Gradient Boosting

Ce ne așteaptă?

1. Esența Gradient Boosting

2. Instrumente Scikit-Learn

1. Esența Gradient Boosting

- Gradient Boosting este un mecanism boosting aplicat consecutivasupra algoritmilor simpli prin utilizarea valorii erorii reziduale și coeficienți de valoarea egalăi
- Paşii algoritmului Gradient Boosting pentru sarcini de regresie
 - 1. Se elaborează algoritmul simplu și se obțin rezultatele de predicții pe datele de training \hat{y}
 - 2. Se determină valoarea erorii reziduale e

$$e = y - \hat{y}$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	у	ŷ	e
200	3	2	500	430	70
190	2	1	462	395	67
230	3	3	565	602	-37

- 3. Se elaborează algoritmul simplu și se realizează trainingul acestuia considerându-se drept etichetă valoarea erorii reziduale e
- 4. Se obține rezultatele predicției f_1 a acestui nou algoritm pe datele de training
- 5. Actualizarea predicției \hat{y}_1 algoritmului Mega-Learning considerând predicția primului algoritm simplu și a predicția celui de al doilea înmulțită cu un coeficient al ratei de training (learning rate) $\alpha=(\mathbf{0}\div\mathbf{1})$

$$\widehat{y}_1 = \widehat{y} + \alpha * f_1$$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	у	ŷ	e	f_1	$\widehat{y}_1(\alpha=0,1)$
200	3	2	500	430	70	85	438,5
190	2	1	462	395	67	59	400,9
230	3	3	565	602	-37	-40	598

6. Se repetă pașii 2-5 considerându-se noile erori reziduale $e_n = y - \widehat{y}_n$

- În cadrul sarcini de clasificarea se vor considera:
 - $\widehat{f 1}$. Valoarea prezisă $\widehat{m y}$ se va transforma în probabilitatea de prezicere $\widehat{m p}$:

$$\widehat{p} = \frac{e^{\widehat{y}}}{1 + e^{\widehat{y}}}$$

2. Eroarea reziduală se va determina conform probabilității de prezicere \widehat{p} :

$$e = y - \hat{p}$$

3. Valoarea predicției f_1 se va transforma în unități logaritmice ale cotei:

$$F_{f_1} = \frac{f_1}{\widehat{p} * (1 - \widehat{p})}$$

4. Actualizarea predicției \hat{y}_1 algoritmului Mega-Learning:

$$\widehat{y}_1 = \widehat{y} + \alpha * F_{f_1}$$

3. Se determina eroarea totală a acestui arbore

$$eroare_{total} = n_{puncte_eronate} * pond_{date} = 3 * \frac{1}{10} = 0,3$$

4. Se determina performanța acestui arbore

$$perf = \frac{1}{2}ln\left(\frac{1-eroarea_{total}}{eroarea_{total}}\right) = \frac{1}{2}ln\left(\frac{1-0.3}{0.3}\right) = 0.42$$

5. Se actualizează ponderile datelor eronate și a celor corecte

$$pond_{er} = pond_{date} * e^{perf} = 0, 1 * e^{0,42} = 0, 15$$

 $pond_{cor} = pond_{date} * e^{-perf} = 0, 1 * e^{-0,42} = 0, 06$

6. Se normalizează ponderile actualizate

$$pond_{er_nor} = \frac{pond_{er}}{pond_{er} + pond_{cor}} = \frac{0.15}{0.15 + 0.06} = 0,71$$

$$pond_{ecor_nor} = \frac{pond_{cor}}{pond_{er} + pond_{cor}} = \frac{0.06}{0.15 + 0.06} = 0,29$$

2. Instrumente Scikit-Learn

Se importa clasa algoritmului GradientBoostingClassifier

```
from sklearn.ensemble import GradientBoostingClassifier
```

- Se creează un model cu fixarea valori hiper-parametrului:
 - o n_estimators numărul de arbori ai algoritmului (valori posibile = int, implicit =100)
 - o max_depth numarul maxim de divizari a datelro în arbore (valori posibile = int, implicit =3)

```
model = GradientBoostingClassifier(n_estimators =100, max_depth=4)
```

Se realizează trainingul modelului pe datele de training

```
model.fit(X_train, y_train)
```

Se vizualizează importanța fiecărei caracteristici

```
model.feature_importances_
```

Se realizează predicția pe datele de test

```
y_pred = model.predict(X_test)
```