Algorithms and Datastructures

Lecture 9

Manfred Jaeger

Dynamic Programming

Not a style of computer programming – a method for solving optimization problems developed in the 1950's:

My first task was to find a name for multistage decision processes [...] I felt I had to do something to shield [...] the Air Force from the fact that I was really doing mathematics [...] Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to.

(Richard Bellman, Autobiography, 1984)

Cut a steel rod of length *n* into integer-sized pieces to maximize total revenue:

Problem Formalization

Solution space: *Partitions of n*: numbers i_1, i_2, \dots, i_k , so that $n = i_1 + i_2 + \dots + i_k$

<u>Value function:</u> Partition i_1, i_2, \dots, i_k has value $p_{i_1} + p_{i_2} + \dots + p_{i_k}$.

Objective: Find optimal value and optimal partition:

$$r_n = max(p_{i_1} + p_{i_2} + \dots + p_{i_k})$$

 $s_n = arg max(p_{i_1} + p_{i_2} + \dots + p_{i_k})$

where the maximimum is taken over all possible solutions i_1, i_2, \dots, i_k .

General optimization scenario:

General optimization scenario:

General optimization scenario:

- ▶ Instead of maximizing a value function, one may minimize a cost function
- Another example: Maximal subarray problem
 - Solution space: set of all subarrays of input array
 - ▶ Value function: sum of values in subarray

Brute-force approach for solving rod-cutting problem with n=4: compute values of all possible solutions:

Solution	Value
1,1,1,1	4 = 1+1+1+1
1,1,2	7 = 1+ 1+ 5
1,3	9 = 1 + 8
2,2	10 = 5 + 5
4	9

- → best value: 10, best solution: 2,2.
- mathred math
- mathrew brute force approach can only work for very small values of n

Optimal Substructure

Consider optimal solution i_1, i_2, \dots, i_k for problem size n:

Then: i_2, \ldots, i_k is optimal solution for problem size $n - i_1$, and the optimal value for size n is $p_{i_1} + r_{n-i_1}$

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

 ${\ \ \ }$ The optimal solution for a given problem instance incorporates optimal solution(s) of simpler/smaller subproblems.

input: Positive integer n, Array p[1..n] of positive integers **output**: Value of optimal rod-cutting solution for problem size n and price table p

```
\begin{array}{l} \frac{\mathsf{CUTRoD}(p,n)}{\mathsf{if}\ n==0\ \mathsf{then}} \\ \mathbf{1} \quad & \mathsf{if}\ n==0\ \mathsf{then} \\ \mathbf{2} \quad & \mathsf{return}\ 0 \\ \mathbf{3} \quad q=-\infty \\ \mathbf{4} \quad & \mathsf{for}\ i=1\ to\ n\ \mathsf{do} \\ \mathbf{5} \quad & q=\max(q,p[i]+CutRod(p,n-i)) \\ \mathbf{6} \quad & \mathsf{return}\ q \end{array}
```

input: Positive integer n, Array p[1 ... n] of positive integers **output**: Value of optimal rod-cutting solution for problem size n and price table p

CUTROD(p, n)

- 1 if n==0 then
- 2 return ()
- $g = -\infty$
- 4 for i=1 to n do
- $q = \max(q, p[i] + CutRod(p, n i))$
- 6 return q

Concrete recursion tree for CUTROD(p, 4):

Number of nodes in tree for CUTROD(p, n):

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$

Solution:

$$T(n)=2^n$$

How fast (worst-case) can we solve the rod cutting problem using dynamic programming?

- A 2ⁿ
- $B n^3$
- $C n^2$
- D nlgn
- E n

Overlapping Subproblems

Computations performed in subtrees with the same root are identical!

Idea: Instead of repeating identical computations, store the results and look them up!

Computations performed in subtrees with the same root are identical!

Idea: Instead of repeating identical computations, store the results and look them up!

Top-down Computation with Memoization

```
\frac{\mathsf{MEMOIZEDCUTROD}(p,n)}{\mathsf{let}\ r[1\dots n]}\ \mathsf{be}\ \mathsf{a}\ \mathsf{new}\ \mathsf{array}
\mathsf{2}\ \mathsf{for}\ i=0\ to\ n\ \mathsf{do}
\mathsf{3}\ r[i]=-\infty
\mathsf{4}\ \mathsf{return}\ \mathsf{MEMOIZEDCUTRODAUX}(p,n,r)
```

Bottom-Up Version

```
BOTTOMUPCUTROD(p,n)
1 let r[0..n] be a new array
2 r[0] = 0
3 for j=1 to n do
4 q = -\infty
5 for i=1 to j do
6 q = max(q, p[i] + r[j-i])
7 r[j] = q
8 return r[n]
```

Complexity: $\Theta(n^2)$

Recursion tree for memoized cut rod:

Subproblem Graph

11/22

The **Subproblem Graph** for SOMEALGORITHM(x)

- contains one node for each distinct recursive function call occurring in the concrete recursion tree of SOMEALGORITHM(x)
- an edge between node z and node y if evaluating SOMEALGORITHM(z) leads to a call SOMEALGORITHM(y)

Is the edges in the subproblem graph correspond to the edges in the recursion tree with memoization

If the complexity of top-down computation with memoization is $\Omega(e)$, where e is the number of edges in the subproblem graph.

MEMOIZEDCUTROD and BOTTOMUPCUTROD only compute the *value* of the optimal solution, not the solution itself!

EXTENDEDBOTTOMUPCUTROD
$$(p,n)$$

1 let $r[1 ... n]$ and $s[1 ... n]$ be new arrays

2 $r[0] = 0$

3 for $j=1$ to n do

4 $q = -\infty$

5 for $i=1$ to j do

6 if $q < p[i] + r[j-i]$ then

7 $q = p[i] + r[j-i]$

8 $s[j] = i$

9 $r[j] = q$

10 return $r[n]$

Result for n = 10:

i	0	1	2	3	4	5	6	7	8	9	10
<i>r</i> [<i>i</i>]	0	1	5	8	10	13	17	18	22	25	30
r[i] s[i]	0	1	2	3	2	2	6	1	2	3	10

Optimal Binary Search Tree

Before (Red-Black Trees etc.): goal is to construct BST with $\lg n$ worst-case complexity for all operations insert, delete, search.

Now: goal is to construct BST with best *average-case* complexity for repeated *search* operations.

Example

- ▶ Want to build search tree for keys $k_1 < k_2 < k_3 < k_4 < k_5$
- Have the following probabilities:
 - p_i : probability that search is for key k_i (i = 1, ..., 5)
 - q_i : probability that search is for key in between k_i and k_{i+1} ($i=1,\ldots,4$), a key less than k_1 (i=0), or greater than k_5 (i=5)

Want to minimize average search time for repeated searching according to these probabilities

Two candidate trees. Unsuccessful searches represented by leaves with dummy keys $\emph{d}_0,\ldots,\emph{d}_5$:

Computing average search time (search cost for (dummy) key: 1+ depth of node):

			(a)	(b)		
Node	Probability	Depth	Contribution	Depth	Contribution	
k ₁	0.15	1	0.3	1	0.3	
k_2	0.1	0	0.1	0	0.1	
k_3	0.05	2	0.15	3	0.2	
k_4	0.1	1	0.2	2	0.3	
k ₅	0.2	2	0.6	1	0.4	
d_0	0.05	2	0.15	2	0.15	
d_1	0.1	2	0.3	2	0.3	
d_2	0.05	3	0.2	4	0.25	
d_3	0.05	3	0.2	4	0.25	
d_4	0.05	3	0.2	3	0.2	
d_5	0.1	3	0.4	2	0.3	
Total			2.8		2.75	

BST for (dummy) keys $d_0, k_1, \ldots, d_{r-1}, k_r, \ldots, k_n, d_n$ with k_r the root:

every subtree of a BST contains a contiguous range of (dummy) keys $d_{i-1}, k_i, d_i, \dots, k_j, d_j$.

Defining e[i,j]

▶ For tree T containing $d_{i-1}, k_i, d_i, \ldots, k_j, d_j$, the expected search cost is

$$e_T = \sum_{h=i}^{j} p_i \cdot (depth_T(k_i) + 1) + \sum_{h=i-1}^{j} q_i \cdot (depth_T(d_i) + 1)$$

▶ e[i,j]: minimum value of e_T for all possible trees T containing $d_{i-1}, k_i, d_i, \ldots, k_j, d_j$.

Recursion for e[i, j]

Assuming the optimal tree for $d_{i-1}, k_i, d_i, \dots, k_j, d_i$ has root k_r ($i \le r \le j$). Then:

$$e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)$$

where

$$w(i,j) = \sum_{h=i}^{j} p_i + \sum_{h=i-1}^{j} q_i$$

Optimizing over possible choices of root:

$$e[i,j] = \begin{cases} q_{i-1} & \text{if } j = i-1\\ \min_{1 \le r \le j} e[i,r-1] + e[r+1,j] + w(i,j) & \text{if } i \le j \end{cases}$$

Subproblem graph for the computation of e[1,4]:

Number of edges: $\Theta(n^3)$

$$\textbf{Reminder}: \quad e[i,j] = \left\{ \begin{array}{ll} q_{i-1} & \text{if } j=i-1 \\ \min_{i \leq r \leq j} e[i,r-1] + e[r+1,j] + w(i,j) & \text{if } i \leq j \end{array} \right.$$

Grey area: not needed

Arrows indicate sequence in which array entries are computed

- Iteratively fill in matrix e[1..n+1,0..n], so that when e[i,j] is computed all required e[i,r-1] and e[r+1,j] are already computed.
- ► In parallel, compute additional matrices:
 - w[1..n+1,0..n] for the w(i,j) values
 - root[1 .. n, 1 .. n] for the index of the optimal root
- ▶ Complexity: $\Theta(n^3)$.

Computed values in e[i, j] and root[i, j] matrices:

		e[i,j]							
	5	2.75	2.00	1.30	0.90	0.50	0.10		
	4	1.75	1.20	0.60	0.30	0.05			
	3	1.25	0.70	0.25	0.05				
J	2	0.90	0.40	0.05					
	1	0.45	0.10						
	0	0.05							
		1	2	3	4	5	6		
					ι				

Green cells in root[i,j]: entries needed to retrieve structure of optimal BST.

19/22

Summary

Optimization Problems

The computational problem can be defined as optimization of a value function over a solution space.

Optimal Substructure

The optimal solution contains optimal solutions of (smaller) subproblems.

Often: optimal solution is determined by:

- one initial (optimal) choice
 - ► Rod cutting: choice of first length to cut off
 - Optimal BST: choice of key at the root
- optimal solutions of smaller subproblems
 - Rod cutting: optimal cutting of remaining length of rod
 - Optimal BST: optimal BST for keys left and right of root

Overlapping Subproblems

In *recursive solution* approach identical subproblems occur at several nodes of the concrete recursion tree.

- Rod cutting: optimal cutting of rod of length i
- ▶ Optimal BST: optimal BST for keys in range $k_i, ..., k_j$

Typical: subproblems are defined by 1,2,3, ... (a small number) integer arguments.

Subproblem graph: graph obtained from concrete recursion tree by merging nodes representing identical subproblems.

Top-Down Solution

Use recursive computation, save results of subproblems already solved (Memoization, Caching)

Bottom-Up Computation

Typical scenario: subproblems are defined by k integer arguments (e.g. k=2). Then: iteratively fill up a k-dimensional array containing the solutions for all subproblems needed to solve the original problem.

Complexity

A lower bound is given by the number of edges in the subproblem graph:

- In top-down approach, an edge represents a recursive function call
- In bottom-up approach, an edge represents an access to an already computed subproblem solution

Typical: this lower bound is also an upper bound

Time-Space Tradeoff

Dynamic programming ...

- saves time compared to recursive solutions
- needs extra space to store solutions of subproblems