Operations Research Metaheuristic Assignment

Operations Research

Instructor: Dr. Chia-Yen Lee

Due Date: Dec. 13, 2019, 5pm

This work is **optional!** It will count the 5% in your final grade if you work for it.

Please zip your files including eg. MS Word, Excel (or csv, txt), **Python code** file or other files, with the file name: **OR_HW_ID_NAME.zip**, and upload your homework to MOODLE by due.

The last digit of your student ID is (1) EVEN for Traveling Salesman Problem; (2) ODD for Single-Machine Scheduling Problem.

(學號末位數為偶數做旅行推銷員、奇數做單機排程問題)

Programming Questions (100%)

Please use <u>Python</u> (**MUST use it, other language is not allowed**) to answer the following questions. Provide your code and justify your answer. Show all your work in detail including specific algorithm and parameter design. You should hand in <u>one ZIP fold (EVEN for Traveling Salesman Problem by Simulated Annealing and ODD for scheduling problem by <u>Tabu</u>). The result should include <u>approximate optimal solution (i.e., traveling sequence, job sequence), fitness function value, running time.</u> For the parameter settings (eg. temperature, cooling rate, tabu size, etc.), please give a simple <u>trial-and-error</u> adjustment of parameters.</u>

Traveling Salesman Problem (學號末位數為偶數)

Please answer following TSP problem. The objective function is to minimize the total distance.

Data Source: **GR17** is a set of 17 cities, from TSPLIB.

0	633	257	91	412	150	80	134	259	505	353	324	70	211	268	246	121
633	0	390	661	227	488	572	530	555	289	282	638	567	466	420	745	518
257	390	0	228	169	112	196	154	372	262	110	437	191	74	53	472	142
91	661	228	0	383	120	77	105	175	476	324	240	27	182	239	237	84
412	227	169	383	0	267	351	309	338	196	61	421	346	243	199	528	297
150	488	112	120	267	0	63	34	264	360	208	329	83	105	123	364	35
80	572	196	77	351	63	0	29	232	444	292	297	47	150	207	332	29
134	530	154	105	309	34	29	0	249	402	250	314	68	108	165	349	36
259	555	372	175	338	264	232	249	0	495	352	95	189	326	383	202	236
505	289	262	476	196	360	444	402	495	0	154	578	439	336	240	685	390
353	282	110	324	61	208	292	250	352	154	0	435	287	184	140	542	238
324	638	437	240	421	329	297	314	95	578	435	0	254	391	448	157	301
70	567	191	27	346	83	47	68	189	439	287	254	0	145	202	289	55
211	466	74	182	243	105	150	108	326	336	184	391	145	0	57	426	96
268	420	53	239	199	123	207	165	383	240	140	448	202	57	0	483	153
246	745	472	237	528	364	332	349	202	685	542	157	289	426	483	0	336

1	121	518	142	84	297	35	29	36	236	390	238	301	55	96	153	336	0	l
	121	210	172	0-1	271))	2)	50	250	570	250	501	55	70	155	220	U	

Operations Research

Instructor: Dr. Chia-Yen Lee

Please use Simulated Annealing (SA) algorithm to solve the problem and provide the total distance. Show your parameter design (i.e. temperature, cooling rate) and the result.

Single-Machine Scheduling Problem (學號末位數為奇數)

Please answer following single-machine total weighted tardiness problem. The objective function is to minimize the total weighted tardiness.

Jobs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Processing Time	10	10	13	4	9	4	8	15	7	1	9	3	15	9	11	6	5	14	18	3
Due Date	50	38	49	12	20	105	73	45	6	64	15	6	92	43	78	21	15	50	150	99
Weights	10	5	1	5	10	1	5	10	5	1	5	10	10	5	1	10	5	5	1	5

Please use Tabu Search (TS) algorithm to solve the problem and provide the total weighted tardiness. Show your parameter design (i.e. tabu list size) and the result.

Note

- 1. Show all your work in detail. Innovative idea is encouraged.
- If your answer refers to any external source, please "must" give an academic citation. Any "plagiarism" is not allowed.