# Obsah

| 1 | Vyčíslitelné funkce            | 2                    |
|---|--------------------------------|----------------------|
| 2 | Numerace vyčíslitelných funkcí | 4                    |
| 3 | Vyčíslitelné vlastnosti množin | 6                    |
| 4 | Uzávěrové vlastnosti           | 8                    |
| 5 | Riceovy věty                   | 9                    |
| 6 | Složitost – Rozcvička          | 11                   |
| 7 | Redukce a úplnost              | 14                   |
| 8 | Asymptotické chování funkcí    | 19                   |
| 9 | Složitostní třídy 9.1 Lehké    | 21<br>21<br>23<br>24 |

## Vyčíslitelné funkce

Příklad 1 Dokažte, že tyto dvě množiny nejsou spočetné:

- 1. Množina všech podmnožin množiny №
- 2. Množina všech částečných funkcí z N do N, jejichž obor hodnot je konečná množina.

\*Příklad 2 Uvažujte následující funkci:

$$f(x) = \left\{ \begin{array}{ll} 1 & \text{jestliže existuje posloupnost } alespoň \ x \\ & \text{sousedních 5 v desetinném rozvoji čísla } \pi; \\ 0 & \text{jinak} \end{array} \right.$$

Například f(0)=f(1)=1, protože  $\pi=3.14159265358979\ldots$  Je funkce f vyčíslitelná? Změní se odpověď, jestliže v definici funkce f nahradíme alespoň x výrazem přesně x?

**Příklad 3** Nechť *f* je částečná funkce, jejíž definiční obor je konečná množina. Je *f* vyčíslitelná? Nechť nyní *f* je částečná funkce, jejíž obor hodnot je konečná množina, ale definiční obor nemusí být konečný. Je *f* vyčíslitelná?

**Příklad 4** Předpokládejme programovací jazyk  $\mathcal{L}$ , jehož programy vždy *končí*. Zdůvodněte, že existují vyčíslitelné funkce, které nejsou vyčíslitelné v tomto programovacím jazyku.

**Příklad 5** Napište **while**-program, který počítá " $x_i := x_j - 1$ " a používá z přiřazovacích příkazů jen x := 0 a  $x_i := x_j + 1$ .

Příklad 6 Napište while-programy pro následující makro-příkazy:

- 1. Z := X + Y
- 2. Z := X \* Y
- 3.  $Z := X \operatorname{div} Y$
- 4.  $Z := X \operatorname{mod} Y$
- 5.  $Z := 2^X$

Příklad 7 Napište makro definice pro konstrukce if-then-else a repeat-until.

- \*\***Příklad 8 While**-programy, které neobsahují příkaz cyklu **while-do** se nazývají "přímé" programy.
  - 1. Ukažte, že ke každému **while-**programu s přesně jednou proměnnou, existuje přímý program, který počítá tutéž funkci.

- 2. Ukažte, že existuje funkce, kterou lze počítat **while**-programem se dvěma proměnnými, ale není vyčíslitelná žádným přímým programem.
- \*\*Příklad 9 Dokažte, že náhradou příkazu <u>while</u>  $x_i \neq x_j$  <u>do</u>  $\delta$  příkazem <u>while</u>  $x_i \neq 0$  <u>do</u>  $\delta$  získáme ekvivalentní třídu **while**-programů.
- \***Příklad 10** Ukažte, že neexistuje **while**-program s *jednou* proměnnou, který počítá funkci f(x) = 2 \* x. Nepoužívejte makro-příkazy!

## Numerace vyčíslitelných funkcí

**Příklad 11** Nechť  $\Phi: \mathbb{N}^2 \to \mathbb{N}$  je univerzální funkce pro množinu všech unárních vyčíslitelných funkcí. Kolik indexů má  $\Phi$ ? Vaši odpověď zdůvodněte!

**Příklad 12** Nechť  $P_e$  je program, který počítá universální funkci  $\Phi: \mathbb{N}^2 \to \mathbb{N}$ . Ukažte, že výsledek výpočtu programu  $P_e$  pro vstupní vektor (e,a) je stejný jako výsledek výpočtu  $P_e$  pro vstupní vektor (a,0) pro libovolné  $a \in \mathbb{N}$ .

\*Příklad 13 Nechť  $f: \mathbb{N} \to \mathbb{N}$  je vyčíslitelná bijekce. Uvažujme numeraci unárních vyčíslitelných funkcí

$$\psi_0, \psi_1, \ldots, \psi_n, \ldots$$

kde  $\psi_n = \varphi_{f(n)}$ . Dokažte, že pro tuto numeraci existuje vyčíslitelná univerzální funkce  $\Psi: \mathbb{N}^2 \to \mathbb{N}$ . Ukažte, že existuje a takové, že funkce  $\Psi$  je počítána programem  $P_{f(a)}$ .

Budou požadovaná tvrzení platit i v případě, že f je totálně vyčíslitelná surjekce, ale není prostá a v případě, že f je totálně vyčíslitelná a prostá, ale není surjektivní?

**Příklad 14** Definujme obecněji pojem *univerzální* funkce následovně. Nechť  $\mathcal F$  je třída j–árních funkcí, ne nutně vyčíslitelných. Univerzální funkce  $F:\mathbb N^{j+1}\to\mathbb N$  pro  $\mathcal F$  je funkce splňující následující dvě podmínky:

- 1. Pro každé pevné  $e \in \mathbb{N}$  patří j–ární funkce  $F(e, x_1, \dots, x_j)$  do  $\mathcal{F}$ .
- 2. Ke každé funkci  $f(x_1, \dots, x_j) \in \mathcal{F}$  existuje  $e \in \mathbb{N}$  tak, že pro všechna  $x_1, \dots, x_n \in \mathbb{N}$ :

$$F(e, x_1, \ldots, x_i) = f(x_1, \ldots, x_i)$$

Pro jednoduchost předpokládejme j = 1.

- 1. Definujte univerzální funkci pro třídu funkcí  $\mathcal{F} = \{1, x, x^2, x^3, \dots \}$ .
- 2. Definujte univerzální funkci pro třídu funkcí  $\mathcal{F} = \{x, x^3, x^5, \dots\}$ .
- 3. Ukažte, že každá konečná třída funkcí  $\mathcal{F}$  má univerzální funkci F.

\*Příklad 15 Použijeme definici univerzální funkce z cvičení 14.

- 1. Nechť  $\mathcal{F}$  je třída totálních unárních funkcí nad  $\mathbb{N}$ , která má univerzální funkci  $F: \mathbb{N}^2 \to \mathbb{N}$ . Dokažte, že pak existuje totální unární funkce, která nepatří do  $\mathcal{F}$ .
- 2. Dokažte, že třída *všech* totálně vyčíslitelných unárních funkcí nad ℕ, nemá *vyčíslitelnou* univerzální funkci.
- 3. Definujte nekonečnou třídu totálně vyčíslitelných funkcí, která má vyčíslitelnou univerzální funkci.

**Příklad 16** Ukažte, že existuje totálně vyčíslitelná funkce  $g: \mathbb{N}^2 \to \mathbb{N}$  taková, že

$$\varphi_{q(i,j)}(x) = \varphi_i(x) + \varphi_j(x)$$

přičemž součet je definován právě pro ta x, pro která jsou definovány obě funkce  $\varphi_i, \varphi_j$ .

\***Příklad 17** Dokažte, že existují totálně vyčíslitelné funkce f, g takové, že

$$1. \ \varphi_{f(x)}(y) = \left\{ \begin{array}{ll} \varphi_x^{(2)}(y,\varphi_x^{(2)}(y,y)) & \text{ je-li } \varphi_x^{(2)}(y,y) \text{ definováno;} \\ \bot & \text{ jinak} \end{array} \right.$$

$$2. \ \varphi_{g(x)}^{(2)}(y,z) = \left\{ \begin{array}{ll} \varphi_x^{(2)}(y,y) & \text{jestliže } y=z; \\ \varphi_x^{(2)}(z,z) & \text{jestliže } y=z+1; \\ \varphi_x^{(2)}(y,z) & \text{jestliže } y=z+2; \\ \varphi_x^{(2)}(z,y) & \text{jinak} \end{array} \right.$$

V obou případech dokažte existenci funkce jednak konstrukcí odpovídajícího programu, jednak s využitím věty o parametrizaci (bez konstrukce programu).

\*\*Příklad 18 Nechť  $\psi_0, \psi_1, \dots, \psi_n, \dots$  je libovolná numerace vyčíslitelných funkcí, která nemusí být efektivní a která nemusí obsahovat všechny vyčíslitelné funkce, t.j. jestliže položíme  $\psi_n = \varphi_{f(n)}$ , pak f je totální funkce, která nemusí být ani vyčíslitelná ani surjektivní. Takovouto numeraci nazveme kvazi-efektivní jestliže existuje totálně vyčíslitelná funkce  $g: \mathbb{N} \to \mathbb{N}$  taková, že

$$\varphi_{f(0)} = \varphi_{g(0)}, \varphi_{f(1)} = \varphi_{g(1)}, \dots, \varphi_{f(n)} = \varphi_{g(n)}, \dots$$

Poznamenejme, že to nemusí nutně znamenat, že f = g.

Dokažte, že numerace  $\psi_n$  je kvazi-efektivní právě když její univerzální funkce  $\Psi(n,x)=\psi_n(x)$  je vyčíslitelná.

**Příklad 19** Nechť  $\Phi: \mathbb{N}^2 \to \mathbb{N}$  je univerzální funkce. Ukažte, že funkce  $\psi(x) = \Phi(x,x)$  nemůže být rozšířena na totální vyčíslitelnou funkci.

Řekneme, že f je rozšířením g, píšeme  $g \le f$ , jestliže kdykoliv je g(x) definováno, pak je definováno i f(x) a f(x) = g(x).

Příklad 20 Zjistěte, která z následujících funkcí je vyčíslitelná a výsledek zdůvodněte:

1. 
$$\psi_1(x,y) = \begin{cases} y & \text{jestliže } \varphi_x(x) \text{ je definováno;} \\ \bot & \text{jinak} \end{cases}$$

2. 
$$\psi_2(x,y)=\left\{ egin{array}{ll} y & \mbox{jestliže}\ \varphi_x(x)\ \mbox{je}\ \mbox{definováno;} \\ 0 & \mbox{jinak} \end{array} \right.$$

3. Nechť 
$$\mu, \sigma: \mathbb{N} \to \mathbb{N}$$
 jsou vyčíslitelné funkce takové, že  $\sigma \leq \mu$ . 
$$\psi_3(x,y) = \left\{ \begin{array}{ll} \mu(y) & \text{jestliže } \varphi_x(x) \text{ je definováno;} \\ \sigma(y) & \text{jinak} \end{array} \right.$$

## Vyčíslitelné vlastnosti množin

\***Příklad 21** Nechť *A* je nekonečná r.e. množina, pro jejíž numerující funkci *f* platí:

pro všechna 
$$n \ge 0$$
:  $f(2n+3) > f(2n+1)$  a  $f(2n+2) > f(2n)$ 

Dokažte, že A musí být rekurzívní.

\***Příklad 22** Charakteristická funkce  $\chi_A$  množiny  $A\subseteq \mathbb{N}$  je definována takto:

$$\chi_A(x) = \begin{cases} 1 & \text{je-li } x \in A \\ 0 & \text{je-li } x \notin A. \end{cases}$$

Dokažte, že A je rekurzívní množina právě když  $\chi_A$  je totálně vyčíslitelná funkce.

**Příklad 23** Použijte techniku "paralelního zpracování" k důkazu toho, že následující množiny jsou rekurzívně spočetné:

- 1.  $\{i \mid \varphi_i \neq \epsilon\}$ , kde  $\epsilon$  je prázná funkce,
- 2.  $\{i \mid \varphi_i \text{ není prostá}\},$
- 3.  $\{i \mid \varphi_i \text{ není konstantní funkce}\},$
- 4.  $\{n \mid a \in \text{dom}(\varphi_n)\}\$ , pro pevné  $a \in \mathbb{N}$ ,
- 5.  $\{n \mid a \in \text{range}(\varphi_n)\}\$ , pro pevné  $a \in \mathbb{N}$ .

\*\*Příklad 24 Dokažte, že každá nekonečná rekurzívní množina má jak nerekurzívní r.e. podmnožinu, tak i podmnožinu, která není r.e.

\*\*Příklad 25 Dokažte, že každá nekonečná r.e. množina má jak nerekurzívní r.e. podmnožinu, tak i podmnožinu, která není r.e.

\*Příklad 26 Uveď te příklad množiny, která není r.e. a která má rekurzívní podmnožinu a nerekurzívní r.e. podmnožinu.

Příklad 27 Dokažte, že řezy a kartézské součiny rekurzívních relací jsou rekurzívní.

Příklad 28 Dokažte, že každá nekonečná r.e. množina má prostou numerující funkci.

**Příklad 29** Nechť A je nekonečná r.e. množina, jejíž numerující funkce f splňuje tuto podmínku: Existuje  $c \in \mathbb{N}$  tak, že pro všechna  $i, j \geq c$  platí

$$i < j \Rightarrow f(i) < f(j)$$
.

Dokažte, že *A* je rekurzívní.

**Příklad 30** Najděte vyčíslitelnou funkci  $\theta: \mathbb{N} \to \mathbb{N}$  takovou, že pro každou totálně vyčíslitelnou funkci  $f: \mathbb{N} \to \mathbb{N}$  existuje  $n \in \mathbb{N}$  tak, že  $\theta(n)$  je definováno a  $\theta(n) \neq f(n)$ .

\*\*Příklad 31 Nechť  $\theta$  je funkce zadaná ve cvičení 30 a nechť f je daná totálně vyčíslitelná funkce. Ukažte, že množina

$$A = \{n \mid \theta(n) \text{ je definováno a } f(n) \neq \theta(n)\}$$

je rekurzívně spočetná, ale není rekurzívní.

### Uzávěrové vlastnosti

\***Příklad 32** Nechť A je rekurzívní množina a f je totálně vyčíslitelná funkce. Jsou množiny f(A) a  $f^{-1}(A)$  rekurzívní? Jsou r.e.? Odpověď zdůvodněte!

**Příklad 33** Nechť  $A,B\subseteq \mathbb{N}.$  Nechť  $A\oplus B=\{2a\mid a\in A\}\cup\{2b+1\mid b\in B\}.$  Dokažte, že

- 1. Aje rekurzívní a Bje rekurzívní právě když $A \oplus B$ je rekurzívní,
- 2. A je rekurzívně spočetná a B je rekurzívně spočetná právě když  $A\oplus B$  je rekurzívně spočetná.

## Riceovy věty

Příklad 34 Pomocí Riceovy věty dokažte, že následující množiny nejsou rekurzívní.

- 1.  $A_2 = \{i \mid \varphi_i = f\}$ , kde f je pevná totálně vyčíslitelná funkce
- 2.  $A_3 = \{i \mid \varphi_i = g\}$ , kde g je pevná vyčíslitelná funkce
- 3.  $A_4 = \{i \mid a \in \text{dom}(\varphi_i)\}, \text{ kde } a \in \mathbb{N} \text{ je pevné}$
- 4.  $A_5 = \{i \mid \operatorname{dom}(\varphi_i) = \emptyset\}$
- 5.  $A_6 = \{i \mid \text{dom}(\varphi_i) \text{ je konečná množina}\}$
- 6.  $A_7 = \{i \mid a \in \text{range}(\varphi_i)\}$ , kde  $a \in \mathbb{N}$  je pevné
- 7.  $A_8 = \{i \mid \text{range}(\varphi_i) \text{ je konečná množina} \}$
- 8.  $A_9 = \{i \mid \operatorname{dom}(\varphi_i) = \mathbb{N}\}\$
- 9.  $A_{10} = \{i \mid \varphi_i \text{ je prostá}\}$
- 10.  $A_{11} = \{i \mid \varphi_i \text{ je bijekce}\}\$

\*Příklad 35 Funkce  $\xi:\mathbb{N}\to\mathbb{N}$  se nazývá konečná, je-li  $\mathrm{dom}(\xi)$  konečná množina. Nechť

$$I = \{i \mid \xi \le \varphi_i\}$$

kde  $\xi$  je konečná funkce. Respektuje I funkce? Je I rekurzívní? Je I r.e? Je její doplněk  $\overline{I}$  r.e? Odpovědi zdůvodněte.

\*Příklad 36 Je množina

$$A = \{i \mid P_i \text{ s proměnnými inicializovanými na 0 cyklí}\}$$

r.e.? Je rekurzívní? Lze použít Riceovu větu?

**Příklad 37** Dokažte, že množina  $B=\{i\mid \varphi_i(i^2) \text{ je definováno}\}$  není rekurzívní. Lze použít Riceovu větu? Je tato množina r.e.?

Příklad 38 Uvažujme následující množiny:

- (a)  $\{i \mid W_i \text{ je konečná}\}$
- (b)  $\{i \mid W_i \text{ je rekurzívní}\}$
- (c)  $\{i \mid W_i \text{ je rekurzívní, ale ani } W_i \text{ ani } \overline{W}_i \text{ není konečná}\}$

U každé z nich zjistěte, zda množina respektuje funkce, zda je rekurzívní, r.e. nebo není r.e. a zdůvodněte.

Příklad 39 Pomocí Riceovy věty dokažte, že následující množiny nejsou rekurzívně spočetné.

- 1.  $\overline{A_2} = \{i \mid \varphi_i \neq f\}$ , kde f je pevná totálně vyčíslitelná funkce
- 2.  $A_3 = \{i \mid \varphi_i = g\}$ , kde g je pevná vyčíslitelná funkce
- 3.  $\overline{A_3} = \{i \mid \varphi_i \neq g\}$ , kde g je pevná vyčíslitelná funkce
- 4.  $A_4 = \{i \mid a \in \text{dom}(\varphi_i)\}$ , kde  $a \in \mathbb{N}$  je pevné
- 5.  $A_5 = \{i \mid \operatorname{dom}(\varphi_i) = \emptyset\}$
- 6.  $A_6 = \{i \mid \operatorname{dom}(\varphi_i) \text{ je konečná množina } \}$
- 7.  $\overline{A_7} = \{i \mid a \notin \text{range}(\varphi_i)\}$ , kde  $a \in \mathbb{N}$  je pevné
- 8.  $A_8 = \{i \mid \text{range}(\varphi_i) \text{ je konečná množina}\}$
- 9.  $\overline{A_9} = \{i \mid \operatorname{dom}(\varphi_i) \neq \mathbb{N}\}$
- 10.  $A_{10} = \{i \mid \varphi_i \text{ je prostá}\}$
- 11.  $\overline{A_{11}} = \{i \mid \varphi_i \text{ není bijekce}\}$

#### Složitost – Rozcvička

**Příklad 40** Které z následujících dvojic čísel jsou nesoudělné? Podrobně napište výpočty, které vedly k Vašemu závěru.

- a. 1274 and 10505
- b. 7289 and 8029

**Příklad 41** Které z následujících dvojic čísel jsou nesoudělné? Podrobně napište výpočty, které vedly k Vašemu závěru.

- a. 1276 and 10505
- b. 7289 and 8129

**Příklad 42** Které z následujících dvojic čísel jsou nesoudělné? Podrobně napište výpočty, které vedly k Vašemu závěru.

- a. 1620 and 1989
- b. 1322 and 8129

**Příklad 43** Je následující formule splnitelná? Pokud ano, napište nějaké splňující přiřazení proměnným!

$$(x \lor y) \land (x \lor \neg y) \land (\neg x \lor y) \land (\neg x \lor \neg y)$$

**Příklad 44** Je následující formule splnitelná? Pokud ano, napište nějaké splňující přiřazení proměnným!

$$(x \vee \neg y) \wedge (x \vee y \vee z) \wedge (\neg x \vee \neg y) \wedge (\neg x \vee y) \wedge (x \vee \neg z)$$

**Příklad 45** Je následující formule splnitelná? Pokud ano, napište nějaké splňující přiřazení proměnným!

$$(x \lor \neg y) \land (x \lor \neg y \lor z) \land (\neg x \lor \neg y) \land (\neg x \lor y) \land (x \lor \neg z)$$

**Příklad 46** Je následující formule splnitelná? Pokud ano, napište nějaké splňující přiřazení proměnným!

$$(x \vee y \vee z) \wedge (\neg x \vee y \vee z) \wedge (x \vee \neg y \vee z) \wedge (x \vee y \vee \neg z) \wedge (\neg x \vee \neg y \vee z) \wedge (x \vee \neg y \vee \neg z) \wedge (\neg x \vee \neg y \vee \neg z)$$

12

**Příklad 47** Hra *tic-tac-toe* je variace piškvorek. Využívá hrací pole tři krát tři, na které dva hráči postupně umisťují své symboly, stejně jako u piškvorek. Účelem hry je vytvořit přímku ze svých tří symbolů. Pokud se zaplní hrací pole bez vytvoření sledu tří stejných symbolů, hra končí remízou. Má hráč který začíná výherní strategii? Pokud ano, popište ji, stačí první tah. Pokud ne, popište obrannou strategii druhého hráče, stačí protitah proti každému možnému prvnímu tahu prvního hráče.

**Příklad 48** Uvažujme následující hru dvou hráčů na orientovaném grafu G=(V,H). První hráč začíná ve vyznačeném vrcholu  $v\in V$  a vybere nějaký vrchol  $u\in V$ , do kterého vede z v hrana, tedy  $(v,u)\in H$ . Druhý hráč potom vybere nějaký nenavštívený vrchol, do kterého vede hrana z u, atd. Hráči se střídají. Hra pokračuje dokud existuje tah do ještě nenavštíveného vrcholu. Hráč, který nemá kam táhnout, prohrává.

Má první hráč výherní strategii v následující hře? Má ji druhý hráč? Startovní vrchol je vyznačen šipkou směřující odnikud.



**Příklad 49** Je dán semi-Thueův systém  $\mathcal{T} = (\{a,b\}, \{ba \to bbb, bbb \to b\})$ . Rozhodněte, zda:

- a.  $abaaba \Rightarrow_{\mathcal{T}}^* abb$
- b.  $babababa \Rightarrow_{\mathcal{T}}^* b$

**Příklad 50** Je dán semi-Thueův systém  $\mathcal{T}=(\{a,b,c\},\{ab\rightarrow ba,abc\rightarrow acb,ac\rightarrow ca,cba\rightarrow ab\})$ . Rozhodněte, zda:

- a.  $abcabc \Rightarrow_{\mathcal{T}}^* baab$
- b.  $acbccc \Rightarrow_{\mathcal{T}}^* ba$

**Příklad 51** Je dán semi-Thueův systém  $\mathcal{T}=(\{a,b,c\},\{ab\rightarrow ba,ba\rightarrow ab,bb\rightarrow aa\})$ . Rozhodněte, zda:

- a.  $abbbbbaab \Rightarrow_{\mathcal{T}}^* baabbbbba$
- b.  $abbababab \Rightarrow_{\mathcal{T}}^* aaaaaaaaa$

**Příklad 52** Je dán Postův systém  $S = \{(aba,a),(bbb,aaa),(aab,abab),(bb,babba)\}$ . Má tento systém řešení? Zdůvodněte!

**Příklad 53** Je dán Postův systém  $S = \{(abc, ab), (ca, a), (acc, ba)\}$ . Má tento systém řešení? Zdůvodněte!

**Příklad 54** Je dán Postův systém  $S = \{(ab,a), (bbaaba,a), (b,bbbb), (bb,ab)\}$ . Má tento systém řešení? Zdůvodněte!

**Příklad 55** Vyřešte TSP problém s následujícím zadáním.



**Příklad 56** Zkonstruujte jednopáskový Turingův stroj, který rozhoduje jazyk  $L = \{0^k 1^k \mid k \ge 0\}$  v čase  $\mathcal{O}(n \log n)$ . Přesná definice Vámi navrženého stroje není nutná, stačí dostatečně podrobný popis funkce.

**Příklad 57** Zkonstruujte dvoupáskový Turingův stroj, který rozhoduje jazyk  $L = \{0^k 1^k \mid k \ge 0\}$  v čase  $\mathcal{O}(n)$ . Přesná definice Vámi navrženého stroje není nutná, stačí dostatečně podrobný popis funkce.

**Příklad 58** Zkonstruujte jednopáskový Turingův stroj, který rozhoduje jazyk  $L = \{0^k 1^k \mid k \ge 0\}$  v čase  $\mathcal{O}(n^2)$ . Stroj má povoleno zapisovat na pásku pouze symboly z abecedy  $\Sigma = \{0, 1\}$ . Přesná definice Vámi navrženého stroje není nutná, stačí dostatečně podrobný popis funkce.

**Příklad 59** Nechť M je deterministický jednopáskový Turingův stroj, který rozhoduje jazyk L v čase  $\mathcal{O}(n^{\frac{3}{2}})$ . Je možné z toho vyvodit závěr, že existuje konstanta  $k \in \mathbb{N}$  taková, že hlava M se při výpočtu nad libovolným slovem z L nikdy nedostane dál než k políček od začátku pásky? Pokud ano, určete konstantu k.

**Příklad 60** Nechť M je deterministický jednopáskový Turingův stroj, který rozhoduje konečný jazyk L v čase  $\mathcal{O}(n^{\frac{3}{2}})$ . Je možné z toho vyvodit závěr, že existuje konstanta  $k \in \mathbb{N}$  taková, že hlava M se při výpočtu nad libovolným slovem z L nikdy nedostane dál než k políček od začátku pásky? Pokud ano, určete konstantu k.

## Redukce a úplnost

**Příklad 61** Dokažte, že relace  $\leq_m$  (many-to-one redukce) je tranzitivní.

**Příklad 62** Dokažte, že relace  $\leq_p$  (polynomiální many-to-one redukce) je tranzitivní.

**Příklad 63** Rozhodněte, zda relace  $\leq_p$  (polynomiální many-to-one redukce) je reflexivní a symetrická.

**Příklad 64** Nechť  $A,B\subseteq\{a,b\}^*$ ,  $A\le_m B$  a jazyk B je regulární. Platí, že pak i jazyk A je regulární? Zdůvodněte!

**Příklad 65** Nechť množina  $A\subseteq \mathbb{N}$  je rekursivně spočetná a  $A\leq_m$  co-A. Pak A je rekursivní. Dokažte

**Příklad 66** Nechť množina  $A \subseteq \mathbb{N}$  je rekursivně spočetná a co $-A \leq_m A$ . Pak A je rekursivní. Dokažte.

**Příklad 67** Nechť  $A = \{i \in \mathbb{N} \mid \varphi_i(i^4 + 2i^2 + i + 8) \text{ je definováno}\}$ . Dokažte, že množina A není rekurzivní.

**Příklad 68** Nechť  $A = \{i \in \mathbb{N} \mid \varphi_i(5i) \text{ není definováno}\}$ . Dokažte, že množina A není rekurzivně spočetná.

**Příklad 69** Nechť  $A=\{i\in\mathbb{N}\mid \varphi_i=\epsilon\}$ , kde  $\epsilon$  je prázdná funkce. Dokažte pomocí redukce, že A není rekurzivně spočetná.

**Příklad 70** Nechť  $A = \{i \in \mathbb{N} \mid \varphi_i = g\}$ , kde g je pevně daná vyčíslitelná funkce různá od prázdné funkce. Dokažte pomocí redukce, že A není rekurzivní.

**Příklad 71** Nechť L je jazyk,  $L \subseteq \Sigma^*$ . Jestliže  $L \neq \emptyset$  a současně  $L \neq \Sigma^*$ , pak pro každý jazyk  $L_0 \in \mathsf{P}$  platí  $L_0 \leq_p L$ . Dokažte.

**Příklad 72** Za předpokladu P  $\neq$  NP existují dva jazyky A, B patřící do třídy NP takové, že

- A,B jsou neprázdné a i jejich komplementy jsou neprázdné, a současně
- A není redukovatelné na B.

Dokažte!

**Příklad 73** Ukažte, že za předpokladu P = NP je každý jazyk  $L \in P$ , kromě  $L = \emptyset$  a  $L = \Sigma^*$ , NP-úplný.

**Příklad 74** Rozhodněte, zda je problém zastavení Turingova stroje NP–těžký? Svou odpověď dokažte!

\*\*Příklad 75 Problém SUBSET-SUM je definován následovně.

$$\mathit{SUBSET-SUM} = \{S \subset \mathbb{Z} \mid S \text{ je konečná a existuje } A \subseteq S \text{ taková, že } A \neq \emptyset \land \sum_{a \in A} a = 0\}$$

Najděte polynomiální redukci problému *SUBSET-SUM* na problém odvození v semi-Thueově systému.

\***Příklad 76** Dokažte, že problém jednoznačnosti bezkontextové gramatiky je nerozhodnutelný. Můžete k tomu využít fakt, že Postův problém přiřazení je nerozhodnutelný.

\***Příklad** 77 Dokažte, že problém zániku matic je nerozhodnutelný. Můžete k tomu využít fakt, že Postův problém přiřazení je nerozhodnutelný.

\***Příklad 78** *Hamiltonovská cesta* v orientovaném grafu je cesta, která obsahuje každý vrchol grafu právě jednou. *Hamiltonovský cyklus* v orientovaném grafu je cyklus, který obsahuje každý vrchol grafu právě jednou. Problémy *HAMPATH* a *HAMCYCLE* jsou definovány následovně:

 $\mathit{HAMPATH} = \{ < G, s, t > \mid \mathit{V} \ \mathit{orientovan\'em} \ \mathit{grafu} \ \mathit{G} \ \mathit{existuje} \ \mathit{hamiltonovsk\'a} \ \mathit{cesta} \ \mathit{z} \ \mathit{s} \ \mathit{do} \ \mathit{t} \}$ 

 $HAMCYCLE = \{ \langle G \rangle | V \text{ orientovaném grafu } G \text{ existuje hamiltonovský cyklus} \}$ 

Dokažte následující tvrzení:

- a.  $HAMPATH \leq_p HAMCYCLE$
- b.  $HAMCYCLE \leq_p HAMPATH$

**Příklad 79** *Hamiltonovský cyklus* v neorientovaném grafu je cyklus, který obsahuje každý vrchol grafu právě jednou. *Hamiltonovský cyklus* v orientovaném grafu je cyklus, který obsahuje každý vrchol grafu právě jednou, přitom cyklus musí respekrovat orientaci hran. Problémy *UHAMCYCLE* a *HAMCYCLE* jsou definovány následovně:

 $UHAMCYCLE = \{ \langle G \rangle | V neorientovaném grafu G existuje hamiltonovský cyklus \}$ 

 $HAMCYCLE = \{ \langle G \rangle | V \text{ orientovaném grafu } G \text{ existuje hamiltonovský cyklus} \}$ 

Dokažte, že problém *UHAMCYCLE* je NP-úplný. Můžete k tomu využít fakt, že problém *HAMCYCLE* je NP-úplný.

 ${\it N\'{a}vod}: HAMCYCLE} \le_p UHAMCYCLE.$  Redukce přiřadí orientovanému grafu graf neorientovaný. Každému vrcholu v orientovaného grafu budou odpovídat tři vrcholy –  $v_{in}, v_{mid}, v_{out}$  – grafu neorientovaného. Mezi  $v_{in}$  a  $v_{mid}$  a mezi  $v_{mid}$  a  $v_{out}$  budou neorientované hrany. Pokud v původním grafu existovala orientovaná hrana (u,v), bude v novém grafu neorientovaná hrana  $(u_{out},v_{in})$ .

**Příklad 80** *Hamiltonovský cyklus* v neorientovaném grafu je cyklus, který obsahuje každý vrchol grafu právě jednou, na orientaci hran nezáleží. Problém *UHAMCYCLE* je definován následovně:

 $UHAMCYCLE = \{ \langle G \rangle | V neorientovaném grafu G existuje hamiltonovský cyklus \}$ 

Problém *TSP* je definovaný následovně.

 $TSP = \{ < G, k > | \ \, \text{V neorientovan\'em ohodnocen\'em grafu} \, G \\ \text{existuje trasa obchodn\'iho cestuj\'e\'iho s hodnotou nejv\'y\'se} \, k \}$ 

Dokažte, že problém *TSP* je NP-úplný. Můžete k tomu využít fakt, že problém *UHAMCYCLE* je NP-úplný.

**Příklad 81** Dokažte, že problém *3SAT* definovaný následujícím způsobem je NP-úplný.

 $3SAT = \{ \langle \varphi \rangle | \quad \varphi \text{ je splnitelná formule v konjunktivní normální formě a každá její klauzule má právě tři literály }$ 

Použijte redukci z problému SAT!

#### **Příklad 82** Dokažte NP-úplnost problému *CNF*(8)

*Formulace problému:* Je daná booleovská formule  $\Phi$  v konjunktivním normálním tvaru. Existuje alespoň 8 různých splňujících přiřazení hodnot proměnným formule  $\Phi$ ?

\***Příklad 83** Řekneme, že neorientovaný graf G má *k*-kliku, pokud v něm existuje úplný podgraf s *k* vrcholy. Dokažte, že problém *KLIKA* definovaný následujícím způsobem je NP-úplný.

$$KLIKA = \{ \langle G, k \rangle | G \text{ je neorientovaný graf s k-klikou} \}$$

\***Příklad 84** Dokažte, že jazyk *1–3SAT* je NP–úplný.

1– $3SAT = \{ F \mid F \text{ je formule v konjunktivním normálním tvaru a taková,}$  že každá její klauzule obsahuje právě 3 literály, a existuje takové přirazení hodnot proměnným, že v každé klauzuli formuly F je splněn právě jeden literál.}

*Návod:* Důkaz redukcí z *3SAT*. Klauzuli  $(x \lor y \lor z)$  nahradíme klazulemi  $(x \lor a \lor d)$ ,  $(y \lor b \lor d)$ ,  $(a \lor b \lor e)$ ,  $(c \lor d \lor f)$ ,  $(z \lor c \lor g)$ ,  $(g \lor h \lor \neg h)$ , kde a, b, c, d, e, f, g, h jsou nové proměnné.

**Příklad 85** Dokažte, že jazyk *01–3SAT* je NP–úplný.

01– $3SAT = \{F \mid F \text{ je formule v konjunktivním normálním tvaru a taková,}$  že každá její klauzule obsahuje právě 3 literály a existuje takové přirazení hodnot proměnným, že v žádné klauzuli formule F nejsou splněny všechny tři literály.}

*Návod:* Důkaz redukcí z *3SAT.* Klauzuli  $(x \lor \neg y \lor z)$  nahradíme klazulí  $(\neg x \lor y \lor \neg z)$ 

**Příklad 86** Dokažte, že jazyk *IZO* je NP-úplný.

$$\mathit{IZO} = \{ < G, \overline{G} > | \mathit{graf} \ G \ \mathit{obsahuje} \ \mathit{podgraf} \ \mathit{izomorfni} \ \mathit{s} \ \mathit{grafem} \ \overline{G} \}$$

Definice: Necht  $G_1=(V_1,H_1)$  a  $G_2=(V_2,H_2)$  jsou grafy. Graf  $G_1$  je izomorfní s grafem  $G_2$  právě když existuje bijekce  $g:V_1\to V_2$  taková, že hrana  $(u,v)\in H_1$  právě když hrana  $(g(u),g(v))\in H_2$ . Graf  $G_1$  je podgrafem grafu  $G_2$  když  $V_1\subseteq V_2$  a  $H_1\subseteq H_2$ .

Návod: KLIKA < IZO

#### Příklad 87 Dokažte NP-úplnost problému NON-EKVIVALENCE.

Formulace problému: Jdou dány dvě booleovské formule  $\Phi_1$  a  $\Phi_2$  proměnných  $x_1,\ldots,x_n$ . Jsou formule  $\Phi_1$  a  $\Phi_2$  různé? (Tj. existuje takové přiřazení hodnot  $a_1,\ldots,a_n$  proměnným  $x_1,\ldots,x_n$ , pro které  $\Phi_1(a_1,\ldots,a_n)\neq\Phi_2(a_1,\ldots,a_n)$ ?)

*Návod: SAT ≤ NON-EKVIVALENCE* 

**Příklad 88** Řekneme, že neorientovaný graf G=(V,H) má k-vrcholové pokrytí, pokud existuje množina  $X\subseteq V$  taková, že |X|=k a  $\{(x,y)\in H\mid x\in X\vee y\in X\}=H$ . Dokažte, že jazyk  $VRCHOLOVÉ\ POKRYTÍ\ je\ NP-úplný.$ 

 $VRCHOLOVÉ\ POKRYTÍ = \{ < G, k > |\ graf\ G\ obsahuje\ k-vrcholové\ pokrytí \}$ 

 $\emph{N\'{a}vod:}~SAT \leq \emph{VRCHOLOV\'{E}}~POKRYT\'{I}.$  Nechť F je formule proměnných  $x_1,\ldots,x_n$  s m klauzulemi.

- 1. Pro každou proměnnou  $x_i$  formule F obsahuje graf G dvojici vrcholů  $x_i^t$  a  $x_i^f$  a hranu  $(x_i^t, x_i^f)$ . Intuitivně, vybraný vrchol bude odpovídat přiřazení hodnoty proměnné  $x_i$ .
- 2. Pro každou klauzuli  $C_j$  formule F obsahuje G kompletní podgraf  $G_j$  s  $n_j$  vrcholy, ze kterých každý odpovídá jednomu literálu klauzule. Intuitivně, na pokrytí hran této kliky je potřeba  $n_j-1$  vrcholů, zbylý vrchol bude odpovídat tomu literálu, který bude mít přiřazenu pravdivostní hodnotu true.
- 3. Pokud  $x_i$  resp.  $\neg x_i$  je literál formule F, tak G obsahuje hranu spojující vrchol odpovídající literálu  $x_i$  resp.  $\neg x_i$  s vrcholem  $x_i^t$  resp.  $x_i^f$ .

Číslo k definujeme jako

$$k = n + (n_1 - 1) + (n_2 - 1) + \dots + (n_m - 1)$$

**Příklad 89** Nechť G=(V,H) je neorientovaný graf. Množina  $X\subseteq V$  je nezávislá, pokud  $\{(x,y)\in H\mid x\in X\land y\in X\}=\emptyset$ . Dokažte, že jazyk *NEZÁVISLÁ MNOŽINA* je NP-úplný.

 $NEZÁVISLÁ MNOŽINA = \{ \langle G, k \rangle | graf G obsahuje nezávislou množinu o k prvcích \}$ 

Návod: KLIKA < NEZÁVISLÁ MNOŽINA

**Příklad 90** Dokažte, že problém *NM* je NP-úplný.

Formulace problému: Je daný neorientovaný graf G=(V,H), přičemž |V|=2n. Existuje  $V'\subset V$  taková, že |V'|=n a žádné dva vrcholy z V' nejsou v G spojeny hranou?

Návod: NEZÁVISLÁ MNOŽINA < NM

**Příklad 91** Uvažujme následující problém. Je zadán ohodnocený orientovaný graf G=(V,H,w), kde  $w:H\to \mathbb{Z}$  je funkce ohodnocení hran. Dále je zadán vrchol  $v\in V$  a konstanta  $c\in \mathbb{Q}$ . Úkolem je zjistit, zda graf G obsahuje cyklus jehož součástí je vrchol v a průměrná hodnota hrany na tomto cyklu je menší než c. Příklad:



Uvedený graf obsahuje cyklus s průměrnou délkou hrany menší než  $\frac{7}{5}$ , totiž cyklus  $(v_1,v_2,v_4,v_1)$ , jehož průměrná hodnota hrany je  $\frac{4}{3}$ . Nicméně součástí tohoto cyklu není vyznačený vrchol  $v_3$  a cyklus s minimální průměrnou délkou hrany, jehož součástí je vrchol  $v_3$ , je cyklus  $(v_3,v_4,v_3)$ , jeho průměrná délka hrany je  $\frac{3}{2}$ , což je více než  $\frac{7}{5}$ . Řešením této konkrétní instance problému je tedy odpověď NE.

Dokažte, že v obecnosti je uvedený problém NP-úplný. Můžete k tomu využít fakt, že problém existence Hamiltonovského cyklu v orientovaném grafu je NP-úplný.

Příklad 92 Uveď te příklad co-NP-úplného problému a dokažte jeho co-NP-úplnost.

Příklad 93 Ukažte, že každý PSPACE-těžký problém je také NP-težký.

**Příklad 94** Nechť  $A \oplus B = \{x0 \mid x \in A\} \cup \{x1 \mid x \in B\}$ . Dokažte, že pro libovolné jazyky A, B platí  $A \leq_p A \oplus B$ .

**Příklad 95** Nechť  $C_1, C_2$  jsou složitostní třídy uzavřené vzhledem k redukci. Dále nechť L je jazyk, který je současně  $C_1$ -úplný a  $C_2$ -úplný. Plyne z těchto faktů rovnost tříd  $C_1$  a  $C_2$ ?

**Příklad 96** Nechť jazyky  $L_1$  a  $L_2$  jsou NP-úplné. Dokažte, že za předpokladu  $L_1 \setminus L_2 \in P$  anebo  $L_2 \setminus L_1 \in P$  je i jazyk  $L_1 \cup L_2$  NP-úplný.

**Příklad 97** Definujme jazyky  $B_1$  a  $B_2$  následovně:

$$B_1 = \{ (F_1, F_2) \mid F_1 \in CNF \land F_2 \not\in CNF \}$$

$$B_2 = \{ (F_1, F_2) \mid F_1 \in CNF \lor F_2 \notin CNF \}$$

Dokažte:

- **a)**  $B_1 \leq_p B_2$
- **b)**  $B_2 \leq_p B_1$ .

**Příklad 98** Dokažte, že pokud existuje NP-úplný problém L takový, že  $L \in \mathsf{NP} \cap \mathsf{co-NP}$ , tak NP = co–NP.

## Asymptotické chování funkcí

V této sekci pracujeme s přirozenými čísly bez nuly,  $\mathbb{N}=\{1,2,\ldots\}$ , a s funkcemi typu  $f,g:\mathbb{N}\to\mathbb{R}^+.$ 

**Příklad 99** Dokažte, že pokud  $\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$ , tak  $f(n)\in\mathcal{O}(g(n))$ .

**Příklad 100** Dokažte, že pokud  $\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$ , tak  $f(n)\in\Omega(g(n))$ .

Příklad 101 Rozhodněte, které z následujících vztahů platí. Odpovědi zdůvodněte.

- a.  $2n \in \mathcal{O}(n)$
- b.  $n^2 \in \mathcal{O}(n)$
- c.  $n \log_2 n \in \mathcal{O}(n^2)$
- d.  $n \log_2 n \in \mathcal{O}(n)$
- e.  $3^n \in 2^{\mathcal{O}(n)}$
- f.  $3n^2 + 4n + 17 \in \mathcal{O}(n^2 n + 1)$

Příklad 102 Rozhodněte, které z následujících vztahů platí. Odpovědi zdůvodněte.

- a.  $n \in o(2n)$
- b.  $2n \in o(n^2)$
- c.  $2^n \in o(3^n)$
- d.  $1 \in o(n)$
- e.  $1 \in o(\log n)$
- f.  $1 \in o(\frac{1}{n})$
- g.  $n^3 \in o(3^n)$

**Příklad 103** Třída  $\mathcal{O}(g(n))$  se někdy definuje následujícím způsobem. Nechť  $f,g:\mathbb{N}\to\mathbb{R}^+$  jsou funkce. Píšeme  $f(n)\in\mathcal{O}(g(n))$ , pokud existují  $c_1,c_2\in\mathbb{N}$  takové, že pro všechna  $n\in\mathbb{N}$  platí:

$$f(n) \le c_1 \cdot g(n) + c_2$$

Je tato definice ekvivalentní standardní definici z přednášek? Změní se odpověd, pokud uvažujeme pouze funkce g(n) splňující  $g(n) \ge k$  pro nějakou konstantu  $k \in \mathbb{R}^+$  a pro všechna  $n \in \mathbb{N}$ ?

**Příklad 104** Existuje funkce  $f: \mathbb{N} \to \mathbb{R}^+$  taková, že platí  $f(n) \in o(f(n))$ ?

**Příklad 105** Dokažte, že platí následující vztahy:

```
(a) f(n) \in \mathcal{O}(g(n)) \iff g(n) \in \Omega(f(n))
```

$$\begin{array}{lll} \text{(b)} & f(n) \in \mathcal{O}(g(n)) & \Longrightarrow & f(n) \in \mathcal{O}(g(n)) \\ \text{(c)} & f(n) \in o(g(n)) & \Longrightarrow & f(n) \not\in \Omega(g(n)) \\ \text{(d)} & f(n) \in o(g(n)) & \Longrightarrow & g(n) \not\in \mathcal{O}(f(n)) \end{array}$$

(c) 
$$f(n) \in o(g(n)) \implies f(n) \notin \Omega(g(n))$$

(d) 
$$f(n) \in o(g(n)) \implies g(n) \notin \mathcal{O}(f(n))$$

**Příklad 106** Rozhodněte, zda platí následující vztah. Odpověď zdůvodněte.

$$f(n) \in o(g(n)) \iff g(n) \notin \mathcal{O}(f(n))$$

## Složitostní třídy

#### 9.1 Lehké

Příklad 107 Dokažte, že každý bezkontextový jazyk je v P.

**Příklad 108** Dokažte, že třída Pje uzavřená na operace sjednocení, komplement a zřetězení. Rozhodněte, na které z těchto operací je uzavřena třída NP. Odpověď zdůvodněte.

**Příklad 109** Dokažte, že třída PSPACEje uzavřená na operace sjednocení, komplement a iteraci.

**Příklad 110** Určete vztah mezi následujícími dvojicemi složitostních tříd. Svoje tvrzení zdůvodněte. Rozlišujte mezi rovností, inkluzí a ostrou inkluzí.

```
\begin{array}{l} \operatorname{DTIME}(n^2) \text{ a } \operatorname{DTIME}(n^3) \\ \\ \operatorname{DSPACE}(2n^2) \text{ a } \operatorname{DSPACE}(100n^2) \\ \\ \operatorname{DTIME}(n^2) \text{ a } \operatorname{DSPACE}(n^2) \\ \\ \operatorname{NSPACE}(n^2) \text{ a } \operatorname{DSPACE}(n^5) \\ \\ \operatorname{NSPACE}(n^2) \text{ a } \operatorname{DSPACE}(n^3) \\ \\ \operatorname{P a } \operatorname{DTIME}(2^n) \end{array}
```

#### Příklad 111 Dokažte:

```
\mathsf{DSPACE}(2^n) = \mathsf{DSPACE}(2^{n+1})
```

**Příklad 112** Najděte chybu v následujícím důkazu tvrzení  $P \neq NP$ .

Predpokládejme, že P= NP. Pak pro nějaké  $k \in \mathbb{N}$  platí  $SAT \in \mathsf{DTIME}(n^k)$ . Protože každý jazyk z třídy NP je polynomiálně redukovatelný na jazyk SAT, tak NP  $\subseteq \mathsf{DTIME}(n^k)$ . Podle předpokladu je P= NP, a tedy i P  $\subseteq \mathsf{DTIME}(n^k)$ . Lze dokázat (opravdu lze, zde chybu nehledejte), že  $\mathsf{DTIME}(n^k) \subset \mathsf{DTIME}(n^{k+1})$ . To je spor s P  $\subseteq \mathsf{DTIME}(n^k)$ . Proto P  $\neq$  NP.

**Příklad 113** Najděte chybu v následujícím důkazu tvrzení  $P \neq NP$ .

Uvažujme následující algoritmus pro problém CNF. Pro vstupní formuli F prověříme všechna možná přiřazení hodnot proměnným. Když některé z nich splňuje F, tak akceptujeme. Zřejmě tento algoritmus má exponenciální složitost. Proto problém CNF má exponenciální složitost. Problém CNF tedy nepatří do třídy P. Protože CNF je NP-úplný, tak musí být P  $\neq$  NP.

Příklad 114 Najděte chybu v následujícím důkazu tvrzení, že jazyk

 $\forall \textit{KLIKA} = \{ \langle G, k \rangle \mid \text{každá klika v grafu } G \text{ má velikost menší než } k \}$  patří do třídy NP.

Víme, že jazyk

 $\exists KLIKA = \{\langle G, k \rangle \mid v \text{ grafu } G \text{ existuje klika velikosti alespoň } k \}$ 

patří do třídy NP. Nechť  $\mathcal{M}$  je nedeterministický Turingův stroj polynomiální časové zložitosti, akceptující jazyk  $\exists KLIKA$ . Pak záměnou akceptujícího a zamítajícího stavu stroje  $\mathcal{M}$  dostaneme nedeterministický TS stroj polynomiální časové zložitosti a rozhodující jazyk  $\forall KLIKA$ . Proto jazyk  $\forall KLIKA$  patří do třídy NP.

**Příklad 115** Popište chování nedeterministického Turingova stroje s výstupní páskou (speciální páska, na které se na konci výpočtu nachází výstup výpočtu) řešícího rozklad čísla n na prvočinitele v polynomiálním čase vzhledem k n. Nevyžaduje se formální zápis Turingova stroje, stačí popis činnosti od načtení vstupu po zápis rozkladu na výstupní pásku.

**Příklad 116** Nechť  $T,S:\mathbb{N}\to\mathbb{N}$  jsou funkce. Definujeme složitostní třídu DTISP(T(n),S(n)) takto: jazyk L patří do DTISP(T(n),S(n)) právě když existuje k-páskový Turingův stroj M akceptují jazyk L v čase T(n) a v prostoru S(n). Poznamenáváme, že stroj musí současně splňovat časové i prostorové ohraničení. Ukažte, že pro každý jazyk  $L\in \mathsf{DTISP}(T(n),S(n))$  existuje  $\mathit{je-dopáskový}$  Turingův stroj akceptující L v čase  $\mathcal{O}(T(n)S(n))$  a  $\mathit{současně}$  v prostoru S(n).

**Příklad 117** Nechť  $L\subseteq \Sigma^*$  je jazyk. *Polynomiální prodloužení* jazyka L je jazyk  $L_k$  definovaný předpisem

$$L_k = \{x0^r \mid x \in L, r = |x|^k\}$$

kde k je fixní přirozené číslo a symbol 0 nepatří do abecedy  $\Sigma$ .

- (a) Dokažte, že třída NP je uzavřená vůči operaci polynomiálního prodloužení, tj. pro každé dva jazyky L a  $\overline{L}$  takové, že  $\overline{L}$  je prodloužením jazyka L platí současně
  - $L \in \mathsf{NP} \Rightarrow \overline{L} \in \mathsf{NP}$
  - $\overline{L} \in \mathsf{NP} \Rightarrow L \in \mathsf{NP}$
- (b) Zdůvodněte, proč DSPACE $(n) \neq NP$

**Příklad 118** Dokažte, že problém *DNF-SAT* definovaný následujícím způsobem je v P.

$$DNF\text{-}SAT = \{ \langle \varphi \rangle | \varphi \text{ je splnitelná formule v disjunktivní normální formě} \}$$

Příklad 119 Trojúhelník v neorientovaném grafu je 3-klika. Ukažte, že jazyk TRIANGLE je v P.

$$TRIANGLE = \{ \langle G \rangle | G \text{ obsahuje trojúhelník} \}$$

**Příklad 120** Ukažte, že testování prvočíselnosti je řešitelné v polynomiálním čase, pokud použijeme unární kódování čísel. Jinými slovy, ukažte, že jazyk *UNARY-PRIMES* je v P.

$$UNARY-PRIMES = \{1^n \mid n \text{ je prvočíslo}\}$$

*Poznámka*: Poznamenejme, že testování prvočíselnosti je řešitelné v polynomiálním čase i pro binární kódování čísel. Důkaz je ale v tomto případě poněkud složitější.

**Příklad 121** Dokažte, že problém *CONNECTED* definovaný následujícím způsobem je v P.

$$CONNECTED = \{ \langle G \rangle | G \text{ je spojitý neorientovaný graf} \}$$

**Příklad 122** Pro dvě přirozená čísla a,b>1 definujeme lcm(a,b) jako nejmenší společný násobek čísel a a b. Dokažte, že problém LCM definovaný následujícím způsobem je v P.

$$LCM = \{ \langle a, b, c \rangle | c = lcm(a, b) \}$$

**Příklad 123** Řekneme, že grafy  $G_1$  a  $G_2$  jsou izomorfní, pokud vrcholy grafu  $G_2$  mohou být přeuspořádány tak, aby byl identický s  $G_1$ . Dokažte, že problém ISO definovaný následujícím způsobem je v NP.

$$ISO = \{ \langle G_1, G_2 \rangle | G_1 \text{ a } G_2 \text{ jsou izomorfni grafy} \}$$

Příklad 124 Dokažte, že následující jazyk je v NP.

$$FACTOR = \{ \langle m, n \rangle | m \text{ je dělitelné číslem r takovým, že } 1 \langle r \langle n \rangle \}$$

**Příklad 125** Označme *DNF-SAT* problém splnitelnosti booleovské formule v disjunktivní normální formě. Najděte chybu v následující úvaze.

Použitím distributivního zákona můžeme každou CNF formuli transformovat na formuli v DNF tvaru. Například,  $(x_1 \vee x_2) \wedge (\neg x_1 \vee x_3)$  můžeme přepsat do tvaru  $(x_1 \wedge \neg x_1) \vee (x_1 \wedge x_3) \vee (x_2 \wedge \neg x_1) \vee (x_2 \wedge x_3)$ . To znamená, že  $SAT \leq DNF-SAT$ . Problém DNF-SAT se dá řešit v polynomiálním čase. Proto i problém SAT sa dá řešit v polynomiálním čase, a proto P=NP.

**Příklad 126** Je daný nedeterministický konečný automat  $\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$  a slovo  $w\in\Sigma^*$ . O slovu w řekneme, že je víceznačné, právě když existují dva různé akceptující výpočty  $\mathcal{M}$  na w. Automat  $\mathcal{M}$  nazveme víceznačný, právě když nějaké slovo w z  $L(\mathcal{M})$  je víceznačné. Prozkoumejte pojem víceznačnosti. Konkrétně: je pro daný automat  $\mathcal{M}$  rozhodnutelné, jestli je víceznačný? Když ano, jaká je zložitost tohoto problému? Patří do P, NP, je NP-úplný?

Příklad 127 Dokažte anebo vyvraťte:

$$NP \neq co-NP \implies P \neq NP$$
.

#### 9.2 Průměrně obtížné

\***Příklad 128** Dokažte, že problém 2*SAT* definovaný následujícím způsobem je v P.

$$2SAT = \{ \langle \varphi \rangle | \ \varphi \ je \ splnitelná formule v konjunktivní normální formě a každá její klauzule má právě dva literály \}$$

- \*Příklad 129 Ukažte, že libovolná booleovská formule se dá transformovat v polynomiálním čase na formuli v CNF, která je splnitelná tehdy a jen tehdy, když byla původní formule splnitelná.
- \***Příklad 130** Booleovská formule se nazývá *tautologie*, právě když je splněna pro každé přiřazení hodnot proměnným. Existuje polynomiální algoritmus, který rozhodne, jestli je daná formule tautologie?
- \*Příklad 131 Booleovská formule se nazývá *kontradikce*, právě když není splněna pro žádné přiřazení hodnot proměnným. Existuje polynomiální algoritmus, který rozhodne, jestli je daná formule kontradikce?
- \***Příklad 132** Předpokládejme, že existuje polynomiální algoritmus pro jazyk *SAT*. Navrhněte polynomiální algoritmus, který pro danou formuli najde splňující přiřazení hodnot proměnným (pokud existuje).

\*Příklad 133 Dokažte, že pro deterministický Turingův stroj  $\mathcal{M}$ , který vždy zastaví, existuje ekvivalentní deterministický Turingův stroj  $\mathcal{N}$ , který s prostorovou složitostí:

$$S_{\mathcal{N}} \leq \left\lceil \frac{S_{\mathcal{M}}}{2} \right\rceil$$

Návod: Modifikujte důkaz věty o prostorové kompresi – ve výše uvedené nerovnosti oproti větě o kompresi chybí konstantní člen

\***Příklad 134** Jaký je vztah mezi třídami DTIME(f(n)) a DSPACE(f(n)) ( $\subset$ ,  $\subseteq$ , =,  $\supseteq$ ,  $\supset$ )? Zdůvodněte své tvrzení.

Uveď te příklad f(n) a Turingova stroje  $\mathcal{M}$  takového, že  $S_{\mathcal{M}} = o(f(n))$  a  $T_{\mathcal{M}} = \Omega(f(n))$ .

\*Příklad 135 Určete co nejpřesněji jednotkovou a logaritmickou paměťovou složitost algoritmu:

```
n := read();
i := 0;
r := 1;
for i:=1 to n do r := 3*r;
```

\***Příklad 136** Ukažte, že když jazyk L patří do třídy P, pak i jazyk L\* patří do P. Platí analogické tvrzení i pro třídu NP?

\*Příklad 137 Pro každý z níže definovaných jazyků rozhodněte, do které z následujícíh zložitostných tříd patří: P, NP, NP–úplné jazyky, NP–těžké jazyky. Jestliže některý z jazyků neumíte zařadit do žádné z uvedených tříd, tak uveď te, jestli jeho přesná klasifikace je otevřeným problémem. V každém případě odůvodněte svou odpověď.

```
a) A = \{ \langle M, w \rangle \mid M \text{ je NTS akceptující } w \},
```

**b)**  $B = \{\langle M, w, 0^k \rangle \mid M \text{ je DTS akceptující slovo } w \text{ v nanejvýš } k \text{ krocích} \},$ 

c)  $C = \{\langle M, w, 0^k \rangle \mid M \text{ je NTS akceptující slovo } w \text{ v nanejvýš } k \text{ krocích} \}.$ 

DTS — deterministický Turingův stroj, NTS — nedeterminstický Turingův stroj

\*Příklad 138 Rozhodněte, zda následující argumenty jsou důkazem toho, že problém neekvivalence bezkontextových gramatik je ve třídě NP.

Nechť  $\mathcal{G}_1$  a  $\mathcal{G}_2$  jsou bezkontextové gramatiky nad abecedou  $\Sigma$ . Víme, že problém rozhodnout, zda dané slovo je generováno danou bezkontextovou gramatikou, je v P. Nedeterministický stroj se vstupem  $<\mathcal{G}_1,\mathcal{G}_2>$  bude proto pracovat následovně. Nedeterministicky vybere nějaké slovo  $w\in\Sigma^*$  (cílem je uhodnout slovo, na kterém se  $\mathcal{G}_1$  a  $\mathcal{G}_2$  liší) a v polynomiálním čase ověří, zda  $w\in\mathcal{L}(\mathcal{G}_1)$  a  $w\in\mathcal{L}(\mathcal{G}_2)$ . Pokud dostane různé výsledky, tak akceptuje. Pokud obě gramatiky slovo w generují, nebo naopak obě gramatiky slovo w negenerují, tak zamítá.

#### 9.3 Obtížné

\*\*Příklad 139 Dokažte, že pro deterministický k-páskový Turingův stroj  $\mathcal{M}$ , který vždy zastaví, existuje ekvivalentní deterministický (k+1)-páskový Turingův stroj  $\mathcal{N}$ , který s časovou složitostí:

$$T_{\mathcal{N}} \leq \left\lceil \frac{T_{\mathcal{M}}}{2} \right\rceil + n$$

Návod: Modifikujte důkaz věty o prostorové kompresi.

\*\*Příklad 140 Dokažte, že následující jazyk je v co-NP.

$$FACTOR = \{ \langle m, n \rangle | m \text{ je dělitelné číslem r takovým, že } 1 \langle r \langle n \rangle \}$$