

Synteny & biosynthetic gene clusters

Prof. Dr. Boas Pucker (Plant Biotechnology and Bioinformatics)

Availability of slides

- All materials are freely available (CC BY) after the lectures:
 - O StudIP: Lecture: Grundlagen der Biochemie und Bioinformatik der Pflanzen (Bio-MB 09)
 - Skype: (link shared via email)
 - GitHub: https://github.com/bpucker/teaching

- Questions: Feel free to ask at any time
- Feedback, comments, or questions: b.pucker[a]tu-braunschweig.de

My figures and content can be re-used in accordance with CC-BY 4.0, but this might not apply to all images/logos.

Progress in plant genomics

- Number of reference quality genome sequences is increasing
- Remaining challenge is separation of haplotypes
- Number of re-sequencing projects is increasing
- Focus is shifting towards investigation of intraspecies variation

Sielemann et al., 2020: 10.7717/peerj.9954

Long read sequencing

- Plant genomics is based on long read sequencing technologies:
 - ONT: Oxford Nanopore Technologies
 - PacBio: Pacific Biosciences
- Read length is >>20kb; up to million bases
- Read quality is continuously increasing (>99% accuracy)

Synteny

- Synteny = same order of genes in different species
- Shared ancestry is responsible for synteny
- Changes during evolutionary times reduce synteny

Biosynthetic gene cluster

- Genes involved in one biosynthetic pathway
- Genes located in the same gene cluster
- Genes belong to different gene families
- Evolutionary benefits of clustering?

Biosynthetic gene cluster - example 1

• Thalianol gene cluster

Marneral gene cluster

Biosynthetic gene cluster - example 2

- Betalain biosynthesis gene cluster in sugar beet
- Evolution of betalain and anthocyanin biosynthesis is a model system for evolutionary questions

Biosynthetic gene clusters vs. gene arrays

- Biosynthetic gene clusters are characterized by genes encoding enzymes with different functions
- Gene arrays comprise copies of the same gene (result of tandem duplications)

Biosynthetic gene cluster:

Gene array:

Gene array examples

- Gene arrays are frequent, but less interesting
- CHS gene array in sugar beet (Beta vulgaris)
- FLS gene array in Arabidopsis thaliana

Beta vulgaris:

Arabidopsis thaliana:

Identification of biosynthetic gene clusters

- Neighbouring genes must have different functions
 - Assign functional annotation (InterProScan, Mercator, RBHs)
- Neighbouring genes must be involved in the same pathway
 - Assign pathway to genes (KEGG, GO, MetaCyc)
- Co-expression of clustered genes is additional evidence
 - Analyse gene expression across numerous samples
- Conservation across some species can be additional evidence
 - Synteny analysis (JCVI)

Reciprocal Best BLAST hits (RBHs)

- Run BLAST of data set 1 against data set 2
- Run BLAST in opposite direction
- Check for bidirectional (reciprocal) hits
- Reciprocal hits add reliability to the pairing
- Functional annotation can be transferred from data set 1 to data set 2
- Computationally efficient, but not perfect method

JCVI (tool for synteny analysis)

- Required input: FASTA file with mRNA sequences and GGF3 file with gene positions
- BLAST of concatenated mRNA sequences is used to connect gene across species
- Identification of syntenic gene blocks
- Extension of syntenic blocks

Extraction of mRNA sequences based on genomic positions of genes

Ortholog assignment confirmation

- Phylogenetic tree for ortholog assignment confirmation
- Evolutionary signal can support synteny analysis results

Pucker & Iorizzo, 2022: 10.1101/2022.02.16.480750

Chromatin structure influences gene expression

- Chromatin structure can determine gene expression
- Shared chromatin structure in gene cluster
- Shared regulation of all genes in cluster
- Genes acting in the same pathway need co-expression

Evolutionary benefits of gene clusters

- Biosynthetic gene clusters are often evolutionary young pathways
- Many biosynthetic gene clusters lead to pathogene resistances
- Clustered genes ensure joint inheritance
- Clustering might prevent toxic intermediates
- Clustering could support shared regulation

Biosynthetic gene cluster - examples

S.no	Species	Metabolite	Compound class	Chromosome (core genes)	Function	Tissue of expression	References
1	Arabidopsis thaliana	Thalianol	Triterpenes	5	Unknown physiological function, unregulated expression of cluster genes leads to dwarfing of plant. Modulate root microbiome content	Roots	Field and Osbourn, 2008; Field et al., 2011; Chen et al., 2019a
2	A. thaliana	Marneral	Triterpenes	5	Unknown physiological function, unregulated expression of cluster genes leads to dwarfing of plant	Roots	Field and Osbourn, 2008; Field et al., 2011
3	Avena strigosa	Avenacins	Triterpenes	1	Defense against pathogens	Roots	Li et al., 2021a
4	Cucumis sativus	Cucurbitacins	Triterpenes	6	Insect deterrent properties and possess medicinal value	Leaves and fruits	Shang et al., 2014
5	Ricinus communis and Jatropha curcas	Casbenes	Diterpenes	1	Possess medicinal value and used in treating cancers and HIV infection	Constitutive expression in leaves, roots and stems	King et al., 2014, 2016
6	Zea mays	2,4-dihydroxy- 7-methoxy- 1,4- benzoxazin-3- one (DIMBOA)	Hydroxamic acids	4	Defense related activities	Mainly expressed during seedling stages and in roots.	Frey et al., 1997
7	Oryza sativa	Momilactones	Diterpenes	4	Insect deterring properties and anti-fungal properties	Induced expression during pathogen attack	Shimura et al., 2007; Wang et al., 2011
8	O. sativa	Phytocassanes Oryzalides	Diterpenes	2	Defense related activities	Induced expression during pathogen attack	Swaminathan et al., 2009; Wu et al., 2011
9	Lotus japonicus	Linamarin Lotuastralin	Cyanogenic glucosides	3	Herbivore deterrent activities	Above ground plant parts	Takos et al., 2011
10	Sorghum bicolor	Dhurrin	Cyanogenic glucosides	1	Herbivore deterrent activities	Above ground plant parts	Takos et al., 2011
11	L. japonicus	20-hydroxy- betulinic acid	Triterpene	3	Possible role in plant development and nodule formation	Elevated expression in roots and nodules	Krokida et al., 2013

Bharadwaj et al., 2021: 10.3389/fpls.2021.697318

Tools for gene cluster identification - plantiSMASH

- Required input: FASTA file and GFF3 file
- Web server available: http://plantismash.secondarymetabolites.org/
- plantiSMASH is plant version of antiSMASH (bacteria tool)
- Many integrated tools: NCBI BLAST+, Diamond, HMMer3, GlimmerHMM, CD-HIT

Biosynthetic gene cluster detection:

Biosynthetic gene cluster extension:

Time for questions!

Questions

- 1. Which sequencing technologies are used to analyze plant genomes?
- 2. What is synteny?
- 3. What are the characteristics of a biosynthetic gene cluster?
- 4. What are evolutionary benefits/forces that cause clustering of genes?

