The Lasso

DS 301

Iowa State University

See R script: $shrinkage_methods.R$

Why does ridge regression improve over least squares?

Ridge regression's advantage over least square is rooted in the bias-variance trade-off.

ullet As λ increases, the flexibility of the ridge regression fit decreases, leading to a decreased variance but increased bias.

Ridge regression recap

- Minimizes the usual regression criterion (RSS) plus a l₂ penalty term.
- It can shrink coefficients towards 0 by introducing some bias.
- This can improve prediction.
- Works well in the presence of multicollinearity)
- Amount of shrinkage is controlled by λ . \rightarrow λ dsing cv.
- Ridge regression performs particularly well when there is a subset of true regression coefficients that are small or even zero.

Disadvantage of ridge regression

can never set regression coefficients fo be exactly 0.

Ly will always return to you the full model.

The Lasso (least absolute selection 8 shrinkage operator)

- Resolve disadvantage of ridge regression
- Performs both model selection and regularization.

can set regression coefficients to be exactly o.

The Lasso

we want regression coefficients Blasso such that

$$\hat{B}_{1asso} = \min_{B} \left(\sum_{i=1}^{n} (y_i - (Bo + B_1 X_i + \cdots B_p X_p))^2 + \lambda \sum_{i=1}^{p} |B_i| \right)$$

$$\lambda = 0 \implies \hat{B}_{1asso} \text{ defaults to least squares}$$

$$\lambda = \infty \implies \hat{B}_{1asso} = 0.$$

The Lasso

For a λ in between the extreme, we are balancing two ideas:

- Fitting a linear model of Y on X.
- Shrinking the coefficients (I_1 penalty can shrink some to 0).

Lasso has no analytical solution (no closed-form formula).

 Can find lasso regression coefficients using numerical algorithms.

```
(gradient desoeut, newton raphson, etc.)
```

Lasso regression coefficients

Lasso vs. Ridge

- In terms of prediction error (test MSE), the lasso performs comparably to ridge regression.
- Lasso penalty can set some coefficients to 0 when λ is sufficiently large.
 - Performs automatic model selection.
 - Leads to sparse models. (1188 predictors)
- Selecting λ here is (again) critical and can be done using cross-validation.
- Lasso implicitly assumes that a number of the coefficients truly equal zero.

Lasso vs. Ridge

- Neither ridge regression nor the lasso will universally dominate the other.
- Lasso will generally perform better when a relatively small number of predictors have substantial coefficients.
- Ridge regression will generally perform better when the response is a function of many predictors.
- The number of predictors that is related to the response is almost never known beforehand for real data sets.
- Cross-validation can help us determine which approach is better on a particular data set.

See R script: $shrinkage_method.R$

Predictive modeling tools at your disposal

- (1) Least squares linear regression $lm(\cdot)$
 - Analytical solution, simple to implement.
 - Model non-linear relationships (polynomial regression, regression splines, natural splines)
 - Incorporate higher order terms (interactions).
 - Model selection (subset selection, forward, backward, stepwise, cross-validation)
 regsubsus (·)
 - Inference is straightforward to carry out. > muth collinearity

However, unbiased estimates of B: ECB). B.

La potentially high variance

 \Longrightarrow we don't get best prediction error \Leftrightarrow \lor best HSE.

Predictive modeling tools at your disposal

(2) Ridge Regression

- Useful in improving prediction accuracy.
- Will always result in a full model with all p predictors. Ridge regression is the obvious choice if you believe all predictors are somewhat important.
- Can handle multicollinearity.
- Inference can also be done (relatively straightforwardly).

Predictive modeling tools at your disposal

(3) The Lasso

- Regularizes and performs model selection.
- Generally works well when only a subset of predictors are actually important.
- Inference not as straightforward to carry out.

No one approach will universally dominate the other.

Extensions of Lasso

- · elastic net
 - addresses some of shorteomings of lasso
 laces not do well in
 presence of multicollineanity)
 - · does not work well when p>n.
 (high dimensional)

Is takes best of both worlds:

min
$$\left(\begin{array}{c} \frac{n}{2} (y_i - (Bo + B_i X_i + \cdots B_p K_p))^2 \\ + \lambda_i \stackrel{p}{\underset{i=1}{\sum}} |B_i| + \lambda_2 \stackrel{p}{\underset{j=1}{\sum}} |B_j|^2 \right)$$

charapenalty riolge penalty.

(lt)

Extensions of Lasso

- group lasso

 5 categorical predictors → K-1

 (K7 dommy vaniables.
- -> allows groups of predictors to be selected in low of model together.
 - => keep collection of dommy variables together.

categorical predictors /
biological studies /