fflonk: cheaply opening many polynomials using the fast-fourier equation

Ariel Gabizon (based on work with Zac Williamson)

Motivation: Save gas on Ethereum

Recent polynomial IOP based snarks (Sonic, Marlin, Plonk,..) verification consists of two pairings and some number t of G₁ scalar multiplications.

Motivation: Save gas on Ethereum

- Recent polynomial IOP based snarks (Sonic, Marlin, Plonk,..) verification consists of two pairings and some number t of G₁ scalar multiplications.
- **Each G_1 scalar mult** 6000 gas 5usd.
- That's 76800usd per scalar mult when doing an on chain proof once in half an our per scalar mult.

Motivation: Save gas on Ethereum

- Recent polynomial IOP based snarks (Sonic, Marlin, Plonk,..) verification consists of two pairings and some number t of G₁ scalar multiplications.
- **Each G_1 scalar mult** 6000 gas 5usd.
- That's 76800usd per scalar mult when doing an on chain proof once in half an our per scalar mult.
- ► This work: Getting t down from 16 to 5 in plonk (at the cost of trippling prover time) .

snark verification reduces to polynomial commitment scheme (PCS) opening verification -

a 3 minute reminder on the

Kate-Zaverucha-Goldberg PCS

Prover send short commitment cm(f) to polynomial.

- Prover send short commitment cm(f) to polynomial.
- ▶ Later Verifier can choose value $s \in \mathbb{F}$.

- Prover send short commitment cm(f) to polynomial.
- ▶ Later Verifier can choose value $s \in \mathbb{F}$.
- Prover sends back z = f(s); together with proof open(f, s) that z is correct.

- Prover send short commitment cm(f) to polynomial.
- ▶ Later Verifier can choose value $s \in \mathbb{F}$.
- Prover sends back z = f(s); together with proof open(f, s) that z is correct.

KZG give us PCS with commitments and openings are practically 32 bytes.

Notation: $[x]_1 = x \cdot g$ where g generator of (first source group of) elliptic curve group with pairing.

Setup: $\left[1\right]_{1}$, $\left[x\right]_{1}$, \ldots , $\left[x^{d}\right]_{1}$, for random $x\in\mathbb{F}$.

Setup: $\left[1\right]_{1}$, $\left[x\right]_{1}$, \ldots , $\left[x^{d}\right]_{1}$, for random $x\in\mathbb{F}$.

Setup. $[1]_1, [x]_1, \ldots, [x]_1$, for random $x \in \mathbb{R}$

 $cm(f) := [f(x)]_1$

Setup: $[1]_{\scriptscriptstyle 1}$, $[x]_{\scriptscriptstyle 1}$, \ldots , $\left[x^{\mathrm{d}}\right]_{\scriptscriptstyle 1}$, for random $x\in\mathbb{F}.$

$$cm(f) := [f(x)]_1$$

open $(f, s) := [h(x)]_1$, where $h(X) := \frac{f(X) - f(s)}{X - s}$

Setup: $\left[1\right]_{1}$, $\left[x\right]_{1}$, \ldots , $\left[x^{d}\right]_{1}$, for random $x\in\mathbb{F}$.

 $cm(f) := [f(x)]_1$

$$\mathsf{open}(\mathsf{f},\mathsf{s}) \coloneqq \left[\mathsf{h}(\mathsf{x})\right]_1, \text{ where } \mathsf{h}(\mathsf{X}) \coloneqq \frac{\mathsf{f}(\mathsf{X}) - \mathsf{f}(\mathsf{s})}{\mathsf{X} - \mathsf{s}}$$

verify(cm,
$$\pi$$
, z , s):

$$e(cm - [z]_1, [1]_1) \stackrel{?}{=} e(\pi, [x - s]_1)$$

Opening many polynomials at s

Input: $f_0, \ldots f_{d-1}, z_0 = f_0(s), \ldots, z_{d-1} = f_{d-1}(s)$. Verifier has commitments cm_i to f_i 's wants to verifier correctness of z's.

Opening many polynomials at s

Input: $f_0, \ldots f_{d-1}, z_0 = f_0(s), \ldots, z_{d-1} = f_{d-1}(s)$. Verifier has commitments cm_i to f_i 's wants to verifier correctness of z's.

Naive solution: Run KZG for each f_i . Cost: d group elements in proof, d pairings for verifier

Batched opening (Sonic, Marlin, Plonk)

ightharpoonup Verifier sends random $\gamma \in \mathbb{F}$

Batched opening (Sonic, Marlin, Plonk)

- lacktriangle Verifier sends random $\gamma \in \mathbb{F}$
- Prover computes combination $f(X) := \sum_{i < d} \gamma^i f_i(X)$
- Verifier computes commitment to f as $cm(f) := \sum_{i \le d} \gamma^i cm_i$
- Prover and verifier use KZG to verify f(s) = z for $z = \sum_{i < d} \gamma^i z_i$

cost: $\mathbf{d} - 1$ verifier scalar muls to compute cm(f) Punchline of this work: can get rid of this \mathbf{d} dependence when \mathbf{s} is a \mathbf{d} 'th power

A useful tool from BDFG/Halo infinite

thm[BDFG]: We can open a polynomial f at points s_0, \ldots, s_{d-1} with 2 verifier scalar mults no matter how large d is.

A useful tool from BDFG/Halo infinite

thm[BDFG]: We can open a polynomial f at points s_0, \ldots, s_{d-1} with 2 verifier scalar mults no matter how large d is.

If we can reduce opening many polys at s to opening *one poly* at many points, we can use BDFG to get our desired result

polys f_0 , f_1 , $a = f_0(s)$, $b = f_1(s)$

```
polys f_0, f_1, \alpha = f_0(s), b = f_1(s)
```

First attempt: Only open the sum -
$$F(X) := f_0(X) + f_1(X)$$
. Prove that $F(s) = c = a + b$.

```
polys f_0, f_1, \alpha = f_0(s), b = f_1(s)

First attempt: Only open the sum -

F(X) := f_0(X) + f_1(X). Prove that

F(s) = c = \alpha + b.

problem: Doesn't constrain \alpha, b individually - for any \alpha', (\alpha', c - \alpha') will also verify
```

```
polys f_0, f_1, \alpha = f_0(s), b = f_1(s)

First attempt: Only open the sum -

F(X) := f_0(X) + f_1(X). Prove that

F(s) = c = \alpha + b.

problem: Doesn't constrain \alpha, b individually - for any \alpha', (\alpha', c - \alpha') will also verify
```

Solution: Use "FFT equation in reverse direction":

$$F(X) = f_0(X^2) + Xf_1(X^2)$$

To commit to f_0 , f_1 send cm(F).

Solution: Use "FFT equation in reverse direction":

$$F(X) = f_0(X^2) + Xf_1(X^2)$$

To commit to f_0 , f_1 send cm(F).

Assume $\mathbf{s} = \mathbf{t}^2$

To open $f_0(s)$, $f_1(s)$ open F at $\{t, -t\}$:

Solution: Use "FFT equation in reverse direction":

$$F(X) = f_0(X^2) + Xf_1(X^2)$$

To commit to f_0 , f_1 send cm(F).

Assume $s = t^2$.

To open $f_0(s)$, $f_1(s)$ open F at $\{t, -t\}$:

$$b_0 := F(t) = f_0(s) + tf_1(s) = \alpha + tb$$

 $b_1 := F(-t) = f_0(s) - tf_1(s) = \alpha - tb$

i.e. (b_0, b_1) give two independent constraints on $(\alpha, b)!$

Assume $\mathbf{s} = \mathbf{t}^2$.

To open $f_0(s)$, $f_1(s)$ open F at $\{t, -t\}$:

Assume $\mathbf{s} = \mathbf{t}^2$.

To open $f_0(s)$, $f_1(s)$ open F at $\{t, -t\}$:

$$b_0 := F(t) = f_0(s) + tf_1(s) = \alpha + tb$$

 $b_1 := F(-t) = f_0(s) - tf_1(s) = \alpha - tb$

- i.e. (b_0,b_1) give two independent constraints on $(\alpha,b)!$
 - Similar construction can open d polys at any $s = t^d$
 - Important: poly-iop based snarks work fine with a PCS that can only open d'th powers.

Given poly f with commitment cm,

 $s_0, \ldots, s_{d-1} \in \mathbb{F}$, suppose $z_i = f(s_i)$ for i < d.

Define poly r of degree < d with r(s_i) = z_i for i < d.</p>

Given poly f with commitment cm,

 $s_0, \ldots, s_{d-1} \in \mathbb{F}$, suppose $z_i = f(s_i)$ for i < d.

- Define poly r of degree < d with r(s_i) = z_i for i < d.</p>
- ▶ Define $Z(X) = \prod_{i < d} (X s_i)$. Then we have Z|(f r).

Given poly f with commitment cm,

 $s_0,\ldots,s_{d-1}\in\mathbb{F}$, suppose $z_\mathfrak{i}=\mathsf{f}(s_\mathfrak{i})$ for $\mathfrak{i}< d$.

- ▶ Define poly \mathbf{r} of degree $\langle \mathbf{d} \text{ with } \mathbf{r}(s_i) = z_i \text{ for } i < \mathbf{d}$.
- ▶ Define $Z(X) = \prod_{i < d} (X s_i)$. Then we have Z|(f r).
- Let h(X) := (f(X) r(X))/(Z(X)). Prover sends $\pi = [h(x)]_1$.

Given poly f with commitment cm,

 $s_0, \ldots, s_{d-1} \in \mathbb{F}$, suppose $z_i = f(s_i)$ for i < d.

- ▶ Define poly \mathbf{r} of degree $\langle \mathbf{d} \text{ with } \mathbf{r}(\mathbf{s_i}) = \mathbf{z_i} \text{ for } \mathbf{i} \langle \mathbf{d} \rangle$
- ▶ Define $Z(X) = \prod_{i < d} (X s_i)$. Then we have Z|(f r).
- Let h(X) := (f(X) r(X))/(Z(X)). Prover sends $\pi = [h(x)]_1$.
- From [KZG]: Verifier can now check

$$e(cm - [r(x)]_1, 1) = e(\pi, [Z(x)]_2$$

Given poly f with commitment cm,

- $s_0, \ldots, s_{d-1} \in \mathbb{F}$, suppose $z_i = f(s_i)$ for i < d.
 - ▶ Define poly \mathbf{r} of degree $\langle \mathbf{d} \text{ with } \mathbf{r}(s_i) = z_i \text{ for } i < \mathbf{d}$.
 - ▶ Define $Z(X) = \prod_{i < d} (X s_i)$. Then we have Z|(f r).
 - Let h(X) := (f(X) r(X))/(Z(X)). Prover sends $\pi = [h(X)]_1$.
 - From [KZG]: Verifier can now check

$$e(cm - [r(x)]_1, 1) = e(\pi, [Z(x)]_2$$

This requires d G1 and G2 verifier scalar muls!

In [BDFG] we trade these scalar mults for an extra group element in the proof:

- Verifier chooses random $\alpha \in \mathbb{F}$ and sends to prover.
- Define the polynomial

$$L(X) := f(X) - r(\alpha) - Z(\alpha)h(X)$$

In [BDFG] we trade these scalar mults for an extra group element in the proof:

- Verifier chooses random $\alpha \in \mathbb{F}$ and sends to prover.
- Define the polynomial

$$L(X) := f(X) - r(\alpha) - Z(\alpha)h(X)$$

▶ If evals are correct, L(X) should be zero at α

In [BDFG] we trade these scalar mults for an extra group element in the proof:

- lacktriangle Verifier chooses random $lpha \in \mathbb{F}$ and sends to prover.
- ▶ Define the polynomial

$$L(X) := f(X) - r(\alpha) - Z(\alpha)h(X)$$

If evals are correct, L(X) should be zero at α

Verifer can compute cm(L) with only two scalar muls:

$$cm(L) = cm - [r(\alpha)]_1 - Z(\alpha)\pi$$

Prover and verifier can now use KZG to check $L(\alpha) = 0$.