MTH 416: Lecture 2

Cliff Sun

August 29, 2024

Lecture Span

- Vector Spaces
- Subspaces

8 Axioms

- 1. $\forall x, y \in V$, $x + y \iff y + x$
- 2. $\forall x, y, z \in V$, $(x+y)+z \iff x+(y+z)$
- 3. $\exists 0 \in V$ such that for all vectors $x \in V$, we have that 0 + x = x
- 4. $\forall x \in V, \exists y \in V \text{ such that } x + y = 0.$ In other words, y = -x
- 5. For each $x \in V$, $1 \cdot x = x$
- 6. For each $a, b \in \mathbb{R}$ and $x \in V$, (ab)x = a(bx)
- 7. For each $a \in \mathbb{R}$ and $x, y \in V$, a(x+y) = ax + ay
- 8. For each $a, b \in \mathbb{R}$ and $x \in V$, we have that (a + b)x = ax + bx

Vector Spaces

We will be discussing Vector Spaces over other fields besides \mathbb{R}^n . So what is a field?

Definition 0.1. A field is some set that is equipped as operations addition, subtraction, multiplication, \mathcal{E} division. All satisfying the usual properties. Examples: \mathbb{R} , \mathbb{C} , \mathbb{Q} , etc. Note, \mathbb{Z} is not a field since dividing an integer by an integer does not necessarily yield an integer.

To define a vector space over \mathbb{C} , replace all previous instances of \mathbb{R} with \mathbb{C} .

Generally, linear algebra works well over any field. But when one introduces a vector space, specifying the field of scalars is part of defining a vector space. But usually, the field of interest is implied.

For example, $\mathbb C$ is a vector space over $\mathbb C$. But $\mathbb C$ is also a vector space over $\mathbb R$. But both instances of $\mathbb C$ are not the same! If $\mathbb C$ is a vector space over $\mathbb C$, then $\mathbb C$ is a $\underline{1 \text{ dimensional}}$ vector space. But if $\mathbb C$ is a vector space over $\mathbb R$, then this instance of $\mathbb C$ is a $\underline{2 \text{ dimensional}}$ vector space.

Non-Examples of vector spaces

- 1. $V = \mathbb{R}^2$ with coordinate wise scalar multiplication, but $(x_1, y_1) + (x_2, y_2) \iff (x_1 + x_2, y_1 y_2)$. Defining this addition operation as this means that Axiom 1 & 2 fail!
- 2. $V = \mathbb{R}^2$ with coordinate wise addition, but scalar multiplication is defined as $c(x,y) \iff (cx,y)$. Axiom 8 breaks with this definition of a vector space.

1

Proofs using Axioms

Cancellation Theorem for addition

Theorem 0.2. If u, v, w are vectors in V, and u + w = v + w, then u = v.

Proof. Suppose u + w = v + w. By Axiom 4, w has an additive inverse y. In particular, w + y = 0. Thus, if we add y to both sides, then we get

$$u + w = v + w \tag{1}$$

$$(u+w) + y = (v+w) + y$$
 (2)

$$u + (w + y) = v + (w + y) \tag{3}$$

$$u = v \tag{4}$$

This concludes the proof. (Note: We have to specify the parenthesis in equation 2 since the original equation involved just adding u + w and y was not in the picture.)

Corollary 0.3. The 0 vector is unique. As in suppose 0 and 0' both satisfy Axiom 3, then 0 = 0'.

Corollary 0.4. Additive inverses are unique. That is, suppose y and y' satisfy Axiom 4, then y = y'.

Corollary 0.5. If v is a vector in V, then $0 \cdot v = 0$.

Proof. Suppose

$$v = v \tag{5}$$

We claim that

$$v + 0 \cdot v = v + 0 \tag{6}$$

Indeed,

$$v + 0 \cdot v = 1 \cdot v + 0 \cdot v \tag{7}$$

$$= (1+0) \cdot v \tag{8}$$

$$= 1 \cdot v \tag{9}$$

$$=v$$
 (10)

$$= v + 0 \tag{11}$$

Thus,

$$v + 0 \cdot v = v + 0 \tag{12}$$

Using the cancellation theorem, we have that

$$0 \cdot v = 0 \tag{13}$$

Subspaces

Suppose $V = \mathbb{R}^3$. Suppose some plane W lives in V. If we give V the same operations as V, is W a vector space? Claim: Yes!

We claim that W is closed over addition and multiplication. That is, $(\forall w_1, w_2 \in W, w_1 + w_2 \in W)$ and $(cw \in W)$. Suppose that W is closed over addition and multiplication, we still have to check all 8 axioms. Answer: Yes, this is true even for all $x, y \in V \supseteq W$

Definition 0.6. Given a vector space V, a subspace of V is the subset $W \subseteq V$ such that

- 1. $0 \in W$
- 2. W is closed under addition $(w_1, w_2 \in W \implies w_1 + w_2 \in W)$
- 3. W is closed under scalar multiplication $(c \in F, \forall w \in W \implies c \cdot w \in W)$

Note, Subspace and Vector Space are NOT the same thing.

Theorem 0.7. Let V be a vector space and W be a subset of V. Then W is a <u>subspace</u> of V if and only if W is a vector space when given the same operations as V.

Proof. This is a proof of the \implies direction. Suppose that W is a subspace, then we claim that it is a vector space when given the same operations as V. Because of properties 2, 3, addition and scalar multiplication produce outputs in W. So we must check the 8 Axioms. Axioms 1, 2, 5, 6, 7, 8 are true within V, thus must be true in W. For 3, we know that from property 1. But for 4, let $w \in W$, then we know that there exists $y = -w \in V$ because V is a vector space. But is $y \in W$? But because W is closed under scalar multiplication, we multiply by -1 to achieve -w. Thus it follows that $-w \in W$.

Lemma 0.8. $-1 \cdot w \iff -w$

Proof. We know that

$$w + -1 \cdot w = 1 \cdot w + -1 \cdot w \tag{14}$$

$$= (1+-1)\cdot w \tag{15}$$

$$= 0 \cdot w \tag{16}$$

$$=0 (17)$$

$$= w + -w \tag{18}$$

Examples:

1. For any V, V and 0 are subspaces.

2. If $V = \mathbb{R}^3$, then any line/plane containing 0 that lives within V is a subspace.

3. If $V = M_{n \times n}(\mathbb{R})$, then the following are subspaces: Diagonal Matrices (all entries are 0 except for the diagonal), upper triangular matrices (all entries are 0 except for the upper triangular section of the matrix), and symmetrical matrices ($A^T = A$)

4. If $V = F(\mathbb{R}, \mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R}\}$, then the following are subspaces:

- (a) Polynomials
- (b) Continuous Functions
- (c) Differential Functions
- (d) Functions such that f(7) = 0. The only constraint is that f(7) = 0, the rest of the function is unmonitored.

Non-Examples in \mathbb{R}^2 :

1. $\{(x,y): x,y \ge 0\}$, multiplying by a negative scalar doesn't work.

2. $\{(x,y): x = 0 \lor y = 0\}$, addition fails