COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

INSTRUCTION EXECUTION AND STRAIGHT-LINE SEQUENCING

- a possible program segment for the task, C=A+B, as it appears in the memory of a computer.
- Straight-line sequencing: using the information in the PC to fetch and execute instructions, one at a time, in the order of increasing addresses.
- Executing a given instruction is a two-phase procedure.
 - Instruction fetch (First phase)
 - Instruction execute (Second phase)

Figure 2.4 A program for $C \leftarrow [A] + [B]$.

BRANCHING

 Consider the task of adding a list of n numbers.

Figure 2.5 A program for adding n numbers.

BRANCHING

 Consider the task of adding a list of n numbers in a loop.

Figure 2.6 Using a loop to add n numbers.

BRANCHING

Branch_if_[R4]>[R5] LOOP

• In generic assembly language as:

• Using an actual mnemonic as:

Branch_greater_than R4, R5, LOOP

BGT R4, R5, LOOP

GENERATING MEMORY ADDRESSES

- The purpose of the instruction block starting at LOOP is to add successive numbers from the list during each pass through the loop
- must refer to a different address during each pass
- memory operand address cannot be given directly in a single Load instruction in the loop.

Figure 2.6 Using a loop to add n numbers.

ADDRESSING MODES

- Addressing modes:
 - Different ways for specifying the locations of instruction operands.
- RISC-style processors basic addressing modes Table 2.1
- The assembler syntax defines the way in which instructions and the addressing modes of their operands are specified

Name	Assembler syntax	Addressing function
Immediate	#Value	Operand = Value
Register	Ri	EA = Ri
Absolute	LOC	EA = LOC
Register indirect	(Ri)	EA = [Ri]
Index	X(Ri)	EA = [Ri] + X
Base with index	(Ri,Rj)	EA = [Ri] + [Rj]
EA = effective addre	SS	

IMPLEMENTATION OF VARIABLES AND CONSTANTS

- Register mode
 - The operand is the contents of a processor register; the name of the register is given in the instruction.
 - Example: Add R4, R2, R3
- Absolute mode
 - The operand is in a memory location; the address of this location is given explicitly in the instruction.
 - Load R2, NUM1
- Immediate mode
 - The operand is given explicitly in the instruction.
 - Add R4, R6, 200_{immediate}
 - Add R4, R6, #200

INDIRECTION AND POINTERS

- Indirect mode:
 - The effective address of the operand is the contents of a register that is specified in the instruction
 - Load R2, (R5)

Figure 2.7 Register indirect addressing.

TOPICS COVERED FROM

- Textbook 1:
 - Chapter 2: 2.3, 2.4