

SCHOOL OF ELECTRONICS ENGINEERING WINTER SEMESTER _ 2023-24 CONTINUOUS ASSESSMENT TEST (CAT)-2 BECE301L- DIGITAL SIGNAL PROCESSING

Course

: B.Tech (ECE)

Class Nbrs

: VL2023240501354, 1338, 1343, 1345, 1348, 1352, 3749,

Slot : C2+TC2

Course Type : ETH Course Mode: CBL

Date : 3rd April 2024

Faculty: RAMACHANDRA REDDYS KALAIVANI, ABHIJIT BHOWMICK, SUDHAKAR M S, LAVANYA N,

SARANYA K.C. ANANTHAKRISHNA CHINTANPALLI.

Each Question carries 10 marks

1	Question	Marks
	Design a band-stop Butterworth filter that satisfies the following magnitude response specifications.	10
	100π 200π 600π 800π Ω rad/sec	
t	Obtain an analog Chebyshev filter transfer function that satisfies the constraints: $0.707 \le H(j\Omega) \le 1$, $0 \le \Omega \le 2$; $ H(j\Omega) \le 0.1$, $\Omega \ge 4$	10
	3. Using the bilinear transformation approach with $T=1$ sec, find the system function $H(s)$ of the lowest order Butterworth filter for the following specifications: 3dB ripple in pass band $0 \le \omega \le 0.2\pi$ 25dB attenuation in stop band $0.45\pi \le \omega \le \pi$	10
A	Given a transfer function, $H(s) = \frac{2}{(s+0.5)^2 + 4}$	10
	Use impulse invariant technique to convert that into digital filter $H(z)$, using sampling interval of 1 sec. And also locate the poles and zeros of $H(z)$ in the $z-$ plane.	
5.	Realize the given H(z) as cascade form of two second order transfer functions: $H(z) = 1 + \frac{3}{2}z^{-1} + \frac{5}{4}z^{-2} + \frac{1}{2}z^{-3} + \frac{1}{8}z^{-4}$	10