Overview of the "Barrier Approach" to lower the upper bound of the de Bruijn-Newman constant.

D.H.J. Polymath

July 2018

# High level storyline

- $\triangleright$  The basic De Bruijn-Newman idea and the function H<sub>t</sub>(x+iy).
- $\triangleright$  How to effectively bound a good estimate for H<sub>t</sub>?
- $\triangleright$  Some observations on the zeros of H<sub>t</sub>.
- $\triangleright$  How could zeros of H<sub>t</sub> be 'blocked' to lower the  $\Lambda$  upper bound.
- The key ideas behind the "Barrier approach".
- ➤ How to ensure no zeros have passed the Barrier?
- $\triangleright$  How to show that H<sub>t</sub> doesn't vanish from the Barrier to N<sub>b</sub>?
- > Optimizations used to improve computation speed.
- $\triangleright$  Numerical results showing  $\Lambda$  < 0.22 (and  $\Lambda$  < 0.13 conditionally on RH < 10^18).
- > Software used, optimizations, and detailed results available.

## The idea behind the De Bruijn-Newman constant



# Estimating and effectively bounding H<sub>t</sub>(x+iy)

#### Main estimate

$$A(x+iy) := M_t(\frac{1-y+ix}{2}) \sum_{n=1}^{N} \frac{b_n^t}{n^{\frac{1-y+ix}{2} + \frac{t}{2}\alpha(\frac{1-y+ix}{2})}}$$

$$B(x+iy) := M_t(\frac{1+y-ix}{2}) \sum_{n=1}^{N} \frac{b_n^t}{n^{\frac{1+y-ix}{2}} + \frac{t}{2}\alpha(\frac{1+y-ix}{2})}$$

Optionally: a more effective C-term is available

Designed for:  $0 < t \le \frac{1}{2}$ ;  $0 \le y \le 1$ ;  $x \ge 200$ .

Error terms

Error upper bounds

$$E_A(x+iy) := |M_t(\frac{1-y+ix}{2})| \sum_{n=1}^N \frac{b_n^t}{n^{\frac{1-y}{2}+\frac{t}{2}\operatorname{Re}\alpha(\frac{1-y+ix}{2})}} \varepsilon_{t,n}(\frac{1-y+ix}{2})$$

$$E_B(x+iy) := |M_t(\frac{1+y+ix}{2})| \sum_{n=1}^N \frac{b_n^t}{n^{\frac{1+y}{2}+\frac{t}{2}\operatorname{Re}\alpha(\frac{1+y+ix}{2})}} \varepsilon_{t,n}(\frac{1+y+ix}{2})$$

$$E_{C,0}(x+iy) := \exp\left(\frac{t\pi^2}{64}\right) |M_0(iT')| (1+\tilde{\varepsilon}(\frac{1-y+ix}{2}) + \tilde{\varepsilon}(\frac{1+y+ix}{2})).$$

$$H_t(x+iy) = A(x+iy) + B(x+iy) + O_{\leq}(E_A(x+iy) + E_B(x+iy) + E_{C,0}(x+iy))$$

Normalize by B<sub>0</sub> and bound effectively

$$\frac{H_t(x+iy)}{B_0(x+iy)} = \sum_{n=1}^N \frac{b_n^t}{n^{s_*}} + \gamma \sum_{n=1}^N n^y \frac{b_n^t}{n^{\overline{s_*} + \kappa}} + \overline{O_{\leq} (e_A + e_B + e_{C,0})}$$

#### Main estimate lower bound

$$\text{(triangle)}\ |f_t(x+iy)| \geq 1 - |\gamma| - \sum_{n=2}^N \frac{b_n^t}{n^\sigma} (1 + |\gamma| n^{y-\operatorname{Re}(\kappa)}),$$

$$(\text{lemma}) \quad |f_t(x+iy)| \geq \left(\left|\sum_{n=1}^N \frac{b_n^t}{n^{s_*}}\right| - \left|\sum_{n=1}^N \frac{|\gamma| b_n^t n^y}{n^{s_*}}\right|\right)_+ - |\gamma| \sum_{n=1}^N \frac{b_n^t (n^{|\kappa|} - 1)}{n^{\sigma - y}}.$$

Hence,

$$\begin{split} e_A + e_B &\leq \sum_{n=1}^{N} (1 + |\gamma| N^{|\kappa|} n^y) \frac{b_n^t}{n^{\text{Re}(s_{\star})}} \left( \exp\left(\frac{\frac{t^2}{16} \log^2 \frac{x}{4\pi n^2} + 0.626}{x - 6.66}\right) - 1 \right) \\ e_{C,0} &\leq \left(\frac{x}{4\pi}\right)^{-\frac{1+y}{4}} \exp\left(-\frac{t}{16} \log^2 \frac{x}{4\pi} + \frac{1.24 \times (3^y + 3^{-y})}{N - 0.125} + \frac{3|\log \frac{x}{4\pi} + i\frac{\pi}{2}| + 10.44}{x - 8.52} \right) \end{split}$$



$$\int_{d=1}^{D} \frac{\lambda_d}{d^s} = \prod_{p \le P} \left( 1 - \frac{b_p^t}{p^s} \right)$$

Choice of 'Euler mollifiers

If Lower bound  $\geq$  Upper bound then  $H_t(x+iy) \neq 0$ 

# Actual trajectories of real and complex zeros of H<sub>t</sub>(x+iy)

The complex parts of zeros attract each other and the real parts repel each other. From isolating the imaginary "force", it can be derived that all complex zeroes will be forced into the real axis in a finite time leading to the bound:

$$\Lambda \le t + \frac{1}{2}\sigma_{max}^2(t)$$



Zeroes get denser as one moves away from the origin, so there are more zeros to the right of  $x_n$  then to the left, hence their trajectories typically "lean" leftwards.

Once a zero becomes real, it stays real forever and ends up roughly equally spaced with:

$$z_{j+1}(t) - z_j(t) = (1 + o(1)) \frac{4\pi}{\log z_j(t)}$$



# The De Bruijn – Newman $\Lambda$ : introducing a 'canopy' the complex zeroes can't cross



Possible trajectory of a complex zero  $(H_t(x+i|y|_{>0})=0)$ 



→ Possible trajectories of complex zeros that should be "blocked".

## "Barrier" approach: how to clear the barrier?



# "Barrier" approach: how to verify the area from the barrier up to N<sub>b</sub>?



# Optimizations made to improve computation speed

### **Barrier Optimizations**

### **Euler Bounds Optimizations**





Using the incremental Lemmabound computations, as in section 8 of the writeup. When the incremental bounds reach a threshold (>> error bound), the full bound is recalculated.





#### A larger t step:

$$t_{next} = t_{curr} + \frac{\min(mesh|(A+B)/B0|) - 0.5}{ddtbound}$$

is allowed due to a conservatively chosen mesh gap 1/ddzbound.

(, y, t.

2.

Fast conservative error bound for [ $N_{min}$ ,  $N_{max}$ ].  $N_{min}$  could also be reset at the beginning of a new sawtooth.

 $3N_{max}\max(e_{B}summand(^{n=1,X=X_{N_{min}}}),e_{B}summand(^{n=N_{max},X=X_{N_{min}}})) + e_{C,0}(^{x=X_{N_{min}}})$ 





### The Barrier model - progress made

X-location where min mesh | (A+B)/B0 | Selected with the Selected with the starts between 4 and 5 at t=0 and ends LemmaBound utility TriangleBound utility near 1.5 at  $t=t_0$ . Winding RH mollifier mollifier Barrier Lemma Triangle Λ Na Nb to **y**0 Χ offset verified? number primes bound value primes bound value 6.00E+10 155019 0.20 0.20 0.22 0.067 69098 (0)0.077 1.7E+06 yes 0 (2,3,5,7)2.00E+11 187700 tentative 0.19 0.20 0.21 0 (2,3,5,7)0.095 126156 (0)0.121 4.0E+06 1.00E+12 46880 0.18 0.20 0.20 0.135 282094 (0)7.0E+06 tentative 0 (2,3,5)0.112 tentative<sup>2)</sup> 5.00E+12 194858 0.17 0.20 0.19 1.5E+07 (2,3,5)0.180 630783 (0)0.116 0 1.00E+13 9995 0.16 0.20 0.18 0.109 892062 0.091 3.0E+07 0 (2,3,5)(0)not yet 7.0E+07 1.00E+14 2659 0.15 0.20 0.17 0.195 2820947 (0)0.076 not yet 0 (2,3,5)1.00E+15 21104 0.14 0.20 0.16 (2,3,5)0.251 8920620 (0)0.073 2.0E+08 not yet 0 172302 0.20 7.0E+08 1.00E+16 0.13 0.15 0 (2,3,5)0.278 28209479 (0)0.077 not yet 1.00E+17 31656 0.12 0.20 0.14 3.0E+09 not yet 0 (2,3,5)0.279 89206205 (0)0.080 1.00E+18 44592 0.11 0.20 0.13 0.207 282094791 0.103 2.0E+10 (2,3)(0)not yet 0 12010 0.20 0.12 1.00E+19 0.10 tbd (2,3)0.128 892062059 (2) 0.109 2.0E+09 not yet 2820947918 1.00E+20 37221 0.09 0.20 0.11 tbd (2,3,5)0.037 (2) 0.094 1.3E+10 not yet

<sup>1)</sup> Platt et al, 2011

<sup>2)</sup> Gourdon-Demichel, 2004

### Software used and useful links

All software was developed in two languages and results between them were reconciled:

- > Symbolic math programming language pari/gp (<a href="https://pari.math.u-bordeaux.fr">https://pari.math.u-bordeaux.fr</a>)
  - Short development time
  - Relatively fast
- Arithmetic Balls C-based library Arb (<a href="http://arblib.org">http://arblib.org</a>)
  - Longer development time
  - Very fast (up to 20 x pari/gp)

All software and results are free to use (under the LGPL-terms) and can be found here:

https://github.com/km-git-acc/dbn upper bound