Recursive Formulation of Social Planner Problem Value Function Iteration: Numerical Approach

Dirk Krueger (2017) - Seção 3.2.3

Apresentação por Fábio Nishida

Maio, 2021

Formulação Recursiva do Problema do Planejador Social (1/2)

• A função valor v soluciona a seguinte recursão

$$v(k) = \max_{0 \le k' \le f(k)} \{ U(f(k) - k') + \beta v(k') \}$$
 (3.2)

em que:

- (3.2): Equação Funcional ou "Equação de Bellman"
- v: função valor
- k: estoque de capital que o planejador traz para o período atual, ou seja, que é resultado de decisões anteriores (variável de estado)
- k': é escolhida hoje pelo planejador social (variável de controle), definindo o estoque capital do próximo período.
- Queremos encontrar a função valor v e a função política ótima k' = g(k).

Formulação Recursiva do Problema do Planejador Social (2/2)

- Assuma que:
 - U(c) = In(c)
 - $F(k, n) = k^{\alpha} n^{1-\alpha}$
 - Depreciação total: $\delta=1$
 - Logo, $f(k) = F(k,1) + (1 \delta)k = k^{\alpha}$

(no ótimo, n=1)

• Portanto, (3.2) pode ser reescrita como:

$$v(k) = \max_{0 \le k' \le f(k)} \left\{ \ln(k^{\alpha} - k') + \beta v(k') \right\} \tag{1}$$

- Suponha
 - $k, k' \in \mathcal{K} = \{0.04, 0.08, 0.12, 0.16, 0.20\}$
 - $\alpha = 0.3$ e $\beta = 0.6$
 - Palpite inicial: $v_0(k) = 0$, $\forall k \in \mathcal{K}$, ou seja, $v_0 = \{0, 0, 0, 0, 0\}$

Resolvendo $v_1(k)$ - $1^{\underline{a}}$ iteração (1/2)

Calcularemos

$$v_1(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \ln(k^{\alpha} - k') + \beta v_0(k') \right\}$$

• Como $v_0(k) = 0, \forall k \in \mathcal{K}$, o problema será:

$$v_1(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \ln(k^{\alpha} - k') \right\}$$

- Note que, para todo $k \in \mathcal{K} = \{0.04, 0.08, 0.12, 0.16, 0.20\}$, o valor de k' que maximiza a expressão é sempre k' = 0.04 neste caso.
- Logo, sabemos que, nesta 1^a iteração, a função política ótima

$$k'(k) = g_1(k) = 0.04, \ \forall k \in \mathcal{K}.$$

Note que 0.04 é o menor valor permitido em \mathcal{K} .

Resolvendo $v_1(k)$ - $1^{\underline{a}}$ iteração (2/2)

• Calculando os valores de $v_1(k)$ para cada k e com k' = 0.04, obtemos

$$\begin{aligned} v_1(k=0.04) &= \ln \left(0.04^{0.3} - 0.04\right) = -1.077 \\ v_1(k=0.08) &= \ln \left(0.08^{0.3} - 0.04\right) = -0.847 \\ v_1(k=0.12) &= \ln \left(0.12^{0.3} - 0.04\right) = -0.715 \\ v_1(k=0.16) &= \ln \left(0.16^{0.3} - 0.04\right) = -0.622 \\ v_1(k=0.20) &= \ln \left(0.20^{0.3} - 0.04\right) = -0.550 \end{aligned}$$

• Função valor v_1 e função política g_1 são dadas por

k	$v_1(k)$	$g_1(k)$
0.04	-1.077	0.04
0.08	-0.847	0.04
0.12	-0.715	0.04
0.16	-0.622	0.04
0.20	-0.550	0.04

Resolvendo $v_2(k)$ - $2^{\underline{a}}$ iteração (1/2)

Calcularemos

$$v_2(k) = \max_{0 \le k' \le k^{\alpha}} \left\{ \ln(k^{\alpha} - k') + \beta v_1(k') \right\}$$

- Como $v_1(k')$ não é nulo para todo k', precisamos agora verificar qual é o k' que maximiza $v_2(k)$ para cada k.
- para k = 0.04, temos os possíveis $v_2(k)$:

$$v_2(k = 0.04) = \ln(0.04^{0.3} - 0.04) + 0.6 * (-1.077) = -1.7227$$
 $(k' = 0.04)$
 $v_2(k = 0.04) = \ln(0.04^{0.3} - 0.08) + 0.6 * (-0.847) = -1.7097$ $(k' = 0.08)$

$$v_2(k = 0.04) = \ln(0.04^{0.3} - 0.12) + 0.6 * (-0.715) = -1.7731$$
 (k' = 0.12)

$$v_2(k = 0.04) = \ln(0.04^{0.3} - 0.16) + 0.6*(-0.622) = -1.8838$$
 (k' = 0.16)

$$v_2(k = 0.04) = \ln(0.04^{0.3} - 0.20) + 0.6 * (-0.550) = -2.0407$$
 (k' = 0.20)

• Logo, para maximizar $v_2(k = 0.04)$, escolhe-se k' = 0.08

Resolvendo $v_2(k)$ - $2^{\underline{a}}$ iteração (2/2)

• Repete-se esse processo feito para k = 0.04 para os demais possíveis valores de k:

k'	0.04	0.08	0.12	0.16	0.2
0.04	-1.7227	-1.7097^*	-1.7731	-1.8838	-2.0407
0.08	-1.4929	-1.4530^*	-1.4822	-1.5482	-1.6439
0.12	-1.3606	-1.3081^{*}	-1.3219	-1.3689	-1.4405
0.16	-1.2676	-1.2072^*	-1.2117	-1.2474	-1.3052
0.2	-1.1959	-1.1298	-1.1279^{*}	-1.1560	-1.2045

• Função valor v_2 e função política g_2 são dadas por

k	$v_2(k)$	$g_2(k)$
0.04	-1.7097	0.08
0.08	-1.4530	0.08
0.12	-1.3081	0.08
0.16	-1.2072	0.08
0.20	-1.1279	0.12

Demais iterações - Função Valor

• Ao repetir mais iterações, a função valor converge para a função valor real, no entanto, não chegará a ser exatamente igual.

Demais iterações - Função Política

• E também encontramos a função política, g(k).

Capital Estacionário k*

- A partir da função política encontrada, g(k), podemos obter o capital estacionário, k^* :
- (1) A partir de k_0 , encontrar $k_1 = g(k_0)$
- (2) Se $k_0 = k_1$, então encontramos o capital estacionário.
- (3) Se $k_0 \neq k_1$, então vamos para o próximo período e verificamos se $k_1 = g(k_1) = k_2$
- (4) Repete-se isso até encontrar $k_t = k_{t+1}$.
 - Note que o capital estacionário $k^* = g(k^*)$, ou seja, k^* é ponto fixo de g(k).

