MA108/MA110 - Linear Algebra & Differential Equations: Endsem - $\overline{\mathbf{A}}$

Name:

Roll No.

Tutorial Batch: D____

 ${f T}$

Max. marks: 40

April 23, 2024

14:00 - 16:00

- (1) For x > 0, $y_1(x) = \frac{\cos x}{x}$ is a solution of xy'' + 2y' + xy = 0. If y_2 is a solution of the DE satisfying $y_2(\frac{\pi}{2}) = 1 = y_2(\pi)$, then for x > 0, $y_2(x)$ equals $-\frac{\pi \cos x}{x} + \frac{\pi \sin x}{2x}$ [1]
- (2) For $x \in \mathbb{R}$, $y_1(x) = \cos^3 x$ is a solution of the DE $y'' + ay' + by = \alpha \cos x + \beta \sin x$, $a, b, \alpha, \beta \in \mathbb{R}$. Let y(x) denote the general solution of the DE. Then [1+1+1]

(a,b) = (0, 9) $(\alpha, \beta) = (6, 0)$ $y(x) = c_1 \cos 3x + c_2 \sin 3x + \frac{3}{4} \cos x$

(3) For x > 0, $\sqrt{x} \sin(\ln \sqrt{x})$ is a solution of $x^2y'' + axy' + by = 0, x > 0, a, b \in \mathbb{R}$. Then

 $\boxed{a=0} \qquad \boxed{b=\frac{1}{2}}$

- (4) Let $Ly = y'' + y' + \frac{1}{4}y$.
 - (i) Let y_1, y_2 be two solutions of Ly = 0 satisfying $y_1(0) = 1, y'_1(0) = 0; y_2(0) = 0, y'_2(0) = 1$. Then [1+1]

 $y_1(x) = (1 + \frac{x}{2})e^{-\frac{x}{2}}$ $y_2(x) = xe^{-\frac{x}{2}}$

- (ii) If y_p is a particular solution of $Ly = \cos x$, then $y_p(x) = -\frac{12}{25}\cos x + \frac{16}{25}\sin x$ [2]
- (5) Let Ly = (1-x)xy'' + 2xy' 2y. Let y_1, y_2 be linearly independent solutions of Ly = 0, 0 < x < 1 with $y_1(x) = x, 0 < x < 1; y_2(\frac{1}{2}) = -\frac{3}{4} + \ln 2, \ y_2'(\frac{1}{2}) = 2 \ln 2 1$. If W(x) denotes the wronskian of (y_1, y_2) in that order, and $y_p(x) = v_1(x)y_1(x) + v_2(x)y_2(x)$ is a particular solution of $Ly = x^2(1-x)^3$, then [1+1+1+1]

 $y_2(x) = x^2 - 2x \ln x - 1$ $W(0.5) = \frac{1}{4}$

 $v_1(x) = -\frac{x^2}{4} + \frac{2}{3}x^3 \ln x - \frac{2}{9}x^3 + \frac{x^2}{2}$ $v_2(x) = \frac{x^3}{3}$

(6) Let $Ly = x^2y'' - 4xy' + 6y$. Let y_h denote the general solution of Ly = 0, x > 0, y_p denote a particular solution of $Ly = x^2 + \ln x, x > 0$ and $x^2D^2 + axD + b$ annihilates $\ln x, a, b \in \mathbb{R}$. Then

 $y_h(x) = c_1 x^2 + c_2 x^3$

(a,b) = (1,0)

 $y_p(x) = \frac{5}{36} + \frac{1}{6} \ln x - x^2 \ln x$

(7) Let Ly = y''' - 4y'' + 5y' - 2y. Let y_h denote the general solution of Ly = 0. Then for $x \in \mathbb{R}$, [1]

$$y_h(x) = c_1 e^x + c_2 x e^x + c_3 e^{2x}$$

Particular solution of $Ly = e^x(1 + e^x)$ is given by $-\frac{x^2}{2}e^x + xe^{2x}$ [2]

(8) Let $L = x^3 D^3 + \alpha x^2 D^2 + \beta x D + \gamma$, x > 0 annihilates $\sqrt{x} (\ln x)^2$, $\alpha, \beta, \gamma \in \mathbb{R}$. Also let y denote the general solution of Ly = 0. Then

$$(\alpha, \beta, \gamma) = (\frac{3}{2}, \frac{1}{4}, -\frac{1}{8})$$

$$y(x) = c_1 \sqrt{x} + c_2 \sqrt{x} \ln x + c_3 \sqrt{x} (\ln x)^2$$

(9) Let a > 0 be such that $y_1(x) = x$, $y_2(x) = x^2 \ln x$, x > 0 are solutions of y'' + p(x)y' + q(x)y = 0, 0 < x < a, where p(x), q(x) are continuous in (0, a). Let α denote the maximum value of a. Then

$$\alpha = \frac{1}{e}$$

$$p(x) = -\frac{3 + 2\ln x}{x(1 + \ln x)}$$

$$q(x) = \frac{3 + 2 \ln x}{x^2 (1 + \ln x)}$$

$$\lim_{x \to 0+} x p(x) = -2$$

(10) Let $f(t) = \int_0^t \frac{\sin \tau}{\tau} d\tau$ and $\frac{d}{ds}(sF(s)) = \frac{\alpha}{s^2 + \beta s + 1}$, where F(s) denotes the Laplace transform of f. Then

$$(\alpha, \beta) = (-1, 0)$$
 $F(s) = \frac{1}{s} \cot^{-1} s$

(11) Let $g:[0, \infty) \to \mathbb{R}$, $h:[0, \infty) \to \mathbb{R}$ be such that g*h is the inverse Laplace transform of $F(s) = \frac{s}{(s+1)(s^2+4)}, s>0.$ [1+1]

(i) If
$$g(t) = e^{-t}$$
, then $h(t) = \cos 2t$

(ii) If $g * h(t) = a \sin 2t + b \cos 2t + ce^{-t}$, $a, b, c \in \mathbb{R}$, then $(a, b, c) = (\frac{2}{5}, \frac{1}{5}, -\frac{1}{5})$

$$y' = 5(y-x)^{\frac{4}{5}} + 1, x \in (-\infty, a),$$

$$y(0) = -2$$

has a unique solution for a = 1. Also find the largest value of a such that the IVP has a unique solution in $(-\infty, a)$.

Solution: Denote the IVP by (1). Set u = y - x. Then (1) becomes $u' = 5u^{\frac{4}{5}}$, u(0) = -2.

Using separation variables method, we get $u=(x-2^{\frac{1}{5}})^5 \Rightarrow y(x)=x+(x-2^{\frac{1}{5}})^5, x \in \mathbb{R}$ as a solution of the IVP (1)

The solution $y(x) = x + (x - 2^{\frac{1}{5}})^5$, $x \in \mathbb{R}$ is increasing and meets the line y = x at $x = 2^{\frac{1}{5}}$ and y = y(x), $x < 2^{\frac{1}{5}}$ is below the line y = x.

 $f(x,y) = (y-x)^{\frac{4}{5}} + 1$ is bounded and continuous on any finite rectangle containing $(x_0, y(x_0))$ for each fixed $x_0 \in \mathbb{R}$. Also since $f_y(x,y) = \frac{4}{5(y-x)^{\frac{1}{5}}}$, $y \neq x$ is bounded on any finite rectangle which (strictly) lies above or below the line y = x, f is Lipschitz continuous in y on any finite rectangle which (strictly) lies above or below the line y = x.

Hence using the existence uniqueness theorem, the IVP $y' = f(x,y), y(a) = a + (a-2^{\frac{1}{5}})^5 := y_0$ has a unique solution for each $a < 2^{\frac{1}{5}}$ in $(a - \alpha, a + \alpha)$ for some $\alpha > 0$. Since $y = x + (x - 2^{\frac{1}{5}})^5$ is a solution satisfying $y(a) = y_0$, it is the unique solution for the IVP (1) for x < a for any $a < 2^{\frac{1}{5}}$. In particular IVP (1) has a unique solution in the interval $(-\infty, 1)$.

Consider

$$y_1(x) = \begin{cases} x + (x - 2^{\frac{1}{5}})^5 & \text{for } x \le 2^{\frac{1}{5}} \\ x & \text{for } x > 2^{\frac{1}{5}}. \end{cases}$$

 $y'_1(2^{\frac{1}{5}})$ exists and hence y_1 is differentiable at each $x \in \mathbb{R}$.

Also y = x is a solution of the IVP $y' = f(x, y), y(2^{\frac{1}{5}}) = 2^{\frac{1}{5}}$.

Hence one can see that $y = y_1(x), x \in \mathbb{R}$ is a solution of the IVP (1). Therefore, $y = y_1(x), x < a$ is a second solution of the IVP for $a > 2^{\frac{1}{5}}$.

Hence maximum value of a is $2^{\frac{1}{5}}$ [1]

13. Using Laplace transform technique, solve the DE

$$xy'' + (2x+3)y' + (x+3)y = 3e^{-x}, y(0) = 0.$$

[4]

Solution Set Y = L(y), the Laplace transform of y. Take Laplace transform on the DE and using linearity property of Laplace transform, we get

$$L(xy'') + 2L(xy') + 3L(y') + L(xy) + 3L(y) = \frac{3}{s+1}.$$

$$\Rightarrow -\frac{d}{ds}(s^2Y - sy(0) - y'(0)) - 2\frac{d}{ds}(sY - y(0)) + 3(sY - y(0)) - Y' + 3Y = \frac{3}{s+1}.$$

$$\Rightarrow (-s^2 - 2s - 1)Y' + (1+s)Y = \frac{3}{s+1}$$

$$\Rightarrow Y' - \frac{1}{(1+s)}Y = -\frac{3}{(s+1)^3}$$
[1]

Solving, we get

$$Y(s) = \frac{1}{(1+s)^2} + c(1+s)$$

[1]

Since using the result, $L(f)(s) \to 0$ as $s \to \infty$ for any piecewise continuous function f with exponential order, we have $Y(s) \to 0$ as $s \to \infty$, hence c = 0.

Therefore

$$Y = \frac{1}{(1+s)^2} = -\frac{d}{ds} \left(\frac{1}{1+s}\right).$$

$$\Rightarrow y = xe^{-x}, x > 0$$

is a solution. [1]