Лабораторная работа №1

Определение количества информации. Единицы измерения количества информации

<u>**Цель работы:**</u> изучить понятие информации, три уровня рассмотрения информации, способы определения количества информации на этих уровнях; единицы измерения количества информации. Получение табличных моделей решения задачи средствами табличного процессора.

Порядок выполнения работы

- 1. Создать конвертер для перевода единиц измерения информации, решить индивидуальное задание, результат вычисления занести в отчет.
- 2. Сделать табличную модель для вычисления количества информации, сделать вычисления к задаче по варианту, результат вычисления занести в отчет.

Содержание отчета

После выполнения расчетной части лабораторной работы каждый студент должен подготовить отчет, в который входит:

- 1) титульный лист;
- 2) цель работы;
- 3) вариант задания;
- 4) расчетная часть в соответствии с ходом решения задачи (<u>табличные модели</u> и <u>письменные расчеты</u>);
- 5) выводы по работе.

Теоретическая часть

1. Единицы измерения количества информации

Количество информации – это количество сведений, содержащихся в том или ином информационном элементе (в символе кода или сообщении).

Единица количества информации – двоичная единица информации или бит.

Минимальную порцию информации о каком-либо свойстве объекта принято называть битом (binarydigit— двоичная цифра).

Бит — единица измерения информации, представляющая собой выбор из двух равновозможных вариантов. Бит представляет собой обозначение одного двоичного разряда, способного, в зависимости от сделанного выбора, принимать значение 1 или 0.

Таблица степеней двойки показывает, сколько комбинаций можно закодировать с помощью некоторого количества бит:

Количество бит	1	2	3	4	5	6	7	8	9	10
Количество комбинаций	2	4	8	16	32	64	128	256	512	1024

Байт — единица измерения информации, представляющая собой последовательность, состоящую из 8 бит: **1 байт** = 2^3 бит = **8 бит**.

Каждый бит имеет определенное место внутри байта, которое называется разрядом. Разряды принято нумеровать справа налево. Например, третий бит в байте на самом деле находится в пятом разряде байта.

Для измерения больших объемов информации принято использовать производные единицы измерения, представленные в таблице:

В информатике также широко используются кратные байту единицы измерения количества информации, однако в отличие от метрической системы мер, где в качестве множителей кратных единиц применяют коэффициент 10n, где n =3, 6, 9 и т. д., в кратных единицах измерения количества информации используется коэффициент 2n. Выбор этот объясняется тем, что компьютер в основном оперирует числами не в десятичной, а в двоичной системе счисления.

Кратные байту единицы измерения количества информации вводятся следующим образом:

```
1 Килобайт (Кбайт) = 1024 байт = 2^{10} байт (примерно 10^3 байт);

1 Мегабайт (Мбайт) = 1024 Кбайт = 2^{20} байт (примерно 10^6 байт);

1 Гигабайт (Гбайт) = 1024 Мбайт = 2^{30} байт (примерно 10^9 байт);

1 Терабайт (Тбайт) = 1024 Гбайт = 2^{40} байт (примерно 10^{12} байт);

1 Петабайт (Пбайт) = 1024 Тбайт = 2^{50} байт (примерно 10^{15} байт);

1 Экзабайт (Эбайт) = 1024 Пбайт = 2^{60} байт (примерно 10^{18}байт);

2^{10} = 1024.
```

Единицы измерения количества информации, в названии которых есть приставки «кило», «мега» и т. д., с точки зрения теории измерений <u>не являются корректными</u>, поскольку эти приставки используются в метрической системе мер, в которой в качестве множителей кратных единиц используется коэффициент 10n, где n = 3, 6, 9 и т. д.

Для устранения этой некорректности международная организацией International Electrotechnical Commission, занимающаяся созданием стандартов для отрасли электронных технологий, утвердила ряд новых приставок для единиц измерения количества информации: киби (kibi), меби (mebi), гиби (gibi), теби (tebi), пети (peti), эксби (exbi). Однако пока

используются старые обозначения единиц измерения количества информации, и требуется время, чтобы новые названия начали широко применяться.

Пример 1. Получено сообщение, информационный объем которого равен 32 битам. Чему равен этот объем в байтах?

Решение: В одном байте 8 бит. 32:8=4 байта.

Пример 2. Перевести 376832 бит в Кбайт.

Решение. 376832 бит = 376832 / 8 = 47104 байт = 47104 / 1024 = 46 Кбайт

Пример 3. Большие числа.

Обычно (хотя и не всегда) задачи, в условии которых даны большие числа, решаются достаточно просто, если выделить в этих числах степени двойки. На эту мысль должны сразу наталкивать такие числа как

$$128 = 2^7$$
, $256 = 2^8$, $512 = 2^9$, $1024 = 2^{10}$, $2048 = 2^{11}$, $4096 = 2^{12}$, $8192 = 2^{13}$, $16384 = 2^{14}$, $65536 = 2^{16}$ и т.п.

Нужно помнить, что соотношение между единицами измерения количества информации также представляют собой степени двойки:

1 байт =
$$8$$
 бит = 2^3 бит,

1 Кбайт =
$$1024$$
 байта = 2^{10} байта = $2^{10} \cdot 2^3$ бит = 2^{13} бит,

$$1$$
 Мбайт = 1024 Кбайта = 2^{10} Кбайта = $2^{10} \cdot 2^{10}$ байта = 2^{20} байта = $2^{20} \cdot 2^{3}$ бит = 2^{23} бит.

Правила выполнения операций со степенями:

• при умножении степени при одинаковых основаниях складываются

$$2^{a} \cdot 2^{b} = 2^{a+b}$$
• ... а при делении — вычитаются $\frac{2^{a}}{2^{b}} = 2^{a-b}$.

Решение:

$$1/512\ {\rm Mбайтa} = 2^{23}\,/\,512\ {\rm битa} = 2^{23}\,/\,2^9\ {\rm битa} = 2^{14}\ {\rm битa}\ (=16384\ {\rm битa!})$$

$$2^{14}$$
 бита / $2^{12} = 2^2$

Задание 1.

Переведите из одних единиц изменения информации в другие:

- 1. 64 бит =64/8=8 байт;
- 2. 128Кбайт=128/1024=0,125Мбайта;
- 3. 10Кбайт=10*1024=10240 байт;
- 4. 37 Кбайт 515 Байт 3 бит= 37 * 1024 + 515 байт 3 бит = 38403 байт 3 бит = 38403 * 8 + 3 = 307227 бит.

Для автоматизации перерасчетов, в MS Excel можно создать следующий конвертер (зеленое поле для ввода данных) (Рис.1.).

D.	fx ∑ Автосумма ▼ № Логические ▼ Д Ссылки и массивы ▼ Вставить функцию № Недавно использовались ▼ № Текстовые ▼ № Математические ▼ Библиотека функций Другие функции ▼								Диспетчер имен	≥ Π _I £ Nα EE Cα Or
	G21 ▼ (f _x									
4	А	В	С		D	E	F		G	
1	Bit		=C2*8	=D2*	8	=E2*8				
2	Bait	=B1/8		=D3*	1024	=E3*1024	=F3*1024			
3	Kb	=B2/1024	=C2/1024			=E4*1024	=F4*1024			
4	Mb	=B3/1024	=C3/1024	=D3/	1024		=F5*1024			
5	Gb	=B4/1024	=C4/1024	=D4/	1024	=E4/1024				
6										

Рис.1. Окно конвертора

Варианты для самостоятельного решения ПРИЛОЖЕНИЕ 1.

Приведите два способа решение указанных в варианте задач (ручной и автоматизированный MS Excel).

2. Измерение информации

Понятие информации можно рассматривать при различных ограничениях, накладываемых на ее свойства, т. е. при различных уровнях рассмотрения. В основном выделяют три уровня — синтаксический, семантический и прагматический. Соответственно на каждом из них для определения количества информации применяют различные оценки.

На синтаксическом уровне для оценки количества информации используют вероятностные методы, которые принимают во внимание только вероятностные свойства информации и не учитывают другие (смысловое содержание, полезность, актуальность и т. д.).

2.1. Вероятностный подход к понятию количества информации

Вероятностный подход постулирует принцип: если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно утверждать, что такое сообщение содержит информацию. При этом сообщения содержат информацию о каких - либо событиях, которые могут реализоваться с различными вероятностями.

Формулу для определения количества информации для событий с различными вероятностями и получаемых от дискретного источника информации предложил американский ученый К. Шеннон в 1948 г. Согласно этой формуле количество информации может быть определено следующим образом:

$$I = -\sum_{i=1}^{N} Pi \cdot \log_2 Pi \tag{1}$$

где I –количество информации; N –количество возможных событий (сообщений); Pi –вероятность отдельных событий (сообщений); Σ – математический знак суммы чисел.

Пример 3. Определим, какое количество информации можно получить после реализации одного из шести событий. Вероятность первого события составляет 0,15; второго - 0,25; третьего - 0,2; четвертого - 0,12; пятого - 0,12; шестого - 0,1, т. е. P1 =0,15; P2 =0,25; P3 = 0,2; P4 =0,18; P5 =0,12; P6 =0,1.

Решение: Для определения количества информации применим формулу (1.1)

$$\begin{split} I &= -(P_1 \cdot \log_2 P_1 + P_2 \cdot \log_2 P_2 + P_3 \cdot \log_2 P_3 + P_4 \cdot \log_2 P_4 + \\ &+ P_5 \cdot \log_2 P_5 + P_6 \cdot \log_2 P_6) = -(0.15 \cdot \log_2 0.15 + 0.25 \cdot \log_2 0.25 + \\ &+ 0.2 \cdot \log_2 0.2 + 0.18 \cdot \log_2 0.18 + 0.12 \cdot \log_2 0.12 + 0.1 \cdot \log_2 0.1) \text{ бит.} \end{split}$$

Для автоматизации вычисления этого выражения, содержащего логарифмы, воспользуемся, табличным процессором MS Excel,

Результат вычисления - количество информации I = 2,52 бит.

Применение MS Excel для решения задач на нахождение количества информации.

Разработаем табличную модель для вычисления количества информации (Puc.2.).¹

A	A	В	С	D	Е	F
1	События	Число событий	Renogruecti	Количество информации о происходящих событиях I=LOG ₂ (1/P)	P*LOG ₂ (P)	$I=-\sum Pi*LOG_2P_i$
2						
3						
4						
5						
6						

Для значений ячеек диапазона A2:F6 установим Формат ячейки – Вкладка Главная, группа Число - Числовой (устанавливаем число десятичных знаков, равное двум).

Для проведения расчетов в ячейки столбцов C, D, E введем формулы (Puc.3.)

 $^{^1}$ Для написания нижних индексов у вероятностей P1 \div P6 в ячейках A1, B1, C1, D1, E1, F1 выполним следующую команду: Вкладка Главная, группа Шрифт, поставим флажок «подстрочный».

1	А	В	С	D	Е	F
1	События	Число событий	Вероятность Р=K/N	Количество информации о происходящих событиях I=LOG ₂ (1/P)	P*LOG ₂ (P)	$I=-\sum Pi^*LOG_2P_i$
2	Событие1	значение	=B2/\$B\$6	=LOG(1/C2;2)	=C2*LOG(C2;2)	=-CYMM(E2:E5)
3	Событие2	значение	=B3/\$B\$6	=LOG(1/C3;2)	=C3*LOG(C3;2)	
4	Событие3	значение	=B4/\$B\$6	=LOG(1/C4;2)	=C4*LOG(C4;2)	
5	Событие4	значение	=B5/\$B\$6	=LOG(1/C5;2)	=C5*LOG(C5;2)	
6	Bcero (N)	=CУMM(B2:B5)				

Рис. 3. Формулы вычисления количества информации

Пример 4. В студенческой группе 20 человек. За рубежный контроль по курсу «Теоретическая информатика» получено 5 пятерок, 6 четверок, 8 троек и 1 двойка. Сколько информации мы получим, когда получим какую-нибудь оценку?

Дано: Кп=5; Кч=6; Кт= 8;Кд=1.

Найти: Іп, Іч, Іт, Ід, І

Решение:

Найдем общее количество оценок:

 $N = K_\Pi + K_\Psi + K_T + K_Д.$

Найдем вероятность получения каждой оценки:

 $P_{\Pi} = K\Pi/N;$

 $P_{y} = Ky/N;$

 $P_T = KT/N$;

 $P_{\pi} = K_{\pi}/N$.

Найдем количество информации о каждой оценке:

$$I_{\Pi} = \log_2(1/p_{\Pi}); \qquad I_{\Psi} = \log_2(1/p_{\Psi}); \qquad I_{\tau} = \log_2(1/p_{\tau}); \qquad I_{\pi} = \log_2(1/p_{\pi})$$

Найдем количество информации о получении любой оценки:

 $I = p_{\pi} \cdot log_2 p_{\pi} + p_{\pi} \cdot log_2 p_{\pi} + p_{\pi} \cdot log_2 p_{\pi} + p_{\pi} \cdot log_2 p_{\pi} = 1,77$ бит.

	Α	В	С	D	Е	F
1	События	Число событий	Вероятность Р=K/N	Количество информации о происходящих событиях I=LOG ₂ (1/P)	P*LOG ₂ (P)	$I=-\sum Pi*LOG_2P_i$
2	пятерка	5,00	0,25	2,00	-0,50	1,77 бит
3	четверка	6,00	0,30	1,74	-0,52	
4	тройка	8,00	0,40	1,32	-0,53	
5	двойка	1,00	0,05	4,32	-0,22	
6	Bcero (N)	20				

Рис. 4. Результат вычисления количества информации

Задание. Используя табличную модель, решить задачу варианта, решение оформить в отчете.

Варианты для самостоятельного решения ПРИЛОЖЕНИЕ 2.

2.2. Определение количества информации, содержащегося в сообщении

В статистической теории информации в качестве меры количества информации используют энтропию.

В случае, когда в ходе испытаний имевшаяся неопределенность снята, количество полученной информации совпадает с первоначальной энтропией.

Энтропия – мера неопределенности состояния системы.

Энтропия сообщения (или энтропия источника сообщений) — это количество информации, в среднем приходящееся на каждое из M сообщений с вероятностями P_i (i=1, 2,...,M).

Энтропия источника символов — это количество информации, в среднем приходящееся на каждый из К символов, появляющихся на выходе кодирующего устройства с вероятностями $P_i = P(x_i)$ ($x_i - i$ -тый символ алфавита, i=1, 2,...,K).

Энтропия ансамбля из N событий, имеющих вероятности P_i (i=1, 2,...,N), равна:

$$H = -\sum_{i=1}^{N} Pi \cdot \log_2 Pi \tag{2}$$

Указанная величина обладает следующими основными свойствами:

- 1) Энтропия является вещественной и неотрицательной величиной;
- 2) Энтропия величина ограниченная;
- 3) Энтропия обращается в нуль, только если вероятность одного из состояний равна единице. При этом вероятности всех остальных состояний будут равны нулю;
- 4) Максимального значения энтропия достигает при равновероятных событиях. При этом она равна:

$$H_{\text{max}} = \log_2 N \tag{3}$$

5) Энтропия объединения нескольких статистически независимых источников информации равна сумме энтропий исходных источников.

Применение MS Excel для решения задач на нахождение количества информации

Для заданного русского текста вашего варианта (количество символов в тексте M=90-110)

- а) Алфавит источника русских букв (исходя из заданного текста);
- б) Количество (K) источника русских букв (количество букв в полученном алфавите);
 - в) Количество появлений каждой i-ой буквы в тексте n_i ;
- г) Определите для каждой буквы алфавита частоту ее появления используя следующую формулу:

$$p_i = \frac{n_i}{M};$$

д) Для каждой буквы алфавита найти значение энтропии (количества информации содержащееся в і-ой букве) по формуле:

$$h_i = -\log_2 p_i$$
;

е) Энтропию источника русских букв по формуле:

$$H = \sum_{i=1}^{K} p_i h_i \; ;$$

- ж) Энтропию источника русских букв при условии, что появление всех символов равновероятно.
- Постройте график зависимости $h(p_i)$ энтропии элемента h_i от вероятности его появления p_i .

Разработаем табличную модель для определения количества информации, содержащегося в сообщении (Рис.5.).

	Α	В	С	D	Е	F
1	Таблі	ща расчета з	нтропии источ			
2						
3	Исхо	дный текст				
4	№ п/п	Символ (буква)	Число вхождений символа в текст (n _i)	Вероятность вхождения символа (p _i) pi=n _i /M	Значение энтропии для символа h _i =-Log ₂ p _i	Значение энтропии для источника символов h _i *p _i
5	1	Α				
6	2	Б				
7						
8		Я				
9		Всего символов в тексте (М)				
10			Полная вероятность (P=1)		Энтропия источника (Н)	

Рис.5. Примерный вид расчетной таблицы

- **Шаг 1.** Введите в ячейку С4 исходный текст Вашего варианта (ПРИЛОЖЕНИЕ 3).
- Шаг 2. Столбц В заполните символами русского алфавита.
- **Шаг 3.** Используя текстовую функцию =ДЛСТР(C3), в ячейке Cx определите число символов в тексте (M);
- **Шаг 4.** Для подсчета числа вхождения символов в тексте, размещенном в ячейке C3 используем формулу подсчета количество экземпляров букв:

Например формула которая подсчитывает количество экземпляров буквы В (только прописной) в строке в ячейке

С5: =ДЛСТР(С3)-ДЛСТР(ПОДСТАВИТЬ(С3;"А";"")).

Эта формула работает с помощью функции ПОДСТАВИТЬ для создания новой строки (в памяти), в которой удалены все экземпляры А. Затем длина этой строки вычитается из длины исходной строки. Результат показывает количество вхождений А в исходную строку.

Примечание: Сравнение выполняется с учетом регистра.

Так, например, если ячейка С3 содержит текст Bubble Chart, то формула возвращает 0.

Следующая формула немного более универсальна. Она подсчитывает количество букв A (как прописных, так и строчных) в строке ячейки С3: =ДЛСТР(С3)-ДЛСТР(ПОДСТАВИТЬ(ПРОПИСН(С3);"A";"")). Если ячейка С3 содержит текст Bubble Chart, формула возвращает 1.

- **Шаг 5.** Проанализировав число вхождений символов, определите количество (K) источника русских букв (количество букв в полученном алфавите).
- **Шаг 6.** Определите для каждой буквы алфавита частоту ее появления по формуле, приведенной выше.
- Шаг 7. Найдите полную вероятность.
- Шаг 8. Для каждой буквы алфавита найдите значение энтропии.
- **Шаг 9.** Энтропию источника русских букв при условии, что появление всех символов равновероятно.
- **Шаг 10.** Постройте график зависимости $h(p_i)$ энтропии элемента h_i от вероятности его появления p_i .

- Задание 1– табличная модель;
 Задание 2,3– табличная модель + ручное преобразование.

Вариант	ие 2,3— таоличная модель + <u>ручное преооразование.</u> Условие
1	5 Гбайт = ? Кбайт = ? бит;
	$512 \text{ Кбайт} = 2^{?} \text{ байт} = 2^{?} \text{ бит};$
	$384 \text{ Мбайт} = (2^2 + 2^2) \text{ байт} = (2^2 + 2^2) \text{ бит.}$
2	? Гбайт = ? Кбайт = 12288 бит;
	$8 \text{ Пбайт} = 2^{?} \text{ Гбайт} = 2^{?} \text{ Кбайт};$
	768 Тбайт = $(2^2 + 2^2)$ Мбайт = $(2^2 + 2^2)$ бит.
3	? Гбайт = 7168 Мбайт =? Кбайт;
	256 Кбайт = 2 [?] байт = 2 [?] бит;
	192 Тбайт = $(2^{?} + 2^{?})$ Кбайт = $(2^{?} + 2^{?})$ бит.
4	? Гбайт = ? Мбайт = 2500 байт;
	512Γ байт = $2^{?}$ Кбайт = $2^{?}$ бит;
	$160 \text{ Тбайт} = (2^2 + 2^2) \text{ Кбайт} = (2^2 + 2^2) \text{ бит}.$
5	? Тбайт = ? Мбайт = 700 000 000 бит;
	$0,5$ Тбайт = $2^{?}$ Кбайт = $2^{?}$ бит;
	$288 \text{ Тбайт} = (2^{?} + 2^{?}) \text{ Кбайт} = (2^{?} + 2^{?}) \text{ бит}.$
6	2 Гбайт = ? Кбайт = ? бит;
	$256 \text{ Мбайт} = 2^{?} \text{ Кбайт} = 2^{?} \text{ бит};$
	576 Тбайт = $(2^2 + 2^2)$ Кбайт = $(2^2 + 2^2)$ бит.
7	5,5 Mбайт = ? Кбайт = ? бит;
	$1,5 \ $ Кбайт = $2^{?} \ $ байт = $2^{?} \ $ бит;
	$528\ \Gamma$ байт = $(2^2 + 2^2)\ K$ байт = $(2^2 + 2^2)\ бит.$
8	? Кбайт = ? байт = 10 073 741 бит;
	$2,5$ Мбайт = $2^{?}$ Кбайт = $2^{?}$ байт;
	320Γ байт = $(2^2 + 2^2) K$ байт = $(2^2 + 2^2) $ бит.
9	? Гбайт = 15 Мбайт = ? бит;
	$3,5$ Мбайт = $2^{?}$ байт = $2^{?}$ бит;
	96 Гбайт = $(2^7 + 2^7)$ Кбайт = $(2^7 + 2^7)$ бит.
10	? Тбайт = ? Мбайт = 1 073 741 824 байт;
	512 Гбайт = 2 [?] Мбайт = 2 [?] Кбайт;
	80Γ байт = $(2^2 + 2^2) K$ байт = $(2^2 + 2^2) $ бит.
11	? Кбайт = ? байт = 1024 бит;
	$1024 \text{ Тбайт} = 2^{?} \text{ Мбайт} = 2^{?} \text{ Кбайт};$
	144Γ байт = $(2^2 + 2^2)$ Кбайт = $(2^2 + 2^2)$ бит.
12	1,5 Гбайт = ? Мбайт = ? бит;
	$0,5$ Гбайт = $2^{?}$ Кбайт = $2^{?}$ байт;
	544Γ байт = $(2^2 + 2^2)$ Кбайт = $(2^2 + 2^2)$ бит.

- 1. В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.
- 2. 2.В непрозрачном мешочке хранятся 12 белых, 20 красных, 32 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?
- 3. За контрольную работу по информатике получено 7 пятерок, 13 четверок, 6 троек и 5 двойки. Какое количество информации получил Васечкин при получении тетради с оценкой?
- 4. В непрозрачном мешочке хранятся 14 белых, 25 красных, 30 синих и 45 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?
- 5. В коробке лежат кубики: 16 красных, 5 зеленых, 8 желтых, 10 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.
- 6. В непрозрачном мешочке хранятся 16 белых, 25 красных, 35 синих и 44 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?
- 7. В корзине лежат 4 груши, 3 яблока и 2 апельсина и три киви. Вычислите вероятность доставания яблока и количество информации, которое при этом будет получено.
- 8. В непрозрачном мешочке хранятся 18 белых, 25 красных, 32 синих и 45 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?
- 9. В корзине лежат 7 груш, 3 яблока, 5 апельсинов и три сливы. Вычислите вероятность доставания груши и количество информации, которое при этом будет получено.
- 10. В непрозрачном мешочке хранятся 10 белых, 25 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?
- 11. За контрольную работу по информатике получено 3 пятерок, 15 четверок, 3 троек и 2 двойки. Какое количество информации получил Васечкин при получении тетради с оценкой?
- 12. В непрозрачном мешочке хранятся 15 белых, 22 красных, 30 синих и 45 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

Буквы	Вероятн.	Буквы	Вероятн.	Буквы	Вероятн.
О	0.090	M	0.026	Й	0.010
E,Ë	0.072	Д	0.025	X	0.009
A	0.062	Π	0.023	Ж	0.007
И	0.062	У	0.021	Ю	0.006
T	0.053	R	0.018	Ш	0.006
Н	0.053	Ы	0.016	Ц	0.004
C	0.045	3	0.016	Щ	0.003
P	0.040	Ь,Ъ	0.014	Э	0.003
В	0.038	Б	0.014	Φ	0.002
Л	0.035	Γ	0.013	ПРОБЕЛ	0.175
К	0.028	Ч	0.012		

Вероятности появления букв русского алфавита

Варианты заданий

- 1. Слово информация заимствовано из латинского языка и в дословном переводе означает «изложение», «разъяснение».
- 2. Марксистская философия называет информацию характеристикой такого всеобщего свойства материи как разнообразие.
- 3. Закон признает информацией сведения о лицах, предметах, фактах, событиях, явлениях и процессах независимо от формы их представления.
- 4. Семантической информацией называют информацию, содержащуюся в высказываниях и передаваемую через значения единиц речи.
- 5. Измерительной информацией называют информацию о значениях физических величин, а также данные о погрешности измерений.
- 6. Ключевой информацией называют такие новые сведения, которые не могут быть подсказаны ни контекстом, ни ситуацией.
- 7. Документальная информация закрепляется посредством какой-либо знаковой системы на бумаге или ином материальном носителе.
- 8. Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, а также иные признаки организма.
- 9. Деятельность по сбору и обработке существующей и созданию новой информации называется информационной деятельностью.
- 10. Экономическая информация это документированные сведения, отражающие состояние экономических процессов.
- 11.Информация обладает свойством инвариантности по отношению к языку и типу материального носителя.
- 12.Информационный процесс это изменение с течением времени содержания информации или представляющего его сообщения.