4. MOS Amplifier Biasing & Discrete MOS Amplifiers

Sedra & Smith Sec. 5.7 & 5.8

(S&S 5th Ed: Sec. 4.7 & 4.9)

The major goal of "Bias" is to ensure that MOS is in saturation at all times

- Bias is the state of the system when there is no signal.
- \blacktriangleright Bias point should be stable (i.e., resilient to variations in $\mu_n C_{ox}$ $(W/L),\ V_t$, ... due to temperature and/or manufacturing variability.)
 - \circ Important parameters are I_D and V_{DS}

In addition:

- Bias point impacts the small-signal parameters.
- ➤ Bias point impacts how large a signal can be amplified.
- Bias point impact power consumption.

Bias with Gate Voltage

$$I_D = 0.5 \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

$$V_{DS} = V_{DD} - I_D R_D$$

- This method is NOT desirable as $\mu_n C_{ox} (W/L)$ and V_t are not "well-defined." Bias point (i.e., I_D and V_{DS}) can change drastically due to temperature and/or manufacturing variability.
 - \circ See Exercise 5.33 (S&S 5th Ed: Exercise 4.19) Changing V_t from 1 to 1.5 V leads to 75% change in I_D .

Bias with Source Degeneration (Resistor R_s provides negative feedback)

Negative Feedback:

$$\circ \text{ If } I_D \uparrow \text{ (because } \mu_n C_{ox} \uparrow \text{ or } V_{tn} \downarrow \text{)} \xrightarrow{\text{GS KVL}} V_{GS} \downarrow \xrightarrow{I_D \text{ Eq.}} I_D \downarrow$$

$$\circ \text{ If } I_D \downarrow \text{ (because } \mu_n C_{ox} \downarrow \text{ or } V_{tn} \uparrow \text{)} \xrightarrow{\text{GS KVL}} V_{GS} \uparrow \xrightarrow{I_D \text{ Eq.}} I_D \uparrow$$

$$\circ$$
 If $I_D \downarrow$ (because $\mu_n C_{ox} \downarrow$ or $V_{tn} \uparrow$) GS KVL $V_{GS} \uparrow \stackrel{I_D \, \mathsf{Eq.}}{\longrightarrow} I_D \uparrow$

Feedback is most effective if
$$R_S I_D >> V_{GS}$$

$$V_{GS} - V_G + R_S I_D = 0 \implies I_D \approx V_{\overline{G}} / R_{\overline{S}}$$

Examples of Bias with Source Degeneration

Example: Find Bias point for V_t = 1 V and $\mu_n C_{ox}$ (W/L) = 1.0 mA/V² (Ignore channel-width modulation.

Impact of $R_{\rm S}$ (prove it) if $V_t=1.5$ V (50% change), $I_D=0.455{\rm mA}$ (9% change)

Voltage divider
$$(I_G = 0)$$

$$V_G = (7)/(7+8) \times 15 = 7 \text{ V}$$

$$I_{D} = 0.5 \mu_{n} C_{ox} \frac{W}{L} V_{OV}^{2}$$

$$GS - KVL : V_{G} = V_{GS} + R_{S} I_{D} = 7$$

$$V_{OV} + V_{t} + R_{S} I_{D} = 7$$

$$V_{OV} + 1 + 10^{4} \times (0.5 \times 10^{-3} V_{OV}^{2}) = 7$$

$$5V_{OV}^{2} + V_{OV} - 6 = 0 \rightarrow V_{OV} = 1 \text{ V}$$

$$V_{GS} = V_{OV} + 1 = 2 \text{ V}$$

 $V_S = V_G - V_{GS} = 7 - 2 = 5 \text{ V}$
 $I_D = V_S / R_S = 0.5 \text{ mA}$

DS- KVL:
$$15 = R_D I_D + V_D$$

 $V_D = 15 - R_D I_D = 10 \text{ V}$
 $V_{DS} = V_D - V_S = 5 \text{ V}$

Biasing in ICs

- Resistors take too much space on the chip. So, source degeneration with R_S is NOT implemented in ICs.
- Recall that the goal of a good bias is to ensure I_D and V_{DS} would not change (e.g., due to temperature variation). One can force I_D to be constant using a current source.

Current Mirrors or Current Steering Circuits are used as current sources for biasing ICs

Identical MOS: Same μC_{ox} and V_t

➤ Qref is <u>always</u> in <u>saturation</u> since

$$V_{DS,ref} = V_{GS,ref} > V_{GS,ref} - V_t$$

$$> V_{GS,ref} = V_{GS1} = V_{GS}$$

$$> V_{OV,ref} = V_{OV1} = V_{OV}$$

$$\gt V_{GS,ref} = V_{GS1} = V_{GS}$$

$$\triangleright V_{OV,ref} = V_{OV1} = V_{OV}$$

$$I_{ref} = I_{D,ref} = 0.5 \mu_n C_{ox} \left(\frac{W}{L}\right)_{ref} V_{OV}^2$$

$$I_1 = I_{D1} = 0.5 \mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{OV}^2$$

$$\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}}$$

Circuit works as long as Q1 is in

saturation:
$$V_{DS1} > V_{OV} = V_{GS} - V_t$$

An implementation of a Current Mirror

Identical MOS: Same $\,\mu C_{ox}\,$ and $V_{t}\,$

The above 2 equations uniquely set Qref Bias point ($I_{D.ref}$ and $V_{GS.ref} = V_{DS.ref}$)

- ightharpoonup Current mirror: $\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}}$
- Since $I_1 =$ constant regardless of voltage, this is a current source!
- ➤ **Note:** Circuit works as long as Q1 is in saturation.

Examples of Current Steering circuits

Current steering circuit can bias several transistors

$$\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}}$$

$$\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}} \qquad \frac{I_2}{I_{ref}} = \frac{(W/L)_2}{(W/L)_{ref}}$$

A PMOS current mirror

$$\frac{I_1}{I_{ref}} = \frac{(W/L)_1}{(W/L)_{ref}}$$

An implementation of current steering circuit to bias several transistors in an IC

Exercise: Compute I_4/I_{ref}

Discrete MOS Amplifiers

- We will use MOS Fundamental Amplifier
 Configurations and Elementary R Forms
 to find the response of discrete MOS amplifiers
- > First, a few observations.

Stable Bias circuits for discrete MOS amplifiers

One power supply

Two power supplies

$$V_{GS} = V_{SS} - R_{S}I_{D}$$

$$R_{D} \stackrel{V_{DD}}{=}$$

$$R_{S} \stackrel{V_{DD}}{=}$$

$$-V_{SS} \stackrel{V_{DD}}{=}$$

Drain Feedback

Will Discuss later

Identical signal circuit for $R_G = R_{G1} \mid\mid R_{G2}$

We will do analysis for this configuration

Signal is typically coupled to <u>discrete</u> amplifiers via coupling capacitors

- Capacitors are open circuits for Bias (DC)
- We assume that the signal is at sufficiently high frequencies, such that "large" <u>capacitors</u> <u>can be approximated as shorts</u> (|Z| = 1/ωC is small)
 - A lower cut-off frequency for amplifier
- These capacitors can be added at input, output, and between amplifier stages.
- These capacitor can also be used to "by-pass" resistors needed for bias but not for signal.
- Note: In general, one should NOT assume that all capacitors are short. We will see the impact of various capacitors later when we discuss frequency response of amplifiers.

Real Circuit

Test book uses current source for biasing (not a practical discrete circuit)

The analysis method introduced here, however, apply to any discrete bias case.

The best way to identify the type of amplifier is to follow the signal

Analysis Steps

Note: We should solve the complete circuit (i.e., include v_{sig} , R_{sig} , R_L in our analysis).

- Compute Bias point.
 - All capacitors are open circuits
 - o Compute g_m and r_o
- > Draw signal circuit (with MOS intact).
 - Low-frequency Caps are short, high-frequency Caps are open (high-frequency caps discussed later)
- Indentify fundamental amplifier configuration and compute proper amplifier gain (v_o/v_i) and the circuit gain (v_o/v_{sig})
- \succ Use elementary R forms to find R_i and R_o
 - \circ In general R_i will depend on R_L and R_o depends on R_{sig}

Discrete Common-source Amplifier

- This is a common-source amplifier (input at the gate and output at the drain).
- Bias calculations are NOT done here as we have done that before.
- Note $\frac{v_i}{v_{sig}} = \frac{R_i}{R_i + R_{sig}}$ (this is true for ALL circuits)

Derivation of small-signal circuit for Discrete CS Amplifier

Discrete CS Amplifier – Gain

Discrete CS Amplifier – R_i

- ✓ Replace transistor with its equivalent resistance
- ✓ Looking into the gate

Elementary R Configuration

Discrete CS Amplifier – R_o

- \checkmark Set $v_{sig} = 0$
- ✓ Replace transistor with its equivalent resistance
- \checkmark Since i_g = 0, R_{sig} and R_G can be removed (v_g = 0)
- ✓ Looking into the drain

Discrete CS Amplifier with R_s

Real Circuit

Signal Circuit

Short caps
Zero bias supplies

Discrete CS Amplifier with R_s – Gain

Discrete CS Amplifier with $R_s - R_i$

- ✓ Replace transistor with its equivalent resistance
- ✓ Looking into the gate

Elementary R Configuration

Discrete CS Amplifier with $R_s - R_o$

- \checkmark Set $v_{sig} = 0$
- ✓ Replace transistor with its equivalent resistance
- \checkmark Since i_g = 0, R_{sig} and R_G can be removed (v_g = 0)
- ✓ Looking into the drain

Discrete CG Amplifier

Real Circuit

Signal Circuit

Short caps
Zero bias supplies

Discrete CG Amplifier – Gain

Discrete CG Amplifier – R_i

- ✓ Replace transistor with its equivalent resistance
- ✓ Looking into the source

Elementary R Configuration

$$\overline{R_{S}} = \overline{R_{D} \parallel R_{L}}$$

$$\overline{R_{i}} = \overline{R_{i}} = \overline{R_{i} + (R_{D} \parallel R_{L})}$$

$$R_i = R_S \parallel \left[\frac{r_o + (R_D \parallel R_L)}{1 + g_m r_o} \right]$$

Discrete CG Amplifier – R_o

- \checkmark Set $v_{sig} = 0$
- ✓ Replace transistor with its equivalent resistance
- ✓ Looking into the drain

Discrete CD Amplifier (Source Follower)

Real Circuit

Signal Circuit

Short caps
Zero bias supplies

Discrete CG Amplifier – Gain

Discrete CG Amplifier – R_i

- ✓ Replace transistor with its equivalent resistance
- ✓ Looking into the gate

Discrete CG Amplifier – R_o

- \checkmark Set $v_{sig} = 0$
- ✓ Replace transistor with its equivalent resistance
- \checkmark Since i_g = 0, R_{sig} and R_G can be removed (v_g = 0)
- ✓ Looking into the source

