

Universidad Católica del Norte Curso de Ciencia de Datos

Laboratorio 02: Uso de funciones y pandas

Profesores:

Dr. Juan Bekios Calfa

AGENDA

- 1. Introducción a Google Colab.
- 2. Descomposición funcional del problema.
- 3. Carga de archivos utilizando Pandas.
- 4. Cálculos básicos usando Pandas.

Flujo de peatones en un corredor unidireccional

Descripción del problema:

El estudio del flujo de peatones en un corredor unidireccional es un problema relevante en la planificación urbana y en la gestión de eventos donde grandes grupos de personas transitan por espacios limitados.

Este problema se centra en analizar y entender cómo se mueven los individuos en un espacio lineal y restringido, donde todos se desplazan en la misma dirección. Se busca identificar patrones, calcular velocidades promedio y evaluar cómo la densidad y otros factores afectan la movilidad de los peatones.

Flujo de peatones en un corredor unidireccional

Problema

Flujo de peatones en un corredor unidireccional

Experimentos para estudiar el fenómeno: https://ped.fz-juelich.de/da/doku.php?id=corridor5

Objetivos del laboratorio

- 1. **Cargar** el dataset utilizando pandas.
- 2. **Implementar** el problema utilizando funciones.
- Calcular la cantidad de peatones que participan en el experimento a partir del dataset.
- 4. Calcular la velocidad media de cada peatón.
- 5. **Graficar** un histograma de todas las velocidades medias y establecer cuál es la velocidad media dominante.
- 6. Calcular la velocidad media de todos los peatones en el experimento.
- 7. **Calcular** la distancia de los k peatones más cercanos por frame para cada peatón del frame.
- 8. **Calcular** la distancia media de los k peatones más cercanos por frame para cada peatón del frame.

Condiciones del laboratorio

Datos: Los datos consistirán en registros temporales de peatones que transitan por un corredor. Cada registro incluirá marcas de tiempo, posiciones y otros posibles atributos como la edad o el género del peatón.

Herramientas de software: Se utilizará Python como lenguaje de programación principal. El laboratorio utilizará los conceptos de manipulación de *strings* y diccionarios para la implementación del problema.

Métodos de procesamiento de datos: Se emplearán técnicas de manipulación de cadenas para limpiar y preparar los datos, y estructuras de datos como listas y diccionarios para su organización y análisis.

Entregables: El laboratorio finalizará con la presentación de un **archivo colab** que incluya gráficos y tablas que resuman los hallazgos estadísticos, así como una discusión sobre las implicaciones de estos resultados para el diseño de infraestructura peatonal.

Este laboratorio busca dotar a los estudiantes o investigadores de las herramientas y métodos necesarios para abordar problemas de ingeniería urbana y de transporte de manera práctica y basada en datos.

Materiales del laboratorio

Información completa del problema la pueden encontrar en:

https://ped.fz-juelich.de/da/doku.php?id=corridor5

Dataset: Se utilizará el archivo con código UNI_CORR_500_05 y UNI_CORR_500_9

Se pide calcular:

- 1. **Calcular** la cantidad de peatones que participan en el experimento a partir del dataset.
- 2. **Calcular** la velocidad media de cada peatón.
- 3. **Graficar** un histograma de todas las velocidades medias y establecer cuál es la velocidad media dominante.
- 4. Calcular la velocidad media de todos los peatones en el experimento.
- 5. **Calcular** la distancia de los k peatones más cercanos por frame para cada peatón del frame.
- 6. **Calcular** la distancia media de los k peatones más cercanos por frame para cada peatón del frame.

Descripción del Laboratorio 02

K, vecinos seleccionados

$$\overline{s_k} = \frac{1}{K} \sum_{i} \sqrt{(x - x_i)^2 + (y - y_i)^2}$$

 $\overline{s_k} = Distancia \ media \ entre \ vecinos$

Se espera obtener una relación entre \overline{s}_k y la velocidad

$$v = f(\overline{s_k})$$

Visualización de los datos

Gráfico que muestra los peatones en un frame y sus vecinos más cercanos

Materiales del laboratorio

Dataset: Contiene la información de todos los peatones en su posición X, Y y Z separado por *frame* o cuadro de un video. Viene el ejemplo en la página.

Existen diversos archivos que representan el fenómeno con diferentes configuraciones.

En la figura, se muestra el escenario y las diferentes configuraciones que se pueden realizar sobre el experimento.

Para el laboratorio solo se ocupará la configuración: UNI_CORR_500_05 y UNI_CORR_500_9

Materiales del laboratorio

Dataset: Contiene la información de todos los peatones en su posición X, Y y Z separado por *frame* o cuadro de un video. Viene el ejemplo en la página.


```
# description: UNI_CORR_500_05
```

framerate: 25.00

#	PersID	Frame X	Y Z
1	74	-5.5268	4.2383 1.7600
1	75	-5.4471	4.2452 1.7600
1	76	-5.3705	4.2548 1.7600
1	77	-5.2965	4.2515 1.7600
1	78	-5.2246	4.2578 1.7600
1	79	-5.1642	4.2572 1.7600
1	80	-5.1223	4.2612 1.7600
1	81	-5.0750	4.2575 1.7600
1	82	-5.0274	4.2460 1.7600
1	83	-4.9750	4.2477 1.7600
1	84	-4.9091	4.2394 1.7600

El archivo muestra el nombre y los frame por segundo que fueron procesados: 25.

Columna #PersID: Identificador de la persona. En el ejemplo se muestra la persona 1. **Frame:** Indica el cuadro que se está procesando del video. En el ejemplo la persona 1 apareció en el cuadro 74.

X: Posición eje X de la persona con respecto a los ejes mostrados en la *slide* anterior.

Y: Posición eje X de la persona con respecto a los ejes mostrados en la *slide* anterior.

Z: Posición eje X de la persona con respecto a los ejes mostrados en la *slide* anterior.