Stochastic Processes and Simple Decisions

Review

Guiding Question

What does "Markov" mean in "Markov Decision Process"?

• A stochastic process is a collection of R.V.s indexed by time.

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

$$x_0 = 0$$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

$$x_0=0 \hspace{1cm} x_{t+1}=x_t+v_t$$

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

Example: Positive, Uniform Random Walk

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

Bayes Net

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

Example: Positive, Uniform Random Walk

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.)

In a *stationary* stochastic process (all in this class), this relationship does not change with time

Bayes Net

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

Example: Positive, Uniform Random Walk

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

In a *stationary* stochastic process (all in this class), this relationship does not change with time

Bayes Net

- A stochastic process is a collection of R.V.s indexed by time.
- ullet $\{x_1,x_2,x_3,\ldots\}$ or $\{x_t\}_{t=1}^\infty$ or just $\{x_t\}$

Example: Positive, Uniform Random Walk

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

In a *stationary* stochastic process (all in this class), this relationship does not change with time

Bayes Net

Dynamic Bayes Net (DBN)

- A stochastic process is a collection of R.V.s indexed by time.
- $\{x_1, x_2, x_3, \ldots\}$ or $\{x_t\}_{t=1}^{\infty}$ or just $\{x_t\}$

Example: Positive, Uniform Random Walk

$$x_0 = 0$$
 $x_{t+1} = x_t + v_t$ Shorthand: $v_t \sim \mathcal{U}(\{0,1\})$ (i.i.d.) $x' = x + v$

$$x' = x + i$$

 $P(x' \mid x)$ $=\operatorname{SparseCat}([x,x+1],[0.5,0.5])$

In a *stationary* stochastic process (all in this class), this relationship does not change with time

Bayes Net

Dynamic Bayes Net (DBN)

Causal Stochastic Processes

In general, stochastic processes may have connections between any times in their Bayesian Network.

In a *causal* stochastic process, x_t may depend on any x_{τ} with $\tau < t$.

Simulating a Causal Stochastic Process

030-Stochastic-Processes.ipynb

• A stochastic process $\{s_t\}$ is *Markov* if

$$P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_0) = P(s_{t+1} \mid s_t) \ s_{t+1} oldsymbol{oldsymbol{s}} s_{t- au} \mid s_t \ \ orall au \in 1:t$$

• A stochastic process $\{s_t\}$ is *Markov* if

• s_t is called the "state" of the process

Positive Uniform Random Walk

Is Ex+3 Markov?

X++1 L X+- T | X+ V

all paths would

contain

Contain

Contain

(x) (x+1) -
All paths

d-sep

Is $\{x_t^3\}$ Markov?

Inconclusive given only Bayes Net Structure

(With reasonable pilots, No) $S_t = (x_t^2, x_t^2)$ Is $\{s_t^3\}$ Markov?

You

ullet A stochastic process $\{s_t\}$ is *Markov* if

$$P(s_{t+1} \mid s_t, s_{t-1}, \dots, s_0) = P(s_{t+1} \mid s_t) \ s_{t+1} \perp s_{t- au} \mid s_t \ \ orall au \in 1:t$$

ullet s_t is called the "state" of the process

Another example

Cannot conclude EXX3 is Markov based on structure

$$S_{t} = (x_{t}, x_{t+1})$$
 $S_{t+1} = (x_{t+1}, x_{t+2}) P(s_{t+1} | s_{t})$
Then $\{s_{t}, s_{t}\}$ is Markov $P(s' | s_{t})$

 2×13 is not Markov $2+=(\times+,\times+-1)$ 2+3 is Markov

tisions

{y+} is Markov

Outcomes $S_1 \dots S_n$ or A, B, C

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities

$$p_1 \dots p_n$$

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities $p_1 \dots p_n$

Lottery
$$[S_1:p_1;\ldots;S_n:5]$$

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities

 $p_1 \dots p_n$

Lottery

 $[S_1:p_1;\ldots;S_n:$

 $p_n]$

• Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities

 $p_1 \dots p_n$

Lottery

 $[S_1:p_1;\ldots;S_n:$

 $[p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities

$$p_1 \dots p_n$$

Lottery

$$[S_1:p_1;\ldots;S_n:$$

 $p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A \succeq C \succeq B$, then there exists a probability p such that $[A:p;B:1-p] \sim C$

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities

$$p_1 \dots p_n$$

Lottery

 $[S_1:p_1;\ldots;S_n:$

 $p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A\succeq C\succeq B$, then there exists a probability p such that $[A:p;B:1-p]\sim C$
- Independence: If $A \succ B$, then for any C and probability p, $[A:p;C:1-p] \succeq [B:p;C:1-p]$

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities

$$p_1 \dots p_n$$

Lottery

$$[S_1:p_1;\ldots;S_n:$$

 $p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A\succeq C\succeq B$, then there exists a probability p such that $[A:p;B:1-p]\sim C$
- Independence: If A > B, then for any C and probability p,

$$[A:p;C:1-p] \succeq [B:p;C:1-p]$$

von Neumann - Morgenstern Axioms

Outcomes $S_1 \dots S_n$ or A, B, C

Probabilities

$$p_1 \dots p_n$$

Lottery

$$[S_1:p_1;\ldots;S_n:$$

 $p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A \succeq C \succeq B$, then there exists a probability p such that $[A:p;B:1-p] \sim C$
- Independence: If $A \succ B$, then for any C and probability p, $[A:p;C:1-p] \succeq [B:p;C:1-p]$

von Neumann - Morgenstern Axioms

Outcomes $S_1 \dots S_n$ or A,B,C

Probabilities

$$p_1 \dots p_n$$

Lottery

$$[S_1:p_1;\ldots;S_n:$$

 $p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A \succeq C \succeq B$, then there exists a probability p such that $[A:p;B:1-p] \sim C$
- Independence: If $A \succ B$, then for any C and probability p, $[A:p;C:1-p] \succeq [B:p;C:1-p]$

von Neumann - Morgenstern Axioms

•
$$U(A) > U(B)$$
 iff $A > B$

Outcomes $S_1 \dots S_n$ or A,B,C

Probabilities

$$p_1 \dots p_n$$

Lottery

$$[S_1:p_1;\ldots;S_n:$$

 $[p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A \succeq C \succeq B$, then there exists a probability p such that $[A:p;B:1-p] \sim C$
- Independence: If $A \succ B$, then for any C and probability p, $[A:p;C:1-p] \succeq [B:p;C:1-p]$

von Neumann - Morgenstern Axioms

- U(A) > U(B) iff A > B
- U(A) = U(B) iff $A \sim B$

Outcomes $S_1 \dots S_n$ or A,B,C

Probabilities

$$p_1 \dots p_n$$

Lottery

$$[S_1:p_1;\ldots;S_n:$$

 $p_n]$

- Completeness: Exactly one holds: $A \succ B$, $B \succ A$, $A \sim B$
- Transitivity: If $A \succeq B$ and $B \succeq C$, then $A \succeq C$
- Continuity: If $A \succeq C \succeq B$, then there exists a probability p such that $[A:p;B:1-p] \sim C$
- Independence: If $A \succ B$, then for any C and probability p, $[A:p;C:1-p] \succeq [B:p;C:1-p]$

von Neumann - Morgenstern Axioms

- U(A) > U(B) iff A > B
- U(A) = U(B) iff $A \sim B$
- $ullet U([S_1:p_1;\ldots;S_n:p_n]) = \sum_{i=1}^n p_i \, U(S_i)$

Decision Networks

D= disease state T= treatment

a*=argmax E[U(5') | a,5]

Markov Decision Process

1. Finite time

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty} \mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight]$$

discount $\gamma \in [0,1)$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T} r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{aligned}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty}\gamma^{t}r_{t}
ight] \qquad egin{aligned} \mathsf{discount}\ \gamma\in[0,1) \ \mathsf{typically}\ 0.9,\,0.95,\,0.99 \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,0.95,0.99} \end{aligned}$$

$$\mathsf{if}\,\underline{r} \leq r_t \leq \bar{r}$$

then

$$rac{r}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$\mathrm{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{aligned} \mathsf{discount} \ \gamma \in [0,1) \ \mathsf{typically} \ \mathsf{0.9,} \ \mathsf{0.95,} \ \mathsf{0.99} \end{aligned}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

then

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

4. Terminal States

1. Finite time

$$\mathrm{E}\left[\sum_{t=0}^{T}r_{t}
ight]$$

2. Average reward

$$\lim_{n o\infty}\!\mathrm{E}\left[\sum_{t=0}^n r_t
ight]$$

3. Discounting

$$ext{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t
ight] \qquad egin{array}{l} ext{discount } \gamma \in [0,1) \ ext{typically 0.9, 0.95, 0.99} \end{array}$$

if
$$\underline{r} \leq r_t \leq ar{r}$$

4. Terminal States

Infinite time, but a terminal state (no reward, no leaving) is always reached with probability 1.

$$rac{ar{r}}{1-\gamma} \leq \sum_{t=0}^{\infty} \gamma^t r_t \leq rac{ar{r}}{1-\gamma}$$

Suppose you want to create a Markov process model that describes how many new COVID cases will start on a particular day. What information should be in the state of the model?

Suppose you want to create a Markov process model that describes how many new COVID cases will start on a particular day. **What information should be in the state of the model?**Assume:

Suppose you want to create a Markov process model that describes how many new COVID cases will start on a particular day. **What information should be in the state of the model?**Assume:

• The population mixes thoroughly (i.e. there are no geographic considerations).

Suppose you want to create a Markov process model that describes how many new COVID cases will start on a particular day. **What information should be in the state of the model?**Assume:

- The population mixes thoroughly (i.e. there are no geographic considerations).
- COVID patients may be contagious up to 14 days after they contract the disease.

Suppose you want to create a Markov process model that describes how many new COVID cases will start on a particular day. **What information should be in the state of the model?**Assume:

- The population mixes thoroughly (i.e. there are no geographic considerations).
- COVID patients may be contagious up to 14 days after they contract the disease.
- The number of people infected by each person on day d of their illness is roughly $\mathcal{N}(\mu_d, \sigma^2)$

$$P(n_{15} | n_0 ... n_{14}) = N(M_{14} n_0 + M_{13} n_1 ... | 14 \sigma^2)$$

Guiding Question

What does "Markov" mean in "Markov Decision Process"?