Gradient Descent

顏安孜

azyen@nycu.edu.tw

The following slides are selected from the course material of Machine Learning by Prof.

Hung-Yi Lee

Review: Gradient Descent

In step 3, we have to solve the following optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

Suppose that θ has two variables $\{\theta_1, \theta_2\}$

Randomly start at
$$heta^0 = egin{bmatrix} heta_1^0 \ heta_2^0 \end{bmatrix}$$

Randomly start at
$$\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$$

$$\nabla L(\theta) = \begin{bmatrix} \frac{\partial L(\theta_1)}{\partial L(\theta_2)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix}$$

$$\begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^0)}{\partial L(\theta_2^0)} / \frac{\partial \theta_1}{\partial \theta_2} \end{bmatrix} \implies \theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\begin{bmatrix} \theta_1^2 \\ \theta_2^2 \end{bmatrix} = \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^1)}{\partial \theta_1} \\ \frac{\partial L(\theta_2^1)}{\partial \theta_2} \end{bmatrix} \implies \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

$$\nabla L(\theta) = \begin{bmatrix} \partial L(\theta_1)/\partial \theta_1 \\ \partial L(\theta_2)/\partial \theta_2 \end{bmatrix}$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

Review: Gradient Descent

Learning Rate

$$\theta^{i} = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Set the learning rate η carefully

Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
 - E.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

Adagrad

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \qquad g^t = \frac{\partial L(\theta^t)}{\partial w}$$

 Divide the learning rate of each parameter by the root mean square of its previous derivatives

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$
 w is one parameters

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 $w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$ σ^t : root mean square of the previous derivatives of parameter w

Parameter dependent

Adagrad

$$u^1 \leftarrow u^0 - \frac{\eta^0}{\eta^0}$$

$$w^2 \leftarrow w^1 - \frac{\eta^1}{\sigma^1} g^1$$

$$w^3 \leftarrow w^2 - \frac{\eta^2}{\sigma^2} g^2$$

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

σ^t : **root mean square** of the previous derivatives of parameter w

$$w^{1} \leftarrow w^{0} - \frac{\eta^{0}}{\sigma^{0}} g^{0} \qquad \sigma^{0} = \sqrt{(g^{0})^{2}}$$

$$w^{2} \leftarrow w^{1} - \frac{\eta^{1}}{\sigma^{1}} g^{1} \qquad \sigma^{1} = \sqrt{\frac{1}{2}} [(g^{0})^{2} + (g^{1})^{2}]$$

$$w^{3} \leftarrow w^{2} - \frac{\eta^{2}}{\sigma^{2}} g^{2} \qquad \sigma^{2} = \sqrt{\frac{1}{3}} [(g^{0})^{2} + (g^{1})^{2} + (g^{2})^{2}]$$

$$\vdots$$

$$w^{t+1} \leftarrow w^{t} - \frac{\eta^{t}}{\sigma^{t}} g^{t} \qquad \sigma^{t} = \sqrt{\frac{1}{t+1}} \sum_{i=0}^{t} (g^{i})^{2}$$

Adagrad

• Divide the learning rate of each parameter by the root mean square

Contradiction?

$$\eta^t = \frac{\eta}{\sqrt{t+1}}$$
 $g^t = \frac{\partial L(\theta^t)}{\partial w}$

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t \underline{g}^t \longrightarrow \text{Large}$$

Larger gradient, larger step

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

Larger gradient, larger step

Larger gradient, smaller step

Intuitive Reason

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \ g^t = \frac{\partial L(\theta^t)}{\partial w}$$

How surprise it is

Very big

g^0	g ¹	g ²	g ³	g ⁴	•••••
0.001	0.001	0.003	0.002	0.1	•••••
g ⁰	g ¹	g ²	g ³	g ⁴	•••••

Very small

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$

Larger gradient, larger steps?

Comparison between different parameters

Larger 1st order derivative means far from the minima

Do not cross parameters

Second Derivative

$$\frac{\partial^2 y}{\partial x^2} = 2a$$
 The best step is

|First derivative|

Second derivative

Comparison between different parameters

Larger 1st order derivative means far from the minima

Do not cross parameters

Use first derivative to estimate second derivative

Implement Adagrad by NumPy

```
import numpy as np
Load features and labels as numpy arrays
    e.g., X = np.array(X)
Initial bias (b), weight (w), learning rate (lr), and iteration
Ir_b, Ir_w = 0.0, 0.0 // learning rate of bias and weight
for i in range(iteration):
    b grad, w grad = 0.0, 0.0
    for j in range(length of X):
                                                                   You can also use dot product:
        b grad = b grad - 2.0*(y[i] - b - w * X[i]) * 1
                                                                   y = np.dot(x,w) + b
        w grad = w grad -2.0*(y[i] - b - w * X[i]) * X[i]
    Ir b = Ir b + b grad ** 2 // customized learning rate
    Ir w = Ir w + w \operatorname{grad} ** 2
                                                    w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t
    b = b - Ir / np.sqrt(Ir b) * b grad
    w = w - Ir / np.sqrt(Ir w) * w grad
```

Gradient Descent

Tip 2: Stochastic

Gradient Descent

Make the training faster

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i}^{n} \right) \right)^{2}$$
 Loss is the summation over all training examples

- $igoplus Gradient Descent \quad heta^i = heta^{i-1} \eta \nabla L(heta^{i-1})$
- Stochastic Gradient Descent

Faster!

Pick an example xⁿ

$$L^{n} = \left(\hat{y}^{n} - \left(b + \sum w_{i} x_{i}^{n}\right)\right)^{2} \quad \theta^{i} = \theta^{i-1} - \eta \nabla L^{n} \left(\theta^{i-1}\right)$$
Loss for only one example

Stochastic Gradient Descent

Gradient Descent

Update after seeing all examples

Stochastic Gradient Descent

Update for each example If there are 20 examples, 20 times faster.

Batch

$$g = \begin{bmatrix} \frac{\partial L}{\partial \theta_1} |_{\theta = \theta^0} \\ \frac{\partial L}{\partial \theta_2} |_{\theta = \theta^0} \end{bmatrix}$$
1. (Randomly) Pick initial values θ^0
2. Compute gradient $g = \nabla L^1(\theta^0)$ L^1

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

- update $\theta^1 \leftarrow \theta^0 \eta g$

Gradient Descent

Tip 3: Feature Scaling

Feature Scaling

Source of figure: http://cs231n.github.io/neuralnetworks-2/

$$y = b + w_1 x_1 + w_2 x_2$$

Make different features have the same scaling

Feature Scaling

$$y = b + w_1 x_1 + w_2 x_2$$

Feature Scaling

Optimization

$$w^*, b^* = arg \min_{w,b} L(w,b)$$

Gradient Descent

Reference

- Lecture Slides from Machine Learning by Prof. Hung-Yi Lee
 - https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/ Gradient%20Descent.pdf