BCC204 - Teoria dos Grafos

Marco Antonio M. Carvalho

(baseado nas notas de aula do prof. Haroldo Gambini Santos)

Departamento de Computação

Instituto de Ciências Exatas e Biológicas

Universidade Federal de Ouro Preto

Conteúdo

- Sólidos Platônicos
- @ Grafos de Kuratowski
- Região ou Face
- 4 Detecção de Planaridade
- 6 O Teorema de Kuratowski
- 6 Complemento e Planaridade

Teoria dos grafos

Fonte

Este material é baseado no livro

Goldbarg, M., & Goldbarg, E. (2012). Grafos: conceitos, algoritmos e aplicações. Elsevier.

Licença

Este material está licenciado sob a Creative Commons BY-NC-SA 4.0. Isto significa que o material pode ser compartilhado e adaptado, desde que seja atribuído o devido crédito, que o material não seja utilizado de forma comercial e que o material resultante seja distribuído de acordo com a mesma licença.

Sólidos Platônicos

Definicão

Os sólidos platônicos (em homenagem ao filósofo Platão) são figuras tridimensionais nas quais todas as faces são polígonos regulares congruentes, tal que cada vértice possui o mesmo número de faces incidentes.

Existem somente 5 sólidos platônicos.

Sólidos Platônicos

A Fórmula de Euler

Um sólido platônico é composto por vértices (V), arestas (E) e faces (F). A relação entre estes valores é dada pela Fórmula de Euler:

$$V - E + F = 2$$

Grafos Platônicos

Correspondência

Para cada sólido platônico, há um grafo platônico correspondente, que na verdade representam o "esqueleto" de cada sólido.

Sólidos Platônicos e Planaridade

A correlação

Veremos a seguir que o conceito de planaridade possui propriedades dos sólidos platônicos, como a aplicação da fórmula de Euler.

Grafo Planar

Definição

Um grafo G é planar se existir uma representação gráfica de G no plano sem cruzamento de arestas.

O grafo K_4 é planar?

Grafos Planares - Aplicação de Exemplo

- Vértices: portas lógicas;
- Arestas: fios entre as portas lógicas;
- ▶ Objetivo: encontrar um leiaute do circuito sem cruzamento de fios.

Grafos de Kuratowski

\mathcal{K}_5 – grafo não planar com menor número de **vértices**.

$K_{3,3}$ – grafo não planar com menor número de arestas.

Grafos de Kuratowski

O que K_5 e $K_{3,3}$ têm em comum:

- Ambos são regulares;
- Ambos são não planares;
- A remoção de uma aresta ou um vértice torna o grafo planar;
- $Arr K_5$ é o grafo não-planar com o menor número de vértices e o $K_{3,3}$ com o menor número de arestas.

Planaridade

Teorema

Qualquer grafo planar simples pode ter sua representação planar utilizando apenas linhas retas.

Região ou Face

Definição

Seja G um grafo planar, uma face é uma região fechada de G limitada por algumas arestas de G.

Exemplo

No grafo abaixo temos 6 faces. A última face é o exterior do grafo que também é chamada de face infinita.

Planaridade

Teorema (Fórmula de Euler):

Seja G um grafo conexo e planar com

- n vértices;
- m arestas;
- ► f faces.

Temos que:

$$n - m + f = 2$$

Implicação: apesar das inúmeras maneiras de se desenhar um grafo no plano, o número de faces irá permanecer o mesmo.

Planaridade

Teorema (Fórmula de Euler):

Seja G um grafo conexo e planar com

- n vértices;
- m arestas;
- ▶ f faces.

Temos que:

$$n - m + f = 2$$

Implicação: apesar das inúmeras maneiras de se desenhar um grafo no plano, o número de faces irá permanecer o mesmo.

n - m + f = 2

A fórmula de Euler é válida para G_1 .

É fácil mostrar que a fórmula de Euler é válida para **qualquer árvore**, ou seja, um grafo onde m = n - 1 e f = 1.

n - m + f = 2

Prova

A fórmula de Euler é válida para G_1 . É fácil mostrar que a fórmula de Euler é válida para **qualquer árvore**, ou seja, um grafo onde m = n - 1 e f = 1.

n - m + f = 2

Prova (cont.)

Se *G* é conexo, então a adição de uma nova aresta *a* cria um ciclo e, por consequência, uma nova face em *G*.

Ou seja, adicionar arestas em uma árvore (onde a fórmula de Euler está correta), não modifica o valor obtido pela fórmula.

Corolário (decorrência imediata de um teorema)

Se G é um grafo planar conexo com m > 1, então

$$m \leq 3n - 6$$

Prova (p.1)

Definimos o grau de uma face como o número de arestas nos seus limites. Se uma aresta aparece duas vezes pelo limiar, então contamos duas vezes.

Ex.: A região K tem grau 12.

Corolário (decorrência imediata de um teorema)

Se G é um grafo planar conexo com m > 1, então

$$m \leq 3n - 6$$

Prova (p.1)

Definimos o grau de uma face como o número de arestas nos seus limites. Se uma aresta aparece duas vezes pelo limiar, então contamos duas vezes.

Ex.: A região K tem grau 12.

Corolário

Se G é um grafo planar conexo com m > 1, então $m \le 3n - 6$.

Prova (p.2)

Note que nenhuma face pode ter menor do que grau 3, considerando grafos simples.

Logo,
$$2m^a \ge 3f$$
, ou seja, $f \le \frac{2}{3}m$.

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos

$$2+m-n\leq \tfrac{2}{3}m$$

Multiplicando por 3 para eliminar a fração e isolando *m* temos:

$$6+3m-3n\leq 2m$$

$$m < 3n - 6$$

^a2m: soma dos graus das faces

Corolário

Se G é um grafo planar conexo com m > 1, então $m \le 3n - 6$.

Prova (p.2)

Note que nenhuma face pode ter menor do que grau 3, considerando grafos simples.

Logo,
$$2m^a \ge 3f$$
, ou seja, $f \le \frac{2}{3}m$.

Isolando ${\bf f}$ na fórmula de Euler, temos que ${\bf f=2+m-n}$. Substituindo ${\bf f}$ na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{3}m$$

Multiplicando por 3 para eliminar a fração e isolando m temos:

$$6 + 3m - 3n \le 2m$$

$$m < 3n - 6$$

^a2m: soma dos graus das faces

Corolário

Se G é um grafo planar conexo com m > 1, então $m \le 3n - 6$.

Prova (p.2)

Note que nenhuma face pode ter menor do que grau 3, considerando grafos simples.

Logo,
$$2m^a \ge 3f$$
, ou seja, $f \le \frac{2}{3}m$.

Isolando ${\bf f}$ na fórmula de Euler, temos que ${\bf f=2+m-n}$. Substituindo ${\bf f}$ na equação anterior, temos:

$$2+m-n\leq \frac{2}{3}m$$

Multiplicando por 3 para eliminar a fração e isolando *m* temos:

$$6 + 3m - 3n < 2m$$

$$m < 3n - 6$$

^a2m: soma dos graus das faces

Discussão

É possível haver grafos com $m \le 3n - 6$ que não sejam planares?

Grafo de Petersen e $K_{3,3}$.

Casos Especiais

O grafo bipartido completo $K_{3,3}$ possui todas as regiões de grau 4, logo:

$$2m^a \ge 4f$$
, ou $f \le \frac{2}{4}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{4}m$$

Multiplicando por 2 para eliminar a fração e isolando m temos:

$$4 + 2m - 2n \le m$$
$$m < 2n - 4$$

^a2m: soma dos graus das faces

Casos Especiais

O grafo bipartido completo $K_{3,3}$ possui todas as regiões de grau 4, logo:

$$2m^a \ge 4f$$
, ou $f \le \frac{2}{4}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{4}m$$

Multiplicando por 2 para eliminar a fração e isolando m temos:

$$4 + 2m - 2n \le m$$
$$m < 2n - 4$$

^a2m: soma dos graus das faces

Casos Especiais

O grafo bipartido completo $K_{3,3}$ possui todas as regiões de grau 4, logo:

$$2m^a \ge 4f$$
, ou $f \le \frac{2}{4}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{4}m$$

Multiplicando por 2 para eliminar a fração e isolando *m* temos:

$$4 + 2m - 2n \le m$$
$$m \le 2n - 4$$

^a2m: soma dos graus das faces

Casos Especiais

O grafo bipartido completo $K_{3,3}$ possui todas as regiões de grau 4, logo:

$$2m^a \ge 4f$$
, ou $f \le \frac{2}{4}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{4}m$$

Multiplicando por 2 para eliminar a fração e isolando *m* temos:

$$4 + 2m - 2n \le m$$
$$m \le 2n - 4$$

^a2m: soma dos graus das faces

Casos Especiais

O grafo de Petersen possui todas as regiões de grau 5, logo:

$$2m^a \geq 5f$$
, ou $f \leq \frac{2}{5}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{5}m$$

Multiplicando por 5 para eliminar a fração e isolando m temos:

$$10 + 5m - 5n \le 2m$$
$$3m \le 5n - 10$$

^a2m: soma dos graus das faces

Casos Especiais

O grafo de Petersen possui todas as regiões de grau 5, logo:

$$2m^a \geq 5f$$
, ou $f \leq \frac{2}{5}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{5}m$$

Multiplicando por 5 para eliminar a fração e isolando m temos:

$$10 + 5m - 5n \le 2m$$
$$3m \le 5n - 10$$

^a2m: soma dos graus das faces

Casos Especiais

O grafo de Petersen possui todas as regiões de grau 5, logo:

$$2m^a \geq 5f$$
, ou $f \leq \frac{2}{5}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{5}m$$

Multiplicando por 5 para eliminar a fração e isolando *m* temos:

$$10 + 5m - 5n \le 2m$$
$$3m \le 5n - 10$$

^a2m: soma dos graus das faces

Casos Especiais

O grafo de Petersen possui todas as regiões de grau 5, logo:

$$2m^a \geq 5f$$
, ou $f \leq \frac{2}{5}m$

Isolando f na fórmula de Euler, temos que f=2+m-n. Substituindo f na equação anterior, temos:

$$2+m-n\leq \tfrac{2}{5}m$$

Multiplicando por 5 para eliminar a fração e isolando *m* temos:

$$10 + 5m - 5n \le 2m$$
$$3m \le 5n - 10$$

^a2m: soma dos graus das faces

Redução Elementar

Em um grafo G podemos, com segurança, contrair todos os vértices de grau 2 sem afetar sua planaridade. Esse processo é chamado de redução elementar.

Depois dessa operação, o grafo resultante H é:

- Uma única aresta;
- Um grafo completo com 4 vértices; ou
- ⑤ Um grafo com $n \ge 5$ e $m \ge 7$.

Redução Elementar

Em um grafo G podemos, com segurança, contrair todos os vértices de grau 2 sem afetar sua planaridade. Esse processo é chamado de redução elementar.

Depois dessa operação, o grafo resultante H é:

- Uma única aresta;
- Um grafo completo com 4 vértices; ou
- ⑤ Um grafo com $n \ge 5$ e $m \ge 7$.

Redução Elementar

Em um grafo G podemos, com segurança, contrair todos os vértices de grau 2 sem afetar sua planaridade. Esse processo é chamado de redução elementar.

Depois dessa operação, o grafo resultante H é:

- Uma única aresta;
- Um grafo completo com 4 vértices; ou
- ⑤ Um grafo com $n \ge 5$ e $m \ge 7$.

Redução Elementar

Em um grafo G podemos, com segurança, contrair todos os vértices de grau 2 sem afetar sua planaridade. Esse processo é chamado de redução elementar.

Depois dessa operação, o grafo resultante H é:

- Uma única aresta;
- Um grafo completo com 4 vértices; ou
- **③** Um grafo com $n \ge 5$ e $m \ge 7$.

Redução Elementar

Em um grafo G podemos, com segurança, contrair todos os vértices de grau 2 sem afetar sua planaridade. Esse processo é chamado de redução elementar.

Depois dessa operação, o grafo resultante H é:

- Uma única aresta;
- Um grafo completo com 4 vértices; ou
- **3** Um grafo com $n \ge 5$ e $m \ge 7$.

Homeomorfismo

Dizemos que um grafo H é homeomorfo a G se H puder ser obtido de G pela inserção de vértices de grau 2 em pontos intermediários de suas arestas.

De outro modo: dois grafos G_1 e G_2 são homeomorfos se os grafos H_1 e H_2 obtidos a partir da redução elementar de G_1 e G_2 , respectivamente, forem isomorfos.

Teorema de Kuratowski, 1930

Um grafo é planar se e somente se nenhum de seus subgrafos for homeomorfo ao K_5 ou a $K_{3,3}$.

G, subgrafo de G e contração do subgrafo.

Isomorfismo e Complexidade

O algoritmo intuitivo para testes de isomorfismo consiste em analisar as permutações de linhas e colunas de matrizes de equivalência, em busca de uma relação um-para-um, ou seja, O(n!).

Em 9 de janeiro de 2017, Lászó Babai, da Universidade de Chicago, anunciou um algoritmo quasipolinomial a para o teste de isomorfismo! b

^aMais lento que polinomial, mas significativamente mais rápido que exponencial.

^bhttps://jeremykun.com/2015/11/12/

a-quasipolynomial-time-algorithm-for-graph-isomorphism-the-details/

Complemento e Planaridade

Seja G um grafo não dirigido com n vértices e C(G) o seu complemento.

- ▶ Se n < 8, então G ou C(G) é planar;
- ▶ Se n > 8, então G ou C(G) é não planar;
- \triangleright Se n=8, nada pode ser dito.

Dúvidas?

