RETURN THIS COVER SHEET WITH YOUR EXAM AND SOLUTIONS!

Geometry/Topology

Ph.D. Preliminary Exam Department of Mathematics University of Colorado Boulder

January, 2018

INSTRUCTIONS:

- 1. Answer each of the six questions on a separate page. Turn in a page for each problem even if you cannot do the problem.
- 2. Label each answer sheet with the problem number.
- 3. Put your number, not your name, in the upper right hand corner of each page. If you have not received a number, please choose one (1234 for instance) and notify the graduate secretary as to which number you have chosen.

- Q.1 Let X be a topological space, let Y be a set, and let $f: X \to Y$ be a function. Construct a topology on Y with the following property: if Z is a topological space and $g: Y \to Z$ is a function, then g is continuous if and only if $g \circ f$ is continuous. Prove that your topology has the required property.
- Q.2 Prove that \mathbb{R}^n and \mathbb{R}^m are not homeomorphic unless n=m.
- Q.3 Recall that the n-th homotopy group $\pi_n(X,x)$ of a topological space X with a basepoint x is the set of basepoint preserving homotopy classes of maps $S^n \to X$ that send the basepoint of S^n to x. Suppose that $f: X \to Y$ is a covering space. Prove that the map $f_*: \pi_n(X,x) \to \pi_n(Y,f(x))$, sending $\alpha: S^n \to X$ to $f \circ \alpha$, is a bijection for all $n \geq 2$. (Note that the group structure on $\pi_n(X,x)$ is not relevant to this problem.)
- Q.4 Let $a, b \in \mathbb{R}$, and consider the subset S of \mathbb{R}^3 defined by the equations

$$xyz = a, \qquad x + y + z = b.$$

- (a) Show that if $a \neq 0$ and $b^3 \neq 27a$, then S is a smooth submanifold of \mathbb{R}^3 .
- (b) Suppose that a=0 and b=1. Identify the points of S where S is not a smooth submanifold of \mathbb{R}^3 .
- Q.5 Consider the two vector fields on \mathbb{R}^3 with coordinates (x, y, z) given by

$$X = \frac{\partial}{\partial y} + z \frac{\partial}{\partial x}, \qquad Y = \frac{\partial}{\partial z} + y \frac{\partial}{\partial x}.$$

- (a) Show that [X, Y] = 0.
- (b) Compute the flows θ_t of X and ϕ_s of Y, and show directly that for any point $p = (a, b, c) \in \mathbb{R}^3$ and any $s, t \in \mathbb{R}$,

$$\theta_t(\phi_s(p)) = \phi_s(\theta_t(p)).$$

- (c) Use part (b) to give a parametrization (x(s,t),y(s,t),z(s,t)) for the (unique!) surface passing through the point p=(1,0,0) and tangent to the vector fields X and Y at each point. Then give an equation of the form F(x,y,z)=0 that describes this surface.
- Q.6 Define a 1-form ω on $\mathbb{R}^2 \setminus \{(0,0)\}$ by

$$\omega = -\left(\frac{y}{x^2 + y^2}\right) dx + \left(\frac{x}{x^2 + y^2}\right) dy.$$

- (a) Let C be the circle of radius r>0 centered at the origin, oriented counterclockwise. Evaluate the integral $\int_C \omega$ by direct computation.
- (b) Calculate $d\omega$.
- (c) Let C' be the curve defined implicitly by the equation $x^4 + y^2 = 1$, oriented counterclockwise. Compute the integral $\int_{C'} \omega$.

	Top / Diff Geo Prelim Exam January 2018
1)	Let f: X-Y be any map from a topological space X
	to a set y, and define a hopelogy on y by V= y is open if and only if f'(V) is open in X we have that f'(V) = Ø, f'(Y) = X, f'(V) \(\tau \) f'(V) \(\tau \) f'(U), and
	f (0) = 0, f (9) = x, f (V/10) = f (V) (1 f (0), and f (0) = 0, f (V _A) = 0, f (V _A), so his defines a topology on (1.
	Suppose that g is continuous and let UEZ be open.
	Suppose that g is continuous and let U= 7 be open. Then g'(u) is open in y and by definition of the topology on y, we have that f'(g'(u)) = (fog'(u) is open in K. Hence fog is continuous.
	Suppose that fog is continuous, and let U=7 be
	So by the definition of the topology on 4, we have that g'(u) is open in 1, so g is continuous.
	mat g (a) is open in 2, so g is continuous.

There are a couple of ways to go about this. The first way is to use the fact that hemeomorphic spaces Now isomorphic of homeomorphism and WOG assume fire of is a homeomorphism and WOG assume that MAN. This induces a homeomorphism fire (B) - R' (B) We know that R' (Lp) is homeofopic to S'' and since homology graps are invariant under both homology and hermomorphism, we get that	Top Oilf Geo Prelim Exam January 2018
for all k. But if Man then O = 1 mil (5m²) = 1 = 1 mil (5m²). So no such homeomorphism can exist. Alternatively, we can use the Invariance of domain theorem which states if I: R" > R" is a continuous injection of R", then f is an open map (so for any U = R", fw) is open when U is open) Tor this, assume again that man, and consider the inclusion map L: R" > R" Then 2 of is a continuous, injective may but Lof (R"): § (x', x'): x' = 0 : 7 m³ is not apen. This	way is to use the fact that homeomorphic spaces have isomorphic 1th homofopy groups. Suppose that f: TR - R is a homeomorphism and WLOG assume that MLN. This induces a homeomorphism f: This -> TR 1860 We know that R' 12p3 is homofopic to 5" and since homofopy groups are invariant under both homolopy and homeomorphism, we get that
injection of R", then f is an open map (so for any UER", flu) is open when U is open) The this assume again that man, and consider the inclusion map L: R" -> R" and suppose that there is some homeomorph f: R" -> R" Then L of is a continuous, injective map but L of (TR") = § (x' - x"): x' = 0 i > m3 is not agen. This	 for all k. But if $M < n$ then $0 \stackrel{\sim}{=} N_{n-1}(s^{m-1}) \stackrel{\sim}{\neq} Z \stackrel{\sim}{=} N_{n-1}(s^{n-1}).$
f: R" > R" Then cof is a continuous, injective may but cof (TR") = § (x' - x'): x'=0 i>m3 is not apen. This	injection of R", then f is an open map (so brany UER", fai)
	map L: TR" - TR", and suppose that there is some homeomorphy f: TR" -> R" Then Lof is a continuous, injective may but Lof (TR") = § (x', -, x'): x'=0 :> m3 is not apen. This

	Top 1 Diff Geo Prelim Exam January 2018
3)	Let $f: X \rightarrow Y$ be a covering map. Then f induces a map $f_*: \Pi_n(X) \rightarrow \Pi_n(Y)$.
· · · · · · · · · · · · · · · · · · ·	Suppose that fx(a)=fx(b) for a b & Ta(x), so fox-lob.
	Then for every open set containing the image of Jud 2 for, we have a collection of corresponding open sets {U; } iet = Tx with U; NU; 20 for it; such that for all i
	in (x) $\Lambda U_i = in(\beta) \Lambda U_i$ since $in(\alpha)$, $in(\beta) \stackrel{\mathcal{L}}{=} UU_i$. Thus $\alpha = \beta$.
	Now let $[T] \in \mathcal{H}_{n}(Y, f_{(X)})$. Since $n \ge 2$, $\mathcal{H}_{n}(S^{n}) = \{1\}$ so $\mathcal{H}_{n}(S^{n}) = \{1\} \subseteq \mathcal{H}_{n}(X, Y)$ so there is a lifting
	$\tilde{\gamma}: \tilde{S}^n \to X$ with $f \circ \tilde{\gamma} = \gamma = f_*(\tilde{\gamma})$, so f is surjective.

	T 1011 1 22 -
	Top / Diff Ges Prelim Exam January 2018
	Define a function F: P3 -> P2: (x,y,z) + (xyz, xryrz)
	Define a function 1. It - 1k. (xyz) + (xyz, xryrz)
	a we have funt
	OF 2 (yz xz xy)
$-\parallel$	a we have final OF 2 (y2 x2 xy) (1 1 1)
	which only drops rank below 2 when yz=xz, yz=xy, and xz=xy.
	ye=xe, ye=xy, and xzzxy.
	Suppose xyz=a to and b + 27a. Then none of x y as z
	Suppose xyz=a to, and b' + 27a. Then none of x, y, or the sero and 2+-4 so DF has full rank in F'((a,b)).
- '	my (a,b) is a regular point of F and S=F((a,b));
5	Thus (a,b) is a regular point of F and S= F'((a,b)) is regular level out of R3 menning S is an embedded submanifold of R3
11	
1	b) If a=0 and b=1 then we have that
+	
\parallel	S= { (x, y, 2): xy==0, x+y+2=13,
15	is S access as the land of the three lines
	3 S appears as the union of the three lines Zzl-x, y=1-x, and Zzl-y.
41_	
	als to be locally Enclodern at the points where have lines interest. Namely (1,0,0), (0,1,0), and (0,0,1).
	als to be locally Euclidean at the points where
X	hese lines intersect. Home (g (1,0,0), (0,1,0), and (0,0,1).
-	

```
Top Diff Geo Prelim Exun January 2018
\int (a) [x, y] = X(1) \frac{1}{52} + X(y) \frac{1}{5x} - y(1) \frac{1}{5y} - y(2) \frac{1}{5x}
= 0 + 1 \frac{1}{5x} - 0 - 1 \frac{1}{5x}
= 0
     (b) We have that the flow of X is given by \Theta_{\epsilon}(x,y,z): (x+2t, y+t, z)
    and that the flow of y is given by

Ys (x, y, z) = (x + ys, y, z+s).
     This gives us that

Ot 0 4s (x,y, 2) = (x+ys+2t, y+t, 2+s).
     4, 0θ (x,y,z)=(x+ys+ze, y+t, z+s)
    which are equal.
    (c) Let S be the codimension I submanifold of TE3 corresponding to the x-axis. Then at p=(1,00), we have
   that the tangent space to S, TpS, is complimentary to span {X|p, Y|p}, and we can construct a smeet function

Ir (s,t) 20,0 y, (r,0,0): (r+st, t, s): (x(s,t), y(s,t), z(s,t))

for any r & R that parameterizes a surface passing through

(r,0,0) with

If I(t,s) = 3 &x + dy = z(s,t) dx + dy = X
   and
                           35 Fr(E,S): 63x + 32 = y(S,E) 3x + 32 = y
   So the parameter ration of the unique surface passing through (1,0,0) and tangent to X and 4 is given by I (t,s) = (1+5t, t,s).
   If we want to represent this as F(x,y,z)=v, then we solve this system to get F(x,y,z)=x-yz-1.
```


