武汉大学

2015 年攻读硕士学位研究生入学考试试题 (满分值_150_分)

科目名称: 计算机基础 (C卷)

科目代码: 933

注意: 所有答题内容必须写在答题纸上, 凡写在试题或草稿纸上的一律无效。

《数据结构》(共45分)

一、单项选择题(共11小题,每小题2分,	共 22 分)	
1、若线性表中总的元素个数基本稳定,但经常要在表	头删除元素,在表尾	
插入元素,那么最好采用来实现该线性表。		
A、带头指针的单链表 B、双向循	环链表	
C、循环顺序队列 D、顺序表		
2、在以下操作中,需要用到栈结构的是。		
A、二叉树的层次遍历		
B、图的广度优先搜索		
C、Kruscal 算法求解图的最小生成树		
D、后序遍历二叉树		
3、在 KMP 模式匹配算法中,已知模式串 t="abcabcad",若第一个字符 a		
的 next 函数值 next[1]=0, 那么字符 d 的 next 函数值 next[8]=。		
A, 1 B, 5 C, 4	D, 0	
4、若采用左孩子右兄弟的方式存储一棵树,那么树的后序遍历对应于二叉		
链表的		
A、先序 B、中序 C、后序	以上答案均不正确	
5、给定权值集合{2,3,5,6,11},则其对应的最优树的带权路径长度为		
A, 58 B, 59 C, 60	D, 57	
6、若一棵二叉树的叶子结点是某子树中序遍历的最后	一个结点,则它必是	
该子树的遍历序列中的最后一个结点。		
A、先序 B、后序 C、层次	D、不确定	

计算机基础(C卷)

共10 页 第1页

7、已知某图的邻接矩阵如图一所示,则该图的拓扑有序序列为

v1 v2 v3 v4 v5 v6 v7 v8

图一 某图的邻接矩阵

- A. v1,v2,v5,v4,v3,v6,v7,v8
- B、v1,v2,v3,v4,v5,v6,v8,v7
- C, v1,v2,v5,v3,v4,v6,v7,v8
- D, v1,v2,v3,v5,v7,v4,v6,v8
- 8、对含有 19 个数据的有序表进行二分查找,则查找第 9 个元素的查找路 径是_____。
 - A. 10,5,8,7,9 B. 10,5,7,9 C. 11,6,7,8,9 D. 10,5,7,8,9
 - 9、以下关于 B-树和 B+树描述不正确的是_____。
 - A、B-树和 B+树常用于外存数据的组织和查找
 - B、B-树的分支结点中含有的关键字个数和指向子树的指针数相等
 - C、B+树的分支结点可以看作是索引,只记录关键字,不含有记录
 - D、B+树中所有的记录均位于叶子结点
 - 10、优先队列中每个元素都有一个优先级,优先队列支持三种操作:

Min(Q): 返回优先级最小的元素

Insert(Q,x): 将元素 x 插入队列

计算机基础(C卷)

共10 页 第2页

DeleteMin(Q): 删除优先级最小的元素

若要在 O(1)时间内完成 Min(Q), O(logn)时间内完成 Insert(Q,x)和 DeleteMin(Q),则应采用_____来实现优先级队列。

- A、有序链表
- B、无序链表
- C、二叉搜索树
- D、堆

11、设有关键字序列(66,89,8,123,9,44,55,37,200,127,98),进行两趟快速排序 后的结果是____。

- A, 37,55,8,44,9,66,123,89,200,127,98
- B、 9,8,37,44,55,66,98,89,123,127,200
- C、8,9,37,44,55,66,89,98,123,127,200
- D, 8,9,44,55,37,66,89,123,200,127,98

二、综合应用题(共2小题,共23分)

- 1、(11 分) 某城市所有初三年级进行了一次数学联考,为了对数学教学质量进行分析,需要对各分数段的人数进行统计。假设初三年级的全体同学共有m人,需要统计的分数段有 n 个(n<<m,总分为 100 分,分数均按整数计)。假设学生的分数存放在数组 Scores[m]中,设定的分数段存放在数组 Seg[n]中,每个分数段都包含低值 low 和高值 high。请设计一个高效的算法,能够在 O(m)时间内完成各分数段的统计。
- 2、(12分)若要在N个海量数据(超过十亿,不能一次全部放入内存)中 找出最大的k个数(内存可以容纳k个数),最好采用什么数据结构和策略?请 详细说明你采用的数据结构和策略,并用时间复杂度和空间复杂度来说明理由。

计算机基础(C卷)

共10 页 第3页

《计算机组成原理》(共45分)			
一、单项选择题(共11小题,每小题2分,共22分)			
1、在 Cache 更新时,把数据写入 Cache 不写入主存的策略是			
A、写直达 B、写回法			
C、按写分配法 D、不按写分配法			
2、为了提高存储器性能,结构上可采取的措施是。			
A、减少存储器周期 B、提高存储器强制性			
C、增加存储器容量 D、采用多体交叉存储			
3、采用虚拟存储器的目的是。			
A、增大 Cache 容量 B、提高存储器速度			
C、增大存储器容量 D、降低存储器成本			
4、以下正确的叙述是。			
A、RAID0 采用镜像盘 B、RAID1 无冗余			
C、RAID2 采用 CRC 校验 D、RAID3 采用奇偶校验			
5、外围处理机(PPU)不具备功能。			
A、中断 B、DMA			
C、程序控制 D、数据运算			
6、计算机数据总线的宽度由总线的 定义。			
A、物理特性 B、功能特性			
C、电气特性 D、时间特性			
7、计算机总线的同步通信方式。			
A、既不采用时钟信号,也不采用握手信号			
B、只采用时钟信号,不采用握手信号			
C、不采用时钟信号,只采用握手信号			
D、既采用时钟信号,又采用握手信号			
8、以下有关 PCI 总线基本概念中,不正确的描述是。			
A、HOST 总线不仅连接主存,还可以连接多个 CPU			
B、PCI 总线体系中有三种桥,它们都是 PCI 设备			
C、以桥连接实现的 PCI 总线结构不允许多条总线并行工作			
D、桥的作用可以有的存取都按 CPU 的需要出现在总线上			

计算机基础 (C卷) 共 10 页 第 4 页

- 9、在多重中断情况下,CPU 现场信息可以保存到中。
 - A、通用寄存器

B、控制存储器

C、堆栈

- D、外设接口
- 10、以下描述正确的是
 - A、中断方式一般用于处理随机出现的服务请求
 - B、外部设备发出中断请求应立即得到 CPU 的响应
 - C、中断方式可以用于 CPU 与外部设备的请求
 - D、DMA 也可以用于主存单元与主存单元之间的数据传输
- 11、下面哪种关于多核处理器的说法是错误的。。
- A、多核处理器并不能使单线程程序的执行加速,但是能够在特定时间 内执行更多的任务
 - B、多核处理器中每个核心的主频有可能低于单核处理器的主频
 - C之多核处理器的出现能很好的解决内存瓶颈问题
 - D、在能耗上,多核处理器一般比单核处理器更加高效

二、综合应用题(共3小题,共23分)

1、(5 分) 图二是一个(7,4) 循环海明码编码器的原理图,该码的生成多项式是 $G(x)=x^3+x+1$,它由三个延迟电路 D 和两个异或门组成。如果输入的信息码为 1001,分析该电路的编码输出,写出编码过程和输出信息。

图二 (7,4)编码器原理图

2、(5 分)假定某一微处理器的控制器完成每条指令功能的时间为 5 个机器周期(M_1 、 M_2 、 M_3 、 M_4 、 M_5),设计能够产生 5 个机器周期的时序电路,并画出时序图。

计算机基础(C卷)

共10 页 第5页

3、(共13分)某一单流水线处理机,包含取指、译码、执行3个功能段。取指、译码各需1T;在执行段,MOV操作需2T,ADD操作需3T,MUL操作需4T;各操作在1T内取数,在最后1T写结果。执行下面程序后按要求分析指令流水线的功能。

 $k: MOV R_1, R_0 ; R_1 (R_0)$

 $k+1: MUL R_0,R_2,R_1 ; R_0 \leftarrow (R_1)^*(R_0)$

k+2: ADD R_0,R_2,R_1 ; $R_0 \leftarrow (R_2)+(R_3)$

- 1)(5分)设计并画出流水线功能段的结构图。
- 2)(5分)考虑指令数据相关性,设计并画出指令执行过程流水线的时空图。
- 3)(3分)为了加快速度,可以采取那些改进措施。

《操作系统》(共35分)

- 一、单项选择题(共10小题,每小题2分,共20分)
- 1、操作系统的特征包括()。

I.动态性 II.并发行 III.共享性 IV.不确定性

A、I、II和III

B、I、II和IV

C、II、III和IV

D、I、II和IV

- 2、并发进程失去了封闭性是指()。
 - A、多个相对独立的进程以各自的速度向前推进
 - B、并发进程的执行结果与速度无关
 - C、并发进程执行时, 在同时刻发生的错误
 - D、并发进程共享变量, 其执行结果与速度有关
- 3、某系统有4个并发进程,都需要同类资源3个、试问该系统不会发生死锁的最少资源数是()。

A, 8

B, 9

C₂ 10

D. 11

4、() 调度算法有利于 CPU 繁忙型作业而不利于 I/O 繁忙型作业。

A、时间片轮转

B、多级反馈队列

C、短作业优先

D、先来先服务

- 5、采用()存储管理方式会产生外部碎片。
 - I.固定分区 II.分页 III.分段 IV.伙伴系统 V.动态分区

计算机基础(C卷)

共10 页 第6页

A、III和 V

B、II和V C、III和IV

D、II和III

6、设页面引用序列为 1、2、1、3、1、2、4、2、1、3、4、3, 分配给进 程3个物理块(初始时为空),若采用简单时钟(clock)算法将产生()次缺 页中断。

A. 6

B、7

C、8

D. 9

7、在适合多道程序运行的存储管理方法中,存储保护是为了()。

A、防止一个作业占用同一分区 B、防止非法访问磁盘文件

C、防止非法访问磁带数据

D、防止各道作业相互干扰

8、段页式存储管理中,每次从内存中取出一条指令或数据,需要3次访问 内存,其中第2次是()。

A、访问指令或数据

B、访问页表。

C、访问空闲分区表

D、访问段表

9、在以下 I/O 控制方式中,需要 CPU 干预最少的是()。

A、程序直接控制方式

B、DMA 控制方式

C、通道控制方式

D、中断控制方式

10、文件的存储方法依赖于()。

A、外存的分配方式

B、文件的大小

C、文件的逻辑结构

D、都不对

二、综合应用题(共2题,共15分)

1、(7 分)有一个师傅进程和三个学徒进程,每个学徒连续不断地组装产 品,做一个产品需要 A、B、C 三种零件,这三个学徒分别掌握有 A 零件、B 零 件、C零件多个。师傅源源不断地供应上述三种零件,但他每次只将其中的两 种零件放在桌子上(所放零件由 rand % 3 函数生成的 0-2 之间的随机数决定), 具有另一零件的学徒就可以组装产品,且做完后给师傅发信号,然后师傅再拿 出两种零件放在桌上,如此重复,试用 P、V 操作描述他们的同步。

- 2、(8分)某操作系统采用混合索引分配方式,文件地址表共有10项,其 中前8项是直接索引项,第9项是一次间接索引项,第10项是2次间接索引项。 假设物理块的大小是 2KB, 每个地址项占 4 字节, 试问: (要求写出简单的计算 过程)
 - (1)每个物理块中可以放下多少个地址项?
 - (2) 该文件系统中最大的文件可以达到多大? (长度只要求给出 xKB+yMB+...的结果,不要求计算出具体数值)

计算机基础 (C卷)

共10 页 第7页

(3)假设文件的实际大小是 128MB,该文件实际占用磁盘空间量多大? (包含索引块占用空间,结果要求同上)

《计算机网络》(共 25 分)
一、单项选择题(共8小题,每小题2分,共16分)
1、IEEE 802.11 采用以下哪两个频段进行数据通信? ()
A、2.4GHz 和 5GHz B、11GHz 和 54GHz
C、2.4GHz 和 11GHz D、5GHz 和 54GHz
2、同步数字系列(SDH)是光纤信道复用标准, 其中 STM-4(OC-12)的数
据速率是()。
A、51.840Mb/s B、155.520Mb/s
C、622.080Mb/s D、2488.320Mb/s
3、按照 IEEE 802.1D 协议, 当交换机端口处于()状态时, 既可以
学习 MAC 帧中的源地址,又可以把接收到的 MAC 帧转发到适当端口。
A、阻塞 (blocking) B、学习 (learning)
C、监听(listening) D、转发(forwarding)
4、在 IPv6 的单播地址中有一些特殊地址, 其中地址 0:0:0:0:0:0:0:1 表示
().
A、不确定地址,不能分配给任何结点
B、回环地址,结点用这种地址向自身发送 IPv6 分组
C、不确定地址,可以分配给任何地址
D、回环地址,用于测试远程结点的连通性
5、某企业的网络管理员给财务部门分配的 IP 地址块是 210.42.123.0/28, 请
问财务部门有效的 IP 地址数共有()个。
A, 32 B, 30 C, 16 D, 14
6、以下关于 IPSec 协议的描述中,不正确的是()。
A、IPSec 认证头(AH)可以向 IP 通信提供数据完整性和数据源验证
B、IPSec 的 ESP 提供 IP 层数据完整性验证以对付网络上的监听
C、IPSec 认证头(AH)提供 IP 层数据加密服务
D、IPSec 的 ESP 提供 IP 层数据加密服务

计算机基础 (C卷)

共10 页 第8页

- 7、以下关于 OSPF 路由协议的描述,说法不正确的是()
 - A、OSPF 属于距离向量协议的一种
 - B、Hello 分组用来发现和维持邻站的可达性
 - C、OSPF 支持多路径间的负载均衡
 - D、OSPF 支持可变长度的子网划分
- 8、中国自主研发的 3G 移动通信标准是 ()。
 - A、TD-LTE
- B、TD-SCDMA
- C、WCDMA
- D、-CDMA2000

二、综合应用题(共1题,共9分)

某 IT 企业的网络拓扑结构如下图所示,办公楼所分配的子网为: 210.42.125.0/24; 研发楼所分配的子网为 192.168.1.0/24。

路由器 R1 接口 Fa0/0 地址为 202.114.66.5/30,接口 Fa0/1 地址为 210.42.125.254/24。

路由器 R2 接口 Fa0/0 地址为 202.114.66.6/30,接口 Fa0/1 地址为 192.168.1.254/24。

计算机基础(C卷)

共10 页 第9页

- 1、(2分)路由器 R1接口 Fa0/0地址 202.114.66.5/30 所属的子网号是多少?该子网的广播地址是多少?
- 2、(2分)交换机 S1 接口 Fa0/2 连接办公楼中的 PC1,接口 Fa0/3 连接办公楼中的 PC2。 PC1 的 IP 地址为 210.42.125.11/24, PC2 的 IP 地址为 210.42.125.22/24。如果要阻止 PC1 和 PC2 之间的通信,可以采用什么方法? 为什么?
- 3、(2分) 办公楼中的 PC1 安装的是 Win7 操作系统, PC1 的网关地址是多少? 在 PC1 中可以使用什么命令可以查看/设置路由表?
- 4、(2分)研发楼中的计算机采用 NAT 技术共享路由器 R2 接口 Fa0/0 的外部 IP 地址上网,请解释什么是 NAT? 在当前实例中要不要采用端口复用?
- 5、(1分)如果 PC3 访问外部武汉大学 WWW 服务器,其发送的请求数据帧包含信息 (目标 MAC、源 MAC、目标 IP、源 IP、目标端口、源端口),当经过路由器 R2 之后,该请求数据帧哪些信息发生了变化?

4

计算机/软件工程专业 每个学校的 考研真题/复试资料/考研经验 考研资讯/报录比/分数线

免费分享

微信 扫一扫 关注微信公众号 计算机与软件考研

计算机基础(C卷)

共10 页 第10页

武汉大学

2015年攻读硕士学位研究生入学考试试题

参考答案

(满分值 150分)

科目名称: 计算机基础 (C卷)

科目代码: 933

《数据结构》(共 45 分)

一、单项选择题(共11小题,每小题2分,共22分)

1, C

3、B

10, D

11、B

6. A

8, D

9, B

二、综合应用题(共2小题,共23分)

1、(11分)解答:

typedef struct{

int low;

// 分数段的低值

int high;

// 分数段的高值

int num;

// 该分数段的人数

void Count(int Scores[], int m, Node Seg[], int n)

{ // Scores 里存放学生的成绩, Seg 里存放的是设定的分数段

//m个学生, n个分数段

// 统计后的结果存放在 Seg 的 num 字段

int C[101]; // 用于表示从 0-100 共 101 种不同的分数

for (int i = 0; i<101; i++) C[i]=0; // 初始化

for(int i = 0; i < n; i++) Seg[i].num = 0; // 人数初始化

for(int i = 0; i < m; i++)

C[Scores[i]]++; //将下标为 Scores[i]对应的单元加 1

for(int j = 0; j < n; j++)

for(int $k = Seg[j].low; k \le Seg[j].high; k++)$

Seg[j].num = Seg[j].num + C[k];

计算机基础 (C卷)

第1页共7页

} 算法的时间复杂度为 O(n+m),由于 n<<m,因此该算法的时间复杂度为 O(m).

2、(12分)解答:

首先读入 k 个数,假设第一次读取的 k 个数就是前 k 个最大的数,然后把 k 个数建成小顶堆。然后从第 k+1 个数开始,每个数都与堆顶的数值进行比较,如果数字 d 大于堆顶元素,则把堆顶的元素的元素替换成 d,再将其调整成为小顶堆。当所有数据都读入并比较完之后,这个小顶堆里面的所有元素就是最大的 k 个数。

时间复杂度: O(NlogK)

空间复杂度: O(K)

计算机基础(C卷)

第2页共7页

《计算机组成原理》(共45分)

一、单项选择题(共11小题,每小题2分,共22分)

2, D 3, C 4, D 5, D 1、B

6, B 7, B 8, C 9, C 10, A 11, D

二、综合应用题(共3小题,共23分)

1、(5分)解答:

向输入端输入信息码 1001000 的过程中, 电路编码过程如下表描述。

输入信息	D触发器延迟状态	输出信息
1	000	1
0	110	0
-0	011	1
7	001	0
0	110	0
0	011	1
0	001	1

得到的输出信息码为 1010011。

2、(5分)解答: 时序电路如下图

利用机器启动时的总清信号将 5 个触发器置成 10000, 触发器连接成移位 寄存器,M1,M2,M3,M4,M5 依次产生高电平,在任一时间仅有一位为高电位。(时 序图略)

也可以用其他电路实现。

计算机基础 (C卷)

第3页共7页

3、(共13分)答: 1) (5分) 功能段结构图如下: MOV MUL 译码 取指 ADD 执行 取指 译码

2) (5 分) k+1 指令取数(R_1)与 k 指令数据相关,需延时一个时钟周期,k+2 指令 取数需延时一个时钟周期,写数(R₀)与 k+1 指令数据相关,需延时一个时钟周期。

3)(3分)可以采取改进措施:

①软件处理:编译优化时、取消 k+1 条指令,因为该条指令无作用。

②硬件处理:在取数相关时将上一条指令在写入前的数据直接取来,需要增加

一条通道。

计算机基础(C卷)

第4页共7页

```
《操作系统》(共35分)
一、单项选择题(共10小题,每小题2分,共20分)
                 3. B 4. D 5. A
          2. D
   1. C
          7. D
                 8. B
                        9. C
                                10. A
   6. A
二、综合应用题(共2题,共15分)
1、(7分)解答:
Semaphore a[3]=[0,0,0];
Semaphore mutex=1;
main()
{ cobegin
         xt0(); xt1(); xt2(); //1分
   sf();
                                  //3 分
sf()
while (true)
                    { i=rand() %3;
j=rand()\%3;
P(mutex);
放两个零件到桌面;
if (i=0 \&\& j=1) V(a[2]);
else if ( i=0 \&\& j=2) V(a[1]);
else V(a[0]);
}
                             //1 分
xt0()
{
while (true);
 \{ P(a[0]); 
组装产品;
 V(mutex);
```

计算机基础(C卷)

第5页共7页

```
} }
                                //1 分
xt1()
{
while (true);
\{ P(a[1]);
组装产品;
V(mutex);
}}
                                //1 分
xt2()
while (true);
\{ P(a[2]) \}
}}
2、(8分)解答:
 (1) 2K/4=512
 (2) 文件大小: 2KB*8+512*2KB+512*512*2KB=513MB+16KB //4 分
 (3) 文件占 128MB=131072KB=65536 块
                                                     //2 分
直接块及一次间接有 16KB+1MB=1040KB
二次间接有 131072-1040=130032KB, 即 65016 块
每块可装512个索引项,二次间接文件索引块有
所以共占(65536+1+1+127)*2KB=131330KB
```

计算机基础 (C卷)

第6页共7页

《计算机网络》(共25分)

- 一、单项选择题(共8小题,每小题2分,共16分)
 - 1. A 2. C 3. D 4. B
 - 5. D 6. C 7. A 8. B
- 二、综合应用题(共1题,共9分)

解答:

(1) 所属的子网号为 202.114.66.4/30 (1分) 该子网的广播地址是 202.114.66.7/30 (1分)

没有标注子网掩码不扣分!

(2) 可以采用虚拟局域网(VLAN)技术(1分) 可以将 PC1 和 PC2 划分在不同的 VLAN中, VLAN 支持对局域网的逻辑划分,物理上在一起的计算机可以让其逻辑上属于不同的网段。(1分)

第两种答案:

也可以回答采用端口保护技术(1分)端口保护可以确保同一交换机上的端口之间不进行通信。保护端口不向其他保护端口转发任何传输,包括单播、多播和广播包。(1分)

(3) PC1 的网关地址是 210 42,125.254 (1分)

在PC中可以使用route命令(netsh命令)查看/设置路由表(1分)

(4) NAT (Network Address Translation, 网络地址转换), 当在专用网内部的一些主机(即保用的内部保留 IP 地址), 需要和因特网上的主机通信(并不需要加密)时,可使用 NAT 方法。借助于 NAT, 私有(保留)地址的"内部"网络通过路由器发送数据包时,私有地址被转换成合法的 IP 地址,一个局域网只需使用少量IP 地址(甚至是 1 个)即可实现私有地址网络内所有计算机与 Internet 的通信需求。(1 分)

需要采用端口复用 (1分)

发生变化的信息字段(目标 MAC、源 MAC、源 IP、源端口)(1分)

计算机基础 (C卷)

第 7 页 共 7 页