₁ Kapitel 2

₂ Integrationstheorie

2.1 Messbare Funktionen

```
Definition 2.1. Seien (X, A) und (Y, B) messbare R\"{a}ume, f: X \to Y. Dann
```

- f heißt f A-B-messbar (oder kurz messbar), falls f⁻¹(B) ∈ A für alle B ∈ B.
- Es reicht die Eigenschaft $f^{-1}(B) \in \mathcal{A}$ nur für Mengen B zu zeigen, die die
- **Lemma 2.2.** Seien (X, A) und (Y, B) messbare Räume, $f: X \to Y$, und sei
- 9 $S \subseteq \mathcal{B}$ mit $\mathcal{A}_{\sigma}(S) = \mathcal{B}$. Dann ist $f \ \mathcal{A}$ - \mathcal{B} -messbar genau dann, wenn $f^{-1}(B) \in \mathcal{A}$
- 10 für alle $B \in S$.

 σ -Algebra \mathcal{B} erzeugen.

11 Beweis. "
$$\Leftarrow$$
" Wir verwenden $f_*(A)$, siehe Beispiel 1.4. Nach Voraussetzung gilt

$$S \subseteq f_*(\mathcal{A})$$
. Damit ist auch $\mathcal{B} \subseteq f_*(\mathcal{A})$, und f ist \mathcal{A} - \mathcal{B} -messbar.

Verknüpfungen stetiger und messbarer Funktionen sind messbar.

- Lemma 2.3. Seien (X, A) ein messbarer Raum, Y und Z metrische Räume.
- Weiter seien $g: X \to Y$ A- $\mathcal{B}(Y)$ -messbar und $f: Y \to Z$ stetig. Dann ist $f \circ g$
- ¹⁶ \mathcal{A} - $\mathcal{B}(Z)$ -messbar.

17 Beweis. Sei
$$O\subseteq Z$$
 offen. Dann ist $f^{-1}(O)\in \mathcal{B}(Y)$ und $(f\circ g)^{-1}(O)=$

$$g^{-1}(f^{-1}(O)) \in \mathcal{A}.$$

- Im Folgenden sei (X, A) immer ein messbarer Raum.
- Definition 2.1 werden wir für die Spezialfälle $Y = \mathbb{R}$ und $Y = \overline{\mathbb{R}}$ verwenden,
- wobei die Bildräume mit der Borel- σ -Algebra versehen werden. Sei $\mathcal T$ die Menge
- der offenen Mengen auf \mathbb{R}^1 . Dann ist die Borel- σ -Algebra von \mathbb{R} definiert durch

$$\mathcal{B}(\bar{\mathbb{R}}) := \mathcal{A}_{\sigma}(\mathcal{T} \cup \{\{+\infty\}, \{-\infty\}\}),$$

```
also \mathcal{B}(\mathbb{R}) ist die kleinste \sigma-Algebra, die die offenen Teilmengen von \mathbb{R} und die
    einelementigen Mengen \{+\infty\}, \{-\infty\} enthält. Offensichtlich ist \mathcal{B}^1\subseteq\mathcal{B}(\bar{\mathbb{R}}).
     Mithilfe von Lemma 2.2 können wir die Anforderungen an eine messbare Funk-
     tion schon reduzieren.
     Definition 2.4. Eine Funktion f: X \to \mathbb{R} heißt Lebesgue messbar (oder kurz:
     messbar), wenn f A-B^1-messbar ist, also wenn f^{-1}(O) \in A für alle offenen
     Mengen O \subseteq \mathbb{R}.
          Analog heißt f: X \to \mathbb{C} Lebesgue messbar (oder kurz: messbar), wenn f
     \mathcal{A}\text{-}\mathcal{B}(\mathbb{C})\text{-}messbar\ ist,\ also\ wenn\ f^{-1}(O)\in\mathcal{A}\ f\ddot{u}r\ alle\ offenen\ Mengen\ O\subset\mathbb{C}.
          Eine Funktion f: X \to \mathbb{R} heißt Lebesgue messbar (oder kurz: messbar),
     wenn f \mathcal{A}-\mathcal{B}(\mathbb{R})-messbar ist, also wenn f^{-1}(O) \in \mathcal{A} für alle offenen Mengen
     O \subseteq \mathbb{R}, f^{-1}(\{-\infty\}) \in \mathcal{A} \text{ und } f^{-1}(\{+\infty\}) \in \mathcal{A}.
    Folgerung 2.5. Sei f: \mathbb{R}^n \to \mathbb{R} stetig. Dann ist f \mathcal{L}(n)-\mathcal{B}^1-messbar und \mathcal{B}^n-
    \mathcal{B}^1-messbar.
14
    Bemerkung 2.6. Eine stetige Funktion f: \mathbb{R} \to \mathbb{R} muss allerdings nicht \mathcal{L}(1)-
     \mathcal{L}(1)-messbar sein. Das ist der Grund, warum auf dem Bildbereich \mathbb{R} die Borel-
     \sigma-Algebra verwendet wird. Eine stetige aber nicht \mathcal{L}(1)-\mathcal{L}(1)-messbare Funktion
     kann mit der Cantor-Menge konstruiert werden, wir verweisen auf [Tao11, Re-
     mark 1.3.10].
         Ist f:X\to\mathbb{R} Lebesgue messbar, dann ist f auch messbar, wenn f als
20
    Funktion nach \bar{\mathbb{R}} angesehen wird.
21
    Definition 2.7. Sei f: X \to \mathbb{R} eine Funktion. Für \alpha \in \mathbb{R} definiere
                                      \{f < \alpha\} := \{x \in X : f(x) < \alpha\},\
23
     analog \{f \leq \alpha\}, \{f > \alpha\}, \{f \geq \alpha\}.
     Satz 2.8. Sei f: X \to \overline{\mathbb{R}} gegeben. Dann sind die folgenden Aussagen äquivalent:
           (2.9) f ist messbar,
26
           (2.10) \{f < \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q},
27
           (2.11) \{f \leq \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q},
           (2.12) \{f > \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q},
29
           (2.13) \{f \geq \alpha\} \in \mathcal{A} \text{ für alle } \alpha \in \mathbb{R} \text{ oder für alle } \alpha \in \mathbb{Q}.
     Beweis. Wir beweisen nur die Äquivalenz von (2.9) und (2.10). Ist f messbar,
```

dann ist $\{f < \alpha\} = f^{-1}(\{-\infty\} \cup (-\infty, \alpha)) \in \mathcal{A}$. Sei nun $\{f < \alpha\} \in \mathcal{A}$ für alle

- $\alpha \in \mathbb{Q}$. Wir nutzen aus, dass $f_*(A)$, also die Menge aller Teilmengen $B \subseteq \mathbb{R}$ für
- die $f^{-1}(B) \in \mathcal{A}$ ist, eine σ -Algebra ist, siehe Beispiel 1.4. Sei $\alpha \in \mathbb{R}$. Dann gibt
- s es eine monoton wachsende Folge rationaler Zahlen (α_k) mit $\alpha_k \to \alpha$. Es folgt

$$\{f < \alpha\} = \bigcup_{k=1}^{\infty} \{f < \alpha_k\} \in \mathcal{A}.$$

- 5 Damit ist auch $\{f \geq \alpha\} = \{f < \alpha\}^c \in \mathcal{A}$. Dann gilt für alle $\alpha < \beta$, dass
- $f^{-1}([\alpha,\beta)) \in \mathcal{A}$. Damit sind die Urbilder aller halboffenen Intervalle in \mathcal{A} .
- Damit ist auch $\mathcal{B}^1 \subseteq f_*(\mathcal{A})$. Weiter gilt

$$f^{-1}(\{-\infty\}) = \bigcap_{n \in \mathbb{N}} \{f < -n\} \in \mathcal{A}.$$

- Wegen $\{+\infty\} = (\mathbb{R} \cup \{-\infty\})^c$ ist auch $f^{-1}(\{+\infty\}) \in \mathcal{A}$. Damit sind die Urbilder
- aller Erzeuger von $\mathcal{B}(\bar{\mathbb{R}})$ in \mathcal{A} , und f ist messbar.
- ${}_{11}$ Beispiel 2.14. Sei $A\subseteq X$. Definiere die charakteristische Funktion von A
- 12 durch

15

$$\chi_A(x) := \begin{cases} 1 & \text{falls } x \in A, \\ 0 & \text{falls } x \notin A. \end{cases}$$

Dann ist χ_A messbar genau dann, wenn $A \in \mathcal{A}$. Ist $B \subseteq X$, dann ist

$$\chi_{A \cap B} = \chi_A \cdot \chi_B, \quad \chi_{A \cup B} = \max(\chi_A, \chi_B).$$

Beispiel 2.15. Ist $f: X \to \mathbb{R}$ messbar und $A \in \mathcal{A}$, dann ist auch die durch

$$(\chi_A \cdot f)(x) := \begin{cases} f(x) & \text{falls } x \in A, \\ 0 & \text{falls } x \notin A \end{cases}$$

- definierte Funktion $\chi_A \cdot f$ messbar. Hier haben wir wieder die Konvention 0
- 19 $\pm \infty := 0$ benutzt. Für $\alpha < 0$ ist

$$\{\chi_A \cdot f < \alpha\} = A \cap \{f < \alpha\} \in \mathcal{A},$$

 $w\ddot{a}hrend \ f\ddot{u}r \ \alpha \geq 0 \ gilt$

$$\{\chi_A \cdot f < \alpha\} = A^c \cup \{f < \alpha\} \in \mathcal{A},$$

- und $\chi_A \cdot f$ ist messbar.
- Nun wollen wir beweisen, dass Summen, Produkte, etc, von messbaren Funk-
- tionen messbar sind. Wir starten mit zwei Hilfsresultaten.

```
Lemma 2.16. Sei g: \mathbb{R} \to \mathbb{R} monoton wachsend, das heißt für alle x, y \in \mathbb{R}
    mit \ x \leq y \ ist \ g(x) \leq g(y). Sei f: X \to \mathbb{R} messbar. Dann ist auch g \circ f messbar.
    Beweis. Wir benutzen Satz 2.8. Sei \alpha \in \mathbb{R}. Dann ist \{g < \alpha\} ein Intervall:
    Definiere \beta := \sup\{x \in \mathbb{R} : g(x) < \alpha\} \in \mathbb{R}. Ist g(\beta) = \alpha dann ist \{g < \alpha\} = \alpha
    [-\infty,\beta), ansonsten ist g(\beta)<\alpha und \{g<\alpha\}=[-\infty,\beta]. In beiden Fällen ist
    f^{-1}(\{g < \alpha\}) = \{g \circ f < \alpha\} messbar.
         Damit bekommen wir folgendes Resultat.
    Satz 2.17. Sei f: X \to \mathbb{R} messbar. Dann sind die folgenden Funktionen mess-
          (2.18) c \cdot f für alle c \in \mathbb{R},
10
          (2.19) f^+ := \max(f, 0), f^- := \min(f, 0),
11
          (2.20) \operatorname{sign}(f), wobei
12
                                        \operatorname{sign}(y) = \begin{cases} +1 & \text{falls } y > 0 \\ 0 & \text{falls } y = 0 \\ -1 & \text{falls } u < 0 \end{cases}
13
          (2.21) |f|^p \text{ für alle } p > 0,
          (2.22) 1/f falls f(x) \neq 0 für alle x \in X.
15
    Beweis. (2.18): Wir zeigen erst, dass -f messbar ist. Sei \alpha \in \mathbb{R}. Dann ist \{-f < \}
    \{\alpha\} = \{f > -\alpha\}, \text{ also ist } -f \text{ messbar. Sei nun } c \in \mathbb{R}. \text{ Dann ist } g(y) := |c| \cdot y
17
    monoton wachsend, und mit Lemma 2.16 ist |c| \cdot f messbar, also auch -|c| \cdot f.
         (2.19),(2.20): Die Funktionen y\mapsto \max(y,0), y\mapsto \min(y,0) und y\mapsto \operatorname{sign}(y)
19
    sind monoton wachsend. Wegen Lemma 2.16 sind die Funktionen \max(f,0),
    \min(f,0) und \operatorname{sign}(f) messbar.
21
         (2.21): Sei \alpha \in \mathbb{R}. Dann ist \{|f| < \alpha\} = \{f < \alpha\} \cap \{-f < \alpha\}. Dies
22
    ist wegen (2.18) und Satz 2.8 in A, also ist auch |f| messbar. Die Abbildung
    y \mapsto (\max(0,y))^p ist monoton wachsend, damit ist auch |f|^p messbar.
         (2.22): Sei \alpha \in \mathbb{R}. Dann ist
              \{1/f < \alpha\} = (\{f < 0\} \cap \{\alpha f < 1\}) \cup (\{f > 0\} \cap \{\alpha f > 1\}) \in \mathcal{A},
    also 1/f messbar.
                                                                                                           Desweiteren sind Summen, Produkte, Quotienten messbarer Funktionen wie-
```

der messbar.

- Satz 2.23. Es seien $f,g:X\to \bar{\mathbb{R}}$ messbar. Dann sind $f+g,\ f\cdot g$ und f/g
- $_{2}$ messbar, falls diese Funktionen auf ganz X definiert sind. Die Ausdrücke $\infty-\infty$,
- $\pm \infty / \pm \infty$, c/0 für $c \in \mathbb{R}$ sind nicht definiert.
- 4 Beweis. Wir zeigen, dass f+g messbar ist. Sei $\alpha \in \mathbb{R}$. Sei $f(x)+g(x)<\alpha$,
- 5 woraus $f(x) < +\infty$ und $g(x) < +\infty$ folgt. Dann existiert $q \in \mathbb{Q}$ mit $q \in \mathbb{Q}$
- 6 $(g(x), \alpha f(x))$. Dann ist

$$\{f + g < \alpha\} = \bigcup_{q \in \mathbb{O}} (\{f < \alpha - q\} \cap \{g < q\}) \in \mathcal{A},$$

und f + g ist messbar.

12

14

16

30

- Seien zuerst f und g Abbildungen nach \mathbb{R} . Dann folgt die Messbarkeit von
- 10 $f \cdot g$ aus $f \cdot g = \frac{1}{2}((f+g)^2 f^2 g^2)$. Seien nun f und g Abbildungen nach \mathbb{R} .
- Wir definieren die messbare Menge

$$A := \{|f| < \infty\} \cap \{|g| < \infty\}$$

13 sowie die messbaren Funktionen (mit Wertebereich ℝ)

$$\tilde{f} := \chi_A f, \quad \tilde{g} := \chi_A g.$$

Dann ist $\tilde{f} \cdot \tilde{g}$ messbar. Außerdem gilt (beachte $0 \cdot \infty = 0$)

$$f \cdot q = \chi_A \cdot \tilde{f} \cdot \tilde{q} + \chi_{A^c} \cdot \operatorname{sign}(f) \cdot \operatorname{sign}(q) \cdot \infty.$$

- Beide Summanden sind messbar: $\chi_A \cdot \tilde{f} \cdot \tilde{g}$ und $\chi_{A^c} \cdot \mathrm{sign}(f) \cdot \mathrm{sign}(g)$ sind Pro-
- dukte R-wertiger messbarer Funktionen (Beispiel 2.15), Multipikation mit der
- 19 Konstante $+\infty$ erhält Messbarkeit.
- Sei g messbar, so dass $g(x) \neq 0$ für alle x. Dann ist 1/g messbar (2.22).
- Damit ist auch $f/g = f \cdot 1/g$ messbar.
- Aufgrund der Eigenschaften von σ -Algebren können wir recht einfach bewei-
- 23 sen, dass punktweise Infima, Suprema und Grenzwerte von Folgen messbarer
- ²⁴ Funktionen wieder messbar sind.
- Satz 2.24. Seien (f_n) messbare Funktionen von X nach $\bar{\mathbb{R}}$. Dann sind auch
- inf $f_n \in \mathbb{N}$ inf f_n , $\sup_{n \in \mathbb{N}} f_n$, $\lim \inf_{n \to \infty} f_n$, $\lim \sup_{n \to \infty} f_n$ messbare Funktionen. Da-
- bei ist $(\inf_{n\in\mathbb{N}} f_n)(x) := \inf_{n\in\mathbb{N}} f_n(x)$ punktweise definiert. Analog wird für die
- 28 drei anderen Konstrukte verfahren.
- 29 Beweis. Die Messbarkeit von Infimum und Supremum folgt aus Satz 2.8 und

$$\{\inf_{n\in\mathbb{N}} f_n \ge \alpha\} = \bigcap_{n\in\mathbb{N}} \{f_n \ge \alpha\} \in \mathcal{A},$$

$$\{\sup_{n\in\mathbb{N}} f_n \le \alpha\} = \bigcap_{n\in\mathbb{N}} \{f_n \le \alpha\} \in \mathcal{A}.$$

² Per Definition ist

$$\liminf_{n \to \infty} f_n(x) = \sup_{n \in \mathbb{N}} \inf_{k \ge n} f_k(x).$$

- Wegen des gerade Gezeigten ist $x \mapsto \inf_{k > n} f_k(x)$ messbar für alle n, und damit
- auch $x \mapsto \liminf_{n \to \infty} f_n(x)$. Analog folgt der Beweis für lim sup.
- Folgerung 2.25. Seien (f_n) messbare Funktionen von X nach \mathbb{R} . Weiter sei
- 7 $f: X \to \mathbb{R}$ gegeben mit $f(x) = \lim_{n \to \infty} f_n(x)$ für alle x. Dann ist auch f
- 8 messbar.

15

- Wir zeigen nun, dass sich Lebesgue-messbare Funktionen durch einfache
- 10 Funktionen approximieren lassen.
- **Definition 2.26.** Sei $f: X \to \mathbb{R}$ messbar. Dann heißt f einfache Funktion,
- wenn f(X) eine endliche Menge ist.
- Lemma 2.27. Sei $f:X\to\mathbb{R}$ einfach, dann existieren $c_1\ldots c_n\in\mathbb{R}$ und
- paarweise disjunkte, messbare Mengen $A_1 \dots A_n$, so dass $\bigcup_{j=1}^n A_j = X$ und

$$f = \sum_{j=1}^{n} c_j \chi_{A_j}.$$

- 16 Beweis. Da f einfach ist, ist $f(X) \subseteq \mathbb{R}$ eine endliche Menge. Dann existieren
- $n \in \mathbb{N} \text{ und } c_1 \dots c_n \in \mathbb{R} \text{ so, dass } f(X) = \{c_1 \dots c_n\}. \text{ Mit } A_j := f^{-1}(\{c_j\}) \in \mathcal{A}$
- 18 folgt die Behauptung.
- Das heißt, eine Funktion ist einfach, wenn sie eine Linearkombination cha-
- 20 rakteristischer Funktionen ist.
- Folgerung 2.28. Sind f, g einfache Funktionen, dann sind auch f+g und $f \cdot g$
- 22 einfache Funktionen.
- 23 Beweis. Wegen Lemma 2.27 gibt es reelle Zahlen c_i und d_j sowie messbare
- Mengen A_i und B_j , so dass

$$f = \sum_{i=1}^{n} c_i \chi_{A_i}, \quad g = \sum_{j=1}^{m} d_j \chi_{B_j}$$

- und $X = \bigcup_{i=1}^n A_i = \bigcup_{j=1}^m B_j$, wobei dies disjunkte Vereinigungen sind. Dann
- ist $A_i = \bigcup_{j=1}^m (A_i \cap B_j), \ \chi_{A_i} = \sum_{j=1}^m \chi_{A_i \cap B_j},$ sowie analog $\chi_{B_j} = \sum_{i=1}^n \chi_{A_i \cap B_j}$
- 28 11nd

$$f + g = \sum_{i=1}^{n} c_i \chi_{A_i} + \sum_{j=1}^{m} d_j \chi_{B_j} = \sum_{i=1}^{n} \sum_{j=1}^{m} (c_i + d_j) \chi_{A_i \cap B_j}.$$

Für das Produkt erhalten wir

$$f \cdot g = \left(\sum_{i=1}^n c_i \chi_{A_i}\right) \left(\sum_{j=1}^m d_j \chi_{B_j}\right) = \sum_{i=1}^n \sum_{j=1}^m c_i d_j \chi_{A_i \cap B_j}.$$

3

- **Satz 2.29.** Sei $f: X \to [0, +\infty]$ messbar. Dann existiert eine Folge (f_n) nicht-
- negativer, einfacher Funktionen mit $f_n(x) \nearrow f(x)$ für alle x. Ist f beschränkt,
- 6 dann ist die Folge (f_n) gleichmäßig beschränkt, und die Konvergenz $f_n \to f$ ist
- ⁷ gleichmäβig.

11

15

- 8 Beweis. Wir konstruieren die f_{n} durch eine Unterteilung des Bildbereichs. Sei
- 9 $n \in \mathbb{N}$. Wir unterteilen das Intervall [0,n) in $n2^n$ -viele Intervalle der Länge 2^{-n} .
- Setze für $j = 1 \dots n2^n$

$$A_{n,j} := f^{-1}\left(\left[\frac{j-1}{2^n}\frac{j}{2^n}\right)\right).$$

2 Damit definieren wir die einfache Funktion

$$f_n(x) := n\chi_{\{f \ge n\}} + \sum_{i=1}^{n2^n} \chi_{A_{n,j}} \cdot \frac{j-1}{2^n}.$$

Damit gilt $f_n(x) \leq f(x)$. Wegen

$$A_{n,j} = A_{n+1,2j-1} \cup A_{n+1,2j}$$

- folgt $f_n(x) \leq f_{n+1}(x)$. Es bleibt noch die Konvergenz zu zeigen. Ist f(x) < n
- dann ist $x \in A_{n,j}$ für ein passendes j, und es gilt $f(x) \leq f_n(x) + \frac{1}{2^n}$. Damit
- bekommen wir $f_n(x) \to f(x)$ falls $f(x) < +\infty$. Ist $f(x) = +\infty$, dann ist $f_n(x) =$
- 19 n für alle n, und die Konvergenz $f_n(x) \to f(x) = +\infty$ folgt.
- Sei f beschränkt. Dann existiert ein $N \in \mathbb{N}$ mit f(x) < N für alle x. Daraus
- folgt $f_n(x) < N$ für alle n und x. Für n > N ist dann $f_n(x) \le f(x) \le f_n(x) + \frac{1}{2^n}$
- für alle x, woraus die gleichmäßige Konvergenz folgt.
- Im Folgenden werden wir die abkürzende Schreibweise

$$f_n \nearrow f \quad \Leftrightarrow \quad f_n(x) \nearrow f(x) \ \forall x \in X$$

₂₅ benutzen.

- Folgerung 2.30. Sei $f:X\to \bar{\mathbb{R}}$ messbar. Dann existiert eine Folge (ϕ_n)
- einfacher Funktionen mit $|\phi_n(x)| \leq |f(x)|$ und $\phi_n(x) \to f(x)$ für alle x.

- Beweis. Wir approximieren |f| durch eine Folge nicht negativer, einfacher Funk-
- z tionen (ϕ_n) , Satz 2.29. Die Funktion sign(f) ist eine einfache Funktion. Die
- Funktionen $sign(f) \cdot \phi_n$ haben dann die gewünschten Eigenschaften, wobei wir
- ⁴ Folgerung 2.28 benutzt haben.

5 2.2 Das Lebesgue-Integral

- 6 Es sei (X, \mathcal{A}, μ) ein Maßraum.
- **Definition 2.31.** Sei $f:X\to [0,+\infty)$ eine einfache Funktion mit f=
- $\sum_{i=1}^{n} c_i \chi_{A_i}$ mit paarweise disjunkten Mengen (A_i) . Dann ist

$$\int f \, \mathrm{d}\mu := \sum_{i=1}^n c_i \mu(A_i)$$

- $das\ Lebesgue\ Integral\ von\ f.$
- Da $\mu(A_i) = +\infty$ sein kann, ist $\int f d\mu$ im Allgemeinen in \mathbb{R} . Um unbestimmte
- ¹² Ausdrücke zu vermeiden, haben wir das Integral nur für nicht negative Funk-
- 13 tionen definiert.

17

- 14 Lemma 2.32. Das Lebesgue-Integral für einfache Funktionen ist wohldefiniert:
- ¹⁵ Gilt $f = \sum_{i=1}^{n} c_i \chi_{A_i} = \sum_{j=1}^{m} d_j \chi_{B_j}$ mit paarweise disjunkten Mengen (A_i) und
- paarweise disjunkten Mengen (B_j) , dann gilt

$$\sum_{i=1}^{n} c_{i} \mu(A_{i}) = \sum_{j=1}^{m} d_{j} \mu(B_{j}).$$

- Beweis. Wir können annehmen, dass $X = \bigcup_{i=1}^n A_i = \bigcup_{j=1}^m B_j$. Falls nicht set-
- ¹⁹ zen wir $A_{n+1} = (\bigcup_{i=1}^n A_i)^c$, $c_{n+1} = 0$.
- Ist $A_i \cap B_i \neq \emptyset$ dann folgt $c_i = d_i$: Sei $x \in A_i \cap B_i$, dann ist $f(x) = c_i = b_i$,
- da die Mengen (A_i) und die Mengen (B_j) paarweise disjunkt sind. Weiter ist
- 22 $A_i = \bigcup_{j=1}^m (A_i \cap B_j)$ und $B_j = \bigcup_{i=1}^n (A_i \cap B_j)$. Damit bekommen wir

$$\sum_{i=1}^{n} c_{i}\mu(A_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i}\mu(A_{i} \cap B_{j})$$

$$= \sum_{i,j: A_{i} \cap B_{j} \neq \emptyset} c_{i}\mu(A_{i} \cap B_{j})$$

$$= \sum_{i,j: A_{i} \cap B_{j} \neq \emptyset} d_{j}\mu(A_{i} \cap B_{j})$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} d_{j}\mu(A_{i} \cap B_{j}) = \sum_{j=1}^{m} d_{j}\mu(B_{j}).$$

Dieses Integral für einfache Funktionen hat folgende Eigenschaften.

- ³ Satz 2.33. Seien $f, g: X \to [0, +\infty)$ einfache Funktionen. Dann gelten folgende
- 4 Aussagen:
- $(1) \int (cf) d\mu = c \int f d\mu \text{ für alle } c \in \mathbb{R} \text{ mit } c \ge 0,$
- $6 (2) f + g d\mu = \int f d\mu + \int g d\mu,$
- (3) ist $f \le g$, dann ist $\int f d\mu \le \int g d\mu$,
- 8 (4) $\int \chi_A d\mu = \mu(A) \text{ für alle } A \in \mathcal{A}.$
- 9 Beweis. (1) folgt sofort aus der Definition. (2) Wegen Lemma 2.27 gibt es reelle
- Zahlen c_i und d_j sowie messbare Mengen A_i und B_j , so dass

$$f = \sum_{i=1}^{n} c_i \chi_{A_i}, \quad g = \sum_{j=1}^{m} d_j \chi_{B_j}$$

und $X = \bigcup_{i=1}^n A_i = \bigcup_{j=1}^m B_j$, wobei dies disjunkte Vereinigungen sind. Wie im

³ Beweis von Folgerung 2.28 bekommen wir

$$f + g = \sum_{i=1}^{n} \sum_{j=1}^{m} (c_i + d_j) \chi_{A_i \cap B_j}.$$

Damit ist

11

$$\int f + g \, d\mu = \sum_{i=1}^{n} \sum_{j=1}^{m} (c_i + d_j) \mu(A_i \cap B_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} c_i \mu(A_i \cap B_j) + \sum_{j=1}^{m} \sum_{i=1}^{n} d_j \mu(A_i \cap B_j)$$

$$= \sum_{i=1}^{n} c_i \mu(A_i) + \sum_{j=1}^{m} d_j \mu(B_j) = \int f \, d\mu + \int g \, d\mu.$$

17 (3) Sei $x \in A_i \cap B_j$. Dann gilt $f(x) = c_i \leq g(x) = d_j$. Mit Argumenten wie im

18 Beweis von Lemma 2.32 bekommen wir

$$\int f \, \mathrm{d}\mu = \sum_{i=1}^n c_i \mu(A_i) = \sum_{i,j: \ A_i \cap B_j \neq \emptyset} c_i \mu(A_i \cap B_j)$$

$$\leq \sum_{i,j: \ A_i \cap B_i \neq \emptyset} d_j \mu(A_i \cap B_j) = \sum_{j=1}^m d_j \mu(B_j) = \int g \, \mathrm{d}\mu.$$

(4) χ_A ist eine einfache Funktion mit $\int \chi_A d\mu = \mu(A)$.

Wir können messbare Funktionen durch einfache Funktionen approximieren.

- Dies werden wir benutzen, um das Lebesgue-Integral für messbare Funktionen
- zu definieren. Wir beginnen mit dem Integral nicht-negativer Funktionen, damit
- wir die Monotonie der Konvergenz aus Satz 2.29 benutzen können. In den Beweis
- 5 des nächsten Satzes geht entscheidend die Stetigkeit von Maßen auf monoton
- wachsenden Folgen messbarer Mengen (1.29) ein.
- 7 Lemma 2.34. Sei (f_n) eine Folge nichtnegativer, einfacher Funktionen mit
- * $f_n \nearrow f$, f einfache Funktion. Dann gilt

$$\int f_n \, \mathrm{d}\mu \nearrow \int f \, \mathrm{d}\mu.$$

10 Beweis. Wir betrachten die beiden Fälle $\int f d\mu = +\infty$ und $\int f d\mu < +\infty$.

11 (1) Angenommen $\int f d\mu = +\infty$. Da f eine einfache Funktion ist, existiert ein

c>0 und ein $A\in\mathcal{A}$, so dass $\mu(A)=+\infty$ und $f\geq c$ auf A. Für $n\in\mathbb{N}$ setze

 $A_n := \{x: f_n(x) \ge c/2\}$. Da $(f_n(x))$ monoton wachsend ist, folgt $A_n \subseteq A_{n+1}$.

Aus der punktweisen Konvergenz $f_n(x) \to f(x)$ folgt $\bigcup_{n=1}^{\infty} A_n \supseteq A$. Dann

folgt $\mu(A_n) \to \mu(A) = +\infty$ aus (1.29). Aus der Ungleichung $\chi_{A_n} \frac{c}{2} \leq f_n$ folgt

 $\int f_n \, \mathrm{d}\mu \ge \mu(A_n) \tfrac{c}{2} \to +\infty \text{ (Satz 2.33)}.$

17 (2) Sei nun $\int f d\mu < \infty$. Dann ist $(\int f_n d\mu)$ eine beschränkte, monoton

wachsende Folge, also konvergent. Weiter ist $B := \{f > 0\} \in \mathcal{A} \text{ mit } \mu(B) < \infty$.

Da f eine einfache Funktion ist, ist f beschränkt, und es existiert M > 0 mit

o $f(x) \leq M$ für alle x. Sei $\varepsilon > 0$. Für $n \in \mathbb{N}$ setze $B_n := B \cap \{f_n \geq f - \varepsilon\}$. Dann

 $J(x) \subseteq M$ for all x, set x = 0. For $x \in M$, set $x \in M$, $x \in M$, $y \in M$, y

folgt $B_n \subseteq B_{n+1}$ und $\bigcup_{n=1}^{\infty} B_n = B$, und wir bekommen $\lim_{n\to\infty} \mu(B_n) = \mu(B) < \infty$ und $\lim_{n\to\infty} \mu(B \setminus B_n) = 0$ aus (1.29) und (1.30). Wir schätzen nun

das Integral der einfachen und nicht-negativen Funktion $f - f_n$ von oben ab.

Auf B_n ist $f - f_n \leq \varepsilon$, auf $B \setminus B_n$ ist $f - f_n \leq f \leq M$, während auf B^c gilt

 $f = f_n = 0$. Dann ist $f - f_n \le \chi_{B_n} \varepsilon + \chi_{B \setminus B_n} M$ und es folgt

$$0 \le \int f - f_n \, \mathrm{d}\mu \le \int \chi_{B_n} \varepsilon + \chi_{B \setminus B_n} M \, \mathrm{d}\mu = \mu(B_n) \varepsilon + \mu(B \setminus B_n) M \to \mu(B) \varepsilon.$$

²⁷ Da $\mu(B) < \infty$ und $\varepsilon > 0$ beliebig war, folgt

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \left(\int f \, \mathrm{d}\mu - \int f - f_n \, \mathrm{d}\mu \right) = \int f \, \mathrm{d}\mu.$$

Nun zeigen wir, dass der Grenzwert von $(\int f_n d\mu)$ für $f_n \nearrow f$ nur vom Grenzwert f abhängt, und nicht von der konkreten Wahl der (f_n) . Dies ist ein

wichtiger Schritt, um das Lebesgue-Integral definieren zu können.

- Lemma 2.35. Seien (f_n) , (g_n) Folgen nichtnegativer, einfacher Funktionen mit
- ² $f_n \nearrow f$, $g_n \nearrow f$, f messbar. Dann gilt

$$\lim_{n \to \infty} \int f_n \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu.$$

4 Beweis. Sei $n \in \mathbb{N}$ fest. Für $m \in \mathbb{N}$ definiere

$$h_m := \min(f_n, g_m).$$

- 6 Dies ist eine einfache Funktion. Aus der Voraussetzung folgt $h_m \nearrow f_n$ für $m \to$
- $_{7}$ ∞ . Aus Lemma 2.34 bekommen wir dann

$$\lim_{m \to \infty} \int h_m \, \mathrm{d}\mu = \int f_n \, \mathrm{d}\mu.$$

- 9 Da $h_m \leq g_m$ folgt mit der Monotonie des Integrals $\int h_m d\mu \leq \int g_m d\mu$. Grenz-
- 10 übergang auf beiden Seiten der Ungleichung ergibt

$$\int f_n d\mu = \lim_{m \to \infty} \int h_m d\mu \le \liminf_{m \to \infty} \int g_m d\mu.$$

12 Für $n \to \infty$ bekommen wir

$$\limsup_{n \to \infty} \int f_n \, \mathrm{d}\mu \le \liminf_{m \to \infty} \int g_m \, \mathrm{d}\mu.$$

Vertauschen wir in dieser Argumentation die Rollen von f_n und g_m erhalten wir

$$\limsup_{n \to \infty} \int g_n \, \mathrm{d}\mu \le \liminf_{m \to \infty} \int f_m \, \mathrm{d}\mu.$$

- Daraus folgt, dass die Grenzwerte existieren und gleich sind.
- Definition 2.36. Sei $f: X \to [0, +\infty]$ messbar. Sei (f_n) eine Folge einfacher,
- nichtnegativer Funktionen mit $f_n \nearrow f$. Dann ist das Lebesgue-Integral von f
- 19 definiert als

$$\int f \, \mathrm{d}\mu := \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

- Wegen Lemma 2.35 ist das Lebesgue-Integral von f wohldefiniert: der Wert
- $\int f \, \mathrm{d}\mu$ hängt nicht von der konkreten Wahl der approximierenden, einfachen
- Funktionen (f_n) ab.
- Satz 2.37. Seien $f, g: X \to [0, +\infty]$ messbare Funktionen. Dann gilt

(1)
$$\int (cf) d\mu = c \int f d\mu \text{ für alle } c > 0$$

$$(2) \int f + g \, \mathrm{d}\mu = \int f \, \mathrm{d}\mu + \int g \, \mathrm{d}\mu,$$

- (3) ist $f \leq g$, dann ist $\int f d\mu \leq \int g d\mu$,
- (4) $sind (f_m)$ messbare Funktionen von X nach $[0, +\infty]$ mit $f_m \nearrow f$, dann $gilt \int f_m d\mu \nearrow \int f d\mu$.
- Beweis. (1)–(3) Seien (f_n) und (g_n) Folgen einfacher, nichtnegativer Funktionen
- 5 mit $f_n \nearrow f$ und $g_n \nearrow g$. (1) und (2) folgen nun direkt aus Satz 2.33. Für (3)
- benutzen wir $\min(f_n, g_n) \nearrow f$ und $\int \min(f_n, g_n) d\mu \leq \int g_n d\mu$.
- $_{7}$ (4) Für jedes m existiert eine Folge einfacher, nichtnegativer Funktionen
- 8 $(f_{m,n})$ mit $f_{m,n} \nearrow f_m$ für $n \to \infty$. Definiere die einfache Funktion h_m durch

$$h_m(x) := \max_{i,j \le m} f_{i,j}(x).$$

Dann ist $(h_m(x))$ monoton wachsend. Für $i, j \leq m$ ist $f_{i,j} \leq f_i \leq f_m$. Dann ist

11
$$h_m \le f_m \le f$$
, und es folgt $\int h_m \, \mathrm{d}\mu \le \int f_m \, \mathrm{d}\mu \le \int f \, \mathrm{d}\mu$. Wir zeigen $h_m \nearrow f$.

- Seien $x \in X$ und $r, s \in \mathbb{R}$ mit r < s < f(x). Dann existiert m, so dass $s \le s$
- $f_m(x)$. Weiter existiert ein n, so dass $r \leq f_{m,n}(x)$. Daraus folgt $r \leq h_{\max(m,n)}(x)$
- und $r \leq \lim_{m \to \infty} h_m(x)$. Da r < f(x) beliebig war, folgt $h_m(x) \to f(x)$. Damit
- folgt $h_m \nearrow f$ und $\int h_m d\mu \to \int f d\mu$, woraus die Behauptung folgt.

2.3 Integrierbarkeit

- Wir wollen nun messbare Funktionen mit Werten in \mathbb{R} integrieren. Wir verwenden folgen de Bossich zum gen
- den folgende Bezeichnungen

$$f^+ := \max(f, 0), \quad f^- := \min(f, 0).$$

20 Dann ist $f = f^+ + f^-$.

19

- **Definition 2.38.** Sei $f: X \to \bar{\mathbb{R}}$ messbar. Es sei eines der Integrale $\int f^+ d\mu$,
- $\int (-f^-) d\mu$ endlich. Dann ist das Lebesgue-Integral von f definiert als

$$\int f \,\mathrm{d}\mu := \int f^+ \,\mathrm{d}\mu - \int (-f^-) \,\mathrm{d}\mu.$$

- Sind beide Integrale $\int f^+ d\mu$, $\int (-f^-) d\mu$ endlich, dann heißt f integrierbar.
- ²⁵ Alternative Schreibweisen für dieses Integral sind

$$\int f \,\mathrm{d}\mu = \int_X f \,\mathrm{d}\mu = \int f(x) \,\mathrm{d}\mu(x) = \int f(x)\mu(\,\mathrm{d}x).$$

Satz 2.39. Sei $f:X\to \bar{\mathbb{R}}$ messbar. Dann ist f integrierbar genau dann, wenn

- Beweis. Sei f integrierbar. Wegen $|f| = f^+ + (-f^-)$ ist $\int |f| d\mu = \int f^+ d\mu +$
- $\int (-f^-) d\mu < +\infty$, wobei wir Satz 2.37 benutzt haben. Sei nun $\int |f| d\mu < +\infty$.
- $_{3}~$ Da $f^{+}\leq |f|$ und $0\leq -f^{-}\leq |f|$ folgt die Behauptung mit der Monotonie des
- 4 Integrals aus Satz 2.37.
- 5 **Lemma 2.40.** Seien $f_1, f_2: X \rightarrow [0, +\infty]$ messbar, so dass $f:=f_1-f_2$
- 6 definiert ist und $\int f_i d\mu < \infty$ für i = 1, 2. Dann ist f integrierbar, und es gilt

$$\int f \, \mathrm{d}\mu = \int f_1 \, \mathrm{d}\mu - \int f_2 \, \mathrm{d}\mu.$$

- 8 Beweis. Es gilt $|f| \leq f_1 + f_2$, und mit Satz 2.37 folgt $\int |f| d\mu < +\infty$. Wegen
- 9 Satz 2.39 ist f integrierbar. Aufgrund der Konstruktion ist $f_1 \geq f^+$. Definiere
- die nichtnegative Funktion g durch

13

$$g := f_1 - f^+ = f - f^+ + f_2 = f^- + f_2.$$

Da $|g| \leq |f_1|$ ist g integrierbar. Damit bekommen wir

$$\int f_1 d\mu - \int f_2 d\mu = \int (g + f^+) d\mu - \int (g - f^-) d\mu$$

$$= \int g d\mu + \int f^+ d\mu - \left(\int g d\mu + \int (-f^-) d\mu \right)$$

$$= \int f^+ d\mu - \int (-f^-) d\mu = \int f d\mu.$$

- Hierbei haben wir Satz 2.37 benutzt.
- Die Schwierigkeit des Beweises war, dass wir die Additivität des Integrals
- bisher nur für nichtnegative Funktionen haben.
- Satz 2.41. Es seien $f, g: X \to \mathbb{R}$ integrierbare Funktionen. Dann gilt:
- 18 (1) $\int (cf) d\mu = c \int f d\mu \text{ für alle } c \in \mathbb{R}.$
- (2) Ist f + g definiert, dann ist f + g integrierbar, und es gilt $\int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu$.
- (3) Ist $f \leq g$, dann ist $\int f d\mu \leq \int g d\mu$.
- $(4) | \int f d\mu | < \int |f| d\mu.$
- $_{23}$ Beweis. Wegen $|cf| \leq |c| \cdot |f|$ und $|f+g| \leq |f| + |g|$ folgt die Integrierbarkeit
- von cf und f+g aus Satz 2.39 und Satz 2.37. Sei $c\geq 0$. Dann ist $(cf)^+=cf^+$
- und $(cf)^- = cf^-$, und es folgt (1). Analog wird der Fall c < 0 bewiesen. Wegen

Lemma 2.40 bekommen wir aus $f + g = (f^+ + g^+) - (-f^- - g^-)$

$$\int f + g \, d\mu = \int f^{+} + g^{+} \, d\mu - \int (-f^{-} - g^{-}) \, d\mu$$

$$= \int f^{+} \, d\mu + \int g^{+} \, d\mu - \int (-f^{-}) \, d\mu - \int (-g^{-}) \, d\mu$$

$$= \int f \, d\mu + \int g \, d\mu,$$

- 3 wobei wir wieder die Additivität aus Satz 2.37 benutzt haben. Damit ist (2)
- bewiesen. Zu (3): ist $f \leq g$ dann ist $f^+ \leq g^+$ und $f^- \leq g^-$, woraus mit der
- 5 Monotonie aus Satz 2.37

$$\int f \, \mathrm{d}\mu = \int f^+ \, \mathrm{d}\mu - \int (-f^-) \, \mathrm{d}\mu \le \int g^+ \, \mathrm{d}\mu - \int (-g^-) \le \int g \, \mathrm{d}\mu$$

- folgt. (4) bekommen wir aus $-|f| \le f \le |f|$ und (3), (1).
- **Definition 2.42.** Es sei $\mathcal{L}^1(\mu)$ die Menge aller integrierbaren Funktionen von
- Y X $nach <math>\mathbb{R}$.
- Die Menge $\mathcal{L}^1(\mu)$ versehen mit der üblichen Addition und Skalarmultiplikation ist ein Vektorraum wegen Satz 2.41.
- 12 Lemma 2.43. Die Abbildung

$$f \mapsto \|f\|_{\mathcal{L}^1(\mu)} := \int |f| \,\mathrm{d}\mu$$

- ist eine Halbnorm auf $\mathcal{L}^1(\mu)$, d.h., es gilt:
- 15 (1) $||f+g||_{\mathcal{L}^1(\mu)} \le ||f||_{\mathcal{L}^1(\mu)} + ||g||_{\mathcal{L}^1(\mu)}$ für alle $f, g \in \mathcal{L}^1(\mu)$,
- (2) $||cf||_{\mathcal{L}^1(\mu)} \le |c| ||f||_{\mathcal{L}^1(\mu)} \text{ für alle } f \in \mathcal{L}^1(\mu), c \in \mathbb{R}.$
- Im Allgemeinen folgt aus $||f||_{\mathcal{L}^1(\mu)} = 0$ nicht, dass f = 0.
- Beispiel 2.44. Dazu betrachte den Maßraum $(\mathbb{R}, \mathcal{L}(1), \lambda_1)$. Setze $f := \chi_{\mathbb{Q}}$.
- 19 Dann ist $\int f d\mu = \lambda_1(\mathbb{Q}) = 0$ aber $f \neq 0$.
- Satz 2.45. Es seien $f, g: X \to \overline{\mathbb{R}}$ messbare Funktionen. Dann gelten folgende
- 21 Aussagen:
 - (1) $\int |f| d\mu = 0 \Leftrightarrow \{f \neq 0\} \text{ ist eine } \mu\text{-Nullmenge.}$
- 23 (2) Ist f integrierbar, dann ist $\{f = \pm \infty\}$ eine μ -Nullmenge.
- 24 (3) Sei $\{f \neq g\}$ eine μ -Nullmenge. Dann ist f integrierbar genau dann, wenn 25 g integrierbar ist. In diesem Falle gilt $\int f d\mu = \int g d\mu$.

- Beweis. (1) Setze $A := \{f \neq 0\}$. Sei $\int |f| d\mu = 0$. Für $k \in \mathbb{N}$ definiere $A_k :=$
- $\{\frac{1}{k} \leq |f|\}$. Dann ist $\frac{1}{k}\chi_{A_k} \leq \chi_{A_k}|f| \leq |f|$, woraus mit Satz 2.37 $\frac{1}{k}\mu(A_k) \leq 1$
- $\int |f| d\mu = 0$ folgt. Damit ist $\mu(A_k) = 0$ für alle k und $\mu(A) = \mu(\bigcup_{k=1}^{\infty} A_k) = 0$.
- Sei $\mu(A) = 0$. Wegen $|f| \le \infty \cdot \chi_A$ folgt $\int |f| d\mu \le \infty \cdot \mu(A) = 0$.
- 5 (2) Setze $A := \{|f| = +\infty\}$. Dann ist $\infty \cdot \mu(A) \le \int |f| \, \mathrm{d}\mu < \infty$ (Satz 2.37),
- also $\mu(A) = 0$.
- 7 (3) Sei $N := \{ f \neq g \}$. Wegen (1) haben wir

$$\int |f| \,\mathrm{d}\mu = \int (\chi_N + \chi_{N^c}) |f| \,\mathrm{d}\mu = \int \chi_{N^c} |f| \,\mathrm{d}\mu = \int \chi_{N^c} |g| \,\mathrm{d}\mu = \int |g| \,\mathrm{d}\mu.$$

- 9 Damit ist f integrierbar genau dann, wenn g integrierbar ist. Sind f und g
- integrierbar, bekommen wir mit einer analogen Begründung, dass $\int f^+ d\mu =$

$$\int g^+ d\mu \text{ und } \int -f^- d\mu = \int -g^+ d\mu.$$

- **Definition 2.46.** Sei $P: X \to \{wahr, falsch\}$ eine Abbildung (ein einstelliges
- Prädikat auf X im Sinne der Logik). Dann gilt P μ -fast überall (oder P(x) gilt
- 14 für μ -fast alle $x \in X$) genau dann, wenn es eine Menge $N \in \mathcal{A}$ mit $\mu(N) = 0$
- gibt, so dass P(x) für alle $x \in N^c$ gilt.
- Damit lassen sich die Aussagen von Satz 2.45 wie folgt ausdrücken:
- (1) $\int |f| d\mu = 0 \Leftrightarrow f = 0 \mu$ -fast überall.
- 18 (2) Ist f integrierbar, dann ist $f \notin \{\pm \infty\}$ μ -fast überall.
- 19 (3) Ist $f = g \mu$ -fast überall, dann ist $\int f d\mu = \int g d\mu$.
- **Lemma 2.47.** Sei (X, \mathcal{A}, μ) ein vollständiger Maßraum. Seien $f, g: X \to \bar{\mathbb{R}}$
- gegeben, so dass f messbar und f = g μ -fast überall ist. Dann ist g messbar.
- 22 Beweis. Sei N eine μ -Nullmenge, so dass f(x) = g(x) für alle $x \in \mathbb{N}^c$. Sei $\alpha \in \mathbb{R}$.
- 23 Dann ist

$$g^{-1}((-\infty,\alpha]) = \left(N^c \cap f^{-1}((-\infty,\alpha])\right) \cup \left(N \cap g^{-1}((-\infty,\alpha])\right).$$

- Da N eine Nullmenge ist, und der Maßraum vollständig ist, ist $N \cap g^{-1}((-\infty, \alpha])$
- als Teilmenge einer Nullmenge messbar. Es folgt, dass q messbar ist.
- **Definition 2.48.** Es sei $A \in \mathcal{A}$, $f: X \to \overline{\mathbb{R}}$, so dass $\chi_A f$ messbar ist. Dann
- $_{28}$ ist das Integral von f über A definiert als

$$\int_A f \, \mathrm{d}\mu := \int \chi_A f \, \mathrm{d}\mu.$$

- **Aufgabe 2.49.** Es sei $f \in X \to [0, +\infty]$ messbar. Dann ist die Abbildung ν
- 2 definiert durch

$$u(A) := \int_A f \,\mathrm{d}\mu$$

- 4 ein Maß auf A. Die Funktion f heißt Dichtefunktion von ν .
- **Definition 2.50.** Sei $f: X \to \mathbb{C}$ messbar. Dann heißt f integrierbar, falls $\operatorname{Re} f$
- 6 und Im f integrierbar sind, und wir definieren

$$\int f \, \mathrm{d}\mu := \int \mathrm{Re} \, f \, \mathrm{d}\mu + i \int \mathrm{Im} \, f \, \mathrm{d}\mu.$$

- Bei der Integration komplexwertiger Funktionen entstehen keine neuen Ef-
- 9 fekte: Die Abbildung $f \mapsto \int f \, d\mu$ ist C-linear für komplexwertige Funktionen.
- Eine messbare Funktion $f: X \to \mathbb{C}$ ist integrierbar genau dann, wenn |f| in-
- tegrierbar ist. Die Menge aller solcher integrierbarer Funktionen ist wieder ein
- 12 Vektorraum.

2.4 Konvergenzsätze

- Es sei (f_n) eine Folge messbarer Funktionen, die punktweise gegen f konvergiert.
- 15 Wir wollen nun untersuchen, wann gilt

$$\int f_n \, \mathrm{d}\mu \to \int f \, \mathrm{d}\mu.$$

- Dies ist eine nicht-triviale Frage, denn das Integral haben wir über einen Grenz-
- wert definiert.

- Beispiel 2.51. Im Maßraum $(\mathbb{R}, \mathcal{L}(1), \lambda_1)$ definieren wir die folgenden Funk-
- 20 tionenfolgen
 - $f_n(x) = n\chi_{(0,1/n)}(x)$
- $g_n(x) = \chi_{(n,n+1)}(x)$,
- $h_n(x) = \frac{1}{n} \chi_{(0,n)}(x)$.
- Dann konvergieren (f_n) , (g_n) und (h_n) punktweise gegen Null, aber die Integrale
- 25 nicht: $\int f_n d\lambda_1 = \int g_n d\lambda_1 = \int h_n d\lambda_1 = 1$. Hier kann man Grenzwertbildung
- und Integral nicht vertauschen.
- Satz 2.52 (Monotone Konvergenz). Seien (f_n) integrierbare Funktionen von
- 28 X nach \mathbb{R} mit $f_n \nearrow f$ punktweise. Dann gilt $\int f_n d\mu \nearrow \int f d\mu$. Existiert ein
- 29 M > 0, so dass $\int f_n d\mu < M$ für alle n gilt, dann ist f integrierbar.

- Beweis. Definiere $g_n:=f_n-f_1\geq 0,\ g:=f-f_1\geq 0.$ Dann gilt $g_n\nearrow g,$
- $\int g_n d\mu \nearrow \int g d\mu$ (Satz 2.37). Da f_1 integrierbar ist, folgt

$$\int f_n \,\mathrm{d}\mu \nearrow \int f - f_1 \,\mathrm{d}\mu + \int f_1 \,\mathrm{d}\mu.$$

- 4 Ist $\int f f_1 d\mu < \infty$, dann ist $f f_1$ integrierbar, und es folgt $\int f_n d\mu \nearrow$
- $f = \int f \, \mathrm{d}\mu$ aus der Linearität des Integrals (Satz 2.41). Wegen $0 \geq f^- \geq f_1$ ist f^-
- integrierbar, und aus $+\infty = \int f f_1 d\mu = \int f^+ + f^- f_1 d\mu$ folgt

$$+\infty = \int f^+ d\mu = \int f d\mu = \int f - f_1 d\mu + \int f_1 d\mu.$$

8 Weiter folgt

16

21

$$0 \le \int g \, \mathrm{d}\mu = \lim_{n \to \infty} \int g_n \, \mathrm{d}\mu \le M - \int f_1 \, \mathrm{d}\mu,$$

also ist g integrierbar und damit auch f.

Beispiel 2.53. Die Funktionenfolgen $f_n = -\chi_{[n,+\infty)}$ und $g_n = \chi_{[0,n]}$ im Ma β -

raum $(\mathbb{R},\mathcal{L}(1),\lambda_1)$ zeigen, dass monotone Konvergenz alleine nicht reicht für

- 13 die Aussagen des Satzes.
- Satz 2.54 (Lemma von Fatou). Es sei (f_n) eine Folge messbarer Funktionen
- $f_n: X \to [0, +\infty]$. Dann gilt

$$\int (\liminf_{n \to \infty} f_n) \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

17 Beweis. Definiere $g_n(x) := \inf_{k \geq n} f_k(x)$. Dann sind die Funktionen g_n nichtne-

gativ und messbar. Weiter gilt $g_n \leq f_n$ und $g_n \geq \lim\inf_{n \to \infty} f_n$. Also bekom-

men wir aus Satz 2.37

$$\int (\liminf_{n \to \infty} f_n) d\mu = \lim_{n \to \infty} \int g_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

Beispiel 2.55. Gleichheit gilt in Satz 2.54 im Allgemeinen nicht, siehe $f_n(x) =$

 $n\chi_{(0,1/n)}$ aus Beispiel 2.51. Auf die Nichtnegativität kann nicht verzichtet wer-

- 1 f" f ()
- ²⁴ den: für $f_n(x) = -n\chi_{(0,1/n)}$ gilt die Behauptung nicht.
- Satz 2.56 (Dominierte Konvergenz). Es sei (f_n) eine Folge messbarer Funk-
- tionen von X nach \mathbb{R} , $f:X\to\mathbb{R}$ messbar, $g:X\to\mathbb{R}$ integrierbar. Gilt
- 27 $f_n(x) o f(x)$ und $|f_n(x)| \le g(x)$ für alle n und μ -fast alle x, dann folgt
- ²⁸ $\lim_{n\to\infty} \int |f_n f| d\mu = 0$ und $\lim_{n\to\infty} \int f_n d\mu = \int f d\mu$.
- 29 Beweis. (1) Wir nehmen zuerst an, dass $f_n(x) \to f(x)$ und $|f_n(x)| \leq g(x)$ für
- alle n und alle x gilt. Daraus folgt $|f(x)| \leq g(x)$ für alle x. Damit sind die

Funktionen f und f_n integrierbar. Wir setzen $g_n := 2g - |f_n - f| \ge 0$. Nach

₂ Satz 2.54 ist

$$\begin{split} 2\int g\,\mathrm{d}\mu &= \int (\liminf_{n\to\infty} g_n(x))\,\mathrm{d}\mu \leq \liminf_{n\to\infty} \int g_n\,\mathrm{d}\mu \\ &= \liminf_{n\to\infty} \int 2g - |f_n - f|\,\mathrm{d}\mu \\ &= 2\int g\,\mathrm{d}\mu - \limsup_{n\to\infty} \int |f_n - f|\,\mathrm{d}\mu \leq 2\int g\,\mathrm{d}\mu. \end{split}$$

- Damit ist $\limsup_{n\to\infty}\int |f_n-f|\,\mathrm{d}\mu=0$, woraus mit Satz 2.41 die Behauptung
- 5 folgt.
- 6 (2) Sei nun $f_n(x) \to f(x)$ und $|f_n(x)| \le g(x)$ für alle n und μ -fast alle x.
- Dann existiert eine μ -Nullmenge N, so dass $f_n(x) \to f(x)$ und $|f_n(x)| \leq g(x)$
- s für alle n und alle $x \in N^c$. Die Funktionen $\chi_{N^c} f_n$, $\chi_{N^c} f$ erfüllen dann die
- Voraussetzungen von Beweisteil (1). Es folgt also $\lim_{n\to\infty} \int \chi_{N^c} |f_n f| d\mu = 0$.
- Da $\chi_{N^c}|f_n-f|$ und $|f_n-f|$ sich nur auf der Nullmenge N unterscheiden, gilt

$$\int |f_n - f| \, \mathrm{d}\mu = \int \chi_{N^c} |f_n - f| \, \mathrm{d}\mu \to 0.$$

- Beispiel 2.57. Auf die Existenz der integrierbaren gemeinsamen oberen Schran-
- 13 ke kann im Allgemeinen nicht verzichtet werden, wie Beispiel 2.51 zeigt.
- Satz 2.58 (Vollständigkeit von $\mathcal{L}^1(\mu)$). Es sei (f_n) eine Folge integrierbarer
- Funktionen, die eine Cauchyfolge bezüglich $\|\cdot\|_{\mathcal{L}^1(\mu)}$ ist, d.h. für alle $\varepsilon>0$
- existiert ein N, so dass $||f_m f_n||_{\mathcal{L}^1(\mu)} < \varepsilon$ für alle n, m > N.
 - Dann existiert ein $f \in \mathcal{L}^1(\mu)$ mit $||f_n f||_{\mathcal{L}^1(\mu)} \to 0$. Weiter existiert ein
- 18 $g \in \mathcal{L}^1(\mu)$ und eine Teilfolge, so dass $f_{n_k}(x) \to f(x)$ und $|f_{n_k}(x)| \leq g(x)$ für
- 19 alle k und μ -fast alle x.
- Beweis. (1) Wir nehmen zuerst an, dass $\sum_{n=1}^{\infty} \|f_{n+1} f_n\|_{\mathcal{L}^1(\mu)} < \infty$. Definiere
- 21 die messbaren Funktionen

$$g_m := |f_1| + \sum_{n=1}^m |f_{n+1} - f_n|, \quad g := |f_1| + \sum_{n=1}^\infty |f_{n+1} - f_n|.$$

- 23 Dann gilt $g_m \nearrow g$. Weiter ist $\int g_m d\mu = \|f_1\|_{\mathcal{L}^1(\mu)} + \sum_{n=1}^m \|f_{n+1} f_n\|_{\mathcal{L}^1(\mu)}$,
- woraus mit der monotonen Konvergenz $\int g \, \mathrm{d}\mu < \infty$ folgt. Dann ist (Satz 2.45)
- $g<+\infty$ fast überall, und es folgt $\sum_{n=1}^{\infty}|f_{n+1}-f_n|<+\infty$ fast überall. Damit ist
- $(f_n(x))$ für fast alle x eine Cauchyfolge, also konvergent. Wir definieren f(x) =
- $\lim_{n\to\infty} f_n(x)$ falls der Grenzwert existiert, sonst setzen wir f(x):=0. Da
- $|f_n(x)| \leq g(x)$ für alle x, folgt $|f| \leq g$ fast überall. Mit dominierter Konvergenz
- Satz 2.56 bekommen wir $\int |f_n f| d\mu \to 0$.
- 30 (2) Sei m_k die kleinste Zahl in \mathbb{N} , für die $||f_m f_n||_{\mathcal{L}^1(\mu)} < 2^{-k}$ für alle
- $n, m \geq m_k$. Dann ist (m_k) monoton wachsend, und (n_k) definiert durch $n_k := n$

- m_k+k ist streng monoton wachsend. Definiere $\tilde{f}_k:=f_{n_k}$. Dann ist $\sum_{k=1}^{\infty}\|\tilde{f}_{k+1}-f_{n_k}\|$
- $\tilde{f}_k\|_{\mathcal{L}^1(\mu)} < \infty$. Wegen Teil (1) existiert $f \in \mathcal{L}^1(\mu)$, so dass $\|\tilde{f}_k f\|_{\mathcal{L}^1(\mu)} \to 0$
- gilt und die Teilfolge $(f_{n_k}) = (\tilde{f}_k)$ alle weitere Behauptungen erfüllt.
- Sei $\varepsilon > 0$. Wähle k so, dass $\|\tilde{f}_k f\|_{\mathcal{L}^1(\mu)} < \varepsilon/2$ und $2^{-k} < \varepsilon/2$. Sei $n \ge n_k$.
- 5 Dann ist $||f_n f||_{\mathcal{L}^1(\mu)} \le ||f_n \tilde{f}_k||_{\mathcal{L}^1(\mu)} + ||\tilde{f}_k f||_{\mathcal{L}^1(\mu)} < \varepsilon$.
- 6 Beispiel 2.59. Man bekommt im Allgemeinen die punktweise Konvergenz nur
- τ für eine Teilfolge. Wir betrachten den Maßraum $(\mathbb{R},\mathcal{L}(1),\lambda_1)$. Definiere $f_n:=$
- $2^{j/2}\chi_{[k2^{-j},(k+1)2^{-j}]} f\ddot{u}r n = 2^j + k, 0 \le k < 2^j. Dann ist ||f_n||_{\mathcal{L}^1(\lambda_1)} = 2^{-j/2} \to 0.$
- ⁹ Aber die Folge f_n ist nicht punktweise konvergent, und es existiert auch keine
- 10 integrierbare gemeinsame obere Schranke.

2.5 Vergleich mit Riemann-Integral

12 Sei $I = [a, b], a, b \in \mathbb{R}, a < b.$

16

- Eine Abbildung $\phi: I \to \mathbb{R}$ heißt Treppenfunktion, falls $a_1, \dots, a_{n+1} \in \mathbb{R}$ und
- $\varphi_1, \ldots, \varphi_n \in \mathbb{R}$ existieren mit $a = a_1 < a_2 < \cdots < a_{n+1} = b$ und $\phi|_{(a_i, a_{i+1})} = \phi_i$.
- $_{\mbox{\scriptsize 15}}$ Das Riemann-Integral von ϕ ist definiert durch

$$R - \int_a^b \phi(x) dx := \sum_{i=1}^n \phi_i(a_{i+1} - a_i).$$

- Der Vektorraum aller solcher Treppenfunktionen sei $\mathcal{T}(I)$.
- Definition 2.60. Eine Funktion $f: I \to \mathbb{R}$ heißt Riemann integrierbar, wenn all

$$s := \sup \left\{ R - \int_{a}^{b} \phi(x) \, \mathrm{d}x : \ \phi \in \mathcal{T}(I), \ \phi \le f \right\}$$

$$= \inf \left\{ R - \int_{a}^{b} \phi(x) \, \mathrm{d}x : \ \phi \in \mathcal{T}(I), \ f \le \phi \right\}.$$

22 In diesem Fall setzen wir

$$R - \int_a^b f(x) \, \mathrm{d}x := s.$$

- Wir arbeiten hier im Maßraum $(\mathbb{R}^1, \mathcal{L}(1), \lambda_1)$.
- Satz 2.61. Sei $f:I\to\mathbb{R}$ Riemann integrierbar. Dann ist f λ_1 -integrierbar und es gilt

$$R - \int_{a}^{b} f(x) \, \mathrm{d}x = \int_{A} f \, \mathrm{d}\lambda_{1}.$$

- 28 Beweis. Sei ϕ eine Treppenfunktion. Dann ist $\phi \mathcal{B}^1 \mathcal{B}^1$ -messbar, und damit
- ²⁹ auch $\mathcal{L}(1) \mathcal{B}^1$ -messbar. Außerdem ist $R \int_a^b \phi \, \mathrm{d}x = \int_I \phi \, \mathrm{d}\lambda_1$.

- Aus der Riemann-Integrierbarkeit von f bekommen wir für jedes n die Exis-
- tenz von Treppenfunktionen ϕ_n und ψ_n mit $\phi_n \leq f \leq \psi_n$ und $R \int_a^b (\psi_n \psi_n) d\mu$
- ϕ_n d $x \leq \frac{1}{n}$. Daraus folgt $\|\psi_n \phi_n\|_{L^1(\lambda_1)} = R \int_a^b (\psi_n \phi_n) dx \to 0$.
- Wegen Satz 2.58 gibt es eine Teilfolgen, so dass $\psi_{n_k} \phi_{n_k} \to 0$ fast überall.
- 5 Da $\phi_n \leq f \leq \psi_n$ folgt daraus $\lim_{k\to\infty} \psi_{n_k}(x) = \lim_{k\to\infty} \phi_{n_k}(x) = f(x)$ für
- fast alle $x \in [a,b]$. Da der Maßraum $(\mathbb{R}^1,\mathcal{L}(1),\lambda_1)$ vollständig ist, folgt dar-
- aus die Messbarkeit von f. Aus der Integrierbarkeit von ϕ_n und ψ_n folgt die
- 8 Integrierbarkeit von f. Grenzübergang in

$$R - \int_a^b \phi_n \, \mathrm{d}x = \int_I \phi_n \, \mathrm{d}\lambda_1 \le \int_I f \, \mathrm{d}\lambda_1 \le \int_I \psi_n \, \mathrm{d}\lambda_1 = R - \int_a^b \psi_n \, \mathrm{d}x$$

- liefert die Gleichheit von Riemann- und Lebesgue-Integral.
- Bemerkung 2.62. Ein ähnliches Resultat gilt auch für den Borel-Lebesgue-
- 12 $Ma\beta raum(\mathbb{R}^1, \mathcal{B}^1, \lambda_1)$: Nach Änderung auf einer λ_1 -Nullmenge ist die Riemann-
- integrierbare Funktion f dann auch messbar und integrierbar, und die Integrale
- stimmen überein.
- Beispiel 2.63. Die Funktion $\chi_{\mathbb{Q}}$ ist λ_1 -integrierbar aber nicht Riemann inte-
- 16 grierbar.
- Beispiel 2.64. Sei s>1 und $f(x)=x^{-s}$ für x>1. Dann existiert das
- uneigentliche Riemann-Integral

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x = \lim_{t \to \infty} \int_{1}^{t} f(x) \, \mathrm{d}x = \lim_{t \to \infty} \frac{1}{1 - s} (t^{1 - s} - 1) = \frac{1}{s - 1}.$$

20 Ähnlich argumentieren wir das Lebesgue-Integral

$$\int_{(1,\infty)} f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_{(1,\infty)} \chi_{(1,n)} f(x) \, \mathrm{d}\lambda^1 = \frac{1}{s-1}.$$

- Hier haben wir die monotone Konvergenz benutzt.
- Beispiel 2.65. Das uneigentliche Riemann-Integral R- $\int_1^\infty \frac{\sin x}{x} dx$ existiert und
- ist endlich, während die Funktion f definiert durch $f(x) = \frac{\sin x}{x}$ nicht auf dem
- Intervall $[1,+\infty)$ λ_1 -integrierbar ist, und das Integral $\int_{[1,\infty)} f \, d\lambda_1$ ist nicht de-
- 26 finiert.
- Da Lebesgue- und Riemann-Integral gleich sind, kann man auch für das
- 28 Lebesgue-Integral die Riemann-Integral-Schreibweise verwenden, also

$$\int_{(a,b)} f(x) \, \mathrm{d}\lambda^1(x) = \int_a^b f(x) \, \mathrm{d}x$$

für $f:(a,b)\to \bar{\mathbb{R}}$ Lebesgue-messbar schreiben.

2.6 Produktmaße und Satz von Fubini

- seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) Maßräume. Auf $X \times Y$ können wir ein äußere Maß
- 3 definieren:

$$\lambda^*(M) := \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) \nu(B_n) : A_n \in \mathcal{A}, B_n \in \mathcal{B}, \bigcup_{n=1}^{\infty} (A_n \times B_n) \supseteq M \right\}.$$
(2.66)

- $_{5}$ Wegen Satz 1.37 ist dies tatsächlich ein äußeres Maß.
- **Definition 2.67.** Seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) σ -endliche Maßräume. Wir de-
- 7 finieren das durch μ und ν auf $X \times Y$ erzeugte Produktma $\beta \mu \otimes \nu$ als das durch
- 8 Satz 1.60 aus dem obigen äußeren Maß (2.66) erzeugte Maß. Die Menge der
- 9 λ^* -messbaren Mengen nennen wir Λ .
- Dann ist $(X \times Y, \Lambda, \mu \otimes \nu)$ ein vollständiger Maßraum. Wir zeigen, dass $A \otimes B \subseteq \Lambda$.
- Lemma 2.68. Es gilt $A \otimes B \subseteq \Lambda$. Weiter ist

$$(\mu \otimes \nu)(A \times B) = \mu(A)\nu(B)$$

14 $f\ddot{u}r$ alle $A \in \mathcal{A}, B \in \mathcal{B}$.

13

- 15 Beweis. [Fre03, Proposition 251E] Wir zeigen, dass $A \times Y$ und $X \times B$ in Λ
- sind. Wegen $A \times B = (A \times Y) \cap (X \times B)$ und der Definition von $\mathcal{A} \otimes \mathcal{B}$ ist dies
- ausreichend, vergleiche Lemma 1.18.
- Sei $A \in \mathcal{A}$ und $D \subseteq X \times Y$ mit $\lambda^*(D) < \infty$. Sei $\varepsilon > 0$. Dann existieren
- Folgen (A_j) und (B_j) in \mathcal{A} und \mathcal{B} mit $\bigcup_{j=1}^{\infty} (A_j \times B_j) \supseteq D$ und $\lambda^*(D) + \varepsilon \ge 0$
- $\sum_{j=1}^{\infty} \mu(A_j) \nu(B_j)$. Dann ist

$$D \cap (A \times Y) \subseteq \bigcup_{j=1}^{\infty} ((A_j \cap A) \times B_j), \quad D \cap (A \times Y)^c \subseteq \bigcup_{j=1}^{\infty} ((A_j \cap A^c) \times B_j).$$

22 Aus der Definition von λ^* folgt

$$\lambda^*(D \cap (A \times Y)) + \lambda^*(D \cap (A \times Y)^c)$$

$$\leq \left(\sum_{j=1}^{\infty} \mu(A_j \cap A)\nu(B_j)\right) + \left(\sum_{j=1}^{\infty} \mu(A_j \cap A^c)\nu(B_j)\right)$$

$$= \sum_{j=1}^{\infty} \mu(A_j)\nu(B_j) \leq \lambda^*(D) + \varepsilon,$$

also ist $A \times Y$ in Λ . Analog folgt $X \times B \in \Lambda$ für $B \in \mathcal{B}$.

Seien nun $A \in \mathcal{A}, B \in \mathcal{B}$. Dann gilt $\lambda^*(A \times B) \leq \mu(A)\nu(B)$. Es bleibt,

die umgekehrte Ungleichung zu zeigen. Seien also Folgen (A_j) und (B_j) mit

$$\bigcup_{j=1}^{\infty} (A_j \times B_j) \supseteq A \times B$$
 gegeben. Definiere $S := \sum_{j=1}^{\infty} \mu(A_j) \nu(B_j) \in [0, +\infty]$.

Wir zeigen $\mu(A)\nu(B) \leq S$.

Dazu reicht es, den Fall $S < +\infty$ zu betrachten. Setze

$$I := \{j: \ \mu(A_j) = 0\}, \quad J := \{j: \nu(B_j) = 0\}, \quad K := \mathbb{N} \setminus (I \cup J).$$

7 Definiere

$$A' := A \setminus (\bigcup_{j \in I} A_j), \quad B' := B \setminus \bigcup_{j \in J} B_j.$$

Dann ist $\mu(A) = \mu(A')$ und $\nu(B) = \nu(B')$. Weiter ist $A' \subseteq \bigcup_{j \notin I} A_j$ und $B' \subseteq \bigcup_{j \in I} A_j$

 $\bigcup_{j \notin J} B_j$. Außerdem gilt

$$A' \times B' \subseteq \bigcup_{j \in K} A_j \times B_j,$$

was man wie folgt sieht: Sei $(a,b) \in A' \times B', I_a = \{j: a \in A_j\}, J_b = \{j: b' \in A' \times B'\}$

 $\{B_j\}$. Dann ist $I_a \subseteq I^c$, $J_b \subseteq J^c$, damit $I_a \cap J_b \subseteq K$, und wegen $(a,b) \in A$ ist

 $I' \cap J' \neq \emptyset$.

11

Weiter ist $S = \sum_{j \in K} \mu(A_j) \nu(B_j)$ und $\mu(A_j), \nu(B_j) \in \mathbb{R}$ für alle $j \in K$.

Definiere $f_j:X\to\mathbb{R}$ durch $f_j:=\chi_{A_j}\nu(B_j)$ falls $j\in K$, sonst $f_j:=0$. Dann ist

 f_j eine einfache Funktion. Die Folge $\sum_{j=1}^n f_j$ ist monoton wachsend, und wir

setzen $g(x) := \sum_{j=1}^{\infty} f_j(x)$. Da $\int_X \sum_{j=1}^n f_j d\mu \leq S$ für alle n folgt mit dem Satz

¹⁹ über monotone Konvergenz Satz 2.37

$$\int_X g \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X \sum_{j=1}^n f_j \, \mathrm{d}\mu = \lim_{n \to \infty} \sum_{j=1}^n \mu(A_j) \nu(B_j) = S.$$

21 Sei $x \in A'$ und setze $K_x := \{j \in K: x \in A_j\}$. Wegen $\{x\} \times B' \subseteq \bigcup_{j \in K} A_j \times B_j$

folgt $B' \subseteq \bigcup_{j \in K_x} B_j$ und

$$\nu(B) = \nu(B') \le \sum_{j \in K_x} \nu(B_j) = \sum_{j \in K_x} \chi_{A_j}(x)\nu(B_j) \le g(x).$$

Also ist $\chi_{A'}\nu(B) \leq g$ und

$$\mu(A)\nu(B) = \mu(A')\nu(B) = \int_X \chi_{A'}\nu(B) \,\mathrm{d}\mu$$

$$\leq \int_X g(x) \,\mathrm{d}\mu = S = \sum_{i=1}^\infty \mu(A_j)\nu(B_j).$$

Daraus folgt
$$\lambda^*(A \times B) \ge \mu(A)\nu(B)$$
.

- Ein anderer Beweis findet sich zum Beispiel in [Tao11, Proposition 1.7.11].
- Folgerung 2.69. Sind μ und ν σ -endlich, dann sind die Maßräume $(X \times Y, A \otimes$
- 3 $\mathcal{B}, \mu \otimes \nu$) und $(X \times Y, \Lambda, \mu \otimes \nu)$ σ -endlich.
- Folgerung 2.70. Sei $\mu \otimes \nu$ σ-endlich. Für jede Menge $C \in \Lambda$ gibt es $D \in \mathcal{A} \otimes \mathcal{B}$
- 5 und eine $\mu \otimes \nu$ -Nullmenge $N \in \mathcal{A} \otimes \mathcal{B}$ mit $C \cup N = D$.
- 6 Beweis. Sei $(\mu \otimes \nu)(C) < \infty$. Dann folgt aus der Konstruktion von λ^* , dass
- ⁷ für jedes $k \in \mathbb{N}$ eine Menge $D_k \in \mathcal{A} \otimes \mathcal{B}$ existiert mit $C \subseteq D_k$ und $\lambda^*(D_k) \le$
- $\delta = \lambda^*(C) + \frac{1}{k}$. Dann ist $\tilde{D} := \bigcap_{k=1}^{\infty} D_k \in \mathcal{A} \otimes \mathcal{B}$ mit $(\mu \otimes \nu)(C) = (\mu \otimes \nu)(\tilde{D})$, und
- 9 $\tilde{N}:=\tilde{D}\setminus C\in\Lambda$ ist eine $\mu\otimes\nu$ -Nullmenge. Wenden wir diese Argumentation auf
- $_{^{10}}$ \tilde{N} an, dann bekommen wir die Existenz einer $\mu\otimes\nu\text{-Nullmenge}\ N\in\mathcal{A}\otimes\mathcal{B}$ mit
- 11 $\tilde{N} \subseteq N$. Die Behauptung folgt mit $D = \tilde{D} \cup N$.
- Sei nun $C \in \Lambda$ beliebig. Da das Produktmaß σ -endlich ist, existiert eine
- Folge (C_j) in $A \otimes B$ mit $(\mu \otimes \nu)(C_j) < \infty$ und $\bigcup_{j=1}^{\infty} C_j = X \times Y$. Für jedes j
- existieren dann $D_j, N_j \in \mathcal{A} \otimes \mathcal{B}$ mit $(\mu \otimes \nu)(N_j) = 0$ und $(C \cap C_j) \cup N_j = D_j$.
- Dann folgt die Behauptung mit $D:=\bigcup_{j=1}^{\infty}D_{j}$ und $N:=\bigcup_{j=1}^{\infty}N_{j}$.
- Damit ist dann $(X \times Y, \Lambda, \mu \otimes \nu)$ die Vervollständigung von $(X \times Y, \mathcal{A} \otimes \nu)$
- 17 $\mathcal{B}, (\mu \otimes \nu)|_{\mathcal{A} \otimes \mathcal{B}}).$
- Im Folgenden werden wir mit der symmetrischen Differenz $A\triangle B$ arbeiten,
- 19 definiert durch

$$A \triangle B := (A \setminus B) \cup (B \setminus A) = (A \cap B^c) \cup (A^c \cap B).$$

- 21 Aufgabe 2.71. [Bog07, Lemma 1.5.5] Sei (X, A, μ) ein Maßraum. Sind $A, B \in$
- 22 \mathcal{A} mit $\mu(A) < \infty$ und $\mu(B) < \infty$ dann gilt $|\mu(A) \mu(B)| \le \mu(A \triangle B)$.
- Für die Eindeutigkeit des Produktmaßes ist die σ -Endlichkeit von μ und ν entscheidend.
- Satz 2.72. Es seien μ und ν σ -endlich. Sei $\lambda : \mathcal{C} \to \mathbb{R}$ ein Ma β mit $\mathcal{A} \otimes \mathcal{B} \subseteq \mathcal{C}$
- und $\lambda(A \times B) = \mu(A)\nu(B)$ für alle $A \in \mathcal{A}, B \in \mathcal{B}$. Dann gilt $\lambda = \mu \otimes \nu$ auf
- 27 $\mathcal{C} \cap \Lambda \supset \mathcal{A} \otimes \mathcal{B}$.
- 28 Beweis. Sei λ^* das durch μ und ν auf $X \times Y$ erzeugte äußere Maß aus (2.66).
- Dann gilt $\lambda^*(A \times B) = \mu(A)\nu(B) = \lambda(A \times B)$ für alle $A \in \mathcal{A}, B \in \mathcal{B}$ nach
- Lemma 2.68. Wir zeigen, dass $\lambda^*(C) = \lambda(C)$ für alle $C \in \mathcal{C}$.
- (1) Wir zeigen zuerst $\lambda(\bigcup_{j=1}^n A_j \times B_j) = \lambda^*(\bigcup_{j=1}^n A_j \times B_j)$ für $A_j \in \mathcal{A}$,
- $B_j \in \mathcal{B}$. Wir benutzen die Additivität der beiden Maße auf $\mathcal{C} \cap \Lambda \supseteq \mathcal{A} \otimes \mathcal{B}$. Für
- $I \subseteq \{1 \dots n\}$ definieren wir

$$A_I := \{x \mid \forall i = 1 \dots n : x \in A_i \iff i \in I\} = \bigcap_{i \in I} A_i \cap \bigcap_{i \notin I} A_i^c.$$

1 Ist $I' \subseteq \{1 \dots n\}$ mit $I' \neq I$ dann ist $A_I \cap A_{I'} = \emptyset$. Analog definieren wir B_I .

2 Dann gilt

$$\bigcup_{j=1}^{n} A_j \times B_j = \bigcup_{\substack{I,J \subseteq \{1...n\}\\I \cap J \neq \emptyset}} A_I \times B_J,$$

wobei die Vereinigung auf der rechten Seite eine disjunkte Vereinigung ist, und

$$\lambda(\bigcup_{j=1}^{n} A_{j} \times B_{j}) = \sum_{\substack{I,J \subseteq \{1...n\}\\I \cap J \neq \emptyset}} \lambda(A_{I} \times B_{J})$$

$$= \sum_{\substack{I,J \subseteq \{1...n\}\\I \cap J \neq \emptyset}} \lambda^{*}(A_{I} \times B_{J}) = \lambda^{*}(\bigcup_{j=1}^{n} A_{j} \times B_{j}).$$

7 (2) Sei nun $C \in \mathcal{C} \cap \Lambda$ mit $\lambda^*(C) < \infty$. Sei $\varepsilon > 0$. Dann existiert eine Folge

- 8 (C_j) mit $C_j \in \mathcal{A} \boxtimes \mathcal{B}, C_{\varepsilon} := \bigcup_{j=1}^{\infty} C_j \supseteq C$ und $\sum_{j=1}^{\infty} \lambda^*(C_j) \leq \lambda^*(C) + \varepsilon/6$.
- 9 Dann folgt $\lambda^*(C_{\varepsilon} \setminus C) \leq \varepsilon/6$. Da die Folge $n \mapsto C \setminus \bigcup_{j=1}^n C_j$ monoton fällt mit
- $(\mu \otimes \nu)(C \setminus \bigcup_{j=1}^{\infty} C_j) = 0$ gibt es ein N, so dass

$$\lambda^*(C \setminus \bigcup_{j=1}^N C_j) = (\mu \otimes \nu)(C \setminus \bigcup_{j=1}^N C_j) \le \frac{\varepsilon}{6}.$$

Setze $C_N := \bigcup_{j=1}^N C_j$. Dann ist

$$\lambda^*(C_N \triangle C) = \lambda^*(C \triangle \bigcup_{j=1}^N C_j) = \lambda^*(\bigcup_{j=1}^N C_j \setminus C) + \lambda^*(C \setminus \bigcup_{j=1}^N C_j)$$

$$\leq \lambda^*(C_\varepsilon \setminus C) + \frac{\varepsilon}{6} \leq \frac{\varepsilon}{3}.$$

Weiter gibt es eine Folge (D_j) mit $D_j \in \mathcal{A} \boxtimes \mathcal{B}$ mit $\bigcup_{j=1}^{\infty} D_j \supseteq C_N \triangle C$ und $\sum_{j=1}^{\infty} \lambda^*(D_j) \leq \frac{2}{3}\varepsilon$. Dann ist

$$\lambda(C_N \triangle C) \le \sum_{j=1}^{\infty} \lambda(D_j) = \sum_{j=1}^{\infty} \lambda^*(D_j) \le \frac{2}{3}\varepsilon.$$

Aus dem oben in Teil (1) Gezeigten folgt $\lambda^*(C_N) = \lambda(C_N)$. Daraus folgt

19
$$|\lambda^*(C) - \lambda(C)| \le |\lambda^*(C) - \lambda^*(C_N)| + |\lambda(C_N) - \lambda(C)|$$

 $\le \lambda^*(C \triangle C_N) + \lambda(C_N \triangle C) \le \varepsilon.$

Da $\varepsilon > 0$ beliebig war, ist $\lambda^*(C) = \lambda(C)$.

(3) Für allgemeines $C \in \mathcal{C} \cap \Lambda$ folgt $\lambda^*(C) = \lambda(C)$ aus der σ -Endlichkeit von

 $_{1}$ μ und ν .

Der Beweis ist eine Kombination von Argumenten aus den Beweisen von

- Bog07, Theorem 1.11.8, Theorem 1.5.6(iii)]. Eine andere Beweisvariante ist
- ⁴ [Els05, Satz II.5.6].
- 5 Satz 2.73. Es gilt $\lambda_m \otimes \lambda_n = \lambda_{m+n}$ auf $\mathcal{L}(m+n)$.
- ₆ Beweis. [Fre03, Theorem 251N] Es sei λ^* das durch λ_m und λ_n erzeugte äußere
- Maß auf \mathbb{R}^{m+n} . Wir zeigen $\lambda^* = \lambda_{m+n}^*$. Da $\mathbb{J}(m+n) = \mathbb{J}(m) \boxtimes \mathbb{J}(n) \subseteq \mathcal{L}(m) \boxtimes \mathbb{J}(n)$
- 8 $\mathcal{L}(n)$ ist $\lambda^* \leq \lambda^*_{m+n}$.
- (1) Wir zeigen, dass gilt $\lambda_{m+n}^*(A \times B) \leq \lambda^*(A \times B) = \lambda_m(A)\lambda_n(B)$ für alle $A \in \mathcal{L}(m)$ und $B \in \mathcal{L}(n)$. Wir betrachten zuerst den Fall $\lambda_m(A) < \infty$, $\lambda_n(B) < \infty$. Sei $\varepsilon > 0$. Dann gibt es Überdeckungen (A_i) und (B_j) von A_i und B_j durch Quader des \mathbb{R}^m und \mathbb{R}^n mit $\sum_{i=1}^{\infty} \lambda_m(A_i) \leq \lambda_m(A) + \varepsilon$ und $\sum_{j=1}^{\infty} \lambda_n(B_j) \leq \lambda_n(B) + \varepsilon$. Dann ist $(A_i \times B_j)_{i,j \in \mathbb{N}}$ eine Überdeckung von $A \times B_i$ und es folgt mit dem Doppelreihensatz Satz 1.38

$$\lambda_{m+n}^*(A \times B) \le \sum_{i,j=1}^{\infty} \lambda_m(A_i)\lambda_n(B_j) = \left(\sum_{i=1}^{\infty} \lambda_m(A_i)\right) \left(\sum_{j=1}^{\infty} \lambda_n(B_j)\right)$$

$$\le (\lambda_m(A) + \varepsilon)(\lambda_n(B) + \varepsilon).$$

Sei nun $\lambda_m(A)=0$ und $\lambda_n(B)=+\infty$. Dann gibt es eine Überdeckung von B durch eine Folge (B_j) mit $\lambda_n(B_j)<\infty$. Wegen der σ -Subadditivität von λ_{m+n}^* und dem gerade Bewiesenen ist

$$\lambda_{m+n}^*(A \times B) \le \sum_{j=1}^{\infty} \lambda_{m+n}^*(A \times B_j) \le \sum_{j=1}^{\infty} \lambda_m(A)\lambda_n(B_j) = 0.$$

Damit ist die Ungleichung $\lambda_{m+n}^*(A \times B) \leq \lambda^*(A \times B) = \lambda_m(A)\lambda_n(B)$ für alle

²¹ $A \in \mathcal{L}(m), B \in \mathcal{L}(n)$ bewiesen.

22 (2) Sei $C \subseteq \mathbb{R}^{m+n}$. Weiter seien Folgen (A_i) und (B_i) in $\mathcal{L}(m)$ und $\mathcal{L}(n)$ mit

 $\bigcup_{i=1}^{\infty} A_i \times B_i \supseteq C$ gegeben. Es folgt mit der σ -Subadditivität von λ_{m+n}^*

$$\lambda_{m+n}^*(C) \le \sum_{i=1}^{\infty} \lambda_{m+n}^*(A_i \times B_i) \le \sum_{i=1}^{\infty} \lambda_m(A_i)\lambda_n(B_i).$$

Damit ist $\lambda_{m+n}^* \leq \lambda^*$, da λ^* als Infimum über solche Überdeckungen definiert ist.

Nun wollen wir das Lebesgue-Integral bezüglich des Produktmaßes betrachten. Hier wollen wir beweisen, dass

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_{X} \left(\int_{Y} f(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) \\
= \int_{Y} \left(\int_{Y} f(x, y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y).$$

Angewandt auf den Spezialfall $\mu = \nu = \lambda_1$ bekommen wir

$$\int_{\mathbb{R}^2} f \, \mathrm{d}\lambda_2 = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) \, \mathrm{d}\lambda_1(x) \right) \, \mathrm{d}\lambda_1(y) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x,y) \, \mathrm{d}\lambda_1(y) \right) \, \mathrm{d}\lambda_1(x).$$

- Wir beginnen mit einem Hilfsresultat aus der Mengenlehre.
- **Definition 2.74.** Sei $X \neq \emptyset$. Eine Menge $\mathcal{M} \subseteq \mathcal{P}(X)$ heißt monotone Klasse,
- 7 wenn gilt:
- 8 (1) Für (A_j) mit $A_j \in \mathcal{M}$ und $A_j \subseteq A_{j+1}$ folgt $\bigcup_{j=1}^{\infty} A_j \in \mathcal{M}$.
- 9 (2) Für (A_j) mit $A_j \in \mathcal{M}$ und $A_j \supseteq A_{j+1}$ folgt $\bigcap_{i=1}^{\infty} A_j \in \mathcal{M}$.
- Beispiel 2.75. Jede σ -Algebra ist eine monotone Klasse. Da Durchschnitte von
- monotonen Klassen wieder monotone Klassen sind, existiert für jedes $S \subseteq \mathcal{P}(X)$
- 12 die kleinste monotone Klasse, die S enthält.
- Satz 2.76. Sei $A \subseteq \mathcal{P}(X)$ eine (boolesche oder Mengen-) Algebra, d.h. es gilt
- $(1) X \in \mathcal{A},$
- $(2) \ A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A},$
- $(3) \ A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}.$
- Dann ist $A_{\sigma}(A)$ gleich der kleinsten monotonen Klasse, die A enthält.
- 18 Beweis. Es sei

$$\mathcal{M}:=\bigcap\{\mathcal{M}':\ \mathcal{A}\subseteq\mathcal{M}',\ \mathcal{M}'\ \mathrm{monotone}\ \mathrm{Klasse}\}.$$

- Da $\mathcal{A}_{\sigma}(\mathcal{A})$ eine monotone Klasse ist, folgt $\mathcal{M} \subseteq \mathcal{A}_{\sigma}(\mathcal{A})$. Außerdem ist $\mathcal{A} \subseteq \mathcal{M}$
- und damit $X \in \mathcal{M}$. Wir zeigen $\mathcal{A}_{\sigma}(\mathcal{A}) \subseteq \mathcal{M}$.
- Für $A \subseteq X$ definieren wir

$$\mathcal{M}(A) := \{ B \subseteq X : A \cup B, A \setminus B, B \setminus A \in \mathcal{M} \}.$$

- Die Definition ist symmetrisch in A und B, damit ist $B \in \mathcal{M}(A)$ genau dann,
- wenn $A \in \mathcal{M}(B)$.
- Sei nun $A \in \mathcal{A}$. Dann gilt $\mathcal{A} \subseteq \mathcal{M}(A)$. Weiter ist $\mathcal{M}(A)$ eine monotone
- ²⁷ Klasse: Sei (B_j) eine Folge in $\mathcal{M}(A)$ mit $B_j \subseteq B_{j+1}$. Dann ist $A \cup B_j \in \mathcal{M}$,

- $A \cup B_j \subseteq A \cup B_{j+1} \text{ und } A \cup (\bigcup_{j=1}^{\infty} B_j) = \bigcup_{j=1}^{\infty} (A \cup B_j) \in \mathcal{M}. \text{ Also ist } \bigcup_{j=1}^{\infty} B_j \in \mathcal{M}$
- 2 \mathcal{M} . Die restlichen Eigenschaften folgen analog, und es gilt $\bigcup_{i=1}^{\infty} B_i \in \mathcal{M}(A)$.
- Daraus folgt $\mathcal{M} \subseteq \mathcal{M}(A)$ für alle $A \in \mathcal{A}$.
- Aus der Symmetrie folgt $A \subseteq \mathcal{M}(M)$ für alle $M \in \mathcal{M}, A \in \mathcal{A}$. Damit ist
- $\mathcal{A} \subseteq \mathcal{M}(M)$ und $\mathcal{M} \subseteq \mathcal{M}(M)$ für alle $M \in \mathcal{M}$. Weil $X \in \mathcal{M}$ ist, ist \mathcal{M} eine
- 6 Algebra.
- Es bleibt zu zeigen, dass \mathcal{M} eine σ -Algebra ist. Sei (A_i) eine Folge in \mathcal{M} .
- Definiere $B_k := \bigcup_{j=1}^k A_j$. Da \mathcal{M} eine Algebra ist, folgt $B_k \in \mathcal{M}$ für alle k. Weiter
- 9 ist $B_k \subseteq B_{k+1}$. Da \mathcal{M} eine monotone Klasse ist, folgt $\bigcup_{k=1}^{\infty} B_k = \bigcup_{j=1}^{\infty} A_j \in \mathcal{M}$,
- also ist \mathcal{M} eine σ -Algebra, die \mathcal{A} enthält, und damit $\mathcal{A}_{\sigma}(\mathcal{A}) \subseteq \mathcal{M}$.
- Aufgabe 2.77. Seien (X, \mathcal{A}) und (Y, \mathcal{B}) messbare Räume. Sei $C \in \mathcal{A} \otimes \mathcal{B}$. Dann ist $C_x := \{y : (x, y) \in C\} \in \mathcal{B}$ für alle $x \in X$ und $C^y := \{x : (x, y) \in C\} \in \mathcal{A}$ für alle $y \in Y$.
- ¹⁴ Aufgabe 2.78. Seien (X, A) und (Y, B) messbare Räume, $f: X \times Y \to \overline{\mathbb{R}}$
- 15 $\mathcal{A} \otimes \mathcal{B}$ -messbar. Dann ist für jedes $x \in X$ die Funktion $f_x(y) := f(x,y)$ \mathcal{B} -
- messbar. Analog ist für jedes $y \in Y$ die Funktion $f_y(x) := f(x,y)$ A-messbar.
- Wir betrachten zuerst Integrale nicht-negativer Funktionen. Wir beginnen
- mit Integralen charakteristischer Funktionen. Außerdem zeigt der folgende Satz
- 19 eine Alternative, um ein Produktmaß zu definieren.
- Satz 2.79. Seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) Maßräume, ν sei σ -endlich. Dann ist
- ²¹ für jedes $C \in A \otimes B$ die Abbildung $x \mapsto \nu(C_x)$ A-messbar, und

$$\rho(C) := \int_X \nu(C_x) \,\mathrm{d}\mu(x)$$

ist ein Maß auf $\mathcal{A}\otimes\mathcal{B}$ mit

$$\rho(A \times B) = \mu(A)\nu(B) \quad \forall A \in \mathcal{A}, \ B \in \mathcal{B}.$$

- 25 Beweis. (1) Wir betrachten erst den Fall, dass ν endlich ist. Der Beweis folgt
- dem Prinzip der guten Mengen: Wir definieren

$$\mathcal{M} := \{ C \in \mathcal{A} \otimes \mathcal{B} : x \mapsto \nu(C_x) \text{ ist } \mathcal{A}\text{-messbar} \}.$$

- Wir zeigen, dass \mathcal{M} eine monotone Klasse ist. Ist (C_i) eine monoton fallende
- Folge in \mathcal{M} mit $C:=\bigcap_{j=1}^{\infty}C_j$, dann gilt $\nu(C_x)=\lim_{j\to\infty}\nu(C_{j,x})$ für alle x
- wegen (1.30). Und damit ist $C \in \mathcal{M}$. Für eine monoton wachsende Folge (C_i)
- in \mathcal{M} bekommen wir analog $\bigcup_{j=1}^{\infty} C_j \in \mathcal{M}$.

Wir betrachten nun die Menge

$$\mathcal{C}:=\left\{igcup_{j=1}^n A_j imes B_j:\ n\in\mathbb{N},\ A_j\in\mathcal{A},\ B_j\in\mathcal{B}
ight\}.$$

- Dann ist \mathcal{C} eine Algebra: aus $C_1, C_2 \in \mathcal{C}$ folgt $C_1 \cup C_2 \in \mathcal{C}$. Wegen $(A \times B)^c =$
- $(A^c \times Y) \cup (X \times B^c)$ ist

$$\mathbf{5} \quad \left(\bigcup_{j=1}^n A_j \times B_j\right)^c = \bigcap_{j=1}^n ((A_j^c \times Y) \cup (X \times B_j^c)) = \bigcup_{J \subseteq \{1...n\}} \left(\bigcap_{j \in J} A_j^c \times \bigcap_{j \not \in J} B_j^c\right),$$

- $_{6}$ und C ist eine Algebra.
- Wir zeigen $\mathcal{C} \subseteq \mathcal{M}$. Wie im Beweis von Satz 2.72 argumentiert, kann jede
- $_{8}$ Vereinigung von endlich vielen Mengen aus $\mathcal{A}\boxtimes\mathcal{B}$ als endliche, disjunkte Verei-
- nigung von Mengen aus $\mathcal{A} \boxtimes \mathcal{B}$ geschrieben werden. Sei $C := \bigcup_{j=1}^n A_j \times B_j \in \mathcal{C}$
- mit disjunkten Mengen $A_j \times B_j$. Dann ist

$$x \mapsto \nu(C_x) = \sum_{j=1}^{n} \nu((A_j \times B_j)_x) = \sum_{j=1}^{n} \chi_{A_j}(x)\nu(B_j)$$

- eine messbare Funktion, und $C \in \mathcal{M}$, also $\mathcal{C} \subseteq \mathcal{M}$. Nach Satz 2.76 ist $\mathcal{A} \otimes \mathcal{B} = \mathcal{A}_{\sigma}(\mathcal{C})$ die kleinste monotone Klasse, die \mathcal{C} enthält, also folgt $\mathcal{A} \otimes \mathcal{B} \subseteq \mathcal{M}$.
- (2) Sei nun ν σ -endlich. Dann gibt es eine aufsteigende Folge (Y_j) mit $Y_j \in \mathcal{B}$, $\bigcup_{j=1}^{\infty} Y_j = Y$ und $\nu(Y_j) < \infty$. Dann ist $B \mapsto \nu(B \cap Y_j)$ ein endliches Maß auf Y für alle j. Sei $C \in \mathcal{A} \otimes \mathcal{B}$. Wegen (1) ist $x \mapsto \nu(C_x \cap Y_j)$ \mathcal{A} -messbar für alle j. Wegen der Konvergenz $\nu(C_x \cap Y_j) \to \nu(C_x)$ für alle x ist auch $x \mapsto \nu(C_x)$ \mathcal{A} -messbar.
- 19 (3) Es bleibt zu zeigen, dass ρ die behaupteten Eigenschaften hat. Sind 20 $A \in \mathcal{A}, B \in \mathcal{B},$ dann ist

$$\rho(A \times B) = \int_X \chi_A \nu(B) \, \mathrm{d}\mu(x) = \mu(A)\nu(B).$$

Sei (C_j) eine Folge disjunkter Mengen aus $\mathcal{A} \otimes \mathcal{B}$. Setze $C := \bigcup_{j=1}^{\infty} C_j$. Dann ist $\nu(C_x) = \nu(\bigcup_{j=1}^{\infty} C_{j,x}) = \sum_{j=1}^{\infty} \nu(C_{j,x})$ für alle x. Mithilfe der monotonen

Konvergenz (Satz 2.37) folgt

$$\int_{X} \nu(C_x) \, \mathrm{d}\mu(x) = \int_{X} \sum_{j=1}^{\infty} \nu(C_{j,x}) \, \mathrm{d}\mu(x)$$

$$= \int_{X} \lim_{n \to \infty} \sum_{j=1}^{n} \nu(C_{j,x}) \, \mathrm{d}\mu(x)$$

$$= \lim_{n \to \infty} \int_{X} \sum_{j=1}^{n} \nu(C_{j,x}) \, \mathrm{d}\mu(x)$$

$$= \lim_{n \to \infty} \sum_{j=1}^{n} \rho(C_j) = \sum_{j=1}^{\infty} \rho(C_j),$$

- und ρ ist ein Maß.
- Bemerkung 2.80. Der Umweg über die Menge C war nötig, denn man kann
- 5 nicht zeigen, dass M abgeschlossen gegenüber Durchschnittsbildung ist. In die-
- sem Fall wäre \mathcal{M} eine Algebra: Wegen (1.27) würde aus $C_1 \subseteq C_2$ mit $C_1, C_2 \in$
- 7 \mathcal{M} folgen, dass $C_2 \setminus C_1 \in \mathcal{M}$ ist, damit wäre \mathcal{M} abgeschlossen gegenüber Kom-
- s plementbildung.
- s Satz 2.81. Seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) σ -endliche Maßräume. Sei $C \in \mathcal{A} \otimes \mathcal{B}$.
- Dann sind die Abbildungen $x \mapsto \nu(C_x)$ und $y \mapsto \mu(C^y)$ A- und B-messbar, und
- 11 es gill

15

$$(\mu \otimes \nu)(C) = \int_X \nu(C_x) \,\mathrm{d}\mu(x) = \int_Y \mu(C^y) \,\mathrm{d}\nu(y).$$

- 13 Beweis. Folgt aus Satz 2.79 und Satz 2.72.
- Sei $C \in \mathcal{A} \otimes \mathcal{B}$. Dann ist für alle $x \in X$ und $y \in Y$

$$\chi_C(x,y) = \chi_{C_x}(y).$$

Damit bekommen wir aus Satz 2.81

$$_{17} \quad (\mu \otimes \nu)(C) = \int_{X \times Y} \chi_C \, \mathrm{d}(\mu \otimes \nu) = \int_X \nu(C_x) \, \mathrm{d}\mu(x) = \int_X \int_Y \chi(x,y) \, \mathrm{d}\nu(y) \, \mathrm{d}\mu(x).$$

- Folgerung 2.82 (Prinzip von Cavalieri). Seien $A, B \in \mathcal{L}(m+n)$. Gilt $\lambda_m(A_y) =$
- 19 $\lambda_m(B_y)$ für λ_n -fast alle $y \in \mathbb{R}^n$, dann folgt $\lambda^{m+n}(A) = \lambda^{m+n}(B)$.
- Beweis. Folgt aus Satz 2.81 und Satz 2.73.
- Beispiel 2.83. Ohne σ-Endlichkeit ist die Behauptung von Satz 2.81 falsch.
- Sei $X = Y = \mathbb{R}$ mit $A = B = B^1$ und $\mu = \lambda_1$ sowie $\nu = \mathcal{H}^0$ (Zählmaß). Sei
- 23 $D:=\{(x,x): x\in [0,1]\}$. Dann ist D abgeschlossen und gehört zu $\mathcal{B}^2=\mathcal{B}^1\otimes\mathcal{B}^1$.

П

Wir beweisen zuerst, dass $\lambda^*(D) = +\infty$ mit dem äußeren Maß λ^* aus (2.66). Seien (A_j) und (B_j) Folgen in \mathcal{A} und \mathcal{B} mit $\sum_{j=1}^{\infty} \mu(A_j)\nu(B_j) < \infty$. Wir zeigen,

 $dass \bigcup_{i=1}^{\infty} A_i \times B_j$ keine Überdeckung von D sein kann.

Damit $\mu(A_j)\nu(B_j)<\infty$ ist, muss B_j eine endliche Menge oder A_j eine λ_1 -Nullmenge sein. Wir setzen

$$A := \bigcup_{j: \lambda_1(A_j)=0} A_j, \quad B := \bigcup_{j: \mathcal{H}^0(B_j) < \infty} B_j.$$

Dann ist A eine λ_1 -Nullmenge und B eine abzählbare Menge.

Weiter ist $A_j \times B_j \subseteq (A \times \mathbb{R}) \cup (\mathbb{R} \times B)$ für alle j, und damit $\bigcup_{j=1}^{\infty} A_j \times B_j \subseteq$ $(A \times \mathbb{R}) \cup (\mathbb{R} \times B). \text{ Sei } \pi_1 : \mathbb{R}^2 \to \mathbb{R}^1 \text{ die Projektion auf die erste Koordinate,}$ $\text{also } \pi_1(x_1, x_2) = x_1. \text{ Dann ist } \pi_1(D \cap (A \times \mathbb{R})) = A \text{ und } \pi_1(D \cap (\mathbb{R} \times B)) = B.$

Da $\pi_1(D) = [0,1]$ ist $\lambda_1(\pi_1(D)) = 1$. Weil aber $\lambda_1(\pi(A \cup B)) = 0$ ist, kann $\bigcup_{j=1}^{\infty} A_j \times B_j$ keine Überdeckung von D sein. Damit folgt $\lambda^*(D) = (\mu \otimes \nu)(D) = 0$

Wertet man die Integrale in Satz 2.81 aus bekommt man allerdings andere Werte: es ist $\nu(D_x) = \chi_{[0,1]}(x)$ und $\mu(D^y) = 0$, so dass

$$\int_X \nu(D_x) \,\mathrm{d}\mu(x) = 1, \quad \int_Y \mu(D^y) \,\mathrm{d}\nu(y) = 0.$$

Außerdem zeigt dieses Beispiel, dass das Produktmaß nicht mehr eindeutig im Sinne von Satz 2.72 sein kann. Denn wegen Satz 2.79 ist $C \mapsto \int_Y \mu(C^y) d\nu(y)$ ein weiteres, von $\mu \otimes \nu$ verschiedenes Maß auf $X \times Y$.

Den folgenden Satz (Satz von Fubini) beweisen wir in vier Varianten: jeweils für nicht-negative Funktionen und integrierbare Funktionen, und $\mathcal{A}\otimes\mathcal{B}$ -messbare und Λ -messbare Funktionen.

Satz 2.84. Seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) σ -endliche Maßräume. Sei $f: X \times Y \to$ $[0, +\infty]$ $\mathcal{A} \otimes \mathcal{B}$ -messbar.

Dann sind die Funktionen $x \mapsto \int_Y f(x,y) \, \mathrm{d}\nu(y)$ und $y \mapsto \int_X f(x,y) \, \mathrm{d}\mu(x)$ A- und B-messbar, und es gilt

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_{X} \left(\int_{Y} f(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) \\
= \int_{Y} \left(\int_{X} f(x, y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y).$$

Beweis. Wegen Satz 2.81 gilt die Behauptung des Satzes für einfache Funktionen $f: X \times Y \to [0, +\infty)$.

Sei nun $f: X \times Y \to [0, +\infty]$ $\mathcal{A} \otimes \mathcal{B}$ -messbar. Dann gibt es wegen Satz 2.29 eine Folge einfacher, nichtnegativer Funktionen (f_n) mit $f_n \nearrow f$. Dann ist

- die Funktion $x \mapsto \int_Y f(x,y) d\nu(y)$ als punktweiser Grenzwert der messbaren
- Funktionen $x \mapsto \int_{Y} f_n(x,y) d\nu(y)$ A-messbar. Analog ist $y \mapsto \int_{X} f(x,y) d\mu(x)$
- $_3$ $\,$ $\mathcal{B}\text{-messbar}.$ Mit monotoner Konvergenz Satz 2.37 bekommen wir

$$\int_{Y} f_n(x,y) \, \mathrm{d}\nu(y) \nearrow \int_{Y} f(x,y) \, \mathrm{d}\nu(y)$$

 $_{5}$ für alle x und

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \lim_{n \to \infty} \int_{X \times Y} f_n \, \mathrm{d}(\mu \otimes \nu)$$

$$= \lim_{n \to \infty} \int_X \left(\int_Y f_n(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x)$$

$$= \int_X \left(\lim_{n \to \infty} \int_Y f_n(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x)$$

$$= \int_X \left(\int_Y f(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x).$$

- ⁷ Analog bekommen wir die zweite Gleichung.
- s Satz 2.85. Seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) σ -endliche Maßräume. Sei $f: X \times Y \to \mathcal{A}$
- $\mathbb{R} \ \mathcal{A} \otimes \mathcal{B}$ -messbar und integrierbar bezüglich $\mu \otimes \nu$.
- Dann sind die Funktionen $x \mapsto \int_Y f(x,y) d\nu(y)$ und $y \mapsto \int_X f(x,y) d\mu(x)$
- $_{11}$ für μ -fast alle x und ν -fast alle y definiert und integrierbar, und es gilt

$$\int_{X\times Y} f \,\mathrm{d}(\mu\otimes\nu) = \int_X \left(\int_Y f(x,y) \,\mathrm{d}\nu(y)\right) \,\mathrm{d}\mu(x) \\
= \int_Y \left(\int_X f(x,y) \,\mathrm{d}\mu(x)\right) \,\mathrm{d}\nu(y).$$

Diese Schreibweise birgt eine kleine Unsauberkeit: die Funktion $y\mapsto f(x,y)$ muss nicht für alle x ν -integrierbar sein. Die Doppelintegrale sind deshalb wie folgt zu verstehen: Die Menge $N:=\{x:\int_Y |f(x,y)|\,\mathrm{d}\nu(y)=+\infty\}$ ist eine μ -Nullmenge nach der Behauptung von Satz 2.85, und wir setzen

$$\int_{X} \left(\int_{Y} f(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) := \int_{N^{c}} \left(\int_{Y} f(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x). \tag{2.86}$$

- Analog verfahren wir mit dem zweiten Doppelintegral.
- 20 Beweis von Satz 2.85. Wegen Satz 2.39 ist |f| bezüglich $\mu \otimes \nu$ integrierbar,
- und Satz 2.84 ergibt $\int_{X\times Y} |f| \,\mathrm{d}(\mu\otimes\nu) = \int_X \left(\int_Y |f(x,y)| \,\mathrm{d}\nu(y)\right) \,\mathrm{d}\mu(x)$. Nach
- Satz 2.45 ist die Menge $N:=\{x:\;\int_Y|f(x,y)|\,\mathrm{d}\nu(y)=+\infty\}$ eine μ -Nullmenge.

1 Ist $x \in N^c$ dann gilt

$$\int_{Y} f(x,y) \, d\nu(y) = \int_{Y} f^{+}(x,y) \, d\nu(y) + \int_{Y} -f^{-}(x,y) \, d\nu(y).$$

- Die Funktionen auf der rechten Seite sind A-messbar und μ -integrierbar we-
- 4 gen Satz 2.84. Weiter ist $N \times Y$ eine $\mu \otimes \nu$ -Nullmenge. Durch Integration und
- 5 Anwenden von Satz 2.84 erhalten wir

$$\int_{N^{c}} \left(\int_{Y} f(x, y) \, d\nu(y) \right) d\mu(x)
= \int_{N^{c}} \left(\int_{Y} f^{+}(x, y) \, d\nu(y) \right) d\mu(x) - \int_{N^{c}} \left(\int_{Y} -f^{-}(x, y) \, d\nu(y) \right) d\mu(x)
= \int_{X \times Y} \chi_{N^{c} \times Y} f^{+} d(\mu \otimes \nu) - \int_{X \times Y} \chi_{N^{c} \times Y} \cdot (-f^{-}) d(\mu \otimes \nu)
= \int_{X \times Y} f^{+} d(\mu \otimes \nu) - \int_{X \times Y} -f^{-} d(\mu \otimes \nu)
= \int_{X \times Y} f d(\mu \otimes \nu).$$
(2.87)

⁸ Da $\mu(N) = 0$, ist nach der Definition in (2.86)

$$\int_X \left(\int_Y f(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) = \int_{N^c} \left(\int_Y f(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x).$$

Der zweite Teil der Behauptung folgt analog.

Wir wollen nun noch Sätze analog zu Satz 2.84 und Satz 2.85 formulieren,

12 für Funktionen, die Λ -messbar sind. Wegen $\mathcal{A} \otimes \mathcal{B} \subseteq \Lambda$ ist das eine schwächere

Voraussetzung als $\mathcal{A} \otimes \mathcal{B}$ -Messbarkeit.

Lemma 2.88. Sei $\mu \otimes \nu$ σ-endlich. Sei $f: X \times Y \to \overline{\mathbb{R}}$ Λ-messbar. Dann

existiert eine Menge $N \in \mathcal{A} \otimes \mathcal{B}$ mit $(\mu \otimes \nu)(N) = 0$ und eine $\mathcal{A} \otimes \mathcal{B}$ -messbare

Funktion \tilde{f} , so dass $f = \tilde{f}$ auf N^c .

17 Beweis. Sei zunächst $f=\chi_C$ mit $C\in\Lambda$. Nach Folgerung 2.70 existieren $D,N\in$

 $\mathcal{A} \otimes \mathcal{B}$ mit $C \cup N = D$ und $(\mu \otimes \nu)(D) = (\mu \otimes \nu)(C)$. Die Behauptung folgt

mit $\tilde{f} = \chi_D$. Dann gilt die Behauptung auch für einfache Funktionen. Sei nun

f A-messbar. Wir approximieren f durch eine Folge (f_n) einfacher Funktionen,

die Λ -messbar sind (Folgerung 2.30). Dann gibt es für jedes n eine Nullmenge

 $N_n \in \mathcal{A} \otimes \mathcal{B}$ und eine (einfache) $\mathcal{A} - \mathcal{B}$ -messbare Funktion \tilde{f}_n mit $\tilde{f}_n = f_n$ auf

 N_n^c . Setze $N:=\bigcup_{n=1}^\infty N_n$. Dann ist $(\mu\otimes\nu)(N)=0$. Die Behauptung folgt mit

 $\tilde{f} = \limsup_{n \to \infty} \tilde{f}_n.$

Satz 2.89. Seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) σ -endliche und vollständige Maßräume

26 mit Produkt $(X \times Y, \Lambda, \mu \otimes \nu)$. Sei $f: X \times Y \to [0, +\infty]$ Λ -messbar.

Dann gilt:

- 2 (1) Für μ -fast alle x ist $y \mapsto f(x,y)$ \mathcal{B} -messbar. Weiter ist die (für fast alle x definierte) Abbildung $x \mapsto \int_{V} f(x,y) \, d\nu(y) \, \mathcal{A}$ -messbar.
- (2) Für ν -fast alle y ist $x \mapsto f(x,y)$ \mathcal{A} -messbar. Weiter ist die (für fast alle y definierte) Abbildung $y \mapsto \int_X f(x,y) d\mu(x) \mathcal{B}$ -messbar.

(3)

11

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_{X} \left(\int_{Y} f(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) \\
= \int_{Y} \left(\int_{X} f(x, y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y).$$

⁸ Beweis. Aus Lemma 2.88 bekommen wir eine $\mu \otimes \nu$ -Nullmenge $N \in \mathcal{A} \otimes \mathcal{B}$ und

eine $\mathcal{A}\otimes\mathcal{B}$ -messbare Funktion \tilde{f} mit $f=\tilde{f}$ auf N^c . Dann ist $\int_{X\times Y}f\,\mathrm{d}(\mu\otimes\nu)=0$

 $_{^{10}}$ $\int_{X\times Y}\tilde{f}\,\mathrm{d}(\mu\otimes\nu).$ Satz 2.84 angewandt auf χ_{N} ergibt

$$0 = (\mu \otimes \nu)(N) = \int_X \nu(N_x) \,\mathrm{d}\mu(x) = \int_Y \mu(N^y) \,\mathrm{d}\nu(y).$$

Damit ist N_x ein ν -Nullmenge für μ -fast alle x, und N^y ist ein μ -Nullmenge für ν -fast alle y.

Sei $M:=\{x: \nu(N_x)>0\}$. Sei $x\in M^c$, also $\nu(N_x)=0$. Dann ist f(x,y)=0 für alle $y\in (N_x)^c$. Nun ist $y\mapsto \tilde{f}(x,y)$ \mathcal{B} -messbar, $\nu(N_x)=0$ und

 (Y, \mathcal{B}, ν) vollständig, also $y \mapsto f(x, y)$ ist \mathcal{B} -messbar, und damit ist das Integral

 $\int_{Y} f(x,y) d\nu(y)$ definiert. Und es gilt $\int_{Y} f(x,y) d\nu(y) = \int_{Y} \tilde{f}(x,y) d\nu(y)$, weil

sich $f(x,\cdot)$ und $\tilde{f}(x,\cdot)$ nur auf der Nullmenge N_x unterscheiden.

Da die Abbildung $x \mapsto \int_Y \tilde{f}(x,y) \, d\nu(y)$ A-messbar (Satz 2.84), $\mu(M) = 0$

und (X, \mathcal{A}, μ) vollständig ist, ist auch $x \mapsto \int_Y f(x, y) \, d\nu(y) \, \mathcal{A}$ -messbar. Integrie-

ren bezüglich x gibt

$$\int_X \left(\int_Y f(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) = \int_{M^c} \left(\int_Y f(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x)$$

$$= \int_{M^c} \left(\int_Y \tilde{f}(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) = \int_X \left(\int_Y \tilde{f}(x,y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x).$$

Analog argumentieren wir für $y \mapsto \int_X f(x,y) \, \mathrm{d}\mu(x)$. Die Behauptung folgt mit Satz 2.84 angewandt auf \tilde{f} .

Satz 2.90. Seien (X, \mathcal{A}, μ) und (Y, \mathcal{B}, ν) σ -endliche und vollständige Maßräume mit Produkt $(X \times Y, \Lambda, \mu \otimes \nu)$. Sei $f: X \times Y \to \mathbb{R}$ Λ -messbar und integrierbar.

Dann gilt:

- 1 (1) Für μ -fast alle x ist $y \mapsto f(x,y)$ ν -integrierbar. Weiter ist die (für fast alle x definierte) Abbildung $x \mapsto \int_Y f(x,y) d\nu(y)$ μ -integrierbar.
- 3 (2) Für ν -fast alle y ist $x \mapsto f(x,y)$ μ -integrierbar. Weiter ist die (für fast alle y definierte) Abbildung $y \mapsto \int_X f(x,y) d\mu(x) \nu$ -integrierbar.

(3)

$$\int_{X \times Y} f \, \mathrm{d}(\mu \otimes \nu) = \int_{X} \left(\int_{Y} f(x, y) \, \mathrm{d}\nu(y) \right) \, \mathrm{d}\mu(x) \\
= \int_{Y} \left(\int_{X} f(x, y) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\nu(y).$$

⁷ Beweis. Der Beweis ist ähnlich zu Satz 2.85. Da f integrierbar ist, sind auch

- 8 f^+ und $-f^-$ integrierbar. Wir wenden Satz 2.89 auf |f|, f^+ und $-f^-$ an. Dann
- gibt es eine μ -Nullmenge N, so dass gilt: $y \mapsto f(x,y)$ ist \mathcal{B} -messbar und inte-
- grierbar für alle $x \in N^c$, und die Abbildungen $x \mapsto \chi_{N^c} \int_Y |f(x,y)| \, \mathrm{d}\nu(y), x \mapsto \chi_{N^c} \int_Y |f(x,y)| \, \mathrm{d}\nu(y)$
- 11 $\chi_{N^c} \int_Y f^+(x,y) d\nu(y), x \mapsto \chi_{N^c} \int_Y -f^-(x,y) d\nu(y) \text{ sind } \mathcal{A} \mathcal{B}(\mathbb{R}) \text{-messbar. Wir}$
- können nun wie in (2.87) argumentieren.

Beispiel 2.91. [Els05, Beispiel V.2.3] Für die Funktion

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} \arctan(\frac{x}{y})$$

15 sind die iterierten Integrale

$$\int_0^1 \int_0^1 f(x,y) \, dx \, dy = -\frac{\pi}{4}, \ \int_0^1 \int_0^1 f(x,y) \, dy \, dx = +\frac{\pi}{4},$$

also kann f nicht λ_1 -integrierbar auf $(0,1)^2$ sein.

Lemma 2.92. Sei (X, \mathcal{A}, μ) σ -endlich und $f: X \to [0, \infty]$ \mathcal{A} - $\mathcal{B}(\bar{\mathbb{R}})$ messbar.

19 Definiere

14

16

22

24

$$A_f := \{(x,t): 0 \le t < f(x)\} \subseteq X \times \mathbb{R}.$$

21 Dann ist

$$(\mu \otimes \lambda_1)(A^f) = \int_X f \,\mathrm{d}\mu.$$

23 Beweis. Wegen

$$A_f = \bigcup_{t \in \mathbb{O}} \left(\left\{ x : \ f(x) > t \right\} \times [0, t] \right)$$

ist $A_f \in \mathcal{A} \otimes \mathcal{B}(\bar{\mathbb{R}})$. Da $\lambda_1((A_f)_x) = f(x)$, folgt die Behauptung mit Satz 2.81.

- **Lemma 2.93.** Sei (X, A, μ) σ-endlich und $f: X \to [0, \infty]$ A- $\mathcal{B}(\bar{\mathbb{R}})$ messbar.
- 2 Dann gilt

$$\int_X f \,\mathrm{d}\mu = \int_{(0,+\infty)} \mu(\{x: \ f(x) > t\}) \,\mathrm{d}\lambda_1(t),$$

- wobei $t \mapsto \mu(\{x: f(x) > t\}) \mathcal{B}(\bar{\mathbb{R}})$ -messbar ist.
- 5 Beweis. Sei $Y:=[0,+\infty)$. Es gilt $f(x)=\int_Y \chi_{(0,f(x))}\,\mathrm{d}\lambda_1$. Für $t\geq 0$ und $x\in X$
- 6 ist

$$\chi_{(0,f(x))}(t) = \chi_{(t,+\infty)}(f(x)).$$

8 Anwenden von Satz 2.84 gibt

$$\begin{split} \int_X f \, \mathrm{d}\mu &= \int_X \left(\int_Y \chi_{(0,f(x))}(t) \, \mathrm{d}\lambda_1(t) \right) \, \mathrm{d}\mu(x) \\ &= \int_Y \left(\int_X \chi_{(0,f(x))}(t) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\lambda_1(t) \\ &= \int_Y \left(\int_X \chi_{(t,+\infty)}(f(x)) \, \mathrm{d}\mu(x) \right) \, \mathrm{d}\lambda_1(t) \\ &= \int_Y \mu(\{x: \ f(x) > t\}) \, \mathrm{d}\lambda_1(t). \end{split}$$

Folgerung 2.94. Sei $f: \mathbb{R} \to [0, +\infty]$ $\mathcal{L}(n)$ -messbar. Dann gilt für alle s > 0

$$\int_{\mathbb{R}} f(x) \, \mathrm{d}\lambda_1(x) = s \int_{\mathbb{R}} f(sx) \, \mathrm{d}\lambda_1(x).$$

13 Beweis. Sei $t \geq 0$. Dann ist

$$\{y: \ f(y) > t\} = s \cdot \{x: \ f(sx) > t\}.$$

Wegen Satz 1.83 ist

$$\lambda_1(\{y: f(y) > t\}) = \lambda_1(s\{x: f(sx) > t\}) = s\lambda_1(\{x: f(sx) > t\}).$$

- Integrieren bezüglich t ergibt mit Lemma 2.93 die Behauptung. \square
- Folgerung 2.95. Sei $g: \mathbb{R} \to [0, +\infty]$ $\mathcal{L}(n)$ -messbar. Dann gilt

$$\left(\int_{\mathbb{R}} g \,\mathrm{d}\lambda_1\right)^2 = 2 \int_{\mathbb{R}} \int_{(0,1)} g(xy) g(y) y \,\mathrm{d}\lambda_1(x) \,\mathrm{d}\lambda_1(y).$$

Beweis. Mit Satz 2.84 erhalten wir

$$\int_{\mathbb{R}} \int_{(0,y)} g(x)g(y) \, d\lambda_1(x) \, d\lambda_1(y) = \int_{\mathbb{R}} \int_{(x,\infty)} g(x)g(y) \, d\lambda_1(y) \, d\lambda_1(x)$$
$$= \int_{\mathbb{R}} \int_{(y,\infty)} g(x)g(y) \, d\lambda_1(x) \, d\lambda_1(y),$$

- wobei im letzten Schritt nur die Buchstaben x und y vertauscht wurden. Dann
- 4 bekommen wir

$$\left(\int_{\mathbb{R}} g \, d\lambda_1\right)^2 = \int_{\mathbb{R}} \int_{\mathbb{R}} g(x)g(y) \, d\lambda_1(x) \, d\lambda_1(y)$$
$$= 2 \int_{\mathbb{R}} \int_{(0,y)} g(x)g(y) \, d\lambda_1(x) \, d\lambda_1(y)$$
$$= 2 \int_{\mathbb{R}} \int_{(0,1)} yg(xy)g(y) \, d\lambda_1(x) \, d\lambda_1(y),$$

- wobei wir im letzten Schritt Folgerung 2.94 angewendet haben.
- Damit können wir folgendes Integral berechnen:

$$\left(\int_{\mathbb{R}} \exp(-x^2) \, \mathrm{d}x\right)^2 = 2 \int_0^1 \int_{\mathbb{R}} \exp(-(x^2 + 1)y^2) y \, \mathrm{d}y \, \mathrm{d}x$$
$$= 2 \int_0^1 \left[(-\frac{1}{2}) \frac{1}{x^2 + 1} \exp(-(x^2 + 1)y^2) \right]_{y=0}^{y=\infty} \, \mathrm{d}x$$
$$= \int_0^1 \frac{1}{x^2 + 1} \, \mathrm{d}x = \left[\arctan(x) \right]_{x=0}^{x=1} = \frac{\pi}{4}.$$

₉ 2.7 Approximationssätze

- Sei (X, \mathcal{A}, μ) ein Maßraum.
- In diesem Abschnitt werden wir beweisen, dass integrierbare Funktionen in
- der $\mathcal{L}^1(\mu)$ -Norm durch Funktionen mit "besseren" Eigenschaften approximiert
- 13 werden können.
- satz 2.96. Sei $f \in \mathcal{L}^1(\mu)$. Dann existiert für alle $\varepsilon > 0$ eine beschränkte
- Funktion $f_{\varepsilon} \in \mathcal{L}^1(\mu)$, so dass $||f f_{\varepsilon}||_{\mathcal{L}^1(\mu)} < \varepsilon$.
- Beweis. Setze $f_n := \max(-n, \min(f, n))$. Dann ist f_n eine messbare und be-
- schränkte Funktion. Mithilfe der dominierten Konvergenz Satz 2.56 folgt $||f_n-f_n||$

$$f \|_{\mathcal{L}^1(\mu)} \to 0.$$

- 19 Satz 2.97. Sei μ σ -endlich. Sei $f \in \mathcal{L}^1(\mu)$. Dann existiert für alle $\varepsilon > 0$
- 20 eine einfache Funktion $f_{\varepsilon} \in \mathcal{L}^1(\mu)$ mit $\mu(\{x: f_{\varepsilon}(x) \neq 0\}) < +\infty$, so dass
- $||f f_{\varepsilon}||_{\mathcal{L}^1(\mu)} < \varepsilon.$

- Beweis. Nach Folgerung 2.30 existiert eine Folge einfacher Funktionen (ϕ_n) mit
- $\phi_n \to f$ und $|\phi_n| \le |f|$. Wegen der σ -Endlichkeit existiert eine aufsteigende
- Folge (X_j) mit $\mu(X_j) < \infty$ und $\bigcup_{j=1}^{\infty} X_j = X$. Mit dominierter Konvergenz
- ⁴ Satz 2.56 bekommen wir $\|\chi_{X_n}\phi_n f\|_{\mathcal{L}^1(\mu)} \to 0.$
- Sei nun (X, d) ein metrischer Raum.
- **Lemma 2.98.** Sei $A \subseteq X$. Dann ist die Abbildung $x \mapsto d(x, A)$ stetig, wobei

$$d(x,A) := \inf_{y \in A} d(x,y).$$

8 Beweis. Sei $y \in A, x_1, x_2 \in X$. Dann ist

$$d(x_1, A) \le d(x_1, y) \le d(x_1, x_2) + d(x_2, y).$$

Nach bilden den Infimums über $y \in A$ auf der rechten Seite bekommen wir

$$d(x_1, A) \le d(x_1, x_2) + d(x_2, A).$$

Sei Y ein weiterer metrischer Raum. Wir definieren

$$C(X,Y) := \{ f : X \to Y : f \text{ stetig } \}.$$

- Lemma 2.99 (Urysohn-Funktion). Seien $A, B \subseteq X$ nicht leere, abgeschlossene,
- 15 disjunkte Mengen. Dann existiert $\phi \in C(X,[0,1])$ mit $\phi|_A = 0, \ \phi|_B = 1, \ \phi(x) \in$
- 16 (0,1) für alle $x \in (A \cup B)^c$.

12

13

17 Beweis.
$$\phi := \frac{d(x,A)}{d(x,A)+d(x,B)}$$
.

- Satz 2.100. Sei $\mathcal{B}(X) \subseteq \mathcal{A}$. Sei μ σ -endlich und regulär (vgl. Satz 1.69). Sei
- 19 $f \in \mathcal{L}^1(\mu)$. Dann existiert für alle $\varepsilon > 0$ eine Funktion $f_{\varepsilon} \in \mathcal{L}^1(\mu) \cap C(X, \mathbb{R})$,
- so dass $||f f_{\varepsilon}||_{\mathcal{L}^{1}(\mu)} < \varepsilon$.
- 21 Beweis. Wir beweisen die Behauptung zuerst für charakteristische Funktionen.
- 22 Sei $A \in \mathcal{A}$ mit $\mu(A) < \infty$. Sei $\varepsilon > 0$. Wegen der Regularität existiert eine
- kompakte Menge K und eine offene Menge O mit $K \subseteq A \subseteq O$ und $\mu(O \setminus K) < \varepsilon$.
- Wegen Lemma 2.99 existiert $\phi \in C(X, [0, 1])$ mit $\phi|_K = 1$ und $\phi|_{O^c} = 0$. Es folgt

$$\|\chi_A - \phi\|_{\mathcal{L}^1(\mu)} = \int \chi_{O \setminus K} |\chi_A - \phi| \, \mathrm{d}\mu \le 1 \cdot \mu(O \setminus K) = \varepsilon.$$

- Damit ist ϕ integrierbar. Wegen Satz 2.97 folgt die Behauptung für alle inte-
- 27 grierbare Funktionen.
- Für eine Funktion $f: X \to \mathbb{R}$ ist

$$\operatorname{supp} f := \overline{\{x : f(x) \neq 0\}}$$

der Support (oder Träger). Wir definieren

$$C_c(X,\mathbb{R}) := \{ f \in C(X,\mathbb{R}) : \text{ supp } f \text{ kompakt } \}$$

- die Menge der stetigen Funktionen von X nach $\mathbb R$ mit kompaktem Träger. Diese
- Menge ist kein abgeschlossener Teilraum von $C(X,\mathbb{R})$ bezüglich der Supremums-
- norm. Ist $O \subseteq \mathbb{R}^n$ offen und $f \in C_c(O,\mathbb{R})$, dann ist die Funktion \hat{f} definiert
- durch

durch
$$\hat{f}(x) := \begin{cases} f(x) & \text{falls } x \in O, \\ 0 & \text{falls } x \notin O \end{cases}$$

- stetig und gehört zu $C_c(\mathbb{R}^n, \mathbb{R})$. Funktionen aus $C_c(\mathbb{R}^n, \mathbb{R})$ sind λ^1 -integrierbar.
- Der zugrundeliegende Maßraum des nächsten Resultats ist $(\mathbb{R}^n, \mathcal{L}(n), \lambda_n)$.

Satz 2.101. Sei $f \in \mathcal{L}^1(\lambda_n)$. Dann existiert für alle $\varepsilon > 0$ eine Funktion $f_{\varepsilon} \in C_c(\mathbb{R}^n, \mathbb{R}), \text{ so dass } ||f - f_{\varepsilon}||_{\mathcal{L}^1(\lambda_n)} < \varepsilon.$

Beweis. Wie im Beweis von Satz 2.100 reicht es, die Behauptung für charak-

teristische Funktionen zu beweisen. Sei also $A \in \mathcal{A}$ mit $\mu(A) < \infty$. Sei $\varepsilon > 0$.

Aufgrund der σ -Endlichkeit existiert eine beschränkte Teilmenge $A_{\varepsilon} \subseteq A$ mit

 $\mu(A \setminus A_{\varepsilon}) < \varepsilon/2$. Wegen der Regularität des Lebesgue-Maßes (Satz 1.69) exis-

tiert eine kompakte Menge K und eine offene Menge O mit $K \subseteq A_{\varepsilon} \subseteq O$ und $\mu(O \setminus K) < \varepsilon/2$. Die offene Menge kann beschränkt gewählt werden. Die Funk-

tion ϕ aus Lemma 2.99 erfüllt $\phi \in C(\mathbb{R}^n, [0,1])$ mit $\phi|_K = 1, \phi|_{O^c} = 0$ und

 $\|\chi_{A_{\varepsilon}} - \phi\|_{\mathcal{L}^{1}(\mu)} < \varepsilon/2$. Damit ist supp $\phi \subseteq \overline{O}$, und ϕ hat kompakten Träger. \square 19

Dieser Satz wird den Beweis im nächsten Abschnitt vereinfachen: zuerst wird die Behauptung für stetige Funktionen gezeigt, dann für integrierbare.

Allerdings müssen wir den Träger von f_{ε} noch etwas besser kontrollieren können.

Für die folgenden Resultate benutzen wir die Maximumnorm auf \mathbb{R}^n .

Lemma 2.102. Sei $O \subseteq \mathbb{R}^n$ offen und nicht leer. Dann gibt es eine aufsteigende Folge kompakter Mengen (K_j) mit $\bigcup_{j=1}^{\infty} K_j = O$. Weiter gibt es eine aufstei-

gende Folge (ψ_i) nichtnegativer Funktionen $\psi_i \in C_c(O, \mathbb{R})$ mit $\psi_i(x) \nearrow 1$ für

alle $x \in O$.

20

21

Beweis. Setze

$$K_j := \left\{ x \in \bar{O} : \|x\|_{\infty} \le j, \ d(x, \partial O) \ge \frac{1}{j} \right\},$$

was wegen Lemma 2.98 abgeschlossen ist. Dann gilt $K_j \subseteq O$ und $\bigcup_{i=1}^{\infty} K_j = O$.

Weiter sei $A_j := \{x \in \mathbb{R}^n : d(x, K_j) < \frac{1}{j} - \frac{1}{j+1}\}$. Dann ist A_j offen und

 $A_j \subseteq K_{j+1}$. Sei $\psi_j \in C(\mathbb{R}^n, [0, 1])$ aus Lemma 2.99 mit $\psi_j = 0$ auf A_i^c und $\psi_j = 1$

auf K_j . Dann ist supp $\psi_j \subseteq \overline{A_j} \subseteq K_{j+1}$. Daraus folgt dann $\psi_j \leq \psi_{j+1}$.

- Satz 2.103. Sei $f \in \mathcal{L}^1(\lambda_n)$ mit supp $f \subseteq O$, $O \subseteq \mathbb{R}^n$ offen. Dann existiert für
- alle $\varepsilon > 0$ eine Funktion $f_{\varepsilon} \in C_c(O, \mathbb{R})$, so dass $||f f_{\varepsilon}||_{\mathcal{L}^1(\lambda_n)} < \varepsilon$.
- Beweis. Nach Satz 2.101 existiert $\tilde{f} \in C_c(\mathbb{R}^n, \mathbb{R})$ mit $\|f \tilde{f}\|_{\mathcal{L}^1(\lambda_n)} < \varepsilon/2$. Sei
- (ψ_i) die in Lemma 2.102 konstruierte Folge. Dann ist $\psi_i \tilde{f} \in C_c(O, \mathbb{R})$ für alle
- 5 j, und mit dominierter Konvergenz folgt $\|\psi_j \tilde{f} \tilde{f}\|_{\mathcal{L}^1(\lambda_n)} \to 0$. Die Behauptung
- folgt mit $f_{\varepsilon} := \psi_j \tilde{f}$ für ein j, so dass $\|\psi_j \tilde{f} \tilde{f}\|_{\mathcal{L}^1(\lambda_n)} \leq \varepsilon/2$.
- 7 **Aufgabe 2.104.** Sei (X, d) ein metrischer Raum. Seien $K, U \subseteq X$ mit U offen,
- * K kompakt und $K \subseteq U$. Dann ist
- $0 < d(K, \partial U) = d(K, U^c) := \inf\{d(x, z) : x \in K, z \in U^c\}.$

2.8 Transformationssatz

- ¹¹ Ziel dieses Abschnittes ist es, eine Koordinatentransformation für Integrale der
- 12 Bauart

$$\int_{V} f \, \mathrm{d}\lambda_{n} = \int_{U} (f \circ \Phi) \cdot |\det \Phi'| \, \mathrm{d}\lambda_{n}$$

- zu beweisen, wobei $\Phi:U\to V$ ein Diffeomorphismus ist. Wir arbeiten hier
- wieder im Maßraum $(\mathbb{R}^n, \mathcal{L}(n), \lambda_n), n \in \mathbb{N}$.
- **Definition 2.105.** Seien $U,V\subseteq\mathbb{R}^n$ nicht leere, offene Mengen. Es sei Φ :
- U o V bijektiv. Sind Φ und Φ^{-1} stetig differenzierbar, dann heißt Φ C^1 -
- 18 Diffeomorphismus.
- Die Ableitung von Φ ist die Matrix

$$\Phi'(x) = \left(\frac{\partial \Phi_i(x)}{\partial x_j}\right)_{i,j=1...n}$$

- Es folgt, dass $\Phi'(x)$ und $\Phi^{-1}(y)$ invertierbar sind: Differenzieren der Gleichung
- $\Phi^{-1}(\Phi(x)) = x \text{ ergibt } (\Phi^{-1})'(\Phi(x)) \cdot \Phi'(x) = I_n, \text{ woraus } \Phi'(x)^{-1} = (\Phi^{-1})'(\Phi(x))$
- 23 folgt.
- Die Ableitungen Φ' und $(\Phi^{-1})'$ sind Abbildungen nach $\mathbb{R}^{n,n}$, den wir wie
- ₂₅ folgt mit einer Norm versehen.
- Definition 2.106. Für $A \in \mathbb{R}^{n,n}$ definiere

$$||A||_{\infty} := \max_{\|x\|_{\infty} \le 1} ||Ax||_{\infty}.$$

- Für die induzierte Matrixnorm gilt:
 - $A \mapsto ||A||_{\infty}$ ist eine Norm auf $\mathbb{R}^{n,n}$,

- $||A||_{\infty} = \max_{i=1...n} \sum_{j=1}^{n} |a_{i,j}|$ (Zeilensummennorm),
- $||Ax||_{\infty} \le ||A||_{\infty} ||x||_{\infty}$ für alle $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n,n}$,
- $||AB||_{\infty} \le ||A||_{\infty} ||B||_{\infty}$ für alle $A, B \in \mathbb{R}^{n,n}$.
- **Satz 2.107** (Mittelwertsatz). Seien $U, V \subseteq \mathbb{R}^n$ offen, $\Phi: U \to V$ stetig diffe-
- renzierbar. Es seien $x_1, x_2 \in U$, so dass $tx_1 + (1-t)x_2 \in U$ für alle $t \in (0,1)$
- 6 ist. Dann gilt

$$\|\Phi(x_1) - \Phi(x_2)\|_{\infty} \le \sup_{t \in (0,1)} \|\Phi'(tx_1 + (1-t)x_2)\|_{\infty} \|x_1 - x_2\|_{\infty}.$$

- Anwenden des Mittelwertsatzes auf $h \mapsto \Phi(x+h) \Phi'(x)h$ ergibt
- $\|\Phi(x+h) \Phi(x) \Phi'(x)h\|_{\infty} \le \sup_{t \in (0,1)} \|\Phi'(x+th) \Phi'(x)\|_{\infty} \|h\|_{\infty} \quad (2.108)$
- wenn $x + th \in U$ für alle $t \in [0, 1]$.
- Definition 2.109. Wir definieren den Würfel mit Seitenlänge 2r und Mittelpunkt x₀ als
- $W(x_0, r) := \{ x \in \mathbb{R}^n : \|x x_0\|_{\infty} \le r \}.$
- Damit folgt $||x_1 x_2||_{\infty} \le 2r$ für alle $x_1, x_2 \in W(x_0, r)$ und $\lambda_n(W(x_0, r))$
- 15 $(2r)^n$.
- Seien $x, x_0 \in U$. Ist $||x x_0||_{\infty}$ klein, dann folgt aus der Differenzierbarkeit

$$\Phi(x) \approx \Phi(x_0) + \Phi'(x_0)(x - x_0).$$

18 Ist $W \subseteq U$ ein kompakter Würfel mit $x_0 \in W$, dann erwarten wir

$$\Phi(W) \approx \Phi(x_0) + \Phi'(x_0)(W - x_0)$$

20 und damit

- $\lambda_n(\Phi(W)) \approx |\det(\Phi'(x_0))| \cdot \lambda_n(W).$
- 22 Diese Idee wird im nächsten Lemma rigoros bewiesen.
- Lemma 2.110. Seien $U, V \subseteq \mathbb{R}^n$ offen, $\Phi: U \to V$ ein C^1 -Diffeomorphismus.
- Sei $x_0 \in U$ gegeben. Dann existiert für alle $\varepsilon > 0$ ein $\delta_1 > 0$, so dass für alle
- ²⁵ Würfel W mit Seitenlänge kleiner als δ_1 und $x_0 \in W \subseteq U$ gilt

$$\left|\lambda_n(\Phi(W)) - |\det(\Phi'(x_0))| \cdot \lambda_n(W)\right| \le \varepsilon \lambda_n(W).$$

1 Beweis. Definiere

$$T := \Phi'(x_0), \ L(x) := \Phi(x_0) + \Phi'(x_0)(x - x_0).$$

- s Sei $x_0 \in U$. Dann existiert ein $\rho > 0$, so dass $V_0 := W(\Phi(x_0), \rho) \subseteq V$. Hier ist
- wichtig, dass V_0 kompakt und konvex ist. Wähle $\delta_0 > 0$ so, dass für alle $x \in \mathbb{R}^n$
- 5 mit $||x x_0||_{\infty} \le \delta_0$ gilt

$$x \in U, \ \Phi(x), L(x) \in V_0.$$
 (2.111)

7 Setze

$$M := \max_{y \in V_0} \|(\Phi^{-1})'(y)\|_{\infty}. \tag{2.112}$$

- 9 Dann ist auch $||T^{-1}||_{\infty} = ||\Phi'(x_0)^{-1}||_{\infty} = ||(\Phi^{-1})'(\Phi(x_0))||_{\infty} \le M$. Sei $\varepsilon > 0$
- gegeben. Wähle $\varepsilon_1 \in (0, 1/2)$ so, dass

$$|(1 \pm 2\varepsilon_1)^n - 1| \le \varepsilon. \tag{2.113}$$

Dann existiert ein $\delta_1 \in (0, \delta_0)$, so dass

$$\sup_{x \in W(x_0, \delta_1)} \|\Phi'(x) - \Phi'(x_0)\|_{\infty} \le M^{-1} \varepsilon_1.$$

Daraus folgt für $x \in W(x_0, \delta_1)$ mit dem Mittelwertsatz (2.108)

$$\|\Phi(x) - L(x)\|_{\infty} = \|\Phi(x) - \Phi(x_0) - \Phi'(x_0)(x - x_0)\|_{\infty}$$

$$\leq \sup_{\tilde{x} \in W(x_0, \delta_1)} \|\Phi'(\tilde{x}) - \Phi'(x_0)\|_{\infty} \|x - x_0\|_{\infty} = M^{-1} \varepsilon_1 \|x - x_0\|_{\infty}. \quad (2.114)$$

- Sei W ein Würfel mit Seitenlänge $\delta \in (0, \delta_1)$ und $x_0 \in W \subseteq U$. Es folgt $\|x x_0\|_{\infty} \le \delta \le \delta_0$ für alle $x \in W$. Dann ist $\Phi(W), L(W) \subseteq V_0$.
- (1) Wir zeigen, dass $T^{-1}\Phi(W)$ in einem Würfel mit Seitenlänge $(1+2\varepsilon_1)\delta$ enthalten ist. Sei $x \in W$. Dann folgt aus (2.112) und (2.114)

$$||T^{-1}(\Phi(x) - L(x))||_{\infty} \le ||T^{-1}||_{\infty} ||\Phi(x) - L(x)||_{\infty} \le \varepsilon_1 \delta.$$

22 Damit bekommen wir

$$T^{-1}(\Phi(W) - \Phi(x_0)) \subseteq T^{-1}(L(W) - \Phi(x_0)) + W(0, \varepsilon_1 \delta)$$

$$= W - x_0 + W(0, \varepsilon_1 \delta).$$

Dabei ist $W + W(0, \varepsilon_1 \delta)$ ein Würfel mit Seitenlänge $(1 + 2\varepsilon_1)\delta$. Es folgt mit

Satz 1.83 und (2.113)

$$\lambda_n(\Phi(W)) \le |\det T|((1+2\varepsilon_1)\delta)^n$$

$$= |\det T|(1+2\varepsilon_1)^n \lambda_n(W) \le (1+\varepsilon)|\det T|\lambda_n(W).$$

- (2) Sei $\tilde{W} = W(\tilde{x}, (1 2\varepsilon_1)\delta/2) \subseteq W$ der Würfel mit Seitenlänge $(1 2\varepsilon_1)\delta$,
- der den gleichen Mittelpunkt wie W hat. Wir zeigen nun, dass $\Phi^{-1}(L(\tilde{W})) \subseteq W$
- ist. Dazu sei $x \in \tilde{W}$. Dann gilt mit dem Mittelwertsatz, (2.111) und (2.114)

$$\|\Phi^{-1}(L(x)) - \Phi^{-1}(\Phi(x))\|_{\infty} \le \sup_{y \in V_0} \|(\Phi^{-1})'(y)\|_{\infty} \cdot \|L(x) - \Phi(x)\|_{\infty}$$

$$\le MM^{-1}\varepsilon_1 \|x - x_0\|_{\infty} = \varepsilon_1 \|x - x_0\|_{\infty} \le \varepsilon_1 \delta.$$

8 Daraus folgt

$$\|\Phi^{-1}(L(x)) - \tilde{x}\|_{\infty} \le \varepsilon_1 \delta + \|x - \tilde{x}\|_{\infty} \le \varepsilon_1 \delta + (1 - 2\varepsilon_1)\delta/2 = \delta/2$$

10 und

$$\Phi^{-1}(L(\tilde{W})) \subseteq \tilde{x} + W(0, \delta/2) = W.$$

12 Es folgt $L(\tilde{W}) \subseteq \Phi(W)$ nach Anwenden von Φ , und mit Satz 1.83 bekommen

13 wir

$$\lambda_n(\Phi(W)) \ge |\det T| \lambda_n(\tilde{W}) = |\det T| \lambda_n(W) (1 - 2\varepsilon_1)^n \ge (1 - \varepsilon) |\det T| \lambda_n(W).$$

15 Damit erhalten wir

$$|\lambda_n(\Phi(W)) - |\det(\Phi'(x_0))| \cdot \lambda_n(W)| \le \varepsilon |\det T|\lambda_n(W),$$

was die Behauptung ist.

Lemma 2.115. Seien $U, V \subseteq \mathbb{R}^n$ offen, $\Phi: U \to V$ ein C^1 -Diffeomorphismus.

Dann ist $\Phi \mathcal{L}(n)|_{U} - \mathcal{L}(n)|_{V}$ -messbar. Ist $N \subseteq V$ eine λ_n -Nullmenge, dann ist

auch $\Phi^{-1}(N)$ eine λ_n -Nullmenge.

Hierbei ist $\mathcal{L}(n)|_U$ die Einschränkung von $\mathcal{L}(n)$ auf Teilmengen von U defi-

22 niert durch

$$\mathcal{L}(n)|_{U} = \{ A \subseteq U : A \in \mathcal{L}(n) \} = \{ A \cap U : A \in \mathcal{L}(n) \}.$$

Beweis. Ist $O \subseteq V$ offen, dann ist $\Phi^{-1}(O)$ offen. Damit folgt, dass $\Phi \mathcal{B}(U)$ –

 $\mathcal{B}(V)$ -messbar ist. Sei nun $A \in \mathcal{L}(n)|_V$. Nach Satz 1.70 existiert $K \in \mathcal{B}(\mathbb{R}^n)$

und $N \in \mathcal{L}(n)$ mit $\lambda_n(N) = 0$ und $A = K \cup N$. Indem wir K und N durch

 $K \cap V$ und $N \cap V$ ersetzen, können wir annehmen, dass $K \in \mathcal{B}(\mathbb{R}^n)|_V = \mathcal{B}(V)$ und $N \in \mathcal{L}(n)|_V$ ist. Aus der Zerlegung bekommen wir auch, dass $\Phi^{-1}(A) = \Phi^{-1}(K) \cup \Phi^{-1}(N)$ ist. Da $\Phi^{-1}(K) \in \mathcal{B}(U)$ ist, muss noch $\Phi^{-1}(N) \in \mathcal{L}(n)|_U$ nachgewiesen werden.

Sei $x \in V$. Dann ist $d(x, \partial V) > 0$ und $W_x := W(x, d(x, \partial V)/2) \subseteq V$. Es folgt $V = \bigcup_{x \in V \cap \mathbb{Q}^n} W_x$. Sei $x \in V \cap \mathbb{Q}^n$. Da W_x kompakt und Φ^{-1} stetig differenzierbar ist, ist $(\Phi^{-1})'$ auf W_x beschränkt. Da W_x konvex ist, ist Φ^{-1} Lipschitz-stetig auf W_x wegen Satz 2.107. Nach Satz 1.75 ist dann $\Phi^{-1}(W_x \cap N)$ eine Nullmenge. Da $\Phi^{-1}(N) = \bigcup_{x \in V \cap \mathbb{Q}^n} \Phi^{-1}(W_x \cap N)$ ist $\Phi^{-1}(N) \in \mathcal{L}(n)|_U$ und $\lambda_n(\Phi^{-1}(N)) = 0$.

Folgerung 2.116. Seien $U, V \subseteq \mathbb{R}^n$ offen, $\Phi : U \to V$ ein C^1 -Diffeomorphismus. Sei $f : V \to \overline{\mathbb{R}}$ $\mathcal{L}(n)|_V - \mathcal{B}(\overline{\mathbb{R}})$ -messbar. Dann ist $f \circ \Phi$ $\mathcal{L}(n)|_U - \mathcal{B}(\overline{\mathbb{R}})$ -messbar.

Satz 2.117. Seien $U, V \subseteq \mathbb{R}^n$ offen, $\Phi: U \to V$ ein C^1 -Diffeomorphismus. Sei $f \in C_c(V, \mathbb{R})$. Dann gilt

$$\int_{V} f \, d\lambda_n = \int_{U} (f \circ \Phi) \cdot |\det \Phi'| \, d\lambda_n.$$

Beweis. Da supp f kompakt ist, ist f beschränkt und integrierbar auf V. Weiter ist $\Phi^{-1}(\operatorname{supp} f)$ kompakt, damit ist $|\det \Phi'|$ beschränkt auf $\Phi^{-1}(\operatorname{supp} f)$, und $(f \circ \Phi) \cdot |\det \Phi'|$ ist integrierbar auf V.

Wir beweisen folgende Aussage: es gilt

$$\int_{\Phi(W)} f \, d\lambda_n = \int_W (f \circ \Phi) \cdot |\det \Phi'| \, d\lambda_n \tag{2.118}$$

22 für alle kompakten Würfel $W \subseteq U$.

16

21

29

Daraus folgt die Behauptung: Wegen Aufgabe 2.104 ist $d(\operatorname{supp}(f \circ \Phi), U^c) =: r > 0$. Wie im Beweis von Satz 1.14 überdecken wir den \mathbb{R}^n durch eine disjunkte Vereinigung halboffener Würfel (W_j) der Seitenlänge r/2, siehe (1.15). Ist $W_j \cap \sup(f \circ \Phi) \neq \emptyset$ dann ist $\overline{W_j} \subseteq U$ wegen der Definition von r, und die Formel (2.118) gilt für $\overline{W_j}$. Aufsummieren über alle j mit $W_j \cap \sup(f \circ \Phi) \neq \emptyset$ ergibt dann die Behauptung.

Sei nun $W \subseteq U$ ein kompakter Würfel. Wir definieren

$$\Delta(W) := \int_{\Phi(W)} f \, \mathrm{d}\lambda_n - \int_W (f \circ \Phi) \cdot |\det \Phi'| \, \mathrm{d}\lambda_n.$$

Wir zerlegen W in 2^n Würfel (W_j) mit halber Seitenlänge. Diese Würfel haben nur Randpunkte gemeinsam, und so ist $\lambda_n(W_j \cap W_{j'}) = 0$ für alle $j \neq j'$. Wegen Lemma 2.115 angewendet auf Φ^{-1} ist auch $\lambda_n(\Phi(W_j) \cap \Phi(W_{j'})) = \lambda_n(\Phi(W_j \cap W_{j'}))$ $(W_{j'}) = 0$ für $j \neq j'$. Aus der Additivität der Integrale bekommen wir

$$\Delta(W) = \sum_{j=1}^{2^n} \Delta(W_j).$$

₃ und

$$\frac{|\Delta(W)|}{\lambda_n(W)} \le \frac{1}{2^n} \sum_{i=1}^{2^n} \frac{|\Delta(W_j)|}{\lambda_n(W_j)}.$$

- 5 Damit gibt es ein W_j mit $\frac{\Delta(W_j)}{\lambda_n(W_j)} \geq \frac{|\Delta(W)|}{\lambda_n(W)}$.
- Damit konstruieren wir uns eine absteigende Folge (W_k) kompakter Würfel
- mit $W_1 = W$, $\lambda_n(W_k) \searrow 0$, so dass $\frac{|\Delta(W_k)|}{\lambda_n(W_k)}$ monoton wachsend ist. Wir zeigen
- 8 $\lim_{k\to\infty} \frac{|\Delta(W_k)|}{\lambda_n(W_k)} = 0.$
- Da die W_k kompakt sind, existiert $x_0 \in \bigcap_{k=1}^{\infty} W_k$ (Aufgabe 2.119). Sei $y_0 :=$
- $\Phi(x_0)$. Wir schreiben

$$\Delta(W_k) = \int_{\Phi(W_k)} f - f(y_0) \, \mathrm{d}\lambda_n -$$

$$\int_{W_k} (f \circ \Phi) \cdot |\det \Phi'| - (f \circ \Phi)(x_0) \cdot |\det \Phi'(x_0)| \, \mathrm{d}\lambda_n$$

$$+ \int_{\Phi(W_k)} f(y_0) \, \mathrm{d}\lambda_n - \int_{W_k} (f \circ \Phi)(x_0) \cdot |\det \Phi'(x_0)| \, \mathrm{d}\lambda_n.$$

 $_{\mbox{\tiny 14}}~$ Wir zeigen, dass diese drei Summanden beliebig klein werden. Sei $\varepsilon>0.$ DaW

und $\Phi(W)$ kompakt sind, bekommen wir aus der gleichmäßigen Stetigkeit von

 $f, f \circ \Phi \text{ und } |\det \Phi'(x_0)|, \text{ dass }$

$$\int_{\Phi(W_k)} |f - f(y_0)| \, \mathrm{d}\lambda_n \le \frac{\varepsilon}{3} \lambda_n(W_k),$$

$$\int_{W_k} \left| (f \circ \Phi) \cdot |\det \Phi'| - (f \circ \Phi)(x_0) \cdot |\det \Phi'(x_0)| \right| d\lambda_n \le \frac{\varepsilon}{3} \lambda_n(W_k)$$

für alle k groß genung. Aus Lemma 2.110 bekommen wir

$$\left| \int_{\Phi(W_k)} f(y_0) \, \mathrm{d}\lambda_n - \int_{W_k} (f \circ \Phi)(x_0) \cdot |\det \Phi'(x_0)| \, \mathrm{d}\lambda_n \right|$$

$$= |f(y_0)| \cdot \left| \lambda(\Phi(W_k)) - |\det \Phi'(x_0)| \lambda(W_k) \right| \le \frac{\varepsilon}{3} \lambda_n(W_k)$$

k für alle k groß genung. Es folgt

$$|\Delta(W_k)| \le \varepsilon \lambda_n(W_k)$$

- für alle k groß genug. Da $\varepsilon > 0$ beliebig war, folgt $\lim_{k \to \infty} \frac{|\Delta(W_k)|}{\lambda_n(W_k)} = 0$ und damit $|\Delta(W_k)| = 0$ für alle k, und insbesondere $\Delta(W) = 0$.
- 3 Aufgabe 2.119. Sei (X,d) ein vollständiger metrischer Raum. Sei (K_j) eine
- ⁴ Folge kompakter Mengen mit $K_j \supseteq K_{j+1}$ für alle j. Dann ist $\bigcap_{j=1}^{\infty} K_j \neq \emptyset$.
- 5 Satz 2.120 (Transformationssatz). Seien $U, V \subseteq \mathbb{R}^n$ offen, $\Phi: U \to V$ ein
- 6 C^1 -Diffeomorphismus. Sei $f: V \to \mathbb{R}$. Dann gilt ist f integrierbar genau dann,
- u wenn $(f \circ \Phi) \cdot |\det \Phi'|$ auf V integrierbar ist. In diesem Falle gilt

$$\int_V f \, \mathrm{d}\lambda_n = \int_U (f \circ \Phi) \cdot |\det \Phi'| \, \mathrm{d}\lambda_n.$$

- Beweis. (1) Sei f integrierbar. Wegen Folgerung 2.116 ist $g := (f \circ \Phi) \cdot |\det \Phi'|$
- $\mathcal{L}(n)-\mathcal{B}^1$ -messbar. Nach Satz 2.103 können wir f durch eine Folge von $C_c(V,\mathbb{R})$ -
- Funktionen approximieren, die nach Satz 2.58 eine fast überall konvergente Tei-
- 12 folge hat. Es gibt also eine Folge (f_k) mit $f_k \in C_c(V), \|f f_k\|_{\mathcal{L}^1(\lambda_n)} \to 0$ und
- $f_k(x) \to f(x)$ für alle $x \in V \setminus N$, wobei $N \subseteq V$ eine λ_n -Nullmenge ist.
- Da $\Phi^{-1}(N)$ eine λ_n -Nullmenge ist, folgt auch

$$g_k := (f_k \circ \Phi) \cdot |\det \Phi'| \to (f \circ \Phi) \cdot |\det \Phi'| = g$$

16 λ_n -fast überall auf U.

15

- Wegen Satz 2.117 gilt $\int_V f_k d\lambda_n = \int_U g_k d\lambda_n$. Da (f_k) eine Cauchyfolge in
- 18 $\mathcal{L}^1(\lambda_n)$ ist, ist auch (g_k) eine Cauchyfolge in $\mathcal{L}^1(\lambda_n)$. (Hier haben wir stillschwei-
- gend f_k und g_k mit Null auf ganz \mathbb{R}^n fortgesetzt.) Damit existiert $G \in \mathcal{L}^1(\lambda_n)$
- mit $\|g_k-G\|_{\mathcal{L}^1(\lambda_n)}\to 0$. Da eine Teilfolge von (g_k) λ_n -fast überall gegen G kon-
- vergiert, folgt $g = G \lambda_n$ -fast überall und $g = (f \circ \Phi) \cdot |\det \Phi'|$ ist integrierbar.
- Weiter erhalten wir

$$\int_{V} f \, d\lambda_{n} = \lim_{k \to \infty} \int_{V} f_{k} \, d\lambda_{n}$$

$$= \lim_{k \to \infty} \int_{U} g_{k} \, d\lambda_{n} = \lim_{k \to \infty} \int_{U} G \, d\lambda_{n} = \int_{U} (f \circ \Phi) \cdot |\det \Phi'| \, d\lambda_{n}.$$

Sei nun $g=(f\circ\Phi)\cdot|\det\Phi'|$ integrierbar. Nach Teil (1) angewendet auf $\Psi:=\Phi^{-1}$ ist dann auch $(g\circ\Psi)|\det\Psi'|$ integrierbar, und es gilt

$$\int_{U} g \, d\lambda_{n} = \int_{V} (g \circ \Psi) |\det \Psi'| \, d\lambda_{n}$$

$$= \int_{V} f(\Phi(\Psi(x))) \underbrace{|\det \Phi'(\Psi(x))| \cdot |\det \Psi'(x)|}_{=1} \, d\lambda_{n}(x)$$

$$= \int_{V} f \, d\lambda_{n},$$

- was die Behauptung ist.
- Folgerung 2.121 (Polarkoordinaten 2d). Definiere

$$\Phi(r,\phi) := \begin{pmatrix} r\cos\phi\\r\sin\phi \end{pmatrix}.$$

- 4 Sei $f:\mathbb{R}^2 \to \mathbb{R}$ messbar. Dann ist f integrierbar genau dann wenn $f\circ \Phi$ auf
- 5 $[0,\infty) \times [0,2\pi)$ integrierbar ist. In diesem Fall gilt

$$\int_{\mathbb{R}^2} f \, \mathrm{d}\lambda_2 = \int_0^{2\pi} \int_0^{\infty} f(r\cos\phi, r\sin\phi) \, r \, \mathrm{d}r \, \mathrm{d}\phi.$$

- Beweis. Das folgt aus dem Transformationssatz, Satz 2.120, und dem Satz von
- 8 Fubini, Satz 2.89. Wir setzen

$$U := (0, \infty) \times (0, 2\pi), \quad V := \mathbb{R}^2 \setminus \{0\}.$$

Dann ist $\Phi: U \to V$ bijektiv und differenzierbar. Weiter ist

$$\det(\Phi'(r,\phi)) = \det\begin{pmatrix} \cos\phi & -r\sin\phi\\ \sin\phi & r\cos\phi \end{pmatrix} = r.$$

- Also ist Φ' auf U invertierbar, und Φ ist ein Diffeomorphismus. Da die Ränder
- von U und V Nullmengen sind, folgt die Behauptung.
- Folgerung 2.122. Sei (X, \mathcal{A}, μ) σ -endlich und $f: X \to [0, \infty]$ \mathcal{A} - $\mathcal{B}(\bar{\mathbb{R}})$ mess-
- 15 bar. Dann gilt

$$\int_{X} f^{p} d\mu = p \int_{(0,+\infty)} t^{p-1} \mu(\{x: f(x) > t\}) d\lambda_{1}(t)$$

- 17 $f\ddot{u}r$ alle p > 1.
- ¹⁸ Beweis. Aus Lemma 2.93 bekommen wir

$$\int_X f^p \, \mathrm{d}\mu = \int_{(0,+\infty)} \mu(\{x: \ f(x)^p > t\}) \, \mathrm{d}\lambda_1(t).$$

Mit $t = \Phi(s) := s^p$ ist

$$\int_{(0,+\infty)} \mu(\{x: f(x) > t^{1/p}\}) \, \mathrm{d}\lambda_1(t) = \int_{(0,+\infty)} \mu(\{x: f(x) > s\}) \cdot ps^{p-1} \, \mathrm{d}\lambda_1(s).$$