Técnicas de Projeto de Algoritmos - Força Bruta

Kleber Jacques F. de Souza

- A técnica de Força Bruta (também conhecida como busca exaustiva) é a mais simples das técnicas de projeto.
- É um método para resolver um problema através de uma **travessia completa** (ou parcial) **no espaço de busca**.

- Solução direta, geralmente baseada no enunciado do problema.
- Pode exigir grande esforço computacional, mas os algoritmos são fáceis de entender.

Dado um conjunto de valores:

 Quais os procedimentos necessários para encontrar um valor específico dentro deste conjunto de dados?

Força Bruta - Busca Sequencial

- Solução:
 - Comparar a chave com cada item do conjunto de elementos até encontrar um item cujo o valor é igual ao valor da chave.

• Valor procurado: 4

Busca Sequencial - Algoritmo

Seja:

- x: o valor procurado
- A[1..n]: o conjunto de elementos

Algoritmo:

Melhor caso: C(n) = 1

Pior caso : C(n)=n

Caso médio : C(n)=(n+1)/2

Pesquisa sem sucesso:

C(n) = n+1

- x é comparado sucessivamente com A[1], A[2],..., A[n].
- Se x for igual a algum dos A[i], retorna Verdadeiro.
- Senão, retorna-se **Falso**.

Força Bruta - Algoritmo Geral

- 1. Listar **todas** as soluções potenciais para o problema.
 - Nenhuma solução é repetida;
- 2. <u>Avaliar</u> as soluções, **uma a uma**, mantendo a melhor encontrada até o momento.
- 3. Quando a busca terminar, retornar a solução encontrada.

- Pode ser recursiva, mas na maioria das vezes é iterativa.
- Útil para o desenvolvimento rápido de algoritmos que operem sobre uma entrada pequena ou que serão executados poucas vezes.

- Dados n itens
 - Pesos: p₁, p₂, ..., p_n
 - Valores: v₁, v₂, ..., v_n
 - Uma mochila de capacidade C
- Problema:
 - Encontrar o subconjunto mais valioso de itens que caibam dentro da mochila.

A solução exaustiva para este problema consiste em considerar "todos" os subconjuntos do conjunto de n itens dados, calculando o peso total de cada subconjunto para identificar subconjunto praticáveis

&

Encontrar um subconjunto com o valor mais elevado entre eles

Item	Peso	Valor
1	12	4
2	2	2
3	1	1
4	4	10
5	1	2

Subconjunto	Peso Total	Valor Total
1	12	4
2	2	2
3	1	1
4	4	10
5	1	2

Subconjunto	Peso Total	Valor Total
1,2	14	6
1,3	13	5
1,4	16	14
1,5	13	6
2.3	3	3
2,4	6	12
2,5	3	4
3,4	5	11
3,5	2	3
4,5	5	12

Subconjunto	Peso Total	Valor Total
1,2,3	15	7
1,2,4	18	16
1,2,5	15	8
1,3,4	17	15
1,3,5	14	7
2,3,4	7	13
2,3,5	4	5
3,4,5	6	13

Subconjunto	Peso Total	Valor Total
1,2,3,4	19	17
1,2,3,5	16	9
2,3,4,5	8	15
1,2,3,4,5	20	19

- Como o número de subconjuntos de um conjunto de n elementos é 2ⁿ, a busca exaustiva leva a um algoritmo O(2ⁿ).
- Assim, a busca exaustiva leva a algoritmos que s\u00e3o extremamente ineficientes

- Algoritmos de Busca exaustiva s\u00e3o executados em uma quantidade de tempo real\u00edstica somente para inst\u00e1ncias muito pequenas.
- Em muitos casos existem alternativas muito melhores!
- Em alguns casos, busca exaustiva (ou variação) é a única solução conhecida.

Referências Bibliográficas

Ziviani, Nivio. **Projeto de Algoritmos:** com implementações em JAVA e C++. CENGACE Learning, 2012. (Livro Eletrônico)

CORMEN, Thomas H. et al. **Algoritmos**: teoria e prática. Elsevier, RJ, 2012.

Dake. **File:Knapsack.svg**. Disponível em: commons.wikimedia.org/wiki/File:Knapsack.svg, 2017.