linear_regression

January 18, 2023

0.1 Linear regression workbook

This workbook will walk you through a linear regression example. It will provide familiarity with Jupyter Notebook and Python. Please print (to pdf) a completed version of this workbook for submission with HW #1.

ECE C147/C247, Winter Quarter 2023, Prof. J.C. Kao, TAs: T.M, P.L, R.G, K.K, N.V, S.R, S.P, M.E

```
[1]: import numpy as np import matplotlib.pyplot as plt

#allows matlab plots to be generated in line
%matplotlib inline
```

0.1.1 Data generation

For any example, we first have to generate some appropriate data to use. The following cell generates data according to the model: $y = x - 2x^2 + x^3 + \epsilon$

```
[2]: np.random.seed(0) # Sets the random seed.
num_train = 200 # Number of training data points

# Generate the training data
x = np.random.uniform(low=0, high=1, size=(num_train,))
y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_train,))
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
```

```
[2]: Text(0, 0.5, '$y$')
```


0.1.2 QUESTIONS:

Write your answers in the markdown cell below this one:

- (1) What is the generating distribution of x?
- (2) What is the distribution of the additive noise ϵ ?

0.1.3 ANSWERS:

- (1) x is in uniform distribution which ranges from 0 to 1
- (2) ϵ is in normal distribution which is symmetric about y-axis and the standard deviation is 0.03

0.1.4 Fitting data to the model (5 points)

Here, we'll do linear regression to fit the parameters of a model y = ax + b.

```
[3]: # xhat = (x, 1)
xhat = np.vstack((x, np.ones_like(x)))

# ========= #
# START YOUR CODE HERE #
# ========= #
```

[4]: print(theta)

[-0.10599633 0.13315817]

```
[5]: # Plot the data and your model fit.
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# Plot the regression line
xs = np.linspace(min(x), max(x),50)
xs = np.vstack((xs, np.ones_like(xs)))
plt.plot(xs[0,:], theta.dot(xs))
```

[5]: [<matplotlib.lines.Line2D at 0x7fa718c63280>]

0.1.5 QUESTIONS

- (1) Does the linear model under- or overfit the data?
- (2) How to change the model to improve the fitting?

0.1.6 ANSWERS

- (1) This linear model underfit the data because the line doesn't fit many datapoints of the training set.
- (2) We can use a polynomial model of a higher order to fit the data.

0.1.7 Fitting data to the model (5 points)

Here, we'll now do regression to polynomial models of orders 1 to 5. Note, the order 1 model is the linear model you prior fit.

```
[17]: # ========= # # START YOUR CODE HERE # # ====== # # GOAL: create a variable thetas.
```

```
\hookrightarrow fit of order i+1.
      # i.e., thetas[0] is equivalent to theta above.
      # i.e., thetas[1] should be a length 3 np.array with the coefficients of the
       \rightarrow x^2, x, and 1 respectively.
      # ... etc.
      N = 5
      x2 = [i**2 for i in x]
      x3 = [i**3 for i in x]
      x4 = [i**4 for i in x]
      x5 = [i**5 for i in x]
      x_list = [x5, x4, x3, x2, x, np.ones_like(x)]
      # xhats5 = np.vstack((x5, x4, x3, x2, x, np.ones_like(x)))
      thetas = [[],[],[],[],[]]
      for i in range(N):
          xhats = np.vstack(x_list[-(i+2):])
          print(xhats.shape)
          xhats_T = xhats.T
          x_inv = np.linalg.pinv(xhats.dot(xhats_T))
          thetas[i] = x_inv.dot(xhats).dot(y)
      pass
      # ======= #
      # END YOUR CODE HERE #
      # ====== #
[18]: print(thetas)
     [array([-0.10599633, 0.13315817]), array([-0.48023061, 0.36743967,
     0.05521084]), array([ 0.8843808 , -1.82077417, 0.91178032, 0.00979068]),
     array([ 0.14080037, 0.60466289, -1.64250929, 0.87250485, 0.01175321]),
     array([ 0.52432591, -1.164568 , 1.76052438, -2.07430275, 0.93373916,
             0.009716 ])]
[19]: # Plot the data
      f = plt.figure()
      ax = f.gca()
      ax.plot(x, y, '.')
      ax.set xlabel('$x$')
      ax.set_ylabel('$y$')
      # Plot the regression lines
      plot_xs = []
      for i in np.arange(N):
          if i == 0:
              plot_x = np.vstack((np.linspace(min(x), max(x), 50), np.ones(50)))
```

thetas is a list, where theta[i] are the model parameters for the polynomial \Box

```
else:
    plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
    plot_xs.append(plot_x)

for i in np.arange(N):
    ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))

labels = ['data']
[labels.append('n={}'.format(i+1)) for i in np.arange(N)]
bbox_to_anchor=(1.3, 1)
lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```


0.1.8 Calculating the training error (5 points)

Here, we'll now calculate the training error of polynomial models of orders 1 to 5.

```
theta = thetas[i]
    xhats = np.vstack(x_list[-(i+2):])
    y_pred = theta.dot(xhats)
    train_err = (np.sum(np.square(np.array(y - y_pred))) / num_train) ** 0.5
    training_errors.append(train_err)
pass

# =========== #
# END YOUR CODE HERE #
# ========= #
print ('Training errors are: \n', training_errors)
```

Training errors are:

```
[0.04878484486357111, 0.03305287008607351, 0.02858251878527393, 0.028575083088762804, 0.028568302706890553]
```

0.1.9 QUESTIONS

- (1) What polynomial has the best training error?
- (2) Why is this expected?

0.1.10 ANSWERS

- (1) I think the 3/4/5 has the best training error (though not exactly same but very similar)
- (2) This is because the generating model has a polynomial order of 3, so the linear model or the polynomial model of order 2 couldn't fit the generating model the best. As for models with higher polynomial order, they are more complicated and the coefficients for x⁴ or x⁵ will be automatically set to zero according to our derivative, so 3/4/5 polynomial models have better and similar performance.

0.1.11 Generating new samples and testing error (5 points)

Here, we'll now generate new samples and calculate testing error of polynomial models of orders 1 to 5.

```
[25]: x = np.random.uniform(low=1, high=2, size=(num_train,))
y = x - 2*x**2 + x**3 + np.random.normal(loc=0, scale=0.03, size=(num_train,))
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
```

```
[25]: Text(0, 0.5, '$y$')
```



```
[26]: xhats = []
for i in np.arange(N):
    if i == 0:
        xhat = np.vstack((x, np.ones_like(x)))
        plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
    else:
        xhat = np.vstack((x**(i+1), xhat))
        plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
    xhats.append(xhat)
```

```
[27]: # Plot the data
f = plt.figure()
ax = f.gca()
ax.plot(x, y, '.')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')

# Plot the regression lines
plot_xs = []
for i in np.arange(N):
```

```
if i == 0:
        plot_x = np.vstack((np.linspace(min(x), max(x),50), np.ones(50)))
    else:
        plot_x = np.vstack((plot_x[-2]**(i+1), plot_x))
        plot_xs.append(plot_x)

for i in np.arange(N):
        ax.plot(plot_xs[i][-2,:], thetas[i].dot(plot_xs[i]))

labels = ['data']
[labels.append('n={}'.format(i+1)) for i in np.arange(N)]
bbox_to_anchor=(1.3, 1)
lgd = ax.legend(labels, bbox_to_anchor=bbox_to_anchor)
```


Testing errors are:

```
[0.8992310706681896, 1.4601093262169904, 0.17679641139969646, 0.10895304128478694, 1.4659816421052532]
```

0.1.12 QUESTIONS

- (1) What polynomial has the best testing error?
- (2) Why polynomial models of orders 5 does not generalize well?

0.1.13 **ANSWERS**

- (1) The 4 polynoimal ths the best testing error: nearly 0.109.
- (2) Because our data is actually not complex, and the polynomial of 5 is too complicated for such a simple dataset, which will cause overfitting, which means it may fit the training data pretty well but would might have a bad performance when dealing with new data (testing data).