Harvest Fund Project

Version: 01

Alternative Energy Industry Chain Modelling

Lecturer: Junan Zhu jazhu@jsfund.cn

Student: Zhenyu Jin jzy20@mails.tsinghua.edu.cn

Micro-Model Building

• Notation:

Variable	Defination	Acquire Method
c	The overall cost of mine from the upstream industry chain.	
K	The product capacity of fab planning.	
p(K)	The price and demand function(usually linear)	
D	Market demand, consists of two part \overline{D} and \tilde{D}	
\overline{D}	The stable demand in the market.	
\tilde{D}	The trendancy symbol of demand moving.	
h	Reputation loss since the lack of supplying.	
s	Reserving value of oversupply inventory.	

• Consider the three-node supply chain for one industry, especially new-energy lottery industry.

$$\begin{split} &\prod_{mid} = p \cdot min(D,K) - h(D-K)^+ + s(K-D)^+ - cK \\ &\prod_{mid} = \int_0^K [p(D) \cdot D + s(K-D)] \cdot f(D) \, dD + \int_K^\infty [p(K) \cdot K - h(D-K)] \cdot f(D) dD - cK \end{split}$$

• Let the first order of the former equation to 0, thus can obtain that,

$$\frac{\partial}{\partial K} \prod_{mid} = [p(K) \cdot K - sK] \cdot f(K) + sF(K) + SK \cdot f(K) - p(K)K \cdot f(K)$$

$$+ [p'(K) \cdot K + p(K)] \cdot \overline{F(K)} + hK \cdot f(K) + h\overline{F(K)} - hK \cdot f(K) - c$$

$$= [p'(K) \cdot K + p(K)] \cdot \overline{F(K)} + h\overline{F(K)} + sF(K) - c$$

$$= 0$$

• If the price function p(D) maintain stable when the product has rigid market demand, the equation can be simplified to:

$$p\overline{F(K)} + h\overline{F(K)} + sF(K) = c$$

$$F_D(K) = \frac{p+h-c}{p+h-s}$$

$$K = F_D^{-1}(\frac{p+h-c}{p+h-s})$$

Macro-Model Building

• Notation:

Variable	Defination	Acquire Method
$\overline{q_t}$	The predicting output $vector(n*1)$ of product in the period t .	
$\overline{A_t}$	The correlation $matrix(n^*n)$ of inter-product.	
$\overline{f_t}$	The predicting demand $vector(m*1)$ by category in the period t.	
\overline{H}	The bridge $matrix(n^*m)$ transform the demand from category to product.	
$\overline{p_t}$	The predicting price vector $(1*n)$ of product in the period t .	
$\overline{v_t}$	The added value vector $(1*n)$ of each product.	

• Modelling:

- P-STEP:
$$\overline{q_t} = A_{t-1} * \overline{q_t} + H \overline{f_t}$$

$$\overline{p_t} = \overline{p_t} * A_{t-1} + \overline{v_t}$$
 - C-STEP:
$$q_t = A_t * q_t + H f_t$$

$$p_t = p_t * A_t + v_t$$

• Training:

 $\overline{f_t}$:

- Method1: The predicting vector of product demand, by fitting the indicators(price index, total fixed asset) through the measurement method.
- Method2: $\overline{f_t} = Mq_{t-1}$, while M represents the bridge matrix between f and q, connecting with p_{t-1} .

 A_t : Siche A_t must be a symmetric matrix, then it can be expressed as $A_t = s_t s_t^T$

$$\min_{s_t} \quad \frac{||p_t - \tilde{p_t}||}{||p_t||} + \frac{||q_t - \tilde{q_t}||}{||q_t||}$$