d = 28 cm.

- Nel vuoto, una sferetta di dimensioni trascurabili, carica $q = -5.1 \times 10^{-10}$ C e massa $m = 7.5 \times 10^{-3}$ kg è posta, equidistante da entrambi, tra un piano infinito con densità superficiale di carica $\sigma = -1.86 \times 10^{-6}$ C/m² e un filo infinito, parallelo al piano, con densità lineare di carica $\lambda = 8.1 \times 10^{-7}$ C/m. La distanza tra il filo e il piano è
 - ▶ Calcola il campo elettrico nel punto in cui si trova la sferetta.
 - ► Calcola l'accelerazione della sferetta. Verso dove è rivolta?

FRETRIA =
$$q \vec{E}$$

FRETRIA = $q \vec{E}$

FRETRIA = $1q | \vec{E} = (5,1 \times 10^{-10} \text{ C})(2,09 \times 10^5 \frac{N}{\text{C}}) = 10,659 \times 10^{-5} \text{ N} \approx 1,1 \times 10^{-4} \text{ N}$

FRESO = $mq = (7,5 \times 10^{-3} \text{ kg})(3,8 \frac{N}{\text{kg}}) = 73,5 \times 10^{-3} \text{ N}$
 $\approx 7,4 \times 10^{-2} \text{ N}$

Freso > \vec{E}

From a quindi l'acaleratione \vec{E} dietto vers il land

From = ma
 $a = \frac{mq}{m} = \frac{mq}{m} = \frac{1q|\vec{E}}{m} = \frac{mq}{7,5 \times 10^{-3} \text{ Kg}}$

Se non considers \vec{E} forso \vec{E}

From (ad 25. fertile l'espen; ments arriens lontans de \vec{E}

altre mars), l'acaleratione \vec{E}
 \vec{E} diretto vers l'ests

 \vec{E} diretto vers l'ests

 \vec{E}
 \vec{E}