Classification question

a) Assume the following training data in the two-dimensional plane of X_1 and X_2 is available (Figure 1). The target variables for the points in the red and blue are +1 and -1. We summarise the data as the following tuples: <(2,0), 1>, <(0,2),-1>, <(0,-2),1>, and <(-2,0),1>, respectively.

i. Design a k-NN classifier with k=1 and use it to determine the class variables C_1 through C_4 for the following test data points: <(0,1), $C_1>$, <(1.5,1), $C_2>$, <(-0.5,1), $C_3>$, and <(0,0), $C_4>$:

[4 marks]

SOLUTION:

ii. What would be the class variable C_4 above if we had used k=3? [2 marks] SOLUTION: $C_4 = 1$

iii. Write down the equations that specify the decision boundary between the two classes. [4 marks]

SOLUTION:

$$X_1 - X_2 = 0$$
 in $X_1 > 0.0$ and $X_2 > 0.0$ 2 marks $X_1 + X_2 = 0$ in $X_2 > 0.0$ and $X_1 < 0.0$ 2 marks

b) In the same data set in Figure 1, we apply a linear SVM model with the predictor $y(X_1, X_2)$ for classification.

I. Which data points are the support vectors? Write down the equation for $y(X_1, X_2)$. (Hint: First visually assess the data to determine the decision boundary and the support vectors. Observe the constraints for the margin and SVM classifier.)

[6 marks]

SOLUTION:

$$(2,0)$$
, $(0,2)$, and $(-2,0)$ 3 mark, $y(X_1,X_2)=-X_2+1$ 3 marks

II. Specify the Lagrange multipliers α_1 , α_2 , α_3 , α_4 for each of the data points in the training data (2,0), (0,2), (-2,0), and (0,-2), respectively.

[4 marks]

SOLUTION:

$$\alpha_1 = .25, \alpha_2 = .5, \alpha_3 = 0.25, \alpha_4 = 0$$