Problem Set 6

D. Zack Garza

Monday 4th May, 2020

Contents

1	Humphreys 5.3	1
	Humphreys 7.2 2.1 Solution	1
3	Exercise p.108	3

1 Humphreys 5.3

Let λ be regular, antidominant, and integral, and suppose $M(\lambda)^n \neq 0$ but $M(\lambda)^{n+1} = 0$. In the Jantzen filtration of $M(w \cdot \lambda)$, show that $n = \ell_{\lambda}(w)$ where ℓ_{λ} is the length function of the system $(W_{[\lambda]}, \Delta_{[\lambda]})$. Thus there are $\ell(w) + 1$ nonzero layers in this filtration.

Use 0.3(2) to describe $\Phi_{w\cdot\lambda}^+$.

2 Humphreys 7.2

Let $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ and show that T^{μ}_{λ} need not take Verma modules to Verma modules.

For example, let $\lambda = 1$ and $\mu = -3$.

2.1 Solution

Let $\lambda=1$ and $\mu=-3$, noting that both are integral, μ is antidominant, and μ , λ are compatible as in the definition in 7.1. We can then consider $\nu:=\mu-\lambda=-3-1=-4$, and to compute the $\bar{\nu}$ that appears in the definition of T^{μ}_{λ} , we consider the (usual) W-orbit of ν . In $\mathfrak{sl}(2,\mathbb{C})$, we identify $\Lambda=\mathbb{Z}$, $W=\{\mathrm{id},s_{\alpha}\}$, and $s_{\alpha}\lambda=-\lambda$ as reflection about 0. Thus the orbit is given by $W\nu=\{-4,4\}$, which contains the unique dominant weight $\bar{\nu}=4$. We thus have

$$T_1^{-3}(\,\cdot\,) = \operatorname{pr}_{-3}(L(4) \otimes \operatorname{pr}_1(\,\cdot\,)).$$

We use the fact that we always have an exact sequence of the form

$$0 \longrightarrow N(\lambda) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0.$$

where in $\mathfrak{sl}(2,\mathbb{C})$ we can identify $N(\lambda) = L(-\lambda - 2)$, thus we have

$$0 \longrightarrow L(-\lambda - 2) \longrightarrow M(\lambda) \longrightarrow L(\lambda) \longrightarrow 0.$$

Here we can identify

$$L(-\lambda-2) = L(-1-2)$$

$$= L(-3)$$

$$= L(\mu)$$

$$= M(\mu) \quad \text{since } \mu = -3 \text{ is integral and antidominant,}$$

thus we can rewrite the exact sequence as

We know that the translation functor is exact, so applying T^{μ}_{λ} yields the following short exact sequence:

$$0 \longrightarrow T_1^{-3}M(-3) \longrightarrow T_1^{-3}M(1) \longrightarrow T_1^{-3}L(1) \longrightarrow 0$$

Since not both λ, μ are antidominant, we can not apply Theorem 7.6 to compute these, so we instead turn to the definition. We claim that

$$\begin{split} T_1^{-3}L(1) &= \operatorname{pr}_{-3}(L(4) \otimes \operatorname{pr}_1(L(1))) \\ &= \operatorname{pr}_{-3}(L(4) \otimes L(1)) \\ &= 0. \end{split}$$

This follows from the fact that any module in $\mathcal{O}_{\chi_{-3}}$ has a composition series for which *all* of the composition factors have highest weight in \$, but $L(4) \otimes L(1) \cong L(3) \oplus L(5)$ has only composition factors with highest weight 3 or 5.

This forces an isomorphism $T_1^{-3}M(-3) \xrightarrow{\sim} T_1^{-3}M(1)$, so it suffices to show that either of these is not a Verma module.

and considering the weights of the parenthesized term.

This follows by considering

$$T_1^{-3}M(-3) = \operatorname{pr}_{-3}(L(4) \otimes \operatorname{pr}_1 M(-3))$$

= $\operatorname{pr}_{-3}(L(4) \otimes M(-3)).$

We'll use the fact that

$$\Pi(M(-3)) = \{-3, -5, \cdots\}$$

$$\Pi(L(4)) = \{-4, -2, 0, 2, 4\},\$$

and by Theorem 3.6, the parenthesized term has a finite filtration with quotients of the form

$$Q(\mu) \in \Big\{ M(\lambda + \mu) \ \Big| \ \mu \in \Pi(L(4)) \Big\} = \{ \cdots, M(-3+2), M(-3+4), \cdots \} = \{ \cdots, M(-1), M(3), \cdots \}$$

and since $W_{[\lambda]} = \{\lambda, -\lambda - 2\} = \{1, -3\}$, we see that composition factors with linked weights appear in the subquotients above. Thus the projection onto $\mathcal{O}_{\chi_{-3}}$ has a composition series subquotients isomorphic to M(-1) and M(-3). But then the resulting projection must have at least *two distinct* simple quotients, whereas every Verma module has a unique simple quotient, so the projection can not be a Verma module.

3 Exercise p.108

- a. Work out the Jantzen filtration sections for $M(w_0 \cdot \lambda)$. List carefully any additional assumptions or facts needed to deduce $M(w_0 \cdot \lambda)^i$ uniquely.
- b. Continue #4.11 for the case of singular λ , e.g. $(\lambda + \rho, \widehat{\alpha}) = 1$. If you didn't deduce the structure of all $M(w \cdot \lambda)$ there, can you complete it now?
- c. Work out the non-integral case. (There are several different cases to consider.)