

REVUE DE MATHÉMATIQUES SPÉCIALES

(Fondée en 1890)

Sujets donnés aux concours d'Agrégation et aux concours d'entrée aux grandes Écoles en 1972

N.D.L.R. — Pour permettre à ce numéro de la Revue de présenter un éventail des concours aussi large que possible, nous avons dû renoncer à faire paraître le sujet de certaines épreuves. Nos lecteurs voudront bien nous en excuser.

PREMIÈRE PARTIE

AGRÉGATION DES SCIENCES MATHÉMATIQUES

Composition de mathématiques générales.

5990. PRÉAMBULE. — On rappelle qu'une droite (D) du plan projectif complexe (Π) est tangente à une conique dégénérée en deux droites distinctes si elle passe par le point commun à ces deux droites. On ne parlera pas de tangente à une conique dégénérée en deux droites distinctes si elle passe par le point commun à ces deux droites. On ne parlera pas de tangente à une conique dégénérée en deux droites confondues. Si A et A' sont des points d'une conique propre, on désignera par AA' soit la droite joignant A et A', si ces points sont distincts, soit la tangente (unique) en A à la conique si ces points sont confondus.

Étant donné deux coniques propres (Ω) et (C) distinctes, on appelle ligne polygonale de Poncelet (ligne \mathfrak{L}) inscrite dans (Ω) et circonscrite à (C) toute suite infinie $n \longmapsto A_n$, n étant un élément de \mathbf{Z} et A_n un point de (Ω) , telle que les droites A_nA_{n+1} et A_nA_{n-1} soient les deux tangentes à (C), distinctes ou confondues issues de A_n . On dira que les points A_n sont les sommets de la ligne \mathfrak{L} et que A_n et A_{n+1} sont deux sommets consécutifs, qui d'ailleurs peuvent être confondus. Une ligne \mathfrak{L} est un polygone de Poncelet à s sommets s'il existe un entier s, supérieur ou égal à s, tel que l'on ait, pour tout s, s, s, s, les s sommets consécutifs étant distincts.

L'objet du problème est l'étude de telles lignes polygonales, la partie I étudiant directement, et indépendamment les uns des autres, des choix particuliers de (Ω) et (C).

Les lettres X, Y et T désignent les coordonnées d'un point M de (Π) dans un repère projectif \Re qui est soit fixé à l'avance, soit à choisir convenablement en fonction de certaines conditions. On note (Φ) un faisceau linéaire ponctuel de coniques contenant (Ω) .

- I. A) 1º Démontrer que, si (Φ) contient une conique dégénérée en deux droites confondues, un choix convenable de ${\mathcal R}$ permet de donner
 - à cette conique dégénérée l'équation $T^2 = 0$;
- à Ω soit l'équation $Y^2-2XT=0$ (premier cas), soit l'équation $X^2+Y^2-T^2=0$ (deuxième cas), ces deux cas s'excluant mutuellement.

2º Démontrer que, dans le premier cas, si (C) est une conique propre de (Φ), il n'existe aucun polygone de Poncelet inscrit dans (Ω) et circonscrit à (C).

3º Le repère \Re étant fixé, on prend pour (Ω) la conique d'équation $X^2 + Y^2 - T^2 = 0$ et pour (C) la conique (C_1) d'équation $X^2 + Y^2 - \lambda T^2 = 0$, λ étant un nombre complexe différent de 0 et de 1.

a) Comment faut-il choisir λ pour qu'il existe au moins un polygone de Poncelet inscrit dans (Ω) et circonscrit à (C₁)?

Le nombre entier s étant donné supérieur ou égal à 3, pour combien de valeurs distinctes de λ existe-t-il un l'olygone de Poncelet à s sommets inscrit dans (Ω) et circonscrit à (C_{λ}) ?

- b) Déduire de ce qui précède que, si les coniques (Ω) et (C) sont définies dans un repère quelconque par des formes quadratiques à coefficients réels et sont tangentes en deux points distincts à coordonnées réelles, un polygone de Poncelet inscrit dans (Ω) et circonscrit à (C), s'il en existe, a, au plus, deux sommets à coordonnées réelles.
- B) Le repère \Re est fixé; J est le point (1,0,0). On prend pour (Ω) la conique, d'équation $Y^2-2XT=0$, et pour (C) la conique (C₂), d'équation $Y^2 - 2XT + \lambda YT = 0$, λ n'étant pas nul. Quel que soit λ , (C₂) et (Ω) appartiennent à un faisceau linéaire ponctuel (Φ) .

1º Une représentation paramétrique rationnelle propre de $(\overline{\Omega}) = (\Omega) \setminus \{J\}$ $[(\Omega)$ privée du point J] est t ----- A, les coordonnées de A étant

$$X = \frac{1}{2}t^2$$
, $Y = t$ et $T = 1$.

Établir une condition $\theta(\lambda, t, t') = 0$ nécessaire et suffisante pour que la droite (AA') définie par les points de $(\overline{\Omega})$ de paramètres respectifs t et t' soit tangente à (C_{λ}) .

20 a) On suppose $t(\lambda - 4t) \neq 0$. Établir que par le point A de paramètre t passent deux tangentes à (C_{λ}) qui recoupent $(\overline{\Omega})$ en des points A'(t') et A''(t''), les trois paramètres t, t' et \hat{t}'' étant distincts.

- Calculer $\frac{t'}{\lambda}$ et $\frac{t''}{\lambda}$ en fonction de $\frac{t}{\lambda}$.

 b) Démontrer que, si $\frac{4t_0}{\lambda}$ n'est pas le carré d'un entier, le point A_0 de paramètre t_0 est sommet d'une ligne $\mathfrak L$ de sommets distincts, inscrite dans (Ω) et circonscrite à (C_{λ}) .
 - c) Que se passe-t-il lorsque. $\frac{4t_0}{\lambda}$ est le carré d'un entier?

30 On suppose $t(\lambda - 4t) \neq 0$. Établir que par le point A(t) passe au moins une tangente à la conique propre (C.) du faisceau (Φ) $(v \neq \lambda)$ coupant $(\overline{\Omega})$ en B de paramètre u, différent de t.

On pose $\nu = \lambda \rho^2$, $\lambda' = \lambda(\rho - 1)^2$, $\lambda'' = \lambda(\rho + 1)^2$.

Démontrer que des deux droites (BA') et (BA'') l'une est tangente à la conique $(C_{\lambda'})$, et l'autre à la conique

4º Établir que, pour λ et k fixés ($k \in \mathbb{Z}$) et pour une ligne \mathfrak{L} , quelconque inscrite dans (Ω) et circonscrite à (C_1) , les droites A_nA_{n+k} sont, quel que soit $n(n \in \mathbb{Z})$, tangentes à une même conique de (Φ) , que l'on précisera.

5º Existe-t-il des polygones de Poncelet inscrits dans (Ω) et circonscrits à (C_1) ?

II. — La conique propre (Ω) et le faisceau (Φ) resteront fixes dans la partie II, (Φ) ne contenant pas de conique dégénérée en deux droites confondues. On note $\,\lambda\,$ un nombre complexe quelconque.

Soit (C) une autre conique propre de (Φ), S (resp. N) la matrice symétrique d'une forme quadratique dont l'annulation définit (Ω) [resp. (C)] dans un repère \mathcal{R} .

 $d(\lambda)$, ou det $(N - \lambda S)$, le déterminant de la matrice $N - \lambda S$;

(C_{\lambda}) la conique d'équation
$$\det \left[(XYT) (N - \lambda S) \begin{pmatrix} X \\ Y \\ T \end{pmatrix} \right] = 0;$$

 (Γ) la cubique, dite de Cayley, d'équation $\mu^2=d(\lambda)$ dans le plan affine complexe (P) rapporté à un repère fixe, où λ et μ sont les coordonnées d'un point.

Dans une complétion projective (\widehat{P}) de (P), où ω est le point à l'infini de l'axe des μ , on considère

$$(\widehat{\Gamma}) = (\Gamma) \cup \{\omega\}.$$

1º La cubique $(\widehat{\Gamma})$ dépend, pour (Ω) et (C) fixées, du choix de \mathcal{R} , S et N. Comment se transforme-t-elle si l'on change \mathcal{R} , ou S, ou N? Établir que le nombre de ses points doubles ne dépend que de (Φ) . A quelle condition (Φ) doit-elle satisfaire pour que $(\widehat{\Gamma})$ soit sans point double?

Jusqu'à la question II, 6° incluse, la cubique $(\widehat{\Gamma})$ est supposée sans point double. Toute droite de (\widehat{P}) rencontre donc $(\widehat{\Gamma})$ en trois points distincts ou non.

2º Si m et m' sont des points de $(\widehat{\Gamma})$, (mm') désigne soit la droite joignant m et m' si ces points sont distincts, soit la tangente (unique) en m à $(\widehat{\Gamma})$ si ces points sont confondus. La droite (mm') recoupe $(\widehat{\Gamma})$ en un point m''. Au couple (m, m') on associe le point, noté m + m', où la droite $(\omega m'')$ recoupe $(\widehat{\Gamma})$.

En admettant sans démonstration qu'elle est associative, établir que la loi de composition interne ainsi définie munit $\widehat{(\Gamma)}$ d'une structure de groupe commutatif (ce qui justifie pour cette loi la notation additive).

Montrer que, (Ω) et (C) étant fixées, les groupes $(\widehat{\Gamma}, +)$ correspondant aux différents choix de \mathcal{R} , S et N sont deux à deux isomorphes.

 3° a) Montrer qu'un choix convenable du repère et des formes quadratiques définissant (Ω) et (C) permet de supposer

$$N = \begin{pmatrix} \alpha & \beta & -1 \\ \beta & \gamma & 0 \\ -1 & 0 & 0 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \qquad \text{avec} \qquad (\alpha, \beta, \gamma) \in \mathbb{C}^3, \text{ det } N \neq 0.$$

La cubique $(\widehat{\Gamma})$ est alors fixée.

On désigne par f l'application de $(\widehat{\Gamma})$ dans Φ définie par

$$\langle f(m) = (\Omega), | pour m = \omega, \\ \langle f(m) = (C_{\lambda}), pour m point d'abscisse \lambda de (\Gamma).$$

Le point I(0, 0, 1) est un point de base de (Φ) . Chaque conique f(m) possède en I une tangente bien déterminée, qui coupe (Ω) en I et en un point g(m) éventuellement confondu avec I.

b) Soit λ_1 , λ_2 et λ_3 trois nombres complexes. Établir une condition, $\Delta(\lambda_1, \lambda_2, \lambda_3) = 0$, nécessaire et suffisante pour que ces trois nombres soient les abscisses de trois points m_1 , m_2 et m_3 de (Γ) vérifiant la relation

$$m_1+m_2+m_3=\omega.$$

- c) Démontrer que, si m_1 , m_2 et m_3 sont trois points de $(\widehat{\Gamma})$ vérifiant la relation $m_1 + m_2 + m_3 = \omega$, alors la droite $g(m_1)g(m_2)$ est tangente à la conique $f(m_3)$.
- 4º Soit c l'un des points de (Γ) dont l'image par f est (C). Démontrer que les deux tangentes à (C) menées par le point g(m) de (Ω) sont les deux droites g(m)g(m+c) et g(m)g(m-c).
 - 50 On considère dans cette question les lignes ${\mathfrak L}$ inscrites dans (Ω) et circonscrites à (C).
- a) Établir que, s'il existe une ligne $\mathcal L$ périodique de plus petite période strictement positive s, alors toute ligne $\mathcal L$ est périodique de plus petite période strictement positive s. Ces lignes sont-elles des polygones de Poncelet? Que se passe-t-il, selon la parité de s, pour une ligne $\mathcal L$ périodique admettant pour sommet un point de base de Φ ou un point de contact d'une tangente commune à Φ 0 et à Φ 1.
- b) Dans le cas où il n'existe aucune ligne ${\mathfrak L}$ périodique, démontrer que les sommets d'une ligne ${\mathfrak L}$ sont distincts, sauf dans certains cas, que l'on précisera.
- c) Démontrer que, pour un entier k fixé et pour toute ligne \mathfrak{L} , les droites $A_n A_{n+k}$ sont, quel que soit $n(n \in \mathbb{Z})$, tangentes à une même conique de (Φ) , que l'on précisera.
- 6° a) Dans le faisceau (Φ) existe-t-il des coniques (C_{λ}) dont trois tangentes forment un triangle inscrit dans (Ω) ?

En se plaçant dans les hypothèses du II, 3°, a, établir une condition, portant sur α , β et γ , d'existence de lignes $\mathfrak L$ de période 3 inscrites dans (Ω) et circonscrites à (C).

b) Dans le faisceau (Φ) existe-t-il des coniques (C_{λ}) dont quatre tangentes forment un quadrangle inscrit dans (Ω) ?

En se plaçant dans les hypothèses du II, 3°, a, établir une condition, portant sur α , β et γ , d'existence de lignes \mathcal{Z} de période 4 inscrites dans (Ω) et circonscrites à (C).

7º On suppose dans cette question que la cubique $(\widehat{\Gamma})$ a un point double.

Démontrer que dans ce cas il n'existe pas de droite de (\widehat{P}) incluse dans $(\widehat{\Gamma})$. Que deviennent les résultats des cinq questions précédentes?

Analyse.

On désigne

- par Z (resp. N) l'ensemble des entiers relatifs (resp. naturels),

— par (x_1, x_2, x_3) le point courant de \mathbb{R}^3 ,

— par \mathbf{R}_1 [resp. \mathbf{R}_2 et \mathbf{R}_3] le sous-espace formé par les vecteurs de la forme $(x_1, 0, 0)$ [resp. $(0, x_2, 0)$ et $(0, 0, x_3)$],

- par $(z,\,x_3)$ le point courant de ${f C} imes {f R},\,\,{f C_1}$ étant le sous-espace formé par les vecteurs de la forme (z, 0).

On identifie $C \times R$ à R^3 par la relation $(z, x_3) = (x_1, x_2, x_3)$, avec $z = x_1 + ix_2$. Si A et B sont deux parties non vides de R^n , A + B désigne l'ensemble des vecteurs X + Y, où X parcourt A et Y parcourt B.

Si Ω est un ouvert non vide de \mathbf{R}^n et ω une partie de Ω , $\mathfrak{D}(\Omega)$ est l'ensemble des fonctions à valeurs complexes indéfiniment différentiables sur Ω et $\mathfrak{D}(\omega, \Omega)$ la partie de $\mathfrak{D}(\Omega)$ constituée par celles qui s'annulent sur ω ; pour n=3, $H(\Omega)$ est formé par les fonctions f de $\mathfrak{D}(\Omega)$ telles que, pour tout nombre c réel, la fonction partielle $z \longmapsto f(z, c)$ soit holomorphe sur la section de Ω par le plan d'équation $x_3 = c$; la dérivée de cette fonction sera notée $\frac{\partial f}{\partial z}$.

I. — On désigne par S l'ensemble des suites doubles $a=(a_{p,q})$ à valeurs complexes indexées par $\mathbf{Z}\times\mathbf{N}$. Étant donné a et b dans S, $\Re(a,b)$ désignera l'ensemble des suites c de S vérifiant pour tout couple (p,q)de $\mathbf{Z} \times \mathbf{N}$

$$c_{p+1,q} = a_{p,q}c_{p+2,p+1} + b_{p,q}c_{p,q+2}.$$

.1º Soit k un entier donné quelconque dans N. Démontrer l'existence de fonctions $\Gamma_{i,\ j,\ k}$ polynomiales des $a_{p,q}$ et $b_{p,q}$, à coefficients positifs, et telles que pour tout c dans $\Re(a,b)$ on ait

$$c_{0,0} = \sum_{\substack{i+2,j=3k\\k\leqslant j\leqslant 2k}} \Gamma_{i,j,k}(a,b)c_{i,j}.$$

2º Soit $a' = (a'_{p,q})$ et $b' = (b'_{p,q})$ deux suites à valeurs réelles de S, telles que, pour tout couple, (p,q) $\mathbb{Z} \times \mathbb{N}$ vérifiant $|p+1| \leq q$, on ait $|a_{p,q}| \leq a'_{p,q}$ et $|b_{p,q}| \leq b'_{p,q}$. Démontrer alors

$$|\Gamma_{i,j,k}(a,b)| \leqslant \Gamma_{i,j,k}(a',b').$$

3º Soit ϵ la suite de S définie par $\epsilon_{p,q} = \frac{\alpha}{q+1} (\alpha \in \mathbb{C}, \ \alpha \neq 0)$. Vérifier l'inégalité $|\Gamma_{i,j,k}(\epsilon, \epsilon)| \leq \frac{|2\alpha|^k}{k!}$.

4º Soit A, λ et μ trois constantes réelles positives et $(\theta_p)_{p \in \mathbb{Z}}$ une suite de nombres complexes vérifiant $|\theta_p| \leq 1$, pour tout p. Démontrer que, si c est une suite de S vérifiant les relations

$$c_{p+1,q} = \frac{\theta_p}{q+1} \, c_{p+2,q+1} + \frac{\mu(p+1)}{(q+1) \, (q+2)} \, c_{p,q+2} \qquad \text{et} \qquad |c_{p,q}| \leqslant \lambda \Lambda^{p+2q},$$

pour tout couple $(p, q) \in \mathbb{Z} \times \mathbb{N}$, alors il existe un nombre M, ne dépendant que de A, λ , μ , p et q, tel que I'on ait, pour tout $k \ge 1$,

$$|c_{p,q}| \leqslant \frac{\mathbf{M}^k}{(k-1)!}.$$

(On pourra commencer par majorer $|c_0, o|$, puis ramener le cas général au cas précédent par une translation des indices.)

En déduire que les $c_{p,q}$ sont nuls.

II. — Le point courant de \mathbb{R}^2 est noté (x,y); on étudie l'opérateur différentiel $\mathbb{D} = \frac{\partial^2}{\partial y^2} + a(x) \frac{\partial}{\partial y} + b \frac{\partial}{\partial x}$

où a est une fonction polynomiale du premier degré à coefficients complexes et b une constante complexe. 1º (Π) est le demi-plan formé par les points (x,y) vérifiant y>0; K est une partie bornée contenue dans (Π). Démontrer que toute fonction f de $\mathfrak{D}(\Pi)$, nulle en dehors de K, bornée sur K ainsi que ses dérivées partielles jusqu'à l'ordre deux et vérifiant $\mathrm{D}f=0$, est nulle sur (II) tout entier. (Pour cela, on pourra poser pour tout couple (p, q) de $\mathbb{Z} \times \mathbb{N}$

$$c_{p,q} = \iint_{(\mathbf{I})} [a(x)]^p y^q f(x, y) dx dy$$
 si $p \ge 0$ et $c_{p,q} = 0$ si $p < 0$,

puis montrer que la suite $c = (c_{p,q})$ vérifie les conditions du I,4º et en déduire le résultat.)

20 Ω et ω sont deux ouverts convexes non vides de \mathbf{R}^2 vérifiant $\omega \subseteq \Omega \subseteq \omega + \mathbf{R}_2$ et $\omega \neq \Omega$;

 \mathbf{G}_{ω} désigne le complémentaire de ω dans \mathbf{R}^2 . Soit dans \mathbf{R}^2 une parabole $\mathbf{\mathcal{Z}}$ d'axe parallèle à \mathbf{R}_2 et d'équation

$$\varphi(x, y) = \alpha y - (x^2 + \beta x + \gamma) = 0;$$

 \mathfrak{L}_i désigne l'intérieur de la parabole, c'est-à-dire l'ensemble $\{(x, y) | \varphi(x, y) > 0\}$.

a) Soit M un point donné dans $\Omega \cap \mathbf{G}_{\omega}$; démontrer que l'on peut choisir \mathcal{L} de façon que M appartienne à \mathcal{L}_i et que la composante connexe, δ , de $\mathcal{L}_i \cap \mathbf{G}_{\omega}$ contenant M soit relativement compacte et contenue dans Ω . La parabole \mathcal{L} est ainsi choisie dans la suite.

b) Soit o une fonction de $\mathfrak{D}(\omega, \Omega)$. Démontrer que la fonction \widetilde{o} , qui est nulle en dehors de δ et coïncide avec o sur δ , appartient à $\mathfrak{D}(\mathfrak{F}_i)$.

c) Soit Φ l'application telle que $(x, y) \longmapsto (x, \varphi(x, y))$. Démontrer que l'application $g \longmapsto g \circ \Phi$ définit une bijection de $\mathfrak{D}(\Pi)$ sur $\mathfrak{D}(\mathfrak{L}_i)$.

Expliciter en fonction de (α, β, γ) l'opérateur différentiel \tilde{D} tel que, pour tout g de $\mathfrak{D}(\Pi)$, on ait

$$D(g \circ \Phi) = (\widetilde{D}g) \circ \Phi.$$

3º Déduire des questions précédentes que D est un opérateur injectif sur $\mathfrak{D}(\omega, \Omega)$.

4º Démontrer que ce résultat subsiste pour l'opérateur $D_0 = \frac{\partial^2}{\partial u^2} + b \frac{\partial}{\partial x}$

III. — On étudie l'opérateur différentiel $\Delta = \frac{\partial}{\partial z} - i \frac{\partial^2}{\partial x_3^2}$, défini sur les ensembles $H(\Omega)$ introduits dans le préambule.

Soit M un point (ζ, c) donné dans $C \times R$.

1º Soit α un nombre complexe.

a) Démontrer que l'équation $\Delta u = 0$ a, dans $H(\mathbf{C} \times \mathbf{R})$, une solution unique de la forme $\Psi(z)e^{\alpha x_3}$ et satisfaisant à $u(\zeta, c) = 1$. On appelle U_n cette solution pour $\alpha = \sqrt{n} e^{i\theta} (n \in \mathbf{N}, \theta$ réel donné).

b) Démontrer que la série $\sum_{n=0}^{\infty} U_n$ converge uniformément et absolument sur tout compact d'un demi-espace ouvert P_0 ayant M comme point frontière, et que la somme s de cette série est une fonction de $H(P_0)$ vérifiant

c) Démontrer que s n'est pas bornée au voisinage de M.

2º Soit P le plan d'équation $x_2=0$ et $\tilde{\Delta}$ l'opérateur $\frac{\partial}{\partial x_1}-i\frac{\partial^2}{\partial x_3^2}$. Étant donné un demi-plan (Π_1) de P, dont la frontière est parallèle à \mathbf{R}_1 ou \mathbf{R}_3 , et un point M de cette frontière, démontrer qu'il existe une fonction h de $\mathfrak{D}(\Pi_1)$ non bornée au voisinage de M et vérifiant $\tilde{\Delta}h=0$.

IV. — On suppose que Ω est une partie non vide, ouverte et convexe de $\mathbf{C} \times \mathbf{R}$.

1° a) Démontrer que, si A est une partie convexe de Ω ayant plus d'un point et contenue dans un plan parallèle à C_1 , alors toute fonction de $H(\Omega)$, qui s'annule sur A, s'annule aussi sur $(A + C_1) \cap \Omega$.

b) Démontrer que, si B est une partie convexe de Ω contenue dans le plan d'équation $x_2 = a$ et formant un ouvert non vide de ce plan, alors toute fonction u de $H(\Omega)$, qui s'annule sur B et vérifie $\Delta u = 0$, s'annule nécessairement sur $(B + \mathbf{R}_3) \cap \Omega$.

2º Démontrer que deux points quelconques de Ω peuvent être joints par une ligne polygonale dont les côtés sont parallèles soit à C_1 , soit à R_3 .

3º On suppose que la partie ω de Ω est un ouvert non vide, convexe, borné du plan P d'équation $x_2 = 0$; $\mathcal{E}(\Omega)$ [resp. $\widetilde{\mathcal{E}}(\omega)$] désigne l'ensemble des solutions dans $H(\Omega)$ [resp. $\mathcal{D}(\omega)$] de l'équation $\Delta u = 0$ [resp. $\widetilde{\Delta}\omega = 0$]. Pour tout u de $H(\Omega)$, \widetilde{u} est la restriction de u à ω .

Démontrer que l'application $u \longmapsto \tilde{u}$ est une injection de $\mathfrak{E}(\Omega)$ dans $\tilde{\mathfrak{E}}(\omega)$.

Démontrer, à l'aide des résultats de la partie III, que cette application n'est pas surjective.