The Laws of Logic

Two statements s_1 and s_2 are logically equivalent if $s_1 \leftrightarrow s_2$ is a tautology, that is, s_1 and s_2 have the same truth table (up to the order of the rows)

If s_1 and s_2 are logically equivalent, we write $s_1 \Leftrightarrow s_2$. Note that $s_1 \leftrightarrow s_2$ is a statement and can in general be true or false, and $s_1 \Leftrightarrow s_2$ indicates the (higher level) fact that it is a tautology.

Logically equivalent statements are "the same" in the sense that logically equivalent statements can be freely substituted for each other without changing the meaning of a compound statement.

Here are some basic logical equivalences. Each of the following can be verified (proved) with a truth table. It is a good idea to memorize them, so that they are at your fingertips when needed. In what follows, 1 denotes a statement that is always true (i.e. a tautology), and **0** denotes a statement that is always false (i.e. a contradiction).


```
• Idempotence: p \lor p \Leftrightarrow p,
```

• Commutative: $p \land q \Leftrightarrow q \land p$, $p \lor q \Leftrightarrow q \lor p$ • Associative: $(p \land q) \land r \Leftrightarrow p \land (q \land r)$, $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ same signs used in individual statements

Commutative, two variable

Distributative: $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r), p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

• Double Negation: $\neg(\neg p) \Leftrightarrow p$

• DeMorgan's Laws: $\neg(p \lor q) \Leftrightarrow \neg p \land \neg q, \quad \neg(p \land q) \Leftrightarrow \neg p \lor \neg q$

• Identity: $p \wedge 1 \Leftrightarrow p$,

• Dominance: $p \land 0 \Leftrightarrow 0$, $p \lor 1 \Leftrightarrow 1$

and // 0 > p > 1 // precedenceor // 1 > p > 0 // precedence (and prefers p) // (or prefers 1) among p and 1 (and loves 0) // (or hates 0)

Distributative: two chaos to three chaos, three variables to four variables

DeMorgan's Law, in a nutshell:

"not" destroys the "brackets", which in turn changes the signs (read "chaos")

> No need to remember the name of identity and dominance, but memorize the statements

The following are some other useful legical equivalences.

chaotic

(p thakle q) EQUIVALANT ((breakup) p thakbena q thakle)

• $p \to q \Leftrightarrow \neg p \lor q$

• $p \leftrightarrow q \Leftrightarrow (p \to q) \land (q \to p) \Leftrightarrow (\neg p \lor q) \land (p \lor \neg q)$ (p sufficient q) and (p necessary p) } } (p thakbena q thakle) and (p thakle q thakbena)

It is apparent that the Laws of Logic come in pairs. The dual of a statement is obtained by replacing \vee by \wedge ; \wedge by \vee ; 0 by 1; and 1 by 0, wherever they occur. It is a theorem of logic that if s_1 is logically equivalent to s_2 , then the dual of s_1 is logically equivalent to the dual of s_2 .