46 Электромагнитная волна

Электромагнитная волна — это распространение колебаний электрического и магнитного полей¹.

Источником электромагнитных волн является любой заряд, движущийся с ускорением. На рис. 1 показана структура электромагнитной волны вдали от колеблющегося заряда, излучающего эту волну.

Рис. 1. Электромагнитная волна

Электромагнитная волна, изображенная на рис. 1, излучается зарядом, колеблющимся с частотой ν вдоль оси y около начала координат. Волна распространяется (бежит) со скоростью \vec{v} вдоль оси x. В каждой точке оси x векторы напряженности \vec{E} электрического поля и индукции \vec{B} магнитного поля волны совершают колебания вдоль осей y и z соответственно (в каждой точке оси x векторы \vec{E} и \vec{B} взаимно перпендикулярны²; колебания этих векторов происходят также с частотой ν , называемой частотой электромагнитной волны).

Две синусоиды на рис. 1 отражают распределение значений напряженности E и индукции B вдоль оси x в некоторый момент времени. Длина волны λ — это расстояние между двумя ближайшими впадинами или горбами (см. рис. 1; $\lambda = vT$, где T — период волны, то есть величина обратная частоте волны).

Электромагнитные волны являются nonepeuhumu — колебания векторов напряжённости и индукции происходят в плоскости, перпендикулярной направлению распространения волны $(\vec{E} \perp \vec{B} \perp \vec{v})$.

Все электромагнитные волны в зависимости от частоты (или длины волны в вакууме) разделяют на диапазоны.

- 1. Радиоволны $(\nu < 3 \cdot 10^{12} \; \Gamma \text{ц}).$
- 2. Инфракрасное излучение $(3 \cdot 10^{12} \ \Gamma \text{ц} < \nu < 4 \cdot 10^{14} \ \Gamma \text{ц})$.
- 3. Видимый свет $(4 \cdot 10^{14} \ \Gamma \mathrm{u} < \nu < 8 \cdot 10^{14} \ \Gamma \mathrm{u})$.
- 4. Ультрафиолетовое излучение $(8 \cdot 10^{14} \ \Gamma \text{ц} < \nu < 6 \cdot 10^{16} \ \Gamma \text{ц})$.
- 5. Рентгеновское излучение $(6 \cdot 10^{16} \, \Gamma \text{ц} < \nu < 8 \cdot 10^{19} \, \Gamma \text{ц})$.
- 6. Гамма-излучение ($\nu > 8 \cdot 10^{19} \, \, \Gamma \text{ц}$).

¹ А именно, колебаний *напряженности* электрического поля и *индукции* магнитного поля.

 $^{^2}$ Кратчайший поворот вектора \vec{E} к вектору \vec{B} всегда совершается против часовой стрелки, если смотреть с конца вектора $\vec{v}.$