Lecture 4 - Ordered Counting

Tuesday, September 14, 2021 9:32 AM

Theorem: If (Ci) are a partition of S Sthen for any event E

 $P(E) = \sum_{i} P(EC_{i}).$

1) (EC;) is a partition of E

B ECinEG= + i+j

2) By Axiom 3

 $P(E) = P(VEC_i) = \sum_i P(EC_i).$

Egvally Likely Outcomes

If I have a sample space

S= { A,,..., An } sr flet (s)= 2.

Than assume that

$$\frac{1}{n} = P(sa;3) = P(sa;3) + ij$$

Rational! Ssi3 i=1,..,n partition S

So $1 = P(s) = \sum_{i=1}^{n} P(sa_{i})$ must be /n

More generally: if ECS than

P(E) = # outcomes in E # outcomes in S

 $= \frac{|E|}{|S|} = \frac{|E|}{n}.$

Ex, E= { s,, sz} thu

 $P(E) = P(SA_13) + P(SA_23) = \frac{1}{h} + \frac{1}{h} = \frac{2}{h}$

Canting

Theorem: Fundamental Theorem of Counting (FTC)

Theorem: Fundamental Theorem of Counting (FTC)

If I have a task consisting of k subtacks

and the ith subtack can be done in

Ni then the total number of ways to

achieve my task is

 $N = n_1 \cdot n_2 \cdot n_3 \cdot \cdot \cdot \cdot n_k$ $= \prod_{i=1}^{k} n_i$

Ex. An experiment consist of 3 factors

- 2 temp rettings

- 2 pressure settings

4 hu midity settings.

How many waps can I do my experiment?

A! FTC says 2.2-4=16 ways

Tree diagram

P₂ P₁ P₂ P₃

16 possibilities.

Ex. A moin how 5 shirts, 2 pairs of pants, and 2 pairs of ohoes.

Q! How many outfit does he have?

5.2.2 = 20 out fits.

Ex. I have a deck of 52 cards

If I shuffle the cards so that each 13 denominations ordering is equally

A, 2, 3, -.., 10, 5, 0, K

likely, what is

A Suit: GD, H, S

the prob I get

them back in order often the shuffle?

>A-K, CDHS E = in orderThen P(E) = IEIS = all possible orderings. To court [5] consider task of choosing the order for the card consistry of R=52 subtasks # way task 1 chouse card 1 task ? task 3 tasK52 11 52 So by FTC then $|S| = 52.51.50.99 - \cdots 3.2.1$ hend

$$P(E) = 52.51...3.7.1$$

Defa: Factorial

For any non-negative integer n we define n factorial as

$$\eta' = \eta(n-1)(n-2) - 3 \cdot 2 \cdot 1$$

$$= \eta i$$

$$i=1$$

Note: 01=1

Ex, Prev. example,

P(E) = /52!

Samplin w/ or w/o Orderry and Replacement.

Ordering: ordering matters?

	1 1	
109	K+	
0 10	(- 1	
1	· 00	ıρ
	7 <i>/</i>	

Defu: permutation

A permutation is an ordering of a Collection of objects.

Ex, Object SA, Az, Az)

permutations: 3 items

A2A3A1 A3A1A2 A3A2A1 /3/

6 penns

Theorem: Permutation Counting

The number of ways to penute n, tems is n!

Pf. Use FTC. k=n itens to choose.

task # task # ways 1 choose Hem 1			
flu FTC sap I (an do this in $N(n-1)(n-2) - 3 \cdot 2 \cdot 1 = n!$ ways.			
Merilie : Samply W/o Replacement and w/ Ordering			
If I have <u>n</u> items and I draw a Sample of <u>size</u> r (r \le n) and I do this sampling w/o repl. and w/ ordering, I Can draw this sample in			
$ (n)_r = \frac{n!}{(n-r)!} $ wap			

of. k=v subfasks wing FTC

task #	task	H waps		
1 2 3	drau 1 drau 2 drau 3	ル カー		
,	drowr	i n-r+1		
So by FTC I can do this in				
n(n-1)(n-2)(n-r+1) ways.				
$\frac{n!}{(n-r)!} = \frac{n(n-1)\cdots(n-r+2)(n-r+1)-32}{(n-r)!}$				
ex, I have (0 students) to put on a committee consisting of:				
President, VP, treasurer T=3				
Her many ways can I form this committee?				
$\frac{10!}{(0-3)!} = \frac{10!}{7!} = \frac{10.9.8.7.6}{7.6.5}$				

$$= 10.9.8 = 720$$

Ex. Lollo I have a box w/ balls numbered to 25

Lotto: drav 4 balls w/o replacement

If I gress the 4 balls in correct order I win.

my choice: (1) (3) (22) (7)

()! What is the prob. I win?

E = "I win" then

 $P(t) = \frac{|t|}{|s|} = \frac{1}{|s|}$

$$S = Sall possible draws 3 \qquad \begin{cases} n = 25 \\ r = 4 \end{cases}$$
ad $|S| = \frac{25!}{(25-4!)} = \frac{75!}{2!!}$

$$= \frac{25 \cdot 29 \cdot 23 \cdot 22 \cdot 21 \cdot 1}{2! \cdot 20 \cdot 1}$$

$$= 25 \cdot 24 \cdot 23 \cdot 22$$
So $P(E) = \frac{1}{25 \cdot 24 \cdot 23 \cdot 22}$
Theorem: Samply w/ Replacement and w/ Ordering
The number of ways to sample r from N:

The number of ways to sample r from n:

(1) w/ replacement

(2) w/ ordering

is