CS F364
Design & Analysis of Algorithms

Online Problems and Online Algorithms

Online Paging Problem:

- Performance of Online Algorithms
- Competitive Performance

Paging Algorithm - Miss Rates

- Online Paging Lemma:
 - For any deterministic online algorithm A there exist sequences of arbitrary length such that A misses on every request
 - i.e. $f_A([\rho_0, \rho_1, ..., \rho_n]) = n$
 - Proof:
 - Consider an adversary who chooses the next input ρ_{j} to be a page that is not one of the k pages in M_{0}
 - Since $|M_1| = k+1$, there always exists one such page.
- Implication:
 - Worst case analysis is not useful in comparing these algorithms

Paging Algorithm - Competitive Analysis

Definition:

- A deterministic online page replacement algorithm A is said to be C-competitive if there exists a constant b such that on every sequence of requests $\rho = \rho_0$, ρ_1 , ... ρ_n ,
 - $f_A(\rho) C * f_{OPT}(\rho) <= b$

where the constant b must be independent of n but may depend on k.

- ◆ The competitiveness coefficient of A, denoted C_A, is the smallest C such that A is C-competitive.
- Online Paging Competitiveness Theorem:
 - For any deterministic online algorithm A for paging, C_A
 - Proof:
 - By GreedyPaging Lemma and Online Paging Lemma

Paging Algorithm - Competitive Analysis

- Claim:
 - $+ C_{IRIJ} = k$
 - + Proof:
 - Partition the input sequence into rounds R₀, R₁ ... R_t
 - such that each round R_j results in exactly k misses by LRU.
 - In each round R_j, all the k+1 pages must have been accessed.
 - Why?
 - So, the ratio of misses by LRU to optimal misses is at most k i.e. for any input sequence ρ
 - $f_{LRU}(\rho) / f_{OPT}(\rho) \ll k$
 - i.e. C_{LRU} <=k
 - ◆ But by OPC Theorem: C_{LRU} >= k.

Paging Algorithm - Competitive Analysis

- \diamond Claim: $C_{FIFO} = k$
 - Proof: (similar to the proof for LRU: left as exercise)
- ❖ Claim: C_{LFU} > k
 - Proof:
 - Consider a sequence ρ where
 - ρ_0 , ρ_1 , ... ρ_j are k-1 distinct pages with 2 accesses each and
 - ρ_{j+2^*i-1} , ρ_{j+2^*i} are a pair of different pages repeated for each i=1,2,...
 - and are different from ρ_0 , ρ_1 , ... ρ_j
 - $f_{LFU}(\rho) = n 2*k + 1$ and $f_{OPT}(\rho) = 1$
 - Therefore the ratio f_{LFU} (ρ) / f_{OPT} (ρ) is O(n)
 - i.e. not bounded