КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Доповідь

Прямі методи розв'язання різницевих рівнянь. Методи матричної прогонки, редукції (декомпозиції), застосування до розв'язання модельної задачі; метод розділення змінних (Фур'є)

Виконали студенти групи ОМ-4 Кроча Кирило Коломієць Микола Депенчук Марія

3MICT

1	Прямі методи розв'язання різницевих рівнянь	2
2	Методи матричної прогонки	3
3	Методи редукції (декомпозиції)	4
4	Застосування до розв'язання модельної задачі	5
	4.1 Постановка задачі	5
5	Метод розділення змінних (Фур'є)	6

РОЗДІЛ 1 ПРЯМІ МЕТОДИ РОЗВ'ЯЗАННЯ РІЗНИЦЕВИХ РІВНЯНЬ

РОЗДІЛ 2 МЕТОДИ МАТРИЧНОЇ ПРОГОНКИ

РОЗДІЛ З МЕТОДИ РЕДУКЦІЇ (ДЕКОМПОЗИЦІЇ)

РОЗДІЛ 4 ЗАСТОСУВАННЯ ДО РОЗВ'ЯЗАННЯ МОДЕЛЬНОЇ ЗАДАЧІ

4.1 Постановка задачі

$$\begin{cases}
-\left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}}\right) = f(x, y) \\
0 < x < 1, 0 < y < 1 \\
u(0, y) = 0 \\
u(1, y) = Ae^{By}\sin\omega \\
u(x, 0) = A\sin\omega x \\
u(x, 1) = Ae^{B}\sin\omega x \\
f(x, y) = Ae^{By}(\omega^{2} - B^{2})\sin\omega x
\end{cases}$$
(4.1)

Розв'язок: $u(x,y) = Ae^{By}\sin(\omega x)$

Початкові значення: $A=B=1, \omega=\pi$

РОЗДІЛ 5 МЕТОД РОЗДІЛЕННЯ ЗМІННИХ (ФУР'Є)