1課題1

ネットワークの構造を変更し、認識精度の変化を確認する.

1.1 結果

実行結果を表 1 に示す. バッチサイズは 64, エポック数は 10, 学習率は 0.01, 最適化手法はモメンタム SGD とする.

	認識精度	中間層のユニット数	層数	活性化関数	カーネルサイズ
1	0.6761	1024	5	ReLU	3×3
2	0.6763	1024, 1024	6	ReLU	3×3
3	0.6784	2048, 2048	6	ReLU	3×3
4	0.6662	2048, 2048	6	LeakyReLU	3×3
5	0.7141	2048, 2048	6	ELU	3×3
6	0.7145	2048, 2048	6	ELU	5×5
7	0.6599	2048, 2048	6	ReLU	5×5
8	0.67	2048, 2048, 2048	7	ReLU	5×5
9	0.6755	1024, 1024, 1024	7	ReLU	5×5
10	0.6678	1024, 1024, 1024, 1024	8	ReLU	5×5
11	0.6594	1024, 1024, 1024, 1024	8	LeakyReLU	5×5
12	0.6698	1024, 1024, 1024, 1024	8	LeakyReLU	3×3
13	0.6712	512, 512, 512, 512	8	LeakyReLU	3×3
14	0.6714	512, 512, 512, 512, 512	9	LeakyReLU	3×3
15	0.7049	512, 512, 512, 512, 512	9	ELU	3×3
16	0.7113	1024, 1024, 1024, 1024, 1024	9	ELU	3×3

表 1:ネットワーク構造の変更

1.2 考察

活性化関数以外の構造を同じにして ReLU と LeakyReLU の精度を比較すると, 3 行目と 4 列目では 0.00122, 10 行目と 11 行目では 0.0084 となり, ReLU と LeakyReLU の性能に大きな差はないと考える. また, 同じ ReLU の発展形である ELU は LeakyReLU と比べより高い認識精度を出している.

2課題2

学習設定を変更し、認識精度の変化を確認.

2.1 結果

実行結果を表 2 に示す。層数は 5 層として,中間層のユニット数は 1024,活性化関数は ReLU,カーネルサイズは 3×3 で固定する.

認識精度 バッチサイズ 学習回数 学習率 最適化手法 0.6732 10 0.01 **SGD** 64 0.6878 20 0.01 **SGD** 64 0.6952 64 30 0.01 SGD 0.7091 128 40 0.01 SGD 0.7076 256 50 0.01 **SGD** 0.4899 256 50 0.01 Adadelta 0.701256 50 0.01 Adagrad 0.5323 256 50 0.01 Adam

表 2: 学習設定の変更

2.2

モーメンタムを使用しない Adadelta や Adagrad は SGD と比べて認識精度が低下している.

3課題3

認識精度が向上するようにパラメータを変更.

3.2 結果

表3:学習パラメータとネットワーク構造の変更

認識	中間層のユニット数	層数	活性化関数	カーネル	バッチ	学習	最適化
精度				サイズ	サイズ	回数	手法
0.6795	1024	5	ReLU	3×3	256	30	SGD
0.716	1024	5	ELU	3×3	256	30	SGD
0.6965	1024, 1024, 1024	7	ELU	3×3	256	30	SGD
0.7247	2048, 2048	6	ELU	3×3	128	30	SGD

3.3 考察

層数を増やすと認識精度は向上するが上限があり、ある一定以上層数を増やしても認識精度は向上しなくなる。学習回数も同様に、一定以上増やしても認識精度は向上せず、逆に認識精度が低下する。これらは、過学習や勾配消失によるものであり、層数と学習回数は正確に見極める必要がある。