Using Machine learning to enhance a Kalman filter : application to the measurement of the velocity of a car

Maud Biquard Nathan Doumèche

Mines de Paris - MAREVA

Friday, January 28, 2022

Content

- Introduction
 - Our supervisor
 - Presentation of the problem
 - The Kalman filter
- Modelling and implementing
 - Classical Kalman filter
 - The neural network
- Conclusion

Content

- Introduction
 - Our supervisor
 - Presentation of the problem
 - The Kalman filter
- 2 Modelling and implementing
- Conclusion

Our supervisor

Colin Parellier PhD at CAOR

Presentation of the problem

Goal : measure the velocity of a car

2 measures:

- the acceleration with noise (inertial measurement unit),
- the velocity of the wheels with noise, sliding and slipping.

We model sliding and slipping thanks to the Pacejska formula. One of the difficulties is that, for a given acceleration, there are two ways of sliding.

How can we merge these information?

Figure 1 – The acceleration with a uniform noise

Figure 2 – Reconstructing the velocity by integrating the acceleration : propagation of the noise $\,\,7/26$

Figure 3 – When the variance of v^{wheel} is low, the Kalman filter gets close to it. Otherwise, it gets close to the reconstruction by integrating the acceleration.

The Kalman filter

We follow Fox et al. [2005].

Hypothesis : $t \mapsto a_t$ et $t \mapsto v_t^{wheel}$ are gaussian processes.

Prediction:

$$\begin{cases} & \hat{v}_{t|t-1} &= \hat{v}_{t|t-1} + a_t & Prediction \\ & P_{t|t-1} &= P_{t-1|t-1} + Q_t & Predicted\ covariance \end{cases}$$

Update:

$$\begin{cases} y_t &= v_t^{wheel} - \hat{v}_{t|t-1} & Innovation \\ S_t &= P_{t|t-1} + \mathbf{R_t} & Innovation \ Covariance \\ K_t &= P_{t|t-1}S_t^{-1} & Optimal \ Kalman \ gain \\ \hat{v}_{t|t} &= \hat{v}_{t|t-1} + K_t y_t & Update \\ P_{t|t} &= (I - K_t)P_{t|t-1} & Update \ covariance \end{cases}$$

Content

- Introduction
- 2 Modelling and implementing
 - Classical Kalman filter
 - The neural network
- Conclusion

Datas

Figure 4 - Collecting the data

Classical Kalman filter

We call Classical Kalman filter the Kalman filter taken with a constant R. We evaluate its performance by computing its Mean Squared Error :

$$MSE = \sum_{1 \le t \le T} (v_t^{vehicle} - \tilde{v}_t)^2.$$

Figure 5 – Result of the Kalman filter by taking $Q_t=1$ and $R_t=1.\ MSE=136.6$

Figure 6 – Result of the Kalman filter by taking $Q_t=1$ and $R_t=150.\ MSE=41.8$ 13/26

Evaluating the minimal loss

The system we considered contains noise by nature (because of the captors). We evaluate its covariance: it is $P_{k|k}$. While learning, the loss can not converge towards 0. Let's compute a lower bound for the L^2 -error. For a trajectory i, let \mathcal{L}_i be its loss. \tilde{v}_t is the velocity computed by the neural network.

$$\mathcal{L}(i) = \mathbb{E}\left(\sum_{1 \le t \le T} \left(v_t^{vehicle}(i) - \tilde{v}_t(i)\right)^2\right)$$

Strong law of large numbers : $\bar{\mathcal{L}} = \frac{1}{N} \sum_{1 \leq i \leq N} \mathcal{L}(i) \xrightarrow{a.s.} \mathbb{E}(\mathcal{L})$

The average loss during learning is therefore approximately $\mathbb{E}(\mathcal{L})$.

$$\begin{split} \mathbb{E}\left(\mathcal{L}\right) &= \sum_{1 \leq t \leq T} \mathbb{E}\left(\left(v_t^{vehicle} - \tilde{v}_t\right)^2\right) \\ &\geq \sum_{1 \leq t \leq T} \mathbb{E}\left(\mathbb{E}\left(\left(v_t^{vehicle} - \hat{v}_{t|t}\right)^2|t\right)\right) \text{ the Kalman filter is optimal in } L^2 \\ &= \sum_{1 \leq t \leq T} \mathbb{E}\left(P_{t|t}\right) \text{ by definition of } P_{t|t} \end{split}$$

Evaluating the minimal loss

Therefore, during the training phase, we expect the average loss to converge towards $\sum\limits_{1\leq t\leq T}\mathbb{E}\left(P_{t|t}\right)>0.$ In fact, we can estimate this loss thanks to a well-trained neural

network. Once again, we use the Monte-Carlo method :

$$\frac{1}{N} \sum_{1 \le i \le N} \sum_{1 \le t \le T} P_{t|t}(i) \xrightarrow{p.s.} \sum_{1 \le t \le T} \mathbb{E}\left(P_{t|t}\right).$$

The result is that, during the training phase, the loss can not converge towards something smaller thant 3.1. In practive, we can't simulate the Kalman filter thanks to a neural network and $\tilde{v}_t \neq \hat{v}_{t|t}.$ There is what is called an approximation error because of the approximation of R by the neural network. It is therefore normal to compute an average loss during training greater than the minimal loss.

The first network

- Takes a whole trajectory and returns $\hat{R} = (\hat{R}_t)_{1 \leq t \leq T}$.
- ullet \Rightarrow Downside : it needs to see the future.

Figure 7 – First network

First network : training and results

Figure 8 – Loss for the first network

Figure 9 – $v^{vehicle}$ estimated by a Kalman filter with \hat{R}_t given by the network. MSE is the mean on the whole test set : MSE = 4.66.

Real-time

You can't see the future for real uses.

Idea : estimate R_t depending on $a_u^{vehicle}$ and v_u^{wheel} for $t-p \le u \le t-1$.

• Same training but

$$\mathcal{L} = \sum_{1 \leq t \leq T} w_t \left(v_t^{vehicle} - \hat{v}_t \right)^2 \text{ with } w_t = \left\{ \begin{array}{ll} 1 & \text{si } t < T \\ K & \text{si } t = T \end{array} \right..$$

ullet Inference : we only use \hat{R}_T for the Kalman filter.

Real-time network: training and results

Figure 10 – Loss for the real time network

Figure $11-v^{vehicle}$ estimated by a Kalman filter, p=30. \hat{R}_t computed by the network. MSE is the mean on the whole test set : MSE=7.92.

Further analysis

	Classical Kalman	Future Kalman	Real-time Kalman
MSE	35 - 45	4.66	7.92

Figure 12 – First network (sees the future)

Figure 13 – Real-time network

Further analysis

Figure 14 – Comparison between R_t returned by the future and the real-time networks

Further analysis

Figure 15 – First network (sees the future)

Figure 16 – Real-time network

Content

- Introduction
- 2 Modelling and implementing
- 3 Conclusion

Overview

Bibliography

Dieter Fox, Sebastian Thrun, and Wolfram Burgard. *Probabilistic Robotics*. The MIT Press, 2005.

Appendix 1 : Network structure

```
Sequential(
(0): Conv1d(2, 16, kernel_size=(3,), stride=(1,), padding=(1,))
(1): ReLU()
(2): Conv1d(16, 32, kernel_size=(5,), stride=(1,), padding=(2,))
(3): ReLU()
(4): Conv1d(32, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(5): ReLU()
(6): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(7): ReLU()
(8): Conv1d(64, 64, kernel_size=(5,), stride=(1,), padding=(2,))
(9): ReLU()
(10): Conv1d(64, 1, kernel size=(3,), stride=(1,), padding=(1,))
(11): ReLU()
```