

Álgebra Linear LCC

Exame de recurso

Duração: 2h30

[Exame modelo] Escola de Clências

Proposta de resolução

Grupo I

Em cada questão deste grupo deve ser assinalada apenas uma das opções de resposta. A uma resposta correta é atribuída uma cotação de 1.25 valores (apenas uma resposta está correta) e a uma resposta errada é atribuída uma cotação de -0.25 valores. A cotação mínima total deste grupo é de 0 valores.

1.	Dadas duas matrizes $A \in \mathcal{M}_{4\times 2}(\mathbb{R})$ e $B \in \mathcal{M}_{2\times 4}(\mathbb{R})$, a matriz	
	AB + BA está bem definida.	A^TB está bem definida.
	X $(A + B^T)^T$ pode ser calculada.	
2.	Se A e B são matrizes de ordem $n>1$ tais que $3AB=I_n,$ então	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	A é invertível e $A^{-1} = \frac{1}{3}B$.
	X A é invertível e $A^{-1} = 3B$.	\square A é invertível e B é não invertível.
3.	Seja $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.	
	X Para $n \geq 3$, $A^n = \mathbf{O}_{3 \times 3}$.	\square O sistema $Ax=0$ tem solução única.
4.	Os seguintes vetores formam uma base de \mathbb{R}^3 .	
	(1,1,-1), (2,3,4), (1,-2,3), (2,1,1).	X $(1,1,0), (0,2,3), (-2,0,1).$
5.	Seja $T: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ uma aplicação linear tal que dim $\left(Im(T)\right) = 2$. Então	
	$igcap Nuc(T) = \{0_{\mathbb{R}^4}\}.$	
	$oxed{X} \operatorname{Nuc}(T)$ é um subespaço de \mathbb{R}^4 com dimensão 2.	Nuc (T) é um subespaço de \mathbb{R}^3 com dimensão 1.
6.	Seja A uma matriz de ordem 3 cujo polinómio característico é $p(\lambda)=(1-\lambda)(\lambda^2-4)$. Entã	
		X Os valores próprios da matriz $A^T + 2I_3$ são 0, 3 e 4.
	o sistema $(A - 2I_3)x = 0$ é possível e determinado.	$A^T - I_3$ é invertível.

Grupo II

Neste grupo as respostas a todos as questões devem ser devidamente justificadas.

1. [1 valor] Sejam A e B matrizes invertíveis. Mostre que

$$A^{-1} + B^{-1} = A^{-1}(A+B)B^{-1}.$$

Resolução.

Dado que A e B são matrizes invertíveis, temos $AA^{-1} = A^{-1}A = I_n$ e $BB^{-1} = B^{-1}B = I_n$. Assim,

$$A^{-1}(A+B)B^{-1} = (A^{-1}A + A^{-1}B)B^{-1} = (I_n + A^{-1}B)B^{-1}$$
$$= (I_nB^{-1} + A^{-1}BB^{-1}) = (I_nB^{-1} + A^{-1}I_n) = B^{-1} + A^{-1} = A^{-1} + B^{-1}.$$

2. [2.5 valores] Considere, para $\alpha, \beta \in \mathbb{R}$, a matriz

$$M = \begin{bmatrix} 1 & 1 & 1 & 3 \\ -1 & 0 & 2 & -2\beta \\ 1 & -1 & \alpha & \beta \end{bmatrix}.$$

- (a) Escreva o sistema, nas incógnitas $x, y \in z$, cuja matriz ampliada é M.
- (b) Discuta o sistema, em função dos parâmetros α e β .
- (c) Indique a solução do sistema para $\alpha = \beta = 0$.

Resolução.

(a)
$$\begin{cases} x + y + z = 3 \\ -x + 2z = -2\beta \\ x - y + \alpha z = \beta \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ -1 & 0 & 2 & -2\beta \\ 1 & -1 & \alpha & \beta \end{bmatrix} \xrightarrow{l_2 \leftarrow l_2 + l_1} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & -2\beta + 3 \\ 0 & -2 & \alpha - 1 & \beta - 3 \end{bmatrix}$$

$$\xrightarrow{l_3 \leftarrow l_3 + 2l_2} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & -2\beta + 3 \\ 0 & 0 & \alpha + 5 & -3\beta + 3 \end{bmatrix}$$

- Se $\alpha = -5$ e $\beta = 1$, a característica da matriz simples do sistema é igual a 2 e igual à característica da matriz ampliada, sendo por isso o sistema possível e indeterminado, já que o número de incógnitas é n = 3 > 2.
- Se $\alpha = -5$ e $\beta \neq 1$, o sistema é impossível uma vez que a característica da matriz simples do sistema é igual a 2 e diferente da característica da matriz ampliada que é igual a 3.
- Se α ≠ −5, o sistema é possível e determinado qualquer que seja o valor de β, já que as características da matrizes simples e ampliada do sistema são iguais e iguais a 3 que é o número de incógnitas.

(c) Temos o sistema equivalente ao sistema inicial:

$$\begin{cases} x & +y & +z & = 3 \\ y & +3z & = 3 \\ 5z & = 3 \end{cases} \iff \begin{cases} x & = 3 - y - z \\ y & = 3 - 3z \\ z & = \frac{3}{5} \end{cases} \iff \begin{cases} x & = \frac{6}{5} \\ y & = \frac{6}{5} \\ z & = \frac{3}{5} \end{cases}$$

3. [2 valores] Considere as seguintes matrizes

$$A = \begin{bmatrix} 2 & 3 & 6 & -1 \\ 0 & -1 & 4 & 1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 2 & 0 & 1 & 3 \\ 2 & 4 & -3 & 2 \end{bmatrix}.$$

- (a) Calcule det(A) e det(B).
- (b) Considere o sistema $A\mathbf{x} = \mathbf{b}$, onde $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$ e $\mathbf{b} = \begin{bmatrix} 2 & 2 & 3 & -6 \end{bmatrix}^T$. Determine o valor da incógnita x_3 usando a regra de Cramer.

Resolução.

(a) $det(A) = 2 \times (-1) \times (-2) \times 3 = 12$ (uma vez que A é uma matriz triangular superior o seu determinante é igual ao produto dos elementos da diagonal).

Para a matriz B temos

$$\det(B) = 2 \det \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ 4 & -3 & 2 \end{pmatrix} - 4 \det \begin{pmatrix} 0 & 1 & 0 \\ 2 & 1 & 3 \\ 2 & -3 & 2 \end{pmatrix} = 2 \times 34 - 4 \times 2 = 60,$$

uma vez que

$$\det \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ 4 & -3 & 2 \end{pmatrix} = 2 \det \begin{pmatrix} 1 & 3 \\ -3 & 2 \end{pmatrix} - 1 \det \begin{pmatrix} 0 & 3 \\ 4 & 2 \end{pmatrix} = 2(2+9) - (0-12) = 34$$

 \mathbf{e}

$$\det \begin{pmatrix} 0 & 1 & 0 \\ 2 & 1 & 3 \\ 2 & -3 & 2 \end{pmatrix} = -1 \det \begin{pmatrix} 2 & 3 \\ 2 & 2 \end{pmatrix} = -1(4-6) = 2.$$

(b)

$$x_3 = \frac{\det \begin{pmatrix} 2 & 3 & 2 & -1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -6 & 3 \end{pmatrix}}{\det(A)} = \frac{2 \times (-1) \times \det \begin{pmatrix} 3 & 1 \\ -6 & 3 \end{pmatrix}}{12} = \frac{-30}{12} = -\frac{15}{6}.$$

4. [3 valores] Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ a aplicação linear definida por

$$T(x, y, z) = (x + 2y - z, y + 2z, 2x + 5y, x + 3y + z).$$

- (a) Determine a representação matricial de T relativamente às bases canónicas.
- (b) Calcule, de duas formas distintas, T(1,2,3).
- (c) Determine Nuc(T) e uma sua base.
- (d) Indique uma base para Im(T).

Resolução.

(a) Como T(1,0,0) = (1,0,2,1), T(0,1,0) = (2,1,5,3) e T(0,0,1) = (-1,2,0,1), a matriz da aplicação linear relativamente às bases canónicas é

$$A_T = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \\ 1 & 3 & 1 \end{bmatrix}.$$

(b) $T(1,2,3) = (1+2\times 2-3, 2+2\times 3, 2\times 1+5\times 2, 1+3\times 2+3) = (2,8,12,10)$ ou

$$T(1,2,3) = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 2 & 5 & 0 \\ 1 & 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 12 \\ 10 \end{bmatrix}.$$

(c) Da definição de Nuc(T),

$$Nuc(T) = \{(x, y, z) \in \mathbb{R}^3 : T(x, y, z) = (0, 0, 0, 0)\},\$$

obtemos o sistema

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 2 & 5 & 0 & 0 \\ 1 & 3 & 1 & 0 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 - 2l_1} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ l_4 \leftarrow l_4 - l_1 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 - l_2} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 - l_2} \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Resolvendo o sistema, obtemos

$$Nuc(T) = \{(5\alpha, -2\alpha, \alpha) : \alpha \in \mathbb{R}\} = \langle (5, -2, 1) \rangle$$

e, portanto, $\dim(\mathsf{Nuc}(T)) = 1$, uma vez que ((5, -2, 1)) é uma base de $\mathsf{Nuc}(T)$.

(d)

$$\begin{aligned} \mathsf{Im}(T)) &= \left\{ (x+2y-z,y+2z,2x+5y,x+3y+z) \in \mathbb{R}^4 \colon x,y,z \in \mathbb{R} \right\} \\ &= \left\{ x(1,0,2,1) + y(2,1,5,3) + z(-1,2,0,1) \colon x,y,z \in \mathbb{R} \right\} \\ &= \left\langle (1,0,2,1), (2,1,5,3), (-1,2,0,1) \right\rangle \end{aligned}$$

Observe-se que os vetores (1,0,2,1),(2,1,5,3) e (-1,2,0,1) não são linearmente independentes e, portanto, não constituem uma base de $\mathsf{Im}(T)$). De facto,

Como a característica desta matriz é 2, temos apenas dois vetores linearmente independentes. Assim,

$$Im(T) = \langle (1, 0, 2, 1), (2, 1, 5, 3) \rangle$$

 $e \dim (\operatorname{Im}(T)) = 2.$

5. [2.5 valores] Considere a matriz

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & -1 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 2 \end{bmatrix}$$

- (a) Determine os valores próprios de A.
- (b) Determine o subespaço próprio associado ao maior valor próprio de A.

Resolução.

(a) Os valores próprios de A são as soluções da equação $\det(A - \lambda I) = 0$. Temos

$$\det(A - \lambda I) = \det\begin{pmatrix} 2 - \lambda & 0 & 0 & 0\\ 0 & 2 - \lambda & -1 & 2\\ 0 & 0 & 2 - \lambda & 1\\ 0 & 0 & 4 & 2 - \lambda \end{pmatrix}$$
$$= (2 - \lambda)(2 - \lambda)[(2 - \lambda)(2 - \lambda) - 4]$$
$$= (2 - \lambda)^2(\lambda^2 - 4\lambda) = \lambda(2 - \lambda)^2(\lambda - 4).$$

e

$$\det(A - \lambda I) = 0 \iff \lambda (2 - \lambda)^2 (\lambda - 4) = 0$$
$$\iff \lambda = 0 \ \lor \ 2 - \lambda = 0 \ \lor \ \lambda - 4 = 0$$
$$\iff \lambda = 0 \ \lor \ \lambda = 2 \ \lor \ \lambda = 4.$$

(b) O subespaço próprio associado ao valor próprio $\lambda=4$, E_4 , é o conjunto-solução do sistema $(A-4I)\boldsymbol{x}=\boldsymbol{0}$, com $\boldsymbol{x}=\begin{bmatrix}x_1 & x_2 & x_3 & x_4\end{bmatrix}^T$. Usando o método de eliminação de Gauss para a resolução do sistema, vem

$$\begin{bmatrix} -2 & 0 & 0 & 0 & 0 \\ 0 & -2 & -1 & 2 & 0 \\ 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 4 & -2 & 0 \end{bmatrix} \xleftarrow[l_4 \longleftarrow l_4 + 2l_3]{} \begin{bmatrix} -2 & 0 & 0 & 0 & 0 \\ 0 & -2 & -1 & 2 & 0 \\ 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Assim, x_4 é uma variável livre e, por substituição inversa, obtemos $x_3 = \frac{1}{2}x_4$, $x_2 = \frac{3}{4}x_4$ e $x_1 = 0$. O conjunto-solução do sistema é, então, dado por

$$\left\{ \left(0, \frac{3}{4}x_4, \frac{1}{2}x_4, x_4\right) \colon x_4 \in \mathbb{R} \right\} = \left\{ x_4 \left(0, \frac{3}{4}, \frac{1}{2}, 1\right) \colon x_3 \in \mathbb{R} \right\} = E_4.$$

Logo, o subespaço próprio associado ao maior valor próprio de $A, \lambda = 4,$ é $E_4 = \langle (0, \frac{3}{4}, \frac{1}{2}, 1) \rangle = \langle (0, 3, 2, 4) \rangle.$

- 6. [1.5 valores] Sejam A uma matriz real quadrada de ordem n tal que $A^2 = I_n$ e \boldsymbol{u} um vetor não nulo que não é vetor próprio de A.
 - (a) Mostre que se λ é um valor próprio de A, então $\lambda \in \{-1, 1\}$.
 - (b) Mostre que os vetores $\mathbf{v} = \mathbf{u} + A\mathbf{u}$ e $\mathbf{w} = \mathbf{u} A\mathbf{u}$ são vetores próprios de A e diga a que valores próprios estão associados.

5

Resolução.

(a) Seja λ um valor próprio de A. Então, por definição, $Ax = \lambda x$, com $x \neq 0$. Sendo λ um valor próprio de A, λ^2 é uma valor próprio de A^2 , uma vez que

$$Ax = \lambda x \Longrightarrow AAx = A\lambda x \Longrightarrow A^2x = \lambda Ax \Longrightarrow A^2x = \lambda \lambda x \Longrightarrow A^2x = \lambda^2x.$$

Como $A^2 = I_n$, segue que $\mathbf{x} = \lambda^2 \mathbf{x}$, ou seja, $\lambda^2 = 1$, ou ainda, $\lambda = 1$ ou $\lambda = -1$.

(b) Observe-se que \boldsymbol{v} e \boldsymbol{w} não são vetores nulos. De facto, se se tivesse, por exemplo, $\boldsymbol{v}=\mathbf{0}$ obteríamos

$$u + Au = 0 \iff Au = -u$$
.

ou seja, u seria um vetor próprio de A associado ao valor próprio -1, o que contraria a hipótese de u não ser um vetor próprio de A.

Analogamente, w = 0 implicaria que u seria um vetor próprio de A associado ao valor próprio 1, o que não é possível, por hipótese.

Repare-se, agora, que

$$A\mathbf{v} = A(\mathbf{u} + A\mathbf{u}) = A\mathbf{u} + A^2\mathbf{u} = A\mathbf{u} + I_n\mathbf{u} = A\mathbf{u} + \mathbf{u} = \mathbf{v}$$

e

$$Aw = A(u - Au) = Au - A^{2}u = Au - I_{n}u = Au - u = -(u - Au) = -w.$$

Ou seja, \boldsymbol{v} é um vetor próprio associado ao valor próprio 1 e \boldsymbol{w} é um vetor próprio associado ao valor próprio -1.