Homework2 Monday, September 11, 2023 2:22 PM	Tony Samour APPM 4600
(1+x) ² Ox 1 = O(x) as $x \to 0$.	
$(1+x)^{n} - nx - 1 = o(x) \text{ as } x \to 0 \text{ if } \lim_{x \to 0} \frac{ (1+x)^{n} - nx - 1 }{ x } = 0$	
$\lim_{K \to 0} \frac{ (1+x)^{2}-nx-1 }{ x } = \frac{ (1+0)^{2}-n(0)-1 }{0} = \frac{0}{ x } = \frac{1}{ x } = \frac{ n(1)^{n-1}-n }{ x } = n(1$: 6 7
(b) Show that $x \sin \sqrt{x} = O(x^{3/2})$ as $x \to 0$.	
$(X \cdot Sin(JX)) = O(X^{2/2})$ as $X \rightarrow O$ if J a positive constant M st	
$\lim_{x\to 0} \frac{ x\sin(\sqrt{x}) }{ x^{3/2} } \le M + values of x in neighborhood of 0$	
	2(05(1))
$\frac{\text{Zim} x = \sin(\sqrt{x}) }{ x ^{3/2}} = \frac{O}{C} \stackrel{\text{LH}}{=} \frac{\text{Zim}}{ sin(\sqrt{x}) } + \frac{2\sqrt{x}(\cos(\sqrt{x}))}{ sin(\sqrt{x}) } = \frac{\text{Zim}}{ sin(\sqrt{x}) } + \text{$	32
$= \frac{2 \cdot \cos(\sqrt{6})}{\frac{3}{2}} = \frac{4}{3} \neq 0$	
(c) Show that $e^{-t}=o(\frac{1}{l^2})$ as $t\to\infty$. Following the definition of $O(t)$ as shown is part	(a)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(d) Show that $\int_0^\varepsilon e^{-x^2} dx = O(\varepsilon)$ as $\varepsilon \to 0$. Following the definition of $O(\varepsilon)$ as shown in (b))
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$= \lim_{\varepsilon \to 0} \frac{1}{e^{x^2}}$	

2.) _{2. Co}	onsider solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ where $\mathbf{A} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 + 10^{-10} & 1 - 10^{-10} \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The exact
80	Lution is $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the inverse of \mathbf{A} is $\begin{bmatrix} 1 - 10^{10} & 10^{10} \\ 1 + 10^{10} & -10^{10} \end{bmatrix}$. In this problem we will
im	vestigate a perturbation in ${f b}$ of $\left[egin{array}{c} \Delta b_1 \\ \Delta b_2 \end{array} ight]$ and the numerical effects of the condition number.
(a) F	ind an exact formula for the change in the solution between the exact problem and the
pe	erturbed problem Δx .
EKO	ut Problem:
	$A_X = b$
	$\begin{vmatrix} 1 & 1 & 1 \\ 1 + 10^{-10} & 1 - 10^{-10} \end{vmatrix} \cdot $
	[1+10-10] [Xz] [1]
Pertur	bed problem: $A\hat{x} = b + \delta b \Rightarrow \hat{x} = A^{-1}b + A^{-1}\delta b$ $pert. soln.$
	Put. soln
t (pert.)	$S - F(\text{original}) = A^{-1}b + A^{-1}5b - A^{-1}b$
	$\hat{\mathbf{x}}$
	= A ⁻¹ 5b
. 0	
·· Yert	erbed Problem: [Δx_i] [1-10 0 10 0 Δb_1]
	urbed Poblen: $\overline{\chi} = \begin{bmatrix} \Delta \chi_1 \\ \Delta \chi_2 \end{bmatrix} = \begin{bmatrix} 1 - 10^{10} & 10^{10} \\ 1 + 10^{10} & -10^{10} \end{bmatrix} \begin{bmatrix} \Delta b_1 \\ \Delta b_2 \end{bmatrix}$
(b) What	is the condition number of A?
N\	
Numero	For of sclative condition $\# : \ \underline{A^{-1}Sb}\ $ $\ X\ $
	11 \(\lambda\)
4	K = A-Sb . b Bound to get a more practical Form
	$K = A^{-1}5b $. $ b $ Bound to get a more practical Form
	by Cauchy-Schwarz = Ax
K	= A-10
	= A-16 . 16 < A-11186 . 16
	" " " " " " " " " " " " " " " " " " " "
	h, c e
	$= A^{-1} \cdot A \times \leq A^{-1} \cdot A = K(A) $

 $\therefore k(A) = ||A^{-1}|| \cdot ||A||$

11×11

(a) What is the relative condition number $\kappa(f(x))$? Are there any values of x for which this is ill-conditioned?

$$k(f(x)) = |f'(c)| |x|$$

$$|f(x)|$$

$$K(e^{x}-1) = \frac{|e^{c}| \cdot |x|}{|e^{x}-1|}$$
, pick c to be 0 : $K(e^{x}-1) = \frac{|x|}{|e^{x}-1|}$

This is ill-conditioned for values of x near O

- (b) Consider computing f(x) via the following algorithm:
 - 1: y = math.e^x
 - 2: return y -1

Is this algorithm stable? Justify your answer

After attempting different x volves and a small perturbation, I found that small changes to x resulted in changes in y of the same order of magnitude. However, it is manble near 0, so it is unstable.

(c) Let x have the value $9.999999995000000 \times 10^{-10}$, in which case f(x) is equal to 10^{-9} up to 16 decimal places. How many correct digits does the algorithm listed above give you? Is this expected?

Inputing the above x value yielded the following volve for f(1):

1.00000082740371.10-9, which implies that the correct number of digits is 8.

(d) Find a polynomial approximation of f(x) that is accurate to 16 digits for $x = 9.99999995000000 \times 10^{-10}$. Hint: use Taylor series, and remember that 16 digits of accuracy is a relative error, not an absolute one.

Taylor expansion of $e^x = \begin{bmatrix} + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \end{bmatrix} = \sum_{n=1}^{\infty} \frac{x^n}{n!}$

$$e^{x} - 1 = x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$

.. Absolute Error = (ex-1) - (x+ x2 + x5 + ...)[

helovive Error =
$$\frac{|(e^{x}-1)-(x+\frac{1}{2},\frac{x^{3}}{3}+\cdots)|}{|(e^{x}-1)|}$$

When using the machine to solve For the number of terms needed, I found that I needed two of the Taylor Polynomial terms

(e) Verify that your answer from part (d) is correct.

Using information from post (g), I used expul to verity my results

