Dual Fractional Mixed Integer Programming

Instructor: Kwei-Long Huang

Agenda

- Basic Procedures
- Form of the Cut
- Derivation of the Cut
- Mixed Cut to IP

Basic Procedures

The there main steps are:

- Solve the MIP by LP. If the problem is an ILP, start with an all-integer tableau (or with tableau of rational numbers). If the problem is infeasible or has an integer solution, stop. Otherwise, go to step 2.
- For an integer constrained variable without an integral value, derive a new inequality constraint. Add a new constraint to the tableau, which will produce primal infeasibility.
- Re-optimize with the lexicographic dual simplex (LDS) method. If the new problem is infeasible or has an integer solution for integer constrained variables, stop. Otherwise, go to 2.

MILP

• It is a cutting plane method for MILP problems using the LDS method.

(MILP) Maximize
$$z = C^T x$$
,
subject to $Ax \le b$
 $x_j \ge 0$, integer, $j = 1, ..., I$,
 $x_j \ge 0$ $j = I+1, ..., n$.

• The initial tableau is not required to be integer. However, to ensure convergence the objective function value $z(x_o)$ is required to be integer.

Generate a Cut

• The LDS method will produce an optimal tableau such that

$$\alpha_{j} \stackrel{\ell}{\succ} 0, \ j = 1, \dots, n \qquad \Rightarrow \qquad a_{0,j} \ge 0, \ j = 1, \dots, n,$$
 $a_{i0} \ge 0, \ i = 1, \dots, n + m.$

- In addition, if a_{i0} is integer, $i=1,\ldots,I$, the MILP is solved:
 - $z^* = a_{0,0}$,
 - $x^* = a_{i,0}$, i = i, ..., n+m.
 - Otherwise, we need to generate a "Gomory" cut.

Agenda

- Basic Procedures
- Form of the Cut
- Derivation of the Cut
- Mixed Cut to IP

Form of the Cut

There is a row v $(1 \le v \le I)$, $x_v = a_{v,0} + \sum_{j=1}^n a_{v,j} \left(-x_{J(j)}\right)$, with $a_{v,0}$ fractional.

$$k^{th}$$
 Gomory cut: $x_{n+m+k} = -f_{v,0} + \sum_{j=1}^{n} (-g_{v,j})(-x_{J(j)}) \ge 0,$ (Gomory, 1960)

$$\text{where } g_{v,j} = \begin{cases} a_{v,j}, & \text{if } a_{v,j} \geq 0 \text{ and } x_{J(j)} \text{ is a continuous variable,} \\ \frac{f_{v,0}}{f_{v,0}-1}a_{v,j}, & \text{if } a_{v,j} < 0 \text{ and } x_{J(j)} \text{ is a continuous variable,} \\ f_{v,j}, & \text{if } f_{v,j} \leq f_{v,0} \text{ and } x_{J(j)} \text{ is an integer variable,} \\ \frac{f_{v,0}}{1-f_{v,0}}\Big(1-f_{v,j}\Big), & \text{if } f_{v,j} > f_{v,0} \text{ and } x_{J(j)} \text{ is an integer variable,} \end{cases}$$

$$f_{v,j} = a_{v,j} - |a_{v,j}|, j = 0, ..., I,$$

and x_{n+m+k} is the gomory slack varible.

Note that $0 \le f_{v,j} < 1, j = 1, ..., I, 0 < f_{v,0} < 1.$

Example (1/7)

Maximize $z = -4 x_1 - 5x_2$, subject to

$$-x_1 - 4x_2 + x_3 = -5$$
, (*)
 $-3x_1 - 2x_2 + x_4 = -7$, (**)
 $x_1 \ge 0$, integer,
 $x_2, x_3, x_4 \ge 0$.

Example (2/7)

#3	1	$(-x_4)$	$(-x_3)$
x_0	- ¹¹² / ₁₀	¹¹ / ₁₀	⁷ / ₁₀
x_1	18/10	$-\frac{4}{10}$	$^{2}/_{10}$
x_2	8/10	1/10	$-\frac{3}{10}$
x_3	0	0	-1
x_4	0	-1	0

Example (3/7)

#4	1	$(-x_5)$	$(-x_3)$
x_0	- ¹⁸⁸ / ₁₆	¹¹ / ₁₆	9/16
x_1	2	$-\frac{4}{16}$	⁴ / ₁₆
x_2	12/16	¹ / ₁₆	$-\frac{5}{16}$
x_3	0	0	-1
x_4	8/16	$-\frac{10}{16}$	$^{2}/_{16}$
x_5	0	-1	0

Example (4/7)

#5	1	$(-x_6)$	$(-x_3)$	
x_0	-12	1	0	Cut derivation:
x_1	²³ / ₁₁	$-\frac{4}{11}$	⁵ / ₁₁	$f_{10} = 23/11 - [23/11] = 1/11$
x_2	8/11	¹ / ₁₁	$-\frac{4}{11}$	$g_{11} = \frac{1/11}{1/11-1}(-4/11) = 4/110$
x_3	0	0	-1	811 1/11-1 (1/1-1) 1/1-13
x_4	8/11	$-\frac{10}{11}$ $-\frac{16}{11}$	⁷ / ₁₁	$g_{12} = 5/11$
x_5	⁴ / ₁₁	$-\frac{16}{11}$	⁹ / ₁₁	
<i>x</i> ₆	0	-1	0	$x_7 = -\frac{1}{11} - \frac{4}{110}(-x_6) - \frac{5}{11}(-x_3)$
x_7	- ¹ / ₁₁	$-4/_{110}$	$(-5/_{11})$	11 110 11

Example (5/7)

#6	1	$(-x_6)$	$(-x_7)$
x_0	-12	1	0
x_1	2	$-\frac{2}{5}$	1
x_2	⁴ / ₅	⁶ / ₅₀	$-\frac{4}{5}$
x_3	¹ / ₅	⁴ / ₅₀	$-\frac{11}{5}$
x_4	³ / ₅	$-48/_{50}$	$^{7}/_{5}$
x_5	¹ / ₅	$-\frac{76}{50}$	⁹ / ₅
<i>x</i> ₆	0	-1	0
x_7	0	0	-1

Example (6/7)

• The cuts in terms of original non-basic variables

$$x_5 = -13 + 5x_1 + 4x_2 \ge 0,$$

 $x_6 = -12 + 4x_1 + 5x_2 \ge 0,$
 $x_7 = -14/5 + (3/5)x_1 + 2x_2 \ge 0,$

Example (7/7)

Agenda

- Basic Procedures
- Form of the Cut
- Derivation of the Cut
- Mixed Cut to IP

Derivation of the Cut (1/7)

$$x = a_0 + \sum_{j=1}^{n} a_j \left(-x_{J(j)} \right),$$

$$0 \equiv a_0 + \sum_{j=1}^{n} a_j \left(-x_{J(j)} \right) \pmod{1}$$

$$0 \equiv f_0 + \sum_{j=1}^n a_j \left(-x_{J(j)} \right) \pmod{1}. \qquad f_0 = a_0 - \lfloor a_0 \rfloor$$

$$\sum_{j=1}^{n} a_j x_{J(j)} \equiv f_0 \pmod{1}.$$

Derivation of the Cut (2/7)

• Assume the left-hand side $(\sum_{j=1}^{n} a_{j}(x_{J(j)}))$ is positive:

$$\sum_{j=1}^{n} a_j x_{J(j)} \ge f_0$$

$$\sum_{j \in P} a_j x_{J(j)} \ge \sum_{j=1}^n a_j x_{J(j)} \ge f_0, \quad \text{where } P = \{j \mid a_j \ge 0, \ j = 1, ..., n\}.$$

Derivation of the Cut (3/7)

• Assume the left-hand side $(\sum_{i=1}^{n} a_{j}(x_{J(j)}))$ is negative:

$$\sum_{j=1}^{n} a_j x_{J(j)} \le -1 + f_0$$

$$\sum_{j \in N} a_j x_{J(j)} \le \sum_{j=1}^n a_j x_{J(j)} \le -1 + f_0, \quad \text{where } N = \{j \mid a_j < 0, j = 1, ..., n\}.$$

• Multiplying the negative number f_0/f_{-1+f_0} gives

$$\sum_{j \in N} \left(\frac{f_0}{-1 + f_0} \right) a_j x_{J(j)} \ge f_0$$

Derivation of the Cut (4/7)

• Combine the two inequalities:

$$\sum_{j \in P} a_j x_{J(j)} + \sum_{j \in N} \left(\frac{f_0}{-1 + f_0} \right) a_j x_{J(j)} \ge f_0$$

• Thus, a non-negative Gomory slack variable *x*' is

$$x' = -f_0 + \sum_{j \in P} a_j x_{J(j)} + \sum_{j \in N} \left(\frac{f_0}{-1 + f_0} \right) a_j x_{J(j)} \ge 0$$

Derivation of the Cut (5/7)

• Consider any nonbasic integer constrained variable x_t with $a_t \neq 0$ in the following congruence relation

$$0 \equiv f_0 + \sum_{j=1}^n a_j (-x_{J(j)}) \pmod{1}.$$

• Add or subtract integer multiples of to or from the relation will not invalidate it.

Derivation of the Cut (6/7)

- If t is placed in P set, the smallest coefficient is
- If t is place in N set, the smallest coefficient is
- Thus, when $f_t \le \frac{f_0}{-1+f_0}(f_t-1)$, it is better to put t in set.
- In addition, the equation is true when $f_t \leq f_0$.

Derivation of the Cut (7/7)

$$x' = -f_0 + \sum_{j=1}^{n} g_j x_{J(j)} \ge 0,$$

where

$$g_{v,j} = \begin{cases} a_j & \text{if } a_j \geq 0 \text{ and } x_{J(j)} \text{ is a continuous variable.} \\ \frac{f_0}{f_0 - 1} a_j & \text{if } a_j < 0 \text{ and } x_{J(j)} \text{ is a continuous variable.} \\ f_j & \text{if } f_j \leq f_0 \text{ and } x_{J(j)} \text{ is an integer variable.} \\ \frac{f_0}{1 - f_0} \left(1 - f_j\right), & \text{if } f_j > f_0 \text{ and } x_{J(j)} \text{ is an integer variable.} \end{cases}$$

Example

• Suppose the source row is $(x_1 \text{ and } x_2 \text{ are integer})$:

$$x = \frac{23}{10} + (\frac{14}{10})(-x_1) + (\frac{12}{10})(-x_2) - (\frac{11}{10})(-x_3) + (\frac{18}{10})(-x_4)$$

$$0 = \frac{3}{10} + (\frac{14}{10})(-x_1) + (\frac{12}{10})(-x_2) - (\frac{11}{10})(-x_3) + (\frac{18}{10})(-x_4)$$

Agenda

- Basic Procedures
- Form of the Cut
- Derivation of the Cut
- Mixed Cut to IP

MILP Gomory Cut

• Assume all non-basic variables in the current optimal are integer constrained, the MILP Gomory cut is

$$x^{M} = -f_{0} + \sum_{j \in J^{1}} f_{j} x_{J(j)} + \sum_{j \in J^{2}} \left(\frac{f_{0}}{1 - f_{0}} \right) (1 - f_{j}) x_{J(j)} \ge 0,$$

where
$$J^1 = \{j : f_j \le f_0, j \in J\}$$
, and $J^2 = \{j : f_j > f_0, j \in J\}$.

and the ILP Gomory cut is

$$x^{I} = -f_{0} + \sum_{j=1}^{n} f_{j} x_{J(j)} \ge 0.$$

Stronger Cut

Theorem: If $x_{J(j)}$, $j \in J$, are integer variables and $J^2 \neq \emptyset$, then the MILP cut is stronger than the ILP cut.

Proof:

and

Note that
$$\{1, 2, ..., n\} = J^1 \cup J^2$$
. Then,

$$x^I = -f_0 + \sum_{j \in J^1} f_j x_{J(j)} + \sum_{j \in J^2} f_j x_{J(j)} \ge 0,$$

$$x^M = -f_0 + \sum_{j \in J^1} f_j x_{J(j)} + \sum_{j \in J^2} \left(\frac{f_0}{1 - f_0}\right) (1 - f_j) x_{J(j)} \ge 0.$$

In addition, note that

$$j \in J^2 \implies x^M \le x^I$$

Thus, x^{M} produces a stronger inequality (cut) than x^{I} .

Example (1/6)

Maximize
$$x_1 + x_2 = x_0$$

subject to $-4x_1 + x_2 \le -1$ (x_3)
 $4x_1 + x_2 \le 3$ (x_4)
and $x_1, x_2 \ge 0$, integer.

Example - MILP (2/6)

#4	1	$(-x_3)$	$(-x_4)$		#5	1	$(-x^M)$	$(-x_4)$
x_0	12/8	3/8	5/8	$f_{10} = \frac{4}{8}$	x_0	0	3	1/4
x_1	4/8	$-\frac{1}{8}$	¹ / ₈	$f_{11} = \frac{7}{8}$	x_1	1	-1	1/4
x_2	1	4/8	4/8	$f_{12} = \frac{3}{8}$	x_2	-1	4	0
x_3	0	-1	0	O	x_3	4	-8	1
x_4	0	0	-1		x_4	0	0	-1
x^{M}	-4/8	$\left(\frac{-1}{8}\right)$	$-\frac{1}{8}$		χ^M	0	-1	0

Example - ILP (3/6)

#4	1	$(-x_3)$	$(-x_4)$
$\longrightarrow x_0$	12/8	3/8	5/8
x_1	4/8	$-\frac{1}{8}$	1/8
x_2	1	4/8	4/8
x_3	0	-1	0
x_4	0	0	-1
x_5	- ⁴ / ₈	-3/8	- ⁵ / ₈

$$(x_1 = 4/8, x_2 = 1)$$

Minimun $\{\frac{3/8}{|-3/8|}, \frac{5/8}{|-5/8|}\}$ tie;

to maintain lexicographically positive columns α_1 and α_2 , compute

Minimum
$$\left\{ \frac{-1/8}{\left| -3/8 \right|}, \frac{1/8}{\left| -5/8 \right|} \right\} = -\frac{1}{3};$$

 x_3 becomes basic.

Example - ILP (4/6)

#5	1	$(-x_5)$	$(-x_4)$	#6	1	$(-x_5)$	$(-x_6)$
x_0	1	1	0	x_0	1	1	0
$\longrightarrow x_1$	2/3	-1/3	1/3	x_1	0	-1	1
x_2	1/3	4/3	-1/3	x_2	1	2	-1
x_3	4/3	-8/3	5/3	x_3	-2	$\overline{\left(-6\right)}$	5
x_4	0	0	-1	x_4	2	2	-3
x_5	0	-1	0	x_5	0	-1	0
x_6	-2/3	-2/3	$\overline{\left(-1/3\right)}$	<i>x</i> ₆	0	0	-1

$$(x_1 = 2/3, x_2 = 1/3)$$

$$(x_1 = 0, x_2 = 1)$$

Example - ILP (5/6)

#7	1	$(-x_3)$	$(-x_6)$	#8	1	$(-x_7)$	$(-x_6)$	#9	1	$(-x_7)$	$(-x_2)$
$\overline{x_0}$	4/6	1/6	5/6	x_0	0	1	0	x_0	0	1	0
x_1	2/6	-1/6	1/6	x_1	1	-1	1	x_1	0	1	1
x_2	2/6	2/6	4/6	x_2	-1	2	(-1)	x_2	0	0	-1
x_3	0	-1	0	x_3	4	-6	5	x_3	-1	4	5
x_4	8/6	2/6	-8/6	x_4	0	2	-3	x_4	3	-4	-3
x_5	2/6	-1/6	-5/6	x_5	1	-1	0	x_5	1	-1	0
x_6	0	0	-1	x_6	0	0	-1	x_6	1	-2	-1
x_7	-4/6	(-1/6)) -5/6	x_7	0	-1	0	<i>x</i> ₇	0	-1	0
$(x_1 = x_2 = 2/6)$					$(x_1$	$= 1, x_2$	= -1)		$(x_1 =$	$= x_2 =$	0)

Example- ILP (6/6)

Questions?

Reminder:

- No class on 4/6
- HW3 due on 11:59 AM 4/17(Monday)
- Midterm on April 20