```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = sns.load dataset("iris")
df.head(4)
   sepal length sepal width petal length petal width species
0
            5.1
                         3.5
                                                     0.2 setosa
                                        1.4
1
            4.9
                                                     0.2 setosa
                         3.0
                                        1.4
            4.7
                                                     0.2 setosa
2
                         3.2
                                        1.3
3
            4.6
                         3.1
                                        1.5
                                                     0.2 setosa
df["species"].unique()
array(['setosa', 'versicolor', 'virginica'], dtype=object)
name = {
    "setosa" : 1,
     "versicolor":2,
     "virginica":3}
df["species"]=df["species"].map(name)
df["species"].unique()
array([1, 2, 3])
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
#
     Column
                   Non-Null Count
                                    Dtype
- - -
     sepal length 150 non-null
0
                                    float64
1
     sepal width
                   150 non-null
                                    float64
2
                  150 non-null
                                    float64
     petal length
 3
                   150 non-null
     petal width
                                    float64
4
     species
                   150 non-null
                                    int64
dtypes: float64(4), int64(1)
memory usage: 6.0 KB
df.head()
   sepal length
                 sepal width petal length
                                             petal width species
0
            5.1
                         3.5
                                                     0.2
                                        1.4
                                                                 1
1
            4.9
                         3.0
                                        1.4
                                                     0.2
                                                                 1
2
            4.7
                                        1.3
                                                     0.2
                                                                 1
                         3.2
```

```
3
            4.6
                          3.1
                                         1.5
                                                       0.2
                                                                   1
4
            5.0
                          3.6
                                         1.4
                                                       0.2
                                                                   1
x = df.iloc[:,:-1]
x.head(3)
   sepal length sepal width petal length
                                             petal width
0
            5.1
                          3.5
                                         1.4
                                                       0.2
                          3.0
                                                       0.2
            4.9
1
                                         1.4
2
            4.7
                          3.2
                                         1.3
                                                       0.2
y = df["species"]
У
0
       1
1
       1
2
       1
3
       1
4
       1
145
       3
       3
146
       3
147
       3
148
       3
149
Name: species, Length: 150, dtype: int64
y.head(4)
0
     1
1
     1
2
     1
Name: species, dtype: int64
from sklearn.model_selection import train_test_split
x train,x test,y train,y test =
train_test_split(x,y,test_size=.20,random_state = 34)
x train.shape
(120, 4)
x_test.shape
(30, 4)
y_train.shape
(120,)
```

```
y_test.shape
(30,)
from sklearn.tree import DecisionTreeClassifier
cls = DecisionTreeClassifier()
cls.fit(x_train,y_train)
DecisionTreeClassifier()
y_pred =cls.predict(x_test)
y_pred
array([2, 3, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1,
2,
       2, 3, 1, 2, 2, 1, 2, 2])
y_test
97
       2
       3
149
27
       1
       2
60
138
       2
55
       1
10
32
       1
       2
86
       2
67
       1
12
       2
78
7
       1
       2
82
33
       1
94
       2
       1
26
       1
40
       2
52
       3
126
       1
3
       2
65
       2
50
108
       3
       1
46
       2
54
       2
64
22
       1
       2
56
```

```
Name: species, dtype: int64

from sklearn.metrics import accuracy_score

accuracy_score(y_test,y_pred)

0.933333333333333

from sklearn import tree

plt.figure(figsize =((10,7)))

tree.plot_tree(cls,filled = True,fontsize = 8)

plt.show()
```



```
cls2 = DecisionTreeClassifier(max_depth = 2)
cls2.fit(x_train,y_train)
DecisionTreeClassifier(max_depth=2)
y_pred2 = cls2.predict(x_test)
y_pred2
```

```
array([2, 3, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1,
2,
2, 3, 1, 2, 2, 1, 2, 2])
accuracy_score(y_test,y_pred2)
0.9
plt.figure(figsize =((10,7)))
tree.plot_tree(cls2,filled = True,fontsize = 8)
plt.show()
```


<pre>from sklearn.metrics import classification_report</pre>					
<pre>print(classification_report(y_pred2,y_test))</pre>					
		precision	recall	fl-score	support
	1 2 3	1.00 0.93 0.50	1.00 0.88 0.67	1.00 0.90 0.57	11 16 3
	accuracy macro avg	0.81	0.85	0.90 0.82	30 30

weighted a	vg	0.91	0.90	0.91	. 30		
<pre>print(classification_report(y_pred,y_test))</pre>							
	pre	cision	recall	f1-score	e support		
	1 2 3	1.00 1.00 0.50	1.00 0.88 1.00	1.00 0.94 0.67	17		
accura		0.50	1.00	0.93			
macro a weighted a	vg	0.83 0.97	0.96 0.93	0.93 0.87 0.94	30		
<pre># preprunning import pandas as pd df = pd.read_csv("bcd.csv")</pre>							
df.head()							
Pregnan BMI \	cies G	lucose Bl	oodPres	sure Ski	.nThickness	Insulin	
0	6	148		72	35	0	33.6
1	1	85		66	29	0	26.6
2	8	183		64	0	0	23.3
3	1	89		66	23	94	28.1
4	0	137		40	35	168	43.1
Diabete 0 1 2 3	sPedigre	eeFunction 0.627 0.351 0.672 0.167 2.288	50 31 32 21	Outcome 1 0 1 0			
x1 = df.iloc[:,:-1] x1							
\	ancies	Glucose	BloodPr	essure S	SkinThickness	: Insuli	n BMI
0	6	148		72	35)	0 33.6
1	1	85		66	29)	0 26.6
2	8	183		64	()	0 23.3

3	1	89	66	23	94	28.1
	•	107	4.0	25	1.00	40.1
4	0	137	40	35	168	43.1
763	10	101	76	48	180	32.9
703	10	101	70	40	100	32.9
764	2	122	70	27	0	36.8
,	_		, 0	_,	Ū	50.0
765	5	121	72	23	112	26.2
766	1	126	60	0	0	30.1
767	1	93	70	31	0	30.4

	DiabetesPedigreeFunction	Age
0	0.627	50
1	0.351	31
2	0.672	32
3	0.167	21
4	2.288	33
763	0.171	63
764	0.340	27
765	0.245	30
766	0.349	47
767	0.315	23

[768 rows x 8 columns]

y1 = df[['Outcome']]

у1

0 1 2 3	Outcome 1 0 1 0
763	
764	0
765	0
766	0
767	1

[768 rows x 1 columns]

```
from sklearn.model_selection import train_test_split
x1_train,x1_test,y1_train,y1_test =
train_test_split(x1,y1,test_size=.20,random_state = 34)
from sklearn.tree import DecisionTreeClassifier
cls3 = DecisionTreeClassifier()
cls3.fit(x1_train,y1_train)
DecisionTreeClassifier()
y pred3 = cls3.predict(x1 test)
print(classification report(y pred3,y1 test))
              precision
                           recall f1-score
                                               support
           0
                   0.79
                             0.79
                                        0.79
                                                   105
           1
                   0.55
                             0.55
                                       0.55
                                                    49
                                        0.71
                                                   154
    accuracy
                   0.67
                             0.67
                                        0.67
                                                   154
   macro avg
                                        0.71
                                                   154
weighted avg
                   0.71
                             0.71
plt.figure(figsize = ((20,30)))
tree.plot tree(cls3,filled = True,fontsize = 8)
plt.show()
```



```
from sklearn.model selection import GridSearchCV
cls3 = DecisionTreeClassifier()
cls3
DecisionTreeClassifier()
parameter = {"criterion":["gini","entropy","log_loss"],
             "splitter":["best","random"],
             "max depth":[4,5,6,7]}
Gridsearch = GridSearchCV(cls3,parameter,cv=5)
Gridsearch.fit(x1_train,y1_train)
GridSearchCV(cv=5, estimator=DecisionTreeClassifier(),
            'splitter': ['best', 'random']})
Gridsearch.best params
{'criterion': 'log loss', 'max depth': 6, 'splitter': 'random'}
v predg = Gridsearch.predict(x1 test)
print(classification_report(y_predg,y1_test))
             precision
                          recall f1-score
                                            support
                  0.90
                            0.81
          0
                                     0.85
                                                118
                  0.53
                            0.72
                                     0.61
                                                 36
                                     0.79
                                                154
   accuracy
                                                154
                  0.72
                            0.76
                                     0.73
   macro avg
weighted avg
                  0.82
                            0.79
                                     0.80
                                                154
cls4 = DecisionTreeClassifier(criterion = "entropy", max depth=
4, splitter = "best")
cls4.fit(x1_train,y1_train)
DecisionTreeClassifier(criterion='entropy', max_depth=4)
import joblib
joblib.dump(cls4, "dtc.pkl")
['dtc.pkl']
```