

100 D.B.

Keyboard Encoder Circuits

For additional application information, see AN-128 and AN-139 at the end of this section.

not in H

of the specification is the transfer for the property was set, included the contract of the set of the section

MM5740 90 key keyboard encoder

general description

The MM5740 MOS/LSI keyboard encoder is a complete keyboard interface system capable of encoding 90 single pole single throw switch closures into a usable 9-bit code. It is organized as a bit paired system and is capable of N key or two key rollover. The MM5740 is fabricated with silicon gate technology and provides for direct TTL/DTL compatibility on Data and Strobe outputs without the use of any special interface components.

features

- TRI-STATE® data outputs directly compatible with TTL/DTL or MOS logic
- Function inputs directly compatible with TTL/ DTL logic

- Only one TTL level clock required......
- N key/two key rollover (mask programmable)
- 90 key-quad mode capability
- One character data storage
- Repeat function (selectable)
- Shift lock with indicator capability
- Key bounce masking by single external capacitor
- Level or pulse data strobe output
- Data strobe pulse width control

block and connection diagrams

TRI-STATE is a registered trademark of National Semiconductor Corp.

absolute maximum ratings

Data and Clock Input Voltages and Supply Voltages with Respect to V_{SS}

+0.3V to -20V

Power Dissipation

600 mW at T_A = +25°C 25°C to +70°C ambient

Operating Temperature

Storage Temperature

65 C to +160 C

Lead Temperature (Soldering, 10 seconds)

300°C

electrical characteristics (Note 1,5)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Clock Repetition Rate		10	1	200	kHz
Clock Pulse Width	Rep. Rate = 200 kHz	2.4		2.6	μs
	Rep. Rate = 10 kHz	20		, 80	μs
Clack Amplitude			İ		
Logic Level "0" Logic Level "1"				3.25	V
	•	+0.4		[V
Clock Transition Times			1		
Risetime Falltime	Rep. Rate = 200 kHz Rep. Rate = 200 kHz			100	115
	hep. hate - 200 kHz			100	ns
Clock Input Capacitance			5.0		pF
Data Input Levels, Y1 thru Y10					
Logic Level "D" Logic Level "1"				V _{SS} 1.5	V
Logic Level "O"		-4.5		2.05	V
Logic Level "1"		+0.4		3.25	V
Data Strobe Control					,
Logic Level "O"	2		i	+3.5	V
Logic Level "1"		.0.4		-3.5	V
Data Output Levels, X1 thru X9	1				, i
Logic Level "0"	When Connected to Y1 thru Y10			V _{SS} - 0.75	V
Logic Level "1"	via Switch Matrix, (C _L = 75 pF)	4.5		VSS 0.13	v
B1 thru B9 and Data Strobe					
Logic Level "0"	I = 100μΑ (Note 2)			V _{SS} 1.0	V
Logic Level "1"	I = 1.6 mA (Note 2)	+0.4			V
Shift Lock Voltage Open	Before Closure		V _{GG} 2.0		V
Shift Lock Voltage Closed	Switch Closed		V _{SS}		v
Shift Lock Voltage Locked	After Release, (I = 1.0 mA)		V _{SS} = 5.0	V _{SS} - 8.0	v
	(Figure 2)		V SS 3.0	VSS 0.U	V
Transition Times					
Data Strobe (TpS1)	C _L = 100 pF, l = 1.6 mA			2.5	LIS.
Data Strobe (T _{DSO})	C _L = 100 pF, 1 = 100µA		1 1	1.0	μs
Data Output Levels					
(T _{DO1})	C _L - 100 pF, I = 1.6 mA			2.5	μs
(TDGO)	C _L = 100 pF, I = 100µA		1	1.0	μs
Output Enable Setup Time (TOES)		2.5			μs
Output Enable Release Time (TOER)		2.5			μς
Repeat Input Pulse Width (Tapw)	(Note 3)				
The state of the s	fcLock 10 kHz	10			ms
	folock = 200 kHz	0.5	1		ms
Power Supply Current	I _{GG} , I _{SS}		20	DE.	
TOWER Supply Current	'GG · 'SS		20	35	mΑ

Note 1: These specifications apply for VSS = +5.0 VDC +5%, VGG = -12.0 VDC +5%, VLL = GND and TA = 0°C to +70°C. Note 2: When outputs B1 thru B9 and Data Strobe are driving TTL/DTL VSS = $V_{LL} \le 5.25V$, When driving MOS, VSS = $V_{LL} \le 10.0V$.

Note 3: Trpw min. = 100 x f clock

f clock. Note 4: If shift, and control inputs are derived from a single pole, single throw switch closure to V_{SS} , a 100 OHM resistor returned to V_{LL} (GND) is required on these inputs.

NAME	PIN NO.	FUNCTION
X1-X9	4-12	These pins are chip outputs which are used to drive the key switch matrix. When activated (at the appropriate scan time! they are driven high.
Y1-Y10	22-31	Pins 22-31 are the Y sense inputs which are con- nected to the X drive lines via the key switch matrix. They are internally precharged to a low state and are pulled high upon switch closure.
B1-B9	1, 33-40	These are the data outputs which represent the code for each keyswitch. They are TRI-STATE outputs with direct TTL compatibility. When the output enable input (Pin 15) is high, these outputs are in the third state.
Data Strobe Output	13	The function of this pin is to indicate that valid data has been entered by the keyboard and is ready for acceptance. An active data strobe is indicated by a high level. The data strobe may be operated in the pulse or level mode as indicated by the timing diagram.
Data Strobe Control	14	The basic purpose of this input is to provide data strobe output pulse width control. When connected to the data strobe output (Pin 13), the data strobe will exhibit a one bit wide pulse width. The pulse width may be varied by interposing an RC network between the data strobe output and the strobe control input. For level mode of operation the data strobe control input may be tied to V _{SS} or to the data strobe output.
Output Enable	15	This input serves to TRI-STATE the data output (B1-99) lines. In addition, it controls the return of the data strobe to the idle condition (low state) which is needed in the level strobe mode of operation.
Repeat	16	The repeat input is designed to accept a repeat signal via the repeat key. One data strobe will be issued for each positive interval of the repeat signal. Thus, if a 10 Hz signal is applied to the repeat input via the repeat switch, a 10 character per second data strobe will be issued when a data key and the repeat key are held depressed.
Key-Bounce Mask	17	This pin is intended as a timing node to mask switch key-bounce. The mask time interval is generated by connecting a capacitor to this pin.
Shift	21	When this input is brought to a logic "0" (V_{ss}) level, the encoder will assume the shifted character mode.
Control	19	A logic "0" places the encoder in the control character mode.
Shift Lock I/O	20	This pin is intended to serve as an input when the shift lock key is depressed. It places the encoder in the shift mode. Upon release of the key, the

		shift mode will be maintained and unit pin will serve as an output to drive an indicator. This func-	
		tion is reset by depressing the shift key.	
Clock	3	A TTL compatible clock signal is applied to this pin. A bit time is defined as the time from one negative going transition to the succeeding negative going transition of the clock.	
V _{SS}	32	+5.0V supply	
V _{LL} .	2	Ground	
V _{GG}	18	-12V supply	

10-4

FIGURE 1. Key-Bounce Mask Time

10-5

application

MM5740

FIGURE 2, Shift Logic I/O Interface

repeat switch function

Repeat Switch Connections

Note: Both Repeat Switch and a Data Key must be depressed to enable repeat function. For N-Key Rollover, the data outputs will represent the current valid data key (N Key Roll during Repeat).

CODE ASSIGNMENT CHART

Customer:	

ADDI			co	OMMC	ON			UNSI	HIFT			SH	IFT			CONT	ROL			SHI				CHAR	ACTER	
Х	Υ	В1	B ₂	B ₃	B ₄	8,	B ₅	Be	B ₇	Bg	85	Be	B ₇	88	85	B ₆	87	Вв	B ₅	B ₆	В7	Ba	US	S	С	sc
Note 3)	1																									
	2																									
	3																									\vdash
	4																									\vdash
	5																							,		1
	6																				_					\vdash
	7														$\overline{}$		_				$\overline{}$					\vdash
	8		_															_								\vdash
	9																							· · · · · · · · · · · · · · · · · · ·		_
	10							_			_								-		_					_
	1	\vdash			-			_							\vdash	_							-			\vdash
\rightarrow	2	_								_					Η-		_	-		\vdash						-
	3			\vdash			_	-	-		-				\vdash				\vdash		_	-				_
_	4	\vdash				\vdash									\vdash				_			\vdash				\vdash
	5			\vdash	-	Н	\vdash	-			-				\vdash	-					-					-
\rightarrow	6			\vdash	-	\vdash							\vdash		├	-			\vdash		-	\vdash			<u> </u>	-

MM5740

	7			[
	8										ì				
	9														
	10														
	1														
	2														
-	3														
	4														
	5	00													
	6														
	7														
	8														
	9														
	10														

- N-Key Rollover
- 2 Key Rollover

Page of 3 (Note 1)

Note: Use 88 if parity bit is desired

Note 1: 3 code assignment charts are required for each keyboard encoder pattern. Fill in a "1" or "0" in each output box (B1 thru B9). Indicate page number.

Note 2: The matrix is 9 "X" locations by 10 "Y" locations.

Note 3: Write in 10 one's, 10 two's, etc. in successive X address locations up to 9. This will fill 3 charts. The first page will have address matrix location 1,1; 1,2: 1,3... 1,10; 2,1; 2,2... 2,10; 3,1, etc. up to 3,10. Page 2 has 4,1 to 6,10. Page 3 has 7,1 to 9,10. Note 4: A contact closure at the address matrix location will cause the appropriate bit pattern to appear at the output in negative true logic. V_{OH} = "0"; V_{OL} = "1."

Note 5: See application note AN-80 for coding example.

10

10-7

MM5740AAE, MM5740AAF CODE ASSIGNMENT CHARTS

MAT			C	MMC	ON			UNSI	ніғт			\$н	IFT			CONT	TROL			SH	FT TROL			CHAR	ACTER	
х	Υ	В	82	83	84	В9	6 5	86	В,	Вв	B ₅	В ₆	B ₇	B ₈	85	86	87	Ba	B ₅	86	В,	B ₈	US	s	С	SC
1	1	0	0	0	1	0	1	1	0	4	1	1	0	1	1	1	0	1	1	12.1	0	i	8	8	. 8	8
- (2	0	0	1	0	0	1	1.	0	1	3	1	0	1	1	1	0	1	1	ŧ	0	J	4	4	4	-4
1	3	1	0	1	0	U	. 1	1	u	0	1.	1	0	0	1	1	0	0	10	1	0	0	.5	5	5	5
1	4	1	0	0	0	0	1	1.	0	1	1.	1	0	1 1	1	1	0	1	1	1	0	1	1	1	3	1
.1	5	0	1	0	n	a	1	1	0	1	1	,	0	1 1	1	1	0	1	1	1	0	1.1	2	2	2	2
1	6	1	1	0	0	0	1	1	0	0	3	1	0	0	1	1	0	0	1	,	0	0	3	3	3	3
1	7	0	0	0	0	.1.	1	1	0	0		1	0	0	1	1	0	0	1	4	0	υ	2		4.	- 5
1	8	0	1	1	0	0	. 3	1.	0	D	1	1 1	0	0	1	1	0	0	1	1	0	0	6	- 6	6	ts.
1	9	1	0	0	7	0	1	1	0	0	1	1	· U	1 0	1	1	0	0	1	1	0	Ü	9	9	e)	9
- 1	10	1	1	- 1	0	0	1	1	0	1	1	1	0	1	1	1	0	1	1	1	۵	1	7	- 7	7	.7
2	1	t ₀	0.	,	1.	0	0	0	0	(1	Û	0	۵	0	0	0	D	0	0	b	0	0	FF	FF	FF	20
2	2	:	. 0	1	1	ì	0	0	0	1	0	0	0	1	u	0	0	1	Ü	0	0	17	CH.	CR	CB	CR
2	3	0	. 0	1	1	0	1	0	0	1	1	0	0	1.	1 .	0	0	- 1	1	0	0	1	FS	FS	FS	F.5
2	4	1.	0	1	1	0	1	0	0	15	1	0	U	0	1	0	0	0	1	0	0	0	GS	GS	GS	G5
2	5	1	1	0	1	0	0.	0	0	1	()	0	0	1	0	0	0	1	0	Di-	0	1	٧ï	VI	VT	17.3
2	- 6	0	1	1	1	0	0	0	0	1	0	, c	1)		D	0	0	1	G	0	U	1	50	so	50	50
7	7	13	0	0	0	1	e	1	. 0	1	-61	1 1	0	1	10	1	D	1 1	n	1 :	10	11	SP	SP	KP.	6,0

- 1	-	-				- 1												-	1				A	1 -	1	1
2	R	1	- 6	0	1	n	0	()	0	Ð	13	D	0	0	Ü	1)	0	0	0	0	0	0.	HT	HT	HT	HT
2	9	0	0	0	1	1	0	0	0	1	0	0	0	1	. 0	0	0	1	0	0	io	1.	BS	BS	BS	Bs
?	10	1	0	1	1	1	0	1	0	U	1	1	0	1	D	1	10	0	1	1	0	1				Ι
3	.1	9	0	0	0	0	1	1	0	U	1	1	0	0	1	1	0	0	1.	1	0	0	5			
3	2	0	1	0	13	1	0	0	0	0	0	0	0	n	0	0	0	0	0	n	0	0	1.5	LF	Lf	1.5
3	3	0	0	0	0	0	1	0		. 0	0	0	1	1	-1	0	0	1	0	0	0	0	P	1.0	DLF	NUL
3	.1	1	1	1	13	1	1	11.0	1	1	1	1	1	1	,	1	1	1	1	1	11	1	DEL	DEL	DEL	DEL
3	5	1	1	0	- 1	0.	1	1	0	1	0	1	0	0	-1	1	0	1	0	1	0	0	Ī .	-3		
3	6	0	1	1	1.	1	0	1	0	0	0	1	0	0	U	1	0	0	0	1	0	0				
3	7	1	1	1	- 1	0	0 .	1	0	1	1	1	0	Ü	0	1	0	1	1.	1	10	0		>		,
3	8	0	0	0	0	0	1	0	1	0	1	0	1	0	1	0	0	1	1.	0	i U	T.	P	Р	DLE	DLE
3,	9	.1	1	-	. 1	0	0	0	1	1	D	0	1	1	0	0	Ü	0	0	0	10	ū	0	0	51	51
3,	10	0	1	0	1	1	1	1	0	.0	0	1	0	1	T	1	0	0	a	1	0	1				-

MATI ADDF		,	C	MMC	ON.			UNS	HET			SH	IFT			CONT	TROL			CON	FT FROL			СНАЯ	ACTER	
×	Y	Bı	82	83	₿4	Bg	85	B ₆	В	Вв	B ₅	В-6	В,	Вв	B ₅	В6	87	88	В5	В ₆	B ₇	BB	US	S	C	SC
4	1.	1	0	9	1	0	1	1	0	0	0	1	0	1	1	1	a	Ü.	0	1	0.	1	û	N.	9	1 2
4	2	1	0	0	1	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	1	HIL	1 41
4	- 3	3	1	1	1	1	0	0	1	1	1	0	1	0	o	0	0	0	1	0	0	1	0		SI	US
4	4	1	1	0	1	0	0	0	1	0	1	0	1	1	0	0	9	1	1	0	0	0	K		VI	ESC
4	5	0	0	1	1	0	0	U	1	1	1	0	1	0	0	0	()	0	1	U	1	,	i.		FF	PS
4	6	0	0	1	1	٥	0	1	0	1	1	1	0	0	n	1 .	0	:	1	1	4	0		1		
-1	7	0	1	1.	1,	1	0	- 1	0	0	1	1	0	1	0	1	0	0	i	1	0	1		1	-	1-
4	В	0	0	1	1	0	0	0	1	1	-0	0	i	1	0	0	0	U	Ü	0	0	0	L	-	FF	FF
4	9	1	. 1	0	1	Ð	0	0	1	u ·	0	0	1	0	0	()	0	1	0	0	0	1	K	K	VI	VI
4	10	0	0	0	1	0	1	1	0	1	0	1	0	0.	1	1	0	. 1	D	1	0	0	8		3	1
5	1	0	1	1	0	0	1	1	0	U	n	1	0	1	1	, ,	1	0	0.	1	0	1	6	8.	- 0	R
5	2	,	0	1	0	0	1	Úr.	1	0	1	0	1	0	1	0	0	3	i	.)	0	1	U	Ü	NAK	NA
5	3	1	()	D	1	0	1	0	1	0	1	0	1	0	7	. 0	0	1	1	0	0	1	Y	Y	EM	ES
5.	4	0	1	0	1	0	0	0	1	1	0	0	1	1	0	: 0	0	. (1	0	0	0	0	J)	LF	LF
5	5	٥	ß	D	1	0	0	0	1	0	Ŋ.	0	1	0	0	0	ů.	1	0.	0	0	1	н	н	, BS	83
5	6	1	0	1	1	0	0	0	1	0	1.	0	1	1.	0	0	0	. 1	1	0	0	0	101	1	CR	GS
5	7.	0	1	1	1	1	0	0	1	0	î	i R	1	1.	0	0	0	1	1	0	0	n	r _i	1 3	SO	R
. 5	8	1	0	1	1	0	0	0	1	0	Ū	D	1	D	D	0	0	1	0	0	0	1	51	R1	CR	UF
5	9	a	1	1	1	0	0	0	1	0	0	0	1	0	0	0	0	3	U	0	0	1	N	N	SO	50
5	10	1	1	1	0	0	1	1	0	1	0	1	0	0	1	1	0	1	f)	1	0	0	7	1.0	7	1
6	- 1	1	0	3	0	0	1	1	0	0	0	1	U	1	1	1	0	0	0	1	0	1	5		5	1
G	2	0	1	0.	0	0	1	0	1	1	T	0	1	. 1	1	0	0	0	1	10	0	0	B	l B	DC2	DC
6	3	0	0	1	0	0	1	0	1	1	1	0	1	1	1	0	0	0	1	0	0	0	Ţ	T	DC4	00
6	4	0	1	1	0	0	0	0	1	1	0	0	ì	1	0	0	0	0	0	0	0	0	F	F	ACK	AC:
6	5	1	1	1	0	0	0	0	1	Q	0	0	1	0	0	0	Б	1	0	0	0	1	G	G	BEL	86
6	6	0	1	ì	0	0	1	0	1	0.	1	0	1	0	1	0	Ü	0	1	0	0	0	V	٧	SYN	SY
6	1	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	1.	В	8	STX	ST
ô	8	0	0	0	1	0	1	Ō	0	0	1	0	0	0	1	0	0	0	1	0	0	0	CAN	CAN	CAN	CA
6	9	1	0	0	1	0	1	0	0	1	1.	0	0	1	1	n	0	7	1	0	0	1	EM	EM	EM	E
6	10	0	0	1	0	0	3	1	0	1	0	1	0	0	ī	1	0	1.	0	1	0	0	J	S	4	5

Negative True Logic
$$\begin{split} \mathbf{B}_1 &= \mathbf{B}_7 &= \mathbf{ASCII} \ \mathbf{Code} \\ \mathbf{B}_3 &= \mathbf{E}_{\text{ten}} \ \mathbf{parity} \ (\mathbf{n}, \mathbf{B}_1, \mathbf{B}_2, \mathbf{B}_3, \mathbf{B}_4, \mathbf{B}_5, \mathbf{B}_6, \mathbf{B}_7, \mathbf{B}_8) \\ \mathbf{B}_9 &= \mathbf{Selective} \ \mathbf{Repeat} \ \mathbf{B}_1 \mathbf{t} \\ \mathbf{Note} \quad \mathsf{Use} \ \mathbf{B}_8 \ \mathsf{if} \ \mathsf{parity} \ \mathsf{bit} \ \mathsf{is} \ \mathsf{desired}. \end{split}$$