

And Self-Sovereign Identity: A Healthcare Use Case

Matheus Lázaro Honório da Silva¹ Gislainy Velasco¹, Noeli Antônia Pimentel Vaz¹², Matheus Brito Martins¹, Pedro Moraes Ribeiro Gonçalves Silva¹, Sergio T. Carvalho¹

l'Instituto de Informática - Universidade Federal de Goiás (UFG)

l'Instituto Acadêmico de Ciências Exatas e Tecnológicas - Universidade Estadual de Goiás (UEG)

{matheus.lazaro, gislainycrisostomo, noelivaz}@discente.ufg.br

{matheus.b.m, pedro.ribeiro}@discente.ufg.br

sergiocarvalho@ufg.br

Motivação

- A transformação digital tem provocado mudanças significativas em diversos setores, sendo a saúde um dos mais impactados.
 - a. Tem impulsionado a criação de sistemas clínicos distribuídos e interoperáveis.
- Relaciona-se ao avanço da digitalização na saúde, que amplia o compartilhamento de dados, mas também os riscos de vazamentos, fraudes e falta de controle pelo paciente.
- 3. Demandas por **privacidade**, **rastreabilidade e interoperabilidade** crescem, impulsionadas por normas como a **LGPD/GDPR**.

Problema

 Sistemas centralizados dificultam a governança descentralizada e tornam pacientes dependentes de intermediários para acessar ou compartilhar seus dados clínicos. Falta autonomia, privacidade seletiva e auditabilidade confiável.

Objetivo

 Elaborar uma arquitetura híbrida on-chain/off-chain que integra blockchain permissionada e identidade autossoberana (SSI) e, então, permitir que pacientes controlem, compartilhem e verifiquem credenciais e dados clínicos com consentimento explícito.

Blockchain em Saúde

Redes permissionadas

- <u>Participação controlada</u> (leitura, escrita e validação).
- Assegura-se <u>confiança</u> mesmo entre entidades com interesses distintos. Ex.: hospitais, clínicas e laboratórios.
- <u>Hyperledger Fabric</u> é modularizável para diferentes circunstâncias de <u>descentralização de dados e de governança</u>.

Casos de uso já validados

- Prontuários eletrônicos.
- Rastreamento de fármacos.
- Gestão de consentimentos.
- Demonstra-se a viabilidade em auditabilidade e interoperabilidade.

Benefícios

- Transparência e integridade dos registros médicos (funções hash).
- Rastreabilidade.
- Dificulta fraudes ou manipulações.

Desafios

- Escalabilidade técnica e regulatória.
- Interoperabilidade entre redes distintas.
- Busca por um padrão único global para saúde.

Identidade Digital e SSI

Identidade digital

- Base para **autenticação** e **autorização** segura.
- Representação de uma pessoa ou dispositivo por meio de atributos verificáveis.

ZKP (Prova de Conhecimento Zero)

- Permite **provar atributos** (ex: maioridade) sem expor dados sensíveis (ex: data de nascimento).
- Reforça a privacidade dos usuários em sistemas descentralizados.

SSI (Identidade Autossoberana) •

Usuários controlam suas próprias credenciais (DIDs e VCs), dispensando autoridades centrais.

Carteira digital:

consentimento granular e revogação independente de terceiros.

AnonCreds

- Modelo com três níveis de atributos: visíveis, comprometidos e predicados com ZKP.
- Adotado por Hyperledger Indy para garantir verificações criptográficas e privacidade seletiva.

Trabalhos Relacionados

1. Nascimento-Silva-Jr et al.	Propõem blockchain para proteger dados de saúde, destacando riscos de vazamento e fraude. Não abordam SSI, DIDs ou carteiras digitais.
2. Robichez et al	Discutem uso de blockchain na identificação cidadã em governos, com foco em transparência. Não tratam de SSI nem de aplicações clínicas.
3. Leite & Henriques	Analisam a transição de modelos federados para descentralizados, priorizando privacidade. Não apresentam solução prática aplicada à saúde.
4. Wolff & Henriques	Aplicam SSI em contexto acadêmico via RNP (Rede Nacional de Ensino e Pesquisa), com foco técnico e em governança. Não envolvem saúde nem credenciais clínicas.
5. Vora et al. 6. Xu et al	Propõem arquiteturas para consentimento e prontuários com blockchain, mas sem adoção de princípios de SSI como DIDs, VCs ou controle pelo paciente.

Modelo de dados do Chaincode

Hyperledger Indy, Aries, Ursa, e integração SSISH

ACA-Py multitenant:

• cada tenant = clínica, médico ou paciente.

Fluxos DIDComm:

 Conexão --> Emissão de credencial --> Solicitação de comprovante/Verificação.

Caso de Uso: Stakeholders

Dr. Carlos: médico, emissor e verificador de credenciais.

Ana: paciente, quer privacidade e posse do histórico médico.

Laboratórios/Clínicas: emitir laudos;

Seguradoras: verificar carteira digital para receber, armazenar, compartilhar VCs.

Cenário de Login e Registro

Dashboard, DID e Conexão

Configuração e Emissão de Credenciais Verificáveis

Prova de Credencial - Prova de Conhecimento Zero

Exames, Diagnósticos e Tratamentos

Benefícios e Limitações

Benefícios observados:

- +Soberania do paciente (gestão própria de dados clínicos e credenciais).
- +Auditoria e rastreabilidade de eventos de saúde (exames, diagnósticos, tratamentos).
- +Confidencialidade com abordagem híbrida e ZKP (verificação sem revelação total).

Limitações identificadas:

- Validação limitada ao ambiente de testes controlado.
- Desafios em orquestração de rede e múltiplas instituições.
- Integração com sistemas legados (como prontuários eletrônicos) demanda padronização.

Próximos passos e Conclusão

Próximos passos:

- Testes de carga para avaliar escalabilidade.
- Suporte a interoperabilidade via FHIR (Recursos rápidos de interoperabilidade em saúde) para integração com sistemas de saúde existentes.
- Exploração de ZKPs avançadas para anonimato verificável em auditorias públicas em saúde.

Conclusão:

- A arquitetura SSISH demonstra que é possível registrar eventos imutáveis e emitir/verificar VCs com privacidade seletiva.
- A integração com agentes ACA-Py simplifica credenciamento e provas criptográficas.

Dashboard, DID e Conexão

Dashboard, DID e Conexão

Notificações

Prova de Credencial - Prova de Conhecimento Zero

Scanear

Credenciais

Exames, Diagnósticos e Tratamentos

Exames, Diagnósticos e Tratamentos

Blockchain Hyperledger Fabric - SSISH

 $\underline{\text{https://github.com/SelfSovereignIdentity-SystemHealthc}} \\ \underline{\text{are/blockchainFabric-SSISH}}$

SSISH - Self Sovereign Identity System for Healthcare

 $\frac{https://github.com/SelfSovereignIdentity-SystemHealthc}{are/SSISystem}$

Perguntas?

Obrigado!