Razvrščanje z dominantnimi množicami povzetek

Taja Debeljak, Anže Marinko Finančni praktikum Finančna matematika, Fakulteta za matematiko in fiziko

Jesen 2017

1 Uvod

Grupiranje (ang. Clustering) je postopek razvrščanja predmetov znotraj razreda v podrazrede (cluster) tako, da so si predmeti znotraj istega podrazreda bolj podobni med sabo, kot so si podobni z elementi iz ostalih podrazredov. Problem združevanja lahko opišemo z uteženim grafom, ki ga definiramo kot trojico $G=(V,E,\omega)$, kjer je $V=1,\ldots,n$ končna množica vozlišč, $E\subseteq V\times V$ množica usmerjenih povezav in $\omega:E\to\mathbb{R}$ funkcija, ki vsakemu vozlišču dodeli neko vrednost(težo). Vozlišča grafa G ustrezajo predmetom, ki jih je potrebno

Povezave predstavljajo, kateri predmeti so med seboj povezani, utežene povezave pa odražajo podobnosti med povezanimi predmeti. Poleg tega matrika $A_{i,j} = \omega(i,j)$ za vse $i,j \in V$ predstavlja podobnost med vozlišči. Imenujemo jo matrika podobnosti.

Osnovni lastnosti, ki morata zadostovati gruči, sta:

- Notranja homogenost: elementi, ki pripadajo gruči si morajo biti med seboj podobni
- Maksimalnost: gruče ne moremo dodatno razširiti z uvedbo zunanjih elementov

Definicija 1.1 Naj graf G predstavlja primer združevanja množic in naj bo $C \subseteq V$ neprazna podmnožica. Povprečna utežena vhodna stopnja glede na C je definirana kot

$$awindeg_C(i) = \frac{1}{|C|} \sum_{j \in C} A_{i,j}$$

 $kjer |C| predstavlja velikost množice C. Za j \in C definiramo$

$$\phi_C(i,j) = A_{i,j} - awindeg_C(j)$$

Funkcija $\phi_C(i,j)$ je mera relativne podobnosti elementa i z elementom j glede na povprečno povezanost elementa i z elementi iz C. Težo elementa i glede na množico C definiramo kot

$$W_C(i) = \begin{cases} 1 & \text{; \'e} |C| = 1, \\ \sum_{j \in C \setminus i} \phi_{C\{i\}}(i,j) W_{C \setminus \{i\}}(j) & \text{; sicer.} \end{cases}$$

Vrednost $W_C(i)$ nam pove koliko podpore prejme element i od elementov $C \setminus \{i\}$ glede na skupno podobnost z elementi iz $C \setminus \{i\}$. Pozitivne vrednosti nam povedo da je i močno koleriran z $C \setminus \{i\}$.

Skupna teža množice C pa je definirana z

$$W(C) = \sum_{i \in C} W_C(i)$$

Definicija 1.2 Dominantna množica

Neprazni množici $C \subseteq V$ za katero je W(T) > 0 za vsako neprazno množico $T \subseteq C$ pravimo dominantna množica, če velja:

- 1. $W_C(i) > 0$ za vse $i \in C$
- 2. $W_{C \cup \{i\}}(i) < 0$ za vse $i \notin C$

2 Povezava s teorijo optimizacije

Če se omejimo na simetrične povezanosti, torej A je simetrična matrika, potem lahko dominantno množico zapišemo kot rešitev naslednjega standardnega kvadratičnega programa

$$max f(x) = x^T A x \tag{1}$$

$$p. p. x \in \Delta \subset \mathbb{R}^n$$
 (2)

Kjer je $\Delta=\{x\in\mathbb{R}^n:\sum_{j\in V}x_j=1\ \text{in}\ x_j\geq 0\ \text{za}\ \text{vsak}\ j\in V\}$ standardni simpleks iz $\mathbb{R}^n.$

Pravimo, da je x rešitev zgornjega problema če obstaja soseščina x-a $U\subseteq \Delta$ za katero je f(x)>f(z) za vsak $z\in U\setminus \{x\}$. Podpora $\sigma(x)$ za $x\in \Delta$ je definirana kot indeksna množica pozitivnih komponenta vektorja x, torej $\sigma(x)=\{i\in V: x_i>0\}.$

Definicija 2.1 Otežen vektor

Za neprazno podmnožico C množice V lahko definiramo otežen vektor $x^C \in \Delta$, če ima množica C pozitivno skupno težo W(C). V tem primeru je

$$x_i^C = \begin{cases} \frac{W_C(i)}{W(C)} & \text{; \'e } i \in C, \\ 0 & \text{; sicer.} \end{cases}$$

Za dominantno množico lahko torej vedno definiramo otežen vektor.

Izrek 1 Če je C dominantna množica A, potem je njen otežen vektor x^C rešitev zgornjega problema. Obratno, če je x^* rešitev zgornjega problema, potem je njegova podpora $\sigma = \sigma(x^*)$ dominantna množica od A pri pogoju, da je $W_{\sigma \cup \{i\}}(i) \neq 0$ za vse $i \notin \sigma$.

3 Povezava s teorijo grafov

Naj boG=(V,E)neusmerjen graf, kjer je $V=1,2,\dots,n$ množica vozlišč in $E\subseteq V\times V$ množica povezav v grafu. Dve vozlišči $u,v\in V$ sta sosednji, če

 $(u,v)\in E$. Podmnožici vozlišč $C\subseteq V$ pravimo klika, če so si vsa vozlišča iz te množice med seboj sosednja.

Klika C na neusmerjenem grafu F je največja (maximal), če ne obstaja klika D na grafu G, tako da $C \subseteq D$ in $C \neq D$. Kliko C imenujemo maksimalna (maximum) klika, če ne obstaja klika na grafu G, ki bi vsebovala več vozlišč kot največja klika C. Število vozlišč v maksimalni kliki imenujemo klično število (clique number) in ga označimo z $\omega(G)$.

Matrika sosednosti grafa G je kvadratna matrika A_G , kjer je $(A_G)_{i,j}=1$, če $(i,j)\in E$, sicer pa $(A_G)_{i,j}=0$.

Na matriko sosednosti v neusmrejnem grafu lahko gledamo kot na matriko podobnosti v problemu razvrščanja in posledično lahko uporabimo dominantno množico da najdemo združbe znotraj grafa.

Glede na povezavo z teorijo optimizacije, upoštevamo naslednji kvadratični program

$$max f_{\alpha}(x) = x^{T} (A_G + \alpha I) x \tag{3}$$

p. p.
$$x \in \Delta \subset \mathbb{R}^n$$
 (4)

Kjer je I identična matrika, α realno število in Δ simpleks.

Izrek 2 Naj bo graf G neusmerjen z matriko sosednosti A_G in naj bo $0 < \alpha < 1$. Vsaka največja klika C grafa G je dominantna množica od $A_{\alpha} = A_G + \alpha I$. Obratno, če je C dominantna množica od A_{α} potem je C največja klika v G.

4 Razvrščanje z uporabo dmoinantnih množic

Naivna strategijabi lahko bilo oštevilčenje vseh podmnožic $C \subseteq V$ preverjanje pogojev iz Definicije 1. Ta rešitev je očitno precej neučinkovita, zato si bomo ogledali dve alternativni strategiji. Obe rešitvi izvirata iz teorije iger.

4.1 Dinamika replikatorjev

Dinamika replikatorjev (RD) je deterministična dinamična igra, ki je bila razvita v evolucijski teoriji iger. Ta teorija izvira iz zgodnjih sedemdesetih let kot poskus uporabe načel in orodja teorije iger v biološke namene za model evolucije živali. Predvideva idealni scenarij, s katerim so posamezniki ponavljajoč naključno prirejeni iz velike, idealno neskončne, populacije v igro dveh igralcev. V nasprotju s klasično teorijo iger se tukaj igralci naj ne bi obnašali racionalno ali naj ne bi imeli popolnih informacij o igri, ampak delujejo v skladu s podedovanim vedenjskim vzorcem ali čisto strategijo, in domneva se, da zaradi evolucijskega izbora proces sčasoma deluje na porazdelitev vedenja. Splošni razred evolucijskih enačb je podan z naslednjim nizom navadnih diferencialnih enačb:

$$\dot{x}_i = x_i g_i(x) \tag{5}$$

za $i=1,\ldots,n$, kjer pika pomeni odvod po času in je $g=(g_1,\ldots,g_n)$ funkcija z odprtim definicijskim območjek, ki vsebuje Δ . Tukaj funkcija g_i določa stopnjo, po kateri čista strategija i replicira. Običajno je potrebno, da je funkcija g strogo naraščajoča, kar pomeni, da je Lipschitz kontinuiran in da je $g(x)^T x=0$

za vsak $x \in \Delta$. Zgornji pogoj zagotavlja, da ima sistem diferencialnih enačb (5) enolično določeno rešitev za vsako začetno populacijsko stanje. Slednji pogoj, namesto tega zagotavlja, da je množica Δ zaprta za sistem diferencialnih enačb (5), saj katerikoli evolucijski vzorec, ki se začne v Δ ostane v Δ .

Za točko x velja, da je stacionarna (ali ravnovesna) točka za naše dinamične sisteme, če je $\dot{x}_i = 0$ ($i \in S$). Stacionarna točka x je stabilna, če za vsako okolico U od x obstaja okolica V od x, tako da $x(0) \in V$ implicira $x(t) \in U$ za vse $t \geq 0$. Stacionarna točka naj bi bila asimptotično stabilna, če obstaja pot, ki se začne v njeni okolici in k njej konvergira, ko $t \to \infty$.

Dinamika monopolne igre izplačil predstavlja širok razpon običajne izbirne dinamike, za katero držijo koristne lastnosti. Intuitivno, za monopolno dinamiko izplačil se bodo strategije povezane z višjimi izplačili povečale pri višji stopnji. Formalno naj bi bila navadna dinamika izbora (5) monopolno-izplačilna, če $g_i(x) > g_j(x) \Leftrightarrow (Ax)_i > (Ax)_j$ za vse $x \in \Delta$ in $i, j \in V$.

Čeprav ta razred vsebuje veliko različnih dinamik, se izkaže, da si delijo veliko skupnih lastnosti. Za začetek, vsi imajo enako množico stacionarnih točk, saj je $x \in \Delta$ stacionarna točka pod kakršno koli izplačilno-monopolno dinamiko natanko tedaj, ko velja $(Ax)_i = x^T Ax$ za vsak $i \in \sigma(x)$.

Dobro znan podrazred izplačilno-monopolnih dinamičnih iger je podan z

$$\dot{x}_i = x_i [\phi((Ax)_i) - \sum_{j \in V} x_j \phi((Ax)_j)]$$

kjer je $\phi(u)$ naraščajoča funkcija u. Ti modeli se pojavijo v modeliranju evolucije vedenja z imitacijskimi procesi, kjer igralci občasno dobijo priložnost za spremembo svoje strategije.

Ko je ϕ identična funkcija, to je $\phi(u)=u$, dobimo standardne enačbe za replikator v odvisnosti od časa,

$$\dot{x}_i = x_i[(Ax)_i - x^T Ax] \tag{6}$$

katerih osnovna ideja je, da je povprečna stopnja povečanja \dot{x}_i/x_i enaka razliki med povprečno sposobnostjo strategije i in povprečno sposobnostjo celotne populacije.

Drug znan model se pojavi, ko je $\phi(u) = e_k u$, kjer je k pozitivna konstanta. Ko je k blizu 0, ta dinamika prestopi v standarden model replikatorja prvega reda upočasnjenega za faktorj k; poleg tega, pa se za velike vrednosti k model približuje tako imenovani dinamiki najboljšega odgovora.

Dinamika replikatorjev in bolj v splošnem kakršno koli izplačilo monopolne dinamike imajo nasledne lastnosti:

Izrek 3 V kakršni koli izplačilno-monopolni dinamiki velja:

- Nashevo ravnovesje je stacionarna točka;
- strogo Nashovo ravnovesje je asimptotično stabilno;
- stacionarna točka x^* , ki je meja notranje orbite, t.j. da je $\sigma(x(t)) = V$ za $vsak \ t \geq 0$ in $lim_{t\to\infty} x(t) = x^*$, je Nashevo ravnovesje;
- stabilna stacionarna točka je Nashevo ravnovesje;
- evolucijsko stabilna strategija (ESS) je asimptotično stabilna.

V splošnem trditve iz izreka 4 ne veljajo v obratni smeri. Poleg tega, če se omejimo na simetrične matrike izplačil, t.j., $A = A^T$, potem veljajo močnejše lastnosti:

Izrek 4 Če je $A = A^T$, potem velja naslednje:

- $x^T Ax$ je strogo naraščajoča vzdolž katere koli nekonstantne poti po (6). Z drugimi besedami, za vse $t \geq 0$ imamo $\frac{d}{dt}[x(t)^T Ax(t)] > 0$, razen če je x stacionarna točka. Poleg tega vsaka taka pot konvergira proti (enolično določeni) stacionarni točki;
- x je asimptotično stabilna natanko tedaj, ko je x ESS.

Da bi lahko izvajali dinamiko replikatorja v času, lahko uporabimo neko iterativno metodo, npr. metodo Runge-Kutta, za iskanje približka rešitev navadnih diferencialnih enačb. Druga možnost je, da lahko sprejmemo diskretno časovno podobo (6), ki je znana kot dinamika diskretnega replikatorja po času, ki jo dobimo z $x_i(t+1) = x_i(t) \frac{(Ax(t))_i}{x(t)^T Ax(t)}$, za $i \in V$. Opazimo, da je dinamika diskretnega replikatorja po času enostavno-invariantna, če je A nenegativna. To pa ni omejitev, ker vsaka izplačila A ohranijo svoje ravnotežje s konstantnim premikom. Torej, če ima A negativne elemente, lahko skonstruiramo matriko $\bar{A} = A + \mu E$ s pozitivnimi elementi z ustrezno izbiro $\mu > 0$, kjer je E matrika s samimi enicami.

Ker so ESS asimptotično stabilne v dinamiki replikatorjev po izrekih 3 in 4, lahko uporabimo to dinamiko za pridobivanje dominantnih množic, ki so v resnici v skladu z ESS, kot je bilo predhodno opisano. Poleg tega, če prevzamemo simetrične funkcije izplačil, spet opazimo povezavo s teorijo optimizacije, iz izhaja iz izreka 4, da dinamika replikatorjev lokalno maksimira x^TAx . Končno, motivirana s povezavo s teorijo grafov, je bila dinamika replikatorjev uporabljena tudi za problem največje teže klika.