Capítulo 5

Integração numérica

Neste capítulo iniciamos a aplicação da linguagem Python para implementar algoritmos numéricos que resolvem integrais. Abordaremos os seguintes métodos numéricos: método do retângulo, método do ponto central, método trapezoidal, método de Simpson e o método de Monte Carlos.

5.1 Métodos de Integração Numérica

Existem vários métodos de Integração numérica. Estes métodos têm na estrutura de sua definição a ideia básica de interpretação geométrica da integral analítica a qual representa a área sob a curva no intervalo considerado. O método mais simples consiste em dividir o intervalo em espaços iguais, gerando pequenos retângulos. A ideia é então somar a área de todos os retângulos gerados, assim a soma dessas áreas irá se aproximar da área analítica quanto menor for o espaçamento entre os retângulos. Numa função qualquer, a ideia do retângulo pode superestimar o valor da área da função, quando o retângulo passa por cima da função, ou pode subestimar, quando o retângulo passa por baixo da função (ver Figura 5.1). Neste livro vamos abordar os seguintes métodos numéricos, cada um com implementações que visam eliminar o erro por superestimação ou subestimação.

Método do retângulo

$$I(f) = \int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{N} f(x_{i})$$

Método do ponto central

Figura 5.1 – Área do retângulo acima da curva: (b - a)f(b) superestimando a área (figura à esquerda). Área retângulo abaixo da curva (b - a)f(a) subestimando a área. A parte hachurada representa o quanto da área é superestimada ou subestimada, respectivamente, com a aproximação retangular.

Método trapezoidal simples

$$I(f) = \int_{a}^{b} f(x)dx \approx \frac{[f(a) + f(b)]}{2}(b - a)$$

Método trapezoidal composto

$$I(f) = \int_{a}^{b} f(x)dx \approx \frac{h}{2} [f(a) + f(b)] + h \sum_{i=1}^{N} f(x_i)$$

Método de Simpson 1/3

$$I(f) = \int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(a) + 4 \sum_{i}^{N} f\left(x + \frac{h}{2}\right) + f(b) \right]$$

• Método de Simpson 1/3 composto

$$I(f) = \int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(a) + 4 \sum_{i=1}^{n/2} f(a + (2i - 1)h) + 2 \sum_{i=1}^{n/2 - 1} f(a + 2ih) + f(b) \right]$$

O número de subintervalo (n) no intervalo [a, b] deve ser um número par.

5.1.1 O método do Retângulo

Como o nome indica, o método consiste em aproximar a área embaixo da curva, ou seja, a integral no intervalo, pela área do retângulo formado pela largura do intervalo e o valor da função, considerada constante durante todo o intervalo, sendo assim a altura do retângulo. Considere a integral no intervalo [a, b], a integral aproximada da função **f** (x) neste intervalo é dada por:

$$I(f) = \int_{a}^{b} f(a)dx \approx f(a)(b-a) = hf(a)$$

onde h = b-a é o espaçamento ou subintervalo discreto que separa os pontos \mathbf{a} e \mathbf{b} , ver Figura 5.2. Podemos considerar ainda o valor da função no ponto final **b**, a integral é então calculada por:

$$I(f) = \int_a^b f(b)dx \approx f(b)(b-a) = hf(b)$$

No primeiro caso, utilizando-se o valor da função no primeiro ponto f (a) temos que o valor da área sob a curva é subestimado, pois, a área do retângulo formado é menor que o valor da área que queremos. No segundo caso, utilizando-se o valor da função no segundo ponto f (b) o valor da área é superestimado, pois, neste caso a área do retângulo é maior que a área abaixo da curva. Você logo teria uma solução razoável, utilizar o valor médio da função entre a e b, ou seja, f ((a+b) / 2), esta solução é feita no método do ponto central, dado pela equação:

$$I(f) = \int_{a}^{b} f(x)dx \approx h \sum_{i=1}^{N} f\left(\frac{a+b}{2}\right)$$

Figura 5.2 – Método do retângulo, a aproximação considera a área embaixo da curva dada pela área do retângulo de largura (b - a) e altura f (a) ou f (b).

5.1.2 O método do trapézio

Vamos considerar o cálculo da integral

$$\int_a^b f(x)dx.$$

O método considera o uso de \mathbf{f} (x) em valores de x igualmente espaçados, passo h. São utilizados N pontos x_i (i = 1, ..., N) no intervalo [a, b], incluindo os pontos extremos, ou seja, há N-1 intervalos de largura h.

$$h = \frac{b - a}{N - 1}$$

$$x_i = a + (i-1)h, \quad i = 1,...,N.$$

Como começamos nossa contagem de 1, o método considera **um número ímpar de pontos** N. Na sequência, vamos utilizar a notação simplificada $\mathbf{f}_i = \mathbf{f}(\mathbf{x}_i)$.

A ideia básica é considerar a aproximação da curva em cada intervalo como a área de um trapézio de largura h. A área de um único trapézio é

$$A = \frac{1}{2}(x_{i+1} - x_i)(f_{i+1} + f_i) = \frac{h(f_{i+1} + f_i)}{2}$$

A integral no intervalo é dada pela soma das áreas dos trapézios,

$$\int_{a}^{b} f(x)dx \approx A_{1} + A_{2} + \dots + A_{N-1}.$$

Para pontos igualmente espaçados, a equação geral da integral será

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} f_{1} + h f_{2} + h f_{3} + \dots + h f_{N-1} + \frac{h}{2} f_{N}.$$

Note que como cada ponto no intervalo é contado duas vezes, eles possuem um peso h, enquanto os pontos extremos são contados uma única vez, eles têm peso h/2.

O método pode então ser escrito na forma simplificada e sucinta como:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} (f_1 + f_N) + h \sum_{i=2}^{N-1} f_i.$$

onde $\mathbf{f}_1 = \mathbf{f}$ (a) e $\mathbf{f}_N = \mathbf{f}$ (b), ou seja, os valores extremos da função no intervalo.

Lembrando mais uma vez que N deve ser um valor ímpar. O valor de \mathbf{f}_i é calculado para os pontos $x_i = a + (i - 1)h$, onde i varia de i = 2 a i = N-1.

Esta integral também pode ser reescrita para integração numérica na seguinte forma alternativa:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2}(f(a) + f(b)) + h \sum_{i=2}^{N-1} f_{i}.$$

Sendo agora a = a + ih de tal forma que $f_i = f(a + ih)$, e o valor de i = 1, 2, ..., N-1. As duas formas são equivalentes, sendo apenas escritas de forma diferente na recorrência.

Exemplo: Calcular o valor numérico da integral da função: (3/2 sen³ (x)). O valor desta integral pode ser determinado analiticamente tendo um valor igual a 2. Queremos determinar numericamente:

$$\int_{0}^{\pi} \frac{3}{2} sen^{3}(x) dx$$

Solução: Vamos utilizar o método do trapézio composto para solucionar este problema. O algoritmo básico é dado a seguir:

- 1. Definir a função a ser integrada f (x)
- 2. Entrar com os limites da integração a e b
- 3. Entrar com o número ímpar de pontos N
- 4. Definir a função trapézio (valor inicial, valor final, N) Início da função

Calcular o valor do passo

$$h = \frac{b - a}{N - 1}$$

Calcular

$$soma = (f(a) + f(b))/2$$

Faça para i = 2 até i = N-1

$$soma = soma + f(a+(i-1)h)$$

Retornar o valor da soma Fim da função

5. Imprimir o valor retornado da função trapézio.

O algoritimo anterior e implementado no programa integra_trapezio.py a seguir.

```
#integra_trapezio.py
'''Metodo do trapezio para integração
Programador: Elinei Santos
Data da ultima revisão:03/09/2017'''
from numpy import *
def funcao(x):
    return (3./2)*pow(sin(x),3.0)
def trapezio(a, b, N):
    h = (b-a)/(N-1) #passo da integração
```

Podemos verificar a dependência da aproximação numérica com o argumento do valor do número de subintervalos N. Reutilizamos o programa anterior e implementamos o programa trapezioerro.py que chama a função trapézio em um laço for variando o número de intervalos N.

```
#trapezio_erro.py
^{\prime\prime} Determina o erro no etodo do trapezio para integração
Programador: Elinei Santos
Data da ultima revisão:03/09/2017'''
from numpy import *
def funcao(x):
    return (3./2) *pow(sin(x), 3.0)
def trapezio(a, b, N):
    h = (b-a)/(N-1) #passo da integração
    soma = (funcao(a)+funcao(b))/2 # valores extremos da funcao
    for i in range(2, N-1):
        soma += funcao(a+(i-1)*h)
    return h*soma
a = 0.
b = pi
for N in 5, 11, 51, 101, 501, 1001: #Numeros impar de pontos
    aprox = trapezio(a, b, N)
    print('N = %3d, valor aprox = %18.15f, erro = %9.2E '%\
          (N, aprox, 2-aprox))
```

O programa trapezio erro.py gera o seguinte resultado:

```
N = 5, valor_aprox = 1.594617520548519, erro = 4.05E-01
N = 11, valor_aprox = 1.986343825027498, erro = 1.37E-02
N = 51, valor_aprox = 1.999977057928317, erro = 2.29E-05
N = 101, valor_aprox = 1.999998563942519, erro = 1.44E-06
N = 501, valor_aprox = 1.999999997701192, erro = 2.30E-09
N = 1001, valor aprox = 1.99999999856323, erro = 1.44E-10
```

podemos notar que a aproximação melhora e o erro diminui à medida que o valor de N aumenta.

Exemplo: Uma partícula de massa m = 0.5kg iniciando seu movimento com uma velocidade inicial de 2m/s e submetida a uma força dada por:

$$F(t) = F_0 e^{-\gamma t} \cos(\omega t + \theta)$$

em que F_0 =1.0 N é a amplitude da força, θ = π /6 é o ângulo de fase, ω = 1,2rad/s é a frequência angular e Υ = 0,2 é um fator de amortecimento. A velocidade da partícula em um intervalo de tempo pode ser determinada a partir da integral:

$$v = v_0 + \frac{F_0}{m} \int_0^t e^{-\gamma t} cos(\omega t + \theta) dt$$

Utilizando o método do trapézio para resolver integrais numericamente determine 20 valores da velocidade entre os tempos t = 0 e t = 20 s. Faça um gráfico t x v.

Solução: uma vez implementado o método numérico, só temos que utilizá-lo para calcular a integral. Vamos dividir o tempo de 20s em 40 valores começando de t=0 e acrescentando 0,5s cada vez que realizarmos a integração. Ou seja, criamos um processo de recorrência onde cada nova velocidade depende do cálculo numérico da velocidade anterior:

$$v_{i+1} = v_i + \frac{F_0}{m} \int_{t_i}^{t_{i+1}} e^{-\gamma t} cos(\omega t + \theta) dt$$

o intervalo de integração será feito em t_{i+1} - t_i =0,5s com N = 11 passos. Utilizamos poucos passos, pois o intervalo de tempo é pequeno para cada integração. O programa $velocidade_trapezio.py$ implementa esta ideia. No gráfico mostrado na Figura 5.3 mostramos o comportamento da velocidade calculada numericamente em cada tempo.

```
#velocidade trapezio.py
'''Metodo do trapezio para integração
Programador: Elinei Santos
Data da ultima revisão:03/09/2017'''
from numpy import *
import matplotlib.pyplot as plt
def funcao(t):
    return ((1./0.5) \times \exp(-0.2 \times t) \times \cos(1.2 \times t + pi/6))
def trapezio(a, b, N):
    h = (b-a)/(N-1) #passo da integração
    soma = (funcao(a)+funcao(b))/2 # valores extremos da funcao
    for i in range(2, N-1):
        soma += funcao(a+(i-1)*h)
    return h*soma
a = 0.
b = pi
N = 11 #numero impar de pontos
van = 2.0
tan = 0.
for i in arange(40):
    t = tan + 0.5
    v = van + trapezio(tan, t, N)
    print(v)
    van = v
    tan = t
    print(t)
    plt.scatter(t,v, color='r',s=10)
```

```
plt.xlabel('tempo(s)', fontsize=15)
plt.ylabel('Velocidade (m/s)', fontsize=15)
plt.show()
```


Figura 5.3 – Velocidade em função do tempo para uma partícula com força dependente do tempo. Cálculo da integral pelo método do trapézio.

5.1.3 Cálculo do período do pêndulo simples para grandes amplitudes

Quando linearizamos a equação do pêndulo simples, o que implica que sua análise só vale para pequenas oscilações, mostramos que o mesmo tem movimento periódico com períodos dado por:

$$T_0 = 2\pi \sqrt{\frac{l}{g}},$$

onde 1 é o comprimento do pêndulo e g a aceleração da gravidade.

Queremos, no entanto, determinar o período do pêndulo simples considerando grandes oscilações. Neste caso, não podemos linearizar a equação de movimento e lançamos mão do método da conservação da energia mecânica (Energia cinética K mais a energia pontencial V), dada por:

$$E = K + V = \frac{1}{2}I\dot{\theta}^2 - mglcos\theta = \frac{1}{2}ml^2\dot{\theta}^2 - mglcos\theta,$$

onde m é a massa do pêndulo. Vamos considerar que iniciamos o movimento do pêndulo a partir de um ângulo inicial máximo $\theta_{_{m}}$. Sendo a energia mecânica conservada, temos então

$$\frac{1}{2}ml^2\dot{\theta}^2 - mglcos\theta = -mglcos\ \theta_{\rm m},$$

onde $\boldsymbol{\theta}_{\mathrm{m}}$ é o ângulo máximo. Explicitando o valor da velocidade angular w, temos

$$\omega^2 = \frac{2g}{1}(\cos\theta - \cos\theta_{\rm m}),$$

Sendo $\omega = d\theta/dt$, temos

$$\left(\frac{d\theta}{dt}\right)^2 = \frac{2g}{1}(\cos\theta - \cos\theta_{\rm m}).$$

Isolando o diferencial do tempo,

$$dt = \frac{d\theta}{\sqrt{\frac{2g}{1}(\cos\theta - \cos\theta_{\rm m})}}.$$

Para determinar o período do movimento, devemos integrar a equação em dt. Por simetria, podemos integrar de 0 a $\theta_{\rm m}$ e multiplicar por quatro, pois, num período completo o pêndulo oscila de $\theta=\theta_{\rm m}$ a $\theta=-\theta_{\rm m}$ e retorna a $\theta=\theta_{\rm m}$.

Período do pêndulo simples

$$T = 4\sqrt{\frac{1}{2g}} \int_0^{\theta_{\rm m}} \frac{d\theta}{\sqrt{\cos\theta - \cos\theta_{\rm m}}}.$$

Utilizamos a identidade trigonométrica: $\cos 2q = 1 - 2 sen^2 q$, podemos reescrever a equação, obtendo

$$T = 2\sqrt{\frac{1}{g}} \int_0^{\theta_m} \frac{d\theta}{\sqrt{sen^2(\theta_m/2) - sen^2(\theta/2)}}.$$

Fazendo a mudança de variável:

$$senz = \frac{sen(\theta/2)}{sen(\theta_m/2)}, \quad x = sen(\theta_m/2); \quad sen(\frac{\theta}{2}) = xsenz$$

Temos então:

$$\cos z dz = \frac{\cos(\theta/2)}{2sen(\theta-2)} d\theta = \frac{\sqrt{1-x^2sen^2z}}{2x} d\theta.$$

Inserindo essas variáveis na equação do período, obtemos:

$$T = 2\sqrt{\frac{l}{g}} \int_{0}^{\theta_{m}} \frac{d\theta}{\sqrt{sen^{2}(\theta_{m}/2) - sen^{2}(\theta/2)}} = 2\sqrt{\frac{l}{g}} \int_{0}^{\theta_{m}} \frac{2x\cos zdz}{\sqrt{1 - x^{2}sen^{2}z}} \frac{1}{\sqrt{x^{2} - x^{2}sen^{2}z}}$$

Simplificando, temos:

$$T = 4\sqrt{\frac{1}{g}} \int_0^{\theta_{\rm m}} \frac{dz}{\sqrt{1 - x^2 sen^2 z}}.$$

Para uma oscilação do pêndulo fazendo 180° ($\theta_{\rm m}$ = π /2) podemos reescrever o período em função da integral elíptica de primeira espécie, dada por:

$$K(x) = \int_0^{\pi/2} \frac{dz}{\sqrt{1 - x^2 sen^2 z}}$$
 (5.1)

o período do pêndulo pode ser escrito como

$$T = 4\sqrt{\frac{l}{g}}K(x)$$
 ou $T = \frac{2T_0}{\pi}K(x)$

Temos que integrar numericamente a Integral 5.1, onde $x = sen(\theta_m/2)$. O programa $periodo_trapezio.py$ determina o período para um ângulo máximo de 90° graus utilizando o método do trapézio.

#periodo_trapezio.py

'''Calculo do periodo do pendulo com integracao numerica

da integral eliptica peo método do trapézio

Programador: Elinei Santos

```
Data da ultima revisão:03/09/2017'''
from numpy import *
a = 0.
b = pi/2.
1 = 1.0
q = 9.8
N = 1701 #numero impar de pontos
def eliptica(z, te =b/2.):
    x = \sin(te)
    return 1./sqrt(1-(x*sin(z))**2)
def trapezio(a, b, N):
    h = (b-a)/(N-1) #passo da integração
    soma = (eliptica(a)+eliptica(b))/2 # valores extremos da funcao
    for i in range(2, N-1):
        soma += eliptica(a+(i-1)*h)
    return h*soma
periodo =4.* sqrt(1/g)*trapezio(a,b,N)
print('O periodo do pendulo e = %.4f s\n' %periodo)
```

Para um pêndulo de comprimento L = 1,0 m, temos que o programa fornece:

O periodo do pendulo e = 2.3674 s

Método de Simpson composto

Vamos implementar o método de Simpson, também denominado método de Simpson 1/3 composto. Consideramos os subintervalos igualmente espaçados e o número de subintervalos dentro do domínio de integração [a, b] deve ser um número par. O método é reescrito a seguir:

$$I(\mathbf{f}) = \int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(a) + 4 \sum_{i=1}^{n/2} f(a + (2i - 1)h) + 2 \sum_{i=1}^{n/2 - 1} f(a + 2ih) + f(b) \right]$$

Este método é implementado em Python no programa integra_Simpson.py a sequir.

Exemplo: A fórmula de Debye para a determinação do calor específico de um sólido é dada por:

$$C_{\rm V} = 9Nk_B \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \frac{x^4 e^{x}}{(e^{x} - 1)^2} dx,$$

onde N é o número de átomos, k_B é a constante de Boltzmann, θ_D é a temperatura de Debye. Faça um programa em Python que imprima uma tabela com 20 valores de temperatura T começando em T=0° aumentando de vinte em vinte graus e os valores de $C_V/3Nk_B$ para o cobre (θ_D = 309 K). Em seguida, faça um gráfico de $C_V/3Nk_B$ por T/θ_D para estes 20 valores calculados. Utilize o método de Simpson para o cálculo numérico da integral. O programa $integra_Simpson.py$ a seguir implementa o método de Simpson para resolver este problema. Na Figura 5.4 mostramos o resultado gerado pelo programa.

Nota: Vale destacar nos dois programas a seguir nos comandos for, por exemplo: for i range(1, int(n/2)+1), nós fazemos a conversão explícita para inteiro da divisão de n/2, esta é uma diferença crucial entre Python 3 e Python 2, pois na versão atual Python 3 a divisão de dois inteiros resulta sempre num número de ponto flutuante. Assim, se não fizéssemos esta conversão explícita o Python acusaria erro, uma vez que o comando range exige um intervalo de números inteiros, não números em ponto flutuante que resultaria de n/2.

```
#integra_Simpson.py

'''Programa que determina o calor especifico de um solido pela formula de Debye. O calculo da integral é feito pelo método de Simpson composto 
Programador: Elinei Santos 
Ultima revisão: 06/09/2017''' 
from numpy import * 
import matplotlib.pyplot as plt 
def g(x):
```

```
return x**4*exp(x)/(exp(x)-1.)**2
def integra Simpson(f, a, b, n= 300):
    h = (b-a)/float(n)
    soma1 = 0
    for i in range(1, int(n/2)+1):
        soma1 += f(a + (2*i-1)*h)
    soma2 = 0
    for i in range(1, int(n/2)):
        soma2 += f(a + 2*i*h)
    somageral = (b-a)/(3.*n)*(f(a)+f(b)+4.*soma1+2.*soma2)
    return somageral
a =0.001 #valor nao nulo para nao gerar indeterminacao
b = 309
Td = 309.
T=1
for k in range (1,21):
    b = 309./T
    Cv = 3.*((T/309.)**3)*integra_Simpson(g,a,b)
    print('T = %.2f \ K \ Cv/3Nk = %.3f ' %(T/Td,Cv))
    plt.scatter(T/Td,Cv, color='black')
    T +=20.
plt.xlabel(r'$T/T_\theta$')
plt.ylabel(r'$C V/3Nk B$')
plt.show()
A Tabela e o gráfico (Figura 5.4) são mostrados na sequência.
T = 0.00 \text{ K Cv/3Nk} = 0.000
T = 0.07 \text{ K Cv/3Nk} = 0.024
T = 0.13 \text{ K Cv/3Nk} = 0.160
T = 0.20 \text{ K Cv/3Nk} = 0.361
T = 0.26 \text{ K Cv}/3\text{Nk} = 0.531
T = 0.33 \text{ K Cv}/3Nk = 0.653
T = 0.39 \text{ K Cv/3Nk} = 0.737
T = 0.46 \text{ K Cv/3Nk} = 0.796
T = 0.52 \text{ K Cv/3Nk} = 0.838
```

```
T = 0.59 K Cv/3Nk = 0.868

T = 0.65 K Cv/3Nk = 0.891

T = 0.72 K Cv/3Nk = 0.909

T = 0.78 K Cv/3Nk = 0.922

T = 0.84 K Cv/3Nk = 0.933

T = 0.91 K Cv/3Nk = 0.942

T = 0.97 K Cv/3Nk = 0.949

T = 1.04 K Cv/3Nk = 0.955

T = 1.10 K Cv/3Nk = 0.960

T = 1.17 K Cv/3Nk = 0.964

T = 1.23 K Cv/3Nk = 0.968
```


Figura 5.4 — Calor específico do cobre em função da temperatura (T/T_□). Integral calculada pelo método de Simpson composto.

Exemplo: A espiral de Euler, espiral de Cornu ou clotoide é encontrada na teoria de difração de Fresnel e é gerada a partir da curva paramétrica formada a partir do cálculo das seguintes integrais:

$$S(w) = \int_0^w sen\left(\frac{\pi x^2}{2}\right) dx$$

$$C(w) = \int_0^w \cos\left(\frac{\pi x^2}{2}\right) dx$$

Vamos utilizar o método de Simpson para calcular estas integrais e gerar a espiral de C(w) versus S(w) no intervalo de -10 < w < 10. O programa integra_fresnel.py calcula estas integrais e gera o gráfico da espiral mostrado na Figura 5.5

```
#integra fresnel.py
"'Programa que determina a espiral de Euler ou de Cornu
O calculo da integral é feito pelo
método de Simpson composto
Programador: Elinei Santos
Ultima revisão: 06/09/2017'''
from numpy import *
import matplotlib.pyplot as plt
def c(x):
    return cos(0.5*pi*x**2)
def s(x):
    return sin(0.5*pi*x**2)
def integra Simpson(f, a, b, n= 400): #n - numero para de pontos
   h = (b-a)/float(n)
   soma1 = 0
    for i in range(1, int(n/2)+1):
       soma1 += f(a + (2*i-1)*h)
    soma2 = 0
    for i in range(1, int(n/2)):
        soma2 += f(a + 2*i*h)
    somageral = (b-a)/(3.*n)*(f(a)+f(b)+4.*soma1+2.*soma2)
    return somageral
a =0.0 #valor inicial da integral
b = -10.
N = 1000
dx = fabs(2*b)/N
cx = []
sy = []
for k in range(1,N):
    C =integra Simpson(c,a,b) #usa o valor default n=400 do metodo
```

```
S =integra_Simpson(s,a,b)
    cx.append(C)
    sy.append(S)
    #plt.scatter(S,C,color='black',s=2) #para pontos individuais
calculados
    b += dx
plt.plot(cx,sy,'r')
plt.xlabel('C(x)', fontsize=15)
plt.ylabel('S(x)', fontsize=15)
plt.show()
```


Figura 5.5 – Clotoide ou espiral de Euler. Cálculo das integrais pelo método de Simpson.

5.2 Integral utilizando o método de Monte Carlo

5.2.1 Método de Monte Carlo para uma dimensão

Considere uma região retangular de altura h e largura (b-a), conforme a Figura 5.6 a seguir. Esta região é separada por uma função contínua f(x). Vamos supor que geremos N pares de números aleatórios (x_i, y_i) , onde os valores de x_i devem estar no intervalo [a, b] ou seja: $a \le x_i \le b$ e y_i deve estar no intervalo [0,h] ($0 \le y_i \le h$). A fração n dos pontos (x_i, y_i) que satisfazem a relação: $y_i \le f(x_i)$ é uma estimativa da área abaixo de curva f(x) (ou seja a integral de f(x)) em relação a região da área retangular. Em outras palavras,

a área estimada abaixo de f(x) é dada por:

$$E_n = \frac{n}{N}A,$$

Onde N é o número de pontos aleatórios total, n é o número de pontos que estão debaixo da curva f(x) e A é a área da região retangular (h(b-a)). Um outro exemplo: imagine que isto fosse uma figura de tiro ao alvo que você atirasse N balas e contasse quantas balas n atingem a figura abaixo da curva f(x). A área abaixo da curva é aproximadamente a fração de balas (n/N) que atingem a figura abaixo de f(x) multiplicada pela área da figura A. Esta é a ideia central do método de Monte Carlo.

Figura 5.6 - Integral de f(x) é igual a área embaixo da curva f(x).

Formalmente o método de Monte Carlo para integração numérica é baseado no Teorema do valor médio do cálculo elementar:

$$I = \int_{a}^{b} f(x)dx = (b - a)\langle f \rangle$$

O teorema diz que a integral de uma função contínua f(x) entre o intervalo [a, b] (igual a área abaixo da curva) é igual ao intervalo (b-a) multiplicado pelo valor médio da função neste intervalo. O método de Monte Carlo escolhe a sequência de x, de N números uniformemente aleatórios ao invés de intervalos regulares. Assim, nós determinamos a média amostral no intervalo para esses pontos:

$$\langle f \rangle \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

Obtemos assim a regra para a integração numérica do método:

$$I = \int_a^b f(x)dx = (b-a)\frac{1}{N}\sum_{i=1}^N f(x_i) = (b-a)\langle f \rangle.$$

Onde x_i são números aleatórios uniformemente distribuídos no intervalo: $a \le x_i \le b$ e N é o número total de tentativas. Vale lembrar que para funções em uma dimensão os métodos anteriores são mais precisos e mais rápidos. No método de Monte Carlo para uma dimensão o erro diminui com N^{-1/2}, não é melhor que os métodos anteriores. No entanto para dimensões maiores, o método de Monte Carlo é muito mais preciso que os outros métodos.

Exemplo: Utilizando o método de integração de Monte Carlo elaborar um programa em Python que calcule a integral:

$$I = 4 \int_0^1 \sqrt{1 - x^2} \, dx.$$

Esta integral tem o valor exato igual ao valor de π . Calcule o valor absoluto da diferença entre o valor da integral e o valor de π , ou seja, o erro. Faça o cálculo para 6 valores de n, começando com n = 10 e indo até 10^6 . Em seguida faça um gráfico log x log do erro em função do valor de n.

Solução: Uma possível implementação deste programa é listado a seguir no programa: integ_montecarlolD.py. Na sequência, mostramos na Figura 5.7 o gráfico do erro em função do valor de n, é possível notar que a dependência do erro cai com n^{-1/2}.

```
#integ_montecarlo1D.py
'''Metodo de Monte Carlo para o calculo de integrais
em uma dimensao
Prog: Elinei Santos
Data da ultima revisao: 11/09/2017'''
import random
import numpy as np
import matplotlib.pyplot as plt
from math import sqrt, pi,fabs
```

```
def g(x):
    return sqrt(1.-x**2)
def MCarlo(f, a, b, n):
    soma = 0.
    for i in xrange(n):
        xi = random.uniform(a,b)
        soma += f(xi)
    Integ = (float(b-a)/n)*soma
    return Integ
nc = np.zeros(1000)
E = np.zeros(1000)
n=1
for i in range(6):
    n *= 10
    I = 4.*MCarlo(g, 0., 1., n)
    nc[i] = n
    E[i] = fabs(I - pi)
    print('n = %d Integ=%.5f' %(n,I))
plt.loglog(nc,E,'ko')
plt.xlabel('n', fontsize=15)
plt.ylabel('Erro')
plt.show()
```


Figura 5.7 – Erro versus n da integral numérica calculada com o método de monte carlo. O erro cai com n^{-1/2}.

O valor da integral de acordo com o número de tentativas é mostrado a seguir, onde podemos verificar que o valor numérico da integral se aproxima do valor de pi.

```
n = 10 Integ=2.60535
```

n = 100 Integ=3.29473

n = 1000 Integ=3.10542

n = 10000 Integ= 3.12811

n = 100000 Integ=3.13947

n = 1000000 Integ= 3.14195

5.2.2 Método de Monte Carlo para duas dimensões

Podemos generalizar o método muito facilmente para duas ou mais dimensões, basta coletarmos pontos aleatórios no espaço adequado. No caso bidimensional, por exemplo, temos:

$$\int_a^b fx \int_c^d f(x,y) dy \approx (b-a)(d-c) \frac{1}{N} \sum_{i=1}^N f(x_i,y_i) = (b-a)(d-c) \langle f \rangle.$$

Onde (x_i, y_i) são números aleatórios dentro da área de integração.

5.2.3 Exercícios

1. Estime a integral pelo método do retângulo, trapézio, Simpson e Monte Carlo.

$$\int_0^1 e^{-x^2} dx$$

2. Implemente o método de Monte Carlos para duas variáveis. Determine analiticamente e numericamente o valor da integral:

$$\int_{-1}^{1} \int_{0}^{2} (x^{2} - 2y^{2} + xy^{3}) dx dy$$

3. Utilizando o método de Simpson composto determine o valor da integral:

$$I = \int_0^{30} 200 \left(\frac{y}{5+y} \right) e^{-2y/30} dy$$

4. Determine as seguintes integrais numericamente:

$$I = \int_0^{\pi} 2sen^2 dx \quad e \quad G = \int_0^{\pi} xsen^2 dx$$

5. Usando os métodos: a) do trapézio e b) usando o método de Simpson.