(A Product) A product can be produced on four different machines. Each machine has a fixed setup cost, variable production cost per unit processed, and a production capacity, given in the file P06_53.xlsx. A total of 2000 units of the product must be produced. Determine how to minimize the total cost.

	Machine 1	Machine 2	Machine 3	Machine 4
Fixed cost	\$1,000	\$920	\$800	\$700
Variable cost	\$20	\$24	\$16	\$28
Capacity	900	1000	1200	1600

Discussion: -

It is like the manufacturer problem 40[RA] where the manufacturer should take a decision on production of different items. In this problem, we need to take a decision on the type of machines which we are using to produce the product. Our objective is to minimize the cost. To calculate the cost, we need to decide on the units produced from each type of machine.

Mathematical Model: -

Parameters (Inputs):

 $i \in 1,2,3,4$ (i: Index for machines) F_i : Fixed cost to use machine i

 V_i : Per unit Variable cost that were produced using machine i

 C_i : Capacity of machine i

D: Demand for the product; D = 2000

Decision Variables:

 x_i : Decision on whether producing product i or not

 y_i : Units of item i produced

Objective:

$$Minimize\ total\ cost = \sum_{i=1}^{4} (x_i * F_i) + \sum_{i=1}^{4} (y_i * V_i)$$

Constraints:

$$\sum_{i=1}^{4} y_i \ge D ; \qquad (1) Demand Constraint$$

$$x_i \in \{0,1\}$$

(2) Binary Constraint

$$y_i \le x_i * C_i \quad ; For \ i \in \{1,2,3,4\}$$

(3) Machine capacity constraint

Excel Implementation: Please find the attached spreadsheet for solution.

42[RA].xlsx

	Machine 1	Machine 2	Machine 3	Machine 4				Inputs
Fixed cost	\$1,000	\$920	\$800	\$700				Decision variables
Variable cost	\$20	\$24	\$16	\$28				Calculated Variables
Capacity	900	1000	1200	1600				Constraints
								Objective
Decision	1	0	1	0				
Units produced	800	0	1200	0	2000	>=	2000	
	<=	<=	<=	<=				
Capacity	900	0	1200	0				
Fixed Cost	1800							
Variable Cost	35200							
Total Cost	37000							