Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems

Charbel Abi Younes, Marvyn Bailly, Bart Boom, Rohin Gilman, Daran Xu

May 1, 2023

UNIVERSITY of WASHINGTON Applied Mathematics

Introduction and Motivation

Figure: NASCAR Dynamical System

Model

SLDS and rSLDS

- Continous latent state $x_{t+1} = A_{z_{t+1}} x_t + b_{z_{t+1}} + \nu_t, \ \nu_t \overset{\mathrm{iid}}{\sim} \mathcal{N}(0, Q_{z_{t+1}})$
- Observation $y_t = Cx_t + d + w_t$, $w_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, S)$
- Discrete latent state $z_t \in \{1, \dots, K\}$
 - SLDS [1] $z_{t+1}|z_t \sim \pi_{z_t}$
 - rSLDS [2] $z_{t+1}|z_t, x_t \sim \pi_{SB}(\nu_{t+1}), \ \nu_{t+1} = R_{z_t}x_t + r_{z_t}$

Stick Breaking Logitstic Regression [3]

- $p(z|x) \sim \pi_{SB}(\nu), \ \nu = Rx + r$
- Link function: $\pi_{SB}(\nu) = \left(\pi_{SB}^{(1)}(\nu), \dots, \pi_{SB}^{(K)}(\nu)\right)$ (with $\sigma(x) = \frac{e^x}{1 + e^x}$)

$$\pi_{SB}^{(k)}(\nu) = \begin{cases} \sigma(\nu_k) \prod_{j < k} \sigma(-\nu_j), & \text{if } k = 1, \dots, K - 1 \\ \prod_1^K \sigma(-\nu_j), & \text{if } k = K \end{cases}$$

- $p(z|x) \sim \prod_{k=1}^{K} \sigma(\nu_k)^{\mathbb{I}[z=k]} \sigma(-\nu_k)^{\mathbb{I}[z>k]}$ (Likelihood)
- With a Gaussian Prior p(x), the posterior $p(x|z) \propto p(x) * p(z|x)$ is non-Gaussian
- Bayesian updating is not efficient
 - Gibbs Sampler: sampling $x^{(i+1)} \sim p(x|z=z^{(i)})$, sampling $z^{(i+1)} \sim p(z|x=x^{(i+1)})$

May 1, 2023 RSLDS 4/

Polya-gamma augmentation [3]

$$\frac{(e^{\nu})^{a}}{(1+e^{\nu})^{b}} = 2^{-b} \int_{0}^{\infty} e^{\kappa \nu} e^{-\omega \nu^{2}/2} \frac{\rho_{PG}}{\rho_{PG}} \left(\omega \mid b, 0\right) d\omega \left(\kappa = a - \frac{b}{2}\right)$$
(2.1)

$$p(x_t|z_{t+1}) \propto \prod_{k=1}^{K-1} \frac{\left(e^{\nu_{t+1,k}}\right)^{\mathbb{I}[z_{t+1}=k]}}{\left(1+e^{\nu_{t+1,k}}\right)^{\mathbb{I}[z_{t+1}\geq k]}}$$
(2.2)

$$p(x_t|z_{t+1}) = \int p(x_t, \omega_t|z_{t+1}) d\omega_t = \int p(x_t|z_{t+1}, \omega_t) \frac{p(\omega_t)}{p(\omega_t)} d\omega_t$$
 (2.3)

$$\omega_{t,k} \mid x_t, z_{t+1} \sim \mathsf{PG}\left(\mathbb{I}\left[z_{t+1} \ge k\right], \nu_{t+1,k}\right) \tag{2.4}$$

- $p(x_t|z_{t+1},\omega_t)$ is Gaussian
- Thus instantiating these auxiliary variables in a Gibbs sampler enables efficient block updates

Conclusions

SLDS vs rSLDS

Canonical Dynamical System - Lorenz Attractor

Generated States (rSLDS)

Next Steps

- Van der Pol Oscillator
 - Canonical dynamical system with a stable limit cycle and bifurcations

- Double Pendulum
 - System with chaotic dynamics and multiple states (depending on the relative positions of the weights)

Bibliography

Guy A. Ackerson and King-Sun Fu.

On state estimation in switching environments.

IEEE Transactions on Automatic Control, 15(1):10–17, 1970.

David Barber.

Expectation correction for smoothed inference in switching linear dynamical systems.

Journal of Machine Learning Research, page 7(Nov):2515-2540, 2006.

Scott W Linderman, Matthew J Johnson, and Ryan P Adams.

Dependent multinomial models made easy: Stick-breaking with the polya-gamma augmentation.