

Department of Computer Engineering

Experiment No. 7

Apply Dimensionality Reduction on Adult Census Income

Dataset and analyze the performance of the model

Date of Performance:

Date of Submission:

Department of Computer Engineering

CSL701: Machine Learning Lab

Aim: Apply Dimensionality Reduction on Adult Census Income Dataset and analyze the

performance of the model.

Objective: Able to perform various feature engineering tasks, perform dimetionality reduction

on the given dataset and maximize the accuracy, Precision, Recall, F1 score. Theory:

In machine learning classification problems, there are often too many factors on the basis of

which the final classification is done. These factors are basically variables called features. The

higher the number of features, the harder it gets to visualize the training set and then work on it.

Sometimes, most of these features are correlated, and hence redundant. This is where

dimensionality reduction algorithms come into play. Dimensionality reduction is the process of

reducing the number of random variables under consideration, by obtaining a set of principal

variables. It can be divided into feature selection and feature extraction. Dataset:

Predict whether income exceeds \$50K/yr based on census data. Also known as "Adult" dataset.

Attribute

Information: Listing of

attributes:

>50K, <=50K.

age: continuous.

workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked.

Department of Computer Engineering

fnlwgt: continuous.

CSL701: Machine Learning Lab

education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.

education-num: continuous.

marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.

occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.

relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.

race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black. sex: Female,

Male. capital-gain: continuous. capital-loss: continuous. hours-per-week:

continuous.

native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad & Tobago, Peru, Hong, Holand-Netherlands.

CSL701: Machine Learning Lab

```
In [2]: import numpy as np
import pandas as pd

df = pd.read_csv("adult.csv")
    df.head()
```

Out[2]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gŧ
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
1	38	Private	89814	HS-grad	9	Married- civ-	Farming- fishing	Husband	White	
2				Assoc-		spouse Married-	Destantina			
_	28	Local-gov	336951	acdm	12	spouse	Protective- serv	Husband	White	
3				Some-		Married-	Machine-			
J	44	Private	Private 160323	college	10	civ- spouse	op-inspct	Husband	Black	
4	18	?	103497	Some- college	10	Never- married	?	Own-child	White	F€
4)			>

In [3]: df.describe()

Out[3]:

	age	fnlwgt	educational- num	capital-gain	capital-loss	hours-per- week
count	48842.000000	4.884200e+04	48842.000000	48842.000000	48842.000000	48842.000000
mean	38.643585	1.896641e+05	10.078089	1079.067626	87.502314	40.422382
std	13.710510	1.056040e+05	2.570973	7452.019058	403.004552	12.391444
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.175505e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.781445e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.376420e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.490400e+06	16.000000	99999.000000	4356.000000	99.000000

```
In : df.shape (48842, 15)
```

In [5] df.info

[48842 rows x 15 columns]>

Out[5]:	<body> on ed</body>	meth ucati	od DataFrame.i onal-num \	nfo of	age	workclass	fnlwgt	educ	ati
	0 1	25 38	Private Private	226802 898 1 4	11th HS-grad		7		
	2	28	Local-gov	336951	Assoc-acdm		12		
	3	44	Private	160323	Some-college		10		
	4	.18		103497	Some-college		.10		
	48837	27	Private	257302	Assoc-acdm		12		
	48838	40	Private	1 54374	HS-grad		9		
					HS-grad				
	48839	58	Private	151910	HS-grad		9		
	48840	22	Private	201490	HS-grad		9		
	48841	52	Self-emp-inc	287927			9		
			marital-status		r	elationship	race		\
	0				occupation	Own-child		gender	•
			Never-married		e-op-inspct		Black	Male	
	1		ied-civ-spouse		ing-fishing	Husband	White	Male	
	2		ied-civ-spouse		ective-serv	Husband	White	Male	
	3	Marr	ied-civ-spouse	Machin	e-op-inspct	Husband	Black	Male	
	4 48837		Never-married	Т	ech-support	Own-child Wife	White White	Female Female	
		Marr	ied-civ-spouse		e - op-inspct				
	48838	Marr	ied-civ-spouse		dm-clerical	Husband	White	Male	
	48849 48841	Marr	Never-wadowed ied-civ-spouse	A Exec	dm-clerical -managerial	Owmachi∉d Wife	White White	Fe Male Female	
			.	+-1 1	.				
	0	сарі	tal-gain capi	tal-loss	hours-per-w		_	income	
	0 1 2 3		А	а		United- 50 United-		<i>₹≣</i> 5 ∅ ₭	
	2		8	9 8 9		50 United-		>50K	
			7688						
	4		7550	0		40 United:	-Stätes	<=50K	
	48837					 38 United	·States	<=50K	
	48838		0	0		40 United		>50K	
	48839		0	0		40 United		<=50K	
	48840		0	0		20 United		<=50K	
	48841		15024	0		40 United	-States	>50K	

```
In [7]
         df.isnull().sum()
 Out[7]: age
                              0
                           2799
         workclass
         fnlwgt
                              0
         education
                              0
         educational-num
                              0
         marital-status
                              0
         occupation
                           2809
         relationship
                              0
         race
                              0
         gender
                              0
                              0
         capital-gain
         capital-loss
                              0
         hours-per-week
                              0
         native-country
                            857
         income
                              0
         dtype: int64
 In [9]: | for col in ['workclass', 'occupation', 'native-country']:
             df[col].fillna(df[col].mode()[0], inplace=True)
         df.isnull().sum()
 Out[9]: age
                           0
                           0
         workclass
                           0
         fnlwgt
         education educational-num
                           0
0
                           0
         marital-status
         occupation
                           0
         relationship
                           8
                           0
         gender
         capital-gain
                           0
         capital-loss
                           0
                           0
         hours-per-week
         native-country
                           0
         int64
        from sklearn.model selection import train_test_split
In [11]
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rail
         from sklearn import preprocessing
   [14]
         for feature in categorical:
             label = preprocessing.LabelEncoder()
             X train[feature] = label.fit transform(X train[feature])
             X_test[feature] = label.transform(X_test[feature])
```

```
from sklearn.preprocessing import StandardScaler
In [15]
          scaler = StandardScaler()
          X_train = pd.DataFrame(scaler.fit_transform(X_train), columns = X.columns)
          X test = pd.DataFrame(scaler.transform(X test), columns = X.columns)
          X train.head()
Out[15]:
                                                     educational-
                                                                  marital-
                  age workclass
                                    fnlwgt education
                                                                          occupation relationship
                                                                   status
                                                           num
             -0.849978
                                                       -0.027733
                                                                 -0.406325
                        -1.887643 -0.551219
                                            1.212393
                                                                            -1.554732
                                                                                        0.969833
              0.241031
                        -0.094859
                                  1.687545
                                           -2.650223
                                                       -1.587187 -0.406325
                                                                            -1.049322
                                                                                        0.969833
           2 -0.486308
                        1.697924 -1.434052
                                           -0.590161
                                                       0.362131 -0.406325
                                                                            -0.543912
                                                                                       -0.899325
             -0.195373
                        -0.094859
                                 -0.384485
                                            1.212393
                                                       -0.027733
                                                                 0.922720
                                                                            -0.796617
                                                                                       -0.276272
              -0.704510
                        -0.094859
                                  1.608144
                                            0.182362
                                                       -0.417596
                                                                 1.587242
                                                                            1.730434
                                                                                        1.592886
          from sklearn.linear_model import LogisticRegression
In [18]:
          from sklearn.metrics import accuracy_score
          LR = LogisticRegression()
          LR.fit(X_train, y_train)
Out[18]: LogisticRegression()
          In a Jupyter environment, please rerun this cell to show the HTML representation or
          trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
          with nbviewer.org.
          y_pred = LR.predict(X_test)
    [20]
          accuracy_score(y_test, y_pred)
          0.8221524602470484
Out[20]
          from sklearn.decomposition import PCA
Ιn
   [21]
          pca = PCA()
In
          X_train = pca.fit_transform(X_train)
   [22]
          pca.explained_variance_ratio_
         <sup>l</sup>array([0.14740223, 0.10130193, 0.08096753, 0.07933632, 0.07433976,
Out[22]
                  0.07314763, 0.07066221, 0.06753572, 0.06516078, 0.06093536,
                  0.06003764, 0.04864317, 0.04289137, 0.02763835])
In
          X = df.drop(['income'], axis=1)
   [24]
          y = df['income']
          X train, X test, y train, y test = train test split(X, y, test size = 0.3, ram
```

```
In [25]
         categorical = ['workclass', 'education', 'marital-status', 'occupation', 'rele
         for feature in categorical:
              lablel = preprocessing.LabelEncoder()
             X train[feature] = label.fit transform(X train[feature])
             X test[feature] = label.transform(X test[feature])
In [26]: X train = pd.DataFrame(scaler.fit transform(X train), columns = X.columns)
         pca= PCA()
In [27]:
         pca.fit(X train)
         cumsum = np.cumsum(pca.explained_variance_ratio_)
         dim = np.argmax(cumsum >= 0.90) + 1
          print('The number of dimensions required to preserve 90% of variance is',dim)
         The number of dimensions required to preserve 90% of variance is 12
In [28]: | X = df.drop(['income', 'native-country', 'hours-per-week'], axis=1)
         y = df['income']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rar
In [30]: | categorical = ['workclass', 'education', 'marital-status', 'occupation', 'rela
         for feature in categorical:
             label = preprocessing.LabelEncoder()
             X_train[feature] = label.fit_transform(X_train[feature])
             X test[feature] = label.transform(X test[feature])
         X train = pd.DataFrame(scaler.fit transform(X train), columns = X.columns)
         X_test = pd.DataFrame(scaler.transform(X_test), columns = X.columns)
In [31]: | LR2 = LogisticRegression()
         LR2.fit(X_train, y_train)
Out[31]: LogisticRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or
         trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
         y_pred = LR2.predict(X_test)
         accuracy_score(y_test, y_pred)
         0.8229031597625059
Out[32]
```

In [33] from sklearn.metrics import confusion_matrix
import pandas as pd
confusion = confusion_matrix(y_test, y_pred)

df_confusion_= nd_DataEname(confusion__columns=['Pn

df_confusion = pd.DataFrame(confusion, columns=['Predicted No', 'Predicted Yes
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
<=50K >50K	0.84 0.71	0.94 0.44	0.89 0.54	11138 3515
accuracy macro avg weighted avg	0.78 0.81	0.69 0.82	0.82 0.72 0.81	14653 14653 14653

Department of Computer Engineering

Conclusion:

- 1. Using principal component analysis, we were able to obtain an accuracy score of 0.82 on the testing data, meaning that our model is 82% accurate.
- 2. Our model's precision score, which quantifies the accuracy of the positive predictions, is 0.84.
- 3. Recall evaluates the model's capacity to accurately identify all pertinent instances; our model received a recall score of 0.94.
- 4. The F1-score, which our model yielded, is 0.89. It is the harmonic mean of precision and recall and offers a balance between the two metrics.

CSL701: Machine Learning Lab