AutoML: Gaussian Processes

Covariance Functions for GPs

<u>Bernd Bischl</u> Frank Hutter Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Covariance function of a GP I

The marginalization property of the Gaussian process implies that for any finite set of input values, the corresponding vector of function values is Gaussian:

$$f = \left[f\left(\mathbf{x}^{(1)}\right), \dots, f\left(\mathbf{x}^{(n)}\right) \right] \sim \mathcal{N}\left(\boldsymbol{m}, \boldsymbol{K}\right).$$

- ullet The covariance matrix $m{K}$ is constructed according to the chosen inputs $ig\{\mathbf{x}^{(1)},\dots,\mathbf{x}^{(n)}ig\}$.
- Each entry K_{ij} is computed by $k\left(\mathbf{x}^{(i)},\mathbf{x}^{(j)}\right)$.
- Technically, to be a valid covariance matrix, K needs to be positive semi-definite for **every** choice of inputs $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$.
- A function $k(\cdot, \cdot)$ that satisfies this condition is called **positive definite**.

Covariance function of a GP II

• Recall that the purpose of the covariance function is to control to which degree the following condition is fulfilled:

If $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$ are close in the \mathcal{X} -space, their function values $f(\mathbf{x}^{(i)})$ and $f(\mathbf{x}^{(j)})$ should be close in \mathcal{Y} -space.

 ${f Q}$ Closeness of ${f x}^{(i)}$ and ${f x}^{(j)}$ in the input space ${\cal X}$ is measured by ${f d}={f x}^{(i)}-{f x}^{(j)}.$

Covariance function of a GP: Example I

- Let $f(\mathbf{x})$ be a GP with $k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2}||\mathbf{d}||^2)$ where $\mathbf{d} = \mathbf{x} \mathbf{x}'$.
- Consider two points $\mathbf{x}^{(1)} = 3$ and $\mathbf{x}^{(2)} = 2.5$. To investigate how correlated their function values are, compute their correlation!

Covariance function of a GP: Example II

• Assume that we observe a value of $y^{(1)}=-0.8$. Under the said assumption for the Gaussian process, the value of $y^{(2)}$ should be close to $y^{(1)}$.

Covariance function of a GP: Example III

- ullet Now, let us take a new point ${f x}^{(3)}$ which is not too close to ${f x}^{(1)}$.
- ullet Their function values should not be so correlated. That is, $y^{(1)}$ and $y^{(3)}$ are probably far away from each other.

Covariance Functions

Three types of properties are commonly used in covariance functions:

- k is **stationary** if it depends only on d = x x' and is denoted by k(d).
- k is **isotropic** if it depends only on $r = \|\mathbf{x} \mathbf{x}'\|$ and is denoted by k(r).
- k is a **dot product** if it depends only on $\mathbf{x}^T\mathbf{x}'$.

- Isotropy implies stationarity.
- Isotropic functions are rotationally invariant.
- Stationary functions are translationally invariant:

$$k(\mathbf{x}, \mathbf{x} + \boldsymbol{d}) = k(\boldsymbol{0}, \boldsymbol{d}) = k(\boldsymbol{d})$$

Commonly Used Covariance Functions I

Name	$k(\mathbf{x}, \mathbf{x}')$
constant	σ_0^2
linear	$\sigma_0^2 + \mathbf{x}^T \mathbf{x}'$
polynomial	$(\sigma_0^2 + \mathbf{x}^T \mathbf{x}')^p$
squared exponential	$\exp(-rac{\ \mathbf{x}-\mathbf{x}'\ ^2}{2\ell^2})$
Matérn	$ \frac{1}{2^{\nu}\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{\ell} \ \mathbf{x} - \mathbf{x}'\ \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{\ell} \ \mathbf{x} - \mathbf{x}'\ \right) $
exponential	$\exp\left(-\frac{\ \mathbf{x}-\mathbf{x}'\ }{\ell}\right)$

 $K_{
u}(\cdot)$ is the modified Bessel function of the second kind.

Commonly Used Covariance Functions II

- Some random functions drawn from Gaussian processes with a Squared Exponential Kernel (left), Polynomial Kernel (middle), and a Matérn Kernel (right, $\ell=1$).
- The length-scale hyperparameter determines the "wiggliness" of the function.
- $holdsymbol{\circ}$ For Matérn, the u parameter determines how differentiable the process is.

Squared Exponential Covariance Function

The squared exponential function is one of the most commonly used covariance functions.

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\ell^2}\right).$$

Properties:

- \mathbf{V} It depends merely on the distance $r = \|\mathbf{x} \mathbf{x}'\| \to \text{isotropic}$ and stationary.
- ightharpoonup Infinitely differentiable o the corresponding GP is too smooth.
- ightharpoonup It utilizes strong smoothness assumptions ightharpoonup unrealistic for modeling most of the physical processes.

Characteristic Length-Scale I

$$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\ell^2} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$

 ℓ is called **characteristic length-scale**. Loosely speaking, the characteristic length-scale describes how far you need to move in input space for the function values to become uncorrelated. Higher ℓ induces smoother functions, lower ℓ induces more wiggly functions.

Characteristic Length-Scale II

For more than p=2 dimensions, the squared exponential can be parameterized as follows:

$$k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sigma_f^2 \exp\left(-\frac{1}{2}\left(\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right)^{\top} \boldsymbol{M}\left(\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\right)\right)$$

Possible choices for the matrix $oldsymbol{M}$ include

$$oldsymbol{M}_1 = \ell^{-2} oldsymbol{I} \qquad oldsymbol{M}_2 = \operatorname{diag}(oldsymbol{\ell})^{-2} \qquad oldsymbol{M}_3 = \Gamma \Gamma^ op + \operatorname{diag}(oldsymbol{\ell})^{-2}$$

where ℓ is a p-vector of positive values and Γ is a $p \times k$ matrix.

Here again, $\boldsymbol{\ell}=(\ell_1,\ldots,\ell_p)$ are characteristic length-scales for each dimension.

Characteristic Length-Scale III

What is the benefit of having an individual hyperparameter ℓ_i for each dimension?

- The ℓ_1, \ldots, ℓ_p hyperparameters play the role of **characteristic length-scales**.
- ullet Loosely speaking, ℓ_i describes how far you need to move along axis i in input space for the function values to be uncorrelated.
- Such a covariance function implements **automatic relevance determination** (ARD), since the inverse of the length-scale ℓ_i determines the relevancy of input feature i to the regression.
- ullet If ℓ_i is very large, the covariance will become almost independent of that input, effectively removing it from inference.
- If the features are on different scales, the data can be automatically **rescaled** by estimating ℓ_1, \ldots, ℓ_p .

Characteristic Length-Scale IV

For the first plot, we have chosen M = I: the function varies the same in all directions. The second plot is for $M = \text{diag}(\ell)^{-2}$ and $\ell = (1,3)$: The function varies less rapidly as a function of x_2 than x_1 as the length-scale for x_1 is less. In the third plot $M = \Gamma \Gamma^T + \text{diag}(\ell)^{-2}$ for $\Gamma = (1, -1)^{\top}$ and $\ell = (6, 6)^{\top}$. Here Γ gives the direction of the most rapid variation. [Rasmussen and Williams, 2006]