Lecture 1 Formulating Research Problems and Constructing Hypotheses

Ioannis Pavlidis Dinesh Majeti

Computational Physiology Lab

ipavlidis@uh.edu dmajeti@uh.edu

January 19, 2018

(CPL)

Inductive vs. Deductive Methods

- An inductive method aims at generating a new theory from the data
 - Exploring new phenomena
 - Completely open minded no preconceived ideas
- A deductive method aims at testing a theory using the data
 - Hypothesis driven with emphasis on association

(CPL) Lecture 1 January 19, 2018 2 / 1

Examples of Inductive and Deductive Research

- Inductive Research: Data mining
 - Bottom-up process that discovers patterns in big data
 - Explore massive genomic data bases for a defective gene
 - Discovering customer preferences in online purchases
- Deductive Research: Effectiveness of a new drug
 - Randomized control trial on a patient sample
 - Half receiving drug and the other half receiving placebo
 - Test if the drug sample fared better than the placebo sample

Hypothesis-Driven Research

- Hypothesis-driven research is most appropriate when a researcher is trying to decide between a small number of mutually exclusive cases
 - Finding which of two network configurations is more effective
- Hypothesis-driven research is NOT appropriate when the researcher is trying to decide among a vast number of possible cases
 - ullet Testing the hypothesis that the density of a rock is $1~{\rm g/cm^3}$

(CPL) Lecture 1 January 19, 2018

Null and Alternative Hypothesis

- **Control** or **Independent** variable: Something that for sure will change during the course of experimental measurements
- Response or Dependent variable: Not sure if it will change
- **Null Hypothesis**: Changes in the independent variable will not lead to any changes in the dependent variable
- Alternative Hypothesis: Changing the independent variable does change the dependent variable

Statistics

- Descriptive Statistics is concerned with the properties of the observed data
 - No assumptions about the underlying population
- Inferential Statistics is concerned with the underlying population of a sample
 - First select a statistical model and then draw a statistical inference

(CPL) Lecture 1 January 19, 2018 6 / 16

Statistical Model

- A statistical model is a set of assumptions concerning the generation of the observed data
 - Fully Parametric Models: The probability distributions involve a finite number of unknown parameters
 - . e.g., normal with unknown mean and variance
 - Non-Parametric Models: Minimal assumptions
 - e.g., sample median
 - Semi-Parametric Models: Somewhere in between

(CPL)

Statistical Inference

- **Statistical Inference** is the process of deducing properties of an underlying distribution via data analysis
- The outcome of statistical inference is a statistical proposition
 - Point estimate (for a parameter of interest)
 - Interval estimate (for a parameter of interest)
 - Credible interval (e.g., 95% of posterior belief)
 - Rejection of hypothesis
 - Classification (grouping of data points)

Experiments

- Comparative Experiments: Designed to measure changes in an environment
 - Comparison of fertilizers, computer networks, or medications
- Absolute Experiments: Involve the measurement of quantities that are assumed to be constant
 - Velocity of light or mass of an electron

Observations

- **Observation** is the active acquisition of information from a primary source
 - In living beings, observation employs the senses
 - In science, observation can involve the recording of data via instruments

Observational Studies

- An observational study draws inferences about the possible effect of a treatment on entities, where the assignment of entities into a treated group vs. a control group is outside the control of the investigator
 - Sample survey: Information about a population at a specific time
 - Prospective study: Longitudinal study
 - Retrospective study: Sample survey + recollection
 - Comparative study: Two or more methods are compared
 - Compare three educational systems based on cost effectiveness
 - Descriptive study: Characterize a population based on attributes
 - Characterize the computer skills of teenagers attending public schools
- No cause-and-effect relationships can be found; only associations
 - Confounding factors due to lack of control

Sample Survey Example

- Product preference poll related to Dell vs. Apple
 - What was the population of interest?
 - Was the sample in fact selected from this population?
 - What questions were asked and how were the questions phrased?

Study Variables

- Explanatory variables
- Response variables
- Confounding variables or covariates
 - In an observational study we cannot control covariates

The Scientific Method

- Asking a question about a natural phenomenon
- Making observations of the phenomenon
- 4 Hypothesizing an explanation for the phenomenon
- Predicting a logical consequence of the hypothesis
- Testing the hypothesis by an experiment or an observational study
 - 5.1 Identifying the variable(s) of interest
 - 5.2 Choosing an appropriate design for the study
 - 5.3 Collecting the data
 - 5.4 Summarizing the data
 - 5.5 Analyzing the data
- Creating a conclusion with data gathered in the experiment/study, or forming a revised/new hypothesis and repeating the process

An Example Project Formulation

- Assess the public's perception of the city's bus system
- Identify variables that can increase the number of people using buses
 - 2.1 Cleanliness, proximity & frequency of service, on-time arrival, cost
 - 2.2 Choose Likert scale
- Sample survey or controlled experiment?
 - 3.1 If survey, choose covariates: age, financial status, and others
 - 3.2 If experiment, decide on variable to vary (regular vs. reduced price)

15 / 16

Science is ... Measurements

- Measuring a few numbers underlies many of the most expensive projects in science
 - Particle Physics is devoted to finding masses and changes of a small number of elementary particles
 - The GENOME project aimed to find a long sequence composed of four letters, which one can think as a single very large number in base 4
 - Government agencies like to fund projects of this type for the simple reason that the success of the project is almost guaranteed and there is specific deliverable!
- Measuring even a single number is more difficult than it seems
 - Random errors
 - Systematic errors