Отчёт №3.5.1 «Изучение плазмы газового разряда в неоне»

Выполнил:

Хмельницкий А.А., Б01-306

Описание установки

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и zemmephuiu узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (zemmep). Трубка наполнена изотопом неона ²²Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

1 Теоретические сведения

Плазма - ионизованный газ , дебаевский радиус которого r_D существенно меньше характерного размера 1 объёма, занимаемого этим газом.

Из-за теплового движения в плазме электроны могут смещаться относительно ионов и образовывать неоднородности. В этих неоднородностях возникает электрическое поле, которое стремится восстановить баланс, из-за чего происходят колебания с частотой

$$w_p = \sqrt{\frac{4\pi n_e e^2}{m_e}} \tag{1}$$

За характерное время колебаний электроны за счет теплового движения смещаются на

$$r_D \sim \frac{v_e}{w_p} = \sqrt{\frac{kT_e}{4\pi n_e e^2}} \tag{2}$$

 r_D - дебаевский радиус, k - константа Больцмана.

Если поместить в плазму пробную (допустим, положительную) частицу, то электроны будут скапливаться около этой частицы, экранируя её поле. Потенциал точечного заряда будет иметь в плазме следующий вид:

 $\varphi(r) = \frac{q}{r}e^{-\frac{r}{r_D}}$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ — радиус Дебая в случае равновесной плазмы. Если температуры электронов и ионов сильно отличаются, то следует определять отдельно величину радиуса экранирования для электронов и для ионов. Итоговый радиус будет

$$r_D = (r_{De}^{-2} + r_{Di}^{-2})^{-1/2}$$

То есть если $T_i \ll T_e$, то $r_D \approx r_{Di}$ Число заряженных частиц в сфере радиуса r_D :

$$N_D = \frac{4}{3}\pi n_i r_D^3 \tag{3}$$

Одиночный зонд

При внесении в плазму уединённого проводника — $son \partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS, \tag{4}$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS, \tag{5}$$

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего потенциала. В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока I_{en} – электронный ток насыщения, а минимальное I_{in} – ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4neS\sqrt{\frac{2kT_e}{m_i}}. (6)$$

Электронный ток насыщения можно определить по тепловому движению:

$$I_{eH} = \frac{n_e S}{4} \sqrt{\frac{8kT}{\pi m_e}}$$

Двойной зонд

Двойной зонд – система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS\langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{7}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{8}$$

Из (7) и (8) с учётом последовательного соединение зондов $(I_1 = -I_2 = I)$:

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{ii}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{iii}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, \quad I = I_{iH} th \frac{eU}{2kT_e}.$$
 (9)

Из формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (10)

2 Результаты эксперимента

1. Определим напряжение зажигания: $V = 101 \pm 6 \; \mathrm{B}$

Таблица 1: Напряжение зажигания

2. ВАХ разряда: в режиме переключателя Π_1 снимем вольт-амперную характеристику разряда $I_p(U_p)$:

V_1 B	I_1 MA	I_1 MA	V_1 B	I_1 MA	V_1 B	I_1 MA	V_1 B
25,50	2,10	3,02	22,20	3,92	16,70	2,91	22,60
25,10	2,22	3,09	21,80	3,84	17,20	2,80	22,90
24,90	2,26	3,16	21,50	3,80	17,40	2,69	23,40
24,70	2,35	3,23	21,10	3,73	17,90	2,61	23,60
24,50	2,39	3,32	20,60	3,66	18,40	2,56	23,80
24,40	2,44	3,41	20,00	3,60	18,80	2,52	23,90
24,20	2,47	3,53	19,30	3,54	19,20	2,48	24,10
24,00	2,52	3,60	18,80	3,46	19,80	2,41	24,30
23,70	2,62	3,65	18,50	3,35	20,40	2,32	24,60
23,60	2,66	3,72	18,10	3,28	20,80	2,23	24,70
23,50	2,70	3,82	17,40	3,20	21,20		
23,00	2,86	3,85	17,20	3,11	21,70		
22,50	2,94	3,92	16,70	3,00	22,20		

Таблица 2: BAX при нарастании и убывании тока

Рисунок 1: ВАХ одиночного зонда

По этому графику определим максимальное дифференциальное сопротивление разряда: $R_{\rm диф}=\frac{dU}{dI}=-10.5\pm0.7$ к Ом. Такое поведение BAX соответствует участку поднормальному тлеющему заряду теоретической зависимости.

3. Двойной зонд: измерим ВАХ двойного зонда $I_3(U_3)$ при $I_p=4{,}04$ мА, $2{,}99$ мА и $2{,}31$ мА. Далее при расчётах $I_1=4{.}04$ мА, $I_2=2{.}99$ мА, $I_3=2{.}31$ мА, $n_e=n_i=n$.

U_1 , B	I_1 , мкрА	U_2 , B	I_2 , мкр A	U_3 , B	I_3 , мкрА
25,00	41,90	24,87	29,5	24,87	23,26
22,70	40,40	22,033	28,85	22,06	22,7
21,90	40,00	19,01	28,15	18,93	22,03
19,00	39,10	15,96	27,4	16,02	21,3
16,03	38,17	13,01	26,48	12,98	20,44
13,05	36,96	10,01	24,95	9,96	19,03
9,97	34,76	7,94	22,92	8,02	17,46
8,03	32,12	6,06	19,9	6,01	14,96
6,01	27,57	4,04	15,03	4,04	11,3
3,99	20,82	1,99	8,46	2,06	6,5
2,02	12,24	0,01	1,27	0,01	0,8
0,70	4,01	-2,02	-6,74	-2,01	-5,13
-2,041	-9,56	-4,02	-11,91	-4,05	-9,17
-4,007	-16,6	-5,99	-15,33	-5,98	-11,76
-6,07	-21,6	-8,07	-17,44	-8,04	-13,44
-8,08	-24,4	-10,09	-18,58	-10,03	-14,4
-10,043	-25,9	-13,11	-19,5	-12,98	-15,25
-12,99	-27,2	-15,99	-20,01	-16,06	-15,85
-14,98	-27,78	-18,87	-20,56	-18,97	-16,33
-18,056	-28,56	-22,03	-21,24	-21,99	-16,8
-21,079	-29,25	-24,87	-21,75	-24,87	-17,5

Таблица 3: ВАХ двойного зонда при $I_p=4.04;\,2{,}99;\,2{,}31$ мА

2.1 Построим общий график

:

Рисунок 2: BAX двойного зонда

2.2 И отдельно найдём токи насыщения и температуры электронов в плазме

Рисунок 3: ВАХ при $I_p=4.04$ мА

 $1)\frac{dI}{dU}=(4.3\pm0.2)\cdot 10^6$ См (Сименс); $I_{\rm hac}=(8.3\pm0.2)\cdot 10^4$ СГСэ. Их температуры соответственно: $(6.6\pm0.3)\cdot 10^4K\approx (5.7\pm3)$ эВ. Согласно формуле (2) $n_i=$

Рисунок 4: ВАХ при $I_p=2.99~\mathrm{mA}$

 $2) {dI \over dU} = (2.8 \pm 0.5) \cdot 10^6$ См (Сименс); $I_{
m Hac} = (5.9 \pm 0.1) \cdot 10^4$ СГСэ. Их температуры соответственно: $(3.7 \pm 0.7) \cdot 10^4 K \approx (3.2 \pm 0,6)$ эВ

 $3)\frac{dI}{dU}=(2.2\pm0.1)\cdot 10^6$ См (Сименс); $I_{\rm Hac}=(4.9\pm0.3)\cdot 10^4$ СГСэ. Их температуры соответственно: $(3.9\pm0.3)\cdot 10^4 K\approx (3,4\pm0,3)$ эВ

Рисунок 5: ВАХ при $I_p=2.31~\mathrm{mA}$

3 Обработка результатов

3.1 Обработанные данные

Используя формулы (1), (2), (3), (9), (10), надём температуры электронов T_e в плазме, их концентрицию n_e , ленгмюровсую частоту колебаний электронов w_p , поляризационная длина r_{D_e} , дебаевский радиус r_D , число частиц в дебаевской сфере N_D , и ионизацию газа α .

I_1	Величина	Погрешность, σ
$T_e, 10^4 K$	6,6	0,3
$n, 10^{10} cm^{-3}$	1,9	0,1
$w, 10^9 c^{-1}$	7,7	1,8
$r_{D_e}, 10^{-2} cm$	1,3	0,1
$r_D, 10^{-4}cm$	8,7	0,5
N_D	52	9
$n, 10^{14} m^{-3}$	3	0,1
$\alpha, 10^{-3}\%$	6,3	0,4
I_2		
$T_e, 10^4 K$	3,7	0,7
$n, 10^{10} m^{-3}$	1,8	0,2
$w, 10^9 c^{-1}$	7,5	2,5
$r_{D_e}, 10^{-2} cm$	1	0,1
$r_D, 10^{-4}cm$	8,9	1
N_D	53	19
$n, 10^1 4m^{-3}$	5,3	1
$\alpha, 10^{-3}\%$	3,4	0,7
I_3		
$T_e, 10^4 K$	3,9	0,3
$n, 10^{10} m^{-3}$	1,4	0,1
$w, 10^9 c^{-1}$	6,6	1,8
$r_{D_e}, 10^{-2} cm$	1,2	0,1
$r_D, 10^{-4}cm$	10,1	0,7
N_D	60	13
$n, 10^{14} m^{-3}$	5,1	0,4
$\alpha, 10^{-3}\%$	2,7	0,3

Таблица 4: Результаты

3.2 Построим графики зависимости $T_e(I_p)$ и $n_e(I_p)$ по обработанным результатам

Рисунок 6: Зависимость температуры от тока разряда

Рисунок 7: Зависимость концентрации ионов от тока разряда

4 Выводы

В данной лабораторной работе мы исследовали состояние плазмы в тлеющем газовом разряде с помощью двойного зонда. Полученные результаты сходятся с указанными в лабораторной работе по порядку. Плазму в тлеющем разряде можно с хорошей точностью назвать идеальной,

так как N_D » 1. Также были измерены зондовых характеристики плазмы при различных токах разряда. Полученные данные были обработаны, с их помощью было проведено исследование основных параметров плазмы – температуры и концентрации ионов. Из того что $r_{D_e} >> r_{D_i}$ можно сделать вывод, что исследованная плазма является идеальной.