0 General

- cov(X, Y) = E((X E(X))(Y E(Y)))
- Covariance C: $C_{X_i,X_i} = cov(X_i,X_j)$
- Square Diagonal is variance
- Square Diagonal is variance Cond. P.: $P[B|A] := \frac{P[B\cap A]}{P[A]}$ Tot. P.: $P[B] = \sum_{i=1}^{n} P[B \mid A_i] \cdot P[A_i]$ Bayes: $P[A \mid B] = \frac{P[B|A] \cdot P[A]}{P[B]}$ Indep.: $P[A \cap B] = P[A] \cdot P[B]$ $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$

- $Var[X] = E[(X E[X])^2]$
- Cartesian $(x, y) \Leftrightarrow \text{Polar } (r, \varphi)$ * $x = r \cos(\varphi) * y = r \sin(\varphi)$
- $* r = \sqrt{x^2 + y^2} * \cos(\varphi) = \frac{x}{r} * \sin(\varphi) = \frac{y}{r}$

1 Introduction

- · Physical interaction between vehicle and environment
- Stability: characterized by Number of contact pts - CoG - Static/dynamic stabilization - Inclination of terrain
- Contact: characterized by Contact pt size and shape - Angle of contact - Friction
- Environment: characterized by Structure
- Implementation Aspects: Number of actuators - Structural complexity - control complexity - Energy consumption
- Cost of transportation C_{mt} : $= \frac{E}{m \cdot g \cdot d} = \frac{P}{m \cdot g \cdot v}, - \mathbf{E:} \text{ Energy } - \mathbf{P:} \text{ Power}$ $- \mathbf{m:} \text{ Mass } - \mathbf{d:} \text{ Distance } - \mathbf{v:} \text{ Speed}$

2.1 Legged Locomotion

- + Mobility + Adaptability + Ability to manipulate environment - Mechanical complexity - Control complexity - Energy Consumption
- · Gait: Distinct sequence of lift and release events of individual legs
- # possible events for k legged robot is N = (2k - 1)!
- Static Gaits: System is statically sable - Requires ≥ 4 legs + Safe - Slow
- Energetically inefficient
- Dynamic Gaits: System is stabilized on a limited cycle - Falls over if stopped + Fast + Energetically efficient - Demanding for actuators - Demanding for control

• Locomotion Control

- 1) Stepping sequence defined by gait pattern
- 2) Stepping location
- 3) Contact forces

2.2 Wheeled Locomotion

+ Highly efficient on flat surface

2.2.1 Wheel Types

• Standard Wheel: - 2 DoF (* wheel axle * wheel contact point) - Can be steered or

- fixed Steering without side effects on the body
- Castor Wheel: 3 DoF (* wheel axle * wheel contact point * offset steering joint)
- Steering must be compensated by the body Swedish Wheel: - 3 DoF (* Rotation
- around the wheel axle * Rotation around the contact point * Rotation around the rollers) - Similar to standard wheel but provides low resistance in another direction
- Spherical Wheel: 3 DoF Difficult to realize

2.2.2 Wheel Arrangements

- Influences manoeuvrability, controllability and stability
- No optimal arrangement
- Stability: > 3 wheels required for static stability - Improved by adding more wheels
- Manoeuvrability: Number of DoF
- Controllability: Inverse correlation between controllability and manoeuvrability - Less manoeuvrability robots can be controlled more accurately

3 Kinematics

3.1 Rigid Body Kinematics

- Rotation: One pt is fixed an all other move around it
- Vector r in B rotated to I: $I = R_{IBB}r$

- Rotation R_{IB} along x, y, z:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{bmatrix} \begin{bmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{bmatrix}$$

$$\begin{bmatrix} \cos(\varphi) - \sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Inverse: $R_{BI} = R_{IB}^{-1} = R_{IB}^{\mathsf{T}}$ Composition: $R_{AI} = R_{AB} \cdot R_{BI}$
- Angular velocity of B in I along z: $I\omega_{IB} = (0, 0, \dot{\varphi})$
- * Equal for every point in the body
- Transformation: $I\omega_{IB} = R_{IB} \ _B\omega_{IB}$
- Composition: $I\omega_{IC} = I\omega_{IB} + I\omega_{BC}$ $-I\hat{\omega}_{IB} = \dot{R}_{IB}R_{IB}^{\mathsf{T}} =$

$$\begin{bmatrix} I_{IB} - I_{IB} I_{IB} I_{IB} \\ 0 - I_{IB} & I_{I} u_{IB}^y \\ I_{I} u_{IB}^z & 0 - I_{I} u_{IB}^x \\ - I_{U} u_{IB} & I_{U} u_{IB}^x & 0 \end{bmatrix}, I_{U} u_{IB} = \begin{bmatrix} I_{U} u_{IB}^y \\ I_{U} u_{IB}^y \\ I_{U} u_{IB}^z \end{bmatrix}$$

- Homogeneous Transformation: Rotation + Translation
- Vector from O to P in I:
- $\begin{pmatrix} I^{TOP} \\ 1 \end{pmatrix} = \begin{bmatrix} R_{IB} & I^{TOB} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} B^{TBP} \\ 1 \end{pmatrix}$
- - $_{I}v_{P}=_{I}\dot{r}_{OP}=_{I}\dot{r}_{OB}+_{I}\omega_{IB}\times_{I}r_{BP}$
- Vector Differentiation
- Non-moving system: $Ir \implies I\dot{r} = \frac{dI^r}{dt}$
- Moving (translating or rotating)
- system: $Br \implies B\dot{r} = \frac{d_Br}{dt} + B\omega_{IB} \times Br$

Generalized Coordinated

- Set of independent variables that uniquely describe the robot's configuration
- $q = (q_1, q_2, \dots q_n)^{\mathsf{T}}$
- $-Ir_{OP} = Ir_{OP}(q)$
- Jacobians

$$-J_{P} = \frac{\partial r_{OP}(q)}{\partial q} = \begin{bmatrix} \frac{\partial r_{1}}{\partial q_{1}} & \cdots & \frac{\partial r_{1}}{\partial q_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial r_{m}}{\partial q_{1}} & \cdots & \frac{\partial r_{1}}{\partial q_{n}} \end{bmatrix}$$

$$- Cartesian velocity to generalized velocity.$$

- Cartesian velocity to generalized velocity: $\dot{r}_P = J\dot{q}$
- Change in generalized coordinates to Cartesian space: $\triangle r_P = J \triangle q$

3.2 Inverse Kinematics

- Given desired endeffector position $r_{OF}(q) = r_{OF}^{\text{goal}}$, determine generalized coordinates q
- $r_{OF}(q)$ not easily invertible

Iterative Method:

- 1) Initialize $q = q^0$ to initial guess and set r = r(q)
- 2) Evaluate Jacobian $J_P =$ $\frac{\partial r_{OF}}{\partial r}$
- 3) Invert Jacobian to obtain $\triangle q = J^+ \triangle r_{OF}$
- 4) Update generalized coordinates $q^{i+1} = q^i + J^+(r_{OF}^{\text{goal}} - r_{OF}^j)$ 5) Repeat from 2 till con-

3.3 Inverse Differential Kinematics

Given desired endeffector velocity $\dot{r}_F = J_P \dot{q} = r_F^{\rm goal}$, determine generalized velocity $q = J_F^+ \dot{r}_F^{\rm goal}$

3.4 Redundancy and Singularity

- Redundancy: Jacobian is column-rank deficient
- Pseudo inverse minimizes ||q||₂
- Can have multiple solutions $\dot{q} = J^{+}\dot{r}^{\text{goal}} + (I - J^{+}J) \dot{q}_{0}$
- an is chosen solution
- Singularity: Jacobian is row-rand deficient
- Pseude inverse minimizes error

$||\dot{r}^{\text{goal}} - \dot{r}||_2$

3.5 Mobile Robot Kinematics

- Legged Robot: Quadropad
 - $|q_B|$ Un-actuated base Actuated joints
- Contact Constraint: $\dot{r}_F = J_F \dot{q} = 0 \Rightarrow \dot{q} = J_F \dot{r}_F^{=0} + N_F \dot{q}_0$ Body Move: $\dot{r}_B = J_B \dot{q} = J_B N_F \dot{q}_0$ $\dot{q} = J_F \dot{r}_F^{=0} + N_F \dot{q}_0 = N_F (J_B N_F)^+ \dot{r}_B$ Wheeled Robot: Planar car

- $\int x + r \sin(\varphi)$ - Point on wheel: $Ir_{OP} = r + r \cos(\varphi)$
- Contact Constraint:

$$I\dot{x}_P|_{\varphi=\pi} = IJ_P|_{\varphi=\pi}\dot{q} = \begin{bmatrix} 1 & -r \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{\varphi} \end{bmatrix} = 0$$

Rolling Constraint: $\dot{x} - r\dot{\phi} = 0$

3.6 Mobile Robots

- Holonomic: Can move instantaneously in any direction of its DoF - Differential constraints are integrable
- Non-Holonomic: Cannot move instantaneously in any direction of its DoF - Differential constraints are not integrable
- Differential Forward Kinematics: Given set of actuator speeds, determine its corresponding velocity
- Differential Inverse Kinematics: given a desired velocity, determine the corresponding actuator speeds

3.6.1 Wheel Kinematic

- Robot state: $\xi_I = [x, y, \theta]^{\mathsf{T}} \cdot \dot{\xi}_I = [\dot{x}, \dot{y}, \dot{\theta}]^{\mathsf{T}}$
- $\dot{\xi}_R = R(\theta)\dot{\xi}_I$ $R(\theta) = R_{\sim}^{\mathsf{T}}(\theta)$

•
$$Wv_{IW} = \begin{bmatrix} 0 \\ -r\dot{\varphi} \\ 0 \end{bmatrix}$$
 no-sliding constraint rolling constraint planar assumption

- Rolling Constraint: $J_1(\beta_s)R(\theta)\dot{\xi}_I \dot{\varphi}r = 0$ No-Sliding Constraint: $C_1(\beta_s)R(\theta)\dot{\xi}_I=0$
- General Wheel Equation: $v_{IW} =$
- $v_{IR} + \omega_{IR} \times r_{RS} + \omega_{IR} \times r_{SW} + \omega_{RS} \times r_{SW}$ Standard (Steered & Fixes) Wheel:
- $r_{SW} = 0$ - Wheel Equation:
- $v_{IW} = v_{IR} + \omega_{IR} \times r_{RS}$
- $* \ _{W}v_{IR} = R(\alpha + \beta)R(\theta)[\dot{x},\dot{y},0]^{\mathsf{T}}$ * $W \omega_{IR} \times W r_{RS} = [l\dot{\theta}\sin(\beta), l\dot{\theta}\cos(\beta), 0]^{\mathsf{T}}$
- $J_1(\beta_s) =$ $[\sin(\alpha + \beta_s), -\cos(\alpha + \beta_s), -l\cos(\beta_s)]$
- $C_1(\beta_s) = [\cos(\alpha + \beta_s), \sin(\alpha + \beta_s), l\sin(\beta_s)]$
- If fixed, J₁(β_s) = J₁, C₁(β_s) = C₁ Only wheel which imposes constraints
- Castor Wheel:
- $J_1(\beta_s)$ same as standard wheel $- C_1(\beta_s) = [\cos(\alpha + \beta_s), \sin(\alpha + \beta_s), d + l\sin(\beta)]$
- Swedish Wheel: $-J_1(\beta_s) = [\sin(\alpha + \beta_s + \gamma), -\cos(\alpha + \beta_s +$
- γ), $-l\cos(\beta_s + \gamma)$] $- C_1(\beta_s) =$ $[\cos(\alpha + \beta_s + \gamma), \sin(\alpha + \beta_s + \gamma), l\sin(\beta_s + \gamma)]$

3.6.2 Mobile Robot Kinematic

- $N = (N_f + N_s)$ wheeled robot
- $J_1(\beta_s) = \begin{vmatrix} J_{1f} \\ J_{1S}(\beta_s) \end{vmatrix}$ $C_1(\beta_s) = \begin{vmatrix} C_{1f} \\ C_{1S}(\beta_s) \end{vmatrix}$
- $J_2 = \operatorname{diag}(r_1, \dots, r_N)$ $\dot{\varphi} = \begin{vmatrix} \dot{\varphi}_f \\ \dot{\varphi}_0 \end{vmatrix}$
- Rolling Constraint:
- $J_1(\beta_s)R(\theta)\dot{\xi}_I J_2\dot{\varphi} = 0$
- No-Sliding Constraint: $C_1(\beta_s)R(\theta)\dot{\xi}_I=0$

- Forward Kinematics:
- $\dot{\xi}_R = (A^\mathsf{T} A)^{-1} A^\mathsf{T} B \dot{\varphi} = A^+ B \dot{\varphi}$
- $-l_r = b r_r = r \alpha_r = \pi/2 \beta_r = 0$ $-l_l = -b - r_l = r$
- $-\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}_{R} = \begin{bmatrix} r/2 & r/2 \\ 0 & 0 \\ r/2b r/2b \end{bmatrix} \begin{bmatrix} \dot{\varphi}_{r} \\ \dot{\varphi}_{l} \end{bmatrix}$ $-\begin{bmatrix} \dot{\varphi}_r \\ \dot{\varphi}_l \end{bmatrix} = \begin{bmatrix} 1/r & 0 & b/r \\ 1/r & 0 & -b/r \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$

3.6.3 Maneuverability

- Degree of Maneuverability $\delta_{\mathbf{M}} = \delta_m + \delta_s$ Degree of Mobility $\delta_{\mathbf{m}}$:
- $= \dim N(C_1(\beta_S)) = 3 \operatorname{rank}(C_1(\beta_S))$
- $-0 \le \delta_m \le 3 \delta_m = 0 \Rightarrow N_f = N_s = 0$ $-\delta_m = 3 \Rightarrow \text{motion not possible}$
- Degree of Steerability δ_s : = rank $(C_{1s}(\beta_s))$
- $-0 \le \delta_s \le 2 \delta_s = 0 \Rightarrow N_s = 0$ $-\delta_s = 1 \Rightarrow N_s \ge 1 - \delta_s = 2 \Rightarrow N_f = 0$
- Examples:

	Omnidirectional	Differential	Omni-Steer	Tricyle	Two-Steer	Ackerman Steer	Bicycle	Synchro Drive	Onmi Drive
δ_M δ_m δ_s	3	2	3	2	3	2	2	2	3
δ_m	3 3 0	2 2 0	3 2 1	2 1 1	3 1 2	2 1 1	2 1 1	2 1 1	3
δ_s	0	0	1	1	2	1	1	1	0

3.7 Motion Control - Feedback Control

- Drive robot from $_{I}[x,y,\delta]$ to $_{I}[0,0,0]$
- Error: $e = [x, y, \delta]^{\mathsf{T}}$
- Get control inputs as $\begin{bmatrix} v(t) \\ \omega(t) \end{bmatrix} = K \cdot e = K \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$
- Find K such that
- Polar Coordinate Transformation:
 - $-\rho = \sqrt{\triangle x^2 + \triangle y^2}$
 - $-\alpha = -\theta + \operatorname{atan2}(\triangle y, \triangle x) \beta = -\theta \alpha$ $-\alpha, \beta \in [-\pi, \pi]$
- Otherwise: $\begin{vmatrix} \dot{\rho} \\ \dot{\alpha} \\ \dot{\beta} \end{vmatrix} = \begin{vmatrix} \frac{\sin \alpha}{\rho} & 1 \\ \frac{\sin \alpha}{\rho} & 0 \end{vmatrix}$
- Control Law:

- Inverse Kinematics: $\dot{\varphi} = (B^{\mathsf{T}}B)^{-1}B^{\mathsf{T}}A\dot{\xi}_R = B^{\mathsf{T}}A\dot{\varphi}$ Differential Drive: $-\alpha_r = -\pi/2 - \beta_r = \pi$

$$\begin{bmatrix} \dot{\rho} \\ \dot{\alpha} \\ \dot{\beta} \end{bmatrix} = \begin{bmatrix} -k_{\rho}\rho\cos(\alpha) \\ k_{\rho}\sin(\alpha - k_{\alpha}\alpha - k_{\beta}\beta) \\ -k_{\rho}\sin(\alpha) \end{bmatrix}$$

v has a constant sign for one run

• Stable if $k_{\rho} > 0, k_{\beta} < 0, k_{\alpha} - k_{\rho} > 0$

• Raw Data \Longrightarrow Features \Longrightarrow Objects \Longrightarrow Places/Situations

4.1 Sensors

4.1.1 Types of Sensors

- · Proprioceptive (PC): Measure values internally to the system
- Exteroceptive (EC): Acquire information about the robots environment
- · Passive (P): Measure ambient environmental energy
- Active (A): Emit energy into the environment and measure the environments reaction to it + More accurate - May interfere - May affect the characteristic one wants to measure

Sensor Type	System	Class
Tactile	Bumpers	EC, P
Wheel/motor	Brush encoders	PC, P
	Optical encoders	PC, A
Heading	Compass	EC, P
	Gyroscope	PC, P
	Inclinometer	EC, A/1
Acceleration	Accelerometer	PC, P
Beacons	GPS	EC, A
	Radio, ultrasonic,	EC, A
	Reflective Beacons	
Motion/speed	Doppler: radar/sound	EC, A
Range	Ultrasound, laser, struct. light, ToF	EC, A
Vision	CCD/CMOS	EC, P

- of a shaft to digital For control of motor-driven joints
- Heading Sensors: Determine orientation and inclination w.r.t some reference
- Gyroscope: * Absolute measure for heading * Mechanical: Fast spinning wheel * Optical: Laser beam in fiber coil; Measure phase shift
- Range Sensors: Traveled distance d of a sound or electromagnetic wave after a time of **flight** t - d = ct - Sound: $c = 0.3 \,\text{m/ms}$ - Light: $c = 0.3 \,\mathrm{m/ns}$
- GPS: Satellites send their position and time to the device - Device computes location based on ToF - Time synchronisation and measurement is critical - RTK: Measure of carrier wave phase - up to centimeter-level accuracy TODO: More Sensors?

4.1.2 Uncertainty Representation

- Systematic Error: Deterministic Can be modelled and calibrated
- Random Error: Cannot be predicted - Described statistically
- Density function identifies for each possible xof RV X a probability $f(x) - \int_{-\infty}^{\infty} f(x) dx = 1$

$$-\mu = E[X] = \int_{-\infty}^{\infty} x f(x) dx$$
$$-\sigma^2 = E[(X - E[X])^2]$$

$$-\sigma^2 = E[(X - E[X])^2]$$

• Error Propagation Law - Error propagation in system with n inputs and moutputs $f: \mathbb{R}^n \to \mathbb{R}^m$, $f: X_1, \ldots X_n \mapsto f(X_1, \ldots, X_n) = Y_i$

- Uncertainty of X_i is known - Mapping between input covariance C_X and output covariance $C_{\mathbf{Y}}$: $C_{\mathbf{Y}} = F_{\mathbf{X}} C_{\mathbf{X}} F_{\mathbf{Y}}^{\mathsf{T}}$

covariance
$$C_Y \colon C_Y = F_X C_X F_X'$$

$$-F_X = \nabla f_X = \begin{bmatrix} \frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial X_1} & \cdots & \frac{\partial f_m}{\partial X_n} \end{bmatrix} - \mathbf{C}_{\mathbf{X}/\mathbf{Y}} \colon$$
• Extrinsic Parameter $[R \mid T]$: depending on transformation
• Perspective Projection: $K[R \mid T]$

Covariance of input uncertainties/propagated uncertainties of the output

4.2 Computer Vision

4.2.1 Camera Model

- Pinhole Model: Black box with single hole - Beam of rays enter through the Optical Center/Center of Projection C - Inverted image is projected onto the Image Plane
- Converging Lens: Focuses multiple rays from the same point on the object to the same point on the image plane - All rays parallel to the optical axis converge at the focal point - Rays passing through the optical center are not diverged

- Thin Lens equation: $\frac{1}{f} = \frac{1}{z} + \frac{1}{z}$
- Pinhole Approximation: $z \gg f \implies f \approx e$
- I.e. lens is approximated as pinhole at distance f from image plane
- If follows that $B' = \frac{f}{B}B$

4.2.2 Perspective Camera

- Image plane represented in front of C
- Camera measures angles and not distances
- Project pt $P_W = (x, y, z)$ onto $p_C = (u, v)$ on the image plane
- Perspective Equations:

$$-x = f \frac{X_c}{Z_G} - y = f \frac{Y_c}{Z_G}$$

 $-x = f \frac{X_c}{Z_C} - y = f \frac{Y_c}{Z_C}$ $-u = u_0 + kx - v = v_0 + ky - \text{Scale factor } k$ [pixels/meter] - Focal length in pixels:

$$- \implies \tilde{p} = \begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = \underbrace{\begin{bmatrix} kf & 0 & u_0 \\ 0 & kf & v_0 \\ 0 & 0 & 1 \end{bmatrix}}_{ZC} \begin{bmatrix} X_C \\ Y_C \\ Z_C \end{bmatrix}$$

- Intrinsic Parameter K: depending on
- Rigid Body transformation

$$\begin{bmatrix} X_C \\ Y_C \\ Z_C \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} X_W \\ Y_W \\ Z_W \end{bmatrix} + \underbrace{\begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix}}_T = \begin{bmatrix} X_W \\ X_W \end{bmatrix}$$

 $\implies \tilde{p} = \begin{bmatrix} \lambda u \\ \lambda v \\ \lambda \end{bmatrix} = K[R \mid T] \begin{bmatrix} A_W \\ Y_W \\ Z_W \end{bmatrix}$

- Straight lines get bend
- Barrel Distortion: Image gets "round"
- Pincusion Distortion: Corners pulled out

- Model:
$$\begin{bmatrix} u_d \\ v_d \end{bmatrix} = (1 + k_1 r^2) \begin{bmatrix} u - u_0 \\ v - v_0 \end{bmatrix} + \begin{bmatrix} u_0 \\ v_0 \end{bmatrix}$$
* **Distortion Parameter k**₁: Intrinsic

- parameter * $r^2 = (u u_0)^2 + (v v_0)^2$

4.2.3 Omnidirectional Camera

- **Dioptric:** System of lenses $\sim 180^{\circ}$ FOV
- Catadioptric: Combination of lens and mirrors - > 180° FOV - Greatly distorted (can be removed depending on mirror)
- Central Camera: Mirror shaped that all incoming rays have same single effective viewpoint
- * Correct mirror placement is important
- + Unwarping into perspective image possible
- + Can convert points in the image to spherical vectors
- + Can apply standard algorithms
- **Polydioptric:** Multiple cameras $\sim 360^{\circ}$

4.2.4 Camera Calibration

· Determine intrinsic (and extrinsic) camera

parameters •
$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K[R|T] \begin{bmatrix} X_W \\ Y_W \\ Z_W \\ 1 \end{bmatrix} \stackrel{!}{=}$$

 $\begin{bmatrix} X_W \\ Y_W \\ Z_W \end{bmatrix} \bullet \text{ Find all } m_{ij}$

• Requires > 6 pts • Done using least-square method • Need to decompose the found matrix into K, R, T • QR factorize 3×3 submatrix $m_{11}: m_{33} \Rightarrow K := R, R := R \cdot \text{Calculate}$ $T = K^{-1}[m_1 4, m_{24}, m_{34}]^{\mathsf{T}}$

4.2.5 Stereo Vision

- · Obtain depth information from two cameras with know relative position Cameras need to be
- calibrated Calculating depth Z_P of point P_W (distance to P_W)
- Baseline b: Distance between the two
- Disparity: Difference in image location of the projection of a 3D point on the two image
- Two identical cameras aligned on x
- Two identical cameras in different Coordinate
- C_r is a rigid body transformation of C_l
- Triangulation * $\tilde{p}_l = \lambda_l \begin{vmatrix} u_l \\ v_l \end{vmatrix} = K_l \begin{vmatrix} X_W \\ Y_W \end{vmatrix}$
- Compute disparity for corresponding points

of every pixel

 Can compute the depth from it and reconstruct 3D scene

4.2.6 Correspondence Search

- Identify corresponding points in two images of the same scene
- Measure similarity of two pts using a similarity measurement
- Epipolar Plane: Spanned by C_1 , C_r and some pt P_W
- Epipolar Line: Projection of the ray from one camera through points in the other
- Epipole: Projection of other camera in image plane - All epipolar lines go through it
- Epipolar Constraint: Correspond of pt of left images lies on the epipolar line of the right image
- Epipolar Rectification: Transform both images to make epipolar lines collinear and parallel: 1) Remove radial distortion 2) Warping: Reprojection of both images to same plane

4.2.7 Triangulation

- Find 3D coordinate of a point given the projections on multiple image planes
- R_i, T_i, K_i are known

$$\bullet \quad -\lambda_1 \underbrace{\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}}_{p_1} = \underbrace{K_1[I \mid 0]}_{M_1} \underbrace{\begin{bmatrix} X_x \\ Y_w \\ Z_w \\ 1 \end{bmatrix}}_{P}$$

$$-\lambda_2 \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = K_2[R \mid T] \begin{bmatrix} X_x \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

- No unique solution du to noise and errors
- Linear Approach: Solved using SVD
- Reprojection Approach: Minimize Sum of Square Reprojection Error
- $SSRE = ||P_1 M_1 P||^2 + ||p_2 M_2 P||^2$ Baseline is important:
- Too Small: Large depth error
- Too Large: * Objects may be visible only from one camera * Difficult search problem for close objects

4.2.8 Structure from Motion (SfM)

- Given corresponding image points $\{(u_1^i, v_1^i), (u_2^i, v_2^i)\}$, recover: – 3D location P_i of all n pts - Relative pose of right camera R, T – Camera intrinsic K (optionally)
- Assume K is known
- Knowns: 4n: n correspondences
- **Unknowns:** 5 + 3n: rotation (3), translation (2. since scale cannot be recovered). n 3D pts (3n)
- Solution exists iff $4n \ge 5 + 3n \implies n \ge 5$

$$a \times b = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [a]_X$$

- Epipolar Constraint: $p_2^T E p_1 = 0$ Essential Matrix: $E = [T] \times R$
- Computed with > 5 correspondences
- Can be decomposed into R and T
- Normalized Img Coordinates: $p = [\bar{u}, \bar{v}, 1]^{\mathsf{T}} = K^{-1}[u, v, 1]^{\mathsf{T}}$
- 8-pt Algorithm Algorithm to compute essential matrix – Uses > 8 pts

 $[u_2u_1, u_2v_1, u_2, v_2u_1, v_2v_1, v_2, u_1, v_1, 1]$

$$Q:$$
known $[e_{11}, e_{12}, \dots, e_{33}] = 0$

unknown

 For 8 non-coplanar pts, unique solution is given by the EV of Q corresponding to the smallest Eigenvalue

4.2.9 Image Filtering

- Linear: Replace each pixel by a linear combination of its neighbours
- Shift-Invariant: Same operation is
- performed on every point on the image
- Filter H: aka. kernel, mask, window Boundaries: Need to handle specially:
- Ignore Zero padding Pad with edge value - Mirror boundary - Wrap around from other
- Normalization: Prevent img from getting
- brighter/darker Correlation: $J(x) = F \circ I(x, y) =$ $\sum_{i=-N}^{N} \sum_{j=-M}^{M} F(i,j)I(x+i,y+j)$ - Not associative
- Convolution: J(x) = F * I(x, y) =
- $\sum_{i=-N}^{N} \sum_{j=-M}^{M} F(i,j) I(x-i, y-j)$
- Equivalent to correlation except that the filter is flipped before correlating
- Same result to correlation if the filter is symmetric
- Is associative: F * (G * I) = (F * G) * I
- Correlation Cost: (per pixel)
- **2D**: * Mult.: $(2N+1)^2$ * Add.: $(2N-1)^2-1$
- 2 × 1D: * Mult.: 2(2N + 1) * Add.: 4N - 2 × 1D with const.: * Mult.: 1 * Add.:
- 4N**Derivation:** $J(x) = \frac{I(x+1) - I(x-1)}{2}$
- Smoothing: For blurring or noise detection
- 1D Gaussian: $G_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^{2}}{2\sigma^{2}}}$ 2D Gaussian:

Gaussian:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} =$$

$$g_{\sigma}(x) \cdot g_{\sigma}(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-x^2}{2\sigma^2}} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-y^2}{2\sigma^2}}$$

- * Is separable
- Similarity Measure
- Sum of Square Diff.: SSD(x) = $\sum_{i} (F(i) - I(x+i))^{2} = \sum_{i} F(i)^{2} + \sum_{i} I(x+i)^{2} - 2\sum_{i} (F(i)I(x+i))$ Normalized Cross Correlation: $NCC = \frac{\sum_{i} (F(i)I(x+i))}{\sqrt{\sum_{i} F(i)^{2}} \sqrt{\sum_{i} I(x+i)^{2}}}$

$$NCC = \frac{\sum_{i} (F(i)I(x+i))}{\sqrt{\sum_{i} F(i)^{2}} \sqrt{\sum_{i} I(x+i)}}$$

- Zero-Mean Normalized Cross Correlation (ZNCC): Invariant to local average intensity. Maximize: ZNCC(x) =

$$\begin{split} & \frac{\sum_{i} (F(i) - \mu_F) (I(x+i) - \mu_{I_X})}{\sqrt{\sum_{i} (F(i) - \mu_F)^2} \sqrt{\sum_{i} (I(x+i) - \mu_{I_X})^2}} \\ & * \mu_F = \frac{\sum_{i} F(i)}{2N+1} * \mu_{I_X} = \frac{\sum_{i} I(x+i)}{2N+1} \\ & \text{Template Matching: Use template as filter} \end{split}$$

- and apply similarity measure
- Edge Detection: 1) Noise reduction 2) Gradient $S' = (G_{\sigma} * I)' = G'_{\sigma} * I$
- 3) Thresholding 4) Non-maximal suppression
- Derivation of Gaussian: $G'_{\sigma}(x,y) = \frac{\partial G_{\sigma}(x,y)}{\partial x} + \frac{\partial G_{\sigma}(x,y)}{\partial y} * \text{Edges}$ at min/max
- Laplacian of Gaussian:

Laplacian of Gaussian:
$$\text{LoG} = G''_{\sigma}(x,y) = \frac{\partial^2 G_{\sigma}(x,y)}{\partial x^2} + \frac{\partial^2 G_{\sigma}(x,y)}{\partial y^2}$$
* Edges at zero crossing

$$\begin{array}{l} -\text{ Prewitt:} \\ *F_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} *F_x = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \\ -\text{ Sobel:} \\ *F_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} *F_x = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

- Roberts: $*F_x = \begin{bmatrix} 0|1\\1|0 \end{bmatrix} *F_x = \begin{bmatrix} 1|0\\0|1 \end{bmatrix}$

4.2.10 Point Features

- Harris Corner Detection: Patch at (x, y) of size P has great difference to all surrounding patches $(x + \Delta x, y + \Delta y)$
- $-\operatorname{SSD}(\Delta x, \Delta y) =$

 $- \begin{array}{l} \operatorname{SSD}(\Delta x, \Delta y) = \\ \sum_{x,y \in P} (I(x,y) - I(x + \Delta x, y + \Delta y))^2 \\ - \Rightarrow \operatorname{SSD}(\Delta x, \Delta y) \approx \\ \sum_{x,y \in P} (I_x(x,y)x - I_y(x,y)y)^2 \\ * I_x = \frac{\partial I(x,y)}{\partial x} * I_y = \frac{\partial I(x,y)}{\partial y} * \operatorname{Using} \\ \operatorname{first-order Taylor approx} \\ - \Rightarrow \operatorname{SSD}(\Delta x, \Delta y) \approx [\Delta x, \Delta y] M[\Delta x, \Delta y]^T \\ - \sum_{x,y \in P} \sum_{x,y \in P} \prod_{x,y \in P} \prod_{x,y$

 $*M = \sum_{x,y \in P} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x^2 & I_x I_y \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R^{-1}$ $*\lambda_1, \lambda_2 \text{ small: Flat region } *\lambda_1 >> \lambda_2:$ $Edge *\lambda_1 << \lambda_2: Edge *\lambda_1, \lambda_2 \text{ large: }$

- Cornerness Function:
- $C = \det \kappa \operatorname{trace}^{2}(M)$
- * Extract local minima * Used since calculating eigenvalues is expensive $*\kappa$ is magic number
- Invariant to: * Rotation * Linear intensity change
- Not invariant to: Scale change
- Scale Invariant Feature Transform (SIFT) Features:
- Detect blobs
- Assigns each keypoint a orientation and descriptor
- Keypoint Detection: 1) Downscale image multiple times 2) Gaussian blur each at different rates 3) Calculate Difference of Gaussian (DoG) (subtract successive smoothed images) 4) Find keypoints (local extrema in the DoG)
- Keypoint Orientation: 1) Generate gradient orientation histogram for each keypoint 2) Orientation is value of highest peak in histogram
- Keypoint Descriptor: 1) Divide neighbourhood into 4×4 regions 2) Compute orientation histograms along 8

- orientations 3) Concatenate $4 \times 4 \times 8 = 128$ values in vector
- + High robustness
- Invariant to rotation
- Features from Accelerated Segment Test (FAST) Detector: - Detects corners - Look at 16 pixels around target pixel - If they are all significantly darker/brighter, we have a FAST corner + Fast - Not robust against noise
- Binary Robust Independent Elementary Features (BRIEF) Descriptor:
- Detect blobs 1) "Random" (predefined) selection of pixel pairs 2) Compare intensity of pairs and store result in descriptor
- 3) Matching done with Hamming Distance
- + High speed in description and matching
- Not scale invariant
- Not rotation invariant
- Binary Robust Invariant Scalable Keypoints (BRISK) Detector - Detect blobs 1) Detect corners using FAST
 - 2) Compare intensity similar to BRIEF but in some specific geometric pattern + High speed + Rotation and scale invariant - Slower than

4.2.11 Place Recognition

- Training set of images needed to create structure
- Bag of features: Bag of descriptors of a word - Image is described by this set - Sectional information is removed
- Visual Word: Single number representing a high-dimensional descriptor - Done by k-means clustering – Bag of features \Rightarrow bag of visual words
- Visual Vocabulary: DB of visual words created by many training images
- Scene is collection of visual words
- Efficiently find matches:
- Vocabulary Tree: Hierarchical arrangement of visual vocabulary (I guess) * Leaf holds image which matches the feature * By feeding in features of new images, we get a bag of matching images * Number of matches determines the probability
- Inverted File DB: * List of all possible visual words points to list containing all images containing this feature * Query DB for all features of a given list and count occurrences of a certain image (using voting array)
- Term Frequency-Inverse Document Frequency (tf-idf): Not all words are equally important
- Measure importance of visual word inside image
- Used for voting array
- For word w_i in img j: * tf-ids_{ij} = tf_{ij} · idf_i * $\operatorname{tf}_{ij} = \frac{\# \operatorname{occur. of } w_i \operatorname{in } j}{\# \operatorname{words in } j}$
- * $\operatorname{idf}_i = \log \frac{|\operatorname{Img}|}{|\{\operatorname{img}|w_i \in \operatorname{img}\}|}$
- **FABMAP** Place recognition Assume: worlds is set of discrete places - Place: vector of visual words at that scene - Calculate probability of being at a know location
- Frequent occurring objects are suppressed
- + High performance

4.2.12 Line Extraction

- Task: Given set of pts, find best fitting line - Do not have to figure out which pts belong to which line
- Split-and-Merge:
- 1) Split: a) Fit line through point set (or take end-pts) b) Find most distant pt c) If distance > threshold, split set and repeat

- 2) Merge: If two consecutive line segments are almost collinear, merge them
- Sensitive to outliers
- Random Sample Consensus (RANSAC): 1) Draw line through two randomly selected
- pts 2) Compute distance of all pts to it 4) Repeat $k = \frac{\log(1-p)}{\log(1-w^2)}$ times * w: fraction
- of inliers * **p**: prob of finding set of pts free of outliers 5) Select line with least total error - Non-Deterministic

Hough-Transform:

- Each pt in image space defines a sinosoid in Hough space
- 1) For each pt compute
- $\rho = x \cos \theta + y \sin \theta, \theta \in [0, 180]$ 2) Capture votes for parameters 3) Find (rho, θ) with most votes

5 Localization

- Problems:
- Position tracking: Keep track of known location
- Global localization: Localize without initial location
- Kidnapping robot problem: Robot is moved to new location
- Map Representation
- Known a priori or build by robot
- Types: * Architecture map * Finite/infinite set of lines * Exact cell decomposition * Fixed cell decomposition * Topological map
- Belief Representation
- Uncertain due to error \implies probabilistic localization
- Continuous: * Precision bound by sensor data * Typically single hypotheses (\Longrightarrow danger of getting lost)
- Discretized: * Precision bound by discretization resolution * Typically multiple hypotheses * High resource demands
- Types: * Continuous map with single hypotheses prob. dist. p(x) * Continuous map with multiple hypotheses prob. dist. p(x) * Discretized metric map (grid k) with prob. dist. p(x) * Discretized topologicalmap (nodes n) with prog. dist. p(x)
- Odometry
- Process of calculating current position by using previous position and measured motion of last time step
- Differential Drive Robot:

$$p_t = f(p_{t-1}, u_t) = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} \frac{\Delta S_r + \Delta S_l}{2} \cos(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \\ \frac{\Delta S_r + \Delta S_l}{2} \sin(\theta_{t-1} + \frac{\Delta S_r - \Delta S_l}{2b}) \end{bmatrix}$$

- b = Distance between wheels
- Error Model:
- $$\begin{split} * & \text{ Error Propagation:} \\ & \Sigma_{p_t} = F_{p_{t-1}} \Sigma_{p_{t-1}} F_{p_{t-1}}^{\mathsf{T}} + F_{\Delta S} \Sigma_{\Delta S} F_{\Delta S}^{\mathsf{T}} \\ * & \text{ Error Model:} \end{split}$$
- $\Sigma_{\Delta S} = \begin{pmatrix} k_r | \Delta S_r | & 0\\ 0 & k_l | \Delta S_l | \end{pmatrix}$

5.1 Map-Based Localization

(observation) at time t

- Estimate position using perceived information and a map
- **Terminology:** $-\mathbf{x_t}$: robot location at time t- ut: proprioceptive sensor reading at time t - z+: exteroceptive sensor reading
- $\mathbf{M} = \{m_0, m_1, \dots, m_{n-1}\}$ true map of the

- environment with n features
- $\mathbf{bel}(\mathbf{x_t}) = p(x_t \mid z_{1 \to t}, u_{1 \to t})$
- $-\overline{\mathbf{bel}}(\mathbf{x_t}) = p(x_t \mid z_{1 \to t-1}, u_{1 \to t})$
- Requirements
- Initial probability distribution bel(x₀) - Map $M = \{m_0, m_1, \dots, m_n\}$ of the
- environment Proprioceptive and exteroceptive data u_t
- and z_{+}
- Probabilistic motion model $p(x_t \mid u_t, M)$ * Derived from the robots kinematics
- Probabilistic measurement model
- $p(z_t \mid x_t, M)$
- * Derived from the exteroceptive sensor model

Steps

- 0) Robot is placed somewhere in the environment
- S1) Prediction/Action Update (ACT): Move and estimate position using proprioceptive
 - * Uncertainty grows
- S2) Perception/Measurement Update (SEE): Make observation using exteroceptive sensors
 - * Uncertainty shrinks

5.1.1 Markov Localization

- Solves: Global localization Position tracking - Kidnapped robot
- Discretized pose representation x_t $bel(x_t)$ is representation by arbitrary prob. density function
- Multiple hypotheses
- Markov Assumption: $bel(x_t) = p(x_t \mid$ $x_0, u_{0 \to t}, z_{0 \to t}) = p(x_t \mid x_{t-1}, u_t, z_t)$
- Steps:

for all
$$x_t$$
 do
 $S1)$ ACT: $\overline{\text{bel}}(x_t) = \sum_{x_{t-1}} p(x_t \mid u_t, x_{t-1}) \text{bel}(x_{t-1})$
 $S2)$ SEE: $\text{bel}(x_t) = \eta p(z_t \mid x_t, M) \overline{\text{bel}}(x_t)$
with $\eta = \frac{1}{p(y)}$

- Huge state space
- Improvements: Change of cell size
- Adaptive cell size Randomized Sampling: Approximation of belief state by a representative subset of possible locations.

Higher density around peak points 5.1.2 Extended Kalman Filter (EKF) Localization

- Solves: Position tracking
- $bel(x_t)$, motion model and measurement model is represented by a normal distribution Single hypotheses
- Steps:
- S1) Prediction Update
 - * New position: $\hat{x}_t = f(x_{t-1}, u_t)$

- * Position uncertainty: $\hat{P}_t = F_x P_{t-1} F_x^\mathsf{T} + F_u Q_t F_u^\mathsf{T}$
- $* \circ P_{t-1}$: Covariance of the previous state
- o Qt: Covariance of motion model noise
- o $\mathbf{F}_{\mathbf{x}/\mathbf{u}}$: Jacobian w.r.t. x/u

S2) Measurement Update

- 1) Observation: Obtain set of observation z_t^i with covariance R_t^i , $i = 1 \dots n$
- 2) Measurement Prediction: Predict feature observations $\hat{z}_{\perp}^{j} = h^{j}(\hat{x}_{t}, m^{j})$ and compute its Jacobian H^j w.r.t \hat{x}_t
- 3) Matching:
- $\begin{array}{l} \circ \quad \text{Compute the innovation } v_t^{ij} = [z_t^i \hat{z}_t^j] \\ \circ \quad \text{Compute the innovation covariance} \\ \Sigma_{IN_t}^{ij} = H^j \, \dot{p}_t H^{j\, \mathsf{T}} + R_t^i \\ \circ \quad \text{Find matches with a validation gate } g \\ \end{array}$
- $\begin{array}{c} \triangleright \text{ Mahalanobis distance:} \\ v_t^{ij} \overset{\text{T}}{} (\Sigma_{IN_t}^{ij})^{-1} v_t^{ij} \leq g^2 \end{array}$

- o Stack validated observations into z_t , corresponding innovations into v_{+} . measurement Jacobians into H_t and $R_t = \operatorname{diag}(R_t^i)$
- o Compute composite innovation covariance Σ_{IN_t}
- o For each match, update position estimate $x_t = \hat{x}_t + K_t v_t$ o For each match, update covariance
 - $P_t = \hat{P}_t K_t \Sigma_{IN_t} K_t^{\mathsf{T}}$
- \triangleright Kalman Gain: $K_t = \hat{P}_t H_t^{\mathsf{T}} (\Sigma_{IN_t})^{-1}$
- Precise
- Efficient
- Robot may get lost

5.2 Simultaneous Localization and Mapping (SLAM)

- Create map and localize in parallel only using
- proprioceptive and exteroceptive sensor data
- **Terminology:** $-\mathbf{x_t}$: robot location at time t $-\mathbf{X_t} = \{x_0, x_1, \dots, x_t\}$ robot path till time t
- $\mathbf{u_t}$: motion between t-1 and t- $\mathbf{U_t} = \{u_0, u_1, \dots, u_t\}$ sequence of relative motions till time $t - \mathbf{z_t}$: landmark observation at time $t - \mathbf{Z_t} = \{z_0, z_1, \dots, z_t\}$ sequence of landmark observations till time $t - \mathbf{z_t}$: exteroceptive sensor reading (observation) at time t – $\mathbf{M} = \{m_0, m_1, \dots, m_{n-1}\}$ true map
- of the environment with n landmarks Full SLAM: Reconstruct full path
- $p(X_t, M \mid Z_t, U_t)$ Online SLAM: Reconstruct current position
- $p(x_t, M \mid Z_t, U_t)$ Approaches:
- Full Graph Optimisation
- * Eliminate observations and control inputs * Solve for constraints between poses and
- landmarks
- + Finds globally consistent solution
- + Trajectories can be very smooth

- Kev Frames

- * Retain most representative poses and their dependency links
- * Optimize resulting graph
- * Example: PTAM, OKVIS, ORB-SLAM

- Filtering

- * Summarize all experience w.r.t. last pose
- * Done using state vector and covariance matrix
- * Example: MonoSLAM, FastSLAM

5.2.1 EKF SLAM

- · Example of filtering
- Summarizes past experience:
- Extended state vector

$$y_t = \begin{bmatrix} x_t, m_1, \cdots, m_{n-1} \end{bmatrix}^\mathsf{T}$$

$$- \text{ Corresponding covariance}$$

$$P_{y_t} = \begin{bmatrix} P_{xx} & \cdots & P_{xm_{n-1}} \\ \vdots & \ddots & \vdots \\ P_{m_{n-1}x} & \cdots & P_{m_{n-1}m_{n-1}} \end{bmatrix}$$

- According to EKF equations
- According to EAT $\hat{y}_t = \begin{bmatrix} \hat{x}_t \\ m_i \end{bmatrix} = \begin{bmatrix} f(x_{t-1}, u_t) \\ 0 \end{bmatrix}$
- Measurement model $\hat{z}_i = h_i(\hat{x}_t, m_i)$ as in EKF localization

S3) Update:

- Update the state with actual observations
- $y_t = \hat{y}_t + K_t(Z_{n-1} h_{0:n-1}(\hat{x}_t, M_{n-1}))$
- $-P_{y_t} = \hat{P}_{y_t} K_t \Sigma_{IN} K_t^\mathsf{T}$
- Where * $\Sigma_{IN} = H\hat{P}_{y_t}H^{\mathsf{T}} + R$ * Kalman gain $K_t = \hat{P}_{y_t} H(\Sigma_{IN})^{-1}$
- Initially, the covariance matrix is sparse (features are uncorrolated)
- After some time the covariance matrix
- becomes more dense
- MonoSLAM
- EKF SLAM implementation
- Only one camera ⇒ no proprioceptive data => custom motion model
- Constant Velocity Motion Model

data
$$\Rightarrow$$
 custom motion mode

Constant Velocity Motion M

$$f_v = \begin{bmatrix} \mathbf{r}_{WW}^W R \\ \mathbf{q}_{WW}^W V \\ \mathbf{v}_{new} \end{bmatrix} = \begin{bmatrix} \mathbf{r}^W + (\mathbf{v}^W + \mathbf{V}^W) \Delta t \\ \mathbf{q}^W R \times \mathbf{q}((\omega^W + \Omega^W) \Delta t) \\ \mathbf{v}^W + \mathbf{V}^W \\ \omega^W + \Omega^W \end{bmatrix}$$

Unknown linear and angular acc cause a velocity impulse in each $\begin{bmatrix} \mathbf{v}^W \end{bmatrix} \begin{bmatrix} \mathbf{p}_{W} \Delta t \end{bmatrix}$

 Unknown linear and angular accelerations cause a velocity impulse in each time step:

$$n = \begin{bmatrix} \mathbf{V}^W \\ \mathbf{\Omega}^W \end{bmatrix} = \begin{bmatrix} \mathbf{a}^W \Delta t \\ \alpha^W \Delta t \end{bmatrix}$$

- Challenges Robust local motion estimation - Mapping and loop-closure detection - Map management and optimisation - Sensitivity to incorrect data associations - Tradeoff between efficiency and precision - Dynamic objects
- Collaborative exploration

6 Planning

• Completeness: A robot system is complete iff for all possible problems, when a solution trajectory exists, the system will find it

6.1 Path Planning

- Problem: Find path in the physical space from the initial position to the goal position avoiding obstacles
- Workspace: Physical area where the robot
- Configuration Space C: k-dimensional space representing all configurations (position, rotations etc.) of a robot: - Occupied areas O– Free areas $F = C \setminus O$

6.1.1 Graph Search

- Idea: Search path in connectivity graph of free space
- Consists of two steps

Graph Construction

- Visibility Graph

- * o Polygonal configuration space
- \circ Robot is a point \implies enlarge obstacles o Connect corners which "see" each other
- + Gives shortest path
- Complexity depends on number of obstacles
- Path is close to obstacles
- Does not consider robot motion constraints

- Voroni Diagram

- * o For each point in free space compute the distance to the nearest obstacle
- o Points which are equidistant to two obstacles for edges
- Maximizes distance to obstacles
- + Can do the process in reverse. Robot in unknown environment creates diagram by moving on unknown veroni edges
- Not optimal
- Does not consider robot motion constraints
- Exact Cell Decomposition
- * o Draw lines according to obstacle geometry
- \circ Each filed is in either F or O
- \circ Create connectivity graph from cells in F
- * Assumes: precise position in F does not matter
- Complexity depends on number and complexity of obstacles

- Approximate Cell Decomposition

- * O Put grid over map
- \circ Each cell is either in O or F
- Create connectivity graph from cells in F
- * Fixed-Size: Grid has fixed size
- Variable-Size: Recursively split partially occupied cells into 4 new cells
- Loss of narrow passages

- Lattice Graph

- * Overlay space with custom edges/curves
- Each cell is either in O or F
- $\circ~$ Create connectivity graph from cells in F* Cell decomposition is a special case of it
- + Great freedom

Graph Search

Expected cost from start to goal via node n: $f(n) = g(n) + \epsilon h(n)$ cost so far cost to go

- Breath-First Search (BFS)

- * Nodes expanded according to FIFO queue and closed list
- * Solution is optimal for uniform edge cost $\mathcal{O}(|V| + |E|)$
- + First solution found is optional
- * Greedy backtracking of solution
- * BF(Graph G, Node Start, Node Goal)

FIFO.push(Start) while FIFO not empty do

Node current \leftarrow FIFO.pop() if current == Goal then return SUCCESS end if visited.push(current) Nodes next = getNeighbours(current) for all next ∉ visited do FIFO.push(next) end for end while return FAILURE

Depth-First Search (DFS)

- * Nodes expanded according to LIFO queue and closed list
- + Better space complexity
- * $\mathcal{O}(|V| + |E|)$
- First solution found may not be optional
- * Greedy backtracking of solution
- * DF: Same as BF but using LIFO

- Diikstra's Algorithm

- * Nodes expanded according to Min-Heap (on g(n)) and closed list
- * Positive edge cost
- * $\mathcal{O}(|V|\log(|V|) + |E|)$
- * Often computed from the goal position to get all distances to the goal
- + First solution found is optional
- * Greedy backtracking of solution

visited.push(current)

end for

return FAILURE

(on f(n)) and closed list

* Heuristic function guides search

o Must underestimate the distance

* Good for single source shortest path

* Runtime depends on chosen h(n)

+ Very efficient if we are ok finding a

+ First solution found is optional

* Greedy backtracking of solution

* A-Star(Graph G, Heur H, Node

HEUR-MIN-HEAP.push(Start)

HEUR-MIN-HEAP.pop()

if current == Goal then

for all next ∉ visited do

Rapidly Exploring Random Trees

return SUCCESS

visited.push(current)

while HEUR-MIN-HEAP not empty do

Nodes next = getNeighbours(current)

HEUR-MIN-HEAP.push(next)

end while

* Positive edge cost

 $\circ \ \ {\rm Done} \ {\rm if} \ \epsilon > 1$

end if

end for

return FAILURE

* Grows randomized tree

end while

(RRTs)

suboptimal solution

Start, Node Goal)

Node current ←

for all next ∉ visited do

MIN-HEAP.push(next)

* Nodes expanded according to Min-Heap

 \circ Often h(n) = Distance from n to goal

* Dijkstra(Graph G, Node Start, Node

attractive repulsive attractive repulsive $\begin{array}{l} - \ U_{\rm att}(q) = \frac{1}{2}k_{\rm att}(q-q_{\rm goal})^2 \\ - \ U_{\rm rep}(q) = \\ \left\{ \begin{array}{l} \frac{1}{2}k_{\rm rep}(\frac{1}{\rho(q)}-\frac{1}{\rho_{\rm lim}})^2 \quad {\rm if} \ \rho(q) \geq \rho_{\rm lin} \\ 0 & {\rm otherwise} \end{array} \right. \end{array}$ MIN-HEAP.push(Start) while MIN-HEAP not empty do Node current ← MIN-HEAP.pop() if current == Goal then return SUCCESS end if

- $*\rho(\mathbf{q})$: Min distance between q and the closest obstacle * ρ_{lim} : Distance of influence Nodes next = getNeighbours(current) of obstacle * katt/rep: Scaling factor

* Selects random points and connects it to

closest point of the tree using a new

* Most likely returns suboptimal solution

* RRT(Node Start, Node Goal, System

while Graph.size() < threshold do

Graph.addNode(new)

Node near = Graph.nearest(rand)

Graph.addEdge(near, new)

Idea: Robot follows gradient of potential field

Implicit incorporation of basic system models

Node new = Sys.propagate(near,

Node rand = random()

* Probabilistically complete

Graph.init(Start)

rand)

end try

return FAILURE

end while

6.1.2 Potential Field Planning

Local Potential Fields

 $U(q) = U_{\text{att}}(q) + U_{\text{rep}}(q)$

- Potential Field:

Sys, Environment Env)

branch

- Robot follows force $F(q) = \nabla U(q)$
- May get stuck in local minima - No incorporation of robot's dynamic constraints

Harmonic Potential Fields

- Robots follows solution of Laplace Equation $\Delta U = \sum_{i=0}^{\infty} \frac{\partial^2 U}{\partial^2 q_i} = 0$
- Boundary is specified according to:
- * Neumann: o Equidistant lines parallel to the obstacles - Potentially small distance to the obstacle o $\frac{\partial U(q)}{\partial q} = g(q) = 0$ * Dirchlet: o Obstacle boundaries have
- constant high potential o Goal has constant low potential o Close to obstacles, robot moves perpendicularly away from obstacle o U(q) = f(q) = const+ Safe paths - Long paths
- + Absence of local minima
- Solved via discretization of the workspace into cells
- Euler approximation:

$$\nabla U(q)_i \approx \frac{U(q+\delta e_i)-U(q)}{\delta}$$

 $\nabla U(q)_i \approx \frac{-(q_1 - e_4)^{\frac{1}{\delta}}}{\delta}$ - Iterative method: $U^{k+1}(q) = \frac{1}{2n} \sum_{i=1}^n (U^k(q + \delta e_i) + U^k(q - \delta e_i))$ * \mathbf{n} : # dimensions * \mathbf{e}_i : unit vector

- Steps from iteration i to i + 1 1) Initialize cell values
 - o Dirchlet: Set obstacles to 1 and goal and all other cells to 0
- 2) Update all cells except goal and obstacles a) Add up values of 4 neighbouring cells
- b) Scale sum by 2n
- c) Update cell values
- 3) Repeat 2 till convergence
- 4) Backtrack solution

6.2 Obstacle Avoidance

- Function of current on optionally past sensor readings, its current and goal location
- Prone to local minima Incorporate system model
- Dynamic Window Approach (DWA)
- Assume: robot moves on circular arcs (ν, ω)
- Obstacle space V₀: Transformation of obstacles from V a workspace to input space
- Admissible space Va: complement of Vo Static Window Vs: Configuration which are allowed by robot limits
- Dynamic Window Vd: Configuration which can be reached in one step
- * Centred around the current configuration New configuration V_r = V_a ∩ V_s ∩ V_d
- * Selected which maximizes some objective function containing heading, distance to goal and velocity
- Not safe when obstacles are dynamic

Velocity Obstacles (VO)

- Assume: * Robot moves on piece-wise linear curves * Robot is omnidirectional * Robot and obstacles are circular
- * Obstacles move at constant speed Collision of robot
- and obstacle if $||p_{\rm RO} + \nu_R t|| <$ $r_{\rm R} + r_{\rm O}$
- Velocity Obstacle: Velocities in velocity space which lead to collisions in less than τ
- $\begin{array}{c} \text{time} \\ \text{VO}_{\text{RO}}^{\tau} = \bigcup_{0 \leq t \leq \tau} D(-\frac{p_{\text{RO}}}{t}, \frac{r_{\text{RO}}}{t}) * \mathbf{p_{RO}} \text{:} \\ \text{Relative position between robot and} \end{array}$ obstacle * VORO: Relative velocity between robot and obstacle * r_{R/O}: Radius of robot/obstacle * $\mathbf{D}(\mathbf{x}, \mathbf{y})$: Disc centred at (x, y)
- Multiple objects lead to multiple velocity obstacle regions
- Robot selects any velocity outside of the complement of VOs
- Does not model interaction effects

Reciprocal Velocity Obstacles (RVO) - Assume: * Robot

- moves on piece-wise linear curves * Robot is omnidirectional
- * Robot and obstacles are circular * Fair behaviour of all agents
- Identical to CO, but collision avoidance is shared between
- interaction agents - Operate in relative velocity space
- Linear constraints decides if obstacles are avoided to the left or right
- * Tangent to the boundary of the CO which is closer to the current velocity - Current relative velocity leads to
- collision: Shift at least with half the velocity difference to the linear constraint Current relative velocity does not lead
- to collision: Shift at most with half the velocity difference towards the linear constraint