

Fei-Fei Li Lecture 7 - 1 17-Oct-11

What we will learn today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras

Reading:

[FP] Chapters 1 – 3 [HZ] Chapter 6

Fei-Fei Li Lecture 7 - 2 17-Oct-11

What we will learn today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras

Reading:

[FP] Chapters 1 – 3

[HZ] Chapter 6

Fei-Fei Li Lecture 7 - 3 17-Oct-11

How do we see the world?

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Fei-Fei Li Lecture 7 - 4 17-Oct-11

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture

Fei-Fei Li Lecture 7 - 5 17-Oct-11

Some history...

Milestones:

- Leonardo da Vinci (1452-1519): first record of camera *obscura*
- Johann Zahn (1685): first portable camera

Fei-Fei Li Lecture 7 - 6 17-Oct-11

Some history...

Milestones:

- Leonardo da Vinci (1452-1519): first record of camera *obscura*
- Johann Zahn (1685): first portable camera
- Joseph Nicephore Niepce (1822):
 first photo birth of photography
- Daguerréotypes (1839)
- Photographic Film (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)

Photography (Niepce, "La Table Servie," 1822)

Some history...

Motzu
(468-376 BC)
Oldest existent book
on geometry in China

Aristotle (384-322 BC) Also: Plato, Euclid

Al-Kindi (c. 801–873) Ibn al-Haitham (965-1040)

Derived using similar triangles

- Common to draw image plane in front of the focal point
- Moving the image plane merely scales the image.

 $y' = f \frac{y}{z}$

Is the size of the aperture important?

Fei-Fei Li Lecture 7 - 12 17-Oct-11

Shrinking aperture size

- Rays are mixed up

- -Why the aperture cannot be too small?
 - -Less light passes through
 - -Diffraction effect

Adding lenses!

Fei-Fei Li Lecture 7 - 13 17-Oct-11

• A lens focuses light onto the film

Fei-Fei Li Lecture 7 - 14 17-Oct-11

- A lens focuses light onto the film
 - Rays passing through the center are not deviated
 - All parallel rays converge to one point on a plane located at the focal length f

Fei-Fei Li Lecture 7 - 15 17-Oct-11

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 [other points project to a "circle of confusion" in the image]

Fei-Fei Li Lecture 7 - 16 17-Oct-11

- Laws of geometric optics
 - Light travels in straight lines in homogeneous medium
 - Reflection upon a surface: incoming ray, surface normal, and reflection are co-planar
 - Refraction: when a ray passes from one medium to another

Snell's law

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

 α_1 = incident angle α_2 = refraction angle n_i = index of refraction

$$z'=f+z_{o}$$

$$f = \frac{R}{2(n-1)}$$

Snell's law:

$$n_1 \sin \alpha_1 = n_2 \sin \alpha_2$$

Small angles:

$$n_1 \alpha_1 \approx n_2 \alpha_2$$

$$n_1 = n \text{ (lens)}$$

$$n_1 = 1$$
 (air)

$$x' = z' \frac{x}{z}$$

$$y'=z'\frac{y}{z}$$

18

Source wikipedia

Fei-Fei Li Lecture 7 - 19 17-Oct-11

Issues with lenses: Chromatic Aberration

• Lens has different refractive indices for different wavelengths: causes color fringing

$$f = \frac{R}{2(n-1)}$$

Fei-Fei Li Lecture 7 - 20 17-Oct-11

Issues with lenses: Chromatic Aberration

Rays farther from the optical axis focus closer

Fei-Fei Li Lecture 7 - 21 17-Oct-11

Issues with lenses: Chromatic Aberration

 Deviations are most noticeable for rays that pass through the edge of the lens

Fei-Fei Li Lecture 7 - 22 17-Oct-11

What we will learn today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras

Fei-Fei Li Lecture 7 - 23 17-Oct-11

f = focal length

c = center of the camera

$$(x,y,z) \to (f \frac{x}{z}, f \frac{y}{z})$$

$$\Re^{3} \stackrel{E}{\to} \Re^{2}$$

Is this a linear transformation?

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

No — division by z is nonlinear!

How to make it linear?

Fei-Fei Li Lecture 7 - 25 17-Oct-11

Homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Homogeneous coordinates

Perspective Projection Transformation:

$$P' = \begin{bmatrix} f & x \\ f & y \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = M P$$

$$\Re^4 \xrightarrow{H} \Re^3$$

M

"Projection matrix"

$$P' = M P$$

$$\mathfrak{R}^4 \stackrel{\mathrm{H}}{\rightarrow} \mathfrak{R}^3$$

$$P_{i}^{'} = \begin{bmatrix} f \frac{X}{Z} \\ \frac{Z}{Z} \end{bmatrix}$$

Fei-Fei Li Lecture 7 - 28 17-Oct-11

Fei-Fei Li Lecture 7 - 29 17-Oct-11

- 1. Off set
- 2. From metric to pixels

$$(x, y, z) \rightarrow (f k \frac{x}{z} + c_x, f l \frac{y}{z} + c_y)$$

Units: k,l:pixel/m

f:m

Non-square pixels

 $lpha,~oldsymbol{eta}$: pixel

Fei-Fei Li Lecture 7 - 31 17-Oct-11

$$P' = M P$$

$$= K[I \quad 0] P$$
intrinsic parameters

$$P' = \begin{bmatrix} \alpha & s & c_{x} & 0 \\ 0 & \beta & c_{y} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

K has 5 degrees of freedom!

Camera & world reference system

- •The mapping is defined within the camera reference system
- What if an object is represented in the world reference system?

Fei-Fei Li Lecture 7 - 36 17-Oct-11

Camera & world reference system

Fei-Fei Li Lecture 7 - 37 17-Oct-11

Projective cameras

How many degrees of freedom?

Projective cameras

$$(x, y, \overline{\mathbf{m}_{1}P_{w}}, \frac{\mathbf{m}_{2}P_{w}}{\mathbf{m}_{3}P_{w}}, \frac{\mathbf{m}_{2}P_{w}}{\mathbf{m}_{3}P_{w}})$$

M is defined up to scale! Multiplying M by a scalar won't change the image

Theorem (Faugeras, 1993)

$$M = K[R \quad T] = [KR \quad KT] = [A \quad b]$$

Let $\mathcal{M} = (\mathcal{A} \quad \mathbf{b})$ be a 3×4 matrix and let \mathbf{a}_i^T (i = 1, 2, 3) denote the rows of the matrix \mathcal{A} formed by the three leftmost columns of \mathcal{M} .

- A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix is that $\text{Det}(\mathcal{A}) \neq 0$.
- A necessary and sufficient condition for \mathcal{M} to be a zero-skew perspective projection matrix is that $\mathrm{Det}(\mathcal{A}) \neq 0$ and

$$(\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0.$$

• A necessary and sufficient condition for \mathcal{M} to be a perspective projection matrix with zero skew and unit aspect-ratio is that $\text{Det}(\mathcal{A}) \neq 0$ and

$$\begin{cases} (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = 0, \\ (\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_1 \times \boldsymbol{a}_3) = (\boldsymbol{a}_2 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3). \end{cases}$$

$$A = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix}$$

$$K = \begin{bmatrix} \alpha & s & c_x \\ 0 & \beta & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\alpha = f k;$$

 $\beta = f 1$

Properties of Projection

- Points project to points
- Lines project to lines

Fei-Fei Li Lecture 7 - 41 17-Oct-11

Properties of Projection

Angles are not preserved

Parallel lines meet

Vanishing point

Fei-Fei Li Lecture 7 - 42 17-Oct-11

What we have learned today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras

Reading:

[FP] Chapters 1 – 3[HZ] Chapter 6

Fei-Fei Li Lecture 7 - 43 17-Oct-11