We damped freq.

The argument Principle: N=Z-P., # (CN O of o)= # (zeros inside) - # (poles inside),

N= 2-P, # (CM & of - to) = # (RHP CL poles) - # (RHP OL poles). The Nyguist Thm.

Nyquist Stability Criterion. The CL system is stade iff. the Myquist plot of GLS) D-1/k for Ptimes CCW. (Bode M, phase => Nyquist phot)

Phase of H:
$$\angle H(s) = \angle \frac{(s-2i)...(s-2m)}{(s-p_i)...(s-p_n)} = \sum_{k=0}^{m} \psi_i - \sum_{k=0}^{n} \psi_i = \sum_{k=0}^{n} \angle poles$$

I. Contour encirles a sero:

1. φ_1, φ_2 return to original value. 2. ψ_1 net change of -360° . $\Rightarrow \angle H(5) - 360^\circ$.

VI, ZHIS same direction.

II. Contour envireles a pule.

=> ZH(5) -360°.

 $^{\operatorname{Re}H(s)}$ H(c) encircles the night once counterlockmise.

II. Contour encirles no poles, no revos.

- ϕ_1 , ϕ_2 , ψ_1 all return to their original values
- ► therefore, no net change in $\angle H(s)$, so H(C) does not encircle the origin

C: the whole In anis + pooth around infinity,

H(C) = Nyquist plot of H