МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики Кафедра математического моделирования

ОТЧЕТ О ПРОХОЖДЕНИИ УЧЕБНОЙ ПРАКТИКИ

(практике по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности)

Выполнила	B.A. Аванесова
Направление подготовки <u>02.03.03 Математическое обеспечадминистрирование информационных систем</u>	нение и
Kypc <u>1</u>	
Руководитель учебной практики	
канд. физмат. наук, доцент кафедры	
математического моделирования	С.Е. Рубцов

СОДЕРЖАНИЕ

1. Постановка задачи	3
2. Описание численного метода (метод правых прямоугольников)	5
3. Аналитическое вычисление интеграла	7
4. Описание работы программы	9
5. Результаты численных расчетов	10
Список используемых источников	17
Приложение. Текст программы	18

1 Постановка задачи

Задана функция в виде интеграла с параметром:

$$y(x) = \int_0^1 \frac{1}{1 + \cos\left(xt\right)}$$

Написать программу на языке высокого уровня (СИ, Visual Basic, Delphi) для расчета значений этой функции на промежутке

$$x \in [c,d]$$
 $(x_i = c + i \cdot \frac{d-c}{20}, i = \overline{0,20})$

Для вычисления использовать метод правых прямоугольников с шагом h:

$$(h = (b - a) / N)$$

Произвести расчеты для различных значений N разбиения интервала интегрирования (например, при N=5, 10, 20, 50).

В программе предусмотреть ввод исходных данных: c, d, N.

Аналитически вычислить интеграл. В той же программе произвести сравнение точного и приближенного решения: вычислить максимальную невязку (наибольшую по абсолютной величине разность между точным и приближенным решениями для различных значений x_i).

В одной системе координат построить графики точного и приближенного решений. Для построения графиков использовать графические возможности выбранного языка программирования или Microsoft Excel.

Создать в электронном виде отчет по учебной практике. При этом использовать стандарты, принятые для оформления курсовых и дипломных работ.

Отчет должен включать постановку задачи, описание числового метода решения, аналитическое вычисление интеграла, описание программы, результаты числовых расчетов, график точного и приближенных решений, вычисление значения навязок и текст программы.

2 Описание численного метода (метод правых прямоугольников)

Пусть на отрезке $[a;b],\ a < b$, задана непрерывная функция f(x). Требуется вычислить интеграл $\int_a^b f(x) dx$, численно равный площади соответствующей криволинейной трапеции. Разобьем отрезок [a;b] на n частей $[x_{i-1};x_i],\ i=1,2,...,n$ точками

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$
. Внутри каждого отрезка

 $[x_{i-1};x_i]$, i=1,2,...,n выберем точку ξ_i . Так как по определению определенный интеграл есть предел интегральных сумм при бесконечном уменьшении длины элементарного отрезка разбиения

 $\lambda = \max_{i=1,2,...,n} (x_i - x_{i-1}) \to 0$, то любая из интегральных сумм является приближенным значением интеграла

$$\int_a^b f(x)dx \approx \sum_{i=1}^n f(\xi_i) \cdot (x_i - x_{i-1})$$

Если отрезок интегрирования [a;b] разбить на равные части длины h точками

$$a=x_0, x_1=x_0+h, x_2=x_0+2h, \dots, x_{n-1}=x_0+(n-1)h, x_n=x_0+nh=b$$
 (то есть $h=x_i-x_{i-1}=\frac{b-a}{n}$, $i=1,2,\dots,n$) и в качестве точек ξ_i выбрать левые границы элементарных отрезков $[x_{i-1};x_i]$, $i=1,2,\dots,n$

(то есть $\xi_i = x_{i-1} + h, \ i = 1, 2, ..., n$), то приближенное равенство

$$\int_a^b f(x)dx \approx \sum_{i=1}^n f(\xi_i) \cdot (x_i - x_{i-1})$$

можно записать в виде:

$$\int_{a}^{b} f(x)dx \approx h \cdot \sum_{i=1}^{n} f(x_{i})$$

Это и есть формула метода правых прямоугольников.

Рисунок 1 — Графическое представление метода правых прямоугольников

3 Аналитическое вычисление интеграла

Вычислить определенный интеграл:

$$y(x) = \int\limits_0^1 \frac{1}{1 + \cos(xt)} dt.$$

Рассмотрим вычисление неопределенного интеграла:

$$y(x) = \int \frac{1}{1 + \cos(xt)} dt.$$

Подстановка:

$$= \int_0^1 \frac{du}{x(1+\cos u)}.$$

Преобразуем, используя формулу понижения степени:

$$\cos^2\left(\frac{u}{2}\right) = \frac{1 + \cos(u)}{2}$$

$$= \frac{1}{x} \int \frac{1}{2\cos^2\left(\frac{u}{2}\right)} \, \mathrm{du}.$$

Подстановка:

$$\begin{vmatrix} y = \frac{u}{2} & du = 2dy \\ u = 2y & \end{vmatrix}$$

$$= \frac{1}{x} \int \frac{1}{\cos^2(y)} dy = \frac{1}{x} \operatorname{tg}(y).$$

Обратная замена $y = \frac{u}{2}$:

$$\frac{1}{x} tg(y) = \frac{\operatorname{tg}(\frac{u}{2})}{x}.$$

Обратная замена u = xt:

$$\frac{\operatorname{tg}\left(\frac{u}{2}\right)}{x} = \frac{\operatorname{tg}\frac{xt}{2}}{x}.$$

Вернемся к вычислению определенного интеграла. Воспользуемся формулой Ньютона-Лейбница:

$$\int_{0}^{1} \frac{1}{1 + \cos(xt)} dt = \frac{\operatorname{tg} \frac{xt}{2}}{x} = \frac{\operatorname{tg} \frac{x}{2}}{x} - 0 =$$
$$= \frac{\operatorname{tg} \frac{x}{2}}{x}.$$

При х=0 интеграл принимает значение = 0.5

4 Описание работы программы

Реализуем задачу на языке высокого уровня С++.

Будем считать, что:

$$\frac{\pi}{2} = 1.5708$$

Ввод данных в программу:

Согласно условиям задания, необходимо с клавиатуры ввести значения промежутка [a,b] заданного определенного интеграла, а также вести значения промежутка $x \in [c,d]$.

Вычисление значения интеграла:

При помощи функции Function находим значение интеграла.

Далее, при помощи функции Integral, которая использует формулу правых прямоугольников, находим значение интеграла.

Вычислив точные и приближенные значения интеграла, находим максимальную невязку.

Вывод данных из программы:

При вводе исходных данных: c, d, a, b, N в консоли отладки выводятся четыре столбца: в первом столбце - значение переменной х; во втором — точное значение вычисленное программой; в третьем, четвертом, пятом и шестом - результаты вычислений интеграла программой методом правых прямоугольников для N=5, N=10, N=20, N=50. А также выводится максимальная невязка для различных значений разбиений.

Построение графика:

При окончании работы программы, данные, выводимые в консоли, записываются в файл "data.txt", при этом все точки заменяются на запятые. После этого нужно зайти в Excel и открыть нужный текстовый документ "data.txt"

5 Результаты численных расчетов

Для создания графиков фукнций используем Excel. Для этого, откроем файл data.txt в Excel.

На рисунке 2 представлены результаты работы программы с точным решение интеграла и приближенным решением с N=5, N=10, N=20, N=50

Введите количе 5 10 20 50	ство разбиений.	4 разных значения	۹.		
5: 0.144806					
10: 0.0736938					
20: 0.037173					
50: 0.0149477					
x	Точное	5	10	20	50
0,078540	0,500257	0,400185	0,450220	0,475238	0,490250
0,157080	0,501031	0,400742	0,450881	0,475955	0,491000
0,235620	0,502326	0,401673	0,451988	0,477154	0,492257
0,314160	0,504153	0,402984	0,453547	0,478845	0,494029
0,392700	0,506526	0,404683	0,455571	0,481040	0,496330
0,471240	0,509463	0,406780	0,458072	0,483755	0,499177
0,549780	0,512987	0,409289	0,461068	0,487010	0,502592
0,628320	0,517126	0,412223	0,464581	0,490830	0,506602
0,706860	0,521914	0,415603	0,468635	0,495244	0,511239
0,785400	0,527393	0,419449	0,473263	0,500288	0,516542
0,863940	0,533611	0,423788	0,478499	0,506004	0,522556
0,942480	0,540624	0,428649	0,484385	0,512441	0,529335
1,021020	0,548499	0,434067	0,490971	0,519657	0,536943
1,099560	0,557316	0,440081	0,498314	0,527719	0,545454
1,178100	0,567168	0,446737	0,506480	0,536706	0,554955
1,256640	0,578165	0,454087	0,515549	0,546712	0,565549
1,335180	0,590436	0,462194	0,525610	0,557846	0,577358
1,413720	0,604139	0,471127	0,536772	0,570238	0,590527
1,492260	0,619459	0,480969	0,549160	0,584044	0,605229
1,570800	0,636621	0,491814	0,562927	0,599448	0,621673

Рисунок 2 – Консоль вывода программы при N=5, N=10, N=20, N=50.

На рисунке 3 представлен график при N=5. На нем изображены точное решение (зеленый линия) и приближенное решение (синяя линия).

Рисунок 3 – График интегралов при N=5.

На рисунке 4 представлен график при N=10. На нем изображены точное решение (зеленый линия) и приближенное решение (синяя линия).

Рисунок 4 – График интегралов при N=10.

На рисунке 5 представлен график при N=20. На нем изображены точное решение (зеленый линия) и приближенное решение (синяя линия).

Рисунок 5 – График интегралов при N=20.

На рисунке 6 представлен график при N = 50. На нем изображены точное решение (зеленый линия) и приближенное решение (синяя линия).

Рисунок 6 – График интегралов при N=50.

На рисунке 7 представлен график точного и приближенных значений. На нем изображены точное решение (оранжевая линия) и приближенное решение для N=5 (желтая линия), для N=10 (зеленная линия), для N=20 (красная линия) и для N=50 (коричневая линия).

Рисунок 7 – График точного и приближенного значения.

Таблица 1 – Максимальная невязка при соответствующих разбиениях

интервала интегрирования

Количество точек	Максимальная невязка
в разбиении	
5	0.144806
10	0.0736938
20	0.037173
50	0.0149477

Таблица 2 – Данные, используеммые для нахождения точного решения

X	Невязка в точке				
	5	10	20	50	
0,07854	0,40019	0,45022	0,490971	0,49025	
0,15708	0,40074	0,450881	0,498314	0,491	
0,23562	0,40167	0,451988	0,50648	0,492257	
0,31416	0,40298	0,453547	0,515549	0,494029	
0,3927	0,40468	0,455571	0,52561	0,49633	
0,47124	0,40678	0,458072	0,536772	0,499177	
0,54978	0,40929	0,461068	0,54916	0,502592	
0,62832	0,41222	0,464581	0,562927	0,506602	
0,70686	0,4156	0,468635	0,495244	0,511239	
0,7854	0,41945	0,473263	0,500288	0,516542	
0,86394	0,42379	0,478499	0,506004	0,522556	
0,94248	0,42865	0,484385	0,512441	0,529335	

X	Невязка в точке			
	5	10	20	50
1,02102	0,43407	0,490971	0,519657	0,536943
1,09956	0,44008	0,498314	0,527719	0,545454
1,1781	0,44674	0,50648	0,536706	0,554955
1,25664	0,45409	0,515549	0,546712	0,565549
1,33518	0,46219	0,52561	0,557846	0,577358
1,41372	0,47113	0,536772	0,570238	0,590527
1,49226	0,48097	0,54916	0,584044	0,605229
1,5708	0,49181	0,562927	0,599448	0,621673

Таблица 3 — Данные, используемые для построения графиков приближенного и точного решений

X	Точное решение	Приближенные решения при соответствующих разбиениях			
	(округлены до 5 знаков после запятой)	5	10	20	50
0,07854	0,500257	0,40019	0,45022	0,490971	0,49025
0,15708	0,501031	0,40074	0,450881	0,498314	0,491
0,23562	0,502326	0,40167	0,451988	0,50648	0,492257
0,31416	0,504153	0,40298	0,453547	0,515549	0,494029

X	Точное решение (округлены	Приближенные решения при соответствующих разбиениях			
	до 5 знаков				
	после запятой)	5	10	20	50
0,3927	0,506526	0,40468	0,455571	0,52561	0,49633
0,47124	0,509463	0,40678	0,458072	0,536772	0,499177
0,54978	0,512987	0,40929	0,461068	0,54916	0,502592
0,62832	0,517126	0,41222	0,464581	0,562927	0,506602
0,70686	0,521914	0,4156	0,468635	0,495244	0,511239
0,7854	0,527393	0,41945	0,473263	0,500288	0,516542
0,86394	0,533611	0,42379	0,478499	0,506004	0,522556
0,94248	0,540624	0,42865	0,484385	0,512441	0,529335
1,02102	0,548499	0,43407	0,490971	0,519657	0,536943
1,09956	0,557316	0,44008	0,498314	0,527719	0,545454
1,1781	0,567168	0,44674	0,50648	0,536706	0,554955
1,25664	0,578165	0,45409	0,515549	0,546712	0,565549
1,33518	0,590436	0,46219	0,52561	0,557846	0,577358
1,41372	0,604139	0,47113	0,536772	0,570238	0,590527
1,49226	0,619459	0,48097	0,54916	0,584044	0,605229
1,5708	0,636621	0,49181	0,562927	0,599448	0,621673

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Курс математического анализа. В 3 т. Т. 2 : учебник для бакалавров / Л. Д. Кудрявцев. 6-е изд., перераб. и доп. М.: Издательство Юрайт, 2014. 720 с. ISBN 978-5-9916-4062-6
- 2. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Том 2. Интегралы. Ряды: Учеб. пособие /Под ред. Л.Д.Кудрявцева. 2-е изд., перераб. М.:ФИЗМАТЛИТ, 2003. 504 с. ISBN 5-9221-0307-5.
- 3. Основы программирования на языке C++: учеб.-метод. пособие / авт. В. В. Подколзин и др. Краснодар: Кубанский гос. ун-т, 2019. 156 с. ISBN 978-5-8209-1768-4.
- 4. Павловская, Т.А. С/С++. Процедурное и объектно-ориентированное программирование: Учебник для вузов. СПб.: Питер, 2019. 496 с. ISBN: 978-5-496-00109-0

ПРИЛОЖЕНИЕ

Текст программы.

```
#include <iostream>;
#include <string>;
#include <fstream>;
#include <math.h>;
using namespace std;
double Function(double x, double t)
      return 1/(1 + \cos(x * t));
double Integral(double x, double n, double h, double a){
      double sum = 0;
      for (int i = 1; i < n; ++i)
            sum += (Function(x, h * i + a)) * h;
      return sum;
}
int main()
      setlocale(LC ALL, "Russian");
      double x, y, h, a, b, c, d;
      double N[4], discrepancy[4] = \{0, 0, 0, 0, 0\};
      //х- просто х
      //у - значение аналитическое интеграла
      cout << "Введите нижнюю границу интегрирования " << endl;
      cin >> a;
      cout << "Введите верхнюю границу интегрирования " << endl;
      cin >> b;
      cout << "Введите нижнюю границу для х " << endl;
      cin >> c;
      cout << "Введите верхнюю границу для х " << endl;
      cin >> d;
      cout << "Введите количество разбиений. 4 разных значения " << endl;
      cin >> N[0] >> N[1] >> N[2] >> N[3];
      string s = "";
      for (int i = 1; i \le 20; i++)
      {
            x = c + i * (d - c) / 20;
            if(x == 0) {
```

```
y = 0.5;
                                             else {
                                                                    y = (\tan(x / 2) / x) - (\tan(0) / x);
                                             s += to_string(x) + '\t' + to_string(y) + '\t';
                                             for (int j = 0; j < 4; j++)//максимальная невязка для N
                                                                    h = (b - a) / N[i];
                                                                    s += to string(Integral(x, N[j], h)) + '\t';
                                                                    if (abs(y - Integral(x, N[j], h)) > discrepancy[j])
                                                                                           discrepancy[j] = abs(y - Integral(x, N[j], h));
                                             s += ' n';
                        }
                       for (int i = 0; i < s.length(); i++) //замена точек на запятые
                                             if(s[i] == '.')
                                                                    s[i] = ',';
                       ofstream file("data.txt");
                       file \ll s;
                       file << "Максимальная невязка для различных значений разбиений
равна: \п ";
                       for (int i = 0; i < 4; i++)
                        {
                                             file \ll N[i] \ll ": " \ll discrepancy[i] \ll "\n";
                                             cout << N[i] << ": " << discrepancy[i] << "\n";
                       cout << "x \t\t" << " Точное" << "\t" << N[0] << "\t\t" << N[1] << "\t\t\t" << N[1] << "\t\t\t\t" << N[1] << "\t\t\t\t\T" << N[1] << "\t\t\t\t\T" << N[1] << "\t\t\t\t\T" << N[1] << "\t\t\t\T" << N[1] << "\t\t\T" << N[1] << "\t\t\T" << N[1] << "\t\T" << N[1] << "\T" << N[1] << N[1] << "\T" << N[1] <
N[2] << "\t' << N[3] << "\t' << '\n' << s;
                       file.close();
                       system("pause");
 }
```