3-Link Robot Arm: Design Explained

The Concept

This 3-link robot arm design represents a classic mechanical system combining stability, articulation, and precise object manipulation. The robot features a sturdy base, three identical links connected by rotational joints, and a specialized end effector for gripping objects.

Key Components

Base

- Design: Square base (200×200×50mm) for maximum stability
- Evolution: Initially designed as a circular platform but changed to square for better balance
- Implementation: Centered at origin with dark gray coloring for visual grounding

Links

- Design: Three identical links (40×40×180mm) forming the arm's reach
- Evolution: Originally varied in length, standardized to simplify kinematics
- Implementation: Red coloring for high visibility during operation

Joints

- Design: Four rotational joints with Y-axis rotation (25mm radius)
- Evolution: Increased from 20mm to 25mm radius after stress testing

• Implementation: Yellow cylinders marking each articulation point

End Effector

- Design: Specialized gripper with central channel and sliding mechanisms
- Evolution: Most complex component, evolved from simple gripper to multi-feature design
- Implementation: Orange coloring with ergonomic cutout for improved handling

Code Implementation Highlights

The robot is built programmatically using FreeCAD's Python API with these key approaches:

1. Parametric Design

: All dimensions defined as variables for easy modification

python

BASE_WIDTH = 200 BASE_LENGTH = 200 BASE_HEIGHT = 50

LINK_WIDTH = 40 LINK_DEPTH = 40 LINK1_HEIGHT = 180

2. Cumulative Positioning

: Each component positioned based on previous elements

python

joint2_pos = Base.Vector(0, 0, BASE_HEIGHT + JOINT_HEIGHT/2 + LINK1_HEIGHT + JOINT_HEIGHT/2 + LINK2_HEIGHT)

3. Complex Geometry

: End effector created using boolean operations

python

ee_with_channel = ee_base.cut(channel)
ee_shape = ee_temp.cut(cutout_cyl)

4. Component Organization

: Logical grouping for easier manipulation

python

robot_group = doc.addObject("App::DocumentObjectGroup", "Robot")
robot_group.addObject(base_obj)
robot_group.addObject(joint0)

Design Iterations

Base Evolution

- 1. Circular

 Square design for stability
- 2. Height increased from 30mm to 50mm after balance testing

Link System Refinement

- 1. Variable lengths 🛮 Uniform 180mm for manufacturing simplicity
- 2. Cross-section optimized to 40×40mm for strength-to-weight ratio

Joint Improvements

- 1. Z-axis

 Y-axis rotation for better movement patterns
- 2. Radius increased for improved structural integrity

End Effector Development

- 1. Simple block

 Channel design

 Rail system

 Dual grippers
- 2. Added ergonomic cutout for improved object handling

Technical Challenges Solved

- 1. Weight Distribution: Base dimensions increased to improve stability
- 2. Positioning Precision: Implemented cumulative height calculations
- 3. Complex Geometry
 - : Used boolean operations with error handling

```
try:
    ee_shape = ee_temp.cut(cutout_cyl)
    except:
    ee_shape = ee_base # Fallback option
```

Future Directions

The design provides a foundation for enhancements including:

- Dynamic joint control for posing
- Inverse kinematics for precise positioning
- Material properties for physical simulation
- Animation capabilities for movement demonstration

This 3-link robot arm successfully balances form and function through thoughtful design choices and efficient implementation, creating a versatile platform suitable for educational purposes and practical applications.