Введение

В процессе автоматизации производства, при расчете расписания работы сотрудников либо прогнозировании сроков выполнения заказов, существует необходимость привязки абстрактных расчетов, базирующихся на времени выполнения операций, к конкретно заданному календарю производственной площадки, который учитывает выходные дни, праздничные и шаблонные смены занятых сотрудников. Данный шаг позволяет оценить применимость составленного расписания в данных условиях и оценить реальные сроки выполнения заказа.

Содержание

Введение	1
1 Обзорная часть	3
1.1 Индустрия 4.0	3
1.2 Обзор существующих решений	3
1.2.1 OpenSource решения	3
1.2.2 Коммерческие решения	3
1.3 Постановка задачи	3
2 Система планирования и прогнозирования	5
2.1 Архитектура СПП	5
2.2 Подсистема имитационного моделирования	5
2.3 Модель ресурса сборочной линии	5
2.4 Модуль отображения логического времени	5
3 Организация консистемного хранилища данных	9
Заключение	9
Список литературы	9

1 Обзорная часть

1.1 Индустрия 4.0

Четвертая промышленная революция

1.2 Обзор существующих решений

Пара слов

1.2.1 OpenSource решения

FrePPLe, Odoo, qcadoo? По презентации

1.2.2 Коммерческие решения

Нужно найти

1.3 Постановка задачи

В целом постановка задачи

В соответствии с архитектурой, представленной ранее, расчет пояснение тения операции (или набора операций) производится в логитк ческом времени, т. е. во времени отсчитываемому от нуля. Данное пояснение те обуславливает необходимость в отображении () логического отображении на физическое, которое используется в повседневной жизни пояснение то из главных сложностей, возникающих при этом, является сменность родность рабочего времени, которая проявляется в (), наличии графика по терминологии в системе обратного расчета, при котором планирование ведется от что накладывает некоторые ограничения на реализацию данной компоненты.

Подумать над формулировкой

Данная компонента является частью (или частной реализацией) модели ресурсов СПП и отражает поведение во времени продуктов на сборочной линии. Основная сложность данной компоненты в необходимости объединения нескольких сборочных линий со схожими параметрами в один ресурс, хранении их состояний, синхронизации <u>и распределении</u> по линиям. Также, сложностью является сама станциями ресурса, которая обеспечивает хорошую масштабируемость, входМодель потока про этом требует времени на понимание и создание модулей. Ба-<mark>за дан</mark>н<u>ых является основных хранилищем всех постоянных д</u>анных. (не р<mark>асчет ра</mark>зработке было выделено требование к хранению предыдущих напррасчетов и их параметров, что влечет к требованию тат работы СПП), так ли это? 'истории' консистентнос<mark>т</mark>и' базы данных, БД?

- 2 Система планирования и прогнозирования
- 2.1 Архитектура СПП
- 2.2 Подсистема имитационного моделирования
- 2.3 Модель ресурса сборочной линии
- 2.4 Модуль отображения логического времени

нужна схема и немного воды Для отображения логического времени на физическое был предложен итеративный процесс, который осуществляет 'переход' к необходимому времени путем последовательного перебора.

Как было сказано ранее, из-за того, что рабочее время является дискретным, то мы не имеем возможности просуммировать начальную дату и значение поданного логического времени. Это ведет к тому, что необходимо синхронизировать логическое и физическое время, и в данной компоненте это достигается периодическим отображением конкретного логического времени на физическое с использованием информации о переносах дней, сменном графике задействованного персонала и так

схема с ося- будет обозначаться как 'конфигурация модуля').

Это подразумевает под собой наличие двух 'осей': оси логического времени, которая начинается с нуля и единица которой соответствует одной секунде (необходимости в более точном отображении нет) и оси физического времени, на которой может быть отложено любая дата физического времени, отсчет которой начинается 1 января 1970 года 00:00:00. Особенностью оси физического времени является наличие на ней 'выколотых' промежутков времени, в которые работа не ведется и операции не выполняются и следовательно об этих промежутках системе необходимо знать, и они передаются системе в виде структуры данных(расписать!!!).

Входными данными для модуля являются:

дата с которой необходимо начинать отсчет;

- логическое время, которого необходимо достигнуть;
- конфигурация модуля.

Дата является точкой на физической оси, на которую будет отображаться нуль логической. Представляет собой количество секунд, прошедшее с начала 'Эпохи Unix' - 1 января 1970 года 00:00:00. Логическое время - количество секунд, которое должно быть отложено на логической оси. В силу дискретности физической оси, каждой логической точке сопоставляется отрезок на физической оси, сопоставляется пара чисел - границ данного отрезка. Конфигурация модуля - вспомогательные данные используемые для определения модулем какие промежутки необходимо пропускать в процессе работы. Состоит из данных о сменном графике занятого персонала (шаблонные интервалы рабочего времени), шаблонном расписании на неделю (например, суббота, воскресенье - выходные, пятница - 'короткий' день, остальные стандартные рабочие дни) и набор информации о датах, которые являются днями-исключениями и соответствующими шаблонами работы в эти дни.

Выходными данными данного модуля является пара чисел, характеризующие начало и конец отрезка которые отображаются на логическую ось в точке, значение которой равно входному логическому времени.

Схема с осями и парой чисел

После получения параметров совершается проверка последних на корректность и непротиворечивость (например, если два дня имеют пересечения временных промежутков то они противоречивы, ведь ресурс не может работать одновременно в двух сменах) как в рамках смен одного так соседних дней.

Далее производится определение режима работы: прямой, обратный расчет или проверка времени(нужно более емкое понятие). Прямой расчет - задается дата начала отсчета, логическое время и расчет ведется до нахождения даты окончания работ. (картинка) Обратный расчет -

задается дата окончания отсчета ('дедлайн'), логическое время и расчет ведется до нахождения начала работ. (картинка)

можно дать пояснение зачем это нужно

Проверка времени - задается дата и логическое время равное нулю, что запускает оба предыдущих расчета пока не будет найдено первое ненулевое время в обоих направлениях от даты расчета. (нужна картинка)

можно дать пояснение зачем это нужно

Выбрав режим работы сбрасывается счетчик текущего логического времени до нуля и счетчик текущего физического времени до стартовой даты. Затем итеративно, пока текущее логическое время не превысит необходимое производится поиск следующей даты. Алгоритмически, поиск даты работает следующим образом:

- 1) определяются интервалы рабочих смен относящихся к текущему дню:
 - при отсутствии таковых, к текущей дате прибавляется один день и затем возврат к п.1.
- 2) отсортированные в порядке возрастания, интервалы перебираются и последовательно их длительности прибавляются к логическому и физическому времени:
 - при превышении текущим логическим временем необходимого, переход к п.3;
 - если все интервалы были использованы, но необходимое логическое время не превышено - переход к п.1;
- 3) вычитается из физического времени разность текущего и необходимого логического времён, при этом сохраняя данное значение как левую (правую при обратном расчете) и продолжается расчет для выявления правой границы промежутка (пояснение)

(картинка)

Определение интервалов рабочего времени происходит взятием даты (важно!!!) из текущего физического времени, после чего начинается определение является ли данная дата одной из перенесенных после чего есть два варианта развития ситуации:

последовательным итеративным суммированием

Так как расчет расписания — это итеративный процесс, то в рамках разработки было выделено понятие временной линии (прямой) — это «линия» на которой для каждой точки, которая является абстрактной величиной времени выполнения операции, сопоставляются две даты соответствующие данной абстрактной величине времени с учетом расписания. Первая дата является концом данной операции, вторая — началом следующей. Данное разделение было использовано, потому как все время что между ними также относится к данной точке, а значит каждой точке, из-за непрерывности времени, соответствует бесчисленное множество точек на временной прямой, что может быть лишь ограничено двумя границами — временем начала и конца данного отрезка.

Немного текста, объединение с архитектурой по количеству страниц? Можно много наговорить

15 страниц

3 Организация консистемного хранилища данных

Заключение

Список литературы