Engineering Optics

Lecture 3

22/03/2022

by

Debolina Misra

Department of Physics IIITDM Kancheepuram, Chennai, India

Wave-particle dilemma

- ► "Is light a wave phenomenon or a particle phenomenon?" → at the heart of Optics →
 far more complicated.
- Particle nature: ball or a pebble and shrink it → vanishingly small → particle
- ▶ pebble interacts with its environment \rightarrow gravitational field \rightarrow spreads out into space—an inextricable part of the ball
- Real particles interact via fields → the field is the particle and the particle is the field

Wave-particle dilemma

- **Wave nature:** the essential feature of a wave is its non-localization.
- A classical traveling wave is a self-sustaining disturbance of a medium, which moves through space transporting energy and momentum.
- \triangleright Conceptually, the classical EM wave \rightarrow continuous entity \rightarrow wave. not particle.
- ▶ But in the past century we found that classical formulation of the EM wave good at macroscopic level, particle nature at microscopic level (Einstein)
- Both classical and wave treatment of light uses mathematical description of waves.

Longitudinal wave

The medium is displaced in the direction of motion of the wave

Transverse waves

Medium is displaced in a direction perpendicular to that of the motion of the wave

In all cases, energy-carrying disturbance advances → individual participating atoms remain in the vicinity of their equilibrium positions:

- the disturbance advances, not the material medium.
- Difference from a stream of particles.
- Leonardo da Vinci → first recognized → wave does not transport the medium → waves propagate at very great speeds.

How to describe a wave?

1D wave function

- A moving disturbance $\psi(x, t) = f(x, t)$
- ► Assume → wave does not change its shape as it progresses through space.
- After t the pulse has moved vt along x, but in all other respects it remains unaltered.
- introduce a coordinate system S', that travels along with the pulse at the speed v.
- In this system ψ is no longer a function of time \rightarrow stationary constant profile
- The disturbance looks the same at any t in S' as it did at t = 0 in $S(S \text{ and } S' \rightarrow a \text{ common origin})$
- ► How the observer at S will see the disturbance now? \rightarrow rewrite disturbance in terms of x

$$\psi = f(x')$$

$$x' = x - vt$$

$$\psi(x, t) = f(x - vt)$$

1D Wave

Shape can be found at $t=0 \rightarrow$ wavefunction

(b) S' = f(x') 0' = x'

disturbance has traveled through a certain distance= $v\Delta t$.

if the equation describing the rope at t = 0 is y(x), then the equation of the curve is y(x),

then the equation of the curve is y(x - vt), at a later instant t,

which simply implies a shift of the origin by a distance vt.

Similarly, for a disturbance propagating in the -x direction, equation of the curve is y(x+vt)

Optics, Hecht; Ghatak

1D Wave continued

- $\psi(x, t) = f(x-vt) \rightarrow$ choose the shape \rightarrow there is a wave moving in the positive x-direction with a speed v.
 - \rightarrow Example: $f(x) = \exp(-ax^2) \rightarrow$ which function is this? (how does it look like?)
- Differential wave equation

Important \rightarrow different kinds of waves, each described by own $\psi(x)$

 \rightarrow all satisfy the same wave equation

$$y(x, t) = a \cos k(x - vt)$$

Shape and time profile.

Fig. 11.4 The curves represent the displacement of a string at t = 0 and $t = \Delta t$, respectively, when a sinusoidal wave is propagating in the +x direction.

$$y(x, t) = a \cos k(x - vt)$$

- A wave propagating along _?_ direction.
- Can two points separated by a distance have same displacement?

Fig. 11.4 The curves represent the displacement of a string at t = 0 and $t = \Delta t$, respectively, when a sinusoidal wave is propagating in the +x direction.

$$y(x,t) = a \cos k(x - vt)$$

- It can be seen from the figure that, at a particular instant, any two points separated by a distance $\lambda \rightarrow$ same displacement
- $\lambda \rightarrow$ wavelength
- maximum displacement of the particle (from its equilibrium position) is ?
- which is known as the ____ of the wave.

Fig. 11.4 The curves represent the displacement of a string at t = 0 and $t = \Delta t$, respectively, when a sinusoidal wave is propagating in the +x direction.

$$y(x,t) = a \cos k(x - vt)$$

- It can be seen from the figure that, at a particular instant, any two points separated by a distance $\lambda \rightarrow$ same displacement
- $\lambda \rightarrow$ wavelength
- maximum displacement of the particle (from its equilibrium position) is → 'a'
- which is known as the <u>amplitude</u> of the wave.

Fig. 11.4 The curves represent the displacement of a string at t = 0 and $t = \Delta t$, respectively, when a sinusoidal wave is propagating in the +x direction.

SINUSOIDAL WAVES: Time dependence

$$y(x, t) = a \cos k(x - vt)$$

Fig. 11.5 The curves represent the time variation of the displacement of a string at x = 0 and $x = \Delta x$, respectively, when a sinusoidal wave is propagating in the +x direction.

Optics by Ghatak

$$y(t) = a \cos \omega t$$
 at $x = 0$
 $y(t) = a \cos (\omega t - k\Delta x)$ at $x = \Delta x$

where

$$\omega = kv$$

- Corresponding to a particular point, the displacement repeats itself after a time ?
- Called Time period of the wave $T = 2\pi/\omega$
- ► How is T related to v?
- No. of oscillation a particle carries out in 1s.

1D differential wave Equation

$$\psi(x, t) = f(x')$$
$$x' = x \mp vt.$$

taking the partial derivative w.r.t x, keeping t constant

$$\frac{\partial \psi}{\partial x} = \frac{\partial f}{\partial x}$$

$$\frac{\partial \psi}{\partial x} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial x} = \frac{\partial f}{\partial x'} \tag{1}$$

$$\frac{\partial x'}{\partial x} = \frac{\partial (x \mp vt)}{\partial x} = 1$$

partial derivative w.r.t time and keeping x constant

$$\frac{\partial \psi}{\partial t} = \frac{\partial f}{\partial x'} \frac{\partial x'}{\partial t} = \frac{\partial f}{\partial x'} (\mp v) = \mp v \frac{\partial f}{\partial x'}$$
 (2)

combining (1) & (2)
$$\frac{\partial \psi}{\partial t} = \mp v \frac{\partial \psi}{\partial x}$$
 (3)

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2 f}{\partial x'^2} \tag{4}$$

$$\frac{\partial^2 \psi}{\partial t^2} = \frac{\partial}{\partial t} \left(\mp v \frac{\partial f}{\partial x'} \right) = \mp v \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial t} \right) \tag{5}$$

from (2):
$$\frac{\partial \psi}{\partial t} = \frac{\partial f}{\partial t}$$

Hence, (5) becomes
$$\frac{\partial^2 \psi}{\partial t^2} = \mp v \frac{\partial}{\partial x'} \left(\frac{\partial \psi}{\partial t} \right)$$

Using (2) again,
$$\frac{\partial^2 \psi}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial x'^2}$$

Or,
$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

1-D differential wave equation

Optics, Hecht

Harmonic waves

1-D differential wave equation

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

 $x \rightarrow x - vt$ What about damping?

Simplest waveform: Sine or Cosine → Sinusoidal / harmonic waves

$$\psi(x, t)|_{t=0} = \psi(x) = A \sin kx = f(x)$$

Any wave → superposition of harmonic waves

k: propagation number \rightarrow a +ve constant; why do we need k?

 $|\psi(x)|_{max} = ? \rightarrow maximum \ disturbance \rightarrow amplitude$

Argument of Sine function \rightarrow 'phase (φ) '

Reference: Optics by Hecht

Thank You