Colle 10A: Suites et Matrices

Question de cours :

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. Montrer que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Exercice 1:

Soit $n \in \mathbb{N} - \{0,1\}$. On pose $\omega = \exp(2i\pi/n)$. On définit les matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ par :

$$\forall p, q \in [1, n], a_{p,q} = \omega^{pq} \text{ et } b_{p,q} = \omega^{-pq}$$

Calculer A^2 , AB et, si possible, l'inverse de A.

Exercice 2 : Irrationalité de e

Soit $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ deux suites réelles définies pour tout entier $n\geqslant 1$ par :

$$u_n = \sum_{k=1}^n \frac{1}{k!} \qquad v_n = u_n + \frac{1}{n \times n!}$$

- 1. Montrer que $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ sont adjacentes. On notera e leur limite commune.
- 2. Montrer que pour tout entier $n \ge 1$,

$$n!u_n < n!e < n!u_n + \frac{1}{n}$$

3. En déduire que e est irrationel.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 10B: Suites et Matrices

Question de cours :

Montrer que $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont deux sous-espaces supplémentaires de $\mathcal{M}_n(\mathbb{K})$.

Exercice 1 : Matrices nilpotentes

Soit $A \in \mathcal{M}_n(\mathbb{R})$ nilpotente. Montrer que $A - I_n$ est inversible et déterminer son inverse.

Exercice 2 : Suites de Cauchy

On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ est de Cauchy lorsque pour tout $\varepsilon > 0$, il existe un entier N tel que pour tout entiers $p, q \geqslant N$, on a :

$$|u_p - u_q| < \varepsilon$$

- 1. Montrer que toute suite convergente est de Cauchy.
- 2. On s'intéresse à la réciproque de la proposition précédente. Soit alors $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy.
 - (a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée.
 - (b) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge.

Colle 10C: Suites et Matrices

Question de cours :

Théorème des suites adjacentes.

Exercice 1: Matrices stochastiques

Soit $n \in \mathbb{N}^*$. On note \mathcal{D} l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que :

$$\forall i, j \in [1, n], a_{ij} \geqslant 0 \text{ et } \sum_{j=1}^{n} a_{ij} = 1.$$

1. Montrer que \mathcal{D} est stable par produit.

2. Déterminer les matrices $A \in \mathcal{D}$ inversibles telles que $A^{-1} \in \mathcal{D}$.

Exercice 2 : Théorème de Césaro

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On définit la suite réelle $(T_n)_{n\in\mathbb{N}}$ pour tout $n\in\mathbb{N}$ par :

$$T_n = \frac{1}{n} \sum_{k=1}^n u_k$$

1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ alors $(T_n)_{n\in\mathbb{N}}$ converge vers ℓ . (Indication : commencer par le cas $\ell=0$)

2. La réciproque est-elle vraie?

3. Application : déterminer la limite quand $n \to +\infty$ de $\prod_{k=1}^{n} \left(1 + \frac{2}{k}\right)^{k/n}$.