§ 42. Гипербола

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение гиперболы

Определение

Гиперболой называется множество всех точек плоскости, координаты которых в подходящей системе координат удовлетворяют уравнению вида

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (1)$$

где a,b>0. Это уравнение называется *каноническим уравнением* гиперболы.

- Как и в случае эллипса, каноническое уравнение гиперболы является ее общим уравнением в смысле понятия общего уравнения кривой на плоскости, введенного в начале § 15.
- Параметрические уравнения гиперболы будут указаны ниже, после того, как мы выясним «внешний вид» гиперболы, т. е. ее расположение на плоскости.
- В школьном курсе математики дается другое определение гиперболы. Связь между «школьной» гиперболой и тем понятием гиперболы, которое введено только что, будет обсуждена в конце данного параграфа.

Вершины, фокусы, фокальные радиусы, эксцентриситет и директрисы гиперболы

Введем ряд понятий, играющих важную роль в изучении гиперболы. Пусть гипербола задана уравнением (1). Положим $c = \sqrt{a^2 + b^2}$. Ясно, что c > a.

Определения

Точки с координатами (a,0), (-a,0), (b,0) и (-b,0) называются вершинами гиперболы, величина a- действительной полуосью гиперболы, а величина b- ее мнимой полуосью. Точки $F_1(c,0)$ и $F_2(-c,0)$ называются фокусами гиперболы, причем фокус F_1 называется правым, а фокус F_2- левым. Если точка M принадлежит гиперболе, то расстояния $|F_1M|$ и $|F_2M|$ называются фокальными радиусами. Величина $e=\frac{c}{a}$ называется эксцентриситетом гиперболы. Прямые с уравнениями $x=\frac{a}{e}$ и $x=-\frac{a}{e}$ называются директрисами гиперболы.

«Физический смысл» введенных сейчас понятий станет ясен позднее, после того, как мы изучим форму гиперболы. Пока отметим только, что из определения эксцентриситета непосредственно вытекает следующий факт:

ullet для любой гиперболы выполнено неравенство e>1.

Расположение гиперболы на плоскости (1)

Изучим «внешний вид» гиперболы. Предположим, что точка M(x,y) удовлетворяет уравнению (1). Как и в случае эллипса, легко убедиться, что гипербола симметрична относительно обеих осей координат. Поэтому достаточно изучить форму гиперболы лишь в первой четверти. Это позволяет далее считать, что $x\geqslant 0$ и $y\geqslant 0$. Тогда, в силу (1),

$$y = \frac{b}{a} \cdot \sqrt{x^2 - a^2}.$$
 (2)

Рассмотрим прямую с уравнением $y=\frac{b}{a}\cdot x$, точнее, луч этой прямой, расположенный в первой четверти. Ясно, что $\frac{b}{a}\cdot x>\frac{b}{a}\cdot \sqrt{x^2-a^2}$. Это означает, что гипербола расположена ниже прямой. Далее,

$$\lim_{x \to +\infty} \left(\frac{b}{a} \cdot x - \frac{b}{a} \cdot \sqrt{x^2 - a^2} \right) = \lim_{x \to +\infty} \frac{b}{a} \cdot \left(x - \sqrt{x^2 - a^2} \right) =$$

$$= \lim_{x \to +\infty} \frac{b}{a} \cdot \frac{\left(x - \sqrt{x^2 - a^2} \right) \left(x + \sqrt{x^2 - a^2} \right)}{x + \sqrt{x^2 - a^2}} =$$

$$= \lim_{x \to +\infty} \frac{ab}{x + \sqrt{x^2 - a^2}} = 0.$$

Следовательно, при $x \to +\infty$ гипербола неограниченно приближается к прямой $y = \frac{b}{a} \cdot x$, которая, таким образом, является асимптотой гиперболы.

Расположение гиперболы на плоскости (2)

Нетрудно видеть, что в первой четверти нет точек гиперболы, для которых x < a. (В самом деле, $x^2 = a^2(1+\frac{y^2}{b^2})$, и потому если $x \geqslant 0$, то $x = a \cdot \sqrt{1+\frac{y^2}{b^2}} \geqslant a$.) Вычислив первую и вторую производные функции (2), получим:

$$y' = \frac{bx}{a\sqrt{x^2 - a^2}}$$
 u $y'' = \frac{-ab}{(x^2 - a^2)^{3/2}}$.

В частности, y'>0 и y''<0 при любом x>0. Следовательно, в первой четверти гипербола возрастает и вогнута (т. е. выпукла вверх). Кроме того, из (2) легко вытекает, что в первой четверти гипербола пересекает ось абсцисс в точке (a,0), а ось ординат не пересекает. С учетом симметрии относительно осей координат и того, что прямая $y=\frac{b}{a}\cdot x$ является асимптотой, получаем кривую, изображенную на рис. 1 на следующем слайде (чтобы выделить гиперболу среди вспомогательных линий, она изображена красным цветом).

Отметим, что точки с координатами (0,b) и (0,-b) не лежат на гиперболе, хотя и называются ее вершинами.

Расположение гиперболы на плоскости (рисунок)

Рис. 1. Гипербола

Расположение гиперболы на плоскости (комментарий к рисунку)

Мы видим, что гипербола распадается на две части, одна из которых лежит в правой полуплоскости, а другая — в левой. Эти части называются, соответственно, правой и левой ветвью гиперболы. Отметим, что, в силу симметрии относительно осей координат, асимптотой гиперболы является не только прямая $y=\frac{b}{a}\cdot x$, но также и прямая $y=-\frac{b}{a}\cdot x$. Как и в случае эллипса (см. рис. 1 в $\S41$, директрисы гиперболы не пересекают кривую, а ее фокусы расположены «внутри» кривой. Отметим еще, что точки с координатами (0,b) и (0,-b) не принадлежат гиперболе, хотя и называются ее вершинами.

На рис. 1 указаны также используемые в дальнейшем обозначения для фокальных радиусов: если точка лежит на левой [правой] ветви гиперболы, то расстояния от нее до фокусов обозначаются через $r_{\text{1-ne}}$ и $r_{\text{2-ne}}$ [соответственно $r_{\text{1-np}}$ и $r_{\text{2-np}}$] (оба раза цифра 1 в индексах соответствует фокусу F_1 , а цифра 2 — фокусу F_2).

Параметрические уравнения гиперболы (1)

Для того, чтобы записать параметрические уравнения гиперболы, нам понадобятся следующие две функции из $\mathbb R$ в $\mathbb R$:

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$
 u $\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$.

Первая из них называется *гиперболическим синусом*, а вторая — *гиперболическим косинусом*. Легко проверяется, что для любого $x \in \mathbb{R}$ выполняется равенство

$$\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1.$$

По аналогии с основным тригонометрическим тождеством оно называется основным гиперболическим тождеством.

Наша ближайшая цель — доказать, что параметрические уравнения гиперболы имеют вид

$$\begin{cases} x = a \operatorname{ch} t, \\ y = b \operatorname{sh} t. \end{cases} \tag{3}$$

Доказательство. Используя основное тригонометрическое тождество, легко убедиться в том, что из уравнений (3) вытекает равенство (1). Таким образом, если координаты точки удовлетворяют уравнениям (3) при некотором значении параметра t, то точка лежит на гиперболе.

Параметрические уравнения гиперболы (2)

Докажем обратное. Пусть точка $M(x_0,y_0)$ лежит на гиперболе, заданной уравнением (1). Для удобства будем считать, что $x_0\geqslant 0$ (в опротивном случае рассуждения аналогичны). Докажем, что существует $t_0\in\mathbb{R}$ такое, что $x_0=a$ ch t_0 и $y_0=b$ sh t_0 . Рассмотрим равенство

$$x_0 = a \operatorname{ch} t \tag{4}$$

как уравнение относительно t. Это уравнение можно переписать в виде $\frac{a(e^t+e^{-t})}{2}=x_0$, или $ae^t+ae^{-t}=2x_0$. Умножим обе части последнего равенства на e^t и перепишем полученное равенство в виде $ae^{2t}-2x_0e^t+a=0$. Положим $u=e^t$. Тогда последнее уравнение можно переписать в виде

$$au^2 - 2x_0u + a = 0. (5)$$

Мы получили квадратное уравнение относительно u. Его дискриминант равен $D=4(x_0^2-a^2)$. Из того, что точка M лежит на гиперболе и $x_0\geqslant 0$, вытекает, что $x_0\geqslant a$. Следовательно, $D\geqslant 0$, и потому уравнение (5) имеет хотя бы одно решение. Обозначим произвольное его решение через u_0 . Тогда число $t_0=\ln u_0$ является решением уравнения (4). Итак, $x_0=a\operatorname{ch} t_0$ для некоторого t_0 .

Параметрические уравнения гиперболы (3)

Поскольку точка M лежит на гиперболе, выполнено равенство $\frac{x_0^2}{a^2}-\frac{y_0^2}{b^2}=1.$ Используя основное тригонометрическое тождество, имеем

$$\frac{y_0^2}{b^2} = \frac{x_0^2}{a^2} - 1 = \operatorname{ch}^2 t_0 - (\operatorname{ch}^2 t_0 - \operatorname{sh}^2 t_0) = \operatorname{sh}^2 t_0.$$

Следовательно, $y_0^2=b^2\,{\rm sh}^2\,t_0$, откуда $y_0=b\,{\rm sh}\,t_0$. Итак, из того, что точка лежит на гиперболе, вытекает, что существует такое значение t_0 параметра t, что координаты точки M удовлетворяют равенствам (3) при $t=t_0$.

• В отличие от параметрических уравнений окружности и эллипса (см. $\S 15$ и 41 соответственно), параметр t из параметрических уравнений гиперболы не имеет наглядного геометрического смысла.

Вычисление фокальных радиусов (1)

Основная цель данного параграфа — указать два утверждения, характеризующих гиперболу как геометрическое место точек с некоторыми свойствами. Для этого нам понадобится следующий вспомогательный факт.

Лемма о фокальных радиусах гиперболы

Если точка M(x,y) принадлежит гиперболе, заданной уравнением (1), то

$$r_{ exttt{1np}} = ex - a, \; r_{ exttt{2np}} = ex + a, \; r_{ exttt{1nes}} = -ex + a, \; r_{ exttt{2nes}} = -ex - a.$$

Доказательство. Если точка M(x,y) принадлежит гиперболе, то

$$\frac{y^2}{b^2} = \frac{x^2}{a^2} - 1,$$

откуда

$$y^2 = \frac{b^2}{a^2} \cdot x^2 - b^2. {(6)}$$

Предположим, что точка M лежит на правой ветви гиперболы.

Вычисление фокальных радиусов (2)

Используя (6), получаем, что выполнены равенства

$$r_{1np} = |F_1 M| = \sqrt{(x-c)^2 + y^2} =$$

$$= \sqrt{x^2 - 2cx + c^2 + \frac{b^2}{a^2} \cdot x^2 - b^2} =$$

$$= \sqrt{\left(1 + \frac{b^2}{a^2}\right)x^2 - 2cx + c^2 - b^2}.$$

Учитывая, что

$$1 + \frac{b^2}{a^2} = \frac{a^2 + b^2}{a^2} = \frac{c^2}{a^2} = e^2$$
, $c = ea$, $c = ea$, $c = ea$, $c = ea$

имеем

$$r_{1np} = \sqrt{e^2 x^2 - 2eax + a^2} = \sqrt{(ex - a)^2} = |ex - a|.$$

Поскольку $x\geqslant a$, а e>1, то |ex-a|=ex-a, и потому $r_{\texttt{inp}}=ex-a$. Остальные равенства из формулировки леммы проверяются вполне аналогично.

Фокальное свойство гиперболы (1)

Следующее утверждение дает характеризацию гиперболы, которую нередко принимают за ее определение.

Фокальное свойство гиперболы

Точка M принадлежит гиперболе, заданной уравнением (1), тогда и только тогда, когда модуль разности расстояний от M до фокусов равен 2a.

Доказательство. Необходимость. В силу леммы о фокальных радиусах гиперболы, имеем $|r_{1np}-r_{2np}|=|r_{1nes}-r_{2nes}|=2a$.

Достаточность. Пусть M(x,y) — точка плоскости, для которой выполнено равенство $||F_1M| - |F_2M|| = 2a$. Тогда

$$\left| \sqrt{(x-c)^2 + y^2} - \sqrt{(x+c)^2 + y^2} \right| = 2a,$$

или

$$\sqrt{(x-c)^2+y^2}=\pm 2a+\sqrt{(x+c)^2+y^2}$$
.

Фокальное свойство гиперболы (2)

Возведя обе части последнего равенства в квадрат, получим

$$x^{2} - 2cx + c^{2} + y^{2} = 4a^{2} \pm 4a\sqrt{(x+c)^{2} + y^{2}} + x^{2} + 2cx + c^{2} + y^{2}.$$

После очевидных преобразований имеем

$$\pm a\sqrt{(x+c)^2+y^2} = a^2 + cx.$$

Еще раз возведем полученное равенство в квадрат. Получим

$$a^{2}(x^{2} + 2cx + c^{2} + y^{2}) = a^{4} + 2a^{2}cx + c^{2}x^{2}$$

или

$$(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2).$$

Поскольку $a^2-c^2=-b^2$, последнее равенство можно переписать в виде

$$-b^2x^2 + a^2y^2 = -a^2b^2.$$

Разделив это равенство на $-a^2b^2$, мы получим уравнение (1).

Директориальное свойство гиперболы

Следующее утверждение дает еще одну характеризацию гиперболы.

Директориальное свойство гиперболы

Точка M принадлежит гиперболе тогда и только тогда, когда отношение расстояния от M до фокуса к расстоянию от M до соответствующей этому фокусу директрисы равно эксцентриситету гиперболы.

Мы не приводим доказательство этого утверждения, поскольку оно вполне аналогично доказательству директориального свойства эллипса (см. § 41).

Оптическое свойства гиперболы (1)

Гипербола обладает следующим оптическим свойством:

Оптическое свойство гиперболы

Свет от источника, находящегося в одном из фокусов гиперболы, отражается противоположной ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.

Доказательство этого утверждения во многом аналогично доказательству оптического свойства эллипса (см. $\S41$), отличаясь от него лишь незначительными деталями. Поэтому мы не будем воспроизводить все выкладки, а ограничимся только схемой рассуждений. Эти рассуждения иллюстрирует рис. 2.

Будем считать, что луч света выпущен из правого фокуса (случай левого фокуса разбирается вполне аналогично). Обозначим точку пересечения этого луча с левой ветвью гиперболы через M, а ее координаты — через (x_0,y_0) . Требуется доказать, что луч MF_2 является продолжением отражения исходного луча от гиперболы. Обозначим касательную к гиперболе в точке M через ℓ , угол между прямой ℓ и лучом F_1M — через φ , а угол между ℓ и лучом ℓ 0 и лучом ℓ 1. Поскольку угол падения равен углу отражения, требуется доказать, что ℓ 2.

Оптическое свойства гиперболы (2)

Как и в § 41 при доказательстве оптического свойства эллипса, мы докажем, что $\sin \varphi = \sin \psi$. Ясно, что этого достаточно для наших целей. Рассуждая так же, как в § 41 при выводе уравнения касательной к эллипсу, получаем, что прямая ℓ имеет уравнение $\frac{\mathbf{x_0x}}{a^2} - \frac{\mathbf{y_0y}}{b^2} - 1 = 0$. Положим

 $N=\sqrt{\frac{\chi_0^2}{a^4}+\frac{y_0^2}{b^4}}$. Используя формулу для расстояния от точки до прямой на плоскости (формула (14) в § 15), найдем расстояние d_1 от фокуса F_1 до прямой ℓ :

$$d_1 = \frac{\left|\frac{x_0c}{a^2} - 1\right|}{N} = \frac{\left|x_0c - a^2\right|}{Na^2} = \frac{a^2 - x_0c}{Na^2}$$

(последнее равенство объясняется тем, что $x_0<0$, а c>0, откуда $x_0c-a^2<0$). С другой стороны, в силу леммы о фокальных радиусах гиперболы, $r_{\text{1лев}}=-ex_0+a=-\frac{c}{a}\cdot x_0+a=\frac{a^2-x_0c}{a}$. Следовательно,

$$\sin \varphi = \frac{d_1}{r_{_{1,\text{neB}}}} = \frac{(a^2 - x_0 c)a}{Na^2(a^2 - x_0 c)} = \frac{1}{Na}.$$

Аналогично, обозначив через d_2 расстояние от F_2 до ℓ , находим, что $d_2=\frac{-x_0c-a^2}{Na^2}$ и $r_{_{\mathbf{2}_{\mathsf{N}\mathsf{B}}}}=\frac{-x_0c-a^2}{a}$, откуда $\sin\psi=\frac{d_2}{r_{_{\mathbf{2}_{\mathsf{N}\mathsf{B}}}}}=\frac{1}{Na}$. Следовательно, $\sin\varphi=\sin\psi$.

Оптическое свойства гиперболы (рисунок)

Рис. 2. К доказательству оптического свойства гиперболы

«Школьная» гипербола (1)

В школьном курсе математики гиперболой называется график функции $y=rac{k}{x}$, где k
eq 0. Естественно возникает вопрос, как соотносится «школьная» гипербола с гиперболой, введенной в этом параграфе. Отвечая на этот вопрос, можно ограничиться случаем, когда k>0 (если k<0, можно сделать замену неизвестных x'=-x, y'=y).

Рассмотрим новую систему координат Ox'y', полученную из старой поворотом на 45° . Используя формулы поворота системы координат (см. формулы (9) в $\S 14)$, получаем, что

$$\begin{cases} x = \frac{\sqrt{2}}{2}(x' - y'), \\ y = \frac{\sqrt{2}}{2}(x' + y'). \end{cases}$$
 (7)

Можно считать, что $x \neq 0$, так как кривая, заданная уравнением $y = \frac{k}{x}$, очевидно не имеет точек, абсцисса которых равна 0. Поэтому равенство $y = \frac{k}{x}$ эквивалентно равенству xy = k. Если подставить в него x и y из формул (7), мы получим

$$k = xy = \frac{\sqrt{2}}{2}(x' - y') \cdot \frac{\sqrt{2}}{2}(x' + y') = \frac{1}{2}((x')^2 - (y')^2).$$

«Школьная» гипербола (2)

Это означает, что в системе координат Ox'y' «школьная» гипербола определяется уравнением $\frac{(x')^2}{2k}-\frac{(y')^2}{2k}=1$. Поскольку k>0, то $2k=a^2$ для некоторого a>0. Следовательно, последнее уравнение можно переписать в виде $\frac{(x')^2}{a^2}-\frac{(y')^2}{a^2}=1$. Мы получили уравнение вида (1), в котором a=b.

Определение

Гипербола, заданная уравнением вида (1), в котором a=b, называется равносторонней.

Таким образом,

• «школьная» гипербола является частным случаем гиперболы, определяемой уравнением (1), а именно, равносторонней гиперболой. Каноническое уравнение эта гипербола имеет в системе координат, которая получается повором на угол 45° той системы координат, в которой она имеет уравнение вида $y = \frac{k}{5}$ при k > 0.

Проведенные рассуждения иллюстрирует рис. 3 на следующем слайде.

«Школьная» гипербола (рисунок)

Рис. 3. «Школьная» гипербола