Simetrías del hexágono

Tarea Febrero 23

Juliana Parra Caro

$$V = a, b, c, d, e, f$$

 $E = (a,b), (b,c), (c,d), (d,e), (e,f), (f,a)$

1	a	b	С	d	е	f
2	b	С	d	е	f	a
3	С	d	е	f	a	b
4	d	е	f	a	b	С
5	е	f	a	b	c	d
6	f	a	b	c	d	е
7	f	е	d	c	b	a
8	e	d	c	b	a	f
9	d	c	b	a	f	е
10	c	b	a	f	e	d
11	b	a	f	е	d	С
12	a	f	e	d	С	b

s_0	s_1	s_2	s_3	s_4	s_5	s_6	S_7	s_8	s_9	s_{10}	s_{11}	s_{12}
s_1	s_1	s_2	s_3	s_4	s_5	s_6	S_7	s_8	s_9	s_{10}	s_{11}	s_{12}
s_2	s_2	s_3	s_4	s_5	s_6	s_1	s_{12}	S_7	s_8	s_9	s_{10}	s_{11}
s_3	s_3	s_4	s_5	s_6	s_1	s_2	s_{11}	s_{12}	S_7	s_8	s_9	s_{10}
s_4	s_4	s_5	s_6	s_1	s_2	s_3	s_{10}	s_{11}	s_{12}	S_7	s_8	s_9
S_5	s_5	s_6	s_1	s_2	s_3	s_4	s_9	s_{10}	s_{11}	s_{12}	S_7	s_8
s_6	s_6	s_1	s_2	s_3	s_4	s_5	s_8	s_9	s_{10}	s_{11}	s_{12}	S_7
S_7	S_7	s_8	s_9	s_{10}	s_{11}	s_{12}	s_1	s_2	s_3	s_4	s_5	s_6
s_8	s_8	S_9	s_{10}	s_{11}	s_{12}	S_7	s_6	s_1	s_2	s_3	s_4	s_5
s_9	s_9	s_{10}	s_{11}	s_{12}	S_7	s_8	s_5	s_6	s_1	s_2	s_3	$oxed{s_4}$
s_{10}	s_{10}	s_{11}	s_{12}	S_7	s_8	s_9	s_4	s_5	s_6	s_1	s_2	s_3
s_{11}	s_{11}	s_{12}	S_7	s_8	s_9	s_{10}	s_3	s_4	s_5	s_6	s_1	s_2
s_{12}	s_{12}	S_7	s_8	s_9	s_{10}	s_{11}	s_2	s_3	s_4	s_5	s_6	s_1

$$s_{1} = \begin{pmatrix} a & b & c & d & e & f \\ a & b & c & d & e & f \end{pmatrix}$$

$$s_{2} = \begin{pmatrix} a & b & c & d & e & f \\ b & c & d & e & f & a \end{pmatrix}$$

$$s_{3} = \begin{pmatrix} a & b & c & d & e & f \\ b & c & d & e & f & a \end{pmatrix}$$

$$s_{4} = \begin{pmatrix} a & b & c & d & e & f \\ d & e & f & a & b & c \end{pmatrix}$$

$$s_{5} = \begin{pmatrix} a & b & c & d & e & f \\ d & e & f & a & b & c & d \end{pmatrix}$$

$$s_{6} = \begin{pmatrix} a & b & c & d & e & f \\ e & f & a & b & c & d & e & f \\ e & f & a & b & c & d & e & f \end{pmatrix}$$

$$s_{12} = \begin{pmatrix} a & b & c & d & e & f \\ c & b & a & f & e & d & c \end{pmatrix}$$

 $\mathbf{Identidad} = \mathbf{S}_1$

$$\left(\begin{array}{cccccc} a & b & c & d & e & f \\ a & b & c & d & e & f \end{array}\right) * \left(\begin{array}{ccccccc} a & b & c & d & e & f \\ b & c & d & e & f & a \end{array}\right) = \left(\begin{array}{cccccccc} a & b & c & d & e & f \\ b & c & d & e & f & a \end{array}\right)$$