Skript

Inhalt

- Ziele und Anforderungen
- Aussage von EKG und warum Herzschlag an Haut messbar
- Umsetzung in elektrischer Schaltung
- Analyse eines EKG-Verlaufs, Bewertung der Schaltung

Ziele & Anforderungen

- EKG-Verlauf von Elektroden auf Oszilloskop als Spannungskurve darstellen
- Analoge Schaltung auf Steckbrett, dann auf Leiterplatte
- Medizinisch verwertbar → Ende: Analyse

Theorie

- Warum schlägt Herz? Wie verbreitet sich Herzschlag im Herz und Körper?
- Wie kann man das mit EKG messen?

Herzschlag

- Herzschlag wird von Sinusknoten angeregt
- Kleine elektrische Impulse → Aktionspotenziale
- Verbreiten sich über Reizleitungssystem → Herzmuskelzellen als Leiterbahnen
- Herzmuskelzellen ziehen sich zusammen zuerst Vorhöfe, dann Leiterbahnen
- Gap Junctions übertragen Ionenfluss zwischen Hautzellen

EKG-Arten

- Klassisch aus 12 Kanälen
- Brustwand-Ableitungen: 6 Elektroden direkt auf Brust
- Extremitäten-Ableitungen: Einthoven-Ableitungen
- Information: Verbreitung des Aktionspotenzials im Herz
- Potenzialdifferenzen zwischen 2 Elektroden wird aufgetragen

Umsetzung in analoger Schaltung

Aufgaben

- Sehr schwaches und verrauschtes Signal → filtern, verstärken
- Potenzialdifferenz von 2 Elektroden
- System, um zwischen Einthoven-Ableitungen hin- und her zu schalten

Instrumentationsverstärker

- Symmetrische Eingänge mit gekoppelten nicht invertierenden Verstärkern
- Differenzverstärker
- Potenzialtrennung → kein Strom auf Elektroden

Vorverstärker

- Nicht invertierender Operationsverstärker
- Durch Rückkopplung wird Signalanteil wieder auf Eingang geleitet
- Verstärkung durch Widerstandsverhältnis

Tiefpass-Filter

- Hochfrequentes Rauschen und Rauschen mit Netzfrequenz
- Butterworth-Filter 3. Ordnung \rightarrow flacher Durchlassbereich
- Absinken von -40 dB pro Dekade → -44 dB bei 50 Hz
- Leichte Dämpfung im Durchlassbereich

Nachverstärker

- Nicht invertierender Operationsverstärker
- Verstärkung durch Widerstandsverhältnis
- Vorwiderstand gegen Masse für Eingangsruhestrom → OP floatet sonst

Switch

- Ziel: alle Einthoven-Ableitungen darstellen
- Elektroden in verschiedenen Konfigurationen auf Eingänge schalten
- DPDT-Switch (double pole double throw): 4 Eingänge auf 2 Ausgänge, 3 Schalterstellungen

Layout

- Mit Eagle entwickelt
- Vor allem SMD-Bauteile
- Breite und Entfernung der Leitungen → Störungen
- Signal konsistenter als auf Steckbrett

Ergebnisse

- Was hab ich erreicht mit dem Projekt?

Analyse

- EKG-Kurve, leicht von 50 Hz-Störungen überlagert, aber gut erkennbar
- P-Welle: Aktivierung der Vorhöfe
- QRS-Komplex: Aktivierung der Herzkammern

- RR-Intervall: Herzfrequenz
- Sehr viele Erkenntnisse mit zeitlichen Abständen und Amplituden der verschiedenen Zacken

Optimierungen

- Steileres Filter oder Bandsperre für 50 Hz
- Digitale Signalverarbeitung mit Filterung
- Goldberger-Ableitungen durch Addierer mit Operationsverstärkern
- Noch bessere vektorielle Deutung möglich

Erkenntnisse

- Schaltungskonzept aus Dezember ziemlich gut umsetzbar
- Einfache Umsetzung für medizinisch verwendbares Gerät → einfache Schaltungsblöcke
- Menschlicher K\u00f6rper funktioniert mit Strom, nie so richtig bewusst → viele Schnittstellen zur Elektrotechnik

Fragen Abschlusspräsentation

- Wie genau leitet Haut elektrische Impulse weiter?
 - o Reizleitungssystem im Herz
 - Zellmembranen enthalten Ionen, die durch Potenzial bewegt werden →
 Ionenfluss überträgt sich über Ionenkanäle auch auf Hautzellen →
 Hautzellen sind durch Gap Junctions miteinander verbunden
 - Potenzial führt zur Ladungsverschiebung in Zelle und Ladungsfluss durch Gap Junctions
- Warum Instrumentationsverstärker > Differenzverstärker?
 - o Hochohmigere, symmetrischere Eingänge
- Genaue Formel für Ausgangsspannung
- Warum Verstärkung nicht schon im Instr.verst.?
 - o einfacher einzustellen beim Testen
- Warum analog?
 - Weil ich Lust drauf hatte
 - o Hab noch nie mit SMD-Bauteilen gearbeitet
 - o Digital auch möglich, aber analog relativ überschaubar
- Warum 2 Verstärkerstufen?
 - Ausgleichen von Dämpfung des Filters
 - o Hat sich in Entwicklung so ergeben
 - Ausgangsamplitude besser einstellbar, weil man Base-Wert hat, von dem man hochgehen kann?
- Warum ist Netzfrequenz so stark messbar?
 - Netzbrummen von elektrischen Geräten wird über Körper/Leitungen in Schaltung übertragen
 - o Induktivität von Leitungen erzeugt B-Feld, was Wechselspg. induziert
- Warum nicht geerdet?
 - o Vergessen? ldk:`(
 - o Deshalb 50 Hz Störungen?