绪论

渐近复杂度:指数

慌得那拿盘的小怪,战兢兢跑去报道:"难,难,难,难,难,难!"

老妖道: "怎么有许多难?"

"你是什么东西?"太太说。四虎子也楞住了,他自己不知道他是什么东西——这本是世上最难答的一个问题。

邓俊辉 deng@tsinghua.edu.cn

$\mathcal{O}(2^n)$: exponential

*指数:
$$T(n) = \mathcal{O}(a^n), \quad a > 1$$

$$:: e^n = 1 + n + n^2/2! + n^3/3! + n^4/4! + \dots$$

$$:: \forall c > 1, \quad n^c = \mathcal{O}(2^n)$$

$$n^{1000...01} = \mathcal{O}(1.000...01^n) = \mathcal{O}(2^n)$$

$$1.000...01^n = \Omega(n^{1000...01})$$

- ❖ 这类算法的计算成本增长极快,通常被认为不可忍受
- ❖从Ø(nc)到Ø(2n),是从有效算法到无效算法的分水岭
- ❖ Ø(2ⁿ)算法往往显而易见,然而设计出Ø(n^c)算法却极其不易,有时甚至注定是徒劳无功
- ❖ 更糟糕的是,这类问题要远比我们想象的多得多...

2-Subset:问题

$$\forall S = \{a_1, a_2, \dots, a_n\} \subset \mathbb{Z} \text{ and } \sum_{k=1}^n a_k = 2m$$

$$\exists T \subset S \text{ s.t. } \sum_{a \in T} a = m = \sum_{a \notin T} a ?$$

❖ 选举人团投票制:

50个州加1个特区,共538票 //n, 2m

获270张选举人票,即可当选 //m+1

- ❖ 若仅两位候选人,会否恰好各得269票? //m
- ❖ 直觉上,并不难:

逐一枚举5的每一子集,统计总和并核对

55	California	11	Indiana	7	Connecticut	4	Idaho
34	Texas	11	Missouri	7	Iowa	4	Maine
31	New York	11	Tennessee	7	Oklahoma	4	New Hampshire
27	Florida	11	Washington	7	Oregon	4	Rhode Island
21	Illinois	10	Arizona	6	Arkansas	3	Alaska
21	Pennsylvania	10	Maryland	6	Kansas	3	Delaware
20	Ohio	10	Minnesota	6	Mississippi	3	D. C.
17	Michigan	10	Wisconsin	5	Nebraska	3	Montana
15	Georgia	9	Alabama	5	Nevada	3	North Dakota
15	New Jersey	9	Colorado	5	New Mexico		South Dakota
15	North Carolina	9	Louisiana	5	Utah	3	Vermont
13	Virginia	8	Kentucky	5	West Virginia	3	Wyoming
12	Massachusetts	8	South Carolina	4	Hawaii		538 = ∑

2-Subset: NPC

- *定理: $|2^S| = 2^{|S|} = 2^n$
- ❖ 亦即:直觉算法需要迭代2ⁿ轮,并(在最坏情况下)至少需要花费这么多的时间 故严格地讲,这仍只是程序,而不是算法
- ❖ 还是直觉:应该有更好的办法吧?
- ❖定理: 2-Subset is NP-complete
 - 一 什么意思?
- ❖ 意即:就目前的计算模型而言,不存在可在多项式时间内回答此问题的算法
 - 就此意义而言,上述的直觉算法已属最优