REVIEW QUESTIONS FOR PARAMETRIC CURVES AND POLAR COORDINATES

Parametric curves

- 1) What is a parametric curve? How and when can one obtain the Cartesian equation of a parametric curve? How to compute the slope of the tangent to a parametric curve? Write down the expressions for the area under a parametric curve, and the arc length of a parametric curve. What is the equation for the area of the surface obtained by rotation of a parametric curve?
- 2) Eliminate the parameter from the given parametric curve and sketch its graph. Show the direction of motion as the parameter increases.
 - (a) $x = \sin t$, $y = \csc t$, $0 < t < \pi/2$
 - (b) $x = e^t, y = e^{-2t}, -\infty < t < \infty.$
- 3) Find the equation of the tangents to the following curves for the given value of the parameter t or at the given point (x, y):
 - (a) $x = t^3 + 1$, $y = t^4 + t$, t = -1
 - (b) $x = t \cos t$, $y = t \sin t$, $t = \pi$
 - (c) $x = 1 + \ln t$, $y = t^2 + 2$, (1,3)
 - (d) $x = t^2 t$, $y = t^2 + t + 1$, (0,3).
- 4) Find the length of the given curve:
 - (a) $x = 1 + 3t^2$, $y = 4 + 2t^3$, $0 \le t \le 1$
 - (b) $x = e^t t$, $y = 4e^{t/2}$, $0 \le t \le 2$
 - (c) $x = t \sin t, \ y = t \cos t, \quad 0 \le t \le 1.$
- 5) Find the area of surfaces obtained by rotating the following curves about the x-axis:
 - (a) $x = t^3$, $y = t^2$, $0 \le t \le 1$
 - (b) $x = 2\cos^3 t$, $y = 2\sin^3 t$, $0 \le t \le \pi/2$.
- 6) Find the area of surfaces obtained by rotating the following curves about the y-axis:
 - (a) $x = 8\sqrt{t}$, $y = 2t^2 + 1/t$, $1 \le t \le 3$
 - (b) $x = e^t t$, $y = 4e^{t/2}$, $0 \le t \le 1$.

Polar coordinates

- 7) Explain how a point in the plane is determined by its polar coordinates. Write down the conversion formulas between the Cartesian and polar coordinates. How does the quadrant containing a certain point determines its polar angle?
- 8) Plot the point with the given polar coordinates and find its Cartesian coordinates:
 - (a) $(1, \pi/3)$
 - (b) $(-8, 7\pi/4)$
 - (c) $(3, -5\pi/2)$
 - (d) $(0, -71\pi/4)$
 - (e) $(2\sqrt{2}, 3\pi/4)$.
- 9) For the given Cartesian coordinates of a point, find its polar coordinates (r, θ) with $r \geq 0$ and $0 \leq \theta < 2\pi$. Then, find the expression of polar coordinates with $r \leq 0$ and $0 \leq \theta < 2\pi$:
 - (a) (0,5)

- (b) $(5\sqrt{3}, -5)$
- (c) $(2\sqrt{2}, -2\sqrt{2})$
- (d) $(1, \sqrt{3})$.

Polar curves

- 10) What is a polar curve? How to sketch the graph of a polar curve, given its equation? How to determine the slope of a polar curve at a given point?
- 11) Identify the curve:
 - (a) $r^3 = 125$
 - (b) $\theta = \pi/4$
 - (c) $r = 4 \sec \theta$
 - (d) $r = -2 \sec \theta$
 - (e) $r = 3 \csc \theta$
 - (f) $r^2 \cos 2\theta = 1$.
- 12) Find a polar equation for the curve given in Cartesian coordinates:
 - (a) y = 2
 - (b) y = x
 - (c) $x^2 + y^2 = 2x$
 - (d) $4y^2 = x$
 - (e) $x^2 y^2 = 4$.
- 13) Find the slope of the tangent line to the given polar curve at the point corresponding to the specified value of θ :
 - (a) $r = 2\cos\theta$, $\theta = \pi/3$
 - (b) $r = 1/\theta$, $\theta = \pi$
 - (c) $r = 2 + \sin 3\theta$, $\theta = \pi/4$
 - (d) $r = \cos(\theta/3), \quad \theta = \pi.$
- 14) Find points on the given curve where the tangent line is horizontal or vertical:
 - (a) $r = 3\cos\theta$
 - (b) $r = 1 + \cos \theta$
 - (c) $r = e^{\theta}$
 - (d) $r = 1 \sin \theta$.
- 15) Sketch the polar curve:
 - (a) $r = \theta$, $\theta \ge 0$
 - (b) $r = 1 + \sin \theta$
 - (c) $r = 2 + \sin 3\theta$
 - (d) $r^2 = \cos 4\theta$
 - (e) $r = 2\cos(\theta/2)$.

Areas and lengths for polar curves

- 16) Write down the formula for the area enclosed by a polar curve $r = f(\theta)$, as well as for the area between a pair of polar curves $r = f(\theta)$ and $r = g(\theta)$. Explain how to determine the range of integration in the corresponding integrals. How to compute the arc length of a polar curve?
- 17) Find the area of the region that lies inside the first curve and outside the second curve:
 - (a) $r = 4\sin\theta$, r = 2
 - (b) $r = 1 \sin \theta$, r = 1

- (c) $r = 3\cos\theta$, $r = 1 + \cos\theta$
- (d) $r^2 = 8\cos 2\theta$, r = 2.
- 18) Find all the points of intersection of the given curves:
 - (a) $r = \sin \theta$, $r = 1 \sin \theta$
 - (b) $r = 1 + \cos \theta$, $r = 1 \sin \theta$
 - (c) $r = \sin \theta$, $r = \sin 2\theta$
 - (d) $r = 2\sin 2\theta$, r = 1.
- 19) Find the length of the polar curve:
 - (a) $r = 2\cos\theta$, $0 \le \theta \le \pi$
 - (b) $r = \theta^2$, $0 \le \theta \le 2\pi$
 - (c) $r = 2(1 + \cos \theta)$.

Answer kev

4

3) (a)
$$y = 1/x$$
, $0 < x < 1$

4) (a)
$$y = -x$$

(b)
$$y = \pi(x + \pi)$$

5) (a)
$$4\sqrt{2} - 2$$

(b)
$$e^2 + 1$$

6) (a)
$$\frac{2}{1215} \pi \left(247 \sqrt{13} + 64\right)$$

7) (a)
$$\frac{32}{15}\pi(103\sqrt{3}+3)$$

8) (a)
$$(1/2, \frac{\sqrt{3}}{2})$$

(b)
$$(-4\sqrt{2}, 4\sqrt{2})$$

9) (a)
$$(5, \pi/2)$$
; $(-5, 3\pi/2)$

(b)
$$(10, 11\pi/6)$$
; $(-10, 5\pi/6)$

11) (a) Circle
$$x^2 + y^2 = 25$$
.

(b) Line
$$y = x$$
.

(c) Line
$$x = 4$$
.

12) (a)
$$r = 2 \csc \theta$$

(b)
$$\theta = \pi/4$$

(c)
$$r = 2\cos\theta$$

13) (a)
$$\frac{1}{3}\sqrt{3}$$

(b)
$$-\pi$$

(c)
$$-\frac{\sqrt{2}-1}{\sqrt{2}+2}$$

(d)
$$-\sqrt{3}$$
.

(b)
$$y = 1/x^2$$
, $x > 0$.

(c)
$$y-3=2(x-1)$$

(d)
$$y - 3 = 3x$$
.

(c)
$$\frac{1}{2}\sqrt{2} + \frac{1}{2}\ln(1+\sqrt{2})$$
.

(b)
$$\frac{24}{5} \pi$$
.

(b)
$$\pi((e+1)^2-7)$$
.

(c)
$$(0, -3)$$

(e)
$$(-2,2)$$
.

(c)
$$(4,7\pi/4)$$
; $(-4,3\pi/4)$

(d)
$$(2, \pi/3)$$
; $(-2, 4\pi/3)$.

(d) Line
$$x = -2$$
.

(e) Line
$$y = 3$$
.

(f) Hyperbola
$$x^2 - y^2 = 1$$
.

(d)
$$r = \frac{1}{4} \csc \theta \cot \theta$$

(e)
$$r^2 \cos 2\theta = 4$$
.

- 14) The answers are given in polar coordinates; only unique points are included. For example, in (a), the point $(-3/\sqrt{2}, 5\pi/4)$ also has a horizontal tangent, but it coincides with $(3/\sqrt{2}, \pi/4)$, and so is omitted.
 - (a) Horizontal: $(3/\sqrt{2}, \pi/4), (-3/\sqrt{2}, 3\pi/4);$ vertical: (3, 0), (0, 0).
 - (b) Horizontal: $(3/2, \pi/3), (0, \pi), (3/2, 5\pi/3);$ vertical: $(2, 0), (1/2, 2\pi/3), (1/2, 4\pi/3).$
 - (c) Horizontal: $(e^{3\pi/4+k\pi}, 3\pi/4+k\pi)$, k-integer; vertical: $(e^{\pi/4+k\pi}, \pi/4+k\pi)$, k-integer.
 - (d) Horizontal: $(1/2, \pi/6), (2, 3\pi/2), (1/2, 5\pi/6);$ vertical: $(0, \pi/2), (3/2, 7\pi/6), (3/2, 11\pi/6).$

(a)
$$r = \theta$$

(b)
$$r = 1 + \sin \theta$$

(c) $2 + \sin 3\theta$

(d)
$$r^2 = \cos 4\theta$$

(e) $r = 2\cos(\theta/2)$

- 15) See the graphs (a)–(e).
- 17) (a) $\frac{4}{3}\pi + 2\sqrt{3}$ (b) $\frac{1}{4}\pi + 2$

 - (c) π

(d)
$$2\left(-\frac{2}{3}\pi + 2\sqrt{3}\right)$$
.

- 18) The answers are given in polar coordinates; only unique points are included.
 - (a) $(1/2, \pi/6), (1/2, 5\pi/6)$
 - (b) $(0,0), (1-1/\sqrt{2}, 3\pi/4), (1+1/\sqrt{2}, 7\pi/4)$
 - (c) $(0,0), (\sqrt{3}/2, \pi/3), (\sqrt{3}/2, 2\pi/3)$
 - (d) $(1, \pi/12)$, $(1, 5\pi/12)$, $(1, 7\pi/12)$, $(1, 11\pi/12)$, $(1, 13\pi/12)$, $(1, 17\pi/12)$, $(1, 19\pi/12)$, $(1, 23\pi/12)$.
- 19) (a) 2π
 - (b) $\frac{8}{3}(\pi^2+1)^{3/2}-\frac{8}{3}$
 - (c) 16.