# Chapitre 5: Les bascules

Licence en Ingénierie Informatique

**Pr Youssou FAYE** 

Année 2020-2021

# Les circuits séquentiels

Pour un circuit séquentiel, les sorties Y dépendent des entrées X mais également de l'état Q du système. Celui-ci dépend aussi des entrées X.

- $Y=f(X,Q_t)$
- $Q_{t}=f(X,Q_{t-1})$
- Une rétroaction des sorties sur les entrées
- Un nouveau paramètre temporel entre en jeu (état actuel, état antérieur, délai de propagation)



# Délai de propagation des portes logiques

Temps mis par les signaux logiques entre l'entrée et la sortie d'une porte logique



L'équation booléenne de la sortie S en fonction de l'entrée E est: S=E.E=E.E=0



t est le temps de propagation du signal à travers une porte logique

Chronogramme de front montant sur E

#### Phénomène de mémorisation et de stabilisation

- Créer une rétroaction entre les sorties et les entrées du circuit combinatoire
- Exemple: avec un XOR,



- Entrée unique (E), sortie unique (S)
- Sondons le circuit en  $A_0, A_1, A_2$
- Rétroaction de A<sub>2</sub> à A<sub>1</sub> sans délai de propagation
- Supposons un état initial E=0 et S=0
- Si le signal E passe à 1 au point A<sub>0</sub>, la sortie S A<sub>1</sub> oscille entre 0 et 1 jusqu'à ce que E repasse à 0 et S peut valoir 0 ou 1 selon la dernière valeur de S. A<sub>2</sub>



 $A_0$ 

#### **Bascule**

- Bascule: permet la mémorisation d'un bit
- Portes logiques: brique de base des circuits combinatoires: décodeur, multiplexeur.......
- Bascules: Eléments de base des circuits séquentiels:
- Circuits séquentiels fondamentaux
  - Bascule
  - registre,
  - compteur
  - **RAM**

# Bascule

- On trouve deux grandes familles de bascules :
- bascules de mémorisation: elles possèdent les commandes de mise à zéro, mise à un, mémorisation;
- bascules de comptage: elles possèdent en outre une commande de changement d'état.

#### Le bistable

- Deux inverseurs en série
  - Principe de rétroaction
  - Deux états possibles
  - Pour "écrire", on modifie le bistable







$$(Q \text{ ou } Q_{(t-1)}=1) \Rightarrow (B=1) \Rightarrow (\bar{Q}=0) \Rightarrow (A=0) \Rightarrow (Q \text{ ou } Q_{(t)}=1)$$

$$(Q \text{ ou } Q_{(t-1)}=0) \Rightarrow (B=0) \Rightarrow (\bar{Q}=1) \Rightarrow (A=1) \Rightarrow (Q \text{ ou } Q_{(t)}=0)$$

On note deux états de la bascule

$$1''$$
1" ( Q =1,  $\bar{Q}$ =0)

$$V'''0'' (Q = 0, \bar{Q} = 1)$$

Circuit à deux états stables possibles: appelé circuit bistable

### Bascule RS (R=Reset, S=Set)

- La bascule RS (faite avec des portes NOR) a 2 entrées: R et S et 2 sorties (Q<sub>(t)</sub>et Q<sub>(t)</sub>)
- Fonctionnement

$$\Re Si S=0 \text{ et } R=0 \Rightarrow Q_{(t)}=Q_{(t-1)}$$

$$*Si S=1 \text{ et } R=0 \Rightarrow Q_{(t)}=1 \text{ (état SET)}$$

$$*$$
Si S=0 et R= 1  $\Rightarrow$  Q<sub>(t)</sub>= 0 (état RESET)

 $*Si S=1 \text{ et } R=1 \Rightarrow Q_{(t)}=\bar{Q}_{(t)}=0 \Rightarrow ? \text{ (état indéterminé à interdire)}$ 

|                                     | Sorties       |       | Entrées |   |   |
|-------------------------------------|---------------|-------|---------|---|---|
| Etats                               | $ar{Q}_{(t)}$ | Q (t) | Q (t-1) | R | S |
| $Q_{(t)}=Q_{(t-1)}:M\acute{e}moire$ | 1             | 0     | 0       | 0 | 0 |
| $Q_{(t)}=Q_{(t-1)}$ :Mémoire        | 0             | 1     | 1       | 0 | 0 |
| Reset: Remise à 0                   | 1             | 0     | 0       | 1 | 0 |
| Reset: Remise à 0                   | 1             | 0     | 1       | 1 | 0 |
| Set: Remise à 1                     | 0             | 1     | 0       | 0 | 1 |
| Set: Remise à 1                     | 0             | 1     | 1       | 0 | 1 |
| Indéterminé(interdit)               | 0             | 0     | 0       | 1 | 1 |
| Indéterminé(interdit)               | 0             | 0     | 1       | 1 | 1 |

#### Table de Vérité Résumée

| S | R | Q (t)       |               |
|---|---|-------------|---------------|
| 0 | 0 | $Q_{(t-1)}$ | Mémorisation) |
| 0 | 1 | 0           | Reset         |
| 1 | 0 | 1           | Set           |
| 1 | 1 | X           | Interdit      |

## Bascule RS de base (R=Reset, S=Set)

- Résumé
- **Fonctionnement NAND** 
  - Si R=S =1 , Etat INTERDIT
  - Si R≠S, alors écriture Q=S
  - ▶ R=S=0, Etat mémoire



| S | R | Q (t)                               |
|---|---|-------------------------------------|
| 0 | 0 | $Q_{(t)}=Q_{(t-1)}:M\acute{e}moire$ |
| 0 | 1 | Reset: Remise à 0                   |
| 1 | 0 | Set: Remise à 1                     |
| 1 | 1 | Indéterminé(interdit)               |

## Bascule RS (R=Reset, S=Set)

- La bascule RS (avec des portes NAND) a 2 entrées: R et S et 2 sorties  $Q_{(t)}$  et  $\hat{Q}_{(t)}$
- Fonctionnement

$$*Si S=0$$
 et  $R=0 \Rightarrow Q_{(t)}=\bar{Q}_{(t)}=1 \Rightarrow ?$  (état indéterminé à interdire)

$$*Si S=0$$
 et  $R=1 \Rightarrow Q_{(t)}=1$  (état SET)

$$*Si S=1 \text{ et } R=0 \Rightarrow Q_{(t)}=0 \text{ (état RESET)}$$

$$\Re$$
 Si S=1 et R= 1  $\Rightarrow$  Q<sub>(t)</sub>= Q<sub>(t-1)</sub>

#### Table de Vérité

|   | Entrées |         | Entrée |               | Sort                                | ies |  |
|---|---------|---------|--------|---------------|-------------------------------------|-----|--|
| S | R       | Q (t-1) | Q (t)  | $ar{Q}_{(t)}$ | Etats                               |     |  |
| 0 | 0       | 0       | 1      | 1             | Indéterminé(interdit)               |     |  |
| 0 | 0       | 1       | 1      | 1             | Indéterminé(interdit)               |     |  |
| 0 | 1       | 0       | 1      | 0             | Set: Remise à 1                     |     |  |
| 0 | 1       | 1       | 1      | 0             | Set: Remise à 1                     |     |  |
| 1 | 0       | 0       | 0      | 1             | Reset: Remise à 0                   |     |  |
| 1 | 0       | 1       | 0      | 1             | Reset: Remise à 0                   |     |  |
| 1 | 1       | 0       | 0      | 1             | $Q_{(t)}=Q_{(t-1)}$ :Mémoire        |     |  |
| 1 | 1       | 1       | 1      | 0             | $Q_{(t)}=Q_{(t-1)}:M\acute{e}moire$ |     |  |



| •             |         |   |   |
|---------------|---------|---|---|
|               | Q (t)   | S | R |
| Mémorisation) | Q (t-1) | 1 | 1 |
| Reset         | 0       | 1 | 0 |
| Set           | 1       | 0 | 1 |
| Indéterminé   | X       | 0 | 0 |

## Bascule RS de base (R=Reset, S=Set)

- Résumé
- ▶ Fonctionnement NAND
  - ▶ Si R=S =1, Etat mémoire
  - Si R≠S, alors écriture Q=R
  - ▶ R=S=0, INTERDIT

| R | S | Q (t)   |
|---|---|---------|
| 1 | 1 | Q (t-1) |
| 0 | 1 | 0       |
| 1 | 0 | 1       |
| 0 | 0 | X       |



#### Bascule RS de base (R=Reset, S=Set)

Inverser les entrées de RS NAND pour avoir la même table de vérité RS NOR



Représentation simplifiée





avec ses entrées inversées.

# Bascule RS de base (R=Reset, S=Set) (1)

- Deux variables d'entrées
  - S pour la mise à l'état 1 de la bascule
  - R pour la mise à l'état 0
- Deux variables de sorties Q et Q
  - Q est toujours le complément de Q.
  - Quand Q=Q on parle d'état interdit
- ▶ Fonctionnement avec NOR



Quand la bascule est mise sous tension, on ne peut déterminer avec certitude l'état des sorties: indétermination



L'état de la bascule est dit: RESET

## Bascule RS de base (R=Reset, S=Set) (2)

#### Fonctionnement avec NOR



(R revient à 0)  $\Rightarrow$  (Q reste à 0)  $\Rightarrow$  ( $\bar{Q}$  reste à 1)  $\Rightarrow$  (Q reste toujours à 0)

L'état de la bascule est dit: MEMOIRE



(S revient à 0)  $\Rightarrow$ ( $\bar{Q}$  reste à 0)  $\Rightarrow$ (Q reste à 1)  $\Rightarrow$ ( $\bar{Q}$  reste toujours à 0)

L'état de la bascule est dit: MEMOIRE

**5** 



(S passe à 1)  $\Rightarrow$ ( $\bar{Q}$  passe à 0)  $\Rightarrow$ (Q passe à 1)  $\Rightarrow$ ( $\bar{Q}$  reste toujours à 0) L'état de la bascule est dit: SET



(S et  $\overline{R}$  sont à 1)  $\Rightarrow$  (Q et  $\overline{Q}$  sont à 0)  $Q = \overline{Q}$  (anormal)

L'état de la bascule est dit: INTERDIT



## Bascule RS de base (R=Reset, S=Set) (3)

#### Fonctionnement avec NAND



Quand la bascule est mise sous tension, on ne peut déterminer avec certitude l'état des sorties: indétermination







# Bascule RS de base (R=Reset, S=Set) (4)

#### Fonctionnement avec NAND



(R revient à 1)  $\Rightarrow$ ( $\bar{Q}$  passe à 1)  $\Rightarrow$ (Q reste à 0)  $\Rightarrow$ ( $\bar{Q}$  reste toujours à 1)

L'état de la bascule est dit: MEMOIRE



 $(S \text{ et } R \text{ sont à } 0) \Rightarrow (Q \text{ et } \overline{Q} \text{ sont à } 1)$   $Q = \overline{Q} \text{ (anormal)}$ 

L'état de la bascule est dit: INTERDIT



6

NB1: L'état S=R=0->Q= Q=1,est aussi appelé **indéterminé** car si R et S repasse à 1 simultanément, l'une des deux sorties doit prendre l'état 0: il est impossible de prédire la quelle

NB2: Les états Set et Reset relatifs aux entrées S et R dépendent de la position de S et R par rapport à Q et  $\bar{Q}$ .

### Bascule RS: Chronogramme

- Résumé
- Fonctionnement NOR
  - ▶ Si R=S =0 , Etat mémoire
  - Si R≠S, alors écriture Q=S
  - ▶ R=S=1, INTERDIT

| R              | 1      | - 1    |       |              |
|----------------|--------|--------|-------|--------------|
| S Å            | " "    |        |       | <b>→</b> t   |
| 1              |        |        |       |              |
| Q              | 11     |        |       | <b>-</b> →t  |
| Q N            |        |        |       | <b>─</b> → t |
|                | 11     |        |       |              |
| t <sub>0</sub> | Chrono | gramme | t5 t6 | <b>→</b> t   |

| R | S | Q (t)   |
|---|---|---------|
| 0 | 0 | Q (t-1) |
| 1 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 1 | X       |



- ▶Si on suppose au départ à t<sub>0</sub> S=1, R=0
- ► A  $t_1$  S passe à  $0 \Rightarrow Q$  reste à 1
- ► A  $t_2$  R passe à  $1 \Rightarrow Q$  passe à 0
- A t<sub>3</sub> R passe à  $0 \Rightarrow Q$  reste à 0
- $A t_4 S$  passe à  $1 \Rightarrow Q$  passe à  $1 \Rightarrow Q$
- Etat mémoire

  Etat Set

  Etat Reset

# Bascule Asynchrone/Synchrone

- Bascule Asynchrone,
  - \*La sortie évolue des lors qu'un changement a lieu sur l'une des entrées
    - \*Exemple: la Bascule RS déjà vu à la page précédente
- Bascule Synchrone
  - \*La sortie évolue quand le signal d'horloge est actif
    - \*Actif par **niveau**: niveau haut ou bas, le circuit est dit à excitation statique
    - \*Actif par **front**: avant (montant) ou arrière (descendant), le circuit est dit à excitation dynamique

Actif par niveau haut Actif par niveau bas Actif par front avant Actif par front arrière



# Synchrone sur front montant ou ou descendant



Quand Clk passe de 0 à 1, un pic de durée de porte NAND ressemble à un front montant 22 Quand Clk passe de 1 à 0, un pic de durée de porte NAND ressemble à un front descendant

# Bascule RS avec signal d'activation: RSH (1)

- Bascule commandée par un signal d'activation périodique Clk (appelé horloge)
- Trois entrées (S,R, Clk) deux sorties (Q et Q)
- La bascule fonctionne normalement quand Clk est actif (Clk=1)
- La bascule mémorise la dernière valeur lorsque Clk est inactif (Clk=0)
- Introduction de portes ET aux entrées

Ambiguïté de la RSH:

Si Clk=R=S=1 ->Q=Q=0: Interdit, Indéterminé car Clk repasse à 0, l'une des deux sorties doit prendre l'état 1: il est impossible de prédire la quelle.

#### Interdit≠ Indéterminé

Quand Clk=1, le circuit fonctionne, et quand Clk=0 le circuit mémorise la dernière valeur

#### Table de Vérité

| 1   | Entrée | Sorties |         |
|-----|--------|---------|---------|
| Clk | R      | S       | Q (t)   |
| 0   | 1      | 1       | Q (t-1) |
| 1   | 0      | 0       | Q (t-1) |
| 1   | 0      | 1       | 1       |
| 1   | 1      | 0       | 0       |
| 1   | 1      | 1       | X       |

mémorise la dernière valeur

Sorties inchangées

Indéterminé



Bascule RS synchrone avec l'horloge à l'état **bloqué** 

# Bascule RS avec signal d'activation: RSH (2)



t<sub>7</sub> t<sub>8</sub>

Etat Set

Etat Reset

 $t_0$   $t_1$ 

Chronogramme

# Bascule RS avec signal d'activation:RSH (3)

Bascule activée par front avant



| ]   | Entrée | Sorties |         |
|-----|--------|---------|---------|
| Clk | R      | S       | Q (t)   |
| 0   | ı      | ı       | Q (t-1) |
| 1   | -      | ı       | Q (t-1) |
| 1   | 0      | 0       | Q (t-1) |
| 1   | 0      | 1       | 1       |
| 1   | 1      | 0       | 0       |
| 1   | 1      | 1       | X       |

Bascule RS synchrone avec front montant

Quand Clk passe de 0 à 1, un pic de durée de porte NAND

# Bascule D (Delay)

- La bascule D recopie, sur sa sortie Q, l'unique signal D appliqué à son entrée avec une période d'horloge Clk.
- Le bistable D dérive de la SRH
  - Si Clk =1 et D=1  $\Rightarrow$ Q<sub>(t)</sub>=1= D
- V=
- Si Clk =1 et D=0  $\Rightarrow$ Q<sub>(t)</sub>=0= D
- Si Clk=0 Q<sub>(t)</sub> ne change pas (mémorise la dernière valeur)
  Table de Vérité

|   | Entrée | s       | Sorties          |                       |   |     |      |         |    | m 11 1    | <b>T</b> 77. • |
|---|--------|---------|------------------|-----------------------|---|-----|------|---------|----|-----------|----------------|
| D | Clk    | Q (t-1) | Q <sub>(t)</sub> |                       | _ |     |      |         | (- | Table de  |                |
| 0 | 0      | 0       | 0                | $Q_{(t)} = Q_{(t-1)}$ |   |     |      |         | (1 | ersion co | ondensée       |
| 0 | 0      | 1       | 1                | $Q_{(t)} = Q_{(t-1)}$ |   | Ent | rées | Sorties |    |           |                |
| 0 | 1      | 0       | 0                | Q(t) = D              |   | Clk | D    | Q(t)    |    | Entrée    | Sortie         |
| 0 | 1      | 1       | 0                | Q(t) = D              |   |     | D    |         |    | D         | Q(t)           |
| 1 | 0      | 0       | 0                | $Q_{(t)}=Q_{(t-1)}$   |   | 0   | -    | Q (t-1) |    | 0         | 0              |
| 1 | 0      | 1       | 1                | $Q_{(t)}=Q_{(t-1)}$   |   | 1   | 0    | 0       |    | 1         | 1              |
| 1 | 1      | 0       | 1                | Q(t) = D              |   | 1   | 1    | 1       |    | 1         | 1              |
| 1 | 1      | 1       | 1                | Q(t) = D              |   |     |      |         | J  |           |                |

• Equation booléenne après simplification:  $Q_{(t)} = DClk + Q_{(t-1)}\overline{Clk}$ 

# Bascule D (Delay)

- Résous l'ambiguïté de la bascule RS, RSH
  - Principe: faire en sorte que l'état R=S=1 ne soit jamais présent à l'entrée de la bascule
  - Réunir les signaux SR par un seul signal D qui correspond à la donnée que l'on veut écrire dans la mémoire de la bascule
    - Si Clk =1 et D=1  $\Rightarrow$ Q=1
    - Si Clk =1 et D=0  $\Rightarrow$ Q=0
    - Si Clk=0 Q (t) ne change pas







# Bascule T (Toggle ou Trigger)

- La bascule T a une seule entrée T.
- A l'entrée d'une impulsion, la sortie Q est inversée
  - Si T=0, la valeur  $Q_{(t)}=Q_{(t-1)}$  est maintenue
  - Si T=1, la valeur de  $Q_{(t)} = \bar{Q}_{(t-1)}$  est inversée

#### Table de Vérité

|   | Entrées | 3       | Sorties          |                          |
|---|---------|---------|------------------|--------------------------|
| Т | Clk     | Q (t-1) | Q <sub>(t)</sub> |                          |
| 0 | 0       | 0       | 0                | $Q_{(t)} = Q_{(t-1)}$    |
| 0 | 0       | 1       | 1                | $Q_{(t)} = Q_{(t-1)}$    |
| 0 | 1       | 0       | 0                | $Q_{(t)} = Q_{(t-1)}$    |
| 0 | 1       | 1       | 1                | $Q_{(t)} = Q_{(t-1)}$    |
| 1 | 0       | 0       | 0                | $Q_{(t)} = Q_{(t-1)}$    |
| 1 | 0       | 1       | 1                | $Q_{(t)} = Q_{(t-1)}$    |
| 1 | 1       | 0       | 1                | $Q(t) = \bar{Q}_{(t-1)}$ |
| 1 | 1       | 1       | 0                | $Q(t) = \bar{Q}_{(t-1)}$ |

Synchrone quand Clk=1

|  | $\begin{array}{c c} Entr\'ees \\ \hline T & Q_{(t-1)} \end{array}$ |   | Sorties          |
|--|--------------------------------------------------------------------|---|------------------|
|  |                                                                    |   | Q <sub>(t)</sub> |
|  | 0                                                                  | 0 | 0                |
|  | 0                                                                  | 1 | 1                |
|  | 1                                                                  | 0 | 1                |
|  | 1                                                                  | 1 | 0                |

#### Table de Vérité (version condensée)

| Entrée | Sortie                |
|--------|-----------------------|
| Т      | Q <sub>(t)</sub>      |
| 0      | Q(t-1)                |
| 1      | $ar{Q}_{(t	ext{-}1)}$ |

$$Q_{(t)} = \overline{T}Q_{(t-1)} + T\overline{Q}_{(t-1)}$$

$$Q_{(t)} = T \oplus Q_{(t-1)}$$

# Bascule T (Toggle ou Trigger)

- La bascule T est une bascule D à laquelle on ajoute une rétroaction depuis la sortie Q vers un XOR
- Une seule entrée T
  - Si T=0, la valeur  $Q=Q_{(t-1)}$  est maintenue au front montant
  - ightharpoonup Si T=1, la valeur de Q=  $\bar{Q}_{(t-1)}$  est inversée au front montant

#### Table de Vérité

| Clk | Т | Q(t)                  |
|-----|---|-----------------------|
| 0   | 1 | Q (t-1)               |
| 1   | 0 | Q (t-1)               |
| 1   | 1 | $ar{Q}_{(t	ext{-}1)}$ |



Bascule T

#### Bascule Maître-Esclave

- Objectif: éviter l'état interdit S=R=1
- Deux Bascules RSH connectées en cascade, les connexions entre les entrées et sorties sont croisées
- RSH de gauche est le maître, celle de droite l'esclave
- Les deux horloges sont reliées entre elles
  - Lorsque Clk<sub>M</sub>=1 pour le maître=>Clk<sub>E</sub>=0 pour l'esclave, Q<sub>M</sub> et Q
    M vont être recopiés dans les entrées de l'esclave qui les bloque car Clk<sub>E</sub>=0
  - Quand  $Clk_M$  passe à  $0 \Rightarrow Clk_E=1$ , l'esclave envoie  $Q_M$  et  $\bar{Q}_M$  comme entrées, ils sortent respectivement Q et  $\bar{Q}$  et sont re-bouclées aux entrées du maître qui les bloque aussitôt (si  $Clk_M=0$ )
  - Lorsque Clk<sub>M</sub> reste = 0, le système est bloqué
  - Pas de possibilité pour l'utilisateur d'imposer une valeur initiale
  - Il n'y a pas d'état mémoire



- Elle possède deux entrées J et K et lève l'ambiguïté (l'indétermination quand S=R=1) qui existe dans la bascule RS en asservissant les entrées R et S aux sorties Q et Q
- Règle le problème de la bascule maître-esclave
  - Permet l'état mémoire (S=R=0=>J=K=0)
  - Permet à l'utilisateur d'imposer une valeur initiale
- Fonctionne à mis chemin entre la bascule RS et la bascule T
  - Comportement proche de la bascule T
    - Conserve la valeur de Q quand J=K=0
    - ▶ Inverse la valeur de Q quand J=K=1
  - Comportement proche de la bascule RS
    - ▶ Si JK=10, Q= 1
    - ▶ Si JK=01, Q= 0

- Si JK=11,  $Q_{(t)} = \bar{Q}_{(t-1)}$
- Si JK=00,  $Q_{(t)}=Q_{(t-1)}$
- ▶ Si JK=10, Q= 1
- ▶ Si JK=01, Q= 0
  - Table de vérité

| Entrées |   |             | Sorti                 |                  |                             |
|---------|---|-------------|-----------------------|------------------|-----------------------------|
| J       | K | $Q_{(t-1)}$ | $ar{Q}_{(t	ext{-}1)}$ | Q <sub>(t)</sub> |                             |
| 0       | 0 | 0           | 1                     | 0                |                             |
| 0       | 0 | 1           | 0                     | 1                | $Q_{(t)} = Q_{(t-1)}$       |
| 0       | 1 | 0           | 1                     | 0                | 0 . 0                       |
| 0       | 1 | 1           | 0                     | 0                | $Q_{(t)}=0$                 |
| 1       | 0 | 0           | 1                     | 1                | 0 . 1                       |
| 1       | 0 | 1           | 0                     | 1                | $Q_{(t)}=1$                 |
| 1       | 1 | 0           | 1                     | 1                | 0. 0                        |
| 1       | 1 | 1           | 0                     | 0                | $Q_{(t)} = \bar{Q}_{(t-1)}$ |

On a éliminé 8/16 combinaisons, là où Q=  $\bar{Q}$ 

| Entrées |   | Sorties           |
|---------|---|-------------------|
| J       | K | Q (t)             |
| 0       | 0 | Q(t-1)            |
| 0       | 1 | 0                 |
| 1       | 0 | 1                 |
| 1       | 1 | $\bar{Q}_{(t-1)}$ |

Table Karnaugh

| KJ | 0           | 1                     |
|----|-------------|-----------------------|
| 0  | $Q_{(t-1)}$ | 1                     |
| 1  |             | $ar{Q}_{(t	ext{-}1)}$ |

- Equation booléenne après simplification (Karnaugh
- $Q(t) = J\overline{Q}_{(t-1)} + \overline{K} Q_{(t-1)}$



#### La bascule SR dans le schéma simplifié













- Pour JK=00 et  $Q_{(t-1)}$ =0,
- ▶⇒ SR=11, à l'entrée d'une bascule RS (NAND),
- Donc  $Q_{(t)}=0=Q_{(t-1)}$ : Etat mémoire (à prouver avec le cas suivant  $Q_{(t-1)}=1$ )









- Pour JK=00 et  $Q_{(t-1)}=1$ ,
- ▶⇒ SR=11, à l'entrée d'une bascule RS (NAND),
- Donc  $Q_{(t)}=1=Q_{(t-1)}$ : Etat mémoire confirmée









- Pour JK=01 et  $Q_{(t-1)}$ =0,
- ▶⇒ SR=11, à l'entrée d'une bascule RS (NAND),
- Donc  $Q_{(t)}=0=Q_{(t-1)}$ : (a prouver par la suite si c'est un état mémoire)









- Pour JK=01 et  $Q_{(t-1)}$ =1,
- ▶⇒ SR=10, à l'entrée d'une bascule RS (NAND),
- ▶ Donc  $Q_{(t)}$ = 0 ≠  $Q_{(t-1)}$ :  $Q_{(t)}$ =est forcé à 0 quelque soit  $Q_{(t-1)}$









- Pour JK=10 et  $Q_{(t-1)}=0$ ,
- ▶⇒ SR=01, à l'entrée d'une bascule RS (NAND),
- Donc  $Q_{(t)}=1 \neq Q_{(t-1)}$ :  $Q_{(t)}=$ est forcé à 1, à prouver par la suite









- Pour JK=10 et  $Q_{(t-1)}=1$ ,
- ▶⇒ SR=11, à l'entrée d'une bascule RS (NAND),
- Donc  $Q_{(t)}$ = 1=  $Q_{(t-1)}$ :  $Q_{(t)}$ =est forcé à 1, quelque soit  $Q_{(t-1)}$



**Donc**  $Q_{(t)}$ = 1≠  $Q_{(t-1)}$  ⇒SR=10 ⇒ $Q_{(t)}$ = 0≠  $Q_{(t-1)}$  =La sortie Q va osciller entre 0 et 1 pendant toute la durée du signal d'horloge rendant le résultat ambigu



**Donc**  $Q_{(t)}$ = 0≠  $Q_{(t-1)}$  ⇒SR=01 ⇒ $Q_{(t)}$ = 1≠  $Q_{(t-1)}$  =La sortie Q va osciller entre 0 et 1 pendant toute la durée du signal d'horloge rendant le résultat ambigu

#### Bascule JK (Maître-Esclave)

▶ Pour une bascule JK, quand J=K=1=Clk(qui synchronise avec le niveau haut) la sortie Q va osciller entre 0 et 1 pendant toute la durée du signal d'horloge rendant le résultat ambigu. Pour éviter ce problème on monte deux bascules R-S en cascade



• Quand le signal d'horloge à 1 pour le maître et 0 pour l'esclave. L'état Q<sub>(t)</sub> est donc invariant car l'horloge de l'esclave multiplie par zéro les entrées S et R.

$$ightarrow Si \ Q_M = S$$
, et  $\ \bar{Q}_M = R \Rightarrow S1 = R1 = 1$ ,  $Q_{E(t)} = Q_{E(t-1)} \Rightarrow$  un état mémoire

Lorsque le signal d'horloge passe de 1 à 0 (front descendant), l'état de la bascule maître est transféré à la bascule esclave: le maître est bloqué et l'esclave libéré

►Si 
$$Q_M=1$$
,  $\bar{Q}_M=0$   $\Rightarrow$  (S=1 et R=0)  $\Rightarrow$  Q=1,  $\bar{Q}=0$ 

►Si 
$$Q_M=0$$
,  $\bar{Q}_M=1 \Rightarrow (S=0 \text{ et } R=1) \Rightarrow \bar{Q}=1$ ,  $Q=0$ 

## Bascule T à partir de la JK

La bascule T peut également être obtenue à partir d'une bascule JK, on injecte la même entrée sur J et K.





# Bascule D à partie de la JK

- La bascule D peut également être obtenue à partir d'une bascule JK, on envoie simultanément:
  - La donnée sur l'entrée J
  - Et son inverse sur l'entrée K



