

 DP algoritmas atlieka daug skaičiavimų bereikšmėje srityje

	G	Α	A	<u>}</u>	Τ/	С	Α	G	Τ	Τ	Α
G	1	1	1	1	1	\neq	1	1	~	1	1
\mathcal{Q}	1	1	1	1	1	1	1	Ŋ	2	2	2
Α	*	2	2	2	2	2	2	2	X	2	2
Т	1	2	2	3	3	3	3	3	, ფ	m	3
С	1	2	2	3	3	4	4	4	4	4	4
G	1	2	2	3	3/	4	4	5	5	5	5
Α	1	2	3	3	3	4	5	5	5	5	6

FASTA sutelkia paiešką į įstrižainių sritį

FASTA

Naudojami artiniai ("heuristika"):
 geras lokalus palyginys turi tam tikrą
 visiškos sutapimo subseką.

- Surasti visus "karštus taškus" (ilgio k sekos, kuirios idealiai sutampa)
- Galima naudoti "hash" arba "look-up" lenteles
- Atrinkti N geriausių sekų

Apjungti sub-palyginius atsižvelgiant į tarpus

- Konstruojamas svorinis kryptinis grafas
- Mazgai yra sub-palyginiai
- Kraštinė (u,v) egzistuoja, jei u yra prieš v
- Kiekviena kraštinė turi tarpo baudą (neigiamas svoris)
- leškoma maksimalaus svorio kelio

 Apribotoje srityje naudojamas dinaminio programavimo algoritmas

- Kitas heuristinis algoritmas
- Rezultatai įvertinami statistiškai
- Remiasi prielaida, kad homologinės sekos turi trumpų sekų porų su dideliais įverčiais.
- Šiuos trumpus segmentus algoritmas praplečia į abi puses kad būtų gautas optimalus palyginys

- Paruošiamieji darbai:
 - 1 žingsnis paruošti daugiausiai taškų turinčius žodžius iš užklausos sekos

 2 žingsnis – paieška sekų duomenų bazėje. Kiekvienam žodžiui iš sąrašo randami tikslūs radiniai DB

Galima naudotis hash-lentelėmis

position	1	2	3	4	•••	
88	LAA	AAL	ALL	LLN	-600	
ords	LAG	AAA	AAL	LVN		
Neighbor words	AAA	AGL	ALA	LLD	•••	_
ghb	LGA	GAL	GLL	LLE		ee /
Nei	IAA	AAV		VVN		
		AAI				
9		AGL				

word	position
AAA	1,2,15,16
AAL	2,3,10,11
AAA	2,15,43
LAA	1,5,7,
GLL	3,8,34,
VVN	4,21,25,
:	110

Hach lentale

žodžia

- •3 žingsnis optimalaus palyginio paieška.
 - •Naudojami <u>dviejų</u> žodžių sutapmai, kaip inkarai palyginio konstravimui

 4 žingsnis – palyginio statistinio reikšmingumo įvertinimas. Palyginio plėtimas stabdomas, kai E-reikšmė būna didesnė nei ribinė. Toks rastas segmentas vadinamas didelio įverčio segmentu (High Scoring Segment Pair, HSSP, HSP)

E- reikšmės apibrėžimas:

Tikėtinas HSP, kurių įvertis didesnis nei S, skaičius

$$E = K*n*m*e^{-\lambda S}$$

K, λ nuo modelio priklausančios konstantos

n, m užklausos ir sekos ilgiai

Sekų įverčiai pasiskirstę pagal ekstremalių verčių dėsnį.

- Užklausos ilgis 153
- DB dydis 5997 sekos

Algoritmas	Trukmė		
D.P	16.989 [s]		
FASTA	0.618 [s]		
BLAST	0.118 [s]		

- Dinaminis programavimas:
 - Jautriausias algoritmas
 - Panaudojama visa informacija
 - Algoritmas lėtas
 - Naudojamos ir bereikšmės sritys

FASTA

- Mažiau jautrus nei DP ir BLAST
- Naudojama dalinė informacija pagreitinant skaičiavimus
- Rezultatai nevertinami statistiškai
- Žymiai greitesnis nei DP

BLAST

- Jautresnis nei FASTA
- Rezultatai įvertinami statistiškai
- Greitesnis nei FASTA. Atsižvelgiant į rezultatų patikimumą atmetamas triukšmas ir tokiu būdu sutrumpėja skaičiavimo laikas

Porinio palygininimo generazizacija

- Dviejų sekų palyginys dvimatė matrica.
- Analogiškai palyginimą iš trijų sekų galima pavazduoti optimalaus kelio trajektorija trimatėje matricoje.

 Įvertis - kuo mažiau vairuoja stulpeliai tio geresnis palyginimas.

Palyginiai= Keliai

 Palyginam tris sekas: ATGC, AATC,ATGC

Palyginimo kelias

0	1	1	2	3	4
	Α		Т	G	С

x koordinatė

	Α	Т	G	С
--	---	---	---	---

Palyginimo kelias

Align the 3 sequences: ATGC, AATC, ATGC

0	1	1	2	3	4
	Α		Т	G	С
0	1	2	3	3	4
	Α	Α	Т		С

x koordinatė

y koordinatė

-- A T G C

Palyginimo kelias

0	1	1	2	3	4
	Α		Т	G	С
0	1	2	3	3	4
	А	А	Т		С
0	0	1	2	3	4
		Α	Т	G	С

x koordinatė

y koordinatė

z koordinatė

Atitinkamas kelias (x,y,z) erdvėje:

$$(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$$

Trijų sekų lyginimas

- Ta pati strategia, kaip ir 2-jų sekų atveju
- Naudojamas 3-D
 "Manheteno kubas", kur
 kiekviena lyginama seka
 sutapatinama su
 koordinačių ašimi.
- Globaliam sulyginimui gauti einama nuo pradžios čiaupo iki kriauklės.

2-D vs 3-D Palyginimo tinklelis.

2-D grafas

3-D grafas

3-D vs 2-D palyginimo celė

2-D, 3 viršūnės vienam lyginimo vienetui

3-D, 7 viršūnės vienam lyginimo vienetui

3-D sulyginimo celės architektūra

Daugybinis palyginys: Dinaminis programavimas

•
$$s_{i,j,k} = \max \begin{cases} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k-1} + \delta(v_i, w_j, u_k) \\ s_{i,j-1,k-1} + \delta(v_i, u_k) \\ s_{i-1,j,k} + \delta(v_i, u_k) \\ s_{i-1,j,k} + \delta(v_i, u_k) \\ s_{i,j-1,k} + \delta(v_i, u_k) \\ \end{cases}$$
 kraštinės diagonalės tarpas dvejose sekose $s_{i,j,k-1} + \delta(v_i, u_k)$

• $\delta(x, y, z)$ įvertis 3-D įverčių matricoje

Daugybinis palyginys: vykdymo laikas

- 3-jų n ilgio sekų palyginimas, globalaus palyginimo laikas
 7n³; O(n³). (7-nios diagonalės)
- k sekoms, atitinka k-dimensijų paieškos matricą, kurios apskaičiavimo laikas (2k-1)(nk); O(2knk)
- Klasikinis dinaminis programavimas lengvai pritaikomas ir išplečiamas daugeliui sekų, bet yra nepraktiškas dėl eksponentiškai didėjančių laiko sąnaudų.

Daugybinio palyginio profilinė išraiška.

A

T

Daugybinio palyginio profilinė išraiška.

Praeityje lygiom seką su seka.

Ar galima lyginti seką su profiliu?

Ar galima lyginti profili su profiliu?

Lyginant palyginius

Ar galim sulyginti du palyginimus?


```
x GGGCACTGCAT
```

y GGTTACGTC-- Palyginimas 1

z GGGAACTGCAG

w GGACGTACC-- Palyginimas 2

v GGACCT----

Lyginant palyginius

- Ar galim sulyginti du palyginimus?
- Galim naudoti atitikamus palyginimus...

y GGTTACGTC-- Apjungti palyginiai

z GGGAACTGCAG

w GGACGTACC--

v GGACCT----

Daugybinis palyginis: "godusis" sprendimas

- Pasirink labiausiai panašią sekų porą ir apjunk ją į profilį, k sekų sulyginimą paverčians į k-1 sekų/profilių palyginimą.
 Kartojimas
- Euristinis "godusis" metodas:

```
k = ACGTACGTACGT...
u_1 = ACg/tTACg/tTACg/cT...
u_2 = TTAATTAATTAA...
u_3 = ACTACTACTACT...
u_k = CCGGCCGGCCGG...
u_k = CCGGCCGGCCGG
```

"Godusis" sprendimas: Pavyzdys

Turim keturias sekas:

s1 GATTCA

s2 GTCTGA

s3 GATATT

54 GTCAGC

"Godusis" sprendimas: Pavyzdys (tesinys)

• Yra = 6 galimi palyginiai

```
s2 GTCTGA
s1 GATTCA--
s4 GTCAGC (score = 2)
s1 GAT-TCA
s2 G-TCTGA
s2 G-TCTGA (score = 1)
s1 GAT-TCA
s3 GATAT-T (score = 1)
s3 GAT-ATT
s3 GATAT-T (score = 1)
```

"Godusis" sprendimas: Pavyzdys (tesinys)

 s_2 ir s_4 yra panašiausi, apjungiam:

naujas 3 sekų palyginiai:

$$S_1$$
 GATTCA
 S_3 GATATT
 $S_{2,4}$ GTCt/aGa/c

Progresyvus lyginimas

- Progresyvus lyginimas yra "godžiojo" algoritmo variantas su kiek inteligentiškesniu pasirinkimu, kurias sekas reikia pirmiausiai apjungti.
- Progresyvus lyginimas veikia gerai artimoms sekoms, bet nutolusioms sekoms veikia prastai:
 - Sekos jau sudarytuose profiliuose yra fiksluojamos.
 - Lyginame sekas naudodami profilius.

ClustalW

- Populiarus ir dar dabar naudojamas algoritmas.
- 'W' reiškia 'weighted' (atskiros palygino dalys turi skirtingus svorius).
- Trijų žingsnių algoritmas
 - 1.) Apskaičiuojam visus galimus porinius palyginius.
 - 2.) Suklasterizuojam sekas pagal panašumą kurdami medį palyginimo "gidą".
 - 3.) Kuriam palyginį apjungdami ir lygindami sekas pagal medį.

Žingsnis 1: Poriniai palyginimai

- Palygina kiekvieną seką su kiekviena.
 Sukuriama identiškumų matricą.
- Identiškumų matrica = tikslus sutapimas / porinio palyginio ilgis

Žingsnis 2: Medis - palyginimo "gidas"

 Sukuriamas medis pagal apskaičiuotą identiškumų matricą

 ClustalW naudoja artimiausių kaimynų apjungimo metodiką (sekanti paskaita).

 Naudojamas medis grubiai atititinka evoliucinius ryšius.

Žingsnis 2: Medis - palyginimo "gidas" (ę)

Skaičiuojam palyginimą:

```
V_{1,3} = alignment (v_1, v_3)

V_{1,3,4} = alignment ((v_{1,3}), v_4)

V_{1,2,3,4} = alignment ((v_{1,3,4}), v_2)
```

Step 3: Progresyvus lyginimas

- Sulyginam dvi panašiausias sekas
- Sekdami medžiu pridedam paeiliui kitas sekas prie palyginio (profilio - sekos lyginimas).

Insert gaps as necessary

taškai ir žvaigždutės rodo konservatyviausias sritis

Daugybinis palyginys: Įvertis

Sutapimų skaičius (visiškai sutapatintų stulpelių skaičius)

Entropijos įvertis

Suminis porinis įvertis(SP-Score)

Sutapimų skaičiaus įvertis

AAA AAA AAT ATC

Geras tik visiškai panašioms sekoms.

Entropijos įvertis

AAA

- Apibrėžiam nukleotidų pasikartojimo dažnius stulpeliuose
 - $p_A = 1$, $p_T = p_G = p_C = 0$ (1st column)
 - $p_A = 0.75$, $p_T = 0.25$, $p_G = p_C = 0$ (2nd column)
 - $p_A = 0.50$, $p_T = 0.25$, $p_C = 0.25$ $p_G = 0$ (3rd column)
- Compute entropy of each column

$$-\sum_{X=A,T,G,C} p_X \log p_X$$
AAA
AAT
ATC

Entropija: Pavyzdys

$$entropy \begin{pmatrix} A \\ A \\ A \\ A \end{pmatrix} = 0$$
 geriausias atvejis

Worst case
$$entropy \begin{pmatrix} A \\ T \\ G \\ C \end{pmatrix} = -\sum \frac{1}{4} \log \frac{1}{4} = -4(\frac{1}{4}*-2) = 2$$

Entropijos įvertis

Daugybino palyginio entropija lygi jo stulpelių entropijų sumai

$$\Sigma_{\text{per stulpelius}} \Sigma_{X=A,T,G,C} p_X \log p_X$$

Palyginio entropija: Pavyzdys

Α	Α	Α
Α	С	С
Α	С	G
Α	С	Т

•stulpelis 2 = -[
$$(\frac{1}{4})*\log(\frac{1}{4}) + (\frac{3}{4})*\log(\frac{3}{4}) + 0*\log0 + 0*\log0$$
]
= -[$(\frac{1}{4})*(-2) + (\frac{3}{4})*(-.415)$] = +0.811

•stulpelis 3 =
$$-[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)]$$

= $4*-[(1/4)*(-2)] = +2.0$

•Palyginio entropija= 0 + 0.811 + 2.0 = +2.811

Suminis porinis įvertis

Daugybinį palyginį galima suskaldyti į daugelį porinių

x: AC-GCGG-C

y: AC-GC-GAG

z: GCCGC-GAG

Atitinka:

x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG

y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG

Suminis porinis įvertis(SP-Score)

Tarkim, kad

$$a_i$$
 ir a_j

yra sekos paimtos iš daugybinio palyginio, kuris sudarytas iš *k* sekų.

Tegul šio porinio palyginio seka bus:

$$s^*(a_i, a_i)$$

 Šių įverčių suma daugybiniam palyginiui ir atitiks SP-Score:

$$s(a_1,...,a_k) = \Sigma_{i,j} s^*(a_i, a_j)$$

SP-Score skaičiavimas

Daugyninis palygiys iš 4 sekų: 6 poriniai payginimai

Sekos a_1, a_2, a_3, a_4 :

$$s(a_1...a_4) = \sum s^*(a_1,a_1) = s^*(a_1,a_2) + s^*(a_1,a_3) + s^*(a_1,a_4) + s^*(a_2,a_3) + s^*(a_2,a_4) + s^*(a_3,a_4)$$

SP-Score: Pavyzdys

$$a_1$$
 ATG-C-AAT
. A-G-CATAT
 a_k ATCCCATTT

Einam per visas įmanomas simbolių poras stulpelyje ir per visus stulpelius

$$S(a_1...a_k) = \sum_{i,j} s^*(a_i, a_j) \leftarrow \binom{n}{2}$$
 Pairs of Sequences

$$G$$
 $-\mu$
 G
Stulpelis 3