Reinforcement Learning

## Agenda

- Machine Learning
  - Definition
  - Machine Learning Algorithm
- Markov Chain
- Markov Reward Processes
  - Discount Factor
  - Markov Chain
  - Total Discounted Factor
  - The Bellman Equation
  - The Bellman Expectation Equation for value function
- Markov Decision Processes
  - Definition
  - Policy
  - The Bellman Expectation Equation
  - Optimal Value Function
  - Optimal State/Active-Value Function
  - Optimal Policy
  - The Bellman Optimality Equation

## Agenda

- Dynamic Programming
  - Policy Evaluation
  - Policy Iteration
  - Policy Improvement
  - Generalised Policy Iteration
  - Deterministic Value Iteration
  - Value Iteration
  - Extensions to Dynamic Programming
- Reference

**Definition of Machine Learning** 

Machine Learning is a field of study that give computer ability to learn without being explicitly programmed



Arthur Samuel (1959)

Reinforcement Learning is one of the three Machine Learning Algorithms:

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Machines take trial and error → Rule of thumb

Learn from an environment



## **Markov Chain**

## Markov Chain

#### Brief review of Markov Chain

- A state ONLY depends on the previous state
- State transition probability matrix
- The following is a state diagram
- The sum of each row is 1



State Diagram

$$\begin{array}{ccccc}
o & & & & \\
d & & e & & \\
d & & e & & \\
g & & h & & i
\end{array}$$

**Transition Matrix** 

## **MRPs**

List of useful equations for Markov Reward Processes.

Total discounted reward,

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Value function,

$$v(s) = E[G_t | S_t = s]$$

Immediate reward :  $R_{t+1}$  Discounted value of successor state :  $\gamma v(S_{t+1})$ 

Discount factor

Def.  $\gamma$  is a discount factor  $\gamma \in [0,1]$ .

We want to maximize the sum of rewards. We also prefer rewards now to reward later.



Source: UCL Course on RL

#### Markov Chain

- A state ONLY depends on the previous state
- State diagram
- State transition probability matrix
- The sum of each row is 1



Daily Life of an Employee

**Transition Matrix** 

#### Total discounted reward

Def. The return  $G_t$  is the total discounted reward from time-step t,

• 
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$

eg. Let  $\gamma = 0$ .



**Transition Matrix** 

Total discounted reward

Def. The return  $G_t$  is the total discounted reward from time-step t,

• 
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$

eg. Let  $\gamma = 1$ .



How do we find value function  $v_1$ ?

$$v_1 = -5 + 0.7 \times 10 + 0.3 \times 8 = 4.4$$

Daily Life of an Employee

Total discounted reward

Def. The return  $G_t$  is the total discounted reward from time-step t,

• 
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$

eg. Let  $\gamma = 0$ .



Daily Life of an Employee

Since  $\gamma = 0$ , we only care about the immediate reward, which means we only get the reward from the next state.

Other states are irrelevant!

Total discounted reward

Def. The return  $G_t$  is the total discounted reward from time-step t,

• 
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$

eg. Let 
$$\gamma = \frac{1}{2}$$
.



**Transition Matrix** 

#### Total discounted reward

Def. The return  $G_t$  is the total discounted reward from time-step t,

• 
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$



work\_am 
$$\rightarrow$$
 lunch  $\rightarrow$  work\_pm  $\rightarrow$  home  $\rightarrow$  sleep  
=  $-1 + 2 \times \frac{1}{2} - 1 \times \frac{1}{4} + 2 \times \frac{1}{8} + 10 \times \frac{1}{16} = 0.625$ 

work\_am 
$$\rightarrow$$
 play  $\rightarrow$  lunch  $\rightarrow$  work\_pm  $\rightarrow$  home  
=  $-1 - 2 \times \frac{1}{2} + 2 \times \frac{1}{4} - 1 \times \frac{1}{8} + 2 \times \frac{1}{16} = -1.5$ 

work\_am 
$$\rightarrow$$
 work\_pm  $\rightarrow$  home  $\rightarrow$  sleep  
=  $-1 - 1 \times \frac{1}{2} + 2 \times \frac{1}{4} + 10 \times \frac{1}{8} = 0.25$ 

work\_am 
$$\rightarrow$$
 lunch  $\rightarrow$  pub  $\rightarrow$  home  $\rightarrow$  sleep  
=  $-1 + 2 \times \frac{1}{2} + 5 \times \frac{1}{4} + 2 \times \frac{1}{8} + 10 \times \frac{1}{16} = 2.125$ ...

We need to average these return  $G_t$ ...

#### Value Function

Def. The return  $G_t$  is the total discounted reward from time-step t,

• 
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$

eg. Let 
$$\gamma = \frac{1}{2}$$
.



$$v(s) = E[G_t | S_t = s]$$

How do we find value function?

$$v_1 = ???$$
 $v_2 = ???$ 
 $v_3 = ???$ 
 $v_4 = ???$ 
 $v_5 = ???$ 
 $v_6 = ???$ 
 $v_7 = ???$ 

#### Value Function

Def. The return  $G_t$  is the total discounted reward from time-step t,

• 
$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$

eg. Let 
$$\gamma = \frac{1}{2}$$
.



Daily Life of an Employee

How do we find value function?

$$v_3 = -1 + 0.5(0.5 \times 6.961 + 0.5 \times 8.629)$$
  
= 2.8975

The Bellman Expectation Equation for value function

The two parts of value function:

- Immediate reward  $R_{t+1}$
- Discounted value of successor state  $\gamma v(S_{t+1})$

$$v(s) = E[G_t|S_t = s]$$

$$= E[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots |S_t = s]$$

$$= E[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) |S_t = s]$$

$$= E[R_{t+1} + \gamma G_{t+1} |S_t = s]$$

$$= E[R_{t+1} + \gamma v(S_{t+1}) |S_t = s]$$

$$v(s) = E[R_{t+1} + \gamma v(S_{t+1}) | S_t = s]$$



$$v(s) = R_s + \gamma \sum_{s' \in S} P_{ss'} v(s')$$

The Bellman Equation in matrix form

The Bellman Equation can be expressed as the following using matrices,

$$v = R + \gamma P v$$

where v is a column vector with one entry per state,

$$\begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \vdots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix}$$

Thank you Bellman Equation!! You are a linear equation!! We can solve for v now.

The Bellman Equation in matrix form

The Bellman Equation can be expressed as the following using matrices,

$$v = R + \gamma P v$$

where v is a column vector with one entry per state,

$$v = R + \gamma P v$$
  

$$(I - \gamma P)v = R$$
  

$$v = (I - \gamma P)^{-1} R$$

## **MDPs**

Def. A Markov Decision Processes is a tuple  $\langle S, A, P, R, \gamma \rangle$ .

- *S* is a finite set of states
- *A* is a finite set of actions
- P is a state transition probability matrix,  $P_{SS}^a = P[S_{t+1} = s' | S_t = s, A_t = a]$
- R is a reward function,  $R_S^a = E[R_{t+1}|S_t = s, A_t = a]$
- $\gamma$  is a discount factor  $\gamma \in [0,1]$



gets reward (ALL the rewards over time) by taking action from state s value decrease over time



Source: Simple Beginner's guide to Reinforcement Learning & its implementation, UCL Course on RL

List of useful equations for Markov Decision Processes.

Total discounted reward,

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma R_{t+k+1}$$

State-value function,

$$v_{\pi}(s) = E_{\pi}[G_t|S_t = s]$$

• Policy,

$$\pi(a|s) = P[A_t = a|S_t = s]$$

Action-value function,

$$q_{\pi}(s,a) = E_{\pi}[G_t|S_t = s, A_t = a]$$

Policy

Def. A *policy*  $\pi$  is a distribution over actions given states,

$$\pi(a|s) = P[A_t = a|S_t = s]$$

Determining an action in a certain state on a specific time is called "Policy".

$$A_t \sim \pi(\cdot | S_t), \forall t > 0$$

$$R_s^{\pi} = \sum_{a \in A} \pi(a|s) R_s^a$$

Policy

#### Value function

State-value function for policy

Def. The state-value function  $v_{\pi}(s)$  of an Markov Decision Processes is the expected return starting from state s, and then following policy  $\pi$ ,

$$v_{\pi}(s) = E_{\pi}[G_t | S_t = s]$$

The state-value function can be varied for each policy.

Since we need to find the policy which maximizes its value function, state-value function plays an important role in reinforcement learning.

The state-value function can again be decomposed into immediate reward plus discounted value of successor state,

$$v_{\pi}(s) = E_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

Source: UCL Course on RL

Policy

#### Value function

Action-value function for policy

Def. The *action-value function*  $q_{\pi}(s, a)$  is the expected return starting from state s, taking action a, and then following policy  $\pi$ ,

$$q_{\pi}(s,a) = E_{\pi}[G_t|S_t = s, A_t = a]$$

This is the expected value of return when an action is taken in a certain state.

The action-value function can similarly be decomposed,

$$q_{\pi}(s, a) = E_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Source: UCL Course on RL

## Policy

State Diagram



Daily Life of an Employee

The Bellman Expectation Equation for  $V^{\pi}$  and  $Q^{\pi}$ 



$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s, a)$$



$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{\pi}(s')$$

The Bellman Expectation Equation for  $V^{\pi}$  and  $Q^{\pi}$ 



$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) \left( R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_{\pi}(s') \right)$$



$$q_{\pi}(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{\alpha' \in A} \pi(\alpha'|s') q_{\pi}(s',\alpha')$$

Source: UCL Course on RL

The Bellman Expectation Equation

eg. Let 
$$\pi(a|s) = 0.5, \gamma = 1$$
.



Daily Life of an Employee

#### How do we find value function?

$$v_1 = ???$$
 $v_2 = ???$ 
 $v_3 = ???$ 
 $v_4 = ???$ 
 $v_5 = ???$ 

The Bellman Expectation Equation

eg. Let 
$$\pi(a|s) = 0.5, \gamma = 1$$
.



Daily Life of an Employee

**Transition Matrix** 

The Bellman Expectation Equation

eg. Let 
$$\pi(a|s) = 0.5, \gamma = 1$$
.



Daily Life of an Employee

How do we find value function?

$$v_3 = 0.5 \times (1 + 0.2 \times (-1.288) + 0.4 \times (1.873) + 0.4 \times (7.182) + 0.5 \times 10$$
  
= 7.1822

The Bellman Expectation Equation in matrix form

The Bellman Equation can be expressed as the following using matrices,

$$v_{\pi} = R^{\pi} + \gamma P^{\pi} v_{\pi}$$

$$v_{\pi} = (I - \gamma P^{\pi})^{-1} R^{\pi}$$

 $P^{\pi}$  = Average state transition dynamics

 $v_{\pi}$  = Averaged reward function

Since the Bellman Equation is a linear equation, we can solve for v now.

Source: UCL Course on RL

Optimal Value Function

Def. The *optimal state-value function*  $v_*(s)$  is the maximum value function over all policies,

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

Def. The optimal action-value function  $q_*(s,a)$  is the maximum action-value function over all policies,

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- The optimal value function specifies the best possible performance in the Markov Decision Processes
- Markov Decision Processes is "solved" when we know the optimal value function

Optimal State-Value Function

eg. Find  $v_*(s)$  for  $\gamma = 1$ .



Daily Life of an Employee

#### Optimal state-value function?

$$v_1 = 8 - 2 \text{ or } v_1 = 6 - 1$$
  
 $v_2 = 10 - 2 \text{ or } v_2 = 0 + 0$   
 $v_3 = 1 \text{ or } v_3 = 0 + 10$   
 $v_4 = 6 + 0 \text{ or } v_4 = 6 - 1$   
 $v_5 = 0$ 

Optimal Action-Value Function

eg. Find  $q_*(s, a)$  for  $\gamma = 1$ ?



Daily Life of an Employee

Optimal action-value function?

$$q_* = 0 + 10 = 10$$

$$q_* = 10 - 2 = 8$$

$$q_* = 0 + 0 = 0$$

$$q_* = 8 - 2 = 6$$

$$q_* = 6 - 1 = 5$$

$$q_* = 6 + 0 = 6$$

$$q_* = 6 - 1 = 5$$

**Optimal Policy** 

Define a partial ordering over policies,

$$\pi \geq \pi'$$
 if  $v_{\pi}(s) \geq v_{\pi'}(s)$ ,  $\forall s$ 

Theorem. For any Markov Decision Process,

- There exists an optimal policy  $\pi_*$  that is better than or equal to all other policies,  $\pi_* \geq \pi$ ,  $\forall \pi$
- All optimal policies achieve the optimal value function,  $v_{\pi_*}(s) = v_*(s)$
- All optimal policies achieve the optimal action-value function,  $q_{\pi_*}(s, a) = q_*(s, a)$

Finding an Optimal Policy

An optimal policy can be found by maximizing over  $q_*(s, a)$ ,

$$\pi_*(a|s) = \begin{cases} 1, & \text{if } a = \operatorname*{argmax} q_*(s, a) \\ 0, & \text{otherwise} \end{cases}$$

- There is always a deterministic optimal policy for any Markov Decision Processes
- If we know  $q_*(s, a)$ , we immediately have the optimal policy

**Optimal Policy** 

eg. Find  $\pi_*(s, a)$  for  $\gamma = 1$ ?



Daily Life of an Employee

Optimal action-value function?

$$q_* = 0 + 10 = 10$$
 $q_* = 10 - 2 = 8$ 
 $q_* = 0 + 0 = 0$ 
 $q_* = 8 - 2 = 6$ 
 $q_* = 6 - 1 = 5$ 
 $q_* = 6 + 0 = 6$ 
 $q_* = 6 - 1 = 5$ 

The Bellman Optimality Equation for  $V^*$  and  $Q^*$ 



$$v_*(s) = \max_a q_*(s, a)$$



$$q_*(s,a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s')$$

The Bellman Optimality Equation for  $V^*$  and  $Q^*$ 



$$v_*(s) = \max_{a} \left( R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_*(s') \right)$$



$$q_*(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \max_{a'} q_*(s', a')$$

The Bellman Optimality Equation

eg. Find  $\pi_*(a|s)$  for  $\gamma = 1$ .



Optimal state-value function?

$$6 = \max_{\pi} \{8 - 2, 6 - 1\}$$

Daily Life of an Employee

Dynamic Programming divides problem into subproblems, which are themselves usually divided into further subproblems.

A better name for Dynamic Programming might be Recursive Optimization.

eg. Shortest dipath problems



Dynamic Programming divides problem into subproblems, which are themselves usually divided into further subproblems.

A better name for Dynamic Programming might be Recursive Optimization.

eg. Shortest dipath problems



Dynamic Programming divides problem into subproblems, which are themselves usually divided into further subproblems.

A better name for Dynamic Programming might be Recursive Optimization.

eg. Shortest dipath problems



#### **Policy Evaluation**

Iterative Policy Evaluation



$$v_{k+1}(s) = \sum_{a \in A} \pi(a|s) \left( R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$
$$\vec{v}^{k+1} = \vec{R}^{\vec{\pi}} + \gamma \vec{P}^{\vec{\pi}} \vec{v}^k$$

**Policy Evaluation** 

eg. Evaluating a random policy in the Small Gridworld



|    | 1  | 2  | 3  |
|----|----|----|----|
| 4  | 5  | 6  | 7  |
| 8  | 9  | 10 | 11 |
| 12 | 13 | 14 |    |

$$\gamma = -1$$
 on all transitions

- Undiscounted episodic Markov Decision Processes ( $\gamma = 1$ )
- Nonterminal states 1, ...,14
- One terminal state (two shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

**Policy Evaluation** 

eg. Evaluating a random policy in the Small Gridworld

0.0

0.0

$$k = 2 \begin{bmatrix} 0.0 & -1.75 & -2.0 & -2.0 \\ -1.75 & -2.0 & -2.0 & -2.0 \\ -2.0 & -2.0 & -2.0 & -1.75 \\ -2.0 & -2.0 & -1.75 & 0.0 \end{bmatrix}$$



**Policy Evaluation** 

eg. Evaluating a random policy in the Small Gridworld

Starting from each step...

$$-1 = \frac{(-1+0) + (-1+0) + (-1+0) + (-1+0)}{4}$$

**Policy Evaluation** 

eg. Evaluating a random policy in the Small Gridworld

$$k = 0$$



$$k = 1$$



Starting from each step...

$$-1 = \frac{(-1+0) + (-1+0) + (-1+0) + (-1+0)}{4}$$

Now update...

**Policy Evaluation** 

eg. Evaluating a random policy in the Small Gridworld

Starting from each step...

$$-2 = \frac{(-1-1) + (-1-1) + (-1-1) + (-1-1)}{4}$$

$$-1.75 = \frac{(-1-1) + (-1-1) + (-1-1) + (-1)}{4}$$

Now update...

**Policy Evaluation** 

eg. Evaluating a random policy in the Small Gridworld

$$k = 0$$



$$k = 1$$



$$k = 2$$

Starting from each step...

$$-2 = \frac{(-1-1) + (-1-1) + (-1-1) + (-1-1)}{4}$$

$$-1.75 = \frac{(-1-1) + (-1-1) + (-1-1) + (-1)}{4}$$

Policy Iteration

How do we improve a policy?

- Given a policy  $\pi$ 
  - Evaluate the policy  $\pi$ ,

$$v_{\pi}(s) = E(R_{t+1} + \gamma R_{t+2} + \dots | S_t = s)$$

• Improve the policy by acting greedily with respect to  $v_{\pi}$ ,

$$\pi' = greedy(v_{\pi})$$

- In Small Gridworld improved policy was optimal,  $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to  $\pi^*$

Policy Iteration



Policy evaluation Estimate  $v_{\pi}$  Iterative policy evaluation Policy improvement Generate  $\pi' \geq \pi$  Greedy policy improvement



Policy Iteration

eg. Jack's Car Rental

- States: Two locations, maximum of 20 cars at each
- Actions: Move up to 5 cars between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
  - Poisson distribution, *n* returns / requests with probability  $\frac{\rho^n}{n!}e^{-\rho}$
  - 1<sup>st</sup> location : average requests = 3, average returns = 3
  - 2<sup>nd</sup> location : average requests = 4, average returns = 2

Policy Iteration

eg. Jack's Car Rental



#### Policy Improvement

- Consider a deterministic policy,  $a = \pi(s)$
- We can *improve* the policy by acting greedily,

$$\pi'(s) = \operatorname*{argmax}_{a \in A} q_{\pi}(s, a)$$

This improves the value from any state s over one step,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

• If therefore improves the value function,  $v_{\pi'}(s) \ge v_{\pi}(s)$ 

$$\begin{aligned} v_{\pi}(s) &\leq q_{\pi}\big(s, \pi'(s)\big) = E_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s] \\ &\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_t = s] \\ &\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s] = v_{\pi'}(s) \end{aligned}$$

#### Policy Improvement

If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

Then the Bellman optimality equation has been satisfied,

$$v_{\pi}(s) = \max_{a \in A} q_{\pi}(s, a)$$

- Therefore  $v_{\pi}(s) = v_{*}(s)$  for all  $s \in S$
- So  $\pi$  is an optimal policy

#### Generalised Policy Iteration



Policy evaluation Estimate  $v_{\pi}$ Any policy evaluation algorithm Policy improvement Generate  $\pi' \geq \pi$ Any policy improvement algorithm



**Deterministic Value Iteration** 

- If we know the solution to subproblems  $v_*(s')$
- Then the solution  $v_*(s')$  can be found by one-step lookahead

- The idea of value iteration is to apply these updates iteratively
- Intuition: Start with final rewards and work backwards
- Still works with loopy, stochastic Markov Decision Processes

Value Iteration

eg. Shortest Path Problem



 g
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0

 0
 0
 0
 0





Problem

 $V_1$ 

 $V_2$ 

 $V_3$ 

| g  | -1 | -2 | -3 |
|----|----|----|----|
| -1 | -2 | -3 | -3 |
| -2 | -3 | -3 | -3 |
| -3 | -3 | -3 | -3 |

g -1 -2 -3 -1 -2 -3 -4 -2 -3 -4 -4 -3 -4 -4 -4



g -1 -2 -3 -1 -2 -3 -4 -2 -3 -4 -5 -3 -4 -5 -6

 $V_4$ 

 $V_5$ 

 $V_6$ 

 $V_7$ 

#### Value Iteration

- Problem : Find optimal policy  $\pi$
- Solution: Iterative application of the Bellman optimality backup
- $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_*$
- Using synchronous backups
  - At each iteration k+1
  - For all states  $s \in S$
  - Update  $v_{k+1}(s)$  from  $v_k(s')$
- Unlike policy iteration, there is no explicit policy
- Intermediate value functions may not correspond to any policy

Value Iteration



$$v_{k+1}(s) = \max_{a \in A} \left( R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right)$$
$$\vec{v}_{k+1} = \max_{a \in A} \left( \vec{R}^{\vec{a}} + \gamma \vec{P}^{\vec{a}} \vec{v}_k \right)$$

#### Extensions to Dynamic Programming

Synchronous Dynamic Programming Algorithms

| Problem    | The Bellman Equation                                         | Algorithm                   |
|------------|--------------------------------------------------------------|-----------------------------|
| Prediction | The Bellman Expectation Equation                             | Iterative Policy Evaluation |
| Control    | The Bellman Expectation Equation + Greedy Policy Improvement | Policy Iteration            |
| Control    | Bellman Optimality Equation                                  | Value Iteration             |

- Algorithms are based on state-value function  $v_{\pi}(s)$  or  $v_{*}(s)$
- Could also apply to action-value function  $q_{\pi}(s, a)$  or  $q_{*}(s, a)$
- Others:

Asynchronous Dynamic Programming, In-Place Dynamic Programming, Prioritised Sweeping, Real-Time Dynamic Programming, Full-Width Backups, Sample Backups, Approximate Dynamic Programming

# Reference

#### Reference

UCL Course on RL <a href="http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html">http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html</a>

Simple Beginner's guide to Reinforcement Learning & its implementation <a href="https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/">https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/</a>

# Thank you