

하둡 분산 파일 시스템

대용량 파일 읽기 및 쓰기 작업에 최적화된 특별한 파일 시스템

로컬 파일 시스템과 HDFS는 분리되어 있음

사용자는 필요한 파일을 로컬 파일 시스템에서 HDFS로 내보냄

HDFS에서 로컬 파일 시스템으로 가져와서 작업해야 함

1) 아키텍처 HDFS 네임 노드 네임 노드 데이터 노드 데이터 노드 데이터 노드

② 내보내기

HDFS에 파일을 저장하면

파일의 데이터를 슬라이스로 분할

하둡 클러스터의 여러 노드에 이중으로 저장함

대용량 파일을 작은 단위의 블록으로 나눔

③ 가져오기

하둡 분산 파일 시스템

파일을 기본적으로 64MB 혹은 128MB 블록 단위로 나누어 여러 개의 데이터 노드에 분산 저장함

복제본의 수는 시스템에서 설정할 수 있음(디폴트: 3)

파일의 메타정보는 마스터 노드의 네임 노드가 관리하고 실제 블록 데이터는 작업 노드인 데이터 노드에 분산 저장됨

해당 파일들의 메타정보를 보관하는 역할을 수행

실제 파일 내용은 보관하지 않음

- 클라이언트로부터 특정 파일에 대한 요구 발생
- 2 해당 파일을 보관하고 있는 블록들에 대한 정보 탐색
- 3 실제 데이터가 보관되어 있는 데이터 노드에 대한 위치를 알려줌
- 4 실제 데이터 접근은 데이터 노드를 통해 이루어짐

데이터 노드

파일

64MB 혹은 128MB 블록 단위로 나누어짐

여러 개의 데이터 노드에 분산 저장

블록들은 복제(Replication)를 통해 여러 개의 데이터 노드에 저장

신뢰성 보장

하나의 복제본이 손실되어도
아무런 결함 없이 사용될 수
있도록 함

데이터 지역성(Data Locality) 향상

 실행을 위해 데이터 이동 없이 블록이 저장된 곳에서 수행할 수 있도록 함

- 4 통합 데이터 흐름 파일 쓰기 작업
 - (1) 클라이언트 파일 생성 요청

② 한 블록이 생성되면 네임 노드를 연결

- 4 통합 데이터 흐름 파일 쓰기 작업
 - ③ 네임 노드가 메타정보를 리턴함

4) 첫 번째 데이터 노드에 블록 쓰기

- 4 통합 데이터 흐름 파일 쓰기 작업
 - (5) 블록 복제

6 데이터 노드가 Heartbeat 및 블록 리포트를 네임 노드에게 발송

- _____4 통합 데이터 흐름 파일 읽기 작업
 - 1 네임 노드로부터 메타정보 수신

② 가까운 데이터 노드로부터 블록 읽기

