Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

Avaliação de Desempenho

Introdução

Aula 1

Marcos José Santana Regina Helena Carlucci Santana

- 1. Planejamento de Experimentos
- 2. Técnicas para Avaliação de Desempenho
- 3. Análise de Resultados

1. Planejamento de Experimentos

- Motivação
- Introdução à Avaliação de Desempenho
- Etapas de um Experimento
- Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Técnicas para Avaliação de Desempenho
- 3. Análise de Resultados

- 1. Planejamento de Experimentos
- 2. Técnicas para Avaliação de Desempenho
 - Técnicas de Aferição: Protótipos, Benchmarks e Monitores
 - Técnicas de Modelagem: Solução Analítica e por Simulação

3. Análise de Resultados

- 1. Planejamento de Experimentos
- 2. Técnicas para Avaliação de Desempenho
- 3. Análise de Resultados
 - Análise Estatística dos Resultados
 - Comparação de Resultados
 - Aplicações em Sistemas Operacionais

- 1. Planejamento de Experimentos
 - Motivação
 - Introdução à Avaliação de Desempenho
 - Etapas de um Experimento
 - Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Técnicas para Avaliação de Desempenho
- 3. Análise de Resultados

Por quê se preocupar com isso?

Por quê saber qual a temperatura no final de semana?

A avaliação da temperatura é importante para planejar!

Por quê se preocupar em avaliar um sistema?

Obter o melhor desempenho possível a um menor custo.

O que é "melhor desempenho possível"?

O que deve ser analisado?

Depende do ponto de vista

O que o sistema precisa?

Qual é o tipo de usuário?

Qual é o objetivo do sistema?

Como se dá o gerenciamento de recursos?

Exemplo 1: Tornar um sistema mais rápido

- 1. Identificar os pontos de atraso e verificar o impacto desse atraso
- 2. Propor soluções
- 3. Avaliar soluções

MotivaçãoComo Agilizar?

 Identificar os pontos de atraso e verificar o impacto desse atraso:

Verificar a frequência com que o procedimento ocorre

- Eventos raros e lentos:
 - Pouco impacto
 - Muita otimização para ser perceptível
 - Exemplo: procedimento ao ligar o computador, falha ao entrar em uma região crítica
- Eventos freqüentes:
 - Muito impacto
 - Pequena otimização pode ser perceptível
 - Exemplo: processo escalonador
- 2. Propor soluções
- 3. Avaliar soluções

Avaliação de Desempenho de Sistemas Computacionais

Exemplo2: Tornar um sistema mais seguro

- 1. Identificar os pontos vulneráveis e verificar o impacto desses pontos
- 2. Propor soluções
- 3. Avaliar soluções

Avaliação de Desempenho de Sistemas Computacionais

- 1. Planejamento de Experimentos
 - Motivação
 - Introdução à Avaliação de Desempenho
 - Etapas de um Experimento
 - Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Técnicas para Avaliação de Desempenho
- 3. Análise de Resultados

- O que vem a ser isso?
- Quando se preocupar com o desempenho?
- Quem deve se preocupar com a avaliação?
- Como medir o desempenho? Que técnicas utilizar?
- O que medir?
- Como confiar nas métricas obtidas?

- O que vem a ser isso?
- Quando se preocupar com o desempenho?
- Quem deve se preocupar com a avaliação?
- Como medir o desempenho? Que técnicas utilizar?
- O que medir?
- Como confiar nas métricas obtidas?

Avaliação de Desempenho O que vem a ser isso?

- Análise detalhada:
 - Dos recursos do sistema
 - Dos gerenciadores
 - Dos Usuários
 - Dos objetivos do sistema e da avaliação

Caso contrário pode-se trocar um conjunto de problemas por outro

Exemplo

O que vem a ser Avaliação de Desempenho?

Avaliar um sistema (computacional ou não)

 buscar uma métrica que indique quantidade ou qualidade, por exemplo, de um serviço prestado;

Determinar a eficiência com a qual um sistema atinge seus objetivos

- O que vem a ser isso?
- Quando se preocupar com o desempenho?
- Quem deve se preocupar com a avaliação?
- Como medir o desempenho? Que técnicas utilizar?
- O que medir?
- Como confiar nas métricas obtidas?

- Quando se preocupar com a avaliação de desempenho?
 - Usuário reclamando
 - Troca de sistema
 - Comparação entre sistemas
 - Avaliação de um projeto

- O que vem a ser isso?
- Quando se preocupar com o desempenho?
- Quem deve se preocupar com a avaliação?
- Como medir o desempenho? Que técnicas utilizar?
- O que medir?
- Como confiar nas métricas obtidas?

- Quem deve se preocupar com a avaliação de desempenho?
 - cada domínio implica em um profissional
 - exemplo: sistemas computacionais:
 - analista de sistemas;
 - gerente de sistemas;
 - engenheiro de sistemas;
 - projetista de hardware ou software;
 - programador;
 - etc.

- O que vem a ser isso?
- Quando se preocupar com o desempenho?
- Quem deve se preocupar com a avaliação?
- Como medir o desempenho? Que técnicas utilizar?
- O que medir?
- Como confiar nas métricas obtidas?

Técnicas para Avaliação de Desempenho

Como medir o desempenho?

Como escolher a técnica mais adequada?

- Deve deixar a análise isenta
- Não deve ser um fator degenerador
- Deve considerar o domínio da aplicação
- Intrusões em sistemas já estabelecidos nem sempre são bem-vindas

Técnicas para Avaliação de Desempenho

Técnicas de Aferição:

Realizam experimentação no sistema

- Construção de Protótipos;
- Coleta de Dados;
- Benchmarks

• Técnicas de Modelagem:

Criam abstrações desse sistema

- Desenvolvimento de um Modelo
- Solução do Modelo

- Por quê se preocupar com isso?
- O que vem a ser isso?
- Quando se preocupar com o desempenho?
- Quem deve se preocupar com a avaliação?
- Como medir o desempenho? Que técnicas utilizar?
- O que medir?
- Como confiar nas métricas obtidas?

Planejamento de Experimentos Variável de Resposta

O que medir?

Quero ter a informação mais fiel possível sobre o comportamento de um sistema

Diversos enfoques:

- Responsividade tempo que leva para executar um serviço
- Produtividade taxa de execução de um serviço por unidade de tempo
- Utilização recurso utilizado para a execução do serviço

Planejamento de Experimentos

Variável de Resposta

O que medir?

- Velocidade
- Confiabilidade
- Disponibilidade
- Métricas individuais
- Métricas globais

• exemplo 1: uma montadora de automóveis ⇒

- número de carros produzidos em 1 hora;
- qualidade dos carros produzidos;
- lucro obtido por carro fabricado;
- quantidade de quilômetros por litro de combustível;
- tempo necessário para acelerar o carro de 0 a 100 km;
- etc.

exemplo 2: um sistema computacional centralizado ⇒

- tempo de resposta experimentado por um usuário;
- sobrecarga do escalonador de processos;
- •taxa de utilização do processador;
- •taxa de acerto da memória cache;
- •taxa de acerto do cache do disco;
- •sobrecarga das rotinas de redundância em disco;
- •etc.

- exemplo 3: um sistema computacional distribuído ⇒
 - todas as considerações do caso centralizado;
 - tempo de resposta para operações remotas;
 - impacto do uso de cache local (nas estações);
 - •impacto do algoritmo de escalonamento no servidor;
 - influência do disco no servidor de arquivos;
 - •balanceamento de carga no sistema;
 - sobrecarga devido à redundância de informação;
 - •sobrecarga devido aos mecanismos de tolerância a falhas;
 - •etc.

Qual ou quais medidas devem ser consideradas?

Depende da aplicação, do tipo do sistema, do objetivo, etc.

- Exemplo 1: sistemas computacional de uso geral
 - tempo de resposta
 - disponibilidade
- Exemplo 2: Sistema Computacional de um Banco
 - segurança

- Qual ou quais medidas devem ser consideradas?
- Cuidado

Aeronave	Washington a Paris	Velocidade	
Boeing 747	6.5 horas	610 mph	
BAD/Sud Concorde	3 horas	1350 mph	

Aeronave	Washington a Paris	Velocidade	Passageiros	Throughput (pmph)
Boeing 747	6.5 horas	610 mph	470	286,700
BAD/Sud Concorde	3 horas	1350 mph	132	178,200

- Tempo para executar a tarefa
 - tempo de resposta, latência
- Tarefas por dia, por hora, etc.
 - Throughput, bandwidth

- O que vem a ser isso?
- Quando se preocupar com o desempenho?
- Quem deve se preocupar com a avaliação?
- Como medir o desempenho? Que técnicas utilizar?
- O que medir?
- Como confiar nas métricas obtidas?

Como confiar nas métricas obtidas?

- Avaliação versus Análise ⇒
 - Qual a diferença?
 - Avaliar ⇒ obter, produzir, levantar dados a respeito de uma entidade;
 - exemplo: determinar o consumo de um automóvel ⇒ usar alguma técnica para medir a distância percorrida e o volume de combustível consumido;

- Avaliação versus Análise ⇒
 - Qual a diferença?
 - Analisar ⇒ verificar a precisão, a validade, o significado da grandeza produzida durante a avaliação.
 - exemplo: se a avaliação do automóvel levou a 20 Km/litro de gasolina, então a análise se preocupa em se certificar que:
 - a metodologia utilizada foi correta;
 - que os números levantados são suficientemente precisos;
 - e, então, conclui se o desempenho avaliado é bom, ruim, etc.

Pontos Importantes para a Avaliação de Desempenho

- 1. Entendimento completo do sistema, dos problemas e dos objetivos da avaliação
- 2. Abordagem sistemática
- Não devem ser considerados parâmetros, cargas, métricas, etc. arbitrários.
- 4. Definição de uma carga de trabalho característica
- 5. Definição da metodologia mais apropriada
- 6. Definição do nível de detalhamento
- 7. Análise dos resultados
- 8. Considerar os limites, suposições e margem de erro

- 1. Planejamento de Experimentos
 - Motivação 🙂
 - Introdução à Avaliação de Desempenho
 - Etapas de um Experimento
 - Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Análise de Resultados
- 3. Técnicas para Avaliação de Desempenho

Etapas a serem consideradas

- 1. Estudar o sistema e definir os objetivos
- 2. Determinar os serviços oferecidos pelo sistema
- 3. Selecionar métricas de avaliação
- 4. Determinar os parâmetros que afetam o desempenho do sistema
- 5. Determinar o nível de detalhamento da análise
- 6. Determinar a Técnica de Avaliação apropriada
- 7. Determinar a carga de trabalho característica
- 8. Realizar a avaliação e obter os resultados
- 9. Analisar e interpretar os resultados
- 10. Apresentar os resultados

Planejamento de Experimento

Técnica de Avaliação

Análise dos

Resultados

1. Planejamento de Experimentos

- Motivação
- Introdução à Avaliação de Desempenho
- Etapas de um Experimento
- Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Análise de Resultados
- 3. Técnicas para Avaliação de Desempenho