Nombre y Apellido:

Justifique todas sus respuestas

Parte práctica.

- 1. (15 pts.) Sea W el subespacio de \mathbb{R}^4 generado por el conjunto $S = \{(1, -1, 1, -2), (1, 0, 0, 3)\}.$
 - a) Hallar todos los valores de $a, b \in \mathbb{R}$ tales que $W = \langle (a, 1, -1, 2), (1, b, 0, 3) \rangle$.
 - b) Sea $U = \{(x, y, z, t) \in \mathbb{R}^4 : x y 3z = t z = 0\}$. Dar una descripción implícita y una base del subespacio W + U y determinar su dimensión.
 - c) Dado un vector $\alpha = (x, y, z, t)$ en W + U, encontrar vectores $\beta_1 \in W$ y $\beta_2 \in U$ tales que $\alpha = \beta_1 + \beta_2$.
- 2. (15 pts.) Sea $T: \mathbb{R}^3 \to \mathbb{R}^{2\times 2}$ la única transformación lineal tal que $T(e_1) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $T(e_2) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $T(e_3) = \begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix}$, donde $\{e_1, e_2, e_3\}$ es la base ordenada canónica de \mathbb{R}^3 .
 - a) Dar una descripción implícita de NuT, calcular su dimensión y mostrar una base.
 - b) Dar una descripción implícita de $\operatorname{Im} T$, calcular su dimensión y mostrar una base.
 - c) Hallar $[T]_{\mathcal{B}_1}^{\mathcal{B}_2}$ donde \mathcal{B}_1 y \mathcal{B}_2 son las bases ordenadas de \mathbb{R}^3 y $\mathbb{R}^{2\times 2}$ dadas, respectivamente, por

$$\mathcal{B}_1 = \{(1,0,-1),(-1,1,1),(2,0,-1)\}, \qquad \mathcal{B}_2 = \left\{ \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}.$$

3. (15 pts.) Sea
$$A = \begin{pmatrix} i & 0 & 0 \\ 0 & 1 & 0 \\ 1+i & 0 & 1 \end{pmatrix} \in \mathbb{C}^{3\times 3}$$
.

- a) Calcular el determinante de la matriz A^{15} .
- b) Probar que A es inversible y determinar su inversa.
- c) Decidir si A es diagonalizable y en caso afirmativo hallar una matriz inversible P tal que $P^{-1}AP$ sea diagonal.
- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Sea V un espacio vectorial de dimensión finita y sea \mathcal{B} una base de V. Si W es un subespacio de V, entonces existe un subconjunto $\mathcal{B}' \subseteq \mathcal{B}$ tal que \mathcal{B}' es base de W.
 - b) Existe una transformación lineal sobreyectiva $T: \mathbb{R}^5 \to \mathbb{R}^4$ tal que los vectores (1,0,1,-1,0) y (0,0,0,-1,2) pertenecen al núcleo de T.
 - c) Si $A \in F^{3\times 3}$ y $B \in F^{3\times 3}$ son tales que AB = 0, entonces BA = 0.

Parte Teórica.

- 5. (20 pts.) Sea V un espacio vectorial y sea S un subconjunto de V.
 - a) Dar la definición del subespacio generado por S.
 - b) Probar que si S es un subconjunto linealmente independiente de V y $\beta \in V$ es un vector que no pertenece al subespacio generado por S, entonces el conjunto $S \cup \{\beta\}$ es linealmente independiente.
 - c) Supongamos que V es de dimensión finita. Probar que todo subconjunto linealmente independiente puede extenderse a una base de V.
- 6. (20 pts.) Sean V y W espacios vectoriales y sea $T:V\to W$ una transformación lineal.
 - a) ¿Cuándo se dice que T es un isomorfismo?
 - b) Probar que si T es isomorfismo, entonces $T^{-1}: W \to V$ es una transformación lineal.
 - c) Probar que si V es de dimensión finita entonces $\dim V = \dim \operatorname{Nu}(T) + \dim \operatorname{Im}(T)$.

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	Total	Total General
Evaluación				