福宁古五校教学联合体 2024-2025 学年第一学期期中质量监测

高三化学试题

(考试时间: 75 分钟, 试卷总分: 100 分)

可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ce 140 第 I 卷 选择题(共 40 分)

- 一、选择题(本题共10小题,每小题4分。每小题只有一个选项符合题意)
- 1. 中国"天宫"空间站运用的"黑科技"很多,下列对所涉及物质的性质描述错误的是
 - A. 被誉为"百变金刚"的太空机械臂主要成分为铝合金, 其强度大于纯铝
 - B. 太阳电池翼采用碳纤维框架和玻璃纤维网,二者均为无机非金属材料
 - C. 核心舱配置的离子推进器以氚和氩气作为推进剂, 氚和氩属于稀有气体
 - D. 柔性太阳能板使用了国产新型高纯度二氧化硅, 其性质稳定, 是优良的光电材料
- 2. 劳动创造未来。下列劳动项目与所述的化学知识没有关联的是

选项	劳动项目	化学知识
A	生产活动:海水晒盐	蒸发原理
В	医院消毒: 喷洒次氯酸钠溶液	次氯酸钠溶液具有强氧化性
С	卫生劳动: 用食醋洗水壶	醋酸可与水垢中的 Mg(OH)2、CaCO3 反应
D	酿酒师: 在葡萄酒中添加适量的二氧化硫	SO ₂ 是酸性氧化物

3. 抗肿瘤药物盐酸苯达莫司汀的合成工艺中截取其中一部分如图所示,已知该转化过程中化合物 a 需经过两步反应才可成环。下列叙述错误的是

$$\begin{array}{c|c} O_2N & H \\ & & \\ & & \\ N & CH_3 \end{array} \begin{array}{c} COOH \\ & & \\ & & \\ H_2SO_4/\triangle \end{array} \begin{array}{c} O_2N \\ & & \\ b & CH_3 \end{array} \begin{array}{c} COOC_2H_5 \\ \end{array}$$

- A. 化合物 a 的分子式为 C₁₂H₁₅N₃O₅
- B. 化合物 a 中的含氧官能团有硝基、酮羰基、羧基
- C. 化合物 a 生成化合物 b 发生的两步反应为加成反应和消去反应
- D. 化合物 b 与足量 H。加成后的产物中含有 4 个手性碳原子
- 4. Cu_2HgI_4 是一种红色固体,常用作示温涂料。制备反应为如下: $2CuSO_4+SO_2+K_2HgI_4+2H_2O$ —— Cu_2HgI_4 \downarrow $+K_2SO_4+2H_2SO_4$ 。已知: N_A 表示阿伏加德罗常数的值。下列有关方程式中的物质说法正确的是
 - A. 上述反应中生成 1 mol Cu₂HgI₄时,转移电子的数目为 2N_A

- B. 标准状况下,44.8 L 水中所含 O 原子数目为 2NA
- C. 1mol H₂SO₄含有的 H⁺数目为 2N_A
- D. 1 L 0.1 mol L⁻¹CuSO₄溶液中 Cu²⁺数目为 0.1N_A
- 5. 关注"实验室化学"并加以实践能有效提高同学们的实验素养。用如图所示装置(夹持装置已省略)进行实验,能达到实验目的是

- A. 用甲装置收集干燥纯净的氯气
- B. 用乙装置制备碳酸氢钠
- C. 用丙装置观察氢氧化亚铁白色沉淀
- D. 用丁装置完成喷泉实验
- 6. 下列离子方程式书写正确的是
 - A. FeCl₂溶液中通入过量 H₂S 气体: Fe²⁺+H₂S= FeS ↓ +2H⁺
 - B. 向 H₂¹⁸O 中加入 Na₂O₂: 2Na₂O₂+2H₂¹⁸O =4Na⁺+4OH⁻+¹⁸O₂ ↑
 - C. 向碳酸氢铵溶液中加入足量石灰水:NH₄++Ca²⁺+HCO₃-+2OH-=CaCO₃ ↓ +H₂O+NH₃ H₂O
 - D. 向 FeI₂溶液中通入足量 Cl₂: 2Fe²⁺+2I⁻+2Cl₂=2Fe³⁺+I₂+4Cl⁻
- 7. 我国科学家构建直接异质结和间接异质结系统,实现 CO_2 还原和 H_2O 氧化。有关该过程的叙述正确的是

- A. 该过程需要不断补充 Fe2+和 Fe3+
- B. 金属 Pt 表面的反应为: Fe²⁺-e⁻=Fe³⁺
- C. Fe^{2+}/Fe^{3+} 作为氧化还原协同电对,可以换成 I^{-}/I_{2}
- D. 总反应为: 2H₂O+2CO₂催化剂 O₂+2HCOOH

8. 硫元素的价类二维图如图所示。下列说法错误的是

- A. a与c、d、e都有可能反应生成b
- B. d 溶液久置于空气中会生成 e, 溶液的酸性增强
- C. g与f之间可能发生反应
- D. g 具有强氧化性,原因一定是 S 元素处于+6 价
- 9. 锂离子电池在我们日常生活中随处可见,随之而来的是废旧电池的合理处理,否则会造成新的环境污染。如图是某锂离子电池的正极材料(主要含 $LiCoO_2$ 、Al、C 等)的处理工艺(已知 $LiCoO_2$ 与 NaOH 不反应):

下列说法错误的是

- A. 滤液 X 的主要成分是 Na[Al(OH)₄]
- B. 灼烧的目的是除碳, 灼烧时用到的仪器有坩埚、三脚架、石棉网等
- C. 还原步骤中 LiCoO₂ 转化为 Li₂SO₄和 CoSO₄
- D. "除铝""还原"和"沉淀"三步共同的实验操作是过滤
- 10. 药物贝诺酯有消炎、镇痛、解热的作用,在实验室依据酯化反应原理和以下装置(夹持和水浴加热装置略)制备贝诺酯(沸点 453.11 $^{\circ}$),实验中利用环己烷与水的共沸体系(沸点 69 $^{\circ}$)带出水分。已知体系中沸点最低的有机物是环己烷(沸点 81 $^{\circ}$)。下列说法正确的是

- A. 反应时水浴温度不能高于 69℃
- B. 根据环己烷带出水的体积可推测出反应的限度和速率
- C. 因为蒸出的是共沸体系,故锥形瓶中不会出现分层现象
- D. 贝诺酯可以用氢氧化钠除去其中混杂的有机酸。

第Ⅱ卷 非选择题(共60分)

二、非选择题

11. (13分)

中国的崛起,离不开我国强大的材料制造工业。

- (1) 磁流体材料是电子材料的新秀,在一定条件下,将 FeSO₄和 Fe₂(SO₄)₃的溶液按 一定的比例混合,再滴入稍过量的 NaOH 溶液,可得到分散质粒子大小在 36-55nm 之间的 黑色 Fe₃O₄ 磁流体。
- ② 将 $n(Fe^{3+})/n(Fe^{2+})=2:1$ 混合时, 理论上制得的纳米 Fe_3O_4 产率应该最高, 但事实并 非如此可能的原因是
- ③水热法制备纳米 Fe_3O_4 的反应为 $3Fe^{2+} + 2S_2O_3^{2-} + O_2 + xOH^- = Fe_3O_4 + S_4O_6^{2-} + 2H_2O_7$ x=____, 当 4 mol Fe²⁺被氧化时有_____ mol O₂ 被还原。
- (2) 铍是重要的战略资源,已经成为引人注目的导弹和飞机结构材料。铍的性质和 铝相似,回答和铍相关的问题。
- ①某溶液中含有 NaCl、BeCl₂ 和少量 HCl,为了提纯得到 BeCl₂ 固体,请选择合理的 步骤并排序 。(填序号)
 - a.加入适量的盐酸

- b.通入过量的 CO₂ c.过滤 d.加入过量的 NaOH 溶液
- e.加入过量的氨水
- f.洗涤

- g. 在 HCl 气流中加热蒸干。
- ②已知: Al₄C₃+12H₂O = 4Al(OH)₃ +3CH₄ ↑ , 写出 Be₂C 与 NaOH 溶液反应的离子方程式:

(3) 奥运会期间使用易降解的有机合成材料聚乳酸 $(HO+CH_2-C-O+H_1H_1)$,聚乳酸 含有的官能团有 种,由乳酸制备聚乳酸的化学方程式为

12. (17分)

氨基钠 (NaNH₂)常用作有机合成的还原剂、脱水剂。某学习小组拟制备氨基钠并测定 产品的纯度。(已知: 氨基钠极易水解且易被空气氧化)

【制备方法一】: 如图 1 装置,以 NH₃和 Na 为原料加热至 350~360℃制备氨基钠, 并检验生成的产物。

(1) 实验时,应先关闭____(填 K_1 或 K_2),打开___(同上),通一段时间He,排尽装 置内的空气。 (2) B 中 P₂O₅ 的作用是______, , C 装置的作用是____ (3) 为证明 A 中反应的气体产物,需要观察到的实验现象: ①E 中黑色粉末变红; (2) 【制备方法二】: 如图 2 装置,用液氨和金属钠片制备氨基钠 已知: 碱金属的液氨溶液中含有蓝色溶剂化电子[e(NH₃), [, 钠在液氨中先形成蓝色溶 液后缓慢生成气体和氨基钠粒状沉积物。 图 2 图 3 (4) E装置的作用是 (5) 钠和液氨形成蓝色溶液的离子方程式_ 0.2mol 钠投入液氨中,生成 0.01mol 氢气时,钠转移的电子数目为 _ 【产品纯度测定】 (6) 气体体积法: 取 3.9 g 产品, 按图 3 装置进行实验(产品所含杂质与水反应不生成 气体)。仪器 F 的名称为_____, 恒压分液漏斗中侧管 q 的作用除平衡气压, 有利于 液体顺利流下外,还有_____。G 中液面从 V_1 mL 变为 V_2 mL(已知 $V_2 > V_1$,数据已 折合为标准状况),则产品纯度为_____。(用含 V_1 、 V_2 的代数式表示) (7) 气体质量法: 称取 8.0g 氨基钠产品与适量水在加热条件下充分反应后,将生成 的气体全部驱赶出来并用碱石灰干燥后,再用浓硫酸充分吸收,称量测得浓硫酸增重 3.4g, 则氨基钠产品的纯度为 %(保留三位有效数字)。

硫酸铈铵[(NH₄)₄Ce(SO₄)₄]微溶于水,不溶于乙醇,溶于无机酸,可用作分析试剂、氧化剂。某工厂以氟碳铈矿(含 CeFCO₃、BaO、SiO₂等)为原料制备硫酸铈铵的流程如图所示。

13. (15分)

- (1) CeFCO₃ 中铈元素的化合价为_____; "焙烧"中空气从焙烧炉下部快速鼓入矿粉从中上部加入,这样操作的目的是。
 - (2)"酸浸"中, 铈浸出率与硫酸浓度的关系如图 2 所示。

工业生产应选择的适宜的硫酸浓度是______mol·L⁻¹。若用稀盐酸进行酸浸,则会造成的影响是_____。滤渣 A 的主要成分有 SiO₂、______(填化学式)。
(3)"沉铈"中,硫脲的作用是____。
(4)向含 Ce³⁺溶液中加入 NH₄HCO₃ 反应生成 Ce₂(CO₃)₃ 的离子方程式为_____。

- (5) Ce₂(SO₄)₃ 加入稍过量的 H₂O₂、氨水,在 30℃条件下反应,可得到 Ce(OH)₄ 悬浊液,其化学方程式为_____。
- (6)将最后得到的溶液经_____、_____过滤,得到硫酸铈铵晶体,最后用_______洗涤 2-3 次后,得到高纯硫酸铈铵晶体。
- (7)测定产品纯度。称取 wg 产品全部溶于水,配制成 250mL 溶液,准确量取 25.00mL 配制的溶液于锥形瓶中,以苯代邻氨基苯甲酸为指示剂,用 $0.10mol \cdot L^{-1}$ (NH₄)₂Fe(SO₄)₂ 溶液滴定(滴定反应为 Fe²⁺+Ce⁴⁺=Ce³⁺+Fe³⁺),起始读数为 V_0mL ,终点时溶液恰好由紫红色变为亮黄色,此时滴定管的读数为 V_1mL ,则该产品的纯度为_____%(用含 w、 V_0 、 V_1 的代数式表示)。

14. (15分)

基于生物质资源开发常见的化工原料,是绿色化学的重要研究方向。利用木质纤维素为起始原料结合 CO₂ 生产聚碳酸对苯二甲酯可以实现碳减排,路线如下,回答下列问题:

本质
$$H^+$$
 $C_6H_{12}O_6$ \overline{m} $\overline{m$

- (1) 化合物Ⅱ中含氧官能团的名称
- (2) 化合物III到化合物IV的反应是原子利用率 100%的反应,且 1mol III与 1mol 化合物 a 反应得到 1mol IV。则化合物 a 为 。反应类型为 。
- (3) 已知化合物 V 的核磁共振氢谱有 2 组峰。且峰面积之比为 2:3,写出化合物的结构简式: _____。化合物 VI 的名称为____。
 - (4) 化合物Ⅷ的芳香族同分异构体中符合下列条件的有 种(不含立体异构)。
 - ①最多能与相同物质的量的 Na₂CO₃ 反应
 - ②能与 2 倍物质的量的 Na 发生放出 H2 的反应
 - (5) 关于Ⅷ生成Ⅷ的反应的说法中,不正确的有____。
 - A. 反应过程中,有 H-O 键断裂
- B. 反应过程中,有 C=O 双键和 C-O 单键形成
- C. 该反应为缩聚反应
- D. CO₂属于极性分子,分子中存在 π 键
- (6) 结合上述信息,写出以丙烯为起始有机原料合成 的路线_____(无机

试剂任选)。