Dokumentace ročníkového projektu

Vývoj řízení simulovaných robotů ve 3D prostředí

Marek Bečvář MFF UK 2022

Obsah

Γ1	Dos	tupné technologie	
		Fyzikální simulátory	
		OpenAI - Gym	
i	ii	Další odkazy	

I Popis a cíl projektu

Projekt je zaměřen na využití genetických algoritmů pro vývoj řízení simulovaných robotů ve fyzikálním prostředí. Řízení se má vyvíjet směrem k předem specifikovanému cíli.

Cílem projektu je seznámení se s různými možnostmi zvoleného fyzikálního prostředí, vývoj základního genetického algoritmu a jeho aplikace na sadu výchozích a vlastních simulovaných robotů a vytvoření další sady aplikací umožňující statistické zpracování výsledků.

II Dostupné technologie

i. Fyzikální simulátory

MuJoCo (*Multi-Joint Dynamics with Contact*) je free a open source robustní fyzikální engine pro vývoj v oblasti robotiky, biomechaniky a dalších.

MuJoCo umožňuje velký nárůst v rychlosti běhu simulace za pomoci plné podpory paralelizace na všech dostupných jádrech a stabilitě simulace i při využití větších simulačních časových kroků. Zároveň nabízí jednoduchý styl, jakým si může uživatel upravit všechny detaily simulace i robotů samotných pomocí C++ API nebo jednoduchých XML konfiguračních souborů.

Webots

Odkazy

- MuJoCo.org
- OpenAl MuJoCo
- MuJoCo Instalace
- MuJoCo Docs
- MuJoCo XML reference

ii. OpenAI - Gym

OpenAI je firma zaměřená na vývoj a praktické využití umělé inteligence.

Gym je open source Python API firmy OpenAI. Je to platforma pro vývoj převážně Reinforcement learning metod. Umožňuje využít řadu prostředí, ve kterých uživatelé mohou jednoduše spouštět a testovat své agenty. Tato prostředí mohou být různé Atari hry, textové hry, jednoduché 2D i plně fyzikálně simulované 3D prostředí (**MuJoCo**).

Gym nabízí jednoduchý přístup do všech těchto prostředí kde vstupy (akce agenta v prostředí) i výstupu (stav prostředí, pozorování agenta) jsou standardizované napříč všemi prostředími. Navíc open source vlastnost tohoto API umožňuje vlastní doprogramování pokročilých pomocných nástrojů pro vývoj a práci s prostředími.

I když je Gym primárně vytvořené pro vývoj Reinforcement learning agentů, je velmi jednoduché použít namísto toho například agenta, který je v našem případě vyvíjen pomocí genetických algoritmů.

Odkazy

- Oficiální Gym library docs
- Gym Github
- Getting started with OpenAI Gym
- Medium článek Exploring OpenAI Gym

iii. Další odkazy

- Python.org
- Python Wikipedia
- XML Introduction Mozilla Developer
- XML Wikipedia

III Popis softwarového díla

i. Rozdělení

Projekt je rozdělený do více Python skriptů. Pro rychlejší iteraci při vývoji je potřeba jemné rozdělení všech možných částí a různých typů operací

genetických algoritmů (s otestovanou správností) tak, aby bylo později jednoduché poskládat agenty z těchto předdefinovaných částí.

Dále je třeba mít skripty, které umožňují spouštění genetického algoritmu za určitým cílem (fitness funkce), ve specifikovaném prostředí, s vybraným typem robota a za použití specifického typu agenta a jeho parametrů a později mít možnost výsledky z běhu algoritmu ukládat pro pozdější zpracování. Zároveň pro snadnější zpracování a vývoj je užitečné mít uložené i celého nejlepšího výsledného agenta pro vizuální rozbor a kontrolu jeho finálního výsledku.

Poslední částí je statistický skript, který zpracuje výsledky z jednoho nebo více běhů genetického algoritmu a podle uložených informací z jednotlivých běhů zanese jejich výsledky dle potřeby do tabulky, nebo grafu.