WHAT IS CLAIMED IS:

1

2

1	1. A method for extracting information in an optical subcarrier of a			
2	subcarrier multiplexed baseband optical signal, the subcarrier multiplexed baseband optical			
3	signal comprising a modulated optical carrier for a payload and a modulated optical			
4	subcarrier for control information, the modulated optical subcarrier being at a subcarrier			
5	frequency which is separated from the modulation bandwidth of the optical carrier, the			
6	method comprising:			
7	receiving the subcarrier multiplexed baseband optical signal at an input port of			
8	an optical circulator;			
9	applying the subcarrier multiplexed baseband optical signal via an extraction			
0	port of the optical circulator to a fiber Bragg grating;			
] :1	optically separating the modulated optical subcarrier in the fiber Bragg grating			
2	and directing the modulated optical subcarrier to an optical energy transducer while reflecting			
3	the modulated optical carrier back to the extraction port of the optical circulator; and			
4	outputting the modulated optical carrier to an output port of the optical			
	circulator.			
li	2. The method according to claim 1 further comprising:			
2	outputting a modulated electrical signal from the optical transducer which is			
3	proportional to modulation of the modulated optical signal; and			
4	detecting the information modulating the electrical signal.			
1	3. A method for swapping control information of a subcarrier multiplexed			
2	baseband optical signal, the subcarrier multiplexed baseband optical signal comprising a			
3	modulated optical carrier for a payload and a modulated optical subcarrier for control			
4	information, the modulated optical subcarrier being at a subcarrier frequency which is			
5	separated from the modulation bandwidth of the optical carrier, the method comprising:			
6	separating the modulated optical carrier from the modulated optical subcarrier			
7	according to the method of claim 1; and			
8	applying the modulated optical carrier to an optical modulator adapted for			
9	writing new subcarrier modulated control information.			
	,			

4. A method for controlling the propagation path of a subcarrier multiplexed baseband optical signal comprising a modulated optical carrier for a payload and

4	a
5	C
5 6 7	
7	
8	а
9	
10	r
11	
12	O
	n
3	1.
N.	S
	s s
đ	S
6	c
7	
8	n
9 10	
10	C
11	r

4	at a subcarrier frequency which is separated from the modulation bandwidth of the optical		
5	carrier, the method comprising:		
6	receiving the signal at the input to a routing element;		
7	extracting the modulated optical subcarrier control information		
8	according to the method of claim 2;		
9	changing the wavelength of the optical carrier for the payload in		
10	response to the control information; and		
11	directing the optical carrier for the payload along one of a plurality of		
12 	output paths from the routing element responsive to the control information.		
	5. The method according to claim 4 further comprising the step of		
2	modulating the directed optical carrier to add a subcarrier containing new control		
	information.		
	6. A device for extracting information in an optical subcarrier of a		
<u> </u>	subcarrier multiplexed baseband optical signal, the subcarrier multiplexed baseband optical		
III La	signal comprising a modulated optical carrier for a payload and a modulated optical		
14	subcarrier for control information, the modulated optical subcarrier being at a subcarrier		
	frequency which is separated from the modulation bandwidth of the optical carrier, the device		
6	comprising:		
7	an optical circulator having an input port for receiving the subcarrier		
8	multiplexed baseband optical signal, a bi-directional extraction port and an output port;		
9	a fiber Bragg grating optically coupled to said extraction port of said optical		
10	circulator for optically separating the modulated optical subcarrier from the subcarrier		
11	multiplexed baseband optical signal and reflecting the modulated optical carrier to the optical		
12	circulator; and		
13	an optical energy transducer optically coupled to receive the modulated optical		
14	subcarrier.		
1	7. The device according to claim 3 wherein the optical energy transducer		
2	is a photodetector for generating a electrical signal proportional to the signal of the modulated		
3	subcarrier and further including:		
4	a detector for detecting the information modulating the electrical signal.		

a modulated optical subcarrier for control information, the modulated optical subcarrier being

	1	8. A device for swapping control information of a subcarrier multiplexed
	2	baseband optical signal, the subcarrier multiplexed baseband optical signal comprising a
	3	modulated optical carrier for a payload and a modulated optical subcarrier for control
	4	information, the modulated optical subcarrier being at a subcarrier frequency which is
	5	separated from the modulation bandwidth of the optical carrier, the device comprising:
	6	an optical subcarrier receiver according to claim 6 and a means for modulating
	7	the modulated optical carrier to add new information contained in a new modulated optical
uster time the contract of the time time	8	subcarrier.
	1	O An antical marting device adopted for controlling the gravelenath and
	1	9. An optical routing device adapted for controlling the wavelength and
	2	manner of propagation of a subcarrier multiplexed baseband optical signal, said subcarrier
	3	multiplexed baseband optical signal comprising a modulated optical carrier for a payload and
	4	a modulated optical subcarrier for control information, the modulated optical subcarrier being
	5	at a subcarrier frequency which is separated from the modulation bandwidth of the optical
8 211)	6	carrier, the routing element comprising:
	7	an optical subcarrier receiver according to claim 7;
	8	a controller for controlling other components in response to the control
Com and who was	9	information extracted by said optical subcarrier receiver; and
	10	a tunable optical source coupled to said controller, adapted for emitting an
	11	optical signal with a modulation proportional to the modulated optical carrier at a wavelength
	12	dictated by the control information on the said control information.
	1	10. The device of claim 9 wherein the tunable optical source comprises:
		•
	2	a tunable laser optically coupled to a semiconductor optical amplifier.
	1	11. The device of claim 9 further comprising a wavelength switch having
	2	at least one input and a plurality of outputs, the switch being optically coupled to the tunable
	3	optical source and adapted for directing an optical signal on any of its inputs to a specific
	4	output in accordance with the wavelength of the input signal.
	4	10 70 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1	12. The device of claim 11 wherein the wavelength switch is an array
	2	waveguide grating.

- 1 13. The device of claim 11 further comprising an array of optical
- 2 modulators coupled to the outputs of the wavelength switch, said modulators adapted for
- 3 further modulating the modulated optical carrier signal to add additional information.