Philips August 31 2025

Eindhoven Noord-Brabant Netherlands

To Whom it May Concern,

Re: "Computational Modeling Scientist"

I am applying for the position of "Computational Modeling Scientist" (ref 555573), having seen the opportunity on LinkedIn, as I believe I would be a ideal candidate for this role.

I am an applied mathematician by training, I have worked, as a computational scientist, at the interface between academic research and industry for over ten years, in the United Kingdom and Germany. My primary field is in therapy and imaging with medical ultrasound, but have wealth of experience in other fields, such as micro-fluidics, image reconstruction and the modelling of radiofrequency and microwave propagation within the body. As such I am familiar with many types of mathematical models and am able to quickly learn from the physics of the problem what the best numerical approach and deployment could be, given constraints such as computational resources.

Furthermore, I have worked in inter-disciplinary teams and can understand clinical problems from engineering, physics and mathematical perspectives. I have used the results of my simulations to deliver design recommendations to SMEs and international companies in the medical field in the context of fetal and doppler ultrasound, microwave ablation and in the design of breast imaging devices.

I have used my mathematical skills and experience to write high-performance, well-documented, well tested, deployable code, compliant with technical standards, such as ISO 13485 and IEC 62304. I have many of the core technical skills required: C/C++, Python, MATLAB, software testing, issue tracking with JIRA, continuous integration/deployment in GitHub/GitLab. I have some knowledge of Java and Mathematica, but can quickly learn new languages.

I have proven expertise in acoustics (I am a member of IEC technical committee 87 on ultrasonics), electromagnetics (through modelling of radiofrequency ablation) and wave propagation (developed models for design of microwave ablation devices for commercial partners). For these tasks I have used commercial programs (COMSOL), open source software (FENICS) as well as developing in-house solutions. I have lectured final year students in finite-element analysis and numerical methods. I am a maintainer of a ultrasound solver, k-wave-python, which is widely used around the world by both research and commercial groups.

I am applying as there are structural changes at my current role which may reduce opportunities for development. I am enthusiastic about this role as it combines cutting-edge technology with a growing industry. I believe that it is better to work together than apart, and am willing to relocate.

Please find enclosed my résumé, and let me know if you require any additional information.

Yours faithfully,

David Sinden

Attached: Résumé

id Sinde

💌 david.sinden@gmail.com | 🌴 djps.github.io | 🖸 djps | 🛅 sindendavid | 💆 david_sinden

Professional Experience

Fraunhofer Institute for Digital Medicine MEVIS

Bremen, Germany

SENIOR RESEARCH SCIENTIST - MODELLING & SIMULATION GROUP - PROF. TOBIAS PREUSSER

2019 - present

- · Developed patient-specific thermal ablation simulations for microwave, radio-frequency and ultrasound therapies
- Pharmacokinetic modelling of liver function and regeneration
- · Ultrasound beamforming, transcranial imaging

National Physical Laboratory

Teddington, UK

SENIOR RESEARCH SCIENTIST – ULTRASOUND & UNDERWATER ACOUSTICS GROUP – PROF. BAJRAM ZEQIRI

2014 - 2019

- Piezo- and pyro-electric sensor modelling using multi-physics finite-element for device design and characterisation
- Development of computational tools for ultrasound field characterisation
- Measurement-based simulation for nonlinear propagation through complex media

Institute of Cancer Research/The Royal Marsden Cancer NHS Foundation Trust

Sutton, UK

POST-DOCTORAL RESEARCH ASSOCIATE - THERAPEUTIC ULTRASOUND GROUP - PROF. GAIL TER HAAR

2011 - 2014

• Design and implementation of treatment planning software for a large phased-array ultrasound transducer for transcostal thermal ablation

University College London

POST-DOCTORAL RESEARCH ASSOCIATE - MECHANICAL ENGINEERING - PROF. NADER SAFARI | PROF. ELEANOR STRIDE

2008 - 2011

• Modelling cavitation activity in tissue during high-intensity focused ultrasound therapy

Education

PhD - University College London

DYNAMICAL SYSTEMS 2004 - 2008

- · Thesis: "Integrability, Localisation and Bifurcation of an Elastic Conducting Rod in a Uniform Magnetic Field"
- Advisor: Prof. Gert van der Heijden

MSc - University of Bath

MODERN APPLICATIONS OF MATHEMATICS 2003 - 2004

BSc - Imperial College London

MATHEMATICS WITH APPLIED MATHEMATICS/MATHEMATICAL PHYSICS - 2.1

2000 - 2003

Skills_____

SOFTWARE:	Python	10	Contributor to open source projects, open sourcing code in papers
	C++	8	Including STL, Boost, Eigen, VTK and ITK libraries
	Accelerators	4	OpenCL, numba/cupy, jax/XLA
	Matlab/Octave	20	Was used extensively in research
	Fortran	14	Experience from MSc, PhD, post-doc (BLAS, Lapack, auto07)
OS:	Linux	14	Ubuntu/WSL
PRESENTATION:		10	html/css (tailwind), ヒቫ፫X, BibT፫X
METHODS:	Software development	8	Version control (git/svn), continuous integration, build systems (CMake, qmake), testing (googletests, pytest), documentation (doxygen, sphinx)

Teaching & Dissemination

Department of Mobility - Constructor University Bremen

Bremen, Germany

ADJUNCT LECTURER

2022, 2024 - present Calculus and Linear Algebra for Graduate Students [MDE-MET-01]: introductory mathematics course for MSc students in data science (2024)

- · Numerical Methods [JTMS-MAT-13]: second year mathematics course for physics, engineering and mathematics students (2024-)
- Numerical Analysis [CA-S-MATH-804]: final year course for mathematics students (2022)

CIMPA Summer School - University of Havana

Havana, Cuba

GUEST LECTURER

June 2023

• Delivered short lecture course on "Examples and Principles of Mathematical Modelling in Medicine", to around 50 applied mathematicians from Central and South America and Africa

Department of Mechanical Engineering - University College London

London, UK

SEMINAR TEACHER

2011

2011

· Modelling and Analysis in Engineering I [MECH1010]: first year mathematics course for engineering students

Department of Civil, Environmental & Geomatic Engineering - University College London

London, UK

SEMINAR TEACHER

2008, 2009

· Mathematics for Engineers II [Math6502]: Second year mathematics course for engineering students

Nazarbayez University ADMINISTRATION | SEMINAR TEACHER Astana, Kazakhstan

For students on prestigious "Bolashak" scholarship and in establishing partner campus at Nazarbayez University

- · Involved in construction of mathematics modules for new courses in mechanical and civil engineering degrees, design of syllabus and preparation of course notes
 - Project management skills, including liaising with host organisation and participating partner institutions from the United States
- Ran tutorials and revision classes for students in mathematics and physics foundation classes
- Marking of tests and exam scripts

PhD Industrial Supervisor

University College London

2018-2019

- · Morgan Roberts, Dept. Medical Physics (with Prof. Ben Cox) "Ultrasound Computed Tomography of the Breast".
- Santeri Kaupinmäki, Dept. Medical Physics (with Prof. Simon Arridge) "Inverse Problems for Ultrasound Computed Tomography of the Breast" 2017-2019 HERIOT-WATT UNIVERSITY

Katherine Baker, Dept. Mathematics, (with Prof. Lehel Banjai) "Linear and Nonlinear Wave Equation Models with Power Law Attenuation"

MSc Secondary Supervisor

CONSTRUCTOR UNIVERSITY, BREMEN

2019-2021

 Sandeep Gyawali, Dept. Mathematics, (with Prof. Tobias Preusser). "Extending Composite Finite Element Method for PDE Problems with Geometric Uncertainties'

Undergraduate Supervision

NATIONAL PHYSICAL LABORATORY

Antoine Lucquiaud, École Normale Supérieure de Cachan, "Boundary Element Methods for Bubble Activity".

University College London

2012

· Jade Junqua, ENSEIRB-MATMECA and Bordeaux 1, "Investigating mode conversion and heating around the ribs due to high-intensity ultrasound"

Outreach

- Scientific consultant on documentary "The healing power of sound" (2014)
- NPL "Scientific Ambassador": delivered talks at a number of schools and colleges on careers in science as well as demonstrations of experiments relating to objective measurements (2016-2019)

Affiliations, Awards & Achievements

Standardization

• Member of IEC Technical Committee 87: Ultrasonics, Working Group 6 – High Power Part of working group of internationally recognised experts writing the technical specification "TS 63900: Measurement-based Simulation in water and complex media"

Scholarships

• M.Sc. funded by an EPSRC scholarship (2003-4); EPSRC funding was awarded for Ph.D. (2004-7) and post-doctoral work (2014)

Awards

- Challenge Award: Joint first place in IEEE IUS Challenge on Ultrasound Beamforming with Deep Learning (CUBDL) for "Improving image quality of single plane wave ultrasound via deep learning based channel compounding (2020)"
- Conference Award: Honourable mention for paper "Studying the effect of tissue properties on radiofrequency ablation by visual simulation ensemble analysis" VCBM 2022: Eurographics Workshop on Visual Computing for Biology and Medicine (2022)

Professional Affiliations

• Member of SIAM, the Society for Industrial and Applied Mathematics (2004–present), associate member of the IMA, Institute of Mathematics and its Applications, (2016–present), and member of the IOP, Institute of Physics, (2008–present)

Service

- Reviewer for a number of journals (Int. J. Hyperthermia Ultrasonics Ultrasound Med. & Biol. Med. Phys. Comp. Meth. Prog. Biomed. J. Open Source Softw.), as well as funding agencies (ANR France, FWF Austria, Focused Ultrasound Foundation International).
- Mentor to junior staff at NPL (2015–2019)
- Maintainer in open-source scientific code: k-wave-python ♠, available via pypi https://doi.org/10.5281/zenodo.10719461 ☆ 150

Equality, Diversity & Inclusion

- Member of Fraunhofer MEVIS diversity and inclusion task force (2021-)
- Member of ICR's Athena Swan board (2012)

Grants_

In descending chronological order:

2023	Fraunhofer DISCOVER CompTop: Computational Topology in Medical Imaging	€150,000
2023	European Metrology Programme for Innovation and Research (EMPIR) MAIBAI: Developing a Metrological Framework for Assessment of Image-based Artificial Intelligence Systems for Disease Detection	€180,000
2022	Fraunhofer-Netzwerk: Simulation Physics-Informed Neural Networks	€11,000
2019	European Metrology Programme for Innovation and Research (EMPIR) RaCHy: Radiotherapy Coupled with Hyperthermia – Adapting the Biological Equivalent Dose Concept	£180,000
2018	Analysis for Innovators (A4I), with Deltex Medical Devices Optimizing Oesophageal Doppler Transducers	£26,500
2018	Industrial Challenge Strategy Fund, Wave 1, Metrology for Medical Imaging, with Huntleigh Diagnostics Optimizing Fetal Doppler Transducers	£45,500
2016	EPSRC Network+ Therapy Ultrasound Network for Drug Delivery & Ablation Research (ThUNDDAR) feasibility study Machine Learning for Cavitation Detection	£26,500
2014	NPL Strategic Research Award Mathematical Modelling of Histotripsy	£25,000
2012	EPSRC/ICR Platform Grant Vascular Remodelling	£25,000

Book Chapters

<u>David Sinden</u>, "Numerical modelling for simulation and planning of focused ultrasound treatments"

2024 In *Image-guided Focused Ultrasound Therapy: Physics and Clinical Applications*, Eds. F. Wu, G. ter Haar, and I. Rivens, Series in Medical Physics and Biomedical Engineering, (CRC Press, Baton Rouge, FL, 2024) ISBN 9781498711357

Publications & Preprints _____

In descending chronological order. Citation data from Google Scholar.

20	025	Christina A. Neizert, Hoang N. C. Do, Miriam Zibell, <u>David Sinden</u> , Christian Rieder, Jakob Albrecht, Stefan M. Niehues, Kai S. Lehmann, and Franz G. M. Poch, "Optimizing microwave ablation planning with the ablation success ratio". <i>Sci. Rep.</i> 15, 10450	_
20	022	Pauline Coralie Guillemin, <u>David Sinden</u> , Yacine M'Rad, Michael Schwenke, Jennifer Le Guevelou, Johan Uiterwijk, Orane Lorton, Max Scheffler, Pierre-Alexandre Poletti, Jürgen Jenne, Thomas Zilli, and Rares Salomir, "A novel concept of transperineal focused ultrasound transducer for prostate cancer local deep hyperthermia treatments". <i>Cancers</i> 15, 163	cites: 5
20	022	Christina A. Neizert, Hoang N. C. Do, Miriam Zibell, Christian Rieder, <u>David Sinden</u> , Stefan M. Niehues, Janis L. Vahldiek, Kai S. Lehmann, and Franz G. M. Poch, "Three-dimensional assessment of vascular cooling effects	cites: 6

	Karl Heimes, Marina Evers, Tim Gerrits, Sandeep Gyawali, <u>David Sinden</u> , Tobias Preusser, and Lars Linsen, "Studying	
2022	the effect of tissue properties on radiofrequency ablation by visual simulation ensemble analysis", in Eurographics	oitoo. 2
2022	the effect of tissue properties on radiofrequency ablation by visual simulation ensemble analysis", in Eurographics Workshop on Visual Computing for Biology and Medicine, Eds. R. G. Raidou, B. Sommer, T. W. Kuhlen, M. Krone,	cites: 3
	T. Schultz, and H–Y. Wu (The Eurographics Association, 2022) ISBN 978-3-03868-177-9. ISSN 2070-5786	

on hepatic microwave ablation in a standardized ex vivo model", Sci. Rep. 12, 17061

2021	Dongwoon Hyun, Alycen Wiacek, Sobhan Goudarzi, Sven Rothlübbers, Amir Asif, Klaus Eickel, Yonina C. Eldar, Jiaqi Huang, Massimo Mischi, Hassan Rivaz, <u>David Sinden</u> , Ruud J. G. van Sloun, Hannah Strohm, and Muyinatu A. Lediju Bell, "Deep learning for ultrasound image formation: CUBDL evaluation framework and open datasets", <i>IEEE Trans</i> .	cites: 9
	Ultrason. Ferroelectr. Freq. Control 68, 3466-–3483	

92

70171	Santeri Kaupinmäki, Ben Cox, Simon Arridge, Christian Baker, <u>David Sinden</u> , and Bajram Zeqiri, "Pyroelectric	
	ultrasound sensor model: directional response", Meas. Sci. Technol. 32, 035106	cites: 4

	Sven Rothlübbers, Hannah Strohm, Klaus Eickel, Jürgen Jenne, Vincent Kuhlen, <u>David Sinden</u> , and Matthias	
20	20 Günther, "Improving image quality of single plane wave ultrasound via deep learning based channel compounding",	cites: 33
	2020 IEEE International Ultrasonics Symposium (IUS) pp. 14	

2020	Nadia A. S. Smith, <u>David Sinden</u> , Spencer A. Thomas, Marina Romanchikova, Jessica E. Talbott, and Michael		
2020	Adeogun, "Building confidence in digital health through metrology", <i>Br. J. Radiol.</i> 93, 20190574	cites: 1	

	<u>David Sinden</u> , Srinath Rajagopal, N. Christopher Chaggares, Guofeng Pang, and Oleg Ivanytskyy, "Reducing	
2017	uncertainties for spatial averaging at high frequencies", 2017 IEEE International Ultrasonics Symposium (IUS) (IEEE,	cites: .
	2017) pp. 1–4	

2017	Ki Joo Pahk, Pierre Gélat, <u>David Sinden</u> , Dipok Kumar Dhar, and Nader Saffari, "Numerical and experimental study of	cites: 48
2017	mechanisms involved in holling histotrinsy" Illtrasound Med. Riol. 43, 28482861	CILES. 40

2014	<u>David Sinden</u> and Gail ter Haar, "Dosimetry implications for correct ultrasound dose deposition: uncertainties in descriptors, planning and treatment delivery", <i>Trans. Cancer Res.</i> 3, 459–471	cites: 13
	descriptors, planning and deather delivery, Tans. Cancer Nes. 5, 455 471	

David Sinden, Eleanor Stride, and Nader Saffari, "Approximations for acoustically excited bubble cluster dynamic J. Phys.: Conf. Ser., Vol. 353 (IOP Publishing, 2012) p. 012008	cs",
2012 J. Phys.: Conf. Ser., Vol. 353 (IOP Publishing, 2012) p. 012008	cites: 4

<u>David Sinden</u> and Gert H. M. van der Heijden, "The buckling of magneto-strictive Cosserat rods", in Proc. 7 th	
2011 European Nonlinear Dynamics Conference (ENOC 2011), edited by D. Bernardini, G. Rega, and F. Romeo (European	_
Mechanics Society (2011) n. 4. ISBN 978-88-906234-2-4	

2011	Gert H. M. van der Heijden and <u>David Sinden</u> , "Localisation of a twisted conducting rod in a uniform magnetic field: the Hamiltonian-Hopf-Hopf bifurcation", in Proc. 7 th European Nonlinear Dynamics Conference (ENOC 2011), edited by D. Bernardini, G. Rega, and F. Romeo (European Mechanics Society, 2011) p. 4, ISBN 978-88-906234-2-4	cites: 2
2009	<u>David Sinden</u> , Eleanor Stride, and Nader Saffari, "The effects of nonlinear wave propagation on the stability of inertial cavitation", <i>J. Phys.: Conf. Ser.</i> , Vol. 195 (IOP Publishing, 2009) p. 012008	cites: 3
2009	<u>David Sinden</u> and Gert H. M. van der Heijden, "Spatial chaos of an extensible conducting rod in a uniform magnetic field", <i>J. Phys. A: Math. Theor.</i> 42, 375207	cites: 10
2008	<u>David Sinden</u> and Gert H. M. van der Heijden, "Integrability of a conducting elastic rod in a magnetic field", J. Phys. A: Math. Theor. 41, 045207	cites: 10

Presentations

In descending chronological order.

2025	Nonlinear dynamics of microbubbles in tissue, Dynamical Systems and Geometry Seminary, University of Bremen, 23 January 2025 [Abstract] [Presentation]	Invited
2023	Integrability, localisation and bifurcation of an elastic conducting rod in a magnetic field, 7 th Workshop on Dynamical Systems & Ergodic Theory in Northern Germany, 9 June 2023 [Abstract] [Presentation]	Invited
	Artificial intelligence in therapeutic ultrasound, 22 nd International Symposium on Therapeutic Ultrasound, Lyon, 17–20 April 2023 [Abstract]	Invited
2022	Patient-specific modelling of microwave ablation, Society for Thermal Medicine 2022 Annual Meeting, 1–4 May 2022 [Abstract] [Presentation]	
2020	Factors for validation of measurement-based simulation, ASA 179, ASA Acoustics Virtually Everywhere, 8 December 2020. [Abstract][Presentation]	
2018	Machine learning for cavitation detection, British Medical Ultrasound Symposium, 5 December 2018	
2016	Acceleration techniques for acoustic holography, British Medical Ultrasound Symposium, 8 December 2016	
	Computational challenges in high-intensity focused ultrasound, University of Strathclyde, 25 October 2016	Invited
	Absorption of ultrasound by tissue: fractional operators and integral equations Maxwell Institute for Applied Analysis, International Centre for Mathematical Sciences, Edinburgh, 7 October 2016	Invited
	Mathematical challenges of high-intensity focused ultrasound, Leslie Comrie Lecture, University of Greenwich, 11 April 2016	Invited
	Wave3D: A parallelised three-dimensional nonlinear acoustic wave propagation solver, Anglo-French Physical Acoustics Conference 15, London, 13–15 January 2016	
2015	Computational challenges in high-intensity focused ultrasound treatment planning, University of Surrey, 15 December 2015	Invited
2014	Computational challenges in high-intensity focused ultrasound treatment planning, 14 th International Symposium on Therapeutic Ultrasound, Las Vegas, Nevada, 2–4 April 2014	
2013	Treatment planning of high-intensity focused ultrasound, Medical Modelling Group, University College London, 30 September 2013	Invited
2012	The challenges in boundary element modelling for high-intensity focused ultrasound treatment planning, Boundary Integral Equation Methods for High-Frequency Scattering, University of Reading, 25 May 2012	Invited
	The effects of nonlinear wave propagation on thermal ablation high-intensity focused ultrasound, Department of Electrical Engineering, Stanford University, California, 11 April 2012	Invited

The buckling of magneto-strictive Cosserat rods, 7th European Mechanics Society European Nonlinear Oscillations Conference, Rome, Italy, 24–29 July 2011

Localisation of a twisted conducting rod in a uniform magnetic field: the Hamiltonian-Hopf-Hopf bifurcation, 7th European Mechanics Society European Nonlinear Oscillations Conference, Rome, Italy, 24–29 July 2011

Cavitation in tissue under high-intensity focused ultrasound, SIAM Conference on Applications of Dynamical Systems, Snowbird, Utah, 22–26 May 2011

The effect of fluid compressibility on multi-bubble cavitation for high-intensity focused ultrasound, 161st Meeting of the Acoustical Society of America, Seattle, Washington, 23–27 May 2011

Modelling cavitation in liver tissue under high-intensity focused ultrasound, British Applied Mathematics Colloquium, University of Birmingham, 11–13 April 2011

Cavitation in models of wave propagation through tissue under high-intensity focused ultrasound, Anglo-French Physical Acoustics Conference 11, Fréjus, France, 19–21 January 2011

The influence of liquid viscosity and compressibility on multi-bubble cavitation, UK Therapeutic Ultrasound Interest Group, University College London, 20 December 2010

Multi-bubble interactions, and high-intensity focused ultrasound therapy, 10th International Symposium on Therapeutic Ultrasound, Tokyo, 9–12 June 2010

On the stability of interacting bubbles, UK Therapeutic Ultrasound Interest Group, Institute of Cancer Research, 11 May 2010

Cavitation in high-intensity focused ultrasound treatment, Medical Modelling Group, University College London, 4 May 2010

Integrability, spatially complex localisation and bifurcation of an elastic conducting rod in a uniform magnetic field, London Dynamical Systems Workshop, Imperial College, 29 April 2010

Invited

Phase synchronisation and the collective instability oscillating bubble clouds, 159th Meeting of the Acoustical Society of America, Baltimore, Maryland, 19–23 April 2010. *J. Acoust. Soc. Am.* 127(3), 1865–1865

On multi-bubble interactions, Anglo-French Physical Acoustics Conference 10, Kendal, 18–22 January 2010

On multi-bubble interactions, UK Therapeutic Ultrasound Interest Group, University College London, 11 November 2009

The effects of viscoelasticity on the stability of inertial cavitation, 9th International Symposium on Therapeutic Ultrasound, Aix-en-Province, 23–26 September 2009

The effects of nonlinear wave propagation on inertial cavitation, UK Therapeutic Ultrasound Interest Group, University College London, 18 December 2008

The effects of nonlinear wave propagation on inertial cavitation, Anglo-French Physical Acoustics Conference 9, Arcachon, 8–10 December 2008

Integrability, spatially complex localisation and bifurcation of an elastic conducting rod in a uniform magnetic field, University of Surrey, 3 October 2008

Invited

Spatially complex localisation of an elastic conducting rod in a uniform magnetic field, Bifurcations in Dynamical Systems with Applications, University of Bielefeld, 19–21 May 2008

The integrability of a conducting elastic rod in a magnetic field, British Applied Mathematics Colloquium, Bristol University, 17–19 April 2007

August 2025 David Sinden · cv_sinden 7