Model Documentation of the Furuta Pendulum

1 Nomenclature

1.1 Nomenclature for Model Equations

- m_2 mass of the pendulum
- l_1 length of the arm
- l_2 length of the pendulum
- J_1 moment of inertia of the arm
- J_2 moment of inertia of the pendulum about the axis of rotation through the center of mass
- g acceleration due to gravity
- q_1 angel of the arm
- q_2 angel of the pendulum
- au torque on the arm

1.2 Graphic of the Structure

Figure 1: Structure of the Furuta Pendulum. Source: Wang, Yang/Erstellung eines regelungstheoretischen Katalogs unteraktuierter mechanischer Systeme

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (q_1 \ q_2 \ \dot{q}_1 \ \dot{q}_2)^T$$

$$= (x_1 \ x_2 \ x_3 \ x_4)^T$$

$$u = \tau$$

Kinetic Energy:

$$T = \frac{1}{2}J_2x_3^2 + \frac{1}{2}m_2[(l_1^2 + l_2^2\sin^2 x_2)x_3^2 + l_2^2x_4^2 + 2l_1l_2\cos x_2x_3x_4]$$
(1a)
(1b)

Potential Energy:

$$V = m_2 g l_2(\cos x_2 - 1) \tag{2a}$$

(2b)

Parameters: $m_2, l_1, l_2, J_1, J_2, g$

Outputs: $\underline{\mathbf{x}}$

2.1 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
mass of the pendulum	m_2	0.2	kg
length of the arm	l_1	0.5	\mathbf{m}
length of the pendulum	l_2	0.5	\mathbf{m}
moment of inertia of the arm	J_1	0.02	$kg \cdot m^2$
moment of inertia of the pendulum	J_2	0.02	$kg \cdot m^2$
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution.

4 Simulation

Figure 2: Simulation of the furuta pendulum.

References

- [1] K. Furuta: Swing-up control of inverted pendulum using pseudo-state feedback., Journal of Systems and Control Engineering, S. 263–269, published 1992.
- [2] Wang, Yang: Erstellung eines regelungstheoretischen Katalogs unteraktuierter mechanischer Systeme, master thesis at the Institut of Control Theory TU Dresden, published 2016. (not publicly accessible)