Investigation of the Mercury Arc Rectifier by Means Of the Oscillograph

J. C. Hail E. E. Campbell

1907

537.84 H 12

ARMOUR INST. OF TECH. LIB. CHICAGO.

Illinois Institute of Technology Libraries

. AT 72 Hail, J. C. Investigation of the Mercury Arc Rectifier by means of

Investigation of the Mercury Arc Rectifier by Means of the Oscillograph

A THESIS

PRESENTED BY

7. C. bail

C. C. Campbell

TO THE

PRESIDENT AND FACULTY

OF

ARMOUR INSTITUTE OF TECHNOLOGY

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

HAVING COMPLETED THE PRESCRIBED COURSE OF STUDY IN

ELECTRICAL ENGINEERING

ILLINOIS INSTITUTE OF TECHNOLOGY PAUL V GALVIN LIBRARY 35 WEST 33RD STREET CHICAGO, IL 60616

June 1, 1907 Cathan Sanstor =

```
Insa Justica.
```

Description.

Theory.

lether of Investig ion.

Tubles of Data.

Plates.

```
General Viat of ... aratus.
```

Front of Roctifier Linel. Diagramatic View of Rectifit Land. III.

Tiring Disgress of Lectifier. IV.

Scheme for Experimental Work. VI.

Ourves from Data.

VII.

```
Westing Louds Alt. 220 Volt. Of rectaristics
VIII.
      .700d
III.
      Rotary Converter 220
                             11
II.
                        250 "
      Holtzer-Sabot
      Westing nouse alt. 110 "
Wood " 110 "
FII. Wood
                         110 "
HIII. Rotary Converter
```

110 " HIV. Holtzer-Cabot Westin house ...lt . Voltage Con, risons. XV.

XVI. Wood AVII. Rotary Converter 11

MVIII. Holt zer-Cabot KIY. Effective and average Routified D. F.

Oscillographic Curves.

T. M. F.s and Currents Westinghouse Alternator.

E.M.F. Wave forms Wood and Holtzer-Cabot.

XXIII. Consections for Older Type of Fanel. XIIV. Panel Hessurements.

Discussion.

Bibliography.

I. IIC. .

compact in a reliable against for some ortine also notine current into continuous on a small scale, especially for chargin accumulators. Teither the motor generator nor the retary converter is in the innediate luture lively to be superesded for the conversion of large powers at comparatively low got notials from alternating to direct current, but for smaller powers there are now two systems of rectification in conmercial operation, both of them having the supreme alvonture of no moving parts, with the electrolytic rectifier, and the marrows are rectifier.

The Electrolytic Rectifier.

The chemical rectifier is only serviceable for chart runs. It has never been developed to any degree of efficiency and has never been a very satisfactory rice of aparetus.

The Mercury are Rectilier.

It will be the object of this thesis to study the heroury are rectifier, its uses, limitations, shountages, disauvantages, and characteristics under various conditions by means of the oscillograph.

Before the introduction of the mercury are rectifier the rectification of alternating current was only possible by meam of the actor generator set, retary converter, synchronius or mechanically driven rectifiers, and chemical rectifiers. Obviously all the foregoing arrangements,

encert in electrolytic potition, to consider the interpretation of that are subject to wear ad lance need the tent adjustments and renewals, have lover efficiency, bestook being entensive to install. An attendent the has helded a tent one with electrical appliances must also be provided and this further adds to the operating entense. For these or against here has existed for a long time a denime for a enough device for rectifying or converting alternating into continuous current, that should at once be compact, efficient, and not apt to get out of order. The General Electric Company's Mercury are rectifier shown in Plats II fulfills these conditions to a nicety since it is lower in first cost, higher in efficiency, more compact and more simple to operate than any mechanical converter. It requires practically no attention and for chargin, batteries it is almost ideal.

The General Elect ic Company's mercury are rectifier with a 20 empers, 100 welt tube was used on a single phase line throughout this test.

The investigation of this rectifier was taken up under the following heads; study of the theory and operation; experimental determination of the characteristics under varying conditions of impressed F.V.F., rectified T.V.F., frequency, load, reactance and varying wave forms; and the explanation of the results by means of the oscillograph.

DESCRIPTION.

The Single-Phase Herewy are Nectilier synighment, is from and side view of which is shown in Plate III, consists of a slate genel, 40° m 10° m $1_{\rm k}^{\circ}$, rigidly held in josition by pipe supports, and to which the following parts are connected:

- 1 Double pole circuit breaker
- l Ammeter
- 1 Voltmeter
- 1 A.C. line : witch
- l Rectirier tube
- 1 Rectifier tube holder
- 1 Starting switch
- 1 Combined starting and starting anode resistance.
- l Regulating resetance and controlling switch
- I Compensating reactance and list switch. The compensation rescance one dist switch is placed directly below the panel.

TUBE

The tube is an elemented, cylindrical, calcusted place vescel, having 'wo encies, n-A'(See Plate V, Fig. 1), one cathode, E, and a startin uncle, C. The tubes differ in size according to their empere capacity, mi in shape according to the 1. C. voltage at which they are to be used. Tubes should never be used above their rated voltage. If used at lower voltage they may sometimes be hard to start but otherwise will be satisfactory.

The tube must be very highly exhausted in order to insure its rapid starting. The presence of foreign gases or inert mercury vapor impedes the starting. It is comparatively easy to produce a vacuum in the tube but a difficult matter to completely drive out gases that are absorbed in

the walls of the tube and the choice meatrial. The ne vacuo of the tube becomes in, irol with use are to be must be used to sttain as nearly a profect vacuum of it possible in the first place.

The shape of the tube must be such as to .110. The free flow of cathesic ions to the snode. Carillary or bent tubes hinder or prevent the starting of the main are and are therefore avoided.

There is theoretically no limit to the capacity of the tube, but in practice the difficulties of introlucing large currents into an exhausted place vessel and of dissipating the energy wasted in the form of heat in the rectifier itself are to be met. These difficulties have been sufficiently overgone to build a tuble of 100 amperes capacity.

The tube must also be of sufficient size to provide ample condensing space. The conductivity of the are depends on the relative amounts of ionized and inert mercury vapor; hence the necessity for condensation. Sufficient space must also be provided to keep down the pressure of the ordinary mercury vapor volatilized from the cathode to a certain value so that conductivity of the are is almost exactly proportioned to the current.

The anodes are not made of mercury for the reason that they would result in inert mercury production.

HOLDER .

The tube holder, mounted on a support back of the panel, consists of an upper clip and a lower support for

holdin the rectifier __oser.

The holder is rividly companie to the like theel on the front of the panel, used a file be oblimed to obtain. The support for the holder has four leads which a signout out with the four terminals of the bube.

STARTIN WAITLE.

The startin switch is a cimple-pole, double throm Eggin switch. It automatically transfers the rectified current from the starting resistance to the load. In charging storage cells the counter .".F. of resistance afforded by these cells is too great to permit the modifier to start and hence a smaller resistance is used upon thich to start the rectifier.

STARTIN' LOAD AND STARTIN' SARODE RESISTANCE.

These resistances are the unclosed card type and are mounted together on the back of the panel. The one serves as a starting load and the other limits the current in the starting anode, which rould other iso be excessive at the start when the two mercury services are brought into contact.

CONTROLLING REASTERNS.

The controlling reacting is connected in series in the A.C. line and is used to regulate the A.T. voltage supplied to the tube and thereby regulate the A.T. voltage while the rectifier is in operation.

COMPENSATING REACTANCE.

The compersating reactance is connected lirectly

derose the fittern in correct Eugyl, n is living into several steps. The leads for these steps are in secretly connected to the Airl switch, thus in mining the correct supply. The compensation reactince is used to the Steps variation in A.S. voltage and A.S. current supply in graded steps. The controlling reactince performs a similar function but gives the finer adjustment.

AMINITER ... ! CELITER.

The armeter and volumeter are of the inclined coil type since the rectified current is of a julgating nature.

THO. C. CE. ATION

loga, using care not to surject it so to a speed to our relative of the tube, and then close it.

Turn in the A. . reactines, close the line switch, and hold the spring switch in the lever position. Rock the tube gintly by means of the hand-wheel connected to the holder. This will e use a mercury brilge to be formed and broken between the starting anode, 3, and the cathode, 3. This in turn will cause a clight flath and the rectifier will start. A single flash should be sufficient to start the tube, but in cold weather more may be necessary. When the hand is removed from the starting switch, the spring will throw the switch up, transferring the rectified current from the starting resistance to the load. If the voltage of the batteries being sharged is higher than that of the rectifier, the tube will so out when the starting switch moves to the lost position. The controlling reactance should then be cut partially out and the tube restarted. In case this will not give the current, the voltage should be further increased by means of the conpensating reactance until the desired current and voltage is obtained. After the correct position of the dial switch is once determined it will not be necessary to change it again, since the regulation of the current may be obtained by the controlling reactance.

In starting up the rectifier on bettery load, the

hand—wheel of the editrolling relative encul. Is the main to the right, one wifer the rectifier has started hould be surred back to such resition as will give desired charging current. As the battery voltage rises, more resotunce should be out out until the heavy part of the charge is finished. The current should then be lowered by turning the handwheel to the right to give the groper finishing charge.

When the line voltage is comparatively free from fluctuations, the comparation reactines should be a justed to vive such voltage as to require a minimum use of the controlling reactines. If the line fluctuations are a cessive and cause the rectifier to go out occasionally, it is advisable to use the maximum amount of this reactines; this will give greatly increased stability to the rectifier.

From General Blectric Company's Instruction Book.

It will now be at empted to live a simple physical emplanation of the action of the rectifier.

The rectifier consists broadly of a meleur, vapor are, enclosed in an exhausted vessel. Percury vapor has a very great resistance to the passage of an electric current. For instance, if mercury is vaporized by the application of heat and the resistance of the vapor measured, this resistance will be found to be extremely high regardless of polarity. It is then obvious that a very high voltage would be necessary to pass current between two terminals placed in this vapor; in fact ordinary mercury vapor may be considered practically a non-conductor.

If, however, the mercury vapor is in some manner ionized, it becomes a good conductor but in one direction only. By ionizing the vapor is meant producing an electrolytic action by virtue of which mercury ions will be shot from a mercury electrode used as a cathode. Then a mercury electrode is used as a cathode, ionized mercury vapor is liberated, hance the use in a mercury vapor lamp of a negative mercury electrode, the positive terminal being mercury or some other suitable material. When a negative mercury electrode is in an active state, as, for instance, when an arc is operating, only a few volts are necessary to sustain the arc in one direction, but the voltage must be entremely high to sustain an arc of reversed polarity; then the ionized vapor is a good conductor of current in one

direction, but, inflar as craiming our major, is a insulator in the og of its direction.

This action is taken a ventage of in the concess are rectifier then the two encles accounted a corest the terminals of the alternating current line become alternately positive and negative. This either anode is positive, there is an are carrying the current between it and the cathole, the cathole being negative. Then the polarity of the alternating current line reverses, the are passes from the other anode to the cathode, the cathode being still negative. Hence, Juning the complete cycle, the cathode is negative and the current at this point must be unidirectional.

It should be noted that the rectifier is so designed that the entire alternating current wave is used. This, of course, means that the rectifier has twice the efficiency that would be obtained if only one-half of the alternating-current wave were used. The use of the entire alternating current wave is clearly shown in the oscillograph records shown in Plate MC, Figs. 4 and 5. The upper curve shows the current in one anode; the lower curve, the simultaneous current in the other mode.

If it were possible to maintain the are in a single-phase rectifier without auxiliary spearatus, the above discussion indicates that the resulting direct-current wave would be a pulsating wave of the same characteristics as the alternating-current wave from which it was derived, except that the current would vary from zero to a positive

maximum, the negative rove Eximp bean reversed to that it appears as positive to the zero line. Such a method of operation is impossible, because although the current is at zero for an infinitesimally thort time, yet this interval of time is sufficient for the cathods to lose its excitation and the are to go out. No matter how high a frequency is used, the are will go out at the zero value of the wave.

By means of suitable reactances, the current is help over the zero value and the julcutions are smoothed out, the current of the cathode becoming not only uni-directional, but a true direct current with pulsations of small amplitude.

The resulting direct current is shown in Plate XMII. Which is the result of superimposing the two curves shown in Plate XX, Figs. 4 and 5. The action of the reactance can be seen from Plate XX, Figs. 4 and 5, by carefully observing that the wave shape is evidently no longer a sine wave, but that during its operation the reactance is sustaining the current at a higher value than it naturally would be; also that the current curves in each anode overlap by an angle of about 20 degrees, thus eliminating the zero points previously mentioned.

The cathode is then one terminal of the directcurrent circuit. The junction between two reactines coils,
such a referred to above, connected between the anodes,
furnished the other terminal, so that any instant the circuit
from the alternating-current line is composed of a rectifier
are, the load and one of the reactance coils. The other coil

is at the grace time discharging the only storolog ouring the provious half wave, at which time it was in the line circuit.

The initial ionization of the mercury vapor is accomplished by a small starting and e, C (see Plate 8, Pis. 2) which is brought into contact with the cathode by a mercury bridge formed by a slight shake of the tube. The breaking of this mercury bridge starts a small initial are, and the are thus obtained encites the cathode, giving the necessary ionized vapor, which enables the torking anodes to become immediately active and the tube to start.

. detailed idea of the operation of the ne cury are rectifier eircuit may be obtained from Plate 5, Dig. 2. assume an instant then the terminal. H. of the sup ly transformer is positive, the anode I is then positive, and the are is free to flow between A and B, B being the nercury cathode. Following the directions of the errows, without the circles still further, the current passes through the load J, through the reactinee coil T and back to the negative terminal G on the transformer. A little later, when the impressed I.T.F. falls below a value sufficient to maintain the are against the counter E.M.F. of the are and load, the reactines E, which heretofore has been charging, now discharges, the discharge current being in the same direction as formerly. This serves to maintain the arc in the rectifier until the P.M.F. of the supply has passed through zero, reverses and builds up to such a value as to cause A' to have a sufficiently positive value to start an are between it and the mercury cathode D. The

disclarge sireuit of a recembee cil i us that the or area of the case of the c

The charge in discharge voltage of one veletimes coil is clearly shown in Plate II, Pis. 3 By skinsting the amount of reactines inserted in the circuit the pulsations of the direct current on to make suitable for conserved purposes.

Then it is a visable to reduce still further the caplitude of the pulsations, it say be as outlisted by means of the reactiness.

TOLUME I LUMB.

The object of the ejection of the object of the object of the events, of a ich, the end of the object of the objec

The whe interest a tilloo volts in trainI then to 500 cr, in desired, to 110 by maying an or income
connections in the transformer. The scheme is because ents
on both the alternation and direct current alless of the
rectifier are shown in Flate VI. The following instruments
were used; on the literating current if a producte.,
ammeter, frequency later and latenater. On one indet
current side there was a direct current armeter and voltmeter,
an alternating current character and voltmeter are
attracter. By means of a houble pole coulds show switch
the A.I. voltmater and used to measure the 1.1. We impressed
at the anodes of the rectifier tube.

Since the rectified "..." is pulseting rea incomere taken on both the alternation and direct current voltaeters in order to determine the relation of the effective and average of this "...." from minimum to full load.

All the leaf characteristics such resulation, efficiency, apparent efficiency and power factor were

table on: telting res in . or figure in a press veloc, appears, velocity of these characteristics were sound for verythe or form of ingressed 7.7. F., such as also form as frequency, else till incandescent lambs, are last a frequency losses.

In order to date wine to obtain in the chical express voltage relations of the restrictor ball the line Out a juste, to 220 rolts and the so in time react noe connected J-1, 1-1, with which is a suited on 1 mi 7 and emplained in thate IV. Rea in . To to un of 1.0. and D. C. wetts and volts with a one that look should be switch at 1-7, t=8, t=9, t=10, 0=10, 0=13. The line sommedions to the reactinee war, charges to J-1, I-T ma unote er series of realing tobal. This ives the larget voltage with an impressed b. .. of 220, so the line was connected to give 110 volts on the compersating reactine. Nich to J-J. H-12, in the same operation ropeated until the minimum voltage of the rectifier was reached. with 110 volts A.C. the P.C. range is from 15 to 140 volts, and with 220 volts 1.0. the rage is from 45 to 115 volts. These voltage comparisons were made for wifferent loads, wave forms and frequency. The efficiency was calculated for all conjections of the compensating reactionce, showing the most economical point of operation.

Plate KMIV shows the connection for measuring the drop over various parts and the current in all circuits of the rectifier.

TILLI. er dia lour liter del.

Improved the following state of the first state of the s

							-
-de	I _u ,	I _{ue}	/le	We e	E22idika	iri i	gi kete
970	11.63	1=.35	1525	1650	5.10	48.0°	.840
570	: 3.83	10.73	1590	2200	55.60	-5.00	.826
100.75	lə.55	155	1590	14-0	āT.00		.950
101.75	19.00	11.75	1300	2201	. \$.0\$	1:.15	. 51
104.75	16.00	10.20	1:00	1950	01.50	550	.969
100.75	l 5	9.25	1125	1700	00.1°	00.50	,835
110.75	11.50	7.75	1075	1=70	75.10	68.00	.860
111.75	9.90	6.75	910	1500	75.95	01.30	.\$10
115.75	8.15	5.20	700	950	72.60	01.10	.830
121.75	6.15	00	400	700	37.20	45.50	.,75

For above test connection of coaren stime resetunce was J to 6, and H to 11. Diel switch has alteed on 1 and 7.

TI.

Impress - "o.ta --220.

Pr try-100 to 1200.

 -āc	I.,	I.,a	1150		Effici		Fower	
 						Difficiency	Factor	
90.0	£1.60	1.10	1900	25-0	74.9	01,2	.820	
9:.5	ls.SE	1:.70	1750	2040	7=.0	ů .š	.838	
101.5	18.00	11.30	1600	2100	70.2	64.4	.845	
102.5	10.00	10.10	1440	1840	ر. 78	64.9	.828	
104.5	15.65	8.75	1.25	1600	8- •3	68.9	.830	
107.5	11.85	7.50	1140	1200	92.9	89 . 0	.925	
110.5	a * 80	5.90	960	1100	87.2	74.0	.949	
112.5	8.15	÷.50	750	860	85.2	75.8	.890	
117.5	6.25	€.30	500	600	34	60.1	.825	

For above test connection of compensating reactance that J to a, and H to M. Dial switch was wherelon 1-7.

TABL. III.

Rotary Converter, into myu.

Impressive Voltage-186. Frequency-20 gales.

 	т	т			Efficiency	Misrent	ower
 _Sie	I _{de}	Ic	"âc	"e	merroreno.	Eflicianey	Factor
152	21.65	17.00	2550	3500	77.5	58 . 00	.883
133	19.85	15.00	2270	2940	50.6	~1,90	.95l
130	18.00	11.50	2190	1700	81.1	70.75	.510
156	15.00	11.05	1950	2340 ,	85.5	76.00	.915
119	10.65	10.00	1675	2060	81,4	76.10	.937
141	11.85	8.65	1390	1700	91.9	78.00	.894
140	9.90	6.75	1050	1540	™S .5	70.80	.904
144	8.15	5.00	750	1000	75.0	68.10	.910
143	u.25	60	470	700	67.10	59.40	.884

For above test connection of com that ting reactines was J to 6, na H to 17. Disl switch tas placed on 1 mma 7.

TABLY IV.

Holtzer-Oalo. Set. Sinc ave.

Impressed Toltage-220. Prequincy-of the east

 TD -	т.	т.			Efficiency	Lrend	cv.r
 Ede	Ide	Ise	de	Wae		Bifficials,	Metor
102	1.65	14.90	2140	3000	78.0	71.5	.915
124	19.85	18.10	2140	2700	79.5	7. •4	.936
128	18.00	11.70	2010	2400	83.9	78.0	.953
129	16.00	10.80	1810	.160	84.0	80.6	.962
150	13.65	9.20	1590	1880	84.6	78.5	.930
132	11.85	7.75	1300	1540	84.5	76.3	.904
132	9.90	6.30	1050	1260	83.4	75.8	.910
135.5	8.15	5.00	820	1000	82.0	74.5	.910
139	6,25	5.60	500	660	75.9	62.0	.854

For above test connection of compensation reactance was J to 0, and H to 12. Dial switch was globed on 1 and 7.

· ·

Jestin down .lt .l. tor,
Inpressed Volta e-110

is osn We.

Fr .c may -00 aga - 8.

	T.1	т.	-	,		Efficie neg	L, arent	Power
	² ae	Ide	1sc	Mae Pae			Rificiane	Factor
	36.0	21.65	13.78	525	1200	40.75	J= .7=	.794
	56.0	19.85	1: .50	5:15	1120	-u.95	.8.80	.815
	57.0	18.00	11.20	525	1000	52.50	40.60	.812
	0.88	16.00	9.75	52 5	860	61.05	49.00	.801
4	40.0	13.65	8.50	500	740	67.50	50.50	.792
	11.5	11.85	7.25	450	650	69.25	56.50	.815
4	43.5	9.90	6.00	350	550	66.00	53.00	.303
	45.0	8.15	÷.50	250	400	65.50	50.05	.809
,	10.4	6.25	2.60	175	200	58.35	44.20	.757

For above test connection of compens ting reactance was J to 6, and H to 10. Diel switch was placed on 1 and 7.

PABLE VI.

Wood Alternator

Tibitel Tilve.

Impressed Voltage-110.

Frequency-120 april ...

 2)	Т	т	-	77	Efficiency	Apparent	T,OMet.
 Fac	Iae	-ac	de	Wac 		Efficiency	Fuetor
31.5	21.65	15.50	700	1100	65.60	47,1	.740
35.5	19.85	11.20	650	1040	65.60	48.5	.775
34.5	18.00	11.15	580	940	61.70	47.3	.766
57.5	16.00	9.50	550	800	68.75	52.6	.765
S9.5	13.65	8.25	460	700	65.70	50.7	.770
±0.9	11.85	7.25	430	600	71.70	54.0	.752
42.0	9.90	5.85	340	480	70.80	52.8	.746
42.0	8.15	4.50	220	260	01.10	44.5	.727
45.0	6.25	3.60	150	300	50.00	57.9	.758

For above test connection of compensiting reactance was J to 6, and H to 12. Dial switch cas placed on 1 and 7.

Costa fil. Rotary Converter

Impressel voltage-110.

Sine wave
Prequency-20 eyelus

 1.1	T	т			The Color of the Color	Apparent	Power
 Edc	Idc	I _{Ee}	Wie		Efficiency	Effici ency	Factor
51.5	21.65	15.00	1020	1460	09,9	61.8	.885
55.0	19.85	12.25	960	13 40	71.6	65.9	.920
55	18.00	11.80	890	1200	74.1	68.5	.924
56.1	10.00	10,30	800	1080	74.1	70.6	.954
57.5	13.65	9,20	700	940	74.5	69.2	.950
58.5	11.85	7.50	570	740	77.0	69.0	.896
59.5	9.90	6.50	450	640	70.4	63.0	.895
61.5	8.13	5.10	550	500	70.0	01.1	.875
 65.0	6:25	J.60	230	560	64.0	58.0	.910

For above test connection of compensating rejetance was J to 6, and H to 12. Diel switch was placed on 1 and 7.

. . .

...BLF VIII.

moltger-cabos es.

line p. Vc.

Impresse. Voltage-110.

Frequency - 1 delen.

Eac	Ide	Ico	Wa a		Tffiria ne	rent	Fower
	-0.0	-0.0	16		, , , , , , , , , , , , , , , , , , , ,	Efficiency	Pactor
95,0	1.65	14.00	870	1340	05.00	36.5	.870
95.0	19.85	11.50	810	1220	66,40	59.0	.8:7
98.0	18.00	11.30	79C	1140	69,30	65.5	.918
102.0	16.00	\$.80	710	1000	71.00	65.9	.928
104.2	13.65	8.75	600	860	69.75	32.4	.894
106,0	11.85	7.25	500	700	71.50	62.7	.878
110.0	00	ú.00	440	600	73,50	66.0	,910
113.0	8,15	±.50	540	480	71.00	08.7	.900
116.0	6.25	J.60	230	260	64.00	58.0	.910

For showe test connection of compensating reactined was J to 0, and H to 12. Dial switch was placed on 1 and 7.

Matin a has which act.

Impresses oftens-.20.

1 --- 11-

E _o e	T	ILC	Vae		Df2:e4.	AND BULL	lower
	-d.c	10.C	- 'G. C	"ac		ictenc.	l'actor
111.0	10.40	ü.80	1000	1280	76.0	00.£	.855
110.5	10.75	7.25	1050	1340	78.5	UJ.S	.840
108.0	11.70	7.90	1100	1440	70.4	64.l	.940
107.0	13.75	9.55	1270	1700	74.6	62.4	.855
106.5	16.00	11.00	1500	2000	75.0	67.0	.826
105.5	17.00	12.00	1690	2240	75.4	04.0	,848
105.5	:0.00	12,50 .	1880	2500	73.1	6.3	.841
104.5	£1.75	14,80	1050	2760	74.2	65.0	.848
103.0	25.75	16.30	2250	3000	74.4	62.5	.837

Starting current, no load is all ungures.

Running current, no lead is 10 ampores.

For the above test the connection of compensating reactance was J to 6, and H to 12. Disl switch has placed on 1 and 7.

-1---

Westin Total Lite water.

21.0005-00 11200

Ingress Coltage-120.

er alle.

1.0 Volt Dange.

Tác	Т.	7	Ξ.		32-22-7	#1.	T P	.o. of _ L_E
	-100	*80	,,TG	'. U				- 111
101.0	22.00	10,10	2200	8920	15.4	02.1	.855	1
103.5	18,00	12.50	1750	2300	76.0	65.7	.007	2
107.0	11.75	8.75	15.50	1,00	°8,0	65.0	.810	5
115	7.25	± ,¿ô	650	303	51.0	J7.5	.555	<u>4</u>

For the leve test connection of conjensating react new was 2 to 0, and 1 to 12. Dial switch was alread on 1 and 7.

MABLE FI.

Volta. The ractulistic.

Frequent - 10 les.

Westin nouse ...lternator. Full load.

Peched ave.

Line	Ede	Rac	Wde	Was	Eff.	Ochyensatin Recetures	ni.i.on
220	98	525	2000	2640	75.7	J-0, I-12	1-7
≿£0	91	3 04	1825	2500	70.0		2-8
120	84	284	1750	2550	75		J-9
220	76	201	1650	2160	70.4		4-10
220	70	240	18 00	2000	75.0		5-11
220	62	217	l: 75	1840	69.4		6-12
220	57	223	1225	1700	71.0	J-1, 11-7	1-7
220	52	207	1100	1600	68.9		2-8
220	47	193	1000	1500	66,6		3-9
220	42	175	960	1400	68.5		4-10
220	42	165	900	1280	70.4		ã-11
220	36	150	750	1200	62.5		6-12
110	5 5	151	730	1160	63.0	J-0, .i-12	1-7

TARL II.

Voltuge Characteristic.

મેટ ક્રાફાડા −હણ તે કે ટેલ્ક.

Westinghouse Alternator.

Fake Tive.

Three-quarter Lett.

Line	Ede	Eac	Wae	Wac	Bro.	Compele tin Reactance	Diel Switch
220	102	525	14.50	2060	70.5	J-0, E-1	1-7
220	95	303	1440	1900	75.9		2-8
220	88	283	1500	1820	71.0		£-9
220	S 0	262	1160	1680	J9.0		4-10
220	75	258	1100	1540	71.5		5-11
220	64	216	1100	1400	78.5		6-12
220	65.5	226	1030	1500	79.1	J-1, 1-7	1-7
220	59.5	210	925	1240	74.5		2-8
220	55.0	195	875	1160	75.5		5 - 9
220	49.5	181	740	1080	68.5		4-10
220	45.	166	600	1000	60.0		5-11
220	59	150	445	900	49.4		∪ -1 2
110	55.5	160	450	900	50.0	J-6, H-12	1-7
110	54.	151.5	400	800	50.0		2-8
110	SO.5	141	400	760	52.6		3-9
110	57.0	151	350	700	50.0		4-10
110	£5 . 5	119	300	640	46,9		5-11
110	20.0	109	280	600	46.6		6-15

Tabli alli.

Voltage The rectablistic. Frogo my-solecules.

Westin house Alternator.

Dealm Tave.

One Hali Ios.

			0 110.11 1 00 1					
Line	Dae	Eac	"le	 Ve.e	Eff.	Comparanting Redetance	Dial Switch	
220	108	ఎ25	1000	1420	84.5	J-6, (-12	1-7	
220	100	302	1100	1320	88.8		ವಿ -8	
220	9.2.6	280	950	1280	74.4		5-9	
220	0.38	256	900	1200	75.0		4-10	
220	76.0	235	850	1100	77.5.		5-11	
220	75.0	217	740	1004	75.7		0-12	
220	68.5	225	650	900	72.2	J-1, 1-7	1-7	
220	62.6	209	630	860	75.2		2-8	
220	57.	194	550	800	68.7		3-9	
220	51.5	179	500	700	71.4		4-10	
220	46.	165	450	640	70.5		5-11	
220	40.5	148	430	600	71,6		0-12	
220	40.5	162	450	600	75.0	J-6, H-12	1-7	
220	37.	145	580	560	68.0		2-8	
220	35.	143	350	500	70.0		3 →9	
220	30.	132	230	480	68.7		4-10	
220	26.	121	270	440	61.4		5-11	
220	22.	109.5	240	400	60.0		6-12	
220	20.5	lll.	200	360	55.5	J-1, 11-7	1-7	
220	16.	103	200	320	62.5		2-8	
220 220 220	15. 10. 2.	96 88 81.5	190 150 150	300 280 280	65.4 53.6 53.6		3-10 4-11 5-12	

MBIE FIV.

Voltage Unirectoristic. Fr 10.00 -00 201 s.

Westim house Alternator. Pested as va.

One-jurta It 5

		OHe -					
Line	Mae	Ecc	W le	Vice	Eff.	Compensitin Relatione	Mia w't ch
220	118	315	660	800	82.5	Jab, Halo	1-7
220	109	295	550	740	74.4		2-8
220	101	275	550	680	\$1.0		3-9
220	9.5	252	480	640	75.0		4-10
220	83	250	÷50	600	75.0		5-11
220	74	208	360	540	66.7		6-12
220	71	218	350	÷80	75.0	J-1, i-7	1-7
220	66	205	330	420	78.5		2-8
220	60.5	191	290	400	72.5		3-9
220	55,	176	260	360	72.2		4-10
220	49	160	250	320	78.l		5-11
220	48.5	146	210	300	70.0		0-12
110	44.5	162	170	300	56.6	J-6,12	1-7
110	41.0	152	150	250	57.7		: -8
110	57.0	141	140	240	58.3		3-9
110	52.5	151	130	240	ā4.l		4-10
110	28.	119	80	200	40.0		5-11
110	25.	126	120	200	60.0		6-12
110	21.5	110	90	200	45.0	J-1, H-7	1-7
110	18	103	60	160	37.5		2-8
110	16	96	50	140	35.7		5-9
110 110 110	12 5 -	87 79 73.5	50 50 50	100 100 100	41.6 50.0 50.0		4-10 5-11 6-12

ERL IV.

Voltage distriction. Frequency -120 coles.

Wood Generator.

Peske .ave .

Full Leaf.

		T. Commercia				
Line	Pae	Zae	Vie	ac	Compensiting Reservings	Dial 3- it ch
220	98.5	525	1700	2300	2-0, -10	1-7
220	91.5	3 0 3	1600	2100		: - 8
220	84.5	284	1540	2060		J-9
220	73.5	201.5	1570	1930		4-10
220	J9.5	238.0	1250	1760		3-11
220	31.5	217	1120	1600		6-12
220	05,0	225	1170	1540	J-1, 4-7	1-7
220	50.0	-10	1070	14 60		2-8
220	54.5	195	990	1260		5-9
220	47.5	179	900	1260		4-10
220	42.0	164.5	770	1140		5-11
220	37.5	149	670	1080		6-12
110	53.5	161	540	1006	J-0, E-12	1-7
110	30.5	148	490	1000		2-9
110	27.5	139	450	900		∑ −9
110	24.5	150	400	840		4-10
110	21.5	119	370	800		5-11
110	18.5	108.5	350	700		ò-12

HABL HVI.

Voltage - racturistic.

the irlf Le. 1.

Te. Tave.

		C 110				
Line	Bác	Eag	. de	7	Compant vind Resoftince	Dial Switch
220	107	320	1060	1120	J-0, I-12	1-7
220	100	500	960	1090		2-8
220	92	280	890	1000		5-9
220	23	277.5	850	540		4-10
220	75	238	730	038		5-11
220	ô7	212	540	680		6-12
220	70	222	670	700	J-1. II-7	1-7
220	65	202	640	640		2-8
220	58	191	5÷0	600		5-9
220	52	178	500	560		4-10
220	46	163	450	500		5-11
220	40	146	360	460		6-12
110	40	163	500	480	J-6, I-15	1-7
110	37	155	260	440		2-8
110	34	142	240	400		2-9
110	ã0	139	200	360		4-10
110	25	119	150	520		5-11
110	22	108	140	300		6-12
110	20	111	200	300	J-1, II-7	1-7
110	18	103	160	260		2-8
110	15	96	140	240		5-9
110	10	88.5	130	200		4-10
110	5	80.5	100	200		5-11
110	-	72.5	90	200		6-12

TABLU HVII.

Volteze Characteristic.

Roter; Converter.
Full Lear.

Figure, -5 of les.

PABIL HVIII.

Voltage maracteristic.

Rotary Converter.

One Juli Los ..

Frequency-50 chales.

Line	de	Bac	ã.c	Wac	Comparatia Reactance	Dial Witch
220	141	304	1140	1400	J-61:	1-7
220	1.0	: 85	1040	1500		1-8
220	150	164	920	1840		3-9
.20	111	246	850	1160		10
220	101	225	790	1080		5-11
220	91	205	750	1000		6-12
220	87	208	760	900	J-1, J-7	1-7
220	80	195.3	670	840		£-8
220	74	181.2	650	800		5-9
220	66	165.0	550	700		4-10
220	58	148.5	520	660		5-11
220	52	13=.0	470	600		6 -1 2
110	58	156.0	450	600	J-6, H-15	1-7
110	54	147.0	450	500		2-8
110	49.5	136.0	440	520		5-9
110	45	127.0	370	500		4-10
110	40	117.5	350	420		5-11
110	35.5	105.0	300	400		6-12
110	33	107.0	250	400	J-1.5-7	1-7
110	29	99.6	250	340		2→8
110	25	92.5	230	300		5-9
110	22	85,40	160	280		4-10
110	18	76.0	150	260		5-11
110	15	68.8	130	240		6-12

	4	
140		
	•	

well ir.

Voltage Characteristic.
ioliter shot set.
PULL LOAD.

Fr dino; -60 og sæc.

HITT TO CO

Line	·· de	Fac	Vie	l' s.c	Composition Resotance	Dial Switeh
220	124	Els	1190	3760	J-0,11	1-7
22.0	115	296	2000	2580		-8
120	100	277	281C	2900		i9
220	9 Ç	254	ló 50	2240		10
220	90	233	1530	2100		5-11
220	80	212	1350	1900		0-12
220	76	217	1130	1800	J-1. H-12	1-7
220	70	201	1140	1700		·-8
220	64	184	1130	1540		9
220	56	170	1150	1460		4-10
220	50	155	940	1200		5-11
120	44	139	850	1240		i −1 2
110	47	165	770	1240	J-6, H-12	1-7
110	44	153	770	1160		2-8
110	<u>40.5</u>	142	740	1100		5-9
110	56	131	670	1040		-2-10
110	33	120	630	960		5-11
110	28	109	550	068		6-12
110	26	111	450	840	₹-1, ±-7	1-7
110	25	105	370	800		£-8
110	i.0	95.5	370	740		J - 9

2 dd. 3.

Voltage - agreet faction.

Follower-dabet Set.

One fall feet.

ire, taudjet mysles. Bine uve.

Line	de	ے <u>د</u> و	de	W ac	Conjuncating Resotance	ia l Stitch
220	100	SlO	1050	1300	J-6.11-12	1-7
220	11.4	504	106 C	1.50%		26
220	114	270	960	1160		3-9
220	104	245	850	1080		4-10
220	\$5	227	780	1000		• 5-11
220	87	205	690	900		6-12
L£0	80	:10			-1,7	1-7
220	74	197	590	.)3		2-8
220	LE	181	ELC	700		C-C
120	c C	100	£(-)	700		lC
21 0	يدغ	1.7.	٠.5١.	Ç., '		5-33
220	43	137	580	600		0 -1 2
110	34.5	140	410	300	J-0, J-1	1-7
110	49.5	150	270	560		2-8
110	45.	138	350	500		5-9
110	40.5	128	550	480		4-10
110	56.	117	270	400		5-11
110	31.	106.5	250	400		6-12
110	SO.	109	240	400	J-1, H-7	1-7
110	25	101	250	300		2-8
110	25	94	170	500		3-9
110	20	89.5	150	260		4-10
110	15	77.5	140	240		5-11
110	10	70.5	130	200		0-12

TIBLE INI

Westin house Alternator. Frequency +40 cycles.

Line Voltage	Bac	Ε¹ae	Ide
115.5 115.0 115.5 110.5 111.4 110.5 109.6 108.5	110 110 110 110 110 110 110 110	110.2 118.8 112.8 116.5 117.0 117.4 119.5 119.5	£1.65 19.80 18.00 16.00 15.65 11.85 :.90 £.15 6.25
108.4 108.0 105.5 104.3 102.1 102.2 101.5 101.5	100 100 100 100 100 100 100	98.7 98.7 100.8 100.8 101.8 102.5 103.5 106.8 110.5	21.65 19.85 18.00 16.00 12.65 11.95 9.90 5.15 6.25
100.0 98.5 97.0 94.5 93.8 95.8 91.8 91.0 96.7	90 90 90 90 90 90 90 90	88.7 88.7 90.7 90.7 92.7 94.7 97.7 59.7	11.65 19.85 18.00 16.00 12.65 11.95 9.90 6.15 6.25
91.0 90.0 88.5 87.1 86.0 65.2 83.7 83.2 82.5	80 80 80 80 80 80 80 80	76.7 76.4 77.2 78.7 78.7 79.7 61.7 82.7	11.65 19.85 18.00 16.00 13.65 11.85 9.90 8.15 6.25

For above test connection of compensating reactance was J to 6, and H to 12. Dial switch was placed on 1 and 7.

JABI SXII.

Me dry are lectifier for macute.

Shown by Plate M IV.

Mornal conditions, bull land with impressed .T.F.220, or epcles

Refer to Place IV.

J-6, E-1. Dial Switch 6-18.

The current in line T --8.4 taperes

" "cnode E -18.0"

" O.O2-C baol " "

R.fer to Plate IV.

Drop over one compensating coil 1-D--188 volts.

" "1/2 one " " b-D--120 "

" one " 1-onede--222 volts

" " 1/2 one " " 6- " -188 "

with condition of rull load, short circuit.

 \mathbb{E}_{dc} \mathbb{I}_{ac} \mathbb{E}_{dc} \mathbb{I}_{dc}

The minimum load is slueys 45 sugares.

" line L.M.F. is slucys 27.5 volts.

TRLICGELLERY OC . . NY LE E ACTUELL

1904 to October, 1906.

- 1. The Mercury are, aperican Blackwoodel. 350. V.V., ... 15
- 2. Const. Cur. P. I.S. P. 14, p.171, 742.870.
- 5. M. . R. for Olargin Auto Stor. I though Elec. go. 7.84, y. 473
- 4. Mercury are. Blee. 18, U. S., p. 473
- 5. T. R. for Charging Lute. Stor. Tuttery, Med. Lige, V. 20, p. 66
- 6. Man.R. in Tulligle with Motor Can. Elecange, W.30, p.810
- 7. ...R. Dlec. no. V. 57, 2.509
- S. Man.R. Used .. Frequency Changer, Bloc. or D., V.45, p. 754
- 9. . . Lang and Rectifier, Blec. World V. 45, p. 1051
- 10. Rectifier Equipment for Carages, Blee. Took, V.47, p.79.
- 11. Rectifier, Electrician, Vol. 34, p. 949.95.
- 18. The Fercury ire, Electrician, Vol.51, p.506, 588.
- 13. T.A. Lamp & Rectifier, Electrici n, 7. 50, p. 387,589.
- 14. Sim le Ph se 1.1.R. Elect. V. 58, p.587.
- 15. Rectification of a.C. Elect. V. So, p. 677.
- 10. Observation on Lercury are, Elact. V. 57, Pay 11, 1906.
- 17. T.A.R. En (U.S.A.) V. 42, p. 444.
- 18. C.A.R. for charging storage Datteries.Sci.Amer.1894, D.148.
- l. . I.A. R. Metional files. Light Last. Denver, June, 1905. V-1, p. 808-318

John Crerar Library.

- 20. Y... Lamp & Rectifier, Elec. Ravid , (London) V.57, p.58
- 21. T.A.R. Blec.Review (London) V. 57, p. 864.
- 22. Rectifiers" " (A. Y.) V. 44, p. 319
- 23 .A.R. " " (I. Y.) V. 47, p. 346.
- 24. .a...'s Operating in Parallel with Notor Generator.

 Elec. Review (N. Y.) 48, p.379

relevant to the Laborate

1904 to Getober, 1906.

- 1. The Tereury re. merien lectro. them. soc, V. . . . 73
- 3. ... Por C's cinc Auto "tor. ' the y. Elee. gc. V. ..., p. 73
- 4. Tercury .re. | lec. g , T. C.,). 475
- 6. . . T. in ulliple ith oter for. Elec. ge, V.36, p.310
- 7. Elec. nr. V. .7, p.809
- 8. T. M. O. Tropony Changer, Records, T.4., p. 754
- 9. . . terp in "setidier, Lee Torld Vieb, p. 1001
- 10. Moetifier Manipulat Co. (ereses, elec. To M., V.47, p.79.
- 11. Rectifier, Electricien, Vol. 24, p.949.95.
- 17. The Mercury Fre, Meetrician, Vol.55, p.376, 338.
- 13. T. . Jamp & Rectifier, Electrici n. V. 5a, p. 387,389.
- 14. Sin le Th se T. R. Elect. V. 50, p.387.
- 15. Rectification o. .C. Flect. V. 50, p. 677.
- lo. Observation on to cury tre, bleet. V. 57, Lay 11, 1906.
- 17. En .(U. . .) V. .f., p. 444.
- 18. . . . for ther inc storage batteries. co. mer. 189., 148.
- ls. Notional Thee. Light sr_1^* , Derver, Sunc, 1905. $v-1^+$; p. 701-118

John Frerer Library.

- 10. . . Tamp & Lectinier, Aloc. E. vic. (Lonion) 1.34, ..38
- 21. Flee . Ravier (London) 1. 57, p. 264.
- 22, Rectifiers" (A. 1.) V. 44, p. 19
- 23 " " (. T.) V. 47, p. 3.0.
- 24. . . . 's Operating in or litel with over otherstor. Flec. Review (B. f.) 48, p.379

PLATE XIIII. —CONNECTIONS FOR NIERCURY ARG RECTIFIER AUTOMOBILE CHARGING PANEL

I. UTT ICL. .

- We fill large our attention age of a force. Its
- we fill Minsteed about the responsible file in a second value of the Property of the residual Minsteed with the Property of the control of the Minsteed Control of the Minstee
- 1. Lt 180 spales the officions in 2 absorber to 50 epoles.
- U. At 60 cycles the D. . Tolking is to Timpelly about two volts his her than that of 100 cycles.

Under the star perdiffication of above but using an impressed voltage of 110 volts, we find from a longericous of Phates KI and KII that:--

- 1. The (is efficiency at 100 golds is on in /verage greater than that of 60 cycles.
- 2. The power factor at 30 system swessess about 803 and at 100 cycles about 75%.
- S. at 60 cycles the T.C. voltage is continually 2 volts higher than that at 140 cycles.

These results are similar to those obtained at 120 volts.

The efficiency is higher at 120 cycles than at 60 cycles owing to the fact that the inductance effect increases with the frequency and makes the rectified characteristics assume more nearly a straight line. Int

180 cycles the rectified \mathbb{R} . W. and current are of lesser amplitude than at 60 cycles and give more nearly a linear care.

the new mill respondence. All, cliefles with a singular actual frequencies with an impressed volvege of SEO. From a comparison of classes IX and N we note:--

- 1. It 60 cycles the efficiency is higher than that at 50 cycles at various leads.
- 2. The power factor at 30 cycles is somethat higher on the average than that at 30 cycles.
- 3. The D.C. voltage at 50 cycles is higher than that at 60 cycles.

With 110 inpressed voltage on the supply line the same conclusions held.

Comparing the effect of wave form at the same frequency we find from a comparison of Slates VII and II that :--

- 1. The efficiency with a sine wave is much greater than with a peaked.
 - 2. The sine wave gives a better power factor.
 - 3. The D.C. voltages are approximately the same.

The same conclusions hold true for both 110 and 220 impressed voltage.

The choice of 220 or 110 voltages depends on the supplying line and the n.C. voltage desired which is essential in the storage battery work.

In general the efficiency curves with peaked waves have a large hump at the lower loads which the effici-

one, states on line have and lot.

The moretry are row i for words A of rail co-

The rectifier given folds on mit. Here of the folder have a load, but it is difficult to supply a large succell starting current without operations.

Dlates Mv, MVI, NVII in itilif also the relation of D.G. volte delivered to A. C. volte and lies to them.

With the same form of three the solver ich of voltage is those the same, as one be usen from the places.

With a size that a greater 1.0. weltage on the obtained for the same weltage supplied, that with a fedhed have.

. . . .

· VALTA-

call be a concepted to the concept in still-concept, and in a concepted to the concept in the co

The dight ecst of the borney are rectified is composed ively low, the SO chapters exploitly being shout about 285.00.

At the less in the are is constant the efficiency of source varies with the D.C. Voltage telivered. The efficiency holes up very high nown to one guarter load, everaging from To to 90 per cent, which is not true in not, reperator sets. The everage west on an elsebelytic rectifier gives an efficiency of about 40 per cent. With a motor generator of similar especity the efficiency could be about 55 per cent over the hole run.

Under ordinary conditions of test the power freter everaged approximately 90 per cent. It is of special interest to know that this high power factor is practically maintained in charging, whether a lover a high voltage battery is being charged.

The nervny are rectifier is especially adopted to charging storage batteries on account of the inherent regulation.

As the told is of the ordering literally someth, to discuss required in less and the point. It restricts to impress this has direct current E.M.T. which is required a court one of the direct current in more generated but dope while sharping the localmentor is more eigenfally around the crimiture of the generator, seriously injuring the conditions the mercury properties are does no dampe to the cells nor in any way of sots itself along the in- in Droite on account of the local or a shutdown in the line. The breefing or the are open the circuit, thus protecting both buttery in medifier and using absolutely no power from the line.

The heroury are rectifier is unique in that it has no revine parts. There is no larger of fire from ever-heated journals and specking commutators. This rectifier is free from vibrations, cil, dirt and noise which is very all greed le under certain conditions. In account of its simplicity the mercury are rectifier orn be in tabled and operated by unshilled labor. It is now flowible and reliable in appearing that other forms of rectifiers. It can be used an any commer tal frequency and almost any line voltage giving a mids range of direct current voltage. The artire E.F.F. wave is used which is not true of the electrolytic rectifier.

The distiluantages of the mercury are rectifier will now be taken up briefly. The only part of the rectifier set that can require maintanence is the tube. The average

look 700 hours for the large single in the similar sometimes of the number of the second sometimes and the second sometimes are second sometimes.

The minimum has an old the did that till agree it will impose on the control of t

The assummy are received is limite to call caracity on account of the tube but ean W usef on hig voltage. Terruny are rectifiers are bring built for followed to the alternating correct and to deliver a constant current of 6.6 superes. A rectifier giving 2000 volts on the first current side with a loss composed of are long; is in regular service on the streets of schemectady, running a number of "ma notite" area in series.

On account of the recvisied current being pulsation the rectifier cannot be used for all conditions there a direct current is required. The question of injury to storage betteries has been submitted to a storage battery manufacturer and the reply was that there is no possible harm to batteries in charging with a pulsation current.

The foor regulation would be counted as a disadventage and could be for some loads but since the recorry are rectifier is almost entirely used for charging accumulators the regulation is an advantage as explained under the subject of advantages.

