

Internship Report

CFHT APRIL- AUGUST 2011

Martin TOURNEBOEUF Stéphane ARNOUTS

Small mass galaxies and The star formation Scenarios

Introduction

- Observational Cosmology
 - → Galaxies intrinsic evolution
 - → Star Formation Rate
 - → Star Formation History

- UV survey
 - → Small galaxies
 - → More efficient
 - → Different evolution

Model from Bruzual and Charlot 2003

Models from Starburst 99, Luminosity of different Stars, (IMF 2.3)

•1- Fuv (1500-2800) = continum •2- $H\alpha$ (6563Å) z<0.5•3- OII (3727Å) z<1.6 •4-Fir (8-1000 µm) =black body

SFR
$$(M_{\odot} yr^{-1}) = 1.4 \times 10^{-28} L_{\nu} \text{ (ergs s}^{-1} \text{ Hz}^{-1}).$$

SFR $(M_{\odot} yr^{-1}) = 7.9 \times 10^{-42} L(H\alpha) \text{ (ergs s}^{-1}) = 1.08 \times 10^{-53} Q(H^0) \text{ (s}^{-1}).$

Kennicut 1998

$$SFR (M_{\odot} yr^{-1}) = (1.4 \pm 0.4) \times 10^{-41} L[OII] (ergs s^{-1}),$$

SFR
$$(M_{\odot} yr^{-1}) = 4.5 \times 10^{-44} L_{FIR} (\text{ergs s}^{-1}) \quad (starbursts)$$

• GALEX (Satellite [0.5m])

COSMOS survey

- 2 square degree equatorial field
- Space (Hubble, <u>Spitzer</u>, <u>GALEX</u>, XMM, Chandra)
- Ground (<u>Subaru</u>, VLA, ESO-VLT, UKIRT, NOAO, <u>CFHT</u>, and others)
- 2 million galaxies

 PEGASE2 generates lots of templates of galaxies. (change Star Formation History)

 PEGASE2 generates lots of templates of galaxyes. (change <u>Star Formation History</u>)

 \rightarrow LEPHARE choses the best fit <u>template</u> for the <u>photometric catalog</u> (NUV<25.5) 2 000 000 \rightarrow 67 000

Are the small galaxies so young?

2 Mains Star formation Histories

Exponentially decressing

$$sfr(t) = exp(-t/\tau)$$

Delayed

$$sfr(t) = (t/\tau)^{\alpha} * exp(-t/\tau)$$

Different ages for the 2 models (function of mass)

•Different ages for the 2 models (function of mass) Only the galaxies which fits best with model 2

histo mass de COSMOS NUV255

• AGE + SFH (+ IMF) = Degenerate

Intern Error 1 : 0.37 Intern Error 2 : 0.32 Extern Error 1 Vs 2: 0.28

Who is contributing to the cosmic SFR?

And

How does this contribution evolve with time?

Our selection

- No Stars, no AGN, only galaxies +
- FUV<26
- Or NUV<25.2
- Or U<25.5
- Or K<23.5
- Or 24μm<19.2

Result: 500 000 galaxies

- How to caculate luminosity functions.
 - 1-> Exctinction (Intrinsic From Galaxies)
 - 2-> Across the Universe
 - 3-> InterGalactic Medium

How to caculate luminosity functions.

```
1-> Exctinction
2-> Across the Universe
3-> InterGalactic Medium
(4-> Milky Way)
(5-> Atmosphere)
(6-> Telescope)
(7-> My Computer)
```


Luminosity density

$$\rho_L = \int \phi(L)LdL$$

The last of the last

Conclusion

<u>UV traces</u> O and B star + IMF = <u>SFR</u>

• Small galaxies appear <u>very young</u> (whatever the redshift) and have a continuous high SFR.

 After z=1.2 ,we do not see <u>Cosmic</u> downsizing ??

THE END

ANY QUESTIONS:

the first is the most difficult so let's start directly by the second

2/ SED fitting

2 Other Star formation Histories

2/ SED fitting

2/ SED fitting

