References

 Table 1
 Calibration

Macroeconomic Parameters						
γ	0.36	Capital's Share of Income				
٦	$0.94^{1/4}$	Depreciation Factor				
$\sigma^2_\Theta \ \sigma^2_\Psi$	0.00001	Variance Aggregate Transitory Shocks				
σ_{Ψ}^2	0.00004	Variance Aggregate Permanent Shocks				
	Steady S	State of Perfect Foresight DSGE Model				
	$(\sigma_\Psi$	$= \sigma_{\Theta} = \sigma_{\psi} = \sigma_{\theta} = \wp = D = 0, \Phi_t = 1)$				
$reve{K}/reve{K}^{\gamma}\ reve{K}$	12.0	SS Capital to Output Ratio				
$reve{K}$	48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\gamma)}$)				
W	2.59	SS Wage Rate $(=(1-\gamma)\breve{K}^{\gamma})$				
ř	0.03	SS Interest Rate $(= \gamma \check{K}^{\gamma-1})$				
$reve{\mathfrak{R}}$	1.015	SS Between-Period Return Factor $(= 7 + \check{r})$				
Preference Parameters						
ho	2.	Coefficient of Relative Risk Aversion				
β_{SOE}	0.970	SOE Discount Factor				
β_{DSGE}	0.986	HA-DSGE Discount Factor $(= \breve{\mathcal{R}}^{-1})$				
П	0.25	Probability of Updating Expectations (if Sticky)				
Idiosyncratic Shock Parameters						
$\sigma_{ heta}^2$	0.120	Variance Idiosyncratic Tran Shocks ($=4\times$ Annual)				
$\sigma_{ heta}^2 \ \sigma_{\psi}^2$	0.003	Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times \text{Annual})$				
Ø	0.050	Probability of Unemployment Spell				
D	0.005	Probability of Mortality				

Table 2 Equilibrium Statistics

	SOE Mod	del	HA-DSGE Model	
	Frictionless Sticky		Frictionless	Sticky
Means				
A	7.49	7.43	56.85	56.72
C	2.71	2.71	3.44	3.44
Standard Deviations				
Aggregate Time Ser	ies ('Macro')			
$\log A$	0.332	0.321	0.276	0.272
$\Delta \log \mathbf{C}$	0.010	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	0.010	0.010	0.007	0.007
Individual Cross Sectional ('Micro')				
$\log \mathbf{a}$	0.926	0.927	1.015	1.014
$\log \mathbf{c}$	0.790	0.791	0.598	0.599
$\log p$	0.796	0.796	0.796	0.796
$\log \mathbf{y} \mathbf{y} > 0$	0.863	0.863	0.863	0.863
$\Delta \log \mathbf{c}$	0.098	0.098	0.054	0.055
Cost of Stickiness 4.82e		:	4.51e-	4

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a newborn frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3 Aggregate Consumption Dynamics in US Data

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$							
Measure of Consumption			OLS	2 nd Stage	KP p -val		
Independent Variables			or IV	$ar{R}^2$	Hansen J \boldsymbol{p} val		
Nondurables and Services							
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.468^{***}			OLS	0.216			
(0.076)							
0.830^{***}			IV	0.278	0.222		
(0.098)					0.439		
	0.587***		IV	0.203	0.263		
	(0.110)				0.319		
		-0.17e-4		-0.005	0.081		
		(5.71e-4)			0.181		
0.618***		-4.96e-4*		0.304	0.415		
(0.159)	(0.161)			. =0	0.825		
Memo: Fo	or instrument	s $\mathbf{Z}_t, \Delta \log \mathbf{C}$	$S_t = \mathbf{Z}_t$	$\zeta, \ \bar{R}^2 = 0.35$	8 		
Nondurab	les						
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t					
0.200^{***}			OLS	0.036			
(0.058)							
0.762^{***}			IV	0.083	0.504		
(0.284)					0.727		
	0.849^{**}		IV	0.061	0.398		
	(0.357)				0.731		
		9.09e - 4	IV	0.008	0.118		
		(9.05e-4)			0.446		
0.620**	0.313	-3.25e-4	IV	0.077	0.523		
'	(0.286)	\	~ –	- = o	0.821		
Memo: Fo	or instrument	s $\mathbf{Z}_t, \Delta \log \mathbf{C}$	$C_t = \mathbf{Z}_t$	$\zeta, \ \bar{R}^2 = 0.08$	0		

Notes: Robust standard errors are in parentheses. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}, \text{lags 2 and 3 of differenced Fed funds rate, lags 2 and 3 of the Michigan Index of Consumer Sentiment Expectations}. The penultimate column reports the <math>\bar{R}^2$ from a regression of the dependent variable on the RHS variables (instrumented, when indicated); the final column reports two tests of instrument validity: The p-value from the Kleibergen–Paap Wald rk F statistic of first-stage instrument validity (top), and the p-value from the Hansen–Sargan overidentification test (bottom). $\{*, **, ***\}$ = Statistical significance at $\{10, 5, 1\}$ percent.

Data sources are NIPA and US Financial Accounts, 1960Q1–2016Q4. Income (**Y**) is measured as as wages, salaries and transfers, net of social insurance. Wealth–income ratio (A_t) is measured as the ratio of net worth to income.

 Table 4
 Micro Consumption Regression on Simulated Data

$$\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{a}_{t,i} + \epsilon_{t+1,i}.$$

Model of				
Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.019			0.000
	(-)			
	()	0.011		0.004
		(-)		
		()	-0.190	0.010
			(-)	
	0.061	0.016	-0.183	0.017
	(-)	(-)	(-)	
Sticky	. ,		. ,	
Sucky	0.012			0.000
				0.000
	(-)	0.011		0.004
		0.011		0.004
		(-)	0.101	0.010
			-0.191	0.010
	0.051	0.015	(-)	0.016
	0.051	0.015	-0.185	0.016
	(-)	(-)	(-)	

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t. The notation "(—)" indicates that standard errors are close to zero, given the very large simulated sample size.

 Table 5
 Aggregate Consumption Dynamics in SOE Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$ Expectations: Dep Var OLS 2nd Stage KP *p*-val

Expectations : Dep Var			OLS	2 nd Stage	KP p-val	
Independent Variables			or IV	$ar{R}^2$	Hansen J p -val	
Frictionless: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
$\Delta \log \mathbf{C}_t^*$ Δ		A_t		t	30))	
$0.295^{\bullet\bullet\bullet}$	0 0/1	U	OLS	0.087		
(0.066)						
$0.660^{\bullet\bullet}$			IV	0.040	0.237	
(0.309)					0.600	
,	$0.457^{\bullet\bullet}$		IV	0.035	0.059	
	(0.209)				0.421	
	,	-6.92e-4	IV	0.026	0.000	
		(5.87e-4)			0.365	
0.420	0.258	0.45e-4	IV	0.041	0.516	
(0.428)	(0.365)	(9.51e-4)			0.529	
Memo: For	instrument	s \mathbf{Z}_t , $\Delta \log \mathbf{C}$	$C_t^* = \mathbf{Z}_t$	$_{2}\zeta, \ \bar{R}^{2}=0.039;$	$var(\log(\xi_t)) = 5.99e-6$	
Sticky : $\Delta \log$	$\log \mathbf{C}_{t+1}^*$ (wi	th measurer	ment er	$\operatorname{ror} \mathbf{C}_t^* = \mathbf{C}_t \times \xi$	$\overline{(t)};$	
$\Delta \log \mathbf{C}_t^*$ Δ	•	A_t				
$0.508^{\bullet\bullet\bullet}$	9 -11-		OLS	0.263		
(0.058)						
0.802			IV	0.260	0.000	
(0.104)					0.554	
	$0.859^{\bullet\bullet\bullet}$		IV	0.198	0.060	
	(0.182)				0.233	
		$-8.26e-4^{\bullet \bullet}$	IV	0.066	0.000	
		(3.99e-4)			0.002	
$0.660^{\bullet\bullet\bullet}$	0.192	0.60e-4	IV	0.261	0.359	
(0.187)	(0.277)	(5.03e-4)			0.546	
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.260$; $\operatorname{var}(\log(\xi_t)) = 5.99e{-}6$						

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y$

 Table 6
 Aggregate Consumption Dynamics in HA-DSGE Model

 $\Delta \log \mathbf{C}_{t+1} = \underline{\varsigma} + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

2nd Stage KP p-val OLS Expectations: Dep Var \bar{R}^2 Independent Variables or IV Hansen J p-val Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{C}_t^*$ $\Delta \log \mathbf{Y}_{t+1}$ A_t $0.189^{\bullet\bullet\bullet}$ OLS 0.036(0.072)IV 0.4760.318 0.020(0.354)0.556

0.017

0.015

0.020

0.107

0.457

0.000

0.433

0.572

(0.463) (0.583) (1.87e-4) 0.531 Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.023$; $\operatorname{var}(\log(\xi_t)) = 4.16e-6$

IV

IV

IV

-0.34e-4

(0.98e-4)

0.01e-4

0.368

(0.321)

0.214

0.289

Sticky : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{C}_t^* \quad \Delta \log \mathbf{Y}_{t+1}$ A_t $0.467^{\bullet\bullet\bullet}$ OLS 0.223 (0.061)0.773 IV 0.2300.000(0.108)0.542 $0.912^{\bullet \bullet \bullet}$ IV 0.1450.105(0.245)0.187 $-0.97e-4^{\bullet}$ IV 0.059 0.000 (0.56e-4)0.002 $0.670^{\bullet\bullet\bullet}$ IV 0.12e-40.2310.4600.171(0.181)(0.363)(0.86e-4)0.551Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.232$; $\operatorname{var}(\log(\xi_t)) = 4.16\text{e}-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-3}, \Delta_{t-2}, \Delta_{t-3}, \Delta_{t-3$

 Table 7
 Aggregate Consumption Dynamics in RA Model

 $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var			OLS	2 nd Stage	KP p -val	
Independent Variables			or IV	$ar{R}^2$	Hansen J p -val	
Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
	$\Delta \log \mathbf{Y}_{t+1}$	A_t		v	• • • • • • • • • • • • • • • • • • • •	
-0.015			OLS	0.002		
(0.077)						
0.387			IV	0.014	0.367	
(0.390)					0.570	
	0.390		IV	0.016	0.084	
	(0.311)				0.475	
		-0.26e-4	IV	0.016	0.000	
		(1.11e-4)			0.493	
0.122	0.267	0.16e-4	IV	0.018	0.547	
(0.519)	(0.575)	(2.12e-4)		- 0	0.572	
Memo: Fo	r instrument	s \mathbf{Z}_t , $\Delta \log \mathbf{Q}$	$\mathbf{C}_t^* = \mathbf{Z}_t$	$g\zeta, R^2 = 0.018;$	$var(\log(\xi_t)) = 3.33e-6$	
Sticky: $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.412^{\bullet\bullet\bullet}$			OLS	0.179		
(0.063)						
$0.788^{\bullet\bullet\bullet}$			IV	0.183	0.001	
(0.138)					0.532	
	$0.641^{\bullet \bullet \bullet}$		IV	0.128	0.085	
	(0.163)				0.171	
		-0.47e-4	IV	0.075	0.000	
		(0.52e-4)			0.027	
$0.632^{\bullet \bullet \bullet}$	0.118	0.10e-4	IV	0.184	0.321	
(0.223)	(0.280)	(0.79e-4)		- 0	0.480	
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.186$; $\operatorname{var}(\log(\xi_t)) = 3.33e{-}6$						

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-3}, A_{t-3$