Spring 2025 | DATA 266 | Homework -3 Deadline – 11.59 PM – 04/23/2025 20 Points

Question # 1 (10 Points)

You are tasked with building an intelligent restaurant recommendation system that uses Retrieval-Augmented Generation (RAG) to answer free-form user queries. The underlying dataset includes detailed restaurant metadata such as description, review tags, features, location, hours, and cuisines.

import pandas as pd

df = pd.read_json("hf://datasets/itinerai/restaurants/restaurant_data.json")

You will build two versions of this system:

- 1. Naive RAG: Retrieval purely based on vector similarity.
- 2. **Re-ranking RAG**: Retrieval followed by a re-ranking step using an LLM or a cross-encoder.

System Architecture

1. **Document Creation**

- o Combine relevant fields into a single natural paragraph per restaurant.
- o Example:

"The Consulate UWS is a French-American restaurant with brunch and vegetarian options. Located on the Upper West Side, it offers outdoor seating and receives excellent ratings for its atmosphere and pasta dishes."

2. Naive RAG Pipeline

- o Encode each document using a dense retriever
- o Use FAISS or similar to build an index.
- o Given a user query, retrieve top-3 restaurants and pass them + query to a generator
- o Generate a recommendation.

3. Re-ranking RAG Pipeline

- o Retrieve top-10 restaurants using the same retriever.
- o Re-rank them
- o Select top-3 re-ranked items and generate response.

Queries for Evaluation

Use the following 10 sample queries:

- 1. I want a cozy Italian restaurant near downtown that's open late.
- 2. Any vegan-friendly brunch spots with wheelchair accessible, outdoor seating and good reviews?
- 3. Where can I eat seafood near the beach with a romantic vibe?
- 4. Suggest a casual lunch place in the general area of Chinatown.
- 5. Are there any highly-rated spots for dessert after 10 PM?
- 6. I'm looking for a halal or vegetarian dinner place near the Riverwalk with highchair avaiable.
- 7. Recommend a mid-range price Mexican dog friendly restaurant with quick service.
- 8. Any hidden gems for coffee or breakfast with quiet seating?
- 9. Find a sushi place with scenic views, serves alcohol, and not too expensive.
- 10. I want to go somewhere trendy and lively for drinks and appetizers.

Evaluation: For each query, compare the Naive RAG and Re-ranking RAG outputs using the following criteria:

Criteria	Scoring Method
Relevance	Manual score from 1 to 5
Diversity	Do responses vary across queries?
Fluency	Language quality of the generated output

Question # 2 (10 Points)

Teaching One Model to Follow Instructions: Fine-Tuning with Dolly 15K

In this assignment, you will instruction-tune one decoder-only language model (LLM) using the **Dolly 15K** dataset, simulating how industry systems like ChatGPT are fine-tuned to follow user instructions. You will also evaluate the model's improvements in terms of helpfulness, fluency, and instruction adherence.

The fine-tuning must ensure that **only the response contributes to the loss function**, using response-only masking. You will use the Databricks Dolly 15K dataset. Load it using:

import pandas as pd

df = pd.read_json("hf://datasets/databricks/databricks-dolly-15k/databricks-dolly-15k.jsonl", lines=True)

Prompt Formatting

Requirements

- Use only one decoder-only model, such as:
 - o gpt2
 - o EleutherAI/gpt-neo-125M
 - o tiiuae/falcon-rw-1b
 - o mistralai/Mistral-7B (if your environment supports it)
- Use Hugging Face's transformers library for training.
- Use DataCollatorForCompletionOnlyLM to apply instruction masking, so that only the response tokens are used to compute loss.
- Train for 3-5 epochs on a filtered subset

Evaluation: Select 10 held-out instruction samples and compare the outputs from:

1. The base (pretrained) model

2. The **instruction-tuned** model

Use the following evaluation rubric (1–5 scale):

Metric	Description
Instruction Following	How well does the output follow the instruction?
Helpfulness	Is the response useful and relevant?
Fluency	Is the output grammatically and stylistically sound?

For **3 cases**, include a short reflection explaining what improved and why. Also include **1 failure case** and hypothesize the cause.

Bonus (Optional) (4 Points)

• Apply LoRA or QLoRA to train and compare the results with the fine-tuned model in terms of the above-mentioned evaluation.

You are required to follow:

- 1. Submit **one** MS/PDF/Scanned document:
 - Include all the steps of your calculations.
 - Include the summary of the model.
 - Attach screenshots of your code.
 - Attach screenshots showing first few epochs of model training.
 - Attach screenshots of the important code outputs such as confusion matrices, learning curves, and classification reports.

2. Source code:

- a. Python (Jupyter Notebook)
- b. Ensure it is well-organized with comments and proper indentation.
- Failure to submit the source code will result in a deduction of full/partial points.
- Format your filenames as follows: "your_last_name_HW1.pdf" for the document and "your last name HW1 source code.ipynb" for the source code.
- Before submitting the source code, please double-check that it runs without any errors.
- Must submit the files separately.
- Do not compress into a zip file.
- HW submitted more than 24 hours late will not be accepted for credit.