DRW Questions

Exit Times

g(.): expected time I spend in state i

$$\begin{cases} g(0) = 1 + 1 \cdot g(1) \\ g(1) = 1 + \frac{5}{6}g(1) + \frac{1}{6}g(2) \\ g(2) = 1 + \frac{5}{6}g(1) + \frac{1}{6}g(3) \\ \vdots \\ g(3) = \frac{1}{6}g(1) + \frac{1}{6}g(3) \\ \vdots \\ g(4) = \frac{1}{6}g(1) + \frac{1}{6}g(2) \\ \vdots \\ g(5) = \frac{1}{6}g(1) + \frac{1}{6}g(2) \\ \vdots \\ g(6) = \frac{1}{6}g(1) + \frac{1}{6}g(1) \\ \vdots \\ g(6) = \frac{1}{6}g(1) \\ \vdots \\ g(6$$

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & \frac{1}{6} & -\frac{1}{6} \\ 0 & -\frac{5}{6} & 1 \end{bmatrix} \begin{bmatrix} 9(0) \\ 9(2) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad 9(0) = 43$$

Binomial Tree Mode

Consider the return on a stock price w/n steps

where - / < d < u and 0 < p < 1

- · Sn can move (I+u) and (I+d) at each time step
- · So as initial stock price, S, stock price at n=1

$$\frac{S_1}{S_0} = 1 + k_1$$

$$S_1 = \langle S_0(1+d) \rangle w/ \text{ prob. } P$$

· As a result?

Ex) Find I and u if S, can take \$87 or \$76, and the top possible value Sz is \$92.

Risk-neutral Probability

The expected one-step return can be written as:

• We'll introduce a special symbol po to denote the risk-neutral probability

$$E^{*}[K_{1}] = P^{*}u + (1-P^{*})d = r$$

$$P^{*} = \frac{r-d}{u-d}$$

Value of a Portfolio $V_n = \sum_{i=1}^{d} \partial_i^i S_n^i$ where $\partial_n^i = \#$ of shares invest in asset i at step n

- We assume St is our riskless asset

The initial wealth is denoted by

$$V_0 = \sum_{i=0}^{d} \Theta_0^i S_0^i$$

No arbitrage principle

- · There is no strategy s.t. Vo = 0 and Vn > 0 w/ positive probability for some n>0.
- · The binomial tree model admits no arbitrage off der < u
- Ex) Consider a market w/ risk-free asset st. So=100, Si=110, Si=121 and risky asset w/ price process

ر	·	-			U=0.4 144
Scenario	5 S	51	52		$\int C - \Omega dx$
		12 🔿	144	u=0.2	-120 -0.2
ω_{L}	100	120	144		96
W_2	100	120	96	100 (=0.1	/
	,	۸.6			
ω_3	100	90	96	d=-0.1	90 /
					80 C - 110
	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u></u>	S _I	-90, S, =110

Is there an arbitrage oppurtunity of

- a) If there are no restrictions on short-selling?
- b) No short-selling is allowed.

$$(\theta', \theta') = (x, y)$$

$$X = \frac{909}{110}$$

$$121(\frac{-90}{110}y) + 96y > 0$$

Let
$$y = -\frac{1}{3}$$

$$X = -\frac{90}{10}(-\frac{1}{3})$$

$$n=1 % 110 (\frac{3}{11}) + 90 (-\frac{1}{3}) = 0$$

$$N=2^{\circ}$$
 $121\left(\frac{3}{11}\right)+96\left(-\frac{1}{3}\right)=1$

Option Pricing

Consider the model, $S_0 = 100$, $S_1 = 110$, $S_2 = 121$ and suppose that the stock prices are as follows:

Suppose we have a European Call option that pays: $C_2 = \max\{S_2^1 - 85, 0\}$

In other words, the payoff of call option

Then we can find the price of this option: $C_{1}^{E}(\omega_{1}) = \frac{1}{(1+r)} \left[270^{2} + 21(1-0)^{2} \right] = 22.73$ $C_{1}^{E}(\omega_{2}) = \frac{1}{1+r} \left[5r^{2} + 0(1-r^{2})^{2} \right] = 3.64$ $C_{0}^{E} = \frac{1}{1+r} \left[22.73 p^{2} + 3.64(1-p^{2})^{2} \right] = 19.79$ Ex) Calculate value of a Put Option: Pz = max {100-S2, 0} w/ the same parameters as before

Put-Call Parity

For European Call and Put options w/ the same strike price X and exercise time T.

Otherwise an arbitrage opportunity exists.

Ex) The American option can be exercised at any time step in w/payoff f(Sn)

At expiry:
$$C_n = f(S_n)$$
, Suppose $n=2$

At time 1, the option holder can exercise immediately w/f(S,) or wait until time step 2

- This means at time 1,

And Similarly for Co

· Consider an American Put option w/ strike Price X=80 that expires at n=2 $5'_{0} = 80$, u = 0.1, d = -0.05, r = 0.05

$$80 - 96.8$$

$$83.60$$

$$76 - 0.05, r = 0.05$$

$$83.60$$

$$76 - 0.05, r = 0.05$$

$$83.60$$

$$72.20$$

 $C_0^{\frac{1}{4}} = \max\{0, \frac{1}{1.05}[0(\frac{2}{3}) + (\frac{1}{3})(4)\} = 1.27$

Ex) Compute the value of an American Call w/strike X=120 at time 2 initial price $S_0'=120$, u=0.2, d=-0.1, and r=0.1