

Operador de cruza Laplaciano (LX)

Instituto de Investigaciones en Inteligencia Artificial Maestría en Inteligencia Artificial

Research Group on Computer Vision, Neural Networks
Evolutionary Computation and Applications

Angel García Báez

Paradigmas del computo evolutivo

- Algoritmos genéticos: Se basa en metáforas de la genética y cuenta con operadores de cruza, mutación, selección.
- Estrategias evolutivas: Se centra en el uso de la mutación como principal operador de variación con mecanismos de selección determinísticos y toma en cuenta la adaptación de los parámetros.
- Programación Evolutiva

Características de los algoritmos genéticos

- •Los algoritmos genéticos son propuestos por John Holland tomando inspiración en la naturaleza bajo las metáforas de la genética, la evolución y la adaptación.
- Nacen con la representación de genes como cadenas de bits así como sus respectivos operadores de selección, cruza y mutación.

Representación

•A lo largo del tiempo surgen otras propuestas en términos de la representación, Michalewicz fue pionero en el uso de y propuesta de la representación de los genes como valores reales y desarrollo el cruce aritmético entre padres

Operador de cruza Laplaciana

- •Kusum Deep y Manoj Thakur proponen en 2007 el operador de cruce Laplaciano (LX) en algoritmos genéticos con representación de las soluciones como vectores de números reales.
- •Nace como propuesta de mejora en problemas no lineales.
- •Su objetivo es introducir variación controlada entre dos padres para generar dos hijos mediante una distribución Laplaciana.

Densidad y función de distribución de Laplace

$$f(x) = \frac{1}{2b} \exp\left(-\frac{|x-a|}{b}\right), \quad -\infty < x < \infty$$

$$F(x) = \begin{cases} \frac{1}{2} \exp\left(\frac{|x-a|}{b}\right), & x \le a \\ 1 - \frac{1}{2} \exp\left(-\frac{|x-a|}{b}\right), & x > a \end{cases}$$

- Donde $a \in R$ es el parametro de localización de la función
- b > 0 es el parametro de escala
- Se fija a = 0 para que este centrada
 - Si b aumenta,

Comparativa de densidades de Laplace

Mecanismo generador de hijos

Sean 2 padres:

$$x^{(1)} = (x_1^{(1)}, x_2^{(1)}, \dots, x_n^{(1)}) y$$

$$x^{(2)} = (x_1^{(2)}, x_2^{(2)}, \dots, x_n^{(2)}).$$

Se van a generar 2 hijos:

$$y^{(1)} = \left(y_1^{(1)}, y_2^{(1)}, \dots, y_n^{(1)}\right) \mathbf{y}$$
$$y^{(2)} = \left(y_1^{(2)}, y_2^{(2)}, \dots, y_n^{(2)}\right)$$

Mecanismo generador de hijos

Aplicando el operador LX como sigue:

$$y_i^{(1)} = x_i^{(1)} + \beta \left| x_i^{(1)} - x_i^{(2)} \right|$$
$$y_i^{(2)} = x_i^{(2)} + \beta \left| x_i^{(1)} - x_i^{(2)} \right|$$

Donde β se obtiene de

$$\beta = \begin{cases} a - b \ln(u), & u \le \frac{1}{2} \\ a + b \ln(u), & u > \frac{1}{2} \end{cases}$$

Se genera un numero random con distribución uniforme $u \in [0,1]$

Propuesta pare ejemplificar la cruza

Se tienen 2 padres

$$x^{(1)} = (0.2, 0.8) \text{ y}$$

- $x^{(2)} = (0.8, 0.2).$
- Se propone como parámetro a=0 para centro en 0 la distribución
- Se proponen 2 parámetros $b_1 = 0.1 \ y \ b_2 = 0.9$
 - Para cada parámetro b propuesto se van a generar 100*2 hijos

Resultado 1

Hijos por medio de la cruza de laplace con N = 100 y b =0.1

Resultado 2

Resultado 3

Hijos por medio de la cruza de laplace con N = 100 y b =0.1y 0.9

Fortalezas

- Al basarse en la distribución de Laplace que tiene colas más pesadas, permite generar soluciones más alejadas de los padres.
- Favorece saltos explotatorios útiles para evitar la convergencia prematura
- Los cruces se generan de forma simétrica alrededor del centro de los padres.
- Simplicidad de representación.

Debilidades

- Puede llegar a generar hijos fuera del dominio valido
- Sensibilidad al parámetro b (necesita calibración)

Referencias

Deep, K., & Thakur, M. (2007). A new crossover operator for real coded genetic algorithms. *Applied Mathematics and Computation*, 188(1), 895-911. https://doi.org/10.1016/j.amc.2006.10.047

John, H. (1992). Holland. genetic algorithms. Scientific american, 267(1), 44-50.

•Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. *Evolutionary computation*, *4*(1), 1-32.