

Scaling Attributed Network Embedding to Massive Graphs

Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, Sourav S. Bhowmick

Outline

- Problem Definition
- Applications
- Existing Work & Challenges
- Node-Attribute & Attribute-Node Affinity
- Objective Function & Solution
- Parallel Implementations
- Experiments

Attributed Network

• **Input**: a graph G, where each node u has some attributes from a set R, e.g., a social network user has an attribute "gender"

• Each node-attribute pair (u,r) has a weight w(u,r) that indicates the strength of association

Attributed Network Embedding (ANE)

 Objective: Map each node to an embedding vector, which can then be used as input to downstream machine learning tasks

Applications

- Node classification
 - user tagging in social networks
 - fraud detection in financial networks
 - cancer biomarkers identification in biological networks

Applications

- Link Prediction
 - image/video recommendation in Pinterest [Ying KDD'18]
 - product recommendation in Alibaba [Cen KDD'19]

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. KDD'18. Cen et al. Representation Learning for Attributed Multiplex Heterogeneous Network. KDD'19.

Existing work

Matrix Factorization-based methods

Existing work

Neural networks-based methods

Limitations

- Existing ANE solutions
 - generate effective embeddings based on expensive learning techniques (e.g., auto-encoders). This makes them difficult to handle large graphs.
 - are more efficient but produce low-quality embeddings.

Basic idea & challenges

- Objective: Construct high-quality embeddings without significant computation cost
- Basic idea: formulate ANE as a new matrix factorization problem
- Challenges
 - Two types of affinity to capture: node-node & node-attribute
 - How to model these affinities?
 - How to compute & store these affinities? $(O(n^2)$ space, n=#nodes)
 - Two affinity matrices
 - Which one are we factorizing?
 - How to design the objective function?

Solution Overview: PANE

- Construct node-attribute affinity matrix F & attribute-node affinity matrix B
 - forward & backward random walk models
 - indirectly model node-node affinity via F & B
- Joint factorization of affinity matrices F & B
 - initialize embeddings via singular value decomposition
- Parallelize PANE for higher efficiency
 - parallel singular value decomposition

Two Types of Random Walks

Forward: node-to-attribute

Backward: attribute-to-node

Forward Random Walks

- Forward random walk from node u:
 - Start from u
 - At each step, stop with α probability
 - After stopping at a node v, pick an attribute r with probability $\propto w(v,r)$
- Intuition: it samples an attribute r from the vicinity of u
- $p_f(u,r)$ is the probability that a forward random walk from u samples r in the end

Node-Attribute Affinity

Our node-attribute affinity measure:

$$\mathbf{F}[u,r] = \log \left(\frac{|V| \cdot p_f(u,r)}{\sum_{v \in V} p_f(v,r)} + 1 \right)$$

- Understand $\mathbf{F}[u,r]$ using PMI (pointwise mutual information) in information theory:
 - PMI $\log(\frac{\Pr(r|v)}{\Pr(r)})$ measures the co-occurrence of elements and in a collection of elements S
 - all random walks as S, $\sum_{v \in V} p_f(v, r)$ as $\Pr(r)$ and $p_f(u, r)$ as $\Pr(r|v)$
 - $\mathbf{F}[u,r]$ measures how frequently u,r co-occur on all random walks to r
 - Word2vec is implicitly factorizing a PMI matrix to obtain word embeddings [Levy NeurIPS'14]

Computing F

- Node-attribute affinity
 - $\mathbf{F}[u,r] = \log\left(\frac{|V| \cdot p_f(u,r)}{\sum_{v \in V} p_f(v,r)} + 1\right)$
 - $p_f(u,r) = \alpha \sum_{i=0}^t (1-\alpha)^i \mathbf{P}^i \cdot \mathbf{R}_r[u,r]$
 - O(mdt) time using power method

$$\begin{array}{c|cccc} & r_1 & r_2 & r_3 \\ \hline v_1 & 1/2 & 1/2 & 0 \\ v_2 & 1/3 & 0 & 2/3 \\ v_3 & 1/3 & 1/3 & 1/3 \\ v_4 & 1 & 0 & 0 \\ \end{array}$$

Row-normalized attribute matrix R_r

Backward RW & Attribute-Node Affinity

- Backward random walk from attribute r
 - Randomly pick a node s with probability $\propto w(s, r)$
 - Start a random walk from s
 - At each step, stop with α probability
 - Let v be the stopping point of the walk
- Our attribute-to-node affinity measure:

$$\mathbf{B}[r, v] = \log \left(\frac{|R| \cdot p_b(r, v)}{\sum_{r' \in R} p_b(r', v)} + 1 \right)$$

- where R is the set of all attributes,
- $p_b(r, v)$ is the probability that a backward random walk from r samples v in the end

Why node-attribute & attribute-node affinities

 We can indirectly model node-node affinities with much less space using node-attribute + attribute-node affinities

- Intuition:
 - Consider a forward random walk from u to r & a backward random walk from r to v
 - They form an extended walk from u to v, in which we "teleport" through a virtual connection by r
 - Such random walks could be combined to model node-node affinity

Capturing node-node affinity

Our node-node affinity can be indirectly constructed via:

- Thus, we do not need an $n \times n$ node-node affinity matrix explicitly
 - space overhead: $O(n^2) \rightarrow O(nd), d \ll n$
 - d = #attributes, n = #nodes

Objective function

We construct

- two embedding matrices $\mathbf{X}_f, \mathbf{X}_b \in \mathbb{R}^{n \times k}$ for the nodes, and
- one embedding matrix $\mathbf{Y} \in \mathbb{R}^{d \times k}$ for attributes
- Optimization objective:
 - $\min_{\mathbf{X}_f, \mathbf{Y}, \mathbf{X}_b} \left\| \mathbf{F} \mathbf{X}_f \mathbf{Y}^{\mathsf{T}} \right\|_F^2 + \left\| \mathbf{B} \mathbf{X}_b \mathbf{Y}^{\mathsf{T}} \right\|_F^2$
 - $\mathbf{X}_f \cdot \mathbf{Y}^{\mathsf{T}} \approx \mathbf{F}$, to capture node-attribute affinity
 - $\mathbf{X}_b \mathbf{Y}^T \approx \mathbf{B}$, to capture attribute-node affinity

Solving the optimization objective

J(w,b)

Optimization objective:

• $\min_{\mathbf{X}_f, \mathbf{Y}, \mathbf{X}_b} \left\| \mathbf{F} - \mathbf{X}_f \mathbf{Y}^{\mathrm{T}} \right\|_F^2 + \left\| \mathbf{B} - \mathbf{Y} \cdot \mathbf{X}_b^{\mathrm{T}} \right\|_F^2$

- We can obtain X_f , X_b , and Y using gradient descent
 - a large number of iterations are required till convergence
 - jointly updating X_f , X_b and Y involves intensive computation
- Our idea for efficiency:
 - find a good initialization for X_f, X_b and
 Y based on singular value decomposition (SVD)

Initialize embeddings via SVD

 Initial solution for the first part via randomized SVD

$$\mathbf{F} \approx \mathbf{U} \cdot \mathbf{\Sigma} \cdot \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{X}_f \qquad \mathbf{Y}$$

- Initial solution for the second part
 - approximate singular vectors Y=V
 is semi-unitary, i.e., Y^TY = I
 - Intuitively, if we want $X_b Y^T = B$, $X_b = X_b Y^T Y = B \cdot Y$

Space & time complexities

- Time complexity:
 - O(mdt + ndkt)
 - t = #iterations of gradient descent
 (t = 5 in our experiments)
 - k =the embedding size
 - m = #edges
 - n = # nodes
 - *d* = #attributes
- Space complexity
 - 0(m + nd + nk)

Parallel implementation of PANE

- Parallel computation of F and B
 - Matrix multiplications can be easily parallelized
- Parallel gradient descent. In each iteration,
 - $\mathbf{X}_f[u] \ \forall u \in V \ \text{or} \ \mathbf{X}_b[v] \ \forall v \in V \ \text{can be updated}$ independently

- Y[r] for each attribute r can be updated independently
- Parallel SVD over F
 - The SVD over F ≠ direct SVD over each matrix blocks of F
 - How to perform SVD over F in parallel?

• Given $\mathbf{F} \in \mathbb{R}^{12 \times 8}$, we want $\mathbf{X}_f \in \mathbb{R}^{12 \times 3}$ and $\mathbf{Y} \in \mathbb{R}^{8 \times 3}$ s.t. $\mathbf{X}_f \cdot \mathbf{Y}^{\top} \approx \mathbf{F}$

• Given $\mathbf{F} \in \mathbb{R}^{12 \times 8}$, we want $\mathbf{X}_f \in \mathbb{R}^{12 \times 3}$ and $\mathbf{Y} \in \mathbb{R}^{8 \times 3}$ s.t. $\mathbf{X}_f \cdot \mathbf{Y}^{\mathsf{T}} \approx \mathbf{F}$

randomized SVD

• Given $\mathbf{F} \in \mathbb{R}^{12 \times 8}$, we want $\mathbf{X}_f \in \mathbb{R}^{12 \times 3}$ and $\mathbf{Y} \in \mathbb{R}^{8 \times 3}$ s.t. $\mathbf{X}_f \cdot \mathbf{Y}^{\mathsf{T}} \approx \mathbf{F}$

matrix multiplication

• Given $\mathbf{F} \in \mathbb{R}^{12 \times 8}$, we want $\mathbf{X}_f \in \mathbb{R}^{12 \times 3}$ and $\mathbf{Y} \in \mathbb{R}^{8 \times 3}$ s.t. $\mathbf{X}_f \cdot \mathbf{Y}^{\mathsf{T}} \approx \mathbf{F}$

Experiments: Datasets

Name	# of nodes	# of edges	# of distinct attributes	# of attributes per node	# of distinct labels
Cora	2.7k	5.4k	1.4k	18.2	7
Citeseer	3.3k	4.7k	3.7k	31.9	6
Facebook	4k	88.2k	1.3k	8.3	193
Pubmed	19.7k	44.3k	0.5k	50.2	3
Flickr	7.6k	479.5k	12.1k	24.0	9
Google+	107.6k	13.7M	15.9k	2793.7	468
TWeibo	2.3M	50.7M	1.7k	7.3	8
MAG	59.3M	978.2M	2.0k	7.3	100

 $[\]ensuremath{\texttt{©}}$ Copyright National University of Singapore. All Rights Reserved.

Experiments: Competitors

- PANE: Our solution for attributed graphs
- Default embedding dimensionality: k = 128
- CPU: Intel Xeon 2.2GHz
- 6 neural-based methods
 - STNE [KDD 2018]
 - ARGA [IJCAI 2018]
 - LQANR [IJCAI 2019]
 - CAN [WSDM 2019]
 - DGI [ICLR 2019]
 - GATNE [KDD 2019]

- 3 factorization-based methods
 - TADW [IJCAI 2015]
 - □ BANE [ICDM 2018]
 - NRP [VLDB 2020]
- 1 other method
 - PRRE [CIKM 2018]

Results: Node Classification

- Percentage of nodes used for training: 10% ~ 90%
- PANE vs. SOTA: improvements of 3.4%-17.2% in terms of F1 measure

Results: Link Prediction

Method	Area Under Curve (AUC)									
Method	Cora	Citeseer	Pubmed	Facebook	Flickr	Google+	TWeibo	MAG		
NRP	0.796	0.86	0.87	0.969	0.909	0.989	0.967	0.915		
GATNE	0.791	0.687	0.745	0.961	0.805	=	-	Ē		
TADW	0.829	0.895	0.904	0.752	0.573		E	=		
ARGA	0.64	0.637	0.623	0.71	0.676	= 3	-	-		
BANE	0.875	0.899	0.919	0.796	0.64	0.56	-	-		
PRRE	0.879	0.895	0.887	0.899	0.789	- :	-	=		
STNE	0.808	0.71	0.789	0.962	0.638		9	-		
CAN	0.663	0.734	0.734	0.714	0.5		-	-		
DGI	0.51	0.5	0.73	0.711	0.769	0.792	0.721	-		
LQANR	0.886	0.916	0.904	0.951	0.824	=:	-	-		
PANE (single thread)	0.933	0.932	0.985	0.982	0.929	0.987	0.976	0.96		
PANE (10 threads)	0.929	0.929	0.985	0.98	0.927	0.984	0.975	0.958		

Results: Efficiency

- Compared to the state of the art, PANE is orders of magnitude faster
- On the MAG dataset with 0.98 billion edges, PANE can terminate within 12 hours using 10 CPU cores (Intel Xeon 2.2GHz)

Effectiveness of SVD-based initializations

PANE-R: the algorithm that uses random initializations **PANE**: the algorithm that uses SVD-based initializations

Link prediction performance vs. running time when varying #iteration for the gradient descent from 1 to 20

THANK YOU

Random walks

Joint matrix factorization

Parallelization