Домашнее задание №3 по курсу теории вероятностей и математической статистики.

Аналитические модели теории массового обслуживания.

Исходные данные

R_1	G_1	B_1	R_2	G_2	B_2	R_3	G_3	B_3
6	5	8	7	6	7	11	10	10

Задание

Известно, что среднее время между звонками клиентов составляет $T_c = R_1 + G_1 + B_1$, секунд, а среднее время обслуживания $T_s = R_2$ секунд. Все потоки случайных событий считать пуассоновскими. Если все операторы заняты, звонок теряется.

1. Рассмотреть систему без очереди.

Построить графики от числа операторов: вероятности отказа (вплоть до обеспечения отказов менее 1%); математического ожидания числа занятых операторов; коэффициента загрузки операторов.

2. Рассмотреть систему с ограниченной очередью.

Варьируя число операторов (вплоть до числа каналов, соответствующего 1% отказов в системе без очереди), построить семейства графиков от числа мест в очереди: вероятности отказа; математического ожидания числа занятых операторов; коэффициента загрузки операторов; вероятности существования очереди; математического ожидания длины очереди; коэффициента занятости мест в очереди.

Варьируя число место в очереди, построить семейства графиков от числа операторов: вероятности отказа; математического ожидания числа занятых операторов; коэффициента загрузки операторов; вероятности существования очереди; математического ожидания длины очереди; коэффициента занятости мест в очереди.

3. Рассмотреть систему без ограничений на длину очереди.

Построить графики от числа операторов (вплоть до числа каналов, соответствующего 1% отказов в системе без очереди): математического ожидания числа занятых операторов; коэффициента загрузки операторов; вероятности существования очереди; математического ожидания длины очереди.

4. Рассмотреть систему без ограничений на длину очереди, учитывающей фактор ухода клиентов из очереди (среднее приемлемое время ожидания – $T_w = R_3 + G_3 + B_3$ секунд).

Построить графики от числа операторов (вплоть до числа каналов, соответствующего 1% отказов в системе без очереди): математического ожидания числа занятых операторов; коэффициента загрузки операторов; вероятности существования очереди; математического ожидания длины очереди.

Решение

По условию
$$\lambda=\frac{1}{T_c},\ \mu=\frac{1}{T_s},\ \nu=\frac{60}{T_w}.$$
 Положим $\rho=\frac{\lambda}{\mu},\ \beta=\frac{\nu}{\mu}.$

Рассмотрим общий случай, когда в системе имеется n операторов, m ячеек в очереди.

Вероятность того, что все каналы свободны:
$$P_0 = \left(\sum_{k=0}^n \frac{\rho^k}{k!} + \frac{\rho^n}{n!} \cdot \sum_{q=1}^m \frac{\rho^q}{\prod_{j=1}^q n + j\beta}\right)^{-1}$$
.

Вероятность отказа:
$$P_{n+m} = \frac{\rho^n}{n!} \cdot \frac{\rho^m}{\displaystyle\prod_{j=1}^m n + j\beta} \cdot P_0.$$

Вероятность существования очереди:
$$P_m = \frac{\rho^n}{n!} \cdot \sum_{q=1}^{m-1} \frac{\rho^q}{\prod_{j=1}^q n + j\beta} \cdot P_0.$$

Математическое ожидание числа занятых операторов: $E_n = \sum_{k=1}^n P_k \cdot k + \sum_{j=1}^m P_{n+1} \cdot n$.

Математическое ожидание длины очереди: $E_m = \sum_{k=1}^m P_{n+1} \cdot k$.

Коэффициент загрузки операторов $K_o = \frac{E_n}{n}$. Коэффициент занятости очереди $K_q = \frac{E_m}{m}$.

Решим задание, рассматривая каждую из задач как частный случай, с помощью предельных переходов (в случае бесконечных очередей) будем находить нужные показатели.

1. Рассмотрим систему без очереди: $M_{\lambda}|M_{\mu}|n|0$

Относиельная пропускная способность $Q = 1 - P_n$, абсолютная пропускная способность $A = \lambda \cdot Q$. Математическое ожидание числа занятых операторов $E_n = \frac{A}{\mu} = \frac{\lambda \cdot Q}{\mu} = \rho \cdot (1 - P_n)$.

2. Рассмотрим систему с ограниченной очередью: $M_{\lambda}|M_{\mu}|n|m$

Вероятность существования очереди $P_m = \frac{\rho^n}{n!} \cdot \frac{1 - \rho^m \cdot n^{-m}}{1 - \rho \cdot n^{-1}} \cdot P_0$. Математическое ожидание длины очереди $E_m = \frac{\rho^{n+1}}{n \cdot n!} \cdot \frac{(1 - \rho^m \cdot n^{-m}) \cdot [1 + m \cdot (1 - \rho \cdot n^{-1})]}{(1 - \rho \cdot n^{-1})^2} \cdot P_0$.

3. Рассмотрим систему без ограничений на длину очереди: $M_{\lambda}|M_{\mu}|n|\infty$

Вероятность отказа $P_n=0$, тогда Q=1, $A=\lambda$, $E_n=\rho$, $K_n=\frac{E_n}{n}$. Формула для P_0 получается при предельном переходе $m\mapsto\infty$ для P_0 из предыдущего пункта, то есть $P_0=\left(\sum_{k=0}^n\frac{\rho^k}{k!}+\frac{\rho^n}{n!}\cdot\frac{1}{n-\rho}\right)^{-1}$ (бесконечно убывающая геометрическая прогрессия). Вероятность существования очереди $P_m=\frac{\rho^n}{(n-1)!}\cdot\frac{1}{n-\rho}\cdot P_0$. Математическое ожидание длины очереди $E_m=\frac{\rho^{n+1}}{(n-1)!}\cdot\frac{1}{(n-\rho)^2}\cdot P_0$.

4. Рассмотрим систему без ограничений на длину очереди, учитывающей фактор ухода клиентов из очереди: $M_{\lambda}|M_{\mu}|n|\infty_{\nu}$

$$P_{0} = \lim_{m \to \infty} \left(\sum_{k=0}^{n} \frac{\rho^{k}}{k!} + \frac{\rho^{n}}{n!} \cdot \sum_{q=1}^{m} \frac{\rho^{q}}{\prod_{j=1}^{q} n + j\beta} \right)^{-1}.$$