$\mathbb{Z}_n \otimes \mathbb{Z}_m \cong \mathbb{Z}_{(n,m)}$.

Pf: We have a hom $\Psi: \mathbb{Z} \to \mathbb{Z}_n \otimes \mathbb{Z}_n$, $K \overset{\varphi}{\longmapsto} \kappa \otimes 1$ surjective. (d) C Ker Ψ so Ψ reduces to a hom-sm $\mathbb{Z}_d \to \mathbb{Z}_n \otimes \mathbb{Z}_n$.

Consider $\beta: \mathbb{Z}_n \times \mathbb{Z}_m \longrightarrow \mathbb{Z}_J$ defined by $\beta(K, \ell) = K\ell \mod d$. β is bither so it induces a hom-sm $\psi: \mathbb{Z}_n \otimes \mathbb{Z}_m \longrightarrow \mathbb{Z}_J$. Clariff: $\psi = \psi^{-1}$

 $\mathcal{L} \quad \forall (\psi(\kappa \otimes l)) = \quad \forall (\kappa l) = \quad \kappa l \otimes l = \quad \kappa \otimes \ell$ $\forall (\psi(\kappa)) = \quad \forall (\kappa \otimes l) = \quad \kappa$

Theorems: $M_1 \otimes M_2 \cong M_2 \otimes M_1$ $0: u_1 \otimes u_2 \longleftrightarrow u_2 \otimes u_1$

 $\frac{\text{proof:}}{\beta: M_1 \times M_2 \longrightarrow M_2 \otimes M_1}$ $\beta(u_1, u_2) = u_2 \otimes u_1 \quad \text{is biliher}$

SU, induces P: M. &M2 -- M2 &M,

u, & U2 -- U2 &U,

Same way the other way, and 4=4-1.

In $M \otimes M$, $u_1 \otimes u_2 \neq u_2 \otimes u_1$.

Sterner's Lemma

\$\rightarrow{\sigma}{\sigma}\circ\{\sigma}\{\sima}\{\sima}\{\sigma}\{\sigma}\{\sigma}\{\sigma}\{\sigma}\{\sigma}\{\sigma}\{\sigma

<u>Proof</u>: Consider $\beta: (M, \oplus M_2) \times M_3 \longrightarrow (M_1 \otimes M_3) \oplus (M_2 \otimes M_3)$ $((h_1, h_2), h_3) \longmapsto (h_1 \otimes h_3, h_2 \otimes h_3)$

So β induces a hom-sin $\Psi:(M_1 \oplus M_2) \otimes M_3 \longrightarrow (M_1 \otimes M_3) \oplus (M_2 \otimes M_3)$ S.t. $\Psi((u_1, u_2) \otimes u_3) = \beta((u_1, u_2), u_3)$.

define $\varphi_i: M_1 \otimes M_3 \longrightarrow (M_1 \oplus M_2) \otimes M_3$ by $\varphi_i(u_1 \otimes u_3) = (u_1, o) \otimes u_3$. $\varphi: M_1 \times M_3 \longrightarrow (M_1 \oplus M_2) \otimes M_3$ by $\varphi_i(u_1 \otimes u_3) = (u_1, o) \otimes u_3$ is bilinear.

Ψ₂: M₂ ⊗ M₃ → (M₁ ⊕ M₂) ⊗ M₃ by Ψ₂(u₂ ⊗ u₃) = (0, u₂) ⊗ u₃

By universal property of \oplus , \exists unique $\psi:(M,\otimes M_3)\oplus(M_2\otimes M_3)\longrightarrow(M,\oplus M_2)\otimes M_3$

which agrees with 4, & \$2.

$$\forall M_1, M_2, \forall n_1, n_2 \in \mathbb{Z}, \left(\bigoplus_{n_1}^{11} M_1\right) \otimes \left(\bigoplus_{n_2}^{11} M_2\right) = \bigoplus_{n_1 \cdot n_2}^{11} \left(M_1 \otimes M_2\right)$$

$$R^n \otimes M = \bigoplus_{n} \left(R \otimes M\right) = \bigoplus_{n} M = M^n$$

$$R^n \otimes R^n = R^{nm}$$

Extension of Scalers: Let S be an R-algebra.

Let M be an R-module.

S & M - R-module

It has an S-module structure by Note: $\mathcal{K}\left(\beta\otimes \mathcal{U}\right) = (\alpha\beta)\otimes \mathcal{U} \,. \qquad \left(\beta\otimes \mathcal{U} \neq \beta\cdot (1\otimes \mathcal{U})\right)$

Oheck: $\mathcal{K}_{1}(\alpha_{2}(\beta \otimes u)) = (\alpha_{1}\alpha_{2}\beta) \otimes u = (\alpha_{1}\alpha_{2})(\beta \otimes u)$ $(\alpha_{1} + \alpha_{2})(\beta \otimes u) = \alpha_{1}(\beta \otimes u) = \alpha_{2}(\beta \otimes u)$ $\alpha(\omega_{1} + \omega_{2}) = \alpha\omega_{1} + \alpha\omega_{2}?$ (where $\omega_{1}, \omega_{2} \in S \otimes M$).