Answers: Introduction to radians

Ifan Howells-Baines, Mark Toner

Summary

Answers to the questions relating to the guide on radians.

These are the answers to Questions: Introduction to radians.

Please attempt the questions before reading these answers!

Q1

- 1.1. Multiplying 30° by π and dividing by 180 gives $\frac{30\pi}{180}$ rad $=\frac{\pi}{6}$ rad =0.524 rad to three decimal places.
- 1.2. Multiplying 105° by π and dividing by 180 gives $\frac{105\pi}{180}$ rad $=\frac{7\pi}{12}$ rad =1.833 rad to three decimal places.
- 1.3. Multiplying 298° by π and dividing by 180 gives $\frac{298\pi}{180}$ rad $=\frac{149\pi}{90}$ rad =5.201 rad to three decimal places.
- 1.4. Multiplying 61° by π and dividing by 180 gives $\frac{61\pi}{180}$ rad = 1.064 rad to three decimal places.
- 1.5. Multiplying 353° by π and dividing by 180 gives $\frac{353\pi}{180}$ rad = 6.161 rad to three decimal places.
- 1.6. Multiplying 197° by π and dividing by 180 gives $\frac{197\pi}{180}$ rad = 3.438 rad to three decimal places.

Q2

- 2.1. Multiplying $\frac{\pi}{3}$ rad by 180 and dividing by π gives $\frac{180\pi}{3\pi}^{\circ}=60^{\circ}.$
- 2.2. Multiplying $\frac{2\pi}{3}$ rad by 180 and dividing by π gives $\frac{360\pi}{3\pi}^{\circ}=120^{\circ}.$
- 2.3. Multiplying $\frac{\pi}{7}$ rad by 180 and dividing by π gives $\frac{180\pi^{\circ}}{7\pi}=25.714^{\circ}$ to three decimal places.

1

2.4. Multiplying $\frac{5\pi}{7}$ rad by 180 and dividing by π gives $\frac{900\pi}{7\pi}^\circ=128.571^\circ$ to three decimal places.

2.5. Multiplying 5 rad by 180 and dividing by π gives $\frac{900}{\pi}^{\circ}=286.479^{\circ}$ to three decimal places.

2.6. Multiplying $\frac{3}{4}$ rad by 180 and dividing by π gives $\frac{540}{4\pi}^{\circ}=\frac{135}{\pi}^{\circ}=42.972^{\circ}$ to three decimal places.

Q3

3.1. In this case, the length of the arc is $\frac{7\pi}{8}=2.749$ (to 3dp) and the area of the sector is $\frac{49\pi}{16}=9.621$ (to 3dp).

3.2. In this case, the length of the arc is $\frac{\pi}{2}=1.571$ (to 3dp) and the area of the sector is $\frac{\pi}{12}=0.262$ (to 3dp).

3.3. In this case, the length of the arc is $14\pi=43.982$ (to 3dp) and the area of the sector is $\frac{525\pi}{2}=824.668$ (to 3dp).

Version history and licensing

v1.0: initial version created 08/23 by Ifan Howells-Baines, Mark Toner as part of a University of St Andrews STEP project.

• v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.