컴퓨팅 사고와 SW 코딩

05

완전 탐색

경북대학교 배준현 교수 (joonion@knu.ac.kr)

- 완전 탐색: *exhaustive* search
 - 모든 가능한 경우의 수를 전부 다 탐색해 보는 방법
 - 단순무식하게 푸는 방법: Brute-Force
 - 장점:
 - 답이 있는 모든 문제를 해결할 수 있는 일반적인 문제해결 방법
 - 단점:
 - 시간이 너무 많이 걸리므로 상당수의 문제들은 해결이 불가능 (시간 초과)

- BOJ 1929: 소수 구하기
 - 문제:
 - M이상 N이하의 소수를 모두 출력하는 프로그램을 작성하시오.
 - 입력:
 - 첫째 줄에 자연수 M과 N이 빈 칸을 사이에 두고 주어진다.
 - $(1 \le M \le N \le 1,000,000)$
 - M이상 N이하의 소수가 하나 이상 있는 입력만 주어진다.
 - 출력:
 - 한 줄에 하나씩, 증가하는 순서대로 소수를 출력한다.

예제 입력	예제 출력 	_
3 16	3	
	5	
	7	
	11	
	13	


```
def is_prime(n):
    if n < 2:
        return False
    else:
        for k in range(2, int(n ** 0.5) + 1):
            if n % k == 0:
                return False
        return True
def solve(m, n):
    for k in range(m, n + 1):
        if is_prime(k):
            print(k)
M, N = map(int, input().split())
solve(M, N)
```


○ 05. 완전 탐색

- BOJ 1259: 팰린드롬 수
 - 문제:
 - 어떤 수를 뒤에서부터 읽어도 똑같다면 그 수를 팰린드롬 수라고 한다.
 - 121, 12421 등은 팰린드롬수다.
 - 123, 1231은 뒤에서부터 읽으면 다르므로 팰린드롬수가 아니다.
 - 이번 문제에서는 무의미한 O이 앞에 올 수 없다고 하자.
 - 입력:
 - 입력은 여러 개의 테스트 케이스로 이루어져 있으며, 각 줄마다 1 이상 99999 이하의 정수가 주어진다.
 - 입력의 마지막 줄에는 ⊙이 주어지며, 이 줄은 문제에 포함되지 않는다.
 - 출력:
 - 각 줄마다 주어진 수가 팰린드롬 수이면 'yes', 아니면 'no'를 출력한다.

예제 입력	예제 출력 	
121	yes	
1231	no	
12421 0	yes	

O5. 완전 탐색

```
def is_palindrome(n):
    s = str(n)
    return s == s[::-1]
while True:
    n = int(input())
    if n == 0:
        break
    print("yes" if is_palindrome(n) else "no")
```


- BOJ 1747: 소수인 팰린드롬
 - 문제:
 - 어떤 수와 그 수의 숫자 순서를 뒤집은 수가 일치하는 수를 팰린드롬이라 부른다.
 - 예를 들어 79,197과 324,423 등이 팰린드롬 수이다.
 - 어떤 수 N $(1 \le N \le 1,000,000)$ 이 주어졌을 때,
 - N보다 크거나 같고, 소수이면서 팰린드롬인 수 중에서,
 - 가장 작은 수를 구하는 프로그램을 작성하시오.
 - 입력:
 - 첫째 줄에 N이 주어진다.
 - 출력:
 - 첫째 줄에 조건을 만족하는 수를 출력한다.

예제 입력	예제 출력
31	101

• 어느 쪽을 먼저 검사하는 것이 더 효율적일까?

```
def solve(n):
    while True:
        if is_prime(n) and is_palindrome(n):
            return n
        n += 1
N = int(input())
print(solve(N))
```


- 에라토스테네스의 체: Sieve of Eratosthenes
 - N보다 작거나 같은 모든 소수를 효율적으로 찾는 알고리즘
 - 1. 2부터 N까지 모든 정수를 적는다.
 - 2. 아직 지우지 않은 수 중 가장 작은 수를 찾는다.
 - 이 수를 P라고 하고, 이 수는 소수이다.
 - 3. P를 지우고, 아직 지우지 않은 P의 배수를 크기 순서대로 지운다.
 - 4. 아직 모든 수를 지우지 않았다면, 다시 2번 단계로 간다.

_											
		2	3	4	5	6	7	8	9	10	Pri
	11	12	13	14	15	16	17	18	19	20	
	21	22	23	24	25	26	27	28	29	30	
	31	32	33	34	35	36	37	38	39	40	
	41	42	43	44	45	46	47	48	49	50	
	51	52	53	54	55	56	57	58	59	60	
	61	62	63	64	65	66	67	68	69	70	
	71	72	73	74	75	76	77	78	79	80	
	81	82	83	84	85	86	87	88	89	90	
	91	92	93	94	95	96	97	98	99	100	
	101	102	103	104	105	106	107	108	109	110	
	111	112	113	114	115	116	117	118	119	120	

Prime numbers

https://en.wikipedia.org/wiki/Sieve of Eratosthenes#/media/File:Sieve of Eratosthenes animation.gif

○ O5. 완전 탐색

```
def find_primes(n):
    sieve = [0] * (n + 1)
    for i in range(2, int(n ** 0.5) + 1):
        if sieve[i] == 0:
            for j in range(i * i, n + 1, i):
                sieve[j] = 1
    return [i for i in range(2, n + 1) if sieve[i] == 0]
print(find_primes(10))
print(find_primes(100))
```


- BOJ 4948: 베르트랑 공준
 - 문제:
 - 임의의 자연수 n에 대하여, n보다 크고, 2n보다 작거나 같은 소수는 적어도 하나 존재한다.
 - 10보다 크고, 20보다 작거나 같은 소수는 4개가 있다. (11, 13, 17, 19)
 - 14보다 크고, 28보다 작거나 같은 소수는 3개가 있다. (17,19, 23)
 - n보다 크고, 2n보다 작거나 같은 소수의 개수를 구하는 프로그램을 작성하시오.
 - 입력:
 - 입력은 여러 개의 테스트 케이스로 이루어져 있다.
 - 각 케이스는 n을 포함하는 한 줄로 이루어져 있다.
 - 입력의 마지막에는 O이 주어진다.
 - 출력:
 - 각 테스트 케이스에 대해서, n보다 크고, 2n보다 작거나 같은 소수의 개수를 출력한다.

예제 입력	예제 출력				
1	1				
10	4				
13	3				
100	21				
1000	135				
10000	1033				
100000	8392				
0					


```
def find_primes(m):
    n = 2*m
    sieve = [0] * (n + 1)
    for i in range(2, int(n ** 0.5) + 1):
        if sieve[i] == 0:
            for j in range(i * i, n + 1, i):
                sieve[j] = 1
    return [i for i in range(m + 1, n + 1) if sieve[i] == 0]
while True:
    n = int(input())
    if n == 0: break
    print(len(find_primes(n)))
```


- BOJ 1969: DNA
 - 문제:
 - DNA란 어떤 유전물질을 구성하는 분자이다. DNA는 서로 다른 4가지의 뉴클 레오티드로 이루어져 있다
 - Adenine, Thymine, Guanine, Cytosine.
 - 어떤 DNA의 물질을 표현할 때, 이 DNA를 이루는 뉴클레오티드의 첫글자를 따서 표현한다.
 - Thymine-Adenine-Cytosine-Thymine-Guanine-Cytosine-Cytosine-Guanine-Adenine-Thymine 로 이루어진 DNA를
 - "TAACTGCCGAT"로 표현

- Hamming Distance란 길이가 같은 두 DNA가 있을 때,
 - 각 위치의 뉴클오티드 문자가 다른 것의 개수이다.
 - "AGCAT" 와 "GGAAT"는 첫 번째 글자와 세 번째 글자가 다르므로 Hamming Distance는 2이다.
- 우리가 할 일은 다음과 같다.
 - N개의 길이 M인 DNA S₁, S₂, ..., S_n가 주어져 있을 때
 - Hamming Distance의 합이 가장 작은 DNA s를 구하는 것이다.
 - 즉, s와 s_1 의 Hamming Distance + s와 s_2 의 Hamming Distance + s와 s_3 의 Hamming Distance ... 의 합이 최소가 된다는 의미이다.

■ 순열과 조합

• 순열: permutations

• 조합: combinations

■ 더 풀어볼 문제:

• BOJ 2581: 소수

• BOJ 14561: 회문

• BOJ 1990: 소수인 팰린드롬

• BOJ 6588: 골드바흐의 추측

• BOJ 2960: 에라토스테네스의 체

• BOJ 2529: 부등호

• BOJ 2503: 숫자 야구

Any Questions?

