Informe de Lectura: Decaimiento del Higgs a Quarks Bottom

Juan Montoya

27 de marzo de 2025

Resumen

Se presenta la observación de la desintegración del bosón de Higgs del Modelo Estándar (SM) en un par de quarks bottom ($H \rightarrow bb$). El resultado proviene de procesos donde el Higgs se produce en asociación con un bosón W o Z, buscando eventos con 0, 1 o 2 leptones cargados y dos jets identificados como provenientes de quarks bottom.

El análisis se basa en datos registrados por el experimento CMS en 2017, en colisiones protonproton a $\sqrt{s}=13$ TeV. Al combinar estos datos con mediciones previas a $\sqrt{s}=7,8$ y 13 TeV, se observa un exceso de eventos en $m_H=125$ GeV con una significancia de 4.8 desviaciones estándar, cercano al valor esperado de 4.9, y en una combinación global con otras producciones se alcanza una significancia observada de 5.6 (esperada 5.5).

1. Contenido e Ideas Principales

Contexto y Motivación

Tras el descubrimiento en torno a 125 GeV por ATLAS y CMS, se han estudiado en detalle las propiedades del bosón de Higgs. Aunque se han observado otras desintegraciones (como $\gamma\gamma$, ZZ, WW, $\tau\tau$) y recientemente su producción en asociación con quarks top, el canal H \rightarrow bb resulta crucial dado su alto porcentaje de ramificación (aproximadamente 58%). La confirmación de este canal refuerza la verificación del mecanismo de generación de masa en el sector de fermiones.

Estrategia Experimental Ampliada

El análisis se centra en la producción asociada (VH), donde el Higgs se produce junto con un bosón W o Z. Se consideran cinco canales distintos, que incluyen:

- Z(νν)H
- $W(\mu\nu)H$
- $W(e\nu)H$
- $\mathbf{Z}(\mu\mu)\mathbf{H}$
- Z(ee)H

Esto abarca escenarios con 0, 1 o 2 leptones cargados, junto con la presencia de dos jets b. La estrategia incluye el uso de disparadores en línea, definiendo umbrales en la energía faltante $(p_{\rm T}^{\rm miss})$ y $H_{\rm T}^{\rm miss}$, para optimizar la eficiencia, especialmente en el canal 0-leptón, donde se requieren $p_{\rm T}^{\rm miss} > 220~{\rm GeV}$.

Metodología, Reconstrucción y Control de Fondos

El estudio se apoya en:

■ Selección y reconstrucción de eventos: Se definen criterios para la selección basada en la presencia de 0, 1 o 2 leptones y dos jets identificados como provenientes de quarks bottom. Cada canal tiene su metodología para reconstruir el bosón vectorial, considerando el $p_{\rm T}^{\rm miss}$ (para el caso 0-leptón) o la reconstrucción directa (en canales con leptones).

- Identificación de jets b: Se emplea el algoritmo deepCSV, basado en redes neuronales, que combina información de vértices secundarios, propiedades cinemáticas y la posible presencia de leptones suaves, utilizando puntos de trabajo (tight y loose) para optimizar su identificación.
- Reducción de fondos: Se definen regiones señal y de control para separar la señal de importantes fondos como V+jets, ttbar, top único, dibosones y eventos multijets de QCD. Un ajuste simultáneo mediante likelihood fit, bindeado a la forma y normalización de distribuciones (por ejemplo, el score de la DNN), permite extraer la fuerza de señal (μ).
- Medición de la energía faltante: La energía faltante $(p_{\rm T}^{\rm miss})$ se define como la magnitud del vector negativo de la suma de los momentos transversales de los objetos físicos, corrigiendo las contribuciones de pileup y la energía neutra. Esto resulta esencial para la reconstrucción en el canal sin leptones.

Datos, Resultados y Combinación

Los datos analizados corresponden a colisiones proton-proton a 13 TeV registradas por CMS en 2017, con una luminosidad integrada de 41.3 fb^{-1} . Los puntos clave incluyen:

- Combinación de Datos: La combinación de los datos de Run 2 (2016 y 2017) resulta en una significancia de 4.4σ y $\mu = 1,06 \pm 0,26$, mientras que la combinación de Run 1 y Run 2 alcanza una significancia observada de 4.8σ (esperada 4.9σ) y $\mu = 1,01 \pm 0,22$.
- Integración con Otros Procesos: Se combinan estos resultados con otras búsquedas de H \rightarrow bb (incluyendo producciones vía gluón-fusión, fusión vectorial y asociación con quarks top), logrando una significancia global observada de 5.6σ (esperada 5.5σ) y confirmando la predicción del Modelo Estándar.
- Distribución de la Masa Invariante: La distribución de la masa invariante del par de jets, ponderada según la razón señal/fondo (S/(S+B)), muestra claramente la contribución de la señal VH y de el fondo VZ, lo que valida la metodología de análisis.

Evaluación de Incertidumbres

Se analiza detalladamente el impacto de diversas fuentes de incertidumbre:

- Normalización de fondos.
- Tamaño de las muestras simuladas (MC).
- Eficiencias y tasas de malidentificación en el b-tagging.
- Modelado de procesos V+jets.

En estos procesos se mencionan softwares como POWHEGv2, MADGRAPH5, PYTHIA y GEANT4

2. Conclusión

El análisis del decaimiento del Higgs en quarks bottom demuestra la eficacia de la estrategia VH para identificar y medir la señal en presencia de fondos complejos. La combinación de datos de distintos periodos y canales, junto con técnicas avanzadas de reconstrucción y reducción de incertidumbres, confirma la observación de $H \rightarrow bb$ y la consistencia con la predicción del Modelo Estándar, aportando evidencia crucial al estudio del mecanismo de generación de masa en el sector de fermiones.