Basic Cross-Section Processing Using Python

In this exercise we will learn how to process data using ENDF data downloaded from the National Nuclear Data Center (nndc.bnl.gov). What I've done is download some data in comma-separated value tables and the first thing we do is read them in.

In this exercise we will consider a system made of pure ²³⁵U metal, similar to the Godiva reactor. Such a reactor will be a fast reactor, and we do not need to worry about the thermal part of the spectrum.

This first block of code uses a built-in function to read in the files. The second file has a header that we skip with the appropriate parameter.

```
In [1]: import numpy as np
#open total cross-section
sigma_t = np.genfromtxt('u235_total.csv', delimiter=",")
#open scattering cross-section
sigma_s = np.genfromtxt('u235_elastic.csv', delimiter=",", skip_header=1)
```

Different cross-section files have different points of evaluation (i.e., the energies are different). We can handle this by computing the union of the two grids.

```
In [2]: #get the union of the energy grids
   energies = np.union1d(sigma_t[:,0], sigma_s[:,0])
```

We will use an analytic expression for the fission spectrum $\chi(E)$.

```
In [3]: #create the fission spectrum
    chi = lambda E: 0.4865*np.sinh(np.sqrt(2*E))*np.exp(-E)
```

Using SciPy we create functions to get the cross-sections at any energy via interpolation. We have to be care about evaluating the cross-sections above the maximum energy in the table. In our case we are likely to be evaluating above the max energy, so we set the cross-section to be the cross-section at the max energy.

```
In [4]: #make interpolation functions
    from scipy import interpolate
    sig_t_interp = interpolate.interpld(sigma_t[:,0], sigma_t[:,1],bounds_error=False, fill_value=sigm
    a_t[-1,1])
    sig_s_interp = interpolate.interpld(sigma_s[:,0], sigma_s[:,1],bounds_error=False, fill_value=sigm
    a_s[-1,1])
```

As a sanity check let's plot the cross-sections and the fission spectrum.

```
In [5]: #let's make some plots
        %matplotlib inline
        import matplotlib
        import numpy as np
        import matplotlib.pyplot as plt
        import matplotlib
        import math
        import matplotlib.font_manager as fm
        import matplotlib.ticker as mtick
        font = fm.FontProperties(family = 'Gill Sans', fname = '/Library/Fonts/GillSans.ttc')
        def hide spines(intx=False,inty=False):
            """Hides the top and rightmost axis spines from view for all active
            figures and their respective axes.""
            # Retrieve a list of all current figures.
            figures = [x for x in matplotlib._pylab_helpers.Gcf.get_all_fig_managers()]
            if (plt.gca().get_legend()):
                plt.setp(plt.gca().get_legend().get_texts(), fontproperties=font)
            for figure in figures:
                # Get all Axis instances related to the figure.
                for ax in figure.canvas.figure.get_axes():
                    # Disable spines.
                    ax.spines['right'].set_color('none')
                    ax.spines['top'].set_color('none')
                    # Disable ticks.
                    ax.xaxis.set ticks position('bottom')
                    ax.yaxis.set_ticks_position('left')
                   # ax.xaxis.set_major_formatter(mtick.FuncFormatter(lambda v,_: ("10$^{%d}$" % math.log(v,10))
        ))
                    for label in ax.get xticklabels() :
                        label.set fontproperties(font)
                    for label in ax.get_yticklabels() :
                        label.set_fontproperties(font)
                    #ax.set_xticklabels(ax.get_xticks(), fontproperties = font)
                    ax.set_xlabel(ax.get_xlabel(), fontproperties = font)
                    ax.set_ylabel(ax.get_ylabel(), fontproperties = font)
                    ax.set_title(ax.get_title(), fontproperties = font)
                    if (inty):
                        ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%d'))
                    if (intx):
                        ax.xaxis.set_major_formatter(mtick.FormatStrFormatter('%d'))
        def show(nm=0,a=0,b=0):
            hide_spines(a,b)
            \#ax.xaxis.set_major_formatter(mtick.FuncFormatter(lambda v,_: ("10$^{%d}$" % math.log(v,10)) ))
            #plt.yticks([1,1e-2,1e-4,1e-6,1e-8,1e-10,1e-12], labels)
            \#ax.yaxis.set\_major\_formatter(mtick.FuncFormatter(lambda v,_: ("10$^{$d}$" $ math.log(v,10)) ))
            if (nm != 0):
                plt.savefig(nm);
            plt.show()
        fig = plt.figure(figsize=(8,6), dpi=1600)
        \verb|plt.loglog(energies, sig_t_interp(energies), label="\$\sigma_\mathrm{t}$")|
        plt.loglog(energies, sig_s_interp(energies), label="$\sigma_\mathrm{s}$")
        plt.legend(loc=3) #bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
        plt.ylabel("$\sigma$ (barns)")
        plt.xlabel("E (MeV)")
        show("U-235_xsect.pdf")
```



```
In [6]: fig = plt.figure(figsize=(8,6), dpi=1600)
        plt.semilogx(energies,chi(energies))
        plt.xlabel("E (MeV)")
        plt.ylabel("Probability (MeV$^{-1}$)")
        show("U-235_chi.pdf")
```


Computing the Spectrum for this reactor

We will attempt to compute the spectrum for this reactor using only the fine group cross-sections and the fission spectrum. To do this we look at the steady-state infinite medium problem given by

$$N^{235}\sigma_{\rm t}(E)\psi(\mu,E) = \frac{1}{2} \int_0^\infty dE' \, N^{235}\sigma_{\rm s}(E' \to E)\phi(E') + \frac{\chi(E)}{2k} \int_0^\infty dE' \, N^{235}\bar{\nu}\sigma_{\rm f}(E')\phi(E')$$

Note that in this equation we can normalize the fission term so that the effective source has a magnitude of
$$\chi(E)$$
:
$$\sigma_{\rm t}\psi(\mu,E) = \frac{1}{2} \int_0^\infty \sigma_{\rm S}(E' \to E) \phi(E') + \frac{\chi(E)}{2}.$$

For the energy transfer via scattering, we assume that all collisions have the same fractional energy loss:

$$\left(\frac{E}{E'}\right)_{\text{average}} = \frac{A^2 + 1}{(A+1)^2} \approx 0.991561333.$$

This allows us to write the transport equation, integrated over energy to be

$$\sigma_{\rm t}(E)\phi(E) = \sigma_{\rm s}\left(\frac{(A+1)^2}{A^2+1}E\right)\phi\left(\frac{(A+1)^2}{A^2+1}E\right) + \chi(E).$$

We can solve this equation at all the points in our energy grid using the following iteration procedure

$$\phi^{l+1}(E) = \frac{1}{\sigma_{\rm t}(E)} \sigma_{\rm s} \left(\frac{(A+1)^2}{A^2+1} E \right) \phi^l \left(\frac{(A+1)^2}{A^2+1} E \right) + \frac{\chi(E)}{\sigma_{\rm t}(E)}.$$

This is equivalent to a Jacobi iteration. Do we know that the operator is diagonally dominant?

For the first iteration we will assume that $\phi^0(E)$ is zero, so that

$$\phi^1(E) = \frac{\chi(E)}{\sigma_t(E)}.$$

```
In [7]: #Now do 1 iteration
    fig = plt.figure(figsize=(8,6), dpi=1600)
    phi = interpolate.interpld(energies,chi(energies)/sig_t_interp(energies),fill_value=1e-10,bounds_error=Fal
    se)
    plt.loglog(energies,phi(energies))
    plt.xlabel("E (MeV)")
    plt.ylabel("$\phi(E)$ (MeV$^{-1}$)")
    show("FirstIteration.pdf")
```


The next step is to do the iterations until we converge.

Number of iterations 55

```
In [9]: fig = plt.figure(figsize=(8,6), dpi=1600)
    plt.loglog(energies,phi_iteration(energies)/np.sum(phi_iteration(energies)), label="Scattering Adjusted")
    plt.loglog(energies,phi(energies)/np.sum(phi_iteration(energies)), label="Uncollided")
    plt.xlabel("E (MeV)")
    plt.ylabel("$\phi(E)$ (MeV$^{-1}$)")
    plt.legend(loc=4)
    show("SpectrumComparison.pdf")
```



```
In [10]: fig = plt.figure(figsize=(8,6), dpi=1600)
    plt.loglog(energies,phi_iteration(energies)/np.sum(phi_iteration(energies)), label="Scattering Adjusted")
    plt.loglog(energies,phi(energies)/np.sum(phi_iteration(energies)), label="Uncollided")
    plt.xlabel("E (MeV)")
    plt.ylabel("$\phi(E)$ (MeV$^{-1}$)")
    plt.legend(loc=4)
    plt.xlim([1e-6,1e-2])
    plt.ylim([1e-8,1e-4])
    show("SpectrumComparison_zoom.pdf")
```


Uranium Oxide Instead of Uranium Metal

In this case the solution will be a little different because the oxygen in the fuel will do some moderating of the spectrum. For U0₂, the molar mass is 270.03 g/mol. We will assume 10%-atom enrichment of the fuel. This means that for every 1 nucleus of ²³⁸U, we have 0.1 nuclei of ²³⁵U, and 2 nuclei of ¹⁶O.

This makes our transport equation

$$\left[N^{238} \sigma_{\rm t}^{238}(E) + 0.1 N^{238} \sigma_{\rm t}^{235}(E) + 2 N^{238} \sigma_{\rm t}^{16}(E) \right] \psi(\mu, E) = \frac{1}{2} \int_0^\infty dE' \left[N^{238} \sigma_{\rm s}^{238}(E' \to E) + 0.1 N^{238} \sigma_{\rm s}^{235}(E' \to E) + 2 N^{238} \sigma_{\rm s}^{16}(E' \to E) \right] \phi(E') + \frac{\chi(E)}{2k} \int_0^\infty dE' \left[N^{238} \bar{\nu} \sigma_{\rm f}^{238}(E') + 0.1 N^{238} \bar{\nu} \sigma_{\rm f}^{235}(E) \right] \phi(E')$$

We can make the same normalization to the fission source as we did above, and we will assume that the scattering all goes to the average energy to get

$$\left[\sigma_{\rm t}^{238}(E) + 0.1\sigma_{\rm t}^{235}(E) + 2\sigma_{\rm t}^{16}(E) \right] \phi(E) = \sigma_{\rm s}^{238} \left(\frac{(239)^2}{238^2 + 1} E \right) \phi \left(\frac{(239)^2}{238^2 + 1} E \right) + 0.1\sigma_{\rm s}^{235} \left(\frac{(236)^2}{235^2 + 1} E \right) \phi \left(\frac{(236)^2}{235^2 + 1} E \right) + 0.1\sigma_{\rm s}^{16} \left(\frac{(17)^2}{16^2 + 1} E \right) \phi \left(\frac{(17)^2}{16^2 + 1} E \right) + \chi(E)$$

We have also assumed that $\chi(E)$ has not changed.

The next code snippet handles some reading in of data.

```
In [11]: #give previous functions useful names
                             sig_s_235_interp = sig_s_interp
                             sig_t_235_interp = sig_t_interp
                             #read in 238-U data
                             #open total cross-section
                             sigma_t_238 = np.genfromtxt('u238_total.csv', delimiter=",")
                             #open total cross-section
                             sigma_s_238 = np.genfromtxt('u238_elastic.csv', delimiter=",")
                             #read in 16-0 data
                             sigma_t_16 = np.genfromtxt('o16_total.csv', delimiter=",")
                             #open total cross-section
                             sigma_s_16 = np.genfromtxt('o16_elastic.csv', delimiter=",")
                             #create interpolation functions
                             sig_t_238_interp = interpolate.interp1d(sigma_t_238[:,0], sigma_t_238[:,1],bounds_error=False, fill_valu
                             e=sigma_t_238[-1,1])
                             sig_s_238_interp = interpolate.interp1d(sigma_s_238[:,0], sigma_s_238[:,1],bounds_error=False, fill_valu
                             e=sigma_s_238[-1,1])
                             sig\_t\_16\_interp = interpolate.interp1d(sigma\_t\_16[:,0], sigma\_t\_16[:,1], bounds\_error = False, fill\_value = sigma\_t\_16[:,0], sigma\_t\_16[:,0], sigma\_t\_16[
                             ma_t_16[-1,1])
                             sig_s_16_interp = interpolate.interp1d(sigma_s_16[:,0], sigma_s_16[:,1],bounds_error=False, fill_value=sig
                             ma_s_{16}[-1,1]
                             energies_new = np.union1d(energies, sigma_t_238[:,0])
                             energies = energies.copy()
```

We'll plot the cross-sections as a sanity check.

```
In [12]: fig = plt.figure(figsize=(8,6), dpi=1600)
    plt.loglog(energies, sig_t_238_interp(energies), label="$\sigma_\mathrm{t}\$")
    plt.loglog(energies, sig_s_238_interp(energies), label="$\sigma_\mathrm{s}\$")
    plt.legend(loc=3) #bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    plt.ylabel("$\sigma$ (barns)")
    plt.xlabel("E (MeV)")
    show("U-238_xsect.pdf")
```

/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/site-packages/scipy/interpolate/interpolate.py:520: RuntimeWarning: invalid value encountered in greater above_bounds = x_new > self.x[-1]


```
In [13]: fig = plt.figure(figsize=(8,6), dpi=1600)
    plt.loglog(energies, sig_t_16_interp(energies), label="$\sigma_\mathrm{t}\$")
    plt.loglog(energies, sig_s_16_interp(energies), label="$\sigma_\mathrm{s}\$")
    plt.legend(loc=3) #bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    plt.ylabel("$\sigma$ (barns)")
    plt.xlabel("E (MeV)")
    show("0-16_xsect.pdf")
```


We will do the same iteration strategy as before. Now the initial spectrum is given by

$$\left[\sigma_{\rm t}^{238}(E) + 0.1\sigma_{\rm t}^{235}(E) + 2\sigma_{\rm t}^{16}(E)\right]\phi(E) = \chi(E).$$


```
phi_iterationox = lambda E: phi_oxide(E)
converged = 0
tolerance = 1.0e-6
iteration = 0
max iterations = 100
change_factor_func = lambda A: (A+1)**2/(A**2+1)
#first solve without 238-U scattering
while not(converged):
   phi_prev = interpolate.interpld(energies,phi_iterationox(energies),fill_value=0,bounds_error=False)
   phi_iterationox= lambda E: (0*phi_prev(E*change_factor_func(238))*sig_s_238_interp(E*change_factor_fun
c(238))
                                + 0.1 * phi_prev(E*change_factor_func(235))*sig_s_235_interp(E*change_fact
or_func(235))
                                + 2 * phi_prev(E*change_factor_func(16))*sig_s_16_interp(E*change_factor_f
unc(16))
                                + chi(E))/(sig_t_238_interp(energies) +
                                           0.1 * sig_t_235_interp(energies) +
                                           2 * sig_t_16_interp(energies))
    converged = (np.linalg.norm(phi_prev(energies) - phi_iterationox(energies))/
                 np.linalg.norm(phi_iterationox(energies)) < tolerance) or (iteration >= max_iterations)
    iteration += 1
print("Number of iterations", iteration)
#using that as initial guess, now solve the entire thing
while not(converged):
   phi prev = interpolate.interp1d(energies,phi iterationox(energies),fill value=0,bounds error=False)
   phi_iterationox= lambda E: (phi_prev(E*change_factor_func(238))*sig_s_238_interp(E*change_factor_fun
c(238))
                                + 0.1 * phi_prev(E*change_factor_func(235))*sig_s_235_interp(E*change_fact
or func(235))
                                + 2 * phi_prev(E*change_factor_func(16))*sig_s_16_interp(E*change_factor_f
unc(16))
                                + chi(E))/(sig_t_238_interp(energies) +
                                           0.1 * sig_t_235_interp(energies) +
                                           2 * sig_t_16_interp(energies))
   converged = (np.linalg.norm(phi_prev(energies) - phi_iterationox(energies))/
                 np.linalg.norm(phi_iterationox(energies)) < tolerance) or (iteration >= max_iterations)
    iteration += 1
print("Number of iterations", iteration)
Number of iterations 16
Number of iterations 16
```

```
In [16]: fig = plt.figure(figsize=(8,6), dpi=1600)
    plt.loglog(energies,phi_oxide(energies)/np.sum(phi(energies)), label="Uncollided")
    plt.loglog(energies,phi_iterationox(energies)/np.sum(phi_iterationox(energies)), label="Scattering Adjuste d")
    plt.xlabel("E (MeV)")
    plt.ylabel("$\phi(E)$ (MeV$^{-1}$)")
    plt.legend(loc=4)
    show("SpectrumComparison_oxide.pdf")
```


In [15]: #converge the spectrum

n [17]:						
] -						