Insper

Elementos de Sistemas

aula 7 – Unidade Lógica Aritmética

"Contar é a religião desta geração, sua esperança e salvação."
"Counting is the religion of this generation, its hope and salvation."
Gertrude Stein (1874-1946) escritora americana
apud Nisan, N. & Schocken, S. 2005. Elements of Computing Systems

Comentários

- Os grupos devem sentar JUNTOS
- Cada mesa um grupo!
- Scrum master projetar no monitor o Kabam

Conteúdos: Somadores.

Objetivos de Aprendizado da Aula

- Criar somadores em Hardware;
- Projetar uma Unidade Lógica Aritmética.

Conteúdos: Somadores.

Z01

Z01 - etapas

Z01 – ULA – Projeto D

Unidade Lógica Aritmética (ULA)

Unidade Lógica Aritmética (ULA) - Z01

Duas FPGAs por grupo!

John Vincent Atanasoff e Clifford Berry, estão construindo um dos primeiros computador reconhecido na história. Você consegue ajudar eles a desenvolver a lógica para os somadores*.

Formem subgrupos de três pessoas para resolver as atividades da parte 1 do handout.

Mantenha um ambiente em que todos participem de tudo.

Handout parte 1

40 min

Handout parte 2

- Modificar um projeto no Quartus e programar a FPGA
- Implementar um Half-Adder
- Fazer port map
- Implementar um Full Adder
- Implementar um somador de 8 bits

Implementação do Half Adder

a	b	soma	car ry			
0	0	0	0			
0	1	1	0			
1	0	1	0			
1	1	0	1 ,	Hal	f	—carry
				Add		⇒ soma

Implementação do Full Adder

a	b	C _i	So ma	C ou
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Projeto

Fazer ALU e Incrementador usando as entidades já desenvolvidos e que estão no repositório GIT.

Passos:

Scrum Master:

- Configurar travis
- Implementação dos blocos (em duplas)
 - Criar novo projeto no github projects
 - Alocar e atualizar tarefas (issues);
 - Implementar e Testar;
 - Atualiza arquivo no Git.
- Teste do sistema completo (facilitador)

Reflexões

- Complexidade
- Velocidade/Performance
- Otimizações
- Outras operações (multiplicação e divisão)

Git: Stash

Remove suas modificações locals e guarda elas **git stash**

Para recuperar suas modificações: **git stash pop**

Próxima Aula

- Ver estudo para aula 8 sobre Lógica Sequencial
- Estudar Lista de Exercícios Aula 7 (opcional):
- Ler (opcional)

The Elements of Computing Systems

Building a Modern Computer from First Principles

Noam Nisan e Shimon Schocken

Capítulo 3

Sistemas Digitais - Princípios e A Ronald Tocci, Neal Widmer e Gregory Capítulo 5

es

Insper

www.insper.edu.br