N. Bousquet¹, F. Havet², N. Nisse², L. Picasarri-Arrieta², A. Reinald³

- ¹ LIRIS, CNRS, Université Claude Bernard Lyon 1, Lyon, France
- ² CNRS, Université Côte d'Azur, I3S, Inria, Sophia-Antipolis, France
 - ³ LIRMM, CNRS, Université de Montpellier, Montpellier, France

• k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

 $\mathcal{D}_k(D)$: the *k*-dicolouring graph of D:

- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\gamma_i \gamma_j \in E(\mathcal{D}_k(D))$ if $\gamma_i = \gamma_j$ except on one vertex.


```
\mathcal{D}_k(D): the k-dicolouring graph of D:
```

- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\gamma_i \gamma_j \in E(\mathcal{D}_k(D))$ if $\gamma_i = \gamma_j$ except on one vertex.

 $C_k(G)$: the k-colouring graph of G is similar.

• recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.

- recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.
- D is k-mixing : $\mathcal{D}_k(D)$ is connected.

- recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.
- D is k-mixing : $\mathcal{D}_k(D)$ is connected.

 \longrightarrow Is D k-mixing ?

- recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.
- D is k-mixing : $\mathcal{D}_k(D)$ is connected.

 \longrightarrow Is D k-mixing ?

 \longrightarrow Can we bound the diameter of $\mathcal{D}_k(D)$?

Theorem (Bonsma et al.; Dyer et al.)

If
$$k \ge \delta^*(G) + 2$$
, then G is k-mixing, and $diam(C_k(G)) \le 2^n - 1$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(C_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \ge \delta^*(G) + 2$$
, then $diam(C_k(G)) = O(n^2)$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(\mathcal{C}_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \ge \delta^*(G) + 2$$
, then $diam(C_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G)+1)$$
, then $diam(\mathcal{C}_k(G)) = O(n^2)$.

Theorem (Bonsma et al. ; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(C_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If $k \ge \delta^*(G) + 2$, then $diam(C_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{C}_k(G)) = O(n^2)$.

Directed graphs

Theorem

If $k \ge \delta_{\min}^*(D) + 2$, then D is k-mixing, and $\operatorname{diam}(\mathcal{D}_k(D)) \le 2^n - 1$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(C_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \ge \delta^*(G) + 2$$
, then $diam(C_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{C}_k(G)) = O(n^2)$.

Directed graphs

Theorem

If $k \ge \delta_{\min}^*(D) + 2$, then D is k-mixing, and $diam(\mathcal{D}_k(D)) \le 2^n - 1$.

Conjecture

If
$$k \ge \delta_{\min}^*(D) + 2$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(C_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \geq \delta^*(G) + 2$$
, then $diam(C_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{C}_k(G)) = O(n^2)$.

Directed graphs

Theorem

If $k \geq \delta_{\min}^*(D) + 2$, then D is k-mixing, and $diam(\mathcal{D}_k(D)) \leq 2^n - 1$.

Conjecture

If
$$k \geq \delta_{\min}^*(D) + 2$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Theorem

If
$$k \geq \frac{3}{2}(\delta_{\min}^*(D) + 1)$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Degeneracy of a (di)graph

• Degeneracy $\delta^*(G)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has at most d neighbours in $\{v_{i+1}, \ldots, v_n\}$.

Degeneracy of a (di)graph

- Degeneracy $\delta^*(G)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has at most d neighbours in $\{v_{i+1}, \ldots, v_n\}$.
- Min-degeneracy $\delta_{\min}^*(D)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has $\leq d$ in-neighbours or $\leq d$ out-neighbours in $\{v_{i+1}, \ldots, v_n\}$.

Degeneracy of a (di)graph

- Degeneracy $\delta^*(G)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has at most d neighbours in $\{v_{i+1}, \ldots, v_n\}$.
- Min-degeneracy $\delta_{\min}^*(D)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has $\leq d$ in-neighbours or $\leq d$ out-neighbours in $\{v_{i+1}, \ldots, v_n\}$.
- $\delta^*(G) = \delta^*_{\min}(\overrightarrow{G})$

An easy result on the (di)chromatic number using the (min-)degeneracy

Every graph G satisfies $\chi(G) \leq \delta^*(G) + 1$. Every digraph D satisfies $\overline{\chi}(D) \leq \delta^*_{\min}(D) + 1$.

An easy result on the (di)chromatic number using the (min-)degeneracy

Every graph G satisfies $\chi(G) \leq \delta^*(G) + 1$. Every digraph D satisfies $\overrightarrow{\chi}(D) \leq \delta^*_{\min}(D) + 1$.

An easy result on the (di)chromatic number using the (min-)degeneracy

Every graph G satisfies $\chi(G) \leq \delta^*(G) + 1$. Every digraph D satisfies $\overrightarrow{\chi}(D) \leq \delta^*_{\min}(D) + 1$.

A generalization of a result from Bonsma, Cereceda, Dyer, Flaxman, Frieze and Vigoda.

Theorem (Bonsma et al.; Dyer et al.)

If $k \geq \delta^*(G) + 2$, then G is k-mixing, and diam $(C_k(G)) \leq 2^n - 1$.

This **generalizes** to the following:

Theorem

If $k \geq \delta_{\min}^*(D) + 2$, then D is k-mixing, and diam $(\mathcal{D}_k(D)) \leq 2^n - 1$.

• n=1: Trivial.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v.

- n=1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \overset{2^{n-1}-1}{\longrightarrow} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \xrightarrow{2^{n-1}-1} \beta_{|H}$.

When x is recoloured in H, either we can recolour it in D, or we can first recolour v and then recolour x:

At the end we find $\alpha \longrightarrow \beta$ of length $\leq 2(2^{n-1}-1)+1=2^n-1$

An analogue of Cereceda's conjecture.

Conjecture (Cereceda, 2007)

If
$$k \geq \delta^*(G) + 2$$
, then $diam(\mathcal{C}_k(G)) = O(n^2)$.

We posed the analogue for digraphs :

Conjecture

If
$$k \geq \delta_{\min}^*(D) + 2$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

A partial result

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{C}_k(G)) = O(n^2)$.

Theorem

If
$$k \geq \frac{3}{2}(\delta_{\min}^*(D) + 1)$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Using the Maximum Average Degree

$$MAD(D) = \max \left\{ \frac{2|A(H)|}{|V(H)|} | H \text{ subdigraph of } D \right\}$$

Theorem

If an oriented graph D satisfies $MAD(D) < \frac{7}{2}$ then it is 2-mixing.

Conjecture

It is also true when MAD(D) < 4.

Using the planarity

Conjecture (Neumann-Lara)

Every oriented planar graph D has dichromatic number at most 2.

It is known that $\overrightarrow{\chi}(D) \leq 3$.

Using the planarity

Conjecture (Neumann-Lara)

Every oriented planar graph D has dichromatic number at most 2.

It is known that $\overrightarrow{\chi}(D) \leq 3$.

Problem

Is every oriented planar graph D 3-mixing?

About complexity

Theorem

For every $k \ge 2$, given a digraph D together with two k-dicolourings α, β of D, deciding if there is a recolouring sequence (with k colours) between α and β is PSPACE-complete.

Problem

What is the complexity of deciding if D is k-mixing for any fixed $k \ge 2$?

Thanks for your attention.

