

Universidade do Minho

Licenciatura em Engenharia Informática

NUMER	70			
NOME				_

aprendizagem _

Aprendizagem e Decisão Inteligentes 3° ano, 2° semestre Ano letivo 2023/2024

Prova escrita 14 de maio de 2024

GRUPO 1

(6 valores) QUESTÃO 1 RESPONDA ÀS QUESTÕES DESTE GRUPO EM FOLHA DE TESTE SEPARADA.

A resolução de problemas por aplicação de técnicas de *Machine Learning* envolve a identificação do tipo de problema em questão.

Para problemas de regressão, dê 3 exemplos de métricas de qualidade, explicando o seu significado.

OUESTÃO 2

O trabalho em grupo envolveu a realização de duas tarefas. Uma delas desenvolvia-se a partir de um *dataset* atribuído. A outra tarefa envolvia a seleção de um problema cujos dados eram escolhidos pelo grupo de trabalho.

No que respeita à tarefa cujo dataset foi escolhido pelo grupo de trabalho:

- a) Indique o tipo de problema que o *dataset* reportava originalmente (classificação, regressão ou outro) descrevendo o(s) atributo(s) *target*.
- b) Identifique duas das técnicas de *Machine Learning* que foram aplicadas, relacionando com os resultados pretendidos para a abordagem ao problema.

QUESTÃO 3

Considere o gráfico à direita que representa a distribuição dos dados de um atributo contínuo com assimetria positiva, em que no eixo xx' estarão representados os valores do atributo e no eixo yy' a sua frequência.

Havendo a intenção de discretizar este atributo, explique as consequências de serem utilizadas estratégias de discretização de igual altura (*equal frequency binning*) e de igual largura (*equal width binning*).

GRUPO 2	2
---------	---

(4 valores)

RESPONDA ÀS QUESTÕES DESTE GRUPO NO ESPAÇO RESERVADO <u>PREENCHENDO OS ESPAÇOS VAZIOS</u> COM EXPRESSÕES ADEQUADAS DE MODO QUE A DECLARAÇÃO SEJA CORRETA.

QUESTÃO 1	Numa Rede Neuronal Artificial, um neurónio é a	de composição		
	da rede, o axónio é	e a sinapse é		
	e e	·		
QUESTÃO 2	Em <i>Machine Learning</i> a regressão linear é uma técnica para previsão de	e		
	a regressão logística é uma técnica para previsão de	·		
QUESTÃO 3	Uma Árvore de Decisão é um grafo hierarquizado em que um	testa um atributo do		
	dataset, cada identifica uma alternativa do teste e cada			
	representa uma decisão.			
QUESTÃO 4	Num paradigma da aprendizagem com supervisão é possível construir uma relação en	ntre os valores		
	e os valores uma vez que	utilizados para a		

informações sobre os resultados pretendidos.

	NÚMERO
GRUPO 3 (6 valores)	PARA CADA AFIRMAÇÃO APRESENTADA, RESPONDA ASSINALANDO A SUA VERACIDADE (V) OU FALSIDADE (F). JUSTIFIQUE A RESPOSTA <u>EXCLUSIVAMENTE</u> NO ESPAÇO DISPONIBILIZADO. <u>NÃO SÃO CONSIDERADAS</u> RESPOSTAS PARA AS QUAIS NÃO EXISTA JUSTIFICAÇÃO.
QUESTÃO 1	Machine Learning é um paradigma de computação em que a característica essencial do sistema se revela pela sua capacidade de aprender com a experiência de modo autónomo e independente.
QUESTÃO 2	Uma metodologia para análise de dados define que técnicas de <i>Machine Learning</i> deverão ser utilizadas no desenvolvimento de um projeto de aprendizagem automática para a resolução de problemas.
QUESTÃO 3	Na fase de preparação de dados, a discretização de igual altura transforma um atributo numérico em categórico, e a discretização de igual largura transforma um atributo categórico em numérico.
QUESTÃO 4	Técnicas de <i>Machine Learning</i> baseadas em Árvores de Decisão são utilizadas para a resolução de problemas de regressão.
QUESTÃO 5	O treino de uma Rede Neuronal Artificial corresponde à aplicação de regras de aprendizagem que visam fazer variar os pesos das ligações entre neurónios.
QUESTÃO 6	Numa Rede Neuronal Artificial <i>feedforward</i> podem existir ligações entre os neurónios de uma mesma camada intermédia.

NÚMERO

GRUPO 4

(4 valores)

AS QUESTÕES DESTE GRUPO LISTAM AFIRMAÇÕES VERDADEIRAS (V) OU FALSAS (F).

<u>PARA CADA QUESTÃO</u> DESTE GRUPO, UMA AFIRMAÇÃO INCORRETAMENTE ASSINALADA <u>ANULA</u> OUTRA ASSINALADA CORRETAMENTE. UMA AFIRMAÇÃO <u>NÃO ASSINALADA NÃO É CONSIDERADA</u>.

QUESTÃO 1

A Figura 1 apresenta um excerto de um *dataset* utilizado no decorrer das aulas com dados sobre os passageiros do desastre do Titanic.

Figura 1

Dataset "titanic.xlsx"

	Α	В	С	D	Е	F	G	Н	1	J	K	L
1	Rowld	Survived	PClass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7,25		S
3	2	1	1	Cumings, Mrs. John Bradley	female	38	1	0	PC 17599	71,2833	C85	С
4	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 31	7,925		S
5	4	1	1	Futrelle, Mrs. Jacques Heath	female	35	1	0	113803	53,1	C123	S
6	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8,05		S
7	6	0	3	Moran, Mr. James	male		0	0	330877	8,4583		Q
8	7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463	51,8625	E46	S
9	8	0	3	Palsson, Master. Gosta Leon	male	2	3	1	349909	21,075		S
10	9	1	3	Johnson, Mrs. Oscar W (Elisa	female	27	0	2	347742	11,1333		S
11	10	1	2	Nasser, Mrs. Nicholas (Adel	female	14	1	0	237736	30,0708		С
12	11	1	3	Sandstrom, Miss. Marguerite	female	4	1	1	PP 9549	16,7	G6	S
13	12	1	1	Bonnell, Miss. Elizabeth	female	58	0	0	113783	26,55	C103	S
14	13	0	3	Saundercock, Mr. William He	male	20	0	0	A/5. 2151	8,05		S
15	14	0	3	Andersson, Mr. Anders Joha	male	39	1	5	347082	31,275		S
16	15	0	3	Vestrom, Miss. Hulda Aman	female	14	0	0	350406	7,8542		S
17	16	1	2	Hewlett, Mrs. (Mary D Kingo	female	55	0	0	248706	16		S
18	17	0	3	Rice, Master. Eugene	male	2	4	1	382652	29,125		Q
19	18	1	2	Williams, Mr. Charles Eugen	male		0	0	244373	13		S
20	10	^	2	Manager Manager Manager (1.11)	£1-	24	4	^	245762	10		

	As células vazias, como por exemplo «F7» e «K2», representam <i>missing values</i> .			
	Os dados da coluna «A» representam conhecimento que não tem relevância analítica.			
	Não é possível preencher as células vazias da coluna «K» por se tratar de um atributo alfanumérico.			
	Não é possível discretizar os dados da coluna «F» por conter células vazias.			
	Apesar de a coluna «B» estar preenchida com números, representa conhecimento categórico.			
	Os dados da coluna «L» representam conhecimento binário.			
QUESTÃO 2	Em <i>Machine Learning</i> , técnicas de segmentação (<i>clustering</i>):			
	São técnicas usadas para construir modelos para previsão de resultados contínuos.			
	Seguem um paradigma de aprendizagem por reforço.			
	São técnicas de aprendizagem automática.			
	Seguem um paradigma de aprendizagem supervisionada.			
	São técnicas usadas para construir modelos de classificação.			
	Seguem um paradigma de aprendizagem não supervisionada.			

NÚMERO	

QUESTÃO 3

Considere o nodo «Partitioning» ilustrado na Figura 2.

Figura 2 Configuração de nodo Knime

	O nodo implementa uma estratégia de validação de modelos denominada cross validation.
	A configuração do nodo é adequada para permitir a replicabilidade das experiências.
	A opção «Draw randomly» é incompatível com a opção «Use random seed».
	A opção «Relative [%]» tem de ser sempre superior a 50.
	O nodo «Partitioning» implementa uma estratégia de treino designada hold-out validation.
	Quando assinalada, a opção «Stratified sampling» cria uma nova amostra do <i>dataset</i> designada «label»