

Définition

Une grandeur numérique X prenant, lors d'une expérience aléatoire, des valeurs $x_1, x_2, ..., x_n$ avec des probabilités $p_1, p_2, ..., p_n$ est une **variable aléatoire discrète**.

Définition

La **loi de probabilité** de la variable aléatoire X est la fonction f qui a chaque valeur associe sa probabilité.

En général, on présente la loi d'une variable aléatoire X sous la forme d'un tableau, qui récapitule les valeurs prises par X ainsi que les probabilités associées.

Dans la suite, on considérera la variable aléatoire discrète de loi :

Valeurs de $X: x_i$	x_1	x_2	<i>x</i> ₃	 x_n
Probabilité : $p(X = x_i)$	p_1	p_2	p_3	 p_n

Définition

Soit X une variable aléatoire discrète, on appelle **espérance** de la variable aléatoire X le réel noté E(X) qui vaut :

$$E(X) = p_1 x_1 + p_2 x_2 + ... + p_n x_n = \sum_{i=1}^{n} p_i x_i.$$

Ce nombre important en probabilités représente la valeur moyenne de la variable aléatoire X.

Définition

Soit X une variable aléatoire aléatoire discrète d'espérance E(X).

 \blacktriangleright On appelle **variance** de la variable aléatoire X le réel noté V(X) qui vaut :

$$V(X) = p_1[x_1 - E(X)]^2 + p_2[x_2 - E(X)]^2 + \dots + p_n[x_n - E(X)]^2 = \sum_{i=1}^n p_i[x_i - E(X)]^2.$$

 \blacktriangleright On appelle **écart-type** de X le réel noté $\sigma(X)$ ou σ_X défini par :

$$\sigma(X) = \sqrt{V(X)}.$$

TG 2002-203

Théorème

Le théorème suivant permet un calcul plus facile de la variance :

$$V(X) = p_1 x_1^2 + p_2 x_2^2 + \dots + p_n x_n^2 - [E(X)]^2 = \sum_{i=1}^n p_i x_i^2 - [E(X)]^2 = E(X^2) - E^2(X).$$

- La variance et l'écart-type d'une variable aléatoire réelle *X* sont des nombres positifs.
- L'écart-type mesure la dispersion des valeurs d'une variable aléatoire par rapport à son espérance.
- \implies Si X est exprimé dans un certaine unité, σ_X l'est dans la même unité.

Propriétés

Soit X une variable aléatoire discrète admettant une espérance et une variance, alors pour tous $a; b \in \mathbb{R}$, la variable aléatoire aX + b admet une expérance, une variance et un écart-type définis par :

- lacklosep E(aX+b) = aE(X)+b.
- \bullet $\sigma(aX + b) = |a|\sigma(X)$.

Loi binomiale

Si X est une variable aléatoire suivant une loi binomiale de paramètres n et p alors :

- $lacklash E(X) = n \times p$.
- $V(X) = n \times p \times (1 p).$
- l'écart type $\sigma(X) = \sqrt{V(X)} = \sqrt{n \times p \times (1-p)}$