编程题说明文档

数据

利用 pandas 读取训练数据,由于训练集缺失值的数据只占 7%,为了避免引入错误数据,选择直接丢弃含有缺失值(即值为?)的数据。

在编码之前,对数据分布进行总体分析,结果保存在 classification/result 文件夹内。

编码时,为了保证训练集和数据集编码方式统一,封装了 Encoder 类进行数据集编码。对于离散属性,考虑到种类比较多,利用 LabelEncoder 方法进行编码。然后对数据进行 Minmax 归一化处理,其中 fnlwgt、capital-gain、capital-loss 属性的分布极为不均,因此在归一化之前进行了对数缩放,即: $x \leftarrow \log_{10}(x+1)$ 。

模型

选择了sklearn 内置的 LogisticRegression、KNeighborsClassifier 和 LinearSVC 算法。

- LogisticRegression 利用 sigmoid 函数将线性回归的的预测结果映射到 $\{0,1\}$,利用交叉熵作为损失函数,利用 L-BFGS 算法进行求解。
- KNeighborsClassifier 统计距离预测数据最近的几个已知点,利用已知点的分类来给预测点的类别进行投票。
- LinearSVC 是线性分类支持向量机的实现,使用 Squared Hinge 作为损失函数。

此外,我手动实现了 KNN 算法模型(MyKNNClassifier.py),利用 KDTree 数据结构存储和查找训练样本。

训练

利用 10 折交叉验证进行超参数选择,评估方法为 sklearn 的 cross_val_score 方法:

- LogisticRegression 的超参数为 L2 正则项的系数 C 。经过交叉验证(见图 classification/result/Logistic.png) 选择最佳参数 2.04 。
- KNeighborsClassifier 的超参数为最近点的数量 n_neighbors 。经过交叉验证(见图 classification/result/KNN.png)选择最佳参数 16 。
- LinearSVC 的超参数为惩罚项 C 。经过交叉验证(见图 classification/result/LinearSVC.png)选择最佳参数16。

评估

Model	Accuracy	Recall	Precision	F1- score	Cross Entropy	Train Time	Test Time
LogisticRegression	0.8143	0.4508	0.6856	0.5439	6.4147	0.24s	0.00s
KNeighborsClassifier	0.8309	0.5762	0.6855	0.6261	5.8391	0.27s	0.97s
LinearSVC	0.8147	0.4295	0.7003	0.5324	6.4009	1.29s	0.01s
MyKNNClassifier	0.8306	0.5765	0.6843	0.6258	5.8505	0.72s	2598.75s

混淆矩阵如下:

综合来看,KNN 算法的表现是最好的,但预测数据时远远不如其他两个模型。除此之外, LinearSVC 的 准确率比较高,LogisticRegression 的效率是最高的。

我自己基于 KDTree 实现的 KNN 算法训练和预测效率远远落后于 sklearn 实现,其他指标与其大致相同,原因可能有:使用递归实现,层数较多时效率被拖慢;树的分层设置不够合理,将方差较大的特征优先分层,可能可以加快搜索速度。