Steam games Analysis

using PostgreSQL, Neo4j and MongoDB

Chenze Fan, Jingyi Zhou, Sirui Li Dec 12, 2023

Part 1 Introduction

Background, Context, Goals

Backgroud

Extensive Game Library

Steam hosts a vast array of games, from indie titles to blockbuster releases. It has become a go-to platform for developers to release their games due to its large user base and comprehensive support for game publishing.

Community and Social Features

Steam provides robust community features like user reviews, forums, and groups. This ecosystem allows gamers to connect, share experiences, and discover new games through social interactions.

Steam Sales

Known for its seasonal sales, Steam offers significant discounts on a wide range of games, attracting a large number of users and boosting sales for developers.

Context

Leveraging a combination of PostgreSQL, Neo4j, and MongoDB databases with Python to extract, process, and analyze complex datasets related to games which are on the Steam platform.

Goals

Provide comprehensive insights into gaming trends on Steam aid in offering tailored game recommendations and understand industry collaboration patterns.

- 1. Conducting game score analysis to identify top genres and developers based on popularity and media.
- 2. Developing game recommendation system based on genres and descriptions.
- 3. Performing a collaboration analysis to understand the impact of developer-publisher collaborations on game popularity and pricing.

Part 2 Data Sources

Github repository:

https://github.com/leinstay/steamdb/blame/main/steamdb.json

Kaggle datasets:

Steam Store Games: https://www.kaggle.com/datasets/nikdavis/steam-store-games/

Steam Games Genres: https://www.kaggle.com/datasets/danieliusv/steam-games-genres

Steam Video Games: https://www.kaggle.com/datasets/tamber/steam-video-games

columns we used:

appid (primary key)
name
release_date
categories
positive_rating
negative_rating
price

```
cur.execute("""
            CREATE TABLE IF NOT EXISTS steam (
                appid INT,
                name TEXT,
                release date VARCHAR(100),
                english BOOLEAN,
                platforms VARCHAR(100),
                required age INT,
                categories TEXT,
                steamspy_tags TEXT,
                achievements INT,
                positive ratings INT,
                negative ratings INT,
                average_playtime INT,
                median playtime INT,
                owners VARCHAR(100),
                price FLOAT
            );
        """)
        conn.commit()
```

Data in PostgreSQL

Over 25,000 rows

appid	name	release_dat english	platforms	required_a	categories	steamspy_t	achievemen	positive_rat	negative_ro	average_pl	median_plo	owners	price
1	0 Counter-Strike	2000/11/1	1 windows;mac;linux	0	Multi-playe	Action;FPS	0	124534	3339	17612	317	10000000-200000	7.19
2	20 Team Fortress Classic	1999/4/1	1 windows;mac;linux	0	Multi-playe	Action;FPS	0	3318	633	277	62	5000000-1000000	3.99
3	30 Day of Defeat	2003/5/1	1 windows;mac;linux	0	Multi-playe	FPS;World	0	3416	398	187	34	5000000-1000000	3.99
4	10 Deathmatch Classic	2001/6/1	1 windows;mac;linux	0	Multi-playe	Action;FPS	0	1273	267	258	184	5000000-1000000	3.99
Ī	60 Half-Life: Opposing Force	1999/11/1	1 windows;mac;linux	0	Single-playe	FPS;Action	0	5250	288	624	415	5000000-1000000	3.99
(60 Ricochet	2000/11/1	1 windows;mac;linux	0	Multi-playe	Action;FPS	0	2758	684	175	10	5000000-1000000	3.99
7	70 Half-Life	1998/11/8	1 windows;mac;linux	0	Single-playe	FPS;Classic	0	27755	1100	1300	83	5000000-1000000	7.19
8	30 Counter-Strike: Condition Z	2004/3/1	1 windows;mac;linux	0	Single-playe	Action;FPS	0	12120	1439	427	43	10000000-200000	7.19
13	30 Half-Life: Blue Shift	2001/6/1	1 windows;mac;linux	0	Single-playe	FPS;Action	0	3822	420	361	205	5000000-1000000	3.99
22	20 Half-Life 2	######	1 windows;mac;linux	0	Single-playe	FPS;Action	33	67902	2419	691	402	10000000-200000	7.19
24	Ocunter-Strike: Source	2004/11/1	1 windows;mac;linux	0	Multi-playe	Action;FPS	147	76640	3497	6842	400	10000000-200000	7.19
28	30 Half-Life: Source	2004/6/1	1 windows;mac;linux	0	Single-playe	FPS;Action	0	3767	1053	190	214	2000000-5000000	0
30	00 Day of Defeat: Source	2010/7/12	1 windows;mac;linux	0	Multi-playe	FPS;World	54	10489	1210	1356	134	5000000-1000000	7.19
32	20 Half-Life 2: Deathmatch	2004/11/1	1 windows;mac;linux	0	Multi-playe	Action;FPS	0	6020	787	311	32	10000000-200000	3.99
34	Half-Life 2: Lost Coast	######	1 windows;mac;linux	0	Single-playe	FPS;Action	0	5783	1020	46	29	10000000-200000	0
30	60 Half-Life Deathmatch: Sou	2006/5/1	1 windows;mac;linux	0	Multi-playe	Action;FPS	0	1362	473	102	81	5000000-1000000	0
38	80 Half-Life 2: Episode One	2006/6/1	1 windows;mac;linux	0	Single-playe	FPS;Action	13	7908	517	281	184	5000000-1000000	5.79
40	00 Portal	######	1 windows;mac;linux	0	Single-playe	Puzzle;Firs	15	51801	1080	288	137	10000000-200000	7.19
42	20 Half-Life 2: Episode Two	######	1 windows;mac;linux	0	Single-playe	FPS;Action	22	13902	696	354	301	5000000-1000000	5.79
44	10 Team Fortress 2	######	1 windows;mac;linux	0	Multi-playe	Free to Pla	520	515879	34036	8495	623	20000000-500000	0
50	00 Left 4 Dead	######	1 windows;mac	0	Single-playe	Zombies;Co	73	17951	948	897	278	5000000-1000000	7.19
55	50 Left 4 Dead 2	######	1 windows;mac;linux	0	Single-playe	Zombies;Co	70	251789	8418	1615	566	10000000-200000	7.19
57	70 Dota 2	2013/7/9	1 windows;mac;linux	0	Multi-playe	Free to Pla	0	863507	142079	23944	801	100000000-20000	0
62	20 Portal 2	2011/4/18	1 windows;mac;linux	0	Single-playe	Puzzle;Co-c	51	138220	1891	1102	520	10000000-200000	7.19
63	30 Alien Swarm	2010/7/19	1 windows	0	Single-playe	Free to Pla	66	17435	941	371	83	2000000-5000000	0
73	O Counter-Strike: Global Offe	2012/8/21	1 windows;mac;linux	0	Multi-playe	FPS;Multip	167	2644404	402313	22494	6502	50000000-100000	0
100	2 Rag Doll Kung Fu	######	1 windows	0	Single-playe	Indie;Fight	i 0	40	17	0	0	20000-50000	5.99
120	00 Red Orchestra: Ostfront 41-	2006/3/14	1 windows;mac;linux	0	Multi-playe	World War	44	1562	223	232	258	500000-1000000	3.99
125	60 Killing Floor	2009/5/14	1 windows;mac;linux	0	Single-playe	FPS;Zombi	285	53710	2649	1328	306	2000000-5000000	14.99
130	00 SiN Episodes: Emergence	2006/5/10	1 windows	0	Single-playe	Action;FPS	0	468	61	0	0	100000-200000	7.19
150	00 Darwinia	2005/7/14	1 windows;mac;linux	0	Single-playe	Strategy;Inc	0	472	158	182	273	500000-1000000	7.19
151	0 Uplink	2006/8/23	1 windows;mac;linux	0	Single-playe	Hacking;In	. 0	1602	152	65	77	500000-1000000	6.99
152	20 DEFCON	2006/9/29	1 windows;mac;linux	0	Single-playe	Strategy;Inc	22	2057	344	80	119	500000-1000000	7.19

Data in MongoDB

[83]: data[0]
[83]: {'sid': 10,

columns we used:

```
description
   popularity
sid (primary key)
  meta score
  meta uscore
   igdb_score
  igdb_uscore
 igdb_popularity
```

```
'store_url': 'https://store.steampowered.com/app/10',
    'store_promo_url': 'https://www.youtube.com/watch?v=oKC9SAF4JAc',
   'store uscore': 97,
   'published store': '2000-11-01',
   'published_meta': '2000-11-08'.
    'published_stsp': '2000-11-01',
    'published_hltb': '1999-06-12',
    'published_igdb': '1999-06-12',
   'image': 'https://steamcdn-a.akamaihd.net/steam/apps/10/header.jpg',
   'name': 'Counter-Strike',
   'description': "Play the world's number 1 online action game. Engage in an incredibly realistic brand of terrorist
  warfare in this wildly popular team-based game. Ally with teammates to complete strategic missions. Take out enemy
  sites. Rescue hostages. Your role affects your team's success. Your team's success affects your role.",
   'full_price': 999,
   'current_price': 999,
   'discount': None.
   'platforms': 'WIN, MAC, LNX',
    'developers': 'Valve',
   'publishers': 'Valve'
    'languages': 'English,French,German,Italian,Spanish - Spain,Simplified Chinese,Traditional Chinese,Korean',
   'voiceovers': 'English, French, German, Italian, Spanish - Spain, Simplified Chinese, Traditional Chinese, Korean',
   'categories': 'Multi-player, PvP, Online PvP, Shared/Split Screen PvP, Valve Anti-Cheat enabled',
   'tags': "Action,FPS,Multiplayer,Shooter,Classic,Team-Based,First-Person,Competitive,Tactical,1990's,e-sports,PvP,M
  ilitary, Strategy, Score Attack, Survival, Assassin, 1980s, Ninja, Tower Defense",
   'achievements': None,
   'qfq url': 'https://qamefaqs.gamespot.com/pc/429818-counter-strike?ftag=MCD-06-10aaa1f',
    'gfg difficulty': 'Just Right-Tough',
   'gfq difficulty comment': '<a href="/games/rankings?platform=19&amp;qenre=54&amp;list type=diff&amp;dlc=1&amp;page
  =33&game id=429818&min votes=2#1656"><b>#1656</b></a> hardest PC action game (<a href="/games/rankings?plat
  form=19&list_type=diff&dlc=1&page=111&game_id=429818&min_votes=2#5600"><b>#5600</b></a> on PC,
  <b>#22929</b> overall)',
   'qfq rating': 3.9.
   'qfq rating comment': '<a href="/qames/rankings?platform=19&amp;genre=54&amp;list type=rate&amp;dlc=1&amp;page=21&
  amp:game id=429818&amp:min votes=2#1079"><b>#1079</b></a> highest rated PC action game (<a href="/games/rankings?pl
 'qfq_rating': 3.47,
 'gfg rating comment': '<a href="/games/rankings?platform=19&amp;genre=54&amp;list type=rate&amp;view type=1&amp;dl
c=1&amp:page=35&amp:game id=562917&amp:min votes=2#1799"><b>#1799</b></a> lowest rated PC action game (<a href="/ga
mes/rankings?platform=19&list_type=rate&view_type=1&dlc=1&page=148&game_id=562917&min_votes
=2#7435"><b>#7435</b></a> on PC, <b>#30579</b> overall)',
 'gfq_length': 50.6,
 'qfq_length_comment': '<a href="/games/rankings?platform=19&amp;genre=54&amp;list_type=time&amp;dlc=1&amp;page=2&a
mp;qame id=562917&min votes=2#127"><b>#127</b></a> longest PC action game (<a href="/games/rankings?platform=19"
&list_type=time&dlc=1&page=30&game_id=562917&min_votes=2#1501"><b>#1501</b></a> on PC, <b>#4994
</b> overall)'.
 'stsp_owners': 3500000,
 'stsp mdntime': 20,
 'hltb_url': 'https://howlongtobeat.com/game?id=9634',
 'hltb_single': None,
 'hltb_complete': None,
 'meta_url': 'https://www.metacritic.com/game/pc/team-fortress-classic',
 'meta_score': None,
 'meta uscore': 71,
 'arnk score': None,
 'igdb_url': 'https://www.igdb.com/games/team-fortress-classic',
 'igdb_single': None,
 'igdb complete': None,
 'igdb_score': None,
 'igdb_uscore': 70,
 'igdb_popularity': 1.67}
```

Data in Neo4j

information we used:

```
id (primary key)
game
developer
publisher
genre
developed_by
is_genre
published_by
```

```
Cluster Developer Game Genre
Publisher Supporter

Relationships (161,479)

DEVELOPED_BY IN_CLUSTER IS_GENRE
PUBLISHED_BY SUPPORTED_BY
```


Part 3 Methodology

Libraries, Game Score Analysis, Game Recommedation System, Collaboration Analysis

Libraries for Connection

 psycopg2: connect to postgres (local)

 pymongo: connect to mongodb (cloud)

 neo4j: connect to neo4j (cloud)

```
def connect_mongodb():
    #connect to MongoDB
    uri = "***"
    client=MongoClient(uri,server_api=ServerApi('1'))
    db=client['steam']
    collection=db['steamdb']
    return collection,client
```

```
def connect_neo4j():
    #connect to Neo4j
    URI="*"
    USERNAME="neo4j"
    PASSWORD="*"
    driver = GraphDatabase.driver(URI, auth=(USERNAME, PASSWORD))
    driver.verify_connectivity()
    return driver
```

Other Libraries

```
from collections import defaultdict
import pandas as pd
import numpy as np
from prettytable import PrettyTable
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.cluster import MiniBatchKMeans
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.feature_extraction.text import TfidfVectorizer
import re
import nltk
from nltk.corpus import stopwords
```

Game Score Analysis

Queries:

- Top 5 highest media score and user score genres of all time
- The popularity shift of top 5 highest score genres over time
- Top 5 highest media score and user score developer of all time

Query 1: Top 5 highest media score and user score genres of all time

Pipeline: Use mongodb and postgres

select media score from mongodb

Insert result into Postgres

select steam table from postgres

Merge tables based on game ID Apply Query on Postgres

Detailed query

From mongodb

```
#get game info from MongoDB
json_games=collection.find({},{"_id":0,"sid":1,"gfq_rating":1,"meta_score":1,\
    "meta_uscore":1,"igdb_score":1,"igdb_uscore":1,"igdb_popularity":1})
```

Postgres query to merge and select top 5 genres with highest score

```
with t as (select s.appid, s.name, s.release date, s.genres, j.gfq rating, j.meta score,
   j.meta uscore, j.igdb score, j.igdb uscore, j.igdb popularity
   from steam as s inner join json scores as j on j.sid=s.appid)
   SELECT unnested genres, round (AVG (gfq rating), 2) AS
avg gfq rating, round (AVG (meta score), 2) AS avg meta score, round (AVG (meta uscore), 2) AS
avg meta uscore, round (AVG (igdb score), 2) AS avg igdb score, round (AVG (igdb uscore), 2) AS
avg igdb uscore, round (AVG (igdb popularity), 2) AS avg igdb popularity
   FROM (SELECT unnest(string to array(genres, ';')) AS unnested genres, gfq rating,
meta score, meta uscore, igdb score, igdb uscore, igdb popularity
    FROM t) GROUP BY unnested genres
```

Query1 Result

Top 5 genres with highest media score and user score

	unnested_genres	avg_gfq_rating	avg_igdb_popularity	avg_score	avg_uscore
0	RPG	3.39	3.72	71.72	67.40
1	Early Access	3.15	2.71	71.68	67.06
2	Strategy	3.41	3.26	71.65	66.20
3	Sports	3.51	1.56	71.51	64.20
4	Nudity	3.22	2.60	70.62	65.16

- gain insights into user preferences.
- sets a standard for new games.

Query2: The popularity shift of top 5 highest score genres over time

```
with t as (select s.appid, s.name, s.release_date, s.genres, j.gfq_rating, j.meta_score,
j.meta_uscore, j.igdb_score, j.igdb_uscore, j.igdb_popularity
from steam as s inner join json scores as j on j.sid=s.appid)
SELECT
unnested_genres,
release_year,
count(*) as num games,
round(AVG(gfq_rating),2) AS avg_gfq_rating,
round(AVG(meta_score),2) AS avg_meta_score,
round(AVG(meta_uscore),2) AS avg_meta_uscore,
round(AVG(igdb_score),2) AS avg_igdb_score,
round(AVG(igdb_uscore),2) AS avg_igdb_uscore,
round(AVG(igdb_popularity),2) AS avg_igdb_popularity
FROM
(SELECT
        unnest(string to array(genres, ';')) AS unnested genres,
        extract(year from to_date(release_date,'YYYY-MM-DD')) as release_year,
        gfq_rating,
        meta_score,
        meta_uscore,
        igdb score,
        igdb_uscore,
        igdb_popularity
    FROM
GROUP BY
release_year,unnested_genres
order by unnested_genres, release_year
```

Basically similar to query 1.

Use igdb_popularity instead of average media score.

Extract year from game release date, add year to group by expression.

Query2 Merged Data sample

	unnested_genres	release_year	avg_igdb_popularity
0	Action	1997	1.00
1	Action	1998	14.82
2	Action	1999	2.56
3	Action	2000	14.15
4	Action	2001	4.04

Query2 Result

The popularity shift of top 5 highest score genres over time (Take RPG and Strategy as examples)

- popularity trends analysis
- help with development decisions

Query 3: Top 5 highest media score and user score developer of all time

Pipeline: Use mongodb, neo4j, and postgres

Detailed query

Neo4j query

Postgres query

```
query = """

MATCH (g:Game)-[:DEVELOPED_BY]->(d:Developer)

RETURN g.name as Name,toInteger(g.id) as appid,d.name as Developer
"""
```

```
with t as (
   select t1.*,s.release date
   from (select g.appid,g."Developer",j.gfq_rating,j.meta_score,
j.meta_uscore,j.igdb_score,j.igdb_uscore,j.igdb_popularity
from game_developer as g inner join json_scores as j on j.sid=g.appid ) as t1 inner join steam as s
on s.appid=t1.appid
select
unnested_developer,
release_year,
count(*) as num_games,
round(AVG(gfq_rating),2) AS avg_gfq_rating,
round(AVG(meta_score),2) AS avg_meta_score,
round(AVG(meta_uscore),2) AS avg_meta_uscore,
round(AVG(igdb_score),2) AS avg_igdb_score,
round(AVG(igdb_uscore),2) AS avg_igdb_uscore,
round(AVG(igdb popularity),2) AS avg igdb popularity
    FROM
(SELECT
       unnest(string_to_array(t."Developer", ';')) AS unnested_developer,
        extract(year from to_date(release_date,'YYYY-MM-DD')) as release_year,
        gfq_rating,
       meta_score,
        meta_uscore,
        igdb_score,
        igdb_uscore,
        igdb_popularity
    FROM
       t)
GROUP BY
release year, unnested developer
order by unnested_developer, release_year
```

Query3 Result

Top 5 highest media score and user score developer of all time

	unnested_developer	num_games	avg_gfq_rating	avg_igdb_popularity	avg_score	avg_uscore
0	InvertMouse	8	2.85	1.31	97.5	70.4
1	Gritfish	2	3.64	1.42	96.0	74.0
2	Flying Helmet Games	1	3.69	1.45	95.0	84.0
3	tobyfox	1	4.25	33.10	94.0	85.5
4	MAD Virtual Reality Studio	1	3.31	1.00	94.0	57.0

- help investors make decision
- help user make decision on whether to buy a game

Game Recommendation System

Queries:

Recommend similar games based on genres

Recommend high rating games based on key word clusters

Query 1: Recommend similar games based on genres

Pipeline: Use neo4j and postgres

- 1. User input a game name
- 2. select and output games with similar names from postgres using ilike expression
- 3. User input the index of correct game name, get corresponding game id
- 4. get genres of game from postgres based on game id, one game can have multiple genres
- 5. select and output games have a relation to all the genres selected in step 4 from neo4j

Detailed query

#process input name for ilike
def format name for ilike(name):

words = name.split()

Join the words with '%'

Split the name into words and convert each to lowercase

lowercase words = [word.lower() for word in words]

formatted name = '%'.join(lowercase words)

Interact with Postgres

n4j=session.run(query,genres=genres).data()

return pd.DataFrame(n4j)

```
# Add '%' at the beginning and end for the ILIKE expression
  Interact with Neo4j
                                                   ilike expression = f'%{formatted name}%'
                                                   return ilike expression
#return list of genres from id
def get_genres_from_id(id,session):
    n4j=session.run("match p=(g:Game)-[:IS_GENRE]->(genre:Genre) where g.id=$id RETURN genre",parameters={'id':id}).data()
    genres=[item['genre']['genre'] for item in n4j]
    return genres
#return dataFrame of games from genres(list)
def get games from genres(genres, session):
    query = """
        MATCH (g:Game)
        WHERE ALL(genre IN $genres WHERE (g)-[:IS_GENRE]->(:Genre {genre: genre}))
        RETURN g.name as Name, g.id as Appid
        111111
```

Query1 Result Example

												-								
Simi	lar	games	for	Seki	ro™:	Shac	lows	Die	Twi	ce	with	genres	s ['	Adven	ture',	, 'Ac	tion	']		
												-								
																		Name	(c) sancos • (c) • (c)	id
0																	Po	rtal 2	6	20
1													Thr	illvi	lle®:	0ff	the F	Rails™	60	80
2															The L	onge	st J	ourney	63	10
3												Los	st P	lanet	™: Ext	treme	Cond	dition	65	10
4															Tomb	Raid	er: I	Legend	70	00
5																	X-I	Blades	75	10
6														Tomb	Raide	er: A	nnive	ersary	80	00
7														Tom	b Raio	der:	Unde	rworld	81	40
8																Ju	st Ca	ause 2	81	.90
9																Deat	h to	Spies	98	00
10																Βl	ade l	Kitten	99	40
11																	Proto	otype™	101	.50
12													В	ully:	Schol	larsh	ip E	dition	122	.00
13														10358	Grand	d The	ft A	uto IV	122	10
14														Hun	ting l	Jnlim	ited	™ 2008	125	30
15															700		Damı	nation	127	90
16												Princ	ce o	f Per	sia: V	Warri	or W:	ithin™	135	00

Query 2: Recommend high rating games based on key word clusters

Pipeline: Use postgres, mongodb and neo4j

Find high rating games Using PostgreSQL

Calculate the positive ratings rate using the formula: positive_ratings / (positive_ratings + negative_ratings)

```
def get_games_above_threshold(threshold, cur):
    query = """
    SELECT name
    FROM steam
    WHERE (positive_ratings::FLOAT / NULLIF(positive_ratings + negative_ratings, 0)) > %s
    """
    cur.execute(query, (threshold,))
    return cur.fetchall()
```

Find high rating games Using PostgreSQL

```
Pinged your deployment. You successfully connected to MongoDB!
Successfully connected to Neo4j.
Connected to the database successfully
Enter the threshold value (as a percentage, e.g., 0.8 for 80%):
0.98
```

- Input a threshold
- It will return all games with a positive rating rate that meets this threshold.

Hexa Path Pixel Puzzles 2: Paintings Assault of the Robots Virtual Skydiving TOK HARDCORE Foxyland 2 Bunker - Nightmare Begins Pixel Art Monster - Color by Number Easy puzzle: Animals Magic Farm 2: Fairy Lands (Premium Edition) The Cat and the Box Awakening: The Dreamless Castle Argonauts Agency: Pandora's Box City Zombies VTB Basketball League VR Moon Pool Funny Bunny: Adventures Franchise Wars New Yankee 6: In Pharaoh's Court Azurael's Circle: Chapter 4 Magic Clouds Die, zombie sausage, die! Nyasha Valkyrie Peas Adventure Blacksmith Run MonteCube Dodge The Mystery of Bikini Island CaptainMarlene Old Edge II Room of Pandora New Yankee 7: Deer Hunters Rune Lord

Text AnalysisUsing MongoDB

```
def get_game_descriptions(game_names):
   collection, _ = connect_mongodb()
   games = collection.find({"name": {"$in": game_names}}, {"_id": 0, "description": 1})
   return [game['description'] for game in games if 'description' in game and game['description']]
def custom_preprocessor(text):
   text = re.sub(r'\b\d+\b', '', text)
   return text
def analyze_texts(texts):
   if not texts:
       print("No descriptions available for analysis.")
       return None
   additional_stop_words = {'quot', 'games', 'And'}
   custom_stop_words = list(set(stopwords.words('english')).union(additional_stop_words))
   vectorizer = TfidfVectorizer(
   preprocessor=custom_preprocessor,
   token_pattern=r'\b[a-zA-Z]{2,}\b',
   max_df=0.10,
   min_df=0.01,
   stop_words=custom_stop_words)
   tfidf_matrix = vectorizer.fit_transform(texts)
   feature_names = vectorizer.get_feature_names_out()
   # print TF-IDF matrix
   print("TF-IDF Matrix:")
   dense_tfidf_matrix = tfidf_matrix.todense()
   print(pd.DataFrame(dense_tfidf_matrix, columns=vectorizer.get_feature_names_out()))
   cosine_similarities = cosine_similarity(tfidf_matrix)
   return dense_tfidf_matrix, pd.DataFrame(cosine_similarities), feature_names
```

Term-Document Matrix:

	F Mat		About	Access	Achievements	Action	Adventure	After		written	wrong	year	years	vet	young	zomb
ies	zone											,	,	,	, 9	
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0	0.0															
1	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0	0.0															
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.148522	
0.0	0.0															
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0	0.0															
4	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0	0.0															
• • •	•••				***				• • •		•••	•••	•••	•••		
2027		0 0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0 0	0 0	0.000000	
2936	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0 2937	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0 0	0.0	0 0	0.000000	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	• • • •	0.0	0.0	0.0	0.0	0.0	0.000000	
2938	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
2939	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
2940	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.000000	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	• • • •	0.0	0.0	0.0	0.0	0.0	0.00000	
0.0	0.0															
12941	rows	x 164	6 colu	mns1												

Cosine Similarity Matrix:

	Similari 0	1	2	3	4	5		2935	2936	2937	2938	2939	
2940		-	-				•••	2700	2700	2707	2700	2,0,	
0 20437	1.000000	0.088747	0.023010	0.017112	0.008858	0.029584		0.013565	0.073283	0.000000	0.021658	0.000000	0.0
1 57071	0.088747	1.000000	0.049821	0.042742	0.041497	0.013353	•••	0.040190	0.026062	0.000000	0.000000	0.013866	0.0
2	0.023010	0.049821	1.000000	0.112165	0.028510	0.049703		0.032929	0.000000	0.012487	0.000000	0.018178	0.0
3 25627	0.017112	0.042742	0.112165	1.000000	0.027845	0.027978		0.000000	0.000000	0.000000	0.000000	0.020479	0.1
4 00000	0.008858	0.041497	0.028510	0.027845	1.000000	0.015001	•••	0.028879	0.000000	0.000000	0.000000	0.000000	0.0
• • • • • • • • • • • • • • • • • • • •			• • • •			• • •		• • • •	•••		• • • •		
2936 21346	0.073283	0.026062	0.000000	0.000000	0.000000	0.000000		0.000000	1.000000	0.042854	0.082735	0.025372	0.1
2937 15192	0.000000	0.000000	0.012487	0.000000	0.000000	0.019364	•••	0.010546	0.042854	1.000000	0.000000	0.028204	0.0
2938 25265	0.021658	0.000000	0.000000	0.000000	0.000000	0.000000	•••	0.000000	0.082735	0.000000	1.000000	0.061516	0.0
2939 32881	0.000000	0.013866	0.018178	0.020479	0.000000	0.000000	•••	0.000000	0.025372	0.028204	0.061516	1.000000	0.0
2940 00000	0.020437	0.057071	0.000000	0.125627	0.000000	0.031768	•••	0.064598	0.121346	0.015192	0.025265	0.032881	1.0

View clustering results and find similar games Using Neo4j

- Perform clustering using the results of the termdocument matrix.
- Prior to this, due to slow code execution speed, we conducted PCA.

Enter the number of clusters (integer): 10


```
def update_game_cluster(game_name, cluster_label, session):
    try:
        query = """
        MATCH (g:Game {name: $game_name})
        SET g.cluster = $cluster_label
        RETURN g.name, g.cluster
        """
        result = session.run(query, game_name=game_name, cluster_label=cluster_label)
        return result.data()
    except Exception as e:
        print(f"Error updating game cluster in Neo4j: {e}")
        return None
```

View clustering results and find similar games Using Neo4j

- 0: Mode, Challenge, Story
- 1: space, ship, planet
- 2: Vive, HTC (maybe related to virtual reality)
- 3: Collector, Edition, extras
- 4: monsters, battle, combat
- 5: blocks, block, master
- 6: endings, mysterious, hidden
- 7: tiles, board, pieces
- 8: score, multiplayer, arcade
- 9: platformer, solve, Steam

We can infer the game style through keywords!

```
Cluster 0 - Keywords: Mode, Challenge, Story
Game Name

Farm Frenzy 3: American Pie Mode, Challenge, Story
Icebound Mode, Challenge, Story
Goscurry Mode, Challenge, Story
The First Time I Died Mode, Challenge, Story
Ruler by Default Mode, Challenge, Story
Ruler by Default Mode, Challenge, Story
Choconoa Mode, Challenge, Story
Mode, Challenge, Story
Mode, Challenge, Story
Mode, Challenge, Story
Time to Fight Mode, Challenge, Story
```

Recommend similar games:

```
Which game do you want to query for similar games?

Finding Paradise

Games in the same cluster as 'Finding Paradise':

Similar Games

Sniper Fodder

Marty Thinks 4D

Queendoom

Creeper World 3: Arc Eternal

Dungeons of Hell
```

Goal:

Analyze how the collaborations of developers and publishers influent the igdb_popularity and price of games.

Retrieve the relationship between games, their publishers, and developers from Neo4j

Fetch igdb_popularity and appid from MongoDB

Fetch appid and price from PostgreSQL

Merge Dataframes based on appid in Python

Querying Neo4j:

Retrieve the relationship between games, their publishers, and developers from Neo4j, including the count of games (num_games) for each publisher-developer pair.

Querying MongoDB and PostgreSQL:

- 1. Fetch igdb_popularity and appid from MongoDB
- 2. Fetch appid and price from PostgreSQL.

Note: Rename sid to appid for consistency.

```
# MongoDB Query
cursor_mongo = collection.find({}, {"sid": 1, 'igdb_popularity': 1})
df_mongo = pd.DataFrame(list(cursor_mongo))
df_mongo = df_mongo.rename(columns={'sid': 'appid'})

# PostgreSQL Query
cur.execute("SELECT appid, price FROM steam;")
columns = [desc[0] for desc in cur.description]
data = cur.fetchall()
df_postgres = pd.DataFrame(data, columns=columns)
```

Merging DataFrames:

Merge those data from Neo4j, MongoDB, and PostgreSQL into a single DataFrame based on the appid which means the id of game.

```
# Merge DataFrames
```

```
df_merged = pd.merge(df_neo4j, df_mongo, on='appid', how='inner')
df_merged = pd.merge(df_merged, df_postgres, on='appid', how='inner')
df_merged.dropna(subset=['igdb_popularity'], inplace=True)
```

Performing Analysis:

- 1. Group the dataframe by the developer-publisher pair
- 2. Calculate the mean of igdb_popularity, price, and num_games for each group.

```
# Analysis
analysis_result = df_merged.groupby(['developer', 'publisher']).agg({
    'igdb_popularity': 'mean',
    'price': 'mean',
    'num_games': 'mean'
}).reset_index()
```

Results:

T					
Top 5	_3				
	developer	publisher	igdb_popularity	price	num_games
1982	Choice of Games	Choice of Games	1.134762	3.745556	94.0
5654	KOEI TECMO GAMES CO., LTD. KOEI TECMO	GAMES CO., LTD.	2.936939	30.012857	69.0
8917	Ripknot Systems	Ripknot Systems	1.029545	10.671818	62.0
7390	Nikita "Ghost_RUS"	Ghost_RUS Games	1.117273	1.053636	50.0
6023	Laush Dmitriy Sergeevich	Laush Studio	1.067000	2.520000	47.0
Least	5 num_games:				
	developer	<pre>publisher igdb_</pre>	popularity pric	e num_game	S
4793	Hex Entertainment Hex Ente	ertainment	1.45 0.00	1.0	9.
4794	HexGameStudio HexG	GameStudio	54.94 12.39	1.0	9
4796	HexWar Games Ltd HexWar	Games Ltd	1.00 6.99	1.0	9
4798	Hexagon Games; NAMI TENTOU Hexa	agon Games	1.00 0.00	1.0	8
12689	黄昏フロンティア	9	2.5	6 19.49	1.0

Results:

Part 4 Demonstration

THANK YOU!

Chenze Fan, Jingyi Zhou, Sirui Li

