Corps finis

Solutions

Exercice 1 – En notant $\alpha \in \mathbb{F}_4$ la classe de X, on a la relation $\alpha^2 = \alpha + 1$, d'où les identités $\alpha^4 = (\alpha + 1)^2 = \alpha^2 + 1 = \alpha$. On remarquera que pout tout $a \in \mathbb{F}_2$, on a la relation $a^4 = a$. Tout élément $x \in \mathbb{F}_4$ s'écrivant de manière unique comme $x = a + b\alpha$, avec $a, b \in \mathbb{F}_2$, on obtient les égalités

$$x^{4} = (a + b\alpha)^{4} = a^{4} + 4a^{3}b\alpha + 6a^{2}b^{2}\alpha^{2} + 4ab^{3}\alpha^{3} + b^{4}\alpha^{4} = a^{4} + b^{4}\alpha^{4} = a + b\alpha = x,$$

ce qui amène à l'identité $x^4 = x$, ou encore $x(x^3 - 1) = 0$. Si x est non nul, on en déduit alors la relation $x^3 = 1$.

Exercice 2 – La relation étant clairement vérifiée pour x = 0, supposons que x non nul, ce qui revient à affirmer qu'il appartient au groupe k^{\times} , qui est d'ordre q - 1. Le théorème de Lagrange affirme alors que $x^{q-1} = 1$ et, en multipliant les deux termes de cette égalité par x, on obtient l'identité $x^q = x$.

Exercice 3 -

- 1. Un élément $x \in K^{\times}$ appartient au noyau de f si et seulement si $x^2 = 1$, ou encore $x^2 1 = (x 1)(x + 1) = 0$, ce qui amène à $x = \pm 1$. L'image de f étant le sous-groupe $(K^{\times})^2$ de K^{\times} formé par les éléments x tels qu'il existe $y \in K^{\times}$ avec $x = f(y) = y^2$, il coïncide avec l'ensemble des carrés de K^{\times} .
- 2. D'après le théorème de factorisation des homomorphismes de groupes, l'image de f est isomorphe au quotient $K^{\times}/\ker(f)$, qui est d'ordre $\frac{q-1}{2}$.
- 3. D'après le théorème de Lagrange, pour tout $a \in K^{\times}$, on a la relation $a^{q-1} = 1$. Si a est un carré, soit $a = b^2$, on obtient alors les identités

$$a^{\frac{q-1}{2}} = (b^2)^{\frac{q-1}{2}} = b^{q-1} = 1.$$

- 4. Le polynôme $X^{\frac{q-1}{2}}-1\in K[X]$ possède au plus $\frac{q-1}{2}$ racines et les points précédents affirment que ces racines sont précisément les carrés de K^{\times} , d'où le résultat.
- 5. Pour tout $a \in K^{\times}$, on a les relations $a^{q-1} 1 = (a^{\frac{q-1}{2}} 1)(a^{\frac{q-1}{2}} + 1) = 0$. Si a n'est pas un carré, nous venons de montrer que $a^{\frac{q-1}{2}} \neq 1$, d'où l'identité $a^{\frac{q-1}{2}} = -1$.

Exercice 4 – Le polynôme $X^2 + 1$ est irréductible si et seulement s'il ne possède pas de racine dans \mathbb{F}_p , ce qui revient à affirmer que -1 n'est pas un carré dans \mathbb{F}_p . Pour p = 2, on a les identités $-1 = 1 = 1^2$ et le polynôme n'est pas irréductible. Supposons

donc p impair. D'après le critère d'Euler (cf. l'exercice précédent), -1 est un carré si et seulement si $(-1)^{\frac{p-1}{2}} = 1$, ce qui revient à affirmer que $\frac{p-1}{2}$ est pair, ou encore que p est congru à 1 modulo 4, ce qui permet de conclure.

Exercice 5 -

- 1. On a les identités $2 = 1^2 + 1^2$, $5 = 1^2 + 2^2$, $13 = 2^2 + 3^2$ et $17 = 1^2 + 4^2$.
- 2. La première assertion obtenue par une simple vérification directe. Supposons donc que p est somme de deux carrés, soit $p = a^2 + b^2$. Les entiers a^2 et b^2 étant congrus à 0 ou 1 modulo 4, on en déduit que p est congru à 0, 1 ou 2 modulo 4 (on remarquera que p étant premier, la première possibilité est exclue).
- 3. Si l'application f était injective, le cardinal de l'ensemble $S \times S$, qui est égal à $(n+1)^2 > p$, serait inférieur ou égal au cardinal de \mathbb{F}_p , qui est égal à p.
- 4. L'identité f(x,y) = f(u,v) se traduit par les congruences $x+wy \equiv u+wv \pmod p$, ou encore $x-u \equiv (v-y)w \pmod p$, d'où la première assertion. On obtient alors les relations

$$a^2 \equiv (bw)^2 \equiv b^2 w^2 \equiv -b^2 \pmod{p},$$

ce qui implique que p divise $a^2 + b^2$.

5. Remarquons que les couples (x, y) et (u, v) étant distincts, les entiers a et b ne peuvent pas être tous les deux nuls, ce qui amène à l'inégalité $a^2 + b^2 > 0$. D'autre part, on a les relations

$$|a| = \max\{x, u\} - \min\{x, u\} \le n - 0 < \sqrt{p}$$

et, de même, on obtient l'inégalité $|b|<\sqrt{p}$. On en déduit donc les relations $0< a^2+b^2< 2p$. L'entier a^2+b^2 étant un multiple de p, on a alors l'identité $p=a^2+b^2$.

Exercice 6 -

- 1. Une vérification directe montre que le polynôme $X^2 X 1$ ne possède pas de racine dans \mathbb{F}_7 et est donc irréductible. L'anneau K est alors un corps de cardinal $7^2 = 49$.
- 2. Le groupe K^{\times} étant d'ordre 48, le théorème de Lagrange amène à l'identité $\alpha^{48}=1$, ce qui entraı̂ne les relations

$$\alpha^{483} = \alpha^3 \cdot \alpha^{480} = \alpha^3 \cdot (\alpha^{48})^{10} = \alpha^3 \cdot 1^{10} = \alpha^3.$$

Finalement, l'identité $\alpha^2=\alpha+1$ amène aux égalités

$$\alpha^3 = \alpha(\alpha + 1) = \alpha^2 + \alpha = 2\alpha + 1.$$

Exercice 7 – On utilise le résultat du cours (Théorème 6.6., page 107) appliqué au polynôme $X^8-X=X^{2^3}-X$. L'ensemble des diviseurs irréductibles du polynôme $X^{2^3}-X$ est formé des polynômes irréductibles de $\mathbb{F}_2[X]$ de degré divisant 3.

Les polynômes unitaires irréductibles de $\mathbb{F}_2[X]$ de degrés 1 et 3 sont $X, X+1, X^3+X+1$ et X^3+X^2+1 . On a donc la factorisation

$$X^{8} - X = X(X^{7} - 1) = X(X + 1)(X^{3} + X + 1)(X^{3} + X^{2} + 1).$$

Donc
$$X^7 - 1 = (X+1)(X^3 + X + 1)(X^3 + X^2 + 1)$$
.

Exercice 8-

- 1. Le polynôme f étant de degré 2, il est irréductible si et seulement s'il ne possède pas de racine dans \mathbb{F}_p . La relation $(X-1)f=X^3-1$ et le fait que $f(1)=3\neq 0$ impliquent que f possède une racine dans \mathbb{F}_p si et seulement si le groupe \mathbb{F}_p^{\times} , qui est d'ordre p-1, possède un élément d'ordre 3. Les théorèmes de Cauchy et Lagrange affirment que cette dernière condition est remplie si et seulement si p-1 est divisible par 3.
- 2. Pour p=2, l'élément 3 étant clairement un carré, on suppose p impair. Le critère d'Euler (cf. l'exercice 3) affirme alors que 3 est un carré dans \mathbb{F}_p si et seulement si on a l'identité $3^{\frac{p-1}{2}}=1$ dans \mathbb{F}_p . Le nombre premier p étant différent de 3, il est congru à ± 1 modulo 3. Traitons ces deux cas séparément :
 - D'après le point précédent, pour $p \equiv 1 \pmod{3}$, le polynôme

$$4f = 4X^2 + 4X + 4 = (2X + 1)^2 + 3$$

possède une racine dans \mathbb{F}_p , ce qui implique que -3 est un carré dans \mathbb{F}_p , d'où l'identité $(-3)^{\frac{p-1}{2}} = 1$. On obtient alors les relations

$$3^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}} (-3)^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}}.$$

Il s'en suit que 3 est un carré si et seulement si $\frac{p-1}{2}$ est pair, ce qui revient à affirmer que p est congru à 1 modulo 4. Le théorème des restes chinois affirme alors que les congruences $p \equiv 1 \pmod 3$ et $p \equiv 1 \pmod 4$ sont équivalentes à $p \equiv 1 \pmod {12}$.

— Pour $p \equiv -1 \pmod{3}$, en procédant comme ci-dessus, on montre que -3 n'est pas un carré dans \mathbb{F}_p et le dernier point de l'exercice 3 amène à l'identité $(-3)^{\frac{p-1}{2}} = -1$, ce qui entraı̂ne les relations

$$3^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}} (-3)^{\frac{p-1}{2}} = (-1)^{\frac{p+1}{2}}.$$

On en conclut que 3 est un carré dans \mathbb{F}_p si et seulement si p est congru à -1 modulo 4 et, en appliquant une fois de plus le théorème des restes chinois, cette dernière condition est équivalente à $p \equiv -1 \pmod{12}$.

Exercice 9-

- 1. Pour tout $x \in \mathbb{F}_9$, on a l'identité $x^9 = x$, d'où la relation f(x) = 1.
- 2. Pour tout $x \in \mathbb{F}_3$, on a g(x) = -1. Le polynôme g étant de degré 3 et ne possédant pas de racine sur \mathbb{F}_3 , il est irréductible.
- 3. On vérifie facilement les identités $f = g^3 + g = g(g^2 + 1)$.
- 4. Le polynôme g étant irréductible sur F₃, on a l'identité F₂₇ = F₃[X]/(g). On remarquera que pour tout x ∈ F₂₇ et tout y ∈ F₃, on a l'identité g(x + y) = g(x). Il s'en suit que si α ∈ F₂₇ indique la classe de X, les racines de g dans F₂₇ sont α, α+1 et α-1. De plus le critère d'Euler (cf. l'exercice 3) affirme que -1 n'est pas un carré dans F₂₇ et le polynôme g² + 1 n'admet donc pas de racine dans F₂₇. On en déduit que les racines de f dans F₂₇ coïncident avec celles de g. Cette dernière affirmation aurait également pu être obtenue de manière directe en remarquant que si x ∈ F₂₇ est une racine de f, on obtient les identités

$$0 = f(x)^3 = x^{27} - x^3 + 1 = x - x^3 + 1 = -g(x).$$

5. Montrons que le polynôme $h = g^2 + 1 = X^6 + X^4 + X^3 + X^2 - X + 1$ est irréductible sur \mathbb{F}_3 : si l'on avait h = uv, avec $0 < \deg(u) \le \deg(v)$ et u irréductible, on en déduirait la relation $\deg(u) \in \{1, 2, 3\}$. Pour $\deg(u) \in \{1, 2\}$, le polynôme f = gh possèderait une racine dans \mathbb{F}_9 , ce qui contredit le point 1. Pour $\deg(u) = 3$, le polynôme u étant irréductible, il possèderait une racine dans \mathbb{F}_{27} , et il en serait alors de même pour h, contredisant le point précédent. On en déduit donc la factorisation

$$f = (X^3 - X - 1)(X^6 + X^4 + X^3 + X^2 - X + 1).$$

Exercice 10 – On vérifie facilement que le polynôme f n'a pas de racine dans \mathbb{F}_3 et est donc irréductible, ce qui implique que K est un corps à 27 éléments. Le groupe K^{\times} étant d'ordre 26, le théorème de Lagrange affirme que les valeurs possibles pour l'ordre de x sont 1, 2, 13 ou 26. Les relations x=1 et $x^2=1$ sont impossibles (car le polynôme X^3+2X+1 ne divise pas X^2-1). Remarquons maintenant que x,x^3 et x^9 sont les trois racines de X^3+2X+1 et leur produit, qui n'est autre que x^{13} , est égal à -1 (l'opposé du terme constant de X^3+2X+1). On aurait également pu effectuer la division euclidienne de X^{13} par X^3+2X+1 , dont le reste est -1. On en déduit que x est d'ordre 26 et engendre donc K^{\times} . Finalement, la relation $x^3=x-1$ amène aux identités $x^9=(x-1)^3=x^3-1=x+1$, d'où l'égalité $x(x+1)=x^{10}$.

Exercice 11 -

- 1. Soit $g \in \mathbb{F}_p[X]$ un facteur irréductible de $f = X^p X 1$ et notons K le corps $\mathbb{F}_p[X]/(g)$. Si $\alpha \in K$ désigne la classe de X, on a la relation $g(\alpha) = 0$, d'où $f(\alpha) = 0$. Pour tout entier $n \in \{0, 1, \dots, p-1\}$, l'élément $\alpha_n = \alpha^{p^n} \in K$ est également une racine de g et la relation $\alpha^p = \alpha + 1$ amène à l'identité $\alpha_n = \alpha + n$. Il s'en suit que g possède au moins p racines dans K, d'où les relations $p \leq \deg(g) \leq \deg(f) = p$. On a donc $\deg(f) = \deg(g)$, ce qui donne finalement f = g.
- 2. En suivant les notations du point précédent, dans le corps K, on a l'identité

$$X^{p} - X - 1 = \prod_{n=0}^{p-1} (X - \alpha_n).$$

En évaluant en 0, on en tire la relation $\alpha_0 \cdots \alpha_{p-1} = 1$, ce qui amène aux identités

$$\alpha^{\frac{p^p-1}{p-1}} = \alpha^{1+p+\dots+p^{p-1}} = \alpha_0 \dots \alpha_{p-1} = 1.$$

L'élément α étant d'ordre divisant $\frac{p^p-1}{p-1} < p^p-1$, il ne peut pas être un générateur de K^{\times} .

Exercice 12 -

1. On remarquera que f divise le polynôme $X^5 - 1$ et que $f(1) \neq 0$. Il s'en suit que si x est une racine de f dans une extension k de \mathbb{F}_3 , elle est d'ordre 5 (en tant qu'élément de k^{\times}) et le théorème de Lagrange affirme alors que 5 divise l'ordre de k^{\times} . Le groupe \mathbb{F}_9^{\times} étant d'ordre 8, le polynôme f n'admet pas de racine dans \mathbb{F}_9 .

- 2. Supposons d'avoir une factorisation f = gh avec $g, h \in \mathbb{F}_3[X]$ et $\deg(g) \leq \deg(h)$. On a alors l'inégalité $\deg(g) \leq 2$. Si l'on avait $\deg(g) = 1$ ou $\deg(g) = 2$, le polynôme f possèderait une racine dans \mathbb{F}_9 , ce qui est exclu. On a donc $\deg(g) = 0$ et f est donc irréductible. Le quotient K est alors un corps de cardinal 81.
- 3. Pour tout $x \in K$, on a l'identité $x^{81} = x$, d'où les relations

$$y^9 = (x^9 - x)^9 = x^{81} - x^9 = x - x^9 = -y.$$

Si x n'appartient pas à \mathbb{F}_9 alors $x^9 \neq x$, ce qui donne $y \neq 0$. Si cette dernière condition est remplie, alors l'identité $y^9 = -y$ se traduit par la relation $x^8 = -1$. Il s'en suit que y est d'ordre d divisant 16. Si d divisait 8, on obtientdrait les égalités $1 = x^8 = -1$, ce qui est absurde. On a donc d = 16. Finalement, si y est d'ordre 16, il est non nul et donc $x^9 \neq x$, ou encore $x \notin \mathbb{F}_9$.

4. L'élément α étant d'ordre 5, on a les identités

$$\beta = \alpha(\alpha^{-1} - \alpha) = \alpha(\alpha^9 - \alpha).$$

D'après le premier point, on a $\alpha \notin \mathbb{F}_9$ et le point 3 affirme alors que $\alpha^9 - \alpha$ est d'ordre 16. Les éléments α et $\alpha^9 - \alpha$ étant d'ordres premiers entre eux, leur produit β est d'ordre $5 \cdot 16 = 80$ et engendre donc K^{\times} .

5. Les identités

$$\beta^3 = (1 - \alpha^2)^3 = 1 - \alpha^6 = 1 - \alpha$$
 et $\beta^{40} = -1$

amènent à la relation $\beta^{43} = \alpha - 1$ et la clé privée d'Alice est donc égale à 43. Notons $m \in K$ le message envoyé par Bob. En remarquant que $(1 + \alpha)^{37}$ est l'inverse de $(1 + \alpha)^{43}$, on obtient les identités

$$m = (1 + \alpha)^{-43} (1 + \alpha^3) = (1 + \alpha)^{37} (1 + \alpha)^3 = (1 + \alpha)^{40}.$$

L'élément $1 - \alpha = \beta^3$ étant un générateur de K^{\times} (car 3 est premier avec 80) on a les relations $\beta^{40} = (1 - \alpha)^{40} = -1$. L'identité $\beta = (1 - \alpha)(1 + \alpha)$ amène alors à la relation m = 1.

Exercice 13 – L'entier $p^2 - 1$ étant un multiple de p + 1, le polynôme $f = X^{p+1} - 1$ divise $g = X^{p^2} - X = X(X^{p^2-1} - 1)$. Ce dernier étant scindé sur \mathbb{F}_p^2 , il en est de même pour f. De plus, le polynôme g étant le produit des polynômes irréductibles, unitaires sur \mathbb{F}_p de degré divisant 2, tout facteur irréductible de f est de degré est inférieur ou égal à 2. On remarquera que les facteurs irréductibles (unitaires) de f de degré 1 s'écrivent comme X - x, où $x \in \mathbb{F}_p$ est une racine de f et vérifie donc l'identité $x^p = x$. Dans ce cas, la relation f(x) = 0 se traduit par $x^2 = 1$, d'où $x = \pm 1$. On en déduit que pour p > 2, les polynômes X - 1 et X + 1 sont les deux seuls facteurs irréductibles de degré 1 de f et pour p = 2 on ne retrouve que le facteur X - 1. Pour p = 5, on a les identités

$$X^{6} - 1 = (X^{3} - 1)(X^{3} + 1) = (X - 1)(X + 1)(X^{2} + X + 1)(X^{2} - X + 1)$$

et, d'après ce qui précède, les polynômes $X^2 + X + 1$ et $X^2 - X + 1$ sont irréductibles sur \mathbb{F}_5 (on aurait également pu le vérifiér en montrant qu'ils n'ont pas de racine dans \mathbb{F}_5).