Proprietatile matricelor

- 1. Proprietati ale adunarii matricelor
- a) Adunarea matriceloe este comutativa A + B = B + A.
- b) Adunarea matricelor este asociativa, adica (\forall) A, B, C \in M_{m, n} (C) avem (A + B) + C = A + (B+C).
- c) Elementul neutru al adunarii matricelor este matricea de tipul (m, n) ale carei elemente sunt egale cu 0 numita matricea si care ne noteaza $O_{m, n}$ deoarece $A + O_{m, n} = O_{m, n} + A = A$.
- d) Orice matrice are un opus in raport cu operatia de adunarea a matricelor adica (∀) A ∈ M_{m, n} (C) exista o matrice notata –A astfel incat A + (-A) = (-A) + A = O_{m, n}
 - 2. Proprietatile inmultirii cu scalari a matricelor
- a) Daca $A \in M_{m,n}$ (C) atunci 1A = A
- b) Daca $A \in M_{m,n}(C)$ si a, b $\in C$ atunci (a+b)A = aA + bA
- c) Daca $A \in M_{m,n}$ (C) si a, b \in C atunci (ab) A = a(bA)
- d) Daca A, B \in M_{m, n} (C) si a \in C atunci a(A + B) = aA + aB
- e) Daca $A \in M_{m, n}$ (C), $B \in M_{n, p}$ (C) si $a \in C$, atunci a(AB) = (aA)B
 - Proprietatile inmultirii matricelor
- a) Asociativitatea (AB)C = A(BC) (\forall) A \in M_{m, n} (C), B \in M_{n, p} (C), C \in M_{p, q} (C)
- b) Elementul neutru $A \in M_n(C)$, este

$$I_n = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

c) In general AB \(\neq BA => \) inmultirea nu e comutativa