2.2.1 椭圆及其标准方程

杨习

SHINEYOUNG7@163.COM

2018.12.12

复习

■ 圆的定义:

■ 圆的定义:平面内,到一个定点的距离等于定长的所有的点的轨迹.

- 圆的定义:平面内,到一个定点的距离等于定长的所有的点的轨迹.
- 如何画一个圆?

- 圆的定义:平面内,到一个定点的距离等于定长的所有的点的轨迹.
- 如何画一个圆?
- 圆的标准方程:

- 圆的定义: 平面内,到一个定点 的距离等于定长的所有的点的 轨迹.
- 如何画一个圆?
- 圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2$

- 圆的定义:平面内,到一个定点的距离等于定长的所有的点的轨迹.
- 如何画一个圆?
- 圆的标准方程: $(x-a)^2 + (y-b)^2 = r^2$

思考一下:

平面内, 到两个定点的距离之和等于定长的点的轨迹又是什么呢?

•

知识目标

- 1. 理解椭圆的缘之所起
- 2. 能通过自己的动手操作,深层次理解椭圆是什么
- 3. 会由椭圆的定义推出椭圆的标准方程

引入

中国国家大剧院

天体运行轨道

如何画一个椭圆?什么是椭圆?

小实验材料:

草稿纸、针管笔、细绳、图钉.

小实验材料:

草稿纸、针管笔、细绳、图钉.

步骤:

小实验材料:

草稿纸、针管笔、细绳、图钉.

步骤:

1. 取出不可拉伸的定长细绳; 在草稿 纸上画两个定点*F*₁, *F*₂;

小实验材料:

草稿纸、针管笔、细绳、图钉.

步骤:

- 取出不可拉伸的定长细绳;在草稿 纸上画两个定点F₁, F₂;
- 2. 将细绳的两端固定在这两个定点上;

小实验材料:

草稿纸、针管笔、细绳、图钉.

步骤:

- 取出不可拉伸的定长细绳;在草稿 纸上画两个定点F₁, F₂;
- 2. 将细绳的两端固定在这两个定点上;
- 3. 用笔尖把细绳拉紧,在草稿纸上慢慢移动,画出一条轨迹,观察画出的图形.

小实验材料:

草稿纸、针管笔、细绳、图钉.

步骤:

- 取出不可拉伸的定长细绳;在草稿 纸上画两个定点F₁, F₂;
- 2. 将细绳的两端固定在这两个定点上;
- 3. 用笔尖把细绳拉紧,在草稿纸上慢慢移动,画出一条轨迹,观察画出的图形.

1. 在画轨迹的过程中,细绳两端的位置是固定的还是运动的?

1. 在画轨迹的过程中,细绳两端的位置是固定的还是运动的? 细绳两端处于定点上

- 1. 在画轨迹的过程中,细绳两端的位置是固定的还是运动的? 细绳两端处于定点上
- 2. 在画轨迹的过程中, 轨迹上的点始终满足一个什么条件?

- 1. 在画轨迹的过程中,细绳两端的位置是固定的还是运动的? 细绳两端处于定点上
- 2. 在画轨迹的过程中,轨迹上的点始终满足一个什么条件? 轨迹上的点到两定点的距离之和始终不变

- 1. 在画轨迹的过程中,细绳两端的位置是固定的还是运动的? 细绳两端处于定点上
- 2. 在画轨迹的过程中,轨迹上的点始终满足一个什么条件? 轨迹上的点到两定点的距离之和始终不变
- 3. 在画轨迹的过程中,细绳的长度和两定点的距离有怎样的大小关系?
 - 细绳长度 > 两定点距离

- 1. 在画轨迹的过程中,细绳两端的位置是固定的还是运动的? 细绳两端处于定点上
- 2. 在画轨迹的过程中,轨迹上的点始终满足一个什么条件? 轨迹上的点到两定点的距离之和始终不变
- 3. 在画轨迹的过程中,细绳的长度和两定点的距离有怎样的大小 关系?

细绳长度 > 两定点距离

由此,大家能通过这一小实验归结出椭圆的定义了吗?

椭圆的定义

平面内, 到<mark>两个定点 F_1, F_2 </mark>

椭圆的定义

平面内, 到两个定点F₁, F₂ 的距离之和

椭圆的定义

平面内, 到两个定点F1, F2 的距离之和等于常数

椭圆的定义

平面内,到两个定点 F_1, F_2 的距离之和等于常数(大于 $|F_1F_2|$)

椭圆的定义

平面内,到<mark>两个定点 F_1, F_2 </mark> 的<mark>距离之和等于常数</mark>(大于 $|F_1F_2|$)的点的轨迹叫做椭圆.

椭圆的定义

平面内,到<mark>两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹叫做椭圆.</mark>

一些定义

■ 两个定点F₁, F₂ —— 焦点;

椭圆的定义

平面内,到<mark>两个定点 F_1 , F_2 的<mark>距离之和等于常数</mark>(大于 $|F_1F_2|$)的点的轨迹叫做椭圆.</mark>

一些定义

- 两个定点F₁, F₂ —— 焦点;
- 两个焦点之间的距离|F₁F₂| ---- 焦距

椭圆的定义

平面内,到<mark>两个定点 F_1 , F_2 的<mark>距离之和等于常数</mark>(大于 $|F_1F_2|$)的点的轨迹叫做椭圆.</mark>

一些定义

- 两个定点F₁, F₂ —— 焦点;
- 两个焦点之间的距离|F₁F₂| ---- 焦距

椭圆定义辨析

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

椭圆定义辨析

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

若距离之和($|MF_1| + |MF_2|$) 为常数:

椭圆定义辨析

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

若距离之和($|MF_1| + |MF_2|$) 为常数:

■ 距离之和 > 焦距:

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

若距离之和($|MF_1| + |MF_2|$) 为常数:

■ 距离之和 > 焦距: 轨迹为椭圆;

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

若距离之和($|MF_1| + |MF_2|$) 为常数:

- 距离之和 > 焦距: 轨迹为椭圆;
- 距离之和 = 焦距:

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

若距离之和($|MF_1| + |MF_2|$) 为常数:

- 距离之和 > 焦距: 轨迹为椭圆;
- 距离之和 = 焦距: 轨迹为一条线段 F_1F_2 ;

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

若距离之和($|MF_1| + |MF_2|$) 为常数:

- 距离之和 > 焦距: 轨迹为椭圆;
- 距离之和 = 焦距: 轨迹为一条线段F₁F₂;
- 距离之和 < 焦距:

思考

平面内, 到两定点 距离之和 等于 常数 的点的轨迹都是椭圆吗?

若距离之和($|MF_1| + |MF_2|$) 为常数:

- 距离之和 > 焦距: 轨迹为椭圆;
- 距离之和 = 焦距: 轨迹为一条线段F₁F₂;
- 距离之和 < 焦距: 轨迹不存在.

练一下

已知A(-3.0), B(3,0), 点M到A, B 两点的距离之和为 2a:

1. 当2a = 10 时,点M 的轨迹是什么?

练一下

已知A(-3.0), B(3,0), 点M到A, B 两点的距离之和为 2a:

- 1. 32a = 10 时,点M 的轨迹是什么? 椭圆;
- 2. 当2a = 6 时,点M 的轨迹是什么?

练一下

已知A(-3.0), B(3,0), 点M到A, B 两点的距离之和为 2a:

- 1. 当2a = 10 时,点M 的轨迹是什么? 椭圆;
- 2. 当2a = 6 时,点M 的轨迹是什么?线段AB;
- 3. 3 = 5 时,点M 的轨迹是什么?

练一下

已知A(-3.0), B(3,0), 点M到A, B 两点的距离之和为 2a:

- 1. 当2a = 10 时,点M 的轨迹是什么? 椭圆;
- 2. 当2a = 6 时,点M 的轨迹是什么?线段AB;
- 3. 32a = 5 时, 点M 的轨迹是什么? 没有轨迹;

建立平面直角坐标系通常遵循的原则:对称、简洁

建立平面直角坐标系通常遵循的原则:对称、简洁

建立平面直角坐标系通常遵循的原则:对称、简洁

以F₁, F₂ 所在直线为x轴

建立平面直角坐标系通常遵循的原则:对称、简洁

以 F_1 , F_2 所在直线为x轴 以线段 F_1F_2 的中垂线为y轴

建立平面直角坐标系通常遵循的原则:对称、简洁

以 F_1 , F_2 所在直线为x轴 以线段 F_1F_2 的中垂线为y轴 则线段 F_1F_2 的中点就为原点 建立平面直角坐标系.

在此,我们设定: 椭圆上的点到焦点的<mark>距离之和</mark>为"2*a*"

在此,我们设定: 椭圆上的点到焦点的距离之和为"2*a*" **焦**距为"2*c*". (且2*a* > 2*c* > 0)

在此,我们设定: 椭圆上的点到焦点的<mark>距离之和</mark>为"2a" 焦距为"2c". (月2*a* > 2C > 0)

那么椭圆上的点到焦点的<mark>距离之和</mark>等于常数这样一个几何关系可以转换成一个怎样的数学语言呢?

在此,我们设定: 椭圆上的点到焦点的<mark>距离之和</mark>为"2a" **焦**距为"2c". (月2*a* > 2*c* > 0)

那么椭圆上的点到焦点的<mark>距离之和</mark>等于 常数 这样一个几何关系可以转换成一个怎样的数学语言呢?

$$|MF_1| + |MF_2| = 2a$$

在此,我们设定: 椭圆上的点到焦点的<mark>距离之和</mark>为"2*a*"

焦距为"2c". (且2a > 2c > 0)

 $(-C,O)F_1 \qquad F_2(C,O) \rightarrow X$

那么椭圆上的点到焦点的<mark>距离之和</mark>等于 常数 这样一个几何关系可以转换成一个怎样的数学语言呢?

$$|MF_1| + |MF_2| = 2a$$

$$\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$$

在此,我们设定:

椭圆上的点到焦点的<mark>距离之和为"2a"</mark>

焦距为"2c". (且2a > 2c > 0)

那么椭圆上的点到焦点的<mark>距离之和</mark>等于 常数 这样一个几何关系可以转换成一个怎样的数学语言呢?

$$|MF_1| + |MF_2| = 2a$$

$$\sqrt{(X+C)^2+y^2}+\sqrt{(X-C)^2+y^2}=2a$$

思考

上式该如何化简呢?

$$\sqrt{(X+C)^2+y^2}+\sqrt{(X-C)^2+y^2}=2a$$

$$\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$$
移项,再平方, $(\sqrt{(x+c)^2+y^2})^2=(2a-\sqrt{(x-c)^2+y^2})^2$

$$\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$$
 移项,再平方, $(\sqrt{(x+c)^2+y^2})^2=(2a-\sqrt{(x-c)^2+y^2})^2$ 整理得, $a^2-cx=a\sqrt{(x-c)^2+y^2}$,

$$\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$$
移项,再平方, $(\sqrt{(x+c)^2+y^2})^2=(2a-\sqrt{(x-c)^2+y^2})^2$

整理得, $a^2 - cx = a\sqrt{(x-c)^2 + y^2}$,

两边再平方, 化简, 即得:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

$$\sqrt{(X+C)^2+y^2}+\sqrt{(X-C)^2+y^2}=2a$$

移项,再平方,
$$(\sqrt{(x+c)^2+y^2})^2=(2a-\sqrt{(x-c)^2+y^2})^2$$

整理得, $a^2 - cx = a\sqrt{(x-c)^2 + y^2}$,

两边再平方, 化简, 即得:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

设
$$a^2 - c^2 = b^2(b > 0)$$
,

$$\sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$$
移项,再平方, $(\sqrt{(x+c)^2+y^2})^2=(2a-\sqrt{(x-c)^2+y^2})^2$

整理得, $a^2 - cx = a\sqrt{(x-c)^2 + y^2}$,

两边再平方, 化简, 即得:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$

设 $a^2 - c^2 = b^2(b > 0)$, 则上式变为:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

焦点在x轴上的椭圆的标准方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

焦点在x轴上的椭圆的标准方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

注意事项

■ 椭圆的焦点在

焦点在x轴上的椭圆的标准方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

注意事项

■ 椭圆的焦点在 x轴上;

焦点在x轴上的椭圆的标准方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

注意事项

- 椭圆的焦点在 x轴上;
- 焦点坐标为:

焦点在x轴上的椭圆的标准方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

注意事项

- 椭圆的焦点在 x轴上;
- 焦点坐标为: F₁(-c,0), F₂(c,0);

焦点在x轴上的椭圆的标准方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

注意事项

- 椭圆的焦点在 x轴上;
- 焦点坐标为: F₁(-c, 0), F₂(c, 0);
- $\blacksquare a^2 = b^2 + c^2.$

焦点在x轴上的椭圆的标准方程

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

注意事项

- 椭圆的焦点在 x轴上;
- 焦点坐标为: F₁(-c,0), F₂(c,0);
- $\blacksquare a^2 = b^2 + c^2.$

思考

若椭圆的焦点在y轴上,则其标准方程又是怎样的呢?

焦点在y轴上的椭圆的标准方程

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

焦点在y轴上的椭圆的标准方程

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

注意事项

■ 椭圆的焦点在

焦点在y轴上的椭圆的标准方程

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

注意事项

■ 椭圆的焦点在 y轴上;

焦点在y轴上的椭圆的标准方程

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

注意事项

- 椭圆的焦点在 y轴上;
- 焦点坐标为:

焦点在y轴上的椭圆的标准方程

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

注意事项

- 椭圆的焦点在 y轴上;
- 焦点坐标为: F₁(O, c), F₂(O, -c);

焦点在y轴上的椭圆的标准方程

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

注意事项

- 椭圆的焦点在 y轴上;
- 焦点坐标为: F₁(O, c), F₂(O, -c);
- $a^2 = b^2 + c^2.$

焦点在x轴

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

焦点在y轴

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

特别注意:

■ 方程的形式:

焦点在x轴

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

焦点在y轴

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

特别注意:

■ 方程的形式: 左边是两个分式的平方和, 右边是"1";

焦点在x轴

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

焦点在y轴

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

特别注意:

- 方程的形式: 左边是两个分式的平方和, 右边是"1";
- 三个参数a,b,c的关系:

焦点在x轴

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

焦点在y轴

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

特别注意:

- 方程的形式: 左边是两个分式的平方和, 右边是"1";
- 三个参数a, b, c的关系: $a^2 = b^2 + c^2$;

焦点在x轴

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

焦点在v轴

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

特别注意:

- 方程的形式: 左边是两个分式的平方和, 右边是"1";
- 三个参数a, b, c的关系: $a^2 = b^2 + c^2$;
- 谁的分母大,焦点就在谁轴上("比大小");

15 | 19

判断下列椭圆焦点在哪个轴上,并指明a²,b²,及其焦点坐标.

(1).
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

判断下列椭圆焦点在哪个轴上,并指明a²,b²,及其焦点坐标.

(1).
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 在x轴上,

判断下列椭圆焦点在哪个轴上,并指明a²,b²,及其焦点坐标.

(1).
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$

(2).
$$\frac{x^2}{144} + \frac{y^2}{169} = 1$$

判断下列椭圆焦点在哪个轴上,并指明a²,b²,及其焦点坐标.

(1).
$$\frac{\chi^2}{25} + \frac{y^2}{16} = 1$$
 $ext{tal.}, (-3,0)$ $\pi(3,0)$.

(2).
$$\frac{x^2}{144} + \frac{y^2}{169} = 1$$
 在y轴上,

判断下列椭圆焦点在哪个轴上,并指明a²,b²,及其焦点坐标.

(1).
$$\frac{\chi^2}{25} + \frac{y^2}{16} = 1$$
 $\pm x$ $\pm x$, $(-3, 0)$ $\pi(3, 0)$.

(3).
$$\frac{x^2}{m^2} + \frac{y^2}{m^2+1} = 1$$

判断下列椭圆焦点在哪个轴上,并指明a²,b²,及其焦点坐标.

(1).
$$\frac{\chi^2}{25} + \frac{y^2}{16} = 1$$
 $\pm x$ $\pm x$, $(-3, 0)$ $\pi(3, 0)$.

(3).
$$\frac{x^2}{m^2} + \frac{y^2}{m^2+1} = 1$$
 在y轴上,

判断下列椭圆焦点在哪个轴上,并指明a²,b²,及其焦点坐标.

(1).
$$\frac{\chi^2}{25} + \frac{y^2}{16} = 1$$
 $\pm x$ $\pm x$, $(-3, 0)$ $\pi(3, 0)$.

(2).
$$\frac{x^2}{144} + \frac{y^2}{169} = 1$$
 在y轴上, $(0,-5)$ 和 $(0,5)$.

(3).
$$\frac{x^2}{m^2} + \frac{y^2}{m^2+1} = 1$$
 在y轴上, $(0,-1)$ 和 $(0,1)$.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(c,0) F_{2}(c,0) \times x$$

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(c,0) F_{2}(c,0) \times x$$

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(c, 0) \quad F_{2}(c, 0) \times x$$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(-c, 0) \qquad F_{2}(c, 0) \times x$$

■ 定义: 平面内, 到两个定点F₁, F₂

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(-c,0) \qquad F_{2}(c,0) \times x$$

■ 定义: 平面内,到两个定点F₁, F₂ 的距离之和

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(c, 0) F_{2}(c, 0) \times x$$

■ 定义: 平面内, 到两个定点F₁, F₂ 的距离之和等于常数

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(c, 0) \qquad F_{2}(c, 0) \times x$$

■ 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)

■ 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹

■ 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹(2a>2c).

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

- 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹(2a>2c).
- *a*, *b*, *c*的关系:

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(x,y) \to x$$

$$F_{2}(x,y) \to x$$

- 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹(2a>2c).
- a, b, c的关系: $a^2 = b^2 + c^2$

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

- 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹(2a>2c).
- a, b, c的关系: $a^2 = b^2 + c^2$
- 焦点位置的判断:

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

$$y$$

$$F_{1}(c,0) F_{2}(c,0) \times x$$

- 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹(2a>2c).
- a, b, c的关系: $a^2 = b^2 + c^2$
- 焦点位置的判断: 谁的分母大, 焦点就在谁轴上

$$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a > b > 0)$$

- 定义: 平面内,到两个定点 F_1 , F_2 的距离之和等于常数(大于 $|F_1F_2|$)的点的轨迹(2a>2c).
- a, b, c的关系: $a^2 = b^2 + c^2$
- 焦点位置的判断: 谁的分母大, 焦点就在谁轴上("比大小")

拓展练习: 求椭圆的标准方程

写出适合下列条件的椭圆的标准方程:

1. 焦点坐标为(O, -4), a = 5;

拓展练习: 求椭圆的标准方程

写出适合下列条件的椭圆的标准方程:

- 1. 焦点坐标为(O, -4), a = 5;
- 2. 焦点在x轴上,焦距等于4, 且经过点 $P(3, -2\sqrt{6})$;

拓展练习: 求椭圆的标准方程

写出适合下列条件的椭圆的标准方程:

- 1. 焦点坐标为(O, -4), a = 5;
- 2. 焦点在x轴上,焦距等于4, 且经过点 $P(3, -2\sqrt{6})$;

3.
$$a + c = 10, a - c = 4$$
.

课后巩固

作业:

《课时作业(八)》

课后探索:

方程 $Ax^2 + By^2 = 1$ 什么时候表示椭圆? 什么时候表示焦点在 x 轴上的椭圆? 什么时候表示焦点在 y 轴上的椭圆? 能表示圆吗?