raport SIK

Michał Zmyślony

April 2024

1 Plan

Badanie efektywności programów bedzie podzielone na pare sekcji:

- 1) testowane lokalnie
- 2) testowanie na dwóch maszynach wirtualnych w tej samej sieci
- 3) testowanie na dwóch maszynach wirtualnych w tej samej sieci z właczonym opóźnieniem 50ms
- 4) testowanie na dwóch maszynach wirtualnych w tej samej sieci z właczonym gubieniem pakietów 25%

w każdym z warunków testowych bedzie uruchamiany ten sam skrypt ,który 5 razy bedzie powtarzać procedure. Procedura dla każdego z protokołów (udp, udpr, tcp) sprawdza szybkość i poprawność przesyłanego pliku (polecenie diff). Testowane jest 5 rozmiarów plików: 1B, 26KB, 2,8MB, 14MB oraz 110MB. Dodatkowo każda cała operacja jest powtarzana dla różnych długości pakietów:

- 64B, mały prawdopodobnie za mały rozmiar
- 1500B, Maximum Transmission Unit
- 10000B

Stałe do testowania sie nie zmieniaja i sa ustawione nastepujaco:

MAX RETRANSMITS - 10

MAX WAIT - 10

Wyniki programów, zmierzone czasy sa zapisywane w tabelkach i przedstawione poniżej.

2 Testowane lokalnie na jednym komputerze

W nawiasie podana jest liczba udanych, pełnym przesłań pliku na 5 prób. Można zauważyć pare tendencji: czas przesyłania rośnie liniowo wzgledem rozmiaru pliku, TCP i UDPR sa całkiem niezawodne, natomiast udp dla plików /<math>2.8MB jest wyjatkowo mocno zawodny. Dodatkowo tcp jest znaczaco szybszy niż udpr dostarczajac tak samo dobre wyniki.

Table 1: Czas transferu danych testowany lokalnie					
	1B	28KB	$2.8 \mathrm{MB}$	14MB	110MB
TCP(64B)	0.007(5)	0.051(5)	0.348(5)	1.388(5)	11.533(5)
UDP $(64B)$	0.007(5)	0.014(5)	0.246(0)	1.035(0)	8.559(0)
UDPR $(64B)$	0.008(5)	0.039(5)	2.092(5)	11.352(5)	82.174(5)
TCP (1500B)	0.007(5)	0.047(5)	0.073(5)	0.211(5)	1.271(5)
UDP $(1500B)$	0.007(5)	0.008(5)	0.059(0)	0.143(0)	0.870(0)
UDPR $(1500B)$	0.007(5)	0.012(5)	0.154(5)	0.573(5)	5.102(5)
TCP (10KB)	0.007(5)	0.048(5)	0.093(5)	0.134(0)	0.830(5)
UDP $(10KB)$	0.007(5)	0.009(5)	0.040(5)	0.399(0)	0.545(0)
UDPR $(10KB)$	0.007(5)	0.008(5)	0.085(5)	0.105(5)	1.326(5)
TCP (64KB)	0.008(5)	0.012(5)	0.058(5)	0.139(5)	0.696(5)
UDP $(64KB)$	0.007(5)	0.008(5)	0.045(0)	0.102(0)	0.537(0)
UDPR $(64KB)$	0.008(5)	0.010(5)	0.065(5)	0.173(5)	0.819(5)

3 Dwie maszyny wirtualne

Table 2: Czas transferu danych testowany na dwóch maszynach wirtualnych						
	1B	28KB	2.8MB	14MB	110MB	
TCP (64B)	0.006(5)	0.066(5)	2.822(5)	13.559(5)	110.470(5)	
UDP $(64B)$	0.006(5)	0.069(0)	1.305(0)	3.512(0)	24.943(0)	
UDPR $(64B)$	0.020(5)	0.125(5)	9.351(5)	40.556(5)	302.449(5)	
TCP (1500B)	0.022(5)	0.034	2.764(5)	11.342(5)	88.342 (5)	
UDP $(1500B)$	0.006(5)	0.018(0)	0.268(0)	5.709(0)	40.106(0)	
UDPR (1500B)	0.007(5)	0.237(5)	9.896(5)	37.552	231.949(5)	
TCP (10KB)	0.017(5)	0.079(5)	0.104(5)	0.361(5)	3.107(5)	
UDP $(10KB)$	0.009(5)	0.028(5)	0.166(0)	0.267(0)	1.832(0)	
UDPR (10KB)	0.009(5)	0.026(5)	0.422(5)	0.769(5)	4.270(5)	

w tym przypadku trendy ogólne sa podobne jak wyżej, natomiast bezwzgledne wartości sa parokrotnie wyższe od swoich odpowiedników wyżej.

4 Opóźnienie 1000ms

w przypadku wprowadzenia opóźnienia protokół udp przestaje być wiarygodny, natomiast przy używaniu udpr nie udało mi sie zmierzyć rozsadnego czasu wykonywania. Jedyny wiarygodny i zaskakujaco sensowny czasowo jest tcp.

5 Strata pakietów 25%

w tym przypadku ogólne trendy sa podobne natomiast czesto udpr oraz udp po prostu sie psuja. Nastepuje timeout lub odebranie złego pakietu i klient sie

Table 3: Czas transferu danych testowany na dwóch maszynach wirtualnych z $50\mathrm{ms}$ opóźnienia

	V P					
	1B	28KB	$2.8 \mathrm{MB}$	14MB	110MB	
TCP (64B)	0.253(5)	0.347(5)	2.039(5)	12.644(5)	73.779(5)	
UDP $(64B)$	0.204(5)	error	error	error	error	
UDPR $(64B)$	0.126(5)	31.768(5)	ponad rozsadny czas	ponad rozsadny czas	ponad rozsadny czas	
TCP (1500B)	0.411(5)	0.325(5)	2.054(5)	12.379(5)	82.222(5)	
UDP $(1500B)$	0.211(5)	$0.275/\mathrm{error}$	error	error	error	
UDPR (1500B)	0.189(5)	55.059	ponad rozsadny czas	ponad rozsadny czas	ponad rozsadny czas	
TCP (10KB)	0.188(5)	0.308(5)	2.892(5)	12.202(5)	66.889(5)	
UDP $(10KB)$	0.099(5)	error	error	error	error	
UDPR (10KB)	0.229(5)	25.541	ponad rozsadny czas	ponad rozsadny czas	ponad rozsadny czas	

Table 4: Czas transferu danych testowany na dwóch maszynach wirtualnych z25%strata pakietów

- , 0	1				
	1B	28KB	2.8MB	14MB	110MB
TCP (64B)	0.19(5)	2.957(5)	7.095(5)	22.341(5)	168.798(5)
UDP $(64B)$	0.005(0)	0.035(0)	0.811(0)	10.282(0)	31.910(0)
UDPR $(64B)$	0.021 / timeout	112.525 / timeout	timeout	timeout	timeout
TCP (1500B)	0.111(5)	0.277(5)	7.261(5)	28.389(5)	144.340
UDP $(1500B)$	0.005(5)	error/timeout	error/timeout	error/timeout	error/timeout
UDPR (1500B)	0.021 / timeout	timeout	timeout	timeout	timeout
TCP (10KB)	0.022(5)	0.099(5)	0.351(5)	3.664	24.728
UDP $(10KB)$	0.019(5)	0.020(4)	timeout	timeout	timeout
UDPR (10KB)	0.022(5)	0.026(5)	timeout/error	timeout/error	timeout/error

wyłacza.

6 Podsumowanie

W prawdziwym życiu nie bedziemy mieć warunków idealnych takich jak w przypadku 1 i 2. Dlatego, wydaje sie, że jeżeli zależy nam na dostaniu każdego pakietu to niestety musimy zrezygnować z udp. Natomiast w przypadku udpr bedziemy musieli długo oczekiwać. Obiektywnie najlepszym protokołem do takiego zadania jest tcp. Pomimo teoretycznie dłuższego działania (3 way handshake) to w praktyce tcp wydaje sie najlepszym rozwiazaniem.