Predicting Young or Aged Cells from the X-chromosome Gene Expression Profile

Doudou Yu
Data Science Initiative
Brown University
2021.12.10

Outline

- Recap: intro to the problem, EDA, and preprocessing
- Cross-validation (CV): pipeline, models and parameter tuning
- Results: select, evaluate, and interpret the best model
- Outlook: to improve the model

Recap: aging is one of the biggest disease risk factors, but it is hard to evaluate anti-aging interventions

Luu, Jennings, and Krzysztof Palczewski. PNAS (2018)

Maximum Lifespan

4 years

40 years

122.5 years

Recap: classification based on single cell RNAseq data

Hajdarovic, Kaitlyn H., et al. "Single cell analysis of the aging hypothalamus." under revision

25,002 nuclei/cells Gene names

features	Xkr4	Gm1992
AAACCTGAGACTAGAT- 1_1	1.540812	0.000000
AAACCTGAGGCCCGTT- 1_1	0.000000	0.000000

Cell

Additional features related to total gene expression

sum	x_sum	x_prop
3477.047641	128.435941	0.036938
2213.750159	74.358735	0.033589

tree.ident Target

Avp/Oxt Young (0)

Nrg1/Nnat Aged (1)

281 Numerical features

Not bounded, zero-inflated negative binomial—> **StandardScaler**

1 Categorical feature with 34 categories

not ordered -> OneHotEncoder

Recap: increased expression of X-genes *Xist* and *Tsix* during aging

Cross validation: KFold splitting (GridSearchCV)

Splitting:

- To predict cells within the previously investigated animals: IID, not time-series
- train-validation-test: 64-16-20
- train_test_split (20% for testing) + KFold (5 folds) to ensure no overlap between two folds

Preprocessing:

- 281 numerical features (unbounded, continuous): StandardScaler
- 1 categorical feature (unordered): OneHotEncoder

GridSearchCV for each model:

- pipeline with KFold CV to avoid data leakage
- accuracy score (not imbalanced)

Loop through 10 random states:

- measure uncertainties due to splitting and non-determistic models
- return best hyperparameters, validation and test scores for each state

Cross validation: models and parameters tuned

Tabel 1. Parameters used for tuning models

Model	Parameters	
L1 (Lasso)	C: 0.01, 0.05, 0.1 , 0.5, 1, 5, 10	
L2 (Ridge)	C : 0.01, 0.05, 0.1 , 0.5, 1, 5, 10	
ElasticNet	C: 0.05, 0.1 , 0.5, 1, 3; 11_ratio : 0.2, 0.35, 0.5 , 0.65, 0.8	
Random Forest	max_features: 25, 50, 75, 100, 200, None; max_depth: 10, 20, 30, 50, 100, None; min_samples_split: 2, 5, 10, 20	
SVC	gamma: 1e-4, 1e-3, 1e-2, 1e-1; C: np.logspace(-1, 1, 5) (3.162)	
XGBoost	max_depth: 1, 3, 5, 10, 20, 30, 100; 1, 2, 3, 4, 5, 8, 10, 15, 20 (finer)	
KNN	n_neighbors: 30, 100, 200, 300; weights: uniform, distance	

Results: model performance (test scores) — XGBoost Classifier outperforms others

f scores with beta=0.5 (put more emphasis on precision since it is expensive to perform the anti-aging interventions)

Results: retrained the XGBoost with the selected parameters over 50 random states

max_depth = 5 with early_stop

baseline accuracy: 0.596 ± 0.007

model accuracy: 0.778 ± 0.006

consistent over time

Results: permutation feature importance

Results: important features in XGBoost metrics

Results: SHAP feature importance for global and local interpretability

Results: SHAP local features

Outlook

- GroupKFold splitting for broader applications, together with more animals or ages
- XGBoost linear models to improve interpretability
- For better prediction: booster parameters like gamma could be further tuned, together with gpu implementation.
- Adding more features (not just X chromosome genes)
- With more animals in different time points, probably change the classification into a regression (specific age)