

Site Selection for

Alternative SUDOKWON Landfill

In the perspective of Efficiency and Equity

Lim Sungmin Park Sinae Kim Seonho Lee Donghun

Contents

1. Introduction

2. Literature Review

3. Conceptual Framework

4. Data and Work flow

- 5. **Analysis** with ArcGIS
 - 1) Exclusion
 - 2) **Z**oning
 - 3) **Scoring**

- 6. **Results:** Site Selection
- 7. **Implications**

8. References

1. Introduction

Background on Sudokwon Landfill

Related bodies

- ✓ Incheon
 - Where the current site belongs
 - Arguing to end the current site
- ✓ Seoul & Gyeonggi
 - The beneficiary of this mega-scale landfill in the Incheon
 - Not show any active engagement
- Ministry of Environment
 - Only gave a temporary solution to prolong its operation

- ✓ A mega-scale land fill site situated in Incheon
- ✓ Final destination of waste from Seoul, Incheon and Gyeonggi from 1992
- ✓ Expected to be saturated in 2025

While Incheon calls for equity, others weight on efficiency!

1. Introduction

Objectives

✓ To suggest site to replace the current Sudokwon Landfill which satisfies the equity
and efficiency

Questions

- ✓ Which criteria can be weighted to select an alternative landfill site?
- ✓ Where can be the best preferable place to replace Sudokwon landfill when applied the new criteria?

2. Literature Review

On landfill site suitability

Han, Ji Youn (2014)	The Systematization of Waste Landfill Site Selection Process Utilizing GIS	Selected the landfill site using standards criteria targeted on Cheongju area
Yi, Sora et al. (2017)	Analysis of Landfill Resource Recovery Potentials and Strategies for Managing Future Landfills	Gave information on the current practices about landfill management
Lee, Jin Duk et al.(2000)	A Case Study on Suitability Analysis of Solid Waste Landfill Site Utilizing GIS	Suggested socio-economical, natural environmental factors and its weighting which should be considered finding Landfill suitability
•	A Case Study on Landfill Site Selection Wilizing GISental justice	Modeled a landfill site selection reflecting socio-economic factors and natural environmental factors.

Anna(1996)	Fairness: Siting Low-level Radioactive Waste Disposal	Highlighted technical efficiency, local consent(preference), criteria for distributive justice(contribution to the problem, ecological vulnerability, socio-economic vulnerability) in selecting a site for risky facility.
Renn Orwin(1996)	Procedural and Substantive Fairness in	The key point is the equal distribution of resources not status quo. The procedural equity was also stressed

3. Conceptual Framework

- Eco Criteria
 - Altitude
 - Slope
 - Fault
 - River
- Socio Criteria
 - Population density
 - Road
 - Land-use

Zoning and site selection

- Zoned by Waste Generation per capita
- Rotate landfill zone by Waste generation

 Considered land price and transport distance selecting a suitable site in the

designated zone.

4. Data and Work flow

Data

Classification	Variables		Input Data Type	Resource
		Altitude	Raster	National Spatial Data Infrastructure Portal data.nsdi.go.kr
	Topography	Slope	Polygon	
Natural		Fault	Polyline	
Environment	Water Resources	River	Polyline	
Factor		Reservoir	Polygon	
	Conservation Area	Water source	Polygon	
		Green-belt	Polygon	
	Population Density		Excel data	Open Data Portal <u>data.go.kr</u>
Cocio oconomia	Land use			
Socio economic Factor	Land price			
	Roads		Polyline	NSDIP <u>data.nsdi.go.kr</u>

4. Data and Work flow

Work flow

Exclusion Flow

Exclusion Standard

	Criteria	Standard
Exclusion Factors	Fault	Within 600m
ractors	Altitude	Over 600m
	Slope	Over 30%
	River	Within 300m
	Reservoir	Within 300m
	Conservation Area	Natural source/Green-belt/ Water source

Exclusion Factors

Exclusion(all combined)

Zoning

- 1. Dividing Sudokwon area to several zones
 - ✔ Referring for Seoul bus line system
- 2. Ranking zones by waste generation per person

Rank	Area	Amount Kg/1person/1day
1	Seongdong, Gwangjin, Guri, Yangpyeong, Gapyeong	1.404kg
2	Seocho, Gangnam, Seongnam, Yongin, Anseong	1.245kg
3	Mapo, Paju, Seodaemun,Goyang,	1.203kg

Scoring flow

Scoring flow

Scoring Board

	Criteria	1 st (3 points)	2 nd (2 points)	3rd(1 points)
Eco	Fault	2000m -	1000 - 2000m	600 - 1000m
	Altitude	- 200m	200 – 400m	400 - 600m
	Slope	0 – 7%	7 - 15%	15 - 30%
	River	- 500m	500 – 1000m	1000 – 1500m
	Reservoir	- 500m	500 – 1000m	1000 – 1500m
Socio	Population Density	-16,400 cap/km ²	16,400 – 13,200 cap/km ²	20,000 –16,400 cap/km ²
	Main roads	- 500m	500 – 1000m	1000 – 1500m
	Land Use	paddy field, orchard, pasture, forestry,	park, gymnastic site, recreation area	residential,commerci al, industrial facilities
	Land price	-1,400,000 W/m2	1,400,000-3,000,00 0 W/m ²	3,000,000-11,000,0 00 W/m ²

Scoring(Eco)

Considering factor

Fault + Altitude + Slope

+ River + Reservior

Layer

Dark blue = highscore($0\sim12$)

Scoring(socio)

Considering factor

Population density + Main road + Land use + Land price

Layer

Dark red = highscore($0\sim12$)

Scoring(All combined)

Considering factor

total score =

Eco factor + socio factor

Layer

Dark violet

=highscore(0~24)

6. Results

Site Selection

Site location in SUDOKWON

Site location in AREA2, 4, 7

6. Results

Explanation on the site

AREA7

Tanhyeon-myeon, Paju

Paddy field & Forestry	Value
Land price	117,513 Won/m ²
Land purchase cost	480,628,000,000 Won
Paddy+forestry Rate	52.40% (6.6km²/4пkm²)
Distance to Gwanghwamun	50km(road) 34km(straight)

AREA2

Sulmak-myeon, Gapyeong-gun

Paddy field & Forestry	Value
Land price	40,472 Won/m ²
Land purchase cost	165,530,000,000 Won
Paddy+forestry Rate	89.52% (11.24km²/4пkm²)
Distance to Gwanghwamun	60km(road) 49km(straight)

6. Results

Explanation on the site

AREA4 Chou In-gu, Yongin 2km

Paddy field & Forestry	Value
Land price	85,567 Won/m ²
Land purchase cost	349,969,000,000 Won
Paddy+forestry Rate	78.44% (9.85km²/4пkm²)
Distance to Gwanghwamun	51km (road) 42km(straight)

[Comparison] of Socio factor

Comparison	Gapyeong	Paju	Yong-in
Land price	40,472Won/m ²	117,513Won/m ²	85,567Won/m ²
Land cost	165billion won	480billion won	350billion won
Rate	89.52%	52.40%	78.44%
Dist. to Seoul	49km(straight)	34km(straight)	42km(straight)
Pop. density	100(person/km ²)	700(person/km ²)	1400(person/km ²)

7. Implications

Policy implication

1. No capable land for landfill to achieve "Polluter pays principle"

In fact, Jung-gu, a center of Seoul, has a highest level of the waste generation among the sudokwon, but the area are filled with other facilities.

2. Replace the land-fill method to the alternatives with eco-friendly ways

Instead of mega scale of land-fill, we have to set up small-scale land-fills by reducing waste generation and increasing preprocessing facility like a MBT(Mechanical Biological Treatment).

References

- Han, Ji Youn(2014) The Systematization of Waste Landfill Site Selection Process utilizing GIS, The Korean Society for Geospatial Information Science.
- Yi, Sora et al. (2017) Analysis of Landfill Resource Recovery Potentials and Strategies for Managing Future Landfills. Korea Environment Institute
- Lee, Jin Duk et al.(2000) A Case Study on Suitability Analysis of Solid Waste Landfill Site Utilizing GIS. The Korean Association of Geographic Information Studies
- Lee, Jin Duk et al. (1999) A Case Study on Landfill Site Selection Utilizing GIS. KOREAN SOCIETY OF CIVIL ENGINEERS
- Vari Anna(1996) Public Perceptions about Equity & Fairness: Siting Low-level Radioactive Waste Disposal Facilities in the U.S. and Hungary. Risk: Health, Safety & Environment 7, no. 2 (Spring 1996): 181-196
- Renn Orwin(1996) Procedural and Substantive Fairness in Landfill Siting: A Swiss Case Study. Risk: Health, Safety & Environment 7, no. 2 (Spring 1996): 145-168
- Mohai, Paul et al.(2019) Environmental Justice. Annual Review of Environmental Resources.
 www.annualreviews.org