

Machine Learning

Linear regression with one variable

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

852

$$\chi^{(2)} = 1416$$

$$4^{(1)} = 446$$

How do we represent h?

$$h_{e}(x) = \Theta_{0} + \Theta_{1} \times \frac{1}{2}$$

Shorthand: $h(x)$

Linear regression with one variable. (*)
Univariate linear regression.

L one variable

Machine Learning

Linear regression with one variable

Cost function

Training Set

_	Size in feet ² (x)	Price (\$) in 1000's (y)	
	2104	460	
	1416	232	h M= 47
	1534	315	
	852	178	
)

Hypothesis:
$$h_{\theta}(x) = \theta_{0} + \theta_{1}x$$
 θ_{i} 's: Parameters \uparrow
How to choose θ_{i} 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Machine Learning

Linear regression with one variable

Cost function intuition I

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

ameters:
$$\frac{\theta_0,\theta_1}{-}$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1) \qquad \diamondsuit_{, \times}$$

 $J(\theta_1)$

 $h_{\theta}(x)$

Machine Learning

Linear regression with one variable

Cost function intuition II

 $h_{\theta}(x) = \theta_0 + \theta_1 x$ Hypothesis:

 θ_0, θ_1 Parameters:

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$ **Cost Function:**

Goal:

minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

(function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

Machine Learning

Linear regression with one variable

Gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $\mathcal{J}(\Theta_0,\Theta_1)$ $\mathcal{J}(\Theta_0,\Theta_1)$ Want $\min_{\theta_0,\theta_1}J(\theta_0,\theta_1)$ $\max_{\Theta_0,\Theta_1}\mathcal{J}(\Theta_0,\dots,\Theta_n)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Gradient descent algorithm 0,0,

repeat until convergence
$$\{\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \}$$

(for
$$j = 0$$
 and $j = 1$)

Simultaneously update

Assignment

Correct: Simultaneous update

temp
$$0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\theta_0 := \text{temp0}$$

$$\begin{array}{ccc}
 & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\
 & \rightarrow \theta_0 := \operatorname{temp0} \\
 & \rightarrow \theta_1 := \operatorname{temp1}
\end{array}$$

Oo and &

Incorrect:

 $\rightarrow (\theta_0) := \text{temp} 0$

$$\Rightarrow \underline{\text{temp0}} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$heta_0, heta_1)$$

$$\frac{\partial}{\partial t} J(\theta_0, \theta_1)$$

$$\frac{1}{10}J(\theta_0,\theta_1)$$

$$\Rightarrow \underline{\text{temp1}} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\Rightarrow \theta_1 := \underline{\text{temp1}}$$

Machine Learning

Linear regression with one variable

Gradient descent intuition

Gradient descent algorithm

repeat until convergence {
$$\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (simultaneously update $j = 0$ and $j = 1$) }
$$\begin{cases} \text{leaving derivative} \end{cases}$$
 (simultaneously update $j = 0$ and $j = 1$)
$$\begin{cases} \text{leaving derivative} \end{cases}$$

$$\theta_1 := \theta_1 - \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

time.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over
$$\theta_1$$

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(for
$$j = 1$$
 and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{30j} \lim_{\substack{i = 1 \ 2m}} \frac{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}$$

$$= \frac{2}{30j} \lim_{\substack{i = 1 \ 2m}} \frac{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\mathcal{E}}{\leq} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \stackrel{\mathcal{E}}{\leq} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm

2 7(0.0)

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0, \theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0,\theta_1)$

$$h_{\theta}(x)$$

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0,\theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.