B.E. COMPUTER SCIENCE AND ENGINEERING FOURTH YEAR FIRST SEMESTER - 2021

SUBJECT PATTERN RECOGNITION

Time: 4 hours Full marks: 70

Answer Question No. 1 (COMPULSORY) and any four form the rest

1. Answer true or false stating reasons

2x11 = 22

- (a) A Naïve Bayes Classifier always assumes that each feature x_i is conditionally dependent of every other feature x_j for $j \neq i$.
- (b) The success of a pattern classification scheme using decision function depends on finding the geometrical properties of the pattern classes under consideration.
- (c) A training phase is essential in a typical Syntactic Pattern classification system.
- (d) The support vectors of a linear SVM can be any points in the training set.
- (e) Density- based clustering algorithms provide a natural protection against outliers.
- (f) The main demerit of a NB classifier is that, the assumption of class conditional independence not always valid for real life problems.
- (g) Syntactic Pattern Recognition attempts to classify patterns based on a set of extracted features and an underlying statistical model for the generation of these patterns.
- (h) Partitional clustering methods help in exploring data at different levels of granularity.
- (i) A Hopfield net is mainly used for prediction.
- (j) For a supervised pattern classification problem having M classes, where the patterns are pair-wise separable, the classifier needs to compute M number of decision surfaces to perform classification.
- (k) Data preprocessing is required to ensure only the accuracy of the data.
- 2. Consider M pattern classes and assume that these classes are represented by prototype patterns $Z_1, Z_2, ..., Z_M$. Derive the expression of decision function utilizing the distance of pattern vectors from their prototype patterns. Show that such a decision function is a linear one.
- 3. What is Bayes theorem? Derive an analytical expression for Naïve Bayes classifier for a set of data $D \in \mathbb{R}^n$ to be assigned into k classes $C_1, C_2, ..., C_k$. Assume that a feature can be either categorical or continuous valued and each feature is conditionally independent of every other feature.

4.	Let	us	define	the	"natural	groups"	present	in	a	given	data	set
	$S = \{$	x_1, x_2	2,	$\{x_n\}$	$\equiv \Re^2$, to b	e the gro	ups that c	ne j	per	ceives ł	y viev	ving
	the scatter diagram of S . Assume that the number of such "natural groups"											
	present in S is not known a priori. Describe a suitable clustering technique											
	that o	an e	xtract sı	ich na	itural grou	ıps presen	t in S .					12

5. Suppose you need to classify the following four alphabets.

Define the necessary set of primitive strings and an appropriate grammar to solve the problem using syntactic pattern recognition method.

12

- 6. Write short notes on any one of the following.
 - (a) SVM Classifier
 - (b) The importance of ANN in PR