

# Introduction to rstan: workshop

**lan Laga** 

#### What is Stan?

- Stan is, among other things, a modeling language:
  - Bayesian inference with MCMC samplings via NUTS, HMC (No-u-turns Hamiltonian Monte Carlo)
  - Approximate Bayesian inference with variational inference
  - Penalized maximum likelihood estimation with optimization
- Similar to BUGS
- Rstan is just a way to run Stan using R code
  - The same files can be run in python, shell, MATLAB, etc

#### What will we cover?

- Packages we need and initialization
- How to use rstan directly
- How to check diagnostics
- How to handle rstan objects
- How to avoid using rstan
  - brms (my favorite)
  - rstanarm (pretty good)

# Downloading packages

- Need:
  - rstan
  - parallel
- Want:
  - rstanarm
  - brms
  - shinystan

## Getting Started

- options(mc.cores = parallel::detectCores())
  - This tells rstan to use as many cores as your computer has available
- rstan\_options(auto\_write = TRUE)
  - Don't have to recompile stan files
- Sys.setenv(LOCAL\_CPPFLAGS = '-march=native')
  - Allows faster executive time, must may cause problems (I believe this is no longer recommended for R version 4.0)

## rstan package

- "User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the 'StanHeaders' package."
- 1. Write your model in a .stan file
- 2. Prepare the data
- 3. Call stan
- 4. Diagnose non-convergence
- 5. Conduct posterior inference

#### .stan file

- A .stan file entirely specifies your Bayesian model
- There are three required components:
- 1. "data" block
  - Specify all observed data in the model, including the dimensions of the data and parameters
- 2. "parameters" block
  - Specify all parameters you want to sample
- 3. "model" block
  - Specify the priors on your parameters and distributions on your data

#### Example Problem

Assume you observe  $Y = (y_1, ..., y_N), y_i \sim Exponential(\lambda)$ 

You place a half-normal prior on  $\mu$  with standard deviation 10, i.e.

$$\pi(\lambda) = \frac{\sqrt{2}}{10\sqrt{\pi}} \exp\left(-\frac{\lambda^2}{200}\right), \lambda \ge 0$$

#### "data" block

### "parameters" block

Notice that we specified that lambda must be positive

#### "model" block

• This is where all the magic happens

```
model {
    lambda ~ normal(0, 10) // Declare your prior
    y ~ exponential(lambda) // Declare your likelihood
}
```

#### .stan file

```
data {
     int<lower=0> N; // Declare the dimension of your
                             //observations
     vector[N] y; // Declare your observations
parameters {
     real<lower=0> lambda; // Declare your parameter you
                                       //want to sample from
model {
     lambda ~ normal(0, 10) // Declare your prior
     y ~ exponential(lambda) // Declare your likelihood
```

## Rules/Common Problems

- Stan files must always end with a blank line
- Stan files need to have a "data", "parameters", and "model" chunk
  - Can also have "transformed parameters", "functions", and "generated quantities", "transformed data", and maybe a few others
- Always declare the dimensions and support for variables. This isn't strictly required for the "data" block, but is good practice
  - Ex: real<lower=L, upper=U> y[N]

## rstan package

- Rstan does a lot of things that we won't cover
  - Solving Algebraic Equations
  - Ordinary Differential Equations
  - One Dimensional Integrals

# brms package

- "Fit Bayesian generalized (non-)linear multivariate multilevel models using 'Stan' for full Bayesian inference."
- Uses familiar R notation for models (Im, glm, lmer, etc)
- Nicer output formatting
- Note: data argument must <u>always</u> be supplied, unlike functions like lm

## rstanarm package

- "Estimates previously compiled regression models using the 'rstan' package."
- Uses familiar R notation for models, but not as familiar
- Plays a little nicer with rstan functions

## Where to go for help

- Stan User's Guide: <a href="https://mc-stan.org/docs/2">https://mc-stan.org/docs/2</a> 19/stan-users-guide/index.html
- Initialization: <a href="https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started">https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started</a>
- Reference Manual: <a href="https://mc-stan.org/docs/2">https://mc-stan.org/docs/2</a> 19/reference-manual/index.html#overview
- rstanarm vignettes: <a href="http://mc-stan.org/rstanarm/articles/index.html">http://mc-stan.org/rstanarm/articles/index.html</a>