La dinamica

La **dinamica** è la parte della fisica che studia come si muovono i corpi, per effetto delle forze che agiscono su di essi.

- Primo principio, o principio di inerzia
- Secondo principio, o legge fondamentale della dinamica
- Terzo principio, o principio di azione e reazione

- •La meccanica di Newton, basata su questi principi, consente non solo di prevedere i movimenti della Terra e degli altri pianeti, ma anche di progettare molti dispositivi, come le biciclette, gli aerei, i razzi.
- •I principi di Newton non sono invece applicabili a corpi microscopici (come gli atomi) e a oggetti che si muovono a velocità molto alte, vicine a quella della luce.

La dinamica

Se un oggetto si muove, c'è sempre una forza che lo sta spingendo?

Un falso indizio Aristotele (IV secolo a.C.)

«Ciò che è mosso cessa di muoversi nel momento stesso in cui il motore che agisce su di esso smette di muoverlo.»

In un linguaggio più moderno: «un corpo in moto si ferma, quando la forza che lo spinge smette di agire».

Lo stato naturale dei corpi è la quiete; per mantenere costante la velocità di un corpo è necessaria una forza.

La soluzione dell'enigma Galileo (XVII secolo d.C.)

Ogni corpo continua a muoversi di **moto rettilineo uniforme**, a meno che una forza lo costringa a muoversi diversamente.

L'applicazione di un forza per mantenere in movimento un corpo è necessaria per vincere l'attrito. In assenza di attrito i corpi continuerebbero a muoversi di moto rettilineo uniforme senza necessità di applicare forze.

Il primo principio della dinamica

Esperimento di Galileo.

La pallina rotola sul piano inclinato accelerando. Poi risale lungo il piano di destra, decelerando, e raggiunge la stessa altezza da cui è partita.

Diminuendo l'inclinazione del piano di destra, si osserva che la pallina percorre distanze sempre maggiori prima di fermarsi.

Esperimento di Galileo

- La pallina scende rotolando lungo il piano inclinato a sinistra e risale quello di destra fino a fermarsi.
- Più diminuisce l'inclinazione del secondo piano inclinato, più a lungo si muove la pallina e più lentamente perde velocità.
- Idealmente, su un piano orizzontale privo di attrito, la pallina si muoverebbe indefinitamente con velocità costante

Il primo principio della dinamica

forza dei pedali

forze di attrito

- Se la **forza totale** applicata a un punto materiale è uguale a **zero**, *allora* esso si muove a **velocità costante**.
- Se un punto materiale si muove a **velocità costante**, allora la **forza totale** che subisce è uguale a **zero**.

Questo principio dice in sostanza che tutti i corpi, per inerzia, tendono a muoversi a velocità costante.

Se non ci fossero le forze di attrito a rallentarne il moto, una bicicletta che va a 30 km/h continuerebbe a muoversi a questa velocità senza bisogno di pedalare. E' necessario pedalare perché le forze di attrito (*in particolare quella tra pneumatici e strada e quella con l'aria*) causano un rallentamento.

La forza del ciclista serve per controbilanciare le forze di attrito e mantenere così la velocità costante.

Il primo principio della dinamica

Primo principio della dinamica (principio di inerzia)

Un corpo rimane nel suo stato di quiete o di moto rettilineo uniforme, finché non interviene una causa esterna (una forza) a variare il suo stato.

Inerzia: tendenza di un corpo a mantenere invariato il suo stato di moto rettilineo uniforme (o di quiete).

Dispositivi per eliminare gli attriti in laboratorio

I sistemi di riferimento inerziali

A terra

Visto da terra il ragazzo continua a muoversi, prima e dopo la frenata, a 50 km/h: il sistema di riferimento terrestre è inerziale.

Sull'autobus

Il principio di inerzia **non vale** nei sistemi di riferimento accelerati.

Cosa spinge il ragazzo in avanti quando l'autobus frena? Se la risultante delle forze rispetto al sistema di riferimento dell'autobus è nulla, cosa dovrebbe accadere secondo il principio di inerzia?

Quando l'auto frena, continuiamo a muoverci per inerzia alla velocità della vettura.

I sistemi di riferimento inerziali

Sistema di riferimento inerziale: sistema di riferimento in cui vale il principio di inerzia

- Per molti tipi di esperimenti un sistema di riferimento solidale con la Terra può essere considerato inerziale.
- Un sistema di riferimento in moto rettilineo uniforme rispetto a un sistema inerziale
 è a sua volta un sistema inerziale.
- Un sistema di riferimento in moto accelerato rispetto a un sistema inerziale non è un sistema inerziale: per esempio, il principio di inerzia non vale su una piattaforma rotante rispetto alla Terra.

La relatività galileiana

Le leggi della meccanica sono le stesse in tutti i sistemi di riferimento inerziali.

