MAT602 - FUNCTIONAL ANALYSIS

YANNIS BÄHNI

Contents

1	Line	ar Operators	1
		Continuous Operators	
	1.2	The Hahn-Banach Theorem	

1. Linear Operators

1.1. Continuous Operators.

Definition 1.1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces. An **operator** is a linear mapping $T: X \to Y$. Moreover, we say that an operator $T: X \to Y$ is **bounded** if there exists c > 0 such that

$$||T(x)||_{Y} \le c||x||_{Y} \tag{1}$$

holds for all $x \in X$.

1.2. The Hahn-Banach Theorem.

Lemma 1.1. Let X be a vector space over \mathbb{R} , $M \subsetneq X$ a linear subspace, $p: X \to \mathbb{R}$ a sublinear functional, $f: M \to \mathbb{R}$ linear and $x_0 \in X \setminus M$. Moreover, assume that $f \leq p$ on M. Then there exists $F: M + \mathbb{R}x_0 \to \mathbb{R}$ linear such that $F \leq p$ on $M + \mathbb{R}x_0$ and $F|_M = f$.

Theorem 1.1 (Hahn-Banach, real case). Let X be a vector space over \mathbb{R} , $M \subseteq X$ a linear subspace and $f: M \to \mathbb{R}$ linear. Moreover, let $p: X \to \mathbb{R}$ be a sublinear functional such that $f \leq p$ on M. Then there exists $F: X \to \mathbb{R}$ linear such that $F \leq p$ on X and $F|_{M} = f$.

Theorem 1.2 (Hahn-Banach, complex case).

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.