Pharmakodynamik

Block 9 2023/24

Inhalt

Einleitung	2
Dosis-Wirkung	2
Proteine als Angriffspunkte von Pharmaka	
Struktur-unspezifische Angriffpunkte	
Toleranz	

Einleitung

- 1. Was wir über ein Pharmakon wissen wollen:
 - Pharmakodynamik: Was macht das Pharmakon mit dem Organismus
 - o Wirkung auf molekularem & zellulärem Niveau
 - Hauptwirkung
 - Nebenwirkung
 - a. UAW dosisabhängig
 - b. UAW dosisunabhängig (Allergien)
 - o Dosis-Abhängigkeit der Effekte
 - Pharmakokinetik¹: Was macht der Organismus mit dem Pharmakon
 - o ADME (absorption, distribution, metabolism, excretion)
 - Interaktionen mit anderen Arzneimitteln (pharmakokinetisch & -dynamisch)
 - → Arzneimittelanamnese
 - o Warnung des Patienten vor eigenmächtiger Einnahme anderer Mittel
 - Gewöhnung, Toleranz, Sensibilisierung

Dosis-Wirkung

1. MM-Gleichung

•
$$v = \frac{v_{\text{max}} \cdot [S]}{K_m + [S]}$$

v...Reaktionsgeschwindigkeit

[S]...Substratkonzentration

Substratkonzentration

- o K_m ist ein Maß für die Affinität zum Substrat (Dissoziationskonstante)
- o Je kleiner K_m, desto größer die Affinität
- [S] << K_m (Bereich A)

$$\circ \quad v = \frac{v_{max} \cdot [S]}{K_m + 0}$$

- Reaktion 1. Ordnung
- doppelte Substratkonzentration macht doppelte Reaktionsgeschwindigkeit

- o Reaktion 0. Ordnung
- Reaktionsgeschwindigkeit ist unabhängig von der Substratkonzentration
- 2. Sättigungskinetik einer Enzymreaktion (links) vs. Lineweaver-Burk (rechts)

Reaktionsgeschwindigkeit

Vmax

3. Kompetitive/nicht-kompetitive Hemmung

	Kompetitiv	Nicht-kompetitiv
K _m	wird größer	unverändert
V _{max}	unverändert	wird kleiner
Schnittpunktänderung	y-Achse	x-Achse
Lineweaver-Burk Plot	(v _{max} = konst)	$(K_m = konst)$

¹ siehe Pharmakokinetik

- $\bullet \quad \ \ K_{app}$
- o apparenter/scheinbarer K_m-Wert des Agonisten, wenn ein kompetitiver Antagonist vorhanden ist
- $\bigcirc \quad K_{app} = K_m \left(1 + \frac{[l]}{\kappa_i} \right) \ \, \dots [l] = \text{Konzentration des Inhibitors} \\ \quad \dots \text{K}_{\text{i}} = \text{K}_{\text{m}} \text{ des Inhibitors}$
- \circ $\frac{K_{app}}{K_m}$ = Faktor, um den die Konzentration des Agonisten erhöht werden muss, damit im Gegenwart des Antagonisten dieselbe Wirkung wie in Abwesenheit hervorgerufen wird.
- 4. Analog zu K_m und v_{max}

Wirkung	Rezeptorbindung
E _{max} : intrinsische Aktivität	E _{max} : intrinsische Aktivität
EC ₅₀ : Potenz	K _D : Dissoziationskonstante
(= dosisbezogene Wirkungsstärke)	(= Maß für Affinität – K _m)

- Agonist: hohe intrinsische Aktivität
- Partieller Agonist: schwächere intrinsische Aktivität
- Antagonist: keine intrinsische Aktivität, hohe Affinität
- Inverser Agonist: gegensinnige intrinsische Aktivität
- 5. Analogverfahren/Alternativverfahren
 - Analogverfahren: Im Experiment wird die Potenz (EC₅₀) mit dem Wirkungsmaximum (E_{max}) verglichen
 - Alternativverfahren: In der Klinik relevant ist der Vergleich zwischen Potenz (ED₅₀) und Responserate (Anzahl der Individuen, die ansprechen)

ED ₅₀	Dosis, bei der 50% der Individuen
	ansprechen
EC ₅₀	Konzentration, mit 50% der
	Wirkung

- 6. Kollektive Dosis-Wirkungs-Beziehung
 - Dosis wird erhöht, bis alle Individuen reagiert haben
 - Normalverteilung ergibt sich, wenn reagierende Individuen gegen log-Dosis aufgetragen wird
 - ED₅₀: Dosis, bei der 50% der Individuen reagieren
 - TD₅₀: Dosis, bei der 50% der Individuen mit einer toxischen Wirkung reagieren
 - Kumuliert ergibt dies folgende Kurve (rot)

- $\frac{TD_5}{ED_{95}}$: therapeutischer Index
- $\frac{TD_{50}}{ED_{50}}$: therapeutische Breite
- 7. Kompetitiver Antagonist (Formel für EC_{app})
 - apparenter/scheinbarer EC₅₀-Wert des Agonisten, wenn ein kompetitiver Antagonist vorhanden ist

o
$$EC_{app} = EC_{50} \left(1 + \frac{[l]}{K_i} \right)$$
 ... [I] = Konzentration des Inhibitors ... $K_i = EC_{50}$ des Inhibitors

- $\frac{EC_{app}}{EC_{50}}$ = Faktor, um den die Konzentration des Agonisten erhöht werden muss, damit in Gegenwart des Antagonisten dieselbe Wirkung wie in Abwesenheit hervorgerufen wird
- 8. Partieller Agonist: schwächere intrinsische Aktivität
 - Wirkungsmaximum ist kleiner als das Wirkungsmaximum des (endogenen) vollen Agonisten
 - ACHTUNG: für Berechnung von EC₅₀ wird immer das jeweilige Wirkungsmaximum herangezogen → daher kann EC₅₀ vom vollen Agonisten und vom partiellen Agonisten auch (annähernd) gleich sein.

- 9. Chemischer Antagonismus
 - Komplexbildung
 - Dosis-Wirkungskurve wie bei kompetitivem Antagonismus
- 10. Funktioneller/Physiologischer Antagonismus
 - Dosis-Wirkungskurve wie bei nicht-kompetitivem Antagonismus
 - Zb Opiat-Rezeptor-Agonisten; Agonisten an muskarinischen Cholinozeptoren

Spezifische Bindungsstelle

Stereoselektivität (Chiralität)

Hohe Affinität

Proteine als Angriffspunkte von Pharmaka

- 2. Nukleäre Rezeptoren
 - Testosteron (Androgene)
 - Antiandrogene: Flutamid,
 Bicalutamid, Enzalutamid, Apalutamid, Darolutamid
 - Östrogene
 - SERM (selektiver Östrogenrezeptormodulator): Tamoxifen, Raloxifem, Toremifen
 - a. Tamoxifen: Antagonist in der Mamma; Agonist in Knochen, Uterus
 (→ Endometrium-Ca) und Leber (Gerinnungsfaktoren → Thromboembolierisiko)

Rezeptoren:

- b. Raloxifen: Antagonist in der Mamma; Agonist in Knochen, aber nicht im Uterus
- O SERD (selektiver Östrigenrezeptor-Downregulatur): Fulvestrant
- Progesteron
- Fremdstoffe (Xenobiotika)
 - AH (aromatic hydrocarbon)-Rezeptor: Dioxin²
 - o CAR: Phenobarbital
 - o PXR: Rifampicin
- 3. Membranständige Rezeptoren
 - Liganden-gesteuerte Ionenkanäle (ionotrope Rezeptoren)
 - Pentamere (cystein-loop)
 - a. n-Cholinozeptoren: Nikotin aktiviert; Curare blockieren
 - b. 5-HT₃-Blocker³: Ondansetron, Granisetron, Tropisentron
 - o GABA_A-Rezeptoren
 - a. Phenobarbital aktiviert
 - o Tetramere
 - a. Glutamat-Rezeptoren
 - o Trimere
 - a. P2X: ATP
 - G-Protein-gekoppelte Rezeptoren (metabotrope Rezeptoren)
 - o β-Blocker
 - o α-Blocker
 - o Angiotensin-II-Antagonisten
 - o m-Cholinozeptoren
 - a. Antagonisten: Atropin, Pirenzepin, Scopolamin⁴
 - Histamin-Rezeptor
 - a. H₁-Blocker⁵: Dimenhydrinat
 - b. H₂-Blocker⁶: Cimetidin, Ranitidin, Famotidin
 - Dopamin-Rezeptor⁷
 - a. D₂-Blocker: Metoclopramid (Paspertin®)

² siehe Toxikologie: Dioxin

³ siehe Therapie: Antiemetika

⁴ siehe Therapie: Antiemetika

⁵ siehe Therapie: Antiemetika

⁶ Siehe Therapie: Ulcus

⁷ siehe Therapie: Antiemetika

- Substanz P Rezeptor⁸
 - a. NK₁-Blocker: Aprepitant
- Cannabinoid-Rezeptor⁹
 - a. CB₁-Blocker: Dronabinol
- Prostaglandin-Rezeptor¹⁰
 - a. Agonist: Misoprostol
- Opioid-Rezeptor
 - a. Agonist: Morphin, Loperamid
- Dimerisierende, liganden-gesteuerte Tyrosinkinase-Rezeptor
 - o Peptidhormon-Rezeptoren
 - a. Insulin, EGF
 - b. Trastuzumab, Erlotinib, ...
- Dimerisierende mit assoziierten Tyrosinkinase
 - o Zytokin-, Wachstumsfaktor-Rezeptor
 - a. Erythropoietin¹¹
- 4. Enzyme
 - Hemmung der Cyclooxygenase:¹²
 - COX 1/2 unselektiv: Acetylsalicylsäure (hemmt irreversibel), Paracetamol, Diclofenac
 - o COX 2 selektiv: Celecoxib, Etoricoxib

• Hemmung der Bcr-abl Tyrosinkinase: Imatinib

 ⁸ siehe Therapie: Antiemetika
 9 siehe Therapie: Antiemetika
 10 siehe Therapie: Ulcus

¹¹ siehe Therapie: Eisenmangelanämie¹² siehe Therapie: COX-Hemmer

- Hemmung der Xanthinoxidase¹³
 - o Allopurinol, Febuxostat
 - o Xanthinoxidase ist für den Purinabbau

- a
- b. URAT-Oxidase/Uricase: Harnsäure zu Allantoin (renalgängig)
- o Xanthinoxidase metabolisert auch Allopurinol

- a.
- Hemmung der Dihydrofolatreduktase
 - o Human: Methotrexat
 - o Bakteriell: Trimethoprim
- Hemmung der Tubulin(de)polymerisation
- 5. Transporter, Ionenkanäle
 - Urat1-Transporter wird geblockt (Urikosurika)¹⁴
 - o Lesinurad, Benzbromaron
 - Ionenpumpen werden geblockt¹⁵
 - o H+/K+-ATPase (Protonenpumpe) der Belegzellen
 - a. Omeprazol, Pantoprazol, Lansoprazol, Rabeprazol

Struktur-unspezifische Angriffpunkte

- 1. Interkation mit DNA
 - geringere strukturelle Spezifität als Bindung von Pharmaka an Proteine
- 2. Alkylierende Zytostatika
 - Covalente Inkorporation
 - zB Cyclophosphamid
- 3. Interkalierende Verbindungen
 - zb Doxorubicin

¹³ siehe Therapie: Gicht

¹⁴ siehe Therapie: Gicht

¹⁵ siehe Therapie: Ulcus

- 4. Wirkung durch physiochemische Eigenschaften
 - Antacida: Säurepuffer
 - Aktivkohle: Adsorption an große Oberfläche
 - Cholestyramin: bindet Gallensäure & manche Arzneimittel
 - Salinische Laxantien: osmotische Retention
 - o Nicht resorbierbare Substanzen
 - o Aktivkohle stopft, daher Abführmittel
 - o Darmpassage wird verkürzt
 - o Glaubersalz

Toleranz

- 1. Molekulare Mechanismen
 - Rezeptor-Phosphorylierung
 - Endozytose des Rezeptors in Endosomen (Sequestrierung)
 - Rezeptorabbau in Lysosomen
 - Verminderte Rezeptorsynthese (Down-Regulation)
- 2. Zelluläre Mechanismen
 - Proteinkinase ↑
 - Proteinphosphatase ↑
- 3. Gesamtorganismus
 - Gegenregulatorische Reflexe
 - Ausschüttung von Hormonen
- 4. ! Entzugsymptomatik
 - Bei abruptem Absetzen von Pharmaka sind Mechanismen der Gegenregulation noch wirksam → Entzugssymptomatik