## Chapter 5 - MEMORY

Memory Hierarchy = A structure that uses multiple
levels of memory.

(Distance from processor 1 > Size of memories

& access time

Cost per

5it

Block (or line) = minimum unit of information that

Con be present or not present

in Cache.

Hit Rate = Fraction of memory accesses found in a level of the memory hierarchy.

Direct-Mapped Cache = A cache structure in which the memory location is mapped to exactly one location in the cache.

Tag = A field in a table used for a memory hierarchy
that contains the addess info. required to
identify whether the associated block in the
hierarchy corresponds to a requested word.

| Decimal address<br>of reference | Binary address<br>of reference | Hit or miss<br>in cache | Assigned cache block<br>(where found or placed)          |
|---------------------------------|--------------------------------|-------------------------|----------------------------------------------------------|
| 22                              | 10110 <sub>two</sub>           | miss (5.9b)             | $(10110_{\text{two}} \text{ mod } 8) = 110_{\text{two}}$ |
| 26                              | 11010 <sub>two</sub>           | miss (5.9c)             | $(11010_{\text{two}} \mod 8) = 010_{\text{two}}$         |
| 22                              | 10110 <sub>two</sub>           | hit                     | $(10110_{two} \mod 8) = 110_{two}$                       |
| 26                              | 11010 <sub>two</sub>           | hit                     | $(11010_{\text{two}} \mod 8) = 010_{\text{two}}$         |
| 16                              | 10000 <sub>two</sub>           | miss (5.9d)             | $(10000_{\text{two}} \text{ mod } 8) = 000_{\text{two}}$ |
| 3                               | 00011 <sub>two</sub>           | miss (5.9e)             | $(00011_{two} \text{ mod } 8) = 011_{two}$               |
| 16                              | 10000 <sub>two</sub>           | hit                     | $(10000_{two} \text{ mod } 8) = 000_{two}$               |
| 18                              | 10010 <sub>two</sub>           | miss (5.9f)             | $(10010_{\text{two}} \text{ mod } 8) = 010_{\text{two}}$ |
| 16                              | 10000 <sub>two</sub>           | hit                     | $(10000_{\text{two}} \mod 8) = 000_{\text{two}}$         |



The cacle holds 1024 words = 4 KiB

Block size = 1 word & cacle has 1024 = 2 words

(10-Bit for index 32-10-2 = 20 bit for TAG)

Block Addr = Box Addr Bytes per block



Question: Address -> 1200 mapped to which block?

Assume 64 blocks & (block=16 bytes given



## That block maps all address between 1200 and 1245

## Total # of Bits for a Cache

Total # of bits needed for a cacle is a function of Cacle Site & address Site

- \* 32-bit addes 1
- \* Direct-mapped Cacle
- \* Cacle Size is 2<sup>n</sup> blocks (n-bit for Mdex)
- \* Block size is 2 m words (2 m+2 bytes) (n-bits word with block 2 bits byte port of the addr)

Size of fag field: 32-(n+m+2)

| tag        | index  | offset              |
|------------|--------|---------------------|
|            | n-5its | block offset + byte |
| 32- (n+m+) |        | (m+2) bits          |
| bits       |        |                     |

Total # of bits in a direct mapped cade

= 2 1 × (block size + tag size + valid
field size)

$$= 2^{n} \times \left(2^{m} \times 32 + (32 - n - m - 2) + 1\right)$$
$$= 2^{n} \times \left(2^{m} \times 32 + 31 - n - m\right)$$

