1 master-theorem

$$T(n) = aT(\frac{n}{b}) + f(n) \tag{1}$$

If $f(n) = O(n^{\log_b^{a-\epsilon}})$ for some constant $\epsilon > 0$. Then $T(n) = \Theta(n^{\log_b^a})$ If $f(n) = \Theta(n^{\log_b^a})$, then $T(n) = \Theta(n^{\log_b^a} \lg n)$ If $f(n) = \Omega(n^{\log_b^{a+\epsilon}})$ for some constant $\epsilon > 0$, if $af(\frac{n}{b}) <= cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$