```
# Outlier: A data value that is numerically distant from a data set.
#Outliers imapct statistical measures such as mean, variance, standered devaition.
#utliers less affect the median and IQR.

import matplotlib.pyplot as plt
import pandas as pd

df = pd.DataFrame({"x":[1,3,4,5,7,9,0,10]})

plt.boxplot(df["x"])
plt.show
```


import seaborn as sns
sns.boxplot(x=df["x"])
plt.show

```
matplotlib.pyplot.show
def show(*args, **kwargs) -> None

/usr/local/lib/python3.11/dist-packages/matplotlib/pyplot.py
Display all open figures.

Parameters
-----
block: bool, optional
```



```
# To extract outliers data
```

df[(df["x"]<4) | (df["x"]>9)]

1 3

6 0

7 10

_		gender	Marks	no_of_assignments	
	0	F	30	1	ıl.
	1	F	40	1	+/
	2	F	32	2	
	3	F	44	1	
	4	М	56	2	
	5	М	62	3	
	6	F	77	2	

```
Next steps: (Generate code with df) ( View recommended plots) (New interactive sheet)
```

```
#Frequency Distribution #Graphical representation of variable with corresponding frequency.
```

df["gender"].unique()

```
⇒ array(['F', 'M'], dtype=object)
```

```
df["gender"].value_counts()
```

dtype: int64

```
sns.countplot(x=df["gender"])
plt.show()
```


#continous Frequency Distribution:
#Graphical representation of continous variable with corresponding frequency.

```
sns.histplot(df['Marks'], bins=5, stat = 'count')
plt.show()
```



```
# Cumulative Frequency Distribution
```

```
sns.histplot(df['Marks'], bins=5, stat = 'count', cumulative=True)
plt.show()
```



```
#Probability
# chanve of occurances
# Sum of all possiblities = 1
```

df["gender"].value_counts()/len(df)

count

gender F 0.714286

M 0.285714

dtype: float64

#Probability distribution

 $\label{eq:control} $$sns.countplot(x=df["gender"],stat="probability")$ plt.show()$


```
# Continous Probability Distribution.
sns.histplot(df["Marks"],bins=2, stat="probability")
plt.show()
```


#Continous Probability Distribution
sns.histplot(df['Marks'], bins=5, stat= "probability")
plt.show()

Cumulative probability distribution.
sns.histplot(df['Marks'],bins=5, stat="probability", cumulative=True)
plt.show()

