Abstract Binding Trees

Jonathan Sterling

1 Preliminaries

Fix a set \mathscr{S} of *sorts*. We will say s *sort* when $s \in S$. A valence $\{\vec{p}\}[\vec{q}]$ *s* specifies an expression of sort s which binds symbols in \vec{p} and variables in \vec{q} .

$$\frac{s \ sort \ p_i \ sort \ (i \le m) \ q_i \ sort \ (i \le n)}{\left\{p_0, \dots, p_m\right\} \left[q_0, \dots, q_n\right]. \ s \ valence}$$

An arity $(\vec{v})s$ specifies an operator of sort s with arguments of valences \vec{v} . We will call the set of valences \mathcal{V} , and the set of arities \mathcal{A} .

$$\frac{s \ sort \ v_i \ valence \ (i \le n)}{(v_0, ..., v_n) \ s \ arity}$$

Let \mathbb{I} be an infinite set of symbols; let \mathbb{F} be the free cocartesian category over $\mathbb{I} \times \mathscr{S}$. Then, fix a covariant presheaf of operators $\mathscr{O} : \mathbb{F} \times \mathscr{A} \to \mathbf{Set}$ such that the arrows in \mathbb{F} lift to renamings of operators' parameters; via the Grothendieck construction, we can also consider the set $\int \mathscr{O}$ of operators (U, ϱ, ϑ) for $\vartheta \in \mathscr{O}(\Upsilon, \varrho)$.

$$\frac{\vartheta \in \mathcal{O}(\Upsilon, \varrho)}{\Upsilon \Vdash \vartheta : \varrho}$$

The judgment $\Upsilon \Vdash \vartheta : \varrho$ enjoys the structural properties of weakening and exchange via the functoriality of \mathscr{O} .

Examples Operators are defined by specifying the fibres of $\int \mathcal{O}$ in which they reside. For instance, consider the lambda calculus with a single sort, exp; we give its signature by asserting the following about its operators:

$$\Upsilon \Vdash \lambda : (\{\cdot\} [\exp] . \exp) \exp$$

 $\Upsilon \Vdash \operatorname{ap} : (\{\cdot\} [\cdot] . \exp, \{\cdot\} [\cdot] . \exp) \exp$

So far, we have made no use of symbols and parameters; however, consider the extension of the calculus with assignables (references):

```
\Upsilon \Vdash \operatorname{decl} : (\{\cdot\} [\cdot] . \exp, \{\exp\} [\cdot] . \exp) \exp
\Upsilon, u : \exp \Vdash \operatorname{get}[u] : (\cdot) \exp
\Upsilon, u : \exp \Vdash \operatorname{set}[u] : (\{\cdot\} [\cdot] . \exp) \exp
```

Declaring a new assignable consists in providing an initial value, and an expression with a free symbol (which shall represent the assignable in scope). Weakening can be seen as inducing a "degeneracy map" on operators, whereas a renaming $u \mapsto v$ will take get[u] to get[v].

2 Contexts

In general, we will have three kinds of context: metavariable contexts, variable contexts, and symbol (parameter) contexts. A metavariable context Ω consists of bindings of valences to metavariables; a variable context Γ is a collection of bindings of sorts to variables, and a parameter context Υ is a collection of bindings of sorts to symbols.

$$\begin{array}{c} \frac{\Omega \ mctx \quad v \ valence \quad \mathbf{M} \notin |\Omega|}{\Omega, \, \mathbf{M} : v \ mctx} \\ \\ \frac{\Gamma \ vctx \quad s \ sort \quad x \notin |\Gamma|}{\Gamma, x : s \ vctx} \\ \\ \frac{\Upsilon \ vctx \quad s \ sort \quad u \notin |\Upsilon|}{\Upsilon, u : s \ sctx} \end{array}$$

3 Abstract Binding Trees

Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash M : s$ presuppose Ω mctx, Υ sctx, Γ vctx and s sort, meaning that M is an abstract binding tree of sort s, with metavariables in Ω , parameters in Υ , and variables in Γ . Let the judgment $\Omega \triangleright \Upsilon \parallel \Gamma \vdash E : v$ presuppose v valence. Then, the syntax of abstract binding trees is inductively defined in four rules:

$$\begin{split} \frac{\Gamma \ni x : s}{\Omega \rhd \Upsilon \parallel \Gamma \vdash x : s} \ var \\ \Omega \ni \mathbf{M} : & \left\{ p_0, \dots, p_m \right\} \left[q_0, \dots, q_n \right] . s \\ \Upsilon \ni u_i : p_i \quad (i \le m) \\ \Omega \rhd \Upsilon \parallel \Gamma \vdash M_i : q_i \quad (i \le n) \\ \hline \Omega \rhd \Upsilon \parallel \Gamma \vdash \mathbf{M} \left\{ u_0, \dots, u_m \right\} (M_0, \dots, M_n) : s \end{split} mvar \\ \frac{\Upsilon \Vdash \vartheta : v_1, \dots, v_n}{\Omega \rhd \Upsilon \parallel \Gamma \vdash E_i : q_i \quad (i \le n)} \ \frac{\Omega \rhd \Upsilon \parallel \Gamma \vdash E_i : q_i \quad (i \le n)}{\Omega \rhd \Upsilon \parallel \Gamma \vdash \vartheta \left(E_0, \dots, E_n \right) : s} \ app \\ \frac{\Omega \rhd \Upsilon, \vec{u} : \vec{p} \parallel \Gamma, \vec{x} : \vec{q} \vdash E : s}{\Omega \rhd \Upsilon \parallel \Gamma \vdash \left(\left\{ \vec{u} \right\} \left[\vec{x} \right] . E \right) : \left(\left\{ \vec{p} \right\} \left[\vec{q} \right] . s \right)} \ abs \end{split}$$