Assignment 2

EP3110 Electromagnetics and applications 21-08-2022

Last date for submission:28-08-2022

- 1. Find out \vec{H} and β , if the electric field is given as $\vec{E} = 0.2 \sin(10\pi y) \cos(6\pi 10^9 t \beta z)\hat{x}$ in air.
- 2. In a homogeneous nonconducting region where $\mu_r = 1$, find ε_r and ω if $\vec{E} = 30\pi e^{j(\omega t 4/3y)} \hat{z}$ (V/m) and $\vec{H} = 1.0e^{j(\omega t 4/3y)} \hat{x}$ A/m.
- 3. Prove that the electric field intensity $\vec{E}(x,y,z) = E_0 e^{-j(k_x x + k_y y + k_z z)}$ satisfies the homogeneous Helmoltz's equation provided that the condition $k_x^2 + k_y^2 + k_z^2 = \omega^2 \mu \varepsilon$ is satisfied.
- 4. If the electric field of a harmonic plane wave in a medium is given by $\vec{E}(R) = E_0 e^{-j\vec{k}\cdot\vec{R}}$, then show that the four Maxwell's equations for uniform plane wave in a source-free region reduce to the following equations i) $\vec{k} \times \vec{E} = \omega \mu \vec{H}$, ii) $\vec{k} \times \vec{H} = -\omega \varepsilon \vec{E}$, iii) $\vec{k} \cdot \vec{E} = 0$, and d) $\vec{k} \cdot \vec{H} = 0$.
- 5. The E field of a uniform plane wave propagating in a dielectric medium is given by $\vec{E}(t,z) = 2\cos(10^8 t ^2/\sqrt{3})\hat{x} \sin(10^8 t ^2/\sqrt{3})\hat{y}$ (V/m). a) Determine the frequency and wavelength of the wave. b) what is the dielectric constant of the medium? c) Describe the polarization of the wave. d) Find the corresponding \vec{H} -field.
- 6. Show that a plane wave with an instantaneous expression for the electric field $E(z,t) = E_{10} \sin(\omega t kz)\hat{x} + E_{20} \sin(\omega t kz + \psi)\hat{y}$ is elliptically polarized. Find the polarization.