Sets and functions

Marcel Schütz

October 26, 2021

Contents

Ι	Sets	3
1	Sets	3
	1.1 Subsets	3
	1.2 Set extensionality	3
	1.3 Separation	3
	1.4 Set existence	4
	1.5 The empty set	4
	1.6 Pairing	4
	1.7 Set-systems	5
	1.8 Intersections	5
	1.9 Unions	6
	1.10 Complements	7
	1.11 Computation laws	7
2	The powerset	11
3	The axiom of regularity	12
4	The symmetric difference	13
	4.1 Definition	13
	4.2 Computation laws	13
5	Ordered pairs and Cartesian products	16
	5.1 Ordered pairs	16
	5.2 Cartesian products	16
	5.3 Computation laws	17
6	The axiom of infinity	21
II	I Functions	22

7	Fun	ctions	22
	7.1	Function axioms	22
	7.2	The range	22
	7.3	Functions between sets	23
	7.4	The identity function	24
	7.5	Constant functions	24
	7.6	Composition	25
	7.7	Restriction	26
8	Ima	ge and preimage	27
	8.1	The image	27
	8.2	The preimage	28
	8.3	Computation rules	29
9	Inve	ertible functions	33
	9.1	Definitions and basic properties	33
	9.2	Involutions	36
10	Fun	ctions and the symmetric difference	37
11	Fun	ctions and set-systems	38
12	Can	tor's theorem	38
13	Equ	ipollency	39
14	The	Cantor-Schröder-Bernstein theorem	39
15	The	axiom of choice	41

Part I

Sets

1 Sets

Axiom 1. (SF 01 01 603161) Every set is an element.

Axiom 2. (SF 01 01 617091) Every element of any set is an element.

Let x, y, z denote sets. Let u, v, w denote elements.

Theorem 3. (Russell) If every class is a set then we have a contradiction.

Proof. Assume that every class is a set. Define $R = \{ \text{set } x \mid x \notin x \}$. Then R is a set. Hence $R \in R$ iff $R \notin R$. Contradiction.

1.1 Subsets

Definition 4. A subset of x is a set y such that every element of y is an element of x.

Let $y \subseteq x$ stand for y is a subset of x. Let $y \subset x$ stand for $y \subseteq x$. Let a superset of x stand for a set y such that $x \subseteq y$. Let $y \supseteq x$ stand for y is a superset of x. Let $y \supset x$ stand for $y \supseteq x$.

Definition 5. A proper subset of x is a subset of x that is not equal to x

Let $y \subsetneq x$ stand for x is a proper subset of x. Let a proper superset of x stand for a set y such that $x \subsetneq y$. Let $y \supsetneq x$ stand for y is a proper superset of x.

Proposition 6. (SF 01 01 375611) $x \subseteq x$.

Proposition 7. (SF 01 01 726162) If $x \subseteq y$ and $y \subseteq z$ then $x \subseteq z$.

1.2 Set extensionality

Axiom 8. (Set extensionality) If $x \subseteq y$ and $y \subseteq x$ then x = y.

1.3 Separation

Axiom 9. (Separation) Let C be a class and x be a set. Assume that every element of C is contained in x. Then C is a set.

1.4 Set existence

Axiom 10. (Set existence) There exists a set.

1.5 The empty set

Definition 11. x is empty iff x has no elements. Let x is nonempty stand for x is not empty. **Lemma 12.** There exists an empty set. Proof. Define $C = \{\text{element } u \mid \text{contradiction}\}$. Take a set x (by set existence). Then every element of C is contained in x. Hence C is a set (by separation). C has no element. Hence the thesis. \Box **Lemma 13.** If x and y are empty then x = y. Proof. Assume that x and y are empty. Then every element of x is an element of y and every element of y is an element of x. Hence $x \subseteq y$ and $y \subseteq x$. Thus x = y. \Box **Definition 14.** \emptyset is the empty set. Let $\{\}$ stand for \emptyset . Let the empty set stand for \emptyset . **Proposition 15.** (SF 01 01 656396) \emptyset is a subset of every set. Proof. Let x be a set. Then every element of \emptyset is an element of x. Indeed y has no element. Hence $y \subseteq x$. \Box

1.6 Pairing

Axiom 16. (Pairing) There exists a set z such that $z = \{\text{element } w \mid w = u \text{ or } w = v\}$.

Definition 17. $\{u, v\}$ is the set z such that $z = \{\text{element } w \mid w = u \text{ or } w = v\}$.

Let the unordered pair of u and v stand for $\{u, v\}$.

Lemma 18. There exists a set z such that $z = \{\text{element } w \mid w = u\}$.

Proof. Take $z = \{u, u\}$. Then $z = \{\text{element } w \mid w = u\}$.

Definition 19. $\{u\}$ is the set z such that $z = \{\text{element } w \mid w = u\}$.

Let the singleton set of u stand for $\{u\}$.

Definition 20. A singleton set is a set x such that $x = \{u\}$ for some element u.

1.7 Set-systems

Definition 21. A system of sets is a set X such that every element of X is a set.

Let X, Y, Z denote systems of sets.

Definition 22. A system of nonempty sets is a system of sets X such that every element of X is nonempty.

Proposition 23. (SF 01 01 261697) $\{x\}$ is a system of sets.

Proposition 24. (SF 01 01 176500) $\{x, y\}$ is a system of sets.

Definition 25. A system of subsets of x is a set X such that every element of X is a subset of x.

Proposition 26. (SF 01 01 366869) Every system of subsets of x is a system of sets.

1.8 Intersections

Lemma 27. Let x be a nonempty system of sets. Then there exists a set z such that $z = \{\text{element } u \mid u \text{ is an element of every element of } x\}.$

Proof. Take an element y of x. Then y is a set. (1) Define $z = \{\text{element } u \mid u \text{ is an element of every element of } x\}$. Every element of z is contained in y. Hence z is a set. Then we have the thesis (by 1).

Definition 28. Let x be a nonempty system of sets. $\bigcap x$ is the set z such that $z = \{\text{element } u \mid u \text{ is an element of every element of } x\}.$

Let the intersection over x stand for $\bigcap x$.

Lemma 29. Let x, y be sets. Then there exists a set z such that $z = \{\text{element } u \mid u \in x \text{ and } u \in y\}.$

Proof. Take $z = \bigcap \{x, y\}$. Then $z = \{\text{element } u \mid u \text{ is an element of every element of } \{x, y\}\}$. Hence $z = \{\text{element } u \mid u \in x \text{ and } u \in y\}$.

Definition 30. $x \cap y$ is the set z such that $z = \{\text{element } u \mid u \in x \text{ and } u \in y\}.$

Let the intersection of x and y stand for $x \cap y$.

Proposition 31. (SF 01 01 220491) $\bigcap \{x, y\} = x \cap y$.

Proof. Let us show that $\bigcap \{x, y\} \subseteq x \cap y$. Let $u \in \bigcap \{x, y\}$. Then u is an element of every element of $\{x, y\}$. Hence $u \in x$ and $u \in y$. Thus $u \in x \cap y$. End.

Let us show that $x \cap y \subseteq \bigcap \{x, y\}$. Let $u \in x \cap y$. Then $u \in x$ and $u \in y$. Hence u is an element of every element of $\{x, y\}$. Thus $u \in \bigcap \{x, y\}$. End.

Corollary 32. (SF 01 01 485484) $\bigcap \{x\} = x$. *Proof.* $\bigcap \{x\} = \bigcap \{x, x\} = x \cap x = x$. **Proposition 33.** (SF 01 01 517087) Let x be a nonempty system of sets. Then $y \subseteq \bigcap x$ iff y is a subset of every element of x. *Proof.* Case $y \subseteq \bigcap x$. Let z be an element of x. Let $u \in y$. Then $u \in \bigcap x$. Hence $u \in z$. End. Case y is a subset of every element of x. Let $u \in y$. Then $u \in z$ for all sets z such that $z \in x$. Hence $u \in \bigcap x$. End. **Definition 34.** x and y are disjoint iff $x \cap y = \emptyset$. Proposition 35. (SF 01 01 300845) If x and y are disjoint then yand x are disjoint. *Proof.* Assume that x and y are disjoint. Then $x \cap y$ is empty. Hence there is no element u such that $u \in x$ and $u \in y$. Thus $y \cap x$ is empty. Therefore y and x are disjoint.

1.9 Unions

Axiom 36. (Union) Let x be a system of sets. Then there exists a set z such that $z = \{\text{element } u \mid u \text{ is an element of some element of } x\}.$

Definition 37. Let x be a system of sets. $\bigcup x$ is the set z such that $z = \{\text{element } u \mid u \text{ is an element of some element of } x\}.$

Let the union over x stand for $\bigcup x$.

Lemma 38. Let x, y be sets. Then there exists a set z such that $z = \{\text{element } u \mid u \in x \text{ or } u \in y\}.$

Proof. Take $z = \bigcup \{x, y\}$. Then $z = \{\text{element } u \mid u \text{ is an element of some element of } \{x, y\}\}$. Hence $z = \{\text{element } u \mid u \in x \text{ or } u \in y\}$.

Definition 39. $x \cup y$ is the set z such that $z = \{\text{element } w \mid w \in x \text{ or } w \in y\}.$

Let the union of x and y stand for $x \cup y$.

Proposition 40. (SF 01 01 519005) $\bigcup \{x, y\} = x \cup y$.

Proof. Let us show that $\bigcup \{x, y\} \subseteq x \cup y$. Let $u \in \bigcup \{x, y\}$. Then u is an element of some element of $\{x, y\}$. Hence $u \in x$ or $u \in y$. Thus $u \in x \cup y$. End.

Let us show that $x \cup y \subseteq \bigcup \{x, y\}$. Let $u \in x \cup y$. Then $u \in x$ or $u \in y$. Hence u is an element of some element of $\{x, y\}$. Thus $u \in \bigcup \{x, y\}$. End.

Corollary 41. (SF 01 01 820534) $\bigcup \{x\} = x$.

Proof. Hence $\bigcup \{x\} = \bigcup \{x, x\} = x \cup x = x$.

Proposition 42. (SF 01 01 251673) Let x be a system of sets. Then $\bigcup x \subseteq y$ iff every element of x is a subset of y.

Proof. Case $\bigcup x \subseteq y$. Let z be an element of x. Let $u \in z$. Then u is an element of some element of x. Hence $u \in \bigcup x$. Thus $u \in y$. End.

Case every element of x is a subset of y. Let $u \in \bigcup x$. Take a set z such that $z \in x$ and $u \in z$. Then z is a subset of y. Hence $u \in y$. End.

Proposition 43. (SF 01 01 675114) $\bigcup \emptyset = \emptyset$.

Proof. \emptyset has no elements. Hence there is no $x \in \emptyset$ that has an element. Thus $\bigcup \emptyset$ is empty. Therefore $\bigcup \emptyset = \emptyset$.

1.10 Complements

Lemma 44. Let x, y be sets. There exists a set z such that $z = \{\text{element } w \mid w \in x \text{ and } w \notin y\}.$

Proof. Define $z = \{\text{element } w \mid w \in x \text{ and } w \notin y\}$. Then every element of z is contained in x. Hence z is a set (by separation). \square

Definition 45. $x \setminus y$ is the set such that $x \setminus y = \{\text{element } w \mid w \in x \text{ and } w \notin y\}.$

Let the complement of y in x stand for $x \setminus y$.

1.11 Computation laws

Proposition 46. (SF 01 01 830899)

$$x \cup y = y \cup x$$
.

Proof. Let us show that $x \cup y \subseteq y \cup x$. Let $u \in x \cup y$. Then $u \in x$ or $u \in y$. Hence $u \in y$ or $u \in x$. Thus $u \in y \cup x$. End.

Let us show that $y \cup x \subseteq x \cup y$. Let $u \in y \cup x$. Then $u \in y$ or $u \in x$. Hence $u \in x$ or $u \in y$. Thus $u \in x \cup y$. End.

Proposition 47. (SF 01 01 728823)

$$x \cap y = y \cap x$$
.

Proof. Let us show that $x \cap y \subseteq y \cap x$. Let $u \in x \cap y$. Then $u \in x$ and $u \in y$. Hence $u \in y$ and $u \in x$. Thus $u \in y \cap x$. End.

Let us show that $y \cap x \subseteq x \cap y$. Let $u \in y \cap x$. Then $u \in y$ and $u \in x$. Hence $u \in x$ and $u \in y$. Thus $u \in x \cap y$. End.

Proposition 48. (SF 01 01 665069)

$$((x \cup y) \cup z) = x \cup (y \cup z).$$

Proof. Let us show that $((x \cup y) \cup z) \subseteq x \cup (y \cup z)$. Let $u \in (x \cup y) \cup z$. Then $u \in x \cup y$ or $u \in z$. Hence $u \in x$ or $u \in y$ or $u \in z$. Thus $u \in x$ or $u \in (y \cup z)$. Therefore $u \in x \cup (y \cup z)$. End.

Let us show that $x \cup (y \cup z) \subseteq (x \cup y) \cup z$. Let $u \in x \cup (y \cup z)$. Then $u \in x$ or $u \in y \cup z$. Hence $u \in x$ or $u \in y$ or $u \in z$. Thus $u \in x \cup y$ or $u \in z$. Therefore $u \in (x \cup y) \cup z$. End.

Proposition 49. (SF 01 01 368359)

$$((x \cap y) \cap z) = x \cap (y \cap z).$$

Proof. Let us show that $((x \cap y) \cap z) \subseteq x \cap (y \cap z)$. Let $u \in (x \cap y) \cap z$. Then $u \in x \cap y$ and $u \in z$. Hence $u \in x$ and $u \in y$ and $u \in z$. Thus $u \in x$ and $u \in (y \cap z)$. Therefore $u \in x \cap (y \cap z)$. End.

Let us show that $x \cap (y \cap z) \subseteq (x \cap y) \cap z$. Let $u \in x \cap (y \cap z)$. Then $u \in x$ and $u \in y \cap z$. Hence $u \in x$ and $u \in y$ and $u \in z$. Thus $u \in x \cap y$ and $u \in z$. Therefore $u \in (x \cap y) \cap z$. End.

Proposition 50. (SF 01 01 106755)

$$x \cap (y \cup z) = (x \cap y) \cup (x \cap z).$$

Proof. Let us show that $x \cap (y \cup z) \subseteq (x \cap y) \cup (x \cap z)$. Let $u \in x \cap (y \cup z)$. Then $u \in x$ and $u \in y \cup z$. Hence $u \in x$ and $(u \in y)$ or $(u \in x)$ and $(u \in y)$ or $(u \in x)$ and $(u \in y)$ or $(u \in x)$ and $(u \in x)$ or $(u \in x)$ or $(u \in x)$ define $(u \in x)$ and $(u \in x)$ or $(u \in x)$ define $(u \in x)$ and $(u \in x)$ or $(u \in x)$ define $(u \in x)$ define (

Let us show that $((x \cap y) \cup (x \cap z)) \subseteq x \cap (y \cup z)$. Let $u \in (x \cap y) \cup (x \cap z)$. Then $u \in x \cap y$ or $u \in x \cap z$. Hence $(u \in x \text{ and } u \in y)$ or $(u \in x \text{ and } u \in z)$. Thus $u \in x$ and $(u \in y \text{ or } u \in z)$. Therefore $u \in x \text{ and } u \in y \cup z$. Hence $u \in x \cap (y \cup z)$. End.

Proposition 51. (SF 01 01 836290)

$$x \cup (y \cap z) = (x \cup y) \cap (x \cup z).$$

Proof. Let us show that $x \cup (y \cap z) \subseteq (x \cup y) \cap (x \cup z)$. Let $u \in x \cup (y \cap z)$. Then $u \in x$ or $u \in y \cap z$. Hence $u \in x$ or $(u \in y \text{ and } u \in z)$. Thus $(u \in x \text{ or } u \in y)$ and $(u \in x \text{ or } u \in z)$. Therefore $u \in x \cup y$ and $u \in x \cup z$. Hence $u \in (x \cup y) \cap (x \cup z)$. End.

Let us show that $((x \cup y) \cap (x \cup z)) \subseteq x \cup (y \cap z)$. Let $u \in (x \cup y) \cap (x \cup z)$. Then $u \in x \cup y$ and $u \in x \cup z$. Hence $(u \in x \text{ or } u \in y)$ and $(u \in x \text{ or } u \in z)$. Thus $u \in x$ or $(u \in y \text{ and } u \in z)$. Therefore $u \in x \text{ or } u \in y \cap z$. Hence $u \in x \cup (y \cap z)$. End.

Proposition 52. (SF 01 01 496190)

$$x \cup x = x$$
.

Proof. $x \cup x = \{\text{element } u \mid u \in x \text{ or } u \in x\}$. Hence $x \cup x = \{\text{element } u \mid u \in x\}$. Thus $x \cup x = x$.

Proposition 53. (SF 01 01 783425)

$$x \cap x = x$$
.

Proof. $x \cap x = \{\text{element } u \mid u \in x \text{ and } u \in x\}$. Hence $x \cap x = \{\text{element } u \mid u \in x\}$. Thus $x \cap x = x$.

Proposition 54. (SF 01 01 339365)

$$x \setminus (y \cap z) = (x \setminus y) \cup (x \setminus z).$$

Proof. Let us show that $x \setminus (y \cap z) \subseteq (x \setminus y) \cup (x \setminus z)$. Let $u \in x \setminus (y \cap z)$. Then $u \in x$ and $u \notin y \cap z$. Hence it is wrong that $(u \in y \text{ and } u \in z)$. Thus $u \notin y$ or $u \notin z$. Therefore $u \in x$ and $(u \notin y \text{ or } u \notin z)$. Then $(u \in x \text{ and } u \notin y)$ or $(u \in x \text{ and } u \notin z)$. Hence $u \in x \setminus y$ or $u \in x \setminus z$. Thus $u \in (x \setminus y) \cup (x \setminus z)$. End.

Let us show that $((x \setminus y) \cup (x \setminus z)) \subseteq x \setminus (y \cap z)$. Let $u \in (x \setminus y) \cup (x \setminus z)$. Then $u \in x \setminus y$ or $u \in x \setminus z$. Hence $(u \in x \text{ and } u \notin y)$ or $(u \in x \text{ and } u \notin z)$. Thus $u \in x$ and $(u \notin y \text{ or } u \notin z)$. Therefore $u \in x$ and not $(u \in y \text{ and } u \in z)$. Then $u \in x$ and not $u \in y \cap z$. Hence $u \in x \setminus (y \cap z)$. End.

Proposition 55. (SF 01 01 403962)

$$x \setminus (y \cup z) = (x \setminus y) \cap (x \setminus z).$$

Proof. Let us show that $x \setminus (y \cup z) \subseteq (x \setminus y) \cap (x \setminus z)$. Let $u \in x \setminus (y \cup z)$. Then $u \in x$ and $u \notin y \cup z$. Hence it is wrong that $(u \in y \text{ or } u \in z)$. Thus $u \notin y$ and $u \notin z$. Therefore $u \in x$ and $(u \notin y \text{ and } u \notin z)$. Then $(u \in x \text{ and } u \notin y)$ and $(u \in x \text{ and } u \notin z)$. Hence $u \in x \setminus y$ and $u \in x \setminus z$. Thus $u \in (x \setminus y) \cap (x \setminus z)$. End.

Let us show that $((x \setminus y) \cap (x \setminus z)) \subseteq x \setminus (y \cup z)$. Let $u \in (x \setminus y) \cap (x \setminus z)$. Then $u \in x \setminus y$ and $u \in x \setminus z$. Hence $(u \in x \text{ and } u \notin y)$ and $(u \in x \text{ and } u \notin z)$. Thus $u \in x$ and $(u \notin y \text{ and } u \notin z)$. Therefore $u \in x$ and not $(u \in y \text{ or } u \in z)$. Then $u \in x$ and not $u \in y \cup z$. Hence $u \in x \setminus (y \cup z)$. End. \square

Proposition 56. (SF 01 01 628970)

$$x \subseteq x \cup y$$
.

Proof. Let $u \in x$. Then $u \in x$ or $u \in y$. Hence $u \in x \cup y$.

Proposition 57. (SF 01 01 368515)

$$x \cap y \subseteq x$$
.

Proof. Let $u \in x \cap y$. Then $u \in x$ and $u \in y$. Hence $u \in x$.

Proposition 58. (SF 01 01 591527)

$$x \subseteq y \iff x \cup y = y.$$

Proof. Case $x \subseteq y$.

Let us show that $x \cup y \subseteq y$. Let $u \in x \cup y$. Then $u \in x$ or $u \in y$. If $u \in x$ then $u \in y$. Hence $u \in y$. End.

Let us show that $y \subseteq x \cup y$. Let $u \in y$. Then $u \in x$ or $u \in y$. Hence $u \in x \cup y$. End. End.

Case $x \cup y = y$. Let $u \in x$. Then $u \in x$ or $u \in y$. Hence $u \in x \cup y = y$. End. \square

Proposition 59. (SF 01 01 681535)

$$x\subseteq y\iff x\cap y=x.$$

Proof. Case $x \subseteq y$.

Let us show that $x \cap y \subseteq x$. Let $u \in x \cap y$. Then $u \in x$ and $u \in y$. Hence $u \in x$. End.

Let us show that $x \subseteq x \cap y$. Let $u \in x$. Then $u \in y$. Hence $u \in x$ and $u \in y$. Thus $u \in x \cap y$. End. End.

Case $x \cap y = x$. Let $u \in x$. Then $u \in x \cap y$. Hence $u \in x$ and $u \in y$. Thus $u \in y$. End. \square

Proposition 60. (SF 01 01 402739)

$$x \setminus x = \emptyset$$
.

Proof. $x \setminus x$ has no elements. Indeed $x \setminus x = \{\text{element } u \mid u \in x \text{ and } u \notin x\}$. Hence the thesis. \Box

Proposition 61. (SF 01 01 661163)

$$x \setminus \emptyset = x$$
.

Proof. $x \setminus \emptyset = \{\text{element } u \mid u \in x \text{ and } u \notin \emptyset\}$. No element is an element of \emptyset . Hence $x \setminus \emptyset = \{\text{element } u \mid u \in x\}$. Then we have the thesis. \square

Proposition 62. (SF 01 01 408438)

$$x \setminus (x \setminus y) = x \cap y.$$

Proof. Let us show that $x \setminus (x \setminus y) \subseteq x \cap y$. Let $u \in x \setminus (x \setminus y)$. Then $u \in x$ and $u \notin x \setminus y$. Hence $u \notin x$ or $u \in y$. Thus $u \in y$. Therefore $u \in x \cap y$. End.

Let us show that $x \cap y \subseteq x \setminus (x \setminus y)$. Let $u \in x \cap y$. Then $u \in x$ and $u \in y$. Hence $u \notin x$ or $u \in y$. Thus $u \notin x \setminus y$. Therefore $u \in x \setminus (x \setminus y)$. End. \square

Proposition 63. (SF 01 01 185130)

$$y \subseteq x \iff x \setminus (x \setminus y) = y.$$

Proof. Case $y \subseteq x$. Obvious.

Case $x \setminus (x \setminus y) = y$. Then every element of y is an element of $x \setminus (x \setminus y)$. Thus every element of y is an element of x. Then we have the thesis. End.

Proposition 64. (SF 01 01 878796)

$$x \cap (y \setminus z) = (x \cap y) \setminus (x \cap z).$$

Proof. Let us show that $x \cap (y \setminus z) \subseteq (x \cap y) \setminus (x \cap z)$. Let $u \in x \cap (y \setminus z)$. Then $u \in x$ and $u \in y \setminus z$. Hence $u \in x$ and $u \in y$. Thus $u \in x \cap y$ and $u \notin z$. Therefore $u \notin x \cap z$. Then we have $u \in (x \cap y) \setminus (x \cap z)$. End.

Let us show that $((x \cap y) \setminus (x \cap z)) \subseteq x \cap (y \setminus z)$. Let $u \in (x \cap y) \setminus (x \cap z)$. Then $u \in x$ and $u \in y$. $u \notin x \cap z$. Hence $u \notin z$. Thus $u \in y \setminus z$. Therefore $u \in x \cap (y \setminus z)$. End.

2 The powerset

Axiom 65. There exists a set z such that $z = \{ \text{set } y \mid y \subseteq x \}$.

Definition 66. $\mathcal{P}(x)$ is the set z such that $z = \{ \text{set } y \mid y \subseteq x \}.$

Let the powerset of x stand for $\mathcal{P}(x)$.

Proposition 67. (SF 01 02 481481) \emptyset and x are elements of $\mathcal{P}(x)$.

Proof. We have $\emptyset, x \subseteq x$. Hence the thesis.

Corollary 68. (SF 01 02 671341) $\mathcal{P}(x)$ is nonempty.

Proposition 69. (SF 01 02 833606) $\mathcal{P}(x)$ is a system of subsets of x .		
Proposition 70. (SF 01 02 706547) $\bigcup P(x) = x$.		
<i>Proof.</i> Every element of $\mathcal{P}(x)$ is a subset of x . Hence $\bigcup \mathcal{P}(x) \subseteq x$.		
We have $x \in \mathcal{P}(x)$. Hence every element of x is an element of some element of $\mathcal{P}(x)$. Thus every element of x belongs to $\bigcup \mathcal{P}(x)$. Therefore $x \subseteq \bigcup \mathcal{P}(x)$.		
Then we have the thesis. $\hfill\Box$		
Proposition 71. (SF 01 02 818609) $\bigcap \mathcal{P}(x) = \emptyset$.		
<i>Proof.</i> We have $\emptyset \in \mathcal{P}(x)$. Hence every element of $\bigcap \mathcal{P}(x)$ is an element of \emptyset . Thus $\bigcap \mathcal{P}(x)$ is empty. Therefore $\bigcap \mathcal{P}(x) = \emptyset$.		

3 The axiom of regularity

Axiom 72. (Regularity) Every nonempty set x that contains some set contains some set y such that x and y are disjoint.
Proposition 73. (SF 01 03 877283) No set x is an element of x .
<i>Proof.</i> Assume the contrary. Take a set x such that $x \in x$. We can take an element y of $\{x\}$ such that $\{x\}$ and y are disjoint (by regularity). Indeed $\{x\}$ contains some set. Then $y = x$. Hence $\{x\}$ and x are disjoint. Contradiction. Indeed $x \in \{x\}$ and $x \in x$.
Corollary 74. (SF 01 03 722484) There is no set that contains every set.
<i>Proof.</i> Assume the contrary. Take a set V that contains every set. Then V is an element of V . Contradiction.
Proposition 75. (SF 01 03 512352) There exist no sets x, y such that $x \in y$ and $y \in x$.
<i>Proof.</i> Assume the contrary. Take sets x, y such that $x \in y$ and $y \in x$. Consider an element z of $\{x, y\}$ such that $\{x, y\}$ and z are disjoint (by regularity). Indeed $\{x, y\}$ contains some set. We have $z = x$ or $z = y$.
Case $z=x.$ Then x and $\{x,y\}$ are disjoint. Hence $y\notin x.$ Contradiction. End.
Case $z=y$. Then y and $\{x,y\}$ are disjoint. Hence $x\notin y$. Contradiction. End. \Box

4 The symmetric difference

4.1 Definition

Definition 76. $x \triangle y = (x \cup y) \setminus (x \cap y)$.

Let the symmetric difference of x and y stand for $x \triangle y$.

Lemma 77. $x \triangle y$ is a set.

Proof. x and y are sets. Hence $x \cup y$ and $x \cap y$ are sets. Thus $(x \cup y) \setminus (x \cap y)$ is a set. Therefore $x \triangle y$ is a set.

Proposition 78. (SF 01 04 470605) $x \triangle y = (x \setminus y) \cup (y \setminus x)$.

Proof. Let us show that $x \triangle y \subseteq (x \setminus y) \cup (y \setminus x)$. Let $u \in x \triangle y$. Then $u \in x \cup y$ and $u \notin x \cap y$. Hence $(u \in x \text{ or } u \in y)$ and not $(u \in x \text{ and } u \in y)$. Thus $(u \in x \text{ or } u \in y)$ and $(u \notin x \text{ or } u \notin y)$. Therefore if $u \in x$ then $u \notin y$. If $u \in y$ then $u \notin x$. Then we have $(u \in x \text{ and } u \notin y)$ or $(u \in y \text{ and } u \notin x)$. Hence $u \in x \setminus y$ or $u \in y \setminus x$. Thus $u \in (x \setminus y) \cup (y \setminus x)$. End.

Let us show that $((x \setminus y) \cup (y \setminus x)) \subseteq x \triangle y$. Let $u \in (x \setminus y) \cup (y \setminus x)$. Then $(u \in x \text{ and } u \notin y)$ or $(u \in y \text{ and } u \notin x)$. If $u \in x \text{ and } u \notin y$ then $u \in x \cup y$ and $u \notin x \cap y$. If $u \in y \text{ and } u \notin x \text{ then } u \in x \cup y \text{ and } u \notin x \cap y$. Hence $u \in x \cup y \text{ and } u \notin x \cap y$. Thus $u \in (x \cup y) \setminus (x \cap y) = x \triangle y$. End. \square

4.2 Computation laws

Proposition 79. (SF 01 04 688675)

$$x \triangle y = y \triangle x$$
.

Proof.
$$x \triangle y = (x \cup y) \setminus (x \cap y) = (y \cup x) \setminus (y \cap x) = y \triangle x.$$

Proposition 80. (SF 01 04 606646)

$$((x \triangle y) \triangle z) = x \triangle (y \triangle z).$$

Proof. Take $A = (((x \setminus y) \cup (y \setminus x)) \setminus z) \cup (z \setminus ((x \setminus y) \cup (y \setminus x))).$

Take
$$B = (x \setminus ((y \setminus z) \cup (z \setminus y))) \cup (((y \setminus z) \cup (z \setminus y)) \setminus x)$$
.

We have $x \triangle y = (x \setminus y) \cup (y \setminus x)$ and $y \triangle z = (y \setminus z) \cup (z \setminus y)$. Hence $(x \triangle y) \triangle z = A$ and $x \triangle (y \triangle z) = B$.

Let us show that (A) $A \subseteq B$. Let $u \in A$.

(A 1) Case $u \in ((x \setminus y) \cup (y \setminus x)) \setminus z$. Then $u \notin z$.

(A 1a) Case $u \in x \setminus y$. Then $u \notin y \setminus z$ and $u \notin z \setminus y$. $u \in x$. Hence $u \in x \setminus ((y \setminus z) \cup (z \setminus y))$. Thus $u \in B$. End.

- (A 1b) Case $u \in y \setminus x$. Then $u \in y \setminus z$. Hence $u \in (y \setminus z) \cup (z \setminus y)$. $u \notin x$. Thus $u \in ((y \setminus z) \cup (z \setminus y)) \setminus x$. Therefore $u \in B$. End. End.
- (A 2) Case $u \in z \setminus ((x \setminus y) \cup (y \setminus x))$. Then $u \in z$. $u \notin x \setminus y$ and $u \notin y \setminus x$. Hence not $(u \in x \setminus y \text{ or } u \in y \setminus x)$. Thus not $((u \in x \text{ and } u \notin y) \text{ or } (u \in y \text{ and } u \notin x))$. Therefore $(u \notin x \text{ or } u \in y)$ and $(u \notin y \text{ or } u \in x)$.
- (A 2a) Case $u \in x$. Then $u \in y$. Hence $u \notin (y \setminus z) \cup (z \setminus y)$. Thus $u \in x \setminus ((y \setminus z) \cup (z \setminus y))$. Therefore $u \in B$. End.
- (A 2b) Case $u \notin x$. Then $u \notin y$. Hence $u \in z \setminus y$. Thus $u \in (y \setminus z) \cup (z \setminus y)$. Therefore $u \in ((y \setminus z) \cup (z \setminus y)) \setminus x$. Then we have $u \in B$. End. End. End.

Let us show that (B) $B \subseteq A$. Let $u \in B$.

- (B 1) Case $u \in x \setminus ((y \setminus z) \cup (z \setminus y))$. Then $u \in x$. $u \notin y \setminus z$ and $u \notin z \setminus y$. Hence not $(u \in y \setminus z \text{ or } u \in z \setminus y)$. Thus not $((u \in y \text{ and } u \notin z) \text{ or } (u \in z \text{ and } u \notin y))$. Therefore $(u \notin y \text{ or } u \in z)$ and $(u \notin z \text{ or } u \in y)$.
- (B 1a) Case $u \in y$. Then $u \in z$. $u \notin x \setminus y$ and $u \notin y \setminus x$. Hence $u \notin (x \setminus y) \cup (y \setminus x)$. Thus $u \in z \setminus ((x \setminus y) \cup (y \setminus x))$. Therefore $u \in A$. End.
- (B 1b) Case $u \notin y$. Then $u \notin z$. $u \in x \setminus y$. Hence $u \in (x \setminus y) \cup (y \setminus x)$. Thus $u \in ((x \setminus y) \cup (y \setminus x)) \setminus z$. Therefore $u \in A$. End. End.
- (B 2) Case $u \in ((y \setminus z) \cup (z \setminus y)) \setminus x$. Then $u \notin x$.
- (B 2a) Case $u \in y \setminus z$. Then $u \in y \setminus x$. Hence $u \in (x \setminus y) \cup (y \setminus x)$. Thus $u \in ((x \setminus y) \cup (y \setminus x)) \setminus z$. Therefore $u \in A$. End.
- (B 2b) Case $u \in z \setminus y$. Then $u \in z$. $u \notin x \setminus y$ and $u \notin y \setminus x$. Hence $u \notin (x \setminus y) \cup (y \setminus x)$. Thus $u \in z \setminus ((x \setminus y) \cup (y \setminus x))$. Therefore $u \in A$. End. End. End.

Proposition 81. (SF 01 04 751668)

$$x \cap (y \triangle z) = (x \cap y) \triangle (x \cap z).$$

Proof. $x \cap (y \triangle z) = x \cap ((y \setminus z) \cup (z \setminus y)) = (x \cap (y \setminus z)) \cup (x \cap (z \setminus y)).$ $x \cap (y \setminus z) = (x \cap y) \setminus (x \cap z). \ x \cap (z \setminus y) = (x \cap z) \setminus (x \cap y).$

Hence $x \cap (y \triangle z) = ((x \cap y) \setminus (x \cap z)) \cup ((x \cap z) \setminus (x \cap y)) = (x \cap y) \triangle (x \cap z)$. \square

Proposition 82. (SF 01 04 420961)

$$x \subseteq y \iff x \triangle y = y \setminus x.$$

Proof. Case $x \subseteq y$. Then $x \cup y = y$ and $x \cap y = x$. Hence the thesis. End.

Case $x \triangle y = y \setminus x$. Let $u \in x$. Then $u \notin y \setminus x$. Hence $u \notin x \triangle y$. Thus $u \notin x \cup y$ or $u \in x \cap y$. Indeed $x \triangle y = (x \cup y) \setminus (x \cap y)$. If $u \notin x \cup y$ then we have a contradiction. Therefore $u \in x \cap y$. Then we have the thesis. End.

Proposition 83. (SF 01 04 241267)

$$x \triangle y = x \triangle z \iff y = z.$$

Proof. Case $x \triangle y = x \triangle z$.

Let us show that $y \subseteq z$. Let $u \in y$.

Case $u \in x$. Then $u \notin x \triangle y$. Hence $u \notin x \triangle z$. Therefore $u \in x \cap z$. Indeed $x \triangle z = (x \cup z) \setminus (x \cap z)$. Hence $u \in z$. End.

Case $u \notin x$. Then $u \in x \triangle y$. Indeed $u \in x \cup y$ and $u \notin x \cap y$. Hence $u \in x \triangle z$. Thus $u \in x \cup z$ and $u \notin x \cap z$. Therefore $u \in x$ or $u \in z$. Then we have the thesis. End. End.

Let us show that $z \subseteq y$. Let $u \in z$.

Case $u \in x$. Then $u \notin x \triangle z$. Hence $u \notin x \triangle y$. Therefore $u \in x \cap y$. Indeed $u \notin x \cup y$ or $u \in x \cap y$. Hence $u \in y$. End.

Case $u \notin x$. Then $u \in x \triangle z$. Indeed $u \in x \cup z$ and $u \notin x \cap z$. Hence $u \in x \triangle y$. Thus $u \in x \cup y$ and $u \notin x \cap y$. Therefore $u \in x$ or $u \in y$. Then we have the thesis. End. End.

Proposition 84. (SF 01 04 496712)

$$x \triangle x = \emptyset$$
.

Proof.
$$x \triangle x = (x \cup x) \setminus (x \cap x) = x \setminus x = \emptyset.$$

Proposition 85. (SF 01 04 182395)

$$x \triangle \emptyset = x$$
.

Proof.
$$x \triangle \emptyset = (x \cup \emptyset) \setminus (x \cap \emptyset) = x \setminus \emptyset = x$$
.

Proposition 86. (SF 01 04 814558)

$$x = y \iff x \triangle y = \emptyset.$$

Proof. Case x=y. Then $x \triangle y = (x \cup x) \setminus (x \cap x) = x \setminus x = \emptyset$. Hence the thesis. End.

Case $x \triangle y = \emptyset$. Then $(x \cup y) \setminus (x \cap y)$ is empty. Hence every element of $x \cup y$ is an element of $x \cap y$. Thus for all elements u if $u \in x$ or $u \in y$ then $u \in x$ and $u \in y$. Therefore every element of x is an element of y. Every element of y is an element of x. Then we have the thesis. End.

5 Ordered pairs and Cartesian products

Let u', v', w' denote elements. Let x', y', z' denote sets.

5.1 Ordered pairs

Note that Naproche provides an built-in function symbol (\cdot, \cdot) , i.e. for any two objects a, b there is an object (a, b).

```
Axiom 87. (u, v) = \{\{u\}, \{u, v\}\}.
                          (SF 01 05 366682) Let u, v be elements. Then
Proposition 88.
(u, v) is an element.
Proof. \{u\} and \{u, v\} are elements. Hence (u, v) = \{\{u\}, \{u, v\}\}. Thus
(u,v) is an element.
                        (SF 01 05 270653) If (u, v) = (u', v') then u = u'
Proposition 89.
and v = v'.
Proof. Assume (u, v) = (u', v'). (1) Then \{\{u\}, \{u, v\}\} = \{\{u'\}, \{u', v'\}\}.
Hence (\{u\} = \{u'\}) or \{u\} = \{u', v'\} and (\{u, v\} = \{u'\}) or \{u, v\} = \{u'\}
\{u', v'\}). Thus (\{u\} = \{u'\} \text{ and } (\{u, v\} = \{u'\} \text{ or } \{u, v\} = \{u', v'\})) or
(\{u\} = \{u', v'\} \text{ and } (\{u, v\} = \{u'\} \text{ or } \{u, v\} = \{u', v'\})).
Case \{u\} = \{u'\} and (\{u, v\} = \{u'\}) or \{u, v\} = \{u', v'\}. We have
\{u\} = \{u'\}. \text{ Hence } u = u'.
Case \{u,v\} = \{u'\}. Then u = u' = v. Hence \{\{u\}, \{u,u\}\} = \{\{u\}, \{u,v'\}\} (by 1). Thus \{\{u\}\} = \{\{u\}, \{u,v'\}\}. Therefore \{u\} = \{\{u\}, \{u,v'\}\}.
\{u, v'\}. Consequently v' = u = v. End.
Case \{u, v\} = \{u', v'\}. Then \{u, v\} = \{u, v'\}. Hence v = v'. End. End.
Case \{u\} = \{u', v'\} and (\{u, v\} = \{u'\} \text{ or } \{u, v\} = \{u', v'\}). We have
\{u\} = \{u', v'\}. Hence u = u'.
Case \{u, v\} = \{u'\}. Then u = v = u'. Hence v = v'. End.
Case \{u, v\} = \{u', v'\}. Then \{u, v\} = \{u, v'\}. Hence v = v'. End.
End.
```

5.2 Cartesian products

```
Lemma 90. There exists a set z such that z = \{(u, v) \mid u \in x \text{ and } v \in y\}. 
 Proof. (1) Define z = \{(u, v) \mid u \in x \text{ and } v \in y\}. Take z' = \mathcal{P}(\mathcal{P}(x \cup y)). Then z' is a set. 
 Let us show that every element of z is contained in z'. Let w \in z. Take
```

elements u, v such that w = (u, v). Then $u \in x$ and $v \in y$. Hence $\{u\}$ and $\{u, v\}$ are subsets of $x \cup y$. Thus $\{u\}$ and $\{u, v\}$ are elements of $\mathcal{P}(x \cup y)$. Therefore $w = \{\{u\}, \{u, v\}\} \subseteq \mathcal{P}(x \cup y)$. Consequently $w \in \mathcal{P}(\mathcal{P}(x \cup y)) = z'$. End. Hence z is a set (by separation). Therefore the thesis (by 1). **Definition 91.** $x \times y$ is the set z such that $z = \{(u, v) \mid u \in x \text{ and } v \in y\}.$ Let the Cartesian product of x and y stand for $x \times y$. Proposition 92. (SF 01 05 773790) $(u,v) \in x \times y$ iff $u \in x$ and $v \in y$. *Proof.* Case $(u,v) \in x \times y$. Assume $(u,v) \in x \times y$. We can take $u' \in x$ and $v' \in y$ such that (u,v) = (u',v'). Then u = u' and v = v'. Hence $u \in x$ and $v \in y$. End. Case $u \in x$ and $v \in y$. u and v are elements. Hence (u, v) is an element. Therefore $(u, v) \in x \times y$. Indeed $x \times y = \{(u', v') \mid u' \in x \text{ and } v' \in y\}$. **Proposition 93.** (SF 01 05 279635) $x \times y$ is empty iff x is empty or y is empty. *Proof.* Case $x \times y$ is empty. Assume that x and y are nonempty. Thus we can take an element u of x and an element v of y. Then (u, v) is an element of $x \times y$. Contradiction. End. Case x is empty or y is empty. Assume that $x \times y$ is nonempty. Then we can take an element z of $x \times y$. Then z = (u, v) for some $u \in x$ and some $v \in y$. Hence x and y are nonempty. Contradiction. End. **Proposition 94.** (SF 01 05 784919) $\{u\} \times \{v\} = \{(u, v)\}.$ *Proof.* Let us show that $\{u\} \times \{v\} \subseteq \{(u,v)\}$. Let $w \in \{u\} \times \{v\}$. Take $a \in \{u\}$ and $b \in \{v\}$ such that w = (a, b). We have a = u and b = v. Hence w = (u, v). Thus $w \in \{(u, v)\}$. End.

5.3 Computation laws

Proposition 95. (SF 01 05 197314)

$$x \subseteq y \implies x \times z \subseteq y \times z.$$

Let us show that $\{(u,v)\}\subseteq \{u\}\times \{v\}$. Let $w\in \{(u,v)\}$. Then w=(u,v).

We have $u \in \{u\}$ and $v \in \{v\}$. Hence $w \in \{u\} \times \{v\}$. End.

Proof. Assume $x \subseteq y$. Let $w \in x \times z$. Take $u \in x$ and $v \in z$ such that w = (u, v). Then $u \in y$. Hence $(u, v) \in y \times z$.

Proposition 96. (SF 01 05 238807) Assume that x and x' are nonempty.

$$(x \times x') \subseteq (y \times y') \iff (x \subseteq y \text{ and } x' \subseteq y').$$

Proof. Case $(x \times x') \subseteq (y \times y')$. Let us show that for all $u \in x$ and all $v \in x'$ we have $u \in y$ and $v \in y'$. Let $u \in x$ and $v \in x'$. Then $(u, v) \in x \times x'$. Hence $(u, v) \in y \times y'$. Thus $u \in y$ and $v \in y'$. End. End.

Case $x \subseteq y$ and $x' \subseteq y'$. Let $w \in x \times x'$. Take $u \in x$ and $v \in x'$ such that w = (u, v). Then $u \in y$ and $v \in y'$. Hence $(u, v) \in y \times y'$. End.

Proposition 97. (SF 01 05 138531)

$$((x \cup y) \times z) = (x \times z) \cup (y \times z).$$

Proof. Let us show that $((x \cup y) \times z) \subseteq (x \times z) \cup (y \times z)$. Let $w \in (x \cup y) \times z$. Take $u \in x \cup y$ and $v \in z$ such that w = (u, v). Then $u \in x$ or $u \in y$. If $u \in x$ then $w \in x \times z$ and if $u \in y$ then $w \in y \times z$. Hence $w \in x \times z$ or $w \in y \times z$. Thus $w \in (x \times z) \cup (y \times z)$. End.

Let us show that $((x \times z) \cup (y \times z)) \subseteq (x \cup y) \times z$. Let $w \in (x \times z) \cup (y \times z)$. Then $w \in x \times z$ or $w \in y \times z$. Take elements u, v such that w = (u, v). Then $(u \in x \text{ or } u \in y)$ and $v \in z$. Hence $u \in x \cup y$. Thus $w \in (x \cup y) \times z$. End.

Proposition 98. (SF 01 05 575129)

$$x \times (y \cup z) = (x \times y) \cup (x \times z).$$

Proof. Let us show that $x \times (y \cup z) \subseteq (x \times y) \cup (x \times z)$. Let $w \in x \times (y \cup z)$. Take $u \in x$ and $v \in y \cup z$ such that w = (u, v). Then $v \in y$ or $v \in z$. Hence $w \in x \times y$ or $w \in x \times z$. Indeed if $v \in y$ then $w \in x \times y$ and if $v \in z$ then $w \in x \times z$. Thus $w \in (x \times y) \cup (x \times z)$. End.

Let us show that $((x \times y) \cup (x \times z)) \subseteq x \times (y \cup z)$. Let $w \in (x \times y) \cup (x \times z)$. Then $w \in x \times y$ or $w \in x \times z$. Take elements u, v such that w = (u, v). Then $u \in x$ and $(v \in y \text{ or } v \in z)$. Hence $w \in x \times (y \cup z)$. End.

Proposition 99. (SF 01 05 811990)

$$((x \cap y) \times z) = (x \times z) \cap (y \times z).$$

Proof. Let us show that $((x \cap y) \times z) \subseteq (x \times z) \cap (y \times z)$. Let $w \in (x \cap y) \times z$. Take $u \in x \cap y$ and $v \in z$ such that w = (u, v). Then $u \in x$ and $u \in y$. Hence $w \in x \times z$ and $w \in y \times z$. Thus $w \in (x \times z) \cap (y \times z)$. End.

Let us show that $((x \times z) \cap (y \times z)) \subseteq (x \cap y) \times z$. Let $w \in (x \times z) \cap (y \times z)$. Then $w \in x \times z$ and $w \in y \times z$. Take elements u, v such that w = (u, v). Then $(u \in x \text{ and } u \in y)$ and $v \in z$. Hence $u \in x \cap y$. Thus $w \in (x \cap y) \times z$. End.

Proposition 100. (SF 01 05 427022)

$$x \times (y \cap z) = (x \times y) \cap (x \times z).$$

Proof. Let us show that $x \times (y \cap z) \subseteq (x \times y) \cap (x \times z)$. Let $w \in x \times (y \cap z)$. Take $u \in x$ and $v \in y \cap z$ such that w = (u, v). Then $v \in y$ and $v \in z$. Hence $w \in x \times y$ and $w \in x \times z$. Thus $w \in (x \times y) \cap (x \times z)$. End.

Let us show that $((x \times y) \cap (x \times z)) \subseteq x \times (y \cap z)$. Let $w \in (x \times y) \cap (x \times z)$. Then $w \in x \times y$ and $w \in x \times z$. Take elements u, v such that w = (u, v). Then $u \in x$ and $(v \in y)$ and $v \in z$. Hence $w \in x \times (y \cap z)$. End.

Proposition 101. (SF 01 05 517847)

$$((x \setminus y) \times z) = (x \times z) \setminus (y \times z).$$

Proof. Let us show that $((x \setminus y) \times z) \subseteq (x \times z) \setminus (y \times z)$. Let $w \in (x \setminus y) \times z$. Take $u \in x \setminus y$ and $v \in z$ such that w = (u, v). Then $u \in x$ and $u \notin y$. Hence $w \in x \times z$ and $w \notin y \times z$. Thus $w \in (x \times z) \setminus (y \times z)$. End.

Let us show that $((x \times z) \setminus (y \times z)) \subseteq (x \setminus y) \times z$. Let $w \in (x \times z) \setminus (y \times z)$. Then $w \in x \times z$ and $w \notin y \times z$. Take $u \in x$ and $v \in z$ such that w = (u, v). Then $u \notin y$. Indeed if $u \in y$ then $w \in y \times z$. Hence $u \in x \setminus y$. Thus $w \in (x \setminus y) \times z$. End.

Proposition 102. (SF 01 05 773842)

$$x \times (y \setminus z) = (x \times y) \setminus (x \times z).$$

Proof. Let us show that $x \times (y \setminus z) \subseteq (x \times y) \setminus (x \times z)$. Let $w \in x \times (y \setminus z)$. Take $u \in x$ and $v \in y \setminus z$ such that w = (u, v). Then $v \in y$ and $v \notin z$. Hence $w \in x \times y$ and $w \notin x \times z$. Thus $w \in (x \times y) \setminus (x \times z)$. End.

Let us show that $((x \times y) \setminus (x \times z)) \subseteq x \times (y \setminus z)$. Let $w \in (x \times y) \setminus (x \times z)$. Then $w \in x \times y$ and $w \notin x \times z$. Take elements u, v such that w = (u, v). Then $u \in x$ and $(v \in y)$ and $v \notin z$. Hence $w \in x \times (y \setminus z)$. End.

Proposition 103. (SF 01 05 472623) Assume that x and x' are nonempty or y and y' are nonempty.

$$(x \times x') = (y \times y') \iff (x = y \text{ and } x' = y').$$

Proof. Case $x \times x' = y \times y'$. Then x and x' are nonempty iff y and y' are nonempty.

Let us show that for all $u \in x$ and all $v \in x'$ we have $u \in y$ and $v \in y'$. Let $u \in x$ and $v \in x'$. Then $(u, v) \in x \times x'$. Hence we can take $w \in y \times y'$ such that w = (u, v). Thus $u \in y$ and $v \in y'$. End.

Therefore $x \subseteq y$ and $x' \subseteq y'$. Indeed x and x' are nonempty.

Let us show that for all $u \in y$ and all $v \in y'$ we have $u \in x$ and $v \in x'$. Let $u \in y$ and $v \in y'$. Then $(u, v) \in y \times y'$. Hence we can take $w \in x \times x'$ such that w = (u, v). Thus $(u, v) \in x \times x'$. End.

Therefore $y \subseteq x$ and $y' \subseteq x'$. Indeed y and y' are nonempty. End.

Case x = y and x' = y'. Trivial.

Proposition 104. (SF 01 05 261950)

$$((x \times y) \cap (x' \times y')) = (x \cap x') \times (y \cap y').$$

Proof. Let us show that $((x \times y) \cap (x' \times y')) \subseteq (x \cap x') \times (y \cap y')$. Let $w \in (x \times y) \cap (x' \times y')$. Then $w \in x \times y$ and $w \in x' \times y'$. Take elements u, v such that w = (u, v). Then $u \in x, x'$ and $v \in y, y'$. Hence $u \in x \cap x'$ and $v \in y \cap y'$. Thus $w \in (x \cap x') \times (y \cap y')$. End.

Let us show that $(x \cap x') \times (y \cap y') \subseteq (x \times y) \cap (x' \times y')$. Let $w \in (x \cap x') \times (y \cap y')$. Take elements u, v such that w = (u, v). Then $u \in x \cap x'$ and $v \in y \cap y'$. Hence $u \in x, x'$ and $v \in y, y'$. Thus $w \in x \times y$ and $w \in x' \times y'$. Therefore $w \in (x \times y) \cap (x' \times y')$. End.

Proposition 105. (SF 01 05 687547)

$$((x \times y) \cup (x' \times y')) \subseteq (x \cup x') \times (y \cup y').$$

Proof. Let $w \in (x \times y) \cup (x' \times y')$. Then $w \in x \times y$ or $w \in x' \times y'$. Take elements u, v such that w = (u, v). Then $(u \in x \text{ or } u \in x')$ and $(v \in y \text{ or } v \in y')$. Hence $u \in x \cup x'$ and $v \in y \cup y'$. Thus $w \in (x \cup x') \times (y \cup y')$. \square

Proposition 106. (SF 01 05 247770)

$$((x \times y) \setminus (x' \times y')) = (x \times (y \setminus y')) \cup ((x \setminus x') \times y).$$

Proof. Let us show that $((x \times y) \setminus (x' \times y')) \subseteq (x \times (y \setminus y')) \cup ((x \setminus x') \times y)$. Let $w \in (x \times y) \setminus (x' \times y')$. Then $w \in x \times y$ and $w \notin x' \times y'$. Take $u \in x$ and $v \in y$ such that w = (u, v). Then it is wrong that $u \in x'$ and $v \in y'$. Hence $u \notin x'$ or $v \notin y'$. Thus $u \in x \setminus x'$ or $v \in y \setminus y'$. Therefore $w \in x \times (y \setminus y')$ or $w \in (x \setminus x') \times y$. Hence we have $w \in (x \times (y \setminus y')) \cup ((x \setminus x') \times y)$. End.

Let us show that $(x \times (y \setminus y')) \cup ((x \setminus x') \times y) \subseteq (x \times y) \setminus (x' \times y')$. Let $w \in (x \times (y \setminus y')) \cup ((x \setminus x') \times y)$. Then $w \in (x \times (y \setminus y'))$ or $w \in ((x \setminus x') \times y)$. Take elements u, v such that w = (u, v). Then $(u \in x \text{ and } v \in y \setminus y')$ or $(u \in x \setminus x' \text{ and } v \in y)$.

Case $u \in x$ and $v \in y \setminus y'$. Then $u \in x$ and $v \in y$. Hence $w \in x \times y$. We have $v \notin y'$. Thus $w \notin x' \times y'$. Therefore $w \in (x \times y) \setminus (x' \times y')$. End.

Case $u \in x \setminus x'$ and $v \in y$. Then $u \in x$ and $v \in y$. Hence $w \in x \times y$. We have $u \notin x'$. Thus $w \notin x' \times y'$. Therefore $w \in (x \times y) \setminus (x' \times y')$. End.

6 The axiom of infinity

Axiom 107. (infinity) There exists a system of sets ω such that $\emptyset \in \omega$ and for all $x \in \omega$ we have $x \cup \{x\} \in \omega$.

Part II

Functions

7 Functions

7.1 Function axioms

Let u, v, w denote elements. Let x, y, z denote sets. Let f, g, h denote functions.

Let the domain of f stand for dom(f). Let the value of f at u stand for f(u). Let f_u stand for f(u).

Definition 108. A value of f is an object v such that v = f(u) for some $u \in \text{dom}(f)$.

Definition 109. A fixed point of f is an element u of the domain of f such that f(u) = u.

Note that the following two axioms are already hard-coded into Naproche.

Axiom 110. (Function extensionality) Let f, g be functions. If dom(f) = dom(g) and f(u) = g(u) for all $u \in dom(f)$ then f = g.

Axiom 111. (SF 02 01 459591) The domain of any function is a set.

Axiom 112. (SF 02 01 303112) Every value of f is an element.

Important note: The current version of Naproche¹ allows to define functions *manually* whose values are not elements. Hence such a manual definition will introduce an inconsistency to the theory. Fortunately the ATP is not able to deduce the existence of a function which contradicts this axiom. So as long as you do not define a non-element-valued function yourself, there will not be any consistency issues (assuming that our is consistent at all).

Axiom 113. (Replacement) Let f be a function. There exists a set y such that $y = \{f(u) \mid u \in \text{dom}(f)\}.$

7.2 The range

Definition 114. Let f be a function. range(f) is the set y such that $y = \{f(u) \mid u \in \text{dom}(f)\}.$

Let the range of f stand for range(f).

Proposition 115. (SF 02 01 324423) v is a value of f iff $v \in \text{range}(f)$.

¹Isabelle/Naproche 2021

Proof. Case v is a value of f. Take $u \in \text{dom}(f)$ such that v = f(u). v is an element. Hence $v \in \text{range}(f)$. End.

Case $v \in \text{range}(f)$. Then v = f(u) for some $u \in \text{dom}(f)$. Hence v is a value of f. End.

7.3 Functions between sets

Definition 116. A function of x is a function f such that dom(f) = x.

Definition 117. A function to y is a function f such that $f(u) \in y$ for all $u \in \text{dom}(f)$.

Let a function from x to y stand for a function f of x such that f is a function to y. Let $f: x \to y$ stand for f is a function from x to y.

Proposition 118. (SF 02 01 694542) Let f be a function from x to y. Then range(f) $\subseteq y$.

Proof. Let $v \in \text{range}(f)$. Take $u \in x$ such that v = f(u). Then $v \in y$. \square

Definition 119. A function onto y is a function f such that y = range(f).

Definition 120. A function from x onto y is a function f of x such that f is a function onto y.

Let $f: x \rightarrow y$ stand for f is a function from x onto y.

Proposition 121. (SF 02 01 677451) f is a function onto range(f).

Proposition 122. (SF 02 01 495468) Let f be a function onto y. Then f is a function to y.

Proof. Let $u \in \text{dom}(f)$. Then $f(u) \in \text{range}(f)$. Hence $f(u) \in y$.

Definition 123. A function on x is a function from x to x.

Definition 124. f is one to one iff for all $u, v \in dom(f)$ if f(u) = f(v) then u = v.

Definition 125. A function into y is an one to one function to y.

Definition 126. A function from x into y is a function f of x such that f is a function into y.

Let $f: x \hookrightarrow y$ stand for f is a function from x into y.

Definition 127. A bijection between x and y is a one to one function f from x onto y.

Let a bijection from x to y stand for a bijection between x and y.

Proposition 128. (SF 02 01 717927) Let f be a function from x into y. Then f is a bijection between x and range(f).

Proof. f is one to one and f is a function from x onto range(f). Hence f is a bijection between x and range(f). \Box Definition 129. A permutation of x is a bijection between x and x.

7.4 The identity function

Lemma 130. There is a function ι of x such that $\iota(u) = u$ for all $u \in x$.

Proof. Define $\iota(u) = u$ for $u \in x$.

Definition 131. idx is the function of x such that $\mathrm{id}x(u) = u$ for all $u \in x$.

Let the identity function on x stand for idx.

Proposition 132. (SF 02 01 848243) idx is a permutation of x.

Proof. (1) idx is a function of x.

(2) idx is a function onto x. Proof. Let $v \in x$. Then $v = \mathrm{id}x(v)$. Hence $v \in \mathrm{range}(\mathrm{id}x)$. Qed.

(3) idx is a function into x. Proof. Let $v, v' \in x$. Assume $\mathrm{id}x(v) = \mathrm{id}x(v')$. Then v = v'. Qed.

7.5 Constant functions

Lemma 133. Let x be a set and v be an element. There is a function c of x such that $c(u) = v$ for all $u \in x$.
<i>Proof.</i> Define $c(u) = v$ for $u \in x$.
Definition 134. $\operatorname{const}_{x,v}$ is the function of x such that $\operatorname{const}_{x,v}(u) = v$ for all $u \in x$.
Let the constant function on x with value v stand for $const_{x,v}$.
Proposition 135. (SF 02 01 180417) Assume $v \in y$. Then $const_{x,v}$ is a function from x to y .
<i>Proof.</i> We have $dom(const_{x,v}) = x$ and $const_{x,v}(u) = v$ for all $u \in x$. Hence $const_{x,v}(u)$ is an element of y for all $u \in x$. Thus $range(const_{x,v}) \subseteq y$. Therefore $const_{x,v}$ is a function from x to y .
Definition 136. Let f be a function. f is constant iff there exists an object v such that $f(u) = v$ for all $u \in \text{dom}(f)$.
Proposition 137. (SF 02 01 359618) $const_{x,v}$ is constant.
<i>Proof.</i> We have $const_{x,v}(u) = v$ for all $u \in x$. Hence the thesis.

7.6 Composition

Lemma 138. Assume range $(f) \subseteq \text{dom}(g)$. Then there is a function h such that $\text{dom}(h) = \text{dom}(f)$ and $h(u) = g(f(u))$ for all $u \in \text{dom}(h)$.
<i>Proof.</i> Define $h(u) = g(f(u))$ for $u \in dom(f)$.
Definition 139. Assume range $(f) \subseteq \text{dom}(g)$. $g \circ f$ is the function h such that $\text{dom}(h) = \text{dom}(f)$ and $h(u) = g(f(u))$ for all $u \in \text{dom}(h)$.
Let the composition of g and f stand for $g \circ f$.
Proposition 140. (SF 02 01 289732) Let f be a function from x to y and g be a function from y to z . Then $g \circ f$ is a function from x to z .
<i>Proof.</i> (1) $g \circ f$ is a function of x . Indeed $dom(g \circ f) = dom(f) = x$.
(2) range $(g \circ f) \subseteq z$. Proof. Let $w \in \text{range}(g \circ f)$. Take $u \in x$ such that $(g \circ f)(u) = w$. Then $w = g(f(u))$. We have $f(u) \in y$. Hence $w \in z$. Qed.
Proposition 141. (SF 02 01 718601) Let f be a function from x to y . Then $f \circ idx = f = idy \circ f$.
<i>Proof.</i> x is the domain of $f \circ \mathrm{id} x$ and the domain of f and the domain of $\mathrm{id} y \circ f$. $(f \circ \mathrm{id} x)(u) = f(\mathrm{id} x(u)) = f(u) = \mathrm{id} y(f(u)) = (\mathrm{id} y \circ f)(u)$ for all $u \in x$. Hence the thesis (by function extensionality).
Proposition 142. (SF 02 01 558108) Let f be a function from x to y and v be an element. Then $\text{const}_{y,v} \circ f = \text{const}_{x,v}$.
<i>Proof.</i> We have $dom(const_{y,v} \circ f) = dom(f) = x = dom(const_{x,v})$. $(const_{y,v} \circ f)(u) = const_{y,v}(f(u)) = v = const_{x,v}(u)$ for all $u \in x$. Hence the thesis (by function extensionality).
Proposition 143. (SF 02 01 795869) Let f be a function from y to z and $v \in y$. Then $f \circ \operatorname{const}_{x,v} = \operatorname{const}_{x,f(v)}$.
<i>Proof.</i> We have $dom(f \circ const_{x,v}) = dom(const_{x,v}) = x = dom(const_{x,f(v)})$. $(f \circ const_{x,v})(u) = f(const_{x,v}(u)) = f(v) = const_{x,f(v)}(u)$ for all $u \in x$. Hence the thesis (by function extensionality).
Proposition 144. (SF 02 01 205975) Let f be a function from x onto y and g be a function from y onto z . Then $g \circ f$ is a function from x onto z .
<i>Proof.</i> $g \circ f$ is a function of x .
Let us show that $g \circ f$ is a function onto z . Let $w \in z$. Take $v \in y$ such that $w = g(v)$. Take $u \in x$ such that $v = f(u)$. Then $w = g(f(u)) = (g \circ f)(u)$. End.

Proposition 145. (SF 02 01 784576) Let f be a function from x into y and g be a function from y into z. Then $g \circ f$ is a function from x into z.

Proof. $g \circ f$ is a function of x.

Let us show that $g \circ f$ is one to one. Let $u, u' \in x$. Assume $(g \circ f)(u) = (g \circ f)(u')$. Then g(f(u)) = g(f(u')). Hence f(u) = f(u'). Indeed $f(u), f(u') \in y$. Thus u = u'. End.

Corollary 146. (SF 02 01 627406) Let f be a bijection between x and y and g be a bijection between y and z. Then $g \circ f$ is a bijection between x and z.

Proof. $g \circ f$ is a function from x onto z and a function into z. Hence the thesis.

Proposition 147. (SF 02 01 517102) Let w be a set. Let $f: w \to x$ and $g: x \to y$ and $h: y \to z$. Then $h \circ (g \circ f) = (h \circ g) \circ f$.

Proof. $dom(h \circ (g \circ f)) = dom(g \circ f) = dom(f) = w$. $dom((h \circ g) \circ f) = dom(f) = w$. Hence $dom(h \circ (g \circ f)) = dom((h \circ g) \circ f)$.

Let us show that $(h \circ (g \circ f))(u) = ((h \circ g) \circ f)(u)$ for all $u \in w$. Let $u \in w$. Then

$$(h \circ (g \circ f))(u)$$

$$= h((g \circ f)(u))$$

$$= h(g(f(u)))$$

$$= (h \circ g)(f(u))$$

$$= ((h \circ g) \circ f)(u).$$

End.

Thus $h \circ (g \circ f) = (h \circ g) \circ f$ (by function extensionality).

7.7 Restriction

Lemma 148. Let $a \subseteq \text{dom}(f)$. Then there is a function h of a such that h(u) = f(u) for all $u \in a$.

Proof. Define h(u) = f(u) for $u \in a$.

Definition 149. Let $a \subseteq \text{dom}(f)$. $f \upharpoonright a$ is the function h of a such that h(u) = f(u) for all $u \in a$.

Let the restriction of f to a stand for $f \upharpoonright a$.

Proposition 150. (SF 02 01 589280) Let f be a function from x to

y and $a \subseteq x$. Then $f \upharpoonright a$ is a function from a to y. Proof. We have $dom(f \upharpoonright a) = a$. Then $(f \upharpoonright a)(u) = f(u) \in y$ for all $u \in a$. Hence $f \upharpoonright a$ is a function from a to y. \square Proposition 151. (SF 02 01 795968) Let $a \subseteq x$. Then $idx \upharpoonright a = ida$. Proof. We have $dom(idx \upharpoonright a) = a = dom(ida)$. $(idx \upharpoonright a)(u) = idx(u) = u = ida(u)$ for all $u \in a$. Hence the thesis (by function extensionality). \square Proposition 152. (SF 02 01 575265) Let v be an element and $a \subseteq x$. Then $const_{x,v} \upharpoonright a = const_{a,v}$. Proof. We have $dom(const_{x,v} \upharpoonright a) = a = dom(const_{a,v})$. $(const_{x,v} \upharpoonright a)(u) = const_{x,v}(u) = v = const_{a,v}(u)$ for all $u \in a$. Hence the thesis (by function extensionality). \square Proposition 153. (SF 02 01 507691) Let f be an one to one function from f to f and f and f are f and f are f and f are f are f are f are f and f are f and f are f are f and f are f are f are f are f are f and f are f and f are f are f are f and f are f are f and f are f and f are f and f are f are f are f are f and f are f are f are f and f are f are f are f are f are f and f are f are f are f are f are f are f and f are f are f are f are f are f and f are f and f are f are f and f are f are f are f are f

8 Image and preimage

8.1 The image

Lemma 154. Let f be a function. There exists a set y such that y = $\{f(u) \mid u \in \text{dom}(f) \cap z\}.$ *Proof.* Take $y = \operatorname{range}(f \upharpoonright (\operatorname{dom}(f) \cap z))$. Then $y = \{(f \upharpoonright (\operatorname{dom}(f) \cap z)) : (\operatorname{dom}(f) \cap z) : (\operatorname{dom}(f) \cap z) \}$ $(z)(u) \mid u \in \text{dom}(f) \cap z\}.$ Hence $y = \{f(u) \mid u \in \text{dom}(f) \cap z\}.$ **Definition 155.** Let f be a function. f[z] is the set y such that y = $\{f(u) \mid u \in \text{dom}(f) \cap z\}.$ Let the image of z under f stand for f[z]. Let the direct image of z under f stand for f[z]. **Proposition 156.** (SF 02 02 549225) Let f be a function from x to y and $a \subseteq x$. Then $f[a] = \{f(u) \mid u \in a\}$. *Proof.* $f[a] = \{f(u) \mid u \in \text{dom}(f) \cap a\}.$ $\text{dom}(f) \cap a = x \cap a = a$. Hence the thesis. Corollary 157. (SF 02 02 516307) Let f be a function from x to y. Then f[x] = range(f). *Proof.* We have $f[x] = \{f(u) \mid u \in x\}$. Hence f[x] = range(f). **Corollary 158.** (SF 02 0 216993) Let f be a function from x to y and $a \subseteq x$. Then $f[a] = \text{range}(f \upharpoonright a)$.

Proof. We have $f[a] = \{f(u) \mid u \in a\}$. Hence $f[a] = \operatorname{range}(f \upharpoonright a)$.

Proposition 159. (SF 02 02 560324) Let $a \subseteq x$. Then idx[a] = a.

Proof. $idx[a] = \{idx(u) \mid u \in a\}$. We have idx(u) = u for all $u \in a$. Hence $idx[a] = \{element \ u \mid u \in a\}$. Thus idx[a] = a.

Proposition 160. (SF 02 02 196036) Let $a \subseteq x$ and v be an element. Assume that a is nonempty. Then $const_{x,v}[a] = \{v\}$.

Proof. Let us show that $\operatorname{const}_{x,v}[a] \subseteq \{v\}$. Let $w \in \operatorname{const}_{x,v}[a]$. Take $u \in a$ such that $w = \operatorname{const}_{x,v}(u)$. Then w = v. Hence $w \in \{v\}$. End.

Let us show that $\{v\} \subseteq \operatorname{const}_{x,v}[a]$. Let $w \in \{v\}$. Then w = v. Take $u \in a$. Then $\operatorname{const}_{x,v}(u) = v = w$. Hence $w \in \operatorname{const}_{x,v}[a]$. End.

Proposition 161. (SF 02 01 257685) Let f be a function from x into y and $a \subseteq x$. Then $f \upharpoonright a$ is a bijection between a and f[a].

Proof. (1) $f \upharpoonright a$ is a function of a.

- (2) $f \upharpoonright a$ is one to one.
- (3) range $(f \upharpoonright a) = f[a]$. Proof. Let us show that range $(f \upharpoonright a) \subseteq f[a]$. Let $v \in \text{range}(f \upharpoonright a)$. Take $u \in a$ such that $v = (f \upharpoonright a)(u)$. Then v = f(u). Hence $v \in f[a]$. End.

Let us show that $f[a] \subseteq \operatorname{range}(f \upharpoonright a)$. Let $v \in f[a]$. Take $u \in a$ such that v = f(u). Then $v = (f \upharpoonright a)(u)$. Hence $v \in \operatorname{range}(f \upharpoonright a)$. End. Qed.

Thus $f \upharpoonright a$ is an one to one function from a onto f[a]. Therefore $f \upharpoonright a$ is a bijection between a and f[a].

8.2 The preimage

Lemma 162. Let f be a function. There exists a set y such that $y = \{u \in \text{dom}(f) \mid f(u) \in z\}.$

Proof. Case $f(u) \in z$ for all $u \in \text{dom}(f)$. Obvious.

Case $f(u) \notin z$ for some $u \in \text{dom}(f)$. Take $w \in \text{dom}(f)$ such that $f(w) \notin z$. Define

$$g(u) = \begin{cases} u & f(u) \in z \\ w & f(u) \notin z \end{cases}$$

for $u \in \text{dom}(f)$. range $(g) = \{g(u) \mid u \in \text{dom}(f)\}$. Hence range $(g) = \{u \in \text{dom}(f) \mid f(u) \in z \text{ or } u = w\}$. Take $y = \text{range}(g) \setminus \{w\}$. Then $y = \{u \in \text{dom}(f) \mid f(u) \in z\}$. End.

Definition 163. Let f be a function. $f^-[z]$ is the set y such that $y = \{ u \in \text{dom}(f) \mid f(u) \in z \}.$ Let the preimage of z under f stand for $f^-[z]$. Let the inverse image of zunder f stand for $f^-[z]$. Proposition 164. (SF 02 02 317629) Let $b \subseteq y$. Then $idy^-[b] = b$. *Proof.* $idy^{-}[b] = \{u \in y \mid idy(u) \in b\}.$ idy(u) = u for all $u \in y$. Hence $idy^{-}[b] = \{u \in y \mid u \in b\}.$ Thus $idy^{-}[b] = b.$ **Proposition 165.** (SF 02 02 732231) Let v be an element and z be a set that contains v. Then $const_{x,v}^-[z] = x$. *Proof.* const $_{x,v}^-[z]=\{u\in x\mid \mathrm{const}_{x,v}(u)\in z\}$. const $_{x,v}(u)=v$ for every $u\in x$. Hence $\mathrm{const}_{x,v}^-[z]=\{u\in x\mid v\in z\}$. We have $v\in z$. Thus $\operatorname{const}_{x,v}^-[z] = x.$ **Proposition 166.** (SF 02 02 483725) Let v be an element and z be a set that does not contain v. Then $\operatorname{const}_{x,v}^-[z] = \emptyset$. *Proof.* const $_{x,v}^-[z] = \{u \in x \mid \text{const}_{x,v}(u) \in z\}$. const $_{x,v}(u) = v$ for every $u \in x$. Hence $\operatorname{const}_{x,v}^-[z] = \{u \in x \mid v \in z\}$. It is wrong that $v \in z$. Thus $\operatorname{const}_{x,v}^{-}[z] = \emptyset.$

8.3 Computation rules

Proposition 167. (SF 02 02 206888) Let f be a function from x to y and $a \subseteq x$ and $u \in x$. Then $u \in a \implies f(u) \in f[a]$.
<i>Proof.</i> Assume $u \in a$. We have $f[a] = \{f(u') \mid u' \in a\}$. Hence $f(u) \in f[a]$.
Proposition 168. (SF 02 02 451910) Let f be a function from x to y and $b \subseteq y$ and $u \in x$. Then $f(u) \in b \iff u \in f^{-}[b]$.
<i>Proof.</i> We have $f^-[b] = \{u' \in x \mid f(u') \in b\}$. Hence $u \in f^-[b]$ iff $u \in x$ and $f(u) \in b$. Then we have the thesis.
Proposition 169. (SF 02 02 186101) Let f be a function from x to y . Then $f[x] \subseteq y$.
Proof. $f[x] = f[\text{dom}(f)] = \text{range}(f) \subseteq y$.
Proposition 170. (SF 02 02 104059) Let f be a function from x to y . Then $f^{-}[y] = x$.
<i>Proof.</i> We have $f^-[y] = \{u \in x \mid f(u) \in y\}$. $f(u)$ is an element of y for all $u \in x$. Hence the thesis

Proposition 171. (SF 02 02 481295) Let f be a function from x to y. Then $f[f^{-}[y]] = f[x]$. *Proof.* Let us show that $f[f^-[y]] \subseteq f[x]$. Let $v \in f[f^-[y]]$. Take $u \in$ $f^-[y] \cap x$ such that v = f(u). Then $u \in x$. Hence $v \in f[x]$. End. Let us show that $f[x] \subseteq f[f^-[y]]$. Let $v \in f[x]$. Take $u \in x$ such that v = f(u). We have $v \in y$. Hence $u \in f^{-}[y]$. Thus $f(u) \in f[f^{-}[y]]$. Indeed $f^-[y] \subseteq x$. Therefore $v \in f[f^-[y]]$. End. **Proposition 172.** (SF 02 02 253830) Let f be a function from x to y. Then $f^{-}[f[x]] = x$. *Proof.* $f^-[f[x]] = \{u \in x \mid f(u) \in f[x]\}$. For all $u \in x$ we have $f(u) \in f[x]$. Hence every element of $f^{-}[f[x]]$ is contained in x and every element of x is contained in $f^-[f[x]]$. Thus $f^-[f[x]] = x$. **Proposition 173.** (SF 02 02 163978) Let f be a function from x to y and $b \subseteq y$. Then $f[f^-[b]] = b \cap f[x]$. *Proof.* Let us show that $f[f^-[b]] \subseteq b \cap f[x]$. Let $v \in f[f^-[b]]$. Take $u \in f^{-}[b]$ such that v = f(u). Then $f(u) \in b \cap f[x]$. Hence we have $v \in b \cap f[x]$. End. Let us show that $b \cap f[x] \subseteq f[f^-[b]]$. Let $v \in b \cap f[x]$. Take $u \in x$ such that v = f(u). Then $u \in f^{-}[b]$. Hence $f(u) \in f[f^{-}[b]]$. End. Corollary 174. (SF 02 02 422873) Let f be a function from x to yand $b \subseteq y$. Then $f[f^-[b]] \subseteq b$. *Proof.* We have $f[f^-[b]] = b \cap f[x] \subseteq b$. Hence $f[f^-[b]] \subseteq b$. **Proposition 175.** (SF 02 02 171121) Let f be a function from x to y and $a \subseteq x$. Then $f^-[f[a]] \supseteq a$. *Proof.* Let $u \in a$. Then $f(u) \in f[a]$. Hence $u \in f^-[f[a]]$. Indeed $f[a] \subseteq$ **Proposition 176.** (SF 02 02 693086) Let f be a function from x to y and $a \subseteq x$. Then $f[a] = \emptyset \iff a = \emptyset$. *Proof.* Case $f[a] = \emptyset$. Then there is no $u \in a$ such that $f(u) \in f[a]$. For all $u \in a$ we have $f(u) \in f[a]$. Hence a is empty. End. Case $a = \emptyset$. For all $v \in f[a]$ we have v = f(u) for some $u \in a$. There is no $u \in a$. Hence f[a] is empty. End. **Proposition 177.** (SF 02 02 464503) Let f be a function from x to y and $b \subseteq y$. Then $f^{-}[b] = \emptyset \iff b \subseteq y \setminus f[x]$.

Proof. Case $f^-[b] = \emptyset$. Let $v \in b$. Then $v \in y$. There is no $u \in x$ such that v = f(u). Proof. Assume the contrary. Take $u \in x$ such that v = f(u). Then $u \in f^{-}[b]$. Contradiction. Qed. Hence $v \notin f[x]$. Therefore $v \in y \setminus f[x]$. End. Case $b \subseteq y \setminus f[x]$. Then no element of b is an element of f[x]. Assume that $f^-[b]$ is nonempty. Take $u \in f^-[b]$. Then $f(u) \in b$ and $f(u) \in f[x]$. Contradiction. End. **Proposition 178.** (SF 02 02 474184) Let f be a function from x to $y \text{ and } a \subseteq x \text{ and } b \subseteq y. \text{ Then } f[a] \cap b = \emptyset \iff a \cap f^{-}[b] = \emptyset.$ *Proof.* Case $f[a] \cap b = \emptyset$. Assume that $a \cap f^{-}[b]$ is nonempty. Take $u \in a \cap f^{-}[b]$. Then $f(u) \in f[a]$ and $f(u) \in b$. Hence $f(u) \in f[a] \cap b$. Contradiction. End. Case $a \cap f^{-}[b] = \emptyset$. Assume that $f[a] \cap b$ is nonempty. Take $v \in f[a] \cap b$. Consider a $u \in a$ such that v = f(u). Then $u \in f^{-}[b]$. Indeed $v \in b$. Hence $u \in a \cap f^-[b]$. Contradiction. End. **Proposition 179.** (SF 02 02 522811) Let f be a function from x to y and g be a function from y to z and $a \subseteq x$. Then $(g \circ f)[a] = g[f[a]]$. *Proof.* $((g \circ f)[a]) = \{g(f(u)) \mid u \in a\}$. We have $g[f[a]] = \{g(v) \mid v \in f[a]\}$ and $f[a] = \{f(u) \mid u \in a\}$. Thus $g[f[a]] = \{g(f(u)) \mid u \in a\}$. Therefore $(g \circ f)[a] = g[f[a]].$ **Proposition 180.** (SF 02 02 819065) Let f be a function from x to y and g be a function from y to z and $c \subseteq z$. Then $(g \circ f)^-[z] = f^-[g^-[z]]$. *Proof.* $((g \circ f)^-[z]) = \{u \in x \mid g(f(u)) \in z\}$. We have $g^-[z] = \{v \in y \mid g(f(u)) \in z\}$. $g(v) \in z$ and $f^{-}[g^{-}[z]] = \{u \in x \mid f(u) \in g^{-}[z]\}$. Hence $f^{-}[g^{-}[z]] =$ $\{u \in x \mid g(f(u)) \in z\}.$ Thus $(g \circ f)^{-}[z] = f^{-}[g^{-}[z]].$ **Proposition 181.** (SF 02 02 889945) Let f be a function from x to y and $a, a' \subseteq x$. Then $a \subseteq a' \implies f[a] \subseteq f[a']$. *Proof.* Assume $a \subseteq a'$. Let $v \in f[a]$. Take $u \in a$ such that f(u) = v. Then $u \in a'$. Hence $v = f(u) \in f[a']$. **Proposition 182.** (SF 02 02 514409) Let f be a function from x to $y \text{ and } b, b' \subseteq y. \text{ Then } b \subseteq b' \implies f^{-}[b] \subseteq f^{-}[b'].$ *Proof.* Assume $b \subseteq b'$. Let $u \in f^{-}[b]$. Then $f(u) \in b$. Hence $f(u) \in b'$. Thus $u \in f^-[b']$. **Proposition 183.** (SF 02 02 319894) Let f be a function from x to

y and $a, a' \subseteq x$. Then $f[a \cup a'] = f[a] \cup f[a']$.

Proof. Let us show that $f[a \cup a'] \subseteq f[a] \cup f[a']$. Let $v \in f[a \cup a']$. Take $u \in a \cup a'$ such that v = f(u). Then $u \in a$ or $u \in a'$. Hence $f(u) \in f[a]$ or $f(u) \in f[a']$. Thus $v = f(u) \in f[a] \cup f[a']$. End.

Let us show that $f[a] \cup f[a'] \subseteq f[a \cup a']$. Let $v \in f[a] \cup f[a']$.

Case $v \in f[a]$. Take $u \in a$ such that v = f(u). Then $u \in a \cup a'$. Hence $v \in f[a \cup a']$. End.

Case $v \in f[a']$. Take $u \in a'$ such that v = f(u). Then $u \in a \cup a'$. Hence $v \in f[a \cup a']$. End. End.

Proposition 184. (SF 02 02 357044) Let f be a function from x to y and $b, b' \subseteq y$. Then $f^{-}[b \cup b'] = f^{-}[b] \cup f^{-}[b']$.

Proof. Let us show that $f^-[b \cup b'] \subseteq f^-[b] \cup f^-[b']$. Let $u \in f^-[b \cup b']$. Then $f(u) \in b \cup b'$. Hence $f(u) \in b$ or $f(u) \in b'$. If $f(u) \in b$ then $u \in f^-[b]$. If $f(u) \in b'$ then $u \in f^-[b']$. Thus $u \in f^-[b] \cup f^-[b']$. End.

Let us show that $f^-[b] \cup f^-[b'] \subseteq f^-[b \cup b']$. Let $u \in f^-[b] \cup f^-[b']$. Then $u \in f^-[b]$ or $u \in f^-[b']$. If $u \in f^-[b]$ then $f(u) \in b$. If $u \in f^-[b']$ then $f(u) \in b'$. Hence $f(u) \in b \cup b'$. Thus $u \in f^-[b \cup b']$. End.

Proposition 185. (SF 02 02 512404) Let f be a function from x to y and $a, a' \subseteq x$. Then $f[a \cap a'] \subseteq f[a] \cap f[a']$.

Proof. Let $v \in f[a \cap a']$. Take $u \in a \cap a'$ such that v = f(u). Then $u \in a$ and $u \in a'$. Hence $f(u) \in f[a]$ and $f(u) \in f[a']$. Thus $v \in f[a] \cap f[a]$. \square

Proposition 186. (SF 02 02 266480) Let f be a function from x to y and $b, b' \subseteq y$. Then $f^{-}[b \cap b'] = f^{-}[b] \cap f^{-}[b']$.

Proof. Let us show that $f^-[b \cap b'] \subseteq f^-[b] \cap f^-[b']$. Let $u \in f^-[b \cap b']$. Then $f(u) \in b \cap b'$. Hence $f(u) \in b$ and $f(u) \in b'$. Thus $u \in f^-[b]$ and $u \in f^-[b']$. Therefore $u \in f^-[b] \cap f^-[b']$. End.

Let us show that $f^-[b] \cap f^-[b'] \subseteq f^-[b \cap b']$. Let $u \in f^-[b] \cap f^-[b']$. Then $u \in f^-[b]$ and $u \in f^-[b']$. Hence $f(u) \in b$ and $f(u) \in b'$. Thus $f(u) \in b \cap b'$. Therefore $u \in f^-[b \cap b']$. End.

Proposition 187. (SF 02 02 560446) Let f be a function from x to y and $a, a' \subseteq x$. Then $f[a \setminus a'] \supseteq f[a] \setminus f[a']$.

Proof. Let $v \in f[a] \setminus f[a']$. Then $v \in f[a]$ and $v \notin f[a']$. Take $u \in a$ such that v = f(u). If $u \in a'$ then $v \in f[a']$. Hence $u \notin a'$. Thus $u \in a \setminus a'$. Therefore $v = f(u) \in f[a \setminus a']$.

Proposition 188. (SF 02 02 523450) Let f be a function from x to y and $b, b' \subseteq y$. Then $f^-[b \setminus b'] = f^-[b] \setminus f^-[b']$.

Proof. Let us show that $f^-[b \setminus b'] \subseteq f^-[b] \setminus f^-[b']$. Let $u \in f^-[b \setminus b']$. Then $f(u) \in b \setminus b'$. Hence $f(u) \in b$ and $f(u) \notin b'$. Thus $u \in f^-[b]$ and $u \notin f^-[b']$. Therefore $u \in f^-[b] \setminus f^-[b']$. End.

Let us show that $f^-[b] \setminus f^-[b'] \subseteq f^-[b \setminus b']$. Let $u \in f^-[b] \setminus f^-[b']$. Then $u \in f^-[b]$ and $u \notin f^-[b']$. Hence $f(u) \in b$ and $f(u) \notin b'$. Thus $f(u) \in b \setminus b'$. Therefore $u \in f^-[b \setminus b']$. End.

9 Invertible functions

9.1 Definitions and basic properties

Definition 189. An inverse of f is a function g from range(f) to dom(f) such that

$$f(u) = v \iff g(v) = u$$

for all $u \in dom(f)$ and all $v \in dom(g)$.

Definition 190. f is invertible iff f has an inverse.

Lemma 191. Let g, g' be inverses of f. Then g = g'.

Proof. We have dom(g) = range(f) = dom(g').

Let us show that g(v) = g'(v) for all $v \in \text{range}(f)$. Let $v \in \text{range}(f)$. Take u = g'(v). Then g(v) = u iff f(u) = v. We have f(u) = v iff g'(v) = u. Thus g(v) = g'(v). End.

Definition 192. Let f be invertible. f^{-1} is the inverse of f.

Let f is involutory stand for f is the inverse of f. Let f is selfinverse stand for f is the inverse of f.

Proposition 193. (SF 02 03 587168) Let f be a function from x onto y and g be a function from y onto x. Then g is the inverse of f iff $g \circ f = \mathrm{id} x$ and $f \circ g = \mathrm{id} y$.

Proof. Case g is the inverse of f. We have $dom(g \circ f) = dom(f) = x = dom(idx)$. For all $u \in x$ we have $(g \circ f)(u) = g(f(u)) = u$. Hence $g \circ f = idx$.

We have $dom(f \circ g) = dom(g) = y = dom(idy)$. For all $v \in y$ we have $(f \circ g)(v) = f(g(v)) = v$. Hence $f \circ g = idy$. End.

Case $g \circ f = \operatorname{id} x$ and $f \circ g = \operatorname{id} y$. Then $\operatorname{dom}(g) = y = \operatorname{range}(f)$ and $\operatorname{range}(g) = x = \operatorname{dom}(f)$. Let $u \in \operatorname{dom}(f)$ and $v \in \operatorname{dom}(g)$. If f(u) = v then $g(v) = g(f(u)) = (g \circ f)(u) = \operatorname{id} x(u) = u$. If g(v) = u then $f(u) = f(g(v)) = (f \circ g)(v) = \operatorname{id} y(v) = v$. Hence f(u) = v iff g(v) = u. End. \square

Proposition 194. (SF 02 03 196251) Let f be an invertible function from x onto y. Then f^{-1} is an invertible function from y onto x such that $(f^{-1})^{-1} = f$.

Proof. f^{-1} is a function from y to x. Indeed range(f) = y and dom(f) = x. Hence f^{-1} is a function from y onto x. f^{-1} is the inverse of f. Thus $f \circ f^{-1} = \mathrm{id}y$ and $f^{-1} \circ f = \mathrm{id}x$. Therefore f is the inverse of f^{-1} (by SF 02 03 587168).

Proposition 195. (SF 02 03 601485) Let f be an invertible function from x onto y. Then $f \circ f^{-1} = idy$ and $f^{-1} \circ f = idx$.

Proof. f^{-1} is a function from y onto x (by SF 02 03 196251). f^{-1} is the inverse of f. Hence the thesis (by SF 02 03 587168).

Proposition 196. (SF 02 03 173329) Let f be an invertible function from x onto y. Then $(f^{-1}(f(u)) = u$ for all $u \in x$) and $(f(f^{-1}(v)) = v$ for all $v \in y$).

Proof. Let us show that $f^{-1}(f(u)) = u$ for all $u \in x$. Let $u \in x$. Then $f^{-1}(f(u)) = (f^{-1} \circ f)(u) = \mathrm{id} x(u) = u$. End.

Let us show that $f(f^{-1}(v)) = v$ for all $v \in y$. Let $v \in y$. Then $f(f^{-1}(v)) = (f \circ f^{-1})(v) = \mathrm{id}y(v) = v$. End.

Proposition 197. (SF 02 03 430030) Let f be an invertible function from x onto y and g be an invertible function from y onto z. Then $g \circ f$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. f^{-1} is a function from y onto x. g^{-1} is a function from z onto y. Take $h = f^{-1} \circ g^{-1}$. Then h is a function from z onto x (by SF 02 01 205975). Hence h is a function from z to x.

Let us show that $((g \circ f) \circ h) = idz$. We have $f \circ (f^{-1} \circ g^{-1}) = (f \circ f^{-1}) \circ g^{-1}$. $f \circ h$ is a function from z to y. Hence

$$(g \circ f) \circ h$$

$$= g \circ (f \circ h)$$

$$= g \circ (f \circ (f^{-1} \circ g^{-1}))$$

$$= g \circ ((f \circ f^{-1}) \circ g^{-1})$$

$$= g \circ (idy \circ g^{-1})$$

$$= g \circ g^{-1}$$

$$= idz.$$

End.

Let us show that $h \circ (g \circ f) = idx$. We have $(f^{-1} \circ g^{-1}) \circ g = f^{-1} \circ (g^{-1} \circ g)$. $g \circ f$ is a function from x to z. Hence

$$h \circ (g \circ f)$$

$$= (h \circ g) \circ f$$

$$= ((f^{-1} \circ g^{-1}) \circ g) \circ f$$

$$= (f^{-1} \circ (g^{-1} \circ g)) \circ f$$

$$= (f^{-1} \circ idy) \circ f$$

$$= f^{-1} \circ f$$

$$= idx.$$

End.

Thus h is the inverse of $g \circ f$ (by SF 02 03 587168).

Proposition 198. (SF 02 03 908585) Let f be an invertible function from x onto y and $a \subseteq x$. Then $f \upharpoonright a$ is invertible and $(f \upharpoonright a)^{-1} = f^{-1} \upharpoonright f[a]$.

Proof. $f \upharpoonright a$ is a function from a onto f[a]. Take $g = f^{-1} \upharpoonright f[a]$. Then g is a function of f[a].

Let us show that $a \subseteq \text{range}(g)$. Let $u \in a$. Then $f(u) \in f[a]$. Hence $g(f(u)) = f^{-1}(f(u)) = u$. Thus u is a value of g. End.

Let us show that range $(g) \subseteq a$. Let $u \in \text{range}(g)$. Take $v \in f[a]$ such that u = g(v). Take $w \in a$ such that v = f(w). Then $u = (f^{-1} \upharpoonright f[a])(v) = f^{-1}(v) = f^{-1}(f(w)) = w$. Hence $u \in a$. End.

Hence range(g) = a. Thus g is a function onto a.

Let us show that $g((f \upharpoonright a)(u)) = u$ for all $u \in a$. Let $u \in a$. Then $g((f \upharpoonright a)(u)) = g(f(u)) = (f^{-1} \upharpoonright f[a])(f(u)) = f^{-1}(f(u)) = u$. End.

Let us show that $((f \upharpoonright a)(g(v))) = v$ for all $v \in f[a]$. Let $v \in f[a]$. Take $u \in a$ such that v = f(u). We have $g(v) = g(f(u)) = (f^{-1} \upharpoonright f[a])(f(u)) = f^{-1}(f(u)) = u$. Hence $(f \upharpoonright a)(g(v)) = (f \upharpoonright a)(u) = f(u) = v$. End.

Thus $g \circ (f \upharpoonright a) = \mathrm{id} a$ and $(f \upharpoonright a) \circ g = \mathrm{id} f[a]$. Therefore g is the inverse of $f \upharpoonright a$.

Proposition 199. (SF 02 03 293037) Let f be an invertible function from x onto y and $b \subseteq y$. Then $f^-[b] = f^{-1}[b]$.

Proof. We have $f^{-1}[b] = \{f^{-1}(v) \mid v \in b\}$ and $f^{-}[b] = \{u \in x \mid f(u) \in b\}$.

Let us show that $f^-[b] \subseteq f^{-1}[b]$. Let $u \in f^-[b]$. Take $v \in b$ such that v = f(u). Then $f^{-1}(v) = f^{-1}(f(u)) = u$. Hence $u \in f^{-1}[b]$. End.

Let us show that $f^{-1}[b] \subseteq f^{-}[b]$. Let $u \in f^{-1}[b]$. Take $v \in b$ such that $u = f^{-1}(v)$. Then $f(u) = f(f^{-1}(v)) = v$. Hence $u \in f^{-}[b]$. End.

Corollary 200. (SF 02 03 265073) Let f be an invertible function from x onto y and $v \in y$. Then $f^{-}[\{v\}] = \{f^{-1}(v)\}.$

Proof.
$$f^-[\{v\}] = f^{-1}[\{v\}]$$
. We have $f^{-1}[\{v\}] = \{f^{-1}(w) \mid w \in \{v\}\}$. Hence $f^{-1}[\{v\}] = \{f^{-1}(v)\}$.

Proposition 201. (SF 02 03 394829) Let f be a function from x onto y. f is invertible iff f is one to one.

Proof. Case f is invertible. Let $u, v \in x$. Assume f(u) = f(v). Then $u = f^{-1}(f(u)) = f^{-1}(f(v)) = v$. End.

Case f is one to one. Define $g(v) = \text{choose } u \in x \text{ such that } f(u) = v \text{ in } u$ for $v \in y$. g is a function from g to g. For all g and all g, g and that g and the g and that g are g and the g and the g are g and g and g are g are g and g are g are g and g are g and g are g are g and g are g are g and g are g and g are g are g are g are g are g and g are g and g are g and g are g are g are g are g are g are g and g are g and g are g and g are g

Corollary 202. (SF 02 03 187673) Let f be an invertible function from x onto y. Then f^{-1} is a bijection between y and x.

Proof. f^{-1} is a function from y onto x. f^{-1} is invertible. Hence f^{-1} is one to one. Thus f^{-1} is a function from y into x. Therefore f^{-1} is a bijection between y and x.

9.2 Involutions

Definition 203. An involution on x is a selfinverse function f on x.

Proposition 204. (SF 02 03 305935) idx is an involution on x.

Proof. idx is a function on x. We have idx \circ idx = idx. Hence idx is selfinverse.

Proposition 205. (SF 02 03 610247) Let f and g be involutions on x. Then $g \circ f$ is an involution on x iff $g \circ f = f \circ g$.

Proof. Case $g \circ f$ is an involution on x. Then $(g \circ f)^{-1} = f^{-1} \circ g^{-1} = f \circ g$. End.

Case $g \circ f = f \circ g$. $f \circ f$, $f \circ g$ and $f \circ g$ are functions on x. Hence

$$(g \circ f) \circ (g \circ f)$$

$$= (g \circ f) \circ (f \circ g)$$

$$= ((g \circ f) \circ f) \circ g$$

$$= (g \circ (f \circ f)) \circ g$$

$$= (g \circ idx) \circ g$$

10 Functions and the symmetric difference

Proposition 208. (SF 02 04 657921) Let f be a function from x to y and $a, a' \subseteq x$. Then

$$f[a \triangle a'] \supseteq f[a] \triangle f[a'].$$

Proof. Let $v \in f[a] \triangle f[a']$. Then $v \in f[a] \cup f[a']$ and $v \notin f[a] \cap f[a']$. We have $f[a] \cup f[a'] = f[a \cup a']$. Hence we can take $u \in a \cup a'$ such that v = f(u).

Let us show that $u \notin a \cap a'$. Assume the contrary. Then $v = f(u) \in f[a \cap a']$. We have $f[a \cap a'] \subseteq f[a] \cap f[a']$. Hence $v \in f[a] \cap f[a']$. Contradiction. End.

Thus $u \in a \triangle a'$. Therefore $v \in f[a \triangle a']$.

Proposition 209. (SF 02 04 661750) Let f be a function from x to y and $b,b'\subseteq y$. Then

$$f^-[b \triangle b'] \supseteq f^-[b] \triangle f^-[b'].$$

Proof. Let $u \in f^-[b] \triangle f^-[b']$. Then $u \in f^-[b] \cup f^-[b']$ and $u \notin f^-[b] \cap f^-[b']$. We have $f^-[b] \cup f^-[b'] = f^-[b \cup b']$. Hence we can take $v \in b \cup b'$ such that f(u) = v.

Let us show that $v \notin b \cap b'$. Assume the contrary. Then $v = f(u) \in b \cap b'$. Hence $u \in f^-[b \cap b'] = f^-[b] \cap f^-[b']$. Thus $v = f(u) \in b \cap b'$. Contradiction.

Therefore $v \in b \triangle b'$. Hence $u \in f^-[b \triangle b']$.

11 Functions and set-systems

Definition 210. A function between systems of sets is a function f such that f is a function from X to Y for some systems of sets X, Y.

Definition 211. Let f be a function between systems of sets. f preserves subsets iff for all $x, y \in \text{dom}(f)$ if $x \subseteq y$ then $f(x) \subseteq f(y)$.

Definition 212. Let f be a function between systems of sets. f preserves supersets iff for all $x, y \in \text{dom}(f)$ if $x \supseteq y$ then $f(x) \supseteq f(y)$.

Lemma 213. Let f be a function between systems of sets. Then f preserves subsets iff f preserves supersets.

Proof. Case f preserves subsets. Let $x, y \in \text{dom}(f)$. Assume $x \supseteq y$. Then $y \subseteq x$. Hence $f(y) \subseteq f(x)$. Thus $f(x) \supseteq f(y)$. End.

Case f preserves supersets. Let $x, y \in \text{dom}(f)$. Assume $x \subseteq y$. Then $y \supseteq x$. Hence $f(y) \supseteq f(x)$. Thus $f(x) \subseteq f(y)$. End.

Theorem 214. (SF 01 05 636019) Let h be a function from $\mathcal{P}(x)$ to $\mathcal{P}(x)$ that preserves subsets. Then h has a fixed point.

Proof. (1) Define $A = \{y \subseteq x \mid y \subseteq h(y)\}$. Then A is a subset of $\mathcal{P}(x)$ (by separation). We have $\bigcup A \in \mathcal{P}(x)$.

Let us show that $(2) \bigcup A \subseteq h(\bigcup A)$. Let $u \in \bigcup A$. Take $y \in A$ such that $u \in y$. Then $u \in h(y)$. We have $y \subseteq \bigcup A$. Hence $h(y) \subseteq h(\bigcup A)$. Thus $h(y) \subseteq h(\bigcup A)$. Therefore $u \in h(\bigcup A)$. End.

Then $h(\bigcup A) \in A$ (by 1). (3) Hence $h(\bigcup A) \subseteq \bigcup A$. Indeed every element of $h(\bigcup A)$ is an element of some element of A.

Thus $h(\bigcup A) = \bigcup A$ (by 2, 3).

12 Cantor's theorem

Theorem 215. (Cantor) Let x be a set. There exists no function from x onto $\mathcal{P}(x)$.

Proof. Assume the contrary. Take a function f from x onto $\mathcal{P}(x)$. Define $N = \{u \in x \mid u \notin f(u)\}$. Then N is a subset of x (by separation). Hence $N \in \mathcal{P}(x)$. Thus we can take an element u of x such that f(u) = N. Then $u \in N$ iff $u \in f(u)$ iff $u \notin N$. Contradiction.

13 Equipollency

14 The Cantor-Schröder-Bernstein theorem

The proof of the following theorem is adopted from a formalization of set theory from 2019^2 .

Theorem 221. (Cantor Schroeder Bernstein) Let x, y be sets. x and y are equipollent iff there exists a function from x into y and there exists a function from y into x.

Proof. Case x and y are equipollent. Take a bijection f between x and y. Then f^{-1} is a bijection between y and x. Hence f is a function from x into y and f^{-1} is a function from y into x. End.

Case there exists a function from x into y and there exists a function from

²https://github.com/naproche/FLib/tree/master/SetTheory2019

y into x. Take a function f from x into y. Take a function g from y into x. We have $y \setminus f[a] \subseteq y$ for any $a \in \mathcal{P}(x)$.

(1) Define $h(a) = x \setminus g[y \setminus f[a]]$ for $a \in \mathcal{P}(x)$.

h is a function from $\mathcal{P}(x)$ to $\mathcal{P}(x)$.

Let us show that h preserves subsets. Let a, b be subsets of x. Assume $a \subseteq b$. Then $f[a] \subseteq f[b]$. Hence $y \setminus f[b] \subseteq y \setminus f[a]$. Thus $g[y \setminus f[b]] \subseteq g[y \setminus f[a]]$. Therefore $x \setminus g[y \setminus f[a]] \subseteq x \setminus g[y \setminus f[b]]$. Consequently $h[a] \subseteq h[b]$. End.

Hence we can take a fixed point c of h.

(2) Define F(u) = f(u) for $u \in c$.

We have c = h(c) iff $x \setminus c = g[y \setminus f[c]]$. g^{-1} is a bijection between range(g) and y. Thus $x \setminus c = g[y \setminus f[c]] \subseteq \text{range}(g)$.

(3) Define $G(u) = g^{-1}(u)$ for $u \in x \setminus c$.

F is a bijection between c and range(F). G is a bijection between $x \setminus c$ and range(G).

Define

$$H(u) = \begin{cases} F(u) & u \in c \\ G(u) & u \notin c \end{cases}$$

for $u \in x$.

Let us show that H is a function to y. Let v be a value of H. Take $u \in x$ such that H(u) = v. If $u \in c$ then $v = H(u) = F(u) = f(u) \in y$. If $u \notin c$ then $v = H(u) = G(u) = g^{-1}(u) \in y$. End.

Let us show that every element of y is a value of H. Let $v \in y$.

Case $v \in f[c]$. Take $u \in c$ such that f(u) = v. Then F(u) = v. End.

Case $v \notin f[c]$. Then $v \in y \setminus f[c]$. Hence $g(v) \in g[y \setminus f[c]]$. Thus $g(v) \in x \setminus h(c)$. We have $g(v) \in x \setminus c$. Therefore we can take $u \in x \setminus c$ such that G(u) = v. Then v = H(u). End. End.

Let us show that H is one to one. Let $u, v \in \text{dom}(H)$. Assume $u \neq v$.

Case $u, v \in c$. Then H(u) = F(u) and H(v) = F(v). We have $F(u) \neq F(v)$. Hence $H(u) \neq H(v)$. End.

Case $u, v \notin c$. Then H(u) = G(u) and H(v) = G(v). We have $G(u) \neq G(v)$. Hence $H(u) \neq H(v)$. End.

Case $u \in c$ and $v \notin c$. Then H(u) = F(u) and H(v) = G(v). Hence $v \in g[y \setminus f[c]]$. We have $G(v) \in y \setminus F[c]$. Thus $G(v) \neq F(u)$. End.

Case $u \notin c$ and $v \in c$. Then H(u) = G(u) and H(v) = F(v). Hence $u \in g[y \setminus f[c]]$. We have $G(u) \in y \setminus f[c]$. Thus $G(u) \neq F(v)$. End. End.

Hence H is a bijection between x and y. End.

15 The axiom of choice

Definition 222. Let X be a system of nonempty sets. Assume that y and y' are disjoint for all $y, y' \in X$ such that $y \neq y'$. A choice set of X is a set z such that for all $y \in X$ there exists an element w such that $y \cap z = \{w\}$.

Axiom 223. (Choice) Let X be a nonempty system of nonempty sets. Assume that y and y' are disjoint for all $y, y' \in X$ such that $y \neq y'$. Then X has a choice set.

Definition 224. Let X be a system of nonempty sets. A choice function of X is a function g of X such that $g(y) \in y$ for all $y \in X$.

Proposition 225. Let X be a system of nonempty sets. Assume that y and y' are disjoint for all $y, y' \in X$ such that $y \neq y'$. X has a choice function iff X has a choice set.

Proof. Case X has a choice function. Take a choice function g of X. Define $z = \{g(y) \mid y \in X\}$. range(g) is a set. $g(y) \in \text{range}(g)$ for each $y \in X$. Hence z is a set (by separation).

Let us show that for all $y \in X$ we have $y \cap z = \{g(y)\}$. Let $y \in X$. We have $\{g(y)\} \subseteq y \cap z$. Indeed $g(y) \in y$ and $g(y) \in z$.

 $y \cap z \subseteq \{g(y)\}.$

Proof. Let $u \in y \cap z$. Then $u \in y$ and $u \in z$. Take $y' \in X$ such that u = g(y'). Then y' = y. Indeed if $y' \neq y$ then y' and y are disjoint. Qed.

Hence $y \cap z = \{g(y)\}$. End. End.

Case X has a choice set. Take a choice set z of X. Then for all $y \in X$ there exists an element w such that $y \cap z = \{w\}$. Define g(y) = choose the element w such that $y \cap z = \{w\}$ in w for $y \in X$.

Let us show that $g(y) \in y$ for all $y \in X$. Let $y \in X$. Take an element w such that $y \cap z = \{w\}$. Then g(y) = w. We have $\{w\} \subseteq y \cap z \subseteq y$. Hence $\{w\} \subseteq y$. Thus $w \in y$. Therefore $g(y) \in y$. End.

Hence g is a choice function of X. End.