TFY4155/FY1003 Elektr. & magnetisme

oting 12Solenoide. Grensevilkår. Induksjon.

Veiledning: Fredag 27. mars ifølge nettsider.

Innlevering: Onsdag 8. april kl. 14:00 (første undervisningsdag etter påske)

Oppgave 1. Magnetfelt ved longitudinalt materialskille. ¹

En sylinderformet stav av jern med relativ permeabilitet $\mu_{\rm r}=2000$ er plassert midt (koaksialt) inne i en solenoide. Innerradien til solenoiden er b=30 mm og radien til staven er a=15 mm. Viklingstallet for solenoiden er $n=900\,{\rm m}^{-1}$ og den fører en strøm I=3,00 A. Du kan anta både solenoiden og staven er svært lange slik at du kan se bort fra randeffekter.

- a) Finn verdier for H_0 , B_0 og M_0 inni solenoiden, utenfor jernstaven (a < r < b).
- b) Finn verdier for H, B og M inne i jernstaven (r < a). Har du kommentarer til tallverdiene for B og M, i lys av resultatet oppgave 4 i forrige øving?

Oppgave 2. Magnetfelt ved transversalt materialskille.

(Viklingene tegnet for hånd, ikke helt pene!)

En toroide
formet kjerne av jern har relativ permeabilitet $\mu_{\rm r}=2000.$ Midlere radius i toroiden er
 R=0,200m og tverrsnittradien rtil toroiden er my
e mindre enn R. Tett utenpå kjernen er det tvunnet en ledning som fører strømmen
 I=0,50 A og har N=400 viklinger. Viklingene er jamt fordelt og så tette at det magnetiske feltet kan regnes homogent inne i magnet
kjernen.

Det er skjært bort en smal luftfylt spalte av toroidekjernen. Anta at åpningen δ er mye mindre enn r slik at magnetfeltlinjer også over åpningen er asimutale (sirkelretning).

- a) Finn verdier for H og B inne i den toroideformede kjernen.
- b) Finn verdier for H_0 og B_0 i den smale spalteåpningen.

 $^{^1}$ Tips for opg. 1 og 2: Tangentkomponenten til \vec{H} og normalkomponenten til \vec{B} er kontinuerlig over ei grenseflate.

Oppgave 3. Bevegelsesindusert ems.

Sett ovenfra (z-aksen): Sett fra siden (y-aksen):

En kvadratisk ledersløyfe med sidekant L, masse m og total resistans R ligger i horisontalplanet xy med et hjørne i origo, en sidekant langs x-aksen og en sidekant langs y-aksen, se figuren.

Tyngdefeltet går i -z-retning og et homogent magnetfelt $\vec{B} = B \hat{\mathbf{i}}$ er retta i x-retning.

Sløyfa kan rotere fritt om sidekanten langs y-aksen og slippes fra denne horisontale stillingen i tyngdefeltet og begynner derfor å falle ved å rotere om y-aksen. Vinkelen mellom ledersløyfa og x-aksen angis som ϕ . Vinkelhastigheten er $\omega = \dot{\phi}$ og er avhengig av ϕ .

- a) Vil ledersløyfa falle fortere, langsommere eller like fort med det angitte magnetiske feltet \vec{B} sammenliknet med $\vec{B} = \vec{0}$? Videre regning vil bekrefte svaret ditt.
- b) Finn indusert strøm I i ledersløyfa uttrykt med bl.a. ϕ og ω og angi retning for denne.
- c) Finn netto kraftmomentet $\vec{\tau}$ som virker på sløyfa idet den faller ($\vec{\tau}$ pga. tyngden og $\vec{\tau}$ pga. magnetisk effekt) .
- c) Ledersløyfas treghetsmomentet for rotasjon om en sidekant er $I_{\rm t}=\frac{5}{12}mL^2$. Hva er vinkelakselerasjonen α uttrykt ved bl.a. ϕ og ω ?
- d) Er mekanisk energi bevart idet sløyfa faller?

Oppgave 4. E-felt i en solenoide.

Når en rett solenoide blir påtrykt en varierende strøm induseres det et elektrisk felt E_{ϕ} i sirkulær (asimutal) retning rundt solenoiden. Vi har en rett, jernfylt ($\mu_{\rm r}=2000$) solenoide med 200 viklinger, lengde L=10.0 cm og radius R=1,00 cm. Beregn hva amplituden til det elektriske feltet E_{ϕ} er i avstand 5,0 cm fra sentrum av solenoiden når det sendes en AC-strøm med amplitude 2,00 A og frekvens 50 Hz gjennom viklingene.

Anta solenoiden er lang og tynn slik at B-feltet er homogent inni solenoiden og null utafor.

Oppgave 5. Varmeutvikling i solenoide.

En (tilnærmet uendelig) lang, luftfylt solenoide er laget med kobbertråd og har en viklingstetthet $n=1000\,\mathrm{m}^{-1}$. Resistiviteten til Cu er ved $20^{\circ}\ \rho=1,68\cdot10^{-8}\,\Omega\mathrm{m}$ (og ved $130^{\circ}\ \rho=2,4\cdot10^{-8}\,\Omega\mathrm{m}$).

- a) Hvor stor strøm I må gå i kobbertråden for at magnetfeltet inne i spolen skal bli 1,00 T?
- b) Kobbertråden har sirkulært tverrsnitt med diameter d = 1,00 mm. Hvor stort blir effekttapet P' per lengdeenhet av kobbertråden når den fører strømmen I? Kommentarer til svaret?

¹a) 2700 A/m, 3,40 mT, 0; 1b) 2700 A/m, 6,80 T, 5,40 · 10⁶ A/m.

³b) $\frac{1}{B}L^2B\omega\cos\phi$ 4) 3,2 V/m. 5) 796 A; 14 kW/m.

Oppgave 6. Påskequiz: Noen frivillige flervalgsoppgaver.

- a) Hvor mange av disse størrelsene er en vektorstørrelse:
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) 5

elektrisk strøm, elektrisk ladning, elektrisk felt, elektrisk potensial, magnetisk fluks, magnetisk moment.

- b) Figuren viser en halvsirkelformet stav med uniform ladning per lengdeenhet, enten negativ $(-\lambda)$, merket med "-") eller positiv (λ) , merket med "+") på ulike deler av staven, slik at staven totalt har ladning lik null. Hvilken pil angir da riktig retning på den elektriske kraften som virker på et elektron som er plassert i "sentrumspunktet" (dvs. det som ville ha vært sentrum av en hel sirkel)?
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) Krafta er null.

- c) Hver av de fem lyspærene kan betraktes som en ideell ohmsk motstand R. Hva er ekvivalentresistansen for kretsen, dvs. resistansen sett fra spenningskilden V_0 ?
 - A) $\frac{1}{5}R$
 - B) $\frac{3}{5}R$
 - C) $\frac{8}{3}R$
 - D) 2R
 - E) $\frac{8}{5}R$

- d) Et elektron med masse m og ladning -e befinner seg i et uniformt magnetfelt $\vec{B} = B_0$ $\hat{\mathbf{k}}$. Ved tidspunktet t = 0 har elektronet hastighet $\vec{v} = v_0$ $\hat{\mathbf{j}} + v_0$ $\hat{\mathbf{k}}$. Hva slags bevegelse får elektronet?
 - A) Sirkelbevegelse med radius mv_0/eB_0
 - B) Sirkelbevegelse med radius $\sqrt{2}mv_0/eB_0$
 - C) Sirkelbevegelse med radius $\sqrt{2}m/eB_0$
 - D) Heliksbevegelse med radius mv_0/eB_0
 - E) Heliksbevegelse med radius $\sqrt{2}mv_0/eB_0$
- e) Ledningen vist i figuren er uendelig lang og har en 90° bøy. Med strømmen som vist, hva er retningen på B-feltet ved punktet P?
 - A) mot venstre
 - B) mot høyre
 - C) rett ned
 - D) opp av papirplanet
 - E) ned i papirplanet.

