Academic notes: Analysis

J. Mak (August 1, 2017) [From notes of D. Schütz, Durham]*

I. METRIC SPACES

A. Basic notions

The field of real numbers $\mathbb R$ is a totally ordered field which also satisfies the <u>completeness</u> axiom, i.e. a non-empty bounded set $A \subseteq \mathbb R$ has a <u>supremum</u> and/or an <u>infimum</u>. The supremum of $A \subseteq \mathbb R$ is a <u>real number s</u> where $a \le s$ for all $a \in A$. If m is also such that $a \le m$ for $a \in A$, then $s \le m$, denoted $\sup A$. The infimum of A is where the inequalities signs are swapped, denoted $\inf A$.

Lemma I.1 Let $I_n = [a_n, b_n]$ be a sequence of closed intervals such that $a_n \le a_{n+1} < b_{n+1} \le b_n$ for all $n \ge 1$, then $\bigcap_{n=1}^{\infty} I_n$ is non-empty.

Proof Let $a=\sup\{a_n\}$. Since $a_n\leq b_1$ for all n exists by completeness axiom, $a_n\leq b_k$ for any value of n and k, and so $a\leq b_k$. Hence $a_k\leq a\leq b_k$ for all k, and that $a\in \cap_{n=1}^\infty I_n$.

Let M be a set. A function $d: M \times M \to [0, \infty)$ is called a <u>metric</u> on M if

- 1. d(x,y) = 0 iff x = y;
- 2. d(x,y) = d(y,x) for all $x, y \in M$;
- 3. $d(x,z) \leq d(x,y) + d(y,z)$ for all $x, y, z \in M$.

The pair (M,d) is then called a metric space. It is easy to see any $N\subseteq M$ is also a metric space using the same d.

Example 1. On \mathbb{R} , d(x,y) = |y-x| gives a metric.

2. On \mathbb{R}^2 , $d_1(\boldsymbol{x}, yb) = |y_1 - x_1| + |y_2 - x_2|$ is also a metric, but notice that, for example, $d_1((1, 1), (0, 0)) = 2$ as opposed to the expected distance of $\sqrt{2}$.

The standard (Euclidean) metric in \mathbb{R}^2 is given by

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2}.$$

Let V be a real vector space. An $\underline{\text{inner product}}$ on V is a function $(\cdot, \cdot): V \times V \to \mathbb{R}$ that, for all $x, y \in V$, satisfies the following:

- linearity in the first factor;
- $\bullet (\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{y}, \boldsymbol{x});$
- (x, x) > 0 and is zero iff x = 0.

Example 1. For $V = \mathbb{R}^n$, the standard inner product is given by $(x, y) = x_i y_i$ (where Einstein notation is understood). If **A** is a symmetric matrix, then $(x, y) = x^T \mathbf{A} y$ is an inner product if all eigenvalues of **A** are positive.

2. For V = C[a, b], $(f, g) = \int_a^b f(x)g(x) dx$ is an inner product since V is a vector space of continuous functions, and the only function that is everywhere zero and continuous is f(x) = 0 for all $x \in [a, b]$.

^{*} julian.c.l.mak@googlemail.com

Theorem I.2 (Cauchy–Schwartz inequality) Let V be a real vector space, and (\cdot, \cdot) an inner product on V. Then

$$|(x, y)| \le ||x|| \cdot ||y||,$$

where $\|\cdot\|$ is the standard Euclidean norm of the vector, and there is equality iff $x = \lambda y$ for some $\lambda \in \mathbb{R}$.

Proof Note that (x, 0) = (x, x - x) = (x, x) - (x, x) = 0, so we may assume that $y \neq 0$. Then, with $\lambda = -(x, y)/\|y\|^2$,

$$0 \le (x + \lambda y, x + \lambda y) = ||x||^2 + 2\lambda(x, y) + \lambda^2 ||y||^2$$
$$= ||x||^2 - \frac{(x, y)^2}{||y||^2}.$$

So $(x, y)^2 \le ||x||^2 ||y||^2$ and the result follows.

Lemma I.3 Let V be a real vector space with inner product (\cdot,\cdot) . Then $d:V\times V\to [0,\infty)$ with $d(\boldsymbol{x},\boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\|$ gives a metric on V.

Proof Clearly d(x, x) = 0 and is symmetric, so we just need to check the triangle inequality. By Cauchy–Schwartz,

$$\|a+b\| = \sqrt{\|a\|^2 + 2(a,b) + \|b\|^2} \le \sqrt{\|a\|^2 + 2\|a\|\|b\| + \|b\|^2} \le \|a\| + \|b\|,$$

as required.

Let $f: M \to N$ be a function metric spaces (M, d_M) and (N, d_N) . For $a \in M$, f is continuous at a if, for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_N(f(a), f(x)) < \epsilon$ for all $x \in M$ when $d_M(a, x) < \delta$.

B. Sequences and Cauchy sequences

Let M be a metric space. A sequence (a_n) in M consists of elements $a_n \in M$ for all $n \in \mathbb{N}$. Let $a \in M$, and (a_n) converges to a if, for all $\epsilon > 0$, $\overline{d(a_n, a)} < \epsilon$ for some all $n \geq n_0$. We write $\lim_{n \to \infty} a_n = a$. The sequence (a_n) is called convergent if there exists $a \in M$ where $a_n \to a$.

Lemma I.4 Let $f: M \to N$ be a function between metric spaces and $a \in M$. The function f is continuous at $a \in M$ iff $f(a_n) \to f(a)$ for $(a_n) \in M$ with $a_n \to a$. (Note that $f(a_n)$ is a sequence in N.)

Proof Assume that f is continuous at $a \in M$, and let (a_n) be a sequence with $a_n \to a$. By continuity, for any $\epsilon > 0$, there exists $\delta > 0$ such that, for $d(a,y) < \delta$, $d(f(a),f(y)) < \epsilon$ for arbitrary $y \in M$. Choose $n_0 \ge 0$ such that $d(a_n,a) < \delta$ for all $n \ge n_0$, then this implies $d(f(a_n),f(a)) < \epsilon$, and thus $f(a_n) \to f(a)$ as required.

On the other hand, assume $f(a_n) \to f(a)$ for all sequences such that $a_n \to a$. Given $\epsilon > 0$, assume that instead there is no $\delta > 0$ such that, for $d(a,y) < \delta$, $d(f(a),f(y)) < \epsilon$ for arbitrary $y \in M$. Then we can find $a_n \in M$ with $d(a,a_n) < 1/n$. However, this means $d(f(a),f(a_n)) \ge \epsilon$, which contradicts the assumption that $f(a_n) \to f(a)$ even though $a_n \to a$. So such δ exists and we have continuity.

Lemma I.5 *The limit of a sequence is unique.*

Proof Assume there are two limits a and b for the sequence a_n . Then $d(a,b) \le d(a,a_n) + d(a_n,b)$. As $n \to \infty$, the RHS tends to zero so a = b.

A Cauchy sequence (a_n) in the metric space M is a sequence such that, for all $\epsilon > 0$, there exists $n_0 \geq 0$ such that $d(a_n, a_q) < \epsilon$ for all $p, q \geq n_0$.

Lemma I.6 A convergent sequence is a Cauchy sequence (the converse is not true).

Proof Suppose $a_n \to a$. Then, for all $\epsilon > 0$, there is some $n_0 \ge 0$ such that $d(a_n, a) < \epsilon/2$ for $n \ge n_0$. Let $p, q \ge n_0$, then $d(a_n, a_q) \le d(a_p, a) + d(a_q, a) < \epsilon$, so the sequence is Cauchy.

A metric space M is complete if all Cauchy sequences in M converges.

Theorem I.7 (Completeness of \mathbb{R}) *The real line* \mathbb{R} *is complete.*

Proof Let (a_n) be a Cauchy sequence in \mathbb{R} . Define the sequence of integers (n_k) where $n_0=1$, and n_{k+1} is the smallest integer bigger than n_k where $|a_p-a_q|<2^{-(k+2)}$ for $p,q\geq n_{k+1}$. Define the intervals $I_k=[a_{n_k}-2^{-k},a_{n_k}+2^{-k}]$ and let $x\in I_{k+1}$. Now, since $x\in I_{k+1}$, this implies that $|x-a_{n_{k+1}}|<2^{-(k+1)}$. By definition of the integer sequence, $|a_{n_k}-a_{n_{k+1}}|<2^{-(k+1)}$, so then, by triangle inequality,

$$|a_{n_k} - x| \le |x - a_{n_{k+1}}| + |a_{n_{k+1}} - a_{n_k}| < 2 \cdot 2^{-(k+1)} = 2^{-k}$$

so $x \in I_k$. However, $x \in I_{k+1}$, so $I_{k+1} \subset I_k$. By Lemma I.1, $\bigcap_{k=1}^{\infty} I_k \neq \emptyset$, so assume $a \in \bigcap_{k=1}^{\infty} I_k$. For $m \ge n_k$,

$$|a - a_m| \le |a - a_{n_k}| + |a_{n_k} - a_m| \le 2^{-k} + 2^{-(k+1)} \to 0$$

as $m \ge n_k \to \infty$. Thus $a_m \to a$ and this arbitrary Cauchy sequence converges in $\mathbb R$ and thus $\mathbb R$ is complete.

Proposition I.8 For $X \neq \emptyset$, let $\mathcal{B}(X)$ be the set of functions $f: X \to \mathbb{R}$ such that f is bounded. For $f, g \in \mathcal{B}(X)$, let $d(f,g) = \sup_{x \in X} |f(x) - g(x)|$. Then $(\mathcal{B}(X), d(f,g))$ defines a complete metric space.

Proof d is clearly a metric. For completeness, let (f_n) be a Cauchy sequence in $\mathcal{B}(X)$. For $x \in X$, $(f_n(x))$ is a Cauchy sequence of real numbers because, by definition of d(f,g), $|f_q(x)-f_p(x)| \leq d(f_p-f_q)$, and since \mathcal{R} is complete, the sequence $(f_n(x))$ converges.

Defining $f: X \to \mathbb{R}$ such that $f(x) = \lim_{n \to \infty} f_n(x)$, we need to show that $f \in \mathcal{B}(X)$, and that indeed $f_n(x) \to f(x)$ regardless of $x \in X$. Be definition of a Cauchy sequence, for $\epsilon > 0$, there exists $n_0 \ge 0$ such that $d(f_p, f_q) < \epsilon/2$ for $p, q \ge n_0$. Note also that, for all $x \in X$, there exists $n_1(x) \ge n_0$ such that $|f_{n_1(x)} - f| < \epsilon/2$. Then, let $x \in X$ and $n \ge n_0$, we have

$$|f_n(x) - f(x)| \le |f_n - f_{n_1(x)}| + |f_{n_1(x)} - f| < \epsilon.$$

Additionally note, $|f(x)| \le |f(x) - f_{n_0(x)}| + |f_{n_0(x)}| \le \epsilon + c_{f_{n_0}}$ since $f_{n_0(x)}$ is bounded, so $f \in \mathcal{B}(X)$. Further, $d(f_n - f) = \sup |f_n - f| = \delta < \epsilon$, so f_n converges to $f \in \mathcal{B}(x)$. Thus every Cauchy sequence converges and thus the space is complete and equipped with a metric.

C. Topology of metric spaces

Let (M,d) be a metric space with $x \in M$ and r > 0. Define the open ball around x of radius r to be

$$B(\boldsymbol{x};r) = \{ \boldsymbol{y} \in M \mid d(\boldsymbol{x},\boldsymbol{y}) < r \}.$$

The analogous closed ball $D(\boldsymbol{x};r)$ is defined with the less than or equal to sign. A set $A\subset M$ is bounded if it can be contained in some $D(\boldsymbol{x};r)$ for some $\boldsymbol{x}\in M$, r>0. A set $U\subset M$ is open if, for all $\boldsymbol{x}\in U$, there exists $r_{\boldsymbol{x}}>0$ such that $B(\boldsymbol{x};r_{\boldsymbol{x}})\subset U$. A set $A\subset M$ is closed if $M\setminus A$ is open.

Lemma I.9 Let (M, d) be a metric space, then:

- 1. M and \emptyset are open;
- 2. $\bigcup_i A_i$ is open if all $A_i \subset M$ are open;
- 3. $\bigcap_{i=1}^{n} is open if all A_i \subset M$ are open and $n < \infty$;
- 4. B(x;r) is open for some r > 0.

Proof The first two are obvious. For 3), suppose the open sets U_i indexed by i are open and $\mathbf{x} \in \bigcap_{i=1}^n U_i$. Then $\mathbf{x}inU_i$ for all i, so there is some $B(\mathbf{x}; r_i) \subset U_i$. Taking the minimum of such $r_i > 0$ means $B(\mathbf{x}; r_i) \subset \bigcap_{i=1}^n U_i$, and thus the collective finite union is open.

For 4), let $\mathbf{y} \in B(\mathbf{x}; r)$, $r_y = r - d(\mathbf{x}, \mathbf{y}) > 0$ and $\mathbf{z} \in B(\mathbf{y}; r_y)$. Then $d(\mathbf{x}, \mathbf{z}) \le d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z}) < d(\mathbf{x}, \mathbf{y}) + r - d(\mathbf{x}, \mathbf{y}) = r$, so $B(\mathbf{y}; r_y) \subseteq B(\mathbf{x}; r)$.

Corollary I.10 The following may be shown by considering the appropriate complements:

- 1. M and Ø are closed;
- 2. $\bigcap_i A_i$ is closed if $A_i \subset M$ for all i;

- 3. $\bigcup_i A_i$ is closed if $A_i \subset M$ for all i and $n < \infty$;
- 4. D(x;r) is closed.

Example Open intervals are open and closed intervals are closed.

 (a, ∞) is open as it is a union of open bounded intervals.

 $[a, \infty)$ is closed since $(-\infty, a)$ is open.

 \mathbb{Z} is closed as $\mathbb{R} \setminus \left(\bigcup_{n=-\infty}^{\infty} (n, n+1) \right)$ is closed.

 \mathbb{Q} and [0,1) are neither, while \mathbb{R} is both.

Proposition I.11 Suppose M is a metric space and $A \subseteq M$. A is closed iff every sequence converges to $a \in A$.

Proof Assume A is closed and $a_n \to a$. Assume the converse so that $a \in U = M \setminus A$ which is an open set. Then there is some r > 0 such that $B(a; r) \in U$, and since $a_n \to a$, there exists $n_0 \ge 0$ where $d(a_n, a) < r$ for $n \ge n_0$. This implies $a_n \in B(a; r)$ for all n, but this is a contradiction since $a_n \in A$, and thus $a \in A$.

Assume $a_n \to a \in A$. Let $x \in M \setminus A$, r > 0, and assume there is no such $B(x;r) \subset M \setminus A$. Thus there is an intersection, i.e., $B(x;1/n) \cap A \neq \emptyset$. This implies that there is some i where $a_i \in B(x;1/n) \cap A$. However, (a_n) is a sequence in A and $d(a_m,x) < 1/n$ for $m \ge n+1$, so $a_m \to a$, but this implies x = a which is not possible since $x \in M \setminus A$. So $M \setminus A$ is open which means A is closed.

Theorem I.12 Let M be a complete metric space and $A \subseteq M$ is closed. Then A is complete with the induced metric.

Proof Let (a_n) be a Cauchy sequence in A. Since M is complete, (a_n) converges in M, but A is closed, so (a_n) converges in A by previous proposition, which implies A is complete.

Let M be a metric space. M is compact if every sequence $(a_n) \in M$ has a convergent subsequence (a_{n_k}) .

Example • $(a_n) = (-1)^n$ is non-convergent but has a convergent sequence.

- M = (0,1) is not compact since $a_n = 1/n$ and its subsequences do not converge in M.
- \mathbb{R} is not compact as a_n has no subsequence converging in \mathbb{R} .
- M=[0,1] is compact. Let (a_n) be a subsequence in M. Let I_1 be either [0,1/2] or [1/2,1], and let (a_{n_k}) be the subsequences in I_1 . Continuing this we have a sequence of intervals $I_{m+1}\subset I_m$ with I_m of length 2^{-m} . Denote the subsequences $(a_{m_k}^m)$ to be those in I_m . Taking $b_m=a_{n_m}^m\in I_m$, we see that $b_{m+1}\in I_M$ since $I_{m+1}\subset I_m$, so that $d(b_m,b_q)\leq 2^{-m}$ for $q\geq m$. Thus (b_m) is a Cauchy sequence, which is a subsequence of (a_n) . Since $M\subseteq \mathbb{R}$, M is complete, so $b_m\to b\in M$, and thus M is compact.

Proposition I.13 By extension, closed n-gons in \mathbb{R}^n are compact.

Proposition I.14 Let $f: M \to N$ be a continuous map between metric spaces. If M is compact, then $f(M) \subset N$ is compact.

Proof Let (a_n) be a sequence in f(M). Then $a_n = f(b_n)$ for some $b_n \in M$. The sequence (b_{n_k}) converges in M since M is compact, thus

$$\lim_{k \to \infty} a_{n_k} = \lim_{k \to \infty} f(b_{n_k}) = f\left(\lim_{k \to \infty} b_{n_k}\right) = f(b)$$

since f is continuous. So (a_{n_k}) is convergent, thus f(M) is compact.

Proposition I.15 A closed subset of a compact space is a compact set.

Proof Let (a_n) be a sequence in $A \subset M$ where M is compact. Since $(a_n) \in M$, (a_{n_k}) is convergent, but A closed so $(a_{n_k}) \to a \in A$, thus A is compact.

Theorem I.16 (Heine–Borel) A subset $A \subseteq \mathbb{R}^n$ is compact iff A is closed and bounded.

Proof Suppose A is compact, so clearly A is closed. If A is unbounded, then there exists $(a_n) \in A$ where $d(a_n, 0) \ge n$, so (a_{n_k}) does not converge in \mathbb{R}^n . However A is compact, which is a contradiction, so A is bounded.

Suppose A is bounded, then $A \subseteq [a, b]^n$. If A is closed, then it is a closed subset of a compact set, so A is compact by previous proposition.

For example, if $f: M \to N$ with f is a scalar continuous function, then $f(M) \subset \mathbb{R}$ is closed and bounded since M is compact, and thus f(M) compact implies f(M) is closed and bounded.

D. Banach and Hilbert spaces

Let V be a real vector space. The <u>norm</u> on V is a function $\|\cdot\|:V\to[0,\infty)$ where:

- 1. ||x|| = 0 iff x = 0;
- 2. $\|\lambda \boldsymbol{x}\| = |\lambda| \cdot \|\boldsymbol{x}\|$ for all $\boldsymbol{x} \in V$ and $\lambda \in \mathbb{R}$;
- 3. $\|x + y\| \le \|x\| + \|y\|$.

The pair $(V, \|\cdot\|)$ gives a normed vector space.

Lemma I.17 Let V be a normed vector space, then d(x, y) = ||x - y|| defines a metric on V.

Proof Two of the properties follow from definition. To show the reflexive property, note that

$$d(y, x) = ||y - x|| = ||(-1)(x - y)|| = ||x - y|| = d(x, y).$$

Example 1. It may be shown that the metrics

$$\sum_{i} |x_i|, \qquad \sum_{i} \sqrt{|x_i|^2}, \qquad \max\{|x_i| \in \mathbb{R}\}$$

define norms on \mathbb{R}^n (the ℓ^1 , ℓ^2 and ℓ^∞ norms).

2. The supremum norm on B(X) is defined by

$$||f||_{\infty} = \sup\{|f(x)| \in \mathbb{R} \; ; \; x \in X\}.$$

3. For X a metric space, $C_b(X) = \{f : x \to \mathbb{R} \mid f \text{ continuous and bounded}\}$ is also a normed vector space with the supremum norm.

If $C(X) = \{f : x \to \mathbb{R} \mid f \text{ continuous}\}\$ then f does not have a supremum, however, we have the following:

Proposition I.18 If X is compact, then $C(X) = C_b(X)$, so C(X) is a normed vector space.

Proof $C_b(X) \subseteq C(X)$ regardless of X. For the converse, assume $f \in C(X)$, so that f(X) is compact. This implies f(X) is bounded and closed by the Heine–Borel theorem, so $C(X) \subseteq C_b(X)$.

Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be two normed vector spaces. A function $f: V \to W$ is continuous at $x \in V$ if, for all $\epsilon > 0$, there exists $\delta > 0$ such that $\|x - y\|_V < \delta$ implies that $\|f(x) - f(y)\|_W < \epsilon$.

Let V be a normed vector space. V is a Banach space if V with the metric induced by the norm is complete.

Theorem I.19 Let X be a metric space, then $C_b(X)$ with the supremum norm is a Banach space.

Proof Since $C_b(X) \subseteq B(X)$, if C_b is closed, then C_b is complete since B(X) is complete. To show this, let $(f_n) \in C_b(X)$, and let $f_n \to f \in B(X)$. The convergene of f_n implies that there exists $n_0 \ge 0$ such that $||f_n - f|| < \epsilon/3$ for any $\epsilon > 0$ with $n \ge n_0$. Also, $||f_{n_0}(y) - f(y)|| < \epsilon/3$ for all $y \in X$. The functions are continuous, so there exists $\delta > 0$ where, if $d(x,y) < \delta$, $||f_{n_0}(x) - f_{n_0}(y)|| < \epsilon/3$ for $x \in X$. Thus, for $d(x,y) < \delta$,

$$|f(x) - f(y)| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(y)| + |f_{n_0}(y) - f(y)| < \epsilon$$

so f is continuous, and $C_b(X)$ is closed and thus complete.

Corollary I.20 For a < b, C[a, b] with the supremum norm is a Banach space.

Note that C[a, b] is not a complete space with, for example, the L_2 norm

$$||f||_2 = \sqrt{\int_a^b (f(x))^2 dx}.$$

For example, with $f_n = x^n$, $f_n \to 0$ but clearly $f_n(1) = 1$ for all n. The underlying reason is the sequence is not a Cauchy sequence with respect to the norm.

Convergence with respect to the supremum norm is called uniform convergence.

- II. ORDINARY DIFFERENTIAL EQUATIONS
- III. TANGENT SPACES AND VECTOR FIELDS
 - IV. DIFFERENTIAL FORMS ON \mathbb{R}^n
- V. DIFFERENTIAL FORMS ON ORIENTED MANIFOLDS