Homework 06 Joseph Blubaugh jblubau1@tamu.edu STAT 642-720 1.

a)

$$Y_{ijkl} = \tau_i + \gamma_j + (\tau \gamma)_{ij} + \lambda_l + (\tau \lambda)_{ik} + (\gamma \lambda)_{jk} + (\tau \gamma \lambda)_{ijk} + a_{l(i)} + (\gamma a)_{j,l(i)} + (\lambda a)_{k,l(i)}$$

 $\tau_i = Signal$

 $\gamma_j = Traffic$

 $\lambda_k = MeasuredDevice$

 $a_l = Intersection$

b) Model AOV

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	20	6092.253	304.612	73.08	0.0023
Error	3	12.505	4.168		
Corrected Total	23	6104.758			

Source	DF	Type I SS	Mean Square	F Value	Pr > F
S	2	3143.023	1571.511	377.01	0.0002
T	1	236.881	236.881	56.83	0.0048
I(S)	3	2053.050	684.350	164.18	0.0008
ST	2	275.773	137.886	33.08	0.0090
T I(S)	3	96.370	32.123	7.71	0.0638
М	1	96.000	96.000	23.03	0.0172
SM	2	51.430	25.715	6.17	0.0865
МТ	1	31.740	31.740	7.61	0.0702
M I(S)	3	96.015	32.005	7.68	0.0641
SMT	2	11.970	5.985	1.44	0.3652

Source	DF	Sum of Squares	Mean Square	Expected Mean Square
S	2	3143.023	1571.511	(2053.05 + 3143.0233) / 5 = 1039.215
Т	1	236.881	236.881	(236.88 + (32.12 * 0.46)) / 4 = 62.913
ST	2	275.773	137.886	(137.88 + (32.12 * 0.54)) / 5 = 31.04
M	1	96.000	96.000	(96 + (96.015 * .65)) / 4 = 39.60
SM	2	51.430	25.715	(51.43 + (96.015 * .35)) / 5 = 17.00
ΜT	1	31.740	31.740	(31.74 + (12.505 * .134)) / 4 = 8.35
SMT	2	11.970	5.985	(11.97 + (12.505 * .05)) / 5 = 2.51
I(S)	3	2053.050	684.350	(2053.05 + 311.87) / 8.2014 = 288.35

Source	DF	Sum of Squares	Mean Square	Expected Mean Square
T I(S)	3	96.370	32.123	(96.37 + (12.505 * .408)) / 6 = 16.91
M I(S)	3	96.015	32.005	(96.015 + (12.505 * .406)) / 6 = 16.84
Residual	3	12.505	4.168	

c)

d) With an $\alpha=.05$ the only significant interaction is between the type of signal and the type of traffic. The main effects of Method, Type of Signal, and Type of traffic are all individually significant, as is the specific intersection. Increasing α slightly would make several of the interactions significant.

e)

	Source	SS	Var.Prop
1	S	3143.023	51.6%
2	T	236.881	3.9%
3	I(S)	2053.050	33.7%
4	ST	275.773	4.5%
5	TI(S)	96.370	1.6%
6	M	96.000	1.6%
7	SM	51.430	0.8%
8	MT	31.740	0.5%
9	MI(S)	96.015	1.6%
10	SMT	11.970	0.2%

2.

Source	DF	MS	Expected Mean Squares
A	3	24.5	$90\sigma_A^2 + 18\sigma_{A*B}^2 + 6\sigma_{A*C(B)}^2 + \sigma_e^2$
В	4	19.7	$72Q_B + 18\sigma_{A*B}^2 + 24\sigma_{C(B)}^2 + 6\sigma_{A*C(B)}^2 + \sigma_e^2$
АВ			$18\sigma_{A*B}^2 + 6\sigma_{A*C(B)}^2 + \sigma_e^2$
C(B)	12	7.5	$24\sigma_{C(B)}^2 + 6\sigma_{A*C(B)}^2 + \sigma_e^2$
A C(B)			$6\sigma_{A*C(B)}^2 + \sigma_e^2$
Error	300	5.8	σ_e^2

a)

Source	DF	MS	F	P-value
АВ	12	8.9	8.9 / 6.8 = 1.308	1 - pf(q = 1.308, df1 = 12, df2 = 36) = .256

b)

c) Using the Satterthwaite approximation

Source	DF	MS	F	P-value
В	4	19.7	19.7 / (8.9 + 7.5 - 6.8) = 2.052	1 - pf(q = 2.052, df1 = 4, df2 = 11.45332) = .153

d)

$$\begin{split} y_{.1..} &= \mu + a_{.} + \beta_{1} + c_{.(1)} + (a\beta)_{.1} + (ac)_{..(1)} + e_{.1..} \\ y_{.2..} &= \mu + a_{.} + \beta_{2} + c_{.(2)} + (a\beta)_{.2} + (ac)_{..(2)} + e_{.2..} \\ Var[\bar{y}_{.1..} - \bar{y}_{.2..}] &= Var[\bar{c}_{.(1)} - \bar{c}_{.(2)}] + Var[\bar{a}\beta_{.1} - \bar{a}\beta_{.2}] + Var[\bar{a}c_{..(1)} - \bar{a}c_{..(2)}] + Var[\bar{e}_{.1..} - \bar{e}_{.2..}] \\ &= \frac{2\sigma_{a}^{2}}{4} + \frac{2\sigma_{a\beta}^{2}}{4} + \frac{2\sigma_{ac(\beta)}^{2}}{12} + \frac{2\sigma_{e}^{2}}{72} \\ &= \frac{36\sigma_{a}^{2}}{72} + \frac{36\sigma_{a\beta}^{2}}{72} + \frac{12\sigma_{ac(\beta)}^{2}}{72} + \frac{2\sigma_{e}^{2}}{72} \\ &= \frac{1}{18}[18\sigma_{a}^{2} + 18\sigma_{a\beta}^{2} + 6\sigma_{ac(\beta)}^{2} + \sigma_{e}^{2}] \\ &= \frac{1}{18}19.7 \\ Var &= 1.094 \\ DF &= 4 \end{split}$$

e)

$$TukeyHSD = \frac{qtukey(p = .95, nmeans = 6, df = 4)(\sqrt{1.094})}{\sqrt{2}}$$
$$= \frac{(6.7064)(1.0459)}{\sqrt{2}}$$
$$= 4.959$$

3.

- a) i. Interaction F1*F2
 - ii. Yes
- b) i. Main Effect F2
 - ii. No missing values
- c) i. Main Effect F2
 - ii. No missing values