2019.8.25汇报-王鹏

- 1. 论文阅读
 - 1. 复现实验过程:Is word segmentation necessary for DL of Chinese representations?
- 2. Web Data Mining
- 3. CRF的学习使用-达观杯NER比赛
- 4. Github: https://github.com/RelativeWang/word2vec-study

1复现实验准备

CTB6.0的下载需要LDC购买,东南和蒙纳士的数据库里都没有,浙大有但是需要浙大的账号,现在打算换其他数据集。

实验内容	数据集	方法	L S		评价指标	备注
Language Modeling	CTB Train: Validation: test = 8: 1: 1		1024+10 24 2048+20 48	码char和word Yin et al., 2016 Yu et al., 2017 CNNs保持维数 一致 分词后只用连续的字代表向量	通俗解释给 定一个词, 下一个词的	Char- only 合不白只词单 的模太。用后词
	https://catal og.ldc.upenn .edu/LDC200 7T36	还采用了Stanford CWS和LTP包分词,效果类似,但文中没有体现对比实验			I —	吗?

1复现实验准备

机器翻译的这个实验的模型没有找到模型的代码。

实验内容		数据集		方法	评价指标	备注
	Ch-	Train	1.25M Sentences Pairs from LDC2002E18等	Standard SEQ2SEQ+ attention		文中还用了 BPE字词模型 测试,可以 自己测一下 BLEU(改进的 n-gram +
	En	Validatio n Evaluate d	NIST2002 NIST2003- 2006&2008		验证集和 评估集翻 译的准确	
char-base vocab size 4500)	EN- Ch	Same train	me train and test .2 dimensionalities <u>ref</u>		率	brevity penalty) https://www.aclweb.org/anthology/P02-1040

1复现实验准备

句子匹配的实验,BQ这个数据集正在申请,LCQMC这个数据集和在github上找到,BiMPM模型,训练有些慢,正在尝试GPU训练。

文本分类模型目前, 还没有进行具体实验。

实验内容	数据集	方法	评价指标	备注
Sentence Matching/Pa raphrase	BQ 句子相似 意思不同 LCQMC 句子 不同意思一 样	Jieba分词 用模型 <u>BiMPM</u>	通过valid集 合	
实验内容	数据集	方法	评价指标	备注
Text Classification	来自Ref的5 个数据集 Description不 同即train valid test 比 例不同	Wordbased charbased of bi-directional LSTM models	通过valid集 合	

2. Web data mining

8.25日看到3.7, 朴素贝叶斯分类, 这周完成了四节的内容。

CRF是信息抽取的主流模型,目标函数考虑了输入的状态特征函数,同时包含了标签转移特征函数。

这样使得标注过程可以利用到内部特征和上下文特征信息。

HMM是生成模型, CRF是判别模型。

```
# Unigram
U00:%x[-3,0]
U01:%x[-2,0]
U02: %x[-1,0]
U03:%x[0,0]
U04:%x[1,0]
U05:%x[2,0]
U06:%x[3,0]
U07: %x[-2,0]/%x[-1,0]/%x[0,0]
U08: x[-1,0]/x[0,0]/x[1,0]
U09: %x[0,0]/%x[1,0]/%x[2,0]
U10: %x[-3,0]/%x[-2,0]
U11: %x[-2,0]/%x[-1,0]
U12: %x[-1,0]/%x[0,0]
U13: %x[0,0]/%x[1,0]
U14: %x[1,0]/%x[2,0]
U15: %x[2,0]/%x[3,0]
# Bigram
В
```

对于命名实体识别问题:

左图是CRF的函数模板, U(number):%x代表第(number)个特征, %X[a, b], a表示当前词的特征词, b表 示用户自定义的特征。 其中[0, 0]代表了当前词, a代表了词 的位置-3到-1是前三个词, 1到3是后 三个词。 后面的特征代表了, 词和词之间的关 系的特征。

如下,标记的方法根据BEMOS,其中的数字代表得分,正数代表该字属于这个类别的分数高,负数代表该字属于这个类别的分数小。

```
"U06:待": [
-0.0761171148843781,
-0.3304252678324269,
-0.0258093469791894,
0.4334372103636684,
-0.0010854806687564
],
```

通过特征模板,可以的到字和前几个字和后几个字特征,以及,不同字之间的特征。通过L-BFGS训练。最终得出模型告诉我们每个特征对于不同标签的值是多少。

解码的时候,将当前序列通过特征模板,然后去模型中乘上对应权重,最终可以得到一个得分向量,分别每个标签的得分,用维特比解码即可。

比赛最终通过F1值,来确定通过自己的模型得到的结果的好坏。

成功提交(diindi是我的)后0.85,自己想通过在学习一下CRF的模板,看看能不能通过更好地特征模板得到更好地结果。

		*			-
3!	57	↓2	tuzi	0.85134	1
3!	58	↓2	<mark>diin</mark> di	0.85134	3
3!	59	↓ 2	lixinwuhahaha	0.85125	1

F1值如下计算:

正确率 = 抽取出的正确字段数 / 抽取出的字段数

召回率 = 抽取出的正确字段数 / 样本的字段数

F1值 = (2 * 正确率 * 召回率) / (正确率 + 召回率)

CRF是信息抽取的主流模型,目标函数考虑了输入的状态特征函数,同时包含了标签转移特征函数。

这样使得标注过程可以利用到内部特征和上下文特征信息。

HMM是生成模型, CRF是判别模型。