EE542 Lecture 7: Computer Networks for Cloud Internet and Cloud Computing

Young Cho
Department of Electrical Engineering
University of Southern California

Enterprise Network Market

Note(s): United States; 2017

Further information regarding this statistic can be found on <u>page 8</u>. **Source(s):** Statista estimates; Grand View Research; ID 807581

Network Equipment Companies

Equivalent Command Line Interface

JUNIPER.

NOKIA

IOS XR

JUNOS

SROS

HVRP

COMMAND LINE CHEAT SHEET

BASIC			
show	show	show	display
exit	exit / up	exit	quit
run	run	-	-
end	exit	exit all	return
include	match	match	include
formal	display-set	-	-
reload	request system reboot	admin reboot now	reboot
GENERAL CONFIGURATION			
show running-config	show configuration	admin display-config	display current-configuration
show startup-config	-	-	display saved-configuration
configure terminal	configure / edit	configure	system view
hostname hostname	system host-name hostname	system name systemname	sysname systemname
show (after conf change)	show compare	info (after conf change)	-
commit	commit	admin save	save

Top 5 Certifications

Components of Switch

- Control/Management Software
- Network OS
- Hardware Driver
- Mechanical Box
- Silicon

White Box

- An Open Switch Architecture
- Separate switch software and hardware
- Openness, Flexibility and Programmability
- Transparent price
- Break free from vendor lock-in

White Box Market

Report Attribute	Details	
Market size value in 2020	USD 8.8 billion	
Revenue forecast in 2025	USD 25.5 billion	
Growth Rate	22.0% from 2018 to 2025	
Historical data	2015 - 2016	
Forecast period	2018 - 2025	

Bare Metal Server vs. Switch

- BIOS + PXE → U-Boot + ONIE
- Open Network Install Environment
 - Supported hardware preloaded with ONIE
 - ONIE available on GitHub

Open Source Networking Switch

Open Networking Software

- Cumulus Network (Cumulus Linux)
 - Linux NOS at web-scale
 - Configuration and Management Tools
- Big Switch Networks (SwitchLight)
 - Big Monitoring Fabric
 - Big Cloud Fabric via centralized controller
- Pica8 (PicOS)
 - Hybrid Networking: OpenFlow 1.3/1.4
 - Native L2 and L3 features
- IP Infusion (OcNOS)
 - Full function L2/L3 with MPLS/VPLS,
 Carrier Ethernet
 - OAM and telecom features

- OpenSwitch
 - Full function, open-source NOS
- SnapRoute FlexSwitch
 - L2 and L3 protocol suite
- Open Network Linux
 - OCP reference OS for switches
- Open Network Foundation (CORD)
 - OpenFlow Phy and Open VSwitches
 - ONOS OpenFlow controller with BGP
- Open Compute Project
 - ONIE: Universal NOS Loader
 - Switch Abstraction Interface (SAI)
- Open Optical Monitoring API
 - Open Networking in Cloud (SONiC)
 - Network OS with full L3 routing
 - Microsoft and co-contributors to OCP

Example: Switch Light Architecture

Switch Light is our Indigo OpenFlow Agent running on Open Network Linux on x86 or ASIC-based hardware.

Example: CORD Architecture

Central Office Re-architected as a Datacenter (CORD)

Components of CORD

Building Blocks of CORD

- OpenStack
 - Cluster Management Suite
 - Internet as a service (laaS)
 - Create and Provision VMs and VNet
- Open Network OS (ONOS)
 - Collection of Control App
 - Manage SW and HW Switches
- Everything OS (XOS)
 - A service control plane on top of back-end service
 - VM-hosted VNFs, container-based services, and SDN control
 - Everything as a service (XaaS)
- Docker
 - Deploy and Interconnect Services
 - Deploy CORD

Example: Open Network Linux

- A Linux distribution for bare metal switches
- Open-sourced build scripts, drivers from Switch Light
- Part of Open Compute Project (OCP)
- Project goals
 - Improve perception/de-risk bare metal
 - "Crowd source" larger Switch Light HCL
 - Released mid-January: Initial results
- Strong community response from ODMs, OCP
 - Accton self-supporting three new boxes, more ODMs interested
 - Other vendors investigating ONL for their own purposes
 - Info: http://opennetlinux.org under construction

ONL - Supported Hardware

- ONL Support is Pre-cursor to Switch Light Support
- Working on OCP box from Interface Masters with x86 support

Open Networking History

SmartNICs

Reconfig HW based SmartNICs

Remote Direct Memory Access

- RDMA enable Network
 - Low and stable latency, e.g.,
 I 0us; High throughput,
 e.g., I 00Gbps; Low CPU
 overhead
 - Widely deployed in companies such as Microsoft, Alibaba, ByteDance
- Network stack in NIC
 - Processing in dedicated NIC hardware
 - Bypass kernel
 - Zero copy

Remote Direct Memory Access

Remote

–data transfers between nodes in a network

❖ Direct

- –no Operating System Kernel involvement in transfers
- –everything about a transfer offloaded onto Interface Card

Memory

- transfers between user space application virtual memory
- –no extra copying or buffering

Access

—send, receive, read, write, atomic operations

RDMA Benefits

- High throughput
- Low latency
- High messaging rate
- Low CPU utilization
- Low memory bus contention
- Message boundaries preserved
- Asynchronous operation

RDMA Technologies

- InfiniBand (41.8% of top 500 supercomputers)
 - -SDR 4x 8 Gbps
 - -DDR 4x 16 Gbps
 - -QDR 4x 32 Gbps
 - -FDR 4x 54 Gbps
- iWarp internet Wide Area RDMA Protocol
 - -10 Gbps
- RoCE RDMA over Converged Ethernet
 - -10 Gbps
 - -40 Gbps

Uniqueness of RDMA stack

- Network stack on RDMA NIC (RNIC)
 - Maintain massive connectionrelated states on RNIC

e.g., MLX maintains
256B states for each
RDMA connection
(/include/linux/mlx4/qp.h
... mlx4_qp_context)

Still growing...

- Modifying Linux Kernel Module
- Read and understand the congestion control
- Fix/Break it to Not Back Off

2024/6/13 26