БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра высшей математики

Лекции по курсу "Дифференциальное и интегральное исчисление"

для студентов специальности

"Информатика"

Лектор Васьковский М.М.

ОГЛАВЛЕНИЕ

1	Числа	4
2	Грани числовых множеств	7
3	Предел последовательности. Свойства сходящихся последовательностей	11
4	Сходимость монотонной ограниченной последовательности. Число e	15
5	Фундаментальные последовательности. Критерий Коши	18
6	Предел функции. Критерий Гейне	21
7	Свойства пределов функций. Критерий Коши	2 4
8	Замечательные пределы	27
9	Непрерывная функция. Классификация точек разрыва	32
10	Непрерывность обратной и сложной функций	35
11	Глобальные свойства непрерывных функций	38
12	Определение производной. Производные элементарных функций	41
13	Производные и дифференциалы высших порядков	45
14	Неопределенный интеграл. Методы вычисления	48
15	Интегрирование рациональных функций	51
16	Интегрирование некоторых иррациональных функций	5 4
17	Свойства дифференцируемой функции. Правило Лопиталя	5 6
18	Формула Тейлора. Остаточный член формулы Тейлора	61
19	Исследование локальных экстремумов функций	64
2 0	Выпуклая функция. Исследование точек перегиба	66
2 1	Глобальный экстремум и асимптоты. Построение графиков функций	70
22	Определенный интеграл. Необходимые условия интегрируемости	7 3
23	Критерий Коши. Интегрируемость непрерывной функции	7 5
24	Геометрический смысл определенного интеграла	77
25	Длина кривой	80

26 Свойства определенного интеграла. Методы вычисления	82
27 Критерий Дарбу. Классы интегрируемых функций	86
28 Рекомендации к решению задач по теме "Пределы и непрерывность"	90
29 Рекомендации к решению задач по теме "Производная и формула Тейлора"	" 9 4
30 Рекомендации к решению задач по теме "Неопределенный интеграл"	98
Приложение 1. Список вопросов к экзамену	104
Приложение 2. Требования к практической части на экзамене	108
Приложение 3. Основные понятия, необходимые (но не достаточные!) дл	R
получения положительной оценки на экзамене	109

1 Числа

Через \mathbb{N} , \mathbb{Z} , \mathbb{Q} будем обозначать соответственно множества натуральных, целых и рациональных чисел.

Напомним, что каждое рациональное число представляется единственным образом в виде обыкновенной дроби $\frac{m}{n}$, где $m \in \mathbb{Z}$, $n \in \mathbb{N}$, числа m, n взаимно простые (не имеют общих делителей за исключением тривиальных делителей ± 1).

Вместе с тем каждое рациональное число α можно представить в виде десятичной дроби, которая является либо конечной, либо бесконечной периодической. При этом каждая конечная десятичная дробь имеет 2 представления в виде бесконечной десятичной дроби. Например,

$$0.5 = 0.500 \dots,$$

 $0.5 = 0.499 \dots$

Пример 1.1 Диагональ квадрата со стороной длины 1 не является рациональным числом.

Действительно, если допустим, что диагональ такого квадрата выражается рациональным числом $\frac{m}{n}$, то будем иметь $m^2=2n^2$. Откуда получаем, что число m – четное, т.е. $m=2m_1$. Но тогда из равенства $2m_1^2=n^2$ получим, что число n также четное. Но это противоречит взаимной простоте чисел m и n.

Определение 1.1 Определим множество действительных чисел (обозначение \mathbb{R}) как множество всех бесконечных десятичных дробей

$$\pm a_0, a_1 a_2 \dots a_n \dots,$$

 $i\partial e \ a_0 \in \mathbb{N} \cup \{0\}, \ a_k \in \{0, 1, \dots, 9\} \ \forall k \ge 1.$

Непериодические десятичные дроби будем называть иррациональными числами.

Определение 1.2 Приближением по недостатку порядка $n \geq 0$ неотрицательного действительного числа $\alpha = a_0, a_1 a_2 \dots a_n \dots$ называется рациональное число $\alpha_n = a_0, a_1 \dots a_n$. Приближением по недостатку порядка $n \geq 0$ отрицательного действительного числа $\alpha = -a_0, a_1 a_2 \dots a_n \dots$ называется рациональное число $\alpha_n = -a_0, a_1 \dots a_n - 10^{-n}$. Приближение по недостатку порядка 0 числа α называется целой частью и обозначается $[\alpha]$.

Определение 1.3 Приближением по избытку порядка $n \geq 0$ неотрицательного действительного числа $\alpha = a_0, a_1 a_2 \dots a_n \dots$ называется рациональное число $\alpha'_n = a_0, a_1 \dots a_n + 10^{-n}$. Приближением по избытку порядка $n \geq 0$ отрицательного действительного числа $\alpha = -a_0, a_1 a_2 \dots a_n \dots$ называется рациональное число $\alpha'_n = -a_0, a_1 \dots a_n$.

Приведем основные свойства приближений по недостатку, которыми будем пользоваться в дальнейшем.

- 1. $\alpha_n \leq \alpha_{n+1}$ (свойство монотонности приближений);
- 2. $\alpha_{n+1} \alpha_n < 10^{-n}$;

- 3. Если для некоторых действительных чисел α , β и некоторого n выполняется $\alpha_n = \beta_n$, то $\alpha_i = \beta_i \ \forall i \leq n$;
- 4. Если $\alpha_n < \beta_n$, то $\alpha_n + 10^{-n} \le \beta_n$.

Определение 1.4 Будем говорить, что два иррациональных числа равны: $\alpha = \beta$, если $\alpha_n = \beta_n \ \forall n \geq 0$. Будем говорить, что два рациональных числа равны: $\alpha = \beta$, если $\alpha_n = \beta_n \ \forall n \geq 0$ или существует номер n такой, что $\alpha_i = \beta_i$ для любого i < n и $|\alpha_i - \beta_i| = 10^{-i}$ для любого $i \geq n$ (во втором случае α и β – два представления одной и той же конечной десятичной дроби: одно из них c нулем в периоде, другое – c девяткой).

Определение 1.5 Будем говорить, что выполняется нестрогое неравенство двух действительных чисел $\alpha \leq \beta$ если $\alpha = \beta$ или $\alpha_n \leq \beta_n \ \forall n \geq 0$. Будем говорить, что имеет место строгое неравенство двух действительных чисел $\alpha < \beta$, если $\alpha \leq \beta$ и $\alpha \neq \beta$.

Теорема 1.1 (Критерий различия чисел). Пусть α , β – два действительных числа. Тогда неравенство $\alpha < \beta$ эквивалентно существованию индекса $k \in \mathbb{N} \cup \{0\}$ такого, что

$$\alpha_k + 2 \cdot 10^{-k} \le \beta_k. \tag{1.1}$$

 \Diamond

Необходимость.

Дано $\alpha < \beta$. Согласно определению неравенства чисел получаем, что $\alpha_n \leq \beta_n \ \forall n \geq 0$, при этом $\alpha \neq \beta$. Если бы для любого n имело место равенство $\alpha_n = \beta_n$, то получили бы $\alpha = \beta$ – противоречие. Поэтому найдется индекс $i \in \mathbb{N} \cup \{0\}$ такой, что $\alpha_i < \beta_i$ (пусть i – наименьшее значение индекса, при котором выполнится такое неравенство). В силу свойства 3) приближений по недостатку получаем:

$$\alpha_n = \beta_n \ \forall n < i;$$

$$\alpha_n < \beta_n \ \forall n \ge i.$$

Если предположить, что неравенство (1.1) не выполнится ни при каком $n \ge i$, то согласно свойству 4) приближений по недостатку получим:

$$\alpha_n + 10^{-n} = \beta_n \ \forall n \ge i.$$

Очевидно, что такая возможность реализуется лишь в случае, когда α и β – два представления одной и той же конечной десятичной дроби, что влечет равенство чисел α , β – противоречие.

Достаточность.

Пусть для некоторого индекса $k \in \mathbb{N} \cup \{0\}$ выполняется неравенство (1.1). Равенство $\alpha = \beta$ невозможно, т.к. тогда имели бы $\alpha_n = \beta_n$ или $|\alpha_n - \beta_n| = 10^{-n}$ для любого индекса n. Остается доказать, что $\alpha_n \leq \beta_n$ для любого $n \geq 0$. Предположим, что нашелся номер $m \geq 0$ такой, что $\alpha_m > \beta_m$. Рассмотрим 2 случая: 1) m < k, 2) m > k.

Случай 1: m < k. Тогда по свойствам 1), 4), 2) приближений имеем

$$\alpha_{m+1} \ge \alpha_m \ge \beta_m + 10^{-m} > \beta_{m+1}.$$

Аналогично получим, что $\alpha_{m+2} > \beta_{m+2}$ и так далее. Следовательно, $\alpha_k > \beta_k$, что противоречит неравенству (1.1).

Случай 2: m>k. Из неравенства (1.1) получаем, что $\beta_k>\alpha_k$. Но тогда, используя рассуждения предыдущего случая, получим $\beta_{k+1}>\alpha_{k+1},\ \beta_{k+2}>\alpha_{k+2}$ и так далее. Тем самым, $\beta_m>\alpha_m$ — противоречие.

Замечание 1.1 Неравенство (1.1) нельзя заменить более слабым неравенством

$$\alpha_k + 10^{-k} \le \beta_k,$$

m.к. в этом случае возможен случай, когда α и β – два представления одной и той же конечной десятичной дроби, что влечет равенство чисел α , β .

Пример 1.2 Критерий различия чисел дает конструктивный способ доказательства различия двух чисел в отличие от определения, требующего проверки на неравенство всех приближений двух чисел.

Рассмотрим числа $\alpha = -2,17801...,\ \beta = -2,17799...$ Применяя критерий различия чисел, получаем:

$$\alpha_0 = -3, \ \beta_0 = -3;$$

$$\alpha_1 = -2.2, \ \beta_1 = -2.2;$$

$$\alpha_2 = -2.18, \ \beta_2 = -2.18;$$

$$\alpha_3 = -2.179, \ \beta_3 = -2.178;$$

$$\alpha_4 = -2.1781, \ \beta_4 = -2.1780;$$

$$\alpha_5 = -2.17802, \beta_5 = -2.17800.$$

 $T.\kappa. \ \alpha_5 + 2 \cdot 10^{-5} \le \beta_5, \ mo \ \alpha < \beta.$

Теорема 1.2 (теорема о плотности множества действительных чисел). Для любых двух действительных чисел α , β таких, что $\alpha < \beta$, существует рациональное число r такое, что $\alpha < r < \beta$.

 \Diamond

T.к. $\alpha < \beta$, то согласно критерию различия чисел найдется индекс k такой, что

$$\alpha_k + 2 \cdot 10^{-k} \le \beta_k$$
.

Докажем, что рациональное число

$$r = \alpha_k + 10^{-k} + 5 \cdot 10^{-(k+1)}$$

удовлетворяет условию теоремы.

Действительно,

$$\alpha_{k+1} + 2 \cdot 10^{-(k+1)} < \alpha_k + 10^{-k} + 2 \cdot 10^{-(k+1)} < r - 10^{-(k+1)} \le r_{k+1}$$

откуда $\alpha < r$ согласно критерию различия чисел.

Аналогично,

$$r_{k+1} + 2 \cdot 10^{-(k+1)} \le r + 2 \cdot 10^{-(k+1)} = \alpha_k + 10^{-k} + 7 \cdot 10^{-(k+1)} < \alpha_k + 2 \cdot 10^{-k} \le \beta_k \le \beta_{k+1},$$
откуда $r < \beta$ согласно критерию различия чисел.

2 Грани числовых множеств

В предыдущем параграфе были введены отношения равенства, нестрогого и строго неравенств действительных чисел. Таким образом, для любых α , $\beta \in \mathbb{R}$ можем определить интервал (α, β) и отрезок [a, b] следующим образом:

$$(\alpha, \beta) = \{ x \in \mathbb{R} : \alpha < x < \beta \},\$$

$$[\alpha, \beta] = \{ x \in \mathbb{R} : \alpha \le x \le \beta \}.$$

Аналогично можно определить полуинтервалы $(\alpha, \beta]$, $[\alpha, \beta)$. Через $|\alpha, \beta|$ будем обозначать любой из промежутков (α, β) , $[\alpha, \beta]$, $[\alpha, \beta]$, $[\alpha, \beta)$. Аналогично можно определить промежуток $|\alpha, \beta|$, у которого один или оба конца бесконечны.

Любое подмножество X множества \mathbb{R} будем называть числовым множеством.

Числовое множество X называется ограниченным сверху, если существует число $\beta \in \mathbb{R}$ (верхняя грань множества X) такое, что $x \leq \beta$ для любого $x \in X$. Аналогично, числовое множество X называется ограниченным снизу, если найдется постоянная $\alpha \in \mathbb{R}$ (нижняя грань множества X) такая, что $x \geq \alpha$ для любого $x \in X$. Числовое множество X называется ограниченным, если оно ограничено сверху и снизу.

Определение 2.1 Точной верхней гранью множества $X \subset \mathbb{R}$ называют наименьшую из верхних граней множества X, т.е. такое число $\beta \in \mathbb{R}$, что:

$$\forall x \in X \Rightarrow x \leq \beta;$$

$$\forall \gamma < \beta \ \exists \bar{x} \in X : \bar{x} > \gamma.$$

Tочную верхнюю грань называют супремумом множества X, $nuwym \sup X$.

Определение 2.2 Точной нижней гранью множества $X \subset \mathbb{R}$ называют наибольшую из нижних граней множества X, т.е. такое число $\alpha \in \mathbb{R}$, что:

$$\forall x \in X \Rightarrow x > \alpha$$
;

$$\forall \gamma > \alpha \ \exists \bar{x} \in X : \bar{x} < \gamma.$$

Точную нижнюю грань называют инфимумом множества X, пишут inf X.

Пример 2.1 Для конечного промежутка $|\alpha,\beta|$ имеем $\sup |\alpha,\beta| = \beta$, $\inf |\alpha,\beta| = \alpha$.

Пример 2.2 Для любого конечного множества $X \subset \mathbb{R}$ супремум совпадает с максимальным элементом множества X, а инфимум совпадает с минимальным элементом множества X.

Теорема 2.1 Любое непустое ограниченное сверху множество $X \subset \mathbb{R}$ имеет точную верхнюю грань, а любое непустое ограниченное снизу множество X имеет точную ниженюю грань.

 \Diamond

Докажем теорему для ограниченного сверху непустого числового множества X. Рассмотрим 2 случая:

- 1) существует неотрицательный элемент множества X;
- 2) все элементы множества X отрицательные.

Случай 1: $\exists x \in X : x \geq 0$.

Без ограничения общности, можем удалить из множества X все отрицательные элементы. Оставшееся непустое множество, состоящее из неотрицательных элементов, также будем обозначать через X.

Заменим все периодические дроби с девяткой в периоде, входящие в множество X, на равные периодические дроби с нулем в периоде.

Множество целых частей чисел из X ограничено сверху, следовательно, в этом множестве существует максимальный элемент b_0 . Пусть Y – множество чисел из X, целые части которых равны b_0 .

Для каждого $n \in \mathbb{N}$ обозначим через Y_n множество приближений по недостатку порядка n чисел из Y. Заметим, что каждое из множеств Y_n является конечным, поскольку каждое число этого множества имеет фиксированную первую цифру b_0 , а также состоит из n знаков после запятой. Поэтому каждое множество Y_n имеет максимальный элемент β_n .

Рассмотрим множества Y_n и Y_{n+1} . Очевидно, что элементы множества Y_n также можно рассматривать как приближения по недостатку порядка n элементов множества Y_{n+1} . Поэтому максимальный элемент β_n множества Y_n есть приближение по недостатку порядка n максимального элемента β_{n+1} множества Y_{n+1} . Следовательно, существует бесконечная последовательность цифр b_1, \ldots, b_n, \ldots такая, что

$$\beta_1 = b_0, b_1$$

$$\beta_2 = b_0, b_1 b_2$$

$$\dots$$

$$\beta_n = b_0, b_1 \dots b_n$$

Таким образом, можно определить действительное число

$$\beta = b_0, b_1 \dots b_n \dots$$

Докажем, что $\beta = \sup X$. Для этого достаточно проверить, что $\beta = \sup Y$.

Возьмем произвольный элемент $y \in Y$. Для его приближения по недостатку порядка n выполнено

$$y_n \leq \beta_n$$
.

Так как последнее неравенство выполняется при любом n, то $y \leq \beta$.

Теперь возьмем произвольное действительное число $\gamma < \beta$. Из критерия различия чисел вытекает существование индекса k такого, что

$$\gamma_k + 2 \cdot 10^{-k} \le \beta_k.$$

Из определения множества Y_k вытекает, что существует элемент $\bar{y} \in Y$ такой, что для его приближения по недостатку порядка k выполняется $\bar{y}_k = \beta_k$. То есть

$$\gamma_k + 2 \cdot 10^{-k} \le \bar{y}_k.$$

Следовательно, по критерию различия чисел имеем $\gamma < \bar{y}$.

Таким образом, доказали, что $\beta = \sup Y = \sup X$.

Теперь рассмотрим второй случай.

Случай 2: $\forall x \in X \Rightarrow x < 0$.

В отличие от предыдущего случая будем рассматривать приближения по избытку.

На первом шаге аналогично случаю 1 сформируем множество Y, состоящее из чисел множества X с максимальной целой частью b'_0 .

Через Y'_n будем обозначать множество приближений по избытку порядка n чисел из Y. Каждое множество Y'_n имеет максимальный элемент β'_n .

Существует последовательность цифр b_1, \ldots, b_n, \ldots такая, что

$$\beta_1' = -b_0, b_1$$

$$\beta_2' = -b_0, b_1 b_2$$

$$\dots$$

$$\beta_n' = -b_0, b_1 \dots b_n$$

где $b_0 = b_0' + 1$ — максимальное из приближений по избытку порядка 0 чисел множества X. Определим действительное число

$$\beta = -b_0, b_1 \dots b_n \dots$$

Убедимся, что $\beta = \sup Y$.

Возьмем произвольный элемент $y \in Y$. Для его приближения по избытку порядка n выполнено

$$y_n' \leq \beta_n'$$
.

Так как $y'_n = y_n + 10^{-n}$, $\beta'_n = \beta_n + 10^{-n}$, то аналогичное неравенство выполняется и для приближений по недостатку чисел y и β , т.е.

$$y_n < \beta_n$$
.

Так как последнее неравенство выполняется при любом n, то $y \leq \beta$.

Возьмем произвольное действительное число $\gamma < \beta$. Из критерия различия чисел вытекает существование индекса k такого, что

$$\gamma_k + 2 \cdot 10^{-k} \le \beta_k.$$

Из определения множества Y_k' вытекает, что существует элемент $\bar{y} \in Y$ такой, что для его приближения по избытку порядка k выполняется $\bar{y}_k' = \beta_k'$. Но тогда $\bar{y}_k = \beta_k$. То есть

$$\gamma_k + 2 \cdot 10^{-k} \le \bar{y}_k.$$

Следовательно, по критерию различия чисел имеем $\gamma < \bar{y}$. Тем самым, $\beta = \sup Y = \sup X$.

Доказательство теоремы для ограниченного снизу непустого множества X проводится по аналогичной схеме и оставляется читателю в качестве упражнения.

Замечание 2.1 Если множество X неограничено сверху, то полагают $\sup X = +\infty$. Если множество X неограничено снизу, то полагают $\inf X = -\infty$.

Определим сумму двух действительных чисел α и β как точную верхнюю грань сумм приближений по недостатку этих чисел:

$$\alpha + \beta = \sup\{\alpha_n + \beta_n\}.$$

Под разностью действительных чисел α , β понимаем сумму $\alpha + (-\beta)$.

Определим произведение двух неотрицательных чисел α , β следующим образом:

$$\alpha \cdot \beta = \sup \{ \alpha_n \cdot \beta_n \}.$$

Если $\alpha \geq 0$, $\beta < 0$, то полагаем $\alpha \cdot \beta = -(\alpha \cdot (-\beta))$. Аналогично определяется умножение для других комбинаций знаков.

Под частным двух чисел $\alpha \geq 0,\, \beta > 0$ понимаем

$$\frac{\alpha}{\beta} = \sup \left\{ \frac{\alpha_n}{\beta_n + 10^{-n}} \right\}.$$

Аналогично умножению вводится деление чисел со знаком.

3 Предел последовательности. Свойства сходящихся последовательностей

Числовой последовательностью называют перенумерованную бесконечную совокупность чисел

$$a_1, a_2, \ldots, a_n, \ldots$$

Кратко будем обозначать такую последовательность через (a_n) .

Последовательность (a_n) называется ограниченной, если множество $\{a_n : n \in \mathbb{N}\}$ является ограниченным.

Удалим из последовательности (a_n) конечное число первых членов, полученный бесконечный набор чисел

$$a_{k+1}, a_{k+2}, \dots$$

называется остатком последовательности (a_n) .

Очевидно, что из ограниченности некоторого остатка следует ограниченность всей последовательности. И наоборот, из ограниченности последовательности вытекает ограниченность любого остатка этой последовательности.

Определение 3.1 Последовательность (a_n) называется сходящейся, если существует число $a \in \mathbb{R}$ такое, что:

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) > 0 : \forall n \in \mathbb{N}, n \ge n_0(\varepsilon) \Rightarrow |a_n - a| \le \varepsilon.$$

В противном случае последовательность (a_n) называется расходящейся. Если последовательность (a_n) сходится, то число а называется пределом последовательности (a_n) , пишут $a = \lim_{n \to \infty} a_n$ или $a_n \to a$.

Приведем геометрическую интерпретацию предела последовательности.

Сходимость $a_n \underset{n \to \infty}{\to} a$ означает, что для любого заданного отрезка $[a - \varepsilon, a + \varepsilon]$ положительной длины все члены последовательности a_n , начиная с некоторого номера $n_0 = n_0(\varepsilon)$ будут попадать в этот отрезок.

Сформулируем отрицание к условию сходимости $a_n \to a$: найдется отрезок $[a-\varepsilon_0,a+\varepsilon_0]$ положительной длины такой, что какой бы ни выбрать большой номер $n \in \mathbb{N}$ найдется член a_{n_0} с номером $n_0 \geq n$, такой, что $a_{n_0} \notin [a-\varepsilon_0,a+\varepsilon_0]$.

Формальная запись последнего утверждения выглядит следующим образом:

$$\exists \varepsilon_0 > 0 : \forall n \in \mathbb{N} \ \exists n_0 \ge n \Rightarrow |a_{n_0} - a| > \varepsilon_0.$$

При построения отрицания к формальному математическому утверждению необходимо придерживаться следующего правила Де Моргана:

- 1) каждый квантор ∀ заменяется на квантор ∃;
- 2) каждый квантор ∃ заменяется на квантор ∀;
- 3) вывод P заменяется на его отрицание \bar{P} .

В приведенном выше примере сходимости последовательности к числу a вывод P представляет собой неравенство $|a_n-a| \leq \varepsilon$. Кроме того, для удобства чтения записи мы снабжаем

нулевым индексом символы, относящиеся к кванторам существования.

Теперь проиллюстрируем исследование сходимости последовательности на основе определения.

Пример 3.1 Докажем, что $\sqrt[n]{n} \to 1$.

Возьмем произвольное $\varepsilon > 0$ и рассмотрим неравенство

$$|\sqrt[n]{n}-1|\leq \varepsilon$$
.

Данное неравенство можно переписать в следующем виде

$$n \le (1+\varepsilon)^n = 1 + n\varepsilon + \frac{n(n-1)}{2}\varepsilon^2 + \ldots + \varepsilon^n.$$

Для того, чтобы последнее неравенство выполнилось достаточно, чтобы

$$n \le \frac{n(n-1)}{2}\varepsilon^2,$$

откуда находим $n \geq \frac{2}{\varepsilon^2} + 1 := n_0(\varepsilon)$.

Пример 3.2 Докажем, что $(-1)^n \xrightarrow[n\to\infty]{} 1$.

Возьмем произвольное $n \in \mathbb{N}$ и рассмотрим неравенство

$$|(-1)^{n_0}-1|>\varepsilon_0,$$

где $n_0 \ge n$, а число $\varepsilon_0 > 0$ не зависит от n. Понятно, что в качестве n_0 можно выбрать любое нечетное число, большее n, а в качестве ε_0 можно взять любое положительное число, меньшее 2.

Лемма 3.1 (М-лемма). Если $\forall \varepsilon > 0 \ \exists n_0(\varepsilon) > 0 : \forall n \in \mathbb{N}, n \geq n_0(\varepsilon) \Rightarrow |a_n - a| \leq M\varepsilon$, где постоянная M > 0 не зависит от ε и n, то $a_n \xrightarrow[n \to \infty]{} a$.

 \Diamond

Возьмем произвольное $\varepsilon_1 > 0$ и рассмотрим неравенство

$$|a_n - a| \le \varepsilon_1.$$

Полагая $arepsilon=rac{arepsilon_1}{M}$ в условии леммы, находим номер $n_0(arepsilon_1/M)$, для которого

$$|a_n - a| < M\varepsilon = \varepsilon_1$$

при всех $n \geq n_0(\varepsilon_1/M)$. Потому в качестве номера n_0 из определения сходимости можно выбрать найденное значение $n_0(\varepsilon_1/M)$.

П

Говорят, что последовательность (a_n) бесконечно малая, если $\lim_{n\to\infty}a_n=0$.

Приведем основные свойства сходящихся последовательностей.

Свойство 3.1 Сходящаяся последовательность имеет лишь один предел.

Предположим, что у последовательности (a_n) есть два различных предела: a и b. Тогда последовательности (α_n) , (β_n) являются бесконечно малыми, где

$$\alpha_n = a_n - a, \ \beta_n = a_n - b.$$

Для любых n имеем

$$|a - b| = |\alpha_n - \beta_n| \le |\alpha_n| + |\beta_n|.$$

Поскольку последовательности (α_n) , (β_n) бесконечно малые, то можно найти такой номер n_0 , для которого

$$|\alpha_n| \le \frac{|a-b|}{4}, \ |\beta_n| \le \frac{|a-b|}{4}$$

при всех $n \geq n_0$.

Но тогда при всех $n \ge n_0$ получим, что

$$|a-b| \le \frac{|a-b|}{2},$$

что невозможно для $a \neq b$.

Свойство 3.2 Сходящаяся последовательность ограничена.

Возьмем $\varepsilon = 1$ в определении предела, получаем:

$$a-1 \le a_n \le a+1$$

для всех $n \ge n_0(\varepsilon)$. Таким образом, нашелся остаток последовательности, который ограничен. Потому ограничена вся последовательность.

Свойство 3.3 Пусть $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Тогда справедливы соотношения:

1) $\lim_{n\to\infty} (a_n + b_n) = a + b$;

2) $\lim_{n\to\infty} (a_n b_n) = ab$;

- 3) $\lim_{n\to\infty} (\frac{a_n}{b_n}) = \frac{a}{b}$ в предположении, что $b_n \neq 0 \ \forall n, b \neq 0$.

Докажем утверждение 1).

$$\forall \varepsilon > 0 \ \exists n'_0(\varepsilon) > 0 : \forall n \in \mathbb{N}, n \ge n'_0(\varepsilon) \Rightarrow |a_n - a| \le \varepsilon;$$

$$\forall \varepsilon > 0 \ \exists n_0''(\varepsilon) > 0 : \forall n \in \mathbb{N}, n \ge n_0''(\varepsilon) \Rightarrow |b_n - b| \le \varepsilon;$$

тогда для любых $n \ge \max\{n_0'(\varepsilon), n_0''(\varepsilon)\}$ имеем

$$|a_n + b_n - a - b| \le |a_n - a| + |b_n - b| \le 2\varepsilon.$$

Теперь применяя М-лемму, получаем, что $\lim_{n\to\infty} (a_n + b_n) = a + b$.

Докажем утверждение 2).

Из сходимости последовательностей (a_n) , (b_n) вытекает их ограниченность:

$$|a_n| \le M, |b_n| \le M \ \forall n.$$

Для любых $n \geq \max\{n_0'(\varepsilon), n_0''(\varepsilon)\}$ имеем

$$|a_n b_n - ab| = |a_n b_n - a_n b + a_n b - ab| \le |a_n| |b_n - b| + |b| |a_n - a| \le (M + b)\varepsilon.$$

Согласно М-лемме, получаем $\lim_{n \to \infty} (a_n b_n) = ab$.

Докажем утверждение 3).

Найдется номер $n_0''(|b|/2)$ такой, что для любого $n \ge n_0''(|b|/2)$ имеем

$$|b_n - b| \le \frac{|b|}{2}.$$

Отсюда получаем, что для таких n выполнено

$$||b_n| - |b|| \le |b_n - b| \le \frac{|b|}{2} \Rightarrow \frac{|b|}{2} \le |b_n| \le \frac{3|b_n|}{2}.$$

Теперь для всех $n \ge \max\{n_0'(\varepsilon), n_0''(\varepsilon), n_0''(|b|/2)\}$ получаем

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| = \left|\frac{a_n}{b_n} - \frac{a_n}{b} + \frac{a_n}{b} - \frac{a}{b}\right| \le \frac{|a_n||b_n - b|}{|bb_n|} + \frac{|a_n - a|}{|b|} \le \left(\frac{2M}{|b|^2} + \frac{1}{|b|}\right)\varepsilon.$$

Теперь требуемое утверждение вытекает из M-леммы.

Свойство 3.4 Пусть $\lim_{n\to\infty}a_n=a, \lim_{n\to\infty}b_n=b, \ u \ a_n\leq b_n \ \forall n.$ Тогда $a\leq b.$

 \Diamond

Предположим, что a>b. Тогда найдется такое $\varepsilon>0$, что $a-\varepsilon>b+\varepsilon$. Для достаточно больших n имеем $a_n\geq a-\varepsilon,\ b_n\leq b+\varepsilon$. Но тогда $a_n>b_n$ для таких n. Противоречие.

Свойство 3.5 Пусть $b_n \le a_n \le c_n \ \forall n, \ \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = d.$ Тогда $\lim_{n \to \infty} a_n = d.$

 \Diamond

$$\forall \varepsilon > 0 \ \exists n_0'(\varepsilon) > 0 : \forall n \in \mathbb{N}, n \ge n_0'(\varepsilon) \Rightarrow d - \varepsilon \le b_n \le d + \varepsilon;$$

$$\forall \varepsilon > 0 \ \exists n_0''(\varepsilon) > 0 : \forall n \in \mathbb{N}, n \ge n_0''(\varepsilon) \Rightarrow d - \varepsilon \le c_n \le d + \varepsilon.$$

Отсюда получаем, что для всех $n \geq \max\{n_0'(\varepsilon), n_0''(\varepsilon)\}$ выполняется неравенство

$$d - \varepsilon \le a_n \le d + \varepsilon$$
.

Свойство 3.6 Произведение бесконечно малой последовательности на ограниченную является бесконечно малой последовательностью.

$$\diamondsuit$$
 Пусть $a_n \underset{n \to \infty}{\to} 0$, а $|b_n| \le M \ \forall n$. Тогда

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) > 0 : \forall n \in \mathbb{N}, n \ge n_0(\varepsilon) \Rightarrow |a_n| \le \varepsilon \Rightarrow |a_n b_n| \le M\varepsilon.$$

4 Сходимость монотонной ограниченной последовательности. Число e

Последовательность (a_n) называется строго возрастающей, если

$$a_1 < a_2 < \ldots < a_n < \ldots$$

Последовательность (a_n) называется возрастающей, если

$$a_1 < a_2 < \ldots < a_n < \ldots$$

Аналогично определяются строго убывающие и убывающие последовательности.

Возрастающие и убывающие последовательности относят к монотонным последовательностям, а строго возрастающие и строго убывающие – к строго монотонным.

Теорема 4.1 (о сходимости монотонной ограниченной последовательности). Каждая монотонная и ограниченная последовательность сходится.

 \Diamond Докажем теорему для возрастающей последовательности (a_n) . По теореме о гранях

$$\exists \sup\{a_n\} = a \in \mathbb{R}.$$

Из определения точной верхней грани вытекает, что

$$a_n \leq a \ \forall n \in \mathbb{N},$$

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N} : a_{n_{\varepsilon}} > a - \varepsilon.$$

Из второго условия и возрастания (a_n) получаем, что

$$a_n > a - \varepsilon \ \forall n \ge n_{\varepsilon}.$$

Таким образом,

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) := n_{\varepsilon} : \forall n > n_0(\varepsilon) \Rightarrow a - \varepsilon < a_n < a < a + \varepsilon,$$

T.e.
$$a = \lim_{n \to \infty} a_n$$
. \square

Замечание 4.1 Из доказательства теоремы вытекает, что для сходимости возрастающей последовательности достаточно ее ограниченности сверху, а для сходимости убывающей последовательности достаточно ограниченности снизу.

Последовательность (a_n) называется бесконечно большой, если

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \forall n \ge n_0(\varepsilon) \Rightarrow |a_n| \ge \varepsilon.$$

В таком случае говорят, что последовательность a_n имеет бесконечный предел: $\lim_{n\to\infty} a_n = \infty$ (однако такие последовательности не относятся к сходящимся!).

Среди бесконечно больших последовательностей выделяют два типа последовательностей:

- 1. $\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \forall n \ge n_0(\varepsilon) \Rightarrow a_n \ge \varepsilon;$
- 2. $\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \forall n \ge n_0(\varepsilon) \Rightarrow a_n \le -\varepsilon$.

В первом случае говорят, что (a_n) имеет предел $+\infty$, а во втором случае имеет предел $-\infty$. Пусть (a_n) – последовательность, члены которой отличны от нуля. Из определения предела вытекает, что последовательность (a_n) бесконечно большая тогда и только тогда, когда последовательность $(\frac{1}{a_n})$ бесконечно малая.

Замечание 4.2 *Если последовательность* (a_n) *возрастающая и неограниченная, то*

$$\lim_{n\to\infty} a_n = +\infty;$$

если последовательность (a_n) убывающая и неограниченная, то

$$\lim_{n\to\infty} a_n = -\infty.$$

Таким образом, любая монотонная последовательность имеет предел (который может быть бесконечным).

Рассмотрим последовательность (a_n) . Если из этой последовательности удалить часть элементов так, чтобы осталось бесконечно много членов, то получим подпоследовательность исходной последовательности:

$$a_{n_1}, \ldots, a_{n_k}, \ldots,$$
 где $n_1 < n_2 < \ldots < n_k < \ldots$

Теорема 4.2 (теорема о выборе монотонной подпоследовательности). Из любой последовательности можно выбрать монотонную подпоследовательность.

 \Diamond Возьмем произвольную последовательность (a_n) и рассмотрим 2 случая.

Случай 1: каждый остаток последовательности (a_n) имеет максимальный элемент.

Случай 2: существует остаток последовательности (a_n) , который не имеет максимального элемента.

Предположим, что имеет место первый случай. Покажем, что можно выбрать убывающую подпоследовательность. Пусть a_{n_1} – максимальный элемент всей последовательности, a_{n_2} – максимальный элемент остатка

$$a_{n_1+1}, a_{n_1+2}, \ldots,$$

 a_{n_3} – максимальный элемент остатка

$$a_{n_2+1}, a_{n_2+2}, \ldots,$$

и так далее. Очевидно, что

$$a_{n_1} \ge a_{n_2} \ge a_{n_3} \ge \dots$$

тем самым построена убывающая подпоследовательность.

Теперь рассмотрим второй случай и покажем, что можно построить возрастающую подпоследовательность. Рассмотрим остаток последовательности, не имеющий максимального элемента:

$$a_m, a_{m+1}, \ldots$$

Тогда и все последующие остатки не имеют максимального элемента. Положим $a_{n_1}=a_m$. В остатке a_m, a_{m+1}, \ldots нет максимального элемента, поэтому в нем найдется $a_{n_2}>a_{n_1}$. Затем рассмотрим остаток, начинающийся с номера n_2 и в нем выберем $a_{n_3}>a_{n_2}$ и так далее. Таким образом, построим возрастающую последовательность $a_{n_1}< a_{n_2}< \ldots$

Теорема 4.3 (принцип выбора). Из любой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

 \Diamond Пусть (a_n) – ограниченная последовательность. На основании теоремы о выборе монотонной подпоследовательности найдется монотонная подпоследовательность (a_{n_k}) последовательности (a_n) . Очевидно, что (a_{n_k}) является также ограниченной. Тогда на основании теоремы о сходимости монотонной ограниченной последовательности выбранная подпоследовательность (a_{n_k}) сходится. \square

Рассмотрим последовательность

$$a_n = \left(1 + \frac{1}{n}\right)^n, \ n \in \mathbb{N}.$$

Докажем, что последовательность (a_n) является возрастающей. Используя формулу бинома Ньютона, получаем

$$a_n = \left(1 + \frac{1}{n}\right)^n = 1 + C_n^1 \frac{1}{n} + C_n^2 \frac{1}{n^2} + \dots + C_n^{n-1} \frac{1}{n^{n-1}} + \frac{1}{n^n} =$$

$$= 1 + \frac{n}{1!} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \dots + \frac{n(n-1)\dots 2}{(n-1)!} \frac{1}{n^{n-1}} + \frac{n(n-1)\dots 1}{n!} \frac{1}{n^n} =$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{(n-1)!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-2}{n}\right) + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-1}{n}\right).$$

Аналогично получаем

$$a_{n+1} = \left(1 + \frac{1}{n+1}\right)^{n+1} = 1 + C_{n+1}^{1} \frac{1}{n+1} + C_{n+1}^{2} \frac{1}{(n+1)^{2}} + \dots + C_{n+1}^{n} \frac{1}{(n+1)^{n}} + \frac{1}{(n+1)^{n+1}} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{n-1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{n}{n+1}\right).$$

Сравнивая почленно первые n+1 слагаемых в правых частях равенств для a_n , a_{n+1} , получаем, что каждое соответствующее слагаемое для a_n не превосходит соответствующего слагаемого для a_{n+1} . Кроме того, a_{n+1} содержит дополнительное положительное слагаемое, стоящее на последнем месте. Отсюда можно сделать вывод, что $a_n < a_{n+1}$.

Докажем, что последовательность (a_n) ограничена сверху. Действительно,

$$a_n < 1 + 1 + \frac{1}{2!} + \ldots + \frac{1}{n!} \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}} < 3.$$

Таким образом, по теореме о сходимости монотонной ограниченной последовательности последовательность (a_n) имеет конечный предел, который обозначают через e.

Известно, что число e является иррациональным, e = 2,71828...

5 Фундаментальные последовательности. Критерий Коши

Определение 5.1 Последовательность (a_n) называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \forall n, m \ge n_0(\varepsilon) \Rightarrow |a_n - a_m| \le \varepsilon.$$

Теорема 5.1 (критерий Коши сходимости последовательности). Последовательность (a_n) сходится тогда и только тогда, когда она фундаментальная.

 \Diamond

Необходимость.

Пусть $a_n \underset{n \to \infty}{\longrightarrow} a$. Тогда

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon/2) : \forall n \ge n_0(\varepsilon/2), \forall m \ge n_0(\varepsilon/2) \Rightarrow |a_n - a| \le \frac{\varepsilon}{2}, \ |a_m - a| \le \frac{\varepsilon}{2}.$$

Отсюда с помощью неравенства треугольника получаем, что для всех $n, m \geq n_0(\varepsilon/2)$ выполняется

$$|a_n - a_m| \le \varepsilon.$$

Достаточность.

Пусть (a_n) – фундаментальная последовательность, т.е.

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \forall n, m \ge n_0(\varepsilon) \Rightarrow |a_n - a_m| \le \varepsilon.$$

Зафиксируем ε и $m \geq n_0(\varepsilon)$. Для любых $n \geq n_0(\varepsilon)$ выполняется двойное неравенство

$$a_m - \varepsilon < a_n < a_m + \varepsilon$$
.

Таким образом, остаток последовательности (a_n) , начинающийся с номера, большего $n_0(\varepsilon)$, ограничен. Но тогда и ограничена вся последовательность (a_n) .

На основании принципа выбора существует сходящася подпоследовательность (a_{n_k}) последовательности (a_n) . Пусть $a_{n_k} \underset{k \to \infty}{\longrightarrow} a$.

Из условия фундаментальности последовательности (a_n) получаем

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \forall n, n_k \ge n_0(\varepsilon) \Rightarrow |a_n - a_{n_k}| \le \varepsilon.$$

При каждом фиксированном $n \ge n_0(\varepsilon)$ переходя к пределу при $k \to \infty$ в неравенстве

$$a_{n_k} - \varepsilon \le a_n \le a_{n_k} + \varepsilon$$
,

получаем:

$$a - \varepsilon \le a_n \le a + \varepsilon \ \forall n \ge n_0(\varepsilon),$$

что означает сходимость $a_n \underset{n \to \infty}{\to} a$.

Замечание 5.1 Условие фундаментальности последовательности (a_n) можно записать следующим образом:

$$\forall \varepsilon > 0 \ \exists n_0(\varepsilon) : \forall n \ge n_0(\varepsilon), \ \forall p \in \mathbb{N} \Rightarrow |a_n - a_{n+p}| \le \varepsilon.$$

Сформулируем отрицание к критерию Коши: последовательность (a_n) не является сходящейся тогда и только тогда, когда

$$\exists \varepsilon_0 \ \forall n \in \mathbb{N} \ \exists n_0, m_0 \geq n \Rightarrow |a_{n_0} - a_{m_0}| > \varepsilon_0.$$

Пример 5.1 Докажем, что последовательность

$$a_n = 1 + \frac{\cos 1}{2} + \ldots + \frac{\cos n}{2^n}$$

является сходящейся.

Убедимся, что последовательность (a_n) фундаментальная.

Возьмем произвольное $\varepsilon > 0$, имеем:

$$|a_n - a_{n+p}| = \left| \frac{\cos(n+1)}{2^{n+1}} + \dots + \frac{\cos(n+p)}{2^{n+p}} \right| \le \varepsilon.$$

Усилим неравенство, заменив модуль суммы на сумму модулей, а каждый из косинусов на единицу:

$$\frac{1}{2^{n+1}} + \ldots + \frac{1}{2^{n+p}} \le \varepsilon.$$

Усилим также и последнее неравенство, дополнив правую часть до бесконечной геометрической прогрессии, получаем:

$$\frac{1}{2^n} \le \varepsilon.$$

Таким образом, для любых $n \geq n_0(\varepsilon) = \log_2(1/\varepsilon), \, p \in \mathbb{N}$ выполняется неравенство

$$|a_n - a_{n+p}| \le \varepsilon,$$

что влечет фундаментальность последовательности (a_n) , а следовательно, и ее сходимость.

Пример 5.2 Докажем, что последовательность

$$a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$

является расходящейся.

В силу критерия Коши достаточно доказать, что последовательность (a_n) не является фундаментальной.

Возьмем произвольное $n \in \mathbb{N}$ и подберем такие $\varepsilon_0 > 0$ и номера $n_0 \ge n, m_0 \ge n,$ что выполняется

$$|a_{n_0} - a_{m_0}| > \varepsilon_0.$$

Пусть для определенности $m_0 > n_0$, тогда

$$|a_{n_0} - a_{m_0}| = \frac{1}{n_0 + 1} + \frac{1}{n_0 + 2} + \dots + \frac{1}{m_0}.$$

Очевидно, что каждое из слагаемых в правой части может быть сколь угодно малым с ростом параметра n. Поэтому для того, чтобы обеспечить выполнение неравенства

$$|a_{n_0} - a_{m_0}| > \varepsilon_0$$

с независящим от n положительным ε_0 , необходимо требовать, чтобы величины m_0 , n_0 , n были одного порядка.

Положим $m_0 = 2n, n_0 = n$ и оценим:

$$\frac{1}{n_0+1} + \frac{1}{n_0+2} + \ldots + \frac{1}{m_0} = \frac{1}{n+1} + \ldots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2}.$$

Таким образом, можно взять $\varepsilon_0 = \frac{1}{2}$, что завершает проверку отрицания к критерию Коши.

Рассмотрим произвольную последовательность (a_n) . Частичным пределом последовательность (a_n) называется предел $a \in \mathbb{R} \cup \{+\infty, -\infty\}$ некоторой подпоследовательности (a_{n_k}) . Беззнаковую бесконечность не будем рассматривать в качестве возможного частичного предела.

Обозначим через L множество всех частичных пределов последовательности (a_n) . В силу теоремы о выборе монотонной подпоследовательности множество L непустое.

Верхним пределом последовательности (a_n) называется $\sup L$, а нижним пределом последовательности (a_n) называется $\inf L$. Верхний и нижний пределы обозначают через

$$\overline{\lim}_{n\to\infty} a_n$$
, $\underline{\lim}_{n\to\infty} a_n$.

Таким образом, любая последовательность (a_n) имеет верхний предел (конечный или $+\infty$) и нижний предел (конечный или $-\infty$). Если последовательность (a_n) ограничена, то ее верхний и нижний пределы конечные. Например, $\overline{\lim_{n\to\infty}}(-1)^n=1$, $\underline{\lim_{n\to\infty}}(-1)^n=-1$.

Теорема 5.2 (критерий совпадения верхнего и нижнего пределов). Последовательность (a_n) имеет предел (конечный или бесконечный определенного знака) тогда и только тогда, когда

$$\overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n.$$

 \Diamond

Необходимость.

Так как последовательность (a_n) стремится к некоторому a, то любая подпоследовательность стремится к a. Следовательно, множество частичных пределов состоит из одной точки a. Откуда вытекает, что $\overline{\lim_{n\to\infty}} a_n = \underline{\lim_{n\to\infty}} a_n = a$.

Достаточность.

Пусть $\overline{\lim}_{n\to\infty} a_n = \underline{\lim}_{n\to\infty} a_n = a$. Предположим, что последовательность (a_n) не стремится к a. Тогда найдется $\varepsilon_0 > 0$ такое, что для любого $k \in \mathbb{N}$ можно найти бесконечно много номеров $n_0(k) \geq k$, таких, что $a_{n_0(k)}$ будет лежать за пределами ε_0 -окрестности точки a. Причем индексы $n_0(k)$ можно выбрать так, чтобы $n_0(1) < n_0(2) < \dots$ Тогда все частичные пределы такой подпоследовательности $(a_{n_0(k)})$ отличны от a. Противоречие.

Из доказанной теоремы вытекает, что для сходящейся последовательности понятия предела, верхнего предела и нижнего предала совпадают.

6 Предел функции. Критерий Гейне

Пусть заданы два непустых множества X, Y. Функцией, определенной на множестве X со значениями в Y называют соответствие f, которое каждому элементу $x \in X$ соотносит единственный элемент $y \in Y$. Пишут $f: X \to Y$ или $y = f(x), x \in X, y \in Y$. При этом множество X называется областью определения функции f (обозначают D_f), а множество Y называется областью значений функции f.

Множеством значений функции $f: X \to Y$ называется множество

$$E_f = \{ f(x) : x \in X \}.$$

Вообще говоря, множество значений E_f может не совпадать с областью значений Y. По определению $E_f \subseteq Y$.

Прообразом элемента $y \in Y$ при отображении $f: X \to Y$ называется множество

$$f^{-1}(y) = \{x \in X : f(x) = y\}.$$

Вообще говоря, прообраз элемента $y \in Y$ может быть пустым множеством (если y не принадлежит E_f).

Если X и Y – числовые множества, то функция f называется вещественной. Пока будем рассматривать лишь вещественные функции. При этом будем считать, что $Y = \mathbb{R}$, если не оговорено иное.

Графиком вещественной функции $f: X \to Y$ называется множество

$$\Gamma_f = \{(x, f(x)) : x \in X\}.$$

Функция $f: X \to Y$ называется сюрьективной, если для любого $y \in Y$ прообраз $f^{-1}(y)$ непустой. Иными словами, сюрьективность функции f означает, что множество значений E_f совпадает с областью значений Y.

Функция $f: X \to Y$ называется инъективной, если для любого $y \in Y$ прообраз $f^{-1}(y)$ состоит не более чем из одного элемента. Иными словами функция f отображает различные элементы x_1, x_2 множества X в различные элементы y_1, y_2 множества Y.

Функция f называется биективной (или взаимно однозначной), если для любого $y \in Y$ прообраз $f^{-1}(y)$ состоит ровно из одного элемента. По определению биективная функция является сюрьективной и инъективной.

Пусть функция $y=f(x), x\in X, y\in Y$ является биективной. Тогда можно определить функцию $x=g(y), y\in Y, x\in X$, где g(y) совпадает с прообразом $f^{-1}(y)$. Такая функция x=g(y) называется обратной функцией к функции y=f(x) и обозначается f^{-1} . Легко видеть, что обратная функция $f^{-1}:Y\to X$ также является биективной. Заметим, что графики прямой и обратной функций симметричны относительно прямой y=x.

Пусть X, Y, Z – некоторые непустые числовые множества, и заданы две функции $f: X \to Y, g: Y \to Z$. Композицией функций g и f называют функцию $h: X \to Z$, действующую по правилу:

$$h(x) = q(f(x)), x \in X.$$

Обозначают $h = g \circ f$. В частности, композиция биективной функции f и обратной функции f^{-1} является тождественной функцией.

Если X=Y=Z, то можно определить композиции $f\circ g$ и $g\circ f$, которые, вообще говоря, являются различными функциями.

Рассмотрим некоторые классы функций $f:X\to\mathbb{R}$, которые относят к элементарным функциям. Будем предполагать, что $X = \mathbb{R}$, если не оговорено иное.

- 1. Линейная функция: $y = kx + b, k, b \in \mathbb{R}$.
- 2. Квадратичная функция: $y = ax^2 + bx + c$, $a, b, c \in \mathbb{R}$, $a \neq 0$.
- 3. Многочлен степени $n: y = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0, a_i \in \mathbb{R}, i = 0, \ldots, n, a_n \neq 0.$
- 4. Рациональная функция: $y=\frac{P_n(x)}{Q_m(x)}$, где $P_n(x)$, $Q_m(x)$ многочлены степеней n и m, m>0. Областью определения рациональной функции является множество

$$\{x \in \mathbb{R} : Q_m(x) \neq 0\}.$$

- 5. Тригонометрические функции: $y = \sin x; y = \cos x; y = \operatorname{tg} x, x \neq \frac{\pi}{2} + \pi n; y = \operatorname{ctg} x,$ $x \neq \pi n, n \in \mathbb{Z}$.
- 6. Обратные тригонометрические функции: $y = \arcsin x, x \in [-1,1]; y = \arccos x, x \in$ [-1,1]; $y = \operatorname{arctg} x$, $x \in \mathbb{R}$; $y = \operatorname{arcctg} x$, $x \in \mathbb{R}$.
- 7. Степенная функция: $y = x^a, x > 0, a \in \mathbb{R}$.
- 8. Показательная функция: $y = a^x$, $a \in (0,1) \cup (1,+\infty)$, $x \in \mathbb{R}$.
- 9. Логарифмическая функция: $y = \log_a x, \ a \in (0,1) \cup (1,+\infty), \ x>0$. Если основание aсовпадает с e, то пишут $y = \ln x$ (натуральный логарифм).
- 10. Гиперболические функции: $y = \sinh x$, $y = \cosh x$, $y = \sinh x = \frac{\sinh x}{\cosh x}$, $y = \coth x = \frac{\cosh x}{\sinh x}$
- 11. Обратные гиперболические функции: $y = \operatorname{arcsh} x, x \in \mathbb{R}; y = \operatorname{arcch} x, x \geq 1.$

Пусть функция f определена в проколотой Δ -окрестности точки c, т.е. на множестве

$$U_{\Delta}(c) = \{x \in \mathbb{R} : 0 < |x - c| \le \Delta\},\$$

где $\Delta > 0$.

Говорят, что функция f имеет предел при $x \to c$, если существует число $A \in \mathbb{R}$ такое, что

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \forall x \in U_{\Lambda}(c) : 0 < |x - c| < \delta(\varepsilon) \Rightarrow |f(x) - A| < \varepsilon.$$

В таком случае пишут, что $\lim_{x\to c} f(x) = A$ или $f(x) \underset{x\to c}{\to} A$. Если f(x) определена в точке c, и $\lim_{x\to c} f(x) = A$, то необязательно A = f(c).

Аналогично доказательству М-леммы для предела последовательности можно доказать М-лемму для предела функции.

Лемма 6.1 (М-лемма для предела функции). Если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \forall x \in U_{\Delta}(c) : 0 < |x - c| \le \delta(\varepsilon) \Rightarrow |f(x) - A| \le M\varepsilon,$$

где постоянная M не зависит ни от x ни от ε , то $f(x) \underset{x \to c}{\to} A$.

Пример 6.1 Докажем, что $\lim_{x\to 2} x^3 = 8$.

Положим $\Delta = 1$. Возьмем произвольное $\varepsilon > 0$. Имеем:

$$|x^3 - 8| \le \varepsilon \Leftrightarrow |x - 2||x^2 + 2x + 4| \le \varepsilon$$
.

Так как $|x^2+2x+4|\leq 19$ для любого $x\in [1,3],$ то можем положить $\delta(\varepsilon):=\min\{\frac{\varepsilon}{19},1\}$ в определении предела.

Теорема 6.1 (критерий Гейне). Для того, чтобы функция f(x) имела предел A при $x \to c$, необходимо и достаточно, чтобы для любой последовательности $x_n \to c$, $x_n \neq c$, последовательность $f(x_n)$ сходилась x A.

 \Diamond

Необходимость.

Возьмем прозвольные $\varepsilon>0$ и последовательность $x_n\underset{n\to\infty}{\to} c,\, x_n\neq c.$ Так как $\lim_{x\to c}f(x)=A,$ то

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \forall x \in U_{\Delta}(c) : 0 < |x - c| \le \delta(\varepsilon) \Rightarrow |f(x) - A| \le \varepsilon.$$

Так как последовательность x_n сходится к c, и $x_n \neq c$, то

$$\exists n_0(\delta(\varepsilon)) > 0 : \forall n \ge n_0(\delta(\varepsilon)) \Rightarrow 0 < |x_n - c| \le \delta(\varepsilon)$$

Таким образом, для любых $n \geq n_0(\delta(\varepsilon))$ имеем

$$|f(x_n) - A| < \varepsilon.$$

Следовательно, $\lim_{n\to\infty} f(x_n) = A$.

Достаточность.

Предположим, что $\lim_{x\to c} f(x) \neq A$, т.е.

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x_0 \in U_{\Delta}(c) : 0 < |x_0 - c| \le \delta \Rightarrow |f(x_0) - A| > \varepsilon_0.$$

В частности, для каждого $\delta_n = \frac{1}{n}$ найдется точка $x_{0,n}$ такая, что

$$0 < |x_{0,n} - c| \le \frac{1}{n}, |f(x_{0,n}) - A| > \varepsilon_0.$$

Отсюда вытекает, что $x_{0,n} \underset{n \to \infty}{\to} c, \ x_n \neq c,$ но $f(x_{0,n})$ не стремится к A при $n \to \infty$, что противоречит условию теоремы.

Замечание 6.1 Критерий Гейне позволяет перенести свойства 3.1 – 3.6 пределов последовательностей на пределы функций.

Пример 6.2 Докажем, что функция $y = \sin(1/x), x \neq 0$, не имеет предела при $x \to 0$.

Выберем $x'_n = \frac{1}{\pi/2 + 2\pi n}, x''_n = \frac{1}{-\pi/2 + 2\pi n}$. Очевидно, что эти последовательности сходятся к 0, но $y'_n = \sin(x'_n) \to 1, y''_n = \sin(x''_n) \to -1$ при $n \to \infty$. Существование предела $\lim_{x \to 0} \sin(1/x)$ противоречило бы единственности предела и критерию Гейне.

Свойства пределов функций. Критерий Коши

Свойство 7.1 Функция не может иметь более одного предела.

Предположим, что $\lim_{x\to c} f(x) = A$, $\lim_{x\to c} f(x) = B$, $A \neq B$. Возьмем последовательность $x_n \underset{n\to\infty}{\to} c$, $x_n \neq c$. По критерию Гейне $f(x_n) \underset{n\to\infty}{\to} A$, $f(x_n) \underset{n\to\infty}{\to} B$, что противоречит единственности предела последовательности.

Свойство 7.2 Пусть $f(x) \underset{x \to c}{\rightarrow} A, \ g(x) \underset{x \to c}{\rightarrow} B.$ Тогда

1)
$$f(x) + g(x) \underset{x \to c}{\rightarrow} A + B;$$

2)
$$f(x)g(x) \underset{x\to c}{\longrightarrow} AB;$$

3) ecnu
$$g(x) \neq 0 \ \forall x \in U_{\Delta}(c) \ u \ B \neq 0, \ mo \ \frac{f(x)}{g(x)} \xrightarrow{x \to c} \frac{A}{B}$$
.

 \Diamond

Докажем свойство 1). Возьмем произвольную последовательность $x_n \underset{n \to \infty}{\to} c, \ x_n \neq c.$ По критерию Гейне $f(x_n) + g(x_n) \underset{n \to \infty}{\to} A + B$. Теперь применяя критерий Гейне в обратную сторону, получаем, что $f(x) + g(x) \underset{x \to c}{\to} A + B$. Свойства 2) и 3) доказываются аналогично.

Свойство 7.3
$$Ecлu\ f(x) \underset{x \to c}{\to} A,\ g(x) \underset{x \to c}{\to} B\ u\ f(x) \leq g(x)\ \forall x \in U_{\Delta}(c),\ mo\ A \leq B.$$

Возьмем произвольную последовательность $x_n \underset{n \to \infty}{\to} c, \ x_n \in U_{\Delta}(c)$. По критерию Гейне $f(x_n) \underset{n \to \infty}{\to} A, \ g(x_n) \underset{n \to \infty}{\to} B$. Так как $f(x_n) \leq g(x_n) \ \forall n \in \mathbb{N}, \ \text{то} \ A \leq B$.

Свойство 7.4 Если
$$h(x) \leq f(x) \leq g(x) \ \forall x \in U_{\Delta}(c) \ u \ h(x) \underset{x \to c}{\to} A, \ g(x) \underset{x \to c}{\to} A, \ mo \ f(x) \underset{x \to c}{\to} A.$$

Возьмем произвольную последовательность $x_n \underset{n \to \infty}{\to} c, \ x_n \in U_{\Delta}(c)$. По критерию Гейне $h(x_n) \underset{n \to \infty}{\longrightarrow} A, \ g(x_n) \underset{n \to \infty}{\longrightarrow} A.$ Так как $h(x_n) \leq f(x_n) \stackrel{n \to \infty}{\leq} g(x_n) \ \forall n \in \mathbb{N},$ то по лемме о сжатой последовательности имеем $f(x_n) \to A$.

Свойство 7.5 Произведение бесконечно малой функции f(x), т.е. такой функции, что $\lim f(x)=0$, на ограниченную функцию $g(x),\ x\in U_{\Delta}(c)$, является бесконечно малой функ $x \rightarrow c$ $uue \ddot{u}$.

 \Diamond

Возьмем произвольную последовательность $x_n \underset{n \to \infty}{\to} c, \ x_n \in U_{\Delta}(c)$. По критерию Гейне последовательность $(f(x_n))$ бесконечно малая. Так как последовательность $(g(x_n))$ ограниченная, то последовательность $(f(x_n)g(x_n))$ бесконечно малая. Применяя критерий Гейне в обратную сторону, получим, что функция f(x)g(x) бесконечно малая.

Теорема 7.1 (критерий Коши существования предела функции). Функция $f:U_{\Delta}(c)\to \mathbb{R}$ имеет предел при $x\to c$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x', x'' \in U_{\Delta}(c), 0 < |x' - c| \le \delta(\varepsilon), 0 < |x'' - c| \le \delta(\varepsilon) \Rightarrow |f(x') - f(x'')| \le \varepsilon.$$

 \Diamond

Необходимость.

Так как $\lim_{x\to c} f(x) = A$, то

$$\forall \varepsilon > 0 \ \exists \delta\left(\frac{\varepsilon}{2}\right) > 0 : \forall x', x'' \in U_{\Delta}(c), 0 < |x' - c| \le \delta\left(\frac{\varepsilon}{2}\right), 0 < |x'' - c| \le \delta\left(\frac{\varepsilon}{2}\right) \Rightarrow$$
$$|f(x') - A| \le \frac{\varepsilon}{2}, \ |f(x'') - A| \le \frac{\varepsilon}{2}.$$

Для таких x', x'' получаем

$$|f(x') - f(x'')| \le |f(x') - A| + |f(x'') - A| \le \varepsilon.$$

Достаточность.

Возьмем последовательность $x_n \to c$, $x_n \neq c$, и произвольное $\varepsilon > 0$. Для этого $\varepsilon > 0$ найдем $\delta(\varepsilon) > 0$ из условия теоремы. Существует номер $n_0(\delta(\varepsilon))$ такой, что для любых $n,m \geq n_0(\delta(\varepsilon))$ выполняется

$$|x_n - c| \le \delta(\varepsilon), |x_m - c| \le \delta(\varepsilon).$$

Отсюда получаем, что для любых $n, m \ge n_0(\delta(\varepsilon))$ выполнено

$$|f(x_n) - f(x_m)| \le \varepsilon,$$

то есть последовательность $(f(x_n))$ является фундаментальной. Согласно критерию Коши сходимости последовательности $f(x_n) \underset{n \to \infty}{\to} A \in \mathbb{R}$.

Из условия теоремы получаем

$$\forall n \ge n_0(\delta(\varepsilon)), \ \forall x \in U_\Delta(c), 0 < |x - c| \le \delta(\varepsilon) \Rightarrow f(x_n) - \varepsilon \le f(x) \le f(x_n) + \varepsilon.$$

Переходя в последнем неравенстве к пределу при $n \to \infty$, получим

$$\forall x \in U_{\Delta}(c), 0 < |x - c| \le \delta(\varepsilon) \Rightarrow A - \varepsilon \le f(x) \le A + \varepsilon,$$

следовательно, $f(x) \underset{x \to c}{\to} A$.

Пусть $\Delta > 0$ и функция f определена в проколотой правосторонней Δ -окрестности точки c, т.е. на множестве

$$U_{\Delta}^+(c) = \{ x \in \mathbb{R} : 0 < x - c \le \Delta \}.$$

Говорят, что функция f(x) имеет предел справа при $x \to c$, если существует число A такое, что

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in U_{\Delta}^{+}(c), 0 < x - c \le \delta(\varepsilon) \Rightarrow |f(x) - A| \le \varepsilon.$$

При этом пишут: $A = \lim_{x \to c+0} f(x) = f(c+0)$ или $f(x) \underset{x \to c+0}{\longrightarrow} A$.

Пусть $\Delta>0$ и функция f определена в проколотой левосторонней Δ -окрестности точки c, т.е. на множестве

$$U_{\Delta}^{-}(c) = \{ x \in \mathbb{R} : 0 < c - x \le \Delta \}.$$

Говорят, что функция f(x) имеет предел слева при $x \to c$, если существует число A такое, ОТР

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in U_{\Lambda}^{-}(c), 0 < c - x \le \delta(\varepsilon) \Rightarrow |f(x) - A| \le \varepsilon.$$

Пишут:
$$A = \lim_{x \to c - 0} f(x) = f(c - 0)$$
 или $f(x) \underset{x \to c - 0}{\longrightarrow} A$.

Из определения предела и односторонних пределов вытекает следующее утверждение.

Теорема 7.2 (критерий равенства односторонних пределов). Функция f(x) имеет пре- ∂ ел $\lim_{x\to c} f(x) = A$ тогда и только тогда, когда f(c+0) = f(c-0) = A.

Говорят, что функция f, определенная на множестве $[a, +\infty)$ имеет предел при $x \to +\infty$, если существует число A такое, что

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in [a, +\infty), x \ge \delta(\varepsilon) \Rightarrow |f(x) - A| \le \varepsilon.$$

Обозначают $A = \lim_{x \to +\infty} f(x) = f(+\infty)$ или $f(x) \underset{x \to +\infty}{\to} A$.

Аналогично, $A = \lim_{x \to -\infty} f(x) = f(-\infty)$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in (-\infty, a], x \le -\delta(\varepsilon) \Rightarrow |f(x) - A| \le \varepsilon.$$

Говорят, что функция $f:U_{\Delta}(c)\to\mathbb{R}$ стремится к бесконечности при $x\to c$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in U_{\Delta}(c), 0 < |x - c| \le \delta(\varepsilon) \Rightarrow |f(x)| \ge \varepsilon,$$

обозначают $\lim_{x\to c} f(x) = \infty$. Аналогично, $\lim_{x\to c} f(x) = +\infty$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in U_{\Delta}(c), 0 < |x - c| \le \delta(\varepsilon) \Rightarrow f(x) \ge \varepsilon,$$

и $\lim_{x\to c} f(x) = -\infty$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in U_{\Delta}(c), 0 < |x - c| \le \delta(\varepsilon) \Rightarrow f(x) \le -\varepsilon.$$

Замечание 7.1 Для введенных односторонних и бесконечных пределов имеет место критерий Γ ейне c coomветствующими изменениями. Например: функция f(x) стремится $\kappa + \infty$ $npu \ x \to c - 0$ тогда и только тогда, когда для любой последовательности $x_n \underset{n \to \infty}{\longrightarrow} c$, $x_n < c$, последовательность $f(x_n)$ стремится $\kappa + \infty$ при $n \to \infty$.

8 Замечательные пределы

Замечательный тригонометрический предел

Лемма 8.1 Если $\lim_{t\to c} \varphi(t)=b, \lim_{x\to b} f(x)=A, \ \varphi(t)\neq b$ в некоторой проколотой окрестности точки $c,\ mo\lim_{t\to c} f(\varphi(t))=A.$

 \Diamond

Возьмем произвольную последовательность $t_n \underset{n \to \infty}{\to} c, \, t_n \neq c.$ По критерию Гейне

$$\varphi(t_n) \underset{n \to \infty}{\longrightarrow} b.$$

По условию леммы $\varphi(t_n) \neq b$ для всех достаточно больших n. Поэтому по критерию Гейне

$$f(\varphi(t_n)) \underset{n \to \infty}{\longrightarrow} A.$$

Теперь, применяя критерий Гейне в обратную сторону, получаем

$$\lim_{t \to c} f(\varphi(t)) = A.$$

Замечание 8.1 Лемма остается в силе и для односторонних пределов.

Теорема 8.1 (замечательный тригонометрический предел).

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

 \Diamond

Рис. 1: К доказательству теоремы 8.1

Докажем, что

$$\lim_{x \to +0} \frac{\sin x}{x} = 1.$$

Сразу покажем, что

$$\sin x < x < \operatorname{tg} x \ \forall x \in \left(0, \frac{\pi}{2}\right).$$

Рассмотрим единичный круг и конфигурацию точек, изображенную на Рис. 1. Легко видеть, что площади треугольника OAB, сектора OAB и треугольника OAD равны соответственно $\frac{1}{2}\sin x$, $\frac{1}{2}tg$ x. Отсюда и вытекают требуемые неравенства.

Таким образом, для любого $x \in (0, \frac{\pi}{2})$ имеем

$$\cos x < \frac{\sin x}{x} < 1.$$

Далее

$$\left| 1 - \frac{\sin x}{x} \right| < 1 - \cos x = 2\sin^2 \frac{x}{2} < 2\sin \frac{x}{2} < x.$$

Таким образом,

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) = \varepsilon > 0 : \forall x \in \left(0, \frac{\pi}{2}\right), 0 < x \le \delta(\varepsilon) \Rightarrow \left|1 - \frac{\sin x}{x}\right| \le \varepsilon,$$

что означает $\lim_{x \to +0} \frac{\sin x}{x} = 1$.

Теперь докажем, что

$$\lim_{x \to -0} \frac{\sin x}{x} = 1.$$

Согласно лемме 8.1 и доказанному равенству $\lim_{x\to +0} \frac{\sin x}{x} = 1$ имеем

$$\lim_{x \to -0} \frac{\sin x}{x} = \lim_{t \to +0} \frac{\sin(-t)}{-t} = \lim_{t \to +0} \frac{\sin t}{t} = 1.$$

Таким образом, $\lim_{x\to 0} \frac{\sin x}{x} = 1$, что и требовалось доказать.

Замечательный показательно-степенной предел

Теорема 8.2 (замечательный показательно-степенной предел).

$$\lim_{x \to 0} (1+x)^{1/x} = e.$$

 \Diamond

Докажем, что

$$\lim_{x \to +0} (1+x)^{1/x} = e.$$

Возьмем произвольную последовательность $x_n \underset{n \to \infty}{\to} +0, x_n > 0.$

Обозначим $k_n = \left[\frac{1}{x_n}\right]$. Тогда

$$k_n \le \frac{1}{x_n} < k_n + 1,$$

$$\frac{1}{k_n+1} < x_n \le \frac{1}{k_n}.$$

Отсюда получаем оценку

$$\left(1 + \frac{1}{k_n + 1}\right)^{k_n} \le (1 + x_n)^{1/x_n} \le \left(1 + \frac{1}{k_n}\right)^{k_n + 1},$$

$$\left(1 + \frac{1}{k_n + 1}\right)^{k_n + 1} \left(1 + \frac{1}{k_n + 1}\right)^{-1} \le (1 + x_n)^{1/x_n} \le \left(1 + \frac{1}{k_n}\right)^{k_n} \left(1 + \frac{1}{k_n}\right).$$

Очевидно, что $k_n \to +\infty$, $k_n \in \mathbb{N}$. Предположим, что последовательность $\left(1 + \frac{1}{k_n}\right)^{k_n}$ не стремится к e при $n \to \infty$. Тогда найдется подпоследовательность (k'_n) последовательности (k_n) такая, что

$$\lim_{n \to \infty} \left(1 + \frac{1}{k'_n} \right)^{k'_n} = A \neq e.$$

Из последовательности (k'_n) можно выбрать монотонную подпоследовательность (k''_n) . Очевидно, что $k''_{n\to\infty} \to +\infty$ как подпоследовательность последовательности $k_n \to +\infty$. Кроме того,

$$\lim_{n\to\infty} \left(1 + \frac{1}{k_n''}\right)^{k_n''} = \lim_{n\to\infty} \left(1 + \frac{1}{k_n'}\right)^{k_n'} = A.$$

С другой стороны, последовательность (k''_n) является подпоследовательностью последовательности (n). Поэтому

$$\lim_{n \to \infty} \left(1 + \frac{1}{k_n''} \right)^{k_n''} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Противоречие. Следовательно,

$$\lim_{n \to \infty} \left(1 + \frac{1}{k_n} \right)^{k_n} = e.$$

Применяя лемму о сжатой последовательности, получаем, что

$$\lim_{n \to \infty} (1 + x_n)^{1/x_n} = e.$$

Согласно критерию Гейне

$$\lim_{x \to +0} (1+x)^{1/x} = e.$$

Теперь докажем, что

$$\lim_{x \to -0} (1+x)^{1/x} = e.$$

Для этого воспользуемся леммой 8.1:

$$\lim_{x \to -0} (1+x)^{1/x} = \lim_{t \to +0} (1-t)^{-1/t} = \lim_{t \to +0} \left(\frac{1}{1-t}\right)^{1/t} = \lim_{t \to +0} \left(1 + \frac{t}{1-t}\right)^{\frac{1-t}{t}} \left(1 + \frac{t}{1-t}\right) = e.$$

Замечательный логарифмический предел

Функция f(x), определенная на отрезке $[x_0 - \delta, x_0 + \delta], \delta > 0$, называется непрерывной в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0).$$

В дальнейшем будет показано, что все элементарные функции, введенные в параграфе 6, а также их композиции являются непрерывными в каждой точке области определения.

Теорема 8.3 (замечательный логарифмический предел).

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

 \Diamond

Воспользуемся леммой 8.1, теоремой 8.2 и непрерывностью функции $f(x) = \ln x$ в точке x = e :

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{1/x} = \lim_{t \to e} \ln t = \ln e = 1.$$

Замечательный показательный предел

Теорема 8.4 (замечательный показательный предел).

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

 \Diamond

Воспользуемся леммой 8.1, теоремой 8.3 и непрерывностью функции $f(x)=e^x$ в точке x=0 :

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(1 + t)} = 1.$$

Замечательный степенной предел

Теорема 8.5 (замечательный степенной предел). Пусть $\mu \in \mathbb{R}$, тогда

$$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \mu.$$

 \Diamond

Воспользуемся теоремами 8.3, 8.4:

$$\lim_{x \to 0} \frac{(1+x)^{\mu} - 1}{x} = \lim_{x \to 0} \frac{e^{\mu \ln(1+x)} - 1}{x} = \lim_{x \to 0} \frac{e^{\mu \ln(1+x)} - 1}{\mu \ln(1+x)} \frac{\mu \ln(1+x)}{x} = \mu.$$

О-символика

Говорят, что функции f(x) и g(x) эквивалентны при $x \to x_0$, если

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$$

Пишут $f(x) \underset{x \to x_0}{\sim} g(x)$.

Например, $\sin x \sim \underset{x\to 0}{\sim} \lg x \sim \ln(1+x) \sim e^x - 1 \sim x$.

Замечание 8.2 *При вычислении пределов можно заменять функции на эквивалентные* им функции в произведении и в частном, но не в сумме или в разности.

Говорят, что функция f(x) является бесконечно малой относительно функции g(x) при $x \to x_0$, если

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

При этом пишут $f(x) = o(g(x)), x \to x_0$. Произносят f(x) есть о-малое от g(x).

Например, $x^2 = o(x)$ при $x \to 0$, но $x = o(x^2)$ при $x \to \infty$.

Говорят, что функция f(x) растет не быстрее чем функция g(x) при $x \to x_0$, если существует постоянная M>0 такая, что в некоторой окрестности точки x_0 выполняется неравенство

$$|f(x)| \le M|g(x)|.$$

Пишут $f(x) = O(g(x)), x \to x_0$. Произносят f(x) есть о-большое от g(x). Например, $ax^2 + bx + c = O(x^2)$, при $x \to \infty$.

Пример 8.1 Вычислить предел

$$\lim_{x \to 0} \frac{\ln \cos x}{\sin x^2}.$$

Имеем

$$\frac{\ln \cos x}{\sin x^2} = \frac{\ln(1 + (\cos x - 1))}{\sin x^2} \underset{x \to 0}{\sim} \frac{\cos x - 1}{x^2} = \frac{-2\sin^2 \frac{x}{2}}{x^2} \underset{x \to 0}{\sim} \frac{-\frac{x^2}{2}}{x^2} = -\frac{1}{2}.$$

Таким образом,

$$\lim_{x \to 0} \frac{\ln \cos x}{\sin x^2} = -\frac{1}{2}.$$

9 Непрерывная функция. Классификация точек разрыва

Пусть функция f(x) определена на отрезке $U_{\Delta}(x_0) = [x_0 - \Delta, x_0 + \Delta], \ \Delta > 0$. Говорят, что функция f(x) непрерывна в точке x_0 , если

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Если данное равенство не выполняется, то говорят, что функция f(x) разрывна в точке x_0 . Запишем определение непрерывности на формальном языке: функция f(x) непрерывна в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in U_{\Delta}(x_0), |x - x_0| \le \delta(\varepsilon) \Rightarrow |f(x) - f(x_0)| \le \varepsilon.$$

Величину $\Delta x = x - x_0$ называют приращением аргумента, в величину $\Delta y = f(x_0 + \Delta x) - f(x_0)$ называют приращением функции. Определение непрерывности функции f(x) в точке x_0 можно записать следующим образом:

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

Говорят, что функция f(x) непрерывна на множестве X, если f(x) непрерывна в каждой точке множества X. Если f(x) непрерывна на множестве определения, то говорят, что f(x) непрерывна.

Аналогично критерию Гейне существования предела последовательности доказывается следующий критерий Гейне непрерывности.

Теорема 9.1 (критерий Гейне непрерывности). Функция f(x) непрерывна в точке x_0 тогда и только тогда, когда для любой последовательности $x_n \underset{n \to \infty}{\to} x_0$ имеет место сходимость

$$f(x_n) \underset{n \to \infty}{\longrightarrow} f(x_0).$$

Пусть функция f(x) определена на отрезке $U_{\Delta}^{+}=[x_{0},x_{0}+\Delta],\,\Delta>0.$ Говорят, что функция f(x) непрерывна справа в точке x_{0} , если

$$\lim_{x \to x_0 + 0} f(x) = f(x_0).$$

Аналогично функция f(x), определенная на $U_{\Delta}^- = [x_0 - \Delta, x_0], \, \Delta > 0$, называется непрерывной слева в точке x_0 , если

$$\lim_{x \to x_0 - 0} f(x) = f(x_0).$$

Отметим, что из функция непрерывна в точке x_0 тогда и только тогда, когда она непрерывна слева и справа в этой точке.

Например, функция f(x) = 1, $x \ge 0$, f(x) = -1, x < 0, является непрерывной справа в точке $x_0 = 0$, но не является непрерывной слева в точке $x_0 = 0$, т.к. f(-0) = -1, f(0) = 1.

Замечание 9.1 Имеет место аналог критерия Гейне непрерывности слева и справа: функция f(x) непрерывна слева (соответственно справа) тогда и только тогда, когда для любой последовательности $x_n \underset{n \to \infty}{\to} x_0 - 0$ (соответственно $x_n \underset{n \to \infty}{\to} x_0 + 0$) имеет место сходимость

$$f(x_n) \underset{n \to \infty}{\longrightarrow} f(x_0).$$

Теорема 9.2 (теорема о стабилизации знака). Пусть функция f задана на промежутке |a,b| и непрерывна в точке $x_0 \in |a,b|$. Если $f(x_0) \neq 0$, то существует окрестность точки x_0 , в которой f(x) принимает значения того же знака, что и $f(x_0)$.

 \Diamond

Докажем теорему для случая, когда x_0 – внутренняя точка промежутка |a,b| и $f(x_0)>0$. Имеем

$$\varepsilon := \frac{f(x_0)}{2} \ \exists \delta(\varepsilon) > 0 : \forall x \in [x_0 - \delta(\varepsilon), x_0 + \delta(\varepsilon)] \Rightarrow |f(x) - f(x_0)| \le \frac{f(x_0)}{2}.$$

Отсюда получаем, что $f(x) \ge \frac{f(x_0)}{2} > 0 \ \forall x \in [x_0 - \delta(\varepsilon), x_0 + \delta(\varepsilon)].$

Теорема 9.3 (теорема о локальной ограниченности непрерывной функции). Пусть функция f(x) непрерывна в точке $x_0 \in |a,b|$. Тогда существует окрестность точки x_0 , в которой функция f ограничена.

 \Diamond

Докажем теорему для случая, когда x_0 – внутренняя точка промежутка |a,b|. Имеем

$$\varepsilon := 1 \ \exists \delta(\varepsilon) > 0 : \forall x \in [x_0 - \delta(\varepsilon), x_0 + \delta(\varepsilon)] \Rightarrow |f(x) - f(x_0)| \le 1.$$

Таким образом, $f(x) \in [f(x_0) - 1, f(x_0) + 1] \ \forall x \in [x_0 - \delta(\varepsilon), x_0 + \delta(\varepsilon)].$

Теорема 9.4 (теорема о непрерывности арифметических комбинаций). Если функции f(x), g(x) непрерывны в точке x_0 , то функции f(x) + g(x), f(x)g(x) непрерывны в точке x_0 . Если дополнительно $g(x_0) \neq 0$, то функция $\frac{f(x)}{g(x)}$ также непрерывна в точке x_0 .

 \Diamond

Утверждение теоремы для суммы и произведения функций вытекает из соответствующих свойств предела функции.

Если $g(x_0) \neq 0$, то по теореме о стабилизации знака функция g(x) отлична от нуля в некоторой окрестности точки x_0 . Потому в этой окрестности определено частное $\frac{f(x)}{g(x)}$. Теперь применяя свойство для предела частного, получаем требуемое утверждение.

Классификация точек разрыва

Предположим, что функция $f(x), x \in U_{\Delta}(x_0)$, является разрывной в точке x_0 . Равенство

$$\lim_{x \to x_0} f(x) = f(x_0)$$

нарушается, поэтому реализуется один из следующих случаев:

- 1) предел $\lim_{\substack{x \to x_0 \\ \text{что } x_0 \text{точка устранимого разрыва;}} f(x)$ существует и конечен, но отличен от $f(x_0)$. В таком случае говорят,
- 2) существуют конечные односторонние пределы $f(x_0-0), f(x_0+0),$ но $f(x_0-0) \neq f(x_0+0)$. В таком случае говорят, что x_0 точка конечного скачка;

- 3) существуют односторонние пределы $f(x_0 0)$, $f(x_0 + 0)$ и хотя бы один из них бесконечен. В таком случае говорят, что x_0 точка бесконечного скачка;
- 4) хотя бы один из односторонних пределов $f(x_0 0)$, $f(x_0 + 0)$ не существует. В таком случае говорят, что x_0 точка неопределенности.

Точки разрыва 1) и 2) относят к точкам разрыва первого рода. Точки разрыва 3) и 4) называют точками разрыва второго рода.

Пример 9.1 Пусть $f(x) = \frac{\sin x}{x}, x \neq 0, f(0) = 0.$

Так как $\lim_{x\to 0} \frac{\sin x}{x} = 1 \neq f(0) = 0$, то $x_0 = 0$ – точка устранимого разрыва.

Пример 9.2 Пусть f(x) = sgn(x), m.e. f(x) = 1 при x > 0, f(x) = -1 при x < 0, f(0) = 0.

Так как $f(+0) = 1 \neq f(-0) = -1$, то $x_0 = 0$ – точка конечного скачка.

Пример 9.3 Пусть $f(x) = \frac{1}{x} npu \ x > 0, f(x) = 0 npu \ x \le 0.$

Так как существует оба односторонних предела $f(+0) = \infty$, f(-0) = 0 и один из них бесконечен, то $x_0 = 0$ – точка бесконечного скачка.

Пример 9.4 Пусть $f(x) = \sin \frac{1}{x} npu \ x \neq 0, f(0) = 0.$

Докажем, что не существует предела f(+0). Воспользуемся критерием Гейне. Рассмотрим две последовательности

$$x'_n = \frac{1}{\frac{\pi}{2} + 2\pi n}, \ x''_n = \frac{1}{-\frac{\pi}{2} + 2\pi n}, \ n \in \mathbb{N}.$$

Так как $f(x'_n) \underset{n \to \infty}{\to} 1$, $f(x''_n) \underset{n \to \infty}{\to} -1$, то предел f(+0) не существует. Таким образом, точка $x_0 = 0$ – точка неопределенности функции f.

Пример 9.5 Рассмотрим функцию Дирихле D(x), принимающую значение 1 в рациональных точках x и принимающую значение θ в иррациональных точках x.

Докажем, что функция Дирихле разрывна в каждой точке. Возьмем произвольную точку $x_0 \in \mathbb{R}$. Можно выбрать две последовательности

$$x'_n \to x_0 + 0, \ x'_n \in \mathbb{Q};$$

$$x_n'' \to x_0 + 0, \ x_n'' \notin \mathbb{Q}.$$

Имеем

$$f(x_n') \underset{n \to \infty}{\longrightarrow} 1,$$

$$f(x_n'') \underset{n \to \infty}{\longrightarrow} 0.$$

Таким образом, предел $f(x_0+0)$ не существует. Таким образом, каждая точка $x \in \mathbb{R}$ является точкой неопределенности функции Дирихле.

10 Непрерывность обратной и сложной функций

Функция $f:|a,b|\to\mathbb{R}$ называется строго возрастающей, если

$$\forall x_1, x_2 \in |a, b| : x_1 < x_2 \Rightarrow f(x_1) < f(x_2).$$

Аналогично определяются строго убывающие, возрастающие, убывающие функции. Такие функции называются монотонными.

Лемма 10.1 Если функция $f:|a,b|\to\mathbb{R}$ монотонна, то для любого $x_0\in(a,b)$ существуют конечные односторонние пределы $f(x_0-0), f(x_0+0)$.

 \Diamond

Докажем лемму для возрастающей функции. Возьмем произвольную точку $x_0 \in (a,b)$. Тогда

$$\forall x \in (a, x_0) \Rightarrow f(x) \le f(x_0).$$

Следовательно, множество

$$L = \{ f(x) : x \in (a, x_0) \}$$

ограничено сверху. По теореме о гранях существует $\sup L = A \in \mathbb{R}$. Очевидно, что $A \le f(x_0)$, иначе можно было бы найти $\varepsilon > 0$ такое, что $A - \varepsilon \ge f(x_0) \ge f(x) \ \forall x \in (a, x_0)$, что противоречит определению точной верхней грани. Кроме того,

$$\forall \varepsilon > 0 \ \exists x_{\varepsilon} \in (a, x_0) : f(x_{\varepsilon}) > A - \varepsilon.$$

В силу возрастания f имеем

$$\forall \varepsilon > 0 \ \forall x \in [x_{\varepsilon}, x_0) \Rightarrow f(x) > A - \varepsilon.$$

Следовательно,

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) = x_0 - x_\varepsilon : \forall x \in (a, b), 0 < x_0 - x \le \delta(\varepsilon) \Rightarrow A - \varepsilon < f(x) \le A.$$

Следовательно, $f(x_0 - 0) = A \le f(x_0)$.

Аналогичными рассуждениями можно доказать, что $f(x_0 + 0) = B \ge f(x_0)$, где

$$B = \inf\{f(x) : x \in (x_0, b)\}.$$

Замечание 10.1 Из доказательства леммы вытекает, что для возрастающей функции

$$f(x_0-0) \le f(x_0) \le f(x_0+0),$$

а для убывающей функции

$$f(x_0 - 0) \ge f(x_0) \ge f(x_0 + 0).$$

Теорема 10.1 (критерий непрерывности монотонной функции). Для непрерывности возрастающей на отрезке [a,b] функции f необходимо и достаточно, чтобы множеством ее значений был отрезок [f(a),f(b)]. Для непрерывности убывающей на отрезке [a,b] функции f необходимо и достаточно, чтобы множеством ее значений был отрезок [f(b),f(a)].

 \Diamond

Докажем теорему для возрастающей функции. Если функция f тождественна равна постоянной, то утверждение теоремы очевидно. Пусть A = f(a), B = f(b), A < B. Согласно лемме 10.1 имеем

$$\forall x_0 \in (a, b) \Rightarrow f(x_0 - 0) \le f(x_0) \le f(x_0 + 0).$$

Необходимость.

Пусть функция f непрерывна на отрезке [a,b]. Возьмем произвольное $y_0 \in (A,B)$. Определим множество

$$S = \{x \in [a, b] : f(x) < y_0\}.$$

Пусть $x_0 = \sup S$.

Докажем, что для любого $x \in [a, x_0)$ имеем

$$f(x) < y_0.$$

Предположим, что это не так, и найдется $x_1 \in [a, x_0)$ такое, что $f(x_1) \ge y_0$. Но тогда в силу возрастания f выполняется $f(x) \ge y_0 \ \forall x \in [x_1, b]$. Из последнего получаем, что $x_0 = \sup S \le x_1$ – противоречие.

Таким образом, $f(x_0 - 0) \le y_0$.

Докажем, что для любого $x \in (x_0, b]$ имеем

$$f(x) \geq y_0$$
.

Допустим, найдется $x_2 \in (x_0, b]$ такое, что $f(x_2) < y_0$. Но тогда получаем, что $x_0 = \sup S \ge x_2$ – противоречие.

Таким образом, $f(x_0 + 0) \ge y_0$.

Так как f непрерывна в точке x_0 , то

$$f(x_0) = f(x_0 - 0) = f(x_0 + 0).$$

Следовательно, $f(x_0) = y_0$.

Достаточность.

Предположим, что функция f разрывна в некоторой точке $x_0 \in [a, b]$. Пусть x_0 – внутренняя точка отрезка [a, b] (случай, когда x_0 является одним из концов отрезка [a, b], рассматривается аналогично).

Тогда выполняется одно из неравенств: $f(x_0 - 0) < f(x_0)$, $f(x_0 + 0) > f(x_0)$. Допустим, выполняется первое неравенство. Возьмем некоторое $\gamma \in (f(x_0 - 0), f(x_0))$.

С одной стороны,

$$\forall x \in [a, x_0) \Rightarrow f(x) \le f(x_0 - 0) < \gamma,$$

с другой стороны,

$$\forall x \in [x_0, b] \Rightarrow f(x) > f(x_0) > \gamma.$$

Поэтому функция f не принимает значение $\gamma \in [A, B]$. Противоречие.

Теорема 10.2 (теорема о непрерывности обратной функции). Пусть $f:[a,b] \to \mathbb{R}$ - непрерывная строго возрастающая функция. Тогда существует обратная функция f^{-1} , которая определена на отрезке [f(a), f(b)], является непрерывной и строго возрастающей.

 \Diamond

Существование обратной функции f^{-1} следует из биективности отображения $f:[a,b] \to [f(a),f(b)]$. Обратная функция f^{-1} определена на отрезке [f(a),f(b)], а ее значения покрывают отрезок [a,b]. Очевидно, что f^{-1} является строго возрастающей. По критерию непрерывности монотонной функции f^{-1} является непрерывной.

Теорема 10.3 (теорема о непрерывности сложной функции). Если функция f непрерывна в точке x_0 , а функция g непрерывна в точке $y_0 = f(x_0)$, то функция y = g(f(x)) непрерывна в точке x_0 .

Возьмем произвольную последовательность $x_n \to x_0$ при $n \to \infty$. По критерию Гейне непрерывности функции имеем

$$y_n = f(x_n) \to f(x_0) = y_0, g(y_n) \to g(y_0) \Rightarrow g(f(x_n)) \to g(f(x_0)).$$

Непрерывность элементарных функций

- 1) Непрерывность функции y=x вытекает из определения непрерывности ($\delta(\varepsilon)=\varepsilon$). Согласно теореме о непрерывности арифметических комбинаций заключаем, что многочлен $P_n(x)$ степени n и рациональная функция $\frac{P_n(x)}{Q_m(x)}$ непрерывны на множестве определения.
 - 2) Функция $y = \sin(x)$ непрерывна в каждой точке $x \in \mathbb{R}$, т.к.

$$|\Delta y| = |\sin(x + \Delta x) - \sin x| = |2\cos(x + \Delta x/2)\sin(\Delta x/2)| \le |\Delta x| \underset{\Delta x \to 0}{\to} 0.$$

По теореме о непрерывности сложной функции $y = \cos(x) = \sin(\pi/2 - x)$ непрерывна в каждой точке $x \in \mathbb{R}$. Согласно теореме о непрерывности арифметических комбинаций функции $y = \operatorname{tg} x, \ y = \operatorname{ctg} x$ непрерывны на множестве определения.

3) Рассмотрим показательную функцию $y=a^x$, где $a>0, a\neq 1$. По определению можно доказать, что функция $f(x)=a^x, x\in\mathbb{Q}$ непрерывна в каждой точке. Если $x\in\mathbb{R}$, то полагают $a^x:=\sup_{r\in\mathbb{Q},r\leq x}a^r$. Используя монотонность функции a^x и теорему о плотности множества действительных чисел, делаем вывод о непрерывности функции $a^x, x\in\mathbb{R}$.

Из непрерывности показательной функции и теоремы о непрерывности арифметических комбинаций вытекает непрерывность гиперболических функций $y = \sinh x$, $y = \cosh x$, $y = \cosh x$, $y = \cosh x$ на множестве определения.

- 4) Логарифмическая функция $y = \log_a x, \ x > 0, \ a > 0, \ a \neq 1$, а также обратные тригонометрические функции $y = \arcsin x, \ x \in [-1,1], \ y = \arccos x, \ x \in [-1,1], \ y = \arctan x, \ x \in \mathbb{R},$ и обратные гиперболические функции $y = \operatorname{arcsh} x, \ x \in \mathbb{R}, \ y = \operatorname{arcch} x, \ x \geq 1$, непрерывны по теореме о непрерывности обратной функции.
- 5) Степенная функция $y=x^a, \ x>0, \ a\in\mathbb{R}$, непрерывна по теореме о непрерывности сложной функции, т.к. $x^a=e^{a\ln x}$.

11 Глобальные свойства непрерывных функций

Теорема 11.1 (теорема о промежуточных значениях). Пусть непрерывная функция $f:|a,b|\to\mathbb{R}$ принимает значения $A,\ B,\ тогда$ она принимает любое промежуточное значение C.

 \Diamond

Пусть $f(x_1) = A$, $f(x_2) = B$, A < C < B, $x_1 < x_2$.

Сначала докажем теорему для случая C = 0. Определим множество

$$L = \{x \in |a, b| : f(t) < 0 \ \forall t \in [x_1, x]\}.$$

Очевидно, что множество L непустое и ограниченное сверху. Поэтому существует $x_0 = \sup L$.

Докажем, что $f(x_0 - 0) \le 0$. Отметим, что $x_0 < b$, так как $f(x_2) = B > 0$. Следовательно, $x_0 \in [a,b]$. Предел $f(x_0 - 0)$ существует, поскольку функция f непрерывна в точке x_0 . Если предположить, что $f(x_0 - 0) > 0$, то по теореме о стабилизации знака нашлась бы левосторонняя окрестность точки x_0 , в которой f принимает положительные значения. И в таком случае x_0 не может быть точной верхней гранью множества L. Таким образом, $f(x_0 - 0) \le 0$.

Докажем, что $f(x_0) \ge 0$. Если предположить, что $f(x_0) < 0$, то найдется окрестность точки x_0 , в которой f принимает отрицательные значения. В этом случае x_0 не может быть точной верхней гранью множества L. Таким образом, $f(x_0) > 0$.

Так как f непрерывна, то $f(x_0 - 0) = f(x_0)$. Следовательно, $f(x_0) = 0$.

Для того, чтобы доказать теорему для произвольного C, достаточно провести те же рассуждения для функции g(x) = f(x) - C.

Теорема 11.2 (теорема Вейерштрасса). Непрерывная функция $f : [a, b] \to \mathbb{R}$ достигает максимального и минимального значений на отрезке [a, b].

 \Diamond

Докажем теорему для случая максимального значения.

Пусть $A = \sup_{x \in [a,b]} f(x)$. Возьмем возрастающую последовательность (α_n) такую, что

$$\alpha_n \xrightarrow[n \to \infty]{} A.$$

Для каждого $n \in \mathbb{N}$ найдется точка $x_n \in [a,b]$ такая, что

$$f(x_n) \ge \alpha_n$$
.

Так как последовательность (x_n) ограничена, то существует сходящаяся подпоследовательность

$$x_{n_k} \underset{k \to \infty}{\to} \bar{x}.$$

Докажем, что $\bar{x} \in [a,b]$. Если предположить, что точка \bar{x} находится за пределами отрезка [a,b], то найдется окрестность точки \bar{x} , которая также не пересекается с отрезком [a,b]. Поэтому в этой окрестности нет членов подпоследовательности x_{n_k} , что противоречит сходимости этой подпоследовательности. Таким образом, $\bar{x} \in [a,b]$.

Переходя к пределу при $k \to \infty$ в неравенстве

$$f(x_{n_k}) \geq \alpha_{n_k}$$

получим

$$f(\bar{x}) \geq A$$
.

Следовательно, $A < +\infty$ и $f(\bar{x}) = A$. Теорема доказана.

ш

Следствие 11.1 Непрерывная функция $f:[a,b] o\mathbb{R}$ ограничена.

Условие непрерывности функции $f:|a,b| \to \mathbb{R}$ можно записать следующим образом:

$$\forall x' \in |a,b| \ \forall \varepsilon > 0 \ \exists \delta(\varepsilon,x') > 0 : \forall x'' \in |a,b|, |x''-x'| \le \delta(\varepsilon,x') \Rightarrow |f(x'')-f(x')| \le \varepsilon.$$

Если при каждом $\varepsilon > 0$ величина $\delta(\varepsilon, x')$ может быть выбрана не зависящей от x', то говорят, что функция f равномерно непрерывна на промежутке |a, b|. Иными словами,

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x', x'' \in [a, b], |x'' - x'| \le \delta(\varepsilon) \Rightarrow |f(x'') - f(x')| \le \varepsilon.$$

Пример 11.1 Функция $f(x) = \frac{1}{x}$ является непрерывной на интервале (0,1), но не является равномерно непрерывной на этом интервале, так как

$$\exists \varepsilon_0 = 1 \ \forall \delta \in (0,1] \ \exists x_0' = \delta/2, x_0'' = \delta/4 \Rightarrow |f(x_0') - f(x_0'')| > \varepsilon_0.$$

Теорема 11.3 (теорема Кантора). Если функция f непрерывна на отрезке [a,b], то она равномерно непрерывна на этом отрезке.

 \Diamond

Предположим, что f не является равномерно непрерывной на отрезке [a,b], т.е.

$$\exists \varepsilon_0 > 0 \ \forall \delta > 0 \ \exists x_0', x_0'' \in [a, b] : |x_0' - x_0''| \le \delta \Rightarrow |f(x_0') - f(x_0'')| > \varepsilon_0.$$

Возьмем последовательность $\delta_n = \frac{1}{n}, x'_{0,n}, x''_{0,n} \in [a,b]$ такие, что

$$|x'_{0,n} - x''_{0,n}| \le \frac{1}{n}, |f(x'_{0,n}) - f(x''_{0,n})| > \varepsilon_0.$$

Так как последовательность $(x'_{0,n})$ ограничена, то существует сходящаяся подпоследовательность

$$x'_{0,n_k} \underset{k \to \infty}{\longrightarrow} x_0 \in [a,b].$$

Так как

$$|x'_{0,n_k} - x''_{0,n_k}| \le \frac{1}{n_k} \underset{k \to \infty}{\longrightarrow} 0,$$

то

$$x_{0,n_k}'' \underset{k \to \infty}{\to} x_0.$$

Согласно критерию Гейне непрерывности $f(x'_{0,n_k}) \to f(x_0), \ f(x''_{0,n_k}) \to f(x_0)$. Переходя к пределу при $k \to \infty$ в неравенстве

$$|f(x'_{0,n_k}) - f(x''_{0,n_k})| > \varepsilon_0,$$

получаем $0>\varepsilon_0$. Противоречие. Теорема доказана.

Величину

$$\omega(f, |\alpha, \beta|) = \sup_{x_1, x_2 \in |\alpha, \beta|} |f(x_1) - f(x_2)|$$

называют колебанием функции f на промежутке $|\alpha, \beta|$.

Рассмотрим разбиение $\{x_k\}$ отрезка [a,b]:

$$a = x_0 < x_1 < \ldots < x_n = b.$$

Величину

$$W(f, \{x_k\}) = \max_{1 \le k \le n} \omega(f, [x_{k-1}, x_k])$$

называют колебанием функции f, соответствующим разбиению $\{x_k\}$, а величину $\delta = \max_{1 \le k \le n} (x_k - x_{k-1})$ называют диаметром разбиения $\{x_k\}$.

Теорема 11.4 (теорема о колебании функции). Пусть функция $f:[a,b] \to \mathbb{R}$ непрерывна, $(\{x_k\}_m),\ 0 \le k \le n_m$ – последовательность разбиений отрезка [a,b] с диаметрами $\delta_m \to 0$. Тогда

$$W(f, \{x_k\}_m) \underset{m \to \infty}{\longrightarrow} 0.$$

 \Diamond

Согласно теореме Кантора

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x', x'' \in [a, b], |x' - x''| \le \delta(\varepsilon) \Rightarrow |f(x') - f(x'')| \le \varepsilon.$$

Так как $\delta_m \to 0$, то

$$\exists m_0(\delta(\varepsilon)) > 0 : \forall m \ge m_0(\delta(\varepsilon)) \Rightarrow \delta_m \le \delta(\varepsilon) \Rightarrow |x_k - x_{k-1}| \le \delta(\varepsilon) \ \forall k = 1, \dots, n_m.$$

Таким образом,

$$\forall \varepsilon > 0 \,\exists \delta(\varepsilon) > 0 \,\exists m_0(\delta(\varepsilon)) > 0 : \forall m \geq m_0(\delta(\varepsilon)) \,\forall k = 1, \dots, n_m, \, \forall \xi, \eta \in [x_{k-1}, x_k] \Rightarrow |f(\xi) - f(\eta)| \leq \varepsilon.$$

Отсюда получаем, что

$$W(f, \{x_k\}_m) \le \varepsilon \ \forall m \ge m_0(\delta(\varepsilon)).$$

Следовательно,

$$W(f, \{x_k\}_m) \underset{m \to \infty}{\longrightarrow} 0$$

12 Определение производной. Производные элементарных функций

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 .

Определение 12.1 Производной функции f(x) в точке x_0 называется предел

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Для производной используют обозначение $f'(x_0)$. Если предел существует и конечен, то говорят, что функция имеет конечную производную в точке x_0 , если предел бесконечен, то полагают $f'(x_0) = \infty$, если предела не существует, то говорят, что функция не имеет производной в точке x_0 .

Рассмотрим точки $M_0(x_0, f(x_0))$, $M_1(x_0 + \Delta x, f(x_0 + \Delta x))$, лежащие на графике функции y = f(x). Прямая, проходящая через точки M_0 , M_1 , называется секущей графика функции y = f(x) и задается уравнением

$$y = \frac{\Delta y}{\Delta x}(x - x_0) + f(x_0),$$

где $\Delta y = f(x_0 + \Delta x) - f(x_0)$ – приращение функции y = f(x) в точке x_0 , соответствующее приращению агрумента Δx .

Если функция y=f(x) имеет конечную производную в точке x_0 , то при $\Delta x \to 0$ секущая M_0M_1 приближается к прямой

$$y = f'(x_0)(x - x_0) + f(x_0),$$

которую называют касательной к функции y = f(x) в точке x_0 . Таким образом, $f'(x_0)$ есть угловой коэффициент касательной к графику функции y = f(x) в точке x_0 , т.е. $f'(x_0) = \operatorname{tg} \alpha$, где α – угол, который образует касательная с положительным направлением оси Ox.

В частности, из определения прозводной вытекает, что производная $f'(x_0)$ характеризует скорость роста функции y = f(x) в точке x_0 , т.е.

$$\frac{\Delta y}{\Delta x} \mathop{\to}_{\Delta x \to 0} f'(x_0).$$

Теорема 12.1 (теорема о непрерывности функции, имеющей конечную производную). Если существует конечная производная $f'(x_0)$, то функция f(x) непрерывная в точке x_0 .

 \Diamond

Из определения производной вытекает

$$\frac{\Delta y}{\Delta x} = f'(x_0) + o(1), \ \Delta x \to 0.$$

Отсюда получаем

$$\Delta y = f'(x_0)\Delta x + o(\Delta x), \ \Delta x \to 0.$$

Таким образом,

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

Теорема 12.2 (теорема о производных арифметических комбинаций). Если функции f(x), g(x) имеют конечные производные в точке x, mo:

- 1) (f(x) + q(x))' = f'(x) + q'(x);
- 2) (f(x)g(x))' = f'(x)g(x) + f(x)g'(x);3) $(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) f(x)g'(x)}{g^2(x)}$ npu ycnosuu $g(x) \neq 0.$

Свойство 1) очевидным образом вытекает из определения производной и свойств пределов.

Докажем свойство 2):

$$(f(x)g(x))' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{(f(x + \Delta x)g(x + \Delta x) - f(x + \Delta x)g(x)) + (f(x + \Delta x)g(x) - f(x)g(x))}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} f(x + \Delta x) \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} + g(x) \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} =$$

$$= f(x)g'(x) + g(x)f'(x).$$

Докажем свойство 3):

$$\left(\frac{f(x)}{g(x)}\right)' = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left(\frac{f(x + \Delta x)}{g(x + \Delta x)} - \frac{f(x)}{g(x)}\right) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \frac{f(x + \Delta x)g(x) - f(x)g(x + \Delta x)}{g(x + \Delta x)g(x)} =$$

$$= \lim_{\Delta x \to 0} \frac{1}{g(x + \Delta x)g(x)} \lim_{\Delta x \to 0} \frac{g(x)(f(x + \Delta x) - f(x)) - f(x)(g(x + \Delta x) - g(x))}{\Delta x} =$$

$$= \frac{1}{g^2(x)} (g(x)f'(x) - f(x)g'(x)).$$

Теорема 12.3 (теорема о производной обратной функции). Пусть функция f(x) строго монотонная и непрерывная в некоторой окрестности точки x_0 . Предположим, что существует конечная производная $f'(x_0) \neq 0$. Тогда в некоторой окрестности точки $y_0 = f(x_0)$ определена обратная функция x = g(y), которая является строго монотонной и непрерывной, и кроме того, $g'(y_0) = \frac{1}{f'(x_0)}$.

 \Diamond

Существование, строгая монотонность и непрерывность обратной функции x = g(y) вытекает из теоремы о непрерывности обратной функции.

Из биективности функций $f:U_{x_0}\to V_{y_0},\,g:V_{y_0}\to U_{x_0}$ вытекает, что для любого $\Delta x\neq 0$ такого, что $x_0+\Delta x\in U_{x_0}$ существует единственное $\Delta y\neq 0$ такое, что $y_0+\Delta y\in V_{y_0}$ и $g(y_0 + \Delta y) = x_0 + \Delta x, \ f(x_0 + \Delta x) = y_0 + \Delta y.$ Так как функция g(y) непрерывна в точке y_0 , TO

$$\lim_{\Delta y \to 0} \Delta x = 0.$$

Таким образом,

$$g'(y_0) = \lim_{\Delta y \to 0} \frac{g(y_0 + \Delta y) - g(y_0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{1}{\Delta y/\Delta x} = \frac{1}{f'(x_0)}.$$

Теорема 12.4 (теорема о производной сложной функции). Если функции $x = \varphi(t)$, y = f(x) соответственно имеют в точках t_0 , $x_0 = \varphi(t_0)$ конечные производные, то сложная функция $g(t) = f(\varphi(t))$ имеет конечную производную в точке t_0 , которая вычисляется следующим образом:

$$g'(t_0) = f'(x_0)\varphi'(t_0).$$

 \Diamond

Имеем

$$\Delta x = \varphi(t_0 + \Delta t) - \varphi(t_0) = \varphi'(t_0)\Delta t + o(\Delta t), \ \Delta t \to 0,$$

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = f'(x_0)\Delta x + o(\Delta x), \ \Delta x \to 0.$$

Так как $\lim_{\Delta t \to 0} \Delta x = 0$, то получаем

$$f(\varphi(t_0 + \Delta t)) - f(\varphi(t_0)) = f'(x_0)\Delta x + o(\Delta x) = f'(x_0)(\varphi'(t_0)\Delta t + o(\Delta t)) + o(\Delta x) =$$
$$= f'(x_0)\varphi'(t_0)\Delta t + o(\Delta t), \ \Delta t \to 0.$$

Таким образом,

$$\lim_{\Delta t \to 0} \frac{f(\varphi(t_0 + \Delta t)) - f(\varphi(t_0))}{\Delta t} = f'(x_0)\varphi'(t_0).$$

Производные элементарных функций

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin(\Delta x/2)\cos(x + \Delta x/2)}{\Delta x} = \cos x;$$

$$(\cos x)' = (\sin(\pi/2 - x))' = \cos(\pi/2 - x) \cdot (\pi/2 - x)' = -\sin x;$$

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x};$$

$$(\operatorname{ctg} x)' = \left(\frac{\cos x}{\sin x}\right)' = \frac{-\sin x \sin x - \cos x \cos x}{\sin^2 x} = -\frac{1}{\sin^2 x};$$

$$(x^{\alpha})' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^{\alpha} - x^{\alpha}}{\Delta x} = \lim_{\Delta x \to 0} x^{\alpha - 1} \frac{(1 + \Delta x/x)^{\alpha} - 1}{\Delta x/x} = \alpha x^{\alpha - 1}, \ x > 0, \alpha \in \mathbb{R};$$

$$(x^n)' = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^n + nx^{n-1}\Delta x + \dots + (\Delta x)^n - x^n}{\Delta x} = nx^{n-1}, \ x \in \mathbb{R}, n \in \mathbb{N};$$

$$(e^x)' = \lim_{\Delta x \to 0} \frac{e^{x + \Delta x} - e^x}{\Delta x} = e^x;$$

$$(\ln x)' = \lim_{\Delta x \to 0} \frac{\ln(x + \Delta x) - \ln x}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{x} \frac{\ln(1 + \Delta x/x)}{\Delta x/x} = \frac{1}{x}, \ x > 0;$$

$$(a^{x})' = (e^{x \ln a})' = e^{x \ln a} \cdot (x \ln a)' = a^{x} \ln a, \ a > 0, a \neq 1;$$

$$(\log_{a} x)' = \left(\frac{\ln x}{\ln a}\right)' = \frac{1}{x \ln a}, \ a > 0, a \neq 1, x > 0;$$

$$(\operatorname{sh} x)' = \frac{1}{2}(e^{x} - e^{-x})' = \frac{1}{2}(e^{x} + e^{-x}) = \operatorname{ch} x;$$

$$(\operatorname{ch} x)' = \frac{1}{2}(e^{x} - e^{-x}) = \operatorname{sh} x;$$

$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^{2} x};$$

$$(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^{2} x};$$

$$y = \arcsin x \Rightarrow x = \sin y, x' = \cos y \Rightarrow (\arcsin x)' = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^{2}}}, \ |x| < 1;$$

$$(\arccos x)' = (\pi/2 - \arcsin x)' = -\frac{1}{\sqrt{1 - x^{2}}}, \ |x| < 1;$$

$$y = \arctan x \Rightarrow x = \operatorname{tg} y, x' = \frac{1}{\cos^{2} y} \Rightarrow (\arctan x)' = \cos^{2} y = \frac{1}{1 + x^{2}}, \ x \in \mathbb{R};$$

$$(\operatorname{arcctg} x)' = (\pi/2 - \operatorname{arctg} x)' = -\frac{1}{1 + x^{2}};$$

$$y = \operatorname{arcsh} x \Rightarrow x = \operatorname{sh} y, x' = \operatorname{ch} y \Rightarrow (\operatorname{arcsh} x)' = \frac{1}{\operatorname{ch} y} = \frac{1}{\sqrt{x^{2} + 1}};$$

$$y = \operatorname{arcch} x \Rightarrow x = \operatorname{ch} y, x' = \operatorname{sh} y \Rightarrow (\operatorname{arcch} x)' = \frac{1}{\operatorname{sh} y} = \frac{1}{\sqrt{x^{2} - 1}}, \ x > 1.$$

Пример 12.1 Найти производную функции $f(x) = x^x$ при x > 0.

Имеем
$$f(x) = x^x = e^{x \ln x} \Rightarrow f'(x) = e^{x \ln x} \cdot (x \ln x)' = x^x (\ln x + 1).$$

Пример 12.2 Найти производную функции $f(x) = \frac{1-\cos x}{x}, \ x \neq 0, \ f(0) = 0.$

Если $x \neq 0$, то имеем

$$f'(x) = \frac{\sin x \cdot x - (1 - \cos x)}{x^2}.$$

При x = 0 имеем

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{(\Delta x)^2} = \lim_{\Delta x \to 0} \frac{2\sin^2(\Delta x/2)}{(\Delta x)^2} = \frac{1}{2}.$$

13 Производные и дифференциалы высших порядков

Пусть функция f(x) определена в некоторой окрестности точки x_0 .

Определение 13.1 Функция y = f(x) называется дифференцируемой в точке x_0 , если существует постоянная A такая, что

$$\Delta y = A\Delta x + o(\Delta x), \Delta x \to 0,$$

где $\Delta y = f(x_0 + \Delta x) - f(x_0)$. При этом произведение $A\Delta x$ называют дифференциалом функции f(x) в точке x_0 и обозначают $df(x_0)$. Приращение Δx аргумента часто обозначают dx.

Из определения производной и определения дифференцируемости функции в точке вытекает следующий критерий дифференцируемости.

Теорема 13.1 (критерий дифференцируемости). Функция f(x) дифференцируема в точке x_0 тогда и только тогда, когда существует конечная производная $f'(x_0)$, при этом $df(x_0) = f'(x_0)dx$.

Геометрический смысл дифференциала $df(x_0)$ заключается в том, что $A\Delta x$ – есть приращение ординаты касательной к графику функции y=f(x) в точке x_0 при переходе от точки x_0 к точке $x_0+\Delta x$.

Кроме того, величину $A\Delta x$ можно рассматривать как линейное приближение приращения Δy функции f, т.е.

$$f(x_0 + \Delta x) - f(x_0) \approx A\Delta x$$

для малых Δx .

Определение 13.2 Правосторонней и левосторонней производной называют пределы

$$f'_{+}(x_0) = \lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}, \ f'_{-}(x_0) = \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

Из определения производной и односторонних производных вытекает, что функция f имеет конечную производную в точке x_0 тогда и только тогда, когда односторонние производные в точке x_0 существуют, конечны и равны. В таком случае $f'(x_0) = f'_+(x_0) = f'_-(x_0)$.

Определение 13.3 Функция $f:|a,b|\to\mathbb{R}$ называется дифференцируемой, если она дифференцируема в каждой точке интервала (a,b), а на концах промежутка существуют конечные односторонние производные (если эти концы принадлежат промежутку). В дальнейшем на концах промежутка рассматриваем лишь односторонние производные, а для сокращения записи будем опускать слово "односторонние".

Определение 13.4 Функция $f:|a,b|\to\mathbb{R}$ называется непрерывно дифференцируемой, если она дифференцируема, и производная f'(x) непрерывна на |a,b|.

Если производная f'(x) является дифференцируемой функцией, то можно определить вторую производную:

$$f''(x) = (f'(x))'.$$

Аналогично можно определить рекуррентным образом производную порядка n:

$$f^{(n)}(x) = (f^{(n-1)}(x))'.$$

При этом полагают $f^{(0)}(x) = f(x)$.

Определение 13.5 Функцию $f:|a,b|\to\mathbb{R}$ называют n раз дифференцируемой (пишут $f\in D^n|a,b|$), если она имеет конечные производные до порядка n включительно. Функция $f:|a,b|\to\mathbb{R}$ называется n раз непрерывно дифференцируемой (пишут $f\in C^n|a,b|$), если функция f является n раз дифференцируемой u все её производные до порядка n включительно непрерывны на |a,b|.

Имеют место следующие включения:

$$C^0|a,b|\supset D^1|a,b|\supset C^1|a,b|\supset\ldots\supset D^n|a,b|\supset C^n|a,b|\supset\ldots$$

Теорема 13.2 (правило Лейбница). Пусть $u, v \in D^n[a, b], morda$

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}.$$

 \Diamond

Докажем теорему индукцией по n. База индукции $n=0,\,n=1$ очевидна. Допустим, что верна формула

$$(uv)^{(m)} = \sum_{k=0}^{m} C_m^k u^{(k)} v^{(m-k)}.$$

Имеем

$$(uv)^{(m+1)} = ((uv)^{(m)})' = \left(\sum_{k=0}^{m} C_m^k u^{(k)} v^{(m-k)}\right)' = \sum_{k=0}^{m} C_m^k (u^{(k)} v^{(m-k)})' =$$

$$= \sum_{k=0}^{m} C_m^k (u^{(k+1)} v^{(m-k)} + u^{(k)} v^{(m+1-k)}) =$$

$$= \sum_{k=1}^{m+1} C_m^{k-1} u^{(k)} v^{(m+1-k)} + \sum_{k=0}^{m} C_m^k u^{(k)} v^{(m+1-k)} =$$

$$= C_m^m u^{(m+1)} v^{(0)} + \sum_{k=1}^{m} (C_m^{k-1} + C_m^k) u^{(k)} v^{(m+1-k)} + C_m^0 u^{(0)} v^{(m+1)} =$$

$$= C_{m+1}^{m+1} u^{(m+1)} v^{(0)} + \sum_{k=1}^{m} C_{m+1}^k u^{(k)} v^{(m+1-k)} + C_{m+1}^0 u^{(0)} v^{(m+1)} =$$

$$= \sum_{k=0}^{m+1} C_{m+1}^k u^{(k)} v^{(m+1-k)}.$$

Дифференциал функции df(x) = f'(x)dx зависит от двух переменных x и dx. Если приращение аргумента dx фиксировано, то df является функцией лишь от x. В этом случае можно определить дифференциал второго порядка следующим образом:

$$d^{2}f = d(df) = d(f'(x)dx) = df'(x) \cdot dx = f''(x)dx^{2},$$

где $dx^2 = (dx)^2$. Аналогично по индукции можно получить

$$d^n f = d(d^{n-1}f) = f^{(n)}(x)dx^n.$$

Пусть $y = f(\varphi(t))$ – сложная функция. Тогда по теореме о производной сложной функции имеем:

$$y'(t) = f'(\varphi(t)) \cdot \varphi'(t).$$

Отсюда получаем, что

$$dy(t) = f'(\varphi(t))\varphi'(t)dt = f'(x)dx,$$

где $x = \varphi(t)$. Таким образом, формула для дифференциала первого порядка верна независимо от того x – независимый аргумент или функция от t. Это свойство называется инвариантностью формы первого дифференциала.

Отметим, что дифференциалы высших порядков не обладают инвариантностью формы. Например,

$$d^{2}(f(\varphi(t))) = d(f'(\varphi(t))\varphi'(t))dt = f''(\varphi(t))(\varphi'(t))^{2}dt^{2} + f'(\varphi(t))\varphi''(t)dt^{2} = f''(x)dx^{2} + f'(x)d^{2}x.$$

В ряде случае удобно использовать параметрическое задание функций, т.е. x=x(t), $y=y(t),\ t\in T$. Например, верхнюю полуокружность $x^2+y^2=1,\ y>0$, можно задать парметрически следующим образом: $x=\cos t,\ y=\sin t,\ t\in (0,\pi)$. Предположим, что существует обратная функция t=t(x) для функции $x=x(t),\ t\in T$. Тогда определена явная функция y=y(t(x)), производную которой можно найти следующим образом:

$$y_x' = \frac{y_t'}{x_t'}.$$

Аналогично можно вычислять производные высших порядков от функции, заданной параметрически:

$$y_{x^2}^{"} = \frac{(y_x^{\prime})_t^{\prime}}{x_t^{\prime}} = \frac{(\frac{y_t^{\prime}}{x_t^{\prime}})_t^{\prime}}{x_t^{\prime}}$$

и так далее.

Например, в случае $x = \cos t$, $y = \sin t$, $t \in (0, \pi)$, получаем:

$$y_x' = \frac{\cos t}{-\sin t} = -\frac{x}{\sqrt{1 - x^2}}.$$

Тот же самый результат можно получить, дифференцируя явную сложную функцию

$$(\sqrt{1-x^2})' = \frac{-2x}{2\sqrt{1-x^2}} = -\frac{x}{\sqrt{1-x^2}}.$$

14 Неопределенный интеграл. Методы вычисления

Пусть задана функция f(x), $x \in [a,b]$. Первообразной функции f(x) называется функция F(x), $x \in [a,b]$, такая, что $F'(x) = f(x) \ \forall x \in [a,b]$.

Теорема 14.1 (теорема об общем виде первообразной). Пусть F(x) – первообразная для функции f(x) на промежутке |a,b|. Функция $\Phi(x)$ является первообразной для функции f(x) тогда и только тогда, когда $\Phi(x) = F(x) + C \ \forall x \in [a,b]$, где C – постоянная.

Достаточность очевидна. Необходимость вытекает из того факта, что любые две функции с совпадающими производными различаются на константу (см. следствие 17.3).

Определение 14.1 Совокупность всех первообразных функции f(x), $x \in |a,b|$, называется неопределенным интегралом и обозначается

$$\int f(x)dx.$$

Из теоремы об общем виде первообразной вытекает, что

$$\int f(x)dx = F(x) + C,$$

где F(x) – первообразная для функции f(x), а C – произвольная постоянная.

Из определения неопределенного интеграла вытекает, что операции дифференцирования и неопределенного интегрирования взаимно обратны, т.е.

$$\left(\int f(x)dx\right)' = f(x),$$

$$\int F'(x)dx = F(x) + C.$$

Если для функций f(x), g(x) существуют первообразные на промежутке |a,b|, то выполняется свойство линейности неопределенного интеграла, т.е. для любых α , $\beta \in \mathbb{R}$:

$$\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx + C.$$

Непосредственной проверкой с помощью таблицы производных находятся следующие интегралы:

1.
$$\int e^x dx = e^x + C$$

2.
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$3. \int \frac{dx}{x} = \ln|x| + C$$

4.
$$\int \sin x dx = -\cos x + C$$

5.
$$\int \cos x dx = \sin x + C$$

6.
$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

7.
$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

8.
$$\int \frac{dx}{1+x^2} = \arctan x + C$$

9.
$$\int \operatorname{ch} x dx = \operatorname{sh} x + C$$

10.
$$\int \operatorname{sh} x dx = \operatorname{ch} x + C$$

11.
$$\int \frac{dx}{\cosh^2 x} = \tanh x + C$$

12.
$$\int \frac{dx}{\sinh^2 x} = \coth x + C$$

13.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

14.
$$\int \frac{dx}{\sqrt{1+x^2}} = \operatorname{arcsh} x + C$$

15.
$$\int \frac{dx}{\sqrt{x^2-1}} = \operatorname{arcch} x + C$$

Методы вычисления неопределенных интегралов

Внесение множителя под знак дифференциала

Если подынтегральную функцию можно представить в виде

$$f(x) = g(u(x))u'(x),$$

то

$$\int f(x)dx = \int g(u(x))u'(x)dx = \int g(u)du = G(u(x)) + C,$$

где G – первообразная для функции g.

Пример 14.1

$$\int \frac{\arctan x}{1+x^2} dx = \int \arctan x d(\arctan x) = \frac{1}{2}\arctan^2 x + C.$$

Замена переменных

Пусть $x=\varphi(t)$ – непрерывно дифференцируемая строго монотонная функция, $g(t)=f(\varphi(t))\varphi'(t)$, тогда

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt = \int g(t)dt = G(t) + C = G(\psi(x)) + C,$$

где $t=\psi(x)$ – обратная функция к функции $x=\varphi(t).$

Пример 14.2

$$\int \sqrt{1 - x^2} dx = [x = \sin t, dx = \cos t dt] = \int \cos^2 t dt = \frac{1}{2} \int (1 + \cos 2t) dt = \frac{1}{2} t + \frac{1}{4} \sin 2t + C = \frac{1}{2} \arcsin x + \frac{1}{4} \sin(2\arcsin x) + C.$$

Интегрирование по частям

Пусть функции u, v непрерывно дифференцируемые. Так как (uv)' = u'v + uv', то

$$\int (u(x)v(x))'dx = \int u'(x)v(x)dx + \int u(x)v'(x)dx,$$
$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x).$$

Пример 14.3

$$\int x \ln x dx = \left[u = \ln x, dv = x dx, du = dx/x, v = x^2/2 \right] = \frac{1}{2} x^2 \ln x - \frac{1}{2} \int x dx = \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + C.$$

Пример 14.4

$$\int xe^x dx = [u = x, dv = e^x dx, du = dx, v = e^x] = xe^x - \int e^x dx = xe^x - e^x + C.$$

Пример 14.5

$$\int e^x \sin x dx = [u = \sin x, dv = e^x dx, du = \cos x dx, v = e^x] = e^x \sin x - \int e^x \cos x dx =$$

$$= [u = \cos x, dv = e^x dx, du = -\sin x dx, v = e^x] = e^x \sin x - (e^x \cos x + \int e^x \sin x dx) \Rightarrow$$

$$\Rightarrow \int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) + C.$$

Пример 14.6

$$\int \frac{dx}{(x^2+1)^2} = \int \frac{x^2+1-x^2}{(x^2+1)^2} dx = \int \frac{dx}{x^2+1} - \int \frac{x^2 dx}{(x^2+1)^2} = \arctan x - \int \frac{x^2 dx}{(x^2+1)^2} =$$

$$= \left[u = x, dv = \frac{x dx}{(x^2+1)^2}, du = dx, v = -\frac{1}{2(x^2+1)} \right] = \arctan x + \frac{x}{2(x^2+1)} - \frac{1}{2} \int \frac{dx}{x^2+1} =$$

$$= \frac{1}{2} \arctan x + \frac{x}{2(x^2+1)} + C.$$

15 Интегрирование рациональных функций

Рассмотрим рациональную функцию $R(x) = \frac{Q(x)}{P(x)}$, где Q(x), P(x) – некоторые многочлены с действительными коэффициентами. Не нарушая общности, можно считать, что старший коэффициент многочлена P(x) равен 1.

Рациональную функцию $R(x) = \frac{Q(x)}{P(x)}$ называют правильной, если $\deg Q < \deg P$. Каждую рациональную функцию можно представить в виде суммы многочлена и правильной рациональной функции:

$$\frac{Q(x)}{P(x)} = S(x) + \frac{T(x)}{P(x)},$$

где Q(x) = S(x)P(x) + T(x), deg $T < \deg P$.

Многочлен P(x) с действительными коэффициентами и старшим коэффициентом 1 можно разложить в произведение линейных многочленов и квадратичных многочленов с отрицательными дискриминантами:

$$P(x) = (x - \alpha_1)^{k_1} \dots (x - \alpha_s)^{k_s} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_t x + q_t)^{l_t}.$$

Рациональные функции вида

$$\frac{A}{(x-\alpha)^k}, \frac{Mx+N}{(x^2+px+q)^l}, A, M, N, \alpha, p, q \in \mathbb{R}, p^2-4q < 0, k, l \in \mathbb{N},$$

называются простейшими дробями.

Теорема 15.1 (теорема о разложении рациональной функции). Каждую правильную рацинальную функцию можно представить в виде суммы простейших дробей:

$$\frac{Q(x)}{P(x)} = \sum_{i=1}^{s} \sum_{j=1}^{k_i} \frac{A_{i,j}}{(x - \alpha_i)^j} + \sum_{i=1}^{t} \sum_{j=1}^{l_i} \frac{M_{i,j}x + N_{i,j}}{(x^2 + p_i x + q_i)^j}.$$

 $\stackrel{\circ}{\mathrm{ M}}_{\mathrm{M}}$ еем $P(x)=(x-\alpha_1)^{k_1}\dots(x-\alpha_s)^{k_s}(x^2+p_1x+q_1)^{l_1}\dots(x^2+p_tx+q_t)^{l_t}$. Отсюда

$$\frac{Q(x)}{P(x)} = \frac{A_{1,k_1}}{(x - \alpha_1)^{k_1}} + \frac{Q(x) - A_{1,k_1} \widetilde{P}(x)}{(x - \alpha_1)^{k_1} \widetilde{P}(x)},$$

где $\widetilde{P}(x)=(x-\alpha_2)^{k_2}\dots(x-\alpha_s)^{k_s}(x^2+p_1x+q_1)^{l_1}\dots(x^2+p_tx+q_t)^{l_t}.$ Выберем A_{1,k_1} так, чтобы $Q(\alpha_1)-A_{1,k_1}\widetilde{P}(\alpha_1)=0.$ Это сделать возможно, так как $\widetilde{P}(\alpha_1)\neq$ 0. Следовательно,

$$\frac{Q(x) - A_{1,k_1}\widetilde{P}(x)}{(x - \alpha_1)^{k_1}\widetilde{P}(x)} = \frac{(x - \alpha_1)\widetilde{Q}(x)}{(x - \alpha_1)^{k_1}\widetilde{P}(x)} = \frac{\widetilde{Q}(x)}{(x - \alpha_1)^{k_1 - 1}\widetilde{P}(x)}.$$

Применяя аналогичные рассуждения к рациональной функции $\frac{\widetilde{Q}(x)}{(x-\alpha_r)^{k_1-1}\widetilde{P}(x)}$, мы выделим слагаемое вида $\frac{A_{1,k_1-1}}{(x-\alpha_1)^{k_1-1}}$ и так далее. Тем самым получим, что

$$\frac{Q(x)}{P(x)} = \sum_{i=1}^{s} \sum_{j=1}^{k_i} \frac{A_{i,j}}{(x - \alpha_i)^j} + \frac{\widehat{Q}(x)}{\widehat{P}(x)},$$

где $\widehat{P}(x) = (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_t x + q_t)^{l_t}$. Представим рациональную функцию $\frac{\widehat{Q}(x)}{\widehat{P}(x)}$ в виде

$$\frac{\widehat{Q}(x)}{\widehat{P}(x)} = \frac{M_{1,l_1}x + N_{1,l_1}}{(x^2 + p_1x + q_1)^{l_1}} + \frac{\widehat{Q}(x) - (M_{1,l_1}x + N_{1,l_1})\overline{P}(x)}{(x^2 + p_1x + q_1)^{l_1}\overline{P}(x)},$$

где $\overline{P}(x) = (x^2 + p_2 x + q_2)^{l_2} \dots (x^2 + p_t x + q_t)^{l_t}.$

Пусть $\alpha_1 \pm \beta_1 i$ – комплексно-сопряженные корни квадратного трехчлена $x^2 + p_1 x + q_1$, $\beta_1 \neq 0$. Выберем постоянные M_{1,l_1} , N_{1,l_1} так, чтобы многочлен $\widehat{Q}(x) - (M_{1,l_1} x + N_{1,l_1}) \overline{P}(x)$ имел корни $\alpha_1 \pm \beta_1 i$. Это сделать возможно, т.к. $\overline{P}(\alpha_1 \pm \beta_1 i) \neq 0$ и $\beta_1 \neq 0$. Таким образом,

$$\frac{\widehat{Q}(x) - (M_{1,l_1}x + N_{1,l_1})\overline{P}(x)}{(x^2 + p_1x + q_1)^{l_1}\overline{P}(x)} = \frac{(x^2 + p_1x + q_1)\overline{Q}(x)}{(x^2 + p_1x + q_1)^{l_1}\overline{P}(x)} = \frac{\overline{Q}(x)}{(x^2 + p_1x + q_1)^{l_1-1}\overline{P}(x)}.$$

Применяя аналогичные рассуждения к рациональной функции $\frac{\overline{Q}(x)}{(x^2+p_1x+q_1)^{l_1-1}\overline{P}(x)}$, выделим слагаемое вида $\frac{M_{1,l_1-1}x+N_{1,l_1-1}}{(x^2+p_1x+q_1)^{l_1-1}}$ и так далее. Тем самым получаем искомое представление

$$\frac{Q(x)}{P(x)} = \sum_{i=1}^{s} \sum_{j=1}^{k_i} \frac{A_{i,j}}{(x - \alpha_i)^j} + \sum_{i=1}^{t} \sum_{j=1}^{l_i} \frac{M_{i,j}x + N_{i,j}}{(x^2 + p_i x + q_i)^j}.$$

Методы нахождения коэффициентов разложения рациональной функции на простейшие дроби

Метод соответствующих коэффициентов

Пример 15.1

$$\frac{1}{x^2 - 3x + 2} = \frac{A}{x - 1} + \frac{B}{x - 2} = \frac{A(x - 2) + B(x - 1)}{(x - 1)(x - 2)} = \frac{(A + B)x - (2A + B)}{x^2 - 3x + 2} \Rightarrow A + B = 0, 2A + B = -1, B = 1.$$

Метод домножения

Пример 15.2

$$\frac{1}{x^3(x^2+1)^2} = \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{A_3}{x^3} + \frac{M_1x + N_1}{x^2 + 1} + \frac{M_2x + N_2}{(x^2+1)^2}.$$

Умножим левую и правую часть на x^3 и подставим значение x=0, получаем $A_3=1$.

Умножим левую и правую часть на x^3 , затем продифференцируем и подставим значение x=0. Отсюда получаем, что $A_2=\left(\frac{1}{(x^2+1)^2}\right)'\big|_{x=0}=0$.

Умножим левую и правую часть на x^3 , дважды продифференцируем и подставим x=0. Получаем, что $2A_1=\left(\frac{1}{(x^2+1)^2}\right)''|_{x=0}=-4$. Следовательно, $A_1=-2$.

Умножим левую и правую часть на $(x^2+1)^2$ и подставим значение x=i, получим: $M_2i+N_2=\frac{1}{i^3}=i\Rightarrow M_2=1, N_2=1.$

Умножим левую и правую часть на $(x^2+1)^2$, продифференцируем и подставим значение x=i. Получаем: $-4=((M_1x+N_1)(x^2+1)+M_2x+N_2)'\big|_{x=i}=-2M_1+2N_1i+M_2\Rightarrow N_1=0, M_1=\frac{5}{2}$.

При вычислениях пользовались следующим правилом: если у многочлена P(x) есть корень α кратности k, то число α будет корнем кратности k-1 производной P'(x).

Интегрирование простейших дробей

$$\int \frac{A}{(x-\alpha)^k} dx = \frac{A(x-\alpha)^{1-k}}{1-k} + C, k \neq 1; \int \frac{A}{x-\alpha} dx = \ln|x-\alpha| + C;$$

$$\int \frac{Mx+N}{x^2+px+q} dx = \int \frac{Mx+N}{(x+p/2)^2+q-p^2/4} dx = [x+p/2=t, q-p^2/4=a^2>0] =$$

$$= \int \frac{Mt+N-Mp/2}{t^2+a^2} dt = \frac{M}{2} \ln(t^2+a^2) + \frac{N-Mp/2}{a} \arctan \frac{t}{a} + C;$$

$$\int \frac{Mx+N}{(x^2+px+q)^l} dx = [x+p/2=t, q-p^2/4=a^2>0, N_1=N-Mp/2] = \int \frac{Mt+N_1}{(t^2+a^2)^l} dt =$$

$$= \frac{M}{2} \frac{(t^2+a^2)^{1-l}}{1-l} + N_1 \int \frac{dt}{(t^2+a^2)^l} = \frac{M}{2} \frac{(t^2+a^2)^{1-l}}{1-l} + \frac{N_1}{a^2} \int \frac{t^2+a^2-t^2}{(t^2+a^2)^l} dt =$$

$$= \frac{M}{2} \frac{(t^2+a^2)^{1-l}}{1-l} + \frac{N_1}{a^2} \int \frac{dt}{(t^2+a^2)^{l-1}} + \frac{N_1}{a^2} \int \frac{t^2}{(t^2+a^2)^{l-l}} dt =$$

$$= [u=t, dv = \frac{tdt}{(t^2+a^2)^l}, du = dt, v = \frac{(t^2+a^2)^{1-l}}{2(1-l)}] =$$

$$= \frac{M}{2} \frac{(t^2+a^2)^{1-l}}{1-l} + \frac{N_1}{a^2} \int \frac{dt}{(t^2+a^2)^{l-1}} + \frac{N_1t(t^2+a^2)^{1-l}}{2a^2(1-l)} - \frac{N_1}{2a^2(1-l)} \int \frac{dt}{(t^2+a^2)^{l-1}}.$$

Алгоритм интегрирования рациональных функций

- 1. Представить рациональную функцию в виде суммы многочлена и правильной рациональной функции.
- 2. Разложить правильную рациональную функцию в сумму простейших дробей.
- 3. Проинтегрировать многочлен и простейшие дроби из шагов 1 и 2.

16 Интегрирование некоторых иррациональных функций

Одночленом от двух переменных u, v называется выражение Au^kv^m , где $A \in \mathbb{R}, k, m \in \mathbb{N} \cup \{0\}$. Многочлен от двух переменных – это конечная сумма одночленов от двух переменных. Рациональная функция от двух переменных – это частное двух многочленов Q(u,v), P(u,v). Легко видеть, что множество рациональных функций замкнуто относительно арифметических операций и композиций. В дальнейшем через R(u,v) обозначаем некоторую рациональную функцию от двух переменных, а через $R_1(t), R_2(t), \ldots$ будем обозначать рациональные функции от переменной t.

Интегрирование функций вида $R(x, \left(\frac{ax+b}{cx+d}\right)^{m/n}), m,n \in \mathbb{N}, |a|+|b|\neq 0, |c|+|d|\neq 0$

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{m/n}\right) dx = \left[\frac{ax+b}{cx+d} = t^n, x = \frac{dt^n - b}{a - ct^n}, dx = R_1(t)dt\right] =$$

$$= \int R\left(\frac{dt^n - b}{a - ct^n}, t^m\right) R_1(t) dt = \int R_2(t) dt.$$

Интегрирование функций вида $R(x, \sqrt{ax^2 + bx + c}), b^2 - 4ac \neq 0, a \neq 0$

Так как $ax^2 + bx + c \ge 0$, то a > 0 или $b^2 - 4ac > 0$.

Указанные функции интегрируются с помощью подстановок Эйлера:

1.
$$a > 0 \Rightarrow \sqrt{ax^2 + bx + c} = x\sqrt{a} + t \Rightarrow x = \frac{t^2 - c}{b - 2t\sqrt{a}}, dx = R_1(t)dt \Rightarrow$$

$$\int R(x, \sqrt{ax^2 + bx + c}) dx = \int R\left(\frac{t^2 - c}{b - 2t\sqrt{a}}, \frac{(t^2 - c)\sqrt{a}}{b - 2t} + t\right) R_1(t) dt = \int R_2(t) dt.$$

2.
$$b^2 - 4ac > 0 \Rightarrow ax^2 + bx + c = a(x - \lambda_1)(x - \lambda_2) \Rightarrow \sqrt{ax^2 + bx + c} = (x - \lambda_1)t \Rightarrow x = \frac{\lambda_1 t^2 - a\lambda_2}{t^2 - a}$$
, $dx = R_1(t)dt \Rightarrow$

$$\int R(x, \sqrt{ax^2 + bx + c}) dx = \int R\left(\frac{\lambda_1 t^2 - a\lambda_2}{t^2 - a}, \frac{a(\lambda_1 - \lambda_2)t}{t^2 - a}\right) R_1(t) dt = \int R_2(t) dt.$$

Интегрирование биномиального дифференциала $x^m(a+bx^n)^p,\,m,n,p\in\mathbb{Q},\,a,b\in\mathbb{R}\setminus\{0\}$

Интеграл от биномиального дифференциала выражается через элементарные функции лишь в следующих трех случаях:

- 1. $p \in \mathbb{Z}$;
- $2. \frac{m+1}{n} \in \mathbb{Z};$
- 3. $\frac{m+1}{n} + p \in \mathbb{Z}$.

В первом случае $(p \in \mathbb{Z})$ производится замена $x = t^r$, где r – наименьшее общее кратное знаменателей рациональных чисел m и n.

Во втором случае $(\frac{m+1}{n} \in \mathbb{Z})$ производится замена $a+bx^n=t^s,$ где s – знаменатель числа p.

В третьем случае $(\frac{m+1}{n}+p\in\mathbb{Z})$ производится замена $ax^{-n}+b=t^s$, где s – знаменатель числа p.

Пример 16.1

$$\int \frac{dx}{\sqrt[4]{1+x^4}} = \int (1+x^4)^{-1/4} dx = \left[m = 0, n = 4, p = -1/4, a = b = 1, \frac{m+1}{n} + p = 0 \in \mathbb{Z}, \right.$$

$$x^{-4} + 1 = t^4, x = (t^4 - 1)^{-1/4}, dx = -t^3 (t^4 - 1)^{-5/4} dt \right] = \int \frac{t^2}{1-t^4} dt = -\frac{1}{2} \int \left(\frac{1}{t^2 - 1} + \frac{1}{t^2 + 1} \right) dt = \frac{1}{4} \ln \left| \frac{t+1}{t-1} \right| - \frac{1}{2} \operatorname{arctg} t + C.$$

Интегрирование рационально-тригонометрических функций $R(\cos x, \sin x)$

Функции указанного вида интегрируются с помощью универсальной тригонометрической подстановки $t=\operatorname{tg} \frac{x}{2}$:

$$\int R(\cos x, \sin x) dx = \left[\cos x = \frac{1 - t^2}{1 + t^2}, \sin x = \frac{2t}{1 + t^2}, x = 2 \arctan t, dx = \frac{2dt}{1 + t^2}\right] =$$

$$= \int R\left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2}\right) \frac{2dt}{1 + t^2} = \int R_1(t) dt.$$

В ряде частных случаев можно применять следующие подстановки, которые приводят к менее громоздким вычислениям по сравнению с универсальной тригонометрической подстановкой.

- 1. $R(\cos x, -\sin x) = -R(\cos x, \sin x) \Rightarrow t = \cos x;$
- 2. $R(-\cos x, \sin x) = -R(\cos x, \sin x) \Rightarrow t = \sin x$;
- 3. $R(-\cos x, -\sin x) = R(\cos x, \sin x) \Rightarrow t = \operatorname{tg} x$.

Пример 16.2

$$\int \frac{dx}{\sin x} = [t = \operatorname{tg}(x/2)] = \int \frac{dt}{t} = \ln|t| + C.$$

Пример 16.3

$$\int \frac{dx}{\sin^4 x + \cos^4 x} = [t = \lg x] = \int \frac{1 + t^2}{1 + t^4} dt = \int \frac{d(t - \frac{1}{t})}{(t - \frac{1}{t})^2 + 2} = \frac{1}{\sqrt{2}} \arctan(\frac{1}{\sqrt{2}}(t - \frac{1}{t})) + C.$$

Далее будет доказано, что любая непрерывная на промежутке I функция f(x) обладает первообразной на этом промежутке, а значит, существует $\int f(x)dx$ на этом промежутке. При этом интеграл от элементарной функции не обязательно является элементарной функцией. Такие интегралы называются неберущимися. Примерами неберущихся интегралов служат следующие интегралы:

1) $\int e^{-x^2} dx$ — интеграл вероятности; 2) $\int \frac{\sin x}{x} dx$ — интегральный синус; 3) $\int \frac{dx}{\ln x}$ — интегральный логарифм; 4) $\int \sin x^2 dx$, $\int \cos x^2 dx$ — интегралы Френеля.

17 Свойства дифференцируемой функции. Правило Лопиталя

Определение 17.1 x_0 называется стационарной точкой функции f(x), если $f'(x_0) = 0$.

Теорема 17.1 (теорема Ферма). Если x_0 – точка экстремума функции $f:(a,b)\to\mathbb{R}$, и функция f дифференцируема в точке x_0 , то x_0 – стационарная точка функции f.

 $\stackrel{\vee}{\Pi}$ редположим, что $f(x_0)=\sup_{x\in(a,b)}f(x)$. Тогда для любых Δx таких, что $x_0+\Delta x\in(a,b)$ имеем:

$$\Delta y = f(x_0 + \Delta x) - f(x_0) \le 0.$$

Следовательно, $\frac{\Delta y}{\Delta x} \leq 0$ при $\Delta x > 0$, $\frac{\Delta y}{\Delta x} \geq 0$ при $\Delta x < 0$. Отсюда получаем, что

$$f'_{+}(x_0) \le 0, \ f'_{-}(x_0) \ge 0.$$

Так как
$$f'(x_0) = f'_+(x_0) = f'_-(x_0)$$
, то $f'(x_0) = 0$.

Замечание 17.1 Касательная к графику дифференцируемой в точке экстремума функции параллельна оси Ox.

Теорема 17.2 (теорема Ролля). Пусть функция f непрерывна на отрезке [a,b] и диф-ференцируема на интервале (a,b). Если f(a)=f(b), то на интервале (a,b) существует стационарная точка функции f.

Ф По теореме Вейерштрасса существуют точки $\underline{x}, \overline{x} \in [a,b]$ такие, что $f(\underline{x}) = \inf_{x \in [a,b]} f(x)$, $f(\overline{x}) = \sup_{x \in [a,b]} f(x)$. Если $f(\underline{x}) = f(\overline{x})$, то функция f постоянная на отрезке [a,b], и каждая точка интервала (a,b) является стационарной точкой функции f. Пусть $f(\underline{x}) < f(\overline{x})$. Так как f(a) = f(b), то хотя бы одна из точек $\underline{x}, \overline{x}$ принадлежит интервалу (a,b). Тогда по теореме Ферма эта точка является стационарной.

Замечание 17.2 Если функция f непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и принимает равные значения на концах отрезка [a,b], то касательная к графику функции f в некоторой точке интервала (a,b) параллельная оси Ox.

Теорема 17.3 (теорема Лагранжа). Если функция f непрерывна на отрезке [a,b], диф-ференцируема на интервале (a,b), то существует точка $c \in (a,b)$ такая, что

$$f(b) - f(a) = f'(c)(b - a).$$

♦ Определим функцию

$$\varphi(x) = (f(b) - f(a))(x - a) - (f(x) - f(a))(b - a).$$

Имеем

$$\varphi(a) = \varphi(b) = 0,$$

кроме того, функция φ непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), поэтому она удовлетворяет условиям теоремы Ролля. Следовательно, существует точка $c \in (a,b)$ такая, что $\varphi'(c)=0$.

Таким образом,

$$\varphi'(x) = f(b) - f(a) - f'(x)(b - a) \Rightarrow f(b) - f(a) = f'(c)(b - a).$$

Замечание 17.3 Так как отношение $\frac{f(b)-f(a)}{b-a}$ равно угловому коэффициенту секущей, проходящей через концы $A(a,f(a)),\,B(b,f(b))$ графика функции $f(x),\,x\in[a,b],\,$ то теорема Лагранжа утверждает существование точки $c\in(a,b),\,$ в которой касательная к графику параллельна секущей AB.

Следствие 17.1 Если функция f непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то для любых $x,x+\Delta x\in [a,b]$ существует $\theta=\theta(x,\Delta x)\in (0,1)$ такое, что

$$f(x + \Delta x) - f(x) = f'(x + \theta \Delta x) \Delta x.$$

 \Diamond

Пусть $\Delta x>0.$ По теореме Лагранжа существует $c\in(x,x+\Delta x)$ такое, что

$$f(x + \Delta x) - f(x) = f'(c)\Delta x.$$

Положим $\theta = \frac{c-x}{\Delta x}$. Очевидно, что $\theta \in (0,1)$ и $f(x+\Delta x) - f(x) = f'(x+\theta \Delta x) \Delta x$.

Следствие 17.2 (критерий постоянства дифференцируемой функции). Для постоянства дифференцируемой на промежутке |a,b| функции необходимо и достаточно, чтобы ее производная тождественно равнялась нулю на этом промежутке.

Необходимость очевидна.

Докажем достаточность. Зафиксируем произвольные $x_0, x_0 + \Delta x \in [a, b]$. Выберем отрезок $[\alpha, \beta] \subset [a, b]$ так, чтобы $x_0, x_0 + \Delta x \in [\alpha, \beta]$. Так как функция f непрерывна на отрезке $[\alpha, \beta]$ и дифференцируема на интервале (α, β) , то по следствию 17.1 имеем:

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \Delta x$$

для некоторого $\theta \in (0,1)$. Так как $x_0 + \theta \Delta x \in |a,b|$, то $f'(x_0 + \theta \Delta x) = 0$. Следовательно, $f(x_0 + \Delta x) = f(x_0)$.

Следствие 17.3 (теорема о функциях с совпадающими производными). Если две дифференцируемые функции имеют на интервале совпадающие производные, то они отличаются на постоянную на этом интервале.

 \Diamond

Пусть $f'(x) = g'(x) \ \forall x \in (a,b)$. Определим функцию h(x) = f(x) - g(x). Так как h'(x) = 0 $\forall x \in (a,b)$, то по следствию 17.2 имеем $h(x) \equiv C$, т.е. $f(x) = g(x) + C \ \forall x \in (a,b)$.

Теорема 17.4 (теорема Коши). Пусть функции f и g непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b), причем $g'(x) \neq 0 \ \forall x \in (a,b)$. Тогда существует точка $c \in (a,b)$ такая, что

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

 \Diamond

Из теоремы Лагранжа и условия $g'(x) \neq 0 \ \forall x \in (a,b)$ вытекает, что $g(b) - g(a) \neq 0$. Определим функцию

$$\varphi(x) = (f(x) - f(a))(g(b) - g(a)) - (f(b) - f(a))(g(x) - g(a)).$$

Эта функция удовлетворяет условиям теоремы Ролля. Следовательно, существует $c \in (a,b)$ такое, что $\varphi'(c) = 0$. Имеем

$$\varphi'(x) = f'(x)(g(b) - g(a)) - g'(x)(f(b) - f(a)).$$

Так как $\varphi'(c) = 0$ и $g(b) - g(a) \neq 0$, то

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Правило Лопиталя

Пусть $a \in \mathbb{R} \cup \{\infty\}$, через X_a обозначим некоторую проколотую окрестность точки a. При этом окрестность может быть односторонней (в таком случае запись $\lim_{x\to a}$... будет означать соответствующий односторонний предел), а бесконечность может быть как беззнаковой, так и знаковой.

Теорема 17.5 (правило Лопиталя). Пусть выполнены следующие условия:

- 1. Функции f, g дифференцируемы на $X_a;$
- 2. $g(x) \neq 0, g'(x) \neq 0 \ \forall x \in X_a;$
- 3. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) \in \{0, \infty\};$
- 4. $\lim_{x \to a} \frac{f'(x)}{g'(x)} = l \in \mathbb{R} \cup \{\infty\}.$

Тогда
$$\lim_{x \to a} \frac{f(x)}{g(x)} = l$$
.

 \diamondsuit Случай 1: $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$. 1.1) Предположим, что $a \in \mathbb{R}$. Определим функции F(x), G(x) так, что F(x) = f(x), G(x) = g(x) при $x \in X_a$, и F(a) = G(a) = 0. Используя теорему Коши, получаем

$$x \in X_a \Rightarrow \frac{f(x)}{g(x)} = \frac{F(x)}{G(x)} = \frac{F(x) - F(a)}{G(x) - G(a)} = \frac{F'(c)}{G'(c)} = \frac{f'(c)}{g'(c)} \underset{x \to a}{\rightarrow} l.$$

1.2) Предположим, что $a=\infty$. Не нарушая общности, можно считать, что $0 \notin X_a$. Сделаем замену переменной $t=\frac{1}{x}$ и рассмотрим функции $\widetilde{f}(t)=f(\frac{1}{t}),\ \widetilde{g}(t)=g(\frac{1}{t}),$ в некоторой проколотой окрестности \widetilde{X}_0 точки $t_0=0$. Тогда $\lim_{t\to 0}\widetilde{f}(t)=\lim_{t\to 0}\widetilde{g}(t)=0$ и

$$t \in \widetilde{X}_0 \Rightarrow \frac{\widetilde{f}'(t)}{\widetilde{g}'(t)} = \frac{(f(\frac{1}{t}))'}{(g(\frac{1}{t}))'} = \frac{f'(\frac{1}{t})(-\frac{1}{t^2})}{g'(\frac{1}{t})(-\frac{1}{t^2})} = \frac{f'(x)}{g'(x)} \underset{x \to \infty}{\longrightarrow} l.$$

Отсюда и из рассмотренного выше случая $(a \in \mathbb{R})$ получаем, что

$$x \in X_a \Rightarrow \frac{f(x)}{g(x)} = \frac{\widetilde{f}(t)}{\widetilde{g}(t)} \underset{x \to \infty}{\longrightarrow} l.$$

Случай 2: $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\infty$. 2.1) Предположим, что $a\in\mathbb{R},\ l\in\mathbb{R}$. Зафиксируем произвольное $\varepsilon>0$. Из условия (4) теоремы вытекает, что

$$\exists \delta(\varepsilon) > 0 : \forall x \in X_a, 0 < |x - a| \le \delta(\varepsilon) \Rightarrow \left| l - \frac{f'(x)}{g'(x)} \right| \le \varepsilon.$$

Возьмем произвольные $x, \overline{x} \in X_a, x \neq \overline{x}$, лежащие в проколотой $\delta(\varepsilon)$ -окрестности точки a, причем точку \overline{x} зафиксируем. Тогда из теоремы Лагранжа и условия $g'(y) \neq 0 \ \forall y \in X_a$ вытекает, что $g(x)-g(\overline{x})\neq 0$. С помощью теоремы Коши найдем точку c между $x,\,\overline{x}$ такую, ОТР

$$l - \frac{f(x)}{g(x)} = \left(l - \frac{f(x) - f(\overline{x})}{g(x) - g(\overline{x})}\right) \frac{g(x) - g(\overline{x})}{g(x)} - \frac{f(\overline{x})}{g(x)} + l\frac{g(\overline{x})}{g(x)} =$$

$$= \left(l - \frac{f'(c)}{g'(c)}\right) \left(1 - \frac{g(\overline{x})}{g(x)}\right) - \frac{f(\overline{x})}{g(x)} + l\frac{g(\overline{x})}{g(x)}.$$

Так как точка c также лежит в проколотой $\delta(\varepsilon)$ -окрестности точки a, то

$$\left| l - \frac{f'(c)}{g'(c)} \right| \le \varepsilon.$$

Так как $\lim_{x\to a}g(x)=\infty$, то найдется $\nu(arepsilon,\overline{x})>0$ такое, что

$$\forall x \in X_a, 0 < |x - a| \le \nu(\varepsilon, \overline{x}) \Rightarrow \left| \frac{f(\overline{x})}{g(x)} \right| \le \varepsilon, \left| \frac{g(\overline{x})}{g(x)} \right| \le \varepsilon.$$

Таким образом, для любого $x \in X_a, \ 0 < |x-a| \le \min\{\delta(\varepsilon), \nu(\varepsilon, \overline{x})\}$ выполняется

$$\left| l - \frac{f(x)}{g(x)} \right| \le \varepsilon (1 + \varepsilon) + \varepsilon + l\varepsilon \le M\varepsilon.$$

Следовательно, $\lim_{x\to a}\frac{f(x)}{g(x)}=l$.

2.2) Предположим, что $a \in \mathbb{R}$, $l = \infty$. Так как $\lim_{x \to a} f(x) = \infty$, $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \infty$, то $f(x) \neq 0$, $f'(x) \neq 0$ в некоторой окрестности точки a. Следовательно, можно применить уже доказанную часть теоремы для $\frac{g(x)}{f(x)}$:

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \lim_{x \to a} \frac{g'(x)}{f'(x)} = \frac{1}{l} = 0 \Rightarrow \lim_{x \to a} \frac{f(x)}{g(x)} = \infty = l.$$

2.3) Предположим, что $a=\infty$. Этот случай сводится к случаю конечного a заменой $t=\frac{1}{x}$. \square

Замечание 17.4 Правило Лопиталя можно применять лишь для раскрытия неопределенностей вида $\frac{0}{0}$ и $\frac{\infty}{\infty}$. Тем не менее другие виды неопределенностей $0 \cdot \infty, \infty - \infty, 0^0, \infty^0, 1^\infty$ во многих случаях сводятся с помощью арифметических преобразований к неопределенностям вида $\frac{0}{0}$ и $\frac{\infty}{\infty}$.

Пример 17.1

1.
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = \lim_{x \to +\infty} \frac{1}{\alpha x^{\alpha}} = 0, \ \alpha > 0;$$

2.
$$\lim_{x \to +\infty} \frac{x^n}{e^x} = \lim_{x \to +\infty} \frac{nx^{n-1}}{e^x} = \dots = \lim_{x \to +\infty} \frac{n!}{e^x} = 0, \ n \in \mathbb{N};$$

3.
$$\lim_{x \to +0} x^{\alpha} \ln x = \lim_{x \to +0} \frac{\ln x}{x^{-\alpha}} = \lim_{x \to +0} \frac{1}{-\alpha x^{-\alpha}} = 0, \ \alpha > 0;$$

4.
$$\lim_{x \to +0} x^x = \lim_{x \to +0} e^{x \ln x} = e^0 = 1.$$

Пример 17.2

$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1) \ln x} = \lim_{x \to 1} \frac{x - 1 - \ln x}{(x - 1)^2} = \lim_{x \to 1} \frac{1 - \frac{1}{x}}{2(x - 1)} = \frac{1}{2}.$$

18 Формула Тейлора. Остаточный член формулы Тейлора

Пусть функция f дифференцируема до порядка n включительно в точке x_0 . Многочленом Тейлора называется следующий многочлен

$$T_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Величину $R_n(x) = f(x) - T_n(x)$ называют остаточным членом, а представление

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x)$$

называется формулой Тейлора.

Далее рассматриваем некоторый интервал $I = (x_0 - \delta_1, x_0 + \delta_2), \, \delta_1 > 0, \, \delta_2 > 0.$

Теорема 18.1 (теорема об остаточном члене формулы Тейлора). Пусть $f \in D^{n+1}(I)$; $x \in I$; $\varphi \in D(I)$, $\varphi'(t) \neq 0 \ \forall t \in I \setminus \{x\}$. Тогда между точками x_0 и x существует такое c, что

$$R_n(x) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(c)} \frac{f^{(n+1)}(c)}{n!} (x - c)^n.$$

 \Diamond

Определим функцию

$$\psi(t) = f(x) - f(t) - \frac{f'(t)}{1!}(x - t) - \dots - \frac{f^{(n)}(t)}{n!}(x - t)^n.$$

Имеем

$$\psi'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n.$$

Кроме того, $\psi(x_0) = R_n(x)$, $\psi(x) = 0$. По теореме Коши

$$\frac{\psi(x) - \psi(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{\psi'(c)}{\varphi'(c)}.$$

Отсюда получаем

$$-\frac{R_n(x)}{\varphi(x) - \varphi(x_0)} = -\frac{f^{(n+1)}(c)}{n!} (x - c)^n \frac{1}{\varphi'(c)}.$$

Следствие 18.1 (представление остаточного члена в форме Лагранжа). Пусть $f \in D^{n+1}(I), \ x \in I$. Тогда

$$R_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (x - x_0)^{n+1}$$

для некоторого $\theta = \theta(x, x_0) \in (0, 1)$.

 \Diamond

Положим $\varphi(t) = (x-t)^{n+1}$ в теореме 18.1:

$$R_n(x) = \frac{-(x-x_0)^{n+1}}{-(n+1)(x-c)^n} \frac{f^{(n+1)}(c)}{n!} (x-c)^n = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}.$$

Теперь полагая $\theta = \frac{c-x_0}{x-x_0},$ получаем требуемое представление.

_

Следствие 18.2 (представление остаточного члена в форме Коши). Пусть $f \in D^{n+1}(I), x \in I.$ Тогда

$$R_n(x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{n!} (1 - \theta)^n (x - x_0)^{n+1}.$$

 \Diamond

Положим $\varphi(t) = x - t$ в теореме 18.1:

$$R_n(x) = \frac{-(x-x_0)}{-1} \frac{f^{(n+1)}(c)}{n!} (x-c)^n = \frac{f^{(n+1)}(c)}{n!} (x-x_0)^{n+1} \left(\frac{x-c}{x-x_0}\right)^n.$$

Полагая $\theta = \frac{c-x_0}{x-x_0}$, получаем требуемое представление.

Следствие 18.3 (представление остаточного члена в форме Пеано). Пусть $f \in C^n(I)$, тогда $R_n(x) = o((x-x_0)^n)$ при $x \to x_0$.

 \Diamond

С помощью следствия 18.1 получаем

$$R_{n-1}(x) = \frac{f^{(n)}(c)}{n!}(x - x_0)^n = \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n)}(c) - f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Так как $f^{(n)}$ непрерывна в точке x_0 , то получаем

$$f(x) = T_{n-1}(x) + R_{n-1}(x) = T_n(x) + \frac{f^{(n)}(c) - f^{(n)}(x_0)}{n!} (x - x_0)^n = T_n(x) + o(1)(x - x_0)^n, \ x \to x_0.$$

Отсюда получаем требуемое представление для остаточного члена $R_n(x) = f(x) - T_n(x)$.

Следствие 18.4 (формула Тейлора в дифференциалах). Пусть $f \in D^{n+1}(I), x_0 + \Delta x \in I,$ $\Delta f = f(x_0 + \Delta x) - f(x_0).$ Тогда

$$\Delta f = \frac{df(x_0)}{1!} + \ldots + \frac{d^n f(x_0)}{n!} + \frac{d^{n+1} f(x_0 + \theta \Delta x)}{(n+1)!}$$

для некоторого $\theta = \theta(x_0, \Delta x) \in (0, 1)$.

 \Diamond

Используя следствие 18.1, получаем

$$\Delta f = \frac{f'(x_0)}{1!} \Delta x + \dots + \frac{f^{(n)}(x_0)}{n!} (\Delta x)^n + \frac{f^{(n+1)}(x_0 + \theta \Delta x)}{(n+1)!} (\Delta x)^{n+1} =$$

$$= \frac{df(x_0)}{1!} + \dots + \frac{d^n f(x_0)}{n!} + \frac{d^{n+1} f(x_0 + \theta \Delta x)}{(n+1)!}.$$

Разложение элементарных функций по формуле Тейлора

1. Разложение экспоненты

$$f(x) = e^x \Rightarrow f^{(n)}(x) = e^x \Rightarrow e^x = 1 + \frac{x}{1!} + \dots + \frac{x^n}{n!} + o(x^n), x \to 0.$$

2. Разложение синуса

$$f(x) = \sin x \Rightarrow f^{(n)}(x) = \sin(x + \frac{\pi n}{2}) \Rightarrow f^{(2l)}(0) = 0, f^{(2l+1)}(0) = (-1)^{l};$$

$$\sin x = x - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} + R_{2n+2}(x) = x - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} + o(x^{2n+2}), x \to 0.$$

3. Разложение косинуса

$$f(x) = \cos x \Rightarrow f^{(n)}(x) = \cos(x + \frac{\pi n}{2}) \Rightarrow f^{(2l)}(0) = (-1)^l, f^{(2l+1)}(0) = 0;$$

$$\cos x = 1 - \frac{x^2}{2!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + R_{2n+1}(x) = 1 - \frac{x^2}{2!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n+1}), x \to 0.$$

4. Разложение логарифма

$$f(x) = \ln(1+x) \Rightarrow f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(x+1)^n} \Rightarrow f^{(n)}(0) = (-1)^{n-1}(n-1)!$$
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n), x \to 0.$$

5. Разложение степенной функции

$$f(x) = (1+x)^{\mu} \Rightarrow f^{(n)}(0) = \mu(\mu - 1) \dots (\mu - n + 1);$$

$$(1+x)^{\mu} = 1 + \frac{\mu x}{1!} + \dots + \frac{\mu(\mu - 1) \dots (\mu - n + 1)}{n!} x^{n} + o(x^{n}), x \to 0.$$

Пример 18.1

$$\lim_{x \to 0} \frac{e^{\sin x} - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^{x + o(x^2)} - 1 - x}{x^2} = \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + o(x^2) - 1 - x}{x^2} = \frac{1}{2}.$$

19 Исследование локальных экстремумов функций

Теорема 19.1 (критерий монотонности дифференцируемой функции). Для возрастания дифференцируемой функции $f:(a,b)\to\mathbb{R}$ необходимо и достаточно, чтобы $f'(x)\geq 0$ $\forall x\in(a,b)$. Для убывания дифференцируемой функции $f:(a,b)\to\mathbb{R}$ необходимо и достаточно, чтобы $f'(x)\leq 0$ $\forall x\in(a,b)$.

♦ Докажем теорему для возрастающей функции.

Heoбxoдимость. Так как f возрастающая функция, то для любых $x, x_0 \in (a, b), x > x_0,$ имеем

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Отсюда получаем, что для любых $x_0 \in (a,b)$ выполняется

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Достаточность. Возьмем произвольные $x_1, x_2 \in (a,b), x_1 \neq x_2$. По теореме Лагранжа найдется точка c между x_1 и x_2 такая, что

$$f(x_1) - f(x_2) = f'(c)(x_1 - x_2).$$

Отсюда получаем, что

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} \ge 0,$$

т.е. функция f возрастающая. \square

Теорема 19.2 (критерий строгой монотонности дифференцируемой функции). Дифференцируемая функция $f:(a,b)\to\mathbb{R}$ строго возрастает (соответственно строго убывает) тогда и только тогда, когда $f'(x)\geq 0 \ \forall x\in (a,b)$ (соответственно $f'(x)\leq 0 \ \forall x\in (a,b)$) и f'(x) не обращается в тождественный нуль ни на каком интервале $(\alpha,\beta)\subset (a,b)$.

Доказательство теоремы вытекает из критерия монотонности дифференцируемой функции и критерия постоянства дифференцируемой функции.

Пример 19.1 Функция $f(x) = x^3$ строго возрастает на \mathbb{R} , т.к. $f'(x) = 3x^2 \ge 0$ и f'(x) обращается в нуль лишь в одной точке.

Рассмотрим функцию $f:|a,b|\to\mathbb{R},$ и пусть x_0 – внутренняя точка промежутка |a,b|.

Точка x_0 называется точкой локального максимума, если существует $\delta > 0$ такое, что $f(x) \le f(x_0)$ для любых $x \in (x_0 - \delta, x_0 + \delta)$.

Точка x_0 называется точкой строгого локального максимума, если существует $\delta > 0$ такое, что $f(x) < f(x_0)$ для любых $x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$.

Аналогично определяются точки локального и строгого локального минимума. Все эти точки называются точками локального экстремума функции f.

Теорема 19.3 (необходимое условие локального экстремума). Пусть функция f дифференцируема в точке $x_0 \in (a,b)$, и точка x_0 является точкой локального экстремума функции f. Тогда $f'(x_0) = 0$.

Доказательство теоремы вытекает из теоремы Ферма и определения точки локального экстремума.

Достаточные условия локального экстремума

Подозрительными точками на точки локального экстремума являются точки, в которых производная f'(x) обращается в нуль, а также точки недифференцируемости функции f.

Теорема 19.4 (первое достаточное условие локального экстремума). Пусть x_0 – стационарная точка функции f либо точка, в которой функция недифференцируема; функция f непрерывно дифференцируема на интервалах $(x_0 - \delta, x_0)$, $(x_0, x_0 + \delta)$ и непрерывна в точке x_0 . Если при переходе через точку x_0 производная f'(x) меняет знак c плюса на минус, то x_0 – точка локального максимума; если f'(x) меняет знак c минуса на плюс, то x_0 – точка локального минимума; если f'(x) не меняет знак при переходе чере точку x_0 , то x_0 не является точкой локального экстремума.

 \Diamond Докажем теорему для локального максимума. На интервале $(x_0 - \delta, x_0)$ функция возрастает, а на интервале $(x_0, x_0 + \delta)$ – убывает. Следовательно, x_0 – точка локального максимума.

Теорема 19.5 (второе достаточное условие локального экстремума). Пусть функция f дважды непрерывно дифференцируема в некоторой окрестности стационарной точки x_0 . Если $f''(x_0) > 0$, то x_0 – точка локального минимума; если $f''(x_0) < 0$, то x_0 – точка локального максимума.

🛇 Докажем теорему для локального максимума. По формуле Тейлора имеем

$$f(x) = f(x_0) + \frac{f''(x_0 + \theta(x - x_0))}{2!}(x - x_0)^2.$$

По теореме о стабилизации знака f''(x) < 0 в некоторой окрестности точки x_0 . Следовательно, $f(x) \le f(x_0)$ для всех x из этой окрестности. Т.е. x_0 – точка локального максимума.

Теорема 19.6 (третье достаточное условие локального экстремума). Пусть функция f является n раз непрерывно дифференцируемой в некоторой окрестности точки x_0 ; $f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0$, $f^{(n)}(x_0) \neq 0$. Если n четное и $f^{(n)}(x_0) > 0$, то x_0 – точка локального минимума; если n четное и $f^{(n)}(x_0) < 0$, то x_0 – точка локального максимума; если n нечетное, то n0 не является точкой локального экстремума.

♦ По формуле Тейлора имеем

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0 + \theta(x - x_0))}{n!} (x - x_0)^n.$$

По теореме о стабилизации знака $f^{(n)}(x)$ сохраняет тот же знак, что и $f^{(n)}(x_0)$ в некоторой окрестности точки x_0 . Поэтому при четном n и $f^{(n)}(x_0) > 0$ имеем $f(x) \ge f(x_0)$; при четном n и $f^{(n)}(x_0) < 0$ имеем $f(x) \le f(x_0)$; а при нечетном n в любой окрестности точки x_0 функция f принимает значения как большие $f(x_0)$, так и меньшие $f(x_0)$. \square

20 Выпуклая функция. Исследование точек перегиба

Определение 20.1 Функция $f:|a,b|\to\mathbb{R}$ называется выпуклой, если для любых $x_0,x_1\in |a,b|, x_0\neq x_1, u \ \tau\in (0,1)$ выполняется

$$f(x_0 + \tau(x_1 - x_0)) \le f(x_0) + \tau(f(x_1) - f(x_0)). \tag{20.1}$$

Если заменить неравенство \leq в соотношении (20.1) на <, \geq , >, то получим соответственно определения строго выпуклой, вогнутой, строго вогнутой функции.

Замечание 20.1 (геометрическая интерпретация выпуклости функции). Зафиксируем произвольные $x_0, x_1 \in [a, b], x_0 \neq x_1$ (пусть для определенности $x_0 < x_1$). Отрезок секущей, проходящей через концы графика $A_0(x_0, f(x_0)), A_1(x_1, f(x_1)),$ имеет параметрическое уравнение

$$x_{\tau} = x_0 + \tau(x_1 - x_0), \ y_{\tau} = f(x_0) + \tau(f(x_1) - f(x_0)), \tau \in [0, 1].$$

Таким образом, условие выпуклости, которое можно переписать в виде

$$f(x_{\tau}) \leq y_{\tau},$$

означает, что часть графика функции с концами A_0 , A_1 лежит ниже секущей к графику, проходящей через точки A_0 , A_1 .

Рис. 2: К определению выпуклости функции

Теорема 20.1 (критерий выпуклости дифференцируемой функции). Пусть функция $f: |a,b| \to \mathbb{R}$ дифференцируемая. Для выпуклости функции f необходимо и достаточно, чтобы производная f'(x) была возрастающей на |a,b|.

 \Diamond Необходимость. Возьмем произвольные $x_1, x_2, x_3 \in |a,b|, x_1 < x_2 < x_3$. Положим $\tau = \frac{x_2 - x_1}{x_3 - x_1} \in (0,1)$. Так как $x_2 = x_1 + \tau(x_3 - x_1)$, то из определения выпуклости f вытекают неравенства

$$f(x_2) - f(x_1) \le \tau(f(x_3) - f(x_1)),$$

$$f(x_3) - f(x_2) \ge (1 - \tau)(f(x_3) - f(x_1)).$$

Учитывая, что $1- au=rac{x_3-x_2}{x_3-x_1}$, можем записать

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$
(20.2)

Пусть M_i – точка с координатами $(x_i, f(x_i))$, i = 1, 2, 3. Дроби, входящие в неравенства (20.2) являются угловыми коэффициентами секущих к графику функции, проходящих соответственно через точки M_2 и M_1 , M_3 и M_1 , M_3 и M_2 . Обозначая соотвествующие угловые коэффициенты через $k(M_1M_2)$, $k(M_1M_3)$, $k(M_2M_3)$, получаем

$$k(M_1M_2) \le k(M_1M_3) \le k(M_2M_3).$$
 (20.3)

Рис. 3: К неравенству 20.2

Устремляя точку x_2 к точке x_1 в левом неравенстве (20.3), получаем $f'(x_1) \leq k(M_1M_3)$. Аналогично, устремляя точку x_2 к точке x_3 и используя правое неравенство (20.3), получаем $k(M_1M_3) \leq f'(x_3)$. Таким образом, $f'(x_1) \leq f'(x_3)$.

Достаточность. Возьмем произвольные $x_0, x_1 \in |a,b|, x_0 < x_1, \tau \in (0,1)$. Полагая $x_\tau = x_0 + \tau(x_1 - x_0)$ и используя теорему Лагранжа, получаем

$$f(x_{\tau}) - f(x_0) = f'(c_1)(x_{\tau} - x_0) = f'(c_1)\tau(x_1 - x_0), \tag{20.4}$$

$$f(x_1) - f(x_\tau) = f'(c_2)(x_1 - x_\tau) = f'(c_2)(1 - \tau)(x_1 - x_0), \tag{20.5}$$

где $c_1 \in (x_0, x_\tau), c_2 \in (x_\tau, x_1).$

Умножая неравенство (20.4) на $1-\tau$, неравенство (20.5) — на τ , учитывая возрастание производной f'(x), получаем

$$(1 - \tau)(f(x_{\tau}) - f(x_0)) \le \tau(f(x_1) - f(x_{\tau})). \tag{20.6}$$

Отсюда получаем требуемое неравенство

$$f(x_{\tau}) \le f(x_0) + \tau (f(x_1) - f(x_0)).$$

Замечание 20.2 Любая выпуклая функция является непрерывной. Тем не менее, не каждая выпуклая функция является дифференцируемой, например, $f(x) = |x|, x \in \mathbb{R}$.

Следствие 20.1 (критерий выпуклости дважды дифференцируемой функции). Пусть функция $f: |a,b| \to \mathbb{R}$ дважды дифференцируемая. Для выпуклости функции f необходимо и достаточно, чтобы $f''(x) \ge 0 \ \forall x \in |a,b|$.

Доказательство следствия вытекает из критериев выпуклости и монотонности дифференцируемой функции.

Теорема 20.2 (критерий строгой выпуклости дважды дифференцируемой функции). Пусть функция $f:|a,b|\to\mathbb{R}$ дважды дифференцируемая. Для строгой выпуклости функции f необходимо и достаточно, чтобы $f''(x)\geq 0 \ \forall x\in |a,b|\ u\ f''(x)$ не обращалась в тождественный нуль ни на одном интервале из промежутка |a,b|.

 \Diamond В силу критерия строгой монотонности дифференцируемой функции достаточно доказать, что условие строгой выпуклости f равносильно условию строгого возрастания производной f'(x). Покажем, что это утверждение вытекает из доказательства критерия выпуклости дифференцируемой функции.

Действительно, условие строгой выпуклости гарантирует выполнение строгих неравенств в (20.2) и, следовательно, в (20.3). Откуда следует строгое возрастание производной f'(x). Обратно, из условия строгого возрастания производной f'(x) следует, что неравенство (20.6) является строгим, что обеспечивает строгую выпуклость функции f. \square

Замечание 20.3 Аналогично можно получить критерии вогнутости и строгой вогнутости функции:

- 1) для вогнутости дифференцируемой функции $f:|a,b|\to\mathbb{R}$ необходимо и достаточно, чтобы производная f'(x) убывала на |a,b|;
- 2) для вогнутости дважды дифференцируемой функции $f:|a,b|\to \mathbb{R}$ необходимо и достаточно, чтобы $f''(x)\leq 0 \ \forall x\in [a,b];$
- 3) для строгой вогнутости дважды дифференцируемой функции f необходимо и достаточно, чтобы $f''(x) \leq 0 \ \forall x \in [a,b]$ и f''(x) не обращалась в тождественный нуль ни на одном интервале из промежутка [a,b].

Пример 20.1 В силу критерия строгой выпуклости функция $f(x) = x^2$ является строго выпуклой на \mathbb{R} . А непосредственно из определения выпуклости вытекают многие известные неравенства о средних, в частности, неравенство между средним арифметическим и средним квадратическим. Полагая в соотношении (20.1) $f(x) = x^2$, $\tau = \frac{1}{2}$, получаем

$$\left(\frac{x_0 + x_1}{2}\right)^2 \le \frac{x_0^2 + x_1^2}{2}.$$

Точки перегиба

Определение 20.2 Точка непрерывности x_0 называется точкой перегиба функции $f:(x_0-\delta,x_0+\delta)\to\mathbb{R},\ \delta>0,\ ecnu$ существует конечная или бесконечная (определенного знака) производная $f'(x_0),\ u\ f$ выпукла на одном и интервалов $(x_0-\delta,x_0),\ (x_0,x_0+\delta)$ и вогнута на другом.

Теорема 20.3 (необходимое условие перегиба). Пусть функция $f:(x_0-\delta,x_0+\delta)\to \mathbb{R}$ дважды непрерывно дифференцируема, x_0 – точка перегиба функции f. Тогда $f''(x_0)=0$.

 \Diamond Предположим, что $f''(x_0) \neq 0$. Тогда по теореме о стабилизации знака f''(x) сохраняет постоянный знак в некоторой окрестности точки x_0 . Следовательно, в этой же окрестности функция f является либо строго выпуклой, либо строго вогнутой, что противоречит определению точки перегиба. Таким образом, $f''(x_0) = 0$. \square

Замечание 20.4 Точки, в которых вторая производная f''(x) обращается в нуль, называются точками спрямления. Эти точки являются подозрительными на точки перегиба. Однако, не все такие точки являются точками перегиба. Например, точка $x_0 = 0$ является точкой спрямления функции $f(x) = x^4$, но не является точкой перегиба. Кроме того, точками, подозрительными на точки перегиба, являются точки, в которых функция f непрерывна, но имеет бесконечную (определенного знака) производную, а также точки, в которых функция дифференцируема, но не является дважды дифференцируемой.

Теорема 20.4 (первое достаточное условие перегиба). Пусть x_0 – точка, подозрительная на точку перегиба, и пусть функция f дважды непрерывно дифференцируема на интервалах $(x_0 - \delta, x_0)$, $(x_0, x_0 + \delta)$, $\delta > 0$. Если при переходе через точку x_0 вторая производная f''(x) меняет знак, то x_0 – точка перегиба, иначе x_0 не является точкой перегиба.

Доказательство теоремы вытекает из критериев выпуклости и вогнутости дважды дифференцируемой функции.

Теорема 20.5 (второе достаточное условие перегиба). Пусть функция f трижды непрерывно дифференцируема на интервале $(x_0 - \delta, x_0 + \delta), \ \delta > 0$. Если $f''(x_0) = 0, \ f'''(x_0) \neq 0,$ то x_0 – точка перегиба.

 \Diamond Пусть для определенности $f'''(x_0) > 0$, тогда по теореме о стабилизации знака f'''(x) > 0 в некоторой окрестности точки x_0 . Согласно критерию строгой монотонности f''(x) строго возрастает в этой окрестности точки x_0 . А так как $f''(x_0) = 0$, то f''(x) меняет знак при переходе через точку x_0 . Из первого достаточного условия перегиба вытекает, что x_0 – точка перегиба. \square

Теорема 20.6 (третье достаточное условие перегиба). Пусть функция f является n раз непрерывно дифференцируемой на интервале $(x_0 - \delta, x_0 + \delta), \ \delta > 0, \ u$ пусть

$$f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) \neq 0.$$

Eсли n – нечетное, то x_0 – точка перегиба, иначе x_0 не является точкой перегиба.

♦ Используя формулу Тейлора с остаточным членом в форме Лагранжа, получим

$$f''(x) = \frac{f^{(n)}(c)}{(n-2)!}(x-x_0)^{n-2}, \ x \in (x_0 - \delta, x_0 + \delta),$$

где точка c лежит между точками x_0 и x.

Если n четное, то f''(x) не меняет знак при переходе через точку x_0 и, следовательно, f не имеет перегиба в точке x_0 . Если n нечетное, то f''(x) меняет знак при переходе через точку x_0 . Согласно первому достаточному условию перегиба точка x_0 является точкой перегиба. \square

21 Глобальный экстремум и асимптоты. Построение графиков функций

Рассмотрим непрерывную функцию $f: |a,b| \to \mathbb{R}$. Подозрительными на точки глобального экстремума являются следующие точки:

- 1. Стационарные точки f, лежащие в интервале (a, b).
- 2. Точки интервала (a, b), в которых функция f недифференцируема.
- 3. Концы промежутка |a,b|, принадлежащие этому промежутку.

Если промежуток |a,b| является отрезком, то согласно теореме Вейерштрасса существуют точки глобального минимума и максимума на этом отрезке.

Теорема 21.1 (теорема о глобальном минимуме выпуклой функции). Пусть $f:(a,b) \to \mathbb{R}$ выпуклая дифференцируемая функция. Если $x_0 \in (a,b)$ – стационарная точка функции f, то x_0 – точка глобального минимума на интервале (a,b).

 \Diamond

По критерию выпуклости дифференцируемой функции f'(x) возрастает на (a,b). Так как $f'(x_0) = 0$, то $f'(x) \le 0 \ \forall x \in (a,x_0)$ и $f'(x) \ge 0 \ \forall x \in (x_0,b)$. Согласно критерию монотонности функция f убывает на (a,x_0) и возрастает на (x_0,b) . Следовательно, x_0 — точка глобального минимума функции f на интервале (a,b).

Замечание 21.1 Аналогично можно доказать, что если $f:(a,b)\to\mathbb{R}$ – вогнутая дифференцируемая функция, а $x_0\in(a,b)$ - стационарная точка, то x_0 – точка глобального максимума функции f на интервале (a,b).

Рассмотрим функцию $f:(a,b)\to\mathbb{R}$, пусть $x_0\in(a,b)$.

Определение 21.1 Если $\lim_{x\to x_0-0} f(x) = \infty$, то прямая $x=x_0$ называется левосторонней вертикальной асимптотой. Аналогично, если $\lim_{x\to x_0+0} f(x) = \infty$, то прямая $x=x_0$ называется правосторонней вертикальной асимптотой. Прямая $x=x_0$ называется вертикальной асимптотой. Прямая $x=x_0$ называется вертикальной асимптотой, если она является как левосторонней, так и правосторонней вертикальной асимптотой.

Определение 21.2 *Если существуют числа* α , β *такие, что*

$$\lim_{x \to +\infty} (f(x) - \alpha x - \beta) = 0,$$

то прямая $y = \alpha x + \beta$ называется наклонной асимптотой графика функции f при $x \to +\infty$.

Непосредственно из определения наклонной асимптоты вытекает следующая теорема.

Теорема 21.2 (теорема о наклонной асимптоте). График функции f имеет наклонную асимптоту при $x \to +\infty$ тогда и только тогда, когда существует число α такое, что существует конечный предел

$$\lim_{x \to +\infty} (f(x) - \alpha x).$$

При этом

$$\alpha = \lim_{x \to +\infty} \frac{f(x)}{x}, \ \beta = \lim_{x \to +\infty} (f(x) - \alpha x).$$

Замечание 21.2 Аналогично можно сформулировать определение наклонной асимптоты при $x \to -\infty$ и получить соответствующую теорему о наклонной асимптоте при $x \to -\infty$.

Исследование функций и построение графиков

Для построения графика функции y = f(x) исследуют следующие свойства:

- 1. Находят область определения функции f и определяют точки разрыва.
- 2. Проверяют функцию f на периодичность. Для периодической функции с периодом T достаточно проводить дальнейшее исследование на отрезке [0, T].
- 3. Проверяют функцию f на четность и нечетность. Если функция f четная или нечетная, то дальнейшее исследование достаточно проводить для $x \ge 0$.
- 4. Находят вертикальные и наклонные асимптоты функции f.
- 5. Находят производную f'(x), определяют участки монотонности функции и исследуют функцию на локальный экстремум.
- 6. Находят вторую производную f''(x), определяют участки выпуклости и вогнутости и находят точки перегиба.
- 7. Находят точки пересечения графика с осями координат.

Пример 21.1 Исследовать функцию $f(x) = \sqrt[3]{x^3 + x^2}$ и построить ее график.

- 1. Функция f определена и непрерывна на \mathbb{R} .
- 2. Функция f не является периодичной, так как f непрерывна и неограничена на \mathbb{R} .
- 3. Функция f не является ни четной, ни нечетной, так как $f(1)=\sqrt[3]{2},\,f(-1)=0.$
- 4. Функция f не имеет вертикальных асимптот, поскольку она непрерывна на \mathbb{R} . Так как

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = 1, \ \lim_{x \to \pm \infty} (f(x) - x) = \frac{1}{3},$$

то функция f имеет наклонную асимптоту $y=x+\frac{1}{3}$ при $x\to\pm\infty.$

5. Находим производную

$$f'(x) = \frac{1}{3}(x+1)^{-2/3}x^{-1/3}(3x+2), \ x \neq 0, x \neq -1.$$

На интервалах $(-\infty, -\frac{2}{3})$, $(0, +\infty)$ функция возрастает, а на интервале $(-\frac{2}{3}, 0)$ – убывает.

Функция имеет единственную стационарную точку $x_1 = -\frac{2}{3}$. При переходе через эту точку производная f'(x) меняет знак с плюса на минус, следовательно, $x_1 = -\frac{2}{3}$ – точка локального максимума.

Функция f недифференцируема в точках $x_2 = -1$, $x_3 = 0$. При переходе через точку $x_2 = -1$ производная f'(x) не меняет знак, поэтому эта точка не явлется точкой локального экстремума. При переходе через точку $x_3 = 0$ производная меняет знак с минуса на плюс, поэтому точка $x_3 = 0$ явлется точкой локального минимума.

6. Находим вторую производную

$$f''(x) = -\frac{2}{9}(x+1)^{-5/3}x^{-4/3}, \ x \neq 0, x \neq -1.$$

На интервале $(-\infty, -1)$ функция выпуклая, а на интервалах (-1, 0), $(0, +\infty)$ – вогнутая.

Точек спрямления функции нет. Точки $x_2 = -1$, $x_3 = 0$ являются подозрительными на точки перегиба. При переходе через точку $x_3 = 0$ функция f не меняет характер выпуклости и вогнутости, поэтому эта точка на является точкой перегиба. При переходе через точку $x_2 = -1$ функция меняет характер с выпуклости на вогнутость. Кроме того, существует производная $f'(-1) = +\infty$. Следовательно, $x_2 = -1$ является точкой перегиба.

7. График функции пересекает оси координат в точках (-1,0), (0,0).

Рис. 4: График функции $y = \sqrt[3]{x^3 + x^2}$

22 Определенный интеграл. Необходимые условия интегрируемости

Рассмотрим функцию $f:[a,b]\to\mathbb{R}$, а также разбиение отрезка [a,b] точками $\{x_k\}_{k=0}^n:$

$$a = x_0 < x_1 < \ldots < x_n = b.$$

Пусть $\Delta x_k = x_k - x_{k-1}$. Обозначим через $\delta\{x_k\}$ – диаметр разбиения $\{x_k\}$, т.е.

$$\delta\{x_k\} = \max_k \Delta x_k.$$

На каждом отрезке $[x_{k-1}, x_k]$ выберем точку ξ_k и определим интегральную сумму

$$\sigma = \sum_{k=1}^{n} f(\xi_k) \Delta x_k. \tag{22.1}$$

Замечание 22.1 Рассмотрим фигуру ограниченную прямыми y=0, x=a, x=b и графиком неотрицательной функции y=f(x). Такая фигура называется криволинейной трапецией. Величина $f(\xi_k)\Delta x_k$ составляет площадь прямоугольника, основанием которого является горизонтальный отрезок $[x_{k-1},x_k]$, а высотой – вертикальный отрезок $[0,f(\xi_k)]$. Интегральная сумма σ – сумма площадей таких прямоугольников – дает приближенное значение площади криволинейной трапеции.

Рис. 5: Геометрический смысл интегральной суммы

Определение 22.1 Функция $f:[a,b] \to \mathbb{R}$ называется интегрируемой по Риману на отрезке [a,b] (далее интегрируемой), если существует число I такое, что

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall \{x_k\}_{k=0}^n \subset [a,b], \ \delta\{x_k\} \leq \delta(\varepsilon), \forall \xi_k \in [x_{k-1},x_k] \Rightarrow \left| \sum_{k=1}^n f(\xi_k) \Delta x_k - I \right| \leq \varepsilon.$$

B этом случае число I называют определенным интегралом Pимана (далее определенным интегралом) от функции f на отреже [a,b]. Π ишут

$$I = \int_{a}^{b} f(x)dx.$$

Лемма 22.1 (М-лемма интегрируемости). Если существуют числа I, М такие, что

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall \{x_k\}_{k=0}^n \subset [a,b], \ \delta\{x_k\} \leq \delta(\varepsilon), \forall \xi_k \in [x_{k-1},x_k] \Rightarrow \left| \sum_{k=1}^n f(\xi_k) \Delta x_k - I \right| \leq M\varepsilon,$$

то функция f интегрируема на отрезке [a,b].

Теорема 22.1 (первое необходимое условие интегрируемости). Пусть функция f:[a,b] является интегрируемой. Тогда для любой последовательности разбиений $\{x_k^m\}_{k=0}^{n_m}, m \in \mathbb{N},$ с диаметрами разбиения $\delta_m \underset{m \to \infty}{\to} 0$ при любом выборе точек $\xi_k^m \in [x_{k-1}^m, x_k^m]$ последовательность интегральных сумм

$$\sigma_m = \sum_{k=1}^{n_m} f(\xi_k^m) \Delta x_k^m$$

cxodumcs к $\int_a^b f(x)dx$ npu $m \to \infty$.

 \Diamond

Возьмем произвольное $\varepsilon > 0$ и найдем соответствующее $\delta(\varepsilon) > 0$ из определения 22.1. Так как $\lim_{m \to \infty} \delta_m = 0$, то найдется m_0 такое, что для всех $m \ge m_0$ выполняется неравенство

$$\delta_m \leq \delta(\varepsilon)$$
.

Из определения 22.1 для любых $m \ge m_0$ получаем

$$\left|\sigma_m - \int_a^b f(x)dx\right| \le \varepsilon,$$

откуда вытекает требуемая сходимость.

Теорема 22.2 (второе необходимое условие интегрируемости). Если функция $f:[a,b] \to \mathbb{R}$ интегрируема, то f ограничена.

 \Diamond

Предположим, что f неограничена на [a,b]. Возьмем произвольное разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b]. Существует отрезок $[x_{i-1},x_i]$, на котором функция f неограничена. Зафиксируем все точки ξ_k , участвующие в определении интегральной суммы, кроме точки x_i . В таком случае интегральную сумму можно рассматривать как функцию от $\xi_i \in [x_{i-1},x_i]$. Эта функция является неограниченной, поскольку f неограничена на $[x_{i-1},x_i]$. Таким образом,

$$\forall I \in \mathbb{R} \ \exists \varepsilon_0 = 1 \ \forall \delta > 0 \ \exists \{x_k\}_{k=0}^n \subset [a,b], \delta\{x_k\} \leq \delta, \exists \xi_k \in [x_{k-1},x_k] \Rightarrow \left| \sum_{k=1}^n f(\xi_k) \Delta x_k - I \right| > \varepsilon_0,$$

что противоречит определению интегрируемости функции f.

23 Критерий Коши. Интегрируемость непрерывной функции

Рассмотрим функцию $f:[a,b]\to\mathbb{R}$, а также две произвольные интегральные суммы σ и τ , соответствующие разбиениям $\{x_k\}_{k=0}^n$ и $\{z_r\}_{r=0}^s$ отрезка [a,b], т.е.

$$\sigma = \sum_{k=1}^{n} f(\xi_k) \Delta x_k, \ \tau = \sum_{r=1}^{s} f(\eta_r) \Delta z_r.$$

Теорема 23.1 (критерий Коши интегрируемости). Функция $f:[a,b] \to \mathbb{R}$ интегрируема тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \forall \{x_k\} : \delta\{x_k\} \leq \delta(\varepsilon), \ \forall \{z_r\} : \delta\{z_r\} \leq \delta(\varepsilon), \forall \xi_k, \forall \eta_r \Rightarrow |\sigma - \tau| \leq \varepsilon.$$

 \Diamond

Heoбxoдимость очевидным образом вытекает из определения 22.1 и неравенства $|\sigma-\tau| \leq |\sigma-I| + |\tau-I|$, где $I = \int\limits_a^b f(x) dx$.

Достаточность. Функция f является ограниченной на [a,b]. Действительно, если бы функция f была неограниченной, то разность $|\sigma - \tau|$ можно было бы сделать сколь угодно большой, фиксируя все точки ξ_k , η_r , кроме одной точки ξ_i из отрезка $[x_{i-1}, x_i]$, на котором функция неограничена (см. доказательство теоремы 22.1).

Так как f ограничена, то все интегральные суммы ограничены одной и той же постоянной:

$$\left| \sum_{k=1}^{n} f(\xi_k) \Delta x_k \right| \le \sum_{k=1}^{n} |f(\xi_k)| \Delta x_k \le M \sum_{k=1}^{n} \Delta x_k = M(b-a).$$

Возьмем последовательность интегральных сумм (τ_m) с диаметрами разбиения $\delta_m \underset{m \to \infty}{\to} 0$. Согласно принципу выбора существует сходящаяся подпоследовательность $\tau_{m_l} \underset{l \to \infty}{\to} A$.

Возьмем произвольное $\varepsilon>0$ и найдем $\delta(\varepsilon)$ из условия теоремы. Так как $\lim_{l\to\infty} \tau_{m_l}=A$ и $\lim_{l\to\infty} \delta_{m_l}=0$, то существует номер l_0 такой, что

$$|\tau_{m_{l_0}} - A| \le \varepsilon, \ \delta_{m_{l_0}} \le \delta(\varepsilon).$$

Тогда для любого разбиения $\{x_k\}_{k=0}^n: \delta\{x_k\} \leq \delta(\varepsilon)$, для любых $\xi_k \in [x_{k-1}, x_k]$ выполняется

$$|\sigma - A| \leq |\sigma - \tau_{m_{l_0}}| + |\tau_{m_{l_0}} - A| \leq \varepsilon + \varepsilon = 2\varepsilon.$$

Согласно М-лемме интегрируемости функция f является интегрируемой на отрезке [a,b]. \square

Интегрируемость непрерывной функции

Для разбиений $\{x_k\}_{k=0}^n, \{z_r\}_{r=0}^s$ отрезка [a,b] через Δ_{kr} обозначим длину пересечения двух отрезков $[x_{k-1},x_k], [z_{r-1},z_r]$. Такое пересечение может быть пустым для некоторых k,r, в таком случае $\Delta_{kr}=0$.

Лемма 23.1 Пусть $\delta_1, \, \delta_2$ – диаметры разбиений $\{x_k\}_{k=0}^n, \, \{z_r\}_{r=0}^s.$ Тогда

$$\sum_{k=1}^{n} f(\xi_k) \Delta x_k - \sum_{r=1}^{s} f(\eta_r) \Delta z_r = \sum_{k,r: |\xi_k - \eta_r| \le \delta_1 + \delta_2} (f(\xi_k) - f(\eta_r)) \Delta_{kr}.$$

 \Diamond

Так как

$$\sum_{k=1}^{n} \Delta_{kr} = \Delta z_r, \ \sum_{r=1}^{s} \Delta_{kr} = \Delta x_k,$$

ТΟ

$$\sum_{k=1}^{n} f(\xi_k) \Delta x_k - \sum_{r=1}^{s} f(\eta_r) \Delta z_r = \sum_{k=1}^{n} \sum_{r=1}^{s} f(\xi_k) \Delta_{kr} - \sum_{r=1}^{s} \sum_{k=1}^{n} f(\eta_r) \Delta_{kr} = \sum_{k=1}^{n} \sum_{r=1}^{s} (f(\xi_k) - f(\eta_r)) \Delta_{kr}.$$

Если $|\xi_k - \eta_r| > \delta_1 + \delta_2$, то отрезки $[x_{k-1}, x_k], [z_{r-1}, z_r]$ не пересекаются, и в этом случае $\Delta_{kr} = 0$.

Теорема 23.2 (теорема об интегрируемости непрерывной функции). Если функция $f:[a,b] \to \mathbb{R}$ непрерывна, то f интегрируема на отрезке [a,b].

 \Diamond

По теореме Кантора функция f равномерна непрерывна на отрезке [a,b], т.е.

$$\forall \varepsilon > 0 \ \exists \delta \bigg(\frac{\varepsilon}{b-a}\bigg) > 0, \forall x', x'' \in [a,b]: |x'-x''| \leq \delta \bigg(\frac{\varepsilon}{b-a}\bigg) \Rightarrow |f(x')-f(x'')| \leq \frac{\varepsilon}{b-a}.$$

Возьмем две произвольные интегральные суммы σ , τ с диаметрами разбиения, меньшими $\frac{1}{2}\delta(\frac{\varepsilon}{b-a})$. Тогда по лемме 23.1 получаем

$$|\sigma - \tau| = \left| \sum_{k,r: |\xi_k - \eta_r| \le \delta(\frac{\varepsilon}{b-a})} (f(\xi_k) - f(\eta_r)) \Delta_{kr} \right| \le \sum_{k,r: |\xi_k - \eta_r| \le \delta(\frac{\varepsilon}{b-a})} |f(\xi_k) - f(\eta_r)| \Delta_{kr} \le \varepsilon.$$

Согласно критерию Коши функция f интегрируема на отрезке [a,b].

Замечание 23.1 Условие непрерывности функции f не является неоходимым для интегрируемости функции. Например, функция $f(x) = \operatorname{sgn}(x)$ не является непрерывной на отрезке [-1,1], тем не менее эта функция интегрируема на этом отрезке u

$$\int_{-1}^{1} \operatorname{sgn}(x) dx = 0.$$

А условие ограниченности функции f не является достаточным для интегрируемости. Функция Дирихле D(x), принимающая значение 1 в рациональных точках и принимающая значение 0 в иррациональных точках, не явлется интегрируемой ни на каком отрезке [a,b], a < b, поскольку при любом сколь угодно малом разбиении отрезка можно построить интегральные суммы, равные b-a и 0 (соответственно выбирая точки ξ_k рациональными в первом случае и иррациональными во втором случае).

24 Геометрический смысл определенного интеграла

Фигурой будем называть любое непустое ограниченное множество точек на плоскости Oxy. Прямоугольником будем называть множество точек вида

$$P = \{(x, y) \in \mathbb{R}^2 : x \in |a, b|, y \in |c, d|\},\$$

где $a \le b, c \le d$ – некоторые числа. Площадь прямоугольника P полагают равной (b-a)(d-c) по определению.

Фигура называется простой, если ее можно представить как объединение конечного числа прямоугольников. Площадь простой фигуры по определению равна сумме площадей прямоугольников, из которых она состоит.

Для каждой фигуры Ф определим два числа

$$s_* = \sup_{P_* \subset \Phi} \{ \text{пл.} P_* \}, \ s^* = \inf_{\Phi \subset P^*} \{ \text{пл.} P^* \},$$

где супремум и инфимум берутся соответственно по всем вписанным простым фигурам P_* в фигуру Φ и описанным простым фигурам P^* около фигуры Φ .

Если $s_* = s^*$, то фигуру Φ называют измеримой по Жордану (далее измеримой), а величину $s = s_* = s^*$ принимают за меру (площадь) фигуры Φ .

Теорема 24.1 (критерий измеримости). Фигура Φ измеримая тогда и только тогда, когда для любого $\varepsilon > 0$ существуют измеримые фигуры Φ_* , Φ^* такие, что

$$\Phi_* \subset \Phi \subset \Phi^*, \ n \Lambda \cdot \Phi^* - n \Lambda \cdot \Phi_* < \varepsilon.$$

 \Diamond

Heoбxoдимость. Возьмем произвольное $\varepsilon > 0$. Так как фигура Φ измеримая, то существуют простые вписанная и описанная фигуры P_* , P^* такие, что пл. Φ – пл. $P_* \leq \frac{\varepsilon}{2}$, пл. P^* – пл. $\Phi \leq \frac{\varepsilon}{2}$. Следовательно, пл. P^* – пл. $P_* \leq \varepsilon$. Поэтому можно взять $\Phi_* = P_*$, $\Phi^* = P^*$. Достаточность. Предположим, что фигура Φ не является измеримой, т.е.

$$s^* - s_* = q > 0. (24.1)$$

По условию теоремы можно найти измеримые фигуры Φ_* , Φ^* такие, что

$$\Phi_* \subset \Phi \subset \Phi^*, \ \Pi \Pi \cdot \Phi^* - \Pi \Pi \cdot \Phi_* \le q/4. \tag{24.2}$$

Так как фигуры Φ_* , Φ^* измеримые, то существуют простые фигуры P_* , P^* такие, что

$$P_* \subset \Phi_*, \ P^* \subset \Phi^*, \ \text{пл.} P^* - \text{пл.} \Phi^* \le q/4, \ \text{пл.} \Phi_* - \text{пл.} P_* \le q/4.$$
 (24.3)

Из неравенств (24.2) и (24.3) получаем

$$\Pi \Pi P^* - \Pi \Pi P_* < 3q/4. \tag{24.4}$$

Поскольку простые фигуры P_* , P^* соответственно вписаны и описаны относительно фигуры Φ , то неравенство (24.4) противоречит неравенству (24.1). Следовательно, фигура Φ измерима.

Следствие 24.1 Пусть фигура Φ является измеримой. Тогда пл. $\Phi = \sup\{n \pi. \Phi_*\} = \inf\{n \pi. \Phi^*\}$, где супремум и инфимум берутся соответственно по всем вписанным и описанным измеримым фигурам Φ_* , Φ^* .

Пример 24.1 Пусть Φ – фигура, состоящая из точек, лежащих внутри квадрата $[0,1]^2$ и имеющих рациональные координаты.

Покажем, что фигура Φ из определения 24.1 не является измеримой. Действительно, в силу плотности множества рациональных чисел во множестве действительных чисел получаем, что $s^*=1, s_*=0$.

Замечание 24.1 Если в определении простой фигуры допустить не более чем счетные объединения попарно непересекающихся прямоугольников, то приходим к определению меры Лебега. Можно доказать, что если фигура измерима по Жордану, то она измерима по Лебегу, и значения мер совпадают. Обратное неверно: в частности, фигура из примера 24.1 имеет нулевую меру Лебега.

Площадь криволинейной трапеции

Рассмотрим криволинейную трапецию Φ , ограниченную прямыми y=0, x=a, x=b и графиком непрерывной неотрицательной функции y=f(x).

Возьмем произвольное разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b]. Согласно теореме Вейерштрасса существует точка максимума $\overline{\xi}_k$ и точка минимума $\underline{\xi}_k$ функции f на отрезке $[x_{k-1},x_k]$.

Построим верхнюю и нижнюю интегральные суммы Дарбу

$$\overline{\sigma} = \sum_{k=1}^{n} f(\overline{\xi}_k) \Delta x_k, \ \underline{\sigma} = \sum_{k=1}^{n} f(\underline{\xi}_k) \Delta x_k.$$

Эти суммы соответствуют площадям простых фигур, описанной и вписанной относительно криволинейной трапеции Ф.

Теперь возьмем последовательность разбиений $\{x_k^m\}_{k=0}^{n_m}$ отрезка [a,b] с диаметрами разбиения $\delta_m \underset{m \to \infty}{\to} 0$ и определим соответствующие интегральные суммы Дарбу

$$\overline{\sigma}_m = \sum_{k=1}^{n_m} f(\overline{\xi}_k^m) \Delta x_k^m, \ \underline{\sigma}_m = \sum_{k=1}^{n_m} f(\underline{\xi}_k^m) \Delta x_k^m.$$

Согласно теореме об интегрируемости непрерывной функции существует интеграл $\int_a^b f(x)dx$. Из первого необходимого условия интегрируемости вытекает, что

$$\lim_{m \to \infty} \overline{\sigma}_m = \lim_{m \to \infty} \underline{\sigma}_m = \int_a^b f(x) dx.$$

Отсюда и из критерия измеримости вытекает, что криволинейная трапеция Φ измерима. А из следствия 24.1 вытекает, что пл. $\Phi = \int\limits_a^b f(x) dx$.

Площадь криволинейного сектора

Криволинейным сектором Φ называется фигура, ограниченная полярными лучами $\varphi = \alpha$, $\varphi = \beta \ (0 \le \alpha < \beta \le 2\pi)$ и графиком непрерывной неотрицательной функции $r = r(\varphi)$, $\varphi \in [\alpha, \beta]$.

Возьмем произвольное разбиение $\{\varphi_k\}_{k=0}^n$ отрезка $[\alpha,\beta]$. Согласно теореме Вейерштрасса существует точка максимума $\overline{\tau}_k$ и точка минимума $\underline{\tau}_k$ функции $r(\varphi)$ на отрезке $[\varphi_{k-1},\varphi_k]$.

Построим верхнюю и нижнюю интегральные суммы Дарбу

$$\overline{\sigma} = \sum_{k=1}^{n} \frac{1}{2} r^2(\overline{\tau}_k) \Delta \varphi_k, \ \underline{\sigma} = \sum_{k=1}^{n} \frac{1}{2} r^2(\underline{\tau}_k) \Delta \varphi_k.$$

Эти суммы соответствуют площадям описанной и вписанной фигур Φ^* , Φ_* , состоящих из n круговых секторов. Отметим, что любой круг является измеримым, как фигура, состоящая из двух криволинейных трапеций. Отсюда очевидным образом вытекает измеримость кругового сектора и, как следствие, измеримость фигур Φ^* , Φ_* .

Возьмем последовательность разбиений $\{\varphi_k^m\}_{k=0}^{n_m}$ отрезка $[\alpha,\beta]$ с диаметрами разбиения $\delta_m \underset{m \to \infty}{\to} 0$ и определим соответствующие интегральные суммы Дарбу

$$\overline{\sigma}_m = \sum_{k=1}^{n_m} \frac{1}{2} r^2(\overline{\tau}_k^m) \Delta \varphi_k^m, \ \underline{\sigma}_m = \sum_{k=1}^{n_m} \frac{1}{2} r^2(\underline{\tau}_k^m) \Delta \varphi_k^m.$$

Согласно теореме об интегрируемости непрерывной функции интеграл $\int_{\alpha}^{\beta} \frac{1}{2} r^2(\varphi) d\varphi$ существует, а из первого необходимого условия интегрируемости вытекает, что

$$\lim_{m \to \infty} \overline{\sigma}_m = \lim_{m \to \infty} \underline{\sigma}_m = \int_{\alpha}^{\beta} \frac{1}{2} r^2(\varphi) d\varphi.$$

Отсюда и из критерия измеримости вытекает, что криволинейная трапеция Φ измерима. А из следствия 24.1 вытекает, что пл. $\Phi=\frac{1}{2}\int\limits_{\alpha}^{\beta}r^{2}(\varphi)d\varphi$.

Рис. 6: Криволинейная трапеция и криволинейный сектор

25 Длина кривой

Пусть заданы непрерывные функции x(t), y(t) на отрезке [a,b]. Отображение $M: t \to (x(t),y(t)), t \in [a,b]$, называется кривой на плоскости.

Точка M(a) называется началом кривой, точка M(b) – концом кривой. Кривая называется замкнутой, если ее начало и конец совпадают.

Кривая называется простой, если она не содержит точек самопересечения, т.е. любые две точки кривой $M(t_1), M(t_2)$ ($t_1 < t_2$) либо различны, либо являются началом и концом кривой.

Кривая называется гладкой, если функции x(t), y(t) непрерывно дифференцируемые на отрезке [a,b] и $(x'(t))^2 + (y'(t))^2 > 0 \ \forall t \in (a,b)$.

Пример 25.1 Функции $x(t) = \cos t$, $y(t) = \sin t$, $t \in [0, 2\pi]$, задают единичную окруженость на плоскости Оху. Данная окруженость является простой замкнутой гладкой кривой. Если в данном примере заменить отрезок $[0, 2\pi]$ на отрезок $[0, 4\pi]$, то получим другую кривую, несмотря на то, что множества точек, лежащих на этих кривых совпадают.

Рассмотрим простую кривую l, имеющую параметрическое уравнение x=x(t), y=y(t), $t\in [a,b]$. Возьмем некоторое разбиение $\{t_k\}_{k=0}^n$ отрезка [a,b] и рассмотрим ломаную $L=M_0M_1\ldots M_n$, вписанную в кривую l, где M_i – точка с координатами $(x(t_i),y(t_i))$. Кривая l называется спрямляемой, если величина $\sup\{\mathrm{дл.}L\}$ конечна, где супремум берется по всем ломаным L, вписанным в кривую l. Если кривая l называется спрямляемой, то величину $\sup\{\mathrm{дл.}L\}$ принимают за длину кривой l.

Теорема 25.1 (теорема о длине кривой). Пусть кривая l, имеющая параметрическое уравнение $x=x(t),\,y=y(t),\,t\in[a,b],$ является простой и гладкой. Тогда кривая l является спрямляемой и ее длине находится по формуле

$$\partial n.l = \int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$

 \Diamond Докажем, что кривая l является спрямляемой. Рассмотрим произвольную ломаную L, вписанную в кривую l. Длина ломаной $L=M_0\dots M_n$ находится следующим образом:

дл.
$$L = \sum_{k=1}^{n} \sqrt{(x(t_k) - x(t_{k-1}))^2 + (y(t_k) - y(t_{k-1}))^2}.$$

Применяя теорему Лагранжа, получим, что

дл.
$$L = \sum_{k=1}^{n} \sqrt{(x'(\xi_k))^2 + (y'(\eta_k))^2} \Delta t_k,$$

где $\xi_k, \eta_k \in [t_{k-1}, t_k]$. По теореме Вейерштрасса существует постоянная M > 0 такая, что

$$\sup_{t \in [a,b]} |x'(t)| \le M, \ \sup_{t \in [a,b]} |y'(t)| \le M.$$

Отсюда получаем

дл.
$$L \leq \sqrt{2}M(b-a)$$
.

В силу теоремы о гранях существует конечный $\sup\{дл.L\}$, следовательно, кривая l является спрямляемой.

Возьмем последовательность ломаных L_m , $m \in \mathbb{N}$, так, чтобы дл. $L_m \underset{m \to \infty}{\to}$ дл.l, а диаметры δ_m разбиений $\{t_k^m\}_{k=0}^{n_m}$ отрезка [a,b], соответствующих ломаным L_m , стремились к нулю при $m \to \infty$.

Имеем

дл.
$$L_m = \sum_{k=1}^{n_m} \sqrt{(x'(\xi_k^m))^2 + (y'(\eta_k^m))^2} \Delta t_k^m = \sum_{k=1}^{n_m} \sqrt{(x'(\xi_k^m))^2 + (y'(\xi_k^m))^2} \Delta t_k^m + A_m,$$
 (25.1)

где

$$A_m = \sum_{k=1}^{n_m} (y'(\eta_k^m) - y'(\xi_k^m)) \frac{y'(\eta_k^m) + y'(\xi_k^m)}{\sqrt{(x'(\xi_k^m))^2 + (y'(\eta_k^m))^2}} \Delta t_k^m.$$

Легко видеть, что дробь в правой части последнего соотношения по модулю не превосходит 1. Кроме того,

$$|y'(\eta_k^m) - y'(\xi_k^m)| \le W(y', \{t_k^m\}),$$

где $W(y',\{t_k^m\})$ – колебание функции y'(t) по разбиению $\{t_k^m\}$.

Следовательно, получаем оценку

$$|A_m| \le W(y', \{t_k^m\}) \sum_{k=1}^{n_m} \Delta t_k^m = (b-a)W(y', \{t_k^m\}).$$

Так как $\delta_m \underset{m \to \infty}{\longrightarrow} 0$, то согласно теореме о колебании непрерывной функции

$$\lim_{m \to \infty} |A_m| \le (b - a) \lim_{m \to \infty} W(y', \{t_k^m\}) = 0.$$
 (25.2)

Функция $\sqrt{(x'(t))^2 + (y'(t))^2}$ непрерывна на отрезке [a,b] и, следовательно, интегрируема на этом отрезке. Поэтому из первого необходимого условия интегрируемости получаем, что

$$\lim_{m \to \infty} \sum_{k=1}^{n_m} \sqrt{(x'(\xi_k^m))^2 + (y'(\eta_k^m))^2} \Delta t_k^m = \int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} dt.$$
 (25.3)

Таким образом, из (25.1), (25.2), (25.3) вытекает требуемая формула для длины кривой l. \square

Следствие 25.1 Если простая гладкая кривая l задается явно в декартовых координатах, т.е. $y = f(x), x \in [a, b],$ то, полагая x = t, y = f(t), находим, что

$$\partial A.l = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx.$$

Если простая гладкая кривая l задается в полярных координатах $x=r(\varphi)\cos\varphi,\ y=r(\varphi)\sin\varphi,\ \varphi\in[\alpha,\beta],$ то получаем

$$\partial a.l = \int_{\alpha}^{\beta} \sqrt{((r(\varphi)\cos\varphi)')^2 + ((r(\varphi)\sin\varphi)')^2} d\varphi = \int_{\alpha}^{\beta} \sqrt{r^2(\varphi) + (r'(\varphi))^2} d\varphi.$$

26 Свойства определенного интеграла. Методы вычисления

Пусть f(x) – интегрируемая на отрезке [a,b] функция. По определению полагаем

$$\int_{b}^{a} f(x)dx := -\int_{a}^{b} f(x)dx, \int_{a}^{a} f(x)dx := 0.$$

1. Линейность. Если функции f(x), g(x) интегрируемы на [a,b], то для любых α , $\beta \in \mathbb{R}$ функция $\alpha f(x) + \beta g(x)$ интегрируема на [a,b], и

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$
 (26.1)

 \diamondsuit Так как f, g интегрируемы на [a, b], то

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall \{x_k\}_{k=0}^n : \delta\{x_k\} \le \delta(\varepsilon), \ \forall \xi_k \in [x_{k-1}, x_k] \Rightarrow$$

$$\left| \sum_{k=1}^{n} f(\xi_k) \Delta x_k - \int_{a}^{b} f(x) dx \right| \le \varepsilon, \ \left| \sum_{k=1}^{n} g(\xi_k) \Delta x_k - \int_{a}^{b} g(x) dx \right| \le \varepsilon.$$

Отсюда получаем

$$\left| \sum_{k=1}^{n} (\alpha f(\xi_k) + \beta g(\xi_k)) \Delta x_k - \int_{a}^{b} (\alpha f(x) + \beta g(x)) dx \right| \le |\alpha| \varepsilon + |\beta| \varepsilon.$$

Согласно М-лемме к определению интеграла Римана, получаем, что функция $\alpha f(x) + \beta g(x)$ интегрируема на [a,b] и выполняется равенство (26.1). \square

2. Монотонность. Пусть функции f(x), g(x) интегрируемы на [a,b], и $f(x) \leq g(x) \ \forall x \in [a,b]$. Тогда

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

 \Diamond Возьмем последовательность разбиений $\{x_k^m\}_{k=0}^{n_m}$ отрезка [a,b] с диаметрами разбиения $\delta_m \underset{m \to \infty}{\to} 0$. Так как $f(x) \leq g(x) \ \forall x \in [a,b],$ то для любого m имеем

$$\sum_{k=1}^{n_m} f(\xi_k^m) \Delta x_k^m \le \sum_{k=1}^{n_m} g(\xi_k^m) \Delta x_k^m.$$

Переходя к пределу в этих неравенствах при $m \to \infty$, используя при этом первое необходимое условие интегрируемости, получаем

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

3. $A\partial \partial umuвность$. Пусть функция f непрерывна на отрезке [a,b]. Тогда для любых α , β , $\gamma \in [a,b]$ справедливо равенство

$$\int_{\alpha}^{\beta} f(x)dx = \int_{\alpha}^{\gamma} f(x)dx + \int_{\gamma}^{\beta} f(x)dx.$$

 \Diamond Пусть $\alpha \leq \gamma \leq \beta$. Так как функция f непрерывна на каждом отрезков $[\alpha, \beta]$, $[\alpha, \gamma]$, $[\beta, \gamma]$, то она интегрируема на каждом из этих отрезков. Возьмем последовательность разбиений $\{x_k^m\}_{k=0}^{n_m}$ с диаметрами разбиения $\delta_m \underset{m \to \infty}{\to} 0$ такую, что точка γ совпадает с одной из точек разбиения, назовем ее $x_{l_m}^m$. Рассмотрим интегральную сумму

$$\sum_{k=1}^{n_m} f(\xi_k^m) \Delta x_k^m = \sum_{k=1}^{l_m} f(\xi_k^m) \Delta x_k^m + \sum_{k=l_m+1}^{n_m} f(\xi_k^m) \Delta x_k^m.$$

Переходя к пределу при $m \to \infty$, используя первое необходимое условие интегрируемости, получаем

$$\int_{\alpha}^{\beta} f(x)dx = \int_{\alpha}^{\gamma} f(x)dx + \int_{\gamma}^{\beta} f(x)dx.$$

4. *Теорема о среднем*. Если функция f непрерывна на отрезке [a,b], то существует точка $c \in [a,b]$ такая, что

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Иными словами, существует точка $c \in [a,b]$ такая, что площадь прямоугольника $[a,b] \times [0,f(c)]$ равна площади криволинейной трапеции, ограниченной линиями $y=0,\,x=a,\,x=b,\,y=f(x).$

 \Diamond По теореме Вейерштрасса существуют $m=\min_{x\in[a,b]}f(x),\ M=\max_{x\in[a,b]}f(x).$ Возьмем последовательность разбиений $\{x_k^m\}_{k=0}^{n_m}$ отрезка [a,b] с диаметрами разбиения $\delta_m\underset{m\to\infty}{\to}0.$ Имеют место следующие оценки для интегральных сумм

$$m\sum_{k=1}^{n_m} \Delta x_k^m \le \sum_{k=1}^{n_m} f(\xi_k^m) \Delta x_k^m \le M \sum_{k=1}^{n_m} \Delta x_k^m.$$

Переходя к пределу при $m \to \infty$, получаем

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a).$$

Так как $\frac{1}{b-a} \int_a^b f(x) dx \in [m, M]$, то по теореме о промежуточных значениях непрерывно функции существует $c \in [a, b]$ такое, что

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$$

- 5. Теорема Барроу. Пусть функция f непрерывна на отрезке [a,b]. Тогда интеграл с переменным верхним пределом $F(x) = \int\limits_a^x f(t)dt, \ x \in [a,b]$, является первообразной для функции f(x), т.е. $F'(x) = f(x) \ \forall x \in [a,b]$.
 - \diamondsuit Возьмем произвольную точку $x_0 \in [a,b]$. Пусть для определенности x_0 внутренняя точка отрезка [a,b]. Применяя теорему о среднем и используя непрерывность функции f, получаем

$$F'(x_0) = \lim_{\Delta x \to 0} \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t)dt = \lim_{\Delta x \to 0} f(c_{\Delta x}) = f(x_0),$$

где $c_{\Delta x}$ – некоторая точка, лежащая между x_0 и $x_0+\Delta x$. \square

Методы вычисления определенных интегралов

Формула Ньютона-Лейбница

Пусть F(x) – первообразная для непрерывной функции $f(x), x \in [a, b]$. Выражение

$$F(x)\Big|_{a}^{b} = F(b) - F(a)$$

называют двойной подстановкой.

Из теоремы Барроу вытекает следующая формула Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = \int f(x)dx \bigg|_{a}^{b},$$

которая связывает определенный и неопределенный интегралы.

Замена переменной

Пусть $f:[a,b]\to\mathbb{R}$ – непрерывная функция, $\varphi:[\alpha,\beta]\to[a,b]$ – непрерывно дифференцируемая биективная функция, $\varphi(\alpha)=a,\,\varphi(\beta)=b.$ Тогда

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$
 (26.2)

 \diamondsuit Пусть $F(x)=\int\limits_a^x f(t)dt,\,x\in[a,b].$ Согласно формуле Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(\varphi(\beta)) - F(\varphi(\alpha)).$$

Так как $(F(\varphi(t)))' = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$, то согласно формуле Ньютона-Лейбница имеем

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = F(\varphi(\beta)) - F(\varphi(\alpha)).$$

Требуемая формула замены переменных (26.2) доказана. \square

Интегрирование по частям

Пусть функции u(x), v(x) непрерывно дифференцируемы на отрезке [a,b]. Тогда

$$\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx.$$

 \Diamond

По формуле Ньютона-Лейбница и формуле интегрирования по частям для неопределенного интеграла получаем

$$\int_{a}^{b} u(x)v'(x)dx = \int u(x)v'(x)dx \Big|_{a}^{b} = \left(u(x)v(x) - \int v(x)u'(x)dx\right)\Big|_{a}^{b} =$$

$$= u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx.$$

Пример 26.1

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \left[x = \sin t, t \in [0, \pi/2] \right] = \int_{0}^{\pi/2} \cos^{2} t dt = \frac{1}{2} \int_{0}^{\pi/2} (1 + \cos 2t) dt =$$
$$= \frac{1}{2} (t + \frac{1}{2} \sin 2t) \Big|_{0}^{\pi/2} = \frac{\pi}{4}.$$

Пример 26.2

$$\int_{1}^{2} \ln x dx = \left[u = \ln x, dv = dx, du = dx/x, v = x \right] = x \ln x \Big|_{1}^{2} - \int_{1}^{2} dx = 2 \ln 2 - 1.$$

27 Критерий Дарбу. Классы интегрируемых функций

Рассмотрим функцию $f:[a,b] \to \mathbb{R}$ и разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b]. Определим интегральное колебание функции f по разбиению $\{x_k\}$:

$$\Omega(f, \{x_k\}) := \sum_{k=1}^n \omega(f, [x_{k-1}, x_k]) \Delta x_k,$$

где

$$\omega(f, [x_{k-1}, x_k]) = \sup_{\xi, \eta \in [x_{k-1}, x_k]} |f(\xi) - f(\eta)|.$$

Теорема 27.1 (необходимое условие Дарбу интегрируемости). Если функция f(x) интегрируема на отрезке [a,b], то

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon), \forall \{x_k\}_{k=0}^n : \delta\{x_k\} \leq \delta(\varepsilon) \Rightarrow \Omega(f, \{x_k\}) \leq \varepsilon.$$

 \Diamond Возьмем произвольное $\varepsilon > 0$. Используя критерий Коши интегрируемости, получаем

$$\exists \delta(\varepsilon) > 0, \forall \{x_k\}_{k=0}^n : \delta\{x_k\} \le \delta(\varepsilon), \forall \xi_k, \eta_k \in [x_{k-1}, x_k] \Rightarrow \left| \sum_{k=1}^n f(\xi_k) \Delta x_k - \sum_{k=1}^n f(\eta_k) \Delta x_k \right| \le \frac{\varepsilon}{2}.$$
(27.1)

Возьмем произвольное разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b] с диаметром разбиения $\delta\{x_k\} \leq \delta(\varepsilon)$. По определению точной верхней грани на каждом отрезке $[x_{k-1},x_k]$ можно найти точки ξ_k,η_k такие, что

$$\sup_{\xi,\eta \in [x_{k-1},x_k]} |f(\xi) - f(\eta)| \le f(\xi_k) - f(\eta_k) + \frac{\varepsilon}{2(b-a)}.$$
 (27.2)

Из соотношений (27.1), (27.2) получаем

$$\Omega(f, \{x_k\}) = \sum_{k=1}^{n} \sup_{\xi, \eta \in [x_{k-1}, x_k]} |f(\xi) - f(\eta)| \Delta x_k \le \sum_{k=1}^{n} \left(f(\xi_k) - f(\eta_k) + \frac{\varepsilon}{2(b-a)} \right) \Delta x_k \le \sum_{k=1}^{n} (f(\xi_k) - f(\eta_k)) \Delta x_k + \frac{\varepsilon}{2} = \varepsilon.$$

Теорема 27.2 (достаточное условие Дарбу интегрируемости). Если для любого $\varepsilon > 0$ существует разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b] такое, что $\Omega(f,\{x_k\}) \leq \varepsilon$, то функция f интегрируема на отрезке [a,b].

 \diamondsuit Зафиксируем произвольное arepsilon>0. Возьмем разбиение $\{x_k\}$ отрезка [a,b] такое, что

$$\Omega(f, \{x_k\}) \le \frac{\varepsilon}{4},$$

и рассмотрим соответствующую интегральную сумму

$$\sigma = \sum_{k=1}^{n} f(\xi_k) \Delta x_k.$$

Докажем, что функция f ограничена. Предположим противное, тогда существует отрезок $[x_{i-1}, x_i]$, на котором функция f неограничена. Тогда

$$\Omega(f, \{x_k\}) \ge \sup_{\xi, \eta \in [x_{i-1}, x_i]} |f(\xi) - f(\eta)| \Delta x_i = \infty,$$

что противоречит неравенству $\Omega(f, \{x_k\}) \leq \frac{\varepsilon}{4}$. Таким образом, существует постоянная M такая, что $|f(x)| \leq M \ \forall x \in [a, b]$.

Возьмем произвольные разбиения $\{z_r\}_{r=0}^s,\ \{y_l\}_{l=0}^m$ отрезка [a,b] с диаметрами $\delta\{z_j\}\leq \frac{\varepsilon}{8Mn},\ \delta\{y_l\}\leq \frac{\varepsilon}{8Mn}$ и рассмотрим произвольные интегральные суммы по этим разбиениям:

$$\tau = \sum_{r=1}^{s} f(\eta_r) \Delta z_r, \ \rho = \sum_{l=1}^{m} f(\zeta_l) \Delta y_l.$$

Обозначим через Δ_{kr} длину пересечения отрезков $[x_{k-1},x_k], [z_{r-1},z_r]$. Имеем

$$\sigma - \tau = \sum_{k=1}^{n} f(\xi_k) \Delta x_k - \sum_{r=1}^{s} f(\eta_r) \Delta z_r = \sum_{k=1}^{n} \sum_{r=1}^{s} (f(\xi_k) - f(\eta_r)) \Delta_{kr} =$$

$$= \sum_{k,r:[z_{r-1},z_r] \subset [x_{k-1},x_k]} (f(\xi_k) - f(\eta_r)) \Delta_{kr} + \sum_{k,r:[z_{r-1},z_r] \not\subset [x_{k-1},x_k]} (f(\xi_k) - f(\eta_r)) \Delta_{kr} := \Sigma_1 + \Sigma_2.$$

Оценим слагаемое Σ_1 :

$$|\Sigma_{1}| \leq \sum_{k=1}^{n} \sum_{r=1}^{s} \omega(f, [x_{k-1}, x_{k}]) \Delta_{kr} = \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_{k}]) \sum_{r=1}^{s} \Delta_{kr} =$$

$$= \sum_{k=1}^{n} \omega(f, [x_{k-1}, x_{k}]) \Delta x_{k} = \Omega(f, \{x_{k}\}) \leq \frac{\varepsilon}{4}.$$
(27.3)

Оценим слагаемое Σ_2 . Так как $[z_{r-1},z_r]\not\subset [x_{k-1},x_k]$, то либо отрезки $[z_{r-1},z_r]$, $[x_{k-1},x_k]$ не пересекаются, либо отрезок $[z_{r-1},z_r]$ содержит хотя бы один из концов отрезка $[x_{k-1},x_k]$. В первом случае $\Delta_{kr}=0$. Таким образом, существует не более n значений индекса r, при которых отрезок $[z_{r-1},z_r]$ имеет непустое пересечение хотя бы с одним из отрезков $[x_{k-1},x_k]$. Обозначим эти индексы через r_1,\ldots,r_t $(t\leq n)$. Таким образом получаем оценку:

$$|\Sigma_{2}| \leq \sum_{j=1}^{t} \sum_{k=1}^{n} |f(\xi_{k}) - f(\eta_{r_{j}})| \Delta_{kr_{j}} \leq 2M \sum_{j=1}^{t} \sum_{k=1}^{n} \Delta_{kr_{j}} =$$

$$= 2M \sum_{j=1}^{t} \Delta z_{r_{j}} \leq 2Mt \max_{j} \Delta z_{r_{j}} \leq 2Mn \frac{\varepsilon}{8Mn} = \frac{\varepsilon}{4}.$$
(27.4)

Из соотношений (27.3), (27.4) вытекает, что $|\sigma-\tau|\leq \frac{\varepsilon}{2}$. Аналогично доказывается, что $|\sigma-\rho|\leq \frac{\varepsilon}{2}$. Отсюда получаем

$$|\tau - \rho| \le |\sigma - \tau| + |\sigma - \rho| \le \varepsilon.$$

Согласно критерию Коши интегрируемости функция f интегрируема на отрезке [a,b]. \square

Замечание 27.1 Из теорем 27.1 и 27.2 вытекает, что существование хотя бы одного разбиения со сколь угодно малым интегральным колебанием обеспечивает малость интегральных колебаний для всех разбиений с достаточно малым диаметром.

Замечание 27.2 Необходимое и достаточное условия Дарбу позволяют перенести свойство аддитивности определенного интеграла, доказанное в предыдущем параграфе, на все интегрируемые на отрезке [a,b] функции f(x). Действительно, если функция f интегрируема на [a,b], то согласно необходимому условию Дарбу интегральное колебание $\Omega(f,\{x_k\})$ может быть сделано сколь угодно малым по всем разбиениям $\{x_k\}$ отрезка [a,b] с достаточно малым диаметром разбиения. Тогда на отрезках [a,c], [c,b] (a < c < b) интегральные колебания также могут быть сделаны сколь угодно малыми. Поэтому в силу достаточного условия Дарбу функция f интегрируема на отрезках [a,c], [c,b]. Аналогично, из интегрируемости функции на отрезках [a,c], [c,b] вытекает ее интегрируемость на отрезке [a,b].

Классы интегрируемых функций

- 1. Если функция $f:[a,b] \to \mathbb{R}$ непрерывна, то f интегрируема на отрезке [a,b].
- 2. Если функция $f:[a,b] \to \mathbb{R}$ монотонна, то f интегрируема на отрезке [a,b]. \diamondsuit Пусть функция f возрастающая на отрезке [a,b]. Зафиксируем произвольное $\varepsilon > 0$. Возьмем произвольное разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b] с диаметром разбиения $\delta \le$

$$\omega(f, [x_{k-1}, x_k]) = f(x_k) - f(x_{k-1}),$$

то

 $\frac{\varepsilon}{f(b)-f(a)}$. Tak kak

$$\Omega(f, \{x_k\}) = \sum_{k=1}^n \omega(f, [x_{k-1}, x_k]) \Delta x_k \le \delta \sum_{k=1}^n (f(x_k) - f(x_{k-1})) = \delta(f(b) - f(a)) \le \varepsilon.$$

По достаточному условию Дарбу функция f интегрируема на отрезке [a,b]. \square

- 3. Если функция $f:[a,b] \to \mathbb{R}$ ограничена на [a,b] и интегрируема на каждом отрезке $[\alpha,\beta],\ a<\alpha<\beta< b,$ то функция f интегрируема на [a,b].
 - \Diamond Существует постоянная M>0 такая, что $|f(x)|\leq M\ \forall x\in[a,b].$ Возьмем произвольные $\varepsilon>0,\ \delta\in(0,\frac{\varepsilon}{8M}).$ Так как функция f интегрируема на отрезке $[a+\delta,b-\delta],$ то по необходимому условию Дарбу можно найти разбиение $\{x_k\}_{k=0}^n$ отрезка $[a+\delta,b-\delta]$ такое, что $\Omega(f,\{x_k\})\leq \frac{\varepsilon}{2}.$ Возьмем разбиение $\{z_r\}_{r=0}^{n+2}$ отрезка [a,b] такое, что $z_0=a,$ $z_1=x_0,\ldots,z_{n+1}=x_n,z_{n+2}=b.$ Тогда имеем

$$\Omega(f, \{z_r\}) \le 2M\delta + \Omega(f, \{x_k\}) + 2M\delta \le \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon.$$

Таким образом, по достаточному условию Дарбу функция f интегрируема на [a,b]. \square

- 4. Если функция f кусочно монотонная на [a,b] (т.е. существует разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b] такое, что на каждом отрезке $[x_{k-1},x_k]$ функция f монотонна), то f интегрируема на [a,b].
 - ♦ Справедливость этого утверждения вытекает из аддитивности определенного интеграла и интегрируемости монотонной на отрезке функции. □

- 5. Если функция $f:[a,b] \to \mathbb{R}$ ограничена и имеет конечное число точек разрыва, то f интегрируема на отрезке [a,b].
 - \Diamond Пусть $\{x_k\}_{k=0}^n$ разбиение отрезка [a,b] такое, что на каждом интервале (x_{k-1},x_k) функция f непрерывна. Так как f непрерывна на каждом отрезке $[\alpha,\beta]\subset (x_{k-1},x_k)$ и f ограничена на $[x_{k-1},x_k]$, то f интегрируема на $[x_{k-1},x_k]$. Теперь из аддитивности определенного интеграла вытекает, что f интегрируема на отрезке [a,b]. \square
- 6. Если функции $f:[a,b] \to \mathbb{R}, g:[a,b] \to \mathbb{R}$ интегрируемы на отрезке [a,b], то функция f(x)g(x) интегрируема на отрезке [a,b].

 \diamondsuit Так как функции f,g интегрируемы на отрезке [a,b], то согласно второму необходимому условию интегрируемости функции f,g ограничены на отрезке [a,b], т.е. существует M>0 такое, что $|f(x)|\leq M,$ $|g(x)|\leq M$ $\forall x\in [a,b].$ Для любых $x',x''\in [a,b]$ имеет место оценка

$$|f(x')g(x') - f(x'')g(x'')| \le |g(x'')||f(x') - f(x'')| + |f(x')||g(x') - g(x'')| \le$$

$$\le M|f(x') - f(x'')| + M|g(x') - g(x'')|.$$
 (27.5)

Возьмем произвольное разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b]. Из оценки (27.5) вытекает, что

$$\omega(fg, [x_{k-1}, x_k]) \le M(\omega(f, [x_{k-1}, x_k]) + \omega(g, [x_{k-1}, x_k])).$$

Отсюда получаем

$$\Omega(fg, \{x_k\}) \le M\Omega(f, \{x_k\}) + M\Omega(g, \{x_k\}). \tag{27.6}$$

Возьмем произвольное $\varepsilon > 0$. Из необходимого условия Дарбу вытекает, что существует разбиение $\{x_k\}_{k=0}^n$ отрезка [a,b] такое, что

$$\Omega(f, \{x_k\}) \le \frac{\varepsilon}{2M}, \ \Omega(g, \{x_k\}) \le \frac{\varepsilon}{2M}.$$

В силу (27.6) получаем, что $\Omega(fg, \{x_k\}) \leq \varepsilon$. Поэтому согласно достаточному условию Дарбу функция f(x)g(x) интегрируема на отрезке [a, b]. \square

Замечание 27.3 Если функции $f, g: [a,b] \to \mathbb{R}$ интегрируемы и различаются на конечном множестве аргументов, то $\int\limits_a^b f(x)dx = \int\limits_a^b g(x)dx$. В силу сказанного будем считать интегрируемыми функции, заданные на конечных промежутках |a,b|, если после доопределения такой функции на концах промежутка получается интегрируемая на отрезке [a,b] функция.

28 Рекомендации к решению задач по теме "Пределы и непрерывность"

Предел последовательности

1. Удобно пользоваться следующей шкалой роста функций при $n \to \infty$:

$$\log_a n \ll n^a \ll a^n \ll n! \ll n^n \ (a = const > 1).$$

- 2. Если последовательность является монотонной, то для доказательства её сходимости достаточно доказать ограниченность последовательности.
- 3. Для доказательства того, что неотрицательная последовательность a_n является бесконечно малой, пользуются леммой о сжатой последовательности, находя такую последовательность $b_n \geq a_n$, для которой свойство бесконечной малости устанавливается легко.
- 4. Если общий член последовательности является элементарной функцией от *n* часто вычисление предела последовательности сводят к вычислению соответствующего предела функции (к которому применяют правило Лопиталя, формулу Тейлора или замечательные пределы).

Пример 28.1 Вычислить предел

$$\lim_{n\to\infty}\frac{1}{\sqrt[n]{n!}}.$$

Заметим, что $1 \cdot n < 2 \cdot (n-1) < 3 \cdot (n-2) < \dots$ Действительно, если $1 \leq a < b \leq \frac{n}{2}$, то a(n-a) < b(n-b).

Следовательно, $n! > (1 \cdot n)^{n/2}$. Отсюда получаем, что

$$0 < \frac{1}{\sqrt[n]{n!}} < \frac{1}{n^{1/2}}.$$

По лемме о сжатой последовательности $\frac{1}{\sqrt[n]{n!}} \underset{n \to \infty}{\longrightarrow} 0$.

Замечание 28.1 В дальнейшем будет доказано более сильное утверждение, дающее асимптотическую формулу для факториала (формула Стирлинга):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, \ n \to \infty.$$

Пример 28.2 Доказать, что последовательность сходится

$$a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n.$$

Заметим, что

$$\ln n = (\ln n - \ln(n-1)) + (\ln(n-1) - \ln(n-2)) + \ldots + (\ln 2 - \ln 1) + \ln 1 =$$

$$= \ln\left(1 + \frac{1}{n-1}\right) + \ln\left(1 + \frac{1}{n-2}\right) + \dots + \ln\left(1 + \frac{1}{1}\right) + \ln 1.$$

Таким образом,

$$a_n = 1 + \sum_{k=2}^{n} \left(\frac{1}{k} - \ln\left(1 + \frac{1}{k-1}\right) \right).$$

Запишем формулу Тейлора с остаточным членом в форме Лагранжа для $f(x) = \ln(1+x)$ при $x = \frac{1}{k-1}$:

$$\ln(1+x) = x + \frac{f''(\theta x)}{2!}x^2 = x - \frac{x^2}{2(1+\theta x)^2} \Rightarrow |\ln(1+x) - x| \le \frac{x^2}{2}.$$

Для доказательства сходимости последовательности (a_n) применим критерий Коши. Возьмем произвольное $\varepsilon > 0$ и некоторые $m, n \in \mathbb{N}, m > n$. Имеем

$$|a_{m}-a_{n}| = \left| \sum_{k=n+1}^{m} \left(\frac{1}{k} - \ln\left(1 + \frac{1}{k-1}\right) \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k} - \frac{1}{k-1} \right) \right| + \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \ln\left(1 + \frac{1}{k-1}\right) \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k-1} \right) \right| \le \left| \sum_{k=n+1}^{$$

$$\leq \frac{1}{n} - \frac{1}{m} + \frac{1}{2} \sum_{k=n+1}^{m} \frac{1}{(k-1)^2} < \frac{1}{n} + \frac{1}{2} \sum_{k=n+1}^{m} \left(\frac{1}{k-2} - \frac{1}{k-1} \right) < \frac{1}{n} + \frac{1}{2} \cdot \frac{1}{n-1} < \frac{2}{n} \leq \varepsilon.$$

Таким образом, достаточно взять $n_0 = \frac{2}{\varepsilon}$.

Замечание 28.2 Предел последовательности $a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n$ обозначается через C и называется постоянной Эйлера-Маскерони. Известно, что $C = 0.57721\ldots$ Предполагается, что постоянная C является иррациональной, но этот факт до сих пор не доказан.

Пример 28.3 Доказать, что последовательность $a_n = \sin n$ не является сходящейся.

Допустим, существует $A = \lim_{n \to \infty} \sin n$. Тогда

$$A = \lim_{n \to \infty} \sin(n+1) = \lim_{n \to \infty} (\sin n \cos 1 + \sin 1 \cos n) = A \cos 1 + \sin 1 \lim_{n \to \infty} \cos n \Rightarrow$$

$$\Rightarrow \lim_{n \to \infty} \cos n = A \frac{1 - \cos 1}{\sin 1} = A \operatorname{tg} \frac{1}{2}.$$

Так как $\sin^2 n + \cos^2 n = 1$, то $A^2(1 + \lg^2 \frac{1}{2}) = 1$. Повторяя те же рассуждения для $\sin(n+2)$, докажем, что $A^2(1 + \lg^2 1) = 1$. Противоречие, следовательно, предел $\lim_{n \to \infty} \sin n$ не существует.

Пример 28.4 Найти предел последовательности (a_n) , заданной рекуррентно:

$$a_n = \sin a_{n-1}, \ a_0 = 1.$$

Так как $\sin x < x$ при $x \in (0, \frac{\pi}{2})$, то последовательность (a_n) монотонно убывает. Кроме того, последовательность (a_n) ограничена снизу: $a_n \geq 0$. Следовательно, существует конечный предел $A = \lim_{n \to \infty} a_n$. Отсюда $A = \lim_{n \to \infty} a_{n+1} = \sin A$. Это равенство возможно лишь при A = 0.

Предел функции: преобразование неопределенностей и применение правила Лопиталя

Пример 28.5

$$\lim_{x \to 1} \frac{x^m - 1}{x^n - 1} = \left[\frac{0}{0} \right] = \lim_{x \to 1} \frac{mx^{m-1}}{nx^{n-1}} = \frac{m}{n}.$$

Пример 28.6

$$\lim_{x \to +\infty} (\sin \sqrt{x+1} - \sin \sqrt{x}) = \lim_{x \to +\infty} 2 \sin \frac{\sqrt{x+1} - \sqrt{x}}{2} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = \lim_{x \to +\infty} 2 \sin \frac{1}{2(\sqrt{x+1} + \sqrt{x})} \cos \frac{\sqrt{x+1} + \sqrt{x}}{2} = 0$$

как произведение бесконечно малой функции на ограниченную.

Пример 28.7

$$\lim_{n \to \infty} \operatorname{tg}^{n} \left(\frac{\pi}{4} + \frac{1}{n} \right) = [1^{\infty}] = \lim_{n \to \infty} \left(\frac{\sin(1/n) + \cos(1/n)}{\cos(1/n) - \sin(1/n)} \right)^{n} =$$

$$= \lim_{n \to \infty} \left(1 + \frac{2\sin(1/n)}{\cos(1/n) - \sin(1/n)} \right)^{\frac{\cos(1/n) - \sin(1/n)}{2\sin(1/n)} \cdot \frac{2n\sin(1/n)}{\cos(1/n) - \sin(1/n)}} = e^{2}.$$

Предел функции: использование формулы Тейлора

Пример 28.8

$$\lim_{x \to +\infty} x^{3/2} (\sqrt{x+2} - 2\sqrt{x+1} + \sqrt{x}) = \lim_{x \to +\infty} x^2 \left(\left(1 + \frac{2}{x} \right)^{1/2} - 2 \left(1 + \frac{1}{x} \right)^{1/2} + 1 \right) =$$

$$= \lim_{x \to +\infty} x^2 \left(1 + \frac{1}{2} \frac{2}{x} + \frac{1}{2!} \frac{1}{2} \left(-\frac{1}{2} \right) \frac{4}{x^2} + o\left(\frac{1}{x^2} \right) - 2 \left(1 + \frac{1}{2} \frac{1}{x} + \frac{1}{2!} \frac{1}{2} \left(-\frac{1}{2} \right) \frac{1}{x^2} + o\left(\frac{1}{x^2} \right) \right) + 1 \right) = -\frac{4}{8} + \frac{2}{8} = -\frac{1}{4}.$$

Пример 28.9

$$\lim_{x \to 0} \frac{\sin(\sin x) - x\sqrt[3]{1 - x^2}}{x^5} = \lim_{x \to 0} \frac{\sin(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)) - x(1 - \frac{1}{3}x^2 + \frac{1}{2!}\frac{1}{3}(-\frac{2}{3})x^4 + o(x^4))}{x^5} = \lim_{x \to 0} \frac{(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^3}{3!} + \frac{1}{3!}3x^2\frac{x^3}{3!} + \frac{x^5}{5!}) - (x - \frac{x^3}{3} - \frac{x^5}{9})}{x^5} = \frac{1}{120} + \frac{1}{12} + \frac{1}{120} + \frac{1}{9} = \frac{19}{90}.$$

Определение точек разрыва и их типов

Пример 28.10 Исследовать на непрерывность функцию $y = \lim_{n \to \infty} \sqrt[n]{1 + x^{2n}}$

Если
$$|x| \leq 1$$
, то $y = \lim_{n \to \infty} \sqrt[n]{1 + x^{2n}} = 1;$ если $|x| > 1$, то $y = \lim_{n \to \infty} \sqrt[n]{1 + x^{2n}} = x^2.$ Легко видеть, что функция непрерывна на \mathbb{R} .

Пример 28.11 Исследовать на непрерывность функцию $y = \operatorname{sgn} \sin x$.

Функция имеет разрывы в тех точках x, для которых $\sin x = 0$, т.е. $x = \pi n$, $n \in \mathbb{Z}$. Т.к. $\sin x$ меняет знак при переходе через точки $x_n = \pi n$, то эти точки являются точками конечного скачка функции $y = \operatorname{sgn} \sin x$.

Исследование равномерной непрерывности

Пример 28.12 Исследовать функцию $f(x) = \sqrt{x}$, $x \in (0,1)$, на равномерную непрерывность.

Т.к. функция $f(x) = \sqrt{x}$ непрерывна на отрезке [0,1], то по теореме Кантора $f(x) = \sqrt{x}$ равномерно непрерывна на [0,1]. Следовательно, $f(x) = \sqrt{x}$ равномерно непрерывна на интервале (0,1).

Пример 28.13 Исследовать функцию $f(x) = \sin x, x \in \mathbb{R}$, на равномерную непрерывность.

В данном случае теорема Кантора неприменима, т.к. множество задания не является подмножеством отрезка. Исследуем равномерную непрерывность по определению. Возьмем произвольные $x_1, x_2 \in \mathbb{R}$, имеем:

$$|\sin x_1 - \sin x_2| = |2\sin \frac{x_1 - x_2}{2}\cos \frac{x_1 + x_2}{2}|.$$

Если $|x| \le 1$, то $|\sin x| \le |x|$ (см. параграф 8). Если |x| > 1, то $|x| > 1 \ge |\sin x|$. Таким образом,

$$|\sin x_1 - \sin x_2| \le 2 \frac{|x_1 - x_2|}{2} \cdot 1 = |x_1 - x_2|.$$

Следовательно,

$$\forall \varepsilon > 0, \exists \delta(\varepsilon) = \varepsilon : \forall x_1, x_2 \in \mathbb{R}, |x_1 - x_2| \le \delta(\varepsilon) \Rightarrow |f(x_1) - f(x_2)| \le \varepsilon.$$

Поэтому функция $f(x) = \sin x, x \in \mathbb{R}$, равномерно непрерывна.

Пример 28.14 Исследовать функцию $f(x) = x^2, x \in \mathbb{R}$, на равномерную непрерывность.

Докажем по определению, что функция f(x) не является равномерно непрерывной. Возьмем произвольное $\delta > 0, x_1 > 0, x_2 = x_1 + \delta$, имеем:

$$|f(x_1) - f(x_2)| = \delta^2 + 2x_1\delta.$$

Если выбрать $x_1 \ge \frac{1}{\delta}$, то получим

$$|f(x_1) - f(x_2)| \ge 2,$$

следовательно, функция f не является равномерно непрерывной.

Замечание 28.3 Если дифференцируемая функция $f:|a,b|\to\mathbb{R}$ имеет ограниченную производную f'(x), то согласно теореме Лагранжа имеем $|f(x_1)-f(x_2)|=|f'(c)||x_1-x_2|\le M|x_1-x_2|$, то выполняется условие равномерной непрерывности (достаточно взять $\delta(\varepsilon)=\frac{\varepsilon}{M}$).

29 Рекомендации к решению задач по теме "Производная и формула Тейлора"

Вычисление производных и дифференциалов

- 1. Для вычисления производной от функций вида $(f(x))^{g(x)}$ переходят к экспоненциальной форме записи, т.е. $(f(x))^{g(x)} = e^{g(x)\ln f(x)}$, а затем применяют теорему о производной сложной функции.
- 2. Если функция имеет кусочное задание, то в точках стыка различных элементарных функций производную считают по определению или через теорему об односторонних производных.
- 3. Производные высших порядков часто вычисляют с помощью правила Лейбница или формулы Тейлора.

Пример 29.1
$$(\sqrt[x]{x})' = (x^{1/x})' = (e^{(\ln x)/x})' = e^{(\ln x)/x} \cdot (\frac{\ln x}{x})' = \sqrt[x]{x} \frac{1/x \cdot x - \ln x \cdot 1}{x^2} = \sqrt[x]{x} \frac{1 - \ln x}{x^2}$$
.

Пример 29.2 Найти производную функции

$$f(x) = \begin{cases} x^2 \sin\frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
$$x \neq 0 \Rightarrow f'(x) = 2x \sin\frac{1}{x} + x^2 \cos\frac{1}{x}(-\frac{1}{x^2}) = 2x \sin\frac{1}{x} - \cos\frac{1}{x};$$
$$x = 0 \Rightarrow f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \Delta x \sin\frac{1}{\Delta x} = 0.$$

Пример 29.3 Исследовать функцию $f(x) = \arcsin(\sin x)$ на дифференцируемость в точке $x_0 = \frac{\pi}{2}$.

Если $x \in (0, \frac{\pi}{2}]$, то f(x) = x; если $x \in (\frac{\pi}{2}, \pi)$, то $f(x) = \arcsin(\sin(\pi - x)) = \pi - x$.

Так как $f_-^{\vec{l}}(\frac{\pi}{2}) = 1 \neq f_+^{\prime}(\frac{\pi}{2}) = -1$, то не существует производной $f^{\prime}(\frac{\pi}{2})$, и следовательно, f(x) не является дифференцируемой в точке $x_0 = \frac{\pi}{2}$.

Пример 29.4 Исследовать функцию на дифференцируемость

$$f(x) = \begin{cases} x^2, x \in \mathbb{Q}, \\ 0, x \notin \mathbb{Q}. \end{cases}$$

$$x_0 \in \mathbb{R} \Rightarrow f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Если $x_0 \neq 0, x_0 \in \mathbb{Q}$, то выбирая $\Delta x = \frac{\sqrt{2}}{n}$, получим, что

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = -\frac{nx_0^2}{\sqrt{2}} \to -\infty, n \to \infty.$$

Если $x_0 \neq 0$, $x_0 \notin \mathbb{Q}$, то выбирая $\Delta x = x_{0,n} - x_0$ (где $x_{0,n}$ – приближение по недостатку порядка n числа x_0), получим:

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \frac{x_{0,n}^2}{x_{0,n} - x_0} \to -\infty, n \to \infty.$$

Если $x_0 = 0$, то

$$\left| \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \right| = \left| \frac{f(\Delta x)}{\Delta x} \right| \le |\Delta x| \to 0, \Delta x \to 0.$$

Таким образом, функция f дифференцируема лишь в точке $x_0 = 0$.

Пример 29.5 Кардиоида имеет уравнение в полярных координатах $r=a(1+cos\varphi)$. Вычислить y_x' , где y=y(x) – уравнение кардиоиды в декартовых координатах.

Имеем

$$x = r \cos \varphi = a \cos \varphi (1 + \cos \varphi), \ y = r \sin \varphi = a \sin \varphi (1 + \cos \varphi).$$

Тогда

$$y'_x = \frac{y'_{\varphi}}{x'_{\varphi}} = \frac{\cos \varphi + \cos 2\varphi}{-\sin \varphi - \sin 2\varphi}.$$

Пример 29.6 *Найти* $d^{100}y$, $\epsilon \partial e \ y = x \sinh x$.

Имеем $d^{100}y = y^{(100)}(x)dx^{100}$. По правилу Лейбница находим

$$y^{(100)}(x) = \sum_{k=0}^{100} C_{100}^k x^{(k)} (\operatorname{sh} x)^{100-k} = x \operatorname{sh} x + 100 \operatorname{ch} x.$$

Пример 29.7 Пусть $f(x) = \frac{1}{1+x+x^2+x^3}$. Найти $f^{(100)}(0)$.

Имеем

$$f(x) = \frac{1-x}{1-x^4} = (1-x)(1+x^4+x^8+\ldots) = 1-x+x^4-x^5+x^8-x^9+\ldots+x^{100}+o(x^{100}).$$

По формуле Тейлора

$$c_{100} = 1 = \frac{f^{(100)}(0)}{100!} \Rightarrow f^{(100)}(0) = 100!$$

Разложение функций по формуле Тейлора

Пример 29.8 Разложить функцию e^{2x-x^2} до члена с x^5 .

$$\begin{split} e^{2x-x^2} &= 1 + \frac{2x-x^2}{1!} + \frac{(2x-x^2)^2}{2!} + \frac{(2x-x^2)^3}{3!} + \frac{(2x-x^2)^4}{4!} + \frac{(2x-x^2)^5}{5!} + o(x^5) = \\ &= 1 + \frac{2x-x^2}{1!} + \frac{4x^2-4x^3+x^4}{2!} + \frac{8x^3-12x^4+6x^5+o(x^5)}{3!} + \frac{16x^4-32x^5+o(x^5)}{4!} + \frac{32x^5+o(x^5)}{5!} + o(x^5) = \\ &= 1 + 2x + x^2 - \frac{2x^3}{3} - \frac{5x^4}{6} - \frac{x^5}{15} + o(x^5). \end{split}$$

Пример 29.9 Решить уравнение относительно постоянных A, B:

$$\operatorname{ctg} x = \frac{1 + Ax^2}{x + Bx^3} + O(x^5), x \to 0.$$

Имеем:

$$\cos x(x+Bx^3) = \sin x(1+Ax^2) + O(x^6),$$

$$(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + O(x^5))(x+Bx^3) = (x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^6))(1+Ax^2),$$

$$x + x^3(B - \frac{1}{2}) + x^5(\frac{1}{24} - \frac{1}{2}B) + O(x^6) = x + x^3(A - \frac{1}{6}) + x^5(\frac{1}{120} - \frac{1}{6}A) + O(x^6),$$

$$B - \frac{1}{2} = A - \frac{1}{6}, \frac{1}{24} - \frac{1}{2}B = \frac{1}{120} - \frac{1}{6}A \Rightarrow A = -\frac{2}{5}, B = -\frac{1}{15}.$$

Исследование локальных экстремумов и перегибов

Пример 29.10 Исследовать функцию f(x) на локальный экстремум в точке x=0, где

$$f(x) = \begin{cases} |x|(2 + \cos\frac{1}{x}), x \neq 0, \\ 0, x = 0. \end{cases}$$

Так как f(x) > 0 = f(0) для всех $x \in (-1,0) \cup (0,1)$, то x = 0 – точка строгого локального минимума.

Пример 29.11 Исследовать функцию $f(x) = |x|e^{-|x-1|}$ на локальный экстремум и перегибы.

Имеем:

$$f(x) = \begin{cases} xe^{-x+1}, & x \ge 1, \\ xe^{x-1}, & 0 \le x < 1, \\ -xe^{x-1}, & x < 0. \end{cases}$$

Находим производную

$$f'(x) = \begin{cases} e^{-x+1} - xe^{-x+1}, x > 1, \\ e^{x-1} + xe^{x-1}, 0 < x < 1, \\ -e^{x-1} - xe^{x-1}, x < 0. \end{cases}$$
$$f'(x) = 0 \Leftrightarrow x = -1.$$

в точках 0, 1 функция недифференцируема, т.к. левосторонняя и правосторонняя производные не совпадают.

При переходе через точку x=1 производная f'(x) меняет знак с плюса на минус, т.е. x=1 – точка локального максимума.

При переходе через точку x=0 производная f'(x) меняет знак с минуса на плюс, т.е. x=0 – точка локального минимума.

Так как $f''(x) = -2e^{x-1} - xe^{x-1}$ при x < 0, то $f''(-1) = -e^{-2} < 0$, то $x_0 = -1$ – точка локального максимума.

Находим вторую производную

$$f''(x) = \begin{cases} -2e^{-x+1} + xe^{-x+1}, & x > 1, \\ 2e^{x-1} + xe^{x-1}, & 0 < x < 1, \\ -2e^{x-1} - xe^{x-1}, & x < 0. \end{cases}$$

В точках 0, 1 функция не имеет производной f'(x), поэтому достаточно исследовать точки спрямления, т.е. точки, в которых f''(x) = 0. Имеется две точки спрямления: $x = \pm 2$.

Так как $f'''(x) = 3e^{-x+1} - xe^{-x+1}$ при x > 1, то $f'''(2) = e^{-1} \neq 0$. Поэтому точка x = 2является точкой перегиба.

Аналогично, $f'''(x) = -3e^{x-1} - xe^{x-1}$ при x < 0, $f'''(-2) = -e^{-3} \neq 0$. Т.е. точка x = -2также является точкой перегиба.

Глобальный экстремум и доказательство неравенств

Пример 29.12 Исследовать функцию $f(x) = |x^2 - 3x + 2|, x \in [-10, 10],$ на глобальный экстремум.

Так как множество задания функции – отрезок, то достаточно рассмотреть концы отрезка, стационарные точки и точки, в которых функция может быть недифференцируема.

Имеем

$$f(x) = \begin{cases} x^2 - 3x + 2, x \in [-10, 1] \cup [2, 10], \\ -x^2 + 3x - 2, x \in (1, 2). \end{cases}$$

Находим

$$f'(x) = \begin{cases} 2x - 3, x \in (-10, 1) \cup (2, 10), \\ -2x + 3, x \in (1, 2). \end{cases}$$

Таким образом, достаточно рассмотреть точки
$$x=-10,1,\frac{3}{2},2,10.$$
 Имеем $\max_{x\in[-10,10]}f(x)=f(-10)=132, \min_{x\in[-10,10]}f(x)=f(1)=f(2)=0.$

Пример 29.13 Доказать неравенства $x - \frac{x^3}{6} < \sin x < x \ \forall x > 0.$

Рассмотрим функцию $q(x) = x - \sin x$, x > 0. Так как $q'(x) = 1 - \cos x \ge 0$ и не существует интервалов, на которых q'(x) тождественно равна нулю, то q(x) строго возрастающая. Следовательно, g(x) > g(0) = 0.

Рассмотрим функцию $f(x) = \sin x - x + \frac{x^3}{6}$. Имеем $f'(x) = \cos x - 1 + \frac{x^2}{2}$, $f''(x) = -\sin x + x$. По доказанному $f''(x) > 0 \ \forall x > 0$. Следовательно, производная f'(x) строго возрастает. Поэтому f'(x) > f'(0) = 0. Отсюда вытекает, что функция f(x) строго возрастает. Следовательно, f(x) > f(0) = 0, что и требовалось доказать.

30 Рекомендации к решению задач по теме "Неопределенный интеграл"

Преобразование подынтегральной функции и использование линейности интеграла

В отдельных случаях возможно преобразовать произведение функций f(x)g(x) в сумму новых функций, т.е. $f(x)g(x) = h_1(x) + h_2(x)$, тогда

$$\int f(x)g(x)dx = \int h_1(x)dx + \int h_2(x)dx.$$

На практике чаще всего этот прием применяют в случае произведений тригонометрических функций. Также удобно пользоваться формулами понижения степени для тригонометрических функций.

Пример 30.1

$$\int \sin^3 2x \cos^2 2x dx = \int \frac{3\sin 2x - \sin 6x}{4} \cdot \frac{1 + \cos 4x}{2} dx =$$

$$= \frac{1}{8} \int (3\sin 2x - \sin 6x + 3\sin 2x \cos 4x - \sin 6x \cos 4x) dx =$$

$$= \frac{1}{16} \int (6\sin 2x - 2\sin 6x - 3\sin 2x + 3\sin 6x - \sin 2x - \sin 10x) dx =$$

$$= -\frac{1}{16} \cos 2x - \frac{1}{96} \cos 6x + \frac{1}{160} \cos 10x + C.$$

Интегрирование рациональных функций

Пусть $R(x) = \frac{Q(x)}{P(x)}$ — действительная рациональная функция, где P(x) — многочлен со старшим коэффициентом 1.

- 1. Если $\deg Q(x) \geq \deg P(x)$, то выделяют целую часть рациональной функции, т.е. делят многочлен Q(x) на многочлен P(x) с остатком: Q(x) = T(x)P(x) + S(x). Получаем $R(x) = T(x) + \frac{S(x)}{P(x)}$. Интегрируют многочлен T(x).
- 2. Рассматриваем правильную рациональную функцию $\frac{S(x)}{P(x)}$. Находим корни многочлена P(x) и раскладываем многочлен P(x) в произведение многочленов вида $(x-\alpha_i)^{k_i}$, $(x^2+p_ix+q_i)^{l_i}$, где $\alpha_i,\,p_i,q_i\in\mathbb{R},\,k_i,l_i\in\mathbb{N},\,p_i^2-4q_i<0$.
- 3. Представляем правильную рациональную функцию $\frac{S(x)}{P(x)}$ в виде суммы простейших дробей вида $\frac{A_{i,j}}{(x-\alpha_i)^j}, \, \frac{M_{i,j}x+N_{i,j}}{(x^2+p_ix+q_i)^j}$ с неопределенными коэффициентами $A_{i,j}, M_{i,j}, N_{i,j}$:

$$\frac{S(x)}{P(x)} = \sum_{i=1}^{s} \sum_{j=1}^{k_i} \frac{A_{i,j}}{(x - \alpha_i)^j} + \sum_{i=1}^{t} \sum_{j=1}^{l_i} \frac{M_{i,j}x + N_{i,j}}{(x^2 + p_i x + q_i)^j}.$$
 (30.1)

- 4. Находим неопределенные коэффициенты простейших дробей. На практике наиболее эффективен следующий метод.
 - (а) Пусть α_i действительный корень многочлена P(x) кратности k_i . Для каждого $j=0,\ldots,k_i-1$ проводим следующую процедуру: умножаем левую и правую часть соотношения (30.1) на $(x-\alpha_i)^{k_i}$, дифференцируем левую и правую часть j раз и подставляем значение $x=\alpha_i$. В результате мы получаем равенство

$$\left. \left(\frac{S(x)}{P(x)/(x - \alpha_i)^{k_i}} \right)^{(j)} \right|_{x = \alpha_i} = A_{i,j} \cdot j!,$$

откуда находим коэффициент $A_{i,j}$.

(b) Пусть γ_i , $\overline{\gamma_i}$ – пара комплексно-сопряженных корней многочлена P(x) кратности l_i . Для каждого $j=0,\ldots,l_i-1$ делаем следующие шаги: умножаем левую и правую часть (30.1) на $(x-\gamma_i)^{l_i}$, дифференцируем левую и правую часть j раз и подставляем значение $x=\gamma_i$. В результате получаем равенство

$$\left. \left(\frac{S(x)}{P(x)/(x-\gamma_i)^{k_i}} \right)^{(j)} \right|_{x=\gamma_i} = \left. \left(\frac{M_{i,j}x + N_{i,j}}{(x-\overline{\gamma_i})^j} \right)^{(j)} \right|_{x=\gamma_i},$$

откуда находим действительные коэффициенты $M_{i,j}$, $N_{i,j}$.

- (c) В том случае, если некоторые из комплексно- сопряженных корней $\gamma_i, \overline{\gamma_i}$ приводят к дальнейшим громоздким вычислениям с комплексными числами, можно воспользоваться следующим методом подстановки частных значений: пусть на предыдущих шагах вычислены K из $N=2\sum_{i=1}^t l_i$ коэффициентов $M_{i,j}, N_{i,j}$; для нахождения оставшихся N-K коэффициентов в левую и правую часть соотношения (30.1) (с учетом уже найденных коэффициентов) последовательно подставляют N-K различных частных значений $x=x_1,\ldots,x_{N-K}$ и находят оставшиеся коэффициенты $M_{i,j}, N_{i,j}$.
- 5. Проинтегрировать простейшие дроби, полученные на предыдущем шаге.

Пример 30.2 Проиллюстрируем приведенный алгоритм интегрирования рациональной функции на примере. Поскольку исходная рациональная функция правильная, то шаг 1 пропускаем.

$$\int \frac{dx}{(1+x)(1+x^2)(1+x^3)} = \int \frac{dx}{(1+x)^2(1+x^2)(1-x+x^2)} =$$

$$= \left[\frac{1}{(1+x)^2(1+x^2)(1-x+x^2)} = \frac{A}{1+x} + \frac{B}{(1+x)^2} + \frac{Cx+D}{1+x^2} + \frac{Ex+F}{1-x+x^2} \right]$$

Умножаем обе части на $(1+x)^2$ и подставляем x=-1 :

$$\frac{1}{6} = B.$$

Умножаем обе части на $(1+x)^2$, дифференцируем и подставляем x=-1:

$$\left(\left((1+x^2)(1-x+x^2)\right)^{-1}\right)'\Big|_{x=-1} = A \Rightarrow A = -\frac{1}{36}(-6-6) = \frac{1}{36}$$

Умножаем обе части на x-i и подставляем x=i :

$$\frac{1}{4i} = \frac{Ci + D}{2i} \Rightarrow C = 0, D = \frac{1}{2}.$$

Подставляя значение x = 0, получаем:

$$1 = \frac{1}{3} + \frac{1}{6} + \frac{1}{2} + F \Rightarrow F = 0.$$

Подставляя значение x = 1, получаем:

$$\frac{1}{8} = \frac{1}{6} + \frac{1}{24} + \frac{1}{4} + E \Rightarrow E = -\frac{1}{3}.$$

Получаем

$$I = \frac{1}{3} \ln|1+x| - \frac{1}{6} \frac{1}{1+x} + \frac{1}{2} \arctan x - \frac{1}{3} \int \frac{x}{1-x+x^2} dx$$

$$\int \frac{x}{1-x+x^2} dx = \int \frac{x-\frac{1}{2}+\frac{1}{2}}{(x-\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2} dx = \frac{1}{2}\ln(x^2-x+1) + \frac{1}{\sqrt{3}}\arctan\frac{2x-1}{\sqrt{3}} + C.$$

Основные методы рационализации подынтегральной функции

1. От иррациональности вида $\sqrt[n]{\frac{ax+b}{cx+d}}$, $n \in \mathbb{N}$, избавляются с помощью подстановки

$$\frac{ax+b}{cx+d} = t^n.$$

2. От иррациональности вида $\sqrt{ax^2 + bx + c}$ избавляются с помощью подстановок Эйлера:

$$a > 0 \Rightarrow \sqrt{ax^2 + bx + c} = x\sqrt{a} + t;$$

$$b^2 - 4ac > 0 \Rightarrow \sqrt{ax^2 + bx + c} = (x - \lambda_1)t$$

где λ_1 – корень квадратного трехчлена $ax^2 + bx + c$.

3. Биномиальный дифференциал $x^m(a+bx^n)^p$, $m,n,p\in\mathbb{Q}$, $a,b\in\mathbb{R}\setminus\{0\}$, рационализируется с помощью подстановок Чебышева:

$$p \in \mathbb{Z} \Rightarrow x = t^r;$$

$$\frac{m+1}{n} \in \mathbb{Z} \Rightarrow a + bx^n = t^s;$$

$$\frac{m+1}{n} + p \in \mathbb{Z} \Rightarrow ax^{-n} + b = t^s,$$

где r — наименьшее общее кратное знаменателей рациональных чисел m и n; s — знаменатель числа p.

4. Интегралы от рационально-тригонометрических функций $R(\cos x, \sin x)$ сводятся к интегрированию рациональной функции с помощью универсальной тригонометрической подстановки

$$t = \operatorname{tg} \frac{x}{2}$$
.

В ряде случаев подстановки вида $t = \cos x$, $t = \sin x$, $t = \operatorname{tg} x$ приводят к менее громоздким рациональным функциям.

Пример 30.3

$$\int \frac{1 - \sqrt{x+1}}{1 + \sqrt[3]{x+1}} dx = \left[\sqrt[6]{x+1} = t, x = t^6 - 1, dx = 6t^5 dt\right] = \int \frac{1 - t^3}{1 + t^2} \cdot 6t^5 dt = 6 \int \frac{t^5 - t^8}{1 + t^2} dt =$$

$$= 6 \int (-t^6 + t^4 + t^3 - t^2 - t + 1) dt + 6 \int \frac{t - 1}{1 + t^2} dt =$$

$$= -\frac{6}{7}t^7 + \frac{6}{5}t^5 + \frac{3}{2}t^4 - 2t^3 - 3t^2 + 6t + 3\ln(1 + t^2) - 6\arctan t + C.$$

Пример 30.4

$$\int \sqrt{x^2 - 2x + 2} dx = \left[\sqrt{x^2 - 2x + 2} = x + t \Rightarrow x = \frac{2 - t^2}{2 + 2t}, dx = \frac{-t^2 - 2t - 2}{2(1 + t)^2} dt \right] =$$

$$= -\frac{1}{4} \int \frac{2 + t}{1 + t} \cdot \frac{t^2 + 2t + 2}{(1 + t)^2} dt = -\frac{1}{4} \int (1 + \frac{1}{1 + t})(1 + \frac{1}{(1 + t)^2}) dt =$$

$$= -\frac{1}{4} t - \frac{1}{4} \ln|1 + t| + \frac{1}{4(1 + t)} + \frac{1}{8(1 + t)^2} + C.$$

Пример 30.5

$$\int \frac{dx}{x^3 \sqrt{x^2 + 1}} = \left[m = -3, n = 2, p = -\frac{1}{2}, \frac{m + 1}{n} \in \mathbb{Z}; x^2 + 1 = t^2, x = (t^2 - 1)^{1/2}, dx = \frac{t dt}{(t^2 - 1)^{1/2}} \right] =$$

$$= \int \frac{dt}{(t^2 - 1)^2} = \left[\frac{1}{(t^2 - 1)^2} = \frac{A}{t - 1} + \frac{B}{(t - 1)^2} + \frac{C}{t + 1} + \frac{D}{(t + 1)^2}; B = D = \frac{1}{4}, 1 = -A + B + C + D, \right]$$

$$\frac{1}{9} = A + B + \frac{C}{3} + \frac{D}{9} \Rightarrow B = D = \frac{1}{4}, C = \frac{1}{4}, A = -\frac{1}{4} \right] = \frac{1}{4} \ln \frac{|t - 1|}{|t + 1|} - \frac{1}{4(t - 1)} - \frac{1}{4(t + 1)} + C.$$

Пример 30.6

$$\int \frac{dx}{(2+\cos x)\sin x} = \int \frac{d(\cos x)}{(2+\cos x)(\cos^2 x - 1)} = [\cos x = t] = \int \frac{dt}{(2+t)(t-1)(t+1)} =$$

$$= \left[\frac{1}{(2+t)(t-1)(t+1)} = \frac{A}{2+t} + \frac{B}{t-1} + \frac{C}{t+1}; A = \frac{1}{3}, B = \frac{1}{6}, C = -\frac{1}{2}\right] =$$

$$= \frac{1}{3}\ln(t+2) + \frac{1}{6}\ln(1-t) - \frac{1}{2}\ln(1+t) + C.$$

Пример 30.7

$$\int \frac{\sin x \cos x}{\sin x + \cos x} dx = \left[t = \operatorname{tg} \frac{x}{2}, \sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2}, dx = \frac{2dt}{1+t^2} \right] =$$

$$= \int \frac{2t(1-t^2)}{(1+t^2)^2(2t+1-t^2)} dt = \dots$$

$$\int \frac{\sin x \cos x}{\sin x + \cos x} dx = \int \frac{\sin 2x}{2\sqrt{2}\sin(x+\frac{\pi}{4})} dx = -\frac{1}{2\sqrt{2}} \int \frac{\cos(2x+\frac{\pi}{2})}{\sin(x+\frac{\pi}{4})} d(x+\frac{\pi}{4}) = \left[x + \frac{\pi}{4} = y \right] =$$

$$= -\frac{1}{2\sqrt{2}} \int \frac{\cos 2y}{\sin y} dy = \frac{1}{2\sqrt{2}} \int \frac{\cos 2y}{\sin^2 y} d(\cos y) = \left[\cos y = t \right] = \frac{1}{2\sqrt{2}} \int \frac{2t^2 - 1}{1-t^2} dt =$$

$$= \frac{1}{2\sqrt{2}} \int (-2 + \frac{1}{2} \frac{1}{1-t} + \frac{1}{2} \frac{1}{1+t}) dt = -\frac{1}{\sqrt{2}} t + \frac{1}{4\sqrt{2}} \ln(1-t^2) + C =$$

$$= -\frac{1}{\sqrt{2}} \cos(x + \frac{\pi}{4}) + \frac{1}{2\sqrt{2}} \ln|\sin(x + \frac{\pi}{4})| + C.$$

Интегрирование по частям

Формула интегрирования по частям

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx$$

применяется в том случае, если интеграл в правой части вычисляется проще, чем интеграл в левой части. В частности, таким методом вычисляются интегралы вида:

$$\int P(x)g(x)dx,$$

где P(x) – некоторый многочлен, а g(x) – одна из функций $\cos x$, $\sin x$, e^x , $\ln x$, $\arctan x$, $\sinh x$, $\cosh x$.

Пример 30.8

$$\int x^2 \arctan x dx = \left[u = \arctan x, dv = x^2 dx, du = \frac{dx}{1+x^2}, v = \frac{x^3}{3} \right] = \frac{x^3 \arctan x}{3} - \frac{1}{3} \int \frac{x^3}{1+x^2} dx = \frac{x^3 \arctan x}{3} - \frac{1}{6} \int \frac{x^2}{1+x^2} d(x^2) = \frac{1}{3} x^3 \arctan x - \frac{1}{6} x^2 + \frac{1}{6} \ln(1+x^2) + C.$$

Пример 30.9

$$\int x^2 \sin x dx = [u = x^2, dv = \sin x dx, du = 2x dx, v = -\cos x] = -x^2 \cos x + 2 \int x \cos x dx =$$

$$= [u = x, dv = \cos x dx, du = dx, v = \sin x] = -x^2 \cos x + 2x \sin x - 2 \int \sin x dx =$$

$$= -x^2 \cos x + 2x \sin x + 2 \cos x + C.$$

Внесение множителя под знак дифференциала и замена переменной

1. При вычислении интеграла вида

$$\int f(g(x))g'(x)dx,$$

удобно пользоваться инвариантностью формы первого дифференциала и полагать u = g(x), du = d(g(x)) = g'(x)dx. В этом случае получаем

$$\int f(g(x))g'(x)dx = \int f(u)du,$$

где u — новая независимая переменная, и к интегралу в правой части можно применять известные методы вычисления неопределенного интеграла.

- 2. На практике чаще всего вносят под дифференциал функции вида x^n при интегрировании рациональных функций, а также функции $\cos x$, $\sin x$ при интегрировании рационально-тригонометрических функций.
- 3. В определенном смысле обратной операцией к внесению множителя под дифференциал является замена переменной, т.е.

$$\int f(x)dx = [x = \varphi(t)] = \int f(\varphi(t))\varphi'(t)dt.$$

4. На практике в выражениях вида $\sqrt{a^2-x^2}$ удобно делать замену $x=a\sin t$, в выражениях вида $\sqrt{a^2+x^2}$ – замены $x=a \tan t$, $x=a \sin t$ в выражениях $\sqrt{x^2-a^2}$ – замену $x=a \cot t$.

Пример 30.10

$$\int \frac{dx}{1+e^x} = \int \frac{d(e^x)}{e^x(1+e^x)} = \int \frac{d(e^x)}{e^x} - \int \frac{d(e^x+1)}{e^x+1} = \ln(e^x) - \ln(e^x+1) + C = x - \ln(e^x+1) + C.$$

Пример 30.11

$$\int \sqrt{x^2 + 1} dx = \left[x = \lg t, x^2 + 1 = \frac{1}{\cos^2 t}, dx = \frac{dt}{\cos^2 t} \right] = \int \frac{dt}{\cos^3 t} = \left[z = \lg \frac{t}{2} \right] = \dots$$
$$\int \sqrt{x^2 + 1} dx = \left[x = \sinh t \right] = \int \cosh^2 t dt = \frac{1}{2} \int (1 + \cosh 2t) dt = \frac{t}{2} + \frac{1}{4} \sinh 2t + C.$$

Приложение 1. Список вопросов к экзамену

- 1. Критерий различия действительных чисел.
- 2. Теорема о плотности множества действительных чисел.
- 3. Теорема о гранях.
- 4. Определение предела последовательности и М-лемма.
- 5. Единственность предела и ограниченность сходящейся последовательности.
- 6. Сумма, произведение и частное пределов.
- 7. Лемма о сжатой последовательности.
- 8. Сходимость монотонной ограниченной последовательности.
- 9. Существование монотонной подпоследовательности и принцип выбора.
- 10. Число е.
- 11. Критерий Коши для предела последовательности.
- 12. Определение предела функции и М-лемма.
- 13. Критерий Гейне для предела функции.
- 14. Критерий Коши для предела функции.
- 15. Тригонометрический предел $\sin(x)/x$.
- 16. Показательно-степенной предел $(1+x)^{1/x}$.
- 17. Логарифмический предел $\ln(1+x)/x$.
- 18. Показательный предел $(e^x 1)/x$.
- 19. Степенной предел $((1+x)^{\mu}-1)/x$.
- 20. О-символика.
- 21. Определение непрерывности функции и типы точек разрыва.
- 22. Критерий Гейне непрерывности.
- 23. Критерий непрерывности монотонной функции.
- 24. Непрерывность обратной функции.
- 25. Непрерывность сложной функции.
- 26. Теорема о стабилизации знака.
- 27. Теорема о локальной ограниченности непрерывной функции.

- 28. Непрерывность суммы, произведения, частного функций.
- 29. Непрерывность элементарных функций.
- 30. Теорема о промежуточных значениях непрерывной функции.
- 31. Теорема Вейерштрасса.
- 32. Определение равномерной непрерывности и теорема Кантора.
- 33. Определение производной, её геометрический и механический смысл.
- 34. Теорема о производных арифметических комбинаций.
- 35. Производные основных тригонометрических функций.
- 36. Производные степенной, показательной и логарифмической функций.
- 37. Теорема о производной обратной функции.
- 38. Теорема о производной сложной функции.
- 39. Определение дифференциала функции и критерий дифференцируемости.
- 40. Правило Лейбница.
- 41. Инвариантность формы первого дифференциала.
- 42. Производная параметрически заданной функции.
- 43. Определение первообразной и теорема об общем виде первообразной.
- 44. Внесение множителя под знак дифференциала и замена переменной в неопределенном интеграле.
- 45. Интегрирование по частям.
- 46. Теорема о разложении рациональной функции в сумму простейших дробей.
- 47. Интегрирование простейших дробей.
- 48. Интегрирование произвольных рациональных функций.
- 49. Рационализация с помощью подстановок Эйлера.
- 50. Рационализация с помощью подстановок Чебышева.
- 51. Интегрирование рационально-тригонометрических функций.
- 52. Теорема Ферма (необходимое условие экстремума).
- 53. Теорема Ролля.
- 54. Теорема Лагранжа.
- 55. Теорема Коши.

- 56. Критерий постоянства дифференцируемой функции и теорема о функциях с равными производными.
- 57. Правило Лопиталя.
- 58. Формула Тейлора и теорема об остаточном члене.
- 59. Остаточный член формулы Тейлора в форме Лагранжа.
- 60. Остаточный член формулы Тейлора в форме Коши.
- 61. Остаточный член формулы Тейлора в форме Пеано.
- 62. Разложение e^x , $\sin(x)$, $\cos(x)$, $\ln(1+x)$, $(1+x)^{\mu}$ по формуле Тейлора.
- 63. Критерии монотонности и строгой монотонности.
- 64. Необходимое условие локального экстремума.
- 65. Первое достаточное условие локального экстремума (через изменение знака производной).
- 66. Второе достаточное условие локального экстремума (с ненулевой второй производной в точке).
- 67. Третье достаточное условие локального экстремума (с нулевой второй производной в точке).
- 68. Определение и геометрический смысл выпуклой функции.
- 69. Критерий выпуклости дифференцируемой функции.
- 70. Критерий выпуклости дважды дифференцируемой функции.
- 71. Определение точки перегиба и необходимое условие перегиба.
- 72. Первое достаточное условие точки перегиба (через изменение знака второй производной).
- 73. Второе достаточное условие точки перегиба (с ненулевой третьей производной в точке).
- 74. Третье достаточное условие точки перегиба (с нулевой третьей производной в точке).
- 75. Теорема о глобальном минимуме выпуклой функции.
- 76. Асимптоты функций.
- 77. Определение интеграла Римана. М-лемма.
- 78. Первое необходимое условие интегрируемости (сходимость последовательности интегральных сумм к значению интеграла).
- 79. Второе необходимое условие интегрируемости (ограниченность интегрируемой функции).

- 80. Критерий Коши интегрируемости.
- 81. Теорема об интегрируемости непрерывной функции.
- 82. Критерий квадрируемости.
- 83. Площадь криволинейной трапеции и геометрический смысл определенного интеграла.
- 84. Площадь криволинейного сектора.
- 85. Теорема о длине кривой.
- 86. Линейность, монотонность и аддитивность определенного интеграла.
- 87. Теорема о среднем и её геометрический смысл.
- 88. Теорема Барроу.
- 89. Формула Ньютона-Лейбница.
- 90. Замена переменных в определенном интеграла.
- 91. Формула интегрирования по частям для определенного интеграла.
- 92. Теорема о колебании непрерывной функции.
- 93. Необходимое условие Дарбу интегрируемости.
- 94. Достаточное условие Дарбу интегрируемости.
- 95. Классы интегрируемых по Риману функций.

Приложение 2. Требования к практической части на экзамене

Умение решать задачи из сборника Б.П. Демидовича "Сборник задач и упражнений по математическому анализу" из следующих разделов:

- 1. Пределы последовательностей и функций: вычисление пределов по определению, с использованием свойств пределов, правила Лопиталя и формулы Тейлора и символики Ландау.
- 2. Непрерывность функции: исследование непрерывности с помощью определения, критерия Гейне, свойств пределов; нахождение точек разрыва и их типов.
- 3. Равномерная непрерывность функции: исследование по определению, с помощью теоремы Кантора.
- 4. Производная и дифференциал: нахождение производных по определению, с помощью теоремы о производной сложной функции, производных функций, заданных параметрически; нахождение производных и дифференциалов высших порядков с помощью правила Лейбница.
- 5. Формула Тейлора: разложение элементарных функций с помощью разложений основных элементарных функций, умение работать с остаточными членами в форме Пеано.
- 6. Вычисление неопределенных интегралов: знание табличных интегралов, интегрирование рациональных, тригонометрических и иррациональных функций; владение приемами замены переменных, интегрирования по частям.
- 7. Исследование функций с помощью производных: нахождение локальных экстремумов, точек перегиба, исследование монотонности и выпуклости, построение графиков функций.

Приложение 3. Основные понятия, необходимые (но не достаточные!) для получения положительной оценки на экзамене

- 1. Знание определений предела, производной, интеграла (определенного и неопределенного).
- 2. Геометрический и механический смысл производной, геометрический смысл определенного интеграла.
- 3. Умение вычислять пределы, не содержащие неопределенностей. Умение раскрывать простые неопределенности (0:0 или $\infty:\infty)$ в выражениях типа отношения двух многочленов.
- 4. Знание производных и интегралов от основных элементарных функций.
- 5. Умение вычислять производные, используя теорему о производной сложной функции.
- 6. Знание замечательных пределов.
- 7. Знание основных разложений по формуле Тейлора.
- 8. Понимание связей между непрерывностью, дифференцируемостью, интегрируемостью (т.е. какие из этих свойств следуют одно из другого); существованием пределов, монотонностью, ограниченностью.