Chapitre 5 : variation et extremum de fonction

nbre d'info mini nécessaires pour résoudre 1 sudoku

1 variation d'1 fonction

1.1 lien avec le signe de la dérivée

- f une fonction définie et dérivable sur un intervalle I
- f croissante $\iff f' \ge 0$
- f strictement croissante $\iff f' > 0$
- f décroissante $\iff f' \leq 0$
- f strictement décroissante $\iff f' < 0$

1.2 méthode

- f une fonction définie et dérivable sur un intervalle ${\cal I}$
- pour trouver les variations de f sur I, construire le tableau de signe de f'
- un exemple traité en vidéo

1.3 un exemple complet

- $f(x) = 5x^2 3x + 9$ définie et dérivable sur \mathbb{R} ; calculer la dérivée de f
- résoudre f'(x) = 0
- construire le tableau de variation de $f(x) = 5x^2 3x + 9$

x	$-\infty$ $+\infty$
$\begin{array}{c} \text{signe} \\ \text{de } f' \end{array}$	
variation de f	

• remplir le tableau de valeurs \boldsymbol{f}

х	-4	-3	-2	-1	0	1	2	3	4
f(x)									

1.4 preuve

• au programme : f croissante $\Longrightarrow f' \ge 0$

- hors programme : f croissante $\iff f' \ge 0$
 - admis (théorème des accroissements finis)
 - pour les aventuriers, voir ce cours sur la dérivation page 6

2 localisation des extremums d'une fonction

2.1 qu'est-ce qu'un extremum?

maximum - minimum

- f une fonction dérivable sur un intervalle I de $\mathbb R$
- M est un maximum de f sur I intervalle de $\mathbb R$ si $\left\{ \begin{array}{ll} \exists\, a\in I & f(a)=M\\ \forall\, x\in I & f(x)\leq M \end{array} \right.$
- idem pour 1 $\underline{\mathbf{minimum}}$ N
- 1 minimum ou 1 maximum est appelé 1 <u>extremum</u>

global - local

- ullet on suppose que M est un extremum de f
- si M est un maximum de f sur D_f alors on dit que c'est un $\underline{\mathbf{maximum\ global}}$
- sinon on parle de $\underline{\mathbf{maximum\ local}}$
- idem pour les termes minimum local et extremum local

exemple

• f la parabole définie par : f(-2) = 20 - f'(2) = 4 - f''(5) = 4 préciser f ainsi que son extremum (valeur et nature)

4

remarque HP

- on distinguera la notion d'extremum et les notions (HP) de borne supérieure et borne inférieure
- 1 extremum (maximum ou minimum) est atteint cad $\exists a, b \in I$ tq f(a) = M ou f(b) = m
- 1 borne supérieure est (grosso modo) 1 majorant qui colle à la fonction en 1 (ou plusieurs) endroit mais qui n'est jamais atteint (sinon cela devient un maximum)
- 1 borne inférieure est (grosso modo) 1 minorant qui colle à la fonction en 1 (ou plusieurs) endroit mais qui n'est jamais atteint (sinon cela devient un minimum)
- on a alors 1 propriété intéressante (simplifiée pour être comprise) : toute fonction continue sur 1 intervalle fermé I de longueur fini possède 1 max et 1 min sur I
- donc si on veut mettre en évidence la différence entre BS/BI et max/min avec 1 fonction continue, il faut chercher avec 1 intervalle infinie ou non fermé

- $x \mapsto \frac{1}{x}$ n'a pas d'extremum sur \mathbb{R} , \mathbb{R}_{-}^{*} ou \mathbb{R}_{+}^{*}
- 0 est 1 borne supérieure de $x\mapsto \frac{1}{x}$ sur \mathbb{R}_{-}^{*}
- 0 est 1 borne inférieure de $x \mapsto \frac{1}{x}$ sur \mathbb{R}_+^*
- regarder la figure puis le démontrer

ex 2 :

- $x \mapsto \sqrt{x}$ n'a pas d'extremum sur]0,4[
- 0 est 1 borne inférieure
- 2 est 1 borne supérieure
- essayer de le démontrer!

2.2 comment trouver un extremum?

condition nécessaire

- f dérivable sur 1 intervalle ouvert I; $a \in I$
- | f admet 1 extremum local en a => f'(a) = 0

condition nécessaire et suffisante

- f dérivable sur 1 intervalle ouvert I; $a \in I$
- f admet 1 extremum local en $a <=> \begin{cases} f'(a) = 0 \\ f'$ change de signe en a

quelques subtilités

- pourquoi préciser I **intervalle**? (ex et contre-ex)
- pourquoi préciser I intervalle <u>ouvert</u>? (ex et contre-ex)

méthode

- f 1 fonction dérivable sur un intervalle I admettant 1 extremum M atteint en a (f(a) = M)
- calculer f' puis rechercher ses zéros
- \Longrightarrow $a \in \{ \text{z\'eros de } f' + \text{bornes de } I \}$

exemple

• trouver et décrire les extremums de $f(x)=\frac{1}{3}x^3-2x^2+10$ sur I = [-5,5] on pourra ensuite synthétiser l'information sous la forme d'1 TdV

HP: approfondissement dimension 3

- en dimension 2, pour 1 fonction de 2 variables z = f(x, y), c'est pareil
- pour comprendre la situation, consulter :
 - cette page html : exemple complet corrigé
 - cette série de vidéos : cours 1 cours 2 cours 3 cours 4 ex 1 ex 2 ex 3

2.3 un peu de python

zéro d'1 fonction : méthode de Newton

- explication de la méthode de Newton en vidéo
- comment appliquer la méthode de Newton pour approximer $\sqrt{2}\,?$
- programmer cette méthode (ultra-rapide) sous python pour avoir une approximation de $\sqrt{2}$ à 10 chiffres après la virgule