<u>מסמך נלווה – ממ"ן 13</u>

מבנה התוכנית:

התוכנית בנויה מכמה תפריטים בהם ניתן לבחור פעולות:

תפריט ראשון – בחירה בעבודה עם רשימה ממויינת או לא ממויינת.

תפריט שני – בחירת קלט לבניית הרשימות.

תפריט שלישי – ביצוע פעולות על הרשימות הקיימות. (הדפסה, מיזוג, בנייה מחדש, והחזרת המינימום).

מבנה נתונים:

מבנה הנתונים באמצעותו ממומשת הערימה הוא רשימה מקושרת דו-כיוונית, בעלת המאפיינים הבאים:

- מצביע לאיבר הראשון Head -
 - מצביע לאיבר האחרון Tail -
- מצביע לרשומה המינימלית Min
 - גודל הרשימה\ערימה Size -

בנוסף קיים משתנה סטטי בוליאני נוסף – sorted, באמצעותו יוחלט באיזה אופן לממש את שגרות הערימה.

<u>שגרות התוכנית:</u>

makeHeap

<u>extractMin</u>

Union

toString

makeHeap

במידה וה- Input ריק, תיווצר רשימה ריקה \ הרשימה הקיימת תיווצר מחדש.

אחרת, ייבדק הערך sorted ותרוץ השגרה המתאימה:

<u>לרשימה ממויינת:</u>

createSorted תרוץ השגרה

השגרה עוברת על כל האיברים שהועברו כפרמטר (כלומר n איטרציות, בהנחה שגודל המערך שהתקבל כפרמטר הוא n) וקוראת לשגרה insertSorted, אשר עוברת על הרשימה\ערימה הקיימת ומכניסה את הערך החדש במקום המתאים (כלומר k איטרציות, כאשר k גודל הערימה).

.k+n בכל איטרציה k גדל עד שמגיע לאיטרציה האחרונה בה ערכו יהיה k

k+n עד איטרציות, תעבור n איטרציות, כאשר בכל איטרציה שלה createSorted תעבור n לכן: איטרציות.

.0 נקראת ע"י makeHeap בהכרח הערך ההתחלתי של insertSorted כאשר

ולכן סיבוכיות השיטה היא:

$$n * \sum_{k=1}^{n} k = \Theta(n^2)$$

במקרה של רשימה לא ממויינת:

השגרה תעבור על כל האיברים במערך שהועבר כפרמטר (n איטרציות) וקוראת לשגרה insertUnsorted, אשאר מכניסה את האיבר לסוף הרשימה. הרשימה מחזיקה מצביע ל-Tail ולכן פעולה זו מתבצעת בזמן קבוע.

 $\Theta(n)$ לכן במקרה של רשימה לא ממויינת, סיבוכיות השיטה היא

extractMin

שגרה זו מוצאת את האיבר המינימלי, מסירה אותו מהרשימה, מעדכנת את המצביע min של הרשימה שגרה זו מוצאת את האיבר המינימלי שנמחק. לאיבר המינימלי הבא, מורידה את הערך size ב-1 , ומחזירה את הערך של האיבר המינימלי שנמחק.

הרשימה שומרת תמיד מצביע לאיבר המינימלי, לכן פעולה זו לא דורשת איטרציות על הרשימה.

מכאן אופן הפעולה מתחלק;

רשימה ממויינת:

בהכרח האיבר המינימלי הבא הוא האיבר העוקב של min, ולכן min יעודכן כך שיצביע לאיבר הבא. פעולה זו מתבצעת בזמן קבוע – (O(1).

<u>רשימה לא ממויינת:</u>

לא ידוע מי האיבר המינימלי הבא ברשימה, ולכן השגרה תעבור על כל איברי הרשימה. פעולה זו תתבצע בזמן לא ידוע מי האיבר המינימלי הבא ברשימה, ולכן השגרה לניארי - $\Theta(n)$ -

union

שגרה זו מאחדת את הרשימות A ו-B לתוך הרשימה

במקרה של ערימה ממויינת:

.A גודל הרשימה n ,B גודל הרשימה m בגדיר

השגרה תריץ m פעמים את השגרה insertSorted (אשר רצה בזמן לינארי, כגודל הרשימה A) אשר תכניס m פעמים את השגרה שגרה extractMin על רשימה B (כלומר m פעמים בזמן ריצה קבוע).

מכאן שבמקרה של ערימה ממויינת סיבוכיות זמן הריצה תהיה:

$$\sum_{i=0}^{m-1} (n+i) * (m-i) = \Theta(n \lg(n))$$

במקרה של ערימה לא ממויינת:

השגרה תצביע מ- Tail של רשימה A ל-Head של רשימה B, ותאפס את המצביעים של רשימה B ותגדיר את B השגרה תצביע מ- Tail כ-0. פעולה זו מתבצעת בזמן קבוע – (0(1).

toString

ממירה את הערימה למחרוזת למטרת הדפסה – עוברת בצורה לינארית על כל איברי הערימה לפי סדרם.

 $\Theta(n)$ - סיבוכיות זמן לינארית