This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1	15					
2	1.					
3	The combination of a mechanism for releasing its cocked condition in a raised					
4	position on a frame of an apparatus and a standard on which said frame is					
5	mounted for raising and lowering it, comprising					
6	a bell-crank assembly having a pivotal mount pivotally mounted on said frame and					
.7	having a first arm and a second arm on opposite sides of the pivotal					
. 8	mount,					
9	bearing means mounted on said first arm,					
10	means for pivoting the second arm on the other side of the pivotal mount,					
11	said standard including a latch means,					
12	said bearing means engaging said latch means in the cocked condition,					
13	whereby					
14	upon actuation of said pivoting means, said bell-crank assembly turns on its					
15	pivotal mount to disengage said bearing means from said latch means and					
16	thereby lower the frame on said standard.					
17						
18						
19	2.					
20	The combination of said mechanism and standard of claim 1 wherein					
21	said pivoting means comprises					
22	solenoid means having a reciprocable rod and being fixedly connected to said					
23	frame which when energized retracts said rod thereby turning said second					
24	arm about the pivotal mount.					
25						
26						
27	3.					
28	The combination of the mechanism and standard of claim 2 wherein					
29	said solenoid means includes linkage connecting its rod to said second arm					
30						
31						
32						
33						
34						
35						

2	7.		
3	In an apparatus for testing the co-efficient-of-friction of a surface such as the		
4	surface of a road, the apparatus including		
5	a frame including longitudinally-extending members and being suitably		
6	mounted on a plurality of standards adapted to engage such		
7	surface,		
8	a plurality of standards supporting said frame,		
9	a carriage slidably mounted on said members,		
10	constant-force coiled spring means operatively connecting together said		
11	frame and carriage for retracting said carriage along said members		
12	upon completion of the testing operation by said apparatus,		
13	a tire securely mounted to a wheel rotatably mounted on said carriage,		
14	means on said frame for maintaining a span between the tire and such		
15	surface,		
16	means for rotating the wheel by which the tire rotates,		
17	a gauging tape in alignment with one of said members, and		
18	indicator means mounted on one of said members slidable with said		
19	carriage in a forward direction of motion for said carriage,		
20	the improvement comprising		
21	said rotating means including a motor having a shaft on which a first sprocket		
22	wheel having teeth is securely mounted thereto and which accelerates the		
23	speed of said tire upon its actuation,		
24	electronic means for actuating said rotating means whereby said carriage slides in		
25	a direction of forward motion along said members,		
26	said electronic means including		
27	means for sensing the speed of said rotating means as the speed of said tire		
28	increases to reach the predetermined value in said electronic		
29	means, and		
30	means for releasing said maintaining means,		
31	whereby		
32	the tire drops to engage such surface and at which dropping said indicator means		
33	halts on said one of said members at a gauge reading to indicate the co-		
34	efficient of friction of the surface to which the tire drops.		
35	when the trops.		
36			
37			

1	18				
2	8.				
3	The apparatus of claim 7 wherein				
4	a single one of said standards supports said frame at its rear, and				
5	said maintaining means comprises				
6	a bell-crank assembly having a pivotal mount pivotally mounted on and at the rear				
7	of said frame and having a first arm and a second arm on opposite sides of				
8	the pivotal mount,				
9	bearing means mounted on said first arm,				
10	means for pivoting the second arm on the other side of the pivotal mount,				
11	said single one of said standards including a latch means,				
12	said bearing means engaging said latch means in the cocked condition,				
13	whereby				
14	upon actuation of said pivoting means, said bell-crank assembly turns on its				
15	pivotal mount to disengage said bearing means from said latch means and				
16	thereby lower the frame on said one of said standards.				
17					
18					
19	9.				
20	In the apparatus of claim 8 wherein				
21	said pivoting means comprises				
22	solenoid means having a reciprocable rod and being fixedly connected to said				
23	frame which when energized retracts said rod thereby turning said second				
24	arm about the pivotal mount.				
25					
26					
27	10.				
28	In the apparatus of claim 9 wherein				
29	said solenoid means includes linkage connecting its rod to said second arm.				
30					
31					
32					
33					
34					
35					

1	19			
2	2 11.			
3	In the apparatus of claim 10 wherein			
4	a single one of said plurality of standards is disposed at the rear	of said frame an		
5	5 comprises			
6	a threaded stem,	100		
7	said latch means is threadedly mounted on said stem, and			
8	handle means securely mounted to said latch means for adjusting	said latch mear		
9	along the length of said stem,			
10	whereby the position of the cocked condition of said mechanism	n to said frame		
11	adjustable along the length of said stem.			
12	2			
13	3			
14	4 12.			
15	5 ⁵ In the apparatus of claim 11 wherein			
16	said latch means comprises	*		
17	a threaded sleeve and a ledge at its bottom on which said bearing	ng means seats i		
18	8 a cocked condition for said mechanism.			
19	9	4		
20	0			
21	1 13.			
22	2 In the apparatus of claim 12 wherein	*		
23	said bearing mean comprises			
24	4 a roller.	*		
25	5			
26	6 14.			
27	7 In the apparatus of claim 7 wherein			
28	8 the wheel includes an axle,			
29	9 said rotating means further comprising			
30	a second sprocket wheel secured to said axle, and			
31		ocket wheel an		
32	:			
33				
34				
35	5			
36	5	*		
37	•	· · · · · · · · · · · · · · · · · · ·		