

Консультант

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информат	тика и системы управлени	IS
КАФЕДРА	Системы обра	ботки информации и упра	авления
РАСЧЕТ	к курс	СНИТЕЛЬНАЯ СОВОЙ РАБОТЕ НА ТЕМУ:	
	решение ко.	мплексной задач	u
	машині	ного обучения	
Студент <u>ИУ5</u> (Групп	•	(Подпись, дата)	Латыпова К.Н. (Фамилия И.О.)
Руководитель курс	овой работы	(Подпись, дата)	<u>Гапанюк Ю.Е.</u> (Фамилия И.О.)
		` ' '	` /

(Подпись, дата)

(Фамилия И.О.)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Ž	УТВЕРЖД	АЮ
Завед	ующий ка	федрой
		(Индекс)
		(И.О.Фамилия)
<u> </u>	»	20г.

ЗАДАНИЕ

на выполнение курсовой работы

па выпо	лисинс кур	совой работы	
по дисциплине Техно	логии машинног	о обучения	
Студент группы ИУ5-63Б			
Латыг	ова Камиля Наил	тевна	
VIMIM	(Фамилия, имя, от		
Тема курсовой работы: _решение ком		-	
Направленность КР (учебная, исслед-	_ ` *		
—————————————————————————————————————	иятие, НИР)	кафедра	
График выполнения работы: 25% к	нед., 50% к	нед., 75% кнед.,	100% кнед.
Задание решение задачи машин			исциплины.
— <u>_</u>			
Оформление курсовой работы:			
	21 gramay hama	ото А.1	
Расчетно-пояснительная записка на _	<u>21</u> листах форм	ara A4.	
Дата выдачи задания «»	20г.		
Руководитель курсовой работы			Гапанюк Ю.Е.
	_	(Подпись, дата)	(Фамилия И.О.)
Студент	_	(Полпись, лата)	
		тиодинсь, дагат	(Pamininia II.O.)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре

Оглавление

1.	Введение:	4
2.	Задание:	4
3.	Описание и анализ набора данных	5
3.1.	. Код	5
3.2	. Экранные формы	11
4.	Заключение	2.1

1. Введение

Курсовой проект – самостоятельная часть учебной дисциплины «Технологии машинного обучения» – учебная и практическая исследовательская студенческая работа, направленная на решение комплексной машинного обучения. Результатом курсового проекта является отчет, содержащий моделей, описания тексты программ результаты экспериментов.

Курсовой проект опирается на знания, умения и владения, полученные студентом в рамках лекций и лабораторных работ по дисциплине.

В рамках курсового проекта возможно проведение типового или нетипового исследования.

Типовое исследование - решение задачи машинного обучения на основе материалов дисциплины. Выполняется студентом единолично. Нетиповое исследование - решение нестандартной задачи. Тема должна быть согласована с преподавателем. Как правило, такая работа выполняется группой студентов.

2. Задание

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимы х для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти

моделей, две из которых должны быть ансамблевыми.

- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбор а гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется использоват ь методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметро в. Сравнение качества полученных моделей с качеством baseline-моделей.

Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

3. Описание и анализ набора данных

В качестве набора данных для исследования возьмем данные об оружиях. Далее построим следующие модели машинного обучения: случайный лес, градиентный бустинг, линейная регрессия, дерево решений и модель на основе К ближайших соседей.

3.1. Код

```
import streamlit as st
import seaborn as sns
import pandas as pd
import numpy as np
import plotly.figure_factory as ff
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.preprocessing import StandardScaler, MinMaxScaler,
StandardScaler, Normalizer
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error,
median_absolute_error, r2_score
from sklearn.neighbors import KNeighborsRegressor
```

```
def load data():
 def preprocess data(data in):
           new cols.append(new col name)
     Y = data out['private sale handgun'].astype(int)
data = load data()
data['private sale long gun'] =
data['private_sale_long_gun'].replace(0,np.nan)
data['private_sale_long_gun'] =
data['private_sale_long_gun'].fillna(data['private_sale_long_gun'].mean())
data['private_sale_handgun'] = data['private_sale_handgun'].replace(0,np.nan)
data['private_sale_handgun'] =
n_estimators_1 = st.sidebar.slider('Количество фолдов:', min_value=3,
st.sidebar.header('Градиентный бустинг')
n_estimators_2 = st.sidebar.slider('Количество:', min value=3, max value=10,
st.sidebar.header('Модель ближайших соседей')
n_estimators_3 = st.sidebar.slider('Количество K:', min value=3,
```

```
st.write(data.head())
st.subheader('Размер датасета')
st.write(data.shape)
st.subheader('Количество нулевых элементов')
st.write(data.isnull().sum())
st.write(data['state'].value counts())
st.subheader('Колонки и их типы данных')
st.write(data.dtypes)
st.subheader('Статистические данные')
st.write(data.describe())
fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x=data['permit'], y=data['permit recheck'])
plt.xlabel("permit")
plt.ylabel("permit recheck")
st.pyplot(fig)
f1, ax = plt.subplots()
sns.boxplot(x=data['permit'])
st.pyplot(f1)
st.subheader('Масштабирование данных')
plt.hist(data['permit'], 50)
plt.show()
st.pyplot(f)
st.subheader('Показать корреляционную матрицу')
fig1, ax = plt.subplots(figsize=(10, 5))
sns.heatmap(data.corr(), annot=True, fmt='.2f')
st.pyplot(fig1)
X_train, X_test, Y_train, Y_test, X, Y = preprocess_data(data)
forest_1 = RandomForestRegressor(n_estimators=n_estimators_1, oob_score=True,
random_state=10)
forest_1.fit(X, Y)
st.subheader('RandomForestRegressor')
st.subheader('Средняя квадратичная ошибка:')
st.write(r2 score(Y test, Y predict))
fig1 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X_test['private sale long gun scaled'], Y test, marker='o',
plt.scatter(X test['private sale long gun scaled'], Y predict, marker='.',
plt.legend(loc='lower right')
```

```
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides no')
plt.plot(n estimators 1)
st.pyplot(fig1)
st.subheader('Нахождение лучшего случайного леса')
grid 2 = GridSearchCV(estimator=RandomForestRegressor(oob score=True,
grid 2.fit(X, Y)
st.write(grid 2.best params )
st.subheader('Средняя абсолютная ошибка:')
st.write(mean absolute error(Y test, Y predict3))
st.subheader ('Средняя квадратичная ошибка:')
st.write(mean squared error(Y test, Y predict3))
st.subheader('Median absolute error:')
st.write(median absolute error(Y test, Y predict3))
st.subheader('Коэффициент детерминации:')
st.write(r2 score(Y test, Y predict3))
fig1 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X test['private sale long gun scaled'], Y test, marker='o',
plt.scatter(X test['private sale long gun scaled'], Y predict3, marker='.',
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides_no')
plt.plot(n estimators 1)
st.pyplot(fig1)
st.subheader('Градиентный бустинг')
grad = GradientBoostingRegressor(n estimators=n estimators 2,
grad.fit(X train, Y train)
st.write(mean_absolute_error(Y_test, Y_grad_pred))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean_squared_error(Y_test, Y_grad_pred))
st.subheader('Median absolute error:')
st.write(median absolute error(Y test, Y grad pred))
st.subheader('Коэффициент детерминации:')
st.write(r2 score(Y test, Y grad pred))
fig2 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X_test['private_sale_long_gun_scaled'], Y_test, marker='o',
```

```
plt.scatter(X test['private sale long gun scaled'], Y grad pred, marker='.
plt.legend(loc='lower right')
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides no')
plt.plot(random state 2)
st.pyplot(fig2)
st.subheader('Нахождение лучшего///')
grid gr = GridSearchCV(estimator=GradientBoostingRegressor(random state=10),
grid gr.fit(X train, Y train)
st.write(grid gr.best params )
grad1 = GradientBoostingRegressor(n estimators=100, max features=1,
min samples leaf=0.01, random state=10)
grad1.fit(X train, Y train)
st.subheader('Средняя абсолютная ошибка:')
st.write(mean absolute error(Y test, Y grad pred1))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean squared error(Y test, Y grad pred1))
st.subheader('Median absolute error:')
st.write(median absolute error(Y test, Y grad pred1))
st.subheader('Коэффициент детерминации:')
st.write(r2_score(Y_test, Y grad pred1))
fig1 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X test['private sale long gun scaled'], Y test, marker='o',
plt.scatter(X_test['private sale long gun scaled'], Y grad pred1, marker='.',
plt.legend(loc='lower right')
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides_no')
st.subheader('Построение линейной регрессии')
lr y pred = Lin Reg.predict(X test)
st.subheader('Средняя абсолютная ошибка:')
st.write(mean_absolute_error(Y_test, lr_y_pred))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean_squared_error(Y_test, lr_y_pred))
st.subheader('Median absolute error:')
st.write(median absolute_error(Y_test, lr_y_pred))
st.subheader('Коэффициент детерминации:')
st.write(r2 score(Y test, lr y pred))
```

```
fig3 = plt.figure(figsize=(7, 5))
plt.scatter(X_test['private_sale_long_gun_scaled'], Y_test, marker='s',
plt.scatter(X test['private sale long gun scaled'], lr y pred, marker='o',
plt.legend(loc='lower right')
plt.xlabel('private_sale_long_gun_scaled')
plt.ylabel('suicides no')
plt.show()
st.pyplot(fig3)
st.subheader('Tree')
clf = clf.fit(X train, Y train)
fig5 = plt.figure(figsize=(7, 5))
plt.scatter(X test['private sale long gun scaled'], Y test, marker='s',
plt.scatter(X test['private sale long gun scaled'], lr y pred, marker='o',
plt.legend(loc='lower right')
plt.xlabel('private sale long gun scaled')
plt.ylabel('suicides no')
plt.show()
st.pyplot(fig5)
st.subheader('Модель ближайших соседей для произвольного гиперпараметра К')
Regressor 5NN = KNeighborsRegressor(n neighbors = n estimators 3)
Regressor 5NN.fit(X train, Y train)
plt.scatter(X test['private sale long gun scaled'], Y test, marker='s',
plt.scatter(X test['private sale long gun scaled'], lr y pred, marker='o',
plt.legend(loc='lower right')
plt.xlabel('private sale long gun scaled')
plt.ylabel('suicides no')
st.pyplot(fig6)
```

3.2. Экранные формы

Первые 5 значений

	month	state	permit	permit_recheck	handgun	long_gun	other	mu
0	2021-05	Alabama	28248	317	21664	12423	1334	
1	2021-05	Alaska	307	7	3368	2701	323	
2	2021-05	Arizona	21767	695	20984	9259	1676	
3	2021-05	Arkansas	7697	1171	8501	5072	422	
4	2021-05	California	20742	11514	40160	25824	5576	

Размер датасета

(14905, 27)

Количество нулевых элементов

	0
month	0
state	0
permit	24
permit_recheck	11385
handgun	20
long_gun	19
other	6985
multiple	0
admin	23
prepawn_handgun	1943
prepawn_long_gun	1945

	state
Idaho	271
North Dakota	271
Colorado	271
Missouri	271
California	271
Oregon	271
New Hampshire	271
0hio	271
Oklahoma	271
Mississippi	271
Hawaii	271

Колонки и их типы данных

Статистические данные

permit permit_recheck handgun long_gun other mult count 14881 3520 14885 14886 7920 1 mean 7,262.4230 9,121.7455 7,126.2406 7,979.9966 550.7981 300. std 25,979.4154 61,210.8606 10,625.2507 9,223.3996 1,381.4198 780. min 0 0 0 0 0 0 0 25% 0 0 1039 2,176.2500 30 30 30 50% 815 0 3529 5270 179.5000 75% 5620 76.2500 8654 10,754.7500 565.2500 30							
mean 7,262.4230 9,121.7455 7,126.2406 7,979.9966 550.7981 300. std 25,979.4154 61,210.8606 10,625.2507 9,223.3996 1,381.4198 780. min 0 0 0 0 0 25% 0 0 1039 2,176.2500 30 50% 815 0 3529 5270 179.5000 75% 5620 76.2500 8654 10,754.7500 565.2500	mult	other	long_gun	handgun	permit_recheck	permit	
std 25,979.4154 61,210.8606 10,625.2507 9,223.3996 1,381.4198 780. min 0 0 0 0 0 0 0 0 0 0 0 30 30 30 50% 815 0 3529 5270 179.5000 75% 5620 76.2500 8654 10,754.7500 565.2500 565.2500	1	7920	14886	14885	3520	14881	count
min 0 0 0 0 0 25% 0 0 1039 2,176.2500 30 50% 815 0 3529 5270 179.5000 75% 5620 76.2500 8654 10,754.7500 565.2500	300.	550.7981	7,979.9966	7,126.2406	9,121.7455	7,262.4230	mean
25% 0 0 1039 2,176.2500 30 50% 815 0 3529 5270 179.5000 75% 5620 76.2500 8654 10,754.7500 565.2500	780.	1,381.4198	9,223.3996	10,625.2507	61,210.8606	25,979.4154	std
50% 815 0 3529 5270 179.5000 75% 5620 76.2500 8654 10,754.7500 565.2500		0	0	0	0	0	min
75% 5620 76.2500 8654 10,754.7500 565.2500		30	2,176.2500	1039	0	0	25%
		179.5000	5270	3529	0	815	50%
max 522188 1350676 147714 108058 77929 3		565.2500	10,754.7500	8654	76.2500	5620	75%
	3	77929	108058	147714	1350676	522188	max

Масштабирование данных

Показать корреляционную матрицу

RandomForestRegressor

Средняя абсолютная ошибка:

4.0313922236345565

Средняя квадратичная ошибка:

234.63550227096212

Median absolute error:

0.2238378370170011

Коэффициент детерминации:

Нахождение лучшего случайного леса

```
"n_estimators":75
```

Средняя абсолютная ошибка:

4.0017446483961665

Средняя квадратичная ошибка:

200.4414527863315

Median absolute error:

0.26450401476691354

Коэффициент детерминации:

Градиентный бустинг

Средняя абсолютная ошибка:

13.203970653620845

Средняя квадратичная ошибка:

12538.276465301355

Median absolute error:

0.11381861612755984

Коэффициент детерминации:

Нахождение лучшего////

```
"max_features": 1
   "min_samples_leaf": 0.01
   "n_estimators": 100
}
```

Средняя абсолютная ошибка:

11.58125003881188

Средняя квадратичная ошибка:

20249.10319419001

Median absolute error:

0.22738303232266333

Коэффициент детерминации:

Построение линейной регрессии

Средняя абсолютная ошибка:

9.783830443571587

Средняя квадратичная ошибка:

2886,1396550885124

Median absolute error:

0.3982726118590847

Коэффициент детерминации:

Tree

Модель ближайших соседей для произвольного гиперпараметра К

4. Заключение

В ходе данной работы были изучены несколько типов моделей машинного обучения. Для конкретного набора данных лучшими моделями оказались случайный лес, линейная регрессия и модель К ближайших соседей.