U.S.S.N.: 10/626,800 Filed: July 24, 2003

CLAIMS:

1. (currently amended) A method of acquiring interferogram data in a Fourier transform spectrometer, the spectrometer including a detector that provides an output signal that exhibits non-linear distortion in a measured interferogram represented by a power series $I_m = a_1 I + a_2 I^2 + a_3 I^3 + ...$, comprising:

representing a measured spectrum $S_m = a_1S + a_2(S*S) + a_3(S*S*S) + b_3$ (S*S*S) +... wherein S is the spectrum of the linear interferogram and * indicates convolution;

expressing a linear interferogram I as a power series of a measured interferogram I_m as in $I = b_1 I_m + b_2 I_m^2 + b_3 I_m^3 + ...$;

expressing the linear spectrum as a power series of the spectra of the interferogram powers $S = b_1S_1 + b_2S_2 + b_3S_3 + ...$;

measuring the non-linear effects of the detector from one or more resolution elements in spectral regions known to have no energy; and

obtaining the coefficients b_i where S=0 by applying the measured non-linear effects to $S=b_1S^1+b_2S^2+b_3S^3+\dots$

2. (original) The method of claim 1 wherein:

a set of m measurements from 1 to n + 1 is selected from the spectra of the powers of the measured interferogram where S = 0; and

making
$$b_1 = 1$$
 and $m = n$.

3. (original) The method of claim 1 wherein:

a set of m measurements from 1 to n + 1 is selected from the spectra of the powers of the measured interferogram where S = 0;

$$m > n$$
;

and the least square approximation is used to find b_i.

U.S.S.N.: 10/626,800 Filed: July 24, 2003

4. (original) The method of claim 1 wherein:

for each measurement of the measured spectra the average of 2 or more resolution elements in the spectra of the powers of the measured interferogram is used to compute b_i.

5. (original) The method of claim 1 wherein:

the measured interferogram is collected by an AC signal channel and a DC offset is taken from the measured interferogram collected by a DC coupled signal channel.

- 6. (original) The method of claim 1 wherein:
 the detector is a single point detector.
- 7. (original) The method of claim 1 wherein:
 the detector is a one dimensional detector.
- 8. (original) The method of claim 1 wherein:
 the detector is a two dimensional detector.
- 9. (original) The method of claim 1 wherein:
 the detector is a photovoltaic detector.
- 10. (original) The method of claim 1 wherein:
 the detector is a photoconducting detector.
- 11. (original) The method as in claim 1 wherein:
 the detector is a bolometric detector.
- 12. (original) A Fourier transform spectrometer comprising:

 an interferometer;

 a reference electromagnetic radiation source;

 an infrared radiation source;

U.S.S.N.: 10/626,800 Filed: July 24, 2003

a detector that provides an output signal from the reference and infrared sources that exhibits a non-linear variation;

a preamplifier circuit, responsive to the output signal, producing an output signal;

an amplifier circuit, responsive to the preamplified signal, producing an output signal;

means for digitizing the amplified output signal to provide a measured interferogram;

signal processing means for acquiring interferogram data wherein the measured interferogram is represented as a measured spectrum $S_m = a_1S + a_2(S*S) + a_3(S*S*S) + b_3(S*S*S) + \dots$ wherein S is the spectrum of the linear interferogram and * indicates convolution, a linear interferogram I is expressed as a power series of a measured interferogram I_m as in $I = b_1I_m + b_2I_m^2 + b_3I_m^3 + \dots$, the linear spectrum is expressed as a power series of the spectra of the interferogram powers $S = b_1S_1 + b_2S_2 + b_3S_3 + \dots$, and the coefficients b_i are computed where S = 0.

- 13. (currently amended) A Fourier transform spectrometer as in claim 12 wherein:
 the signal processing means selects a set of m measurements from 1 to n +
 1 from the spectra of the powers of the measured interferogram where S = 0; and makes b₁ = 1 and m = n.
- 14. (original) A Fourier transform spectrometer as in claim 12 wherein:
 the signal processing means selects a set of m measurements from the spectra of the powers of the measured interferogram from 1 to n + 1 where S = 0; and makes m > n; and
 uses the least square approximation to find b_i.
- 15. (original) A Fourier transform spectrometer as in claim 12 wherein:

the signal processing means uses for each measurement of the measured spectra the average of 2 or more resolution elements in the spectra of the powers of the measured interferogram to compute b_i .

U.S.S.N.: 10/626,800 Filed: July 24, 2003

- 16. (original) A Fourier transform spectrometer as in claim 12 wherein: the amplifier uses an AC signal channel.
- 17. (original) A Fourier transform spectrometer as in claim 16 wherein:

 a DC offset is taken from the measured interferogram collected by a DC coupled amplifier.
- 18. (currently amended) A Fourier transform spectrometer as in claim 12 wherein: the detector is a single point detector.
- 19. (original) A Fourier transform spectrometer as in claim 12 wherein: the detector is a one dimensional detector.
- 20. (original) A Fourier transform spectrometer as in claim 12 wherein: the detector is a two dimensional detector.
- 21. (original) A Fourier transform spectrometer as in claim 12 wherein: the detector is a photovoltaic detector.
- 22. (original) A Fourier transform spectrometer as in claim 12 wherein: the detector is a photoconducting detector.
- 23. (original) A Fourier transform spectrometer as in claim 12 wherein: the detector is a bolometric detector.