## Matematika I

10. marec 2017 10:50

| Meno a priezvisko: Podpis: Podpis:                                                |
|-----------------------------------------------------------------------------------|
| Ročník: Študijný program:                                                         |
| 1. (7b) Daná je všeobecná rovnica kužeľosečky $2x^2 + 8x - 3y^2 + 12y - 16 = 0$ . |
| Doplňte:                                                                          |
| a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je            |
| b) (1b) Typ kužeľosečky je                                                        |
| $c_1$ ) súradnice stredu kužeľosečky:                                             |
| d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky      |

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.



a) 
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b) 
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c) 
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d) 
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy^2 \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník s vrcholmi  $A=[-1,-1],\,B=[1,-1],\,C=[4,3],\,D=[-4,3].$ 

Výsledok:

- 4. (4b) Bod Mmá v pravouhlej súradnicovej sústave súradnice:  $M=[3,\sqrt{3},3].$ 
  - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v cylindrickej súradnicovej sústave sú:

a) 
$$M = [2\sqrt{3}, -\frac{\pi}{6}, 3]$$

c) 
$$M = [2\sqrt{3}, \frac{\pi}{3}, 3]$$

b) 
$$M = [2\sqrt{3}, -\frac{\pi}{3}, 3]$$

d) 
$$M = [2\sqrt{3}, \frac{\pi}{6}, 3]$$

b) (2b) Znázornite tento bod M v cylindrickej súradnicovej sústave.

Náčrt:

| 5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 4y'(x) + 4y(x) = e^{-\frac{x}{2}}$                            |
|----------------------------------------------------------------------------------------------------------------------------------------|
| a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.                                                               |
| Charakteristická rovnica je:                                                                                                           |
| b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou str<br>nou.                                       |
| Fundamentálny systém riešení je                                                                                                        |
| b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.                                                                   |
| Partikulárne riešene je                                                                                                                |
| c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.                                                             |
| Všeobecné riešenie danej LODR je                                                                                                       |
| $\lim_{[x,y]\to[1,1]} \frac{x-1}{x+y-2}.$                                                                                              |
| Výsledok:                                                                                                                              |
| 7. (6b) Nájdite rovnicu dotykovej roviny $\tau$ ku grafu funkcie $f(x,y)=\frac{1}{x^2+y}$ v bode $T=\left[-1,y_0,\frac{1}{3}\right]$ . |
| (2b) Nájdite $y_0$ a <b>uvedte súradnice dotykového bodu</b> :                                                                         |
| (4b) Rovnica dotykovej roviny $\tau$ je:                                                                                               |
| 8. (6b) Daná je funkcia $f(x,y) = \frac{x}{\sqrt{3y-2x}}$ , bod $A = [1, 1]$ a vektor $\vec{l} = (1, -2)$ .                            |
| a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode $A$ .                                                                                 |
| <b>Gradient</b> funkcie $f(x,y)$ v bode $A$ je                                                                                         |
| b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode $A$ v smere vektora $\vec{l}$ .                                                  |
| <b>Derivácia</b> funkcie $f(x,y)$ v bode $A$ v smere vektora $\vec{l}$ je                                                              |

| a) | Načrtnite oblasť $M$ : Náčrt:                                                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|
|    | Nacrt:                                                                                                                                    |
|    |                                                                                                                                           |
|    |                                                                                                                                           |
|    |                                                                                                                                           |
|    |                                                                                                                                           |
|    | Pomocou matematických vzťahov popíšte hranice oblasti $M\colon$                                                                           |
|    | (a) (2b) AB                                                                                                                               |
|    | (c) (2b) CD                                                                                                                               |
|    | (d) (2b) <i>AD</i>                                                                                                                        |
| b) | (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti $M$ .<br>Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".               |
|    | <b>Doplňte odpoveď:</b> Funkcia $f(x,y)$ má v bode lokálne                                                                                |
| c) | Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti $M.$ Ak hľadaný lokálny extrém nejestvuje, napíšte "nie je". |
|    | (a) (3b) Na hranici $AB$ má funkcia $f(x,y)$ v bode $\ldots\ldots$ viazané lokálne $\ldots\ldots$                                         |
|    | (b) (3b) Na hranici $BC$ má funkcia $f(x,y)$ v bode viazané lokálne (c) (3b) Na hranici $CD$ má funkcia $f(x,y)$ v bode viazané lokálne   |
|    | (d) (3b) Na hranici $AD$ má funkcia $f(x,y)$ v bode viazané lokálne                                                                       |
| d) | (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$                                                               |
|    | Najväčšia hodnota funkcie $f(x,y)$ je:                                                                                                    |
|    | Najmenšia hodnota funkcie $f(x,y)$ je:                                                                                                    |
|    |                                                                                                                                           |

9. (27b) Daná je funkcia  $f(x,y)=2x^2-12x+y^2-4y$  a oblasť M. Oblasť M je mnohouholník ABCD s vrcholmi  $A=[-1,0],\ B=[7,0],\ C=[4,3]$  a D=[2,3].