❖ Возьмите простейший отсекатель — треугольник. Расположите невидимые отрезки, невидимость которых определяется всеми возможными способами и объясните определение невидимости.

для определения невидимость отрезка мы смотрим 4 случая:

1. $D_{cкi} = 0$ и $W_{cki} < 0$: параллельность отрезка стороне отсекателя $(D_{cki} = 0)$, P1 не находится на подплоскости, содержащей многоугольники,

2. $D_{\text{скi}} > 0$ и t > 1: $D_{\text{скi}} > 0$ следует, что вектор P1P2 направлен внутрь области C, нижний предел параметра t превышает единицу и пересечение c отсекателем имеет место не для самого отрезка, а для его продолжения за вершину P2

3. $D_{cki} < 0$ и t < 0: $D_{cki} < 0$, следует, что вектор P1P2 направлен из области C, найденное значение t < 0, верхний предел параметра t отрицателен и пересечение t отсекателем имеет место не для самого отрезка, а для его продолжения за вершину P1

4. th > tв: видимост отсеченного отрезка не фактическая

tB= 1

th = 0

AB: $D_{cкi} > 0$ (т.к. вектор P1P2 направлен внутрь области, сторона AB), найденное значение t = t1, Продолжаем сравнить t1 c th: th = max(t1, th) = t1

BC: $D_{c \kappa i} > 0$,(т.к. вектор P1P2 направлен внутрь области, сторона BC) найденное значение t < 0, пропустим

CA: $D_{cki} < 0$ (т.к. вектор P1P2 направлен из области, сторона CA), найденное значение t = t2 (рис. t2 < t1), tB = min(tB, t2) = t2

tв < th : видимост отсеченного отрезка не фактическая

- ❖ Объясните, как распознаются полностью видимые отрезки:
 - Чтобы отрезок был видимым относительно всего отсекателя, он должен быть видим относительно всех ребер отсекателя одновременно
 - о пределить значения параметра t, при которых происходят пересечения исследуемого отрезка с ребрами окна отсечения
 - \circ Найденное значение параметра t, t \in [0;1], для очередной точки пересечения рассматривают в качестве
 - D n_{ві} < 0, возможного верхнего предела tв,
 - D n_{ві >} 0, относят к нижней границе видимости th
 - Полученные решения следует разбить на две группы: верхнюю и нижнюю, в зависимости от близости найденной точки пересечения к началу или концу отрезка.
 - Концам видимой части отрезка будут соответствовать два значения параметра t, максимальное значение из нижней группы и минимально из верхней группы.
 (Проверка фактической видимости отсеченного отрезка)

если исходный отрезок полность видимый то после этого, th = 0, tв = 1