

Data Collection and Preprocessing Phase

Date	4 June,2024
Team ID	SWTID1719938571
Project Title	Walmart Sales Analysis for Retail Industry with Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing

In this phase, we will statistically analyze dataset variables to identify patterns and outliers. Python will be used for preprocessing tasks, including normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring the quality of data for subsequent analysis and modeling. This process will form a strong foundation for generating reliable insights and accurate predictions.

Section	Description		
	Dimensions: 421570 rows ×17 columns Descriptive Statistics:		
Data Overview	Store		
Univariate Analysis	Univariate Analysis merged_data["Type"].value_counts() Type A 214993 B 162752 C 42473 Name: count, dtype: int64		

Data Preprocessing Code Screenshots [2] # reading all the csv files stores = pd.read_csv("stores.csv") features = pd.read_csv("features.csv.zip") train = pd.read_csv("train.csv.zip") test = pd.read_csv("test.csv.zip") / [12] # merging all the csv files # all the csv files have store column in common. # reged_data = train_ereqs(features_one["Store"]", now= 'inner').merge(stores_one["Store"] , how ='inner') Loading Data O merged_data Store Dept Date Weekly_Sales IsHoliday_x Temperature Fuel_Price MarkDown1 MarkDown2 MarkDown3 0 1 1 2010-02-05 24924.50 False 42.31 2.572 NaN NaN 1 1 2 2010-02-05 50605.27 False 42.31 2.572 2 1 3 2010-02-05 13740.12 False 42.31 2.572 3 1 4 2010-02-05 39954,04 False 42,31 2,572 4 1 5 2010-02-05 32229.38 False 42.31 2.572 Code for identifying and handling missing values. # Handling the null values merged_data["MarkDown1"] = merged_data["MarkDown1"].replace(np.nan,0) **Handling Missing Data** merged_data["MarkDown2"] = merged_data["MarkDown2"].replace(np.nan,0) merged_data["MarkDown3"] = merged_data["MarkDown3"].replace(np.nan,0) merged_data["MarkDown4"] = merged_data["MarkDown4"].replace(np.nan,0) merged_data["MarkDown5"] = merged_data["MarkDown5"].replace(np.nan,0) Code for transforming variables (scaling, normalization). # changing the categorical value type into numbers merged_data = pd.get_dummies(merged_data,columns=["Type"]) merged data["is weekened"].replace({False:0,True:1},inplace=True) **Data Transformation** merged_data["IsHoliday"].replace({False:0,True:1},inplace=True) # Scaling the data sc = StandardScaler() X = sc.fit_transform(X) print(X) Code for creating new features or modifying existing ones. # Date , type and isholiday needs to be converted to numbers Feature Engineering merged_data["Date"] = pd.to_datetime(merged_data["Date"]) merged_data.loc[:,"DayofWeek"] =merged_data.loc[:,"Date"].dt.day_name() merged_data.loc[:,"Month"] = merged_data.loc[:,"Date"].dt.month merged_data.loc[:,"Year"] = merged_data.loc[:,"Date"].dt.year Save Processed Data Code to save the cleaned and processed data for future use.