Semigroups

Lecture 12
Discrete Mathematical
Structures

Semigroups

- Part I: Semigroup and Monoid
 - ☐ Binary operations and their properties
 - ☐ Semigroup and monoid
 - ☐ Isomorphism and homomorphism
- Part II: Fundamental Homomorphism Theorem
 - □ Congruence relation
 - □ Quotient semigroup
 - □ Natural homomorphism
 - □ Fundamental homomorphism theorem for semigroup

Binary Operation

- Function $f:A^n \rightarrow B$ is called an n-nary operation from A to B.
 - \square Binary operation: $f:A\times A\to B$
 - □ An example: a new operation "*" defined on the set of real number, using common arithmatic operations:

$$x*y = x+y-ab$$

Note: 2*3 = -1; 0.5*0.7 = 0.85

- An operation is a function, so the following are not operations:
 - \square Let A=R, define * on A: a*b as a/b
 - \square Let A=Z, define * on A: a*b as a number less than a,b

Closedness of Operations

- For any operation $f:A^n \rightarrow B$, if $B \subseteq A$, then it is said that A is closed with respect to f. Or, we say that f is closed on A. (What does the operation table of a closed operation look like?)
- Example:
 - \square Set A={1,2,3,...,10}, gcd is closed, but lcm is not.
 - □ Discuss the closeness of common addition on the following set:
 - {n | there exists a positive integer k, such that $16|n^k$ }
 - {n | 9 divides 21n}
- Assuming $A \subset B$, if A is closed with respect to *, what about B? And if B is closed with respect to *, what about A?

Algebraic System

- Definition:
 - \square A nonempty set S (no limitation about its elements)
 - ☐ One or more operations (binary operations in most cases)
 - \square S is closed with respect to these operations
- \blacksquare Denotation: (S,
- Example:
 - \square (Z, +), here, Z is the set of integers and + is arithmetic addition

Operation Table

 Operation table can be used to define unary or binary operations on a finite set (usually only with several elements)

*	a	b	c	d
a	1	R	*	M
b	&	6	K	M
c	7	6	Q	0
d	G	#	~	

Properties of Binary Operations

- Associativity
 - \square Operation "" defined on the set A is associative if and only if:

For any
$$x, y, z \in A$$
, $(x \ y) \ z = x \ (y \ z)$

- Commutativity
 - □ Operation " " defined on the set *A* is commutative if and only if:

For any
$$x, y \in A$$
, $x = y = x$

- Idempotence
 - □ Operation " defined on the set *A* is idempotent if and only if:

For any
$$x \in A$$
, $x = x$

Identity of an Algebraic System

- For arithmatic multiplication on the set of real number, there is a specific real number 1, satisfying that for any real number x, $1 \cdot x = x \cdot 1 = x$
- An element *e* is called the identity element of an algebraic system (S,) if and only if :

For any
$$x \in S$$
, $e = x = x = e = x$.

- Denotation: 1_S , or simply 1, but remember that it is not *that* "1".
- It is not that every algebraic system has its identity element.

An Example about Coding

- Given an alphabet $A=\{0,1\}$, A^* is the set of string of length n on A.
- Define a binary operation \oplus on A^* as follows:
 - □ For any $x,y \in A^*$, $x \oplus y$ is a binary string of length n, in which, the ith bit is 1 if and only if the corresponding bits in x and y are different. (i=0,1,...,n-1)
- (A^*, \oplus) is an algebraic system
- Satisfied properties: association, commutation, identity

A System with Specified Properties

Let (A,*) is a system satisfying idempotent, commutative and associative properties. Define a relation \leq on A by $a\leq b$ iff. a=a*b. Then (A,\leq) is a poset, and for all a,b in A, GLB(a,b)=a*b

Proof

- □ Reflexivity: since a*a = a, so, $a \le a$ for all a in A
- \square Antisymmetry: if $a \le b$, $b \le a$, then a = a * b, and b = b * a, but a * b = b * a, so, a = b
- □ Transitivity: if $a \le b$, $b \le c$, then a = a*b, b = b*c, so, a = a*(b*c) = (a*b)*c = a*c, so, $a \le c$

□ GLB:

- a*b is a lower bound of $\{a,b\}$: (a*b)=(a*a)*b=(a*b)*a, and similarly, (a*b)=a*(b*b)=(a*b)*b
- a*b is GLB: if $c \le a$, and $c \le b$, then c = c*a and c = c*b, so, c = (c*a)*b = c*(a*b)

Axiomatic System

- Abstract system: too general
- Concrete system: too many

- Abstract algebra as a branch of modern mathematics: axiomatic system
 - ☐ Axioms of the system: usually, one or more of the properties discussed above

Semigroup

- Axiom of semigroup
 - ☐ Association
- An example ({1,2},*) is a semigroup, where * defined as:

For any
$$x,y \in \{1,2\}, x*y=y$$

Proof: it should be proved that for any x,y,z in $\{1,2\}$, (x*y)*z = x*(y*z)

Note: if checking by operation table, we have to check as many as 8 equations.

Generalized Associative Law

■ If $a_1, a_2,...a_n$, $n \ge 3$, are arbitrary elements of a semigroup, then all products of the elements $a_1, a_2,...a_n$ that can be formed by inserting meaningful parentheses arbitrarily are equal.

Proof by induction: Let
$$\prod_{i=1}^{n} a_i = ((...((a_1 * a_2) * a_3) ... * a_{n-1}) * a_n)$$

For any insertion of parenthese, let the last step is u*v

By inductive hypothesis:
$$u = \prod_{i=1}^{m} a_i$$
, $v = \prod_{j=1}^{m} a_{m+j}$ $(m < n)$

$$u * v = \prod_{i=1}^{m} a_i * \prod_{j=1}^{n-m} a_{m+j} = \left(\prod_{i=1}^{m} a_i\right) * \left(\prod_{j=1}^{n-m} a_{m+j} * a_n\right) = \left(\prod_{i=1}^{n-1} a_i\right) * a_n = \prod_{i=1}^{n} a_i$$

м

Power

■ If operation " " is associative, then we can define the exponential function as follows:

$$x^1 = x$$

 $x^{n+1} = x^n$ x (n is positive integer)

■ In addition, if " 'has the identity, then:

$$x^0 = e$$
 (e is the identity)
 $x^{n+1} = x^n$ x (n is nonnegative integer)

Properties

$$\square x^n \qquad x^m = x^{n+m}$$

$$\square (x^n)^m = x^{nm}$$

Several Examples of Semigroup

- Example 1: (A,*) is a semigroup satisfying that for any a,b, if $a\neq b$, then $a*b \neq b*a$, (a*b = b*a implies a = b) show:
 - \Box (1) $a^*a = a$ Note: $(a^*a)^*a = a^*(a^*a)$
 - \Box (2) a*b*a = aNote: (a*b*a)*a = a*(a*b*a)

Several Examples of Semigroup

Example 2: (A,*) is a semigroup. There exists an element a in A, such that, for any x in A, there exist u,v, such that a*u=v*a=x.

$$\exists a (a \in A \land \forall x \left(x \in A \Rightarrow \exists u, v \begin{pmatrix} u \in A \land v \in A \land \\ (a * u = v * a = x) \end{pmatrix} \right))$$

Prove that *A* has an identity.

Proof:

- \square for a itself, there are also u_a, v_a , such that, $a * u_a = a$; $v_a * a = a$.
- \square For any x, exists u_a , v_a such that $a * u_x = v_x * a = x$
 - $x^*u_a = (v_x^*a)^*u_a = v_x^*a = x$, (u_a is a right identity).
 - $v_a * x = v_a * (a * u_x) = a * v_x = x$, (v_a is also left identity).

$$\square v_a * u_a = v_a = u_a$$

Monoid

- Axioms of the system
 - Association
 - ☐ Identity
- Examples
 - \square P(S), where S is a set, together with the operation union or intersection are both commutative monoids
 - □ The set of all functions $f:S \rightarrow S$, denoted as S^S , together with the operation of composition is a monoid

Subsystems

- Subsemigroup
 - □ Let (S,*) be a semigroup and let $T \subseteq S$. If T is closed under the operation *, then (T,*), which is obviously a semigroup itself, is called a subsemigroup of (S,*)
 - \square (Z,+), (Q,+) are both subsemigroups of (R,+)
- Submonoid
 - □ Let (S,*) be a monoid with identity e, and let $T \subseteq S$. If T is closed under the operation * and $e \in T$, then (T,*), which is obviously a monoid itself, is called a submonoid of (S,*)

м

Examples of Subsystem

An Example:

$$S = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \middle| a, d \in R \right\} \qquad T = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in R \right\}$$

■ Let "*" be matric multiplication, then both (S,*) and (*T*,*) are both monoids. *T* is a subsemigroup of *S*, but it is not a submonoid(*why*?).

Systems that look alike

■ "Logical *or*" and "Boolean sum"

■ Note: if the signs and their meaning are ignored, the two tables are same

Isomorphism

- Semigroup (S,) and (T, *) are isomorphic $(S \cong T)$ iff: There exist a one-to-one correspondence $f: S \rightarrow T$, such that: For any $x,y \in S$, f(x y) = f(x) * f(y)(f is called an isomophism)
- Isomorphism is an equivalence relation.
 - □ Reflexibility: the identity function is a one-to-one correspondence.
 - □ Symmetry: inverse of a one-to-one correspondence is also a one-to-one correspondence.
 - ☐ Transitivity: the composition of two one-to-one correspondence is also a one-to-one correspondence.

Show Isomorphism of Two Systems

- Basic approach: find a one-to-to correspondence and check it for the requirements for the isomorphism
- Examples
 - □ "logical OR" semigroup ({F,T},∨) and Boolean sum semigroup ({0,1},+) isomorphism $f: \{F,T\} \rightarrow \{0,1\}: f(F)=0, f(T)=1$
 - \square Positive real number multiplication semigroup (R⁺,•) and real number addition semigroup (R,+)

isomorphism $f: R^+ \rightarrow R: f(x) = \ln x$

Note: $f(x)=\lg x$ is another isomorphism

How to Negate isomorphism

- To prove semigroups (S,) and (T,*) are **not** isomorphic to each other, you must prove that **any** functions from (S,) to (T,*) cannot be an isomorphism between them.
- Example:
 - \square nonzero rational number multiplication semigroup (Q-{0},•) and rational number addition semigroup (Q,+) are not isomorphic to each other

If there exists an isomorphism $f: Q-\{0\} \rightarrow Q$, then f(1)=0 (otherwise, $f(1 \cdot x) \neq f(1) + f(x)$)
However, $f(-1)+f(-1)=f((-1) \cdot (-1))=f(1)=0$

So, f(-1)=f(1), f is not one-to-one, contradiction.

Homomorphism

- Semigroup (S,) and (T,*) are homomorphic, denoted as $(S \sim T)$ if and only if:
 - There exists a function $f: S \rightarrow T$ such that:

for any
$$x,y \in S$$
, $f(x y) = f(x) * f(y)$

- If f is also onto, then T is a homomorphic image of G_1 .
- Note: isomorphism is a special case of homomorphism
- Example: integer addition semigroup (Z,+) and mod-3 addition semigroup $(Z_3,+_3)$
 - \square homomorphism: $f: Z \rightarrow Z_3$, f(3k+r)=r

Isomorphism and Homomorphism: Generalized

- The discussion about isomorphism and homomorphism can be generalized to general algebraic systems
 - \square *Algebraic systems* (G₁,) and (G₂,*) are isomorphic if and only if:

```
there exists a one-to-one correspondence f: G_1 \rightarrow G_2, such that: for any x,y \in G_1, f(x = y) = f(x) * f(y)
```

□ *Algebraic systems* (G_1 ,) and (G_2 ,*) homomorphic if and only if: there exists a function $f: G_1 \rightarrow G_2$, such that: for any $x,y \in G_1$, f(x y) = f(x) * f(y)And if f is onto, then G_2 is a homomorphic image of G_1 .

Homomorphic Image and System Properties

Association

□ Assuming that $f: G_1 \rightarrow G_2$ is a homomorphism, and G_2 is a homomorphic image of G_1 , then, if G_1 is associative, so is G_2 , i.e. for any $x,y,z \in G_2$, $(x \ y) \ z=x \ (y \ z)$

■ Proof:

□ for any $\mathbf{x}', \mathbf{y}', \mathbf{z}' \in \mathbf{G}_2$, since f is onto, there must be $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{G}_1$, such that $f(\mathbf{x}) = \mathbf{x}', f(\mathbf{y}) = \mathbf{y}', f(\mathbf{z}) = \mathbf{z}'$. So, $(\mathbf{x}' * \mathbf{y}') * \mathbf{z}' = (f(\mathbf{x}) * f(\mathbf{y})) * f(\mathbf{z}) = f(\mathbf{x} \ \mathbf{y}) * f(\mathbf{z}) = f(\mathbf{z} \ \mathbf{y}) * f(\mathbf{z}) * f(\mathbf{z}) = f(\mathbf{z} \ \mathbf{y}) * f(\mathbf{z}) * f(\mathbf{z}$

Same discussion applies for commutation.

Homomorphic Image and System Properties

Identity

□ Assuming that $f: G_1 \rightarrow G_2$ is a homomorphism, and G_2 is a homomorphic image of G_1 , then, if G_1 has an identity e, so does G_2 , i.e. there exists e in G_2 , such that for any $x \in G_2$, $(x^*e)=(e^*x)=x$

Proof

□ for any $\mathbf{x}' \in \mathbf{G}_2$, since f is onto, there must be $\mathbf{x} \in \mathbf{G}_1$, such that $f(\mathbf{x}) = \mathbf{x}'$. Let f(e) = e', then, $(\mathbf{x}' * f(e)) = (f(\mathbf{x}) * f(e)) = f(\mathbf{x} * e) = f(\mathbf{x}) = \mathbf{x}'$. (f(e) * x) = x can be proved similarly.

Note that f(e) is in G_2 , so, it is the identity of G_2 .

Holding the System Properties

Homomorphism and Subsystem

Let f be a homomorphism from a semigroup (S,) to a semigroup (T,*). If S' is a subsemigroup of (S,), then

$$f(S') = \{t \in T | t = f(s) \text{ for some } s \in S'\}$$

the image of S' under f, is a subsemigroup of $(T, *)$

- Proof
 - \square Closedness of f(S')
 - \square Associativity hold on f(S')

Products of Semigroup

- If (S, \cdot) and (T, *) are semigroups, then $(S \times T, \otimes)$ is also a semigroup, called **product of semigroups** (S, \cdot) and (T, *), where \otimes is defined by $(s_1, t_1) \otimes (s_2, t_2) = (s_1 \cdot s_2, t_1 * t_2)$
- Proof
 - \square Obviously, $(S \times T, \otimes)$ is a algebraic system
 - $\square \text{ [Associative] } ((s_1,t_1)\otimes(s_2,t_2))\otimes(s_3,t_3) = ((s_1 \quad s_2) \quad s_3, (t_1*t_2)*t_3) \\
 = (s_1 \quad (s_2 \quad s_3), t_1*(t_2*t_3)) = (s_1,t_1)\otimes((s_2,t_2)\otimes(s_3,t_3))$

Products of Monoid

- If (S, \cdot) and (T, *) are monoids, with identities e_s and e_t , then $(S \times T, \otimes)$ is also a monoid , called **product of monoids** (S, \cdot) and (T, *), where \otimes is defined by $(s_1, t_1) \otimes (s_2, t_2) = (s_1 \cdot s_2, t_1 * t_2)$. And the identity of $(S \times T, \otimes)$ is (e_S, e_T)
- Proof
 - \square Obviously, $(S \times T, \otimes)$ is a algebraic system
 - □ [Associative] $((s_1,t_1)\otimes(s_2,t_2))\otimes(s_3,t_3) = ((s_1 s_2) s_3, (t_1*t_2)*t_3) = (s_1 (s_2 s_3), t_1*(t_2*t_3)) = (s_1,t_1)\otimes((s_2,t_2)\otimes(s_3,t_3))$
 - □ [Identity] For any $s \in S$, $t \in T$, $(s,t) \otimes (e_s, e_t) = (s e_S, t * e_T) = (s,t)$; same with $(e_s, e_t) \otimes (s,t)$

Congruence

- An example: defining a relation on the set of integer as: a=b (mod 3) iff. |a-b|/3 is an integer
 - ☐ It is an equivalence
 - $\pi_{2} = \{\dots -3,0,3,6,9,\dots\}$ $\pi_{2} = \{\dots -2,1,4,7,10,\dots\}$ $\pi_{3} = \{\dots -1,2,5,8,11,\dots\}$
- Note: if x_1, x_2 are in the same class, and y_1, y_2 in same class, then x_1+y_1 and x_2+y_2 are in the same class.
- Generalized: An equivalence relation R on the semigroup (S,*) is called a congruence relation if

aRa' and bRb' imply (a*b)R(a'*b')

Congruence on a Free Semigroup

- Let $A=\{0,1\}$. A^* is the set of all finite sequence of elements of A. Then, A^* with the operation catenation is a semigroup, called free semigroup generated by A.
- Define relation R on A^* as following: $\alpha R\beta$ iff. α and β have the same number of 1's
- R is an equivalence
- \blacksquare R is a congruence relation
 - Suppose α_1 and α_2 have the same number of 1's, and β_1 and β_2 have the same number of 1's. Note the number of the number of 1's in $\alpha\beta$ is the sum of that in α and β , so, $\alpha_1\beta_1$ and $\alpha_2\beta_2$ have the same number of 1's

All Equivalences are not Congruence

- (Z,+) is a semigroup, where "+" is common addition operation.
- Given a function $f(x)=x^2-x-2=(x+1)(x-2)$, a relation on Z is defined as following:

$$aRb$$
 if and only if $f(a)=f(b)$

- R is an equivalence
- R is not a congruence relation
 - \square Note that (-1)R2, and, (-2)R3, but **not** (-3)R5

Quotient Semigroup

- Let R is a congruence relation on the semigroup (S,*). S/R is the quotient set, i.e. the set of all equivalence classed.
- Define an operation \otimes from $S/R \times S/R$ to S/R as $[a] \otimes [b] = [a*b]$. Note the operation is well-defined because R is a congruence relation.
 - □ Suppose ([a],[b])=([a'],[b']), then aRa', bRb', by the definition of congruence relation, a*b=a**b*, so \otimes is a well-defined function from $S/R \times S/R$ to S/R
- $(S/R, \otimes)$ is a semigroup, called **quotient semigroup**

Natural Homomorphism

- Any semigroup and its corresponding quotient semigroup are onto homomorphic
- Let $(S/R, \otimes)$ is the corresponding quotient semigroup of semigroup (S, *), define a function $f_R: S \rightarrow S/R$ as following:

$$f_R(a)=[a]$$

- \square By the definition of equivalence class, f_R is a well-defined onto function from S to S/R.
- □ For any a,b in S, $f_R(a*b)=[a*b]=[a]\otimes[b]=f_R(a)\otimes f_R(b)$, which means f_R is a homomorphism.

A Congruence Relation Determined by a Homomorphism

---- R defined on S

It is easy to prove that *R* is an equivalence.

R is a congruence relation:

$$f(a \odot b) = f(a) * f(b)$$

$$f(a_1 \odot b_1) = f(a_1) * f(b_1)$$

However: $f(a)*f(b) = f(a_1)*f(b_1)$

Which means:

$$f(a \odot b) = f(a_1 \odot b_1)$$

That is: $(a \odot b) R(a_1 \odot b_1)$

f is a homomorphism

Fundamental Homomorphism Theorem

Homomorphism

Quotient semigroup

Define $g: S/T \rightarrow T$ as following:

g([a])=f(a) for any $[a] \in S/T$

- 1. g is a function: that is for any other element a' in [a], g[a']=f[a]
- 2. g is one-to-one: all element a having the same value of f(a) are in one equivalence class.
- 3. g is onto: for any $b \in T$, there is some $a \in S$, such that f(a)=b, then g[a]=b.
- **4.** g is an isomorphism:

$$g([a]\otimes[b])=g([a \quad b])=f(a \quad b)=f(a)*f(b)$$

= $g([a])*g([b])$

An Example of Free Semigroup

 $f: A* \rightarrow N: f(\alpha)$ =the number of 1's in α

Define relation R on A^* as following:

 $\alpha R\beta$ iff. $f(\alpha)=f(\beta)$

Then, by the fundamental homomorphism theorem:

$$A*/N \cong N$$
,

and the ismorphism is:

 $g[\alpha]$ =the number of 1's in α . and f = g f_R

м

Home Assignments

■ To be checked

```
□ pp.348-: 5-8, 15-19, 20,22,25, 27-29, 32
```

- □ pp.354 -: 6,8,10,14,18,21,22,26-27, 31-32, 35-36
- □ pp.361 -: 2, 4, 8,10,14,16,18,23-24, 26, 28, 30