Multiple_Regression_Kennzahlen_berechnen

April 14, 2023

[]:

1 Beispiel: Berchnung der wichtigsten Kennzahlen eines Multiplen Linearen Regressionsmodells

```
[1]:
       x1
           x2
                 у
        1
            3 113
        2
    1
            5 117
    2
        3
            9 117
    3
            9 123
        4
    4
        5 11 135
    5
        6
           12 125
    6
        7
           15 141
    7
        8
           17 143
           19
               155
       10
           21
               160
```

```
[2]: # Modell erstellen und Kennzahlen ausgeben
from statsmodels.formula.api import ols

model = ols("y~x1+x2", data=df).fit()
model.summary()
```

/opt/conda/envs/anaconda-2022.05-py39/lib/python3.9/site-packages/scipy/stats/stats.py:1541: UserWarning: kurtosistest only valid for n>=20 ... continuing anyway, n=10

warnings.warn("kurtosistest only valid for n>=20 ... continuing "

[2]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================			
Dep. Variable:	у	R-squared:	0.921
Model:	OLS	Adj. R-squared:	0.898
Method:	Least Squares	F-statistic:	40.64
Date:	Fri, 14 Apr 2023	Prob (F-statistic):	0.000140
Time:	11:10:36	Log-Likelihood:	-29.036
No. Observations:	10	AIC:	64.07
Df Residuals:	7	BIC:	64.98
Df Model:	2		
Covariance Type:	nonrobust		
=======================================			
coe	f std err	t P> t	[0.025 0.975]
Intercept 102.5588	3 5.118 :	20.040 0.000	90.457 114.660
x1 3.1548	3 4.825	0.654 0.534	-8.255 14.565
x2 1.073	5 2.478	0.433 0.678	-4.785 6.932
Omnibus:	1.933	 Durbin-Watson:	2.367
Prob(Omnibus):	0.380	Jarque-Bera (JB):	1.119
Skew:	-0.780	-	0.571
Kurtosis:	2.498	Cond. No.	59.7

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\footnote{``}$

1.1 Berechne Bestimmtheitsmaß (Determinationskoeffizient) \mathbb{R}^2

```
[3]: y_mean = df.y.mean()

r2 = 1 - (model.resid**2).sum() / ((df.y-y_mean)**2).sum()
print(f"R-squared: {r2}")
```

R-squared: 0.9207132025640763

1.2 Berechne Adjustiertes Bestimmtheitsmaß R_{adj}^2

```
[4]: n = df.shape[0]
k = df.shape[1]-1
ddof = n - k - 1 # Freiheitsgrade

r2_adj = 1 - ((1-r2) * (n-1)) / ddof
print(f"Adj. R-squared: {r2_adj}")
```

Adj. R-squared: 0.8980598318680981

1.3 F-Statistik

```
[5]: from scipy.stats import f
F = ddof / k * r2/(1-r2)
print(f"F-statistic: {F}")

p = 1-f.cdf(F, k, ddof)
print(f"Prob (F-statistic): {p}")
```

F-statistic: 40.643541083602905 Prob (F-statistic): 0.0001403469782339517

1.4 Koeffizienten des Modells mit Moore-Penrose

```
[6]: import numpy as np

y = np.array(df.y)
X = np.array(df[["x1", "x2"]])
np.ones(10).reshape(10,1)
X = np.hstack((np.ones(10).reshape(10,1), X))

coef = np.linalg.inv(X.T @ X) @ X.T @ y

print(f"Intercept: {coef[0]}")
print(f"x1: {coef[1]}")
print(f"x2: {coef[2]}")
```

Intercept: 102.55882352941501

x1: 3.154812834224032 x2: 1.073529411764909

1.5 Standardfehler der Koeffizienten

```
[7]: # Varianz der Residuen
var = np.var(model.resid, ddof=3)

# Varianz-Kovarianz-Matrix
```

```
vcov = var * np.linalg.inv(X.T@X)

# Wurzel aus den Beträgen - In der Diagonalen stehen die Standardfehler
stderr = np.diag(np.sqrt(np.abs(vcov)))
print(stderr)
```

[5.11776911 4.82516466 2.47762932]

1.6 t-Werte

```
[8]: ## t-Werte
t_val = coef / stderr
t_val
```

[8]: array([20.03975195, 0.65382491, 0.43328895])

1.7 p - Werte

```
[9]: from scipy.stats import t

p = t.sf(t_val, df=ddof)*2
print(p)
```

[1.92830809e-07 5.34105953e-01 6.77843088e-01]

1.8 Konfidenzintervalle ($\alpha = 0.05$)

```
[10]: t_krit = t.ppf(.975, df=ddof)

ug = coef - t_krit * stderr

og = coef + t_krit * stderr

np.concatenate([ug.reshape(-1,1),og.reshape(-1,1)], axis=1)
```

1.9 Schiefe (Skew) der Residuen

```
[11]: resid_mean = model.resid.mean()
    resid_std = np.std(model.resid)

skew = ((model.resid_resid_mean)**3).sum() / ( (n) * resid_std**3)
    print(f"Skew: {skew}")
```

Skew: -0.7802110350062288

1.10 Kurtosis

```
[12]: kurtosis = ((model.resid-resid_mean)**4).sum() / ( (n) * resid_std**4)
print(f"Kurtosis: {kurtosis}")
```

Kurtosis: 2.498249483711278