

TFT LCD Approval Specification

MODEL NO.: V420H1 - L03

Costumer:	
Approval by:	
Note:	

LCD TV Head Division

AVP	郭振隆

QRA Dept.	TVHD/PDD					
стольери.	DDIII	DDII	DDI			
Approval	Approval	Approval	Approval			
陳永一	李汪洋	藍文錦	林文聰			

LCD TV Marketing and Product Management Division				
Product Manager	嚴逸塵	林孟慧		

- CONTENTS -

REVISION HISTORY		3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS		4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT		5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT 3.2.1 CCFL(Cold Cathode Fluorescent Lamp) CHARA 3.2.2 INVERTER CHARACTERISTICS 3.2.3 INVERTER INTERTFACE CHARACTERISTICS	CTERISTICS	7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE		13
5.V420H1-L03 LCD INPUT TERMINAL PIN ASSIGNMEN 5.1 TFT LCD MODULE Signal input 5.2 TFT LCD MODULE Power input 5.3 BACKLIGHT UNIT 5.4 INVERTER UNIT 5.5 BLOCK DIAGRAM OF INTERFACE 5.6 LVDS INTERFACE 5.7 COLOR DATA INPUT ASSIGNMENT	Τ	14
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE		22
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS		25
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS		29
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL		30
10. PACKAGEING 10.1 PACKING SPECIFICATION 10.2 PACKING METHOD		31
11. MECHANICAL CHARACTERISTICS		33

Issued Date: Sept. 30 2005 Model No.: V420H1-L03

Approval

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 2.0	Sept.9,'05	All	All	Approval Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420H1- L03 is a 42" TFT Liquid Crystal Display module with 24-CCFL Backlight unit and 2ch-LVDS interface. This module supports 1920 x 1080 HDTV format and can display true 16.7M colors (8-bit/color). The inverter module for backlight is built-in.

1.2 FEATURES

- Ultra wide viewing angle Super MVA technology
- High brightness (550 nits)
- High contrast ratio (1000:1)
- Fast response time (8 ms)
- High color saturation (NTSC 75%)
- Full HD (1920 x 1080 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- 180 degree rotation display option
- Optimized response time for 50 / 60 Hz frame rate

1.3 APPLICATION

- Standard Living Room TVs.
- Home Theater Application.
- Public Display Application.
- MFM Application.

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	930.24(H) x 523.26 (V) (42.02" diagonal)	mm	(1)
Bezel Opening Area	938.3 (H) x 531.3 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920x R.G.B. x 1080	pixel	-
Pixel Pitch(Sub Pixel)	0.1615 (H) x 0.4845 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Display Operation Mode	Transmissive mode / Normally black	-	-
	Anti-reflective coating		
Surface Treatment	Hard coating (3H)	-	-
	Reflection rate : < 2%		

Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note	
Horizontal(H)			982.3	983	984	mm	
Module Size	Vertical(V)		575.3	576	577	mm	Note (1)
Module Size	Depth(D)	W/PCB-Cover	43.1	43.8	44.8	mm	
W/I INV		W/I INV	51	52	53	mm	-
	Weight		11000	11200	11400	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Min. Max.		Note	
Storage Temperature	T _{ST}	-20	+60	۰C	(1)	
Operating Ambient Temperature	T _{OP}	0	50	۰C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	(50)	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	1	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 60 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 60 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

5

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
	O y o .	Min.	Max.]	
Power Supply Voltage	V _{cc}	-0.3	20	V	(1)
Logic Input Voltage	V_{IN}	-0.3	(3.6)	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_W	-	3000	V_{RMS}	
Power Supply Voltage	V_{BL}	0	30	V	(1)
Control Signal Level	-	-0.3	7	V	(1), (3)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals includes On/Off Control, Internal PWM Control, External PWM Control and Internal/External PWM Selection.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $Ta = 25 \pm 2 \, {}^{\circ}C$

Parar	notor	Symbol		Value		Linit	Note
Parar	neter	Symbol	Min.	Тур.	Max.	Unit	
Power Supply Voltage		Vcc	16.2	18	19.8	V	(1)
Ripple Voltage		V_{RP}	-	ı	350	mV	-
Rush Current		I _{RUSH}	-	3.5	-	Α	(2)
Power Supply Current	White	lcc	-	0.75	-	Α	(3)a
	Black		-	0.30	-	Α	(3)b
	Vertical Stripe		-	0.55	-	Α	(3)c
LVDS differential input high threshold voltage		V_{TH}	-	-	+100	mV	-
LVDS differential input	low threshold voltage	V_{TL}	-100	-	-	mV	-
LVDS common input ve	oltage	Vic	1.125	1.25	1.375	V	-
Terminating Resistor		RT	-	100	-	ohm	-
CMOS interface	Input High Threshold Voltage	V _{IH}	2.7	-	3.3	V	-
	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V	-

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Vcc rising time is 470μs

Note (3) The specified power supply current is under the conditions at Vcc = 18 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

3.2 BACKLIGHT UNIT

3.2.1 CCFL (Cold Cathode Fluorescent Lamp) CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value	Unit	Note		
Farameter	Syllibol	Min.	Min. Typ.		Offic	Note	
Lamp Input Voltage	V_L		1420		V_{RMS}	$I_{L} = 5.0 \text{ mA}$	
Lamp Current	IL	4.5	5.0	5.5	mA_{RMS}	(1)	
Laman Chartina Valtage	Vs	ı	-	2270	V_{RMS}	(2), Ta = 0 °C,	
Lamp Starting Voltage		-	-	1910	V_{RMS}	(2), Ta = 25 °C	
Operating Frequency	F_L	40	-	70	KHz	(3)	
Lamp Life Time	L_BL	50,000	-	-	Hrs	(4)	

3.2.2 INVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Doromotor	Cymbol		Value	Unit	Note		
Parameter	Symbol -	Min.	Тур.	Max.	Offic	Note	
Power Consumption	P_{BL}	-	187	-	W	$(5), I_L = 5.0 \text{mA}$	
Power Supply Voltage	V_{BL}	22.8	24	25.2	V_{DC}		
Power Supply Current	I _{BL}	-	7.8	-	Α	Non Dimming	
Input Ripple Noise	-	-	-	500	mV_{P-P}	V _{BL} =22.8V	
Backlight Turn on Voltage	V	2270	-	-	V_{RMS}	Ta = 0 °C	
Backlight Tufff off Voltage	V _{BS}	1910	-	-	V_{RMS}	Ta = 25 °C	
Oscillating Frequency	F _W	47	50	53	kHz		
Dimming frequency	F _B	150	160	170	Hz		
Minimum Duty Ratio	D _{MIN}	-	20	-	%		

Note (1) Lamp current is measured by utilizing high frequency current meters as shown below:

Note (2) The lamp starting voltage V_S should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.

- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency of the display input signals, and it may result in line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) The life time of a lamp is defined as when the brightness is larger than 50% of its original value and the effective discharge length is longer than 80% of its original length (Effective discharge length is defined as an area that has equal to or more than 70% brightness compared to the brightness at the center point of lamp.) as the time in which it continues to operate under the condition at Ta = 25±2

and IL = $4.5 \sim 5.5$ mArms.

Note (5) The power supply capacity should be higher than the total inverter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when inverter dimming.

3.2.3 INVERTER INTERTFACE CHARACTERISTICS

Parameter		0	Complete Test		Value			Nico
		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control Voltage	ON	V_{BLON}	-	2.0	-	5.0	V	
On/On Control voltage	OFF	V BLON	ľ	0	-	0.8	V	
Internal/External PWM	Н	V_{SEL}	-	2.0		5.0	V	
Select Voltage	LO	V SEL	ľ	0	-	0.8	V	
Internal PWM Control	MAX	V	$V_{SEL} = L$	Ī	-	3.0	V	maximum duty ratio
Voltage	MIN	V_{IPWM}	WM VSEL = L	ı	0	ı	V	minimum duty ratio
External PWM Control	HI	V_{EPWM}	$V_{SEL} = H$	2.0	-	5.0	V	duty on
Voltage	LO	V EPWM	VSEL — II	0	-	0.8	V	duty off
Control Signal Rising Tim	ne	Tr	-	-	-	100	ms	
Control Signal Falling Tir	ne	Tf	ı	ı	-	100	ms	
PWM Signal Rising Time)	T_{PWMR}	ı	ı	-	50	us	
PWM Signal Falling Time		T_{PWMF}	•	ı	-	50	us	
Input impedance		R_{IN}	-	1	-	-	М	
BLON Delay Time		T _{on}	-	1	-	-	ms	_
BLON Off Time		T_{off}	-	1	-	-	ms	

- Note (1) The SEL signal should be valid before backlight turns on by BLON signal. It is inhibited to change the internal/external PWM selection (SEL) during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the following figure.
- Note (3) The power sequence and control signal timing must follow the figure below. For a certain reason, the inverter has a possibility to be damaged with wrong power sequence and control signal timing.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

5. V420H1-L03 LCD INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE SIGNAL INPUT

CNF1 Connector Pin Assignment (1)

Pin	Name	Description	Note
1	NC	No Connection	(4)
2	RPF	Display Rotation	(3)
3	NC	No Connection	
4	NC	No Connection	(4)
5	NC	No Connection	
6	ODSEL1	Overdrive Lookup Table Selection	(5)
7	ODSEL2	Overdrive Lookup Table Selection	(3)
8	GND	Ground	
9	ERX0-	Even pixel, negative LVDS differential data input, channel 0	
10	ERX0+	Even pixel, positive LVDS differential data input, channel 0	
11	ERX1-	Even pixel, negative LVDS differential data input, channel 1	
12	ERX1+	Even pixel, positive LVDS differential data input, channel 1	
13	ERX2-	Even pixel, negative LVDS differential data input, channel 2	
14	ERX2+	Even pixel, positive LVDS differential data input, channel 2	
15	ECLK-	Even pixel, negative LVDS differential clock input	
16	ECLK+	Even pixel, positive LVDS differential clock input	
17	ERX3-	Even pixel, negative LVDS differential data input, channel 3	
18	ERX3+	Even pixel, positive LVDS differential data input, channel 3	
19	GND	Ground	
20	ORX0-	Odd pixel, negative LVDS differential data input, channel 0	
21	ORX0+	Odd pixel, positive LVDS differential data input, channel 0	
22	ORX1-	Odd pixel, negative LVDS differential data input, channel 1	
23	ORX1+	Odd pixel, positive LVDS differential data input, channel 1	
24	ORX2-	Odd pixel, negative LVDS differential data input, channel 2	
25	ORX2+	Odd pixel, positive LVDS differential data input, channel 2	
26	OCLK-	Odd pixel, negative LVDS differential clock input	
27	OCLK+	Odd pixel, positive LVDS differential clock input	
28	ORX3-	Odd pixel, negative LVDS differential data input, channel 3	
29	ORX3+	Odd pixel, positive LVDS differential data input, channel 3	
30	GND	Ground	

5.2 TFT LCD MODULE Power input

CNF2 Connector Pin Assignment (2)

Pin	Name	Description	Note
1	VCC	Power input (+18V)	
2	VCC	Power input (+18V)	
3	VCC	Power input (+18V)	
4	VCC	Power input (+18V)	
5	VCC	Power input (+18V)	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	GND	Ground	
11	NC	No Connection	
12	NC	No Connection	
13	NC	No Connection	(4)
14	NC	No Connection	
15	NC	No Connection	

Note (1) CNF1 Connector part no.: FI-X30SSL-HF (JAE) or equivalent.

Note (2) CNF2 Connector part no.: 53261-1560 (Molex) or equivalent.

Note (3) Low: normal display (default), High: display with 180 degree rotation

Note (4) Reserved for internal use. Please leave it open.

Note (5) Overdrive lookup table selection. The overdrive lookup table should be selected in accordance with the frame rate to optimize image quality.

ODSEL2	ODSEL1	Note
L	L	Lookup table was optimized for 60 Hz frame rate.
L	Н	Lookup table was optimized for 50 Hz frame rate.
Н	L	Reserved. Do not use.
Н	Н	Reserved. Do not use.

5.3 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN3-CN26: BHR-04VS-1 (JST).

Pin	Name	Description	Wire Color
1	HV	High Voltage	Pink
2	HV	High Voltage	White

Note (1) The backlight interface housing for high voltage side is a model BHR-04VS-1, manufactured by JST. The mating header on inverter part number is SM02(12.0)B-BHS-1-TB(LF).

5.4 INVERTER UNIT

CN1 (Header): S14B-PH-SM3-TB (D)(LF)(JST) or equivalent.

Pin No.	Symbol	Description
1		
2		
3	VBL	+24V _{DC} power input
4		
5		
6		
7		
8	GND	GND
9		
10		
11	SEL	Internal/external PWM selection High : external dimming Low : internal dimming
12	E_PWM	External PWM control signal E_PWM should be connected to ground when internal PWM was selected (SEL = Low).
13	I_PWM	Internal PWM Control Signal I_PWM should be connected to ground when external PWM was selected (SEL = High).
14	BLON	Backlight on/off control

CN2 (Header): S12B-PH-SM3-TB (D)(LF)(JST) or equivalent.

Pin No.	Symbol	Description
1		
2		
3	VBL	+24V _{DC} power input
4		
5		
6		
7		
8	GND	GND
9		
10		
11	NC	NC
12	NC	NC

CN3-CN26 (Header): SM02(12.0)B-BHS-1-TB (LF)(JST) or equivalent

Pin No.	Symbol	Description
1	CCFL HOT	CCFL high voltage
2	CCFL HOT	CCFL high voltage

CN27-CN30 (Header): LM113P-020-TF1-3(Unicorn) or equivalent

	,	, , , ,
Pin No.	Symbol	Description
1		Board to Board
2		Board to Board
3		Board to Board
4		Board to Board
5		Board to Board
6		Board to Board
7		Board to Board
8		Board to Board
9	O a va t va a l	Board to Board
10	Control	Board to Board
11	Signal	Board to Board
12		Board to Board
13		Board to Board
14		Board to Board
15		Board to Board
16		Board to Board
17		Board to Board
18		Board to Board
19		Board to Board
20		Board to Board

Note (1) Floating of any control signal is not allowed.

5.5 BLOCK DIAGRAM OF INTERFACE

ER0~ER7: Even pixel R data
EG0~EG7: Even pixel G data
EB0~EB7: Even pixel B data
OR0~OR7: Odd pixel R data
OG0~OG7: Odd pixel G data
OB0~OB7: Odd pixel B data
DE: Data enable signal
DCLK: Data clock signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is even pixel and the second pixel is odd pixel.

5.6 LVDS INTERFACE

	SIGNAL	TRANSMITTE THC63LVDM8		INTERFACE CO	ONNECTOR	7	RECEIVER FHC63LVDF84A	TFT CONTROL
		PIN	INPUT	Host	TFT-LCD	PIN	OUTPUT	INPUT
	R0	51	TxIN0			27	Rx OUT0	R0
	R1	52	TxIN1			29	Rx OUT1	R1
	R2	54	TxIN2	TA OUT0+	Rx 0+	30	Rx OUT2	R2
	R3	55	TxIN3			32	Rx OUT3	R3
	R4	56	TxIN4			33	Rx OUT4	R4
	R5	3	TxIN6	TA OUT0-	Rx 0-	35	Rx OUT6	R5
	G0	4	TxIN7			37	Rx OUT7	G0
	G1	6	TxIN8			38	Rx OUT8	G1
	G2	7	TxIN9			39	Rx OUT9	G2
	G3	11	TxIN12	TA OUT1+	Rx 1+	43	Rx OUT12	G3
	G4	12	TxIN13			45	Rx OUT13	G4
	G5	14	TxIN14			46	Rx OUT14	G5
	B0	15	TxIN15	TA OUT1-	Rx 1-	47	Rx OUT15	B0
	B1	19	TxIN18			51	Rx OUT18	B1
	B2	20	TxIN19			53	Rx OUT19	B2
24bit	B3	22	TxIN20			54	Rx OUT20	B3
	B4	23	TxIN21	TA OUT2+	Rx 2+	55	Rx OUT21	B4
	B5	24	TxIN22			1	Rx OUT22	B5
	DE	30	TxIN26			6	Rx OUT26	DE
	R6	50	TxIN27	TA OUT2-	Rx 2-	7	Rx OUT27	R6
	R7	2	TxIN5			34	Rx OUT5	R7
	G6	8	TxIN10			41	Rx OUT10	G6
	G7	10	TxIN11			42	Rx OUT11	G7
	B6	16	TxIN16	TA OUT3+	Rx 3+	49	Rx OUT16	B6
	B7	18	TxIN17			50	Rx OUT17	B7
	RSVD 1	25	TxIN23			2	Rx OUT23	Not connect
	RSVD 2	27	TxIN24	TA OUT3-	Rx 3-	3	Rx OUT24	Not connect
	RSVD 3	28	TxIN25			5	Rx OUT25	Not connect
	DCLK	31	TxCLK IN	TxCLK OUT+ TxCLK OUT-	RxCLK IN+ RxCLK IN-	26	RxCLK OUT	DCLK

R0~R7: Pixel R Data (7; MSB, 0; LSB) G0~G7: Pixel G Data (7; MSB, 0; LSB) B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

Notes (1) RSVD(reserved)pins on the transmitter shall be "H" or "L".

5.7 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

	orodo data iripat:											D	ata	Siar	nal										\neg
Color			Red				Data Signal Green					Blue													
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4		G2	G1	G0	В7	В6	B5	B4	B3	B2	В1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l tou	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:		:	:	:	:		:				:	÷		:			:	:		
Of	: Dive (050)	:	:	:		:		:	•	:	:					•	:		•	:		:	:	:	:
Blue	Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
1	Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	Ί	Ί	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
_	Frequency	1/Tc	60	74	80	MHZ	-
LVDS Receiver Clock	Input cycle to cycle jitter	Trcl	-	-	200	ps	-
LVDS Receiver Data	Setup Time	Tlvsu	600	-	-	ps	-
2720 Hoselver Bala	Hold Time	Tlvhd	600	-	-	ps	-
	Frame Rate	Fr5	47	50	53	Hz	(2)
	Traine rate	Fr6	57	60	63	Hz	(3)
Vertical Active Display Term	Total	Τv	1115	1125	1135	Th	Tv=Tvd+Tvb
	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	35	45	55	Th	-
	Total	Th	2100	2200	2300	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	1920	1920	1920	Tc	-
	Blank	Thb	180	280	380	Tc	-

Note (1) Since this module is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this module would operate abnormally.

Note (2) (ODSEL2, ODSEL1) = (L,H). Please refer to 5.1 for detail information.

Note (3) (ODSEL2, ODSEL1) = (L,L). Please refer to 5.1 for detail information.

INPUT SIGNAL TIMING DIAGRAM

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF

CHIME!

Issued Date: Sept. 30 2005 Model No.: V420H1-L03

Approval

Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.

Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.

Note (4) T4 should be measured after the module has been fully discharged between power off and on period.

Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Ta	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	V_{CC}	18	V		
Input Signal	According to typical va	alue in "3. ELECTRICAL	CHARACTERISTICS"		
Lamp Current	l	5.0±0.5	mA		
Oscillating Frequency (Inverter)	F_L	50±3	KHz		
Frame Rate	Fr	60	Hz		

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Ite	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		800	1000	-	-	Note (2)
Response Tim	e	Gray to gray		-	8	12	ms	Note (3)
Center Lumina	nce of White	L _C		450	550	-	cd/m ²	Note (4)
White Variation	า	δW		-	-	1.3	-	Note (7)
Cross Talk		CT	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	-	4	%	Note (5)
	Red	Rx	Viewing Normal Angle		0.651		-	
	Neu	Ry	viewing Normal Angle		0.330		-	
	Green	Gx		T. m	0.275	Typ. +0.03	-	Note (6)
Color		Gy		Тур.	0.596		-	
Color Chromaticity		Bx		-0.03	0.142		-	
Chiomaticity	Diue	Ву			0.067		-	
	\\/hito	Wx			0.285		-	
	White	Wy			0.293		-	
	Color Gamut	C.G		72	75	-	%	NTSC
	Harizontal	θ_x +		80	88	-		
Viewing	Horizontal	θ _x -	OD: 00	80	88	-	Dag	Nata (4)
Angle	Vertical	θ _Y +	CR≥20	80	88	Typ Note (6) +0.03	Note(1)	
	vertical	θ _Y -		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by EZ-Contrast 160R (Eldim)

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

$$CR = CR (5)$$

CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (7).

Note (3) Definition of Gray to Gray Switching Time:

The driving signal means the signal of gray level 0, 63, 127, 191, 255.

Gray to gray average time means the average switching time of gray level 0,63,127,191,255 to each other.

Note (4) Definition of Luminance of White (L_C, L_{AVE}):

Measure the luminance of gray level 255 at center point and 5 points

$$L_{C} = L (5)$$

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L (x) is corresponding to the luminance of the point X at the figure in Note (7).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V420H1-L03
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

- (b) Revision Code: Cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

10. PACKAGING

10.1 PACKING SPECIFICATIONS

(1) 3 LCD TV modules / 1 Box

(2) Box dimensions : $1086(L) \times 356 (W) \times 715 (H)$

(3) Weight: approximately 40Kg (3 modules per box)

10.2 PACKING METHOD

Figures 10-1 and 10-2 are the packing method

Figure.10-1 packing method

Corner Protector:L1400*50mm*50mm L1000*50mm*50mm

Pallet:L1100*W1100*H140mm

Corrugated Fiberboard:L1100*W1100mm

Pallet Stack:L1100*W1100*H1575mm

Gross:257kg

Figure. 10-2 Packing method

11. MECHANICAL CHARACTERISTICS

