

2nd Intelligent Computing and Technology Conference (ICTCon) Central Institute of Technology Kokrajhar, Assam, India

PREDICTING INSURANCE PREMIUM FOR LIFE INSURANCE APPLICANTS USING MACHINE LEARNING

#25

AUTHOR(S)

Subhash Kumar Wary Akher Uddin Ahmed Birhang Borgoyary

ABOUT US

We are final-year B.Tech students from the Department of Computer Science and Engineering at the Central Institute of Technology Kokrajhar. We are passionate about leveraging technology to solve real world challenges and look forward to contributing to the ever evolving tech landscape.

AGENDA

INTRODUCTION

LITERATURE REVIEW

PROBLEM STATEMENT

METHODOLOGY

RESULTS

CONCLUSION

2. Premium assessment traditionally relies on human underwriters analyzing factors like age, health, and lifestyle.

3. ML revolutionizes insurance by enhancing accuracy and efficiency in premium assessment.

4. ML streamlines underwriting, reduces costs, and improves premium predictions for better coverage options.

LITERATURE REVIEW

- 1. Transition from actuarial methods to ML techniques for precise, efficient, and data-driven underwriting.
- 2. ML models like RF, LR, and GB improve risk prediction and handle complex datasets effectively.
- 3. Automation reduces time, cost, and biases while increasing transparency and fairness.
- 4. Dependence on data quality, potential bias, and ethical concerns in ensuring fairness across demographics.

LITERATURE **REVIEW**

Authors & Year	Objectives	Methodology	Results	
Junedi and	to predict the risk	Three ML	Precision using	
Mauritsius (2020)	level of life insurance	classifiers as SVM,	RF, SVM using a	
	applicants using ML.	Naive Baye's & RF	linear kernel & NB	
		are used.	are 0.85, 0.72 and	
			0.49 respectively.	
Chang et al.	to develop an	It discusses	5 types of	
(2022)	automated diabetes	SMOTE and	classifiers (DT, RF,	
	diagnosis system	ADASYN for	NB, KNN and LR)	
	using ML models. dealing with		for predicting	
	imbalanced dataset		diabetes and RF	
		& used DT, RF, NB,	achieved highest	
		KNN and LR.	accuracy.	
Kaushik et al.	to predict health	The training and	ANN based	
(2022)	insurance premiums	evaluation of an	regression model for	
	by using the concept	ANN and LR based	predicting health	
	of AI and ML in	regression model is	insurance premium	
	healthcare.	done to predict health	with accuracy of	
		premiums.	92.72%.	
		1		
Singh et al. (2017)	To classify and	Data mining	Comparison with	
	predict the different	approach	association rule	
	level of diabetes in		mining based	
	the patients		approach	
Baruah et al.	to improve risk	Geographical	ML approaches	
(2023)	assessment in life	Information Systems	are applied to predict	
	insurance industries	(GIS) and ML	the applicants risks	
	of the applicants	approaches	on both the datasets.	
	using predictive			
	analytics			
Baruah and Singh	Review on role of	Risk classification	underwriters role	
	Risk prediction for	is done based	is to calculate the	
	customers in	on their risk levels	premium based on	
	insurance companies.	by grouping of	the calculated risk of	
		customers with ML	customers	

Table 1: Related Work

PROBLEM STATEMENT

To build an efficient ML model to predict life insurance premiums and recommend suitable policies based on predictions.

SOTA METHODS

METHODOLOGY

- 1. Pre-processing of data has been done before training the model.
- 2. 80% (1070) data has been taken for training and 20% (268) data taken for testing.
- 3. The model has trained with the various algorithms such as Linear Regression, Random Forest Regressor, and Gradient Boosting Regressor.
- 4. Various machine learning algorithms were compared and Gradient Boosting Regressor model was selected as the best option for prediction.
- 5. Predict the result using the trained model on the input data and provide the prediction.

BLOCK DIAGRAM

Fig.1 System Architecture

DATASET

Dataset has been taken from Kaggle containing the features Age, Sex, BMI, Children, Smoker, Region and Charges.

Table 2: Insurance Dataset									
	Α	В	С	D	E	F	G		
1	age	sex	bmi	children	smoker	region	charges		
2	19	female	27.9	0	yes	southwest	16884.92		
3	18	male	33.77	1	no	southeast	1725.552		
4	28	male	33	3	no	southeast	4449.462		
5	33	male	22.705	0	no	northwest	21984.47		
6	32	male	28.88	0	no	northwest	3866.855		
7	31	female	25.74	0	no	southeast	3756.622		
8	46	female	33.44	1	no	southeast	8240.59		
9	37	female	27.74	3	no	northwest	7281.506		
10	37	male	29.83	2	no	northeast	6406.411		
11	60	female	25.84	0	no	northwest	28923.14		
12	25	male	26.22	0	no	northeast	2721.321		
13	62	female	26.29	0	yes	southeast	27808.73		
14	23	male	34.4	0	no	southwest	1826.843		
15	56	female	39.82	0	no	southeast	11090.72		

Total Number of Rows and Columns in our Dataset are 1338 and 7 respectively

DATASET

Fig. 2: Age Distribution

Fig. 3: Sex Distribution

Fig. 4: Children Distribution

DATASET

Fig. 5: Smoker Distribution

Fig. 6: Region Distribution

Fig. 7: Charges Distribution

ANALYSIS

Linear Regression vs Actual

Gradient Boosting vs Actual - Actual - Actual M-3 20000 M-2 Random Forest **Gradient Boosting** 14000 17500 12000 15000 10000 Charges 12500 10000 8000 6000 7500 5000 4000 2500 2000 200 400 600 800 1000 200 400 600 800 1000 0 Index Index

Central Institute of Technology Kokrajhar, Subhash Kumar Wary, Akher Uddin Ahmed and Birhang Borgoyary

Fig.8 Compare Performance Visually

RESULTS

Fig. 9 R2 Scores for Different Regression Models

Fig. 10 Mean Absolute Error for Different Regression Models

INTERFACE

Life Insurance Premium Prediction Result

Predicted Cost: \$17628.83163458479

Fig. 11 Interface created using Flask and Python

DISCUSSION

LINEAR REGRESSION (LR) 74%

RANDOM FOREST (RF) REGRESSOR 83% GRADIENT BOOSTING (GB)
REGRESSOR 86%

- 1. Our study focused on ML algorithms for predicting life insurance premiums.
- 2. Models used are Linear Regression (LR), Random Forest (RF) Regressor, Gradient Boosting (GB) Regressor.
- 3. All models effectively predicted premiums with high accuracy.
- 4. GB Regressor achieved the best performance with 86% accuracy.

CONCLUSION

EXISTING PROPOSED

Three ML classifiers as SVM, Naïve Baye's & RF are used.

Precision using RF, SVM using a linear kernel & NB are 0.85, 0.72 and 0.49 respectively.

Three ML regressors as LR, RF and GB are used.

Precision using LR, RF and GB are 74%, 83% and 86% respectively.

SUBHASH KUMAR WARY

Member 1

AKHER UDDIN AHMED

Member 2

BIRHNAG BORGOYARY

Member 3

2nd Intelligent Computing and Technology Conference (ICTCon) Central Institute of Technology Kokrajhar, Assam, India

THANK YOU

Subhash Kumar Wary

u20csel2110@cit.ac.in

+918812013021

