Математический анализ. Подготовка к экзамену

1 Определения

Определение 1 (Множество натуральных чисел). \mathbb{N} – множество натуральных чисел. Состоит из чисел, возникающих при счёте.

Определение 2 (Множество целых чисел). \mathbb{Z} – множество целых чисел. Состоит из натуральных чисел, нуля и чисел, противоположных натуральным.

Определение 3 (Множество рациональных чисел). \mathbb{Q} – множество рациональных чисел. Состоит из чисел, представимых в виде $\frac{z}{n}, z \in \mathbb{Z}, n \in \mathbb{N}$.

Определение 4 (Множество иррациональных чисел). \mathbb{I} — множество иррациональных чисел. Состоит из чисел, которые не представимы в виде $\frac{z}{n}, z \in \mathbb{Z}, n \in \mathbb{N}$.

Определение 5 (Множество действительных чисел). \mathbb{R} – множество действительных чисел. Состоит из рациональных и иррациональных чисел.

Определение 6 (Окрестность точки). Окрестностью S(x) точки x называется любой интервал, содержащий эту точку.

Определение 7 (ε -окрестность точки). ε -окрестностью точки x называется интервал с центром в точке x и длиной 2ε .

$$S(x,\varepsilon) = (x - \varepsilon, x + \varepsilon)$$

Определение 8 (δ -окрестность точки). δ -окрестностью точки x называется интервал с центром в точке x и длиной 2δ .

$$S(x, \delta) = (x - \delta, x + \delta)$$

Определение 9 (Окрестность $+\infty$). Окрестностью $+\infty$ называется любой интервал вида:

$$S(+\infty) = (a, +\infty), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 10 (Окрестность $-\infty$). Окрестностью $-\infty$ называется любой интервал вида:

$$S(-\infty) = (-\infty, -a), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 11 (Окрестность ∞). Окрестностью ∞ называется любой интервал вида:

$$S(\infty) = (-\infty, -a) \cup (a, +\infty), \quad a \in \mathbb{R}, \quad a > 0$$

Определение 12 (Числовая последовательность). Числовой последовательностью называется бесконечное множество числовых значений, которое можно упорядочить (перенумеровать)

Определение 13 (Ограниченная последовательность). Последовательность x_n называется *ограниченной*, если она ограничена и сверху, и снизу, т.е.

$$\forall n \in \mathbb{N}, m \leq x_n \leq M$$
 или $|x_n| \leq M$

Определение 14 (Предел последовательности). Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдется натуральное число $N\left(\varepsilon\right)$, такое, что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

$$\lim_{x \to \infty} x_n = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N}) : (\forall n > N(\varepsilon)) \implies |x_n - a| < \varepsilon$$

Определение 15 (Сходящаяся последовательность). Числовая последовательность называется сходящейся, если существует предел это последовательности, и он конечен.

Определение 16 (Предел функции по Коши). Число a называется пределом функции y=f(x) в точке x_0 , если $\forall \varepsilon>0$ найдется δ , зависящее от ε такое что $\forall x\in \mathring{S}(x_0;\delta)$ будет верно неравенство $|f(x)-a|<\varepsilon$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0) (\exists \delta(\varepsilon) > 0) (\forall x \in \mathring{S}(x_0; \delta) \implies |f(x) - a| < \varepsilon)$$

Определение 17 (Предел функции по Гейне). Число a называется пределом y = f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательнсти x_n из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} = a \iff (\forall x_n \in D_f)(\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = a)$$

Определение 18 (Локальная ограниченность функции). Функция называется локально ограниченной при $x \to x_0,$ если существует проколотая окрестность с центром в точке x_0 , в которой данная функция ограничена.

Определение 19 (Бесконечно малая функция). Функция называется бесконечно малой при $x \to x_0$, если предел функции в этой точке равен

$$\lim_{x \to x_0} f(x) = 0 \iff (\forall \varepsilon > 0) (\exists \delta(\varepsilon)) (\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| < \varepsilon)$$

2 Теория

ī

Вопрос 1. Сформулируйте и докажите теорему о единственности предела сходящейся последовательности.

Ссылки. Используются определения №12, №14, №15

Теорема (О существовании единственности предела последовательности). Любая сходящаяся последовательность имеет единственный предел.

Доказательство. Пусть $\{x_n\}$ – сходящаяся последовательность. Рассуждаем методом от противного. Пусть последовательность $\{x_n\}$ более одного предела.

$$\lim_{n \to \infty} = a \quad \lim_{n \to \infty} = b \quad a \neq b$$

$$\lim_{n \to \infty} = a \iff (\forall \varepsilon_1 > 0)(\exists N_1(\varepsilon_1) \in N)(\forall n > N_1(\varepsilon_1) \implies |x_n - a| < \varepsilon_1)$$

$$(1)$$

$$\lim_{n \to \infty} = b \iff (\forall \varepsilon_2 > 0)(\exists N_2(\varepsilon_2) \in N)(\forall n > N_2(\varepsilon_2) \implies |x_n - b| < \varepsilon_2)$$

$$(2)$$

$$\lim_{n \to \infty} = b \iff (\forall \varepsilon_2 > 0)(\exists N_2(\varepsilon_2) \in N)(\forall n > N_2(\varepsilon_2) \implies |x_n - b| < \varepsilon_2)$$
(2)

Выберем $N = max\{N_1(\varepsilon_1), N_2(\varepsilon_2)\}.$

Пусть

$$\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{|b-a|}{3}$$

$$3\varepsilon = |b - a| = |b - a + x_n - x_n| =$$

$$= |(x_n - a) - (x_n - b)| \le |x_n - a| + |x_n - b| < \varepsilon_1 + \varepsilon_2 = 2\varepsilon$$

$$3\varepsilon < 2\varepsilon$$

Противоречие. Значит, предоположение не является верным \implies последовательность x_n имеет единственный предел.

Вопрос 2. Сформулируйте и докажите теорему об ограниченности сходящейся последовательности.

Ссылки. Используются определения №12, №13, №14, №15

Теорема. Об ограниченности сходящейся последовательности. Любая сходящаяся последовательность ограничена.

Доказательство. По определению сходящейся последовательности

$$\implies \lim_{n \to \infty} = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \implies |x_n - a| < \varepsilon).$$

Выберем в качестве $M = max\{|x_1|, |x_2|, \dots |x_n|, |a-\varepsilon|, |a+\varepsilon|\}$. Тогда для $\forall n \in \mathbb{N}$ будет верно $|x_n| \leq M$ – это и означает, что последовательность x_n – ограниченная.

Вопрос 3. Сформулируйте и докажите теорему о локальной ограниченности функции, имеющей конечный предел.

Ссылки. Используются определения №16, №18

Теорема (О локальной ограниченности функции, имеющей конечный предел). Функция, имеющая конечный предел, локально ограничена.

Доказательство.

$$\lim_{x \to x_0} f(x) = a$$

$$\iff (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$

Распишем:

$$-\varepsilon < f(x) - a < \varepsilon$$

$$a - \varepsilon < f(x) < a + \varepsilon \qquad \forall x \in \mathring{S}(x_0, \delta)$$

Выберем $M = max\{|a - \varepsilon|, |a + \varepsilon|\}$

$$|f(x)| \le M, \quad \forall x \in \mathring{S}(x_0, a)$$

Что и требовалось доказать.

Вопрос 4. Сформулируйте и докажите теорему о сохранении функцией знака своего предела.

Ссылки. Используются определения №16

Теорема (О сохранении функцией знака своего предела). Если $\lim_{x\to x_0}=a\neq 0$, то $\exists \mathring{S}(x_0,\delta)$ такая, что функция в ней сохраняет знак своего предела.

$$\lim_{x \to x_0} f(x) = a \neq 0 \to \begin{cases} a > 0 \\ a < 0 \end{cases} \Longrightarrow \begin{cases} f(x) > 0 \\ f(x) < 0 \end{cases} \quad \forall x \in \mathring{S}(x_0, \delta)$$

Доказательство. Пусть a>0. Выберем $\varepsilon=a>0$.

$$\lim_{x \to x_0} = a \iff (\forall \varepsilon = a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = a)$$

Распишем:

$$-a < f(x) - a < a$$
$$0 < f(x) < 2a$$

Знак у функции f(x) и числа a - одинаковые.

Пусть a < 0. Выберем $\varepsilon = -a$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon = -a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = -a)$$

Распишем:

$$-a < f(x) - a < a$$
$$-2a < f(x) < 0$$

Знак у функции f(x) и числа a - одинаковые. Значит, f(x) сохраняет знак своего предела $\forall x \in \mathring{S}(x_0, \delta)$

Вопрос 5. Сформулируйте и докажите теорему о предельном переходе в неравенстве.

Ссылки. Используются определения №16

Теорема (О предельном переходе в неравенстве). Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\forall x \in \mathring{S}(x_0, \delta)$ верно f(x) < g(x). Тогда $\forall x \in \mathring{S}(x_0, \delta)$ имеет место неравенство $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

Доказательство. По условию $f(x) < g(x), \forall x \in \mathring{S}(x_0, \delta)$.

Введём функцию $F(x) = f(x) - g(x) < 0, \forall x \in \mathring{S}(x_0, \delta)$. Т.к. f(x) и g(x) имеют конечные пределы в точке x_0 , соответственно и функция F(X) имеет конечный предел в точке x_0 (как разность f(x) и g(x)).

По следствию из предыдущей теоремы $\implies \lim_{x\to x_0} F(x)$ Подставим F(x)=f(x)-g(x):

$$\lim_{x \to x_0} \left(f(x) - g(x) \right) \le 0 \implies \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \le 0 \implies \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

Вопрос 6. Сформулируйте и докажите теорему о пределе промежуточной функции.

Ссылки. Используются определения №16

Теорема (О пределе промежуточной функции). Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\lim_{x \to x_0} f(x) = a$ и $\lim_{x \to x_0} g(x) = a, \ \forall x \in \mathring{S}(x_0, \delta)$ верно неравенство $f(x) \le h(x) \le g(x)$. Тогда $\lim_{x \to x_0} h(x) = a$.

Доказательство. По условию:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_1(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$
(1)

$$\lim_{x \to x_0} g(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_2(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |g(x) - a| < \varepsilon)$$
(2)

Выберем $\delta_0 = min\{\delta, \delta_1, \delta_2\}$, тогда (1), (2) и $f(x) \leq h(x) \leq g(x)$ верны одновременно $\forall x \in \mathring{S}(x_0, \delta_0)$.

(1)
$$a - \varepsilon < f(x) < a + \varepsilon$$

(2)
$$a - \varepsilon < g(x) < a + \varepsilon$$

$$f(x) \le h(x) \le g(x)$$

$$\implies a - \varepsilon_1 < f(x) \le h(x) \le g(x) < a + \varepsilon_2$$

$$\implies \forall x \in \mathring{S}(x_0, \delta_0) \qquad a - \varepsilon < h(x) < a + \varepsilon$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_0(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_0 \implies |h(x) - a| < \varepsilon)$$
 \implies по определению предела $\lim_{x \to x_0} h(x) = a$

Вопрос 7. Сформулируйте и докажите теорему о пределе произведения функций.

Ссылки. Используются определения №16, №19, теорема "О произведении бесконечно малой функций на локально ограниченную"

Теорема (О пределе произведения функций). О пределе произведения функций.

Предел произведения функций равен произведению пределов.

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Доказательство. Пусть:

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = b \tag{2}$$

По теореме о связи функции, её предела и бесконечно малой функции:

$$(1) \implies f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф.

$$(2) \implies f(x) = b + \beta(x)$$
, где $\beta(x)$ - б.м.ф.

Рассмотрим:

$$f(x) \cdot g(x) = (a + \alpha(x))(b + \beta(x))$$

$$= ab + \underbrace{a \cdot \beta(x) + b\alpha(x) + \alpha(x) \cdot \beta(x)}_{\gamma(x)}$$

$$= ab + \gamma(x)$$

По следствию из теоремы "О произведении бесконечно малой функций на локально ограниченную":

$$a\cdot eta(x)=$$
 б.м.ф. при $x o 0$ $b\cdot lpha(x)=$ б.м.ф. при $x o 0$ $lpha(x)\cdot eta(x)=$ б.м.ф. при $x o 0$

По теореме о сумме конечного числа с б.м.ф.:

$$\gamma(x)=$$
б.м.ф. при $x \to 0$

Далее расписываем предел:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} (f(x) \cdot g(x))$$

$$= \lim_{x \to x_0} ab + \lim_{x \to x_0} \gamma(x)$$

$$= ab + 0$$

$$= ab$$

Вопрос 8. Сформулируйте и докажите теорему о пределе сложной функции.

Ссылки. Используются определения №14, №17

Теорема (О пределе сложной функции). Если функция y=f(x) имеет предел в точке x_0 равный a, то функция $\varphi(y)$ имеет предел в точке a, равный C, тода сложная функция $\varphi(f(x))$ имеет предел в точке x_0 , равный C.

$$\begin{cases} y = f(x) \\ \lim_{x \to x_0} f(x) = a \\ \lim_{y \to a} \varphi(y) = C \end{cases} \implies \lim_{x \to x_0} \varphi(f(x)) = C$$

Доказательство.

$$\lim_{y \to a} \varphi(y) \iff (\forall \varepsilon > 0)(\exists \delta_1 > 0)(\forall y \in \mathring{S}(a, \delta_1) \implies |\varphi(y) - a| < \varepsilon) \quad (1)$$

Выберем в качестве ε в пределе найденное δ_1 :

$$\lim_{x \to x_0} f(x) = a$$

$$\iff (\forall \delta_1 > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |f(x) - a| < \delta_1)$$
(2)

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |\varphi(f(x)) - c| < \varepsilon)$$

Что равносильно:

$$\lim_{x \to x_0} \varphi(f(x)) = c$$

Вопрос 9. Докажите, что:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 0$$

Ссылки. Используется теорема о промежуточной функции.

Доказательство. Пусть $0 < x < \frac{\pi}{2}$. Рассмотрим окружность радиуса R с центром в начале координат, пересекающую ось абцисс в точке A, и пусть угол $\angle AOB$ равен x. Пусть, далее, CA — перпендикуляр к этой оси, C точка пересечения с этим перпендикуляром продолжения отрезка OB за точку B. Тогда

$$\begin{split} S_{\triangle AOB} &< S_{secOAB} < S_{\triangle OAC} \\ \frac{1}{2}R^2\sin(x) &< \frac{1}{2}R^2x < \frac{1}{2}R^2\operatorname{tg}(x) \\ &\sin(x) < x < \operatorname{tg}(x) \\ 1 &< \frac{x}{\sin(x)} < \frac{1}{\cos(x)} \\ 1 &> \frac{x}{\sin(x)} > \cos(x), \text{ при } x \in \left(0, \frac{\pi}{2}\right) \end{split}$$

Рассмотрим $x \in \left(-\frac{\pi}{2}, 0\right)$. Сделаем замену $\beta = -x$, таким образом $\beta \in \left(0, \frac{\pi}{2}\right)$, а значит, справедливо следующее неравенство:

$$1 > \frac{\sin(\beta)}{\beta} > \cos(\beta)$$

Вернёмся к замене $\beta = -x$:

$$1>\frac{\sin(-x)}{-x}>\cos(-x)$$

$$1>\frac{-\sin(x)}{-x}>\cos(x),\ \text{при }x\in\left(0,\frac{\pi}{2}\right)$$

Таким образом, полученное неравенство справедливо для $x \in \left(-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right)$. Перейдём к пределу при $x \to 0$:

$$\lim_{x \to 0} \cos(x) = 1$$

$$\lim_{x \to 0} 1 = 1$$

$$\implies \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

2 ТЕОРИЯ

по теореме "О пределе промежуточной функции".

Вопрос 10. Сформулируйте и докажите теорему о связи функции, ее предела и бесконечно малой.

Ссылки. Используются определения №16. №19

Теорема (О связи функции, её предела и бесконечно малой). *О связи* функции, её предела и бесконечно малой.

Функция y = f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

$$\lim_{x o x_0} f(x) = a \iff f(x) = a + lpha(x),$$
где $lpha(x)$ – б.м.ф при $x o x_0$

Необходимость. Дано:

$$\lim_{x \to x_0} f(x) = a$$

Доказать:

$$f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to x_0$

Распишем:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$

Обозначим $f(x) - a = \alpha(x)$, тогда:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

По определению бесконечно малой функции $\alpha(x)$ - бесконечно малая функция. Из обозначения следует, что:

$$f(x) = a + \alpha(x)$$

где $\alpha(x)$ - бесконечно малая функция при $x \to x_0$.

Достаточность. Дано:

$$f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to x_0$

Доказать:

$$\lim_{x \to x_0} f(x) = a$$

По определению б.м.ф.:

$$\lim_{x \to x_0} \alpha(x) = 0 \iff (\forall \varepsilon > 0) (\exists \delta > 0) (\mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

С учётом введённого обозначения:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon \iff \lim_{x \to x_0} f(x) = a)$$