Ergodic theory and Dynamical systems

Deviation of ergodic averages of higher step nilflows.

Minsung Kim

August 16, 2021

Nicolaus Copernicus University

Dynamical systems

Dynamical systems is the study of the long-term behavior (evolution) in complex systems.

- Let $\phi^X_t: M \to M$ be a flow, i.e. one parameter family of transformations.
- The trajectory $\{\phi_t^X(x), t \geq 0\}$ of a point $x \in M$ is called orbit.
- A flow is called parabolic if nearby orbits diverge polynomially, i.e $D\phi_X^t = O(t^d)$.

Example

Area-preserving flow, Horocycle flow, Nilflow.

Motivation

Definition

A flow is ergodic (w.r.t probability measure μ) if for any invariant set A,

$$\mu(\phi_t^X(A)) = \mu(A) \Longrightarrow \mu(A) = 0 \text{ or } 1.$$

By Birkhoff ergodic theorem, for a.e $x \in M$

$$\left| \frac{1}{T} \int_0^T f \circ \phi_t^X(x) dt - \int_M f \ d\mu \right| \to 0, \quad \text{as } T \to \infty.$$
 (1)

We call an orbit of x is equidistributed with respect to μ if (1) holds.

 Effective equidistribution means finding the error bound on the speed of convergence of ergodic averages.

3

Motivation

For parabolic flows, there were not many results until mid of 90's.

- M. Ratner('86), M. Burger('90), Sarnak('88) proved results for deviations of ergodic averages for horocycle flow on negative constant curvature.
- A. Zorich proved deviation of ergodic averages for interval exchange maps ('97).
- Forni proved the deviation of area-preserving flows ('02) based on his work on cohomological equation for compact surface of higher genus ('97).
- Marmi-Moussa-Yoccoz ('06) solved cohomological equations for interval exchange maps.

Related results

Deviation of ergodic averages for parabolic flows:

- Area-preserving flow (Forni 02)
- Horocycle flow (Flaminio-Forni 03)
- Heisenberg nilflow (Flaminio-Forni 06)
- Higher rank actions on Heisenberg manifold (Flaminio-Cosentino 15)
- Higher step nilflow (Quasi-abelian) (Flaminio-Forni 14)
- Twisted horocycle flow (Flaminio-Forni-Tanis 15)
- Twisted translation flow (Forni 19)

Bufetov's perspective

A. Bufetov proved deviation of ergodic integrals in terms of finitely-additive Hölder measure. It is called Bufetov functional or cocycle and used in proving limit theorems of parabolic flows.

- Translation flow (Bufetov 14) ← (Forni '02)
- Horocycle flow (Bufetov-Forni 14) ← (Flaminio-Forni '03)
- Heisenberg nilflow (Forni-Kanigowski '20) ← (Flaminio-Forni '06)
- Higher rank actions on Heisenberg ← (Cosentino-Flaminio '15)
- Self-similar tiling (Bufetov-Solomyak 13)
- Interval exchange transformation (Klimenko 19)
- * Limit shape for IET: Marmi-Moussa-Yoccoz ('14) / M-Ulcigrai-Y ('20)

Background: nilflows

Setting

Let G be connected, simply connected nilpotent Lie group. There exists lower central series

$$G = G^{(1)} \supset G^{(2)} \cdots \supset G^{(k)} = \{e\}.$$

Equivalently, for Lie algebra g

$$\mathfrak{g}\supset\mathfrak{g}^{(2)}=[\mathfrak{g},\mathfrak{g}]\supset\cdots\supset\mathfrak{g}^{(k)}=[\cdots[\mathfrak{g},[\mathfrak{g},\mathfrak{g}]]=0.$$

- We call step the smallest number k that satisfies $G^{(k)} = \{e\}$.
- A nilmanifold is the quotient $M = \Gamma \backslash G$ of a nilpotent Lie group by lattice $\Gamma < G$.
- \bullet $\,\mathfrak{S}$ is generator of \mathfrak{g} if the smallest sub-algebras containing \mathfrak{S} is $\mathfrak{g}.$

7

Examples

Definition (Heisenberg Lie algebra)

A Lie algebra $\mathfrak g$ is called Heisenberg if $\mathfrak g=span\{X,Y,Z\}$ with $[X,Y]=Z\in \mathfrak Z(\mathfrak g).$

$$\mathfrak{Z}(\mathfrak{g})=\{X\in\mathfrak{g}\mid [X,Y]=0, \text{for any }Y\in\mathfrak{g}\} \text{ is center of }\mathfrak{g}.$$

Denote Heisenberg nilmanifold by $M := G/\Gamma$.

$$M:=H_3(\mathbb{R})/H_3(\mathbb{Z})=egin{pmatrix} 1 & a & c \ 0 & 1 & b \ 0 & 0 & 1 \end{pmatrix}, \quad a,b,c\in\mathbb{R}/\mathbb{Z}$$

8

Relations with torus

Definition (Nilflows)

Nilflow ϕ^X_t is defined by one-parameter subgroup such that

$$\phi_t^X(x) = x \exp(tX), \quad x \in M, \quad X \in \mathfrak{g}.$$

Heisenberg nilflow can be understood on torus.

$$\phi_t^X(x) = x \exp((\alpha_1 X + \alpha_2 Y + \alpha_3 Z))$$

There exists a projection $p_1: M \to \mathbb{T}^2 = \exp(aX + bY)/\Gamma$.

Relations with torus

There exists a projection $p_2: M \to \mathbb{T}^2 = \exp(bY + cZ)$.

$$r(y,z) = (y + \alpha, z + y + \beta)$$

Definition (Quasi-abelian Lie algebra)

A k-step quasi-abelian filiform nilpotent Lie group G is expressed by its Lie algebra $\mathfrak{g} = span\{X, Y_i\}$ whose descending central sequence has length k with $[X, Y_i] = Y_{i+1}$ for $1 \le i \le k-1$.

- This idea can be generalized to higher dimensional \mathbb{T}^d .
- First return map to the torus can be written as a skew shift.
- In general nilmanifolds, we do not have a nice return map.

Properties of nilflows

Definition (Nilflow)

Let M be nilmanifold and $\mathfrak g$ be its Lie algebras. Nilflow ϕ^X_t is defined by

$$\phi_t^X(x) = x \exp(tX), \quad x \in M, \quad X \in \mathfrak{g}.$$

Theorem (L.Green, L. Auslander, F.Hahn)

The followings are equivalent:

- The nilflow $(\phi_t^X)_{t\in\mathbb{R}}$ is ergodic;
- Uniquely ergodic;
- Minimal, i.e. all orbits are dense;
- The projected flow is an irrational flow on a base torus.

Note: $G^{ab}=G/[G,G]\simeq \mathbb{R}^n$ is abelianization and there always exists projection $p:M\to \mathbb{T}^n$.

Mixing

Nilflow is never mixing but it is recently proved that mixing property is obtained by its time changes. (Shearing property)

- Heisenberg nilflow [Avila-Forni-Ulcigrai 11']
- Filiform [Ravotti 19']
- Higher step nilmanifolds. [AFUR '21]
- Multiple mixing on Heisenberg nilflow [Forni-Kanigowski '20]
- Decay of correlation on Heisenberg nilflow [F-K '20]

It is open for quantitative mixing and higher order mixing on general nilmanifolds.

Effective equidistribution of

higher step nilflows

Results on nilmanifolds

Theorem (Green-Tao '12)

If the projected linear toral flow has a Diophantine frequency, then there exists a constant C>0 and exponent $\delta\in(0,1)$ such that for all Lipschitz function f on nilmanifold M,

$$\left|\frac{1}{T}\int_0^T f\circ\phi_t^X(x)dt - \int_M f \ dvol\right| \leq C \|f\|_{Lip} T^{-\delta}.$$

- Effective equidstribution of Heisenberg nilflows was obtained by Flaminio-Forni ('06). There is an upper bound $T^{-1/2+\epsilon}$ for all $x \in M$.
- Butterley-Simonelli ('20) proved deviation of ergodic averages of Heisenberg nilflows using transfer operator.
- Our question is whether it is possible to prove effective equidistribution of ergodic averages on any higher step nilmanifolds.

Results on nilmanifolds

Theorem (Flaminio-Forni '14)

Let (ϕ_X^t) be a nilflow on k-step filiform nilmanifold M which projects to a linear toral flow on \mathbb{T}^2 with Diophantine frequency of exponent $\nu \in [1, k/2]$. For every $\epsilon > 0$, there exists a positive measurable function $K_{\epsilon}(x) \in L^p(M)$ with $p \in [1, 2)$ such that

$$\left|\frac{1}{T}\int_{0}^{T}f\circ\phi_{X}^{t}(x)dt-\int_{M}f\ vol\right|\leq C_{s}K_{\epsilon}(x)T^{-\frac{2}{3k(k-1)}+\epsilon}\left\|f\right\|_{s}$$

holds for every function $f \in W^s(M)$ and for almost all $x \in M$ and $T \ge 1$.

Applications in Weyl sums

Definition (Weyl sum)

$$W_N(a_k, \dots, a_0) = \sum_{n=0}^{N-1} e^{2\pi i P(n)}, \quad P(n) = \sum_{i=0}^k a_i n^i$$

- The result on Heisenberg nilflows provides the bound of Weyl sums for quadratic polynomials (theta sum).
- It generalized upper bound on the asymptotic behavior of theta sums in the work of Fiedler, Jurkat and Körner.
- Wooley ('14) obtained the (quadratic) bound of Weyl sum.

Strictly triangular nilmaniofold

Definition

A step 3 strictly triangular Lie algebra $\mathfrak g$ is a nilpotent Lie algebra with its basis $\mathcal F=\{X_1,X_2,X_3,Y_1,Y_2,Z\}$ with commutation relations:

$$[X_1, X_2] = Y_1, \quad [X_2, X_3] = Y_2$$

 $[X_1, Y_2] = Z = [Y_1, X_3]$

$$H_6(\mathbb{R}) := egin{pmatrix} 1 & x_1 & y_1 & z \ 0 & 1 & x_2 & y_2 \ 0 & 0 & 1 & x_3 \ 0 & 0 & 0 & 1 \end{pmatrix} \quad x_i, y_j, z \in \mathbb{R}.$$

This model can be generalized to k step triangular.

Main result - step 3 triangular

Theorem

Let (ϕ_t^X) be a nilflow on 3-step triangular nilmanifold M, and projected flow (ϕ_t^X) satisfies Roth-type Diophantine frequency. For every $\epsilon>0$ and s>29 there exists C>0 such that the following holds: for every function $f\in W^s(M)$ and for all $x\in M$ and $T\geq 1$,

$$\left|\frac{1}{T}\int_0^T f\circ\phi_t^X(x)dt-\int_M f\ dvol\right|\leq C_sT^{-\frac{1}{12}+\epsilon}\left\|f\right\|_s.$$

Definition (Roth type)

For $\alpha=(1,\alpha_2,\cdots,\alpha_d)$ and $m\in\mathbb{Z}^d$, α satisfies Roth type Diophantine condition if for all $\epsilon>0$, the following hold with exponent $\nu=1+\epsilon$.

$$|m \cdot \alpha| \geq \frac{C(\alpha, \epsilon)}{\|m\|^{\nu}}$$

17

Main result - Generalization

 Quesiton: Can we extend this result to the k-step triangular nilmanifold?

Yes.

Definition (Transversality condition)

Let $\mathfrak g$ be nilpotent Lie algebra satisfying *transversality condition* if there exists a basis of $\mathfrak g$ such that

$$\langle \mathfrak{G} \rangle \oplus \mathsf{Ran}(\mathsf{ad}_X) + \mathcal{C}_{\mathfrak{I}}(X) = \mathfrak{g}$$

 \mathfrak{G} is a set of generator, and $C_{\mathfrak{I}}(X)$ is centralizer in codimension 1 ideal \mathfrak{I} .

Main theorem

Theorem

Let (ϕ_t^X) be a nilflow on k-step nilmanifold M with $\mathfrak g$ satisfying transversality conditions. For every $\epsilon>0$, there exists $K_\epsilon\in L^p(M)$ and 1< p<2 such that the following holds: for every function $f\in C^\infty(M)$ and for almost all $x\in M$ and $T\geq 1$,

$$\left|\frac{1}{T}\int_0^T f \circ \phi_t^X(x)dt - \int_M f \ dvol\right| \leq K_{\epsilon}(x)T^{-\frac{1}{3S(n,k)}+\epsilon} \left\|f\right\|_s.$$

n: the number of generators of g.

- k-step Quasi-abelian filiform (Flaminio-Forni 14) : $T^{-\frac{2}{3k(k+1)}+\epsilon}$
- Step 3 triangular (K 17) : $T^{-\frac{1}{12}+\epsilon}$ for all $x \in M$
- Triangular (K 19) : $T^{-\frac{1}{3(k-1)(k^2+k-3)}+\epsilon}$

Main steps of the proof.

Cohomological equation

Definition (Cohomological equation.)

The following functional equation is called Cohomological equation.

$$L_X u = X u = f$$

Definition (Invariant distribution.)

Given cohomological equation Xu = f, we define X-invariant distribution D such that the following holds:

$$XD(f) = D(Xf) = 0, \quad \forall f \in C^{\infty}(M)$$

- Invariant distributions are obstructions to solving cohomological equations.
- Flaminio-Forni (07) proved solutions of cohomological equations for nilflows.

Cohomological equation - example

Example

On
$$\mathbb{T}^2$$
, $X = \alpha_1 \partial_x + \alpha_2 \partial_y$

$$Xu = f$$

By Fourier series, for $k = (k_1, k_2)$

$$(2\pi\iota k\cdot\alpha)\hat{u}(k_1,k_2)=\hat{f}(k_1,k_2).$$

If $k \cdot \alpha \neq 0$, then

$$\hat{u}(k_1,k_2) = \frac{\hat{f}(k_1,k_2)}{(2\pi\iota k \cdot \alpha)}.$$

If k = (0,0), then it is necessary to have

$$\hat{f}(0,0)=0\iff D(f)=0.$$

Sketch of the proof

Forni's observation: In ergodic averages, we view it as a distribution

$$\gamma_{\mathsf{x}}^{\mathsf{T}}(f) := \frac{1}{T} \int_0^{\mathsf{T}} f \circ \phi_t^{\mathsf{X}}(\mathsf{x}) dt = D(\mathsf{T})(f) + R(\mathsf{T})(f)$$

Example

On
$$\mathbb{T}^2$$
, $D(T) = \mu$.

If f is coboundary, (assuming zero averages)

$$\left|\frac{1}{T}\int_0^T f \circ \phi_t^X(x)dt\right| = \frac{1}{T}\left|u \circ \phi_T^X(x) - u(x)\right| \le \frac{2}{T}\left\|u\right\|_{\infty}$$

By Harmonic analysis, we obtain

$$||u||_{\infty} \leq C ||f||_{C^{r}(\mathbb{T}^{2})}.$$

Sobolev norm

Definition (Sobolev norm)

We denote $f \in W^s(M)$ if

$$||f||_s = \sum_{i+j \le s} ||X^i Y^j f||_{L^2(M)}$$

Theorem (Sobolev embedding theorem)

For any s > g + 1/2, there exists a constant $B_s > 0$ such that for any $f \in W^s(M)$,

$$\left\|f\right\|_{\infty} \leq B_{s} \left\|f\right\|_{s},$$

where $B_s = \sup_{f \in W^s} \frac{\|f\|_{\infty}}{\|f\|_s}$ is called best Sobolev constant.

Sobolev embedding theorem

Theorem (Sobolev embedding)

Let s > dim(M)/2. For all $f \in W^s(M)$,

$$|\gamma_x^T(f)| \leq B_s(\mathcal{F}) \|f\|_s$$
,

where $B_s(\mathcal{F})$ is called Sobolev constant.

- To replace the bound of $B_s(\mathcal{F})$ in terms of time T, it is inevitable to rescale the frame in time.
- In Heisenberg case, we call renormalization flow

$$g_t: \alpha = (X, Y, Z) \mapsto (e^t X, e^{-t} Y, Z).$$

 It reduces controlling the bound of invariant distributions and remainders (backward iteration)

$$\gamma_x^T(f) = \sum_{i \in \mathbb{N}} C_{D_i}(x, T) D_i(T)(f) + R(T)(f).$$

Renormalization

Example (d=1)

$$\gamma_x^T(f) = \frac{1}{T} \int_0^T f \circ \phi_s^X(x) ds = \frac{1}{e^{-t}T} \int_0^{e^{-t}T} f \circ \phi_s^{e^tX}(x) ds.$$

- However, there is no renormalization flows on higher step nilmanifolds. (No more Sobolev constant!)
- Instead, we rescale each vector field and it behaves like renormalization. This is called the rescaling method.

Sobolev trace theorem

Lemma (Sobolev trace theorem)

For any $s > \dim(M)/2$, there is a constant $C_s > 0$ such that the following holds.

$$\left|\frac{1}{T}\int_0^T f \circ \phi_t^X(x)dt\right| \leq \frac{C_s}{T^{\frac{1}{2}}w_{\mathcal{F}}(x,T)^{\frac{1}{2}}} \|f\|_s.$$

- Bound of averaged width is reduced to ergodic averages of close return function and it ends up estimation of invariant distribution.
- We call a point x ∈ M is 'Good' if averaged width is not too small.
 We prove the set of Good points has a full measure in M.

Main lemma

Estimation of width is reduced to return orbits on transverse manifold.

- Set $O_{x,T} := \{\Omega \subset \mathbb{R} \times [-1/2, 1/2]^a \mid [0, T] \times \{0\} \subset \Omega\}$
- Let $w_{\mathcal{F}}(x,T)$ be averaged width

$$w_{\mathcal{F}(t)}(x,T) := \sup_{\Omega \subset O_{x,T}} \left(\frac{1}{T} \int_0^T \frac{ds}{w_{\Omega}(s)} \right)^{-1}.$$

Remark

Final remark. There are still many issues left to control the average width in higher step case.

- Lack of good return map: the measure of the set of close return (almost periodic) in the transverse manifold should be small.
- Transversality condition is necessary since the set of close return can be too large.

$$\langle \mathfrak{G} \rangle \oplus \mathsf{Ran}(\mathsf{ad}_X) + C_{\mathfrak{I}}(X) = \mathfrak{g}$$

- \mathfrak{G} is a set of generator, and $C_{\mathfrak{I}}(X)$ is centralizer in codimension 1 ideal \mathfrak{I} .
- It is conjectured that desired bound for higher step should work for all x ∈ M.