TAREA N° 8

Nombre:

Joel Stalin Tinitana Carrion

Fecha:

12/06/2025

Tema:

Mínimos cuadrados

Ejercicio 1

Dado el siguiente conjunto de datos:

(x_i)	4.0	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
(y_i)	102.5	130.1	113.1	142.0	167.5	195.1	224.8	256.7	299.5	326.7
	6	1	8	5	3	4	7	3	0	2

Se pide:

Código pricipal

a. Polinomio por mínimos cuadrados de grado 1 y error

Calcular el polinomio:

$$y = a_0 + a_1 x$$

y determinar el error total.

Codigo del literal a)

```
# Polinomio de grado 1
coef1 = np.polyfit(x, y, 1)
```

b. Polinomio por mínimos cuadrados de grado 2 y error

Calcular el polinomio:

$$y = a_0 + a_1 x + a_2 x^2$$

y determinar el error total.

Código del literal b)

c. Polinomio por mínimos cuadrados de grado 3 y error

Calcular el polinomio:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

y determinar el error total.

Código del literal c)

```
{coef3[2]:.4f}x + {coef3[3]:.4f}")
print(f" Error: {err3:.4f}\n")

c) Polinomio grado 3:
    Ecuación: y = -2.6068x³ + 51.5610x² + -254.8748x + 469.1633
    Error: 518.3831
```

d. Ajuste exponencial ($y = b e^{ax}$) y error

Linealizar con logaritmo natural:

$$\ln(y) = \ln(b) + ax$$

Ajustar por mínimos cuadrados y calcular el error.

Código del literal d)

```
# Ajuste y = b e^{a x}
lny = np.log(y)
coef_exp = np.polyfit(x, lny, 1)
a_exp = coef_exp[0]
lnb_exp = coef_exp[1]
b_exp = np.exp(lnb_exp)
y_pred_exp = b_exp * np.exp(a_exp * x)
err_exp = error_ss(y, y_pred_exp)
print("d) Ajuste exponencial y = b e^{a x}:")
print(f" a = {a_exp:.4f}, b = {b_exp:.4f}")
print(f" Ecuación: y = {b_exp:.4f} e^{(a_exp:.4f}x)")
print(f" Error: {err_exp:.4f}\n")
d) Ajuste exponencial y = b e^{a x}:
a = 0.3685, b = 24.7767
Ecuación: y = 24.7767 e^{0.3685x}
Error: 821.0051
```

e. Ajuste de potencia ($y = b x^a$) y error

Linealizar con logaritmos:

$$\ln(y) = \ln(b) + a \ln(x)$$

Ajustar por mínimos cuadrados y calcular el error.

Código del literal e)

```
# Ajuste y = b x^{a}
lnx = np.log(x)
```

```
# Gráfico
plt.figure(figsize=(10,6))
plt.scatter(x, y, label='Datos', color='black')
x plot = np.linspace(min(x), max(x), 200)
plt.plot(x plot, np.polyval(coef1, x plot), label=f'Grado 1',
color='r')
plt.plot(x plot, np.polyval(coef2, x plot), label=f'Grado 2',
color='q')
plt.plot(x_plot, np.polyval(coef3, x_plot), label=f'Grado 3',
color='b')
plt.plot(x plot, b exp*np.exp(a exp*x plot), label=f'be^(ax)',
color='m')
plt.plot(x plot, b pow*(x plot**a pow), label=f'bx^a', color='orange')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Ajustes Mínimos Cuadrados Ej. 1')
plt.legend()
plt.grid(True)
plt.show()
```


Ejercicio 2

Repetir el **Ejercicio 1** con el siguiente conjunto de datos:

(x_i)	0.2	0.3	0.6	0.9	1.1	1.3	1.4	1.6
(y_i)	0.0504	0.0984	0.3327	0.7266	1.0972	1.5697	1.8487	2.5015
	46	26	7	0				

Código principal

```
x2 = np.array([0.2, 0.3, 0.6, 0.9, 1.1, 1.3, 1.4, 1.6])
y2 = np.array([0.050446, 0.098426, 0.33277, 0.72660, 1.0972, 1.5697,
1.8487, 2.5015])
```

Código del literal a)

```
a) Polinomio grado 1:
Ecuación: y = 1.6655x + -0.5125
Error: 0.3356
```

Código del literal b)

Código del literal c)

Código del literal d)

Código del literal e)

```
lnx2 = np.log(x2)
coef pow2 = np.polyfit(lnx2, lny2, 1)
a pow2 = coef pow2[0]
lnb pow2 = coef pow2[1]
b pow2 = np.exp(lnb pow2)
y2\_pred\_pow = b\_pow2*(x2**a pow2)
err pow2 = error ss(y2, y2 pred pow)
print("e) Ajuste potencial y = b x^{a}:")
print(f"
          a = \{a \text{ pow2}:.4f\}, b = \{b \text{pow2}:.4f\}''\}
print(f"
            Ecuación: y = \{b \text{ pow2}:.4f\} \text{ x}^{a} \text{ pow2}:.4f\}")
print(f"
            Error: {err pow2:.4f}\n")
e) Ajuste potencial y = b x^{a}:
   a = 1.8720, b = 0.9502
   Ecuación: y = 0.9502 \times 1.8720
   Error: 0.0545
```

```
# Gráfico
plt.figure(figsize=(10,6))
plt.scatter(x2, y2, label='Datos', color='black')
x2 plot = np.linspace(min(x2), max(x2), 100)
plt.plot(x2 plot, np.polyval(coef1 2, x2 plot), label=f'Grado 1',
color='r')
plt.plot(x2 plot, np.polyval(coef2 2, x2 plot), label=f'Grado 2',
color='q')
plt.plot(x2 plot, np.polyval(coef3 2, x2 plot), label=f'Grado 3',
color='b')
plt.plot(x2 plot, b exp2*np.exp(a exp2*x2 plot), label=f'be^(ax)',
color='m')
plt.plot(x2 plot, b pow2*(x2 plot**a pow2), label=f'bx^a',
color='orange')
plt.xlabel('x')
plt.vlabel('v')
plt.title('Ajustes Mínimos Cuadrados Ej. 2')
```

```
plt.legend()
plt.grid(True)
plt.show()
```


Ejercicio 3

La siguiente tabla muestra los promedios de puntos del colegio de 20 estudiantes y sus puntuaciones ACT:

ACT	Promedio	ACT	Promedio
28	3.84	29	3.75
25	3.21	28	3.65
28	3.23	27	3.87
27	3.63	29	3.75
28	3.75	21	1.66
33	3.20	28	3.12
28	3.41	28	2.96
29	3.38	26	2.92
23	3.53	30	3.10
27	2.03	24	2.81

Se pide:

- Graficar los datos.
- Hallar la ecuación de la recta por mínimos cuadrados:

$$y = a_0 + a_1 x$$

```
x act = np.array([28, 25, 28, 27, 28, 33, 28, 29, 23, 27,
                   29, 28, 27, 29, 21, 28, 28, 26, 30, 24])
y_prom = np.array([3.84, 3.21, 3.23, 3.63, 3.75, 3.20, 3.41, 3.38, 3.53, 2.03,
                    3.75, 3.65, 3.87, 3.75, 1.66, 3.12, 2.96, 2.92, 3.10, 2.81
coef lin 3 = np.polyfit(x act, y prom, 1)
y pred 3 = np.polyval(coef lin 3, x act)
err 3 = error ss(y prom, y pred 3)
print("Ajuste lineal:")
           Ecuación: y = \{coef_lin_3[0]:.4f\}x + \{coef_lin_3[1]:.4f\}"\}
print(f"
           Error: {err 3:.4f}\n")
print(f"
plt.figure(figsize=(10,6))
plt.scatter(x_act, y_prom, label='Datos', color='black')
x plot 3 = np.linspace(min(x act), max(x act), 100)
plt.plot(x plot 3, np.polyval(coef lin 3, x plot 3),
         label='Ajuste lineal', color='r')
plt.xlabel('Puntuación ACT')
plt.ylabel('Promedio de puntos')
plt.title('Ajuste Mínimos Cuadrados - Ejercicio 3')
plt.legend()
plt.grid(True)
plt.show()
Ajuste lineal:
   Ecuación: y = 0.1009x + 0.4866
   Error: 5.0487
```


Ejercicio 4

Datos presentados al Subcomité Antimonopolio del Senado sobre choques de autos:

Tipo	Peso Promedio (lb)	Porcentaje de Presentación (%)
Regular lujoso doméstico	4800	3.1
Regular intermediario doméstico	3700	4.0
Regular económico doméstico	3400	5.2
Compacto doméstico	2800	6.4
Compacto extranjero	1900	9.6

Se pide:

• Encontrar la ecuación de la recta por mínimos cuadrados:

$$y = a_0 + a_1 x$$

```
x peso = np.array([4800, 3700, 3400, 2800, 1900])
y porcentaje = np.array([3.1, 4.0, 5.2, 6.4, 9.6])
coef_lin_4 = np.polyfit(x_peso, y_porcentaje, 1)
y pred 4 = np.polyval(coef lin 4, x peso)
err_4 = error_ss(y_porcentaje, y pred 4)
print("Ajuste lineal:")
print(f" Ecuación: y = \{coef lin 4[0]:.4f\}x + \{coef lin 4[1]:.4f\}"\}
           Error: {err 4:.4f}\n")
print(f"
plt.figure(figsize=(10,6))
plt.scatter(x peso, y porcentaje, label='Datos', color='black')
x_plot_4 = np.linspace(min(x_peso), max(x_peso), 100)
plt.plot(x plot 4, np.polyval(coef lin 4, x plot 4),
         label='Ajuste lineal', color='r')
plt.xlabel('Peso (lb)')
plt.ylabel('Porcentaje de presentación')
plt.title('Ajuste Mínimos Cuadrados - Ejercicio 4')
plt.legend()
plt.grid(True)
plt.show()
Ajuste lineal:
   Ecuación: y = -0.0023x + 13.1465
   Error: 2.0591
```

Ajuste Mínimos Cuadrados - Ejercicio 4

