Variável aleatória contínua

Gilberto Pereira Sassi

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

Objetivo

Caracterização probabilística de variáveis quantitativas contínuas. Neste caso, não existe interesse em atribuir probabilidades a cada valor individual da variável e estamos interessados em atribuir probabilidades para intervalos da variável.

Para uma variável quantitativa contínua X, podemos construir o histograma que é válido para uma amostra específica. Para uma outra amostra da variável quantitativa contínua X na mesma população, podemos obter um histograma ligeiramente diferente. A ideia é obter uma curva ou uma função que aproxime bem o formato de todos histogramas, conforme ilustrado na figura. Chamamos esta curva de função densidade de probabilidade ou simplesmente função densidade.

Figura 1: Histogramas sobrepostos para diversas amostras da variável *X*. A linha azul é a função densidade de probabilidade da variável quantitativa contínua *X*.

Definição

Modelo de probabilidade

Um modelo probabilidade para uma variável quantitativa contínua X é estabelecido quando definimos:

- os valores possíveis para a variável quantitativa contínua;
- a função densidade de probabilidade.

Quando temos uma função densidade de probabilidade associada a uma variável X, dizemos que X é uma variável aleatória contínua para deixar claro que temos um modelo de probabilidade para X.

Definição

Dizemos que f(x) é uma função densidade de probabilidade para um variável aleatória contínua X se satisfaz duas condições:

- A área delimitada por f(x) e o eixo x é igual a 1.

Observação

- ① Note que P(X = x) = 0, para $x \in [a, b]$, logo $P(a < X \le b) = P(a < X < b) = P(a \le X < b) = P(a \le X \le b)$.
- (a) A área sob a curva da função densidade de probabilidade é igual a P(a < X < b) como ilustrado na figura 2.

Área sob a curva como probabilidade.

Figura 2: Probabilidade de uma variável aleatória contínua X estar entre a e b. A área pintada no gráfico é o valor de P(a < X < b).

Num teste tradicional com crianças, o tempo em minutos para a realização de uma bateria de questões de raciocínio verbal e lógico é uma variável aleatória contínua \mathcal{T} com função densidade de probabilidade dada por

$$f(t) = \begin{cases} \frac{t-4}{40}, & \text{se } 8 \le t < 10, \\ \frac{3}{20}, & \text{se } 10 \le t \le 15, \\ 0, & \text{caso contrário.} \end{cases}$$

Qual a probabilidade de uma criança responder a bateria de teste entre 9 e 12 minutos?

 $P(9 < X \le 12)$ é área delimitada pelo gráfico conforme figura 3.

Figura 3: Função denside.

$$P(9 < X \le 12) = 1 \cdot \frac{\frac{5}{40} + \frac{3}{20}}{2} + 2 \cdot \frac{3}{20}$$
$$= \frac{7}{16}$$
$$= 0.4375.$$

Definição

• Média: $E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$;

• Mediana: valor Md com a propriedade $P(X \ge Md) \ge 0.5$ e $P(X \le Md) \ge 0.5$;

• Moda: valor *Mo* tal que $f(x) \le f(Mo), \forall x$;

• Variância: $Var(X) = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$.

Modelo uniforme contínuo

Uma variável aleatória contínua X tem distribuição uniforme contínua no intervalo [a,b] se sua função densidade de probabilidade é dada por:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{se } a \le x \le b, \\ 0, & \text{caso contrário }. \end{cases}$$

Figura 4

Notação: $X \sim U[a, b]$.

Propriedades – modelo uniforme contínuo

1 Média
$$\mu = E(x) = \frac{b+a}{2}$$
;

10 Variância:
$$\sigma^2 = Var(X) = \frac{(b-a)^2}{12}$$
;

Moda Mo : é qualquer número em [a, b].

Admite-se que uma pane elétrica pode ocorrer em qualquer ponto de uma rede elétrica de 10km.

- Qual a probabilidade da pane ocontecer nos primeiros 500 metros;
- O custo do reparo da rede depende da distância do centro do serviço ao local da pane. Considere que o centro de serviço está na origem da rede e que o custo é dado pela tabela

Distância em km	Custo
[0,3)	R\$200,00
[3,8)	R\$400,00
[8, 10]	<i>R</i> \$1000,00

Qual o custo médio para reparar a rede?

Solução:

A função de probabilidade é dada por

Figura 5

- $P(0 \le X \le 500) = \frac{500}{10,000} = \frac{1}{20} = 0,05;$
- $P(0 \le X \le 3.000) = \frac{3.000}{10.000} = 0,3;$ $P(3.000 \le X \le 8.000) = \frac{5.000}{10.000} = \frac{1}{2} = 0,5$
 - $P(8.000 \le X) = \frac{2.000}{10.000} = \frac{1}{5} = 0.2$

Exemplo - continuação

Ou seja, temos uma tabela de distância, custo e probabilidade dada por

Distância em km	Custo	Probabilidade de pane dentro da distância
[0,3)	R\$200,00	0,3
[3, 8)	R\$400,00	0,5
[8, 10]	<i>R</i> \$1000,00	0,2

Então podemos estabelecer uma variável aleatória discreta Y, custo de reparo, com valores possíveis 200, 400 e 1000 e função de probabilidade

$$f(200) = 0,3;$$

$$f(400) = 0,5;$$

$$f(1000) = 0, 2.$$

e o custo médio é dado por

$$E(Y) = 0.3 \cdot 200 + 0.5 \cdot 400 + 0.2 \cdot 1000 = 460.$$

Ou seja, o custo médio de reparo para esta rede elétrica é de *R*\$460,00.

Modelo exponencial

Uma variável aleatória contínua X segue o modelo exponencial com parâmetro α se sua densidade é dada por $f(x) = \alpha e^{-\alpha \cdot x}$, para $x \ge 0$.

Figura 6

Notação: $X \sim Exp(\alpha)$

Propriedades – modelo exponencial

• Variância:
$$Var(X) = \sigma^2 = \frac{1}{\alpha^2}$$
;

 \bigcirc Moda Mo = 0.

Modelo exponencial

Uso

Modelagem de tempo até ocorrer um exemplo. Por exemplo: tempo até o óbito, tempo até uma falha de um equipamento, tempo até solicitação ou ligação, etc.

Cálculo da área sob a curva

Seja $X \sim \textit{Exp}(\alpha)$, seja a e b com $a < b < \infty$ então

- Se a > 0, então $\int_a^b \alpha e^{-\alpha \cdot x} dx = e^{-\alpha \cdot a} e^{-\alpha \cdot b}$;
- Se $a \le 0$, então $\int_a^b \alpha e^{-\alpha \cdot x} dx = 1 e^{-\alpha \cdot b}$.

Sabe-se que um paciente em estágio avançado de uma certa enfermidade vive em média apenas em 120 dias. Qual a probabilidade de um paciente morrer antes de 90 dias?

Solução: Pelo enunciado do exercício, temos que $E(X) = \frac{1}{\alpha} = 120$, ou seja,

$$\alpha = \frac{1}{120} = 0,008. \text{ Então,}$$

$$P(X \le 90) = 1 - \exp(-0,008 \cdot 90) = 0,53.$$

ou seja, probabilidade do paciente morrer antes de 90 dias é 53%.

Modelo normal

Dizemos que uma variável aleatória contínua X tem distribuição normal com parâmetro μ e σ^2 se sua função densidade de probabilidade é dada por:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \quad x \in \mathbb{R}.$$

Figura 7

Propriedade: modelo normal

- $\mathbf{0}$ f(x) é simétrica em relação a μ ;
- **0** $E(X) = \mu;$
- **1** A moda e a medianda de $X \in \mu$;
- **③** Se $-\infty \le a < b \le \infty$, então

em que os valores de $\Phi(z)$ são tabelados;

- Se c < 0, então Φ(c) = 1 − Φ(-c);
- Se $c = -\infty$, então Φ(c) = 0;
- Se $c = \infty$, então $\Phi(c) = 1$.

Doentes, sofrendo de certa moléstia, são submetidos a um tratamento intensivo cujo tempo de cura foi modelado por uma densidade Normal de média 15 e desvio padrão 2. Qual a proporção desses pacientes demoram mais de 17 dias para se recuperar? Qual o tempo máximo para a recuperação de 25% dos pacientes? **Solução:** Note que $X \sim N(15, 4)$.

0

$$P(17 > X) = 1 - P(X \le 17)$$

$$= 1 - \Phi\left(\frac{17 - 15}{\sqrt{4}}\right)$$

$$= \Phi(-1) = 0, 1587.$$

Ou seja, 16% dos porcentagens pacientes demoram mais de 17 dias para se recuperar;

• $P(X \le t) = \Phi\left(\frac{t-15}{2}\right) = 0,25$, então e $\frac{t-15}{2} = -0,68$ e $t = -0,68 \cdot 2 + 15 = 13,64$. Ou seja, o tempo máximo para recuperação de 25% é de 2,651 dias.

Aproximando a Função de Distribuição Acumada de $X \sim b(n; p)$.

Se $X \sim b(n, p)$, então E[X] = np e Var[X] = np(1 - p). Neste contexto, podemos aproximar a distribuição normal usando a distribuição binomial conforme ilustrado na Figura. Mais especificamente,

$$F(x) = P(X \le x) \approx P(Y \le x)$$

em que $Y \sim N(np; np(1-p))$.

Figura 8: Aprroximação da Função de Distribuição Acumulada de $X \sim b(50; 0.3)$ pela Função de Distribuição Acumulada de $Y \sim N(50 \cdot 0.3; 50 \cdot 0.3 \cdot 0.7)$

Correção da continuidade

Consiste em alterar em 0, 5 unidade o valor que se deseja aproximar a função de distribuição acumulada. Mais especificamente, para $X \sim b(n; p)$

$$F(x) = P(X \le x) \approx P(Y \le x + 0, 5)$$
 e $f(x) = P(X = x) \approx P(x - 0, 5 \le Y \le x + 0, 5)$

Estudo do Sindicato dos Bancários indica que cerca de 30% dos funcionários do banco têm problemas de estresse, provenientes das condições de trabalho. Numa amostra de 200 bancários, qual seria a probabilidade de pelo menos 50 com essa doença?

Solução:

Note que $X \sim b(200; 0.3)$ com $E[X] = 200 \cdot 0.3 = 60$ e $Var(X) = 200 \cdot 0.3 \cdot 0.7 = 42$, então

$$P(X \ge 50) = 1 - P(X < 50)$$

$$= 1 - P(X \le 49)$$

$$\approx 1 - P(Y \le 49, 5)$$

$$= 1 - \Phi\left(\frac{49, 5 - 60}{\sqrt{42}}\right)$$

$$= 1 - \Phi(-1, 62)$$

$$= 0.9474$$

Observe que $P(X \ge 50) = 1 - P(X \le 49) = 0,9494$.

Distribuição amostral: motivação

Imagine que um professor tem uma turma com 30 alunos. As notas finais destes 30 alunos estão na Tabela 1. Este professor está com tempo limitado e decidiu analisar o desempenho de 5 alunos ao final do curso. Existem 142.506 maneiras de selecionar esses cinco alunos. Na Tabela 2, mostramos dez amostras diferentes com cinco alunos. Note que cada amostra tem uma média diferente. A ideia é que a média é uma variável (valor diferente em cada amostra) que denotamos por X.

7,29	7,19	7,15	5,54	5,93	5,53	6,44	6,27	8,16	5,72
4,84	4,63	6,11	7,10	3,37	7,36	6,70	5,70	6,31	7,64
5,89	8,82	7,77	7,93	5,24	6,08	5,77	6,57	6,00	6,14

Tabela 1: Turma com 30 alunos.

Amostras	Aluno 1	Aluno 2	Aluno 3	Aluno 4	Aluno 5	Média da amostra
Amostra 1	7,19	8,82	5,54	6,70	6,11	6,87
Amostra 2	7,36	4,84	6,31	6,27	7,29	6,41
Amostra 3	5,77	6,57	6,44	8,16	7,93	6,97
Amostra 4	6,44	7,29	5,77	3,37	6,11	5,80
Amostra 5	6,14	7,36	3,37	6,70	7,10	6,13
Amostra 6	8,82	6,31	7,36	5,77	5,72	6,80
Amostra 7	7,10	7,93	4,84	6,44	5,93	6,45
Amostra 8	7,10	5,72	7,36	5,77	4,84	6,16
Amostra 9	6,44	6,14	7,64	6,08	5,70	6,40
Amostra 10	6,00	7,77	5,53	5,24	7,15	6,34

Tabela 2: Dez amostras com cinco alunos com a média.

Teorema central do limite

Ideia

Para um tamanho de amostra suficientemente grande, a distribuição de \bar{X} pode ser aproximada por uma distribuição normal, independente do modelo de probabilidade de X_i .

Teorema central do limite (amostras grandes)

Considere uma população com média μ e σ^2 . Suponha que temos uma amostra X_1, \ldots, X_n , então

$$ar{X} \sim extstyle exts$$

Propriedade IMPORTANTE da distribuição Normal

Se x_1, \ldots, x_m valores observados da variável aleatória $X \sim N(\mu, \sigma^2)$, então $\bar{X} \sim \textit{Normal}\left(\mu, \frac{\sigma^2}{n}\right)$.

23/28

Em um estudo da altura de pacientes, escolhemos 10 pacientes. Sabemos que a altura dos pacientes tem distribuição normal com média 185cm e desvio padrão 40cm. Qual a distribuição de \bar{X} ? Qual a probabilidade da altura média dos pacientes escolhidos ser maior que a média populacional?

Solução:

• $\bar{X} \sim \textit{Normal}\left(185, \frac{40}{10}\right)$, ou seja, $\bar{X} \sim \textit{Normal}\left(185, 4\right)$.

•

$$P(\bar{X} > 185) = 1 - P(\bar{X} \le 185)$$

$$= 1 - \Phi\left(\frac{185 - 185}{2}\right)$$

$$= 1 - \Phi(0) = 1 - 0,50 = 0,50$$

Considere uma variável aleatória discreta $X:\Omega\to\mathbb{R}$ que assume os valores 3, 6, e 8 com, respectivamente, probabilidades 0, 5; 0, 3, e 0, 2. Uma amostra de 40 observações é sorteada, qual a probabilidade da média da amostra ser maior que 5?

Solução: Primeiramente, note que

$$\mu = 0, 5 \cdot 3 + 0, 3 \cdot 6 + 0, 2 \cdot 8 = 4, 9,$$

$$\sigma^2 = 0, 5 \cdot (3 - 4, 9)^2 + 0, 3 \cdot (6 - 4, 9)^2 + 0, 2 \cdot (8 - 4, 9)^2 = 4, 09.$$

Usando o Teorema central do limite, temos que $\bar{X} \sim N\left(4,9; \frac{4,09}{40}\right)$ e

$$P(\bar{X} > 5) = 1 - P(\bar{X} \le 5)$$

$$= 1 - \Phi\left(\frac{5 - 4, 9}{\sqrt{\frac{4,09}{40}}}\right)$$

$$= 1 - \Phi(0, 32) = 1 - 0,6255 = 0,37.$$

Distribuição Bernoulli

Lembre que E(X) = p e Var(X) = p(1 - p).

Exemplo

Suponha que a prevalência do vírus HIV na África Subsariana é 10%. Um médico selecionou 40 pacientes desta região. Qual a probabilidade de no máximo 20% desses pacientes estarem infectados pelo vírus?

Solução: Pelo Teorema central do limite, temos que $\hat{p} \sim N\left(0,1;\frac{0,1\cdot0,9}{40}\right)$. Logo, temos que

$$P(\hat{p} < 0, 2) = \Phi\left(\frac{0, 2 - 0, 1}{\sqrt{\frac{0, 1 \cdot 0, 9}{40}}}\right)$$
$$= \Phi(2, 11) = 0.9826$$

Distribuição poison

Lembre que $E(X) = \lambda$ e $Var(X) = \lambda$.

Exemplo

A emissão de partículas radioativas alfa de um isótopo em um minuto é modelada através de um distribuição poison com média 5. Um físico analisar cinco amostras desse isótopo e observou o número de partículas alfa emitidas para uma amostra com observações x_1, x_2, x_3, x_4, x_5 . Qual a probabilidade da média de partículas emitidas nessa amostra com cinco valores ser maior que seis?

Solução: Pelo teorema central do limite, temos que $\bar{X} \sim N\left(\lambda, \frac{\lambda}{5}\right)$. Então

$$P(\bar{X} > 6) = 1 - P(\bar{X} \le 6)$$

$$= 1 - \Phi\left(\frac{6 - 5}{\sqrt{\frac{5}{5}}}\right)$$

$$= 1 - \Phi(1) = 1 - 0,8413 = 0,1587$$

Distribuição exponencial

Lembre que
$$E(X) = \frac{1}{\alpha} = \mu$$
 e $Var(X) = \frac{1}{\alpha^2} = \mu^2$.

Exemplo

Uma indústria fabrica lâmpadas especiais que ficam em operação continuamente. A fabricante afirma que as lâmpadas duram em média 8000 horas. Um órgão de controle teste 10 lâmpadas. Assumindo que o fabricante diz a verdade, qual a probabilidade do órgão regulador obter uma média de no máximo 7000 horas para a amostra?

Solução: Pelo teorema do limite central, temos que $\bar{X} \sim N\left(\mu; \frac{\mu^2}{n}\right)$. Então,

$$P(\bar{X} < 7000) = \Phi\left(\frac{7000 - \mu}{\sqrt{\frac{\mu^2}{n}}}\right) = \Phi\left(\frac{7000 - 8000}{\sqrt{\frac{8000^2}{10}}}\right)$$
$$= \Phi(-0, 4)$$
$$= 0,3446.$$