Un exercice de khôlle (pas si) redoutable

Amar AHMANE MP2I

26 novembre 2021

Enoncé Soient *E* un ensemble, $f, g \in \mathcal{F}(E, E)$ deux applications vérifiant

$$f \circ g \circ f = g \tag{1}$$

$$g \circ f \circ g = f \tag{2}$$

Montrer que si f est injective ou surjective, alors f et g sont bijectives et

$$f \circ f = g \circ g = g^{-1} \circ g^{-1} = f^{-1} \circ f^{-1}$$
(3)

Réponse rédigée On montre d'abord que $f \circ f = g \circ g$.

Soit $x \in E$, on a $g \circ f \circ g(x) = f(x)$. En applicant f, on a $f \circ g \circ f \circ g(x) = f \circ f(x)$, mais d'après (1), on a $g \circ g(x) = f \circ f(x)$.

On montre aussi que si f et g sont bijectives, alors on a (3). Supposons que f et g sont bijectives, alors les applications réciproques f^{-1} et g^{-1} existent et on a

$$f \circ g \circ f = g$$
$$f^{-1} \circ f \circ g \circ f = f^{-1} \circ g$$
$$g \circ f = f^{-1} \circ g$$

D'après (2), on a $g \circ f = g \circ g \circ f \circ g$ donc $g \circ g \circ f \circ g = f^{-1} \circ g$ donc en composant à droite avec g^{-1} on a $g \circ g \circ f \circ g \circ g^{-1} = f^{-1} \circ g \circ g^{-1}$ donc $g \circ g \circ f = f^{-1}$. On compose avec f^{-1} à droite, d'où $g \circ g \circ f^{-1} = f^{-1} \circ f^{-1}$ donc $g \circ g = f^{-1} \circ f^{-1}$ donc $f \circ f = f^{-1} \circ f^{-1}$ et $(g \circ g)^{-1} = (f^{-1} \circ f^{-1})^{-1}$ donc $f \circ f = g^{-1} \circ g^{-1}$ donc $g \circ g = g^{-1} \circ g^{-1}$. On a bien (3).

- 1. On traîte ici le cas où *f* est injective.
 - Montrons que g est surjective. Soit $y \in E$, on a

$$g \circ f \circ g(y) = f(y)$$

D'après (2), on a

$$f \circ g \circ f \circ f \circ g(y) = f(y)$$

Par injectivité de *f* , on a

$$g(\underbrace{f \circ f \circ g(y)}_{:=x \in E}) = y$$

Donc g est surjective.

— Montrons que g est injective. Soient $x, x' \in E$, on suppose que g(x) = g(x'), on a alors

$$g(x) = g(x')$$

$$f \circ g(x) = f \circ g(x')$$

$$g \circ f \circ g(x) = g \circ f \circ g(x')$$

$$f(x) = f(x')$$

$$x = x'$$

— Montrons que f est surjective. Soit $y \in E$, on a

$$f \circ g \circ f(y) = g(y)$$

D'après (1), on a

$$g \circ f \circ g \circ g \circ f(y) = g(y)$$

Par injectivité de *g*, on a

$$f(\underbrace{g \circ g \circ f(y)}_{:=x \in E}) = y$$

Donc f est surjective.

Ainsi, on a que f et g sont bijectives, d'où (3).

- 2. On traître ici le cas où f est surjective.
 - Montrons que g est surjective. Soit $y \in E$, il existe alors d'après la surjectivité de f un élément $x \in E$ tel que y = f(x), ainsi $y = g \circ f \circ g(x)$ d'après (2), d'où, en posant x' = f(g(x)), l'existence d'un antécédant à y par g.
 - Montrons que f est injective. Soient $y, y' \in E$, on suppose que f(y) = f(y'). Il existe $x, x' \in E$ tels que g(x) = y et g(x') = y' par surjectivité de g, ainsi on a

$$f(y) = f(y')$$

$$f \circ g(x) = f \circ g(x')$$

$$g \circ f \circ g(x) = g \circ f \circ g(x')$$

$$f(x) = f(x')$$

$$g \circ f(x) = g \circ f(x')$$

$$f \circ g \circ f(x) = f \circ g \circ f(x')$$

$$g(x) = g(x')$$

$$y = y'$$

— L'injectivité de *f* nous donne directement l'injectivité de *g*, en effet, c'est la même preuve qu'on a faite un peu plus haut.

Ainsi, on a que f et g sont bijectives, d'où (3).