CLASE 14 : FUNCIONES RACIONALES (Cont.)

•
$$f(x) = \frac{2x^2 + 1}{x^4 + x^3 - 2x^2}$$

. Asínhohes horizonholes

$$f(x) = \frac{2x^2 + 1}{x^4 + x^3 - 2x^2}$$

$$= \frac{x^2}{x^4} \cdot \frac{2 + \frac{1}{x^2}}{1 + \frac{1}{x} - \frac{2}{x^2}}$$

$$= \frac{1}{x^2} \cdot \frac{2}{1} \longrightarrow \infty \quad \text{si } x \longrightarrow \pm \infty$$

Luego, la aninbola horizontel es el eje horizontel . Asinbhos merticoles

$$f(x) = \frac{2x^{2}+1}{x^{4}+x^{3}-2}x^{2}$$

$$= \frac{2x^{2}+1}{x^{2}(x^{2}+x-2)}$$

$$= \frac{2x^{2}+1}{x^{2}(x+2)(x-1)} \Rightarrow A = x = 0, -2 y$$

$$= x = 0, -2 y$$

• Ej:
$$f(x) = \frac{x^2}{x-3}$$

=)
$$f(x) = x+3 + \frac{9}{x-3} \approx x + 3$$

or in both or oblique

Asinbola ratical an x = 3

DEF: Sea $f:A \longrightarrow B$ une funcion. Decimp yer f in injective si $X_1 \neq X_2 \Longrightarrow f(X_1) \neq f(X_2)$

Es inyectivo

No eo inyective: a+b, flow)= f(b)

• Ej: i)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $\times \longmapsto \times^{2}$
mo so inyechive: $f(1) = f(-1), 1 \neq -1$
ii) $f: \mathbb{R} \longrightarrow \mathbb{R}$
 $\times \longmapsto \frac{X+1}{X^{2}+1}$
mo so inyechive: $f(0) = f(1), 0 \neq 1$

• Obs :
$$f$$
 to injective f :
$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$$

•
$$\sqsubseteq_j : f(x) = 2x + 1$$

$$f(x_1) = f(x_2) \implies 2x_1 + 1 = 2x_2 + 1$$

$$= 2x_1 = 2x_2$$

$$= x_1 = x_2$$

Luego, f & inyechiva

•
$$E_j: f: [0,\infty) \longrightarrow \mathbb{R}$$

$$x \longmapsto x^2$$

$$f(x_1) = f(x_2) \Longrightarrow x_1^2 = x_2^2$$

$$\Longrightarrow |x_1| = |x_2|$$

$$\Longrightarrow x_1 = x_2 (x_1, x_2 \ge 0)$$

Une funcion es injective si x solo si toda recha haijontal intersecta su gnéfica a la més una vez. . <u>DEF</u>: Sea f:A → B una función. Decimos que f es <u>sobreyectiva</u> so

 $\forall y \in B, \exists x \in A : f(x) = y$

Es sobreyechive

No es sobreyectiva

Sin embergut,

f: A -> C

x +-> f(x)

sobreyechine.

• Obs: See $f:A \longrightarrow B$. Siempre podemo tronsforma f in une función sobreyectiva al homor B = Rec f.

•
$$E_j$$
: $f(x) = 2x + 1$, $f: \mathbb{R} \longrightarrow \mathbb{R}$

Sea $y \in \mathbb{R}$, the comb $x \in \mathbb{R}$ had give f(x) = y.

$$f(x) = y \iff 2x + 1 = y$$

$$\Rightarrow 2x = y - 1$$

$$\Rightarrow x = \frac{y - 1}{a_1}$$

Es decir, $f(\frac{y-1}{z}) = y$. Lugs, f so sobreyechion

• Ej:
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $\times \longmapsto \times^2$

mo eo sobreyechiva: Como x²≥0 txeR, -1 & Rec f

Sin embergr,
$$f: \mathbb{R} \longrightarrow [0, \infty)$$

 $x \longmapsto x^2$

es sobreyectiva: si yzo, anton cos

$$f(\sqrt{y}) = y$$

inyechive y sobreyechiva

- DEF: Sea f: A → B ma función.

 Decimos que f as biyectiva so as
 inyectiva y sobreyectiva.
- · Ej: i) f: R ______ R

 x ----- 2x+1

 & biyechiva
 - ii) $f:[0,\infty) \longrightarrow [0,\infty)$ $x \longmapsto x^2$ & biyechiva
 - Ej: Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto x^2 + 4x + 5$

$$f(x) = x^{2} - 4x + 4 + 1$$

$$= (x - z)^{2} + 1$$

. No es inyective :

. No es sheyechive:

$$f: [2,\infty) \longrightarrow [1,\infty)$$

$$X \longmapsto (X-z)^2 + 1$$

es biyectiva.

· Inyechiva:

$$f(X_1) = f(X_2) = \sum_{i=1}^{2} (X_1 - 2)^2 + 1 = (X_2 - 2)^2 + 1$$

$$= \sum_{i=1}^{2} (X_1 - 2)^2 = (X_2 - 2)^2$$

$$= \sum_{i=1}^{2} |X_1 - 2| = |X_2 - 2|$$

$$= \sum_{i=1}^{2} |X_1 - 2| = |X_2 - 2|$$

$$=$$
 $X_1 = X_2$

· Sobreyective:

$$f(x) = y \iff (x-2)^{2} + 1 = y$$

$$\iff (x-2)^{2} = y-1$$

$$y \ge 1$$

$$\iff 1x-2 = \sqrt{y-1}$$

$$x \ge 2$$

$$\iff x = 2+\sqrt{y-1}$$
Es docir, $f(z+\sqrt{y-1}) = y$

 $\forall 2+\sqrt{y-1} \in [2,\infty)$.