An RFID skimming gate using higher harmonics

René Habraken, Peter Dolron, Erik Poll, Joeri de Ruiter

June 2015

Welcome!

RFID System Attacks:

An RFID skimming gate using higher harmonics

René Habraken

Electrical engineering
Techno Centre | High Energy Physics
Nijmegen, the Netherlands
r.habraken@science.ru.nl

Outline of the presentation

Case

 It is possible to communicate with an RFID card in the middle of 100 cm gate.

Goal

- Method
- Show skimming results

Terminology

- Reader
- Tag or card
- Communication
- Quality factor (q-factor)

Project boundaries

- ISO/IEC 14443, Type A and B
- Results are obtained without the use of digital signal processing

Modified reader, more power and a bigger antenna

Reader

Max 100 W, delivered by two amplifiers

50 cm loop antenna

Time and frequency domain

RFID Spectrum (13.56 MHz filtered)

Selective narrowband antenna

Quality factor antennas

Specs receive antenna:

- Resonant at 40.68 MHz
- Inductance ≈ 1.3 uH
- Diameter = 46 cm
- Undamped, no damping resistor
- Gamma matching network

RFID skimming gate - results

Gate width [cm]	Power [W]	Activation distance [cm]	Range [cm]	Reply distance [cm]
100	80	50	< 5	50
90	18	75	< 5	20
70	18	60	50	60

Related work

- Kirschenbaum and Wool How to Build a Low-Cost, Extended-Range RFID Skimmer, 2006.
 Using: a single 40 cm loop antenna.
- Hancke Practical Eavesdropping and Skimming Attacks on High-Frequency RFID Tokens, 2011.
 Using: a 50 cm loop antenna for activation and an active magnetic field antenna for reception.

Comparison with related work

Kirschenbaum and Wool (2006)

Gate width [cm]	Power [W]	Activation distance [cm]	Range [cm]	Reply distance [cm]
1 antenna	2.5	25	unknown	25

Hancke (2011)

Gate width [cm]	Power [W]	Activation distance [cm]	Range [cm]	Reply distance [cm]
40	4	20	unknown	20
215	1	15	unknown	200

Our results (2015)

Gate width [cm]	Power [W]	Activation distance [cm]	Range [cm]	Reply distance [cm]
100	80	50	< 5	50
90	18	75	< 5	20
70	18	60	50	60

Other antenna arrangements

Add a resonant antenna (at 13.56MHz) behind the receive antenna.

- Gate width = 93 cm
- Receive antenna on 77 cm
- Communication range ≈ 60 cm

More compact solution

 Communication range ≈ 50 cm (from reception antenna)

Increased distance for ISO / IEC 14443 RFID communication

How?

- Use a bigger antenna <u>and</u> more power
- Add a second antenna with a high Q-factor resulting in narrowband reception

Resulting in:

Separation of activation and reception signals in frequency domain

Questions / discussion

Activation distance and reply distance for skimming attacks

Sensitive broadband antenna

Comparison with related work

Kirschenbaum and Wool - How to Build a Low-Cost, Extended-Range RFID Skimmer, 2006 Using: single 40 cm antenna

Gate width [cm]	Power [W]	Activation distance [cm]	Range [cm]	Reply distance [cm]
1 antenna	2.5	25	?	25

Hancke - Practical Eavesdropping and Skimming Attacks on High-Frequency RFID Tokens, 2011. Using: 50 cm loop antenna for activation and an active magnetic field antenna for reception.

Gate width [cm]	Power [W]	Activation distance [cm]	Range [cm]	Reply distance [cm]
40	4	20	?	20
215	1	15	?	200

Our results:					
Gate width [cm]	Power [W]	Activation distance [cm]	Range [cm]	Reply distance [cm]	
100	80	50	< 5	50	
90	18	75	< 5	20	
70	18	60	50	60	