第一章 绪论

本章重难点

- ▶高分子的基本概念
- ▶高分子化合物的分类和命名
- >分子量及其分布
- ▶大分子结构

第一章 绪论

主要教学内容

- 1.1 引言
- 1.2 高分子的基本概念
- 1.3 高分子化合物的分类和命名
- 1.4 聚合反应
- 1.5 高分子化合物的基本特点

化工产品广泛, 迄今已达到 7万种之多, 主要包括:

无机化工: 无机酸、碱、盐和化肥等

有机化工: 烷烃、烯烃、芳烃、醇、醛、酸、酯、酮、胺等

高分子化工: 合成树脂及塑料、合成橡胶、合成纤维等

精细化工: 医药、农药、染料、涂料、日用化学品等

还有一些逐步形成了独立的工业部门,

如炼油、冶金、医药、造纸、建材、酿造、环保等。

化学工业,已经而且会在较长时期内,成为我国国民经济的重要支柱产业。

合成高分子材料虽只有100多年,

但,其发展速度远远快于金属和无机材料。

究其原因,是合成高分子的结构具有几乎无穷变化的可能性, 赋予材料性能的潜力远胜于其它物质。

一、什么是高分子?

熟悉而陌生

熟悉——高分子无处不在

- ➤ 生物体永不停息地合成着各种(天然)高分子 淀粉、纤维素、蛋白质、DNA和RNA、
- 人类生活依赖着各种高分子衣(棉、丝绸和合成纤维)食(淀粉和蛋白质)住(涂料和塑钢门窗) 行(鞋、车、机、船).....
- ▶ 人类社会毫无休止地使用着各种高分子 从各行各业、高新科技到手工业
- >

人类生命活动所依赖的(天然)高分子

- ▶食物: 淀粉类、蛋白类
- ▶机体的主要组成物质:蛋白质,构成肌肉、骨骼、

内脏、脑、血液等组织和器官

- ▶维持机体的生理活动:蛋白质(如酶、激素和抗体)
- ▶生命的延续和进化: DNA和RNA

人类生活中所使用的高分子材料

塑钢门窗 (PVC+钛白粉)

> Dulux家居装饰 (涂料)

聚氨酯鞋底 皮革鞋面

中国第一架自主知识产权 支线客机ARJ-21效果图

碳纤维复合机身 工程塑料构件

高科技中的高分子材料

B2 (隐形涂料)

塑料光纤(PMMA)

柔性显示器 (高分子基质)

集成电路(光刻胶)

一、什么是高分子?

熟悉而陌生

陌生——还不了解;新种类、新问题、新现象。

- ▶为什么蛋白质和DNA的合成是如此精确和准确?
- ▶如何实现高分子合成的可控性?
- ▶如何探求新的合成方法、寻找新原料?
- ▶如何赋予高分子材料特殊功能?
- ▶结构和性能关系?

二、高分子科学体系

高分子化学

聚合反应和高分子的化学反应

高分子物理

高分子结构、性质、表征

高分子科学

高分子工程/加工

聚合反应工艺; 高分子加工

与其它 学 科 的 交 叉 渗 透

三、高分子科学发展简史

第一个合成的高分子

- ✓第一个合成热固性塑料
- ✓第一个合成热塑性塑料
- ✓第一个合成橡胶
- ✓第一个合成纤维
- ✓第一个热塑性弹性体

√·····

自学、补充

产量最大的高分子

- ✓ 产量最大的热固性塑料
- ✓ 产量最大的塑料
- ✓ 产量最大的橡胶
- ✓ 产量最大的纤维
- **√**

三、高分子科学发展简史 (与高分子相关的诺贝尔奖)

Hermann Staudinger 施陶丁格 (1881—1965)

1953年Noble 化学奖得主

"for his discoveries in the field of macromolecular chemistry" (高分子科学的奠基人)

1920年首先提出"高分子具有长链结构"的观点,在此基础上逐步形成了高分子的概念。

三、高分子科学发展简史

Karl Ziegler (1903—1979)

Giulio Natta (1898—1973)

1963年Noble 化学奖得主

"for their discoveries in the field of the chemistry and technology of high polymers (Ziegler-Natta引发剂,配位聚合)"

三、高分子科学发展简史

Paul J. Flory (1910—1985)

1974年Noble 化学奖得主

"for his fundamental achievements, both theoretical and experimental, in the physical chemistry of the macromolecules (高分子物理化学)"

三、高分子科学发展简史

Paul Berg (1926—)

Walter Gilbert (1932—)

"DNA测序之父" 第四位两度获得诺贝尔奖 唯一获得两次化学奖的人

Frederick Sanger (1918—2013)

1980年Noble 化学奖得主

"for his fundamental studies of the biochemistry of nucleic acids, with particular regard to recombinant-DNA" (DNA遗传工程/重组体技术) "for their contributions concerning the determination of base sequences in nucleic acids" (共聚物的序列结构)

三、高分子科学发展简史

Robert Bruce Merrifield (1921—)

1984年Noble 化学奖得主

"for his development of methodology for chemical synthesis on a solid matrix (固相合成以高分子作为载体)"

三、高分子科学发展简史

Pierre-Gilles de Gennes (1932—2007)

1991年Noble 物理奖得主

"for discovering that methods developed for studying order phenomena in simple systems can be generalized to more complex forms of matter, in particular to liquid crystals and polymers"(液晶和高分子)"

三、高分子科学发展简史

Alan J. Hegger (1936—)

Alan G. MacDiarmid (1927—2007)

Hideki Shirokawa (1936—)

2000年Noble 化学奖得主

"for the discovery and development of conductive polymers" (导电高分子)

三、高分子科学发展简史

John B. Fenn (1917—2010)

Koichi Tanaka (1959—)

Kurt Wüthrich (1938—)

2002年Noble 化学奖得主

"for the development of methods for identification and structure analyses of biological macromolecules"; (生物大分子的结构与解析技术)

"for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules";

"for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution"

三、高分子科学发展简史

Yves Chauvin (1930—2015)

Robert H. Grubbs (1942—)

Richard R. Schrock (1945—)

2005年Noble 化学奖得主

"for the development of the metathesis method (烯烃复分解/开环易位聚合)in organic synthesis"

1.2 高分子的基本概念

Macromolecule (大分子):包括天然大分子、合成大分子

天然大分子

蛋白质

DNA、RNA

纤维素

淀粉

天然橡胶

.

合成大分子:人工合成的大分子

Macromolecular Compound(大分子化合物)

High Polymer (高聚物)

Polymer (聚合物)

Oligomer (低聚物、齐聚物)

高分子化合物、高分子、大分子

• • • • •

高分子化学 聚合物化学 (Polymer Chemistry)

研究聚合物合成与化学反应的一门科学。涉及到两大类反应:

·聚合物的合成反应(聚合反应,Polymerization)

小分子 —— 大分子

聚合物的化学反应(Polymer Reaction):聚合物的化学性质

- ◆反应的机理
- ◆反应的动力学
- ◆反应的影响因素
- ◆反应的实施方法

什么是高分子?

由原子或原子团(<u>结构单元</u>)以<u>共价键形式连结</u>而成的 大分子量同系混合物。

·结构单元 共价键连结 大分子量(通常>**10**⁴)

同系混合物(具有分子量的多分散性)

注: "分子量"一词国内有关标准规定称"相对分子质量"。但对于高分子,国际上绝大多数专业书刊都称Molecular Weight,且考虑到以后还将引入"平均分子量"、"分子量分布"等高分子专有的概念,故仍称"分子量"。

1.2 高分子的基本概念

一个大分子往往是由许多相同的、简单的重复结构单元连接而成。

例如:聚苯乙烯

缩写成

1) 单体(Monomer): 合成聚合物的起始原料

2) 重复结构单元 (Repeating Structure Unit):

大分子链上**化学组成和结构均可重复出现的最小基本单元**,可简称**重复单元**,又可称**链节(Chain Element)**。

重复单元的特点:

く以单体结构为基础 在聚合物链中重复出现

聚氯乙烯的重复单元

-CH₂CH-CI

尼龙-66的重复单元

NH(CH₂)₆NH•CO(CH₂)₄CO—

3) 结构单元(Structure Unit):

单体分子通过聚合反应进入大分子链的基本单元。结构单元的元素组成可以与单体的元素组成相同,也可以不同。

3) 结构单元(Structure Unit):

单体分子通过聚合反应进入大分子链的基本单元。

结构单元的元素组成可以与单体的元素组成相同,也可以不同。

例2: 聚合物由二种单体缩聚而生成。如:

$$H_2N(CH_2)_6NH_2 + HOOC(CH_2)_4COOH$$
 人 $H_-NH(CH_2)_6NH_-CO(CH_2)_4CO_-OH + (2n-1) H_2O$ 个 重复单元 — 结构单元 — 结构单元 — 结构单元

本例:

因两种单体参与聚合,故两种结构单元构成了一个重复结构单元。

重复单元 (链节) ≠ 结构单元

4) 单体单元(Monomer Unit):单体分子通过聚合反应形成的元素组成与单体完全相同的结构单元。

结构单元与单体的化学组成相同时,该结构单元可称为单体单元。如烯烃单体的结构单元。

4)单体单元(Monomer Unit):单体分子通过聚合反应形成的元素组成与单体完全相同的结构单元。

例:聚合物由二种单体缩聚而生成。如:

因聚合反应为官能团间的缩合反应,单体分子进入大分子后失去了一些元素,故结构单元不能称为单体单元。

5) 聚合度 (Degree of Polymerization):

聚合物分子量大小的一个指标, 在聚合物的分子结构式中以n表示。 也称为链节数。

$$H-\left\{-NH(CH_2)_6NH--CO(CH_2)_4CO-\right\}_nOH$$

5) 聚合度 (Degree of Polymerization)

聚合度有两种表示方法:

 $\{$ 以大分子链中的<mark>结构单元数</mark>目表示,记作 X_n 以大分子链中的重复单元数目表示,记作 \overline{DP}

因两种结构单元构成了一个重复结构单元,所以

$$\overline{X_n} = 2\overline{DP} = 2n$$

5) 聚合度 (Degree of Polymerization)

聚合物的分子量(Molecular Weight):

$$\overline{M} = \overline{DP} \cdot M_0 \neq \overline{X_{n1}} \cdot M_{10} + \overline{X_{n2}} M_{20} = \frac{\overline{X_n}}{2} \cdot (M_{10} + M_{20})$$

式中, M_0 =重复单元的"分子量", M_{10} 、 M_{20} 分别为两种结构单元的"分子量",且

$$M_0 = M_{10} + M_{20}$$

例:聚合物由一种单体聚合而生成,且重复结构单元的元素组成与单体的元素组成完全相同。如:

重复单元 (链节)=结构单元=单体单元

$$\overline{DP} = \overline{X_n} = n$$

$$\overline{M} = \overline{DP} \cdot M_0 = \overline{X_n} \cdot M_0$$

式中, M_0 为重复单元 (或结构单元) 的分子量,也就是单体的分子量。

例:聚合物由一种单体聚合而生成,但重复单元的元素组成与单体的元素组成不同。如:

$$n H_2N_{CH_2} + COOH_{CH_2} + n H_2O$$

重复单元(链节)=结构单元 ≠单体单元

$$\overline{DP} = \overline{X}_n = n$$

$$\overline{M} = \overline{DP} \cdot M_0 = \overline{X_n} \cdot M_0$$

式中, M_0 是重复单元(或结构单元)的"分子量",而不是单体的分子量。

例:聚合物由二种单体聚合而生成,但两种结构单元的元素组成分别与两种单体的元素组成相同。如:

该聚合物(称共聚物, Copolymer)由丁二烯和苯乙 烯两种单体共聚而成,存在着 两种与各自单体元素组成完全 相同的结构单元。 与之对应,由
一种单体聚合而成的
聚合物称均聚合物。
(Homopolymer)

例:聚合物由二种单体聚合而生成,但两种结构单元的元素组成分别与两种单体的元素组成相同。如:

$$\begin{array}{c|c} \hline \{ CH_2 - CH = CH - CH_2 - \frac{1}{\lambda} + CH_2 - \frac{1}{\zeta} + CH_2 - \frac{$$

式中x,y为任意值,故在分子链上结构单元的排列是任意的,即~M₁M₂M₁M₁M₂M₂M₂M₂~

这种由无规排列的结构单元组成的高分子,无法确定它 的重复单元,仅

结构单元=单体单元

$$\overline{M} = \overline{X_{n1}} \cdot M_{10} + \overline{X_{n2}} M_{20}$$

1.3 高分子化合物的分类和命名

A. 分类 (Classification)

1) 根据产品的性能和用途分

```
    塑料(Plastics)
    橡胶(Rubber)
    纤维(Fiber)
    涂料(Coating, Paint)
    胶粘剂(Adhesive)
    功能高分子(生物医用高分子、光电功能高分子、.....)
```

2) 根据高分子的主链结构分类

碳链聚合物

大分子主链完全由碳原子组成。绝大部分烯类、双烯类聚合物属于这一类,如: PE, PP, PS, PVC等。

杂链聚合物

大分子主链中除碳原子外,还有O、N、S等杂原子。如:聚酯、聚酰胺、聚氨酯、聚醚等。

元素有机聚合物

大分子主链中没有碳原子,主要由Si、B、Al、O、N、S、P等原子组成,侧基则由有机基团组成。如:硅橡胶等。

无机高分子

主链和侧链均无碳原子。如: 硅酸盐等。

碳链聚合物-1

教材, P3-5

聚合物	符号	重复单元	单体	玻璃化温度 Ţ _g /℃	熔点 T _m /°C
聚乙烯	PE	—СН₂— СН₂—	CH ₂ —CH ₂	-125	135(线型)
聚丙烯	PP	—CH₂— CH.— CH₃	CH ₂ =CH CH ₃	-10	170(全同)
聚异丁烯	PIB	CH₃ —CH₂—C— —CH₃	$ \begin{array}{c} $	-73	44
聚苯乙烯	PS	—CH₂—CH— C ₆ H₅	$CH_2 = CH$ C_6H_5	100	240(全同)
聚氯乙烯	PVC	—СН2—СН— С1	CH ₂ = CH C1	81	
聚偏二氯乙烯	PVDC	υ — —υ—υ —υ υ	0 –υ–0 H₂=	-17	198
聚氟乙烯	PVF	—СН ₂ — СН— F	CH ₂ —CH F	-20	200

碳链聚合物-2

聚合物	符号	重复单元单体		玻璃化温度 Ţ _g /℃	熔点 T _m /°C
聚四氟乙烯	PE	—CF ₂ — CF ₂ —	CF ₂ = CF ₂	-125	327
聚三氟氯乙烯	PCTFE	—CF ₂ —CF— CI	CF ₂ = CF CI	45	218
聚丙稀酸	PAA	—СН ₂ —СН <u>—</u> СООН	СН ₂ = СН СООН		
聚丙稀酰胺	PAM	—CH ₂ —CH— CONH ₂	$CH_2 = CH$ $CONH_2$		
聚丙烯酸甲酯	PMA	—СН₂—СН— СООСН₃	CH₂= CH COOCH₃	6	
聚甲基丙烯酸 甲酯	PMMA	CH ₃ —CH ₂ —C— —COOCH ₃	CH ₃ CH ₂ = C COOCH ₃	105	160(全同)
聚丙稀晴	PAN	—СН ₂ —СН— СN	CH ₂ == CH CN	104	317

碳链聚合物-3

聚合物	符号	重复单元	单体	玻璃化温度 Ţg/℃	熔点 T _m /℃
聚醋酸乙烯酯	PVAc	—CH ₂ —CH— COOCH ₃	CH₂= CH COOCH₃	28	
聚乙烯醇	PVA	—СН2—СН— ОН	(CH ₂ =CH) 假想 OH	85	258
聚乙烯基烷基醚		—СН ₂ —СН— OR	CH ₂ = CH OR	-25	86
聚丁二烯	PB	-CH ₂ -CH=CH ₂ -CH ₂ -	CH ₂ =CH-CH=CH ₂	-108	2
聚异戊二烯	PIP	—CH2—C== CH—CH2—	CH ₂ =C—CH=CH ₂ CH ₃	-73	
聚氯丁二烯	PCP	—CH ₂ —C— CH—CH ₂ — CI	CH2=C—CH—CH2 C1	105	160(全同)

类型	聚合物	重复单元	单体	玻璃化温度 ፲₃/°C	熔点 T_/°C
聚醚	聚甲醛	—O—CH ₂ —	HCHO或 (CH ₂ O ₃)	-85	195
o	聚环氧乙烷	—O—CH ₂ CH ₂ —	CH ₂ — CH ₂	-67	66
	聚双(氯甲基)丁氧环	CH ₂ C1 —O—CH ₂ —C—CH ₂ — CH ₂ C1	CH ₂ C1 C1—CH ₂ —C—CH ₂ CH ₂ —O		
	聚二甲基苯基醚氧	CH ₃ CH ₃	CH ₃ OH CH ₃	235	480
	环氧树脂	CH ₃ —0(C ₆ H ₄)—C—(C ₆ H ₄)OCH ₂ CHCH ₂ — CH ₃ OH	CH ₃ HO(C ₈ H ₄)—C—(C ₈ H ₄)OH CH ₃ H ₂ C—CHCH ₂ CI		

类型	聚合物	重复单元	单体	玻璃化温度 Ţ _g /°C	熔点 T_/°C
聚酯	涤纶	_осн ₂ сн ₂ о_сс	HOCH₂CH₂OH + HOOC COOH	69	258
-oco-	聚碳酸酯	o—(CH₃ CH₃	HOCOCI2	149	265
	不饱和聚酯	—OCH2CH2OCOCH == CHCO—	HOCH2CH2OH + CH=CH		
	醇酸树脂	—OCH2CHCH2O—CO CO—	CH ₂ OHCHOHCH ₂ OH + C ₆ H ₄ (CO) ₂ O		

类型	聚合物	重复单元	单体	玻璃化温 度 Ţ₂/°C	熔点 T_/ ℃
聚酰胺	尼龙-66	-NH(CH ₂) ₆ NH-CO(CH ₂) ₄ CO-	NH ₂ (CH ₂) ₆ NH ₂ + HOOC(CH ₂) ₄ COOH	49	228
—NНСО—	尼龙-6	−CH(CH ₂) ₅ CO−	NH(CH ₂) ₅ CO	49	228
聚胺酯 -NHOCO-		O(CH ₂) ₂ O—CNH(CH ₂) ₆ NHC— 0 0	HO(CH ₂) ₂ OH + OCN(CH ₂) ₆ NCO		
聚脲 -NHCONH-		—NH(CH ₂) ₆ NH—CNH(CH ₂) ₆ O	NH ₂ (CH ₂) ₆ NH ₂ + OCN(CH ₂) ₆ NCO		
聚砜 -SO ₂ -		——————————————————————————————————————	HO CH ₃ OH	195	
			C1 — C1		

类型	聚合物	重复单元	单体	玻璃化温 度 T₂/°C	熔点 T_/ °C
酚醛	酚醛树脂	он — сн	C ₆ H ₅ OH + HCHO		
脲醛	脲醛树脂	—NHCNH—CH₂— □ O	CO(NH ₂) ₂ + HCHO		
聚硫	聚硫橡胶	—CH ₂ CH ₂ -S-S— II II S S 杂链聚合物	C1CH ₂ CH ₂ C1 + Na ₂ S ₄	-50	205
有机硅 - O—Si— 	硅橡胶	CH ₃ —O—S _i — C _{H3} 元素有机化合物	CH ₃ C1—Si—C1 CH ₃	-123	

1) 习惯命名法: 以单体名称为基础命名

●均聚物: "聚 (Poly)"+单体名,如:

乙烯 —— 聚乙烯 Polyethylene,PE

甲基丙烯酸甲酯 ——聚甲基丙烯酸甲酯

Polymethyl Methacrylate, PMMA

也有以假想单体为基础命名, 如聚乙烯醇(Polyvinyl

Alcohol, PVA)

乙烯醇为假想的单体,聚乙烯醇实际上是聚乙酸乙烯酯(Polyvinyl Acetate)的水解产物。

1) 习惯命名法: 以单体名称为基础命名

●共聚物:取单体简名,在后面加"树脂"或"橡胶"。

合成树脂:

● 苯酚+甲醛 —— 酚醛树脂

● 甘油+邻苯二甲酸酐 —— 醇酸树脂

- 1) 习惯命名法: 以单体名称为基础命名
 - ●共聚物:取单体简名,在后面加"树脂"或"橡胶"。

合成橡胶:

丁二烯(Butadiene)+苯乙烯(Styrene) → 丁苯橡胶(SBR)

<u>丁</u>二烯(Butadiene)+ 丙烯<u>腈</u>(Acrylonitrile)→ 丁腈橡胶

乙烯 (Ethylene) +丙烯 (Propylene) → 乙丙橡胶 (EPR)

1) 习惯命名法:

●以高分子链的结构特征命名

- 1) 习惯命名法:
 - ●商品名(合成纤维最普遍,我国以"纶"作为后缀),如

涤纶 聚对苯二甲酸乙二醇酯(聚酯)纤维,PET

锦纶 聚酰胺纤维,常称尼龙(Nylon)

腈纶 聚丙烯腈或丙烯腈含量大于85%的丙烯腈共聚物"人造羊毛"

丙纶 聚丙烯 (PP) 纤维

维纶 聚乙烯醇缩甲醛纤维,也叫维尼纶,"合成棉花"

氯纶 聚氯乙烯纤维

氨纶 聚氨基甲酸酯纤维(PU)

合成纤维"六大纶"

尼龙[聚酰胺类]的品种很多,常以数字作后缀,以示区别。

✔第一个数字:二元胺的碳原子数,

✔第二个数字:二元酸的碳原子数,

✓只有一个数字:内酰胺或氨基酸的碳原子数。

◆尼龙-66

己二胺和己二酸合成的产物,

学名:聚己二酰己二胺。

◆尼龙-610

己二胺和癸二酸合成的产物,

学名: 聚癸二酰己二胺。

◆尼龙-6

己内酰胺或ω-氨基己酸的产物,

学名:聚己内酰胺。

英文缩写

ABS: 丙烯腈(Acrylonitrile)-丁二烯(Butadiene)

-苯乙烯(Styrene)共聚物

SBR: 丁苯橡胶 (Styrene-Butadiene Rubber)

EVA: 乙烯(Ethylene)-乙酸乙烯酯(VinylAcetate)的共聚物

常用聚合物的俗名及英文

名称	俗名	英文	名称	俗名	英文
聚乙烯	PE	Polyethylene	聚碳酸酯	PC	Polycarbonate
聚丙烯	PP	Polypropylene	聚丙烯酰胺	PAM	Polyacrylamide
聚异丁烯	PIB	Polyisobutylene	聚丙烯酸甲酯	PMA	Polymethyl acrylate
聚苯乙烯	PS	Polystyrene	聚甲基丙烯酯甲 酯	PMMA	Polymethylmetha crylate
聚氯乙烯	PVC	Polyvinyl Chloride	聚醋酸乙烯	PVAc	Polyvinyl Acetate
聚四氟乙烯	PTFE	Polytetra- fluoroethylene	聚乙烯醇	PVA	Polyvinyl Alcohol
聚丙烯酸	PAA	Polyacrylic Acid	聚丁二烯	PB	Polybutadiene
聚酯	PET	Polyester	聚丙烯腈	PAN	Polyacrylnitrile

- B. 命名(Nomenclature)
 - 2) 结构系统命名法:
- 由 (International Union of Pure and Applied Chemistry, IUPAC) 提出 命名程序:
 - ▶确定重复单元结构
 - ▶排出重复单元中次级单元的次序, 遵从两个原则:
 - a. 对乙烯基聚合物,先写有取代基的部分
 - b. 连接元素最少的次级单元写在前面 [当主链上有杂原子时,杂原子都排在碳原子之前]
 - ▶给重复单元命名,在前面加"聚"字

- ●先写有取代基的部分当主链上有杂原子时,杂原子都排在碳原子之前
- ●所连接的侧基元素最少的部分先写

系统命名 习惯命名 聚(1-亚丁烯基)

聚丁二烯

Poly(ethylene)

Poly(propylene)

$$\{ \circ - \bigcirc \}_n$$

「o→(○)」 聚苯醚 聚 (氧化-1, 4-亚苯基)

例

例

$$\left[\begin{array}{ccc} \left\{ \text{NHCO(CH}_2 \right\}_n & \mathbb{R} & \mathbb{R} & \mathbb{R} \\ \mathbb{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} & \mathbb{R} \end{array} \right]$$

- (NH(CH₂)₆NHCO(CH₂)₄CO)_n 尼龙-66 聚己二酰己二胺 聚(亚氨基六次甲基亚氨基己二酰) Poly(iminohexamethylene imino adipoyl) 例

$$\left\{ \text{OCH}_2\text{CH}_2\text{O} - \text{CO} - \left\{ \text{O} \right\} - \text{CO} \right\}_n$$

聚对-苯二甲酸乙二醇酯聚 (氧亚乙基氧对-苯二甲酰)

Poly(oxycarbonyloxy-1,4-phenylene-isopropylidene-1,4-phenylene)

1.4 聚合反应 (Polymerization)

单体 聚合反应 聚合物

按反应单体分:均聚、共聚

按反应类型分:线形、开环、环化、转移、异构化...

按单体、聚合物的组成和结构变化分:加聚、缩聚

按聚合机理或动力学分:连锁、逐步

1) 按单体和聚合物的组成和结构变化分 ------- 20世纪30年代Carothers提出

A. 加聚反应 (Addition Polymerization):

烯类单体因加成而聚合起来的反应。

加聚反应的生成物, 称加聚物(Addition Polymer)。

特点:

聚合物的结构单元与单体组成相同,分子量是单体分子量的整数倍聚合过程无副产物生成

- 1) 按单体和聚合物的组成和结构变化分
 - B. 缩聚反应 (Polycondensation):

单体经多次缩合而聚合起来的反应。

缩聚反应的主产物为缩聚物 (Condensation Polymer)。

特点:

官能团之间反应,缩聚物有特征结构官能团;

有低分子副产物生成;

缩聚物和单体分子量不成整数倍。

加聚和缩聚反应的比较

Addition Polymerization	Condensation Polymerization
烯类单体双键(Double Bond)	官能团(Functional Group)之
加成	间的缩合
形成以碳链为主的大分子,产物称加聚物	大多形成杂链聚合物,产物称 缩聚物
分子量是单体分子量的整数倍	分子量不再是单体的整数倍
加聚物结构单元组成与其单体相同,电子结构有所改变	有低分子产生,缩聚物的结构 单元比单体少若干原子

按单体和聚合物的组成和结构变化分类方法的难点:

一些聚合反应其元素组成变化似加聚,而产物结构却似缩聚物,如:

开环聚合(Ring Opening)

聚加成 (Polyaddition)

按单体和聚合物的组成和结构变化分类方法的难点:

选用水和酸为引发剂或用碱作催化剂时,反应特点及规律完全不同。

从组成和结构变化来看,上述反应应归属于加聚反应;但 从产物中官能团结构特征看,类似于缩聚反应。

按单体和聚合物的组成和结构变化分类方法的难点:

一些消去反应 (Elimination Reaction),如:

$$H_3C$$
 \longrightarrow CH_3 $\xrightarrow{600\sim1000^{\circ}C}$ \longrightarrow $\{CH_2\longrightarrow CH_2\}_n + nH_2\}$

有低分子副产物析出,类似于缩聚反应;但产物却与烯类单体加聚物类似。

2) 按聚合机理 (Mechanism) 或动力学 (Kinetics) 分
------ 20世纪50年代Flory提出

·A、连锁聚合(Chain Polymerization)

活性中心(active center)引发单体,迅速连锁增长

活性中心不同 { 自由基聚合 阳离子聚合 阴离子聚合

分子量 连锁聚合时间 分子量 逐步聚合时间

B、逐步聚合(Stepwise Polymerization)

无活性中心,单体官能团间相互反应而逐步增长

大部分缩聚属逐步机理,大多数烯类加聚属连锁机理

逐步聚合与连锁聚合的比较

Chain Polymerization	Stepwise Polymerization
需活性中心:自由基、阳离子或阴离子,有链引发、增长、 转移、终止等基元反应	官能团间反应,无特定的活性中心,无链引发、增长、终止等基元反应
单体一经引发,便迅速 <mark>连锁增长</mark> ,各步反应速率和活化能差别很大	反应逐步进行,每一步反应速 率和活化能大致相同
体系中只有单体和聚合物,无 分子量递增的中间产物	体系含单体和一系列分子量递 增的中间产物
转化率随着反应时间而增加, 分子量变化不大	分子量随着反应的进行缓慢增 加,而转化率在短期内很高

1.5 高分子化合物的基本特点

●特点一:分子量大(一般在一万以上)

聚合物作为材料许多优良性能都与分子量有关,如:

抗张强度 冲击强度 断裂伸长 可逆弹性

似乎存在着临界分子量:

- A点:初具强度的最低分子量,约以千计。
- A→B:强度随分子量增加而迅速增大。
- B→C: 强度随分子量增加而缓慢增加。
- C点以后:强度不再显著增加。
- 一般地,B点对应的分子量已使聚合物 具备实际使用价值。因此,将B点的分子量 称为<mark>临界分子量</mark>。

□ 常用聚合物的聚合度一般在200~2000 600 之间,对应的分子量在2万~20万之间。

聚合物机械强度—分子量关系

A点:最低聚合度,许多乙烯类聚合物在100以上。 B点:临界聚合度,许多乙烯类聚合物约为400以上。 一般,将机械物料性能 和成型加工性能综合考虑, 确定合成高分子的分子量。 -----< 1,000 <-----< 1,000,000 <-----低分子物 齐聚物 高聚物 超高分子量高分子 (Oligomer) (Polymer) (UHMWP)

实际上,分子量的大小并无明确的界限,一般

常用的聚合物的分子量(万)

塑料	分子量	纤维	分子量	橡胶	分子量
聚乙烯	6~30	涤纶	1.8~2.3	天然橡胶	20~40
聚氯乙烯	5~15	尼龙-66	1.2~1.8	丁苯橡胶	15~20
聚苯乙烯	10~30	维尼纶	6∼7.5	顺丁烯胶	25~30

1.5 高分子化合物的基本特点

●特点二:分子量具多分散性(Polydispersity)即,存在着分子量分布

聚合反应中,

因官能团之间成键的不确定性,或者聚合物活性链的寿命等不同,聚合产物的往往是化学元素相同,但分子量不同的同系聚合物的混合物。

注意:

高分子的分子量都是平均分子量 平均分子量的数值与测定和统计方法有关 聚合物的平均分子量相同,但分散性不一定相同

A. 平均分子量的表示方法

1)数均分子量(Number-average Molecular Weight)

一种按聚合物分子数目统计平均的分子量,即,高分子样品的总重量m 除以其分子的总数量n。

各级分(聚合度)的数量分数[分子分率]与其分子量乘积之和。

$$\overline{M}_{n} = \frac{m}{\sum n_{i}} = \frac{\sum n_{i} M_{i}}{\sum n_{i}} = \frac{\sum m_{i}}{\sum \binom{m_{i}}{M_{i}}} = \sum x_{i} M_{i}$$

$$x_{i} = \frac{n_{i}}{\sum n_{i}}$$

 M_1 , M_2 … M_i : i-聚体分子的分子量。

n_i: 相应分子的分子数。

 x_i : 相应分子所占的数量分数。

1) 数均分子量

测定方法:

利用物化中的依数性(与分子数有关的性质)所测得的分子量均为数均分子量。如:

端基分析、 沸点升高、 冰点下降、 蒸气压、 渗透压等。

2) 重均/质均分子量(Weight-average Molecular Weight)

一种按聚合物重量统计平均的分子量,

即 i-聚体的分子量乘以其重量分数的加和。

各级分的重量分数[质量分率]与其分子量乘积之和。

$$\overline{M}_{w} = \sum W_{i} M_{i} = \frac{\sum m_{i} M_{i}}{\sum m_{i}} = \frac{\sum n_{i} M_{i}^{2}}{\sum n_{i} M_{i}} \qquad W_{i} = \frac{n_{i} M_{i}}{m}$$

 M_1 , $M_2...M_i$: i-聚体分子的分子量。

m_i: 相应分子的重量/质量。

 W_{i} : 相应分子所占的重量/质量分数。

2) 重均/质均分子量

测定方法:

凡是利用与分子重量有关的性质测得的分子量是重均分子量。如,光散射法等。

3) Z 均分子量(Z-average molecular weight)

一种按照 \mathbf{Z} 值 ($\mathbf{Z}_i = \mathbf{W}_i \mathbf{M}_i$) 统计平均的分子量,即

$$\overline{M_i} = \frac{\sum Z_i M_i}{\sum Z_i} = \frac{\sum W_i M_i^2}{\sum W_i M_i} = \frac{\sum N_i M_i^3}{\sum N_i M_i^2}$$
 可通过超离心法测定

三种分子量可用通式表示:

$$\frac{1}{M} = \frac{\sum N_i M_i^q}{\sum N_i M_i^{q-1}} \qquad q = 1 \qquad \overline{M}_n \\
q = 2 \qquad \overline{M}_w \\
q = 3 \qquad \overline{M}_Z$$

$$q = 1 \qquad \overline{M}_{n}$$

$$q = 2 \qquad \overline{M}_{n}$$

$$q = 3 \qquad \overline{M}_{2}$$

4) 粘均分子量(Viscosity- average Molecular Weight)

对于一定的聚合物一溶剂体系, 其特性粘数[η]和分子量的关系(Mark-Houwink方程)为

$$[\eta] = K \overline{M}_{\eta}^{\alpha}$$

K, α 是与聚合物、溶剂有关的常数, 称M-H方程参数

$$\overline{M_{v}} = \left(\frac{\sum W_{i} M_{i}^{\alpha}}{\sum W_{i}}\right)^{1/\alpha} = \left(\frac{\sum N_{i} M_{i}^{1+\alpha}}{\sum N_{i} M_{i}}\right)^{1/\alpha} = \left(\frac{\sum m_{i} M_{i}^{\alpha}}{\sum m_{i}}\right)^{1/\alpha} = \left(\frac{\sum m_{i} M_{i}^{\alpha}}{\sum m_{i} M_{i}}\right)^{1/\alpha} = \left(\frac{\sum m_{i} M_{i}}{\sum m_{i}}\right)^{1/\alpha} =$$

粘度法测定最普遍

一般, α 值在 $0.5\sim0.9$ 之间,故 $M_{\nu}< M_{\nu}$

例:设一聚合物样品,其中分子量为10⁴的分子有10 mol,分子量为10⁵的分子有5 mol,求平均分子量。

解

$$\overline{M_n} = \frac{\sum NiMi}{\sum Ni} = \frac{10 \times 10^4 + 5 \times 10^5}{10 + 5} = 40000$$

$$\overline{M_w} = \frac{\sum NiMi^2}{\sum NiMi} = \frac{10 \times (10^4)^2 + 5 \times (10^5)^2}{10 \times 10^4 + 5 \times 10^5} = 85000$$

例:设一聚合物样品,其中分子量为10⁴的分子有10 mol,分子量为10⁵的分子有5 mol,求平均分子量。

解

$$\overline{M_z} = \frac{\sum N_i M_i^3}{\sum N_i M_i^2} = \frac{10 \times (10^4)^3 + 5 \times (10^5)^3}{10 \times (10^4)^2 + 5 \times (10^5)^2} \approx 98000$$

$$\overline{M_{v}} = \left(\frac{\sum W_{i}M_{i}^{\alpha}}{\sum W_{i}}\right)^{1/\alpha} = \left(\frac{\sum N_{i}M_{i}^{1+\alpha}}{\sum N_{i}M_{i}}\right)^{1/\alpha} = \left(\frac{10 \times (10^{4})^{0.6+1} + 5 \times (10^{5})^{0.6+1}}{10 \times 10^{4} + 5 \times 10^{5}}\right)^{1/\alpha} \approx 80000$$

例:在质量为100g、相对分子质量为 1×10^6 的试样中,分别加入质量为1g、分子量为 1×10^3 和质量为1g、分子量为 1×10^8 的组分,试分析两种情况下,体系的 M_n 和 M_w 的变化情况,由此可得出什么结论?

解:未加入组分之前,假设体系为均一体系,即分子量没有分散性, $M_n = M_w = 1 \times 10^6$

(1)
$$m_1=100g$$
, $M_1=1\times 10^6$; $m_2=1g$, $M_2=1\times 10^3$

$$\overline{Mn} = \frac{\sum m_i}{\sum n_i} = \frac{\sum m_i}{\sum m_i / M_i} = \frac{100 + 1}{\frac{100}{10^6} + \frac{1}{10^3}} = 9.18 \times 10^4$$

$$\overline{Mw} = \frac{\sum m_i M_i}{\sum n_i M_i} = \frac{\sum m_i M_i}{\sum m_i} = \frac{100 \times 10^6 + 1 \times 10^3}{100 + 1} = 0.99 \times 10^6 = 1 \times 10^6$$

(2)
$$m_1=100g$$
, $M_1=1\times 10^6$; $m_2=1g$, $M_2=1\times 10^8$

同上计算可得
$$\overline{Mn} = 1.01 \times 10^6$$
 $\overline{Mw} = 1.98 \times 10^6 = 2 \times 10^6$

结论: 低分子量部分对数均分子量影响大 高分子量部分对重均分子量影响大

小结

- $>M_z > M_w > M_v > M_n$, M_v 略低于M_w
- ▶M n 靠近聚合物中低分子量的部分,即低分子量部分对其影响较大
- ►M * 靠近聚合物中高分子量的部分,即高分子量部分对其影响较大
- ▶一般用*M* "来表征聚合物比 *M* " 更恰当,因为聚合物的性能如强度、熔体粘度更多地依赖于样品中较大的分子。

B. 分子量多分散性的表示方法

单独一种平均分子量不足以表征聚合物的性能,还需要了解分子量的多分散性程度。

1)以分子量分布指数(DI)表示

即重均分子量与数均分子量的比值, $DI = \overline{M_w} / \overline{M_u}$ 比值越大,分布越宽,分子量越不均一。

单分散性聚合物: DI=1, 即 $\overline{M_w}=\overline{M_n}$

常见聚合物: $DI = 2 \sim 50$

缩聚物的DI一般小于加聚物的DI

2) 以分子量分布曲线表示

将聚合物样品分成不同分子量的级分,测定其重量分率。以各级分的重量分率对其平均分子量作图,得到重量基分子量分布曲线。

高聚物的分子量分布曲线

常用凝胶渗透色谱仪(GPC)测定。 该方法的优点:

> 直观地判断分子量分布的宽窄; 由谱图计算各种平均分子量。

分子量分布是影响聚合物性能的因素之一

- ▶分子量过高部分使聚合物的强度增加,但加工成型时塑化困难。
- ▶低分子量部分使聚合物强度降低,但易于加工。

- ▶合成纤维: 分子量分布宜窄
- ▶塑料、橡胶:分子量分布可宽

1.5 高分子化合物的基本特点

●特点三:组成简单、结构有规

组成高分子的原子数目虽然成千上万,但所涉及的元素种类却十分有限,以C、H、O、N 四种非金属元素最为普遍,S、Cl、F、Si 等也存在于一些高分子中。

高分子的主链多由重复结构单元以共价键形式相连接

共价键: 非金属原子间通过共用电子对(电子云的重叠) 所形成的化学键。

根据两原子共用电子对的数目,共价健可分为:

单键: 共用1对电子,以"一"表示,如C-C、C-O等,如

$$H-NH(CH_2)6NH--CO(CH_2)4CO$$
--OH

双键: 共用2对电子,以"="表示,如C=C、C=O等

$$\frac{1}{\left\{ CH_{2}-CH=CH-CH_{2} + CH_{2}-CH_{2}-CH_{3} \right\}_{n}}$$

三键: 共用3对电子,以"≡"表示,在高分子几乎不存在

1.5 高分子化合物的基本特点

●特点四:分子形态呈多样性

绝大多数聚合物呈长链线型,因此有"分子链"之称。

Star 星型高分子

Branched 支链高分子

Dendrimer 树状高分子

Crosslinked Network 体型高分子

◆线型高分子(Linear Polymer):

其长链可能比较伸展,也可能卷曲成团,取决于链的柔顺 性和外部条件,一般为无规线团;

适当溶剂可溶解,加热可以熔融,即可溶可熔;

可由仅含2个官能团的单体(包括单烯类单体、环状单体)聚合而成。

HOOC COOH
$$CH_2$$
= CH CH_2 - CH_2 O HN(CH_2)5CO

◆支链高分子(Branched Polymer):

支链的长短和数量可不同;

适当溶剂可溶解,加热可以熔融,即可溶可熔。

有的是在线型高分子形成后人为地通过反应接枝上去的;

有的则是在聚合过程中自然形成的,如:

- 聚合过程中向聚合物的链转移
- ●与大分子单体共聚

◆体型高分子(Crosslinked Network Polymer):

整个高分子已键合成一个整体,已无单个大分子而言;

可以看成是线型或支链高分子以化学键交联而成;

交联程度浅的, 受热可软化, 适当溶剂可溶胀;

交联程度深的,既不溶解,又不熔融,即不溶不熔。

1.5 高分子化合物的基本特点

●特点五:具有显著的多层次结构

微观结构

•

高

分子

。的各层

次结

构

高次结构:发泡、填充、层压、......

高次混合结构:共混、嵌段、接枝、互穿网络、交联、.....

宏观结构

A. 微观结构

(结构单元的元素组成与排列,重复单元的连接方式与空间排列等)

1) 序列结构(重复单元的连接顺序)

具有取代基的乙烯基单体可能存在头一尾、头一头或尾一尾的连接。

设有取代基的碳原子为头 head, 无取代基的碳原子为尾 tail

聚氯乙烯分子中的头一头结构多达16%

A. 微观结构

2) 立体异构

原子在大分子中不同空间排列(构型,Configuration) 所产生的异构现象。

对映体异构(不对称碳原子上基团空间排列所引起的异构现象) 几何异构(主链上不饱和键所引起的异构现象,多为顺反异构)

对映体异构(又称手性异构):

$$+CH_2-CH_2$$

高分子链上有取代基的碳原子可以看成是不对称碳原子。

如果把主链拉成锯齿形长链,排在同一平面上,取代基在分子链中将有三种排列方式。

例: PP (Polypropylene)

等规(全同)立构PP: 结构规整、能结晶、熔点240℃,可用作纤维。

间规(间同)立构PP:

无规立构PP: 不规整、不能结晶、软化温度 80°C、是一种类似橡胶状的弹性物质、无实际 用途。

聚丙烯大分子的立体异构现象($R=CH_3$)

顺反异构:由双键引起的顺式(Z)和反式(E)的几何异构。

几何异构对聚合物的性能影响很大,如:

- ▶顺式聚丁二烯是性能很好的橡胶
- ▶反式聚丁二烯则是塑料

顺反异构:由双键引起的顺式(Z)和反式(E)的几何异构。

丁二烯

1,4加成和1,2加成,得到4种立体异构,分别为:顺式1,4;反式1,4;全同1,2;间同1,2聚丁二烯。

顺反异构

1,3-异戊二烯

构象(Conformation)(二次结构):

C一C单键内旋转所引起的异构现象

分子通过次价键力聚集在一起,形成了特定聚集态结构: 固态、液态和气态。

高分子分子量大,分子间的作用力也大,因此只有固体和液态。

固态聚合物:

结晶态 (Crystalline)

无定型态(Amorphous)

液态聚合物:

粘流态(Viscous State)

1) 结晶态:

高分子可以结晶,但不能达到100%,

即,结晶高分子多处于晶态和非晶态两相共存状态。

高分子结晶能力与内因(大分子结构规整性、分子柔性和分子间力) 和外因(取向、温度等)有关。

熔融温度或称熔点(Tm)是结晶高分子的热转变温度。由于高分子结晶存在缺陷,并有分子量分布等原因,结晶高分子的熔点通常有一范围。

◆液晶态: 兼有晶体和液体性质的过渡态

Spherulites

2) 无定型态(非晶态)

高分子可以是完全的非晶态, 非晶态高分子的分子链处于无规线团状态。 这种缠结、混杂的状态也可能存在着一定程度的有序性。

非晶态高分子没有熔点, 在比容-温度曲线上有一转折点, 此点对应的温度称为玻璃化转变温度, 用Tg表示。

非晶态高分子的温度-比容曲线

2) 无定型态(非晶态)

将一非态晶高聚物试样, 施一恒定外力,记录试样形变随温度的变化, 可得到温度形变曲线或热机械曲线。

Tg和Tf非晶态高分子的两个重要的特征温度。

非晶态高分子的温度-形变曲线

Tm和Tg分别是结晶态和无定型高分子的主要热转变温度。

塑料处于玻璃态或部份结晶状态,因此Tm或Tg是其使用的上限温度。

对于无定型塑料,一般要求Tg比室温大50~75℃。 对于结晶塑料,则可以Tg小于室温,但Tm必须大于室温。

橡胶处于高弹态,因此Tg为其使用的下限温度。

大部分合成纤维是结晶聚合物,其Tm往往比室温高150℃以上。