Übung 12 AuD

Dominic Deckert

20. Januar 2017

Previously on ...

Floyd-Warshall-Algorithmus

- ► Idee
- Vorgehensweise

a)

$$\begin{pmatrix} 0 & 2 & 5 & \infty & 4 \\ \infty & 0 & 2 & \infty & 1 \\ \infty & \infty & 0 & 3 & \infty \\ 3 & \infty & \infty & 0 & \infty \\ \infty & \infty & \infty & 9 & 0 \end{pmatrix}$$

b)

- **▶ (4, 2, 5)**, (4, 5, 7), (4, 3, 8)
- ► (1, 3, 4), (4, 3, 7), (4, 5, 6), (1, 3, 4), (1, 5, 3)

c)

- **▶** (1, 4, 7), (2, 4, 5)
- **▶** (3, 5, 9), (5, 1, 12), (5, 2, 14), (5, 3, 16), (3,1, 6), (3, 2, 8), (2, 1, 8)

Algorithmisches Pfadproblem

Zusammenfassung mehrerer Graphenprobleme, die auf Pfaden basieren Bsp:

- kürzeste Wege zwischen Knoten
- ► Kapazität einer Straße
- Störsicherheit einer Verbindung
- Zustandsübergänge eines Systems

Algorithmisches Pfadproblem

Beschreibung eines APP als: **Semiring** $(M, \oplus, \odot, \mathbf{0}, \mathbf{1})$

- ▶ *M*: Grundmenge der Kantengewicht
- ightharpoonup \oplus : Pfad-Vereinigungsoperation (neutrales Element: $\mathbf{0}$)
- ▶ ⊙: Pfad-Verknüpfungsoperation (neutrales Element: 1)

 $\textit{Zusatz} \colon \mathsf{Semiring} \to \oplus \mathsf{\ kommutativ\ und\ assoziativ,\ } \odot \mathsf{\ assoziativ,\ } \mathsf{Distributivgesetz\ gilt}$

$$(M,\oplus,\odot,\ \mathbf{0}\ ,\ \mathbf{1}\)$$

Semiring: $(\mathbb{R}^{\infty}_{\geq 0},\mathit{max},\mathit{min},0,\infty)$

$$egin{pmatrix} \infty & 5 & 3 & 0 & 0 \\ 0 & \infty & 4 & 3 & 0 \\ 0 & 4 & \infty & 0 & 2 \\ 0 & 0 & 0 & \infty & 4 \\ 0 & 0 & 0 & 0 & \infty \end{pmatrix}$$

Aho-Algorithmus

Erinnerung: Update-Formel des Floyd-Warshall-Algorithmus:

$$D_G^{(k)}(u,v) = \\ D_G^{(k-1)}(u,v) \max \left(D_G^{(k-1)}(u,k-1) + D_G^{(k-1)}(k-1,k-1)^* + D_G^{(k-1)}(k-1,v) \right) \\ \text{Semiring des Distanzproblem: } (\mathbb{R}_{>0}^{\infty}, \max, +, \infty, 0)$$

Allgemeine Update-Formel:

$$D_G^{(k)}(u,v) = D_G^{(k-1)}(u,v) \oplus (D_G^{(k-1)}(u,k-1) \odot D_G^{(k-1)}(k-1,k-1)^* \odot D_G^{(k-1)}(k-1,v))$$

- **▶** (1, 4, 3), (1, 3, 4), (3, 4, 3)
- **▶** (1, 5, 2), (2, 5, 2)
- **▶** (1, 5, 3), (2, 5, 3), (3, 5, 3)

$$c(4,5) = 1$$

Wie ändert sich $D_G(1,5)$?
 $D_G(1,5) = 2$

a)

Prozessproblem: mögliche Zustandsübergänge, die von einem Startzustand zu einem Endzustand führen Menge aller möglichen Pfade als formale Sprache (Wort beschreibt jeweils einen Pfad) Semiring: $(2^{\Sigma}, \cup, \circ, \emptyset, \{\varepsilon\})$

$$\begin{pmatrix} \{d,\varepsilon\} & \{a\} & \emptyset \\ \emptyset & \{\varepsilon\} & \{b\} \\ \{c\} & \emptyset & \{\varepsilon\} \end{pmatrix}$$

$$\begin{pmatrix} \{d\}^* & \{d^n a\} & \emptyset \\ \emptyset & \{\varepsilon\} & \{b\} \\ \{cd^n\} & \{cd^n a\} & \{\varepsilon\} \end{pmatrix}$$

$$D_G^{(2)}(3,3) = \{\varepsilon, cd^n ab | n \in \mathbb{N}\}$$

$$D_G^{(3)}(3,3) = \{\varepsilon, cd^n ab | n \in \mathbb{N}\}^*$$

Nebenrechnung

Für alle APP: $a^0 = 1$

Semiring $S = (\mathbb{N} \cup \{\infty\}, max, min, 0, \infty)$ Für das Kapazitätsproblem gilt: $a \odot a = a = a \oplus a$, da min(a, a) = a = max(a, a) $a^* = a^0 \oplus a^1 \oplus a^2 \oplus a^3 \dots$ $= \mathbf{1} \oplus a \oplus (a \odot a) \oplus (a \odot a \odot a) \dots$ $= \infty \max a \max (a) \max a \dots$ $= \infty \max a = \infty$

Hinweis: **max** ist dieselbe Funktion wie *max* (zur besseren Lesbarkeit aber in Infixnotation)

Rechnung

$$D_{G}^{(k)}(u,v) = D_{G}^{(k-1)}(u,v) \oplus (D_{G}^{(k-1)}(u,k) \odot D_{G}^{(k-1)}(k,k)^{*} \odot D_{G}^{(k-1)}(k,u))$$

$$= D_{G}^{(k-1)}(u,v) \max (D_{G}^{(k-1)}(u,k) \min \infty \min D_{G}^{(k-1)}(k,u))$$

$$= D_{G}^{(k-1)}(u,v) \max (D_{G}^{(k-1)}(u,k) \min D_{G}^{(k-1)}(k,u))$$