```
from nltk.util import pr
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, ConfusionMatrixDisplay
import re
import nltk
stemmer = nltk.SnowballStemmer("english")
from nltk.corpus import stopwords
import string
nltk.download('stopwords')
stopword=set(stopwords.words('english'))
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from \ sklearn.neighbors \ import \ KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, confusion_matrix , precision_score, recall_score,f1_score
[nltk_data] Downloading package stopwords to /root/nltk_data...
     [nltk_data] Package stopwords is already up-to-date!
pip install vaderSentiment
Requirement already satisfied: vaderSentiment in /usr/local/lib/python3.10/dist-packages (3.3.2)
    Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from vaderSentiment) (2.31.0)
     Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->vaderSentiment) (3.3
     Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->vaderSentiment) (3.7)
    Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->vaderSentiment) (2.0.7)
    Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->vaderSentiment) (2024.6.2)
import pandas as pd
Double-click (or enter) to edit
df = pd.read_csv('labeled_data.csv')
```

df

₹		Unnamed: 0	count	hate_speech	offensive_language	neither	class	tı	
	0	0	3	0	0	3	2	!! @mayasolovely: woman should	
	1	1	3	0	3	0	1	!!!!! RT @mlee boy dats cold dwn	
	2	2	3	0	3	0	1	!!!!!! @UrKindOfB Dawg!!! @80sba	
	3	3	3	0	2	1	1	!!!!!!!! @C_G_Ander @viva_based	
4	4	Л	6	<u>^</u>	6	n	1		
Next	steps:	Generate	code wit	th df	View recommended plo	ts			

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 24783 entries, 0 to 24782
    Data columns (total 7 columns):
                           Non-Null Count Dtype
    # Column
    ---
     0
        Unnamed: 0
                           24783 non-null int64
        count
                           24783 non-null int64
        hate_speech
                           24783 non-null int64
        offensive_language 24783 non-null int64
        neither
                           24783 non-null int64
        class
                           24783 non-null int64
     6 tweet
                           24783 non-null object
    dtypes: int64(6), object(1)
    memory usage: 1.3+ MB
```

Generate code with df

df.head()

₹		Unnamed: 0	count	hate_speech	offensive_language	neither	class	tweet
	0	0	3	0	0	3	2	!!! RT @mayasolovely: As a woman you shouldn't
	1	1	3	0	3	0	1	!!!!! RT @mleew17: boy

View recommended plots

df.shape

→ (24783, 7)

Next steps:

df.describe()

•		Unnamed: 0	count	hate_speech	offensive_language	neither	
	count	24783.000000	24783.000000	24783.000000	24783.000000	24783.000000	24783.
	mean	12681.192027	3.243473	0.280515	2.413711	0.549247	1.
	std	7299.553863	0.883060	0.631851	1.399459	1.113299	0.
	min	0.000000	3.000000	0.000000	0.000000	0.000000	0.
	25%	6372.500000	3.000000	0.000000	2.000000	0.000000	1.
	50%	12703.000000	3.000000	0.000000	3.000000	0.000000	1.
	75%	18995.500000	3.000000	0.000000	3.000000	0.000000	1.
	max	25296.000000	9.000000	7.000000	9.000000	9.000000	2.
4							•

df.columns

df.isnull()

24783 rows × 7 columns

import numpy as np
df.isnull().sum

df=df.dropna()

df.isnull()

24783 rows × 7 columns

df.shape

→ (24783, 7)

df['class'].hist()

df['class'].value_counts()

class
1 19190
2 4163
0 1430

Name: count, dtype: int64

df

 *		Unnamed: 0	count	hate_speech	offensive_language	neither	class	tı
	0	0	3	0	0	3	2	!! @mayasolovely: woman should
	1	1	3	0	3	0	1	!!!!! RT @mlee boy dats cold dwn
	2	2	3	0	3	0	1	IIIIII @UrKindOfB Dawg!!! @80sba
	3	3	3	0	2	1	1	IIIIIIII @C_G_Ander @viva_based
	<i>A</i>	Л	6	n	۴	<u> </u>	1	

```
Next steps: Generate code with df

Next steps: Generate code with df

Next steps: Generate code with df

Next steps: View recommended plots

hateSpeech = df[df['class']==0]

offensiveLanguage = df[df['class']==1]

none = df[df['class']==2]

print(hateSpeech.shape)

print(offensiveLanguage.shape)

print(none.shape)

(1430, 7)

(19190, 7)

(4163, 7)
```

df

```
from matplotlib import pyplot as plt
fig, (ax1, ax2,ax3) = plt.subplots(3, 1, sharex = True)
fig.suptitle('Hate Speech per class')

#print("hate:\n", hateSpeech['count'])
ax1.hist(hateSpeech['count'])
ax1.set_title('Hate Speech')

ax2.hist(offensiveLanguage['count'])
ax2.set_title('Offensive Language')

ax3.hist(none['count'])
ax3.set_title('Neither')

plt.xlabel('categories')
plt.ylabel('Total number of Tweets')

plt.yscale('log')
plt.show()
```


₹ Unnamed: count hate_speech offensive_language neither class !! @mayasolovely: 0 0 0 0 3 woman should !!!!! RT @mlee 0 3 0 boy dats cold... dwn !!!!!!! @UrKindOfB 2 0 Dawg!!! @80sba @C_G_Ander 3 3 0 3 @viva_based 1111111111111 @ChanikaRnh Next steps: Generate code with df View recommended plots

 $\overline{\Rightarrow}$

```
f, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True)
f.suptitle ('Categories vs count')
ax1.scatter (df['count'],df.hate_speech)
ax1.set_title('Hate Speech')
ax2.scatter(df['count'],df.offensive_language)
ax2.set_title('Offensive Language')
ax3.scatter(df['count'],df.neither)
ax3.set_title('Neither')

plt.xlabel('Count')
plt.ylabel('Categories')
plt.show()
```



```
df['hate_speech'] = df['hate_speech'].astype(float)
df['offensive_language'] = df['offensive_language'].astype(float)
df['neither'] = df['neither'].astype(float)
```

₹		Unnamed: 0	count	hate_speech	offensive_language	neither	class	tı
	0	0	3	0.0	0.0	3.0	2	!! @mayasolovely: woman should
	1	1	3	0.0	3.0	0.0	1	!!!!! RT @mlee boy dats cold dwn
	2	2	3	0.0	3.0	0.0	1	!!!!!! @UrKindOfB Dawg!!! @80sba
	3	3	3	0.0	2.0	1.0	1	IIIIIIII @C_G_Ander @viva_based
	4	4	6	0.0	6.0	0.0	1	@ShenikaRoh
Next	steps:	Generate	code wit	th df	View recommended plot	ts		

```
df['hate_speech'] = df['hate_speech'].astype(float)
df['offensive_language'] = df['offensive_language'].astype(float)
df['neither'] = df['neither'].astype(float)
df
```

```
\overline{\pm}
              Unnamed:
                         count hate_speech offensive_language neither class
                                                                                                     t١
                                                                                                      !!
                                                                                        @mayasolovely:
        0
                      0
                             3
                                          0.0
                                                                0.0
                                                                          3.0
                                                                                    2
                                                                                                 woman
                                                                                                 should
                                                                                          !!!!! RT @mlee
        1
                      1
                             3
                                          0.0
                                                                3.0
                                                                          0.0
                                                                                    1
                                                                                         boy dats cold...
                                                                                                  dwn
                                                                                                   !!!!!!!
                                                                                           @UrKindOfB
        2
                      2
                             3
                                          0.0
                                                                3.0
                                                                          0.0
                                                                                                Dawg!!!
                                                                                                @80sba
                                                                                                  11111111
                                                                                          @C_G_Ander
        3
                      3
                             3
                                          0.0
                                                                2.0
                                                                           1.0
                                                                                           @viva_based
                                                                                                @ShanikaRoh
               Generate code with df
                                          View recommended plots
 Next steps:
tweets = df[["tweet"]]
tweets
\overline{\Rightarrow}
                                                                \blacksquare
                                                       tweet
        0
              !!! RT @mayasolovely: As a woman you shouldn't...
                                                                ıl.
        1
                !!!!! RT @mleew17: boy dats cold...tyga dwn ba...
        2
              !!!!!!! RT @UrKindOfBrand Dawg!!!! RT @80sbaby...
        3
               !!!!!!!!! RT @C_G_Anderson: @viva_based she lo...
        4
                   !!!!!!!!!!! RT @ShenikaRoberts: The shit you...
               you's a muthaf***in lie "@LifeAsKing: @2...
      24778
      24779
               you've gone and broke the wrong heart baby, an...
      24780
                  young buck wanna eat!!.. dat nigguh like I ain...
      24781
                             youu got wild bitches tellin you lies
      24782
                   ~~Ruffled | Ntac Eileen Dahlia - Beautiful col...
     24783 rows × 1 columns
 Next steps:
               Generate code with tweets
                                              View recommended plots
def clean(text):
    text = str(text).lower()
    text = re.sub('', '', text)
    text = re.sub('https?://\S+|www\.\S+', '', text)
    text = re.sub('<.*?>+', '', text)
    text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
    text = re.sub('\n', '', text)
    text = re.sub('\w*\d\w*', '', text)
    return text
df["tweet"] = df['tweet'].apply(clean)
def preprocessing (text):
    text = [word for word in text.split() if word not in stopword]
    text = " ".join(text)
    text = [stemmer.stem(word) for word in text.split()]
    text = " ".join(text)
    return text
```

```
df["tweet"] = df['tweet'].apply(preprocessing)
df
```

index = df.columns.get_loc("tweet")
df.insert(index,"value",value)

df

	0	count	hate_spee	ch offensive_lang	uage r	neither	clas	ss	twee	t
0	0	3	C	0.0	0.0	3.0		2	rt mayasolo woma should compla clean hou	n nt n
1	1	3	C	0.0	3.0	0.0			rt boy d coldtyga dw bad cuffin d hoe plad	n at
2	2	3	C	0.0	3.0	0.0		1	urkindofbrar dawg rt ev fuck bito start	er :h
3	3	3	C	1.0	2.0	1.0		1	rt cganderso vivabas loo like tran	k
4										
Next steps:	Generate	code wi	th df	○ View recommende	d plots					•
<pre>class_new = df["class"] df.head()</pre>	df["class' = class_ne	'].map(ew	{0:1,1:0,2:				ass		tweet	■
<pre>class_new = df["class"] df.head()</pre>	<pre>df["class" = class_no named:</pre>	'].map(ew	{0:1,1:0,2:	0})	neith				tweet ayasolov woman shouldnt complain an hou	
class_new = df["class"] df.head() → Unn	df["class' = class_nd mamed: 0 cou	'].map(ew unt hat	{0:1,1:0,2:	0}) offensive_language	neith	ner cla	0	cle	ayasolov woman shouldnt complain	■

	value	class	neither	offensive_language	hate_speech	count	Unnamed: 0	`
rt may v sh co clean	another	0	3.0	0.0	0.0	3	0	0
rt b coldtyg bad cut hoe	another	0	0.0	3.0	0.0	3	1	1
urkindo dawg fuc	another	0	0.0	3.0	0.0	3	2	2
rt cgand vivaba like	another	0	1.0	2.0	0.0	3	3	3

Next steps:

Generate code with df

View recommended plots

Splitting the Dataset

```
x = np.array(df["tweet"])
y= np.array(df['class'])
#cv = CountVectorizer()
#x = cv.fit_transform(x)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2,random_state=42)
x_train,x_val,y_train,y_val = train_test_split(x_train, y_train, test_size=0.2, random_state=42)
```

Implementation of ML models

Logistic Regression

```
log_reg = LogisticRegression()
log_reg.fit(x_train, y_train)
y_pred_log_reg = log_reg.predict(x_test)
```

Evaluating Measures

```
def calculate_metrics(Y_test, y_pred):
   accuracy = accuracy_score(Y_test, y_pred)
   precision = precision_score(Y_test, y_pred)
   recall = recall_score(Y_test, y_pred)
   f1 = f1_score(Y_test, y_pred)
   return {
        'Accuracy': accuracy,
        'Precision': precision,
        'Recall': recall,
        'F1 score': f1
```

Evaluation on Logistic Regression

```
# Calculate metrics for Logistic Regression
print("Logistic regression results")
metrics_log_reg = calculate_metrics(y_test, y_pred_log_reg)
print("Accuracy", metrics_log_reg['Accuracy'])
print("Prescision", metrics_log_reg['Precision'])
print("Recall", metrics_log_reg['Recall'])
print("F1 score", metrics_log_reg['F1 score'])

→ Logistic regression results
     Accuracy 0.9400847286665321
     Prescision 0.464646464646464
     Recall 0.15862068965517243
```

F1 score 0.2365038560411311

Random Forest

```
# Create a Random Forest classifier
rf_classifier = RandomForestClassifier(n_estimators=100)
# Train the classifier
rf_classifier.fit(x_train, y_train)
# Make predictions on the test set
y_pred_rf = rf_classifier.predict(x_test)
```

Evaluation on Random Forest

Naive Byes

```
if hasattr(x_train, 'toarray'):
    x_train = x_train.toarray()

if hasattr(x_test, 'toarray'):
    x_test = x_test.toarray()

nb_classifier = GaussianNB()
nb_classifier.fit(x_train, y_train)
y_pred_nb = nb_classifier.predict(x_test)
```

F1 score 0.3476297968397291

Evaluation on Naive Byes

```
print("Naive Byes Results")
metrics_nb=calculate_metrics(y_test, y_pred_nb)
print("Accuracy", metrics_nb['Accuracy'])
print("Prescision", metrics_nb['Precision'])
print("Recall", metrics_nb['Recall'])
print("F1 score", metrics_nb['F1 score'])

    Naive Byes Results
```

Naive Byes Results Accuracy 0.6834779100262255 Prescision 0.06819716407832546 Recall 0.3482758620689655 F1 score 0.11405985319028797

KNN Algorithm

```
# Create a K-Nearest Neighbors classifier
knn_classifier = KNeighborsClassifier(n_neighbors=5)
# Train the classifier
knn_classifier.fit(x_train, y_train)
# Make predictions on the test set
y_pred_knn = knn_classifier.predict(x_test)
```

Evaluation on KNN

```
print("KNN results")
metrics_knn=calculate_metrics(y_test, y_pred_knn)
print("Accuracy", metrics_knn['Accuracy'])
print("Prescision", metrics_knn['Precision'])
print("Recall", metrics_knn['Recall'])
print("F1 score", metrics_knn['F1 score'])

KNN results
    Accuracy 0.9380673794633851
    Prescision 0.4508670520231214
    Recall 0.2689655172413793
    F1 score 0.3369330453563715
```

Decision Tree Classifier

```
dt_classifier = DecisionTreeClassifier(random_state=42)
# Train the classifier
dt_classifier.fit(x_train, y_train)
# Make predictions on the test set
y_pred_dt = dt_classifier.predict(x_test)
```

Evaluation on Decision Tree

```
print("Decision Tree results")
metrics_dt=calculate_metrics(y_test, y_pred_dt)
print("Accuracy", metrics_dt['Accuracy'])
print("Prescision", metrics_dt['Precision'])
print("Recall", metrics_dt['Recall'])
print("F1 score", metrics_dt['F1 score'])
```

Decision Tree results
Accuracy 0.9267702239257616
Prescision 0.36823104693140796
Recall 0.35172413793103446
F1 score 0.3597883597883598

SVM Classifier

```
# Create a Support Vector Machine classifier
svm_classifier = SVC(kernel='linear', random_state=42)
# Train the classifier
svm_classifier.fit(x_train, y_train)
# Make predictions on the test set
y_pred_svm = svm_classifier.predict(x_test)
```

Evaluation on SVM

```
print("SVM Results")
metrics_svm=calculate_metrics(y_test, y_pred_svm)
print("Accuracy", metrics_svm['Accuracy'])
print("Prescision", metrics_svm['Precision'])
print("Recall", metrics_svm['Recall'])
print("F1 score", metrics_svm['F1 score'])
```

SVM Results
Accuracy 0.9322170667742586
Prescision 0.3693181818181818
Recall 0.22413793103448276
F1 score 0.2789699570815451

Best Model on the basis of Accuracy

```
def compare_all_models(metrics_dict):
    best_model = None
    best_accuracy = 0.0

for model name, metrics in metrics dict.items():
```

```
accuracy = metrics['Accuracy']
        if accuracy > best_accuracy:
            best_accuracy = accuracy
            best_model = model_name
    return best_model
metrics_nb = calculate_metrics(y_test, y_pred_nb)
metrics_log_reg = calculate_metrics(y_test, y_pred_log_reg)
metrics_rf = calculate_metrics(y_test, y_pred_rf)
metrics_dt= calculate_metrics(y_test, y_pred_dt)
metrics_svm = calculate_metrics(y_test, y_pred_svm)
metrics_knn = calculate_metrics(y_test, y_pred_knn)
metrics_dict = {
    'Naive Bayes': metrics_nb,
    'Logistic Regression': metrics_log_reg,
    'Random Forest':metrics_rf,
    'Decision Tree' : metrics_dt,
    'SVM':metrics_svm,
    'KNN':metrics_knn
}
best_model = compare_all_models(metrics_dict)
print("Best Model based on Accuracy:", best_model)
⇒ Best Model based on Accuracy: Random Forest
```

Best Model on the basis of F1 Score