Natural Language Processing

Яковенко Ольга

Natural Language Processing - NLP - Автоматическая обработка естественного языка

- ▶ Распознавание речи
- ▶ Поисковые системы
- Автоматическое исправление опечаток
- Обнаружение спама...

Data Science

Table of baby-name data (baby-2010.csv)Field						
name	rank	gender	year -	names		
Jacob	1	boy	2010	One row		
Isabella	1	girl	2010	(4 fields)		
Ethan	2	boy	2010			
Sophia	2	girl	2010			
Michael	3	boy	2010			
2000 all	rows told					

Объекты NLP

- Слово
- Фраза (поисковый запрос, ФИО, адрес, заголовок, ...)
- Текст
- ▶ Звук

Lorem ipsum

Dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam

Токенизация

Строка -> набор токенов (П: предложение -> слова)

```
'Привет, мир!' —— ['Привет', ',', 'мир', '!']
```

Векторные представления (embeddings)

Результат трансформирования текстовых данных в векторное пространство

'Привет, мир!' **—** [0 1 3 8 2 9 0 7]

Векторные представления (embeddings)

Векторные представления (embeddings)

Bag of Words (BoW) или «мешок слов»

```
['я еду', 'медленно по шоссе еду', 'я еду еду еду по Бердскому шоссе']
```


я	медленно	еду	ПО	Бердскому	шоссе
1	0	1	0	0	0
0	1	1	1	0	1
1	0	3	1	1	1

Tf-idf (term frequency-inverse document frequency)

Большой вес в TF-IDF получат слова:

с <u>высокой частотой</u> в пределах <u>конкретного</u> документа

&

с <u>низкой частотой</u> употреблений в других документах

Tf-idf (term frequency-inverse document frequency)

Сколько раз слово встретилось в рамках одного документа

Количество документов (текстов) в датасете

$$\operatorname{idf}(t,D) = \log rac{(D)}{(\{d_i \in D \mid t \in d_i\})}$$

Число документов из датасета D, в которых встречается слово t.

$$\operatorname{tf-idf}(t,d,D) = \operatorname{tf}(t,d) imes \operatorname{idf}(t,D)$$

Произведение tf и idf

sklearn.feature_extraction.text.TfidfVectorizer

Векторные представления

- Word2Vec
- ► FastText
- ► ElMO
- **▶** BERT
- ▶ ULMFiT

Векторные представления

- Word2Vec
- FastText
- ► ElMO
- ▶ BERT
- ▶ ULMFiT

Векторные представления

- ► Word2Vec
- ► FastText
- ► ElMO
- ► BERT
- OpenAl
- ▶ ULMFiT

Практика

https://github.com/DinoTheDinosaur/russian_sentiment_edu/blob/master/notebooks/Features_word_level.ipynb