Firm Heterogeneity, Leverage and the Aftermath of the Pandemic

Aubhik Khan ¹ Soyoung Lee ²

August 21, 2021

¹Ohio State University ²Bank of Canada

Views expressed here are our own and not those of the Bank of Canada.

Covid-19 recession started when firm leverage was high

Data: Flow of funds

Concerns over firms' worsening balance sheets and a surge in default

Data: Small Business Credit Survey

Firm leverage and recovery

How does high leverage at the onset of a large recession affect the recovery?

Impact of business credit programs?

• reduce bankruptcies and support investment (short-run) vs debt overhang (long-run)

Overview

An incomplete markets model with entrepreneurship, entry and exit

- productivity, financial assets (short-term) and debt (long-term, illiquid)
- · borrowers may default on debt

Replicate firm size, balance sheet distributions and default behavior

· also consistent with firm's growth dynamics

Quantitatively assess the effects of high leverage on recovery

- compare two economies: ordinary and high leverage
- · consider policies that subsidize costs and defer debt obligations

Main findings

High leverage slows down a recovery

- when aggregate business leverage is 11 pp above average, a large negative TFP shock leads to a sharp increase in default
- · the half life of GDP doubles
- a large increase in exits drives the slower recovery

Policy intervention speeds the recovery

- Subsidies reduce exits and thus distortions in production
- Debt payment deferrals raise leverage, dampen policy's effectiveness

Literature

Heterogeneous Firms and Financial Frictions

- Credit Shocks: Buera et al. (2015), Khan and Thomas (2013), Jo (2021)
- Default: Khan et al. (2019), Ottonello and Winberry (2020), Bustamante (2020)

Entrepreneurship and Financial Frictions

- Wealth Inequality: Cagetti and De Nardi (2006)
- Development and TFP: Buera and Shin (2011), Buera et al. (2013)
- Risk and Productivity: Robinson (2021)

Pandemic

- Policy Alternatives: Eichenbaum et al. (2020), Glover et al. (2020)
- Firm Exit: Guerrieri et al. (2020)

Model overview

- · Time is continuous
- · Agents: workers, entrepreneurs, banks and government
- Workers face income shocks (ε) and have a single asset (a)
- Entrepreneurs face productivity shocks (z), hold assets (a) and long-term debt (b)
 - DRS technology
 - may enter and exit
 - · can default on debt
 - earn labor income when not operating a business

Worker

$$\rho v^{w}(a,\varepsilon) = \max_{c} u(c) + v_{a}^{w}(a,\varepsilon)\dot{a} + \sum_{c} \pi_{\varepsilon\varepsilon'} v^{w}(a,\varepsilon')$$
$$\dot{a} = \varepsilon w + ra - c - T(\cdot), \quad a \ge \underline{a}$$

- $T(\cdot)$ is tax or subsidy
- All value functions are functions of t

Entrepreneur

- v^0 : inactive, can enter
- $v^2\,$: business owner with exiting and defaulting option. exogenous exit shock and shock that gives them the borrowing option
- \boldsymbol{v}^1 : business owner with borrowing, exiting, and defaulting option. exogenous exit shock
- $v^d\,$: inactive, defaulted, cannot start a business or borrow. exogenous shock that removes the default flag

Entrepreneur 1: business owner

A stopping time problem. Stopping options: adjusting b, exiting or defaulting

$$v^{1}(a_{t}, b_{t}, z_{t}) = \max_{\{c_{t}, k_{t}, l_{t}\}_{t \geq 0}, \tau} \{E_{0} \int_{0}^{\tau} u(c_{t}) + e^{-\rho \tau} v^{1*}(a_{\tau}, b_{\tau}, z_{\tau})\}$$

$$\dot{a}_{t} = z_{t} k_{t}^{\alpha} l_{t}^{\nu} - w_{t} l_{t} - (r_{t} + \delta) k_{t} + r_{t} a_{t} - c_{t} - (r_{t} + \theta) b_{t} - \xi(\cdot) - T(\cdot)$$

$$k_{t} \leq \gamma a_{t}$$

$$\dot{b}_{t} = -\theta b_{t}$$

$$(a_{0}, b_{0}, z_{0}) = (a, b, z)$$

- τ is a stopping time, z follows a stochastic process
- collateral constraint on capital rental
- $\xi(\cdot)$: cost of production, $T(\cdot)$: tax

Entrepreneur 1: business owner, not stopping

$$\begin{split} \rho v^{1}(a,b,z) &= \max_{c,k,l} u(c) + v_{a}^{1}(a,b,z)\dot{a} + v_{b}^{1}(a,b,z)\dot{b} \\ &+ \sum_{c,k,l} \pi_{zz'} v^{1}(a,b,z') - \lambda_{10}(v^{1}(a,b,z) - v^{0}(a-b,z)) \\ \dot{a} &= zk^{\alpha}l^{\nu} - wl - (r+\delta)k + ra - c - (r+\theta)b - \xi(\cdot) - T(\cdot) \\ k &\leq \gamma a \\ \dot{b} &= -\theta b \\ v^{1}(a,b,z) &\geq v^{1*}(a,b,z) \end{split}$$

- $\pi_{zz'}$ describes the productivity process
- $\lambda_{10}(v^1(a,b,z)-v^0(a-b,z))$ reflects the possibility of exiting where λ_{10} is the frequency of the exiting shock; need to pay off the debt when exiting

Entrepreneur 1: Stopping value: $\max[v^r, v^x, v^b]$

Adjusting debt

$$v^{r}(a_{\tau}, b_{\tau}, z) = \max_{a', b'} v^{1}(a', b', z)$$
$$a' = a_{\tau} - b_{\tau} + q(a', b', z)b' - \xi_{b}(b' - b), \ b \le b' \le \underline{b}$$

Exiting

$$v^{\mathbf{x}}(a_{\tau}, b_{\tau}, z) = v^{0}(\mathbf{a_{\tau}} - \mathbf{b_{\tau}}, z)$$

Defaulting

$$v^{b}(a_{\tau}, b_{\tau}, z) = v^{d}(\chi a_{\tau}, z) - \xi_{d}$$

• ξ_b : refinancing cost. ξ_d : utility cost of defaulting cost business owner w/o borrowing option inactive defaulted

Effects of aggregate leverage: Role of the distribution

- · Entrepreneurs' capital are functions of their productivity and assets
 - collateral constrains renting efficient capital when assets are low
- · Producers with more debt dissave faster (save slower) when assets are low
 - · moving further below efficient level of capital
- but they dissave slower (save faster) when assets are high

Effects of aggregate leverage: Role of the distribution

Effects of aggregate leverage: Role of the distribution

- · Given agg. leverage, greater dispersion increases inefficiency in capital allocation
- · Greater dispersion implies
 - · some producers have more assets than required
 - · others have too little and produce below their efficient scale
 - → misallocation rises, aggregate TFP falls
- Effect of high leverage on recovery determined by the distribution of leverage

Strategy

Focus on reproducing cross-sectional and dynamic features of US firms

- · distribution of assets and debt across firms
- · size distribution
- firm growth dynamics

Calibration

- · values for a subset of parameters are assigned before solving the model
- 16 parameters are jointly calibrated in the steady state

Model fit

Moments	Data	Model	Source
Labor share (wn/y)	0.6	0.66	BLS
Exit rate	8.5%	10.1%	BDS
Bankruptcy rate	3.0%	3.4%	Dun & Brad Street
Share of small* firms without debt	30%	15.8%	SBCS
Share of small* firms with 100k+ debt	32%	73.8%	SBCS
Share of earnings in top 20%	63.5%	60.9%	SCF (2007)
Share of earnings in bottom 60%	15.8%	22.7%	SCF (2007)

Note: * the number employee is 500 or less. BDS data moments are means over 1984 - 2015 and SBCS moments are means over 2016-2019.

Model fit

Moments	Data	Model	Source
Top 10% employment share	69%	75.5%	Buera and Shin (2013)
Share of firms that hire 1-4	88.3%	87.3%	BDS
Share of firms that hire 5-19	9.8%	9.9%	BDS
Share of firms that hire 500+	0.4%	0.7%	BDS
Employment share of firms that hire 1-4	20.9%	21.8%	BDS
Relative size of age 6-10 firms	54.5%	97.6%	BDS
Relative size of age 0-5 firms	37.3%	40.8%	BDS
Exit rate of age 0-5 firms	54.8%	43.2%	BDS
Mean leverage	59.0%	57.0%	ORBIS
Aggregate leverage	36.6%	38.3%	Flow of Funds

Note: * the number employee is 500 or less. BDS data moments are means over 1984 - 2015. Flow of funds is 1954Q1 - 2021Q1.

Role of high leverage on recovery

Compute impulse responses to TFP shock

	Model	Data	
Ordinary leverage	38%	37%	(avg. over 54Q1-21Q1)
High leverage	49%	47%	(as of 19Q4)

- · Compare ordinary and high leverage cases
 - · increased workers' savings offset rise in entrepreneurs' debt
 - no change in net assets

Higher leverage slows the recovery

Higher leverage slows the recovery

Beyond aggregate capital, changes in its distribution shape the recovery

- · half life of TFP is 4 periods
- half life of GDP with ordinary leverage is 7 periods
 - gap between measured and exog. TFP is small
 - amplification is mainly from aggregate capital
- High leverage economy, the half life of GDP rises to 15 years
 - · large gap between measured and exog. TFP
 - changes in distribution from rise in default propagate the shock
 - extensive: smaller number of producers
 - intensive: rise in misallocation

Decomposing the total effects: prices vs distribution

$$y_t = A_t \int z_i k_{it}^{\alpha} l_{it}^{\nu} g_{it} di = A_t \int z_i k_{it}^{\alpha} l_{it}^{\nu} (g_i^* + \Delta g_{it}) di$$
$$= A_t \int z_i k_{it}^{\alpha} l_{it}^{\nu} g_i^* di + A_t \int z_i k_{it}^{\alpha} l_{it}^{\nu} \Delta g_{it} di$$

Exit & default drives slow recovery

[%] deviation from steady state; average of first 10 periods

High leverage increases distortions

% deviation from steady state; average of first 10 periods

Role of policy to recovery

Business Credit Programs in response to Covid-19 shock

- Corporate Credit Facilities
- · Main Street Lending Program
- Paycheck Protection Program
 - total volume (20-21) \$791bn, amount forgiven is \$441bn

Compare ordinary and policy intervention

- the fiscal authority subsidizes production costs for 2 periods
 - total amount of subsidy: 0.2% of GDP (\approx forgiven amount of PPP)
- · over same period, businesses are able to defer debt payments

Policy intervention speed the recovery

• policy dampens drop in wages and interest rates, reducing its effectiveness

Subsidy helps producers stay in business

Conclusion

Heterogeneous producers, long-term debt, and default option

- Effects of high leverage in a recovery depends on its distributions
- Large recessions are propagated by high leverage
 - · doubles the half life of recovery
- Changes in the producer distribution drives down aggregate TFP
- Policies subsidizing costs leads to faster recoveries
- Deferring debt payment dampens the effects of PPP

Entrepreneur 2: business owner, not stopping

Business owners without borrowing option

$$\rho v^{2}(a,b,z) = \max_{c,k,l} u(c) + v_{a}^{2}(a,b,z)\dot{a} + v_{b}^{2}(a,b,z)\dot{b} + \sum_{c,k,l} \pi_{zz'}v^{1}(a,b,z')$$

$$-\lambda_{10}(v^{1}(a,b,z) - v^{0}(a-b,z)) - \lambda_{21}(v^{2}(a,b,z) - v^{1}(a,b,z))$$

$$\dot{a} = zk^{\alpha}l^{\nu} - wl - (r+\delta)k + ra - c - (r+\theta)b - \xi(\cdot) - T(\cdot), \quad k \le \gamma a$$

$$\dot{b} = -\theta b$$

$$v^{2}(a,b,z) \ge v^{2*}(a,b,z)$$

• $\lambda_{20}(v^2(a,b,z)-v^1(a,b,z))$ reflects the possibility of getting borrowing option where λ_{21} is the frequency of the shock

Entrepreneur 2: business owner, stopping values

Exiting

$$\mathbf{v}^{\mathbf{x}}(a_{\tau}, b_{\tau}, z) = v^{0}(a - b, z)$$

Defaulting

$$v^{b}(a_{\tau}, b_{\tau}, z) = v^{d}(\chi a_{\tau}, z) - \xi_{d}$$

Entrepreneur: inactive

A stopping time problem. A stopping option: Entering

$$v^{0}(a_{t}, z_{t}) = \max_{\{c_{t}\}_{t \geq 0}, \tau} \{ E_{0} \int_{0}^{\tau} u(c_{t}) + e^{-\rho \tau} v^{0*}(a_{\tau}, z_{\tau}) \}$$
$$\dot{a}_{t} = \psi z_{t} w_{t} + r_{t} a_{t} - c_{t} - T(\cdot)$$
$$(a_{0}, z_{0}) = (a, z)$$

- given a schedule of the entering cost $(\kappa(z,r,w))$ choose to enter or not
- can borrow up to $\gamma_{\kappa}\kappa(z,r,w)$

Entrepreneur: inactive, not stopping

The HJB equation prior to stopping is,

$$\rho v^{0}(a, z) = \max_{c} u(c) + v_{a}^{0}(a, z)\dot{a} + \sum_{c} \pi_{zz'}v^{0}(a, z')$$
$$\dot{a} = \psi zw + ra - c - T(\cdot)$$
$$v^{0}(a, z) \ge v^{0*}(a, z)$$

Entrepreneur: inactive, stopping values

Entering

$$v^{e}(a_{\tau}, z) = \max_{a', b'} v^{2}(a', b', z)$$
$$a' = a_{\tau} + q(a', b', z)b' - \xi_{b}b' - \kappa(z, r, w)$$
$$b' \le \gamma_{\kappa}\kappa(z, r, w)$$

Entrepreneur: defaulted

$$\rho v^{d}(a,z) = \max_{c} u(c) + v_{a}^{d}(a,z)\dot{a} + \sum_{c} \pi_{zz'}v^{d}(a,z') - \lambda_{d}(v^{d}(a,z) - v^{0}(a,z))$$
$$\dot{a} = \psi_{d}zw + ra - c - T(\cdot)$$

- Default flag is removed after $1/\lambda_d$ on average

Policy economy experiences a more rapid recovery in output

