Evolutionary Learning of Policies for MCTS Simulations

James Pettit, David Helmbold

University of California, Santa Cruz jpettit@soe.ucsc.edu

July 2012

Overview

- The Game of Hex
- Monte-Carlo Tree Search (MCTS)
- Apply Evolutionary Learningto MCTS+Hex
- Results and Future Work

Pettit, Helmbold (UCSC)

The Game of Hex

- 2 player, perfect information
- 6-sided hexagons on a parallelogram board
- Common sizes: 11, 13

The Game of Hex - Example Board

The Game of Hex - Good for Al

- Easy to program
- Clear-cut winning condition
- Large problem space
- Solved for boards up to 7x7

Tree Search

- Game tree grows exponentially
- Symmetry can halve space
- Limited opportunities for provable pruning
- No good position ranking heuristic

Monte Carlo Tree Search

- Use random playouts to estimate minimax value
- Large enough playouts will converge to true minimax value
- Seems dumb, actually works
- Computationally very expensive

Pettit, Helmbold (UCSC)

Monte Carlo Tree Search - Playout Policy

- Naively "improving" the strength of the playout policy can hurt overall performance
- Requires careful and expensive testing to verify improvement

Evolutionary Learning (Hivemind)

- Idea: Evolve playout policy
- Individual policies compete in a tournament to reproduce
- Self-play yields a self-bootstrapping system

Evolution

- Generate n individuals (population)
- Evaluate fitness
- Rank by fitness
- **3** Select top c children, c < n
- Recombine children into n new individuals (next generation)
- Mutate population
- Repeat from 2

Encoding

- Individual policy is a collection of evolvable weights
- One weight, many interpretations
- Explicitly requires domain knowledge
- Implicitly limits the system

Encoding - Example

- Weight moves local to last-played move
- If local area is filled, use default policy

Encoding - Example

- Map from 32-bit integer to floating point weight
- Evolution (mutation/recombination) operates on individual's map entries

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Results (Self)

	opponent			
player	default	uniform	uniform (tenuki)	
uniform	70.50%			
uniform (tenuki)	61.00%	50.00%		
learned	90.00%	84.00%	86.00%	

All-play-all tournament of the 4 Hivemind variants.

Each element is the percent win-rate of the row variant versus the column variant.

Results (Self)

	default		uniform local	
	11×11	13×13	11×11	13×13
learned win %	92.5 %	94 %	88.5%	85%

Results (MoHex 7x7)

Learned policy Uniform local Default policy win % 42% 26% 11.75%

Results (MoHex 11x11)

Hivemind	Win-rate	Relative CPU
Default	0.5%	510%
Local	0.0%	545%
Learned	11%	620%

Future Work

- Different encodings
- General game play
- Encode expert knowledge in weights