О (дискретном) преобразовании Фурье

Золотов Борис Алексеевич, аспирант МКН СПбГУ, преподаватель ЛНМО

«Лига Лекторов», 3 сезон, онлайн-этап

5 февраля 2023 г.

При сохранении в jpg «идёт волнами». Почему так?

И как это связано со способностью слышать одного своего друга в толпе?

Координаты

Смотря на одну координату или убрав одну координату, мы всё ещё что-то содержательное можем сказать про вектор.

Скалярное произведение

Координата = Длина проекции на ось = Коэффициент в сумме = = Скалярное произведение

Скалярное произведение тем больше, чем более вектора похожи.

Какие координаты можно было бы присвоить сложному сигналу, чтобы они помнили содержательную информацию о нём?

Представление через значения в точках

Можно было бы разложить сигнал на его значения в точках, но значение в одной точке ничего не говорит о сигнале в целом.

Разложение в сумму волн

Пусть дан сигнал — последовательность из N чисел (значений замеров). Мы попробуем представить его в виде суммы сигналов—волн с частотой $\frac{k}{N}$ (или их сдвигов).

Почему это естественная идея

Звук инструмента или голоса, свет от конкретного источника естестественным образом представляется в виде суммы волн фикс. частот. Это позволяет узнавать составы звёзд, выделять минусовку / инструмент из звукозаписи.

Как найти координаты?

Перемножить сигнал и интересующую волну в каждой точке и полученные значения сложить.

Похожи — сумма будет большая положительная.

Ведут себя противоположным образом — большая отрицательная.

Совсем непохожи — примерно 0. Это скалярное произведение!

Покажем, как раскладывается сигнал в сумму волн

Будем добавлять слагаемые в порядке возрастания частоты.

Волна с частотой $2\pi \cdot 1 / 48$

Волна с частотой 2π · 4 / 48

Волна с частотой $2\pi \cdot 8 / 48$

Волна с частотой 2π · 14 / 48

Волна с частотой $2\pi \cdot 22 / 48$

Волна с частотой 2π · 24 / 48

- Преобразование Фурье раскладывает поступающий сигнал в сумму волн фикс. частот с коэффициентами
- Полезно при сжатии данных (откинуть ненужные частоты),
 при анализе сигнала
- Волны разных частот такой же ортогональный базис, как единичные векторы в пространстве.
- А как быстро считать это преобразование?
 А что, если сигнал честно непрерывный?
 А вот это уже интересно...

Спасибо за внимание!

