MATH0495: Projet : Wilcoxon

Julien Gustin

Table des matières

1	Analyse théorique	2					
2	Utilisation du programme	2					
3	Limites du programme 3.1 Limites avec une durée infinis						
	3.2 Limites avec une durée finie (15 secondes)	4					

Analyse théorique

2 Utilisation du programme

Pour utiliser le programme il suffit de suivre ces consignes :

- 1. Ouvrir la console dans le répértoire du fichier et écrivez make \leftarrow ;
 - \square Compiler avec ./MAIN -S pour faire une simulation \leftarrow
 - \square Compiler avec ./MAIN -C pour l'analyse combinatoire \hookleftarrow
 - \square Compiler avec ./MAIN -E pour la recherche exhaustive \hookleftarrow
- 3. \square Insérer le nombre de n (première variable) \leftarrow
 - \square Insérer le nombre de p (seconde variable) \leftarrow
 - \square (Seulement pour la simulation, insérer le nombres d'essais à effectuer \hookleftarrow)

∧voir limites du programmes (.3)

- 4. Il ne reste plus qu'à appuyer sur escape et le programme ce lance. "Scores extrêmes" est le nombre de fois où on obtient un score extrême, l'écart de score entre "l'équipe gagnante ou perdante" (n ou p) est ≥ 45
- 5. Exemple d'utilisation :

```
Julien@Julien-UX430UNR: ~/Documents/Bloc2Q1/Proba/Projet/Projet-Probabilit-B2Q1-2019

Fichier Édition Affichage Rechercher Terminal Aide

julien@julien-UX430UNR: ~/Documents/Bloc2Q1/Proba/Projet/Projet-Probabilit-B2Q1-2019$ make

gcc -c main.c -o main.o --std=c99 --pedantic -Wall -W -Wmissing-prototypes

gcc -c analyseCombinatoire.c -o analyseCombinatoire.o --std=c99 --pedantic -Wall -W -Wmissing-prototypes

gcc -c rechercheExhaustive.c -o rechercheExhaustive.o --std=c99 --pedantic -Wall -W -Wmissing-prototypes

gcc -c simulation.c -o simulation.o --std=c99 --pedantic -Wall -W -Wmissing-prototypes

gcc -c simulation.o analyseCombinatoire.o rechercheExhaustive.o simulation.o

julien@julien-UX430UNR: -/Documents/Bloc2Q1/Proba/Projet/Projet-Probabilit-B2Q1-2019$ ./main -s

Veuillez insérer le nombre de n

13

Veuillez insérer le nombre de p

17

Veuillez insérer le nombre d'essais que vous voulez effectuer

10000

durée de l'exécution = 0.023544 secondes

Il y a 3658 scores extremes pour 10000 essais, 36.579998 % julien@julien-UX430UNR: ~/Documents/Bloc2Q1/Proba/Projet/Projet-Probabilit-B2Q1-2019$ ■
```

Figure 1 – Exemple

3 Limites du programme

3.1 Limites avec une durée infinis

FIGURE 2 - Graphique

Temps infinis							
N	Р						
1	4294967295						
2	()						
3	()						
4	564						
5	217						
6	117						
7	76						
8	55						
9	43						
10	36						
11	31						
12	27						
13	24						
14	22						
15	20						
16	19						
17	17						

Figure 3 – Tableau

Pour un temps infinis le programme peut gérer aux maximums c'est cas ci (voir tableau) en effet la plus part des valeurs dont celle qui stocke le nombres de mots sont des UNSIGNED INT ainsi le nombre maximum représentable est de $2^{32}-1$ ainsi il suffit de calculer le 'N' et 'P' maximum pour le quel $C^n_{n+p} \leq 2^{32}-1$.

3.2 Limites avec une durée finie (15 secondes)

Nombre de P et N maximum pour une durée de 15 secondes max

Figure 4 – Graphique

Temps <= 15 sec (machine université)										
Recherche exhaustive			Analyse combinatoire			Simulation (100000)				
N	Р		N	Р		N	Р			
1	50000		1	78000		1	16500			
2	1900		2	2600		2	16500			
3	400		3	510		3	16500			
4	150		4	200		4	16500			
5	85		5	105		5	16500			
6	55		6	70		6	16500			
7	42		7	50		7	16500			
8	33		8	40		8	16500			
9	27		9	32		9	16500			
10	23		10	27		10	16500			
11	20		11	24		11	16500			
12	18		12	21		12	16500			
13	17		13	19		13	16500			
14	16		14	18		14	16500			
15	14		15	17		15	16500			
16	14		16	15		16	16500			
17	13		17	15		17	16500			

Figure 5 – Tableau2