National University of Computer and Emerging Sciences, Lahore Campus

AN HAUE	Course Name:	Artificial Intelligence	Course Code:	Al2002
STIGHAL UNIVERSE	Program:	BS (CS) BS(DS)	Semester:	Spring 2023
8 (Duration:	60 Minutes	Total Marks:	50
	Paper Date:	11-Apr-2023	11-Apr-2023 Weightage	
SWENGINE & RAIL	Section:	ALL	Page(s):	5
	Exam Type:	Mid II		
Question	Q1 (CLO:2)	Q2 (CLO:3)	Q3 (CLO:2,3)	Total Marks
Marks	10	15	25	50

Student Name:	Section:	Roll No.	

Do not use pencil or red ink to answer the questions. In case of confusion or ambiguity make a reasonable assumption. Attempt all questions on the question paper in space provided.

QUESTION 1: Perform the alpha beta pruning on the following min-max tree and show all working. (10)

Obtained Marks

QUESTION 2: Suppose there are 10 chromosomes with finesses as shown in table. What will be the selection probability according to the proportionate and linear rank selection methods? (5 + 10)

Chromosome No.	Fitness fi	Proportionate	Linear Rank	Linear Rank Calculations		
		$p_i = f_i / \sum_{j=1}^n f_j$		Sort	$nf_i = (P - r_i) + 1$	$np_i = nf_i / \sum_{j=1}^n nf_j$
A	50	0.05	0.055	250	10	0.182
В	25	0.025	0.036	140	9	0.164
С	25	0.025	0.018	125	8	0.145
D	100	0.1	0.109	110	7	0.127
Е	75	0.075	0.073	100	6	0.109
F	125	0.125	0.145	100	5	0.091
G	250	0.250	0.182	75	4	0.073
Н	110	0.110	0.127	50	3	0.055
I	140	0.140	0.164	25	2	0.036
J	100	0.1	0.091	25	1	0.018
Total	1000	1	1	1000	55	1

QUESTION 3: A Multi-layer feed-forward neural network with initialization of weights is given below.

a) Do a forward pass and compute the output at O_1 and O_2 . Use linear activation function at hidden layer h_1 , and h_2 and sigmoid activation function at O_1 and O_2 . All biases are 0.5, the input values are $x_1 = 1$, $x_2 = 4$, $x_3 = 5$ and target values are $t_1 = 0.1$, $t_2 = 0.05$. Show all the working. (3+3)

$$net_{-}h_{1} = (0.1 \times 1) + (0.3 \times 4) + (0.5 \times 5) + (0.5 \times 1) = 4.3$$

$$0(net_{-}h_{1}) = 4.3$$

$$net_{-}h_{2} = (0.2 \times 1) + (0.4 \times 4) + (0.6 \times 5) + (0.5 \times 1) = 5.3$$

$$0(net_{-}h_{2}) = 5.3$$

$$net_{-}O_{1} = (0.7 \times 4.3) + (0.9 \times 5.3) + (0.5 \times 1) = 8.28$$

$$0(net_{-}O_{1}) = \frac{1}{1 + e^{-8.28}} = 0.9997$$

$$net_{-}O_{2} = (0.8 \times 4.3) + (0.1 \times 5.3) + (0.5 \times 1) = 4.47$$

$$0(net_{-}O_{2}) = \frac{1}{1 + e^{-4.47}} = 0.9887$$

b) What are the general weight update equations according to delta rule for this network? (2+2)

Error_j =
$$\frac{1}{2}(t_j - O_j)^2$$

learning rate= η

Weight update equation for Output Layer unit *i* to *j*

$$\begin{split} new_{_}w_{ij} &= old_{_}w_{ij} + \Delta w_{ij} \\ \Delta w_{ij} &= -\eta \left(\frac{\partial Error}{\partial w_{ii}}\right) = \eta[(t_j - O_j) \cdot \sigma(net_j)(1 - \sigma(net_j)) \cdot O(net_i)] \end{split}$$

Weight update equation for Hidden Layer unit k to i

$$new_{-}w_{ki} = old_{-}w_{ki} + \Delta w_{ki}$$

$$\Delta w_{ki} = -\eta \left(\frac{\partial Error}{\partial w_{ki}}\right) = \eta \left[\sum_{j=1}^{2} (t_{j} - O_{j}) \cdot \sigma \left(net_{j}\right) \left(1 - \sigma \left(net_{j}\right)\right) \cdot w_{ij}\right] \cdot (1) \cdot x_{k}$$

c) Do a backward pass (backpropagation) and compute update in weights b_1 , w_4 and w_{10} . Use learning rate η =0.01. Show all the working. (5+5+5)

```
\begin{array}{l} \textit{new}\_\textit{w}_{10} = 0.1 + 0.01 \, \times (0.05 - 0.9887) \, \times 0.9887 \, \times (1 - 0.9887) \, \times 5.3 \\ \textit{new}\_\textit{w}_{10} = 0.1 + 0.01 \, \times (-0.9387) \, \times 0.9887 \, \times (0.0113) \, \times 5.3 \\ \textit{new}\_\textit{w}_{10} = 0.1 - 0.000556 = 0.0994 \\ \textit{new}\_\textit{w}_{10} = 0.09944 \end{array}
```

```
\begin{array}{l} \textit{new}\_\textit{w}_4 = 0.4 + 0.01 \times [(0.1 - 0.9997) \times 0.9997 \times (1 - 0.9997) \times 0.9 + (0.05 - 0.9887) \times \\ 0.9887 \times (1 - 0.9887) \times 0.1] \times 4 \\ \textit{new}\_\textit{w}_4 = 0.4 + 0.01 \times [-0.000243 - 0.00105] \times 4 \\ \textit{new}\_\textit{w}_4 = 0.4 - 0.0000517 = 0.39995 \\ \textit{new}\_\textit{w}_4 = 0.39995 \end{array}
```

```
\begin{array}{l} \textit{new\_b}_1 = 0.5 + 0.01 \times [(0.1 - 0.9997) \times 0.9997 \times (1 - 0.9997) \times 0.7 + (0.05 - 0.9887) \times \\ 0.9887 \times (1 - 0.9887) \times 0.8 \,] \\ \textit{new\_b}_1 = 0.5 + 0.01 \times [-0.000189 - 0.00839] \\ \textit{new\_b}_1 = 0.5 - 0.0000858 = 0.49991 \\ \textit{new\_b}_1 = 0.49991 \end{array}
```

Rough Sheet 1