Projeto de Circuitos Fotônicos Integrados

Circuitos fotônicos básicos

Atividade – Design de um acoplador direcional utilizando a ferramenta *CML compiler*

Lucivaldo Barbosa de Aguiar Junior

WIRTUSCC

Centro de Competência Embrapii em Hardware Inteligente para a Indústria

CURSOS, CAPACITAÇÃO E TREINAMENTOS

Sumário

- Introdução;
- Geometria;
- Solver;
- Criação do dispositivo parametrizado;
- Transmissão da cross port variando o comprimento de acoplamento;
- Teste com MZI;
- Teste com Lattice filter;
- Referências.

Introdução

O CML compiler é utilizado para construção, manutenção e QA de bibliotecas de modelos de dispositivos fotônicos compactos.

- Modelos matemáticos;
- Modelos estatísticos;
- Modelos fixos.

Geometria

Informações	
Área da seção transversal	500x220 [nm]
gap	200 nm
Material	Si
Banda de operação	1500~1600 [nm]
Variação dos braços¹	0~45 [um]

¹ A variação do comprimento dos braços foi realizada com um espaçamento de 3 um, ou seja: 0, 3, 6... 45um

Solver - FDTD

Informações		
Dimensão	3D	
Precisão do mesh	3	
frequency points	21	
Fronteiras	PML	
Background material	SiO2 (glass) - Palik	

Criação do dispositivo parametrizado

Resultado:

Transmissão da *cross port* variando o comprimento de acoplamento

Conforme o esperado, quanto maior for Lc, maior será a potência transmitida na porta cruzada.

Testando o dispositivo com um MZI

Properties: length = 0.0002 (m)

Testando o dispositivo com um Lattice filter (circuito)

Testando o dispositivo com um Lattice filter (transmissão)

Referências

- 1. ANSYS. *Creating a custom CML (tutorial)*. Disponível em: https://optics.ansys.com/hc/en-us/articles/360037141714-Creating-a-Custom-CML-tutorial. Acesso em: 7 jun. 2025.
- 2. SVGCONVERTER. Free SVG converter. Disponível em: https://svgconverter.app/free. Acesso em: 7 jun. 2025.
- 3. Notas de aula do orientador.

Projeto de Circuitos Fotônicos Integrados

Centro de Competência Embrapii em Hardware Inteligente para a Indústria

virtus.ufcg.edu.br/cc

Circuitos fotônicos básicos

Atividade 2 – filtros passa-banda MZI SOI aplicados a WDM e (de-)multiplexadores

Lucivaldo Barbosa de Aguiar Junior