Espacios con Productos Internos

Sea $\mathbb{F} = \mathbb{R}$ ó \mathbb{C}

Definición. Un producto interno sobre \mathbb{F} -espacio vectorial es una funcion $(\cdot|\cdot):V\times V\to \mathbb{F}$ tal que $u,v,w\in V,\,c\in \mathbb{F}$ tal que

- a) (u + v|w) = (u|w) + (v|w)
- b) (cu|w) = c(u|w)
- c) $(u|w) = \overline{(w|u)}$
- d) $(u|u) > 0 \text{ si } u \neq 0$
- * Es sesquilineal en la segunda entrada

$$\frac{(u|v+cw)}{\overline{c}(u|w)} = \overline{(v+w|u)} = \overline{(v|u)+c(w|u)} = \overline{(u|v)} + \overline{c}(u|w)$$

- i) Para cada $v \in V$, $f_v : V \to \mathbb{F}$ tal que $f_v = (u|v)$ entonces $f_v \in V^*$
- ii) Si $\mathbb{F} = \mathbb{R}$ entonces $\Phi : V \to V^*$, $\Phi(v) = f_v \Rightarrow \Phi$ es un isomorfismo (si dim $V < \infty$).

Definición. $||\cdot||: V \to \mathbb{R}_{\geq 0}$ tal que $||v|| = \sqrt{\langle v, v \rangle}$, norma de V. (* depende del producto interno \langle , \rangle).

Propiedades.

- a) ||cv|| = |c|||v||
- b) $||u+w||^2 = ||u||^2 + 2\Re\langle v, w\rangle + ||w||^2$
- c) $(u|w) = \frac{1}{4} (||u+w||^2 ||u-w||^2 + i||u+w||^2 i||u-w||^2)$ si $\mathbb{F} = \mathbb{C}$.
- d) $(u|w) = \frac{1}{4} (||u+w||^2 ||u-w||^2)$ si $\mathbb{F} = \mathbb{R}$.

Teorema. Sean $u, v \in V$.

- $a) \ |\langle u|v\rangle| \leq ||u||.||w||$
- b) $||u+v|| \le ||u|| + ||v||$

Definición. Sean V un Espacio Vectorial y $u, v \in V$.

- i) u y v son **ortogonales** si $\langle u|v\rangle = 0$
- ii) $S \subseteq V$ subconjunto es un **conjunto ortogonal** si $\langle u|v \rangle = 0, \forall u, v \in S, u \neq v.$
- iii) $S \subseteq V$ subconjunto es un **conjunto ortonormal** si es ortogonal y $||v|| = 1, \forall v \in S$.
- iv) Una base \mathcal{B} es **ortogonal** (**ortonormal**) si lo es como conjunto.

Observación. Sea S un conjunto ortogonal tal que $0 \notin S$ entonces $S' = \left\{ \frac{v}{||v||} : v \in S \right\}$ es un conjunto ortonormal

Teorema. Sea $S \subseteq V$ un conjunto ortogonal tal que $0 \notin S$ entonces S es linealmente independiente.

Teorema.

Sean V un espacio vectorial con producto interno $\{v_1, v_2, \ldots, v_n\}$ en V linealmente independientes entonces existen $\{w_1, w_2, \ldots, w_n\}$ ortogonales tales que

$$\langle v_1, v_2, \dots, v_k \rangle = \langle w_1, w_2, \dots, w_k \rangle, \ k = 1, 2, \dots, n.$$

IDEA:

 $w_1 = v_1;$

$$w_j = v_j - \sum_{i=0}^{j-1} \frac{\langle v_j | w_i \rangle}{||w_i||^2}, \text{ con } j > 1.$$

Corolario.

Todo espacio vectorial, de dimensión finita, con producto interno tiene bases ortogonales.

Observación. Sean V un espacios vectorial sobre el cuerpo \mathbb{F} y $\mathcal{B} = \{v_1, \dots, v_n\}$ una base de V. $f_i : V \to \mathbb{F}$

$$f_i(v) = \frac{\langle v_j | w_i \rangle}{||w_i||^2} \Rightarrow f_i = \delta_{ij}$$

para todo i, j = 1, 2, ..., n.

 $\mathcal{B}^* = \{f_1, f_2, \dots, f_n\}$ es la base dual de \mathcal{B} entonces

$$v = \sum_{i=0}^{n} \frac{\langle v | v_i \rangle}{||v_i||^2} v_i.$$

Teorema. Sean V espacio vectorial sobre el cuerpo \mathbb{F} , con producto interno, $W\subseteq V$ un subespacio de V y $v\in V$

- a) $w \in W$ es tal que $||v-w|| = \min\{||v-\tilde{w}||, \tilde{w} \in W\}$ si y solo sí $w \in W$ es tal que $v-w\bot W$
- b) Si existe tal w, es único.
- c) Si dim $W < \infty$ y $\{w_1, w_2, \dots, w_n\}$ es una base de entonces $w = \sum_{i=0}^{n} \frac{\langle v|w_i\rangle}{||w_i||^2} w_i$ es como antes.

Definición. Sean V espacio vectorial sobre el cuerpo \mathbb{F} , con producto interno, $W \subseteq V$ un subespacio de V y $v \in V$. Sea dim $W < \infty$ y $\{w_1, w_2, \dots, w_n\}$ es una

base de entonces
$$E(v) = \sum_{i=0}^{n} \frac{\langle v|w_i \rangle}{||w_i||^2} w_i$$

Siempre que exista el vector w en el Teorema anterior se le llama **proyección ortogonal** de v sobre W.

Si todo vector de V tiene proyección ortogonal sobre W, la aplicación que asigna a cada vector de V su proyección ortogonal sobre W, se llama proyección ortogonal de V sobre W.

Observación. Im(E) = W.

Definición. Sea V un espacio producto interno y $W \subseteq V$ (subconjunto). El **complemento ortogonal** de W es el conjunto W^{\perp} de los vectores de V ortogonales a todo vector de W.

$$W^{\perp} = \{ v \in V : v \perp W \} = \{ v \in V : (v, w) = 0, \forall w \in W \}$$

Teorema. Sea W un subespacio de dimensión finita de un espacio producto interno V y sea E la proyección ortogonal de V sobre W. Entonces $E^2 = E$ (E es una transformación lineal idempotente de V sobre W), $\ker(E) = W^{\perp}$ (W^{\perp} es el espacio nulo de E) y $V = W \oplus W^{\perp}$.

Corolario. Bajo las condiciones del teorema anterior, Id - E es la proyección ortogonal de V en W^{\perp} . Esta es una transformación lineal idempotente de V en W^{\perp} con espacio nulo W.

Corolario. Desigualdad de Bessel. Sea $\{w_1, w_2, \dots, w_n\}$ un conjunto ortogonal de rectores no nulos en un espacio producto interno V. Si v es cualquier vector de V, entonces

$$\sum_{i=0}^{n} \frac{|\langle v|w_i\rangle|^2}{||w_i||^2} \le ||v||^2$$

la desigualdad vale si, y solo si

$$v = \sum_{i=0}^{n} \frac{\langle v | w_i \rangle}{||w_i||^2} w_i$$

Funciones lineales y adjuntas

Teorema. Sean V un espacio producto interno de dimensión finita y f un funcional lineal sobre V. Entonces, existe un único vector v de V tal que

$$f_v(w) = \langle w|v\rangle$$

para todo w de V.

Definición. Sea V un espacio vectorial con producto interno de $\langle \cdot | \cdot \rangle$ y sea $T: V \to V$. Se dice que T tiene un adjunto si $\exists T^*: V \to V$ es una transformación lineal tal que $\langle T(v) | w \rangle = \langle v | T^*(w) \rangle, \forall v, w \in V$

Observación. T^* depende de T y de $\langle \cdot | \cdot \rangle$.

Teorema. Para cualquier operador lineal T en un espacio producto interno de dimensión finita. existe un único operador lineal T^* sobre V tal que

$$\langle T(v)|w\rangle = \langle v|T^*(w)\rangle, \forall v, w \in V.$$

Teorema. Sea V un espacio producto interno de dimensión finita y sea $\mathcal{B} = \{w_1, w_2, \dots, w_n\}$ una base (ordenada) ortonormal de V. Sea T un operador lineal sobre V y sea A la matriz de T en la base ordenada \mathcal{B} . Entonces $[T]_{\mathcal{B}} = [\langle T(v_i)|v_j\rangle]$

Corolario. Sea V un espacio producto interno de dimensión finita y sea T un operador lineal sobre V. En cualquier base ortogonal $\mathcal{B} = \{w_1, w_2, \ldots, w_n\}$ de V la matriz de T^* es la conjugada de la transpuesta de la matriz de T, es decir $[T^*]_{\mathcal{B}} = \overline{[T]_{\mathcal{B}}^t}$.

Definición. Sea $A \in \mathbb{F}^{n \times n}$. $A^* = \overline{[A]^t}$ es la traspuesta conjugada de A.

Teorema. Sea V un espacio producto interno de dimensión finita. Si T y U son operadores lineales sobre V y c es un escalar

- $i) (T+U)^* = T^* + U^*.$
- $ii) (cT)^* = \overline{c}T^*.$
- $iii) (TU)^* = U^*T^*.$
- $iv) (T^*)^* = T.$

Operadores Unitarios

Definición. Sean V y W espacios producto interno sobre el mismo cuerpo y sea T una transformación lineal de V en W. Se dice que T preserva productos internos si $\langle T(v)|T(w)\rangle=(v|w)$ para todo v, w de V. Un isomorfismo de V sobre W es un isomorfismo T de espacio vectorial de V sobre W que también preserva productos internos.

Si T preserva productos internos, entonces ||T(v)|| = ||v|| y así T es necesariamente no singular. Así que un isomorfismo de V sobre W puede ser definido también como una transformación lineal de V sobre W que preserva productos internos. Si Tes un isomorfismo de V sobre W, entonces T^{-1} es un isomorfismo de W sobre V; luego, cuando tal T existe, se dirá simplemente que V y W son isomorfos. Naturalmente, el isomorfo de espacio producto interno es una relación de equivalencia.

Teorema. Sean V y W espacios producto interno de dimensión finita sobre el mismo cuerpo y que tienen la misma dimensión. Si T es una transformación lineal de V en W, las siguientes afirmaciones son equivalentes.

- (i) T preserva los productos internos.
- (ii) T es un isomorfismo (en un espacio producto interno).
- (iii) T aplica toda base ortonormal de V sobre una base ortonormal de W.
- (iv) T aplica cierta base ortonormal de V sobre una base ortonormal de W.

Corolario. Sean V y W espacios vectoriales con producto interno de dimensión finita sobre el mismo cuerpo. Entonces V y W son isomorfos si, y solo si tienen la misma dimensión (finita).

Teorema. Sean V y W espacios vectoriales con producto interno sobre el mismo cuerpo y sea T una transformación lineal de V en W. Entonces T preserva productos internos si, y solo si, $||T(v)||_W = ||v||_V$ para todo v en V.

Definición. Un operador unitario U en un espacio vectorial con producto interno es un isomorfismo del espacio sobre sí mismo $(U:V\to V)$ es un isomorfismo).

Teorema. Sea U un operador lineal sobre un espacio vectorial con producto interno V. Entonces U es unitario si, y solo si, el adjunto U^* de U existe y $UU^* = U^*U = Id$.

Definición. Sea $A \in \mathbb{F}^{n \times n}$, se llama unitaria si $AA^* = A^*A = Id$.

Teorema. Sea V un espacio vectorial con producto interno de dimensión finita y sea $U:V\to V$ un operador lineal sobre V, son equivalentes

- i) U es unitario.
- ii) la matriz $[U]_{\mathcal{B}}$ de U en alguna (o toda) base ordenada ortonormal \mathcal{B} es una matriz unitaria.
- iii) Existe $\mathcal B$ base ordenada ortonormal tal que la matriz $[U]_{\mathcal B}$ es unitaria.

Definición. Sea $A \in \mathbb{F}^{n \times n}$, se dice ortogonal si $A^t A = AA^t = Id$

Teorema. Para $A \in \mathbb{C}^{n \times n}$, inversible, existe una única matriz triangular inferior B, con elementos positivos en la diagonal principal, de modo que BA es unitaria.

Definición. Sean $A, B \in \mathbb{C}^{n \times n}$. Se dice que B es unitariamente equivalente a A si existe una matriz unitaria $P \in \mathbb{C}^{n \times n}$, tal que $B = P^{-1}AP$.

Definición. Se dice que B es ortogonalmente equivalente a A si existe una matriz ortogonal $P \in \mathbb{C}^{n \times n}$, tal que $B = P^{-1}AP$.