```
In [2]: # import libraries
        import torch
        import torch.nn as nn
        import torch.nn.functional as F
        from torch.utils.data import DataLoader
        from torchvision import datasets, transforms, models
        from torchvision.utils import make grid
        import os
        import numpy as np
        import pandas as pd
        import seaborn as sns # for heatmaps
        import matplotlib.pyplot as plt
        %matplotlib inline
        sns.set(style = "whitegrid", font_scale = 1.2)
        # ignore non-critical warnings
        import warnings
        warnings.filterwarnings("ignore")
```

```
In [4]: | # prepare train and test sets, loaders
        # define root directory path
        root = 'datasets/cinic10 classes4'
        # batch size
        b size = 16
        train_data = datasets.ImageFolder(os.path.join(root, 'train'), transform = img
        transform)
        test data = datasets.ImageFolder(os.path.join(root, 'test'), transform = img t
        ransform)
        torch.manual seed(42)
        train loader = DataLoader(train data, batch size = b size, shuffle = True)
        test_loader = DataLoader(test_data, batch_size = b_size, shuffle = True)
        class_names = train_data.classes
        print(class names)
        print(f'Training images available: {len(train data)}')
        print(f'Testing images available: {len(test_data)}')
        ['airplane', 'automobile', 'ship', 'truck']
        Training images available: 72000
        Testing images available: 36000
In [5]: # display a batch of images --> grab first batch of 16 images from train data
        for images,labels in train_loader:
            break
        images.shape
Out[5]: torch.Size([16, 3, 32, 32])
In [6]: # 16 images in one batch, 3 color channels (R-G-B), 32 x 32 pixels
```

```
In [7]: # show images and their classes

# print labels
print('Label:', labels.numpy())
print('Class:', *np.array([class_names[i] for i in labels]))

im = make_grid(images) # the default nrow is 8

# inverse normalize the images

inv_normalize = transforms.Normalize(
    mean=[-0.4789/0.2421, -0.4723/0.2383, -0.4305/0.2587],
    std=[1/0.2421, 1/0.2383, 1/0.2587]
)
im_inv = inv_normalize(im)

# print images
plt.figure(figsize=(16,6))
plt.imshow(np.transpose(im_inv.numpy(), (1, 2, 0)));
```

Label: [1 1 1 1 1 3 2 2 1 1 1 1 0 0 3 0]

Class: automobile automobile automobile automobile automobile truck ship ship automobile automobile automobile automobile airplane truck airplane

In [8]: | # everything works fine!

```
In [9]: # select resnet18 model from torchvision models
ResNet18model = models.resnet18()
```

In [10]: # display structure of resnet18
ResNet18model

```
Out[10]: ResNet(
           (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), b
         ias=False)
           (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running
         stats=True)
           (relu): ReLU(inplace=True)
           (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil m
         ode=False)
           (layer1): Sequential(
             (0): BasicBlock(
               (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing_stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing stats=True)
             )
             (1): BasicBlock(
               (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing_stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing stats=True)
             )
           (layer2): Sequential(
             (0): BasicBlock(
               (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1,
         1), bias=False)
               (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
         ning stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=
         (1, 1), bias=False)
               (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
         ning_stats=True)
               (downsample): Sequential(
                  (0): Conv2d(64, 128, kernel size=(1, 1), stride=(2, 2), bias=False)
                  (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
         ning_stats=True)
               )
             )
             (1): BasicBlock(
               (conv1): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=
         (1, 1), bias=False)
               (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_run
         ning stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=
         (1, 1), bias=False)
```

```
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel size=(3, 3), stride=(2, 2), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track run
ning stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
      )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_run
ning stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel size=(3, 3), stride=(2, 2), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track run
ning stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
      )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=
```

```
(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
    )
    (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
    (fc): Linear(in_features=512, out_features=1000, bias=True)
)
```

```
Out[11]: ResNet(
           (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), b
         ias=False)
           (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running
         stats=True)
           (relu): ReLU(inplace=True)
           (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil m
         ode=False)
           (layer1): Sequential(
             (0): BasicBlock(
               (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing_stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing stats=True)
             )
             (1): BasicBlock(
               (conv1): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing_stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(64, 64, kernel size=(3, 3), stride=(1, 1), padding=(1,
         1), bias=False)
               (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track runn
         ing stats=True)
             )
           (layer2): Sequential(
             (0): BasicBlock(
               (conv1): Conv2d(64, 128, kernel size=(3, 3), stride=(2, 2), padding=(1,
         1), bias=False)
               (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
         ning stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=
         (1, 1), bias=False)
               (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
         ning_stats=True)
               (downsample): Sequential(
                  (0): Conv2d(64, 128, kernel size=(1, 1), stride=(2, 2), bias=False)
                  (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
         ning_stats=True)
               )
             )
             (1): BasicBlock(
               (conv1): Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=
         (1, 1), bias=False)
               (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_run
         ning stats=True)
               (relu): ReLU(inplace=True)
               (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=
         (1, 1), bias=False)
```

```
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel size=(3, 3), stride=(2, 2), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track run
ning stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
      )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_run
ning stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel size=(3, 3), stride=(2, 2), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track run
ning stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
      )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=
(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track run
ning_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel size=(3, 3), stride=(1, 1), padding=
```

```
(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_run
ning_stats=True)
    )
    (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
    (fc): Sequential(
        (0): Linear(in_features=512, out_features=4, bias=True)
        (1): LogSoftmax()
    )
)
```

In [12]: # last layer of model has been modified to meet our needs

```
In [13]: # count model parameters

def count_parameters(model):
    params = [p.numel() for p in model.parameters() if p.requires_grad]
    for item in params:
        print(f'{item:>6}')
    print(f'_____\n{sum(params):>6}')

count_parameters(ResNet18model)
```

2/26/2020

```
2359296
512
512
2048
```

11178564

```
In [14]: # approximately 11 million parameters which is not so large of a number
```

```
In [15]: # check if GPU computing is available

# torch.cuda.is_available() checks and returns a Boolean True if a GPU with CU
DA is available, else it returns False
is_cuda = torch.cuda.is_available()

# set device to GPU or CPU depending on the outcome --> we will use this devic
e variable later on in our code!
if is_cuda:
    device = torch.device("cuda")
else:
    device = torch.device("cpu")
```

```
In [16]: # set model to work with available device
ResNet18model.to(device)

# define optimizer --> optimizer needs to be defined after device for model is
selected!
optimizer = torch.optim.Adam(ResNet18model.parameters(), lr = 0.001)

# define loss function
criterion = nn.CrossEntropyLoss()
```

```
In [17]: # start training
         import time
         start time = time.time()
         epochs = 40
         # limit number of train and test images --> optional - saves time to run with
          small numbers first to see if model works
         max_trn_batch = 1000
         max tst batch = 500
         # instantiate trackers for model performance
         train losses = []
         test losses = []
         train_correct = []
         test correct = []
         for i in range(epochs):
             trn corr = 0
             tst corr = 0
             # run the training batches
             for b, (X_train, y_train) in enumerate(train_loader):
                 # limit the number of batches
                 if b == max trn batch:
                     break
                 b+=1
                 # apply the model
                 y pred = ResNet18model(X train.to(device))
                 loss = criterion(y_pred, y_train.to(device))
                 # tally the number of correct predictions
                  predicted = torch.max(y_pred.data, 1)[1]
                 batch_corr = (predicted == y_train.to(device)).sum()
                 trn_corr += batch_corr
                 # update parameters
                 optimizer.zero_grad()
                 loss.backward()
                 optimizer.step()
                 # print interim results
                 if b%max trn batch == 0:
                     print(f'Epoch: {i+1:3} Batch: {b:4} Loss: {loss.item():10.4f}
         Accuracy: {trn corr.item()*100/(b size*b):7.2f}% \
          Time Elapsed Since Start: {(time.time() - start time)/60:7.2f} min')
             train losses.append(loss)
             train correct.append(trn corr)
             # run the test batches
             with torch.no grad():
                 for b, (X_test, y_test) in enumerate(test_loader):
```

```
# limit the number of batches
if b == max_tst_batch:
    break

# apply the model
y_val = ResNet18model(X_test.to(device))

# tally the number of correct predictions
predicted = torch.max(y_val.data, 1)[1]
tst_corr += (predicted == y_test.to(device)).sum()

loss = criterion(y_val, y_test.to(device))
test_losses.append(loss)
test_correct.append(tst_corr)
```

Epoch: d Since		ch: 1000 1.17 min	Loss:	1.0309	Accuracy:	49.45%	Time	Elapse
Epoch: d Since	2 Bate	ch: 1000 2.52 min	Loss:	1.2961	Accuracy:	56.84%	Time	Elapse
Epoch: d Since	3 Bat	ch: 1000 3.69 min	Loss:	0.9534	Accuracy:	61.48%	Time	Elapse
Epoch: d Since	4 Bate	ch: 1000 4.85 min	Loss:	1.1926	Accuracy:	63.99%	Time	Elapse
Epoch: d Since	5 Bat	ch: 1000 5.91 min	Loss:	0.5693	Accuracy:	66.62%	Time	Elapse
	6 Bat		Loss:	0.8185	Accuracy:	67.78%	Time	Elapse
	7 Bate		Loss:	0.5415	Accuracy:	70.53%	Time	Elapse
Epoch: d Since	8 Bate	ch: 1000 8.88 min	Loss:	0.5292	Accuracy:	71.11%	Time	Elapse
Epoch: d Since	9 Bate	ch: 1000 9.92 min	Loss:	0.8405	Accuracy:	72.19%	Time	Elapse
Epoch:		ch: 1000 10.85 min	Loss:	0.4423	Accuracy:	73.97%	Time	Elapse
Epoch: d Since	11 Bate	ch: 1000 11.74 min	Loss:	0.9873	Accuracy:	74.79%	Time	Elapse
Epoch: d Since	12 Bate	ch: 1000 12.71 min	Loss:	0.6206	Accuracy:	76.16%	Time	Elapse
Epoch: d Since	13 Bate	ch: 1000 13.62 min	Loss:	0.9447	Accuracy:	76.58%	Time	Elapse
Epoch:		ch: 1000 14.51 min	Loss:	0.3371	Accuracy:	77.47%	Time	Elapse
Epoch: d Since		ch: 1000 15.40 min	Loss:	0.4260	Accuracy:	77.65%	Time	Elapse
<pre>Epoch: d Since</pre>		ch: 1000 16.42 min	Loss:	0.4613	Accuracy:	78.91%	Time	Elapse
<pre>Epoch: d Since</pre>		ch: 1000 17.39 min	Loss:	0.5665	Accuracy:	79.36%	Time	Elapse
-	18 Bate Start:	ch: 1000 18.33 min	Loss:	0.7893	Accuracy:	80.25%	Time	Elapse
<pre>Epoch: d Since</pre>	19 Bate Start:	ch: 1000 19.28 min	Loss:	0.7203	Accuracy:	80.09%	Time	Elapse
<pre>Epoch: d Since</pre>		ch: 1000 20.19 min	Loss:	0.5410	Accuracy:	81.17%	Time	Elapse
<pre>Epoch: d Since</pre>	21 Bate Start:	ch: 1000 21.20 min	Loss:	0.3397	Accuracy:	82.08%	Time	Elapse
<pre>Epoch: d Since</pre>	22 Bate Start:	ch: 1000 22.11 min	Loss:	0.4036	Accuracy:	82.18%	Time	Elapse
<pre>Epoch: d Since</pre>	23 Bate Start:		Loss:	0.9005	Accuracy:	83.06%	Time	Elapse
Epoch: d Since		ch: 1000 23.96 min	Loss:	0.4419	Accuracy:	83.28%	Time	Elapse
	Start:	ch: 1000 24.87 min	Loss:	0.3025	Accuracy:	84.07%		Elapse
d Since	26 Bate Start:	25.75 min	Loss:	0.2690	Accuracy:			Elapse
Epoch: d Since	Start:	ch: 1000 26.72 min	Loss:	0.5232	Accuracy:	85.41%		Elapse
Epoch: d Since	Start:	ch: 1000 27.74 min	Loss:	0.2080	-	85.51%		Elapse
Epoch:	29 Bate	ch: 1000	Loss:	0.3081	Accuracy:	86.44%	Time	Elapse

```
d Since Start:
                 28.69 min
Epoch:
        30
             Batch: 1000
                            Loss:
                                      0.3414
                                                Accuracy:
                                                            86.39%
                                                                    Time Elapse
d Since Start:
                 29.64 min
Epoch:
             Batch: 1000
                                      0.5039
                                                            86.93%
                                                                    Time Elapse
        31
                            Loss:
                                                Accuracy:
d Since Start:
                 30.61 min
             Batch: 1000
                                      0.1505
Epoch:
        32
                                                Accuracy:
                                                            87.88%
                                                                    Time Elapse
                            Loss:
d Since Start:
                 31.57 min
Epoch:
                                      0.3078
                                                            87.53%
                                                                    Time Elapse
        33
             Batch: 1000
                            Loss:
                                                Accuracy:
d Since Start:
                 32.52 min
Epoch:
                                      0.1139
                                                            89.03%
                                                                    Time Elapse
        34
             Batch: 1000
                            Loss:
                                                Accuracy:
d Since Start:
                 33.51 min
Epoch:
                                      0.1335
                                                            88.74%
                                                                    Time Elapse
        35
             Batch: 1000
                            Loss:
                                                Accuracy:
d Since Start:
                 34.51 min
Epoch:
        36
             Batch: 1000
                                      0.1878
                                                Accuracy:
                                                            89.14%
                                                                    Time Elapse
                            Loss:
d Since Start:
                 35.52 min
Epoch:
        37
             Batch: 1000
                                      0.2102
                                                            89.54%
                                                                     Time Elapse
                            Loss:
                                                Accuracy:
d Since Start:
                 36.46 min
Epoch:
        38
             Batch: 1000
                                      0.1341
                                                Accuracy:
                                                            89.88%
                                                                    Time Elapse
                            Loss:
d Since Start:
                 37.39 min
Epoch:
        39
             Batch: 1000
                                      0.4046
                                                Accuracy:
                                                            89.99%
                                                                     Time Elapse
                            Loss:
d Since Start:
                 38.34 min
Epoch: 40
             Batch: 1000
                            Loss:
                                      0.1391
                                                Accuracy:
                                                            90.60%
                                                                     Time Elapse
d Since Start:
                 39.26 min
```

```
In [19]: # evaluate model performance

# plot losses
plt.figure(figsize = (10,5))
plt.plot(train_losses, label='training loss')
plt.plot(test_losses, label='validation loss')
plt.title('Loss at the end of each epoch')
plt.legend();
```


In [20]: # train and test losses do not converge

```
In [21]: # plot accuracy
    plt.figure(figsize = (10,5))
    plt.plot([t*100/(max_trn_batch*b_size) for t in train_correct], label='trainin
    g accuracy')
    plt.plot([t*100/(max_tst_batch*b_size) for t in test_correct], label='validati
    on accuracy')
    plt.title('Accuracy at the end of each epoch')
    plt.legend();
```


In [23]: # print final test accuracy
print(f'Test accuracy: {test_correct[-1].item()*100/(max_tst_batch*b_size):.2
f}%') # take the value after the last epoch

Test accuracy: 76.05%

- In [24]: # test accuracy is 76%
- In [25]: # compare predictions against ground truth
 # for better visualization we will use heatmap

```
In [26]: # use all test images
  test_load_all = DataLoader(test_data, batch_size = 36000, shuffle = False)
  print(f'Testing images available: {len(test_data)}')
```

Testing images available: 36000

```
In [27]:
         # make predictions with all test images and show confusion matrix results as a
         heat map
         # import confusion matrix
         from sklearn.metrics import confusion matrix
         with torch.no grad():
             correct = 0
             for X_test, y_test in test_load_all:
                 y_val = ResNet18model(X_test.to(device))
                 predicted = torch.max(y val,1)[1]
                 correct += (predicted == y_test.to(device)).sum()
         # convert results to CPU tensors to be able to use them as numpy arrays!
         device = torch.device("cpu")
         y_test = y_test.to(device)
         predicted = predicted.to(device)
         # create heat map from confusion matrix and plot
         arr = confusion matrix(y test.view(-1), predicted.view(-1))
         df_cm = pd.DataFrame(arr, class_names, class_names)
         plt.figure(figsize = (10,8))
         sns.heatmap(df cm, annot = True, fmt = "d", cmap = 'BuGn')
         plt.xlabel("Prediction")
         plt.ylabel("Label (ground truth)")
         plt.show()
```



```
In [28]: # Confusion matrix shows:
             # class 'ship' has highest prediction accuracy of 86.3% (7770/9000)
                 # most often mistaken for 'airplane'
             # class 'airplane' has second highest prediction accuracy of 82.4% (7412/9
         000)
                 # most often mistaken for 'ship'
             # class 'automobile' is third in prediction accuracy with 74.8% (6736/900
         0)
                 # most often mistaken for 'truck'
             # class 'truck' has lowest prediction accuracy of 63.6% (5727/9000)
                 # most often mistaken for 'automobile'
             # the corresponding classes causing highest confusion are neutral to expec
         t due to the similarities between these classes
         # In conclusion:
             # overall model accuracy is 76.8% (27645/36000) which is well above random
         quess (25%)
             # given the similarity between the objects selected here and the small ima
         ge resolution we consider this to be good accuracy
```