CAPWAP 报文分析

Member	Role	E-mail	Department		
zhuxiaoyan	Engineer	aimee@zcom.nj	RD2(2010-6-2)		

一、 CAPWAP 报文

1、CAPWAP 报文格式

2、AC和AP的报文交互过程

TAP	AC =====
[begin optional discovery] ①Discover Request
 /-	②Discover Response
`	end optional discovery] ③Join Request
 <-	> ④ Join Response
· ·	[Join State Complete] ⑤Configuration Status Request
	©Configuration Status Response
	[Configure State Complete] (7) Change State Event Request
 {_	<pre></pre>
	[Data Check State Complete]

3、CAPWAP 报文类型 (CAPWAP Message Type) 值的对应表

CAPWAP Control Message	Message Type
	Value
Discovery Request	1
Discovery Response	2
Join Request	3
Join Response	4
Configuration Status Request	5
Configuration Status Response	6
Configuration Update Request	7
Configuration Update Response	8
WTP Event Request	9
WTP Event Response	10
Change State Event Request	11
Change State Event Response	12
Echo Request	13
Echo Response	14
Image Data Request	15
Image Data Response	16
Reset Request	17
Reset Response	18
Primary Discovery Request	19
Primary Discovery Response	20
Data Transfer Request	21
Data Transfer Response	22
Clear Configuration Request	23
Clear Configuration Response	24
Station Configuration Request	25
Station Configuration Respons	e 26

4、CAPWAP 报文中 Message Type 的计算方法

Message Type =IANA Enterprise Number * 256 +

Enterprise Specific Message Type Number

IANA Enterprise Number: IANA 的企业数(这个由制定者定义的值), ZDC 定义此值为 13277, 13277*256=3398912, 转换成十六进制位 00 33 DD 00, Enterprise Specific Message Type Number 真正的 Message Type value。

二、 CAPWAP 报文分析

1、 抓包方法

使用 HUB 抓 5246 端口号的报文。

2、 抓包截图

1	📝 IP-192.168.3.103	IP-1028	🚽 IP-192.168.3.247	IP-5246	163	0.000000 UDP
2	👰 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	121	0.000336 UDP
3	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	192	0.001125 UDP
4	👰 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	129	0.005400 UDP
5	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	132	0.006026 UDP
6	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	129	0.006435 UDP
7	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	77	0.006902 UDP
8	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	64	0.007235 UDP
9	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	1518	0.008582 UDP
10	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	1518	0.009915 UDP
11	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	343	0.010246 UDP
12	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	1518	0.187184 UDP
13	📝 IP-192.168.3.103	IP-1028	🚽 IP-192.168.3.247	IP-5246	1518	0.188512 UDP
14	📝 IP-192.168.3.103	IP-1028	🚽 IP-192.168.3.247	IP-5246	1518	0.189511 UDP
15	📝 IP-192.168.3.103	IP-1028	🚽 IP-192.168.3.247	IP-5246	978	0.190513 UDP
16	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	64	0.190845 UDP
17	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	318	1.615581 UDP
18	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	272	1.618976 UDP
19	📝 IP-192.168.3.247	IP-5246	🚽 IP-192.168.3.103	IP-1028	64	1.619518 UDP
20	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	272	5.581168 UDP
21	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	64	5.581517 UDP
22	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	272	5.585034 UDP
23	📝 IP-192.168.3.247	IP-5246	📝 IP-192.168.3.103	IP-1028	64	5.585367 UDP
24	📝 IP-192.168.3.103	IP-1028	📝 IP-192.168.3.247	IP-5246	64	9.831798 UDP
25	👰 IP-192.168.3.247	IP-5246	↓ IP-192.168.3.103	IP-1028	64	9.832126 UDP

3、 分析报文

打开报文主要看 Data Area 部分进行分析,

(1)第一个报文截图如下:

点到 Data Area 之后,可以选中它的内容部分,图中黑色区域 00 10 03 00 00 00 00 00 00 代表 CAPWAP 协议头(注:前八个字节代表 CAPWAP 协议头)。之后的四个字节就是 CAPWAP 的报文类型,即 CAPWAP Control Message type value。如第一个包为 00 33 DD 01,那么按照先前介绍的计算方法,00 33 DD 00 为 IANA的企业数,所以 01 是真正的 CAPWAP Control Message type value,由 CAPWAP 报文类型(CAPWAP Message Type)值的对应表可以看到,第一个报文为 Discovery Request 报文。

(2) 第二个报文截图如下:

点到 Data Area之后,可以选中它的内容部分,图中黑色区域 00 10 03 00 00 00 00 00 代表 CAPWAP 协议头(注: 前八个字节代表 CAPWAP 协议头)。之后的四个字节就是 CAPWAP 的报文类型,即 CAPWAP Control Message type value。如第一个包为 00 33 DD 02,那么按照先前介绍的计算方法,00 33 DD 00 为 IANA的企业数,所以 02 是真正的 CAPWAP Control Message type value,由 CAPWAP 报文类型(CAPWAP Message Type)值的对应表可以看到,第一个报文为 Discovery Request 报文。

同样依次分析 3, 4, 5, 6, 7, 8 报文为 Join Request 报文, Join Response 报文, Configuration Status Request 报文, Configuration Status Response 报文, Change State Event Request 报文, Change State Event Response 报文, 之后的报文就是进入运行状态后的报文(enter RUN state)。