LD. for reference and a uniformly scaled query.

- When considering a reference OD matrix, consider the following:
- 1. The order of choices will not change since all entries are scaled by the same factor.

$$(A > B) \implies (k * A > k * B) \rightarrow (1)$$

where A and B are two entries on the same row of the OD matrix, and k is the scaling factor.

Hence, we can simplify the analysis to just two observations.

For an OD matrix as below:

	01	O2	О3
01	0	Α	В
O2	D	0	С
О3	E	F	0

We can generate a uniformly scaled query matrix

	01	O 2	О3
01	0	k*A	k*B
O2	k*D	0	k*C
О3	k*E	k*F	0

Hence, since scaling preserves order of magnitude (1),

Without loss of generality, the skeletal-matrix with mass flow values of both the reference and query can be assumed to be:

	C1	C2	С3		C1	C2	С3
01	(O2,A)	(O3,B)	(01,0)	01	(O2,k*A)	(O3,k*B)	(O1,0)
02	(O1,D)	(O3,C)	(O2,0)	02	(O1,k*D)	(O3,k*C)	(O2,0)
О3	(O1,E)	(O2,F)	(O3,0)	О3	(O1,k*E)	(O2,k*F)	(O3,0)

^{*} C# = choice of order '#'

$$LDOD = (k-1) * (A + B + C + D + E + F)$$

$$LDOD = (k-1)*(\sum (mass\ flows))$$

LD. for Uniformly shifted query.

Here too, the order of choice shall not change in the reference and query since

$$A > B \implies A + n > B + n$$

So, with the same line of reasoning;

reference:

	01	O 2	О3
01	0	Α	В
O2	D	0	С
О3	Е	F	0

query:

2 of 3 30-05-2022, 21:24

	01	O2	О3
01	0	A+n	B+n
O2	D+n	0	C+n
О3	E+n	F+n	0

Hence the Levenshtein Distance shall be

$$LDOD = 6 * n$$

$$\implies LDOD = (3^2 - 3) * n$$

The d=3 is the dimension or the number of origins of the OD matrix. Hence,

$$oxed{LDOD = (d^2 - d) * n}$$

L.D. for non-uniformly shifted query matrix but preserved choice-order

In this case, again the reference matrix shall remain the same but $n_{i,j}$ shall be different. then the Levenshtein distance shall be:

$$LDOD = \sum_{i,\,j} n_{i,j}$$