班号2103206	学号210320621	 教师签字
实验日期 2023.3.10		 总成绩

分光计的调节和用衍射光栅测定光的波长

一、预习

- 1. 分光计调节的主要步骤与要点;
- 2. 如何调整望远镜光轴与分光计的中心轴垂直,何为"各半调节法(对半调节法)"?
- 3. 衍射光栅测定光的波长工作原理是什么?

答。1、①调节望远镜目镜,直至能看到别数上清晰与基准线、

- ①调节望远镜物镜, 使望远镜聚煌到成远
- ③望远镜为轴与载物名轻轴重(相调) } 光=岁露见第2问
- ④ 望远镜 抽齿载物 3转轴垂直(砌周)
- ⑤ 调整平约总管与望远镜为轴同轴、
- 2、 艺粗洞再细调。
 - (1) 租调、放置双面到1镜,使其与截约3上一部线重点镜面正对望远镜。

洞节望远镜俯仰调节螺钉和载物的现象写,直到面别镜两个及射面及射回手的绿色十字像都能被观察到。

(2) 细调、第一步使用"各半调节点"(具体地下),第二岁再将载物石连同双面及射镜转过的。, 荆州"各半调节点"调节反射镜另一面使让与望远镜光轴也保持重直、

各本调节序、 范调节望远镜俯仰角,使+字缘的水平设与上基准设高度差减+-羊, 经后调整载构台下方靠近望远镜的螺钉,直至+字缘的水平设与上基准设对齐。

3. 当克里直入射到约射名栅面上时,根据单维衍射和多为平均厚理知, 透过狭维的充治衍射各方向传播,经透镜全聚石发生多为平均,并在其值和上 形成一名州明红、明钦室间位置用衍射面似表示,有影响方指。

$$S = d \left[sin(i) - sin(V_R) \right] = kl \left(k = 0, \pm 1, \pm 2, \cdots \right)$$

式中d为表栅常智,即相邻狭健的问题,人为免疫长,让为免役入射角。 季美野中,通过调节使让=0,则上式简化为

$$S = d sin (V_R) = kl (k=0,\pm1,\pm2,...)$$

则正义射情形下第十点级明设与第一点级明设相对了名册信线对话,即别射南大小相拿、已知为册高级d时,只常闪量第十点级明设对应的射角版,即可通过下式求得波长。

$$\lambda = \frac{d \sin k}{k}$$

二、原始数据记录

	衍射级次	+		-		标准波长
颜色	k	$ heta_1$	$ heta_2$	θ '1	$ heta'_2$	(nm)
	1	350°5′	17008	331°17′	1510191	
绿	2	359°50'	179°54′	32134	14136	546.1
	3	10°(0'	190°131	311017	131020	
	1	350°39′	170°42	330°491	150°46	
黄 1	2	0°58'	(81°0'	320°27'	1400291	577.0
	3	1200	(92°21	309°281	129°291	
	1	350°42	170°45'	330°41'	150431	
黄 2	2	1021	Y	320°23′	140025	579.1
	3	(2°8′	192012	309°191	129°23′	

教师	姓名
签字	王国强

三、数据处理

- 1. 分别计算相应三种颜色的光(绿光、黄光 1、黄光 2)在衍射级次 k=1、2、3 时波长的测量值 λ_k ,并计算波长平均值 $\bar{\lambda}$,将 $\bar{\lambda}$ 与汞灯波长的标准值相比较,计算测量的相对误差。要求写出完整的计算过程,包括所用公式和代入实验数据后的表达式。
- 2. 计算衍射光栅对黄光 1 和黄光 2 在衍射级次 k=1、2、3 时的角色散率 D_k 。

解: 1. 根据光栅方程可得波长的表达式为

$$\lambda = \frac{d\sin\psi_k}{k},$$

其中,d 为光栅常量(本实验中为 $1/300~\mathrm{mm}$),k 为衍射级次, ψ_k 为第 k 级衍射条纹对应的衍射角。

实验中为测衍射角 ψ_k ,测量的是 $\pm k$ 级衍射条纹对应的角度数据,而且为了避免偏心差,每条衍射条纹对应的角度都从两个间隔 180°的游标各读取一个数值。分别计算每个游标两次读数之差,再取平均值,这样就得到去除偏心差后的 $\pm k$ 级衍射条纹<u>之间的张角</u>,将其再除以 2,就得到 $\pm k$ 级衍射条纹<u>相对于中心明纹的衍射角</u> ψ_k 。用公式表为

$$\psi_{k} = \frac{\frac{1}{2}(\theta_{1} - \theta_{1}') + (\theta_{2} - \theta_{2}')}{2} = [(\theta_{1} - \theta_{1}') + (\theta_{2} - \theta_{2}')]/4.$$

根据实验数据(见原始数据记录表),按照上述公式,计算结果如下:(计算时,实验数据中的0°58′,12°0′,1°2′,12°8′,10°10′按照360°58′,372°0′,361°2′,372°8′,370°10′来计算)

颜色	衍射级次 k	$\psi_k = [(\theta_1 - \theta_1') + (\theta_2 - \theta_2')]/4$	波长λ _k /nm	/ 波长平均值/nm
	1	9.40	544.66	
绿	2	19.14	546.51	545.77
	3	29.44	546.15	
	1	9.96	576.68	
黄 1	2	20.26	577.09	576.84
	3	31.27	576.76	
	1	10.01	579.54	
黄 2	2	20.33	579.02	579.20
	3	31.41	579.04	

测量的相对误差分别为:

(1) 绿光:
$$E_1 = \frac{545.77 - 546.1}{546.1} \times 100\% = -0.06043\%$$
;

(2) 黄光 1:
$$E_2 = \frac{576.84 - 577.0}{577.0} \times 100\% = -0.02773\%$$
;

(3) 黄光 2:
$$E_3 = \frac{579.20 - 579.1}{579.1} \times 100\% = 0.01727\%$$
。

2. 衍射光栅对某波长为 λ 的光束在衍射级次k时的角色散率 D_k 由下式给出:

$$D_k = \frac{k}{d\cos\psi_k} \, .$$

根据实验数据,结合上述公式,利用 Excel 计算得,衍射光栅对黄光 1 和黄光 2 在衍射级次 k=1、2、3 时的角色散率 D_k 如下表:

颜色	衍射级次 k	$\psi_k = [(\theta_1 - \theta_1') + (\theta_2 - \theta_2')]/4$	角色散率 $D_{\!\scriptscriptstyle k}$ (1/mm)
	1	9.96	304.59
黄 1	2	20.26	639.56
	3	31.27	1052.97
	1	10.01	304.64
黄 2	2	20.33	639.86
	3	31.41	1054.51

四、讨论题

1. 应用分光计进行测量之前,应调节到何种状态?

答: (1) 望远镜聚焦于无穷远(能接收平行光);

- (2) 望远镜光轴与载物台转轴垂直(经过粗调和细调);
- (3) 平行光管发射出平行光,并与望远镜光轴同轴。
- 2. 按游标原理,读出下图中的角度数。

答: 读数为5°24′。