

固定收益证券

BONDS

收益率曲线 (YTM and T)

- 预期理论 (1+y_n)ⁿ = (1+y_{n-1})ⁿ⁻¹(1+f_n)
- 流动性偏好理论

债券组合管理(P and YTM)

•利率敏感性

• 久期
$$W_{t} = \frac{CF_{t}/(1+ytm)^{t}}{Price} \quad Dur = \sum_{t=1}^{N} W_{t} \times t \qquad \frac{\Delta P}{P} = -D \times \frac{\Delta y}{1+y}$$
• 修正久期
$$D^{*} = D/(1+y)$$

•
$$\Delta P = -D^* \times \Delta y$$

$$\frac{\Delta P}{P} = -D \times \frac{\Delta y}{(1+y)} + \left[\frac{1}{2} \times Convexity \times \Delta y^2 \right]$$
$$= -D^* \Delta y + \left[\frac{1}{2} \times Convexity \times \Delta y^2 \right]$$

债券的特点

债券是种负债,是发行人(借款人)对债券持有人(债权人)的债务

债券面值(Par Value)是到期时偿还的本金,通常为1000美金

- 票面利率(息票率)决定了决定了所需支付的利息
 - 每半年支付一次
 - 票面利率可以为0
 - 利息支付被称作"息票支付"
- 契约是发行人和债券持有人之间的合同,它规定了票面利率、到期日和票面价值

美国中长期国债

中期及长期国债可以直接从财政部购买

▶中期国债的期限是1~10年;长期国债的期限是10~30年。

最小面额为100美元,但通常1000美元更为常见

Bid/ask prices are quoted as a percentage of par value.

公司债券

可赎回债券 callable bond

• 可以在到期日之前被赎回

可转换债券 convertible bond

• 可以将所持债券转换成一定数量的公司普通股

可回卖债券 puttable bond

• 赋予了持有人收回本金或继续持有的选择权。

浮动利率债券

- 票面利息率是可调整的

优先股

同时具有普通股和固定收益证券的特征

- 股利支付是永久性的
- •不支付股息不会破产
- •优先股股利先于普通股支付
- •没有税收减免

债券市场创新

逆向浮动利率债券

资产支持证券

巨灾债券

投资者因承担更高票面利率的风险而获得补偿。但一旦发生 灾难,债券持有人将失去全部或部分投资。

指数债券

▪ 通货膨胀保值债券(TIPS: Treasury Inflation-Protected Securities)

TABLE 14.1不受通货膨胀影响的国债本金和利息支付

Time	Inflation in Year Just Ended	Par Value	Coupon Payment +	Principal Repayment	= Total Payment
0		\$1,000.00			
1	2%	1,020.00	\$40.80	\$ 0	\$ 40.80
2	3	1,050.60	42.02	0	42.02
3	1	1,061.11	42.44	1,061.11	1,103.55

债券定价

$$P_{B} = \sum_{t=1}^{T} \frac{C}{(1+r)^{t}} + \frac{\text{Par Value}}{(1+r)^{T}}$$

 $P_B = 债券价格$

C, = 票息

T = 存续期

r =半年折现率

EXAMPLE 14.2: 债券定价

30年到期,票面利率为8%,市场利率为10%

Price =
$$\sum_{t=1}^{60} \frac{\$40}{(1.05)^t} + \frac{\$1000}{(1.05)^{60}}$$

Price = \$810.71

债券价格与收益 BOND PRICES AND YIELDS

价格和到期收益率存在负相关关系 债券价格曲线(图14.3)具有凸性 债券期限越长,其价格对市场利率的变化越敏感(表 14.2)

FIGURE 14.3 债券价格与收益率的反向关系

TABLE 14.2不同市场利率下的债券价格

		Bond Price at Given Market Interest Rate						
Time to Maturity	2%	4%	6%	8%	10%			
1 year	1,059.11	1,038.83	1,019.13	1,000.00	981.41			
10 years	1,541.37	1,327.03	1,148.77	1,000.00	875.35			
20 years	1,985.04	1,547.11	1,231.15	1,000.00	828.41			
30 years	2,348.65	1,695.22	1,276.76	1,000.00	810.71			

债券收益率:到期收益率

使债券的产生现金流的现值等于其价格的折现率为到期收益率(YTM-yield to maturity)

•在以下方程式中求解r

$$P_B = \sum_{t=1}^{T} \frac{C}{(1+r)^t} + \frac{\text{Par Value}}{(1+r)^T}$$

到期收益率的例子

假设一个8%息票率,30年期债券售价为 1276.76美元。它的平均回报率是多少?

$$$1276.76 = \sum_{t=1}^{60} \frac{$40}{(1+r)^t} + \frac{1000}{(1+r)^{60}}$$

- •r=半年收益率3%
- ▪债券等值收益率= 6%
- ▶实际年利率EAR = ((1.03)²) 1 = 6.09%

债券收益率:到期收益率vs当期收益率

什么是到期收益率?

- 是债券投资的内部收益率
- 使债券的产生现金流的现值等于其价格的折现率为到期收益率

Bond value =
$$\sum_{t=1}^{T} \frac{\text{Coupon}}{(1+r)^t} + \frac{\text{Par value}}{(1+r)^T}$$
 Price = Coupon × $\frac{1}{r} \left[1 - \frac{1}{(1+r)^T} \right] + \text{Par value} \times \frac{1}{(1+r)^T}$ = Coupon × Annuity factor(r, T) + Par value × PV factor(r, T)

什么是当期收益率?

债券的年利息除以债券价格

什么是溢价/折价债券?

▪ 高于/低于票面价值的债券

对于溢价债券来说

▪ 息票率>当期收益率>YTM

对于贴现债券,关系是相反的

赎回收益率

如果利率下降,债券的价格就会随之上升

可赎回债券的价格在低利率范围内是平缓的,因为回购或赎回的风险很高

当利率较高时,可赎回债券的风险可以忽略不计,不可赎回债 券和可赎回债券的价值趋同

FIGURE 14.4债券价格:可赎回和不可赎回的债券

考虑市场上交易的两种零息债券,债券A和债券B,基于下表中的信息:

Bond	Years to maturity	Face value	Current price
Α	1	\$1,000	\$980
В	2	\$1,000	\$950

(a)计算债券A和B的YTM

Solution:

(a) Price of a 1-year bond, A:

$$$980 = 1000/(1+r1)$$
. So, $r1 = 2.04\%$

Price of a 2-year bond, B:

$$$950 = 1000/((1+r2)^2)$$
. So, $r2=2.60\%$

债券收益率:已实现收益率VS到 期收益率

再投资假设

再投资收益率等于到期收益率的情况下,实际收益率等于到期收益率

持有期回报率

- 利率的变化会影响收益
- 利息的再投资
- 债券价格的变化

图14.5投资资金的增长

举例:已实现收益率

如果利息的再投资利率低于10%,那么投资的最终价值将低于1,210美元,实现的复合收益将低于10%。举例来说,假设利息再投资利率只有8%。

Future value of first coupon payment with interest earnings = $$100 \times 1.08 = 108

+Cash payment in second year (final coupon plus par value)

\$1100

= Total value of investment with reinvested coupons

\$1208

假设所有的利息都被再投资,实现的复合收益是投资基金的复合增长率。这位投资者以面值1000美元的价格购买了这只债券,投资金额增至1208美元。

$$V_0(1+r)^2 = V_2$$

r = 9.91%

举例: 投资期限分析

假设你以980美元的价格买了一个30年期,年息7.5%的债券(到期收益率为7.67%),并计划持有20年。

你的预测是债券的到期利率为8%,持有到期时的再投资率为6%。

在你的投资期限结束时,债券会离到期日还有10年,因此预测债券此时价格(使用到期收益率 8%)是966.45美元。这20张票息将随着复利的增长而增长,至2758.92元。(这是利率为6%的20年期75美元年金的未来价值。)

根据这些预测,你的980美元投资将在20年后增长到966.45美元

+ \$ 2758 .92= \$ 3725 .37;这相当于年化复合收益6.90%

图14.6 30年期、息票利率为6.5%的债券的价格轨迹

到期收益率和持有期收益率

YTM

YTM是债券持有至到期时的平均回 报率

取决于票面利率、期限和票面价 值

所有这些都是已知的

HPR

HPR是特定投资周期的回报率

HPR取决于债券在持有期结束时的 价格,即未知的未来价值

HPR 极少能准确预测。

FIGURE 14.7 30年期零息票债券价格随时间 变化的曲线

违约风险与债券定价

评级公司

穆迪投资服务,标准普尔,惠誉

评级类别

最高评级是AAA或Aaa

投资级债券的评级为BBB或Baa及以上

投机级/垃圾债券的评级低于BBB或Baa

违约风险与债券价格

评级机构使用的评级因素

- ■偿债能力比率 Coverage ratios
 - 衡量一个公司偿还债务的能力
- •杠杆率、负债权益比 Leverage ratios, debtto-equity ratio
- •流动比率 Liquidity ratios
 - 衡量公司偿付短期债务的能力
- ■盈利比率 Profitability ratios
- ■现金流负债比 Cash flow-to-debt ratio

TABLE 14.3长期债券的财务比率和违约风险等级

	3-year medians						
	AAA	AA	Α	BBB	ВВ	В	ccc
EBIT interest coverage multiple	23.8	19.5	8.0	4.7	2.5	1.2	0.4
EBITDA interest coverage multiple	25.5	24.6	10.2	6.5	3.5	1.9	0.9
Funds from operations/total debt (%)	203.3	79.9	48.0	35.9	22.4	11.5	5.0
Free operating cash flow/total debt (%)	127.6	44.5	25.0	17.3	8.3	2.8	(2.1)
Total debt/EBITDA multiple	0.4	0.9	1.6	2.2	3.5	5.3	7.9
Return on capital (%)	27.6	27.0	17.5	13.4	11.3	8.7	3.2
Total debt/total debt + equity (%)	12.4	28.3	37.5	42.5	53.7	75.9	113.5

FIGURE 14.9差异分析

X: firms that eventually went bankrupt

O: firms that remain solvent

The discriminant analysis determine the equation of the line that best separates the X and O observation

违约风险的保护

偿债基金:一种提前赎回债券的方式

次级额外债务:限制额外借贷数额

股利限制:迫使公司保留资产,而不是将其支付给股东

抵押品:如果公司违约,债券持有者可以得到公司的某一特定

资产

违约风险和收益率

债权工具的到期期限相同但利率却不相同的现象称为利率的风 险结构

基于预期现金流的收益率和基于承诺现金流的收益率是有区别的

期望收益率与承诺收益率之差为违约风险溢价

预期到期收益率必须考虑到违约的可能性。

FIGURE 14.11收益率的分布

信用违约掉期

信用违约掉期(CDS) 实际上是对公司债券或者是贷款违约风险的保险政策。

CDS 的购买者每年需支付保险费。

CDS 发行者承诺购买违约债券或者支付给CDS持有者债券面值和市场价格之间的差价。

1-35

信用违约掉期

债券持有机构,如银行,通过购买信用违约掉期将债券评级提 高到AAA来增强他们贷款组合的信誉。

在债券价格将要下降时也可以使用信用违约掉期来投机。

这就意味着更多的未偿还信用违约掉期是为了对实物债券保险。

1-36

图14.12 信用违约掉期价格

CHAPTER 15

利率的期限结构 (YTM and Time)

利率期限结构(收益率曲线)

投资市场上,不同期限债券的到期收益率不同。我们将某个时点期限不同但其他条件相同的各种债券(通常是零息国债)的到期收益率之间的关系称为**利率期限结构**。与利率期限结构等价的曲线图形被称为**收益率曲线**。

为什么到期日不同的债券要提供不同的收益率?

两个假说

- 1,预期假说
- 2,流动性偏好假说

1.期望假说

可观测的长期利率是当期和预期未来的短期利率的函数 两年期债券利率(y₂):

2-year cumulative expected returns

 $1.08 \times 1.10 = 1.188$

 $1.08995^2 = 1.188$

r₁ = 一年期债券的当期收益率current interest rate on a one-year bond

 $E(r_2) =$ 预期未来短期利率 expected future short-term rate (i.e. forward rate)

= 一年之后的一年期利率one-year rate, one year from now

预期假说

$$(1+y_n)^n = (1+y_{n-1})^{n-1}(1+f_n)$$

 $(1.12)^2 = (1.11)^1(1.1301)$

Using 1-yr and 2-yr interest rates:

Longer term rate, $y_n = 12\%$

Shorter term rate, $y_{n-1} = 11\%$

One year forward rate, f_n , for the second year =

one-year rate, one year from now = 13.01%

单选题 1分

Q1. 一年期、两年期和三年期的无违约零息债券到期收益率分别为7%、8%、9%。第二年的隐含远期利率(一年之后的一年期;利率)为多少

- A 2%
- B 8%
- 9%
- D 11%

$$(1.07) (1+f) = (1.08)(1.08)$$

 $f = 9\%$

2. 流动性偏好假说

要持有长期债权,投资者可能需要流动性补偿 Why?

一些投资者可能需要在到期日之前出售债券。 这意味着需要承担利率风险。 较长期债券的利率风险较高,

因此, 他们需要额外的收益来持有长期债券。

更长期限: 更多不确定性

A long delay m

In case anything

happen

a longer night ı

more bad drea

单选题 1分

- Q2. 如果收益率曲线是向上倾斜的, 下列哪个陈述是正确的
- I.根据预期假说,投资者预期未来的短期利率会保持不变。
- II. 投资者会要求更大的流动性补偿来持有长期投资
 - A I only
 - B II only.
 - I and II
 - Neither

SOLUTION

```
I could be valid.
```

```
Expectations hypothesis + Liquidity preference hypothesis

Flat yield curve + rising yield curve

= Overall rising yield curve.
```

Il could be valid.

Rising yield curve due to liquidity preference hypothesis alone.

Q3. 根据利率期限结构的流动性偏好理论,长期公司债券相对于短期债券收益的增加可能是由于

- A 流动性溢价下降
- 预计未来经济即将衰退
- **沙** 预期未来通货膨胀下降
- **预期利率的波动会增加**

单选题 1分

Q4. 根据期限结构的预期理论, 如果收益率曲线是向下倾斜的, 这表明投资者预期短期利率会在未来?

- A 上升
- B 下降
- 个 不变
- 以不可预知的方式改变

假设目前面值100元的1年期、2年期和3年期零息国债的价格分别为95.2元、89元和81.6元。市场预期未来三年的利率是多少?

(1) 计算三种债券的到期收益率(YTM)

$$95.2 = \frac{100}{1+r_1} \quad 89 = \frac{100}{(1+r_2)^2} \quad 81.6 = \frac{100}{(1+r_3)^3}$$

得到1年期、2年期和3年期到期收益率分别为5%,6%和7%,利率曲线是正向的。

(2)计算第二年市场预期利率:

$$(1+6\%)^2 = (1+5\%)(1+r_2^*)$$
 $r_2^* = 7.01\%$

(3)计算第三年市场预期利率:

$$(1+7\%)^3 = (1+6\%)^2(1+r_3^*)$$
 $r_3^* = 9.03\%$

综上,在到期收益率分别为5%,6%和7%的情形下,市场预期未来三年利率分别为5%,7.01%和9.03%,即市场利率呈现上升趋势。

CHAPTER 16

债券资产组合管理 (P and YTM)

债券价格与收益的关系

利率敏感性

当利率变化时债券价格会增加/减少多少

债券价格变动大小与初始市场利率高低呈反向变动关系

Other common terms for Interest Rate Sensitivity:

Price sensitivity

Price volatility

低利率时期更重视利率变动风险

举例:比较利率敏感性

长期债券的价格变动受市场利率变动的影响大于短期债券

30年期零息债券比一年期零息债券更敏感.

什么决定了利率敏感性?

If This Variable is Higher	Interest Rate Sensitivity
到期日	更高*
票面利率	更低
到期利率	更低

^{*}Generally true, although there are some exceptions (fixed income course)

Bonds that pay cash flows (Coupon) <u>sooner</u> have <u>lower</u> interest rate sensitivity.

票息率越高的债券价格变动受市场利率变动的影响越小

Q5. 当利率变化时,哪种债券的价格波动最大?

- 高票息、短到期时间
- 高票息、长到期时间
- 低票息、长到期时间

单选题 1分

Q6. 将下列债券的利率敏感性由高到低进行排序

- I. 8%票息,不可赎回的20年期票面利率债券
- II. 9%票息,不可赎回的20年到期的溢价债券
- III. 30年期的零息债券
 - A I, II, III
 - B II, III, I
- D III, II, I

Rank the interest sensitivity of the following from the most sensitive to an interest rate change to the least sensitive:

I. 8% coupon, non-callable 20-year maturity par bondII. 9% coupon, currently callable 20-year maturity par bondIII. Zero-coupon 30-year maturity bond

Note: Callable: The issuer could call back the bond before maturity.

Lower sensitivity.

9% is higher, → Lower sensitivity too.

A. I, II, III

B. II, III, I

C. III, I, II

D. III, II, I

举例

考虑一个五年期的票息率为10%按年支付利息的债券

1	2	3	4	5
\$100	\$100	\$100	\$100	\$1100

把这个债券考虑成一个由五个不同期限的零息债券构成的投资组合

- 这五个债券期限的加权平均代表了一种有效期限。
- 因为例中的债券每次支付时间先于到期日, 它的有效期限小于5年。

衡量债券的有效期限的变量是**久期**,债券投资回收期。利用久期可以比较不同债券的利率敏感性。

该债券未来五年的现金流为(100,100,100,100,1100).假设折现率为10%,则未来5年现金流现值为(90.9,82.6,75.1,68.3,683),每年回收债券投资成本\$1000美元的资金比例是(9.1%,8.3%,7.5%,6.8%,68.3%),收回债券投资成本的加权平均时间是 $9.1\% \times 1 + 8.3\% \times 2 + 7.5\% \times 3 + 6.8\% \times 4 + 68\% \times 5 = 4.15$ 年

久期计算: 9% COUPON, 8% YTM, 4 YEAR ANNUAL PAYMENT BOND PRICED AT \$1033.12

$$W_{t} = \frac{CF_{t}/(1 + ytm)^{t}}{Price} \qquad \text{Dur} = \sum_{t=1}^{N} W_{t} \times t$$

Year (T)	Cash Flow	$\begin{array}{c} \text{PV } @8\% \\ \text{CF}_{\text{T}} / \left(1 + \text{ytm}\right)^{\text{T}} \end{array}$	% of Value PV/Price	Weighted % of Value (PV/Price)*T
1	\$ 90	\$83.33	8.06%	0.0806
2	90	77.16	7.47%	0.1494
3	90	71.45	6.92%	0.2076
4	\$1090	\$801.18	77.55%	3.1020
Totals		\$1,033.12	100.00%	3.5396 yrs

Duration = 3.5396 years

DURATION (MACAULAY'S DURATION) MEASURES THE <u>EFFECTIVE</u> <u>MATURITY</u> OF A BOND

如何计算久期:

<mark>债券每次支付时间的加权平均</mark>,每次支付时间的权重应该是这 次支付在债券总价值中所占的比重。

除了零息债券,其他所有债券的久期都应该小于其到期时间。

零息债券的久期等于其到期时间

$$w_t = \left[CF_t / (1+y)^t \right] / \text{Price}$$

$$D = \sum_{t=1}^{T} t \times w_{t}$$

CF.=时间+所发生的现金流

从交易角度来考虑久期,如果你预期利率会 下降,你会购买怎么样的债券

- A 低票息、长到期
- B 高票息、短到期
- 高票息、长到期
- 零票息、长到期

SOLUTION

Answer is choice 4: zero, long.

Expect YTM to fall =>

- Buy bond with greatest price sensitivity to experience the largest price appreciation
- The lowest coupon bond (= a zero) and the longest maturity bond.

久期的经济意义

久期是收回债券投资成本的加权平均时间,虽然定义明确,但 其经济意义是什么常令投资人困惑。我们借助数学分析探讨

据公式
$$PV(CF_t) = \frac{CF_t}{(1+r)^t}$$
, 对利率求导

$$\frac{dPV(CF_t)}{dr} = \frac{-tCF_t}{(1+r)^{t+1}} = \frac{-t}{(1+r)}PV(CF_t)$$

对债券估值公式 $P = \sum_{t=1}^{T} PV(CF_t)$ 求导可得:

$$\frac{dP}{dr} = \sum_{t=1}^{T} \frac{dPV(CF_t)}{dr} = \sum_{t=1}^{T} \frac{-t}{(1+r)} PV(CF_t) = -\frac{1}{(1+r)} \sum_{t=1}^{T} tPV(CF_t) = -\frac{P}{(1+r)} \sum_{t=1}^{T} \frac{PV(CF_t)}{P} \times t = -\frac{P}{(1+r)} \times D$$

由此推得:
$$D = -\frac{1+r}{P} \times \frac{dP}{dr}$$
 债券的利率风险: 市场

利率发生微小变动时债 券价格的变动

久期/价格关系

当利率变化时债券价格会变动多少?

价格变化与久期成比例,而与到期时间无关

$$P\% = \frac{\Delta P}{P} = -D \times \frac{\Delta r}{1+r}$$

$$D = Duration (Macaulay's)$$

$$y = yield$$

从业者通常使用*修正久期* D*

$$\frac{D^* = D/(1+r)}{\frac{\Delta P}{P}} = -D^* \times \Delta r$$

例 16.1 久期

一个两年期债券的久期是1.8852 年,票面利率是 8% ,半年付息一次,其出售价格为964.54元,到期收益率是10%。为了进行比较,考虑以下零息债券,其久期和期限都是1.8852年。

每一债券的久期是1.8852 x 2 = 3.7704 个半年周期。

且每一周期的利率是5%。

修正周期是D* = 3.7704/(1+0.05) = 3.591 个半年周期。

1-66

例 16.1 久期

假设半年期利率又5%增长至5.01%,债券价格应该下降:

$$\frac{\Delta P}{P} = -D^* \times \Delta r$$

 $=-3.591 \times 0.01\% = -0.03591\%$

相同久期的债券实际上利率敏感性相同。

例 16.1 久期

息票债券

息票债券的初始销售价格是 \$964.540,当收益上升至5.01%时, 价格下降到\$964.1942。

下降了0.0359%

零息债券

零息债券的初始售价是 \$1,000/1.05 ^{3.7704} = \$831.9704.

收益率更高时,它的卖价是 \$1,000/1.0501^{3.7704} = \$831.6717。价格下降了 0.0359%。

久期法则

法则1零息债券的久期等于它的到期时间。

法则2 到期时间不变时,当息票率较高时,债券久期较短。

法则 3 票面利率不变时,债券久期会随期限增加而增加。

法则 4 保持其他因素都不变,当债券到期收益率较低时,息票债券的久期会较长。

法则5 终身年金的久期=(1+r) / r

久期的应用

1. 免疫策略

- 免疫: 使得债券投资收益免受利率变化的影响
- 利率变化时,债券投资受到以下两方面影响:
 - 价格风险:利率变化引起资产价格变动,价格变动导致投资债券的资本利得变动
 - 再投资风险:利率变化引起期间利息再投资收益变动

利率变化	价格风险	再投资风险
上升	资本利得下降	再投资收益上升
下降	资本利得上升	再投资收益下降

• 如何抵消两种风险?

- 对于一个T年期的付息债券,如果持有时间相对较短,则在利率发生变化时,持有期间获得的利息收入较少,相应的再投资收益变化小,而债券价格变动幅度变化相对较大,这时两种风险很难相互抵消
- 反之,如果持有时间过长,持有期间获得的利息收入较多,相应的再投资收益变大,而债券价格变动幅度变化相对较小,这时两种风险也很难相互抵消
- 如银行的资产和负债
- 因此,债券投资要对利率风险免疫,持有时间必须适度,这个最佳持有长度就是债券的久期。

免疫策略举例

现有5年期和6年期两种债券,其到期收益率都是8%,息票率都是8%。某投资人拟将100万元投资在一只债券上,5年后获得留学资格需要资金146.93万元。如果市场利率此后不发生变化,两只债券都能达到投资人的要求,但若利率在第三年下降或上升50个基点,应买入那只债券?

若第三年市场利率下跌50bp到7.5%,则投资5年期债券到期时的现金流,包括利息再投资、收回本金等共计

$$8 \times (1 + 8\%) \times (1 + 7.5\%)^3 + 8 \times (1 + 7.5\%)^3 + 8 \times (1 + 7.5\%)^2 + 8 \times (1 + 7.5\%) + 108 = 146.52 万元$$

投资6年期债券到期到第五年末的现金流,包括利息再投资、第五年末 出售债券的价格等共计

$$8 \times (1 + 8\%) \times (1 + 7.5\%)^3 + 8 \times (1 + 7.5\%)^3 + 8 \times (1 + 7.5\%)^2 + 8 \times (1 + 7.5\%) + 8 + 100.47 = 146.98 万元 > 146.93$$

因此,投资人买入5年期债券届时资金缺口为0.41万元,买入6年期债券资金剩余为0.05万元

若第三年市场利率上升50bp到8.5%,则投资5年期债券到期时的现金流,包括利息再投资、收回本金等共计

$$8 \times (1 + 8\%) \times (1 + 8.5\%)^3 + 8 \times (1 + 8.5\%)^3 + 8 \times (1 + 8.5\%)^2 + 8 \times (1 + 8.5\%) + 108 = 147.35 万元$$

投资6年期债券到期到第五年末的现金流,包括利息再投资、第五年末出售 债券的价格等共计

$$8 \times (1 + 8\%) \times (1 + 8.5\%)^3 + 8 \times (1 + 8.5\%)^3 + 8 \times (1 + 8.5\%)^2 + 8 \times (1 + 8.5\%) + 8 + 99.54 = 146.89万元$$

因此,投资人买入5年期债券有0.42万元的资金剩余,买入6年期债券资金剩余为0.04万元

综上所述,6年期债券价值未来波幅较小,买入6年期债券能够基本完成投资目标,这就是免疫的作用,因为6年期债券的久期是4.99年,几乎和投资年限相等。

久期的应用

2. 债券价格变化的近似计算

$$\frac{dP}{dr} \approx \frac{\Delta P}{\Delta r}$$

$$D \approx -\frac{1+r}{P} \times \frac{\Delta P}{\Delta r}$$

久期定价错误

Change in yield to maturity (percentage points)

LATIN AMERICAN INTEREST RATES

ARGENTINA 35-DAYLEBAC RATE

SOURCE: TRADINGECONOMICS.COM | CENTRAL BANK OF ARGENTINA

VENEZUELA INTEREST RATE

投资者为什么喜欢凸性?

当收益率下降时、曲率较大的债券在价格上的收益大于在收益率上升时的损失。

凸性

我们可以把凸性量化为价格-收益率曲线斜率的变化率,表示为债券价格的一部分

$$Convexity = \frac{1}{P \times (1+y)^2} \sum_{t=1}^{n} \left[\frac{CF_t}{(1+y)^t} (t^2 + t) \right]$$

Where: CF_t is the cash flow (interest and/or principal) at time t and y = ytm

Prediction model including convexity

$$\frac{\Delta P}{P} = -D \times \frac{\Delta y}{(1+y)} + \left[1/2 \times Convexity \times \Delta y^2\right]$$
$$= -D^* \Delta y + \left[1/2 \times Convexity \times \Delta y^2\right]$$

In practice, convexity is important when interest rate changes are large.

Convexity implies that duration predictions:

- I. Underestimate the percentage increase in bond price when the yield falls.
- II. Underestimate the percentage decrease in bond price when the yield rises.
- III. Overestimate the percentage increase in bond price when the yield falls.
- IV. Overestimate the percentage decrease in bond price when the yield rises.
- A. I and III only
- B. II and IV only
- C. I and IV only
- D. II and III only

Convexity implies that duration predictions:

- I. Underestimate the percentage increase in bond price when the yield falls.
- II. Underestimate the percentage decrease in bond price when the yield rises.
- III. Overestimate the percentage increase in bond price when the yield falls.
- IV. Overestimate the percentage decrease in bond price when the yield rises.
- A. I and III only
- B. II and IV only
- C. I and IV only
- D. II and III only

单选题 1分

计算一个9%票息率,3年期,票面价值为1000元, 到期收益率15%的债券的修正久期:

- A 2.38
- B 2.42
- 2.74
- 3.00

Time	CF	PV(CF)15%	W_t	t^*W_t
1	90	78.26	0.09068	0.09068
2	90	68.05	0.07886	0.15771
3	1090	716.69	0.83046	2.49138
		863.01	1.00	2.73978
		D*卧2.73978/1.15卧		2.38241

CRITICAL THINKING 1

如果投资者偏好短期债券的流动性,这是否属于流动 性偏好理论?

是的。这是流动性偏好理论的推论,投资者持有长期 债券需要额外的补偿。因为他们更喜欢短期债券的流 动性。

CRITICAL THINKING 2

用简单的语言解释:什么是久期?

一种衡量债券价格对利率变化的敏感性的方法,通过结合债券的特征,如票息、到期时间和YTM

CRITICAL THINKING 3

一般来说,长期利率比短期利率波动率小。然而长期 债券的收益率比短期债券更不稳定,如何协调这两个 经验观察,用今天所学的概念来解释

虽然短期利率相比于长期利率更不稳定,但较长期债券的期限越长,收益率也就越不稳定。

存续期越长,对利率的敏感性越大,因此短期债券的 利率波动更大,而长期债券的价格波动更大,这是可 能存在的