### REVIEW FOR FINAL EXAMINATIONS

## 1 Euclid's algorithm

Exercise 1.1. Using Euclide 's algorithm to calculate the following:

- a) gcd(78, 42)
- b) gcd(324, 240)
- c) gcd(662,414)
- d) gcd(252,34)
- e) gcd(3122,4204)
- f) gcd(1234,212)

Exercise 1.2. Using Euclide 's algorithm to calculate the following:

- a) lcm(35,99)
- b) lcm(42, 306)
- c) lcm(78,270)
- d) lcm (212, 36)
- e) lcm(2341, 3122)
- f) lcm(2010,2371)

Exercise 1.3. a) Fill a large trough in the field with exactly 1 litre of river water. Only two cans are available to scoop water from the river: one is exactly 13 litres when full, the other 11.

- b) Fill a large trough in the field with exactly 1 litre of river water. Only two cans are available to scoop water from the river: one is exactly 17 litres when full, the other 11.
- c) Fill a large trough in the field with exactly 1 litre of river water. Only two cans are available to scoop water from the river: one is exactly 17 litres when full, the other 13.
- d) Fill a large trough in the field with exactly 1 litre of river water. Only two cans are available to scoop water from the river: one is exactly 19 litres when full, the other 13.

### 2 Modulo arithmetic

Exercise 2.1. Solve the following equation for integers x; y. List 3 pairs of integers x, y.

- a) 3x + 7y = 69
- b) 2x+5y=100
- c) 3x+5y=90
- d) 4x+3y=48

- e) 3x-2y=21
- f) 5x+7y=25
- g) 2x-9y=20

#### 3 Relations

**Definition 3.1.** For sets A, B, any subset of  $A \times B$  is called a relation from A to B. Any subset of  $A \times A$  is called a relation on A.

**Example 3.1.** Let  $A = \{0, 1, 2\}$  and  $B = \{a, b\}$ . Then

$$\mathcal{R} = \{(0, a), (0, b), (1, a), (2, b)\}\$$

is a relation from A to B.

**Definition 3.2.** Let  $\mathcal{R}$  be a relation on A. We say that

- i)  $\mathcal{R}$  is reflexive  $\Leftrightarrow \forall x \in A, x\mathcal{R}x$ .
- ii)  $\mathcal{R}$  is symmetric  $\Leftrightarrow \forall x, y \in A, x\mathcal{R}y \to y\mathcal{R}x$ .
- iii)  $\mathcal{R}$  is antisymmetric  $\Leftrightarrow \forall x, y \in A, x\mathcal{R}y \land y\mathcal{R}x \rightarrow x = y$ .
- iv)  $\mathcal{R}$  is transitive  $\Leftrightarrow \forall x, y, z \in A, x\mathcal{R}y \land y\mathcal{R}z \rightarrow x\mathcal{R}z$ .

**Definition 3.3.** Let  $\mathcal{R}$  be a relation on A. We say that  $\mathcal{R}$  is an equivalence relation on A if  $\mathcal{R}$  is reflexive, symmetric and transitive

**Definition 3.4.** Let  $\mathcal{R}$  be an equivalence relation on A and  $x \in A$ . The set of all elements in A that is related to x is called the equivalence class of x, denoted by  $\bar{x}$  or [x]. Therefore

$$\bar{x} = \{ a \in A | a\mathcal{R}x \}$$

**Definition 3.5.** A relation  $\mathcal{R}$  on A is called a partial ordering relation, or partial order if  $\mathcal{R}$  is reflexive, antisymmetric, and transitive.  $(A, \mathcal{R})$  is called a partially ordered set.

Let  $\mathcal{R}$  is a partial order on A we denote  $a \leq b$  but  $a \neq b$ .

**Example 3.2.** Let R be a binary relation defined on 2 integers as follow:

$$\forall x, y \in \mathbb{Z}, x\mathcal{R}y \Leftrightarrow 2 \mid (x+y)$$

Is R reflexive, symetric, anti-symetric, transitive? Prove your answer. Is it an equivalence relation? If it is, describe its equivalence class. Is it a partial order?

SOLUTION.

- (i)  $\forall x \in \mathbb{Z}$ , since x + x = 2x is even, we have  $x\mathcal{R}x$ . Hence  $\mathcal{R}$  is reflexive.
- (ii)  $\forall x, y \in \mathbb{Z}$ , if  $x\mathcal{R}y$  then x + y is even, hence y + x is even. Therefore  $y\mathcal{R}x$ , this means  $\mathcal{R}$  is symmetric.
- (iii) We have  $1\mathcal{R}3$  and  $3\mathcal{R}1$ , but  $1 \neq 3$ . Hence  $\mathcal{R}$  is not antisymmetric.

(iv)  $\forall x, y, z \in \mathbb{Z}$ , if  $x\mathcal{R}y$  and  $y\mathcal{R}z$  then x + y and y + z are even. Since

$$x + z = (x + y) + (y + z) - 2y$$

we have x + z is even, hence  $x\mathcal{R}z$ . Therefore  $\mathcal{R}$  is transitive.

So  $\mathcal{R}$  is reflexive, symmetric, transitive but not antisymmetric. Hence  $\mathcal{R}$  is an equivalence relation but it is not a partial order.

The set of equivalence classes is  $\{[0],[1]\}$  where  $[0]=\{n\in\mathbb{Z}:2|n\}$  and  $[1]=\{n\in\mathbb{Z}:n \text{ is not divisible by }2\}$ 

**Exercise 3.1.** Let R be a binary relation between 2 real numbers such that "its product is not negative" defined as follow:

$$\forall x, y \in \mathbb{R} \leftrightarrow x * y \ge 0$$

Is R reflexive, symetric, anti-symetric, transitive? Prove your answer. Is it an equivalence relation? If it is, describe its equivalence class. Is it a partial order?

**Exercise 3.2.** Let  $\mathcal{R}$  be a relation on the set  $A = \{-19, -17, -8, -6, -5, -3, 1, 2, 3, 5\}$  defined by:

$$\forall x, y \in A : x \mathcal{R} y \Leftrightarrow x - 19y \text{ is even.}$$

- a) Prove that  $\mathcal{R}$  is an equivalence relation on A.
- b) Find the equivalence class [1].

SOLUTION.

- a) (i)  $\forall x \in A$ , since x 19x = -18x is even we have  $x\mathcal{R}x$ . Hence  $\mathcal{R}$  is reflexive.
  - (ii)  $\forall x, y \in A$ , if  $x\mathcal{R}y$  then x 19y is even, hence y 19x = 20(y x) + (x 19y) is even. Therefore  $y\mathcal{R}x$ , this means  $\mathcal{R}$  is symmetric.
  - (iii)  $\forall x, y, z \in A$ , if  $x \mathcal{R} y$  and  $y \mathcal{R} z$  then x 19y and y 19z are even. Since

$$x - 19z = (x - 19y) + (y - 19z) + 18y$$

we have x-19z is even, hence  $x\mathcal{R}z$ . Therefore  $\mathcal{R}$  is transitive.

So  $\mathcal{R}$  is reflexive, symmetric, transitive. Hence  $\mathcal{R}$  is an equivalence relation.

b) 
$$[1] = \{x \in A : x\mathcal{R}1\} = \{x \in A : x - 19 \text{ is even}\} = \{-19, -17, -5, -3, 1, 3, 5\}$$

**Exercise 3.3.** Let  $\mathcal{R}$  be a relation on the set  $A = \{-13, -11, -7, -3, 0, 1, 2, 3, 5, 6, 8\}$  defined by:

$$\forall x, y \in A : x \mathcal{R} y \Leftrightarrow x - 23y \text{ is even.}$$

- a) Prove that  $\mathcal{R}$  is an equivalence relation on A.
- b) Find the equivalence class [3].

**Exercise 3.4.** Let  $\mathcal{R}$  be a relation on the set  $A = \{-9, -8, -7, -5, -4, -3, 0, 1, 2, 4, 5, 11\}$  defined by:

$$\forall x, y \in A : x \mathcal{R} y \Leftrightarrow x - 17y \text{ is even.}$$

- a) Prove that  $\mathcal{R}$  is an equivalence relation on A.
- b) Find the equivalence class [5].

#### 4 Set

**Exercise 4.1.** Given  $A = \{1, 5, 8, 9\}$ ;  $B = \{2, 3, 5, 7, 8, 9\}$ . Find the union, intersect, non-symmetric difference, and symmetric difference of A and B.

SOLUTION.

$$A \bigcup B = \{1, 2, 3, 5, 7, 8, 9\}$$
$$A \bigcap B = \{5, 8, 9\}$$
$$A \setminus B = \{1\}$$
$$B \setminus A = \{2, 3, 7\}$$
$$A \Delta B = \{1, 2, 3, 7\}$$

**Exercise 4.2.** Given  $A = \{1, 2, 3, 4, 5, 6, 78, 9\}$ ;  $B = \{1, 3, 5, 7, 9, 11\}$ . Find the union, intersect, non-symmetric difference, and symmetric difference of A and B.

**Exercise 4.3.** Given  $A = \{2, 4, 6, ..., 30\}$ ;  $B = \{3, 6, 9, ..., 30\}$ . Find the union, intersect, non-symmetric difference, and symmetric difference of A and B

#### 5 Recurrence Relation

Exercise 5.1. Find the explicit formula of the following recurrence relation:

$$a_k = 3a_{k-1} - 2a_{k-2}$$

Given initial conditions  $a_0 = 0, a_1 = 1$ 

SOLUTION. Characteristic equation:  $X^2 = 3X - 2 \Leftrightarrow X^2 - 3X + 2 = 0$ . Hence X = 1 or X = 2. Therefore,  $a_n = a \cdot 1^n + b \cdot 2^n$ . We have  $0 = a_0 = a + b$  and  $1 = a_1 = a + 2b$ . Hence a = -1 and b = 1. It follows that  $a_n = 2^n - 1$ 

Exercise 5.2. Find the explicit formula of the following recurrence relation:

$$a_k = 5a_{k-1} - 6a_{k-2}$$

Given initial conditions  $a_0 = 4, a_1 = 2$ 

Exercise 5.3. Find the explicit formula of the following recurrence relation:

$$a_k = 7a_{k-1} - 12a_{k-2}$$

Given initial conditions  $a_0 = 5, a_1 = 1$ 

**Exercise 5.4.** Find the explicit formula of the following recurrence relation:

$$a_k = 11a_{k-1} - 30a_{k-2}$$

Given initial conditions  $a_0 = 7, a_1 = 5$ 

# 6 Euler's circuit/trail

Exercise 6.1. Does each of the following graphs have an Euler's circuit/trail?



Exercise 6.2. Let G be the graph



- a) Determine the degree of each vertex of G.
- b) Does G have an Euler 's trail? Why? Find such a trail if one exists.

Exercise 6.3. Does the following graph have an Euler 's circuit?



Solution. We have deg(0) = 3, deg(1) = deg(2) = deg(3) and deg(4) = 1. Hence the graph G has exactly two vertices with odd degrees. It follows that G has an Eulerian trail. An Eulerian trail is 4 3 0 1 2 0.

Exercise 6.4. Does each of the following graphs have an Euler 's circuit/trail?



Exercise 6.5. Is the following graph an Eulerian graph? If so, determine an Euler 's circuit.



SOLUTION. We have deg(A) = deg(B) = deg(C) = deg(E) = deg(F) = 4 and deg(D) = 2. Hence every vertex of G has even degree. Therefore G is an Eulerian graph. An Eulerian circuit is A B C D E F A E B F C A.  $\blacksquare$ 

Exercise 6.6. Is the following graph an Euler 's graph? If so, determine an Euler 's circuit.



## 7 Adjacency matrix

Exercise 7.1. Find directed unweighted graph that have the following adjacency matrix:

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Exercise 7.2. Determine the Adjacency matrix of the following graph



**Exercise 7.3.** Consider the following graph G. How many distinct walks of length 5 connect  $v_2$  and  $v_3$ ?



Exercise 7.4. Find a walk with length 4 from 1 to 2, and a walk of length 5 from 1 to 7.



Exercise 7.5. In each of the following graphs, find paths of length 9 and 11, and cycles of length 5, 6, 8 and 9, if possible.





# 8 Isomorphisms of Graphs

Exercise 8.1. Which of these following pairs of graphs are isomorphic? Prove your answer.



Solution.  $G_1$  and  $G_2$  are isomorphic since there is the graph isomorphism:  $\varphi: G_1 \to G_2$  as follows:

$$\varphi(1) = 1, \varphi(2) = 3, \varphi(3) = 2$$

Exercise 8.2. Which of these following pairs of graphs are isomorphic? Prove your answer.



Solution. On the one's hand, G has four vertices with degree 3 and each of them is adjacent to two vertices with degree 2 and another vertex with degree 3. On the other hand, every vertex with degree 3 of H is adjacent to two vertices with degree 3 and another vertex with degree 2. Hence G and H are not isomorphic.  $\blacksquare$ 

Exercise 8.3. Which of these following pairs of graphs are isomorphic? Prove your answer.



# 9 Trees

**Example 9.1.** Tranverse the following trees in Pre-order, In-order and Post-order. What is the tree's height?



Solution. Preorder tranversal: 0 4 5 7 6 3 2

Inorder tranversal:  $7\ 5\ 6\ 4\ 0\ 3\ 2$ Postorder tranversal:  $7\ 6\ 5\ 4\ 2\ 3\ 0$ 

The tree's height is 3. ■

**Exercise 9.1.** Tranverse the following trees in Pre-order, In-order and Post-order. What is the tree's height?



**Exercise 9.2.** Tranverse the following tree in Pre-order, In-order and Post-order. What is the tree's height?



**Exercise 9.3.** Transverse the following tree in Pre-order, In-order and Post-order. What is the tree's height?



**Exercise 9.4.** Tranverse the following trees in Pre-order, In-order and Post-order. What is the tree's height?



# 10 Graph's Algorithms

Kruskal's algorithm Given: A connected, weighted graph G.

- i. Find an edge of minimum weight and mark it.
- ii. Among all of the unmarked edges that do not form a cycle with any of the marked edges, choose an edge of minimum weight and mark it.
- iii. If the set of marked edges forms a spanning tree of G, then stop. If not, repeat step ii.

**Example 10.1.** Apply Kruskal's algorithm to the following graph to build a minimum spanning tree.



SOLUTION. A spanning tree is  $T = \{AD, DE, BE, AC\}$ The total weight is 5 + 5 + 6 + 7 = 23

Prim's algorithm Given: A connected, weighted graph G.

- i. Choose a vertex v, and mark it.
- ii. From among all edges that have one marked end vertex and one unmarked end vertex, choose an edge e of minimum weight. Mark the edge e, and also mark its unmarked end vertex.
- iii. If every vertex of G is marked, then the set of marked edges forms a minimum weight spanning tree. If not, repeat step ii.

Example 10.2. Apply Prim's/Kruskal's algorithm to the following graph to build a minimum span-



ning tree.

Solution. A spanning tree is  $T = \{DE, AD, BE, AC\}$ The total weight is 5 + 5 + 6 + 7 = 23

#### Dijkstra Shortest-Path Algorithm

Let G = (V, E) be a weighted graph, with |V| = n. To find the shortest distance from a fixed vertex  $v_0$  to all other vertices in G, as well as a shortest directed path for each of these vertices, we apply the following algorithm.

#### Dijkstra Shortest-Path Algorithm

- Step 1: Set the counter i = 0 and  $S_0 = \{v_0\}$ . Label  $v_0$  with (0, -) and each  $v \neq v_0$  with  $(\infty, -)$ .
  - If n = 1, then  $V = \{v_0\}$  and the problem is solved.
  - If n > 1, continue to step 2.
- Step 2: Let  $\bar{S}_i := V \setminus S_i$ . For each  $v \in \bar{S}_i$  replace, when possible, the label on v by the new label (L(v), y) where

$$L(v) = min_{u \in S_i} \{ L(v), L(u) + w(u, v) \},$$

and y is a vertex in  $S_i$  that produces the minimum L(v). [When a replacement does take place, it is due to the fact that we can go from wo to v and travel a shorter distance by going along a path that includes the edge (y,v)].

- Step 3: If every vertex in \$\bar{S}\_i\$ (for some 0 ≤ i ≤ n − 2) has the label (∞, −) then the labeled graph contains the information we are seeking.
  If not, then there is at least one vertex \$v ∈ \bar{S}\_i\$ that is not labeled by (∞, −) and we perform the following tasks:
  - 1. Select a vertex  $v_{i+1}$  where  $L(v_{i+1})$  is a minimum (for all such v). There may be more than one such vertex, in which case we are free to choose among the possible candidates. The vertex  $v_{i+1}$  is an element of  $\bar{S}_i$  that is closest to  $v_0$ .
  - 2. Assign  $S_i \cup \{v_{i+1}\}$  to  $S_{i+1}$ .
  - 3. Increase the counter i by 1. If i = n -1, the labeled graph contains the information we want. If i < n-1, return to step 2.

**Example 10.3.** Apply Dijstra's algorithm to the following graph to find shortest part from vertex u to vertex w.



| u  | r            | S            | t                | Х            | у            | Z            | W            |
|----|--------------|--------------|------------------|--------------|--------------|--------------|--------------|
| 0* | $(\infty,-)$ | $(\infty,-)$ | $(\infty$ ,- $)$ | $(\infty,-)$ | $(\infty,-)$ | $(\infty,-)$ | $(\infty,-)$ |
| -  | $(4, u_0)$   | $(\infty,-)$ | $(\infty$ ,- $)$ | $(\infty,-)$ | $(1,u_0)$    | $(\infty,-)$ | $(\infty,-)$ |
| -  | (3,y)*       | $(\infty,-)$ | $(\infty,-)$     | $(\infty,-)$ | _            | (4,y)        | $(\infty,-)$ |
| -  | _            | (10,r)       | (6,r)            | $(\infty,-)$ | _            | (4,y)*       | $(\infty,-)$ |
| -  | -            | (10,r)       | (6,r)*           | $(\infty,-)$ | -            | -            | (9,z)        |
| -  | -            | (9,t)        | -                | $(7,t)^*$    | -            | -            | (9,z)        |
| -  | -            | (8,x)*       | -                | -            | -            | -            | (9,z)        |
| -  | -            | -            | -                | -            | -            | -            | (9,z)*       |



**Example 10.4.** Apply Dijstra's algorithm to the following graph to find shortest part from vertex a to vertex z.



## SOLUTION.

| а  | b                        | с      | d      | e               | f               | g       | z               |
|----|--------------------------|--------|--------|-----------------|-----------------|---------|-----------------|
| 0* | (∞,-)                    | (∞,-)  | (∞,-)  | (∞,-)           | (∞,-)           | (∞,-)   | (∞,-)           |
| -  | (4,a)                    | (3,a)* | (∞,-)  | (∞,-)           | (∞,-)           | (∞,-)   | (∞,-)           |
| -  | ( <b>4</b> , <i>a</i> )* | -      | (6,c)  | (9,c)           | (∞,-)           | (∞,-)   | (∞,-)           |
| -  | -                        | -      | (6,c)* | (9,c)           | (∞,-)           | (∞,-)   | (∞,-)           |
| -  | -                        | -      | -      | (7, <i>d</i> )* | (11, <i>d</i> ) | (∞,-)   | (∞,-)           |
| -  | -                        | -      | -      | -               | (11,d)*         | (12,e)  | (∞,-)           |
| -  | -                        | -      | -      | _               | -               | (12,e)* | (18 <i>,</i> f) |
| -  | -                        | -      | -      | -               | -               | -       | (16,g)*         |

# Shortest path tree



Exercise 10.1. Apply Prim's/Kruskal's algorithm to the following graph to build a minimum spanning tree.



Exercise 10.2. Apply Prim's/Kruskal's algorithm to the following graph to build a minimum spanning tree



Exercise 10.3. Apply Prim's/Kruskal's algorithm to the following graph to build a minimum spanning tree



Exercise 10.4. Apply Dijstra's algorithm to the following graph to find shortest part from vertex a to vertex z.



Exercise 10.5. Apply Dijstra's algorithm to the following graph to find shortest part from u to the other vertices.



**Exercise 10.6.** Apply Dijstra's algorithm to the following graph to find shortest part from vertex c to vertex i.



Exercise 10.7. Apply Dijstra's algorithm to the following graph to find shortest part from vertex 0 to vertex 4.

