POLITECHNIKA WARSZAWSKA

CMPO 1

CYFROWE METODY PRZETWARZANIA OBRAZU

Projekt 1

Prowadzący:

mgr inż. Filip Brzeski

Wykonał:

Oleg Łyżwiński

Temat 1 Ar6

Korekcja winietowania na podstawie zadanego wielomianu.

1. Opis teoretyczny

Korekcja winietowania polega na modyfikowaniu intensywności w zależności od odległości piksela od środka obrazu. W tym celu należy wyznaczyć odległość piksela od środka obrazu. Możemy ją wyznaczyć przy użyciu twierdzenia Pitagorasa. W calu koercji winietowania należy przemnożyć intensywność każdego piksela przez wartość wielomianu. Użytkownik podaje współczynniki wielomianu, które po przemnożeniu przez odległość piksela od środka obrazu dają pożądaną intensywność.

2. Implementacja:

- Wczytać obraz oraz wyznaczyć jego wysokość i szerokość.
- Wyznaczyć środek obrazu.
- Wczytać wielomian od użytkownika.
- Sprawdzić ilo kanałowy jest obraz.
- Wykonać przejście po każdym pikselu z wykorzystaniem dwóch pętli for
- Wewnątrz pętli obliczyć odległość piksela od środka (twierdzenie Pitagorasa)
- Wyznaczyć wartość wielomianu korekcji i przemnożyć go przez wartość piksela (w przypadku 3 kanałów przez każdą z wartości przy użyciu pętli for
- Przypisać nową wartość piksela

3. Prezentacja wyników

Obrazy wielokanałowe:

Przykład 1. (Obraz W_1.jpg 300x242)

Wielomian korekcji : $0,00001x^2 + 0,0005x + 0,8$

Przed korekcją:

Po korekcji:

Wartości poszczególnych kanałów dla lewego rogu:

80	81	84
47	48	49
27	28	29
87	90	91
52	53	54
32	33	34
95	95	98
55	55	56
36	36	37

101	102	105
59	60	61
34	35	36
110	113	114
65	66	67
40	41	42
119	119	123
69	69	70
45	45	46

Przykład 2. (Obraz W_2.jpg 1400x928)

Wielomian korekcji: $0,0000009x^2 + 0,00045x + 0,55$

Przed korekcją:

Po korekcji:

Wartości poszczególnych kanałów dla lewego górnego rogu:

22	22	23
29	29	29
32	32	34
23	23	23
30	30	29
33	33	34
23	23	24
29	29	30
34	34	35

34	34	35
45	45	45
50	49	53
35	35	35
46	46	45
51	51	52
35	35	37
45	45	46
53	53	54

Przykład 3. (Obraz W_3.jpg 350x233)

Wielomian korekcji : $0,00000001x^3 + 0,000015x^2 + 0,00025x + 1$

Przed korekcją:

Po korekcji:

Wartości poszczególnych kanałów dla prawego górnego rogu:

49	49	49
36	36	36
28	28	28
49	49	49
36	36	36
28	28	28
49	49	50
36	36	37
28	28	29

Obraz jednokanałowy:

Przykład 4. (Obraz W_4.png 300x188)

Wielomian korekcji : $0,00004x^2 + 0,005x + 1$

Przed korekcją:

Po korekcji:

Temat 2 Mo3

Wyznaczanie krawędzi przy użyciu operacji morfologicznych.

1. Opis teoretyczny.

Znalezienie krawędzi obrazu przy użyciu operacji morfologicznych możemy uzyskać przez:

- wykonanie odejmowania od całego binarnego obrazu, zerodowanego obrazu przy użyciu Struktur Element Z₄.
- wykonanie odejmowania od obrazu po wykonaniu dylatacji przy użyciu Struktur Element Z₄, całego obrazu binarnego.

Dylatacja – podczas operacji element strukturalny przykładany jest do każdego piksela na obrazie. Jeżeli choć jeden piksel z sąsiedztwa objętego przez SE ma wartość równą jeden, punkt centralny również otrzymuje wartość jeden. W przeciwnym wypadku przypisywane jest mu zero.

Erozja - podczas operacji element strukturalny przykładany jest do każdego piksela na obrazie. Jeżeli choć jeden piksel z sąsiedztwa objętego przez SE ma wartość równą zero, punkt centralny również otrzymuje wartość zero. W przeciwnym wypadku jego wartość nie ulega zmianie.

Krawędzie obrazu uzyskane metodą pierwszą (binarny – erozja) stanowią zarys obiektu, natomiast przy technice (dylacja - binarny) stanowią obwiednię zarysu obiektu.

Obraz oryginalny

Obraz (dylacja - binarny):

Obraz (binarny – erozja):

2. Implementacja.

Algorytm polega na przejściu Elementem Struktury po wszystkich pikselach obrazu i zliczeniu czy którykolwiek element struktury jest zerem(255) w przypadku erozji lub jedynką(0) w przypadku dylacji. Jeśli warunek ten jest spełniony należy zamienić badany piksel w przypadku erozji na zero(255), a dylacji jeden(0).

Element struktury Z₄:

7

W celu badania SE Z₄ należy wżąć pod uwagę jeden piksel w każdym kierunku od badanego piksela.

Ostatnim krokiem w celu znalezienia konturów jest:

- odjęcie od binarnego obrazu, zerodowanego obrazu gdy różnica jest równa 255 jest to krawędź obiektu;
- odjęcie od binarnego obrazu, obrazu po dylatacji gdy różnica jest równa 255 jest to zarys

3. Prezentacja działania algorytmu.

Przykład 1 (B_1 1200x699)

Oryginalny obraz:

Krawędzie obrazu (binarny – erozja):

Przykład 2 (B_2 1620x1000)

Oryginalny obraz:

Obraz binarny:

Krawędzie obrazu (dylacja – binarny):

Obraz binarny:

Krawędzie obrazu (binarny – erozja):

Krawędzie obrazu (dylacja – binarny):

Przykład 3 (B_3 600x400)

Oryginalny obraz:

Obraz binarny:

Krawędzie obrazu (binarny – erozja):

Krawędzie obrazu (dylacja – binarny):

