

Compressione di immagini tramite autoencoder

stato dell'arte e sviluppi futuri

Laureando: F. Stella Relatore: M. Cagnazzo

16 Novembre 2023

Indice

- 1. Compressione
- 2. Metodi tradizionali
- 3. Metodi con reti neurali
- 4. Risultati Sperimentali
- 5. Sviluppi Futuri

Compressione

Figure: Blocchi funzionali principali di un framework lossy¹, con l'aggiunta di un quarto blocco per i metodi recenti

¹H. T. Sadeeq, T. H. Hameed, A. S. Abdi, et al., "Image compression using neural networks: A review," International Journal of Online and Biomedical Engineering (iJOE), vol. 17, no. 14, pp. 135–153, 2021

Metodi Tradizionali

I metodi di codifica tradizionale analizzati in questo studio sono i seguenti

- JPEG¹
- JPEG 2000²
- BPG³
- VVC⁴

¹G. Wallace, "The JPEG still picture compression standard," *IEEE Transactions on Consumer Electronics*, vol. 38, no. 1, pp. xviii–xxxiv, 1992, DOI: 10.1109/30.125072

²A. Skodras, C. Christopoulos, and T. Ebrahimi, "The JPEG 2000 still image compression standard," *IEEE Signal Processing Magazine*, vol. 18, no. 5, pp. 36–58, 2001. DOI: 10.1109/79.952804

³F. Bellard, BPG image format, https://bellard.org/bpg/, Consultato: 17-10-2023

⁴B. Bross, Y.-K. Wang, Y. Ye, et al., "Overview of the versatile video coding (VVC) standard and its applications," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 31, no. 10, pp. 3736–3764, 2021. DOI: 10.1109/TCSVT.2021.3101953

Autoencoder

Figure: Schema generico di un autoencoder, immagine presa dal documento *Deep architectures for image compression: A critical review*¹

¹D. Mishra, S. K. Singh, and R. K. Singh, "Deep architectures for image compression: A critical review," *Signal Processing*, vol. 191, p. 108 346, 2022

Metodi con reti neurali

I metodi di codifica con reti neurali analizzati in questo studio sono i seguenti

- Variational compression with a scale hyperprior, Ballé et al¹.
- Discretized gaussian mixture likelihoods, Cheng et al².
- Neural data-dependent transform, Wang et al³.

¹D. Minnen, J. Ballé, and G. D. Toderici, "Joint autoregressive and hierarchical priors for learned image compression." *Advances in neural information processing systems*, vol. 31, 2018

²Z. Cheng, H. Sun, M. Takeuchi, et al., "Learned image compression with discretized gaussian mixture likelihoods and attention modules," in *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2020, pp. 7939–7948

³D. Wang, W. Yang, Y. Hu, et al., "Neural data-dependent transform for learned image compression," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17379–17388

Ballé et al¹. 2018

Figure: Diagramma rete Ballé 2018 et al., immagine presa dal documento Joint autoregressive and hierarchical priors for learned image compression¹

¹D. Minnen, J. Ballé, and G. D. Toderici, "Joint autoregressive and hierarchical priors for learned image compression," Advances in neural information processing systems, vol. 31, 2018

Cheng et al¹. 2020

Figure: Diagramma rete Cheng 2020 et al., immagine presa dal documento Learned image compression with discretized gaussian mixture likelihoods and attention modules¹

¹Z. Cheng, H. Sun, M. Takeuchi, et al., "Learned image compression with discretized gaussian mixture likelihoods and attention modules," in *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2020, pp. 7939–7948

Wang et al¹. 2022

Figure: Diagramma rete Wang 2022 et al., immagine presa dal documento Neural data-dependent transform for learned image compression¹

¹D. Wang, W. Yang, Y. Hu, et al., "Neural data-dependent transform for learned image compression," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 17379–17388

Esempi di Compressione

Esempi di compressione di un immagine a 24bpp del dataset Kodak¹ con le tecniche presentate

Figure: Figure: Lossless JPFG

Figure: Figure: JPFG2000BPG 11.117bpp0.167bpp 0.137bpp 0.103bpp 0.061bpp 0.060bpp

Figure: VVC.

Figure: Ballé

Figure: Cheng 0.056bpp

¹E. K. Company, True color kodak images, https://r0k.us/graphics/kodak/, Consultato: 17-10-2023

Tempi di Compressione

Figure: Tempi di compressione a 0.34 bpp

PSNR

Figure: Grafico del PSNR, punti corrispondenti alla media delle metriche sulle 24 immagini del dataset

12 of 16

MS-SSIM

Figure: Grafico dell'MS-SSIM¹, punti corrispondenti alla media delle metriche sulle 24 immagini del dataset

¹Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multiscale structural similarity for image quality assessment," in *The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers*, 2003, Ieee, vol. 2, 2003, pp. 1398–1402

LPIPS

Figure: Grafico LPIPS¹ con AlexNet, punti corrispondenti alla media delle metriche sulle 24 immagini del dataset

¹R. Zhang, P. Isola, A. A. Efros, et al., "The unreasonable effectiveness of deep features as a perceptual metric," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2018, pp. 586–595

Sviluppi Futuri

Durante la ricerca delle informazioni per la stesura di questa tesi ci siamo imbattuti in SlimCAE¹, un lavoro molto interessante del team di Yang et al., che potrebbe facilitare l'utilizzo di metodi con reti neurali sui dispositivi mobili con ridotta potenza di calcolo.

¹F. Yang, L. Herranz, Y. Cheng, *et al.*, "Slimmable compressive autoencoders for practical neural image compression," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2021, pp. 4998–5007

Grazie per la vostra attenzione