

Code Carbon, comment mesurer l'impact CO2 de vos projets?

Benoît Courty, Mainteneur CodeCarbon Senior Data Scientist, Assemblée Nationale @BenoitCourty

Amine Saboni, Mainteneur CodeCarbon Senior Data Engineer, DiliTrust @Tundjii Impact environmental du numérique

D'où provient le CO2 dans le numérique

TABLE DES MATIERES

Le CO2 dans le ML

Code Carbon et démo

Pistes de réduction

Impact environmental du numérique

- Pourquoi en parler ?
 - Impact global de l'IT
 - Savoir quoi mesurer
 - o Impacts environnementaux liés à la pollution lors de l'extraction, la fabrication et la fin de vie
 - Trouver des Pistes de réduction
- Pourquoi estimer les émissions?
 - Améliorer ses pratiques en se basant sur des chiffres
 - Remonter ces chiffres aux départements RSE
 - Critiquer de manière objective l'impact de l'IT

Répartition de l'impact du numérique mondial

D'où provient l'impact du numérique?

%	Énergie	GES	Eau	Élec.	Ressources
Utilisateurs	60%	63%	83%	44%	75%
Réseau	23%	22%	9%	32%	16%
Centres informatiques	17%	15%	7%	24%	8%

Répartition des impacts du numérique mondial en 2019

Pas seulement le CO2

Disclaimer

Attention : tous les chiffres présentés sont des estimations avec des marges d'erreurs qui peuvent être importantes. Jusqu'à 90x

Factcheck: What is the carbon footprint of streaming video on Netflix?, CarbonBrief.org

Consommation électrique d'un data center

Mesure de l'efficacité énergétique

$$ext{PUE} = rac{ ext{Total Facility Energy}}{ ext{IT Equipment Energy}} = 1 + rac{ ext{Non IT Facility Energy}}{ ext{IT Equipment Energy}}$$

Mesure de l'efficacité de refroidissement

$$WUE = \frac{Annual\ Water\ Usage}{IT\ Equipment\ Energy}$$

Assessing the suitability of the Greenhouse Gas Protocol for calculation of emissions from public cloud computing workloads, David Mytton

Mix énergétique

Ordres de grandeur / consommation PC

1 PC Gaming = 250W

= 2 190 kWh/an si allumé 24/7

= 300 € d'électricité

= 155 kg de CO2

1 PC gaming pendant 1h = 17 gCO2 (en FR)

1 feuille de papier = 10 q de CO2

1 km en voiture = 100 g eq CO2

1 aller-retour Paris-New-York = 2 T de CO2

Budget carbone annuel par être humain : 2 T Emissions moyenne d'un français : 10T

1kg de CO2 => 15 kg de glacier en moins

Gaz inclus: CO2 (hors UTCATF France), CH4, N2O, HFC, SF6, PFC, H₂O (trainées de condensation).

Source: MyCO2 par Carbone 4 d'après le ministère de la Transition écologique, le Haut Conseil pour le Climat, le CITEPA, Agribalyse V3 et INCA 3.

Consommation électrique d'un data center

Mesure de l'efficacité énergétique

$$PUE = \frac{Total\ Facility\ Energy}{IT\ Equipment\ Energy} = 1 + \frac{Non\ IT\ Facility\ Energy}{IT\ Equipment\ Energy}$$

1.2 pour les nouveau comme Marseille 2

Mesure de l'efficacité de refroidissement

$$WUE = \frac{Annual Water Usage}{IT Equipment Energy}$$

Côté Machine Learning

- Augmentation de la taille & de la complexité des modèles de ML
- Augmentation de l'usage des modèles de ML (GenAI, CV, AutoML)
- Nécessité de mesurer les émissions de carbone pour :
 - Stimuler la sobriété & la simplicité dans le ML
 - Point de vue de Y. Bengio: les Data Scientists doivent être capables de mesurer les émissions de carbone dues à leurs activité, pour pouvoir tenir responsable les entreprises de leur impact sociétal, via des taxes Pigouviennes.

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
NLP pipeline (parsing, SRL)	39
w/ tuning & experimentation	78,468
Transformer (big)	192
w/ neural architecture search	626,155

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

Etude de cas de modèles (GPT-3 & Bloom)

	Entrainement GPT-3	Entrainement BLOOM
Énergie consommée	1 287 MWh	433 MWh
Intensité carbone de la production d'électricité	423 g CO2eq / kWh	57 g CO2eq / kWh ■
Impact carbone	552 tonnes CO2eq	30 tonnes CO2eq

GPT-3:

- Consommation électrique de l'équivalent de 270 familles pendant 1 an
- Impact carbone de l'équivalent de 200 Paris New York en avion

Etude de cas de modèles (GPT-3 & Bloom)

	Entrainement GPT-3	Entrainement BLOOM
Énergie consommée	1 287 MWh	433 MWh
Intensité carbone de la production d'électricité	423 g CO2eq / kWh	57 g CO2eq / kWh ■■
Impact carbone	552 tonnes CO2eq	30 tonnes CO2eq

GPT-3:

- Consommation électrique de l'équivalent de 270 familles pendant 1 an
- Impact carbone de l'équivalent de 200 Paris New York en avion

Décomposition de l'impact de Bloom :

- 25 Tonnes de CO2eq pour l'entraînement (avant application du PUE)
- 25 Tonnes de CO2eq pour l'inférence, sur une période de 2 semaines

Process	CO ₂ emissions (CO ₂ eq)	Percentage of total emissions
Embodied emissions	11.2 tonnes	22.2 %
Dynamic consumption	24.69 tonnes	48.9 %
Idle consumption	14.6 tonnes	28.9 %
Total	50.5 tonnes	100.00%

Table 3: Breakdown of CO₂ emissions from different sources of the BLOOM model life cycle

Mesure de la consommation d'un serveur physique

- Mesure de la puissance consommée par :
 - Interface RAPL sur les OS unix
 - Intel Power Gadget: Mac & Windows
- Estimation de la consommation via la valeur de Thermal Design Power (TDP):

Consommation (Joules) ≈ TDP x Taux d'utilisation

Mesure de la consommation d'un GPU

Le driver Nvidia permet d'accéder également aux métriques de puissance et de consommation électrique. (pyNVML)

	2.0s: n 29 1		-smi 3 2018						
NVIDIA-SMI 390.48 Driver Version: 390.48						+ 			
 GPU Fan	Name Temp					Disp.A mory-Usage		Uncorr. ECC Compute M.	+
===== 0 0%	Tesla 57C		217W	======+ On / 250W		3:00.0 Off / 11448MiB		0 Default	
1 0%	Tesla 58C		200W	On / 250W		4:00.0 Off / 11448MiB		0 Default	+
2 0%	Tesla 56C	M40 P0	222W	On / 250W		4:00.0 Off / 11448MiB	99%	0 Default	
3 0%	Tesla 57C		203W	On / 250W		5:00.0 Off / 11448MiB	98%	0 Default	
+									+
Proc GPU	esses:	PID	Туре	Process	name			GPU Memory Usage	
 0 0 1	5	 5346 5323 5323	С С С	python2 python python				110MiB 10673MiB 9970MiB	

MLCO2 Calculator

- Calculatrice de prédiction d'impact
- Choix du fournisseur de services cloud, datacenter, infrastructure
- Permet de partager les estimations d'impact
- Développé au MILA, 2019

https://mlco2.github.io/impact/

Code Carbon

- 2020 : Librairie python à destination des Data Scientists & développeurs
- Lit la consommation électrique depuis :
 - Interface RAPL
 - Intel Power Gadget
 - Interfaces directes CPU / GPU
- Export des données en CSV / API / webhooks / Prometheus
- Monitoring de machines sous forme de daemon

from codecarbon import EmissionsTracker

tracker = EmissionsTracker()
tracker.start()
GPU Intensive code goes here
tracker.stop()

Across All Projects

Net Power Consumption: 496 kWh

Net Carbon Equivalent : 527 kg

Select a Project

project_alpha

× ▼

Infrastructure Hosted at Ontario, Canada

Power Consumption Across All Experiments: 113 kWh Carbon Equivalent Across All Experiments: 120 kg Last Run Power Consumption : 6 kWh
Last Run Carbon Equivalent : 4 kg

Exemplary Equivalents

emissions

Architecture

Code Carbon Users

45 contributeurs 20 000 téléchargements Pypi par mois

Ekimetrics.

Démo time!

Utilisation de Code Carbon

Optimisation d'expérimentation de ML :

- Se servir de l'impact CO2 comme n'importe quelle métrique de performance

Optimisation du choix d'infrastructure

- Comparer les charges de travail entre plusieurs datacenter / régions / cloud providers

Comptabilité de l'impact au niveau entreprise

- Agréger les données par équipes, projects, expériences de ML, ou autres axes d'analyse

Comment réduire ?

Réduire les coûts et réduire le temps d'exécution est souvent bénéfique.

Hardware

Choisir le la zone / région du datacenter cible en fonction de son PUE / Impact carbone

Travailler sur GPU plutôt que sur CPU

Avez vous besoin de ce projet?

Pas de sur-optimisation, s'arrêter quand les performances sont satisfaisantes

Mesures de comparaison

Sobriété

Machine Learning

Fine-tuner un modèle sur étagère plutôt que de réentraîner en partant de zéro

Optimisation de paramètres bayésienne plutôt que par grid search

Pruning des noeuds avant mise en production

Mise en cache des requêtes les plus populaires

Pour des traitements batch, chercher le timing et le mix énergétique optimal Systèmes autour des modèles

N'allez pas trop loin!

Réduire l'empreinte carbone d'un projet ne doit pas l'augmenter ailleurs.

Par exemple : déplacer le calcul vers les machines clientes est pire. Il vaut mieux changer un serveur à cause de son utilisation que des milliers d'ordinateurs clients.

Outil complémentaire : Scaphandre

Utilisateurs **Applicatifs VMs** Hyperviseur

Scaphandre, by Hubblo.org (Boavizta)

- Donnée exportée via un agent sur la VM.
- Volumes partagés sur les VMs
- Donnée brute lue depuis les fichiers RAPL, exportée par un agent Prometheus depuis l'hyperviseur, où Scaphandre est installé

Initiative complémentaire: LowImpact

Site responsive en fonction du mix énergétique

- Website: <u>codecarbon.io</u>
- Source-code: <u>GitHub</u>
- Documentation: <u>Github.io</u>
- Youtube <u>channel</u>
- Live Chat on <u>Gitter</u>

Sondage !!!

