Machine Learning

Pawel Wocjan

University of Central Florida

Fall 2020

- ► Consider the following toy example.
- ► It has been known that crickets (an insect species) chirp more frequently on hotter days than on cooler days.
- Professional and amateur scientists have cataloged data on chirps-per-minute and temperature.
- Using this data, you want to explore this relationship.

► First, examine your data by plotting it:

You could draw a single straight line like the following to approximate this relationship between chirps and temperature.

- ► The line doesn't pass through every dot, but the line does clearly show the relationship between chirps and temperature.
- Using the equation for a line, you could write down this relationship as follows:

$$y = mx + b$$

where:

- ▶ y is the temperature in Celsius the value we're trying to predict.
- ▶ *m* is the slope of the line.
- x is the number of chirps per minute the value of our input feature.
- b is the y-intercept.

▶ By convention in ML, you'll write the equation for a model slightly differently:

$$\hat{y} = b + w_1 x_1$$

where:

- y is the predicted label (a desired output).
- \blacktriangleright b is the bias (the y-intercept), sometimes referred to as w_0 .
- \blacktriangleright w_1 is the weight of feature 1. Weight is the same concept as the "slope" m in the traditional equation of a line.
- $ightharpoonup x_1$ is a feature (a known input).

- ▶ To **infer** (predict) the temperature \hat{y} for a new chirps-per-minute value x_1 , just substitute the x_1 value into this model.
- ▶ A more sophisticated model would rely on multiple features $x_1, x_2, ..., x_n$, each having a separate weight $w_1, w_2, ..., w_n$.
- ► For example, a model that relies on three features might look as follows:

$$\hat{y} = b + w_1 x_1 + w_2 x_2 + w_3 x_3 = b + \sum_{i=1}^{3} w_i x_i$$

Key Terms

- ▶ bias
- **▶** inference
- ► linear regression
- ▶ weight