CPE301 – SPRING 2019

Midterm 1

Student Name: Tyler Gardenhire

Student #: 8000450294

Student Email: gardenhi@unlv.nevada.edu

Primary Github address: gardenhi@unlv.nevada.edu

Directory: https://github.com/tylergardenhire/submission_projects.git

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmel Studio 7 w/ AVR assembly, Atmega328p board, FTDI chip, and ESP module used.

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* midterm1.c
 * Created: 4/7/2019 12:36:13 PM
 * Author : Tyler
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdlib.h>
#include <stdint.h>
#define F_CPU 16000000UL
#define BAUD 115200
#define FOSC 16000000
#define BAUDEQ FOSC/8/BAUD -1
volatile uint8 t ADCvalue;
volatile unsigned char ADCtemp[5];
volatile unsigned char CWMODE[] = "AT+CWMODE=3\r\n"; //WiFi mode = 3
volatile unsigned char WIFI[] = "AT+CWJAP=\"gardenhi\", \"BasketballStar23\"\r\n";
//connect to internet
volatile unsigned char ENABLE[] = "AT+CIPMUX=0\r\n"; //connected to 2.4GHz WiFi
volatile unsigned char CIPSTART[] = "AT+CIPSTART=\"TCP\",\"184.106.153.149\",80\r\n";
//tcp
volatile unsigned char CIPSEND[] = "AT+CIPSEND=45\r\n"; //length of data = 45
volatile unsigned char SEND_DATA[] = "GET /update?key=1Q0Z8SVE7A10NWS1&field1="; //API
volatile unsigned char PAUSE[] = "\r\n\r\n"; //go to left side, skip a line
void ADCinit (void);
void UARTinit (void);
void sendAT (volatile unsigned char c[]);
int main( void )
      ADCinit(); //initializes ADC values
      UARTinit(); //initializes UART values
      //calls functions to enable WiFi mode, connects to the specific WiFi
      _delay_ms(1000);
      signal_AT(CWMODE);
      delay ms(1000);
      signal_AT(WIFI);
      _delay_ms(2000);
      signal_AT(ENABLE);
      while(1) //send values through the cloud until off
             //calls functions to connect to thingspeak
             delay ms(1000);
             signal AT(CIPSTART); //connects to thingspeak
```

```
_delay_ms(1000);
              signal AT(CIPSEND); //set length of data
             _delay_ms(1000);
              signal_AT(SEND_DATA);
              signal AT(ADCtemp); //send data
              signal AT(PAUSE); //pause, load data
       }
}
void ADCinit (void)
       ADMUX = (1 << REFS0) |
                                                        //voltage reference
                                                        //left adjust ADC conversion
       (1 << ADLAR);
       //ADC Control and Status Register A, ADC enable, ADC start conversion,
       //ADC auto trigger enable, ADC interrupt enable, 128 prescaler
       ADCSRA = (1 << ADEN) | (1 << ADSC) | (1 << ADATE) |
       (1 << ADIE) | (1 << ADPS2) (1 << ADPS1) (1 << ADPS0);
}
void UARTinit (void)
{
      UBRROH = UBRREQ >> 8;
                                          //shifts right to store upper 8 bits
      UBRRØL = UBRREQ;
                                          //store lower 8 bits
      UCSR0A |= (1 << U2X0);
                                          //doubles USART transmission speed
      UCSR0B |= (1 << TXEN0);
                                          //enables USART transmitter
      UCSR0C |= (1 << UCSZ01) |
       (1 << UCSZ00);
                                                 // 8-bit size
                                                  // Enable global interrupt
       sei();
}
ISR(ADC_vect)
       volatile unsigned int j=0;
       char temp[5];
       ADCvalue = (ADCH << 1);
                                          //shifts the value left to one place
       itoa(ADCvalue, temp, 10);
                                          //converts integers to string
       while (j<5)
                                          //transfers the temp string
       {
              ADCtemp[j] = temp[j];
              j++;
       }
}
void sendAT(volatile unsigned char c[]) {
       volatile unsigned int i=0;
       volatile unsigned int j=0;
       j = 0;
                                                  //initialize counter
```

3. DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

N/A

4. SCHEMATICS

5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Task 2:

Task 3:

Task 4:

Thank you for signing up for ThingSpeak! Inbox ×

Thank you for signing up for ThingSpeak!

With ThingSpeak you can collect, analyze, and act on your IoT data.

Check out what others have done with ThingSpeak:

- Collect and analyze energy data
- Building the Internet of Things with the ESP8266 Wi-Fi Module and ThingSpeak
- Analyze data from a weather station
- Forecast wind-driven tide levels with an ultrasonic tide gage

2:12 PM (0 minutes ago)

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Programming mode:

Output Mode:

7. VIDEO LINKS OF EACH DEMO

https://youtu.be/84T 1NI3WU4

8. GITHUB LINK OF THIS DA

https://github.com/tylergardenhire/submission_projects.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

TYLER GARDENHIRE