SILICON SHELL BURNING AND THE GROWTH OF THE IRON CORE

Chloe Sandoval - University of Tennessee TEAMS Meeting June 15-16, 2020

OUTLINE

- Introduction and Motivation
- Methodology
- Results
- Future Work

LIFETIME OF A MASSIVE STAR

- Main Sequence Hydrogen Burning
 - $\mathcal{O}(10^7 \text{ years})$
 - For the CNO-cycle $T > 1.7 \times 10^7 \ K$
- Giant Branch (Advanced stages of nuclear burning)
 - He burning via triple- α process lasts on $\mathcal{O}(10^5$ years), $T>1.5\times 10^8~K$
 - C,O,Ne core burning duration $\mathcal{O}(10^3 \text{ years})$, $T > 5 \times 10^8 \text{ K}$

SILICON SHELL BURNING (SISB)

- Final stage of nuclear burning before Iron core-collapse
 - Lasts for I hour to at most I day
 - Occurs just above the inert iron core
- Si burning is not 28 Si + 28 Si = 56 Ni
- Photodisintegration of ²⁸Si into nucleons and alpha particles which then capture onto other silicon nuclei, slowly increasing the mean atomic number
- Iron peak elements "rain" down onto the core slowly increasing the mass

SILICON SHELL BURNING (SISB)

- Final stage of nuclear burning before Iron core-collapse
 - Lasts for I hour to at most I day
 - Occurs just above the inert iron core
- Si burning is not 28 Si + 28 Si = 56 Ni
- Photodisintegration of ²⁸Si into nucleons and alpha particles which then capture onto other silicon nuclei, slowly increasing the mean atomic number
- Iron peak elements "rain" down onto the core slowly increasing the mass?

IRON CORE-COLLAPSE

- Iron ash continues to accumulate onto the core until it approaches the Chandrasekhar mass limit above which electron degeneracy pressure is no longer sufficient to prevent gravitational collapse $M_{ch} \simeq 5.76 Y_e^2 \sim 1.4 M_{\odot}$ ($Y_e = 0.5$)
- Contraction begins once $M \ge M_{ch}$, but is not instantaneous
- Collapse is defined: $v_{infall} = 1000 \text{ km/s}$
- Collapse is accelerated by:
 - Electron capture onto iron peak nuclei increases density \longrightarrow neutron rich environment which decreases $Y_e \longrightarrow$ more electron capture
 - Continued photodisintegration of iron peak species into alpha particles as temperature and density continue to increase

MOTIVATION

- · Understanding the nucleosynthetic origins of the universe
- Understanding the structure of the core before collapse
- · Asymmetries in outer core may make a difference in the
 - Most simulations are done in ID
 - multi-D is needed in certain epochs because fluid instabilities like convection and turbulence are inherently 3D

WORK FLOW

MESA

1D Progenitor generation
Begin Pre-MS

Stop during SiSB

Stop at Fe-core infall

Multi-D Progenitor Generation Begin pre-collapse (SiSB)

Stop at Fe-core infall

Multi-D CCSNe Simulation
Begin at Fe-core collapse

METHODOLOGY/CODES

Modules for Experiments in Stellar Astrophysics (MESA)

- Open source, easy access
- Modular in nature- useful for many different applications
- Modern techniques Adaptive mesh refinement(AMR), large nuclear reaction network capabilities, multitude of stopping and starting conditions, modern equations of state

CHIMERA

- Neutrino Transport Spectral Neutrino Transport with 20 logarithmically spaced energy groups (4-250 Mev), ray-by-ray
- Hydrodynamics- Lagrangian + remap (VHI) with Newtonian multipole expansion for gravity with GR monopole
- XNET- fully implicit thermonuclear reaction code (sn I 60)
- Modern Equations of State: SFHO and Helmholtz

METHODOLOGY/CODES

Modules for Experiments in Stellar Astrophysics (MESA)

- Open source, easy access
- Modular in nature- useful for many different applications
- Modern techniques Adaptive mesh refinement(AMR), large nuclear reaction network capabilities, multitude of stopping and starting conditions, modern equations of state

CHIMERA

- Neutrino Transport Spectral
 Neutrino Transport with 20
 logarithmically spaced energy groups
 (4-250 Mev), ray-by-ray
- Hydrodynamics- Lagrangian + remap (VHI) with Newtonian multipole expansion for gravity with GR monopole
- XNET- fully implicit thermonuclear reaction code (sn I 60)
- Modern Equations of State: SFHO and Helmholtz

METHODOLOGY/CODES

Modules for Experiments in Stellar Astrophysics (MESA)

- Open source, easy access
- Modular in nature- useful for many different applications
- Modern techniques Adaptive mesh refinement(AMR), large nuclear reaction network capabilities, multitude of stopping and starting conditions, modern equations of state

Polaris

- Neutrino Emission neutrino cooling via emission prescription is from Itoh et al. 1996 + tabular electron capture LMSH 2003
- Hydrodynamics- Lagrangian + remap (VHI) with Newtonian multipole expansion for gravity with GR monopole
- XNET- fully implicit thermonuclear reaction code including electron capture
- Equations of State: SFHo (NSE) and Cooperstein (1985) + not (nuclei) (non-NSE)

PROGENITOR SET-UP (MESA)

- Model begins at pre-main sequence to iron core infall
 - Rewound and stopped 270 sec before iron core infall
- Network: 204 species
- EoS: Helmholtz
- Revision 7623

MODEL SET-UP

- Initial Conditions: 15 M_{\odot} 270 s from Fe-Core Collapse
- 2D Wedge with periodic boundary conditions
- Spherical Symmetry imposed on inner 360 zones (I M_{\odot})
- non-NSE EoS: BCK
- Network: sn I 60

- Computational Information:
 - Cori-KNL @ NERSC
 - 4 nodes- 45 processes/ node
 - 720 radial shells
 - 180 angular zones (36°-144°)

Elapsed time: 30.0

Data from Tue Oct 1 10:00:25 2019

VELOCITY PROFILE

THERMODYNAMIC PROFILES

THERMODYNAMIC PROFILES

THERMODYNAMIC PROFILES

IRON CORE GROWTH

COMPOSITION

IRON CORE GROWTH

TAKE AWAYS

- Structural differences
- Sudden growth of the iron core then a slow growth until collapse
 - ~ 100 second delay in collapse
 - Lower Central Electron Fraction
- Larger iron core mass in 2D

FUTURE WORK

- Use current model to run in 3D
- Run a suite of 2D models with newer progenitors from MESA and updated EoSs in Polaris (Helmholtz)
- Run the same suite of 2D models in CHIMERA
 - Using ID MESA at collapse as a starting point
 - Using 2D Polaris at collapse as a starting point

ACKNOWLEDGEMENTS

- NSF Grant AST-1716134
- NERSC Allocation on Cori
- TACC Allocation on Frontera for 3D model
- CHIMERA Team- Notably Eric Lentz and Raph Hix