Summary/Planning

Artificial Intelligence @ Allegheny College

Janyl Jumadinova

December 1, 2021

What is AI?

What is AI?

Agents intelligence rationality

Planning:

- deciding what to do based on an agent's ability, its goals, and the state of the world;
- 'thinking head' using logical representations of the states of the world;
- finding a sequence of actions to solve a goal.

Planning:

- deciding what to do based on an agent's ability, its goals, and the state of the world;
- 'thinking head' using logical representations of the states of the world;
- finding a sequence of actions to solve a goal.

In *classical planning*, the environment is fully observable; deterministic and static with only a single agent.

- Automation requires efficient automated planning.
- In comparison with the classification problem planning problem solutions provide guarantees on its quality.

- Automation requires efficient automated planning.
- In comparison with the classification problem planning problem solutions provide guarantees on its quality.

When to use Planning:

- Desire a procedural course of action for a declaratively described system.
- Domain knowledge can be elicited or learned over time.
- Consistency is more desired than learning transient behaviors.

Applications

- System control (autonomous/virtual agents)
- Process control:
 - Construction and configuration
 - Workflow management
 - Mission planning
 - Project planning

Basic planning problem:

- Given: start state, goal conditions, actions
- Find: sequence of actions leading from start to goal
- **Typically**: states correspond to possible worlds; actions and goals specified using a logical formalism (e.g., STRIPS, situation calculus, temporal logic, etc.)

Delivery Robot Example

Features:

RLoc – Rob's location RHC – Rob has coffee SWC – Sam wants coffee MW – Mail is waiting RHM – Rob has mail

Actions:

mc – move clockwise
mcc – move counterclockwise
puc – pickup coffee
dc – deliver coffee
pum – pickup mail
dm – deliver mail

Explicit State-space Representation

Enumerate the states and, for each state, specify the actions that are possible in that state and, for each state-action pair, specify the state that results from carrying out the action in that state.

Explicit State-space Representation

Enumerate the states and, for each state, specify the actions that are possible in that state and, for each state-action pair, specify the state that results from carrying out the action in that state.

$$4x2x2x2x2 = 64$$
 states

State	Action	Resulting State
$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	mc	$\langle mr, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\left \left\langle \mathit{lab}, \overline{\mathit{rhc}}, \mathit{swc}, \overline{\mathit{mw}}, \mathit{rhm} \right\rangle \right $	mcc	$\left \left\langle \mathit{off},\overline{\mathit{rhc}},\mathit{swc},\overline{\mathit{mw}},\mathit{rhm}\right\rangle\right $
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	dm	$\left \left\langle \mathit{off}, \overline{\mathit{rhc}}, \overline{\mathit{swc}}, \overline{\mathit{mw}}, \overline{\mathit{rhm}} \right\rangle \right $
$\left \left\langle \mathit{off}, \overline{\mathit{rhc}}, \mathit{swc}, \overline{\mathit{mw}}, \mathit{rhm} \right\rangle \right $	mcc	$\langle cs, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
$\langle off, \overline{rhc}, swc, \overline{mw}, rhm \rangle$	mc	$\langle lab, \overline{rhc}, swc, \overline{mw}, rhm \rangle$
·		

Status of Classical Planning

- Classical planning works!
 - Large problems solved very fast (non-optimally)

Status of Classical Planning

Classical planning works!

- Large problems solved very fast (non-optimally)
- Limitations:
 - Does not model uncertainty (no probabilities)
 - Does not deal with incomplete information (no sensing)
 - Deals with very simple cost structure (no state dependent costs)

Policies

A stationary policy is a function:

$$\pi: S \to A$$

Given a state s, $\pi(s)$ specifies what action the agent who is following π will do.

An optimal policy is one with maximum expected discounted reward.

Policy Examples

- 1 Never check for smoke, and call only if there is a report.
- 2 Always check for smoke, and call only if it sees smoke.
- 3 Check for smoke if there is a report, and call only if there is a report and it sees smoke.
- 4 Check for smoke if there is no report, and call when it does not see smoke.
- S Always check for smoke and never call.

Markov Decision Processes (MDPs)

A fundamental framework for probabilistic planning.

MDPs are fully observable, probabilistic state models:

- a state space S
- a set $G \subset S$ of goal states
- actions $A(s) \subset A$ applicable in each state $s \in S$
- transition probabilities $P_a(s_0|s)$ for $s \in S$ and $a \in A(s)$
- action costs c(a, s) > 0

Markov Decision Processes (MDPs)

A fundamental framework for probabilistic planning.

MDPs are fully observable, probabilistic state models:

- a state space S
- a set $G \subset S$ of goal states
- actions $A(s) \subset A$ applicable in each state $s \in S$
- transition probabilities $P_a(s_0|s)$ for $s \in S$ and $a \in A(s)$
- action costs c(a, s) > 0

Solutions are functions (**policies**) mapping states into actions.

Optimal solutions have minimum expected costs.

Markov Decision Processes (MDPs)

MDP Solution

- ullet Want a way to choose an action in a state, i.e., a policy π
- What does a policy look like?
 - Can pick action based on states visited + actions used so far, i.e., execution history h = s(1)a(1)s(2)a(2)...
 - Can pick actions randomly

MDP Solution

- Want a way to choose an action in a state, i.e., a policy π
- What does a policy look like?
 - Can pick action based on states visited + actions used so far, i.e., execution history h = s(1)a(1)s(2)a(2)...
 - Can pick actions randomly
- Thus, in general an MDP solution is a probabilistic history-dependent $\pi: HxA \rightarrow [0,1]$

Evaluating MDP Solutions

• Executing a policy yields a sequence of rewards

Evaluating MDP Solutions

- Define utility function u(R1, R2, ...) to be some "quality measure" of a reward sequence.
- Define **value** function as $V: H \rightarrow [-infty, infty]$.
- Define value function of a policy after history h to be some utility function of subsequent rewards:

$$V^{\pi}(h) = u(R1, R2, ...)$$

Optimal MDP Solution

- Want: a behavior that is "best" in every situation
- π^* is an optimal policy if $V^*(h) \geq V^{\pi}(h)$ for all π , for all h

Example: to exercise or not?

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit} **Actions**: {exercise, relax}

Example: to exercise or not?

Each week Sam has to decide whether to exercise or not:

States: {fit, unfit} Actions: {exercise, relax}

Dynamics:

State	Action	P(fit State, Action)
fit	exercise	0.99
fit	relax exercise	0.7
unfit	exercise	0.2
unfit	relax	0.0

Reward (does not depend on resulting state):

-			•
State	Action	Reward	
fit	exercise	8	
fit	relax	10	
unfit	exercise	0	
unfit	relax	5	
unfit	exercise relax	0	

Information Availability

What information is available when the agent decides what to do?

• Fully-observable MDP the agent gets to observe S_t when deciding on action A_t .

Information Availability

What information is available when the agent decides what to do?

- Fully-observable MDP the agent gets to observe S_t when deciding on action A_t .
- Partially-observable MDP (POMDP) the agent has some noisy sensor of the state. It needs to remember its sensing and acting history.

Al Planning at IBM

