MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET

Avd. Matematik

Examinator: Yishao Zhou

Tentamensskrivning i Linjär algebra, MM5012 den 25 november 2020

Varje uppgift är värd 5 poäng och 15 poäng ger garanterat betyg E. Motivera alla lösningar noggrant.

- 1. Låt $\mathbb{Q}[\sqrt{2}]$ beteckna mängden av alla tal av typen $a+b\sqrt{2}$, där a och b är rationella tal. Visa att, med de naturliga definitionerna av addition och skalär multiplikation, $\mathbb{Q}[\sqrt{2}]$ är ett vektorrum över \mathbb{Q} . Bestäm dimension av $\mathbb{Q}[\sqrt{2}]$. Ange en bas.
- 2. Betrakta $V = \mathbb{C}$ som vektorrummet över \mathbb{R} . Definera $T: V \to V$ genom $T(z) = \bar{z}$, där \bar{z} är z:s komplexa konjugate. Visa att T är linjär. Bestäm dim(V). Betrakta vidare $V = \mathbb{C}$ vara vektorrummet över \mathbb{C} . Bestäm dim(V). Är avblidningen T_1 på V genom $T_1(z) = \bar{z}$ linjär?
- 3. Låt W vara det delrum av $P_4=\{p_0+p_1x+p_2x^2+p_3x^3+p_4x^4:p_i\in\mathbb{R},i=0,1,2,3,4\}$ som spänns upp av vektorerna

$$v_1 = 1 + 2x + x^2 + 3x^4, v_2 = -1 - 2x^2 + x^3 - 2x^4, v_3 = 2 + x - 4x^2 + 3x^4, v_4 = -1 + x + x^3 - x^4.$$

Bestäm W^{\perp} relativt inre produkten

$$\langle p, q \rangle = p_0 q_0 + p_1 q_1 + p_2 q_2 + p_3 q_3 + p_4 q_4, \text{ för } p, q \in P_4.$$

- 4. Bestäm samtliga egenvärden och egenvektorer till den linjära avbildning T på ett n-dimensionellt vektorum V genom $T(e_i) = e_{i+1}$ för i = 1, ..., n-1 och $T(e_n) = e_1$ där $B = \{e_1, ..., e_n\}$ är en bas för V. Låt $A = [T]_B$ och låt $p(x) = c_0 + c_1x + \cdots + c_{n-1}x^{n-1}$ vara ett polynom. Beräkna determinanten till matrisen p(A). (Att göra n = 5 ger delpoäng.)
- 5. Visa att matrisen $A=\begin{pmatrix}3&1&2\\-1&3&2\\-2&-2&3\end{pmatrix}$ är normal. Bestäm en unitär matris U så att A blir diagonaliserad. 5 p
- 6. (a) Vad betyder $A \in M_{m \times n}(\mathbb{R})$ har rang k? Hur stort kan k vara?
 - (b) Vad är kolonnerna till matriserma U och V i singulärvärdesuppdelning för $A \in M_{m \times n}(\mathbb{R})$ med rang k, $A = U\Sigma V^t$, med avseende på bildrum och nollrum till A och A^t . Hur ser Σ ut?
 - (c) Låt nu $\{c_1, ..., c_k\} \subset \mathbb{R}^m$ vara en bas för $\mathcal{R}(A)$ och $\{r_1, ..., r_k\} \subset \mathbb{R}^n$ vara en bas för $\mathcal{R}(A^t)$. Definiera matriserna C och R genom $C = (c_1, c_2, ..., c_k)$ och $R = (r_1, r_2, ..., r_k)^t$. Visa att det finns en inverterbar $k \times k$ -matris M så att A = CMR.

5p

5 p

5 p

 $5\,\mathrm{p}$

5p