

INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

IMT3410: Métodos para ecuaciones diferenciales

Clase 19

Manuel A. Sánchez 2024.10.21

Mallas - Triangulaciones

Malla

Definición

Sea Ω un dominio Lipschitz en \mathbb{R}^d . Decimos que \mathcal{T}_h es una malla de Ω si \mathcal{T}_h es una colección finita de subconjuntos cerrados de Ω llamados elementos o celdas de mallas tal que:

- el interior de los elementos de malla son todos dominios Lipschitz no vaciós en \mathbb{R}^d que son mutuamente disjuntos
- **2** todos los elementos de malla cubren $\bar{\Omega}$ exactamente.

$$\bar{\Omega} = \bigcup_{K \in \mathcal{T}_h} K, \quad y \quad int(K_m) \cap int(K_n) = \emptyset, \ m \neq n.$$

El subíndice h se refiere al nivel de refinamiento de la malla;

$$h_K = \text{diam}(K) = \max_{x_1, x_2 \in K} \|x_1 - x_2\|, \quad \forall K \in \mathcal{T}_h, \quad \mathbf{y} \quad h = \max_{K \in \mathcal{T}_h} h_K.$$

Una sucesión o familia de mallas refinadas sucesivamente se denotan por $\{\mathcal{T}_h\}_{h>0}$.

Mallas

Definición (malla afín)

Dado un elemento de referencia \hat{K} tenemos transformaciones $T_m: \hat{K} \to K_m$ para cada $K_m \in \mathcal{T}_b$.

$$T_m(\hat{K}) = K_m$$

Si las transformaciones $\{T_m\}_{1 \le m \le N_{el}}$ son afín, entonces la malla se dice **afín**. Si \hat{K} es un simplex y la malla es afín, entonces se dice **triangulación**.

Definición

Sea Ω un dominio en \mathbb{R}^d y sea $\mathcal{T}_h = \{K\}_{1 \leq m \leq N_{el}}$ una malla de Ω . La malla \mathcal{T}_h se dice conforme geométricamente si se satisface: Para todo K_m y K_n con una intersección de dimensión (d-1), $F = K_m \cap K_n$, existe una cara \hat{F} de \hat{K} y una re-enumeración de los nodos K_m y K_n tal que $F = \mathcal{T}_m(\hat{K}) = \mathcal{T}_n(\hat{K})$ y $\mathcal{T}_m|_{\hat{F}} = \mathcal{T}_n|_{\hat{F}}$.

Mallas

Observación: Si Ω_h es conexo la definición implica que $K_m \cap K_n$ es:

- 1 vacía o un vértice en común en d = 1.
- vacía o un v'ertice en común o un lado en común en d=2.
- 3 vacía, o un vértice, o lado(1-cara), o cara (2-cara) en común en d=3.

Relaciones de malla

Lema (Relaciones de Euler)

Sea \mathcal{T}_h una malla conforme geométricamente y $\bar{\Omega}_h = \bigcup_{K \in \mathcal{T}_h} K$. Sea d = 2. Denote por I el número de agujeros en Ω_h , y

N_{el} :número de elementos

N_{ed} :número de lados

N_v :número de vértices

 N_{ed}^{∂} :número de lados en la frontera

 N_{ν}^{∂} :número de vértices en la frontera.

Entonces:

$$\begin{cases} N_{el} - N_{ed} + N_{v} = 1 - I \\ N_{v}^{\partial} - N_{ed}^{\partial} = 0. \end{cases}$$

Además, si los elementos de malla son polígonos de ν -vértices, entonces

funciones sobre la malla

Definición

Data una malla conforme \mathcal{T}_h , definimos

 \mathcal{F}_h^i :el conjunto de las caras interiores

 \mathcal{F}_h^{∂} :el conjunto de las caras exteriores

$$\mathcal{F}_h: \mathcal{F}_h^i \cup \mathcal{F}_h^{\partial}.$$

Además, definimos el salto de una función v escalar sobre una (d-1)-cara por

$$\llbracket v_F = v_1 n_1 + v_2 n_2 \rrbracket$$

para una función v vectorial definimos

salto normal:
$$\|\mathbf{v} \cdot \mathbf{n}\| = v_1 \cdot \mathbf{n}_1 + \mathbf{v}_2 \cdot \mathbf{n}_2$$

salto tangencial:
$$[\![\mathbf{v} \times \mathbf{n}]\!]_F = v_1 \times \mathbf{n}_1 + \mathbf{v}_2 \times \mathbf{n}_2$$

interpolación

Espacios de aproximación y operadores de

Elemento de referencia

Sea $\{\hat{K},\hat{P},\hat{\Sigma}\}$ un elemento finito fijo. Denote por $\hat{\sigma}_1,...,\hat{\sigma}_{n_{sh}}$ los grados de libertad locales y por $\{\hat{\theta}_1,...,\hat{\theta}_{n_{sh}}\}$ las funciones de forma locales. Sea $V(\hat{K})$ el dominio del operador de interpolación local $\mathcal{I}_{\hat{K}}$ asociado a $\{\hat{K},\hat{P},\hat{\Sigma}\}$, es decir

$$egin{aligned} \mathcal{I}_{\hat{K}}:&V(\hat{K})
ightarrow\hat{P}\ &\hat{v}\mapsto\mathcal{I}_{\hat{K}}\hat{v}=\sum_{i=1}^{n_{sh}}\hat{\sigma}_i(\hat{v})\hat{ heta}_i\stackrel{ ext{in}}{\hat{P}} \end{aligned}$$

Además define la transformación lineal y biyectiva, para todo $K \in \mathcal{T}_h$

$$\psi_K:\ V(K)\mapsto V(\hat{K})$$

Elemento finito local

Proposición

Para todo $K \in \mathcal{T}_h$, la tripleta $\{K, P_K, \Sigma_K\}$ definida por

$$\begin{cases}
K = T_{K}(\hat{K}) \\
P_{K} := \psi_{K}^{-1}(\hat{P}) = \{\psi_{K}^{-1}(\hat{p}); \quad \hat{p} \in \hat{P}\} \\
\Sigma_{K} := \hat{\Sigma} \circ \psi_{K} = \{\{\sigma_{K,i}\}, 1 \leq i \leq n_{sh}; \quad \sigma_{K,i}(p) = \hat{\sigma}_{i}(\psi_{K}(p)), \quad \forall p \in P_{k}\};
\end{cases}$$

es un elemento finito. Las funciones de forma locales son $\theta_{K,i} = \psi_K^{-1}(\hat{\theta}_i)$, $1 \leq i \leq n_{sh}$ y

$$\mathcal{I}_{K}: V(K) \mapsto P_{K}$$

$$v \mapsto \mathcal{I}_{K}(v) = \sum_{i=1}^{n_{sh}} \sigma_{K,i}(v) \theta_{K,i} \in P_{K}$$

Diagrama commutativo

Tenemos que $\mathcal{I}_{\mathcal{K}} = \psi_{\mathcal{K}}^{-1} \circ \mathcal{I}_{\hat{\mathcal{K}}} \circ \psi_{\mathcal{K}}$

Error de interpolación local

Definición (shape-regularity)

Una familia de mallas $\{\mathcal{T}_h\}_{h>0}$ se dice **shape-regular** (de forma regular) si existe una constante σ_0 tal que

$$\forall h, \ \forall K \in \mathcal{T}_h, \quad \sigma_K = \frac{h_K}{\rho_K} \leq \sigma_0.$$

Observación: Sea K un triángulo y denote por θ_K el mas pequeno de sus ángulos. Entonces

$$\frac{h_K}{\sigma_K} \le \frac{2}{\sin(\theta_K)}$$

Operador de interpolación global

Definimos

$$\mathcal{D}(\mathcal{I}_h) := \{ v \in [L^1(\Omega)]^m : \forall K \in \mathcal{T}_h, \ v|_K \in V(K) \}$$

$$\forall K \in \mathcal{T}_h : (\mathcal{I}_h(v))|_K = \mathcal{I}_K(v|_K) = \sum_{i=1}^{n_{sh}} \sigma_{K,i}(v|_K)\theta_{K,i}$$

$$\mathcal{I}_h v = \sum_{K \in \mathcal{T}_h} \sum_{i=1}^{n_{sh}} \sigma_{K,i}(v|_K)\theta_{K,i} \in W_h$$

$$W_h = \{ v_h \in [L^1(\Omega_h)]^m : \forall K \in \mathcal{T}_h, \ v_h|_K \in P_K \}$$

Definición

Sea W_h y V un espacio de Banach. W_h se dive V—conforme si $W_h \subset V$.

Ejemplo: elemento de Lagrange

Sea $\{\hat{K}, \hat{P}, \hat{\Sigma}\}$ el elemento finito de Lagrange con nodos $\hat{\mathbf{a}}_i, i \in \mathcal{N}$ y $V(\hat{K}) := C^0(\hat{K})$. Sea $V(K) = C^0(K)$ y

$$\psi_{K}: V(K) \mapsto V(\hat{K})$$
$$v \mapsto \psi_{K}(v) = v \circ T_{K}$$

para todo $K \in \mathcal{T}_h$, $\{K, P_K, \Sigma_K\}$ es un elemento finitos de Lagrange.

Demostración: Tenemos que

$$\sigma_{K,i} := \hat{\sigma}_i(\psi_K(p)) := \psi_K(p)(\hat{\mathbf{a}}_i) = (p \circ T_K)(\hat{\mathbf{a}}_i), \quad \forall p \in P_K$$

Como $\mathbf{a}_{K,i} := T_K(\hat{\mathbf{a}}_i)$ para $i \in \mathcal{N}$, se infiere que $\mathbf{a}_{K,i}$ son los nodos de Lagrange de (K, P_K, Σ_K) . El interpolante de Lagrange

$$\mathcal{I}_{K}^{L}(v)(\mathbf{x}) := \sum_{i \in \mathcal{N}} v(a_{K,i})\theta_{K,i}(\mathbf{x}), \quad \forall \mathbf{x} \in K$$

Observe que si \hat{P} es un espacio polinomial, el espacio $P_K := \{\hat{p} \circ T_K^{-1}, \hat{p} \in \hat{P}\}$ no es necesariamente un espacio polynomial a menos que T_K es afín.

Interpolación global

Teorema

Sean p, k y l satisfacen las condiciones del teorema anterior. Sea Ω un poliedro y sea $\{\mathcal{T}_h\}_{h>0}$ una familia de mallas shape-regular y afines de Ω . Denote por V_h^k el espacio de aproximación basado en \mathcal{T}_h y $\{\hat{K},\hat{P},\hat{\Sigma}\}$. Sea I_h^k el operador de interpolación global correspondiente. Entonces, existe c tal que, para todo h y $v \in W^{l+1,p}(\Omega)$,

$$\|v - \mathcal{I}_h^k v\|_{L^p(\Omega)} + \sum_{m=1}^{l+1} h^m \left(\sum_{K \in \mathcal{T}_h} |v - \mathcal{I}_h^k|_{m,p,K}^p\right)^{1/p} \le ch^{l+1} |v|_{l+1,p,\Omega}$$

para $p < \infty$ y para $p = \infty$

$$\|v - \mathcal{I}_h^k v\|_{L^{\infty}(\Omega)} + \sum_{m=1}^{l+1} h^m \max_{K \in \mathcal{T}_h} |v - \mathcal{I}_h^k|_{m,\infty,K} \le ch^{l+1} |v|_{l+1,\infty,\Omega}$$

Espacio H^1 -conforme

Proposición

Sea $V_h = \{v_h \in W_h : \forall F \in \mathcal{F}_h^i, \llbracket v_h \rrbracket_F = 0\}$. Entonces $V_h \subset [H^1(\Omega_h)]^m$.

Ejemplo: Elementos finito de Raviart-Thomas

Sea $K \in \mathbb{R}^d$ un simplex y sea el espacio vectorial $\mathbb{RT}_0 = [\mathbb{P}_0]^d \oplus \mathbf{x} \mathbb{P}_0$. Observe que la dimensión de este espacio es d+1. Para $p \in \mathbb{RT}_0$, los grados de libertad locales se escogen como el valor de la componente normal del flujo de p que cruza las caras de K, es decir $\Sigma = \{\sigma_0, \ldots, \sigma_d\}$ definidas por

$$\sigma_i(p) = \int_{F_i} p \cdot n_i$$

Entonces $\{K, \mathbb{RT}_0, \Sigma\}$ es un elemento finito. Las funciones de forma locales son

$$\theta_i(x) = \frac{1}{d|k|} (x - a_i) \quad 0 \leqslant i \leqslant d, \quad (\sigma_j(\theta_i) = \delta_{ij})$$

Interpolante local de Raviart-Thomas

Dominio

$$V^{\mathsf{div}}(K) = \{ \mathbf{v} \in [L^p(K)]^d; \nabla \cdot \mathbf{v} \in L^s(K) \}, \quad \mathsf{para} \ p > 2, \ s \geq q, \ \frac{1}{q} = \frac{1}{p} + \frac{1}{d}$$

Observe que $V^{\text{div}}(K) = W^{1,t}(K)$, con t > 2d/(d+2), también es opción.

$$\mathcal{I}_{K}^{\mathsf{RT}}: V^{\mathsf{div}}(K) \mapsto \mathbb{RT}_{0}$$

$$v \mapsto \mathcal{I}_{K}^{\mathsf{RT}}(v) = \sum_{i=0}^{d} \left(\int_{F_{i}} \mathbf{v} \cdot \mathbf{n}_{i} \right) \theta_{i} \in \mathbb{RT}_{0}$$

Diagrama de commutatividad

Manuel A. Sánchez 20/28

Espacio H(div)-conforme

Proposición

Sea $D_h = \{v_h \in [L^1(\Omega_h)]^d : \forall K \in \mathcal{T}_h, \ v_h|_K \in \mathbb{R} \mathcal{T}_0, \ \forall F \in \mathcal{F}_h^i, \llbracket v_h \cdot \mathbf{n} \rrbracket_F = 0 \}$. Entonces $D_h \subset H(\operatorname{div}; \Omega_h)$.

Interpolación en H(div)

Sea
$$p > 2d/(d+2)$$
. Existe c tal que, para todo $[W^{1,p}(K)]^d$ con $\nabla \cdot \mathbf{v} \in W^{1,p}(K)$

$$\|\mathcal{I}_K^{\mathsf{RT}}\mathbf{v} - \mathbf{v}\|_{0,p,K} \leq c\sigma_K h_K |v|_{1,p,K}$$

$$\|\nabla\cdot(\mathcal{I}_K^{\mathsf{RT}}\mathbf{v}-\mathbf{v})\|_{0,p,K}\leq ch_K|\nabla\cdot v|_{1,p,K}$$

Espacio H(curl)-conforme

Proposición

Sea $R_h = \{v_h \in [L^1(\Omega_h)]^3 : \forall K \in \mathcal{T}_h, \ v_h|_K \in N_0, \ \forall F \in \mathcal{F}_h^i, [v_h \times \mathbf{n}]_F = 0\}.$ Entonces $R_h \subset H(\text{curl}; \Omega_h).$

Error de interpolación local

Teorema

Sea $(\hat{K}, \hat{P}, \hat{\Sigma})$ un elemento finito asociado a una espacio vectorial normado $V(\hat{K})$. Sea $1 \le p \le \infty$ y asuma qie existe un enetero k tal qie

$$\mathbb{P}_k \subseteq \hat{P} \subset W^{k+1,p}(\hat{K}) \subseteq V(\hat{K})$$

Sea $T_K: \hat{K} \to K$ una transformación afín biyectiva y sea \mathcal{I}_K^k el operador de interpolación local sobre K. Sea I tal que $0 \le I \le k$ y $W^{I+1,p}(\hat{K}) \subseteq V(\hat{K})$ con incrustación continua. Entonces, para $\sigma_K = h_K/\rho_K$, donde ρ_K es el diametro de la bola mas grande inscrita en K, existe c>0 tal que para todo $m\in\{0,...,I+1\}$

$$|v - \mathcal{I}_K^k|_{m,p,K} \leq c h_K^{l+1-m} \sigma_K^m |v|_{l+1,p,K}, \quad \forall K, \ \forall v \in W^{l+1,p}(\hat{K})$$

Análisis del error-Elemento de Lagrange

Elemento de Lagrange

$$L_{C,h}^{k} := \{ v_h \in C^0(\bar{\Omega}); \ \forall K \in \mathcal{T}_h, \ v_h \circ \mathcal{T}_K \in \mathbb{T}_k \}$$
$$V_h = \{ h_h \in L_{C,h}^{k}: \ v_h = 0 \quad \text{sobre} \quad \partial \Omega \}$$

Problema: Hallar $u_h \in V_h$ tal que $a(u_h, v) = l(v)$, para todo $v \in V_h$.

Manuel A. Sánchez 26/

Análisis del error

Teorema (estimación H^1)

Sea Ω un poliedro en \mathbb{R}^d y sea $\{\mathcal{T}_h\}_{h>0}$ una famila de mallas conforme geométricamente de Ω y shape-regular. Entonces

$$\lim_{h\to 0}\|u-u_h\|_{H^1(\Omega)}=0$$

Además, si $u \in H^s(\Omega)$ con $\frac{d}{2} < s \le k+1$, existe C > 0 tal que

$$||u-u_h||_{H^1(\Omega)}\leq Ch^{s-1}|u|_{H^s(\Omega)}.$$

Si el problema tiene "smoothing properties", entonces existe C > 0 tal que

$$|u-u_h||_{L^2(\Omega)}\leq Ch|u-u_h|_{H^1(\Omega)}.$$

INSTITUTO DE INGENIERÍA Matemática y computacional

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE