6.1 પ્રાસ્તાવિક

તમે આગળના પ્રકરણ 5માં શીખી ગયાં કે એક રેખા દોરવા માટે ઓછામાં ઓછાં બે ભિન્ન બિંદુઓ જોઈએ. તમે અગાઉ કેટલીક પૂર્વધારણાઓનો અભ્યાસ કરી ગયાં અને તેની મદદથી કેટલાંક વિધાનો સાબિત કર્યાં. આ પ્રકરણમાં તમે બે રેખાઓ પરસ્પર એકબીજીને છેદે તેથી બનતા ખૂણાઓ અને કોઈ રેખા બે કે વધારે સમાંતર રેખાઓને ભિન્ન બિંદુઓમાં છેદે તેથી બનતા ખૂણાઓના ગુણધર્મો વિશે અભ્યાસ કરશો. તદ્ઉપરાંત આ ગુણધર્મોનો ઉપયોગ કરીને કેટલાંક વિધાનોને આનુમાનિક તર્ક દ્વારા સાબિત કરશો. (જુઓ પરિશિષ્ટ 1.) તમે અગાઉના ધોરણમાં વિવિધ પ્રવૃત્તિ દ્વારા આ વિધાનોની ચકાસણી કરી ગયા છો.

તમારા રોજિંદા જીવનમાં સમતલ સપાટીની ધાર વચ્ચે જુદા જુદા પ્રકારના ખૂણાઓ બનતા જુઓ છો. સમતલ સપાટીનો ઉપયોગ કરીને આ પ્રકારના નમૂના બનાવવા માટે તમને ખૂણાઓનું સંપૂર્ણ જ્ઞાન હોવું જોઈએ. ઉદાહરણ તરીકે માનો કે તમે શાળાના કોઈ પ્રદર્શનમાં વાંસની લાકડીઓનો ઉપયોગ કરીને ઝૂંપડીનો નમૂનો બનાવવા માંગો છો. વિચારો કે તમે તે કેવી રીતે બનાવશો ? તેના માટે તમે કેટલીક લાકડીઓ એકબીજીને સમાંતર અને કેટલીક લાકડીઓ ત્રાંસી ગોઠવશો. જ્યારે શિલ્પીએ એક બહુમાળી મકાનનો નકશો દોરવો હોય તો તેણે ભિન્ન ખૂણાઓ પર પરસ્પર છેદતી રેખાઓ અને સમાંતર રેખાઓ દોરવી પડશે. શું તમે માનો છો કે આ રેખાઓ અને ખૂણાઓના ગુણધર્મોના જ્ઞાન વગર તે ઇમારતનો નકશો બનાવી શકશે ?

વિજ્ઞાનમાં તમે કિરણોની રેખાકૃતિ દોરીને પ્રકાશના ગુણધર્મોનો અભ્યાસ કરો છો. ઉદાહરણ તરીકે જ્યારે પ્રકાશ એક માધ્યમમાંથી બીજા માધ્યમમાં જાય ત્યારે થતાં પ્રકાશના વિભાજનનો અભ્યાસ કરવા તમે પરસ્પર છેદતી અને સમાંતર

રેખાઓના ગુણધર્મોનો ઉપયોગ કરો છો. જ્યારે બે કે તેથી વધુ બળ એક જ પદાર્થ પર લાગે ત્યારે તમે જે આકૃતિ દોરો છો, તેમાં પદાર્થ પર બળોની પરિણામી અસરના અભ્યાસ માટે બળોને દિશાયુક્ત રેખાખંડો દ્વારા દર્શાવો છો. તે સમયે તમારે કિરણો (અથવા રેખાખંડો) એકબીજાને સમાંતર હોય કે પરસ્પર એકબીજાને છેદે ત્યારે બનતા ખૂણાઓ વચ્ચે શો સંબંધ છે તે જાણવું જરૂરી છે. ટાવરની ઊચાઈ કે દીવાદાંડીથી વહાણનું અંતર શોધવા માટે સમક્ષિતિજ કિરણ અને દેષ્ટિકિરણ વચ્ચે બનતા ખૂણા વિશે જાણવું જરૂરી છે. જેમાં રેખાઓ અને ખૂણાઓનો ઉપયોગ થતો હોય એવાં બીજાં ઘણાં ઉદાહરણો આપી શકાય. હવે પછીના ભૂમિતિનાં પ્રકરણોમાં વધુમાં વધુ ઉપયોગી નવા ગુણધર્મો તારવવા તમે રેખાઓ અને ખૂણાઓના આ ગુણધર્મોનો ઉપયોગ કરશો.

તો ચાલો તમે પહેલાં જેનો અગાઉના ધોરણમાં અભ્યાસ કરી ગયાં છો તે રેખાઓ અને ખૂણા સંબંધિત કેટલાંક પદો તથા વ્યાખ્યાઓનું પુનરાવર્તન કરી લઈએ.

6.2 મૂળભૂત પદો તથા વ્યાખ્યાઓ

યાદ રાખો કે બે અંત્યબિંદુઓવાળા રેખાના ભાગને રેખાખંડ કહેવાય. એક જ અંત્યબિંદુ ધરાવતા રેખાના ભાગને કિરણ કહેવાય છે. યાદ રાખો કે રેખાખંડ AB ને \overline{AB} અને તેની લંબાઈને AB વડે દર્શાવાય છે. કિરણ AB ને \overline{AB} તથા રેખાને \overline{AB} વડે દર્શાવાય છે. છતાં પણ આપણે આ સંકેતોનો ઉપયોગ કરીશું નહિ અને રેખાખંડ AB, કિરણ AB, રેખાખંડ AB ની લંબાઈ અને રેખા AB ને એકના એક જ સંકેત વડે દર્શાવીશું. તમને તેનો અર્થ સંદર્ભથી સ્પષ્ટ થઈ જશે. ક્યારેક ક્યારેક રેખાઓને દર્શાવવા અંગ્રેજી મૂળાક્ષરો I, m, n વગેરેનો ઉપયોગ કરીશું.

જો ત્રણ કે ત્રણથી વધારે બિંદુઓ એક જ રેખા પર આવેલા હોય, તો તે બિંદુઓને સમરેખ બિંદુઓ કહેવાય છે. અન્યથા તે અસમરેખ બિંદુઓ કહેવાય છે.

યાદ રાખો કે જયારે બે કિરણો એક સામાન્ય અંત્યબિંદુમાંથી ઉદ્દ્ભવે ત્યારે ખૂણો બને છે. અહીં ખૂણો બનાવતાં કિરણોને ખૂણાની **બાજુઓ** કહેવામાં આવે છે અને સામાન્ય અંત્યબિંદુને ખૂણાનું **શિરોબિંદુ** કહે છે. તમે અગાઉના ધોરણમાં વિવિધ પ્રકારના ખૂણાઓ જેમકે **લઘુકોણ** (acute angle), ગુરુકોણ (obtuse angle), કાટકોણ (right angle), સરળકોણ (straight angle) અને વિપરીત કોણ (reflex angle) વિશે શીખી ગયાં છો. (જુઓ આકૃતિ 6.1.)

લઘુકોણનું માપ 0° થી 90° ની વચ્ચે હોય છે. કાટકોણનું માપ બરાબર 90° હોય. 90° કરતાં વધારે અને 180° કરતાં ઓછા માપના ખૂશાને **ગુરૂકોણ** કહે છે. યાદ રાખો કે *સરળકોણ* 180° ના માપનો હોય છે અને 180° કરતાં વધારે અને 360° કરતાં ઓછા માપના ખુણાને *વિપરીત કોણ* કહે છે. વળી, જે બે ખુશાઓના માપનો સરવાળો 90° થાય છે તે ખુશાઓને એકબીજાના કોટિકોણ (complementary angles) કહે છે અને જે બે ખૂણાઓના માપનો સરવાળો 180° થાય છે તે ખૂશાઓને એકબીજાના *પ્રક કોણ(supplementary angles)* કહે છે.

આકૃતિ 6.2 આસન્ન કોણ

અગાઉના ધોરણમાં તમે *આસન્નકોણ(adjacent angles)* વિશે શીખી ગયા છો. (જુઓ આકૃતિ 6.2.) જો બે ખૂણાઓનું શિરોબિંદુ એક જ હોય, એક ભુજ સામાન્ય હોય અને સામાન્ય ન હોય તેવા ભુજ એ સામાન્ય ભુજની જુદી જુદી બાજુએ હોય તેવા બે ખુશાઓને આસન્નકોશ કહેવાય.

આકૃતિ 6.2 માં ∠ ABD અને ∠ DBC આસન્ન કોણ છે. કિરણ BD તેમનો સામાન્ય ભુજ છે. બિંદુ B એ સામાન્ય શિરોબિંદુ છે અને કિરણ BA અને કિરણ BC સામાન્ય ન હોય તેવા ભુજ છે. વળી જ્યારે બે ખૂણાઓ આસન્ન ખૂણાઓ હોય, ત્યારે તેમના માપનો સરવાળો હંમેશાં સામાન્ય ન હોય તેવા ભુજથી બનતા ખૂશાના માપ જેટલો હોય છે. તેથી, આપશે લખી શકીએ કે,

$$\angle$$
 ABC = \angle ABD + \angle DBC

તમે એ પણ નોંધ લો કે ∠ ABC અને ∠ ABD આસન્ન ખૂણાઓ નથી. શા માટે ? કારણ કે તેમના સામાન્ય ન હોય તે ભુજ કિરણ BD અને કિરણ BC એ સામાન્ય ભુજ BA ની એક જ બાજુએ આવેલા છે.

જો આકૃતિ 6.2 માં સામાન્ય ન હોય તેવા ભુજ BA અને BC એક રેખા બનાવે તો તેમની આકૃતિ 6.3 જેવી દેખાશે. ત્યારે \angle ABD અને \angle DBC એ *ખૂણાઓની રૈખિક* જોડ (pair of linear angles) કહેવાય છે.

તમે એ પણ જાણો છો કે બે રેખાઓ AB અને CD એ એકબીજીને પરસ્પર O બિંદુમાં છેદે તો *અભિક્રોણો* (vertically oppositeangles)ની બે જોડ બને છે (આકૃતિ 6.4). તેમાંથી એક જોડ ∠ AOD અને ∠ BOC છે.

શું તમે બીજી જોડ શોધી શકશો ?

આકૃતિ 6.4 અભિકોણની જોડ

6.3 પરસ્પર છેદતી અને પરસ્પર ન છેદતી રેખાઓ

એક કાગળ પર બે ભિન્ન રેખાઓ PQ અને RS દોરો. તમે જોશો કે આ રેખાઓને બે પ્રકારે દોરી શકાય છે. તે આકૃતિ 6.5(i) અને આકૃતિ 6.5(ii) માં દર્શાવેલ છે.

રેખાની એ કલ્પનાને પણ યાદ કરો કે તે બંને છેડેથી અનંત સુધી વિસ્તરેલ હોય છે. રેખાઓ PQ અને RS આકૃતિ 6.5(i)માં છેદતી રેખાઓ છે અને આકૃતિ 6.5(ii)માં બંને રેખાઓ સમાંતર છે. ધ્યાન રાખો કે આ બંને સમાંતર રેખાઓનાં ભિન્ન બિંદુઓ પર તેના સામાન્ય લંબની લંબાઈઓ સમાન રહેશે. આ સમાન લંબાઈ બંને સમાંતર રેખાઓની વચ્ચેનું અંતર (distance between parallel lines) કહેવાય છે.

6.4 ખૂશાઓની જોડ

વિભાગ 6.2 માં તમે ખૂશાઓની કેટલીક જોડ જેમકે કોટિકોશ, પૂરકકોશ, આસન્નકોશ, ખૂશાની રૈખિક જોડ વગેરેની વ્યાખ્યાઓ વિશે શીખી ગયાં છો. શું તમે આ ખૂશાઓ વચ્ચેના કોઈ સંબંધ વિશે વિચારી શકો છો ? હવે, કોઈ કિરણ કોઈ રેખાને છેદે તો બનતા ખૂશાઓના સંબંધ પર વિચાર કરીએ. આ પરિસ્થિતિ આકૃતિ 6.6 માં દર્શાવેલ છે. રેખાને AB અને કિરણને OC કહો. બિંદુ O પર બનતા ખૂશા કયા છે ? એ ∠AOC, ∠BOC અને ∠AOB છે.

આકૃતિ 6.6 ખૂણાઓની રૈખિક જોડ

શું આપણે ∠AOC + ∠BOC = ∠AOB લખી શકીએ છીએ? હા! (શા માટે? વિભાગ 6.2 માં આપેલ આસન્ન ખૂશાઓ જુઓ.) (1)

∠AOB નું માપ શું છે ? તે 180° છે.

(શા માટે?) (2)

શું (1) અને (2) પરથી તમે કહી શકો કે,
$$\angle AOC + \angle BOC = 180^\circ$$
 છે? હા! (શા માટે?)

ઉપરની ચર્ચાના આધારે આપણે નીચેની પૂર્વધારણા લખી શકીએ છીએ :

પૂર્વધારણા 6.1 : જે કિરણનું ઉદ્દભવબિંદુ રેખા પર હોય તેવા કિરણ અને રેખાથી બનતાં બંને ખૂણાઓનો સરવાળો 180° થાય છે.

યાદ કરીએ કે જ્યારે બે આસન્નકોશોનો સરવાળો 180° થાય ત્યારે તે ખૂશાઓની એક રૈષ્પિક જોડ બનાવે છે. પૂર્વધારણા 6.1 માં એ આપેલ છે કે એક કિરણ એક રેખાને છેદે છે. આ પરથી આપણે તારણ કાઢ્યું કે આ પ્રકારે બનેલા બંને આસન્ન ખૂશાઓનો સરવાળો 180° થાય છે. શું આપણે પૂર્વધારણા 6.1નું પ્રતીપ લખી શકીએ ? એટલે કે પૂર્વધારણા 6.1ના 'તારણ'ને પક્ષ છે તેમ માનીએ અને જે પક્ષ 'આપેલ છે' તેને તારણ માનીએ. આથી, તે નીચે પ્રમાણે બને છે :

(A) જો બે આસન્નકોશોનો સરવાળો 180° હોય, તો સામાન્ય કિરણ એક રેખા પર આવેલ છે.(અર્થાત્ અસામાન્ય બાજુઓ એક જ રેખામાં છે.)

હવે આપણે જોઈએ કે પૂર્વધારણા 6.1 અને વિધાન (A) એકબીજાથી વિરુધ્ધ છે. આપણે તેમાંના પ્રત્યેકને બીજાનું **પ્રતીપ**(converse) કહીશું. આપણે એ નથી જાણતા કે વિધાન (A) સત્ય છે કે નહિ. ચાલો તેની તપાસ કરીએ. આકૃતિ 6.7માં દર્શાવ્યા પ્રમાણે જુદાં જુદાં માપના આસન્નકોણ દોરો. દરેક વિકલ્પમાં અસામાન્ય બાજુઓ પૈકી કોઈપણ એક તરફ સીધી પટ્ટી રાખો. શું બીજી અસામાન્ય બાજુ માપપટ્ટીની તરફ રહેશે?

રાષ્ટ્રિત : ધોરણ 9

આકૃતિ 6.7 જુદાં જુદાં માપના આસન્નકોશો

તમે જોશો કે માત્ર આકૃતિ 6.7 (iii) માં જ બંને સામાન્ય બાજુઓ સીધી પટ્ટીની સામે છે, એટલે કે A, O અને B એક જ રેખા પર આવેલાં છે અને કિરણ OC આ રેખા પર આવેલ છે. સાથે એ પણ જુઓ કે $\angle AOC + \angle COB = 125^{\circ} + 55^{\circ} = 180^{\circ}$ છે. આ પરથી તમે તારણ કાઢી શકો કે વિધાન (A) સત્ય છે. આથી, તમે તેને પૂર્વધારણા રૂપે નીચે પ્રમાણે લખી શકો છો :

પૂર્વધારણા 6.2 : જો બે આસન્નકોશોનો સરવાળો 180° હોય, તો તેની સામાન્ય ન હોય તેવી બાજુઓ એક રેખા બનાવે છે. સ્પષ્ટ કારણોસર, ઉપરની બંને પૂર્વધારણાઓ એકત્રિત કરતાં તેમને સંયુક્ત રૂપે *રૈખિક જોડની પૂર્વધારણા* કહે છે. આવો હવે જ્યારે બે રેખાઓ છેદતી હોય એવી પરિસ્થિતિ ચકાસીએ.

અગાઉના ધોરણમાંથી તમને યાદ હશે કે બે રેખાઓ પરસ્પર છેદતી હોય તો અભિકોણ સમાન હોય છે. ચાલો તે પરિણામને સાબિત કરીએ. સાબિતીમાં રહેલ સોપાન માટે પરિશિષ્ટ 1 જુઓ અને નીચે આપેલ સાબિતીને સમજતી વખતે તેમને ધ્યાનમાં રાખો :

પ્રમેય 6.1 : પરસ્પર છેદતી બે રેખાથી બનતા અભિકોણ સમાન હોય છે.

સાબિતી : ઉપરના વિધાનમાં એ આપેલ છે કે બે રેખાઓ પરસ્પર છેદે છે. આથી માનો

- કે બે રેખાઓ AB અને CD પરસ્પર O બિંદુમાં છેદે છે તે આકૃતિ 6.8 માં દર્શાવેલ
- છે. આનાથી આપણને અભિકોણની નીચેની બે જોડીઓ મળે છે :
- (i) \angle AOC અને \angle BOD (ii) \angle AOD અને \angle BOC.

આપણે સાબિત કરવું છે કે \angle AOC = \angle BOD અને \angle AOD = \angle BOC છે.

હવે, કિરણ OA રેખા CD પર આવેલ છે.

આથી,
$$\angle$$
 AOC + \angle AOD = 180°

(રૈખિક જોડની પૂર્વધારણા) (1)

શું આપણે
$$\angle$$
 AOD + \angle BOD = 180° સાબિત કરી શકીશું ? હા !

(કેમ ?) (2)

(1) અને (2) પરથી આપણે લખી શકીએ કે,

$$\angle$$
 AOC + \angle AOD = \angle AOD + \angle BOD

આના પરથી તારણ મળે છે કે \angle AOC = \angle BOD

(વિભાગ 5.2, પૂર્વધારણા 3 જુઓ.)

તે જ રીતે આપણે સાબિત કરી શકીએ કે ∠AOD = ∠BOC

આવો, હવે રૈખિક જોડની પૂર્વધારણા અને પ્રમેય 6.1 પર આધારિત કેટલાંક ઉદાહરણ ઉકેલીએ.

ઉદાહરણ 1 : આકૃતિ 6.9 માં રેખા PQ અને રેખા RS એકબીજીને બિંદ્ O માં છેદે છે.

જો \angle POR : \angle ROQ = 5 : 7 હોય, તો તમામ ખૂશાઓ શોધો.

General POR
$$+\angle$$
 ROQ = 180°

(ખૂશાની રૈખિક જોડ)

(પક્ષ)

તેથી
$$\angle POR = \frac{5}{12} \times 180^{\circ} = 75^{\circ}$$

તે જ રીતે,
$$\angle ROQ = \frac{7}{12} \times 180^{\circ} = 105^{\circ}$$

(અભિકોણ)

અને
$$\angle$$
 SOQ = \angle POR = 75°

(અભિકોણ)

ઉદાહરણ 2 : આકૃતિ 6.10 માં, કિરણ OS રેખા POQ પર છે. કિરણ OR અને કિરણ OT એ અનુક્રમે \angle POS અને \angle SOQ ના કોણિલભાજક છે. જો \angle POS = x, તો \angle ROT શોધો.

ઉકેલ : કિરણ OS રેખા POQ પર છે.

તેથી,
$$\angle POS + \angle SOQ = 180^{\circ}$$

પરંતુ,
$$\angle POS = x$$

તેથી,
$$x + \angle SOQ = 180^{\circ}$$

માટે,
$$\angle SOQ = 180^{\circ} - x$$

આકૃતિ 6.10

હવે કિરણ OR એ ∠ POS નો દ્વિભાજક છે. તેથી,

$$\angle ROS = \frac{1}{2} \times \angle POS$$

$$= \frac{1}{2} \times x = \frac{x}{2}$$

તે જ રીતે
$$\angle$$
 SOT = $\frac{1}{2} \times \angle$ SOQ
= $\frac{1}{2} \times (180^{\circ} - x)$
= $90^{\circ} - \frac{x}{2}$
હવે, \angle ROT = \angle ROS + \angle SOT
= $\frac{x}{2} + 90^{\circ} - \frac{x}{2}$
= 90°

ઉદાહરણ 3 : આકૃતિ 6.11માં OP, OQ, OR અને OS ચાર કિરણ છે. તો સાબિત કરો કે \angle POQ + \angle QOR + \angle SOR + \angle POS = 360°.

ઉકેલ: આકૃતિ 6.11 માં તમારે કિરણ OP, OQ, OR અથવા OS ના પાછળના બિંદુ તરફ કિરણ દોરવું જરૂરી છે. ચાલો કિરણ OQ ને પાછળના બિંદુ T તરફ લંબાવીએ. તેથી TOQ રેખા છે. (જુઓ આકૃતિ 6.12.)

આકૃતિ 6.11

હવે ક<u>િર</u>ણ OP રેખા TOQ પર છે.

(રૈખિક જોડની પૂર્વધારણા) (1)

તે જ રીતે કિરણ OS એ રેખા TOQ પર છે.

તેથી,
$$\angle TOS + \angle SOQ = 180^{\circ}$$
 (2)

તેથી, (2) પરથી

$$\angle TOS + \angle SOR + \angle QOR = 180^{\circ} બનશે.$$
 (3)

હવે (1) અને (3) નો સરવાળો કરતાં, આપણને નીચેનું પરિણામ મળશે.

$$\angle \text{TOP} + \angle \text{POQ} + \angle \text{TOS} + \angle \text{SOR} + \angle \text{QOR} = 360^{\circ}$$
 (4)

પરંતુ \angle TOP + \angle TOS = \angle POS

તેથી (4) \angle POQ + \angle QOR + \angle SOR + \angle POS =360° મળશે.

સ્વાધ્યાય 6.1

1. આકૃતિ 6.13માં રેખા AB અને CD, O માં છેદે છે. જો \angle AOC + \angle BOE = 70° અને \angle BOD = 40°, તો \angle BOE અને વિપરીત \angle COE મેળવો.

રેખાઓ અને ખૂણાઓ

2. આકૃતિ 6.14 માં, રેખા XY અને MN, O માં છેદે છે. જો ∠ POY = 90° અને a:b=2:3, તો c શોધો.

3. આકૃતિ 6.15 માં, \angle PQR = \angle PRQ, તો સાબિત કરો કે \angle PQS = \angle PRT.

4. આકૃતિ 6.16 માં, જો x + y = w + z હોય, તો સાબિત કરો કે AOB રેખા છે.

આકૃતિ 6.16

6.5 સમાંતર રેખાઓ અને છેદિકા

યાદ કરીએ કે જો કોઈ રેખા બે અથવા બેથી વધુ રેખાઓને ભિન્ન બિંદુઓમાં છેદે, તો તેને આ રેખાઓની છેંદિકા કહે છે. (જુઓ આકૃતિ 6.18.) રેખા l એ રેખાઓ m અને n ને અનુક્રમે P અને Q માં છેદે છે. તેથી, રેખા I એ રેખા m અને n ની છેદિકા છે. તમે જોશો કે પ્રત્યેક બિંદુ P અને બિંદુ Q આગળ ચાર ખૂશાઓનું નિર્માણ થાય છે.

ચાલો આ ખૂશાઓને \angle 1, \angle 2, . . ., \angle 8 નામ આપીએ. (જુઓ આકૃતિ 6.18.)

આકૃતિ 6.18

 $\angle 1$, $\angle 2$, $\angle 7$ અને $\angle 8$ ને **બહિષ્કોણો** (exterior angle) કહે છે. જ્યારે $\angle 3$, $\angle 4$, $\angle 5$ અને $\angle 6$ ને **અંતઃકોણો** (interior angle) કહે છે.

યાદ કરો કે આગળના ધોરણમાં તમે જ્યારે છેદિકા બે રેખાઓને છેદે ત્યારે બનતી ખૂણાઓની કેટલીક જોડને નામ આપ્યા હતાં. તે નીચે પ્રમાણે છે :

- (a) অনুક্রীয় (corresponding angles):
 - (i) ∠ 1 અને ∠ 5

(ii) ∠ 2 અને ∠ 6

(iii) ∠ 4 અને ∠ 8

- (iv) ∠ 3 અને ∠ 7
- (b) અંત:યુગ્મકોણ (alternate interior angles) :
 - (i) ∠ 4 અને ∠ 6

- (ii) ∠ 3 અને ∠ 5
- (c) બહિર્યુગ્મકોણ (alternate exterior angles) :
 - (i) $\angle 1$ અને $\angle 7$

- (ii) ∠ 2 અને ∠ 8
- (d) છેદિકાની એક તરફના અંતઃકોણ (interior angles on the same side of transversal) :
 - (i) ∠ 4 અને ∠ 5

(ii) ∠ 3 અને ∠ 6

છેદિકાની એક તરફના અંતઃકોશને અનુક્રમિક અંતઃખૂશા (consecutive interior angles) તરીકે પણ ઓળખવામાં આવે છે. તેને સંબંધિત કોશ અથવા સહઆંતરિક ખૂશા પણ કહે છે. વધુમાં ઘણી વખત આપણે અંતઃયુગ્મકોશને માટે યુગ્મકોશ શબ્દ પણ વાપરીએ છીએ.

ચાલો, હવે રેખા m અને n સમાંતર હોય ત્યારે આપણે આ ખૂણાઓની જોડ વચ્ચેના સંબંધ શોધીએ. તમે જાણો છો કે તમારી નોટબુકમાં વપરાયેલી સીધી રેખાઓ એક બીજીને સમાંતર હોય છે. તેથી માપપટ્ટી અને પેન્સિલની મદદથી બે સમાંતર રેખાઓ દોરો તેમજ આકૃતિ 6.19 માં દર્શાવ્યા પ્રમાણે તેમને છેદતી છેદિકા દોરો.

આકૃતિ 6.19

હવે અનુકોણોની કોઈ એક જોડના ખૂણાને માપો અને તેમની વચ્ચેનો સંબંધ તપાસો. તમને : $\angle 1 = \angle 5$, $\angle 2 = \angle 6$, $\angle 4 = \angle 8$ અને $\angle 3 = \angle 7$ મળશે. આ પરથી તમે નીચેની પૂર્વધારણા સ્વીકારી શકો :

પૂર્વધારણા 6.3 : જો એક છેદિકા બે સમાંતર રેખાઓને છેદે તો, અનુકોશની પ્રત્યેક જોડ સમાન હોય છે.

પૂર્વધારણા 6.3 ને **અનુકોણ પૂર્વધારણા** પણ કહેવામાં આવે છે. આવો, હવે આ પૂર્વધારણાના પ્રતીપની ચર્ચા કરીએ. તે નીચે પ્રમાણે થશે : જો એક છેદિકા બે રેખાઓને એવી રીતે છેદે કે અનુકોણની એક જોડ સમાન હોય, તો બંને રેખાઓ સમાંતર હોય છે.

શું આ વિધાન સત્ય છે ? તેની ચકાસણી નીચે પ્રમાણે કરી શકાય છે. એક રેખા AD દોરો અને તેનાં પર બે બિંદુઓ B અને C લો. B અને C, પર ક્રમશઃ સમાન ∠ ABQ અને ∠ BCS ની રચના કરો. તે આકૃતિ 6.20 (i) માં બતાવેલ છે.

QB અને SC ને AD ની બીજી બાજુ લંબાવીને રેખાઓ PQ અને RS મેળવો. આકૃતિ 6.20 (ii) માં આ દર્શાવેલ છે. તમે જોઈ શકો છો કે આ રેખાઓ પરસ્પર છેદતી નથી. તમે બંને રેખાઓ PQ અને RS ના જુદાં જુદાં બિંદુઓ પર સામાન્ય લંબ દોરો અને તેની લંબાઈ માપીને જોઈ શકો છો કે આ લંબાઈ દરેક સ્થળે સમાન છે. આથી તમે તારણ કાઢી શકો કે આ રેખાઓ સમાંતર છે. એટલે કે અનુકોણ પૂર્વધારણાનું પ્રતીપ પણ સાચું છે. આ રીતે આપણને નીચેની પૂર્વધારણા મળે છે:

પૂર્વધારણા 6.4 : જો એક છેદિકા બે રેખાઓને એ રીતે છેદે કે અનુકોણની એક જોડ સમાન હોય, તો બંને રેખાઓ પરસ્પર સમાંતર હોય છે.

શું આપણે એક છેદિકા દ્વારા બે સમાંતર રેખાઓને છેદવાથી બનતા અંતઃ યુગ્મકોણો વચ્ચેનો કોઈ સંબંધ જાણવા માટે અનુકોણ પૂર્વધારણાનો ઉપયોગ કરી શકીએ ? આકૃતિ 6.21 માં છેદિકા PS સમાંતર રેખાઓ AB અને CD ને અનુક્રમે બિંદુ Q અને R માં છેદે છે.

શું
$$\angle$$
 BQR = \angle QRC અને \angle AQR = \angle QRD કહી શકાય ? તમે જાણો છો કે \angle PQA = \angle QRC

શું
$$\angle PQA = \angle BQR$$
 ? હા !

(અનુકોણ પૂર્વધારણા)(1)

(શા માટે ?) (2)

આમ, (1) અને (2) પરથી આપણે તારણ કાઢી શકીએ કે,

$$\angle$$
 BQR = \angle QRC.

આ જ રીતે
$$\angle AQR = \angle QRD$$
.

ઉપરના પરિણામને એક પ્રમેયના રૂપમાં નીચે પ્રમાણે લખી શકાય છે :

પ્રમેય 6.2 : જો એક છેદિકા બે સમાંતર રેખાઓને છેદે તો, અંતઃ યુગ્મકોણની પ્રત્યેક જોડ સમાન હોય છે.

હવે અનુકોશ પૂર્વધારશાના પ્રતીપનો ઉપયોગ કરીને શું આપશે કહી શકીએ કે અંતઃ યુગ્મકોશોની એક જોડ સમાન હોવાને કારશે બંને રેખાઓ સમાંતર છે ? આકૃતિ 6.22 માં છેદિકા PS રેખાઓ AB અને CD ને અનુક્રમે બિંદુઓ Q અને R માં એ રીતે છેદે છે કે \angle BQR = \angle QRC.

પરંતુ આ તો અનુકોણ છે. આથી AB || CD $\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

આકૃતિ 6.22

(અનુકોણ પૂર્વધારણાનું પ્રતીપ)

આ વિધાનને એક પ્રમેયના રૂપમાં નીચે પ્રમાણે દર્શાવી શકાય છે :

પ્રમેય 6.3 : જો એક છેદિકા બે રેખાઓને એવી રીતે છેદે કે અંતઃ યુગ્મકોણોની એક જોડ સમાન હોય, તો બંને રેખાઓ પરસ્પર સમાંતર હોય છે.

આ જ રીતે, તમે છેદિકાની એક જ બાજુના અંતઃ કોણોને સંબંધિત બે પ્રમેયો નીચે પ્રમાણે મેળવી શકો :

પ્રમેય 6.4 : એક છેદિકા બે સમાંતર રેખાઓને છેદે તો છેદિકાની એક જ તરફના અંતઃકોણોની પ્રત્યેક જોડ પૂરક હોય છે.

પ્રમેય 6.5 : જો એક છેદિકા બે રેખાઓને એવી રીતે છેદે કે છેદિકાની એક જ તરફના અંતઃકોણોની એક જોડ પૂરક હોય, તો બંને રેખાઓ પરસ્પર સમાંતર હોય છે.

તમને યાદ હશે કે આ પ્રત્યેક પૂર્વધારણા અને પ્રમેયોની ચકાસણી અગાઉના ધોરણમાં તમે કેટલીક પ્રવૃત્તિઓ દ્વારા કરી ગયાં છો. તમે આ પ્રવૃત્તિઓનું પુનરાવર્તન અહીં પણ કરી શકો છો.

6.6 એક જ રેખાને સમાંતર રેખાઓ

જો બે રેખાઓ એક જ રેખાને સમાંતર હોય તો શું એ પરસ્પર સમાંતર હશે ? ચાલો તેનું પરીક્ષણ કરીએ. આકૃતિ 6.23 જુઓ. તેમાં $m \parallel l$ છે અને $n \parallel l$ છે. ચાલો રેખા l, m અને n માટે એક છેદિકા t દોરો.

એ આપેલ છે કે $m \parallel l$ છે અને $n \parallel l$ છે. આથી, $\angle 1 = \angle 2$ અને $\angle 1 = \angle 3$ (અનુકોણ પૂર્વધારણા) આમ, $\angle 2 = \angle 3$ (શા માટે ?) પરંતુ $\angle 2$ અને $\angle 3$ અનુકોણ છે અને સમાન છે. આથી તમે કહી શકો કે રેખા $m \parallel$ રેખા n (અનુકોણ પૂર્વધારણાનું પ્રતીપ) આ પરિણામને એક પ્રમેયના રૂપમાં નીચે પ્રમાણે દર્શાવી શકાય :

પ્રમેય 6.6 : જે રેખાઓ એક જ રેખાને સમાંતર હોય તે પરસ્પર સમાંતર હોય છે.

નોંધ : ઉપરના ગુણધર્મને બેથી વધુ રેખાઓ માટે પણ વ્યાપક બનાવી શકાય છે. ચાલો, હવે સમાંતર રેખાઓને સંબંધિત કેટલાક પ્રશ્નો ઉકેલીએ.

ઉદાહરણ 4 : આકૃતિ 6.24 માં જો PQ \parallel RS, \angle MXQ = 135° અને \angle MYR = 40°, છે તો \angle XMY મેળવો.

ઉકેલ : આકૃતિ 6.25 માં બતાવ્યા મુજબ અહીં આપણે M માંથી પસાર થતી અને રેખા PQ ને સમાંતર એક રેખા AB દોરીએ. હવે, AB || PQ અને PQ || RS છે.

આથી, AB
$$\parallel$$
 RS (કેમ ?) હવે, \angle QXM + \angle XMB = 180° (AB \parallel PQ, છેદિકા XM ની એક જ બાજુના અંતઃકોણ) પરંતુ \angle QXM = 135°

આથી, 135° + ∠ XMB = 180°

આમ,
$$\angle XMB = 45^{\circ}$$
 (1)

હવે, \angle BMY = \angle MYR (AB || RS, યુગ્મકોણ)

આથી
$$\angle$$
 BMY = 40° (2)

(1) અને (2) નો સરવાળો કરતાં.

$$\angle$$
 XMB + \angle BMY = 45° + 40° મળે.

ઉદાહરણ 5 : જો એક છેદિકા બે રેખાઓને એ રીતે છેદે કે અનુકોણની એક જોડના દ્વિભાજક પરસ્પર સમાંતર હોય તો સાબિત કરો કે બંને રેખાઓ પણ પરસ્પર સમાંતર હોય છે.

ઉકેલ : આકૃતિ 6.26 માં એક છેદિકા AD એ રેખાઓ PQ અને RS ને અનુક્રમે બિંદુઓ B અને C માં છેદે છે. કિરણ BE એ ∠ ABQનો દિભાજક છે અને કિરણ CG એ ∠ BCS નો દિભાજક છે તથા BE \parallel CG છે.

આપણે સાબિત કરવું છે કે PQ || RS છે.

આપેલ છે કે કિરણ BE એ ∠ ABQ નો દ્વિભાજક છે.

આથી,
$$\angle ABE = \frac{1}{2} \angle ABQ$$
 (1)

આ જ પ્રમાણે કિરણ CG એ ∠ BCS નો દ્વિભાજક છે.

આથી,
$$\angle BCG = \frac{1}{2} \angle BCS$$
 (2)

પરંતુ BE || CG છે અને AD જ તેમની છેદિકા છે.

આથી,
$$\angle$$
 ABE = \angle BCG (અનુકોણ પૂર્વધારણા) (3)

(3) માં (1) અને (2) ની કિંમત મૂકતાં

આપણને આ પરિણામ પ્રાપ્ત થશે.

$$\frac{1}{2} \angle ABQ = \frac{1}{2} \angle BCS$$
 આથી, $\angle ABQ = \angle BCS$

પરંતુ આ છેદિકા ΛD દ્વારા રેખાઓ PQ અને RS સાથે બનતા અનુકોણ છે અને તે સમાન છે.

ઉદાહરણ 6 : આકૃતિ 6.27 માં AB || CD અને CD || EF અને EA \perp AB છે. જો \angle BEF = 55° હોય, તો x, y અને z નાં મૃલ્ય શોધો.

ઉકેલ:
$$v + 55^{\circ} = 180^{\circ}$$
 (છેદિક

(છેદિકા ED ની એક જ બાજુના અંતઃકોણ)

આથી,
$$y = 180^{\circ} - 55^{\circ} = 125^{\circ}$$

વળી
$$x = v$$

(AB || CD,અનુકોણ પૂર્વધારણા)

આકૃતિ 6.27

આકૃતિ 6.26

માટે $x = 125^{\circ}$

આથી હવે, AB || CD અને CD || EF છે તેથી AB || EF થાય.

આથી, \angle EAB + \angle FEA = 180°

(છેદિકા EA ની એક જ તરફના અંતઃકોણ)

$$\therefore 90^{\circ} + z + 55^{\circ} = 180^{\circ}$$

$$z = 35^{\circ}$$

સ્વાધ્યાય 6.2

1. આકૃતિ 6.28 માં x અને y નાં મૂલ્ય શોધો અને બતાવો કે AB \parallel CD છે.

2. આકૃતિ 6.29, માં જો AB || CD, CD || EF અને y: z=3:7, છે તો x નું મૂલ્ય શોધો.

3. આકૃતિ 6.30, માં જો AB \parallel CD, EF \perp CD અને \angle GED = 126° છે, તો \angle AGE, \angle GEF અને ∠FGE મેળવો.

આકૃતિ 6.30

4. આકૃતિ 6.31માં જો PQ \parallel ST, \angle PQR=110° અને \angle RST=130°, તો \angle QRS મેળવો.

[**સ્**ચન : બિંદુ R માંથી પસાર થતી ST ને સમાંતર એક રેખા દોરો.]

આકૃતિ 6.31

5. આકૃતિ 6.32માં જો AB || CD, ∠ APQ = 50° અને ∠ PRD = 127° છે તો x અને yમેળવો.

આકૃતિ 6.32

6. આકૃતિ 6.33 માં PQ અને RS બે અરીસા છે. તે બંને એકબીજાને સમાંતર રાખેલા છે. એક આપાતિકરણ AB અરીસા PQ ને B પર અથડાય છે અને પરાવર્તિત કિરણ માર્ગ BC પર ચાલીને અરીસા RS ને C પર અથડાય છે તથા ફરી કિરણ CD પર પરાવર્તિત થઈ જાય છે. સાબિત કરો કે AB || CD છે.

6.7 ત્રિકોણના ખૂણાઓના સરવાળાનો ગુણધર્મ

અગાઉના ધોરણમાં તમે પ્રવૃત્તિઓ દ્વારા એ શીખી ગયાં છો કે ત્રિકોણના બધા જ ખૂણાઓનો સરવાળો 180° થાય છે. આપણે આ વિધાનને રેખાઓ સંબંધિત પૂર્વધારણાઓ અને પ્રમેયોનો ઉપયોગ કરીને સાબિત કરી શકીએ.

પ્રમેય 6.7 : ત્રિકોશના ત્રણેય ખૂણાઓનો સરવાળો 180° થાય છે.

સાબિતી : ચાલો જોઈએ કે આપણને ઉપરના વિધાનમાં શું આપેલ છે. અર્થાત્ આપણી પરિકલ્પના શું છે અને આપણે શું સાબિત કરવું છે. આપણને એક ત્રિકોણ PQR આપેલ છે તથા \angle 1, \angle 2 અને \angle 3 આ ત્રિકોણના ખૂણા છે. (જુઓ આકૃતિ 6.34.)

આપણે $\angle 1 + \angle 2 + \angle 3 = 180^\circ$ સાબિત કરવું છે. બાજુ QR ને સમાંતર,ત્રિકોણના શિરોબિંદુ P માંથી પસાર થતી એક રેખા XPY દોરો. તે આકૃતિ 6.35 દર્શાવેલ છે. આથી આપણે સમાંતર રેખાઓને સંબંધિત ગુણધર્મોનો ઉપયોગ કરી શકીશું. હવે. XPY એક રેખા છે.

આકૃતિ 6.34

આકૃતિ 6.35

આથી,
$$\angle 4 + \angle 1 + \angle 5 = 180^{\circ}$$
 છે

પરંતુ XPY ∥ QR તથા PQ, PR છેદિકાઓ છે.

આથી,
$$\angle 4 = \angle 2$$
 અને $\angle 5 = \angle 3$

 \angle 4 અને \angle 5 ની કિંમત (1)માં મૂકતાં,

$$\angle 2 + \angle 1 + \angle 3 = 180^{\circ}$$

એટલે કે,
$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

યાદ કરો કે તમે આગળના ધોરણમાં ત્રિકોણના બહિષ્કોણ વિશે અભ્યાસ કર્યો છે. (જુઓ આકૃતિ 6.36.) બાજુ QR ને બિંદુ S સુધી લંબાવેલ છે. \angle PRS ત્રિકોણ \triangle PQR નો એક બહિષ્કોણ છે.

શું
$$\angle 3 + \angle 4 = 180^{\circ}$$
 છે ?

(શા માટે ?) (1)

આપણે એ પણ જાણીએ છીએ કે,

$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ} \dot{\Theta}$$
.

(શા માટે ?) (2)

(1) અને (2) પરથી, તમે જોઇ શકો છો કે, $\angle 4 = \angle 1 + \angle 2$ છે.

આ પરિજ્ઞામને એક પ્રમેયના રૂપમાં નીચે પ્રમાણે રજૂ કરી શકાય છે :

Q 2 3 R S > અાકૃતિ 6.36

પ્રમેય 6.8 : જો ત્રિકોણની એક બાજુને લંબાવવામાં આવે, તો આ પ્રકારે બનેલ બહિષ્કોણ બંને અં**તઃસંમુખકોણ** (Interior opposite angles)ના સરવાળાને સમાન થાય છે.

ઉપરના પ્રમેયથી આ સ્પષ્ટ છે કે કોઈપણ ત્રિકોણનો એક બહિષ્કોણ તેના બંને અંતઃસંમુખકોણ કરતાં મોટો હોય છે.

આવો આ પ્રમેયનો ઉપયોગ કરીને કેટલાંક ઉદાહરણો ઉકેલીએ.

ઉદાહરણ 7 : આકૃતિ 6.37માં જો QT \perp PR, \angle TQR = 40° અને \angle SPR = 30° હોય, તો x અને y મેળવો.

ઉકેલ : ΔTQR માં $90^{\circ} + 40^{\circ} + x = 180^{\circ}$ (ત્રિકોશના ખૂશાના સરવાળાનો ગુશધર્મ)

આથી,
$$x = 50^{\circ}$$

હવે,
$$y = \angle SPR + x$$

આથી, $y = 30^{\circ} + 50^{\circ}$ $= 80^{\circ}$

આકૃતિ 6.37

આકૃતિ 6.38

ઉદાહરણ 8: આકૃતિ 6.38 માં ΔABC ની બાજુઓ AB અને AC ને અનુક્રમે E અને D સુધી લંબાવેલ છે.

જો \angle CBE અને \angle BCD ના દ્વિભાજક BO અને CO અનુક્રમે બિંદુ O માં છેદે, તો સાબિત કરો કે \angle BOC = $90^{\circ} - \frac{1}{2} \angle$ BAC છે.

ઉકેલ : કિરણ BO એ ∠ CBE નો દ્વિભાજક છે.

$$\angle CBO = \frac{1}{2} \angle CBE$$

$$= \frac{1}{2} (180^{\circ} - y)$$

$$= 90^{\circ} - \frac{y}{2}$$
(1)

આ જ રીતે, કિરણ CO એ ∠ BCD નો દ્વિભાજક છે.

આથી,
$$\angle$$
 BCO = $\frac{1}{2}$ \angle BCD
= $\frac{1}{2}$ (180° – z)
= $90^{\circ} - \frac{z}{2}$ (2)

(પ્રમેય 6.8)

 ΔBOC માં $\angle BOC + \angle BCO + \angle CBO = 180^{\circ}$ છે. (3)

(1) અને (2) ને (3) માં મૂકતાં આપણને,

$$\angle BOC + 90^{\circ} - \frac{z}{2} + 90^{\circ} - \frac{y}{2} = 180^{\circ} + \dot{\varphi}$$
.

$$\therefore \angle BOC = \frac{z}{2} + \frac{y}{2}$$

$$\therefore \angle BOC = \frac{1}{2} (y + z)$$
(4)

પરંતુ
$$x + y + z = 180^{\circ}$$

(ત્રિકોશના ખૂશાના સરવાળાનો ગુણધર્મ)

આથી,
$$y + z = 180^{\circ} - x$$

આ પરથી (4) નું પરિવર્તન નીચે પ્રમાણે થાય.

$$\angle BOC = \frac{1}{2} (180^{\circ} - x)$$

$$= 90^{\circ} - \frac{x}{2}$$

$$= 90^{\circ} - \frac{1}{2} \angle BAC$$

સ્વાધ્યાય 6.3

1. આકૃતિ 6.39માં \triangle PQR ની બાજુઓ QP અને RQ ને અનુક્રમે બિંદુઓ S અને T સુધી લંબાવેલ છે. જો \angle SPR = 135° હોય અને \angle PQT = 110° હોય, તો \angle PRQ મેળવો.

2. આકૃતિ 6.40માં \angle X = 62° અને \angle XYZ = 54° છે. જો \triangle XYZ ના \angle XYZ અને \angle XZY ના દ્વિભાજક અનુક્રમે YO અને ZO હોય, તો \angle OZY અને \angle YOZ મેળવો.

3. આકૃતિ 6.41માં જો AB \parallel DE, \angle BAC = 35° અને \angle CDE = 53° હોય, તો \angle DCE મેળવો.

4. આકૃતિ 6.42 માં જો રેખાઓ PQ અને RS બિંદુ T પર એ પ્રકારે છેદે છે કે \angle PRT = 40°, \angle RPT = 95° અને \angle TSQ = 75° છે, તો \angle SQT મેળવો.

5. આકૃતિ 6.43માં જો PQ \perp PS, PQ \parallel SR, \angle SQR = 28° અને \angle QRT = 65° છે, તો x અને y શોધો.

આકૃતિ 6.43

6. આકૃતિ 6.44માં Δ PQR ની બાજુ QR ને S સુધી લંબાવેલ છે, જો \angle PQR અને \angle PRS ના દ્વિભાજક બિંદુ Υ પર મળે તો, સાબિત કરો કે \angle QTR = $\frac{1}{2}$ \angle QPR.

6.8 સારાંશ

આકૃતિ 6.44

આ પ્રકરણમાં આપણે નીચેના મુદ્દાઓનો અભ્યાસ કર્યો :

- 1. જો એક કિરણ એક રેખા પર આવેલ હોય તો તેમનાથી બનતા બંને આસન્નકોણનો સરવાળો 180° થાય છે અને તેનું પ્રતીપ આસન્નકોણોનો સરવાળો 180° હોય તો તેની સામાન્ય ન હોય તેવી બાજુઓ એક રેખા બનાવે છે. આ ગુણધર્મને રૈખિક જોડની પર્વધારણા કહે છે.
- 2. પરસ્પર છેદતી બે રેખાથી બનતા અભિકોણ સમાન હોય છે.
- 3. જો એક છેદિકા બે સમાંતર રેખાઓને છેદે, તો
 - (i) અનુકોણની પ્રત્યેક જોડ સમાન હોય છે.
 - (ii) અંતઃયુગ્મકોશની પ્રત્યેક જોડ સમાન હોય.
 - (iii) છેદિકાની એક જ તરફના અંતઃકોણની પ્રત્યેક જોડ પૂરક હોય છે.
- 4. જો એક છેદિકા બે રેખાઓને એ રીતે છેદે કે
 - (i) અનુકોણની કોઈ એક જોડ સમાન હોય અથવા
 - (ii) અંતઃયુગ્મકોણની કોઈ એક જોડ સમાન હોય અથવા
 - (iii) છેદિકાની એક જ તરફના અંતઃકોણની કોઈ એક જોડ પૂરક હોય, તો આ બંને રેખાઓ સમાંતર હોય છે.
- 5. જે રેખાઓ એક રેખાને સમાંતર હોય તે પરસ્પર સમાંતર હોય છે.
- 6. એક ત્રિકોણના ત્રણેય ખૂણાઓનો સરવાળો 180° હોય છે.
- 7. જો કોઈ ત્રિકોણની એક બાજુને લંબાવવામાં આવે, તો આ પ્રકારે બનેલ બહિષ્કોણ તેના બંને અંતઃસંમુખકોણના સરવાળા જેટલો હોય છે.