NRL 12-Bit, 213 Msps ADC HSAD9 MCM Evaluation Board

December 8, 1999 Khanh Thai

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20000214 001

Table of Contents

1.		Evaluation Board Overview	
	1.1.	Block Diagram	. 1
2.		Breadboard Interfaces	2
	2.1.	Analog Interface	
	2.2.	BClock Interface	
	2.3.	WCLK Interface	
	2.4.	ADC Data Interface	. 3
	2.5.	Controller Interface	. 4
	2.6.	DVM Sense	. 4
	2.7.	Power	. 5
	2.7	1. Connector Pinout	. 5
	2.7	2. Power consumption	. 5
	2.8.	Test Mode Select Dip Switch	
	2.8		
	2.8	2. FlagL and FlagH DVM Sense Lines Control - Sw2 and Sw3	. 6
	2.8.		
		Evalution Board Mechanical Drawings	
	2.10.	Heatsink and Clamp	. 6
3.		HSAD9 MCM	10
	3.1.	Mechanical Drawings	14
	3.2.	AMAD19 – 12 Bit ADC	15
	3.3.	DAC8800 - Octal DAC	15
	3.4.	OP400 – Quad OpAmp	16
	3.5.	LM385 – 1.2V Voltage Reference	
	3.6.	A1225XL – Calibration FPGA	
	3.7.	X20C16 – EEPROM	19
4.		Breadboard Schematics	21
5.		Bill of Material	22
6.		Breadboard Layout Plots	23

Table of Figures

Figure 1-1: MCM Evaluation Board Block Diagram.	
Figure 2-1: Analog Input Interface.	2
Figure 2-2: BCLOCK Interface.	2
Figure 2-3: WCLK Interface.	3
Figure 2-4: Data Output Interface	3
Figure 2-5: Evaluation Board Mechanical Dimensions.	7
Figure 2-6: Heatsink Mechanical Drawing	8
Figure 2-7: Top Clamp Mechanical Drawing.	8
Figure 2-8: Bottom Clamp Mechanical Drawing.	9
Figure 3-1: HSAD9 MCM Layout	10
Figure 3-2: HSAD9 MCM Mechanical Dimensions.	14
Figure 3-3: Calibration DAC Serial Interface.	16
Figure 3-4: ADC Reference Generation.	17
Figure 3-5: Calibration FPGA Block Diagram.	18
Figure 3-6: Revised Clock Logic Block Diagram.	19
Table of Tables	
Table 2-1: Data Connector Pin Assignment.	
Table 2-2: Controller Interface Connector Pin Assignment	
Table 2-3: DVM Sense Connector Pinout.	
Table 2-4: Power Connector Pinout	
Table 2-5: MCM Evaluation Board Power consumption.	
Table 2-6: Temperature Logic Override Switch Settings.	
Table 2-7: S/H Override Switch Settings	
Table 3-1: HSAD9 MCM Pin Description	
Table 3-2: TRIM DACs	15
Table 3-3: EEPROM Memory Configuration	19

1. Evaluation Board Overview

The MCM Evaluation Board is a 6" by 6" test fixture designed for evaluating the HSAD9 MCM, a completely self-contained ADC multi-chip module that digitizes incoming differential analog signals to 12-bit resolution at a 213 Msps maximum sample rate. Data is output through a 50 pin D connector with LVDS logic levels. The MCM Evaluation Board functions very similarly to the AMAD19 12-bit ADC Breadboard. Its circuitry is very similar as well, with the major components that were once on the Breadboard now packaged on the HSAD9 MCM. The MCM is comprised of five major circuit blocks: the AMAD19 custom GaAs HBT circuit, a Calibration FPGA, a non-volatile Ram, two octal, 8-bit DACs, and reference generation circuitry. Many comparisons and references to the AMAD19 Breadboard document-1999-D502-020, "NRL 12-Bit, 213 Msps ADC Breadboard and Calibration FPGA," by T. Zylman and K. Thai--will be made throughout this document.

1.1. Block Diagram

Figure 1-1: MCM Evaluation Board Block Diagram.

1

2. Evaluation Board Interfaces

Seven separate interfaces are provided on the Evaluation Board, and are described below.

2.1. Analog Interface

Differential analog input with SMA jack connectors on the edge of the Evaluation Board. Both sides of the differential signal are terminated with 50 Ω on the AMAD19 chip itself. See Figure 2-1. An optional phase splitter may be used to drive the ADC input differentially.

Figure 2-1: Analog Input Interface.

2.2. BClock Interface

Differential clock input with SMA jack connectors on the edge of the Evaluation Board. Both sides of the differential signal are terminated with 50 Ω on the AMAD19 chip itself. See Figure 2-2.

Figure 2-2: BCLOCK Interface.

2.3. WCLK Interface

Differential clock input with SMA jack connectors on the edge of the Evaluation Board. Both sides of the differential signal are optionally terminated with 50 Ω on the breadboard. See Figure 2-3. DC blocking capacitors are recommended on this port if driven by an external source.

Figure 2-3: WCLK Interface.

2.4. ADC Data Interface

Figure 2-4 shows the LVDS interface circuit used for the ADC Data interface. Nominal logic levels for the LVDS interface are a common mode voltage of approximately 1.25V and a differential swing of about +/- 330 mV

Figure 2-4: Data Output Interface

12/08/99

3

Table 2-1 shows the pin assignment used in the 50 pin, female, D connector for the Data Output.

Table 2-1: Data Connector Pin Assignment.

Signal	Pin No	Signal	Pin No	Signal	Pin No
O12T	1	GND	18	Q12F	34
QHT	2	GND	19	QHF	35
Q10T	3	GND	20	Q10F	36
Q9T	4	GND	21	Q9F	37
Q8T	5	GND	22	Q8F	38
Q7T	6	GND	23	Q7F	39
Q6T	7	GND	24	Q6F	40
Q5T	8	GND	25	Q5F	41
Q4T	9	GND	26	Q4F	42
Q3T	10	GND	27	Q3F	43
Q2T	11	GND	28	Q2F	44
QIT	12	GND	29	Q1F	45
OF2T	13	GND	30	QF2F	46
QF1T	14	GND	31	QFIF	47
OVRT	15	GND	32	OVRF	48
Not Used	16	GND	33	Not Used	49
CLKOUTT	17			CLKOUTF	50

2.5. Controller Interface

A 20 pin, dual row header is used to interface the controller to the Evaluation Board. The pin assignment for this connector is shown in Table 2-2. All signals for this interface are TTL compatible.

Table 2-2: Controller Interface Connector Pin Assignment.

Signal	Pin No	Signal	Pin No
CSDO	1	GND	2
CSCLK	3	GND	4
CRESETN	5	GND	6
CSLDN	7	GND	8
CSDI	9	GND	10
CNE*	11	GND	12
CWE*	13	GND	14
CCE*	15	GND	16
COE*	17	GND	18
GND	19	GND	20

2.6. DVM Sense

A 50 pin, female D, connector is used for the DVM interface connector. Pinouts for this connector is shown in Table 2-33.

12/08/99

4

Table 2-3: DVM Sense Connector Pinout.

Signal	Pin No	Signal	Pin No	Signal	Pin No
DACREFM	1	GND	18	BSENP	34
WBAREFP	2	GND	19	BREFM	35
CMSENM	3	GND	20	DACSENP	36
TDACBUF	4	GND	21	WBASENM	37
RESENP	5	GND	22	CMREFP	38
LADSENP	6	GND	23	RESREFM	39
LADREFM	7	GND	24	Not Used	40
TEMPL	8	GND	25	Not Used	41
TEMPH	9	GND	26	Not Used	42
VCCD	10	GND	27	Not Used	43
MIOUT	11	GND	28	Not Used	44
M1	12	GND	29	Not Used	45
Vr_n59	13	GND	30	Not Used	46
MADCREF	14	GND	31	Not Used	47
FLAGL	15	GND	32	Not Used	48
FLAGH	16	GND	33	Not Used	49
Not Used	17			Not Used	50

2.7. Power

A 9 pin, female D, connector is used to bring power into the Evaluation Board. The pin assignment for this connector is shown in Table 2-4.

2.7.1. Connector Pinout

Table 2-4: Power Connector Pinout.

Pin No	Supply
1	Vee
2	Vee sense
3	Vee ⁺ sense
4	Vee ⁺
5	Vcca ⁺
6	Vcca ⁺ sense
7	Vcca sense
8	Vcca
9	Not Used

2.7.2. Power consumption

Table 2-5: MCM Evaluation Board Power consumption.

Supply	Voltage	Static Current	Dynamic Current	Total Current	Max Power
Vee	-7.5 V ±5%	0.591 A		0.591 A	4.433 W
Vcca	+5.5 V ±5%	0.096 A		0.096 A	0.528 W
Vcc	+5.5 V ±5%	0.117 A		0.117 A	0.644 W
Vccd	+5.0V ±5%	0.027 A	0.038 A	0.065 A	0.325 W

2.8. Test Mode Select Dip Switch

A four-position DIP switch is used on the Evaluation Board to select the functional modes of the FPGA Calibration Logic and the DVM outputs. These switches are factory set, and are not user selectable

2.8.1. Temperature Logic Override - Sw1

Table 2-6: Temperature Logic Override Switch Settings.

SW1	Temp. Logic Disabled
0	NO
1	YES

2.8.2. FlagL and FlagH DVM Sense Lines Control - Sw2 and Sw3

Table 2-7: S/H Override Switch Settings.

SW2 (FlagL)	SW3 (FlagH)	DVM Output
0 (open)	0 (open)	No Signal
1 (closed)	1 (closed)	Signal

2.8.3. Not Used - Sw4

2.9. Evaluation Board Mechanical Drawings

Figure 2-5: Evaluation Board Mechanical Dimensions.

2.10. Heatsink and Clamp.

A custom machined heatsink and clamp is used to dissipate the heat of the HSAD9 MCM and clamp it to the circuit board to provide a socket for testing multiple parts.

Figure 2-6: Heatsink Mechanical Drawing

Figure 2-7: Top Clamp Mechanical Drawing.

Figure 2-8: Bottom Clamp Mechanical Drawing.

3. HSAD9 MCM

The HSAD9 is a custom high temperature cofired ceramic multi-chip module built by NTK Ceramics. Figure 3-1 shows the MCM layout and pinouts. The 112-lead MCM is 1.5" by 2" and contains the AMAD19 12-Bit ADC (U8 in Fig. 3-1), an EEPROM (U9), an FPGA(U7), two Octal-DACs (U4 & U5), two Quad-Op-Amps (U1 & U2), and a voltage reference (VR1). Table 3-1 describes each pinout.

Figure 3-1: HSAD9 MCM Layout.

Table 3-1: HSAD9 MCM Pin Description.

Pin	Pin Name	Pin Description	Comments	Bias
1	VEE2			-7.5V
2	GNDD12			0V
3	Mlout	DC Monitor	-1V internally generated from Madcref	-1V
4	M1		-1V opamp buffered version of M1out	-1V
5	Vr_n59		-5.9V Op Amp buffered version of TDACBUF	-5.9V
6	MADCref	V	External -1.235V reference	-1.23V
7	GNDD9			0V
8	VCC4			+5.5V
9	VCCD_OUT		+5.0V from +5.5V through dropping diode; route to external noise filter	+5.0V
10	GNDD16			0V
11	VCCD1		+5.0 V input from external noise filter	+5.0V
12	GNDD7			0V
13	COEN	Trim Computer	(Not Required by User)	TTL
14	CCEN	Interface		TTL
15	CWEN			TTL
16	CNEN			TTL
17	CSDI			TTL
18	CSLDN			TTL
19	Creset			TTL
20	CSCLK			TTL
21	CSDO	V		TTL
22	GNDD22			0V
23	fc_1MHz		Output from 1-MHz RC oscillator, clock for FPGA	TTL
24	GNDD5			0V
25	Temp_Hold		Temperature logic override: "1" to override	TTL
26	TRO_LED	Calibration Indicator	Temp Range Over LED	TTL
27	L_LED	Calibration Indicator	Temp Table Load LED	TTL
28	FlagL	Temperature Flag	TTL – temperature below TempL	TTL
29	FlagH	Temperature Flag	TTL – temperature above TempH	TTL
30	VEE5			-7.5V
31	GNDD17			0V
32	WCLK(1)	Word Clock	213 MHz for synchronizing multiple	-1.5V
33	WCLK(0)	(Optional)	ADCs, otherwise unused	-1.25V
34	GNDD8			0V
35	BCLK(1)	Master Clock, T	Connect to 50Ω single-ended sinewave	N/A
36	BCLK(0)	Master Clock, F	Terminate 50Ω to ground	N/A
37	GNDD24			0V
38	VCC2			+5.5V
39	GNDD23			0 V
40	OVRT	Over-range Outputs	High when input is out of range	LVDS
41	OVRF			LVDS
42	Q12T	Data Outputs	100 Ohm Line to Line termination at load	LVDS
43	Q12F		Q12 is LSB	LVDS
44	Q11T			LVDS
45	QHF			LVDS
46	Q10T			LVDS
47	Q10F	V		LVDS

Pin	Pin Name	Pin Description	Comments	Bias
48	Q9T	Data Outputs		LVDS
49	Q9F			LVDS
50	QF2T	Fine Trim Outputs	Fine Latch 2nd MSB (Factory Cal Only)	LVDS
51	QF2F			LVDS
52	GNDD4			0V
53	CLKOUTT	Clock Outputs		LVDS
54	CLKOUTF			LVDS
55	GNDD11			0V
56	VEE6			-7.5V
57	VCC3			+5.5V
58	GNDD13			0V
59	Q8T	Data Qutputs		LVDS
60	Q8F			LVDS
61	Q7T			LVDS
62	Q7F			LVDS
63	Q6T			LVDS
64	Q6F			LVDS
65	Q5T			LVDS
66	Q5F			LVDS
67	Q4T			LVDS
68	Q4F			LVDS
69	Q3T			LVDS
70	Q3F			LVDS
71	Q2T			LVDS
72	Q2F			LVDS
73	QIT	V	Q1 is MSB	LVDS
74	QIF	T		LVDS
75	QF1T	Fine Trim Outputs	Fine Latch MSB (Factory Cal Only)	LVDS
76	QFIF			LVDS
77	GNDD10			0V
78	VCCI			+5.5V
79	GNDD14			0V
80	VEE4			-7.5V
81	GNDD15			0V
82	VCCA1			+5.5V
83	GNDD19			0V
84	Bsenp	Opamp Control Loops	Ref and Sense go to the inputs of the opamp	0.5V
85	Brefm	DC Monitor	a "p" suffix means the opamp plus input	0.5V
86	DACrefm		a "m" suffix means the opamp minus input	-0.5V
87	DACsenp		B is for Bridge balance	-0.5V
88	WBArefp		DAC is for DAC gain	-2V
89	WBAsenm		DAC gain is trimmed with DACref	-2V
90	CMsenm	<u> </u>	WBA is for WBA common mode	-2.5V
91	CMrefp	▼	CM is for DAC common mode	-2.5V
92	GNDD18			0V
93	VCCA2			+5.5V
94	GNDD3			0V
95	INT	Analog Input	Connect to external phase splitter	±0.5V

NRL 12-Bit ADC MCM Evaluation Board

Pin	Pin Name	Pin Description	Comments	Bias
96	INF	Analog Input	Connect to external phase splitter	±0.5V
97	GNDD6			0V
98	VEE3			-7.5V
99	GNDD1			0V
100	TDACBUF	Trim DAC Ref Buffer	-5.9V from chip to opamp buffer to Trim DAC	-5.9V
101	RESrefm	Opamp Control Loops	RES is for Residue amplifier gain	-0.5V
102	RESsenp	DC Monitor		-0.5V
103	VCCD3			+5.0V
104	GNDD20			0V
105	LADsenp	Opamp Control Loops	LAD is for Quantizer ladder gain	-0.5V
106	LADrefm	DC Monitor	Quantizer gain is trimmed with LADref	-0.5V
107	VEE1			-7.5V
108	GNDD2			0V
109	TempL	Trip Low	Analog Low temperature trip voltage input (monitor)	-0.5V
110	TempH	Trip High	Analog High temperature trip voltage input (monitor)	-0.5V
111	GNDD21			0V
112	VCCD2			+5.0V

3.1. HSAD9 MCM Mechanical Drawings

Figure 3-2: HSAD9 MCM Mechanical Dimensions.

3.2. AMAD19 - 12 Bit ADC

The AMAD19 is a 12-Bit, 213 Msps Analog-to-Digital Converter IC. It is designed and built by TRW in its GaAs HBT fabrication facility. Refer to *Sections 3-1 and 3-2* in the AMAD19 Breadboard document, 1999-D502-020, "NRL 12-Bit, 213 Msps ADC Breadboard and Calibration FPGA," by T. Zylman and K. Thai, for specifications and pin descriptions of the AMAD19.

3.3. DAC8800 - Octal DAC

Sixteen trim DACs are required to align and calibrate the AMAD19. Two Octal, Analog Devices, DAC8800's are used to perform this function. **Error! Reference source not found.** shows what the trim DACs are used for.

Table 3-2: TRIM DACs

Trim Point	# OF TRIM	Resolution	Range	Comments
DAC Gain	1	1 LSB	5%	resolution at full scale
Quantizer Gain	1	.05 LSB	10%	resolution at full scale
RESAMP Gain	1	.08 LSB	175° C	range of compensation
C/F Offset	1	1.5 LSB	40 mV	referred to resamp input
DAC Level	8	.15 LSB	1.5%	1.5% of current source value
TEMP Limits	2	1.2° C	150° C	setting temperature threshold
Folder Offset	2	.03 LSB	8%	8% of folder bypass current
Total DACs	16			

The DAC's use a serial interface to reduce the pin count on the package. This interface is controlled via the calibration FPGA. Calibration coefficients are downloaded into the DACs during normal operation as temperature changes.

Figure 3-3: Calibration DAC Serial Interface.

Individual Trim DACs can be controlled via the computer interface by writing data to the EEPROM RAM as described in *Section 5.2*, and then issuing a DAC Load command as described in *Section 4.6.1* in the AMAD19 Breadboard Document.

3.4. OP400 - Quad OpAmp

Two Analog Devices Quad Op-Amps, a total of eight op-amps, are used to buffer the signals to the ADC.

3.5. LM385 - 1.2V Voltage Reference

An external -1.235V reference is required for chip operation. The reference voltage is fed to the MADCREF input and divided down to -1V, and output on the M1out pin. The M1out signal is then buffered by an external opamp and fed back to the AMAD19 at the M1 input pin and also fed to one set of 8 external trim DACs as a low reference. This trim DAC uses a high reference input of 0 V and a low reference voltage of -1 V. SIT Resistors Rx and Rx may be used to adjust the -1 V value slightly.

A second voltage reference of about -5.9 V is output from the AMAD19 on the TDACBUF pin and buffered by an opamp. The buffered voltage is then fed to the second set of 8 DACs as its high reference input. This set of trim DACs uses VEE (-7.5 V) as its low side reference voltage. A SIT resistor may be installed on the opamp inverting terminal to VEE to adjust the reference voltage slightly.

Figure 3-4: ADC Reference Generation.

3.6. A1225XL - Calibration FPGA

An ACTEL A1225XL FPGA is used to implement the Calibration Functions for the ADC. These functions include reading the current temperature of the ADC chip and detecting a change in temperature that requires a new set of calibration coefficients, reading calibration coefficients out of non-volatile memory, and downloading them to the calibration DACs. The FPGA also implements an interface to an external computer which allows control of the calibration functions, and a power on reset mode which defines the initial state of the ADC and calibration circuitry.

Figure 3-5 shows the block diagram for the calibration logic. The logic can be defined by seven unique blocks: a Controller Interface, Power On Reset Logic, Clock Logic, Temperature Logic, a non-Volatile Ram Interface, a Calibration DAC interface, and a Pulse Stretcher for an indicator light for Calibration Active.

12/08/99

Figure 3-5: Calibration FPGA Block Diagram.

Refer to Section 4 in the AMAD19 Breadboard document, 1999-D502-020, "NRL 12-Bit, 213 Msps ADC Breadboard and Calibration FPGA," by T. Zylman and K. Thai, to find details and functions of each of the unique blocks of the calibration circuitry. Several changes were made to the calibration circuitry for the FPGA on the HSAD9 MCM. An R-C clock circuit provides an external 2-MHz clock reference to the FPGA instead of the 16-MHz crystal. The Clock Logic now uses a D-Flip-Flop to divide the incoming clock signal down to the desired 1-MHz. Figure 3-10 shows the revised Clock Logic block. The Temp Logic was altered to program 31 temperature tables into the EEPROM instead of the 126. This will be detailed in the next section. Also, a Temp Logic disable pin was installed for manual override. These changes do not affect the existing user interface described in the AMAD19 Breadboard document.

18

Figure 3-6: Revised Clock Logic Block Diagram.

3.7. X20C16 - EEPROM

An Electrically-Erasable-Programmable-Read-Only-Memory (EEPROM) with a built in shadow RAM (or NOVRAM for Non-Volatile RAM) is used to store calibration DAC codes for the ADC. The RAM is a 2K x 8, X20C16 from Xicor. For the EEPROM write and store commands, refer to Sections 5.2 and 5.3 in the AMAD19 Breadboard document.

As mentioned in the previous section, there are 31 unique temperature tables stored in the EEPROM, each with 16 DAC word storage locations. Each DAC word is an 8-bit word. Two of the DAC locations are used for the temperature trip points – TempH and TempL. These two Memory locations must be preprogrammed in each of the 31 temperature tables before the temperature logic will function. Data is stored in the EEPROM as shown in Table 3-33.

NO	OVRAM Add	ress	DAC Re	ference	
	Temp Bus	DAC Addr			
A10 - A0	A10 - A4	A3 – A0	DAC#	Name	Code
0#H	0	0	DAC 1 - 0	Ioffset	XXX
1#H	0	1	DAC 1 - 1	Qoffset	XXX
2#H	0	2	DAC 1 – 2	DACREFM	XXX
3#H	0	3	DAC 1 - 3	LADREFM	XXX
4#H	0	4	DAC 1 – 4	RESREFM	XXX
5#H	0	5	DAC 1 – 5	TempL	0
6#H	0	6	DAC 1 - 6	TempH	16
7#H	0	7	DAC 1 - 7	COFFT	XXX
8#H	0	8	DAC 2 - 0	Ti	XXX
9#H	0	9	DAC 2 – 1	T2	XXX
A#H	0	10	DAC 2 - 2	T3	XXX
B#H	0	11	DAC 2 - 3	T4	XXX
C#H	0	12	DAC 2 - 4	T5	XXX
D#H	0	13	DAC 2 - 5	T6	XXX
E#H	0	14	DAC 2 - 6	T7	XXX
F#H	0	15	DAC 2 - 7	T8	XXX

Table 3-3: EEPROM Memory Configuration.

NRL 12-Bit ADC MCM Evaluation Board

NO	OVRAM Add	ress	DAC Re	ference	
	Temp Bus	DAC Addr		:	
A10 - A0	A10 - A4	A3 - A0	DAC#	Name	Code
40#H	4	0	DAC 1 - 0	Ioffset	XXX
•	•	•	•	•	•
45#H	4	5	DAC 1 – 5	TempL	8
46#H	4	6	DAC 1 – 6	TempH	24
•	•	•	•	•	•
4F#H	4	15	DAC2 - 7	T(8)	XXX
80#H	8	0	DAC 1 – 0	Ioffset	XXX
•	•	•	•	•	•
85#H	8	5	DAC 1 – 5	TempL	16
86#H	8	6	DAC 1 - 6	TempH	32
•	•	•	•	•	•
8F#H	8	15	DAC 2 -7	T(8)	XXX
C0#H	12	0	DAC 1 – 0	Ioffset	XXX
•	•	•	•	•	•
C5#H	12	5	DAC 1 – 5	TempL	24
C6#H	12	6	DAC 1 - 6	TempH	40
•	•	•	•	•	•
CF#H	12	15	DAC 2 -7	T(8)	XXX
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
740#H	116	0	DAC 1 - 0	Ioffset	XXX
•	•	•	•	•	•
745#H	116	5	DAC 1 – 5	TempL	232
746#H	116	6	DAC 1 - 6	TempH	248
•	•	•	•	•	•
74F#H	116	15	DAC 2 – 7	T(8)	XXX
780#H	120	0	DAC 1 - 0	Ioffset	XXX
•	•	•	•	•	•
785#H	120	5	DAC 1 – 5	TempL	240
786#H	120	6	DAC 1 - 6	TempH	255
•	•	•	•	-	•
78F#H	120	15	DAC 2 – 7	T(8)	XXX
7C0#H	120	0			Not Used
•	•	•	•	•	•
•	•	•	•	•	•
7CF#H	124	15			Not Used

4. Breadboard Schematics

TRW	amad19_mcmbbd_	_output_conr	1sheet1
VER: 3 SIZE: A	July 27, 1999 DRAWN BY: kvthai	09:49:21	PAGE 00

5. Bill of Material

Board Station BOM file Tuesday August 31, 1999; 18:10:17

ITEM_NUMBER PART NO.	R PART NO.	ALT. PART NO.	COUNT	DESCRIPTION	REFERENCE	SOURCE
0	17D-D-50-P-AJ4 1A036-337	MD50F5R8NT2X PCC103BNCT-ND	a 1	CAP (0.01uF)	DATA DVM C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C34 C35 C36 C37 C39 C40 C41 C42 C47 C48 C49 C50	Positronic Digi-Key
64 TO O	1A060-009 1A077-030 1DA29-002 1K070-070	PCT3335CT-ND PCT5106CT-ND 6A2DICT-ND P887CCT-ND	ω 4 4 <i>۲</i>	CAP (3.3uF) CAP (10uF) DIODE 1N5811 RES (887)	C1 C2 C3 C4 C5 C6 C7 CR1 CR2 CR3 CR4 R27 R28 R29 R30 B31 B32 B33	Digi-Key Digi-Key Digi-Key Digi-Key
7 8 6	1K070-073 1K070-097 1K070-114	P1.00KCCT-ND P10.0KCCT-ND P51.1KCCT-ND	- 1 - 25	RES(1K) RES(10K) RES (51K)	R35 R34 R1 R3 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R36 R37 R38	Digi-Key Digi-Key Digi-Key
10	1K070-124	P1.30KCCT-ND	7	RES (1.3K)	R20 R21 R22 R23 R24 R25 R26	Digi-Key
11 13 14 15	2643002402 555-2009 AMP747250-4 DP-04 PADS_FOR_COAX	P9820BK-ND 160-10 <u>45-ND (53-ND)</u> MD9F5R8NT2X CKN3003-ND	400	ferrite_bead LED Red (Yellow) CONN 9p d-sub(fem) SWITCH dip4 PADS	E1 E2 E3 E4 DS1 DS2 POWER S1 BCLKB(0) BCLKB(1) INB(0) INB(1)	Digi-Key Digi-Key Positronic Digi-Key
16 17 18	TSW-102-08-S-S amad19_mcm probe_pad	S2011-36-ND	0	CONN Dual row 10p amad19_mcm probe_pad	WCLKB(U) WCLKB(1) J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 U1	Digi-Key TRW Inc.

6. Breadboard Layout Plots

LAYER_1: SIGNAL_1 (NRL MCM EVAL BRD REV 0.0)

LAYER_2: GROUND (NRL MCM EVAL BRD REV 0.0)

LAYER_3: VCC, VCCA, VCCD (NRL MCM EVAL BRD REV 0.0)

LAYER_4: VEE (NRL MCM EVAL BRD REV 0.0)

LAYER_5: GROUND (NRL MCM EVAL BRD REV 0.0)

LAYER_6: SIGNAL_2 (NRL MCM EVAL BRD REV 0.0)

SILKSCREEN_TOP (NRL MCM EVAL BRD REV 0.0)

SILKSCREEN_BOTTOM (NRL MCM EVAL BRD REV 0.0)

SOLDER_MASK_TOP (NRL MCM EVAL BRD REV 0.0)

SOLDER_MASK_BOTTOM (NRL MCM EVAL BRD REV 0.0)

GOLD_PLATED_AREA_TOP (NRL MCM EVAL BRD REV 0.0)

GOLD_PLATED_AREA_BOTTOM (NRL MCM EVAL BRD REV 0.0)

TRW Space & Electronics Group

Subject:

Summary of NRL HSAD9 MCM

Date:

August 10, 1999

From: Khanh Thai Location/Phone O2/2374 (310) 813-7995

MCM Summary

• Size L x W x H

2.000" x 1.500" x 0.167"

• No. of leads

112

• Number of Layers

6 Ceramic Layers

7 Metallization Layers

• Power Dissipation

6 Watts

Technology

HTCC – high temperature cofired ceramic

Material

Alumina

• Heat Sink

CuW – copper tungsten

• Via Types

0.004 hole w/ 0.008 annular ring 0.008 hole w/ 0.012 annular ring

0.000 I

• Signal Traces

≥ 0.004

Clearances

≥ design standard in NTK Technical Ceramics Manual

Gerber Format

• Gerber Format:

D-coded assigned, Gerber format

• Aperture Types:

Trace and Flash

• Units:

Inches

• Numeric Format:

6-decimal places

N/C Drill Format

• Drill File Format:

Excellon

Units:

Inches

Numeric Format:

Leading / Trailing zero present

Issues and Concerns

• This design is based on the NTK "Special" Design Rules.

- > It is okay for NTK to adjust Gerber data so that design integrity is consistent with its manufacturing process design rules.
- > TRW must be informed, and approve any design changes to the MCM layout.
- Expected date of delivery of MCM: September 15, 1999.

Contents of Data Disk

Directory:

/net/cabo/proj61/mgc_d502_chips/AMAD19_1/mcm/amad19_mcm/pcb/mfg/..

Artwork Files:

Gerber Data	Description
Filename	
TRW_HSAD9.BRZ	Layer 1: Seal Ring Braze Layer Pattern
TRW_HSAD9.SG1	Layer 2: Signal 1 (Top) Pattern
TRW_HSAD9.GD1	Layer 3: Ground 1 Pattern
TRW_HSAD9.VEE	Layer 4: Power VEE Pattern
TRW_HSAD9.VCC	Layer 5: Power VCC, VCCA, VCCD Pattern
TRW_HSAD9.SG2	Layer 6: Signal 2 Pattern
TRW_HSAD9.GD2	Layer 7: Ground 2 Pattern
TRW_HSAD9.SSN	MCM Identification Info for Layer 2

Aperture File:

ASCII Data	Description
Filename	
TRW_HSAD9_REV.APR	Aperture definitions (revised)

Drill Data Files:

Excellon Data	Description
Filename	
thr_BRZG2	Through Via from Braze (layer 1) to Ground 2 (layer 7)
bv_BRZS1	Buried Via from Braze (layer 1) to Signal 1 (layer 2)
bv_S1G1	Buried Via from Signal 1 (layer 2) to Ground 1 (layer 3)
bv_S1VEE	Buried Via from Signal 1 (layer 2) to VEE (layer 4)
bv_S1VCC	Buried Via from Signal 1 (layer 2) to VCC (layer 5)
bv_S1S2	Buried Via from Signal 1 (layer 2) to Signal 2 (layer 6)
bv_G1G2	Buried Via from Ground 1 (layer 3) to Ground 2 (layer 7)

Attachments:

• Aperture Table:

A list of different aperture types used in the layout.

• Via Definitions:

Shows the different types and sizes of vias used. Includes the via naming conventions.

• Mechanical Drawings:

112 Lead HTCC MCM Package MCM Layers (side view) MCM Cover

Power and Signal Layers Drawings:

Hard copies of the Artwork files created in Mentor Graphics MCM station.

Layer 1: Seal Ring Braze Layer Pattern

Layer 2: Signal 1 (Top) Pattern

Layer 3: Ground 1 Pattern

Layer 4: Power VEE Pattern

Layer 5: Power VCC, VCCA, VCCD Pattern

Layer 6: Signal 2 Pattern

Layer 7: Ground 2 Pattern

MCM Identification Info for Layer 2

• MCM Schematics:

amad19_mcm (Mentor Graphics)

• MCM Station BOM (Bill Of Materials) file:

This file lists all the parts used in the MCM. These components are stored in the cell library in Mentor Graphics MCM Station: /net/cabo/proj61/mgc_d502_chips/AMAD19_1/mcm/amad19_mcm/design_geom/..

Wire Bonding Diagrams:

All wire bonds are 1 mil gold wire (C600218-2) There are approximately 410 bonding wires.

APERTURE TABLE:

Tuesday July 13, 1999; 11:45:22

st Run																											
Used Last	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false) 1 1 5
Dcode	10	11	12	13	14	15	16	17	18	19	70	71	20	21	22	23	24	25	26	27	28	29	72	73	125	126) 1 1
Power	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false) } 4
Mirror	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	false	falab) 1 1
Orientation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	Þ
Height(Y)/Diameter	0.004000	0.012000	0.010000	.025000	0.008000	0.005000	0.006000	.035000	0.050000	0.025000	.035000	0.068000	0.030000	0.004000	0.005000	.006000	0.025000	0.010000	.035000	.050000	.030000	.012000	.001000	.002000	0.012000	000800	
								0									0		0	0	0	0	0	0			>
	0.00000	0.00000	0.00000	0.000000	0.00000	0.00000	0.00000	0.050000	0.035000	0.050000	0.060000	0.068000	0.025000	0.004000	0.005000	0.006000	0.030000	0.010000	0.030000	0.025000	0.035000	0.006000	0.00000	0.00000	0 00000		
Type	trace	trace	trace	trace	trace	trace	trace	flash	trace	trace	flach thach	115	ilasn														
Shape	circle	circle	circle	יייי	מן טיני מ	. 4 7 1 2	מן טונט	rectangle	rectandle	rectangle	1 (((((((((((((((((((0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		כדוכדם	circle												
Position	-	, 0	3 m	n 4	יט יי	י נ	, ,	- α	o	, -	110	17	7 F	7 -	1 T	15	17	18	7 6	, ,	21	7.7	4 6	7 7 7	# L	C 7	26

Object Painting Aperture Position Resolution 23 Area Fill Aperture Aperture Position Spacing 23

Thermal tie aperture 23

Via Definitions:

Min/Max

BRAZE_LAYER (HSAD9 MCM) LAYER_1:

SIGNAL_1 (HISAD9 MCM) LAYER_2:

GROUND1 (HSAD9 MCM) LAYER_3:

LAYER_4: VEE (HSAD9 MCM)

LAYER_5: VCC (HSAD9 MCM)

SIGNAL_2 (HSAD9 MCM) LAYER_6:

GROUND2 (HSAD9 MCM) LAYER_7:

Cutout on Layers 1 - 7

LAYER 2. SIGNAL 1 (HSAD9 MCM) SILKSCREEN

TRW	amad19_mcm_power_conn	uu	sheet1
VER: 46 SIZE: A	May 25, 1999 DRAWN BY: kvthai	8:25:31	PAGE 00
!			

DVM(20:0)

TRW	rRW amad19_mcm_dvm		sheet1
VER: 17	VER: 17 July 12, 1999	11:32:43	NGE 00

sheet1	PAGE 00
	13:44:53
amad19_mcm_data	May 5, 1999 DRAWN BY: kvthai
TRW	VER: 14 SIZE: A

MCM Station BOM file

SOURCE	ESS	ESS																					
REFERENCE	C4 C12 C13 C30 C31 C32 C33	C22 C29	CR1	R1 R2 R3	R4 R5	10	U4 U5	VR1	U1 U2	U8	C14 C15 C16 U10	C18 C19 C20 C21	C23 C24 C25 C26	C27 C28 C34 C35	C36 C37 C38 C39	C40 C41 C42 C43	C44 C45	60	J1 J2		T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15	T16 T17 T18 T19 T20 T21 T22 T23	
DESCRIPTION	CAP (4700pF) size AA	CAP (1000pF) size AA	1N5811	RES (1K)	RES (340)	A1225XL	DAC8800	LM185	OP-400	amad19_1	dcblock	dicap						x20c16	jumperpad	padout	probe pads		
COUNT	7	8	-	က	7	-	8	-	7	_	4	22						-	7	112	23		
ALT. PART NO.	1A074-561Z-001	1A074-557Z-001	1N5811	1K055-248W-001	1K055-236W-001	a1225xl	dac8800	lm385	op400	amad19_1	dcblock	dicap	•					x20c16	jumperpad	padout	testpt		
PART NO.	1A036-337	1A036-336	1DA29-002	1K070-073	1K070-074	A1225XL-VQ100C	DAC8800	LM185H-2.5	OP400AY	amad19_1	dcblock	dicap	•					x20c16	jumperpad	padont	testpt		
ITEM_NUMBER	-	7	က	4	2	9	7	8	6	10	=	12						13	14	15	16		

