on convexity in complex networks

Lovro Šubelj University of Ljubljana Faculty of Computer and Information Science joint work with

Tilen Marc
University of Ljubljana
Institute of Mathematics,
Physics and Mechanics

definitions of convexity

convex/non-convex real functions, sets in \mathbb{R}^2 & subgraphs

 $\mathsf{disconnected} \supseteq \mathsf{connected} \supseteq \mathsf{induced} \supseteq \mathsf{isometric} \supseteq \mathsf{convex} \ \mathsf{subgraphs}$

connected subgraphs induced on simple undirected graph ightarrow

convexity in networks?

```
(sna) k-clubs/clans are convex k-cliques
(cd) community often defined as "convex" subgraph

— subset S is convex if it induces convex subgraph

— convex hull \mathcal{H}(S) is smallest convex subset including S
```

```
\mathsf{hull} \; \mathsf{number} = \mathsf{min} \big\{ |S| \colon \mathcal{H}(S) \; \mathsf{includes} \; \mathit{n} \; \mathsf{nodes} \big\} \; {\scriptstyle \mathsf{(Everett \& Seidman, 1985)}}
```

↑ hull number measures how **quickly** convex subsets can grow ↓ how **slowly** randomly grown convex subsets expand

expansion of convex subsets

grow subset S by one node & expand S to convex hull $\mathcal{H}(S)$

- $S = \{ \text{random node } i \}$
- until S contains n nodes:
 - 1. select $i \notin S$ by random edge
 - 2. expand $S = \mathcal{H}(S \cup \{i\})$

S quantifies (locally) **tree-like/clique-like** structure of graphs

convex expansion in graphs

s(t) =fraction of nodes in S after t expansion steps

s(t) = (t+1)/n in convex graphs & $s(t) \gg t/n$ in non-convex graphs

s(t) quantifies (locally) **tree-like/clique-like** structure of graphs

convex expansion in networks

s(t) = fraction of nodes in S after t expansion steps

s(t) = (t+1)/n in convex networks & $s(t) \gg t/n$ in non-convex netw.

s(t) quantifies (locally) tree-like/clique-like structure of networks

convex expansion in networks

convex infrastructure and collaboration & non-convex food web

random graphs fail to reproduce convexity in empirical networks

when/why sudden expansion?

(why) steps $t \approx \text{diameter } D(t) > \text{distance } \langle \ell \rangle$ (when)

random graphs **convex** for $< \mathcal{O}(\ln n)$ & **non-convex** for $> \mathcal{O}(\ln^2 n)$

when/why expansion settles?

(when) S extends to c-core (why) smallest convex subset includ. S

core-periphery networks have convex periphery & non-convex c-core

global measure c-convexity

$$X_c = 1 - \sum_{t=1}^{n-1} \sqrt[c]{\max(s(t) - s(t-1) - 1/n, 0)}$$
 $X_c \ge X_c^{\mathrm{RW}} \ge X_c^{\mathrm{ER}}$

X_c highlights tree-like/clique-like networks (cliques connected tree-like)

	X_1	X_1^{RW}	X_1^{ER}	$X_{1.1}$	$X_{1.1}^{\mathrm{RW}}$	$X_{1.1}^{\mathrm{ER}}$
Western US power grid	0.95	0.32	0.24	0.91	0.10	0.01
European highways	0.66	0.23	0.27	0.44	-0.02	0.06
Networks coauthorships	0.91	0.09	0.06	0.83	-0.05	-0.09
Oregon Internet map	0.68	0.36	0.06	0.53	0.20	-0.09
Caenorhabditis elegans	0.57	0.54	0.07	0.43	0.40	-0.13
US airports connections	0.43	0.24	0.00	0.30	0.16	-0.07
Scientometrics citations	0.24	0.16	0.02	0.04	0.00	-0.13
US election weblogs	0.17	0.12	0.00	0.06	0.04	-0.08
Little Rock food web	0.03	0.03	0.02	-0.06	-0.02	-0.02

 X_c measures **global** & **regional** (periphery) convexity in networks

local measure of convexity

$$L_c = 1 + \max\{ t \mid s(t) < (t+c+1)/n \}$$
 $L_1 \le L_1^{\mathrm{ER}} \approx \ln n / \ln \langle k \rangle$

L_c highlights locally tree-like/clique-like networks & random graphs

	L_t	L_t^{ER}	L_1	$L_1^{ m ER}$	$\ln n / \ln \langle k \rangle$
Western US power grid	14	9	6	9	8.66
European highways	16	7	7	7	7.54
Networks coauthorships	17	4	7	4	3.77
Oregon Internet map	3	4	3	4	4.40
Caenorhabditis elegans	2	5	2	5	5.79
US airports connections	2	3	2	3	2.38
Scientometrics citations	3	4	3	4	4.30
US election weblogs	2	2	2	2	2.15
Little Rock food web	2	2	2	2	1.59

 L_c measures **local** & **absolute** (tree/clique) convexity in networks

probability of convex subgraphs

 $P = \text{probability that random } G_{1-8} \text{ convex}$

$$P \leq P^{\rm ER}$$

P highlights locally tree-like/clique-like networks & random graphs

	Р	$P^{ m ER}$	$\ln n / \ln \langle k \rangle$	A O Ø
Western US power grid	77.0%	99.4%	8.66	YI
European highways	83.2%	97.6%	7.54	$\circ \diamond \circ \circ \circ$
Networks coauthorships	53.3%	71.3%	3.77	
Oregon Internet map	56.0%	86.4%	4.40	φ <u>φ</u> "
Caenorhabditis elegans	77.8%	97.6%	5.79	9 9 9 9
US airports connections	5.5%	12.9%	2.38	$G_3 \bigcirc G_4 \bigcirc G_5 \bigcirc$
Scientometrics citations	30.5%	89.2%	4.30	
US election weblogs	2.7%	6.0%	2.15	
Little Rock food web	2.2%	0.3%	1.59	G_6 G_7 G_8

P measures local (up to 4 nodes) convexity in networks

convexity in networks

c-core \neq k-cores & c-convexity \neq standard measures robustness, navigation, optimization, sampling, comparison etc.

arXiv:1608.03402v3

Tilen Marc University of Ljubljana tilen.marc@imfm.si http://www.imfm.si

Lovro Šubelj University of Ljubljana

lovro.subelj@fri.uni-lj.si http://lovro.lpt.fri.uni-lj.si