Mathematical Methods 3/4 Trial Exam 2 Solutions 2006 Free download and print from www.itute.com Do not photocopy ©Copyright 2006 itute.com

SECTION 1

1	2	3	4	5	6	7	8	9	10	11
Е	Е	D	D	Е	Α	D	С	Α	Α	С

12	13	14	15	16	17	18	19	20	21	22
Α	В	D	A	D	C	D	С	В	D	D

Q1
$$e^{2x+2} = e^x$$
, $e^{2x+2} - e^x = 0$, $e^x (e^{x+2} - 1) = 0$.

Since
$$e^x \neq 0$$
, $\therefore e^{x+2} - 1 = 0$, $e^{x+2} = 1$, $x+2=0$, $x=-2$.

Q2 $3\cos(7x)+1$ is an even function. If x=a and x=b are the first two positive solutions to $3\cos(7x)+1=0$, then x=-a and x=-b are the first two negative solutions. Hence the sum = 0.

Q3
$$\log_2(4a^p) = \log_2 4 + \log_2 a^p = 2 + \frac{\log_a a^p}{\log_a 2} = 2 + \frac{p}{\log_a 2}$$
.

Q4 For f(x) to be defined, $(x+1)^2 > 0$, $\therefore x \neq -1$.

Q5
$$|2x-1| < 1$$
 is equivalent to $(2x-1)^2 < 1$, $(2x-1)^2 - 1 < 0$, $[(2x-1)-1][(2x-1)+1] < 0$, $\therefore 4x(x-1) < 0$, $\therefore 0 < x < 1$.

Q6

Q7 From graph,
$$b = -\frac{5}{2}$$
, $c = 2$, $\therefore y = a \left(x - \frac{5}{2}\right)^2 + 2$.

The graph passes through (0,0), $\therefore 0 = a \left(0 - \frac{5}{2}\right)^2 + 2$,

$$\therefore a = -\frac{8}{25}.$$

Q8 Transformation of y = |x|: From graph, y = a|x - p| + 3. The graph passes through (0,0), $\therefore 0 = a|-p| + 3$, $\therefore ap + 3 = 0$, $a = -\frac{3}{p}$.

Hence
$$y = -\frac{3|x-p|}{p} + 3 = 3\left(1 - \frac{|x-p|}{p}\right) = 3\left(1 - \frac{|p-x|}{p}\right)$$
.

Q9 Any relation has an inverse.

Q10
$$f(x) \to f\left(x + \frac{1}{2}\right) \to f\left(x + \frac{1}{2}\right) - \frac{1}{4} \to -\left[f\left(x + \frac{1}{2}\right) - \frac{1}{4}\right],$$

 $\therefore g(x) = -f\left(x + \frac{1}{2}\right) + \frac{1}{4} = -\left[-\left(x + \frac{1}{2}\right)^2 + \left(x + \frac{1}{2}\right)\right] + \frac{1}{4} = x^2.$

Q11 Use graphics calculator to display $y = x + \sin\left(\frac{\pi x}{2}\right)$. In the interval [0,4], the local minimum value is 1.7895 and the local maximum value is 2.2105. $\therefore x + \sin\left(\frac{\pi x}{2}\right) - c = 0$ will have more than one solution if 1.8 < c < 2.2.

Q12 Use graphics calculator to display $N = 5 \times 2^{0.1t}$, determine $\frac{dN}{dt}$ at t = 10. $\frac{dN}{dt} \approx 0.7$.

Q13 At 6.00 am, t = 6, $h = 1.5 + 0.6 \cos \pi = 0.9$.

At 8.00 am,
$$t = 8$$
, $h = 1.5 + 0.6 \cos \frac{8\pi}{6} = 1.2$.

Average rate = $\frac{1.2 - 0.9}{8 - 6} = 0.150$.

Q14 Total area =
$$-\int_{a}^{b} (f(x) - g(x))dx + \int_{b}^{c} (f(x) - g(x))dx$$

= $\int_{b}^{a} (f(x) - g(x))dx + \int_{b}^{c} (f(x) - g(x))dx$.

Q15
$$\int_0^1 2(x - f(x)) dx = 2 \int_0^1 (x - f(x)) dx = 2 \left(\int_0^1 x dx - \int_0^1 f(x) dx \right)$$
$$= 2 \left[\frac{x^2}{2} \right]_0^1 - 2 [F(x)]_0^1 = 1 - 2 (F(1) - F(0)) = 1 - 2F(1) + 2F(0).$$

Q16 For
$$\pi < x < 3\pi$$
, $f(x) = \left| \cos\left(\frac{x}{2}\right) \right| = -\cos\left(\frac{x}{2}\right)$,
 $f'(x) = \frac{1}{2}\sin\left(\frac{x}{2}\right)$, $\therefore f'(a) = \frac{1}{2}\sin\left(\frac{a}{2}\right)$.

Q17 Let
$$f(x) = \sqrt{x}$$
, $f'(x) = \frac{1}{2\sqrt{x}}$, $a = 16$, $h = -1$.
 $\sqrt{15} = \sqrt{16 + 1} \approx \sqrt{16} + 1 \times \frac{1}{2\sqrt{16}} = 4 - 0.125 = 3.875$.

Q18 Check the gradient of the curve. As $x \to -\infty$, $f'(x) \to 0$. As $x \to \infty$, $f'(x) \to 0$. Gradient is always negative. Slope is steepest (most negative) at x = 0.

Q19 Graph becomes more symmetrical as n increases. Graph becomes more asymmetrical if p increases or decreases past 0.5.

Q20
$$\Pr(X \le 2 \mid X \ge 1) = \frac{\Pr(X \le 2 \cap X \ge 1)}{\Pr(X \ge 1)}$$

= $\frac{\Pr(X = 1) + \Pr(X = 2)}{\Pr(X \ge 1)} = \frac{0.7}{0.9} = \frac{7}{9}$.

Q21

$$Pr(X > \mu + 8) = Pr(X > \mu + 2\sigma) = Pr(Z > 2) = 1 - Pr(Z < 2).$$

Q22
$$\int_{1}^{2} k \sin(\pi x) dx = 1$$
, $\left[\frac{-k \cos(\pi x)}{\pi} \right]_{1}^{2} = 1$, $\frac{-k \cos(2\pi)}{\pi} - \frac{-k \cos(\pi)}{\pi} = 1$, $\frac{-2k}{\pi} = 1$, $\therefore k = -\frac{\pi}{2}$.

SECTION 2

Q1a.
$$f(x) = (x+b)^3 + c = x^3 + 3bx^2 + 3b^2x + b^3 + c$$

= $x^3 - 6x^2 + 12x + p$, $\therefore 3b = -6$ and $b^3 + c = p$,
 $\therefore b = -2$ and $c = p + 8$.

Q1b.
$$x^3 - 6x^2 + 12x + p = 0$$
, $\therefore (x - 2)^3 + p + 8 = 0$, $(x - 2)^3 = -(p + 8)$, $\therefore x - 2 = \sqrt[3]{-(p + 8)} = -\sqrt[3]{p + 8}$, $x = 2 - \sqrt[3]{p + 8}$, which is defined for all real p .

Q1ci. For $f(x) = (x-2)^3 + p + 8$ to have a stationary point on the x-axis, p+8=0, p=-8.

Q1cii.

Q1d. Since
$$f(x) = (x+b)^3 + c$$
,
 $\therefore f(x-b) = ((x-b)+b)^3 + c = x^3 + c$,
 $\therefore f(x-b) - c = x^3$.
Compare with $f(x+u) + v = x^3$, $u = -b = 2$ and $v = -c = -p - 8$.

Q1ei. For
$$p = -7$$
, $f(x) = x^3 - 6x^2 + 12x + p = (x - 2)^3 + 1$. Equation of function $f: y = (x - 2)^3 + 1$. Equation of function $f^{-1}: x = (y - 2)^3 + 1$. Express y as the subject of the equation, $x - 1 = (y - 2)^3$, $y - 2 = \sqrt[3]{x - 1}$, $y = \sqrt[3]{x - 1} + 2$. $\therefore f^{-1}(x) = \sqrt[3]{x - 1} + 2$.

Q1eii.
$$y = \sqrt[3]{x-1} + 2 = (x-1)^{\frac{1}{3}} + 2$$
,
 $\frac{dy}{dx} = \frac{1}{3}(x-1)^{\frac{2}{3}} = \frac{1}{3(x-1)^{\frac{2}{3}}}$. Maximal domain is $R \setminus \{1\}$.

Q1f. The graphs of $g(x) = (x - \alpha)^3 + \alpha$ and $g^{-1}(x)$ are shown below.

The total area of the enclosed regions is the same as the total area enclosed after vertical and horizontal translations by α .

Total area =
$$4 \times \int_0^1 (x - x^3) dx = 4 \left[\frac{x^2}{2} - \frac{x^4}{4} \right]_0^1 = 1$$
.

Q2a.
$$P(t) = Ae^{-at}$$
. At $t = 0$, $P(0) = Ae^{0} = A$.

Q2bi.
$$P(t) = Ae^{-at}$$
, $\frac{dP}{dt} = -aAe^{-at} = -aP$, $\therefore \frac{dP}{dt} \propto P$.

Q2bii. Since $\frac{dP}{dt} \propto P$, $\therefore \frac{dP}{dt}$ is halved when P is halved, i.e. $P = \frac{1}{2}A \cdot \therefore \frac{1}{2}A = Ae^{-at}$, $e^{-at} = \frac{1}{2}$, $e^{at} = 2$, $at = \log_e 2$, $t = \frac{\log_e 2}{a}$.

Q2ci.
$$D(t) = P(0) - P(t) = A - P(t)$$
.

Q2cii.
$$A = D(t) + P(t)$$
, $\frac{A}{P(t)} = \frac{D(t) + P(t)}{P(t)}$, $\frac{A}{P(t)} = \frac{D(t)}{P(t)} + 1$, $e^{at} = \frac{D(t)}{P(t)} + 1$, $\therefore at = \log_e \left(\frac{D(t)}{P(t)} + 1\right)$, $t = \frac{1}{a} \log_e \left(\frac{D(t)}{P(t)} + 1\right)$.

Q2di.

$$t = \frac{1}{a}\log_e\left(\frac{D(t)}{P(t)} + 1\right) = \frac{1}{1.39 \times 10^{-11}}\log_e\left(0.0196 + 1\right) = 1.40 \times 10^9$$

Q2dii. Let
$$r = \frac{D(t)}{P(t)}$$
, $t = \frac{1}{a}\log_e(r+1)$, $\frac{dt}{dr} = \frac{1}{a(r+1)}$.

$$\Delta t \approx \frac{dt}{dr} \Delta r = \frac{\Delta r}{a(r+1)} = \frac{0.00130}{1.39 \times 10^{-11} (0.0196 + 1)} = 9.17 \times 10^7$$
.

Q3ai.

$$500 \begin{bmatrix} ----\frac{5000}{2} & -----\frac{\theta}{2} \\ -----\frac{\theta}{2} & -----\frac{\theta}{2} \end{bmatrix}$$

 $\tan \theta = \frac{500}{5000}$, $\theta = 0.100$. Lower bound for θ is -0.100.

Q3aii.
$$\frac{h-500}{5000} = \tan \theta$$
, $\therefore h = 5000 \tan \theta + 500$.

Q3b.
$$h = 5000 \tan \theta + 500$$
, $\frac{dh}{d\theta} = 5000 \sec^2 \theta = \frac{5000}{\cos^2 \theta}$

Related rates:
$$\frac{dh}{dt} = \frac{dh}{d\theta} \times \frac{d\theta}{dt}$$
, $\therefore \frac{dh}{dt} = \frac{5000}{\cos^2 \theta} \times \frac{d\theta}{dt}$.

Hence
$$\frac{d\theta}{dt} = \frac{\cos^2 \theta}{5000} \times \frac{dh}{dt}$$
.

Q3c. If $\frac{dh}{dt}$ is constant, then $\frac{d\theta}{dt} \propto \cos^2 \theta$.

Since $-0.100 \le \theta < \frac{\pi}{2}$, $\therefore \cos^2 \theta$ and hence $\frac{d\theta}{dt}$ is maximum when $\theta = 0$.

Q3di.

$$\tan \theta_1 = \frac{1000}{x}, \ \theta_1 = \tan^{-1} \left(\frac{1000}{x} \right).$$

$$\tan \theta_2 = \frac{900}{x}, \ \theta_2 = \tan^{-1} \left(\frac{900}{x} \right).$$

$$\therefore \alpha = \theta_1 - \theta_2 = \tan^{-1} \left(\frac{1000}{x} \right) - \tan^{-1} \left(\frac{900}{x} \right).$$

Q3dii. Use graphics calculator to sketch

$$\alpha = \tan^{-1} \left(\frac{1000}{x} \right) - \tan^{-1} \left(\frac{900}{x} \right)$$
. Find x where maximum α occurs, $x = 949$ m.

Q3diii.
$$\alpha = 0.052656^{\circ} = 0.052656 \times \frac{180^{\circ}}{\pi} = 3.02^{\circ}$$
.

Q3div. For
$$x \ge 2000$$
, α is maximum at $x = 2000$, $\alpha = 0.040794 \times \frac{180^{\circ}}{\pi} = 2.34^{\circ}$.

O4a.

$$Pr(4.95 \le L \le 5.05) = normalcdf(4.95, 5.05, 5.00, 0.02) = 0.988$$

Q4b.
$$Pr(3.92 \le d \le 4.08) = \int_{3.92}^{4.08} 750(d-3.9)(4.1-d)dd$$

= 0.944 (by graphics calculator)

Q4c. Proportion acceptable = $0.988 \times 0.944 = 0.933$, \therefore proportion unacceptable = 1 - 0.933 = 0.067.

Q4d.

	L	L'	
d	0.933	0.011	0.944
ď	0.055	0.001	0.056
	0.988	0.012	1

Required proportion =
$$\frac{0.055}{0.067}$$
 = 0.821.

Q4e. $95\% \times 20 = 19$.

Binomial distribution: n = 20, p = 0.933, $x \ge 19$,

$$Pr(X \ge 19) = Pr(X = 19) + Pr(X = 20) = 0.3588 + 0.2498 = 0.609$$

Q4f. Pr(second inspection) = $0.609 \times 0.3 + 0.391 \times 0.9 = 0.535$ Pr(no second inspection) = 1 - 0.535 = 0.465.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors