MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 – MARCH 2013 SOLUTION KEY

Round 2

- A) Expanding $(A + B)^3$, we know $(A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$ or we expand in stages: $(A + B)^3 = (A + B)(A + B)^2 = (A + B)(A^2 + 2AB + B^2)$ and the same result follows. $A^3 + 3A^2B + 3AB^2 + B^3 = (A^3 + B^3) + 3AB(A + B) = 258$ Subtracting, using the second condition, we have $A^3 + B^3 = 258 3.5 = 243$.
- B) To insure that the radicand is itself a positive integer, we require that $82 x \ge 2x + 1 \Rightarrow 3x \le 81 \Rightarrow x \le 27$

Thus, the largest possible x-value is 27 and $\sqrt[3]{\frac{82-27}{2\cdot 27+1}} = \sqrt[3]{\frac{55}{55}} = 1$, so x = 27 works.

<u>FYI</u>: For x = 1, 2 and 5, $\frac{82-x}{2x+1}$ evaluates to 27, 16 and 7.

For x = 7, 16 and 27, $\frac{82 - x}{2x + 1}$ evaluates to 5, 2 and 1. Did you expect this to happen?

C) Squaring both sides, $(4x+1)+2\sqrt{4x+1}\sqrt{10-x}+(10-x)=49$.

Combining like terms and isolating the radicals, $2\sqrt{4x+1}\sqrt{10-x} = 38-3x$ Squaring,

$$4(4x+1)(10-x) = (38-3x)^{2} \Leftrightarrow -16x^{2} + 156x + 40 = 9x^{2} - 284x + 1444$$
 1404

$$\Leftrightarrow 25x^{2} - 384x + 1404 = 0$$
 2 702

This would be a pain to factor over the integers (if indeed it factored at all), except for the hint that there was an integer solution.

3 117

One of the factors must be of the form (x - c), where c is an integer constant.

Thus, we start with $(25x-\square)(x-\square)$ and consider possible factorizations of

3 39 3 13

 $1404 = 2^2 \cdot 3^3 \cdot 13$ until we find the one which gives the proper coefficient of the middle term. (25x - 234)(x - 6) gives the correct middle term (150 + 234 = 384), implying that the fractional

solution is $\frac{234}{25}$. Note: Both solutions check: $\sqrt{25} + \sqrt{4} = 7$ and, converting $\frac{234}{25}$ to the equivalent decimal (9.36), $\sqrt{38.44} + \sqrt{0.64} = 6.2 + 0.8 = 7$

Alternate (Better!) Solution (Norm Swanson – Hamilton Wenham)

Guessing the integer solution 6 is a matter of a little trial and error. As above squaring both sides twice, we get $25x^2 - 384x + \text{(We don't care!)} = 0$ and, by inspection, the sum of the

roots is $\frac{384}{25}$. Since the integer root is 6, the fractional root must be $\frac{384-150}{25} = \frac{234}{25}$.