«Система поддержки принятия медицинских решений»

Хмелёв Алексей

Задача

Даны данные, хранящие информацию о пациентах:

- Показания с датчиков
- Количество прожитых дней
- Умер человек в отделении интенсивной терапии или нет

Необходимо:

• Создать приложение, которое по данным с датчиков пациента будет предсказывать, сколько дней проживет пациент и умрет ли он в отделении интенсивной терапии или нет

В ходе первой сессии данные были обработаны и от временных рядов для каждого параметра был осуществлен переход к некоторым фичам, которые не зависят от длительности расчета показателей пациента

	RecordID	Age	Gender	Height	ICUType	MeanAlbumin	MeanALP	MeanALT	MeanAST	MeanBilirubin	 MeanSysABP	MeanTemp	MeanTroponinl	Mei
0	66269.5	27.0	0.0	-0.50	2.0	NaN	NaN	NaN	NaN	NaN	 NaN	37.357143	NaN	
1	66270.0	38.0	0.5	87.65	1.0	NaN	NaN	NaN	NaN	NaN	 113.411765	36.939130	NaN	
2	66270.5	22.0	0.0	-0.50	1.5	2.5	116.0	83.0	199.5	2.9	 125.687500	37.800000	NaN	
3	66271.5	34.0	0.5	90.15	1.5	4.4	105.0	12.0	15.0	0.2	 NaN	36.223077	NaN	
4	66272.5	44.0	0.0	-0.50	1.5	3.3	NaN	NaN	NaN	NaN	 NaN	36.880000	NaN	
7995	76424.5	39.0	0.5	90.15	1.0	NaN	NaN	NaN	NaN	NaN	 129.271186	36.854348	NaN	
7996	76425.5	45.0	0.5	88.90	1.5	NaN	74.0	12.0	25.0	1.0	 117.416667	37.092857	NaN	
7997	76429.0	35.0	0.0	76.20	1.0	2.8	88.0	11.0	21.0	NaN	 120.272727	36.600000	1.0	
7998	76431.0	24.5	0.0	-0.50	1.5	NaN	NaN	NaN	NaN	NaN	 NaN	36.409091	NaN	
7999	76432.0	41.0	0.0	-0.50	1.0	NaN	NaN	NaN	NaN	NaN	 117.422535	36.927273	NaN	

8000 rows x 45 columns

В ходе второй сессии:

- Из данных были убраны дубликаты и пустые столбцы
- Был убран параметр MeanMechVent, т.к. он состоял из одних единиц и пропусков
- Параметры Gender, Height, MeanWeight, ICUТуре были приведены к правильным значениям (в данных присутствовали отрицательный вес, гендер=0.5 и прочее)
- Были удалены столбцы, в которых больше половины пропусков
- Остальные пропуски были заменены средним значением столбца
- Были удалены выбросы используя IsolationForest
- Были построены гистограммы параметров, боксплоты и коррелограмма, в результате анализа последней было получено, что заметна высокая корреляция признаков MeanNIMAP с MeanNiDiasAB P и MeanNIMAP с MeanNiSysABP

В ходе третьей сессии:

- Данные были нормализованы
- Из датасета были получены два отдельных датасета (для задачи прогноза продолжительности жизни и для задачи предсказания выживаемости)
- В результате отбора признаков (отбор проводился используя обучение моделей с L1-регуляризатором, который зануляет коэффициенты перед малозначимыми признаками) в каждом датасете остались по 20 признаков из 34
- Поиск зависимостей в данных проводился используя коррелограмму Пирсона и Кендалла. Также зависимости были оценены визуально (построены парные графики всех зависимостей)
- В данных для классификации присутствовал дисбаланс классов (6328 наблюдений класса 0 против 872 наблюдений класса 1). Данные для тренировки и обучения делились в отношении 80/20. При обучении моделей использовалась кросс-валидация
- Для поиска лучшей регрессионной модели были рассмотрены линейная регрессия, Lasso-регрессия, Ridge-регрессия, ElasticNet и RandomForest. В результате лучшей регрессионной моделью оказалась Lasso-регрессия
- Для поиска лучшей классификационной модели были рассмотрены логистическая регрессия, случайный лес и SVM. В результате лучшей классификационной моделью оказался SVM (ROC-AUC = 0.74)

В ходе четвертой сессии было написано консольное приложение для:

- Прогноза продолжительности жизни пациентов
- Предсказания выживаемости пациента
- Вывода индикатора степени тяжести больного

Перед запуском необходимо выполнить: pip install –r requirements.txt (установка необходимых библиотек)

Получение справки по работе с приложением: python3 app.py --help

Приложение делает предсказания по данным из файла с информацией о пациентах и позволяет получить результат тремя разными способами:

- 1. Вывести его на экран
- 2. Получить в формате json из скрипта
- 3. Сохранить таблицу с результатом в файл

```
(venv) C:\Users\student\Desktop\C_4_2>python app.py --help
usage: app.py [-h] --path-to-data PATH_TO_DATA [--output-type OUTPUT_TYPE]
              [--path-to-result PATH_TO_RESULT]
API для формирования заключения по прогнозированию продолжительности жизни и
классификации выживаемости пациента
optional arguments:
  -h, --help
                       show this help message and exit
  --path-to-data PATH TO DATA
                        Путь до файла, содержащего данные о пациенте
  --output-type OUTPUT TYPE
                        output - выводит результат на экран; json - возвращает
                        json; file - сохраняет результат в файл (необходимо
                        указать путь в --path-to-result)
  --path-to-result PATH TO RESULT
                        Путь, куда сохраняется результат работы моделей
```

Вывод результата на экран: python3 app.py --path-to-data [ПУТЬ ДО ДАННЫХ] --output-type output

Получение результата в формате json: python3 app.py --path-to-data [ПУТЬ ДО ДАННЫХ] --output-type json

Сохранение результата в виде таблицы в файл: python app.py [ПУТЬ ДО ДАННЫХ] data.csv --output-type file --path-to-result [ПУТЬ ДЛЯ РЕЗУЛЬТИРУЮЩЕГО ФАЙЛА]

(venv)	C:\Users	\student\Desktop\C_4_2>python app.	pypath-to-dat	a data.csvoutput-type output
	RecordID	Продолжительность жизни (в днях)	Степень тяжести	Наступит смерть
0	66269.5	584	зеленая	нет
1	66270.0	692	зеленая	нет
2	66270.5	253	желтая	нет
3	66271.5	588	зеленая	нет
4	66272.5	553	зеленая	нет
7195	76424.5	675	зеленая	нет
7196	76425.5	124	желтая	нет
7197	76429.0	857	зеленая	нет
7198	76431.0	376	зеленая	нет
7199	76432.0	928	желтая	нет
[7200	rows x 4	columns]		