

Computer Networks

Hubs and Switches

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Hubs vs Switches

Hubs vs Switches

Hubs

- Bits coming from one link is repeated to all other links
- No frame buffering
- No CSMA/CD at hub
 - One large collision domain

 Hub: A-to-A' and B-to-B' cannot transmit simultaneously

Switches

- Hosts have dedicated, direct connection to switch
- Switches buffer packets
- Ethernet protocol used on each incoming link, so:
 - No collisions; full duplex
 - Each link is its own collision domain

Cut-through Switches

- Switches start forwarding the frames just after reading the destination address
 - Slightly reduces the latency

Switches vs. routers

Both are store-&-forward:

- Routers: network-layer devices (examine network-layer headers)
- Switches: link-layer devices (examine linklayer headers)

Switches vs. routers

Both have forwarding tables:

- Routers: compute tables using routing algorithms, IP addresses
- Switches: learn forwarding table using flooding, learning, MAC addresses

Hubs vs Switches vs Routers

Network layer Router

Data link layer Bridge, switch

Physical layer Repeater, hub

Summary

☐ Hubs and switches:

- Hubs
- Switches
 - Cut-through switches
- Routers