

Exercices d'Ingénierie Logicielle :

Analyse d'un Système Informatique : Cas d'une Bibliothèque

Par Jean Hubert ABA'A

Prof: M. Thierry SEVERS

Table des matières

Introduction	3
Analyse des données	3
Dictionnaire des données	3
Le Modèle Conceptuel de Données (MCD)	4
Analyse des données de l'utilisateur	4
Analyse des données du Bibliothécaire	5
Analyse des données de la Ressource	5
Analyse des données de l'exemplaire	6
Modèle	6
Le Modèle Organisationnel des données (MOD)	7
Quantification du volume	8
Répartition organisationnelle des données	9
MOD global	10
MOD locaux	10
Modèle logique des données MLD	11
Le Modèle physique des données (MPD)	12
Création des requêtes significatives	13
Diagramme des classes	13
Diagrammes d'objets	14
Analyse des traitements	15
Diagramme Complet des cas d'utilisation	15
Description textuelle du cas	16
Quelques scénarios	16
Les préconditions :	16
Scénario nominal :	17
Scénario alternatif :	17
Scénario d'exception :	17
Diagramme des séquences et de communication	17
Diagramme Etats-Transitions	19
Diagramme d'activités d'un cas d'utilisation	20
Conclusion	21
Références	22

Introduction

'analyse d'un système de gestion d'une bibliothèque aujourd'hui est assez consistant pour apparaître dans le cercle des systèmes à forte connotation informatique. Et pour preuve, les données à gérer son nombreuses.

Notre système est appelé à gérer les clients, les emprunts et les retours dans une bibliothèque. La bibliothèque gère des livres et des revues. Un livre est caractérisé par son titre, son auteur, et un identifiant unique. Un numéro de revue est caractérisé par le titre de la revue, un numéro de volume et sa date de parution. Chaque exemplaire d'une ressource est caractérisé par son code barre au sein de la bibliothèque.

Pour emprunter un ouvrage, un utilisateur doit être enregistré. Il s'enregistre auprès du bibliothécaire en donnant son nom et une caution. Chaque ouvrage a une caution. Un utilisateur ne peut emprunter un ouvrage que si la caution qui lui reste sur son compte est supérieure à la caution de l'ouvrage. La durée de l'emprunt est fixée à 15 jours.

On ne peut ni emprunter plus d'un exemplaire d'une même ressource, ni emprunter une nouvelle ressource si l'on est en retard pour le retour d'une autre.

L'emplacement de stockage d'un ouvrage dans la bibliothèque est représenté par un numéro de travée, un numéro d'étagère dans la travée et un niveau. Différentes ressources peuvent être rangées au même endroit.

Dans le cadre de notre étude, nous nous limiterons aux analyses des données et des traitements de ce système.

Analyse des données

Dictionnaire des données

Notre analyse doit seoir à la demande du client. Au vu du système décrit plus haut, la taille du système n'exige pas une étude formelle. Néanmoins, pour une meilleure assimilation, nous élaborerons un dictionnaire de données pour faciliter la construction d'un modèle conceptuel des données.

Objet	Propriété	Туре
	Nom	string
	Prenom	string
	Caution	Int
Utilisateur	email	String
Otilisateur	idUtilisateur	Long
	téléphone	Long
	mot_de_passe	String
	photo	Blob
	Établissement	String
Etudiant	Date_De_Naissance	Date
	IdCarteEtudiant	String
	Année d'Etude	Int

Particulier	NISS	String
Livre	Auteur ISBN Caution Editeur	String Int Int String
Revue	Volume Parution Caution	Int Date int
Emplacement	Travée Etagère Niveau Zone	Int Int Int String
Exemplaire	Code_Barre Date_Retour Date_Prêt	Int Date ¹ Date
Ressource	Titre Caution Id_ressource Nombre_de-pages Etat Rubrique Nombre_d'exemplaires Résumé Couverture	String Int Long Int String String Int String Int String Blob
Bibliothécaire	CodeNomPrénomMot_de_passe	String String String String

Le Modèle Conceptuel de Données (MCD)

En appliquant une démarche déductive au tableau ci-dessus, nous pouvons en tirer une analyse qui à chaque objet du dictionnaire associera des propriétés au travers des associations. Pour des raisons de formalisme et de simplicité, nous changerons certains noms d'attributs pour les adapter à MySQL.

Analyse des données de l'utilisateur

A la bibliothèque, les utilisateurs seront majoritairement classés en 2 types. Les particuliers et les étudiants. Dans les deux cas, les utilisateurs disposeront d'une carte d'accès, d'un identifiant et d'un mot de passe qui leur permettrons d'avoir accès à des ressources en ligne ou d'accéder à leur compte.

¹ Si un exemplaire n'est pas emprunté, *Date_Retour* prend la valeur *Null*

Les utilisations possibles sont donc :

- Un utilisateur particulier
- Un utilisateur étudiant

Analyse des données du Bibliothécaire

Le bibliothécaire est un administrateur du système. Il créer, modifier, consulter et supprimer aussi bien des ressources que des utilisateurs.

Analyse des données de la Ressource

Chaque ressource disponible à la bibliothèque dispose d'un titre, d'une caution associée qui sera déduite du solde de l'utilisateur à l'emprunt, son identifiant dans la BD, la rubrique, le nombre de pages et l'accessibilité de la ressource.

En fonction de la ressource choisie, s'appliqueront en plus, un auteur et un ISBN dans le cas d'un livre, et un volume et une date de parution dans le cas d'une revue. La contrainte XT de partition nous informe que le caractère unique à utilisation unique de chaque sous-type.

Une ressource est ajoutée par les bibliothécaires. Chaque ressource est positionnée à un endroit où se trouvent tous les exemplaires. Nous avons le schéma suivant :

Analyse des données de l'exemplaire

Un exemplaire est une version physique d'une ressource et qui peut être manipulée par l'utilisateur. Chaque exemplaire possède donc son code barre, ainsi qu'une carte sur laquelle est mentionnée, la date de prêt par un utilisateur, ainsi que la date de retour de ce même utilisateur. Chaque exemplaire ne peut donc être emprunter que par une et une seule personne, et chaque exemplaire ne peut être rendu que par une seule personne.

Modèle

Toutes les analyses effectuées plus haut nous permettent d'établir un modèle conceptuel suivant :

Figure 1: MCD d'une bibliothèque

Le Modèle Organisationnel des données (MOD)

Le MCD tel que vu plus haut, représente les informations utilisées dans un système d'activité sans tenir compte des contraintes organisationnelles, économiques ou bien même techniques. Elle exprimait des objets (concrets ou abstraits), des associations entre ces objets et des informations descriptives, formalisées en termes d'entités, de relations et de propriétés.

Le MOD nous permettra de prendre en compte les éléments relevant de l'utilisation des ressources. Cela passe donc par :

- Le choix des informations à mémoriser informatiquement ;
- La quantification du volume des informations à mémoriser ;
- La répartition des données entre les unités organisationnelles ;
- L'accès aux données pour chaque unité organisationnelle.

Suivant ces différentes préoccupations, nous définirons deux niveaux de MOD :

- ♦ Le MOD global, directement dérivé du MCD ;
- Les MOD locaux spécifiques chacun à une unité organisationnelle. Ils seront dérivés du MOD global en prenant en compte des choix d'organisation, en particulier de répartition.

Quantification du volume

Elle consiste à préciser le type et la longueur des propriétés, ainsi que des contraintes sur les valeurs et le nombre d'occurrences des entités et des relations.

Objet	Propriété	Туре	Taille Entité	Nbre Occur	Volume
Utilisateur	Nom Prenom Caution email PidUtilisateur téléphone mot_de_passe photo	A(10) A(10) N(4) A(20) Long(32) N(10) A(16) Image(32)	134	7000	938 000
Etudiant	Établissement Date_De_Naissance IdCarteEtudiant Année d'Etude	A(10) Date(10) A(16) N(5)	41	4000	164 000
Particulier	NISS	N(16)	16	3000	48 000
Livre	Auteur ISBN Editeur	A(10) A(16) A(10)	36	3000	108 000
Revue	Volume Parution	N(5) Date(10)	15	2000	30 000
Emplacement	Travée Etagère Niveau Zone	N(4) N(4) N(2) A(10)	20	1500	30 000
Exemplaire	Code_Barre Date_Retour Date_Prêt	N(32) Date(10) Date(10)	52	25000	2 704 000
Ressource	Titre Caution Id_ressource Nombre_de-pages Etat Rubrique Nombre_d'exemplaires Résumé Couverture	A(16) N(4) Long(32) N(4) A(16) A(16) N(8) A(64) Image(32)	192	5000	960 000
Bibliothécaire	Code Nom Prénom Mot_de_passe	N(10) A(10) A(10) A(10)	40	10	400

Répartition organisationnelle des données

Jusqu'à présent nous avons raisonné sur un MOD global, très proche dans son contenu du MCD. Il représente l'ensemble des données à mémoriser utilisables dans la bibliothèque. La répartition organisationnelle nous permettra d'orienter la répartition informatique des données. Elle passera par une quantification des cardinalités. Dans le MCD, les cardinalités multiples sont spécifiées par la lettre N, tandis que le MOD nécessite l'évaluation de cette valeur. Nous définirons ainsi dans notre MOD, la cardinalité moyenne pour calculer en particulier le nombre d'occurrences des relations.²

² Nombre d'occurrences de l'entité * cardinalité moyenne.

La quantification de la cardinalité mini s'exprime pour les cardinalités valant 0, par le taux de participation³. Ce taux est compris entre 0 et 1, et vaut 1 dans le cas d'une cardinalité minimum valant 1 (participation obligatoire). (Severs)

Nous avons fixé la cardinalité moyenne de manière arbitraire, mais il est tout à fait possible de l'estimer à l'aide de la loi de répartition des cardinalités.

Cardinalité moyenne = [(m + 2*M + N)/4]*P

Figure 2: Loi de répartition des cardinalités

 $Volume\ brut = 938000 + 164000 + 48000 + 108000 + 30000 + 30000 + 2704000 + 960000 + 400 = 4,982,400o = 4,9\ Mo$

 $Volume\ brut\ total = Volume\ brut\ *\ facteur\ multiplicatif^4 = 9.8Mo$

MOD global

Il est dérivé du Modèle Conceptuel des Données duquel on peut avoir :

- Supprimer des entités, relations, propriétés qui ne sont pas mémorisés informatiquement ;
- Modifié des entités compte tenu de l'information à mémoriser,
- Ajouté de nouvelle informations.

Dans notre cas, aucune modification n'a été effectuée... Notre MOD est donc similaire au MCD de la *Figure 1*

MOD locaux

Voici les critères :

- ♦ Pour un type d'unités organisationnelles donné, nous allons préciser le MOD local associé (entités relations accessibles par ces unités)
- ◆ Pour chaque entité/relation du MOD local, nous précisons la nature de l'accès autorisé pour l'unité organisationnelle :
 - Lecture (L)

³ Nombre d'occurrences de l'entité participant à la relation / nombre d'occurrences de l'entité.

⁴ Généralement compris entre 1.5 et 2

- Modification (M)
- o Création (C)
- Suppression (S)

Tableau 1: Tableau d'accès aux données

	Bibliothécaire		Utilisateur	
Entité - Relation	Accès	Restriction	Accès	Restriction
Exemplaire	LMCS		L	
Ressource	LMCS		L	
Utilisateur	LCS		L	Lecture unique
Emplacement	LMCS		L	
Emprunter	LM		LC	

Modèle logique des données MLD

Le modèle logique de données permet de modéliser la structure selon laquelle les données seront stockées dans la future base de données. (Espinasse) . C'est donc une transformation des objets du MOD en relations. Nous pouvons l'obtenir directement avec le logiciel WinDesign. Pour les héritages utilisés, nous avons tout simplement dupliquer l'identifiant du sur-type dans le sous-type. Ainsi les classes Utilisateur et Ressource, hériteront respectivement des classes particulier, Etudiant et Livre, Revue.

Figure 3 : Modèle logique relationnel

Le Modèle physique des données (MPD)

Le MPD consiste à implémenter une base de données dans un SGBDR⁵. Dans notre cas nous opterons pour le SQL, avec MySQL Workbench. Chaque table peut être créer à l'aide d'un script SQL que nous pouvons obtenir à partir du diagramme pour effectuer quelques modifications. De manière générale, l'interface de MySQL Workbench est assez complète et nous évite de passer par du code SQL à proprement parler. Il suffit de cocher des cases.

⁵ Système de Gestion de Base de Données Relationnel

Figure 4 : MPD généré par MySQL Workbench (EER diagram)

Création des requêtes significatives

♦ Liste des titres de ressources disponibles

SELECT TITRE FROM BILBIOTHEQUE.ressource;

Savoir quels livres utilisateur détient l'utilisateur avec pour ID « 007»

SELECT code_barre FROM EMPRUNTER WHERE idUtilisateur = '007'

• Nombre d'exemplaires restants de « Les Fourberies de Scapin»

SELECT NbreExemplaires
FROM BIBLIOTHEQUE.ressource
WHERE TITRE = 'Les fourberies de Scapin'

♦ Caution totale des livres empruntés

SELECT Caution
FROM RESSOURCE AS R
INNER JOIN EXEMPLAIRE AS E
WHERE E.dateDeRetour = 'NULL'

Diagramme des classes

Le diagramme des classes montre des blocs de construction de tout le système orienté-objet. C'est une vue statique du modèle que nous pouvons obtenir aussi à l'aide du logiciel WinDesign. Ainsi nous pouvons savoir qui intervient dans le système.

Figure 5: Diagramme des classes

En considérant notre application dans le système, nous obtenons un diagramme des classes complet.

Diagrammes d'objets

Le diagramme d'objets est bien le plus parlant. Il représente une instance spécifique d'un diagramme de classes à un moment précis. On remarque que son schéma est assez intuitif :

Figure 6: Un Diagramme d'objets

Analyse des traitements

Nous allons ici analyser le système du point de vue de l'utilisateur. Le diagramme des cas d'utilisation nous aidera dans notre analyse.

Diagramme Complet des cas d'utilisation

Le diagramme des cas d'utilisation est un diagramme UML utilisé pour une représentation du comportement fonctionnel d'un système logiciel. Il permet simplement de recueillir les besoins exprimés par les utilisateurs.

Figure 7: Diagramme des cas d'utilisation

Description textuelle du cas

La description textuelle du cas expose de façon détaillée le dialogue entre acteurs, et cas d'utilisation. Pour commencer, nous allons identifier le cas.

Nom:	Location livre	
Objectif:	Permettre à un acteur d'emprunter une ressource disponible (Livre ou	
	revue) à date, et de la restituer avant une échéance.	
Acteur Principal :	Le client	
Acteur	Bibliothécaire	
Secondaire :		
Dates:	Date de prêt	
	Date de retour	

Quelques scénarios

Les préconditions :

Avant que le système ne puisse être déclenché, il faudrait :

- ♦ Au moins un client inscrit
- ♦ Le client est authentifié
- Au moins un bibliothécaire qui ait préalablement ajouté une ou plusieurs ressources
- Que la ressource désirée par le client soit présente et disponible
- Que le client dispose au minimum du nombre de crédit requis pour louer la ressource

Scénario nominal:

Un client souhaite louer un livre. Il entre le nom de la ressource dans la barre de recherche. Le livre a été retrouvé dans la base de données et un exemplaire est disponible à un emplacement. Le client clique sur le bouton « louer» . Il est ensuite débité du nombre de crédits correspondant à la ressource louée, puis est redirigé vers le bibliothécaire qui mentionne la date de prêt et lui délivre le livre.

Lors du retour, le client rapporte le livre au bibliothécaire qui inscrit la date de retour. Enfin, le client est approvisionné de la caution de la ressource.

Scénario alternatif :

Un client après avoir pris un livre à la bibliothèque, le perd. Alors il perdra la caution de la ressource et le bibliothécaire mentionnera un exemplaire en moins de la ressource dans la base de données.

Scénario d'exception :

Un client désire louer une ressource, mais ne dispose pas d'assez de crédit sur sa carte. Une erreur est générée et il est redirigé vers le bibliothécaire pour recharger ses crédits. La location est avortée.

Diagramme des séquences et de communication

Le diagramme de séquence représente la succession chronologique des opérations réalisées par un acteur. Il nous indique clairement les objets que l'acteur va manipuler et les opérations qui font passer d'un objet à l'autre.

On peut représenter les mêmes opérations par un diagramme de communication ; graphe dont les nœuds sont des objets et les arcs des échanges entre les objets. Les diagrammes de séquences et de communication sont donc deux vues différentes, mais logiquement équivalentes d'une même chronologie. Nous considérerons le cas d'un enregistrement d'un utilisateur dans la base de données. Les objets qui participent à l'évènement sont : le bibliothécaire, le UserRepository, la base de données et l'entité Utilisateurs.

Figure 8: Diagramme de séquence pour l'action : Enregistrer utilisateur

Figure 9: Diagramme de communication pour l'évènement : enregistrer utilisateur

Diagramme Etats-Transitions

Figure 10: Diagramme d'états-transitions d'un exemplaire d'une ressource

Diagramme d'activités d'un cas d'utilisation

Une activité est une partie du cas d'utilisation.

Figure 11: Diagramme des cas pour l'activité : Emprunter une ressource

Conclusion

L'analyse est un préambule à une implémentation d'un système d'information. Elle nous permet de bâtir un solide système qui coordonne, grâce à la structuration des échanges, les activités de l'organisation et lui permet ainsi d'atteindre ses objectifs.

Notre étude n'avait pas pour mission de mettre sur pied un système d'information solide et sans faille, mais nous avions pour objectif de couvrir tous les aspects importants de l'étude d'un système. Elle constituera ainsi une solide base pour une mise en place future d'un tel système, qui sera basé sur des données réelles pour un fonctionnement optimal.

Références

Abderrazzak, E. H. (2016). Exercices d'ingénierie logicielle. ISIB.

Espinasse, B. (s.d.). ER-Relationnel. Récupéré sur https://pageperso.lis-lab.fr/bernard.espinasse/Supports/BD/ER-Relationnel-4p.pdf

Severs, T. (s.d.). Exercices d'ingénierie logicielle : modèle organisationnel des données.

