Slides Outline

Research background

- 1. Motivation:
 - Optimization based on conservation law simulation.
 - Design space is high dimensional.

Example: optimization of turbulent return bend geometry. (picture)

- 2. Many conservation law simulators are gray-box. What is gray-box / black-box / open-box. (table)
- 3. Research scope:
 - conservation law.
 - gray-box simulation.
 - high-dimension design.
- 4. Review of optimization methods: gradient-free, gradient-based.
- 5. Challenges of both methods:
 - each simulation can be accurate but costly.
 - if no adjoint, cost of gradient evaluation scales with dimension.
 - grad-free can be costly.
- When lower-fidelity models are available, can save overall computation time by multi-fidelity optimization.
 - Bayesian calibration / coKriging.
 - Trust region.

High-fidelity model is the gray-box simulator; low-fidelity model can be constructed by surrogate methods.

- 7. Review of surrogate methods.
 - physics-based surrogates: use the physics of the underlying system, such as
 - coarser discretization: require simulator's PDE.
 - reduced order model (POD, DEIM, balanced truncation): require simulator's PDE.
 - simplified physics (RANS, dual porosity, thin airfoil theory).
 - functional surrogate: use the sample value of objective function, such as
 - radial basis function approximation.
 - polynomial approximation.
 - neural network.

Narrative: functional surrogate not suitable in my research scope because design space is high-dimensional. Focus on physics-based surrogate.

- 8. Physics-based surrogates can be adaptive.
 - Adaptive discretization: require simulator's PDE.
 - Goal oriented reduced order model: match observations, require simulator's PDE

Twin model

- 1. Propose a adaptive physics-based surrogate that
 - does not require simulator's PDE, instead infer a PDE.
 - $\bullet\,$ PDE is inferred by matching the gray-box simulation's space-time solution.
- 2. Feasibility: Infer a general form PDE is not feasible, but we infer a conservation law.

