AlexNet (2012) — Report

Paper: ImageNet Classification with Deep Convolutional Neural Networks — Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (NIPS 2012).

1. Executive summary

AlexNet demonstrated that a deep convolutional neural network (CNN), trained on large labeled data (ImageNet) and accelerated by GPUs, could dramatically outperform prior methods on large-scale object recognition. The model's combination of architectural scale, GPU implementation, and several training/regularization innovations (ReLU, dropout, data augmentation, local response normalization, overlapping pooling) produced a large improvement in ImageNet performance and triggered the deep-learning revolution in computer vision.

2. Dataset & goal

Trained on the ImageNet ILSVRC subset: ~ 1.2 million training images, 50k validation, 150k test images across 1000 classes. The paper focused experiments on the ILSVRC-2010 and also reported results for the 2012 competition.

3. Architecture (high level)

- 8 learned layers 5 convolutional + 3 fully connected, with ReLU after every layer.
- Model split across two GPUs to fit memory and speed training.
- Input images: 224x224 crops from resized 256x256 images.

4. Key innovations & practical techniques

- 1. ReLU activations (faster training than tanh/sigmoid).
- 2. GPU implementation with multi-GPU parallelism.
- 3. Local Response Normalization (LRN).
- 4. Overlapping max-pooling.
- 5. Dropout in fully connected layers.
- 6. Data augmentation: random crops, flips, PCA color augmentation.

5. Training setup and hyperparameters

- Hardware: Two NVIDIA GTX 580 GPUs, training time $\approx 5-6$ days.
- Optimization: SGD with momentum (0.9), weight decay 0.0005, batch size 128.
- Learning rate: 0.01, reduced ×10 when validation error plateaued.
- Initialization: Gaussian weights (mean 0, std 0.01); some biases set to 1.

6. Size / capacity

AlexNet has \sim 60 million parameters. Regularization and data augmentation were essential to prevent overfitting.

7. Results reported

- ILSVRC-2010: top-1 error 37.5%, top-5 error ~17–18.9%.
- ILSVRC-2012: ensemble reduced top-5 error to \sim 15.3%, a huge margin over prior state of the art.

8. Impact & legacy

AlexNet proved deep CNNs trained with GPUs and large datasets could outperform handengineered features. It triggered the modern deep learning revolution, inspiring VGG, GoogLeNet, ResNet, etc.

9. Limitations and criticisms

- Some components (LRN, GPU-splitting) were pragmatic and later dropped.
- Competition-winning system relied on ensembles, not just a single model.
- Hardware constraints shaped unusual design choices.
- Today, AlexNet is mainly educational/historical.

10. Practical notes for reproducing

- Use 224x224 random crops, flips, PCA color augmentation.
- Dropout in FC layers, ReLU everywhere, SGD with momentum.
- Many modern frameworks (PyTorch, TensorFlow) have AlexNet variants (sometimes with 227x227 input).

11. Short annotated reading list

- Original paper (NIPS 2012): Krizhevsky, Sutskever & Hinton.
- ACM reprint (2017).
- Wikipedia: AlexNet overview & impact.

12. Model summary

AlexNet (2012) — 5 conv + 3 FC layers, \sim 60M parameters, introduced ReLU, dropout, data augmentation, LRN, overlapping pooling; trained on \sim 1.2M ImageNet images on 2 GPUs in \sim 6 days; reduced ImageNet error dramatically and started deep learning revolution in vision.