

Prof. Dr. Dorin Andrica Asist. Drd. Tudor Micu 1st Semester, 2018-2019

Geometry 1 (Analytic Geometry)

Exercise Sheet 2

Exercise 1. Give the coordinates of the vertices of the rectangular parallelepiped whose sides are the coordinate planes and the planes x = 1, y = 3 and z = 6.

Exercise 2. Describe the locus of points P(x, y, z) in each of the following situations:

- (a) xyz = 0;
- (b) $x^2 + y^2 + z^2 = 0$;

(c)
$$(x+1)^2 + (y-1)^2 + (z+3)^2 = 0$$
;

- (d) (x-2)(z-8) = 0;
- (e) $z^2 25 = 0$.

Exercise 3. Show that the given points are collinear:

- (a) $P_1(1,2,9)$, $P_2(-2,-2,-3)$, $P_3(7,10,6)$;
- (b) $Q_1(2,3,2), Q_2(1,4,4), Q_3(5,0,-4);$

Exercise 4. Find x if:

(a) $P_1(x,2,3)$, $P_2(2,1,1)$ and $P_1P_2 = \sqrt{21}$;

(b) $Q_1(x, x, 1)$, $Q_2(0, 3, 5)$ and $Q_1Q_2 = 5$.

Exercise 5. The coordinates of the midpoint of the segment $[P_1P_2]$, determined by $P_1(x_1, y_1, z_1)$ and $P_2(2, 3, 6)$ are (-1, -4, 8). Find the coordinates of P_1 .

Exercise 6. Let P_3 be the midpoint of the segment joining the points $P_1(-3,4,1)$ and $P_2(-5,8,3)$. Find the coordinates of the midpoint of the segment:

- (a) joining P_1 and P_3 ;
- (b) joining P_3 and P_2 ;

Exercise 7. Graph the point P whose polar coordinates are given by: $(2, \pi)$, $(3, \pi/3)$, $(4, 3\pi/2)$, $(5, \pi/6)$.

Exercise 8. Find the polar equation corresponding to the given Cartesian equation:

- (a) y = 5;
- (b) y = 7x;
- (c) $y^2 = -4x + 4$
- (d) $x^2 + y^2 = 36$;

Exercise 9. Determine, in cylindrical coordinates, the equation of the surface whose equation in rectangular coordinates is $z = x^2 + y^2 - 2x + y$.

Exercise 10. Find the equation, in rectangular coordinates, of the surface whose equation in cylindrical coordinates is $\rho = 4\cos(\theta)$.