Notes

Fractions:

Addition/Subtraction:

$$\frac{a}{b} + \frac{c}{d} \Rightarrow \frac{ad + bc}{bd}, \quad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

$$\frac{a}{b} - c \Rightarrow \frac{a}{b} - \frac{c}{1} \Rightarrow \frac{a}{b} - \frac{bc}{b} \Rightarrow \frac{a - bc}{b}$$

$$\frac{a}{b} * c = \frac{ac}{b} \quad \frac{a}{b} / c = \frac{a}{bc}$$

Powers:

Negative:

$$-x^{y} = -(x^{y}) -2^{2} = -(2^{2}) = -4$$

$$(-x)^{y} = -x \cdot -x (-2)^{2} = -2 \cdot -2 = 4$$

fraction:

$$x^{\frac{a}{b}} = \sqrt[b]{x^a} \qquad x^{-\frac{a}{b}} = \frac{1}{\sqrt[b]{x^a}}$$

example:

$$x^{\frac{1}{2}} = \sqrt{x} \qquad x^{-\frac{3}{4}} = \frac{1}{\sqrt[4]{x^3}}$$

Multiple powers:

$$a^0 = 1$$
, $a^1 = a$, $a^{-1} = \frac{1}{a^1}$
 $a^b * a^c = a^{b+c}$, $\frac{a^b}{a^c} = a^{b-c}$

example:

$$x^{a} * x^{b} = x^{a+b}$$
 $x^{2} * x^{4} = x^{6}$
 $(x^{a})^{b} = x^{a*b}$ $(2^{3})^{2} = (2*2*2)^{2} = (2*2*2)(2*2*2) = 2^{6}$

Surds:

$$\sqrt{a} * \sqrt{b} = \sqrt{ab}$$
 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

rationalising:

$$\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}} = \frac{\sqrt{x}}{\sqrt{y}} * \frac{\sqrt{y}}{\sqrt{y}} = \frac{\sqrt{xy}}{y}$$

$$\frac{x}{\sqrt{y+z}} = \frac{x}{\sqrt{y+z}} * \frac{\sqrt{y-z}}{\sqrt{y-z}} = \frac{x\sqrt{y-xz}}{y-z^2}$$

Calculus:

Derivatives:

$$\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Differentiation		Integration	
Function $f(x)$ c x^{n} $\sin x$ $\cos x$ e^{x} $\ln x(x>0)$	Derivative $f'(x)$ 0 nx^{n-1} $\cos x$ $-\sin x$ e^{x} $\frac{1}{x}(x>0)$	$f(x) \qquad \int f(x) dx$ $a \qquad ax+c$ $x^{n} \qquad \frac{1}{n+1}x^{n+1}+c$ $\frac{1}{x} \qquad \ln(x)+c$ $e^{ax} \qquad \frac{1}{a}e^{ax}+c$ $\cos(ax) \qquad \frac{1}{a}\sin(ax)+c$ $\sin(ax) \qquad \frac{-1}{a}\cos(ax)+c$	

Notations:

Leibniz:
$$f'(x) = \frac{dy}{dx}$$
 $f''(x) = \frac{d^{2y}}{dx^2}$

Newton:
$$f'(x) = \dot{s}$$
 $f''(x) = \ddot{s}$

Sum rule:
$$k(x)=f(x)+g(x) \Rightarrow k'(x)=f'(x)+g'(x)$$

Constant multiple rule:
$$k(x) = cf(x) \Rightarrow k'(x) = cf'(x)$$

Product rule:
$$k(x)=f(x)g(x)\Rightarrow k'(x)=f'(x)g(x)+f(x)g'(x)$$

Quotient rule:
$$k(x) = f(x)/g(x) \Rightarrow k'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

Composite rule:
$$k(x)=g(f(x))\Rightarrow k'(x)=g'(f(x))f'(x)$$

Double angle formulas:

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$

Logarithms:

$$x = a^p \implies \log_a x = p$$

$$1=a^0 \Rightarrow \log_a 1=0$$

$$1=a^{0} \Rightarrow \log_{a} 1=0$$

$$a^{1}=a \Rightarrow \log_{a} a=1$$

$$\frac{1}{a} = a^{-1} \Rightarrow \log_a \left(\frac{1}{a}\right) = -1$$

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y$$

$$\log_a \left(\frac{1}{y}\right) = -\log_a y$$

$$\log_a(x^p) = p * \log_a x$$

Statistics

Sample mean: \bar{x} population mean: μ

Sample standard deviation: s population standrad deviation: σ

Standard error of the mean: $SE = \frac{s}{\sqrt{(n)}}$ where n is the number of samples

95% of \bar{x} (sample mean) is in $\mu \pm 1.96$ SE

Central limit theorem $(n \le 25)$

The sampling distribution of the mean for

samples of size n from a population with mean $\,\mu$ and standard deviation σ may be approximated by a normal distribution with mean μ and standard deviation SE

$$(\overline{x} = \mu, s = SE)$$

Two sample z test

Trigonometry

Pythagoras theorem (for right angle triangles) hypothenous²=adjacent² + opposite² ($b^2 = c^2 + h^2$)

$$\sin(\theta) = \frac{Opposite}{Hypothenous} \qquad \left(\sin(A) = \frac{h}{b}\right)$$

$$\cos(\theta) = \frac{adjacent}{hypotenuse} \qquad \left(\cos(A) = \frac{c}{b}\right)$$

$$\tan(\theta) = \frac{Opposite}{Adjacent} \qquad \left(\cos(A) = \frac{h}{c}\right)$$

Sin Rule:

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$
and:

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Vectors:

To Component form: $V_x = Vcos(\theta)$ $V_y = Vsin(\theta)$ The Magnitude: $|V| = \sqrt{V_x^2 + V_y^2}$

The angle: $\theta = \tan^{-1}(\frac{V_y}{V_x})$ To add vectors $V + U = (V_x + U_x)i + (V_y + U_y)j$

Trig ratios:

<u>Trig ratios:</u>						
	θ	proof				
	0	Adjacent(b)=Hypotenuse(a), opposite(c)=0 $\sin(0) = \frac{c}{a} = \frac{0}{a} = 0 \qquad \cos(0) = \frac{b}{a} = 1 \qquad \tan(0) = \frac{0}{b} = 0$				
a c	45	$c = b \Rightarrow \tan(45) = \frac{c}{b} = 1$ $a^{2} = b^{2} + c^{2} \text{ given: } b = c = 1 a^{2} = 1^{2} + 1^{2} a = \sqrt{2}$ $\sin(45) = \frac{c}{a} = \frac{1}{\sqrt{2}} \Rightarrow \frac{\sqrt{2}}{2} \cos(45) = \frac{b}{a} = \frac{1}{\sqrt{2}} \Rightarrow \frac{\sqrt{2}}{2}$				
a=2c c	30	$c = \left(\frac{1}{2}\right)a \text{ or } a = 2c \sin(30) = \frac{c}{a} = \frac{c}{2c} = \frac{1}{2}$ given: $a = 1, c = \frac{1}{2}$ $a^2 = b^2 + c^2 \Rightarrow 1^2 = b^2 + \left(\frac{1}{2}\right)^2$ $b^2 = 1 - \left(\frac{1}{2}\right)^2 b = \sqrt{1 - \left(\frac{1}{4}\right)} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$ $\cos(30) = \frac{b}{a} = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2} \tan(30) = \frac{c}{b} = \frac{(1/2)}{\sqrt{3}/2} = \frac{1}{\sqrt{3}} \Rightarrow \frac{\sqrt{3}}{3}$				

$$60 \quad \cos(60) = \frac{b}{a} = \frac{b}{2b} = \frac{1}{2}$$

given
$$a=1, b=\frac{1}{2} \Rightarrow 1^2 = \left(\frac{1}{2}\right)^2 + c^2$$

$$c = \sqrt{1 - \frac{1}{4}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

$$\sin(60) = \frac{c}{a} = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2} \quad \tan(60) = \frac{c}{b} = \frac{\sqrt{3}/2}{1/2} = \sqrt{3}$$

$$\sin(\theta) = \frac{c}{a} \rightarrow 1$$
 $\cos(\theta) = \frac{b}{a} \rightarrow \frac{0}{a} \rightarrow 0$

$$\begin{array}{c|c} \theta \to 90^{\circ} \\ a \to c \\ b \to 0 \end{array} \quad \sin(\theta) = \frac{c}{a} \to 1 \quad \cos(\theta) = \frac{b}{a} \to \frac{0}{a} \to 0 \\ \tan(\theta) = \frac{c}{b} = \frac{c}{b \to 0} \to \infty \quad \text{i.e.} \quad \frac{c}{\text{small number}} = \text{large number} \end{array}$$

$$\begin{array}{c|c} \theta > 90^{\circ} \\ \theta \to 90^{\circ} \end{array} \qquad \tan{(\theta)}$$

$$\tan(\theta) = \frac{c}{b} = \frac{c}{-b \to 0} \to -\infty$$

$$\begin{array}{c|c} \theta > 90^{\circ} \\ \theta \rightarrow 90^{\circ} \\ a \rightarrow c \\ b \rightarrow 0 \end{array} \quad \text{tan } (\theta) = \frac{c}{b} = \frac{c}{-b \rightarrow 0} \rightarrow -\infty$$
i.e.
$$\frac{c}{\text{small number}} = \text{large negative number}$$

Ψ				

Trig. functions

deg	$\sin(\theta)$	$tan(\theta)$
0	0	10
15	$-\frac{1+\sqrt{3}}{2\sqrt{2}}$	
30	$\frac{1}{2}$	
45		
60		
75		
90		
	0 15 30 45 60 75	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

proof $\sin(\theta) = opp/hyp \text{ and } \theta = 30^{degrees}$ $A^2 = B^2 + C^2$ given Adj=1 for the ratio of B to C would be

 $\frac{1}{2}$

, ie the opposite is half the hyp. So

$$Hyp^2 = \frac{1}{2}^2 + 1^2$$
 $hyp = \sqrt{\frac{1}{4} + 1}$ and

of hyp is this relation to adj

at 0 degrees: opp=0, sin(0)=0/hyp =0 tan=0/adj=0 cos(0):adj=hyp => adj/hyp=1

tan(h)=opp/h h tendsto 0,

at 30 degrees Opposite is half hyp, or $\frac{hyp}{2hyp} = \frac{1}{2}$

at 45 degrees the adjacent and the opposide are equal, it is a …forgot the name… so given A^2=B^2+C^2 , and given b=c=1, hyp=sqrt{1+1} or sqrt{2} of lengths C and B and $\tan\theta=\frac{1}{1}=1$

hence $\sin 45 = \frac{opp}{hyp} = \frac{1}{\sqrt{2}}$

at 60 degrees at 90 degrees

adj=0

$$\tan (90) = \frac{Opp}{0} = NaN$$

$$|_{\theta \to 90} adj \to 0 \Rightarrow \tan (\theta) = \frac{opp}{adj \to 0} \to \infty$$

at 180 degrees

opp=0 => 0/hyp=0sin:

adj=hyp =>adj/hyp=1 cos:

tan:

hyp=opp so sin=opp/hyp=1/1=1 (given hyp and opp are 1)

Polynomials

solving

To solve a Polynomial means to find all values for which the polynomial equals 0.

Quadratic polynomial formula:

$$ax^2 + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Steps for completing the square and proof:

$$ax^{2} + bx + c$$

$$a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right] \quad \left(\frac{1}{2}\right)\left(\frac{b}{a}\right) = \left(\frac{b}{2a}\right) \quad \left(\frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}}$$

$$a\left[x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right]$$

$$a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}}\right]$$

$$a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{4a^{2}c - b^{2}a}{4a^{3}}\right] \quad a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a^{2}}\right]$$

$$a\left(x + \frac{b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a} \quad \text{Vertex:} \quad x = -\frac{b}{2a} \quad \text{and} \quad y = \frac{4ac - b^{2}}{4a}$$

$$a\left(x + \frac{b}{2a}\right)^{2} = -\frac{4ac - b^{2}}{4a}$$

$$\left(x + \frac{b}{2a} \right)^2 = -\frac{4ac - b^2}{4a^2} \qquad x + \frac{b}{2a} = \pm \sqrt{\frac{4ac - b^2}{4a^2}} \qquad x + \frac{b}{2a} = \frac{\pm \sqrt{4ac - b^2}}{2a}$$
 Solution:
$$x = \frac{-b \pm \sqrt{4ac - b^2}}{2a}$$
 (then y=0) Discriminant(Δ): $-1(4ac - b^2)$

Discriminant(
$$\Delta$$
): $-1(4ac-b^2)$

$$\Delta = b^2 - 4ac$$

if $\Delta > 0$ then there are 2 real roots (solutions).

 $\Delta = 0$ then there is 1 root.

if $\Delta < 0$ then there are no roots.

example:

$$3x^{2}+7x-6 \Rightarrow 3\left[x^{2}+\frac{7}{3}x-\frac{6}{3}\right] \qquad \left(\frac{1}{2}\right)\left(\frac{7}{3}\right)=\frac{7}{6} \qquad \left(\frac{7}{6}\right)^{2}=\left(\frac{49}{36}\right)$$

$$3\left[x^{2}+\frac{7}{3}x+\frac{49}{36}-\frac{6}{3}-\frac{49}{36}\right] \qquad 3\left[\left(x+\frac{7}{6}\right)^{2}-\frac{121}{36}\right]$$
vertex:
$$3\left(x+\frac{7}{6}\right)^{2}-\frac{121}{12} \qquad (x=-7/6 \quad y=-121/12)$$

$$\left(x+\frac{7}{6}\right)^{2}=\frac{121}{36} \qquad x+\frac{7}{6}=\pm\sqrt{\frac{121}{36}} \qquad \left(\Delta=121>0\right)$$

factorising

for $ax^2+bx+c=0$, if a=1 then find two numbers that multiplied together = c and added together = b. if $a \ne 1$ then multiply a by c and find the two factors that add up to b. example:

$$8x^2+18x+9=0$$
 $8*9=72$ (that's ac=8*9=72)

the factors of 72 which are added together to give 18 are 6 and 12

rewrite formula splitting bx into those factors

$$8x^2 + 12x + 6x + 9$$

4x(2x+3) + 3(2x+3) (NOTE if the brackets are different then something is wrong) (4x+3)(2x+3)

so solutions are
$$-\frac{3}{4}$$
 (-0.75) and $-\frac{3}{2}$ (-1.5)

expanding

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$
 $(a+b)(a-b) = a^2 - b^2$ (perfect square)

$$(a+b)^3 = a^3 + a^2b + ab^2 + b^3 \qquad (a-b)^3 = (a-b)(a-b)^2 = (a-b)(a^2 - 2ab + b^2) = a^3 - 3a^2b + 3ab^2 - b^3$$

Pascal's Triangle

Start with two 1s and then add the sum of the two cells above to get the coefficient.

Po	we	<u>er</u>										
1				1	1	L				$(x+y)^1=1x^1+1y^1$		
2				1	2	1				$(x+y)^2=1x^2+2x^1y^1+1y^2$		
3			1	3		3	1			$(x+y)^3=1x^3+3x^2y^1+3x^1y^2+1y^3$		
4		1	1 4	1	6		4	1		$(x+y)^4=1x^4+4x^3y^1+6x^2y^2+4x^1y^3+1y^4$		
5	1	L	5	10		10	Į.	5	1	$(x+y)^5=1x^5+5x^4y^1+10x^3y^2+10x^2y^3+5x^1y^4+1y^5$		

power of **x** decrease (from **power** to 0) as power of **y** increase(from 0 to **power**). coefficient taken from pascal's triangle.

i.e.:
$$(x+y)^2 = 1x^2y^0 + 2x^1y^1 + 1x^0y^2$$