Job Vacancy over the years and University Graduates' Prospect Analysis

Presented by: Tan Yi Ting (P7400025)

TABLE OF CONTENTS

O1 Dataset
Source, Data Overview &
Descriptive Statistic

O2 Process
Setting up Data, Data
Overview, Data Sorting
and Graph Ploting

O3 Analysis
Visualisation of data and insights

O4 SQL to Python
Setup, Process and
Result

O1 DATASET

Source, Data Overview & Descriptive Statistic

Dataset

Datasets were extracted from Data.gov.sg:

1. Job Vacancy by Industry and Occupational Group, Annual

Job Vacancy, Topline
Job Vacancy by Industry (Level 2)

https://data.gov.sg/dataset/job-vacancy-by-industry-and-occupational-group-annual?view_id=afl9c76d-52af-4840-af44-c6c02c087ea3&resource_id=5d429272-3383-442e-b20b-5306daf55229

2. Per Capita GNI and per Capita GDP at Current Prices, Annual

https://data.gov.sg/dataset/per-capita-gni-and-per-capita-gdp-at-current-market-prices-annual?view_id=fbe9781f-7a5c-4372-a6ec-1c122edf4d65&resource_id=0ba721b8-d290-44f0-a3a6-748f5fd74dc5

3. Graduate Employment Survey - NTU, NUS, SIT, SMU, SUSS & SUTD

https://data.gov.sg/dataset/graduate-employment-survey-ntu-nus-sit-smu-suss-sutd

Job Vacancy Dataset

Columns: Year, Job vacancy number (int64)

• **Shape:** (30,1)

Data are from the year of 1990 to 2019

No missing values

Descriptive Statistic:

- Mean: 38,356 - Std: 38,356 - Min: 12,600 - 25%: 28,300 - 50%: 40,350 - 75%: 48,750 - Max: 63,300

```
***Job Vacancy Dataset Overview***
The shape of the data is (30, 1)
The Job Vacancy data is from the year of 1990 to 2019
The columns are: ['job_vacancy']
There are no missing values.
***Summary of Dataset:***
<class 'pandas.core.frame.DataFrame'>
Int64Index: 30 entries, 1990 to 2019
Data columns (total 1 columns):
    Column
                  Non-Null Count Dtype
   job_vacancy 30 non-null
                                  int64
dtypes: int64(1)
memory usage: 480.0 bytes
None
***Descriptive Statistic of Dataset:***
        job_vacancy
          30.000000
count
       38356.666667
mean
std
       14607.123518
min
       12600.000000
25%
       28300.000000
50%
       40350.000000
75%
       48750.000000
       63300.000000
```

GDP Dataset

• Columns: type (str), value (int64)

• **Shape:** (59,2)

Data are from the year of 1960 to 2018

No missing values

Descriptive Statistic:

- Mean: 28,842 - Std: 325,858 - Min: 1,310 - 25%: 5,912 - 50%: 20,918 - 75%: 44,004

- Max: 87,108

```
***GDP Dataset Overview***
The shape of the data is (59, 2)
The GDP data is from the year of 1960 to 2018
The columns are: ['type', 'value']
There are no missing values.
***Summary of Dataset:***
<class 'pandas.core.frame.DataFrame'>
Int64Index: 59 entries, 1960 to 2018
Data columns (total 2 columns):
    Column Non-Null Count Dtype
    type
            59 non-null
                            object
    value 59 non-null
                            int64
dtypes: int64(1), object(1)
memory usage: 1.4+ KB
None
***Descriptive Statistic of Dataset:***
              value
          59.000000
count
      28841.966102
std
      25858.062993
min
     1310.000000
25%
    5911.500000
50%
      20918.000000
       44003.500000
max
       87108.000000
```

Job Vacancy by Industry Dataset

 Columns: year(int64), industry1(str), industry2(str), job_vacancy(int64)

• **Shape:** (584,4)

Data are from the year of 1990 to 2019

7 Missing values in job_vacancy

Descriptive Statistic of job_vacancy:

- Mean: 1994 - Std: 2109 - Min: 100 - 25%: 500 - 50%: 1,400 - 75%: 2,700

- Max: 13,700

```
***Job Vacancy by Industry Dataset Overview***
The shape of the data is (584, 4)
The dataset is from the year of 1990 to 2019
The columns are: ['year', 'industry1', 'industry2', 'job vacancy']
***Number of non NA Values***
vear
              584
industry1
              584
industry2
              584
job_vacancy
              577
dtype: int64
***Summary of Job Vacancy by Industry Dataset:***
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 584 entries, 0 to 583
Data columns (total 4 columns):
                 Non-Null Count Dtype
     Column
     vear
                 584 non-null
                                 int64
    industry1
                 584 non-null
                                object
                 584 non-null
2 industrv2
                                 object
    job vacancy 577 non-null
                                 float64
dtypes: float64(1), int64(1), object(2)
memory usage: 18.4+ KB
None
 ***Descriptive Statistic of Job Vacancy by Industry Dataset: ***
                        job_vacancy
                year
count
         584.000000
                         577.000000
        2004.075342
                        1993.760832
mean
                        2108.933355
std
           8.556210
min
        1990.000000
                         100.000000
25%
        1997.000000
                         500.000000
50%
        2004.000000
                        1400.000000
75%
        2011.000000
                        2700.000000
        2019.000000
                      13700.000000
```

Local University Graduate Employment Dataset

- Columns: year(int64), university(str), employment_rate_overall(float64), gross_monthly_mean(int64),
- **Shape:** (703,12)
- Data are from the year of 2013 to 2018
- There are missing values
- Descriptive Statistic of employment rate and gross monthly mean income:

```
- Mean: 91 | 3,515

- Std: 7 | 522

- Min: 67 | 2,100

- 25%: 86 | 3,207

- 50%: 91 | 3,431

- 75%: 96 | 3,724

- Max: 100 | 5,617
```

```
***Local University Graduate Employment Dataset Overview***
The shape of the data is (703, 12)
The dataset is from the year of 2013 to 2018
The columns are: ['year', 'university', 'school', 'degree', 'employment rate overall',
'employment rate ft perm', 'basic monthly mean', 'basic monthly median',
'gross monthly mean', 'gross monthly median', 'gross mthly 25 percentile',
'gross_mthly_75_percentile']
***Summary of Local University Graduate Employment Dataset: ***
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 703 entries, 0 to 702
Data columns (total 12 columns):
                                   Non-Null Count Dtype
     Column
     vear
                                   703 non-null
                                                     int64
     university
                                   703 non-null
                                                     object
     school
                                                     object
                                   691 non-null
     degree
                                   703 non-null
                                                     object
     employment_rate_overall
                                   630 non-null
                                                     float64
     employment rate ft perm
                                   630 non-null
                                                     float64
     basic monthly mean
                                   630 non-null
                                                     float64
     basic_monthly_median
                                   630 non-null
                                                     float64
     gross monthly mean
                                   630 non-null
                                                     float64
     gross monthly median
                                   630 non-null
                                                     float64
    gross_mthly_25_percentile 630 non-null
                                                     float64
 11 gross mthly 75 percentile 630 non-null
                                                     float64
dtypes: float64(8), int64(1), object(3)
memory usage: 66.0+ KB
None
***Descriptive Statistic of Local University Graduate Employment Dataset:***
      employment_rate_overall gross_monthly_mean
                  630.000000
                                    630.000000
count
                   90.544921
                                   3515.128571
mean
                   6.911726
                                    521.973887
                   66.700000
                                   2100.000000
                                   3206.500000
                   86.025000
                   91.300000
                                   3431.000000
                   96.200000
                                   3723.750000
                  100.000000
                                   5617.000000
```

02

Process

Setting up Data, Data Overview, Data Sorting and Graph Plotting

Process

Scatter plot of Job Vacancy vs Current GDP per capita

1. Setting up and Data Overview

- Import packages Pandas, matplotlib.pyplot, seaborn
- Import data: pd.read_csv(file, na_values = ['-', 'NA', 'N/A'])
- Data overview: df.shape(), df.columns, df.describe(), df.info()

2. Data sorting and Graph plotting

- Slicing to remove 2019 data from Job vacancy to match with GDP data
- pd.merge() by year to combine 2 datasets → df.reset_index to get year as column
- **Change colour:** palette = sns.color_palette("mako_r', 4) - → 4 colour types to distinguish every 10 years from 1990 to 2020.
- **Scatter plot:** sns.scatter(x,y, hue = 'year', size = 'year', palette)
- **Legend:** plt.legend(bbox_to_anchor=(1, 1), loc=2) to move legend outside the graph plot
- **Labelling**: ax.set(xlabel,ylabel); ax.set_title()

Process

1. Setting up and Data Overview

- Import packages Pandas, matplotlib.pyplot, seaborn
- Import data: pd.read_csv()
- Data overview: df.shape(), df.columns, df.describe(), df.info()
- Find data year range → df.year.max(), df.year.min()
- Missing values: df.count() → number of nonna values does not match with other columns → missing values

2. Data sorting and Graph plotting

- Remove unused column: df.drop(columns = 'industry2')
- Groupby data and aggregate: df.groupby(['year','industry1']).sum()
- Change colour for 4 line plots: palette = sns.color_palette("mako_r",4)
- Line plot: sns.lineplot(data=df, x="year",
 y="job_vacancy", style = 'industry1', markers=True,
 hue="industry1", palette=palette)
- Labelling: ax.set(xlabel,ylabel); ax.set_title()
- Moving legend outside chart and renaming legend title:

```
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles=handles[1:], labels=labels[1:],
title = 'Industry', bbox_to_anchor = (1,1), loc = 2)
```

Process

- ✓ Bar Plot of Employment Rate of Local University Graduates from 2013-2018

1. Setting up and Data Overview

- Import packages Pandas, matplotlib.pyplot, seaborn
- Import data: pd.read_csv()
- Data overview: df.shape(), df.columns, df.describe(), df.info()
- Find data year range → df.year.max(), df.year.min()
- Missing values: df.count() → number of nonna values does not match with other columns → missing values

2. Data sorting and Graph plotting

- Creating shortform for the 6 universitys in a new colums: pd.unique(raw['university'].tolist()) to get the list of universities → create shortform in a list → create dictionary with zip() → df['university'].replace(dict, regex= True)
- Slicing to get 2018 data from mean monthly gross income
- Groupby data and mean for employment rate: df.groupby(['year','university']).mean() → df.reset_index() to change index to column
- **Box plot:** sns.boxplot(x,y,data, hue = 'university')
- Bar plot: sns.barplot(x,y,data,hue = 'university')
- Labelling: ax.set(xlabel,ylabel); ax.set_title()
- Moving legend outside chart and renaming legend title:

handles, labels = ax.get_legend_handles_labels() ax.legend(handles=handles, labels=labels, title = 'University', bbox_to_anchor = (1,1), loc = 2)

O3 Analysis

Visualization of data and Insights

- Generally a positive relationship between job vacancy and GDP from year 2000 onwards
- Abnormality in the early year of 2000-2010. Despite higher GDP, job vacancy dip with the effect of 1997 Asian Financial Crisis
- Global Financial Crisis
 (2007-2008) does not have a
 strong effect on the growth
 of GDP and job market

- Increasing trend for service sector and decreasing trend for manufacturing sector over the years
- Construction sector stay relatively constant with peak in 1995-1998
- Sharp decrease across all 3 main industry in 1997 and stayed low with peaks and falls
- Job market picked up in 2005 with sharp increase by the service industry

- Generally, graduates from SMU earns a higher income and graduates from SUSS earns the least
- Large variability in earnings from NUS and it is positively skewed

- SMU graduates remain the most employable over the years
- Despite being a new university, SUTD employment rate surpassed the other universities in 2016 except SMU
- Majority of the employment rate remains relatively similar over the years except for SIT
- SIT drop in employment rate from 2014-2016 and then increase in 2017

O4 SQL to Python

Setup, Process and Result

SQL to Python

SQL

Local University Graduate Employment Dataset

- CREATE DATABASE mydatabase
- Upload dataset into table 'grad_survey'

```
use mydatabase;
select year, university, school, degree from grad_survey where basic_monthly_mean > 3800
```

year	university	school	degree
2013	National University of Singapore	School of Computina	Bachelor of Computing (Computer Science)
2013	National University of Singapore	Faculty of Dentistry	Bachelor of Dental Surgery
2013	National University of Singapore	Faculty of Law	Bachelor of Laws (LLB) (Hons) #
2013	National University of Singapore	YLL School of Medicine	Bachelor of Medicine and Bachelor of Surgery (
2013	Singapore Management University	School of Business (4-vears programme) *	Business Management (4-years programme) Cu.
2013	Singapore Management University	School of Law (4-vears programme) *	Law (4-vears programme) #
2013	Singapore Management University	School of Law (4-years programme) *	Law (4-years programme) Cum Laude and abov

SQL to Python

Python

Local University Graduate Employment Dataset

- Import packages: msql.connector, pandas
- Import data: pd.read_csv(file, na_values = ['na'], encoding = 'latin-1')
- Connect to SQL: mysql.connector.connect(user='root', password='1234', host='127.0.0.1', database='mydatabase')
- Retrieve data from SQL where basic_monthly_mean > 3,800 and store: sql = "SELECT year,university, school, degree FROM grad_survey where basic_monthly_mean > 3800"
 df = pd.read_sql(sql, con = cnx)
- Show result: print(df), shape(18,5)

Majority of the graduates with monthly earning > \$3,800 are from Law

SQL to Python

Result:

The following are the degrees that has a basic monthly mean salary > \$3,800. (non-exclusive)

•				
2013	National University of Singapore	School of Computing	Bachelor of Computing (Computer Science)	3933
2013	National University of Singapore	Faculty of Dentistry	Bachelor of Dental Surgery	4106
2013	National University of Singapore	Faculty of Law		4922
2013	National University of Singapore	YLL School of Medicine	Bachelor of Medicine and Bachelor of Surgery (MBBS) #	4406
2013	Singapore Management University	School of Business (4-years programme) *	Business Management (4-years programme) Cum Laude and above	3825
2013	Singapore Management University	School of Law (4-years programme) *	Law (4-years programme) #	5023
2013	Singapore Management University	School of Law (4-years programme) *	Law (4-years programme) Cum Laude and above #	5329
2014	National University of Singapore	NUS Business School	Bachelor of Business Administration (Hons)	3979
2014	National University of Singapore	Faculty of Dentistry	Bachelor of Dental Surgery	4054
2014	National University of Singapore	School of Design & Environment	Bachelor of Arts (Architecture) #	4290
2014	National University of Singapore	Faculty of Law	, , , ,	5027
2014	National University of Singapore	YLL School of Medicine	Bachelor of Medicine and Bachelor of Surgery #	
2014	Singapore Management University	School of Accountancy (4-year programme) *	Accountancy (4-year programme) Cum Laude and above	3871
2014	Singapore Management University	School of Business (4-year programme) *	Business Management (4-year programme) Cum Laude and above	4019

Thank you