

Redes de Computadores

Camada de Transporte - I

Prof. Me. Ricardo Girnis Tombi

Conteúdo adaptado de:

Redes de Computadores e a Internet. Ed. Pearson J. F Kurose e K. W. Ross

LARC - PCS 5027 G. Bressan

Aquecimento ...

Introdução

 ✓ A camada de transporte fornece comunicação lógica, e não física, entre processos de aplicações

Relação entre as camadas de transporte e de rede

Um protocolo de camada de transporte fornece comunicação lógica entre processos que rodam em hospedeiros diferentes.

Um protocolo de camada de rede fornece comunicação **lógica entre hospedeiros.**

Uma rede de computadores pode disponibilizar vários protocolos de transporte.

Visão geral da camada de transporte na Internet

A responsabilidade fundamental do UDP e do TCP é ampliar o serviço de entrega IP entre dois sistemas finais para um serviço de entrega entre dois processos que rodam nos sistemas finais.

A ampliação da entrega hospedeiro a hospedeiro para entrega processo a processo é denominada multiplexação/demultiplexação de camada de transporte.

O UDP e o TCP também fornecem verificação de integridade ao incluir campos de detecção de erros nos cabeçalhos de seus segmentos

Multiplexação e Demultiplexação

Legenda:

Multiplexação e Demultiplexação

Campos de número de porta de origem e de destino em um segmento de camada de transporte:

Endereçamento na camada de Transporte

As aplicações são endereçadas através de portas.

Duas aplicações em diferentes máquinas se comunicam através de pares de endereços finais.

- Ø IP indica uma máquina
- Ø Porta indica uma aplicação em uma máquina

Endereçamento na camada de Transporte

Exemplo de três conexões distintas:

Portas conhecidas usadas na Internet

São portas na faixa de 0 a 1023

Protocolo	Número da porta	
FTP	21/TCP	
Telnet	23/TCP	
SMTP	25/TCP	
TFTP	69/UDP	
Finger	79/TCP	
HTTP	80/TCP	
POP3	110/TCP	
SNMP	161/UDP	

Protocolos da camada de transporte

TCP	UDP
Orientado a conexão	Sem conexão
Orientado a Stream	Orientado a datagrama
Confiável	Não confiável
Controle de fluxo	Sem controle de fluxo
Controle de congestionamento	Sem controle de congestionamento

Protocolos da camada de transporte

Aplicações populares da Internet e seus protocolos de transporte subjacentes:

Aplicação	Protocolo da camada de aplicação	Protocolo de transporte subjacente
Correio eletrônico	SMTP	TCP
Acesso a terminal remoto	Telnet	TCP
Web	HTTP	TCP
Transferência de arquivo	FTP	TCP
Servidor de arquivo remoto	NFS	Tipicamente UDP
Recepção de multimídia	Tipicamente proprietário	UDP ou TCP
Telefonia por Internet	Tipicamente proprietário	UDP ou TCP
Gerenciamento de rede	SNMP	Tipicamente UDP
Protocolo de roteamento	RIP	Tipicamente UDP
Tradução de nome	DNS	Tipicamente UDP

Protocolo UDP

- O UDP, definido no [RFC 768], faz apenas quase tão pouco quanto um protocolo de transporte pode fazer.
- À parte sua função de multiplexação/demultiplexação e de alguma verificação de erros simples, ele nada adiciona ao IP.
- Se o desenvolvedor de aplicação escolher o UDP, em vez do TCP, a aplicação estará "falando" quase diretamente com o IP.
- O UDP é não orientado para conexão.

Protocolo TCP

- Orientado à conexão
- Transferência confiável
- Controle de fluxo
- Controle de congestionamento

Estrutura do segmento TCP

Estrutura do segmento TCP

- Portas de origem e destino Identificam as aplicações
- Num Seq Indica o número de seqüência do primeiro byte
- deste segmento
- Num ACK Indica o número do próximo byte que o destino
- espera receber. Válido apenas quando o bit ACK estiver ativado.
- SYN Bit usado para indicar o de estabelecimento de conexão
- FIN Bit usado para indicar o de término de conexão
- RST Bit usado para rejeitar uma conexão
- ACK Bit usado para indicar que o segmento contém um
- reconhecimento.

Estrutura do segmento TCP

- Tam Janela Indica quantos bytes o receptor está
- disposto a aceitar
- Opções –
- Campo usado para informar o MSS (Maximum Segment Size)
- que ele está disposto a receber da outra ponta. É válido
- apenas com o bit SYN ativado. Se MSS não for
- transmitido,TCP assume um MSS de 536 bytes.
- Fator de escala para multiplicar a janela informada,
- permitindo janelas maiores.
- • Time stamp para identificar reinício de números de
- sequencias

Estabelecimento de conexão

Um protocolo pare e espere em operação

Pacote de dados

Um protocolo com paralelismo em operação

Envio com pare e espere

Transmissão confiável em canal com erros e perdas

- Canal é confiável, mas o desempenho é um problema
 - Ex.: Enlace de 1Gb/s, retardo de 15ms e pacotes de 1kB

$$d_{trans} = \frac{L}{R} = \frac{8000 \text{bits}}{10^9 \text{bps}} = 8 \text{ microsegundos}$$

Utilização canal =
$$\frac{L/R}{RTT + L/R} = \frac{0,008}{30,008} = 0,00027$$

Pacotes de 1kB são enviados a cada 30ms

→ Vazão de 1kB/30ms=33kB/s num enlace de 1Gb/s

Transmissão confiável em canal com erros e perdas

- Canal é confiável, mas o desempenho é um problema
 - Ex.: Enlace de 1Gb/s, retardo de 15ms e pacotecto 1kB

$$d_{trans} = \frac{L}{R} = \frac{8000 \text{bits}}{10^9 \text{bps}} = 8 \text{mission}$$
Utilização
$$\frac{10^9 \text{bps}}{10^9 \text{colo}} = \frac{10^9 \text{bps}}{10^9 \text{bps}} = 0,00027$$

$$\frac{10^9 \text{colo}}{10^9 \text{colo}} = 0,00027$$

$$\frac{10^9 \text{colo}}{10^9 \text{colo}} = 0,00027$$

$$\frac{10^9 \text{colo}}{10^9 \text{colo}} = 0,00027$$

→ Vaz de 1kB/30ms=33kB/s num enlace de 1Gb/s

Envio com paralelismo

Número de sequência e ACKs

Fundamentais para a transmissão confiável

Número de sequência e ACKs

Número de sequência e ACKs

Mecanismos de retransmissão

Temporização de Retransmissão

Estimativa de RTT

Granularidade do RTO

RTO (Timeout) e RTT (Round Trip Time)

O TCP monitora o desempenho de cada conexão e calcula valores adequados para as temporizações.

TCP registra o tempo decorrido entre o envio de cada segmento e o recebimento do seu ACK (RTT- Round Trip Time).

O cálculo do valor de timeout (RTO - Retransmission Timer) é baseado nos valores amostrados de RTT.

Cálculo do RTT

Sempre que o TCP obtém um novo RTT (AmostraRTT), ele estima o novo RTT (RTTestimado) para essa conexão, usando a seguinte fórmula:

RTTestimado = $(1-\alpha)$ * RTTestimado + α * AmostraRTT onde $0 \le \alpha < 1$

Se α próximo de 0, RTT fica imune às grandes variações de delay.

Se α próximo de 1, RTT responde rapidamente às variações de atrasos na rede.

O valor recomendado de α (RFC 2988) é 1/8 = 0,125

Exemplo de cálculo do RTT

RTTestimado = 0,875 * RTTestimado + 0,125* Amostra RTT

	Amostra RTT	RTT Estimado
1	200	200
2	250	206
3	150	199
4	300	212
5	400	235
6	250	237
7	400	258
8	200	250
9	300	257
10	150	243
11	200	238
12	250	239
13	400	259

Variabilidade de RTT

A RFC 2988 define DevRTT como a estimativa do desvio de RTT utilizada no cálculo da temporização.

DevRTT = $(1 - \beta)*DevRTT + \beta*|AmostraRTT-RTTestimado|$

O valor recomendado para β é 0,25

Cálculo do Timeout

Um valor de Timeout próximo do RTTestimado permite detectar perda de segmentos rapidamente:

Vantagem: Aumenta a vazão (througput) pois não espera desnecessariamente para retransmitir.

Desvantagem: Causa retransmissão desnecessária congestionando a rede.

Nas implementações iniciais, usava-se a fórmula:

Timeout = 2 * RTTestimado

A RFC2988 que especifica o cálculo da temporização leva em conta a variabilidade do RTT utilizando o DevRTT através da fórmula:

Timoout - DTToctimado + 1 * DovDTT

Timeout

DevRTT = (1- 0,25) * DevRTT + 0,25 * | AmostraRTT-RTTestimado |
Timeout = RTTestimado + 4 * DevRTT

PERGUNTAS?

