ENSC 450 Final Project: SoC Integration

Daimon Gill Siavash Rezghi Zi Zhou (John) Qu

For Dr. Anita Tino and Sheida Alan

Final Project Purpose

- Perform an full hierarchical P&R system design
- Amend chosen core to interface with given bus design
- Create testbenches for given IPs and overall system
- Perform front end design including synthesis using DC shell for overall system
 - Chose operating frequency
 - Obtain design reference Verilog file
- Perform back end design including P&R using Cadence Innovus
 - Chose core density
 - Obtain design final Verilog file
- Test final Verilog file to match behavioral VHDL file in system testbench

AES-128 Encryption Core

- Takes 2 128-bit vectors as inputs
 - a vector as plaintext data
 - a vector as encryption key
- Performs AES-128 encryption on plaintext based on FIPS 197 standard
 - Performs 10 rounds of substitution and permutation operations to obtain final ciphertext
- Output a 128-bit encrypted codeword

AES-128 Amended Encryption Core

- 128-bit IO reduced to 32-bit IO
 - Input and output conducted over 4 clock cycles (32-bit * 4 = 128-bit)
- Interface with MR and MW control signals
 - Read when MR = 1, write when MW = 1
- Interface with 32-bit BUS:
 - Key or plain accumulate within buffers (4 cycles), assert load signal
 - Pass 128-bit buffers to aes128key, reset counters and load
 - After computation, cipher accumulated in output buffer
 - Output buffer sent to bus in 4 cycles

Soc System and Integrated Core

- DMA gets the data from the testbench into the SRAM
- Data from the SRAM goes towards the core
- Computation takes place in the core
- Computed data will sent back to the SRAM

Testbench Scenarios:

- 1. EXT port \rightarrow bus \rightarrow read and write to/from core
- 2. CPU writes to SRAM \rightarrow core reads data from SRAM \rightarrow computation \rightarrow write back to SRAM (manually)
- 3. CPU writes to SRAM \rightarrow core reads data from SRAM \rightarrow computation \rightarrow write back to SRAM (using DMA)

System Diagram

Core Synthesis Front-End Results

- Increasing area has frequency increased
- Power increased substantially as frequency increased
- Target Frequency: 175 MHz
 - o 0.17 ns slack

```
nerpoint: regyife[ani[23]

(input port clocked by clock)

Endpoint: plainCount reg[6]

(rising edge-triggered flip-flop clocked by clock)

Path Type: max
        Des/Clust/Port
                                                                                                                                                                                              Wire Load Model
                                                                                                                                                                                                                                                                                                                                                                                                                   Library
                                                                                                                                                                                                                                                                                                                                                                                                                   NangateOpenCellLibrary
        aes128keyWrapper 5K_hvratio_1_1
Clock clock (rise edge)
clock 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.00
0.80 f
                                                                                                                                                                                                                                                                                                                   1.92
1.80
1.92
1.98
1.98
1.88
1.82
1.17
1.17
US383/ZN (0R2-21)
US382/ZN (0R2-21)
US382/ZN (0R2-X1)
US382/ZN (0R2-X1)
US510/ZN (MANDZ-X1)
US510/ZN (MANDZ-X1)
US510/ZN (MANDZ-X1)
US511/ZN (AMDZ-X1)
US511/ZN (AMDZ-X1)
US385/ZN (0R2-X1)
US385/ZN (0R2-X1)
US385/ZN (0R2-X1)
US313/ZN (0R2-X2)
US513/ZN (0R2-X2)
US513/ZN (0R3-X2)
US513/ZN (MANDZ-X2)
US513/ZN (MANDZ-X2)
US513/ZN (MANDZ-X4)
US513/ZN (MANDZ-X4)
US513/ZN (MANDZ-X4)
                                                                                                                                                                                                                                                                                                    268.30
    U74/2N (NANUZ_XI)
US443/ZN (INV_XI)
US444/ZN (INV_X2)
US253/Z (MUXZ_XI)
plainCount reg[6]/D (DFF_XI)
data arrival time
    clock clock (rise edge)
clock network delay (ideal)
plainCount_reg[6]/CK (DFF_X1)
library setup time
data required time
        data required time
        slack (MET)
```

Frequency Vs Area

Core Synthesis Back-End Results

- Densities > 0.7 possessed slack violations
- Densities > 0.7 contained Max Tran and Max Cap violations
- Area decreased as density increased
- Target Density: 0.6
- Target Frequency: 175 MHz
 - o 0.159 ns slack
 - No max tran or max cap violations
 - No timing violations
- Master Script run length: 5.7 minutes
- Critical path contained 71 cells, starts at a control signal port and ends at a internal counter register

Density	Violations
0.4	None
0.5	None
0.6	None
0/7	Max tran, max cap

Core - Clock Tree

Max Skew	Latency	Number of Levels	Number of Clock Buffers	Number of Sinks	
700.6ps	700.6ps - 700.6ps = 0ps	0	3	647	

Core - Place and Route

Violation Type:	Violation:
	LOCATION
Description:	1

Core Design Specifications

Stage	Area (um2)	Area (KGates)	Frequency (MHz)	Slack (ns)	Power (Avg.) (mW)	Power (VCD) (mW)
Front End	18498.97	23122.5	175.00	0.17	0.8569	1.3582
Back End	30856.00	38570.0	175.00	0.159	3.807	1.2807

- Simulation was performed after both FE and BE processes to ensure behavior is preserved
- BE implementation is free of violations (DRC, max tran, max cap, timing)
- Degradation in area and power in backend

SoC Integration - Front End

- VHDL and post-synthesis simulations match
- Frequencies > 125 MHz possessed slack violations
- Minimal changes in area due to macros
- Power increased substantially as frequency increased
- Target Frequency: 100 MHz
 - 0.24 ns slack

Reference	Library	Unit Area	Count	Total Area	Attributes
DMA 1 32 32		2464.489976	1	2464.489976	h. n
INV XI	NangateOp	enCellLibrary			
		0.532000	5	2.660000	
INV_X2	Nangate0p	enCellLibrary			
110		0.798000	2	1.596000	
INV_X4	Nangate0p	enCellLibrary			
A444		1.330000	1		
SRAM	SRAM	14884.000000	1	14884.000000	b, d
aes128keyWrapper	aes 128key	Wrapper			
		33818.601562			
counter_32_4_1	ant teachers and a	2235.198009			
ubus_32_32_400010	00_400017ff				_b0000000_b00000ff
***************************************		676.437997	1	676.437997	h, n
Total 8 reference	 S			54084.313545	

Soc Integration - Back End

- Area remained constant due to macros
- Macros accounted for 17% of core area
- At higher frequencies instances increased, due to clock buffers
- Remained the same otherwise
- Power increased substantially as frequency increased
- Target Frequency: 100 MHz
 - o 0.768 ns slack
 - No max tran or max cap violations
- Master Script run length: 2.8 minutes

SoC - Clock Tree

Max Skew	Latency	Number of Levels	Number of Clock Buffers	Number of Sinks
1117.6ps	1117.6ps - 1117.6 ps = 0ps	0	3	409

Note: Critical path of the SoC contains the critical path of the core

SoC - Place and Route

SoC Integration - Front End vs Back End

Front End Critical Path:

Back End Critical Path:

Cells: 43 Cells: 80

Operation: DMA operation from the core Operation: DMA Operation from the core

Stage	Area (um²)	Area (kilogates)	Slack (ns)	Frequency (MHz)	Average Power (uW)	VCD Power (uW)
Front End	54,084.3	67,605	0.24	100.0	301.6	355.6
Back End	291,462.8	364,328.5	0.768	100.0	442.5	182.9216

Degradation in area, power, and timing

SoC Performance - Test Cases

Stage	Test Case 1	Test Case 2	Test Case 3
VHDL	0x41	0x58	0x80
VHDL + Hard Macro	0x41	0x58	0x80
Front End	0x41	0x58	0x80
Back End	0x41	0x58	0x80

- Test Case 1: read and write raw data to core manually
- Test Case 2: read and write from SRAM to core manually
- Test Case 3: read and write from SRAM to core using DMA

P&R Considerations

- Both place and route scripts are not completely automated
- Failed to automate importing design, automated once design is imported
- Scripts report time of running P&R scripts

aes128keyWrapper Macro:

 Decreased input transition time to 0.01

ENSC450 System:

Decreased input transition time to 0.1

Timing and DRC Violations

aes128keyWrapper Core Macro:

- DRC Violation free
- Timing Violation free
 - Hold and Setup conditions met
 - Max Tran and Max Cap conditions met

ENSC450 System:

- Contains DRC Violations
 - Unconnected pin violations with SRAM macro
 - Pins not connected to VDD and VSS global net
- Timing Violation free
 - Hold and Setup conditions met
 - Max Tran and Max Cap conditions met

Simulations

- Simulations conducted throughout to ensure correct functionality
- Two testbenches created: aes128keyWrapperTB and tb_ensc450
 - Before and after synthesis of amended core (within system and standalone)
 - After PR of core macro (within system and standalone)
 - After synthesizing system with macros
 - After place and route of the entire system
- All simulation waveforms can be viewed in submission folder

Thanks for watching!