## Semantics equivalences

Massimo Merro

4 December 2017

# Semantic equivalence



A formal semantics of a programming language allows us to reason about program properties of that language.

### Intuition:

Two program phrases  $P_1$  and  $P_2$  are said to be semantically equivalent,  $P_1 \simeq P_2$ , if either can be replaced by the other, in any program context.

With a good semantic equivalence  $\simeq$  we can:

- understand what a program is
- prove whether some particolar expression (say an efficient algorithm) is equivalent to another (say a clear specification); that operation is called program verification!
- prove that some compiler optimizations are sound
- understand semantic differences between programs.

si comportino alb stesso

## Some examples

How about the following two fragments of code?

$$(l := 0; 4) \simeq (l := 1; 3 + !l)$$
 ???

The two fragment will produce the same results in any starting store.

Can we replace one by the other in any arbitrary program contexts?

No! For example, let

$$C[\cdot] \stackrel{\mathsf{def}}{=} [\cdot] + !1$$

then

$$C[l := 0; 4] \stackrel{?}{\simeq} C[l := 1; 3 + !l]$$

$$= \qquad \qquad = \qquad \qquad = \qquad \qquad (l := 0; 4) + !l \not\simeq (l := 1; 3 + !l) + !l$$

In fact, C[1 := 0; 4] returns 4 while C[1 := 1; 3 + !!] returns 5. How about

$$(l := !l + 1); (l := !l - 1) \simeq l := !l ???$$

Massimo Merro

## Equational reasoning

Both examples were for particolar expressions. We may want to know whether some general laws are valid for all  $e_1, e_2, \ldots$  How about these?

$$e_1$$
;  $(e_2; e_3) \simeq (e_1; e_2)$ ;  $e_3$ ?

(if  $e_1$  then  $e_2$  else  $e_3$ );  $e \simeq$  if  $e_1$  then  $e_2$ ;  $e$  else  $e_3$ ;  $e$ ?

(if  $e_1$  then  $e_2$  else  $e_3$ )  $\simeq$  if  $e_1$  then  $e$ ;  $e_2$  else  $e$ ;  $e_3$ ?

(if  $e_1$  then  $e_2$  else  $e_3$ )  $\cong$  if  $e$ ;  $e_1$  then  $e_2$  else  $e_3$ ?

# What does it mean for $\simeq$ to be "good"?

- **1** programs that results in observably-different values (starting from some initial store) must not be equivalent:  $\exists s, s_1, s_2, v_1, v_2. \langle e_1, s \rangle \rightarrow^* \langle v_1, s_1 \rangle \land \langle e_2, s \rangle \rightarrow^* \langle v_2, s_2 \rangle \land v_1 \neq v_2$  implies  $e_1 \not\simeq e_2$
- Programs that terminates must not be equivalent to programs that don't
- ②  $\simeq$  must be an equivalence relation:  $e \simeq e$ ,  $e_1 \simeq e_2 \Rightarrow e_2 \simeq e_1$ ,  $e_1 \simeq e_2 \simeq e_3 \Rightarrow e_1 \simeq e_3$
- $\bullet$   $\simeq$  should relate as many programs as possible.

## Program context

- A program context  $C[\cdot]$  is a program which is not completely defined.
- Roughly speaking  $C[\cdot]$  denotes a program with a "hole"  $[\cdot]$  that needs to be instantiated with some program phrase P
- We write C[P] to denote such a program obtained by instantiating the missing code in  $C[\cdot]$  with P.

As an example, in the language *While* program contexts are defined via the following grammar:

```
C[\cdot] \in \mathit{Cxt} \quad ::= \quad [\cdot] \quad | \quad \mathit{C}[\cdot] \; op \; e_2 \quad | \quad e_1 \; op \; \mathit{C}[\cdot] \quad | \quad \mathit{I} := \mathit{C}[\cdot]
\mid \quad \text{if } \mathit{C}[\cdot] \; \text{then } e_2 \; \text{else } e_3 \quad | \quad \text{if } e_1 \; \text{then } \mathit{C}[\cdot] \; \text{else } e_3
\mid \quad \text{if } e_1 \; \text{then } e_2 \; \text{else } \mathit{C}[\cdot] \quad | \quad \mathit{C}[\cdot]; e_2 \quad | \quad e_1; \mathit{C}[\cdot]
\mid \quad \text{while } e_1 \; \text{do } \mathit{C}[\cdot] \quad | \quad \text{while } \mathit{C}[\cdot] \; \text{do } e_2
```

For example, if  $C[\cdot]$  is the context while !l = 0 do  $[\cdot]$  then C[l := !l + 1] is while !l = 0 do l := !l + 1.

## On congruences

- It is very important that for program equivalence be a congruence!
- Suppose you have a big program *Sys* governing some big system and containing some sub-program *P*.
- We could write  $Sys \stackrel{\text{def}}{=} C[P]$ , for some appropriate context  $C[\cdot]$ .
- And suppose your boss asks you to write down an optimised version
   P<sub>fast</sub> of P, with better performances.
- How can you be sure, apart for performances, whether the behaviour of the whole system remains unchanged when replacing the sub-program P with P<sub>fast</sub>?
- You would have to check whether  $C[P] \simeq C[P_{\text{fast}}]!$
- But the two systems C[P] and  $C[P_{fast}]$  may be VERY LARGE!!! This means that their comparison may take months perhaps years!!!
- **Solution**: if the equality  $\simeq$  is a congruence then it suffices to prove that the two sub-programs are equivalent:  $P \simeq P_{\rm fast}$ . The equality of the whole systems, i.e.  $C[P] \simeq C[P_{\rm fast}]$  follows for free!

## A trace-based semantic equivalence for the language While

Let us consider our typed language While without functions, etc.

## Trace equivalence $\simeq_{\Gamma}^{T}$

Define  $e_1 \simeq_{\Gamma}^{T} e_2$  to hold iff for all stores s such that  $dom(\Gamma) \subseteq dom(s)$ , we have  $\Gamma \vdash e_1 : T$ ,  $\Gamma \vdash e_2 : T$ , and

- $\langle e_1, s \rangle \rightarrow^* \langle v, s' \rangle$  implies  $\langle e_2, s \rangle \rightarrow^* \langle v, s' \rangle$
- $\langle e_2, s \rangle \rightarrow^* \langle v, s' \rangle$  implies  $\langle e_1, s \rangle \rightarrow^* \langle v, s' \rangle$ .

## Congruence property

The equivalence relation  $\simeq_{\Gamma}^{T}$  enjoys the congruence property because whenever  $e_{1} \simeq_{\Gamma}^{T} e_{2}$  we have, for all contexts C and types T', if  $\Gamma \vdash C[e_{1}] : T'$  and  $\Gamma \vdash C[e_{2}] : T'$  then  $C[e_{1}] \simeq_{\Gamma}^{T'} C[e_{2}]$ .

# On the trace equivalence $\simeq_{\Gamma}^{T}$

## Let $e_1 \simeq_{\Gamma}^{T} e_2$ , then:

- If one of the two configurations diverges form some store s then also the other configuration must diverge with the same store.
- Given a store s, if the two configurations converges then it must be on the same value and the same store.

Suppose that given a store s the two configurations  $\langle e_1, s \rangle$  and  $\langle e_2, s \rangle$  converges, respectively, to  $\langle v, s_1 \rangle$  and  $\langle v, s_2 \rangle$ , with  $s_1(1) \neq s_2(1)$ , for some l, and v of type T. Then a distinguishing context would be the following:

- If  $T = \text{unit then } C[\cdot] \stackrel{\text{def}}{=} [\cdot];!]$
- If  $T = \text{bool then } C[\cdot] \stackrel{\text{def}}{=} \text{ if } [\cdot] \text{ then !l else !l}$
- If  $T = \text{int then } C[\cdot] \stackrel{\text{def}}{=} l_1 := [\cdot]; !l$

Where  $\langle C[e_1], s \rangle \rightarrow^* \langle v_1, s_1' \rangle$  and  $\langle C[e_2], s \rangle \rightarrow^* \langle v_2, s_2' \rangle$ , with  $v_1 \neq v_2$ .

<ロ > < @ > < き > < き > き 9 < @ へ

## Back to Examples

Essendo in un linguaggio concorrente carte cose che finzionaumo nel linguaggio saquenziate non funzionamo pio

- $2+2 \simeq_{\Gamma}^{\text{int}} 4$ , for any  $\Gamma$
- $(l := 0; 4) \not\simeq_{\Gamma}^{int} (l := 1; 3 + !l)$ , for any  $\Gamma$
- $\bullet \ (l:!l+1); (l:!l-1) \ \simeq^{\mathsf{unit}}_{\Gamma} \ (l:=!l), \ \mathsf{for \ any} \ \Gamma \supseteq \{l:\mathsf{intref}\}$
- $\bullet \ (l := !l+1; k := !j+1) \ \, \simeq^{\mathsf{unit}}_{\Gamma} \ \, (k := !j+1; l := !l+1), \\ \text{for any } \Gamma \supseteq \{k : \mathsf{intref}, \ j : \mathsf{intref}, \ l : \mathsf{intref}\}$

## General laws (1)

Associativity of;

$$e_1; (e_2; e_3) \simeq_{\Gamma}^{T} (e_1; e_2); e_3$$

for any  $\Gamma$ , T,  $e_1$ ,  $e_2$  and  $e_3$  such that  $\Gamma \vdash e_1$ : unit,  $\Gamma \vdash e_2$ : unit and  $\Gamma \vdash e_3 : T$ .

skip removal

$$-e_2 \simeq_{\Gamma_2}^T skip; e_2$$

- 
$$e_1$$
; skip  $\simeq_{\Gamma_1}^{\text{unit}} e_1$ 

for any  $\Gamma_1$ ,  $\Gamma_2$ , T,  $e_1$ ,  $e_2$  such that  $\Gamma_2 \vdash e_2 : T$  and  $\Gamma_1 \vdash e_1 :$  unit.

if true

if true then 
$$e_1$$
 else  $e_2 \simeq_{\Gamma}^{T} e_1$ 

for any  $\Gamma$ , T,  $e_1$  and  $e_2$  such that  $\Gamma \vdash e_1 : T$  and  $\Gamma \vdash e_2 : T$ .

## General laws (2)

if false

if false then 
$$e_1$$
 else  $e_2 \simeq_{\Gamma}^{T} e_2$ 

for any  $\Gamma$ , T,  $e_1$  and  $e_2$  such that  $\Gamma \vdash e_1 : T$  and  $\Gamma \vdash e_2 : T$ .

Distributivity of 'if' wrt;

(if 
$$e_1$$
 then  $e_2$  else  $e_3$ );  $e \simeq_{\Gamma}^{T}$  (if  $e_1$  then  $e_2$ ;  $e$  else  $e_3$ ;  $e$ )

for any  $\Gamma$ , T,  $e_1$ ,  $e_2$  and  $e_3$  such that  $\Gamma \vdash e_1$ : bool,  $\Gamma \vdash e_2$ : unit,  $\Gamma \vdash e_3$ : unit and  $\Gamma \vdash e: T$ .

Distributivity of ; wrt 'if'

$$e$$
; (if  $e_1$  then  $e_2$  else  $e_3$ )  $\simeq_{\Gamma}^{\mathcal{T}}$  (if  $e$ ;  $e_1$  then  $e_2$  else  $e_3$ )

for any  $\Gamma$ , T,  $e_1$ ,  $e_2$  and  $e_3$  such that  $\Gamma \vdash e$ : unit,  $\Gamma \vdash e_1$ : bool,  $\Gamma \vdash e_2 : T$ ,  $\Gamma \vdash e_3 : T$ .

Massimo Merro Semantics equivalences 12 / 14

## Wrong laws

(e; if 
$$e_1$$
 then  $e_2$  else  $e_3$ )  $\not\simeq_{\Gamma}^{T}$  (if  $e_1$  then  $e$ ;  $e_2$  else  $e$ ;  $e_3$ )

## Take:

- *e* to be l := 1
- $e_1$  to be !l = 0
- e<sub>2</sub> to be skip
- e<sub>3</sub> to be while true do skip (loop)

Then, in any store s, where location l is associated to 0, the expression on the left diverges whereas that one on the right converges.

## Semantic equivalence: a simulation approach

### Simulation

We say that  $e_1$  is simulated by  $e_2$ , written  $e_1 \sqsubseteq_{\Gamma}^T e_2$ , iff

- $\Gamma \vdash e_1 : T$  and  $\Gamma \vdash e_2 : T$ , for some T
- for any s with  $dom(\Gamma) \subseteq dom(s)$ , if  $\langle e_1, s \rangle \rightarrow \langle e'_1, s'_1 \rangle$  then there is  $e'_2$  such that  $\langle e_2, s \rangle \rightarrow^* \langle e'_2, s'_2 \rangle$ , with  $e'_1 \sqsubseteq_{\Gamma}^T e'_2$  and  $s'_1 = s'_2$ .

#### Bisimulation

We say that  $e_1$  is bisimilar to  $e_2$ , written  $e_1 \approx_{\Gamma}^T e_2$ , iff

- $\Gamma \vdash e_1 : T$  and  $\Gamma \vdash e_2 : T$ , for some T
- for any s with  $dom(\Gamma) \subseteq dom(s)$ , if  $\langle e_1, s \rangle \rightarrow \langle e_1', s_1' \rangle$  then there is  $e_2'$  such that  $\langle e_2, s \rangle \rightarrow^* \langle e_2', s_2' \rangle$ , with  $e_1' \approx_{\Gamma}^T e_2'$  and  $s_1' = s_2'$
- for any s with  $dom(\Gamma) \subseteq dom(s)$ , if  $\langle e_2, s \rangle \rightarrow \langle e'_2, s'_2 \rangle$  then there is  $e'_1$  such that  $\langle e_1, s \rangle \rightarrow^* \langle e'_1, s'_1 \rangle$ , with  $e'_1 \approx_{\Gamma}^T e'_2$  and  $s'_1 = s'_2$ .