Introduction to cryptography 3. Hashing

Gilles VAN ASSCHE Christophe PETIT

INFO-F-405 Université Libre de Bruxelles 2024-2025

© Olivier Markowitch and Gilles Van Assche, all rights reserved

Compiled on September 9, 2024

Cryptographic hash functions

Applications

- Signatures: $sign_{RSA}(h(M))$ instead of $sign_{RSA}(M)$
- Key derivation: master key K to derived keys $(K_i = h(K||i|))$
- Bit commitment, predictions: h(what I know)
- Message authentication: h(K||M)
- ...

Generalized: extendable output function (XOF)

$$\frac{h}{} : \{0,1\}^* \to \{0,1\}^{\infty}$$

"XOF: a function in which the output can be extended to any length."

[Ray Perlner, SHA 3 workshop 2014]

- Applications
 - Signatures: full-domain hashing, mask generating function
 - Key derivation: as many/long derived keys as needed
 - Stream cipher: $C = P \oplus h(K||nonce)$

Preimage resistance

■ Given $y \in \mathbf{Z}_2^n$, find $x \in \mathbf{Z}_2^*$ such that h(x) = y

- \blacksquare If h is a random function, about 2^n attempts are needed
- **Example**: given derived key $K_1 = h(K||1)$, find master key K

Second preimage resistance

■ Given $x \in \mathbf{Z}_2^*$, find $x' \neq x$ such that h(x') = h(x)

- If h is a random function, about 2^n attempts are needed
- Example: signature forging
 - Given M and sign(h(M)), find $M' \neq M$ with equal signature

Collision resistance

■ Find $x_1 \neq x_2$ such that $h(x_1) = h(x_2)$

- If h is a random function, about $2^{n/2}$ attempts are needed
 - Birthday paradox: among 23 people, probably two have same birthday
 - Scales as $\sqrt{|\text{range}|} = 2^{n/2}$

Collision resistance (continued)

- Example: "secretary" signature forging
 - Set of good messages $\{M_i^{good}\}$
 - Set of bad messages $\{M_i^{\text{bad}}\}$
 - Find $h(M_i^{good}) = h(M_i^{bad})$
 - Boss signs M_i^{good} , but valid also for M_j^{bad}

[Yuval, 1979]

Other requirements

- Security claims by listing desired properties
 - Collision resistant
 - (Second-) preimage resistant
 - Multi-target preimage resistance
 - Chosen-target forced-prefix preimage resistance
 - Correlation-free
 - Resistant against length-extension attacks
 - **...**
- But ever-growing list of desired properties
- A good hash function should behave like a random mapping...

Security requirements summarized

- Hash or XOF h with n-bit output
- Modern security requirements
 - h behaves like a random mapping
 - ... up to security strength s
- Classical security requirements, derived from it

i reimage resistance	$2^{\min(n,s)}$
Second-preimage resistance	$2^{\min(n,s)}$
Collision resistance	$2^{\min(n/2,s)}$

Iterated functions

- All practical hash functions are iterated
 - Message M cut into blocks $M_1, ..., M_l$
 - *q*-bit chaining value
- Output is function of final chaining value

Internal collisions!

- Different inputs M and M* giving the same chaining value
- Messages M||X and $M^*||X$ always collide for any string X Does not occur in a random mapping!

Examples of hash functions

- MD5: n = 128
 - Published by Ron Rivest in 1992
 - Successor of MD4 (1990)
- SHA-1: *n* = 160
 - Designed by NSA, standardized by NIST in 1995
 - Successor of SHA-0 (1993)
- SHA-2: family supporting multiple lengths
 - Designed by NSA, standardized by NIST in 2001
 - SHA-224, SHA-256, SHA-384 and SHA-512
- SHA-3: based on Keccak
 - Designed by Bertoni, Daemen, Peeters and VA in 2008
 - Standardized by NIST in 2015
 - SHA3-{224, 256, 384, 512}, SHAKE{128, 256}, ParallelHash{128, 256}, ...
- Other SHA-3 finalists
 - Blake (Aumasson et al.), Grøstl (Gauravaram et al.), JH (Wu), Skein (Ferguson et al.)

Attacks on MD5, SHA-0 and SHA-1

- 2004: SHA-0 broken (loux et al.)
- 2004: MD5 broken (Wang et al.)
- 2005: practical attack on MD5 (Lenstra et al., and Klima)
- 2005: SHA-1 theoretically broken (Wang et al.)
- 2006: SHA-1 broken further (De Cannière and Rechberger)
- 2016: freestart collision on SHA-1 (Stevens, Karpman and Peyrin)
- 2017: actual collision on SHA-1 (Stevens, Bursztein, Karpman, Albertini and Markov)

Merkle-Damgård

- Uses a compression function from n + m bits to n bits
- Instances: MD5, SHA-1, SHA-2 ...
- Merkle-Damgård strengthening: encode the length at the end

[Merkle, CRYPTO'89], [Damgård, CRYPTO'89]

Merkle-Damgård: preserving collision resistance

Merkle-Damgård: length extension

Recurrence (modulo the padding):

$$h(M_1) = f(IV, M_1) = CV_1$$

$$h(M_1||\ldots||M_i) = f(CV_{i-1},M_i) = CV_i$$

Forgery on naïve message authentication code (MAC):

■
$$MAC(M) = h(Key||M) = CV$$

■
$$MAC(M||suffix) = f(CV||suffix)$$

Solution: HMAC

$$\mathsf{HMAC}(\mathsf{M}) = h(\mathsf{Key}_\mathsf{out} \| h(\mathsf{Key}_\mathsf{in} \| \mathsf{M}))$$

Towards defining Davies-Meyer

Compression function based on a block cipher $f(CV, m_i) = E_{m_i}(CV)$:

- the block m_i is input as the BC's "key",
- the old chaining value CV is input as the BC's input block,
- the BC's output block becomes the new chaining value.

Problem: not preimage resistant! How? Fix m_i , then compute input $CV = E_{m_i}^{-1}$ (output CV).

Davies-Meyer

Compression function based on a block cipher $f(CV, m_i) = E_{m_i}(CV) \oplus CV$:

- the block m_i is input as the BC's "key",
- the old chaining value CV is input as the BC's input block,
- the BC's output block is XORed to the old chaining value, yielding the new chaining value.

Problem fixed!

Why? One cannot find a preimage by computing $E_{m_i}^{-1}$, as the output block is unknown.

Other constructions using block ciphers (1/3)

Davies-Meyer

[Matyas et al., IBM Tech. D. B., 1985], [Quisquater et al., Eurocrypt'89]

Other constructions using block ciphers (2/3)

Matyas-Meyer-Oseas

[Matyas et al., IBM Tech. D. B., 1985]

Other constructions using block ciphers (3/3)

Miyaguchi-Preneel

[Miyaguchi et al., NTT Rev., 1990], [Preneel, PhD th., 1993]

Inside SHA-1

- Uses Davies-Meyer with
 - **a** data path $n = 160 = 5 \times 32$
 - message expansion $m = 512 = 16 \times 32$
- State initialized with (A, B, C, D, E) = (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0)
- Message block $(w_0, ..., w_{15})$ expanded as

$$w_t = (w_{t-3} \oplus w_{t-8} \oplus w_{t-14} \oplus w_{t-16}) \lll 1 \quad (16 \le t \le 79)$$

Data path with 80 steps...

Inside SHA-1: data path

Inside SHA-1: data path details

$0 \leq t \leq 19$	$ f(B, C, D) = (B \odot C) \oplus (\bar{B} \odot D)$	$K_t = 5A827999$
20 ≤ t ≤ 39	$f(B,C,D)=B\oplus C\oplus D$	$K_t = 6ED9EBA1$
$40 \le t \le 59$	$f(B,C,D) = (B \odot C) \oplus (B \odot D) \oplus (C \odot D)$	$K_t = 8F1BBCDC$
$60 \le t \le 79$	$f(B, C, D) = B \oplus C \oplus D$	$K_t = CA62C1D6$

Collision in SHA-1

- February 23, 2017: first collision on SHA-1 published
- Estimated complexity: $2^{63} \ll 2^{80}$

[Stevens, Bursztein, Karpman, Albertini and Markov]

Collision in SHA-1

$$\mathsf{SHA-1}(P\|M_1^{(1)}\|M_2^{(1)}\|\mathsf{S}) = \mathsf{SHA-1}(P\|M_1^{(2)}\|M_2^{(2)}\|\mathsf{S})$$

CV_0	4e	a9	62	69	7с	87	6e	26	74	d1	07	f0	fe	с6	79	84	14	f5	bf	45
$\frac{CV_0}{M_1^{(1)}}$			7f	46	dc	93	a6	b6	7e	01	3b	02	9a	aa	1d	b2	56	0b		
			45	ca	67	d6	88	с7	f8	4b	8c	4c	79	1f	e0	2b	3d	f6		
			14	f8	6d	b1	69	09	01	<u>c5</u>	6b	45	c1	53	<u>0a</u>	fe	df	b7		
			60	38	е9	72	72	2f	е7	ad	72	8f	0e	49	04	e0	46	<u>c2</u>		
$CV_1^{(1)}$ $M_2^{(1)}$	8d	64	<u>d6</u>	17	ff	ed	53	52	eb	с8	59	15	5e	с7	eb	34	<u>f3</u>	8a	5a	7b
$M_2^{(1)}$			30	57	Of	e9	d4	13	98	ab	e1	2e	f5	bc	94	2b	еЗ	35		
			42	a4	80	2d	98	b5	d7	Of	2a	33	2e	сЗ	7f	ac	35	14		
			e7	4d	dc	Of	2c	c1	a8	74	cd	0c	78	30	5a	21	56	64		
			61	30	97	89	60	6b	d0	bf	3f	98	cd	a8	04	46	29	a1		
CV_2	1e	ac	b2	5e	d5	97	0d	10	f1	73	69	63	57	71	bс	3a	17	b4	8a	с5
CV_0 $M_1^{(2)}$	4e	a9	62	69	7с	87	6e	26	74	d1	07	f0	fe	с6	79	84	14	f5	bf	45
$M_1^{(2)}$			73	46	dc	91	66	b6	7е	11	8f	02	9a	<u>b6</u>	21	b2	56	0f		
-			<u>f9</u>	ca	67	cc	<u>a8</u>	с7	f8	<u>5b</u>	<u>a8</u>	4c	79	03	<u>0c</u>	2b	3d	<u>e2</u>		
			18	f8	6d	ъЗ	a9	09	01	d5	df	45	c1	4f	26	fe	df	b3		
			dc	38	е9	6a	c2	2f	е7	bd	72	8f	0e	45	bc	e0	46	d2		
$\frac{CV_1^{(2)}}{M_2^{(2)}}$	8d	64	<u>c8</u>	21	ff	ed	<u>52</u>	<u>e2</u>	eb	с8	59	15	5e	с7	eb	<u>36</u>	<u>73</u>	8a	5a	7ъ
$M_{2}^{(2)}$			Зс	57	Of	eb	14	13	98	bb	55	2e	f5	a 0	a8	2b	еЗ	31		
-			fe	a4	80	37	b8	b5	d7	1f	0e	33	2e	df	93	ac	35	00		
			eb	4d	dc	0d	ec	c1	a8	64	79	0c	78	2c	76	21	56	60		
			dd	30	97	91	d0	6b	d0	af	3f	98	cd	a4	bc	46	29	b1		

From SHA-1 to SHA-2

Changes from SHA-1 to SHA-2:

- Two compression functions
 - SHA-{224, 256}: $n = 256 = 8 \times 32$ and $m = 512 = 16 \times 32$
 - SHA-{384, 512}: $n = 512 = 8 \times 64$ and $m = 1024 = 16 \times 64$
- Non-linear message expansion
- Stronger data path mixing

Generic security: indifferentiability [Maurer et al. (2004)]

Applied to hash functions in [Coron et al. (2005)]

- lacktriangle distinguishing mode-of-use from ideal function (\mathcal{RO})
- lacksquare covers adversary with access to primitive ${\cal F}$ at left
- additional interface, covered by a simulator at right

Consequences of indifferentiability

Theorem 2. Let \mathcal{H} be a hash function, built on underlying primitive π , and RO be a random oracle, where \mathcal{H} and RO have the same domain and range space. Denote by $\mathbf{Adv}^{\text{pro}}_{\mathcal{H}}(q)$ the advantage of distinguishing (\mathcal{H}, π) from (RO, S), for some simulator S, maximized over all distinguishers \mathcal{D} making at most q queries. Let atk be a security property of \mathcal{H} . Denote by $\mathbf{Adv}^{\text{atk}}_{\mathcal{H}}(q)$ the advantage of breaking \mathcal{H} under atk, maximized over all adversaries \mathcal{A} making at most q queries. Then:

$$Adv_{\mathcal{H}}^{\mathrm{atk}}(q) \le Pr_{RO}^{\mathrm{atk}}(q) + Adv_{\mathcal{H}}^{\mathrm{pro}}(q),$$
 (1)

where $Pr_{RO}^{atk}(q)$ denotes the success probability of a generic attack against \mathcal{H} under atk, after at most q queries.

[Andreeva, Mennink, Preneel, ISC 2010]

Limitations of indifferentiability

- Only about the mode
 - No security proof with a concrete primitive
- Only about single-stage games [Ristenpart et al., Eurocrypt 2011]
 - Example: hash-based storage auditing

$$Z = h(File || C)$$

Making Merkle-Damgård indifferentiable

Enveloped Merkle-Damgård

[Bellare and Ristenpart, Asiacrypt 2006]

Making Merkle-Damgård suitable for XOFs

Mask generating function construction "MGF1"

The sponge construction

- Calls a *b*-bit permutation *f*, with b = r + c
 - r bits of rate
 - c bits of capacity (security parameter)
- Natively implements a XOF

Generic security of the sponge construction

Theorem (Bound on the \mathcal{RO} -differentiating advantage of sponge)

$$\mathsf{Adv} \leq \frac{\mathsf{t}^2}{\mathsf{2}^{\mathsf{c}+1}}$$

Adv: differentiating advantage of random sponge from random oracle t: time complexity (# calls to f) c: capacity [Eurocrypt 2008]

Preimage resistance	$2^{\min(n,c/2)}$
Second-preimage resistance	$2^{\min(n,c/2)}$
Collision resistance	$2^{\min(n/2,c/2)}$
Any other attack	$2^{\min(\mathcal{RO},c/2)}$ (*)

(*) This means the minimum between $2^{c/2}$ and the complexity of the attack on a random oracle.

KECCAK-f

- The seven permutation army:
 - 25, 50, 100, 200, 400, 800, 1600 bits
 - toy, lightweight, fastest
 - standardized in [FIPS 202]
- Repetition of a simple round function
 - that operates on a 3D state
 - **■** (5 × 5) lanes
 - up to 64-bit each

KECCAK-f in pseudo-code

```
Keccak-f[b](A) {
 forall i in 0...n.-1
   A = Round[b](A, RC[i])
 return A
Round[b](A,RC) {
  θ step
 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0...4
 D[x] = C[x-1] xor rot(C[x+1],1),
                                                               forall x in 0...4
                                                               forall (x,y) in (0...4,0...4)
 A[x,y] = A[x,y] xor D[x],
 \rho and \pi steps
 B[v.2*x+3*y] = rot(A[x,y], r[x,y]),
                                                               forall (x,y) in (0...4,0...4)
 x step
 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]),
                                                        forall (x.v) in (0...4.0...4)
  ι step
 A[0,0] = A[0,0] \times C RC
 return A
```

https://keccak.team/keccak_specs_summary.html

χ , the nonlinear mapping in Keccak-f

- "Flip bit if neighbors exhibit 01 pattern"
- Operates independently and in parallel on 5-bit rows
- Cheap: small number of operations per bit
- Algebraic degree 2, inverse has degree 3

θ , mixing bits

- Compute parity $c_{x,z}$ of each column
- Add to each cell parity of neighboring columns:

$$b_{x,y,z} = a_{x,y,z} \oplus c_{x-1,z} \oplus c_{x+1,z-1}$$

■ Cheap: two XORs per bit

θ , mixing bits – effect on a single bit

- Compute parity $c_{x,z}$ of each column
- Add to each cell parity of neighboring columns:

$$b_{\mathsf{x},\mathsf{y},\mathsf{z}} = a_{\mathsf{x},\mathsf{y},\mathsf{z}} \oplus \mathsf{c}_{\mathsf{x}-\mathsf{1},\mathsf{z}} \oplus \mathsf{c}_{\mathsf{x}+\mathsf{1},\mathsf{z}-\mathsf{1}}$$

■ Cheap: two XORs per bit

Diffusion of θ

$$1 + \left(1 + y + y^2 + y^3 + y^4\right) \left(x + x^4 z\right)$$

$$\left(\bmod \left\langle 1 + x^5, 1 + y^5, 1 + z^w \right\rangle \right)$$

Diffusion of θ (kernel)

$$1 + (1 + y + y^{2} + y^{3} + y^{4}) (x + x^{4}z)$$

$$(\mod \langle 1 + x^{5}, 1 + y^{5}, 1 + z^{w} \rangle)$$

Diffusion of θ^{-1}

$$1+\left(1+y+y^2+y^3+y^4\right)\mathbf{Q},$$
 with $\mathbf{Q}=1+\left(1+x+x^4z\right)^{-1}$ mod $\left\langle1+x^5,1+z^w\right\rangle$

- **Q** is dense, so:
 - Diffusion from single-bit output to input very high
 - Increases resistance against LC/DC and algebraic attacks

ρ for inter-slice dispersion

- We need diffusion between the slices ...
- \blacksquare ρ : cyclic shifts of lanes with offsets

$$i(i+1)/2 \mod 2^{\ell}$$
, with $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}^{i-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

lue Offsets cycle through all values below 2 $^{\ell}$

π for disturbing horizontal/vertical alignment

$$a_{x,y} \leftarrow a_{x',y'} \text{ with } \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

ι to break symmetry

- XOR of round-dependent constant to lane in origin
- \blacksquare Without ι , the round mapping would be symmetric
 - invariant to translation in the z-direction
 - susceptible to rotational cryptanalysis
- Without ι , all rounds would be the same
 - susceptibility to slide attacks
 - defective cycle structure
- Without ι , we get simple fixed points (000 and 111)

KECCAK-f summary

■ Round function:

$$\mathsf{R} = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

- Number of rounds: $12 + 2\ell$
 - Keccak-f[25] has 12 rounds
 - Keccak-*f*[1600] has 24 rounds

NIST FIPS 202 (August 2015)

- Four drop-in replacements to SHA-2
- Two extendable output functions (XOF)

XOF	SHA-2 drop-in replacements
$KECCAK[c = 256](M \ 11 \ 11)$	
	first 224 bits of $KECCAK[c=448](M\ \mathtt{01})$
KECCAK[c = 512](M 11 11)	
	first 256 bits of $KECCAK[c=512](M\ \mathtt{01})$
	first 384 bits of $KECCAK[c=768](M\ \mathtt{01})$
	first 512 bits of $KECCAK[c=1024](M\ 01)$
SHAKE128 and SHAKE256	SHA3-224 to SHA3-512

■ Toolbox for building other functions

NIST SP 800-185 (December 2016)

Customized SHAKE (cSHAKE)

- \blacksquare H(x) = cSHAKE(x, name, customization string)
- E.g., cSHAKE128(x, N, S) = KECCAK[c = 256](encode(N, S)||x||00)
- cSHAKE128(x, N, S) \triangleq SHAKE128 when N = S = ""

KMAC: message authentication code (no need for HMAC-SHA-3!)

$$KMAC(K, x, S) = cSHAKE(encode(K)||x, "KMAC", S)$$

TupleHash: hashing a sequence of strings $\mathbf{x} = x_n \circ x_{n-1} \circ \cdots \circ x_1$

 $TupleHash(\mathbf{x}, S) = cSHAKE(encode(\mathbf{x}), "TupleHash", S)$

NIST SP 800-185 (December 2016)

ParallelHash: faster hashing with parallelism

Status of Keccak cryptanalysis

- Preimage attacks up to 4 rounds
 [He et al., ToSC 2021] [Wang et al., IACR ePrint 2022/977]
- Collision attacks up to 6 rounds
 [Song et al., CRYPTO 2017] [Guo et al., ASIACRYPT 2022]
 [Zhang et al., CRYPTO 2024]
- Structural distinguishers
 - 7 rounds (practical time)
 [Huang et al., EUROCRYPT 2017]
 - 8 rounds (2¹²² time) [Huang et al., IEICE 2019]
 - 9 rounds (2⁶⁴ time) SymSum [Suryawanshi et al., AFRICACRYPT 2020]
- Lots of third-party cryptanalysis available at: https://keccak.team/third_party.html

What is SymSum?

A SymSum structural distinguisher produces:

- **a** a set S of self-symmetric input strings, i.e., a||a||b||b||c||c||..., with |a|=|b|=|c|=32 bits,
- such that

$$\bigoplus_{m \in S} H(m) \quad \text{is self-symmetric}$$

[Saha et al., ToSC 2017] [Suryawanshi et al., AFRICACRYPT 2020]

KANGAROOTWELVE

An arrow means "hash with TurboSHAKE" (12 rounds).

[Viguier et al., draft-irtf-cfrg-kangarootwelve]