UNIVERSIDAD DE ANTIOQUIA

Facultad de Ingeniería

Departamento de Ingeniería Electrónica y Telecomunicaciones

Laboratorio Electrónica Analógica I

Preinforme Práctica 4 (Regulación de voltaje basada en el diodo Zener)

Presenta:

Luis Fernando Torres Torres

C.C. 1061820239

Andrés Felipe Rodríguez Ferrer

C.C 1020496316

Programa Académico

Ingeniería Electrónica

Docente:

Gustavo Adolfo Patiño Álvarez

Me

Agosto 2022

Medellín - Antioquia

PREINFORME

1. Análisis, diseño y simulación

1.1. Marco teórico

1.1.1. Referencia de los diodos zener entre 2.7V hasta 100V, con potencia de 1W y 5W. La tabla 1 muestra la referencia de cada diodo zener, el voltaje zener de operación y potencia máxima del diodo.

Voltaje Zener	1W	5W	Voltaje Zener	1W	5W
2.7V	1N4725	-	17V	-	1N5354
3V	-	-	18V	1N4746	1N5355
3.3V	1N4728	1N5333	19V	-	1N5356
3.6V	1N4729	1N5334	20V	1N4747	1N5357
3.9V	1N4730	1N5335	22V	1N4748	1N5358
4.3V	1N4731	1N5336	24C	1N4749	1N5359
4.7V	1N4732	1N5337	25V	•	1N5360
5.1V	1N4733	1N5338	27V	1N4750	1N5361
5.6V	1N4734	1N5339	28V	-	1N5362
6.0V	-	1N5340	30V	1N4751	1N5363
6.2V	1N4735	1N5341	33V	1N4752	1N5364
6.8V	1N4736	1N5342	36V	1N4753	1N5365
7.5V	1N4737	1N5343	39V	1N4754	1N5366
8.2V	1N4738	1N5344	43V	1N4755	1N5367
8.7V	-	1N5345	47V	1N4756	1N5368
9.1V	1N4739	1N5346	51V	1N4757	1N5369
10V	1N4740	1N5347	56V	1N4758	1N5370
11V	1N4741	1N5348	62V	1N4759	1N5372
12V	1N4742	1N5349	68V	1N4760	1N5373
13V	1N4743	1N5350	75V	1N4761	1N5374
14V	-	1N5351	82V	1N4762	1N5375
15V	1N4744	1N5352	91V	1N4763	1N5377
16V	1N4745	1N5353	100V	1N4764	1N5378

Tabla 1. Referencia de diodos zener según el voltaje zener y la potencia.

1.1.2. La referencia del diodo de 4.7V y de potencia máxima de 5W es el diodo zener 1N5337.

1.2. Analisis DC de circuito con Diodo Zener.

1.2.1. La figura 1. Muestra la referencia del diodo zener de 4.7 semejante al 1N4732 comprado .

Figura 1. Modelo del diodo 1N4732.

Cabe resaltar que el modelo del diodo se lo realiza con la herramienta de PSpice Modeling Application.

1.2.2. Se implementa el circuito de la figura 2 (Circuito con diodo zener sin carga) y se realiza un análisis DC, se hace variar el voltaje de entrada entre 5V y 25V.

Figura 2. Análisis DC con diodo Zener.

La figura 3 muestra cómo fue implementado el circuito en PSpice.

Figura 3. Implementación del circuito en PSpice con barrido DC.

1.2.3. La figura 4 muestra el voltaje en la resistencia (V_R) en puntos de voltaje de entrada de interés. La figura 5 muestra el voltaje en el diodo zener (V_Z) y con ello se completa la tabla 2.

Figura 4. Voltaje en la resistencia, cuando el voltaje de entrada varía.

Figura 5. Voltaje en el diodo zener, cuando el voltaje de entrada varía.

La tabla 2 muestra los valores encontrados mediante la simulación en PSpice para determinados voltajes de entrada.

V_{in}	V_R	V_Z	$I_z = \frac{V_R}{1K\Omega}$
-5 <i>V</i>	-4.36V	-643.42 <i>mV</i>	-4.36mA
-2V	-1.39V	-612.66 <i>mV</i>	-1.39mA
0 <i>V</i>	-4.20nV	4.20 <i>nV</i>	-4.20pA
2 <i>V</i>	607.72μV	1.99V	607.72nA
4 <i>V</i>	1.22 <i>mV</i>	3.99V	$1.22\mu A$
5 <i>V</i>	362.26mV	4.64V	362.26μΑ
10V	5.34V	4.68V	5.34 <i>mA</i>
15 <i>V</i>	10.31V	4.69V	10.31 <i>mA</i>
20 <i>V</i>	15.30V	4.70 <i>V</i>	15.30 <i>mA</i>
25 <i>V</i>	20.20V	4.7 <i>V</i>	20.20 <i>mA</i>

Tabla 2. Voltaje DC en el Diodo zener y en la Resistencia en serie.

1.3. Analisis DC de circuito con Diodo Zener y con carga R_L .

1.3.1. Se implementa el circuito de la figura 6 de la guía (circuito con Diodo Zener con carga), y se realiza un análisis paramétrico, considerando como parámetro la resistencia de carga R_L , con variación entre 100Ω y $10K\Omega$. La figura 7 muestra la implementación del dicho circuito en PSpice.

Figura 6. Circuito con diodo Zener y carga R_L variable

Figura 7. Implementación del circuito en PSpice realizando análisis paramétrico en R_L .

1.3.2. La figura 8 muestra el voltaje en la resistencia R_S (V_{RS}) en puntos de los valores de R_L de interés. La figura 9 muestra el voltaje de caída en el diodo zener (V_Z) y con ello se completa la tabla 3.

Figura 8. Voltaje en la resistencia V_{RS} , cuando la resistencia de carga R_L varía.

Figura 9. Voltaje en el diodo zener , cuando la resistencia de carga ${\cal R}_L$ varía.

La tabla 3 muestra los valores encontrados mediante la simulación en PSpice para determinados valores de la resistencia de carga.

R_L	V_{RS}	$V_Z = V_{RL}$	$I_{RS} = rac{V_{RS}}{R_s} = rac{V_{RS}}{680\Omega}$	$I_{RL} = \frac{V_{RL}}{R_L}$	$I_Z = I_{RS} - I_{RL}$
100Ω	17.44V	2.56V	25.65 <i>mA</i>	25.60 <i>mA</i>	50μΑ
200Ω	15.46V	4.54 <i>V</i>	22.74 <i>mA</i>	22.70 <i>mA</i>	$40\mu A$
300Ω	15.32V	4.68V	22.53 <i>mA</i>	15.60 <i>mA</i>	6.93 <i>mA</i>
2ΚΩ	15.30V	4.70 <i>V</i>	22.50 <i>mA</i>	2.35mA	20.15 <i>mA</i>
5ΚΩ	15.30V	4.70 <i>V</i>	22.50 <i>mA</i>	0.94 <i>mA</i>	21.56mA
10ΚΩ	15.30V	4.70 <i>V</i>	22.50 <i>mA</i>	0.47mA	22.03 <i>mA</i>

Tabla 3. Voltajes en el Circuito con Diodo Zener y carga R_L variable.

1.4. Regulador de Voltaje con diodo Zener

1.4.1. Se diseña un regulador de voltaje con diodo Zener, que presenta la configuración de la figura 10 de la guía

Figura 10. Circuito regulador basado en Zener con fuente de voltaje no regulado.

- I. Se consulta el *Datasheet* del diodo Zener 1N4732A, los límites de operación del Zener y de potencia máxima del diodo (P_{ZM}) .
 - Voltaje Zener $V_z = 4.7V$ a I_{ZT}
 - Corriente de prueba $I_{ZT} = 53mA$
 - Máxima impedancia Zener Z_{ZT} a $I_{ZT}=8\Omega$
 - Máxima corriente de regulación $I_{ZMax_{fabricante}} = 193mA$
 - Potencia máxima $P_{zm} = 1W$
- II. Por conveniencia de diseño se elige $R_L = 1K\Omega$

Y se procede a calcular R requerido a fin de lograr regulación adecuada en el circuito

$$R = \frac{V_{iMax} - V_{zMax}}{I_{zMax} + I_{lMin}}$$

- $V_{iMax} = 12V$

- $I_{ZMax_{diseño}} = 90mA$ $V_{ZMax} = 4.7V 8\Omega \cdot 53mA = 4.28V$ $I_{lMin} = I_{lMax} = \frac{V_{ZMax}}{R_L} = \frac{4.7V}{100\Omega} = 4.7mA$

Con los anteriores valores calcula R obteniendo un valor de

$$R = \frac{12V - 4.28V}{90mA + 4.7mA} = 81.52\Omega \approx 8.2\Omega$$

III.

Valores en R:

$$I_R = \frac{12V - 4.7V}{82\Omega} = 89.02mA$$

$$V_R = 89.02mA \cdot 82\Omega = 7.3V$$

$$P_R = 89.02mA \cdot 7.3 V = 649.8mW$$

Valores en R_L :

$$I_{RL} = \frac{4.7V}{1000\Omega} = 4.7mA$$

$$V_{RL} = 4.7 mA \cdot 1000 \Omega = 4.7 V$$

$$P_{RL} = 4.7mA \cdot 4.7 V = 22.09mW$$

Valores en diodo Zener

$$I_Z = I_R - I_{RL} = 89.02mA - 4.7mA = 84.32mA$$

$$P_z = 84.32mA * 4.7 V = 396.3mW$$

1.4.2. Simulación del circuito regulador resultante del diseño

Figura 11. Implementación del circuito figura 10 - Circuito regulador basado en Zener con fuente de voltaje no regulado.

I. La figura 12 muestra la gráfica del voltaje en la carga.

Figura 12. Gráfica de voltaje en la carga con máximos y mínimos.

II. Voltaje de rizado en la carga:

$$V_{r_l} = 4.7383V - 4.6740V = 0.0643V$$

Voltaje de rizado en la fuente:

$$V_{r_{vi}} = 12V - 8V = 4V$$

El porcentaje de diferencia entre ambos voltaje es:

$$\%_{dif} = \frac{4V - 0.0643V}{4V} \cdot 100 = 98.4\%$$

Se observa que hay una reducción de voltaje de rizo del 98.4%.

III. La figura 13 muestra la variación de corriente en el diodo zener

Figura 13. Gráfica de variación de corriente en el diodo Zener.

IV. La figura 14 muestra la potencia en el diodo Zener.

Figura 14. Gráfica de potencia en el diodo Zener.

Se estableció que P_{zm} es 1W, pero se observa que la potencia máxima en el diodo Zener es aproximadamente 0.4W.

La siguiente ecuación $P_Z = V_Z \cdot I_{ZMax}$ indica la potencia en el diodo Zener, de la ecuación se analiza que si $V_Z = 4.7V$ pero si se tiene una corriente mayor en el diodo Zener se obtiene una potencia más grande, por lo que se puede analizar que el valor de la potencia máxima en este caso con el diseño utilizado es menor que la potencia máxima del diodo Zener debido a que se tomó un valor de corriente máxima para el diseño por menos de la mitad de la que establece el fabricante y esto provoca menos potencia en el diodo Zener.