

Роботика и компютърно моделиране с MicroBit

DFRobot - Micro IO box

Общи сведения за MicroBit

Місго Віt е хардуерна АРМ-базирана вградена система с отворен код, проектирана от ВВС за използване в компютърното обучение в Обединеното кралство.

Карта на пиновете

🦖 Устройството е описано като половината от размера на кредитна карта и има процесор ARM Cortex-M4F, сензори за акселерометър и магнитометър, Bluetooth и USB свързаност, дисплей, състоящ се от 25 светодиода, два програмируеми бутона и може да се захранва от USB или външна батерия. Входовете и изходите на устройството са през пет пръстеновидни конектора, които формират част от по-голям 25-пинов краен конектор.

<u>Програмиране</u>

С MicroBit можем да програмираме на следните езици:

- Arduino C/C++;
- Python;
- MicroPython;
- Визуално програмиране с блокови конструкции;

Проект Arduino

- Ардуино е проект с отворен код и едноименна компания, произлязла от него, както и свързаното с него потребителско общество;
- Основната цел е проектиране и производство на електронна платформа с лесен за ползване свободен хардуер и софтуер, позволяващи постигането на интерактивност за неспециалисти;

При програмирането на MicroBit имаме две основни функции:

- SETUP функцията се стартира еднократно, при пускане на микроконтролера и служи за настройване на микроконтролера и сензорите;
- LOOP функцията автоматично се стартира през определен интервал от време и изпълнява командите, които са записани в нея;

Блоково програмиране

- Програмирането за деца се базира изцяло на т.н. "блоково" програмиране децата се учат да програмират, подреждайки цветни блокове от код;
- Визуалното програмиране често е наричано визуален програмен език;
- Във всеки един блок е записано определено количество програмен код;

- Средата за програмиране Mind+ има интегриран редактор за писане на код, който има собствен буутлодър за зареждане на кода в микроконтролерите;
- Mind+ поддържа работа с над 10 вида микроконтролери и над 30 вида роботи и разширителни платки;

Зареждане на код

Micro: IO-BOX

- Місго: IO-BOX е многофункционална разширителна платка с вградено захранване от литиево-йонна батерия, приятен външен вид и лесна за използване.
- Интегрирани са многобройни функции като драйвер за два DC мотора, 9-пинов IO порт, I2C порт, сериен порт, зумер, 4 бр. индивидуално адресируеми RGB LED, гнездо за Li-Ion батерия, верига за зареждане, интерфейс за аварийно захранване и др.

Разширителна платка

RGB Light

Сериен терминал

Серийният терминал или UART означава универсален асинхронен приемник/предавател. Това е хардуерно устройство (или верига), използвано за серийна комуникация между две устройства;

В случая тези устройства са MicroBit и компютъра;

За да прочетем цифров сигнал трябва да използваме съответните блокове;

Бут

Бутон А

button_1

```
forever

set button v to A v button pressed?

serial output button in string v , Wrap v

wait 0.05 seconds
```

Вариант 1

```
forever

set button • to read digital pin P5 •

serial output button in string • , Wrap •

wait 0.05 seconds
```

Вариант 2

Аналогов сигнал

- Аналоговият сигнал е сигнал, който може да има безкраен брой близки стойности, принадлежащи към едно непрекъснато множество от стойности;
- За разлика от дискретните сигнали, аналоговите сигнали се описват с непрекъснати функции на времето;
- Затова аналоговият сигнал често се нарича и непрекъснат сигнал;

Променлива

- В програмирането променлива е място за съхранение на някаква стойност в оперативната памет на компютъра;
- Всяка променлива има собствено име, което започва със символ от латиницата и не може да съдържа в себе си празни интервали или специални символи;

Потенциометърът е резистор с 3 извода, с който е възможно при промяната на съпротивлението чрез плъзгащ контакт в електрическата верига, да се променя изходното електрическото напрежение в предварително конструктивно зададени граници;


```
forever

set potent • to read analog pin P1 •

serial output potent in string •, Wrap •

wait 0.05 seconds
```

```
8  volatile float mind_n_potent;
9
10
11  // Main program start
12 void setup() {
13   Serial.begin(9600);
14  }
15 void loop() {
16   mind_n_potent = (analogRead(1));
17   Serial.println(mind_n_potent);
18   delay(50);
19  }
```


Зумер

Місговіт има интегриран магнитен високоговорител на печатна платка, който се използва за извеждането на звук чрез РWМ пин;

Buzzer Switch

- IO Port

External Battery Interface

- Charging Indicator

USB Charging Port

- Зумерът е звуково устройство, което може да преобразува аудио сигнали в звукови сигнали. Обикновено се захранва от постоянно напрежение;
- Той се използва широко в аларми, компютри, принтери и други електронни продукти като звукови устройства;
- Той се разделя главно на пиезоелектрически зумер и електромагнитен зумер, представени от буквата "Н" или "НА" във веригата;

Пиезоелектричният зумер използва пиезоелектричния ефект на пиезоелектричната керамика и използва импулсния ток, за да управлява вибрациите на металната плоча, за да генерира звук.

sound_3

Пин на зумера на разширителния шийлд

Пин на зумера на MicroBit

LEDs DOT SCREEN

heart_button_4

Математически оператори

ріск random 1 to 10 тисло в определен диапазон

random_led_matrix_5


```
micro:bit starts

forever

set ledX * to pick random 0 to 4

set ledY * to pick random 0 to 4

show * coordinates of point (x: ledX , y: ledY )

wait 0.5 seconds

6 #include <Microbit_Matrix.h>

7

8 // Dynamic variables
9 volatile float mind n ledX
```

Вариант 1

```
// Dynamic variables
    volatile float mind_n_ledX, mind_n_ledY;
10
11
    // Main program start
13 * void setup() {
      dfrobotRandomSeed();
14
15
16 * void loop() {
17
      mind_n_ledX = (random(0, 4+1));
18
      mind_n_ledY = (random(0, 4+1));
19
      MMatrix.drawPixel(mind n ledX, mind n ledY, LED ON);
20
      delay(500);
21
      MMatrix.clear();
      delay(500);
22
23 }
```


random_led_matrix_5a


```
micro:bit starts
           set brightness 9 -
•• when button A • pressed
set ledX ▼ to pick random 0 to 4
set ledY ▼ to pick random 0 to 4
   show ▼ coordinates of point (x: ledX), y: ledY)
wait 0.5 seconds
clear all dot matrixes
wait 0.5 seconds
```

Вариант 2

Условна структура

Условните изявления са известни още като изявления за вземане на решения. Използваме тези изрази, когато искаме да изпълним блок от код, когато даденото условие е вярно или невярно;

Оператори за сравнение

if_random_matrix_6

```
micro:bit starts
forever
 set rand_num → to pick random 1 to 30
       rand_num <= (15)
      display pattern •••••
      display pattern
     serial output rand_num in string ▼ , Wrap ▼
 wait 1 seconds
```

Вариант 1

if_random_matrix_6a

```
micro:bit starts
forever
 set rand_num → to pick random 1 to 100
       rand_num <= 30
      display pattern •••••
          rand_num > 30
                                   rand_num ) <= (60)
                            and
      display pattern
         rand_num > 60
                          then 🕣
      display pattern •••••
     serial output (rand_num) in [string ▼], Wrap ▼
 wait 1 seconds
                    Вградена условна структура
```


Сензор за светлина LDR

- Фоторезисторът (LDR) е пасивен компонент, който намалява съпротивлението си при увеличаването на осветеността (светлина) върху чувствителната повърхност на компонента;
- На тъмно фоторезисторът може да има съпротивление до няколко мегаома (МΩ), докато на светлина фоторезисторът може да има съпротивление до няколкостотин ома;

ve Fingerprint Sen e Fingerprint Sensor

Digital Infrared Motion Se Detect infrared released forom moving human or animal

Alcohol Sensor Factory calibration, no calibration required,0-5ppm

Measures TVOC (Total

Display

Analog Soil Moisture Sens Read the amount of moisture present in the soil surrounding it.

Function

zone Sensor Measurement of ozone concentration in the environment

MAX30102 Heart rate block Measure human resting heart

User-Ext

Internet

Steam Sensor Detect rainwater, steam and water mist

Visible Spectrum Sensor Measure the visible spectrum and identify the spectral color

Color Identifi

Identify objec

output R(

I2C Weigh The weight of t be measured, 1K

Analog Ambient Light S Detect the ambient light

Светофар

trafic_lights_leds_8

УПРАЖНЕНИЕ

<u>Задача 1</u>

- Да се направи програма за хвърляне на зар и извеждане на падналото се число на LED дисплея и на терминалния изход;
- Да се използва функция за генериране на случайно число;
- Всяко ново хвърляне на зар да става при натискане на бутон В;


```
when button A ▼ pressed
set rand_num → to pick random 1 to 6
     rand_num = 1 then
    display pattern
      rand_num = 2
                      then 🖯
    display pattern ...
      rand_num = 3
                       then 🖯
     display pattern
      (rand num) = (4)
                       then 🕣
     display pattern
      rand num = 5
                       then 🖯
    display pattern
else 🕣
 odisplay pattern
serial output rand num in string ▼ , Wrap ▼
wait (1) seconds
```


🦖 Да се направи програма, която прочита стойността на аналоговия вход от потенциометъра и ако стойността е по-малка от 500 се извежда изображение квадрат на LED дисплея, ако е по-голяма от 500 и помалка от 600 да се извежда плътен ромб, а ако е по-голяма или равна на 600 се извежда

Прочетената стойност от аналоговия вход да се изведе на серийния монитор;


```
micro:bit starts
 set pot_value ▼ to read analog pin P2 ▼
      pot_value < 500
  display pattern
       pot_value > 500
                           and
                                 pot value < 600
     display pattern
 else if (pot_value) >= 600
                          then 🕣
  🐽 display pattern 🔛
     serial output (pot_value) in string • , Wrap •
 wait 0.06 seconds
```


<u>Задача 3</u>

Да се направи програма, която използва потенциометър и светофарна уредба;

При опредленеи показания на потенциометъра, показани в таблицата, да се управляват светодиодите;

ADC < 300	RED
300 <= ADC < 400	RED + YELLOW
400<= ADC < 800	YELLOW
800 <= ADC < 900	YELLOW + GREEN
900 <= ADC < 1024	GREEN

Задача 4

Да се направи програма за управление на светофарна уредба ;

- when button A pressed
 digital pin P1 output LOW •
 digital pin P2 output LOW •
 digital pin P8 output LOW •
- when button B pressed
 digital pin P1 output HIGH •
 digital pin P2 output HIGH •
 digital pin P8 output HIGH •