TRENDS IN MACHINE LEARNING

- Ensemble Learning: Combining Multiple Models,
 Bagging, Randomization, Boosting, Stacking
- Reinforcement Learning: Exploration, Exploitation, Rewards, Penalties
- Deep Learning: The Neuron, Expressing Linear Perceptron as Neurons, Feed Forward Neural Networks, Linear Neurons and their Limitations, Sigmoid, Tanh and ReLU Neurons

Ensemble

- Powerful way to improve the performance of the model by combining output of multiple classifier
- Combinations of models are known as Model Ensembles
- Increases algorithmic and model complexity

- Lower error
- Less overfitting

Ensemble Methods

- Bagging
 - Decrease variance
- Boosting
 - Decrease bias
- Stacking
 - Improve projections

Bagging

- Bootstrap aggregating
- Creates diverse models of different random samples of the original data set.
- The samples are taken uniformly with replacement .These samples are know as bootstrap samples.

Bagging

- Combining the various outputs into single prediction (Weak learners)
 - Take a weighted Vote
 - Average /aggregate
- Increases stability and accuracy of the model by reducing the variance

Algorithm 11.1: Bagging(D, T, \mathcal{A}) – train an ensemble of models from bootstrap samples.

```
Input : data set D; ensemble size T; learning algorithm \mathcal{A}.
```

Output : ensemble of models whose predictions are to be combined by voting or averaging.

```
1 for t = 1 to T do
```

- build a bootstrap sample D_t from D by sampling |D| data points with replacement;
- run \mathcal{A} on D_t to produce a model M_t ;
- 4 end
- 5 return $\{M_t | 1 \le t \le T\}$

Combining the result

- Voting
 - Majority of the class wins
- Averaging
 - Mean of all predictions

Boosting

- Iterative technique
- Adjust the weights based on last classification.
- Reduces bias
- Convert weak learners to strong one

Boosting

Algorithm AdaBoost

Given: $(x_1,y_1),\ldots,(x_m,y_m)$ where $x_i\in X,y_i\in Y=\{-1,+1\}$ Initialize $D_1(i)=1/m$.

For t = 1, ..., T:

- Train weak learner using distribution D_t .
- Get weak classifier h_t: X → ℝ.
- Choose $α_t ∈ ℝ$.
- Update:

$$D_t + 1(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^{m} D_t(i) exp \left(-\alpha_t y_i h_t(x_i)\right)$$

Output the final classifier:

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Boosting

Choose α_t to minimize training error

$$\alpha_t = \frac{1}{2} In \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

where

$$\in_t = \sum_{i=1}^m D_t(i) \delta(h_t(x_i) \neq y_i)$$

Algorithm 11.3: Boosting(D, T, \mathcal{A}) – train an ensemble of binary classifiers from reweighted training sets.

```
: data set D; ensemble size T; learning algorithm \mathcal{A}.
    Output: weighted ensemble of models.

    w<sub>1i</sub> ←1/|D| for all x<sub>i</sub> ∈ D;

                                                                            // start with uniform weights
2 for t = 1 to T do
         run \mathcal{A} on D with weights w_{tt} to produce a model M_t;
        calculate weighted error \epsilon_t;
 4
        if \epsilon_t \ge 1/2 then
            set T \leftarrow t - 1 and break
        end
        \alpha_t \leftarrow \frac{1}{2} \ln \frac{1-\epsilon_t}{\epsilon_t};
                                                                             // confidence for this model
        w_{(t+1)l} \leftarrow \frac{w_{tl}}{2\varepsilon_r} for misclassified instances x_l \in D; // increase weight
        w_{(t+1)f} \leftarrow \frac{w_{tf}}{2(1-\varepsilon_t)} for correctly classified instances x_f \in D; // decrease weight
10
11 end
12 return M(x) = \sum_{t=1}^{T} \alpha_t M_t(x)
```

Stacking

- Stacked generalization
- less widely used than bagging and boosting
- applied to models built by different learning algorithms
- Uses the concept of a meta-learner, which replaces the voting procedure

Reinforcement Learning

- In this approach learners or software agents learn from direct interaction with the environment.
- Agent gets a feedback about the actions as reward or punishment.
- Combines the field of dynamic programming and supervised learning

Reinforcement Learning

- Exploitation
 - Making the best use of knowledge acquired so far
- Exploration
 - Exploring new action
- Each action leads to learning through rewards or penalties

Reinforcement Learning

 what to do and how to map situations to actions to maximize the numerical reward signal.

$$V^{\pi}(s) = E_{\pi} \{ r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots / s_t = s \}$$

Deep Learning

- Subfield of Machine Learning
- Deep learning is a machine learning technique that teaches computers to learn by example.
- Examples
 - Automated Driving
 - Industry Automation
 - Medical Research
 - Object recognition

- requires large amounts of labeled data
- requires substantial computing power
- Most deep learning methods use neural network architectures, which is why deep learning models are often referred to as deep neural networks.

Neural Network

Difference Between Machine Learning and Deep Learning

MACHINE LEARNING

DEEP LEARNING

Neuron's functional Structure

Neuron in ANN

Types of Neurons

- Sigmoid $f(z) = \frac{1}{1+e^{-z}}$
- The out put is between 0 to 1
- Predict the probability

Types of Neurons

- Sigmoid $f(z) = \tanh(z)$
- output of tanh neurons range from −1 to 1

Types of Neurons

- ReLU:Restricted Linear Unit
- F(z) = max(0,z)

Feed forward Neural Netwoks

- Also known multilayer perceptrons
- The foundation of most deep learning models.
- CNNs and RNNs are some special cases of Feedforward networks.
- These networks are called feedforward is that the flow of information takes place in the forward direction

