Vektorové násobenie vektorov

Vektorový súčin

<u>Definícia</u>: Vektorový súčin nenulových vektorov \vec{u} a \vec{v} je vektor $\vec{w} = \vec{u} \times \vec{v}$, ktorý má tieto vlastnosti :

- 1. \vec{w} je kolmý na vektory \vec{u} a \vec{v}
- 2. smer vektora \vec{w} je určený pravidlom pravej ruky
- 3. $|\vec{w}| = |\vec{u}| \cdot |\vec{v}| \cdot \sin \varphi$

Ak je aspoň jeden z vektorov \vec{u} a \vec{v} nulový, tak ich vektorovým súčinom je nulový vektor.

Pravidlo pravej ruky:

Pravú ruku položíme na rovinu s vektormi \vec{u} a \vec{v} tak, že prsty ukazujú poradie vektorov. Potom palec postavený kolmo k rovine určuje smer vektora \vec{w} .

<u>Vektorový súčin</u> 2 vektorov je <u>vektor</u>.

<u>Poznámka</u>: $\overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{b} \times \overrightarrow{a})$, t.j. sú to opačné vektory

<u>VETA</u>: Pre každé nenulové vektory \vec{a} a \vec{b} v priestore platí:

- 1. Ak sú vektory \vec{a} , \vec{b} lineárne závislé (rovnobežné), potom \vec{a} x $\vec{b} = \vec{0}$
- 2. Ak sú vektory \vec{a} , \vec{b} lineárne nezávislé (rôznobežné), potom \vec{a} x \vec{b} <> $\overset{\rightarrow}{0}$

<u>VETA</u>: V pravotočivej ortonormálnej sústave súradníc v priestore sú dané vektory $\vec{u}[u_1,u_2,u_3]$ a $\vec{v}[v_1,v_2,v_3]$. Potom súradnice vektora $\vec{w} = \vec{u} \times \vec{v}$ môžeme vypočítať podľa vzorca: $\vec{w} = (u_2.v_3 - u_3.v_2, u_3.v_1 - u_1.v_3, u_1.v_2 - u_2.v_1)$ (Nie je nutné ovládať spamäti!)

<u>Poznámka</u>: Ak potrebujeme určiť v priestore ľubovoľný vektor, ktorý je kolmý na dané vektory \mathbf{u} a \mathbf{v} , tak použijeme vektor $\mathbf{w} = \mathbf{u} \times \mathbf{v}$.

Použitie vektorového súčinu

<u>VETA (obsah trojuholníka) :</u> V priestore je daný trojuholník ABC. Nech **b** = AC a **c** = AB. Potom

$$S_{\triangle ABC} = \frac{1}{2} |b \times c|$$

Dôkaz : $S_{\Delta ABC} = \frac{1}{2}$.c. v_c , $v_c = b$.sin α , $b = |\mathbf{b}|$, $c = |\mathbf{c}|$ Po dosadení : $S_{\Delta ABC} = \frac{1}{2}$. $|\mathbf{b}|$. $|\mathbf{c}|$.sin $\alpha = \frac{1}{2}$. $|\mathbf{b}|$ x $\mathbf{c}|$ podľa definície vektorového súčinu

<u>Poznámka</u>: Z každej úlohy v rovine môžeme urobiť úlohu v priestore tak, že za tretiu súradnicu bodov (vektorov) dosadíme nulu.

<u>VETA (objem rovnobežnostena) :</u> Rovnobežnosten je štvorboký hranol, ktorého proti-ľahlé steny sú rovnobežné. Pre objem rovnobežnostena ABCDEFGH, v ktorom $\mathbf{u} = \mathbf{AB}$, $\mathbf{v} = \mathbf{AD}$ a $\mathbf{w} = \mathbf{AE}$ platí : $\mathbf{V} = |(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$

<u>Poznámka : Súčin (u x v).w</u> sa nazýva zmiešaný súčin vektorov.

Autor : Beata Hegerová, Gymnázium Nováky

Použitá literatúra:

Šedivý a kolektív : Matematika pre 3.ročník gymnázia