

Machine Learning Lecture 1: intro to ML

Radoslav Neychev

Outline

- 1. Introduction to Machine Learning, motivation
- 2. ML thesaurus and notation
- 3. Maximum Likelihood Estimation
- 4. Machine Learning problems overview (selection):
 - a. Classification
 - b. Regression
 - c. Dimensionality reduction
- 5. Naïve Bayes classifier
- 6. k Nearest Neighbours (kNN)

Motivation, historical overview and

current state of ML and Al

Machine Learning applications

- Object detection
- Action classification
- Image captioning
- ...

Machine Learning applications

Machine Learning applications

Data — Knowledge

Long before the ML

Isaac Newton

Johannes Kepler

Long before the ML

Eratosthenes

FALSE

Denote the dataset

23

Some

student

Denote the dataset.											
		Statistics	Python		Native		Target				
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)				
John	22	2 5	4	Brown	English	5	TRUE				
Aahna	17	4	5	Brown	Hindi	4	TRUE				
Emily	25	5	5	Blue	Chinese	5	TRUE				
Michael	27	3	. 4	Green	French	5	TRUE				

3 NA

Esperanto

Observation (or datum, or data point) is one piece of information.

Mativo

Dython

		Statistics	Python		ivative		rarget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

In many cases the observations are supposed to be *i.i.d.*

- independent
- identically distributed

Ctatiation

4

5

5

2

TRUE

TRUE

TRUE

TRUE

FALSE

Fostura (or predictor) represents some special property

reature	701 bi	redictor) i	ehreser	112 201116	e speciai k	property.	
		Statistics	Python		Native		Ta
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(þ
John	22	5	4	Brown	English	5	

4

5

3

3

Aahna

Emily

Some

Michael

student

17

25

27

23

Target (passed)

5 Brown

4 Green

5 Blue

3 NA

Hindi

Chinese

French

Esperanto

These all are features

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

5

TRUE

FALSE

These all are features

27

23

3

3

Michael

Some

student

mese all are realures										
		Statistics	Python		Native		Target			
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)			
John	22	5	4	Brown	English	5	TRUE			
Aahna	17	4	5	Brown	Hindi	4	TRUE			
Emily	25	5	5	Blue	Chinese	5	TRUE			

4 Green

3 NA

French

Esperanto

FALSE

Those all are features

23

3

student

Some

rnese all are reatures											
		Statistics	Python		Native		Target				
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)				
John	22	5	4	Brown	English	5	TRUE				
Aahna	17	4	5	Brown	Hindi	4	TRUE				
Emily	25	5	5	Blue	Chinese	5	TRUE				
Michael	27	3	4	Green	French	5	TRUE				

3 NA

Esperanto

FALSE

Those all are features

23

3

Some

student

These air are realures										
		Statistics	Python		Native		Target			
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)			
John	22	5	4	Brown	English	5	TRUE			
Aahna	17	4	5	Brown	Hindi	4	TRUE			
Emily	25	5	5	Blue	Chinese	5	TRUE			
Michael	27	3	4	Green	French	5	TRUE			

Esperanto

			. ,				1.5.1.9
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(pass
John	22	5	4	Brown	English	5	Т
Aahna	17	4	5	Brown	Hindi	4	Т

3 NA

And even the name is a feature

		Statistics	Python		Native		larget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

(despite it might be not informative)

FALSE

The **design matrix** contains all the features and observations.

		Statistics	r yulon		ivalive		rarget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE

Some

student

23

3

Features can even be multidimensional, we will discuss it later in this course.

3 NA

Esperanto

Target

Target represents the information we are interested in. Statistics Python

		Otatiotics	i yuioii		INALIVE		raiget
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some student	23	3	3	NA	Esperanto	2	FALSE

Native

Target can be either a **number** (real, integer, etc.) – for *regression* problem

Target represents the information we are interested in.

		Statistics	Python		Native		Target
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(passed)
John	22	5	4	Brown	English	5	TRUE
Aahna	17	4	5	Brown	Hindi	4	TRUE
Emily	25	5	5	Blue	Chinese	5	TRUE
Michael	27	3	4	Green	French	5	TRUE
Some							
student	23	3	3	NA	Esperanto	2	FALSE

Or a label – for classification problem

Target represents the information we are interested in.

		Statistics	Python		Native	
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)
John	22	5	4	Brown	English	5

4 Green

Mark can be treated as a label too (due to finite number of labels:

3 NA

5 Brown

17 4

Aahna **Emily** 25 5 5 Blue

1 to 5). We will discuss it later.

27

23

Michael

student

Some

3 3

Esperanto

Hindi

Chinese

French

(passed) **TRUE** TRUE

Target

5

5

TRUE

TRUE

FALSE

Further we will work with the numerical target (mark)

					· · ·	
		Statistics	Python		Native	
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)
John	22	5	4	Brown	English	5
Aahna	17	4	5	Brown	Hindi	4
Emily	25	5	5	Blue	Chinese	5
Michael	27	3	4	Green	French	5
Some student	23	3	3	NA	Esperanto	2

The *prediction* contains values we predicted using some *model*. Predicted Statistics Dython Mativo

		Statistics	r yu lon		inalive		ricaloted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5
Aahna	17	4	5	Brown	Hindi	4	4.5

5 **Emily** 25 5 Blue Chinese 5 3.5 Michael 27 4 Green French Some 23 3 student 3 NA **Esperanto**

One could notice that prediction just averages of Statistics and Python marks. So our *model* can be represented as follows:

 $\operatorname{mark}_{ML} = \frac{1}{2} \operatorname{mark}_{Statistics} + \frac{1}{2} \operatorname{mark}_{Python}$

5

3.5

3

The *prediction* contains values we predicted using some *model*. Dradictad Mativo Ctatiation

		Statistics	Pytnon		inative		riedicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5
Aahna	17	4	5	Brown	Hindi	4	4.5

25 **Emily** 5 Blue Chinese Michael 27 4 Green French

student

Different models can provide different predictions:

 $\operatorname{mark}_{ML} = \frac{1}{2} \operatorname{mark}_{Statistics} + \frac{1}{2} \operatorname{mark}_{Python}$

5

3

The *prediction* contains values we predicted using some *model*. Dradiatad

		Statistics	Pytnon		inative		riedicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	1
Aahna	17	4	5	Brown	Hindi	4	5

5 Blue

Michael 27 4 Green French Some

5

25

Emily

Esperanto

Chinese

23 3 NA

student

Different models can provide different predictions:

 $\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$

5

5

2

4

3

The *prediction* contains values we predicted using some *model*.

The production contains values we producted doing come model:							
		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	1
Aahna	17	4	5	Brown	Hindi	4	5

5 Blue

4 Green

Chinese

French

student 23 3 NA Esperanto

5

25

27

Emily

Some

Michael

Different models can provide different predictions.

Usually some hypothesis lies beneath the model choice.

Loss function measures the error rate of our model.

Squ	ıare		Predicted
dev	iare iation	Target (mark)	(mark)
16		5	1
1		4	5
9		5	2
1		5	4
1		2	3
			3

• **Mean Squared Error** (where y is vector of targets):

$$MSE(\mathbf{y}, \mathbf{\hat{y}}) = \frac{1}{N} ||\mathbf{y} - \mathbf{\hat{y}}||_2^2 = \frac{1}{N} \sum_i (y_i - \hat{y}_i)^2$$

Loss function measures the error rate of our model.

1	Absolute		Predicted
(deviation	Target (mark)	(mark)
4	4	5	1
•	1	4	5
(3	5	2
•	1	5	4
	1	2	3

• *Mean Absolute Error* (where y is vector of targets):

$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} ||\mathbf{y} - \hat{\mathbf{y}}||_1 = \frac{1}{N} \sum_{i} |y_i - \hat{y}_i|$$

4

5

5

4.5

5

3.5

3

To learn something, our *model* needs some degrees of freedom:

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.5

5 Brown

5 Blue

Hindi

Chinese

27 Michael 4 Green French Some 23 3 Esperanto student 3 NA

 $\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$

17

25

Aahna

Emily

To learn something, our *model* needs some degrees of freedom:

		Statistics	Python		Native		Predicted
Name	Age	(mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	4.447
Aahna	17	4	5	Brown	Hindi	4	4.734

5 Blue

27 Michael 4 Green French Some 23 3 student 3 NA

 $\operatorname{mark}_{ML} = w_1 \cdot \operatorname{mark}_{Statistics} + w_2 \cdot \operatorname{mark}_{Python}$

5

25

Emily

Esperanto

Chinese

5 5

2 3.060

4.734 5.101 3.714

To learn something, our *model* needs some degrees of freedom:

	-	Statistics	Python		Native		Predicted
Name Age	e (r	mark)	(mark)	Eye color	language	Target (mark)	(mark)
John	22	5	4	Brown	English	5	1

5 Brown

5 Blue

Hindi

Chinese

27 Michael 4 Green French Some 23 3 Esperanto student 3 NA

 $\operatorname{mark}_{ML} = \operatorname{random}(\operatorname{integer from} [1; 5])$

5

Aahna

Emily

17

25

5 4 5

5

4

3

Last term we should learn for now is hyperparameter.

Hyperparameter should be fixed before our model starts to work with the data.

We will discuss it later with kNN as an example.

Recap:	ML thesaurus
Dataset	
 Observation (datum) 	
Feature	
 Design matrix 	
Target	
 Prediction 	
Model	
Loss function	
Parameter	
 Hyperparameter 	

Maximum Likelihood Estimation

Likelihood

Denote dataset generated by distribution with parameter θ

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$

$$L(\theta|X,Y) \longrightarrow \max_{\theta} \quad \text{samples should be i.i.d.}$$

$$L(\theta|X,Y) = P(X,Y|\theta) = \prod_{i} P(x_i,y_i|\theta)$$

Maximum Likelihood Estimation

Likelihood

Denote dataset generated by distribution with parameter θ

Likelihood function:

$$L(\theta|X,Y) = P(X,Y|\theta)$$
 samples should

$$L(\theta|X,Y) \longrightarrow \max_{\theta}$$
 be i.i.d.

$$L(\theta|X,Y) = P(X,Y|\theta) = \prod_{i} P(x_i,y_i|\theta)$$

equivalent to

$$\log L(\theta|X,Y) = \sum_{i} \log P(x_i, y_i|\theta) \longrightarrow \max_{\theta}$$

Machine Learning problems overview

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $x_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{x})$ predicts some value for every object
- ullet Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Regression problem

- Regression problem
- Classification problem

- Regression problem
- Classification problem
- Dimensionality reduction

Let's denote:

• Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where

```
\mathbf{x}_i \in \mathbb{R}^p , y_i \in \{C_1, \dots, C_k\} for k-class classification
```

Bayes' theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
 in our case

or, in our case

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Let's denote:

• Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where

$$\circ \; \mathbf{x}_i \in \mathbb{R}^p$$
 , $y_i \in \{C_1, \dots, C_K\}$ for K-class classification

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are independent

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Naïve assumption: features are independent:

$$P(\mathbf{x}_i|y_i = C_k) = \prod_{i=1}^{p} P(x_i^l|y_i = C_k)$$

$$P(y_i = C_k | \mathbf{x}_i) = \frac{P(\mathbf{x}_i | y_i = C_k) P(y_i = C_k)}{P(\mathbf{x}_i)}$$

Optimal class label:

$$C^* = \arg\max_k P(y_i = C_k | \mathbf{x_i})$$

To find maximum we even do not need the denominator

But we need it to get probabilities

kNN – k Nearest Neighbors

kNN - k Nearest Neighbours

k Nearest Neighbors Method

Given a new observation:

- Calculate the distance to each of the samples in the dataset.
- 2. Select samples from the dataset with the minimal distance to them.
 - 3. The label of the *new observation* will be the most frequent label among those nearest neighbors.

How to make it better?

• The number of neighbors k (it is a *hyperparameter*)

kNN - k Nearest Neighbours

How to make it better?

- The number of neighbors k (it is a *hyperparameter*)
- The distance measure between samples
- a. Hamming
 - b. Euclidean
 - c. cosine
 - d. Minkowski distances
 - e. etc.
- Weighted neighbours

k = 4

Weighted kNN

$$k = 4$$

Weighted kNN

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

$$k = 4$$

Weighted kNN

 Weights can be adjusted according to the neighbors order,

$$w(\mathbf{x}_{(i)}) = w_i$$

or on the distance itself

$$w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$$

Weights can be adjusted according to the

Weighted kNN

or on the distance itself $w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$

$$p_{\text{green}} = \frac{w(\mathbf{x}_1) + w(\mathbf{x}_2)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

Weighted kNN

or on the distance itself $w(\mathbf{x}_{(i)}) = w(d(\mathbf{x}, \mathbf{x}_{(i)}))$

$$p_{\text{blue}} = \frac{w(\mathbf{x}_3) + w(\mathbf{x}_4)}{w(\mathbf{x}_1) + w(\mathbf{x}_2) + w(\mathbf{x}_3) + w(\mathbf{x}_4)}$$

Outro

- Remember the i.i.d. property
- Usually the first dimension corresponds to the batch size, the second (and so on) to the features/time/...
- Even the naïve assumptions may be suitable in some cases
- Simple models provide great baselines

Model validation and evaluation

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $x_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{x})$ predicts some value for every object
- ullet Loss function $Q(\mathbf{x},y,f)$ that should be minimized

Overfitting vs. underfitting

Overfitting vs. underfitting

Overfitting vs. underfitting

- We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):
- select appropriate hypothesis space
- learning algorithm's effective capacity may be less than the representational capacity of the model family

Is it good enough?

Image credit: Joseph Nelson @josephofiowa

Cross-validation

