Image Analysis

Generated by Doxygen 1.9.1

1 Namespace Index	1
1.1 Packages	 1
2 Hierarchical Index	3
2.1 Class Hierarchy	 3
3 Class Index	5
3.1 Class List	 5
4 File Index	7
4.1 File List	 7
5 Namespace Documentation	9
5.1 imagetools Namespace Reference	 9
5.2 imagetools.ml Namespace Reference	 9
5.2.1 Function Documentation	 9
5.2.1.1 gradient_descent()	 9
5.3 imagetools.plotting Namespace Reference	 10
5.3.1 Function Documentation	 10
5.3.1.1 plot_image()	 10
5.4 imagetools.signals Namespace Reference	 11
5.4.1 Function Documentation	11
5.4.1.1 coeffs2img()	 11
5.4.1.2 ComplexSoftThresh()	 11
5.4.1.3 dwt2()	11
5.4.1.4 fft1c()	 11
5.4.1.5 idwt2()	 12
5.4.1.6 ifft1c()	12
5.4.1.7 img2coeffs()	 12
5.4.1.8 iterative_soft_thresholding()	12
5.4.1.9 unstack_coeffs()	12
5.5 inverse_problems Namespace Reference	13
5.5.1 Variable Documentation	14
5.5.1.1 a_noisy_l2	14
5.5.1.2 a_outlier_l2	14
5.5.1.3 ax	 14
5.5.1.4 aximg0	 14
5.5.1.5 aximg1	 14
5.5.1.6 B	 14
5.5.1.7 B0	14
5.5.1.8 B_coefs	15
5.5.1.9 b_noisy_l2	15 15
5.5.1.10 b_outlier_l2	
	15 15
5.5.1.11 data	 15

5.5.1.12 data_random_recon
5.5.1.13 data_unif_recon
5.5.1.14 eps
5.5.1.15 fig
5.5.1.16 figsize
5.5.1.17 file_list
5.5.1.18 grad
5.5.1.19 grad_l1
5.5.1.20 gt
5.5.1.21 label
5.5.1.22 lam
5.5.1.23 lr
5.5.1.24 mask_random
5.5.1.25 mask_unif
5.5.1.26 mse_random
5.5.1.27 mse_unif
5.5.1.28 n_iters
5.5.1.29 obj
5.5.1.30 obj_l1
5.5.1.31 obj_min
5.5.1.32 plotrange
5.5.1.33 river_img
5.5.1.34 river_img_dw
5.5.1.35 river_img_dw_th
5.5.1.36 river_img_recon
5.5.1.37 rng
5.5.1.38 sample_freq
5.5.1.39 sample_random
5.5.1.40 sample_unif
5.5.1.41 signal
5.5.1.42 signal_random
5.5.1.43 signal_random_recon
5.5.1.44 signal_unif
5.5.1.45 signal_unif_recon
5.5.1.46 start_index
5.5.1.47 th
5.5.1.48 title
5.5.1.49 x
5.5.1.50 x0
5.5.1.51 xlabel
5.5.1.52 y_noisy
5.5.1.53 y_outlier

5.5.1.54 ylabel	. 21
5.6 lgd Namespace Reference	. 21
5.6.1 Variable Documentation	. 22
5.6.1.1 adj_op_odl	. 22
5.6.1.2 args	. 22
5.6.1.3 ax	. 22
5.6.1.4 callback	. 22
5.6.1.5 checkpoint	. 23
5.6.1.6 checkpoint_filepath	. 23
5.6.1.7 choices	. 23
5.6.1.8 ckpt	. 23
5.6.1.9 data_fit	. 23
5.6.1.10 data_np	. 23
5.6.1.11 data_odl	. 23
5.6.1.12 device	. 24
5.6.1.13 f	. 24
5.6.1.14 fbp_np	. 24
5.6.1.15 fbp_odl	. 24
5.6.1.16 fbp_op_odl	. 24
5.6.1.17 fig	. 24
5.6.1.18 figsize	. 24
5.6.1.19 fwd_op_odl	. 25
5.6.1.20 g	. 25
5.6.1.21 geometry	. 25
5.6.1.22 grad	. 25
5.6.1.23 ground_truth	. 25
5.6.1.24 gt	. 25
5.6.1.25 img_size	. 25
5.6.1.26 L	. 26
5.6.1.27 lam	. 26
5.6.1.28 lgd_net	. 26
5.6.1.29 lgd_recon_np	. 26
5.6.1.30 loss	. 26
5.6.1.31 losses	. 26
5.6.1.32 mse_loss	. 26
5.6.1.33 niter	. 27
5.6.1.34 num_angles	. 27
5.6.1.35 num_epochs	. 27
5.6.1.36 num_learnable_params	. 27
5.6.1.37 op_norm	. 27
5.6.1.38 optimizer	. 27
5.6.1.39 parser	. 27

5.6.1.40 phantom_np	28
5.6.1.41 phantom_odl	28
5.6.1.42 reco_space	28
5.6.1.43 recon	28
5.6.1.44 reg_func	28
5.6.1.45 required	28
5.6.1.46 save_interval	28
5.6.1.47 sigma	29
5.6.1.48 start_idx	29
5.6.1.49 step_size	29
5.6.1.50 str	29
5.6.1.51 tau	29
5.6.1.52 type	29
5.6.1.53 verbose_interval	29
5.6.1.54 x_admm_np	29
5.6.1.55 x_admm_odl	
5.6.1.56 x_init	
5.6.1.57 y	30
5.7 segment Namespace Reference	
5.7.1 Variable Documentation	
5.7.1.1 ax	
5.7.1.2 cmap	
5.7.1.3 coins_img	
5.7.1.4 coins_labelled	
5.7.1.5 coins_marked	
5.7.1.6 coins_pre	
5.7.1.7 coins_segmented	
5.7.1.8 ct_img	
5.7.1.9 ct_labelled	
5.7.1.10 ct_mask	
5.7.1.11 ct_props	
5.7.1.12 ct_segmented	
5.7.1.13 ct_threshold	
5.7.1.14 desired_coins_idx	
5.7.1.15 fig	
5.7.1.16 figsize	
5.7.1.17 flowers_data	
5.7.1.18 flowers_flat	
5.7.1.19 flowers_img	
5.7.1.20 flowers_pre	
5.7.1.21 flowers_purple	
5.7.1.22 flowers_segmented	

43

5.7.1.23 km	 34
5.7.1.24 lung_idx	 34
5.7.1.25 se	 34
5.7.1.26 verbose	 34
6 Class Documentation	35
6.1 imagetools.ml.KMeans_Custom Class Reference	
6.1.1 Detailed Description	
6.1.2 Constructor & Destructor Documentation	
6.1.2.1init()	
6.1.3 Member Function Documentation	
6.1.3.1 assignment()	
6.1.3.2 fit()	 36
6.1.3.3 predict()	 36
6.1.3.4 predict_cluster()	 37
6.1.4 Member Data Documentation	 37
6.1.4.1 centroids	 37
6.1.4.2 K	 37
6.2 lgd.LGD_net Class Reference	 38
6.2.1 Constructor & Destructor Documentation	 38
6.2.1.1init()	 39
6.2.2 Member Function Documentation	 39
6.2.2.1 forward()	 39
6.2.3 Member Data Documentation	 39
6.2.3.1 adj_op_torch	 39
6.2.3.2 fwd_op_torch	 39
6.2.3.3 niter	 39
6.2.3.4 prox	 39
6.2.3.5 step_size	40
6.3 lgd.prox net Class Reference	40
6.3.1 Constructor & Destructor Documentation	 41
6.3.1.1init()	 41
6.3.2 Member Function Documentation	41
6.3.2.1 forward()	41
6.3.3 Member Data Documentation	41
6.3.3.1 act1	41
6.3.3.2 act2	42
6.3.3.3 conv1	42
6.3.3.4 conv2	42
6.3.3.5 conv3	42
6.3.3.6 pad	42
0.0.0.0 pau	 +2

7 File Documentation

7.1 /h	home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/initpy File Reference	43
7.2 /	home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/ml.py File Reference	43
	7.2.1 Detailed Description	44
7.3 /	home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/plotting.py File Reference	44
	7.3.1 Detailed Description	44
7.4 /	home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/signals.py File Reference	44
	7.4.1 Detailed Description	45
7.5 /h	home/jhughes2712/projects/image_analysis/jh2284/src/inverse_problems.py File Reference	45
	7.5.1 Detailed Description	46
7.6 /	home/jhughes2712/projects/image_analysis/jh2284/src/lgd.py File Reference	47
	7.6.1 Detailed Description	48
7.7 /H	home/jhughes2712/projects/image_analysis/jh2284/src/segment.py File Reference	48
	7.7.1 Detailed Description	49
Index		51

Chapter 1

Namespace Index

1.1 Packages

Here are the packages with brief descriptions (if available):

imagetools		 						 	 	 												9
imagetools.ml		 						 	 	 												9
imagetools.plotting		 						 	 	 												10
imagetools.signals		 						 	 	 												11
inverse_problems		 						 	 	 												13
lgd																						
seament		 						 	 	 												30

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

imagetools.ml.KMeans_Custom	35
nn.Module	
lgd.LGD_net	38
lad.prox net	40

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

imagetools.ml.KMeans_Custom	
Implements a class that handles KMeans Clustering	35
lgd.LGD_net	38
lad prov. net	40

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

/home/jhughes2712/projects/image_analysis/jh2284/src/inverse_problems.py	
Script running code for questions 2.1, 2.2, 2.3, and 3.1	45
/home/jhughes2712/projects/image_analysis/jh2284/src/lgd.py	
Script for training LGD	47
/home/jhughes2712/projects/image_analysis/jh2284/src/segment.py	
Script running code for segmentation problems	48
/home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/initpy	43
/home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/ml.py	
Module containing implementations of machine learning algorithms	43
/home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/plotting.py	
Module building on matplotlib to provide image-specific plotting functions	44
/home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/signals.py	
Module providing useful functions for image processing when employing Fourier and Wavelet	
transforms	44

8 File Index

Chapter 5

Namespace Documentation

5.1 imagetools Namespace Reference

Namespaces

- ml
- plotting
- · signals

5.2 imagetools.ml Namespace Reference

Classes

class KMeans_Custom

Implements a class that handles KMeans Clustering.

Functions

def gradient_descent (obj, grad, x0, obj_min, eps, lr, max_iters, filename)
 Implements vanilla gradient descent for scalar functions on R2, where the true global minimum is known.

5.2.1 Function Documentation

5.2.1.1 gradient_descent()

```
def imagetools.ml.gradient_descent (
    obj,
    grad,
    x0,
    obj_min,
    eps,
    lr,
    max_iters,
    filename )
```

Implements vanilla gradient descent for scalar functions on R2, where the true global minimum is known.

Parameters

obj	The objective function to minimise.
grad	The gradient of the objective function ($R^2>R^2$)
х0	The initial iterate
obj_min	The minimal value of the objective function
eps	The threshold error for the stopping criterion
Ir	The learning rate
max_iters	The maximum number of iterations to run before terminating
filename	Determines the name of the trajectory and loss plot file

Returns

x estimated argmin (in R^2) of the objective

5.3 imagetools.plotting Namespace Reference

Functions

def plot_image (ax_sp, img, title, cmap, gt=None)
 Plots an image and compares to GT.

5.3.1 Function Documentation

5.3.1.1 plot_image()

Plots an image and compares to GT.

```
@param ax_sp Specified matplotlib.pyplot.Axes object
@param img Image to be displayed
@param title Image title string
@param cmap String defining matplotlib colormap for image
@param gt Ground truth measurements to compare to
```

5.4 imagetools.signals Namespace Reference

Functions

```
    def iterative_soft_thresholding (data_sampled, lam, n_iters, gt=None)
        Implements ISTA in 1D.

    def fft1c (x)
    def ifft1c (y)
```

- def ComplexSoftThresh (y, lam)
- def coeffs2img (LL, coeffs)
- def img2coeffs (Wim, levels=4)
- def unstack_coeffs (Wim)
- def dwt2 (im)
- def idwt2 (Wim)

5.4.1 Function Documentation

5.4.1.1 coeffs2img()

5.4.1.2 ComplexSoftThresh()

```
def imagetools.signals.ComplexSoftThresh ( \emph{y}, \emph{lam} )
```

5.4.1.3 dwt2()

5.4.1.4 fft1c()

```
\begin{tabular}{ll} $\operatorname{def imagetools.signals.fftlc} & ( \\ & x \end{tabular} \label{eq:constraints}
```

5.4.1.5 idwt2()

```
\begin{tabular}{ll} $\tt def imagetools.signals.idwt2 ( \\ $\tt \textit{Wim} )$ \\ \end{tabular}
```

5.4.1.6 ifft1c()

```
def imagetools.signals.ifft1c ( y )
```

5.4.1.7 img2coeffs()

```
def imagetools.signals.img2coeffs ( \it Wim, \it levels = 4 )
```

5.4.1.8 iterative_soft_thresholding()

Implements ISTA in 1D.

```
@param data_sampled The subsampled measurement vector
@param lam The soft-thresholding (regularisation) parameter
@param n_iters Number of iterations
@param gt Ground truth measurements to compare to
@return data Approximated reconstructed measurements
@return mse_values Series of mse values per iteration to enable
performance plot
```

5.4.1.9 unstack_coeffs()

```
\label{eq:coeffs} \mbox{def imagetools.signals.unstack\_coeffs (} $\mbox{\it Wim}$ )
```

5.5 inverse problems Namespace Reference

Variables

```
    file_list = f.read().split("\n")[:-1]

    y noisy = np.array([float(x) for x in file list])

• y_outlier = np.array([float(x) for x in file_list])
x = np.arange(len(y noisy))
• a noisy 12 = \text{np.sum}(x * y \text{ noisy}) / \text{np.sum}(x * x)
b_noisy_l2 = np.mean(y_noisy) - a_noisy_l2 * np.mean(x)
a_outlier_I2 = np.sum(x * y_outlier) / np.sum(x * x)
• b_outlier_l2 = np.mean(y_outlier) - a_outlier_l2 * np.mean(x)
• fig

    ax

· figsize
• list B coefs = []
• obj_l1 = lambda B: np.sum(np.abs(B[0] \times x + B[1] - y))
• B0 = np.array([0.1, 0.1])
• float lr = 0.0001
rng = np.random.default_rng(seed=42)
• signal = np.zeros(100)
• data = fft1c(signal)
• int sample freq = 4
• mask random = rng.uniform(0, 1, 100)
mask unif = np.zeros(100)
• start index = rng.integers(0, sample freq)
• sample_random = mask_random * data
sample_unif = mask_unif * data
int signal_random = ifft1c(sample_random) * sample_freq
• int signal_unif = ifft1c(sample_unif) * sample_freq
data_random_recon
· mse random

    lam

n_iters = 1000

    gt

· data_unif_recon

    mse unif

    int signal random recon = ifft1c(data random recon) * sample freq

• int signal_unif_recon = ifft1c(data_unif_recon) * sample_freq

    label

· title

    xlabel

    ylabel

    river img = skimage.io.imread("data/river side.jpeg")

river img dw = dwt2(river img)
river_img_recon = idwt2(river_img_dw)
th = np.quantile(abs(river_img_dw), 0.85)
• river_img_dw_th = abs(river_img_dw) > th

    tuple plotrange

• aximg0 = ax[0].imshow(abs(river img dw), vmin=plotrange[0], vmax=plotrange[1])
• aximg1 = ax[1].imshow(abs(river img dw th), cmap="grey")
• float obj = lambda x: 0.5 * (x[0] ** 2) + (x[1] ** 2)
• grad = lambda x: np.array([x[0], 2.0 * x[1]])
• x0 = np.array([1.0, 1.0])
• float eps = 0.01
float obj_min = 0.0
```

5.5.1 Variable Documentation

```
5.5.1.1 a_noisy_I2
inverse_problems.a_noisy_12 = np.sum(x * y_noisy) / np.sum(x * x)
5.5.1.2 a_outlier_I2
inverse_problems.a_outlier_12 = np.sum(x * y_outlier) / np.sum(x * x)
5.5.1.3 ax
inverse_problems.ax
5.5.1.4 aximg0
inverse_problems.aximg0 = ax[0].imshow(abs(river_img_dw), vmin=plotrange[0], vmax=plotrange[1])
5.5.1.5 aximg1
inverse_problems.aximg1 = ax[1].imshow(abs(river_img_dw_th), cmap="grey")
5.5.1.6 B
```

inverse_problems.B = gradient_descent(obj_l1, grad_l1, B0, 0, 0.01, lr, 100, "gd_l1")

5.5.1.7 B0

```
inverse_problems.B0 = np.array([0.1, 0.1])
```

5.5.1.8 B_coefs

```
list inverse_problems.B_coefs = []
```

5.5.1.9 b_noisy_l2

```
inverse\_problems.b\_noisy\_12 = np.mean(y\_noisy) - a\_noisy\_12 * np.mean(x)
```

5.5.1.10 b_outlier_I2

```
inverse_problems.b_outlier_12 = np.mean(y_outlier) - a_outlier_12 * np.mean(x)
```

5.5.1.11 data

```
inverse_problems.data = fft1c(signal)
```

5.5.1.12 data_random_recon

 $\verb|inverse_problems.data_random_recon|$

5.5.1.13 data_unif_recon

inverse_problems.data_unif_recon

5.5.1.14 eps

float inverse_problems.eps = 0.01

5.5.1.15 fig

inverse_problems.fig

5.5.1.16 figsize

inverse_problems.figsize

5.5.1.17 file_list

```
inverse_problems.file_list = f.read().split("\n")[:-1]
```

5.5.1.18 grad

```
inverse_problems.grad = lambda x: np.array([x[0], 2.0 * x[1]])
```

5.5.1.19 grad_l1

inverse_problems.grad_11

Initial value:

5.5.1.20 gt

inverse_problems.gt

5.5.1.21 label

inverse_problems.label

5.5.1.22 lam

inverse_problems.lam

5.5.1.23 Ir

float inverse_problems.lr = 0.0001

5.5.1.24 mask_random

inverse_problems.mask_random = rng.uniform(0, 1, 100)

5.5.1.25 mask_unif

 $inverse_problems.mask_unif = np.zeros(100)$

5.5.1.26 mse_random

inverse_problems.mse_random

5.5.1.27 mse_unif

inverse_problems.mse_unif

5.5.1.28 n_iters

int inverse_problems.n_iters = 1000

5.5.1.29 obj

float inverse_problems.obj = lambda x: 0.5 * (x[0] ** 2) + (x[1] ** 2)

5.5.1.30 obj_l1

inverse_problems.obj_l1 = lambda B: np.sum(np.abs(B[0] * x + B[1] - y))

5.5.1.31 obj_min

```
float inverse_problems.obj_min = 0.0
```

5.5.1.32 plotrange

tuple inverse_problems.plotrange

Initial value:

```
1 = (
2     np.quantile(abs(river_img_dw), 0.005),
3     np.quantile(abs(river_img_dw), 0.995),
4 )
```

5.5.1.33 river_img

```
inverse_problems.river_img = skimage.io.imread("data/river_side.jpeg")
```

5.5.1.34 river_img_dw

```
inverse_problems.river_img_dw = dwt2(river_img)
```

5.5.1.35 river_img_dw_th

```
{\tt inverse\_problems.river\_img\_dw\_th = abs(river\_img\_dw) > th}
```

5.5.1.36 river_img_recon

```
inverse_problems.river_img_recon = idwt2(river_img_dw)
```

5.5.1.37 rng

```
inverse_problems.rng = np.random.default_rng(seed=42)
```

5.5.1.38 sample_freq

```
int inverse_problems.sample_freq = 4
```

5.5.1.39 sample_random

```
inverse_problems.sample_random = mask_random * data
```

5.5.1.40 sample_unif

```
inverse_problems.sample_unif = mask_unif * data
```

5.5.1.41 signal

```
inverse_problems.signal = np.zeros(100)
```

5.5.1.42 signal_random

```
int inverse_problems.signal_random = ifft1c(sample_random) * sample_freq
```

5.5.1.43 signal_random_recon

```
int inverse_problems.signal_random_recon = ifftlc(data_random_recon) * sample_freq
```

5.5.1.44 signal_unif

```
int inverse_problems.signal_unif = ifftlc(sample_unif) * sample_freq
```

5.5.1.45 signal_unif_recon

```
int inverse_problems.signal_unif_recon = ifftlc(data_unif_recon) * sample_freq
```

5.5.1.46 start_index

```
inverse_problems.start_index = rng.integers(0, sample_freq)
```

5.5.1.47 th

```
inverse_problems.th = np.quantile(abs(river_img_dw), 0.85)
```

5.5.1.48 title

inverse_problems.title

5.5.1.49 x

```
inverse_problems.x = np.arange(len(y_noisy))
```

5.5.1.50 x0

```
inverse\_problems.x0 = np.array([1.0, 1.0])
```

5.5.1.51 xlabel

inverse_problems.xlabel

5.5.1.52 y_noisy

```
inverse\_problems.y\_noisy = np.array([float(x) for x in file\_list])
```

5.5.1.53 y_outlier

```
inverse_problems.y_outlier = np.array([float(x) for x in file_list])
```

5.5.1.54 ylabel

```
inverse_problems.ylabel
```

5.6 Igd Namespace Reference

Classes

```
    class prox_net
```

· class LGD net

Variables

```
• parser = argparse.ArgumentParser()
type
• str

    choices

    required

• args = parser.parse_args()
• int img size = 256
• reco_space
• int num_angles = 30
• geometry = odl.tomo.parallel_beam_geometry(reco_space, num_angles=num_angles)

    fwd_op_odl = odl.tomo.RayTransform(reco_space, geometry)

· fbp_op_odl
• adj_op_odl = fwd_op_odl.adjoint

    phantom_odl = odl.phantom.shepp_logan(reco_space, modified=True)

data_odl = fwd_op_odl(phantom_odl)
• fbp_odl = fbp_op_odl(data_odl)
phantom_np = phantom_odl.__array__()
• fbp_np = fbp_odl.__array__()
data_np = data_odl.__array__()
• fig

    ax

• figsize
• grad = odl.Gradient(reco space)

    L = odl.BroadcastOperator(fwd_op_odl, grad)

    data_fit = odl.solvers.L2NormSquared(fwd_op_odl.range).translated(data_odl)

• float lam = 0.015

    float reg_func = lam * odl.solvers.L1Norm(grad.range)

• g = odl.solvers.SeparableSum(data fit, reg func)
• f = odl.solvers.ZeroFunctional(L.domain)
• float op_norm = 1.1 * odl.power_method_opnorm(L, maxiter=20)
• int niter = 200
• float sigma = 2.0
• float tau = sigma / op_norm**2
· callback
x_admm_odl = L.domain.zero()
x_admm_np = x_admm_odl.__array__()
```

tuple device

- int step_size = 1 / op_norm
- lgd_net = LGD_net().to(device)
- num_learnable_params
- tuple y
- tuple x_init
- tuple ground_truth
- mse_loss = torch.nn.MSELoss()
- optimizer = torch.optim.Adam(lgd_net.parameters(), lr=1e-4)
- int num_epochs = 2000
- ckpt = torch.load("outputs/weights_1990.pth", map_location=device)
- int start_idx = 1989
- losses = ckpt["losses"]
- int save_interval = 1
- int verbose_interval = 1
- recon = lgd_net(y, x_init)
- loss = mse_loss(recon, ground_truth)
- · dictionary checkpoint
- string checkpoint filepath = f"outputs/weights {epoch+1:03d}.pth"
- tuple lgd_recon_np

5.6.1 Variable Documentation

5.6.1.1 adj_op_odl

```
lgd.adj_op_odl = fwd_op_odl.adjoint
```

5.6.1.2 args

```
lgd.args = parser.parse_args()
```

5.6.1.3 ax

lgd.ax

5.6.1.4 callback

lgd.callback

Initial value:

```
1 = odl.solvers.CallbackPrintIteration(
2 step=10
     step=10
3 ) & odl.solvers.CallbackShow(step=10)
```

5.6.1.5 checkpoint

dictionary lgd.checkpoint

Initial value:

```
"epoch": epoch + 1,
"state_dict": lgd_net.state_dict(),
"optimizer": optimizer.state_dict(),
"losses": losses,
```

5.6.1.6 checkpoint_filepath

```
string lgd.checkpoint_filepath = f"outputs/weights_{epoch+1:03d}.pth"
```

5.6.1.7 choices

lgd.choices

5.6.1.8 ckpt

```
lgd.ckpt = torch.load("outputs/weights_1990.pth", map_location=device)
```

5.6.1.9 data_fit

```
lgd.data_fit = odl.solvers.L2NormSquared(fwd_op_odl.range).translated(data_odl)
```

5.6.1.10 data_np

```
lgd.data_np = data_odl.__array__()
```

5.6.1.11 data_odl

```
lgd.data_odl = fwd_op_odl(phantom_odl)
```

5.6.1.12 device

tuple lgd.device

Initial value:

```
1 = (
2    torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
3 )
```

5.6.1.13 f

```
lgd.f = odl.solvers.ZeroFunctional(L.domain)
```

5.6.1.14 fbp_np

```
lgd.fbp_np = fbp_odl.__array__()
```

5.6.1.15 fbp_odl

```
lgd.fbp_odl = fbp_op_odl(data_odl)
```

5.6.1.16 fbp_op_odl

```
lgd.fbp_op_odl
```

Initial value:

```
1 = odl.tomo.fbp_op(
    fwd_op_odl, filter_type="Ram-Lak", frequency_scaling=0.6
3 )
```

5.6.1.17 fig

lgd.fig

5.6.1.18 figsize

lgd.figsize

5.6.1.19 fwd_op_odl

```
lgd.fwd_op_odl = odl.tomo.RayTransform(reco_space, geometry)
```

5.6.1.20 g

```
lgd.g = odl.solvers.SeparableSum(data_fit, reg_func)
```

5.6.1.21 geometry

```
lgd.geometry = odl.tomo.parallel_beam_geometry(reco_space, num_angles=num_angles)
```

5.6.1.22 grad

```
lgd.grad = odl.Gradient(reco_space)
```

5.6.1.23 ground_truth

```
tuple lgd.ground_truth
```

Initial value:

```
1 = (
2          torch.from_numpy(phantom_np).to(device).unsqueeze(0)
3 )
```

5.6.1.24 gt

lgd.gt

5.6.1.25 img_size

```
int lgd.img_size = 256
```

5.6.1.26 L

```
lgd.L = odl.BroadcastOperator(fwd_op_odl, grad)
```

5.6.1.27 lam

```
float lgd.lam = 0.015
```

5.6.1.28 lgd_net

```
lgd.lgd_net = LGD_net().to(device)
```

5.6.1.29 lgd_recon_np

```
tuple lgd.lgd_recon_np
```

Initial value:

```
1 = (
2          recon.detach().cpu().numpy().squeeze()
3 )
```

5.6.1.30 loss

```
lgd.loss = mse_loss(recon, ground_truth)
```

5.6.1.31 losses

```
list lgd.losses = ckpt["losses"]
```

5.6.1.32 mse_loss

```
lgd.mse_loss = torch.nn.MSELoss()
```

5.6.1.33 niter

```
lgd.niter = 200
```

5.6.1.34 num_angles

```
int lgd.num_angles = 30
```

5.6.1.35 num_epochs

```
int lgd.num_epochs = 2000
```

5.6.1.36 num_learnable_params

lgd.num_learnable_params

Initial value:

```
1 = sum(
2    p.numel() for p in lgd_net.parameters() if p.requires_grad
3 )
```

5.6.1.37 op_norm

```
float lgd.op_norm = 1.1 * odl.power_method_opnorm(L, maxiter=20)
```

5.6.1.38 optimizer

```
lgd.optimizer = torch.optim.Adam(lgd_net.parameters(), lr=1e-4)
```

5.6.1.39 parser

```
lgd.parser = argparse.ArgumentParser()
```

5.6.1.40 phantom_np

```
lgd.phantom_np = phantom_odl.__array__()
```

5.6.1.41 phantom_odl

```
lgd.phantom_odl = odl.phantom.shepp_logan(reco_space, modified=True)
```

5.6.1.42 reco_space

lgd.reco_space

Initial value:

```
1 = odl.uniform_discr(
2     min_pt=[-20, -20],
3     max_pt=[20, 20],
4     shape=[img_size, img_size],
5     dtype="float32",
6 )
```

5.6.1.43 recon

```
lgd.recon = lgd_net(y, x_init)
```

5.6.1.44 reg_func

```
float lgd.reg_func = lam * odl.solvers.L1Norm(grad.range)
```

5.6.1.45 required

lgd.required

5.6.1.46 save_interval

```
int lgd.save_interval = 1
```

5.6.1.47 sigma

```
lgd.sigma = 2.0
```

5.6.1.48 start_idx

```
int lgd.start_idx = 1989
```

5.6.1.49 step_size

```
int lgd.step_size = 1 / op_norm
```

5.6.1.50 str

lgd.str

5.6.1.51 tau

```
lgd.tau = sigma / op_norm**2
```

5.6.1.52 type

lgd.type

5.6.1.53 verbose_interval

```
int lgd.verbose_interval = 1
```

5.6.1.54 x_admm_np

```
lgd.x_admm_np = x_admm_odl.__array__()
```

5.6.1.55 x_admm_odl

```
lgd.x_admm_odl = L.domain.zero()
```

5.6.1.56 x_init

```
tuple lgd.x_init
```

Initial value:

```
1 = (
2     torch.from_numpy()
3         fbp_op_od1(y.detach().cpu().numpy().squeeze()).__array__()
4     )
5     .to(device)
6     .unsqueeze(0)
7     )
```

5.6.1.57 y

```
tuple lgd.y
```

Initial value:

```
1 = (
2    torch.from_numpy(data_np).to(device).unsqueeze(0)
3 )
```

5.7 segment Namespace Reference

Variables

- fig
- ax
- figsize
- ct_img = skimage.io.imread("data/CT.png")
- ct_threshold = threshold_otsu(ct_img)
- ct_segmented = ct_img > ct_threshold
- se = disk(4)
- ct_mask = remove_small_objects(binary_opening(ct_segmented, se))
- ct_labelled = label(ct_mask == 0)
- ct_props = regionprops(ct_labelled)
- lung_idx = sorted(list(range(3)), key=lambda i: ct_props[i].area)[:2]
- cmap
- coins_img = skimage.io.imread("data/coins.png")
- coins_marked = coins_img.copy()
- coins_pre = rank.median(coins_img, np.ones((1, 7)))
- int coins_segmented = 1 chan_vese(coins_pre, mu=0.1)
- coins_labelled = label(coins_segmented)
- list desired_coins_idx
- flowers_img = skimage.io.imread("data/noisy_flower.jpg")
- flowers_pre = denoise_tv_bregman(flowers_img, weight=0.5)
- km = KMeans_Custom(K=6)
- flowers_data = flowers_pre[::8, ::8, :].reshape(-1, 3)
- verbose
- flowers_flat = flowers_pre.reshape(-1, 3)
- flowers_segmented = km.predict_cluster(flowers_flat)
- int flowers_purple = 0

5.7.1 Variable Documentation

5.7.1.1 ax segment.ax

5.7.1.2 cmap

segment.cmap

5.7.1.3 coins_img

```
tuple segment.coins_img = skimage.io.imread("data/coins.png")
```

5.7.1.4 coins_labelled

```
segment.coins_labelled = label(coins_segmented)
```

5.7.1.5 coins_marked

```
segment.coins_marked = coins_img.copy()
```

5.7.1.6 coins_pre

```
segment.coins_pre = rank.median(coins_img, np.ones((1, 7)))
```

5.7.1.7 coins_segmented

```
segment.coins_segmented = 1 - chan_vese(coins_pre, mu=0.1)
```

5.7.1.8 ct_img

```
segment.ct_img = skimage.io.imread("data/CT.png")
```

5.7.1.9 ct_labelled

```
float segment.ct_labelled = label(ct_mask == 0)
```

5.7.1.10 ct_mask

```
segment.ct_mask = remove_small_objects(binary_opening(ct_segmented, se))
```

5.7.1.11 ct_props

```
segment.ct_props = regionprops(ct_labelled)
```

5.7.1.12 ct_segmented

```
segment.ct\_segmented = ct\_img > ct\_threshold
```

5.7.1.13 ct_threshold

```
segment.ct_threshold = threshold_otsu(ct_img)
```

5.7.1.14 desired_coins_idx

list segment.desired_coins_idx

Initial value:

5.7.1.15 fig

```
segment.fig
```

5.7.1.16 figsize

```
segment.figsize
```

5.7.1.17 flowers_data

```
segment.flowers_data = flowers_pre[::8, ::8, :].reshape(-1, 3)
```

5.7.1.18 flowers_flat

```
segment.flowers_flat = flowers_pre.reshape(-1, 3)
```

5.7.1.19 flowers_img

```
segment.flowers_img = skimage.io.imread("data/noisy_flower.jpg")
```

5.7.1.20 flowers_pre

```
segment.flowers_pre = denoise_tv_bregman(flowers_img, weight=0.5)
```

5.7.1.21 flowers_purple

```
segment.flowers_purple = 0
```

5.7.1.22 flowers_segmented

```
segment.flowers_segmented = km.predict_cluster(flowers_flat)
```

5.7.1.23 km

```
segment.km = KMeans_Custom(K=6)
```

5.7.1.24 lung_idx

```
segment.lung_idx = sorted(list(range(3)), key=lambda i: ct_props[i].area)[:2]
```

5.7.1.25 se

```
segment.se = disk(4)
```

5.7.1.26 verbose

segment.verbose

Chapter 6

Class Documentation

6.1 imagetools.ml.KMeans_Custom Class Reference

Implements a class that handles KMeans Clustering.

Public Member Functions

- def init (self, K)
- def assignment (self, data)

Assigns a matrix where each row represents the assigned centroid.

• def fit (self, data, verbose=10, limit=1e5)

Fits the KMeans clusters.

• def predict (self, data)

Returns an array whose rows are the closest centroid to each datum.

• def predict_cluster (self, data)

Returns an array whose entries are the closest centroid to each datum, mapped to a single identifying integer.

Public Attributes

- K
- · centroids

6.1.1 Detailed Description

Implements a class that handles KMeans Clustering.

6.1.2 Constructor & Destructor Documentation

36 Class Documentation

6.1.2.1 __init__()

6.1.3 Member Function Documentation

6.1.3.1 assignment()

```
def imagetools.ml.KMeans_Custom.assignment ( self, data )
```

Assigns a matrix where each row represents the assigned centroid.

Parameters

```
data The data to assign labels to. Must be an (N, P) array.
```

Returns

labels

6.1.3.2 fit()

Fits the KMeans clusters.

```
@details Uses the KMeans++ algorithm to initialise centroids,
and then iteratively updates them using Lloyd's algorithm.

@param data The data to assign labels to. Must be an (N, P) array.
@param verbose How often to print out number of reassigned labels.
@param limit Maximum number of iterations before stopping. Prevents an indefinite loop.
```

6.1.3.3 predict()

```
def imagetools.ml.KMeans_Custom.predict ( self, data )
```

Returns an array whose rows are the closest centroid to each datum.

Parameters

data The data to assign labels to. Must be an (N, P) array.

Returns

predictions (N, P) array of centroids

6.1.3.4 predict_cluster()

Returns an array whose entries are the closest centroid to each datum, mapped to a single identifying integer.

Parameters

data The data to assign labels to. Must be an (N, P) array.

Returns

predictions (N, 1) array of predicted clusters

6.1.4 Member Data Documentation

6.1.4.1 centroids

imagetools.ml.KMeans_Custom.centroids

6.1.4.2 K

```
\verb|imagetools.ml.KMeans_Custom.K||
```

The documentation for this class was generated from the following file:

/home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/ml.py

38 Class Documentation

6.2 lgd.LGD_net Class Reference

Inheritance diagram for lgd.LGD_net:

Collaboration diagram for lgd.LGD_net:

Public Member Functions

- def __init__ (self, niter=5, step_size=step_size)
- def forward (self, y, x_init)

Public Attributes

- niter
- prox
- step_size
- fwd_op_torch
- adj_op_torch

6.2.1 Constructor & Destructor Documentation

6.2.1.1 __init__()

6.2.2 Member Function Documentation

6.2.2.1 forward()

```
def lgd.LGD_net.forward ( self, \\ y, \\ x\_init )
```

6.2.3 Member Data Documentation

6.2.3.1 adj_op_torch

```
lgd.LGD_net.adj_op_torch
```

6.2.3.2 fwd_op_torch

```
{\tt lgd.LGD\_net.fwd\_op\_torch}
```

6.2.3.3 niter

```
lgd.LGD_net.niter
```

6.2.3.4 prox

```
lgd.LGD_net.prox
```

40 Class Documentation

6.2.3.5 step_size

```
lgd.LGD_net.step_size
```

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/image_analysis/jh2284/src/lgd.py

6.3 Igd.prox_net Class Reference

Inheritance diagram for lgd.prox_net:

Collaboration diagram for lgd.prox_net:

Public Member Functions

- def __init__ (self, n_in_channels=2, n_out_channels=1, n_filters=32, kernel_size=3)
- def forward (self, x, u)

Public Attributes

- pad
- conv1
- conv2
- conv3
- act1
- act2

6.3.1 Constructor & Destructor Documentation

6.3.1.1 __init__()

6.3.2 Member Function Documentation

6.3.2.1 forward()

YOUR CODE HERE

6.3.3 Member Data Documentation

6.3.3.1 act1

```
lgd.prox_net.act1
```

42 Class Documentation

6.3.3.2 act2

lgd.prox_net.act2

6.3.3.3 conv1

lgd.prox_net.conv1

6.3.3.4 conv2

lgd.prox_net.conv2

6.3.3.5 conv3

lgd.prox_net.conv3

6.3.3.6 pad

lgd.prox_net.pad

The documentation for this class was generated from the following file:

• /home/jhughes2712/projects/image_analysis/jh2284/src/lgd.py

Chapter 7

File Documentation

7.1 /home/jhughes2712/projects/image_
analysis/jh2284/src/imagetools/__init__.py File Reference

Namespaces

· imagetools

7.2 /home/jhughes2712/projects/image_ analysis/jh2284/src/imagetools/ml.py File Reference

Module containing implementations of machine learning algorithms.

Classes

class imagetools.ml.KMeans_Custom
 Implements a class that handles KMeans Clustering.

Namespaces

· imagetools.ml

Functions

• def imagetools.ml.gradient_descent (obj, grad, x0, obj_min, eps, lr, max_iters, filename)

Implements vanilla gradient descent for scalar functions on R2, where the true global minimum is known.

44 File Documentation

7.2.1 Detailed Description

Module containing implementations of machine learning algorithms.

Uses numpy to implement KMeans and Gradient Descent, in a way which is not as optimised as, say, scikit-learn, but is readable.

Author

Created by J. Hughes on 8th June 2024.

7.3 /home/jhughes2712/projects/image_← analysis/jh2284/src/imagetools/plotting.py File Reference

Module building on matplotlib to provide image-specific plotting functions.

Namespaces

· imagetools.plotting

Functions

def imagetools.plotting.plot_image (ax_sp, img, title, cmap, gt=None)
 Plots an image and compares to GT.

7.3.1 Detailed Description

Module building on matplotlib to provide image-specific plotting functions.

Author

Created by J. Hughes on 8th June 2024.

7.4 /home/jhughes2712/projects/image_ analysis/jh2284/src/imagetools/signals.py File Reference

Module providing useful functions for image processing when employing Fourier and Wavelet transforms.

Namespaces

· imagetools.signals

Functions

- def imagetools.signals.iterative_soft_thresholding (data_sampled, lam, n_iters, gt=None)
 Implements ISTA in 1D.
- def imagetools.signals.fft1c (x)
- def imagetools.signals.ifft1c (y)
- · def imagetools.signals.ComplexSoftThresh (y, lam)
- def imagetools.signals.coeffs2img (LL, coeffs)
- def imagetools.signals.img2coeffs (Wim, levels=4)
- def imagetools.signals.unstack coeffs (Wim)
- def imagetools.signals.dwt2 (im)
- · def imagetools.signals.idwt2 (Wim)

7.4.1 Detailed Description

Module providing useful functions for image processing when employing Fourier and Wavelet transforms.

Many of the functions are taken from the 'helper' module provided on the Image Analysis course GitLab page.

Author

Created by J. Hughes on 8th June 2024.

7.5 /home/jhughes2712/projects/image_analysis/jh2284/src/inverse_← problems.py File Reference

Script running code for questions 2.1, 2.2, 2.3, and 3.1.

Namespaces

· inverse problems

Variables

- inverse problems.file list = f.read().split("\n")[:-1]
- inverse_problems.y_noisy = np.array([float(x) for x in file_list])
- inverse_problems.y_outlier = np.array([float(x) for x in file_list])
- inverse_problems.x = np.arange(len(y_noisy))
- inverse_problems.a_noisy_l2 = np.sum(x * y_noisy) / np.sum(x * x)
- inverse_problems.b_noisy_l2 = np.mean(y_noisy) a_noisy_l2 * np.mean(x)
- inverse_problems.a_outlier_l2 = np.sum(x * y_outlier) / np.sum(x * x)
- inverse_problems.b_outlier_I2 = np.mean(y_outlier) a_outlier_I2 * np.mean(x)
- · inverse_problems.fig
- inverse_problems.ax
- inverse_problems.figsize
- list inverse problems.B coefs = []
- inverse problems.obj I1 = lambda B: np.sum(np.abs(B[0] * x + B[1] y))
- inverse problems.grad I1
- inverse_problems.B0 = np.array([0.1, 0.1])

46 File Documentation

- float inverse_problems.lr = 0.0001
- inverse_problems.B = gradient_descent(obj_l1, grad_l1, B0, 0, 0.01, lr, 100, "gd_l1")
- inverse problems.rng = np.random.default rng(seed=42)
- inverse problems.signal = np.zeros(100)
- inverse problems.data = fft1c(signal)
- int inverse_problems.sample_freq = 4
- inverse_problems.mask_random = rng.uniform(0, 1, 100)
- inverse problems.mask unif = np.zeros(100)
- inverse problems.start index = rng.integers(0, sample freq)
- inverse problems.sample random = mask random * data
- inverse problems.sample unif = mask unif * data
- int inverse_problems.signal_random = ifft1c(sample_random) * sample_freq
- int inverse_problems.signal_unif = ifft1c(sample_unif) * sample_freq
- inverse_problems.data_random_recon
- inverse problems.mse random
- · inverse problems.lam
- inverse_problems.n_iters = 1000
- · inverse problems.gt
- inverse_problems.data_unif_recon
- · inverse problems.mse unif
- int inverse_problems.signal_random_recon = ifft1c(data_random_recon) * sample_freq
- int inverse_problems.signal_unif_recon = ifft1c(data_unif_recon) * sample_freq
- · inverse problems.label
- inverse_problems.title
- inverse_problems.xlabel
- inverse problems.ylabel
- inverse_problems.river_img = skimage.io.imread("data/river_side.jpeg")
- inverse problems.river img dw = dwt2(river img)
- inverse_problems.river_img_recon = idwt2(river_img_dw)
- inverse_problems.th = np.quantile(abs(river_img_dw), 0.85)
- inverse_problems.river_img_dw_th = abs(river_img_dw) > th
- tuple inverse_problems.plotrange
- inverse_problems.aximg0 = ax[0].imshow(abs(river_img_dw), vmin=plotrange[0], vmax=plotrange[1])
- inverse_problems.aximg1 = ax[1].imshow(abs(river_img_dw_th), cmap="grey")
- float inverse_problems.obj = lambda x: 0.5 * (x[0] ** 2) + (x[1] ** 2)
- inverse_problems.grad = lambda x: np.array([x[0], 2.0 * x[1]])
- inverse problems.x0 = np.array([1.0, 1.0])
- float inverse_problems.eps = 0.01
- float inverse problems.obj min = 0.0

7.5.1 Detailed Description

Script running code for questions 2.1, 2.2, 2.3, and 3.1.

This script solves various inverse problems related to signal and image processing, employing various iterative strategies and signal transforms.

Author

Created by J. Hughes on 8th June 2024.

7.6 /home/jhughes2712/projects/image_analysis/jh2284/src/lgd.py File Reference

Script for training LGD.

Classes

- class lgd.prox_net
- class lgd.LGD_net

Namespaces

• lgd

Variables

```
• lgd.parser = argparse.ArgumentParser()
```

- lgd.type
- · lgd.str
- lgd.choices
- · lgd.required
- lgd.args = parser.parse args()
- int lgd.img_size = 256
- · lgd.reco_space
- int lgd.num_angles = 30
- lgd.geometry = odl.tomo.parallel_beam_geometry(reco_space, num_angles=num_angles)
- lgd.fwd_op_odl = odl.tomo.RayTransform(reco_space, geometry)
- lgd.fbp_op_odl
- lgd.adj_op_odl = fwd_op_odl.adjoint
- lgd.phantom_odl = odl.phantom.shepp_logan(reco_space, modified=True)
- lgd.data_odl = fwd_op_odl(phantom_odl)
- lgd.fbp_odl = fbp_op_odl(data_odl)
- lgd.phantom_np = phantom_odl.__array__()
- lgd.fbp_np = fbp_odl.__array__()
- lgd.data_np = data_odl.__array__()
- lgd.fig
- lgd.ax
- lgd.figsize
- lgd.gt
- lgd.grad = odl.Gradient(reco_space)
- lgd.L = odl.BroadcastOperator(fwd op odl, grad)
- lgd.data fit = odl.solvers.L2NormSquared(fwd op odl.range).translated(data odl)
- float lgd.lam = 0.015
- float lgd.reg_func = lam * odl.solvers.L1Norm(grad.range)
- lgd.g = odl.solvers.SeparableSum(data_fit, reg_func)
- lgd.f = odl.solvers.ZeroFunctional(L.domain)
- float lgd.op_norm = 1.1 * odl.power_method_opnorm(L, maxiter=20)
- int lgd.niter = 200
- float lgd.sigma = 2.0
- float lgd.tau = sigma / op_norm**2

48 File Documentation

- · lgd.callback
- lgd.x_admm_odl = L.domain.zero()
- lgd.x_admm_np = x_admm_odl.__array__()
- tuple lgd.device
- int lgd.step_size = 1 / op_norm
- lgd.lgd_net = LGD_net().to(device)
- lgd.num_learnable_params
- · tuple lgd.y
- tuple lgd.x_init
- · tuple lgd.ground truth
- lgd.mse loss = torch.nn.MSELoss()
- lgd.optimizer = torch.optim.Adam(lgd_net.parameters(), Ir=1e-4)
- int lgd.num_epochs = 2000
- lgd.ckpt = torch.load("outputs/weights_1990.pth", map_location=device)
- int lgd.start idx = 1989
- lgd.losses = ckpt["losses"]
- int lgd.save_interval = 1
- int lgd.verbose_interval = 1
- lgd_recon = lgd_net(y, x_init)
- lgd.loss = mse_loss(recon, ground_truth)
- · dictionary lgd.checkpoint
- string lgd.checkpoint_filepath = f"outputs/weights_{epoch+1:03d}.pth"
- tuple lgd.lgd_recon_np

7.6.1 Detailed Description

Script for training LGD.

Reconstructs CT images using FBP and ADMM, and compares to a data-driven LGD algorithm. Can be run in 'demo' mode, just performing the last 10 epochs of training from a checkpoint, or 'full' mode which runs all 2000 training epochs.

Author

Created by J. Hughes on 8th June 2024.

7.7 /home/jhughes2712/projects/image_analysis/jh2284/src/segment.py File Reference

Script running code for segmentation problems.

Namespaces

segment

Variables

- · segment.fig
- · segment.ax
- · segment.figsize
- segment.ct_img = skimage.io.imread("data/CT.png")
- segment.ct threshold = threshold otsu(ct img)
- segment.ct_segmented = ct_img > ct_threshold
- segment.se = disk(4)
- segment.ct mask = remove small objects(binary opening(ct segmented, se))
- segment.ct_labelled = label(ct_mask == 0)
- segment.ct props = regionprops(ct labelled)
- segment.lung_idx = sorted(list(range(3)), key=lambda i: ct_props[i].area)[:2]
- · segment.cmap
- segment.coins_img = skimage.io.imread("data/coins.png")
- segment.coins marked = coins img.copy()
- segment.coins_pre = rank.median(coins_img, np.ones((1, 7)))
- int segment.coins_segmented = 1 chan_vese(coins_pre, mu=0.1)
- segment.coins_labelled = label(coins_segmented)
- · list segment.desired coins idx
- segment.flowers img = skimage.io.imread("data/noisy flower.jpg")
- segment.flowers_pre = denoise_tv_bregman(flowers_img, weight=0.5)
- segment.km = KMeans Custom(K=6)
- segment.flowers_data = flowers_pre[::8, ::8, :].reshape(-1, 3)
- · segment.verbose
- segment.flowers flat = flowers pre.reshape(-1, 3)
- segment.flowers segmented = km.predict cluster(flowers flat)
- int segment.flowers_purple = 0

7.7.1 Detailed Description

Script running code for segmentation problems.

This script segments the three images given on the question sheet using three different segmentation algorithms.

Author

Created by J. Hughes on 8th June 2024.

50 File Documentation

Index

```
/home/jhughes2712/projects/image_analysis/jh2284/src/imlagetoiss/s_l/2_init__.py,
                                                             inverse problems, 15
/home/jhughes2712/projects/image analysis/jh2284/src/imlagettolides/nt21.py,
                                                             inverse problems, 15
/home/jhughes2712/projects/image_analysis/jh2284/src/imagetools/plotting.py,
                                                        callback
/home/jhughes2712/projects/image_analysis/jh2284/src/imagetd@s/signals.py,
                                                        centroids
/home/jhughes2712/projects/image_analysis/jh2284/src/inverseinageinals.myl.KMeans_Custom, 37
                                                        checkpoint
/home/jhughes2712/projects/image_analysis/jh2284/src/lgd.py, lgd, 22
                                                        checkpoint filepath
/home/jhughes2712/projects/image_analysis/jh2284/src/segmerles/by/23
                                                        choices
                                                             lgd, 23
 init
                                                        ckpt
     imagetools.ml.KMeans_Custom, 35
                                                             lgd, 23
     Igd.LGD_net, 38
                                                        cmap
     Igd.prox_net, 41
                                                             segment, 31
a_noisy_l2
                                                        coeffs2img
     inverse_problems, 14
                                                             imagetools.signals, 11
a_outlier_l2
                                                        coins_img
     inverse_problems, 14
                                                             segment, 31
act1
                                                        coins labelled
     lgd.prox_net, 41
                                                             segment, 31
act2
                                                        coins marked
     lgd.prox_net, 41
                                                             segment, 31
adj_op_odl
                                                        coins_pre
     lgd, 22
                                                             segment, 31
adj_op_torch
                                                        coins_segmented
     Igd.LGD_net, 39
                                                             segment, 31
args
                                                        ComplexSoftThresh
    lgd, 22
                                                             imagetools.signals, 11
assignment
                                                        conv1
    imagetools.ml.KMeans_Custom, 36
                                                             Igd.prox_net, 42
                                                        conv2
     inverse problems, 14
                                                             Igd.prox_net, 42
     Igd, 22
                                                        conv3
     segment, 31
                                                             Igd.prox_net, 42
aximg0
                                                        ct_img
     inverse_problems, 14
                                                             segment, 31
                                                        ct_labelled
aximg1
    inverse_problems, 14
                                                             segment, 32
                                                        ct mask
В
                                                             segment, 32
     inverse_problems, 14
                                                        ct_props
B0
                                                             segment, 32
     inverse problems, 14
                                                        ct segmented
                                                             segment, 32
     inverse_problems, 14
                                                        ct_threshold
```

segment, 32	lgd.LGD_net, 39
oogmon, oz	lgd.prox_net, 41
data	fwd_op_odl
inverse_problems, 15	lgd, 24
data_fit	fwd_op_torch
lgd, 23	lgd.LGD_net, 39
data_np	
lgd, 23	g
data_odl	lgd, 25
lgd, 23	geometry
data_random_recon	lgd, 25
inverse_problems, 15	grad
data_unif_recon	inverse_problems, 16
inverse_problems, 15	lgd, 25
desired_coins_idx	grad_l1
segment, 32	inverse_problems, 16
device	gradient_descent
lgd, 23	imagetools.ml, 9
dwt2	ground_truth
imagetools.signals, 11	lgd, 25
	gt
eps	inverse_problems, 16
inverse_problems, 15	lgd, 25
f	idwt2
lgd, 24	
fbp_np	imagetools.signals, 11 ifft1c
lgd, 24	
fbp_odl	imagetools.signals, 12
lgd, 24	imagetools, 9
fbp_op_odl	imagetools.ml, 9
lgd, 24	gradient_descent, 9 imagetools.ml.KMeans_Custom, 35
fft1c	init, 35
imagetools.signals, 11	assignment, 36
fig	centroids, 37
inverse problems, 15	fit, 36
lgd, 24	K, 37
segment, 32	predict, 36
figsize	predict_cluster, 37
inverse_problems, 15	imagetools.plotting, 10
lgd, 24	plot image, 10
segment, 33	imagetools.signals, 11
file_list	coeffs2img, 11
inverse_problems, 16	ComplexSoftThresh, 11
fit	dwt2, 11
imagetools.ml.KMeans Custom, 36	fft1c, 11
flowers data	idwt2, 11
segment, 33	ifft1c, 12
flowers flat	img2coeffs, 12
segment, 33	iterative_soft_thresholding, 12
flowers_img	unstack_coeffs, 12
segment, 33	img2coeffs
flowers_pre	imagetools.signals, 12
segment, 33	img_size
flowers_purple	lgd, 25
segment, 33	inverse_problems, 13
flowers_segmented	a_noisy_l2, 14
segment, 33	a_outlier_I2, 14
forward	ax, 14
	w.,

	aximg0, 14	L	
	aximg1, 14		lgd, 25
	B, 14	labe	•
	B0, 14		inverse_problems, 16
	B coefs, 14	lam	
	b_noisy_I2, 15	iaiii	inverse_problems, 16
	b_outlier_I2, 15		lgd, 26
		امنما	_
	data, 15	lgd,	
	data_random_recon, 15		adj_op_odl, 22
	data_unif_recon, 15		args, 22
	eps, 15		ax, <mark>22</mark>
	fig, 15		callback, 22
	figsize, 15		checkpoint, 22
	file_list, 16		checkpoint_filepath, 23
	grad, 16		choices, 23
	grad_l1, 16		ckpt, 23
	gt, 16		data_fit, 23
	label, 16		data_np, 23
	lam, 16		data_odl, 23
			device, 23
	Ir, 16		
	mask_random, 17		f, 24
	mask_unif, 17		fbp_np, 24
	mse_random, 17		fbp_odl, 24
	mse_unif, 17		fbp_op_odl, 24
	n_iters, 17		fig, 24
	obj, 17		figsize, 24
	obj_l1, 17		fwd_op_odl, 24
	obj_min, 17		g, 25
	plotrange, 18		geometry, 25
	river img, 18		grad, 25
	river_img_dw, 18		ground_truth, 25
	river_img_dw_th, 18		gt, 25
	river_img_recon, 18		img_size, 25
	rng, 18		L, 25
	-		lam, 26
	sample_freq, 18		,
	sample_random, 19		lgd_net, 26
	sample_unif, 19		lgd_recon_np, 26
	signal, 19		loss, 26
	signal_random, 19		losses, 26
	signal_random_recon, 19		mse_loss, 26
	signal_unif, 19		niter, 26
	signal_unif_recon, 19		num_angles, 27
	start_index, 19		num_epochs, 27
	th, 20		num_learnable_params, 27
	title, 20		op_norm, 27
	x, 20		optimizer, 27
	x0, 20		parser, 27
	xlabel, 20		phantom_np, 27
	y_noisy, 20		phantom_odl, 28
	• — •		•
	y_outlier, 20		reco_space, 28
	ylabel, 20		recon, 28
itera	tive_soft_thresholding		reg_func, 28
	imagetools.signals, 12		required, 28
1.6			save_interval, 28
K			sigma, <mark>28</mark>
	imagetools.ml.KMeans_Custom, 37		start_idx, 29
km			step_size, 29
	segment, 33		str, 29

tau, 29	obj
type, 29	inverse_problems, 17
verbose_interval, 29	obj_l1
x_admm_np, 29	inverse_problems, 17
x_admm_odl, 29	obj_min
x_init, 30	inverse_problems, 17
y, 30	op norm
lgd.LGD_net, 38	lgd, 27
init , 38	optimizer
adj_op_torch, 39	lgd, 27
forward, 39	194, 27
fwd_op_torch, 39	pad
	lgd.prox net, 42
niter, 39	parser
prox, 39	lgd, 27
step_size, 39	_
lgd.prox_net, 40	phantom_np
init, 41	lgd, 27
act1, 41	phantom_odl
act2, 41	lgd, 28
conv1, 42	plot_image
conv2, 42	imagetools.plotting, 10
conv3, 42	plotrange
forward, 41	inverse_problems, 18
pad, 42	predict
lgd_net	imagetools.ml.KMeans_Custom, 36
lgd, 26	predict_cluster
lgd_recon_np	imagetools.ml.KMeans_Custom, 37
lgd, 26	prox
loss	lgd.LGD_net, 39
	o = <i>r</i>
lgd, 26	reco space
losses	reco_space lgd, 28
losses lgd, 26	lgd, 28
losses lgd, 26 Ir	lgd, 28 recon
losses lgd, 26 Ir inverse_problems, 16	lgd, 28 recon lgd, 28
losses lgd, 26 Ir inverse_problems, 16 lung_idx	lgd, 28 recon lgd, 28 reg_func
losses lgd, 26 Ir inverse_problems, 16	lgd, 28 recon lgd, 28 reg_func lgd, 28
losses	lgd, 28 recon lgd, 28 reg_func lgd, 28 required
losses lgd, 26 Ir inverse_problems, 16 Iung_idx segment, 34 mask_random	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img
losses	lgd, 28 recon lgd, 28 reg_func lgd, 28 required lgd, 28 river_img inverse_problems, 18
losses	lgd, 28 recon lgd, 28 reg_func lgd, 28 required lgd, 28 river_img inverse_problems, 18 river_img_dw
losses	lgd, 28 recon lgd, 28 reg_func lgd, 28 required lgd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 river_img_recon inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 river_img_recon inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 rng inverse_problems, 18
losses	lgd, 28 recon lgd, 28 reg_func lgd, 28 required lgd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 rng inverse_problems, 18
losses	lgd, 28 recon lgd, 28 reg_func lgd, 28 required lgd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 rng inverse_problems, 18 sample_freq inverse_problems, 18 sample_freq inverse_problems, 18
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 rng inverse_problems, 18 sample_freq inverse_problems, 18 sample_freq inverse_problems, 18 sample_freq inverse_problems, 19 sample_unif
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_dw_th inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 rng inverse_problems, 18 sample_freq inverse_problems, 18 sample_freq inverse_problems, 19 sample_unif inverse_problems, 19
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_recon inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 sample_freq inverse_problems, 18 sample_freq inverse_problems, 19 sample_unif inverse_problems, 19 save_interval
losses	lgd, 28 recon lgd, 28 reg_func lgd, 28 required lgd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_recon inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 sample_freq inverse_problems, 18 sample_freq inverse_problems, 19 sample_unif inverse_problems, 19 save_interval lgd, 28
losses	Igd, 28 recon Igd, 28 reg_func Igd, 28 required Igd, 28 river_img inverse_problems, 18 river_img_dw inverse_problems, 18 river_img_recon inverse_problems, 18 river_img_recon inverse_problems, 18 rng inverse_problems, 18 sample_freq inverse_problems, 18 sample_freq inverse_problems, 19 sample_unif inverse_problems, 19 save_interval

segment, 30	imagetools.signals, 12
ax, 31	
cmap, 31	verbose
coins_img, 31	segment, 34
coins_labelled, 31	verbose_interval
coins_marked, 31	lgd, 29
coins_pre, 31	
coins_segmented, 31	X
ct_img, 31	inverse_problems, 20
ct_labelled, 32	x0
ct_mask, 32	inverse_problems, 20
ct_props, 32	x_admm_np
ct_segmented, 32	lgd, 29
ct_threshold, 32	x_admm_odl
desired_coins_idx, 32	lgd, 29
fig, <mark>32</mark>	x_init
figsize, 33	lgd, 30
flowers_data, 33	xlabel
flowers_flat, 33	inverse_problems, 20
flowers_img, 33	
flowers_pre, 33	у
flowers_purple, 33	lgd, 30
flowers_segmented, 33	y_noisy
km, 33	inverse_problems, 20
lung_idx, 34	y_outlier
se, 34	inverse_problems, 20
verbose, 34	ylabel
sigma	inverse_problems, 20
lgd, 28	
signal	
inverse_problems, 19	
signal_random	
inverse_problems, 19	
signal_random_recon	
inverse_problems, 19	
signal unif	
inverse_problems, 19	
signal_unif_recon inverse_problems, 19	
start idx	
lgd, 29	
start index	
_	
inverse_problems, 19	
step_size	
lgd, 29	
lgd.LGD_net, 39	
str	
lgd, 29	
tau	
lgd, 29	
th	
inverse_problems, 20	
title	
inverse_problems, 20	
type	
lgd, 29	
unstack coeffs	
<u>-</u>	