# Classification of Data of Mobile Chat Applications

Sachin P C and Ashutosh Bhatia

Computer Science & Information Systems, Birla Institute of Technology & Science, Pilani, IND.

h20180140p@alumni.bits-pilani.ac.in,ashutosh.bhatia@pilani.bits-pilani.ac.in

**Abstract.** Social media applications are used extensively in mobile and the data generated is enormous. This project captures the encrypted data transferred over the network, extracts the essential data, performs PCA and applies machine learning models to determine the mobile application associated with the data.

Keywords: Classification, Data, Mobile Application, Network, Wireshark

#### 1 Introduction

With increasing mobile usage, there is a vast amount of data generated through social media chat applications every day. At the network level, this data is transferred as encrypted data and hence it is very difficult or impossible to analyze whether the data captured are of a voice call, a text message or a video call, or a Gmail message, etc. The process of capturing network data and applying a classification model to classify those data is defined as Traffic Classification. With mobile data usage is increasing day by day, the application-specific data is also increasing, and it is becoming challenging to classify the network data. With the increasing adoption of security protocols and more applications, it is becoming challenging to classify the network data, as it is becoming impossible to determine the kind of application the data belongs to. This paper presents a method to capture the network data, analyze it, and extract the essential data from the packets. The extracted data are considered features and a machine learning classification algorithm is applied to analyze and determine to which class the input data belongs. With this, if a sufficiently large amount of data is there as training data for each class, we can classify the unknown data into its corresponding class with very high accuracy. The prominent advantage of this approach is that we don't have to decrypt to figure out the type of data it is. This method is used at the application level, where we capture a particular application data using network analysis applications such as Tpacketpro.

This method can help the government understand the data transfer over the network better and analyze the network traffic over the internet. Not always,

analyzing the packets sent through the network is wrong; sometimes it helps understand the usage of data, it gives providers a fair idea of the application data that has been used the most, without actually knowing what the data is. Hence, this approach helps in analyzing the network data and classifying it into different classes.

## 2 Background

As the years pass by, mobile data traffic is increasing exponentially. Now, with decreased data rates, people have been using the internet through mobile very rapidly. If we compare the statistics, there is a massive rise in mobile data traffic when the data rates were considerably reduced and in India, there is a four-fold increase in IP traffic from 2016 to 2021. This only suggests how rapidly the network traffic is increasing. All this is because the network data is made available to most parts of the places and with reduced costs, most of the people are using various applications, and hence the application data are increasing rapidly.

An increase in network data implies that there is a massive amount of traffic data[1] that can be utilized to analyze what kind of traffic is produced and what applications form most part of the network data. We can classify the data using a specific machine learning algorithm depending on the requirement. With increasing mobile traffic, more security protocols are implemented, so it isn't easy to decrypt the network data as they come in encrypted form. We cannot analyze the network data just by seeing the encrypted data, as it will be completely different and hence, we cannot figure out what application data or what data it is just by extracting it and hence analyzing the network data is complex. However, with a large amount of data, there will be a pattern for the same kind of application data and hence, using a classification algorithm on these data, we can determine the class of data to which it belongs.

## 3 Proposed Approach

This section will illustrate the step-by-step procedure to obtain the classification model to classify various mobile chat application data.

## 3.1 Data Capture

The initial measure is to capture the data. One of the primary and essential steps in this approach is to capture data, as it is used to classify. We capture the data at the application level. We have used TpacketCapture Pro[3] to capture the data packets, which captures the inbound and outbound packets of particular chat applications which we specify. While capturing the data, specify a particular application and then start capturing the packets. The tpcaket capture application captures the packets and stores them in pcap files which are later

used to extract the features needed. We can use wireshark to visualize the packets captured and stored pcap files. Wireshark helps in visualizing the packets and its structure and fields.

Steps to capture the data using tpacketCapture pro:

- Install the application on your mobile device.
- Specify the application you want to capture the data using the "Filter App List" option.
- Start Capturing the data.
- Once you have sufficient data, stop the capture.

The captured data is stored in a pcap file, and we can visualize the captured data using Wireshark.



Filter Application whose data has to be captured.

#### 3.2 Extracting the features

The next step is to extract the required features from the pcap file[4]. All the pcap files captured will have a vast amount of data. We need to extract specific data from those pcap files and perform some analysis on those data to obtain the right features. Every pcap file consists of packets of data. Every packet will have header data, payload, etc. We need to extract essential features like the length of the payload, protocol of the data packet, which type it is, etc and we need to group all the data which are of a specific session or connection. I.e. we need to group packets from the beginning of a three-way connection in start to finish in the end, if it is a TCP connection. If it is a UDP connection, we need to group packets concerning the same source IP, port number, and destination

# 4 Classification of Data of Mobile Chat Applications



Start Capturing of Data.

#### IP and destination port number.

The grouping of packets as one is helpful in getting certain features such as the average size of the packets, maximum size, minimum size and many more other features. These features are extracted for every group of packets and is taken as a data set for the machine learning model. So, whenever a new data set has to be classified, these following steps have to be performed, and then we have to apply a classification model to classify the extracted tuple into a specific class.

|    | A           | В      | C                  | D       | E       | F               | G            | H              | 1           | J           | K           |
|----|-------------|--------|--------------------|---------|---------|-----------------|--------------|----------------|-------------|-------------|-------------|
| 1  | MEAN        | MEDIAN | STANDARD DEVIATION | MINIMUM | MAXIMUM | INBOUND_AVG_IAT | INBOUND_MEAN | INBOUND_MEDIAN | INBOUND_SD  | INBOUND_MIN | INBOUND MAX |
| 2  | 158.0590406 | 43     | 496.2503216        | 40      | 5580    | 0.001365459748  | 246          | 40             | 682.7232236 | 40          | 5580        |
| 3  | 852.7435897 | 40     | 1432.795147        | 40      | 5472    | 0.003654572699  | 1655         | 1398           | 1728.21729  | 40          | 5472        |
| 4  | 1827.486486 | 40     | 3001.385945        | 40      | 9546    | 0.0005558799295 | 3659         | 3552.5         | 3484.167189 | 40          | 9546        |
| 5  | 1210.344086 | 40     | 1630.657259        | 40      | 5627    | 0.0005244149102 | 2384         | 2756           | 1624.813528 | 40          | 5627        |
| 6  | 15129.07143 | 43     | 25827.97681        | 40      | 64280   | 0.0005938640008 | 30163        | 22447          | 29977.35587 | 40          | 64280       |
| 7  | 63.94957983 | 40     | 60.78662999        | 40      | 549     | 0.0005035117521 | 66           | 40             | 72.89718787 | 40          | 549         |
| 8  | 71.76363636 | 40     | 85.74989526        | 40      | 668     | 0.001368743723  | 82           | 40             | 113.1149857 | 40          | 668         |
| 9  | 348.7647059 | 40     | 763.7743064        | 40      | 3019    | 0.003479003906  | 620          | 55.5           | 1078.009276 | 40          | 3019        |
| 10 | 80.67948718 | 43     | 78.81910585        | 40      | 475     | 0.0005924490434 | 95           | 40             | 100.2945662 | 40          | 475         |
| 11 | 80.93103448 | 40     | 143.4702873        | 40      | 2113    | 0.0009214888919 | 100          | 40             | 196.0408121 | 40          | 2113        |
| 12 | 2440.487179 | 40     | 4136.668555        | 40      | 13775   | 0.0005417797301 | 4915         | 6830           | 4847.068289 | 40          | 13775       |
| 13 | 750.4451411 | 40     | 805.7512897        | 40      | 2756    | 0.0007048362418 | 1454         | 1398           | 556.3658868 | 40          | 2756        |
| 14 | 78.88111888 | 40     | 94.7698836         | 40      | 738     | 0.001577483283  | 89           | 40             | 120.6772555 | 40          | 738         |
| 15 | 80.25592417 | 43     | 108.8973929        | 40      | 1593    | 0.000503105341  | 94           | 40             | 143.4851909 | 40          | 1593        |
| 16 | 86.95505618 | 43     | 104.3227727        | 40      | 707     | 0.0004835854406 | 107          | 40             | 137.1787156 | 40          | 707         |
| 17 | 81.9444444  | 43     | 95.39419772        | 40      | 668     | 0.0004925021419 | 95           | 40             | 122.9512098 | 40          | 668         |
| 18 | 63.91666667 | 40     | 71.14831926        | 40      | 289     | 0.0005340099335 | 40           | 40             | 0           | 40          | 40          |
| 19 | 99.35064935 | 41     | 194.8197267        | 40      | 2197    | 0.0007809601821 | 126          | 40             | 266.3400083 | 40          | 2197        |
| 20 | 888.5977011 | 40     | 1114.768924        | 40      | 4114    | 0.0005313101269 | 1733         | 1398           | 1044.088598 | 40          | 4114        |
| 21 | 101         | 41.5   | 207.5801589        | 40      | 1398    | 0.0004943609238 | 136          | 40             | 283.0017668 | 40          | 1398        |
| 22 | 832.8205128 | 40     | 1313.306351        | 40      | 4114    | 0.0005066527261 | 1615         | 1398           | 1536.350546 | 40          | 4114        |
| 23 | 91 29166667 | 40     | 122.8411768        | 40      | 585     | 0.0008965015411 | 109          | 40             | 164 972725  | 40          | 585         |

Features extracted from pcap file.

The above figures show that the final features taken are majorly grouped by inbound packets, outbound packets, and the mixture of both.

There are 20 features extracted from the pcap files and a set of tuple are created,

|    | L                | M             | N               | 0           | P            | Q            | R                     | S                | T       |
|----|------------------|---------------|-----------------|-------------|--------------|--------------|-----------------------|------------------|---------|
| 1  | OUTBOUND AVG IAT | OUTBOUND MEAN | OUTBOUNT_MEDIAN | OUTBOUND_SD | OUTBOUND MIN | OUTBOUND MAX | TOTAL_INBOUND_PACKETS | AL OUTBOUND PACK | PROTOCO |
| 2  | 0.00142340046    | 66            | 43              | 56.82429058 | 40           | 360          | 138                   | 133              | 6       |
| 3  | 0.003678043683   | 89            | 40              | 135.6981945 | 40           | 523          | 19                    | 20               | 6       |
| 4  | 0.0005252080805  | 92            | 40              | 138.8956443 | 40           | 523          | 18                    | 19               | 6       |
| 5  | 0.0005255699158  | 61            | 40              | 91.1811384  | 40           | 505          | 46                    | 47               | 6       |
| 6  | 0.0006013313929  | 95            | 40              | 147.1971467 | 40           | 565          | 14                    | 14               | 6       |
| 7  | 0.0005090487631  | 61            | 43              | 45.80392996 | 40           | 289          | 60                    | 59               | 6       |
| 8  | 0.00142451433    | 60            | 43              | 39.73663297 | 40           | 289          | 56                    | 54               | 6       |
| 9  | 0.00348510061    | 107           | 40              | 103.7737925 | 40           | 317          | 8                     | 9                | 6       |
| 10 | 0.0006331946399  | 64            | 43              | 41.74925149 | 40           | 289          | 80                    | 76               | 6       |
| 11 | 0.0009505962426  | 60            | 43              | 37.62977544 | 40           | 289          | 221                   | 214              | 6       |
| 12 | 0.0005476739671  | 88            | 40              | 132.6989073 | 40           | 505          | 19                    | 20               | 6       |
| 13 | 0.0007052074505  | 51            | 40              | 62.30569797 | 40           | 557          | 159                   | 160              | 6       |
| 14 | 0.001671121401   | 68            | 43              | 55.26300752 | 40           | 338          | 73                    | 70               | 6       |
| 15 | 0.0005305128939  | 64            | 43              | 47.89572006 | 40           | 375          | 216                   | 206              | 6       |
| 16 | 0.0005215564406  | 64            | 43              | 37.08099244 | 40           | 289          | 93                    | 85               | 6       |
| 17 | 0.0005224171807  | 67            | 43              | 51.29327441 | 40           | 289          | 55                    | 53               | 6       |
| 18 | 0.0004316568375  | 87            | 47.5            | 98.80789442 | 40           | 289          | 6                     | 6                | 6       |
| 19 | 0.0008133488732  | 70            | 42              | 54.66260147 | 40           | 348          | 78                    | 76               | 6       |
| 20 | 0.0005324454535  | 62            | 40              | 94.23905772 | 40           | 506          | 43                    | 44               | 6       |
| 21 | 0.0005032631659  | 63            | 43              | 47.2546294  | 40           | 289          | 35                    | 33               | 6       |
| 22 | 0.0005099905862  | 88            | 40              | 132.8645927 | 40           | 506          | 19                    | 20               | 6       |
| 23 | 0.0008197697726  | 76            | 43              | 75.57115852 | 40           | 303          | 11                    | 13               | 6       |

Features extracted from pcap file.

which are used as data for the classification algorithm that we will use next to classify the data into its specific class.

#### 3.3 Classification

For classification[5], we use concepts of Machine Learning. Machine learning algorithm written is such that it learns from the previously input data and hence tries to produce better results with the new data. The classification can be done using many machine learning algorithms such as K-means, K-nearest neighbor, Support Vector Machine, Naive Bayes, etc. We can use a specific algorithm depending on the data. As of now, we have used the k-means algorithm to classify the given data. K- means is an unsupervised algorithm, which uses the concepts of cluster to classify the given data. A set of clusters are defined and for every cluster and for every iteration a new centroid is calculated for the clusters until no more new changes for the centroids are there. The algorithm aims at minimizing the squared error given by:

$$j(v) = \sum_{i=1}^{c} \sum_{j=1}^{c_i} (|x_i - v_j|)^2$$

where.

- $-|x_i-v_j|$  is the euclidean distance between  $x_i$  and  $v_j$ .
- $-c_i$  is the number of data points in  $i^th$  cluster.
- -c is the number of cluster centers.

We have applied Principal Component analysis to remove the highly co-related components in the data, so that it will not affect the classification with redundant data. Once PCA is applied, we get a set of features that are used as final features for the classification of data.

#### 4 Results

We have used a K-means algorithm to classify the voice call, text message, video call, email messages data. Each of these is taken as separate classes and is trained. The implementation of this algorithm gave an accuracy of around 65 percent. This accuracy can be increased as the model is trained with more data of different classes.

## 5 Future Scope

The result obtained by performing the classification algorithm is moderate as the classification performed was for a minimal amount of data. In the future, we can perform the same classification algorithm with more data used for training the model, which might help in giving better results. We can use different algorithms like SVM, Decision Tree, etc., compare the results with the obtained result, and analyze which classification algorithm performs better.

#### 6 Conclusion

With Mobile network data increasing rapidly, there is a huge scope to explore the network data generated. As the data generated is enormous, we can explore the pattern among similar kind of applications and analyze them. With many machine learning models, along with network analysis, we can identify the class of data without decrypting the data sent over the network. This can be beneficial for many agencies, governments, etc, to analyze network data better.

#### References

- Peter Velan , Milan Cermak, Pavel Celeda, Martin Drasar. "A Survey of Methods for Encrypted Traffic Classification and Analysis".
- 2. Peek-a-boo, i still see you: "Why efficient traffic analysis countermeasures fail" by KP Dyer, SE Coull, T Ristenpart, T Shrimpton 2012 IEEE symposium on security and privacy, 2012
- 3. Android software tpacketcapture. URL http://www.taosoftware.co.jp/en/android/packetcapture
- Mauro Conti, Luigi V. Mancini, Riccardo Spolaor, and Nino Vincenzo Verde. "Can't you hear me knocking: Identification of user actions on android apps via traffic analysis", pages 297 304, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3191-3. doi:10.1145/2699026.2699119. URL-http://doi.acm.org/10.1145/2699026.2699119
- 5. T. T. Nguyen and G. Armitage. "A survey of techniques for internet traffic classification using machine learning".IEEE Communications Surveys Tutorials, 10(4):56 76, Fourth 2008.ISSN 1553-877X. doi: 10.1109/SURV.2008.080406.