Zima 2023-24

Spis rozmaitości treściowalnych

Wstęp		3
1.1.	Kompleksy łańcuchowe	3
Równov	ważność kategorii	5
2.1.	Presnop i snop	5
2.2.	Funktory wierne, pełne	6
2.3.	Naturalne przekształcenia funktorów	7
2.4.	Równoważność kategorii	9
16.10.2	023 : Tymczasowe	11
3.1.	Granice i kogranice	13
23.10.2	3 : Funktory sprzężone [adjoint functors]	15
4.1.	Kategorie addytywne i abelowe	17
30.10.2	023 : Kompleksy łańcuchowe i (ko)homologie	24
5.1.	Kompleks łańcuchowy i sympleksy	24
	Homologie	25
	Pull-back i push-out	26

Wykład Wstęp

1.1 Kompleksy łańcuchowe

Niech R będzie dowolnym pierścieniem, natomiast A, B, C będą R-modułami. Mając ciąg

$$\mathsf{A} \stackrel{\mathsf{f}}{\longrightarrow} \mathsf{B} \stackrel{\mathsf{g}}{\longrightarrow} \mathsf{C}$$

mówimy, że jest on *dokładny*, jeśli ker(g) = im(f). W szczególności implikuje to, że g \circ f = gf : A \rightarrow C jest homomorfizmem zerowym.

Definicja 1.1: Kompleks łańcuchowy.

Rozważmy rodzinę C = $\{C_n\}_{n\in\mathbb{Z}}$ R-modułów wraz z mapami d = $d_n:C_n\to C_{n-1}$ takimi, że każde złożenie

$$[d_{n-1}\circ d_n=]d\circ d:C_n\to C_{n-2}$$

jest zerowe. Wówczas każdą mapę d_n nazywamy **różniczkami** C, a rodzina C jest **kompleksem łańcuchowym**.

Jądra każdego d_n nazywamy n-*cyklami* C i oznaczamy $Z_n = Z_n(C)$, natomiast obraz każdego d_{n+1} jest nazywany n-*granicą* C i oznacza się jako $B_n = B_n(C)$. Ponieważ $d_n \circ d_{n+1} = 0$, to

$$0\subseteq B_n\subseteq Z_n\subseteq C_n.$$

Definicia 1.2: Homologia.

n-tym modułem homologii kompleksu C nazywamy iloraz $H_n(C) = Z_n/B_n$.

Problem 1.1

Ustalmy $C_n = \mathbb{Z}/8$ dla $n \geq 0$ i $C_n = 0$ dla n < 0. Dla n > 0 niech d_n posyła $x \mod 8$ do $4x \mod 8$. Pokaż, że tak zdefiniowane C jest kompleksem łańcuchowym $\mathbb{Z}/8$ -modułów i policz moduły homologii.

Rozwiązanko

Zauważyć, że $d_{n-1}d_n=0$ jest nietrudno dla $n\leq 1$ ($d_{n-1}d_n:C_n\to C_{n-2}=0$). Z kolei dla dowolnego n>1 i dowolnego $x\in C_n$ wiemy, że $d_n(x)=4x\mod 8$. Jeśli x było oryginalnie liczbą parzystą, to od razu widać, że $d_n(x)=0$. Z kolei gdy x jest nieparzyste, to wówczas

$$d_{n-1}d_n(x) = d_{n-1}(4x \mod 8) = 16x \mod 8 = 8 \cdot (2x) \mod 8 = 0,$$

a więc $d_{n-1}d_n = 0$.

Homologie dla n < 2 są trywialne, natomiast dla n ≥ 2 wszystkie są takie same (gdyż funkcje d_n jak i moduły C_n nie ulegają zmianie wraz z n). Wystarczy więc przyjrzeć się Z_1/B_1

$$C_0 = \mathbb{Z}/8 \leftarrow_{d_1} C_1 = \mathbb{Z}/8 \leftarrow_{d_2} C_2 = \mathbb{Z}/8$$

 Z_1 to liczby parzyste w $\mathbb{Z}/8$ (kernel d_1), natomiast B_1 to liczby podzielne przez 4, ale nie przez 8 w C_1 . W takim razie, $Z_1/B_1 = \{4\}$.

Wykład Równoważność kategorii

2.1 Presnop i snop

Niech X będzie przestrzenią topologiczną i związaną z nią kategorię $\mathbf{Otw}(\mathbf{X})$ zdefiniujemy tak, że

Ob **Otw**(
$$X$$
) = {U $\subseteq X : U - zbiór otwarty}$

morfizmy to włożenia identycznościowe

Wówczas funkctor kontrwariantny $\mathbf{Otw}(\mathbf{X})^{\mathrm{op}} \to \mathbf{Set}$ to $\mathbf{presnop}$ na przestrzeni topologicznej X.

Zamiast kategorii **Set** zbiorów możemy też mieć snop na kategorię grup abelowych, przestrzeni liniowych etc.

Przykład(y) 2.1

1. Niech X będzie przestrzenią topologiczną, a U \subseteq X będzie dowolnym zbiorem otwartym. Funktor F : $\mathbf{Otw}(\mathbf{X})^{\mathrm{op}} \to \mathbf{C}(\mathbf{X})$ definiujemy na obiektach jako

$$F(U) = C(U) = \{f : U \to \mathbb{C} \mid f \text{ ciągła}\}\$$

Dla $V \subseteq U \subseteq X$ otwartych zbiorów mamy

$$F(U) \xleftarrow{\text{obciecie}} F(V)$$
 $C(U) \longleftarrow C(V)$

co w widoczny sposób spełnia $F(\phi \psi) = F(\phi)F(\psi)$.

Funktor jak wyżej jest nazywany presnopem funkcji ciągłych.

Definicja 2.1: Presnop, snop.

Presnopem na kategorii C nazywamy dowolny funktor

$$F: \textbf{C}^{op} \to \textbf{Set}$$

Snopem nazywamy presnop, który dla wszystkich otwartych $U = \bigcup_{i \in I} U_i$ i dla wszystkich $s_i \in F(U_i)$ (które nazywamy *cięciem presnopu*) zachodzi, że jeśli dla dowolnych

 $i,j \in I$ mamy $s_i \upharpoonright (U_i \cap U_j) = s_j \upharpoonright (U_i \cap U_j)$, to istnieje jedyne cięcie $s \in F(U)$ takie, że dla wszystkich $i \in I$ s $\upharpoonright U_i = s_i$. Zapisując to na kwantyfikatorach:

$$\begin{split} (\forall \ U = \bigcup_{i \in I} U_i) (\forall \ s_i \in F(U_i)) \ \left[(\forall i, j \in I) \ s_i \upharpoonright (U_i \cap U_j) = s_j \upharpoonright (U_i \cap U_j) \right] \Rightarrow \\ \Rightarrow \left[(\exists ! \ s \in F(U)) (\forall i \in I) \ s \upharpoonright U_i = s_i \right] \end{split}$$

Przykład(y) 2.2

1. Przykład presnopa z wcześniej spełnia również warunek bycia snopem. Tutaj wchodzą kiełki gromadzące się nad snopem i zbierające się w większe źdźbła, ale ja sobie to odpuszczę.

2.2 Funktory wierne, pełne

Definicja 2.2: podkategoria C' kategorii C.

To kategoria spełniająca następujące warunki:

$$\Rightarrow$$
 $ObC' \subseteq ObC$

$$\mapsto$$
 $\operatorname{Hom}_{\mathbf{C}'}(X,Y) \subseteq \operatorname{Hom}_{\mathbf{C}}(X,Y)$

$$\operatorname{id}_X^{\mathbf{C}'} = \operatorname{id}_X^{\mathbf{C}} \operatorname{zawsze} \operatorname{gdy} X \in \operatorname{Ob}\mathbf{C}'$$

złożenie morfizmów w **C**′ zachowuje się tak samo jak w **C**

Mówimy, że podkategoria \mathbf{C}' jest *pełna*, gdy $\operatorname{Hom}_{\mathbf{C}'}(X,Y) = \operatorname{Hom}_{\mathbf{C}}(X,Y)$

Przykład(y) 2.3

- 1. Kategoria skończonych przestrzeni wektorowych nad ciałem K **Vect**^{fin} jest podkategoria kategorii wszystkich przestrzeni liniowych **Vect**_K. Jest to pełna podkategoria.
- 2. Analogicznie, kategoria grup abelowych Ab jest pełną podkategorią kategorii Grp
- 3. Kategoria gładkich rozmaitości \mathbf{C}^{∞} **rozm** jest podkategorią kateogorii wszystkich przestrzeni topologicznych **Top**. Nie jest to jednak pełna podkategoria.

Definicja 2.3: funktor wierny, pełny.

Funkctor $F : \mathbf{C} \to \mathbf{D}$ jest

- wierny gdy F: $Hom_{\mathbf{C}}(X,Y) \rightarrow Hom_{\mathbf{D}}(F(X),F(Y))$ jest bijekcją
- pełny, gdy dla wszystkich X,Y \in Ob**C** przekształcenie F : Hom**C**(X,Y) \rightarrow Hom**D**(F(X), F(Y)) jest surjekcją

Przykład(y) 2.4

- 1. Włożenie podkategorii w kategorie jest funktorem wiernym
- 2. Jeśli podkategoria jest pełna, to taki włożeniowy funktor jest dodatkowo pełny.

2.3 Naturalne przekształcenia funktorów

Definicja 2.4: naturalne przekształcenie funktorów.

Dla dwóch funktorów F, G: $\mathbf{C} \to \mathbf{D}$ układ morfizmów f: F \to G w \mathbf{D} taki, że dla każdego X \in Ob \mathbf{C} f(X): F(X) \to G(X) i dla każdego ϕ : X \to Y \in Hom $_{\mathbf{C}}$ (X, Y) diagram

$$\begin{array}{ccc} F(X) & \stackrel{f(X)}{---} & G(X) \\ F(\phi) & & & \downarrow G(\phi) \\ F(Y) & \stackrel{f(Y)}{---} & G(Y) \end{array}$$

jest przemienny nazywamy naturalnym przekształceniem funktorów F i G.

Przykład(y) 2.5

1. Patrzymy na funktory Id, ab : $\mathbf{Grp} \to \mathbf{Grp}$ (identyczność i abelianizacja ab(G) = G/[G,G]).

Rozważmymy $f: Id \rightarrow ab$, wtedy Id(G) = G, więc sprawdzamy, czy następujący diagram komutuje:

$$\begin{array}{c} \operatorname{Id}(\mathsf{G}) = \mathsf{G} & \xrightarrow{\mathsf{f}(\mathsf{G})} & \mathsf{G}/\left[\mathsf{G},\mathsf{G}\right] = \mathsf{ab}(\mathsf{G}) \\ \\ \operatorname{Id}(\phi) = \phi \downarrow & & \downarrow \mathsf{ab}(\phi) \\ \\ \operatorname{Id}(\mathsf{H}) = \mathsf{H} & \xrightarrow{\mathsf{f}(\mathsf{H})} & \mathsf{H}/\left[\mathsf{H},\mathsf{H}\right] = \mathsf{ab}(\mathsf{H}) \end{array}$$

Dla każdego $G \in \mathsf{Ob}\mathbf{Grp}$ zdefiniujemy $\mathsf{f}(G) : \mathsf{Id}(G) \to \mathsf{ab}(G)$ jako

$$f(G): G \rightarrow G^{alb} = G/[G, G]$$

jako zwykłe przekształcenie ilorazowe. Wystarczy więc sprawdzić, że komutant w G przechodzi przez dowolny homomorfizm $\phi: G \to H$ na komutant w H:

$$(\forall g, h \in [G, G]) \phi(gh) = \phi(g)\phi(h) = \phi(h)\phi(g) = \phi(hg)$$

- 2. Z odrobiną znajomości topologii algebraicznej możemy pokazać, że istnieje naturalne przekształcenie funktorów H_n , Π_n : **Top** $_* \to \mathbf{Grp}$. Jednak nie znam się na topologii algebraicznej, więc ja tego nie zrobię.
- 3. Pokażemy naturalne przekształcenie funktorów Id, $\star\star$: **Vect**_K \to **Vect**_K. Dla V \in **Vect**_K definiujemy

Chcemy sprawdzić, że diagram

$$\begin{array}{ccc}
V & \xrightarrow{f(V)} & V^{**} \\
\phi \downarrow & & \downarrow \phi^{**} \\
W & \xrightarrow{f(W)} & W^{**}
\end{array}$$

komutuje, czyli f(V) $\phi^{**} = \phi$ f(W).

$$\begin{split} (\phi^{**} \circ \mathsf{f}(\mathsf{V}))(\mathsf{v}) &= \phi^{**}(\mathsf{f}(\mathsf{V})(\mathsf{v})) = \phi^{**}(\langle \cdot, \mathsf{v} \rangle) = \\ &= \langle \cdot, \mathsf{v} \rangle \circ \phi^{*} = \langle \phi^{*}(\cdot), \mathsf{v} \rangle = \\ &= \langle \cdot \circ \phi, \mathsf{v} \rangle = \langle \cdot, \phi(\mathsf{v}) \rangle = \mathsf{f}(\mathsf{W})(\phi(\mathsf{v})) = \\ &= (\mathsf{f}(\mathsf{W}) \circ \phi)(\mathsf{v}) \end{split}$$

Czyli wszystko się zgadza!

Naturalne przekształcenia można składać. Powstaje wtedy (meta)kategoria, której elementy to funktory, a morfizmami są naturalne przejścia. Nie jest to prawdziwa kategoria, bo morfizmy nie zawsze są zbiorami w takim przypadku. Taki twór oznaczamy **Funct**(\mathbf{C} , \mathbf{D}) i mając naturalne przekształcenia funktorów $\mathbf{F} \overset{\mathrm{a}}{\to} \mathbf{G} \overset{\mathrm{b}}{\to} \mathbf{H}$, dowolne X, Y \in Ob \mathbf{C} oraz $\phi: \mathsf{X} \to \mathsf{Y}$ rysujemy

$$\begin{array}{ccccc} F(X) & \xrightarrow{a(X)} & G(X) & \xrightarrow{b(X)} & H(X) \\ F(\phi) \downarrow & & & \downarrow G(\phi) & & \downarrow H(\phi) \\ F(Y) & \xrightarrow{a(Y)} & G(Y) & \xrightarrow{b(Y)} & H(Y) \end{array}$$

 $gdzie (b \circ a)(X) = b(X) \circ a(X).$

Definicja 2.5: izomorfizm funktorów.

W metakategorii funktorów możemy rozważać izomorfizmy, które nazywamy **naturalnymi izomorfizmami funktorów**. Do ich definiowania można podejść na dwa, równoważne, sposoby:

- naturalne przekształcenia $f:F\to G$ dla których istnieje $g:G\to F$ takie, że $f\circ g=id_G$ oraz $g\circ f=id_F$
- przekształcenie $f: F \to G$ takie, że dla każdego $X \in C$ przekształcenie $f(X): F(X) \to G(X)$ jest izomorfizmem w kategorii **D**.

Przykład(y) 2.6

 Przekształcenie funktorów Id, ** na kategorii przestrzeni wektorowych rozważane wyżej staje się izomorfizmem, gdy ograniczymy się do przestrzeni skończonego wymiaru.

2.4 Równoważność kategorii

Definicja 2.6: równoważność kategorii.

Funktor $F: \mathbf{C} \to \mathbf{D}$ zadaje **równoważność kategorii**, jeśli istnieje funktor $G: \mathbf{D} \to \mathbf{C}$ oraz naturalne przekształcenia funktorów $f: F \circ G \to Id_{\mathbf{D}}$ i $g: G \circ F \to Id_{\mathbf{C}}$

Przykład(y) 2.7

1. Kategoria skończenie wymiarowych przestrzeni wektorowych **Vect** $_{\mathbf{K}}^{\mathbf{fin}}$ jest równoważna kategorii $\mathbf{S}_{\mathbf{K}}$, której obiektami są Ob $\mathbf{S}_{\mathbf{K}} = \{K^0, K^1, ..., K^n, ...\}$ a morfizmy to wszystkie przekształcenia liniowe między nimi.

Włożenie $F: S_K \to Vect_K^{fin}$ jest oczywisty, gdyż każdy obiekt z S_K jest przestrzenią wektorową skończonego wymiaru. Aby znaleźć $G: Vect_K^{fin} \to S_K$ do niego odwrotne, musimy najpierw w każdej przestrzeni $V \in Vect_K^{fin}$ znaleźć bazę b(V), którą poślemy

w bazę standardową, tzn dostajemy

$$G(V):V \rightarrow K^{\dim V}$$
.

Morfizmami na **Vect^{fin}** są macierze, więc wystarczy posłać je na ich odpowiedniki po zamianie bazy.

Twierdzenie 2.1.

Funktor $\mathbf{C} \to \mathbf{D}$ jest równoważnością kategorii \iff jest on wierny, pełny i w zasadzie surjektywny, tzn. $(\forall \ Y \in \mathsf{Ob}\mathbf{D})(\exists \ X \in \mathsf{Ob}\mathbf{C}) \ \mathsf{F}(X) \cong \mathsf{Y}.$

Dowód

Mając wiedzę o F będziemy konstruować G.

Dla Y \in Ob**D** wybieramy G(Y) \in Ob**C** takie, że istnieje izomorfizm $\iota_Y: Y \to F(G(Y))$. Niech $\phi: Y \to Y'$ będzie morfizmem obiektów w kategorii **D**. Chcemy sprawdzić istnienie G(ϕ) takie, że Id**D** \cong F \circ G

$$\begin{array}{ccc} Y & \stackrel{\phi}{& & Y'} \\ \iota_Y \downarrow & & \downarrow \iota_{Y'} \\ F(G(Y)) & \stackrel{\iota_{Y'} \circ \phi \circ \iota_Y^{-1}}{& } F(G(Y')) \end{array}$$

F jest wierny i pełny, więc

$$\mathsf{Hom}_{\boldsymbol{C}}(\mathsf{G}(\mathsf{Y}),\mathsf{G}(\mathsf{Y}')) \overset{\mathsf{F}}{\rightarrow} \mathsf{Hom}_{\boldsymbol{D}}(\mathsf{F}(\mathsf{G}(\mathsf{Y})),\mathsf{F}(\mathsf{G}(\mathsf{Y}')))$$

jest bijekcją, a więc istnieje jedyne ψ = $\mathrm{F}^{-1}(\iota_{\mathrm{Y}'}\phi\iota_{\mathrm{Y}}^{-1})$

Wykład 16.10.2023: Tymczasowe

Przykład(y) 3.1

- 1. W kategorii zbiorów element $X \in \mathsf{ObSet}$ możemy widzieć jako elementy zbioru $\mathsf{Hom}_{\mathsf{Set}}(1,X)$ gdzie 1 jest jednoelementowych zbiorem.
- Uogólniając obserwację wyżej, w dowolnej kategorii C obiektowi X możemy przypisać funktor

$$h_X: \textbf{C}^{op} \to \textbf{Set}$$

$$h_X(Y) = Hom_{\mathbf{C}}(Y, X) (\star)$$

ponieważ nie zawsze istnieje odpowiednik 1, dlatego rozważamy wszystkie obiekty i morfizmy:

$$\begin{array}{ccc}
Y & \xrightarrow{f} & Y' \\
\alpha \downarrow & & \downarrow \alpha \circ f \\
X & \xrightarrow{h_Y(f)} & X
\end{array}$$

Tutaj równanie (⋆) można również zapisać jako X(Y), czyli rozumieć jako Y-punkty obiektu X.

Definicja 3.1: Kategoria funktorów i funktory reprezentowalne.

Kategorię funktorów (C^{op} , **Set**), której obiektami są h_X jak w przykładzie wyżej, oznaczamy $\widehat{\mathbf{C}}$.

Funktor $F \in \widehat{\mathbf{C}}$ jest **reprezentowalny**, jeśli $F \cong h_X$ dla pewnego $X \in Ob\mathbf{C}$. Takie X jest jedyne z dokładnością do izomorfizmu. Dla morfizmu X $\stackrel{\phi}{\longrightarrow}$ X' w \mathbf{C} określamy morfizm $h_\phi: h_X \to h_{X'}$ w $\widehat{\mathbf{C}}$.

Przykład(y) 3.2

1. $\mathcal{P}(X)$ jest funktorem, który przypisuje X jest zbiór potęgowy. Jest on reprezentowalny, bo $\mathcal{P}(X)\cong \mathsf{Hom}(X,2)$

- 2. $H^{n}(X,G) = [X,K(G,n)]$ NIE JESTEM PEWNA CO TO OZNACZA? chyba nie homotopie
- 3. wiązki $Vect_n(X) = [X, G^{\infty}]????$

Przyporządkowania X \mapsto h_X oraz $\phi \mapsto$ h_{ϕ} dają funktor h : $\mathbf{C} \to \widehat{\mathbf{C}}$.

Lemat 3.1: Yoneda lemma.

Przyporządkowanie $h: \mathbf{C} \to \widehat{\mathbf{C}}$ zadaje równoważność kategorii \mathbf{C} z pełną podkategorią kategorii $\widehat{\mathbf{C}}$, której obiektami są funktory reprezentowalne.

Dowód

Musimy pokazać, że

jest bijekcją.

Jeśli funktor $F \in \widehat{\mathbf{C}}$ jest reprezentowalny, to reprezentujący go obiekt jest jedyny z dokładnością do izomorfizmu, bo

izomorfizm \star pojawia się bezpośrednio po tym, że F \to h_X i F \to h_X' są izmorfizmami z definicji i od razu zadają izomorfizm $\star\star$.

Niech teraz $F \in Hom_{\widehat{\boldsymbol{c}}}(h_X, h_{X'}).$

Jeśli F = h_C, to mamy

WRÓCIĆ TUTAJ BO NIE WIEM CO SIĘ DZIEJE

3.1 Granice i kogranice

Czyli o granicach odwrotnych [granica] i prostych [kogranica].

Niech I będzie małą kategorią, a $F: I \rightarrow \mathbf{C}$ będzie funktorem.

Definicja 3.2: granica funktora F.

Obiekt X z rodziną odwzorowań (zbioru morfizmów) $\Pi_i: X \to F(i)$ dla $X \in Ob{\bf C}$, które spełniają

 \Longrightarrow [zgodność] dla dowolnych i $\xrightarrow{\alpha}$ j w I diagram

komutuje, tzn. $\Pi_i = F(\alpha) \circ \Pi_i$.

[uniwersalność] dla każdego układu (X', Π_i') spełniającego poprzedni warunek istnieje jedyny morfizm $\lambda: X' \to X$ taki, że dla każdego i \in I diagram

$$X' \xrightarrow{\lambda} X$$

$$F(i)$$

komutuje

jest nazywany granicą funktora F i oznaczamy ją jako lim F.

Granica funktora może nie istnieć, ale zawsze gdy istnieje, to jest jedyna z dokładnością do izomorfizmu.

Przykład(y) 3.3

1. Dla I = $\{0,1\}$ oraz F : I \rightarrow **C** granicę lim F nazywamy *produktem* obiektów F(0) i F(1)

$$\begin{array}{c}
X \xrightarrow{\Pi_1} & F(1) \\
\downarrow \Pi_0 & \Pi'_1 \uparrow \\
F(0) \xleftarrow{\Pi'_0} & X'
\end{array}$$

Definicja 3.3: granica odwrotna.

Wykład 23.10.23: Funktory sprzężone [adjoint functors]

Definicja 4.1: funktory sprzężone.

Para funktorów L : $\mathbf{A} \to \mathbf{B}$ i R : $\mathbf{B} \to \mathbf{A}$ nazywamy **parą sprzężoną** (L jest lewo sprzężony do R, a R jest prawo sprzężony do L), jeśli istnieją naturalne bijekcje (zarówno względem **A** jak i **B**)

$$\mathsf{Hom}_{\mathbf{B}}(\mathsf{L}(\mathsf{A}),\mathsf{B})\longleftrightarrow \mathsf{Hom}_{\mathbf{A}}(\mathsf{A},\mathsf{R}(\mathsf{B}))$$

Funktory sprzężone oznaczamy L ⊢ R

Przykład(y) 4.1

1. Jest sporo przykładów, gdy R jest funktorem zapominającym

$$ightharpoonup$$
 jeśli R : $\mathbf{Grp} o \mathbf{Set}$, wtedy

$$\mathsf{Hom}_{\mathsf{Grp}}(\star,\mathsf{B}) \longleftrightarrow \mathsf{Hom}_{\mathsf{Set}}(\mathsf{A},\mathsf{B})$$
 grupa jako zbiór

★ będzie grupą wolną o zbiorze generatorów A, co oznaczamy F_A.

 $R : \mathbf{Vect}_K \to \mathbf{Set} z$ bijekcjami zdefiniowanymi jako

$$\mathsf{Hom}_{\mathbf{Vect}_{\mathsf{K}}}(\mathsf{LA},\mathsf{V}) \longleftrightarrow \mathsf{Hom}_{\mathbf{Set}}(\mathsf{A},\mathsf{V})$$

gdzie LA to przestrzeń liniowa o bazie równej zbiorowi A.

2. Dla R-modułów A, B, X zachodzi

$$Hom_R(A \otimes X, B) \cong Hom_R(A, Hom_R(X, B))$$

dla $\phi \in Hom_R(A, Hom_R(X, B))$ mamy

$$(a \otimes x \mapsto (\phi(a))(x)) \mapsto \phi$$

Dla ustalonego X mamy funktory sprzężone z R-modułów w R-moduły: L = $- \otimes$ X oraz R = Hom(X, -)

3. Bardzo często włożenie kategorii w inną kategorię jest funktorem mającym funktor sprzężonym.

Włożenie kategorii **Ab** → **Grp** posiada funktor sprzeżony:

$$Hom_{\mathbf{Ab}}(\star, B) \longleftrightarrow Hom_{\mathbf{Grp}}(A, B)$$

komutant dowolnej grupy A przechodzi przez każdy homomorfizm $\phi: A \to B$ na element neutralny, więc od razu indukwoane mamy przekształcenie $A^{op} \to B$, stąd $\star = A^{op}$.

Włożenie kategorii ciał w dziedziny wyrzuca część homomorfizmów. Mamy

$$\mathsf{Hom}_{\mathbf{Ciala}}(\star,\mathsf{K})\longleftrightarrow \mathsf{Hom}_{\mathbf{Dziedziny}}(\mathsf{R},\mathsf{K})$$

Jeśli mamy odwzorowanie z pierścienia R w ciało K, to to odwzorowanie rozszerza się na odwzorowanie z ciała ułamków ciała R w ciało K:

$$stad \star = R_o$$

Włożenie zwartych przestrzeni Hausdorffa w przestrzenie topologiczne $\mathbf{CptT_0} \hookrightarrow \mathbf{Top}$ mamy

$$Hom_{\textbf{Cpf}T_0}(\star,Y) \longleftrightarrow Hom_{\textbf{Top}}(X,Y)$$

więc $\star = \beta X$ czyli uzwarceniem Cecha-Stone'a. To jest maksymalne możliwe uzwarcenie.

Bierzemy przestrzeń X i patrzymy na wszystkie ciągłe odwzorowania z X w [0, 1] i potem odwzorowujemy diagonalnie X w ten produkt, a potem domykamy obraz tego diagonalnego odwzorowania i to jest maksymalne uzwarcenie.

Fakt 4.1: jedyność funktora sprzeżonego.

Funktor sprzężony, jeśli istnieje, to jest jedyny z dokładnością do izomorfizmu.

Dowód

Bardzo poglądowy, bo trzeba się dokładnie wgryźć w spojrzenie jak to działa na morfizmach.

R(B) to jedyny element reprezentujący funktor

$$A^{op}\ni A\mapsto Hom_{\boldsymbol{B}}(LA,B)\in \boldsymbol{Set}$$

Z lematu Yonedy wiemy, że jeśli takie coś istnieje, to jest jedyne z dokładnością do izomorfizmu.

Fakt 4.2: funktory sprzężone zachowują granice (prostą/odwrotną).

Jeśli L ⊢ R, to R zachowuje granice, a L kogranice.

Dowód OBRAZEK

Musimy wziąć dowolny obiekt $A \in \mathbf{A}$ i sprawdzić, czy $\Pi_i': A \to (R \circ F)(I)$ sfaktoryzuje się w jedyny możliwy sposób na $R \circ R(\Pi_i)$. Musimy wziąć obiekt $LA \in \mathbf{B}$ i tutaj dostajemy jedyną strzałkę $LA \to X$, gdyż X jest granicą. Ale sprzężoność R z L mówi, że mamy jedyność odpowiadania strzałek między elementami \mathbf{A} a elementami \mathbf{B} .

4.1 Kategorie addytywne i abelowe

Definicja 4.2: kategoria addytywna.

Kategoria addytywna A to kategoria

Dla każdej pary obiektów A, B \in Ob**A** na Hom**A**(A, B) jest określona struktura grupy abelowej. Złożenia są biaddytywne:

$$A \xrightarrow{g} B \xrightarrow{f'} C \xrightarrow{h} D$$

$$(f + f') \circ g = f \circ g + f' \circ g$$

$$h \circ (f + f') = h \circ f + h \circ f'$$

- Istnieje *obiekt zerowy* 0 taki, że Hom_A(0, 0) = 0 jest grupą trywialną
- Dla dowolnej pary obiektów A, B \in Ob**A** istnieje obiekt C (zwykle oznaczany A \oplus B), który jest ich *produktem* i *koproduktem*, tzn.: istnieją morfizmy

$$A \stackrel{i_A}{\leftarrow} C \stackrel{P_B}{\leftarrow} B$$

takie, że $P_a \circ i_A = id_A i P_A \circ i_B = 0$ (analogicznie gdy przestawimy A i B). Dodatkowo, $i_A P_A + i_B P_B = id_C$.

Tłumacząc ostatni warunek, chcemy pokazać, że istnieje jedyna strałka DightarrowC:

Zauważmy że $i_A f_A + i_B f_B : D \to C$, wystarczy więc sprawdzić, czy taka definicja $D \to C$ sprawia, że diagram komutuje, tzn. złożyć ją z P_A i P_B :

$$P_A(i_Af_A + i_Bf_B) = \underbrace{P_Ai_A}_{id_A} f_A + \underbrace{P_Ai_B}_{0} f_B = f_A$$

$$\mathsf{P}_\mathsf{B}(\mathsf{i}_\mathsf{A}\mathsf{f}_\mathsf{A}+\mathsf{i}_\mathsf{B}\mathsf{f}_\mathsf{B}) = \underbrace{\mathsf{P}_\mathsf{B}\mathsf{i}_\mathsf{A}}_0 \mathsf{f}_\mathsf{A} + \underbrace{\mathsf{P}_\mathsf{B}\mathsf{i}_\mathsf{B}}_{\mathsf{id}_\mathsf{B}} \mathsf{f}_\mathsf{B} = \mathsf{f}_\mathsf{B}$$

Jeśli istnieją dwa takie odwzorowania, to ich różnica u zamykałaby diagram

Zauważmy, że

$$u = id_{C} \circ 0 =$$

= $i_{A}P_{A}u + i_{B}P_{B}u =$
= $i_{A}0 + i_{B}0 = 0 + 0 = 0$

Analogicznie pokazuje się dla koproduktu.

Dygresja: parę słów o zerach.

Dla dowolnego obiektu A \in Ob**A** mamy Hom(0, A) = 0 i Hom(0, A) = 0, bo dla f : A \rightarrow 0 jest id₀ \circ f = f, czyli f = 0 \circ f, a więc

$$0f = (0 + 0)f = 0f + 0f \Rightarrow 0 = 0f \Rightarrow f = 0$$

Przykład(y) 4.2

- 1. AB
- 2. R-moduly
- 3. Presnopy grup abelowych na jakiejś przestrzeni topologicznej (lub kategorii)

Pre – **snop/AB**(X) i od razu zagubione w tym gąszczu snopy.

Definicja 4.3: kategoria abelowa.

Kategoria addytywna jest **abelowa**, jeśli każdy morfizm ma jądro i kojądro i naturalny morfizm z koobrazu w obraz jest izomorfizmem.

Definicja wyżej często jest formułowana w inny, równoważny, sposób.

Kilka wyjaśnień:

1.
$$K \xrightarrow{k} A \xrightarrow{f} B = 0$$

2. Zachodzi własność uniwersalna:

Kojądro f to koekwalizator A $\underset{0}{\overset{f}{\Longrightarrow}}$ B jak w następującym diagramie:

 \mapsto Niech f : A \rightarrow B, wówczas

- im f = ker(B \rightarrow Coker f)
- Coim $f = Coker(ker f \rightarrow A)$

Naturalne odwzorowanie zaznaczone przerywaną linią ma być izomorfizmem jeśli działaby w kategorii abelowej.

Definicja 4.4: mono-, epi-.

 $Morfizm \, f: X \to Y \, jest$

monomorfizmem, jeśli dla dowolnych dwóch odwzorowań $g_1, g_2: Z \to X$ zachodzi

$$f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2$$

W kategorii addytywnej można zamiast powyższego zażądać, żeby dla każdego g : Z \to X f \circ g = 0 \Rightarrow g = 0

epimorfizmem nazywamy morfizm $f:A\to B$ taki, że mając $h_1,h_2:B\to W$ zachodzi

$$h_1 \circ f = h_2 \circ f \Rightarrow h_1 = h_2$$

W kategorii addytywnej można zamiast tego powiedzieć, że mając f : A o B i h : B o W to

$$hf = 0 \Rightarrow h = 0$$

Można pokazać, że jeśli f jest monomorfizmem, to ker f = 0, a jeśli f jest epimorfizmem, to Coker f = 0.

Lemat 4.3.

Jądra są monomorfizmami, a kojądra są epimorfizmami.

Dowód

W przypadku jądra wystarczy zbadać diagram:

i zauważyć, że jedyność odwzorowania $Z \rightarrow K$ wymaga, aby g = 0.

Uwaga 4.4.

Dla każdego morfizmu f : A \to B w kategorii abelowej istnieje jedyny, z dokładnością do izomorfizmu, rozkład

$$K \xrightarrow{k} A \xrightarrow{i} I \xrightarrow{j \text{mono}} B \xrightarrow{c} C$$

w którym k = ker f, c = Coker f, i = Coker k oraz j = ker c i f = $j \cdot i$.

Dowód

Załóżmy, że istnieją dwa takie rozkłady:

Strzałki niebieska i czerwona są izomorfizmami wynikającymi z definicji kategorii abelowej. Strzałkę zieloną dobbieramy w taki sposób, aby diagram

komutował. Chcemy jeszcze pokazać, że lewa strona również komutuje, czyli zajmujemy się diagramem

Lemat 4.5.

W kategorii abelowej, jeśli f jest epimorfizmem, to f = Coker ker f, a jeśli f jest monomofizmem, to f = ker Coker f.

Dowód

Zrobimy dowód dla epimorfizmu korzystając z rozkładu przedstawionego wyżej.

$$K \longrightarrow A \longrightarrow I \xrightarrow{j} B \xrightarrow{0} 0$$

wiemy, że j jest ker(B ightarrow 0), czyli funkcji zerowej. Czyli musi być j = id_B, możemy więc przerysować

ale przecież i : $A \to I$ było i = Coker ker f, z drugiej strony ponieważ $A \to I \to B$ jest równe f, a w tym konkretnym przypadku jest to równe $A \to B \to B$ gdzie druga strzałka to id_B, to musi być i : $A \to I = f$: $A \to B$.

Uwaga 4.6.

W kategorii addytywnej warunek z 4.4 jest równoważny stwierdzeniu, że każdy morfizm ma jądro i kojądro oraz zachodzi lemat 4.5

Przykład(y) 4.3

1. Rozważmy kategorię abelowych grup topologicznych z warunkiem Hausdorffa. Tworzą one kategorię addytywną. Jądro ker f to algebraiczne jądro f z dziedziczoną topologią, a Coker f to tak naprawdę iloraz przez domknięcie obrazu im f.

$$\mathsf{A} \stackrel{\mathsf{f}}{\longrightarrow} \mathsf{B} \longrightarrow \mathsf{B}/\overline{\mathsf{f}[\mathsf{A}]}$$

Przez taką definicję Coker mamy kategorię addytywną, która nie jest kategorią abelową.

Wystarczy sprawdzić

$$0 \longrightarrow \mathbb{R}^{\delta} \longrightarrow \mathbb{R} \longrightarrow 0$$

gdzie \mathbb{R}^{δ} ma topologię dyskretną, a \mathbb{R} traktujemy jako zwykłą przestrzeń euklidesową. Wtedy nie mamy naturalnego izomorfizmu między kojądrami JESZCZE RAZ PRZEMYŚLEĆ TEN PRZYKŁAD

2. Podstawowym przykładem kategorii abelowej jest kategoria R-modułów. Bardzo często kiedy pracujemy w kategorii abelowej zachowujemy się jakbyśmy byli w kategorii R-modułów na mocy twierdzenia Freyd-Mitchella:

Dygresja: twierdzenie Freyd-Mitchella.

Mała kategoria belowa ma wierne, pełne i dokładne zanurzenie w kategorię R-modułów dla pewnego R.

Wykład 30.10.2023: Kompleksy łańcuchowe i (ko)homologie

5.1 Kompleks łańcuchowy i sympleksy

Definicja 5.1: kompleks łańcuchowy.

Kompleks (ko)łańcuchowy w kategorii abelowej A to ciąg obiektów i morfizmów

$$... \, \longrightarrow \, A^{n-1} \, \xrightarrow{d^{n-1}} \, A^n \, \xrightarrow{d^n} \, A^{n+1} \, \longrightarrow \, ...$$

taki, że dla każdego n $d^n \circ d^{n-1} = 0$

Przykład(y) 5.1: kompleksów łańcuchowych

1. Niech X będzie *kompleksem symplicjalnym*. Z takim sympleksem można teraz stowarzyszyć kompleks symplicjalny z obiektami

$$C_nX = \bigoplus_{\sigma-n\text{-sympleks}} \mathbb{Z}$$

i wtedy $\partial: C_n X \to C_{n-1} X$ jest odwzorowaniem brzegu między tymi obiektami takim, że

$$\partial [\sigma^{\mathsf{n}}] = \sum_{\tau^{\mathsf{n}-1} < \sigma^{\mathsf{n}}} \pm [\tau^{\mathsf{n}-1}]$$

gdzie σ^n to generator składniku $\mathbb Z$ odpowiadający sympleksowi σ^n . Jeśli mamy sympleks σ^n = $(v_0,...,v_n)$ to przez ścianę τ^{n-1} rozumiemy

$$\tau^{n-1} = (v_0, ..., \widehat{v_i}, ..., v_n)$$

gdzie przez $\hat{v_i}$ rozumiemy opuszczenie tej współrzędnej.

2. Niech X będzie przestrzenią topologiczną, wówczas

$$S_n X = \bigoplus_{\sigma: \Delta^n \to X} \mathbb{Z}$$

gdzie $\sigma:\Delta^{\mathbf{n}}\to {\sf X}$ jest ciągłym odwzorowaniem z sympleksu w X. To się nazywa kompleks singularny.

Odwzorowanie brzegu $\partial: S_n X \to S_{n-1} X$ na $\sigma: \Delta^n \to X$ przyjmuje wartość

$$\partial \sigma = \sum_{i=0}^{n} (-1)^{i} (\sigma \mid_{i-ta \text{ sciana}})$$

3. Kompleks de Rhama

Niech M będzie gładką rozmaitością, $A^n = \Omega^n M$ będzie zbiorem gładkich form na niej. Wówczas d : $\Omega^n M \to \Omega^{n+1} M$ jest pochodną zewnętrzną.

W szczególności, jeśli M = T^2 , to $H^1 = \mathbb{R}^2$, $H^2 = \mathbb{R}$ oraz $H^{>2} = 0$.

5.2 Homologie

Skoro $\partial_n \cdot \partial_{n+1} = 0$, to im $\partial_{n+1} \subseteq \ker \partial_n$, wiec możemy zastanowić się nad

$$H_nX = \ker \partial_n / \operatorname{im} \partial_{n+1}$$
.

Tak zdefiniowane H_nX nazywamy homologiami.

Definicja 5.2: ogólna definicja (kohomologii).

Niech A' będzie kompleksem (ko)łańcuchowym i patrzymy na jego wycinek

$$\dots \longrightarrow A^{n-1} \xrightarrow{d^{n-1}} A^n \xrightarrow{d^n} A^{n+1} \longrightarrow \dots$$

$$\downarrow^a \qquad \qquad \text{ker } d^n$$

Ponieważ d $^n \circ$ d $^{n-1} = 0$, to pojawia się nam od razu odwzorowanie do jądra a : A $^{n-1} \to K$. Chcemy więc nazwać

$$H^{n}(A^{\cdot}) = Coker a$$

homologią.

Ale to samo można zrobić dualnie, tzn.

i zdefiniować $H^n(A^-) = \ker b$.

Lemat 5.1.

W definicji jak wyżej $H^n(A^{\cdot})$: Coker $a \cong \ker b$.

Dowód

Przy dodatkowym założeniu, że dⁿ⁻¹ jest monomorfizmem, a dⁿ jest epimorfizmem, dostajemy

$$d^n = Coker ker d^n = Coker k$$

$$d^{n-1} = \ker c$$

Pokażemy, że a = ker ck oraz b = Coker ck, z czego od razu wynika teza:

$$A^{n-1} \xrightarrow{a} K \xrightarrow{ck} C \xrightarrow{b} A^{n}$$

$$\downarrow \qquad \uparrow \qquad \uparrow$$

$$Cokera \xrightarrow{*} kerb$$

i strzałka ★ jest izomorfizmem na mocy lematu 4.5.

POBAWIĆ SIĘ WYKRESEM za zdjęcia

Bez dodatkowych założeń

ZDJĘCIA

5.3 Pull-back i push-out

Po polsku czasem mówi się na to kwadrat kartezjański i kwadrat kokartezjański.

Definicja 5.3.Pull-back to granica diagramu $\begin{array}{ccc} X & \longrightarrow & B \\ \downarrow & & \downarrow \\ A & \longrightarrow & C \end{array}$

Push-out to z kolei kogranica diagramu

Fakt 5.2.

W abelowej kategorii istnieją pull-backi i push-outy.

Dowód

Kandydatem na pull-back będzie jądro odwzorowania.

