## EC Lille G3 SEC

## SDR - TP APPLICATION DISTRIBUEE N°3

Objectifs: Connaissances et compétences développées.

- Programmation de sockets dans le domaine AF-INET en mode connecté
- Utilisation d'une messagerie industrielle
- Développement d'application client-serveur

#### **Sujet:**

## 1. Contexte de l'application

Nous désirons réaliser la commande de trois trains dans le contexte d'une mise en œuvre distribuée. Sur autorisation de départ cycle et la saisie d'un nombre de tours, les trains réalisent l'un des circuits suivants (définies selon les tronçons à alimenter) :

circuit 1: Ti03-T23-Ti10-T29-T19-Ti03

circuit 2: Ti04 - T22 - T27-T28- Ti09 - T24 - Ti04

circuit 3: Ti00-T13-T20-T30-Ti09-T31-T26-T15-T12-Ti00

circuit 4: Ti07-T29-Ti09-T28-T27-Ti07

On positionnera manuellement chaque train sur le tronçon de départ du circuit sélectionné.

## 2. Modèles de commande

Afin de répondre aux contraintes induites par cette architecture distribuée, la commande est structurée à l'aide de 3 types de graphes de commandes :

- Les graphes de coordination de chaque train noté GCTRi pour le train n°i,
- Les gestionnaires de ressources (GRk pour la ressource Rk),
- Les filtres de commandes des actionneurs.

## 3. Architecture opérationnelle de commande

Nous désirons utiliser la messagerie industrielle UNITE de Schneider afin de développer des applications distribuées sur automate industriel et PC. Les commandes du train1 et du train 2 seront développé sur un même PC et celles du train3 et du train 4 sur un autre PC. Le Gestionnaire de ressources sera implémenté sur un 3<sup>ème</sup> PC. Les filtres de commande seront implémentés sur l'automate du train d'adresse IP **10.31.125.14**.

## 4. Utilisation du service des filtres de commande

Il existe 3 catégories de filtres de commande : les filtres de commande des avances tronçon, les filtres de commande de positionnement d'aiguillage et les filtres de commande d'inversion du sens d'un train.

A chaque train est associé un filtre de commande générique par catégorie. Pour déclencher les filtres de commande d'un train, on dispose pour chaque train de 3 mots internes consécutifs (Figure 1). Dans le premier mot doit avoir pour valeur l'adresse de la station XWAY du calculateur sur lequel est implémenté le filtre de commande du train. Le second mot sert à demander le déclenchement d'un tronçon et le 3<sup>ème</sup> mot permet de déclencher le positionnement d'un aiguillage.

| %MWi   | adresse XWAY de station du PC client |  |
|--------|--------------------------------------|--|
|        | Requête déclenclenchement filtre de  |  |
| %MWi+1 | commande d'un troncon du train k     |  |
|        | Requête déclenclenchement filtre de  |  |
| %MWi+2 | commande d'un aiguillage du train k  |  |

Figure 1. Tableau de demande de déclenchement d'un filtre de commande

Comme, il n'est pas possible de déclencher pour le même train un tronçon et un aiguillage, le mot non utilisé doit être mis à la valeur -1 soit 0xFFFF en hexadécimale. La Figure 2, donne la répartition des mots par train.

| Adresse des mots<br>internes/train | Signification    |  |  |
|------------------------------------|------------------|--|--|
| %MW39                              | AdrstationTrain1 |  |  |
| %MW40                              | ReqTroncTrain1   |  |  |
| %MW41                              | ReqAigTrain1     |  |  |
| %MW42                              | AdrstationTrain2 |  |  |
| %MW43                              | ReqTroncTrain2   |  |  |
| %MW44                              | ReqAigTrain12    |  |  |
| %MW50                              | AdrstationTrain3 |  |  |
| %MW51                              | ReqTroncTrain3   |  |  |
| %MW52                              | ReqAigTrain3     |  |  |
| %MW53                              | AdrstationTrain4 |  |  |
| %MW54                              | ReqTroncTrain4   |  |  |
| %MW55                              | ReqAigTrain4     |  |  |

Figure 2. Répartition des mots internes par train pour le déclenchement des filtres de commande

Afin de pouvoir utiliser les filtres de commandes génériques associées à chaque train, il est nécessaire d'établir un dictionnaire de données permettant de spécifier chaque service demandé. Ce dictionnaire est donné par la Figure 3. Le principe d'élaboration du dictionnaire est simple. Associer une valeur à chaque commande en essayant de rester le plus intuitif possible. Pour demander l'alimentation d'un tronçon afin de permettre qu'il avance, il suffit d'écrire dans le mot de requête de tronçon, le numéro du tronçon. L'exception à cela n'arrive que si un même train passe dans deux sens différents sur le même tronçon. Afin de déterminer le capteur permettant de savoir quand, il a quitté la commande peut être arrêtée, il nécessaire de distinguer la demande de service en fonction du sens. Cela est nécessaire pour l'avance du train 4 sur le tronçon Ti7. A l'aller (sens horaire), il faut utiliser 7 comme commande valeur de demande du service. Le tronçon Tn07 est alors alimenté, jusqu'à ce que le train passe sur le capteur C61 indiquant l'arrivée sur T29. A retour quand le train arrive sur Ti07, il faut alimenter Tn07 jusqu'à ce que le train passe sur C40. Pour cela, il faut utiliser la valeur 37 correspondant à la commande Tn07 trigo.

| Aiguillages | Valeur   | Tronçon      | Valeur |
|-------------|----------|--------------|--------|
| A0d         | 0        | Tn0          | 0      |
| A1d         | 1        | Tn01         | 1      |
| A5d         | 5 ou 20  | Tn02         | 2      |
| A6d         | 6 ou 20  | Tn03         | 3      |
| A7b         | 10       | Tn04         | 4      |
| A7d         | 7        | Tn07 horaire | 7      |
| A8b         | 89 ou 10 | Tn07 trigo   | 37     |
| A9b         | 9 ou 10  | Tn09         | 9      |
| A10d        | 10       | Tn10         | 10     |
| A11b        | 7 ou 10  | T12          | 12     |
| A11d        | 11 ou 23 | T13          | 13     |
| A12b        | 14       | T15          | 15     |
| A12d        | 12       | T19          | 19     |
| A13d        | 13       | T20          | 20     |
| A14b        | 14       | T22          | 22     |
| A15b        | 13 ou 15 | T23          | 23     |
|             |          | T24          | 24     |
| PA0d        | 31 ou 20 | T26          | 26     |
| PA1d        | 21       | T27          | 27     |
| PA2d        | 22       | T28          | 28     |
| PA3b        | 7        | <br>T29      | 29     |
| PA3d        | 23       | T30          | 30     |
|             |          |              |        |
| TJ1d        | 31       | Ti07         | 47     |
| TJ2d        | 14 ou 32 | Ti09         | 47     |
| Tj3d        | 13 ou 33 |              |        |

Figure 3. Dictionnaire de données pour la mise en œuvre des services par les filtres de commande.

Pour les requêtes de demande d'inversion, on utilise les mots de demande d'alimentation des tronçons mais en ajoutant la valeur 40 au numéro du tronçon inverseur. Par exemple, pour inverser le train 4 sur le tronçon Ti7, une fois qu'il est à l'arrêt, il faut écrire la valeur 47 dans le mot %MW53 (ReqTroncTr4).

Pour les aiguillages, le dictionnaire des données a été élaboré en prenant en général le numéro de l'aiguillage pour les commandes concernant les aiguillages simples (type Ai). Pour les paires d'aiguillages (PAi), il est ajouté la valeur 20 au numéro de l'aiguillage, et pour les aiguillages en croix (TJi) il est ajouté la valeur 30 au numéro de l'aiguillage. Afin de favoriser la commande simultanée d'un ensemble d'aiguillages compris entre deux tronçons à commander, il suffit de demander le positionnement d'un premier aiguillage rencontré par le train. Par exemple, si nous considérons le train 1 devant aller du tronçon Ti03 au tronçon T23, il est nécessaire de positionner TJ1 en droit et PA0 et droit. L'écriture de la valeur 31 dans %MW41 (ReqAigTr1) entrainera le positionnement automatique des 2 aiguillages.

La Figure 4 donne une synthèse de la commande de chacun des filtres. Les groupes de couleurs indiquent les ensembles d'aiguillages commandés simultanément.

| Tr                                 | ain1   |            |                   | Train2 |              |       |
|------------------------------------|--------|------------|-------------------|--------|--------------|-------|
| Variable                           | Valeur | Actionneur | Variable          | Valeur | Actionneur   |       |
| ReqTroncTr1=%MW40                  | 3      | Tn03       |                   | 4      | Tn04         |       |
|                                    | 10     | Tn10       |                   | 9      | Tn09         |       |
|                                    | 19     | T19        | ReqTroncTr2=%MW43 | 22     | T22          |       |
|                                    | 23     | T23        |                   | 24     | T24          |       |
|                                    | 29     | T29        |                   | 27     | T27          |       |
|                                    |        |            |                   | 28     | T28          | 1     |
|                                    | 3      | PA3b       |                   |        |              |       |
|                                    | 3      | A11b       | ReqAigTr2=%MW44   | 7      | A7d          |       |
|                                    | 3      | A7d        |                   | 7      | A11b         |       |
| D = 0.0 A = T = 1 = 0/ B 4) A / 44 | 22     | PA2d       |                   | 7      | PA3d         |       |
| ReqAigTr1=%MW41                    | 22     | Tj2d       |                   | 12     | A12d         | 1     |
|                                    | 31     | TJ1d       |                   | 13     | A13d         | 1     |
| Ī                                  | 31     | PA0d       |                   | 20     | PA0d         |       |
| Ī                                  | 33     | TJ3d       |                   | 20     | A5d          |       |
|                                    |        |            |                   | 20     | A6d          |       |
|                                    |        |            |                   |        |              |       |
|                                    |        |            |                   |        |              |       |
|                                    |        |            |                   |        |              |       |
| Tr                                 | ain3   |            |                   | Train4 |              |       |
| Variable                           | Valeur | Actionneur | Variable          | Valeur | Actionneur   | 1     |
|                                    | 9      | Tn9        |                   | 7      | Tn07 horaire | 1     |
| ļ                                  | 12     | T12        | ReqTroncTr4=%MW53 | 37     | Tn07 trigo   | 1     |
| ļ                                  | 13     | T13        |                   | 9      | Tn09         | 1     |
| D 41: T. O. 0/14=5                 | 15     | T15        |                   | 27     | T27          | 1     |
| ReqAigTr3=%M50                     | 24     | T24        |                   | 28     | T28          | 1     |
| Ţ                                  | 26     | T26        |                   | 29     | T29          | 1     |
| ļ                                  | 30     | T30        |                   | 47     | Ti07         | 1     |
| ļ                                  | 31     | T31        |                   | 49     | Ti09         | 1     |
|                                    |        |            |                   |        |              |       |
|                                    | 0      | A0d        |                   | 10     | A10d         |       |
| Ţ                                  | 1      | A1d        |                   | 10     | A9b          |       |
| Ţ                                  | 13     | A13b       |                   | 10     | A8b          |       |
| İ                                  | 13     | TJ3d       | ReqAigTr4=%MW54   | 10     | A7b          |       |
| ReqAigTr3=%MW51                    | 13     | A15b       |                   | 10     | A11b         |       |
|                                    | 14     | A14        |                   | 10     | PA3b         |       |
| İ                                  | 14     | Tj2d       |                   | 33     | A13b         |       |
|                                    | 14     | A12b       |                   | 13     | A13d         | 1     |
|                                    | 21     | PA1d       |                   | 23     | PA3d         | 40+N° |
|                                    |        |            |                   | 23     | A11b         | 40+N° |
|                                    |        |            |                   | 23     | A7b          |       |
|                                    |        |            |                   | 23     | A8b          |       |
|                                    |        |            |                   | 23     | A9b          |       |
|                                    |        |            |                   |        |              |       |
|                                    |        |            |                   | 23     | A10d         |       |

Figure 4. Synthèse des codes requêtes pour l'activation des filtres de chaque train

Le service des filtres des commandes a été développé sur une base client-serveur. Cela signifie que pour chaque requête émise, l'automate du train qui joue ici le rôle de serveur va envoyer une requête UNITE d'écriture dans un tableau d'un mot interne, de la valeur correspondant au code du service rendu (cf. Figure 5).

Si la requête correspondait à l'alimentation d'un tronçon, le code d'acquittement (Acknowledge) retour sera la valeur du capteur à l'entrée du tronçon de destination. Par exemple, pour le train1, si la requête concerne l'alimentation du tronçon Tn03, le code requête en retour sur 24 pour indiquer que le train est arrivé sur le tronçon T23.

Si la requête concerne un aiguillage ou une demande d'inversion de sens de train sur un tronçon, le code d'acquittement aura pour valeur le code requête.

| Adresse des mots Acknowledge dans les PC clients | Signification                                          | Valeur                                                |
|--------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| %MW8                                             | AckTroncTr1                                            | Valeur du capteur d'arrivée sur<br>le tronçon suivant |
| %MW9                                             | AckTAigTr1                                             | Code requête envoyé pour demander le service          |
| %MW10                                            | AckTroncTr3                                            | Valeur du capteur d'arrivée sur<br>le tronçon suivant |
| %MW11                                            | AckTAigTr3                                             | Code requête envoyé pour demander le service          |
| %MW12                                            | AckTroncTr4                                            | Valeur du capteur d'arrivée sur<br>le tronçon suivant |
| %MW13                                            | AckTAigTr4                                             | Code requête envoyé pour demander le service          |
| %MW14                                            | AckInvTr4 Code requête envoyé p<br>demander le service |                                                       |
| %MW15                                            | AckTroncTr2                                            | Valeur du capteur d'arrivée sur<br>le tronçon suivant |
| %MW16                                            | AckTAigTr2                                             | Code requête envoyé pour<br>demander le service       |

Figure 5. Adresses des variables d'Acknowledge écrites par l'automate du train pour acquitter le service rendu

# Annexe 1 : Plan du réseau ferroviaire de l'Ecole Centrale de Lille (cf. schéma distribué )

## Annexe 2: Fonctionnement de la maquette

## Partie Opérative : la maquette de réseau ferroviaire

Un train avance sur les circuits par alimentation des rails. Ces rails sont répartis en deux types de tronçon : les tronçons alimentés en continu et ceux qui sont alimentés par la mise à 1 de la sortie automate correspondante (cf. schéma du réseau). Par exemple, le tronçon noté T8 est alimenté lorsque la sortie Q4.16 est à 1 (symbole **T8**).

Le train est actionné par deux moteurs à courant continus lui permettant d'aller dans un sens ou dans l'autre. L'inversion de sens du train ne peut s'effectuer que sur les tronçons inverseurs notés  $TI_j$ , "j" étant le numéro du tronçon (Par exemple le tronçon noté TI4). Pour cela, le train étant à l'arrêt, il faut commander la sortie correspondante pendant 50 ms.

**Remarque**: On notera qu'à chaque tronçon "TI<sub>i</sub>" correspond deux commandes:

- Tij pour réaliser l'inversion du sens de circulation d'un train,
- **Tnj** pour faire avancer le train.

Le changement de circuit sur le réseau ferroviaire s'effectue par le positionnement d'aiguillages en biais (B) ou en direct (P) (cf. Figure 6).



Figure 6: Positionnement d'un aiguillage

La commande des aiguillages est de type bistable. Par exemple la sortie Q5.0 permet de positionner l'aiguillage A0 en biais (symbole **A0b**). Inversement, la sortie Q5.1 permet de positionner l'aiguillage A0 en direct (symbole **A0d**). Le positionnement d'un aiguillage s'effectue par la commande de la sortie correspondante pendant un temps de l'ordre de **300ms**.

La position du train sur la maquette est déterminée par des capteurs nommés C<sub>i</sub>. La majeure partie de ces capteurs est située sur des tronçons alimentés en continu. Les seules exceptions sont C22 sur T13 et C24 sur T14.