Settings to generate a generic synthetic dataset

Antonio Martinez-Sanchez^{1,*}

May 18, 2023

¹Department of Information and Communications Engineering, Faculty of Computers Sciences, University of Murcia, Campus de Espinardo 30100 Murcia, Spain

ACRONYM	MEANING	
cryo-ET	cryo-Electron Tomography	
3D	Three dimensions	
DL	Deep Learning	
CNN	Convolutional Neuronal Networks	
TM	Template Matching	
2D	Two dimensions	
TEM	Transmission Electron Microscopy	
VOI	Volume Of Interest	
SAWLC	Self-Avoiding Worm-Like Chain	
PDB	Protein Data Bank	
CSR	Complete Spatial Randomness	
SNR	Signal-to-Noise Ratio	
MRC	Medical Research Council	
VTK	Visualization ToolKit	
CSV	Comma Separated Values	
MT	MicroTubule	

Table 1: Glossary of acronyms by order of appearance in the main publication.

SCOPE	SYMBOL	LABEL	
Membrane	\mathcal{D}	Cellular context scalar field (or density map)	
	\mathcal{V}	VOI	
	t	Membrane thickness or distance between both layers	
	σ_l	Membrane layer thickness	
	\hat{L}	Non-smooth membrane layer set	
	L	Smoothed membrane scalar field	
	c	Membrane structural model center	
	r	Spherical membrane radius	
	a	Ellipsoid membrane semi-axis lengths	
	ϵ	Maximum ellipsoid eccentricity	
	d	Toroid membrane major radius	
	e	Toroid membrane minor radius	
	$\mathcal G$	Gaussian filter for 3D scalar fields	
	λ	Hessian matrix major eigenvalue	
	\mathcal{L}	Membrane surface	
Filament	M	Structural unit 3D scalar field	
	au	Curve (filament center-line) tangent vector	
	d_M	Distance between two structural units in a polymer	
	s	Curve length	
	p	Polymer persistence length	
	κ	Curve curvature	
	f	Helical curve circular component	
	h_z	Helical curve elevation in Z-axis as a fraction of circular component	
	g	Helical curve elevation in Z-axis	
	α	Turning angle around filament tangent for two consecutive monomers	
	h_l^I	Length to complete an inner turn of structural units on a center-line curve	
	P_b	Branching probability for filament networks	
Macromolecule	d	The variable distance between two consecutive macromolecules in a cluster	
	\mathcal{S}	A sphere in \mathbb{R}^3 defined by a center and a radius	
	J	Number of different macromolecules in a cluster	
Transformation R Rotation			
	T	Translation	
Algorithm	Q	A list (or queue)	
	G	Models (structural or transformation) generator	
	O	Occupancy	
	N	Maximum number of tries	

Table 2: Glossary mathematical symbols defined in the main publication.

FILE	VARIABLE	DESCRIPTION	DATA TYPE
Membrane .mbs	MB_TYPE MB_OCC MB_THICK_RG MB_LAYER_S_RG MB_MAX_ECC MB_OVER_TOL MB_MIN_RAD MB_DEN_CF_RG	membrane geometry O t σ_l max ϵ overlapping tolerance min r density factor	'sphere', 'ellipse' or 'torus' range [low, min] in percentages range in Å range in Å positive real value percentage positive real value in Å range of reals between 0 and 1
Filament .hns	HLIX_TYPE HLIX_MMER_RAD HLIX_PMER_L HLIX_PMER_OCC HLIX_MIN_P_LEN HLIX_HP_LEN HLIX_MZ_LEN HLIX_MZ_LEN_F HLIX_OVER_TOL HLIX_MIN_NMMER A_BPROP A_MAX_P_BRANCH MT_RAD MT_NUNITS	filament type monomer radius r_m d_M/r_m O min p h_l^I monomer length in z-axis min h_z overlapping tolerance min structural units P_b max P_b MT radius Z-ring MT ring number of monomers	'actin' or 'mt' positive real value in Å positive real value range in percentages positive real value positive real value in Å positive real value in Å range of reals between 0 and 1 percentage positive integer range reals between 0 and 1 range reals between 0 and 1 positive real value in Å positive integer
Mmolecules .pns or .pms	MMER_ID MMER_SVOL MMER_ISO PMER_L PMER_OCC PMER_LMEX PMER_OVER_TOL PMER_REVERSE_NORMALS	identificador path to density (.mrc) isosurface threshold $d_i \in r_m \cdot [PMER_L, 2xPMER_L]$ O cluster max length overlapping tolerance reverse membrane normal	string string positive real value positive value percentage positive real value in Å percentage boolean

Table 3: Variables used by the input files to model the generators.

TYPE	STRUCTURE	LABEL
Membrane	Spherical	1
	Ellipsoid	2
	Toroid	3
Filament	Microtubules	4
	Actin Network	5
Cytosolic Protein	4v4r	6
	3j9i	7
	4v4r_50S	8
	4v4r_30S	9
	биtj	10
	5mrc	11
	4v94	12
	4cr2	13
	3qm1	14
	3h54	15
	3gl1	16
	3d2f	17
	3cf3	18
	2cg9	19
	1u6q	20
	1s3x	21
	1qvr	22
	1b×n	23
Membrane protein	5wek	24
	4pe5	25
	5ide	26
	5gjv	27
	5kxi	28
	5tj6	29
	5tqq	30
	5vai	31

Table 4: Table with the structures used to simulate the cellular context. Proteins are identified by their Protein Data Bank (PDB) code. 4v4r_50S and 4v4r_30S stand for the isolated subunits 50S and 30S respectively of 4v4r complex. The label is the integer assigned to the ground truth output data.