Im Internat. Recherchenbericht zitierte Entgegenhaltung gegen PCT/DE99/00782 NIGU CHEMIE GMBH Unser Zeichen: 95-2 PCT

(9) BUNDESREPUBLIK DEUTSCHLAND

Gebrauchsmuster

U1

(11) Rollennummer G 94 16 112.7 (51) Hauptklasse CO6D 5/06

Nebenklasse(n) A62D 1/06 B60R 21/26

- (22) Anmeldetag 06.10.94
- (47) Eintragungstag 15.12.94
- (43) Bekanntmachung im Patentblatt 02.02.95
- (30) Pri 06.10.93 DE 43 34 099.7
- (54) Bezeichnung des Gegenstandes Gasgeneratortreibstoff
- (73) Name und Wohnsitz des Inhabers Contec - Chemieanlagen GmbH, 84544 Aschau, DE
- (74) Name und Wohnsitz des Vertreters Vossius, V., Dipl.-Chem. Dr.rer.nat., Pat.-Anw., 81679 München

DR. JOLEA WATER BREEKS SEENSTEIN FLASTERS SEPTS WENCHES

U.Z.: 95-1 Contec Chemieanlagen GmbH Ahornstr. 11 D-84544 Aschau

38, OM 1994

5

Priorität: Deutschland, Aktz.: P 43 34 099.7-45

Belegexemplar

10

Gasgeneratortreibstoff

Die Erfindung betrifft feste Gasgeneratortreibstoffe auf Basis von Guanidinverbindungen auf geeigneten Trägern.

Aus der JP H5-254977 sind Gasgeneratortreibstoffe für Airbags auf der Basis von Triaminoguanidinnitrat (TAGN) bekannt, die zusätzlich Oxidationsmittel wie Alkali- und Eralkalinitrate, -nitrite, -chlorate oder -perchlorate enthalten können. Als weitere Komponente kann als Bindemittel Molybdänsulfid enthalten sein. Der Vorteil der Verwendung von TAGN anstelle des bekannten Natriumazids liegt in der Ungiftigkeit und ebenfalls guten Stabilität von TAGN, das zudem in Verbindung mit Schwermetallen keine reib- und schlagempfindlichen Salze bildet. Die Abbrandrate der Gasgeneratortreibstoffe soll über eine Variation des Verpressdrucks während der Herstellung von Pellets oder Tabletten aus dem Komponentengemisch möglich sein.

25

Nachteile derartiger Gasgeneratortreibstoffe sind eine immer noch unzureichende Steuerbarkeit des Abbrandes, die Entwicklung toxischer Gase wie CO und eine mangelhafte Schlackenbildung beim Abbrand, die zu einer erhöhten Entwicklung von Stäuben führt, die teilweise lungengängig sind.

30

Der vorliegenden Erfindung liegt gegenüber der JP H5-254977 die Aufgabe zugrunde, verbesserte Gasgeneratortreibstoffe bereitzustellen, deren Abbrandverhalten sich gezielt einstellen läßt und die beim Abbrand eine gut zurückhaltbare Schlacke bilden und die Entstehung toxischer Gase auf ein

Minimum beschränken. Die Gasgeneratortreibstoffe sollen thermisch stabil, gut anzündbar, schnell - auch bei niedriger Temperatur - brennend und gut lagerfähig sein und eine hohe Gasausbeute gewährleisten. Zudem sollen diese Gasgeneratortreibstoffe eine Verkleinerung der Generatorgehäuse und somit deren Gewichtsverminderung im Vergleich zu bekannten mit Natriumazid betriebenen Generatoren ermöglichen.

Erfindungsgemäß werden diese Aufgaben durch einen Gasgeneratortreibstoff gelöst, umfassend

10 (A) mindestens ein Carbonat, Hydrogencarbonat oder Nitrat von Guanidin, Aminoguanidin, Diaminoguanidin oder Triaminoguanidin,

5

15

- (B) mindestens ein Alkali- oder Erdalkalinitrat oder Ammoniumnitrat als Oxidationsmittel, und
- (C) mindestens eine Trägersubstanz, ausgewählt aus Siliciumdioxid, Alkali-, Erdalkali- oder Alumosilikaten und/oder mindestens eine sauerstoffliefernde Trägersubstanz, ausgewählt aus Eisen(III)oxid, Kobaltoxiden, Mangandioxid und Kupfer(II)oxid, zur Moderation des Abbrandes und zur Verbesserung der Schlackenbildung.

Als Komponnte (A) können Carbonate, Hydrogencarbonate oder Nitrate von Guanidin, Aminoguanidin, Diaminoguanidin oder Triaminoguanidin (TAGN) oder deren Gemische verwendet werden. Bevorzugt wird TAGN verwendet. TAGN ist praktisch ungiftig (LD₅₀ > 3500 mg/kg Ratte), nicht hygroskopisch, wenig wasserlöslich, thermisch stabil, bei niedriger Temperatur verbrennend und von geringer Schlag- und Reibempfindlichkeit. Die Gasausbeute bei der Verbrennung von TAGN ist sehr hoch, wobei ein großer Anteil an Stickstoffgas entsteht. Wahlweise kann das TAGN zu 1 bis 50 Gew.-% durch Nitroguanidin ersetzt werden. Damit können die Kosten der Komponente (A) vermindert werden und ein günstiges Abbrandverhalten erzielt werden, da Nitroguanidin eine geringere Abbrandrate aufweist als TAGN.

3

Als Oxidationsmittel, Komponente (B), können Alkali- oder Erdalkalinitrate, Ammoniumnitrat und deren Gemische verwendet werden. Vorzugsweise wird Kaliumnitrat verwendet. Kaliumnitrat ist nicht hygroskopisch, nicht toxisch, ermöglicht beim Abbrand eine hohe Gasausbeute und niedrige Abbrandtemperatur.

5

10

15

20

25

30

Komponente (A) liegt im Gemisch von (A) und (B) in einer Menge von etwa 20 bis 55, vorzugsweise etwa 50 bis 55 Gew.-%, Komponente (B) in einer Menge von etwa 80 bis 45, vorzugsweise etwa 50 bis 45 Gew.-% vor. Bevorzugt liegt Komponente (A) in einer Menge von etwa 50 bis 55 Gew.-% und Komponente (B) in einer Menge von etwa 50 bis 45 Gew.-% vor.

Als Trägersubstanz, Komponente (C), können Siliciumdioxid, Alkali-, Erdalkali- oder Alumosilikate oder deren Gemische verwendet werden. Beispiele hierfür sind Aerosil 200 und Aerosil 300, hochdisperse Kieselsäure und Kieselgur (Diatomeenerde). Bevorzugte Trägersubstanz ist Kieselsäure mit einem pH-Wert von etwa 7.

Als Komponente (C) können auch sauerstoffliefernde Trägersubstanzen wie Eisen(III)oxid, Kobaltoxide, Mangandioxid und Kupfer(II)oxid oder deren Gemische verwendet werden. Die bevorzugte sauerstoffliefernde Trägersubstanz ist Eisen(III)oxid.

Komponente (C) liegt bezogen auf die Gesamtmenge der Komponenten (A) und (B) in einer Menge von etwa 5 bis 45, vorzugsweise etwa 8 bis 20 Gew.-% vor. Wird Eisen(III) oxid als sauerstoffliefernde Trägersubstanz (C) verwendet, so liegt sie bezogen auf die Gesamtmenge der Komponenten (A) und (B) in einer Menge von etwa 20 bis 40, vorzugsweise etwa 25 bis 35 Gew.-% vor.

Komponente (C) dient zur Moderation des Abbrandes, d.h. zur Einstellung der Abbrandgeschwindigkeit. Gleichzeitig wird die Schlacken- oder Schmelzenbildung verbessert. Die Schlackenbildung ist beispielsweise beim Airbag unbedingt nötig.

Ein Airbag besteht im wesentlichen aus einem Gasgeneratorgehäuse, das mit dem Gasgeneratortreibstoff, in der Regel in Tablettenform, gefüllt ist, und einem Initialzünder (squib) zur Zündung des Gasgeneratortreibstoff, sowie einem Gassack. Geeignete Zünder sind beispielsweise in der Us-Ps 49 31 111 beschrieben. Der zunächst kleingefaltete Gassack wird nach der Initialzündung von den beim Abbrand des Gasgeneratortreibstoffs entstehenden Gasen gefüllt und erreicht in einem Zeitraum von etwa 10-50 ms sein volles Volumen. Der Austritt von heißen Funken, Schmelzen oder Festkörpern aus dem Gasgenerator in den Gassack muß weitgehend verhindert werden, da er zu einer Zerstörung des Gassacks oder zur Verletzung von Fahrzeuginsassen führen könnte. Dies wird durch die Schlackenbildung erreicht.

Gleichzeitig wird durch Bildung von Schlacken das Entstehen von lungengängigen staubförmigen Anteilen vermindert, die aus dem Gasgenerator eines Airbags austreten könnten. Lungengängige staubförmige Teilchen haben einen Durchmesser von etwa 6 μ m oder weniger. Die sauerstoffliefernden Trägersubstanzen unterdrücken zusätzlich die Bildung toxischer Gase wie Kohlenmonoid beim Abbrand.

Wahlweise kann der Gasgeneratortreibstoff ferner als Komponente (D) ein in Wasser bei Raumtemperatur lösliches Bindemittel enthalten. Bevorzugte Bindemittel sind Celluloseverbindungen oder Polymerisate aus einem oder mehreren polymerisierbaren olefinisch ungesättigten Monomeren. Beispiel für Celluloseverbindungen sind Celluloseether, wie Carboxymethylcellulose, Methylcelluloseether, insbesondere Methylhydroxyethylcellulose. Eine gut verwendbare Methylhydroxyethylcellulose ist CULMINAL^(R) MHEC 30000 PR der Firm Aqualon. Geeignete Polymerisate mit Binderwirkung sind Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Polycarbonate.

Komponente (D) liegt bezogen auf die Gesamtmenge der Komponenten (A) und (B) in einer Menge von etwa 0,1 bis 5, vorzugsweise etwa 1,5 bis 2,5 Gew.-%

vor.

Das Bindemittel (D) dient als Desensibilisierungsmittel und als Verarbeitungshilfe bei der Herstellung von Granulat oder Tabletten aus dem Gasgeneratortreibstoff. Es dient ferner zur Verminderung der Hydrophilie und zur Stabilisierung der Gasgeneratortreibstoffe.

Die in den Gasgeneratoren verwendeten Tabletten oder Pellets aus dem Gasgeneratortreibstoff können nach bekannten Verfahren hergestellt werden, etwa durch Strangpressen, Extrudieren, in Rundläuferpressen oder Tablettiermaschinen. Die Größe der Pellets oder Tabletten hängt von der gewünschten Brennzeit im jeweiligen Anwendungsfall ab.

Ausführungsbeispiele

15

20

10

5

Die berechneten Mengen Triaminoguanidinnitrat (TAGN) - ggf. auch Nitroguanidin - sowie Kaliumnitrat und ggf. Celluloseether werden in möglichst wenig Wasser bei 90° C gelöst und Eisenoxid und/oder Siliciumdioxid einer mittleren Korngröße von ca. 1 μ m in die Lösung eingerührt. Nach Vortrocknen bei 60° C und 16 hPa unter mechanischem Bewegen wird die Mischung in noch feuchtem Zustand zerkleinert und anschließend nach Trocknen bei 60° C mit einer Tablettiermaschine zu Tabletten von 6 mm Durchmesser und 2 mm Höhe verpresst.

25

In Tabelle I sind die untersuchten Gemische aufgeführt. Mischung 1 enthält kein Siliciumdioxid und Mischung 5 kein Eisen(III)oxid. Mischung 6 enthält als Vergleichsmischung weder Siliciumdioxid noch Eisen(III)oxid.

Tab I: Zusammensetzung der Gemische in Gewichtsprozent

		1	2	3	4	5	6
5	TAGN	39,1	39,1	39,1	29,1	47,3	53,0
	Nitroguanidin	-	-	-	10,0	-	-
	KNO ₃	, 30,9	30,9	30,9	30,9	40,7	47,0
	Fe ₂ O ₃	30,0	20,0	14,0	14,0	_	-
	SiO ₂		10,0	14,0	14,0	12,0	•
10	Celluloseether	-	-	2,0	2,0	-	-

Tabelle II zeigt eine Übersicht über die rechnerisch ermittelten Reaktionsparameter. Bei Gemisch 5 und besonders bei Gemisch 6 tritt eine hohe Reaktionstemperatur auf.

Tab II: Errechnete Werte

	O ₂ -Bilanz	%	+ 2,13	÷ 1,13	- 1,84	- 1,57	+ 0,25	+ 0,84
•	Volumen	ccm	1000	1000	1000	1000	1000	1000
20	Ladedichte	(g/ccm)	0,1	0,1	0,1	0,1	1,0	0,1
	Druck	bar	427	444	470	457	654	810
	Temperatur	Κ .	1973	2116	2116	2116	2468	2666
	Molzahlen de	r						
25	Verbr. Gase Expl. Wärme	•	21,1 3369	22,6 3092	23,9 2998	23,4 2913	27,5 3852	28,8 4566

Tabelle III zeigt eine Übersicht der beim Abbrand entstehenden Reaktionsprodukte und ihrer Mengen.

30

Tab III: Reaktionsprodukte bei 298 K, Freeze-Out-Temp. 1.500 K

	Verbindung (Gew. %)	1	2	3	4	5	6
5 10 15	CO ₂	. 3,604	10,086	11,538	13,228	12,408	3,768
	H_2O	18,952	18,817	18,828	17,711	22,935	26,692
	N_2	27,219	27,219	27,217	26,735	33,383	37,596
	СО	0,000	0,134	1,283	1,223	0,000	0,000
	H_2	0,000	0,017	0,139	0,109	0,000	0,000
10	NO	0,001	0,000	0,000	0,000	0,009	0,018
	02	0,001	0,000	0,000	0,000	0,248	0,826
	HCN	0,000	0,000	0,000	0,000	0,000	0,000
	NH ₃	0,000	0,000	0,003	0,002	0,000	0,000
	КОН	0,086	0,000	0,003	0,003	0,053	0,101
15	K ₂ CO ₃	21,014	0,000	0,000	0,000	0,150	31,997
	FeO	-	-	12,597	12,597	-	· -
	Fe ₂ O ₃	3,726	0,000	0,000	0,000	-	0,000
	Fe ₃ O ₄	25,396	19,331	0,000	0,000	-	0,000
	K ₂ SiO ₃	-	23,572	23,572	23,572	30,813	-
20	SiO ₂	-	0,820	4,820	4,820	-	-

Tabelle IV zeigt Untersuchungsergebnisse zur Zersetzungsempfindlichkeit, Stabilität, der Schlackenbildung und dem Abbrandverhalten der verschiedenen Gemische. Gemische 1 bis 5 zeigten gutes bis sehr gutes Abbrandverhalten, insbesondere in bezug auf eine konstante hohe Brenngeschwindigkeit. Für das Vergleichsgemisch 6, das weder Siliciumdioxid noch Eisen(III) oxid als Komponente (C) enthält, konnten nur unzureichende Schlackenbildung und unzureichendes Abbrandverhalten festgestellt werden.

Tab IV: Untersuchungserd	<u>lebnisse</u>
--------------------------	-----------------

	Gemisch	1	2	3	4	5	6
5	Zersetzungstemp. °C	*)	-	207	178	203	
	Meßbedingungen :						
	Aufheizgeschwindigkeit 2℃/min			,			
	ab 15°C unter Zersetzungstemp.						
10	Stabilitāt : Holland-Test						
	Probengewicht: 2,5g						
	Prüftemperatur: 105°C						
	Prüfdauer : 72h		•				
	Gewichtsverlust (Gew. %)	-	-	0,28	0,40	0,13	-
15	•						
	Schlackenbildung	++	++	; +	++	++	
	Abbrandverhalten	+	+ +	++	++	+	-

Anm.: ++ Sehr gut; + Gut; - Unzureichend

*) Für Gemisch 1 wurden andere Stabilitätsuntersuchungen durchgeführt:

Stabilitätsuntersuchungen zu Gemisch 1

25 1. Differentialthermoanalyse

20

30

Gerät: HERAEUS - FUS-O-MAT

Aufheizgeschwindigkeit 10°C/min, Einwaage 10 mg

Ergebnis KNO₃-Umwandlung: 129/130°C

Beginn der exotherm. Reaktion: 168°C

2. Differentialthermogravimetrie

Gerät: LINSEIS - Simultan DTA/TG

Aufheizgeschwindigkeit 5°C/min, Einwaage 20 mg

Ergebnis KNO₃-Umwandlung: 127°C

35 Beginn der exotherm. Reaktion: 135°C

Verpuffung: 158°C

Versuchsabbrand Gemisch 1

10

30

Ein Versuchsabbrand des Gemisches 1 wurde in einem normalen Gasgeneratorgehäuse aus Aluminium für einen 60 Liter-Airbag, versehen mit einer Bohrung zur Druckmessung, in einer 60 Liter-Kanne durchgeführt.

Die Versuchstemperatur für Versuch 1 betrug -35°C, das Treibsatzgewicht

51,0g. Der Treibsatz bestand aus Tabletten mit 6 mm Durchmesser und einer Höhe von 2 mm.

Figur 1 zeigt für Versuch 1 den Druck in der Brennkammer in Einheiten von 10⁵ Pascal in Abhängigkeit von der Zeit nach der Zündung in Millisekunden.

Der Druckaufbau erfolgt innerhalb ca. 1,5 ms und der Druckabfall auf die Hälfte des Maximaldrucks erfolgt nach ca 27 ms. Der maximale Druck beträgt 1,88*10⁷ Pa, er wird nach 12,3 ms erreicht.

Analyse der erzeugten toxischen Gasanteile in ppm

 $_{\text{CO 300}}^{\text{20}}$ NH₃ >70 NO_x 60

Versuchsabbrände Gemisch 2

Die Versuchsabbrände des Gemisches 2 wurde in einem Euro-Gasgeneratorgehäuse aus Aluminium für einen 35 Liter-Airbag, versehen mit einer Bohrung zur Druckmessung, in einer 60 Liter-Kanne durchgeführt.

Die Versuchstemperatur betrug in Versuch 2 -35°C, in Versuch 3 +20°C. Das Treibsatzgewicht betrug bei Versuch 2 41,0g, bei Versuch 3 30,0g. Der Treibsatz bestand aus Tabletten mit 6 mm Durchmesser und einer Höhe von 2 mm.

Figur 2 zeigt für Versuch 2 den Druck in der Brennkammer in Einheiten von 10⁵ Pascal in Abhängigkeit von der Zeit nach der Zündung in Millisekunden.

Der Druckaufbau erfolgt innerhalb ca. 1,5 ms und der Druckabfall auf die Hälfte des Maximaldrucks erfolgt nach ca 27 ms. Der maximale Druck betrug 1,45*10⁷ Pa, er wurde nach 15,7 ms erreicht.

Figur 3 zeigt für Versuch 3 den Druck in der Brennkammer in Einheiten von 10⁵ Pascal in Abhängigkeit von der Zeit nach der Zündung in Millisekunden.

Der Druckaufbau erfolgt innerhalb ca. 1,5 ms und der Druckabfall auf die Hälfte des Maximaldrucks erfolgt nach ca 27 ms. Der maximale Druck betrug 1,33*10⁷ Pa, er wurde nach 7,5 ms erreicht.

Der erfindungsgemäße Gasgeneratortreibstoff besteht aus nichttoxischen, leicht herstellbaren und kostengünstigen Komponenten, deren Verarbeitung unproblematisch ist. Ihre thermische Stabilität bewirkt gute Lagerfähigkeit. Trotz niederer Verbrennungstemperatur ist die Anzündbarkeit der Gemische gut. Sie brennen schnell und liefern große Gasausbeute mit sehr geringen CO- und NO-Anteilen. Die erfindungsgemäßen Gemische sind daher zur Verwendung als Gaserzeugungsmittel in den verschiedenen Airbag-Systemen, als Löschmittel oder Treibmittel besonders geeignet. Zudem sind die Gasgeneratortreibstoffe gut recyclingfähig.

5

10

15

U.Z.: 95-1

Contec Chemieanlagen GmbH

Ahornstr. 11 D-84544 Aschau

5

Priorität: Deutschland, Aktz.: P 43 34 099.7-45

Ansprüche

10

15

20

25

- 1. Gasgeneratortreibstoff, umfassend
 - (A) mindestens ein Carbonat, Hydrogencarbonat oder Nitrat von Guanidin, Aminoguanidin, Diaminoguanidin oder Triaminoguanidin,
 - (B) mindestens ein Alkali- oder Erdalkalinitrat oder Ammoniumnitrat als
 - Oxidationsmittel, und
 - (C) mindestens eine Trägersubstanz, ausgewählt aus Siliciumdioxid, Alkali-, Erdalkali- oder Alumosilikaten und/oder mindestens eine sauerstoffliefernde Trägersubstanz, ausgewählt aus Eisen(III)oxid, Kobaltoxiden, Mangandioxid und Kupfer(II)oxid, zur Moderation des Abbrandes und zur Verbesserung der Schlackenbildung.
- 2. Gasgeneratortreibstoff nach Anspruch 1, wobei Komponente (A) in einer Menge von etwa 20 bis 55, vorzugsweise etwa 50 bis 55 Gew.-%, Komponente (B) in einer Menge von etwa 80 bis 45, vorzugsweise etwa 50 bis 45 Gew.-% und Komponente (C) bezogen auf die Gesamtmenge der Komponenten (A) und (B) in einer Menge von etwa 5 bis 45, vorzugsweise etwa 8 bis 20 Gew.-% vorliegt.
- Gasgeneratortreibstoff nach Anspruch 1 oder 2, wobei Komponente
 (A) Triaminoguanidinnitrat ist.
- 4. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 3, wobei Komponente (B) Kaliumnitrat ist.

- 5. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 4, wobei Komponente (C) Kieselsäure mit einem pH-Wert von etwa 7 ist.
- 6. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 5, wobei
 Komponente (A) zu 99 bis 50 Gew.-% aus Triaminoguanidinnitrat und
 zu 1 bis 50 Gew.-% aus Nitroguanidin besteht, bezogen auf die
 Gesamtmenge der Komponente (A).
- 7. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 6, wobei Komponente (C) Eisen(III) oxid ist.
 - 8. Gasgeneratortreibstoff nach Anspruch 7, wobei das Eisen(III)oxid bezogen auf die Gesamtmenge der Komponenten (A) und (B) in einer Menge von etwa 20 bis 40, vorzugsweise etwa 25 bis 35 Gew.-% vorliegt.
 - Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 8, zusätzlich umfassend (D) ein in Wasser bei Raumtemperatur lösliches Bindemittel.
 - 10. Gasgeneratortreibstoff nach Anspruch 9, wobei das Bindemittel eine Celluloseverbindung oder ein Polymerisat aus einem oder mehreren polymerisierbaren olefinisch ungesättigten Monomeren ist.
 - Gasgeneratortreibstoff nach Anspruch 9 oder 10, wobei das Bindemittel bezogen auf die Gesamtmenge der Komponenten (A) und (B) in einer Menge von etwa 0,1 bis 5, vorzugsweise etwa 1,5 bis 2,5 Gew.-% vorliegt.

15

Fig. 1

Fig. 2

Fig. 3

2/2

