

Design and Analysis of Algorithms Supplemental

Si Wu

School of CSE, SCUT cswusi@scut.edu.cn

TA: 1684350406@qq.com

- LP Duality
- Longest Common Substring
- All-pairs Shortest Paths
- Chain Matrix Multiplication

(P)
$$\max 13A + 23B$$

s. t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A, B \ge 0$

Goal. Find a lower bound on optimal value.

Easy. Any feasible solution provides one.

Ex 1.
$$(A, B) = (34, 0) \implies z^* \ge 442$$

Ex 2.
$$(A, B) = (0, 32) \implies z^* \ge 736$$

Ex 3.
$$(A, B) = (7.5, 29.5) \Rightarrow z^* \ge 776$$

Ex 4.
$$(A, B) = (12, 28) \Rightarrow z^* \ge 800$$

(P)
$$\max 13A + 23B$$

s. t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A, B \ge 0$

Goal. Find an upper bound on optimal value.

Ex 1. Multiply 2nd inequality by 6: $24 A + 24 B \le 960$.

$$\Rightarrow z^* = 13 A + 23 B \le 24 A + 24 B \le 960.$$

objective function

(P)
$$\max 13A + 23B$$

s. t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A, B \ge 0$

Goal. Find an upper bound on optimal value.

Ex 2. Add 2 times 1st inequality to 2nd inequality:

$$\Rightarrow$$
 $z^* = 13 A + 23 B \le 14 A + 34 B \le 1120.$

(P)
$$\max 13A + 23B$$

s. t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A, B \ge 0$

Goal. Find an upper bound on optimal value.

Ex 2. Add 1 times 1st inequality to 2 times 2nd inequality:

$$\Rightarrow$$
 $z^* = 13 A + 23 B \le 13 A + 23 B \le 800.$

Recall lower bound. $(A, B) = (34, 0) \implies z^* \ge 442$ Combine upper and lower bounds: $z^* = 800$.

LP Duality

Primal problem.

(P)
$$\max 13A + 23B$$

s. t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A, B \ge 0$

Idea. Add nonnegative combination (C, H, M) of the constraints s.t.

$$13A + 23B \le (5C + 4H + 35M)A + (15C + 4H + 20M)B$$

 $\le 480C + 160H + 1190M$

Dual problem. Find best such upper bound.

(D) min
$$480C + 160H + 1190M$$

s. t. $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 $C, H, M \ge 0$

Brewer: find optimal mix of beer and ale to maximize profits.

(P)
$$\max 13A + 23B$$

s. t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $35A + 20B \le 1190$
 $A, B \ge 0$

Entrepreneur: buy individual resources from brewer at min cost.

- *C, H, M* = unit price for corn, hops, malt.
- Brewer won't agree to sell resources if 5C + 4H + 35M < 13.

(D) min
$$480C + 160H + 1190M$$

s. t. $5C + 4H + 35M \ge 13$
 $15C + 4H + 20M \ge 23$
 C , H , $M \ge 0$

LP Duals

Canonical form.

(P)
$$\max c^T x$$
 (D) $\min y^T b$
s. t. $Ax \le b$ s. t. $A^T y \ge c$
 $x \ge 0$ $y \ge 0$

Canonical form.

(P)
$$\max c^T x$$
 (D) $\min y^T b$
s. t. $Ax \le b$ s. t. $A^T y \ge c$
 $x \ge 0$ $y \ge 0$

Property. The dual of the dual is the primal.

Pf. Rewrite (D) as a maximization problem in canonical form; take dual.

(D')
$$\max - y^T b$$
 (DD) $\min -c^T z$
s. t. $-A^T y \le c$
 $y \ge 0$ $z \ge 0$

LP dual recipe.

Primal (P)	maximize	minimize	Dual(D)
	$a x = b_i$	y_i unrestricted	
constraints	$a x \leq b_i$	$y_i \ge 0$	variables
	$a x \ge b_i$	$y_i \leq 0$	
	$x_j \ge 0$	$a^{\mathrm{T}}y \geq c_j$	
variables	$x_j \ge 0$ $x_j \le 0$	$a^{\mathrm{T}}y \le c_j$ $a^{\mathrm{T}}y = c_i$	constraints
	unrestricted	$a^{\mathrm{T}}y = c_j$	

Pf. Rewrite LP in standard form and take dual.

LP Strong Duality

Theorem. [Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947]

For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, if (P) and (D) are nonempty, then max = min.

(P)
$$\max c^T x$$
 (D) $\min y^T b$
s. t. $Ax \le b$ s. t. $A^T y \ge c$
 $x \ge 0$ $y \ge 0$

Generalizes:

- Dilworth's theorem.
- König–Egervary theorem.
- Max-flow min-cut theorem.
- von Neumann's minimax theorem.

• ...

LP Weak Duality

Theorem. For $A \in \Re^{m \times n}$, $b \in \Re^m$, $c \in \Re^n$, if (P) and (D) are nonempty, then max $\leq \min$.

(P)
$$\max c^T x$$
 (D) $\min y^T b$
s. t. $Ax \le b$ s. t. $A^T y \ge c$
 $x \ge 0$ $y \ge 0$

Pf. Suppose $x \in \Re^m$ is feasible for (P) and $y \in \Re^n$ is feasible for (D).

- $y \ge 0, A x \le b \implies y^T A x \le y^T b$
- $x \ge 0, A^{\mathrm{T}} y \ge c \implies y^{\mathrm{T}} A x \ge c^{\mathrm{T}} x$
- Combine: $c^Tx \le y^TAx \le y^Tb$

Review: Simplex Tableaux

$$c_B^T x_B + c_N^T x_N = Z$$
 $A_B x_B + A_N x_N = b$
 $x_B , x_N \ge 0$
initial tableaux

subtract $c_B^T A_B^{-1}$ times constraints $(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$ $Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b$ $x_B , x_N \ge 0$ tableaux corresponding to basis B multiply by $A_{B^{-1}}$

Primal solution. $x_B = A_B^{-1} \mathbf{b} \ge 0$, $x_N = 0$ Optimal basis. $c_N^T - c_B^T A_B^{-1} A_N \le 0$

Simplex Tableaux: Dual Solution

subtract $c_B^T A_B^{-1}$ times constraints

$$c_B^T x_B + c_N^T x_N = Z$$

$$A_B x_B + A_N x_N = b$$

$$x_B$$
 , $x_N \geq 0$

initial tableaux

$$(c_N^T - c_B^T A_B^{-1} A_N) x_N = Z - c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1}A_Nx_N = A_B^{-1}b$$

$$Ix_B + A_B^{-1}A_Nx_N = A_B^{-1}b$$

$$x_B , x_N \ge 0$$

tableaux corresponding to basis B

multiply by A_{R}^{-1}

Primal solution.
$$x_B = A_B^{-1}b \ge 0$$
, $x_N = 0$

Optimal basis.
$$c_N^T - c_B^T A_B^{-1} A_N \leq 0$$

Dual solution.
$$y^T = c_B^T A_B^{-1}$$

$$y^{T}b = c_{B}^{T} A_{B}^{-1} b$$

$$= c_{B}^{T} x_{B} + c_{N}^{T} x_{N}$$

$$= c^{T} x$$

 $min \leq max$

$$y^{T}A = \begin{bmatrix} y^{T}A_{B} & y^{T}A_{N} \end{bmatrix}$$

$$= \begin{bmatrix} c_{B}^{T}A_{B}^{-1}A_{B} & c_{B}^{T}A_{B}^{-1}A_{N} \end{bmatrix}$$

$$= \begin{bmatrix} c_{B}^{T} & c_{B}^{T}A_{B}^{-1}A_{N} \end{bmatrix}$$

$$\geq \begin{bmatrix} c_{B}^{T} & c_{N}^{T} \end{bmatrix}$$

$$= c^{T} \qquad \text{dual feasible}$$

Brewer: find optimal mix of beer and ale to maximize profits.

(P)
$$\max 13A + 23B$$

s. t. $5A + 15B \le 480$
 $4A + 4B \le 160$
 $A + 20B \le 1190$
 $A + B \ge 0$
 $A + B \ge 0$

Entrepreneur: buy individual resources from brewer at min cost.

(D) min
$$480C + 160H + 1190M$$
 $C^* = 1$
s. t. $5C + 4H + 35M \ge 13$ $H^* = 2$
 $15C + 4H + 20M \ge 23$ $M^* = 0$
 $C + 4H + 20M \ge 0$

LP duality. Market clears.

- Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
- A. corn \$1, hops \$2, malt \$0.
- Q. Suppose a new product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?
- A. At least 2 (\$1) +5 (\$2) +24 (\$0) = \$12 / barrel.

Fine the dual of the following LP:

Maximize
$$Z = 2x_1 + x_2$$

under constraints

and $x_1 \geq 0, x_2 \in \mathbb{R}$.

Fine the dual of the following LP:

Maximize
$$Z = 2x_1 + x_2$$

under constraints

and $x_1 \geq 0, x_2 \in \mathbb{R}$.

The dual can be found as follows:

	Primal	Dual
Objective function	$\operatorname{Max} Z = 2x_1 + x_2$	$Min W = -4y_1 + y_2 - y_3.$
Row (1)	$-x_1 - x_2 \le -4$	$y_1 \ge 0$
Row (2)	$-x_1 + 2x_2 \le 1$	$y_2 \ge 0$
Row (3)	$-3x_1 + x_2 = -1$	no sign constraint on y_3
Variable (1)	$x_1 \ge 0$	$-y_1 - y_2 - 3y_3 \ge 2$
Variable (2)	x_2 has no sign constraint	$-y_1 + 2y_2 + y_3 = 1$

Longest Common Substring

A slightly different problem (longest common subsequence) with a similar solution

Given two strings $X = x_1x_2...x_m$ and $Y = y_1y_2...y_n$, find their longest common substring Z, i.e., a largest k for which there are indices i and j with $x_ix_{i+1}...x_{i+k-1} = y_jy_{j+1}...y_{j+k-1}$.

For example:

X: DEADBEEF

Y: EATBEEF

Z: BEEF //pick the longest contiguous substring

Show how to do this by dynamic programming.

Step 1: Space of Subproblems

For $1 \le i \le m$, and $1 \le j \le n$,

- Define $d_{i,j}$ to be the length of the longest common substring ending at x_i and y_i . (Does this work?)
- Let *D* be the $m \times n$ matrix $[d_{i,i}]$.
 - How does D provide answer?

Step 2: Recursive Formulation

Case 1: If $x_i = y_j$, then $z_k = x_i = y_j$ and z_{k-1} is a LCS of X and Y ending at x_{i-1} and y_{j-1}

Case 2: If $x_i \neq y_j$, then there cannot be a common substring ending at x_i and y_i !

$$d_{i,j} = \begin{cases} d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\ 0 & \text{if } x_i \neq y_j \end{cases}$$

Finally, we can find length of longest common substring by finding maximum $d_{i,j}$ among all possible ending position i and j.

$$LCSSubString(X,Y) = \max\{d_{i,j}\}$$

Step 3: Bottom-up Computation

Similar to Longest Common Subsequence we set the first row and column of the matrix d[0,j] and d[i,0] to be 0.

```
Calculate d[1,j] for j=1,2,...,n
Then, the d[2,j] for j=1,2,...,n
Then, the d[3,j] for j=1,2,...,n
```

etc., filling the matrix row by row and left to right.

For this problem we do not need to create another $m \times n$ matrix for storing arrows. Instead, we use l_{max} and p_{max} to store the largest length of common substring and its i position respectively. This suffices to reconstruct the solution.

return l_{max} , p_{max} ;

LONGEST-COMMON-SUBSTRING(X, Y)

```
m \leftarrow length(X); n \leftarrow length(Y);
l_{max} \leftarrow 0; \ p_{max} \leftarrow 0;
for i \leftarrow 0 to m // initialization
          d[i,0] \leftarrow 0;
for j \leftarrow 0 to n
          d[0,j] \leftarrow 0;
for i \leftarrow 1 to m // dynamic programming
        for j \leftarrow 1 to n
                  if(x_i \neq y_i)
                          d[i,j] \leftarrow 0;
                 else
                           d[i,j] \leftarrow d[i-1,j-1]+1;
                           if(d[i,j] > l_{max})
                                    l_{max} \leftarrow d[i,j]; p_{max} \leftarrow i;
```

LCS Example

- Take the two strings: X = "EL GATO" and Y = "GATER".
- We'll fill in the following table *D*:

$$d_{i,j} = \begin{cases} d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\ 0 & \text{if } x_i \neq y_j \end{cases}$$

LCS Example

- Take the two strings: X = "EL GATO" and Y = "GATER".
- We'll fill in the following table *D*:

$$d_{i,j} = \begin{cases} d_{i-1,j-1} + 1 & \text{if } x_i = y_j \\ 0 & \text{if } x_i \neq y_j \end{cases}$$

When filling *D*, we only look if the two letters in the strings are equal and if they are we add one to the element to the left and up.

THE TOTAL SECTION AND ADDRESS OF THE PARTY O

All-Pairs Shortest Paths

Input: weighted digraph G = (V, E) with weight function $w : E \to \mathbb{R}$

Find: lengths of the shortest paths (i.e., distance) between all pairs of vertices in *G*.

 we assume that there are no cycles with zero or negative cost.

THE SECOND SECON

All-Pairs Shortest Paths

Input: weighted digraph G = (V, E) with weight function $w : E \to \mathbb{R}$

Find: lengths of the shortest paths (i.e., distance) between all pairs of vertices in *G* .

 we assume that there are no cycles with zero or negative cost.

Input Format:

- To simplify the notation, we assume that
 V = {1, 2, . . . , n}.
- Adjacency matrix: graph is represented by an n x n matrix containing edge weights

$$w_{ij} = \begin{cases} 0 & if \ i = j, \\ \end{cases}$$

Input Format:

- To simplify the notation, we assume that $V = \{1, 2, ..., n\}$.
- Adjacency matrix: graph is represented by an n x n matrix containing edge weights

$$w_{ij} = \begin{cases} 0 & if \ i = j, \\ w(i,j) & if \ i \neq j \ and \ (i,j) \in E, \end{cases}$$

Input Format:

- To simplify the notation, we assume that $V = \{1, 2, ..., n\}$.
- Adjacency matrix: graph is represented by an n x n matrix containing edge weights

$$w_{ij} = \begin{cases} 0 & if \ i = j, \\ w(i,j) & if \ i \neq j \ and \ (i,j) \in E, \\ \infty & if \ i \neq j \ and \ (i,j) \notin E. \end{cases}$$

Input Format:

- To simplify the notation, we assume that $V = \{1, 2, ..., n\}$.
- Adjacency matrix: graph is represented by an n x n matrix containing edge weights

$$w_{ij} = \begin{cases} 0 & if \ i = j, \\ w(i,j) & if \ i \neq j \ and \ (i,j) \in E, \\ \infty & if \ i \neq j \ and \ (i,j) \notin E. \end{cases}$$

Output Format: an $n \times n$ matrix $D = [d_{ij}]$ in which d_{ij} is the length of the shortest path from vertex i to j.

Step 1: Space of Subproblems

For m = 1, 2, 3, ...

Define d_{ij} (m) to be the length of the shortest path from i to j that contains at most m edges.

Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$

We will see (next page) that solution D satisfies $D=D^{n-1}$.

Subproblems: (Iteratively)compute D^(m)for m=1,...,n-1.

Step 1: Space of Subproblems

Lemma

- $D^{(n-1)} = D$
- $d_{ij}^{(n-1)}$ = true distance from i to j

Proof

- We prove that any shortest path P from i to j contains at most n - 1 edges.
- First note that since all cycles have positive weight, a shortest path can have no cycles (if there were a cycle, we could remove it and lower the length of the path).
- A path without cycles can have length at most n − 1
 (since a longer path must contain some vertex twice, that is, contain a cycle).

THE SECOND OF TH

Step 2: Building D^(m) from D^(m-1)

Consider a shortest path from i to j that contains at most m edges.

Let k be the vertex imriately before j on the shortest path.

Step 2: Building D^(m) from D^(m-1)

Consider a shortest path from i to j that contains at most m edges.

Let k be the vertex imriately before j on the shortest path.

The sub-path from i to k must be the shortest 1-k path with at most m-1 edges: $d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}$

Since we don't know k, we try all possible choices: $d_{ij}^{(m)} = \min_{1 \le k \le n} \{d_{ik}^{(m-1)} + w_{kj}\}$

 $D^{(1)} = [w_{ij}]$ is just the weight matrix:

 $D^{(1)} = [w_{ij}]$ is just the weight matrix:

$$D^{(1)} = \begin{bmatrix} 0 & 3 & 8 & \infty \\ \infty & 0 & 4 & 11 \\ \infty & \infty & 0 & 7 \\ 4 & \infty & \infty & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & \infty & \infty & 0 \end{bmatrix}$$

$$d_{ii}^{(2)} = \min_{1 \le k \le 4} \{ d_{ik}^{(1)} + w_{ki} \}$$

$$D^{(1)} = [w_{ij}] \text{ is just the weight matrix:} \qquad \begin{array}{c} 3 \\ 0 \\ 8 \end{array} \qquad \begin{array}{c} 3 \\ 4 \end{array} \qquad \begin{array}{c} 2 \\ 4 \end{array} \qquad \begin{array}{c} 3 \\ 4 \end{array} \qquad \begin{array}{c} 2 \\ 4 \end{array} \qquad \begin{array}{c} 3 \\$$

$$d_{ij}^{(2)} = \min_{1 \le k \le 4} \{d_{ik}^{(1)} + w_{kj}\}$$

$$D^{(2)} = \begin{bmatrix} 0 & 3 & 7 & 14 \\ 15 & 0 & 4 & 11 \\ 11 & \infty & 0 & 7 \\ 4 & 7 & 12 & 0 \end{bmatrix}$$

$$D^{(1)} = [w_{ij}]$$
 is just the weight matrix:

$$D^{(1)} = \begin{bmatrix} w_{ij} \end{bmatrix} \text{ is just the weight matrix:} \\ 0 & 3 & 8 & \infty \\ \infty & 0 & 4 & 11 \\ \infty & \infty & 0 & 7 \\ 4 & \infty & \infty & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{bmatrix} 0 & 3 & 8 & \infty \\ \infty & 0 & 4 & 11 \\ \infty & \infty & 0 & 7 \\ 4 & \infty & \infty & 0 \end{bmatrix}$$

$$\begin{array}{c|c}
1 & 3 \\
\hline
 & 8 & 11 \\
\hline
 & 4 \\
\hline
 & 7 & 3
\end{array}$$

$$d_{ij}^{(2)} = \min_{1 \le k \le 4} \left\{ d_{ik}^{(1)} + w_{kj} \right\}$$

$$d_{ij}^{(3)} = \min_{1 \le k \le 4} \left\{ d_{ik}^{(2)} + w_{kj} \right\}$$

$$D^{(2)} = \begin{bmatrix} 0 & 3 & 7 & 14 \\ 15 & 0 & 4 & 11 \\ 11 & \infty & 0 & 7 \\ 4 & 7 & 12 & 0 \end{bmatrix} \quad D^{(3)} = \begin{bmatrix} 0 & 3 & 7 & 14 \\ 15 & 0 & 4 & 11 \\ 11 & 14 & 0 & 7 \\ 4 & 7 & 11 & 0 \end{bmatrix}$$

$$D^{(3)} = \begin{bmatrix} 0 & 3 & 7 & 14 \\ 15 & 0 & 4 & 11 \\ 11 & 14 & 0 & 7 \\ 4 & 7 & 11 & 0 \end{bmatrix}$$

 $D^{(3)}$ gives the distances between any pair of vertices.

Review of Matrix Multiplication

• Matrix: An $n \times m$ matrix A = [a[i,j]] is a two-dimensional array.

$$A = \begin{bmatrix} a[1,1] & a[1,2] & \cdots & a[1,m-1] & a[1,m] \\ a[2,1] & a[2,2] & \cdots & a[2,m-1] & a[2,m] \\ \vdots & \vdots & & \vdots & & \vdots \\ a[n,1] & a[n,2] & \cdots & a[n,m-1] & a[n,m] \end{bmatrix},$$

which has *n* rows and *m* columns.

Review of Matrix Multiplication

• The product C = AB of a $p \times q$ matrix A and a $q \times r$ matrix B is a $p \times r$ matrix C given by.

$$c[i,j] = \sum_{k=1}^{q} a[i,k]b[k,j],$$
 for $1 \le i \le p$ and $1 \le j \le r$

• Complexity of Matrix multiplication: Note that C has pr entries and each entry takes $\Theta(q)$ time to compute so the total procedure takes $\Theta(pqr)$ time.

Remarks on Matrix Multiplication

Matrix multiplication is associative, e.g.,

$$A_1A_2A_3 = (A_1A_2)A_3 = A_1(A_2A_3),$$

so parenthesization does not change result.

Matrix multiplication is NOT commutative, e.g.,

$$A_1A_2 \neq A_2A_1$$

Matrix Multiplication of ABC

- Given $p \times q$ matrix A, $q \times r$ matrix B and $r \times s$ matrix C, ABC can be computed in two ways: (AB)C and A(BC).
- The number of multiplications needed are:

```
mult[(AB)C] = pqr + prs,

mult[A(BC)] = qrs + pqs.
```

Implication: Multiplication "sequence" (parenthesization) is important!!

The Chain Matrix Multiplication Problem

Definition (Chain matrix multiplication problem):

Given dimensions p_0, p_1, \ldots, p_n , corresponding to matrix sequence $A_1A_2 \ldots A_n$ in which Ai has dimension $p_{i-1} \times p_i$, determine the "multiplication sequence" that minimizes the number of scalar multiplications in computing $A_1A_2 \ldots A_n$.

Question: Is there a better approach?

Developing a Dynamic Programming Algorithm

Step 1: Define Space of Subproblems

Original Problem:

Determine minimal cost multiplication sequence for $A_{1..n}$.

• Subproblems: For every pair $1 \le i \le j \le n$:

Determine minimal cost multiplication sequence for $A_{i...j} = A_i A_{i+1} ... A_j$.

Note that $A_{i...i}$ is a $p_{i-1} \times p_i$ matrix.

- There are $\binom{n}{2} = \theta(n^2)$ such subproblems. (Why?)
- How can we solve larger problems using subproblem solutions?

THE TOTAL OF THE T

Relationships among Subproblems

- At the last step of any optimal multiplication sequence (for a subbroblem), there is some k such that the two matrices $A_{i...k}$ and $A_{k+1...j}$ are multipled together. That is, $A_{i...j} = (A_i \cdots A_k)(A_{k+1} \cdots A_j) = A_{i...k}A_{k+1...j}$
- Question. How do we decide where to split the chain (what is k)?
 - ANS: Can be any k. Need to check all possible values.
- Question. How do we parenthesize the two subchains $A_{i..k}$ and $A_{k+1..j}$?
- For some problems, the subtrees will not overlap.
 - ANS: $A_{i..k}$ and $A_{k+1..j}$ must be computed optimally, so we can apply the same procedure recursively.

Relationships among Subproblems

Step 2: Constructing optimal solutions from optimal subproblem solution

• For $1 \le i \le j \le n$, let m[i,j] denote the minimum number of multiplications needed to compute $A_{i...j}$. This optimum cost must satisfy the following recursive definition.

$$m[i,j] = \begin{cases} 0, & i = j, \\ min_{i \le k < j}(m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) & i < j \end{cases}$$

$$A_{i..j} = A_{i..k} A_{k+1..j}$$

Developing a Dynamic Programming Algorithm

Step 3: Bottom-up computation of m[i, j]

Recurrence:

Fill in the m[i,j] table in an order, such that when it is time to calculate m[i,j], the values of m[i,k] and m[k+1,j] for all k are already available.

```
An easy way to ensure this is to compute them in increasing order of the size (j-i) of the matrix-chain A_{i..j}: m[1,2], m[2,3], m[3,4], \ldots, m[n-3,n-2], m[n-2,n-1], m[n-1,n] m[1,3], m[2,4], m[3,5], \ldots, m[n-3,n-1], m[n-2,n] m[1,4], m[2,5], m[3,6], \ldots, m[n-3,n] \ldots m[1,n-1], m[2,n] m[1,n]
```


Example for the Bottom-Up Computation

Example.

A chain of four matrices A_1 , A_2 , A_3 and A_4 , with $p_0 = 5$, $p_1 = 4$, $p_2 = 6$, $p_3 = 2$ and $p_4 = 7$. Find m[1, 4].

S0: Initialization

• Step 1: Computing m[1, 2]

$$m[1,2] = \min_{1 \le k < 2} (m[1,k] + m[k+1,2] + p_0 p_k p_2)$$
$$= m[1,1] + m[2,2] + p_0 p_1 p_2 = 120$$

• Step 2: Computing m[2,3]

$$m[2,3] = \min_{2 \le k < 3} (m[2,k] + m[k+1,3] + p_1 p_k p_3)$$
$$= m[2,2] + m[3,3] + p_1 p_2 p_3 = 48$$

• Step 3: Computing *m*[3, 4]

$$m[3,4] = \min_{3 \le k < 4} (m[3,k] + m[k+1,4] + p_2 p_k p_4)$$
$$= m[3,3] + m[4,4] + p_2 p_3 p_4 = 84$$

• Step 4: Computing m[1,3]

$$m[1,3] = \min_{1 \le k < 3} (m[1,k] + m[k+1,3] + p_0 p_k p_3)$$

$$= \min \left\{ m[1,1] + m[2,3] + p_0 p_1 p_3 \right\}$$

$$= min \left\{ m[1,2] + m[3,3] + p_0 p_2 p_3 \right\}$$

$$= 88$$

THE Z

Example – Continued

• Step 5: Computing *m*[2, 4]

$$m[2,4] = \min_{2 \le k < 4} (m[2,k] + m[k+1,4] + p_1 p_k p_4)$$

$$= \min \begin{cases} m[2,2] + m[3,4] + p_1 p_2 p_4 \\ m[2,3] + m[4,4] + p_1 p_3 p_4 \end{cases}$$

$$= 104$$

• Step 6: Computing m[1, 4]

$$m[1,4] = \min_{1 \le k < 4} (m[1,k] + m[k+1,4] + p_0 p_k p_4)$$

$$= \min \begin{cases} m[1,1] + m[2,4] + p_0 p_1 p_4 \\ m[1,2] + m[3,4] + p_0 p_2 p_4 \\ m[1,3] + m[4,4] + p_0 p_3 p_4 \end{cases}$$

$$= 158$$

The Dynamic Programming Algorithm

Matrix-Chain(p, n): // / is length of sub-chain

```
for i = 1 to n do m[i, i] = 0;
for l=2 to n do
    for i = 1 to n - l + 1 do
        j=i+l-1;
       m[i,j]=\infty;
        for k = i to j - 1 do
            q = m[i, k] + m[k + 1, j] + p[i - 1] * p[k] * p[j];
           if q < m[i,j] then
    end
end
return m and s; (Optimum in m[1, n])
```

57