Error Detection and Multiple Access

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Link Layer

- link layer is responsible for transferring a frame of data between two nodes over a single link
- many different types of links
 - wired and wireless
 - point-to-point vs shared medium
- each link can potentially run a different protocol (Ethernet, 802.11), may provide different services (reliability, multicast)

Link Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

Link Layer Services

- framing, data transmission
 - encapsulate data into a frame, adding header and/or trailer
 - may use link-layer addressing, likely different from IP addresses
 - negotiate channel access on shared medium
- reliable delivery
 - seldom used on links with low error rates (fiber)
 - wireless links have high error rates, may include retransmission
 - why implement this at both link layer and transport layer?
- flow control
- error detection and correction
 - errors caused by noise, collisions
 - identify and correct some bit errors others cause packet loss or retransmission
- half or full duplex transmission
- broadcast, multicast on shared medium

Hardware

- adaptor or (NIC) combines physical and link layers
- sending
 - encapsulate IP packet in a frame
 - add header and trailer: error checking, flow control
- receiving
 - check/correct errors
 - handle flow control
 - extract IP packet and deliver to IP

Error Detection and Correction

Error Detection and Correction

- EDC = Error Detection and Correction bits
- not 100% reliable very small chance that some errors are missed
- more EDC bits ⇒ better detection and correction

Parity Checking

Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

CRC

- treat D data bits as a binary number
- choose an r+1 pattern, generator G, known by sender and receiver
- sender
 - choose r CRC bits such that D * 2^r ⊕ R exactly divisible by G (modulo 2)
- receiver
 - divide data received by G
 - if non-zero remainder: error detected
 - can detect all burst errors less than r+1 bits
- CRC-32: Ethernet, FDDI

CRC Example

• transmit $D * 2^r \oplus R = 101110011$

Multiple Access Links

• links shared among many nodes

ink Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns.

Multiple Access Protocol

- protocol for sharing a single broadcast channel
- protocol determines when each node can transmit
 - must avoid collisions
 - collision: two or more simultaneous transmissions lead to interference so that a signal can't be received
- challenge: communication about channel sharing must use the channel itself!
- ideal protocol for a channel of rate Rbps
 - when one node wants to send, transmit at rate R
 - when m nodes want to transmit, each sends at R/m
 - fully decentralized: no master node, no clock synchronization
 - simple to implement

k Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

Types of MAC Protocols

channel partitioning

- divide channel into pieces (time slots, frequency, code)
- allocate each piece to a single node

random access

- listen to see if anyone else is sending
- any node can send if the channel is clear
- detect and recover from collisions

taking turns

- nodes coordinate with a master or a token
- on its turn, node can send as much as it needs to (up to some maximum size)

nk Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

TDMA: Time Division Multiple Access

Key:

- 2 All slots labeled "2" are dedicated to a specific sender-receiver pair.
- divide channel into slots based on time
- one slot per node per round
- unused slots are idle
- used in GSM cell phones

ink Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

FDMA: Frequency Division Multiple Access

- divide channel into frequency bands
- one frequency band per node
- unused time in frequency band is idle
- used in conjunction with TDMA

Random Access Protocols

ink Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns.

Random Access

- to send a packet
 - transmit at full channel rate
 - some protocols require listening first to see if channel free
- must detect and recover from collisions
- examples
 - ALOHA: slotted and unslotted
 - CSMA, CSMA/CD, CSMA/CA

Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

Slotted ALOHA

assumptions

- all frames same size
- time is divided into equal size slots = time to transmit 1 frame
- nodes transmit frames only at beginning of slots
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation

- when node wants to send, transmit in next slot
- if no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with probability p until it succeeds

Slotted ALOHA Example

Key:

C = Collision slot

E = Empty slot

S = Successful slot

ink Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns.

Slotted ALOHA Pros and Cons

- pros
 - single active node can continuously transmit at full rate of channel
 - highly decentralized
 - simple
- cons
 - not very efficient
 - channel utilization is 37% (see book)
 - · excess collisions cause wasted slots
 - too many idle slots
 - clock synchronization required
- nodes should be able to detect collision in less than time to transmit packet
 - rest of the slot is wasted
 - but unslotted ALOHA efficiency is even worse (18%)

ink Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

CSMA: Carrier Sense Multiple Access

- solution to problems with ALOHA
- listen before you transmit (carrier sensing)
 - if the channel is busy, wait until later
 - otherwise, send the data

Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turn

CSMA Collisions

- collisions occur even with carrier sensing: propagation delay means two nodes can start before they hear each other
- collision wastes all time when packets are transmitted

Error Detection and Correction Multiple Access Protocols Random Access Protocols Taking Turns

CSMA/CD: Collision Detection

- add ability to stop transmission once a collision is detected
- collision detection
 - easy for wired links: measure signal strengths and compare transmitted and received signals
 - hard for wireless links: turn off receiver when transmitting
- very successful used in Ethernet, 802.11 networks

Taking Turns

Link Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols **Taking Turns**

Taking Turns

- channel partitioning
 - share channel efficiently and fairly at high load
 - inefficient at low load: high delay, only 1/N of bandwidth
- random access
 - efficient at low load: low delay, full bandwidth
 - inefficient at high load: collisions
- taking turns
 - try to have the best of both types
 - send at full rate when it is your turn
 - share fairly when everyone wants a turn

Link Layer Error Detection and Correction Multiple Access Protocols Random Access Protocols **Taking Turns**

Types of Protocols

polling

- master node checks with each other node to see if it wants to send
- problems
 - polling overhead
 - latency
 - single point of failure
- token passing
 - pass a control token among all nodes in a ring
 - problems
 - token passing overhead
 - latency before you get the token again
 - token can be lost
 - used in FDDI: fiber-based token rings