实验 14 -外部中断

1. 实验目的

掌握 NRF24LE1 的 GPIO 外部中断的配置和使用以及注意事项。

2. 实验内容

使用 NRF24LE1 的 GPIO 输出控制 LED 的亮灭。

配置 P0.6(GPINT1)为外部中断,低电平触发。

程序运行后,用杜邦线将排针 JP1 中间的针(P0.6)短接到 GND(注意:短接时先将排线接地,再短接 JP1 中间的针),触发管脚中断。可以看到,每短接一次,指示灯 D1 的状态翻转一次。

3. 实验原理

3.1. 电路原理

开发板上配置的两个用户指示灯 D1、D2,分别有 GPIO P0.0 和 P0.1 控制,当 GPIO 输出高电平时,LED 两端电压相等,LED 上没有电流流过,LED 处于灭状态,当 GPIO 输出低电平时,LED 两端存在正向压差,电流流过 LED,LED 被点亮。

3.2. 寄存器配置

3.2.1. GPIO 配置

NRF24LE1 的 GPIO 通过 2 个寄存器来配置: PxDIR 和 PxCON(更详细的内容请查阅 NRF24LE1 数据手册)。

- PxDIR:设置IO的方向。
- PxCON: 设置 IO 的功能。

表 1: PODIR 寄存器 (地址: 0x93, 复位值: 0xFF)

位	名称	R/W	功能
7~0	方向	R/W	P0.0~P0.7 方向位。输出: dir=0, 输入: dir=1.
			P0DIR 0 – P0.0

1

勇于创新

	P0DIR 1 – P0.1
	P0DIR 2 – P0.2
	P0DIR 3 – P0.3
	P0DIR 4 – P0.4
	P0DIR 5 – P0.5
	P0DIR 6 – P0.6
	P0DIR 7 – P0.7

按照上述内容,对 P0.0 进行配置如下: P0DIR &= ~0x01; //配置 P0.0 为输出

POCON: 采用默认值即可。

3.2.2. 中断相关寄存器配置

使用外部管脚中断,需要配置下面三个寄存器:

表 2: INTEXP 寄存器

V						
地址	位	描述				
0xA6	7~6	没有使用				
	5	1: 使能 GP INT2 中断(到 IFP)				
	4	1: 使能 GP INT1 中断(到 IFP)				
	3	1: 使能 GP INT0 中断(到 IFP)				
	2	1: 使能 2 线完成中断(WIRE2IRQ)				
	1: 使能主 SPI 完成中断(MSDONE)					
	0	1: 使能从 SPI 完成中断(SSDONE)				

表 3: IEN0 寄存器

地址	位	描述			
0xA8	7	1: 允许中断; 0: 禁止所有中断			
	6	未使用			
	5	1: 使能 TIMER2 (tf2/exf2) 中断			
	4	1: 使能串口中断(ri0/ti0)			
	3	1: 使能 TIMER1 溢出(tf1)中断			
	2	1: 使能电源失效(POFIRQ)中断			
	1	1: 使能 TIMER0 溢出(tf0)中断			
	0	1: 使能引脚(IFP)中断			

表 4: TCON 寄存器

地址	复位值	位	名称	自动清除	说明
0x88	0x00	7	tfl	是	Timer1 溢出标志, 当 Timer1 溢出时
					由硬件置位。
		6	tr1	否	Timer1 运行控制,清0时,Timer1
					停止工作。
		5	tf0	是	Timer0 溢出标志,当 Timer0 溢出时

					由硬件置位。
		4	tr0	否	Timer0 运行控制,清0时,Timer0
					停止工作。
		3	ie1	是	外部中断 1 标志,由硬件置位。
		2	it1	否	外部中断 1 类型控制。1: 下降沿触
					发,0:低电平触发。
		1	ie0	是	外部中断 0 标志,由硬件置位。
		0	it0	否	外部中断 0 类型控制。1: 下降沿触
					发,0:低电平触发。

按照上述内容,对 P0.6 进行配置如下:

INTEXP=0x10; //使能 GP INT1 中断 TCON &= ~0x04; //中断类型: 低电平触发 IEN0 |= 0x01; //使能引脚(IFP)中断

特别需要注意的地方是:

- NRF24LE1 QFN32 封装只有两个管脚具备外部中断功能, P0.5-GPINT0, P0.6-GPINT1。
- 开启总中断,即 EA=1。

4. 实验步骤

- 在 Keil uVision4 中打开工程 "gpio_int.uvproj" 工程;
- 编译工程,注意查看编译输出栏,观察编译的结果,如果有错误,修改程序,直到 编译成功为止;

```
Build Output 的idata大小使用的xdata大小compiling hal delay.c...
linking...
Program Size: data=9.0 xdata=0 code=84—代码编译后的大小creating hex file from ".\Object\gpio_led"...
".\Object\gpio_led" - 0 Error(s), 0 Warning(s).错误0, 警告0:表示编译成功
```

- 将编译生成的 HEX 文件"gpio_int.hex"(该文件位于工程目录下的"Object"文件 夹中)通过编程器下载到开发板中运行。
- 用杜邦线将排针 JP1 中间的针(P0.6)短接到 GND(注意: 短接时先将排线接地,再 短接 JP1 中间的针),可以看到,每短接一次,指示灯 D1 的状态翻转一次。

5. 实验程序

5.1. 程序流程

GPIO 输出控制 LED 的程序执行流程如下图所示:

5.2. 程序清单

```
#define D1 P00 //开发板上的指示灯 D1
/*********************
*描述:IO 初始化
*入 参:无
*返回值:无
void IO_Init(void)
{
  PODIR &=~0x01; //配置 P0.0 为输出
            //设置 D1 初始状态为熄灭
  D1 = 1;
*描述:中断配置
*入 参:无
*返回值:无
*****************************
void GPINT1_init(void)
{
  INTEXP=0x10; //使能 GP INT1 中断
  TCON &=~0x04; //中断类型: 低电平触发
  IEN0 |= 0x01; //使能引脚(IFP)中断
*描述:主函数
*入 参:无
*返回值:无
          ********************
```

```
void main(void)
{
             //IO 初始化
 IO Init();
 GPINT1 init(); //中断配置
             //使能全局中断
 EA=1;
 while(1)
}
*描述:中断服务函数
*入 参:无
*返回值:无
void GPINT1_IRQ() interrupt INTERRUPT_IPF
{
   D1 = \sim D1;
            //指示灯 D1 状态翻转
   delay_ms(1000); //延时 1 秒, 方便观察实验现象
}
```