TU: Linear Regression

Industrial AI & Automation by Y.K.Kim

Mod: 2024-2

Author: Jin Kwak/21900031

Date: 24.09.20

Introduction

Fit Linear Regression

Include path

```
addpath('../../Library')
```

Examples

Example 1: Fit with Linear Regression

Data Acquisition

• Feature: One-Dimension, p=1

• True value: ytrue = 2X+3

```
x = randn(100,1);
y = x*2 + 3+randn(100,1);
```

Fit Linear Regression

```
mdl = fitlm(x,y)
```

```
mdl =
선형 회귀 모델:
y ~ 1 + x1
```

추정된 계수:

	ESTIMATE	2E	tStat	pvalue
(Intercept)	2.9193	0.1013	28.819	1.1939e-49
x1	2.0652	0.087093	23.713	2.1985e-42

관측값 개수: 100, 오차 자유도: 98

RMS 오차: 1.01

결정계수: 0.852, 수정된 결정계수: 0.85

상수 모델에 대한 F-통계량: 562, p-값 = 2.2e-42

% Plot prediction

plot(x,y,'.',x,mdl.Fitted, '-')

Analyze Linear Regression

% Plot residual histogram
plotResiduals(mdl)

% From remove outlier from histogram

outl = find(abs(mdl.Residuals.Raw) > 2); mdl.Residuals.Raw(outl)

ans = 3×1

2.9449

2.5349

-2.2979

% Fit with outlier removed

mdl2 = fitlm(x,y,'Exclude',outl)

md12 =

선형 회귀 모델:

 $y \sim 1 + x1$

추정된 계수:

	Estimate	SE	tStat	pValue
				
(Intercept)	2.8886	0.092874	31.102	1.3369e-51
x1	2.0446	0.079297	25.784	1.1196e-44

관측값 개수: 97, 오차 자유도: 95

RMS 오차: 0.911

결정계수: 0.875, 수정된 결정계수: 0.874

상수 모델에 대한 F-통계량: 665, p-값 = 1.12e-44

Predict with Test data

```
% Ypredict and confidence interval
Xnew=2;
[Ynew,YnewI]=predict(md12,Xnew)
```

```
Ynew = 6.9777
YnewI = 1×2
6.6268 7.3286
```

```
% Plot prediction
plot(x,y,'.',x,mdl2.Fitted, '-')
```


Example 2: Predict Car MPG

Find linear relationship of MPG(연비) with Weight & Displacement

Then, Predict MPG for a car with Weight=3000, Displacement=300

Data Acquisition

• Dependet Variable: MPG

• Independet Variables: Weight, Displacement

```
clear
load carsmall

tbl = table(MPG,Weight, Displacement); % table type
```

Fit Linear Regression

```
mdl = fitlm(tbl, 'MPG~Weight+Displacement')
```

mdl = 선형 회귀 모델: MPG ~ 1 + Weight + Displacement

추정된 계수:

	Estimate	SE	tStat	pValue
(Intercept)	46.925	2.0858	22.497	6.0509e-39
Weight	-0.0068422	0.0011337	-6.0353	3.3838e-08
Displacement	-0.014593	0.0082695	-1.7647	0.080968

관측값 개수: 94, 오차 자유도: 91

RMS 오차: 4.09

결정계수: 0.747, 수정된 결정계수: 0.741

상수 모델에 대한 F-통계량: 134, p-값 = 7.22e-28

mdl.CoefficientNames

ans = 1×3 cell
'(Intercept)''Weight' 'Displacement'

mdl.Coefficients.Estimate

ans = 3×1

46.9247

-0.0068

-0.0146

Analyze Linear Regression

plotResiduals(mdl)

% Remove outlier

outl = find((mdl.Residuals.Raw) > 9);

% Fit with outlier removed

mdl2 = fitlm(tbl,'MPG~Weight+Displacement','Exclude',outl)

mdl2 =

선형 회귀 모델:

MPG ~ 1 + Weight + Displacement

추정된 계수:

,	Estimate	SE	tStat	pValue
(Intercept)	45.548	1.8056	25.226	2.5559e-42
Weight	-0.0062503	0.00097845	-6.3879	7.4767e-09
Displacement	-0.018035	0.0071414	-2.5255	0.013324

관측값 개수: 92, 오차 자유도: 89

RMS 오차: 3.51

결정계수: 0.796, 수정된 결정계수: 0.792

상수 모델에 대한 F-통계량: 174, p-값 = 1.78e-31

mdl2.Coefficients.Estimate

ans = 3×1

45.5477

-0.0063

-0.0180

Predict

Detailed look at the interactions

```
% Ypredict and confidence interval
Xnew=[3000 300];
[Ynew,YnewI]=predict(mdl2,Xnew)

Ynew = 21.3863
YnewI = 1×2
19.8515 22.9211
```


Exercise

Exercise 1: Gradient Descent

Linear Regression Using Gradient Descent

Hypothesis.

$$h_{\theta}(x) = \theta_1 x + \theta_0$$

To find the parameters, repeat until convergence

$$\theta_{k} = \theta_{k} - \alpha \frac{\partial}{\partial \theta_{k}} J(\theta_{1}, \theta_{0})$$

where, cost(error) function

$$J(\theta_1, \theta_0) = \frac{1}{2n} E = \frac{1}{2n} \sum_{i=1}^{n} (y_i - h(x_i))^2$$

and

$$\frac{\partial J}{\partial \theta_1} = -\frac{1}{n} \sum_{i=1}^{n} x_i \left(y_i - \left(\theta_1 x_i + \theta_0 \right) \right)$$

$$\frac{\partial J}{\partial \theta_0} = -\frac{1}{n} \sum_{i=1}^{n} \left(y_i - \left(\theta_1 x_i + \theta_0 \right) \right)$$

Data Acquisition

Feature: One-Dimension, p=1

True: y = 2X+3

```
N=100;
X = randn(N,1);
Y = X*2 + 3+randn(N,1);
```

Fit Linear Regression: Gradient Descent

```
% dJ/dx
lambda=0.1; % learning rate

% Initialization for t0, t1
t0=0.5;
t1=0.5;
loss=1;
itrN=1000;
k=1;

t1_prev=0;
t0_prev=0;
```

```
%% ADD your code here
while(loss>0.0001 && k<itrN)</pre>
    % Define function h(x)
    h = t1*X + t0;
   % Define gradient w.r.t theta_1 and theta_0
    dJt1 = -1/N * sum(X .* (Y- (t1*X + t0)));
    dJt0 = -1/N * sum(Y- (t1*X + t0));
   % Update theta1, theta0
   t1= t1 - lambda * dJt1;
    t0= t0 - lambda * dJt0;
   % Cost Function v1
%
    loss=sum((Y-h).^2)/(2*N);
   % Cost Function v2
    loss= (norm(t1-t1_prev)+norm(t0-t0_prev))/2;
    t1_prev=t1;
    t0_prev=t0;
    loss_hist(k) = loss;
    k=k+1;
end
% Plot loss vs iteration
figure;
plot(loss_hist)
xlabel('Iteration');
ylabel('Normalized Loss');
```



```
% Predicted hypothesis y(x)
ypred= t1*X + t0;
disp('optimal paraterms are')
```

optimal paraterms are

t1

t1 = 2.1112

t0

t0 = 3.1064

Exercise 2: Linear Regression with dim=2

Find the linear regression. Remove Outlier and predict a test value Xtest=[2;1];. You can use MATLAB fitlm()

• Feature: 2-Dimensions, p=2

• True value: y = 2*X1+4*X2+3

Data Acquisition

```
X = randn(100,2);
y = X*[2;4] + 3+ randn(100,1);
```

Fit Linear Regression

```
mdl= fitlm(X,y);
```

Analyze

```
% Remove outlier
% -plot residual histogram
figure
plotResiduals(mdl)
```



```
% - remove outlier from histogram analysis
outl = find((mdl.Residuals.Raw) > 1);

% Fit linear regression (fitlm)
mdl2 = fitlm(X,y,'Exclude',outl);
```

Predict

Predict for a Test value

```
Xnew=[2, 1];
[Ynew, YnewI]= predict(mdl2,Xnew);
plot(X,y,'.', X,mdl2.Fitted,'+')
```


Exercise 3: Linear Regression with dim=4

Find linear relationship of

• MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Choose a test data and predict

Data Acquisition

```
clear
load carsmall

tbl = table(MPG,Acceleration,Displacement,Horsepower,Weight);
```

Fit Linear Regression

```
mdl = fitlm(tbl, 'MPG~Acceleration+Displacement+Horsepower+Weight')

mdl =
선형 회귀 모델:
MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

추정된 계수:
Estimate SE tStat pValue
```

(Intercept)	48.117	3.9008	12.335	6.9194e-21
Acceleration	-0.060312	0.21167	-0.28493	0.77636
Displacement	-0.0066826	0.011594	-0.57638	0.56583
Horsepower	-0.037547	0.026139	-1.4364	0.15442
Weight	-0.006084	0.0013823	-4.4014	3.01e-05

관측값 개수: 93, 오차 자유도: 88

RMS 오차: 4.11

결정계수: 0.753, 수정된 결정계수: 0.742

상수 모델에 대한 F-통계량: 67.1, p-값 = 6.49e-26

plotResiduals(mdl);

Analyze

```
% Remove outlier
% -plot residual histogram
% - remove outlier from histogram analysis
outl =find((mdl.Residuals.Raw) > 9); % find from Residuals.Raw
mdl.Residuals.Raw(outl)
```

ans = 2×1 14.1936 12.9259

% Fit linear regression (fitlm)

```
mdl2 = fitlm(tbl, 'Exclude', outl);
plotResiduals(mdl);
```


mdl2.Coefficients.Estimate

ans = 5×1 10³ × 1.5188 -0.0326 0.0573 0.0034 0.0060

mdl2.Coefficients.SE

ans = 5×1 523.0048 8.2575 15.3438 0.8172 1.7691

Predict

Predict for a Test value

```
Xnew = [10 300 150 3500];
[Ynew,YnewI]=predict(mdl2,Xnew);
figure, clf, box on; hold on; grid on;
plotInteraction(mdl,'Horsepower','Weight','predictions')
```


figure, clf, box on; hold on; grid on;
plotInteraction(mdl,'Acceleration','Displacement','predictions')

