

Projeto e Construção de Circuitos Eletrônicos

Projetando a Placa

Professor Ricardo Kerschbaumer

ricardo.kerschbaumer@ifc.edu.br

http://professor.luzerna.ifc.edu.br/ricardo-kerschbaumer/

Seleção e Dimensionamento de Componentes

- Critérios de qualidade e tolerâncias: exemplo de resistores 1% vs. 5%, capacitores cerâmicos ou eletrolíticos.
- Cross talk entre indutores: manter distâncias ou barreiras.
- Durabilidade dos componentes (vida útil): Número de comutações de chaves e relés, por exemplo.
- Temperatura de operação: limitações ambientais.
- Disponibilidade, fornecedores.
- Obsolescência.
- Tipo e tamanho da embalagem (SMD, PTH) e processo de produção.

Code		Length (I)		Width (w)		Height (h)		Power
Imperial	Metric	inch	mm	inch	mm	inch	mm	Watt
0201	0603	0.024	0.6	0.012	0.3	0.01	0.25	1/20 (0.05)
0402	1005	0.04	1.0	0.02	0.5	0.014	0.35	1/16 (0.062)
0603	1608	0.06	1.55	0.03	0.85	0.018	0.45	1/10 (0.10)
0805	2012	0.08	2.0	0.05	1.2	0.018	0.45	1/8 (0.125)
1206	3216	0.12	3.2	0.06	1.6	0.022	0.55	1/4 (0.25)
1210	3225	0.12	3.2	0.10	2.5	0.022	0.55	1/2 (0.50)
1218	3246	0.12	3.2	0.18	4.6	0.022	0.55	1
2010	5025	0.20	5.0	0.10	2.5	0.024	0.6	3/4 (0.75)
2512	6332	0.25	6.3	0.12	3.2	0.024	0.6	1

Exemplos, Reference Designs e Kits de Desenvolvimento

- Exemplo de uso: analisar diagrama de kit de desenvolvimento para extrair práticas de layout e componentes.
- Buscar notas de aplicação (Application Notes) e design de referência (Reference Designs) junto aos fabricantes.
- Priorizar circuitos já consolidados e testados.
- Aplicação de blocos: subdividir o projeto em módulos (alimentação, MCU, sensores, comunicação).

Microcontroladores e Periféricos

- Projetar o circuito pensando em facilitar o desenvolvimento do software.
- Utilizar porta de debug (serial, SWD, JTAG), display ou acesso via gravador.
- Criar tabelas de I/O do MCU: mapeamento de pinos, tensão e correntes, facilitando a programação.
- Uso de watchdog e supervisores de CPU: segurança contra travamentos.
- Disponibilizar conectores de programação quando apropriado, pensando também em update do firmware.

Cuidados com o Diagramas esquemáticos

- Criação de bibliotecas próprias: símbolos, footprints e modelos 3D, evitando conflitos ao compartilhar projetos.
- Projeto hierárquico no Kicad: subdivisão em folhas, organização de blocos.
- Uso de plugins (Kicad) para tarefas específicas (por exemplo, gerador de BOM, PDF interativo).
- Exportar PDF clicável: facilita revisão e compartilhamento.
- Indicar de forma clara o versão do diagrama

Preparação para Layout

- Nomear as principais redes no Kicad com clareza para evitar erros.
- Impressão em papel do footprints para conferir dimensões se necassário.
- Footprints extras (pull-up/down opcionais, dois tipos de encapsulamento para o mesmo componente).
- Replicar layout: técnicas para copiar blocos repetidos de um esquema ou PCB.
- Dimensionamento de dissipadores e cálculo térmico: estimativa de calor gerado, necessidade de ventilação ou cooler.

Placas Universais.

São úteis para protótipos e testes.

Layout e Roteamento

- Determinar as capacidade do processo de fabricação escolhido
- Dimensionar as trilhas conforme a corrente (Ferramenta de cálculo Kicad).
- Desenhar trilhas importantes ou sensíveis primeiro: clock, sinal analógico.
- Distância entre componentes (indutores, cristais, transformadores) para reduzir interferência.
- Remover solder mask em trilhas de potência: aumento de área condutora.
- Thermal relief: garantir soldabilidade e dissipação de calor equilibrada.
- Jumpers em placas de face simples usando vias.

Conectores e Test Points

- Conectores apropriados e robustos: evitar soldar fios diretamente (reduz confiabilidade).
- Soquetes para circuitos integrados, facilita a manutenção.
- Correntes nos conectores: especificações de pinos e contato. (<u>Phoenix Contact Brasil</u>)
- Pontos de teste (test points): identificar no silkscreen e associar à documentação para facilitar depuração. (imagens a seguir)
- Tabela de conectores/pinos/função com níveis de tensão ou corrente (incluindo RS485, USB, etc.). Para facilitar a instalação da Placa.

Test Points

Professor Ricardo Kerschbaumer

Documentos para Fabricação

Geração de Documentos para Fabricação

- Verificar modelos e exigências de quem vai fabricar a placa.
- GERBER, BOM, pick and place: cuidados ao exportar do Kicad, verificação no Gerber Viewer.
- Guia de montagem: ordem de soldagem, componentes opcionais (DNP – Do Not Place).
- Procedimentos de calibração.
- Gravação de firmware.
- Quando produzir em série: planejar uma Jiga de testes automática ou semiautomática.
- Documentação final do projeto, para utilização e manutenção, diagrama de conexão.
- Exemplo: https://youtu.be/_ZjyeltLMAg

Documentos para Fabricação

Jiga de testes

