Numerical search methods for dense sphere packings in higher dimensions

Yoav Kallus

Santa Fe Institute

Jan 11, 2017

Asymptotic density at 1/p = 0 for

$$d \to \infty$$

$$\phi_{th} \sim d2^{-d}$$

With more patience, $\phi_{GCP} \sim d \log(d) 2^{-d}$.

But with unbounded patience, at any d, equilibrium should give $\phi_{\rm opt}$, which scales. . .

Asymptotic density at 1/p = 0 for

$$d \to \infty$$

$$\phi_{th} \sim d2^{-d}$$

With more patience, $\phi_{GCP} \sim d \log(d) 2^{-d}$.

But with unbounded patience, at any d, equilibrium should give ϕ_{opt} , which scales...how?

Asymptotic density at 1/p=0 for

$$d \rightarrow \infty$$

$$\phi_{th} \sim d2^{-d}$$

With more patience, $\phi_{GCP} \sim d \log(d) 2^{-d}$.

But with unbounded patience, at any d, equilibrium should give ϕ_{opt} , which scales...how?

Minkowski: $\phi_{\rm opt} \gtrsim 2^{-d}$

Others: $\phi_{\sf opt} \gtrsim d2^{-d}$ for all d, and

 $\phi_{\mathrm{opt}} \gtrsim d \log(\log d) 2^{-d}$ for some subseq. $d \to \infty$.

Kabatiansky–Levenshtein: $\phi_{\text{opt}} \lesssim 2^{-0.5990d}$

Densest known packing for $d \leq 36$

Recently solved in d = 8,24, still open for all other d > 3.

Densest known packing for $d \leq 36$

Bravais lattices

Bravais lattice is densest known packing in 26 out of first 36 dimensions.

Packings with fixed number of translational orbits

$$\lim_{m\to\infty}\phi_{d,m}=\phi_d$$

Enumeration of locally optimal lattices

Lattice: $\Lambda = \{A\mathbf{n} : \mathbf{n} \in \mathbb{Z}^d\}$, $A \sim d \times d$. Let $G = A^T A$, then Λ has packing radius > 1 if $\mathbf{n}^T G\mathbf{n} \geq 2$ for all $\mathbf{n} \in \mathbb{Z}^d$. det G is quasiconcave.

Also, invariant under $G \mapsto UGU^T$ when $U \in GL_n(\mathbb{Z})$.

Results of enumeration

```
dimension 2 3 4 5 6 7 8 9 \# verts. 1 1 2 3 7 33 10916 > 10^9 \# locally opt. 1 1 2 3 6 30 2408
```

Enumeration of double-lattices (m = 2)

Double lattice: $\Lambda =$ $ig\{ A \mathbf{n} : \mathbf{n} \in \mathbb{Z}^d imes \{0,1\} ig\},$ $A \sim d \times (d+1)$. Let $G = A^T A$, then Λ has packing radius > 1 if $\mathbf{n}^T G \mathbf{n} > 2$ for all $\mathbf{n} \in \mathbb{Z}^d$. $\det G_{1...d,1...d}$ is quasiconcave. But constraint rank G = d

is nonlinear. Nevertheless, can prove, all local optima live on edges.

Results of enumeration (m = 2)

dimension	3	4	5
# verts.	4	10	34
# rank- d pts. on edges	3 (1)	7 (3)	31+full edge (23)
# locally opt.	3 (1)	7 (3)	29 (20)
degen. of global opt.	3 (1)	2 (0)	5 (2)

Thermodynamically sampling lattices

Densest known lattice recovered in some runs for $d \leq 20$

K, Phys. Rev. E 87, 063307 (2013)

Lattice RCP

Pair correlations and quasicontacts

K, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Contact force distribution

K, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Future

- Cleverer annealing: got $d \le 22$; d = 23 almost working.
- Full enumeration for higher *d*, *m*.
- Annealing for m > 1 (hope to discover packings denser than already known in some d).