Elettrostatica

Atomo

Carica elettrica

Legge di Coulomb

$$F = k \frac{Q_1 * Q_2}{d^2}$$
Si misura in C [Coulomb]

$$k = 9 * 10^9 \frac{Nm^2}{C^2}$$

$$k = \frac{1}{4 \pi \epsilon_0 \epsilon_r}$$

Campo elettrico

$$E = \frac{F}{q} = \frac{kQ}{d^2}$$

Campo elettrico

$$F = qE$$

Potenziale elettrico

$$L_{AB} = Fs = qEs$$

Lavoro per spostare una particella q da un punto A ad un punto B all'interno di un campo elettrico E

$$V_A - V_B = \frac{L_{AB}}{q}$$

Differenza di potenziale (d.d.p.) tra un punto A ed un punto B

Si misura in V [Volt]

Condensatore

Permette di accumulare energia in poco spazio

E' composto da armature separate da un dielettrico

$$C = \frac{Q}{V}$$

C rappresenta la capacità di un condensatore, ossia quanta energia può immagazzinare, e si misura in F [Farad]

Energia immagazzinata nel condensatore

$$E = \frac{1}{2}CV^2$$

Condensatore in parallelo

I condensatori hanno la stessa differenza di potenziale, ma diversa carica

$$C_{eq} = C_1 + C_2 + C_3 + \dots + C_n$$

Se i condensatori sono in parallelo, la capacità equivalente è pari alla somma delle singole capacità

Condensatori in serie

I condensatori hanno la stessa carica elettrica, ma diversa differenza di potenziale

$$C_1$$
 C_2 C_3 C_4 C_5 C_7 C_8 C_8

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_n}$$

Se i condensatori sono in serie, il reciproco della capacità equivalente è pari alla somma dei reciproci delle singole capacità

Serie o parallelo?

