Εργασία Υπολογιστικής Γεωμετρίας

Κωνσταντίνος Ζουριδάχης 1115202000254

Contents

1	Υλοποίηση Α: Κυρτό περίβλημα	3
	1.1 Υλοποίηση αλγορίθμων	3
	1.2 Κυρτό Πείβλημα σε 120 τυχαία σημεία	9
	1.3 Υπολογισμός Χρόνου Αλγορίθμων	9
2	Υλοποίηση Β: Γραμμικός Προγραμματισμός	9
3	Υλοποίηση Γ: Διάγραμμα Voronoi - Τριγωνοποίηση Delaunay	10
4	Υλοποίηση Δ: Γεωμετρική Αναζήτηση	10

1 Υλοποίηση Α: Κυρτό περίβλημα

1.1 Υλοποίηση αλγορίθμων

Αυξητικός Αλγόριθμος

Το παράδειγμα που υλοποιώ στον κώδικά μου για τον αυξητικό αλγόριθμο εμφανίζεται παρακάτω με ενωμένα τα σημεία του αποτελέσματος τα οποία αποτελούν το κυρτό περίβλημα.

(0,0)

Αλγόριθμος του Περιτυλίγματος

Το παράδειγμα που υλοποιώ στον κώδικά μου για τον αλγόριθμο του περιτυλίγματος εμφανίζεται παρακάτω:

Δ ιαίρει και B ασίλευε

Το παράδειγμα το οποίο χρησιμοποιώ στον κώδικά μου είναι το παρακάτω:

1.2 Κυρτό Πείβλημα σε 120 τυχαία σημεία

Όπως θα δούμε σχηματικά, το αποτέλεσμα είναι το ίδιο σε όλες τις περιπτώσεις. Ο αλγόριθμος του διαίρε και βασίλευε για 120 σημεία μπαίνει σε infinite loop με αποτέλεσμα να μην εμφανίζεται το κυρτό περίβλημα στο παρακάτω σχήμα.

Figure 1: Αποτέλεσμα Κυρτού Περιβλήματος για 120 τυχαία σημεία.

1.3 Υπολογισμός Χρόνου Αλγορίθμων

Αλγόριθμος	Χρόνος
Graham's Scan	0.000123
Gift Wrapping (Jarvis March)	0.000240
QuickHull	0.000201
Divide and Conquer	∞

Table 1: Comparison of Time Taken for Each Convex Hull Algorithm

2 Υλοποίηση Β: Γραμμικός Προγραμματισμός

Οι περιορισμοί τις άσχησης εμφανίζονται γραφικά παρακάτω:

Figure 2: Περιορισμοί και εφικτή περιοχή.

3 Υλοποίηση Γ: Διάγραμμα Voronoi - Τριγωνοποίηση Delaunay

Το διάγραμμα Voronoi εμφανίζεται παρακάτω: Η αντιστοιχία Voronoi - Delaunay εμφανίζεται γραφικά παρακάτω: Η πολυπλοκότητα και των δύο αλγορίθμων είναι $\mathcal{O}(nlogn)$, το οποίο είναι ένδειξη χρήσης διαίρε και βασίλευε.

Figure 3: Voronoi

Figure 4: Αντιστοιχία Voronoi - Delaunay

4 Υλοποίηση Δ: Γεωμετρική Αναζήτηση

Το αποτέλεσμα εμφανίζεται σχηματικά παρακάτω:

Figure 5: Range tree με ορθογώνια έχταση.

Η λίστα των σημείων εντός της έκτασης παρουσιάζονται κατά την εκτέλεση του προγράμματος geom_search.py.