МГТУ им. Н. Э. Баумана, кафедра ИУ5 курс "Методы машинного обучения"

Лабораторная работа №2

«Обработка признаков (часть 1)»

ВЫПОЛНИЛ:

Сергеев М.К.

Группа: ИУ5-22М

ПРОВЕРИЛ:

Гапанюк Ю.Е.

Задание:

- Выбрать набор данных (датасет), содержащий категориальные и числовые признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Просьба не использовать датасет, на котором данная задача решалась в лекции.
- Для выбранного датасета (датасетов) на основе материалов лекций решить следующие задачи:
 - 1. устранение пропусков в данных;
 - 2. кодирование категориальных признаков;
 - 3. нормализацию числовых признаков.
- Сформировать отчет и разместить его в своем репозитории на github.

Выполнение работы:

Импортирование необходимых библиотек

```
In [5]:
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
           import seaborn as sns
           import scipy.stats as stats
          from google.colab import drive
           drive.mount('/content/drive')
          Mounted at /content/drive
In [68]:
          data = pd.read csv("/content/drive/MyDrive/data/house sales.csv")
In [69]:
          data = data.drop('Id', 1)
          data.head()
          /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:1:
          ning: In a future version of pandas all arguments of DataFrame.drop excep
          t for the argument 'labels' will be keyword-only
            """Entry point for launching an IPython kernel.
            MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Ut
Out[69]:
          0
                    60
                              RL
                                        65.0
                                               8450
                                                      Pave
                                                            NaN
                                                                     Reg
                                                                                  Lvl
                    20
                              RL
                                        80.0
                                               9600
                                                      Pave
                                                            NaN
                                                                     Reg
                                                                                  Lvl
          2
                              RL
                                        68.0
                                              11250
                    60
                                                     Pave
                                                           NaN
                                                                      IR1
                                                                                  Lvl
          3
                     70
                              RL
                                        60.0
                                               9550
                                                      Pave
                                                                      IR1
                                                            NaN
                                                                                  Lvl
                                        84.0
                                                                      IR1
                    60
                              RL
                                              14260
                                                      Pave
                                                           NaN
                                                                                  Lvl
         5 rows x 80 columns
In [33]:
          data features = list(zip(
           # признаки
           [i for i in data.columns],
           zip(
```

```
# типы колонок
              [str(i) for i in data.dtypes],
              # проверим есть ли пропущенные значения
              [i for i in data.isnull().sum()]
          )))
          # Признаки с типом данных и количеством пропусков
          data features
          [('MSSubClass', ('int64', 0)),
Out[33]:
           ('MSZoning', ('object', 0)),
           ('LotFrontage', ('float64', 259)),
           ('LotArea', ('int64', 0)),
           ('Street', ('object', 0)),
           ('Alley', ('object', 1369)),
           ('LotShape', ('object', 0)),
           ('LandContour', ('object', 0)),
           ('Utilities', ('object', 0)),
```

```
('LotConfig', ('object', 0)),
('LandSlope', ('object', 0)),
('Neighborhood', ('object', 0)),
('Condition1', ('object', 0)),
('Condition2', ('object', 0)),
('BldgType', ('object', 0)),
('HouseStyle', ('object', 0)),
('OverallQual', ('int64', 0)),
('OverallCond', ('int64', 0)),
('YearBuilt', ('int64', 0)),
('YearRemodAdd', ('int64', 0)),
('RoofStyle', ('object', 0)),
('RoofMatl', ('object', 0)),
('Exterior1st', ('object', 0)),
('Exterior2nd', ('object', 0)),
('MasVnrType', ('object', 8)),
('MasVnrArea', ('float64', 8)),
('ExterQual', ('object', 0)),
('ExterCond', ('object', 0)),
('Foundation', ('object', 0)),
('BsmtQual', ('object', 37)),
('BsmtCond', ('object', 37)),
('BsmtExposure', ('object', 38)),
('BsmtFinType1', ('object', 37)),
('BsmtFinSF1', ('int64', 0)),
('BsmtFinType2', ('object', 38)),
('BsmtFinSF2', ('int64', 0)),
('BsmtUnfSF', ('int64', 0)),
('TotalBsmtSF', ('int64', 0)),
('Heating', ('object', 0)),
('HeatingQC', ('object', 0)),
('CentralAir', ('object', 0)),
('Electrical', ('object', 1)),
('1stFlrSF', ('int64', 0)),
('2ndFlrSF', ('int64', 0)),
('LowQualFinSF', ('int64', 0)),
('GrLivArea', ('int64', 0)),
('BsmtFullBath', ('int64', 0)),
('BsmtHalfBath', ('int64', 0)),
('FullBath', ('int64', 0)),
('HalfBath', ('int64', 0)),
('BedroomAbvGr', ('int64', 0)),
('KitchenAbvGr', ('int64', 0)),
('KitchenQual', ('object', 0)),
('TotRmsAbvGrd', ('int64', 0)),
('Functional', ('object', 0)),
('Fireplaces', ('int64', 0)),
('FireplaceQu', ('object', 690)),
('GarageType', ('object', 81)),
('GarageYrBlt', ('float64', 81)),
('GarageFinish', ('object', 81)),
('GarageCars', ('int64', 0)),
('GarageArea', ('int64', 0)),
('GarageQual', ('object', 81)),
('GarageCond', ('object', 81)),
('PavedDrive', ('object', 0)),
('WoodDeckSF', ('int64', 0)),
('OpenPorchSF', ('int64', 0)),
('EnclosedPorch', ('int64', 0)),
('3SsnPorch', ('int64', 0)),
('ScreenPorch', ('int64', 0)),
('PoolArea', ('int64', 0)),
('PoolQC', ('object', 1453)),
```

```
('Fence', ('object', 1179)),
('MiscFeature', ('object', 1406)),
('MiscVal', ('int64', 0)),
('MoSold', ('int64', 0)),
('YrSold', ('int64', 0)),
('SaleType', ('object', 0)),
('SaleCondition', ('object', 0)),
('SalePrice', ('int64', 0))]
```

Устранение пропусков

```
In [34]:
           # Доля (процент) пропусков
           [(c, data[c].isnull().mean()) for c in data.columns]
Out[34]: [('MSSubClass', 0.0),
          ('MSZoning', 0.0),
           ('LotFrontage', 0.1773972602739726),
           ('LotArea', 0.0),
           ('Street', 0.0),
           ('Alley', 0.9376712328767123),
           ('LotShape', 0.0),
           ('LandContour', 0.0),
           ('Utilities', 0.0),
           ('LotConfig', 0.0),
           ('LandSlope', 0.0),
           ('Neighborhood', 0.0),
           ('Condition1', 0.0),
           ('Condition2', 0.0),
           ('BldgType', 0.0),
           ('HouseStyle', 0.0),
           ('OverallQual', 0.0),
           ('OverallCond', 0.0),
           ('YearBuilt', 0.0),
           ('YearRemodAdd', 0.0),
           ('RoofStyle', 0.0),
           ('RoofMatl', 0.0),
           ('Exterior1st', 0.0),
           ('Exterior2nd', 0.0),
           ('MasVnrType', 0.005479452054794521),
           ('MasVnrArea', 0.005479452054794521),
           ('ExterQual', 0.0),
           ('ExterCond', 0.0),
           ('Foundation', 0.0),
           ('BsmtQual', 0.025342465753424658),
           ('BsmtCond', 0.025342465753424658),
           ('BsmtExposure', 0.026027397260273973),
           ('BsmtFinType1', 0.025342465753424658),
           ('BsmtFinSF1', 0.0),
           ('BsmtFinType2', 0.026027397260273973),
           ('BsmtFinSF2', 0.0),
           ('BsmtUnfSF', 0.0),
           ('TotalBsmtSF', 0.0),
           ('Heating', 0.0),
           ('HeatingQC', 0.0),
           ('CentralAir', 0.0),
           ('Electrical', 0.0006849315068493151),
           ('1stFlrSF', 0.0),
           ('2ndFlrSF', 0.0),
           ('LowQualFinSF', 0.0),
           ('GrLivArea', 0.0),
           ('BsmtFullBath', 0.0),
```

```
('BsmtHalfBath', 0.0),
('FullBath', 0.0),
('HalfBath', 0.0),
('BedroomAbvGr', 0.0),
('KitchenAbvGr', 0.0),
('KitchenQual', 0.0),
('TotRmsAbvGrd', 0.0),
('Functional', 0.0),
('Fireplaces', 0.0),
('FireplaceQu', 0.4726027397260274),
('GarageType', 0.05547945205479452),
('GarageYrBlt', 0.05547945205479452),
('GarageFinish', 0.05547945205479452),
('GarageCars', 0.0),
('GarageArea', 0.0),
('GarageQual', 0.05547945205479452),
('GarageCond', 0.05547945205479452),
('PavedDrive', 0.0),
('WoodDeckSF', 0.0),
('OpenPorchSF', 0.0),
('EnclosedPorch', 0.0),
('3SsnPorch', 0.0),
('ScreenPorch', 0.0),
('PoolArea', 0.0),
('PoolQC', 0.9952054794520548),
('Fence', 0.8075342465753425),
('MiscFeature', 0.963013698630137),
('MiscVal', 0.0),
('MoSold', 0.0),
('YrSold', 0.0),
('SaleType', 0.0),
('SaleCondition', 0.0),
('SalePrice', 0.0)]
```

In [35]:

Удаление колонок, содержащих пустые значения data.dropna(axis=1, how='any')

Out[35]:		MSSubClass	MSZoning	LotArea	Street	LotShape	LandContour	Utilities	LotConfig
	0	60	RL	8450	Pave	Reg	LvI	AllPub	Inside
	1	20	RL	9600	Pave	Reg	Lvl	AllPub	FR2
	2	60	RL	11250	Pave	IR1	Lvl	AllPub	Inside
	3	70	RL	9550	Pave	IR1	LvI	AllPub	Corner
	4	60	RL	14260	Pave	IR1	Lvl	AllPub	FR2
	1455	60	RL	7917	Pave	Reg	LvI	AllPub	Inside
	1456	20	RL	13175	Pave	Reg	LvI	AllPub	Inside
	1457	70	RL	9042	Pave	Reg	LvI	AllPub	Inside
	1458	20	RL	9717	Pave	Reg	LvI	AllPub	Inside
	1459	20	RL	9937	Pave	Reg	LvI	AllPub	Inside

1460 rows x 61 columns

data.dropna(axis=1, how='any')

Out[36]:		MSSubClass	MSZoning	LotArea	Street	LotShape	LandContour	Utilities	LotConfig
	0	60	RL	8450	Pave	Reg	Lvl	AllPub	Inside
	1	20	RL	9600	Pave	Reg	Lvl	AllPub	FR2
	2	60	RL	11250	Pave	IR1	LvI	AllPub	Inside
	3	70	RL	9550	Pave	IR1	LvI	AllPub	Corner
	4	60	RL	14260	Pave	IR1	LvI	AllPub	FR2
	1455	60	RL	7917	Pave	Reg	LvI	AllPub	Inside
	1456	20	RL	13175	Pave	Reg	LvI	AllPub	Inside
	1457	70	RL	9042	Pave	Reg	LvI	AllPub	Inside
	1458	20	RL	9717	Pave	Reg	Lvl	AllPub	Inside

1460 rows x 61 columns

20

1459

```
In [37]: # Удаление колонок с высоким процентом пропусков (более 50%) data.dropna(axis=1, thresh=730)
```

RL 9937 Pave

Lvl AllPub

Reg

Inside

Out[37]:		MSSubClass	MSZoning	LotFrontage	LotArea	Street	LotShape	LandContour	Utiliti
	0	60	RL	65.0	8450	Pave	Reg	Lvl	AIIP
	1	20	RL	80.0	9600	Pave	Reg	Lvl	AIIP
	2	60	RL	68.0	11250	Pave	IR1	Lvl	AIIP
	3	70	RL	60.0	9550	Pave	IR1	LvI	AIIP
	4	60	RL	84.0	14260	Pave	IR1	LvI	AIIP
	1455	60	RL	62.0	7917	Pave	Reg	Lvl	AIIP
	1456	20	RL	85.0	13175	Pave	Reg	LvI	AIIP
	1457	70	RL	66.0	9042	Pave	Reg	LvI	AIIP
	1458	20	RL	68.0	9717	Pave	Reg	LvI	AIIP
	1459	20	RL	75.0	9937	Pave	Reg	Lvl	AIIP

1460 rows x 76 columns

```
In [38]: # Заполним пропуски возраста средними значениями

def impute_na(df, variable, value):
    df[variable].fillna(value, inplace=True)
    impute_na(data, 'LotFrontage', data['LotFrontage'].mean())

In [41]: # Убедимся, что признак LotFrontage не имеет пустых значений data.isnull().sum()
```

```
Out[41]: MSSubClass 0 MSZoning 0 LotFrontage 0 LotArea 0 Street 0 ...

MoSold 0 YrSold 0 SaleType 0 SaleCondition 0 SalePrice 0 Length: 80, dtype: int64
```

Кодирование категориальных признаков

```
In [42]:
         from sklearn.preprocessing import LabelEncoder
In [43]:
          le = LabelEncoder()
          cat enc le = le.fit transform(data['SaleCondition'])
In [44]:
          data['SaleCondition'].unique()
         array(['Normal', 'Abnorml', 'Partial', 'AdjLand', 'Alloca', 'Family'],
Out[44]:
               dtype=object)
In [45]:
          np.unique(cat enc le)
         array([0, 1, 2, 3, 4, 5])
Out[45]:
In [46]:
          le.inverse transform([0, 1, 2, 3, 4, 5])
         array(['Abnorml', 'AdjLand', 'Alloca', 'Family', 'Normal', 'Partial'],
Out[46]:
               dtype=object)
In [47]:
         data['LotConfig'].unique()
         array(['Inside', 'FR2', 'Corner', 'CulDSac', 'FR3'], dtype=object)
Out[47]:
In [58]:
         pip install category encoders
         Collecting category encoders
           Downloading category encoders-2.4.0-py2.py3-none-any.whl (86 kB)
                                                | 86 kB 2.6 MB/s eta 0:00:011
         Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.7/d
         ist-packages (from category encoders) (0.5.2)
         Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/pyt
         hon3.7/dist-packages (from category encoders) (1.0.2)
         Requirement already satisfied: pandas>=0.21.1 in /usr/local/lib/python3.
         7/dist-packages (from category_encoders) (1.3.5)
         Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/pytho
         n3.7/dist-packages (from category encoders) (0.10.2)
         Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.7/d
         ist-packages (from category encoders) (1.4.1)
         Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.7/
```

dist-packages (from category_encoders) (1.21.5)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/p
ython3.7/dist-packages (from pandas>=0.21.1->category_encoders) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/d
ist-packages (from pandas>=0.21.1->category_encoders) (2018.9)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packa
ges (from patsy>=0.5.1->category_encoders) (1.15.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/d
ist-packages (from scikit-learn>=0.20.0->category_encoders) (1.1.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/pyt
hon3.7/dist-packages (from scikit-learn>=0.20.0->category_encoders) (3.1.
0)

Installing collected packages: category-encoders Successfully installed category-encoders-2.4.0

Out[103		1stFlrSF	2ndFlrSF	3SsnPorch	Alley	BedroomAbvGr	BldgType	BsmtCond	BsmtExpos
	0	856	854	0	1369	3	1220	1311	
	1	1262	0	0	1369	3	1220	1311	
	2	920	866	0	1369	3	1220	1311	
	3	961	756	0	1369	3	1220	65	
	4	1145	1053	0	1369	4	1220	1311	

5 rows x 79 columns

```
In [104...
          data['MSZoning'].unique()
         array(['RL', 'RM', 'C (all)', 'FV', 'RH'], dtype=object)
Out[104...
In [105...
          data COUNT ENC['MSZoning'].unique()
         array([1151, 218, 10, 65, 16])
Out[105...
In [106...
          ce_CountEncoder2 = ce_CountEncoder(normalize=True)
          data FREQ ENC = ce CountEncoder2.fit transform(data[data.columns.differe
In [107...
          data FREQ ENC['MSZoning'].unique()
         array([0.78835616, 0.14931507, 0.00684932, 0.04452055, 0.0109589 ])
Out[107...
In [117...
         from category encoders.helmert import HelmertEncoder as ce HelmertEncode
```

```
In [118...
            #HelmetEncoder
           ce HelmertEncoder1 = ce HelmertEncoder()
           data HELM ENC = ce HelmertEncoder1.fit transform(data[data.columns.diffe
In [119...
           data HELM ENC.head()
             intercept 1stFlrSF 2ndFlrSF 3SsnPorch Alley_0 Alley_1 BedroomAbvGr BldgType_0
Out[119...
           0
                    1
                           856
                                     854
                                                        -1.0
                                                                -1.0
                                                                                 3
                                                                                           -1.0
           1
                          1262
                                       0
                                                        -1.0
                                                                -1.0
                                                                                           -1.0
           2
                    1
                           920
                                     866
                                                        -1.0
                                                                -1.0
                                                                                 3
                                                                                           -1.0
           3
                           961
                                     756
                                                        -1.0
                                                                -1.0
                                                                                           -1.0
           4
                    1
                          1145
                                    1053
                                                  0
                                                        -1.0
                                                                -1.0
                                                                                  4
                                                                                           -1.0
```

5 rows x 255 columns

Нормализация числовых признаков

```
In [120...

def diagnostic_plots(df, variable):
    plt.figure(figsize=(15,6))
    # ructorpamma
    plt.subplot(1, 2, 1)
    df[variable].hist(bins=30)
    ## Q-Q plot
    plt.subplot(1, 2, 2)
    stats.probplot(df[variable], dist="norm", plot=plt)
    plt.show()
In [121... data.hist(figsize=(20,20))
    plt.show()
```


In [126... diagnostic_plots(data, '1stFlrSF')


```
In [127... #Логарифмическое преобразование
data['lstFlrSF'] = np.log(data['lstFlrSF'])
diagnostic_plots(data, 'lstFlrSF')
```



```
diagnostic_plots(data, '1stFlrSF_exp1')
                                                                                                 Probability Plot
              160
              140
                                                                           4.0
              120
                                                                         Ordered Values
9.6
              100
               80
               60
               40
                                                                           3.4
               20
                3.2
                                     3.6
                                               3.8
                                                         4.0
                                                                                                   retical quantiles
In [131...
                data['1stFlrSF_exp2'] = data['1stFlrSF']**(2)
                diagnostic plots(data, '1stFlrSF exp2')
                                                                                                 Probability Plot
              160
                                                                            70
              140
                                                                            65
              120
                                                                            60
                                                                         Ordered Values
              100
               80
               60
                                                                            45
                                                                            40
               20
                                                                            35
                                                                                                -1 0 1
Theoretical quantiles
In [132...
                data['1stFlrSF_exp3'] = data['1stFlrSF']**(0.333)
diagnostic_plots(data, '1stFlrSF_exp3')
                                                                                                Probability Plot
              160
              140
                                                                         2.00
              120
                                                                         1.95
              100
               80
                                                                         1.90
               60
                                                                         1.85
               40
               20
                                                                         1.80
                                                                                               -1 0 1
Theoretical quantiles
                   1.80
In [133...
                #Преобразованиея Бокса-Кокса
                data['1stFlrSF boxcox'], param = stats.boxcox(data['1stFlrSF'])
```

```
print('Оптимальное значение \lambda = \{\}'.format(param))
diagnostic_plots(data, '1stFlrSF_boxcox')
```

Оптимальное значение $\lambda = 0.46304765872484194$

In []: