Übungen zur Vorlesung "Algebra und Zahlentheorie"

WS 2011/2012

A. Schmitt

Übungsblatt 5

Abgabe: Bis Dienstag, den 6.12.2011, 10Uhr

Aufgabe 1 (Symmetriegruppen und spezielle Symmetriegruppen; 10 Punkte). Es seien $M \subset \mathbb{R}^2$ eine Teilmenge, die eine Basis für \mathbb{R}^2 enthält, und

$$M' := M \times \{0\} = \{ (x, y, 0) \in \mathbb{R}^3 \mid (x, y) \in M \}$$

$$M'' := M \times [-1, 1] = \{ (x, y, t) \in \mathbb{R}^3 \mid (x, y) \in M, -1 \le t \le 1 \}.$$

Beweisen Sie¹ $O(M) \cong SO(M') \cong SO(M'')$.

Aufgabe 2 (Isomorphismen; 10 Punkte).

Zeigen Sie, dass die Gruppen $(\mathbb{R},+)$ und $(\mathbb{R}_{>0},\cdot)$ isomorph sind.

Hinweis. Hier benötigen Sie etwas Analysis.

Aufgabe 3 (Homomorphismen; 5+5 Punkte).

Es sei $Q \subset \mathbb{R}^2$ ein Quadrat mit Mittelpunkt 0.

- a) Nummerieren Sie die Eckpunkte von Q entgegen dem Uhrzeigersinn von 1 bis 4. Ein Element $f \in D_4$ definiert die Permutation $\varphi(f) \in S_4$ durch $\varphi(f)(i) = f(i)$, i = 1,...,4. Geben Sie $\varphi(f)$ für jedes Element $f \in D_4$ an. Ist $\varphi: D_4 \longrightarrow S_4$ injektiv und/oder surjektiv?
- b) Nummerieren Sie nun die Kanten von Q von 1 bis 4 und konstruieren damit eine weitere Abbildung $\psi: D_4 \longrightarrow S_4$. Kann man die Ecken und Kanten so nummerieren, dass $\varphi = \psi$ gilt? Hat man $\varphi(D_4) = \psi(D_4)$?

Aufgabe 4 (Untergruppen; 3+3+4 Punkte).

- a) Ist $H := \{ \sigma \in S_4 \mid \sigma(4) = 3 \lor \sigma(4) = 4 \}$ eine Untergruppe von S_4 ?
- b) Es seien G eine **abelsche** Gruppe und $H := \{g \in G | g^2 = e\}$. Zeigen Sie, dass H eine Untergruppe von G ist.
- c) Weisen Sie nach, dass $H := \{ m \in \mathcal{O}_2(\mathbb{R}) \mid m^2 = e \}$ keine **Untergruppe** von $\mathcal{O}_2(\mathbb{R})$ ist. Welche Eigenschaft ist nicht erfüllt?

¹Die erste Symmetriegruppe wird für $M \subset \mathbb{R}^2$ und die zweite bzw. dritte für M' bzw. M'' als Teilmenge von \mathbb{R}^3 gebildet.

²Sie sollten sich davon überzeugen, dass φ ein Gruppenhomomorphismus ist. Wir werden dies im Rahmen der Gruppenwirkungen nochmals thematisieren.