The Atom: From Philosophical Idea to Scientific Theory

When you crush a lump of sugar, you can see that it is made up of many smaller particles of sugar. You may grind these particles into a very fine powder, but each tiny piece is still sugar. Now suppose you dissolve the sugar in water. The tiny particles seem to disappear completely. Even if you look at the sugar-water solution through a powerful microscope, you cannot see any sugar particles. Yet if you were to taste the solution, you'd know that the sugar is still there. Observations like these led early philosophers to ponder the fundamental nature of matter. Is it continuous and infinitely divisible, or is it divisible only until a basic, invisible particle that cannot be divided further is reached?

The particle theory of matter was supported as early as 400 B.C. by certain Greek thinkers, such as Democritus. He called nature's basic particle an *atom*, based on the Greek word meaning "indivisible." Aristotle was part of the generation that succeeded Democritus. His ideas had a lasting impact on Western civilization, and he did not believe in atoms. He thought that all matter was continuous, and his opinion was accepted for nearly 2000 years. Neither the view of Aristotle nor that of Democritus was supported by experimental evidence, so each remained speculation until the eighteenth century. Then scientists began to gather evidence favoring the atomic theory of matter.

Foundations of Atomic Theory

Virtually all chemists in the late 1700s accepted the modern definition of an element as a substance that cannot be further broken down by ordinary chemical means. It was also clear that elements combine to form compounds that have different physical and chemical properties than those of the elements that form them. There was great controversy, however, as to whether elements always combine in the same ratio when forming a particular compound.

The transformation of a substance or substances into one or more new substances is known as a *chemical reaction*. In the 1790s, the study of matter was revolutionized by a new emphasis on the quantitative

SECTION 3-1

OBJECTIVES

- Explain the law of conservation of mass, the law of definite proportions, and the law of multiple proportions.
- Summarize the five essential points of Dalton's atomic theory.
- Explain the relationship between Dalton's atomic theory and the law of conservation of mass, the law of definite proportions, and the law of multiple proportions.