Wintersemester 2023/2024

Physische Geographie 1

(Grundkursvorlesung PG 1 – Vorlesungsteil Klimatologie)

Prof. Dr. Christoph Beck

Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung

Institut für Geographie

Universität Augsburg

- ⇒ Maß für den Wärmezustand der Luft
- ← Definiert über die mittlere molekulare Bewegungsenergie eines Luftquantums

Maßeinheit der Temperatur:

- **Kelvin (K)** orientiert am absoluten Nullpunkt (-273.15°C, entspr. molekularkinetische Bewegung v = 0)
- Grad Celsius (°C) orientiert an Gefrier- und Siedepunkt des Wassers (0° bzw. 100°C)

$$K = {}^{\circ}C + 273 \text{ bzw. } {}^{\circ}C = K - 273$$

Daneben: Fahrenheit-Skala, Reaumur-Skala

Messung der Lufttemperatur

Meßinstrumente:

- Quecksilberthermometer
- Bimetallthermometer
- Elektrische Widerstandsthermometer

Messung der Lufttemperatur

Meßvoraussetzungen:

- außerhalb der bodennahen Luftschicht (2m über Grund)
- Strahlungsschutz
- Ventilation
- **⇒ Englische Wetterhütte**

(www.zamg.ac.at)

Tagesgang der Lufttemperatur

Tagesgang abhängig von:

- Witterungssituation
- Oberflächencharakteristik

(Bauer 2002)

Tagesgang der Lufttemperatur über verschiedenen Oberflächen

Figure 19: Diurnal cycle of air temperature at selected sites in the urban forest and city of Augsburg for the time period July 19 – August 27, 2019

Figure 17: Heat event on August 9, 2019, at selected sites in the urban forest and city of Augsburg

(Buschlinger 2020)

Tagesgang der Lufttemperatur in 2m Höhe über verschiedenen Oberflächenarten (am 25./26.7.1985, nach E. Hase 1990)

Bestimmung des Tagesmittels der Lufttemperatur

Abschätzung des Tagesmittels aus den

"Mannheimer Stunden"

(Bauer 2002)

Tages- und jahreszeitliche Variationen der Lufttemperatur

in räumlicher Differenzierung

Thermisches Tageszeitenklima

Pará. Äquatoriales Tieflandklima mit fast fehlender Jahresschwankung und mäßiger bis geringer Tagesschwankung.

Tages- und jahreszeitliche Variationen der Lufttemperatur

in räumlicher Differenzierung

Macquarie-Insel. Hochozeanisches Subpolarklima mit fast fehlender Tages- und Jahresschwankung.

(Gebhardt et al. 2007)

Ausgeprägtes Jahreszeitenklima

Norway Base (Antarktis). Glaziales Polarklima mit kernlosem Winter (Hauptminimum im September, Nebenminimum im April), fehlendem Tagesgang während der winterlichen Polarnacht, geringem Tagesgang im Südsommer. Der Temperaturanstieg im Oktober ist steiler als der Temperaturabfall im März. Beobachtungswerte 1960/61 der South African Antarctic Expedition I.

Tages- und jahreszeitliche Variationen der Lufttemperatur

in räumlicher Differenzierung

Jahreszeitenklima der Mittelbreiten

im Sommer leicht kontinental verstärkter Tagesschwankung und relativ geringer Jahresschwankung.

Hypsometrischer Temperaturgradient

Maß für die vertikale Temperaturabnahme

⇒ meist zwischen 0.5 und 0.8°C pro 100m

Ursache: Primäre Erwärmung der Atmosphäre an der Erdoberfläche

Hypsometrischer Temperaturgradient

Massenerhebungseffekt ← hochgelegene Heizflächen

Definiert als:

Kraft, die die Atmosphäre oberhalb eines bestimmten Niveaus pro Fläche ausübt

Maßeinheit:

```
1 \text{ hPa} = 100 \text{ Pa} = 100 \text{ N*m}^{-2}
```

Druckabnahme mit der Höhe:

- durchschnittlicher Bodenluftdruck in Meeresniveau
 - (SLP: sea level pressure): 1013 hPa
- in ca. 5,5km Höhe über NN: 500 hPa
- in ca. 11km Höhe über NN: 250 hPa

Definiert als:

Kraft, die die Atmosphäre oberhalb eines bestimmten Niveaus

pro Fläche ausübt

Maßeinheit:

 $1 \text{ hPa} = 100 \text{ Pa} = 100 \text{ N*m}^{-2}$

Druckabnahme mit der Höhe:

 durchschnittlicher Bodenluftdruck in Meeresniveau

(SLP: sea level pressure): 1013 hPa

- in ca. 5,5km Höhe über NN: 500 hPa
- in ca. 11km Höhe über NN: 250 hPa
- ⇒ nicht-lineare Funktion der vertikalen Luftdruckabnahme!

Hydrostatische Grundgleichung:

$$-dp = g * \rho * dz$$

dp: Änderung des Luftdrucks p

dz: Änderung der Höhe

g: Erdbeschleunigung

ρ: Luftdichte

Zustandsgleichung idealer Gase:

(Boyle – Mariotte – Gay – Lussac)

$$p * V = R * T$$

p: Druck

V: Volumen

R: Gaskonstante

T: absolute Temperatur

$$\rho = p/(R * T)$$

ρ: Dichte

Hydrostatische Grundgleichung:

$$-dp = g * (p/(R*T)) * dz$$

dp: Änderung des Luftdrucks p

dz: Änderung der Höhe

g: Erdbeschleunigung

ρ: Luftdichte

Folgerungen:

⇒ der Luftdruck nimmt in einer kalten Atmosphäre mit zunehmender Höhe schneller ab als in einer warmen Atmosphäre.

⇒ je höher der Ausgangsluftdruck, umso stärker ist die vertikale Luftdruckabnahme

Hydrostatische Grundgleichung:

$$-dp = g * (p/(R*T)) * dz$$

Anwendungen:

Formen der

barometrischen Höhenformel:

$$p=p_0\cdot e^{-(g/R\cdot T)\cdot z}$$

$$z = (R \cdot T/g) \cdot \ln(p_0/p)$$

z = Höhendifferenz

p = Luftdruck in der Höhe

 p_0 = Luftdruck am Boden

definiert als:

Anteil des Wasserdampfs am Luftgemisch

← abhängig von Wasserverfügbarkeit und Lufttemperatur

Verschiedene Feuchtemaße:

Dampfdruck e: Partialdruck des Wasserdampfs [hPa]

Taupunkttemperatur τ: Temperatur, bei der der tatsächliche Dampfdruck

(e) dem Sättigungsdampfdruck (E) entspricht

Temperaturabhängigkeit des Sättigungsdampfdrucks

Magnus Formel:
$$E_w(t) = 6{,}112 \text{ hPa} \cdot \exp\left(\frac{17{,}62 \cdot t}{243{,}12 \cdot \text{C} + t}\right)$$

definiert als:

Anteil des Wasserdampfs am Luftgemisch

abhängig von Wasserverfügbarkeit und Lufttemperatur

Verschiedene Feuchtemaße:

```
Dampfdruck e: Partialdruck des Wasserdampfs [hPa]
```

Taupunkttemperatur τ: Temperatur, bei der der tatsächliche Dampfdruck

(e) dem Sättigungsdampfdruck (E) entspricht

Sättigungsdefizit: E – e

relative Luftfeuchtigkeit: (e/E) * 100 [%]

absolute Luftfeuchtigkeit: Wasserdampfmasse pro Luftvolumen [g/m³]

spezifische Feuchte: Wasserdampfmasse pro Masse feuchter Luft [g/kg]

Mischungsverhältnis: Wasserdampfmasse pro Masse trockener Luft [g/kg]

Feuchttemperatur: Temperatur an befeuchtetem Fühler

Messung der Luftfeuchtigkeit:

- z.B. Haarhygrometer, ...
- -zuverlässigste Messung mit Psychrometer

← Psychrometrische Differenz zwischen Trocken- und Feuchttemperatur als Maß für die Luftfeuchtigkeit

Arten der Verdunstung:

Evaporation (E_B)

Verdunstung freier Wasserflächen oder unbewachsener Oberflächen

Transpiration (E_T)

Verdunstung durch Lebewesen (insbes. Pflanzen)

Interzeption(sverdunstung) (E_I)

Verdunstung von pflanzlichen Oberflächen

Gesamtverdunstung = Evapotranspiration (E_v)

$$E_V = E_B + E_T + E_I$$

Arten der Verdunstung:

$$E_V = E_B + E_T + E_I$$

Arten der Verdunstung:

Aktuelle (reale) Evapotranspiration: Po

EA

Potentielle (mögliche) Evapotranspiration: E_P

Wasservolumen, das bei den gegebenen klimatischen Randbedingungen und tatsächlichem Wasserangebot an die Atmosphäre abgegeben wird.

Wasservolumen, das eine ganz oder teilweise mit Vegetation bedeckte, unter optimaler Wasser- und Nährstoffversorgung stehende Fläche bei ungehindertem Wassernachschub unter den gegebenen Randbedingungen pro Zeiteinheit maximal an die Atmosphäre abgeben kann.

Verdunstungsverhältnis:

Verdunstungsverhältnis: $\frac{E_a}{N}$

N: Niederschlag

Verdunstungsverhältnis für verschiedene Oberflächenbedeckungsarten

(nach Baumgartner & Liebscher 1996)

Verdunstungsmessung

Messung des Verdunstungsanspruchs der Atmosphäre

Inst. f. Pflanzenbauwissenschaften HU Berlin

z.B. Piché-Evaporimeter

(http://www.rfuess-mueller.de)

Verdunstungsmessung

Messung der Verdunstung offener Wasseroberflächen

120.7 cm water level 5 - 7.5 cm from rim 25 cm stilling well (http://www.fao.org)

z.B. Class A Pan

Class A Evaporation Pan with Automatic Sensing
Refill Kit and Bird Guard

(www.environdata.com.au)

Verdunstungsmessung

Messung der Verdunstung fester Bodenvolumina

(http://www.iac.ethz.ch)

z.B. Sickerwasser-Lysimeter wägbare Lysimeter

Wägbare Lysimeteranlage

Verdunstungsberechnung:

Berechnung der aktuellen (realen) Verdunstung:

$$E_A = N - A$$

N = Niederschlag A = Abfluß

Verdunstungsberechnung:

Verdunstungsformel (nach Haude) - Berechnung der potentiellen Verdunstung

$$V=k*(E-e)=k*E*(1-\frac{RF}{100})$$

E: Sättigungsdampfdruck um 14 Uhr RF: rel. Luftfeuchte um 14 Uhr

e: Dampfdruck um 14 Uhr

Monatswerte des Koeffizienten k:

J	F	М	Α	М	J	J	Α	S	0	N	D
0,20	0,20	0,21	0,29	0,29	0,28	0,26	0,25	0,23	0,22	0,20	0,20

weitere Ansätze zur Verdunstungsberechnung: nach Wagner, Turc, Penman, ...

Verdunstungsberechnung:

Verdunstungsformel (nach Haude) - Berechnung der potentiellen Verdunstung

Werte für den Haude-Koeffizienten k:

k	Wiese	Rasen	Mais	Buche	Fichte
Januar	0.2	0.2	0.11	0.01	0.08
Februar	0.2	0.2	0.11	0	0.04
März	0.25	0.23	0.11	0.04	0.14
April	0.29	0.24	0.17	0.1	0.35
Mai	0.29	0.29	0.21	0.23	0.39
Juni	0.28	0.29	0.24	0.28	0.34
Juli	0.26	0.28	0.25	0.32	0.31
August	0.25	0.26	0.26	0.26	0.25
September	0.23	0.23	0.21	0.17	0.2
Oktober	0.22	0.2	0.18	0.1	0.13
November	0.2	0.2	0.11	0.01	0.07
Dezember	0.2	0.2	0.11	0	0.05

(nach Häckel 1999)