Lithospheric plates: a dynamical perspective

Fanny Garel

University of Montpellier, France

Deep Earth Doctoral School - Les Houches - Autumn 2022

Dynamical definition of surface plates and subducting slabs

PEPI special issue 20-21

Physical properties and observations of the lithosphere-asthenosphere system

Editors: Rick Aster, Saskia Goes, Derek Schutt

- seismology, heat flow
- electrical conductivity
- gravimetry
- mineral physics
- geotherms
- rheology, melting
- dynamics

. .

• Thermal structures of slabs from gravimetry?

 Breaking plates from below with dislocation creep?

2022-2026

ANR-21-CE49-0009

Concepts and **proxies** of plates & LAB

→ velocity profile with depth ? evolution with time ?

Finite-element thermo-mechanical models

> plate-driven set-up : steady-state

> free subduction set-up : time-evolving

ONE <u>single</u> material for both lithosphere and asthenophere

(no pre-imposed discontinuity)

Vertical profiles below a moving plate (2 cm/yr)

Vertical profiles below a moving plate (2 cm/yr)

Vertical profiles below a moving plate (2 cm/yr)

Dynamical plate in Couette or Poiseuille flows

constant-velocity plate also observed for 'active' asthenosphere flow

drag of asth.
by Pacific plate
(itself pulled by subduction)

asthenospheric "push" by Hawaiian plume

A) Couette flow

B) Poiseuille flow

C) Combined flow (Couette and Poiseuille)

Transient asth. flow driven by subduction

Agreement between fast direction of S_v waves and present-day absolute plate motion (from NUVEL-1A)

blue = parallelism

red = orthogonality

Slow-moving plates

insufficient strain rates in the asthenosphere to generate CPO aligned with plate motion in less than 30 Myr

Debayle & Ricard, 2013

Seismic anisotropy as a proxy for the lith-asth transition?

Eaton et al., 2009

Age-independent radial seismic anisotropy

Burgos et al., 2014

Dislocation & diffusion creep regimes below an oceanic plate

- steady-state
 plate-driven flow
 of upper mantle
- composite rheology diffusion
- + dislocation creep
- D-Rex calculation of anisotropy

Hedjazian, Garel+. EPSL 2017

Dislocation & diffusion creep regimes below an oceanic plate

LAB in fast sinking slabs? (upper mantle)

Horizontal profile across a fast-sinking slab

volume of downdipdragged asthenosphere dependent on

- slab sinking velocity
- viscosity profile

 (dependent on rheological parameterizations)

A decoupling low-viscosity layer?

A **low-viscosity** layer below the plates?

Shear velocity, attenuation

Debayle et al., Nature, 2020 joint inversion of geoid and postglacial rebound data

Compilation in Cizkova et al., PEPI, 2012

A **low-viscosity** layer below the plates?

Shear velocity, attenuation ----- partial melt?

A low-viscosity layer below the plates?

Shear velocity, attenuation ------ partial melt?

V_e perturbation (%)

----→ grain size variations?

creep laws → low-viscosity layer possible with certain rheological parameters

how weak? 10¹⁹ Pa.s?

how much weaker? $10-100 \times ?$

how thick? < 250 km depth ?

A low-viscosity layer favoring plate tectonics regime

localizing deformation at plate boundary

Mobile

lithosphere mobility as a function of yield stress σ_y and viscosity contrast η^* for a sub-plate low-viscosity layer

Richards G³ 2001

A low-viscosity layer reconciling plate vs. slab velocities

- 5 cmr/yr surface plates vs. 1 cm/yr sinking slabs > folding !?
- imaged slab "walls" = piled & folded ?

but most subduction models shows inclined/retreating slabs...

> dominance of vertical-folding regime if addition of subplate 2-5x weak layer

Cerpa, Sigloch, Garel+ JGR 2022

<u>Mass transfers</u> between upper & lower mantle : asthenosphere dragged and trapped by cold deforming slabs

Thermal structure of slabs imaged by spatial gravimetry & gradiometry to retrieve their history of sinking and deformation

starting PhD of Xavier Vergeron

CNES GraviSSym project (PI Cécilia Cadio) Cnes

Thermal structure of slabs imaged by spatial gravimetry & gradiometry to retrieve their history of sinking and deformation

starting PhD of Xavier Vergeron

ANR-21-CE49-0009

Breaking plates from below with dislocation creep?

ANR-21-CE49-0009

"Memory" processes proposed for deformation localization feedbacks

- grain size growth vs. recrystallization under stress
- strain weakening
- shear heating

No memory effect : shear thinning

strain-rate dependent viscosity from dislocation creep (n>1)

composite dislocation + diffusion creep

compatible with deformation experiments : effective viscosity dependent on both temperature and strain rate

Gouriet+ EPSL 2019 Garel+ EPSL 2020

yield-stress rheology successful in localizing "viscous" plate boundaries

1023

1022

 10^{21}

1020

1019

Tackley 1998, 2000; Mallard+ 2016; Coltice+, 2017, Arnould+ 2018....

Model set-up enabling intraplate deformation localization

- accelerated subduction dynamics with a fixed upper plate Alsaif + EPSL 2020
- olivine composite rheology <u>HT and LT disl. creep</u> + diff. creep. + brittle

Model set-up enabling intraplate deformation localization

deformation-Temperature-time paths (def-T-t paths) onto a background of viscosity

rheological effective stress exponent for a composite viscosity (diff + disl)

 $\dot{\varepsilon} \propto \sigma^n$

time-dependent "dynamic" effective stress exponent

Montesi & Zuber, 2002

$$\frac{1}{n_e} \equiv \frac{\chi_0}{\sigma} \, \frac{\mathrm{d}\sigma}{\mathrm{d}\chi_0}$$

$$\frac{1}{n_e^d} = \frac{\mathrm{d} \log(\sigma)}{\mathrm{d} \log(\varepsilon_{II})} = \frac{\mathrm{d} \log(\sigma)}{\mathrm{d} t} \frac{\mathrm{d} t}{\mathrm{d} \log(\varepsilon_{II})}$$

dynamic localization occurs for negative ne and is strongest for more negative 1/ne

deformation localization
may be caused by a hot upwelling
but hot regions then return to
non-localizing, low-deformation state

 deformation-temperature-viscosity-time paths calculated in models of various geodynamical contexts

- rheological param.

compatible with def. Exp.

but with different gradients of viscosity / exponent n
as a function of T and SR

- > why some rheology localize deformation but others do NOT
- > whole-mantle convection models → frequency of plate break-up?
 - → Early Earth?

