

nazwisko i imię: <u>Sdezynjier Karol</u> numer indeksu: <u>6084</u>

- 1. W celu skorygowania dowolnej wagi dowolnego neuronu warstwy ukrytej wielowarstwowej sieci neuronowej podczas stosowania metody propagacji wstecznej należy znać:
 - a) błędy neuronów warstwy następnej,
 - b) wyjścia neuronów warstwy następnej,
 - c) wagi neuronów warstwy poprzedniej,
 - d) żadna z powyższych odpowiedzi.
- 2. Wykorzystaj jeden z wektorów (albo dwa): [2, -1], [-2, 1], aby zaprojektować dwa różne perceptrony (każdy o innej funkcji aktywacji), które umożliwią poprawną klasyfikację przedstawionych poniżej zbiorów punktów (5 punktów). Przyjmij następujące ograniczenia:

perceptron A: dla kółek oczekujemy na wyjściu wartości 1;

perceptron B: zastosuj funkcję unipolarną, dla kwadracików oczekujemy 1.

6. Oblicz wartości błędów w warstwie wyjściowej (α_1 , α_2) oraz błędy w warstwie ukrytej (β_2 , β_3). Wartości z_1 , z_2 , z_3 to wartości obliczonych wyjść warstwy ukrytej, y_1 , y_2 — wartości wyjść sieci zaś d_1 , d_2 to wartości oczekiwane na wyjściu sieci. W razie potrzeby, dookreśl wszystkie, według Ciebie niezbędne, parametry.

$$\beta_{2} = \int_{0}^{1} (NET) \cdot (0.05 \cdot 0 + 1.7 \cdot 0) = 0$$

$$\beta_{3} = \int_{0}^{1} (NET) \cdot (0.05 \cdot 0 + 1.7 \cdot 10) = \int_{0}^{1} (NET) \cdot 17 = -\frac{17}{10}$$