Machine Learning 1

Lawrence Adhinatha

2023-01-31

First up kmeans()

Demo of using kmeans() function in base R. First make up some data with a known structure.

```
tmp <- c(rnorm(30, -3), rnorm(30, 3))
x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```


Now we have some made up data in x let's see how kmeans works with this data

```
k <- kmeans(x, centers=2, nstart=20)
k</pre>
```

```
## K-means clustering with 2 clusters of sizes 30, 30
##
## Cluster means:
##
## 1 3.299632 -3.165428
## 2 -3.165428 3.299632
## Clustering vector:
## Within cluster sum of squares by cluster:
## [1] 66.14739 66.14739
## (between_SS / total_SS = 90.5 %)
## Available components:
##
## [1] "cluster"
                "centers"
                           "totss"
                                       "withinss"
                                                  "tot.withinss"
## [6] "betweenss"
                "size"
                           "iter"
                                       "ifault"
```

Q. How many points are in each cluster

k\$size

[1] 30 30

Q. How do we get to the cluster membership/assignment

k\$cluster

Q. What about cluster centers

k\$centers

```
## x y
## 1 3.299632 -3.165428
## 2 -3.165428 3.299632
```

Now we've got to the main results, let's use them to plot our data with the kmeans result

```
plot(x, col=k$cluster)
points(k$centers, col="blue", pch=15)
```


Now for hclust()

We will cluster the same data x with the hclust(). In this case hclust() requires a distance matrix as output.

```
hc <- hclust( dist(x) )
hc

##
## Call:
## hclust(d = dist(x))
##
## Cluster method : complete
## Distance : euclidean
## Number of objects: 60

Let's plot our hclust result

plot(hc)</pre>
```

Cluster Dendrogram

dist(x) hclust (*, "complete")

To get our cluster membership vector we need to "cut" the tree with the cutree()

```
grps <- cutree(hc, h=8)
grps</pre>
```

It is often helpful to use the k= argument to cutree rather than the h= heihgt of cutting with cutree(). This will cut the tree to yield the number of clusters you want.

Now plot our data with the hclust() results.

```
plot(x, col=grps)
```


Principal Component Analysis (PCA)

PCA of UK food data

Read data from website and try a few visualizations.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
x</pre>
```

##		England	Wales	Scotland	N.Ireland
##	Cheese	105	103	103	66
##	Carcass_meat	245	227	242	267
##	Other_meat	685	803	750	586
##	Fish	147	160	122	93
##	Fats_and_oils	193	235	184	209
##	Sugars	156	175	147	139
##	Fresh_potatoes	720	874	566	1033
##	Fresh_Veg	253	265	171	143
##	Other_Veg	488	570	418	355
##	Processed_potatoes	198	203	220	187
##	Processed_Veg	360	365	337	334
##	Fresh_fruit	1102	1137	957	674
##	Cereals	1472	1582	1462	1494

```
## Beverages
                            57
                                  73
                                           53
                                                     47
## Soft_drinks
                          1374 1256
                                         1572
                                                   1506
## Alcoholic_drinks
                                 475
                                          458
                                                    135
                           375
## Confectionery
                            54
                                  64
                                           62
                                                     41
```

```
cols <- rainbow(nrow(x))
barplot( as.matrix(x), col=cols )</pre>
```



```
barplot( as.matrix(x), col=cols, beside=TRUE )
```


pairs(x, col=cols)

PCA to the rescue! The main base R PCA function is called prcomp() and we will need to give it the transpose of our input data in this case

t(x)

##		Cheese	Carcass_	meat	Other_	meat	Fish	Fats_and_	oils	Sugars
##	England	105		245		685	147		193	156
##	Wales	103		227		803	160		235	175
##	Scotland	103		242		750	122		184	147
##	${\tt N.Ireland}$	66		267		586	93		209	139
##		Fresh_p	otatoes	Fresl	h_Veg	Other_	Veg	Processed	l_potat	coes
##	England		720		253		488			198
##	Wales		874		265		570			203
##	Scotland		566		171		418			220
##	${\tt N.Ireland}$		1033		143		355			187
##		Process	sed_Veg	Fresh	_fruit	Cerea	als H	Beverages	Soft_c	drinks
	England		sed_Veg 1 360	Fresh	_fruit 1102		als I 1472	Beverages 57	Soft_c	drinks 1374
##			_ •	Fresh _.	_	1		_	Soft_d	
## ##	England		360	Fresh _.	1102	1 1	1472	57		1374
## ## ##	England Wales		360 365	Fresh _.	1102 1137 957	1 1	1472 1582 1462	57 73		1374 1256
## ## ## ##	England Wales Scotland N.Ireland		360 365 337		1102 1137 957 674	1 1 1	1472 1582 1462	57 73 53		1374 1256 1572
## ## ## ##	England Wales Scotland N.Ireland		360 365 337 334 Lic_drink		1102 1137 957 674	1 1 1	1472 1582 1462	57 73 53		1374 1256 1572
## ## ## ## ##	England Wales Scotland N.Ireland		360 365 337 334 .ic_drink	s Coi	1102 1137 957 674	1 1 1 nery	1472 1582 1462	57 73 53		1374 1256 1572
## ## ## ## ##	England Wales Scotland N.Ireland England		360 365 337 334 ic_drink: 3'	s Coi 75	1102 1137 957 674	1 1 1 nery 54	1472 1582 1462	57 73 53		1374 1256 1572

```
pca <- prcomp( t(x) )</pre>
```

There is a nice summary of how well PCA accounts for the original dataset variance

```
summary(pca)
```

```
## Importance of components:
##
                                PC1
                                         PC2
                                                  PC3
                                                             PC4
                           324.1502 212.7478 73.87622 5.552e-14
## Standard deviation
## Proportion of Variance
                             0.6744
                                      0.2905
                                              0.03503 0.000e+00
## Cumulative Proportion
                             0.6744
                                      0.9650
                                              1.00000 1.000e+00
```

attributes(pca)

To make our new PCA plot (aka PCA score plot) we access pca\$x

```
plot(pca$x[,1], pca$x[,2])
text(pca$x[,1], pca$x[,2], colnames(x))
```


We really only needed PC1 to see the variance in this dataset.

color up the plot

```
country_cols <- c("orange", "red", "blue", "green")
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500),col=country_cols)
text(pca$x[,1], pca$x[,2], colnames(x), col=country_cols)</pre>
```


We can find how much variation from the original plot each PC accounts for through this formula...

```
v <- round(pca$sdev^2/sum(pca$sdev^2)*100)
v</pre>
```

[1] 67 29 4 0

... or by using this function:

```
z <- summary(pca)
z$importance</pre>
```

```
## PC1 PC2 PC3 PC4
## Standard deviation 324.15019 212.74780 73.87622 5.551558e-14
## Proportion of Variance 0.67444 0.29052 0.03503 0.000000e+00
## Cumulative Proportion 0.67444 0.96497 1.00000 1.000000e+00
```

We can visualize this in a barplot

Principal Component

PC1 accounts for most of the variance, so we'll focus on that:

```
par(mar=c(10,3,0.35,0))
barplot(pca$rotation[,1], las=2)
```


We can also examine PC2, which reflects the second largest source of variance in the data:

```
par(mar=c(10,3,0.35,0))
barplot(pca$rotation[,2], las=2)
```


We can also visualize the PCA results with the biplot() function:

biplot(pca)

This plot hints at the association between the variables positioned farther away from the clustered data, and the country positioned farthest away from the clustered data.

PCA of RNA-Seq data

Read input data from website

```
url2 <- "https://tinyurl.com/expression-CSV"</pre>
rna.data <- read.csv(url2, row.names=1)</pre>
head(rna.data)
##
                         wt4 wt5 ko1 ko2 ko3 ko4 ko5
          wt1 wt2
                    wt3
## gene1
          439 458
                    408
                         429 420
                                       88
                                            86
          219 200
                    204
                         210 187 427 423 434 433 426
  gene2
## gene3
         1006 989
                   1030
                        1017 973 252
                                      237 238 226 210
              792
                    829
                         856 760 849 856 835 885 894
## gene4
          783
                                  277 305 272 270 279
## gene5
          181 249
                    204
                         244 225
## gene6
          460 502
                    491
                         491 493 612 594 577 618 638
pca <- prcomp(t(rna.data))</pre>
summary(pca)
## Importance of components:
##
                                  PC1
                                          PC2
                                                    PC3
                                                              PC4
                                                                        PC5
                                                                                 PC6
## Standard deviation
                            2214.2633 88.9209 84.33908 77.74094 69.66341 67.78516
```

```
## Proportion of Variance
                            0.9917 0.0016 0.00144 0.00122 0.00098 0.00093
## Cumulative Proportion
                                   0.9933 0.99471
                                                    0.99593 0.99691 0.99784
                            0.9917
##
                              PC7
                                      PC8
                                                        PC10
                                               PC9
## Standard deviation
                         65.29428 59.90981 53.20803 2.715e-13
## Proportion of Variance 0.00086 0.00073 0.00057 0.000e+00
## Cumulative Proportion
                          0.99870 0.99943 1.00000 1.000e+00
```

Do our PCA plot of this RNA-Seq data

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2")
```



```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2")
text(pca$x[,1], pca$x[,2], colnames(rna.data))
```

