TASK 2 - UNEMPLOYMENT ANALYSIS WITH PYTHON

Annapoornima task2

Description of the dataset

Importing necessary libraries

```
# data processing
import numpy as np
import pandas as pd

# data visualization
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

 ✓ Loading the dataset

```
df = pd.read_csv('Unemployment in India.csv')
df.head()
```

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	11.
0	Andhra Pradesh	31- 05- 2019	Monthly	3.65	11999139.0	43.24	Rural	
1	Andhra Pradesh	30- 06-	Monthly	3.05	11755881.0	42.05	Rural	

✓ Understanding the structure of the dataset

```
df.shape
```

(768, 7)

Renaming the column

```
df.rename(columns={'Region.1': 'Area'}, inplace=True)
```

 ✓ Checking for missing values

```
df.isnull().sum()
```

```
Region 28
Date 28
Frequency 28
Estimated Unemployment Rate (%) 28
Estimated Employed 28
Estimated Labour Participation Rate (%) 28
Area 28
dtype: int64
```

```
df.duplicated().sum()
```

27

~

Summary of the dataframe

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype					
0	Region	740 non-null	object					
1	Date	740 non-null	object					
2	Frequency	740 non-null	object					
3	Estimated Unemployment Rate (%)	740 non-null	float64					
4	Estimated Employed	740 non-null	float64					
5	Estimated Labour Participation Rate (%)	740 non-null	float64					
6	Area	740 non-null	object					
dtyp	<pre>dtypes: float64(3), object(4)</pre>							
memo	memory usage: 42.1+ KB							

Removing unintentional spaces in columns

df.columns = df.columns.str.strip()
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 7 columns):

Duca	cotamins (total / cotamins):							
#	Column	Non-Null Count	Dtype					
0	Region	740 non-null	object					
1	Date	740 non-null	object					
2	Frequency	740 non-null	object					
3	Estimated Unemployment Rate (%)	740 non-null	float64					
4	Estimated Employed	740 non-null	float64					
5	Estimated Labour Participation Rate (%)	740 non-null	float64					
6	Area	740 non-null	object					
dtyp	<pre>dtypes: float64(3), object(4)</pre>							
memo	memory usage: 42.1+ KB							

Converting data types

df['Date'] = pd.to_datetime(df['Date'])
df.dtypes

Region	object
Date	datetime64[ns]
Frequency	object
Estimated Unemployment Rate (%)	float64
Estimated Employed	float64
Estimated Labour Participation Rate (%)	float64
Area	object
dtype: object	

Summary Statistics

selecting the categorical variables
categorical_var = df.select_dtypes(include='object')
Obtaining summary statistics for the categorical variables
categorical_stat = categorical_var.describe().T
categorical_stat

	count	unique	top	freq	
Region	740	28	Andhra Pradesh	28	ıl.
Frequency	740	2	Monthly	381	+/
Δrea	740	2	Urhan	381	

selecting numerical variables
numerical_var = df.select_dtypes(exclude='object')
Obtaining summar statistics for the numerical variables
numerical_stat = numerical_var.describe().T
numerical_stat

	count	mean	std	min	25%	50%
Estimated Unemployment Rate (%)	740.0	1.178795e+01	1.072130e+01	0.00	4.657500e+00	8.35

✓ Dropping irrelevent column

df = df.drop('Frequency', axis=1)
df.head()

	Region	Date	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area
0	Andhra Pradesh	2019-05- 31	3.65	11999139.0	43.24	Rural
1	Andhra Pradesh	2019-06- 30	3.05	11755881.0	42.05	Rural
2	Andhra Pradesh	2019-07- 31	3.75	12086707.0	43.50	Rural

Outlier detection

```
colors = ['lightblue', 'lightgreen', 'lightcoral']
# Create a figure with three subplots
plt.figure(figsize=(12, 6))
# Subplot 1: Unemployment Rate
plt.subplot(131)
df.boxplot(column='Estimated Unemployment Rate (%)', patch_artist=True)
plt.gca().get_children()[0].set_facecolor(colors[0])  # Set the color of the first box
plt.title('Unemployment Rate')
# Subplot 2: Employed
plt.subplot(132)
df.boxplot(column='Estimated Employed', patch_artist=True)
\verb|plt.gca().get_children()[0].set_facecolor(colors[1])| # Set the color of the second box|
plt.title('Employed')
# Subplot 3: Labor Participation Rate
plt.subplot(133)
df.boxplot(column='Estimated Labour Participation Rate (%)', patch_artist=True)
\verb|plt.gca().get_children()[0].set_facecolor(colors[2])| # Set the color of the third box|
plt.title('Labor Participation Rate')
plt.tight_layout()
plt.show()
```


✓ Unemployment rate in India during Covid-19

```
plt.figure(figsize=(12, 6))
sns.lineplot(data=df, x='Date', y='Estimated Unemployment Rate (%)')
plt.xticks(rotation=45)
plt.show()
```


Unemployment rate in each state

```
import plotly.express as px
plot_unemp = df[['Estimated Unemployment Rate (%)','Region']]
df_unemployed = plot_unemp.groupby('Region').mean().reset_index()

df_unemployed = df_unemployed.sort_values('Estimated Unemployment Rate (%)')

fig = px.bar(df_unemployed, x='Region',y='Estimated Unemployment Rate (%)',color = 'Region',title = 'Average unemployment ratemplate='seaborn')

fig.show()
```

Average unem

Visualizes the distribution of unemployment rates within different areas

```
fig = px.violin(
    df,
    x='Area',
    y='Estimated Unemployment Rate (%)',
    title='Distribution of Unemployment Rates by Areas',
    box=True, # Include box plot inside the violin
    points='all', # Show individual data points
)
fig.show()
```

Distribution of Unemployment Rates by Areas

Composition of Labour Participation Rates by Region Over Time

```
fig = px.area(
    df,
    x='Date',
    y='Estimated Labour Participation Rate (%)',
    color='Region',
    labels={'Estimated Labour Participation Rate (%)': 'Labour Participation Rate (%)'},
    category_orders={'Region': df['Region'].unique()} # Preserve the order of regions
)

fig.update_layout(
    xaxis_title='Date',
    yaxis_title='Labour Participation Rate (%)',
    legend_title='Region',
    legend_dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
)
```

fig.show()

Extracting month from date

df['Month'] = df['Date'].dt.month
df

	Region	Date	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area	Month	
0	Andhra Pradesh	2019-05- 31	3.65	11999139.0	43.24	Rural	5.0	11.
1	Andhra Pradesh	2019-06- 30	3.05	11755881.0	42.05	Rural	6.0	
2	Andhra Pradesh	2019-07- 31	3.75	12086707.0	43.50	Rural	7.0	
3	Andhra Pradesh	2019-08- 31	3.32	12285693.0	43.97	Rural	8.0	
4	Andhra Pradesh	2019-09- 30	5.17	12256762.0	44.68	Rural	9.0	
763	NaN	NaT	NaN	NaN	NaN	NaN	NaN	
764	NaN	NaT	NaN	NaN	NaN	NaN	NaN	
765	NaN	NaT	NaN	NaN	NaN	NaN	NaN	

Percentage change in unemployment

plot_df = before_lock.sort_values('Percentage Change in Unemployment', ascending=False)
plt.figure(figsize=(16, 10))
sns.barplot(data=plot_df, y='Region', x='Percentage Change in Unemployment')

<Axes: xlabel='Percentage Change in Unemployment', ylabel='Region'>

If the percentage change is positive (+X%), it means that unemployment has increased by X% compared to the previous period. In other words, more people are unemployed.

If the percentage change is negative (-X%), it means that unemployment has decreased by X% compared to the previous period. Fewer people are unemployed.

The magnitude of the percentage change indicates how significant the change is. A larger percentage change suggests a more substantial shift in unemployment rates compared to a smaller percentage change.

Puducherry's unemployment rate had been seriously impacted by the lock-down.

Sikkim, Jammu & Kashmir Chattisgar ,Himachal Pradesh and Tripur have negetive percentage change. That means these states are not highly impacted by the lock down.

Start coding or generate with AI.