Package 'gfiExtremes'

January 25, 2024

```
Title Generalized Fiducial Inference for Extremes
Version 1.0.1
Maintainer Stéphane Laurent <laurent_step@outlook.fr>
Description Fiducial framework to perform inference on the quantiles for a generalized Pareto distri-
     bution model and on the parameters of the Pareto exceedance distribution, assuming the ex-
     ceedance threshold is a known or unknown parameter. Reference: Damian V. Wan-
     dler & Jan Hannig (2012) <doi:10.1007/s10687-011-0127-9>.
License GPL (>= 2)
Depends coda
Imports Rcpp (>= 1.0.5), parallel, doParallel, foreach, stats
LinkingTo Rcpp, BH, RcppArmadillo
Encoding UTF-8
RoxygenNote 7.1.1
URL https://github.com/stla/gfiExtremes
BugReports https://github.com/stla/gfiExtremes/issues
Suggests knitr, rmarkdown
VignetteBuilder knitr
SystemRequirements C++ 17
NeedsCompilation yes
Author Stéphane Laurent [aut, cre],
     Jan Hannig [aut],
     Damian V. Wandler [aut]
Repository CRAN
```

Date/Publication 2024-01-25 17:00:09 UTC

Type Package

2 gfigpd1

R topics documented:

gfigp	od1		Fid thre		nfe	ere	enc	ce	fe	or	th	ıe	ge	ene	era	ıliz	zec	l.	Ра	rei	0	m	100	del	! 1	wii	h	k	nc	wn	!
Index																															7
	thresholo	dEstimate					•	٠	•	•			•	•				•	•		•	٠			•		•		•		6
		MCchains																													
	GPareto																														5

Description

Runs the MCMC sampler of the fiducial distribution for the generalized Pareto model with known threshold.

Usage

```
gfigpd1(
 Χ,
 beta,
  threshold,
  gamma.init = NA,
  sigma.init = NA,
  sd.gamma = NA,
  sd.sigma = NA,
  Jnumb = 50L,
  iter = 10000L,
 burnin = 2000L,
  thin = 6L,
 nchains = 4L,
 nthreads = parallel::detectCores(),
  seeds = NULL
)
```

Arguments

Χ	numeric vector of data
beta	vector of probabilities corresponding to the quantiles to be estimated
threshold	value of the known threshold, must be smaller than the maximum of X
gamma.init	starting value for gamma in the MCMC
sigma.init	starting value for sigma in the MCMC
sd.gamma	standard deviation for the proposed gamma in the MCMC
sd.sigma	standard deviation for the proposed sigma in the MCMC

gfigpd2 3

Jnumb	number of subsamples that are taken from the Jacobian
iter	number of iterations per chain (burnin excluded)
burnin	number of the first MCMC iterations discarded
thin	thinning number for the MCMC chain. (e.g. if it is 1 no iteration is skipped)
nchains	number of MCMC chains to run
nthreads	number of threads to run the chains in parallel
seeds	the seeds used for the MCMC sampler; one seed per chain, or NULL to use random seeds $$

Value

An object of class mcmc if nchains=1, otherwise an object of class mcmc.list.

References

Damian V. Wandler & Jan Hannig. *Generalized fiducial confidence intervals for extremes*. Extremes (2012) 15:67–87. <doi:10.1007/s10687-011-0127-9>

Examples

```
set.seed(666L)
X <- rgpareto(200L, mu = 10, gamma = 0.5, sigma = 1)
gf <- gfigpd1(
    X, beta = c(0.98, 0.99), threshold = 10,
    iter = 2000L, nchains = 2L, nthreads = 2L
) # note: 2*2000 iterations is not enough, I'm using these settings because
    # of CRAN constraints (elapsed time must be < 5s)
summary(gf)
qgpareto(c(0.98, 0.99), mu = 10, gamma = 0.5, sigma = 1)
rejectionRate(gf)
HPDinterval(gf)
HPDinterval(joinMCMCchains(gf))</pre>
```

gfigpd2	Fiducial inference for the generalized Pareto model with unknown
	threshold

Description

Runs the MCMC sampler of the fiducial distribution for the generalized Pareto model with unknown threshold.

4 gfigpd2

Usage

```
gfigpd2(
  Χ,
  beta,
  threshold.init = NA,
  gamma.init = NA,
  sigma.init = NA,
  sd.gamma = NA,
  sd.sigma = NA,
  p1 = 0.9,
  p2 = 0.5,
  lambda1 = 2,
  lambda2 = 10,
  Jnumb = 50L,
  iter = 10000L,
  burnin = 2000L,
  thin = 6L,
  nchains = 4L,
  nthreads = parallel::detectCores(),
  seeds = NULL,
  allParameters = FALSE
)
```

Arguments

Χ	numeric vector of data
beta	vector of probabilities corresponding to the quantiles to be estimated
threshold.init	a guess of the unknown threshold, must be in the range of X
gamma.init	starting value for gamma in the MCMC
sigma.init	starting value for sigma in the MCMC
sd.gamma	standard deviation for the proposed gamma in the MCMC
sd.sigma	standard deviation for the proposed sigma in the MCMC
p1	probability that the MCMC will propose a new (gamma, sigma); (1-p1) would be the probability that the MCMC chain will propose a new index for a new threshold
p2	probability that the new index proposed will be larger than the current index
lambda1	the small jump the index variable will make
lambda2	the large jump the index variable will make; happens 1 of every 10 iterations
Jnumb	number of subsamples that are taken from the Jacobian
iter	number of iterations per chain (burnin excluded)
burnin	number of the first MCMC iterations discarded
thin	thinning number for the MCMC chain. (e.g. if it is 1 no iteration is skipped)
nchains	number of MCMC chains to run

GPareto 5

nthreads number of threads to run the chains in parallel

seeds the seeds used for the MCMC sampler; one seed per chain, or NULL to use ran-

dom seeds

allParameters logical, whether to return the MCMC chains of all parameters (pretty useless)

or only the ones of the quantiles

Value

An object of class mcmc if nchains=1, otherwise an object of class mcmc.list.

References

Damian V. Wandler & Jan Hannig. *Generalized fiducial confidence intervals for extremes*. Extremes (2012) 15:67–87. <doi:10.1007/s10687-011-0127-9>

Examples

```
set.seed(31415L)
X <- rgamma(350L, shape = 10, rate = 1)
gf <- gfigpd2(X, beta = c(0.98, 0.99), iter = 3000L, nthreads = 2L)
summary(gf)
qgamma(c(0.98, 0.99), shape = 10, rate = 1)
traceplot(gf[,"beta1"])
traceplot(gf[,"beta2"])
thresholdEstimate(gf)
rejectionRate(gf)
HPDinterval(gf)
HPDinterval(joinMCMCchains(gf))</pre>
```

GPareto

Generalized Pareto distribution

Description

Density, distribution function, quantile function, and random generation for the generalized Pareto distribution.

Usage

```
dgpareto(x, mu, gamma, sigma, log = FALSE)
pgpareto(q, mu, gamma, sigma)
rgpareto(n, mu, gamma, sigma)
qgpareto(p, mu, gamma, sigma)
```

6 thresholdEstimate

Arguments

X	numeric vector
mu	location parameter
gamma	shape parameter

sigma scale parameter, strictly positive

log logical, whether to return the log-density

q numeric vector of quantiles

n positive integer, the desired number of simulations

p numeric vector of probabilities

joinMCMCchains

Join MCMC chains

Description

Joins multiple MCMC chains into a single chain.

Usage

```
joinMCMCchains(gfi)
```

Arguments

gfi

an output of gfigpd1 or gfigpd2 containing more than one chain

Value

A mcmc object.

thresholdEstimate

Threshold estimate

Description

Returns the estimate of the threshold.

Usage

thresholdEstimate(gfi)

Arguments

gfi

an output of gfigpd2

Value

The estimated threshold.

Index

```
dgpareto (GPareto), 5
gfigpd1, 2, 6
gfigpd2, 3, 6
GPareto, 5
joinMCMCchains, 6
mcmc, 3, 5
mcmc.list, 3, 5
pgpareto (GPareto), 5
qgpareto (GPareto), 5
thresholdEstimate, 6
```