Worksheet 7

In this exercise, we will show that for every $k \geq 1$, $n = p^k$ has primitive roots.

Remark: k = 1 (Shown in class).

Let p be an odd prime.

1. Let g be a primitive root modulo p. Show that g + np is a primitive root modulo p^2 for exactly p - 1 values of n modulo p.

Hints:

Step 1: Show that $ord_{p^2}(g+np)=p-1$ or p(p-1).

Step 2: $ord_{p^2}(g+np)=p-1$ only for one of the p possible values of n.

Hints for Step 1:

- (a) Let $h = ord_{p^2}(g + np)$. Show that h|p(p-1).
- (b) Show that $g^h \equiv 1 \mod p$ to conclude that (p-1)|h. (In order to show $g^h \equiv 1 \mod p$, use that $(g+np)^h \equiv 1 \mod p^2$)
- (c) Combine (a) and (b) to conclude Step 1.

Hints for Step 2:

- (a) Let $f(x) = x^{p-1} 1$; then g is a root of the congruence $f(x) \equiv 0 \mod p$. Show $p \not| f'(g)$.
- (b) Use the following Theorem (*) we did in the class to conclude that there is a unique root of the form g + np of the congruence

$$f(x) \equiv 0 \mod p^2$$
.

Theorem *: Let p be a prime, a is a solution of $f(x) \equiv 0 \mod p^k$.

- i. If $p \not| f'(a)$, then there is precisely one solution b of $f(x) \equiv 0 \mod p^{k+1}$ such that $b \equiv a \mod p^k$. The solution is given by $b = a + p^k t$, where t is the unique solution of $f'(a)t \equiv -f(a)/p^k \mod p$.
- (c) Combine (a) and (b) to conclude Step 2.
- 2. If g is a primitive root modulo p^2 , then show g is a primitive root modulo p^k for all $k \ge 2$.

Hints:

Step 1: It suffices to prove that if g is a primitive root $\mod p^k$, $k \ge 2$, then g is also a primitive root $\mod p^{k+1}$.

Show that $ord_{p^{k+1}}g = p^{k-1}(p-1)$ or $p^{k}(p-1)$.

Step 2: Show that $ord_{p^{k+1}}g = p^{k-1}(p-1)$ is not possible.

Step 3: Combine Step 1 and Step 2.

Hints for Step 1:

- (a) Let $h = ord_{p^{k+1}}g$. Show that $h|p^k(p-1)$.
- (b) Show that $g^h \equiv 1 \mod p^k$ to conclude that $p^{k-1}(p-1)|h$.
- (c) Combine (a) and (b) to conclude Step 1.