Applicants: Jacek MARTY Attorney Docket No. 9558/

CLAIMS

JC13 Rec'd PCT/PTO 04 APR 2005

- 1. A process for the preparation of 17β -hydroxy- 7α -methyl-19 $nor-17\alpha-pregn-5(10)-en-20-yn-3-one$ of formula which comprises:
- 5 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-(a) hydrolyzing 5(10)-en-20-yne 3,3-cyclic ketals of formula 2, where:

`,

10

15

20

25

- each of R_1 , R_2 , R_3 and R_4 is a hydrogen atom or a C₁₋₄ alkyl group, or
- (2) R_3 taken are together form to an alicyclic ring together with the carbon atoms in the dioxolane ring to which the groups attached and R2, R4 are hydrogen atoms, or
- (3) R_1 and R_3 are taken together to form an aromatic ring together with the carbon atoms dioxolane ring to which they are attached, and R_2 , R_4 are taken together to form a chemical bond participating in the aromatic electron system of the aromatic ring formed by R₁ and R₃; in the presence of salts of transition metals, salts of lithium or salts of magnesium;
- 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-(b) separating 5(10)-en-20-yn-3-one obtained in step (a) from 17β $hydroxy-7\alpha-methyl-19-nor-17\alpha-pregn-4-en-20-yn-3-one$ by-product of formula 3; and
- (c) converting 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-4en-20-yn-3-one obtained as a by-product in step (b)

BEST AVAILABLE COPY

19-nor-17α-pregn-5(10)en-20-yn-3-one
Applicants: Jacek MAR 1990, et al.
Attorney Docket No. 95

to the ketal of formula 2, wherein R_1 - R_4 are defined as above, which is then hydrolyzed to 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-5(10)-en-20-yn-3-one in step (a).

- 5 2. A process according to claim 1, which in step (a) comprises hydrolyzing 3,3-ethylenedioxy-17 β -hydroxy-7 α -methyl-19-nor-17 α -pregn-5(10)-en-20-yne.
- 3. A process according to claim 2, characterized in that 17β hydroxy- 7α -methyl-19-nor- 17α -pregn-5(10)-en-20-yn-3-one is

 obtained in a molar excess to 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-4-en-20-yn-3-one equal at least 4:1.
 - 4. A process according to claim 3, characterized in that 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-5(10)-en-20-yn-3-one is obtained in a molar excess to 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-4-en-20-yn-3-one equal at least 8:1.

15

- 5. A process according to claim 1, where the metal salt used in step (a) is copper(II) sulfate.
- 6. A process according to claims 1-5, characterized in that the hydrolysis reaction is carried out in a mixture of solvents containing 0%-99% water, 0%-100% of an organic solvent selected from a group consisting of THF, CHCl₃, 1,4-dioxane, CH₂Cl₂, acetone, acetonitrile, ethylmethylketone, diethylketone, 1,3-dioxolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 0%-100% of a C₁₋₄ alcohol.
- 25 7. A process according to claims 1-6, where the reaction temperature is from about 0°C to about 200°C.

19-nor-17α-pregn-5(10)en-20-yn-3-one Applicants: Jacek MART W, et al.

Attorney Docket No. 955

 $^{8.}$ A process according to claim 1, characterized in that $^{17\beta}$ -hydroxy- $^{7\alpha}$ -methyl- 19 -nor- $^{17\alpha}$ -pregn- 4 -en- 20 -yn- 3 -one of formula 3 is in step (c) converted to a $^{17\beta}$ -hydroxy- $^{7\alpha}$ -methyl- 19 -nor- $^{17\alpha}$ -pregn- 5 (10)-en- 20 -yne 3,3-ketal of formula 2 by reaction with a vicinal diol of the formula 1 R_{2}C(OH)-C(OH)R_{3}R_{4}, in the presence of a protic acid and a hydrocarbon solvent.

3

9. A process according to claims 1 and 8, characterized in that 17β -hydroxy- 7α -methyl-19-nor- 17α -pregn-5(10)-en-20-yne the 10 3,3-ketal of formula 2, obtained in step substantially purified before the hydrolysis step (a), by crystallization from mixture of organic solvents containing 50%-100% ethyl acetate.

15

5

BEST AVAILABLE COPY