NEWTON'S METHOD

Newton's Method for solving f(x) = 0.

• Taylors series analysis: use $f(r) = f(x_0 + r - x_0)$;

- Basic Newton's Method Algorithm: starting with approximation x_0 , tolerance ϵ and maximum steps N
 - 1. Initialize with x_0 and i = 0;
 - 2. Set $x_{i+1} = x_i f(x_i)/f'(x_i)$;
 - 3. If $|x_{i+1} x_i| > \epsilon$ and i < N, set i = i + 1 and go to step 2;
 - 4. Stop with $x = x_{i+1}$.

Notes:

- a) other convergences tests?
- b) needs $f(x_i)$, and $f'(x_i)$ for each step.

NEWTON'S METHOD CONTINUED

• Example: $f(x) = x^2 - \sin(x) - 0.5$; $f'(x) = 2x - \cos(x)$, so Newton iteration is

$$x_{i+1} = x_i - \frac{x_i^2 - \sin(x_i) - 0.5}{2x_i - \cos(x_i)}.$$

77
7
4
6

i	X	f(x)
0	0	-0.5
1	-0.5	0.229
2	-0.37780801587057	0.011
3	-0.370910551403399	3.9e-05
4	-0.370887340375536	4.4e-10
5	-0.370887340111992	-5.6e-17

NEWTON ERROR ANALYSIS

• Convergence Theorem: if $f \in C^2[a, b]$ and $\exists r \in (a, b)$ with f(r) = 0, $f'(r) \neq 0$, then $\exists \delta$ such that Newton's method converges to r for any $x_0 \in [r - \delta, r + \delta]$.

Proof: consider g(x) = x - f(x)/f'(x), with $g'(x) = f(x)f''(x)/(f'(x))^2$.

• Quadratic convergence: if a sequence $\{x_n\}$ converges to r with

$$\lim_{n \to \infty} = \frac{|x_{n+1} - r|}{|x_n - r|^2} = M,$$

constant, the sequence has **quadratic convergence**. Note: if error $e_n = x_n - r$, quadratic convergence means

$$|e_{n+1}| \approx M|e_n|^2$$

.

• Newton Method Quadratic Convergence if $f'(r) \neq 0$, $g'(r) = 0 \Rightarrow$ quadratic convergence. Taylor series analysis: uses $x_{n+1} = x_n - f(x_n)/f'(x_n)$.

NEWTON ERROR ANALYSIS CONT.

- Another Newton method example: computing 1/c without division. Solve c-1/x=0. Newton iteration: $x_+ = x \frac{c-1/x}{1/x^2} = x(2-cx)$. If c=3, use $x_0=.3 \rightarrow .33 \rightarrow .3333 \rightarrow .33333333...$
- Multiple Roots?: let $f(x) = (x r)^m q(x)$, $q(r) \neq 0$. With Newton's method, $g'(x) = f(x)f''(x)/(f'(x))^2$

 $|e_{n+1}| \approx \frac{m-1}{m} |e_n|$, **linear** convergence. Modified Newton Method

$$x_{i+1} = x_i - mf(x_i)/f'(x_i)$$

has quadratic convergence.

NEWTON ERROR ANALYSIS CONT.

Multiple Root Example:

$$f(x) = x^6 + 6x^5 + 9x^4 - 2x^3 - 6x^2 + 1$$

Matlab code with results

$$f = 0(x) x^6+6*x^5+9*x^4-2*x^3-6*x^2+1;$$

$$fp = 0(x) 6*x^5+30*x^4+36*x^3-6*x^2-12*x; x = -3;$$

$$for i = 1:7, xo = x; x = x - f(x)/fp(x);$$

$$disp([i x abs(x-xo) f(x)])$$

end

i	x	x-x_	f(x)
0	-3		1
1	-2.94444444444445	5.6e-02	2.7e-01
2	-2.913378139515769	3.1e-02	7.0e-02
3	-2.896794662155538	1.7e-02	1.8e-02
4	-2.888200262526650	8.6e-03	4.5e-03
5	-2.883821304947564	4.4e-03	1.1e-03
6	-2.881610539860946	2.2e-03	2.9e-04
7	-2.880499723844134	1.1e-03	7.2e-05

NEWTON ERROR ANALYSIS CONT.

Modified Newton Method iteration with

$$x_+ = x - 2f(x)/f'(x)$$

i	X	x-x_	f(x)
0	-3		1
1	-2.88888888888888	1.1e-01	5.3e-03
2	-2.879451566951531	9.4e-03	2.5e-07
3	-2.879385244791951	6.6e-05	-7.1e-14
4	-2.879385627189817	3.8e-07	8.5e-12
5	-2.879385245597140	3.8e-07	-1.4e-13
6	-2.879385826819767	5.8e-07	2.0e-11
i	x	x-x_	f(x)
i 0	x 0.25	x-x_	f(x) 0.635
_		x-x_ 0.472	• •
0	0.25		0.635
0	0.25	0.472	0.635
0 1 2	0.25 0.722222222222 0.562590848305134	0.472 0.159	0.635 0.886 0.016
0 1 2 3	0.25 0.7222222222222 0.562590848305134 0.533090715782836	0.472 0.159 0.030	0.635 0.886 0.016 1.6e-05

• Alternate Modified Newton Method: use h(x) = f(x)/f'(x) instead of f(x).