Numerical Methods

Unit - III

by

Dr. A. VENKATESH M.Sc., M. Phil., PGDCA., Ph.D.,

Asst. professor, Dept. of Mathematics, A. V. V. M. Sri Pushpam College(Autonomous), Poondi, Thanjavur(Dt.)

Lagrange's Interpolation (For Unequal intervals):

Let $y_0, y_1,...,y_n$ be n+1 points of a function y = f(x) where f(x) is assumed to be a polynomial in x, corresponding to arguments $x_0, x_1,...,x_n$, not necessarily equally spaced. Then

$$y = f(x) = \frac{(x - x_1)(x - x_2)....(x - x_n)}{(x_0 - x_1)(x_0 - x_2)....(x_0 - x_n)} y_0$$

$$+ \frac{(x - x_0)(x - x_2)....(x - x_n)}{(x_1 - x_0)(x_1 - x_2)....(x_1 - x_n)} y_1$$

 $+\frac{(x-x_0)(x-x_1)....(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)....(x_n-x_{n-1})}y_n$

This is called the Lagrange's formula for interpolation.

Using Lagrange's interpolation formula, find the value of y corresponding to x = 10 from the following data.

x: 5 6 9 11 y: 12 13 14 16

Solution:

Given
$$x_0 = 5$$
, $x_1 = 6$, $x_2 = 9$, $x_3 = 11$
 $y_0 = 12$, $y_1 = 13$, $y_2 = 14$, $y_3 = 16$

By Lagrange's interpolation,

$$y(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

Using x = 10, we get,

$$y(10) = \frac{4 \times 1 \times (-1)}{(-1)(-4)(-6)}(12) + \frac{5 \times 1 \times (-1)}{1(-3)(-5)}(13) + \frac{5 \times 4 \times (-1)}{4 \times 3 \times (-2)}(14) + \frac{5 \times 4 \times 1}{6 \times 5 \times 2}(16)$$

$$\therefore$$
y(10) = 14.67

Use Lagrange's interpolation formula to find the value of y at x = 6, given the data.

x: 3 7 9 10 y: 168 120 72 63

Solution:

Given the data

$$x_0 = 3$$
, $x_1 = 7$, $x_2 = 9$, $x_3 = 10$
 $y_0 = 168$, $y_1 = 120$, $y_2 = 72$, $y_3 = 63$

By Lagrange's interpolation,

$$y(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

Using x = 6, we get,

$$y(6) = \frac{(-1)(-3)(-4)}{(-4)(-6)(-7)}(168) + \frac{3\times(-3)\times(-4)}{4(-2)(-3)}(120) + \frac{3\times(-1)\times(-4)}{6\times2\times(-1)}(72) + \frac{3\times(-3)\times(-1)}{7\times3\times1}(63)$$

$$\therefore y(6) = 147$$

Apply Lagrange's formula to find f(5), given that f(1)=2, f(2)=4, f(3)=8 and f(7)=128.

Solution:

Given the data

$$x_0 = 1$$
, $x_1 = 2$, $x_2 = 3$, $x_3 = 7$
 $y_0 = 2$, $y_1 = 4$, $y_2 = 8$, $y_3 = 128$

By Lagrange's interpolation,

$$y(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

Using x = 5, we get,

$$f(5) = \frac{3 \times 2 \times (-2)}{(-1)(-2)(-6)}(2) + \frac{4 \times 2 \times (-2)}{1 \times (-1)(-5)}(4) + \frac{4 \times 3 \times (-2)}{2 \times 1 \times (-4)}(8) + \frac{4 \times 3 \times 2}{6 \times 5 \times 4}(128)$$

$$\Rightarrow$$
 f(5) = 38.8

Given
$$u_0 = 6$$
, $u_1 = 9$, $u_3 = 33$ and $u_7 = -15$. Find u_2

Solution:

Given the data

$$x_0 = 0, x_1 = 1, x_2 = 3, x_3 = 7$$

 $y_0 = 6, y_1 = 9, y_2 = 33, y_3 = -15$

By Lagrange's interpolation,

$$\mathbf{u}(\mathbf{x}) = y(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} y_0 + \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} y_1 + \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} y_2 + \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} y_3$$

Using x = 2, we get,

$$\mathbf{u}(2) = u_2 = -\frac{10}{7} + \frac{15}{2} + \frac{55}{4} + \frac{5}{28}$$

$$\therefore u(2) = u_2 = 20$$

Using Lagrange's interpolation formula, fit a polynomial to the following data.

x: 0 1 3 4y: -12 0 6 12

Solution:

Given the data
$$x_0 = 0$$
, $x_1 = 1$, $x_2 = 3$, $x_3 = 4$
 $y_0 = -12$, $y_1 = 0$, $y_2 = 6$, $y_3 = 12$

By Lagrange's interpolation,

$$y(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)} y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1$$

$$+ \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)} y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3$$

$$y = f(x) = \frac{(x-1)(x-3)(x-4)}{-12} (-12) + \frac{x(x-1)(x-4)}{(-6)} (6) + \frac{x(x-1)(x-3)}{12} (12)$$

$$\therefore f(x) = x^3 - 8x^2 + 19x - 12 - (x^3 - 5x^2 + 4x) + x^3 - 4x^2 + 3x$$

$$\Rightarrow f(x) = x^3 - 7x^2 + 18x - 12 \text{ is the required polynomial.}$$

Home work Problems:

1. Using lagrange's interpolation, Calculate the profit in the year 2000 from the following data

Year: 1997 1999 2001 2002 Profit: 43 65 159 248

2. Find the missing term in the following table using lagrange's interpolation

X	0	1	2	3	4
У	1	3	9	-	81

Using Lagrange's interpolation formula, find the equation of the cubic curve passes through the points

$$(-1,-8)$$
, $(0,3)$, $(2,1)$,and $(3,2)$.

4. Fit the third degree polynomial f(x) and to find f(4) satisfying the following data Using Lagrange's interpolation formula

X 1 3 5 17 Y 24 120 336 720

Home work Problems:

Answers:

- 1. y(2000) = 100
- 2. y(3) = 31

3.
$$y = \frac{7x^3 - 31x^2 + 28x + 18}{6}$$

4.
$$y(x) = x^3 + 6x^2 + 11x + 6$$
 and $f(4)=210$

Newton's Divided Difference Formula: (For Unequal intervals)

Let $f(x_0)$, $f(x_1)$, $f(x_n)$ be the values of f(x) corresponding to the arguments x_0, x_1, \ldots, x_n , not necessarily equally spaced. Then

$$f(x) = f(x_0) + (x - x_0)f(x_0, x_1) + (x - x_0)(x - x_1)f(x_0, x_1, x_2) + \dots$$
$$\dots + (x - x_0)(x - x_1)\dots (x - x_{n-1})f(x_0, x_1, x_2, \dots x_n)$$

This formula is called Newton's Divided Difference formula.

Representation by Divided difference table

Argument x	Entry $f(x)$	First Divided difference $\Delta_{1}^{\square}f(x)$	Second Divided difference $\Delta_1^2 f(x)$	Third Divided difference $\Delta_1^3 f(x)$	Fourth Divided difference $\Delta_1^4 f(x)$
<i>x</i> ₀	$f(x_0)$				
x_1	$f(x_1)$	$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = f(x_0, x_1)$ $f(x_1) - f(x_1)$	$f(x_0, x_1, x_2)$		
x_2	$f(x_2)$	$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f(x_1, x_2)$	$f(x_1, x_2, x_3)$	$f(x_0, x_1, x_2, x_3)$	$f(x_0, x_1, x_2, x_3, x_4)$
<i>x</i> ₃	$f(x_3)$	$\frac{f(x_3) - f(x_2)}{x_3 - x_2} = f(x_3, x_2)$	$f(x_2, x_2, x_4)$	$f(x_1, x_2, x_3, x_4)$) (XI)X1)X2,X3)X4.
x_4	$f(x_4)$	$\frac{f(x_4) - f(x_3)}{x_4 - x_3} = f(x_4, x_3)$		 	

Dr. A. Venkatesh, AVVMSPC

Using Newton's divided difference method, find the value of f(8) and f(15), given the following data.

x: 4 5 7 10 11 13 f(x): 48 100 294 900 1210 2028

Solution: The divided difference table is given below

x	f(x)	$\Delta_1 f(x)$	$\Delta_1^2 f(x)$	$\Delta_1^2 f(x)$	$\Delta_1^4 f(x)$
4	48	$f(x_0, x_0)$			
	$f(x_0)$	$\frac{100 - 48}{5 - 4} = 52$	$f(x_0, x_1, x_2)$		
5	100	5-4	$\frac{97 - 52}{7 - 4} = 15$	$f(x_0, x_1, x_2, x_3)$	
	1.00		$\frac{1}{7-4} = 15$		
		$\frac{294 - 100}{7 - 5} = 97$	77-4	$\frac{21 - 15}{10 - 4} = 1$	
		7-5	V1.	10-4	$f(x_0, x_1, x_2, x_3, x_4)$
7	294	P. R. S. S. South B. C. B. C.	202 - 97		1
			$\frac{202 - 97}{10 - 5} = 21$		0
		900 - 294	13730 173	27 21	
		$\frac{900 - 294}{10 - 7} = 202$	W waste	$\frac{27-21}{11-5}=1$	
10	900		310 - 202	11-5	
		neith hobret "()	$\frac{310 - 202}{11 - 7} = 27$		
		$\frac{1210 - 900}{2} = 310$	11-7	the second	
		11-10 = 310		manufact to	0
11	1210	$x)(x-x)\cdot (x-y)$	100 000	$\frac{33-27}{1} = 1$	
			$\frac{409-310}{3}=33$	$\frac{13-7}{1}=1$	
		$\frac{2028 - 1210}{2028 - 1210} = 409$	13-10	13-7	
		13-11 = 409	3[21-3]	to entropy of the	
13	2028	Dr. A. Venkates	·h_A\/\/MSDC		12

By Newton's Divided Difference interpolation formula,

$$f(x) = f(x_0) + (x - x_0) f(x_0, x_1) + (x - x_0) (x - x_1) f(x_0, x_1, x_2)$$
$$+ (x - x_0) (x - x_1) (x - x_2) f(x_0, x_1, x_2, x_3) + \dots$$
(1)

From the given data,

$$x_0 = 4, x_1 = 5, x_2 = 7, x_3 = 10, x_4 = 11, x_5 = 13 \text{ and } f(x_0) = 48$$

Using the divided differences and the given data in (1),

$$f(x) = 48 + 52(x-4) + 15(x-4)(x-5) + (x-4)(x-5)(x-7)$$

When x = 8,

$$f(8) = 48 + 208 + 180 + 12$$

 $\Rightarrow f(8) = 448$

When x = 15,

$$f(15) = 48 + 572 + 1650 + 880$$

$$\Rightarrow$$
 f(15) = 3150

Use Newton's divided difference formula, to fit a polynomial to the data

x: -1 0

-8

12

and hence find y when x = 1

Solution:

The divided difference table is given below

х	f(x)	$\Delta_1 f(x)$	$\Delta_1^2 f(x)$	$\Delta_1^3 f(x)$
-1	$-8_{f(x_0)}$	$f(x_0, x_1)$		
0	3	$\frac{11}{x} = 11$ $(x - x)$	$f(x_0, x_1, x_2) = -4$	$f(x_0, x_1, x_2, x_3)$
2	1	$\frac{-2}{2} = -1$	$\frac{12}{3} = 4$	$\frac{8}{4} = 2$
3	12	$\frac{11}{1} = 11$	10 10 10	

By Newton's Divided Difference interpolation formula,

$$f(x) = f(x_0) + (x - x_0) f(x_0, x_1) + (x - x_0) (x - x_1) f(x_0, x_1, x_2)$$
$$+ (x - x_0) (x - x_1) (x - x_2) f(x_0, x_1, x_2, x_3) + \dots$$
(1)

Here
$$f(x_0) = -8$$
, $x_0 = -1$, $x_1 = 0$, $x_2 = 2$, $x_3 = 3$
 $f(x_0, x_1) = 11$, $f(x_0, x_1, x_2) = -4$ and $f(x_0, x_1, x_2, x_3) = 2$

Using these we get,

$$f(x) = -8 + (x+1)11 + (x+1)x(-4) + (x+1)x(x-2)2$$
$$= -8 + 11x + 11 - 4x^2 - 4x + 2x^3 - 2x^2 - 4x$$

$$\therefore y = 2x^3 - 6x^2 + 3x + 3$$

$$\Rightarrow y(1) = 2 - 6 + 3 + 3 = 2$$

Find the eqn. of the cubic curve which passes through the points (4, -43), (7, 83), (9, 327) and (12, 1053). Hence find f(10), using divided difference interpolation formula.

Solution: The divided difference table is given below

X	f(x)	$\Delta_1 f(\mathbf{x})$	$\Delta_1^2 f(\mathbf{x})$	$\Delta_1^3 f(x)$
4	f(x ₀) -43	$f(x_0,x_1)$		
7	83	$\frac{83 + 43}{7 - 4} = 42$	$f(x_0, x_1, x_2)$ $\frac{122 - 42}{9 - 4} = 16$	$f(x_0, x_1, x_2, x_3)$
9	327	$\frac{327 - 83}{9 - 7} = 122$ $\frac{1053 - 327}{12 - 9} = 242$	$\frac{242 - 122}{412 - 7} = 24$	$\frac{24 - 16}{12 - 4} = 1$
12	1053	12 – 9 Dr. A. Venkatesh, A	WMSPC	16

By Newton's Divided Difference interpolation formula,

$$f(x) = f(x_0) + (x - x_0) f(x_0, x_1) + (x - x_0) (x - x_1) f(x_0, x_1, x_2)$$
$$+ (x - x_0) (x - x_1) (x - x_2) f(x_0, x_1, x_2, x_3) + \dots$$
(1)

Given data $x_0 = 4$, $x_1 = 7$, $x_2 = 9$, $x_3 = 12$

$$f(x_0) = -43$$
, $f(x_0, x_1) = 42$, $f(x_0, x_1, x_2) = 16$, $f(x_0, x_1, x_2, x_3) = 1$

Using these, we get,

$$f(x) = -43 + (x - 4)(42) + (x - 4)(x - 7)(16) + (x - 4)(x - 7)(x - 9)(1)$$

$$= -43 + 42x - 168 + (x^2 - 11x + 28)(16) + (x^2 - 11x + 28)(x - 9)$$

$$f(x) = x^3 - 4x^2 - 7x - 15$$

Put x = 10 in above eqn .we get

$$f(10) = 515$$

Find the polynomial equation y = f(x) passing through (-1,3), (0,-6), (3,39), (6,822) and (7,1611)

Solution: Given data

The divided difference table is given below

x	f(x)	$\Delta_1 f(x)$	$\Delta_1^2 f(x)$	$\Delta_1^3 f(x)$	$\Delta_1^4 f(x)$
-1	$f(x_0)$	$\frac{-9}{1} = \frac{f(x_0, x_1)}{-9}$	11 = 1		
		$\frac{1}{1} = -9$		2 20	
0	-6		$\frac{24}{4} = 6$	$f(x_{0}, x_{1}, x_{2}, x_{3})$) -
	4	$\frac{45}{3} = 15$	4	$\frac{35}{7} = 5$	
3	39	3	246	7	$f(x_0, x_1, x_2, x_3, 8, 8, 1)$
	3	783	$\frac{246}{6} = 41$		$\frac{8}{8} = 1$
		$\frac{783}{3} = 261$		$\frac{91}{7} = 13$	
6	822		$\frac{528}{4} = 132$	/	
		$\frac{789}{1} = 789$	4 = 132	Los Te	
7	1611	1	Dr A Venkatesh	AVVMSPC	

By Newton's Divided Difference interpolation formula,

$$f(x) = f(x_0) + (x - x_0) f(x_0, x_1) + (x - x_0) (x - x_1) f(x_0, x_1, x_2)$$

$$+ (x - x_0) (x - x_1) (x - x_2) f(x_0, x_1, x_2, x_3) + \dots$$
(1)

Given data $x_0 = -1, x_1 = 0, x_2 = 3, x_3 = 6, x_4 = 7$

$$f(x_0) = 3, f(x_0, x_1) = -9, f(x_0, x_1, x_2) = 6, f(x_0, x_1, x_2, x_3) = 5,$$

$$f(x_0, x_1, x_2, x_3, x_4) = 1$$

$$y = f(x) = 3 + (x + 1)(-9) + (x + 1)x(6) + (x + 1)x(x - 3)5$$

$$+ (x + 1)x(x - 3)(x - 6)1$$

$$\Rightarrow y = 3 - 9x - 9 + 6x^2 + 6x + 5x^3 - 10x^2 - 15x + x(x^3 - 8x^2 + 9x + 18)$$

$$y = x^4 - 3x^3 + 5x^2 - 6$$
 is the required polynomial

Home work Problems:

- Using Newton's divided difference method find f(1.5) using the data f(1.0)=0.7651977, f(1.3)=0.6200860, f(1.6)=0.4554022, f(1.9)=0.2818186 and f(2.2)=0.1103623.
- Find f(1), f(5) and f(9) using Newton's divided difference formula from the following table:

x: 0 2 3 4 7 8 f(x): 4 26 58 112 466 668

- Using Newton's divided difference formula, find the value u(3) given u(1) = -26, u(2) = 12, u(4) = 256 and u(6) = 844.
- 4. Find f(x) as a polynomial in x for the following data by Newton's divided difference formula:

x: -4 -1 0 2 5 f(x): 1245 33 5 9 1335

Cubic Spline

Definition: Cubic Spline

A Cubic spline S(x) is defined by the following properties.

- (i) $S(x_i) = y_i$, where i = 0,1,2,...n
- (ii) S(x), S'(x), S'(x) are continous on closed interval [a, b]
- (iii) S(x) is at a cubic polynomial in each interval (x_{i-1}, x_i) , i = 1,2,3,...n

Definition: Natural Cubic Spline

The natural or free conditions $S''(x_0) = M_0 = 0$, $S''(x_n) = M_n = 0$ give the natural cubic spline.

<u>Formula:</u>

1). For equal intervals, $x_{i+1} - x_i = h$, we have the relation

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2} [y_{i-1} - 2y_i + y_{i+1}]$$
 $i = 1, 2, 3, \dots \dots (n-1)$

2). If S(x) is the cubic spline in $x_{i+1} \le x \le x_i$, then

$$\begin{split} s(x) &= y(x) = \frac{1}{6h} [(x_i - x)^3 M_{i-1} + (x - x_{i-1})^3 M_i] + \frac{1}{h} [x_i - x) \left[y_{i-1} - \frac{h^2}{6} M_{i-1} \right] \\ &+ \frac{1}{h} (x - x_{i-1}) \left[y_i - \frac{h^2}{6} M_i \right] \quad i = 1, 2, 3 \dots ... \end{split}$$

Fit a Cubic Spline for the following Data and hence evaluate y(1.5).

Solution:

X	1	2	3
у	-6	-1	16

Given Data

	X_0	X_1	\mathbf{X}_2
X	1	2	3
у	-6	-1	16
•	У0	y ₁	y_2

Here h = 1. Assume that $M_o = 0$ and $M_2 = 0$

To find M_1 , use the following formula

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2} [y_{i-1} - 2y_i + y_{i+1}]$$
 $i = 1, 2, 3, \dots \dots (n-1)$

Put i = 1 in above equation, we get

$$M_0 + 4 M_1 + M_2 = \frac{6}{h^2} [y_0 - 2y_1 + y_2]$$

$$0 + 4M_1 + 0 = \frac{6}{1} [-6 - 2(-1) + 16]$$

$$4M_1 = 6[12]$$

$$M_1 = 18$$
Dr A Verketech AVA/MS

The Cubic Spline In the interval $x_{i-1} \le x \le x_i$ is given by

$$s(x) = y(x) = \frac{1}{6h} [(x_i - x)^3 M_{i-1} + (x - x_{i-1})^3 M_i] + \frac{1}{h} [x_i - x) \left[y_{i-1} - \frac{h^2}{6} M_{i-1} \right] + \frac{1}{h} (x - x_{i-1}) \left[y_i - \frac{h^2}{6} M_i \right] \quad i = 1, 2, 3 \dots n$$

For $1 \le x \le 2$, put i = 1 in above eqn ,We get

$$s(x) = y(x) = \frac{1}{6} [(x_{1-}x)^3 M_0 + (x - x_0)^3 M_1] + \frac{1}{1} (x_1 - x) \left[y_0 - \frac{1}{6} M_0 \right]$$

$$+ \frac{1}{1} (x - x_0) [y_1 - \frac{1}{6} M_1]$$

$$= \frac{1}{6} [0 + (x - 1)^3 (18)] + (2 - x) [-6 - 0] + (x - 1) [-1 - 3]$$

$$= 3(x - 1)^3 - 12 + 6x - 4x + 4$$

$$= 3[x^3 - 3x^2 + 3x - 1] + 2x - 8$$

$$= 3x^3 - 9x^2 + 9x - 3 + 2x - 8$$

$$y(x) = 3x^3 - 9x^2 + 11x - 11, \qquad 1 \le x \le 2$$

Since x = 1.5 lies in the interval $1 \le x \le 2$, Put x = 1.5 in

$$y(x) = 3x^3 - 9x^2 + 11x - 11,$$

We get, y(1.5) = -4.6250

Using Cubic Spline, find y(0.5) and y'(1) from the following data assuming that y''(0) and y''(2) = 0

X	0	1	2
y	-5	-4	3

Solution:

Given Data

	X_0	X_1	X_2
X	0	1	2
у	-5	-4	3
	y ₀	y_1	y_2

Here h = 1. Assume that $M_0 = 0$ and $M_2 = 0$

To Find M_1 Use the following formula

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2} [y_{i-1} - 2y_i + y_{i+1}] \qquad i = 1, 2, 3, \dots \dots (n-1)$$

Put i = 1 in the above eqn., We get,

$$M_0 + 4 M_1 + M_2 = \frac{6}{h^2} [y_0 - 2y_1 + y_2]$$

$$0 + 4M_1 + 0 = \frac{6}{1} [-5 - 2(-4) + 3]$$

$$4M_1 = 6[6] \implies M_1 = 9$$

The Cubic Spline in the interval $x_{i-1} \le x \le x_i$ is given by

$$\begin{split} s(x) &= y(x) = \frac{1}{6h} [(x_i - x)^3 M_{i-1} + (x - x_{i-1})^3 M_i] + \frac{1}{h} [x_i - x) \left[y_{i-1} - \frac{h^2}{6} M_{i-1} \right] \\ &+ \frac{1}{h} (x - x_{i-1}) \left[y_i - \frac{h^2}{6} M_i \right] \qquad i = 1, 2, 3 \dots.. \end{split}$$

For $0 \le x \le 1$, put i = 1 in the above eqn., We get,

Put x = 0.5 in eqn. (1), we get y(0.5) = 5.0625 tesh, Put x = 1 in eqn. (2), We get, y'(1) = 4

From the following table, fit the Polynomial and Compute y(1.5) and $y^{1}(1)$

using Cubic Spline.

X	1	2	3
у	-8	-1	18

Solution:

Given Data

	X_0	X_1	\mathbf{X}_2
X	1	2	3
у	-8	-1	18
	y ₀	y_1	y_2

Here h = 1 .Assume that M_0 =0 and M_2 =0

To Find M_1 , Use the following formula

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2} [y_{i-1} - 2y_i + y_{i+1}]$$
 $i = 1, 2, 3, \dots \dots (n-1)$

Put i = 1 in the above equation, We get

$$M_0 + 4 M_1 + M_2 = \frac{6}{h^2} [y_0 - 2y_1 + y_2]$$
 $0 + 4 M_1 + 0 = 6[-8 - 2(-1) + 18]$
 $4 M_1 = 6[12]$
 $M_1 = 18$
Dr. A. Venkatesh, AVVMSPC

The Cubic Spline in the interval $x_{i-1} \le x \le x_i$ is given by

$$\begin{split} s(x) &= y(x) = \frac{1}{6h} [(x_i - x)^3 M_{i-1} + (x - x_{i-1})^3 M_i] + \frac{1}{h} [x_i - x) \left[y_{i-1} - \frac{h^2}{6} M_{i-1} \right] \\ &+ \frac{1}{h} (x - x_{i-1}) \left[y_i - \frac{h^2}{6} M_i \right] \qquad i = 1, 2, 3 \dots.. \end{split}$$

For $1 \le x \le 2$, put i = 1 in the above eqn., We get,

Put x = 1.5 in equation (1), We get
$$y(1.5) = -5.6250$$

Put
$$x = 1$$
 in equation(2), We get $y'(1) = 4$

Fit a Cubic Splines for the following data.

X	1	2	3	4
у	1	2	5	11

Solution:

Given Data

	X_0	X_1	X_2	X3
X	1	2	3	4
у	1	2	5	11
	y_0	y_1	y_2	y_3

Here h = 1. Assume that $M_0 = 0$ and $M_3 = 0$

To Find M_1 and M_2 . Use the following formula

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2} [y_{i-1} - 2y_i + y_{i+1}], i = 1,2,3,....(n-1) \longrightarrow (1)$$

Put i = 1 in eqn.(1), We get,

$$M_0 + 4M_1 + M_2 = 6[y_0 - 2y_1 + y_2]$$

 $0 + 4M_1 + M_2 = 6[1 - 2(2) + 5]$
 $4M_1 + M_2 = 12 - - - \rightarrow (A)$

Put i = 2 in eqn.(1), we get,

$$M_1 + 4M_2 + M_3 = 6[y_1 - 2y_2 + y_3]$$

 $0 + M_1 + 4M_2 = 6[2 - 2(5) + 11]$
 $M_1 + 4M_2 = 18 - - - \rightarrow (B)$

(A)
$$\Rightarrow 4M_1 + M_2 = 12$$

(B)×4 $\Rightarrow 4M_1 + 16 = 72$ (-)

$$-15M_2 = -60$$
 Solving, We get, $M_2 = 4$

Put
$$M_2 = 4$$
 in (A), we get $4 M_1 + 4 = 12 \Rightarrow M_1 = 2$

The Cubic Spline in the interval $x_{i-1} \le x \le x_i$ is given by

$$s(x) = y(x) = \frac{1}{6h} [(x_i - x)^3 M_{i-1} + (x - x_{i-1})^3 M_i] + \frac{1}{h} [x_i - x) \left[y_{i-1} - \frac{h^2}{6} M_{i-1} \right] + \frac{1}{h} (x - x_{i-1}) \left[y_i - \frac{h^2}{6} M_i \right] \qquad i = 1, 2, 3 \dots \longrightarrow (2)$$

For $1 \le x \le 2$, put i = 1 in eqn.(2) We get, the cubic spline,

$$y(x) = \frac{1}{6} [(x_1 - x)^3 M_0 + (x - x_0)^3 M_1] + (x_1 - x) \left[y_0 - \frac{1}{6} M_0 \right]$$

$$+ (x - x_0) [y_1 - \frac{1}{6} M_1]$$

$$= \frac{1}{6} [0 + (x - 1)^3 (2)] + (2 - x) [1 - 0] + (x - 1) [2 - \frac{1}{3}]$$

$$= \frac{1}{3} [x^3 - 3x^2 + 3x - 1] + 2 - x + \frac{5}{3}x - \frac{5}{3}$$

$$= \frac{1}{3} [x^3 - 3x^2 + 3x - 1] + \frac{1}{3} + \frac{2}{3}x$$

$$y(x) = \frac{1}{3} [x^3 - 3x^2 + 5x] \quad \text{Pil} \leq \text{Verbales} \text{ AVVMSPC}$$

For $2 \le x \le 3$, put i = 2 in eqn.(2) We get, the cubic spline,

$$y(x) = \frac{1}{6} [(x_2 - x)^3 M_1 + (x - x_1)^3 M_2] + (x_2 - x) \left[y_1 - \frac{1}{6} M_1 \right]$$

$$+ (x - x_1) [y_2 - \frac{1}{6} M_2]$$

$$= \frac{1}{6} [(3 - x)^3 (2) + (x - 2)^3 (4)] + (3 - x) (2 - \frac{1}{3}] + (x - 2) [5 - \frac{2}{3}]$$

$$= \frac{1}{3} [(27 - 27x + 9x^2 - x^3) + 2(x^3 - 6x^2 + 12x - 8)]$$

$$+ (3 - x) \left(\frac{5}{3} \right) + (x - 2) \frac{13}{3}$$

$$= \frac{1}{3} [27 - 27x + 9x^2 - x^3 + 2x^3 - 12x^2 + 24x - 16$$

$$+ 15 - 5x + 13x - 26]$$

$$y(x) = \frac{1}{3}[x^3 - 3x^2 + 5x] \qquad 2 \le x \le 3$$

For $3 \le x \le 4$, put i = 3 in eqn(2) We get the cubic spline,

$$y(x) = \frac{1}{6} [(x_3 - x)^3 M_2 + (x - x_2)^3 M_3] + (x_3 - x) \left[y_2 - \frac{1}{6} M_2 \right]$$

$$+ (x - x_2) [y_3 - \frac{1}{6} M_3]$$

$$= \frac{1}{6} [(4 - x)^3 (4) + 0] + (4 - x) \left[5 - \frac{2}{3} \right] + (x - 3) [11 - 0]$$

$$= \frac{2}{3} [4^3 - 3(4)^2 x + 3(4)(x)^2 - x^3] + (4 - x) \left(\frac{13}{3} \right) + 11x - 33$$

$$= \frac{2}{3} [64 - 48x + 12x^2 - x^3] + \frac{52}{3} - \frac{13}{3}x + 11x - 33$$

$$= \frac{1}{3} [128 - 96x + 24x^2 - 2x^3] - \frac{47}{3} + \frac{20}{3}x$$

$$= \frac{1}{3} [128 - 96x + 24x^2 - 2x^3 - 47 + 20x]$$

$$y(x) = \frac{1}{3} [-2x^3 + 24x^2 - 76x + 81] \qquad 3 \le x \le 4.$$

Home work Problems:

1. Find the cubic splines from the table given below. Assume $M_0 = 0$, $M_3 = -12$.

X	0	2	4	6
y = f(x)	1	9	41	41

2. Find the cubic spline approximations for the function given below.

X	0	1	2	3
y = f(x)	1	2	33	244

Assume M(0) = M(3) = 0. Also find y(2.5).

Answers:

1.
$$M_1 = 12$$
, $M_2 = -12$
 $y(x) = 1 + x^3$, $0 \le x \le 2$
 $y(x) = 25 - 36x + 18x^2 - 2x^3$, $2 \le x \le 4$
 $y(x) = -103 + 60x - 6x^2$, $4 \le x \le 6$

2.
$$M_1 = -24$$
, $M_2 = 276$
 $y(x) = -4x^3 + 5x + 1$, $0 \le x \le 1$
 $y(x) = 50x^3 - 162x^2 + 167x - 53$, $1 \le x \le 2$
 $y(x) = -46x^3 + 414x^2 - 935x + 715$, $2 \le x \le 3$
 $y(2.5) = 121.25$

INTERPOLATION

Interpolation is the process of finding the intermediate values of the function from a set of its values at specific points given in a tabulated form.

The following table represents a set of corresponding values of x and y = f(x):

<i>x</i> :	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	 x_n

The process of computing y corresponding to x where $x_i < x < x_{i+1}$, i = 0,1,2,...n-1 is interpolation.

GREGORY-NEWTON'S FORWARD INTERPOLATION FORMULA FOR EQUAL INTERVALS

If $y_0, y_1, y_2, ... y_n$ are the values of y = f(x) corresponding to equidistant values of $x = x_0, x_1, x_2, ... x_n$

where
$$x_i - x_{i-1} = h$$
, for $i = 0,1,2,...n$,

then

$$y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \dots + \frac{u(u-1) \dots (u-\overline{n-1})}{n!} \Delta^n y_0$$

Where
$$u = \frac{x - x_0}{h}$$

Forward difference table:

GREGORY -NEWTON'S BACKWARD INTERPOLATION FORMULA: (for equal intervals)

If $y_0, y_1, y_2, ... y_n$ are the values of y = f(x) corresponding to equidistant values of $x = x_0, x_1, x_2, ... x_n$

where
$$x_i - x_{i-1} = h$$
, for $i = 0,1,2,...n$,

then

$$y(x) = y_n + \frac{v}{1!} \nabla y_n + \frac{v(v+1)}{2!} \nabla^2 y_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 y_n + \cdots$$

Where
$$v = \frac{(x-x_n)}{h}$$

Find the values of y at x=21 and x=28 from the following data:

X	20	23	26	29
У	0.3420	0.3907	0.4384	0.4848

Solution:

Newton's forward difference table

X	y = f(x)	$\Delta_{\mathcal{Y}}$	Δ^2_y	Δ^3_{y}
x ₀ 20	<u>y₀</u> 0.3420	$\Delta y_0 = 0.0487$	$\Delta^2 y_0$	
23	0.3907	0.0487	-0.0010	$\frac{\Delta^3 y_0}{-0.0003}$
26	0.4384	0.0464		$\nabla^3 y_n$
29 x _n	$\frac{0.4848}{y_n}$	∇y_n	V y _n	

Dr. A. Venkatesh, AVVMSPC

Since x=21 is nearer to the beginning of the table, we use Newton's forward formula

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \cdots$$

Where $u = \frac{(x-x_0)}{h}$, h is the interval of differencing.

$$u = \frac{(x-x_0)}{h} = \frac{21-20}{3} = 0.3333$$

$$y(21) = 0.3420 + \frac{0.3333}{1!}(0.0487) + \frac{0.3333(0.3333 - 1)}{2!}(-0.001)$$

$$+\frac{0.3333(0.3333-1)(0.3333-2)}{3!}(-0.0003)$$

$$=0.3420+(0.3333)(0.0487)+\frac{0.3333(-0.6666)}{2}(-0.001)$$

$$+\frac{0.3333(-0.6666)(-1.6666)}{Dr. A. Venkatesh, AVVMSPC}(-0.0003)$$

$$y(21) = 0.3583$$

Since x=28 is nearer to end value, we use Newton's backward formula

$$y(x) = y_n + \frac{v}{1!} \nabla y_n + \frac{v(v+1)}{2!} \nabla^2 y_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 y_n + \cdots$$

Where $v = \frac{(x-x_n)}{h}$, h is the interval of differencing.

$$v = \frac{(28-29)}{3} = -0.3333$$

$$y(x) = 0.4848 + \frac{(-0.3333)}{1!}(0.0464)$$

$$+ \frac{(-0.3333)(-0.3333 + 1)}{2!}(-0.0013)$$

$$+ \frac{(-0.3333)(-0.3333 + 1)(-0.3333 + 2)}{3!}(-0.0003)$$

$$=0.4848+(-0.3333)(0.0464)+\frac{(-0.3333)(0.6667)}{2}(-0.0013)$$
$$+\frac{(-0.3333)(0.6667)(1.6667)}{6}(-0.0003)$$

=0.4848-0.01546+0.0001444+0.0000185

$$y(28) = 0.4695$$

Problem: 2

The following data are taken from the steam table. Find the pressure at temperature t = 142°C and 175°C

Temp.°C	140	150	160	170	180
Pressure Kgf/cm^2	3.685	4.854	6.302	8.076	10.225

Solution:

Newton's forward difference table

Temp. (t)	Pressure (p)	Δp	$\Delta^2 p$	$\Delta^3 p$	$\Delta^4 p$
140	y ₀ 3.685	Δy_0	. 2		
150	4.854	1.169	$\Delta^2 y_0$ 0.279	$\Delta^3 y_0$	$\Delta^4 y_0$
160	6.302	1.448 1.774	0.326	0.047 0.049	0.002
170	8.076		0.375		
180	10.225	2.149			

Since t = 142 is nearer to the beginning of the table, we use Newton's forward formula

$$y(t) = p_0 + \frac{u}{1!} \Delta p_0 + \frac{u(u-1)}{2!} \Delta^2 p_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 p_0 + \cdots$$
Where $u = \frac{(t-t_0)}{h} = \frac{142-140}{10} = \frac{1}{5} = 0.2$

$$y(t = 142) = 3.865 + \frac{0.2}{1!} (1.169) + \frac{0.2(0.2-1)}{2!} (0.279)$$

$$+ \frac{0.2(0.2-1)(0.2-2)}{3!} (0.047)$$

$$+ \frac{0.2(0.2-1)(0.2-2)(0.2-3)}{3!} (0.002)$$

$$y(t = 142) = 3.898$$

Since t = 175 is nearer to the end value, we use Newton's backward formula

$$y(x) = p_n + \frac{v}{1!} \nabla p_n + \frac{v(v+1)}{2!} \nabla^2 p_n + \frac{v(v+1)(v+2)}{3!} \nabla^3 p_n + \cdots$$

$$v = \frac{(t-t_n)}{h} = \frac{(175-180)}{10} = \frac{-1}{5} = -0.5$$

$$y(t = 175) = 10.225 + \frac{(-0.5)}{1!}(2.149) + \frac{(-0.5)(-0.5+1)}{2!}(0.375) + \frac{(-0.5)(-0.5+1)(-0.5+2)}{3!}(0.049) + \frac{(-0.5)(-0.5+1)(-0.5+2)(-0.5+3)}{4!}(0.002)$$

$$= 10.225 + \frac{(-0.5)}{1!}(2.149) + \frac{(-0.5)(0.5)}{2}(0.375)$$

$$+ \frac{(-0.5)(0.5)(1.5)}{6}(0.049)$$

$$+ \frac{(-0.5)(0.5)(1.5)(2.5)}{24}(0.002)$$

=10.225-1.0745-0.046875-0.0030625-0.000078125

=9.10048438

$$y(t = 175) = 9.1005$$

Using Newton's forward interpolation formula, find the polynomial f(x) satisfying the following data hence find f(2).

X	0	5	10	15
f(x)	14	379	1444	3584

Solution:

Newton's forward difference table

x	y = f(x)	Δ_y	Δ^2_y	Δ^3_y
x_0	y_0			
0	14	Δy_0	$\Delta^2 y_0$	
		365		$\Delta^3 y_0$
5	379	1065	<mark>700</mark>	375
10	1444	1003	1075	3/3
10	1444	2140	1073	
15	3584			

Newton's Forward interpolation formula is

$$y(x) = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \cdots$$

Where $u = \frac{(x-x_0)}{h}$, h is the interval of differencing.

$$u = \frac{(x-x_0)}{h} = \frac{x-0}{5} = \frac{x}{5}$$

$$y = f(x) = 14 + \frac{x}{5}(365) + \frac{x}{5}\left(\frac{x}{5} - 1\right)\left(\frac{700}{2}\right) + \left(\frac{x}{5}\right)\left(\frac{x}{5} - 1\right)\left(\frac{x}{5} - 2\right)\left(\frac{375}{6}\right)$$

$$= 14 + 73x + \frac{x(x-5)}{25}(350) + \frac{x(x-5)(x-10)}{125 \times 6}(375)$$

$$= 14 + 73x + (x^2 - 5x)(14) + \frac{x(x^2 - 15x + 50)}{2}$$

$$= \frac{1}{2}(28 + 146x + 28(x^2 - 5x) + x^3 - 15x^2 + 50x)$$

$$y = \frac{1}{2}(x^3 + 13x^2 + 56x + 28)$$
 $y = f(2) = 100.$