COMPUTER SCIENCE TRIPOS Part IA - 2016 - Paper 2

9 Discrete Mathematics (MPF)

- (a) Let p and m be positive integers such that p > m.
 - (i) Prove that gcd(p, m) = gcd(p, p m). [3 marks]
 - (ii) Without using the Fundamental Theorem of Arithmetic, prove that if gcd(p, m) = 1 then $p \mid \binom{p}{m}$. You may use any other standard results provided that you state them clearly. [3 marks]
- (b) Let A^* denote the set of strings over a set A.

For a function $h: X \to Y$, let $\text{map}_h: X^* \to Y^*$ be the function inductively defined by

$$\begin{aligned} & \operatorname{map}_h(\varepsilon) &= & \varepsilon \\ & \operatorname{map}_h(x\,\omega) &= & \left(h(x)\right)\left(\operatorname{map}_h(\omega)\right) & & (x\in X,\omega\in X^*) \end{aligned}$$

Prove that, for functions $f: A \to B$ and $g: B \to C$,

$$\operatorname{map}_g \circ \operatorname{map}_f = \operatorname{map}_{g \circ f}$$

Note: You may use the following Principle of Structural Induction for properties $P(\omega)$ of strings $\omega \in A^*$:

$$\left(P(\varepsilon) \, \wedge \, \forall \, \omega \in A^*. \, P(\omega) \Rightarrow \forall \, a \in A. \, P(a \, \omega)\right) \implies \forall \, \omega \in A^*. \, P(\omega)$$
 [6 marks]

(c) We say that a relation $T \subseteq A \times B$ is a total cover whenever $\mathrm{id}_A \subseteq T^\mathrm{op} \circ T$ and $\mathrm{id}_B \subseteq T \circ T^\mathrm{op}$. (Recall that $T^\mathrm{op} \subseteq B \times A$ denotes the opposite, or dual, of the relation $T \subseteq A \times B$.)

For a relation $R \subseteq \{1, ..., m\} \times \{1, ..., n\}$ $(m, n \in \mathbb{N})$, we define a new relation $\stackrel{R}{\leadsto}$ between strings over a set X as follows: for all $u, v \in X^*$,

$$u \stackrel{R}{\leadsto} v \iff R \text{ is a total cover and}$$

 $u = a_1 \dots a_m, v = b_1 \dots b_n, \text{ and } a_i = b_j \text{ for all } (i, j) \in R$

- (i) Prove that for $R = id_{\{1,\ldots,m\}}$, we have that $u \stackrel{R}{\leadsto} u$ for all $u = a_1 \ldots a_m$.
- (ii) Prove that $u \stackrel{R}{\leadsto} v$ implies $v \stackrel{R^{\text{op}}}{\leadsto} u$.
- (iii) Prove that $u \stackrel{R}{\leadsto} v$ and $v \stackrel{S}{\leadsto} w$ imply $u \stackrel{S \circ R}{\leadsto} w$.
- (iv) Prove that the further relation \sim on X^* defined by

$$u \sim v \iff \exists \, R. \, u \overset{R}{\leadsto} v$$

is an equivalence relation.

[8 marks]