

MDPs: value iteration

Optimal value and policy

Goal: try to get directly at maximum expected utility

Definition: optimal value-

The **optimal value** $V_{\text{opt}}(s)$ is the maximum value attained by any policy.

Optimal values and Q-values

Optimal value if take action a in state s:

$$Q_{\mathsf{opt}}(s, a) = \sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s')].$$

Optimal value from state s:

$$V_{\text{opt}}(s) = \begin{cases} 0 & \text{if } \mathsf{IsEnd}(s) \\ \max_{a \in \mathsf{Actions}(s)} Q_{\text{opt}}(s, a) & \text{otherwise.} \end{cases}$$

Optimal policies

Given Q_{opt} , read off the optimal policy:

$$\pi_{\mathsf{opt}}(s) = \arg \max_{a \in \mathsf{Actions}(s)} Q_{\mathsf{opt}}(s, a)$$

Value iteration

Algorithm: value iteration [Bellman, 1957]—

Initialize $V_{\mathrm{opt}}^{(0)}(s) \leftarrow 0$ for all states s.

For iteration $t=1,\ldots,t_{\rm VI}$:

For each state *s*:

$$V_{\text{opt}}^{(t)}(s) \leftarrow \max_{a \in \mathsf{Actions}(s)} \underbrace{\sum_{s'} T(s, a, s') [\mathsf{Reward}(s, a, s') + \gamma V_{\text{opt}}^{(t-1)}(s')]}_{Q_{\text{opt}}^{(t-1)}(s, a)}$$

Time: $O(t_{VI}SAS')$

[semi-live solution]

Value iteration: dice game

```
s end in V_{
m opt}^{(t)} \quad {
m 0.00 \ 12.00} \ (t=100 \ {
m iterations}) \pi_{
m opt}(s) - stay
```

CS221

Value iteration: volcano crossing

	-50	20
	-50	
2		

CS221

Convergence

Theorem: convergence-

Suppose either

- discount $\gamma < 1$, or
- MDP graph is acyclic.

Then value iteration converges to the correct answer.

Summary of algorithms

• Policy evaluation: (MDP, π) $\to V_{\pi}$

• Value iteration: MDP $\rightarrow (Q_{\sf opt}, \pi_{\sf opt})$

Unifying idea

Algorithms:

- Search DP computes FutureCost(s)
- Policy evaluation computes policy value $V_{\pi}(s)$
- Value iteration computes optimal value $V_{\text{opt}}(s)$

Recipe:

- Write down recurrence (e.g., $V_{\pi}(s) = \cdots V_{\pi}(s') \cdots$)
- Turn into iterative algorithm (replace mathematical equality with assignment operator)

CS221 1