STATS 205: Homework Assignment 3

Brian Liu 4/26/2019

Solution to Problem 1

(i)

```
library(bootstrap); data(law)
t(law)
##
## LSAT 576.00 635.0 558.00 578.00 666.00 580.00 555 661.00 651.00 605.00
          3.39
                 3.3
                        2.81
                               3.03
                                      3.44
                                              3.07
## GPA
                                                     3
                                                         3.43
                                                                3.36
##
                    12
                           13
                                  14
            11
                                         15
## LSAT 653.00 575.00 545.00 572.00 594.00
## GPA
          3.12
                 2.74
                         2.76
                                2.88
theta.hat = cor(law$LSAT, law$GPA); theta.hat
## [1] 0.7763745
library(partitions)
n = 15
allCompositions = compositions(n, n);allCompositions[,1:5]
         [,1] [,2] [,3] [,4] [,5]
##
   [1,]
           15
                14
                     13
                           12
                                11
##
   [2,]
            0
                            3
## [3,]
                 0
                       0
                            0
                                 0
            0
## [4,]
            0
                 0
                       0
                            0
                                 0
##
  [5,]
            0
                 0
                      0
                            0
                                 0
  [6,]
##
            0
                 0
                       0
                            0
                                 0
## [7,]
            0
                 0
                      0
                                 0
                            0
## [8,]
            0
                      0
                 0
                            0
                                 0
## [9,]
            0
                 0
                      0
                            0
                                 0
## [10,]
            0
                 0
                      0
                            0
                                 0
## [11,]
            0
                 0
                      0
                            0
                                 0
## [12,]
            0
                 0
                      0
                            0
                                 0
## [13,]
            0
                       0
                            0
                                 0
## [14,]
            0
                 0
                      0
                                 0
                            0
## [15,]
allCompositions.sub = allCompositions[, sample(1:dim(allCompositions)[2], size=10000, replace=FALSE)]
draw.bootstrap.samples = function(df){
  n = dim(df)[1]
  ind = sample(n, replace = TRUE)
  cor.bootstrap.replicate = cor(df[ind, "LSAT"], df[ind, "GPA"])
  return(cor.bootstrap.replicate)
}
R = 10000
```

```
theta.hat.star = replicate(R, draw.bootstrap.samples(law))
# make a gaplot
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
##
     method
                    from
##
     [.quosures
                    rlang
##
     c.quosures
                    rlang
##
     print.quosures rlang
theta.hat.star.df = data.frame(theta.hat.star = theta.hat.star)
ggplot(theta.hat.star.df) +
  geom_density(aes(x = theta.hat.star, y = ..scaled..),
    fill = "lightblue") +
  geom_hline(yintercept=0, colour="white", size=1) +
  theme_bw() +
  ylab("density") +
  xlab(bquote(hat(theta))) +
  geom_vline(xintercept = theta.hat, col = "red")+
  scale_y_continuous(expand = c(0,0))
  1.00
  0.75
```


(ii)

```
sd(theta.hat.star)
```

[1] 0.1333626

Solution to Problem 2

```
(i)
```

```
67 runs resulting in swallowing attempts
58 successful
9 failed

H_O: p = 0.6
H_A: p > 0.6

n = 67
successes = 58
pbar = successes / n; pbar

## [1] 0.8656716

p0 = 0.6; nsim = 10000
B = rbinom(nsim, size = n, prob = p0)
hist(B, breaks = 30)
```

Histogram of B

Test statistic Z:

$$Z_0 = \frac{B - 67(0.6)}{(67(0.6)(0.4))^{\frac{1}{2}}}$$

```
qnorm((1-0.05), mean = 0, sd = 1)
```

[1] 1.644854

Rejection region: $Z \ge z_{0.05} = 1.645$

Observed test statistic Z_o :

$$Z_o = \frac{58 - 67(0.6)}{(67(0.6)(0.4))^{\frac{1}{2}}} = 4.44$$

```
numerator = successes - (n * p0)
denominator = sqrt(n * p0 * (1.0 - p0))
Z.obs = numerator / denominator; Z.obs
```

[1] 4.438917

The large sample approximation value $Z_o = 2.5 > 1.645$ and thus we reject $H_0: p = 0.6$ in favor of p > 0.6 at the approximate $\alpha = 0.05$ level. Thus there is evidence that the success rate of swallowing attempts is greater than 0.6.

(ii)

Power is the probability of rejecting H_0 when H_A is true. We found that test reject H_0 is $Z \ge z_{0.05} = 1.645$. Therefore, if p = 0.7,

$$Z_o = \frac{58 - 67(0.6)}{(67(0.6)(0.4))^{\frac{1}{2}}} = 4.44$$

is no longer standard normal.

We have

$$Z_{o7} = \frac{58 - 67(0.7)}{(67(0.7)(0.3))^{\frac{1}{2}}} = 2.96$$

```
p1 = 0.7
numerator = successes - (n * p1)
denominator = sqrt(n * p1 * (1.0 - p1))
Z.obs.seven = numerator / denominator; Z.obs.seven
```

[1] 2.959211

$$Power = P(Z \ge 1.645 | p = 0.7)$$

$$= P_{p=0.7} \left(\frac{B - 67(0.6)}{(67(0.6)(0.4))^{\frac{1}{2}}} \ge 1.645 \right)$$

$$= P_{p=0.7}(B \ge 1.645(67(0.6)(0.4))^{\frac{1}{2}} + 67(0.6))$$

$$=P_{p=0.7}\bigg(\frac{B-67(0.7)}{(67(0.7)(0.3))^{\frac{1}{2}}}\geq \frac{1.645(67(0.6)(0.4))^{\frac{1}{2}}+67(0.6)-67(0.7)}{(67(0.7)(0.3))^{\frac{1}{2}}}\bigg)$$

```
triple_product = n * p0 * (1.0 - p0)
first_term = 1.645 * sqrt(triple_product)
second_term = n * p0
third_term = n * p1
bottom_term = n * p1 * (1.0 - p1)
```

```
p7_numerator = first_term + second_term - third_term
p7_denominator = sqrt(bottom_term)
Pp_7_zvalue = p7_numerator / p7_denominator; Pp_7_zvalue
## [1] -0.02761144
```

$$P(Z^* \ge -0.0276) = 0.4890$$

```
# pvalue = pnorm(-abs(Pp_7_zvalue)); pvalue
pvalue = pnorm(Pp_7_zvalue); pvalue
```

[1] 0.488986

If p = 0.8,

$$Power = P(Z \ge 1.645 | p = 0.8)$$

$$= P_{p=0.8} \left(\frac{B - 67(0.8)}{(67(0.8)(0.2))^{\frac{1}{2}}} \ge \frac{1.645(67(0.6)(0.4))^{\frac{1}{2}} + 67(0.6) - 67(0.8)}{(67(0.8)(0.2))^{\frac{1}{2}}} \right)$$

```
p2 = 0.8
triple_product = n * p0 * (1.0 - p0)
first_term = 1.645 * sqrt(triple_product)
second_term = n * p0
third_term = n * p2
bottom_term = n * p2 * (1.0 - p2)
p8_numerator = first_term + second_term - third_term
p8_denominator = sqrt(bottom_term)
Pp_8_zvalue = p8_numerator / p8_denominator; Pp_8_zvalue
```

[1] -2.077971

$$P(Z^* > -2.078) = 0.01886$$

```
# pvalue = pnorm(-abs(Pp_7_zvalue)); pvalue
pvalue = pnorm(Pp_8_zvalue); pvalue
```

[1] 0.01885601

Solution to Problem 3

Summary: Estimate for $\hat{p} = 0.8615$ and estimate for standard deviation of $\hat{p} = 0.04284$.

Estimate for p using binomial confidence interval, binom.confint():

```
library(binom)
binom.confint(x=56, n=65, conf.level=.95, methods = "asymptotic")
```

```
## method x n mean lower upper
## 1 asymptotic 56 65 0.8615385 0.7775744 0.9455025
```

```
\hat{p} = (0.7776, 0.9455)
```

Estimate for p using 1-sample proportions test without continuity correction, prop.test(): prop.test(x=56, n=65, p = 0.6, conf.level=0.95, alternative = c("greater"))

```
##
## 1-sample proportions test with continuity correction
##
## data: 56 out of 65, null probability 0.6
## X-squared = 17.452, df = 1, p-value = 1.473e-05
## alternative hypothesis: true p is greater than 0.6
## 95 percent confidence interval:
## 0.7676875 1.0000000
## sample estimates:
```

$$p = 0.8615$$

Estimate for p using Exact Binomial Test:

```
binom.test(x=56, n=65, p = 0.6, alternative = c("greater"), conf.level = 0.95)
```

```
##
## Exact binomial test
##
## data: 56 and 65
## number of successes = 56, number of trials = 65, p-value =
## 4.096e-06
## alternative hypothesis: true probability of success is greater than 0.6
## 95 percent confidence interval:
## 0.7708174 1.0000000
## sample estimates:
## probability of success
## 0.8615385
```

Standard error of \hat{p} is:

0.8615385

$$\sqrt{\frac{p(1-p)}{n}}$$

$$= \sqrt{\frac{(0.6)(0.4)}{65}}$$

$$= 0.06076$$

```
p = 0.6
n = 65
numerator = p * (1 - p)
denominator = n
answer = sqrt(numerator/denominator); answer
```

```
## [1] 0.06076436
```

and estimate is:

$$\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$=\sqrt{\frac{(0.8615)(1-0.8615)}{65}}$$

$$=0.04284$$

```
p.hat = 0.8615
n = 65
numerator = p.hat * (1 - p.hat)
denominator = n
answer = sqrt(numerator/denominator); answer
## [1] 0.04284458
```

Solution to Problem 4

```
binom.confint(x = 56, n = 65, conf.level = 0.96, methods = "all")
##
             method x n
                               mean
                                         lower
                                                   upper
## 1
      agresti-coull 56 65 0.8615385 0.7488973 0.9301180
## 2
         asymptotic 56 65 0.8615385 0.7735567 0.9495202
## 3
              bayes 56 65 0.8560606 0.7655984 0.9375798
## 4
            cloglog 56 65 0.8615385 0.7439982 0.9276404
              exact 56 65 0.8615385 0.7480632 0.9371740
## 5
## 6
              logit 56 65 0.8615385 0.7484912 0.9286194
## 7
             probit 56 65 0.8615385 0.7545841 0.9312980
## 8
            profile 56 65 0.8615385 0.7589798 0.9334925
## 9
                lrt 56 65 0.8615385 0.7589836 0.9335307
## 10
          prop.test 56 65 0.8615385 0.7483484 0.9308913
## 11
             wilson 56 65 0.8615385 0.7514483 0.9275670
Here are the rows relevant to our problem:
##
             method x n
                               mean
                                         lower
                                                   upper
## 1
      agresti-coull 56 65 0.8615385 0.7488973 0.9301180
## 2
         asymptotic 56 65 0.8615385 0.7735567 0.9495202
## 5
              exact 56 65 0.8615385 0.7480632 0.9371740
## 11
             wilson 56 65 0.8615385 0.7514483 0.9275670
```

where asymptotic is Laplace-Wald, agresti-coull is Agresti-Coull, exact is Clopper-Pearson, and wilson is Wilson.

It looks like agresti-coull and exact are fairly similar in terms of the location of the interval, while asymptotic is skewed towards the "right" side of the intervals, and wilson has the smallest range.

Solution to Problem 5

```
plants <- matrix(c(926, 288, 293, 104), ncol = 2, byrow=FALSE)
colnames(plants) <- c('tall', 'dwarf')
rownames(plants) <- c('cut-leaf', 'potato-leaf')
plants</pre>
```

```
## tall dwarf
## cut-leaf 926 293
## potato-leaf 288 104

library("gplots")

##
## Attaching package: 'gplots'

## The following object is masked from 'package:stats':
##
## lowess
dt <- as.table(as.matrix(plants))
balloonplot(t(dt), main ="plants", xlab ="", ylab="", label = FALSE, show.margins = FALSE)</pre>
```

plants

housetasks

