



#### **Conclusion**

- Efficient grey water treatment using sensors and automation.
- Maintains safe pH, turbidity, and BOD levels.
- Real-time alerts via app for abnormal conditions.
- Auto-stop motor control for safety.
- Supports sustainable and eco-friendly water reuse.

#### References

- [1] Shindhal, Toral, Parita Rakholiya, Sunita Varjani, Ashok Pandey, Huu Hao Ngo, Wenshan Guo, How Yong Ng, and Mohammad J. Taherzadeh. "A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater." Bioengineered 12, no. 1 (2021): 70-87. DOI: https://doi.org/10.1080/21655979.2020.1863034
- [2] Khajvand, Mahdieh, Ali Khosravanipour Mostafazadeh, Patrick Drogui, and Rajeshwar Dayal Tyagi. "Management of greywater: environmental impact, treatment, resource recovery, water recycling, and decentralization." Water Science & Technology 86, no. 5 (2022): 909-937. DOI: https://doi.org/10.2166/wst.2022.226
- [3] Verma, Akshaya Kumar, Aditya Kishore Dash, Puspendu Bhunia, and Rajesh Roshan Dash. "Removal of surfactants in greywater using low-cost natural adsorbents: a review." Surfaces and Interfaces 27 (2021): 101532. DOI: https://doi.org/10.1016/j.surfin.2021.101532
- [4] Jan, Farmanullah, Nasro Min-Allah, Saqib Saeed, Sardar Zafar Iqbal, and Rashad Ahmed. "IoT-based solutions to monitor water level, leakage, and motor control for smart water tanks." Water 14, no. 3 (2022): 309. DOI: https://doi.org/10.3390/w14030309
- [5] Manoj, M., V. Dhilip Kumar, Muhammad Arif, Elena-Raluca Bulai, Petru Bulai, and Oana Geman. "State of the art techniques for water quality monitoring systems for fish ponds using iot and underwater sensors: A review." Sensors 22, no. 6 (2022): 2088. DOI: https://doi.org/10.3390/s22062088

- [6] Manna, Madhumita, and Sujit Sen. "Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater." Environmental Science and Pollution Research 30, no. 10 (2023): 25477-25505. DOI: https://doi.org/10.1016/j.fuel.2013.03.033
- [7] Santos, Joice, Sara Rodrigues, Marcelo Magalhães, Kelly Rodrigues, Luciana Pereira, and Glória Marinho. "A state-of-the-art review (2019-2023) on constructed wetlands for greywater treatment and reuse." Environmental Challenges (2024): 100973. DOI: https://doi.org/10.1016/j.envc.2024.100973
- [8] Bassi, Nitin, Saiba Gupta, and Kartikey Chaturvedi. "Reuse of treated wastewater in India." Market Potential and Recommendations (2023). DOI: https://www.ceew.in/sites/default/files/scaling-wastewater-reuse-treatment-and-management-india.pdf
- [9] Ranganathan, Chitra Sabapathy, Virendra Singh Thakur, Ramakrishnan Raman, S. Sujatha, and SwapnParikh. "IoT and Real-time Data Analytics Optimize Greywater Recycling." In 2023 Second International Conference On Smart Technologies For Smart Nation (SmartTechCon), pp. 1049-1053. IEEE, 2023. DOI: https://doi.org/10.1109/SmartTechCon57526.2023.10391788
- [10] Rai, Prince Kumar, Vishav Kant, Rakesh Kumar Sharma, and Ankur Gupta. "Process optimization for textile industry-based wastewater treatment via ultrasonic-assisted electrochemical processing." Engineering Applications of Artificial Intelligence 122 (2023): 106162. DOI: https://doi.org/10.1016/j.engappai.2023.106162

