linear algebra

Zixun Xiong

$March\ 2023$

目录

1	gua	sian elimination	2
	1.1	number of solutions	2
	1.2	Theorem	2
2	Det	rminant	2
	2.1	number of solutions	2
3	line	r space	2
	3.1	rank	2
	3.2	线性空间的基	3
		3.2.1 定义一: 基	3
		3.2.2 定义二: 有限维无限维	3
		3.2.3 定义四: 维数	4
		3.2.4 定义五: 坐标	5

1 guassian elimination

1.1 number of solutions

1.2 Theorem

homogeneous linear system

if number of equations is smaller than number of variable, then there exists nonzero solutions

2 Determinant

2.1 number of solutions

homogeneous linear system

for AX = 0, if |A| = 0, then there exists nonzero solutions if $|A| \neq 0$, then there is only a zero solution

Nonhomogeneous linear equations

for AX = b, if |A| = 0, then exists a unique solution if $|A| \neq 0$, we can't be sure(none or infinite)

3 linear space

3.1 rank

Definition

The column rank of A is the dimension of the column space of A, while the row rank of A is the dimension of the row space of A.

proposition 3

 $\alpha_{1,2}, \cdot, \alpha_s$ linear independent $\iff rank(\alpha_1, \cdot, \alpha_s) = s$

pf:

 $\alpha_{1,2},\cdot,\alpha_{s}$ linear independent $\iff \alpha_{1,2},\cdot,\alpha_{s}$ is maximal linearly independent subset of $\alpha_{1,2},\cdot,\alpha_{s} \iff rank(\alpha_{1},\cdot,\alpha_{s})=s)$

Proposition 4

if vector set (I) can be linearly expressed by (II), then $rank(I) \leq rank(II)$

Proposition 5

equivalence (I) and (II), then rank(I) = rank(II)

3.2 线性空间的基

3.2.1 定义一: 基

我们将空集定义为线性无关

定义 1

设 V 是数域 K 上的线性空间

V 的一个子集 S 如果满足下列条件:

- 1. S 是线性无关的
- 2. V 中任意一个向量可以由 S 中的有限个向量线性表出 则称 S 是 V 的一个基

定理 1

数域上任意一个线性空间都有一个基

pf: 见下册 P157-p158

3.2.2 定义二: 有限维无限维

定义 2

若 V 有一个基是有限子集, 则 V 为有限维的 若 V 有一个基是无限子集, 称 V 为无限维的

定理 2

若 V 是有限维的,则 V 任意两个基所含向量个数相等

证:(反证法) 假设 V 有两个基 α_1 , ..., α_n 和 S; 假设 S 的数目大于前者,则 S 中可以取 n+1 个元素,则 S 中的 β_1 , ·, β_{n+1} 可以由 α_1 , ..., α_n 线性表出。且 n+1>n,则根据第四节的引理 1,我们得到 S 线性相关,矛盾(S 为基,线性无关)!(得证)

引理 1

若 V 是无限维的,则 V 的任意一个基都是无限子集

反证法,假设 V 有一个基是有限子集,则由定理 2 的证明知道,V 任 意一个基是有限维的,与无限维定义矛盾,得证!

3.2.3 定义四: 维数

定义四

V 的一个基所含的向量个数 若 V 是无限维的,记为 $dimV = \infty$ {0} 的维数是 0

命题 1

若 dimV = n, 则 V 中任意 n+1 个向量都线性相关

3.2.4 定义五: 坐标

定义五: 坐标

由定义四, 取基为 $\alpha_1, \cdot, \alpha_n$,则 V 中任意一个向量均可以由 $\alpha_1, \cdot, \alpha_n$ 表出

 $\alpha = a_1\alpha_1 + \cdot + a_n\alpha_n$, 且表达方式唯一 (第三节命题一) 则称呼

$$y = \begin{vmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{vmatrix}$$

为 α 在基 $\alpha_1, \cdot, \alpha_n$ 下的坐标

例子: 几何空间中,三条不共线的向量是一个基,从而几何空间中,从 而几何空间是三维的(由基的定义和维数的定义可以推出)

命题三: 找基

设 dimV=n, 若向量组 V 中任意一个向量可以由于 α_1,\cdot,α_n 表出,则 α_1,\cdot,α_n 为 V 的基

证: 设 V 的基为 β_1, \cdot, β_n , 则由题, 他们可以由 $\alpha_1, \cdot, \alpha_n$ 线性表出, 则

$$n = rank(\beta_1, \cdot, \beta_n) <= rank(\alpha_1, \cdot, \alpha_n) <= n$$

则, $rank(\alpha_1, \cdot, \alpha_n) = n$

命题四: 扩充成基

任何线性无关的向量都可以扩充成基

(显然的)

命题四: 子空间维数

假设 S 为 V 的子空间, 则有 $dimS \leq dimV;$ 若 dimS = dimV, 则 有 V=S

证: 因为 dimS = dimV = n 设 S 的基为 $\alpha_1, \cdot, \alpha_n$, 则 $\alpha_1, \cdot, \alpha_n$ 也是 V 的基 $(\alpha_1, \cdot, \alpha_n$ 属于 V,是 V 中 n 个线性无关的量) 则 V 中任意向量可以由于 $\alpha_1, \cdot, \alpha_n$ 表出,则 V 属于 S,又因为 S 属于 V,则 S=V

补充 (证明 dimV=n,n 个 V 中线性无关的向量为 V 的基): V 中 n 个无 关向量 α_1,\cdot,α_n ,任取 $\beta\in V$,则 α_1,\cdot,α_n 相关 (dimV=n,则 n+1 个向量线性相关,证: 任取 $\gamma_1,\cdot,\gamma_{n+1}$,可以由基数 δ_1,\cdot,δ_n 线性表出,则 α_1,\cdot,α_n 线性相关 (n>n+1)),则 β 可以由 α_1,\cdot,α_n 线性表出