$10_9 \ (K10a_{110})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{18} - 2u^{17} + \dots - u + 1 \rangle$$

 $I_2^u = \langle u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 19 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{18} - 2u^{17} - 10u^{16} + 21u^{15} + 37u^{14} - 85u^{13} - 59u^{12} + 166u^{11} + 27u^{10} - 160u^9 + 30u^8 + 65u^7 - 39u^6 + 5u^5 + 9u^4 - 7u^3 + 2u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{7} + 4u^{5} - 4u^{3} + 2u \\ -u^{9} + 5u^{7} - 7u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{8} + 5u^{6} - 7u^{4} + 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{17} + u^{16} + \dots - u + 2 \\ -3u^{17} + u^{16} + \dots + 3u^{2} + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

$$= -4u^{15} + 40u^{13} - 152u^{11} + 4u^{10} + 272u^9 - 28u^8 - 232u^7 + 64u^6 + 84u^5 - 52u^4 + 12u^2 - 4u - 2u^2 + 24u^2 +$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_9, c_{10}	$u^{18} - 2u^{17} + \dots - u + 1$
c_2	$u^{18} - 3u^{17} + \dots + 3u - 3$
c_3, c_7, c_8	$u^{18} - 8u^{16} + \dots - u + 1$
c_4	$u^{18} - 4u^{17} + \dots - 5u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \ c_9, c_{10}$	$y^{18} - 24y^{17} + \dots + 3y + 1$
c_2	$y^{18} + 3y^{17} + \dots - 39y + 9$
c_3, c_7, c_8	$y^{18} - 16y^{17} + \dots + 3y + 1$
c_4	$y^{18} + 22y^{16} + \dots - 65y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.972680 + 0.237177I	-3.70552 - 3.19755I	-8.61366 + 5.32391I
u = 0.972680 - 0.237177I	-3.70552 + 3.19755I	-8.61366 - 5.32391I
u = -0.965445 + 0.329507I	1.32984 + 6.64718I	-3.24506 - 6.19689I
u = -0.965445 - 0.329507I	1.32984 - 6.64718I	-3.24506 + 6.19689I
u = -0.884294	-1.71487	-4.98730
u = 0.572262 + 0.347341I	3.49531 + 0.56492I	-0.70794 + 1.84066I
u = 0.572262 - 0.347341I	3.49531 - 0.56492I	-0.70794 - 1.84066I
u = 0.158501 + 0.549521I	4.78286 - 3.66002I	2.48971 + 4.64953I
u = 0.158501 - 0.549521I	4.78286 + 3.66002I	2.48971 - 4.64953I
u = -0.184698 + 0.383796I	-0.150453 + 1.027520I	-2.68106 - 6.45577I
u = -0.184698 - 0.383796I	-0.150453 - 1.027520I	-2.68106 + 6.45577I
u = -1.62858	-3.96483	-2.02740
u = 1.70718 + 0.02414I	-11.15470 - 0.27346I	-6.21894 - 1.07083I
u = 1.70718 - 0.02414I	-11.15470 + 0.27346I	-6.21894 + 1.07083I
u = 1.70822 + 0.08549I	-8.11334 - 8.29410I	-4.53964 + 4.66449I
u = 1.70822 - 0.08549I	-8.11334 + 8.29410I	-4.53964 - 4.66449I
u = -1.71227 + 0.06112I	-13.25300 + 4.38839I	-8.97609 - 3.55329I
u = -1.71227 - 0.06112I	-13.25300 - 4.38839I	-8.97609 + 3.55329I

II.
$$I_2^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_6, c_7, c_8 c_9, c_{10}	u+1
c_2	u
c_4	u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_8, c_9, c_{10}	y-1
c_2	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	-1.64493	-6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_6 \ c_9, c_{10}$	$(u+1)(u^{18}-2u^{17}+\cdots-u+1)$
c_2	$u(u^{18} - 3u^{17} + \dots + 3u - 3)$
c_3, c_7, c_8	$(u+1)(u^{18}-8u^{16}+\cdots-u+1)$
c_4	$(u-1)(u^{18}-4u^{17}+\cdots-5u-1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \ c_9, c_{10}$	$(y-1)(y^{18}-24y^{17}+\cdots+3y+1)$
c_2	$y(y^{18} + 3y^{17} + \dots - 39y + 9)$
c_3, c_7, c_8	$(y-1)(y^{18}-16y^{17}+\cdots+3y+1)$
c_4	$(y-1)(y^{18}+22y^{16}+\cdots-65y+1)$