Sea $G = \langle a, b; a^6 = 1, b^3 = 1, (ab)^2 = 1 \rangle$. Entonces

- \bigcirc a. En S_4 no hay elementos de orden 6 por tanto no hay morfismos de G en S_4 .
- \odot b. Puedo definir un morfismo de G en S_4 que lleve a en (123) y b en (143).
- \bigcirc c. Puedo definir un morfismo de G en S_4 que lleve a en (123) y b en (214).

Respuesta correcta

La respuesta correcta es:

Puedo definir un morfismo de G en S_4 que lleve a en (123) y b en (143).

Grupos abelianos no isomorfos de orden 75

- \odot a. hay 2 que son $C_3 \times C_5 \times C_5$ y $C_3 \times C_{25}$.
- O b. hay 3 que son $C_3 \times C_5 \times C_5$, $C_{15} \times C_5$ y C_{75} .
- \bigcirc c. hay sólo uno $C_3 \times C_5 \times C_5 \cong C_{15} \times C_5 \cong C_{75}$.

Respuesta correcta

La respuesta correcta es:

hay 2 que son $C_3 \times C_5 \times C_5$ y $C_3 \times C_{25}$.

Sean $C_3 = \langle a: a^3 = 1 \rangle$ y $C_{21} = \langle b: b^{21} = 1 \rangle$, considera la acción de C_3 en C_{22} definida por $ab = b^4$ y el correspondiente producto semidirecto $C_{21} \ltimes C_3$ entonces el inverso de (b, a^2) es

- a. ninguna de las otras opciones es cierta.
- b. (b¹⁷, a).

 ✓
- $(b^{-1}, a^{-2}) = (b^{20}, a).$

Respuesta correcta

La respuesta correcta es: (b^{17}, a) .

Sea $V = \{1, (12)(34), (13)(24), (14)(23)\} \subseteq S_5$. Entonces

- \bigcirc a. V no es un subgrupo de S_5 .
- \bigcirc b. V es un subgrupo normal de S_5 .
- \odot c. V es un subgrupo pero no es normal en S_5 . \checkmark

Respuesta correcta

La respuesta correcta es:

V es un subgrupo pero no es normal en S_5 .

Sea G un grupo de orden 53361 y sean P_3, P_7 y P_{11} respectivamente un 3, 7 y 11-Subgrupo de Sylow de G. Entonces

- \odot a. P_3 , P_7 y P_{11} son subgrupos abelianos de G pero no tienen que ser normales. \checkmark
- \bigcirc b. P_3 , P_7 y P_{11} no tienen porqué ser subgrupos abelianos de G.
- \bigcirc c. Siempre se cumple que P_3 , P_7 y P_{11} son subgrupos abelianos y por tanto normales de G.

Respuesta correcta

La respuesta correcta es:

 P_3 , P_7 y P_{11} son subgrupos abelianos de G pero no tienen que ser normales.

Considera el grupo abeliano $A = \langle x, y : 4x + 6y = 0, 5x + 2y = 0 \rangle$, entonces

- \bigcirc a. Las descomposiciones cíclica y cíclica primaria de A son $A\cong \mathbb{Z}\times \mathbb{Z}_{22}$ y $A\cong \mathbb{Z}\times \mathbb{Z}_{11}$ respectivamente.
- \bigcirc b. Las descomposiciones cíclica y cíclica primaria de A son iguales $A\cong\mathbb{Z}\times\mathbb{Z}_{22}$.
- \odot c. Las descomposiciones cíclica y cíclica primaria de A son $A\cong \mathbb{Z}_{22}$ y $A\cong \mathbb{Z}_2\times \mathbb{Z}_{11}$ respectivamente.

Respuesta correcta

La respuesta correcta es:

Las descomposiciones cíclica y cíclica primaria de A son $A\cong \mathbb{Z}_{22}$ y $A\cong \mathbb{Z}_2\times \mathbb{Z}_{11}$ respectivamente.

Sea $C_{126}=\langle a;a^{126}=1\rangle$. Entonces el orden de a^{30} es

- a. 6.
- b. 21.

 ✓
- o. 126.

Respuesta correcta

La respuesta correcta es:

21.

De C_6 en C_{27} hay

- O b. exactamente 27 homomorfismos de grupos.
- oc. sólo un homomorfismo de grupos.

Respuesta correcta

La respuesta correcta es:

exactamente 3 homomorfismos de grupos.

Sea
$$G = \langle a, b; a^6 = 1, b^2 = 1 \rangle$$
. Entonces

- a. El orden de G es infinito.
- \odot b. El orden de G es mayor o igual que 12.
- \bigcirc c. El orden de G es menor o igual que 12.

Respuesta correcta

Las respuestas correctas son:

El orden de G es infinito.

, El orden de G es mayor o igual que 12.

Considera el grupo $C_{12} = \langle a : a^{12} = 1 \rangle$, entonces

- \bigcirc a. la serie $C_{12} \trianglerighteq \langle a^4 \rangle \trianglerighteq \langle a^2 \rangle \trianglerighteq 1$ es de composición.
- \bigcirc b. la serie $C_{12} \trianglerighteq \langle a^3 \rangle \trianglerighteq \langle a^9 \rangle \trianglerighteq 1$ es de composición.
- \odot c. la serie $C_{12} \trianglerighteq \langle a^2 \rangle \trianglerighteq \langle a^4 \rangle \trianglerighteq 1$ es de composición. \checkmark

Respuesta correcta

La respuesta correcta es:

Sea G un grupo de orden 2079 y sean P_3 , P_7 y P_{11} respectivamente un 3,7 y II-Subgrupo de Sylow de G. Entonces

- \odot a. P_3 , P_7 y P_{11} no tienen porqué ser subgrupos abelianos de G.
- \bigcirc b. Siempre se cumple que P_3 , P_7 y P_{11} son subgrupos abelianos pero no tienen que ser normales en G.
- \bigcirc c. Siempre se cumple que P_3 , P_7 y P_{11} son subgrupos abelianos y por tanto normales de G.

Respuesta correcta

La respuesta correcta es:

 P_3 , P_7 y P_{11} no tienen porqué ser subgrupos abelianos de G.

Considera las series $S_5 \supseteq A_5 \supseteq 1$ y $S_4 \supseteq A_4 \supseteq 1$

- \odot a. La de S_5 es de composición pero la de S_4 no. \checkmark
- b. No son de composición.
- o. Son ambas de composición.

Respuesta correcta

La respuesta correcta es:

La de S_5 es de composición pero la de S_4 no.

Sean $C_3 = \langle a : a^3 = 1 \rangle$ y $C_7 = \langle b : b^7 = 1 \rangle$.

- \bigcirc a. Entonces ${}^ab:=b^2$ y ${}^ab:=b^{-1}$ definen acciones de C_3 en C_7 .
- \bigcirc b. Entonces ${}^ab:=b^2$ y ${}^ab:=b^{-1}$ no definen acciones de $extit{$C_3$}$ en $extit{$C_7$}$.
- \bigcirc c. Entonces $^ab:=b^2$ define una acción de C_3 en C_7 pero $^ab:=b^{-1}$ no.

Respuesta incorrecta.

La respuesta correcta es:

Entonces $^ab:=b^2$ define una acción de C_3 en C_7 pero $^ab:=b^{-1}$ no.

Sea $H = \langle (12) \rangle, K = \langle (34) \rangle \subseteq S_4$. Entonces

- \bigcirc a. HK no es un subgrupo de S_4 .
- \odot b. HK es un subgrupo de S_4 pero no es normal. \checkmark
- \bigcirc c. HK es un subgrupo normal de S_4 .

Respuesta correcta

La respuesta correcta es:

UV as un subgrupo de C. paro no as normal

Sea $G = \langle a, b; a^6 = 1, b^2 = 1, (ab)^2 = 1 \rangle$. Entonces

- \bigcirc a. el subgrupo $H = \langle a \rangle$ es normal pero el subgrupo $K = \langle b \rangle$ no lo es.
- O b. los subgrupos $H = \langle a \rangle$ y $K = \langle b \rangle$ no son normales.
- \bigcirc c. el subgrupo $H=\langle a \rangle$ no es normal pero el subgrupo $K=\langle b \rangle$ si lo es.

Respuesta incorrecta.

La respuesta correcta es:

el subgrupo $H=\langle a \rangle$ es normal pero el subgrupo $K=\langle b \rangle$ no lo es.

Sea $H = \langle (123) \rangle, K = \langle (124) \rangle \subseteq S_4$. Entonces

- \bigcirc a. HK no es un subgrupo de S_4 .
- \bigcirc b. HK es un subgrupo normal de S_4 .
- \odot c. HK es un subgrupo de S_4 pero no es normal. \times

Respuesta incorrecta.

La respuesta correcta es:

HK no es un subgrupo de S_4 .

Sea G un grupo simple	
\bigcirc a. Si G es abeliano entonces es resoluble pero el recíproco no es cierto.	
\odot b. G es resoluble si y sólo si es abeliano. \checkmark	
\circ c. G no es resoluble.	

Respuesta correcta

La respuesta correcta es:

 ${\it G}$ es resoluble si y sólo si es abeliano.

Sean C_5 y C_6 grupos cíclicos de orden 5 y 6 respectivamente. Entonces:

- \odot a. la única acción de grupos de C_5 en C_6 es la trivial. \checkmark
- O b. hay 6 acciones de grupos de C_5 en C_6 .
- \bigcirc c. hay dos acciones de grupos de C_5 en C_6 .

Respuesta correcta

La respuesta correcta es:

la única acción de grupos de C_5 en C_6 es la trivial.

Grupos abelianos no isomorfos de orden 72

- a. hay 6.

 ✓
- ob. hay sólo uno.
- O c. hay $\varphi(72) = \varphi(8)\varphi(9) = 4 * 3 * 2 = 24$.

Respuesta correcta

La respuesta correcta es:

hay 6.

Las descomposiciones cíclica y cíclica primaria de $C_4 \times C_6$ son

- \bigcirc a. $C_2 \times C_{12} \text{ y } C_2 \times C_4 \times C_3$.
- O b. $C_2 \times C_{12}$ y $C_2 \times C_2 \times C_2 \times C_3$.
- \bigcirc c. $C_2 \times C_2 \times C_6$ y $C_8 \times C_3$.

Respuesta correcta

La respuesta correcta es:

 $C_2 \times C_{12} \text{ y } C_2 \times C_4 \times C_3.$

Sea $\sigma = (12)(234) \text{ y } \tau = (1234)(456)$. Entonces

- a. una es par y otra impar.
- b. son ambas pares.
- ⊚ c. son ambas impares.

Respuesta correcta

La respuesta correcta es: son ambas impares.

Sean $C_3 = \langle a : a^3 = 1 \rangle$ y $C_{21} = \langle b : b^{21} = 1 \rangle$, entonces

- \bigcirc a. es posible definir una acción de C_3 en C_{21} por la fórmula $^ab=b^3$ pero no es de grupos.
- O b. no es posible definir una acción de grupos de C_3 en C_{21} por la fórmula $ab=b^3$
- \bigcirc c. es posible definir una acción de grupos de C_3 en C_{21} por la fórmula $^ab=b^3$

Respuesta incorrecta.

La respuesta correcta es:

no es posible definir una acción de grupos de $\,C_3\,$ en $\,C_{21}\,$ por la fórmula $\,^ab=b^3\,$

Sea G un grupo no abeliano de orden 39, entonces	
\bigcirc a. El conmutador $[G,G]$ no es un subgrupo de Sylow.	
\bigcirc b. El conmutador $[G,G]$ es un 13-subgrupo de Sylow.	
$\ \ $ c. El conmutador $[G,G]$ es un 3-subgrupo de Sylow. $igstar$	
Respuesta incorrecta. La respuesta correcta es: El conmutador $[G,G]$ es un $ 3$ -subgrupo de Sylow.	
Sea G un grupo no abeliano de orden 125, entonces	
 a. El centro de G tiene orden 5 b. El centro de G tiene orden 25. c. El centro de G tiene orden 1. 	
Respuesta incorrecta.	
La respuesta correcta es:	?

El centro de G tiene orden 5

Sea G un grupo de orden 40 y sean P_2 y P_5 respectivamente un 2 y un 5-Subgrupo de Sylow de G. Entonces

- \bigcirc a. P_5 y P_2 son abelianos y por tanto resolubles. Por tanto G es resoluble.
- \bigcirc b. P_5 y P_2 son resolubles. Por tanto G es resoluble sin necesidad de que sean normales o no.
- © c. P₅ es abeliano y por tanto resoluble. Además P₅ es normal y G/P₅ aunque no tiene que ser abeliano si es resoluble. Por tanto G es resoluble.

Respuesta correcta

La respuesta correcta es:

 P_5 es abeliano y por tanto resoluble. Además P_5 es normal y G/P_5 aunque no tiene que ser abeliano si es resoluble. Por tanto G es resoluble.

Sean $C_3 = \langle a: a^3 = 1 \rangle$ y $C_{21} = \langle b: b^{21} = 1 \rangle$, considera la acción de C_3 en C_{22} definida por $ab = b^4$ y el correspondiente producto semidirecto $C_{21} \ltimes C_3$ entonces el producto $(b, a^2)(b^2, a^2)$ es

- \bigcirc a. (b^3, a) .
- O b. (b^{11}, a) .
- ◎ c. ninguna de las otras opciones es cierta.

Respuesta correcta

La respuesta correcta es:

Un grupo es simple si:

a. No tiene subgrupos normales propios. ✓
b. Tiene orden primo.
c. No tiene subgrupos propios.

Respuesta correcta

La respuesta correcta es:
No tiene subgrupos normales propios.

De C_{27} en C_{9} hay

- a. exactamente 9 homomorfismos de grupos.

 ✓
- O b. sólo un homomorfismo de grupos.
- c. 27/9=3 homomorfismos de grupos.

Respuesta correcta

La respuesta correcta es: exactamente 9 homomorfismos de grupos.

Sea G un grupo simple

- \bigcirc a. Si G no es abeliano entonces el derivado G'=1.
- \odot b. Si G no es abeliano entonces el derivado G'=G.
- o. Ninguna deblas otras opciones tiene que ser cierta.

Respuesta correcta

La respuesta correcta es:

Si G no es abeliano entonces el derivado G' = G.

Considera los grupos $H \leq K \leq G$.

- \odot a. Siempre se cumple que [G:H] = [G:K][K:H].
- \bigcirc b. Sólo se cumple que [G:H]=[G:K][K:H] si $H \unlhd G$ y $K \unlhd G$.
- \bigcirc c. Sólo se cumple que [G:H] = [G:K][K:H] si $H \subseteq K$ y $K \subseteq G$.

Respuesta correcta

La respuesta correcta es:

Siempre se cumple que [G:H] = [G:K][K:H].

Sea G un grupo de orden 23 | y P_3 , P_7 y P_{11} respectivamente un 3,7 y | 1-Subgrupo de Sylow de G. Entonces

- \bigcirc a. Siempre se cumple que P_{11} es un subgrupo normal de G pero P_7 no tiene porqué serlo.
- \bigcirc b. Siempre se cumple que P_3 , P_7 y P_{11} son subgrupos normales de G.
- \odot c. Siempre se cumple que P_7 y P_{11} son subgrupos normales de G.

Respuesta correcta

La respuesta correcta es:

Siempre se cumple que P_7 y P_{11} son subgrupos normales de G.

Considera el grupo abeliano $A = \langle x, y, z : 4x + 6y = 0, 5y - 2z = 0 \rangle$, entonces

- \odot a. El rango de la parte libre de A es 1, y las descomposiciones cíclica y cíclica primaria de A son iguales $A \cong \mathbb{Z}_4 \times \mathbb{Z}$.
- \bigcirc b. El rango de la parte libre de A es \land , y las descomposiciones cíclica y cíclica primaria de A son $A \cong \mathbb{Z}_4 \times \mathbb{Z}$ y $A \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}$.
- \bigcirc c. El rango de la parte libre de A es 1, y las descomposiciones cíclica y cíclica primaria de A son iguales $A \cong \mathbb{Z} \times \mathbb{Z}_4 \times \mathbb{Z}$.

Respuesta correcta

La respuesta correcta es:

El rango de la parte libre de A es I, y las descomposiciones cíclica y cíclica primaria de A son iguales $A \cong \mathbb{Z}_4 \times \mathbb{Z}$.

Considera las series $D_5 \trianglerighteq \langle \rho \rangle \trianglerighteq 1$ y $D_4 \trianglerighteq \langle \rho \rangle \trianglerighteq 1$, donde ρ es el correspondiente giro.

- a. No son de composición. X
- O b. Son ambas de composición.
- \bigcirc c. La de D_5 es de composición pero la de D_4 no.

Respuesta incorrecta.

La respuesta correcta es:

La de D_5 es de composición pero la de D_4 no.

Considera los grupos $H \unlhd K \unlhd G$.

- \bigcirc a. Nunca se cumple que $H \leq G$.
- \bigcirc b. Entonces se cumple que $H \subseteq G$.

Respuesta correcta

La respuesta correcta es:

No tiene por qué ser $H ext{ } ext{$

Sea G un grupo de orden 40 y sean P_2 y P_5 respectivamente un 2 y un 5-Subgrupo de Sylow de G. Entonces

- \bigcirc a. $G = P_5 \ltimes P2$
- \bigcirc b. $G = P_2 \ltimes P_5 \times$
- \bigcirc c. G no tiene porqué ser un producto semidirecto de P_5 y P_2 .

Respuesta incorrecta.

La respuesta correcta es:

 $G = P_5 \ltimes P_2$

Sea G grupo de orden 36. Entonces

- b. G tiene al menos un elemento de orden 2, otro de orden 3, otro de orden 4 y otro de orden 9 (por ser potencias de primos), pero no tiene porqué tener elementos de orden 6.
- o. los elementos de G tienen orden divisores de 36, además para cada divisor d de 36 puedo asegurar la existencia de un elemento de orden d.