Introduction to Statistical Analysis

Stat Bootcamp
Session 1

Sema Barlas

What is Statistics?

- Statistics is a tool helping us to make intelligent decisions in the presence of uncertainty and variation.
- It is a tool to turn uncertainty into calculated risk.
- Decision: Conversion rates on a web page across regions are:
 - **13.8% 18.3% 32.2% 32.5%**
 - Probability of observing 32.5% conversion for a website at an ordinary region (OR) is 0.02 – so, this region is extra-ordinary
 - -P(18.3% | OR) = 0.6 so, this region is ordinary

What is Statistics?

- Communication tell more with less
- Data on millions of website
- Summarizing data descriptive statistics
 - Mean
 - Standard deviation
 - Distribution
 - Modality
 - Skewedness
 - Kurtosis

Manage Variation Concurrently and Proactively

- Total variation in the attribute = systematic variation
 + random Variation
 - Variation in conversion rates = variation among regions + variation within a region
- Random variation: Due to unknown sources or inherent to the process — variation within a region (error).
- Systematic variation: Due to known or knowable sources variation across regions (explained variance).

Variation due to Sampling from Population Sampling Variance

Sampling Strategy

- Random Samples 1 to 6 will be somewhat different
 - Sample is representative of the population depending on the size of sampling variance
- Stratified Variation due to an important variable can be controlled for
 - Sample is unlikely to be representative of the population
- Probability Sampling variation can be reduced
- Convenience Sample is unlikely to be representative of the population

Types of Statistics

- Descriptive statistics
 - Understanding the sample- mean, median, mode, standard deviation, variance
- Probability
- Inferential statistics
 - Understanding the population on the basis of information from the sample z test, t test, ANOVA, Regression

Does the Distribution in the Population Looks Like a Known Distribution?

Given that average conversion rate is 15% in the population of ordinary websites. How many of such sites in a sample of 100 can we expect to have 32% or more conversion rate?

Given that average conversion rate rate is 18.5% in the sample of 100 websites. Is this sample coming from the population of ordinary websites?

Variables

- Characteristics of some event, object, or person that take on different values (has variability)
 - Dependent variable sales (\$)
 - Independent variable marketing expenditures
- Discrete
 - Nominal race
 - Ordinal letter grade
- Continuous
 - Interval Fahrenheit
 - Ratio weight in kilograms

Distributions of Variables

Normal distribution

Central tendency: Mean, median, mode Dispersion: Standard deviation, variance

Shape - Symmetric (skewness = 0)

Uni-modal

Mezokurtic (Kurtosis = 0)

Central Tendency Measures

Stem	Leaf
0	136
1	2888
2	3567

N = 11

Mean: 16.09 - Ratio, interval, and ordinal level variables

Median: 18 – the observation at the middle – Ratio, Interval, and ordinal variables

Mode: 18 – the most frequent observation – Ratio, interval, ordinal, and nominal variables

Dispersion Measures Ratio, Interval, and ordinal variables

Variance

- $-var = sum((x-\mu)^2/(N-1)))$
- 87.29 in the example before

- Standard Deviation
 - average distance from mean
 - Std = sqrt(var) = 9.34

Test Scores

Score	Score - Mean	Square(score – mean)
90	20	400
80	10	100
80	10	100
70	0	0
60	-10	100
40	-30	900
420	0	1,600

Variance =
$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
$$= 1,600/5$$
$$= 320$$

Std =
$$\sqrt{320}$$
 = 17.89
Range = highest – lowest = 90 – 40 = 50
IQR = Q3 – Q1 = 77.5 - 52.5 = 25

Skewness

Kurtosis

Characteristic

Bimodal Distribution

Nominal Variables – Bar Chart

Future Wealth Holder's Gender Shift

Nominal Variables – Pie Chart

Frequency Tables

Ratings	Frequency	Cumulative Frequency	Relative Frequency	Cumulative Relative Frequency
2	1	1	.006	.006
3	2	3	.011	.017
4	13	16	.074	.091
5	45	61	.256	.347
6	33	94	.187	.534
7	56	150	.318	.852
8	21	171	.119	.972
9	5	176	.028	100

N=176 Mean = 6.18

Mod = 7

median = 6

std = 1.33

Central Tendency

Variability

Continuous Variables - Histogram

Linear Transformation of Variables

•
$$Z = a + b*X$$

•
$$\bar{z} = a + b^* \bar{x}$$

•
$$Std_z = b^*(std_x)$$

X	z=2+2X	(x-70) ²	(z-142) ²
90	182	400	1600
80	162	100	400
80	162	100	400
70	142	0	0
60	122	100	400
40	82	900	3600
Mean	Mean	std	std
70	142	17.90	35.77

Two Variables, X and Y

Covariance between X and Y

Covariance =
$$\frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \bar{x}) \quad (y_i - \bar{y})$$

_	X is below and y is above the mean	Both X and Y are above mean
y	Both, x and y are below the mean	X is above and y is below the mean

Correlation between X and Y

$$Correlation = \frac{Cov(x, y)}{std(x)std(y)}$$

Covariance is about the Direction of the Relationship

×	у	$(x-\overline{\chi})$	$(y - \overline{y})$	$(x-\overline{x})(y-\overline{y})$
23	11	1.4	0.8	1.12
20	9	-1.6	-1.2	1.92
14	4	-7.6	-6.2	47.12
27	15	5.4	4.8	25.92
22	10	0.4	-0.2	-0.08
20	11	-1.6	0.8	-1.28
26	11	4.4	0.8	3.52
16	7	-5.6	-3.2	17.92
25	13	3.4	2.8	9.52
23	11	1.4	0.8	1.12

Mean: 21.6 Std: 4.20 10.2 3.05 Sum: 106.8 Cov: 11.86

Corr: 0.98

Optimize Publisher Strategy—Results

Formulate Publisher Strategy Note: (Bubble Size=Current Funding)

Line is at Average Probability Across All Publishers

Probability

- Experiment: Whether a person would click a web page A Bernoulli trial?
- Sample space (S): Yes and No
- Event (success): p(x)
- Experiment: Whether 3 people you observe would click a web page A binomial trial? X: # of people clicking.
- Sample space: YYY YYN YNY YNN NYY NYN NNY NNN
- Event: at least two people click
- $p(x \ge 2)$.
- Outcome for a single experiment: 2, Replication: 3
- Total number of outcomes in sample space: 2³ = 8
- $p(x \ge 2) = p(x=3) + p(x=2) = \frac{1}{8} + \frac{3}{8} = \frac{4}{8} = 0.5$
- $\sum_{i=1}^{8} P(O_i) = 1$

Complement

- Complement of event A, A', is the set of all outcomes that are not in A.
- A: at least two clicks {YYY, YYN, NYY, YNY}
- A': {NNN, NNY, NYN, YNN}

$$0 \le p(A) \le 1$$

 $p(S) = 1$
 $p(A) + p(A') = 1$
 $p(A) = 1 - p(A')$
 $p(A') = 1 - p(A)$

Union and Intersection

- Union: A or B A U B (most women want rich or handsome man)
- Intersection: A and B A \cap B (most women want rich and handsome man)
- A: at least two clicks {YYY, YYN, NYY, YNY}
- B: at least one click {YYY, YYN, NYY, YNY, NYN, YNN, NNY}
- A ∩ B: {YYY, YYN, NYY, YNY}
- A U B : {YYY, YYN, NYY, YNY, NYN, YNN, NNY}
- Events are disjoint or independent if $A \cap B = \emptyset \rightarrow P(A \cap B) = 0$.

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Interpretation of Probability

Person #	1	2	3	4	5	6	7	8	9	10
A: Clicked?	N	Υ	Υ	Υ	N	N	Υ	Υ	N	N
D	0	Б	667	75	6	Б	E71	625	EE6	Е
Р	0	.5	.667	.75	.6	.5	.571	.625	.556	.5

$$P(A) = \frac{N(A)}{N} = \frac{5}{10} = .5$$

Permutation

- There are 3 (n) web pages on your web site and visitors can access from one page to all other pages.
 Visitors usually select 2 pages (k). How many ways are there to select the 2 pages?
- 12, 13, 21, 23, 31, 32 (ordered subsets)
- 3*2

•
$$P_{k,n} = \frac{n!}{(n-k)!} = \frac{3!}{(3-2)!} = \frac{3*2*1}{1} = 6$$

Combination

- There are 3 (n) web pages on your web site and visitors can access from one page to all other pages. Visitors usually select 2 pages (k).
 Which 2 pages are selected?
- 21, 13, 23 (unordered subsets)

•
$$\binom{n}{k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!} = \frac{3*2*1}{2*1*1} = 3$$

Conditional Probability

	B - faulty	B' – not faulty
Line A	2	6
Line A'	1	9

$$p(A) = \frac{8}{18} = 0.44$$

$$p(A) = \frac{8}{18} = 0.44$$

$$p(A|B) = \frac{2}{3} = \frac{\frac{2}{18}}{\frac{3}{18}} = \frac{P(A \cap B)}{P(B)}$$

Reading Habits

A: Art, B: Books, C: Cinema

Read Regularly	А	В	С	A ∩ B	A ∩ C	B ∩ C	A∩B∩C
Р	.14	.23	.37	.08	.09	.13	.05

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{.08}{.23} = .348$$

P(A|BUC) =
$$\frac{P(A \cap (BUC))}{P(BUC)} = \frac{.04 + .05 + .03}{.47} = .225$$

P(A|reads at least one) = P(A|A U B U C)

$$= \frac{P(A \cap (A \cup B \cup C))}{(A \cup B \cup C)}$$

$$= \frac{P(A)}{(A \cup B \cup C)} = \frac{.14}{.49} = .286$$

P(AUB|C) =
$$\frac{P((AUB)\cap C)}{P(C)} = \frac{.04 + .05 + .08}{.37} = .459$$

Multiplication Rule for P(A∩B)

•
$$P(A \cap B) = P(A|B) * P(B)$$

Player Brand	Market Share	Repair Rate
M	50%	25%
L	30%	20%
N	20%	10%

- Probability that a consumer bought Brand M that will need repair?
- Probability that customer has a player that will need repair?
- Given that player needs repair, what is the probability that it is brand M? Brand L? Brand N?

Independence

- If two events A and B are independent:
- P(A|B) = P(A)
- $P(A \cap B) = P(A) * P(B)$

Α	В	АВ	0
.40	.11	.04	.45

 What is the probability that blood phenotypes of two randomly selected individuals match?

Binomial Probability Distribution

- The experiment consists of a sequence of n smaller experiments called trials,
 where n is fixed in advance of the experiment.
- Each trial can result in one of the same two possible outcomes, success (S) or Failure (F).
- The trials are independent, so that the outcome on any particular trial does not influence the outcome on any other trial.
- The probability of success p(S) is constant from trial to trial; we denote this probability by p.
- Examples: The number of heads when one flips a coin 10 times. Number of customers who pay with credit card among 10 customer who visit the store.
- b(x; n, p)
- $P(X = x) = {n \choose x} p^x (1-p)^{n-x}$

Example

- 20% of customers click your ad.
- Select random 5 people
- X: # of customers who click your ad.
- What is the probability that at most 3 customers click your ad?

•
$$P(X=3) = b(3; 5, .20) = {5 \choose 3}.20^3.80^2 = .0512$$

•
$$P(X=2) = {5 \choose 2}.20^2.80^3 = 0.2048$$

•
$$P(X=1) = {5 \choose 1}.20^1.80^4 = 0.4096$$

•
$$P(X=0) = .80^5 = 0.32768$$

Answer: 0.99328

• Mean =
$$E(X)$$
 = $np = 5*.20 = 1$

Variance(X) = np(1-p)

Flipping a Fair Coin 10 Times

0	1	2	3	4	5	6	7	8	9	10
.0001	.001	.044	.117	.205	.246	.205	.117	.044	.001	.0001

Binomial Distribution

