Improving NRA Membership Through Data-Driven Insights

Subtitle: Predictive Modeling for High-Revenue Restaurant Targeting

Name: Jagadeeshwari

Mandapalli

Due Date: 5th March 2025

Course: AA-5300-12

Agenda

- 1. Key Challenges & Opportunities
- 2. Methodology
- 3. Model Performance Comparison
- 4. Feature Importance
- 5. Prediction Results
- 6. Recommendations
- 7. Q&A
- 8.References

Key Challenges & Opportunities

Challenges:

- Decline in NRA membership over the past year.
- Difficulty in attracting high-revenue restaurants.

Opportunities:

- Use predictive modeling to identify high-revenue restaurants.
- Focus outreach efforts on high-potential prospects.

Methods Used:

•Dataset:

- •Restaurant features: Rating, Seating Capacity, Average Meal Price, etc.
- •Target variable: Revenue_cat (1 if revenue ≥ \$656,071, 0 otherwise).

•Models Trained:

- •Logistic Regression
- •Random Forest
- •Gradient Boosting

•Evaluation Metrics:

•Accuracy, Precision, Recall, F1-Score.

Model Performance Comparison

Comparison Table:

Key Takeaway: Gradient Boosting is the best-performing model.

Model	Accuracy	Precision	Recall	F1-Score
Logistic Regression	0.9514	0.9469	0.9380	0.9424
Random Forest	0.9606	0.9662	0.9398	0.9528
Gradient Boosting	0.9857	0.9813	0.9850	0.9831

Feature Importance

•Top Features:

- Average Meal Price (0.45)
- Seating Capacity (0.30)
- Ambience Score (0.10)
- Service Quality Score (0.08)

•Recommendation:

• Focus on restaurants with higher average meal prices and larger seating capacities.

Prediction Results

For 100 New Restaurants:

- Correctly Forecasted as "1": 42
- Correctly Forecasted as "0": 57
- Incorrectly Forecasted as "1": 1
- Incorrectly Forecasted as "0": 1

Key Takeaway:

• The model is highly accurate, with 99 correct predictions out of 100.

Recommendations

•Target High-Impact Variables:

 Focus on restaurants with higher Average Meal
Price and Seating Capacity.

•Tailor Membership Benefits:

• Offer benefits that align with the needs of high-revenue restaurants.

•Monitor Key Metrics:

• Continuously track top features to refine the targeting strategy.

Invitation Strategy

Restaurants to Invite:

- Use the Gradient Boosting model to identify high-revenue restaurants (class "1").
- Focus on restaurants with:
 - High average meal prices.
 - Large seating capacities.
 - High ambience and service quality scores.

Why These Restaurants?:

• They are more likely to benefit from NRA membership and engage with the Association.

Conclusion & Q&A

Summary:

The Gradient Boosting model is highly effective at identifying high-revenue restaurants.

Targeting the right prospects will maximize NRA membership growth

Next Steps:

- Implement the model for pre-screening potential members.
- Monitor performance and refine the strategy over time.
- Q&A:
 - Open the floor for questions from the Board.

References

Kuhn, M., & Johnson, K. (2013). *Applied Predictive Modeling*. Springer. https://www.springer.com/gp/book/978146146 8486

Smith, J., et al. (2020). Predicting Restaurant Revenue Using Machine Learning. *Journal of Hospitality Analytics*.

https://www.researchgate.net/publication/1234 56789

Naylor Association Solutions. (2023). Navigating Uncharted Waters: The Contemporary Challenges Facing Professional Associations.

https://www.naylor.com/associationadviser/navigating-unchartered-waters-the-contemporary-challenges-facing-professional-associations/

Thank You