પ્રકરણ 7

દોલનો

- 7.1 પ્રસ્તાવના
- 7.2 આવર્તગતિ અને દોલિતગતિ
- 7.3 સરળ આવર્તગતિ (સ.આ.ગ.)
- 7.4 સરળ આવર્તગતિ માટે બળનો નિયમ
- 7.5 સરળ આવર્તગતિનું વિકલ સમીકરણ
- 7.6 ભારિત સ્પ્રિંગોમાં દોલનો
- 7.7 સરળ આવર્તદોલકની કુલ યાંત્રિક-ઊર્જા
- 7.8 સરળ આવર્તગતિ અને નિયમિત વર્તુળમય ગતિ
- 7.9 સાદું લોલક
- 7.10 અવમંદિત સરળ આવર્તગતિ
- 7.11 પ્રાકૃતિક દોલનો, પ્રજ્ઞોદિત દોલનો અને અનુનાદ
 - 🏿 સારાંશ
 - સ્વાધ્યાય

7.1 પ્રસ્તાવના (Introduction)

વહાલા વિદ્યાર્થીઓ, વર્તુળમય ગતિ અને પ્રક્ષિપ્ત ગતિના અભ્યાસ દરમિયાન તમે એ શીખ્યા છો કે કણ પર વિશિષ્ટ પ્રકારે લાગતાં બળો તેના ગતિપથને કેવી અસર કરે છે. તરંગગતિ, આવર્તગતિ (પ્રસંવાદી ગતિ) અને દોલિત ગતિના ખ્યાલો, તેમની લાક્ષણિક્તાઓ જેવી કે આવૃત્તિ, આવર્તકાળ, કંપ વિસ્તાર વગેરે વિશે પણ તમે ધોરણ 9માં શીખ્યા છો.

ભૌતિકવિજ્ઞાનમાં આવર્તગતિનું ખૂબ જ મહત્ત્વ છે. ધ્વનિ અને વિદ્યુતચુંબકીય તરંગોની ઉત્પત્તિ અને તેના પ્રસરણને સમજવામાં આ ગતિ મુખ્ય ભાગ ભજવે છે. ઘટક કણો જેવા કે અશુ, પરમાશુ કે આયનો પણ દોલિત ગતિ ધરાવે છે.

આ પ્રકરણમાં પ્રથમ આપણે આવર્ત (પ્રસંવાદી)ગતિ અને દોલિત ગતિના આપણા ખ્યાલોને તાજા કરીશું અને સ્થાન આધારિત બળોની અસર હેઠળ આવી ગતિનો અભ્યાસ કરીશું. સ્થિતિ-ઊર્જા, ગતિ-ઊર્જા અને કુલ યાંત્રિક-ઊર્જાના આવર્તગતિ માટેનાં ગાણિતિક નિરૂપણોને જોઈશું. આપણે અવમંદિત દોલનો, પ્રણોદિત દોલનો અને અનુનાદની ઘટનાનો પણ અભ્યાસ કરીશું.

7.2 આવર્તગતિ અને દોલિત ગતિ (Periodic Motion and Oscillatory Motion)

જો કોઈ પદાર્થ કોઈ નિશ્ચિત પથ પર, કોઈ નિશ્ચિત બિંદુને અનુલક્ષીને, નિયત સમયગાળે પોતાની ગતિનું પુનરાવર્તન કરતો હોય, તો આવી ગતિને આવર્તગતિ કહે છે.

ઘડિયાળના કાંટાઓની ગતિ, ચંદ્રની પૃથ્વીની આસપાસની ગતિ અને પૃથ્વીનું સૂર્યની આસપાસનું ભ્રમણએ આવર્તગતિનાં સુંદર ઉદાહરણો છે.

જો કોઈ પદાર્થ કોઈ નિયત બિંદુની આસપાસ આગળ-પાછળ કે ઉપર -નીચે નિયત સમયમાં પુનરાવર્તિત ગતિ કરતો હોય, તો આવી ગતિને દોલિત ગતિ કહે છે. જે પદાર્થ આવી ગતિ કરે છે, તેને દોલક કહે છે.

લોલકના ગોળાની ગતિ તથા સ્પ્રિંગ સાથે લટકાવેલ દળદાર પદાર્થની ગતિ એ દોલિત ગતિનાં જાણીતાં ઉદાહરણો છે.

દરેક દોલિત ગતિઓ આવર્તગતિઓ છે પરંતુ દરેક આવર્તગતિઓ દોલિત ગતિઓ ન પણ હોય. જેમકે ઘડિયાળના કાંટાની ગતિ, પૃથ્વીની સૂર્યની આસપાસની ગતિએ આવર્તગતિઓ છે, પરંતુ દોલિત ગતિ નથી. નિયતભિંદુની આસપાસ, આગળ પાછળ કે ઉપર નીચેની ગતિનો ખ્યાલ આ કિસ્સાઓમાં નથી.

આપણે જોઈશું કે દોલિત ગતિને sine અને cosine વિષયો વડે દર્શાવાય છે. ત્રિકોશમિતિના વિષયો sine અને cosineએ 2π રેડિયન આવર્તકાળ ધરાવતા આવર્ત વિષયો છે. ગણિતમાં આ વિષયો પ્રસંવાદી વિષયો (harmonic functions) તરીકે ઓળખાય છે. આથી દોલિત ગતિને પ્રસંવાદી ગતિ પણ કહેવાય છે.

7.3 સરળ આવર્તગતિ (સ.આ.ગ) (Simple Harmonic Motion (SHM))

સરળ આવર્તગતિ એ આવર્તગતિનો સાદામાં સાદો પ્રકાર છે.

જ્યારે કોઈ પદાર્થ નિયતબિંદુથી સ્થાનાંતરના સમપ્રમાણમાં અને નિયતબિંદુ તરફ લાગતા બળની અસર હેઠળ નિયતબિંદુની આસપાસ સુરેખ પથ પર આવર્તગતિ કરતો હોય, તો તેવી ગતિને સરળ આવર્તગતિ કહે છે. સરળ આવર્તગતિ કરતા પદાર્થને સરળ આવર્તદોલક (સ.આ.દો) કહે છે.

હુકના નિયમનું પાલન કરતી વજનરહિત સ્થિંગને આપશે હવે ધ્યાનમાં લઈશું. આ સ્થિંગને દઢ આધાર પરથી આકૃતિ 7.1માં દર્શાવ્યા પ્રમાશે શિરોલંબ લટકાવેલ છે. હવે m દળવાળો પદાર્થને તેના નીચેના છેડે બાંધો. જ્યારે આપણે આ પદાર્થને નીચે તરફ ખેંચીને છોડી દઈશું, ત્યારે તે (લગભગ) સરળ આવર્તગતિ કરશે.

સરળ આવર્તગતિ સાથે સંકળાયેલ કેટલીક મૂળભૂત રાશિઓને સમજવા હવે આકૃતિ7.1નો ઉપયોગ કરો.

સમતોલન સ્થિતિ (મધ્યમાન સ્થિતિ) (Equilibrium position / Mean position) :

સરળ આવર્તદોલક જે બિંદુની સાપેક્ષે સરળ આવર્તગતિ કરતું હોય તે બિંદુને સમતોલન સ્થાન કે મધ્યમાન સ્થાન કહે છે.

આકૃતિ 7.1માં (a), (e) અને (i)એ પદાર્થ સમતોલન સ્થાન પર છે.

स्थानांतर (Displacement)

સમતોલનબિંદુથી કોઈ પણ ક્ષણે દોલકના અંતરને તે ક્ષણે દોલકનું સ્થાનાંતર કહે છે.

સ્ત્રિંગ સાથે જોડેલા દળદાર પદાર્થની સરળ આવર્તગતિ તથા તેના સ્થાનાંતર-સમયનો આલેખ આકૃતિ 7.1

આકૃતિ 7.1 (b)માં $t=t_1$ સમયે દોલકનું સ્થાંનાંતર y_1 છે. $t=t_5$ સમયે દોલકનું સ્થાંનાંતર $-y_1$ છે. (આકૃતિ 7.1 (f)).

કંપવિસ્તાર (Amplitude)

મધ્યમાન સ્થાનથી કોઈ એક તરફના દોલકના અધિકતમ સ્થાનાંતરને દોલકનો **કંપવિસ્તાર** કહે છે.

આકૃતિ 7.1~(c,~g)માં બતાવ્યા પ્રમાણે, y_2 એ દોલક વડે પ્રાપ્ત થતું મહતમ સ્થાનાંતર છે. આથી y_2 એ આ દોલકનો કંપવિસ્તાર થશે.

આવર્તકાળ (Periodic Time, Time period or period)

એક દોલન પૂર્શ કરવા માટે લાગતા સમયને તે દોલકનો આવર્તકાળ (T) કહે છે.

બીજા શબ્દોમાં, જે લઘુતમ સમયનાં અંતરાલમાં દોલક આવર્તગતિનું પુનરાવર્તન કરે તે સમયને તે દોલકનો આવર્તકાળ કહે છે.

આવર્તકાળનો SI એકમ second (s) છે.

આકૃતિ 7.1ના દોલક માટે t_8-t_0 એ આવર્તકાળ છે.

આવૃત્તિ (Ferquency)

એક સેકન્ડમાં પૂર્ણ થતાં દોલનોની સંખ્યાને તે સરળ આવર્ત દોલકની **આવૃત્તિ** તરીકે વ્યાખ્યાયિત કરવામાં આવે છે.

તેનો SI એકમ S^{-1} અથવા H_z છે.

તેને f વડે દર્શાવાય છે, અને f=1/T.

કોણીય આવૃત્તિ (Angular frequency)

દોલકની આવૃત્તિના 2π ગણાને તે દોલકની કોણીય આવૃત્તિ કહે છે.

તેને ω (= $2\pi f$) વડે દર્શાવાય છે.

તેનો SI એકમ rad s^{-1} છે.

જો આપણે સરળ આવર્ત દોલક માટે સ્થાનાંતર વિરુદ્ધ સમયનો આલેખ દોરીએ, તો આકૃતિ 7.1ના નિમ્ન ભાગમાં દર્શાવ્યા પ્રમાણેનો મળે. આવી ગતિને સમય સાથેના ગાણિતિક વિધેય તરીકે નીચે મુજબ દર્શાવી શકાય.

આપણે જાણીએ છીએ કે sine વિધેયનો વિસ્તાર [-1, 1] છે. આથી સ.આ.ગ.નું સ્થાનાંતર y(t) એ $\pm A$ વચ્ચે બદલાશે. (આકૃતિ 7.2 જુઓ)

જો બીજી સ.આ.ગ. $y(t) = \mathbf{B} \sin(\omega t + \phi)$ જયાં $\mathbf{B} < \mathbf{A}$ વડે દર્શાવાય, તો તે આકૃતિ 7.2 ના વક્ર 2 મુજબ હશે અને જો $\mathbf{B} > \mathbf{A}$ હોય, તો તે વક્ર 3 મુજબનો હોય.

સમયવિષેય તરીકે સ.આ.ગ.નું સ્થાનાંતર આકૃતિ 7.2

રાશિ $(\omega t + \phi)$ ને સ.આ.ગ.ની t સમયની કળા કહે છે. જે દોલકની તે સમયની ગતિની અવસ્થા દર્શાવે છે.

t=0 સમયની સ.આ.દો.ની કળાને પ્રારંભિક કળા (ϕ) (intial phase or ephoch) કે કળા-અચળાંક (ϕ) કહે છે.

એક પૂર્ણ દોલનમાં સ.આ.ગ.ની કળામાં 2π rad જેટલો વધારો થાય છે અને આથી n દોલનોના અંતે કળામાં $2n\pi$ rad જેટલો વધારો થાય.

આવર્તગતિનો આવર્તકાળ T છે, તેથી (t+T) સમયનું દોલકનું સ્થાનાંતર એ કોઈ પણ t સમયે દોલકના સ્થાનાંતર જેટલું જ હોય.

એટલે કે,
$$y(t) = y(t + T)$$
A $\sin(\omega t + \phi) = A \sin[\omega(t + T) + \phi]$

$$\sin(\omega t + \phi + 2\pi) = \sin(\omega t + \omega T + \phi)$$

$$\omega t + \phi + 2\pi = \omega t + \omega T + \phi$$

$$\omega T = 2\pi$$

$$\therefore \omega = \frac{2\pi}{T} = 2\pi f (\because T = \frac{1}{f}) \quad (7.3.2)$$

હવે દોલકનો વેગ

વેગ (Velocity)

$$v(t)=rac{dy(t)}{dt}$$

$$v(t)=\omega A cos(\omega t + \phi) \eqno(7.3.3)$$
 સમીકરણ (7.3.3) પરથી,

$$v = \pm A\omega \sqrt{1 - \sin^2(\omega t + \phi)}$$

$$v = \pm \omega \sqrt{A^2 - A^2 \sin^2 (\omega t + \phi)}$$

$$v = \pm \omega \sqrt{A^2 - y^2}$$
(7.3.4)

$$y = 0$$
 એ, $v = \pm A\omega = \pm v_m$

સ.આ.ગ.ની આ મહત્તમ ગતિ કે ગતિ-કંપવિસ્તાર (v_m) છે.

 $y=\pm \mathbf{A}$ (સ.આ.ગ.નાં અંત્યબિંદુ) આગળ, v=0.

પ્રવેગ (Acceleration)

સ.આ.દો.નો પ્રવેગ એ,

$$a(t) = \frac{dv(t)}{dt} = \frac{d^2y(t)}{dt^2}$$

$$a(t) = -\omega^2 A \sin(\omega t + \phi)$$

$$a(t) = -\omega^2 y(t) \qquad (7.3.5)$$

$$y = 0 આગળ, a(t) = 0 અને$$

$$y = \pm A આગળ, a(t) = \mp \omega^2 A.$$

સ.આ.ગ.ના કણના સ્થાનાંતર y(t), ગતિ v(t) અને પ્રવેગ a(t)ના સમય વિરુદ્ધના આલેખો આકૃતિ 7.3માં દર્શાવેલ છે.

સ.આ.દો.નાં સ્થાનાંતર, ગતિ અને પ્રવેગના સમય વિરુદ્ધના આલેખો ($\phi=0$ માટે)

આકૃતિ 7.3

y(t), v(t) અને a(t)ના સમય સાથેનાં મૂલ્યો ટેબલ 7.1માં સંકલિત કરેલ છે.

ટેબલ 7.1 y(t), v(t) અને a(t)નાં મૂલ્યો

t	0	$\frac{\mathrm{T}}{4}$	$\frac{\mathrm{T}}{2}$	3T 4	Т
સ્થાનાંતર $y(t)$	0	A	0	-A	0
ગતિ v(t)	ωΑ	0	-ωΑ	0	ωΑ
પ્રવેગ <i>a</i> (<i>t</i>)	0	$-\omega^2 A$	0	$\omega^2 A$	0

ઉદાહરણ 1:

 $y = 0.40 \sin(440t + 0.61)$ દ્વારા સરળ આવર્ત-દોલકનું સ્થાનાંતર આપવામાં આવેલ છે. આ માટે,

(i) કંપવિસ્તાર (ii) કોણીય આવૃત્તિ (iii) આવર્તકાળ અને (iv) પ્રારંભિક કળાનાં મૂલ્યો શું હશે ? અહીં y મીટરમાં અને t secondમાં છે.

ઉકેલ :

 $y = 0.40 \sin(440t + 0.61) \hat{-1}$

 $y = A\sin(\omega t + \phi)$ સાથે સરખાવતાં,

(i) કંપવિસ્તાર $A = 0.40 \ m$

(ii) કોણીય આવૃત્તિ $\omega = 440 \text{ rad/s}$

(iii) આવર્તકાળ T
$$=\frac{2\pi}{\omega}=2\times\frac{22}{7}\times\frac{1}{440}$$

= 0.0143 s

(iv) પ્રારંભિક કળા $\phi = 0.61$ rad

7.4 સરળ આવર્તગતિ માટે બળનો નિયમ

સમીકરણ (7.3.5) પરથી એ જોઈ શકાય છે કે સરળ આવર્ત દોલકનો પ્રવેગ એ સમયનું વિધેય છે આથી, આ પ્રવેગ માટે કેટલા બળની જરૂર પડે ? આ પ્રશ્નના ઉત્તર આપવા આપણે ન્યૂટનના ગતિના બીજા નિયમનો ઉપયોગ કરી શકીએ.

આપણે જાણીએ છીએ કે

$$F = ma$$
,

$$\therefore F = -m\omega^2 y(t), \qquad (7.4.1)$$

આ પુનઃસ્થાપક બળ છે.

હુકના નિયમ અનુસાર, પુનઃસ્થાપક બળ

$$F = -ky(t) (7.4.2)$$

વડે આપવામાં આવે છે, જ્યાં k સ્પ્રિંગ અચળાંક છે.

સમીકરણો (7.4.1) અને (7.4.2)ને સરખાવતાં, $k=m\omega^2$

∴ કોણીય આવૃત્તિ

$$\omega = \sqrt{\frac{k}{m}} \tag{7.4.3}$$

અને દોલકની આવૃત્તિ

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \quad . \tag{7.4.4}$$

દોલકનો આવર્તકાળ

$$T = \frac{1}{f} = 2\pi \sqrt{\frac{m}{k}}$$
 (7.4.5)

ઘણા બધા કિસ્સાઓમાં સ્પ્રિંગ વગર પણ સરળ આવર્તગતિ ઉદ્દ્ભવે છે. આ કિસ્સામાં kને સ.આ.ગ.નો બળઅચળાંક કહે છે અને તે એકમ સ્થાનાંતર દીઠ લાગતું પુનઃસ્થાપક બળ છે ($k=-rac{F}{y}$).

7.5 સરળ આવર્તગતિનું વિકલ સમીકરણ (Differential Equation of Simple Harmonic Motion)

ન્યૂટનના ગતિના બીજા નિયમ પ્રમાણે,

$$F = ma = m \frac{dv(t)}{dt} = m \frac{d^2y(t)}{dt^2}$$
. (7.5.1)

આને F = -ky(t) સાથે સરખાવતાં

$$m\frac{d^2y(t)}{dt^2} = -ky(t)$$

$$\therefore \frac{d^2y(t)}{dt^2} = -\frac{k}{m}y(t)$$

$$\frac{d^2y(t)}{dt^2} = -\omega^2y(t) \qquad (\because 7.4.3)$$

$$\therefore \frac{d^2y(t)}{dt^2} + \omega^2y(t) = 0 \qquad (7.5.2)$$

આ સરળ આવર્તગતિનું દ્વિતીય ક્રમનું વિકલ સમીકરણ છે. આ સમીકરણનો ઉકેલ

જાત સમાકરફાતા ઉકલ
$$y(t) = A \sin \omega t$$
 અથવા $y(t) = B \cos \omega t$ અથવા sine અને cosine નું કોઈ રેખીય સંયોજન, $y(t) = A \sin \omega t + B \cos \omega t$ જેવું હોય છે.

ઉદાહરણ 2: એક સ્થિતિસ્થાપક સ્પ્રિંગના નીચેના છેડે 14.4 gનો પદાર્થ લટકાવતાં તેની લંબાઈમાં 9 cm વધારો થાય છે. આ સ્થિતિમાંથી તેને 3 cm નીચે તરફ ખેંચીને છોડી દેતાં તે સરળ આવર્તગતિ શરૂ કરે છે, તો આ ગતિ માટે

- (1) કંપવિસ્તાર અને પ્રારંભિક કળા
- (2) કોણીય આવૃત્તિ અને આવર્તકાળ
- (3) t = 3 s 42 sol
- (4) સ્થાનાંતરનું સમીકરણ અને
- (5) t = 1.5 s ક્ષણે દોલકનું સ્થાનાંતર શોધો.
- $g = 100\pi^2 \text{ cm s}^{-2} \text{ ell.}$

ઉકેલ:

(1) પદાર્થને 3 cm નીચે તરફ ખેંચવામાં આવે છે, આથી તેનો કંપવિસ્તાર 3 cm થાય.

વળી, અહીં દોલનની શરૂઆત ગતિ પથના નીચેના છેડેથી થાય છે.

$$= \sqrt{\frac{mg}{\Delta l} \times \frac{1}{m}} = \sqrt{\frac{g}{\Delta l}}$$

$$= \sqrt{\frac{100\pi^2}{9}}$$

$$= \frac{10\pi}{3} \text{ rad s}^{-1}.$$
વળી, $T = \frac{2\pi}{\omega}$

$$\therefore T = \frac{2\pi}{\left(10\frac{\pi}{3}\right)}$$

$$=\frac{3}{5}$$
 s.

(3) આપણે જાણીએ છીએ કે કળા

$$\theta = \omega t + \phi$$

$$= \frac{10\pi}{3} \times 3 + \frac{3\pi}{2}$$

$$\theta = \frac{23\pi}{2}$$
 rad.

(4)
$$t$$
 સમયે સ્થાનાંતર માટે
 $y = A \sin (\omega t + \phi)$
 $= 3 \sin \left(\frac{10\pi}{3}t + \frac{3\pi}{2}\right) (\text{in cm}).$
(5) $t = 1.5 \text{ sec}$
 $y = 3 \sin \left(\frac{10\pi}{3} \times 1.5 + \frac{3\pi}{2}\right)$
 $= 3 \sin(5\pi + \frac{3\pi}{2})$
 $y = 3 \text{ cm}$

ઉદાહરણ 3: એક સરળ આવર્તગતિને $y = 3 \sin 314 \ t + 4 \cos 314 \ t \ a$ ડે દર્શાવવામાં આવેલ છે. y cm અને t secondમાં છે. આ સ.આ.ગ. માટે કંપવિસ્તાર, પ્રારંભિક કળા, આવર્તકાળ અને મહત્તમ ગતિ શોધો.

ઉકેલ :
$$y = A \sin (\omega t + \phi)$$

∴ $y = A \cos \phi \sin \omega t + A \sin \phi \cos \omega t$
અહીં, $y = 3\sin 314t + 4\cos 314t$ ને ઉપરોક્ત
સમીકરણ સાથે સરખાવતાં,

3 = A
$$\cos \phi$$
 અને $4 = A \sin \phi$

$$\therefore A^2 \cos^2 \phi + A^2 \sin^2 \phi = 3^2 + 4^2$$

$$\therefore A^2 = 25$$

$$A = 5 \text{ cm.}$$
પારંભિક કળા મેળવવા,
$$\tan \phi = \frac{\sin \phi}{\cos \phi} = \frac{4}{3}$$

$$\therefore \phi = \tan^{-1} \left(\frac{4}{3}\right)$$

$$\therefore \phi = 53^\circ 8'.$$
ઇવે $T = \frac{2\pi}{\omega}$

$$= \frac{2\pi}{314} = 0.02 \text{ s}$$

 $v_{\text{max}} = \omega A$ $= 314 \times 5$

= 1570 cm/s

ઉદાહરણ 4: એક ક્શ સુરેખ પથ પર સ.આ.ગ. કરે છે. દોલકનો કંપવિસ્તાર 2 cm છે. મધ્યમાન સ્થિતિથી જ્યારે ક્શનું સ્થાનાંતર 1 cm હોય ત્યારે તેનો પ્રવેગ અને ગતિના મૂલ્યો સમાન છે. આ સ.આ.ગ. માટે આવર્તકાળ, મહત્તમ ગતિ અને મહત્તમ પ્રવેગ શોધો.

ઉકેલ :

અહીં
$$A=2$$
 cm.
જયારે $y=1$ cm,
{ગતિનું મૂલ્ય} = {પ્રવેગનું મૂલ્ય}
 $\therefore \omega \sqrt{A^2-y^2}=\omega^2 y$
 $A^2-y^2=\omega^2 y^2$
 $2^2-1^2=\omega^2\times 1^2$
 $\therefore \omega=\sqrt{3}$ rad/s.
 \therefore આવર્તકાળ $T=\frac{2\pi}{\omega}=\frac{2\pi}{\sqrt{3}}$ s
હવે મહત્તમ ગતિ
 $v_m=\omega A$
 $=\sqrt{3}\times 2=2\sqrt{3}$ cm s⁻¹
મહત્તમ પ્રવેગ = $A\omega^2$
 $=2\times 3$
 $=6$ cm s⁻²

ઉદાહરણ 5 : એક સ્પ્રિંગકાંટાનો માપક્રમ 50 kg આંક દેખાડે છે. આ માપક્રમની લંબાઈ 20 cm છે. આ સ્પ્રિંગ સાથે લટકાવેલ પદાર્થને જ્યારે ખેંચીને છોડતાં તે 0.6 sના આવર્તકાળથી દોલન કરે છે. આ પદાર્થનું વજન શોધો.

ઉકેલ:

અહીં
$$m=50~\mathrm{kg}.$$
સ્પ્રિંગનું મહત્તમ ખેંચાશ $y=20-0$

$$=20~\mathrm{cm}=0.2~\mathrm{m}$$
આવર્તકાળ $T=0.6~\mathrm{s}$
મહત્તમ બળ $F=\mathrm{mg}$

$$=50\times9.8=490~\mathrm{N}$$

$$\therefore k=\frac{F}{y}$$

$$=\frac{490}{0.2}=2450~\mathrm{N}~\mathrm{m}^{-1}.$$
પણ $T=2\pi\sqrt{\frac{m}{k}}$

$$m=\frac{T^2k}{4\pi^2}$$

$$=\frac{(0.6)^2\times2450}{4\times(3.14)^2}=22.36~\mathrm{kg}$$

$$\therefore \mathrm{ પદાર્થનું વજન }=mg=22.36\times9.8$$

$$=219.1~\mathrm{N}=22.36~\mathrm{kg}f$$

[1 kgf (kilogram force) = g N; જ્યાં g = ગુરૂત્યપ્રવેગ]

162 ભૌતિકવિશાન

7.6 ભારિત સ્પ્રિંગોમાં દોલનો (Oscillations in Loaded Springs)

(i) k_1 અને k_2 બળ-અચળાંકવાળી બે વજનરહિત સ્ત્રિંગોના શ્રેશી જોડાશને એક છેડેથી આકૃતિ 7.4માં દર્શાવ્યા પ્રમાણે દેઢ આધાર પરથી શિરોલંબ લટકાવેલ છે. તેના બીજા મુક્ત છેડા સાથે m દળ લટકાવેલ છે. હવે પદાર્થને y જેટલા નાના અંતર સુધી નીચે તરફ ખેંચી તે શિરોલંબ દોલન કરી શકે તેમ મુક્ત કરો.

બે સિંગોનું શ્રેણીજોડાણ આકૃતિ 7.4

જો સ્પ્રિંગ 1ની લંબાઈમાં y_1 અને સ્પ્રિંગ 2ની લંબાઈમાં y_2 જેટલો વધારો થાય છે તો,

$$y = y_1 + y_2$$

પરંતુ દરેક સ્પ્રિંગ પર લાગતું પુનઃ સ્થાપક બળ (= mg) સરખું જ છે.

આમ બે સ્પ્રિંગોનાં શ્રેણીજોડાણ માટેનો સમતુલ્ય બળ-અચળાંક

$$k = \frac{k_1 k_2}{k_1 + k_2} \tag{7.6.2}$$

હવે દોલનનો આવર્તકાળ

$$T=2\pi\sqrt{rac{m}{k}}$$
 $\therefore T=2\pi\sqrt{m\left(rac{k_1+k_2}{k_1k_2}
ight)}$ (7.6.3) જો $k_1=k_2=k'$ ત્યારે $k=rac{k'k'}{k'+k'}$ આથી સમતુલ્ય સ્પ્રિંગ-અચળાંક $k=rac{k'}{2}$ અને દોલનનો આવર્તકાળ $T=2\pi\sqrt{rac{2m}{k'}}$ થશે.

(ii) હવે આકૃતિ 7.5માં બતાવ્યા પ્રમાણેની પરિસ્થિતિ લો, જ્યાં m દળવાળો પદાર્થ k_1 અને k_2 સ્પ્રિંગ-અચળાંક ધરાવતી બે સ્પ્રિંગો વચ્ચે જોડેલ છે. દળ mને કોઈ એક તરફ ખેંચી તેને ઊર્ધ્વતલમાં સ.આ.ગ. કરે તેમ મુક્ત કરો.

આ સ્થિતિમાં જ્યારે પદાર્થને કોઈ એક તર* y જેટલું નાનું સ્થાનાંતર આપવામાં આવે, ત્યારે એક સ્પ્રિંગની લંબાઈમાં y જેટલો વધારો થશે. જ્યારે બીજી સ્પ્રિંગમાં y જેટલો ઘટાડો થશે. આથી ઉત્પન્ન થતા પુનઃસ્થાપક બળો F_1 અને F_2 બન્ને એક જ દિશામાં લાગશે.

ભારિત બે સિંગોનું જોડાણ આકૃતિ 7.5

∴ કુલ પુનઃસ્થાપક બળ એ

$$F = F_1 + F_2$$

$$= -k_1 y - k_2 y$$

$$= -(k_1 + k_2) y$$

$$= -k y$$

આમ આ કિસ્સામાં સમતુલ્ય સ્પ્રિંગ-અચળાંક એ

$$k = k_1 + k_2.$$
 (7.6.4)
હવે આવર્તકાળ

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$
 (7.6.5)
જો $k_1 = k_2 = k'$ ત્યારે
 $k = 2k'$ અને
 $T = 2\pi \sqrt{\frac{m}{2k'}}$.

(iii) વજનરહિત અને સમાન લંબાઈ ધરાવતી અને k_1 અને k_2 બળ-અચળાંકવાળી બે સ્પ્રિંગોને આકૃતિ 7.6માં દર્શાવ્યા પ્રમાણે શિરોલંબ લટકાવેલી છે. તેમના મુક્ત છેડે \mathbf{m} દળવાળો અને અસમાન ઘનતા વિતરણવાળો બ્લૉક લટકાવેલ છે, આથી તેમની લંબાઈઓમાં સમાન વધારો થાય છે.

આ પરિસ્થિતિમાં પદાર્થને નીચે તરફ y જેટલા નાના અંતર સુધી ખેંચીને તેને મુક્ત કરવામાં આવે છે, જેથી તંત્ર ઊર્ધ્વતલમાં સ.આ.ગ. કરે છે.

અહીં બંને સ્પ્રિંગોના બળ-અચળાંકો જુદા-જુદા છે. વળી, બંને સ્પ્રિંગોની લંબાઈમાં સમાન વધારો થયેલ હોવાથી બળથી ઉદ્ભવતો બોજો દરેક સ્પ્રિંગ પર જુદો-જુદો વહેંચાય છે. આથી બંને સ્પ્રિંગમાં પુનઃસ્થાપક બળ જુદું-જુદું હોય છે.

જો F_1 અને F_2 એ સ્પ્રિંગના ખેંચાણને લીધે ઉત્પન્ન થયેલ પુનઃસ્થાપક બળો હોય તો,

$$F_1 = -k_1 y$$
 અને
$$F_2 = -k_2 y$$
 પણ કુલ પુનઃસ્થાપક બળ (= mg)
$$F = F_1 + F_2$$

$$= -k_1 y - k_2 y$$

$$-ky = -(k_1 + k_2) y$$

જ્યાં, બે સ્પ્રિંગોના સમાંતર જોડાણનો સમતુલ્ય સ્પ્રિંગ-અચળાંક છે.

ે.
$$k = k_1 + k_2$$
. (7.6.6) દોલકનો આવર્તકાળ
$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T = 2\pi \sqrt{\frac{m_1}{k_1 + k_2}}$$
 (7.6.7) જો $k_1 = k_2 = k'$, તો $k = 2k'$ અને

ઉદાહરણ 6: 0.1 m દબાયેલ એક સ્પ્રિંગમાં 10 N પુનઃસ્થાપક બળ ઉદ્ભવે છે. 4 kg દળવાળો એક પદાર્થ તેના પર મૂકેલ છે. જો આ સ્પ્રિંગ સ.આ.દો. કરે તો (i) આ સ્પ્રિંગનો બળ-અચળાંક, (ii) પદાર્થના વજનથી સ્પ્રિંગમાં ઉદ્ભવતું સંકોચન અને (iii) આ દોલકનો આવર્તકાળ ગણો (g = 10 N/kg).

 $T = 2\pi \sqrt{\frac{m}{2k}}.$

ઉકેલ :

અહીં, F = 10 N

સ્થાનાંતર $\Delta y = 0.1 \ m$ $m = 4 \ \text{kg}.$

 $T = 0.4\pi \text{ s}$

આપણે જાણીએ છીએ,
$$(i) \quad k = \frac{F}{\Delta y}$$

$$= \frac{10}{0.1}$$

$$k = 100 \text{ Nm}^{-1}.$$

$$(ii) \quad y = \frac{mg}{k} = \frac{4 \times 10}{100} = 0.4\text{m}$$

$$(iii) \quad T = 2\pi \sqrt{\frac{m}{k}}$$

$$= 2\pi \sqrt{\frac{4}{100}}$$

ઉદાહરણ 7: એક U નળી ρ જેટલી ઘનતાવાળા પ્રવાહીથી આંશિક ભરેલી છે. U નળીની દરેક ભુજામાં પ્રવાહીની ઊંચાઈ L છે. એક ભુજામાં પ્રવાહીની મુક્ત સપાટીને γ જેટલું સ્થાનાંતર આપી પ્રવાહીને દોલિત કરવામાં આવે, તો સાબિત કરો કે આ દોલનો સરળ આવર્ત પ્રકારનાં છે. આ સ.આ.ગ.નો આવર્તકાળ શોધો.

પ્રવાહી ભરેલ U-નળી આકૃતિ 7.7

ઉકેલ :

U-નળીની એક ભુજામાં પ્રવાહી y જેટલું સ્થાનાંતર નીચે તરફ પામે, તો બીજી ભુજામાં પ્રવાહી y જેટલું સ્થાનાંતર ઉપર તરફ અનુભવે.

- ∴ આકૃતિ 7.7માં દર્શાવ્યા પ્રમાણે બંને ભુજાઓમાં પ્રવાહીની મુક્ત સપાટીઓ વચ્ચે ઊંચાઈનો તફાવત = 2y.
- \therefore 2y ઊંચાઈના પ્રવાહીના સ્તંભથી ઉદ્ભવતું દબાણ P=2y
 ho g

જ્યાં, ρ = પ્રવાહીની ઘનતા, g = ગુરુત્વપ્રવેગ.

આ દબાશને કારણે ઉદ્ભવતું બળ F = PA

$$\therefore$$
 F = 2y ρ gA = (2 ρ gA)y = ky

 $\therefore F \alpha y$

વળી, આ બળ સ્થાનાંતર yની વિરુદ્ધ દિશામાં લાગતું હોવાથી $F \alpha - y$.

આ દોલનો સરળ આવર્ત પ્રકારનાં છે.
 દોલકનો આવર્તકાળ

$$T = 2\pi \sqrt{\frac{m}{k}}$$
$$= 2\pi \sqrt{\frac{m}{2\rho g A}}.$$

પ્રવાહીનું દળ $m = \text{LA}\rho = 2y\text{A}\rho$

$$=2\pi\sqrt{\frac{2yA\rho}{2\rho gA}}$$

$$T = 2\pi \sqrt{\frac{y}{g}}.$$

ઉદાહરણ 8: A જેટલું આડછેદનું ક્ષેત્રફળ ધરાવતી એક લંબચોરસ પાઇપનો એક છેડો બંધ છે અને બીજો છેડો હવાચુસ્ત રહે તેમ તેટલા જ આડછેદવાળો બ્લૉક મૂક્યો છે. બ્લૉકની સમતોલન સ્થિતિમાં પાઇપમાં હવાનું દબાણ P અને કદ V છે. જો બ્લૉકને અંદર તરફ x જેટલું અતિ નાનું સ્થાનાંતર આપી છોડી દેવામાં આવે, તો સાબિત કરો કે તે સ.આ.ગ. કરે છે અને તેનો આવર્તકાળ પણ શોધો. હવાનું સંકોચન સમતાપી ગણો.

ધારો કે હવાનું સૂક્ષ્મ સંકોચન થતાં દબાણમાં થતો વધારો = ΔP અને કદમાં થતો ઘટાડો = ΔV

સમતાપી સંકોચન માટે.

 $(P+\Delta P)\;(V-\Delta V)=PV\;$ (બોઇલના નિયમ PV = અચળ પરથી)

$$\therefore PV - P\Delta V + V\Delta P - \Delta P\Delta V = PV$$

હવે $\Delta P \Delta V$ અત્યંત સૂક્ષ્મ હોવાથી બીજાં પદોની સરખામણીમાં $\Delta P \Delta V$ અવગણતાં અને ΔP સૂત્રોનો કર્તા બનાવતાં,

$$\Delta P = \frac{P\Delta V}{V} = \frac{P\Delta x}{V} \ (\because \Delta V = Ax) \ (1)$$

આ વધારાના દબાણને લીધે બ્લૉક પર તેના સ્થાનાંતરના વિરુદ્ધ દિશામાં લાગતું (પુનઃસ્થાપક) બળ,

$$F = A\Delta P \tag{2}$$

સમીકરણ (1)માંથી APનું મૂલ્ય સમીકરણ (2)માં મૂકતાં,

$$F = \left(\frac{PA^2}{V}\right)x = kx$$

જ્યાં
$$k=rac{\mathrm{P}\mathrm{A}^2}{\mathrm{V}}=$$
 અચળ

આ બળ સ્થાનાંતરની વિરુદ્ધ અને સ્થાનાંતરના સમપ્રમાણમાં હોવાથી અત્રે બ્લૉક સ.આ.ગ. કરે છે.

હવે આવર્તકાળ, T
$$=2\pi\sqrt{rac{m}{k}}$$

$$\therefore T = 2\pi \left(\frac{mV}{PA^2}\right)^{\frac{1}{2}}$$

ઉદાહરણ 9 : આકૃતિ 7.9માં દર્શાવ્યા પ્રમાણે પૃથ્વીમાં કોઈ એક ટનલ (બોગદું) ખોદીને તેમાં પદાર્થને મુક્ત પતન કરાવવામાં આવે છે. સાબિત કરો કે આ પદાર્થ સ.આ.ગ. કરે છે. પૃથ્વીને સમાન ઘનતા ρ ધરાવતો ગોળો ધારો. આ સ.આ.ગ.નો આવર્તકાળ કેટલો હશે ?

ઉકેલ: આકૃતિમાં 7.9માં દર્શાવ્યા પ્રમાણે ધારો કે આપેલી ટનલમાં m દળનો પદાર્થ, પૃથ્વીના કેન્દ્ર Oથી r જેટલા અંતરે છે. આ વખતે તેના પર ρ ઘનતાવાળા r ત્રિજ્યાના ગોળાના, પૃથ્વીના કેન્દ્ર પર સંકેન્દ્રિત મનાતા દળના કારણે ગુરુત્વાકર્ષી બળ F_g લાગશે. F_g નો cosine ઘટક પદાર્થની ટનલમાં ગતિ માટે જવાબદાર છે.

$$\therefore F = F_g \cos \theta$$

$$= \frac{Gm(\frac{4}{3}\pi r^3 \rho)}{r^2} \cos \theta \tag{1}$$

જ્યારે પદાર્થ પૃથ્વીના કેન્દ્રથી r અંતરે છે, ત્યારે ટનલના મધ્યબિંદુ Pથી ધારો કે તેનું અંતર x છે.

∴
$$\cos\theta = \frac{x}{r}$$
 (2) સમીકરણ (1) અને (2) પરથી
$$F = \left(\frac{4}{3}\pi G\rho m\right)x$$
 ⇒ $F \alpha x$ અને $k = \frac{4}{3}\pi G\rho m$ વળી, આ બળની દિશા મધ્યબિંદુ P તરફ છે. ∴ પદાર્થ ટનલમાં સ.આ.ગ. કરે છે.

હવે આવર્તકાળ,
$$T=2\pi\sqrt{rac{m}{k}}$$

$$T=2\pi\sqrt{rac{m imes 3}{4\pi G
ho m}}$$

$$T=2\pi\sqrt{rac{3}{4\pi G
ho}}$$

7.7 સરળ આવર્તદોલકની કુલ યાંત્રિક-ઊર્જા (Total Mechanical Energy in Simple Harmonic Osallator)

સ.આ.ગ. કરતો કણ બે પ્રકારની ઊર્જા ધરાવે છે :

- (i) ક્શની ગતિ થકી ગતિ-ઊર્જા (Kinetic Enrgy) (KE) અને
- (ii) કણના સ્થાન થકી સ્થિતિ-ઊર્જા (Potential Energy) (PE).

વહાલા વિદ્યાર્થીઓ, તમે જાણો છો કે ક્શની ગતિ-ઊર્જાએ

$$\mathrm{K}=rac{1}{2}mv^2$$
 સમીકરણ $v=\omega\sqrt{\mathrm{A}^2-y^2}$ નો ઉપયોગ કરતાં

$$K = \frac{1}{2}m\omega^2(A^2 - y^2)$$
 (7.7.1)

જો કણનું સ્થાનાંતર $y = A \sin(\omega t + \phi)$ હોય તો $v = A\omega\cos(\omega t + \phi)$

$$\therefore K = \frac{1}{2}m\omega^2 A^2 \cos^2(\omega t + \phi)$$
 (7.7.2)

અત્રે પ્રસ્તુત કિસ્સામાં, દોલક પરનું બળ F = -ky(જેને પુનઃસ્થાપક બળ કહે છે). આવા કિસ્સામાં સ્થિતિ-ઊર્જા

$$U = \frac{1}{2}ky^2 (7.7.3)$$

વડે આપવામાં આવે છે. (જે તમે સિમેસ્ટર I માં ભણ્યા છો.)

∴ સ.આ.ગ. કરતા કણની સ્થિતિ-ઊર્જા

$$U = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$$
 (7.7.4)

હવે દોલકની કુલ યાંત્રિક-ઊર્જા (Mechanical Energy)

$$E = K + U$$

$$= \frac{1}{2}mv^2 + \frac{1}{2}ky^2$$

$$= \frac{1}{2}m\omega^2(A^2 - y^2) + \frac{1}{2}m\omega^2y^2$$

$$(\because k = m\omega^2)$$

$$E = \frac{1}{2}m\omega^2 A^2 \tag{7.7.5}$$

ખથવા

$$E = \frac{1}{2}kA^2 (7.7.6)$$

આ સમીકરણો (7.7.5) અને (7.7.6) સૂચવે છે કે રેખીય સરળ આવર્તદોલકની કુલ યાંત્રિક-ઊર્જા અચળ છે. તથા સમય t અને સ્થાનાંતર yથી સ્વતંત્ર છે. $\to \alpha$ 2 .

આકૃતિ 7.10 સ.આ.દો.ની ગતિ-ઊર્જા, સ્થિતિ-ઊર્જા અને કુલ યાંત્રિક-ઊર્જાના સ્થાનાંતર વિધેય તરીકેના આલેખો દર્શાવે છે. (સમીકરણો (7.7.1), (7.7.3) અને (7.7.6)નો ઉપયોગ કરો.)

સ.આ.દો.ની ઊર્જાઓ વિરુદ્ધ સ્થાનાંતર આકૃતિ 7.10

આકૃતિ 7.10 પરથી નીચેના મુદ્દાઓ નોંધવા રહ્યા : (i) મધ્યમાન સ્થિતિ y=0 એ, સ્થિતિ-ઊર્જા ન્યૂનતમ (U=0) અને ગતિ-ઊર્જા મહત્તમ ($K=\frac{1}{2}kA^2=E$) હોય છે.

- (ii) $y = \pm A$ (ગતિપથનાં અંત્યબિંદુઓ) આગળ સ્થિતિ- \Im ર્જા મહત્તમ (U = $\frac{1}{2}kA^2$ = E) અને ગતિ- \Im ર્જા ન્યન્યતમ (K = 0) છે.
- (iii) બિંદુઓ P અને Q કે જ્યાં U અને K ના આલેખો એકબીજાને છેદે છે, ત્યારે $U=K=rac{1}{2}E$.

(iv) P અને Qના યામો (
$$\mp \frac{A}{\sqrt{2}}, \frac{E}{2}$$
).

આકૃતિ 7.11 એ સ.આ.દો.ની ગતિ-ઊર્જા, સ્થિતિ-ઊર્જા અને યાંત્રિક-ઊર્જાના સમયવિધયના આલેખો બતાવે છે. (સમીકરણો (7.7.2), (7.7.4) અને (7.7.6)નો ઉપયોગ કરો.)

સ.આ.દો.ની ઊર્જાઓ સમયવિધેય તરીકે આકૃતિ 7.11

આલેખો 7.11 પરથી જોઈ શકાય છે કે દોલક જ્યારે એક દોલન પૂર્ણ કરે છે, ત્યારે K અને U બે દોલનો પૂર્ણ કરે છે. આમ, ગતિ-ઊર્જા અને સ્થિતિ-ઊર્જાની આવૃત્તિ સ.આ.ગ. કરતાં બમણી છે.

ઉદાહરણ 10 : મધ્યમાન સ્થિતિથી ગતિ શરૂ કર્યાની એક સેકન્ડ બાદ 10 kg દળ ધરાવતા એક પદાર્થનો વેગ 6 ms⁻¹ છે. જો સ.આ.દો.નો આવર્તકાળ 6 s હોય તો સ.આ.દો.ની ગતિ-ઊર્જા, સ્થિતિ-ઊર્જા અને કુલ યાંત્રિક-ઊર્જા શોધો.

ઉકેલ :

અહીં,
$$m = 10 \text{ kg}$$
,
 $v = 6 \text{ ms}^{-1}$,
 $T = 6 \text{ s}$.
હવે $K = \frac{1}{2}mv^2 = \frac{1}{2} \times 10 \times 36 = 180 \text{ J}$
 $v = \omega A \cos \omega t = \omega A \cos \left(\frac{2\pi}{T} \cdot t\right)$
 $6 = A\omega \cos \left(\frac{2\pi}{6} \times 1\right)$
 $= A\omega/2$
 $\therefore A\omega = 12$.
હવે $E = \frac{1}{2}mA^2\omega^2$
 $= \frac{1}{2} \times 10 \times 144$
 $E = 720 \text{ J}$
 $\therefore U = E - K = 720 - 180$
 $\therefore U = 540 \text{ J}$.

7.8 સરળ આવર્તગતિ અને નિયમિત વર્તુળમય ગતિ (Simple Harmonic Motion and Uniform Circular Motion)

O કેન્દ્ર અને A ત્રિજયાવાળા વર્તુળાકાર માર્ગ પર ω જેટલી અચળ કોણીય ઝડપથી વિષમઘડી દિશામાં ગતિ કરતો એક કણ P લો (જુઓ આકૃતિ 7.12). અહીં કણને સંદર્ભક્શ અને વર્તુળને સંદર્ભવર્તુળ તરીકે વર્ણવામાં આવે છે.

નિયમિત વર્તુળમય ગતિ આકૃતિ 7.12

સંદર્ભરેખા OXની સાપેક્ષે t સમયે ક્યાનું કોશીય સ્થાન $(\omega t + \phi)$ જ્યાં ϕ એ પ્રારંભિક કળા છે. Q એ Pનો Y-અક્ષ પરનો પ્રક્ષેપ છે, જે t સમયે સ્થાનસદિશ OPનો પ્રક્ષેપ = OQ = y(t) આપે છે.

આકૃતિ 7.12ની ભૂમિતિ પરથી,

$$\sin(\omega t + \phi) = \frac{OQ}{OP}$$

$$\therefore y(t) = A \sin(\omega t + \phi)$$
 (7.8.1)

આ સમીકરણ (7.8.1) એ Y-અક્ષ પર સ.આ.ગ. કરતાં કણનું સ્થાનાંતર બતાવે છે.

જો OPનો પ્રક્ષેપ X-અક્ષ પર OR તરીકે લેવામાં આવે, તો

$$\cos(\omega t + \phi) = \frac{OR}{OP}$$

$$x(t) = A \cos(\omega t + \phi) \tag{7.8.2}$$

આ સમીકરણ (7.8.2) એ X-અક્ષ પર સ.આ.ગ. કરતાં કણનું સ્થાનાંતર બતાવે છે.

આમ આપણે તારવી શકીએ કે,

સરળ આવર્તગતિ એ નિયમિત વર્તુળમય ગતિની, સંદર્ભવર્તુળના વ્યાસ પરના પ્રક્ષેપની ગતિ છે.

હવે A જેટલી ત્રિજ્યાના વર્તુળ પર ω જેટલી કોણીય ઝડપથી ગતિ કરતા સંદર્ભકણ Pની ગતિ $\stackrel{\rightarrow}{\nu}$ નું મૂલ્ય $\nu=\omega A$ છે. t સમયે ν નો Y-અક્ષ પરનો પ્રક્ષેપ આકૃતિ 7.13માં બતાવેલ છે.

નિયમિત વર્તુળમય ગતિનો વેગ અને પ્રવેગ આકૃતિ 7.13

આકૃતિ 7.13 ની ભૂમિતિ પરથી,

$$\cos(\omega t + \phi) = \frac{SQ}{\omega A}$$

$$\therefore v(t) = \omega A \cos(\omega t + \phi)$$
 (7.8.3)

જ્યારે દોલક ધન *y*-દિશામાં ગતિ કરતો હોય ત્યારે *v* ધન હોય છે અને ઋણ *y*-દિશા તરફ ગતિ કરતો હોય તો *v* ઋણ હોય છે.

આ જ રીતે સંદર્ભક્કાનો કેન્દ્રગામી પ્રવેગ $\omega^2 A$ નો y-દિશામાંનો ઘટક $\omega^2 A \sin(\omega t + \phi)$ છે.

7.9 સાદું લોલક (Simple Pendulum)

કોઈ એક સ્થિર (દઢ) આધાર પરથી વજનરહિત અને ખેંચી ન શકાય તેવી વળરહિત દોરી વડે લટકતી નાની દળદાર વસ્તુથી બનતી રચનાને સાદું લોલક કહે છે.

આકૃતિ 7.14ને ધ્યાનમાં લો. સાદા લોલકના સમગ્ર દળને લટકાવેલા ગોળાના દ્રવ્યમાનકેન્દ્ર પર એકત્રિત થયેલ ગણવામાં આવે છે. આધારબિંદુથી ગોળાના દ્રવ્યમાનકેન્દ્ર સુધીનું અંતર તે સાદા લોલકની (અસરકારક) લંબાઈ (1) છે.

સાદું લોલક આકૃતિ 7.14

હવે વિચારો કે લોલકના ગોળાને તેના સમતુલન-સ્થાન Oમાંથી θ જેટલું નાનું કોણીય સ્થાનાંતર આપી બિંદુ B આગળથી મુક્ત કરતાં તે એ ઊર્ધ્વ સમતલમાં દોલનો કરે છે. m દળ ધરાવતા આ ગોળા પર લાગતાં બળો નીચે મજબ થશે :

- (1) નિમ્ન દિશામાં લાગતું ગોળાનું વજન (= mg)
- (2) \overrightarrow{BA} દિશામાં દોરીમાં લાગતું તણાવ \overrightarrow{T} '.

બળ mgના ઘટકો :

- (i) mg $\cos\theta$ એ \overrightarrow{BC} તરફ લાગશે અને
- (ii) mg sinθ એ BD તરફ લાગશે.

દોરી ખેંચાયેલી રહે છે તેથી,

$$T' = mg \cos\theta \tag{7.9.1}$$

બળનો બીજો ઘટક mg sinθ એ ગોળાને તેની સમતોલન સ્થિતિ Oમાં પાછો લાવે છે. આથી ગોળા પર લાગતું આ પુનઃ સ્થાપક બળ છે.

$$F = -mg \sin\theta. \qquad (7.9.2)$$
 જો ગોળાનું કોશીય સ્થાનાંતર θ નાનું હોય, તો
$$F = -mg\theta \qquad (\mathring{s} + \theta \to 0, \sin\theta \approx \theta)$$
$$= -mg\frac{\text{arc OB}}{l}$$
$$= -mg\frac{x}{l} \qquad (\because \text{ arc OB} = x)$$

$$\therefore F = -\left(\frac{mg}{l}\right)x \tag{7.9.3}$$

પણ m, g અને l અચળ છે.

$$F = -kx$$

જ્યાં,
$$k = \frac{mg}{l}$$
 (7.9.4)

સમીકરણ (7.9.4) એ સાદા લોલકનો બળ અચળાંક આપે છે.

હવે સાદા લોલકનો આવર્તકાળ,

$$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m}{mg/l}}$$

$$\therefore T = 2\pi \sqrt{\frac{l}{g}}$$
 (7.9.5)

દોલકની આવૃત્તિ

$$f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$
 (7.9.6)

અને કોણીય આવૃત્તિ

$$\omega = 2\pi f = \sqrt{\frac{g}{l}} \tag{7.9.7}$$

વહાલા વિદ્યાર્થીઓ, એ યાદ રાખો કે નાના ખૂણા θ માટે સાદા લોલકનો આવર્તકાળ

- (i) ગોળાના દળથી સ્વતંત્ર છે.
- (ii) દોલકના કંપવિસ્તારથી સ્વતંત્ર છે.
- (iii) તે લોલકની લંબાઈ પર આધાર રાખે છે.

T α \sqrt{l} અને

(iv) તે ગુરુત્વીય પ્રવેગ પર આધારિત છે.

T
$$\alpha \frac{1}{\sqrt{g}}$$
.

સમીકરણ (7.9.5) પરથી આકૃતિ 7.15 મુજબના આલેખો દોરી શકાય .

વહાલા વિદ્યાર્થીઓ, નીચેના મુદ્દાઓ નોંધો :

(i) T α \sqrt{l} એનો અર્થ એવો નથી કે જેમ $l \to \infty$, T $\to \infty$.

આ સંબંધ $l \ge પૃથ્વીની ત્રિજ્યા માટે લાગું પડતું નથી.$

(ii) સુતરાઉ દોરીની જગ્યાએ જો ગોળો ધાતુના તાર વડે લટકાવેલ હોય તો લોલકની લંબાઈ તાપમાનના વધવાથી વધશે અને તાપમાન ઘટવાથી ઘટશે.

આનો અર્થ એમ કે સાદા લોલકનો આવર્તકાળ વધે કે ઘટે તેનો આધાર તાપમાન વધશે કે ઘટશે તેના પર છે. આ જ કારણથી લોલક ઘડિયાળ શિયાળામાં ઝડપી અને ઉનાળામાં ધીમી પડે છે.

(iii) પૃથ્વીની સપાટી કરતાં પહાડો ઉપર કે ખાણોમાં g નું મૂલ્ય ઓછું હોય છે. આથી સાદા લોલકનો આવર્તકાળ સૈદ્ધાંતિક રીતે પહાડો પર કે ખાણોમાં વધશે.

આકૃતિ 7.15

(A) લિફ્ટમાં સાદું લોલક :

જો a જેટલા પ્રવેગથી ગતિ કરતી લિફ્ટમાં સાદું લોલક દોલન કરતું હોય, તો તેના પર લાગતું અસરકારક g એ,

$$g_{eff} = g \pm a$$

'+' નિશાની લિફ્ટ ઉપર જતી હોય ત્યારે અને

'–' નિશાની લિફ્ટ નીચે આવતી હોય ત્યારે લેવામાં આવે છે.

આથી સાદા લોલકનો આવર્તકાળ

$$T = 2\pi \sqrt{\frac{l}{g \pm a}}.$$

હવે, ધારો કે લિફ્ટ મુક્તપતન કરે છે.

$$\therefore a = g$$

અને
$$T = 2\pi \sqrt{\frac{l}{g-g}} = \infty$$
.

એટલે કે લોલક દોલન નહીં કરે.

(B) ટ્રેનના ડબામાં સાદું લોલક :

a જેટલા પ્રવેગ કે પ્રતિપ્રવેગની ગતિ કરતાં ટ્રેનના ડબામાં જો સાદું લોલક દોલન કરતું હોય, તો gનું અસરકારક મૂલ્ય

$$g_{eff} = \sqrt{g^2 + a^2}$$

$$\therefore T = 2\pi \sqrt{\frac{l}{(g^2 + a^2)^{\frac{1}{2}}}}.$$

(C) સેકન્ડ લોલક :

જે લોલકનો આવર્તકાળ બે સેકન્ડ હોય છે તેવા લોલકને સેકન્ડ લોલક કહે છે. આવું લોલક તેના દોલન દરમિયાન એક અંતિમ સ્થાનેથી બીજા અંતિમ સ્થાન સુધી જતાં એક સેકન્ડ જેટલો સમય લે છે. તે સમતોલન સ્થિતિ આગળથી દર સેકન્ડે પસાર થાય છે.

ઉદાહરણ 10 : એક સેકન્ડ લોલકની લંબાઈ જો બમણી કરવામાં આવે, તો તેનો આવર્તકાળ શું થશે ?

ઉકેલ :

આપણે જાણીએ છીએ કે.

$$T = 2\pi \sqrt{\frac{l}{g}} = 2 \text{ s}$$

$$\therefore T' = 2\pi \sqrt{\frac{2l}{g}}$$

$$= \sqrt{2} \times 2\pi \sqrt{\frac{l}{g}}$$
$$= \sqrt{2} \times 2$$
$$T' = 2.828 \text{ s.}$$

ઉદાહરણ 11 : પૃથ્વીની સપાટી પર એક સેકન્ડ લોલકની લંબાઈ l_1 છે અને પૃથ્વીની સપાટીથી 'h' જેટલી ઊંચાઈએ સેકન્ડ લોલકની લંબાઈ l_2 છે, તો સાબિત કરો કે

પૃથ્વીની ત્રિજ્યા
$$\mathrm{R}_e=rac{h\sqrt{l_2}}{\sqrt{l_1}-\sqrt{l_2}}$$
 છે.

ઉકેલ :

સેકન્ડ લોલકનો આવર્તકાળ 2 s હોય છે.

સેકન્ડ લોલક માટે પૃથ્વીની સપાટી પર, $2=2\pi\sqrt{rac{l_1}{g_1}}$,

જ્યાં, $g_1 =$ પૃથ્વીની સપાટી પર ગુરુત્વપ્રવેગ. સેકન્ડ લોલક માટે, પૃથ્વીની સપાટીથી 'h' ઊંચાઈ પર,

$$2=2\pi\sqrt{\frac{l_2}{g_2}}\,,$$

જ્યાં, $\boldsymbol{g}_2 =$ પૃથ્વીની સપાટીથી \boldsymbol{h} ઊંચાઈએ ગુરૂત્વપ્રવેગ

$$\therefore \frac{l_1}{g_1} = \frac{l_2}{g_2} \Rightarrow \frac{g_2}{g_1} = \frac{l_2}{l_1} \tag{1}$$

પરંતુ, ગુરુત્વપ્રવેગ
$$g=rac{\mathrm{GM}_e}{r^2}$$

જ્યાં, r= પૃથ્વીના કેન્દ્રથી જે-તે સ્થાનનું અંતર હવે $l_{
m l}={
m R}_e=$ પૃથ્વીની ત્રિજ્યા, $l_{
m l}={
m R}_e+h$

$$\therefore \frac{g_2}{g_1} = \frac{R_e^2}{(R_e + h)^2} \tag{2}$$

સમીકરણ (1) અને (2) પરથી,

$$\sqrt{\frac{l_2}{l_1}} = \frac{R_e}{R_e + h}$$

$$\sqrt{l_2} R_e + \sqrt{l_2} h = \sqrt{l_1} R_e$$

$$(\sqrt{l_1} - \sqrt{l_2}) R_e = \sqrt{l_2} h$$

$$\therefore \ \mathbf{R}_e = \frac{h\sqrt{l_2}}{\sqrt{l_1} - \sqrt{l_2}}.$$

7.10 અવમંદિત સરળ આવર્તગતિ (Damped Simple Harmonic Motion)

સરળ આવર્તગતિ એ અતિ આદર્શ પરિસ્થિતિ વર્ણવે છે. યાંત્રિક તંત્ર પર જ્યારે કોઈ અવરોધક બળ કે ઘર્ષણબળ લાગતું ન હોય, ત્યારે જ સ.આ.ગ. કરે છે.

વ્યવહારમાં કોઈ પણ યાંત્રિક પ્રણાલી અવરોધ પેદા કરતાં માધ્યમમાં જ દોલનો કરે છે. તદુપરાંત યાંત્રિક પ્રણાલીમાં આંતરિક ઘર્ષણબળો પણ હોય છે. અવરોધક બળની વિરુદ્ધમાં દોલન કરતાં તંત્રને કાર્ય કરવું પડતું હોવાથી તેની યાંત્રિક-ઊર્જા એ ઊષ્મા-ઊર્જા સ્વરૂપે ઊર્જા મુક્ત કરે છે.

સ.આ.ગ.ની યાંત્રિક-ઊર્જા સમીકરણ $E=\frac{1}{2}kA^2$ એ દર્શાવે છે કે જેમ યાંત્રિક-ઊર્જા ઘટશે, તેમ તેનો કંપવિસ્તાર પણ ઘટશે. આમ, અંતે ગતિ બંધ પડશે.

આમ, જ્યારે સરળ આવર્ત તંત્ર સમય સાથે ઘટતાં કંપવિસ્તારથી દોલન કરે, તો આવા દોલનોને અવમંદિત દોલનો કહે છે.

હવામાં દોલન કરતું સાદું લોલક હવાનું અવરોધક બળ અનુભવે છે. જ્યારે સ્વરકાંટો દોલન કરે છે ત્યારે તેની ધાતુમાં આંતરિક ઘર્ષણબળ લાગતું હોય છે.

આકૃતિ 7.16માં બતાવ્યા પ્રમાણે k સ્પ્રિંગ-અચળાંકવાળી સ્પ્રિંગ સાથે m દળવાળો બ્લૉક ઊર્ધ્વતલમાં દોલન કરે છે. બ્લૉકના નીચેના છેડે એક સળિયા સાથે એક તકતી લગાડી તેને વાસણમાં ભરેલ પ્રવાહીમાં ડુબાડો. જ્યારે તકતી ઉપર નીચે ગતિ કરે છે, ત્યારે પ્રવાહી દોલન કરતા સમગ્ર તંત્ર પર અવરોધક બળ લગાડશે. આથી દોલન કરતા તંત્રની યાંત્રિક ઊર્જા ઘટશે.

અવમંદિત સરળ આવર્તદોલક આકૃતિ 7.16

પ્રાયોગિક અભ્યાસો દર્શાવે છે કે, તરલ માધ્યમોમાં લાગતું અવરોધક બળ દોલકના વેગ પર આધારિત છે.

આથી દોલક પર લાગતું અવરોધક બળ કે અવમંદિત બળ એ (બહુ મોટો વેગ ન હોય ત્યારે)

$$F_d \propto v$$

$$\therefore F_d = -bv \tag{7.10.1}$$

અહીં b એ **અવમંદન અચળાંક** છે અને તેનો SI એકમ kg / second છે. અહીં ૠ્રણ નિશાની દર્શાવે છે કે બળ F_d એ ગતિને વિરોધે છે.

આમ, અવમંદિત દોલક બે પ્રકારનાં બળોની અસર નીચે દોલનો કરશે :

- (i) પુનઃસ્થાપક બળ $F_y = -ky$ અને
- (ii) અવરોધક બળ $F_d = -bv$

$$\therefore$$
 કુલ બળ $F = F_v + F_d$

ન્યૂટનના ગતિના બીજા નિયમ અનુસાર,

$$ma = -ky -bv$$

$$m\frac{d^2y}{dt^2} = -ky - b\frac{dy}{dt}$$

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0 (7.10.2)$$

આ અવમંદિત દોલનો માટેનું દ્વિતીય ક્રમનું વિકલ સમીકરણ છે અને તેનો ઉકેલ છે,

$$y(t) = A e^{-bt/2m} \sin (\omega' t + \phi)$$
 (7.10.3)
અથવા

$$y(t) = A(t) \sin(\omega' t + \phi).$$
 (7.10.4)

અહીં $A(t) = A e^{-bt/2m}$ એ અવમંદિત દોલનનો કંપ વિસ્તાર છે. જે સમય સાથે ચરઘાતાંકીય રીતે ઘટતો જાય છે.

અવમંદિત દોલકની કોણીય આવૃત્તિ

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}} \tag{7.10.5}$$

વડે આપવામાં આવે છે.

જો b=0, $\omega'=\sqrt{rac{k}{m}}$ એ આદર્શ સ.આ.ગ. દર્શાવે છે.

અવમંદિત દોલકના સ્થાનાંતર y(t)-tનો આલેખ આકૃતિ 7.17માં બતાવ્યો છે.

અવમંદિત દોલકનો સ્થાનાંતર-સમયનો આલેખ ($\phi = \frac{\pi}{2}$ માટે)

આકૃતિ 7.17

આપણે જાણીએ છીએ કે દોલકની યાંત્રિક-ઊર્જા

$$E = \frac{1}{2}kA^{2}$$

$$\therefore E(t) = \frac{1}{2}kA^{2}(t)$$

$$E(t) = \frac{1}{2}kA^{2} e^{-bt/m}$$
(7.10.6)

સમીકરણ (7.10.6) પરથી એ પણ સ્પષ્ટ છે કે અવમંદિત દોલકની યાંત્રિક-ઊર્જા પણ સમય સાથે ચરઘાતાંકીય રીતે ઘટતી જાય છે. સમીકરણ (7.10.6) એ નાના અવમંદન, $b << \sqrt{km}$ માટે જ સાચું છે.

ઉદાહરણ 12 : સાદા લોલકમાં દોરીના છેડે પિત્તળનો નાનો ગોળો લટકાવી તેનાં હવામાં સરળ આવર્તદોલનો મેળવીએ, તો તેનો આવર્તકાળ T મળે છે. હવે આ પિત્તળના ગોળાને પ્રવાહીમાં ડૂબે તેમ રાખીને તેનાં સરળ આવર્તદોલનો મેળવીએ, તો નવો આવર્તકાળ $\sqrt{2}$ T મળે છે, તેમ સાબિત કરો. પ્રવાહીની ઘનતા પિત્તળની ઘનતા કરતાં 1/2 ભાગની છે. અહીં દરેક પ્રકારનું અવરોધકતાબળ અવગણો.

ઉકેલ :

ગોળો પ્રવાહીમાં ડૂબેલો હોય ત્યારે તેની પર લાગતું ઉત્પ્લાવક બળ $= m_0 g$; જ્યાં, m_0 ગોળાએ ખસેડેલ પ્રવાહીનું દળ.

જો ગોળાનું હવામાં વજન mg હોય, તો પ્રવાહીમાં તેનું અસરકારક વજન $=mg-m_0g$

અહીં,
$$m_0 = V \rho_0 = \frac{V \rho}{2} = \frac{m}{2};$$

જ્યાં V = ગોળાનું કદ = ગોળાએ ખસેડેલ પ્રવાહીનું કદ. $ho_0=$ પ્રવાહીની ઘનતા અને ho= પિત્તળની ઘનતા.

$$\therefore$$
 પ્રવાહીમાં ગોળાનું અસરકારક વજન = $mg - \frac{mg}{2}$ = $\frac{1}{2}mg$.

∴ પ્રવાહીમાં અસરકારક ગુરુત્વપ્રવેગ = $g' = \frac{1}{2}g$.

હવે,
$$T=2\pi\sqrt{\frac{l}{g}}$$
 પરથી $T \propto \sqrt{\frac{1}{g}}$.

$$\therefore \frac{\mathrm{T'}}{\mathrm{T}} = \sqrt{\frac{g}{g'}} = \sqrt{\frac{2g}{g}}$$

$$\therefore$$
 T' = $\sqrt{2}$ T.

ઉદાહરણ 13: અવમંદિત દોલનોમાં કંપવિસ્તાર

 $\frac{A}{2^n}$ થતાં લાગતા સમયની ગણતરી કરો.

જ્યાં, A એ મૂળ કંપવિસ્તાર છે.

ઉકેલ :
$$A(t) = Ae^{-bt/2m}$$

પણ,
$$A(t) = \frac{A}{2^n}$$

$$\therefore \frac{A}{2^n} = Ae^{-bt/2m}$$

∴ બંને બાજુ *e*ના બેઇઝ પર *log* લેતાં,

$$\therefore \frac{bt}{2m} = n \ln 2$$

(Natural *log* ને *ln* વડે લખાય છે.)

$$\therefore t = \frac{2mn}{b} (2.303) \log_{10}(2)$$

$$(\because \ln x = 2.303 \log_{10} x)$$

$$= \frac{2mn}{b} (2.303)(0.3010)$$

$$\therefore t = \frac{2mn}{b} (0.693).$$

7.11 પ્રાકૃતિક દોલનો, પ્રણોદિત (બળપ્રેરિત) દોલનો અને અનુનાદ (Natural Oscillations, Forced Oscillations and Resonance)

દોલન કરી શકે તેવા તંત્રને જ્યારે તેની સમતોલન-સ્થિતિથી થોડુંક પ્રારંભિક સ્થાનાંતર આપી છોડતાં તે દોલનો શરૂ કરશે. આમ, કોઈ પણ પ્રકારના અવરોધક બળની ગેરહાજરીમાં થતાં દોલનોને પ્રાકૃતિક દોલનો કહે છે. પ્રાકૃતિક દોલનોની આવૃત્તિને તેની પ્રાકૃતિક આવૃત્તિ $f_{\scriptscriptstyle 0}$ કહે છે. ઉહરણ તરીકે સાદા લોલકના ગોળાને સહેજ ચલિત કરીને

મુક્ત કરતાં તે
$$f_0=rac{1}{2\pi}\sqrt{rac{g}{l}}$$
 જેટલી પ્રાકૃતિક આવૃતિ

સાથે પ્રાકૃતિક દોલનો કરે છે. (અહીં, હવાના અવરોધક બળને અવગણેલ છે.)

વહાલા વિદ્યાર્થીઓ, તમે હીંચકામાં હીંચકા ખાવાનો આનંદ માણ્યો જ હશે. તમે એ પણ અનુભવ્યું હશે કે જો તમારે અવિરત ઝૂલવું હોય, તો તમારે તમારા પગ વડે જમીનને વારે વારે ધક્કા મારવા પડે અથવા કોઈએ તમને વારેવારે ધક્કો મારવો પડે (આકૃતિ 7.18). આમ, બાહ્ય આવર્તબળની શરતને આધીન હીંચકો અવિરત ઝૂલતો રહેશે.

હીંચકા ખાતું બાળક આકૃતિ 7.18

મોટા ભાગના કિસ્સામાં અવમંદિત બળો હાજર જ હોય છે અને આખરે સમય સાથે દોલનો બંધ પડે છે. આથી દોલનો ચાલુ રાખવા બાહ્ય આવર્ત બળો જરૂરી છે.

આમ, જ્યારે તંત્ર બાહ્ય આવર્ત બળની મદદથી દોલનો કરે, તો તેને પ્રણોદિત (બળપ્રેરિત) દોલનો કહે છે.

તંત્રને દોલિત કરી શકે તેવું તંત્ર પર લાગતું કોઈ એક બાહ્ય આવર્તબળ $F=F_0 \sin\!\omega t$ લો.

આથી સમીકરણ (7.10.2) ને નીચેના સ્વરૂપે લખી શકાય.

$$m\frac{d^2y}{dt^2} = -ky - b\frac{dy}{dt} + F_0 \sin\omega t$$

$$\therefore \frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{ky}{m} = \frac{F_0}{m}\sin\omega t$$

(7.11.1)

આ પ્રણોદિત દોલનો માટેનું દ્વિતીય ક્રમનું વિકલ સમીકરણ છે. સમીકરણ (7.11.1) નો ઉકેલ નીચે મુજબ આપી શકાય છે.

$$y = A \sin (\omega t + \phi)$$

અહીં, A અને ϕ એ ઉકેલના અચળાંકો છે, જે નીચે મુજબ મળે છે.

$$A = \frac{F_0}{[m^2(\omega_0^2 - \omega^2)^2 + b^2\omega^2]^{\frac{1}{2}}}$$
 (7.11.2)

અને
$$\phi = \tan^{-1} \frac{\omega y_0}{v_0}$$
 . (7.11.3)

અહીં m એ દોલકનું દળ, v_0 અને y_0 એ જયારે આવર્તબળ લગાડવામાં આવે, ત્યારે તેનો ક્રમિક વેગ અને સ્થાનાંતર છે.

પ્રારંભમાં દોલક પોતાની પ્રાકૃતિક આવૃત્તિથી દોલનો કરે છે. જ્યારે આપણે બાહ્ય આવર્તબળ લગાડીએ, ત્યારે પ્રાકૃતિક આવૃત્તિ સાથેનાં દોલનો નાશ પામશે અને પદાર્થ બાહ્ય આવર્તબળની આવૃત્તિ સાથે દોલનો કરશે.

સમીકરણ (7.11.2) પરથી જોઈ શકાય છે કે પ્રણોદિત દોલનોનો કંપવિસ્તાર (i) $({\omega_0}^2-{\omega}^2)$ તફાવત અને (ii) અવરોધક-ગુણાંક (અવમંદિત અચળાંક)ના વ્યસ્ત પ્રમાણમાં ચલે છે.

નાના અવરોધક-ગુણાંક માટે $b\omega << m \ (\omega_0^2 - \omega^2)$ આથી સમીકરણ (7.11.2)ને નીચે મુજબ લખી શકાય.

$$A = \frac{F_0}{m (\omega_0^2 - \omega^2)}.$$
 (7.11.4)

 $\omega \approx \omega_0$ માટે

 $m(\omega_0^2-\omega^2)<< b\omega$, આથી

$$A = \frac{F_0}{b\omega}. (7.11.5)$$

જેમ ω નું મૂલ્ય ω_0 તરફ જાય છે તેમ કંપવિસ્તાર વધતો જાય છે અને ω ના કોઈ લાક્ષણિક મૂલ્ય માટે કંપવિસ્તાર મહત્તમ થાય છે. આ ઘટનાને અનુનાદ કહે છે. ω ના જે મૂલ્ય માટે અનુનાદ ઉદ્ભવે છે તે મૂલ્યને અનુનાદીય કોણીય આવૃત્તિ કહે છે.

અવરોધક ગુશાંક b ના વિવિધ મૂલ્યો માટે કંપવિસ્તાર- ω/ω_0 નો આલેખો આકૃતિ 7.19માં બતાવેલ છે.

જો b=0 હોય તો $\omega=\omega_0$ માટે કંપવિસ્તાર અનંત થાય છે. જેમ અવમંદન વધે છે તે આલેખમાં કંપવિસ્તારનું મહત્તમ મૂલ્ય ડાબી તરફ ખસે છે.

વ્યવહારમાં એવાં યાંત્રિક તંત્રો મળે છે કે જેનાં દોલનોની એક કરતાં વધારે પ્રાકૃતિક આવૃત્તિઓ હોય છે. જો તંત્ર પર લાગતાં બાહ્ય આવર્તબળની આવૃત્તિ તે તંત્રની પ્રાકૃતિક આવૃત્તિ જેટલી (અથવા લગભગ સમાન) થાય ત્યારે તંત્ર અતિ મોટા કંપવિસ્તાર સાથે દોલનો કરે છે અને તંત્ર તૂટી કે ફસકાઈ પણ પડે.

આથી ઝૂલતા પુલ પર જતાં સૈનિકોને માર્ચિંગ ન કરવાની સલાહ આપવામાં આવે છે. વળી, પુલ-ડિઝાઇન કરતી વખતે, ત્યાંથી વહેતા પવનને કારશે લાગતા બાહ્ય બળની આવૃત્તિ અને પુલનાં દોલનોની પ્રાકૃતિક આવૃત્તિનાં મૂલ્યો સરખાં કે લગભગ સરખાં ન થાય તેની કાળજી લેવામાં આવે છે. કેટલીક વખત એવું પણ જોવામાં આવ્યું છે કે ધરતીકંપ વખતે ઓછી ઊંચાઈ અને મોટી ઊંચાઈવાળા બાંધકામ (structure)ને ઓછું નુકસાન થાય છે, જ્યારે મધ્યમ ઊંચાઈવાળાં બાંધકામો નીચે પડી જાય છે. કારણ કે સેસ્મિક તરંગોની આવૃત્તિ કરતાં ઓછી ઊંચાઈવાળા બાંધકામની પ્રાકૃતિક આવૃત્તિઓ વધુ હોય છે અને વધુ ઊંચાઈવાળાં બાંધકામની પ્રાકૃતિક આવૃત્તિઓ ઓછી હોય છે.

સારાંશ

- જો કોઈ પદાર્થ કોઈ નિશ્ચિત પથ પર, કોઈ નિશ્ચિતબિંદુને અનુલક્ષીને, નિયત સમયગાળે પોતાની ગતિનું પુનરાવર્તન કરતો હોય, તો આવી ગતિને આવર્તગિત કહે છે.
- જો કોઈ પદાર્થ કોઈ નિયતભિંદુની આસપાસ, આગળ-પાછળ કે ઉપર નીચે નિયત સમયમાં ગતિ કરતો હોય, તો આવી ગતિને દોલિત ગતિ કહે છે.
- 3. જ્યારે કોઈ પદાર્થ નિયતબિંદુથી સ્થાનાંતરના સમપ્રમાણમાં અને નિયતબિંદુ તરફ લાગતા બળની અસર નીચે, નિયતબિંદુની આસપાસ સુરેખ પથ પર આવર્તગિત કરતો હોય, તો તેવી ગિતને સરળ આવર્તગિત કહે છે.
- મધ્યમાન સ્થાનથી કોઈ એક તરફના દોલકના અધિકતમ સ્થાનાંતરને તે દોલકનો કંપવિસ્તાર કહે છે.
- 5. એક દોલન પૂર્ણ કરવા માટે દોલકે લીધેલ સમયને તે દોલકનો આવર્તકાળ (T) કહે છે.
- એક સેકન્ડમાં પૂર્શ થતાં દોલનોની સંખ્યાને તે સરળ આવર્ત દોલકની આવૃત્તિ (f) કહે છે.
- 7. દોલકની આવૃત્તિના 2π ગણાને તે દોલકની કોણીય આવૃત્તિ (ω) કહે છે.

8.
$$T = \frac{1}{f} = \frac{2\pi}{\omega} \ \ f = \frac{1}{T} \ \ \omega = \frac{2\pi}{T}$$

 સરળ આવર્તગતિ માટે, મધ્યમાન સ્થિતિથી કણનું સ્થાનાંતર y(t)ને sine, cosine અથવા તેના રેખીય સંયોજનથી દર્શાવવામાં આવે છે. જેમકે,

$$y(t) = A \sin(\omega t + \phi),$$

$$y(t) = B \cos(\omega t + \phi),$$

$$y(t) = A' \sin \omega t + B' \cos \omega t$$

જ્યાં,
$$A' = A\cos\phi$$
 અને $B' = B\sin\phi$ છે.

- **10.** સ.આ.દો.નો વેગ $v = \pm \omega \sqrt{A^2 y^2}$ વડે આપવામાં આવે છે.
- 11. સ.આ.દોનો પ્રવેગ $a = -\omega^2 y$ વડે આપવામાં આવે છે.

174 ભૌતિકવિશાન

12 હુકના નિયમની અસર હેઠળ દોલન કરતાં m દળવાળો ક્ર્યા સરળ આવર્તગતિ કરે છે તથા

$$\omega = \sqrt{\frac{k}{m}}$$
; $T = 2\pi \sqrt{\frac{m}{k}}$

- 13. $\frac{d^2y}{dt^2} + \omega^2y = 0$ એ સ.આ.ગ. માટેનું વિકલ સમીકરણ છે.
- 14. $k_1,\ k_2,\ k_3$ k_n સ્પ્રિંગ-અચળાંકો ધરાવતી n સ્પ્રિંગોનાં શ્રેણીજોડાણનો સમતુલ્ય સ્પ્રિંગ-અચળાંક k હોય તો, $\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}+\ldots\ldots+\frac{1}{k_n}$ અને આવર્તકાળ $\mathrm{T}=2\pi\sqrt{\frac{m}{k}}$ છે.
- **15.** $k_1,\ k_2,\ k_3\\ k_n$ સ્થિંગ-અચળાંકો ધરાવતી n સ્થિંગોના સમાંતર જોડાણનો સમતુલ્ય સ્થિંગ-અચળાંક $k=k_1+k_2+k_3+.....+k_n$ અને આવર્તકાળ $\mathrm{T}=2\pi\sqrt{\frac{m}{k}}$ છે.
- **16.** $K = \frac{1}{2}m\omega^2 (A^2 y^2)$ એ સ.આ.દો.ની ગતિ-ઊર્જા છે.
- **17.** $U = \frac{1}{2}ky^2$ એ સ.આ.દો.ની સ્થિતિ-ઊર્જા છે.
- 18. $E = K + U = \frac{1}{2}m\omega^2A^2 = \frac{1}{2}kA^2$ એ સ.આ.દો.ની કુલ યાંત્રિક-ઊર્જા છે.
- 19. સ.આ.દો. માટે, y=0 એ, સ્થિતિ-ઊર્જા ન્યૂનતમ (U = 0) અને ગતિ-ઊર્જા મહત્તમ $(\mathrm{K}=\frac{1}{2}k\mathrm{A}^2=\mathrm{E})$ હોય છે.
- **20.** સ.આ.દો. માટે, $y=\pm A$ એ, સ્થિતિ-ઊર્જા મહત્તમ (U = $\frac{1}{2}kA^2=E$) અને ગતિ-ઊર્જા ન્યૂનત્તમ (K = 0) છે.
- 21. સરળ આવર્તગતિ એ નિયમિત વર્તુળમય ગતિની, સંદર્ભ વર્તુળના વ્યાસ પરના પ્રક્ષેપની ગતિ છે.
- 22. સાદા લોલક માટે, નાના કોણીય સ્થાનાંતર માટે

$$T = 2\pi \sqrt{\frac{l}{g}}$$
 અને $ω = 2\pi f = \frac{2\pi}{T} = \sqrt{\frac{g}{l}}$

- સાદા લોલકનો આવર્તકાળ T એ ગોળાના દળ તેમજ દોલનના કંપવિસ્તારથી સ્વતંત્ર છે.
- 24. સરળ આવર્તતંત્ર સમય સાથે ઘટતાં કંપિવસ્તારથી દોલન કરે, તો આવાં દોલનોને અવમંદિત દોલનો કહે છે.

$$m \frac{d^2 y}{dt^2} + b \frac{dy}{dt} + ky = 0$$
. એ અવમંદિત દોલનો માટેનું વિકલ સમીકરણ છે,

જ્યાં સ્થાનાંતર
$$y(t)=\mathrm{A}e^{-bt/2m}\,\sin(\omega'\,t+\,\phi)$$
 અને કોણીય આવૃત્તિ $\omega'=\sqrt{\frac{k}{m}-\frac{b^2}{4m^2}}$ છે.

- **25.** $E(t) = \frac{1}{2}kA^2 e^{\frac{-bt}{m}}$ એ અવમંદિત દોલનની t-સમયની યાંત્રિક-ઊર્જા આપે છે.
- 26. જ્યારે તંત્ર બાહ્ય આવર્ત બળની મદદથી દોલનો કરે, તો તેને પ્રણોદિત (બળપ્રેરિત) દોલનો

$$\frac{d^2y}{dt^2} + \frac{b}{m}\frac{dy}{dt} + \frac{k}{m}y = \frac{F_0}{m}\sin\omega t$$
 એ પ્રણોદિત દોલનો માટેનું વિકલ સમીકરણ છે.

$$A=rac{F_0}{[m^2({\omega_0}^2-{\omega}^2)^2+b^2{\omega}^2]^{rac{1}{2}}}$$
 એ પ્રણોદિત દોલનનો કંપવિસ્તાર છે.

A	$\Lambda = \frac{\Gamma_0}{\left[m^2({\omega_0}^2 - {\omega}^2)^2 + b^2{\omega}^2\right]^{\frac{1}{2}}}$ એ પ્રશોદિત દોલનનો કંપવિસ્તાર છે.
	સ્વાધ્યાય
નીચેન	ાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :
1.	સ.આ.ગ.માં ક્શનો પ્રવેગ શૂન્ય થાય જ્યારે કે તેની,
	(A) ગતિ શૂન્ય હોય.
	(B) સ્થાનાંતર શૂન્ય હોય.
	(C) ગતિ અને સ્થાનાંતર બંને શૂન્ય હોય.
	(D) ગતિ અને સ્થાનાંતર બંને મહત્તમ હોય.
2.	સ.આ.ગ. કરતાં પદાર્થનું મહત્તમ પ્રવેગ a_{max} અને મહત્તમ વેગ v_{max} છે, તો તેનો
	કંપવિસ્તાર
	(A) v_{max}^2 / a_{max} (B) a_{max}^2 / v_{max}
	(C) v_{max}^2 / a_{max}^2 (D) v_{max} / a_{max}
3.	નીચેનામાંથી ગતિ એ સરળ આવર્ત બને તે માટેની આવશ્યક શરત કઈ છે ?
	(A) અચળ બળ
	(B) બળ ચલે છે સ્થાનાંતરને
	(C) સ્થાનાંતરની વિરુદ્ધ બળ
4.	(D) બળ સ્થાનાંતરના સમપ્રમાણમાં અને તેની વિરુદ્ધ દિશામાં હોય છે. સાદા લોલકની લંબાઈ <i>l</i> અને તેના આવર્તકાળ Tનો આલેખ એ
4.	(A) સુરેખા છે. (B) ઉપવલય છે. (C) પરવલય છે. (D) અતિવલય છે.
5.	બે દોલકના આવર્તકાળ અનુક્રમે T અને $\frac{5T}{4}$ છે. તેઓ તેમનાં ગતિપથના મધ્યમાનસ્થાનેથી
	એકસાથે દોલનો શરૂ કરે છે. જ્યારે T આવર્તકાળ ધરાવતા દોલકનું એક દોલન પૂર્ણ થયું હોય,
	ત્યારે તેમની કળાનો તફાવત છે.
	(A) 45° (B) 72° (C) 90° (D) 112°
6.	એક સ.આ.દો.નો આવર્તકાળ T છે. નિયતબિંદુથી શરૂ કરીને $\frac{3}{8}$ જેટલા દોલન પૂર્ટું કરતાં તેને
	કેટલો સમય લાગશે ?

- (B) $\frac{5}{8}$ T (C) $\frac{5}{12}$ T (D) $\frac{8}{3}$ T (A) $\frac{3}{8}$ T
- 7. નિયતબિંદુ પરથી પસાર થતા એક 0.5 m લંબાઈવાળા સાદા લોલકના ગોળાનો વેગ 3 m/s છે. જ્યારે લોલક શિરોલંબ સાથે 60°નો કોણ બનાવે, ત્યારે તેના ગોળાનો વેગ હશે. $(g = 10 \text{ m/s}^2 \text{ ell.})$
 - (A) $\frac{1}{3}$ m/s (B) $\frac{1}{2}$ m/s (C) 2 m/s (D) 3 m/s

આકૃતિ 7.20માં બતાવ્યા પ્રમાણે સમાન સ્પ્રિંગ-અચળાંક ધરાવતી બે સ્પ્રિંગોને m દળ લટકાવેલ છે. $\frac{T_1}{T_2}$ શું થશે ?

આકૃતિ 7.20

(A) 1

(B) 2

(C) 3

(D) 4

🥦 આકૃતિ 7.21માં બતાવ્યા પ્રમાણે *m* દળને ત્રણ સ્પ્રિંગો સાથે જોડેલ છે, તો Τશુંથશે?

(A)
$$2\pi \sqrt{\frac{m}{k}}$$

(B)
$$2\pi \sqrt{\frac{m}{3k}}$$

(C)
$$2\pi \sqrt{\frac{3m}{2k}}$$

(D)
$$2\pi \sqrt{\frac{2k}{3m}}$$

આકૃતિ 7.21

 $oldsymbol{10}$. જો સ્પ્રિંગનો પુનઃસ્થાપક બળ F અને સ્પ્રિંગ-અચળાંક k હોય, તો સ્પ્રિંગને વજન લટકાવતાં yજેટલી ખેંચાય, ત્યારે સ્પ્રિંગમાં સંગૃહીત યાંત્રિક-ઊજા-કેટલી હશે ?

(A)
$$\frac{F^2}{2y}$$

(B)
$$\frac{F^2}{2k}$$
 (C) $\frac{2y}{F^2}$

(D) $\frac{2k}{E^2}$

11. અવમંદિત દોલનના કિસ્સામાં કંપવિસ્તાર, મૂળ કંપવિસ્તારના ૯મા ભાગનો થવા લાગતો સમય છે.

(A)
$$\frac{m}{2b}$$

(B) $\frac{2m}{h}$ (C) $e^{-bt/2m}$ (D) $e^{2m/b}$

(C)
$$e^{-bt/2m}$$

12. એક સ.આ.દો. તેનાં દોલનો તેના ગતિપથના નીચેના અંતિમ છેડેથી શરૂ કરે છે. 10 દોલનોના અંતે તેની કળા હશે. ગતિ Y-અક્ષ પર અને સંદર્ભદિશા ધન X-અક્ષ લો.

(A)
$$\frac{1}{2}\pi$$
 rad

(B)
$$5\pi \text{ rad}$$
 (C) $10\pi \text{ rad}$

(D) $\frac{43}{2}\pi$ rad

 $oxed{13.}$ એક દોલક પર બાહ્ય આવર્તબળ $F=F_0\sin\,\omega t$ લાગે છે. જો દોલકનો કંપવિસ્તાર $\omega=\omega_1$ માટે મહત્તમ અને ઊર્જા એ $\omega=\omega_{_2}$ માટે મહત્તમ હોય ત્યારે ($\omega_{_0}$ એ પ્રાકૃતિક કોણીય આવૃત્તિ છે.)

(A)
$$\omega_1 = \omega_0$$
 અને $\omega_2 \neq \omega_0$

(B)
$$\omega_1 \neq \omega_0$$
 ਅਜੇ $\omega_2 = \omega_0$

(C)
$$\omega_1 \neq \omega_0$$
 અને $\omega_2 \neq \omega_0$

(D)
$$\omega_1 = \omega_0$$
 અને $\omega_2 = \omega_0$

> 14. સ્પ્રિંગના નીચેના છેડે 1 kg દળ લગાડેલ છે, જેના દોલનની એક ચોક્કસ આવૃત્તિ છે. આમાં કેટલું દળ ઉમેરતાં તેની આવૃત્તિમાં અડધો ઘટાડો થાય.

- (A) 1 kg
- (B) 2 kg
- (C) 3 kg
- (D) 4 kg

15. જ્યારે ટ્રેન $10~{
m m~s^{-2}}$ થી પ્રવેગી ગતિ કરે છે, ત્યારે ટ્રેનના ડબ્બાની છત પરથી લટકાવેલ લોલકનો આવર્તકાળ $2~\mathrm{s}$ છે. આ લોલકનો આવર્તકાળ જ્યારે ટ્રેન $10~\mathrm{m}~\mathrm{s}^{-2}$ ના પ્રતિપ્રવેગથી ગતિ કરશે ત્યારે કેટલો હશે ?

- (A) 2 s(B)
- $\sqrt{2}$ s
- (C) $2\sqrt{2}$ s (D) $\frac{2}{\sqrt{2}}$ s

6. (C)

જવાબો

- 3. (D) 1. (B) 2. (A) 4. (C) 5. (B)
- 7. (C) 8. (A) 9. (C) **10.** (B) 11. (B) 12. (D)
- 14. (C) 13. (D) 15. (A)

નીચે આપેલ પ્રશ્નોના જવાબ ટુંકમાં આપો :

- એક પૂર્શ દોલનમાં સાદા લોલક વડે થતું કાર્ય કેટલું હશે ?
- 2. મુક્તપતન કરતી લિફ્ટમાં લોલકનો આવર્તકાળ કેટલો થશે ?
- 3. U–ટ્યૂબમાં પ્રવાહીના દોલનના આવર્તકાળનું સમીકરણ લખો.
- પ્રારંભિક કળા શું છે ? તે કયા એકમમાં મપાય છે ? 4.
- એક સ.આ.દો.નો કંપવિસ્તાર 4 cm છે. નિયતબિંદુથી કેટલા અંતરે તેની સ્થિતિ-ઊર્જા અને 5. ગતિ-ઊર્જા સરખી થશે.
- બળ અચળાંકનો SI એકમ શું છે ?
- સ.આ.ગ માટે પ્રવેગ(a)-કંપવિસ્તાર , સ્થાનાંતર કંપવિસ્તાર (A) અને કોશીય આવૃત્તિ (ω) વચ્ચેનો સંબંધ લખો.
- સાદું લોલક આખરે કેમ થંભી જાય છે ?
- $b << \sqrt{km}$ માટે અવમંદિત દોલક માટેની યાંત્રિક-ઊર્જાનું સૂત્ર લખો.
- 10. પ્રશોદિત દોલનો માટેનું વ્યાપક સ્વરૂપનું દ્વિતીય ક્રમનું વિકલ સમીકરણ લખો.

નીચેના પ્રશ્નોના જવાબ આપો :

- આવર્તગતિ અને દોલિત ગતિ વ્યાખ્યાયિત કરો. તેનાં યોગ્ય ઉદાહરણો આપો.
- સાદા લોલકના આવર્તકાળ માટેનું સૂત્ર તારવો. 2.
- અવમંદિત દોલનો એટલે શું ? તેની ગતિને અસર કરતાં પરિબળો ક્યાં છે ? 3.
- અવમંદિત આવર્ત દોલનની કુલ ઊર્જાનો સંબંધ તારવો.
- 5. પ્રશોદિત દોલનો અને અનુનાદ સમજાવો.
- રેખિય સ.આ.ગ. માટે એક આવર્તકાળ પરની સરેરાશ KE અને તેટલા જ આવર્તકાળ પરની સરેરાશ PEનાં મૂલ્યો સમાન છે, તેમ બતાવો.

178

- KE અને PE વિરુદ્ધ સ્થાનાંતર આલેખો જે બિંદુઓએ છેદે તેના યામો મેળવો.
- 8. સ.આ.ગ. માટે પ્રવેગ વિરુદ્ધ સ્થાનાંતરનો વક્ર કેવો હશે ? આ વક્રનો ઢાળ શું હશે ?
- 9. સ.આ.ગ. કરતાં કણનો આવર્તકાળ $T=2\pi\sqrt{\frac{m}{k}}$ છે, તો સાદા લોલકનો આવર્તકાળ લોલકના દળથી સ્વતંત્ર કેમ છે ? સમજાવો.
- સરળ આવર્તદોલકોના નીચેના કિસ્સાઓમાં પુનઃસ્થાપક બળ કોણ પૂરું પાડે છે ?
 (i) સાદું લોલક (ii) સ્પ્રિંગ (iii) U ટ્યૂબના કૉલમમાં પારો.

નીચેના દાખલા ગણો :

 આકૃતિ 7.22 (a) અને (b)ના કિસ્સામાં ભ્રમણ કરતાં કણ Pના ત્રિજયા સદિશના y-પ્રક્ષેપની સરળ આવર્તગતિનાં સમીકરણો મેળવો.

આકૃતિ 7.22

[8414: (a)
$$y = 2 \sin\left(\frac{2\pi t}{3} + \frac{\pi}{3}\right)$$
 (b) $y = 3 \cos\left(\frac{\pi}{30}t\right)$]

2. આકૃતિ 7.23 માં બતાવ્યા પ્રમાણે એક m=80~g દળ ત્રણ સ્પ્રિંગો સાથે લગાડેલ છે. જો $k=2~\mathrm{N~m^{-1}}$ હોય તો, સમતુલ્ય સ્પ્રિંગ-અચળાંક અને આવર્તકાળ કેટલો હશે ?

[%
$$k = 8 \text{ Nm}^{-1}, T = 0.628 \text{ s}$$
]

3. l લંબાઈની અને k જેટલો બળ-અચળાંક ધરાવતી સ્પ્રિંગના l_1 અને l_2 લંબાઈના બે ભાગ કરવામાં આવે છે. જો $l_1=nl_2$ હોય, તો અત્રે મળતી બંને સ્પ્રિંગના બળ-અચળાંક k_1 અને k_2 નાં સૂત્રો n અને k ના સ્વરૂપમાં મેળવો. [જવાબ: $k_1=\left(1+\frac{1}{n}\right)k$, $k_2=(n+1)k$]