Computer System Organization Recitation [Spring 2019] CSCI-UA 0201-002

R3: Integer, Float, C Basics

Pull r03 from upstream

- git pull upstream master
- Get a merge message? Hit ctrl + x

Starting from today

- We will do a quick review of lecture contents
 - Quick in-class questions
- Do recitation exercise together
 - You will have several minutes to read and do questions by yourself
 - After that I will release the answer in class

Today's topic

- Memory model
- How to represent integer
- How to represent real numbers
- Bit operators

Bits and Bytes

- Bit
 - smallest storage unit
 - two possible states (0, 1)
 - A typical "8GB" computer memory has 2^36 bits
- Byte
 - 1 byte = 8 bits
 - 1 byte can represent 2^8 = 256 possible states
 - computer memory is addressed at byte granularity

Memory model

- Everything is stored in memory
- Memory is a sequence of cells (logically)
- Each cell is has 8 bits (1 byte)
- Each cell has an address (0-indexed)
 - What's address space of 16MB memory?
 - From 0 to 2^24-1
- Think about everything from memory perspective

0

Things to memorize

- 1 byte = 8 bits
- common powers of 2: $2^0 = 1, ..., 2^9 = 512, 2^10 = 1024$
- 2^10 B = 1 KB
- $2^20 B = 1 MB$
- $2^30 B = 1 GB$
- 2^10 is approximately equal to 1000 (10^3)

Quick question

- Which of the following is closest to 1 million?
 - A. 2^10
 - B. 2^20
 - C. 2^30

Representing Non-negative integer

Base-2 representation

Most Significant Bit (MSB)

Exercise

• What's the decimal value of the binary representations?

Binary	Decimal	Hexadecimal
0000 0100	2^2 = 4	0x04
0010 0010	2^5+2^1 = 34	0x22
0101 1101	2^6+2^4+2^3+2^2+2^0 = 93	0x5D

Representing signed integers

2's complement

$$\vec{b} = [b_w, b_{w-1}, ..., b_0] \qquad val(\vec{b}) = -b_w 2^w + \sum_{i=0}^{w-1} b_i 2^i$$

- How to tell is whether b is a negative number?
 - b is negative iff MSB b_w is 1

From 2's complement to decimal

Method 1:

- Calculate
$$-b_w 2^w + \sum_{i=0}^{w-1} b_i 2^i$$

Example: 1101 1000

=-2^7+2^6+2^4+2^3

=-40

- Method 2:
 - rewrite the above formula

$$-b_{w}2^{w} + \sum_{i=0}^{w-1}b_{i}2^{i} = -2b_{w}2^{w} + b_{w}2^{w} + \sum_{i=0}^{w-1}b_{i}2^{i}$$
 Example:
$$= \sum_{i=0}^{w}b_{i}2^{i} - b_{w}2^{w+1} = \sum_{i=0}^{w}b_{i}2^{i} - b_{w}2^{n}$$
 =2^7+2^6+2^4+2^3-2^8 =216-256=-40

- So, view the binary as non-negative number, and then subtract $b_w 2^n$, n is number of bits

From negative decimal to 2's complement

Method 1

Convert the absolute value to binary format 0010 1000

flip all bits

- add 1 (don't forget me !!!)

Method 2

- Remember decimal value $D = \sum_{i=0}^{w} b_i 2^i - b_w 2^n$

- Then $\sum b_i 2^i = D + b_w 2^n$

Add Dⁱ⁼⁰ by 2ⁿ and convert to binary, n is number of bits

Example
-40 + 2^8 = 216
= 1101 1000

Integer types in C

You need to memorize the size!

64 bits machine

type	size (bytes)	example
(unsigned) char	1	char c = 'a'
(unsigned) short	2	short $s = 12$
(unsigned) int	4	int i = 1
(unsigned) long	8	long l = 1

Exercise

• What's the decimal value of the following numbers?

Hex	Binary	char	unsigned char	short	unsigned short
0xB6	1011 0110	-2^7+2^5+ 2^4+2^2+ 2^1=-74	2^7+2^5+ 2^4+2^2+ 2^1=182	182	182
0x7A	0111 1010	2^6+2^5+ 2^4+2^3+ 2^1=122	122	122	122

Exercise

- Do it again faster
 - Convert from hex to decimal directly!

Hex	char	unsigned char	short	unsigned short
0xB6	11*16+6-2^8 =-74	11*16+6=182	182	182
0x7A	7*16+10=122	122	122	122

From memory perspective

- How are multi-byte data stored in computer memory?
- Use C int type as an example:

Advantages of little-endian machine

- Overlap computation and memory read
 - Computation usually start from lower bits
 - simultaneously perform memory transfer and calculation

high 0000 0000 0000 0000 0100 0110 1000 0010

- Faster shortening
 - Casting from int to short?
 - Just read lower two bytes
 - What's the value if cast to char?
 - What's the value if cast to unsigned char?

Unless otherwise noted, we always assume 64-bit little endian machine

Integer overflow

Assuming one-byte signed integer

- How to tell if there is an integer overflow
 - pay attention to the data type
 - whenever the computation result goes out of range, it's an overflow
 - ▶ for example, 1 + 127 = -128;-128-1=127;...

Representing real numbers

Converting real numbers from decimal to binary

$$r_{10} = (d_{m}d_{m-1}d_{1}d_{0} \cdot d_{-1}d_{-2}...d_{-n})_{10}$$

$$= (b_{p}b_{p-1}b_{1}b_{0} \cdot b_{-1}b_{-2}...b_{-q})_{2}$$

$$p_{2^{p-1}}$$

$$p_{p}b_{p-1}\cdots b_{1}b_{0} \cdot b_{-1}b_{-2}\cdots b_{-q} = \sum_{i=-q}^{p} 2^{i} \times b_{i}$$

$$p_{p}b_{p-1}\cdots b_{1}b_{0} \cdot b_{-1}b_{-2}\cdots b_{-q} = \sum_{i=-q}^{p} 2^{i} \times b_{i}$$

$$p_{p}b_{p-1}\cdots b_{1}b_{0} \cdot b_{-1}b_{-2}\cdots b_{-q} = \sum_{i=-q}^{p} 2^{i} \times b_{i}$$

Single-precision floating point number

$$r_{10} = \pm M * 2^{E}$$
, where 1 <= M < 2
M = $(1.b_1b_2b_3...b_{23})_2$

M: significant, E: exponent

Exercise

 If the right-hand side figure is the memory representation of a float number, what's its decimal value?

$$S = 0$$

 $E = (0111111110)_2 - 127 = 126 - 127 = -1$
 $F = 0$
 $M = 1.0$
Decimal value = +1.0 * $2^{-1} = 0.5$

Exercise

= 0xC0B20000

What's hex representation of float number -5.5625?

IEEE denormalized representation

- Why?
 - Represent 0 and values very close to 0
- How?

Denormalized Encoding:

31 30 23 22 0 s 0000 0000 fraction (F)

$$E = 1 - Bias = -126$$
 $0 \le M \le 1, M = (0.F)_2$

Zeros

+0

0000 0000 0000 0000 0000 0000 0000

-0

1 0000 0000 0000 0000 0000 0000 0000

+0 = -0

Special Values

Special Value's Encoding:

31 30 23 22

S	1111 1111	fraction (F)
---	-----------	--------------

values	sign	frac	Computation Rules
+∞	0	all zeros	$1/+0 = +\infty$, $3e38+1e38 = +\infty$, $1/\infty = +0$
-∞	1	all zeros	$1/-0 = -\infty$, $-3e38-1e38 = -\infty$ $1/-\infty = -0$
NaN	any	non-zero	sqrt(-1), ∞ +∞

Other things you need to know

- Double-precision format
 - S (1 bit), E (11 bits), F(52 bits)
- Using floating points are tricky
 - Invalid operation: 0/0, sqrt(-1), ∞+∞
 - Divide by zero: x/0=∞
 - Overflows: result too big to fit
 - Underflows: 0 < result < smallest denormalized value
 - Inexact: rounding!

C bit operators

C operators

- Similar to other languages like Java and Python
 - operations may have different symbols in different language

Arithmetic
$$+, -, *, /, \%, ++, --$$
Relational $==, !=, >, <, >=, <=$
Logical &&, ||, !
Bitwise &, |, ^, ~, >>, <<

Bit operators

- Operators that perform bit-wise operations:
 - &: bit-wise and
 - : bit-wise or
 - ^: bit-wise xor
 - ~: bit-wise negate (flip bits)
 - >>, <<: right and left shift bits</p>
- Why bit operators?
 - Special functionalities
 - Fast! Can usually be done in parallel

How to write multiply by 2?

- Use multiply operator
 - x = x * 2;
 - Complexity: O(n^2), n is number of bits
- Use add operator
 - X = X + X;
 - Complexity: O(n)
- Use bit operator
 - x = x << 1;
 - Complexity: O(1)

Shift operator

- << shift all bits left, and pad 0 at right side
- >> shift bits right
 - Logical shift: always pad 0 at left side
 - Arithmetic shift: pad sign bit (MSB) at left side
- Why do we need arithmetic shift?
 - Semantically, shift means multiply or divide by some power of 2
 - If pad 0, $(-2)_{10} >> 1 = (1111 \ 1110)_2 >> 1 = (0111 \ 1111)_2 = (127)_{10}$
- Which shift does C use?
 - Unsigned type uses logical shift
 - Signed type uses arithmetic shift

Why can't unsigned type use arithmetic shift as well?

Operator precedence

What's the result of the following expression?

$$- x = 16 >> 3 + 1;$$

- bit operator has lower precedence than arithmetic operator
 - Use parenthesis whenever you use bit operators!

Lab1

- Mini part:
 - 8 simple C exercises
 - complete and test each exercise individually
 - don't work in a failure-stop mode!
- Scratch part
 - write stand-alone program from scratch
 - write your own Makefile
 - learn how to use IO to read write files
- Pay attention to coding style (20% of your lab grade)
 - http://cs61.seas.harvard.edu/wiki/2015/Style

Lab1

- Read (updated) lab1 instructions carefully
 - https://nyu-cso.github.io/labs/l1.html
- Lab 1 due 2/25 11pm
- Make sure your code is tested inside VM
- Pay attention to the rules:
 - only modify files you are allow to change
 - check your scratch part output format using the output_format_checker.sh
- Get crazy pointer bugs and segmentation fault?
 - Try GDB first!
 - Come to office hour, we will help you debug for lab 1

Today's exercise

- go through the readme and e1.c e2.c
- answer questions and complete code