Lektion 1

1

Ekonomen i ett företag vill prediktera elkostnaderna för nästa år. Man har data för de sista 84 månaderna. De sista 21 värdena i serien och en tidsseriegraf visas nedan. Anta att enheten på konsumtionen är kilo-wattimmar kWh.

Metoden *klassisk komponentuppdelning* har anpassats till tidsserien.

Trendkomponent och säsongskomponenter ges av utskriften nedan.

Fitted Trend Equation

 $Yt = 1520,2 + 5,119 \times t$

Seasonal Indices

Period	Index
1	-284,627
2	-298,481
3	-40,273
4	53,998
5	67,748
6	62,665
7	297,811
8	267,457
9	62,332
10	3,477
11	-127,856
12	-64,252

Elkonsump	Tid	Månad
1985	64	4
1819	65	5
1984	66	6
2225	67	7
2226	68	8
1991	69	9
1783	70	10
1750	71	11
1836	72	12
1564	73	1
1589	74	2
1817	75	3
1966	76	4
2020	77	5
1905	78	6
2181	79	7
2233	80	8
1991	81	9
1856	82	10
1800	83	11
1887	84	12

Följande uppgifter gäller modellen ovan.

- a) Vilken månad är konsumtionen som högst?
- b) Hur mycket ökar konsumtionen i snitt på ett år?
- c) Beräkna de fyra sista anpassade värdena för Elkonsumtionen samt residualerna för modellen.
- d) Beräkna prognoser för de kommande fyra månaderna.
- e) Ekonomen vill göra prognos för ett helt år. Verkar det rimligt att göra det för denna tidsserie?

2

Beräkna ett 2 punkters centrerat glidande medelvärde för följande tidsserie.

12 24 14 25 17 29 18 28

Rita in tidsserien och det glidande medelvärdet i en graf.

3

Följande data är antalet dagar till distribution av en viss vara.

Beräkna ett fem punkters centrerat glidande medelvärde för tidsserien:

38, 40, 25, 23, 35, 38, 35, 32, 41, 33, 31, 21

4

Nedan ges data för el-produktion kvartalsvis för tre år.

	År 1	År 2	År 3
Kvartal 1	99	120	139
Kvartal 2	88	108	127
Kvartal 3	93	111	131
Kvartal 4	111	130	152

Skatta de fyra säsongskomponenterna med den additiva klassiska komponentmetoden.

5

I denna uppgift ska Sveriges befolknings medelålder analyseras. I grafen nedan ses hur medelåldern har förändrats mellan 1968 och 2015.

Beräkna prognos för 2016 och 2017 med hjälp av modellen nedan.

$$ar^2 = ar^2$$

Modell

Regression Analysis: Befolkningens medelålder versus år; år^2

Analysis of Variance Adj SS Source DF Adj MS Regression 2 78,4237 39,2119 45 1,4145 0,0314 Error Total 47 79,8382 Model Summary S R-sq R-sq(adj) 0,177292 98,23%

Coefficients

Term Coef SE Coef T-Value P-Value 592 -3356 -5**,**67 0,000 Constant 3,319 0,594 5,59 0,000 år -0,000810 0,000149 -5,43 0,000

Regression Equation Befolkningens medelålder = $-3356 + 3,319 \text{ år} - 0,000810 \text{ år}^2$

Vi ska i denna uppgift använda data Naturgasförbränning som vi tidigare har analyserat. Nedan ses en graf över serien samt SAC. Serien innehåller 40 värden. Notera att säsongsberoendet syns var fjärde lag i SAC.

Uppgiften är nu att beräkna SAC för k=2. Men eftersom serien är så lång så ska vi endast använda de 10 första värdena.

