Sistema eficiente de entrega domiciliaria

Juan Camilo Echeverri Salazar Mateo Ramirez Hernandez Medellín, 2/11/2017

Estructuras de Datos Diseñada

Gráfico 1: Algoritmo de Dijkstra La idea en este algoritmo consiste en ir explorando todos los caminos más cortos que parten del vértice origen y que llevan a todos los demás vértices; cuando se obtiene el camino más corto desde el vértice origen, al resto de vértices que componen el grafo, el algoritmo se detiene

Explicación del algoritmo y su complejidad

Método	Complejidad
Dijkstra	O(m log v)
Coordenadas ingresadas	O(n + 1)
Complejidad total	O((n+1)*mlogv))

Tabla 1: Complejidad del algoritmo

Gráfico 2: Ejemplo de un mapa (inventado), En el cual los puntos son coordenadas y se ha hecho un Dijkstra de un punto a otro para hallar el camino mas corto

Inspira Crea Transforma

Criterios de Diseño del Algoritmo

Para el desarrollo del problema, al haber discutido varias opciones, se concluyo que la mejor manera era una solución basada en el algoritmo de Dijkstra, ya que tiene un orden de complejidad y presenta una solución eficiente en cuanto a camino entre dos nodos.

Se plantearon tener otro tipo de soluciones pero fueron descartadas por la ineficiencia que ellas presentan, por ejemplo es el caso de fuerza bruta que tiene una complejidad de O(n!) y de programación dinámica que tiene complejidad de Ô(n^2 2^n)

Consumo de Tiempo

	Conjunto de datos 1 (3 coordenada s)	Conjunto de datos 2 (4 coordenada s)	Conjunto de datos 3 (6 coordenada s)	Conjunto de datos n (mas de 8 Coordenada s)
Mejor caso	2.0713 seg	2.7588 seg	48.248 seg	87.631 seg
Caso promedio	2.07945 seg	2.7643 seg	48.517 seg	90.752 seg
Peor caso	2.08245 seg	2.7767 seg	50.973 seg	118.730 seg

Gráfico 3: consumo de Tiempo

Consumo de memoria

	Conjunto de datos 1 (3 coordenada s)	Conjunto de datos 2 (4 coordenada s)	Conjunto de datos 3 (6 coordenada s)	Conjunto de datos n (mas de 8 Coordenada s)
Mejor caso (bytes)	183442324	183427072	184217600	184545280
Caso promedio (bytes)	183467823	183537664	186326178	187635212
Peor caso (bytes)	183482367	183541760	190021213	190127262

Software en funcionamiento

C. Patiño-Forero, M. Agudelo-Toro, and M. Toro. Planning system for deliveries in Medellín. ArXiv e-prints, Nov. 2016. Available at: https://arxiv.org/abs/1611.04156

Inserten el enlace del reporte aceptado en arXiv

