

数据技术嘉年华

// Data Technology Carnival

开源·融合·数智化 — 引领数据技术发展 释放数据要素价值

Cost-Intelligent Data Analytics in the Cloud

Huanchen Zhang

Traditional

Traditional

Traditional

Traditional

Traditional

Traditional

\$\$\$

\$\$\$

User Profit

П

User Profit Utility \$ Cost
$$\Pi = U(p) - C$$

User Profit Utility \$ Cost
$$\Pi = U(p) - C_{Fix, Large}$$
Traditional
$$C_{sunk} + C_{e}$$

User Profit Utility \$ Cost
$$\Pi = U(p) - C_{Fix, Large}$$
Traditional p t $C_{sunk} + C_e$

	User Profit		Utility	\$ Cost
			U(p)	 C Fix, Large
Traditional			pt	C _{sunk} + C _e
Cloud-Native			P	ΔC — Enabled by Elasticity

Resource Pool

Resource Pool

Provider-Observable Cost

[Multi-Tenancy Techniques]

Workload

Choose your cluster size

4 server A

8 server A

1 server B

2 server B

•

Workload

Choose your cluster size

4 server A

8 server A

1 server B

2 server B

•

> Fixed cluster size the entire workload

Workload

Choose your cluster size

1 server A

4 server A

8 server A

1 server B

2 server B

- > Fixed cluster size the entire workload
- → Users tend to over-provision

Workload

Choose your cluster size

2 server A

4 server A

8 server A

1 server B

2 server B

- → Fixed cluster size the entire workload
- → Users tend to over-provision

Resource Waste!

Workload

Choose your cluster size

4 server A

8 server A

1 server B

2 server B

•

DBA

\$\$\$

- Build Indexes
- Build Materialized Views
- Re-partition Data
- O Change Data Format
- Re-train a Learned Module

Cost Intelligence

The system's ability to **self-adapt** to stay at **Pareto-optimal** in the performance-cost trade-of under different workloads and user constraints.

Cost Intelligence

The system's ability to **self-adapt** to stay at **Pareto-optimal** in the performance-cost trade-of under different workloads and user constraints.

Cost Intelligence

The system's ability to self-adapt to stay at Pareto-optimal in the performance-cost trade-of under diferent workloads and user constraints.

Interface of a Cost-Intelligent System

Workload

Choose your cluster size

4 server A

8 server A

1 server B

2 server B

•

DBA

\$\$\$

- Build Indexes
- **O** Build Materialized Views
- Re-partition Data
- Change Data Format
- Re-train a Learned Module

Interface of a Cost-Intelligent System

Cost: \$2 -5 - \$0.1

DBA

\$\$\$

- Build Indexes
- Build Materialized Views
- Re-partition Data
- Change Data Format
- Re-train a Learned Module

Interface of a Cost-Intelligent System

- Build Indexes
- **O** Build Materialized Views
- Re-partition Data
- O Change Data Format
- Re-train a Learned Module

Base System Architecture

Workload

Workload **X** 100 min Config 1 Config 2 100 servers Same \$ Cost

Workload **X** 100 min Config 1 Config 2 100 servers

Same \$ Cost

100x performance boost!

Workload **X** 100 min Config 1

Config 2

100 servers

100x \$ Cost

Same performance

Build Indexes

Build Materialized Views

Re-partition Data

Change Data Format

Re-train a Learned Module

Under Fix Resources

Under Fix Resources

- → Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Under Fix Resources

Read Perf:

- → Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Under Fix Resources

- → Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Under Fix Resources

- Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Under Fix Resources

- Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Under Fix Resources

- Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Resource Contention

Read Perf:

With Elastic Resources

- → Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Read Perf:

Write Perf:

Read Cost:

Write Cost:

With Elastic Resources

- → Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Read Perf:

Write Perf:

Read Cost: X

Write Cost:

With Elastic Resources

- → Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Read Perf:

Write Perf: Same

Read Cost: X

Write Cost: Y1

With Elastic Resources

- → Speeds up a subset of queries
- → MV update slows down writes
- → MV takes extra space

Read Perf:

Write Perf: Same

Read Cost: X

Storage Cost: \(\bar{7}\) \(Z\)

With Elastic Resources

- Speeds up a subset of queries
- MV update slows down writes
- MV takes extra space

Read Perf:

Write Perf: Same

Read Cost: X

Write Cost:

$$x - y - z > 0$$

With Elastic Resources

- → Speeds up a subset of queries
- → MV update slows down writes
- MV takes extra space

Read Perf:

Write Perf: Same

Key Challenges:

Accurate Cost Estimation

Accurate Workload Estimation

Towards Cost Intelligence

Cost is as important as performance in cloud-native databases

谢谢观看

THANKS FOR WATCHING

中国DBA联盟 All China DBA Union