

Dr. rer. nat. Johannes Riesterer

Infinitessimalrechnung

Sir Isaac Newton

Infinitessimalrechnung

Konvergenz erfahrungsgemäß

Etwas konvergiert gegen einen Grenzwert, wenn es sich diesem Grenzwert beliebig nahe annähert.

Figure: Konvergente Schienen

Infinitessimalrechnung

Infinitessimalrechnung

Wie kann man damit rechnen und braucht man das?

Limes

Achilles und die Schildkröte

Figure: Quelle: Wikipedia:

Mehr hier im Video

Paradoxon der Antike

Obwohl Achilles schneller ist, kann er die Schildkröte niemals einholen.

Limes

Achilles und die Schildkröte infinitessimal betrachtet

Sei s_0 der Vorsprung der Schildkröte zu Beginn des Rennens, t_0 die Zeit, die Achilles benötigt, um s_0 zurückzulegen. Die Schildkröte sei q-mal langsamer als Achilles. Dann ist Achilles bei der Zeit $t_0 \cdot q$ ein weiteres Mal dort, wo die Schidlkröte vorher war. Nach der Zeit $(t_0 \cdot q) \cdot q = t_0 \cdot q^2$ ein drittes Mal usw. Mit $q^0 = 1$ ist die Summe aller betrachteten Zeiten, die Achilles zurücklegt:

$$t = t_0 \cdot \sum_{n=0}^{\infty} q^n = t_0 \cdot \lim_{n \to \infty} \sum_{k=0}^n q^k = t_0 \cdot \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q} = \frac{t_0}{1 - q}.$$

Infinitessimalrechnung Limes

Folge

Eine reelle Folge ist eine Abbildung

$$a: \mathbb{N} \to \mathbb{R}^n$$

Für $n \in \mathbb{N}$ bezeichnen wir $a_n := a(n)$ als n tes Folgenglied.

Limes

Konvergenz

Eine Folge a_n in \mathbb{R}^n heißt konvergent gegen den Grenzwert $a \in \mathbb{R}^n$, wenn gilt:

$$\forall \varepsilon > 0 \; \exists \; N \in \mathbb{N} \; \forall \; n > N : \; d(a, a_n) < \varepsilon$$

in Worten: Es gibt für jedes beliebige (noch so kleine) ε einen Index N derart, dass für alle Indizes n>N, alle weiteren Folgenglieder, gilt: der Abstand $d(a,a_n)$ ist kleiner als ε .

Axiome eines metrischen Raumes

Ein metrischer Raum ist ein Paar (X, d), wobei X eine Menge und $d: X \times X \to \mathbb{R}$ eine Abbildung ist, die die folgenden Axiome erfüllt:

- Nichtnegativität: $d(x, y) \ge 0 \quad \forall x, y \in X$.
- Identität der Ununterscheidbaren: d(x,y) = 0 genau dann, wenn x = y.
- Symmetrie: $d(x,y) = d(y,x) \quad \forall x,y \in X$.
- Dreiecksungleichung: $d(x, z) \le d(x, y) + d(y, z) \quad \forall x, y, z \in X.$

Beispiel eines metrischen Raumes

Betrachte den Raum R mit der absoluten Differenz als Metrik:

$$d(x,y) = |x - y|, \quad \forall x, y \in \mathbb{R}.$$

Überprüfung der Axiome:

- Nichtnegativität: $|x y| \ge 0$.
- Identität der Ununterscheidbaren: |x y| = 0 genau dann, wenn x = y.
- **Symmetrie**: |x y| = |y x|.
- Dreiecksungleichung: $|x z| \le |x y| + |y z|$.

Normen in einem Vektorraum

Sei $X=\mathbb{R}^n$ ein Vektorraum. Eine Norm auf X ist eine Abbildung $\|\cdot\|:X\to\mathbb{R}$, die für alle $x,y\in X$ und $\alpha\in\mathbb{R}$ folgende Eigenschaften erfüllt:

- Positive Definitheit: $||x|| \ge 0$ und ||x|| = 0 genau dann, wenn x = 0.
- Homogenität: $\|\alpha x\| = |\alpha| \cdot \|x\|$.
- Dreiecksungleichung: $||x + y|| \le ||x|| + ||y||$.

Beispiel: Euklidische Norm in \mathbb{R}^2

Sei $x = (x_1, x_2) \in \mathbb{R}^2$. Dann ist die euklidische Norm gegeben durch:

$$||x||_2 = \sqrt{x_1^2 + x_2^2}.$$

Konkretes Beispiel: Für x = (3, 4) gilt:

$$||x||_2 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5.$$

Abstände durch Normen

Sei $X=\mathbb{R}^n$ ein Vektorraum und $\|\cdot\|:X\to\mathbb{R}$ eine Norm. Ein durch die Norm definierter Abstand ist gegeben durch:

$$d(x,y) = ||x-y||,$$

wobei $x, y \in X$ beliebige Punkte sind. Dieser Abstand erfüllt die Axiome eines metrischen Raumes:

- Nichtnegativität: $d(x, y) = ||x y|| \ge 0$.
- Identität der Ununterscheidbaren: d(x,y) = 0 genau dann, wenn x = y.
- Symmetrie: d(x, y) = ||x y|| = ||y x|| = d(y, x).
- Dreiecksungleichung:

$$||x - z|| \le ||x - y|| + ||y - z|| \quad \forall x, y, z \in X.$$

Beispiele:

- Euklidische Norm: $||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$.
- Manhattan-Norm: $||x||_1 = \sum_{i=1}^n |x_i|$.
- Maximum-Norm: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|_{1 \le i \le n} |x_i|_{1 \le i \le n} |x_i|_{1 \le i \le n}$

Skalarprodukt

Definition:

Ein Skalarprodukt ist eine Abbildung

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

auf einem reellen Vektorraum V, die folgende Eigenschaften erfüllt:

- Linearität: $\langle a\mathbf{v} + b\mathbf{w}, \mathbf{u} \rangle = a \langle \mathbf{v}, \mathbf{u} \rangle + b \langle \mathbf{w}, \mathbf{u} \rangle$
- Symmetrie: $\langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$
- Positivität: $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$ und $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ genau dann, wenn $\mathbf{v} = 0$

Euklidisches Skalarprodukt

Beispiel: Euklidisches Skalarprodukt

In \mathbb{R}^n ist das Skalarprodukt definiert als:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^n v_i w_i$$

für
$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$
 und $\mathbf{w} = (w_1, w_2, \dots, w_n)$.

Zusammenhang mit der Norm

Definition:

Die durch das Skalarprodukt induzierte Norm ist definiert als:

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Beispiel: Euklidische Norm

Für das euklidische Skalarprodukt ist die Norm:

$$\|\mathbf{v}\| = \sqrt{\sum_{i=1}^n v_i^2}$$

Diese Norm wird auch als *Euklidische Norm* oder *2-Norm* bezeichnet.

Definition: Topologischer Raum

Ein topologischer Raum ist ein Paar (X, \mathcal{T}) , wobei X eine Menge und \mathcal{T} eine Familie von Teilmengen von X ist, die folgende Eigenschaften erfüllt:

- $\emptyset \in \mathcal{T}$ und $X \in \mathcal{T}$ (Die leere Menge und die Gesamtheit X gehören zur Topologie).
- **②** Wenn $A, B \in \mathcal{T}$, dann gilt $A \cap B \in \mathcal{T}$ (Schnittstabilität von endlichen Mengen).
- ③ Wenn $\{A_i\}_{i \in I}$ eine beliebige Familie von Mengen in \mathcal{T} ist, dann gilt $\bigcup_{i \in I} A_i \in \mathcal{T}$ (Vereinigungsstabilität von beliebigen Mengen).

Die Familie $\mathcal T$ heißt die *Topologie* auf der Menge X. Die Mengen in $\mathcal T$ werden als *offene Mengen* bezeichnet.

Beispiel: Standardtopologie durch den Abstand

Sei (X,d) ein *metrischer Raum* mit Abstandsfunktion $d: X \times X \to \mathbb{R}_{\geq 0}$. Die *Standardtopologie* \mathcal{T}_d auf X wird durch den Abstand d induziert, indem als offene Mengen die folgenden Teilmengen $U \subseteq X$ gewählt werden:

$$U \in \mathcal{T}_d \quad \Leftrightarrow \quad \forall x \in U, \ \exists \epsilon > 0 \text{ sodass } B_{\epsilon}(x) \subseteq U,$$

wobei $B_{\epsilon}(x) = \{ y \in X \mid d(x,y) < \epsilon \}$ eine *offene Kugel* um den Punkt x mit Radius ϵ ist.

Definition: Filter

Ein Filter \mathcal{F} auf einer Menge X ist eine nicht-leere Familie von Teilmengen von X, die folgende Eigenschaften erfüllt:

- ② Falls $A, B \in \mathcal{F}$, dann gilt $A \cap B \in \mathcal{F}$
- **3** Falls $A \in \mathcal{F}$ und $A \subseteq B \subseteq X$, dann gilt $B \in \mathcal{F}$

Beispiel: atTop

$$atTop := \bigcup_{n \in \mathbb{N}} M_n \tag{1}$$

$$M_n := \{m \mid m \ge n\} \tag{2}$$

Beispiel: Umgebungsfilter

Sei X ein topologischer Raum und $x \in X$. Der Umgebungsfilter $\mathcal{U}(x)$ besteht aus allen Teilmengen $U \subseteq X$, für die es eine offene Menge V gibt, sodass $x \in V \subseteq U$.

Beispiel: Bildfilter

Sei $m: X \to Y$ ein Abbildung und \mathcal{F} ein Filter auf X. Der Bildfilter von \mathcal{F} unter m ist definiert durch

$$MAP(m)(\mathcal{F}) := \{ M \subset Y \mid m^{-1}(M) \in \mathcal{F} \}. \tag{3}$$

Konvergenz

Konvergenz von Filtern

Seien ${\mathcal F}$ und ${\mathcal G}$ Filter auf Y. Wir sagen ${\mathcal F}$ konvergiert gegen ${\mathcal G}$ falls

$$G \in \mathcal{F} \ \forall G \in \mathcal{G} \tag{4}$$

Wir schreiben hierfür auch $\mathcal{F} \leq \mathcal{G}$

Konvergenz einer Folge

Eine Folge

$$a:\mathbb{N}\to X$$

heißt konvergent gegen den Grenzwert $a \in X$, wenn gilt:

$$MAP(m)(atTop) \le U(a)$$
 (5)

