Лекция 3

Метрические пространства Открытые и замкнутые множества в \mathbb{R}^n и их свойства

Определение 3.1. Непустое множество X называется метрическим простран*ством*, если задана функция $\rho: X \times X \to \mathbb{R}$, удовлетворяющая условиям:

$$1)\rho(x,y)\geqslant 0, \forall x,y\in X,$$

 $(2)\rho(x,y) = 0, \Leftrightarrow x = y,$ $3) \rho(x,y) = \rho(y,x)$ $4) \rho(x,z) \in \rho(x,y) + \rho(y,z)$ (неравенство треугольника) Указанная функция называется *метрикой* (расстоянием в X).

Пример 1. Пусть $X = \mathbb{R}$. Положим $\rho(x,y) = |x-y|$. Условия 1) - 4), очевидно, выполнены $\Rightarrow \mathbb{R}$ – метрическое пространство.

Теорема 3.1. $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ имеет место неравенство Коши-Буняковского

$$|(\mathbf{x}, \mathbf{y})| \leqslant \sqrt{(\mathbf{x}, \mathbf{x})} \sqrt{(\mathbf{y}, \mathbf{y})}.$$
 (3.1)

Доказательство. По свойству скалярного произведения имеем $(\mathbf{x} + \lambda \mathbf{y}, \mathbf{x} + \lambda \mathbf{y}) \geqslant$ $0, \ \forall \ \lambda \in \mathbb{R}, \ ext{то есть} \ (\mathbf{x}, \mathbf{x}) + \lambda(\mathbf{x}, \mathbf{y}) + \lambda(\mathbf{y}, \mathbf{x}) + \lambda^2(\mathbf{y}, \mathbf{y}).$ Тогда

$$\lambda^{2}(\mathbf{y}, \mathbf{y}) + 2\lambda(\mathbf{x}, \mathbf{y}) + (\mathbf{x}, \mathbf{x}) \geqslant 0,$$

то есть имеем квадратный трехчлен относительно λ , значение которого больше нуля.

Дискриминант данного трехчлена равен

$$D = 4(\mathbf{x}, \mathbf{y})^2 - 4(\mathbf{x}, \mathbf{x})(\mathbf{y}, \mathbf{y}) \leqslant 0,$$

то есть $(\mathbf{x},\mathbf{y})^2\leqslant (\mathbf{x},\mathbf{x})(\mathbf{y},\mathbf{y})$. Извлекая квадратный корень из обеих частей последнего неравенства, получаем

(3.1).

Определение 3.2. Векторное пространство X называется *нормированным*, если задана функция $\|\cdot\|: X \to \mathbb{R}$, удовлетворяющая условиям:

$$1. \ \|x\|\geqslant 0 \text{, } \forall \ x\in X;$$

2. $||x|| = 0 \Leftrightarrow x = 0$;

3.
$$\|\lambda x\| = |\lambda| \|x\|_{3} \ \forall \ \lambda \in \mathbb{R}, \ \forall \ x \in X;$$

4.
$$||x + y|| \le ||x|| + ||y|| \le \forall x, y \in X$$
.

$$|x| = \sqrt{|x|^{2}} + \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} = \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} = \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} = \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} + \frac{1}{|x|^{2}} = \frac{1}{|x|^{2}} + \frac{1}{|x|^$$

$$X_{3}^{1}+X_{5}^{5}+\cdots+X_{5}^{n}=0$$

 $X = \left(X^{1} X^{5} \cdots X^{r} \right)$ $D = \left(O^{1} O^{1} \cdots O^{r} \right)$

Такая функция называется нормой.

Положим $\forall \mathbf{x} \in \mathbb{R}^n$

$$\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$
 (3.2)

Теорема 3.2. Векторное пространство \mathbb{R}^n , наделенное функцией (3.2), является нормированным пространством.

Доказательство. Условия 1) - 3) являются очевидными. Докажем условие 4). Имеем

$$(\mathbf{x} + \mathbf{y})^{2} = (\mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y}) =$$

$$= (\mathbf{x}, \mathbf{x}) + 2(\mathbf{x}, \mathbf{y}) + (\mathbf{y}, \mathbf{y}) = \|\mathbf{x}\|^{2} + 2(\mathbf{x}, \mathbf{y}) + \|\mathbf{y}\|^{2} \le$$

$$\leq \|\mathbf{x}\|^{2} + 2\|\mathbf{x}\| \|\mathbf{y}\| + \|\mathbf{y}\|^{2} = (\|\mathbf{x}\| + \|\mathbf{y}\|)^{2}.$$

To ects $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Положим $\forall \mathbf{x} | \mathbf{x$

Теорема 3.3. Векторное пространство \mathbb{R}^n , наделенное функцией (3.3), является метрическим пространством.

Доказательство. Условия 1) - 3) из определения метрического пространства являются очевидными. Докажем 4). Имеем

$$\rho(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} - \mathbf{z}\| = \|(\mathbf{x} - \mathbf{y}) + (\mathbf{y} - \mathbf{z})\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y} - \mathbf{z}\| = \rho(\mathbf{x}, \mathbf{y}) + \rho(\mathbf{y}, \mathbf{z}).$$

Определение 3.3. Открытым шаром радиуса $\delta > 0$ сцентром в точке $\mathbf{a} \in \mathbb{R}^n$ называется множество $U(\mathbf{a};\delta) = \{\mathbf{x} \in \mathbb{R}^n : \rho(\mathbf{a},\mathbf{x}) < \delta\}$. $U(\mathbf{a};\delta)$ называется δ -окрестностью точки \mathbf{a} .

Определение 3.4. Точка $\mathbf{x} \in \mathbb{R}^n$ называется внутренней точкой множества $X \subset \mathbb{R}^n$, если $\exists \ U(\mathbf{x}; \delta) \subset X$.

Определение 3.5. Множество $G \subset \mathbb{R}^n$ называется *открытым* в \mathbb{R}^n , если каждая точка $\mathbf{x} \in G$ является внутренней точкой множества G.

Определение 3.6. Множество $F \subset \mathbb{R}^n$ называется *замкнутым*, если его дополнение $\mathbb{R}^n \setminus F$ является открытым в \mathbb{R}^n .

Пример 2.

- 1. (a,b) открытое множество в \mathbb{R}^1 ;
- 2. [a,b] замкнутое множество в \mathbb{R}^1 ;
- 3. \mathbb{R}^n открытое множество.

2 (/ - O/)+ (/ - 0/2) = 52

(xy-a1/+(x2-012)2+(x3-03)2=52

Теорема 3.4. δ -окрестность точки $\mathbf{a} \in \mathbb{R}^n$ является открытым множеством.

Доказательство. Положим $\delta_1 = \delta - \rho(\mathbf{a}, \mathbf{x})$. Покажем, что $U(\mathbf{x}; \delta) \subset U(\mathbf{a}; \delta)$. Так как

$$\rho(\mathbf{a}, \mathbf{y}) \leqslant \rho(\mathbf{a}, \mathbf{x}) + \rho(\mathbf{x}, \mathbf{y}) < \\ < \rho(\mathbf{a}, \mathbf{x}) + \delta_1 = \\ = \rho(\mathbf{a}, \mathbf{x}) + \delta - \rho(\mathbf{a}, \mathbf{x}) = \delta,$$

TO ECTLE $\mathbf{y} \in U(\mathbf{a}; \delta)$. To ECTLE $U(\mathbf{x}; \delta_1) \subset U(\mathbf{a}; \delta)$.

Определение 3.7. Множество $\overline{U}(\mathbf{a};\delta) = \{\mathbf{x} \in \mathbb{R}^n : \rho(\mathbf{a},\mathbf{x}) \leqslant \delta\}$ называется замкнутым шаром радиуса δ с центром в точке $a \in \mathbb{R}^n$.

Это множество является замкнутым. Его дополнение в \mathbb{R}^n является множество $\{\mathbf{x} \in \mathbb{R}^n : \rho(\mathbf{a}, \mathbf{x}) > \delta\}$ – открытое множество в \mathbb{R}^{n} (доказательство аналогично доказательству теормы 3.4).

Определение 3.8. Множество $S(\mathbf{a}, r) = \{ \mathbf{x} \in \mathbb{R}^n : \rho(\mathbf{a}, \mathbf{x}) = r \}$ называется $c\phi epo \ddot{u}$ радиуса r с центром в точке $a \in \mathbb{R}^n$.

Определение 3.9. Точка $a \in \mathbb{R}^n$ называется предельной точкой множества $X \subset \mathbb{R}^n$, если в любой δ -окрестности точки \mathbf{a} существует хотя бы одна точка $\mathbf{x} \in X: \mathbf{x} \neq \mathbf{a}$.

Определение 3.10. Любое открытое множество из \mathbb{R}^n , содержащее точку **a**, называется окрестностью точки а.

Теорема 3.5. Если $\{G_{\alpha}, \alpha \in L\}$ семейство открытых в \mathbb{R}^n множеств, то $\bigcup_{\alpha \in L} G_{\alpha}$ является открытым в \mathbb{R}^n множеством.

ооказательство. Пусть $\mathbf{x}\in \underset{\alpha\in L}{\cup}G_{\alpha}$. Тогда $\exists~\alpha_{0}:~\mathbf{x}\in G_{\alpha_{0}}$. Так как $G_{\alpha_{0}}$ — открытое множество, то $\exists U(\mathbf{x}, \delta) \subset G_{\alpha_0} \Rightarrow U(\mathbf{x}, \delta) \subset \bigcup_{\alpha \in L} G \Rightarrow \bigcup_{\alpha \in L} G$ является открытым множеством

Теорема 3.6. G_i , $i=1,\ldots,k$ – открытые в \mathbb{R}^n множества. Тогда их пересечение $\bigcap G_i$ является открытым в \mathbb{R}^n множеством. $\mathcal{L} = \{ 1, \ldots, k \}$ Так как G_i – открытые множества, то $\exists U(\mathbf{x}, \delta_i) \subset G_i$, $i=1,\ldots,k$ Положим $\delta = \{ \delta_1, \delta_2,\ldots, \delta_k \}$. Тогда $U(\mathbf{x}, \delta) \subset \bigcap G_i$, то есть $\bigcap G_i$ является открытым множеством. $\bigcup G_i \subset G_i$ то есть $\bigcap G_i \subset G_i$ является открытым множеством. $\bigcup G_i \subset G_i$ то есть $\bigcap G_i \subset G_i$ является открытым множеством. $\bigcup G_i \subset G_i$ то есть $\bigcap G_i \subset G_i$ является открытым множеством. $\bigcup G_i \subset G_i$ то есть $\bigcap G_i \subset G_i$ является открытым множеством. $\bigcup G_i \subset G_i$ то есть $\bigcap G_i \subset G_i$ является открытым множеством.

является замкнутым множеством.

Доказательство. Покажем, что $\mathbb{R}^n \setminus \bigcap_{\alpha \in I} \mathcal{F}_\alpha$ является открытым множеством. Имеем

$$\mathbb{R}^{n} \setminus \bigcap_{\alpha \in L} \mathcal{F}_{\alpha} = \bigcup_{\alpha \in L} \mathbb{R}^{n} \setminus \mathcal{F}_{\alpha} \Rightarrow$$

 \Rightarrow по теореме 3.5. $\mathbb{R}^n \setminus \bigcap_{\alpha \in L} \mathcal{F}_{\alpha}$ – открытое множество.

Теорема 3.8. Пусть $\{\mathcal{F}_i, i=1,\ldots, l\}$ – множество замкнутых множеств. Тогда \mathcal{F}_i является замкнутым множеством.

Доказательство. Покажем, что $\mathbb{R}^n \setminus \bigcup_{i=1}^n \mathcal{F}_i$ является открытым множеством в \mathbb{R}^n . Имеем

– открытое множество по теореме 3.6.

Определение 3.11. Объединение множества X и всех его предельных точек называется *замыканием* множества X и обозначается \overline{X} .

Упражнение. Доказать, что, если X – замкнутое множество, то $\overline{X} = X$

Теорема 3.9. Если X — замкнутое множество в \mathbb{R}^n , то оно содержит все свои предельные точки.

Доказательство. Пусть точка $\mathbf{x} \in \mathbb{R}^n$ является предельной точкой множества X, то есть в любой окрестности точки \mathbf{x} существует хотя бы одна точка $\mathbf{y} \in X$: $y \neq X$

Допустим, что $x \notin X$, тогда $x \in \mathbb{R}^n \backslash X$. Поскольку $\mathbb{R}^n \backslash X$ – открытое множество в \mathbb{R}^n , то $\exists U(\mathbf{x}, \delta) \subset \mathbb{R}^n \backslash X$. Учитывая, что $X \cap \mathbb{R}^n \backslash X = \varnothing$, заключаем, что $U(\mathbf{x}, \delta) \cap X = \varnothing \Rightarrow x$ не является предельной точкой множества $X \Rightarrow$ противоречие, возникает в силу предположения, что $x \notin X$.

Компакты в \mathbb{R}^n

Определение 3.12. Множество $\{S_{\alpha}\}$, $\alpha \in L$ открытых множеств в \mathbb{R}^n называется открытым покрытием множества $X \subset \mathbb{R}^n$, если $\forall x \in X \; \exists \; S_{\alpha_0} : \; x \in S_{\alpha_0}$.

Определение 3.13. Множество $X \subset \mathbb{R}^n$ называется *компактным* множеством или *компактном* в \mathbb{R}^n , если из любого его открытого покрытия можно выделить конечное подпокрытие.

Пример 3. Отрезок [a, b] является компактным множеством в \mathbb{R}^1 .