2-D Photosynthesis Model

We model leaf photosynthesis using a two-dimensional porous medium approximation. The model is solved using a finite element method (FEM) using the steady.2d() function in the R package rootSolve version 1.8.2.4 (Soetaert and Herman 2009). Table S1 is a glossary model terms and symbols.

Leaf anatomy

We assume that the leaf is a homogenous 2-D medium. The mesophyll is $T_{\rm leaf}$ thick and the stomata are regularly spaced apart by distance U on both ab- and adaxial surfaces. In this scenario, we assume that the stomata on each surface are precisely offset from each other by distance U/2. This minimizes the average distance between any point in the mesophyll and its nearest stomate. Because of the regular spacing, we only need to model the region between a stomate on surface and the next stomate on the other surface (Fig. S1). The rest of the mesophyll will be the same because of symmetry.

Table 1: Table 1: glossary of model terms and mathematical symbols.

Name	Symbol	Value	Units	Notes	
Whole-leaf light absorption	α	0.8	mol	67.5	
			$\text{mol}^{-1} assi$	umed Chlorophyll spatial distribution coefficient Chlorophyll spatial coefficient Ch	
Chlorophyll spatial	$b_{1,chl}$	41.5	NA	Borsuk and Brodersen	
distribution coefficient	_,			(2019); $f_{z,\text{chl}} =$	
				$b_{0,chl} + b_{0,chl}z + b_{2,chl}z^2$	
Chlorophyll spatial	$b_{2,chl}$	-29	NA	Borsuk and Brodersen	
distribution coefficient	,			$(2019); f_{z,\text{chl}} =$	
				$b_{0,chl} + b_{0,chl}z + b_{2,chl}z^2$	
Fraction of light absorbed by	β	0.5	mol	NA	
PSII			$\text{mol}^{-1} assumed [CO2]inintercellularairspace Cias\$$		
$[CO_2]$ in chloroplast stroma	$C_{ m liq}$	NA	$\mathrm{mol}\ \mathrm{m}^{-3}$	equation Equation 5	
[CO ₂] in substomatal cavity	$C_{ m stom}$	$1.50 \times$	$\mathrm{mol}\ \mathrm{m}^{-3}$	assumed	
	Stom	10^{-2}	leaf		

Name	Symbol	Value	Units	Notes
$\overline{[\mathrm{CO}_2]}$ compensation point	Γ^*	1.35×10^{-3}	${ m mol~m^{-3}}$ stroma	Caemmerer (2000)
Diffusivity of $[CO_2]$ in intercellular airspace	D_{c}	1.54×10^{-5}	$\mathrm{m}^2~\mathrm{s}^{-1}$	assumed
Effective diffusivity of [CO ₂]	$D_{ m e}$	NA	$\mathrm{m}^2~\mathrm{s}^{-1}$	equation Equation 3
in intercellular airspace	_	2.2		
Fraction of palisade mesophyll	$f_{ m pal}$	0.6	1	$1 = f_{\text{pal}} + f_{\text{spg}}$
Fraction of spongy mesophyll	$f_{ m spg}$	0.4	1	$1 = f_{\mathrm{pal}} + f_{\mathrm{spg}}$
Chlorophyll fluoresence profile along leaf depth normalized	$F_{ m z,chl}$	NA	1	Borsuk and Brodersen (2019);
by total fluoresence	-	. ~ .	· -2	$egin{aligned} f_{z, ext{chl}} &= b_{0,chl} + b_{0,chl}z + \ b_{2,chl}z^2 Conductance of cell wall, plasmalemn \end{aligned}$
PPFD incident on the leaf surface	I_0	1.50×10^{-3}	$\begin{array}{c} \text{mol m}^{-2} \\ \text{s}^{-1} \end{array}$	assumed
Maximum photosynthetic e ⁻ transport rate on a leaf area basis	$J_{ m max}$	2.75×10^{-4}	$\begin{array}{c} \rm mol~m^{-2} \\ \rm leaf~s^{-1} \end{array}$	assumed
Maximum photosynthetic e ⁻ transport rate on a stroma volume basis	$j_{ m max}$	NA	$\begin{array}{c} \mathrm{mol} \ \mathrm{m}^{-3} \\ \mathrm{stroma} \\ \mathrm{s}^{-1} \end{array}$	equation not listed yet
Catalytic rate of Rubisco	$k_{\rm c}$	2.84	m^{-1}	Tholen and Zhu (2011)
Rubisco effective $K_{\rm m}$	$\overset{ m c}{K_{ m m}}$	1.87×10^{-2}	$\mathrm{mol}\ \mathrm{m}^{-3}$	Caemmerer (2000)
Number of elements in x direction	n_x	100	NA	$U=2n_xt_{\rm elem}$
Number of elements in z direction	n_z	200	NA	$T_{\rm leaf} = n_z t_{\rm elem}$
Fraction of intercellular airspace (aka porosity), palisade	$arphi_{ m pal}$	0.1	m^3 airspace m^{-3} leaf	assumed
Fraction of intercellular airspace (aka porosity), spongy	$arphi_{ m spg}$	0.3	m^3 airspace m^{-3} leaf	assumed
Quantum yield of PSII electron transport	$arphi_{ ext{PSII}}$	0.85	$\mathrm{mol}\ \mathrm{mol}^{-1}$	assumed
Volumetric rate of RuBP carboxylation	$r_{ m c}$	NA	$\begin{array}{c} \mathrm{mol} \ \mathrm{m}^{-2} \\ \mathrm{stroma} \\ \mathrm{s}^{-1} \end{array}$	equation not listed yet
Volumetric respiration rate	$r_{ m d}$	6.60×10^{-2}	$\begin{array}{c} \mathrm{mol} \ \mathrm{m}^{-2} \\ \mathrm{stroma} \\ \mathrm{s}^{-1} \end{array}$	Earles et al. (2017); Tholen and Zhu (2011)

Name	Symbol	Value	Units	Notes
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$r_{ m p}$	NA	$mol m^{-2}$ $stroma$ s^{-1}	equation not listed yet
Leaf surface area-to-mesophyll surface area ratio, palisiade	$S_{ m m,pal}$	20	m^2 m esophyll m^{-2} leaf	assumed
Leaf surface area-to-mesophyll surface area ratio spongy	$S_{ m m,spg}$	2	m^2 mesophyll m^{-2} leaf	assumed
Tortuosity of intercellular airspace	au	1.55	${\rm m}~{\rm m}^{-1}$	Syvertsen et al. (1995)
Thickness of element in both x and z directions	$t_{ m elem}$	1.00×10^{-6}	m	$T_{\rm leaf} = n_z t_{\rm elem}$
Leaf thickness	T_{leaf}	NA	m	$T_{\rm leaf} = n_z t_{\rm elem}$
Interstomatal distance	U	NA	m	$U = n_x t_{\text{elem}}$
Stroma volume-to-mesophyll	$V_{ m strom}$	$1.74 \times$	$\rm m^3 \ stroma$	Earles et al. (2017); Tholen
surface area ratio	Strom	10^{-6}	m^{-2} mesophyll	and Zhu (2011)
Rubisco-limited carboxylation rate	$w_{ m c}$	NA	$mol m^{-2}$ $stroma$ s^{-1}	equation not listed yet
RuBP regeneration-limited carboxylation rate	$w_{ m j}$	NA	$mol m^{-2}$ stroma s^{-1}	equation not listed yet
Rubisco concentration in stroma	$X_{ m c}$	2.5	mol m ⁻³ stroma	Tholen and Zhu (2011); Oguchi, Hikosaka, and Hirose (2003)

Solving within gradients in $\ensuremath{\mathbf{CO}}_2$ assimilation and concentration

We extended the 1-D FEM of Earles et al. (2017) to solve a set of partial differential equations describing CO_2 diffusion, photosynthesis, and respiration throughout a 2-D leaf geometry. The diffusive flux of CO_2 through ab- and adaxial stoamta, intercellular airspace, and mesophyll cells was described by:

$$D_{\rm e} \frac{\partial^2 C_{\rm ias}}{\partial x^2} = -f_{\rm liq} \tag{1}$$

$$f_{\rm liq} = r_{\rm d} + r_{\rm d} - r_{\rm c} \tag{2}$$

Figure 1: Example leaf anatomy analyzed by the 2-D FEM.

where

$$D_{\rm e} = \frac{\phi}{\tau} D_{\rm c} \tag{3}$$

is the effective diffusivity of CO₂ though a porous medium composed of an intercellular airspace with a porosity (ϕ ; m³ m⁻³) and tortuosity (τ ; m m⁻¹). D_c is the diffusion coefficient (m s⁻¹) for CO₂ in the intercellular airspace, $C_{\rm ias}$ is the [CO₂] (mol m⁻³) at depth z in the intercellular airspace, $f_{\rm liq}$ is the volumetric rate of CO₂ diffusion from the intercellular airspace into the chloroplast stroma (mol m⁻³ s⁻¹), r_c is the volumetric rate of ribulose 1,5-bisphosphate (RuBP) carboxylation (mol m⁻³ s⁻¹), r_d is the volumetric respiration rate (mol m⁻³ s⁻¹), and r_p is the volumetric photorespiration rate by Rubisco (mol m⁻³ s⁻¹).

The volumetric rate of CO_2 diffusion from the intercellular air space into the chloroplast stroma, $f_{\rm liq}$, is defined as:

$$f_{\text{liq}} = \frac{g_{\text{liq}}(C_{\text{liq}} - C_{\text{ias}})}{l_z} \tag{4}$$

where g_{liq} is the CO₂ conductance from the intercellular airspace into the chloroplast stroma (m s⁻¹), C_{liq} (mol m⁻³) is the [CO₂] in the stroma, and l_z is the finite element length through which diffusion occurs (m)." (n.b. l_z is the same as t_{elem} in my Table 1)

In the 2-D model, we extend the flux equation to x (length) and z (depth) dimensions:

$$D_{\rm e}\nabla^2 C_{\rm ias} = D_{\rm e} \left(\frac{\partial^2 C_{\rm ias}}{\partial x^2} + \frac{\partial^2 C_{\rm ias}}{\partial z^2} \right) = -f_{\rm liq}$$
 (5)

As I worked through Earles et al. (2017) model, it did not seem like dividing $g_{\rm liq}$ by l_z in equation Equation 4 made sense. The FEM is a discretization of a continuous model. Intuitively, it does make sense why a coarser grid (greater l_z) would lead to a larger [CO₂] drawdown for a given assimilation rate. Noting that $g_{\rm liq}$ is conductance per m² of stroma, this means the length scale to divide by should be 1/(stroma area per unit bulk leaf volume). This is equivalent to 1/[(stroma area per leaf area)x(leaf area per bulk leaf volume)] = 1/[Sc x (1/Tleaf)] = Tleaf/Sc (for now I am assuming Sm = Sc, but we can correct this later). Our equation is therefore:

$$f_{\rm liq} = \frac{g_{\rm liq}(C_{\rm liq} - C_{\rm ias})}{T_{\rm leaf}/S_{\rm m}} \tag{6}$$

I calculated assimilation and respiration the same way as Earles et al. (2017) using the standard C\$_3\$ biochemical model.

The boundary conditions are that the CO_2 concentration in the substomatal cavity is constant at C_{stom} . The fluxes on the left and right sides are 0 because of symmetry.

R code

I've copied the R code to set up the model and solve it if you want to copy and paste on your own machine. I annotated the R code you would need to run the model and include an example result.

```
# Variables
vars1 = read_rds("objects/model_var.rds") |>
  left_join(rename(parms, Variable = symbol), by = join_by(Variable))
vars2 = ph2d_offset$parms[pull(vars1, r)] |>
  as_tibble() |>
  pivot_longer(everything(), names_to = "r") |>
  full_join(vars1, by = join_by(r)) |>
  mutate(
    # convert from model unit to print unit
    value1 = case_when(
      r == "I_0" \sim value * 1e6,
      r == "phi_pal" ~ value,
      r == "T_leaf" ~ value * 1e6 - 1,
      r == "U" \sim 2 * (value * 1e6 - 1)
    )
  )
vars3 = vars2 |>
  transmute(
    s = glue("{var} = {value1}$ {Units}", var = str_remove(Variable, "\\$$"))
  ) |>
  pull(s) |>
  str_c(collapse = "; ")
# Guide to symbols
symbols = parms |>
  filter(r %in% c("C_ias", "C_liq", "I_0", "phi_pal", "T_leaf", "U")) |>
  transmute(s = glue("{symbol} = {name}")) |>
  pull(s) |>
  str_c(collapse = "; ")
```

extra words

Figure 2: Example profiles of volumetric CO_2 concentrations within otherwise identical amphistomatous leaves that have stomatal positions offset (top row) or aligned (bottom row) based on the 2-D porous medium model. When stomata are aligned, both aband adaxial stomata are position 0 along the x-axis; when stomata are offset, the adaxial stomate is positioned U/2 distance away. In this example, variables are set as: $I_0=1000~\mu\mathrm{mol}~\mathrm{m}^{-2}~\mathrm{s}^{-1};~\varphi_{\mathrm{pal}}=0.2~\mathrm{m}^3$ airspace m^{-3} leaf; $T_{\mathrm{leaf}}=200~\mu\mathrm{m};~U=200~\mu\mathrm{m}.$ All other parameter values are described in Table S1. $C_{\mathrm{ias}}=[\mathrm{CO}_2]$ in intercellular airspace; $C_{\mathrm{liq}}=[\mathrm{CO}_2]$ in chloroplast stroma; $I_0=\mathrm{PPFD}$ incident on the leaf surface; $\varphi_{\mathrm{pal}}=\mathrm{Fraction}$ of intercellular airspace (aka porosity), palisade; $T_{\mathrm{leaf}}=\mathrm{Leaf}$ thickness; $U=\mathrm{Interstomatal}$ distance.

References

- Borsuk, Aleca M., and Craig R. Brodersen. 2019. "The Spatial Distribution of Chlorophyll in Leaves." *Plant Physiology* 180 (3): 1406–17. https://doi.org/10.1104/pp.19.00094.
- Caemmerer, Susanne von. 2000. Biochemical Models of Leaf Photosynthesis. Techniques in Plant Science 2. Collingwood: CSIRO.
- Earles, J. Mason, Guillaume Théroux-Rancourt, Matthew E. Gilbert, Andrew J. McElrone, and Craig R. Brodersen. 2017. "Excess Diffuse Light Absorption in Upper Mesophyll Limits $\rm CO_2$ Drawdown and Depresses Photosynthesis." Plant Physiology 174 (2): 1082–96. https://doi.org/10.1104/pp.17.00223.
- Oguchi, R., K. Hikosaka, and T. Hirose. 2003. "Does the Photosynthetic Light-Acclimation Need Change in Leaf Anatomy?: Chloroplast Volume Change in Photosynthetic Light-Acclimation." Plant, Cell & Environment 26 (4): 505–12. https://doi.org/10.1046/j.1365-3040.2003.00981.x.
- Soetaert, Karline, and Peter M. J. Herman, eds. 2009. A Practical Guide to Ecological Modelling. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-8624-3.
- Syvertsen, J. P., J. Lloyd, C. McConchie, P. E. Kriedemann, and G. D. Farquhar. 1995. "On the Relationship Between Leaf Anatomy and CO₂ Diffusion Through the Mesophyll of Hypostomatous Leaves." *Plant, Cell and Environment* 18 (2): 149–57. https://doi.org/10.1111/j.1365-3040.1995.tb00348.x.
- Tholen, D., and X.-G. Zhu. 2011. "The Mechanistic Basis of Internal Conductance: A Theoretical Analysis of Mesophyll Cell Photosynthesis and ${\rm CO_2}$ Diffusion." Plant Physiology 156 (1): 90–105. https://doi.org/10.1104/pp.111.172346.