Table 7. JD and magnitude of last-non detection, discovery, and confirmation epochs and estimated explosion epoch for 33 CSP-I SE SNe.

SN	Discovery telegram	Last non-detection (JD-2 450 000)	Discovery (JD-2 450 000)	Confirmation (JD-2 450 000)	Last non-detection (mag)	Discovery (mag)	Confirmation (mag)	Explosion date (JD-2 450 000)
2004ex	IAUC 8418	3272.77	3289.84	3291.83	>19.0	17.7	17.7	$3288.40^{0.33}_{-0.33}{}^{R}$
2004ff	IAUC 8425	3291.91	3308.90	3309.91	>19.0	18.0	18.0	$3298.16_{-6.25}^{8.22}{}^{R}$
2004gq	IAUC 8452	3343.88	3350.86	3351.43	>19.5	15.5	15.9	$3347.37^{3.49}_{-3.49}{}^{L}$
2004gt	IAUC 8454	3136.75	3351.58	3355.51	>15.7	14.9	14.6	$3343.33^{4.08}_{-4.08}{}^{R}$
2004gv	IAUC 8454	3338.24	3353.17	3354.07	>18.6	17.6	17.4	$3345.77^{1.54}_{-1.54}$ R
2005aw	CBET 127	3436.82	3453.77	3454.75	>17.9	15.3	15.3	$3446.17^{3.00}_{-3.00}^{R}$
2005em	IAUC 8604	3615.93	3640.94	3641.88	>19.5	18.1	18.0	$3638.66^{2.28}_{-3.00}{}^{T}$
2006T	CBET 385	3752.45	3766.49	3767.35	>18.0	17.2	17.4	$3758.14_{-0.92}^{0.92}$ R
2006ba	CBET 443	3771.54	3814.31	3820.35	>18.8	18.4	17.7	$3801.61^{3.00}_{-3.00}{}^{T}$
2006bf	IAUC 8693	3741.50	3821.85	3822.62	>19.3	17.7	17.7	$3798.15^{3.35}_{-3.35}^{T}$
2006ep	CBET 609	3974.14	3977.85	3979.10	>19	17.8	17.8	$3975.99^{1.86}_{-1.86}{}^{L}$
2006ir	CBET 658		4001.80			16.9		$3988.76^{3.35}_{-3.35}^{T}$
2006lc	CBET 688		4029.50			20.2		$4015.24^{1.97}_{-1.97}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
2007C	CBET 798	4093.37	4108.36	4109.20	>18.5	15.9	16.0	$4095.94_{-2.57}^{3.30}$
2007Y	CBET 845	4083.35	4147.27	4148.24	>18.0	17.5	17.1	$4145.50^{2.00}_{-2.00}^{a}$
2007ag	CBET 868	4155.50	4166.79	4167.62	>19.4	18.0	17.5	$4155.50_{-0.00}^{3.32}$
2007hn	CBET 1050		4343.70			18.6		$4341.32_{-3.02}^{2.38}$
2007kj	CBET 1092	4364.11	4376.10	4376.95	>19.0	17.4	17.3	$4364.11_{-0.00}^{3.00}$
2007rz	CBET 1158	4423.91	4442.90	4443.92	>19.5	16.9	16.9	$4427.00^{3.35}_{-3.09}{}^{T}$
2008aq	CBET 1271	4506.97	4523.94	4524.90	>19.1	16.3	16.2	$4511.29^{3.00}_{-3.00}^{T}$
2008gc	CBET 1529	4651.78	4742.66	4743.65	>18.0	17.4	17.3	$4724.95^{3.29}_{-3.29}{}^{T}$
2009bb	CBET 1731	4909.70	4911.61	4913.51	>18	17.0	16.6	$4909.60^{0.60}_{-0.60}^{c}$
2009K	CBET 1663	4842.58	4845.57	4846.56	>18.0	14.9	15.0	$4844.07_{-1.49}^{1.49}$
2009Z	CBET 1685	4617-67**	4865.03	4866.97	>19.4	18.1	17.8	$4860.54_{-0.56}^{0.56}$ R
2009ca	CBET 1750	4766.69	4920.87	4924.86*	>18.5	17.1	17.1	$4915.86_{-3.35}^{3.35}^{T}$
2009dt	CBET 1785	4942.86	4949.83	4950.82	>19.0	17.2	16.6	$4946.34_{-3.48}^{3.49}{}^{L}$
2004ew	CBET 96	3260.71	3288.42	3289.26	>18.1	17.5	17.5	$3260.71_{-0.00}^{3.35}$
2004fe	IAUC 8425	3300.78	3308.79	3309.80	>19.0	18.1	17.7	$3307.24_{-3.00}^{1.55}{}^{T}$
2005Q	CBET 106	3370.31	3399.30	3400.26	>20.5	17.2	17.1	$3386.20_{-3.00}^{3.00}{}^{T}$
2005bj	CBET 137	3191.50	3471.60	3472.51	>19.5	17.7	17.7	$3452.58_{-3.00}^{3.00}{}^{T}$
2006fo	CBET 624		3994.50	***		18.2		$3983.86_{-3.00}^{3.00}{}^{T}$
2008hh	CBET 1575	4759.50	4789.62	4790.65	>19.2	16.6	16.6	$4781.19_{-3.35}^{3.35}^{T}$
2009dp	CBET 1779	4923.60	4944.60	4945.62	>18.5	17.7	17.7	$4939.50_{-3.35}^{3.35}^{T}$

Notes. A horizontal line separates the objects observed in both optical and NIR from those observed only in the optical. (a) From Stritzinger et al. (2009). (b) From Taddia et al. (2015). (c) From Pignata et al. (2011). (L) From good pre-explosion limits. (R) From the fit of the photospheric radius before r_{max} . (T) From the rise time.

photospheric velocity ($v_{\rm ph}$). Measured as the Doppler velocity at maximum absorption, $v_{\rm ph}$ serves as an important constraint on the ratio between the E_K and $M_{\rm ej}$. In the following, $v_{\rm ph}$ values are adopted from Doppler velocity measurements of the Fe II $\lambda 5169$ feature (cf. Branch et al. 2002; Richardson et al. 2006), which are presented in a companion paper by Holmbo et al. (in prep.). Plotted in Fig. 16 are the resulting $v_{\rm ph}$ values versus days relative to explosion epoch, with the associated uncertainties being on the order of 500 km s⁻¹. Inspection of the $v_{\rm ph}$ measurements reveals similar values for each of the SE SN subtypes

over the same epochs, and the evolution of $v_{\rm ph}$ is found to be well-represented by a PL function characterized by an index $\alpha=-0.41$ (dashed line in Fig. 16). As expected, the Type Ic-BL SN 2009bb and SN 2009ca exhibit significantly higher $v_{\rm ph}$ values, several thousand of km s⁻¹ higher than the rest of the sample over the same epochs. These two objects are omitted when computing the PL fit.

For the semi-analytic models we use the value of $v_{\rm ph}$ at peak luminosity $[v_{\rm ph}(t_{\rm max})]$ to constrain $E_K/M_{\rm ej}$. These are computed by fitting a PL to the measured Fe II $\lambda 5169$ velocities for each