Esercizi di Algebra Lineare, corso A

Enrico Berni

27/03/2025

Provate a svolgere i seguenti esercizi in maniera autonoma, eventualmente confrontandovi con dei compagni. Le soluzioni saranno discusse durante il tutorato di giovedì 27 marzo.

1. Consideriamo i sottospazi $U, W \subseteq \mathbb{R}^3$ definiti da $U = \{x_1 + x_2 + x_3 = 0\}, W = \{x_1 - x_2 = 0\}$. Sia

$$F = \{ f \in \text{End}(V) | f = f^*, f(U) \subseteq W, f(W) \subseteq U \}.$$

Dire se F sia o meno un sottospazio di $\mathrm{End}(V)$; nel caso lo sia, calcolarne la dimensione.

2. Trovare due matrici $P \in O(2), D \in \mathfrak{M}(2,\mathbb{R})$ diagonale, tali che

$$P^{-1} \begin{pmatrix} 4 & 3 \\ 3 & 12 \end{pmatrix} P = D.$$

- 3. Sia J un blocco di Jordan di taglia n relativo a un numero λ .
 - (a) Determinare J^k , con k intero positivo.
 - (b) Determinare la forma di Jordan di J^k .
- 4. Siano $A, B \in \mathfrak{M}(n, \mathbb{R})$. Dimostrare che A e B sono simili su \mathbb{R} se e solo se sono simili su \mathbb{C} .
- 5. Sia V uno spazio vettoriale reale, munito di un prodotto scalare definito positivo. Sia $P \in \text{End}(V)$ un proiettore, ossia un endomorfismo tale che $P^2 = P$. Dopo aver dimostrato che anche P^* è un proiettore, dimostrare che i seguenti fatti sono equivalenti:
 - (a) P è una proiezione ortogonale su un sottospazio di V.
 - (b) P è autoaggiunto;
 - (c) P è un operatore normale, cioè $PP^* = P^*P$;