Alimentador automático para animais de estimação

Arthur Torres Magalhães – 15/0006063 Universidade de Brasília - UnB Brasília-DF - Brasil arthurtorres26@outlook.com Jovelino Caetano Braz Junior – 14/0043641 Universidade de Brasília - UnB Brasília-DF - Brasil jovelinocbjunior@gmail.com

Resumo — Este trabalho propõe a criação de um protótipo com o uso de conceitos de sistemas embarcados e do microcontrolador MSP430, para a implementação de um alimentador automático para animais de estimação, com custo muito menor em relação a outros produtos com a mesma finalidade.

Palavras chaves – MSP430; alimentador automático; animais de estimação.

I. JUSTIFICATIVA

Segundo dados do IBGE em parceria com a Abinpet (Associação Brasileira da Indústria de Produtos para Animais de Estimação), a população total de animais de estimação no Brasil é a 4ª maior do mundo, com mais de 130 milhões de animais. Se forem contados somente a população total de cachorros, gatos e aves canoras e ornamentais (mais de 112 milhões), o país se torna o 2º maior no mundo [1].

Esses animais precisam ser alimentados de tempos em tempos e essa é uma tarefa aparentemente simples para os donos. Entretanto devido a correria e as ocupações do dia-adia, os donos desses animais podem acabar esquecendo de alimentá-los, causando um mal tanto nos animais, que ficam sem se alimentar, quanto nos donos que ficam com um malestar e sentimento de culpa ao descobrir que esqueceram de fazer algo tão básico. Além do mais, deixar de alimentar animais domésticos é considerado maus tratos com o animal, que por sua vez é crime [2]. Outro ponto a ser observado é que nem todos os animais tem noção do que devem comer, nem dos horários. Eles tendem a comer toda comida da tigela assim que ela é colocada, o que pode trazer problemas de peso e até de ansiedade neles.

Portanto, uma solução para isto está no projeto de um alimentador automatizado de ração para animais de estimação, capaz de encher o recipiente do animal em intervalos programados de tempo e de maneira remota, não permitindo que este animal fique sem acesso à comida caso o dono esqueça ou não esteja em casa no momento (esteja numa viagem, por exemplo).

II. OBJETIVO

Elaboração de um projeto com protótipo de um alimentador automatizado para animais de estimação, que despeja ração em intervalos regulares de tempo e de maneira remota, capaz de avisar ao dono quando o reservatório de ração está perto de ficar vazio.

III. REQUISITOS

A. Disponibilizar ao usuário a possibilidade de determinar o intervalo de tempo em que serão despejadas as rações, assim como a quantidade desejada;

Tal funcionalidade será possível a partir de uma interface, que se comunicará com o MSP430 a partir de um módulo Wi-Fi. O usuário será capaz de determinar um intervalo de tempo (como um timer) onde a ração será despejada.

B. Despejar a quantidade de ração desejada pelo usuário nas horas programadas;

Tal função se torna possível pelo fato de que o tempo em que a "porta" do dispositivo está aberta, ou seja, o tempo em que a ração está sendo despejada, determina a vazão de ração. Consequentemente, ao se determinar o tempo de abertura da "porta", pode-se determinar a quantidade de ração despejada.

C. Disponibilizar ao usuário a possibilidade de acionar o dispositivo através de um botão;

O usuário será capaz de ativar o sistema através de um botão físico no dispositivo, independentemente do tempo programado para o timer.

D. Disponibilizar ao usuário acesso remoto ao dispositivo;

O usuário será capaz de ativar o sistema através de uma interface via Wi-Fi, independentemente do tempo programado para o timer.

E. Disponibilizar ao usuário a informação de que o reservatório está perto de esvaziar;

O sensor ultrassônico medirá a distância do nível de ração para a tampa do reservatório. Com isso, a quantidade de ração no reservatório será medida. Quando esta quantidade atingir um limite crítico (inicialmente foi estabelecido 10% da quantidade), uma notificação é enviada ao usuário via Wi-Fi.

F. Ter uma alimentação de energia que dure dias.

O dispositivo deve ser capaz de se manter ligado por uma quantidade considerável de dias.

IV. TABELA DE MATERIAIS

Tabela 1. Materiais usados no projeto

Quantidade	Equipamento	Marca
01	MSP430G2553LP	Texas Instruments
01	Módulo Wi-Fi – ESP8266	Espressif Systems
01	Servo Motor – SG90	Tower Pro
01	Sensor de Distância Ultrassônico HC-SR04	ElecFreaks
-	Jumpers	-
01	Protoboard	Hikari
-	Resistores	-

V. HARDWARE E SOFTWARE

O hardware do projeto engloba quatro pontos principais: a placa MSP430, o servo motor, o sensor ultrassônico e o módulo Wi-Fi. Ou seja, basicamente, envolve um microcontrolador, um sensor, um atuador e um responsável pela comunicação.

A placa MSP430 por ser um dos objetos de estudo da disciplina, será utilizada como um microcontrolador no projeto, ou seja, toda a programação lógica para resolução do problema estará nessa placa. Ela funciona como o "cérebro" do sistema. A versão utilizada será a MSP-EXP430G2553.

Fig. 1. MSP430G2553 da Texas Instruments.

O servo-motor escolhido para a aplicação foi o SG90. Sua escolha foi devido ao fato desse motor ser capaz de realizar movimentos entre 0° e 180° (suficientes para a realização do projeto) e ter uma programação de fácil entendimento, que permite modificar a angulação e a velocidade do movimento. Além disso, ele tem um torque de 1,2 kg.cm (4,8V) a 1,6 kg.cm (6,0V) e é mais acessível economicamente, custando menos de R\$ 20,00. No projeto, ele realiza o movimento responsável por liberar comida do reservatório.

Fig. 2. Micro Servo SG90.

O módulo Wi-Fi por sua vez, é o responsável por fazer a comunicação entre o equipamento com o usuário através da internet, seja para que o usuário defina o timer, seja para que ele receba notificações sobre o estado de risco de falta de ração do reservatório.

Fig. 3. NodeMCU ESP8266.

Já o sensor ultrassônico HC-SR04 será usado no projeto para determinar a quantidade de ração contida dentro do reservatório. Terá como principal função retornar ao MSP340 o valor da distância do nível de ração até a tampa do reservatório e assim o usuário receberá um aviso indicando risco para a falta de ração. Esse aviso será determinado quando a ração no reservatório representar 10% do total do compartimento de ração.

Fig. 4. Sensor HC-SR04.

O software usado para fazer a comunicação dos hardwares e o microcontrolador foi o Energia IDE (fig. 6). Uma interface de fácil utilização e com várias bibliotecas para fazer os códigos. Os códigos utilizados para os testes do servo motor e do sensor estão disponíveis em [3].

```
X
Arquivo Editar Sketch Ferramentas Ajuda
 sketch oct03a
#include <Servo.h>
int pos = 0;
const int buttonPin = PUSH2;
int buttonState = 0;
void setup()
 myservo.attach(9):
 pinMode(buttonPin, INPUT_PULLUP);
() gool biov
 buttonState = digitalRead(buttonPin);
 if (buttonState == HIGH) {
     myservo.write(0);
 else {
   myservo.write(60);
                                       MSP-EXP430G2 w/ MSP430G2553 em COM3
```

Fig. 5. Exemplo de layout do Energia IDE.

Fig. 6. Fluxograma do projeto.

VI. BENEFÍCIOS

O uso de um alimentador automático beneficia pessoas com animais de estimação que não ficam muito tempo em casa, que estão constantemente viajando ou até mesmo aquelas pessoas que constantemente tem imprevistos que as impedem de alimentar seus animais na hora correta.

Também é muito útil para pessoas que tem animais com problemas alimentares (animais com sobrepeso, diabéticos...) e que precisam ser alimentados em intervalos certos de tempo, com quantidades controladas.

Além disso, um alimentador automático permite que o dono possa definir as quantidades e horários em que a ração será despejada, o que ajudaria na criação de uma rotina mais saudável para os animais. Ao fazer isso, o dono além de ter mais comodidade ainda pode economizar tempo.

VII. REVISÃO BIBLIOGRÁFICA

Atualmente, existem vários modelos de alimentadores automáticos para animais de estimação no mercado. Eles podem ser feitos especificamente para cães, gatos, pássaros ou até mesmo para peixes. Alguns desses modelos oferecem muitas funcionalidades, o que pode elevar bastante o preço. Dois exemplos desses modelos são:

- A. Alimentador eletronônico Hoison: babá robô para pet [4]
 - 1) Funcionalidades:
 - a) Alimentador programável por aplicativo;
 - b) Comedouro removível e lavável;
 - c) Capacidade de até 2kg de ração;
 - d) Liberação de ração
 - Automaticamente nos horários programados no aplicativo;
 - Remotamente por app, sem necessidade de programação;

- Manualmente, pressionando o botão no topo do aparelho.
- e) Necessária rede Wi-fi para estabelcer conexão com smartphone.
 - 2) Custo: R\$ 1.349,90.
- B. Alimentador Eletrônico Eatwell Plus 5 refeições Amicus [5]
 - 1) Funcionalidades:
- a) Evita a exposição prolongada de alimentos no ambiente;
- b) Compartimentos de comida removível que facilita a higienização;
 - c) Até cinco refeições programadas por hora;
 - 2) Custo: R\$ 549,90.

Também existem projetos de alimentadores eletrônicos que são construídos de forma mais simples, porém com custo menor de fabricação e que viabilizam o mesmo objetivo dos demais. Não necessariamente estes projetos são comercializados. Um exemplo disso é o projeto feito através do uso do Arduino [6], que assim como diversos projetos encontrados, se enquadra melhor no escopo da disciplina.

VIII. RESULTADOS

Os resultados foram bem satisfatórios. A comunicação com o servo motor foi obtida com sucesso, onde conseguimos mudar a velocidade de rotação e o ângulo de rotação. Quanto ao sensor ultrassônico de distância, também foi feito a comunicação e foi possível verificar a distância através do monitor serial e um critério de alarme, onde um led acende quando uma distância calculada é menor ou igual a uma distância pré-estabelecida no código (representando baixo volume de ração no reservatório, por exemplo).

Já o teste do módulo Wi-Fi não foi bem-sucedido até a data de apresentação, por motivos da falta de conhecimento teórico a respeito da comunicação entre o MSP e o nodeMCU, o que dificultou o entendimento do funcionamento.

REFERÊNCIAS

- [1] IBGE. População de animais de estimação no Brasil 2013. Disponível em:http://www.agricultura.gov.br/assuntos/camaras-setoriaistematicas/documentos/camaras-tematicas/insumos-agropecuarios/anosanteriores/ibge-populacao-de-animais-de-estimacao-no-brasil-2013abinpet-79.pdf. Acesso em 4 de setembro de 2018.
- [2] Brasil. Lei nº 9.605 de 12 de Fevereiro de 1998. Disponível em: http://www.planalto.gov.br/ccivil_03/LEIS/L9605.htm. Acessado em 4 de setembro de 2018.
- [3] Github. Disponível: https://github.com/arthurtorrs/Eletronica-Embarcada/tree/master/2_PCs/Codigos
- [4] Petlove. Disponível em. https://www.petlove.com.br/hoison?destaque=alimentador-eletronico-

- hoison-baba-robo-para-pet&sku=1571337&gclid=CjwKCAjw2rjcBRBuEiwAheKeL8s7IJ7LQd UQnehyGO5Im-zucs7HsaKT1QRsox7gYqfsjv2UOH1r8BoCNK0QAvD_BwE.Acesso em 4 de setembro de 2018.
- [5] Petlove. Disponível em: https://www.petlove.com.br/amicus?destaque=alimentador-eletronicoeatwell-plus-5-refeicoes---amicus-3102969&sku=3102969. Acesso em 4 de setembro de 2018.
- [6] Arduino Project Hub. Disponível em: https://create.arduino.cc/projecthub/circuito-io-team/iot-pet-feeder-10a4f3?ref=tag&ref_id=pets&offset=0. Acesso em 3 de setembro de 2018