S&DS 265 / 565
Introductory Machine Learning

Classification (continued)

September 21

Upcoming items

- Assn 1 due on Thursday (midnight, 11:59pm)
- Assn 2 will be posted on Thursday
- Submit both your .ipynb notebook and a printout as .pdf (save as HTML then print as pdf).
- Quiz 1 will be available on Canvas for 24 hours starting at noon; you have 20 minutes to take the quiz.
- Questions?

Outline

- Logistic regression (continued)
- Iris example
- Generative vs. discriminative
- Gaussian discriminant analysis
- Regularization
- Example: Supernovae
- Next: Algorithms for fitting the models

Recall: Important concepts

Binary classifier h: function from \mathcal{X} to $\{0,1\}$.

Linear if exists a function $H(x) = \beta_0 + \beta^T x$ such that h(x) = 1 if H(x) > 0; 0 otherwise.

H(x) also called a *linear discriminant function*. Decision boundary: set $\{x \in \mathbb{R}^d : H(x) = 0\}$

Classification risk, or error rate, of h:

$$R(h) = \mathbb{P}(Y \neq h(X))$$

and the empirical classification error or training error is

$$\widehat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(h(x_i) \neq y_i).$$

Optimal classification rule

Theorem. The classification rule that minimizes R(h) is

$$h^*(x) = \begin{cases} 1 & \text{if } m(x) > \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

where $m(x) = \mathbb{E}(Y | X = x) = \mathbb{P}(Y = 1 | X = x)$ denotes the regression function.

This is called the Bayes rule.

The risk $R^* = R(h^*)$ of the Bayes rule is called the *Bayes risk*.

The set $\{x \in \mathcal{X} : m(x) = 1/2\}$ is called the *Bayes decision boundary*.

The Bayes decision rule

From Bayes' theorem

$$\mathbb{P}(Y = 1 \mid X = X) = \frac{p(X \mid Y = 1)\mathbb{P}(Y = 1)}{p(X \mid Y = 1)\mathbb{P}(Y = 1) + p(X \mid Y = 0)\mathbb{P}(Y = 0)}$$

So,

$$m(x) > \frac{1}{2}$$
 is equivalent to $\frac{p(x \mid Y=1)}{p(x \mid Y=0)} > \frac{\mathbb{P}(Y=0)}{\mathbb{P}(Y=1)}$.

Simulated data: Large Bayes error

Simplification—one predictor: Large Bayes error

Conditional probabilities of the class:

$$\mathbb{P}(Y=1 \mid X=x) \equiv p(x)$$

$$\mathbb{P}(Y=0 \mid X=x)=1-p(x)$$

Conditional probabilities of the class:

$$\mathbb{P}(Y=1 \mid X=x) \equiv p(x)$$

$$\mathbb{P}(Y=0 \mid X=x)=1-p(x)$$

We model the relationship between p(x) and x.

ć

The *logit* transform:

$$logit(p) = \log\left(\frac{p}{1-p}\right)$$

The *logit* transform:

$$logit(p) = \log\left(\frac{p}{1-p}\right)$$

The logit transform

- is monotone
- maps the interval [0,1] to $(-\infty,\infty)$

Logistic regression is a linear regression model of the log odds:

$$logit(p(x)) = \beta_0 + \beta_1 x$$

- p is a probability.
- $\frac{p}{1-p}$ is odds.
- $logit(p) = log(\frac{p}{1-p})$ is (natural) log odds.

1:

Logistic regression is a linear regression model of the log odds:

$$logit(p(x)) = \beta_0 + \beta_1 x$$

- p is a probability.
- $\frac{p}{1-p}$ is odds.
- $logit(p) = log(\frac{p}{1-p})$ is (natural) log odds.

Equivalent formulation:

$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} = logistic(x^T \beta) \equiv softmax(x^T \beta)$$

1:

• When
$$\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$$
, $\frac{\widehat{p}}{1-\widehat{p}} = 1$, so $\widehat{p} = \frac{1}{2}$.

- When $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$, $\frac{\widehat{\rho}}{1-\widehat{\rho}} = 1$, so $\widehat{\rho} = \frac{1}{2}$.
- If our goal is to minimize the overall training error rate, then we use the rule:

$$\widehat{y} = \begin{cases} 1 & \widehat{p} > \frac{1}{2} \\ 0 & \widehat{p} \le \frac{1}{2} \end{cases}$$

- When $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$, $\frac{\widehat{\rho}}{1-\widehat{\rho}} = 1$, so $\widehat{\rho} = \frac{1}{2}$.
- If our goal is to minimize the overall training error rate, then we use the rule:

$$\widehat{y} = \begin{cases} 1 & \widehat{\rho} > \frac{1}{2} \\ 0 & \widehat{\rho} \le \frac{1}{2} \end{cases}$$

• Hence, the decision boundary is given by $\{x : x^T \hat{\beta} = 0\}$.

- When $\widehat{\beta}_0 + \widehat{\beta}_1 x = 0$, $\frac{\widehat{p}}{1-\widehat{p}} = 1$, so $\widehat{p} = \frac{1}{2}$.
- If our goal is to minimize the overall training error rate, then we use the rule:

$$\widehat{y} = \begin{cases} 1 & \widehat{p} > \frac{1}{2} \\ 0 & \widehat{p} \le \frac{1}{2} \end{cases}$$

• Hence, the decision boundary is given by $\{x : x^T \hat{\beta} = 0\}$.

The decision boundary is linear in x!

Simulated data

X1 13

Fitting a logistic regression

Traditionally, use maximum likelihood estimation (MLE).

• Likelihood of a single observation (x_i, y_i) :

$$L_i(\beta) = p_i^{y_i} \cdot (1 - p_i)^{1 - y_i}$$

Fitting a logistic regression

Traditionally, use maximum likelihood estimation (MLE).

• Likelihood of a single observation (x_i, y_i) :

$$L_i(\beta) = p_i^{y_i} \cdot (1 - p_i)^{1 - y_i}$$

Log-likelihood of a single observation:

$$\ell_i(\beta) = y_i \log p_i + (1 - y_i) \log(1 - p_i)$$

= $y_i x_i^T \beta - \log(1 + e^{x_i^T \beta})$

Fitting a logistic regression

Traditionally, use maximum likelihood estimation (MLE).

• Likelihood of a single observation (x_i, y_i) :

$$L_i(\beta) = p_i^{y_i} \cdot (1 - p_i)^{1 - y_i}$$

Log-likelihood of a single observation:

$$\ell_i(\beta) = y_i \log p_i + (1 - y_i) \log(1 - p_i)$$

= $y_i x_i^T \beta - \log(1 + e^{x_i^T \beta})$

Aggregate log-likelihood:

$$\ell(\beta) = \sum_{i=1}^{n} \left\{ y_i x_i^T \beta - \log(1 + e^{x_i^T \beta}) \right\}$$

Extension to more than 2 classes

Multinomial logistic regression extends the logistic regression model to $K \ge 2$ classes.

$$\log\left(\frac{P(Y=k\,|\,X=x)}{P(Y=0\,|\,X=x)}\right)=x^T\beta_k,\qquad k=1,2,\ldots,K-1$$

Extension to more than 2 classes

Multinomial logistic regression extends the logistic regression model to $K \ge 2$ classes.

$$\log\left(\frac{P(Y=k \mid X=x)}{P(Y=0 \mid X=x)}\right) = x^{T}\beta_{k}, \quad k = 1, 2, ..., K-1$$

$$P(Y=k \mid X=x) = \begin{cases} \frac{\exp(x^{T}\beta_{k})}{1 + \sum_{l=1}^{K-1} \exp(x^{T}\beta_{l})} & k = 1, 2, ..., K-1 \\ \frac{1}{1 + \sum_{l=1}^{K-1} \exp(x^{T}\beta_{l})} & k = 0 \end{cases}$$

Loss function for 3 classes

We want to maximize the likelihood of the data, which is equivalent to minimizing the log-likelihood:

$$-\sum_{i=1}^{n} \log P(Y = y_i | X = x_i)$$

$$= -\sum_{i=1}^{n} \left\{ \beta_{y_i}^T x_i - \log(1 + e^{\beta_1^T x_i} + e^{\beta_2^T x_i}) \right\}$$

$$= n \log(1 + e^{\beta_1^T x_i} + e^{\beta_2^T x_i}) - \sum_{i=1}^{n} \beta_{y_i}^T x_i$$

keeping in mind that β_0 is all zeros, by definition.

Fisher's iris classification

Iris setosa (Left), Iris versicolor (Middle), and Iris virginica (Right).

Examples in Jupyter notebook

Lets work through some examples in the demo Jupyter notebook. Please download classification-examples.ipynb and run the notebook as we go through it.

Regularization

Recall from last time: We can separate *setosa* from the two other species just on the basis of their petal length (or width).

This causes problems when we fit the model — the parameters get large so that the probabilities get very close to zero or one.

To address this problem, we *regularize* the parameters. This means we introduce a penalty term that prevents them from getting too large (in absolute value).

The least squares estimator:

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta} (y - \beta)^{2}$$

The least squares estimator:

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta} (y - \beta)^2$$

Solution: $\widehat{\beta} = y$

The least squares estimator:

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta} (y - \beta)^2$$

Solution: $\widehat{\beta} = y$

Now *penalize* β from getting too large:

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} (y - \beta)^2 + \lambda \beta^2$$

The least squares estimator:

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta} (y - \beta)^2$$

Solution: $\widehat{\beta} = y$

Now *penalize* β from getting too large:

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} (y - \beta)^2 + \lambda \beta^2$$

Solution: $\widehat{\beta} = \frac{y}{1+\lambda}$.

The least squares estimator:

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta} (y - \beta)^2$$

Solution: $\widehat{\beta} = y$

Now *penalize* β from getting too large:

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} (y - \beta)^2 + \lambda \beta^2$$

Solution: $\widehat{\beta} = \frac{y}{1+\lambda}$. As λ gets large, $\widehat{\beta}$ shrinks to zero.

Two flavors of classifiers

Generative models model both the input *X* and the output *Y*.

Discriminative models model only the output *Y* given *X*.

Two flavors of classifiers

Generative models model both the input *X* and the output *Y*.

Discriminative models model only the output *Y* given *X*.

Which do you think is better?

Generative models

We build a model of the inputs x and the outputs y

In the generative case we typically estimate the joint distribution by maximizing the *joint likelihood*: p(x, y)

Discriminative models

In the discriminative case we are on concerned about the *conditional* distribution of the output given the input.

We will typically estimate by maximizing the *conditional likelihood*:

The form of the Bayes classification rule suggests we should use a generative model

$$m_{\theta}(x) \equiv \mathbb{P}(Y = 1 \mid X = x) = \frac{\pi_1 p_{\theta_1,1}(x)}{(1 - \pi_1) p_{\theta_0,0}(x) + \pi_1 p_{\theta_1,1}(x)}.$$

Given an estimator $(\widehat{\theta}_n, \widehat{\pi}_1)$, define classification rule

$$\widehat{h}(x) = \mathbb{1}(m_{\widehat{\theta}_n}(x) > 1/2).$$

where $\ensuremath{\mathbb{I}}$ is the "indicator function" which is 1 if its argument is true, and zero otherwise.

Gaussian discriminant analysis

- A type of generative model
- We model the inputs x using Gaussians
- Two flavors: Linear and Quadratic

Quadratic discriminant analysis

In the binary (two-class) case, we have two Gaussians:

$$X \mid y = 1 \sim N(\mu_1, \Sigma_1)$$

 $X \mid y = 0 \sim N(\mu_0, \Sigma_0)$

The decision boundary is a quadratic surface (algebra!)

Quadratic discriminant analysis

To estimate this we just separate the training data according to the two labels and estimate two separate Gaussians. Easy-peasy!

Think of Y here as another predictor variable, not the class label! $\verb|https://en.wikipedia.org/wiki/Multivariate_normal_distribution|$

Linear discriminant analysis

In the binary (two-class) case, we again have two Gaussians:

$$X \mid y = 1 \sim N(\mu_1, \Sigma)$$

 $X \mid y = 0 \sim N(\mu_0, \Sigma)$

But now we use the same covariance matrix for each.

The decision boundary is now *linear*.

Quadratic discriminant analysis: Iris data

Linear discriminant analysis: Iris data

Logistic regression

Logistic regression is a discriminative model, because we don't have a model for the inputs X.

We only model the conditional probability p(Y | X).

Logistic regression is the discriminative version of linear discriminative analysis (the latter is a generative model).

Supernovæ

- A supernova is an exploding star.
- Type la supernovae are very useful in astrophysics research.
 Have a characteristic *light curve*, same maximum brightness
- Since we know both the absolute and apparent (measured) brightness of a type la supernova, we can compute its distance.
- Astronomers also measure the *redshift* of the supernova, the speed at which the supernova is moving away from us
- The relationship between distance and redshift provides important information about the large scale structure of the universe.

Supernovae

Two supernova remnants from the NASA's Chandra X-ray Observatory study. The right one is Type Ia. (Credit: NASA/CXC/UCSC/L. Lopez et al.)

Supernovae

- Data are 20,000 real and simulated supernovae.
- For each supernova, there are a few noisy measurements of the flux (brightness) in four different filters *g*-band (green), *r*-band (red), *i*-band (infrared) and *z*-band (blue).
- These noisy data are processed to fit a curve through the measurements in each band.

Supernovae

Supernovae – classification results

Fitting a logistic regression model

- We maximize conditional likelihood. There is no closed form.
- Need to iterate.
- Standard approach is equivalent to Newton's algorithm
 - Make a quadratic approximation
 - Do a weighted least squares regression
 - Repeat

We'll talk about a more scalable approach next time

Summary

- Classifiers come in two flavors: generative & discriminitive
- Linear Gaussian discriminant analysis is a simple generative classifier
- Logistic regression is the discriminative version. Default method; no closed-form solution
- We regularize the parameters with a penalty β^2 that keeps them from being too big. *Shrinks* coefficients toward zero.