32.4 (x,d) northic space	
S is said to disconnected	
$S = A \cup B + \phi$ where $\begin{cases} \overline{A} \cap B = \varphi \\ A \cap \overline{B} = \varphi \end{cases}$	5
$A \neq \emptyset $ $B = \emptyset$	5
A Connected	
connected del not disconne	
S def not disconn	cki
AnB	
= On British	
$ \begin{array}{cccc} & & & & & & & & & & \\ & & & & & & & &$	
Prop. 2.67 A subset SCR is conveled	\bigcirc
=> (x,y) < S. x < d, (1)	
(=)) Suppose S is commeted	
Assume @ is fake	
3 x,y ∈ S , x < y 5.1. [x,y] ¢ S	
=> 2 2 E (x,y) XES =45.	

Take A = (-a, 2) 1 S, B = (2,+6) 1S S= AUB. AnB= (-w, 2)ns nB < (-00,2) ns nB FAX CXAT 20 (mt, \$1 (5,00-) = AnB = \$ similarly. Given Vx,yes when xey => [xy] <5. Assum S is disconnected. AUB st. AnBed, BnA-6. (A) CRIB E Eno A elevant let = sup(An [xy]) ZEB => ZEA = 2 E A an E Antiy) S connected => S connected. <u>Ex:</u>

S is Path - connected

del Axyes. IT: to,13-35

continuous

S.t 700 = x and 700=y.

path-connected = connected. cannected = path-connected. Grivar: S is path-connected Wort: S is connected. W Assum not (i.e. Six disconnected) S=AUB, AnB= \$ A # # A NB = \$.

A X & A X & A X & B & A X & B & A X & B & B & B & B & Continuous. $\Upsilon(S) = \Upsilon'(AUB)$ $\Upsilon(O) = Y.$ $\Upsilon(O) = Y.$ [0,1] = 7 (A) U T'(B) 7-1(A) ~ ~ (B) < ~ (A) ~ ~ (B) = 7 (((A) = 7 ())

