

P1 Vyloženě triviální

Jako každý rok vám i letos přinášíme jednu vyloženě triviální úlohu. Po loňské Jednoduché jsme chtěli překonat sami sebe – a podařilo se :-) Dostanete zdrojový kód programu a jako kód úlohy zadáte číslo, které program spočítá na výstup.

Jediný detail spočívá v tom, že zdrojový kód tohoto programu tvoří jediné číslo: 4877834132309277925699335504480212264525061476537143535947435306707766..., celé číslo najdete v přiloženém souboru program.txt.

Zbytek zadání popisuje, jak se zapisují programy v našem číselném jazyce.

Programy počítají s přirozenými čísly včetně nuly. Mohou používat libovolné množství proměnných, označených x_1, x_2, \ldots Tyto proměnné mají při spuštění programu hodnotu 0. Jakmile program skončí, jeho výstupem je hodnota v proměnné x_1 .

Samotný program může tvořit jeden z následujících příkazů:

popis					
kód	ekvivalent v Pascalu				
přičtení C k x_i (přičemž $C \geq 0$)					
$3^C \cdot 5^i$	$x_i := x_i + C$				
přiřazení $x_j - 1$ do x_i					
$5^i \cdot 7^j$	$x_i := x_j - 1$				
vynásobení x_i hodnotou v x_j					
$3^i \cdot 7^j$	$x_i := x_i * x_j$				
opakování příkazu δ dokud $x_i \neq x_j$					
$2 \cdot t(2^i \cdot 3^j, \operatorname{k\'od}(\delta))$	while $x_i \ll x_j$ do δ				
postupné provedení příkazů δ_1,\dots,δ_m					
$2 \cdot t(0, t(\dots t(t(0, k\acute{o}d(\delta_1)), \dots), k\acute{o}d(\delta_m)))$	begin $\delta_1; \dots; \delta_m end$				

kde funkce t je definována takto:

$$t(p,q) = \frac{(p+q) \cdot (p+q+1)}{2} + p$$

Poznámka k odčítání použitém v druhém příkazu: pokud by měla být přiřazovaná hodnota záporná, přiřadí se do x_i hodnota 0 (jinými slovy, do x_i se přiřadí $max(0, x_j - 1)$). Následuje několik příkladů, které snad ozřejmí, jak náš číselný jazyk funguje:

295245 je program, který dá na výstup 10. Neboť 295245 = $3^{10} \cdot 5^1$. Tedy je to ekvivalent Pascalovskému programu $x_1 := x_1 + 10$, přičemž x_1 má při startu programu hodnotu 0. Po jeho doběhnutí má tedy hodnotu 10. Hodnota x_1 funguje jako výstup programu, takže výstup je 10.

POZNÁMKA: úloha pokračuje na další straně

P1 Vyloženě triviální (pokračování)

Jak se zapisují sekvence několika příkazů můžeme například vidět na následujícím programu 1148707154771761610069592. Vezmeme-li ekvivalent programu zapsaného v Pascalu jako:

```
begin x_1 := x_1 + 2; x_2 := x_2 + 3; x_1 := x_1 * x_2; and
```

... zapíšeme jej v číselném jazyce jako číslo $2 \cdot t(0, t(t(t(0, 3^2 \cdot 5^1), 3^3 \cdot 5^2), 3^1 \cdot 7^2))$. Sekvence totiž tvoříme takto: tělo sekvence o jediném příkazu s kódem k se vyjádří jako t(0,k). Chceme-li na sekvenci navázat příkaz s kódem l, použijeme t(0,k) jako první argument funkce t a jako druhý argument dáme l. Dostaneme tak t(t(0,k),l). A tak dále až pro obecné sekvence m příkazů. Vše zabalíme do výrazu $2 \cdot t(0, tělo)$, kde tělo je spočítaným tělem sekvence. Uvedený program je tedy tvořen sekvencí tří příkazů. Po jeho skončení je v x_1 , a tedy i na výstupu, číslo 6.

Ještě příklad na cyklus: program počítající 6!, t. j. $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6$, bychom např. v Pascalu zapsali jako:

```
\begin{array}{l} \mathbf{begin} \\ x_1 := x_1 + 1; \\ x_2 := x_2 + 1; \\ x_3 := x_3 + 7; \\ \mathbf{while} \ x_2 <> x_3 \ \mathbf{do} \\ \mathbf{begin} \\ x_1 := x_1 * x_2; \\ x_2 := x_2 + 1 \\ \mathbf{end} \\ \mathbf{end} \end{array}
```

V našem číselném jazyce to zapíšeme obdobně – program je tvořen sekvencí několika příkazů přičtení (k implicitně nulovým hodnotám) následovanou WHILE-cyklem, jehož tělo tvoří opět sekvence. Postupně zevnitř: tělo WHILE-cyklu je program s kódem $2 \cdot t(0, t(t(0, 3^1 \cdot 7^2), 3^1 \cdot 5^2))$. Celý WHILE-cyklus zapíšeme číslem $2 \cdot t(2^2 \cdot 3^3, tělo)$, tedy po dosazení těla cyklu máme $2 \cdot t(2^2 \cdot 3^3, 2 \cdot t(0, t(t(0, 3^1 \cdot 7^2), 3^1 \cdot 5^2)))$. Celý program je pak sekvencí čtyř příkazů – zapsáno číslem $2 \cdot t(0, t(t(t(t(0, 3^1 \cdot 5^1), 3^1 \cdot 5^2), 3^7 \cdot 5^3), kód-cyklu))$. Po dosazení dostáváme program 7053639018282609081776942375556293420478203061897584 722463397481879743303294845755924178567877436087198196858891375819682882.

P2 MI(o)sání

Los Norbert si včera vymyslel novú hru: má niekoľko misiek a niekoľko cukríkov. Misky postavil do jedného radu a do najľavejšej dal všetky cukríky. Potom sa začal s cukríkmi hrať. Vždy si vyberie misku, v ktorej sú aspoň dva cukríky, jeden zje a jeden presunie do misky vpravo od nej. Misku úplne vpravo vybrať nemôže. Koľko cukríkov sa podarí Norbertovi pri tejto hre zjesť?

Máte dané n - počet cukríkov a k - počet misiek. V zadaní máte 5 dvojíc n a k, ako odpoveď na tento príklad napíšte vyrátaný počet zjedených cukríkov pre každý vstup. Výsledky pro jednotlivé vstupy v kódu ničím neoddělujte (takže ak bude počet zjedených cukríkov napr. 1, 2, 3 tak výsledkom je "123").

Konkrétní čísla najdete v externím souboru p2.txt, který najdete mezi soubory k sadě.

P3 Sudoku netradičně

Klasické Sudoku 9×9 s právě jedním řešením umí řešit každý. Tak zkusme něco trochu méně tradičního. Času máte málo, tak zkusíme menší mřížku 6×6 s čísly od 1 do 6. Jako u klasického Sudoku platí, že v každém řádku, sloupci a oblasti musí být každé číslo právě jednou. Oblasti však nemají pravidelný tvar. A hlavně úloha nemá jednoznačné řešení. Kódem je počet řešení.

				5
			4	
	5			
2				

L1 Interlosí domino

Sada interlosího domina se skládá z 36 kostek, které obsahují všechny dvojice písmen ze slova INTERLOS, včetně opakování. Nalezněte rozmístění kostek v předložené mřížce takové, že se kostky nepřekrývají a každá je použita právě jednou.

Kódem je sekvence 10 písmen — V a S — udávající, zda se prvních deset kostek (tj. kostky 1-10) ve správném rozložení nachází vodorovně nebo svisle.

0	0	R	S	S		S	0	L
L	L	N	R	T	L	T	T	S
R	E	E	R		R	S	T	L
I	L		E		0	0	S	S
Ε	N	N	E	Ο	Ε	N	N	I
0	S	T	T	Ο	R	T	N	L
	N I	N	E		R	E	R	I
N	N	IA				L		
IN I	T	L	R	T	0	L I	E	S
l	Т	L	R	Т	0	I	E	S
	Т	L	R	Т	0	I	E	
1 1 1	T	L	R 13 N	Т	O	25 E	E	S
1 1 1	T 7	L	13 N 14 N (T	O T L T O	25 E 26 E	O 31 S 32	S
1 1 1 1 2 1 N	7 [] 8 [] 9 [N	L	13 N 14 N (T L 19 O 20	T L T O T S	25 E 26 E	O 31 S 32 R 33	S
1 I I I 2 I N 3 I T	7	L	13 N 14 N 0 15 N 16 T 1	T 19 0 20 S 21	O T S E E	25 E 26 E 27 R	O 31 S 32 R 33 L 34	S L

L2 Hermionin rozvrh

Aby Hermiona mohla navštívit všechny předměty na čarodějné škole, musela by se snad rozkrájet. Naštěstí se umí rozdělit alespoň na dvě plnohodnotné studentky Hermiony, a to každý den od devíti do devatenácti hodin. Pomozte oběma Hermionám sestavit rozvrh takový, aby stihly absolvovat laboratoře, semináře a přednášky všech pondělních předmětů.

Každý z pondělních předmětů se vyučuje v několika níže uvedených časech. Přirozeně stačí účast na jednom z termínů. Čas na přesun mezi učebnami je nulový (Hermiona samozřejmě použije přemisťovací kouzlo).

kategorie	předmět	časy výuky
1-hodinové laboratoře	Abrakadabra	13-14, 14-15, 15-16
	Bylinky	10-12, 13-15
2-hodinové semináře	$C'arov\'an\'i$	11-13, 14-16
	Draci	9-11, 11-13
	Enviromagie	10-12, 14-16
3-hodinové přednášky	Futurologie	13-16, 16-19
5-nodmove prednasky	Globalizace	10-13, 12-15, 16-19
	$Hypogryfov\'e$	9-12, 12-15

Navíc se musí obě Hermiony naobědvat. V jídelně se ale nesmí potkat, neboť by byla jejich dělící finta prozrazena. Oběd každé z nich trvá hodinu. Kouzelná menza má otevřeno v čase 12-14, takže jedna Hermiona musí jíst od 12 do 13 a ta druhá od 13 do 14.

Odpovědní kód sestavte z prvních písmen všech pondělních předmětů a začátku termínů seřazených abecedně a bez mezer. Oběd se do výsledného kódu nezapisuje. Například v úterý to mají Hermiony trochu volnější, ta první chodí jen na *Košťata* v termínu 9-11 a ta druhá na *Létání* v termínu 10-13. Kód úterního rozvrhu je tedy: 'K9L10'.

L3 Povolení na lov losů

InterLoS 2012

Zadání této úlohy najdete na níže uvedené webstránce (odkaz je také mezi soubory k sadě).

http://interlos.yavanna.cz/bludiste

S1 Ví bůch

Mlsný, ramenatý, movitý, všetečný, libový a sebejistý los Čestmír dostal hlad jak vlk, a tak si zašel cestou přes jehličnatý les domů na svačinku. Na radu pejska a kočičky smíchal pšeničný prášek, kukuřičný škrob, zelný salát, hořčičný vývar, ovocný pohár a k tomu si dal jablečný mošt. Když snědl vydatný a nápaditý pokrm, na utření rtů použil pestrobarevný buničitý ubrousek. Byl to nečekaný, slastný zážitek a současně pětistý oběd, který si kdy uvařil a ten mu nezanechal víc než čistý vylízaný talíř a krásný pocit. A navíc ho čekal volný večer. Koupil si dort, vaječný likér a vyrazil na skalnatý útes, odkud pozoroval snový nekonečný hvězdnatý vesmír. Likér byl báječný, dort také, los spokojený a jeho žaludek vděčný. Když pak večer usnul, zdál se mu pohodový, ale trochu divný sen, ve kterém s ním devítičelý drak dojídal zbytky dortu a dopíjel likér.

InterLoS 2012

Šifru tvoří 6 zvukových souborů, které naleznete na uvedených odkazech. Řešením šifry je jedno české slovo.

Odkazy na soubory najdete mezi soubory k sadě.

InterLoS 2012

monopol hrst studna definice mnoho