Neurális hálózatok bemutató

Füvesi Viktor

Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet

Miért?

Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.: arcfelismerés

Számítógép
Gyors
Pontos
Előre programozott

Agy
Lassú (10⁶)
Összetett
Párhuzamos asszociatív
működés

Neurális hálózat

Neurális hálózatnak nevezzük azt a hardver vagy szoftver megvalósításu párhuzamos, elosztott működésre képes információfeldolgozó eszközt, amely:

- azonos, vagy hasonló típusú általában nagyszámú lokális feldolgozást végző műveleti elem, neuron(*processing element, neuron*) többnyire rendezett topológiájú, nagymértékben összekapcsolt rendszeréből áll,
- rendelkezik tanulási algoritmussal (*learning algorithm*), mely általában minta alapján való tanulást jelent, és amely az információfeldolgozás módját határozza meg,
- rendelkezik a megtanult információ felhasználását lehetővé tevő információ előhívási, vagy röviden előhívási algoritmussal (recall algorithm).

Neuron általános felépítése

Perceptron típusú mesterséges neuron

Rosenblatt - 1958

$$y = f(s) = f(\mathbf{w}^T \mathbf{x})$$

Tipikus aktivációs függvények

(a) lépcsősfüggvény

$$y = \begin{cases} +1 & s > 1 \\ s & -1 \le s \le 1 \\ -1 & s < -1 \end{cases}$$
(b)

telítéses lineáris függvény

$$y = \frac{1 - e^{-Ks}}{1 + e^{-Ks}}; \quad K > 0$$

tangens hiberbolikusz függvény $(K=2-n\acute{e}1)$

$$y = \frac{1}{1 + e^{-Ks}}; K > 0$$

logisztikus függvény

Bemeneti összegzést nem használó neuron

x bemeneti vektor c középpont vektor

Memóriával rendelkező neuron

példa H_y -ra folytonos esetben

példa H_y -ra diszkrét esetben

FIR / IIR neuron struktúra

Hálózat topológia

A hálózat topológiáján a neuronok összeköttetési rendszerét és a hálózat bemeneteinek és kimeneteinek helyét értjük.

- irányított gráf
- gráf csomópontjai a neuronok

Rétegbe szervezett topológia

Bementi réteg Rejtett réteg Kimeneti réteg

Visszacsatolások

Lokális – elemi (a), laterális (b) és rétegek közötti (c) – visszacsatolás

Tanítás

Ellenőrzött tanulásnál

- •be- és kimeneti tanító mintapont párok rendelkezésre állnak
- •Tanítás a mintapárok alapján
- •Az összehasonlítás eredménye a tényleges és a kívánt válasz különbsége felhasználható a hálózat olyan módosítására, hogy a tényleges válaszok a kívánt válaszokkal minél inkább megegyezzenek, és a hálózat tényleges viselkedése és a kívánt viselkedés közötti eltérés csökkenjen.

Nemellenőrzött tanulásnál(unsupervised learning)

- •nem állnak rendelkezésünkre adott bemenetekhez tartozó kívánt válaszok
- •bemenetek és a kimenetek alapján a viselkedést kialakítása
- •Környezetből nincs visszajelzés
- •Bemeneti adatokban, jelekben valami hasonlóság, korreláció, kategóriák, csoportok

Tanítás leállítása

MLP

Bementi réteg Rejtett réteg Kimeneti réteg

Dinamikus rendszer modellezése

SISO - Single Input Single Output System

$$\widetilde{y}(t) = f(u(t), u(t-1), u(t-2), \dots, u(t-n))$$

Neurális háló alkalmazása

Alkalmazási területek:

- Mérnöki önjáró autó, repülőgépek szabályozása
- Fizikai adaptív teleszkóp optika
- Biológiai protein identifikáció
- Orvosi ráksejt, EKG analízis
- Pénzügyi tőzsdei előrejelzés
- Művészet beszéd és írásfelismerés
- Katonai adattömörítés, célpont követés
- stb

Feladatcsoportok:

- Minta asszociáció
- klaszterezés., osztályozás, jellemvonás felismerés
- Függvény közelítés
- Szabályozás
- Optimalizálás
- Tudás rögzítés

Szoftverek

- Szkript nyelvek:
 - Matlab + Simulink NN Toolbox, NNSYSID, stb.
 - Scilab + Xcos ANN Toolbox, LoLiMoT, stb.
 - Octave
 - Matematica
- Programozási nyelvek

$$C/C++$$

- FANN
- OpenNN

C#

- Encog
- Specifikus programok
 - Alyda NeuroIntelligence
 - NeuroXL
 - NeuroSolution
 - EasyNN

Források

 Retter Gyula: Fuzzy, neurális, genetikus, kaotikus rendszerek Akadémiai Kiadó, Budapest, 2. kiadás, 2006
 ISBN 963 05 8353 4

http://project.mit.bme.hu/mi_almanach/

• Google.hu

RL tag bekapcsolási folyamata

$$i_{ki} = \frac{u_{be} - u_L}{R} \qquad \qquad u_L = L \frac{di_{ki}}{dt}$$

$$i_{ki} = \frac{u_{be}}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

RL tag bekapcsolási folyamata

RL tag bekapcsolási folyamata

RL tag bekapcsolási folyamata

