CHEM / BCMB 4190/6190/8189 Introductory NMR

Lecture 19

The NOESY Experiment

1). Review: 1D steady-state NOE experiment

- used in cases of well resolved spectra for assignment purposes or to establish local or global geometry by saturation of selected signals
- the *steady-state NOE* develops during saturation of one spin, and results in a change in the intensity of the signal from another spin -this is in contrast to the *transient NOE* (see below)

-used most often these days for enhancement of ¹³C signals by broadband decoupling of ¹H

2). 1D and 2D transient NOE experiments: NOESY

a). 1D selective transient NOE experiment

-an NOE can also be induced by application of a selective 180° pulse to one spin (the 'A' spin)

-during the mixing time (τ_m) , the NOE starts to build (at the 'X' spin), as the W_0 and W_2 routes redistribute the spin populations

-the NOE is transient, however: it builds to a maximum in a short time (approximately one T_1 period) and then decreases (remember, only a few T_1 periods after a 180° pulse, equilibrium populations are established)

- the NOESY (<u>N</u>uclear <u>O</u>verhauser <u>E</u>ffect <u>S</u>pectroscopy) experiment plays a central role in the structural elucidation of molecules ranging from small organic molecules to large biological molecules (nucleic acids and proteins)

-in the 2D NOESY experiment, *all* spins are inverted by the first two 90° pulses (assume, for the moment, that $t_1 = 0$), permitting all transient NOE's to develop during the subsequent mixing time (τ_m)

-increasing \mathbf{t}_1 provides chemical shift modulation of the signal for the second dimension

-in the 2D NOESY spectrum, the peaks representing the transferred magnetization (the "NOEs"), appear as crosspeaks (off-diagonal peaks)

-the crosspeaks appear at the chemical shifts of the spins involved

-the intensities of the crosspeaks are much less than the intensities of the diagonal peaks

3). 2D NOESY: vector diagrams

-we again will assume a simple AX system with no coupling $(J_{AX}=0)$ A X

- A and X have different Larmor frequencies, so $M_{\rm A}$ and $M_{\rm X}$ precess about z and move apart during ${\bf t_1}$
- the second 90° pulse converts the 'y' components of $M_{\rm A}$ and $M_{\rm X}$ to 'z'
- during τ_m , polarization is transferred from A to X and from X to A via cross-relaxation $(W_0$ and $W_2)$
 - -the transferred components are represented by the small arrows with opposite coloring

4). 2D NOESY: spectrum

Cross-relaxation / cross-polarization between nuclei results in cross peaks in the 2D NOESY spectrum, usually referred to as 'NOE cross-peaks' or simply 'NOEs'

- the *intensity* of the cross peaks is substantially less than the intensity of the diagonal peaks (the diagonal peaks can be problematic in these experiments because they are very intense)
- -the *intensity* of the cross peaks is proportional to $1/r^6$ where r is the internuclear distance

$$I \propto 1/r^6$$

- so, for $^1\text{H-}^1\text{H}$ distances, if the distance is \leq approximately 5 Å, crosspeaks can be observed
- -the *sign* or *phase* of crosspeaks (relative to the diagonal peaks) depends on the size of the molecule
 - -for small molecules, the crosspeaks and diagonal peaks are of opposite phase
 - -for large molecules, the crosspeaks are the same phase as the diagonal peaks

5). 2D NOESY: role of G₁ and G₂ gradient pulses

Normally, the data from many scans at each t_1 are added together during collection of NOESY spectra

- -ideally, one would wait $\sim 5T_1$ between scans to allow the system to equilibrate
- -this of course require far too much time to acquire a complete 2D data set
- -one can wait for $<5T_1$ between scans, but this causes a loss in signal intensity and an increase in the appearance of artifacts in the 2D spectra (some of which can be alleviated by phase cycling and other techniques) -linear field gradient pulses can be used to

G₁ gradient:

-in the gradient NOESY experiment, the G_1 gradient pulse will dephase any transverse magnetization during the recycle delay, preventing artifacts in the spectra resulting from these components

G₂ gradient:

-performs a function similar to the G_1 gradient, only during the mixing time, τ_m . During τ_m , transverse magnetization components often can cause artifacts in NOESY spectra. G2 dephases these components

6). 2D NOESY: mixing time

How long should the mixing time, τ_m , be?

- in order to maximize the polarization transfer that can be accomplished by the transient NOE, and therefore to maximize the crosspeak intensity in the NOESY spectrum, τ_m should be set to approximately T_1 for the 1H spins involved

small molecule: 500 ms - 5 s large molecule: 30 ms - 400 ms

7). example: 1D steady-state NOE experiment

Which methyl signal (δ =1.7 or δ =1.5 ppm) is the methyl group on the same side of the ring as H-3?

- -saturate the methyl signals
- -when the signal at δ =1.7 ppm is saturated, an NOE enhancement is observed for H-3, indicating the signal at δ =1.7 ppm corresponds to the methyl group on the same side of the ring as H-3

8). example: 2D NOESY experiment

(20 mg in 0.5 ml D2O, 128 points in t1, mixing time = 2 seconds, 16 scans/FID: 2 hours)

- -crosspeaks observed between H-1' (I) and H-3 and H-4 (II)
- -crosspeaks observed between H-2' (I) and H-5, H-6a and H-6b (II)
- -no crosspeaks between H-2' (I) and H-4 (II)