CENTRALESUPÉLEC

First Year 2018-2019

Test I - Statistics and Learning

Without document.

Exercise 1

In order to evaluate the production potential of a wind turbine plant, wind speed is modelled by a random variable with Weibull distribution, the density of which is given by

$$f_{\beta}(x) = 2\beta^{-2}x \exp(-x^2/\beta^2) \mathbb{I}_{\mathbb{R}^+}(x),$$

where β is a strictly positive parameter called the scale parameter.

We will admit that if $X \sim f_1$, then:

$$\mathbb{E}_1(X) = \int_{\mathbb{R}} x \, f_1(x) \, dx = \frac{\sqrt{\pi}}{2}, \ \mathbb{E}_1(X^2) = \int_{\mathbb{R}} x^2 f_1(x) \, dx = 1 \text{ et } \mathbb{E}_1(X^4) = \int_{\mathbb{R}} x^4 f_1(x) \, dx = 2$$

We have a sample X_1, \ldots, X_N of i.i.d. random variables with density function f_{β^*} where β^* is the true value of the parameter.

- **1.** Show that $\forall r \in \mathbb{N}^*$, $\mathbb{E}_{\beta}(X^r) = \beta^r \mathbb{E}_1(X^r)$. Deduce then $\mathbb{E}_{\beta}(X)$, $\mathbb{V}_{\beta}(X)$ and $\mathbb{V}_{\beta}(X^2)$ for all $\beta > 0$.
- (N.B.: \mathbb{E}_{β} and \mathbb{V}_{β} denote the expectation and variance under the density function f_{β}).
- **2.** a) Provide an estimator of β^* by using the method of moments based on the first moment. $\hat{\beta}_1$ denotes this estimator.
- b) Calculate its bias and mean square error.
- c) Show that $\hat{\beta}_1$ is convergent.
- d) Determine the asymptotic distribution of $\sqrt{N}(\hat{\beta}_1 \beta^*)$.
- e) Make an asymptotically pivotal function for β^* . Deduce an asymptotic confidence interval at level 98% for β^* as a function of $q_{0.99}$ where $q_{0.99}$ is the 0.99—quantile for the standard normal distribution.
- **3**. a) Define the likelihood of the parameter β based on the sample (x_1, \ldots, x_N) .
- b) Show that the maximum likelihood estimator exists, that it is unique and that it is expressed as a function of the second order empirical moment of the sample. We will denote it by $\hat{\beta}_2$.

- c) Show that $\hat{\beta}_2$ is convergent.
- d) Based on $\hat{\beta}_2$ and by using the Delta method, determine a confidence interval for β at asymptotic level 0.98 as a function of $q_{0.99}$, the 0.99—quantile for the standard normal distribution.

Exercise 2

Let $(X_1, X_2, ..., X_N)$ be a sample of independent random variables, identically distributed from a statistical model parameterized by $\theta \in \Theta \subset \mathbb{R}$. In this exercise, we consider the likelihood ratio test for parametric type tests defined as following:

$$H_0: \theta \in \Theta_0$$
 against $H_1: \theta \in \Theta_0^c$

where $\Theta_0 \subsetneq \Theta$ is given and Θ_0^c is the complementary set of Θ_0 in Θ .

For this purpose, a test statistic is constructed:

$$\lambda(X_1, \dots, X_N) = \frac{\sup_{\Theta} \mathcal{L}(\theta; X_1, \dots, X_N)}{\sup_{\Theta_0} \mathcal{L}(\theta; X_1, \dots, X_N)}$$

where $\mathcal{L}(\theta; X_1, \dots, X_N)$ represents the likelihood function of the parameter θ for the sample (X_1, \dots, X_N) . We are then led to a rejection zone defined by:

$$R_{\alpha} = \{(x_1, \dots, x_N) \text{ such that } \lambda(x_1, \dots, x_N) > c_{\alpha}\}$$

where c_{α} is chosen such that :

$$\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta} \left((X_1, \dots, X_N) \in R_{\alpha} \right) = \alpha .$$

- 1) Let $X = (X_1, X_2, ..., X_N)$ be a sample of independent random variables, identically distributed from a normal distribution $\mathcal{N}(\mu, 1)$.
- a) Calculate $\hat{\mu}$ the maximum likelihood estimator for μ defined on $\Theta = \mathbb{R}$ and give its distribution.
- b) We want to perform a parametric hypothesis test:

$$H_0: \mu = \mu_0 \text{ against } H_1: \mu \neq \mu_0$$

where μ_0 is given.

Determine the likelihood ratio $\lambda(X)$ and deduce a simplified form of the rejection region. Determine c_{α} .

2) Now, we consider a family of exponential distributions with densities of the form:

$$f(x;\theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta \\ 0 & x < \theta \end{cases}$$

Let $X = (X_1, X_2, ..., X_N)$ be a sample of independent random variables, identically distributed according to $f(x; \theta)$. We test:

$$H_0: \theta \leq \theta_0 \text{ against } H_1: \theta > \theta_0$$

where θ_0 is given.

- a) Calculate $\hat{\theta}$ the maximum likelihood estimator for θ on $\Theta = \mathbb{R}$ by bringing out $X_{(1)} := \min_{1 \leq i \leq N} X_i$.
- b) Determine $\lambda(X)$ for the considered parametric test and deduce a simplified form of the rejection region. Determine c_{α} .

Exercise 3

We recall the definition of a multinomial distribution of order K. Let $N \in \mathbb{N}^*$, $p \in]0; 1[^K$ such that $\sum_{i=1}^K p_i = 1$. The probability mass function of the multinomial distribution with parameter (N, p) is:

$$P(x_1, ..., x_K) = \begin{cases} \frac{N!}{\prod_{i=1}^K x_i!} \prod_{i=1}^K p_i^{x_i}, & \text{if } (x_1, ..., x_K) \in \{0; 1; ...; N\}^K \text{ such that } \sum_{i=1}^K x_j = N \\ 0 & \text{otherwise.} \end{cases}$$

Let us denote $X \sim M(N, p)$.

We also recall the definition of a Dirichlet distribution of order K.

Let $a = (a_1, \ldots, a_K) \in (\mathbb{R}_+^*)^K$. The Dirichlet distribution of order K with parameter a and the support $S = \left\{ x \in [0; 1]^K : \sum_{i=1}^K x_i = 1 \right\}$ has a probability density function defined as:

$$p(x_1, \dots, x_K) = \begin{cases} \frac{1}{\beta(a)} \prod_{i=1}^K x_i^{a_i - 1} & \text{if } (x_1, \dots, x_K) \in \mathcal{S} \\ 0 & \text{otherwise} \end{cases}$$

It is denoted by Dir(a). The Dirichlet distribution of ordre 2 is the Beta distribution, $Dir(a_1, a_2) = Beta(a_1, a_2)$.

- 1) Without performing any calculation, tell how to determine the function $a \mapsto \beta(a)$. We will assume that it is known for the followings.
- 2) Let Y be a random variable that follows a multinomial distribution of order K, $K \geq 3$ with parameters (N, θ) , where N is known and $\theta = (\theta_1, \dots, \theta_K)$ is unknown. Let $y = (y_1, \dots, y_K)$ be an observation of the variable Y. We focus on the Bayesian estimation for θ and assume a prior distribution $\pi = \text{Dir}(a)$, with $a = (a_1, \dots, a_K) \in (\mathbb{R}_+^*)^K$. Determine the posterior distribution $p(\theta|y)$.

- 3) a) Show that if $(X_1, \ldots, X_{K-1}, X_K)$ has a Dirichlet distribution with parameter $(a_1, \ldots, a_{K-1}, a_K)$, then $(X_1, \ldots, X_{K-2}, X_{K-1} + X_K)$ has a Dirichlet distribution with parameter $(a_1, \ldots, a_{K-2}, a_{K-1} + a_K)$.
- b) We denote $a_r = \sum_{i=3}^K a_i$ and $y_r = \sum_{i=3}^K y_i$. Deduce from the previous question that $p(\theta_1, \theta_2 | y) \propto \theta_1^{a_1 + y_1 1} \theta_2^{a_2 + y_2 1} (1 \theta_1 \theta_2)^{a_r + y_r 1}.$
- 4) We carry out the variable change ϕ :

$$(\alpha_1, \alpha_2) = \left(\frac{\theta_1}{\theta_1 + \theta_2}, \theta_1 + \theta_2\right) = \phi(\theta_1, \theta_2).$$

- a) Show that ϕ is a \mathcal{C}^1 -Diffeomorphism of $]0; +\infty[^2]$ onto $]0; 1[\times]0; +\infty[$.
- b) Deduce the conditional density $p(\alpha_1, \alpha_2|y)$ up to a normalizing constant.
- c) Finally, deduce the probability law of the conditional density $p(\alpha_1|y)$.