Chapitre II: **Espérance Conditionnelle**

Probabilités II

5^{ème} année DS A.U:2022-2023

- Notion de Tribus Filtrations
- Espérance conditionnelle
- 3 Propriétés de l'espérance conditionnelle
- 4 Conditionnement d'une v.a. par une autre v.a.

Tribus construites à partir de variables aléatoires

Soit Ω un ensemble muni d'une tribu \mathcal{A} . On rappelle qu'une tribu est un sous-ensemble de l'ensemble $\mathcal{P}(\Omega)$ des parties de Ω

- \bullet contenant \emptyset et Ω .
- 2 stable par passage au complémentaire.
- 3 stable par union ou intersection dénombrable.

Remarque:

Une sous-tribu B de A est une tribu sur Ω tel que $B \subset A$.

Rappel: Variable aléatoire

Définition

Une variable aléatoire réelle est **une application mesurable** X de (Ω, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, où $\mathcal{B}(\mathbb{R})$ est la tribu borélienne de \mathbb{R} (c'est la plus petite tribu qui contient tous les intervalles de \mathbb{R}). c-à-d $\forall B \in \mathcal{B}(\mathbb{R})$, on a :

$$\{\omega \in \Omega, X(\omega) \in B\} = \{X \in B\} \in \mathcal{A}.$$

Tribus construites à partir de variables aléatoires

Définition

Soit X une variable aléatoire sur (Ω, A) à valeurs dans \mathbb{R} . On note par $\sigma(X)$ la plus petite sous tribu \mathcal{B} de A, rendant l'application X \mathcal{B} -mesurable.

Cette tribu représente l'information donnée par la connaissance de X.

Exemple : Soit $X=1_A$, avec $A \in \mathcal{A}$. la tribu engendrée par X est :

$$\sigma(X) = \{\emptyset, \Omega, A, A^c\}$$

Tribus construites à partir de variables aléatoires

- Soient $X_1,...,X_n$, n variables aléatoires sur (Ω,\mathcal{A}) à valeurs dans \mathbb{R} , on note :

$$\sigma(X_1,...,X_n)$$

la plus petite sous tribu \mathcal{B} de \mathcal{A} rendant les applications $X_1,...,X_n$ \mathcal{B} -mesurables. De même cette tribu représente l'information donnée par la connaissance des variables aléatoires $X_1,...,X_n$.

Filtration

Définition

Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace de probabilité, **une filtration** $(\mathcal{F}_n)_{n\geq 0}$ sur $(\Omega, \mathcal{A}, \mathbb{P})$ est une suite croissante de sous-tribus de \mathcal{A}

Proposition

Soit $(X_n, n \ge 1)$ une suite de variables aléatoires réelles \mathcal{A} -mesurables. On note, pour tout $n \ge 1$:

$$\mathcal{F}_n = \sigma(X_k, 1 \leq k \leq n).$$

Alors $(\mathcal{F}_n, n \ge 1)$ est une suite croissante de tribus qui porte le nom de **filtration naturelle**.

Pour un $n \ge 1$ fixé, \mathcal{F}_n représente l'information disponible à l'instant n.

Filtration

Proposition

Soient X et Y deux variables aléatoires réelles, alors Y est dite $\sigma(X)$ -mesurable si et seulement si il existe une fonction f de $\mathbb R$ dans $\mathbb R$, telle que :

$$\mathbb{P}(Y = f(X)) = 1$$

- Ce résultat explique l'interprétation d'une tribu comme information.
- Si Y est $\sigma(X)$ -mesurable, et si on connaît la valeur de X, on peut en déduire la valeur de Y.

- Notion de Tribus Filtrations
- 2 Espérance conditionnelle
- 3 Propriétés de l'espérance conditionnelle
- 4 Conditionnement d'une v.a. par une autre v.a.

Soit X une variable aléatoire réelle définie sur (Ω, \mathcal{A}) et soit $B \subset \mathcal{A}$ une sous tribu de \mathcal{A} .

L'espérance conditionnelle vise à définir la notion de meilleure approximation de X par une variable aléatoire B-mesurable.

Hypothèses:

On pose:

- $\mathcal{H}_{\mathcal{A}} = \{X \text{ variable aléatoire A-mesurable telle que } E(X^2) < +\infty\}$. C'est un espace de Hilbert : c'est un espace vectoriel complet muni d'une norme dérivant du produit scalaire < X, Y >= E(XY) et $||X||^2 = < X, X >$.
- $\mathcal{H}_{\mathcal{B}} = \{X \text{ variable aléatoire B-mesurable telle que } E(X^2) < +\infty\}.$ C'est un sous espace vectoriel fermé inclus dans $\mathcal{H}_{\mathcal{A}}$.

Le théorème de projection sur un sous espace fermé dans un espace de Hilbert, nous permet d'avoir le résultat suivant.

Proposition

Si X est une variable aléatoire telle que $\mathbb{E}(X^2) < +\infty$, il existe une unique variable aléatoire Z, B-mesurable, telle que $\mathbb{E}(Z^2) < +\infty$ et vérifiant :

$$\mathbb{E}[(X-Z)^2] = \inf_{Y \in \mathcal{H}_R} \mathbb{E}[(X-Y)^2].$$

- Z est la variable aléatoire la "plus proche" de X au sens de la norme de l'espace de Hilbert $\mathcal{H}_{\mathcal{B}}$.
- Z est l'espérance conditionnelle de X sachant $\mathcal B$ que l'on note :

$$\mathbb{E}[X|\mathcal{B}]$$

Projection orthogonale sur \mathcal{H}_{B}

Proposition

Il existe une unique variable aléatoire $\mathcal B$ -mesurable telle que $\mathbb E(Z^2)<+\infty$, vérifiant pout toute variable aléatoire Y, $\mathcal B$ -mesurable et telle que $\mathbb E(Y^2)<+\infty$:

$$\mathbb{E}(XY) = \mathbb{E}(ZY).$$

-Cette variable aléatoire Z est la meilleure approximation, au sens de la norme $\sqrt{\mathbb{E}(X^2)}$, de X parmi les variables aléatoires \mathcal{B} -mesurables de carré intégrable.

La définition précédente ne permet pas de traiter le cas de variables aléatoires seulement intégrables. On admet le résultat suivant :

Théorème

Soit X une variable aléatoire réelle telle que $\mathbb{E}(|X|) < +\infty$, alors il existe une unique variable aléatoire \mathcal{B} -mesurable Z telle que $\mathbb{E}(|Z|) < +\infty$ vérifiant $\forall Y$ \mathcal{B} -mesurable et **bornée** :

$$\mathbb{E}(XY) = \mathbb{E}(ZY)$$

On note la variable aléatoire Z sous la forme :

$$E(X|\mathcal{B})$$

C'est l'espérance conditionnelle de X sachant \mathcal{B} .

Remarque:

Rappelons que toute variable aléatoire $\sigma(X)$ -mesurable est de la forme f(X). Donc on aura

$$\mathbb{E}(Y|X) = \mathbb{E}(Y|\sigma(X)) = f(X), \ \mathbb{P} - p.s$$

 $\mathbb{E}(Y|X)$ est donc la meilleure approximation de Y par une fonction de X.

- Notion de Tribus Filtrations
- 2 Espérance conditionnelle
- 3 Propriétés de l'espérance conditionnelle
- 4 Conditionnement d'une v.a. par une autre v.a.

Linéarité

$$E(\lambda X + \mu Y | \mathcal{B}) = \lambda \mathbb{E}(X | \mathcal{B}) + \mu \mathbb{E}(Y | \mathcal{B}), \ \forall (\lambda, \mu) \in \mathbb{R}^2$$

Positivité

Si
$$X \geq 0$$
, alors $\mathbb{E}(X|\mathcal{B}) \geq 0$.

Si
$$X \geq Y$$
, alors $\mathbb{E}(X|\mathcal{B}) \geq E(Y|\mathcal{B})$.

Mesurabilité de X

Si X est intégrable et \mathcal{B} -mesurable alors :

$$\mathbb{E}(X|\mathcal{B}) = X.$$

"Sortir ce qui est connu"

Soit Z est une v.a. \mathcal{B} -mesurable et bornée alors :

$$\mathbb{E}(ZX|\mathcal{B}) = Z\mathbb{E}(X|\mathcal{B})$$

L'espérance de l'espérance conditionnelle

$$\mathbb{E}(\mathbb{E}(X|\mathcal{B})) = \mathbb{E}(X)$$

Emboitement

Soit $\mathcal C$ une sous-tribu de $\mathcal B$ alors :

$$\mathbb{E}(\mathbb{E}(X|\mathcal{B})|\mathcal{C}) = \mathbb{E}(X|\mathcal{C})$$

Indépendance

Si X est indépendante de la tribu $\mathcal B$ alors :

$$\mathbb{E}(X|\mathcal{B}) = \mathbb{E}(X)$$

Contraction pour la norme L²

$$\mathbb{E}\Big(|\mathbb{E}(X|\mathcal{B})|^2\Big) \leq \mathbb{E}(|X|^2)$$

Remarque:

On pourra déduire la contraction pour la norme L^1 .

En effet d'après la positivité de l'espérance conditionnelle on a :

$$\mid \mathbb{E}(X|\mathcal{B}) \mid \leq \mathbb{E}(|X||\mathcal{B})$$

Ce qui donne que :

$$\mathbb{E}\Big(\mid \mathbb{E}(X|\mathcal{B})\mid\Big) \leq \mathbb{E}(|X|)$$

Lemme

Soient $\mathcal B$ une sous-tribu de $\mathcal A$, X et Y deux v.a.réelles telsque X est indépendante de $\mathcal B$ et Y est $\mathcal B$ -mesurable. On considère $f:\mathbb R^2\to\mathbb R$ une fonction mesurable bornée alors :

$$\mathbb{E}(f(X,Y)|\mathcal{B}) = \psi(Y)$$

avec

$$\psi(y) = \mathbb{E}(f(X, y)), \ \forall y \in \mathbb{R}$$

- Notion de Tribus Filtrations
- 2 Espérance conditionnelle
- 3 Propriétés de l'espérance conditionnelle
- 4 Conditionnement d'une v.a. par une autre v.a.

Conditionnement: Cas discret

Définition

Soit (X, Y) un couple de variable aléatoires discrètes. On appelle distribution conditionnelle de X sachant Y = y la fonction

$$F_{X|Y}(x) = \mathbb{P}(X \le x | Y = y),$$

définie pour les y tels que $\mathbb{P}(Y = y) > 0$. La distribution conditionnelle de X sachant Y est la variable

$$F_{X|Y}(x) = \mathbb{P}(X \le x|Y).$$

On peut aussi introduire les fonctions de masse conditionnelles

$$f_{X|Y=y}(x) = \mathbb{P}(X \le x|Y=y)$$

$$f_{X|Y}(x) = \mathbb{P}(X \le x|Y).$$

Exercice

Une poule pond un nombre aléatoire N d'oeufs qui suit une loi de Poisson de paramètre λ . Les oeufs éclosent avec une probabilité p indépendamment les uns des autres. Quelle est la loi du nombre X de poussins?

Solution

Conditionnellement à N le nombre X suit une loi de binomial de paramètre N et p.c-a-d

$$\mathbb{P}(X = k | N = n) = C_k^n p^k (1 - p)^{n-k}, \quad k = 0, \dots, n$$

Par conséquent

$$\mathbb{P}(X=k,N=n)=\mathbb{P}(X=k|N=n)\mathbb{P}(N=n)=C_k^np^k(1-p)^{n-k}e^{-\lambda}\frac{\lambda^n}{n!}.$$

Puis

$$\mathbb{P}(X=k) = \sum_{n=k}^{+\infty} \frac{\lambda^n p^k (1-p)^{n-k} e^{-\lambda}}{k! (n-k)!}$$

En faisant le changement d'indice m = n - k on trouve

$$\mathbb{P}(X=k)=e^{-\lambda p}\frac{(\lambda p)^k}{k!}$$

Donc X suit une loi de Poisson de paramètre λp .

Conditionnement: Cas discret

Définition

Soit X une v.a.d à valeurs dans $\{x_1, x_2, \dots, x_n\}$. On suppose que X est intégrable. On appelle espérance conditionnelle de X sachant Y = y la quantité

$$\mathbb{E}(X|Y=y) = \sum_{i} x_{i} \mathbb{P}(X=x_{i}|Y=y)$$

définie pour les y tels que $\mathbb{P}(Y = y) > 0$. On appelle espérance conditionnelle de X sachant Y la v.a.

$$\mathbb{E}(X|Y) = \sum_{i} x_{i} \mathbb{P}(X = x_{i}|Y)$$

Conditionnement : Cas continu

Définition

Soit X, Y un couple de v.a. ayant une densité $f_{(X,Y)}$. On appelle densité conditionnelle de X sachant Y = y la fonction

$$f_{X|Y=y}(x) = \frac{f_{(X,Y)}(x,y)}{f_{Y}(y)}$$

définie pour tout y telle que $f_Y(y) > 0$.

Définition

On suppose que X est intégrable. On appelle espérance conditionnelle de X sachant Y=y la quantité

$$\mathbb{E}(X|Y=y) = \int_{\mathbb{R}} x f_{X|Y=y}(x) dx$$

Exemple

Soit (X, Y) ayant pour densité la fonction la fonction

$$f_{(X,Y)}(x,y) = \frac{1}{x} 1_{0 < y < x < 1}(x,y).$$

La densité X est

$$f_X(x) = \int_{\mathbb{R}} f_{(X,Y)}(x,y) dy = \frac{1}{x} \left(\int_0^x dy \right) 1_{0 < x < 1}(x) = 1_{0 < x < 1}(x)$$

Autrement dit X suit une loi uniforme sur [0,1]. La densité conditionnelle de Y sachant X est donnée par

$$f_{Y|X=x}(y) = \frac{f_{(X,Y)}(x,y)}{f_X(x)} = \frac{1_{0 < y < x}(y)}{x}$$

Pour tout $y \in \mathbb{R}$ et tout $x \in]0,1[$. Autrement dit, conditionnellement à X, la variable Y est uniforme sur [0,X]. En particulier

$$\mathbb{E}(Y|X) = \int_{\mathbb{R}} y f_{Y|X=x}(y) dy = \int_{\mathbb{R}} \frac{y}{x} 1_{0 < y < x} dy$$
$$= \frac{1}{x} \int_{0}^{x} y dy = \frac{X}{2}.$$

Exercice

Soit $(B_t)_{t\geq 0}$ un mouvement brownien et $0 < s \leq t$.

- Calculer $E[B_t|B_s]$ et $E[B_s|B_t]$.
- ② Déterminer $E[B_t^2|B_s]$ et $E[e^{\lambda B_t}|B_s]$, $\lambda \in \mathbb{R}$