

Rappel : MÉTHODE CRISP-DM

- 1. Compréhension du métier
- 2. Compréhension des données
- 3.Constitution du Data Hub
- 4.Modélisation
- 5. Evaluation
- 6.Déploiement

ipes.boutyour@gmail.com

47

Compréhension du métier

- OBien comprendre l'enjeu métier (fidélisation des clients, détection de fraudes, augmentation des ventes d'un produit, etc.)
- OBien évaluer la situation (ressources, prérequis, contraintes, risques, coûts, gains, etc.)
- Olmpliquer les experts du domaine en question
- OBien définir l'objectif du data mining

pes.boutyour@gmail.com

Compréhension des données **Variables** Variables | Oune variable est une propriété ou caractéristique Revenus Etudian Taux crédit Achat PC d'un individu <=30 élevé faible non non <=30 excellent élevé non non Exemple : Couleur des yeux 31...40 élevé faible non oui d'une personne, >40 moyen non faible oui >40 faible oui faible température, état civil, ... >40 excellent faible oui non 31...40 faible excellent oui oui Oune collection de variables <=30 moyen faible non non <=30 faible oui faible oui décrivant un individu. On dit >40 moyen oui faible oui individu ou enregistrement, <=30 excellent moyen oui oui 31...40 moyen non excellent point, cas, objet, entité, 31...40 élevé faible oui oui >40 excellent moyen non non observation

49

Types de variables

- Variables quantitatives
 - Les valeurs sont des nombres qui peuvent être ordonnés et additionnés
 - Mesurables par une unité physique
 - Exemples: salaire, poids, taille, proportion, quantité, durée de séjour, etc.

ipes.boutyour@gmail.com

51

Compréhension des données

Types de variables

- Variables quantitatives
 - Variables continues
 - Elles forment un sous-ensemble infini de R (ex: salaire)
 - Elles sont ordonnées (on peut les comparer par la relation d'ordre <)
 - On peut effectuer des opérations arithmétiques
 - Variables discrètes
 - Elles forment un sous-ensemble fini ou infini dénombrable de N (ex: nombre d'enfants)
 - Elles sont ordonnées (on peut les comparer par la relation d'ordre <)
 - · On peut effectuer des opérations arithmétiques

Poids

41,5
33,4
37,5
33,5
39,7
30,8
37,4
38,2
43
38,5

Nombre de frères et sœurs

ipes.boutyour@gmail.com

Types de variables

- Variables qualitatives
 - Les valeurs sont des qualités appelées modalités
 - Les modalités peuvent être sous format numérique ou alphanumérique
 - Non mesurables par une unité physique; caractéristique de l'individu
 - Exemples: sexe, profession, couleur des yeux, couleur des cheveux, etc.

ipes.boutyour@gmail.com

F 1

53

Compréhension des données

Types de variables

- Variables qualitatives
 - Variables ordinales
 - Les modalités peuvent être ordonnées (ex: «faible, moyen, fort»)
 - Il n'est pas possible de calculer la distance entre les modalités
 - Elles sont souvent traitées comme données discrètes
 - Variables nominales
 - Les modalités ne peuvent pas être ordonnées (ex: profession)
 - Variables de type intervalle (avec transformation)
 - Elles sont numériques (ex: durée de vie)
 - Il est possible de calculer la distance entre les modalités

es.boutyour@gmail.com

Types de variables (Application)

- Nationalité d'un individu
- Temps de réalisation d'un travail
- Nombre d'étudiant dans une classe
- Nom de la couleur
- Date de naissance
- Degré de satisfaction
- Distance parcourue

- Etat civil
- Durée de voyage
- Sexe d'un individu
- Marque de voiture
- Nombre de bonnes réponses à un examen
- Classement dans une compétition
- Taille d'un individu

ipes.boutyour@gmail.com

_

55

Compréhension des données

Types de variables

- Variables qualitatives
 - Le type d'une variable qualitative est déterminé par la façon avec laquelle on la mesure.
 - Exemple: variable « Education »
 - Nominale : privée, publique
 - Ordinale : niveau d'études atteint
 - Intervalle : nombre d'années d'études après le BAC

pes.boutyour@gmail.com

Etapes:

- 1. Collecter les données
- 2. Décrire les données
- 3. Explorer les données
 - Valeurs manquante
 - Analyse univariée
 - Analyse bivariée
- 4. Vérifier la qualité des données

ipes.boutyour@gmail.com

57

Compréhension des données

Première étape: collecter les données

- OBases de données classiques (Relationnelles, Transactionnelles)
- Bases de données avancées (Objet, Objet-relationnelles,
 Spatiales, Séries temporelles, Textes, Multimédia, Hétérogènes)
- OLog de pages web
- ○Entrepôts de données (DW)

pes.boutyour@gmail.com

Deuxième étape: décrire les données

- OVérifier le volume des données et leurs propriétés générales
- Vérifier les différents attributs et découvrir leurs ordres de grandeurs.

ipes.boutyour@gmail.com

59

Compréhension des données

Troisième étape: explorer les données

OAnalyser en détail les variables en utilisant la statistique

descriptive

- Statistique univariée pour analyser en détail les propriétés d'une variable
- O Statistique bivariée pour analyser la relation entre deux variables

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyser univariée:
 - Décrire et résumer chaque variable
 - Généraliser les informations à la population entière
 - Détecter les anomalies (valeurs rares, manquantes, aberrantes, extrêmes)
 - Valeur aberrante: valeur erronée à cause d'une mauvaise mesure, erreur de calcul, fausse déclaration, ...
 - Valeur extrême: valeur très supérieure ou inférieure par rapport à l'ordre de gradeur des observations de la variable

ipes.boutyour@gmail.com

61

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée:
 - Valeur extrême: pas forcément aberrante
 - Peut correspondre à une catégorie particulière d'individus
 - Profil rare, intéressant à détecter (fraude, impayé, niche...)
 - Affecte certaines techniques qui se basent sur les calculs de la variance (régression logistique, analyse discriminante)
 - Valeur manquante
 - Mauvais fonctionnement de l'équipement
 - Non saisie car non/mal comprise
 - Considérée peu importante au moment de la saisie

pes.boutyour@gmail.com

6:

Troisième étape: explorer les données

- Analyser univariée: Variable qualitative
 - Effectif: nombre d'individus de l'échantillon pour chaque modalité
 - Effectif total : nombre de valeurs dans la série statistique.
 - Fréquence: effectif ramené à la taille de l'échantillon (%) (effectif de la modalité / effectif total)
 - Exemple:
 - · Prenons la série: bleu, noir, bleu, vert, noir, rouge, vert , bleu, noir, noir
 - L'effectif total =
 - L'effectif de la valeur bleu = sa fréquence =
 - L'effectif de la valeur vert = sa fréquence =

ipes.boutyour@gmail.com

63

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable qualitative
 - Effectif: nombre d'individus de l'échantillon pour chaque modalité
 - Effectif total : nombre de valeurs dans la série statistique.
 - Fréquence: effectif ramené à la taille de l'échantillon (%) (effectif de la modalité / effectif total)
 - Exemple:
 - Prenons la série: bleu, noir, bleu, vert, noir, rouge, vert, bleu, noir, noir
 - L'effectif total = 10
 - L'effectif de la valeur bleu = $\frac{3}{10}$ sa fréquence = $\frac{3}{10}$
 - L'effectif de la valeur vert = $\frac{2}{10}$ sa fréquence = $\frac{2}{10}$

pes.boutyour@gmail.com

Troisième étape: explorer les données

- Analyser univariée: Variable quantitative
 - Indicateurs de tendance centrale (moyenne, médiane, mode, minimum, maximum, quartile)
 - Indicateurs de Indicateurs de dispersion (étendue, variance, écart-type, coefficient de variation)
 - 3. Indicateurs de forme de la distribution (asymétrie, aplatissement)

ipes.boutyour@gmail.com

,

65

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Moyenne: somme des observations / taille de l'échantillon
 - Médiane : valeur qui partage l'échantillon en deux parties égales
 - Mode : valeur la plus fréquente (variable discrète) ou classe la plus dense (variable continue)
 - Calcul de la médiane (n taille échantillon; X, ie observation) :
 - Classer les observations par ordre croissant
 - n impair \rightarrow médiane = valeur de l'observation centrale $X_{(n+1)/2}$
 - n pair \rightarrow médiane = moyenne des deux valeurs centrales $(X_{n/2} + X_{n/2+1})/2$

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Moyenne : sensible aux valeurs extrêmes/aberrantes et à la forme de la distribution

Exemple: 5 personnes âgées de 34, 35, 37, 39, et 100 ans

- → Privilégier la médiane en cas de distribution asymétrique.
- <u>Médiane</u>: à utiliser dans le cas de variable discrète / variable qualitative ordinale avec un nombre important de modalités

ipes.boutyour@gmail.com

67

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Exemple: Série de 10 observations (âge)

35;28;29;29;30;31;35;35;27;39

Déterminer la moyenne

Déterminer la médiane

Déterminer le mode

es.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - <u>Exemple</u>: Série de 10 observations (âge)

```
35;28;29;29;30;31;35;35;27;39
```

Déterminer la moyenne = (35+28+29+29+30+31+35+35+27+39)/10 = 31.8

Déterminer la médiane :

ordre: 27;28;29;29;30;31;35;35;35;39n=10 (pair) \rightarrow médiane = (30+31)/2 = 30.5

Déterminer le mode : 35 se répète le plus souvent

Le mode est 35

ipes.boutyour@gmail.com

69

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles: En statistique descriptive, un quartile est chacune des 3 valeurs qui divisent les données triées en 4 parts égales, de sorte que chaque partie représente 1/4 de l'échantillon de population.
 - Le quartile est calculé en tant que 4-quantile. Donc :
 - le 1 er quartile sépare les 25 % inférieurs des données ;
 - le 2e quartile est la médiane de la série ;
 - le 3e quartile sépare les 75 % inférieurs des données.
 - La différence entre le 3e quartile et le 1er quartile s'appelle écart interquartile ; c'est un critère de dispersion de la série.

pes.boutyour@gmail.com

Troisième étape: explorer les données

- Analyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles:
 - Dans le cas continu on utilise la fonction représentative du polygone des fréquences cumulées.
 - Dans le cas discret, on range les données par ordre croissant ensuite: Le quartile inférieur est la valeur du milieu du premier ensemble, dans lequel 25 % des valeurs sont inférieures à Q1 et 75 % lui sont supérieures. Le premier quartile prend la notation Q1. Le quartile supérieur est la valeur du milieu du deuxième ensemble, dans lequel 75 % des valeurs sont inférieures à Q3 et 25 % lui sont supérieurs. Le troisième quartile prend donc la notation Q3

ipes.boutyour@gmail.com

71

71

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles:

ipes.boutyour@gmail.com

Troisième étape: explorer les données

- Analyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles:
 - Exemple : Soient les 12 observations suivantes : 57, 11, 15, 34, 24, 20, 28, 19, 37, 47, 50, 1

Les valeurs dans l'ordre ascendant : 1, 11, 15, 19, 20, 24, 28, 34, 37, 47, 50, 57

Q1 est entre 15 et 19 donc : Q1 = 17

Q2 est entre 24 et 28 donc : Q2 = 26 (c'est la médiane)

Q3 est entre 37 et 47 donc : Q3 = 42

73

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles:
 - <u>Exemple 2</u>: On a interrogé 20 élèves en leur demandant leur pointure. On a trié les résultats dans le tableau suivant :

Pointure	35	36	38	39	40
effectif	1	5	4	7	3
Effectif cumulé					

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles:
 - <u>Exemple 2</u>: On a interrogé 20 élèves en leur demandant leur pointure. On a trié les résultats dans le tableau suivant :

Pointure	35	36	38	39	40
effectif	1	5	4	7	3
Effectif cumulé	1	6	10	17	20

ipes.boutyour@gmail.com

75

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles:
 - <u>Exemple 2</u>: On a interrogé 20 élèves en leur demandant leur pointure. On a trié les résultats dans le tableau suivant :

Pointure	35	36	38	39	40
effectif	1	5	4	7	3
Effectif cumulé	1	6	10	17	20

es.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 1. Indicateurs de tendance centrale
 - Quartiles:
 - <u>Exemple 2</u>: On a interrogé 20 élèves en leur demandant leur pointure. On a trié les résultats dans le tableau suivant :

Pointure	35	36	38	39	40
effectif	1	5	4	7	3
Effectif cumulé	1	6	10	17	20

```
Médiane = Q1 = Q3 =
```

ipes.boutyour@gmail.com

77

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - Indicateurs de tendance centrale
 - Quartiles:
 - <u>Exemple 2</u>: On a interrogé 20 élèves en leur demandant leur pointure. On a trié les résultats dans le tableau suivant :

```
        Pointure
        35
        36
        38
        39
        40

        effectif
        1
        5
        4
        7
        3

        Effectif cumulé
        1
        6
        10
        17
        20
```

```
Médiane = 38.5

Q1 = 36

Q3 = 39

N=20 et N/4=5 ; donc le premier quartile

est la 5e valeur, soit 36

N=20 et 3N/4=15 ; donc le troisième

quartile est la 15e valeur, soit 39
```

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 2. Indicateurs de dispersion
 - Évaluent la répartition des observations autour des valeurs centrales
 - ❖Étendue, variance, écart-type, écart interquartile, coefficient de variation

ipes.boutyour@gmail.com

70

79

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - Indicateurs de dispersion : étendue
 - Différence entre la plus grande et la plus petite des valeurs observées (maximum - minimum)
 - ❖Basée uniquement sur les extrêmes → Très sensible aux extrêmes
 - → Souvent peu significative

pes.boutyour@gmail.com

Troisième étape: explorer les données

- Analyser univariée: Variable quantitative
 - 2. Indicateurs de dispersion : variance (dénoté v ou s²)
 - Mesure la dispersion autour de la moyenne
 - La moyenne des carrés des écarts par rapport à la moyenne
 - Plus les données sont concentrées autour de la moyenne, plus la variance est faible.

ipes.boutyour@gmail.com

81

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 2. Indicateurs de dispersion : Ecart-type (dénoté s ου σ)
 - Mesure la dispersion autour de la moyenne
 - Dans le cas d'une population entière, l'écart type est obtenu en appliquant la formule suivante :

$$\mathbf{\sigma} = \sqrt{\left(\frac{\sum (xi - \mu)^2}{n}\right)}$$

dans laquelle μ désigne la moyenne arithmétique de la distribution et n le nombre de données dans cette population.

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 2. Indicateurs de dispersion : Ecart-type (dénoté s ου σ)
 - Mesure la dispersion autour de la moyenne
 - Dans le cas d'un échantillon de cette distribution, l'écart type est obtenu en appliquant la formule suivante :

$$\mathbf{s} = \sqrt{\left(\frac{\sum (xi - \bar{x})^2}{n - 1}\right)}$$

dans laquelle \overline{x} désigne la moyenne des données de l'échantillon et n désigne le nombre de données considérées.

ipes.boutyour@gmail.com

83

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 2. Indicateurs de dispersion : écart interquartile
 - Mesure la taille de l'intervalle situé au centre de la série et incluant 50% des observations :

Ecart interquartile = Q3 - Q1

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 2. Indicateurs de dispersion : coefficient de variation
 - Rapport de l'écart-type à la moyenne de la distribution en %
 - Utile pour comparer la dispersion des variables
 - On dit qu'une variable X est dispersée si :

$$CV(X) > 25\%$$

ipes.boutyour@gmail.com

85

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 3. Indicateurs de forme de la distribution :
 - Asymétrie
 - Aplatissement

pes.boutyour@gmail.com

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - 3. Indicateurs de forme de la distribution : Asymétrie
 - Mesure l'asymétrie d'une distribution
 - Coefficient de symétrie (Skewness) :

$$\frac{1}{n}\sum_{i}\left(\frac{xi-\overline{x}}{\sigma_{x}}\right)^{3} \begin{array}{c} \cdot \text{ Skewness} = 0 \rightarrow \text{ distribution normale} \\ \cdot \text{ Skewness} > 0 \rightarrow \text{ distribution asymétrique} \\ \text{à droite} \\ \cdot \text{ Skewness} < 0 \rightarrow \text{ distribution asymétrique} \\ \text{à gauche} \end{array}$$

ipes.boutyour@gmail.com

87

Troisième étape: explorer les données

- Analyser univariée: Variable quantitative
 - 3. Indicateurs de forme de la distribution : Coefficient d'aplatissement
 - Mesure le relief ou la platitude d'une courbe issue d'une distribution de fréquences
 - Coefficient d'aplatissement (Kurtosis)

$$\frac{1}{n}\sum_{i}\left(\frac{xi-\overline{x}}{\sigma_{x}}\right)^{4}$$

- $\frac{1}{n}\sum_{i}\left(\frac{xi-\overline{x}}{\sigma_{x}}\right)^{4}$ Kurtosis = 3 \rightarrow aplatie comme une distribution normale (d.n)
 - Kurtosis > 3 → plus concentrée qu'une (d.n)
 - Kurtosis < 3 → plus aplatie qu'une (d.n)

89

Compréhension des données

Troisième étape: explorer les données

- OAnalyser univariée: Variable quantitative
 - Indicateurs de forme de la distribution : Coefficient d'aplatissement

 Mésokurtique: courbe normale (cloche)

- Platikurtique: courbe plate
 - > les cas s'éloignent de la moyenne
 - > forte variation : distribution relativement hétérogène

- <u>Leptokurtique</u>: courbe élancée
 - > haute concentration de cas aui prennent les valeurs égales ou proches de la moyenne
 - peu de variation : distribution relativement homogène

Etapes:

- 1. Collecter les données
- 2. Décrire les données
- 3. Explorer les données
 - Valeurs manquante
 - Analyse univariée
 - Analyse bivariée (pour la séance prochaine)
- 4. Vérifier la qualité des données

ipes.boutyour@gmail.com

Om.

