Resistor-Inductor-Capacitor circuits

1. Series RLC

```
circuit = Circuit('circuits/rlc_series.txt');
circuit.list
ans =
```

```
'Vin 1 0 DC 5
R1 3 0 1000
L1 1 2 1
C1 2 3 0.0001
```


ELAB.analyze(circuit)

Symbolic analysis successful (0.303556 sec).

Say, you want expressions for node voltages.

circuit.symbolic_node_voltages

ans = $\begin{pmatrix} v_1 = \text{Vin} \\ v_2 = \frac{\text{Vin} (C_1 R_1 s + 1)}{C_1 L_1 s^2 + C_1 R_1 s + 1} \\ v_3 = \frac{C_1 R_1 \text{Vin } s}{C_1 L_1 s^2 + C_1 R_1 s + 1} \end{pmatrix}$

From the circuit, you can easily create a transfer function object, only giving the input and output nodes.

```
TF = ELAB.ec2tf(circuit, 1, 3)
```

Matlab can then be used to visualize the circuit behavior as with any other system. Plotting the Bode diagram, we see that this circuit acts as a band-pass-filter.

```
bode(TF)
```


2. Parallel RLC

We can repeat the process to look at RLC in parallel.

```
circuit = Circuit('circuits/rlc_parallel.txt');
circuit.list
```

```
ans =
'Iin 1 0 DC 2
R1 1 0 1000
L1 1 0 1
C1 1 0 0.0001
```


ELAB.analyze(circuit)

Symbolic analysis successful (0.20026 sec).

ELAB.evaluate(circuit)

Numerical evaluation successful (0.0448269 sec).

In this case, because there is only one node besides ground, the transfer function is just the voltage at node 1.

```
circuit.numerical_node_voltages(1)
```

ans =

$$v_1 = -\frac{2000 \, s}{\frac{s^2}{10} + s + 1000}$$

You can of course input the equation directly into Matlab's transfer function. Plotting the Bode diagram show that this is another kind of band-pass-filter.

```
s = tf('s');
TF = -(1000*s)/(s^2/10 + s + 1000);
bode(TF)
```


Feel free to try any combination of resistors, capacitors and inductors.

3. Arbitrary RLC-circuits

```
circuit = Circuit('circuits/rlc_mix.txt');
circuit.list
```

```
ans =

'Vs 1 0 AC Vs

R1 2 3 1000

R2 4 0 1000

L1 1 2 0.01

C1 3 4 0.0000001
```


ELAB.analyze(circuit)

Symbolic analysis successful (0.470365 sec).

ELAB.ec2sd(circuit,1,3)

Symbolic transfer function calculated successfully (4.440400e-03 sec). ans =

$$\frac{v_3}{v_1} = \frac{C_1 R_2 s + 1}{C_1 R_1 s + C_1 R_2 s + C_1 L_1 s^2 + 1}$$

bode(ELAB.ec2tf(circuit,1,3))

Numerical evaluation successful (0.10732 sec).
Transfer function object created successfully (1.374029e-01 sec).

