

4. Equações Não Lineares

4.1 Equações Não Lineares: background

4.1.1 Introdução

Neste capítulo consideramos o problema da determinação de raízes de uma **equação não linear**, isto é, de uma equação da forma

$$f(x) = 0 (4.1)$$

onde f é uma função real de variável real, não linear.

Os métodos usados para resolver (4.1) são **métodos iterativos**: são dadas m+1 aproximações iniciais x_0,\ldots,x_m para uma raiz r da equação (4.1) e determina-se, então, uma nova aproximação x_{m+1} , repetindo-se sucessivamente este processo. Mais precisamente, é gerada uma sequência $\{x_k\}$ de aproximações para r através do uso de fórmulas do tipo

$$x_{k+1} = g(k, x_k, \dots, x_{k-m}); k = m, m+1, \dots$$
 (4.2)

Se a função g em (4.2) não depender de k, isto é, se a forma da função iterativa se mantiver de iteração para iteração, o método diz-se **estacionário**.

Seja $e_k := r - x_k$ (erro na aproximação x_k para r). O que se pretende, naturalmente, é ter métodos convergentes, isto é, métodos que satisfaçam

$$\lim_{k \to \infty} x_k = r$$

ou, equivalentemente,

$$\lim_{k\to\infty}e_k=0.$$

Ordem de convergência

Um conceito importante na discussão de métodos iterativos é o de ordem de convergência.

Seja $\{x_k\}$ uma sequência de aproximações obtidas por um determinado método iterativo e suponhamos que $\lim_{k\to\infty}x_k=r$. Seja $e_k:=r-x_k$. Se existir um número $p\geq 1$ e uma constante C>0 tais que

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C \tag{4.3}$$

dizemos que o método é de **ordem** p em r. Se p=1, a convergência diz-se **linear** e, se p>1, a convergência é dita **superlinear**, dizendo-se **quadrática** se p=2, **cúbica** se p=3, etc. A constante C é chamada **constante de convergência assintótica**. É usual escrever a expressão (4.3) de forma assintótica como

$$|e_{k+1}| \sim C|e_k|^p$$

que nos indica como o erro se comporta quando k é suficientemente grande.

Nota 4.1 Quando p=1, C deve ser menor ou igual a 1 para que o método convirja, mas para p>1, não é necessário que $C\leq 1$ para haver convergência. Nalguns casos é possível estabelecer uma relação do tipo

$$|e_k| \le CM^k, \ M < 1, \tag{4.4}$$

não sendo, no entanto, possível mostrar diretamente que a condição (4.3) se verifica (com p=1). Neste caso, dizemos ainda que o método converge linearmente.

Quanto maior for a ordem de convergência de um método iterativo e menor a constante de convergência, maior será, em princípio, a sua rapidez de convergência.

4.1.2 Método do ponto fixo ou das iterações sucessivas

Seja $g:D\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ uma função real de variável real. Dizemos que g é **contrativa** em D, se existe uma constante $0\leq L<1$, tal que

$$|g(x) - g(y)| \le L|x - y|, \ \forall x, y \in D.$$

A constante L é chamada **constante de Lipschitz**.

Seja g uma aplicação de D em si mesmo, isto é, $g:D\longrightarrow D$. Diz-se que $\alpha\in D$ é **ponto fixo** de g se $g(\alpha)=\alpha$. Comecemos por recordar o importante Teorema do Ponto Fixo (num intervalo I=[a,b] de \mathbb{R}).

Teorema 4.1 (do ponto fixo de Banach) Seja $I = [a, b] \subseteq \mathbb{R}$ e seja g uma aplicação de I em si mesmo, contrativa, com constante de Lipschitz L. Então:

- (i) a aplicação g tem um e um só ponto fixo α em I;
- (ii) para qualquer valor inicial $x_0 \in I$, a sequência de iterações $\{x_k\}$ definida por

$$x_{k+1} = g(x_k); \ k = 0, 1, 2, \dots$$
 (4.5)

converge para α , ponto fixo de g em I;

(iii) o erro $e_k := \alpha - x_k$ satisfaz

$$|\alpha - x_k| \le \frac{L^{k-m}}{1-L}|x_{m+1} - x_m|; \ 0 \le m \le k-1.$$
 (4.6)

Em particular, tem-se:

• m = 0 – Estimativa "a priori" para o erro na iteração k:

$$|\alpha - x_k| \le \frac{L^k}{1 - L} |x_1 - x_0| \tag{4.7}$$

• m = k - 1 – Estimativa "a posteriori" para o erro na iteração k:

$$|\alpha - x_k| \le \frac{L}{1 - L} |x_k - x_{k-1}|$$
 (4.8)

Voltemos, então, ao problema da determinação de uma raiz da equação não linear (4.1). Suponhamos que, por operações elementares, reescrevemos essa equação, de uma forma equivalente, como

$$g(x) = x \tag{4.9}$$

transformando, assim, o problema da determinação de uma raiz de (4.1) no da determinação de um ponto fixo de g. Se encontrarmos um intervalo I tal que $g(I) \subseteq I$ e g seja contrativa em I então, tendo em conta o Teorema do Ponto Fixo de Banach, poder-se-á procurar α (ponto fixo de g em I) usando a fórmula iterativa

$$x_{k+1} = g(x_k); \ k = 0, 1, \dots; \ x_0 \in I.$$
 (4.10)

A este método chamamos método do ponto fixo ou das iterações sucessivas.

A verificação de que g é contrativa no intervalo I poderá, por vezes, tornar-se mais simples recorrendo ao seguinte resultado, consequência imediata do Teorema do Valor Médio de Lagrange.

Teorema 4.2 Seja $g \in C^1[a,b]$ tal que $|g'(x)| \le L < 1$, para todo $x \in (a,b)$. Então, g é contrativa em I = [a,b] com constante de Lipschitz L.

Tem-se, também o seguinte teorema.

Teorema 4.3 Seja α um ponto fixo de uma função g e suponhamos que g é continuamente diferenciável num certo intervalo centrado em α e que, além disso, $|g'(\alpha)| < 1$. Então, existe um intervalo $I = [\alpha - \delta, \alpha + \delta]$ para o qual são válidas as hipóteses do teorema do ponto fixo de Banach.

O resultado anterior mostra, assim, que se α for um ponto fixo de g e $|g'(\alpha)| < 1,^1$ então poderemos aplicar o método das aproximações sucessivas para aproximar α , desde que x_0 seja escolhido "suficientemente" próximo de α . Por estas razões se diz que o método do ponto fixo é um método de convergência **local**.

Pode também mostrar-se que, se $|g'(\alpha)| > 1$, então o método das iterações sucessivas não poderá convergir.

As Figuras 4.1 - 4.3 ilustram o comportamento do método do ponto fixo, de acordo com o valor de $g'(\alpha)$.

¹E sendo g' é contínua num intervalo centrado em α .

Figura 4.1: Convergência: $-1 < g'(\alpha) < 0$

Figura 4.2: Convergência: $0 < g'(\alpha) < 1$

Figura 4.3: Divergência: $g'(\alpha) > 1$

Teorema 4.4 (Ordem de convergência do método do ponto fixo) Seja α um ponto fixo de uma função g e suponhamos que g é continuamente diferenciável num certo intervalo centrado em α e que, além disso,

$$0 < |g'(\alpha)| < 1.$$

Seja I o intervalo (que sabemos existir) para o qual se verificam as condições do teorema do ponto fixo, e suponhamos que $x_0 \in I$ e que $x_{k+1} = g(x_k)$; $k = 0, 1, \ldots$ Então, designando por e_k o erro na iteração k, isto é, $e_k = \alpha - x_k$, tem-se

$$\lim_{x \to \infty} \frac{|e_{k+1}|}{|e_k|} = |g'(\alpha)|. \tag{4.11}$$

Por outras palavras, nestas condições o método converge linearmente, com constante de convergência assintótica $C = |g'(\alpha)|$.

O resultado anterior mostra que a convergência do método do ponto fixo será tanto mais rápida quanto menor for o valor de $C = |g'(\alpha)|$. Pode acontecer que $g'(\alpha) = 0$. Nesse caso, será de esperar que a convergência seja "melhor" que linear. De facto, tem-se o seguinte resultado mais geral:

Teorema 4.5 (convergência do método do ponto fixo) Seja α um ponto fixo de uma função g e suponhamos que g é p vezes continuamente diferenciável num certo intervalo centrado em α e que, além disso,

$$g'(\alpha) = g''(\alpha) = \dots g^{(p-1)}(\alpha) = 0$$

e que $g^{(p)}(\alpha) \neq 0$. Seja $\{x_k\}$ a sequência de iterações obtida por aplicação do método do ponto fixo, com x_0 escolhido suficientemente próximo de α . Então, tem-se

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = \frac{1}{p!} |g^{(p)}(\alpha)|. \tag{4.12}$$

Por outras palavras, nestas condições, a ordem de convergência do método é p e a constante de convergência assintótica é $C = \frac{1}{n!} |g^{(p)}(\alpha)|$.

4.1.3 Aceleração de Aitken

A convergência do método do ponto fixo é, em geral, linear, podendo por isso revelar-se bastante lenta. A aceleração de Aitken é um procedimento que visa melhorar a velocidade de convergência de sequências iterativas, sendo particularmente útil no contexto do método de ponto fixo.

Observe-se que, nas condições dos teoremas anteriores, podemos escrever

$$\alpha - x_{k+1} = g'(\xi_k)(\alpha - x_k),$$

com $\xi_k \in (\min(x_k, \xi_k), \max(x_k, \xi_k))$. Analogamente

$$\alpha - x_{k+2} = g'(\xi_{k+1})(\alpha - x_{k+1}).$$

Assim, em caso de convergência e para k suficientemente grande, será então válida a relação

$$\alpha - x_{k+1} \approx C(\alpha - x_k)$$
 e $\alpha - x_{k+2} \approx C(\alpha - x_{k+1})$, (4.13)

onde $C \approx g'(\xi_k) \approx g'(\xi_{k+1}) \approx g'(\alpha)$. Eliminando α entre as duas relações obtém-se

$$C \approx \frac{x_{k+2} - x_{k+1}}{x_{k+1} - x_k}.$$

A relação anterior permite estimar o valor de C sem necessidade de recorrer a estimativas de $g'(\alpha)$, as quais envolveriam o valor (desconhecido) do ponto fixo α . Introduzindo este valor de C em (4.13), obtém-se a expressão simplificada

$$\alpha \approx x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k},$$

a qual pode ser escrita, usando o operador de diferenças descendentes (cf. Exercício 2.4) como

$$\alpha \approx x_k - \frac{(\Delta x_k)^2}{\Delta^2 x_k}.$$

É de esperar que a sucessão $(y_k)_k$ calculada através da fórmula

$$y_k = x_k - \frac{(\Delta x_k)^2}{\Delta^2 x_k} \tag{4.14}$$

convirja mais rapidamente que a sucessão original $(x_k)_k$. O processo de obter, a partir de uma sequência linearmente convergente $(x_k)_k$, uma sequência de convergência mais rápida $(y_k)_k$ através de (4.14) é usualmente designado **aceleração** Δ^2 **de Aitken** e pode ser aplicado a qualquer sequência linearmente convergente, gerada ou não pelo método do ponto fixo.

Nota 4.2 Se, a partir de determinado k, a sequência dos rácios $\frac{\Delta x_{k-1}}{\Delta x_k}, \frac{\Delta x_k}{\Delta x_{k+1}}, \dots$ é aproximadamente constante, pode assumir-se que y_k será uma melhor aproximação para α do que x_k . Em particular, $|y_k - x_k|$ será uma boa estimativa para o erro $|\alpha - x_k|$.

4.1.4 Exercícios

Exercício 4.1 Seja $I=[a,b]\subseteq\mathbb{R}$ e seja $g\in C^1[a,b]$ uma aplicação que satisfaz as condições de convergência do método do ponto fixo no intervalo I, isto é, suponhamos que $g(I)\subseteq I$ e $|g'(x)|<1, \forall x\in (a,b)$. Mostre que, se $0< g'(x)<1, \ \forall x\in (a,b)$, então a convergência da sequência gerada pelo método do ponto fixo para α (ponto fixo de g em I) é monótona. Mais precisamente, mostre que:

- Se $x_0 > \alpha$, então $x_0 > x_1 > x_2 > x_3 > \dots$
- Se $x_0 < \alpha$, então $x_0 < x_1 < x_2 < x_3 < \dots$

O que acontece quando -1 < g'(x) < 0, $\forall x \in (a,b)$? Interprete geometricamente estes resultados.

Exercício 4.2 Seja a um inteiro positivo e considere a sucessão definida por

$$x_0 = \frac{1}{a}, \ x_1 = \frac{1}{a + \frac{1}{a}}, \ x_2 = \frac{1}{a + \frac{1}{a + \frac{1}{a}}}, \cdots,$$

ou seja, $\{x_k\}$ é a sucessão definida por $x_0 = \frac{1}{a}$, $x_{k+1} = \frac{1}{a+x_k}$.

a) Mostre que essa sucessão converge para um valor $\alpha \in [\frac{1}{a+1}, \frac{1}{a}].$

Nota: O valor de α definido pela sucessão anterior é normalmente apresentado sob a forma de uma fracção contínua:

$$\alpha = \frac{1}{a + \frac{1}{a + \frac{1}{a + \dots}}}$$

- b) Quando a=1, que número "famoso" é $1+\alpha$? Determine uma aproximação para esse número, usando 8 iterações do método do ponto fixo. Obtenha uma estimativa para o erro $|\alpha-x_8|$.
- Exercício 4.3 Seja $g:[a,b] \longrightarrow [a,b]$ uma aplicação contrativa, com constante de Lipschitz L e seja α o ponto fixo de g em I=[a,b]. Seja $\{x_k\}$ a sequência definida por iteração do ponto fixo: $x_k=g(x_{k-1});\ x_0\in I$. Mostre que, se $L<\frac{1}{2}$, então, ao utilizarmos o critério de paragem $|x_k-x_{k-1}|<\delta$, teremos garantia de que a iteração x_k satisfará também $|\alpha-x_k|<\delta$. Que poderá acontecer se $\frac{1}{2}< L<1$?
- **Exercício 4.4** Pretende-se resolver a equação $\frac{1}{x} e^x = 0$, a qual admite uma raiz perto do ponto x = 0.5.
 - a) Quais das seguintes fórmulas iterativas

$$x_{k+1} = -\ln x_k$$
; $x_{k+1} = e^{-x_k}$; $x_{k+1} = \frac{x_k + e^{-x_k}}{2}$,

poderão ser usadas? E qual deverá ser usada?

- b) Calcule uma aproximação para essa raiz, usando a fórmula mais eficiente, iterando até que $|x_k-x_{k-1}| \leq 0.5 \times 10^{-3}$. Estime, então, o valor de $|\alpha-x_k|$.
- c) Indique uma estimativa para o número de iterações que deveria efetuar para, usando a outra fórmula possível, garantir uma aproximação para a raiz com o mesmo número de casas decimais da aproximação obtida na alínea anterior.
- **Exercício 4.5** Considere a sucessão de números reais definida do seguinte modo:

$$\begin{cases} x_0 = a, \\ x_{k+1} = 1 - \frac{1}{bx_k}; \quad k = 0, 1, \dots, \end{cases}$$

onde a e b são números reais dados.

- a) Mostre que, se b> 4, esta sucessão é convergente, qualquer que seja $a\in [\frac{1}{2},1].$
- b) Seja então b>4, $a\in [\frac{1}{2},1]$ e $\alpha=\lim_{n\to\infty}x_n$. Verifique que:

i.
$$\alpha = \frac{1}{2} + \sqrt{\frac{1}{4} - \frac{1}{b}}$$
.

ii.
$$|\alpha - x_k| \le \frac{4}{b-4}|x_k - x_{k-1}|, \ k = 1, 2, \dots$$

c) Faça a=0.75, b=5 e estime o número de iterações do Método do Ponto Fixo que seriam necessárias para obter uma aproximação para α com 4 casas decimais corretas.

Exercício 4.6

- a) Mostre que a fórmula de Aitken transforma uma sucessão linearmente convergente $(x_k)_k$ noutra sucessão, $(y_k)_k$, também linearmente convergente, mas cuja constante de erro assimptótico é mais favorável, i.e., C^2 em vez de C.
- b) Uma vez que a sucessão transformada $(y_k)_k$ tem convergência linear, podemos aplicar a esta sucessão a transformação de Aitken obtendo-se aquilo que se designa por **transformação de Aitken iterada**. Obtenha a fórmula da transformação de Aitken iterada.

Exercício 4.7 Considere a função

$$g(x) = \frac{0.1x - \tan x}{1.5},$$

cujo ponto fixo é $\alpha = 0.20592169510...$

- a) Faça 30 iterações do método do ponto fixo, usando como aproximação inicial $x_0=0$. Apresente os resultados numa tabela contendo o número k da iteração, a aproximação x_k para o ponto fixo, os valores Δx_k e os rácios $\frac{\Delta x_{k-1}}{\Delta x_k}$.
- b) Diga se se justifica usar a fórmula de Aitken para acelerar a convergência e, em caso afirmativo, obtenha a sequência resultante.

4.2 Método de Newton e variantes

4.2.1 Descrição geométrica

Se a função f, cujo zero estamos a procurar, for continuamente diferenciável e se a derivada de f puder ser calculada sem grande esforço computacional, podemos aproximar os zeros de f utilizando o bem conhecido **método de Newton**.

A ideia é começar com uma estimativa inicial x_0 , depois aproximar a função f pela reta tangente ao seu gráfico em x_0 e, finalmente, calcular a interseção desta tangente com o eixo dos x para obter x_1 . Esta aproximação x_1 será tipicamente uma melhor aproximação para o zero da função original do que a primeira estimativa x_0 , e o método pode ser iterado (ver Figura 4.4).

Facilmente se prova que o método de Newton é definido pelo esquema iteratico

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}; k = 0, 1, 2, \dots$$
 (4.15)

sendo x_0 uma aproximação inicial (suficientemente próxima do zero de f) e $f'(x_k) \neq 0$ (ver Exercício 4.15).

Figura 4.4: O método de Newton

4.2.2 Bacias de atração

O método de Newton também pode ser utilizado para a determinação de zeros complexos, desde que se considere um número complexo como estimativa inicial.

Quando f tem mais do que um zero, o zero para o qual o método de Newton converge depende da estimativa inicial x_0 . Uma **bacia de atração** de Newton de o zero r é simplesmente o conjunto de estimativas iniciais que levam à convergência do método de Newton para r. Colorir o plano complexo de acordo com o zero para o qual uma estimativa inicial converge, atribuindo uma cor diferente a cada solução, pode originar imagens muito bonitas.

Exemplo 4.1 Considere o polinómio $p(x) = x^4 + 1$, cujos zeros são

$$r_1 = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i, \quad r_2 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, \quad r_3 = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i, \quad r_4 = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i.$$

Para indicar quais as estimativas iniciais que convergem e para que raízes, utilizámos 4 cores: vermelho (que mostra a convergência para r_1), azul (r_2) , amarelo (r_3) e verde (r_4) . Considerámos

várias estimativas iniciais no quadrado $[-1.5, 1.5] \times [-1.5, 1.5]$, e o resultado é mostrado na figura seguinte. As regiões brancas correspondem ao uso de estimativas iniciais para as quais o método de Newton não convergiu em 20 iterações.

Nota 4.3 Outra forma de obter as bacias de atração é utilizar uma escala de cores para representar o número de iterações necessárias para alcançar a convergência, sem considerar para que zero as iterações convergem. Nesses casos, obtemos as seguintes figuras.

4.2.3 Exercícios

Exercício 4.6 Deduza o esquema iterativo (4.15) do método de Newton.

Exercício 4.7 Mostre que o método de Newton é equivalente ao método do ponto fixo com função iterativa

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Conclua que, se f for três vezes continuamente diferenciável² num certo intervalo centrado em α , então existe um intervalo $I=[\alpha-\delta,\alpha+\delta]$, tal que o método converge pelo menos quadraticamente para r, para qualquer estimativa inicial $x_0\in I$.

Além disso, no caso de convergência quadrática, a constante de convergência assintótica é dada por:

$$C = \frac{1}{2} \left| \frac{f''(r)}{f'(r)} \right|.$$

Exercício 4.8 Seja $f(x) = (x - r)^m$, com m > 1.

a) Mostre que se usarmos o método de Newton para determinar r,então $e_{k+1}=\frac{m-1}{m}\,e_k$, onde $e_k=r-x_k$.

 $^{^2}$ Aqui exigimos que f seja três vezes continuamente diferenciável para invocar os resultados de convergência do método do ponto fixo; no entanto, pode ser demonstrado que o resultado ainda se mantém quando f é apenas duas vezes continuamente diferenciável numa vizinhança de r.

b) Conclua que a convergência do método para r não pode ser quadrática, mas apenas linear. Neste caso, qual é o valor da constante de convergência?

Este resultado generaliza-se para o caso em que $f(x) = (x - r)^m g(x)$, com g sendo uma função (suficientemente diferenciável) que não se anula em r, ou seja, para o caso em que r é uma raiz de ordem m de f.

Neste cenário, o método de Newton ainda pode ser aplicado e a convergência ocorre, embora o comportamento e a ordem de convergência dependam da multiplicidade m da raiz r. Em particular, a convergência do método de Newton para raízes múltiplas pode ser sublinear, em vez de quadrática, quando m>1.

Exercício 4.9 (Método de Newton Modificado) Mostre que, se a multiplicidade m da raiz é conhecida, o seguinte algoritmo modificado preserva a ordem de convergência quadrática do método de Newton:

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}; k = 0, 1, 2, \dots$$
 (4.16)

Exercício 4.10 Considere o polinómio

$$p(x) = x^3 - 3.5x^2 + 4x - 1.5.$$

- a) Use o método de Newton para obter aproximações para os zeros de p, utilizando $x_0=0.9$, $x_0=1.33,\ x_0=1.35$ e $x_0=1.5$.
- b) Observe que $p(x) = (x-1)^2(x-1.5)$ e use o Método de Newton Modificado (4.16) para obter o zero duplo de p.

4.3 Método da secante

Um método alternativo ao método de Newton, utilizado, por exemplo, se o cálculo da derivada da função f envolve grande esforço computacional, é o chamado método da secante.

Neste caso, partindo de duas aproximações x_{k-1} e x_k para um um zero r de f, vamos considerar como nova aproximação a abcissa do ponto de encontro da reta que une os pontos $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$ com o eixo das abcissas. Mais precisamente, o método da secante gera uma sequência de iterações definidas por

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}; k = 1, 2 \dots,$$
 (4.17)

sendo x_0 , x_1 dados.

No que diz respeito à convergência, tem-se o seguinte resultado.

Figura 4.5: O método da secante

Teorema 4.6 (convergência do método da secante) Seja r uma raiz da equação f(x)=0 e suponhamos que f é duas vezes continuamente diferenciável numa vizinhança de r e que $f'(r)\neq 0$ (ou seja , que r é um zero simples de f). Então, existe um intervalo $I=[r-\delta,r+\delta]$ tal que, para quaisquer aproximações iniciais $x_0,x_1\in I$, o método da secante converge para r, com ordem de convergência

$$p = \frac{1 + \sqrt{5}}{2} \tag{4.18}$$

e constante de convergência assimptótica dada por

$$C = \left| \frac{f''(r)}{2f'(r)} \right|^{1/p}.$$
 (4.19)

4.4 Métodos simultâneos para encontrar raízes de polinómios

4.4.1 Método de Weierstrass

Os métodos apresentados anteriormente envolvem a aproximação de um zero α_i de cada vez. Se a função a considerar for um polinómio, podemos obter todas as raízes através da deflação (i.e., dividindo pelo fator $x-\alpha_i$). Nesta secção, vamos considerar um método iterativo que encontra todas as raízes de um polinómio simultaneamente.

O método mais simples dessa classe de métodos simultâneos foi mencionado pela primeira vez por Weierstrass (1903) em conexão com o Teorema Fundamental da Álgebra e foi redescoberto por vários autores, em particular por Durand (1960) e Kerner (1966). Por esta razão, o método que vamos derivar é conhecido como **método de Weierstrass** ou método de Weierstrass-Durand-Kerner.

Começamos por considerar polinómios mónicos de grau três, ou seja, polinómios P da forma

$$P(x) = (x - x_1)(x - x_2)(x - x_3).$$

Isolando o valor x_1 a partir desta equação, obtemos

$$x_1 = x - \frac{P(x)}{(x - x_2)(x - x_3)}.$$

Observe que x_1 é um ponto fixo da função $x-\frac{P(x)}{(x-x_2)(x-x_3)}$, já que $P(x_1)=0$. Além disso, se substituirmos as raízes x_2 e x_3 por aproximações ξ_2 e ξ_3 , respetivamente, tais que ξ_2 e ξ_3 não sejam iguais a x_1 , então x_1 continua a ser um ponto fixo da função perturbada $x-\frac{P(x)}{(x-\xi_2)(x-\xi_3)}$. Portanto, x_1 pode ser obtido a partir da iteração do ponto fixo:

$$x_1^{(k+1)} = x_1^{(k)} - \frac{P(x_1^{(k)})}{(x_1^{(k)} - \xi_2)(x_1^{(k)} - \xi_3)}, \quad k = 0, 1, 2, \dots$$

A ideia do método de Weierstrass é combinar a iteração de ponto fixo para x_1 com iterações semelhantes para x_2 e x_3 numa iteração simultânea para todas as raízes. Assim, pode-se utilizar o seguinte procedimento iterativo:

$$\begin{split} x_1^{(k+1)} &= x_1^{(k)} - \frac{P(x_1^{(k)})}{(x_1^{(k)} - x_2^{(k)})(x_1^{(k)} - x_3^{(k)})}, \\ x_2^{(k+1)} &= x_2^{(k)} - \frac{P(x_2^{(k)})}{(x_2^{(k)} - x_1^{(k)})(x_2^{(k)} - x_3^{(k)})}, \quad \text{para } k = 0, 1, 2, \dots \\ x_3^{(k+1)} &= x_3^{(k)} - \frac{P(x_3^{(k)})}{(x_3^{(k)} - x_1^{(k)})(x_3^{(k)} - x_2^{(k)})}. \end{split}$$

A última fórmula é realizada em "modo paralelo" e é frequentemente chamada de "modo de passo total". A convergência do método pode ser acelerada utilizando uma variante diferente que faz uso das aproximações mais recentes para as raízes assim que estejam disponíveis, conforme segue:

$$\begin{split} x_1^{(k+1)} &= x_1^{(k)} - \frac{P(x_1^{(k)})}{(x_1^{(k)} - x_2^{(k)})(x_1^{(k)} - x_3^{(k)})}, \\ x_2^{(k+1)} &= x_2^{(k)} - \frac{P(x_2^{(k)})}{(x_2^{(k)} - x_1^{(k+1)})(x_2^{(k)} - x_3^{(k)})}, \quad \text{para } k = 0, 1, 2, \dots \\ x_3^{(k+1)} &= x_3^{(k)} - \frac{P(x_3^{(k)})}{(x_3^{(k)} - x_1^{(k+1)})(x_3^{(k)} - x_2^{(k+1)})}. \end{split}$$

Essa variante do método de Weierstrass é geralmente chamada de "modo sequencial" ou "modo de passo único".

O caso particular para grau n=3 pode ser generalizado facilmente para outros graus. Mais precisamente, dado um polinómio mónico P de grau n e uma estimativa inicial $x_i^{(0)}$, o esquema de iteração de Weierstrass paralelo é:

$$x_i^{(k+1)} = x_i^{(k)} - \frac{P(x_i^{(k)})}{\prod_{j=1, j \neq i}^n (x_i^{(k)} - x_j^{(k)})}; \quad i = 1, \dots, n; \quad k = 0, 1, 2, \dots,$$

$$(4.20)$$

enquanto que o método de Weierstrass sequencial é:

$$x_i^{(k+1)} = x_i^{(k)} - \frac{P(x_i^{(k)})}{\prod_{j=1}^{i-1} (x_i^{(k)} - x_j^{(k+1)}) \prod_{j=i+1}^{n} (x_i^{(k)} - x_j^{(k)})}; \quad i = 1, \dots, n; \quad k = 0, 1, 2, \dots$$
(4.21)

Teorema 4.7 (Convergência do método de Weierstrass) Seja P um polinómio da forma

$$P(x) = (x - x_1)(x - x_2) \dots (x - x_n),$$

e suponha que todas as raízes de P são simples. Se as aproximações iniciais $x_i^{(0)}$ estiverem suficientemente próximas das raízes x_i de P, então as sequências $\{x_i^{(k)}\}$ em (4.20) convergem quadraticamente para x_i .

Demonstração. Sejam $x_i^{(k)}$ aproximações para x_i com erros $\varepsilon_i^{(k)}$, isto é,

$$\varepsilon_i^{(k)} := x_i - x_i^{(k)}, \ i = 1, \dots, n,$$
 (4.22)

e seja

$$\varepsilon^{(k)} := \max_{i} |\varepsilon_{i}^{(k)}|.$$

Observe-se que

$$x_{i} - x_{i}^{(k+1)} = x_{i} - x_{i}^{(k)} + \frac{P(x_{i}^{(k)})}{\prod_{j=1, j \neq i}^{n} (x_{i}^{(k)} - x_{j}^{(k)})} = x_{i} - x_{i}^{(k)} + \frac{\prod_{j=1}^{n} (x_{i}^{(k)} - x_{j})}{\prod_{j=1, j \neq i}^{n} (x_{i}^{(k)} - x_{j}^{(k)})}$$
$$= x_{i} - x_{i}^{(k)} - (x_{i} - x_{i}^{(k)}) \prod_{j=1, j \neq i}^{n} \frac{x_{i}^{(k)} - x_{j}}{x_{i}^{(k)} - x_{j}^{(k)}}.$$

Como

$$\frac{x_i^{(k)} - x_j}{x_i^{(k)} - x_j^{(k)}} = 1 + \frac{x_j^{(k)} - x_j}{x_i^{(k)} - x_j^{(k)}}$$

e x_i é uma raiz simples, podemos concluir que, para $\varepsilon^{(k)}$ suficientemente pequeno, $|x_i^{(k)}-x_j^{(k)}|$ está afastado de zero, e assim

$$\frac{x_i^{(k)} - x_j}{x_i^{(k)} - x_i^{(k)}} = 1 + \mathcal{O}(\varepsilon^{(k)})$$

е

$$\prod_{i=1, i \neq i}^{n} \frac{x_{i}^{(k)} - x_{j}}{x_{i}^{(k)} - x_{i}^{(k)}} = \left(1 + \mathcal{O}(\varepsilon^{(k)})\right)^{n-1} = 1 + \mathcal{O}(\varepsilon^{(k)}).$$

Portanto,

$$x_i - x_i^{(k+1)} = x_i - x_i^{(k)} - (x_i - x_i^{(k)}) (1 + \mathcal{O}(\varepsilon^{(k)})),$$

ou seja,

$$\varepsilon_i^{(k+1)} = \varepsilon_i^{(k)} \left(1 - (1 + \mathcal{O}(\varepsilon^{(k)})) \right) = \varepsilon_i^{(k)} \mathcal{O}(\varepsilon^{(k)}).$$

Isto mostra que

$$\varepsilon^{(k+1)} = \mathcal{O}((\varepsilon^{(k)})^2).$$

Nota 4.4 (Símbolo de Landau $\mathcal{O}(.)$) Considerem-se duas funções $f,g:D\longrightarrow\mathbb{R},\ D\subset\mathbb{R},\ tais$ que $g(x)\neq 0,\ x\in D.$ Dizemos que f é de ordem \mathcal{O} ("o grande") a respeito de g quando x tende para x_0 (finito ou $\pm\infty$), se existir uma constante K>0 e um $\delta>0$ tais que

$$\left| \frac{f(x)}{g(x)} \right| \le K,$$

para todo o $x \in D$, tal que $x \in B(x_0, \delta)^3$ e $x \neq x_0$. Escrevemos, então,

$$f(x) = \mathcal{O}(g(x)), \text{ quando } x \to x_0.$$

Recordemos algumas propriedades:

- 1. $f(x) = \mathcal{O}(f(x))$
- 2. $\mathcal{O}(\mathcal{O}(h(x))) = \mathcal{O}(h(x))$.
- 3. $k\mathcal{O}(g(x)) = \mathcal{O}(g(x))$
- 4. $\mathcal{O}(g(x)) + \mathcal{O}(g(x)) = \mathcal{O}(g(x))$
- 5. $\mathcal{O}(g_1(x)).\mathcal{O}(g_2(x)) = \mathcal{O}((g_1.g_2)(x))$

Exemplo 4.2 Considere o polinómio $P(x) = (x^2+2)(x+2)(x-3)$. Escolhendo como aproximação inicial o vetor $x_0 = (-1. + 0.5i, 2., 2. - 0.5i, 0)^T$, obtemos os seguintes resultados (com 4 a.s.), usando o Método de Weierstrass Paralelo:

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$x_{4}^{(k)}$
0	-1. + 0.5i	2.	20.5i	0
1	-1.722 - 0.491i	3.297 - 7.784i	-2.551 + 6.581i	1.976 + 1.694i
2	-1.708 - 0.444i	2.031 - 4.083i	-1.442 + 3.012i	2.119 + 1.514i
3	-1.675 - 0.287i	1.401 - 2.131i	-0.997 + 1.520i	2.271 + 0.898i
4	-1.725 + 0.053i	0.768 - 0.996i	-0.371 + 0.926i	2.328 + 0.018i
5	-2.098 + 0.0618i	-0.626 - 1.232i	0.424 + 1.406i	3.301 - 0.235i
6	-1.980 + 0.021i	-0.0717 - 1.270i	0.067 + 1.309i	2.985 - 0.061i
7	-2.001 - 0.0028i	0.012 - 1.418i	-0.010 + 1.417i	2.998 + 0.003i
8	-2.000	-1.414i	1.414 <i>i</i>	3.000

A figura seguinte contém um gráfico das iterações à medida que convergem para as raízes. Cada cor corresponde a uma raiz diferente, sendo o vermelho para a raiz -2, magenta para a raiz 3, verde para a raiz $\sqrt{2}i$ e azul para $-\sqrt{2}i$. A aproximação inicial está marcada com um quadrado e a raiz está marcada com um círculo.

 $^{^3\}mathsf{Entende-se por }B(+\infty,\delta):=\{x:x>\tfrac{1}{\delta}\},\,\mathsf{definindo-se},\,\mathsf{de modo análogo},\,B(-\infty,\delta):=\{x:x<-\tfrac{1}{\delta}\}.$

Figura 4.6: Iterações de Weierstrass

4.4.2 Exercícios

Exercício 4.14 Uma maneira de aproximar a ordem de convergência local ρ do método de Weierstrass é usar

$$\rho \approx \rho^{(k)} := \frac{\log \varepsilon^{(k)}}{\log \varepsilon^{(k-1)}},$$

onde $\varepsilon_i^{(k)}$ é dado por (4.22).

Considere novamente o polinómio do Exemplo 4.2. Complete a seguinte tabela:

k	$arepsilon_1^{(k)}$	$arepsilon_2^{(k)}$	$arepsilon_{3}^{(k)}$	$arepsilon_{f 4}^{(k)}$	$\rho^{(k)}$
0					
1					
:					
10					

Exercício 4.15 Repita o exercício anterior usando o método de Weierstrass sequencial. O que observa?

Conteúdo

4	Equ	Equações Não Lineares				
	4.1	1 Equações Não Lineares: background				
		4.1.1	Introdução	3		
		4.1.2	Método do ponto fixo ou das iterações sucessivas	4		
		4.1.3	Aceleração de Aitken	7		
		4.1.4	Exercícios	8		
	4.2	Método de Newton e variantes				
		4.2.1	Descrição geométrica	10		
		4.2.2	Bacias de atração	11		
		4.2.3	Exercícios	12		
	4.3	Método	odo da secante			
	4.4	Método	Métodos simultâneos para encontrar raízes de polinómios			
		4.4.1	Método de Weierstrass	14		
		442	Exercícios	18		