Week 3: Heuristic Search

COMP90054 – Al Planning for Autonomy

Key concepts

- Heuristic Functions and their properties and relations
- Heuristic search algorithms
- State-space model and size of the problem

Heuristic function

h(s) estimates the distance from the current state **s** to the *closest* goal state

 $h^*(s)$ is a **perfect heuristic**, the optimal cost from the current state to the goal state

Heuristic function's properties 4 properties:

- **Safe**: if a solution exists from state s, then $h(s) < \infty$
- Goal-aware: All goal states have a heuristic h = 0
- **Admissible**: never over-estimate the cost
- **Consistent**: the cost diff between the parent and the child heuristics is never larger than the actual cost

- **safe** if $h^*(s) = \infty$ for all $s \in S$ with $h(s) = \infty$;
- **goal-aware** if h(s) = 0 for all goal states $s \in S^G$;
- **admissible** if $h(s) \leq h^*(s)$ for all $s \in s$;
- **consistent** if $h(s) \leq h(s') + c(a)$ for all transitions $s \xrightarrow{a} s'$.

Admissible: for all $s \in S$, $h(s) \le h^*(s)$

Which Heuristics are admissible?

h1, h2, h3

Consistent: the cost diff between the parent and the child heuristics is never larger than the actual cost

Which heuristics are consistent?

h1, h2

Dominate relation

h1 dominates h2 if

- both heuristics are admissible
- h2 <= h1 <= h* for all s in S

Does any of the heuristic dominate any other?

h2 dominates h1 h2 dominates h3

Heuristic search algorithms

Search node: n = <s, f(n), g(n), parent n> f(n) is a priority value for node in the priority queue

DS: priority queue

- Uniform-cost search (Dijkstra): f(n) = g(n)
- Greedy best-first search: f(n) = h(s)
- A^* : f(n) = h(s) + g(n)
- WA^* : f(n) = W * h(s) + g(n)

Greedy best-first search

Search node: n = <s, f(n), g(n), parent n> f(n) = h(s)

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 6,="" none=""></s1,>	
2	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n3 = <s4, 0="" 1,="" 5,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n4 = <s6, 2,="" 3="" 4,=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""> n5 = <s7, 0,="" 4="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 2,="" 5,=""> n2 = <s3, 0="" 10,="" 2,=""></s3,></s2,>	n0, n3, n4, n5

Solution: s1 -> s4 -> s6 -> s7

A*

Search node: $n = \langle s, f(n), g(n), parent n \rangle$ f(n) = h(s) + g(n)

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 6,="" none=""></s1,>	
2	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n3 = <s4, 0="" 1,="" 6,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n4 = <s6, 2,="" 3="" 6,=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""> n5 = <s7, 5="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 2,="" 7,=""> n2 = <s3, 0="" 12,="" 2,=""></s3,></s2,>	n0, n3, n4, n5

Solution: s1 -> s4 -> s6 -> s7

Search node: $n = \langle s, f(n), g(n), parent n \rangle$ f(n) = W * h(s) + g(n)

WA*(W=2)

Step	Open (Priority Queue)	Close (Visited)
1	n0 = <s1, 0,="" 12,="" none=""></s1,>	
2	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n3 = <s4, 0="" 1,="" 11,=""></s4,></s3,></s2,>	n0
3	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n4 = <s6, 10,="" 2,="" 3=""></s6,></s3,></s2,>	n0, n3
4	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""> n5 = <s7, 4="" 6,=""></s7,></s3,></s2,>	n0, n3, n4
5	n1 = <s2, 0="" 12,="" 2,=""> n2 = <s3, 0="" 2,="" 22,=""></s3,></s2,>	n0, n3, n4, n5

Solution: s1 -> s4 -> s6 -> s7

Heuristic algorithms

Which is the path returned as solution? (using h2 and A* as example)

Is this the optimal plan? Has the algorithm proved this? (using h2 and A* as example)

Yes. h2 is both admissible and consistent

Problem 2

Consider an $m \times m$ Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

Formulate a state-based search problem to find a tour to all the desired points

State space model: a state = <current coordinate, a set of remaining coordinates> $P = \langle s_0, S, S_C, A, f, c \rangle$

Initial state
$$s_0 = <(0,0), G \setminus \{(0,0)\}>$$

Goal state
$$S_G = \{ \langle (x, y), \{ \} \rangle \mid x, y \in \{0, ..., m-1 \} \}$$

State
$$S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G \}$$

Action A(
$$<(x,y), V'>$$
) = $\{(dx,dy) \mid dx,dy \in \{-1,0,1\}$
 $\land |dx| + |dy| = 1$
 $\land x + dx, y + dy \in \{0,...,m-1\}\}$

Transition
$$f(<(x,y), V'>, (dx,dy)) = <(x+dx,y+dy), V'\setminus\{(x+dx,y+dy)\}>$$

$$\mathsf{Cost}\;\mathsf{c}(a)=\mathbf{1}$$

Problem 2

Consider an m imes m Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

What is the branching factor of the search?

4 (branching factor = max number of child nodes)

(x,y)	

Problem 2

Consider an m imes m Manhattan Grid, and a set of coordinates G to visit in any order.

Hint: Consider a set of coordinates V' remaining to be visited, or a set of coordinates V already visited. What's the difference between them

What is the size of the state space in terms of m and G?

If using V' (remaining to be visited), then $m^2 \times 2^{|G|}$

(x,y)	