Deep Learning and Convolutional Neural Network (42028)

Convolutional Neural Network (CNN) - 2

Dataset preparation

• In case of small dataset (Range: 100 - <100k)

- Train set: 60%

- Validation set: 20%

- Test set: 20%

Or,

- Train set: 70%

- Test set: 30%

Popular dataset spit choice in non-DL era! Or Small Data era!

Dataset preparation

• In case of Large dataset (Range: 500K - 1M+)

Example: Total data sample: 1M+

Train: 98%!

Validation: 10,000 samples

Test: 10,000 samples

Popular dataset spit choice in DL era!

Or BIG Data era!

Dataset preparation

Train, validation and test set distribution:

Rule of Thumb:

Validation and Test set should come from the same distribution

Bias and Variance

Bias

It is a value that allows to shift the activation function to left or right,
to better fit the data

Bias

 Changes in 'w' alters the steepness of the curve, keeping the origin at (0,0) or same/unchanged

 Without bias we may get a poor fit to training data

Bias

 Changes in 'b' shifts the curve to left or right

 With bias the curve/line will not always pass through origin

We get a better fit to training data

Variance

 It is the change in prediction accuracy of Machine Learning model between training data and test data.

 Model with high variance pays a lot of attention to training data and does not generalize on the data which it hasn't seen before.

• With high variance, models perform very well on training data but has high error rates on test data.

Bias and Variance effect

Bias and Variance effect

Identify High Bias:

- High training error
- Validation/test error nearly same as train error

Identify High Variance:

- Low training error
- High validation/test error

Bias and Variance effect

- High Bias Low Variance: Models are consistent but inaccurate
- High Bias High Variance: Models are inconsistent and inaccurate
- Low Bias and Low Variance: Models are consistent and accurate

• Low Bias and High Variance: Models are somewhat accurate but inconsistent on average

Fixing Bias and Variance issues

• High Bias: Due to simple ML model and high training error.

- Potential things to try :
 - Increase features: this will help in generalizing dataset
 - Make ML model more complicated
 - Decrease Regularization parameter

Fixing Bias and Variance issues

• **High Variance:** Due to a ML model which is fitting most of the training dataset - overfitting.

Potential things to try :

- Increase dataset size
- Reduce input features
- Increasing *Regularization* parameter

Regularization

 Regularization is a technique which makes slight modifications to the learning algorithm such that the model generalizes better.

Improves the model's performance on the unseen data as well.

- Popular techniques:
 - L2 and L1 regularization
 - Dropout

Regularization

Regularization

Regularization- L1 and L2

- L2 and L1 regularization are common types and help in reducing the overfitting issue
- Idea: Update the loss/cost function by adding a regularization term

Loss function = Loss + Regularization term (λ)

- Due to λ , the weight matrices will decrease, assuming a neural network with smaller weight matrices leads to simpler model
- In Deep Learning, Regularization penalizes the weight matrices of the nodes

Regularization- L1 and L2

• L2 regularization:

Cost function = Loss +
$$\left| \frac{\lambda}{2m} * \sum ||w||^2 \right|$$

 λ is a hyper-parameter

Also know as weight decay, as it forces the weight to decay towards zero, but not exactly zero.

Regularization- L1 and L2

• L1 regularization:

Cost function = Loss +
$$\frac{\lambda}{2m} * \sum ||w||$$

- Penalize the absolute value of the 'w'
- Weight may reduce to zero
- Useful in compress a model

Regularization- Dropout

- It produces good results and most popular regularization technique
- At every iteration it randomly selects and drops some nodes and remove all the connections to and from them
- Each iteration has a different set of nodes

Regularization- Dropout

Example Deep NN

Example Deep NN with Dropout

Data Augmentation

- Another simple way to reduce overfitting is to increase size of training dataset!
- Increase the size of training data by creating more sample using the existing training set and applying the following simple operations:
 - Flip
 - Rotate
 - Scale
 - Crop
 - Translate
 - Gaussian Noise

Data Augmentation

- Advanced data augmentation techniques:
 - Generative Adversarial Networks (GANs):
 - Among the hottest topic is DL
 - Able to generate images which look similar to the original ones
 - Proven to be very effective

Data Augmentation

- Advanced data augmentation techniques:
 - Neural Style transfer:
 - Using CNN to separate style
 - transfer style to different image

