Name :	
Roll No. :	
Invigilato	r's Signature :
	CS/B.TECH(CSE)/SEM-4/CS-401/2010 2010
FORM	IAL LANGUAGE AND AUTOMATA THEORY
Time Alla	otted: 3 Hours Full Marks ? 70
	The figures in the margin indicate full marks.
Candid	ates are required to give their answers in their own words as far as practicable.
	GROUP - A
	(Multiple Choice Type Questions)
1. Cho	pose the correct alternatives for the following:
	$10\times1=10$
i)	The production grammar $\{S \rightarrow aSbb, S \rightarrow abb\}$ is
	a) type-3 grammar b) type-2 grammar
	c) type-1 grammar d) type-0 grammar.
ii)	The loop-free testing graph indicates that
	a) the machine has finite memory
	b) the machine has non-finite memory
	c) the machine has finite states
	d) the machine has non-finite states.
4001	[Turn over

- iii) A shift register is a
 - a) Mealy M/c
- b) Moore M/c
- c) Turing M/c
- d) All of these.
- tv) Consider the following regular expression:

R = (ab + abb) *bbab.

Which of the following is not in the set denoted by R?

a) ababab

b) ababbabbab

c) abbbab

- d) abbabbbab.
- v) Which of the following is correct?
 - a) Language can be derived from the FA
 - b) Regular expressions can be derived from the FA
 - c) FA can be derived from the language
 - d) Both (a) & (b).
- vi) The reduced grammar of $S \rightarrow AB \mid a, A \rightarrow a$ is
 - a) $S \rightarrow a$

b) $S \rightarrow a \mid A$

 $A \rightarrow a$

 $A \rightarrow a$

c) $S \rightarrow a$

- d) $S \rightarrow aa$.
- vii) Which of the following grammars generates strings with any number of 1's?
 - a) $S \rightarrow 1A, A \rightarrow \varepsilon$
- b) $S \rightarrow 1S, S \rightarrow \varepsilon$
- c) $S \rightarrow S1, S \rightarrow \varepsilon$
- d) (b) & (c).

- viii) Input sequence of an information lossless machine can be determined from the knowledge of
 - a) only output sequence
 - b) output sequence and initial state
 - c) output sequence, initial state and final state
 - d) initial state.
- ix) Context Free Grammar can be recognized by
 - a) finite state automata
 - b) 2-way linear bounded automata
 - c) push-down automata
 - d) both (b) & (c).
- x) Which of the following statements is wrong?
 - a) A turing machine cannot solve halting problem.
 - b) Set of recursively enumerable languages is closed under union.
 - c) A finite state machine with 3/stacks is more powerful than finite state machine with 2 stacks.
 - d) Context sensitive grammar can be recognized by a linearly bounded memory machine.

[Turn over

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

- 2. a) State the pumping lemma for regular language. 2
 - b) Using pumping lemma prove that the set $L = \{0^i 1^i | i \ge 1\}$ is not regular.
- 3. Draw the transition diagram of a finite state automaton that accepts all strings over { 0, 1 }
 - a) having odd number 0f 0's
 - b) having even number of 0's and even number of 1's.

 $2\frac{1}{2} + 2\frac{1}{2}$

4. Convert the following context free grammar into an equivalent grammar in CNF:

 $S \rightarrow aAbB$

 $A \rightarrow abAB / aAA / a$

 $B \rightarrow bBaA / bBB / b$.

- 5. State and discuss Myhill-Nerode's theorem.
- 6. Construct a regular grammar G generating the regular set represented by

$$P = a*b(a+b)*.$$

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) State the difference between DFA and NFA.
 - b) Design an NFA which accepts set of all binary strings containing 1100 or 1010 as substrings.
 - c) What is Regular language?
 - d) Find Regular expressions over $\Sigma = \{a, b\}$ for the languages defined as follows:
 - i) $L1 = \{ a^m b^m : m > 0 \}$
 - ii) $L2 = \{ a^{2n} b^{2m+1} \mid n \ge 0, m n \ge 0 \}$
 - e) Find the Regular expression for the following transition graph:

4001

5

[Turn over

8. a) Define pushdown automata.

2

- b) Construct a PDA accepting the set of all strings over {a, b} with equal number of a's and b's. 5
- c) What are the nonempty transitions in an NPDA? 2
- d) Let G be a grammar $s \to 0B \mid 1A, A \to 0 \mid 0S \mid 1AA$, $B \to 1 \mid 1S \mid 0BB$. For the string 00110101, find
 - i) leftmost derivation
 - ii) rightmost derivation
 - iii) derivation tree.

2 + 2 + 2

9. a) Construct the minimum state automata equivalent to given automata M defined below:

states	E a	b
$\rightarrow q_0$	q_5	q_1
q_1	q_2	q_6
*q2	q_2	q_0
q_4	q_5	q_7
q_{5}	q_6	q_2
q_6	q_4	q_6
q_7	q_2	q_6

(* q_2 indicates that q_2 is the final state)

b) Convert the following NFA to DFA.

5

- c) Prove that CFLs are not closed under intersection and complement operation.
- 10. a) What is information lossless machine?

3

b) Consider the machine shown in the following table:

Present State	Next State		
	X = 0	X = 1	
Α	A, 1	C, 1	
В	E, 0	B, 1	
C	D, 0	A, 0	
. D	C, 0	В, 0	
E	B, 1	`A, 0	

Is this machine information lossless of finite order ? If yes, find the order μ . 5

c) Design a 2-input 2-output Mealy machine, which takes as input a binary stream and generates on output of 1 only when a sequence of the pattern 01011 is found in the input stream. Design should be clearly justified. 7

4001

7

[Turn over

11. a) Consider the following machine:

PS	NS			
	I ₁	I_2	I_3	I_4
Α	-	_	E, 1	-
В	C, 0	A, 1	В, 0	e -
С	C, 0	D, 1		A, 0
D		E, 1	В, -	_
E,	В, 0		C, -	В, 0

- i) Draw the merger graph.
- ii) Draw the merger table.
- iii) Draw the compatibility graph.
- iv) Find the minimal closed covering with justification.

b) Consider the machine given below:

PS	NS			
	<i>X</i> = 0	X = 1	Z	
A :	D	G	0	
В	С	E	0	
c.	H	0	
D	F	F	0	
E	В	В	0	
F	G	D	0	
G	A	В	0	
H (1987)	E	c /	1	

Derive the closed partitions. Construct a π -lattice for it.