Sistemas Distribuidos Grado en Ingeniería Informática

Sincronización Sistemas Distribuidos II

Departamento de Ingeniería Informática Universidad de Cádiz

Sistemas Distribuidos

Indice

1 Estados Globales

2 Depuración distribuida

Sección 1 Estados Globales

Introducción

Hay tareas para las que necesitamos conocer el estado global del sistema:

- Recolección de basura: Detección de objetos distribuidos que va no se utilizan
- Detección de Interbloqueos: Un interbloqueo distribuido ocurre cuando dos procesos esperan mensaje del otro
- Detección de estados de terminación: Detectar la terminación de un algoritmo distribuido

Es vital tener en cuenta el estado de los procesos y del canal de comunicación

Cortes consistentes

■ Un corte C es consistente si, para cada suceso que contiene, también contiene todos los sucesos que "sucedieron antes que"

Estado global consistente:

Aquél que corresponde con un corte consistente

Evaluación de cortes con relojes vectoriales

Para saber si un corte es consistente, nos podemos basar en los vectores de tiempos:

$$\forall i,j: V_i[i](e_i^{ci}) \geq V_j[i](e_j^{cj})$$

- Puesto que cada proceso posee una visión parcial del sistema, para construir un corte consistente (y obtener de paso su estado global asociado) los procesos deben ejecutar un algoritmo distribuido
- Utilidad:
 - Detección de interbloqueos.
 - Establecimiento de puntos de recuperación de un sistema.
 - Finalización distribuida.

Evaluación de cortes con relojes vectoriales - EJEMPLO

Un corte es consistente si, para cada proceso Pi, su reloj lógico en ese momento es mayor o igual que todos los registros del valor del reloj de Pi mantenidos por otros procesos

Algoritmo de instantánea de Snapshot) de Chandy y Lamport

- Objetivo Obtener un conjunto de estados de proceso y del canal de comunicación (instantánea) que sea un estado global consistente
- Suposiciones
 - Los canales y procesos no fallan: todos los mensajes se reciben correctamente, y una única vez
 - Los canales son unidireccionales con entrega tipo FIFO
 - Hay canal de comunicación directo entre todos los procesos
 - Cualquier proceso puede tomar una instantánea en cualquier momento
 - Los procesos pueden continuar su ejecución y comunicación mientras se está tomando una instantánea

Evaluación de cortes con relojes vectoriales - EJEMPLO

Además del propio estado del proceso, cada proceso construye el estado de sus canales de recepción. Como ya hemos definido, los mensajes enviados por P_i y aún no recibidos por P_i constituyen el estado del canal Cij.

Estados Globales Evaluación de cortes con relojes vectoriales - EJEMPLO

- Regla de recepción de instantánea (mark) en Pi por el canal c
 - si (P_i no ha registrado su estado todavía)
 registra su estado de proceso
 registra el estado de c como vacío
 activa el registro de mensajes que lleguen por otros canales
 - si no
 P_i registra el estado de c como el conjunto de mensajes recibidos en c desde que guardó su estado (mensajes posteriores a la instantánea)
- Regla de envío de instantánea por Pi
 - Tras registrar su estado, para cada canal de salida c P_i envía un mensaje de instantánea por el canal c

Universida

Sección 2 Depuración distribuida

Predicados

- La ejecución de un SD se puede caracterizar (y depurar) por las transiciones entre estados globales consistentes S₀ → S₁ → S₂ → S_n
- Un predicado de estado global es un función
 - Determinar una condición del SD equivale a evaluar su predicado
- Características posibles de un predicado
 - Estabilidad: el valor del predicado no varía con los nuevos sucesos (por ejemplo, en el caso de interbloqueo o terminación)
 - **Seguridad:** el predicado tiene valor falso para cualquier estado alcanzable desde *S*₀ (deseable para errores)
 - **Veracidad:** el predicado tiene valor verdadero para algún estado alcanzable desde *S*₀ (deseables para situaciones necesarias)

Predicados:Ejemplo

Imaginemos un sistema de 2 procesos donde queremos controlar el predicado

Monitorización

- Depurar un SD requiere registrar su estado global, para poder hacer evaluaciones de predicados en dichos estados
 - lacktriangle Generalmente, la evaluación trata de determinar si el predicado φ cumple con la condición "posiblemente" o "sin duda alguna".
- Monitorización del estado global:
 - Centralizado: algoritmo de Marzullo y Neiger
 - Los procesos envían su estado inicial al proceso monitor
 - Periódicamente, le vuelven a enviar su estado
 - El monitor registra los mensajes de estado en colas de proceso (Una por proceso)
 - Instantánea global: Algoritmo de Chandy y Lamport.

Instantánea global del estado(global snapshot)

- Canal C_{12} de P_1 a P_2 .
- 2 Canal C_{21} de P_2 a P_1 .

Ejemplo: Qué hay que apuntar

Ejemplo

- Estado de cada proceso.

Ejemplo: Qué hay que apuntar

Ejemplo

- Estado de cada proceso.
- 2 Estado de los canales

Universida

Ejemplo: Qué hay que apuntar

Ejemplo

- Estado de cada proceso.
- Estado de los canales.

Ejemplo en movimiento

Ejemplo

- 1 P_1 envía mensaje a P_2 .
- 2 P₂ cambia su estado

Universida

Ejemplo en movimiento

Ejemplo

- P_1 envía mensaje a P_2 .
- P_2 cambia su estado.

Universida

Problema: Obtener una instantánea global

Supone:

- Ningún error en los procesos.
- No se pierde ningún mensaje, ni se duplica.
- Dos canales FIFO entre cada par de procesos.

Restricciones Iniciales

Otros algoritmos relajan estos supuestos.

Algoritmo Chandy-Lamport

Proceso

- Un proceso P_i inicia la instantánea.
- P_i registra su estado.
- Envía un mensaje especial *marca* a cada proceso conectado.
- Registra todos los mensajes que le recibe de otros proceso $(C_{ii}, i! = i).$

Para todo proceso P_i que recibe el mensaje de marca del proceso P_i

- 1 Si es la primera vez:
 - 1 P_i guarda su estado, y marca C_{ki} como *empty*.
 - Envía el mensaje de marca a cada proceso conectado.
 - Registra todos los mensajes que le llegan desde C_{li} , l! = k.

- P_1 inicia el proceso.

- P_1 inicia el proceso.
- P₁ Guarda su estado.

- P_1 inicia el proceso.
- P_1 Guarda su estado.
- P_1 Envía mensaje de marca a P_2 .

- P_1 inicia el proceso.
- P_1 Guarda su estado.
- P_1 Envía mensaje de marca a P_2 .
- P₂ guarda el estado y envía mensaje de marca.

- P_1 inicia el proceso.
- P₁ Guarda su estado.
- P_1 Envía mensaje de marca a P_2 .
- P₂ guarda el estado y envía mensaje de marca.
- P₁ Registra el mensaje recibido.

Evaluación de predicados

- Objetivo de la monitorización
 - Determinar si un predicado φ es "posiblemente" o "sin duda alguna" verdadero en un determinado punto de la ejecución.
 - El proceso monitor sólo registra los estados globales consistentes
 - Los únicos en que podemos evaluar el predicado con certeza
- Monitorización del estado global:
 - Teniendo en cuenta el predicado a evaluar, podemos reducir el tráfico de mensajes de estado
 - Tamaño: el predicado puede depender sólo de ciertas partes del estado de un proceso → no es necesario mandar el estado completo
 - Número: el cambio de valor del predicado sólo ocurre en algunos casos
 → sólo hay que recoger los estados en cambios relevantes

Red de estados globales

- Mediante la monitorización podemos construir una red de estados globales consistentes
 - S_{ii} = estado global tras i eventos en el proceso 1 y j eventos en el proceso 2

Red de estados globales: ejemplo

Red de estados globales

- Linealización: ruta entre estados
- Posiblemente φ: existe un estado consistente S a través del que pasa una linealización tal que $\varphi(S)$ = Verdadero
- Sin duda alguna φ: existe un conjunto de estados consistentes S* a través del que pasan todas las linealizaciones, tal que, para todo S en S*, $\varphi(S)$ =Verdadero

Evaluación Instantánea de predicados

Evaluación de predicados posiblemente

- Recorremos los estados alcanzables de cada estado inicial
 - Hasta que en algún momento alguno de los estados cumpla que $\varphi(S_i)$ = Verdadero, o terminamos de recorrer la red.

```
Evaluar posiblemente \phi para la red H de N procesos
 L=0: //Nivel de la red de estados
 Estados=\{(s_1^0, s_2^0, \dots s_N^0)\}; //Estados del nivel L
 mientras (\varphi(s_i) = Falso para todos los s_i en Estados)
   L=L+1:
    Alcanzable = { S' tal que S' es alcanzable en H desde
    algún S en Estados y nivel(S') = L };
    Estados = Alcanzable:
  fin mientras
  si L <= {nivel máximo de H} salida "posiblemente φ";
```

Evaluación de predicados sin duda alguna

- Recorremos los estados alcanzables de cada estado inicial
 - Hasta que en algún momento todos los estados cumplan con el predicado $\varphi(S_i)$ = Verdadero, o terminamos de recorrer la red.

```
Evaluar sin duda alguna φ para la red H de N procesos
  L=0;
  si (\varphi(s_{1}^{0}, s_{2}^{0} ... s_{N}^{0})) Estados={};
                          Estados={(s0, s0, ... s0, )};
  si no
  mientras (Estados != {})
    L=L+1;
    Alcanzable = { S' tal que S' es alcanzable en H desde algún S en Estados y nível(S') = L };
    Estados = {S en Alcanzable con \varphi(S)=Falso};
  fin mientras
  salida "sin duda alguna φ";
```

Resumen

Consiste en

- Determinar el predicado que queremos evaluar
- Especificar un método para construir una red o historia de estados alobales consistentes
 - Teniendo en cuenta el predicado para optimizar tráfico
- Evaluar si nuestro predicado se cumple en algún momento
 - Si es posible, se cumplirá para algunas linealizaciones
 - Si es sin duda, se cumplirá para todas las linealizaciones

