BioWaveNet

A Novel Multi-Scale Convolutional Neural Network for Generalized Bio-signal Applications

Project Authors
Punnawish Thuwajit and Thee Mateepitaktham
Suankularb Wittayalai School, Bangkok, THA

Background & Inspiration

How can we develop a bio-signal analysis idea/prototype to generalize on different signals?

Research Problem

Proposed Solution

Methods & Results

Discussion

Our tasks

Choose important signals and tasks

- 1. Electroencephalography (EEG-Brain) + Seizure Detection
 - EEG = main measure for epilepsy
 - Over 100 million epilepsy patients worldwide
 - Help doctors screen hours of EEG recording
- 2. Photoplethysmography (PPG-Blood) + Respiratory Rate Estimation
 - PPG = easily collected from **smartwatches**
 - Respiratory rate can screen abnormal breathing on COVID-19

Research
Problem

Proposed Solution

Methods & Results

Discussion

Datasets

EEG PPG

Bonn dataset (n=5)

• 3 classes (can predict pre-seizure)

CHB-MIT (n=23)

Medical cohort (most complete)

TUSZ (n=28)

Many devices used (most varied)

Capnobase (n=42) and BIDMC (n=52) datasets

ICU dataset (most complete)

WESAD Dataset (n=15)

ICU dataset (realistic usage)

Research Problem

Materials & Methods

Methods & Results

Discussion

Impacts

Our study covers a larger amount of datasets than others to show demonstrate our robustness

Experiment Protocols

(A) Subject Dependent

: Trained and tested on the same patients

(B) Subject Independent

: Tested on unknown patients (LOOCV)

(C) Transfer Learning

: Weights are pre-trained among datasets

Figure 1: Experimental Setups (all experiments used 5-fold cross validation)

Research Problem

> Materials & Methods

Methods & Results

Discussion

BioWaveNet - EEG and PPG

(A) Multi-scale Convolution (NOVELTY)

: various convolutional filters for learnable scaling

- (B) Spatial-temporal Feature Extraction
- : CNN to analyze signal patterns from (A)
- (C) Multilayer Perceptron
- : Output Network

(i) Hyperband for hyperparameter tuning

(ii) AdaBelief optimizer with 0.001 learning rate (0.25 decay - 5 patience)

(iii) Earlystopping after 10 consecutive epochs

(iv) Cross Entropy (classification) and MSE (regression) loss

Research Problem

Materials & Methods

Methods & Results

Discussion

EEG Seizure Results

■ Accuracy ■ F1-score

EEGWaveNet's Subject Independent Performance on TUSZ Dataset Comparison

Findings (Dependent): EEGWaveNet achieves the best performance while trains the fastest, due to faster fitting to minimal loss

Findings (Independent): EEGWaveNet outperforms the SOTA (EEGNet) while achieving reasonable starting performance before transfer learning

Research Problem

Proposed Solution

Methods & Results

Discussion

PPG Respiratory Results

Respiratory Rate Estimation via PPG on Capnobase dataset

Respiratory Rate Estimation via PPG on BIDMC Dataset

Respiratory Rate Estimation via PPG on WESAD Dataset

■ RespWatch ■ PPGWaveNet

Findings (1): PPGWaveNet achieves the best performance on 16 seconds – the smallest window size (model can infer up to 60 seconds after!)

Findings (2): When compared the model size, PPGWaveNet is the smallest and works on all dataset

Research Problem

Proposed Solution

Methods & Results

Discussion

Transfer Learning Results

Respiratory Rate Estimation via PPG
Performance (MAE) vs Pre-trained Datasets

Findings (EEG): Transfer learning with 1-hour finetuning data can adjust our performance boost within 10 seconds of fine-tuning.

Findings (PPG): Transfer learning from an ICU dataset can reduce the error when trained again on the WESAD (wearable device) dataset

Research Problem

Proposed Solution

Methods & Results

Discussion

Discussions

EEGWaveNet's Generated Scales

Findings (EEG): Seizure (left) and normal (right) EEG are further discriminated when passed through the multi-scale module

Findings (PPG): SHAP values are shown in P-peaks that corresponds medically to respiratory rate.

Findings (Overall): Our multi-scale module allow for a smaller yet more effective model, while transfer learning boost performances.

Research Problem

Proposed Solution

Methods & Results

Discussion

Impacts

PPGWaveNet's SHAP explanation

Impacts and Conclusions

Generalized Bio-signal Model

We successfully create a generalized system for biosignal applications, and showcased on 2 tasks.

Transfer Learning Experimental Protocol

We proposed transfer learning protocols that deal with the lack of data, which can be applied in hospitals

EEG Seizure Detection

Our model can be developed into a screening application for seizure diagnosis, potentially saving 100 millions epilepsy patients

PPG Respiratory Rate Estimation

Our model can screen abnormal breathing remotely, potentially allowing telemedicine on COVID-19 patients through a smartwatch.

Research Problem

Proposed Solution

Methods & Results

Discussion

References

UNDER CONSTRUCTION, WILL BE REVISED AND DONE IN THE NEXT DRAFT!!!!