Hyperspectral remote sensing and analysis of intertidal zones: A contribution to monitor coastal biodiversity

Benjamin D. Hennig(1), Christopher B. Cogan(2), Inka Bartsch(2)

GI_Forum Salzburg

July 4 2007

(1) Department of Geography, University of Cologne(2) Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven

Overview:

Hyperspectral remote sensing and analysis of intertidal zones

- 1. Introduction:
 Research goals
 and study area
- 2. Data and analysis approach
- 3. Results:
 Biotope classification
 and data accuracy
- 4. Perspectives of GIS-RS-based environmental monitoring

Study area

Helgoland Northern Intertidal

Working scheme

Data Collection

- Hyperspectral Aircraft Survey with ROSIS
- GPS-supported Groundtruthing

Pre-Processing

 Radiometric and Geometric Correction

Hyperspectral Image

- **Analysis**
- Spatial Data Reduction: Minimum Noise Fraction-Transformation
- Spectral Data Reduction:
 Pixel Purity Index
- Endmember Selection:
 n-Dimensional Visualizer
 Compilation of a Spectral Library
- Final Classification:
 Spectral Angle Mapper

Monitoring

- Integration of Remote Sensing Data in Geographical Information Systems
- Establishment of a standardised long-term observation system

Data

Scanning Pushbroom Spect. Coverage 0,43 - 0,86 µm Bandwidth FOV **IFOV**

4,0 nm ±8°

0,56 mrad

Px / Line 512 115 No. of Bands

Scan Frequ. 88 Hz 14 Bit Digitisation

Int. Spec. Calibr. Calibration

Operated since 1992/1999

Biotope classification

Biotope classification Selected Spectral Plots SemLitX Mytilus Reflectance (Stacked - Offset for Clarity) Green Algae Red Algae Brown Algae Brown Algae Submersed Algae Green Algae Mixed Brown/Green Algae Red Algae Mussel Bed Shading/Noise Sand Mastercagus (Mas Fucus serratus (Fser) Unknown MasGreenargae degraded Accumulation MasSent.XX FserEnteromorpha Ascophyllum FserRedalgae RhoFsert.dio Corralina (Cor) FserRhodothamniella Eminus (Sent.00) Enteromorpha (Ent) Fucus spiralis FucusLaminaria No vegetation. **Fucus** Undefined Halidrys (Hal) FucusEntPorphyra Sargassum FucusRedalgae SargarounLamnan Mylligit Sucurifiedal

^{1.} Introduction – 2. Data analysis – <u>3. Results</u> – 4. Perspectives Hyperspectral remote sensing and analysis of intertidal zones Benjamin D. Hennig GI Forum Salzburg, 4.07.2007

Thematic accuracy

	,			<u> </u>		4	100	AW/			A 60x	
	Reference Data											
ta		No Vegetation	Brown Algae	Dense Brown Algae	Red Algae	Green Algae	Kelp	Vegetated Channels	Mussel bed	Barnacles	Total	User's Accuracy %
	No Veget.	9		-				6			15	60
Data	Brown Algae		19		9			4			32	59,4
Classified	Dense Brown Algae			38	4	_					42	90,5
<u> 3</u>	Red Algae				24	<u> </u>	ı	2			26	92,3
	Green Algae					18					18	100
	Kelp					3	17	8	-		28	60,7
	Vegetated Channels					1	3	20			24	83,3
	Mussel bed								27	9	36	75
	Barnacles	3							12	30	45	66,7
	Total	12	19	38	37	22	20	40	39	39	266	76,4
	Producer's accuracy %	75	100	100	64,9	81,8	85	50	69,2	76,9	78,1	<u>75,9</u>

^{1.} Introduction – 2. Data analysis – <u>3. Results</u> – 4. Perspectives Hyperspectral remote sensing and analysis of intertidal zones Benjamin D. Hennig GI_Forum Salzburg, 4.07.2007

Field work

Introduction – 2. Data analysis – 3. Results – <u>4. Perspectives</u>
 Hyperspectral remote sensing and analysis of intertidal zones
 Benjamin D. Hennig
 GI Forum Salzburg, 4.07.2007

Integrated GIS-RS-analysis approaches

Introduction – 2. Data analysis – 3. Results – <u>4. Perspectives</u>
 Hyperspectral remote sensing and analysis of intertidal zones
 Benjamin D. Hennig
 GI Forum Salzburg, 4.07.2007

The presented study has been performed at the Alfred-Wegener-Institute for Polar and Marine Research (AWI Bremerhaven) for a Diploma Thesis at the University of Cologne, Department of Geography

Field work has been conducted with the support of the Biologische Anstalt Helgoland (BAH) and the Wadden Sea Station Sylt (List)

Benjamin D. Hennig, b.hennig@uni-koeln.de Department of Geography, University of Cologne

Co-authors:

Christopher B. Cogan, Inka Bartsch Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven

Thanks for your attention!

