Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №1 по дисциплине «Технологии машинного обучения» на тему «Разведочный анализ данных. Исследование и визуализация данных»

Выполнил: студент группы ИУ5-63Б Кривцов Н. А.

0.1. # Лабораторная работа №1. Разведочный анализ данных. Исследование и визуализация данных.

0.2. 1) Текстовое описание набора данных

Используется набор данных о жилье Калифорнии. Датасет доступен в библиотеке scikit-learn.

Каждая запись представляет собой сведения о некотором территориальном блоке, определенном переписью населения США 1990 года.

Признаки датасета: * MedInc - медианный годовой доход населения блока (в сотнях тысяч долларов). * HouseAge - средний возраст домов в блоке. * AveRooms - среднее число комнат в доме. * AveBedrooms - среднее число спальных комнат в доме. * Population - население блока. * AveOccup - средняя число жильцов в доме. * Latitude - географическая широта блока. * Longitude - географическая долгота блока. * MedValue - медианная стоимость домов в блоке (в сотнях тысяч долларов). **Целевой признак.** — ### Импорт библиотек

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.datasets
%matplotlib inline
sns.set(style="darkgrid")
```

0.2.1. Загрузка набора данных

Meтoд sklearn.datasets.fetch_california_housing() возвращает объект со следующими полями: * data - NumPy-матрица значений исходных признаков. * target - NumPy-вектор значений целевого признака. * feature_names - упорядоченный массив названий признаков датасета (а именно - поля data).

Для удобства анализа исходные и целевые признаки объединяются в один DataFrame.

```
[2]: cal_housing = sklearn.datasets.fetch_california_housing()
  data = pd.DataFrame(cal_housing.data, columns=cal_housing.feature_names)
  target = pd.DataFrame(cal_housing.target, columns=["MedValue"])
  data = data.join(target)
```

0.3. 2) Основные характеристики датасета

```
[3]: # Типы признаков датасета data.dtypes
```

```
[3]: MedInc
                   float64
    HouseAge
                   float64
     AveRooms
                   float64
     AveBedrms
                   float64
    Population
                   float64
    Ave0ccup
                   float64
     Latitude
                   float64
     Longitude
                   float64
    MedValue
                   float64
```

dtype: object

[4]: # Первые пять записей в датасете data.head()

[4]:	د	MedInc ⊦ →Latitude	HouseAge \	AveRooms	AveBedrms	Population	AveOccup 🛚	
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85
		Longitude	e MedVal	ue				
	0	-122.23	3 4.5	26				
	1	-122.22	2 3.5	85				
	2	-122.24	4 3.5	21				
	3	-122.25	3.4	13				
	4	-122.25	3.4	22				

[5]: # Статистические характеристики признаков датасета data.describe()

	uata.uescribe()									
[5]:	⊶Popula	MedInc tion \	HouseAge	AveRooms	AveBedrms	?				
	•	0640.000000	20640.000000	20640.000000	20640.000000	20640.				
	mean ⊶476744	3.870671	28.639486	5.429000	1.096675	1425.				
	std	1.899822	12.585558	2.474173	0.473911	1132.				
	min	0.499900	1.000000	0.846154	0.333333	3.				
	25%	2.563400	18.000000	4.440716	1.006079	787.				
	50%	3.534800	29.000000	5.229129	1.048780	1166.				
	75% ⊶000000		37.000000	6.052381	1.099526	1725.				
	max →000000	15.000100	52.000000	141.909091	34.066667	35682.				
		Ave0ccup	Latitude	Longitude						
	count 20	640.000000	20640.000000	20640.000000						
	mean	3.070655	35.631861	-119.569704	2.068558					
	std	10.386050	2.135952	2.003532	1.153956					
	min	0.692308	32.540000		0.149990					
	25%	2.429741	33.930000		1.196000					
	50% 75%	2.818116 3.282261	34.260000 37.710000	-118.490000 -118.010000	1.797000 2.647250					
	1 3/0	3.202201	37.710000	-110.010000	2.04/230					

0.4. 3) Визуальное исследование датасета

0.4.1. Диаграммы рассеяния и гистограммы

[6]: sns.pairplot(data)

max

[6]: <seaborn.axisgrid.PairGrid at 0x13021130>

Между признаками AveRooms и AveBedrms наблюдается линейная зависимость (что очевидно из "физического смысла" самих признаков).

Судя по гистограмме, целевой признак имеет "почти" нормальное распределение - исключением является второй пик графика около значения 5.0.

0.4.2. Зависимость стоимости от географических координат

По оси абсцисс откладывается долгота, по оси ординат - широта блока. Цвет точки характеризуется медианной стоимостью домов - более насыщенному цвету соотвествует более высокая стоимость.

```
[7]: colors = sns.light_palette((217/255, 73/255, 7/255), as_cmap=True) fig, ax = plt.subplots(figsize=(10, 10)) sns.scatterplot(x="Longitude", y='Latitude', data=data, hue="MedValue", → ax=ax, palette=colors, linewidth=0, marker='s', size='Population')
```

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x15979fd0>

По диаграмме можно выделить следующие закономерности: * Дома на тихоокеанском побережье, в общем случае, оказываются дороже, нежели дома вдали от берега. * Выделяются два района с высокой стоимостью домов и крайне плотным расположением исследуемых блоков.

В самом деле: в Калифорнии находятся две крупных агломерации - округ Лос-Анджелес и бухта Сан-Франциско, что объясняет группировку точек на диаграмме. Рассмотрим оба региона в крупном масштабе.

[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1014190>

0.5. 4) Корреляция признаков

0.5.1. Тепловая карта

[14]: <matplotlib.axes._subplots.AxesSubplot at 0x19213050>

Как было отмечено раньше, между признаками AveRooms и AveBedrms наблюдается значительная корреляция, которая так же заметна между координатами широты и долготы.

0.5.2. Признаки, коррелирующие с целевым

-0.046701

AveBedrms

Latitude -0.144160

Name: MedValue, dtype: float64