II SEM - Engg. Mathematics II MAT -1251 (II sessional)

Time: 1 Hr.

Date: 23.03.2019

Time: 12.00PM-1.00PM

Max. Marks: 15

Answer ALL the questions

Note: Questions 1 to 10 are of 0.5 mark and 11 to 15 are of 2 marks each

	+		
1. The value of $L\left\{\frac{1-e^t}{t}\right\}$ is			
$a)\log(\frac{s-1}{s})$	$b)\log(\frac{s}{s-1})$	c) $\log(\frac{s-1}{s+1})$	$d)\log(\frac{s+1}{s-1})$
2. The area between the curves $y = x$ and $y = x^2$ is			
a) $\frac{1}{2}$ b	$^{3}/_{4}$	c) $^{1}/_{4}$	$d)^{1}/_{6}$
3. The value of $\int_0^\infty \frac{x^{12}}{(1+x)^{15}} dx =$ a) $\beta(13,2)$ b) $\beta(12,15)$ c) $\beta(3,12)$ d) $\beta(11,2)$ 4. For spherical polar coordinates the value of $J\left(\frac{x,y,z}{r,\theta,\varphi}\right)$ is			
a) $rsin \theta$	b) $rcos \theta$	c) $r^2 \sin \theta$	d) $r^2 cos \theta$
5. The value of $L(2^{3t}) =$			
a) $\frac{1}{s-3}$	b) $\frac{1}{s-ln8}$	$c) \frac{1}{s-ln6}$	$d) \; \frac{1}{s - ln9}$
6. The limits of θ when finding the area of the region inside $r = 1 + \cos \theta$ and outside the circle $r = 1$ is			
$a)-\pi$ to π	b) 0 to π	c) 0 to 2π d)	$-\pi/_2$ to $\pi/_2$
7. If $u = s \cos t$ and $v = s \sin t$ then $\frac{\partial(s,t)}{\partial(u,v)} =$			
a) s	$b) \frac{1}{s}$	c) t	$d) \frac{1}{t}$
8. Write the given integral in polar form: $\iint_R \sqrt{x^2 + y^2} dx dy$, where R is the region bounded by $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ where $a < b$.			
$a) \int_0^\pi \int_a^b r^2 dr$	$d\theta$	b) $\int_0^{2\pi} \int_a^b r^2$	dr dθ
c) $\int_0^\pi \int_a^b r dr d\theta$)	$d) \int_0^{2\pi} \int_a^b r dr$	$d\theta$

- 9. The value of $\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$ is _____.

 a) $\frac{2\pi}{\sqrt{3}}$ b) 2π c) $\frac{\sqrt{3}\pi}{2}$

- 10. The limit of y in the projection of the tetrahedron $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ on XOY plane while finding the volume is _
 - 1 to $b(1-\frac{x}{a})$ a)
- b) 0 to $a\left(1-\frac{x}{a}\right)$

c)0 to 1

- d) 0 to $b\left(1-\frac{x}{a}\right)$
- 11. Calculate the volume of a solid whose base is in a xy-plane and is bounded by the parabola $y = 4 - x^2$ and the straight line y = 3x, while the top of the solid is in the plane z = x + 4.

(Fig 0.5M)

$$V = \int_{-4}^{1} \int_{3x}^{4-x^2} (x+4) dy dx$$
$$= \frac{625}{12}$$

(0.5M)(1M)

12. Evaluate $\int_{-1}^{1} (1+x)^6 (1-x)^7 dx$.

Put
$$x = 2t - 1$$
, $dx = 2dt$.

(0.5M)

$$\int_0^1 (2t)^6 (2-2t)^7 2dt = 2^{14} \int_0^1 (t)^6 (1-t)^7 dt$$

(1M)

$$=2^{14}\beta(7.8) = \frac{2^{14}6!7!}{14!} = 0.6819. \quad (0.5M)$$

13. Find the Laplace transform of $t^2e^{-3t}sin2t$.

 $L(\sin 2t) = \frac{2}{s^2 + 4},$

$$L(t^2 \sin 2t) = \frac{12s^2 - 16}{(s^2 + 4)^3} \tag{1M}$$

$$L(t^{2}e^{-3t}sin2t) = \frac{12(s+3)^{2}-16}{((s+3)^{2}+4)^{3}}$$
(0.5M)

14. Find the volume of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ inside the cylinder $x^2 + y^2 = ay$.

Converting to cylindrical polar, $x = rcos\theta, y = rsin\theta, J = r.$

$$V = 2 \int_0^{\pi} \int_0^{asin\theta} \int_0^{\sqrt{a^2 - r^2}} r \, dz dr d\theta$$

$$= \frac{2a^3 (3\pi - 4)}{9}$$
(0.5M)

(1M)

Evaluate $\int_0^a \int_y^a \frac{x}{x^2+y^2} dxdy$ by changing to polar coordinates. 15.

Put $x = rcos\theta$, $y = rsin\theta$, J = r.

$$\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy = \int_0^{\frac{\pi}{4}} \int_0^{asec\theta} \cos\theta dr d\theta$$
 (1M)

$$=\frac{a\pi}{4} \tag{0.5M}$$