Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2016-2017

Mathematical Analysis Seminar 3

- 1. Study whether the sequences defined by the following recurrence relations are convergent. If the sequence converges determine its limit.
 - a) $x_1 \in (0,1)$ and $x_{n+1} = \frac{2x_n + 1}{3}$ for all $n \in \mathbb{N}$;
 - b) $x_1 \in (0, +\infty)$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ for all $n \in \mathbb{N}$, where a > 0 is a priori given.
- **2.** Consider the sequence $(\gamma_n)_{n\in\mathbb{N}}$ defined for all $n\in\mathbb{N}$ by

$$\gamma_n := 1 + \frac{1}{2} + \ldots + \frac{1}{n} - \ln n.$$

- a) Using the fact that $\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$ for all $n \in \mathbb{N}$ (cf. Exercise 3 of Seminar 2), prove that $(\gamma_n)_{n\in\mathbb{N}}$ is strictly decreasing and bounded below by 0.
- b) Deduce that $(\gamma_n)_{n\in\mathbb{N}}$ is convergent and, denoting its limit by γ (the Euler's constant, also known as the Euler-Mascheroni constant), show that $\gamma < 0.58$.
 - c) Prove that the sequence $(x_n)_{n\in\mathbb{N}}$ defined for all $n\in\mathbb{N}$ by

$$x_n := \gamma_n + \ln n - \ln(n+1)$$

is strictly increasing. Then, observing that $x_n < \gamma_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \gamma_n$, deduce that $\gamma > 0.57$.

- **3.** Compute the limits:
 - a) $\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right);$ b) $\lim_{n \to \infty} \left[\frac{1}{2 \cdot 3} + \frac{1}{4 \cdot 5} + \dots + \frac{1}{2n(2n+1)} \right].$
- **4.** Find the sum of the following series:

a)
$$\sum_{n=1}^{\infty} (-\pi/4)^n$$
; b) $\sum_{n=1}^{\infty} 3^{1-2n}$; c) $\sum_{n=1}^{\infty} \binom{n+2}{3}^{-1}$; d) $\sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + \dots + n^2}$; e) $\sum_{n=1}^{\infty} (\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n})$; f) $\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$; g) $\sum_{n=0}^{\infty} \arctan\frac{1}{n^2 + n + 1}$; h) $\sum_{n=0}^{\infty} \frac{n+1}{2^n}$.