

Support Vector Regression

the mass of a bunch of mice...

The **red dots** represent mice are **not obese**...

...and the green dots represent mice are obese.

However, what if get a new observation here?

Because this observation has more mass than the threshold, we classify it as **obese**.

But that doesn't make sense, because it is much closer to the observations that are **not obese**.

Can we do better?

...and use the midpoint between them as the threshold.

The shortest distance between the observations and the threshold is called the **margin**.

SVM is used to solve regression and classification problems.

■ The objective of the support vector machine is to find a hyper plane in N dimensional space (N- the Number of features) that distinctly classifies the data

points.

- Support Vectors
- Hyperplane
- Marginal Distance
- Linear Separable
- Non Linear Separable

- First require to find hyper plane and also create two parallel line(one line pass from at least one positive point and other line pass from at least one negative points).
- Select the hyper plane having maximum marginal distance.

Consider we have data points that are linearly separable

Math intuition behind SVM

We select 3 support vectors to start with

$$S_1 = {2 \choose 1}$$

$$S_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$S_3 = {4 \choose 0}$$

 Here we will use vectors augmented with a 1 as a bias input, and for clarity we will differentiate these with an over-tilde

$$S_1 = \binom{2}{1}$$

$$S_2 = \binom{2}{-1}$$

$$S_3 = \binom{4}{0}$$

$$\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

Now we need to find 3 parameters α_1 , α_2 , and α_3 based on the following 3 linear equations:

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_1} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_1} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_1} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_2} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_2} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_2} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_3} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_3} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_3} = +1 \ (+ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_1} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_1} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_1} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_2} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_2} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_2} = -1 \ (-ve \ class)$$

$$\alpha_1 \widetilde{S_1} \cdot \widetilde{S_3} + \alpha_2 \widetilde{S_2} \cdot \widetilde{S_3} + \alpha_3 \widetilde{S_3} \cdot \widetilde{S_3} = +1 \ (+ve \ class)$$

Let's substitute the values for
$$\widetilde{S_1}$$
, $\widetilde{S_2}$ and $\widetilde{S_3}$ in the above equations. $\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ $\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ $\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = +1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = -1$$

$$\alpha_{1} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + \alpha_{3} \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = +1$$

After simplification we get:

$$6\alpha_1 + 4\alpha_2 + 9\alpha_3 = -1$$

$$4\alpha_1 + 6\alpha_2 + 9\alpha_3 = -1$$

$$9\alpha_1 + 9\alpha_2 + 17\alpha_3 = +1$$

After simplification we get:

$$6\alpha_1 + 4\alpha_2 + 9\alpha_3 = -1$$

$$4\alpha_1 + 6\alpha_2 + 9\alpha_3 = -1$$

$$9\alpha_1 + 9\alpha_2 + 17\alpha_3 = +1$$

 After applying any method for to solve system equation all values we get

$$\alpha_1 = \alpha_2 = -3.25$$
 and $\alpha_3 = 3.5$.

$$\alpha_1 = \alpha_2 = -3.25$$
 and $\alpha_3 = 3.5$.

$$\widetilde{S_1} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_2} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

$$\widetilde{S_3} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

■ The hyper plane that discriminates the positive class from the negative class is given by:

$$\widetilde{w} = \sum_{i} \alpha_{i} \widetilde{S}_{i}$$

Substituting the values we get:

$$\widetilde{w} = \alpha_1 \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$$

$$\widetilde{w} = (-3.25) \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + (-3.25) \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + (3.5) \cdot \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$$

$$\widetilde{w} = (-3.25) \cdot {2 \choose 1} + (-3.25) \cdot {2 \choose -1} + (3.5) \cdot {4 \choose 0} = {1 \choose 0}$$

- Our vectors are augmented with a bias.
- Hence we can equate the entry in \widetilde{W} as the hyper plane with an offset b.
- Therefore the separating hyper plane equation

$$y = wx + b$$
 with $w = {1 \choose 0}$ and offset $b = -3$.

Support Vector Machine- Example 1

```
% 3 support vector version
s1 = [0-11];
s2 = [011];
s3 = [201];
A = [sum(s1.*s1) sum(s2.*s1) sum(s3.*s1);
sum(s1.*s2) sum(s2.*s2) sum(s3.*s2);
                                              0
sum(s1.*s3) sum(s2.*s3) sum(s3.*s3) ]
Y = [-1 - 1 + 1]
X = Y/A
p = X(1)
q = X(2)
r = X(3)
W = [p*s1 + q*s2 + r*s3]
```

When you run you should get: $\widetilde{w} = [1 \ 0 \ -1]$. This is a vertical line passing through x1=1.

Support Vector Machine- Example 2

```
% 4 support vector version
s1 = [1111];
52 = [1-11];
s3 = [3-11];
54 = [310];
A = [sum(s1.*s1) sum(s2.*s1) sum(s3.*s1) sum(s4.*s1);
  sum(s1.*s2) sum(s2.*s2) sum(s3.*s2) sum(s4.*s1);
  sum(s1.*s3) sum(s2.*s3) sum(s3.*s3) sum(s4.*s3);
  sum(s1.*s4) sum(s2.*s4) sum(s3.*s4) sum(s4.*s4);]
Y = [-1 - 1 + 1 + 1]
X = Y/A
p = X(1)
q = X(2)
r = X(3)
s = X(4)
W = [p*s1 + q*s2 + r*s3 + s*s4]
```


When you run you should get: $\widetilde{w} = [1 \ 0 \ -2]$. This is a vertical line passing through x1=2.

Support Vector Machine- Example 3

```
% 5 support vector version
s1 = [101];
52 = [201];
53 = [301];
54 = [221];
55 = [321];
A = [sum(s1.*s1) sum(s2.*s1) sum(s3.*s1) sum(s4.*s1)
sum(s5.*s1);
 sum(s1.*s2) sum(s2.*s2) sum(s3.*s2) sum(s4.*s2) sum(s5.*s2);
 sum(s1.*s3) sum(s2.*s3) sum(s3.*s3) sum(s4.*s3) sum(s5.*s3);
                                                                     I
 sum(s1.*s4) sum(s2.*s4) sum(s3.*s4) sum(s4.*s4) sum(s5.*s4);
 sum(s1.*s5) sum(s2.*s5) sum(s3.*s5) sum(s4.*s5) sum(s5.*s5)]
                                                                     0 1
Y = [-1 - 1 - 1 + 1 + 1]
X = Y/A
p = X(1)
q = X(2)
r = X(3)
s = X(4)
t = X(5)
W = [p*s1 + q*s2 + r*s3 + s*s4 + t*s5]
```

When you run you should get: $\widetilde{w} = [0 \ 1 \ -1]$. This is a horizontal line passing through x2=1.

Support Vector Machine- Classification Example

Let's take the 5 support vector version

 $\widetilde{w} = [0 \ 1 \ -1]$. This is a horizontal line passing through x2=1.

Let's classify the point (x1,x2)=(4,2).

$$w. x = {0 \choose 1}. {4 \choose 2} = 2 > 1$$

Hence this point belongs to the red class

Let's classify the point (x1,x2)=(2,-2).

$$w. x = {0 \choose 1}. {2 \choose -2} = -2 < 1$$

Hence this point belongs to the blue class

We can do the same for any new point.

Support Vector Regression

- Fig show how SVM is used for Regression.
- Hyper plane plotted with equal distance with extreme end and its used to predict the values

Support Vector Regression

- For Non Linear Separable data SVM used various kernels.
- SVM Kernels convert 2D (low dimensional to High dimensional).