線形代数学・同演習 B

12 月 13 日分 演習問題*1

1. (1)
$$W(1; A) = \text{Span}(\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}), W(-1; A) = \text{Span}(\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})$$

(2) $W(2; A) = \text{Span}(\begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}), W(-1; A) = \text{Span}(\begin{pmatrix} -1 \\ 1 \\ -2 \\ 1 \end{pmatrix})$

 2^{\dagger} (1) \bigcirc (2) \times (3) \bigcirc (4) \times

(1) $v,v'\in \mathrm{Im}(T)$ とすると, $\mathrm{Im}(T)$ の定義より, $v=T(u),\,v'=T(u')$ となる $u,u'\in V$ が存在する.このとき,T の線形性から

$$T(\boldsymbol{u} + \boldsymbol{u}') = T(\boldsymbol{u}) + T(\boldsymbol{u}') = \boldsymbol{v} + \boldsymbol{v}', \quad T(\lambda \boldsymbol{u}) = \lambda T(\boldsymbol{u}) = \lambda \boldsymbol{v}$$

なので, $v+v'\in {\rm Im}(T),\; \lambda v\in {\rm Im}(T)$ である.また, ${\bf 0}_V=T({\bf 0}_V)$ であることより ${\bf 0}_V\in {\rm Im}(T)$ なので, ${\rm Im}(T)$ は V の部分空間となる.

- (2) V の零元 $\mathbf{0}_V$ は係数が全て 0 である多項式である.よって W_1 に属するための条件「最高次の係数が 1」を満たさないため, W_1 には零元が含まれない.つまり W_1 は部分空間ではない.
- (3) $v,v'\in {
 m Ker}(T)$ とすると,定義より $T(v)={f 0}_V,\, T(v')={f 0}_V$ となる.このとき,T の線形性から

$$T(\boldsymbol{v} + \boldsymbol{v}') = T(\boldsymbol{v}) + T(\boldsymbol{v}') = \mathbf{0}_V, \quad T(\lambda \boldsymbol{v}) = \lambda T(\boldsymbol{v}) = \mathbf{0}_V$$

なので, $v+v'\in \mathrm{Ker}(T)$, $\lambda v\in \mathrm{Ker}(T)$ である.また, $T(\mathbf{0}_V)=\mathbf{0}_V$ であることより $\mathbf{0}_V\in \mathrm{Ker}(T)$ なので, $\mathrm{Ker}(T)$ は V の部分空間となる.

- (4) $T(\mathbf{0}_V)=\mathbf{0}_V
 eq x$ であるため,零元 $\mathbf{0}_V$ は W_2 に属するための条件を満たさない.つまり, W_2 は部分空間ではない.
- 3. (1) $g_{T_1}(t) = t(t-1), W(0; T_1) = \operatorname{Span}(1), W(1; T_1) = \operatorname{Span}(x)$
 - (2) $g_{T_2}(t) = (t+1)(t-1), W(1; T_2) = \operatorname{Span}(1+x), W(-1; T_2) = \operatorname{Span}(1-x)$
 - (3) $g_{T_3}(t) = (t 1/2)(t 2), W(1/2; T_3) = \operatorname{Span}(x), W(2; T_2) = \operatorname{Span}(1)$
- 4. (1) 固有値は 1,a で , 対応する固有空間はそれぞれ $\mathrm{Span}(1),\,\mathrm{Span}(x+\frac{b}{a-1})$
 - (2) 固有値は $1,a,a^2$ で , 対応する固有空間はそれぞれ $\mathrm{Span}(1),\,\mathrm{Span}(x+\frac{b}{a-1}),\,\mathrm{Span}((x+\frac{b}{a-1})^2)$
 - (3) 固有値は a^i $(i=0,1,\ldots,n)$ で,固有値 a^i に対する固有空間は $\mathrm{Span}((x+\frac{b}{a-1})^i)$ となる.
- 5.† (1) $W(1; T) = \text{Span}(-3x^2 5x + 1), W(-2; T) = \text{Span}(x),$ $W(3; T) = \text{Span}(-2x^2 - 3x + 1).$
 - (2) $W(1; T) = \text{Span}(-2x^2 + 3x + 1), W(-2; T) = \text{Span}(-x^2 + 2x + 1),$ $W(4; T) = \text{Span}(-2x^2 + x).$
 - (3) $W(1; T) = \operatorname{Span}(x^2 + 5x, x^1 + 1), W(2; T) = \operatorname{Span}(x^2 x + 1).$

^{*1} 凡例:無印は基本問題, † は特に解いてほしい問題, * は応用問題.

6. $D=\left(egin{smallmatrix} \lambda & 0 \\ 0 & \mu\end{smallmatrix}
ight),\,P=\left(egin{smallmatrix} a & b \\ c & d\end{smallmatrix}
ight)$ とおく.PD=AP の各成分を比較する.

$$PD = \begin{pmatrix} \lambda a & \mu b \\ \lambda c & \mu d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix} = AP.$$

- 特に (2,1) 成分と (2,2) 成分より, $\lambda=\mu=1$ でなければならないことが分かる.さらに (1,1) 成分と (1,2) 成分を見ると,c=d=0 でなければならない.しかしこのとき $P=\left(\begin{smallmatrix} a&b\\0&0 \end{smallmatrix} \right)$ となるため,正則行列にはなりえない.よって, $A=\left(\begin{smallmatrix} 1&1\\0&1 \end{smallmatrix} \right)$ は対角化することができない.
- 7.* (1) $W_1\ni {m w}_1=-{m w}_2\in W_2$ なので, ${m w}_1,-{m w}_2\in W_1\cap W_2=\{{m 0}\}$,つまり ${m w}_1={m w}_2={m 0}$ となる.
 - (2) $W_1 \ni w_1 w_1' = w_2' w_2 \in W_2$ なので(1) より $w_1 w_1' = 0$ かつ $w_2' w_2 = 0$. つまり $w_1 = w_1'$ かつ $w_2 = w_2'$ となる.