# Machine Learning

Teoría Bayesiana de la Decisión

Christian Oliva Moya Pedro Ramón Ventura Gómez

- Aprendizaje Automático
  - o Supervisado
    - Clasificación
    - Regresión
  - No supervisado
    - Clustering
  - Otros paradigmas



- Aprendizaje Supervisado
  - o Problema:  $\{(\boldsymbol{x}_1, t_1), (\boldsymbol{x}_2, t_2), ..., (\boldsymbol{x}_N, t_N)\}$ 
    - $\mathbf{x}_i \equiv \text{vector de atributos}$
    - $t_i \equiv \text{variable objetivo (target)}$
    - $N \equiv$  número de datos/patrones
  - Objetivo: predecir  $t_i$  a partir de  $\mathbf{x}_i \rightarrow y_i = f(\mathbf{x}_i) \approx t_i$



• Ejemplo: salmones vs lubinas





#### Atributos:

- o Longitud
- o Brillo
- o Posición de las aletas
- Color
- o ..

• Ejemplo: salmones vs lubinas







Avg. scale intensity
(From Duda, Hart and Stork, Pattern Classification, 2001)

Accuracy: 95%

#### ¿Cuál es el mejor modelo?





Avg. scale intensity

Avg. scale intensity

(From Duda, Hart and Stork, Pattern Classification, 2001)

- Complejidad, generalización y sobreajuste
  - Modelos más complejos se adaptan mejor a los datos
  - Modelos más complejos generalizan peor (sobreajuste / overfitting)



- Planteamiento estadístico del problema, asumiendo que:
  - El problema se puede plantear en términos de probabilidades y costes
  - Todas las probabilidades relevantes son conocidas
- Problema de ejemplo:

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |

| _ | Jra | hah        |      |     |   | prio             |  |
|---|-----|------------|------|-----|---|------------------|--|
|   |     |            |      |     | _ |                  |  |
| • |     | $\omega$ u | ,,,, | ıuu | u | $\mathbf{p}_{1}$ |  |
|   |     |            |      |     |   |                  |  |

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |

Probabilidad de observar un salmón/lubina en la cinta

$$Arr$$
 P(salmón) = 60 / 100 = 60% = 0.6

$$\blacksquare$$
 P(lubina) = 40 / 100 = 40% = 0.4

$$Arr$$
 P(salmón) + P(lubina) = 0.6 + 0.4 = 1.0

• En general: 
$$P(C1) + P(C2) + ... + P(Cn) = 1.0$$

Regla de decisión:

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |

- Define qué acción a tomar basándose en la observación
- Supongamos que:
  - Solo conocemos el prior, es decir, no hay datos de entrada
- Lo mejor que podemos hacer es:

$$decisión = \begin{cases} lubina si p(lubina) > p(salmón) \\ salmón si p(lubina) < p(salmón) \end{cases}$$

Regla de decisión en base al prior:

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |

- Elegimos siempre la clase más probable
- Es la regla óptima en ausencia de más información
- Siempre se asigna la misma clase a todos los patrones

En el ejemplo,  $P(salmón) > P(lubina) \rightarrow todos los datos son salmones$ 

Regla de decisión:

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |

- o Define qué acción a tomar basándose en la observación
- Supongamos que:
  - Conocemos un conjunto de variables que describen a cada patrón
- Probabilidad a posteriori:

$$\circ$$
 P(salmón | L < 50 cm) = 20 / 50 = 0.4

$$P(lubina | L < 50 cm) = 30 / 50 = 0.6$$

$$\circ$$
 P(salmón | L > 50 cm) = 40 / 50 = 0.8

$$P(lubina | L > 50 cm) = 10 / 50 = 0.2$$

Regla de decisión:

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |

- o Define qué acción a tomar basándose en la observación
- Supongamos que:
  - Conocemos un conjunto de variables que describen a cada patrón
- Probabilidad a posteriori:

$$P(lubina | L < 50 cm) = 30 / 50 = 0.6$$

$$\circ$$
 P(salmón | L > 50 cm) = 40 / 50 = 0.8

$$P(lubina | L > 50 cm) = 10 / 50 = 0.2$$

| • | Reala | a de | decis | ión l | MAP: |
|---|-------|------|-------|-------|------|
|   |       |      |       |       |      |

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |

- Elegimos siempre la clase más probable dados los atributos observados
- Estimación MAP (máximo a posteriori)

#### En el ejemplo:

$$Si \ L < 50 \ cm \rightarrow P(salm\'on \mid L < 50 \ cm) = 20 \ / \ 50 = 0.4$$
  $P(lubina \mid L < 50 \ cm) = 30 \ / \ 50 = 0.6$ 

$$Si L > 50 cm \rightarrow P(salm\'on \mid L > 50 cm) = 40 / 50 = 0.8$$
  $P(lubina \mid L > 50 cm) = 10 / 50 = 0.2$ 

$$P(C_j|x_i) = \frac{P(x_i|C_j)P(C_j)}{P(x_i)}$$

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |
| Total  | 50        | 50        | 100   |

$$p(salm\acute{o}n \mid L < 50) = \frac{p(L < 50 \mid salm\acute{o}n) \ p(salm\acute{o}n)}{p(L < 50)}$$

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |
| Total  | 50        | 50        | 100   |
|        |           | 7         |       |

$$p(salm\acute{o}n \mid L < 50) = \frac{p(L < 50 \mid salm\acute{o}n) \ p(salm\acute{o}n)}{p(L < 50)}$$

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |
| Total  | 50        | 50        | 100   |

$$p(salm\acute{o}n \mid L < 50) = \frac{p(L < 50 \mid salm\acute{o}n) \ p(salm\acute{o}n)}{p(L < 50)}$$

$$p(L < 50)$$

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |
| Total  | 50        | 50        | 100   |

$$p(salm\acute{o}n \mid L < 50) = \frac{20/60 = 0.33}{p(L < 50 \mid salm\acute{o}n)} \frac{60/100 = 0.6}{p(salm\acute{o}n)}$$

$$\frac{p(salm\acute{o}n \mid L < 50)}{p(L < 50)}$$

|        | L < 50 cm | L > 50 cm | Total |
|--------|-----------|-----------|-------|
| Salmón | 20        | 40        | 60    |
| Lubina | 30        | 10        | 40    |
| Total  | 50        | 50        | 100   |

$$p(salm\acute{o}n \mid L < 50) = \frac{p(L < 50 \mid salm\acute{o}n) \ p(salm\acute{o}n)}{p(L < 50)}$$

$$\frac{p(L < 50)}{50/100 = 0.5}$$

- Regla de decisión con Teorema de Bayes:
- $P(C_j|x_i) = \frac{P(x_i|C_j)P(C_j)}{P(x_i)}$
- La evidencia P(x<sub>i</sub>) no depende de C
- o Por tanto:
  - Decisión  $C^* = \operatorname{argmax} P(x \mid C_i) P(C_i)$
- La decisión depende solo de los prioris y las verosimilitudes.

¿Cómo podemos estimarlos a partir de una muestra finita?

- Estimación paramétrica:
  - Suponemos una forma funcional conocida f(x, w)
  - Ajustamos los parámetros w para maximizar la probabilidad de las observaciones
  - Algoritmo EM para clasificación suponiendo distribuciones Gaussianas

- Clasificador Naive Bayes:
  - Combina el teorema de Bayes suponiendo que los atributos son independientes dada la clase

$$P(y\mid x_1,\ldots,x_n) = rac{P(y)P(x_1,\ldots,x_n\mid y)}{P(x_1,\ldots,x_n)} \hspace{1cm} igsqcup P(y\mid x_1,\ldots,x_n) = rac{P(y)\prod_{i=1}^n P(x_i\mid y)}{P(x_1,\ldots,x_n)}$$

$$\hat{y} = rg \max_y P(y) \prod_{i=1}^n P(x_i \mid y)$$

#### 1.9.1. Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is assumed to be Gaussian:

$$P(x_i \mid y) = rac{1}{\sqrt{2\pi\sigma_y^2}} \mathrm{exp}\left(-rac{(x_i - \mu_y)^2}{2\sigma_y^2}
ight)$$

The parameters  $\sigma_y$  and  $\mu_y$  are estimated using maximum likelihood.

Presupone independencia entre los atributos