

Cyber Security

Disclaimer and Acknowledgement

- The content for these slides has been obtained from books and various other source on the Internet
- I here by acknowledge all the contributors for their material and inputs.
- I have provided source information wherever necessary
- I have added and modified the content to suit the requirements of the course

Agenda

- Computer Security Concepts
- Threats, Attacks, and Assets
- Security Functional Requirements
- Fundamental Security Design Principles

Cyber Security - Introduction

- Attack Surfaces and Attack Trees
- Computer Security Strategy
- Standards

Modularity

- Modularity principle says that the security mechanism must be developed:
 - as separate and protected modules, and

Security Design Principles

- using the modular architecture
- The design goal here is to provide security functions and services (E.g., cryptographic functions), as common modules
- Numerous protocols and applications make use of cryptographic functions
- Rather than implementing such functions in each protocol or application, provide a common cryptographic module that can be invoked by other applications
- The module structure helps us in
 - a) focusing on the secure design and implementation of a single cryptographic module
 - b) focusing on the mechanisms to protect the module from tampering
 - c) migrating to new technology or upgrading the features of security mechanism without modifying the entire system

Security Design Principles

innovate achieve lead

Layering

- Similar to defense in depth
- Involves the use of multiple, overlapping protection approaches in a series
- Provides multiple barriers to the adversary from accessing the protected system
- Allows for different types of controls to guard against threats
- Addresses people, technology, and operational aspects of information systems
- Security breach of any one layer will not leave the system unprotected

Least Astonishment

- Security mechanisms should use a model that the users can easily understand
- The security mechanisms should be designed such that using the mechanism is simple
 - Hide complexity introduced by security mechanisms
 - Ease of installation, configuration, and use
- The security mechanism should be such that the user has a good intuitive understanding of how the security goals map to the provided security mechanism
- The program should always respond in the way that is least likely to astonish the user
 - E.g., at the time of login, the system should not ask your SSN or date of birth
- Configuring and executing a program should be as easy and as intuitive as possible, and any output should be clear, direct, and useful

TECHNOLOGY

Attack Surfaces and Attack Trees

भानं परमं बल

Attack Surfaces

- An attack surface
 - is the set of entry points that attackers can use to compromise a system.
 - consists of reachable and exploitable vulnerabilities in a system
- Keeping the attack surface as small as possible is a basic security measure
- Examples:
 - Open ports on outward facing Web and other servers, and code listening on those ports
 - Services that are available on the inside of a firewall
 - Code that processes incoming data, email, XML, office documents, and industry-specific custom data exchange formats
 - Interfaces, SQL, and Web forms
 - An employee with access to sensitive information vulnerable to a social engineering attack

Attack Surfaces and Attack Trees

Attack Surfaces

- Categories of Attack surfaces:
 - Network attack surface
 - Refers to vulnerabilities over LANs, WANs, or the Internet
 - Includes network protocol vulnerabilities, such as those used for a denial-of-service attack, disruption of communications links, and various forms of intruder attacks.
 - Software attack surface
 - Refers to vulnerabilities in application, utility, or operating system code
 - A particular focus in this category is Web server software
 - Human attack surface
 - Refers to vulnerabilities created by employees or outsiders
 - Includes, social engineering, human error, and trusted insiders

Attack Surface Analysis

- Is a useful technique for assessing the scale and severity of threats to a system
- A systematic analysis of vulnerable points makes security analysts aware of where security mechanisms are required
- Once an attack surface is defined, designers may be able to find ways to make the surface smaller, thus making the task of the adversary more difficult
- It provides guidance on:
 - setting priorities for testing,
 - strengthening security measures, or
 - modifying the service or application

Layering

Attack Surface

 The use of layering (or defense in depth), and attack surface reduction complement each other in mitigating security risk

Attack Trees

- An attack tree shows a set of potential techniques for exploiting security vulnerabilities
- The goal of the attack (the security incident) is represented as the root node
- Branches and subnodes represent the ways in which the goal can be reached
- Each subnode defines a subgoal
 - Each subgoal may have its own set of further subgoals, etc.

Attack Trees

- The leaf nodes represent different ways to initiate an attack
- Each node other than a leaf is either an AND-node or an OR-node
- To achieve the goal represented by an AND-node,
 - all the subgoals represented by that node's subnodes must be achieved
- To achieve the goal represented by an OR-node,
 - at least one of the subgoals must be achieved
- Branches can be labeled with values representing difficulty, cost, or other attack attributes, so that alternative attacks can be compared

Attack Surfaces and Attack Trees

innovate achieve lead

Attack Trees – Example

- The goal of the attacker is to compromise a user's bank account
- The shaded boxes (leaf nodes) represent the attack events
- The white boxes are categories which consist of one or more specific attack events (leaf nodes)
- In this tree, all the nodes other than leaf nodes are OR-nodes
- Three components involved in authentication:
 - User terminal and user (UT/U)
 - Communications channel (CC)
 - Internet banking server (IBS)

An Attack Tree for Internet Banking Authentication

Attack Surfaces and Attack Trees

innovate achieve lead

Attack Trees – Example

- User terminal and user (UT/U):
 - These attacks target the user equipment, including the tokens such as smartcards or other password generators, as well as the actions of the user
- Communications channel (CC):
 - This type of attack focuses on communication links
- Internet banking server (IBS):
 - These types of attacks target the servers that host the Internet banking application

An Attack Tree for Internet Banking Authentication

- Attack Strategies
 - Five attack strategies can be identified
 - User credential compromise
 - Injection of commands
 - User credential guessing
 - IBS Security policy violation
 - Use of known authenticated session
 - Each of the above exploits one or more of the three components

Attack Surfaces and Attack Trees

- User credential compromise
 - This strategy can be used against many elements of the attack surface
 - 1) by using procedural attacks
 - Monitoring a user's action to observe a PIN or other credential
 - Theft of the user's token or handwritten notes
 - 2) embedding malicious software to compromise the user's login and password
 - 3) by using token attack tools
 - Hacking the smartcard
 - Using a brute force approach to guess the PIN
 - 4) obtaining credential information via the communication channel (sniffing)
 - − 5) engaging in communication with the target user

Attack Surfaces and Attack Trees

novate achieve lead

- Injection of commands
 - Involves intercepting communication between the UT and the IBS
 - Involves impersonating the valid user to gain access to the banking system.
- User credential guessing
 - Involves brute force attacks against banking authentication schemes by
 - sending random usernames and passwords
 - The attack mechanism can be by using
 - distributed zombie personal computers,
 - hosting automated programs for username- or password-based calculation

- Security policy violation
 - An employee may expose a customer's account by
 - Sharing passwords
 - Using weak access control and logging mechanisms
- Use of known authenticated session
 - Persuading or forcing the user to connect to the IBS with a preset session ID
 - Once the user authenticates to the server, the attacker may utilize the known session ID to send packets to the IBS, spoofing the user's identity

Attack Trees

- Attack trees are used to effectively exploit the information available on attack patterns
- Organizations such as CERT developed body of knowledge about
 - general attack strategies and
 - specific attack patterns
- These organizations publish security advisories
- Security analysts can use the attack tree to document security attacks in a structured form that reveals key vulnerabilities
- The attack tree can guide both:
 - the design of systems and applications, and
 - the choice and strength of countermeasures

TECHNOLOGY

Computer Security Strategy

भानं परमं बल

Computer Security Strategy

Comprehensive Security Strategy

A comprehensive security strategy involves three aspects:

Computer Security Strategy

Security Policy

- Developing a security policy is the first step in devising security services and mechanisms
- A security policy
 - Is a statement of rules and practices that specify the type of security services required to protect sensitive and critical system resources
 - Describes the desired system behavior
 - Includes the requirements for confidentiality, integrity, and availability
 - Formal security policies are enforced by the system's technical controls, management controls, and operational controls

Security Policy

- In developing a security policy, a security manager needs to consider the following factors and tradeoffs:
 - Factors
 - The value of the assets being protected
 - The vulnerabilities of the system
 - Potential threats and the likelihood of attacks
 - Trade-offs
 - Ease of use versus level of security
 - Cost of security versus cost of failure and recovery

Computer Security Strategy

Security Policy – Trade-offs

- Ease of use versus security
 - Virtually all security measures involve some penalty in the area of ease of use
 - For example:
 - Access control mechanisms require users to remember passwords and perhaps perform other access control actions
 - Firewalls and other network security measures may reduce available transmission capacity or slowdown response time
 - Virus-checking software
 - o reduces available processing power and
 - o introduces the possibility of system crashes or malfunctions due to improper interaction between the security software and the operating system

Security Policy – Trade-offs

- Cost of security versus cost of failure and recovery
 - Costs of implementing and maintaining security measures must be balanced against the cost of security failure and recovery
 - The cost of security failure and recovery must take into account:
 - the value of the assets being protected and the damages resulting from a security violation
 - the risk, which is the probability that a particular threat will exploit a particular vulnerability with a particular harmful result

Security implementation involves four complementary courses of

action:

- Prevention
- Detection
- Response
- Recovery

- Prevention
 - An ideal security scheme is one in which no attack is successful
 - This is impractical
 - There is a wide range of threats in which prevention is a reasonable goal
 - Example: Transmission of encrypted data
 - Attacks on confidentiality of the transmitted data can be prevented by
 - o using secure encryption algorithm and
 - o taking measures to prevent unauthorized access to encryption keys

- Detection
 - Absolute prevention is not feasible, but it is practical to detect security attacks
 - For example:
 - Detecting the presence of unauthorized individuals logged into a system using intrusion detection systems
 - Detecting a denial of service attack
 - Communications or processing resources are consumed so that they are unavailable to legitimate users

• Response:

 Once an attack (E.g., denial of service) is detected, the system can respond by halting the attack and preventing further damage

• Recovery:

- Assets (E.g., data) can be recovered using backup systems
- If data integrity is compromised, a prior, correct copy of the data can be reloaded

Assurance and Evaluation

- The "consumers" of computer security services and mechanisms (e.g., system managers, vendors, customers, and end users) want to feel that the security measures work as intended
- This bring us to the concepts of:
 - Assurance and Evaluation

Assurance and Evaluation

Assurance

— "The degree of confidence one has that the security measures, both technical and operational, work as intended to protect the system and the information it processes."

-- NIST95

- This encompasses both system design and system implementation
- Assurance deals with the questions such as:
 - "Does the security system design meet its requirements?"
 - "Does the security system implementation meet its specifications?"
- Note:
 - Assurance is expressed as a degree of confidence, not in terms of a formal proof that a design or implementation is correct
 - It is not possible to provide absolute proof that designs and implementations are correct

Assurance and Evaluation

Evaluation

- It is the process of examining a computer product or system with respect to certain criteria
- Evaluation involves formal testing of the computer product and process
- The core work involves development of evaluation criteria that can be applied to any security services and mechanisms
- These evaluation criteria can also broadly used for making product comparisons

Thank You!