Example 6.6. Find the Nyquist rate and Nyquist interval for the continuous-time signal given below:

$$x(t) = \frac{1}{2\pi} \cos{(4000\pi t)} \cos{(1000\pi t)}$$

Example 6.9. Find the Nyquist rate for the continuous-time signal given below

$$x(t) = \frac{\sin{(4 \times 10^3 \pi t)}}{\pi t}$$

2.

1.

Example 6.11. Given a continuous-time signal x(t) with Nyquist rate ω_0 . Determine the Nyquist rate for the continuous-time signal.

3. Solution: If the continuous-time signal $\frac{y(t)}{t} = x(t) \cos \omega_0 t$

Determine the Nyquist sampling rate and Nyquist sampling interval for the following signals. Note that the sampling interval T_s is the inverse of the sampling rate f_s : $T_s = \frac{1}{f_s}$

- (a) $\operatorname{sinc}^2(100\pi t)$; (b) $0.01 \operatorname{sinc}^2(100\pi t)$;
- (c) $sinc(100\pi t) + sinc^2(60\pi t)$; (d) $sinc(100\pi t)sinc(50\pi t)$

The Nyquist sampling rate for the signal $x(t)=\frac{\sin(500\pi t)}{\pi t}\times\frac{\sin(700\pi t)}{\pi t}$ is 5.

Determine the Nyquist rate of the following signals:

- (a) 10cos(40t)
- (b) $10\cos(40t)+10\sin(40t)$
- (c) 20sin(40t)sin(60t)
- 6 (d) 40sinc(20t)