Furthermore if East satisfies the boundary condition (iv) then we have $\|\|f\|^2 - \|E_{ast}\|^2 = \|f - E_{ast}\|^2 \ge 0$

 $\frac{49}{10}$ The first part follows immediately from Lemma 1 and Lemma 2, as $E_{AP} - \lambda_{i}^{2} E_{AP}^{i'}$ is identically 0 on (1i,1i+1), making the last term in (44) vanish. The second part is also immediate, as if the boundary condition is met then clearly

$$(f'(b)-E'(b))E''(b)-(f'(a)-E'(a))E''(a)=0$$

Theorem 4. Let $\mathcal{E}_{0,f}(a)$ be an interpolating spline of f satisfying the conditions (i), (ii), (iv), and (v). Among such splines, let $\mathcal{E}_{0,f}(a)$ be the one that is of the form (x). Then $\mathcal{E}_{0,f}(a)$ also satisfies the condition (iii), that is, $\mathcal{E}_{0,f}(a)$ minimizes the given functional.

Then the given conditions, $\mathcal{E}_{0,f}(a)$ can be seen as not only the interpolating spline of f but also an interpolating spline of $\mathcal{E}_{0,f}(a)$, since $\mathcal{E}_{0,f} \in \mathcal{C}^2(a,b)$ implies $\mathcal{E}_{0,f} \in \mathcal{R}^2(a,b)$, by Theorem 3 we get $\|\mathcal{E}_{0,f}\|^2 \geq \|\mathcal{E}_{0,f}\|^2$.

By Theorem 4, East(a) should be in the form (*).

(b) By applying L'Hôpital's rule repectedly, we get $\lim_{\lambda_i \to 0} \frac{6(\sinh(\lambda_i \alpha) - \lambda_i \alpha)}{\lambda_i^3} = \lim_{\lambda_i \to 0} \frac{6(\arcsin(\lambda_i \alpha) - \alpha)}{3\lambda_i^2}$ $= \lim_{\lambda_i \to 0} \frac{2(\cosh(\lambda_i \alpha) - 1)}{\lambda_i^2} \cdot \alpha$ $= \lim_{\lambda_i \to 0} \frac{2\pi \sinh(\lambda_i \alpha)}{2\lambda_i} \cdot \alpha$ $= \lim_{\lambda_i \to 0} \frac{\alpha^2 \cosh(\lambda_i \alpha)}{1} \cdot \alpha = \alpha^2$

asserting that $\lim_{t\to 0} 2h(n-ni) = (n-ni)^2$ and $\lim_{t\to 0} \varphi_i(n-ni) = (n-ni)^3$. Therefore, when $hi\to 0$ the exponential spline reduces into a cubic spline.