Notes for General Topology

Zhao Wenchuan

August 24, 2021

Contents

1	Metric Spaces			
	1.1	Metric Spaces	. 2	-
	1.2	Open sets in Metric Spaces	. 4	1

Chapter 1

Metric Spaces

1.1 Metric Spaces

Definition 1.1.1. Let X be any set. A mapping $d: X \times X \to \mathbb{R}_{\geq 0}$ is metric on X iff it satisfies the metric axioms. That is, for any $x, y, z \in X$:

M1.
$$d(x, y) = 0$$
 iff $x = y$;

M2.
$$d(x,y) = d(y,x);$$

M3.
$$d(x, z) \le d(x, y) + d(y, z)$$
.

In this case, the pair M = (X, d) is called a *metric space*.

Definition 1.1.2. A M=(X,d) be a metric space, let $x \in X$ and let $\varepsilon \in \mathbb{R}_{>0}$. An open ε -ball, or just ε -ball, about x is defined to be the set

$$B_{\varepsilon}(x;d) = \{ y \in X : d(x,y) < \varepsilon \}.$$

A closed ball is defined to be the set

$$\overline{B}_{\varepsilon}(x;d) = \{ y \in X : d(x,y) \le \varepsilon \}.$$

Note 1.1.1. As

$$M = (X, d), M' = (X, d'), M'' = (X, d''), \dots$$

are different although they share the same set X, for any $x \in X$ and any $\varepsilon \in \mathbb{R}_{>0}$,

$$B_{\varepsilon}(x;d), B_{\varepsilon}(x;d'), B(x;d''), \ldots$$

are also different. However, if confusion is unlikely, we simply write " $B_{\varepsilon}(x)$ " for " $B_{\varepsilon}(x;d)$ ".

Example 1.1.1. The Euclidean metric space M = (X, d) is an n-dimensional set X equipped with the Euclidean metric d defined as

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{1}{2}}.$$

This is also called $standard\ Euclidean\ metric$, in contrast to the $non-standard\ Euclidean\ metrics$

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}, \quad p \ge 1.$$

In particular,

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|.$$

Example 1.1.2. A discrete metric space M = (X, d) is a set X equiped with the discrete metric d defined as

$$d(x,y) = \begin{cases} 0, & \text{if } x = y; \\ 1, & \text{else.} \end{cases}$$

This is an equivalent definition of the discrete metric:

$$d(x,y) = (\operatorname{sgn}(d'(x,y)))^2,$$

where $sgn(\cdot)$ is a sign function, and d' is any metric on X.

Example 1.1.3. ¹ Denote C[a, b] for the set of all continuous mapping $\mathbb{R}_{[a,b]} \to \mathbb{R}$. On C[a, b], we can define a metric d as

$$d_p(f,g) = \left(\int_a^b |f(t) - g(t)|^p dt\right)^{\frac{1}{p}}, \quad p \ge 1.$$

In particular,

$$\frac{d_{\infty}(f,g)}{d_{\infty}(f,g)} = \sup_{t \in \mathbb{R}_{[a,b]}} |f(t) - g(t)|.$$

¹ See Minkowski inequality.

Example 1.1.4. ² Let M=(X,d) be a metric space. The *Hausdorff metric* d_H on $2^X\setminus\{\emptyset\}$ is defined as

$$d_H = \max \left\{ \sup_{x \in X} d(x, Y), \sup_{y \in Y} d(y, X) \right\},\,$$

where

$$d(x,Y) = \inf_{y \in Y}(x,y), \text{ and } d(y,X) = \inf_{x \in X}(y,x).$$

1.2 Open sets in Metric Spaces

Definition 1.2.1. Let M = (X, d) be a metric space, and let $U \subseteq X$. U is said to be *open in* M, iff for any $y \in U$, there exists $\varepsilon \in \mathbb{R}_{>0}$, such that $B_{\varepsilon}(y) \subseteq U$.

Lemma 1.2.1. Let M=(X,d) be a metric space, let $x \in A$ and let $\varepsilon \in \mathbb{R}_{>0}$. For any $y \in B_{\varepsilon}(x)$, there is a $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Proof. For any $y \in B_{\varepsilon}(x)$, by the definition of open balls (Definition 1.1.2), we have $d(x,y) < \varepsilon$.

Let $\delta \in \mathbb{R}_{>0}$ such that $\delta + d(x,y) = \varepsilon$.

By M3 in metric axioms (Definition 1.1.1), for any $z \in A$ with $d(y, z) < \delta$, we have

$$d(x,z) \le d(y,z) + d(x,y) < \varepsilon$$
.

Thus, again, by the definition of open balls, we have $B_{\delta}(y) \subseteq B_{\varepsilon}(x)$.

Theorem 1.2.1. ³ Let M = (X, d) be a metric space, and let $U \subseteq X$. U is open in M iff it is a union of open balls.

Proof. First, prove \Rightarrow .

As U is open, for any $y \in U$, there exists $\varepsilon_y \in \mathbb{R}_{>0}$ such that $B_{\varepsilon_y}(y) \subseteq U$. Therefore,

$$U = \bigcup_{y \in U} B_{\varepsilon_y}(y).$$

Now, prove \Leftarrow .

Aiming for a contradiction, suppose U is a union of open balls but not open. As U is not open, there is a $y \in U$ such that for any $\varepsilon \in \mathbb{R}_{>0}$, $B_{\varepsilon}(y) \not\subseteq U$.

 $^{^2}$ See Hausdorff distance.

³ Shared on ProofWiki.

As U is a union of open balls, there is an $x \in U$ and $r \in \mathbb{R}_{>0}$ such that $y \in B_r(x)$.

By Lemma 1.2.1, there exists a $\delta \in \mathbb{R}_{>0}$ such that $B_{\delta}(y) \subseteq B_r(x)$.

This is a contradiction by the assumption.

Thus, U has to be open.

Theorem 1.2.2. Let M=(X,d) be any metric space. M is *Hausdorff*. That is, For any distinct points $x,y\in X$, we can always find an $\varepsilon\in\mathbb{R}_{>0}$ such that

$$B_{\varepsilon}(x) \cap B_{\varepsilon}(y) = \emptyset.$$

Proof. Aiming for a contradiction, suppose there are $x, y \in X$ with $x \neq y$, such that for any $\varepsilon \in \mathbb{R}_{>0}$, we can always find a $z \in X$ such that

$$z \in B_{\varepsilon}(x) \cap B_{\varepsilon}(y)$$
.

Let r = d(x, y)/2, and let $z \in B_r(x) \cap B_r(y)$.

As $z \in B_r(x)$, by the definition of open balls (Definition 1.1.2), d(x, z) < r; as $z \in B_r(y)$, similarly, d(y, z) < r. Then we have

$$d(x,z) + d(y,z) < 2r = d(x,y).$$

By M3 in metric axioms (Definition 1.1.1), this is impossible.

Definition 1.2.2. Let M = (X, d) be any metric space, and let $V \subseteq X$. V is said to be *closed* in M, iff there is an open set U satisfies $X \setminus U = V$.

Lemma 1.2.2. In a metric space, any singleton is closed.

Proof. Let M=(X,d) be a metric space, let $x\in X$, and let $y\in X\setminus\{x\}$. As M is Hausdorff (Theorem 1.2.2), there is an $\varepsilon\in\mathbb{R}_{>0}$ such that

$$0 < \varepsilon < d(x, y),$$

thus $X \setminus \{x\}$ is open, hence, by Definition 1.1.1, its complement $\{x\}$ is open.

Theorem 1.2.3. Let M = (X, d) be a metric space, denote \mathcal{T} for the family of open subsets of X. Then \mathcal{T} satisfies the following conditions:

O1. $X, \emptyset \in \mathcal{T}$;

5

- **O2.** For any $\mathcal{U} \subseteq \mathcal{T}$, $\bigcup \mathcal{U} \in \mathcal{T}$; in words, \mathcal{T} is closed under arbitrary union;
- **O3.** For any finite $V \subseteq \mathcal{T}$, $\bigcap V \in \mathcal{T}$; in words, \mathcal{T} is closed under finite intersection.

Proof. First, prove O1.

As \emptyset is the subset of any set, $\emptyset \in \mathcal{T}$. $\bigcup \emptyset = \emptyset \in \mathcal{T}$.

By Definition 1.2.2, $X = X \setminus \emptyset$.

Then, prove O2.

Let $\mathcal{U} \subseteq \mathcal{T}$, and denote \mathcal{O} for the open balls in M.

For any $U \in \mathcal{U}$, there is an $\mathcal{O}_U \subseteq \mathcal{O}$ such that $U = \bigcup \mathcal{O}_U$.

Let $\mathcal{O}:\mathcal{T} \rightarrow$

Then we have

$$\bigcup \mathcal{U} = \bigcup_{U \in \mathcal{U}} \left(\bigcup \mathcal{O}(U) \right).$$

Thus \mathcal{T} is closed under arbitrary union.