数列极限

李 君

天津师范大学, 数学科学学院

2023 年 6 月

目 录

§2 收敛数列的性质

本节首先考察收敛数列这个新概念有哪些优良性质? 然后学习怎样运用这些性质.

- 一、惟一性
- 二、有界性
- 三、保号性
- 四、保不等式性
- 五、迫敛性 (夹逼原理)
- 六、极限的四则运算
- 七、一些例子

一、惟一性

定理 2.2 若 $\{a_n\}$ 收敛,则它只有一个极限.

证 设 a 是 $\{a_n\}$ 的一个极限. 下面证明对于任何定数 $b \neq a, b$ 不能 是 $\{a_n\}$ 的极限.

若 a,b 都是 $\{a_n\}$ 的极限,则对于任何正数 $\varepsilon > 0$, $\exists N_1$, 当 $n > N_1$ 时,有

$$|a_n - a| < \varepsilon \tag{1}$$

 $\exists N_2$, 当 $n > N_2$ 时, 有

$$|a_n - b| < \varepsilon. \tag{2}$$

令 $N = \max \{N_1, N_2\}$, 当 n > N 时 (1), (2) 同时成立, 从而有

$$|a-b| \le |a_n-a| + |a_n-b| < 2\varepsilon.$$

因为 ε 是任意的, 所以 a = b.

二、有界性

定理 2.3 若数列 $\{a_n\}$ 收敛,则 $\{a_n\}$ 为有界数列,即存在 M>0,使得 $|a_n| \le M, n=1,2,\cdots$.

证 设 $\lim_{n\to\infty} a_n = a$, 对于正数 $\varepsilon = 1, \exists N, n > N$ 时, 有 $|a_n - a| < 1$, 即 $a - 1 < a_n < a + 1$. 若令 $M = \max\{|a_1|, |a_2|, \dots, |a_n|, |a - 1|, |a + 1|\}$.

则对一切正整数 n, 都有 $|a_n| \leq M$.

注 数列 {(-1)ⁿ} 是有界的, 但却不收敛. 这就说明有界只是数列收敛的必要条件, 而不是充分条件.

三、保号性

定理 2.4 设 $\lim_{n\to\infty} a_n = a$, 对于任意两个实数 b,c,b < a < c, 则存在 N, 当 n > N 时, $b < a_n < c$.

证 取
$$\varepsilon = \min\{a - b, c - a\} > 0, \exists N, \ \ \, \exists \ n > N \ \ \,$$
 时, $b \le a - \varepsilon < a_n < a + \varepsilon \le c$, 故 $b < a_n < c$.

注 若
$$a > 0$$
 (或 $a < 0$), 我们可取 $b = \frac{a}{2}$ (或 $c = \frac{a}{2}$), 则 $a_n > \frac{a}{2} > 0$ (或 $a_n < \frac{a}{2} < 0$).

这也是为什么称该定理为保号性定理的原因.

例 1 证明
$$\lim_{n\to\infty}\frac{1}{\sqrt[n]{n!}}=0.$$

证 对任意正数 ε , 因为 $\lim_{n\to\infty}\frac{(1/\varepsilon)^n}{n!}=0$, 所以由定理 2.4, $\exists N>0$, 当 n>N 时,

$$\frac{(1/\varepsilon)^n}{n!} < 1, \ \mathbb{P} \frac{1}{\sqrt[q]{n!}} < \varepsilon.$$

这就证明了
$$\lim_{n\to\infty}\frac{1}{\sqrt[n]{n!}}=0.$$

四、保不等式性

定理 2.5 设 $\{a_n\}$, $\{b_n\}$ 均为收敛数列, 如果存在正数 N_0 , 当 $n > N_0$ 时, 有 $a_n \le b_n$, 则 $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$.

证 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. 若 b < a, 取 $\varepsilon = \frac{a-b}{2}$, 由保号性定理, 存在 $N > N_0$, 当 n > N 时,

$$a_n > a - \frac{a-b}{2} = \frac{a+b}{2}, \ b_n < b + \frac{a-b}{2} = \frac{a+b}{2},$$

故 $a_n > b_n$, 导致矛盾. 所以 $a \leq b$.

注 若将定理 2.5 中的条件 $a_n \le b_n$ 改为 $a_n < b_n$, 也只能得到

$$\lim_{n\to\infty}a_n\leq\lim_{n\to\infty}b_n.$$

这就是说,即使条件是严格不等式,结论却不一定是严格不等式.

例如,虽然
$$\frac{1}{n} < \frac{2}{n}$$
,但 $\lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{2}{n} = 0$.

五、迫敛性(夹逼原理)

定理 2.6 设数列 $\{a_n\}$, $\{b_n\}$ 都以 a 为极限, 数列 $\{c_n\}$ 满足: 存在 N_0 , 当 $n > N_0$ 时, 有 $a_n \le c_n \le b_n$, 则 $\{c_n\}$ 收敛, 且 $\lim_{n \to \infty} c_n = a$.

证 对任意正数 ε , 因为 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = a$, 所以分别存在 N_1, N_2 , 使得

当 $n > N_1$ 时, $a - \varepsilon < a_n$; 当 $n > N_2$ 时, $b_n < a + \varepsilon$.

取 $N = \max\{N_0, N_1, N_2\}$, 当 n > N 时,

 $a - \varepsilon < a_n \le c_n \le b_n < a + \varepsilon$.

这就证得

$$\lim_{n\to\infty}c_n=a.$$

例 2 求数列 $\{\sqrt[4]{n}\}$ 的极限.

解设
$$h_n = \sqrt[4]{n} - 1 \ge 0$$
,则有
$$n = (1 + h_n)^n \ge \frac{n(n-1)}{2} h_n^2 (n \ge 2),$$
 故 $1 \le \sqrt[4]{n} = 1 + h_n \le 1 + \sqrt{\frac{2}{n-1}}$. 又因
$$\lim_{n \to \infty} 1 = \lim_{n \to \infty} \left(1 + \sqrt{\frac{2}{n-1}}\right) = 1,$$
 所以由迫敛性,求得 $\lim_{n \to \infty} \sqrt[4]{n} = 1$.

六、四则运算法则

定理 2.7 若 $\{a_n\}$ 与 $\{b_n\}$ 为收敛数列,则 $\{a_n+b_n\}$,

 $\{a_n - b_n\}$, $\{a_n \cdot b_n\}$ 也都是收敛数列, 且有

- (1) $\lim_{n\to\infty} (a_n \pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n;$
- (2) $\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$, 当 b_n 为常数 c 时, $\lim_{n\to\infty} cb_n = c \lim_{n\to\infty} b_n$;
- (3) 若 $b_n \neq 0$, $\lim_{n \to \infty} b_n \neq 0$, 则 $\left\{ \frac{a_n}{b_n} \right\}$ 也收敛, 且 $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} a_n / \lim_{n \to \infty} b_n.$

证 (1) 设 $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$, $\forall \varepsilon > 0$, 存在 N, 当 n > N 时, 有 $|a_n - a| < \varepsilon$, $|b_n - b| < \varepsilon$, 所以

$$|a_n \pm b_n - (a \pm b)| \leq |a_n - a| + |b_n - b| < 2\varepsilon,$$

由 ε 的任意性, 得到

$$\lim_{n\to\infty} (a_n \pm b_n) = a \pm b = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n.$$

证 (2) 因 $\{b_n\}$ 收敛, 故 $\{b_n\}$ 有界, 设 $|b_n| \leq M$. 对于任意 $\varepsilon > 0$,

当
$$n > N$$
 时, 有

$$|a_n-a|<\frac{\varepsilon}{M+1},|b_n-b|<\frac{\varepsilon}{|a|+1},$$

于是

$$|a_nb_n - ab| = |a_nb_n - ab_n + ab_n - ab|$$

$$\leq |b_n| |a_n - a| + |a| |b_n - b| < 2\varepsilon$$

由 ε 的任意性, 证得

$$\lim_{n \to \infty} a_n b_n = ab = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n.$$
证(3) 因为 $\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}$,由(2),只要证明

证 (3) 因为
$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}$$
, 由 (2), 只要证明
$$\lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{\lim_{n \to \infty} b_n}.$$

由于 $b \neq 0$, 据保号性, $\exists N_1$, 当 $n > N_1$ 时,

$$|b_n|>\frac{|b|}{2}.$$

又因为
$$\lim_{n\to\infty} b_n = b, \exists N_2, \exists n > N_2$$
 时,

$$|b_n-b|<\frac{|b|^2}{2}\varepsilon$$

取
$$N = \max\{N_1, N_2\}$$
, 当 $n > N$ 时,

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| = \left|\frac{b_n - b}{b_n b}\right| \le \frac{2}{|b|^2} |b_n - b| \le \varepsilon,$$

即
$$\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{b}$$
. 所以 $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}$.

七、一些例子

例 3 用四则运算法则计算

$$\lim_{n\to\infty} \frac{a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0}{b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0}$$

其中 $m \leq k, a_m b_k \neq 0$.

解 依据
$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0(\alpha>0)$$
, 分别得出:

$$(1)$$
 当 $m = k$ 时,有

$$\lim_{n \to \infty} \frac{a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0}{b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0}$$

$$= \lim_{n \to \infty} \frac{a_m + a_{m-1} \frac{1}{n} + \dots + a_1 \frac{1}{n^{m-1}} + a_0 \frac{1}{b^m}}{b_m + b_{m-1} \frac{1}{n} + \dots + b_1 \frac{1}{n^{m-1}} + b_0 \frac{1}{n^m}}$$

$$= \frac{a_m}{b_m}.$$

$$(2)$$
 当 $m < k$ 时, 有

$$\lim_{n \to \infty} \frac{a_m n^m + a_{m-1} n^{m-1} + \dots + a_1 n + a_0}{b_k n^k + b_{k-1} n^{k-1} + \dots + b_1 n + b_0}$$

$$= \lim_{n \to \infty} \frac{1}{n^{k-m}} \cdot \lim_{n \to \infty} \frac{a_m + a_{m-1} \frac{1}{n} + \dots + a_1 \frac{1}{n^{m-1}} + a_0 \frac{1}{n^m}}{b_k + b_{k-1} \frac{1}{n} + \dots + b_1 \frac{1}{n^{k-1}} + b_0 \frac{1}{n^k}}$$

$$= 0 \cdot \frac{a_m}{b_k} = 0.$$

所以

原式 =
$$\begin{cases} \frac{a_m}{b_m}, & m = k, \\ 0, & m < k. \end{cases}$$

例 4 设
$$a_n \ge 0$$
, $\lim_{n \to \infty} a_n = a$, 求证 $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{a}$.

证 由于 $a_n \ge 0$,根据极限的保不等式性,有 $a \ge 0$.对于任意 $\varepsilon > 0$. 3N. 当 n > N 时, $|a_n - a| < \varepsilon$.于是可得:

$$(1) a = 0$$
 时, 有 $|\sqrt{a_n} - 0| = \sqrt{a_n} < \sqrt{\varepsilon}$;

$$(2) a > 0$$
 时, 有

$$\left|\sqrt{a_n}-\sqrt{a}\right|=\frac{|a_n-a|}{\sqrt{a_n}+\sqrt{a}}\leq \frac{|a_n-a|}{\sqrt{a}}\leq \frac{\varepsilon}{\sqrt{a}}.$$

故
$$\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$$
 得证.

例 5 设
$$a_n \ge 0$$
, $\lim_{n \to \infty} a_n = a > 0$, 求证 $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$.

证 因为 $\lim_{n\to\infty} a_n = a > 0$, 根据极限的保号性, 存在 N, 当 n > N 时, 有 $\frac{a}{2} < a_n < \frac{3a}{2}$, 即

$$\sqrt[n]{\frac{a}{2}} < \sqrt[n]{a_n} < \sqrt[n]{\frac{3a}{2}}.$$

又因为
$$\lim_{n\to\infty} \sqrt[n]{\frac{a}{2}} = \lim_{n\to\infty} \sqrt[n]{\frac{3a}{2}} = 1$$
, 所以由极限的迫敛性, 证得 $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$.

例 6 求极限
$$\lim_{n\to\infty} \frac{a^n}{1+a^n} (a \neq -1)$$
.

$$\mathbf{m}$$
 (1) $|a| < 1$, 因为 $\lim_{n \to \infty} a^n = 0$, 所以由极限四则运算法则, 得

$$\lim_{n\to\infty}\frac{a^n}{1+a^n}=\frac{\lim_{n\to\infty}a^n}{1+\lim_{n\to\infty}a^n}=0.$$

(2)
$$a = 1$$
, $\lim_{n \to \infty} \frac{a^n}{1 + a^n} = \lim_{n \to \infty} \frac{1}{2} = \frac{1}{2}$.

(3)
$$|a| > 1$$
, 因 $\lim_{n \to \infty} (1/a^n) = 0$, 故得

$$\lim_{n \to \infty} \frac{a^n}{1 + a^n} = \lim_{n \to \infty} \frac{1}{1 + 1/a^n} = \frac{1}{1 + \lim_{n \to \infty} (1/a^n)} = 1.$$

例 7 设 a_1, a_2, \dots, a_m 为 m 个正数,证明

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = \max\{a_1, a_2, \dots, a_m\}.$$

证设
$$a = \max\{a_1, a_2, \cdots, a_m\}$$
.由
$$a \leq \sqrt[q]{a_1^n + a_2^n + \cdots + a_m^n} \leq \sqrt[q]{m}a,$$
$$\lim_{n \to \infty} \sqrt[q]{m}a = \lim_{n \to \infty} a = a,$$

以及极限的迫敛性,可得

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n} = a = \max\{a_1, a_2, \dots, a_m\}.$$

定义 1 设 $\{a_n\}$ 为数列, $\{n_k\}$ 为 N_+ 的无限子集, 且

$$n_1 < n_2 < \cdots < n_k < \cdots$$

则数列

$$a_{n_1}, a_{n_2}, \cdots, a_{n_k}, \cdots$$

称为 $\{a_n\}$ 的子列,简记为 $\{a_{n_k}\}$.

注 由定义, $\{a_n\}$ 的子列 $\{a_{n_k}\}$ 的各项均选自 $\{a_n\}$, 且保持这些项在 $\{a_n\}$ 中的先后次序. $\{a_{n_k}\}$ 中的第 k 项是 $\{a_n\}$ 中的第 n_k 项, 故总有 $n_k \geq k$.

定理 2.8 若数列 $\{a_n\}$ 收敛到 a, 则 $\{a_n\}$ 的任意子列 $\{a_{n_k}\}$ 也收敛到 a.

证 设 $\lim_{n\to\infty} a_n = a$. 则 $\forall \varepsilon > 0$, $\exists N$, $\exists n > N$, $|a_n - a| < \varepsilon$. 设 $\{a_{n_k}\}$ 是 $\{a_n\}$ 的任意一个子列. 由于 $n_k \geq k$, 因此 k > N 时, $n_k \geq k > N$, 亦有 $|a_{n_k} - a| < \varepsilon$. 这就证明了 $\lim_{n\to\infty} a_{n_k} = a$.

注 由定理 2.8 可知, 若一个数列的两个子列收敛于不同的值, 则此数列必发散.

例 8 求证 $\lim_{n\to\infty} a_n = a$ 的充要条件是

$$\lim_{n\to\infty}a_{2n-1}=\lim_{n\to\infty}a_{2n}=a.$$

证 (必要性) 设 $\lim_{n\to\infty} a_n = a$, 则 $\forall \varepsilon > 0, \exists N, n > N$ 时,

$$|a_n-a|<\varepsilon$$

因为 2n > N, $2n - 1 \ge N$, 所以

$$|a_{2n-1}-a|<\varepsilon, \quad |a_{2n}-a|<\varepsilon.$$

 $a+b$

(充分性) 设
$$\lim_{k\to\infty} a_{2k+1} = \lim_{k\to\infty} a_{2k} = a$$
, 则 $\forall \varepsilon > 0$, $\exists N$, 当 $k > N$ 时, $|a_{2k-1} - a| < \varepsilon$, $|a_{2k} - a| < \varepsilon$.

令
$$N = 2K$$
, 当 $n > N$ 时, 则有

$$|a_n-a|<\varepsilon$$

所以
$$\lim_{n\to\infty}a_n=a$$
.

例 9 若
$$a_n = (-1)^n \left(1 - \frac{1}{n}\right)$$
. 证明数列 $\{a_n\}$ 发散.

证 显然

$$\lim_{k \to \infty} a_{2k-1} = \lim_{k \to \infty} -\left(1 - \frac{1}{2k-1}\right) = -1;$$

$$\lim_{k \to \infty} a_{2k} = \lim_{k \to \infty} \left(1 - \frac{1}{2k}\right) = 1.$$

因此, 数列 $\{a_n\}$ 发散.

复习思考题

- 1. 极限的保号性与保不等式性有什么不同?
- 2. 仿效例题 5 的证法, 证明: 若 $\{a_n\}$ 为正有界数列, 则

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \cdots + a_n^n} = \sup\{a_n\}.$$