Theorem. Suppose $s_1 = \sqrt{2}$ and $s_{n+1} = \sqrt{2 + \sqrt{s_n}}$ for $n = 1, 2, 3 \dots$, then $\{s_n\}$ converges

Lemma. For all natural n, $1 < s_n < 2$

Proof. the base case $1 < s_1 < 2$ is clearly true. Suppose $1 < s_n < 2$, then

$$1 < \sqrt{2 + \sqrt{1}} < s_{n+1} < \sqrt{2 + \sqrt{2}} < 2.$$

Then by principle of induction, $1 < s_n < 2$ is true for all naturals.

Now for the proof of the main theorem:

Theorem. Take $\epsilon > 0$, and then $4^N > \frac{1}{\epsilon}$, then $|s_n - s_m| < \epsilon$ whenever n, m > N.

Proof. WLOG $n \ge m > N$. Now we have

$$|s_n - s_m| = \frac{|s_n^2 - s_m^2|}{s_n + s_m} = \frac{|s_{n-1} - s_{m-1}|}{(s_n + s_m)(\sqrt{s_{n-1}} + \sqrt{s_{m-1}})} < \frac{|s_{n-1} - s_{m-1}|}{4}$$

Now doing this m-1 times we have

$$|s_n - s_{m-1}| < \frac{|s_{n-m+1} - s_1|}{4^{m-1}} < \frac{2 - \sqrt{2}}{4^{m-1}} < \frac{1}{4^N} < \epsilon$$

Hence $\{s_n\}$ is cauchy, meaning it converges in \mathbb{R}

problem 5

Theorem. Given the upper limits are all finite,

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} (a_n) + \limsup_{n \to \infty} (b_n)$$

Proof. Let $x^* = \limsup_{n \to \infty} x_n$. Now by defination

$$x_1 > a^* \implies \exists N_1 \forall n > N_1 : a_n < x_1$$

$$x_2 > b^* \implies \exists N_2 \forall n > N_2 : b_n < x_2$$

now let $N = \max(N_1, N_2)$, and $x = x_1 + x_2$, then

$$x > a^* + b^* \implies \forall n \ge N : a_n + b_n < x$$

Suppose $(a+b)^* > a^* + b^*$. Now all neighborhoods of $(a+b)^*$ contains arbitarily large members of some subsequence. Take one that does not contain $a^* + b^*$, then there are arbitarily large member of the sequence in this ball that are bigger than $a^* + b^*$, which contradicts the inequality. Hence the theorem is true.

problem 7

I am a loser and could not solve this, and looked up the sol.

Theorem. Suppose the coefficient of the power series $\sum a_n z^n$ are integers, infinitely many distinct from zero. Prove the radius of convergence is at most 1.

Proof. We know by the root test that $|z| \leq \frac{1}{\alpha}$, where $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Now pick a subsequence $\{a'_n\}$, which removes all the zeroes. notice $|a'_n| \geq 1$. this means

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} \ge \limsup_{n \to \infty} \sqrt[n]{|a'_n|} \ge \limsup_{n \to \infty} \sqrt[n]{1} = 1$$

hence the radius of convergence is at most 1.

problem 11

Problem. Suppose $a_n > 0$, and $s_n = a_1 + \cdots + a_n$, and that $\sum a_n$ diverges

Theorem. (a) $\sum \frac{a_n}{1+a_n}$ diverges.

Proof. Suppose $a_n \to \infty$, then clearly $\frac{a_n}{1+a_n} \not\to 0$, and the sum diverges.

Suppose $a_n \not\to \infty$, then a_n is bounded. let this bound be $a_n \le a$, then $\frac{a_n}{1+a_n} \ge \frac{a_n}{1+a}$, and since $\sum \frac{a_n}{1+a}$ diverges, so does the given sum.

Theorem. (b) $\sum_{n=p+1}^{q} \frac{a_n}{s_n} \ge 1 - \frac{s_p}{s_q}$

Proof. Since a_n is positive, s_n is increasing, hence

$$\sum_{n=p+1}^{q} \frac{a_n}{s_n} \ge \sum_{n=p+1}^{q} \frac{a_n}{s_q} = \frac{s_q - s_p}{s_q} = 1 - \frac{s_p}{s_q}$$

since $\frac{1}{s_q}$ tends to 0, This sequence is not cauchy, making it divergent.

Theorem. (c)

$$\frac{a_n}{s_n^2} \le \frac{1}{s_{n-1}} - \frac{1}{s_n}$$

and hence $\sum \frac{a_n}{s_-^2}$ converges.

Proof.

$$\frac{a_n}{s_n^2} = \frac{s_n - s_{n-1}}{s_n^2} = \frac{1}{s_n} - \frac{s_{n-1}}{s_n^2} \le \frac{1}{s_n} - \frac{1}{s_{n-1}}$$

The RHS converges as $\frac{1}{s_n}$ converges and the series telescopes.

Theorem. $\sum \frac{a_n}{1+a_nn^2}$ converges

Proof.
$$\frac{a_n}{1+a_nn^2} \le \frac{1}{n^2}$$

Problem. Suppose $a_n > 0$ and $\sum a_n$ converges. let $r_n = \sum_{m \geq n} a_m$.

Theorem. (a) $\sum_{k=m}^{n} \frac{a_k}{r_k} > 1 - \frac{r_n}{r_m}$ and hence $\sum \frac{a_k}{r_k}$ diverges

Proof. We have $r_m > r_n$ for m < n, hence

$$\sum_{k=m}^{n} \frac{a_k}{r_k} > \sum_{k=m}^{n} \frac{a_k}{r_m} = \frac{r_m - r_{n+1}}{r_m} > 1 - \frac{r_n}{r_m}$$

we have $r_n \to 0$, hence this sequence isnt cauchy.

Theorem.

$$\frac{a_n}{\sqrt{r_n}} < 2(\sqrt{r_n} - \sqrt{r_{n+1}})$$

and hence $\sum \frac{a_n}{\sqrt{r_n}}$ converges

Proof. since $r_n > r_{n+1}$,

$$\frac{a_n}{\sqrt{r_n}} < \frac{2a_n}{\sqrt{r_n} + \sqrt{r_{n+1}}} = \frac{2a_n}{r_n - r_{n+1}} (\sqrt{r_n} - \sqrt{r_{n+1}}) = 2(\sqrt{r_n} - \sqrt{r_{n+1}})$$

convergence follows trivially as $r_n \to 0$

Problem 14

Problem. Let $\{s_n\}$ be a complex sequence, and define its arithmetic mean

$$\sigma_n = \frac{s_0 + s_1 + \dots + s_n}{n+1}$$

Theorem. Suppose $s_n \to s$, then $\sigma_n \to s$.

Proof. Since s_n is convergent, it is bounded. let $b = \sup |s_n - s|$. Now fix $\epsilon > 0$, since $s_n \to s$, there exists N such that for all n > N: $|s_n - s| < \frac{\epsilon}{2}$. Now take $k > N + 2b\frac{N+1}{\epsilon}$, then

$$\left| s - \sum_{n \le k} \frac{s_n}{k+1} \right| < \sum_{n \le k} \frac{|s_n - s|}{k+1} = \frac{1}{k+1} \left(\sum_{n \le N} |s_n - s| + \sum_{N < n \le k} |s_n - s| \right) < \frac{(N+1)b + (N-n)\frac{\epsilon}{2}}{k+1} < \epsilon$$

Theorem. $\sigma_n \to \sigma$ does not imply $s_n \to \sigma$

Proof. Take $\{s_n\} = 1, -1, 1, -1, \dots$, then $\sigma_n \to 0$ but s_n diverges.

Theorem. There exists a positive sequence $\{s_n\}$ with $\limsup_{n\to\infty} s_n = \infty$ but $\sigma_n \to 0$

Proof. consider the sequence $:s_{2n}=-s_{2n+1}=\sqrt{2n+1}$, then the upper limit of s_n is clearly ∞ while $\sigma \to 0$

Theorem. Let $a_n = s_n - s_{n-1}$, then

$$s_n - \sigma_n = \frac{1}{n+1} \sum_{k=1}^n k a_k$$

and then the condition of $na_n \to 0$ in addition to convergence of σ_n implies convergence of s_n

Proof.

$$\frac{1}{n+1} \sum_{k \le n} k(s_k - s_{k-1}) = \frac{1}{n+1} \left(\sum_{k \le n} (ks_k - (k-1)s_{k-1}) - \sum_{k \le n} s_{k-1} \right) = s_n - \sigma_n$$

Now fix $\epsilon > 0$, and let $b = \sup na_n$ which exists since na_n is bounded. Then there is a N such that for all n > N: $|na_n| < \frac{\epsilon}{2}$. Take $k > N + 2b\frac{N+1}{\epsilon}$, then

$$\left| \sum_{n \le k} \frac{na_n}{k+1} \right| \le \sum_{n \le k} \frac{|na_n|}{k+1} = \frac{1}{k+1} \left(\sum_{n \le N} |na_n| + \sum_{N < n \le k} |na_n| \right) < \frac{(N+1)b + (N-n)\frac{\epsilon}{2}}{k+1} < \epsilon.$$

Hence $s_n - \sigma_n \to 0 \implies s_n \to \sigma$, where σ is the limit of σ_n .

problem 16(a)

Theorem. With $x_1 > \sqrt{\alpha}$, the sequence $2x_{n+1} = x_n + \alpha x_n^{-1}$ converges to $\sqrt{\alpha}$

Proof. First by AM-GM, $x_n \geq \sqrt{\alpha} \to x_n \geq \frac{\alpha}{x_n}$. Hence $x_{n+1} \geq x_n$, hence it suffices to find the infinum of this sequence for the limit. As already noted, $\sqrt{\alpha}$ is a lower bound. Suppose some $x > \sqrt{\alpha}$ is the least upperbound, then there are x_n arbitarily close to x, but then $x_{n+1} = \frac{1}{2} \left(x_n + \alpha x_n^{-1} \right) \leq \frac{1}{2} (x_n + \sqrt{\alpha})$ and this would be greater than x, forming a contradiction. Hence $x_n \to \sqrt{\alpha}$.

problem 17

Problem. Fix $\alpha > 1$ and $x_1 > \sqrt{\alpha}$, and define

$$x_{n+1} = \frac{\alpha + x_n}{1 + x_n} = x_n + \frac{\alpha - x_n^2}{1 + x_n}$$

Theorem. (a) and (b): $x_1 > x_3 > x_5 > \dots$ and $x_2 < x_4 < x_6 < \dots$

Proof. First $x_{n+1} = x_n + \frac{\alpha - x_n^2}{1 + x_n}$, hence clearly $x_{2n+1} > \sqrt{\alpha}$ and $x_{2n} < \sqrt{\alpha}$ by induction. Next

$$x_{n+2} = \frac{\alpha+1}{2} - \frac{1}{2} \frac{(\alpha-1)^2}{2x_n + \alpha + 1} \implies y_{n+2} = \frac{(\sqrt{\alpha}-1)^2}{2} - \frac{(\alpha-1)^2}{2(2y_n + (\sqrt{\alpha}+1)^2)} \implies \frac{y_{n+2}}{y_n} = \frac{(\sqrt{\alpha}-1)^2}{2y_n + (\sqrt{\alpha}+1)^2}$$

Where $y_n = x_n - \sqrt{\alpha}$, clearly $x_n > 1$, and hence $y_n > 1 - \sqrt{\alpha} > -4\sqrt{\alpha}$ meaning

$$\frac{y_{n+2}}{y_n} < \frac{(\sqrt{\alpha} - 1)^2}{-4\sqrt{\alpha} + (\sqrt{\alpha} + 1)^2} = 1$$

Hence $x_1 > x_3 > x_5 \dots$ and $x_2 < x_4 < x_6 \dots$

Theorem. (c) $x_n \to \sqrt{\alpha}$

Proof. Duh

problem 20

Theorem. Suppose $\{p_n\}$ is a Cauchy sequence in some metric space X, and some subsequence $\{p_{n_k}\}$ converges to $p \in X$, then $p_n \to p$.

Proof. Fix $\epsilon > 0$, now there is some N such that for all n, m > N, $d(p_n, p_m) < \frac{\epsilon}{2}$. There is also some K such that k > K means $d(p_{n_k}, p) < \frac{\epsilon}{2}$. Now take $M = \max(N, K)$, and then $d(p_m, p) \le d(p_m, p_{n_k}) + d(p_{n_k}, p) < \epsilon$ for all m > M, notice the fact that $n_k \ge k$ was used. Hence p_m converges to p.

Theorem. Suppose $\{E_n\}$ is a sequence of non-empty, closed and bounded subsets of complete metric space X with $E_n \supset E_{n+1}$, and with $\lim_{n\to\infty} diam(E_n) = 0$, then there is one and only one element x in each of the E_n .

Proof. Choose $x_n \in E_n$, this is possible since each E_n is non empty. Now $\{x_n\}$ as a cauchy sequence, as if not, then there is some ϵ such that $d(x_n, x_m) > \epsilon$ for arbitrarily large n, m but then this is less than the diameter of E_k for arbitrarily large k, contradicting the diameter converging to 0. Since X is complete, $x_n \to x$ for some x.

Now all neighborhoods of x contain infinitely many x_n , i.e points of E_n , meaning x is either limit point of E_n or in E_n for each E_n . Since E_n is closed, x is in each E_n , meaning the intersection contains x.

If the intersection had more than one point, the diameter would be more than 0, forming a contradiction.

problem 24

Theorem (a). Call cauchy sequences $\{p_n\} \sim \{q_n\}$ if $\lim_{n\to\infty} d(p_n,q_n) = 0$. This is an equivalence relationship.

Proof. This is clearly reflexive, as $d(p_n, p_n) = 0$. This is clearly symmetric as d is symmetric.

Suppose $\{p_n\} \sim \{q_n\}$ and $\{q_n\} \sim \{r_n\}$, then $d(p_n, r_n) \leq d(p_n, q_n) + d(q_n, r_n) \implies \lim d(p_n, r_n) \leq 0$ and since d is non-negative, the limit is 0, meaning $\{p_n\} \sim \{r_n\}$

Theorem (b). Let X^* be the set of equivalence relations. Define

$$\Delta(P,Q) = \lim_{n \to \infty} d(p_n, q_n)$$

with $\{p_n\} \in P, \{q_n\} \in Q$. Then this is a well defined distance function in X^*

Proof. Suppose $\{p'_n\} \sim \{p_n\}$, then

$$d(p_n, q_n) - d(p_n, p'_n) \le d(p'_n, q_n) \le d(p_n, q_n) + d(p_n, p'_n)$$

Since $d(p, p'_n)$ goes to 0,

$$\lim_{n\to\infty} d(p_n, q_n) = \lim_{n\to\infty} d(p'_n, q_n)$$

Clearly Δ satisfies the triangle inequality, is symmetric, and by defination is 0 iff P=Q. Hence this is a distance function.

Theorem (c). X^* is complete.

Proof. Take a cauchy sequence $\{P_n\}$, Call $A_{m,n}=\Delta(P_m,P_n)$. Fix $\epsilon>0$. We know there is some N such that m,n>N implies $A_{m,n}<\frac{\epsilon}{2}$. We know that there is some K such that k>K means,

$$|d(p_k^m, p_k^n) - A_{m,n}| < \frac{\epsilon}{2} \implies d(p_k^m, p_k^n) < \frac{\epsilon}{2} + A_{m,n} < \epsilon$$

with $\{p_k^m\} \in P_m$ and same for n.Since \mathbb{R} is complete, this means $\{p_k^m\}_m$ converges for arbitrarily large k, which means the whole sequence convergences, as for Δ only arbitrarily large terms matter.

Theorem (d). Let $\psi: X \hookrightarrow X^*$ be the canonical map that sends $\{p\}$ with $p \in X$ to its equivalence class, p''. This map is isometric.

Proof.

$$\Delta(p'', q'') = \lim_{n \to \infty} d(p, q) = d(p, q)$$

Theorem (e). $\psi(X)$ is dense in X^* , and $\psi(X) = X^*$ if X is complete.

Proof. take a $P \in X^*$, then take a cauchy sequence in it, $\{p_n\}$. Now consider the cauchy sequence $\{P_n''\}$, this converges to P, as $\Delta(P, P_m'') = \lim_{n \to \infty} d(p_n, p_m)$ and this gets arbitarily close to zero for large m, n as p is cauchy. This means every neighborhood of P contains a $P_n'' \in \psi(X)$, or that $\psi(X)$ is dense in X.

Trivially if X is complete, then all equivalence class has all sequences converge. This means X^* is bijective to the set of all possible convergences of sequences in X, which is just X. Result follows.