Topics of the week

- 1. Define Projection, Derive formula for Projection on a subspace, Compute the Projection Matrix.
- 2. Show that when A has independent columns, $A^{T}A$ is invertible and symmetric.
- 3. Define Least Squares solution, derive Normal equations, compute a least squares solution.
- 4. Use Least Squares to fit a line to points (linear regression).

Inner product space is a vector space with well-defined scalar product:

- 1. Symmetry: $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$;
- 2. Linearity: $(a\mathbf{x} + b\mathbf{y}) \cdot \mathbf{z} = a(\mathbf{x} \cdot \mathbf{z}) + b(\mathbf{y} \cdot \mathbf{z})$;
- 3. Positive-definite: $\mathbf{x} \cdot \mathbf{x} \ge 0$ and $\mathbf{x} \cdot \mathbf{x} = 0 \iff \mathbf{x} = 0$.

Note: Not all vector spaces can be equipped with an inner product!

Explanation: Abstractly, a vector space is defined over a field \mathbb{F} , and a lot of fields can't be ordered.

Conjugate transform of $A: V \to W$ is $A^{\top}: W \to V$ such that $Ax \cdot y = x \cdot A^{\top}y$. In matrices: A^{\top} corresponds to the transposed matrix.

Orthogonality Subspaces V and W are orthogonal if $v^{\top}w = 0$ for all $v \in V$ and $w \in W$. **Criterion**: $V \perp W \iff e_i^{\top}g_j = 0$, where $\{e_i\}$ is the basis of V and $\{g_j\}$ is the basis of W.

Subspace intersection of subspaces V and W is $V \cap W = \{v : v \in V, v \in W\}$. **Orthogonal spaces**: $V \perp W \implies V \cap W = \{0\}$, because $v \in V \cap W \implies v \cdot v = 0$.

 $\textbf{Subspace sum} \quad \text{of subspaces V and W is $V+W=\{v+w:v\in V,w\in W\}$} = \operatorname{span}(V\cup W).$

Dimension property $\dim(V+W) + \dim(V\cap W) = \dim V + \dim W$. **Explanation**: Take bases of V and W, and reform them into bases of V+W and $V\cap W$. **Orthogonal spaces**: $\dim(V+W) = \dim V + \dim W$.

Orthogonal complement of V is $V^{\perp} = \{w : w^{\top}v = 0, \forall v \in V\}.$

Interpretation: Union of all orthogonal subspaces of V.

In matrices: $N(A) = R(A)^{\top} \iff \ker A \perp \operatorname{im} A^{\top}$, i.e. $Ax = 0 \iff x \cdot A^{\top}y = Ax \cdot y = 0$ for all y.

Implicit and explicit form Any subspace U can be defined in either of the following ways:

- Explicit form: $U = \{y = Ax : x \in V\} = \text{im } A$, defining y via parametric equation.
- Implicit form: $U = \{y \in V : By = 0\} = \ker B$, defining y via implicit equation.

The basis of U defines A, while the basis of U^{\perp} defines B^{\top} .

- $(V \cap W)^{\perp} = V^{\perp} + W^{\perp}$, union of implicit equations \implies intersection of spaces they define;
- $(V+W)^{\perp} = V^{\perp} \cap W^{\perp}$, intersection of implicit equations \implies span of the union of defined spaces.

Connection between A and $A^{T}A$ $Ax = 0 \iff ||Ax|| = 0 \iff x^{T}(A^{T}A)x = 0$.

Orthogonal projection of a vector v on the subspace S is $s \in S$ s.t. $||v - s|| \to \min$. **Finding projection**: Let im A = S and im $B = S^{\perp}$, then v = Ax + By and s = Az, so

$$\begin{aligned} \|v - Az\|^2 &\to \min \\ \|v\|^2 - 2v \cdot Az + \|Az\|^2 &\to \min \\ (Ax + By) \cdot Az + \|Az\|^2 &\to \min \\ Ax \cdot Az + \|Az\|^2 &\to \min \end{aligned}$$

Thus, z only depends on x, and for v = Ax, the answer is clearly z = x, as ||Ax - Ax|| = 0. We can find x from $A^{\top}v = A^{\top}Ax + A^{\top}By = A^{\top}Ax$, hence $x = (A^{\top}A)^{-1}A^{\top}v$.

Least squares Given n observations (a_i, b_i) , where $b_i \in \mathbb{R}$ and $a_i \in \mathbb{R}^m$, predict $b_i = f(a_i)$.

Linear model: $b_i \approx x^{\top} a_i \implies b \approx Ax \implies ||b - Ax|| \rightarrow \min$.

Fitting a line: Given (x_i, y_i) with $x, y \in \mathbb{R}$, and the model is $y_i = ax_i + b$:

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \approx \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \iff \begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \approx \begin{bmatrix} y \end{bmatrix}$$

Using $x = (A^{\top}A)^{-1}A^{\top}$, we get:

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x^\top x & 1^\top x \\ x^\top 1 & 1^\top 1 \end{bmatrix}^{-1} \begin{bmatrix} x^\top y \\ 1^\top y \end{bmatrix} \iff \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum_i x_i^2 & \sum_i x_i \\ \sum_i x_i & n \end{bmatrix}^{-1} \begin{bmatrix} \sum_i x_i y_i \\ \sum_i y_i \end{bmatrix}$$

Note: If $1^{\top}x = 0$, then $a = \frac{x^{\top}y}{x^{\top}x}$ and $b = \frac{1^{\top}y}{m}$.