

Deep Learning

Graph Neural Network

U Kang Seoul National University

In This Lecture

- Motivation of graph deep learning
- Graph neural networks
- Applications of GNN

Outline

- **→** □ Motivation
 - ☐ Graph Neural Network
 - □ Applications

Deep Learning

IM GENET

Speech data

Grid games

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality

Graph Structured Data

Standard deep models (CNN, RNN) don't work

Formulation

- Node classification problem
 - □ Input: a matrix of node features, $X \in \mathbb{R}^{N \times C}$, with C features in each of the N nodes, and an adjacency matrix $A \in \mathbb{R}^{N \times N}$
 - □ Output: a matrix of node class probabilities, $Y \in R^{N \times F}$, such that $Y_{ij} = P(node \ i \in class \ j)$
- We assume that the edges are unweighted and undirected

Learning: Transductive vs. Inductive

 Transductive: training algorithm sees all the features, including test nodes

Learning: Transductive vs. Inductive

- Inductive learning
 - The algorithm does not have access to all nodes upfront!
 - This implies either
 - Test nodes are (incrementally) inserted into training graphs
 - Test graphs are disjoint and completely unseen
 - A much harder learning problem (requires generalizing across arbitrary graph structures), and many transductive methods will be inappropriate for inductive problems

Inductive Learning

Outline

- Motivation
- **→** □ Graph Neural Network
 - GCN

GraphSAGE

GAT

Gated GNN

☐ Applications

Graph Neural Networks (GNNs)

Main idea: pass messages between pairs of nodes and agglomerate

Graph Convolutional Networks (GCNs)

Consider this undirected graph:

Calculate update for node in red:

GCN

Basic Neighborhood Aggregation

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

VS.

GCN Neighborhood Aggregation

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

same matrix for self and neighbor embeddings

per-neighbor normalization

13

Example: Citation Network

Input: Citation networks (nodes are papers, edges are citation links, optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN
$$Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$$

$$\tilde{A} = A + I_N, \tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$$

$$\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} \in R^{N \times N}$$

$$X \in \mathbb{R}^{N \times C}$$

$$W^{(0)} \in R^{C \times H}$$

$$W^{(1)} \in R^{H \times F}$$

GCN Example: Citation Network

1	1	1	
1	1	1	1
1	1	1	
	1		1

Ã

1/3	1/3	1/3	
1/4	1/4	1/4	1/4
1/3	1/3	1/3	
	4 /0		4 /0

$$\widetilde{D}^{-1}\widetilde{A}$$

 \widetilde{D}

1	1	1	
$\sqrt{9}$	$\sqrt{12}$	$\sqrt{9}$	
1	1	1	1
$\overline{\sqrt{12}}$	$\sqrt{16}$	$\overline{\sqrt{12}}$	$\sqrt{8}$
1	1	1	
$\sqrt{9}$	$\sqrt{12}$	$\sqrt{9}$	
	1		1
	$\sqrt{8}$		$\sqrt{4}$

$$\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}$$

Graph Convolutional Networks (GCNs)

Pros

- Weight sharing over all locations
- Invariance to permutations
- Linear complexity O(E)
- Applicable both in transductive and inductive settings (but, limited in inductive setting)

Cons

- Requires residual connections for depth (oversmoothing problem)
- Only indirect support for edge features

Consider this undirected graph: Calculate update for node in red:

$$\begin{array}{ll} \text{Update} & \mathbf{h}_i^{(l+1)} = \sigma \left(\mathbf{h}_i^{(l)} \mathbf{W}_0^{(l)} + \sum_{j \in \mathcal{N}_i} \frac{1}{c_{ij}} \mathbf{h}_j^{(l)} \mathbf{W}_1^{(l)} \right) \end{array}$$

16

GNNs with Edge Embeddings

Formally:
$$v \rightarrow e$$
: $\mathbf{h}_{(i,j)}^l = f_e^l([\mathbf{h}_i^l, \mathbf{h}_j^l, \mathbf{x}_{(i,j)}])$

$$e \rightarrow v: \quad \mathbf{h}_j^{l+1} = f_v^l([\sum_{i \in \mathcal{N}_j} \mathbf{h}_{(i,j)}^l, \mathbf{x}_j])$$

GNNs with Edge Embeddings

Pros

- Supports edge features
- More expressive than GCN
- As general as it gets (?)

$$\begin{split} \textbf{Formally:} & v {\rightarrow} e: & \mathbf{h}_{(i,j)}^l = f_e^l([\mathbf{h}_i^l, \mathbf{h}_j^l, \mathbf{x}_{(i,j)}]) \\ & e {\rightarrow} v: & \mathbf{h}_j^{l+1} = f_v^l([\sum_{i \in \mathcal{N}_j} \mathbf{h}_{(i,j)}^l, \mathbf{x}_j]) \end{split}$$

Cons

Need to store intermediate edge-based activations

Outline

- Motivation
- **→** □ Graph Neural Network

GCN

GraphSAGE

GAT

Gated GNN

☐ Applications

Motivation of GraphSAGE

We have integrated the neighbor messages by taking their weighted average; can we do better?

Motivation of GraphSAGE

GraphSAGE

Before: Simple neighborhood aggregation

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$

- GraphSAGE
 - Concatenate self embedding and neighbor embedding

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \mathbf{AGG}\left(\left\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\right\}\right), \mathbf{B}_{k}\mathbf{h}_{v}^{k-1}\right]\right)$$
generalized aggregation

22

GraphSAGE Variants

Mean

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

 Pool: transform neighbor vectors and apply symmetric vector function

$$AGG = \gamma \left(\left\{ \mathbf{Q}\mathbf{h}_{u}^{k-1}, \forall u \in N(v) \right\} \right)$$

LSTM: apply LSTM to random permutation of neighbors

$$AGG = LSTM ([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$$

Experiment

	Citation		Reddit		PPI	
Name	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1	Unsup. F1	Sup. F1
Random	0.206	0.206	0.043	0.042	0.396	0.396
Raw features	0.575	0.575	0.585	0.585	0.422	0.422
DeepWalk	0.565	0.565	0.324	0.324	_	_
DeepWalk + features	0.701	0.701	0.691	0.691	-	-
GraphSAGE-GCN	0.742	0.772	0.908	0.930	0.465	0.500
GraphSAGE-mean	0.778	0.820	0.897	0.950	0.486	0.598
GraphSAGE-LSTM	0.788	0.832	0.907	0.954	0.482	0.612
GraphSAGE-pool	0.798	0.839	0.892	0.948	0.502	0.600
% gain over feat.	39%	46%	55%	63%	19%	45%

Outline

- ✓ Motivation
- **→** □ Graph Neural Network

GCN

GraphSAGE

⇒ GAT

Gated GNN

☐ Applications

Aside: Attention

Attention

Attention mechanism

- De facto standard for sequential processing tasks
- Computes linear combinations of the input features to generate the output. The coefficients of these linear combinations are parametrized by a shared neural network
- Intuitively, allows each component of the output to generate its own combination of the inputs—thus, different outputs pay different levels of attention to the respective inputs.

Attention

Attention in Machine Translation

Self-attention

A recent development on attention; the input attends over itself

$$\alpha_{ij} = a(h_i, h_j)$$

$$h'_i = \sum_i softmax_i(\alpha_{ij})h_i$$

- Critically, this is parallelizable across all input positions
- Vaswani et al. (NIPS '17) have successfully demonstrated that this operation is self-sufficient for achieving state-of-the-art on machine translation

30

End of Aside

GNNs with Attention (GAT)

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right) \qquad \alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i \| \mathbf{W} \vec{h}_j] \right) \right)}{\sum_{k \in \mathcal{N}_i} \exp \left(\text{LeakyReLU} \left(\vec{\mathbf{a}}^T [\mathbf{W} \vec{h}_i \| \mathbf{W} \vec{h}_i] \right) \right)}$$

GNNs with Attention (GAT)

Pros

- Effective for inductive setting

Cons

- (most likely) less expressive than GNNs with edge embeddings
- Can be more difficult to optimize

Performance of GAT

	Transductive			Inductive
	Cora	Citeseer	Pubmed	PPI
# Nodes	2708	3327	19717	56944 (24 graphs)
# Edges	5429	4732	44338	818716
# Features/Node	1433	3703	500	50
# Classes	7	6	3	121 (multilabel)
# Training Nodes	140	120	60	44906 (20 graphs)
# Validation Nodes	500	500	500	6514 (2 graphs)
# Test Nodes	1000	1000	1000	5524 (2 graphs)

Performance of GAT

Transductive

Method	Cora	Citeseer	Pubmed
MLP	55.1%	46.5%	71.4%
ManiReg	59.5%	60.1%	70.7%
SemiEmb	59.0%	59.6%	71.7%
LP	68.0%	45.3%	63.0%
DeepWalk	67.2%	43.2%	65.3%
ICA	75.1%	69.1%	73.9%
Planetoid	75.7%	64.7%	77.2%
Chebyshev	81.2%	69.8%	74.4%
GCN	81.5%	70.3%	79.0%
MoNet	$81.7\pm0.5\%$		$78.8\pm0.3\%$
GCN-64*	81.4 ± 0.5%	$70.9\pm0.5\%$	79.0 ± 0.3%
GAT (ours)	83.0 ± 0.7%	72.5 \pm 0.7%	79.0 ± 0.3%

Performance of GAT

Inductive

Method	PPI		
Random	0.396		
MLP	0.422		
GraphSAGE-GCN	0.500		
GraphSAGE-mean	0.598		
GraphSAGE-LSTM	0.612		
GraphSAGE-pool	0.600		
GraphSAGE*	0.768		
Const-GAT (ours)	0.934 ± 0.006		
GAT (ours)	0.973 ± 0.002		

Outline

- Motivation
- **→** □ Graph Neural Network

GCN

GraphSAGE

GAT

- Gated GNN
- ☐ Applications

37

Neighborhood Aggreation

 Basic idea: nodes aggregate messages from their neighbors using neural networks

Neighborhood Aggreation

GCNs and GraphSAGE work only for 2-3 layers; can we make a deep GNN?

- How can we build models with many layers of neighborhood aggregation?
- Challenges
 - Overfitting from too many parameters
 - Oversmoothing
 - Vanishing/exploding gradients during backpropagation
- Main idea
 - Exploit ideas from RNN

Main idea 1 : parameter sharing across layers

■ Main idea 2 : recurrent state update

- Neighborhood aggregation with RNN state update
 - Get message from neighbors at step k

$$\mathbf{m}_v^k = \mathbf{W} \sum_{u \in N(v)} \mathbf{h}_u^{k-1} \quad \text{aggregation function does not depend on } \mathbf{k}$$

Update node state using GRU (Gated Recurrent Unit).
 New node state depends on the old state and the message from neighbors

$$\mathbf{h}_v^k = \text{GRU}(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$$

U Kang

43

Advantages

- Can handle models with more than 20 layers
- Most real-world networks have small diameters (e.g.,< 7)
- Allows for complex information about global graph structure to be propagated to all nodes

Outline

- Motivation
- ☑ Graph Neural Network
- **→** □ Applications
 - Node Classification

Recommendation

Classification and Link Prediction with GNNs/GCNs

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

VERILUX

What Do Learned Representations Look Like?

Forward pass through untrained 3-layer GCN model

Semi-Supervised Classification on Graphs

Setting:

Some nodes are labeled (black circle)
All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

 \mathcal{Y}_L set of labeled node indices

 \mathbf{Y} label matrix

Z GCN output (after softmax)

Toy Example (semi-supervised learning)

Classification on Citation Networks

Input: Citation networks (nodes are papers, edges are citation links,

optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN $Z = f(X, A) = \operatorname{softmax} \left(\hat{A} \operatorname{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right)$

Classification results (accuracy)

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [24]	59.6	59.0	71.1	26.7
→ LP [27]	45.3	68.0	63.0	26.5
→ DeepWalk [18]	43.2	67.2	65.3	58.1
Planetoid* [25]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand, splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

no input features

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

Outline

- ✓ Motivation
- ☑ Graph Neural Network
- **→** □ Applications

Node Classification

Recommendation

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD'18

Bipartite Graph for RecSys

- Graph is dynamic: need to apply to new nodes without model retraining
- Rich node features: content, image

GNN for RecSys

- Two sources of information in traditional recommender systems
 - Content features: user and item features in the form of images, categories etc.
 - Network structure: user-item interactions, in the form of graph/network structure
- Graph neural networks (GNN) naturally incorporate both!

Application: Pinterest

Human curated collection of pins

Very age blue structured coat Nitty Gritty

Hans Wegner chair Room and Board Promoted by

Room & Board

image for thoughts.

This is just a beautiful Yay or nay, your choice.

Pins: Visual bookmarks someone has saved from the internet to a board they've created.

Pin features: Image, text, link

Boards

U Kang

54

Application: Pinterest

Task: recommend related pins to users

- Challenges
 - Massive size: 3 billion pins and boards, 16 billion interactions
 - Heterogeneous data: rich image and text features

U Kang

55

RW-GCN Overview

- RW-GCN = Random-Walk GCN
- Extension of GraphSAGE

RW-GCN Pipeline

- Collect billions of training pairs from user logs.
- Train system to generate similar embeddings for training pairs.
- Generate embeddings for all pins.
- Make recommendations using nearest neighbor search in the embedding space (in real time).

Training RW-GCN

- Train so that pins that are consecutively clicked have similar embeddings
- Max-margin loss

from user logs training pair

sample

"margin" (i.e., how much larger positive pair similarity should be compared to negative)

RW-GCN Efficiency

 10,000X larger than any previous graph neural network application.

Main ideas

- Sub-sample neighborhoods for efficient GPU batching
- Producer-consumer training pipeline
- Curriculum learning for negative samples

Neighborhood Subsampling

Neighborhood Subsampling

Neighborhood Subsampling

- Random-walk-based neighborhood
 - Approximates personalized PageRank (PPR) score.
 - Sampled neighborhood for a node is a list of nodes with the top-K PPR score.

Producer-consumer Pipeline

Select a batch of pins

CPU (producer)

- Run random walks
- Construct their computation graphs

- Multi-layer aggregations
- Loss computation
- Backprop

GPU (consumer)

Curriculum Learning

- Idea: use harder and harder negative samples
- Include more and more hard negative samples for each epoch

Source pin

Positive

Easy negative Hard negative

RW-GCN Performance

 72% better recommendation quality than standard GraphSAGE model.

Key contributions

- Weigh importance of neighbors according to approximate PPR score.
- Use curriculum training to provide harder and harder training examples over time.

RW-GCN Performance

Set-up: rank true "next-clicked" pin against 10^9 other candidates

- MRR: mean reciprocal rank of true example
- Baseline: deep content-based models

What You Need to Know

- Motivation of graph deep learning
- Graph neural networks
- Applications of GNN

Questions?