Generative Adversarial Networks

: From Theory to Practice

Sunmook Choi

Dept. of Mathematics
Korea University

Generative Adversarial Networks

Given a dataset, we want to generate new data which seem to be obtained from the dataset, i.e., given p_{data} , we want to learn the generator's distribution p_g over data x s.t. $p_{\text{data}} = p_g$.

How?

- Define a prior on input noise/latent variable $p_z(z)$, and
- represent a mapping to a data space as $G(z; \theta_g)$, which is the generator.
- Define the discriminator $D(x; \theta_d)$ that outputs the probability that x came from the data distribution p_{data} rather than p_g .
- Train *D* to maximize the probability of assigning the correct label to both training examples (real, label=1) and samples from *G* (fake, label=0).
- Simultaneously train G to minimize $\log(1 D(G(z)))$.

Objective Function

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})} [\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})} [\log (1 - D(G(\mathbf{z})))]$$

Recall: Binary Cross Entropy Loss for Logistic Regression

For binary dataset $\{x^n, y^n\}_{n=1}^N$ where $y^n \in \{0, 1\}$ with hypothesis model h_{θ} ,

$$BCE(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left[-y^n \log (h_{\theta}(\mathbf{x}^n)) - (1 - y^n) \log (1 - h_{\theta}(\mathbf{x}^n)) \right]$$

• For D, $x \sim p_{\text{data}}(x)$ should have label 1, and $G(z) \sim p_g(x)$ should have label 0. Hence, maximizing V(D,G) w.r.t. D is equivalent to minimizing BCE.

Objective Function

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbf{x})} \left[\log D(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} \left[\log (1 - D(G(\mathbf{z}))) \right]$$

Recall: Binary Cross Entropy Loss for Logistic Regression

For binary dataset $\{x^n, y^n\}_{n=1}^N$ where $y^n \in \{0, 1\}$ with hypothesis model h_θ ,

$$BCE(\theta) = \frac{1}{N} \sum_{n=1}^{N} \left[-y^n \log (h_{\theta}(x^n)) - (1 - y^n) \log (1 - h_{\theta}(x^n)) \right]$$

- Practically, minimizing V(D, G) w.r.t. G may not provide sufficient gradient for G early in learning. Instead, we train G to maximize $\log D(G(z))$, i.e., minimize $-\log D(G(z))$.
- Hence, minimizing $-\log D(G(z))$ w.r.t. G is equivalent to minimizing BCE.

Training Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k=1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Theoretical Results

Proposition 1. For G fixed, the optimal discriminator D is $D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}$.

Using the result above, the objective function w.r.t. G can be reformulated as follows:

$$C(G) = \max_{D} V(D, G)$$

$$= \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D_G^*(\mathbf{x}) \right] + \mathbb{E}_{z \sim p_z} \left[\log (1 - D_G^*(G(z))) \right]$$

$$= \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D_G^*(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[\log (1 - D_G^*(\mathbf{x})) \right]$$

$$= \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_g(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[\log \frac{p_g(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_g(\mathbf{x})} \right]$$

Theoretical Results

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if $p_g = p_{\text{data}}$.

$$\text{``Recall that } D_{\mathit{KL}}(p \parallel q) = \mathbb{E}_{x \sim p} \left[\log \frac{p(x)}{q(x)} \right] \text{ and } D_{\mathit{JS}}(p,q) = \frac{1}{2} D_{\mathit{KL}} \left(p \parallel \frac{p+q}{2} \right) + \frac{1}{2} D_{\mathit{KL}} \left(q \parallel \frac{p+q}{2} \right).$$

$$C(G) = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_g(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[\log \frac{p_g(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_g(\mathbf{x})} \right]$$

$$= D_{KL} \left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right) + D_{KL} \left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right) - 2 \log 2 \right.$$

$$= D_{JS} \left(p_{\text{data}}, p_g \right) - \log 4$$

Since the Jensen-Shannon divergence is a metric, we have shown that the global minimum of C(G) is $-\log 4$ and that the only solution is $p_g = p_{\text{data}}$, i.e., the generative model perfectly replicates the data generating process.