Prática de Eletrônica Digital 1 - $\left(119466\right)$

Turma E (Unb - Gama)

Relatório Experimento 4 Circuitos Codificadores

Setembro 23, 2016

Nome	Matrícula	Assinatura
Arthur Temporim	14/0016759	
Eduardo Nunes	14/0056189	

1 Sumário

- Introdução
- Experimentos
- $\bullet~$ Discussão
- Conclusões
- Referências Bibliograficas

2 Introdução

Neste relatorio e apresentado o resultado do experimento realizado na aula da prática da eletrônica digital 1. São apresentados os mapas de Karnaugh, o código vhdl e a saída em forma de onda. Para este experimento foi utilizado a ferramenta *Ise design suite*.

3 Experimentos

3.1 Experimento 01

O primeiro experimento tratou-se da implementação de um circuito a partir da tabela verdade. A dupla teve de identificar os mintermos e elaborar mapas de Karnaugh para alcançar as funções lógicas simplificadas.

Para a realização do experimento em sala de aula, foi despresado os valores hexadecimais referenstes ao display de 7 segmentos, ou seja, que utilizassemos apenas os dez primeiros valores da tabela que representam os algarismos de 0 à q

Segue abaixo, respectivamente: Mapas de Karnaugh, Código vhdl, diagrama esquemático e saída obtida em forma de onda.

3.2 Mapas de Karnaugh

AB/CD	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	X	X	X	X
10	1	1	X	X

Table 1: Mapa de Karnaugh da saida A. Equação: A = C + A + !B!D + BD

AB/CD	00	01	11	10
00	1	1	1	1
01	1	0	1	0
11	X	X	X	X
10	1	1	X	X

Table 2: Mapa de Karnaugh da saida B. Equação: B = !B + !C!D + CD

AB/CD	00	01	11	10
00	1	1	1	0
01	1	1	1	1
11	X	X	X	X
10	1	1	X	X

Table 3: Mapa de Karnaugh da saida C. Equação: C = !C + B + D

AB/CD	00	01	11	10
00	1	0	1	1
01	0	1	0	1
11	X	X	X	X
10	1	1	X	X

Table 4: Mapa de Karnaugh da saida D. Equação: D = A +B!CD + C!A!B + !B + !D

AB/CD	00	01	11	10
00	1	0	0	1
01	0	0	0	1
11	X	X	X	X
10	1	0	X	X

Table 5: Mapa de Karnaugh da saida E. Equação: E = !D!B + C!D

AB/CD	00	01	11	10
00	1	0	0	0
01	1	1	0	1
11	X	X	X	X
10	1	1	X	X

Table 6: Mapa de Karnaugh da saida F. Equação: F = A + B!C + !C!D + B!D

AB/CD	00	01	11	10
00	0	0	1	1
01	0	0	0	1
11	X	X	X	X
10	1	1	X	X

Table 7: Mapa de Karnaugh da saida G. Equação: G = A + C(B + !D)

3.3 Código VHDL

```
1 library IEEE;
   use IEEE.STD_LOGIC_1164.ALL;
3
4 entity projeto1 is
5
     port (
       e: in std_logic_vector (3 downto 0):= "0001";
6
7
       s: out std_logic_vector (6 downto 0)
9
   end projeto1;
10
   architecture Behavioral of projeto1 is
11
12
13 begin
   s <= "0110000" when e = "0001" else
14
       "1101101" when e = "0010" else
15
16
       "1111001" when e = "0011" else
       "0110010" when e = "0100" else
17
       "1011010" when e = "0101" else
18
       "10111111" when e = "0110" else
19
       "1110000" when e = "0111" else
20
       21
22
23 end Behavioral;
```

3.4 Diagrama Esquemático

Figure 1: Diagrama do circuito codificador - Ise Design Suite 14.7

3.5 Diagrama de Onda

Figure 2: Diagrama de ondas do circuito codificador - Ise Design Suite 14.7

4 Discussão

Com a realização deste experimento foi possível adquirir conhecimento a respeito do mapa de Karnaugh. Também foi possível entender que a concepção de um circuito de forma manual e implementação em código VHDL pode ser bem distinta, porém o objetivo alcançado é o mesmo. Na realização do experimento foram simplificadas todas as funções lógicas, porém a implementação no vhdl foi feita com estruturas condicionais.

Todas os resultados apresentados nas saídas do experimento foram de acordo com o esperado.

5 Conclusões

Neste quarto relatório foi possível realizar o experimento com êxito. A compreensão da necessidade de simplificação de funções lógicas pode ser alcançada juntamente com o aprendizado de novas formas de implementação de circuitos em VHDL.

6 Referências Bibliográficas

Prática de Eletrônica Digital I 2016.2 professores Henrique Marra Taira Menegaz, Leonardo Aguayo, Lourdes Mattos Brasil, Marcus Vinícius Chaffim Costa, Mariana Costa Bernardes Matias. UnB - FGA Agosto de 2015.