(19) RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

N° de publication :

2 608 857

21) N° d' nregistrement national :

86 17799

(51) Int CI4: H 02 M 3/335.

DEMANDE DE BREVET D'INVENTION

A1

22 Date de dépôt : 19 décembre 1986.

(30) Priorité :

71 Demandeur(s): SODILEC s.a., société anonyme. — FR.

Date de la mise à disposition du public de la demande : BOPI « Brevets » n° 25 du 24 juin 1988.

Références à d'autres documents nationaux apparentés :

72 Inventeur(s): François Forest; Thierry Meynard.

73 Titulaire(s):

Mandataire(s): Cabinet Moutard.

Convertisseur continu-continu du type « forward » à commutation à courant nul et à fonctionnement en courants bidirectionnels.

(57) Convertisseur continu-continu comprenent un transformateur dont le primaire L₁ est couplé à une source + E par un transistor MOS T₁. Une diode D₁ et un second transistor MOS T₂ en parallèle sont connectés en série avec un condensateur C et le secondaire L₂. Le second transistor MOS T₂ est commandé directement par la tension aux bornes du condensateur C. Ce convertisseur, du type « forward », commute à zéro de courant tout en pouvant pratiquement fonctionner à fréquence constante.

2 608 857 - A1

Vente des fascicules à l'IMPRIMERIE NATIONALE, 27, rue de la Convention - 75732 PARIS CEDEX 15

- 1 -

CONVERTISSEUR CONTINU-CONTINU DU TYPE "FORWARD" A COMMUTA-TION A COURANT NUL ET A FONCTIONNEMENT EN COURANTS BIDIREC-TIONNELS.

L'invention vise à la réalisation d'un convertisseur continu-continu à faibles pertes de commutation aux fréquences élevées, qui soit de faible coût pour des puissances peu importantes, de l'ordre de la centaine de watts par exemple.

Elle concerne plus particulièrement un convertisseur comportant un transformateur de puissance dont l'enroulement primaire est couplé à une source de tension continue par un organe commutateur, tandis qu'un organe à conductibi10 lité unidirectionnelle et un condensateur sont connectés en série avec l'enroulement secondaire du transformateur, ce convertisseur étant:

- d'une part, du type "forward", c'est-à-dire dans lequel
 les polarités sont telles que cet organe à conductibilité unidirectionnelle soit conducteur lorsque l'organe de commutation est conducteur,
- d'autre part, dans lequel l'énergie est emmagasinée sous 20 forme magnétique en utilisant l'inductance de fuite du transformateur de puissance et sous forme électrique par le condensateur, qui constitue un circuit LC avec ladite inductance de fuite,

- enfin, dans lequel le circuit de commande de l'organe de commutation est agencé :
- d'une part, pour que l'organe de commutation soit passant pendant des cycles successifs séparés par des intervalles de temps et dont chacun se termine à un zéro de courant dudit organe de commutation,
- d'autre part, pour que le condensateur, dont la tension 10 est unipolaire, se décharge dans la charge pendant des fractions prédéterminées desdits cycles et sans qu'une fraction de son énergie soit restituée à l'inductance de fuite (ce qui supprime une cause de dissipation).
- 15 La commutation à zéro de courant supprime les pertes de commutation, tandis que le caractère unipolaire de la tension aux bornes du condensateur supprime le risque d'instabilité du montage.
- 20 Un convertisseur du type qui vient d'être défini est notamment décrit dans US-A-4 415 959 déposé le 20 Mars 1981 au nom de Vinciarelli. Dans ce convertisseur, l'organe à conductibilité unidirectionnelle impose l'unidirectionnalité du courant dans les deux enroulements du transformateur 25 et la durée de charge du condensateur est ™√LC, L étant l'inductance de fuite du transformateur. Cette durée est une fonction lentement variable du courant dans la charge et les caractéristiques de sortie tension-courant du dispositif sont finalement fortement dépendantes dudit courant dans la charge; d'où résultent un certain nombre d'inconvénients qui seront exposés plus complètement dans la suite.
- L'invention se propose de s'affranchir de ces inconvénients et de réaliser un convertisseur continu-continu qui cumule 35 les avantages inhérents aux convertisseurs du type défini ci-dessus et c ux du convertisseur forward classique à commutation forcée au blocage, grâc à la bidirectionnalité du courant dans les deux enroulements du transformateur.

Le convertisseur suivant l'invention est principalement caractérisé par l'adjonction d'un second organe de commutation bidirectionnel - avantageusement un transistor MOS - connecté en série avec l'enroulement secondaire du transformateur et le condensateur et commandé directement par la tension aux bornes dudit condensateur.

D'autres caractéristiques, ainsi que les avantages de l'invention, apparaîtront clairement à la lumière de la 10 description ci-après.

Au dessin annexé :

La figure l est le schéma de principe d'un convertisseur conforme à un mode d'exécution préféré de l'invention;

> La figure 2 illustre les formes d'ondes en différents points du montage de la figure 1 ; et

20

La figure 3 représente les courbes caractéristiques de sortie d'un tel montage, comparées à celles du montage selon le brevet américain.

- 25 A la figure 1, on a représenté un convertisseur continucontinu du type "forward" comprenant :
 - une source de tension continue +E ;
- un transformateur de puissance ayant un enroulement 30 primaire \mathbf{L}_1 et un enroulement secondaire \mathbf{L}_2 ;
 - un organe de commutation $\mathbf{T_1}$ en série avec $\mathbf{L_1}$ entre les deux bornes de la source ;
 - un premier organe à conductibilité unidirectionnelle \mathbf{D}_1 en série avec \mathbf{L}_2 et orienté pour être passant en même temps
- 35 que T;
 - un condensateur C en série avec L2 et D1 ;
 - un puits de courant constant Is;

- un second organe à conductibilité unidirectionnelle D_2 en parallèle sur C et orienté pour empêcher l'inversion de la tension aux bornes de C (L_1 et L_2 ayant les polarités relatives indiquées par les points et la tension V_C aux bornes du condensateur la polarité indiquée par la flèche, D_2 devient conducteur dès que V_C s'annule, empêchant ainsi V_C de devenir négatif);
- un circuit de commande K de l'organe de commutation ;
- un second organe de commutation T_2 en parallèle sur D_1 et 10 apte à être commandé par la tension V_C aux bornes de C.

Le transformateur de puissance est réalisé de manière telle que son inductance de fuite secondaire L soit petite vis-àvis de la self du secondaire L₂. L est, par définition, une 15 inductance fictive, égale à (L₁L₂-m²)/L₁, m étant l'inductance mutuelle entre L₁ et L₂. Il doit être bien compris que des inductances réelles pourraient être ajoutées en série avec le primaire et/ou le secondaire : elles modifieraient alors la valeur de L.

20

Avantageusement, T_1 est un transistor MOS ayant une grille g_1 , une source s_1 et un drain d_1 . De même, T_2 est un transistor MOS ayant une grille g_2 , une source s_2 et un drain d_2 . La grille g_1 est reliée au circuit de commande K, tandis que la 25 grille g_2 est reliée à la borne positive de C.

D₁ et D₂ sont des diodes. Le puits de courant constant I_S peut en pratique être constitué par une inductance beaucoup plus grande que L, en série avec la charge aux bornes commu30 nes de C et de D₂ et qui sera parcourue par un courant pratiquement constant pendant le cycle de transfert d'énergie du condensateur vers la charge.

A la figure 2, on a représenté en abscisses le temps t et en 35 ordonnées :

en (a), le courant iT_1 à travers T_1 (sinusoïde) et la tension V_{Tl} aux bornes de T_1 ;

en (b), le courant iL dans l'enroulement secondaire (sinusoïde) et le courant i_{D2} dans D_2 ;

en (c), le courant iC dans C et la tension V_C à ses bornes.

Pendant une première phase de fonctionnement qui part de l'instant t₀ où le circuit de commande amorce T₁, on a une croissance linéaire de iT₁ et de iL et une décroissance linéaire de i_{D2}. En effet, la tension induite au secondaire lo L₂ polarise D₁ dans le sens passant. La tension V_C reste nulle, car D₂ est polarisée dans le sens passant et débite un courant i_{D2} égal à la différence entre I_S et iL.

A l'instant t_1 , iL est devenu égal à I_S , si bien que I_{D2} est 15 nul et que D_2 va se polariser en sens inverse. C commence alors à se charger.

A l'instant t_2 , V_C est chargé à une tension $mE\sqrt{\frac{C}{L}}$, le courant I_L atteint sa valeur maximum $I_S + mE\sqrt{\frac{C}{L}}$, tandis que $t_1 = t_1$ atteint sa valeur maximum $t_2 + m^2 = t_1$.

A l'instant t_3 , I_L devient inférieur à I_S et V_C atteint sa valeur maximum 2mE. En outre i_C passe par zéro et change de signe.

A l'instant t₄ où iL s'est annulé et change de signe, il est évident que D₁ ne peut plus conduire. Par contre, T₂ peut conduire dès l'instant, compris entre t₂ et t₄, où V_C est positive et supérieure à la tension de seuil V_{C0} de grille 30 du MOS. La conduction de T₂ entre t₄ et t₅ permet le passage d'un courant I_L de signe inversé, t₅ est l'instant où la tension V_C devient inférieure à V_{C0}.

La commande du blocage de T_1 par le circuit K s'effectue 35 à l'instant du deuxième passage à zéro de iT_1 , qu'il est facile de fair coîncider avec t_5 . L'expérience et le calcul montrent que la durée de conduction t_C^T 1 de T_1 est

pratiquement indépendante de la valeur de I_S, ce qui permet d'utiliser une bascule monostable comme circuit de commande.

Le MOS T₁ devra être choisi pour que sa diode parasite ne 5 conduise pas de courant dans le sens inverse.

On notera que dans le montage décrit, le MOS T_1 est utilisé en mode bidirectionnel (iT_1 s'inverse à l'instant t_4) si bien que tout problème de recouvrement avec sa diode parasi10 te est supprimé.

Le MOS T₂ n'augmente pas la complexité du circuit de commande, du fait qu'il ne nécessite aucune commande propre, sa commande s'effectuant par la tension aux bornes du condensa-15 teur, ou par un diviseur capacitif si la tension globale est trop élevée.

Ce montage combine les avantages du convertisseur forward classique à commutation forcée au blocage à ceux du disposi-20 tif du brevet américain cité, qui sont :

- absence de pertes au blocage dans le commutateur primaire \mathbf{T}_{1} ,
- utilisation de l'inductance parasite de fuites,
- 25 aucune surtension au blocage, ce qui est très avantageux dans le cas d'un découpage secteur,
 - très faible perturbation de la commande de grille de \mathbf{T}_1 par la commutation.
- 30 En effet, comme le convertisseur forward classique, le montage décrit peut pratiquement fonctionner à fréquence constante.

Pour en expliquer la raison, on se réfèrera à la figure 3 35 dans laquelle on a représenté les caractéristiques V_S/me (V_S étant la tension moyenne de sortie) en fonction de $\frac{I_S}{mE}\sqrt{\frac{C}{L}}$ (I_S étant le courant moyen de sortie) :

- en trait plein pour le montage décrit,
- en pointillés pour un montage du type décrit dans le brevet américain susvisé.
- 5 Les courbes 1 à 9 correspondent respectivement aux valeurs respectives 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8 et 0,9 du rapport f/fo, f étant la fréquence de commande.
- On voit que, dans le montage antérieur, les caractéristiques 10 de sortie sont fortement dépendantes de I_S . En particulier, le fonctionnement à vide est impossible à obtenir. Pour réaliser une source d'alimentation à tension fixe et à courant compris entre 0 et I_n , il faut donc utiliser de grandes variations de la fréquence de commande.
- Dans le montage décrit, les caractéristiques de sortie sont sensiblement horizontales. Il n'y a plus de problème de fonctionnement à vide et les variations de fréquence nécessaires au maintien d'une tension fixe de sortie sont très 20 faibles. Il en résulte que les problèmes d'asservissement du circuit de commande sont réduits, car les fonctions de transfert à utiliser sont proches de celles des alimentations classiques.

Revendications

- Convertisseur continu-continu comportant un transformateur de puissance dont l'enroulement primaire (L₁) est couplé à une source de tension continue (+E) par un organe commutateur (T₁), tandis qu'un organe à conductibilité unidirectionnelle (D₁) et un condensateur (C) sont connectés en série avec l'enroulement secondaire du transformateur, ce convertisseur étant :
- d'une part, du type "forward", c'est-à-dire dans lequel
 les polarités sont telles que cet organe à conductibilité unidirectionnelle soit conducteur lorsque l'organe de commutation est conducteur,
- d'autre part, dans lequel l'énergie est emmagasinée sous forme magnétique en utilisant l'inductance de fuite (L) du transformateur de puissance et sous forme électrique par le condensateur, qui constitue un circuit LC avec ladite inductance de fuite,
- 20 enfin, dans lequel le circuit de commande (K), de l'organe de commutation est agencé :
- d'une part, pour que l'organe de commutation soit passant pendant des cycles successifs séparés par des intervalles de temps et dont chacun se termine à zéro de courant dudit organe de commutation,
- d'autre part, pour que le condensateur dont la tension est unipolaire se décharge dans la charge pendant des 30 fractions prédéterminées desdits cycles et sans qu'une fraction de son énergie soit restituée à l'inductance de fuite (ce qui supprime une cause de dissipation),

caractéris' par un second organe de commutation bidir ction- $35 \text{ nel } (T_2)$ connecté en séri av c l' nroulement s condair

 (L_2) du transformateur et le condensateur (C) et commandé directement par la tension aux bornes dudit condensateur.

Convertisseur selon la revendication 1,
 caractérisé en ce que ledit second organe de commutation bidirectionnel est un transistor MOS (T₂) connecté en parallèle sur le premier organe à conductibilité unidirectionnelle (D₁) et dont la grille (g₂) est reliée audit condensateur (C).

3. Convertisseur selon la revendication 1 ou 2, caractérisé par un second organe à conductibilité unidirectionnelle (D₂) connecté en parallèle sur le condensateur (C) et orienté pour empêcher l'inversion de la tension aux

15 bornes du condensateur.

10

- Convertisseur selon la revendication 3, caractérisé par un puits de courant constant (I_S) comprenant une inductance de valeur beaucoup plus grande que ladite
 inductance de fuite, et connecté en série avec la charge aux bornes communes du condensateur (C) et du second organe à conductibilité unidirectionnelle (D₂).
- 5. Convertisseur selon l'une des revendications l à 4, 25 caractérisé en ce que le premier organe de commutation bidirectionnel est un transistor MOS (T_1) .

