

Highly Efficient HD Map Creation: Accelerating Mapping Process with GPUs

May 10, 2017 ZENRIN Co.,Ltd.

Have you ever travelled to Tokyo?

ZENRIN History

- Founded in 1948 in Beppu, Oita
 Prefecture of Japan as a publisher of tourist maps
- Over 60 years in the mapping arena
- Maps covering 100% of Japan residential areas

What's an HD map?

HD (High Definition) Map

Highly detailed and precise 3D map for autonomous driving

3D Geometry

- √ Lane marks, road boundaries, traffic signs, signals etc.
- ✓ Polylines or polygons
- ✓ Latitude, longitude, altitude
- ✓ Height, width, depth
- √ Sub-meter accuracy to WGS84
 - Car-navigation 10 meter

How it is used in autonomous driving?

More precise localization in various conditions (e.g. inside tunnels) than GPS only

- With the given camera parameters, project map elements to the camera view
- Calculate the accurate camera (car) position and orientation assuming that the map is correct

Semantic Information

ENRIN ups to the Future

- ✓ Meaning of the road scene
- √ Traffic rules, road element associations, etc.
- → Autonomous Driving: Lane level navigation, safe & efficient path planning

Data format: ZENRIN Geospatial data Model (ZGM)

How to create an HD Map?

1. Data collection

2. Data processing

3. Verification

Step 1. Data collection → Survey vehicle

→ Maximum Approx. 1TB of data per car per day

High Resolution 2D Image >30M pixel

Pense Point Cloud Data
>700,000 points/sec

Other Sensor Data

Connecting data to create a 3D model of a certain area

Finding objects from the point cloud data

Verifying and understanding signs with 2D images

Mapping & Step 3: Verification

✓ Primitive geometry extraction

✓ Annotation

- ✓ Quality assurance
- →In-house software tools

Road Length: 1,218,772 km

Traffic Signals: 207,000 units

Traffic Signs: 9,790,000 units

✓ Massive volume data processing

√ Huge computing resource & time

✓ Skilled operators. Lot's of operators...

√ Keep updating the map

Accelerating the mapping process

*DNN: Deep Neural Network

- NVIDIA's high performance mapping SDK
- GPU optimized data processing
- Advanced AI (DNN) for mapping

MapWorks: Point Cloud Registration

CUDA ICP

Registered

3D Points

- Ubuntu, CUDA 8
- F GP104 (2048 cores) 1.6Ghz
- ► CPU Core i7-6700HQ 2.8Ghz
- CUDA ICP vs CPU PCL
 1 pair of frames registered
- Point to Plane ICP
- Filtered input of 3000 points

GP104	CPU (PCL)	GPU (CUDA)	Speedup	
Time (ms)	75-80	16	4.6X - 5X	

MapWorks: Detection/Classification

Labels

LANE DETECTION

- Ubuntu, CUDA 8, TensorRT GP104 (2048 cores)
- 960x544 (RGB image) DNN trained for DriveWorks

NVIDIA Confidential to ZENRIN (Inde

Concept of the new HD map creation pipeline

MapWorks: NV Comp

- Processed with loss-less compression data format (NV Comp) from Velodyne LiDARs
- Saves memory footprint
- Maximizes the GPU throughput

Demo: NVIDIA's locator with ZENRIN HD Map

Reliable and precise locators can detect real world changes and feed back to HD maps

Proof-of-concept: Mapping Japan

Can the DNN trained in US understand Japan roads scenes?

Japan road preliminary benchmark: Traffic Signs

Test Data

Minato-ku, Tokyo Area Approx. 1600m

Arakawa-ku, Tokyo Area Approx. 350m

Mito-city, Ibaragi Approx. 550m

Results

Number of Signs	116	
Precision Rate	24.46%	
Recall Rate	68.10%	

True Positive	79
False Positive	244
False Negative	37

Discussion on the False Positive detections

- DNN is trained with US traffic signs: Square board with texts & symbols
- ightarrow DNN probably detecting Japanese commercial sign boards as signs.
- → Japan general roads in urban areas are full of billboards.

Discussion on the False Negative detections

ZENRIN CO., LTD. All Rights Reserv

False Negative detections of Regulatory Signs

	Occlusion		
General Image processi ng issues	Illumination Change		
	Segmentation		14
	Scaling		14
	Rotation		
	Translation		
Others	Possible untrained data style	(9

23

Future Work: Study & NN training with ZENRIN JP road Bigdata Augustothe Future

- Total: 800M JPG geo-tagged images of JP roads
- 2Mkm drive. Photo taken every 2.5m
- Toll free narrow roads nationwide.

Panoramic Photo

Traffic Signs

Conclusion

 GPUs and Als can accelerate and automate the creation and updating of HD maps

Optimizing the pipeline to Japan roads with ZENRIN's mapping experience, knowledge and big data

→Still have many technical challenges. Looking forward to discussing solutions and collaborating with you!

Acknowledgement to:

Naoyuki Yura, Katsuya Misu, Kenichi Yoshii & Leonid Terenin NVIDIA Japan

Thank You

Shigeyuki (Shawn) Iwata shigeyuki@zenrin.com