

EMI - TEST REPORT

- FCC Part 15.407, RSS-247 -

Type / Model Name : System master basic

Product Description: WLAN module

Applicant: BSH Hausgeräte GmbH

Address : Im Gewerbepark B10

93059 REGENSBURG, GERMANY

Manufacturer : BSH Hausgeräte GmbH

Address : Im Gewerbepark B10

93059 REGENSBURG, GERMANY

Test Result according to the standards listed in clause 1 test standards:

POSITIVE

Test Report No.: T44223-02-04HS

11. December 2019

Date of issue

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

FCC ID: 2AHES-SMB

IC: 21152-SMB

Contents

1 <u>IESI STANDARDS</u>	3
2 EQUIPMENT UNDER TEST	4
3 <u>TEST RESULT SUMMARY</u>	7
4 <u>TEST ENVIRONMENT</u>	8
4.1 Address of the test laboratory	8
4.2 Environmental conditions	8
4.3 Statement of the measurement uncertainty	8
4.1 Measurement protocol for FCC and IC	9
5 TEST CONDITIONS AND RESULTS	10
5.1 Conducted emissions	10
5.2 Maximum conducted output power	14
5.4 Undesirable emissions	17
5.5 Antenna application	31
6 USED TEST EQUIPMENT AND ACCESSORIES	32
	<u> </u>
ATTACHMENT A	33

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15, Subpart A - General (September, 2019)

Part 15, Subpart A, Section 15.31 Measurement standards

Part 15, Subpart A, Section 15.33 Frequency range of radiated measurements

Part 15, Subpart A, Section 15.35 Measurement detector functions and bandwidths

FCC Rules and Regulations Part 15, Subpart C - Intentional Radiators (September, 2019)

Part 15, Subpart C, Section 15.203 Antenna requirement

Part 15, Subpart C, Section 15.204 External radio frequency power amplifiers and antenna modifications

Part 15, Subpart C, Section 15.205 Restricted bands of operation

Part 15, Subpart C, Section 15.207 Conducted limits

Part 15, Subpart C, Section 15.209 Radiated emission limits, general requirements

Part 15, Subpart C, Section 15.212 Modular transmitters

FCC Rules and Regulations Part 15, Subpart E – Unlicensed National Information Infrastructure Devices

(December, 2019)

Part 15, Subpart E, Section 15.407 Operation within the bands 5.15 - 5.25 GHz, 5.25 - 5.35 GHz, 5.47 -

5.725 GHz and 5.725 - 5.85 GHz

ANSI C63.10: 2013 Testing Unlicensed Wireless Devices

ETSI TR 100 028 V1.3.1: 2001-03 Electromagnetic Compatibility and Radio Spectrum Matters (ERM);

Uncertainties in the Measurement of Mobile Radio Equipment

Characteristics—Part 1 and Part 2

KDB 789033 D02 v02r01 Guidelines for compliance testing of UNII-Devices – Part 15, Subpart

E, December 14, 2017.

2 EQUIPMENT UNDER TEST

2.1 Photo documentation of the EUT – Detailed photos see ATTACHMENT A

2.2 General remarks

The EUT is a communication module consist of a fully tested and approved WLAN-Module according the FCC 15.407 with a manufacturer designed host and PCB antennas. This test report show the further compliance to the FCC 15.407 after integration. Therefore, the re-test is partly done to the following requirements, only.

- RF output power (radiated)
- Transmitter unwanted emissions, radiated

2.3 Equipment category

WLAN - Client

2.4 Short description of the equipment under test (EUT)

The EUT is a communication module for assembling into house hold devices.

Number of tested samples:

Serial number: Muster 286 Firmware version WLAN: 7.45.165

EUT configuration:

(The CDF filled by the applicant can be viewed at the test laboratory.)

2.5 Variants of the EUT

There are no variants.

2.6 Operation frequency and channel plan

The operating frequency is 5250 MHz to 5350 MHz.

Channel plan WLAN Standard 802.11a, n HT 20, ac VT20:

Channel	Frequency
52	5260
56	5280
60	5300
64	5320

Channel plan WLAN Standard 802.11n HT 40, ac VT40:

Channel	Frequency
54	5270
62	5310

Channel plan WLAN Standard 802.11ac VT80:

Channel	Frequency
58	5290

Note: The marked frequencies are determined for final testing.

CSA Group Bayern GmbH
Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY
Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

2.7 Transmit operating modes

The module use OFDM modulation and is capable to provide following data rates:

- 802.11a 54, 48, 36, 24, 18, 12, 9, 6 Mbps (Mbps = megabits per second) - 802.11n HT20, MCS 0 - 7 (MCS = megabits per second)

- 802.11n HT40, MCS 0 - 7 - 802.11ac VT20, MCS 0 - 8 - 802.11ac VT40, MCS 0 - 9 - 802.11ac VT80, MCS 0 - 9

2.8 Antenna

The following antenna shall be used with the EUT:

Number	Characteristic	Model number	Connector	Frequency (GHz)	Gain 5GHz (dBi)	Cable loss (dB)	effective Gain 5 GHz (dBi)
1	Omni	PCB antenna (Ant0)	-	5	3.99	0	3.99
2	Omni	PCB antenna (Ant1)	-	5	3.14	0	3.14

2.9 Power supply system utilised

Power supply voltage, V_{nom} : 12 VDC

2.10 Peripheral devices and interface cables

The following peripheral devices and interface cables are connected during the measurements:

-	LAN cable	Model: Common
-		Model:
-		Model:

2.11 Determination of worst case conditions for final measurement

Measurements have been made in all three orthogonal axes and the settings of the EUT were changed to locate at which position and at what setting of the EUT produce the maximum of the emissions. For the final measurement the EUT is set in X position.

Preliminary tests were performed to find the worst case mode from all possible combinations between available modulations, data rates. The maximum output power depends on used data rate.

Following channels and test modes were selected for the final test as listed below:

HT20 mode:

Technology	Available channels	Tested channels	Modulation	Modulation type	Data rate (Mbps)
802.11n	52 - 64	52, 60, 64	OFDM	BPSK	MCS=0 (BW=20 MHz)

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

VT40 mode:

Technology	Available	Tested	Modulation	Modulation	Data rate
	channels	channels		type	(Mbps)
802.11ac	54 - 62	54, 62	OFDM	BPSK	MCS=0
					(BW=40 MHz)

VT80 mode:

Technology	Available	Tested	Modulation	Modulation	Data rate
	channels	channels		type	(Mbps)
802.11ac	58	58	OFDM	BPSK	MCS=0
					(BW=80 MHz)

- TX continuous mode, 802.11n
- TX continuous mode, 802.11ac

2.11.1 Test jig

No test jig is used.

2.11.2 Test software

The test software for the EUT provides free power setting, the special test mode TX continuous mode, modulated. The EUT was set with test modulation to transmit data during the tests with a maximum duty cycle (x) from an internal packet generator.

3 TEST RESULT SUMMARY

UNII device uses the operating band 5250 MHz - 5350 MHz:

FCC Rule Part	RSS Rule Part	Description	Result
15.207(a)	RSS Gen, 8.8	AC power line conducted emissions	passed
15.407(a)	RSS-247, 6.2.1.1	Output power	passed
15.407(b)	RSS-247, 6.2.1.2	Undesirable emissions	passed
15.205(a)	RSS-Gen, 8.10	Emissions in restricted bands	passed
15.407(g)	RSS-Gen, 6.11	Transmitter frequency stability	Not tested
15.407(h)(1)	RSS-247, 6.2.1.1	TPC	Not tested
15.407(a)	-	Antenna requirement	passed
15.407(a)	RSS-210, A9.2(2)	EBW26, OBW 99 %	Not tested

The mentioned RSS Rule Parts in the above table are related to: RSS-Gen, Issue 5, April 2018 RSS-247, Issue 2, February 2017

3.1 Final assessment

Klaus Gegenfurtner Teamleader Radio	<u> </u>	Hermann Smetana Radio Team
Checked by:	Te	ested by:
Testing concluded on	: _11 October 2019	
Testing commenced on	: _20 September 2019	
Date of receipt of test sample	: _acc. to storage records	
The equipment under test fulfills the	EMI requirements cited in clause 1 to	est standards.

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

CSA Group Bayern GmbH Ohmstrasse 1-4 94342 STRASSKIRCHEN GERMANY

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 °C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. It is noted that the expanded measurement uncertainty corresponds to the measurement results from the standard measurement uncertainty multiplied by the coverage factor k = 2. The true value is located in the corresponding interval with a probability of 95 % The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 / 11.2003 "Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the quality system acc. to DIN EN ISO/IEC 17025. For all measurements shown in this report, the measurement uncertainty of the test laboratory, CSA Group Bayern GmbH, is below the measurement uncertainty as defined by CISPR. Therefore, no special measures must be taken into consideration with regard to the limits according to CISPR. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Measurement Type	Range	Confidence Level	Calculated Uncertainty
AC power line conducted emissions	0.15 MHz to 30 MHz	95%	± 3.29 dB
EBW and OBW	2400 MHz to 30000 MHz	95%	± 2.5 x 10 ⁻⁷
Output power ERP, radiated	1000 MHz to 7000 MHz	95%	± 2.71 dB
Field strength of the fundamental	1000 MHz to 7000 MHz	95%	± 2.71 dB
Power spectral density	2400 MHz to 3000 MHz	95%	± 0.62 dB
Spurious Emissions, conducted	9 kHz to 10000 MHz	95%	± 2.15 dB
Spurious Emissions, conducted	10000 MHz to 40000 MHz	95%	± 3.47 dB
Spurious Emissions, radiated	9 kHz to 30 MHz	95%	± 3.53 dB
Spurious Emissions, radiated	30 MHz to 1000 MHz	95%	± 4.44 dB
Spurious Emissions, radiated	1000 MHz to 30000 MHz	95%	± 2.34 dB
Spurious Emissions, radiated	30000 MHz to 40000 MHz	95%	± 5.13 dB

Measurement protocol for FCC and IC 4.1

4.1.1 **General information**

The Open Area test site is a listed Open Site under the Canadian Test-Sites File-No:

IC 3009A-1

The Anechoic chamber is a listed test site under the Canadian Test-Sites File-No:

IC 3009A-2

General Standard information 4.1.2

Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

The test methods used comply with ANSI C63.10 - "Testing Unlicensed Wireless Devices".

4.1.2.1 Justification

The equipment under test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Rev. No. 5.1 2018-11-19

5 TEST CONDITIONS AND RESULTS

5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location:

Shielded Room S2

5.1.2 Photo documentation of the test set-up

5.1.3 Applicable standard

According to FCC Part 15C, Section 15.207(a):

Except as shown in paragraphs (b) and (c) of this Section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits under FCC 15.207(a).

5.1.4 Description of Measurement

The measurements are performed following the procedures set out in ANSI C63.10 described under item 4.4.3. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

5.1.5 Test result

Frequency range: 0.15 MHz - 30 MHz

Min. limit margin 10.8 dB at 0.186 MHz

Limit according to FCC Part 15, Section 15.207(a):

Frequency of Emission	Conducted Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency

The requirements are **FULFILLED**.

Remarks: For detailed test result please see following test protocols.

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

5.1.6 Test protocol

Test point L1 Result: passed Operation mode: Transmission 5 GHz

Remarks:

CISPR 22/CISPR22 B - Average/
CISPR 22/CISPR22 B - QPeak/
Meas. Peak (Phase 1)
Mes. CISPR AVG (Phase 1)
QuasiPeak (Finals) (Phase 1)
CISPR AV (Finals) (Phase 1)

CISPR	22/CISPR22E
OIOI IX	22/0101 11220

freq	SR	QP	margin	limit	AV	margin	limit	line	corr
MHz		dB(μV)	dB	dB	dB(μV)	dB	dB		dB
0.177	1	50.1	-14.5	64.6	32.9	-21.8	54.6	Phase 1	10.1
0.240	1	48.3	-13.8	62.1	31.9	-20.3	52.1	Phase 1	10.1
0.350	2	44.7	-14.3	59.0	30.5	-18.5	49.0	Phase 1	10.1
0.359	2	47.0	-11.8	58.8	34.8	-13.9	48.8	Phase 1	10.1
0.435	2	41.1	-16.1	57.2	28.7	-18.5	47.2	Phase 1	10.1
0.440	2	41.0	-16.1	57.1	28.5	-18.6	47.1	Phase 1	10.1
0.767	3	39.2	-16.8	56.0	28.3	-17.7	46.0	Phase 1	10.2
0.821	3	40.3	-15.7	56.0	28.0	-18.0	46.0	Phase 1	10.2
0.902	3	37.7	-18.3	56.0	25.7	-20.3	46.0	Phase 1	10.2
1.181	3	37.0	-19.0	56.0	26.6	-19.4	46.0	Phase 1	10.2
1.358	4	37.1	-18.9	56.0	28.3	-17.7	46.0	Phase 1	10.2
1.407	4	39.1	-16.9	56.0	28.4	-17.6	46.0	Phase 1	10.2
1.713	4	35.2	-20.8	56.0	27.5	-18.5	46.0	Phase 1	10.3
1.812	4	36.3	-19.7	56.0	29.2	-16.8	46.0	Phase 1	10.3
3.179	5	33.1	-22.9	56.0	27.9	-18.1	46.0	Phase 1	10.4
3.282	5	33.6	-22.4	56.0	28.0	-18.0	46.0	Phase 1	10.4
3.467	5	33.8	-22.2	56.0	27.2	-18.8	46.0	Phase 1	10.4
3.570	5	33.0	-23.0	56.0	27.5	-18.5	46.0	Phase 1	10.4
6.128	6	30.8	-29.2	60.0	25.6	-24.4	50.0	Phase 1	10.6
6.731	6	32.8	-27.2	60.0	27.8	-22.2	50.0	Phase 1	10.6
7.617	6	36.5	-23.6	60.0	28.9	-21.2	50.0	Phase 1	10.6
7.946	6	36.2	-23.8	60.0	30.4	-19.6	50.0	Phase 1	10.7
13.439	7	28.5	-31.5	60.0	21.0	-29.0	50.0	Phase 1	11.1
13.443	7	28.2	-31.8	60.0	20.3	-29.7	50.0	Phase 1	11.1
17.084	7	40.2	-19.8	60.0	34.0	-16.0	50.0	Phase 1	11.3
17.475	7	39.7	-20.3	60.0	33.5	-16.5	50.0	Phase 1	11.3
19.299	8	21.9	-38.1	60.0	15.5	-34.5	50.0	Phase 1	11.4
19.709	8	23.9	-36.1	60.0	19.1	-30.9	50.0	Phase 1	11.4
24.051	8	15.3	-44.7	60.0	9.4	-40.7	50.0	Phase 1	11.6
24.096	8	15.6	-44.4	60.0	9.2	-40.9	50.0	Phase 1	11.7

Test point N Result: passed Operation mode: Transmission 5 GHz

Remarks:

CISPR 22/CISPR22 B - Average/
CISPR 22/CISPR22 B - QPeak/
Meas Peak (Neutral)
Mes. CISPR AVG (Neutral)
QuasiPeak (Finals) (Neutral)
CISPR AV (Finals) (Neutral)

CISPR 22/CISPR22B

freq	SR	QP	margin	limit	AV	margin	limit	line	corr
MHz		$dB(\mu V)$	dB	dB	$dB(\mu V)$	dB	dB		dB
0.186	9	53.4	-10.8	64.2	36.5	-17.7	54.2	Neutral	10.1
0.240	9	47.8	-14.3	62.1	31.8		52.1	Neutral	10.1
0.245	9	47.2	-14.8	61.9	30.9	-21.0	51.9	Neutral	10.1
0.363	10	47.2	-11.4	58.7	35.3	-13.4	48.7	Neutral	10.1
0.372	10	47.2	-11.3	58.5	34.9	-13.6	48.5	Neutral	10.1
0.431	10	41.4	-15.9	57.2	29.4	-17.8	47.2	Neutral	10.1
0.444	10	40.7	-16.3	57.0	28.3	-18.7	47.0	Neutral	10.1
0.767	11	38.5	-17.5	56.0	27.5	-18.5	46.0	Neutral	10.2
0.821	11	39.7	-16.3	56.0	27.1	-18.9	46.0	Neutral	10.2
0.884	11	39.1	-16.9	56.0	26.1	-19.9	46.0	Neutral	10.2
0.902	11	37.1	-19.0	56.0	25.0	-21.0	46.0	Neutral	10.2
1.353	12	36.4	-19.6	56.0	27.9	-18.1	46.0	Neutral	10.2
1.407	12	38.4	-17.6	56.0	27.8	-18.3	46.0	Neutral	10.2
1.866	12	37.2	-18.8	56.0	29.0	-17.0	46.0	Neutral	10.3
2.091	12	33.6	-22.4	56.0	26.1	-19.9	46.0	Neutral	10.3
2.513	13	32.0	-24.0	56.0	24.7	-21.3	46.0	Neutral	10.3
3.264	13	32.1	-23.9	56.0	26.5	-19.5	46.0	Neutral	10.4
3.462	13	32.6	-23.4	56.0	25.6	-20.5	46.0	Neutral	10.4
4.191	13	31.9	-24.1	56.0	26.8	-19.2	46.0	Neutral	10.4
6.024	14	32.2	-27.8	60.0	26.5	-23.5	50.0	Neutral	10.5
6.578	14	30.8	-29.2	60.0	27.3	-22.7	50.0	Neutral	10.6
7.262	14	32.5	-27.5	60.0	25.8	-24.3	50.0	Neutral	10.6
7.374	14	32.1	-27.9	60.0	26.4	-23.6	50.0	Neutral	10.6
13.245	15	26.6	-33.4	60.0	20.3	-29.7	50.0	Neutral	10.9
13.502	15	27.8	-32.2	60.0	19.6	-30.4	50.0	Neutral	10.9
16.827	15	40.7	-19.3	60.0	33.9	-16.1	50.0	Neutral	11.1
16.832	15	40.0	-20.0	60.0	33.4		50.0	Neutral	11.1
19.358	16	22.4	-37.6	60.0	16.3	-33.7	50.0	Neutral	11.2
19.709	16	23.6	-36.4	60.0	18.8	-31.2	50.0	Neutral	11.2
24.105	16	12.5	-47.5	60.0	7.3	-42.7	50.0	Neutral	11.3
24.866	16	11.7	-48.3	60.0	5.9		50.0	Neutral	11.3

5.2 Maximum conducted output power

For test instruments and accessories used see section 6 Part CPR 3.

5.2.1 Description of the test location

Test location: Anechoic chamber 1

Test distance: 3 m

5.2.2 Photo documentation of the test set-up

5.2.3 Applicable standard

According to FCC Part 15E, Section 15.407(a):

The maximum conducted output power over the frequency band of operation shall not exceed the effective values. If transmitting antennas of directional gain are greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.4 Description of Measurement

The output power is measured conducted using a spectrum analyser. The EUT has no constant duty cycle and may be smaller than 98% therefore the procedure according the KDB 789033; item E 2b) Method SA-1 is followed. The EUT is set while measuring in TX continuous mode with a maximum duty cycle. The insertion loss of the measurement cable is taken into account with amplitude offset while measuring. The output power is integrated across the OBW 99 alternatively.

Spectrum analyser settings:

Channel power measurement function, TX channel bandwidth equal to OBW;

RBW: 1 MHz, VBW: 3 MHz, Sweep time: auto, Detector: rms, Trace: power averaging

over 100 sweeps;

5.2.5 Test result

802.11n HT20, MCS0, P16, Ant0 Duty cycle: 99%		Test results radiated		Test results conducted calculated		
Channel	Power set	P [EIRP]	G	A [Pmax]	Limit	Margin
Charine	i ower set	(dBm)	(dBi)	(dBm)	(dBm)	(dB)
CH52	P16	15.7	3.99	11.7	22.6	-10.9
CH60	P16	16.1	3.99	12.1	22.6	-10.5
CH64	P16	15.5	3.99	11.5	22.6	-11.1

802.11ac VT40, M 0 Duty cycle: 99%	CS0, P16, Ant0	Test results radiated		Test resu	ults conducted c	alculated
Channel	Power set	P [EIRP]	G (dD:)	A [Pmax]	Limit	Margin
		(dBm)	(dBi)	(dBm)	(dBm)	(dB)
CH54	P16	14.4	3.99	10.4	24.0	-13.6
CH62	P16	14.3	3.99	10.3	24.0	-13.7

802.11ac VT80, MC Duty cycle: 99%	S0, P8, Ant0	Test results radiated		Test resu	ılts conducted c	alculated
Channel	Power set	P [EIRP]	G	A [Pmax]	Limit	Margin
		(dBm)	(dBi)	(dBm)	(dBm)	(dB)
CH58	P8	6.2	3.99	2.2	24.0	-21.8

802.11n HT20, MCS0, P16, Ant1 Duty cycle: 99%		Test results radiated		Test results conducted calculated		
Channel	Power set	P [EIRP]	G	A [Pmax]	Limit	Margin
		(dBm)	(dBi)	(dBm)	(dBm)	(dB)
CH52	P15	14.8	3.14	11.7	22.6	-10.9
CH60	P15	15.7	3.14	12.6	22.6	-10.0
CH64	P15	15.2	3.14	12.1	22.6	-10.5

FCC ID: 2AHES-SMB

IC:	21	152	-SN	ЛB
IC:	21	152	-SN	ΛE

802.11ac VT40, MC Duty cycle: 99%	CS0, P16, Ant1	Test results radiated		Test resu	ults conducted c	alculated
Channel	Power set	P [EIRP]	G	A [Pmax]	Limit	Margin
		(dBm)	(dBi)	(dBm)	(dBm)	(dB)
CH54	P15	13.9	3.14	10.8	24.0	-13.2
CH62	P15	13.6	3.14	10.5	24.0	-13.5

802.11ac VT80, MC Duty cycle: 99%	S0, P8, Ant1	Test results radiated		Test resu	ılts conducted c	alculated
Channel	Power set	P [EIRP]	G	A [Pmax]	Limit	Margin
		(dBm)	(dBi)	(dBm)	(dBm)	(dB)
CH58	P8	6.4	3.14	3.3	24.0	-20.8

Peak power limit according to FCC Part 15E, Section 15.407(a)(1)(ii):

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Determinati	on of the limit:
20 MHz bar	ndwidth:

OBW99 = 18.019 MHzLimit = 11 dBm + 10 logB = 11 + 10 log18 = 10 + 12.6 = 22.6 dBm;

Applicable limit 22.6 dBm

40 MHz bandwidth: OBW99 = 36.519 MHz

Limit = $11 \text{ dBm} + 10 \log B = 11 + 10 \log 36.5 = 10 + 15.6 = 25.6 \text{ dBm}$;

Applicable limit 24 dBm

80 MHz bandwidth: OBW99 = 75.697 MHz

Limit = $11 \text{ dBm} + 10 \log B = 11 + 10 \log 75.7 = 10 + 18.8 = 25.6 \text{ dBm}$;

Applicable limit 24 dBm

The requirements are **FULFILLED**.

Remarks:			

5.4 Undesirable emissions

For test instruments and accessories used see section 6 Part SER 2 and SER 3.

5.4.1 Description of the test location

Test location: OATS 1

Test location: Anechoic chamber 1

Test distance: 3 m

5.4.2 Photo documentation of the test set-up

5.4.3 Applicable standard

According to FCC Part 15E, Section 15.407(b)(2):

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, radiated emissions which fall in the restricted bands, as defined in Section15.205(a), must also comply with the radiated emission limit specified in Section15.209(a) (see Section15.205(c)).

5.4.4 Description of Measurement

Undesirable emissions are measured using a spectrum analyser and following the procedures according the KDB 789033, item H. If the emission level of the EUT in peak mode complies with the average limit then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported. Up from 8 GHz a HP filter is used.

Spectrum analyser settings for peak values:

RBW: 1 MHz, VBW: 3 MHz, Sweep: Auto, Trace mode: max hold;

Spectrum analyser settings for average values:

RBW: 1 MHz VBW: 10 Hz Sweep: Auto, Trace mode: max hold;

5.4.5 Test result

f < 1000 MHz

Frequency (MHz)	Reading Vert. (dBµV)	Reading Hor. (dBµV)	Correct. Vert. (dB)	Correct. Hor. (dB)	Level Vert. (dBµV/m)	Level Hor. (dBµV/m)	Limit (dBµV/m)	Dlimit (dB)
54.00	9.2	3.3	14.1	13.1	23.3	16.4	40.0	-16.7
125.00	20.7	27.0	12.0	12.5	32.7	39.5	43.5	-4.0
250.00	11.6	20.0	12.9	13.1	24.5	33.1	46.0	-12.9
500.00	10.6	20.7	21.4	21.1	32.0	41.8	46.0	-4.2
875.00	1.4	8.8	28.7	28.2	30.1	37.0	46.0	-9.0

f > 1000 MHz

The spurious emission at Ant0 is measured only because of the highest output power.

5.4.5.1 CHn52 HT20, Ant0

FCC ID: 2AHES-SMB

IC: 21152-SMB

5.4.5.2 CH60n HT20, Ant0

40.0 GHz

2.2 GHz/

44001 pts

5.4.5.3 CH64n HT20, Ant0

18.0 GHz

5.4.5.4 CH54ac VT40, Ant0

40.0 GHz

2.2 GHz/

44001 pts

5.4.5.5 CH62ac VT40, Ant0

18.0 GHz

FCC ID: 2AHES-SMB

IC: 21152-SMB

5.4.5.6 CH58ac VT80, Ant0

Limit according to FCC Part 15E, Section 15.407(b) for undesirable emissions:

Operating Frequency range	Undesirable emission limit, EIRP		
(MHz)	(dBm/MHz)		
5250 - 5350	-27.0		

Radiated limits according to FCC Part 15C, Section 15.209(a):

Frequency	Field strength of spurious emissions		Measurement distance
(MHz)	$(\mu V/m)$ $dB(\mu V/m)$		(metres)
0.009 - 0.490	2400/F(kHz)		300
0.490 - 1.705	24000/F(kHz)		30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

FCC ID: 2AHES-SMB

IC: 21152-SMB

FCC Part 15C, Section 15.205, restricted bands of operation:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15
0.495 - 0.505	16.69475 – 16.69525	608 – 614	5.35 – 5.46
2.1735 – 2.1905	16.80425 – 16.80475	960 – 1240	7.25 – 7.75
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 – 8.5
4.17725 – 4.17775	37.5 – 38.25	1435 – 1626.5	9.0 – 9.2
4.20725 - 4.20775	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7
6.26775 - 6.26825	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4
6.31175 - 6.31225	123 – 138	2200 – 2300	14.47 – 14.5
8.291 – 8.294	149.9 – 150.05	2310 – 2390	15.35 – 16.2
8.362 - 8.366	156.52475 – 156.52525	2483.5 – 2500	17.7 – 21.4
8.37625 - 8.38675	156.7 – 156.9	2690 – 2900	22.01 – 23.12
8.41425 - 8.41475	162.0125 – 167.17	3260 – 3267	23.6 – 24.0
12.29 – 12.293	167.72 – 173.2	3332 – 3339	31.2 – 31.8
12.51975 – 12.52025	240 – 285	3345.8 - 3358	36.43 – 36.5
12.57675 – 12.57725	322 – 335.4	3600 – 4400	Above 38.6

RSS-Gen, Table 6 – Restricted Frequency Bands

MHz	MHz	MHz	GHz
0.090 - 0.110	12.57675 - 12.57725	399.9 - 410	7.250 - 7.750
0.495 - 0.505	13.36 - 13.41	608 - 614	8.025 - 8.500
2.1735 - 2.1905	16.42 - 16.423	960 - 1427	9.0 - 9.2
3.020 - 3.026	16.69475 - 16.69525	1435 - 1626.5	9.3 - 9.5
4.125 - 4.128	16.80425 - 16.80475	1645.5 - 1646.5	10.6 - 12.7
4.17725 - 4.17775	25.5 - 25.67	1660 - 1710	13.25 - 13.4
4.20725 - 4.20775	37.5 - 38.25	1718.8 - 1722.2	14.47 - 14.5
5.677 - 5.683	73 - 74.6	2200 - 2300	15.35 - 16.2
6.215 - 6.218	74.8 - 75.2	2310 - 2390	17.7 - 21.4
6.26775 - 6.26825	108 – 138	2483.5 - 2500	22.01 - 23.12
6.31175 - 6.31225	149.9 - 150.05	2655 - 2900	23.6 - 24.0
8.291 - 8.294	156.52475 - 156.52525	3260 – 3267	31.2 - 31.8
8.362 - 8.366	156.7 - 156.9	3332 - 3339	36.43 - 36.5
8.37625 - 8.38675	162.0125 - 167.17	3345.8 - 3358	Above 38.6
8.41425 - 8.41475	167.72 - 173.2	3500 - 4400	
12.29 - 12.293	240 – 285	4500 - 5150	
12.51975 - 12.52025	322 - 335.4	5350 - 5460	

The requirements are **FULFILLED**.

Remarks:	The measurement was performed from 30 MHz up to 40 GHz.		

CSA Group Bayern GmbH Ohmstrasse 1-4 · 94342 STRASSKIRCHEN · GERMANY Tel.: +49(0)9424-94810 · Fax: +49(0)9424-9481440

5.5 Antenna application

5.5.1 Applicable standard

According to FCC Part 15C, Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit that broken antennas can be replaced by the user, but the use of a standard antenna jack is prohibited.

The EUT use the listed antennas for SISO technique. The equipment connector is subject to the end product.

5.5.2 Antenna requirements

According to FCC Part 15E, Section 15.407(a):

The conducted output power limit specified in paragraph (a) of 15.407 is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from intentional radiator shall be reduced below the stated values in paragraph (a)(1), (a)(2) and (a)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds the effective value.

5.5.3 Defacto EIRP-Limit:

For the output power reduction of the used antennas see the following table. The limit is calculated as using following formula, Pout = 30 - (Gx - 6);

The used integrated PCB antennas has a gain smaller than 6 dBi, therefore no "defacto limit" results.

Remarks:	No power reduction results using the listed antennas in combination with the mentioned power							
	settings.							

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used are calibrated and verified regularly. The calibration history is available on request.

Test ID A 4	Model Type BAT-EMC 3.18.0.26	Equipment No. 01-02/68-13-001	Next Calib.	Last Calib.	Next Verif.	Last Verif.
	ESCI ESH 2 - Z 5 EMV D 30000/PAS N-4000-BNC N-1500-N	02-02/03-15-001 02-02/20-05-004 02-02/30-05-006 02-02/50-05-138 02-02/50-05-140	02/07/2020 25/10/2019 21/02/2020		30/10/2019 25/02/2020	
	ESH 3 - Z 2 EA-PS 3032-20B	02-02/50-05-155 02-02/50-11-013	18/11/2019	18/11/2016	13/11/2019	13/05/2019
CPR 3	FSW43 AFS4-01000400-10-10P-4 AMF-4F-04001200-15-10P	02-02/11-15-001 02-02/17-13-002 02-02/17-13-003	08/04/2020	08/04/2019		
	BBHA 9120 E 251 WBH2-18NHG Sucoflex N-2000-SMA SF104/11SMA/11N/2000MM SF104/11SMA/11N/2000MM	02-02/24-05-006 02-02/24-08-002 02-02/50-05-075 02-02/50-15-003 02-02/50-15-004	15/07/2020 15/07/2020		02/03/2020 02/03/2020	
SER 2	ESVS 30 VULB 9168 NW-2000-NB EA-PS 3032-20B KK-EF393/U-16N-21N20 m KK-SD_7/8-2X21N-33,0M	02-02/03-05-006 02-02/24-05-005 02-02/50-05-113 02-02/50-11-013 02-02/50-12-018 02-02/50-15-028	19/08/2020 19/07/2020	19/08/2019 19/07/2019		
SER 3	FSW43 JS4-18004000-30-5A AMF-6D-01002000-22-10P	02-02/11-15-001 02-02/17-05-017 02-02/17-15-004	08/04/2020	08/04/2019		
	3117 BBHA 9170 KMS102-0.2 m 18N-20 NMS111-GL200SC01-NMS11 BAM 4.5-P NCD KK-SF106-2X11N-6,5M	02-02/24-05-009 02-02/24-05-014 02-02/50-11-020 02-02/50-17-003 102-02/50-17-012 02-02/50-17-024 02-02/50-17-025 02-02/50-18-016	06/06/2020 12/06/2021	06/06/2019 12/06/2018	12/12/2019	12/12/2018

ATTACHMENT A

A1) Photo documentation of the EUT

- End of attachment A -