Which of the following are groups? In case not, find which condition(s) is/are not satisfied.

 \times (A). \mathbb{Z} , under the operation *, where * denotes the multiplication of integers.

inverses?

 \times (B). \mathbb{R} , under the operation *, where * denotes the multiplication of real numbers.

- \times (C). The collection of irrational numbers under addition.
 - · two irrational numbers may not add up to an irrational number
 - · 0 \$ irrational numbers
- (D). The set of clock hours $\{12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ under the addition of clock hours. (Therefore 10 + 3 = 1 under this operation).

identity element of this group is 12

 \checkmark (E). The set $\{1, 3, 7, 9\}$ under the operation "rightmost digit in the multiplication of numbers."

identity = 1,
$$3^{-1} = 7$$
, $7^{-1} = 3$, $9^{-1} = 9$

(F). Symmetries of an amoeba.

 \times (G). The collection $\{a, b, c\}$ of three alphabets with the operation given by the following composition table:

where is the identity?

 \checkmark (H). The collection {□, ○, •, ∘} of four symbols with the operation given by the following composition table:

 \times (J). The subset {1, (1 2), (1 3), (1 4), (2 3), (2 4), (3 4)} of S_4 under the composition of permutations.

 $(1\ 2)(1\ 3) = (1\ 3\ 2)$ is not there in the subset.

 \checkmark (K). The subset even permutations

 $\{1, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3)\}$ of S_4 under the composition of permutations.

•
$$(1 \ 2 \ 3) (2 \ 3 \ 4) = (1 \ 2)(3 \ 4)$$

• $(1 \ 2 \ 3)^{-1} = (1 \ 3 \ 2)$ •tc.

 \times (L). The collection of 2 × 2 matrices having nonzero determinant and entries in \mathbb{Z} , under the operation of matrix multiplication; i.e. $\{A \in M_2(\mathbb{Z}) : \det(A) \neq 0\}$, under multiplication of matrices.

$$\begin{pmatrix} 2 & o \\ o & 2 \end{pmatrix} \notin M_2(\mathbb{Z})$$

(M). $GL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) : \det(A) \neq 0\}$, under multiplication of matrices. invertible matrices (N). $SL_n(\mathbb{R}) := \{A \in M_n(\mathbb{R}) : \det(A) = 1\}$, under multiplication of matrices.

- (O). Sym₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = A$ }, under multiplication of matrices.
- (P). Sym₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = A$ }, under addition of matrices.
- \checkmark (Q). Skew₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A^t = -A$ }, under addition of matrices. skew-symmetric matrices

•
$$A^{t} = A$$
, $B^{t} = A \Rightarrow (AB)^{t} = AB$

$$\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 11 & 14 \\ 18 & 23 \end{pmatrix} \notin Sym_{2}(\mathbb{R})$$

$$- \text{ find such } A, B \text{ for } Sym_{3}(\mathbb{R})$$

(R). Sym₃(\mathbb{R}) \cap GL₃(\mathbb{R}) := { $A \in M_3(\mathbb{R}) : A$ is invertible and $A^t = A$ }, under multiplication of matrices.

- \checkmark (S). O₃(ℝ) := { $A ∈ M_3(ℝ) : A$ is invertible and $A^t = A^{-1}$ }, under multiplication of matrices.
- **√**(T). SO₃(\mathbb{R}) := { $A \in M_3(\mathbb{R})$: A is invertible, $A^t = A^{-1}$ and det(A) = 1}, under multiplication of matrices.

•
$$(AB)^{t} = B^{t}A^{t} = B^{-1}A^{-1} = (AB)^{-1}$$

•
$$det(A) = 1 \Rightarrow det(A^{-1}) = 1$$

- \checkmark (U). The collection of rotations R_{θ} of a circular disc, under composition of symmetries.
- \times (V). The collection of reflections f_{θ} of a circular disc, under composition of symmetries.

•
$$R_{\Theta}R_{\phi} = R_{\Theta} + \phi$$
, $R_{O} = 1$, $R_{\Theta}^{-1} = R_{-\Theta}$

Associative

- **(W)**. The collection of 2×2 matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where a is a nonzero element in \mathbb{Q} , under the operation of matrix multiplication.
- \times (X). The collection of 2 × 2 matrices of the form $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, where a is a nonzero element in \mathbb{Q} , under the operation of matrix addition.

(W)
$$\begin{pmatrix} a & a \\ a & a \end{pmatrix} \begin{pmatrix} b & b \\ b & b \end{pmatrix} = \begin{pmatrix} a & a \\ a & a \end{pmatrix} + a$$

$$\Rightarrow \begin{pmatrix} 2ab & 2ab \\ 2ab & 2ab \end{pmatrix} = \begin{pmatrix} a & a \\ a & a \end{pmatrix}$$

$$\Rightarrow b = \frac{1}{2}$$
so $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ is the identity in this case!

And
$$\begin{pmatrix} a & a \\ a & a \end{pmatrix}^{-1} = \begin{pmatrix} 1/4a & 1/4a \\ 1/4a & 1/4a \end{pmatrix}$$
 - strange!

(x).
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 \notin the given set.

- \checkmark (Y). Collection of all polynomials in one variable with coefficients in \mathbb{R} , under the addition of polynomials.
- \times (Z). Collection of all polynomials in one variable with coefficients in \mathbb{R} , under the multiplication of polynomials.
 - . cometants are also considered folynomials.

 D = identity of folynomials

 under addition
 - . What is the multiplicative inverse of the folynomial X?