## Introduction to Deep Learning for Healthcare

## Introduction to Deep Learning for Healthcare



Cao Xiao Seattle, WA, USA Jimeng Sun San Francisco, CA, USA

ISBN 978-3-030-82183-8 ISBN 978-3-030-82184-5 (eBook) https://doi.org/10.1007/978-3-030-82184-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

## **Preface**

Life can only be understood backwards, but it must be lived forwards

Søren Kierkegaard

Deep learning models are multi-layer neural networks that have shown great success in diverse applications. This is a book describing deep learning models in the context of healthcare applications.

**Story 1** When we took an artificial intelligence class many year ago, many topics were covered, including neural networks. The neural network model was presented as a supervised learning method. However, it was considered a practical failure compared to other more effective supervised learning methods such as decision trees and support vector machine. The common explanation about neural networks at the time involves two aspects: (1) Multi-layer neural networks can approximate any arbitrary functions and hence is a theoretically powerful model. (2) In practice, they don't work well due to the ineffective learning algorithm (i.e., backpropagation method). When we asked why backpropagation doesn't work well, a typical answer was about the accumulated errors across layers, which will eventually become too big to lead to an accurate model. Of course, the understanding of neural networks has evolved greatly in the past few years. When big labeled datasets and parallel computing infrastructure such as graphic processing units (GPU) finally become available, the power of deep neural networks will be unleashed. These days, deep learning models have become the most popular and standard machine learning models.

**Story 2** When we first got into machine learning for healthcare many years ago, we spoke with a senior medical doctor about the potential impact of machine learning and artificial intelligence (AI) in medicine in the future. Specifically, we asked him about the possibility of creating AI algorithms to mimic the practice of realworld doctors. He was very pessimistic about the possibility because he believes

vi Preface

doctors largely depend on medical "intuition" to do their job, which is impossible to be learned by algorithms. Of course, now we know it is not only possible, but often AI algorithms can outperform human experts in various clinical pattern recognition tasks such as diagnosis. Even commercial medical devices have now become available (e.g., atrial fibrillation detection algorithm in Apple Watch). Many rely on deep learning models. Before we finished the book, we saw that doctor's profile on LinkedIn listed as an innovator in AI for healthcare.

Seattle, WA, USA Cao Xiao

Champaign, IL, USA Jimeng Sun

## **Contents**

| 1 | Introduction |                         |                                              | 1  |
|---|--------------|-------------------------|----------------------------------------------|----|
|   | 1.1          | Motiva                  | ating Applications                           | 2  |
|   |              | 1.1.1                   | Diabetic Retinopathy Detection               | 3  |
|   |              | 1.1.2                   | Early Detection of Heart Failure             | 4  |
|   |              | 1.1.3                   | Sleep Analysis                               | 4  |
|   |              | 1.1.4                   | Treatment Recommendation                     | 4  |
|   |              | 1.1.5                   | Clinical Trial Matching                      | 5  |
|   |              | 1.1.6                   | Molecule Property Prediction and Generation  | 5  |
|   | 1.2          | Who S                   | hould Read This Book?                        | 5  |
|   | 1.3          | Who A                   | are the Authors?                             | 6  |
|   | 1.4          | Book (                  | Organization                                 | 6  |
|   | 1.5          | Exercis                 | ses                                          | 8  |
| 2 | Health Data  |                         |                                              | 9  |
|   | 2.1          |                         | rowth of Electronic Health Records           | 9  |
|   | 2.2          | 2 Health Data           |                                              | 10 |
|   |              | 2.2.1                   | The Life Cycle of Health Data                | 11 |
|   |              | 2.2.2                   | Structured Health Data                       | 13 |
|   |              | 2.2.3                   | Unstructured Clinical Notes                  | 15 |
|   |              | 2.2.4                   | Continuous Signals                           | 16 |
|   |              | 2.2.5                   | Medical Imaging Data                         | 17 |
|   |              | 2.2.6                   | Biomedical Data for In Silico Drug Discovery | 18 |
|   | 2.3          | Health Data Standards   |                                              | 18 |
|   | 2.4          | Exercis                 | ses                                          | 21 |
| 3 | Mach         | Machine Learning Basics |                                              |    |
|   | 3.1          | Predict                 | tive Modeling Pipeline                       | 23 |
|   | 3.2          | Superv                  | rised Learning                               | 25 |
|   |              | 3.2.1                   | Logistic Regression                          | 25 |
|   |              | 3.2.2                   | Softmax Regression                           | 27 |
|   |              | 3.2.3                   | Gradient Descent                             | 28 |
|   |              | 3.2.4                   | Stochastic and Minibatch Gradient Descent    | 28 |

viii Contents

|   | 3.3   | Unsupervised Learning                                                     | 29       |
|---|-------|---------------------------------------------------------------------------|----------|
|   |       | 3.3.1 Principal Component Analysis                                        | 30       |
|   |       | 3.3.2 Clustering                                                          | 31       |
|   | 3.4   | Evaluation Metrics                                                        | 31       |
|   |       | 3.4.1 Evaluation Metrics for Regression Tasks                             | 31       |
|   |       | 3.4.2 Evaluation Metrics for Classification Tasks                         | 33       |
|   |       | 3.4.3 Evaluation Metrics for Clustering Tasks                             | 37       |
|   |       | 3.4.4 Evaluation Strategy                                                 | 38       |
|   | 3.5   | Exercises                                                                 | 39       |
| 4 | Deen  | Neural Networks (DNN)                                                     | 41       |
| • | 4.1   | A Single Neuron                                                           | 41       |
|   |       | 4.1.1 Activation Function                                                 | 42       |
|   |       | 4.1.2 Loss Function                                                       | 46       |
|   |       | 4.1.3 Train a Single Neuron                                               | 47       |
|   | 4.2   | Multilayer Neural Network                                                 | 49       |
|   |       | 4.2.1 Network Representation                                              | 49       |
|   |       | 4.2.2 Train a Multilayer Neural Network                                   | 50       |
|   |       | 4.2.3 Parameters and Hyper-Parameters                                     | 55       |
|   | 4.3   | Case Study: Readmission Prediction from EHR Data                          |          |
|   |       | with DNN                                                                  | 56       |
|   | 4.4   | Case Study: DNN for Drug Property Prediction                              | 57       |
|   | 4.5   | Exercises                                                                 | 60       |
| 5 | Embe  | edding                                                                    | 63       |
| J | 5.1   | Overview                                                                  | 63       |
|   | 5.2   | Word2Vec                                                                  |          |
|   | 3.2   | 5.2.1 Idea and Formulation of Word2Vec                                    | 64<br>64 |
|   |       | 5.2.2 t-Distributed Stochastic Neighbor Embedding                         | 0.       |
|   |       | (t-SNE)                                                                   | 66       |
|   |       | 5.2.3 Healthcare Application of Word2Vec                                  | 68       |
|   | 5.3   | Med2Vec: Two-Level Embedding for EHR                                      | 72       |
|   | 0.0   | 5.3.1 Med2Vec Method                                                      | 72       |
|   | 5.4   | MiME: Embed Internal Structure                                            | 75       |
|   |       | 5.4.1 Notations of MIME                                                   | 75       |
|   |       | 5.4.2 Description of MIME                                                 | 76       |
|   |       | 5.4.3 Experiment Results of MIME                                          | 78       |
|   | 5.5   | Exercises                                                                 | 80       |
| _ | Conve |                                                                           | 02       |
| 6 | 6.1   | olutional Neural Networks (CNN)                                           | 83<br>83 |
|   | 6.2   | Architecture of CNN                                                       |          |
|   | 0.2   | 6.2.1 Convolution Layer: 1D.                                              | 84<br>84 |
|   |       | 6.2.2 Convolution Layer: 2D.                                              | 86       |
|   |       | •                                                                         | 88       |
|   |       | <ul><li>6.2.3 Pooling Layer</li><li>6.2.4 Fully Connected Layer</li></ul> | 89       |
|   |       | 0.4.4 Fully Connected Layer                                               | 09       |

Contents ix

|   | 6.3    | Backpropagation Algorithm in CNN*                                    | 89  |
|---|--------|----------------------------------------------------------------------|-----|
|   |        | 6.3.1 Forward and Backward Computation for 1D Data                   | 89  |
|   |        | 6.3.2 Special CNN Architectures                                      | 93  |
|   | 6.4    | Case Study: Diabetic Retinopathy Detection                           | 98  |
|   | 6.5    | Case Study: Skin Cancer Detection                                    | 100 |
|   | 6.6    | Case Study: Automated Surveillance of Cranial Images                 | 101 |
|   | 6.7    | for Acute Neurologic Events                                          | 101 |
|   | 0.7    | Case Study: Detection of Lymph Node Metastases from Pathology Images | 103 |
|   | 6.8    | Case Study: Cardiologist-Level Arrhythmia Detection                  | 103 |
|   | 0.6    | and Classification in Ambulatory ECG                                 | 104 |
|   | 6.9    | Case Study: COVID X-Ray Image Classification                         | 105 |
|   | 6.10   | Exercises                                                            | 107 |
|   |        |                                                                      |     |
| 7 |        | rrent Neural Networks (RNN)                                          | 111 |
|   | 7.1    | RNN Fundamentals                                                     | 111 |
|   | 7.2    | Backpropagation Through Time (BPTT) Algorithm                        | 115 |
|   |        | 7.2.1 Forward Pass                                                   | 115 |
|   |        | 7.2.2 Backward Pass                                                  | 115 |
|   | 7.3    | RNN Variants                                                         | 117 |
|   |        | 7.3.1 Long Short-Term Memory (LSTM)                                  | 117 |
|   |        | 7.3.2 Gated Recurrent Unit (GRU)                                     | 120 |
|   |        | 7.3.3 Bidirectional RNN                                              | 123 |
|   | 7.4    | 7.3.4 Encoder-Decoder Sequence-to-Sequence Models                    | 124 |
|   | 7.4    | Case Study: Early Detection of Heart Failure                         | 125 |
|   | 7.5    | Case Study: Sequential Clinical Event Prediction                     | 127 |
|   | 7.6    | Case Study: De-identification of Clinical Notes                      | 129 |
|   | 7.7    | Case Study: Learning to Prescribe Treatment                          | 120 |
|   | 7.0    | Combination for Multimorbidity                                       | 130 |
|   | 7.8    | Exercises                                                            | 134 |
| 8 | Autoe  | encoders (AE)                                                        | 137 |
|   | 8.1    | Overview                                                             | 137 |
|   | 8.2    | Autoencoders                                                         | 138 |
|   | 8.3    | Sparse Autoencoders                                                  | 139 |
|   | 8.4    | Stacked Autoencoders                                                 | 140 |
|   | 8.5    | Denoising Autoencoders                                               | 141 |
|   | 8.6    | Case Study: "Deep Patient" via Stacked Denoising                     |     |
|   |        | Autoencoders                                                         | 142 |
|   | 8.7    | Case Study: Learning from Noisy, Sparse, and Irregular               |     |
|   |        | Clinical Data                                                        | 143 |
|   | 8.8    | Exercises                                                            | 145 |
| 9 | Attent | tion Models                                                          | 147 |
|   | 9.1    | Overview                                                             | 147 |
|   | 9.2    | Attention Mechanism                                                  | 147 |
|   |        |                                                                      |     |

x Contents

|    | 9.3               | Case Study: Attention Model over Longitudinal EHR     | 150 |
|----|-------------------|-------------------------------------------------------|-----|
|    | 9.4               | Case Study: Attention Model over a Medical Ontology   | 154 |
|    | 9.5               | Case Study: ICD Classification from Clinical Notes    | 156 |
|    | 9.6               | Case Study: Heart Disease Detection from              |     |
|    |                   | Electrocardiography                                   | 158 |
|    | 9.7               | Exercises                                             | 161 |
| 10 | Graph             | Neural Networks                                       | 163 |
|    | 10.1              | Overview                                              | 163 |
|    | 10.2              | Notations and Tasks on Graphs                         | 164 |
|    |                   | 10.2.1 Notations and Operations                       | 164 |
|    |                   | 10.2.2 Tasks on Graphs                                | 165 |
|    | 10.3              | Graph Neural Networks                                 | 166 |
|    | 10.4              | Graph Convolutional Networks                          | 166 |
|    | 10.5              | Message Passing Neural Network (MPNN)                 | 167 |
|    | 10.6              | Graph Attention Networks                              | 168 |
|    | 10.7              | Case Study: Neural Fingerprint in Drug Molecule       |     |
|    |                   | Embedding with GCN                                    | 169 |
|    | 10.8              | Case Study: Decagon Modeling Polypharmacy Side        |     |
|    |                   | Effects with GCN                                      | 170 |
|    | 10.9              | Case Study: Deep Learning Approach to Antibiotic      |     |
|    |                   | Discovery                                             | 173 |
|    | 10.10             | Case Study: STAN Spatio-Temporal Attention Network    |     |
|    |                   | with GAT for Pandemic Prediction                      | 175 |
|    | 10.11             | Exercises                                             | 177 |
| 11 | Memo              | ry Networks                                           | 181 |
|    | 11.1              | Original Memory Networks                              | 181 |
|    | 11.2              | End-to-End Memory Networks                            | 183 |
|    | 11.3              | Self-Attention and Transformer                        | 185 |
|    | 11.4              | BERT: Pre-training of Deep Bidirectional Transformers | 187 |
|    | 11.5              | Case Study: Doctor2Vec—Doctor Recommendation for      |     |
|    |                   | Clinical Trial Recruitment                            | 188 |
|    | 11.6              | Case Study: Medication Recommendation                 | 191 |
|    | 11.7              | Case Study: Pre-training of Graph Augmented           |     |
|    |                   | Transformers for Medication Recommendation            | 196 |
|    | 11.8              | Exercises                                             | 202 |
| 12 | Generative Models |                                                       | 205 |
|    | 12.1              | Generative Adversarial Networks (GAN)                 | 205 |
|    |                   | 12.1.1 The GAN Framework                              | 206 |
|    |                   | 12.1.2 The Loss Function of Discriminator             | 207 |
|    |                   | 12.1.3 The Loss Function of Generator                 | 207 |
|    |                   | 12.1.4 Caveats of GAN                                 | 208 |
|    |                   |                                                       |     |

Contents xi

| 12.2      | Variational Autoencoders (VAE)                      | 208 |
|-----------|-----------------------------------------------------|-----|
|           | 12.2.1 VAE from Deep Learning Perspective           | 208 |
|           | 12.2.2 VAE from Probabilistic Model Perspective     | 210 |
|           | 12.2.3 Reparameterization Trick                     | 213 |
| 12.3      | Case Study: Generating Patient Records with GAN     | 214 |
| 12.4      | Case Study: Molecule Generation Using VAE           | 217 |
| 12.5      | Case Study: MolGAN an Implicit Generative Model for |     |
|           | Small Molecular Graphs                              | 219 |
| 12.6      | Exercises                                           | 221 |
|           |                                                     |     |
| Bibliogra | phy                                                 | 223 |