Teknik Clustering Menggunakan Pendekatan Algoritma K-Means Pada Data Disbursement Fintech

Muhammad Shabri Arrahim Mardi

Alamat : Jl. Perintis No. 46A, Baubau, Sulawesi Tenggara e-mail: shabri@student.telkomuniversity.ac.id

ABSTRAK

Tulisan ini dimaksudkan untuk melakukan pengelompokan data Disbursement Fintech dengan menggunakan teknik clustering menggunakan pendekatan algoritma K-Means. Sehingga akan diketahui region – region yang berpotensi untuk dibukakan cabang fintech baru yang dibagi menjadi tiga kelompok yaitu 1 = low (kurang potensial), 2 = medium (potensial), dan 3 = high (sangat potensial).

Kata kunci: Algoritma K-Means, Disbursement Fintech, Data Mining, Fintech.

1. PENDAHULUAN

1.1 Latar Belakang Masalah

Data disbursement yang ada pada fintech semakin lama semakin banyak jumlahnya, hal tersebut sangat disayangkan jika tidak dimanfaatkan dengan baik karena hanya akan menjadi kuburan data, alangkah lebih baik jika data tersebut dapat dimanfaatkan untuk mencari informasi yang bermanfaat untuk strategi pembuatan cabang baru. Pemahaman yang baik terhadap data pertumbuhan pelanggan pada tiap branch (cabang) dapat digunakan perusahaan fintech untuk berinvestasi dengan membuat cabang baru pada region – region yang dianggap memiliki potensi. Masalah yang mungkin dihadapi adalah kesulitan dalam menganalisa region – region mana saja yang memiliki nilai pertumbuhan pelanggan yang baik dan memiliki potensi untuk dibuatkan cabang yang baru.

Segmentasi *region* adalah metode yang dapat digunakan untuk memilih *region* mana saja yang tepat untuk dibuatkan cabang yang baru. Dengan segmentasi *region* berdasarkan pertumbuhan pelanggannya, kita dapat menargetkan region mana yang dapat dibuatkan cabang *fintech* yang baru. Namun untuk menganalisa data dalam jumlah besar memerlukan tenaga dan waktu yang banyak. Clustering data untuk menentukan region – region mana saja yang memiliki potensi untuk dibuatkan cabang baru dirasa penting karena untuk meningkatkan pelayanan kepada customer.

1.2 Tujuan

Tujuan dari penelitian ini adalah untuk melakukan pengelompokan data *disbursement fintech* dengan menggunakan teknik clustering. Sehingga akan diketahui *region – region* yang berpotensi untuk dibukakan cabang *fintech* baru yang dibagi menjadi tiga kelompok yaitu 1 = *low* (kurang potensial), 2 = *medium* (potensial), dan 3 = *high* (sangat potensial).

1.3 Deskripsi Data

Data yang digunakan pada penelitian ini adalah data disbursement fintech. Jumlah record dari data tersebut adalah 3703 dengan 11 variable. Dataset disbursement fintech terdiri dari beberapa atribut antara lain branch bertipe String, cutoff_date bertipe Date, area bertipe String, region bertipe String, first_date_disbursement bertipe Date, active_borrowers bertipe Integer, active_agent bertipe Integer, deliquency_rate bertipe Numeric, outstanding bertipe Integer, weekly_disbursement bertipe Integer, dan weekly_new_borrower_per_bp bertipe Integer. Hasil evaluasi terhadap kualitas data adalah masih terdapat data yang memliki noise dan ditemukan banyak nilai kosong atau null yang disebut sebagai missing value.

Contoh data bernilai range :

deliquency_rate 1%-2.5%

Contoh data dengan nilai Null/Missing Value dan mempunyai noise:

2. METODE

2.1 Praproses

Pada penelitian ini terdapat 2 pra-proses yang dilakukan yaitu :

Pembersihan Data (Data Cleaning)
 Digunakan untuk menghapus noise dan memperbaiki data yang tidak konsisten. Karena pada dataset masih banyak terdapat noise dan

missing value maka dilakukan Pembersihan Data (*Data Cleaning*) untuk menangani hal tersebut.

■ Reduksi Data (*Data Reduction*)

Digunakan untuk me-resize data dengan agregasi, eliminasi fitur yang sama, atau pengelompokan data. Karena pada dataset terdapat atribut yang tidak terlalu berpengaruh dalam pembentukan kluster, sehingga atribut tersebut harus dieliminasi dan dilakukan pengurangan jumlah record data sebab dari total 3703 record data hanya diambil 250 record untuk tiap – tiap region yang ada, dengan menggunakan metode sampling kuota (Nonprobability sampling). Karena terdapat 5 region pada dateset, jadi jumlah record yang digunakan adalah 5x250 = 1250 record data.

Berikut adalah potongan data yang telah melalui praproses :

	region	active_borrowers	active_agent	weekly_new_borrower_per_bp
0	REGION_JR1	1108	5	3
1	REGION_JH	1515	7	1
2	REGION_JH	1092	5	7
3	REGION_JR2	683	3	17
4	REGION_JR1	2294	8	7
5	REGION_JR1	54	2	4

Figure 1 Dataset hasil pre-proses

2.2 Analisis Pemilihan Algoritma

Penelitian ini menggunakan algoritma *K-means* untuk menyelesaikan masalah yang sudah dijabarkan sebelumnya, *K-means* merupakan suatu algoritma pengklasteran yang cukup sederhana yang mempartisi dataset kedalam beberapa klaster *k*. Algoritmanya cukup mudah untuk diimplementasi dan dijalankan, relatif cepat, mudah disesuaikan dan banyak digunakan[1]. Prinsip utama dari teknik ini adalah menyusun *k* buah partisi/pusat massa (*centroid*)/rata-rata (*mean*) dari sekumpulan data. Algoritma *K-means* dimulai dengan pembentukan partisi klaster di awal kemudian secara iteratif partisi klaster ini diperbaiki hingga tidak terjadi perubahan yang signifikan pada partisi klaster[2].

2.3 Analisis Penentuan Parameter

Pemilihan sebagian kecil kelompok data yang mungkin mengandung pola dari permasalahan. Variabel yang digunakan adalah active_borrowers, active_agent, weekly_new_borrower_per_bp. Beberapa variable tersebeut dianggap memiliki andil yang besar untuk menentukan apakah dalam suatu region memiliki potensi untuk dibuatkan cabang *fintech* yang baru. Proses penentuan nilai k pada algorithma K-means menggunakan metode Elbow. Berikut ini merupakan grafik pencarian nilai k yang dianggap cocok:

Figure 2 Grafik penentuan nilai k

Berdasarkan grafik diatas, dapat dilihat bahwa bentuk *elbow* (siku) terlihat saat jumlah klaster adalah 3. Oleh karena itu, nilai *k* yang baik adalah 3.

3. PEMBAHASAN DAN HASIL

3.1 Hasil Percobaan

Setelah dilakukan percobaan terhadap dataset disbursement Fintech dengan menggunakan algoritma K-means dengan parameter yang telah disebutkan pada point sebelumnya didapatkan hasil *cluster* sebagai berikut:

	active_borrowers	active_agent	weekly_new_borrower_per_bp
cluster			
1.0	984.1	4.4	11.0
2.0	1012.9	4.3	11.7
3.0	1020.0	4.7	8.8

Figure 3 Hasil cluster dan masing - masing nilai atributnya

Figure 3 memperlihat nilai masing – masing atribut berdasarkan klasternya.

Berikut ini merupakan hasil cluster yang didapatkan untuk tiap — tiap *region*. Nilai klaster akhir didaptakan dengan menghitung *Modus* pada atribut *'cluster'* untuk tiap tiap regionnya.

	region	active_borrowers	active_agent	weekly_new_borrower_per_bp	cluster
0	REGION_JH	1515.0	7.0	1	3.0
1	REGION_JH	1092.0	5.0	7	3.0
2	REGION_JH	1973.0	8.0	4	2.0
3	REGION_JH	1258.0	9.0	4	3.0
4	REGION_JH	314.0	3.0	14	1.0
5	REGION_JH	257.0	2.0	17	1.0
6	REGION_JH	1586.0	7.0	5	3.0
7	REGION_JH	277.0	2.0	18	1.0
8	REGION_JH	146.0	2.0	1	1.0
9	REGION_JH	98.0	1.0	24	1.0

Figure 4 Hasil cluster untuk REGION_JH

Pada Figure 4, dapat dilihat bahwa REGION_JH masuk kedalam klaster 3 (High = Sangat Potensial).

Clas	Class untuk REGION_JR1 : 1							
	region	active_borrowers	active_agent	weekly_new_borrower_per_bp	cluster			
250	REGION_JR1	1108.0	5.0	3	2.0			
251	REGION_JR1	2294.0	8.0	7	1.0			
252	REGION_JR1	54.0	2.0	4	2.0			
253	REGION_JR1	452.0	3.0	16	1.0			
254	REGION_JR1	108.0	2.0	15	3.0			
255	REGION_JR1	2057.0	8.0	5	1.0			
257	REGION_JR1	1914.0	7.0	7	1.0			
258	REGION_JR1	1854.0	8.0	4	1.0			
259	REGION_JR1	310.0	3.0	30	2.0			

Figure 5 Hasil cluster untuk REGION JR1

Pada Figure 5, dapat dilihat bahwa REGION_JR1 masuk kedalam klaster 1 (Low = Kurang Potensial).

Class untuk REGION_JR2 : 1						
	region	active_borrowers	active_agent	weekly_new_borrower_per_bp	cluster	
500	REGION_JR2	683.0	3.0	17	1.0	
501	REGION_JR2	243.0	2.0	15	2.0	
502	REGION_JR2	516.0	3.0	22	2.0	
503	REGION_JR2	434.0	3.0	17	1.0	
504	REGION_JR2	82.0	2.0	19	1.0	
505	REGION_JR2	716.0	3.0	24	2.0	
506	REGION_JR2	2089.0	6.0	7	2.0	
507	REGION_JR2	604.0	3.0	10	1.0	
508	REGION_JR2	685.0	3.0	29	1.0	
509	REGION_JR2	2482.0	7.0	3	1.0	

Figure 6 Hasil cluster untuk REGION_JR2

Pada Figure 6, dapat dilihat bahwa REGION_JR1 masuk kedalam klaster 1 (Low = Kurang Potensial).

Class untuk REGION_JT : 1						
	region	active_borrowers	active_agent	weekly_new_borrower_per_bp	cluster	
750	REGIONID_JT	430.0	2.0	19	3.0	
751	REGIONID_JT	385.0	2.0	23	3.0	
752	REGIONID_JT	533.0	3.0	24	1.0	
753	REGIONID_JT	1568.0	7.0	9	3.0	
754	REGIONID_JT	1322.0	7.0	10	1.0	
755	REGIONID_JT	1370.0	8.0	8	3.0	
756	REGIONID_JT	639.0	3.0	12	1.0	
757	REGIONID_JT	511.0	3.0	22	1.0	
758	REGIONID_JT	1722.0	9.0	7	1.0	
759	REGIONID_JT	351.0	3.0	11	3.0	

Figure 8 Hasil cluster untuk REGION_JT

Pada Figure 7, dapat dilihat bahwa REGION_JT masuk kedalam klaster 1 (Kurang = Tidak Potensial).

Class untuk REGION_N : 1						
	region	active_borrowers	active_agent	weekly_new_borrower_per_bp	cluster	
1000	REGIONID_N	235.0	2.0	13	1.0	
1001	REGIONID_N	424.0	2.0	6	3.0	
1002	REGIONID_N	1740.0	7.0	4	1.0	
1003	REGIONID_N	1152.0	8.0	5	1.0	
1004	REGIONID_N	411.0	3.0	11	1.0	
1005	REGIONID_N	569.0	2.0	28	3.0	
1006	REGIONID_N	319.0	2.0	33	3.0	
1007	REGIONID_N	295.0	2.0	2	1.0	
1008	REGIONID_N	360.0	2.0	12	3.0	
1009	REGIONID_N	938.0	5.0	3	1.0	

Figure 9 Hasil cluster untuk REGION_N

Pada Figure 8, dapat dilihat bahwa REGION_N masuk kedalam klaster 1 (Low = Kurang Potensial).

Dari hasil klaster masing – masing *region* diatatas, diketahui bahwa *region* yang Sangat berpotensi untuk dibuatkan *branch* (cabang) untuk *fintech* yang baru adalah REGION_JH karena memiliki nilai klaster = 3 (High = Sangat Potensial).

3.2 Ringkasan Model

Figure 7 Model Teknik Clustering

3.3 Interpretasi Model

Teknik *clustering* dengan algoritma K-Means seperti model pada Figure 9 dapat membantu pengelompokkan dataset dalam pengambilan keputusan untuk pembuatan branch (cabang) *fintech* pada *regionregion* yang dibagi menjadi 3 kelompok yaitu, 1 = low (Kurang Potensial), 2 = medium (Potensial), dan 3 = high (Sangat Potensial). Tujuan dari penelitian ini tercapai dengan menggunakan model pada Figure 9 karena model tersebut berhasil menentukan klaster dari masing – masing *region* yang ada pada dataset.

DAFTAR PUSTAKA

- [1] Wu, Xindong & Kumar, Vipin. (2009). The Top Ten
- Algorithms in Data Mining. London: CRC Press.

 [2] Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning and Tool. Burlington: Morgan Kaufmann Publisher.