Exercise Walkthrough: Analysis of a Uniform Distribution on a Disc

Justin Lanfermann

25. June 2025

Overview

This document provides a detailed, step-by-step walkthrough for an exercise on a two-dimensional random variable. The goal is to carefully dissect each part of the problem, explaining not just *what* we are doing, but *why* we are doing it, grounding our reasoning in the definitions and theorems from the "Discrete Probability Theory" script by Niki Kilbertus.

The exercise focuses on a random variable (X, Y) that is uniformly distributed on a unit disc. This scenario is a perfect illustration of how to work with continuous joint distributions and highlights the important distinction between uncorrelated and independent random variables.

Exercise. Let (Ω, \mathcal{A}, P) be a probability space, and (X, Y) a \mathbb{R}^2 -valued RV that is uniformly distributed on the disc $D_2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$. The joint probability density function (pdf) of this distribution is given by:

$$p_{X,Y}(x,y) = \frac{1}{\pi} \chi_{D_2}(x,y)$$

where χ_{D_2} is the indicator function for the disc.

- (i) Compute the marginal densities $p_X(x)$ and $p_Y(y)$.
- (ii) Compute the means and variances $\mathbb{E}[X]$, $\mathbb{E}[Y]$, var[X], var[Y].
- (iii) Check whether $X \perp Y$ (independent) and whether X and Y are uncorrelated.

1 Step-by-Step Solution

1.1 Part (i): Computing the Marginal Densities

Goal: Our first task is to find the individual probability density functions for X and Y, which are called marginal densities. Conceptually, you can think of this as "squashing" the 2D probability mass of the disc onto the x-axis to find the density of X, and onto the y-axis for the density of Y.

Method: We use the formula for marginalization from the script (**Theorem 1.63 (iii)** [1]). For a continuous random variable (X,Y) with joint pdf $p_{X,Y}(x,y)$, the marginal pdf of X is found by integrating over all possible values of Y:

$$p_X(x) = \int_{-\infty}^{\infty} p_{X,Y}(x,y) \, dy$$

Execution for $p_X(x)$: The joint pdf $p_{X,Y}(x,y)$ is $\frac{1}{\pi}$ inside the unit disc D_2 and 0 everywhere else. The disc is defined by $x^2 + y^2 \le 1$. For a fixed value of x, the variable y is constrained by $y^2 \le 1 - x^2$, which means $-\sqrt{1 - x^2} \le y \le \sqrt{1 - x^2}$. This also implies that x must be in the interval [-1,1], otherwise $\sqrt{1 - x^2}$ is not a real number. For any x outside [-1,1], the density $p_X(x)$ is 0.

For $x \in [-1, 1]$, we compute the integral:

$$p_X(x) = \int_{-\infty}^{\infty} \frac{1}{\pi} \chi_{D_2}(x, y) \, dy$$

$$= \frac{1}{\pi} \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} 1 \, dy$$

$$= \frac{1}{\pi} \left[y \right]_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}}$$

$$= \frac{1}{\pi} \left(\sqrt{1 - x^2} - (-\sqrt{1 - x^2}) \right)$$

$$= \frac{2}{\pi} \sqrt{1 - x^2}$$

Combining this with the condition on x, the full marginal density is:

$$p_X(x) = \frac{2}{\pi} \sqrt{1 - x^2} \chi_{[-1,1]}(x)$$

Execution for $p_Y(y)$: We could repeat the same calculation for $p_Y(y)$. However, notice that the problem is perfectly symmetric with respect to X and Y. The definition of the disc $x^2 + y^2 \le 1$ remains the same if we swap x and y. Therefore, the marginal density for Y must have the same functional form as for X.

$$p_Y(y) = \frac{2}{\pi} \sqrt{1 - y^2} \chi_{[-1,1]}(y)$$

Quick Check: Does our result for $p_X(x)$ make sense? The function $\frac{2}{\pi}\sqrt{1-x^2}$ looks like a semi-ellipse. It has its maximum value at x=0 and is zero at $x=\pm 1$. This is intuitive: if you slice the disc vertically, the longest slice (and thus most probability mass) is at the center (x=0), and the slices become infinitesimally small as you approach the edges $(x=\pm 1)$.

1.2 Part (ii): Computing Means and Variances

Goal: Now we compute the expected value (mean) and variance for both X and Y. These are fundamental properties describing the center and spread of the distributions.

Method for Mean $\mathbb{E}[X]$: According to **Definition 2.1**, the expectation of a continuous RV is:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot p_X(x) \, dx$$

Execution for $\mathbb{E}[X]$:

$$\mathbb{E}[X] = \int_{-1}^{1} x \cdot \left(\frac{2}{\pi} \sqrt{1 - x^2}\right) dx = \frac{2}{\pi} \int_{-1}^{1} x \sqrt{1 - x^2} dx$$

We can solve this integral directly, but it's faster to use a symmetry argument. The function $f(x) = x\sqrt{1-x^2}$ is an odd function ([2]), because x is odd and $\sqrt{1-x^2}$ is even. The integral of any odd function over a symmetric interval like [-1,1] is zero.

$$\mathbb{E}[X] = 0$$

By symmetry, we immediately know that $\mathbb{E}[Y] = 0$.

Method for Variance var[X]: From Remark 2.6, the most convenient formula for variance is $var[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$. Since we found $\mathbb{E}[X] = 0$, this simplifies to $var[X] = \mathbb{E}[X^2]$. To find $\mathbb{E}[X^2]$, we use the Law of the Unconscious Statistician (LOTUS), as stated in **Lemma 2.2** ([3]):

$$\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot p_X(x) \, dx$$

Execution for $\mathbb{E}[X^2]$:

$$\mathbb{E}[X^2] = \int_{-1}^1 x^2 \cdot \left(\frac{2}{\pi}\sqrt{1-x^2}\right) dx = \frac{2}{\pi} \int_{-1}^1 x^2 \sqrt{1-x^2} dx$$

This integral is not trivial. A standard technique for expressions involving $\sqrt{a^2 - x^2}$ is a trigonometric substitution ([4]). Let $x = \sin(u)$, then $dx = \cos(u) du$. The limits of integration change from $x \in [-1, 1]$ to $u \in [-\pi/2, \pi/2]$.

$$\mathbb{E}[X^2] = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \sin^2(u) \sqrt{1 - \sin^2(u)} \cdot \cos(u) \, du$$

$$= \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \sin^2(u) \sqrt{\cos^2(u)} \cdot \cos(u) \, du$$

$$= \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \sin^2(u) \cos^2(u) \, du \quad \text{(since } \cos(u) \ge 0 \text{ on } [-\pi/2, \pi/2])$$

Now, we use the trigonometric identities $\sin(u)\cos(u) = \frac{1}{2}\sin(2u)$ and $\sin^2(\theta) = \frac{1}{2}(1-\cos(2\theta))$:

$$\mathbb{E}[X^2] = \frac{2}{\pi} \int_{-\pi/2}^{\pi/2} \left(\frac{1}{2}\sin(2u)\right)^2 du = \frac{2}{\pi} \cdot \frac{1}{4} \int_{-\pi/2}^{\pi/2} \sin^2(2u) du$$

$$= \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \frac{1}{2} (1 - \cos(4u)) du$$

$$= \frac{1}{4\pi} \left[u - \frac{1}{4}\sin(4u) \right]_{-\pi/2}^{\pi/2}$$

$$= \frac{1}{4\pi} \left(\left(\frac{\pi}{2} - 0\right) - \left(-\frac{\pi}{2} - 0\right) \right) = \frac{1}{4\pi} (\pi) = \frac{1}{4}$$

So, $\operatorname{var}[X] = \mathbb{E}[X^2] = \frac{1}{4}$. By symmetry, $\operatorname{var}[Y] = \frac{1}{4}$.

1.3 Part (iii): Independence and Correlation

Goal: We need to determine if X and Y are independent and if they are uncorrelated. This is the most insightful part of the exercise.

Method for Independence: According to Definition 1.72 (iii), two continuous random variables X and Y are independent if and only if their joint pdf factorizes into the product of their marginal pdfs for (almost) all (x, y):

$$p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

Execution for Independence: Let's compute the product of the marginals we found:

$$p_X(x) \cdot p_Y(y) = \left(\frac{2}{\pi}\sqrt{1-x^2}\right) \cdot \left(\frac{2}{\pi}\sqrt{1-y^2}\right) = \frac{4}{\pi^2}\sqrt{(1-x^2)(1-y^2)}$$

This product is non-zero for any (x, y) in the square $(-1, 1) \times (-1, 1)$. The original joint density is $p_{X,Y}(x,y) = \frac{1}{\pi}$ inside the disc and 0 outside. Clearly, $p_{X,Y}(x,y) \neq p_X(x)p_Y(y)$.

To make this concrete, let's pick a point. Consider (x,y)=(0.7,0.7). This point is inside the square $(-1,1)\times(-1,1)$, so $p_X(0.7)p_Y(0.7)>0$. However, $x^2+y^2=0.49+0.49=0.98\leq 1$, so this point is inside the disc D_2 . Here $p_{X,Y}(0.7,0.7)=1/\pi$. The values are not equal. A stronger argument: consider the point (x,y)=(0.8,0.8). Here $x^2+y^2=0.64+0.64=1.28>1$, so the point is outside the disc.

- $p_{X,Y}(0.8, 0.8) = 0$ (since it's outside the disc).
- $p_X(0.8)p_Y(0.8) = \frac{4}{\pi^2}\sqrt{(1-0.64)(1-0.64)} > 0.$

Since the equality does not hold, X and Y are not independent. This makes sense: if I tell you X = 0.9, you know that Y must be in a very small range around 0. Information about X constrains the possible values of Y.

Method for Correlation: Two variables are uncorrelated if their covariance is zero (**Definition 2.13**). We use the computational formula from **Remark 2.10**:

$$cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Since we already know $\mathbb{E}[X] = 0$ and $\mathbb{E}[Y] = 0$, we just need to compute $\mathbb{E}[XY]$.

$$\mathbb{E}[XY] = \iint_{\mathbb{R}^2} xy \cdot p_{X,Y}(x,y) \, dx \, dy = \iint_{D_2} xy \cdot \frac{1}{\pi} \, dx \, dy$$

Execution for Correlation: This integral is best solved using a change of variables to polar coordinates ([6]), as hinted in the problem. Let $x = r\cos(\theta)$ and $y = r\sin(\theta)$. The Jacobian determinant for this transformation is r. The domain D_2 becomes $r \in [0, 1]$ and $\theta \in [0, 2\pi)$.

$$\mathbb{E}[XY] = \frac{1}{\pi} \int_0^{2\pi} \int_0^1 (r\cos\theta)(r\sin\theta) \cdot r \, dr \, d\theta$$
$$= \frac{1}{\pi} \int_0^{2\pi} \int_0^1 r^3 \cos\theta \sin\theta \, dr \, d\theta$$
$$= \frac{1}{\pi} \left(\int_0^1 r^3 \, dr \right) \left(\int_0^{2\pi} \cos\theta \sin\theta \, d\theta \right)$$

Let's focus on the θ integral. Using the identity $\sin(2\theta) = 2\sin\theta\cos\theta$:

$$\int_0^{2\pi} \cos\theta \sin\theta \, d\theta = \frac{1}{2} \int_0^{2\pi} \sin(2\theta) \, d\theta = \frac{1}{2} \left[-\frac{1}{2} \cos(2\theta) \right]_0^{2\pi} = -\frac{1}{4} (\cos(4\pi) - \cos(0)) = -\frac{1}{4} (1 - 1) = 0$$

Since the θ integral is 0, the entire expression becomes 0.

$$\mathbb{E}[XY] = 0$$

Therefore, cov[X, Y] = 0 - (0)(0) = 0. This means X and Y are uncorrelated.

2 Summary and Key Takeaways

We have successfully analyzed the random variable (X,Y) on the unit disc.

- Marginal Densities: $p_X(x) = \frac{2}{\pi} \sqrt{1-x^2} \chi_{[-1,1]}(x)$ and $p_Y(y)$ is analogous.
- Mean and Variance: $\mathbb{E}[X] = \mathbb{E}[Y] = 0$ and $\text{var}[X] = \text{var}[Y] = \frac{1}{4}$.

• Dependence: X and Y are uncorrelated but not independent.

The most important lesson from this exercise is the demonstration that **uncorrelated does** not imply independent ([5]).

- Correlation measures the strength and direction of a *linear* relationship between two variables. Since the covariance is zero, there is no linear association between X and Y.
- Independence is a much stronger condition. It means that knowledge of one variable provides no information whatsoever about the other. In our case, the circular boundary of the support domain D_2 creates a non-linear relationship. Knowing X restricts the possible values of Y, so they are dependent.

This example is a fundamental counterexample to keep in mind throughout your study of probability and statistics.

Explanatory Notes

- [1] Marginal Density (Theorem 1.63 (iii)): The marginal pdf of one variable in a multivariate distribution represents the probability distribution of that variable alone. It is obtained by "integrating out" or "summing out" all other variables. For a 2D continuous distribution $p_{X,Y}(x,y)$, this means $p_X(x) = \int p_{X,Y}(x,y) dy$.
- [2] Odd and Even Functions: A function f is even if f(-x) = f(x) for all x. Its graph is symmetric about the y-axis. A function f is odd if f(-x) = -f(x) for all x. Its graph has rotational symmetry about the origin. A key property is that for any odd function f, the integral over a symmetric interval is zero: $\int_{-a}^{a} f(x) dx = 0$. In our case, the integrand for $\mathbb{E}[X]$ was $x\sqrt{1-x^2}$. Since x is odd and $\sqrt{1-x^2}$ is even, their product is odd, making the integral zero.
- [3] Variance and LOTUS (Remark 2.6, Lemma 2.2): The variance, var[X], measures the spread of a distribution. The formula $var[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$ is often easier for computation than the definition $\mathbb{E}[(X \mathbb{E}[X])^2]$. To compute $\mathbb{E}[g(X)]$ for some function g, the Law of the Unconscious Statistician (LOTUS) allows us to compute $\int g(x)p_X(x) dx$ without first having to find the pdf of the new random variable Z = g(X).
- [4] Trigonometric Substitutions and Identities: When an integral contains a term of the form $\sqrt{a^2 x^2}$, the substitution $x = a \sin(u)$ is often very effective. It simplifies the square root using the identity $1 \sin^2(u) = \cos^2(u)$. The identities used in the calculation were:
 - $\sin^2(u)\cos^2(u) = (\sin(u)\cos(u))^2 = (\frac{1}{2}\sin(2u))^2 = \frac{1}{4}\sin^2(2u)$
 - $\bullet \sin^2(\theta) = \frac{1}{2}(1 \cos(2\theta))$
- [5] Independence vs. Uncorrelation (Definition 1.72, 2.13): This is a critical distinction.
 - Independence: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$. This means the distributions are completely unrelated.
 - Uncorrelation: cov[X, Y] = 0. This only means there is no *linear* trend between the variables.

Independence is a stronger condition. It is always true that **independence implies uncorrelation**. However, as this exercise shows, the reverse is not true. A non-linear relationship can exist between variables that are uncorrelated.

[6] Change of Variables to Polar Coordinates (Prop. 2.51): When dealing with circular domains, switching from Cartesian coordinates (x, y) to polar coordinates (r, θ) simplifies the integration boundaries. The transformation is:

$$x = r\cos(\theta), \quad y = r\sin(\theta)$$

When performing this change in a double integral, we must replace the area element dx dy with $|\det(J)| dr d\theta$, where J is the Jacobian matrix of the transformation. For polar coordinates, this determinant is famously r, so we replace dx dy with $r dr d\theta$.