Structure and dynamics of complex networks

March 3, 2020

Scale-free p(k) in the continuum formalism

Advanced network characteristics

Scale-free networks Normalizing

Divergenc

Degree correlations Assortativity What if we treat k as a continuous variable?

Scale-free p(k) in the continuum formalism

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description What if we treat *k* as a continuous variable?

• Since $0^{-\gamma} = \infty$, we assume that the domain of p(k) is $[k_{\min}, \infty]$, where $k_{\min} > 0$.

Scale-free p(k) in the continuum formalism

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description What if we treat *k* as a continuous variable?

- Since $0^{-\gamma} = \infty$, we assume that the domain of p(k) is $[k_{\min}, \infty]$, where $k_{\min} > 0$.
- · Normalization means that

$$\int_{k_{\min}}^{\infty} p(k)dk = \int_{k_{\min}}^{\infty} Ck^{-\gamma}dk = 1 \quad \rightarrow \quad C = ?$$

Ā

Degree correlations Assortativity Full description What if we treat *k* as a continuous variable?

- Since $0^{-\gamma} = \infty$, we assume that the domain of p(k) is $[k_{\min}, \infty]$, where $k_{\min} > 0$.
- · Normalization means that

$$\begin{split} &\int\limits_{k_{\min}}^{\infty} p(k)dk = \int\limits_{k_{\min}}^{\infty} Ck^{-\gamma}dk = 1 \quad \rightarrow \quad C = ? \\ &C = \frac{1}{\int_{k_{\min}}^{\infty} k^{-\gamma}dk} = \frac{1}{\frac{1}{1-\gamma} \left[k^{1-\gamma}\right]_{k_{\min}}^{\infty}} = \frac{\gamma-1}{k_{\min}^{1-\gamma}}. \end{split}$$

Ā

What if we treat *k* as a continuous variable?

- Since $0^{-\gamma} = \infty$, we assume that the domain of p(k) is $[k_{\min}, \infty]$, where $k_{\min} > 0$.
- · Normalization means that

$$\int_{k_{\min}}^{\infty} p(k)dk = \int_{k_{\min}}^{\infty} Ck^{-\gamma}dk = 1 \quad \rightarrow \quad C = ?$$

$$C = \frac{1}{\int_{k_{\min}}^{\infty} k^{-\gamma}dk} = \frac{1}{\frac{1}{1-\gamma} \left[k^{1-\gamma}\right]_{k_{\min}}^{\infty}} = \frac{\gamma - 1}{k_{\min}^{1-\gamma}}.$$

• Thus, the continuous p(k) is given by

$$p(k) = (\gamma - 1) \frac{k^{-\gamma}}{k_{\min}^{1-\gamma}}$$

<u>_</u>

Advanced network characteristics

networks
Normalizing
Divergence

Degree correlations Assortativity • We have seen that scale-free p(k)

large degrees (hubs) can appear with high likelihood!

Advanced network characteristics

Scale-free networks Normalizing Divergence

correlations
Assortativity
Full description

 \rightarrow The variance of the degree (the "width" of p(k) around the average) is also high!

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description

- \rightarrow The variance of the degree (the "width" of p(k) around the average) is also high!
 - Mathematically, the variance is given by

$$Var(k) \equiv \langle (k - \langle k \rangle)^2 \rangle = \langle k^2 \rangle - \langle k \rangle^2$$
.

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description

- \rightarrow The variance of the degree (the "width" of p(k) around the average) is also high!
 - Mathematically, the variance is given by

$$Var(k) \equiv \langle (k - \langle k \rangle)^2 \rangle = \langle k^2 \rangle - \langle k \rangle^2.$$

• The term (k^2) is called as the 2^{nd} moment of the degree distribution.

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description

- \rightarrow The variance of the degree (the "width" of p(k) around the average) is also high!
 - Mathematically, the variance is given by

$$Var(k) \equiv \langle (k - \langle k \rangle)^2 \rangle = \langle k^2 \rangle - \langle k \rangle^2.$$

- The term $\langle k^2 \rangle$ is called as the 2nd moment of the degree distribution.
- Let's calculate it with the help of our newly introduced continuous formalism!

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description • The 2^{nd} moment of p(k) can be written as

$$\langle k^2 \rangle \equiv \int_{k=k_{\min}}^{\infty} k^2 p(k) dk = \frac{\gamma - 1}{k_{\min}^{1-\gamma}} \int_{k=k_{\min}}^{\infty} k^{2-\gamma} dk =$$

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description • The 2^{nd} moment of p(k) can be written as

$$\langle k^2 \rangle \equiv \int_{k=k_{\min}}^{\infty} k^2 p(k) dk = \frac{\gamma - 1}{k_{\min}^{1-\gamma}} \int_{k=k_{\min}}^{\infty} k^{2-\gamma} dk = \frac{(\gamma - 1) \left[k^{3-\gamma} \right]_{k_{\min}}^{\infty}}{(3 - \gamma) k_{\min}^{\gamma - 1}}$$

Ā

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description • The 2^{nd} moment of p(k) can be written as

$$\langle k^2 \rangle = \int_{k=k_{\min}}^{\infty} k^2 p(k) dk = \frac{\gamma - 1}{k_{\min}^{1 - \gamma}} \int_{k=k_{\min}}^{\infty} k^{2 - \gamma} dk = \frac{(\gamma - 1) \left[k^{3 - \gamma} \right]_{k_{\min}}^{\infty}}{(3 - \gamma) k_{\min}^{\gamma - 1}}$$

$$3 - \gamma > 0 \rightarrow \langle k^m \rangle = \infty$$

 $3 - \gamma < 0 \rightarrow \langle k^2 \rangle = -\frac{(\gamma - 1)k_{\min}^2}{3 - \gamma}$

Ā

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description • The 2^{nd} moment of p(k) can be written as

$$\langle k^2 \rangle \equiv \int_{k=k_{\min}}^{\infty} k^2 p(k) dk = \frac{\gamma - 1}{k_{\min}^{1 - \gamma}} \int_{k=k_{\min}}^{\infty} k^{2 - \gamma} dk = \frac{(\gamma - 1) \left[k^{3 - \gamma} \right]_{k_{\min}}^{\infty}}{(3 - \gamma) k_{\min}^{\gamma - 1}}$$

$$3 - \gamma > 0 \rightarrow \langle k^m \rangle = \infty$$

 $3 - \gamma < 0 \rightarrow \langle k^2 \rangle = -\frac{(\gamma - 1)k_{\min}^2}{3 - \gamma}$

 \rightarrow For $\gamma < 3$, the $\langle k^2 \rangle$ is divergent!

Scale-free networks

Measured γ exponents

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full descriptio

Network	Size	$\langle k \rangle$	κ	γ_{out}	γ_{in}	ℓ_{real}	ℓ_{rand}	ℓ_{pow}	Reference
WWW	325, 729	4.51	900	2.45	2.1	11.2	8.32	4.77	Albert, Jeong, Barabási 1999
WWW	4×10^{7}	7		2.38	2.1				Kumar et al. 1999
WWW	2×10^{8}	7.5	4,000	2.72	2.1	16	8.85	7.61	Broder et al. 2000
WWW, site	260,000				1.94				Huberman, Adamic 2000
Internet, domain*	3,015 - 4,389	3.42 - 3.76	30 - 40	2.1 - 2.2	2.1 - 2.2	4	6.3	5.2	Faloutsos 1999
Internet, router*	3,888	2.57	30	2.48	2.48	12.15	8.75	7.67	Faloutsos 1999
Internet, router*	150,000	2.66	60	2.4	2.4	11	12.8	7.47	Govindan 2000
Movie actors*	212,250	28.78	900	2.3	2.3	4.54	3.65	4.01	Barabási, Albert 1999
Coauthors, SPIRES*	56,627	173	1, 100	1.2	1.2	4	2.12	1.95	Newman 2001b,c
Coauthors, neuro.*	209, 293	11.54	400	2.1	2.1	6	5.01	3.86	Barabási et al. 2001
Coauthors, math*	70,975	3.9	120	2.5	2.5	9.5	8.2	6.53	Barabási et al. 2001
Sexual contacts*	2810			3.4	3.4				Liljeros et al. 2001
Metabolic, E. coli	778	7.4	110	2.2	2.2	3.2	3.32	2.89	Jeong et al. 2000
Protein, S. cerev.*	1870	2.39		2.4	2.4				Mason et al. 2000
Ythan estuary*	134	8.7	35	1.05	1.05	2.43	2.26	1.71	Montoya, Solé 2000
Silwood park*	154	4.75	27	1.13	1.13	3.4	3.23	2	Montoya, Solé 2000
Citation	783, 339	8.57			3				Redner 1998
Phone-call	53×10^{6}	3.16		2.1	2.1				Aiello et al. 2000
Words, cooccurence*	460, 902	70.13		2.7	2.7				Cancho, Solé 2001
Words, synonyms*	22, 311	13.48		2.8	2.8				Yook et al. 2001

Most measured γ are smaller than 3.

 \rightarrow $\langle k^2 \rangle$ diverges in the $N \rightarrow \infty$ limit!

Divergence of the variance and σ

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description · The variance of the degree:

$$Var(k) \equiv \langle (k - \langle k \rangle)^2 \rangle = \langle k^2 \rangle - \langle k \rangle^2.$$

- → The variance is diverging as well!
 - The standard deviation of the degree:

$$\sigma(k) \equiv \sqrt{\operatorname{Var}(k)} = \sqrt{\langle k^2 \rangle - \langle k \rangle^2}.$$

→ The standard deviation is diverging as well!

Divergence of the variance

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full descriptio

Network	Size	$\langle k \rangle$	κ	γ_{out}	γ_{in}	ℓ_{real}	ℓ_{rand}	$ \ell_{pow} $	Reference
WWW	325,729	4.51	900	2.45	2.1	11.2	8.32	4.77	Albert, Jeong, Barabási 1999
WWW	4×10^{7}	7		2.38	2.1				Kumar et al. 1999
WWW	2×10^{8}	7.5	4,000	2.72	2.1	16	8.85	7.61	Broder et al. 2000
WWW, site	260,000				1.94				Huberman, Adamic 2000
Internet, domain*	3,015 - 4,389	3.42 - 3.76	30 - 40	2.1 - 2.2	2.1 - 2.2	4	6.3	5.2	Faloutsos 1999
Internet, router*	3,888	2.57	30	2.48	2.48	12.15	8.75	7.67	Faloutsos 1999
Internet, router*	150,000	2.66	60	2.4	2.4	11	12.8	7.47	Govindan 2000
Movie actors*	212, 250	28.78	900	2.3	2.3	4.54	3.65	4.01	Barabási, Albert 1999
Coauthors, SPIRES*	56,627	173	1, 100	1.2	1.2	4	2.12	1.95	Newman 2001b,c
Coauthors, neuro.*	209, 293	11.54	400	2.1	2.1	6	5.01	3.86	Barabási et al. 2001
Coauthors, math*	70,975	3.9	120	2.5	2.5	9.5	8.2	6.53	Barabási et al. 2001
Sexual contacts*	2810			3.4	3.4				Liljeros et al. 2001
Metabolic, E. coli	778	7.4	110	2.2	2.2	3.2	3.32	2.89	Jeong et al. 2000
Protein, S. cerev.*	1870	2.39		2.4	2.4				Mason et al. 2000
Ythan estuary*	134	8.7	35	1.05	1.05	2.43	2.26	1.71	Montoya, Solé 2000
Silwood park*	154	4.75	27	1.13	1.13	3.4	3.23	2	Montoya, Solé 2000
Citation	783, 339	8.57			3				Redner 1998
Phone-call	53×10^{6}	3.16		2.1	2.1				Aiello et al. 2000
Words, cooccurence*	460, 902	70.13		2.7	2.7				Cancho, Solé 2001
Words, synonyms*	22, 311	13.48		2.8	2.8				Yook et al. 2001

WWW: $\langle k \rangle = 7 \pm \infty$ Internet: $\langle k \rangle = 3.5 \pm \infty$

Coauthorship: $\langle k \rangle$ = 11.5 ± ∞

etc.

The $\langle k \rangle$ is not meaningful due to the large fluctuations!

Consequences of the scale-free p(k)

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description Summary of the consequences of the scale-free p(k):

- we plot p(k) on log-log scale
- HUBS!
- divergent $\langle k^2 \rangle$! (for $\gamma < 3$)
 - → no "typical" degree,
 - (→ anomalous percolation),
 - $(\rightarrow$ anomalous spreading)

Average distance in scale-free networks

Advanced network characteristics

networks Normalizin Divergence Distance

Degree correlations Assortativity Full description

Do scale-free networks have the small-world property?

Average distance in scale-free networks

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

correlations
Assortativity
Full description

$$\langle l \rangle \sim \left\{ \begin{array}{ll} {\rm const.} & \gamma \leq 2 \\ & \frac{\ln \ln N}{\ln (\gamma - 1)} & 2 < \gamma < 3 \end{array} \right\} \quad {\rm Ultra~Small~World} \\ & \frac{\ln N}{\ln \ln N} & \gamma = 3 \\ & \ln N & \gamma > 3 \qquad {\rm Small~World} \end{array}$$

Ā

Summary of the behavior of scale-free networks

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description

(from the slides of A.-L. Barabási)

Advanced network characteristics

Degree correlations

THEN I TOOK A

DEGREE CORRELATIONS

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description

- Hubs tend to link to small degree nodes in PPI networks...
- → What is the probability for having a link between nodes of degree k_i and k_j in a random graph?

→ If
$$k_i = 50$$
, $k_j = 13$, $L = 1746$, we have $p_{50,13} = 0.15$ \leftrightarrow $p_{2,1} = 0.0004$

Yet, we see many links between degree 2 and 1 nodes, and no links between the hubs.

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description

- Hubs tend to link to small degree nodes in PPI networks...
- → What is the probability for having a link between nodes of degree k_i and k_j in a random graph?

→ If
$$k_i = 50$$
, $k_j = 13$, $L = 1746$, we have $p_{50,13} = 0.15$ \leftrightarrow $p_{2,1} = 0.0004$

Yet, we see many links between degree 2 and 1 nodes, and no links between the hubs...

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description

- Hubs tend to link to small degree nodes in PPI networks...
- → What is the probability for having a link between nodes of degree k_i and k_j in a random graph?

$$P(\text{link } i-j) = \frac{k_i k_j}{2L}$$

→ If
$$k_i = 50$$
, $k_j = 13$, $L = 1746$, we have $p_{50,13} = 0.15$ \leftrightarrow $p_{2,1} = 0.0004$

Yet, we see many links between degree 2 and 1 nodes, and no links between the hubs.

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description

- Hubs tend to link to small degree nodes in PPI networks...
- → What is the probability for having a link between nodes of degree k_i and k_j in a random graph?

$$P(\text{link } i - j) = \frac{k_i k_j}{2L}$$

→ If
$$k_i = 50$$
, $k_j = 13$, $L = 1746$, we have $p_{50,13} = 0.15$ \leftrightarrow $p_{2,1} = 0.0004$

Yet, we see many links between degree 2 and 1 nodes, and no links between the hubs...

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description Hubs tend to link to small degree nodes in PPI networks...

→ What is the probability for having a link between nodes of degree k_i and k_j in a random graph?

$$P(\text{link } i - j) = \frac{k_i k_j}{2L}$$

→ If
$$k_i = 50$$
, $k_j = 13$, $L = 1746$, we have $p_{50,13} = 0.15$ \leftrightarrow $p_{2,1} = 0.0004$

Yet, we see many links between degree 2 and 1 nodes, and no links between the hubs...

Assortative and disassortative networks

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Degree correlations Assortativity Full description

Assortativity and disassortativity

- Assortative network: small degree nodes tend to connect to other small degree nodes, hubs tend to link to each other.
- Neutral network: nodes connect to each other at random.
- Disasortative network: hubs avoid linking to each other, instead they connect to small degree nodes.

Illustration:

How to describe assortativity?

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

Assortativity
Full descriptions

7

- Def.: let P(k' | k) denote the conditional probability for finding a node with degree k' at one end of a link, given the node at the other end has degree k.
- In principle, P(k' | k) encodes all info about whether the network is assortative or disassortative.
- How to measure this in practice?
 By definition:

$$P(k' \mid k) = \frac{P(\text{link between } k' \text{ and } k)}{P(\text{link on } k)}$$

 \rightarrow Def.: let $E_{k',k}$ count the number of links between nodes of degree k' and k, and

$$P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}}$$

- Def.: let P(k' | k) denote the conditional probability for finding a node with degree k' at one end of a link, given the node at the other end has degree k.
- In principle, P(k' | k) encodes all info about whether the network is assortative or disassortative.
- How to measure this in practice?
 By definition:

$$P(k' \mid k) = \frac{P(\text{link between } k' \text{ and } k)}{P(\text{link on } k)}$$

 \rightarrow Def.: let $E_{k',k}$ count the number of links between nodes of degree k' and k, and

$$P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}}$$

- Def.: let P(k' | k) denote the conditional probability for finding a node with degree k' at one end of a link, given the node at the other end has degree k.
- In principle, P(k' | k) encodes all info about whether the network is assortative or disassortative.
- How to measure this in practice?
 By definition:

$$P(k' \mid k) = \frac{P(\text{link between } k' \text{ and } k)}{P(\text{link on } k)}$$

→ Def.: let E_{k',k} count the number of links between nodes of degree k' and k, and

$$P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}}$$

- Def.: let P(k' | k) denote the conditional probability for finding a node with degree k' at one end of a link, given the node at the other end has degree k.
- In principle, P(k' | k) encodes all info about whether the network is assortative or disassortative.
- How to measure this in practice?
 By definition:

$$P(k' \mid k) = \frac{P(\text{link between } k' \text{ and } k)}{P(\text{link on } k)}.$$

→ Def.: let E_{k',k} count the number of links between nodes of degree k' and k, and

$$P(k' \mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}}$$

- Def.: let P(k' | k) denote the conditional probability for finding a node with degree k' at one end of a link, given the node at the other end has degree k.
- In principle, P(k' | k) encodes all info about whether the network is assortative or disassortative.
- How to measure this in practice?
 By definition:

$$P(k' \mid k) = \frac{P(\text{link between } k' \text{ and } k)}{P(\text{link on } k)}.$$

 \rightarrow Def.: let $E_{k',k}$ count the number of links between nodes of degree k' and k, and

$$P(k'\mid k) = \frac{E_{k'k}}{\sum_{k'} E_{k'k}}.$$

Advanced network characteristics

Scale-free networks Normalizin Divergence Distance

correlations
Assortativity
Full description

• $E_{k',k}$: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

Advanced network characteristics

Scale-free networks Normalizing Divergence Distance

correlations
Assortativity
Full description

• $E_{k',k}$: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

	<i>k</i> =	1	2	3	4
$\rightarrow E_{k',k}$:	1	0	1	0	1
	2	1	2	0	3
	3	0	0	0	0
	4	1	3	0	0

Ā

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description • $E_{k',k}$: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

	k =	1	2	3	4
$\rightarrow E_{k',k}$:	1	0	1	0	1
	2	1	2	0	3
	3	0	0	0	0
	4	1	3	0	0

 \rightarrow If we are going to measure $E_{k',k}$, we might as well "forget" $P(k' \mid k)$, and examine what does assortativity mean in turns of $E_{k',k}$.

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

	<i>k</i> =	1	2	3	4
$\rightarrow E_{k',k}$:	1	0	1	0	1
	2	1	2	0	3
	3	0	0	0	0
	4	1	3	0	0

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

	<i>k</i> =	1	2	3	4
	1	0	$\frac{1}{12}$	0	$\frac{1}{12}$
	2 3	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
$\rightarrow e_{k',k}$:	3	$\overline{0}^{12}$	Ŏ	0	Ó
	4	$\frac{1}{12}$	$\frac{1}{4}$	0	0
			•		

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

	<i>k</i> =	1	2	3	4
	1	0	$\frac{1}{12}$	0	1/2
	2	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
$\rightarrow e_{k',k}$:	3	Õ	Ŏ	0	Ó
	4	$\frac{1}{12}$	$\frac{1}{4}$	0	0
		12	•		

$$\sum_{k'k} e_{k'k} = 1$$

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description • $E_{k',k}$: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

	<i>k</i> =	1	2	3	4	
-	1	0	1/12	0	$\frac{1}{12}$	
	2	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$	
$\rightarrow e_{k',k}$:	3	12 0	Ŏ	0	Ó	
	4	$\frac{1}{12}$	$\frac{1}{4}$	0	0	
			•			

$$\sum_{k'k} e_{k'k} = 1$$

$$\sum_{k'} e_{k'k} \stackrel{\text{Def.}}{=} q_k.$$

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

	k =	1	2	3	4
	1	0	1/12	0	1/2
	2 3	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
$\rightarrow e_{k',k}$:	3	12 0	Ŏ	0	Ó
	4	$\frac{1}{12}$	$\frac{1}{4}$	0	0
		12	-		

• Def.: $e_{k',k} = \frac{E_{k',k}}{2L}$ gives the probability for finding a node with degree k' at one end and a node with degree k at the other end of a randomly selected link.

$$\sum_{k'k} e_{k'k} = 1$$

$$\sum_{k'} e_{k'k} \stackrel{\text{Def.}}{=} q_k.$$

What is q_k ?

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

• Def.: $e_{k',k} = \frac{E_{k',k}}{2L}$ gives the probability for finding a node with degree k' at one end and a node with degree k at the other end of a randomly selected link.

$$\sum_{k'k} e_{k'k} = 1$$

$$\sum_{k'} e_{k'k} \stackrel{\text{Def.}}{=} q_k$$

What is q_k ?

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

• Def.: $e_{k',k} = \frac{E_{k',k}}{2L}$ gives the probability for finding a node with degree k' at one end and a node with degree k at the other end of a randomly selected link.

$$\sum_{k'k} e_{k'k} = 1 \qquad \qquad \sum_{k'} e_{k'k} \stackrel{\text{Def.}}{=} q_k$$

What is q_k ? \rightarrow the probability for finding a node with degree k at one end of a randomly selected link.

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

• Def.: $e_{k',k} = \frac{E_{k',k}}{2L}$ gives the probability for finding a node with degree k' at one end and a node with degree k at the other end of a randomly selected link.

$$\sum_{k'k} e_{k'k} = 1 \qquad \qquad \sum_{k'} e_{k'k} \stackrel{\text{Def.}}{=} q_k.$$

What is q_k ? \rightarrow the probability for finding a node with degree k at one end of a randomly selected link.

 \rightarrow In a neutral network with no degree correlations: $e_{k'k} = q_{k'} \cdot q_k$.

Advanced network characteristics

Scale-free networks Normalizing Divergence

Degree correlations Assortativity Full description E_{k',k}: number of links between nodes of degree k' and k, links between nodes with the same degree count twice!

• Def.: $e_{k',k} = \frac{E_{k',k}}{2L}$ gives the probability for finding a node with degree k' at one end and a node with degree k at the other end of a randomly selected link.

$$\sum_{k'k} e_{k'k} = 1 \qquad \qquad \sum_{k'} e_{k'k} \stackrel{\text{Def.}}{=} q_k.$$

What is q_k ? \rightarrow the probability for finding a node with degree k at one end of a randomly selected link.

 \rightarrow In a neutral network with no degree correlations: $e_{k'k} = q_{k'} \cdot q_k$.

Thus, the deviations from this value are the signatures of degree correlations.

7