Pipeline

Lavanderia – analogia com o pipelining

Pipeline de instruções no MIPS

- Busca da instrução
- Leitura dos registradores e decodificação
- Execução da operação ou cálculo de endereço
- Acesso ao operando na memória
- Escrita do resultado em um registrador

Exemplo

- Compare o tempo médio entre instruções da implementação em single-cycle (uma instrução por ciclo) com uma implementação com pipeline.
- Supor maior tempo de operação para acesso à memória = 2ns, operação da ULA = 2ns e acesso ao register file = 1ns. (Instrs Iw, sw, add, sub, and, or slt e beq).

Tempo total para as oito instruções calculado a partir do tempo de cada componente

Instruction class	Instruction fetch	Register read	ALU operation	Data access	Register write	Total time
Load word (1w)	2 ns	1 ns	2 ns	2 ns	1 ns	8 ns
Store word (SW)	2 ns	1 ns	2 ns	2 ns	DAME TO A	7 ns
R-format (add, sub, and, or, slt)	2 ns	1 ns	2 ns	plesic	1 ns	6 ns
Branch (beq)	2 ns	1 ns	2 ns	district the	PERMIN	5 ns

Execução não-pipeline X pipeline

OBS.:

- Sob condições ideais, com estágios balanceados, o speedup do pipeline é igual ao número de estágios do pipeline (5 estágios , 5 vezes mais rápido)
- Na realidade o tempo de execução de uma instrução é um pouco superior (overheads) → speedup é menor que o número de estágios do pipeline

```
Suponha a execução de 1000 instruções

com pipeline → throughput.

1000 X 2.02ns = 2020 (para cada instrução adiciono 10% overhead)

sem pipeline → 1000 X 8ns = 8000

spedup = 8000 / 2020 = 3.96 ~~ 8 / 2
```

Projeto de um conjunto de instruções para pipeline

- O que torna a implementação mais fácil
 - Instruções de mesmo tamanho
 - Poucos formatos, com campos de registradores sempre dispostos no mesmo lugar (Simetria, no 2º estágio podemos ler registradores e decodificar ao mesmo tempo).
 - Acesso à memória apenas com as instruções lw e sw.
 - Operandos alinhados na memória: o dado pode ser transferido da memória para a CPU e CPU para a memória em um único estágio do pipeline.

Projeto de um conjunto de instruções para pipeline

- O que torna a implementação mais dificil
 - Hazard
 - Hazard Estrutural
 - Hazard de Controle
 - Hazard de Dados

Pipeline Hazards

- Hazard Estrutural
 - O hardware não suporta uma combinação de instruções que queremos executar em um único período de clock
 - Ex.: escrever e ler da memória em um mesmo ciclo

Pipeline Hazards

- Hazard de Controle
 - Problemas devido à execução de instruções de desvio
 - Ex.: Quando um branch é tomado, como tratar a(s) instruções que seguem (fisicamente) o branch no programa e que já estão no pipeline

Pipelining stalling para instruções branch

Branch prediction: Tentar "adivinhar" qual dos caminhos do branch será tomado

Pipeline delayed branch

Hazard de Dados

 Quando uma instrução necessita de um dado que ainda não foi calculado

□ Ex.: add \$s0,\$t0,\$t1
sub \$t2.\$s0.\$t3

Soluções:

Compilador (programador) gera código livre de data hazard (introduzindo, por ex., instruções nop no código; alterando a ordem das instruções; ...)

Stall; Forwarding ou bypassing

Principais conflitos que iremos utilizar e como deverão ser tratados

	1	2	3	4	5	6	7	8	9	10
add \$s1, \$s2, \$s3	if	id	ex	me	wb					
add \$s4, \$s5, \$s1		if			id					
lw \$s1, 10(\$s2)	if	id	ex	me	wb					
add \$s4, \$s5, \$s1		if			id					
do: add \$s1, \$s2, \$s3	if	id	ex	me	wb					
add \$s4, \$s5, \$s6		if	id	ex	me	wb				
bne \$s7, \$s8, do			if	id	ex	me	wb			
Segundo loop ->					if	id	ex	me	wb	

Posteriormente (AC3) algumas soluções serão mostradas

				1																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
addi \$s1, \$0, 3																					
do: addi \$s1, \$S1, -1																					
addi \$s2, \$0, 10																					
addi \$s3, \$0, 10																					
bne \$s1, \$0, do																					
nop																					

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
addi \$s1, \$0, 3	if	id	ex	me	wb																											
do: addi \$s1, \$\$1, -1		if			id	ex	me	wb																								
addi \$s2, \$0, 10					if	id	ex	me	wb																							
addi \$s3, \$0, 10						if	id	ex	me	wb																						
bne \$s1, \$0, do							if	id	ex	me	wb																					
nop								if	id																							
do: addi \$s1, \$\$1, -1									if	id	ex	me	wb																			
addi \$s2, \$0, 10										if	id	ex	me	wb																		
addi \$s3, \$0, 10											if	id	ex	me	wb																	
bne \$s1, \$0, do												if	id	ex	me	wb																
nop													if	id																		
do: addi \$s1, \$\$1, -1														if	id	ex	me	wb														
addi \$s2, \$0, 10															if	id	ex	me	wb													
addi \$s3, \$0, 10																if	id	ex	me	wb												
bne \$s1, \$0, do																	if	id	ex	me	wb											
nop																		if	id	ex	me	wb										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	1+																															
loop para 3																						1								\vdash		
loop para 4																											1					
loop para 5																																1
Fórmula para 3 =	1+7+	2*5+3	+1 = 2	22																												
Fórmula para 4 =	1+7+3*5+3+1 = 27																															
Fórmula para 5 =	1+7+																															
·	1+7+																															
·	1+7			3+1																												

Desenrolando o Loop

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
addi \$s1, \$0, 3	if	id	ex	me	wb												
addi \$s1, \$S1, -1		if			id	ex	me	wb									
addi \$s2, \$0, 10					if	id	ex	me	wb								
addi \$s3, \$0, 10						if	id	ex	me	wb							
addi \$s1, \$S1, -1							if	id	ex	me	wb						
addi \$s2, \$0, 10								if	id	ex	me	wb					
addi \$s3, \$0, 10									if	id	ex	me	wb				
addi \$s1, \$S1, -1										if	id	ex	me	wb			
addi \$s2, \$0, 10											if	id	ex	me	wb		
addi \$s3, \$0, 10												if	id	ex	me	wb	
nop													if	id	ex	me	wb

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30

Hazard de Dados

Hazard de Dados

Exemplo

Encontre o hazard no código abaixo e resolva-o:

Solução:

Pipeline: Idéia Básica

 5 estágios: Busca; Decodificação e leitura dos regs; execução ou cálculo de end.; acesso à memória; escrita no reg. destino

Instruções sendo executadas pelo datapath

Pipelined Datapath

