Analízis III

Vizsga jegyzet

Szabó Krisztián

A jegyzet egy az egyben Dr. Simon Péter analízis 3 segédanyagából lett összegyűjtve. Elsősorban magamnak írtam, hogy elősegítse a felkészültést a vizsgára.

Tartalom

	Metrikus-, normált-, euklideszi-terek		
	1.1	Metrikus terek	2
		1.1.1 Példák	3
	1.2	Normált terek	Ę
	1.3	Euklideszi terek	6
2	Kor	nvergencia metrikus terekben	E
	2.1	Nyílt halmazok uniója és metszete	11
	2.2	Zárt halmazok uniója, metszete	14

1 Metrikus-, normált-, euklideszi-terek

Teljes vizsgacím: Metrikus-, normált-, euklideszi-terek. Környezet, belső pont, nyílt halmaz. Torlódási pont, zárt halmaz. Nyílt (zárt) halmazok uniója, metszete. A $(\mathbb{K}^n, \varrho_p)$, $(\mathbb{K}^n, ||.||_p)$, $(\mathbb{K}^n, \langle . \rangle)$, $(C[a, b], \varrho_p)$, $(C[a, b], ||.||_p)$, $(0 < n \in \mathbb{N}, 1 \le p \le +\infty)$ terek.

1.1 Metrikus terek

Konkrét példák sokasága vezet el a távolság-fogalom absztakciójához: legyen az $X \neq \emptyset$ egy nem üres halmaz, és tegyük fel, hogy a

$$\varrho: X^2 \to [0, +\infty)$$

függvény a következő tulajdonságokkal rendelkezik:

- 1. minden $x \in X$ esetén $\varrho(x, x) = 0$;
- 2. ha $x, y \in X$ és $\varrho(x, y) = 0$, akkor x = y;
- 3. bármely $x, y \in X$ választással $\varrho(x, y) = \varrho(y, x)$;
- 4. tetszőleges $x, y, z \in X$ elemekkel $\varrho(x, y) \leq \varrho(x, z) + \varrho(y, z)$.

Azt mondjuk, hogy ekkor a ϱ egy $t\'{a}vols\'{a}gf\ddot{u}ggv\'{e}ny$ (vagy idegen szóval metrika). Ha $x, y \in X$, akkor $\varrho(x, y)$ az x, y elemek $t\'{a}vols\'{a}ga$. Az (X, ϱ) rendezett párt metrikus $t\'{e}rnek$ nevezzük.

Az X-beli elemek távolsága tehát nemnegatív szám. Bármely elem önmagától vett távolsága nulla (ld. 1.), továbbá két kölönböző elem távolsága mindig pozitív (ld. 2.). A távolság szimmetrikus, azaz két elem távolsága független az illető elemek sorrendjétől (ld. 3.). A 4. tulajdonságot háromszöq-egyenlőtlenségként fogjuk idézni.

Mutassuk meg, hogy a háromszög-egyenlőtlenségből annak az alábbi változata is következik:

$$|\varrho(x,\,z)-\varrho(y,\,z)|\leq \varrho(x,\,z)\quad (x,\,y,\,z\in X).$$

Ugyanis a 4. axióma miatt

$$\varrho(x, z) \le \varrho(x, y) + \varrho(y, z),$$

tehát

$$\varrho(x, z) - \varrho(y, z) \le \varrho(x, y).$$

Ha itt x-et és az y-t felcseréljük, akkor a

$$-(\varrho(x, z) - \varrho(y, z)) = \varrho(y, z) - \varrho(x, z) \le \varrho(y, x) = \varrho(x, y)$$

egyenlőtlenséghez jutunk. Az utóbbi két becslés egybevetésével kapjuk a jelzett egyenlőtlenséget.

Bármely $X \neq \emptyset$ halmaz esetén megadható

$$\varrho: X^2 \to [0, +\infty)$$

távolságfüggvény, ui., pl. a

$$\varrho(x, y) := \begin{cases} 0 & (x = y) \\ 1 & (x \neq y) \end{cases} \quad \left((x, y) \in X^2 \right)$$

leképezés nyilván eleget tesz a fenti, a metrikát meghatározó 1.-4. axiómáknak. Az így definiált (X, ϱ) teret $diszkr\acute{e}t$ jelzővel illetjük.

Megmutatható, hogy az 1.-3. axiómák nem függetlenek egymástól, nevezetesen: ha egy

$$\rho: X^2 \to \mathbb{R}$$

függvény rendelkezik az 1., 2., 4., tulajdonságokkal, akkor a ϱ metrika.

1.1.1 Példák

Soroljunk fel néhány példát amelyek nem csupán az analízisben játszanak fontos szerepet.

1. Legyen $1 \le n \in \mathbb{N}$, 0 , és

$$x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{K}^n$$

esetén definiáljuk az (x, y)-ban a

$$\varrho_p: \mathbb{K}^n \times \mathbb{K}^n \to [0, +\infty)$$

függvény helyettesítési értékét a következőképpen:

$$\varrho_p(x, y) := \begin{cases} \sum_{i=1}^n |x_i - y_i|^p & (p \le 1) \\ \left(\sum_{i=1}^n |x_i - y_i|\right)^{1/p} & (p > 1). \end{cases}$$

Terjesszük ki a ϱ_p értelmezését $p=\infty:=+\infty$ -re is az alábbiak szerint:

$$\varrho_{\infty}(x, y) := \max\{|x_i - y_i| : i = 1, \dots, n\}.$$

Belátható, hogy (\mathbb{K}^n , ϱ_p) metrikus tér. A későbbiekben a ϱ_{∞} metrika mellett a \mathbb{K}^n -beli vektorok távolságának a mérésére többnyire a

$$\varrho_2(x, y) = \sqrt{\sum_{i=1}^n |x_i - y_i|^2} \quad (x, y \in \mathbb{K}^n),$$

$$\varrho_1(x, y) = \sum_{i=1}^n |x_i - y_i| \quad (x, y \in \mathbb{K}^n),$$

metrikákat fogjuk használni. Speciálisan az n = 1 esetben

$$\varrho_p(x, y) = |x - y| \quad (x, y \in \mathbb{K}, p \ge 1).$$

2. Tekintsük egy 0 mellett az

$$\ell_p := \left\{ (x_n) : \mathbb{N} \to \mathbb{K} : \sum_{n=0}^{+\infty} |x_n|^p < +\infty \right\}$$

halmazokat. Legyen továbbá $x=(x_n),\,y=(y_n)\in\ell_p$ esetén

$$\varrho_p(x, y) := \begin{cases} \sum_{n=0}^{+\infty} |x_n - y_n|^p & (0 1). \end{cases}$$

Bebizonyítható, hogy az így definiált ϱ_p függvény is metrika, azaz (ℓ_p, ϱ_p) metrikus tér. A $p = \infty := +\infty$ -re való "kiterjeszést" a következőképpen kapjuk:

$$\ell_{\infty} := \left\{ (x_n) : \mathbb{N} \to \mathbb{K} : \sup\{|x_n| : n \in \mathbb{N}\} < +\infty \right\}$$

(más szóval az ℓ_{∞} szimbólum a korlátos számsorozatok halmazát jelöli), valamint az ℓ_{∞} -beli $x = (x_n), y = (y_n)$ elemekre

$$\varrho_{\infty}(x, y) := \sup\{|x_n - y_n| : n \in \mathbb{N}\}.$$

A ϱ_{∞} függvény is metrika, tehát $(\ell_{\infty}, \, \varrho_{\infty})$ is metrikus tér.

3. Valamilyen [a, b] korlátos és zárt intervallum esetén $(a, b \in \mathbb{R}, a < b)$ esetén jelöljük C[a, b]-vel az [a, b]-n értelmezett, valós értékű és folytonos függvények halmazát. Ha $0 , akkor tekintsük az 1., 2. példák alábbi "folytonos" változatait: ha <math>f, g \in C[a, b]$, akkor

$$\varrho_{p}(f, g) := \begin{cases} \int_{a}^{b} |f - g|^{p} & (0$$

Az előbbi példákhoz hasonlóan látható be, hogy $(C[a, b], \varrho_p)$ is metrikus tér.

Azt mondjuk, hogy valamilyen $X \neq \emptyset$ halmaz és egy X^2 -en értelmezett

$$\varrho, \, \sigma: X^2 \to [0, +\infty)$$

metrikák esetén a ϱ és a σ ekvivalens, ha alkalmas c, C pozitív számokkal

$$c \cdot \varrho(x, y) \le \sigma(x, y) \le C \cdot \varrho(x, y) \quad (x, y \in X).$$

Könnyű belátni, hogy ha \mathcal{M} jelöli az előbb említett metrikák halmazát, és a ϱ , $\sigma \in \mathcal{M}$ elemekre $\varrho \sim \sigma$ azt jelenti, hogy a ϱ és a σ ekvivalens, akkor az így értelmezett (\mathcal{M}^2 -beli) \sim reláció ekvivalencia.

Pl. a fenti $(\mathbb{K}^n, \varrho_p)$ metrikus terekre a ϱ_p metrikák közül $p \geq 1$ esetén bármelyik kettő ekvivalens. A továbbiakban az

$$X := \mathbb{K}^n \quad (1 \le n \in \mathbb{N})$$

esetben a $\varrho_2,\,\varrho_1,\,\varrho_\infty$ metrikák bármelyikét fogjuk használni.

1.2 Normált terek

Tegyük fel, hogy a szóban forgó $X \neq \emptyset$ halmaz lineáris tér a \mathbb{K} felett. Azt mondjuk, hogy a

$$||.||X \rightarrow [0, +\infty)$$

leképezés *norma*, ha

- 1. ||0|| = 0;
- 2. ha $x \in X$ és ||x|| = 0, akkor x = 0;
- 3. bármely $\lambda \in \mathbb{K}$, $x \in X$ esetén $||\lambda x|| = |\lambda| \cdot ||x||$;
- 4. tetszőleges $x, y \in X$ elemekre $||x + y|| \le ||x|| + ||y||$.

Egy $x \in X$ elemre az ||x|| nemnegatív számot az x hosszának (vagy normájának), az (X, ||.||) rendezett párt pedig normált térnek nevezzük.

A 4. axiómát szintén háromszög-egyenlőtlenségként említjük a későbbiekben. Ha pl. X jelöli a

$$\mathbb{K}^n \left(0 < n \in \mathbb{N} \right), \quad \ell_p \left(0 < p \in \mathbb{R} \right), \quad C[a, b] \left(-\infty < a < b < +\infty \right)$$

halmazok valamelyikét, akkor a vektorok szokásos összeadására és számmal való szorzására nézve az X lineáris tér a \mathbb{K} , ill. az \mathbb{R} felett. Az említett terekben a nulla-elemet 0-val jelölve azt kapjuk továbbá, hogy $1 \le p \le +\infty$ esetén

$$||x||_p := \varrho_p(x, 0) \quad (x \in X)$$

norma, azaz ilyen p-kre

$$(\mathbb{K}^n, ||.||_p), (\ell_p, ||.||_p), (C[a, b], ||.||_p)$$

normált terek. Tehát

$$||x||_p = \begin{cases} \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} & (1 \le p < +\infty) \\ \max\{|x_i| : i = 1, \dots, n\} & (p = +\infty) \end{cases} \quad (x = (x_1, \dots, x_n) \in \mathbb{K}^n)$$

speciálisan az n=1 esetben

$$||x||_p = |x| \quad (x \in \mathbb{K}, \ 1 \le p \le +\infty)$$

valamint

$$||y||_{p} = \begin{cases} \left(\sum_{i=1}^{+\infty} |y_{i}|^{p}\right)^{1/p} & (1 \leq p < +\infty) \\ \sup\{|y_{i}| : i \in \mathbb{N}\} & (p = +\infty) \end{cases} \quad (y = (y_{n}) \in \ell_{p})$$

és

$$||f||_p = \begin{cases} \left(\int_a^b |f|^p\right)^{1/p} & (1 \le p < +\infty) \\ \max\{|f(x)| : x \in [a, b]\} & (p = +\infty) \end{cases} \quad (f \in C[a, b]).$$

Világos, hogy a most mondott példákban

$$\varrho_p(x, y) = ||x - y||_p \quad (x, y \in X).$$

Sőt, ha most (X, ||.||) egy tetszőleges normált teret jelöl, akkor a

$$\varrho(x, y) := ||x - y|| \quad \left((x, y) \in X^2 \right)$$

függvény metrika, azaz (X, ||.||) metrikus tér:

$$(X, \varrho) \equiv (X, ||.||).$$

Ekkor pl. a

$$|\varrho(x, z) - \varrho(y, z)| \le \varrho(x, y) \quad (x, y, z \in X)$$

háromszög-egyenlőtlenség az alábbi alakot ölti:

$$|||x - z|| - ||y - z||| \le ||x - y|| \quad (x, y, z \in X).$$

Ha itt z = 0, akkor

$$|||x|| - ||y||| \le ||x - y|| \quad (x, y \in X).$$

Azt mondjuk, hogy az X (K-feletti) vektortéren értelmezett

$$||.||, ||.||_* : X \to [0, +\infty)$$

normák ekvivalensek (erre is a $||.|| \sim ||.||_*$ jelölést fogjuk használni), ha alkalmas c, C pozitív konstansokkal

$$c \cdot ||x|| \le ||x||_* \le C \cdot ||x|| \quad (x \in X).$$

1.3 Euklideszi terek

A fent bevezetett $||.||_p$ norma a p=2 esetben speciális esete egy tágabb (lineáris algebrából jól ismert) normaosztálynak. Legyen ui. X újra egy lineáris tér a \mathbb{K} felett, az

$$\langle . \rangle : X^2 \to \mathbb{K}$$

függvényről pedig tegyük fel, hogy

- 1. minden $x, y \in X$ mellett $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (ahol a $\overline{\xi}$ szimbólum a $\xi \in \mathbb{K}$ szám komplex konjugáltját jelöli);
- 2. bármely $x \in X \{0\}$ esetén $\langle x, x \rangle \in \mathbb{R}$ és $\langle x, x \rangle > 0$;
- 3. ha $x, y \in X$ és $\lambda \in \mathbb{K}$, akkor $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$;
- 4. tetszőleges $x, y, z \in X$ elemekre fennáll a következő egyenlőség:

$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle.$$

Ha $x, y \in X$ akkor az $\langle x, y \rangle$ számot az x, y elemek skaláris szorzatának, az $(X, \langle . \rangle)$ rendezett párt pedig skaláris szorzat-térnek (vagy euklideszi-térnek) nevezzük.

Speciálisan itt minden $x \in X$ esetén

$$\langle 0, x \rangle = \langle x, 0 \rangle = 0,$$

ill.

$$\langle x, x \rangle = 0 \Longrightarrow x = 0.$$

Tehát

$$\langle x, x \rangle = 0 \Longleftrightarrow x = 0.$$

Ha $\mathbb{K} = \mathbb{R}$ (azaz $(X, \langle . \rangle)$ egy ún. valós euklideszi tér), akkor

$$\langle x, y \rangle = \langle y, x \rangle \quad (x, y \in X).$$

Jelentse pl. X a

$$\mathbb{K}^n (1 \le n \in \mathbb{N}), \quad \ell_2, \quad C[a, b] (-\infty < a < b < +\infty)$$

halmazok valamelyikét, és

$$\langle x, y \rangle = \begin{cases} \sum_{\substack{i=1 \\ +\infty \\ b}}^{n} x_i \overline{y_i} & (x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{K}^n) \\ \sum_{\substack{i=1 \\ b}}^{n} x_n \overline{y_n} & (x = (x_n), y = (y_n) \in \ell_2) \\ \int_{a}^{b} xy & (x, y \in C[a, b]). \end{cases}$$

Ekkor $(X, \langle . \rangle)$ euklideszi tér, továbbá

$$||x||_2 = \sqrt{\langle x, x \rangle} \quad (x \in X).$$

Ez utóbbi egyenlőségnek sokkal általánosabb háttere van, ui. tetszőleges $(X, \langle . \rangle)$ euklideszi teret véve

$$||x|| := \sqrt{\langle x, x \rangle} \quad (x \in X)$$

norma. Itt a háromszög-egyenlőtlenség igazolásában fontos szerep jut az

$$|\langle x, y \rangle| \le ||x|| \cdot ||y|| \quad (x, y \in X)$$

Cauchy-Bunyakovszkij-egyenlőtlenségnek. Ezt "lefordítva" az előbb említett euklideszi terekre az alábbi egyenlőtlenségeket kapjuk:

$$\left| \sum_{i=1}^{n} x_i \overline{y_i} \right| \le \sqrt{\sum_{i=1}^{n} |x_i|^2} \cdot \sqrt{\sum_{i=1}^{n} |y_i|^2} \quad (x, y \in \mathbb{K}^n),$$

$$\left| \sum_{i=1}^{+\infty} x_i \overline{y_i} \right| \le \sqrt{\sum_{i=1}^{+\infty} |x_i|^2} \cdot \sqrt{\sum_{i=1}^{+\infty} |y_i|^2} \quad (x, y \in \ell_2),$$

$$\left| \int_{a}^{b} fg \right| \le \sqrt{\int_{a}^{b} f^2} \cdot \sqrt{\int_{a}^{b} g^2} \quad (f, g \in C[a, b]).$$

Az n=1 esetben a $\mathbb{K}^n=\mathbb{K}$ -ban az előbb értelmezett skaláris szorzás a kötvetkező:

$$\langle x, y \rangle = x\overline{y} \quad (x, y \in \mathbb{K}),$$

ill. ekkor

$$||x|| = ||x||_2 = \sqrt{\langle x, x \rangle} = \sqrt{|x|^2} = |x| \quad (x \in \mathbb{K}).$$

Nem nehéz belátni, hogy a fenti

$$(\mathbb{K}^n, ||.||_p) \quad (1 \le n \in \mathbb{N}, \ 1 \le p \le +\infty)$$

normált terek közül (\mathbb{K}^n , $||.||_2$) az egyetlen, amelyre a $||.||_p$ normát skaláris szorzás "generálja". Másképp fogalmazva az a tény, hogy egy alkalmas $\langle . \rangle$ skaláris szorzással

$$||x||_p = \sqrt{\langle x, \rangle} \quad (x \in \mathbb{K}^n),$$

azzal ekvivalens, hogy p=2. Ha ui. p=2, akkor a fentebb láttuk, hogy a $||.||_2$ norma skaláris szorásból származik. Fordítva pedig mindez az ún. paralelogramma-szabály következménye: tetszőleges $(X, \langle . \rangle)$ tér esetén az

$$||x|| := \sqrt{\langle x, \rangle} \quad (x \in X)$$

normára

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2) \quad (x, y \in X).$$

2 Konvergencia metrikus terekben

Eredeti vizsgacím: Konvergens sorozatok metrikus terekben. Konvergencia \mathbb{K}^n -ben, a koordináta-sorozatok szerepe. Bolzano-Weierstrass-kiválasztási tétel. Konvergencia a $(C[a, b], ||.||_{\infty})$ térben (függvénysorozatok, az egyenletes, ill. a pontonkénti konvergencia fogalma). Halmazok zártságának jellemzése konvergens sorozatokkal. A teljesség fogalma, Banach-tér, Hilbert-tér. A $(C[a, b], ||.||_{\infty})$ tér teljessége.

Legyen az (X, ρ) metrikus tér esetén $b \in X$ és r > 0, ekkor a

$$K_r(b) := \{ x \in X : \varrho(x, b) < r \}$$

halmazt a b elem r-sugarú környezetének nevezzük. Használni fogjuk a K(b) jelölést is a $K_r(b)$ helyett, ha az adott szituációban a $K_r(b)$ környezet sugara (r) nem játszik szerepet.

Tekintsük a

$$(K^n, \varrho_p) \quad (1 \le n \in \mathbb{N}, p = 1, 2, \infty)$$

metrikus tereket. Ekkor $b=(b_1,\ldots,b_n)\in\mathbb{K}^n$ és r>0 esetén ezekben a terekben a b vektor r-sugarú $K_r(b)$ környezetei (attól függően, hogy $\varrho=\varrho_1,\,\varrho_2,\,\varrho_\infty$) rendre a következők:

$$K_r^{(1)}(b) := \left\{ x = (x_1, \dots, x_n) \in \mathbb{K}^n : \sum_{i=1}^n |x_j - b_j| < r \right\},$$

$$K_r^{(2)}(b) := \left\{ x = (x_1, \dots, x_n) \in \mathbb{K}^n : \sqrt{\sum_{i=1}^n |x_j - b_j|^2} < r \right\},$$

$$K_r^{(\infty)}(b) := \left\{ x = (x_1, \dots, x_n) \in \mathbb{K}^n : \max\{|x_j - b_j| : j = 1, \dots, n\} < r \right\},$$

Speciálisan a $\mathbb{K}^n := \mathbb{R}^2$ választással a $b = (b_1, b_2) \in \mathbb{R}^2$ vektor előbbi környezetei geometriailag (az \mathbb{R}^2 "síkot" egy derékszögű koordináta-rendszerrel reprezentálva) könnyen ellenőrihetően a következők:

• $K_r^{(1)}$ egy, a $(b_1-r,\,b_2),\,(b_1,\,b_2+r),\,(b_1+r,\,b_2),\,(b_1,\,b_2-r)$

pontok (mint csúcspontok) által meghatározott rombusz (csúcsára állított négyzet) belseje,

- $K_r^{(2)}$ egy b középpontú és r sugarú $k\"{o}rlemez$ belseje,
- $K_r^{(\infty)}$ pedig egy, a

$$(b_1-r, b_2-r), (b_1-r, b_2+r), (b_1+r, b_2+r), (b_1+r, b_2-r)$$

pontok (mint csúcspontok) által meghatározott négyzet belseje.

Nyilvánvaló, hogy $0 < v \le r$ esetén

$$K_v(b) \subset K_r(b)$$
.

Tetszőleges $K_r(a)$ környezet és $b \in K_r(a)$ esetén a

$$0 < v < r - \rho(b, a)$$

feltételnek eleget tevő v "sugárral"

$$K_v(b) \subset K_r(a)$$
.

Ha ui. $x \in K_v(b)$, azaz $\varrho(x, b) < v$, akkor a háromszög-egyenlőtlenség szerint

$$\varrho(x, a) \le \varrho(x, b) + \varrho(b, a) < v + \varrho(b, a) < r.$$

Ez azt jelenti, hogy $x \in K_r(a)$, tehát a $K_v(b) \subset K_r(a)$ tartalmazás valóban fennáll.

Nevezzük valamilyen $\emptyset \neq A \subset X$ halmaz esetén az $a \in A$ pontot az A halmaz belső pontjának, ha egy alkalmas K(a) környezettel

$$K(a) \subset A$$

teljesül. Az tulajdonságú pontok által alkotott halmaz az A ún. belseje, amit az

int A

szimbólummal fogunk jelölni. Nyilván int X = X, míg az

$$X := \mathbb{R}, \ \varrho(x, y) := |x - y| \quad (x, y \in \mathbb{R})$$

esetben int $\{a\} = \emptyset (a \in \mathbb{R})$. Állapodjuk meg abban, hogy

int
$$\emptyset := \emptyset$$
.

Tehát bármely $A \subset X$ halmazra

int
$$A \subset A$$
.

Könnyű meggondolni ugyanakkor, hogy pl. tetszőleges K(a) környezetre

$$\operatorname{int} K(a) = K(a).$$

Azt mondjuk, hogy az $A \subset X$ halmaz *nyílt*, ha

$$int A = A.$$

Így pl. az \emptyset (az üreshalmaz) nyílt halmaz, ill. bármely környezet is az. Más megfogalmazásban tehát egy $\emptyset \neq A \subset X$ halmaz akkor és csak akkor nyílt, ha az A minden pontja belső pontja az A-nak:

$$a \in A \Longrightarrow a \in \operatorname{int} A$$
.

Ismételjük el újra, hogy mit is jelent ez: az

$$\emptyset \neq A \subset X$$

halmaz akkor és csak akkor nyílt, ha tetszőleges $a \in A$ elemének létezik olyan K(a) környezete, hogyá

$$K(a) \subset A$$
.

Bármely (X, ϱ) metrikus tér esetén az X "alaphalmaz" nyílt halmaz. Ha pl. (X, ϱ) a diszkrét metrikus tér, amikor is

$$\varrho(x, y) = \begin{cases} 0 & (x = y) \\ 1 & (x \neq y) \end{cases} \quad (x, y \in X),$$

akkor az X összes részhalmaza nyílt halmaz. Valóban, ekkor (pl.)

$$K_{1/2}(a) = \{a\} \quad (a \in X),$$

következésképpen tetszőleges $\emptyset \neq A \subset X$ halmazra és $a \in A$ pontra

$$K_{1/2}(a) = \{a\} \subset A.$$

Tehát $a \in \text{int } A$. Egyúttal minden $x \in X$ pontra az $\{x\}$ halmaz is nyílt. Ha viszont a ϱ metrika olyan, hogy bármelyik $a \in X$ elemhez és tetszőleges r > 0 számhoz van olyan $a \neq x \in X$, hogy

$$\varrho(x, a) < r,$$

akkor az X egyelemű részhalmazai közül egyik sem nyílt. Ti. ebben az esetben (az előbbi jelölésekkel) $x \in K_r(a)$, ezért $x \neq a$ miatt $K_r(a)$ nem lehet részhalmaza az $\{a\}$ halmaznak. Ez azt jelenti, hogy $f\{a\} = \emptyset \neq \{a\}$. Ilyen tulajdonságú metrikus terek pl. a

$$(\mathbb{K}^n, \varrho_p) \quad (1 \le n \in \mathbb{N}, \ 1 \le p \le +\infty)$$

terek.

Legyen

$$\mathcal{T}_p(X) := \mathcal{T}_p := \{ A \in \mathcal{P}(X) : A \text{ nyilt} \}.$$

Az X nyílt részhalmazai által meghatározott \mathcal{T}_p halmazrendszert az (X, ϱ_p) metrikus tér topológiájának nevezzük.

2.1 Nyílt halmazok uniója és metszete

Tétel. Tegyük fel, hogy valamilyen $\Gamma \neq \emptyset$ (index)halmaz esetén az $A_{\gamma} \subset X$ $\gamma \in \Gamma$ halmazok valamennyien nyíltak az (X, ϱ) metrikus térben. Ekkor

- az $\bigcup_{\gamma \in \Gamma} A_{\gamma}$ egyesítésük is nyílt;
- ha a Γ halmaz véges, akkor a $\bigcap_{\gamma \in \Gamma} A_{\gamma}$ metszetük is nyílt.

Bizonyítás. Legyen $a \in \bigcup_{\gamma \in \Gamma} A_{\gamma}$. Ekkor egy $\nu \in \Gamma$ indexszel $a \in A_{\nu}$. Mivel az A_{ν} halmaz nyílt, ezért alkalmaz K(a) környezettel $K(a) \subset A_{\nu}$. Nyilványaló, hogy

$$A_{\nu} \subset \bigcup_{\gamma \in \Gamma} A_{\gamma},$$

így egyúttal

$$K(a) \subset \bigcup_{\gamma \in \Gamma} A_{\gamma}$$

is teljesül. Más szóval $a\in \operatorname{int}\left(\bigcup_{\gamma\in\Gamma}A_{\gamma}\right)$, azaz $\bigcup_{\gamma\in\Gamma}A_{\gamma}$ nyílt halmaz.

Most tegyük fel, hogy a Γ halmaz véges, és legyen $a \in \bigcap_{\gamma \in \Gamma} A_{\gamma}$. Ekkor minden $\gamma \in \Gamma$ mellett $a \in A_{\gamma}$, következésképpen az A_{γ} -k nyíltsága miatt egy $r_{\gamma} > 0$ sugárral

$$K_{r_{\gamma}}(a) \subset A_{\gamma}$$
.

На

$$r := \min\{r_{\gamma} : \gamma \in \Gamma\}$$

(ami egy pozitív szám), akkor $r \leq r_{\gamma} \ (\gamma \in \Gamma)$ miatt

$$K_r(a) \subset K_{r_{\gamma}}(a) \subset A_{\gamma} \quad (\gamma \in \Gamma),$$

így

$$K_r(a) \subset \bigcap_{\gamma \in \Gamma} A_{\gamma}.$$

Tehát $a \in \operatorname{int}\left(\bigcap_{\gamma \in \Gamma} A_{\gamma}\right)$ metszethalmaz nyílt.

Gondoljuk meg, hogy tetszőleges (X, ϱ) metrikus térben minden $A \subset X$ halmazra

$$int A = \bigcup_{T \in A} T,$$

ahol $\mathcal A$ jelöli az X halmaz összes olyan $T\subset X$ nyílt részhalmaza által alkotott halmazrendszert, amelyre $T\subset A$.

Az előző tétel miatt az int $A = \bigcup_{T \in \mathcal{A}}$ halmaz nyílt, továbbá

$$int A = \bigcup_{T \in \mathcal{A}} \subset A.$$

Az is világos, hoyg ha $C \subset X$ olyan nyílt halmaz, amelyre $C \subset A$, akkor $C \subset \operatorname{int} A$. Ezért is szokták az int A halmazt az A legbővebb nyílt részhalmazának nevezni. Speciálisan, ha $A \subset X$

nyílt, akkor $A \in \mathcal{A}$ és A = int A.

Tegyük fel, hogy adottak (X, ϱ) , (X, σ) metrikus terek és $\varrho \sim \sigma$ (azaz a ϱ metrika ekvivalens a σ -val). Ekkor

$$\mathcal{T}_{\varrho}(X) = \mathcal{T}_{\sigma}(X),$$

tehát a két tér topológiája egybeesik. Más szóval az X nyílt részhalmazai a két metrika szerint ugyanazok.

Valóban, ha a c, C > 0 konstansokkal

$$c \cdot \varrho(x, y) \le \sigma(x, y) \le C \cdot \varrho(x, y) \quad (x, y \in X),$$

akkor tetszőleges $a\in X,\, r>0$ esetén $\sigma\text{-szerinti}$

$$K_r^{(\sigma)}(a) := \{ x \in X : \sigma(x, a) < r \}$$

környezetre

$$K_{r/C}^{(\varrho)}(a) \subset K_r^{(\sigma)}(a),$$

ahol

$$K_{r/C}^{(\varrho)}(a) := \{ x \in X : \varrho(x, a) < r/C \}.$$

Ha ui. $x \in K_{r/C}^{(\varrho)}(a)$, azaz $\varrho(x, a) < r/C$, akkor

$$\sigma(x, a) \le C \cdot \varrho(x, a) < C \cdot \frac{r}{c} = r,$$

más szóval $x \in K_r^{(\sigma)}(a)$. Ugyanígy kapjuk, hogy

$$K_{cr}^{(\sigma)}(a) \subset K_r^{(\varrho)}(a).$$

Ha tehát $\emptyset \neq A \subset X$, $a \in A$ és egy alkalmas r > 0 sugárral

$$K_r^{(\sigma)}(a) \subset A,$$

akkor az előbbiek szerint

$$K_{r/C}^{(\varrho)}(a) \subset A$$

is igaz, ill.

$$K_r^{(\varrho)}(a) \subset A$$

esetén

$$K_{cr}^{(\sigma)}(a) \subset A.$$

Következésképpen az a tény, hoyg $a \in \text{int } A$, független attól, hogy az (X, ϱ) , vagy az (X, σ) metrikus térben "vagyunk". így az int A = A egyenlőség is pontosan akkor teljesül a ϱ metrika értelmében, ha a σ szerint is fennáll. Röviden:

$$A \in \mathcal{T}_{\varrho}(X) \longleftarrow A \in \mathcal{T}_{\sigma}(X).$$

Az (X, ϱ) metrikus térben az $A \subset X$ halmazt zártnak fogjuk nevezni, ha az $X \setminus A$ (komplementer) halmaz nyílt. Világos, hogy pl. az \emptyset , X halmazok zártak, vagy pl. a diszkrét metrikus térben minden halmaz zárt.

Tetszőleges (X, ϱ) metrikus térben minden egyelemű halmaz zárt. Legyen ui. $a \in X$, ekkorbármely $b \in X \setminus \{a\}$ elemre $\varrho(a, b) > 0$. Ha

$$0 < v \le \varrho(a, b)$$

és $x \in K_v(b)$, akkor

$$\varrho(a, x) \ge \varrho(a, b) - \varrho(x, b) > \varrho(a, b) - v \ge \varrho(a, b) - \varrho(a, b) = 0,$$

azaz $\varrho(a, b) > 0$. Ez azt jelenti, hogy $x \neq a$, más szóval $x \in X \setminus \{a\}$. Ezért

$$K_v(b) \subset X \setminus \{a\},\$$

röviden: az $X \setminus \{a\}$ halmaz nyílt, tehát $\{a\}$ valóban zárt.

Világos, hogy az $A \subset X$ halmaz akkor és csak akkor nyílt, ha az $X \setminus A$ halmaz zárt.

Nyilvánvaló, hogy az ekvivalens metrikákkal kapcsolatban a topológiákra kapott egyenlőség igaz marad az egyes metrikákra nézve zárt halmazok által meghatározott halmazrendszerekre is. Ha tehát $(X, \varrho), (X, \sigma)$ olyan metrikus terek, hogy $\varrho \sim \sigma$, akkor

$$\mathcal{C}_{\varrho}(X) = \mathcal{C}_{\sigma}(X),$$

ahol általában egy (X, δ) metrikus tér esetén

$$C_{\delta} := \{ A \in \mathcal{P}(X) : A \text{ zárt } \}.$$

Az ismert De Morgan-azonosságokra utalva az előző tételből rögtön következik a

2.2 Zárt halmazok uniója, metszete

Tétel. Tegyük fel, hogy valamilyen $\Gamma \neq \emptyset$ (index)halmaz esetén az $A_{\gamma} \subset X$ ($\gamma \in \Gamma$) halmazok valamennyien zártak az (X, ϱ) metrikus térben. Ekkor

- a $\bigcap_{\gamma \in \Gamma} A_{\gamma}$ metszetük is zárt;
- ha a Γ halmaz véges, akkor az $\bigcup_{\gamma \in \Gamma} A_{\gamma}$ egyesítésük is zárt.

Tekinstük az (X, ϱ) metrikus térben az $A \subset X$ halmazt, és jelöljük \mathcal{X} -szel az összes olyan $B \subset X$ zárt halmaz által alkotott halmazrendszert, amelyre $A \subset B$. Világos, hogy $\mathcal{X} \neq \emptyset$, hiszen nyilván $X \in \mathcal{X}$. Az előző tétel szerint az

$$\overline{A} := \bigcap_{B \in \mathcal{X}} B$$

halmaz zárt, és mive minden $B \in \mathcal{X}$ esetén $A \subset B$, ezért

 $A \subset \overline{A}$.

Az is világos, hogy ha a $C\subset X$ halmaz zárt és $A\subset C$, akkor $\overline{A}\subset C$, ui. $C\in \mathcal{X}$. (Ezért is szokták az \overline{A} halmazt az A-t lefedő legszűkebb zárt halmazként említeni.)