(1) Consider the following conjunctive query Q:

```
result(A, B, C, D, E, F) \leftarrow r(A, B, C), s(A, F, E), t(E, D, C), u(A, C, E)
```

- 1. Give the hypergraph representation of Q.
 - Solution. The node set of this hypergraph is $\{A, B, C, D, E, F\}$. The edge set is $\{\{A, B, C\}, \{A, F, E\}, \{C, D, E\}, \{A, C, E\}\}$.
- 2. Is Q acyclic? If so, can it be made cyclic by removing one hyperedge? Otherwise, can it be made acyclic by removing one hyperedge?
 - Solution. Yes, Q is acyclic. A tree decomposition can be formed by taking {A, C, E} as root and all other edges as children of the root. If we were to remove the edge {A, C, E}, then a tree decomposition of Q would not be possible and hence Q would be cyclic.

(2) Given a schedule S over transactions $\{T_1,\ldots,T_n\}$, the "strong graph" associated with S is the directed graph $\operatorname{sg}(S)$ having exactly one node for each transaction of S and an edge from T_i to T_j (for $i \neq j$) if and only if in S, for some object X there is an action $\alpha_i(X)$ of T_i on X which appears before an action $\alpha_j(X)$ of T_j on X.

Prove or disprove the following claims.

- 1. If sg(S) is acyclic, then S is conflict serializable.
 - ► Solution. This claim is true. First, we note that pg(S), the precedence graph of S, is a subgraph of sg(S). Hence, if sg(S) is acyclic, then so is pg(S). By the Serializability Theorem we then have that S is conflict serializable.
- 2. If S is conflict serializable, then sg(S) is acyclic.
 - Solution. This claim is false. For example, the schedule $\langle R_1(A), R_2(A), R_1(A), C_1, C_2 \rangle$ is clearly conflict serializable, yet has a cycle in its strong graph.

(3) Consider the following conjunctive queries.

$$Q_1: result(A) \leftarrow r(A, B), r(A, C), s(B, D, E), s(B, F, F)$$

$$Q_2$$
: $result(X) \leftarrow r(X, Y), r(X, W), s(Y, W, W), t(X)$

Is it the case that $Q_2 \subseteq Q_1$? Prove your answer.

Solution. Yes. The following variable mapping is a

homomorphism from Q_1 to Q_2 :

$$A \rightarrow X, B \rightarrow Y, C \rightarrow Y, D \rightarrow W, E \rightarrow W, F \rightarrow W.$$

By the Homomorphism Theorem we then have that $Q_2\subseteq Q_1$.

(4) Consider the "semi-difference" relational algebra operator, defined as

$$R \triangleright S = \{r \in R \mid \neg \exists s \in S(r \bowtie s \in R \bowtie S)\}\$$

= $R - (R \bowtie S).$

Formally prove or disprove the following proposals for relational algebra equivalences.

1. $\sigma_{\theta}(R \triangleright S) = \sigma_{\theta}(R) \triangleright S$, where θ is a standard single-table selection condition which mentions only attributes in R (i.e., $atts(\theta) \subseteq atts(R) - atts(S)$).

Solution. This proposal is true. Let $t \in \sigma_{\theta}(R \rhd S)$. Then, (1) $\theta(t)$ is true; (2) $t \in R$; and, (3) there is no $s \in S$ such that $t \bowtie s \in R \bowtie S$. By (1) and (2), we have that (4) $t \in \sigma_{\theta}(R)$. By (3) and (4), we have that $t \in \sigma_{\theta}(R) \rhd S$. Hence $\sigma_{\theta}(R \rhd S) \subseteq \sigma_{\theta}(R) \rhd S$.

Going in the other directtion, suppose now that $t \in \sigma_{\theta}(R) \rhd S$. Then, (1) $t \in \sigma_{\theta}(R)$ and (2) there is no $s \in S$ such that $t \bowtie s \in \sigma_{\theta}(R) \bowtie S$. By (1) we have that (3) $t \in R$ and (4) $\theta(t)$ is true. By (2) and (3) we have that (5) $t \in R \rhd S$. By (4) and (5) we have that $t \in \sigma_{\theta}(R \rhd S)$. Hence $\sigma_{\theta}(R \rhd S) \supseteq \sigma_{\theta}(R) \rhd S$.

Since $\sigma_{\theta}(R \triangleright S) \subseteq \sigma_{\theta}(R) \triangleright S$ and $\sigma_{\theta}(R \triangleright S) \supseteq \sigma_{\theta}(R) \triangleright S$, we conclude that the equality holds.

5

2. $R \ltimes S = R \rhd (R \rhd S)$. Solution. This proposal is true.

$$R \triangleright (R \triangleright S) = R \triangleright (R - (R \ltimes S))$$

$$= R - (R \ltimes (R - (R \ltimes S)))$$

$$= R - (R - (R \ltimes S))$$

$$= R \ltimes S.$$

The first two equalities hold by definition of \triangleright . The third holds since $R \ltimes R' = R'$ for any $R' \subseteq R$, by definition of \bowtie . The final holds since R - (R - R') = R' for any $R' \subseteq R$, by basic set theory.