Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

• Use mesh analysis method to find the complete response v(t) for t > 0 in the circuit.

Find *v(t) for t>0*

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Example of 2nd-order op-amp circuits

• Find v_o for t > 0 when $v_s = 10u(t)mV$.

Initial conditions:
$$v_o(0^+) = 0$$
, $C_1 \frac{dv_o(0^+)}{dt} = \frac{v_1(0^+) - v_o(0^+)}{R_2} = \frac{v_2(0^+)}{R_2} = 0$

Example of 2nd-order op-amp circuits

• Find v_o for t > 0 when $v_s = 10u(t)mV$.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

KCL at node M:

$$\frac{v_s - v_1}{R_1} = C_2 \frac{dv_2}{dt} + \frac{v_1 - v_o}{R_2}$$

KCL at node N:

$$C_1 \frac{dv_o}{dt} = \frac{v_1 - v_o}{R_2}$$

and we have $v_1 - v_2 = v_o$

$$\Rightarrow \frac{d^2v_o}{dt^2} + \left(\frac{1}{R_1C_2} + \frac{1}{R_2C_2}\right)\frac{dv_o}{dt} + \frac{v_o}{R_1R_2C_1C_2} = \frac{v_s}{R_1R_2C_1C_2}$$

Example

In the op amp circuit shown in Fig. 8.34, $v_s = 10u(t)$ V, find $v_o(t)$ for t > 0. Assume that $R_1 = R_2 = 10 \text{ k}\Omega$, $C_1 = 20 \mu\text{F}$, and $C_2 = 100 \mu\text{F}$.

Example-2

find current through the inductor for t>0

Example-2

$$i_{\rm L}(0) = i_{\rm L}(0^-) = 0, \quad i'_{\rm L}(0) = \frac{1}{L} \upsilon_{\rm L}(0) = 0.$$

$$\frac{R_3}{R_2}i_{\rm L} + \left(\frac{L}{R_2} + R_3C\right)\frac{di_{\rm L}}{dt} + LC\frac{d^2i_{\rm L}}{dt^2} = -\frac{V_{\rm s}}{R_1}$$