BÀI TẬP VỀ NHÀ MÔN HỌC: HỒI QUY TUYẾN TÍNH

Bài 2: Bảng số liệu

Số thứ tự	Độ bền đẻo	Độ dày vật liệu	Mật độ vật liệu
So uiu tu	(Y _i)	(X_{i1})	(X_{i2})
1	37,8	4	4,0
2	22,5	4	3,6
3	17,1	3	3,1
4	10,8	2	3,2
5	7,2	1	3,0
6	42,3	6	3,8
7	30,2	4	3,8
8	19,4	4	2,9
9	14,8	1	3,8
10	9,5	1	2,8
11	32,4	3	3,4
12	21,6	4	2,8

(Học viên sử dụng phần mềm R để thực hiện bài tập)

Câu hỏi 1: Tìm 2 phương trình đường thẳng hồi quy và 1 phương trình siêu phẳng (Nếu có)?

Trả lời:

Nhập liệu R:

Y<-c(37.8, 22.5, 17.1, 10.8, 7.2, 42.3, 30.2, 19.4, 14.8, 9.5, 32.4, 21.6)

X1 < -c(4, 4, 3, 2, 1, 6, 4, 4, 1, 1, 3, 4)

X2 < -c(4.0, 3.6, 3.1, 3.2, 3.0, 3.8, 3.8, 2.9, 3.8, 2.8, 3.4, 2.8)

Ta xây dựng mô hình hồi quy như sau:

a. Mô hình 1: $Y = \beta_0 + \beta_1 X_1 + \epsilon$

Mô hình đường thẳng hồi quy: $Y = \widehat{\beta_0} + \widehat{\beta_1} X_1$

Code:

```
Y1 < -lm(Y \sim X1)
summary(Y1)
Call:
lm(formula = Y \sim X1)
Residuals:
        1Q Median 3Q
   Min
-8.266 -4.887 -1.208 3.232 10.770
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
               3.523
                         4.383 0.804 0.440237
X1
                         1.279 4.721 0.000816 ***
               6.036
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 6.633 on 10 degrees of freedom
Multiple R-squared: 0.6903, Adjusted R-squared: 0.6593
F-statistic: 22.29 on 1 and 10 DF, p-value: 0.0008155
```

Kết quả:

$$\widehat{\beta_0}=3,523$$
 và $\widehat{\beta_1}=6,036$
$$\Rightarrow Y=\widehat{\beta_0}+\widehat{\beta_1}X_1=3,523+6,036X_1$$

b. Mô hình 2: $Y = \beta_0 + \beta_2 X_2 + \epsilon$

Mô hình đường thẳng hồi quy: $Y = \widehat{\beta_0} + \widehat{\beta_2} X_2$

Code:

```
Y2 < -lm(Y \sim X2)
summary(Y2)
Call:
lm(formula = Y \sim X2)
Residuals:
     Min
              10 Median
                                30
                                       Max
-15.1923 -5.1780 -0.2298 6.1123 12.3077
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                    20.489 -1.775
(Intercept) -36.373
                                        0.1062
             17.464 6.069 2.878
                                        0.0164 *
X2
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 8.815 on 10 degrees of freedom
Multiple R-squared: 0.453, Adjusted R-squared: 0.3983
F-statistic: 8.282 on 1 and 10 DF, p-value: 0.01645
```

Kết quả:

$$\widehat{\beta_0} = -36,373 \text{ và } \widehat{\beta_2} = 17,464$$

$$\Rightarrow Y = \widehat{\beta_0} + \widehat{\beta_2} X_2 = -36,373 + 17,464 X_2$$

c. Mô hình 3: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$

Mô hình siêu phẳng hồi quy: $Y = \widehat{\beta_0} + \widehat{\beta_1} X_1 + \widehat{\beta_2} X_2$

Code:

```
Y3 < -lm(Y \sim X1 + X2)
summary(Y3)
Call:
lm(formula = Y \sim X1 + X2)
Residuals:
   Min
          10 Median 30
                              Max
-6.897 -2.135 -1.126 1.714 10.122
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -30.081 11.455 -2.626 0.027542 *
              4.905 1.014 4.838 0.000923 ***
X1
X2
             11.072
                       3.621 3.058 0.013617 *
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.897 on 9 degrees of freedom
Multiple R-squared: 0.8481, Adjusted R-squared: 0.8143
F-statistic: 25.12 on 2 and 9 DF, p-value: 0.0002075
```

Kết quả:

$$\widehat{\beta_0} = -30,081 \text{ và } \widehat{\beta_1} = 4,905 \text{ và } \widehat{\beta_2} = 11,072$$

$$\Rightarrow Y = \widehat{\beta_0} + \widehat{\beta_1} X_1 + \widehat{\beta_2} X_2 = -30,081 + 4,905 X_1 + 11,072 X_2$$

Câu hỏi 2: Xác định tỉ lệ phần trăm sự biến thiên của biến phụ thuộc cho từng mô hình có thể có trên.

Trả lời:

a. Mô hình 1: $Y = \beta_0 + \beta_1 X_1 + \epsilon$

```
Quan sát lại:
Call:
lm(formula = Y \sim X1)
Residuals:
   Min
          10 Median
                         30
                               Max
-8.266 -4.887 -1.208 3.232 10.770
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
               3.523
                          4.383
                                 0.804 0.440237
X1
               6.036
                          1.279 4.721 0.000816 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.633 on 10 degrees of freedom
Multiple R-squared: 0.6903, Adjusted R-squared: 0.6593
F-statistic: 22.29 on 1 and 10 DF, p-value: 0.0008155
```

• **Kết quả:** Dựa vào *hệ số xác định bội (Multiple R-squared)* là 0,6903. Vậy biến giải thích X_1 giải thích 69,03% sự biến thiên của độ dẻo vật liệu (Y) phụ thuộc vào độ dày vật liệu (X₁).

b. Mô hình 2: $Y = \beta_0 + \beta_2 X_2 + \epsilon$

```
Quan sát lại:
Call:
lm(formula = Y \sim X2)
Residuals:
     Min
               1Q Median
                                3Q
                                        Max
-15.1923 -5.1780 -0.2298 6.1123 12.3077
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -36.373 20.489 -1.775
                                         0.1062
X2
             17.464
                        6.069 2.878
                                         0.0164 *
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 8.815 on 10 degrees of freedom
Multiple R-squared: 0.453, Adjusted R-squared: 0.3983
F-statistic: 8.282 on 1 and 10 DF, p-value: 0.01645
```

- Kết quả: Dựa vào hệ số xác định bội (Multiple R-squared) là 0,453. Vậy biến giải thích X₂ giải thích 45,3% sự biến thiên của độ dẻo vật liệu (Y) phụ thuộc vào mật độ vật liệu (X₂).
- c. Mô hình 3: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$

```
Quay lại mô hình:
  Call:
  lm(formula = Y \sim X1 + X2)
 Residuals:
    Min
           10 Median 30
                               Max
  -6.897 -2.135 -1.126 1.714 10.122
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) -30.081 11.455 -2.626 0.027542 *
                         1.014 4.838 0.000923 ***
  X1
               4.905
               11.072 3.621 3.058 0.013617 *
  X2
 Signif. codes:
  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 Residual standard error: 4.897 on 9 degrees of freedom
 Multiple R-squared: 0.8481, Adjusted R-squared: 0.8143
  F-statistic: 25.12 on 2 and 9 DF, p-value: 0.0002075
```

Kết quả: Dựa vào hệ số xác định bội (Multiple R-squared) là 0,8481. Vậy biến giải thích X₂ giải thích 84,81% sự biến thiên của độ dẻo (Y) phụ thuộc vào độ dày (X₁) và mật độ vật liệu (X₂).

Câu hỏi 3: Nếu chúng ta chỉ quan tâm đến cả hai biến giải thích, hãy lập bảng ANOVA? *Trả lời:*

Câu hỏi 4: Kiểm định giả thiết sau với mức ý nghĩa 5%,

$$H_0$$
: $\beta_1 = \beta_2 = 0$

Vậy đối thuyết:

$$H_1: \beta_1 \neq 0 \ hoặc \ \beta_2 \neq 0$$

Trả lời:

Kiểm định	Giả thiết: H_0 : $\beta = 0$ H_1 : $\beta \neq 0$	Giả thiết: H_0 : $\beta = 0$ H_1 : $\beta \neq 0$
giả thiết	PP giá trị tới hạn:	PP giá trị tới hạn:
biến độc lập có ảnh	B1: Tính $T_{qs} = \frac{\hat{\beta}}{Se(\hat{\beta})}$	B1: Tính $T_{qs} = \frac{\hat{\beta}}{Se(\hat{\beta})}$
thuộc	B2: Tra bằng t-student giá trị $t_{\frac{\kappa}{2}}^{n-2}$	B2: Tra bằng t-student giá trị $t_{\frac{\kappa}{2}}^{n-k}$
không?	B3: so sánh $ T_{qs} $ và t_{∞}^{n-2}	B3: so sánh $ T_{qs} $ và $t_{\frac{\alpha}{2}}^{n-k}$
	$+ T_{qs} > t_{\frac{\alpha}{2}}^{n-2}$: bác bổ $H_0 =>$ biến độc lập ảnh	
	hưởng lên biến phụ thuộc Y	hưởng lên biến phụ thuộc Y
	$+\left T_{qs}\right < t_{\infty}^{n-2}$: chấp nhận $\mathrm{H_o}$	$+ T_{qs} < t_{\frac{\alpha}{2}}^{n-k}$: chấp nhân H_o
	PP P-value:	PP P-value:
	Lấy giá trị p-value tương ứng với biến độc lập	Lấy giá trị p-value tương ứng với biến độc lập
	mình đang xét	mình đang xét
	Tiến hành so sánh p-value và α:	Tiến hành so sánh p-value và α:
	+ p-value < α : bác bỏ $H_0 \rightarrow biến độc lập (X)$	+ p-value < α : bác bỏ $H_0 \rightarrow biến độc lập (X)$
	ảnh hưởng lên biến phụ thuộc (Y)	ảnh hưởng lên biến phụ thuộc (Y)
	+ p-value > α : chấp nhận H_0	+ p-value > α: chấp nhận H ₀

```
Sử dụng P-Value trong mô hình hồi quy (3):
Call:
lm(formula = Y \sim X1 + X2)
Residuals:
   Min
          1Q Median
                        3Q
                              Max
-6.897 -2.135 -1.126 1.714 10.122
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -30.081 11.455 -2.626 0.027542 *
              4.905
                        1.014 4.838 0.000923 ***
X2
             11.072
                         3.621 3.058 0.013617 *
Signif. codes:
0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 4.897 on 9 degrees of freedom
Multiple R-squared: 0.8481, Adjusted R-squared: 0.8143
F-statistic: 25.12 on 2 and 9 DF, p-value: 0.0002075
```

- P-value của $X_1 = 0,000923 < 0.05$, hoặc
- P-value của $X_2 = 0.013617 < 0.05$
- Nên ta bác bỏ giả thuyết

$$H_0: \beta_1 = \beta_2 = 0$$

• Chấo nhận đối thuyết:

$$H_1$$
: $\beta_1 \neq 0$ hoặc $\beta_2 \neq 0$

Câu hỏi 5: Xác định khoảng tin cậy với mức ý nghĩa 5% cho β_1 trong trường hợp mô hình chỉ có biến độc lập là độ dày của vật liệu.

Trả lời:

Nhắc lại kiến thức:				
Ước lượng khoảng	Dùng công thức cho đa biến với (j =1,2)	Với độ tin cậy ($1-\alpha$), khoảng tin cậy đối xứng, tối đa, tối thiểu của β_i là: $\hat{\beta}_j - Se(\hat{\beta}_j)t_{\alpha/2}^{(n-k)} < \beta_j < \hat{\beta}_j + Se(\hat{\beta}_j)t_{\alpha/2}^{(n-k)}$ $\beta_j < \hat{\beta}_j + Se(\hat{\beta}_j)t_{\alpha}^{(n-k)}$ $\hat{\beta}_j - Se(\hat{\beta}_j)t_{\alpha}^{(n-k)} < \beta_j$		

- Quan sát lại kết quả từ mô hình hồi quy: $y = \widehat{\beta_0} + \widehat{\beta_1} x_1 = 3,523 + 6,036 x_1$ $\widehat{\beta_1} = 6,036$
- Khoảng tin cậy với mức ý nghĩa 5% của β_1 là:

$$\left[\widehat{\beta_{1}} - SE(\widehat{\beta_{1}})t_{2,5}^{11} < \beta_{1} < \widehat{\beta_{1}} + SE(\widehat{\beta_{1}})t_{2,5}^{11}\right]$$

$$[3,187036; 8,88479]$$

Câu hỏi 6: Với khoảng tin cậy vừa tìm được ở câu 5, chúng ta có thể khẳng định rằng hồi quy tuyến tính là có ý nghĩa giữa mức độ bền dẻo của nhựa và độ dày của vật liệu và mật độ của vật liệu không? Chứng minh điều khẳng định của bạn.

Trả lời:

 Hồi quy tuyến tính là có ý nghĩa giữa mức độ bền dẻo của nhựa và độ dày của vật liệu và mật độ của vật liệu, Vì:

```
• Quan sát bảng kết quả cho mô hình hồi quy hai biến:
  Call:
  lm(formula = Y \sim X1 + X2)
  Residuals:
     Min
             10 Median
                            30
                                  Max
   -6.897 -2.135 -1.126 1.714 10.122
  Coefficients:
               Estimate Std. Error t value Pr(>|t|)
  (Intercept) -30.081
                            11.455 -2.626 0.027542 *
  X1
                  4.905
                             1.014 4.838 0.000923 ***
  X2
                 11.072
                             3.621 3.058 0.013617 *
  Signif. codes:
  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
  Residual standard error: 4.897 on 9 degrees of freedom
  Multiple R-squared: 0.8481, Adjusted R-squared: 0.8143
  F-statistic: 25.12 on 2 and 9 DF, p-value: 0.0002075
```

- Ta thấy $\widehat{\beta_1} = 4,905 \in [3,187036; 8,88479] \Rightarrow \widehat{\beta_1}$ vẫn thuộc khoảng tin cậy dành cho ước lượng hệ số hồi quy của biến X_1 trong mô hình hồi quy đơn.
- Ta tính khoảng tin cậy 95% cho $\widehat{\beta_2}$ trong mô hình hồi quy đơn: $y = \widehat{\beta_0} + \widehat{\beta_2} x_2 = -36,373 + 17,464x_2$

$$\widehat{\beta_2} = 17,464$$

• Khoảng tin cậy với mức ý nghĩa 5% của β_2 là:

$$\left[\widehat{\beta_{2}} - SE(\widehat{\beta_{2}})t_{2,5}^{11} < \beta_{2} < \widehat{\beta_{2}} + SE(\widehat{\beta_{2}})t_{2,5}^{11}\right]$$
[3,942487; 30,98642]

- Sử dụng code R, ta có kết quả:
 - > confint(Y2)

```
2.5 % 97.5 %
(Intercept) -82.024671 9.27949
X2 3.942487 30.98642
```

- Ta thấy $\widehat{\beta_2} = 11,072 \in [3,942487;30,98642] \Rightarrow \widehat{\beta_2}$ vẫn thuộc khoảng tin cậy dành cho ước lượng hệ số hồi quy của biến X_2 trong mô hình hồi quy đơn.
- Do đó ta kết luận như trên.