INF587 Exercise sheet 7

Exercise 1 (A proof useful for CSS codes). Our aim in this exercise is to prove

$$\mathbf{H}^{\otimes n}\ket{\mathcal{C}} = \ket{\mathcal{C}^{\perp}}$$

where C is a subspace of \mathbb{F}_2^n ,

$$\mathcal{C}^{\perp} = \left\{ \mathbf{c}^{\perp} \in \mathbb{F}_2^n : \, \forall \mathbf{c} \in \mathcal{C}, \, \langle \mathbf{c}, \mathbf{c}^{\perp} \rangle = \sum_{i=1}^n c_i c_i^{\perp} = 0 \mod 2 \right\}$$

and

$$|\mathcal{C}
angle \stackrel{def}{=} rac{1}{\sqrt{\sharp \mathcal{C}}} \sum_{\mathbf{c} \in \mathcal{C}} |\mathbf{c}
angle \quad ; \quad \left|\mathcal{C}^{\perp}
ight
angle \stackrel{def}{=} rac{1}{\sqrt{\sharp \mathcal{C}^{\perp}}} \sum_{\mathbf{c}^{\perp} \in \mathcal{C}^{\perp}} \left|\mathbf{c}^{\perp}
ight
angle$$

Exercise 2 (Building CSS encoding). We are given two linear codes $C_{\mathbf{X}}$ and $C_{\mathbf{Z}}$ of length n such that $C_{\mathbf{Z}} \subseteq C_{\mathbf{X}} \subseteq \mathbb{F}_2^n$. Recall that $C_{\mathbf{X}}/C_{\mathbf{Z}}$ is a subspace defined as

$$C_{\mathbf{X}}/C_{\mathbf{Z}} = \{\overline{\mathbf{x}} : \mathbf{x} \in C_{\mathbf{X}}\}$$
 where $\overline{\mathbf{x}} \stackrel{def}{=} \mathbf{x} + C_{\mathbf{Z}} = \{\mathbf{x} + \mathbf{c}_{\mathbf{Z}} : \mathbf{c}_{\mathbf{Z}} \in C_{\mathbf{Z}}\} \subseteq C_{\mathbf{X}}$

Let,

$$k \stackrel{def}{=} \dim \mathcal{C}_{\mathbf{X}} / \mathcal{C}_{\mathbf{Z}} = \dim \mathcal{C}_{\mathbf{X}} - \dim \mathcal{C}_{\mathbf{Z}}$$

Recall that

$$C_{\mathbf{X}}/C_{\mathbf{Z}} = \{\mathbf{x}_i + C_{\mathbf{Z}} : 1 \le i \le 2^k\} \quad and \quad C_{\mathbf{X}} = \bigsqcup_{1 \le i \le 2^k} \mathbf{x}_i + C_{\mathbf{Z}}$$

for 2^k vectors $\mathbf{x}_i \in \mathcal{C}_{\mathbf{X}}$ which are called the representatives of $\mathcal{C}_{\mathbf{X}}/\mathcal{C}_{\mathbf{Z}}$.

1. Show how to efficiently compute the following mappings (we naturally identify $\mathbf{i} \in \mathbb{F}_2^k$ to an integer $1 \le i \le 2^k$)

$$\mathbf{i} \in \mathbb{F}_2^k \longmapsto \mathbf{x}_i \in \mathbb{F}_2^n, \quad \mathbf{x}_i \in \mathbb{F}_2^n \longmapsto \mathbf{i} \in \mathbb{F}_2^k$$

$$\mathbf{y} \in \mathcal{C}_{\mathbf{X}} \mapsto \mathbf{x}_i \quad \text{when } \mathbf{y} \in \mathbf{x}_i + \mathcal{C}_{\mathbf{Z}}$$

Notice that the first two mappings "fix" a choice of representatives \mathbf{x}_i 's; recall that if $\{\mathbf{x}_i : 1 \leq i \leq 2^k\}$ is a set of representatives of $\mathcal{C}_{\mathbf{X}}$, then $\{\mathbf{x}_i + \mathbf{c}_i : \mathbf{c}_i \in \mathcal{C}_{\mathbf{Z}} \text{ and } 1 \leq i \leq 2^k\}$ is also a set of representatives. The last mapping is well defined by the decomposition of $\mathcal{C}_{\mathbf{X}}$ as disjoint union of cosets.

2. Show how to compute $|\mathbf{x}\rangle |\mathbf{x} + \mathcal{C}_{\mathbf{Z}}\rangle$ where

$$|\mathbf{x} + \mathcal{C}_{\mathbf{Z}}\rangle \stackrel{def}{=} \frac{1}{\sqrt{\sharp \mathcal{C}_{\mathbf{Z}}}} \sum_{\mathbf{y} \in \mathcal{C}_{\mathbf{Z}}} |\mathbf{x} + \mathbf{y}\rangle$$
.

and supposing that we have access to $|\mathbf{x}\rangle$.

$$\mathcal{C}_{\mathbf{Z}} = \left\{\mathbf{m}_{\mathbf{G}} \; : \; \mathbf{m} \in \mathbb{F}_{\gamma_{\mathbf{Z}}}^{\gamma_{\mathbf{Z}}}\right\}$$

Hint: use the matrix $\mathbf{G} \in \mathbb{F}^{k\mathbf{z} \times n}$ ($k\mathbf{z} \stackrel{\text{def}}{=} \dim \mathcal{C}_{\mathbf{Z}}$) whose rows form a basis of $\mathcal{C}_{\mathbf{Z}}$ (which is supposed to be given to have a description of $\mathcal{C}_{\mathbf{Z}}$); recall that

3. Deduce how to implement the following CSS encoding:

$$\sum_{\mathbf{i} \in \{0,1\}^k} \alpha_{\mathbf{i}} \underbrace{|\mathbf{i}\rangle}_{k \text{ qubits}} \longmapsto \sum_{\mathbf{x}_i} \alpha_{\mathbf{i}} \underbrace{|\mathbf{x}_i + \mathcal{C}_{\mathbf{Z}}\rangle}_{n \text{ qubits}}$$

Exercise 3 (Shor's code is a CSS code). Show that the following codes are CSS codes and give $(\mathcal{C}_{\mathbf{Z}}, \mathcal{C}_{\mathbf{X}})$ for them

- 1. Vect $(|000\rangle, |111\rangle)$
- 2. Vect $((|0\rangle + |1\rangle)^{\otimes 3}, (|0\rangle |1\rangle)^{\otimes 3})$
- 3. Vect $((|000\rangle + |111\rangle)^{\otimes 3}, (|000\rangle |111\rangle)^{\otimes 3})$

Exercise 4 (Steane's code). Let C be the [7,4,3] Hamming code (that we have seen during the lecture). Recall that it has parity-check matrix

$$\mathbf{H} \stackrel{def}{=} \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

Let $C_{\mathbf{X}} \stackrel{def}{=} C$ and $C_{\mathbf{Z}} \stackrel{def}{=} C^{\perp}$.

- 1. Show that $\mathbf{H}\mathbf{H}^{\top} = \mathbf{0}$.
- 2. Deduce that $C_{\mathbf{Z}} \subseteq C_{\mathbf{X}}$.

3. From the above question, $(\mathcal{C}_{\mathbf{Z}}, \mathcal{C}_{\mathbf{X}})$ defines a CSS-code. How many qubits does it enable to encode? How many errors can it correct?

Exercise 5 (CSS codes are stabilizer codes). Let $C_{\mathbf{X}}$ and $C_{\mathbf{Z}}$ be two linear code such that $C_{\mathbf{Z}} \subseteq C_{\mathbf{X}}$.

1. Show that for all $\mathbf{e}_1, \mathbf{e}_2 \in \mathcal{C}_{\mathbf{Z}}, \ \mathbf{f}_1, \mathbf{f}_2 \in \mathcal{C}_{\mathbf{X}}^{\perp}$ we have

$$\left(\mathbf{X}^{\mathbf{e}_1}\mathbf{Z}^{\mathbf{f}_1}\right)\left(\mathbf{X}^{\mathbf{e}_2}\mathbf{Z}^{\mathbf{f}_2}\right) = \left(\mathbf{X}^{\mathbf{e}_2}\mathbf{Z}^{\mathbf{f}_2}\right)\left(\mathbf{X}^{\mathbf{e}_1}\mathbf{Z}^{\mathbf{f}_1}\right)$$

2. Show that for any $\mathbf{e} \in \mathcal{C}_{\mathbf{Z}}$, $\mathbf{f} \in \mathcal{C}_{\mathbf{X}}^{\perp}$, and $|\psi\rangle$ belonging to the CSS code given by $(\mathcal{C}_{\mathbf{X}}, \mathcal{C}_{\mathbf{Z}})$, we have

$$\mathbf{Z}^{\mathbf{f}}\mathbf{X}^{\mathbf{e}}|\psi\rangle = |\psi\rangle$$

3. Deduce that any CSS code is a stabilizer code and precise the subgroup of \mathbb{G}_n which stabilizes it, in particular, give its description in terms of $(\mathcal{C}_{\mathbf{X}}, \mathcal{C}_{\mathbf{Z}})$ (up to an isomorphism).

Exercise 6 (A 5 qubits code). Let

$$\begin{split} \mathbf{M}_1 &= \mathbf{X} \otimes \mathbf{Z} \otimes \mathbf{Z} \otimes \mathbf{X} \otimes \mathbf{I} \\ \mathbf{M}_2 &= \mathbf{I} \otimes \mathbf{X} \otimes \mathbf{Z} \otimes \mathbf{Z} \otimes \mathbf{X} \\ \mathbf{M}_3 &= \mathbf{X} \otimes \mathbf{I} \otimes \mathbf{X} \otimes \mathbf{Z} \otimes \mathbf{Z} \\ \mathbf{M}_4 &= \mathbf{Z} \otimes \mathbf{X} \otimes \mathbf{I} \otimes \mathbf{X} \otimes \mathbf{Z} \end{split}$$

Consider the stabilizer code associated to

$$\mathbb{S} \stackrel{\textit{def}}{=} \langle \mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3, \mathbf{M}_4 \rangle$$

- 1. Show that every error in \mathbb{G}_5 of weight 1 or 2 has a syndrome $\neq 0$.
- 2. Find a harmful error (type B) of weight 3.
- 3. How many errors can be corrected by such a code?
- 4. In which "sense" is this code better than Steane's code?

Exercise 7 (Minimum distance out of 2 for linear codes). Let $C \subseteq \mathbb{F}_2^n$ be a linear code. Recall that its minimum distance d is defined as

$$d \stackrel{def}{=} \min (|\mathbf{c}| : \mathbf{c} \in \mathcal{C} \setminus \{\mathbf{0}\})$$

where $|\cdot|$ denotes the Hamming weight, namely

$$\forall \mathbf{x} \in \mathbb{F}_2^n$$
, $|\mathbf{x}| = \sharp \{i \in [1, n], x_i \neq 0\}$.

Let $\mathbf{H} \in \mathbb{F}_2^{(n-k) \times n}$ be a parity-check matrix of \mathcal{C} , namely $\mathcal{C} = \left\{ \mathbf{c} \in \mathbb{F}_2^n : \mathbf{H} \mathbf{c}^\top = \mathbf{0} \right\}$. Show that

$$\forall \mathbf{e}_1, \mathbf{e}_2 \in \mathbb{F}_2^n : \mathbf{e}_1 \neq \mathbf{e}_2 \ and \ |\mathbf{e}_1|, |\mathbf{e}_2| < \frac{d}{2} \Longrightarrow \mathbf{H} \mathbf{e}_1^\top \neq \mathbf{H} \mathbf{e}_2^\top$$

Exercise 8 (Gilbert-Varshamov' bound for linear error correcting codes). We assume here that a linear code C of length n is drawn at random by choosing an $(n-k) \times n$ parity-check matrix \mathbf{H} for it uniformly at random.

- 1. Let $\mathbf{x} \in \mathbb{F}_2^n \setminus \{\mathbf{0}\}$. Compute $\mathbb{P}(\mathbf{x} \in \mathcal{C})$.
- 2. Compute $\mathbb{E}(n_t)$ where n_t denotes the number of codewords in \mathcal{C} of weight t.
- 3. What is $\mathbb{E}(n_{\leq t})$ where $n_{\leq t}$ denotes the number of non-zero codewords of weight $\leq t$?
- 4. What can you say when $\mathbb{E}(n_{\leq t}) < 1$?
- 5. Let $h(x) \stackrel{\text{def}}{=} -x \log_2(x) (1-x) \log_2(1-x)$. By using

$$\sum_{i=1}^{t-1} \binom{n}{i} \le 2^{nh(t/n)} \tag{1}$$

which holds whenever $t/n \leq 1/2$, prove that there exists a code of minimum distance $\geq t$ and dimension $\geq k$ as soon as

$$1 - h(t/n) > k/n$$

Comment: it turns out that *almost all* codes of dimension $\geq k$ as minimum distance $\leq t$ as soon as the above condition is true.