

Theoretische Elektrotechnik II Übung 1 - WS 2017/2018

Aufgabe II.1: Polarisation elektromagnetischer Wellen

Eine homogene ebene Welle (HEW) breitet sich in einem nicht leitenden, ladungsfreien Medium der Permittivität ε und der Permeabilität μ in positive z-Richtung eines kartesischen Koordinatensystems aus. Die Welle ist hierbei entweder

- i) linear polarisiert: $\vec{E}(\vec{r},t) = (E_{0x}\vec{e}_x + E_{0y}\vec{e}_y)\sin(\omega t kz)$, oder
- ii) zirkular polarisiert: $\vec{E}(\vec{r},t) = E_0 [\vec{e}_x \cos(\omega t kz) + \vec{e}_y \sin(\omega t kz)].$
 - a) Berechnen Sie aus den angegebenen Momentanwerten die magnetische Flussdichte $\vec{B}\left(\vec{r},t\right)$ für beide Polarisationen
 - mittels rot $\vec{E} = -\frac{\partial}{\partial t} \vec{B}$ und
 - mittels $\vec{H} = \frac{1}{Z} \left(\vec{e}_z \times \vec{E} \right)$.
 - b) Berechnen Sie den Poynting-Vektor $\vec{S}\left(\vec{r},t\right)$ für beide Wellen.

Hinweise zu Aufgabe II.1:

Aufgabenteil b): Verwenden Sie

$$\vec{H} = \frac{1}{Z} \left(\vec{e}_z \times \vec{E} \right),$$
$$\vec{a} \times \left(\vec{b} \times \vec{c} \right) = \vec{b} \left(\vec{a} \cdot \vec{c} \right) - \vec{c} \left(\vec{a} \cdot \vec{b} \right).$$

Ergebnisse von Aufgabe II.1:

a)

lineare Polarisation:
$$\vec{B} = \frac{k}{\omega} \left(-E_{0y}\vec{e}_x + E_{0x}\vec{e}_y \right) \sin \left(\omega t - kz \right)$$
zirkulare Polarisation: $\vec{B} = E_0 \frac{k}{\omega} \left[-\sin \left(\omega t - kz \right) \vec{e}_x + \cos \left(\omega t - kz \right) \vec{e}_y \right]$

b)

lineare Polarisation:
$$\vec{S} = \sqrt{\frac{\varepsilon}{\mu}} \left(E_{0x}^2 + E_{0y}^2 \right) \sin^2(\omega t - kz) \vec{e}_z$$
zirkulare Polarisation: $\vec{S} = \sqrt{\frac{\varepsilon}{\mu}} E_0^2 \vec{e}_z$

Aufgabe II.2: Homogene ebene Welle trifft senkrecht auf ideal leitenden Halbraum

Eine HEW breitet sich im Vakuum in positive z-Richtung aus. Sie trifft bei z=0 auf einen Halbraum unendlicher Leitfähigkeit κ , siehe Skizze. Gegeben sind dabei folgende Größen:

$$\underline{\vec{E}}_e(\vec{r}) = E_e \vec{e}_x e^{-j\vec{k}_e \cdot \vec{r}}, \qquad \vec{k}_e = (0, 0, k_{ez})$$

- a) Berechnen Sie das elektromagnetische Feld im Halbraum $z \leq 0$ als Momentanwert.
- b) Geben Sie die Flächenstromdichte $\vec{\alpha}$ in der Grenzfläche an. Überlegen Sie zuerst, in welche Richtung die Flächenstromdichte zeigt.
- c) Berechnen Sie die Energiedichte $w(\vec{r},t)$ sowie deren zeitlichen Mittelwert $\overline{w}(\vec{r})$.
- d) Berechnen Sie den Poynting-Vektor $\vec{S}(\vec{r},t)$ der elektromagnetischen Welle und dessen zeitlichen Mittelwert $\overline{\vec{S}}(\vec{r})$. Überlegen Sie zuerst, was Sie als Ergebnis für den zeitlichen Mittelwert der Leistungsdichte erwarten.
- e) Berechnen Sie die äquivalente Leitschichtdicke δ (auch Skintiefe genannt) im Medium 2 für einen nun nicht mehr ideal leitenden Halbraum mit $\kappa = 0, 1$ S/m, $\mu_r = 1$ und einer Frequenz von f = 1 GHz.

Hinweise zu Aufgabe II.2:

a) Das elektromagnetische Feld im Halbraum $z \leq 0$ setzt sich aus dem Feld der einfallenden Welle und der vollständig reflektierten Welle zusammen. Wegen $\kappa \to \infty$ kann kein Feld in den Halbraum $z \geq 0$ eindringen. Die Ansätze für die einfallende Welle sind in der Aufgabenstellung gegeben. Geben Sie für die reflektierte Welle analoge Ansätze an. Beachten Sie, dass der Wellenvektor der reflektierten Welle \vec{k}_r im Gegensatz zum Wellenvektor der einfallenden Welle $\vec{k}_e = k_e \cdot \vec{e}_z$ in negative z-Richtung zeigt: $\vec{k}_r = -k_r \cdot \vec{e}_z$, wobei hier $k^2 = k_e^2 = k_r^2 = \omega^2 \mu \epsilon$ gilt.

Die unbekannten Amplituden der reflektierten Welle müssen über die Randbedingung $\vec{n} \times (\vec{E}_2 - \vec{E}_1) = 0$ an der Grenzfläche z = 0 bestimmt werden. Die Amplituden der magnetischen Feldstärken H_e und H_r können hierbei mittels der Beziehung $\vec{H} = \frac{1}{\omega \mu} \vec{k} \times \vec{E}$ durch die Amplituden E_e und E_r der korrespondierenden elektrischen Feldstärken ausgedrückt werden. $\vec{E}(\vec{r},t) = \text{Re}\left\{\vec{E}(\vec{r})e^{j\omega t}\right\}$. Analog $\vec{H}(\vec{r},t)$.

- b) Verwenden Sie die Randbedingung $\vec{n}\times(\vec{H}_2-\vec{H}_1)=\vec{\alpha}.$
- c) Die Energiedichte ergibt sich mit: $w(\vec{r},t) = \frac{1}{2}\vec{E}(\vec{r},t) \cdot \vec{D}(\vec{r},t) + \frac{1}{2}\vec{H}(\vec{r},t) \cdot \vec{B}(\vec{r},t)$ Für den zeitlichen Mittelwert gilt: $\overline{w(\vec{r})} = \frac{1}{T}\int_0^T w(\vec{r},t)\,\mathrm{d}t$ Hinweis: $\int\limits_0^T \sin^2(\omega t)\,\mathrm{d}t = \int\limits_0^T \cos^2(\omega t)\,\mathrm{d}t = \frac{T}{2}$ mit $T = \frac{2\pi}{\omega}$.
- d) Den Poynting'schen Vektor (Leistungsdichte) erhält man aus der Beziehung $\vec{S}(\vec{r},t) = \vec{E}(\vec{r},t) \times \vec{H}(\vec{r},t)$. Den zeitlichen Mittelwert dieser Größe bekommt man entweder durch zeitliche Integration analog zu Aufgabenteil c) oder durch $\overline{\vec{S}(\vec{r})} = \frac{1}{2} \mathrm{Re} \left\{ \underline{\vec{E}}(\vec{r}) \times \underline{\vec{H}}^*(\vec{r}) \right\}$.

Ergebnisse von Aufgabe II.2:

a)
$$\underline{\vec{E}}(\vec{r},t) = 2E_e \sin(k_{ez}z)\sin(\omega t)\vec{e}_x$$
$$\underline{\vec{H}}(\vec{r},t) = 2\frac{E_e}{Z_0}\cos(k_{ez}z)\cos(\omega t)\vec{e}_y$$

b)
$$\vec{\alpha}(t) = \text{Re}\left\{2\frac{E_e}{Z_0}e^{j\omega t}\right\}\vec{e}_x = 2\frac{E_e}{Z_0}\cos(\omega t)\vec{e}_x$$

c)
$$w(\vec{r},t) = 2\varepsilon_0 E_e^2 \left(\sin^2(k_{ez}z) \sin^2(\omega t) + \cos^2(k_{ez}z) \cos^2(\omega t) \right)$$

 $\bar{w}(\vec{r}) = \varepsilon_0 E_e^2$

d)
$$\vec{S}(\vec{r},t) = 4\frac{E_e^2}{Z_0}\sin(k_{ez}z)\sin(\omega t)\cos(k_{ez}z)\cos(\omega t)\vec{e}_z$$

 $\vec{S}(\vec{r}) = \vec{0}$ (Stehende Welle)

e) $\delta \approx 50 \ mm$

Aufgabe II.3: Homogene ebene Welle (HEW) trifft auf dielektrischen Halbraum

Eine homogene ebene Welle kommt aus dem Medium 1 und trifft bei z=0 auf die Grenzfläche zum Medium 2 (siehe Skizze).

Der Phasor der magnetischen Feldstärke \vec{H} der einfallenden Welle ist $\underline{\vec{H}}_e = H_e e^{-j\vec{k}_e \cdot \vec{r}} \vec{e}_y$. Der Wellenvektor ist folgend gegeben:

$$\vec{k}_e = k_{ex}\vec{e}_x + k_{ez}\vec{e}_z$$
 mit $|\vec{k}_e|^2 = k_e^2 = \omega^2 \varepsilon_1 \mu_1$.

- a) Wie ist die Welle polarisiert? Erklären Sie in diesem Zusammenhang die Begriffe Polarisation und Einfallsebene.
- b) Zeichnen Sie in eine separate Skizze alle auftretenden Teilwellen.
- c) Bestimmen Sie alle Teilwellenansätze.
- d) Bestimmen Sie für jede Teilwelle den Wellenvektor.
- e) Bestimmen Sie den Reflexions- und den Transmissionsfaktor.

Hinweise zu Aufgabe II.3:

- b) Zeichnen Sie zuerst die Wellenvektoren ein. Benutzen Sie dann die Grenzbedingungen und die Tatsache, dass \vec{E} , \vec{H} und \vec{k} senkrecht aufeinander stehen. Beachten Sie, dass für den unten angegebene Ansatz von \vec{H}_r die gezeichnete Richtung $+\vec{e}_y$ gewählt wurde. Diese Wahl hat Einfluss auf das Vorzeichen des Reflexionsfaktors.
- c) Geben Sie für die magnetische Feldstärke der reflektierten Welle \vec{H}_r und der transmittierten Welle \vec{H}_t analoge Ansätze wie für die einfallende Feldstärke \vec{H}_e an. Bestimmen Sie die Ansätze für die elektrischen Feldstärken \vec{E}_e , \vec{E}_r und \vec{E}_t über $\vec{E} = \frac{Z}{k} \vec{H} \times \vec{k}$. Benutzen Sie dabei allgemeine Wellenvektoren.
- d) Bestimmen Sie die Komponenten der Wellenvektoren aus den bekannten Grenzbedingungen.
- e) Die Randbedingungen liefern zwei Gleichungen für die Amplituden. Hieraus erhalten Sie dann den Reflexions- und den Transmissionsfaktor.

Ergebnisse von Aufgabe II.3:

c) H- und E-Feldansätze:

$$\vec{H}_e = H_e e^{-j(k_{ex} \cdot x + k_{ez} \cdot z)} \vec{e}_y$$

$$\vec{H}_r = H_r e^{-j(k_{rx} \cdot x - k_{rz} \cdot z)} \vec{e}_u$$

$$\vec{H}_t = H_t e^{-j(k_{tx} \cdot x + k_{tz} \cdot z)} \vec{e}_y$$

$$\vec{E}_e = \frac{Z_1}{k_1} H_e e^{-j(k_{ex} \cdot x + k_{ez}z)} \cdot (k_{ez}, 0, -k_{ex})$$

$$\vec{E}_r = \frac{Z_1}{k_1} H_r e^{-j(k_{rx} \cdot x - k_{rz}z)} \cdot (-k_{rz}, 0, -k_{rx})$$

$$\vec{E}_{t} = \frac{Z_{2}}{k_{2}} H_{t} e^{-j(k_{tx} \cdot x + k_{tz}z)} \cdot (k_{tz}, 0, -k_{tx})$$

d) $\vec{k}_t = k_{ex} \cdot \vec{e}_x + k_{tz} \cdot \vec{e}_z$ mit $k_{tz} = \sqrt{-k_{ex}^2 + \omega^2 \varepsilon_2 \mu_2}$ $\vec{k}_r = k_{ex} \cdot \vec{e}_x - k_{ez} \cdot \vec{e}_z$

e)
$$t_{H} = \frac{2\varepsilon_{2} k_{ez}}{\varepsilon_{1} k_{tz} + \varepsilon_{2} k_{ez}}$$
$$t_{E} = \frac{\sqrt{\mu_{2} \varepsilon_{1}}}{\sqrt{\varepsilon_{2} \mu_{1}}} t_{H}$$
$$r_{H} = \frac{\varepsilon_{2} k_{ez} - \varepsilon_{1} k_{tz}}{\varepsilon_{1} k_{tz} + \varepsilon_{2} k_{ez}} = r_{E}$$