

# Enjeux, évolution et conséquences de la sécurité dans monde mobile

Guillaume Bouffard < guillaume.bouffard@ssi.gouv.fr >
Agence nationale de la sécurité des systèmes d'information
Workshop SERTIF - 11 Octobre 2016

#### **ANSSI? Késako?**

- ANSSI (Agence Nationale de la Sécurité des Systèmes d'Information) dépend du Premier Ministre, avec une double mission :
  - Prévention des cyberattaques :
    - Référentiels et guides
    - Politique industrielle et labellisation
    - Assistance technique
  - Réaction aux cyberattaques :
    - Détection et analyse
    - Remédiation

- Introduire la notion de racine de confiance :
  - Qu'est ce que c'est?
  - Comment garantir un niveau de sécurité?
  - Présentation rapide d'un élément sécurisée : la carte à puce.

- Introduire la notion de racine de confiance :
  - Qu'est ce que c'est?
  - Comment garantir un niveau de sécurité?.
  - Présentation rapide d'un élément sécurisée : la carte à puce.
- Présentation de la sécurité des ordiphones et des objets intelligents :
  - Les objets intelligents sont partout,
  - Peut-on garantir un niveau de sécurité comme pour une carte à puce?

# 1. Introduction

La Racine de Confiance

## Pourquoi les racines de confiance sont elles nécessaires?

- Plusieurs fonctionnalités ont besoin d'un environnement de confiance où il est possible :
  - de stocker des données sensibles :
    - en protégeant la confidentialité/intégrité des données;
  - exécuter des opérations sensibles (cryptographie) :
    - sans aucune fuite.

## Pourquoi les racines de confiance sont elles nécessaires ? (cont.)

- La racine de confiance est un environnement d'exécution sécurisé.
- Traditionnellement c'est un composant sécurisé.

## Pourquoi les racines de confiance sont elles nécessaires ? (cont.)

- On voit apparaître des implémentations logicielles de composant sécurisé :
  - Émulation de composant sécurisé matériel :
    - remplacement de TPMs physiques par des enclaves sécurisées, (type ARM TrustZone)
    - ce n'est pas un composant sécurisé.
  - whitebox cryptographique :
    - c'est fondamentalement moins sécurisé,
    - cette tendance est de plus en plus importante,
    - comment garantir le niveau de sécurité de ces implémentations?
    - comment et sous quelles conditions mener ces évaluations?

# 1. Introduction

Évaluation d'un composant sécurisé

## Comment garantir le niveau de sécurité?

- Les développeurs spécifient les recommandations de sécurité.
- Les vendeurs implémentent les recommandations de sécurité dans leurs produits.
- Les CESTIs évaluent le niveau de sécurité des produits.
- Le centre de certification certifie les produits en vérifiant chaque étapes du processus d'évaluation.

### Quel schéma?

- Critère Commun pour l'évaluation Sécuritaire des Technologie de l'information, (Abrégé comme Critère Commun ou CC)
- Standard international (ISO/IEC 15408) pour la certification des produits de sécurité.

#### Niveau d'évaluation

■ Plusieurs classes de certification existent :

| Level | Description                                     |
|-------|-------------------------------------------------|
| EAL 1 | Testé fonctionnellement                         |
| EAL 2 | Testé structurellement                          |
| EAL 3 | Testé et vérifié méthodiquement                 |
| EAL 4 | Méthodiquement conçu, testé et le code est relu |
| EAL 5 | Semi-formellement conçu et testé                |
| EAL 6 | Semi-formellement conçu, vérifié et testé       |
| EAL 7 | Semi-formellement conçu, vérifié et testé       |

- À chacune de ces classes, un niveau exigence d'évaluation est défini et peut être augmenté :
  - Par exemple : une carte à puce peut-être évaluée : EAL4 + ALC\_DVS.2 + AVA\_VAN.5

#### **Reconnaissance Mutuelle**

- SOG-IS (Senior Official Group Info. Systems Security):
  - Accord européen de reconnaissance (10 membres),
  - Audits périodiques entre centres de certification (procédures and compétences techniques).

#### **Reconnaissance Mutuelle**

- SOG-IS (Senior Official Group Info. Systems Security):
  - Accord européen de reconnaissance (10 membres),
  - Audits périodiques entre centres de certification (procédures and compétences techniques).
- CCRA (Common Criteria Recognition Arrangement):
  - Reconnaissance internationale (27 membres),
  - Audits périodiques entre chaque centre de certification (seulement la procédure),
  - Limitation sur le niveau maximum de reconnaissance :
    - AVA\_VAN ⇒ AVA\_VAN.2 maximum

### D'autre schémas?

Schéma EMVCo

■ Schéma Global Platform (Java Card, TEE)

#### D'autre schémas?

#### Schéma FMVCo

- Spécifications pour l'intéropérabilité dans les transactions bancaires,
- schéma certification privé,
- échanges réguliers avec les groupes de travail du SOG-IS.

■ Schéma Global Platform (Java Card, TEE)

#### D'autre schémas?

#### Schéma FMVCo

- Spécifications pour l'intéropérabilité dans les transactions bancaires,
- schéma certification privé,
- échanges réguliers avec les groupes de travail du SOG-IS.

#### ■ Schéma Global Platform (Java Card, TEE)

- Spécifications du cycle de vie et des communications vers la plate-forme Java Card et, récemment pour les TEE (Trusted Execution Environment),
- Nouveau schéma de certification privée pour les TEE,
- Échanges réguliers avec le SOG-İS

  Le profil de protection (PP) pour le TEE a été élaboré par l'ANSSI.

# 1. Introduction

La carte à puce : un système évalué

## La carte à puce

■ La carte à puce est le plus répandu des composants de confiance.

## La carte à puce

- La carte à puce est le plus répandu des composants de confiance.
- Utilisée dans :
  - le monde bancaire,
  - la TV à péage,
  - l'identité,
  - la santé,
  - votre téléphone,
  - . . . .

## La carte à puce : une racine de confiance

- La carte à puce est un système sécurisé avec :
  - juste quelques protocoles d'entrée/sortie :
    - ISO/IEC 7816,
    - ISO/IEC 14443.
  - protection contre les attaques physiques,
  - durcissement du code logiciel.



## L'ordiphone : le réveil de la force



(Martin Cooper avec le premier téléphone mobile.)



## La sécurité des ordiphones

■ La sécurité des ordiphones est un problème difficile avec de nombreux chemins d'attaque.

## La sécurité des ordiphones

- La sécurité des ordiphones est un problème difficile avec de nombreux chemins d'attaque.
- Quelques fonctions de sécurité :
  - Chiffrement des données
  - Protection de l'intégrité du code (et des données)
  - Cloisonnement applicatif et contrôle d'accès

. . . .

## La sécurité des ordiphones

- La sécurité des ordiphones est un problème difficile avec de nombreux chemins d'attaque.
- Quelques fonctions de sécurité :
  - Chiffrement des données
  - Protection de l'intégrité du code (et des données)
  - Cloisonnement applicatif et contrôle d'accès
  - **.** . . .
- Quelques chemins d'attaques :
  - Corruption de la phase de démarrage et/ou du matériel,
  - Installation d'applications malveillantes,
  - Corruption des échanges extérieurs. (les mises à jour peuvent être corrompues.)

## Quelques contre-mesures implémentées

- Fonctionnalités de sécurités présentes :
  - Phase de démarrage sécurisée,
  - Chiffrement des partitions,
  - Exécution sécurisée d'applications :
    - Contrer les attaques d'applications malveillantes.
    - L'utilisateur peut installer uniquement les applications mises à disposition dans une boutique et validées. (sauf dans les appareils de développement)

## Quelques contre-mesures implémentées

- Fonctionnalités de sécurités présentes :
  - Phase de démarrage sécurisée,
  - Chiffrement des partitions,
  - Exécution sécurisée d'applications :
    - Contrer les attaques d'applications malveillantes.
    - L'utilisateur peut installer uniquement les applications mises à disposition dans une boutique et validées. (sauf dans les appareils de développement)
- Ces contre-mesures sont implémentées entre le monde logiciel et le monde matériel.

## Quelques contre-mesures implémentées

- Fonctionnalités de sécurités présentes :
  - Phase de démarrage sécurisée,
  - Chiffrement des partitions,
  - Exécution sécurisée d'applications :
    - Contrer les attaques d'applications malveillantes.
    - L'utilisateur peut installer uniquement les applications mises à disposition dans une boutique et validées. (sauf dans les appareils de développement)
- Ces contre-mesures sont implémentées entre le monde logiciel et le monde matériel.
- Apple maîtrise complètement les composants embarqués dans ses ordiphones.

- « Un grand pouvoir implique de grandes responsabilité »
- Un composant sécurisé est utilisé pour des fonctionnalités sensibles :
  - ce composant sécurisé doit être évalué,
  - la plupart ont le même niveau d'évaluation qu'une carte à puce,
    - pour payer, le composant doit respecter le schéma d'évaluation EMVCo.
- Pour les opérations nécessitant plus de ressources :
  - les opérations doivent être faites sur un SoC (Système sur une puce),
  - Les SoCs récents ont un Environnement d'Exécution Sécurisé.
     (comme ARM TrustZone)

2. L'ordiphone

Utilisation des composants sécurisés dans les ordiphones

# Utilisation du composant sécurisé pour Apple Pay



# Utilisation du composant sécurisé pour Apple Pay



# Utilisation du composant sécurisé pour Google Pay

#### Ordiphone Android





Lecteur NFC

# Utilisation du composant sécurisé pour Google Pay

#### Ordiphone Android



# Utilisation du composant sécurisé pour Google Pay

#### Ordiphone Android



## Utilisation du composant sécurisé pour Google Pay



# 2. L'ordiphone

Sécurité des SoCs

#### Fonctionnalités des SoCs

- Les SoCs sont des micro-processeurs complexes,
- Majoritairement basés sur des ARM 32/64-bits,
- Les SoCs haut de gamme ont :
  - au moins 4-cœurs,
  - au moins 4 Go de RAM.
  - Wi-Fi,
  - 3G/LTE,
  - Bluetooth,
  - GPS,
  - NFC,
  - support de USB,
  - support des caméras,
  - GPU,
  - support des extensions mémoires (type SD, eMMC, etc.).



#### **Architecture ARM TrustZone**



(Source: https://developer.arm.com/technologies/trustzone)

#### **Exemple d'attaque sur ARM TrustZone**

- Étude de cas : démarrage sécurisé d'un boîtier Android multimédia vidéo <sup>1</sup>.
- Le SoC contient un mécanisme de démarrage sécurisé afin de vérifier l'image de l'OS avant de la charger en TrustZone.
- Partie TrustZone non documentée.

//www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

Securité du monde mobile G. Bouffard (ANSSI) Workshop SERTIF

<sup>1.</sup> http:

#### **Exemple d'attaque sur ARM TrustZone**

- Étude de cas : démarrage sécurisé d'un boîtier Android multimédia vidéo <sup>1</sup>.
- Le SoC contient un mécanisme de démarrage sécurisé afin de vérifier l'image de l'OS avant de la charger en TrustZone.
- Partie TrustZone non documentée.
- Accès root disponible (côté non sécurisé) via une connexion UART.



#### 1. http:

//www.fredericb.info/2016/10/amlogic-s905-soc-bypassing-not-so.html

■ Impossible de lire la *BootROM* depuis le monde non sécurisé. (fonctionnement attendu)

- Impossible de lire la *BootROM* depuis le monde non sécurisé. (fonctionnement attendu)
- La chaîne de démarrage sécurisé ne permet pas de charger du code non autorisé.



FIGURE – ARM Trusted Firmware Design.

- A partir de là, deux chemins d'attaque ont été découverts.
- Grâce à la liaison UART, il est possible d'envoyer des commandes U-Boot.
  - La communication entre le Monde Non Sécurisé et le Monde Sécurisé se fait via des instructions SMC (Secure Monitor Call).
    - Corruption non trivial du plan mémoire via une interruption SMC.
    - Lecture du code binaire du BL2
  - 2 Corruption de la phase de chargement du niveau 2.
    - Seulement l'intégrité de le BL3 est vérifié, pas d'authentification.
    - Chargement d'un BL3 corrompu.

- A partir de là, deux chemins d'attaque ont été découverts.
- Grâce à la liaison UART, il est possible d'envoyer des commandes U-Boot.
  - La communication entre le Monde Non Sécurisé et le Monde Sécurisé se fait via des instructions SMC (Secure Monitor Call).
    - Corruption non trivial du plan mémoire via une interruption SMC.
    - Lecture du code binaire du BL2
  - 2 Corruption de la phase de chargement du niveau 2.
    - Seulement l'intégrité de le BL3 est vérifié, pas d'authentification.
    - Chargement d'un BL3 corrompu.
    - Bingo!

- A partir de là, deux chemins d'attaque ont été découverts.
- Grâce à la liaison UART, il est possible d'envoyer des commandes U-Boot.
  - La communication entre le Monde Non Sécurisé et le Monde Sécurisé se fait via des instructions SMC (Secure Monitor Call).
    - Corruption non trivial du plan mémoire via une interruption SMC.
    - Lecture du code binaire du BL2
  - 2 Corruption de la phase de chargement du niveau 2.
    - Seulement l'intégrité de le BL3 est vérifié, pas d'authentification.
    - Chargement d'un BL3 corrompu.
    - Bingo!
- Attaque purement logicielle.

## **Enclave Sécurisée d'Apple**

- Introduit avec iPhone 5S et iOS 7 en 2013.
- coprocesseur intégré au processeur A7 ou supérieur.
  - Mémoire chiffrée.
  - générateur de nombres aléatoires matériel.
  - Système d'exploitation durci.
  - Identifiant matériel unique inconnu d'Apple.
  - Opérations de chiffrement et déchiffrement en boite noire.
  - Les clés ne peuvent pas être lues hors de l'enclave sécurisée.
  - Communications entre l'enclave sécurisée et le processeur applicatif via une « boite aux lettres ».
- Protège les données d'authentification et les clés de déchiffrement des partitions.

- Un SoC n'est pas un composant sécurisé contre les attaques physiques,
  - Actuellement, un système d'exploitation TrustZone est évalué via le schéma CC en France (EAL2 + ALC\_DVS.2 + AVA\_VAN.5),
  - ANSSI a fourni un profil de protection à propos de l'évaluation des TEE.

- Un SoC n'est pas un composant sécurisé contre les attaques physiques,
  - Actuellement, un système d'exploitation TrustZone est évalué via le schéma CC en France (EAL2 + ALC\_DVS.2 + AVA\_VAN.5),
  - ANSSI a fourni un profil de protection à propos de l'évaluation des TEE.
- Théoriquement, un SoC peut être perturbé par une attaque par injection de faute,

- Un SoC n'est pas un composant sécurisé contre les attaques physiques,
  - Actuellement, un système d'exploitation TrustZone est évalué via le schéma CC en France (EAL2 + ALC\_DVS.2 + AVA\_VAN.5),
  - ANSSI a fourni un profil de protection à propos de l'évaluation des TEE.
- Théoriquement, un SoC peut être perturbé par une attaque par injection de faute,
- Mais, un SoC est:
  - un processeur multitâche,
  - avec une CPU haute fréquence.

- Un SoC n'est pas un composant sécurisé contre les attaques physiques,
  - Actuellement, un système d'exploitation TrustZone est évalué via le schéma CC en France (EAL2 + ALC\_DVS.2 + AVA\_VAN.5),
  - ANSSI a fourni un profil de protection à propos de l'évaluation des TEE.
- Théoriquement, un SoC peut être perturbé par une attaque par injection de faute,
- Mais, un SoC est:
  - un processeur multitâche,
  - avec une CPU haute fréquence.
- ... ce qui complexifie le succès d'attaques physiques.

## Et l'IoT dans tout ça?



(Source:flickr.com/wilgengebroed/)

#### Et l'IoT dans tout ça?



(Source:flickr.com/wilgengebroed/)

- Comme pour les ordiphones, l'loT a un cycle de développement très rapide,
- La plupart des systèmes loT n'ont pas de composants de sécurité.

#### **Comment certifier l'Iot?**

- Actuellement aucun standard n'est établi pour évaluer des objets intelligents,
- des initiatives privées semblent émerger,
- il faut des schémas de certification adaptés :
  - on n'évalue pas une brosse à dent comme un pacemaker,
  - la méthode d'évaluation doit être adaptée aux cycles rapides de développement de ces objets.

## **Conclusion**

- Pour l'instant, les attaques physiques ne sont pas/très peu utilisées pour attaquer les ordiphones.
- Peut-on attaquer physiquement un SoC? Oui, mais ce n'est pas trivial.
- Pour l'instant, les attaques sont principalement logicielles.
- Comment garantir le niveau de sécurité d'un SoC?
  - Évaluer ce SoC,
  - Il n'existe pas encore de schéma d'évaluation sûr et rapide,
  - C'est à faire!

# **Questions?**

Guillaume Bouffard <guillaume.bouffard@ssi.gouv.fr>