CS 70 Discrete Mathematics for CS Spring 2008 David Wagner

MT 1

PRINT your name: _	(last)	(first)	
SIGN your name:	(last)	, ,	
PRINT your Unix acco	ount login:		
Name of the person si	tting to your left:		
Name of the person si	tting to your right:		
computers are not per will not grade anythin look there.	books, notes, or other paper-based inanimitted. Please write your answers in the ag on the back of an exam page unless.	e spaces provided in the to we are clearly told on the	est; in particular, v front of the page
	There are 3 questions, of varying credit ending too long on any one question.	(40 points total). The ques	stions are of varyii
	Do not turn this page until your instru	ctor tells you to do so.	
Problem 1			

Problem 2

Problem 3

Total

Problem 1. [True or false] (20 points)

Circle TRUE or FALSE. Do not justify your answers on this problem.

Reminder: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ represents the set of non-negative integers and $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, 3, \dots\}$ represents the set of all integers.

- (a) TRUE or FALSE: Let the logical proposition R(x) be given by $x^2 = 4 \implies x \le 1$. Then R(3) is true.
- (b) TRUE or FALSE: The proposition $P \Longrightarrow (P \land Q)$ is logically equivalent to $P \Longrightarrow Q$.
- (c) TRUE or FALSE: The proposition $P \Longrightarrow (P \land Q)$ is logically equivalent to $(P \land Q) \Longrightarrow P$.
- (d) TRUE or FALSE: The proposition $(P \land Q) \lor (\neg P \lor \neg Q)$ is a tautology, i.e., is logically equivalent to True.
- (e) TRUE or FALSE: $\exists n \in \mathbb{N} . (P(n) \land Q(n))$ is logically equivalent to $(\exists n \in \mathbb{N} . P(n)) \land (\exists n \in \mathbb{N} . Q(n))$.
- (f) TRUE or FALSE: $\exists n \in \mathbb{N} . (P(n) \vee Q(n))$ is logically equivalent to $(\exists n \in \mathbb{N} . P(n)) \vee (\exists n \in \mathbb{N} . Q(n))$.
- (g) True or False: $\forall n \in \mathbb{N} . ((\exists k \in \mathbb{N} . n = 2k) \lor (\exists k \in \mathbb{N} . n = 2k + 1)).$
- (h) True or False: $\exists n \in \mathbb{N} . ((\forall k \in \mathbb{N} . n = 2k) \lor (\forall k \in \mathbb{N} . n = 2k + 1)).$
- (i) True of False: $\forall n \in \mathbb{N} . ((\exists k \in \mathbb{N} . n = k^2) \implies (\exists \ell \in \mathbb{N} . n = \sum_{i=1}^{\ell} (2i-1))).$
- (j) TRUE or FALSE: If we want to prove the statement $x^2 \le 1 \implies x \le 1$ using Proof by Contrapositive, it suffices to prove the statement $x^2 > 1 \implies x > 1$.
- (k) TRUE or FALSE: If we want to prove the statement $x^2 \le 1 \implies x \le 1$ using Proof by Contradiction, it suffices to start by assuming that $x^2 \le 1 \land x > 1$ and then demonstrate that this leads to a contradiction.
- (1) TRUE or FALSE: Let $S = \{x \in \mathbb{Z} : x^2 \equiv 2 \pmod{7}\}$. Then the well ordering principle guarantees that S has a smallest element.
- (m) TRUE or FALSE: Let $T = \{n \in \mathbb{N} : n^2 \equiv 2 \pmod 8\}$. Then the well ordering principle guarantees that T has a smallest element.
- (n) Suppose that, on day k of some execution of the Traditional Marriage Algorithm, Alice likes the boy who she currently has on a string better than the boy who Betty has on a string.

TRUE or FALSE: It's guaranteed that on every subsequent day, this will continue to be true.

Problem 2. [You complete the proof] (10 points)

The algorithm $A(\cdot, \cdot)$ accepts two natural numbers as input, and is defined as follows:

A(n,m):

on the variable

- 1. If n = 0 or m = 0, return 0.
- 2. Otherwise, return A(n-1,m) + A(n,m-1) + 1 A(n-1,m-1).

Fill in the boxes below in a way that will make the entire proof valid.

Theorem: For every $n, m \in \mathbb{N}$, we have A(n, m) = nm.

Proof: If $s \in \mathbb{N}$, let P(s) denote the proposition

" $\forall n, m \in \mathbb{N} . n + m = s \Longrightarrow$."

We will use a proof by

Base case: A(0,0) = 0, so P(0) is true.

Inductive hypothesis: Assume is true for some $s \in \mathbb{N}$.

Induction step: Consider an arbitrary choice of $n, m \in \mathbb{N}$ such that n + m = s + 1. If n = 0 or m = 0, then A(n, m) = 0 = nm is trivially true, so assume that $n \ge 1$ and $m \ge 1$. In this case we see that

$$A(n,m) = A(n-1,m) + A(n,m-1) + 1 - A(n-1,m-1)$$
 (by the definition of $A(n,m)$)
$$= (n-1)m + n(m-1) + 1 - (n-1)(m-1)$$
 (by the inductive hypothesis)
$$= nm - m + nm - n + 1 - nm + n + m - 1$$

$$= nm.$$

In every case where n+m=s+1, we see that A(n,m)=nm. Therefore P(s+1) follows from the inductive hypothesis, and so the theorem is true. \Box

Problem 3. [Modular arithmetic] (10 points)

Suppose that x, y are integers such that

$$3x + 2y = 0 \pmod{71}$$
$$2x + 2y = 1 \pmod{71}$$

Solve for x, y. Find all solutions. Show your work. Circle your final answer showing all solutions for x, y.

CS 70, Spring 2008, MT 1