Из рассмотрения графика функции $q(\tau)$ видно, что точка минимума определяется условием

$$|1-\tau M_1| = |1-\tau m_1|$$

и равна

$$\tau = \tau_0 = 2/(M_i + m_i)$$
.

При этом значении т имеем

$$q(\tau_0) = \rho_0 = \frac{1-\xi}{1+\xi}, \ \xi = \frac{m_1}{M_1},$$

так что для погрешности справедлива оценка

$$|z_n| \leq \rho_0^n |z_0|, \quad n = 0, 1, \ldots$$

3. Метод Ньютона. Пусть начальное приближение x_0 известно. Заменим f(x) отрезком ряда Тейлора

$$f(x) \approx H_1(x) = f(x_0) + (x-x_0)f'(x_0)$$

и за следующее приближение x_1 возьмем корень уравнения $H_1(x) = 0$, т. е.

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
.

Вообще, если итерация x_k известна, то следующее приближение x_{k+1} в методе Ньютона определяется по правилу

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$$
 (9)

Метод Ньютона называют также методом касательных, так как новое приближение x_{k+1} является абсциссой точки пересечения касательной, проведенной в точке $(x_k, f(x_k))$ к графику функции f(x), с осью Ox.

И, во-вторых, такая быстрая сходимость метода Ньютона гарантируется лишь при очень хороших, т. е. близких к точному решению, начальных приближениях. Если начальное приближение выбрано неудачно, то метод может сходиться медленно, либо не сойдется вообще.

Модифицированный метод Ньютона

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_0)}, \quad k = 0, 1, \dots$$
 (10)

применяют в том случае, когда хотят избежать многократного вычисления производной f'(x). Метод (10) предъявляет меньше тре-

бований к выбору начального приближения x_0 , однако обладает лишь линейной сходимостью, т. е. $x_{k+1} - x_* = O(x_k - x_*)$.

Метод (10) гарантирует отсутствие деления на нуль, если

 $f'(x_0)\neq 0.$

4. Метод секущих. Этот метод получается из метода Ньютона (9) заменой $f'(x_k)$ разделенной разностью $\frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}}$, вычис-

ленной по известным значениям x_k и x_{k-1} . В результате получаем итерационный метод

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k), \quad k = 1, 2, \dots,$$
 (11)

который в отличие от ранее рассмотренных методов является $\partial syx-$ *шаговым*, т. е. новое приближение x_{k+1} определяется двумя предыдущими итерациями x_k и x_{k-1} . В методе (11) необходимо задавать два начальных приближения x_0 и x_1 .

Геометрическая интерпретация метода секущих состоит в следующем. Через точки $(x_{k-1}, f(x_{k-1}))$, $(x_k, f(x_k))$ проводится прямая, абсцисса точки пересечения этой прямой с осью Ox и является новым приближением x_{k+1} . Иначе говоря, на отрезке $[x_{k-1}, x_k]$ функция f(x) интерполируется многочленом первой степени и за очередное приближение x_{k+1} принимается корень этого многочлена.

5. Интерполяционные методы. Идея интерполяционных методов состоит в том, что нахождение корней уравнения (1) заменяется нахождением корней интерполяционного многочлена, построенного для f(x). Интерполяционный метод первого порядка приводит к методу секущих. Интерполяционный метод второго порядка называется методом парабол. Метод Ньютона (9) можно получить, заменяя f(x) интерполяционным многочленом Эрмита первой степени.

Получим формулы метода парабол. Пусть приближения x_{k-2} , x_{k-1} , x_k известны. Построим интерполяционный многочлен Ньютона (см. (11) из § 1 гл. 3)

$$P_2(x) = f(x_k) + (x - x_k) f(x_k, x_{k-1}) + (x - x_k) (x - x_{k-1}) f(x_k, x_{k-1}, x_{k-2})$$

и обозначим $z=x-x_{k}$. Тогда уравнение $P_{2}(x)=0$ примет вид

$$az^2 + bz + c = 0, (12)$$

где $a=f(x_k, x_{k-1}, x_{k-2}), b=f(x_k, x_{k-1})+(x_k-x_{k-1})f(x_k, x_{k-1}, x_{k-2}), c=f(x_k).$

Решая уравнение (12), получим два, может быть комплексных, корня, $z^{(1)}$ и $z^{(2)}$, по которым вычислим $x^{(1)} = x_k + z^{(1)}$, $x^{(2)} = x_k + z^{(2)}$. В качестве следующего приближения в методе парабол выбирается то из значений $x^{(1)}$, $x^{(2)}$, которое ближе к x_k , т. е. отвечающее минимальному по модулю корню уравнения (12). Метод парабол удобен тем, что позволяет получить комплексные корни уравнения (7), пользуясь вещественными начальными приближениями x_0 , x_1 , x_2 .