Técnicas de projeto de algoritmos: Indução ACH2002 - Introdução à Ciência da Computação II

Delano M. Beder

Escola de Artes, Ciências e Humanidades (EACH)
Universidade de São Paulo
dbeder@usp.br

08/2008

Material baseado em slides dos professores Marcos Chaim, Cid de Souza e Cândida da Silva

- Técnica matemática muito poderosa para provar asserções sobre números naturais.
- Seja T um teorema que desejamos provar. Suponha que T tenha como parâmetro um número natural n.
- Ao invés de provar diretamente que T é válido para todos os valores de n, basta provar as duas condições a seguir:
 - Té válido para n = 1 (passo base)
 - Para todo n > 1, se T é válido para n 1, então T é válido para n (hipótese da indução ou passo indutivo).

- Normalmente, provar a condição 1 é relativamente fácil.
- Provar a condição 2 é mais fácil do que provar o teorema, pois pode-se utilizar do fato de que T é válido para n - 1.
- Por que a indução funciona? Por que as duas condições são suficientes?
 - As condições 1 e 2 implicam que T é válido para n = 2.
 - Se válido T é válido para n = 2, então pela condição 2 implica que T também é válido para 3, e assim por diante.
- O princípio da indução é um axioma dos números naturais.

Exemplo 1

Considere a expressão de soma dos primeiros números naturais n, isto é, $S(n) = 1 + 2 + \cdots + n$.

Provar por indução que $S(n) = \frac{n*(n+1)}{2}$.

Exemplo 1

Considere a expressão de soma dos primeiros números naturais n, isto é, $S(n) = 1 + 2 + \cdots + n$.

Provar por indução que $S(n) = \frac{n*(n+1)}{2}$.

Prova:

Passo base: Para n = 1, S(1) = 1 (trivial).

Exemplo 1

Considere a expressão de soma dos primeiros números naturais n, isto é, $S(n) = 1 + 2 + \cdots + n$.

Provar por indução que $S(n) = \frac{n*(n+1)}{2}$.

Prova:

Passo base: Para n = 1, S(1) = 1 (trivial).

Passo indutivo:

Pelo princípio da indução matemática podemos assumir

$$S(n-1) = \frac{(n-1)*(n-1+1)}{2}$$
 como válido.

Mas
$$S(n) = S(n-1) + n = \frac{(n-1)*(n-1+1)}{2} + n = \frac{n*(n+1)}{2}$$
.

Assim, provamos o passo indutivo.

Logo,
$$S(n) = \frac{n*(n+1)}{2}$$
 para todo $n \ge 1$.

Exemplo 2

Prove por indução que $2^n > 2^{n-1} + 2^{n-2} + 2^{n-3} + ... + 2^0$, $n \ge 1$.

Exemplo 2

Prove por indução que $2^n > 2^{n-1} + 2^{n-2} + 2^{n-3} + ... + 2^0$, $n \ge 1$. Prova:

Passo base: Para $n = 1, 2^1 > 2^0$ (trivial).

Exemplo 2

Prove por indução que $2^n > 2^{n-1} + 2^{n-2} + 2^{n-3} + \ldots + 2^0, n \ge 1$.

Prova:

Passo base: Para $n = 1, 2^{1} > 2^{0}$ (trivial).

Passo indutivo: Pelo princípio da indução matemática

$$2^{n-1} > 2^{n-2} + 2^{n-3} + \ldots + 2^0$$
 é verdadeiro

Somando 2^{n-1} nos dois lados da inequação (lembrando que 2^{n-1} é positivo e por isso não altera o sinal da inequação) obtemos:

$$2.2^{n-1} > 2^{n-1} + 2^{n-2} + 2^{n-3} + \ldots + 2^0.$$

Portanto, $2^n > 2^{n-1} + 2^{n-2} + 2^{n-3} + \ldots + 2^0$. O passo indutivo está provado.

Logo,
$$2^n > 2^{n-1} + 2^{n-2} + 2^{n-3} + \ldots + 2^0$$
 para todo $n \ge 1$.

Variações

- Variação 1
 - Caso base: n = 1
 - Provar que para $\forall n \geq 2$, se a propriedade é válida para n, ela é valida para n + 1.
- Variação 2
 - Caso base: n = 1, 2 e 3
 - Provar que para ∀n ≥ 4, se a propriedade é válida para n, ela é valida para n + 1.
- Variação 3 (Indução forte)
 - Caso base: n = 1
 - Provar que para $\forall n \geq 2$, se a propriedade é válida para $\forall 1 \geq m \geq n$, ela é valida para n + 1.

Exercícios - Indução Matemática

- **1** Prove que $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{2n^3 + 3n^2 + n}{6}, \forall n \ge 1$
- 2 Prove que $1 + 3 + 5 + \cdots + 2n 1 = n^2, \forall n \ge 1$
- **3** Prove que $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^4 + 2n^3 + n^2}{4}, \forall n \ge 1$
- **9** Prove que $1^3 + 3^3 + 5^3 + \cdots + (2n-1)^3 = 2n^4 n^2, \forall n \ge 1$
- **5** Prove que $1 + 2 + 2^2 + 2^3 + \cdots + 2^n = 2^{n+1} 1, \forall n \ge 0$
- Prove que $2^n \ge n^2, \forall n \ge 4$.
- **o** Prove que $\frac{1}{1} \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n-1} \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$
- Prove a soma dos cubos de três numeros naturais positivos sucessivos é divisível por 9.
- Prove que todo número natural n > 1 pode ser escrito como o produto de primos (indução forte).
- Prove que todo número natural positivo pode ser escrito como a soma de diferentes potências de 2 (indução forte).

Princípio da Recursão

- Definições recursivas de métodos são baseadas no princípio matemático da indução.
- A ideia é que a solução de um problema pode ser apresentada da seguinte forma:
 - Primeiramente, definimos a solução para os casos básicos;
 - Em seguida, definimos como resolver o problema para os demais casos, porém, de uma forma mais simples.

 Problema: definir a multiplicação de dois números inteiros não negativos m e n, em termos da operação de adição

• Qual o caso base ?

- Problema: definir a multiplicação de dois números inteiros não negativos m e n, em termos da operação de adição
- Qual o caso base ?
 - Se n é igual a 0, então a multiplicação é 0.
- Qual seria o passo indutivo

- Problema: definir a multiplicação de dois números inteiros não negativos m e n, em termos da operação de adição
- Qual o caso base ?
 - Se n é igual a 0, então a multiplicação é 0.
- Qual seria o passo indutivo
 - Temos que expressar a solução para n > 0, supondo que já sabemos a solução para algum caso mais simples.
 - m*n = m + (m*(n-1)).

- Problema: definir a multiplicação de dois números inteiros não negativos m e n, em termos da operação de adição
- Qual o caso base ?
 - Se n é igual a 0, então a multiplicação é 0.
- Qual seria o passo indutivo
 - Temos que expressar a solução para n > 0, supondo que já sabemos a solução para algum caso mais simples.
 - m*n = m + (m*(n-1)).
- Portanto, a solução do problema pode ser expressa:
 - m * 0 = 0
 - m * n = m + (m * (n 1))
- Como programar esta solução em Java?

```
class Aritr {
   static int multr (int m, int n) {
    if(n == 0) {
      return 0;
    else {
      return (m + multr(m, n-1));
```

Utilizando Recursão

Comando/ Expressão	Resultado (expressão)	Estado (após execução/avaliação)
multr (3,2)		m —> 3 n —> 2
n == 0	false	m —> 3 n —> 2
return m + multr (m, n-1)		m> 3 m> 3 n> 1
n == 0	false	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
return m + multr (m, n-1)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
n == 0	true	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
return 0		$\begin{array}{c cccc} m \longrightarrow 3 & m \longrightarrow 3 \\ n \longrightarrow 2 & n \longrightarrow 1 \end{array}$
return m + 0		m —> 3 n —> 2
return m + 3		
multr (3,2)	6	

Recursão

- Para solucionar o problema, é feita uma outra chamada para o próprio método, por isso, este método é chamado recursivo.
- Recursividade geralmente permite uma descrição mais clara e concisa dos algoritmos, especialmente quando o problema é recursivo por natureza.
- Cada chamada do método multr cria novas variáveis de mesmo nome m e n.
- Portanto, várias variáveis m e n podem existir em um dado momento.
- Em um dado instante, o nome (m ou n) refere-se à variável local ao corpo do método que está sendo executado.

Recursão

- As execuções das chamadas de métodos são feitas em uma estrutura de pilha.
- Pilha: estrutura na qual a inserção (ou alocação) e a retirada (ou liberação) de elementos é feita de maneira que o último elemento inserido é o primeiro a ser retirado.
- Assim, o último conjunto de variáveis alocadas na pilha corresponde às variáveis e aos parâmetros do último método chamado.
- O espaço de variáveis e parâmetros alocado para um método é chamado de registro de ativação desse método.
- O registro de ativação é desalocado quando termina a execução de um método.

Recursão

- Variáveis que podem ser usadas no corpo de um método:
 - variáveis ou atributos de classe (static): criados uma única vez;
 - variáveis ou atributos de instância: criados quando é criado um novo objeto (new);
 - parâmetros e variáveis locais: criados cada vez que é invocado o método.
- Na criação de uma variável local a um método, se não for especificado um valor inicial, o valor armazenado será indeterminado.
 - Indeterminado = valor existente nos bytes alocados para essa variável na *pilha* de chamada dos métodos.

Iteração

```
class Aritr {
   static int multr (int m, int n) {
    int r = 0;
    for (int i = 1; i \le n; i++) {
      r += m;
    return r;
```

Iteração

Comando/	Resultado	Estado
Expressão	(expressão)	(após execução/avaliação)
multr (3,2)		m —> 3, n —> 2
int r = 0		m —> 3, n —> 2, r —> 0
int i = 1		m —> 3, n —> 2, r —> 0, i —> 1
i <= n	true	m —> 3, n —> 2, r —> 0, i —> 1
r+=m	3	$m \longrightarrow 3, n \longrightarrow 2, r \longrightarrow 3, i \longrightarrow 1$
i++	2	m —> 3, n —> 2, r —> 3, i —> 2
i <= n	true	m —> 3, n —> 2, r —> 3, i —> 2
r+=m	6	m —> 3, n —> 2, r —> 6, i —> 2
i++	3	m —> 3, n —> 2, r —> 6, i —> 3
i <= n	false	m —> 3, n —> 2, r —> 6, i —> 3
for		m —> 3, n —> 2, r —> 6
return r	6	m —> 3, n —> 2, r —> 6
mult(3,2)	6	

Recursão x Iteração

- Soluções recursivas são geralmente mais concisas que as iterativas. Programas mais simples.
- Soluções iterativas em geral têm a memória limitada enquanto as recursivas, não.
- Cópia dos parâmetros a cada chamada recursiva é um custo adicional para as soluções recursivas.
- Programas recursivos que possuem chamadas no final do código são ditos terem recursividade de cauda. São facilmente transformáveis em uma versão não recursiva.
- Projetista de algoritmos deve levar consideração a complexidade (temporal e espacial), bem como os outros custos (e.g., facilidade de manutenção) para decidir por qual solução utilizar.

Exercícios

- Forneça soluções recursivas para os problemas abaixo
 - cálculo do fatorial de um número.
 - cálculo do elemento n da série de Fibonacci.
 - $f_0 = 0, f_1 = 1,$
 - $f_n = f_{n-1} + f_{n-2}$ para n >= 2.
 - busca binária.
- 2 Como faço para calcular a complexidade (temporal ou espacial) de um algoritmo recursivo?
- § Escreva um método recursivo que calcule a soma dos elementos positivos do vetor de inteiros v[0..n-1]. O problema faz sentido quando n é igual a 0? Quanto deve valer a soma nesse caso? (Retirado de [1])
- **Secreva** um método recursivo maxmin que calcule o valor de um elemento máximo e o valor de um elemento mínimo de um vetor v[0..n-1]. Quantas comparações envolvendo os elementos do vetor a sua função faz? (Retirado de [1])

Exercícios

- Escreva um método recursivo que calcule a soma dos elementos positivos do vetor v[ini..fim - 1]. O problema faz sentido quando ini é igual a fim? Quanto deve valer a soma nesse caso? (Retirado de [1])
- Escreva um método recursivo que calcule a soma dos dígitos de um inteiro positivo n. A soma dos dígitos de 132, por exemplo, é
 6. (Retirado de [1])
- ② Escreva um método recursivo onde (). Ao receber um inteiro x, um vetor v e um inteiro n, o método deve devolver j no intervalo fechado $0 \dots n-1$ tal que v[j] == x. Se tal j não existe, o método deve devolver -1. (Retirado de [1])
- § Escreva um método recursivo que recebe um inteiro x, um vetor v e inteiros *ini* e *fim* e devolve j tal que *ini* $\leq j \leq fim 1$ e v[j] == x. Se tal j não existe então devolve ini-1. (Retirado de [1])

Referências

Referências utilizadas: [1] (Capítulo 5) e [2] (páginas 35-42).

[1] C. Camarão & L. Figueiredo. *Programação de Computadores em Java*. Livros Técnicos e Científicos Editora, 2003.

[2] N. Ziviani. *Projeto de Algoritmos com implementações em C e Pascal*. Editora Thomson, 2a. Edição, 2004.