

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

N74-15538

(Carysler CSCL 22B

UNITARY PLAN 0.030-SCALE Corp.) 956

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER HOUSTON, TEXAS

DATA MANagement services SPACE DIVISION

DMS-DR-203.: NASA CR-1:8,794

VOLUME 4 OF 18

RESULTS OF TESTS OA12 AND IA9 IN THE

AMES RESEARCH CENTER UNITARY PLAN WIND TUNNELS

ON AN 0.030-SCALE MODEL OF THE SPACE SHUTTLE

VEHICLE 2A TO DETERMINE AERODYNAMIC LOADS

By

R. H. Spangler Rockwell International

Prepared under NASA Contract Number NAS9-13247

By

Data Management Services
Chrysler Corporation Space Division
New Orleans, Louisiana 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas

WI'S TUNNEL TEST SPECIFICS:

Test Numbers:

ARC 11-707 (A)

ARC 97-707 (B)

ARC 87-707 (c)

NASA Series Numbers:

TA9A, D, C and OALZA, C

Test Date:

2 April - 17 May, 1973

FACILITY COORDINATOR:

C. R. Nysmith Ames Research Center Mail Stop N-229-5 Moffett Field, California 94035

(415) 965-5274 Phone:

PROJECT ENGINEERS:

R. H. Spangler, R. L. Gillins, E. Chee Rockwell International, Space Division 12214 Lakewood Boulevard Mail Code AC-07 Downey, California 90241

Phone: (213) 922-1432

J. J. Brownson, R. E. Fahey Ames Research Center Mail Stop 227-5 Moffett Field, California 94035

Phone: (415) 965-6262

DATA MANAGEMENT SERVICES:

This document has been prepared by:

D. A. Sarver, Terry Mulkey Liaison Operations

> D. E. Poucher, H. C. Zimmerle Data Operations

This document has been reviewed and is approved for release.

FOR N. D. Kemp

Data Management Services

Chrysler Corporation Space Division Assumes in responsibility for the data presented herein other than its display characteristics.

Of Poucho /Ho Emme

RECULTO OF TESTS OALS AND IAS IN THE

AMES RESEARCH CENTER UNITARY PLAN WIND TUNNELS

ON AN O.O3O-CCALE MODEL OF THE SPACE CHUTTLE

VEHICLE SA TO DETERMINE AERODYNAMIC LOADS

By

R. H. Spangler Rockwell International

ABSTRACT

Tests were conducted in the NASA/ARC Unitary Plan Wind Tunnels during April and May 1973, on an 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5.

The investigation included Tests IA9A, B and C on the integrated (launch) configuration and Tests OA12A and C on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected contil surfaces on aerodynamic loads were also investigated.

(THIS PAGE INTENTIONALLY LEFT BLANK)

TABLE OF CONTENTS

<u> 1</u>	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	Ð
INDEX OF DATA FIGURES	3
INTRODUCTION	19
NOMENCLATURE	22
CONFIGURATIONS INVESTIGATED	26
TEST FACILITIES DECERIPTION	<i>2</i> 9
DATA REDUCTION	30
TABLES	
I TEST CONDITIONS	31
II DATA SET COLLATIONS	38
III MODEL COMPONENT DIMENSIONAL DATA	44
IV PRESSURE ORIFICE LOCATIONS	
a. Orbiter Body	55
b. Orbiter Base, Body Flap Lower Surface, and Vertical Tail	56
c. Orbiter Wing	57
d. External Tank	58
e. Left SRM	59
FIGURES	
MODEL	60
DATA	66
APPENDIX - TABULATED SOURCE DATA	

INDEX OF MODEL FIGURES:

<u>Figure</u>	Title	$\underline{\text{Pose}}$
1.	Axis Systems.	60
2.	Model Sketches.	
	a. Orbiter, $O_{\widehat{\mathcal{C}},A}$	61
	b. SRM, S3, and External Tank, T9	62
	c. Integrated Vehicle	63
3•	Model Installation Photographs.	
	a. Integrated (Launch) Vehicle Mounted in the ARC 9 x 7 Ft. Tunnel	64
	b. Isolated Orbiter (Entry Configuration) Mounted in the ARC 8 x 7 Ft. Tunnel	65

INDEX OF DATA FIGURES

7. T.	TYPE OF PLOT	PAI to	PARAMETERS	ERS 8	6 ,	CONDITIONS VARYING	Piges
Test IA97.							
Longitudinal Distribution of	CP vs X/LB	1.5	Ą	0	0	PHI, MACH, ALPHA	1-24
Orbiter Fuselage Pressures		0.5	₫	0	0		25-54
		-1.2	A	0	0	-	55-78
		0.5	ထု	Œ	0	PHI, MACH, BETA	79-102
		0.5	7-	덛	0		103-126
		0.5	0	ഥ	0		127-156
		0.5	4	阳	0		157-180
		0.5	ω	闰	0		181-304
		0.5	0	ഥ	5-		205-216
	 	0.5	0	曰	-10		117-238
		0.5	0	闰	-15) -	839-240
Longitudinal Distribution of	CP vs X/LE	1.5	А	0	0	PHI, MACH, ALPHA	402-242
External Tank Pressures	-	0.5	4	0	0		265-29h
		-1.2	₽	0	0	>>	295-318

INDEX OF DATA FIGURES (CONTINUED)

TIME	TYPE OF PLOT	다 아	PARAMETTERS	TERS B	4	CONDITIONS VARYING	FEGES
Longitudinal Distribution of	CP VS X/LI	0.5	တု	된	0	PHI, MACH, BETA	329-342
TYPE TOTAL TOTAL PROPERTY OF THE PROPERTY OF T		0.5	7-	闰	0		343-366
		0.5	0	闰	0	- (1 -)	367-396
		0.5	7	臼	0		397-420
		0.5	∞	ſ	0	→	421-444
Longitudinal Distribution of	CP vs X/LS	1.5	A	0	0	PHI, MACH, ALPHA	097-544
	····	0.5	A	0	0		161-480
		-1.2	Ą	0	0	->-	1481-496
		0.5	ထု	₽	0	PHI, MACH, BETA	497-512
		0.5	7	터	0		513-528
		0.5	0	떠	0		529-548
		0.5	4	딾	0		549-564
-		0.5	ω	ম	0		565-580
Chordwise Distribution of	CP VS X/CW	1.5	Ą	0	0	T/BW, MACH, ALPHA	966-E86
Upper and Lower Surrace wing Pressures		0.5	Ą	0	0		597-516
•		-1.2	Ą	0	0	- 2-	C17-53.
<u> </u>		0.5	æ	色	٥	Y/BW, MACH, BETA	840-669

INDEX OF DATA FIGURES (CONTINUED)

NIS PAGES	масн, вета 349-564	165-565	CCT+28.	517-107	4сн, 4.грна 717-736	MACH, BETA 737-752	753-768	759-788	789-80t	053-508	യ ഷ - - - - - - - - - -	3 <u>29</u> -836	837-844	545-855	353-860	655-105	₹ 869-876
CONDITIONS	X/BW, M				Z/BV, MACH,	Z/BV, M											
بو بو	0	0	0	0	0	0	0	0	0	0	i,	1	1,	-10	-10	-10	-15
Parameters	田	闰	闰	Ħ	0	闰	된	ഥ	戶	띰	뙤	臼	된	闰	ы	Þ	臼
PARAM	7	0	7	ω	Ą	ထု	7-	0	4	ω	φ	0	Φ	φ	0	∞	φ
io 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
TYPE OF PLOT	CP VS X/CW				CP vs X/CV												→
TILI	Distribution	Upper and Lower Surface Wing Pressures			Chordwise Distribution of Left	and Right Surface Vertical Tail Pressures		•			,						-

INDEX OF DATA FIGURES (CONTINUED)

HILL	TYPE OF PLOT	£o	PARAMETERS	TERS	∂ R	CONDITIONS VARYING	PAGES
Chordwise Distribution of Left	CP vs X/CV	3.0	0	ഥ	-15	Z/BV, MACH, BETA	£32-113
and Hight Surface Vertical Tail Pressures	>-	0.5	ω	闰	-15	Z/BV, MACH, BETA	S85-89E
Orbiter Base Pressures	CP vs ALPHA	0.5	A	0	0	MACH, ALPHA	893-903
Orbiter Base Pressures	CP vs BETA	0.5	0	[2-1	0	MACH, BETA	903 - 912
Upper MPS Nozzle Pressures	CP vs ALPHA	0.5	щ	0	0	PHI, MACH, X/INP	913-917
Ugper MPS Wozzle Pressures	CP vs BETA	0.5	0	[±4	0	PHI, MACH, X LMP	318-9 22
OMS Nozzle Pressures	CP vs ALPHA	0.5	щ	0	0	PHI, MACH X/LNW	729-536
OMS Nozzle Pressures	CP vs BETA	0.5	0	<u> </u>	0	PHI, MACH X/LW	528-932
SRM Booster Base Pressures	CP vs ALPHA	0.5	æ	0	0	PHI, MACII, X/LS	755-556
SRM Booster Base Pressures	CP vs BETA	0.5	0	ĒΉ	0	PHI, MACH, X/LS	175 - BBG
External Tank Base Pressures	CP vs ALPHA	0.5	Д	0	0	PHI, MACH, X/LZ	とまるよ
External Tank Base Pressures	CP vs BETA	0.5	0	Ēτ	0	PHI, MACH, X/LT	SEC-350
Test IA9B							
Longicudinal Distribution of	CP vs X/LB	0.5	Ą	0	0	PHI, MACH, ALPHA	
Orbiter Fusetage Fressures	 !	0.5	8	ы	0	РНІ, МАСН, ВЕТА	(r)
-	-	0.5	4	٢٦	0	-	(1) (1) (1)

INDEX OF DATA FIGURES (CONTINUED)

TITLE PARAMETERS CONDITIONS PARAMETERS CONDITIONS PAGES								
of CP vs X/LB 0.5 0 I 0 FHI, MACH, BETA 0.5 -4 I 0 0.5 -8 I 0 0.5 0 E -15 0.5 0 E 15	ш	TYPE OF PLOT		RAME	TERS B	æ R	CONDITIONS VARYING	PAGES
of CP vs X/LM	itudinal Distribut 1 of	ΛS	0.5	0	Н	0	MACH,	37-45
CP VS X/LM 0.5 -8 I 0 CP VS X/LM 0.5 0 E -10 0.5 0 E -10 0.5 0 E 15 0.5 0	ter Fuselage Pressures 		0.5	7 -	Н	0	······································	79-61
CP VS X/LT			0.0	ထု	Н	0		51-15
CP vs X/LT		·	0.5	0	편	-15	-	75-84
CP vs X/LT			0 n ,	0	⊨	-10		85-96
CP VS X/LIP	*		0.5	0	E	15		97-108
0.5 8 I 0 PHI, MACH, BETA 0.5 4 I 0 0.5 -4 I 0 0.5 -4 I 0 0.5 -8 I 0 PHI, MACH, ALFEA 0.5 8 I 0 PHI, MACH, ALFEA 0.5 8 I 0 PHI, MACH, ALFEA 0.5 0 I 0 PHI, MACH, ALFEA 0.5 0 I 0 PHI, MACH, BETH	itudinal Distribution of	CP VS X/LT	0.5	Ą	0	o	PHI, MACH, ALPHA	021-601
CP vs X/LS O.5 -4 I O O.5 -8 I O PHI, MACH, ALFER O.5 8 I O PHI, MACH, ALFER O.5 8 I O PHI, MACH, ALFER O.5 0 I O PHI, MACH, BETH	rnal Tark Pressures		0.5	∞	Н	0	MACH,	251-121
CP vs X/LS			0.5	4	1-1	0		777-381
CP vs x/IS 0.5 A 0 0 PHI, MACH, ALFHA 0.5 B I 0 PHI, MACH, ALFHA 0.5 B I 0 PHI, MACH, ALFTA 0.5 B I 0 PHI, MACH, BETA 0.5 0 I 0 PHI, MACH, BETA			0.5	0	H	0		50000
CP vs X/IS 0.5 A 0 0 PHI, MACH, ALPHA 0.5 B I 0 PHI, MACH, ALPHA 0.5 B I 0 PHI, MACH, ALPHA 0.5 b I 0 PHI, MACH, BETH			0.5	7-	Н	0		257-168
CP vs X/LS 0.5 A 0 0 PHI, MACH, ALPHA 0.5 8 I 0 PHI, MACH, ALFTA 0.5 4 I 0 PHI, MACH, BETH 0.5 0 I 0 PHI, LACH, BETH		->	0.5	ထု	Н	0		109-180
0.5 8 I 0 PHI, MACH, ALFTA 0.5 4 I 0 PHI, MACH, BATH 0.5 0 I 0 PHI, LACH, BATH	ا جائناتاتاتاتاتاتاتاتاتاتاتاتاتاتاتاتاتاتا	CP VS X/LS	0.0	Ą	0	0		(1) (1) (1) (1) (1)
4 I O PHI, MACH, BETH O I O PHI, LACH, BETH	Booster Pressures		0.5	ω	Н	0	MACH,	
O I O PHI, TACH, BEER			0.5	#	Н	0		400 - 100 -
			0.5	0	Н	0		505-600

INDEX OF DATA FIGURES (CONTINUED)

TITLE	TYPE OF PLOT	io	PARAMETERS	TERS 8	å R	CONDITTIONS VARYING	PEGES
tion of	CP vs X/IS	0.5	7	Н	0	PHI, MACH, BETA	213-220
SRM Booster Pressures		0.5	ထု	н	0	РНІ, МАСН, ВЕТА	221-228
ਰ	CP vs X/CW	0.5	₫ "	0	0	Y/BW, MACH, ALPHA	. 229-236
Upper and Lower Surface Wing Pressures	·	0.5	₹ ∞	н	ဂ	Y/BW, MACH, BETA	257-244
		0.5	4	н	0		245-252
		0.5	0	⊢ ;	0		253-260
*********		0.5	7	н	0		392-193
-	 -	0.5	φ	н	0		<u> 269-276</u>
of	CP vs X/CV	0.5	¥	0	0	Z/BV, MACH, ALPHA	277-384
Left and Right Surface Vertical Tail Pressures	,	0.5	ω	н	0	Z/BV, MACH, BETH	38 5- 393
		0.5	- 7	н	0		υρε- ε δε
-		0.5	0	н	0		301-308
		0.5	7-	н	0	***************************************	505-805
······································		0.5	φ	н	0		755-LE
		0.5	φ	E)	-15		(A), (D)) (F), (F), (F)
-		0.5	0	<u>ы</u>	-15	-	048-888

INDEX OF DATA FIGURES (CONTINUED)

Tut	TYPE OF PLOT	10	PARAMETERS	LERS B	6 R	CONDITIONS VARYING	PAGES
Chordwise Distribution of	CP vs X/CV	0.5	ω	田	-15	Z/BV, MACH, BETA	341-348
Left and Right Surface Vertical Tail Pressures		0.5	φ	딸	-10		349-356
		0.5	0	Þ	-10		357-364
		0.5	ω	闰	-10		365-372
		0.5	φ	闼	15		373-380
		0.5	0	囶	15	<u> </u>	381-388
		0.5	α	딢	15	-	389-396
Orbiter Base Pressures	CP vs ALPHA	0.5	ф	0	0	MACH, ALPHA	397-400
Orbiter Base Pressures	CP vs BETA	0.5	0	ರ	0	MACH, BETA	401-104
Upper MPS Nozzle Pressures	CP vs ALPHA	0.5	щ	0	0	PHI, MACH, X/LMP	904-504
Upper MPS Nozzle Pressures	CP VS BETA	0.5	0	೮	0	PHI, MACH, X/LINP	407-TO4
OMS Nozzle Pressures	CP vs ALPHA	0.5	ф	0	0	PHI, MACH, X/LAW	409-410
OME Nozzle Pressures	CP VS BETA	0.5	0	ರ	0	PHI, MACH, X/LIW	411-415
SRM Booster Base Pressures	CP vs ALPHA	0.5	М	0	0	PHI, MACH, X/LS	414-817
SRM Booster Base Pressures	CP vs BETA	0.5	0	ರ	0	PHI, MACH, X/LS	415-416
External Tank Base Pressures	CP vs ALPHA	0.5	щ	0	0	PHI, MACH, X/LT	417-118
External Tank Rase Pressures	CP vs BETA	0.5	0	೮	0	PHI, MACH, X/LT	419-400

INDEX OF DATA FIGURES (CONTINUED)

TTTE	TYPE OF PLOT	1º	PARAMETERS	TERS	∂ R	CONDITIONS VARYING	PAGES
Test IA9C Longitudinal Distribution of Orbiter Fuselage Pressures	CP vs X/LB	0.5	Ą	0	0	PHI, MACH, ALPHA	421-438
		0.5	ထု	闰	0	PHI, MACH, BETA	439-456
. 	 	0.5	7	闰	0		427-124
		0.5	0	터	0		764-524
a and a decided		0.5	#	闰	0		493-510
<u></u>		0.5	œ	Ħ	0		511-528
		0.5	0	떰	-15		529-546
		0.5	0	困	-10		547-564
Longitudinal Distribution of	CP vs X/LT	0.5	Ą	0	0	PHI, MACH, ALPHA	565-582
External Tank Pressures		0.5	ထု	闰	0	PHI, MACH, BETA	583-600
		0.5	4-	터	0		601-618
		0.5	0	田	0		619-636
	·	0.5	†	덛	0	* * * * * * * * * * * * * * * * * * * *	637-654
	-	0.5	∞	E	0		655-672

INDEX OF DATA FIGURES (CONTINUED)

TITIE	TYPE OF PLOT	10 10	PARAMETERS	TERS B	€ R	CONDITIONS VARYING	PAGES
Longitudinal Distribution of	CP vs X/LS	0.5	A	0	c	PHI, MACH, ALPHA	673-684
SEM Booster Pressures		0.5	φ	되	0	PHI, MACH, BETA	969-589
<u>.</u>	***************************************	0.5	†	闰	0	-	801-169
		0,5	0	阳	0		709-720
		0.5	4	Ħ	0		721-732
		0.5	ω	Ħ	0	->-	733-744
	CP vs X/CW	0.5	Ą	0	0	Y/BW, MACH, ALPHA	745-756
Upper and Lower Surface Wing Pressures		0.5	φ	钶	0	Y/BW, MACH, BETA	757-767
		0.5	7	Ħ	0		768-780
	<u>-</u>	0.5	0	闰	0		781-792
		0.5	4	Ы	0		793-804
	-	0.5	ω	闰	0	-	805-816
Chordwise Distribution of	CP vs X/CV	0.5	Ą	0	0	Z/BV, MACH, ALPHA	817-828
Left and Right Surface Vertical Tail Pressures		0.5	φ	闰	0	Z/BV, MACH, BETA	829-840
		0.5	7	Ħ	0		841-852
		0.5	0	ഠ	0		853-864
***	-	0.5	#	ы	0	-	865-876

	INDEX OF DATA FIGURES (CONTINUED)	URES (CONTE	NUE	<u> </u>		
TITLE	TYPE OF PLOT	ਰ ਜ	PARAMETERS	FERS B	.	CONDITIONS VARYING	PAGES
Chordwise Distribution of	CP vs X/CV	0.5	æ	臼	0	Z/BV, MACH, BETA	877-888
Left and Right Surface Vertical Tail Pressures		0.5	φ-	Þ	-15		989-900
		0.5	0	Ħ	-15		901-912
		0.5	8	闰	-15		913-924
-1- (MAC-19)		0.5	φ	钶	-10		925-936
		0.5	0	闰	-10		937-948
	≯	0.5	ω	闰	-10		096-646
Orbiter Base Pressures	CP VS ALPHA	0.5	ф	0	0	MACH, ALPHA	996-196
Orbiter Base Pressures	CP vs BETA	0.5	0	Ħ	0	MACH, BETA	967-972
Upper MPS Nozzle Pressures	CP vs ALPHA	0.5	ф	0	0	PHI, MACH, X/LMP	973-975
Upper MPS Nozzle Pressures	CP vs BETA	0.5	0	Ħ	0	PHI, MACH, X/LNP	816-918
CMS Nozzle Pressures	CP vs ALPHA	0.5	щ	0	0	PHI, MACH,X/LNW	979-981
OMS Mozzle Pressures	CP vs BETA	0.5	0	Ħ	0	PHI, MACH, X/LINM	186-586
SRM Booster Base Pressures	CP vs ALPHA	0.5	щ	0	0	PHI, MACH, X/LS	985-987
SRM Booster Base Pressures	CP vs BETA	0.5	0	Ħ	0	PHI, MACH, X/LS	988-990
External Tank Base Pressures	s CP vs ALPHA	0.5	щ	0	၁	PHI, MACH, X/LT	991-993
External Tank Base Pressures	s CP vs BETA	0.5		Ħ		PHI, MACH, X/LT	966-166

INDEX OF DATA FIGURES (CONTINUED)

TILE	TYPE OF PLOI	8	8	PARAM ∂e	PARAMETERS de dr	ð BRF	CONDITIONS VARYING	PAGES
VOLIME 6								
Longitudinal Distribution of	CP vs X/LB	ບ	0	0	0	0	PHI, MACH, ALPHA	42−τ
Orbiter Fuselage Pressure		0	Ь	0	C	0	PHI, MACH, BETA	25-36
		10	م	0	0	0		37-48
		80	دا	0	0	0		09-64
	,	0	M	0	-10	0		61-78
***		0	M	0	-20	0		96-62
-		0	П	10	0	0		97-108
		0	X	-10	0	ဂ		951-601
		0	×	-20	0	0		127-144
	>	0	×	0	0	40		145-162
Chordwise Distribution of	CP vs X/CW	ບ	0	0	0	0	Y/BW, MACH, ALFHH	163-178
Upper and Lower Surface Wing Pressures		0	در	0	0	0	Y/BW, MACH, BETA	381-621
	, <u>, , , , , , , , , , , , , , , , , , </u>	10	۵	0	0	0		137-194
***************************************		20	b	0	0	0		195-202
->	-}- -	0	Н	10	0	0	-}-	203-210

INDEX OF DATA FIGURES (CONTINUED)

TITI).	TYPE OF PLOT	8	82	PARAN 6 e	PARAMETERS 6e 6R	øRF	CONDITIONS VARYING	PAGES
Chordwise Distribution of	CP vs X/CW	10	ы	10	0	0	Y/BW, MACH, BETA	211-218
Opper and Lower Surrace wing Pressures		20	н	10	0	0		219-226
		0	×	-10	0	0	-	227-238
		10	×	-10	0	0		239-250
		20	×	-10	0	0		251-262
		0	×	-50	0	0	 	263-274
		10	×	-20	0	0	- 5, 10 - 0 -	275-286
- *		80	×	-20	0	0	≯~	287-298
Chordwise Distribution of	CP vs X/CV	ບ	0	0	0	0	Z/BV, MACH, ALPHA	41€-66€
Vertical Tail Pressures	<u> </u>	0	دا	0	0	0	Z/BV, MACH, BETA	315-323
		10	م	0	0	0		323+330
		20	٦	0	0	0		331-338
Marie Carlo		0	×	0	-10	0		339-350
		10	×	0	-10	0	-	351-362
		50	×	0	-10	0		363-374
		0	×	0	-50	0	*	375-386

INDEX OF DATA FIGURES (CONTINUED)

TTTLE	TYPE OF PLOT	8	8	PARAN 6e	PARAMETERS 6e 6R	6RF	CONDITIONS VARYING	PAGES
Chordwise Distribution of	CP vs X/CV	10	×	0	-20	0	Z/EV, MACH, BETA.	387-398
Left and Right Surface Vertical Tail Pressures		20	×	0	-20	0		399-110
		0	×	0	0	70		411-422
		10	Ħ	0	0	70		423-434
	-	20	M	0	0	040	*	735-446
Orbiter Base Pressures	CP vs ALPHA	ບ	0	0	0	0	MACH, ALPHA	054-744
Orbiter Base Pressures	CP vs BETA	0	ы	0	0	O	MACH, BETA	457-154
Upper MPS Nozzle Pressures	CP vs ALPHA	ပ	0	0	0	0	PHI, MACH, X/LNP	455-456
Upper MPS Nozzle Pressures	CP vs BETA	0	b	0	0	0	PHI, MACH, X/LNF	457-458
OMS Nozzle Pressures	CP VS ALPHA	ပ	0	0	0	0	PHI, MACH, X/LANY	459-460
OMS Wozzle Pressures	CP vs BETA	0	دا	0	0	0	PHI, MACH, X/LANI	797-194
Test OA12C								
Longitudinal Distribution of	CP VS X/LB	Ð	0	0	0	04	PHI, MACH, ALPHA	453-480
Orbiter Fuselage Pressures 	····	0	M	0	-20	04	PHI, MACH, BETA	864-184
		10	×	0	-20	70	-	499-516
		20	×	0	-20	7,0	>	517-534

INDEX OF DATA FIGURES (CONTINUED)

TILL	TYPE OF PLOT	8	В	PARAMETERS	ETTERS OR	å RF	CONDITIONS VARYING	PAGES
Longitudinal Distribution of	CP vs X/LB	30	×	0	0	C4	PHI, MACH, BETA	535-552
Orbiter Fuselage Pressures 	· · · · · · · · · · · · · · · · · · ·	0	×	10	0	70	· · · · · · · · · · · · · · · · · · ·	553-570
		0	Ħ	-20	0	04		571-583
-		0	Ħ	-40	0	04	- }	909-685
	CP VS X/CW	А	0	0	0	7:0	Y/BW, MACH, ALPHA	607-618
Upper and Lower Surface Wing Pressures		0	×	0	-20	70	Y/BW, MACH, BETA	619-630
		10	×	0	-20	01		631-642
		50	Z	0	-20	70		643-654
		30	×	0	0	1 00		999-559
	· = 4, · . · · · ·	0	M	91	0	70		929-299
		10	×	10	0	70		679-690
		20	×	10	0	- 1	*****	€91-703
		0	Ħ	-20	0	7,0	•	417-607
		10	×	-20	0	04		715-726
		20	×	-20	0	70		727-738
-4 -		0	Ħ	04-	0	70	``	739-750

INDEX OF DATA FIGURES (CONTINUED)

TITLE	TYPE OF PLOT	8	8	PARAN de	PARAMETERS 6e ⁰ r	♣RF	CONDITIONS VARYING	PAGES
	CP vs X/CW	10	×	-70	0	70	Y/BW, MACH, BETA	751-762
Upper and Lower Surface Wing Pressures		30	×	04-	0	710	Y/BW, MACH, BETA	763-77h
Chordwise Distribution of	CP vs X/CV	А	0	0	0	70	Z/BV, MACH, ALPHA	775-786
Left and Right Surface Vertical Tail Pressures		0	×	0	-20	04	Z/BV, MACH, BETA	787-798
		70	×	0	-20	70		799-810
		20	×	0	-20	040		811-822
		30	×	0	0	04		458-513
>		30	×	0	-20	7,0	->-	835-846
Orbiter Base Pressures	CP vs ALPHA	А	0	0	0	710	MACH, ALPHA	347-850
Orbiter Base Pressures	CP vs BETA	0	Z	0	-20	0.4	MACH, BETA	
Upper MPS Nozzle Pressures	CP vs ALPHA	А	0	0	0	70	PHI, MACH, X/LMP	355-356
Upper MPS Mozzle Pressures	CP vs BETA	0	M	0	03-	7,0	PHI, MACH, X/LME	857-858
OMS Nozzle Pressures	CP vs ALPHA	А	0	0	O	7,0	PHI, MACH, X/LING	859-860
O.IS Hozzle Pressures	CP VS BETA	0	Ħ	0	02-	7,0	PHI, MACH, X/LIE	361-862

INDEX OF DATA FIGURES (CONCLUDED)

PARAMETER SCHEDULES:

<u>ALPHA</u>

- A) -4, 0, 4, 8 Degrees
- B) -8, -6, -4, -2, 0, 2, 4, 6, 8 Degrees
- c) -4, 0, 5, 10, 15, 20, 22.5 Degrees
- D) 0, 5, 10, 15, 20 Degrees

BETA

- E) -4, 0, 4, 8 or -4, 2, 4, 8 Degrees
- F) -8, -6, -4, -2, 0, 2, 4, 6, 8 Degrees
- G) -7, -5, 3, 5, 7, 9 Degrees
- H) -8, -6, -4, -2, 2, 4, 6, 8 Degrees
- I) -5, 5, 7, 9 or -6, 4, 6, 8 Degrees
- J) -10, -5, 5, 10 Degrees
- K) -8, -4, 0, 4, 8 Degrees
- L) -10, 0, 10 Degrees
- M) -6, -3, 0, 3, 6 Degrees

INTRODUCTION

The 0.030-meals Aero Loads Space Chuttle model was tested in the Unitary Plan Wind Tunnels at ARC starting April 2, and continuing through May 17, 1973 as follows:

IA9A	11-foot Transonic	April : to April 14, 1973
OA12A	11-foot Transonic	April 16 to April 79, 1973
IA9C	8x7-foot Supersonic	April 23 to May 1, 1973
OA12C	8x7-foot Supersonic	May 2 to May 8, 1973
IA9B	9x7-foot Supersonic	May 9 to May 17, 1973

The testing was conducted in all three legs of the Unitary Plan Wind Tunnels to obtain a Mach number range from 0.6 to 3.5. Aerodynamic loads data were obtained for the ascent and entry configurations. The effects of control surface deflections were also investigated.

This report consists of 3 volumes of force data and 15 volumes of pressure data for a total of 18 volumes arranged in the following manner:

VOLUME NO.	CONTENTS
1 3 4 5 6 7	IA9A force data IA9B and IA9C force data OA12A and OA12C force data IA9A plotted pressure data IA9B and IA9C plotted pressure data OA12A and OA12C plotted pressure data IA9A tabulated pressure data (a) orbiter fuselage (b) orbiter base
8	(c) upper MPS nozzle IA9A tabulated pressure data (a) OMS nozzle
9	(b) body flap (c) OMS pcd outside (d) lower wing surface IA9A tabulated pressure data (a) upper wing surface (b) left vertical tail surface (c) right vertical tail surface
10	(d) APU inlet (e) SRM booster base IA9A tabulated pressure data (a) SRM booster (b) external tank (c) external tank base

INTRODUCTION (CONTINUED)

11	IA9B ta	bulated pressure data
	(a)	orbiter fuselage
	\b\{b\}	orbiter base
	(c)	upper MPS nozzle
		OMS nozzle
	(e)	body flap OMS pod outside
	(g)	
12		bulated pressure data
	(a)	upper wing surface
	(b)	left vertical tail surface
	(c)	right vertical tail surface
	(a)	APU inlet
	(e)	SRM booster base SRM booster
	(f)	SRM booster
	(g)	external tank
		external tank base
13	IA9C ta	bulated pressure data
		orbiter fuselage
	(b)	orbiter base
	(c)	upper MPS nozzle
	(d)	OMS nozzle
	(e)	upper MPS nozzle OMS nozzle body flap
	(f)	OMS pod outside
14		bulated pressure data
	(a)	lower wing surface
	(b)	upper wing surface
	(c)	left vertical tail surface
	(d)	right vertical tail surface
1 5	IA9C ta	bulated pressure data
	(a)	APU inlet
	(p)	SRM booster base SRM booster external tank
	(c)	SRM booster
	(4)	CRUCITICE OCHIE
	(e)	
16	OAl2A t	abulated pressure data
	(a)	orbiter fuselage
	(b)	orbiter base
	\c\	upper MPS nozzle OMS nozzle
	(a)	OMS nozzle
	(6)	nogh trab
	(f)	OMS pod outside

INTRODUCTION (CONCLUDED)

17	OAl2A tabulated pressure data	
	(a) lower wing surface	
	(b) upper wing surface	
	(c) left vertical tail surfa	ec
	(d) right vertical teil muri	
	(e) APU inlet	
18	OAl2C tabulated pressure data	
	All components	

NOMENCLATURE General

SYMBOL	EADSAC CYMBOL	DEFINITION
a		speed of sound; m/sec, ft/sec
$c_{\mathbf{p}}$	CF	pressure coefficient: $(p_{ m q} - p_{ m m})/q$
М	MACH	Mach number; 9/a
Þ		pressure; N/m², psi
વ	((NSM) (PSF)	dynamic pressure: 1/CpV2, N/m2, psf
RN/L	RI./L	unit Reynolds number; per m, per ft
V		velocity; m/sec, ft/sec
α	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
ϕ	PHI	angle of roll, degrees
ρ		mess density; kg/m ³ , slugs/ft ³
	<u>F</u>	Reference & C.G. Definitions ,
Ab		base area; m^2 , ft^2
b	BREF	wing span or reference span; m, ft
c.g.		center of gravity
ℓ _{REF}	LREF	reference length or wing mean serodynamic chord; m, ft
s	CREF	wing area or reference area; m^2 , ft ²
	MRP	moment reference point
	XMRP	moment reference point on X exis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUBSCRI	PTS	
ს 1		base local
3		static conditions
t oo		total conditions free stream
*		

NOMENCLATURE (Continued)

Body-Axia System

SYMBOL	SADCAC SYMBOL	DEFINITION
c^{M}	CN	normal-force coefficient; normal force
$\mathbf{c}^{\mathbf{r}}$	CA	axial-force coefficient; axial force
c _Y	CY	side-force coefficient; side force
Cip	CAB	base-force coefficient; base force -Ab(pb - pp)/45
$c_{\mathtt{A}_{\mathbf{f}}}$	CAF	forebody axial force coefficient, ${\rm C}_{\mbox{\scriptsize A}}$ - ${\rm C}_{\mbox{\scriptsize A}_{\mbox{\scriptsize b}}}$
C _m	CLM	pitching-moment coefficient; pitching moment qS/REF
c_n	CYN	yawing-moment coefficient; Ynwing moment qSb
c l	CBL	rolling-moment coefficient; rolling moment
		Stability-Axic System
$c_{\mathtt{L}}$	CL	lift coefficient; lift qS
c^{D}	CD	drag coefficient: drag qS
c_{D_b}	CDB	base-drag coefficient; base drag
$c_{\mathtt{D}_{\mathbf{f}^{*}}}$	CDF	forebody dreg coefficient; C_D - C_{D_b}
$\mathbf{c}_{\mathbf{Y}}$	CY	side-force coefficient; side force
$c_{\mathbf{m}}$	CII4	pitching-moment coefficient; pitching moment ${}^{qS} \boldsymbol{\ell}_{REF}$
C ₁₎	CLN	youIng-nement coefficient; yowing moment
C.	CCIT	rolling-moment coefficient; rolling moment
L/1)	L/D	Lift-to-drug ratio; $c_{\rm L}/c_{\rm D}$
$L/D_{\mathbf{f}}$	I/DF	lift to Porebody drag ratio: $c_{\mathrm{L}}/c_{\mathrm{Dr}}$

NOMENCLATURE (CONTINUED)

ADDITIONS TO STANDARD LIST

SYMBOL	PLOT SYMBOL	DEFINITION
ø R	RUDUER	rudder, surface deflection angle, positive deflection, trailing edge to the left; degrees.
∂ e	FLEVON	elevon, surface deflection angle, positive deflection, trailing edge down; degrees.
$oldsymbol{\delta}_{ ext{RF}}$	RUDFIR	rudder flare, split rudder deflection angle, left split rudder trailing edge left and right split rudder trailing edge right, $\delta_{\rm RF} = (\delta_{\rm RL} + \delta_{\rm RR})/2$, positive deflection; degrees.
io	ORBINC	incidence angle between the orbiter and external tank, $i_0 = \alpha_t - \alpha_t$; degrees.
$oldsymbol{eta}_{'\!1}$	BETAL	angle of sideslip of external tank.
$oldsymbol{lpha}_{ m T}$	ALPHAT	angle of attack of external tank.
ℓ _B	LB	length of orbiter body; in.
$m{\ell}_{ ext{T}}$	LT	length of external tank; in.
l s	LS	length of SRM booster; in.
$\ell_{ m M4}$	INM	length of QMS nozzle, positive direction forward of exit plane; in.
$\ell_{ m NP}$	LNP	length of MPS nozzle, positive direction forward of exit plane; in.
b / 2	BW	wing semi-span; in.
$\mathfrak{b}_{\mathbf{v}}$	BV	vertical tail span; in.
x	x	distance from component nose; in.
у	Y	lateral distance from centerline; in.

NOMENCLATURE (CONCLUDED)

SYMBOL	PLOT SYMBOL	DEFINITION
Z	7.	vertical distance measured from W.L. 500 (vertical tail reference root chord); in.
C _W	CW	local wing chord; in.
$c_{\mathbf{v}}$	CV	local vertical tail chord; in.
x/ $\ell_{\rm B}$	x/lb	longitudinal position/orbiter body length.
×/ / T	x/lt	longitudinal position/external tank length.
x/ / 3	x/ls	longitudinal position/booster length.
x/ L NM	x/lm	longitudinal position/OMS nozzle length.
x/ℓ_{NP}	x/lnp	longitudinal position/MPS nozzle length.
x/c _w	X/CW	local chordwise position/local wing chord length.
x/c _v	x/cv	local chordwise position/local vertical tail chord length.
y/ b/2	$\mathbb{Z}\backslash\mathbb{B}\mathbb{A}$	local spanwise position/wing semi-span.
z/b _v	Z/BV	local spanwise position/vertical tail span.

CONFIGURATIONS INVESTIGATED

The 0.030-scale aero loads model was a replica of the Space Shuttle. Vehicle 2A. It consisted of four major components: the orbiter, the external oxygen and hydrogen tank (FT) and two solid rocket boosters (SRB).

On the ascent configuration, the orbiter was strut mounted from the ET on a Task Corporation MK XVI 2.5-inch diameter internal balance. The left SRB was strut mounted from the ET on a Task Corporation MK XXII 1.5-inch diameter internal balance. No attempt was made to simulate actual inter-attachments. The ET was sting mounted to the tunnel model support system on a Task Corporation 4.0-inch diameter internal balance. The right SRB was strut mounted symetrically to the left side, but did not contain a balance. The orbiter configuration, designated as O2A, consisted of B10C5D7W87V5R5M3F4.

The entry configuration consisted of the isolated orbiter, sting mounted to the tunnel model support system on a Task Corporation MK XXA 2.5-inch diameter internal balance. Midway through the OAL2C test, the MK XXA balance was damaged and was replaced by the MK XXB for the high angles of attack. The orbiter was provided with deflectable elevons by means of interchangeable brackets, deflectable rudder by means of a pin-indexed hinge, and interchangeable rudders to obtain different speed brake flare angles. The main propulsion system engines were removed during entry configuration testing to provide sting clearance. A cover plate was provided for the strut clearance hole.

The orbiter was instrumented with 374 pressure orifices on the left wing, left side of the fuselage, vertical tail, left OMS pod and engine, left and upper MPS engine and the base. The pressures were measured using eleven Scanivalve, Inc., S-type valve modules mounted internally (a five and a six gang unit). When tested in the entry configuration, the MPS pressures were not available for measurement.

The left side of the ET was instrumented with 136 pressure orifices. These pressures were measured by means of 7 Scanivalve, Inc., S-type valve modules configured as one unit of 6 modules and one single. These valves were mounted internally in the tank. The left SRB had one gang of six S-type modules to measure 102 pressures. The right SRB was not instrumented. The pressure transducers used in the valve modules were Statham PM 131 TC differential pressure transducers, with ranges of ±10 psid, ±12.5 psid and ±15 psid. Reference and calibration pressures were measured by the ARC micro manometers.

Some modifications were made to the model at the test site prior to

CONFIGURATIONS INVISITIGATED (CONTINUED)

testing. These were as follows:

- 1. The forward tip of the ET containing the retro rocket package (Reference NR Drawing VL72-000018) was replaced with a flush 0.90 inch radius nose (Model scale). The new nose had five pressure taps; one in the nose and four more aft of the nose on the vertical and horizontal axis on a 0.315 inch radius.
- ?. The ET balance cavity was enlarged by one inch on the diameter (from 5 inches to 6 inches) to provide clearance for cable routing and eliminate balance interference.
- 3. The clearances around both the orbiter and the SRB struts were opened to approximately 1/8 inch to prevent interference.
- 4. An alternate rudder hinge pin was provided to give a rudder deflection of +15 degrees.

Before and during the tests various model discrepancies developed or were discovered. These were generally minor and had only a negligible, if any, effect on the data. Significant discrepancies are noted below:

- Pressure orifices P171 and P173 on the OMS pod base were omitted.
- 2. During the test certain pressure taps developed leaks or became plugged. Data from these taps are questionable and should be used with caution. Difficulties in checking may have resulted in erroneous indications of leakage. Repairs were made to correct leaking or plugged pressure instrumentation, whenever possible, as the test progressed. The following list gives those taps that were indicated as bad on the various leak and response checks:

ARC Facility	Run Nos.	Orifice numbers with questionable pressure data
11'	2-4	70, 163, 427
	5-118	31, 100, 103, 163, 201, 407
	119-160	16, 98, 101, 107, 333, 427
*	161-170	16, 98, 101, 107, 333, 427 + 306, 307, 327, 328, 336, 337, 356, 357, 375

CONFIGURATIONS INVESTIGATED (CONCLUDED)

ARC Facility	Run Nos.	Orifice numbers with questionable pressure data
11' 	171-1 82	16, 47, 53, 75, 78, 98, 107, 201, 236, 237, 238, 307, 327, 365, 427
¥	183-189	Same as (171-182) + 7, 447, 525
	190-211	Same as (171-182)
8 ' x7 '	220-234	20, 21, 24, 74, 326, 327, 336, 424, 427, 752, 868, 871
	235 - 285	74, 326, 327, 336, 424, 427, 752, 868, 871
	286-300	74, 107, 115, 124, 129, 138, 326, 327, 336, 427
	301-305	74, 326, 327, 336, 427
Y	306-333	74, 326, 327, 427
9 'x 7'	340-396	5, 325, 326, 327, 424, 427, 526, 752, 868, 871

TEST FACILITIES DESCRIPTION

Ames 11 x 11-Ft. Transonic

The Ames 11 x 11-Foot Transonic Wind Tunnel is a variable density, closed return, continuous flow type. This tunnel has an adjustable nozzle (two flexible walls) and a slotted test section to permit transonic testing over a Mach number range continuously variable from 0.4 to 1.4.

Ames 8 x 7-Ft. Supersonic

The Ames 8×7 -Foot Supersonic Wind Tunnel is a closed-return, variable-density tunnel with a 8- by 7-foot rectangular test section. The nozzle has flexible side walls with fixed upper and lower surfaces. Mach number range is continuously variable from 7.45 to 3.5. Tunnel stagnation pressure can be varied from 0.3 to 2.0 atmospheres and Reynolds number per foot varies from 1.0×10^6 to 5.0×10^6 .

Ames 9 x 7-Ft. Supersonic

The Ames 9 x 7-Foot Supersonic Wind Tunnel is a variable density, continuous flow type with an adjustable nozzle to permit supersonic testing over a Mach number range continuously variable from 1.5 to 2.5. The nozzle is of the asymmetric, sliding-block type in which the variation of the test section Mach number is achieved by translating, in the streamwise direction, the fixed-contour block that forms the floor of the nozzle.

DATA REDUCTION

Standard procedures were utilized to reduce force and pressure date to coefficient form. The following dimensional constants were applied:

Reference Dimensions and Constants (Model Scale)

@Ref. = 0.401 ft ²	Orbiter reference area
$\rho_{\text{vor.}} = 39.849 \text{ in.}$	Orbiter reference length
Pasc Areas (Model Scale)	
^A BOI = 0.1903 Ft ²	Orbiter base area, invegrated
$A_{BOA} = 0.2360$	Orbiter base area, sting mounted
$f_{\text{EMPSU}} = 0.0417$	Orbiter upper MPS base area
$\Lambda_{\text{EMPGL}} = 0.0853$	Orbiter lower MPS base area
A _{BACPS} = 0.0310	Orbiter ACPS base area on OMS pod
$A_{BOMS} = 0.0231$	Orbiter OMS nozzle base area
$A_{BPOD} = 0.0257$	Orbiter OMS pod base area
$A_{CO} = 0.0611$	Orbiter sting cavity base area
$A_{\rm BNOZ} = 0.0564$	SRM nozzle base area
$A_{BSKIRT} = 0.1729$	SRM nozzle skirt base area
A _{BETT} = 0.3189	ET Base area
A _{CET} = 0.1964	ET Sting cavity base area

TEST : OAI2 / FA9

TABLE I.

DATE: May, 1973

TEST CONDITIONS

MACH NUMBER	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq. 100t)	STAGNATION TEMPERATURE , (degrees Fahrenheit)
0,6	4.0 X 14.6	540	120° NOM.
0,9	4.5	800	
1.1	4.0	800	
1.25	3.0	630	
1.4	3.0	650	
1,55	2,8	600	
2.0	2.3	490	
2.5	1.5	300	
3.0	7.0	3.50	<u> </u>
3,5	2.0	3 00	
			

FIVE (5) TASK CORPORATION BALANCES

BALANCE UTILIZED: WITH CAPACITIES AS FOLLOWS:

ISULATED ORBITER MKTTA MKX 3000 3000 NF 3000 3000 NA 1500 1500 YF 1500 1500 YA X 600 600 4000 4000 2.5" .2.5" 5/2E

ENTECRA ORB MK 100	TED VE SLB MKJS	HICLE ET MKIIB
2400	1250	4000
2400	1250	4000
1200	500	2000
12.00	500	2000
1500	wo	1000
4000	1000	10,000
2.5"	1.5"	4.0"

COMMENTS: THE MARK IXA, 2.4N DIA. BALANCE WAS

DAMAGED AFTER RUN 319. THE MARK IXB WAS

SUBSTITUTED FOR RUN 320 AND SUBSEQUENT RUNS

T: ETT

	П	I							TE:	ST R	UNI	NUM	BER!	5								5 76	1	>) ,	
		المقتلة																				67	1	[5] ## [6]	
C		PENDENT				·	-	:	-		i 								:	· - !		61	4	IDVAR (1)	
. BE 4.0		BCM BIENMB	4.4		\$	• 				64								. 7	+			5.5	444444	1,0,4,8	
	4RY	OR ALT	1.25	7	800	is	40	11/2	42	43	4	45	46	47	201	111	103	3	104	113	105		4	4-0-	
	SUMMA	-		Ø	707	23	30	31	32	B	34	35	%	57	16	138	8	111	66	116	100	49	1	Bc =	
	COLLATION SUMMARY	NACH 11, WRERS	6.0	5	18	2	20	21	22	23	<u>K</u> 2	25	28	27								43	44.4	~	
	COLL	N. A	9.0	es	Ø	6	10	"	21	61	14	12	9	11									1	_s	
	MBER	NO.		1	u)	4	7		->	ريا	+	7			2	7						37	1	COEFFICENTS	
	RUN NUMBER	VALUE	Se Sa SFR 60		- 0.5	}						-											1		8
	SET R	TERS/	SR SFR	0 0	1										-5)_						31	=======================================	. 4.6	4.6
	DATA S	ARAME	Se 8		<u>}</u>		<u> </u>					-	-	-	<u> </u>	-					-	25	4	0,2	2'0'
	Δ	SCHD. P	8	0	Ö	8	7-		2				+	8	v	7-		(2)	0	2	1	2	4	-2,	7-5
ŀ			8	A	7	8-	9	4-4	2	0	~	4	9		8-	9-	4.	5		7	4	19	1	6,-4,	64
	707 : 1		ZOTENTO ZOTENTO	+ 4																	Ą		A a a a a	a.A. = -8,-6	8 = -8,-6
	11 - 70		CONFIGURATION	Ø2 + Sa	11																	13	4111	8	
	ARC		E E	1	1	60	9	n C	1 80	0.0	8	3 8	5	! =	. 2	1 0	7	N	20	1	3	7	1111	a	
	EST:	6 1 6	IDENTIFIER	O X X El)-				-	-	-	-	 	-	-		-	-	-	-	-				γ̈́
I	上	1_	=		1	<u></u>	<u> </u>	1		1	<u></u>	1	32		1		<u> </u>	<u></u>	<u></u>		1	<u> </u>		<u> </u>	

TABLE II. CONTINUED

П								ΤE	57 F	งบห	мии	BER	S			******					3 76	≥ 20 × 2	
	VARIABLE																				67	DVAR (2)	
	OR ALTERNATE INDEPENDENT VAR			:	-																10	ICVAR (1)	
	LTERNATE	2								- 											55		
יייייייייייייייייייייייייייייייייייייי		1 1.25						63 72	1 73		6 75										49	1	
IA SE IZNOM NOMBEN COLEATION SOMMANI	MACH NUMBERS	.1 6.0	115	101	0	9	95	9	7	8	Ø	9	88	76	7	Ö	80	82	83	84		4444	ļ
2000		0.6																			43	4	İ
	ES NO.	Lo RUNS	5 2	<u>}</u>																	37	OFFERDENTS	
	RAMETERS/VALUES	SFR 6	0 0.5	7																	31	1	2
1	PARAMETE	Se SR	0 -5	下 -5	01-	5							>	-15	<u>}</u>								
2	SCHD. P	αβ	2 g	8 1	-8	9-	-4	-2	0	2	1	9	8	-8	9-	-4	-2	0	2	4	25	1	
		N.C			•		•				:			•	•		,				19	4	
		CONFIGURATION	Sa + T+	(_																	13	1	
		200	Ozat :																			1	87 1
	TA SET	IDENTIFIER	PBMX 19	20	21	22	23	24	25	26	27	28	82	8	31	32	33	×	35	38	7	1	8 HO 8
	å	1061	rg C)																		1_	

TABLE II. CONTINUED

	П							TER	7 ₹	un ı	ıun	ВŒ	RG						:	_	-	1	75.76	}			
					<u>,</u>														 	-				4	r l		
	3) 4 4				,	,		!				!	į				! I		1		1		<u>ن</u> ا	4	‡ ; —		
	(f 4 2)			•	÷ · ·	- • -	!	:		1				!		1	ļ			1	I .				a a		
	FRECKE		+						- +	,			+			+			•		-		61	1	ם. קאיס:		
U	140 E	$\ \cdot\ $		+		 -			-			 	+	+	+			<u> </u>		-		1	ا	7			
DATE	日日の日日日			-		•	* :	-	-			i	- 	-	-	 	-	† †	† · ·	-	-	-	55	1			
	LTERN				1-		7	90	0	0	,	-	+	-	-			-	!	+	-	-		3	!		
MARY	OR ALT	1.25	95		55				1			-	-	-			 	<u> </u>	· +-	+	-		49	3			
DATA SET DIN NIMBER COLLATION SUMMARY	BERS]=	53	87	20	21	52	3	54			-	-				! 							4			
ATION	MACH NUMBERS	0					İ			901		!		1			! 	İ					43	1			
00	AM	9.0								101		1	1						1					4		١	
REP	O Z	OF RUNS	2	5	_				-	4													37	1	COEFFICENTS		
2 2		1.0ES	1	5				_	*	-1.2															OEFF		
		SED							_			-	1	-	-		-	_	· 	-	-	_	31	111			
¥ .	3	SO SO SER CO	A	1	-5	5				0	-	+	-	_		-	+	-	+	_	_	_		•			
1	5)					E	10		+	-			+	+	$\frac{1}{1}$	+	-			. 52	-			
		SCHD.	4	+	.8	1	0	4	8			1							1								
(KE		-,	12				1																61	-			
11-707(TR3H)		CONFIGURATION	1	·																į]		
70,		Neigh.	2 4	11																			13	1	}	į	1
		Ö	3						ľ																1	8	LES
ABC		SET 0.00	12	30	8 8	40	41	2	2 4	? ?	1	_				1									1	8 08	SCHEDULES
153		DATA SET	75.00	(C) 339		-	-	+	-	-	-											1			1		Š
L	ــــــــــــــــــــــــــــــــــــــ	<u></u> :	`	-1-	ــــــــــــــــــــــــــــــــــــــ							34			<u> </u>												

TABLE II. CONTINUED

HO. PARAMETERS/VALUES OF ALL TENNALE INDEPENDENT	PARAMETERS/VALUE NO. MACH NUMBERS (OR AL TERNATE INDEPENDENT OF THE PROPERTY O	Se Se Le See Runs See	97-707 IL 3É	DATA SET/RUN NUMBER COLLATION SUMMARY	R COLLATION SUMM	
8 Se	5e 6e <	5e 6p to Ser Rins 155 2.0 0 0 05 0 2 341 351 7 7 7 7 342 360 7 844 358 844 356 846 356 847 355 848 356 848 356 848 356 850 357 861 367 862 369 862 360 862 360 862 360 862 370 862 370 865 371 865 371 865 371 867 372 867 373 867 370 867 370 867 370	Γ	PARAMETERS/VALUES	MAC	
0 0 0 0 2 341 351 1 1 342 360 1 <td< th=""><th>7 0 0 5 0 2 341 351 7 7 7 7 342 360 7 84 359 844 358 844 358 846 357 849 353 850 352 862 352 862 352 862 352 864 370 865 371 865 371 865 371 865 371 874 380 875 875 875 875 876 877 876 877 877 886 875 878 878 878 8</th><th>7 0 0 0 5 0 2 341 351 T T T T 342 360 T 344 359 346 352 1 347 355 1 349 353 1 349 353 1 360 352 1 361 367 1 362 369 1 364 370 1 365 371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th><th>1_</th><th>8 Se 5R 10 5RF</th><th>1.55</th><th></th></td<>	7 0 0 5 0 2 341 351 7 7 7 7 342 360 7 84 359 844 358 844 358 846 357 849 353 850 352 862 352 862 352 862 352 864 370 865 371 865 371 865 371 865 371 874 380 875 875 875 875 876 877 876 877 877 886 875 878 878 878 8	7 0 0 0 5 0 2 341 351 T T T T 342 360 T 344 359 346 352 1 347 355 1 349 353 1 349 353 1 360 352 1 361 367 1 362 369 1 364 370 1 365 371 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1_	8 Se 5R 10 5RF	1.55	
5 342 360 5 343 359 6 346 350 7 346 350 8 346 356 8 340 350 9 350 350 7 362 362 8 362 360 9 365 371 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>342 350 343 353 346 356 346 356 347 355 348 354 350 352 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10</td><td>7 7 7 7 342 360 344 352 346 352 347 355 348 354 348 355 </td><td>一</td><td>0 0 0 0 0 0</td><td>341</td><td></td></t<>	342 350 343 353 346 356 346 356 347 355 348 354 350 352 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10	7 7 7 7 342 360 344 352 346 352 347 355 348 354 348 355 	一	0 0 0 0 0 0	341	
7	343 359 344 358 346 357 347 355 348 354 350 352 -15 361 367 362 363 -16 362 37 365 37 -10 -10 -10 -10 -10 -10 -10 -10	345 353 346 356 347 355 348 356 348 356 350 352 -15 361 367 -16 365 371 -10 1 37 43 380 25 31 37 43 48 55 51 -2,0,2,4,6,6,6	-	0		
344 358 346 357 346 356 347 355 5 349 354 5 349 354 6 349 354 7 350 352 7 362 369 8 362 350 8 365 371 10 1 35 379 10 1 37 374 380 25 31 35 37 25 31 37 37	346 356 346 356 347 355 347 353 368 367 -15 361 367 362 369 -16 362 363 -10 -10 -10 -10 -10 -10 -10 -10	346 356 347 355 347 355 347 355 347 355 347 355 350 352 351 351 351 351 351 351 351 351 351 351		 `		
545 357 340 356 341 355 350 353 6 -/5 7 361 362 363 1 362 362 370 1 365 37 37 365 37 1 365 37 380	346 356 346 356 347 355 349 353 -15 -15 -15 -16 -10 -10 -10 -10 -10 -10 -10 -10	346 356 346 356 347 355 349 353 369 352 361 367 362 363 362 363 363 37 365 371 365 371 365 371 365 371 365 371 365 371 365 371 365 371 365 371 365 371 379 379 370 370 370 370 370 370 370 370	Ť			
246 356 347 355 348 354 550 352 C -15 361 367 C -15 362 36.3 C -15 362 36.3 C -15 362 36.3 C -16 365 37! C -10 50.0 370 C -10 60.0 3	346 356 347 355 349 353 -15 361 367 -15 362 363 -10 -10 -10 -10 -10 -10 -10 -10	346 356 347 355 349 353 -15 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10	+			
340 355 350 352 5 361 362 5 362 363 6 -15 362 363 1 365 370 1 365 371 1 365 371 1 365 372 1 37 43 2 37 380	340 353 349 353 -15 361 367 362 369 364 370 10 10 1 37 43 80 25 31 37 43 80 1-2,0,2,4,2,5,6,10,11	348 355 1-15 361 367 362 363 364 370 1-10 1 37 380 25 31 37 48 380 1-2,012,4,6,8,8 1-6,-8	1			165
C -15 346 354 C -15 361 367 C -15 362 363 C -15 362 373 C -10 V 374 380	25 31 37 49 554 -15 361 567 -15 362 363 -16 362 367 -10 365 371 -10 7 374 380 -2,0,2,4,6,5,6,7,0,-4,-6,-8,10	349 353 1-5 361 367 362 363 362 370 1-10 1 37 380 25 31 37 49 555 61 67 364 370 1-10 1 37 49 556 37 49 55 61 67 1-2,0,2,4,6,6	+	2		TRU
C -15 349 353	25 31 37 49 553 -15 361 367 362 363 -10 7 7 374 380 -2,0,2,4,6,8 37 -2,0,2,4,6,8 353 -2,0,2,4,6,8 353 -2,0,2,0,2,4,6,8 353 -2,0,2,4,6,8 353 -2,0,2,	25 31 37 49 553 -15 361 367 -15 362 369 -10 362 373 -10 575 379 -2,0,2,4,29eFicents 48 55 61 -2,0,2,4,2,6	-	<i>P</i>	348 354	## AL
C -15 361 367 T 362 363 B 364 370 B 365 371 B 365 371 B 365 374 B 374 380 B 374 380	25 31 37 48 56 4 046,-8	25 31 37 48 55 41 10.4.6.28	+-	. 9		IUME I
25 31 37 43 49 55 E1 E	26. 36. 36. 36. 36. 36. 36. 36. 37. 36. 37. 36. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	25 31 37 48 55 E1 E ^C 26 20, Z, 4, E, E, E, E, E, E, E, E, E, E, E, E, E,				EHS
362 368 364 370 365 371 -10 305 372 -10 37 43 49 55 51	25 31 37 48 55 51 65 67 7. 04,-6,-8	25 31 37 49 55 61 6-4.046,-8		V		
363 36.7 365 371 -10	25 31 37 43 49 55 51 6 7 7 7 43 49 55 51 6 7 7 7 43 49 55 51 6 7 7 7 7 43 49 55 51 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	25 31 37 4.2,0,2,4,6,6,8 -6,-8 363 36. 37. 364 37. 365 37! 365 37! 49 5.5 5.1 6. 40 -4.6,-8	1	1		
25 31 37 43 49 55 E1 E	25 31 37 49 55 E1 E-7 26 31 37 49 55 E1 E-7 27 4.8/2 8/6, 4.0, -4, -6, -8 28 31 37 48 8/6, 4.0, -4, -6, -8 29 2, 4, 8, 8, 6, 4.0, -4, -6, -8	25 31 37 49 55 61 6-7 -10 364 370 575 379 6-7 25 31 37 43 49 55 61 6-7 -2,0,2,4,8,8 49 55 61 6-7 -6,-8				
10 365 37! 565 37! 565 37! 565 379 574 380 55 55 55 55 55 55 55 55 55 55 55 55 5	25 31 37 43 49 55 $\frac{1}{5}$ $\frac{1}{5}$ $\frac{365}{379}$ $\frac{379}{5}$ $\frac{379}{380}$ $\frac{49}{5}$ $\frac{55}{5}$ $\frac{57}{5}$ $\frac{379}{380}$ $\frac{49}{5}$ $\frac{55}{5}$ $\frac{51}{5}$ $\frac{67}{5}$ $\frac{67}{5}$ $\frac{67}{5}$ $\frac{1}{5}$ $\frac{67}{5}$ $\frac{1}{5}$ $\frac{67}{5}$ $\frac{1}{5}$ \frac	25 31 37 43 49 55 ϵ^{-1} ϵ		7		
25 31 37 43 49 55 E1 E ⁻	25 31 37 49 55 51 67 1.2. 1.2. 4.8. 8. 6. 4.0468	25 31 37 48 55 E1 E 1-10 V Z74 380 E5 E1 E 1-2,0,2,4,8,8 B E5 E, 4,0,-4,-6,-8		9		
25 31 37 43 49 55 E1 E ⁻	25 31 37 43 86 E1 E- 1-10 V 374 380 E1 E- 1-2,0,2,4,8,8 B(S) = 8,6,4,0,-4,-6,-8	25 31 37 43 69 55 E1 E- 1.2, 0, 2, 4, 8, 8, 8, 6, 4, 0, -4, -6, -8, -8, -6, -8		8		
25 31 37 43 49 55 E1 6 ⁻	25 31 37 43 49 55 51 6- 125 31 37 43 49 55 51 6- 111111111111111111111111111111111111	25 31 37 43 49 55 51 6- 1	<u> </u>			
25 31 37 43 49 55 E1 ET	25 31 37 43 49 55 E1 E- 11111111111111111111111111111111	25 31 37 43 49 55 E1 E- 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1				
	1.2,0,2,4,6,6 -2,0,2,4,6,6	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1	25 31	43	55 61 67
	(10-1		1-4,0,4,4	1	7

THE II. COURTE

			**					ΤE	ST f	31.184	NUM	fse.f	₹5							5 75 3	7	5 6 7	
7)	, b ; p et ;				· · · · · •																Lossol	(Z) 84°C)	
-/-0	SEPENDENT SK			, , , , , , , , , , , , , , , , , , , ,		·- ·· •					i i	19				† · · · · · · ·		r - +			4 4 4 4 4 4 4	100 Am 11.	
1 8 7	LTERNATE NO					~	-			:				<u> </u>	· • · ·	•		•	•	55			
SUMMARY	BERS (OF A													-		· •				 49	41111		
RUN NUMBER COLLATION SUMMARY	MACH NUMBERS	1.55 2.0	375 381	376 382	377 383		385 391	386 392	387 393	388 394	389 395	390 396					ļ 			43	44.444		1
NUMBER C	JES NO.	RUNS	0 2 3	<u>",</u>	9	")	w)	3		3	<i>e</i>	1 3	 							37	444	COEFFICENTS	
SET RUN	AMETERS/VALUES	SR 16 5	1	<i>/ /</i>			+15									-	,			31	4	COE	
DATA	SCHD. PARAM	S		<u>ナ</u> ナ																25	4 4 4 4		
/ai.H		L	0 0	4	0	æ	-8	p-	0	4	9	8								19			
91-101(IAND)		CONFIGURATION	4+53+ 70	+																13	41111		
AKC	DATA SET		420 PIX	1 02-	12	22	23	26	25	26	27	22								7		00	-
TEST	TAG		RBEx 19)								36								B er	111		ű

TABLE II. CONTINUED

	-	-	7-			i		TES	A TE	UN N	I I ME	ERS	T	T	Т		Ţ			4	75.76	Agz Z
	_	1	_	_	-	1			+		_	_	-	+	-	+	-	-	+	4		IDVAR (2)
m	VARIABLE						:				·						' !	-			67	1
2 - 73	1			,	:		! !	!	-	ì	!				1	: 1		:	:			- E
5-1	NON	+	+	+- :									+ 	1					İ			1DVAR
ш	10EPE	+		+	+	_			-		-		-	-	-+				-	-	61	7 7
DATE	ALTERNATE INDEPENDENT	_		 	: :	-				· ‡	-	i	+		-	 	į.	 	· 	\dashv		14.0
	1 1 1 1 1 1 1										1					-	:	10		_	5.5	17
ARY	OR AL	3.5	022	122	222	223	224	225	226	227	228	529	250	25/	252	253	254	255				0-'0-
DATA SET/RUN NUMBER COLLATION SUMMARY	ERS (3.0	230	23/	252	233	234	235	236	237	238	239	256	257	258	259	260	261			8	8C =
NOI	MACH NUMBERS	2.5	240	241	242		244	245	246	247	248		267	992	265	204	263	297				1
LAT	AACH	3	2	2	2	2	0	2	2	2	2	2	2	2	2	2	7	7		-	43	1 .
R C01	Ĺ	S													<u> </u>							T _s
MBE	ON O		n	5	-		 	-	_					-							37	COEFFICENTS
Z Z	ALUE	.9		5				-				-					-					
T/RI	FRS	SFR.	-)	-		-	+		 			8								31	4.6
TA SE	ARAMETERS/VALUES	5,8	╂	5	-	 	-	-					-15	(-				-			24
DA	100		╁	7	1							-))-	I				-		55	10,
	071	B	┿—	+	-6-	7	,	0	0	1 4	· \v	α	-		0	A	9	90			1	1 27
(IA9C)												!									5	4.6
(IA		NOIL	107	16																		1 0
707		CONFIGURATION	Ų,	://	-			_	-	_	-		-	<u> </u>	-	-	+1	-			2	4
Dx7 - 7x8		100 11	1. 1.6																			
ARC &		<u>۔۔۔۔</u>		1	-	+-	-	-			1 ~		+	-	· m	1	· le	12	+	+	، إ	1 4 ac
		DATA SET	3	3 8	2 6	3 3	5 8	3 3	3 5	3 8	3 8	5	2 3	= 6	7 4	5 3	i	5 2				9 OR
rest		TAC	1400	S (S)	.	-	+-	-	-	+-	-	+	+	1	_	1	\perp				<u> </u>	11_

E STORY TO THE

						18. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	- 100 (100 (100 (100 (100 (100 (100 (100	TF	ST F	NUN	NUN	ABE	₹5		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·			75 76	1	√ 0.~	
	a i									-										67]	1DVAR (2)	
0 0	LABORBO				· •	(:				-				-	<u> </u>	•		 6.1	-	IDVAR (1)	
CAIE	102 DEF. 601										-							· · · · · · · · · · · · · · · · · · ·		55	*****		
A SHAMARY	PERS (OP AL	3.6 3.5	280* 265	731# 263	282* 270	233* 271	284* 272	295* 273							-	-	-	· 		67	a e a e f a a		
	10% - 19%	, ·	Pic.	275	276	277	278	512			-		-	-		-			-	43	منطيب		1
RUN NUNBER	h-2-1	رن ان ج ان ان د	5.5	<u>}</u>																37	41144	EFFICENTS	
717	NETSES/VALUES	j	0	}				1							 		+-			31	41111	COEFF SCHEDULE	
DATA	SC .C. PARANET	32	0 2 5-	<u></u>	0	4	٠	8				+								25		280-285	14.0.
(24-12)		2 0	19																	19		* NOTE: RUNS 280-285:	- B
3x7-2			62.5																	13	11111		
TEST ARC		n L	11/2/200	8,		272		22						-	-					,		i	SCHEDULES

TABLE II. CONTINUED

CONFIGURATION Configuration	TEST: AMES	S 11-707 (0A12A)		Δ	DATA	SET	NOW.	JMBL	ろうこと	SET/RUN NUMBER CULLATION SUMMANT	MMAKI					
CONFIGURATION					ABAN	FTER	S/VALUE	ON S	Α×	CH NUMBER	S (OR ALTERN	ATE IND	EPENDENT	VARIABLE	6 3	
Physical No. 1976 1	DATA SET	CONFIGURATION	8		ðe.	P.	øFR		1 1	L			+	1		
120 120	CRDVOI	B. C. D.N.F.MaNaVeRaWaFia	•4	-			0	2	119							
122 128	300		0	Д	5	5-	5	}	120					: 		
10 12 12 12 12 12 12 12	50		2	5	_				121					-	1	
2 0 V V V V V V V V V V V V V V V V V V	G 7		l O			-			122	_		+	-	- -		
C C C C C C C C C C	2 0		1.5		_				123				+			
0 0 0 0 0 0 0 0 0 0	3 70			-		-			124			-		-		TES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 6		0	ບ		-10			131			-	+			TRI
10 13 136 139 140 150 140	5 8		5	5		5			132				- -	- 1		א אנ
15	3 8		10						133					-	-	имв
20 1 10 14 146 147 148	5		1.5 1.5		!				134							ERS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20			> -			135				-	-	-	
10 142 147			0			-20			141				+		\downarrow	
15 1 1 1 1 1 1 1 1 1			5			5			146				:		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	71		S H						177		-			-	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 4		1.5				,		141		:	; i -		-	-	
13 19 25 31 37 43 49 55 61 67 67 67 67 67 67 67 67 67 67 67 67 67	1 2		20	-	-	_			7,47					1		
(a) $A = AIAX$, 0, 5, 10, 15, 20, 25 (coefficients) (b) $A = -10$, -10, -5, 5, 10	17		0		2	0			15.						+	
α A = MAX, 0, 5, 10, 15, 20, 25 β Coefficents β C = 8, -4, 0, 4, 8 β C = -5, 0, 5 β C = -5, 0, 10 β E = -5, 0, 5	18		5	А	10	0	-		15;			_		_	_	4
α A = MAX, 0, 5, 10, 15, 20, 25 β C = 8, -4, 0, 4, 8 β D = -10, 0, 10 β E = -5, 0, 5 β B = -10, -5, 5, 10		13		[]	ξ		31	37		43		55	61	67		75 76
$\alpha_{\text{A}} = \text{MAX}, 0, 5, 10, 15, 20, 25$ $\beta_{\text{B}} = -10, -5, 5, 10$ $\beta_{\text{B}} = -10, 0, 10$ $\beta_{\text{B}} = -10, 0, 10$ $\beta_{\text{B}} = -10, 0, 10$. 1.1.	4 4 4		3	‡	4	1	1	4	بعدونقل	terret	1 1 1	A TOVAR	┨	VAR (2)	Š
$\beta B = -10, -5, 5, 10$	8	B & A =-MAX,	5	레			25°	FICE	118	Ø 10	= 8, -4,	⋣	B E	ं		
		$\beta = -10,$	5,							ρ	170					J

THE THE CHARLEST

								; (9.T.F	RUN	ипи	BER	s								75.75	7	> 0 z	
	(E 7 E 6)				.																67	1,,,,,,,	1DVAR (2)	5
E . 1-23- :	INDEPENDENT VAF			; ;																	61		9 IDVAR (1)	$\beta E = -5, 0,$
DATE	ローロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー		-														··· †				55		3 '7 '0 '7-	0, 10
COLLATION SUMMASY	1 OF A		_														!				49		- 'β-= 28' -	D=-10,
ATION	ಇಸಿದ್ದ ಬರ್ ಚಟ್ಟಣ್ಯ		7.5F	25	155	165	167	168	169	170	182	181	180	179	178	177	189	190	191	192	43	11:1	9	.00
	,4 k		5	151	155	191	162	163	164	165	τĹτ	172	173	174	175	176	183	184	185	186		111	,,	1
UMBER	8 NO.		7	}																-	37	111	FICENTS	
SET RUN NUMBER	AMETERS/VALUES	8 <u>p</u> AFR	<u>ි</u>	<u>}</u>												4 4	0 40	} -		A	31	111111	20, 25	
DATA	SCHD. FAREN	β δ⊜ (D +10	, }- }-	*	C -10	<u>}</u>			A	E-20	- U				4	EO	ر ا د	<u></u>	4	25		10, 15,	İΙ
		8	WerEis Lo	1	33		16	10	15	03	-1	0	u v	70	15	20	1-7	0	5	10	19		1X, 0, 5, 10,	10, -5, 5
9513C) 101-E		CONFIGURATION	315CSD+FLZEN JANKRSWA7EIB																	•	13		= 47	β B = -10.
TEST: CER I	Fillion of the C	FIES	144			C:	100	.:t	.5	95	2.7	28	6,	30	ᆏ	32	33	4/6	35	36	7	11:11:1	9	SCHEDULES
	<u> </u>	Ü		<u>'</u> _	-		<u>L</u>	<u></u>			40										_ •_	•		

TABLE II. CONTINUED

	,							TE	STR	UNI	MUM	BERS	5						_	75 76	3	4R (2) NDV	
	VARIABLE			!		· 	- -	!	_		-	- !		-		_ - ∔	- ;	 _		67	4	iDVAR	
4-23-73				_	-+					!	+			-	!	_	+				1	<u> </u>	(
	ALTERNATE INDEPENDENT				· 					:					:					61	4	-10,00-15(1)	t
DATE	TE IND									: : 		:			1		· · •	!			4	-5,	
	TERNA	1.4			195	138							<u> </u>				,	;		55	4	[= C,	
ARY	OR AL	1.25			197	198				ļ							:				=======================================	Ж	ľ
SUMM	BERS (1.1			159	200		i					į		1					49	4	, 15	ļ
ATION	MACH NUMBERS	0.9	193	194			202	204	506	208	509	211	212	213						43	1	5, 10,	
DATA SET/RUN NUMBER COLLATION SUMMARY	MAC	9.0	187	188			201	203	205	207	210	216	215	214						7	1	5, 8.6,	ĺ
ABER	NO.	RUNS																		37	4	2.5, 4.5, 6.6,	
SN N	PARAMETERS/VALUES																				1	gent.	
T/RU	ERS/V	ØFT.	7†0	7,0	0	})	•	0	<u>} </u>				>			•			31	4		
TA SE	RAMET	$\theta_{ m R}$	0			*	-10	-20	0	70.		(\			_	-			1	5, 0.5,	
Δ	PA GI	β 6 _e	0 0))	0	ტ	闰	王	E 10	E -1	E) 0	H	I	-					25	4	-1.5	1
	SCHD.	8	15	20	Ħ	0.5	† -	-7+	7-	† -	‡	н	-5	양							1	-3.5,	
o7 (OA12A)		CONFIGURATION	BIGGOTH FEMENBURG WORFIS	}										~						13 19		GF = -4.5,	
AMES 11-707			B.GB.Mz																	^	1 1 1 1	9	¢
		DATA SET	RBPx37	æ (33	24	라	24	۠	177	45	94	147	4.3									S
TEST		IDEN	E								4:									<u> </u>	-		

THE THE COMMITTEE

1	?		293 289	265	287	4										1				55 61 67 7576		3, -3, -6 IDVAR (1) IDVAR (2) NOV	3,0,-3,-6	
	?				287	4				-		- i	+		+	·	<u>_</u>			- 1	-1	'n.	ا _س ا	i
1	?				287	4				 i				-						49	****	6c = 6.	$\frac{1}{2}D = 6$	
1	1_	8	2	1		767	262	962	38	30/		306	307	308		-+	-+	-	321	43	4			
٠	"		2	767	162	297	298	567	303	304	305	30%	310	31	317	318	31.0	322	323		4	15		
LUES OF	R.C.	2)															-		37	1111	COEFFICENTS		
		90	,															-		31	411	00		9
RAMET			<u>}</u>	-		-20	<u>}</u>) 1		<u>}</u>		20			40	(5	0					35, 4
HD.	a	0	8	S	v	0	7)						_	_	0	0	25	111	ł	, ,	,30,
	1	1845 KoVigzEs 4	0	01	92	0	ØI	20	0	01	8	0	01	22	0	9	77	E	30	19		e 0 S.	3,-3	aE = 15, 20, 25, 30,3
COMPIGLAA		X5C716. Fa. 18.0h																-		13			88	
DATA SET	SENTIFIER		_ 20	63	04	0.5	26	10	80	8	01	=	1/2	El	14	/2	9/	11	8/	7			SCHEDULE	
	CONFIGURATION	FIER CONFIGURATION & B	BOCE CONFIGURATION OF B	BIOLETINE F. NEWSKSWiggs, 4 0	SICCONFIGL RATION & B B BIOC.CTM.E.M.N.N.N.S.N.S.N.S.N.S. 4 O 10 C	BIOC. C.O.M. F. M. M. M. M. M. M. M. M. M. M. M. M. M.	BIOCS CTHE FANISH AS 100 B B B B B B B B B B B B B B B B B B	BIOC. CTAR. F. M. M. M. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S. S. W. S.	BioC_C7NcE_NoNgyS_5, Vig.75, 4 0 BioC_C7NcE_NoNgyS_5, Vig.75, 4 0 10 C 10 C 10 C	SENTIFIER CONFIGURATION CO B	BIOCACTARE MANAS ESTION BIOCACTARE MANAS ESTIVATES 10 C 10 C 10 C 10 C 10 C 10 C 10 C 10 C	SENTIFIER CONFIGURATION CO B	SENTIFIER CONFIGURATION CO B	SENTIFIER COVETOL RATION G B	En CONFIGL RATION 30557746 E. No. Ng. Vg. 75, 4 0 10 C 1	En CONFIGL RATION BJOC_CTMEEN Whys K, swigg, E, 4 0 BJOC_CTMEEN Whys K, swigg, E, 4	En CONFIGL RATION	S SICCLARION C B B CONFIGL RATION C B B C CONFIGL RATION C B B C C C C C C C C C C C C C C C C	En CONFIGL RATION & B 3055776ENG/89553VigjE, 4 0 10 C 20 C 20 C 30 C 4 0 0 6 0 7 0 0 8 0 8 0 8 0 8 0 8 0 8 0	En CONFIGL RATION	2004 E B A TION	Socconfiguration a B B B B B B B B B B B B B B B B B B	2004 FLAN WAS SAN SAN SAN SAN SAN SAN SAN SAN SAN S	30 CONFIGL RATION

TABLE II. CONCLUDED

	T							TE	ST R	UN	ΝI	JMB	CR!	S									75 76		NOV		
		\prod																1	-	_	_		y -		(2)		
	ALTERNATE INDEPENDENT VARIABLE				:		:									_	 	- -		-			67	:	IDVAR		
5-9-73	AT VAR					 					i	 - -					i	, 	·		 			-	DVAR (1)		
5	PENDE			į	i i		1				<u> </u>	1					;		,	!			61	:	ģ		
DATE	E INDE				ļ							1	ļ						;	1	1						
٥	ERNAT	1			- †											1	-	-	- + !				ť	-			
RY	OR ALT			1							1						1										
UMMA	RS (0										+	- 			 		1	+			 		1 8	² -	1		
DATA SET/RUN NUMBER COLLATION SUMMARY	MACH NUMBERS	3.5	324	975	328	330	33/			-	+	ij				+	+	 				-	١,		-		
OLLA"	MACH	2.5	325 3	327 3	329 3	332 3	333		-		+	: 1 1		 - -	-	+	+			 	-		'	-	1	1	
SER C	0.	RUNS 2	2 3	7	8	3	3		-	<u> </u>	+			-		+	+					 - -	† ,	, . , .	ENTS		
NOM	UES	2		,					-		+				+	+							1		COEFFICENTS		
/RUN	SCHD, PARAMETERS/VALUES	SFR	04	40	3	40	8												,] ;	<u>.</u>	4 ⁸		
A SET	AMETE	52	•	0	0	0	0	_	_	_	-		! !	-		_	_			+	-	-			}	97-	
DAT	PAR.	8		01 0	07- Q	FO	0 0			+	-				_	+		-,		-	-	+	┨	22	-	9-0	e
	SCH	8	L		30			+					<u> </u>		+										4	10,6,0	d
		7	Who has												1									19	ممطما		व
(DA12C)		RATIO	NaN. VGR														ļ						Ì		1	BE:	BG
<i>(</i> Ø)		CONFIGURATION	J.V.C																					=	1	1	7
101-18		8	BINGS O.N. F. Man. K.R. Wer. E. 30																					7	4	80,	ULES
		DATA SET		Τ.	2	22	3 6	3																	1	8 08	SCHEDULES
TEST		DENT	PROX 19		+		-																	_	1		

TABLE III. MODEL COMPONENT DIMENSIONAL DATA

MODEL COMPONENT: Blo Body		
GENERAL DESCRIPTION: Fuselage, 2A Config	uration, Lightweigh	t Orbiter, per
Rockwell Lines VL70-000089 "B."		
Scale Model = .030	•	
DRAWING NUMBER: VL70-000089 "B		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length IN	1328.3	39.8490
Max. Width $\sim IN$ (eX ₀ = 1528.3)	265.0	7.9500
Max. Depth $\sim IN$. (61% = 1480.52)	248.0	7.4400
Fineness Ratio	5.012	5.012
Area_Ft2		•
Max. Cross-Sectional	456.4	.41076
Planform		
Wetted		•
Base	e proprieta	

MODEL COMPONENT: Canopy - C5		
GENERAL DESCRIPTION: 2A Configuration pe	er Lines VL70-000092	
Scale Model = .030	•	
DRAWING NUMBER: VL70-000092		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length (STA FWD Bulkhead)	<u>391.0 ·</u>	11.730
Max. Width (T.E. Bulkhead)	560.0	16,800
Max. Depth (WP = 42.9 22 to =	500)	•
Fineness Ratio		
Area		•
Max. Cross-Sectional		
Planform		······································
Wetted	description of the second	·
; Base	· · · · · · · · · · · · · · · · · · ·	:

MODEL COMPONENT:	Manipulator Housing D-7		·
GENERAL DESCRIPT:	ION: 2A Configuration per	Rockwell Lines VL	70-00093
			
Scale Model = .	030	••	٠
DRAWING NUMBER:	VL70-000093	_	
DIMENSIONS:		FULL-SCALE	MODEL SCALE
Length ~ I	n.	881.00	26.430
Max. Width	~IN.	51.00	1.530
Max. Depth	~IN.	23.00	.690
Fineness R	atio		
Area			
Max.	Cross-Sectional		
Planf	orm		
Wette	d	• *************************************	
Base		•	
D Fuselage	BP = 0.00	Service of the servic	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
• •	WP = 500.0 IN. FS	•	
	V 10/ 0 4 - 3000 0 70 B	•	•

MODEL COMPONENT: WING-W87 New Light Weight Orbite		
GENERAL DESCRIPTION: Orbiter Configuration Per Line	es VL70-000093.	
NOTE: (Dihedral Angle is defined at the lower sur		at the 75.33%
element line projected into a plane perpendiculary	•	
Scale Model = .030		0.00000
TEST NO.	DWG. NO. VL7	0-00093
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (Theo.) Ft2 Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees Incidence Angle, degrees Aerodynamic Twist, degrees Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) B.P.0.0. Tip, (Theo) B.P. 46834 MAC Fus. Sta. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC EXPOSED DATA Area (Theo) Ft2 Span, (Theo) In. BP108 to 468.341 Aspect Ratio Taper Ratio Chords Root BP108 Tip 1.00 b MAC Fus. Sta. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC W.P. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64 Root b = .425 Tip b = 1.00 Data for (1) of (2) Sides	2690.00 936.68 2.265 1.177 0.200 3.5000 3.000 3.500 45.00 -10.24 35.209 689.24 137.85 474.81 1136.89 299.20 182.13 1752.29 720.68 2.058 .2451 562.40 137.85 393.03 1185.31 300.207 143.76	2.42100 28.10040 2.265 1.177 0.2000 3.500 +3.000 +3.000 -10.24 35.209 20.67720 4.13550 14.24430 34.10670 8.97840 5.46390 1.57706 21.62040 2.058 .2451 16.8720 4.13550 11.79090 35.55930 9.00621 4.31280 .10
Data for (1) of (2) Sides Leading Edge Cuff Planform Area Ft2 Leading Edge Intersects Fus M. L. @ Sta Leading Edge Intersects Wing @ Sta	120.33 560.0 1035.0	.10830 16.80 31.050

MODEL COMPONENT: Elevon E-18		
GENERAL DESCRIPTION: 2A Configuration Per Data for (1) of (2) Sides	W-87 Rockwell Line	. vi. 70-00093
Scale Model = .030		
DRAWING NUMBER: VI. 70-000093		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area ~ Ft ²	205.52	.18497
Span (equivalent) ← IN.	353.34	10.60020
Inb'd equivalent chord	114.78	3.44340
Outb'd equivalent chord	55.00	1.6500
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord		208
At Outb'd equiv. chord	.400	400
Sweep Back Angles, degrees	•	·
Leading Edge	0.00	0.00
Tailing Edge	_10.24	_10.24
Hingeline	0.00	0.00
	Ft3 1548.07	.04180

MODEL COMPONENT: VERTICAL - V5	(Light Weight Orbi	ter Configuration	1)
GENERAL DESCRIPTION: Centerline	Vertical Tail, Dou	ble Wedge Airfoil	with Rounded
Leading Edge			
Scale Model = .030			
DRAWING NUMBER:	VL70 000095		
DIMENSIONS:		FULL-SCALE	MODEL SCALE
TOTAL DATA			
Area (Theo) Ft ² Planform Span (Theo) In Aspect Ratio Rate of Taper Taper Ratio Sweep Back Angles, degrees Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W. P. of .25 MAC		413.25 315.72 1.675 0.507 .404 45.000 26.249 41.130 268.50 108.47 199.81 1463.50 635.522	.37192 9.47160 1.675 0.507 .404 45.000 26.249 41.130 8.05500 3.25410 5.99430 43.90500 19.06566
B. L. of .25 MAC Airfoil Section Leading Wedge Angle Trailing Wedge Angle Leading Edge Radius Void Area Ft ² Blanketed Area Ft ²	Deg Deg IN.	10.000 14.920 2.00 13.17 12.67	0.00 10.000 14.920 .06 .01185 .01140

MODEL COMPONENT: R-5 Rudder		-
GENERAL DESCRIPTION: ZA Configuration per Roc	kwell Lines V	L 70-00095
Scale Model = .030		-
DRAWING NUMBER: VL 70-00095		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area ~ Ft ²	106.38	.09574
Span (equivalent) ∼IN.	201.0	_6.030
Inb'd equivalent chord	91.585	2.71.755
Outb'd equivalent chord	50.833	1.52499
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees	•	
Leading Edge	34.83	34.83
Tailing Edge	26.25	26.25
Hingeline	34.83	34.83
Area Moment (Normal to hinge line)~Ft3	526.13	.01421

MODEL COMPONENT: OM	S Pod -M3	•	
	A Light Weight Conf	iguration per Rock	well Lines
V1.70-00094A			
Scale Model = .030		·.	·
DRAWING NUMBER:	VL70-00094A	-	
DIMENSIONS:		FULL-SCALE	MODEL SCALE
Length	•	346.0	_10.380
Max. Width $x_{} =$	1450.0	108.0	3.240
Max. Depth $X_0 =$	1500.0	113.0	3.390
Fineness Ratio	٠.,		•
Area	•		•
Max. Cross-Se	ectional		
Planform			
Wetted			
Pase of OMS Pod	•••	A contract of the contract of	
P = 463.9 IN. FS WP 40	00 + 63.9 = 463.9		•

BP = 80.0 IN. FS

Length 1214.0 to 1560.0' = 346.0 IN. FS

MODEL COMPONENT: FL Body Flap	•	
GENERAL DESCRIPTION: 2A Configuration per Rockwell Lines VL70-000094A Scale Model = .030 DRAWING NUMBER: VL70-000094A	70-00094A	
Scale Model = .030	•	
DRAWING NUMBER: VL70-00	0094A	•
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length	84.70	2.541
Max. Width	265.00	7.950
Max. Depth	· _ 	•
Fineness Ratio	· · · · · · · · · · · · · · · · · · ·	
Area ~ Ft ²	•	•
Max. Cross-Sectional	-	
Planform	142.64	.12838
Wetted		
- Base Ft ²	38.65	.03478

MODEL DIMENSIONAL DATA

MODEL COMPONENT : S3-Booster Solid Roc		
GENERAL DESCRIPTION: 2A Configuration & VL72-000061 "B"	Per Rockwell Li	nes VL77-000012
Body of Revolution; Data for (1) of (2) Sides	
Scale Model = .030		
DRAWING NUMBER: VL 77-000012	······································	
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length ~IN.	1732.0	51.96
Max Width (DIA) IN. BSRM Tank	142.0	4.260
Max Depth (DIA) Aft Skirt	Prince 2A Configuration Per Rockwell Lines VI77-000012	
Fineness Ratio L/D		
Area ~ Ft ²		
		MODEL SCALE 51.96 4.260 7.77 6.687 .32928
Wetted		
Base		•
		RM

BP (Orbiter) = 0.00 = 243.0 IN. BSRM

TABLE III. (CONCLUDED)

MODEL COMPONENT: EXTERNAL TANK - T	19	
	•	
GENERAL DESCRIPTION: 2A Configuration	on	
NOTE: T9 identical to T8 W/O retro	okg., nose w/30"R F.S.	
DRAWING NUMBER NONE		
DIMENSION:	FULL SCALE	MODEL SCALE
Length - IN.	1858	55.740
Max Width (Dia) - IN.	324.0	9.720
Max Depth		
Fineness Ratio L/D	5.73457	5.73457
Area - FT ²		•
Max Cross-Sectional	572.56	0.51530
Planform	· · · · · · · · · · · · · · · · · · ·	
Wetted		· · · · · · · · · · · · · · · · · · ·
Base		•
Nose, Radius, IN.	30.0	. •

ORBITER BODY

											_	_	-						_	_	_	_				-
	180	20	3 6	χ.	- i (ς (59		i i	2	ć	83	16	66	701	ζ ΤΤ	7	724	627	138						
	172				*		`	9																		
	169									7																
	165			•				_			(82	8	9,	106	114	(123	1	137	140	154	162	170		
	162								l	0,																
SEES	157							,	61		_															
DEGREES	150		;	쭚.	0 7	φ ⁴	28		,	69	,	81	89	97	105	113		122	128	136	145	153	161	169		
~ 0	142			٠				-		-	73															
ATTON	135									•			•		•					135	144	152	160	168		
RADIAL LOCATION 0	120		1	30	33	84	23		;	89		80	88	96	104	112		121	127	134	143	151	159	167	173	174
RADTA	110																								171	172
	105																			133	142	150	158	166		
	90	ű	77	53	æ.	17	26			29		79	87	95	103			120	1.26	132	177	611	157	165		
	10		(28	33	97	52			99		28	98	な	102	110		119	125	131	140	148	156	164		
	55			27	36	15	54			65		77														
	04		,	56	35	77	53			79		92	85	93	101	109	117	118		m	m	147	5			
	20			25	34	43	52			63		75														
	O	50	21	77	33	42	17			62		7.	\$	35	100	108	116							163		
~ x°	x /1	_ (. 008	.019	.034	090	.136	151	.158	.173	, 196	.226	.271	.320	.395	.512	.587	.662	.738	.787	.828	.885	.926	,96°	1.00.1	- 7
STATTON	MODEL	6.00	06.3	6.75	7.35	8.40	11.40	12.00	12.30	12.90	13.80	15.00	16.80	18.75	21.75	26.40	29.40	32.40	35.40	37.35	39.00	41.25	42.90	04.44	45.90	45.90
ORBITER	FULL	200	210	950 100	545	280	380	100	710	430	091	500	260	625	725	380	980	1030	1136	1245	1300	1375	1430	1480	1530a	1530 ^b

a OMS POD, INSIDE b OMS POD, OUTSIDE

a. Orbiter body
Table IV. Pressure Orifice Locations

OFBITEF BASE

NUMBERS	1, 2, 3, 4 6 7 8 9 11, 12, 13, 14 15, 16
LOCATION	CRRITSP BASE (INTEGRATED) LEFT NPS NCICLE BASE ANDE AREA ON OWS POD ONS NCIZLE BASE ONS POD BASE TEBLIER BASE TEBLIER BASE TEBLIER BASE TEBLIER BASE

9 ~ DEG 0 40 175 176	
0 7	
STA. X MODEL 47.40	
ORB. S ~ X FULL 1580	

BODY FLAP LWR SURFACE

_			
		270	186 192 197
		225	1.85 191 196
	DEG	180	184 190 1 9 5
<u>ы</u>	υ ~ θ	135	163 189 194
MPS NOZZLE		90	182 188 193
MPS		0	181 187
	X ~ IN. FWD BASE	MODEL	0.75 1.50 225
	X . EWE	FULL	25 50 75

		225	179
	θ ~ DEG	180	178 180
OMS NOZZLE	. 0	135	177
CIMIS	X ~ IN FWD BASE	MODEL	0.30
	X ~ IN FWD BA	FULL	10

TAIL
VERTICAL

WATE	WATER PLANE $\sim { m Z}_{ m O}$	2°		×	, ~ 2/x	THEORETICAL VERTICAL CHORD	TTCAI	. VER	FICAL	CHORE	
FULL	MODEL	AL		0	.05	.15	.30	.52	.65	.775	٠ 9
525	15.75	.079.		001							
550	16.50	.158	니떠	110	115 114	412 512	413 513	414 514	415 515	416 51é	
009	18.00	.316	I H	42C	421 521	1,22 522	1 ₂₃ 523	127 127	125 525	426 526	1427 527
069	20.70	09•	그ㄸ	064	431 531	432 532	43 <u>3</u> 53 <u>3</u>	1134 534	435 535	1;36 536	437 537
765	22.95	₹8.	.H #	044	145 144	442 542	143 543	442 444	44 5 545	346 546	747 747
792	23.76	.925	니타	450	15 5	452 552	453 553	454 554	455 555	456 556	45? 557

b. Orbiter Base, Body Flap Lower Surface, and Vertical Tail

Table IV. (ontinued.

ORBITER WING

5	ORBITTER B.P	F - T									2	Theor	ETTA	THECAPTICAL WING CHORD	CHORC									
TOL	MODEL	4		6 9 −	35	25	15	033	0.0	.05	.15	.25	04.	.55	.60	.65	.70	.725	.75	. 775	.e	. 65	9,	.95
140	1.20	. 299	D 1	20C	201 301		202 303			203 303		20% 30*		205 305					306	.,	201 5.7	20g 30c		203 305
0_4	5.10	.364	ры			210	311			212														
300	6.00	134.	ьч					220		ឆ្ក	222 322		323	224 324					225 325	3.8	226 ; 326	327 3	222 328	229 329
250	7.50	.594	티						230	231 3%	232	233 333	23k 33k	235				236 336		237 337		23E 2 338 3	239 339	240 340
315	9.45	.673	្រុ						250	251 351	252 352	253 353	25k 35k	255 355			256 356			257 357		258 35:		259 359
365	10.95	.780	u I						260	261 361	26 2 362	263				18.78			365			366		267 367
116	b15 12.65	. 98T	DY						270	271 375	272	273	12 K		376				2 %				EE	\neg
							,																	

U - UPPER SURFACE L - LOWER CURFACE

4		X	01 01	X/C LOCAL WING CHOPE	NG CHO	E.			
.299	ö	100.	.226.	.362,	.497,	.700,	0, .094, .225, .362, .497, .700, .634,.865, .900 , .965	.900	.965
.364	å	0, .086, .246	.2 4 6						
124.	c*	180.	.rr.	.¥02.	.565,	.760	0, .081, .177, .402, .565, .760, .808,.857, .905, .953	905.	.953
.53b		8	3	SAME AS THEORETICAL CHORD	TICAL	CHONO			
.6T3									
.780									
Lée.				-					

c. Orbiter Wing Table IV. Continued.

EXTERNAL TANK

	270		620)				-															
	180	+			200	639	649	629	699	619	689	669	402	719	720	730	100	750	λ				₩ 90.4
	165) I			,	638	648	658	899	67B	688	698	708		728	J	a 1.		374	0 0	2.1		
DEG	150	; ;		100	120	637	249	657	299	677	687	769	707	717	707	737	- t - t	- # -	177	ō.	7.1.1		
β ~ 1	125	2								676		969		716	1	764		_	2,2	۵	9		
	00.	νI		1	625	635	645	655	665	675	685	695	705	715	107	720	107	(47	55,	(65	775		
	٥	,	- ;	†T0	624	634	644	65h	799	729	687	709	107	1 ()	1 - 1	100	(34 :	7447			7774		603
l	0,3	2		,	623	633	643	653	76	673	683	603	100	- t	1 F	123	(33	743	753	763	773		
	0.0	2			622	632	0.00	717	660	67.0	182	605	100	- F	777	(55	732	742	752	762	772		
	,		019			6.31		7 1 7	ל לי	125	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	3 5	1 6	7 5	1:	[72]	731	747	751	192	771	601	602
14.		XI/LI	0	00.	045	יכר	14	† •	1 0 0	777.	100 0	200	1 66	77.	できず	. 503	.557	.637	.745	.853	.929		
~ Q⊞S		MODEL									22.50							1,5.00	51.00	57.00	61.20		CAVITY
TARK		77114	316.	217.7		0 0	270	. t.	0.:0	.; (r + ! }~ !	220	၁၃၁ ၁၂၀	956	1050	1150	1250	1350	1500	1700	0001	2040		STING

d. External Tank Table IV. Continued.

LEFT SRM

SRM	STATION -	- XS					θ~	DEG		
FULL	MODEL	xs/ls	0	45	90	135	180	225	270	315
200 260 370 400 450 550 700 850 1050 1250 1450 1650 1750 1790 1850 1900	6.00 7.80 11.10 12.00 13.50 16.50 21.00 25.50 31.50 43.50 49.50 52.50 53.70 55.50 57.00	0 .034 .097 .114 .142 .199 .284 .370 .484 .597 .711 .825 .882 .904 .939 .967	810 811 821 831 841 851 861 871 881 901 911 921 931 941 951	812 822 832 842 852 922 932 942 952	813 823 833 843 853 863 873 883 893 903 913 923 943 953	814 824 834 844 854 924 934 954	815 825 835 845 845 865 875 885 905 915 925 945 955	816 826 836 846 856 866 926 936 946	817 827 837 847 857 867 877 907 917 927 937 947 957	818 828 838 848 858 868 928 928 938 948 958
	SKIRT BAS	SE	802		803		804		805	

e. Left SRM

Table IV. Concluded.

Figure 1. - Axis Systems.

Figure 2. - Model Sketches.

b. SRM, S₃, and External Tank, T₉
Figure 2. - Continued.

c. Integrated Vehicle Figure 2. - Concluded.

 $\frac{\partial u_{\bullet}}{\partial t} = \frac{\partial u_{\bullet}}{\partial t} + \frac{\partial u_{\bullet}}$

b. Isolated Orbiter (Entry Configuration) Mounted in the ARC 8x7 Ft. Tunnel Figure 3. - Concluded.

DATA FIGURES

d)

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

DAGE

ďЭ

PAG. .4 X/LB

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

-1.6

dЭ

-1.0

-1.2

9.

4.

8.

3

88

PARAYETRIC VALLES
.000 078:VC
.000 ELEVO.

BETAT REDER RESER

(R8MB01)

+ T9 ORBITER FUSELAGE

AMES 11-707 1A9 02A + S3

#AC+ 1.102

A. 320 7.980

₹0□◊4

0.1

4.

1.2

œ

СЬ

rp,

C-2

88 33 ARANETRIC VALLES

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC.

OCC. PAGE .4 X/LE (RBMBC2) BETAT RUDER RUDER LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES TO CRRITER FUSELAGE o Φ. ထ -1.0 -1.2 -1.4 -1.6 1.4 0. ယ္ 1.2 Сb + ω AVES ::-707 : A9 024 + S3 .4 X/LB 4.025 8.000 O 4 8 8 8 8 8 8 8 8 8 1.6 1.2 0. 8. -1.0 -1.2 ထ ယ္ Ö **8** ○ | | ◇

88 000 HARAMETRIC VALUES
.000 GRBINC
.000 ELEVEN
.000 Φ X/LB (RBMB02) BETAT RUDDER RUDFLR 0 AMES 11-707 IA9 C2A + S3 + T9 ORBITER FUSELAGE -1.6 -1.2 9. ω. • -1.0 œ ဖ္ 1.0 o -.2 4. 1.2 4. dЭ <u></u> .4 X/LB MACH 900. AL 030 **0**: 0 0 £ 8.88 8.88 8.08 8.08 -1.2 -1.4 ω. -1.0 1.6 1.2 1.0 œ ဖ္ 1.4 Ž OEI♦

СЬ

33

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

į

dЭ

0.0 0.0

Сb

PAGE

СЬ

77

PASE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

PARAYETRIC VALLES
,000 0981NC
,000 ELEVEN.

BETAT PLODER PLOFLR

(RBMB02)

AMES 11-707 1A9 02A + S3 + T9 0RBITER FUSELAGE

MACH 1.249

ALPHAT -3.980 .040

¥ 3. 8 8 8 8 8 8 8 8 8 8

§ OU♦

Cb

į

(RBMB02)

AMES 11-707 1A9 02A + S3 + T9 ORBITER FUSELAGE

(RBMB02) + 19 ORBITER FUSELAGE 83 AVES 11-707 1A9 02A +

PASE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

PAGE

PAGE

dЭ

(ე

PAGE

¥O□¢

10 to the second of the second

ţ-•

PAGE

į <u>:</u> 88 PARAFETRIC VALUES
.000 ORBING
.000 ELEVEN. 9 .4 X/LB (RBMB44) RETAT RODER ROFLR x/LB x/LB CONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES O **\$** 0 AMES 11-707 1A9 C2A + S3 + T9 ORBITER FUSELAGE -1.6 1.0 œ. 9. œ. ۱ -1.0 -1.2 1.6 1.2 œ -.2 4. Cb og. 1.247 ALP+AT -3.960 .020 F 15.00 15.0 80. -1.0 -1.2 0. -1.4 1.6 1.4 9. 1.2 œ ဖ o. -.2 4. Cb

PAG

PAGE

1

Сb

88

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

PAGE

φ

83

PARAMETRIC VALJES
-8.000 CABINC
.C00 ELEVON.

ALPHAT REDER PLOFLR

(RBMB03)

AMES 11-707 IA9 02A + S3 + T9 ORBITER FUSELAGE

₹0± :::02

#1.080 -4.080 0.020

£ % % % £ 55 % % £ 55 % %

₹ OU O

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

The second second

(J.)

* 4

(RBMB03)

AMES 11-707 IA9 02A + S3 + T9 ORBITER FUSELAGE

FACH 1.245

PARAYETRIC VALLES
-8,000 DRBING
,000 ELEVEN
,000 (RBMB03) ALPHAT RUDER RUDELR 8 AMES 11-707 IA9 C2A + S3 + T9 ORBITER FUSELAGE 0 9. 1.2 0. 9 ω 1 ထ္ o ယ္ ? Сb -0 PACH 1.245 BETAT -4.050 2.080 800 1.6 0.1 o -.2 -1.0 4. 1.2 φ. ဖ္ 9. 8. 4. ¥ O□◊

.

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES X/LB

8

O

-1.6

-1.2

g) g)

PAGE

. 22

DAGE

88 .. S PARAMETRIC VALLES
-4.00 DRBINC
.000 ELEVON
.000 PAGE .4 X/LB (RBMB05) ALPHAT PLODER RUDFLR LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES AVES 1:-707 :A9 C2A + S3 + T9 ORBITER FUSELAGE -1.6 1.6 1.4 1.2 0. æ ဖ -.2 9 8. -1.0 -1.2 -1.4 0 dЭ Φ .4 X/LB ₩. 603. 9£1A1 .020 4.080 0 18.03.08 18.03.08 18.03.08 9. æ 1.2 1.0 Ġ ω. -1.2 -1.4 -1.6 4. -.2 -1.0 å O⊟¢

dЭ

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

88

PARAMETRIC VALUES
-4.000 DRBINC
.000 ELEVEN
.000

6 PAGE

CRBMB053 ALPHAT RUDER RUDELR AMES 11-707 149 02A + S3 + T9 ORBITER FUSELAGE 851A7 8.150 K OU O

88

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

Cb

α: • · · DAGE

PARMETRIC VALLES
-4.000 SHBINC
.000 ELEVON
.000 (RBMB05) AMES 11-707 IA9 02A + S3 + T9 ORBITER FUSELAGE

88

EO∏♦

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

X/LB

ó

9.1-

-1.2

ω

Cb

() ()

DAGE

Cb

œ. ::

E0 4 G

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

ძე

 \mathbb{C}

() () ()

ill

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

(.)

(RBMB07)

Сb

88 PARAMETRIC VALLES
.000 0981NC
.000 ELEVO. X/LB (RBMB07) ALPHAT RLODER RLOSTLR LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES 0 AMES 11-707 1A9 02A + S3 + T9 ORBITER FUSELAGE 8. -1.0 -1.2 -1.4 ထ္ 1.6 Cb X/LB ₹. £88. # 1. 020. 020. 9. 8. -1.0 -1.2 -1.4 3.6 1.2 0. φ 1.4 **№** OU♦4 dЭ

BOAC

88 PARAMETRIC VALUES
.000 0981NC
.000 ELEVON
.000 ထ .4 X/LB (RBMB07) ALPHAT RUDER RUSTLR LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES AMES ::-707 IA9 02A + S3 + T9 ORBITER FUSELAGE 0 -1,6 -1.2 9 0. φ ယ္ CP <u></u> X/LB BE1A1 -4.050 020 £ 55.95 65.93 60.0 -1.2 -1.0 9. æ 9 Ġ 4.-S OF I

:29

The same of the sa

Control of the second of the s

Ť

dЭ

d

.33

88 PARAYETRIC VALLES
.CCC CREINC
.CCC ELEVEN. .4 X/LB (RBMB07) ALPHAT RUDGR PUDGLR A~ES 11-707 1A9 02A + S3 + T9 0RBITER FUSELAGE o 1.6 -1.4 -1.6 1.4 1.2 1.0 ω. ယ္ 4. 9 8. -1.0 -1.2 o. Сb O Φ .4 X/LB 9£1AT -4.080 2.070 0 .6 4. ... Ö -1.0 ∞ 8. ιō 9. o, **8**000

7:

PAGE

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

į

ძე

시' 기 . . .

DAGE O

:45

:43

0; 7;

PAGE

dЭ

7

(RBMB07)

AMES 11-707 IA9 02A + S3 + T9 0RBITER FUSEL*3E

FACH 1.397

dЭ

:58

PAGE

.. 00:

PASE

: 62

PASE

. . . .

PAGE

PAGE

<u>-</u>

ΕÚ

Сb

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

68.

0:

111

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

0) 4,

ង់ន 99: PARAMETRIC VALUES

8.000 CHEVON
.000 PASE ×/LB (RBMB11) ALPHAT RLCCER RLCTLR LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES AMES 11-707 1A9 02A + S3 + 19 ORBITER FUSELAGE Ö 9. **ω**. -1.0 ထ ? -1.2 1.2 ဖ္ 4. 0. Ö მე စ္ .4 X/LB #ACH 1.103 4.150 8.300 <u></u> F 85.88 85.88 85.88 85.88 85.88 -1.0 -1.6 7. 0. 9. æ. -1.2 1.6 1.2 φ. ယ္ c, -.2 **&**OU**◊**4 Cb

() ()

(H

PAGE

Cb

0-4

PASE .4 X/LB LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES X/LB

-1.6

Cb

ς. ς.

DAG:

PAGE

Cb

(RBMB34)

AMES 11-707 1A9 02A + S3 + T9 0RBITER FUSELAGE

MAO. 1.:00

NO I O

· 中華 月日 東西神神地下

- より本社の子の数でなれていまして

Сb

LONGITUDINAL DISTRIBUTION OF ORBITER FUSELAGE PRESSURES

\$ 500 S

40

Сb

234,

PASE

PAGE

Сb

Cb

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

24:

PAGE

©C□◊4

and the second s

242

PASE

ä œ PARAMETRIC VALLES

. CCC CREINC
. CCC ELEVON
. CCC Q G (RBMTO1) BETAT RECOER RECOER ø -1.6 AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK ٠ ش -1.2 1.6 Ņ o. 9 -1.0 -1.4 0.1 ယ္ -.2 4.-1.4 1.2 ά 43 اه 9 o popod A. 180 28.085 28.085 -1.6 0.1 4. -1.0 -1.2 -1.4 9 œ Ö 1.4 7. o 7. 4.1 9. 8 g OU

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

243

PASE

, , ,

The state of the s

Cb

と、たて知り、世界に関語のはは、一様を

Cb

811 8 200 (10 C) (10 C X/LT (10. AEa) A: 30 9 11 -1.6 AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK -1,2 0.1-8 7 0 9. o. -:2 1.2 æ 1.6 o. 1.4 4D œ Α. 986 A 600. 0 8888 8888 -1.6 8 -1.0 -1.2 -1.4 0.1 9. 9.1 1.2 œ Ġ Ġ -.2 4. 4. **E**OLIO4

ďЭ

4

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

Cb

573

PAGE

Cb

PASE

ďЭ

(RBMTQ1)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

#6. -10. 104

<u>*</u>#888 8888

§O□◊4 .

9.

4.

1.2

0.

œ

Ö

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

-1.6

-1.4

-1.0

Ö

Ğ

4.

-1.2

253

PAGE

-.2

Ċ

ďЭ

The state of the s

Cb

: 1 :

**・・・ 母母は後年の神の世代の方とい

-- 一年 安藤子明 とせ

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

(C)

2 A C.

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PASE

(RBMTO:)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

FACH : .248

4.040 8.010

Cb

Cb

· 1000 ·

88

PARMETRIC VALUES.
1.000 CRBINC.
1.000 ELEVON.

BETAT RLOSER RLOSELR

(RBMT02)

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

A. P.A. 1. 088.5. 020.

£ 888 888 888

こうかん かいかん かんしん かんしゅう かんかん かいかん かんかん かんかん かんしき いっているいいかい なもでいからはないのできない かいしゃ しいちゅうかんしょう

The second of the second secon

(

(RBMT02)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

これの大きなのでする ちょう・ス

CP

PAGE

88

8888 8888

ŽOU♦4

á

~~4

7:

C)

αė

ယ္

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

277

8

-1.6

ဖ

-1.6

-1.0

φ. • -1.2

-1.4

.4 X/LT

-1.2

Cb

4.

9.

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

要是这个人的时间,我们就会这个时间也是这个人的,也是这种的最后的一个人的,我们就是一个人的,我们的一个人的,也是是一个的,也是是一个人的,也是一个人的人的人的, 第二章

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

28:

PAGE

The Control of Control

PAGE

And the second of the second o

PAGE

The second secon

The state of the s

(RBM102)

AMES 11-707 : A9 02A + S3 + T9 EXTERNAL TANK

PASE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

× × ×

-1.6

-1.4

œ

.4 X/LT

9.1-

-1.4

Cb

297

PASE

1

(RBMT44)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

f ,

i fi

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

dD

8 PARAMETRIC VALLES
COO CABING
COO CABING
COO CABING
COO CABING Q 9 .4 X/L⁷ (33~44) 9E'A' Ö AVES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK -1.6 -1.2 o 9. 8. -1.0 œ Ģ 0.1 9. 4. ďЭ œ Q O² Q O O A.020 010. # 88 E -1.6 -1.0 -1.2 9.1 1.2 0. ဖ္ 1.4 ထ o. & OLI

ŧ

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

ECE

PASE

(RBM144)

AMES 1:-707 IA9 02A + S3 + T9 EXTERNAL TANK

1

(RBM144)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

d)

ď

(RBMT44)

AMES 11-707 IA9 32A + S3 + T9 EXTERNAL TANK

3:2

PAGE

今日 福養皇 みんまつ

第三章要 として

•

Cb

į

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

LONGITUDINAL DISTRIBUTION OF CARITER FUSELAGE PRESSURES

0,5

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

十十 小なる 一日 かっとうといい

The state of the s

がは、100mmは110mmの大きないませんという。

· ·

Cb

d)

PAGE

:RBMT03)

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

日 (本年)中国大学 经营业人工的

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

ر. م

م کرد کی ا

, 90

12. All and discount different the second or the

Apply 1

ì

dD

g OU

342

PAGE

d)

(48MT05)

AMES 11-707 1A9 C2A + S3 + T9 EXTERNAL TANK

有けると 長いてる

**

СЬ

1

(RBMT05)

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

PARAFETRIC VALUES
-4.000 CHBINC
.000 ELEVOA.

ALPHAT RADER RASER

(RBMT05)

AMES 11-707 1A9 C2A + S3 + T9 EXTERNAL TANK

399 399

BETAT 8.150

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

88

PARAMETRIC VALUES.
-4.000 GLEVON.

(RBMT05)

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

dЭ

12) Chi an and days a state of the state of the last

()

The state of the s

-

8 ဖ LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES 8 -1.0 -1.6 0. 9. -1.2 -1.4 Φ Ģ 4. Cb Ø, ယ -1.6 0.1 œ **ش** 1 ဖ o. 9. -1.0 -1.2 -1.4

88 PARAMETRIC VALLES
-4.000 CHRINC
.000 ELEVON
.000 (RBMT05) ALPHAT RLDDER RLDFLR AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK 1.6 4.120 8.230 <u>¥88888</u> 80088 1.6 **8**O□◊4

1.4

1.2

1.2

7.1

Cb

354

PASE

こうといるよう 田田田田の大田田のでは、子

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

353

10 A C

Cb

88

PARAYETRIC VALLES
-4.000 078 INC
.000 ELEVON
.000

ALPHAT RLDDER RLDFLR

(RBMT05)

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

73CH 1.102

28.28 23.38 30.38

g OII

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

36:

PAGE

The state of the s

PAGE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

88

PARAYETRIC VALUES
-4.000 GRBINC
.000 ELEVEN.

ALPHAT PLOCE RLOFLE

(RBI-105)

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

MACH :.245

9£17/1 -4.060 2.060

38.8 88.88 88.88

gOU

Cb

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

. .

: در در

n a breitenbendalite ein materner in-

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

4,0

The state of the Parish of the state of the

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

368

PASE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

37:

PASE

*

Cb

(RBMT07)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

dЭ

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PASE

To design the state of the stat

(

88

PARAMETRIC VALUES
.COC DRBINC
.COC ELEVEN
.COC .

ALPHAT RUDGER RUJFLR

(RBMT07)

AMES 11-707 1A9 C2A + S3 + T9 EXTERNAL TANK

#ETAT 4.080 020

S OLI

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

₽**₽**

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

では、日本のでは、日本のでは、これでは、日本のでは、日本

88

PARMETRIC VALLES
.CCC CRBINC
.CCC ELEVON
.CCC

ALPHAT RLODER RLOFLR

(RBMT07)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

74CH 306.

4.120 8.220

> F. 123.000 135.000 156.000 156.000

§O□◊4

ყე

PAGE

The state of the s

The state of the World State of the State of

40

Same and the same of the same

PAGE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

Cb

382

3570

Control of the contro

一一日本 一日本の日本日本日本日本日本日本日本

d'la

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

385

BAGE

Cb

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

387

DAGE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

「日本の一年には、日本の一年により、日本の

386

PAGE

PASE

СЬ

1.2

0.

ဖ

 $\boldsymbol{\omega}$

% O□◊⊲

4.

9.

0

8.

-1.0

-1.2

-1.4

PASE

d)

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

394

PAGE

というなと、いかなのはなってはないできる

395

PASE

•

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

30 S

dЭ

6.

Сb

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

() ()

11. 12. 14. 0

ĺ

ďЭ

PAGE

The second of th

and a district

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

PAGE

) ||||||

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

これの一年には、日本の一大変は他の日本は日本の一日

40

(RBMT09)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

Cb

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

(0

. . . .

Cb

4:8

PAGE

(RBMT09)

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

СЬ

dЭ

1

888

PARAMETRIC VALUES
B.CCC GRBINC
CCC ELEVEN
CCC

ALPHAT RLODER RLOFLR

CRBMT113

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

-4.010 -200

78.28 28.38 38.38 38.38

S OU

Сb

424

PASE

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

OU 04

Cb

THE PARTY OF THE P

3

1

(RBMT11)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

MACH. 600.

Сb

Cb

88

PARAMETRIC VALLES
8,000 CABING
,000 ELEVON
,000

ALPHAT R.COER R.CF.LR

(RBMT11)

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

3A0H ∴ 102

9E1AT -4.07C 2.09C

£ 85.55 8.65 6.65

NO S

dD

Сb

(RBMT11)

AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK

dЭ

LONGITUDINAL DISTRIBUTION OF EXTERNAL TANK PRESSURES

1

(RBMT11)

AMES 11-707 IA9 02A + S3 + T9 EXTERNAL TANK

d:1

The state of the s

ß.

Cb

PAGE

-1.6

-1.4

-1.0

9.

4.-

8.

-1.2

3.83 3.83 3.83 3.83

g o \square

1.6

1.4

1.2

1.0

9

œ

?

ó

-.2

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

5.46

PASE

dЭ

448

∃9¥c

8 O□ ◊ 4

კე

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

and the same of the same and the same of

СЬ

45.7 1041

Cb

65. 65.

出りべる

は、湯湯し、

Сb

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

459

PAGE

DAGE

48.

PASE

水水源

Сb

Cb

dЭ

「中でしては一時間には中 本ではなるのはいははは、はつの

dD

Ī

(RBMS02)

AMES 11-707 1A9 02A + S3 + T9 SRM B00STER

· 養然 コー・おいて 地の これ こまいまた

1000年後年11日本の

Сb

Cb

dЭ

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

(A (A)

Comment of the State of the

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

-1.6

-1.4

485

PAGE

; ;

:

.

*

8.

ALP-MT -4.020

488 8888

₹00��

1.6

1.4

1.2

1.0

œ

9

7

o.

88

-.2

9.

4. -

ω

-1.0

-1.2

dЭ

СЬ

488

これの門

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

dЭ

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

600

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

498

国のそう

(RBMSD3)

AMES 11-707 IA9 02A + S3 + T9 SRM B00STER

Ĩ

1

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

dЭ

(RBMS03)

AMES 11-707 IA9 02A + S3 + T9 SRM B00STER

S OEIOA

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

503

PAGE

L'INGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

Ĩ

dЭ

į

0.1

dЭ

LONGITUDINAL DISTRIBUTION OF SRM 600STER PRESSURES

{ 11111111 88

PARAMETRIC VALLES
-4.000 CMBINC
.CCO ELEVEN
.CCC

ALPHAT RUDER RUDFLR

(RBMS05)

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

88

PARACTRIC VALLES
-4.000 O'BINC
.000 ELEVEN
.000

ALPHAT RLODER RLOFLR

(RBMS05)

AMES 11-707 1A9 02A + S3 + T9 SRM B00STER

MACH

BETAT 8.150

~

5:8

PAGE

8000◊4

Сb

0,000

PAGE

dЭ

Water State Control of the Control o

dЭ

The second second second in the second secon

528

34.35

№0П�4

· 沙蘭·阿尔尔·斯斯

dЭ

.

Сb

DAGE

٠ •

-

- 13.00 C

MIL TO THE PERSON OF THE PERSO

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

0.4C

PAGE

54:

PAGE

Cb

9.-

-1.0

-1.2

-1.4

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

544

PASE

œ

.4 X/LS

-1.6

100

77

-1.6

225.000 275.000 315.000

€0□◊4

1.6

1.0

1.2

Ģ

7

o

Cb

œ

Сb

A. 19 1000

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

Сb

3, 17 0, 18 0, 19 00

10.0

Ä

94GE

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

СЬ

PARMETRIC VALUES
4.000 ORBINC
.CCD ELEVEN
.CCD

ALPHAT RUDER RUDFLR

(RBMS09)

AMES 11-707 IA9 02A + S3 + T9 SRM BG0STER

4.130 8.240

BOLI◊◊

Сb

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

555

PAGE

PAGE

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

Cb

•

the agreement of

The second secon

- Can - Can

dЭ

T spare

40

PAGE

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

PAGE

LONGITUDINAL DISTRIBUTION OF SRM BOOSTER PRESSURES

Сb

Cb

LONGITUDINAL DISTRIBUTION OF SPM BOOSTER PRESSURES

PAGE

dЭ

-

dD

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

PAGE

ďЭ

The state of the s

, 60° .

Ą

{ ||||

СЬ

FHARINATSF DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

. .

(]||

Í

0,8

1-10-1-13

(al

llu ^k

(...

hut

full

د فودون ا

The state of the s

(a)

The state of the s

4.11

The state of the s

The second secon

1.11

Сb

(ull

hu

⁴ull

83 .: PAGE

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

Total Tall The William

hut

88

PARAMETRIC VALLES
-4.000 DRBINC
.000 ELEVEN
.000

ALPAA RLOSER RLOSELR

CHORDWISE DISTRIBUTION OF UPPER AND LOWER SURFACE WING PRESSURES

88

PARAYETRIC VALUES
-4.000 GRBINC
.000 ELEVON
.000

ALPHAT RUDGER RUDFLR

СЬ

PAGE

(.11

(a)

Oran Carlo C

) (D) 3 (S) (A) (D)

10 m

A STATE OF THE STA

ų^g

に伸ぶされてきが、こ

Same of the second of the seco

The state of the s

(_{dll}

₹ all

大山山田 大田田田田

Provide Antible and the Control of

ĺ

₹ IIII

(|||

4 .M

(||||

3 7 7

The state of the s

į

3) 3)

3.5 jo,5

المال المال المواد المو

90.0 904

СЬ

. .

₩.:

9ETAT -4.080 2.080

1

88

PARAFETRIC VALLES
4.000 GRBINC
.000 ELEVON
.000

ALPHAT RLODER RLOFLR

PAGE

ا ان انسر _

III

ر المالية الما

6.7

dil

THE RESERVE TO SERVE

Table 1

D.

III

3,839

ټ س

* The state of the state of the state of

PAGE

(.11)

*

The state of the s

3,000

S. 400 B. 2. 3. 1.

n n

⁴...ll

⁴.11

おります 一種・変数でありませる

e''||

The state of the s

(.11

The state of the s

*

hil

ô

Ü

To the state of th

-1.04

-1.2

8.

-.6

755

-.2

43

ぜ

7

o.

ဖ

ထ္

1

88

PARMETRIC VALLES
-4.000 CRBINC
.000 ELEVEN
.000

ALPHAT RUDER RUDELR

full

A list

a de la constante de la consta

full

The state of the s

(ull

30,000,000

.

Section 18 Section 18

hut

, ne

0.5

li.

6.0

dЭ

full

full

III

حود م الم

G. 98

The second secon

a

hal

Înt

hill

lin

Сb

₹ all

and the second s

ill

Ĭ

Jan to the month

و المالية الما

.111

E . . .

ę.

i di

 $\hat{\mathcal{G}}_{\mathbf{x}}$

0.10

12 (A)

The section of the section of

A CONTRACTOR OF THE PARTY OF TH

ر الا -الا -

:= :-. . .

The second secon

A STATE OF THE PARTY OF THE PAR

16.

illi

ıIII

The state of the s

Salar Land Charles Had The Control

83:

PASE

The second secon

We will be the second

Control of the Contro

No.

Company of the second

र्ग सम्बद्ध रहे रहे हैं है

IIII

4 (A)

50 mg

3

СЬ

< IIII

¥ 1500

LANGE OF THE PARTY

STATE OF STATE

ıllı

Control of the second of the s

*) ::

843

PASE

CHORDWISE DISTRIBUTION OF LEFT AND RIGHT SURFACE VERTICAL TAIL PRESSURES

ω

ယ

-1.4

€ |||

The transmission of the state o

IIII

•

The was the state of the state

-- f -- 3

de la companya de la

The state of the s

Illi

Cb

;

The work has the way to be a second of the second

A King Samuel

The first section of the second section of the section of the second section of the section of the second section of the

4.11

i III

The state of the s

2/11

IIII

A MORE TO THE MENT OF THE

ıIII

* **

Downson Broken Broken Barrer

PODITED BACE PRESCHIRES

i_{all}

4.11

310133100 1 16661 JON GIOGE

...

⁽ ill

IIII

1.11

IIII

CRBME023

AMES 11-707 : A9 C2A + S3 + T9 OMS NGZZLE

dЭ

Сb

[†] .III

1.11

* .111

SRM BOOSTER BASE PRESSURES

とこれ はいいの間を あいけん

1 .11

.11

このないない 大田田 田田田 大連をというできる

88 PARAYETRIC VALLES
.CCC CRBINC
.CCC ELEVEN. -2 0 BETAT AVES 11-707 IA9 C2A + S3 + T9 EXTERNAL TANK BASE (RBMY07) ALPHAT PLODER PLOFIER ဖှ **φ** -.05 -.10 . 09.-8 -.15 -.30 -.35 -.20 -.25 -.55 -.40 -.45 -.50 d) œ BETAT 1047 98: မှ -.15 -. `.J. 8 -.05 -.10 - 30 -.25 -,35 -.40 -.45 09.--.50 -.55 S OF IC СЬ

88 PARAMETRIC VALUES
.CCC CRBINC
.CCC ELEVEN. AMES 11-707 1A9 02A + S3 + T9 EXTERNAL TANK BASE (RBMY07) ALPHAT PLODER PLOFLR 8 8 -.05 -.10 -.15 . 09*--,30 -.35 -.45 -.20 -.25 -.40 -.55 -.50 CP σ မ *AC± :.249 4 ...x re: 9 8- 09.-¥ 8 8 5 8 8 8 8 8 8 8 -.10 -.05 -.15 -.20 -.45 -.25 -.30 -.35 -.40 -.50 -.55 § OFI¢

₹ ill

dЭ

