```
Classification using Deep neural network
        Multiclass classification using Deep Neural Networks: Example: Use the handwritten OCR letter ( capital
        & small case letters and special characters) dataset
        https://archive.ics.uci.edu/ml/datasets/Letter+recognition
In [1]: !pip install yellowbrick
        Requirement already satisfied: yellowbrick in c:\users\navne\anaconda3\lib\site-packages (1.5)
        Requirement already satisfied: numpy>=1.16.0 in c:\users\navne\anaconda3\lib\site-packages (from yellow
        Requirement already satisfied: matplotlib!=3.0.0,>=2.0.2 in c:\users\navne\anaconda3\lib\site-packages
        (from yellowbrick) (3.3.4)
        Requirement already satisfied: scipy>=1.0.0 in c:\users\navne\anaconda3\lib\site-packages (from yellowb
        rick) (1.7.1)
        Requirement already satisfied: cycler>=0.10.0 in c:\users\navne\anaconda3\lib\site-packages (from yello
        wbrick) (0.10.0)
        Requirement already satisfied: scikit-learn>=1.0.0 in c:\users\navne\anaconda3\lib\site-packages (from
        vellowbrick) (1.2.2)
        Requirement already satisfied: six in c:\users\navne\anaconda3\lib\site-packages (from cycler>=0.10.0->
        yellowbrick) (1.16.0)
        Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\users\navne\anaconda3\lib
        \site-packages (from matplotlib!=3.0.0,>=2.0.2->yellowbrick) (3.0.4)
        Requirement already satisfied: python-dateutil>=2.1 in c:\users\navne\anaconda3\lib\site-packages (from
        matplotlib!=3.0.0,>=2.0.2->yellowbrick) (2.8.2)
        Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\navne\anaconda3\lib\site-packages (from ma
        tplotlib!=3.0.0,>=2.0.2->yellowbrick) (1.3.1)
                                                                             3 31 12 11 24
In [2]: import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn import model_selection
        from sklearn.preprocessing import StandardScaler
        from sklearn.neural network import MLPClassifier
        from sklearn.metrics import classification report
        from sklearn.metrics import confusion matrix
        from sklearn.metrics import accuracy_score
        from sklearn import preprocessing
        from yellowbrick.classifier import ConfusionMatrix
In [3]: df = pd.read_csv("DeepLearningData/letter-recognition.csv", sep = ",")
In [4]: df=df.iloc[:,1:]
In [5]: df.head()
Out[5]:
           T 2 8 3 5 1 8.1 13 0 6 6.1 10 8.2 0.1 8.3 0.2 8.4
         0 | 5 | 12 | 3 | 7 | 2 | 10
                               5 5 4
                                       13
                                                             10
         1 D 4 11 6 8 6 10
                               6 2 6
                                       10
         2 N 7 11 6 6 3
                            5
                               9 4 6
                                              10
                                                      10
                                                              8
         3 G 2 1 3 1 1 8
                               6 6 6
                                        6
                                           5
                                               9
                                                          5 10
         4 S 4 11 5 8 3 8 8 6 9
                                        5
                                           6
```

Submitted by Navneet Das 3433 Comp A

Assignment 2-B Deep Learning

```
In [6]: | names = ['Class',
                    'x-box',
                   'y-box',
                   'width',
                   'high',
                   'onpix',
                   'x-bar',
                   'y-bar',
                    'x2bar',
                    'y2bar',
                    'xybar',
                   'x2ybr',
                   'xy2br',
                   'x-ege',
                   'xegvy',
                   'y-ege',
                   'yegvx']
In [7]: X = df.iloc[:, 1 : 17]
         Y = df.select_dtypes(include = [object])
In [8]: X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size = 0.20, random_state =
In [9]: | scaler = StandardScaler()
         scaler.fit(X_train)
Out[9]:

▼ StandardScaler

          StandardScaler()
In [10]: X_train = scaler.transform(X_train)
         X_test = scaler.transform(X_test)
In [11]: mlp = MLPClassifier(hidden_layer_sizes = (250, 300), max_iter = 1000000, activation = 'logistic')
In [12]: cm = ConfusionMatrix(mlp, classes="A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z".split(','))
In [13]: cm.fit(X_train, Y_train.values.ravel())
Out[13]:
                 ConfusionMatrix
           ▶ estimator: MLPClassifier
                 ▶ MLPClassifier
          1.0
          0.8
          0.6
          0.4
          0.2
          0.0
0.0
                         0.2
                                     0.4
                                                 0.6
                                                             0.8
                                                                          1.0
```

```
In [14]: | cm.score(X_test, Y_test)
        C:\Users\navne\anaconda3\lib\site-packages\sklearn\preprocessing\_label.py:116: DataConversionWarning: A c
        olumn-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for
        example using ravel().
          y = column_or_1d(y, warn=True)
Out[14]: 0.89
In [15]: | predictions = cm.predict(X_test)
In [16]: print("Accuracy: ", accuracy_score(Y_test, predictions))
        Accuracy: 0.89
In [17]: | print(confusion_matrix(Y_test, predictions))
        [[12 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
           0 0]
         [ 0 16 0
                                0
           0 0]
             0 16 0 0
           0 0]
         [01025000
                             0
                                0
                                   0
                                      0
                                        0
                                           0
                                                1
                                                   0
                                                     0
                                                        0
                                                           0
                                                                0
                                             1
           0
             1]
         [ 0
             0 0 0 13 0 1 0
                               0
                                   0
                                      0
                                        0
                                           0
                                             0
                                                0
                                                   0
                                                        0
             2]
             0 0 0 0 15 0 0
         [ 0
                                0
                                   0
                                      0
                                        0
                                           0
                                             0
                                                0
                                                   0
                                                     0
                                                        0
                                                           1 0
                                                                0
           0
             0]
             0 0 0 0 1 15 0
                               0
                                   0
                                      0
                                        0
                                           0
                                             0
                                                0
                                                   0
                                                     0
                                                        0
                                                           0
                                                                1
         [ 0
                                                             0
             0]
         [ 0
               0 0 0 0 0 13 0 0
                                     1 0
                                           0 0
                                                0
                                                   0
                                                     1 1 0 0
                                                                1
           0
             0]
         [ 0
             0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 11 \quad 0
                                      0
                                       0
                                           0 0 0
                                                   0
                                                        0
                                                                0
                                                           1 0
             0]
           1
         [ 0
             0 \quad 13 \quad 0
                                        0
                                                0
           0
             0]
         [ 0
             0 0 0 0
                           0
                             0
                                0
                                   0
                                      8
                                       0
                                           0
                                             0
                                                0
                                                   0
                                                        0
                                                           0
           0
             0]
         [ 0
             0 0 0
                                      0 18
                                           0
             0]
         [ 0
             0 0 0 0
                           0
                             0
                                0
                                   0
                                     0 0 20 0 0 0 0
                                                        0
                                                           0
                                                             0
                                                                0
           0
             0]
         [ 1
             0 0 0 0
                       0 0
                             0
                                0
                                   0
                                     0
                                       0 0 15 0 0 0 0 0
                                                             0
                                                                 0
           0
             0]
         [ 0
             0
                0 0
                        0
                             1
                                0
                                      0
                                        0
                                           0 1 17 1 0
                                                        1
           0
             0]
               0 0 0
                       0
                                0
                                      0
                                        0
                                           0
                                             0 0 12 0
                                                                0
                                                                   0
         [ 0
             a
                           0
                             0
                                   0
                                                        0
                                                           0
                                                             0
             0]
         [ 0
                                           0
                                             0
                                                0 0 14 0
           0
             0]
         [ 0
                0 0 0 0
                          0 0
                               0
                                   0
                                        0
                                           0 0 0 0 0 7 0 0 0
             0
                                      0
             0]
           0
         [ 0
             0 0 0 0 2 0
                             0
                               0
                                   0
                                      0
                                        1
                                           0 0 0 0 0 0 13 0 0
           1
             0]
         [ 0
             0
                0 0
                     0
                        0
                              0
                                0
                                         0
                                           0
                                              0
                                                0
                                                   0
                                                     0
                                                        0
                                                          0 15
             0]
           a
         [ 0
             0 0
                   0
                                0
                                        0
                                           0
                                                0
                                                   0
                                                        0
             0]
         [ 0
             0
                0 0 0
                        0
                           0
                             0
                                0
                                      0
                                        0
                                           1 0
                                                0
                                                   0
                                                     0
                                                        0
                                                           0
                                                                0 12 0
           0
             0]
         [ 0
             0
                0 0 0
                       0
                           0
                             0
                                0
                                   0
                                      0
                                        0
                                           0 1 2 0
                                                     0
                                                        0 0
                                                             0
                                                                0
                                                                   0 12 0
           0
             0]
         [ 0
                                        0
                                           0
                                             0
                                                0
                                                        0
             1
                0 0
                       0
                           0
                                                   0
           0
             0]
         [ 0
             0 0 0 0 0
                               0
                                   0
                                     0
                                        0
                                           0 0 0 0 0 0 0
                                                                0
                             0
                                                                   0
          11 0]
         0 0 0 0 0 0 1 0 0 0 0
           0 16]]
```

In [18]: | print(classification_report(Y_test, predictions, digits=5))

	precision	recall	f1-score	support
۸	0.92308	0.92308	0.92308	13
A	0.92308	0.92308	0.88889	13 17
B C				
	1.00000	0.88889	0.94118	18
D	0.96154	0.86207	0.90909	29
E	1.00000	0.72222	0.83871	18
F	0.83333	0.93750	0.88235	16
G	0.88235	0.88235	0.88235	17
Н	0.81250	0.76471	0.78788	17
I	1.00000	0.78571	0.88000	14
J	0.92857	0.92857	0.92857	14
K	0.80000	1.00000	0.88889	8
L	0.94737	1.00000	0.97297	18
М	0.90909	1.00000	0.95238	20
N	0.83333	0.93750	0.88235	16
0	0.85000	0.80952	0.82927	21
Р	0.92308	1.00000	0.96000	12
Q	0.93333	0.82353	0.87500	17
R	0.77778	1.00000	0.87500	7
S	0.81250	0.76471	0.78788	17
Т	0.93750	1.00000	0.96774	15
U	0.80000	1.00000	0.88889	8
V	1.00000	0.92308	0.96000	13
W	0.92308	0.80000	0.85714	15
Х	0.75000	0.81818	0.78261	11
Υ	0.84615	1.00000	0.91667	11
Z	0.84211	0.88889	0.86486	18
accuracy			0.89000	400
macro avg	0.88726	0.90006	0.88938	400
weighted avg	0.89597	0.89000	0.88922	400
5 0				

```
In [19]: cm.poof()
```

<Figure size 576x396 with 0 Axes>

Out[19]: <AxesSubplot:title={'center':'MLPClassifier Confusion Matrix'}, xlabel='Predicted Class', ylabel='True Class'>