Nome e cognome: ______ Classe: _____ Data: _____Griglia

Risposte (variante 37)

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

- 1. Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
 - (b) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (c) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
 - (d) Un atomo emette radiazione solo quando viene ionizzato.
- 2. In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 0^{\circ}$ (nessuna diffusione).
 - (b) La variazione è indipendente dall'angolo θ .
 - (c) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (d) Quando l'angolo di diffusione è $\theta=180^{\circ}$ (diffusione all'indietro).
- 3. Il principio di indeterminazione è una conseguenza fondamentale:
 - (a) Della teoria della relatività di Einstein.
 - (b) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
 - (c) Del modello atomico di Bohr.
 - (d) Degli errori sperimentali inevitabili negli strumenti di misura.
- 4. Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che il principio di indeterminazione non è valido.
 - (b) Che la luce è composta da particelle (fotoni).
 - (c) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (d) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
- 5. Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?
 - (a) Il decadimento dell'atomo radioattivo all'interno della scatola.
 - (b) L'atto di osservazione o misurazione (apertura della scatola).
 - (c) La volontà del gatto.
 - (d) Il tempo trascorso dall'inizio dell'esperimento.
- 6. Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 2.0141 \,\mathrm{u}$

- (c) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- (b) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (d) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- 7. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (b) Viene assorbito completamente dall'elettrone.
 - (c) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (d) Passa attraverso l'elettrone senza interagire.
- 8. Nel range di energie tipico della radiodiagnostica (es. $30-150\,\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?

	(a)(b)(c)(d)	O O	finita ılla p	a per lunghezze d'onda molto per lunghezze d'onda molto	to pi	ccole (alte frequenze).	temp	eratura.
	-	adosso del gatto di Schröd retazione strettamente qua	_	,	del	gatto PRIMA che la scate	ola ve	nga aperta, secondo
	(a)(b)(c)(d)	Lo stato "gatto morto". Uno stato indeterminato o Una sovrapposizione quar Lo stato "gatto vivo".		on è né vivo né morto. ca degli stati "gatto vivo" e	gat"	to morto".		
	$h \approx 6.63$	diazione di frequenza $f = \times 10^{-34} \text{ J} \cdot \text{s e } 1 \text{ eV} \approx 1.6 \times 10$ rima hf in eV, $hf \approx 4.14 \text{ eV}$	$^{-19} \mathrm{J}$					
	(a)	$K_{max} \approx 6.14 \text{eV}$	(b)	$K_{max} \approx 4.14 \text{eV}$	(c)	$K_{max} \approx 2.0 \text{eV}$	(d)	$K_{max} \approx 2.14 \text{eV}$
13.		o la spiegazione di Einstein cono emessi elettroni, indip					lia" al	di sotto della quale
	(a)(b)(c)(d)	Perché l'interazione tra lu	ce no .ce e	ce si comporta solo come u n è sufficiente a "scaldare" materia richiede un tempo one (hf) deve essere almeno	abba mini	stanza gli elettroni. Imo che dipende dalla freq		
14.	Identific	care il prodotto mancante i	nel de	ecadimento alfa dell'Uranio	-238	$^{238}_{92}\mathrm{U} \to X + \alpha$		
	(a)	$X = {}^{234}_{88}$ Ra (Radio-234)	(b)	$X = ^{234}_{90}$ Th (Torio-234)	(c)	$X=^{234}_{92}$ U (Uranio-234)	(d)	$X = ^{238}_{90}$ Th (Torio-238)
15.	Come si	i calcola l'energia di legame	$e(E_{I}$	3) di un nucleo, noto il dife	etto d	li massa Δm ?		
	(a)	$E_B = m_{nucleo}c^2.$	(b)	$E_B = (\sum m_{costituenti})c^2.$	(c)	$E_B = (\Delta m)c^2.$	(d)	$E_B = (\Delta m)/c^2.$
16.	Comple può deca	tare la seguente reazione d dere β^+ : ${}_{9}^{18}{\rm F} \rightarrow ? + e^+ + \nu_e$	i dec	adimento beta più (β^+) o	cattı	ıra elettronica (EC), saper	ndo cl	ne il Fluoro-18 $\binom{18}{9}$ F)
	(a)	$^{19}_{9}{ m F}$	(b)	$^{18}_{10}{ m Ne}$	(c)	$_{9}^{17}\mathrm{F}$	(d)	$^{18}_{8}\mathrm{O}$
17.	Come sj (a) (b) (c) (d)		prod nette	lucono lo spettro.	solo	a certe frequenze.		
18.	Comple	tare la seguente reazione d	i dec	adimento beta meno (β^-) :	$^{14}_6\mathrm{C}$	\rightarrow ? + e^- + $\bar{\nu}_e$		

Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2}=5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, quanti milligrammi rimarranno dopo 20 giorni?

10. La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:

(b) 1 mg

(c) 8 mg

(c) Scattering di Rayleigh (coerente).
(d) Produzione di coppie (e⁺/e⁻).

(d) 4 mg

(a) Effetto Compton.

(a) 2 mg

(b) Effetto fotoelettrico.

	(a) $^{14}_{7}N$	(b) ${}_{5}^{14}B$	(c) $^{13}_{6}$ C	(d) $^{14}_{6}$ C		
19.	19. Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?					
	(a) Decadimento Al	fa (α)	(c) Decadimento Be	eta più (β^+)		
	(b) Decadimento Be	eta meno (β^-)	(d) Emissione Gamr	$\operatorname{ma}(\gamma)$		

- 20. La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:
 - (a) Il numero N(t) di nuclei radioattivi non ancora decaduti presenti al tempo t, partendo da N_0 nuclei al tempo t=0.
 - (b) Il tempo di dimezzamento del campione.
 - (c) Il numero di nuclei decaduti al tempo t.
 - (d) L'attività del campione al tempo t.