Interest Rate Impact on Stock Prices

Impact of US Federal Interest Rate Policy on Forward-Looking Valuations of Large Businesses, 1954 - 2017

Ryan McReynolds July 24, 2023

GitHub repo: https://github.com/ryanmcr17/project1

Executive Summary

Project Description and Background

Analysis of US interest rate policy relative to large US company valuations. Interest rate policy is represented by effective federal funds rates, set by the Federal Open Market Committee (FOMC) within the Federal Reserve central bank of the US. Forward-looking valuations of large companies are represented by S&P 500 Price-to-Earnings (PE) Ratio data.

Anecdotally, and very generally, businesses typically see stronger revenue/earnings growth when interest rates are lower, at least when other economic conditions are equivalent (employment rates / labor market conditions and inflation rates especially). When the Fed/FOMC 'tightens' interest rate policy by raising their Fed Funds target rate range (i.e. 'raising interest rates') that often negatively impacts future business growth/profits and therefore current forward-looking valuations (in the form of stock prices). However, forward-looking valuations of large US businesses are dependent upon many factors beyond just interest rates, and many of those factors likely impact both valuations as well as federal interest rates themselves (confounding factors). I'm curious to explore the direct relationship mathematically to see how strong it may be, while understanding that a much more thorough analysis would be necessary to truly understand the complex relationship between these two variables and that an especially strong negative correlation (r-value close to -1) is highly unlikely.

Key Questions Considered

- What do the distributions of values look like from each individual dataset?
- What values/periods from each dataset could be considered outliers?
- Is there a consistent (negative) correlation between Effective Fed Funds Rates and S&P 500 PE ratios/valuations?
- Do potential outlier data points (whether included or removed) have a significant impact on the level of correlation between the two datasets?

Process Taken

Data Collection, Exploration, and Cleanup

Data Sources

US federal interest rate data by month obtained from <u>Kaggle</u>, S&P 500 PE ratios by month obtained from <u>NASDAQ Data Link API</u>

Interest Rate Data Exploration

Decided to use 'Effective' rates due to more consistent availability of data, equivalent to monthly availability of PE datapoints in other dataframe

Effective rate data is right-skewed with mean of ~4.9% and long-tail of rarely-occurring higher values

Year	904
Month	904
Day	904
Federal Funds Target Rate	462
Federal Funds Upper Target	103
Federal Funds Lower Target	103
Effective Federal Funds Rate	752
Real GDP (Percent Change)	250
Unemployment Rate	752
Inflation Rate	710
dtype: int64	

	Effective	Federal	Funds R	ate
count			752.000	000
mean			4.910	997
std			3.611	431
min			0.070	000
25%			2.427	500
50%			4.700	000
75%			6.580	000
max			19.100	000

P/E Data Exploration

Many more values in PE dataframe than interest rate values in other dataframe, due to inclusion of both start-of-month and largely-duplicative end-of-month values for PE data as well as data from many more years being included in PE dataset vs rate dataset

PE data is also right-skewed, with mean of \sim 16 and a few especially high + very-rarely-occurring values (max value is >10x the mean value)

	S&P	500 PE Ratio
count		1864.000000
mean		16.209179
std		8.571940
min		5.310000
25%		11.595000
50%		15.070000
75%		18.552500
max		123.730000

Merged Data

Matched formatting of date data between dataframes, used inner merge to combine while dropping duplicative end-of-month datapoints, created new clean dataframe with only necessary columns/data

	Date	S&P 500 PE Ratio	Year	Month	Day	Federal Funds Target Rate	Federal Funds Upper Target	Federal Funds Lower Target	Effective Federal Funds Rate	Real GDP (Percent Change)	Unemployment Rate	Inflation Rate	Month2	Day2	
0	2017- 03-01	23.60	2017	3	1	NaN	0.75	1 # Reduc	e to primary column	s for analysis,	using Effective Fede	ral Funds Ra	ite to repi	resent rat	tes
1	2017- 02-01	23.68	2017	2	1	NaN	0.75	4	f = combined_df[['Date of count())	ate','S&P 500 PE	Ratio','Effective F	ederal Funds	Rate']].c	lropna().s	sort_values('Date',igno
2	2017- 01-01	23.59	2017	1	1	NaN	0.75	7 clean_d	f.head(50)	752					
3	2016- 12-01	23.76	2016	12	1	NaN	0.50	S&P 500 PE	ederal Funds Rate	752 752 752					
4	2016- 11-01	23.35	2016	11	1	NaN	0.50	Date 0 1954-07-01	S&P 500 PE Ratio Effecti	ive Federal Funds Rate 0.80					
								1 1954-08-01	11.70	1.22					
								2 1954-09-01	11.96	1.06					
								3 1954-10-01	12.02	0.85					
								4 1954-11-01	12.28	0.83					
								5 1954-12-01	12.62	1.28					
								6 1955-01-01		1.39					
								7 1955-02-01		1.29					ļ
								8 1955-03-01		1.35					
								9 1955-04-01	12.39	1.43					

Correlation and Outlier Analyses

Initial Line Chart by Date (all datapoints included)

Initial Scatter Plot + Regression Line (all datapoints included)

S&P 500 Overall Price-Earnings Ratio vs Effective Federal Funds Rate (all datapoints included)

Boxplots of Each Dataset Including Potential Outliers

Used standard (quartile +/- 1.5*IQR) calculation for estimating outliers

Removed Potential Outliers and Re-Plotted Time Series

Used standard (quartile +/- 1.5*IQR) calculation for estimating outliers

Scatter + Regression Line with Potential Outliers Removed

Used standard (quartile +/- 1.5*IQR) calculation for estimating outliers

S&P 500 Overall Price-Earnings Ratio vs Effective Federal Funds Rate (potential outlier datapoints excluded)

Additional Potential Outliers Removed

Tested multiple values for the 'IQR factor' used in estimating+removing additional outliers from each dataset 'IQR factor' of 1.25 so far produced the largest (in absolute terms) r-value of ~ -0.54

Boxplots Showing Additional Potential Outliers Removed

'IQR factor' of 1.25 used in 'whis=' argument to match these boxplots with outliers removed in second round

Conclusions

Next Steps

Appendix

Project Plan Details

Additional Interesting Questions for Future Analysis

- Considering the potential time-lag in impact of interest rates on PE ratios, is there a stronger correlation between the two variables if accounting for that time-lag by shifting the x-axis for one of the variables relative to the other?
- What other factors/variables likely impact US company valuations / PE ratios that should be considered through additional analyses? Which of those may also have an impact on interest rate policy / future rates themselves?
- Is there a 'better' dependent variable for representing interest rate policy in the US, in terms of showing a closer real-time correlation with PE ratios and therefore higher potential for causality/predictability (i.e. producing an r-value closer to -1)?

Additional Notes on Original Plan/Datasets

Originally considered looking at tech company valuations specifically, via NASDAQ index PE ratios and because interest rates anecdotally seem to have a greater impact on tech company valuations due to longer average time-to-value industry-wide. Went with broader S&P 500 index data because it's available across a much longer time period, and Fed interest rates move quite slowly over years and differently over decades.

Acknowledgements and Data Sources

- pulling code from week-06/module-06 'WeatherPy' challenge as starting point for data loading
- federal interest rate data by month obtained from Kaggle
 (https://www.kaggle.com/datasets/federalreserve/interest-rates)
- S&P 500 PE ratios by month obtained from NASDAQ Data Link API (https://docs.data.nasdaq.com/docs/python-time-series)