अध्याय

3.1 भूमिका

आप जानते हैं कि कागज़, **समतल** का एक प्रतिरूप है। जब आप कागज़ से पेंसिल को हटाए बिना बिंदुओं को आपस में जोड़ते हैं (अकेले बिंदुओं को छोड़कर आकृति के किसी भी भाग को अनुरेखित किए बिना) तो आप एक **समतलीय वक्र** प्राप्त करते हैं।

पिछली कक्षाओं में अलग-अलग प्रकार के देखे गए वक्रों को स्मरण करने का प्रयास कीजिए। निम्न आकृतियों का सुमेलन कीजिए : (ध्यान रिखए! एक आकृति का एक से अधिक आकृतियों से सुमेलन हो सकता है।)

	आकृति	नमूना	
(1)		(a) सरल बंद वक्र है।	
(2)		(b) बंद वक्र जो सरल नहीं है।	
(3)		(c) सरल वक्र जो बंद नहीं है।	
(4)		(d) सरल वक्र नहीं है।	

अपने मित्रों से इस मिलान की तुलना कीजिए, क्या वे सहमत हैं?

3.2 बहुभुज

केवल रेखाखंडों से बना सरल बंद वक्र बहुभुज कहलाता है।

कुछ और बहुभुजों के उदाहरण देने का प्रयास कीजिए तथा कुछ और ऐसे उदाहरण दीजिए जो बहुभुज न हों। एक बहुभुज की एक कच्ची (Rough) आकृति खींचिए और उसकी भुजाओं और शीर्षों की पहचान कीजिए।

3.2.1 बहुभुजों का वर्गीकरण

हम बहुभुजों का वर्गीकरण उनकी भुजाओं (या शीर्षों) के अनुसार करते हैं।

भुजाओं या शीर्षों की संख्या	वर्गीकरण	आकृति नमूना
3	त्रिभुज	
4	चतुर्भुज	
5	पंचभुज	
6	षड्भुज	
7	सप्तभुज	
8	अष्टभुज	
9	नवभुज	
10	दसभुज	
:	:	
n	<i>n</i> -भुज	

3.2.2 विकर्ण

किसी बहुभुज का **विकर्ण** उसके किन्हीं दो शीर्षों (आसन्न शीर्षों को छोड़कर) को जोड़ने से प्राप्त रेखाखंड होता है। (आकृति 3.1) **p**

आकृति 3.1

L M

क्या आप ऊपर दी गई आकृतियों में प्रत्येक विकर्ण का नाम दे सकते हैं? (आकृति 3.1) क्या \overline{PO} एक विकर्ण है? \overline{LN} के बारे में आप क्या कह सकते हैं?

एक बंद वक्र में अभ्यंतर और बहिर्भाग का क्या अर्थ होता है यह आप भलीभाँति जानते हैं (आकृति 3.2)।

अभ्यंतर की एक परिसीमा होती है। क्या बहिर्भाग की परिसीमा होती है? अपने दोस्तों के साथ चर्चा कीजिए।

3.2.3 उत्तल और अवतल बहुभुज

यहाँ पर कुछ उत्तल (convex) बहुभूज और कुछ अवतल (cocave) बहुभुज दिए गए हैं: (आकृति 3.3)

आकृति 3.3

क्या आप बता सकते हैं कि इस प्रकार के बहुभुज एक दूसरे से अलग क्यों हैं? जो बहुभुज उत्तल होते हैं उनके विकर्णों का कोई भी भाग बहिर्भाग में नहीं होता है। क्या यह अवतल बहुभूजों के लिए भी सत्य होता है? दी गई आकृतियों का अध्ययन कीजिए। तदुपरांत अपने शब्दों में उत्तल बहुभुज तथा अवतल बहुभुज समझाने का प्रयास कीजिए। प्रत्येक प्रकार की दो आकृतियाँ बनाइए। इस कक्षा में हम केवल उत्तल बहुभुजों के बारे में अध्ययन करेंगे।

3.2.4 सम तथा विषम बहुभुज (Regular and Irregular Polygons)

एक सम बहुभुज, समभुज तथा समकोणिक होता है। उदाहरणार्थ, एक वर्ग में भुजाएँ तथा कोण बराबर माप के होते हैं। इसलिए यह एक सम बहुभुज है। एक आयत समकोणिक तो होता है परंतू समभूज नहीं होता है। क्या एक आयत एक सम बहुभुज है? क्या एक समबाह त्रिभुज एक सम बहुभुज है? क्यों?

सम बहुभुज (Regular polygons)

विषम बहुभुज (Irregular polygons)

[संकेत : 💉 या 🔨 का उपयोग बराबर लंबाई वाले रेखाखंडों को दर्शाता है]

पिछली कक्षाओं में, क्या आप किसी ऐसे चतुर्भुज के बारे में पढ़ा है जो समभुज तो हो परंतु समकोणिक न हो? पिछली कक्षाओं में देखे गए चतुर्भुजों की आकृतियों का स्मरण कीजिए जैसे आयत, वर्ग, सम चतुर्भुज इत्यादि।

क्या कोई ऐसा त्रिभुज है जो समभुज तो हो परंतु समकोणिक न हो?

3.2.5 कोण-योग गुणधर्म

क्या आपको एक त्रिभुज के कोण-योग वाला गुणधर्म याद है? एक त्रिभुज के तीनों कोणों की मापों का योग 180° होता है। हमने इस तथ्य को समझाने के लिए जिस विधि का उपयोग किया उसे स्मरण कीजिए। अब हम इन अवधारणाओं को एक चतुर्भुज के लिए प्रयोग करेंगे।

इन्हें कीजिए

कोई एक चतुर्भुज, माना ABCD, लीजिए (आकृति 3.4)। एक विकर्ण खींचकर, इसे दो त्रिभुजों में बाँटिए। आप छ: कोण 1, 2, 3, 4, 5 और 6 प्राप्त करते हैं। त्रिभुज के कोण-योग वाले गुणधर्म का उपयोग कीजिए और तर्क कीजिए कि कैसे ∠A, ∠B, ∠C तथा ∠D की मापों का योगफल 180° + 180° = 360° हो जाता है।

2. किसी चतुर्भुज ABCD, की गत्ते वाली चार सर्वांगसम प्रतिलिपियाँ लीजिए जिनके कोण दर्शाए गए हैं (आकृति 3.5 (i)). इन प्रतिलिपियों को इस प्रकार से व्यवस्थित कीजिए जिससे

आकृति 3.5

ऐसा करने के लिए आप सही किनारे का मिलान कर उसे बदल सकते हैं जिससे वे ठीक ढंग से लग जाएँ। $\angle 1, \angle 2, \angle 3, \angle 4$ एक ही बिंदु पर मिलें जैसा कि आकृति में दर्शाया गया है (आकृति 3.5 (ii))। आप $\angle 1, \angle 2, \angle 3$ तथा $\angle 4$ के योगफल के बारे में क्या कह सकते हैं?

[**टिप्पणी**: हम कोणों को $\angle 1$, $\angle 2$, $\angle 3$ इत्यादि से तथा उनकी मापों को $m\angle 1$, $m\angle 2$, $m\angle 3$ इत्यादि से दर्शाते हैं]

एक चतुर्भुज के चारों कोणों की मापों का योगफल _____ होता है। आप इस परिणाम पर अन्य कई तरीकों से भी पहुँच सकते हैं।

3. चतुर्भुज ABCD पर पुन: विचार कीजिए (आकृति 3.6)। माना इसके अभ्यंतर में कोई बिंदु P स्थित है। P को शीर्षों A, B, C तथा D से जोड़िए। आकृति में, ΔPAB पर विचार कीजिए। हम देखते हैं कि $x=180^{\circ}-m\angle 2-m\angle 3$; इसी प्रकार, ΔPBC , से $y=180^{\circ}-m\angle 4-m\angle 5$, ΔPCD से $z=180^{\circ}-m\angle 6-m\angle 7$ और ΔPDA , $w=180^{\circ}-m\angle 8-m\angle 1$ इसका उपयोग करके कुल माप

 $\Delta {
m PDA}, \ w = 180^{\circ} - m \angle 8 - m \angle 1$ इसका उपयोग करके कुल माप $m \angle 1 + m \angle 2 + ... + m \angle 8$, ज्ञात कीजिए। क्या यह आप को परिणाम तक पहुँचाने में सहायता करता है? याद रखिए, $\angle x + \angle y + \angle z + \angle w = 360^{\circ}$ है।

4. ये सभी चतुर्भुज उत्तल (convex) चतुर्भुज थे। यदि चतुर्भुज उत्तल नहीं होते तो क्या होता? चतुर्भुज ABCD पर विचार कीजिए। इसे दो त्रिभुजों में बाँटिए और अंत:कोणों का योगफल ज्ञात कीजिए? (आकृति 3.7)

आकृति 3.7

र्ज्जि प्रश्नावली **3.1**

1. यहाँ पर कुछ आकृतियाँ दी गई हैं :

(iv)

प्रत्येक का वर्गीकरण निम्नलिखित आधार पर कीजिए:

- (a) साधारण वक्र
- (b) साधारण बंद वक्र
- (c) बहुभुज

- (d) उत्तल बहुभुज
- (e) अवतल बहुभुज
- 2. निम्नलिखित प्रत्येक में कितने विकर्ण हैं?
 - (a) एक उत्तल चतुर्भुज
- (b) एक समषड्भुज
- (c) एक त्रिभुज
- 3. उत्तल चतुर्भुज के कोणों की मापों का योगफल क्या है? यदि चतुर्भुज, उत्तल न हो तो क्या यह गुण लागू होगा? (एक चतुर्भुज बनाइए जो उत्तल न हो और प्रयास कीजिए।)

4. तालिका की जाँच कीजिए : (प्रत्येक आकृति को त्रिभुजों में बाँटिए और कोणों का योगफल ज्ञात कीजिए)

आकृति				
भुजा	3	4	5	6
कोणों का योगफल	180°	$2 \times 180^{\circ}$ = $(4-2) \times 180^{\circ}$	$3 \times 180^{\circ}$ = $(5-2) \times 180^{\circ}$	$4 \times 180^{\circ}$ = $(6-2) \times 180^{\circ}$

एक बहुभुज के कोणों के योग के बारे में आप क्या कह सकते हैं जिसकी भुजाओं की संख्या निम्नलिखित हो?

- (a) 7
- (b) 8
- (c) 10
- (d) n

5. सम बहुभुज क्या है?

एक सम बहुभुज का नाम बताइए जिसमें

- (i) 3 भुजाएँ
- (ii) 4 भुजाएँ
- (iii) 6 भुजाएँ हों।
- **6.** निम्नलिखित आकृतियों में x (कोण की माप) ज्ञात कीजिए :

(c)

7.

3.3 एक बहुभुज के बाह्य कोणों की मापों का योग

कई अवसरों पर बाह्य कोणों की जानकारी अंत: कोणों और भुजाओं की प्रकृति पर प्रकाश डालती है।

इन्हें कीजिए

एक चॉक के टुकड़े से फर्श पर एक बहुभुज बनाइए। (आकृति में, एक पंचभुज ABCDE दर्शाया गया है) (आकृति 3.8)। हम सभी कोणों की मापों का योग जानना चाहते हैं, अर्थात् $m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 + m \angle 5$ है। A से आरंभ कीजिए और \overline{AB} के अनुदिश चिलए। B पर पहुँचने के उपरांत, आपको कोण $m \angle 1$ पर घूमने की आवश्यकता है जिससे आप \overline{BC} के अनुदिश चल सकें। C पर पहुँचने के उपरांत, \overline{CD} के अनुदिश चलने के लिए आपको $m \angle 2$ पर घूमने की आवश्यकता है।

आप इसी तरीके से चलना जारी रखें जब तक आप A पर नहीं पहुँच जाते। वास्तव में, इस तरह से आपने एक पूरा चक्कर घूम लिया है।

इसलिए, $m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 + m\angle 5 = 360^\circ$ है।

एक बहुभुज की चाहे कितनी भी भुजाएँ हों उन सबके लिए यह सही है।

अत: किसी बहुभुज के बाह्य कोणों की मापों का योग 360° होता है।

उदाहरण 1: आकृति 3.9 में माप x ज्ञात कीजिए।

हल:
$$x + 90^{\circ} + 50^{\circ} + 110^{\circ} = 360^{\circ}$$
 (क्यों ?)

$$x + 250^{\circ} = 360^{\circ}$$
$$x = 110^{\circ}$$

प्रयास कीजिए

एक सम षड्भूज लीजिए (आकृति 3.10)।

- (i) बाह्य कोणों x, y, z, p, q तथा r की मापों का योग क्या है?
- (ii) क्या x = y = z = p = q = r है? क्यों?
- (iii) प्रत्येक की माप क्या है?
 - (i) बाह्य कोण
- (ii) अंत: कोण
- (iv) इस क्रियाकलाप को निम्नलिखित के लिए दोहराएँ
 - (i) एक सम अष्टभुज
- (ii) एक सम 20 भुज

उदाहरण 2: एक सम बहुभुज की भुजाओं की संख्या ज्ञात कीजिए जिसके प्रत्येक बाह्य कोण की माप 45° है।

हल: सभी बाह्य कोणों की कुल माप = 360° प्रत्येक बाह्य कोण की माप = 45° इसलिए, बाह्य कोणों की संख्या = $\frac{360}{45}$ = 8 अत: बहुभुज की 8 भुजाएँ हैं।

🕨 प्रश्नावली 3.2

1. निम्नलिखित आकृतियों में x का मान ज्ञात कीजिए :

- 2. एक सम बहुभूज के प्रत्येक बाह्य कोण की माप ज्ञात कीजिए जिसकी
 - (i) 9 भुजाएँ
- (ii) 15 भुजाएँ हों।
- 3. एक सम बहुभूज की कितनी भूजाएँ होंगी यदि एक बाह्य कोण की माप 24° हो?
- 4. एक सम बहुभुज की भुजाओं की संख्या ज्ञात कीजिए यदि इसका प्रत्येक अंत:कोण 165° का हो?
- 5. (a) क्या ऐसा सम बहुभुज संभव है जिसके प्रत्येक बाह्य कोण की माप 22° हो?
 - (b) क्या यह किसी सम बहुभुज का अंत:कोण हो सकता है? क्यों?
- 6. (a) किसी सम बहभूज में कम से कम कितने अंश का अंत:कोण संभव है? क्यों?
 - (b) किसी सम बहुभूज में अधिक से अधिक कितने अंश का बाह्य कोण संभव है?

3.4 चतुर्भुजों के प्रकार

एक चतुर्भुज की भुजाओं व कोणों की प्रकृति के आधार पर इसे विशेष नाम दिए जाते हैं।

3.4.1 समलंब

समलंब एक ऐसा चतुर्भुज होता है जिसमें भुजाओं का एक युग्म समांतर होता है।

उपरोक्त आकृतियों का अध्ययन कीजिए और अपने मित्रों के साथ चर्चा कीजिए कि क्यों इनमें से कुछ समलंब हैं और कुछ समलंब नहीं हैं। (संकेत: तीर का निशान समांतर रेखाओं को दर्शाता है।)

1. समान सर्वांगसम त्रिभुजों के कटे हुए भाग लीजिए जिनकी भुजाएँ 3 cm, 4 cm, 5 cm हैं। इन्हें व्यवस्थित कीजिए जैसा कि आकृति में दर्शाया गया है (आकृति 3.11)।

आपको एक समलंब प्राप्त होता है। (निरीक्षण कीजिए)

यहाँ पर कौन सी भुजाएँ समांतर हैं? क्या असमांतर भुजाएँ बराबर माप की होनी चाहिए? इन समान त्रिभुजों के समूह का उपयोग कर आप दो और समलंब प्राप्त कर सकते हैं। उनको ढूँढिए और उनकी आकृतियों की चर्चा कीजिए।

2. अपने तथा अपने मित्रों के ज्यामितीय बॉक्स से चार सेटस्क्वेयर लीजिए। इन्हें अलग-अलग संख्याओं में उपयोग कर साथ-साथ रखिए और अलग-अलग किस्म के समलंब प्राप्त कीजिए।

यदि समलंब की असमांतर भुजाएँ बराबर लंबाई की हों तो हम इसे समद्विबाहु समलंब कहते हैं। क्या आपने ऊपर किए गए अपने किसी निरीक्षण में कोई समद्विबाहु समलंब प्राप्त किया है?

3.4.2 पतंग

पतंग विशिष्ट प्रकार का एक चतुर्भुज है। प्रत्येक आकृति में एक जैसे चिह्न बराबर भुजाओं को दर्शाते हैं। उदाहरणार्थ AB = AD और BC = CD

इन आकृतियों का अध्ययन कीजिए और यह बताने का प्रयास कीजिए कि पतंग क्या है। निरीक्षण कीजिए कि :

- (i) एक पतंग में 4 भुजाएँ होती हैं (यह एक चतुर्भुज है)।
- (ii) इसमें अलग-अलग आसन्न भुजाओं के दो युग्म होते हैं जिनकी लंबाई बराबर होती है।

एक मोटे कागज़ की शीट लीजिए। इसे दोहरा मोडिए।

दो अलग-अलग लंबाई वाले रेखाखंडों को खींचिए जैसाकि आकृति 3.12 में दर्शाया गया है। इन रेखाखंडों के अनुदिश काटकर खोलिए। आपको एक पतंग की आकृति प्राप्त होती है (आकृति 3.13)।

आकृति 3.12

दिखाइए कि ΔABC एवं ΔADC सर्वांगसम हैं। इससे आप क्या निष्कर्ष निकालते हैं?

आकृति 3.13

क्या पतंग में कोई सममित रेखा है?

पतंग को दोनों विकर्णों पर मोडिए। सेट-स्क्वेयर के उपयोग से जाँचिए कि क्या वे एक दूसरे को समकोण पर काटते हैं। क्या विकर्ण बराबर लंबाई के हैं?

जाँचिए (पेपर को मोड़ने या मापने द्वारा) कि क्या विकर्ण एक दूसरे को समद्रिभाजित करते हैं?

पतंग के एक कोण को एक विकर्ण के अनुदिश विपरीत मोडने पर. बराबर माप वाले कोणों को जाँचिए।

विकर्ण पर पडी तह का निरीक्षण कीजिए; क्या यह दर्शाता है कि विकर्ण एक कोण समद्विभाजक होता है?

अपनी जानकारी को साथियों में बाँटिए और उनकी सूची बनाइए। इन परिणामों का सारांश अध्याय में कहीं पर आपके लिए दिया गया है।

3.4.3 समांतर चतुर्भुज

समांतर चतुर्भुज एक चतुर्भुज ही है। जैसा कि नाम संकेत करता है इसका संबंध समांतर रेखाओं से है।

इन आकृतियों का अध्ययन कीजिए और अपने शब्दों में बताने का प्रयास कीजिए कि समांतर चतुर्भुज क्या है। अपने निष्कर्ष अपने मित्रों के साथ बाँटिए।

दो अलग-अलग चौडाई वाली गत्ते की आयताकार पिट्टयाँ लीजिए (आकृति 3.14)।

अब दूसरी पट्टी को खींची गई रेखाओं के ऊपर तिरछी दिशा में रिखए और इसका उपयोग करते हुए दो और रेखाओं को खींचिए जैसा कि आकृति में दर्शाया गया है (आकृति 3.16)।

आकृति 3.17

इन चार रेखाओं से बनी बंद आकृति चतुर्भुज है (आकृति 3.17)।

यह समांतर रेखाओं के दो युग्मों से मिलकर बनी है। यह एक समांतर चतुर्भुज है। समांतर चतुर्भुज एक चतुर्भुज होता है जिसकी सम्मुख भुजाएँ समांतर होती हैं।

3.4.4 समांतर चतुर्भुज के अवयव

एक समांतर चतुर्भुज में चार भुजाएँ और चार कोण होते हैं। इनमें से कुछ बराबर माप के होते हैं। आपको इन अवयवों से संबंधित कुछ तथ्यों को याद रखने की आवश्यकता है।

एक समांतर चतुर्भुज ABCD दिया गया है (आकृति 3.18)।

 \overline{AB} और \overline{DC} , इसकी **सम्मुख भुजाएँ** हैं। \overline{AD} तथा \overline{BC} सम्मुख भुजाओं का दूसरा युग्म बनाते हैं।

 $\angle A$ और $\angle C$ **सम्मुख कोणों** का एक युग्म है और इसी प्रकार $\angle B$ तथा $\angle D$ सम्मुख कोणों का एक दूसरा युग्म है।

 \overline{AB} और \overline{BC} समांतर चतुर्भुज की आसन्न भुजाएँ हैं। अर्थात् जहाँ पर एक भुजा समाप्त होती है वहीं से दूसरी भुजा प्रारंभ होती है। क्या \overline{BC} और \overline{CD} भी आसन्न भुजाएँ हैं? दो और आसन्न भुजाओं के युग्मों को ढूँढने का प्रयास कीजिए।

∠A और ∠B समांतर चतुर्भुज के **आसन्न कोण** हैं। दोनों ही कोण उभयनिष्ठ भुजा के अंत बिंदुओं पर बने हैं। ∠B तथा ∠C भी आसन्न कोण हैं। समांतर चतुर्भुज के आसन्न कोणों के दूसरे युग्मों की पहचान कीजिए।

दो समान समांतर चतुर्भुजों के कटे हुए भाग ABCD तथा A'B'C'D' लीजिए (आकृति 3.19).

यहाँ पर भुजा \overline{AB} , भुजा $\overline{A'B'}$ के समान है परंतु इनके नाम अलग-अलग हैं। इसी प्रकार, दूसरी संगत भुजाएँ भी समान हैं।

 $\overline{A'B'}$ को \overline{DC} के ऊपर रखिए। क्या वे एक दूसरे को पूर्णतया ढकती हैं? अब आप \overline{AB} तथा \overline{DC} की लंबाई के बारे में क्या कह सकते हैं? इसी प्रकार \overline{AD} तथा \overline{BC} की लंबाई की जाँच कीजिए। आप क्या पाते हैं? आप \overline{AB} तथा \overline{DC} को माप कर इस परिणाम पर पहुँच सकते हैं।

गुण : समांतर चतुर्भुज की सम्मुख भुजाएँ बराबर माप की होती हैं।

प्रयास कीजिए

30° – 60° – 90° कोणों वाले दो समान सेट-स्क्वेयर लीजिए। अब इन्हें आपस में इस प्रकार मिलाकर रखिए जिससे एक समांतर चतुर्भुज बन जाए (आकृति 3.20)। क्या यह ऊपर बताए गए गुण की पुष्टि करने में आपकी सहायता करता है?

आप तर्क-वितर्क के द्वारा इस अवधारणा को प्रभावी बना सकते हैं। एक समांतर चतुर्भुज ABCD पर विचार कीजिए

(आकृति 3.21)। एक विकर्ण, \overline{AC} खींचिए।

हम देखते हैं कि $\angle 1 = \angle 2$ और $\angle 3 = \angle 4$ (क्यों?)

क्योंकि त्रिभुज ABC और ADC में $\angle 1 = \angle 2$, $\angle 3 = \angle 4$ और \overline{AC} उभयनिष्ठ है इसलिए, ASA सर्वांगसमता कसौटी द्वारा

 \triangle ABC \cong \triangle CDA (यहाँ ASA कसौटी कैसे प्रयोग हुई?)

अत: AB = DC और BC = AD.

उदाहरण 3: समांतर चतुर्भुज PQRS का परिमाप ज्ञात कीजिए (आकृति 3.22)

हल: समांतर चतुर्भुज में, सम्मुख भुजाएँ बराबर लंबाई की होती हैं। इसलिए, PQ = SR = 12 cm और QR = PS = 7 cm

अत: परिमाप =
$$PQ + QR + RS + SP$$

= $12 \text{ cm} + 7 \text{ cm} + 12 \text{ cm} + 7 \text{ cm} = 38 \text{ cm}$

12 cm

आकृति 3.22

3.4.5 समांतर चतुर्भुज के कोण

हमने समांतर चतुर्भुज की सम्मुख भुजाओं से संबंधित एक गुण का अध्ययन किया। हम कोणों के बारे में क्या कह सकते हैं?

इन्हें कीजिए

माना ABCD एक समांतर चतुर्भज है (आकृति 3.23)। ट्रेसिंग शीट पर इसकी प्रतिलिपि बनाइए। इस प्रतिलिपि को A'B'C'D' से प्रदर्शित कीजिए। A'B'C'D' को ABCD पर आच्छादित कीजिए। दोनों चतुर्भुजों को आपस में मिलाकर उस बिंदु पर पिन लगाइए जहाँ पर उनके विकर्ण प्रतिच्छेद करते हों. ट्रेसिंग शीट को 180° घुमाइए। समांतर चतुर्भुज अभी भी एक दूसरे को पूर्णतया ढक लेते हैं; परंतु अब आप देखते हैं कि A' पूर्ण रूप से C पर और C पूर्ण रूप से B' पर आ जाता है। इसी प्रकार B' बिंद D पर जाता है और विलोम रूप से भी सत्य है।

क्या यह कोण A तथा कोण C की मापों के बारे में आपको कुछ बताता है? कोण B तथा D की मापों के लिए जाँच कीजिए। अपने निष्कर्ष की चर्चा कीजिए।

गुण : समांतर चतुर्भुज के सम्मुख कोण बराबर माप के होते हैं।

प्रयास कीजिए

 $30^{\circ} - 60^{\circ} - 90^{\circ}$ कोणों वाले दो समान सेट-स्क्वेयर लेकर पहले की तरह ही एक समांतर चतुर्भुज बनाइए। क्या प्राप्त आकृति ऊपर बताए गए गुण की पुष्टि करने में आपकी सहायता करती है?

आप इस अवधारणा की तर्क-वितर्क के द्वारा पुष्टि कर सकते हैं।

यदि \overline{AC} और \overline{BD} समांतर चतुर्भज के विकर्ण हों (आकृति 3.24) तो आप देखेंगे कि

$$\angle 1 = \angle 2$$
 और $\angle 3 = \angle 4$ (क्यों?)

 \cong

 Δ ABC तथा Δ ADC का अलग-अलग अध्ययन करने पर आप देखेंगे कि (आकृति 3.25) ASA सर्वांगसम कसौटी के द्वारा

 Δ ABC

 Δ CDA (कैसे?)

आकृति 3.25

यह दर्शाता है कि ∠B और ∠D समान माप के हैं। इस प्रकार आप प्राप्त करते हैं $m\angle A = m\angle C$

उदाहरण 4: आकृति 3.26 में BEST एक समांतर चतुर्भुज है।

x, y तथा z के मान ज्ञात कीजिए।

हल: बिंदु S, बिंदु B के विपरीत है।

अत: $x = 100^\circ$ (सम्मुख कोण गुण)

 $y = 100^{\circ} (\angle x$ के संगत कोण की माप)

 $z = 80^\circ$ (क्योंकि $\angle y$ और $\angle z$ रैखिक युग्म बनाते हैं)

अब हम अपना ध्यान एक समांतर चतुर्भुज के आसन्न कोणों पर केंद्रित करते हैं।

समांतर चतुर्भुज ABCD में (आकृति 3.27) $\angle A$ और $\angle D$ संपूरक कोण हैं,

क्योंकि $\overline{DC} \,\square\, \overline{AB}$ और \overline{DA} , एक तिर्यक रेखा है। अतः दोनों कोण अंतः सम्मुख कोण हैं।

∠A और ∠B भी संपूरक कोण हैं। क्या आप बता सकते हैं 'क्यों'?

आकृति 3.28

आकृति 3.26

 $\overline{AD} \,\square\, \overline{BC}$ और \overline{BA} एक तिर्यक रेखा है जो $\angle A$ तथा $\angle B$ को अंतः सम्मुख कोण बनाती है। आकृति से दो और संपूरक कोणों के युग्मों की पहचान कीजिए।

गुण : समांतर चतुर्भुज के आसन्न कोण संपूरक होते हैं।

उदाहरण 5: समांतर चतुर्भुज RING में (आकृति 3.28) यदि $m\angle R = 70^\circ$ हो तो दूसरे सभी कोण

ज्ञात कीजिए।

हल : दिया है $m\angle R = 70^{\circ}$

तब $m\angle N = 70^{\circ}$

क्योंकि $\angle R$ तथा $\angle I$ संपूरक कोण हैं

 $m \angle I = 180^{\circ} - 70^{\circ} = 110^{\circ}$

और $m \angle G = 110^\circ$ क्योंकि $\angle G$, $\angle I$ का सम्मुख कोण है।

अतः $m\angle R = m\angle N = 70^{\circ}$ और $m\angle I = m\angle G = 110^{\circ}$

सोचिए, चर्चा कीजिए और लिखिए

 $m\angle R = m\angle N = 70^\circ$, दर्शाने के उपरांत क्या आप किसी अन्य विधि से $m\angle I$ और $m\angle G$ को ज्ञात कर सकते हैं?

3.4.6 समांतर चतुर्भुज के विकर्ण

साधारणतया समांतर चतुर्भुज के विकर्ण बराबर माप के नहीं होते। (क्या आपने अपने पूर्व क्रियाकलाप में इसे जाँचा?) यद्यपि समांतर चतुर्भुज के विकर्णों में एक रोचक गुण होता है।

समांतर चतुर्भुज, (मान लीजिए ABCD,) का एक कटा हुआ भाग लीजिए (आकृति 3.29)। माना इसके विकर्ण \overline{AC} तथा \overline{DB} एक दूसरे को 'O' पर प्रतिच्छेद करते हैं।

C को A पर रखकर एक तह (Fold) के द्वारा \overline{AC} का मध्य बिंदु ज्ञात कीजिए। क्या मध्य बिंदु O ही है? क्या यह दर्शाता है कि विकर्ण \overline{DB} , विकर्ण \overline{AC} को बिंदु 'O' पर समद्विभाजित करता है? अपने मित्रों के साथ इसकी चर्चा कीजिए। इस क्रियाकलाप को यह ज्ञात करने के लिए दोहराएँ कि DB का मध्य बिंदु कहाँ पर स्थित होगा।

गुण : समांतर चतुर्भुज के विकर्ण एक दूसरे को समद्विभाजित करते हैं। (अवश्य ही उनके प्रतिच्छेदी बिंदु पर।)

इस गुण का तर्क-वितर्क तथा पुष्टि करना मुश्किल नहीं है। आकृति 3.30 से. ASA सर्वांगसमता प्रतिबंध द्वारा बडी आसानी से देखा जा सकता है कि

 \triangle AOB \cong \triangle COD (यहाँ पर ASA प्रतिबंध का कैसे प्रयोग हुआ ?)

BO = DOAO = CO तथा अत:

उदाहरण 6: आकृति 3.31 में, HELP एक समांतर चतुर्भुज है। दिया है (लंबाई cm में है):

OE = 4 और HL, PE से 5 अधिक है। OH ज्ञात कीजिए।

हल: यदि

(क्यों?)

अत:

$$PE = 8$$
,

(क्यों?)

इसलिए

$$HL = 8 + 5 = 13$$

अत:

$$OH = \frac{1}{2} \times 13 = 6.5 \text{ cm}$$

प्रश्नावली 3.3

1. ABCD एक समांतर चतुर्भुज है। प्रत्येक कथन को परिभाषा या प्रयोग किए गए गुण द्वारा पूरा कीजिए:

- (ii) ∠ DCB =
- (iii) OC = (iv) $m \angle DAB + m \angle CDA =$
- **2.** निम्न समांतर चतुर्भुजों में अज्ञात x, y, z के मानों को ज्ञात कीजिए :

- 3. क्या एक चतुर्भुज ABCD समांतर चतुर्भुज हो सकता है यदि
 - (i) $\angle D + \angle B = 180^{\circ}$?
- (ii) AB = DC = 8 cm, AD = 4 cm और BC = 4.4 cm?
- (iii) ∠A = 70° और ∠C = 65°?
- 4. एक चतुर्भुज की कच्ची (Rough) आकृति खींचिए जो समांतर चतुर्भुज न हो परंतु जिसके दो सम्मुख कोणों की माप बराबर हो।
- 5. किसी समांतर चतुर्भुज के दो आसन्न कोणों का अनुपात 3 : 2 है। समांतर चतुर्भुज के सभी कोणों की माप ज्ञात कीजिए।

- 6. किसी समांतर चतुर्भुज के दो आसन्न कोणों की माप बराबर है। समांतर चतुर्भुज के सभी कोणों की माप ज्ञात कीजिए।
- 7. संलग्न आकृति HOPE एक समांतर चतुर्भुज है। x, y और z कोणों की माप ज्ञात कीजिए। ज्ञात करने में प्रयोग किए गए गुणों को बताइए।
- **8.** निम्न आकृतियाँ GUNS और RUNS समांतर चतुर्भुज हैं। x तथा y ज्ञात कीजिए (लंबाई cm में है):

 दी गई आकृति में RISK तथा CLUE दोनों समांतर चतुर्भुज हैं, x का मान ज्ञात कीजिए।

- 10. बताइए कैसे यह आकृति एक समलंब है। इसकी कौन सी दो भुजाएँ समांतर हैं? (आकृति 3.32)
- 11. आकृति 3.33 में $m\angle C$ ज्ञात कीजिए यदि $\overline{AB}\Box \overline{DC}$ है।

12. आकृति 3.34 में $\angle P$ तथा $\angle S$ की माप ज्ञात कीजिए यदि $\overline{SP} \square \overline{RQ}$ है। (यदि आप $m \angle R$, ज्ञात करते हैं, तो क्या $m \angle P$ को ज्ञात करने की एक से अधिक विधि है?)

3.5 कुछ विशिष्ट समांतर चतुर्भज

3.5.1 सम चतर्भज

पतंग (जो कि एक समांतर चतुर्भुज नहीं है) की विशेष स्थिति के रूप में हमें एक सम चतुर्भज (Rhombus) जो एक समांतर चतुर्भज भी है. प्राप्त होता है।

इन्हें कीजिए

आपके द्वारा कागज़ से काटकर पहले बनाई गई पतंग का स्मरण करें।

सम चतुर्भुज-काट (Rhombus-cut)

जब आप ABC के अनुदिश काटकर खोलते हैं तो आप एक पतंग प्राप्त करते हैं। यहाँ पर लंबाई AB और BC अलग-अलग थीं। यदि आप AB = BC खींचते हैं तो प्राप्त की गई पतंग एक सम चतुर्भुज कहलाता है।

ध्यान दीजिए कि सम चतुर्भुज की सभी भुजाएँ बराबर लंबाई की होती हैं परंतु पतंग की स्थिति में ऐसा नहीं है।

सम चतुर्भुज एक चतुर्भुज है जिसकी सभी भुजाएँ बराबर लंबाई की होती हैं। क्योंकि सम चतुर्भुज की सम्मुख भुजाएँ बराबर लंबाई की होती हैं, इसलिए यह एक समांतर चतुर्भज भी है। अत: एक सम चतुर्भज में एक समांतर चतुर्भज और एक पतंग के भी सभी गुण विद्यमान हैं। उनकी सूची तैयार करने का प्रयास कीजिए। तब आप अपनी सूची पुस्तक में दी गई जाँच सूची के साथ मिलाकर पुष्टि कर सकते हैं। एक सम चतुर्भुज का सबसे उपयोगी गुण उसके विकर्णों का है।

गुण: एक सम चतुर्भुज के विकर्ण परस्पर लंब समद्विभाजक होते हैं।

इन्हें कीजिए

सम चतुर्भुज की एक प्रतिलिपि लीजिए। पेपर को मोडकर जाँच कीजिए कि क्या प्रतिच्छेदी बिंदु प्रत्येक विकर्ण का मध्यबिंदु है। आप एक सेट-स्क्वेयर के किनारे का उपयोग करके जाँच सकते हैं कि वे एक दूसरे को समकोण पर प्रतिच्छेद करते हैं।

तर्क-पूर्ण चरणों का उपयोग कर यहाँ एक खाका दिया गया है जो इस गुण की पुष्टि करता है।

ABCD एक सम चतुर्भुज है (आकृति 3.35)। अतः यह एक समांतर चतुर्भुज भी है।

चूँकि विकर्ण एक दूसरे को समद्विभाजित करते हैं,

अत: OA = OC और OB = OD

हमें यह दर्शाना है कि $m\angle AOD = m\angle COD = 90^\circ$ है।

SAS सर्वांगसमता प्रतिबंध से यह देखा जा सकता है कि

$$\Delta AOD \cong \Delta COD$$

अत:

$$m \angle AOD = m \angle COD$$

क्योंकि ∠AOD और ∠COD रैखिक युग्म बनाते हैं,

$$m \angle AOD = m \angle COD = 90^{\circ}$$

RICE एक सम चतुर्भुज है (आकृति 3.36)। x, y, तथा z का मान ज्ञात कीजिए और अपने उत्तर की पृष्टि कीजिए।

3.5.2 एक आयत

आयत एक समांतर चतुर्भुज है जिसके सभी कोण समान माप के होते हैं (आकृति 3.37)।

इस परिभाषा का पूर्ण अर्थ क्या है? इसकी चर्चा अपने मित्रों के साथ कीजिए। यदि आयत समकोणिक हो तो प्रत्येक कोण की माप x° होगी।

आकृति 3.37

तब

$$4x^{\circ} = 360^{\circ}$$

इसलिए.

$$x^{\circ} = 90^{\circ}$$

अत: आयत का प्रत्येक कोण समकोण होता है।

अतः एक आयत समांतर चतुर्भुज होता है जिसमें प्रत्येक कोण समकोण होता है।

एक समांतर चतुर्भुज होने के कारण आयत की सम्मुख भुजाएँ बराबर लंबाई की होती हैं और विकर्ण एक दूसरे को समद्विभाजित करते हैं। समांतर चतुर्भुज में विकर्ण अलग-अलग लंबाई के हो सकते हैं (जाँच कीजिए) : परंतु आयत (विशेष स्थिति में) के विकर्ण बराबर माप (लंबाई) के होते हैं।

गुण: आयत के विकर्ण बराबर लंबाई के होते हैं।

आकृति 3.35

आकृति 3.36

इसकी पुष्टि आसानी से हो सकती है। यदि ABCD एक आयत है (आकृति 3.38) तो त्रिभुज ABC तथा ABD को अलग-अलग (आकृति 3.39 और आकृति 3.40) देखने पर, हमें प्राप्त होता है.

$$\Delta ABC \cong \Delta ABD$$

क्योंकि

$$AB = AB$$

(उभयनिष्ठ)

$$BC = AD$$

(क्यों?)

$$m \angle A = m \angle B = 90^{\circ}$$

(क्यों?)

SAS प्रतिबंध से सर्वांगसमता होती है।

अत:

$$AC = BD$$

और एक आयत में विकर्ण बराबर लंबाई के होने के अतिरिक्त एक दूसरे को समद्विभाजित करते हैं। (क्यों?)

उदाहरण 8: RENT एक आयत है (आकृति 3.41)। इसके विकर्ण एक दूसरे को 'O' पर प्रतिच्छेद करते हैं। x, का मान ज्ञात कीजिए यदि OR = 2x + 4 और OT = 3x + 1 हैं।

हुल: \overline{OT} , विकर्ण \overline{TE} का आधा है। \overline{OR} , विकर्ण \overline{RN} का आधा है। यहाँ पर विकर्ण बराबर लंबाई के हैं। (क्यों?) अत: उनके आधे भी आपस में बराबर हैं। इसलिए 3x + 1 = 2x + 4

अर्थात्

$$3x + 1 = 2x + 4$$

$$x = 3$$

3.5.3 वर्ग

वर्ग एक आयत होता है जिसकी भुजाएँ बराबर होती हैं। इसका मतलब यह है कि एक वर्ग में एक आयत के सभी गुण होने के साथ-साथ एक अतिरिक्त गुण भी होता है कि इसकी भुजाएँ बराबर लंबाई की होती हैं। वर्ग के विकर्ण, आयत के विकर्णों की तरह ही, बराबर लंबाई के होते हैं। एक आयत में विकर्णों का एक दूसरे पर लंब होना आवश्यक नहीं होता है (जाँचिए)। किसी वर्ग में विकर्ण

- (i) एक दूसरे को समद्विभाजित करते हैं (वर्ग एक समांतर चतुर्भुज है)।
- (ii) बराबर लंबाई के होते हैं। (वर्ग एक आयत है।) और
- (iii) एक दूसरे को समकोण पर समद्विभाजित करते हैं। इस प्रकार, हमें निम्नलिखित गुणधर्म प्राप्त होता है। गुण: वर्ग के विकर्ण एक दूसरे को समकोण पर समद्विभाजित करते हैं।

BELT एक वर्ग है जिसमें. BE = EL = LT = TB

 \angle B, \angle E, \angle L, \angle T तथा समकोण हैं।

BL = ET और $\overline{BL} \perp \overline{ET}$

OB = OL और OE = OT

एक वर्गाकार शीट, माना PQRS लीजिए (आकृति 3.42)। दोनों विकर्णों के अनुदिश तह (fold) लगाइए। क्या उनके मध्य बिंदु समान ही हैं।

सेट-स्क्वेयर का उपयोग करके जाँच कीजिए, क्या 'O' पर बना कोण 90° का है। यह ऊपर बताए गए गुणधर्म को सिद्ध करता है।

तर्क-वितर्क की सहायता से हम इसकी पुष्टि कर सकते हैं। ABCD एक वर्ग है जिसके विकर्ण एक दूसरे को 'O' पर प्रतिच्छेद करते हैं (आकृति 3.43)।

(क्योंकि वर्ग एक समांतर चतुर्भुज है) OA = OCSSS सर्वांगसमता प्रतिबंध के अनसार

 $\Delta \text{ AOD} \cong \Delta \text{ COD} \quad (कैसे?)$

 $m\angle AOD = m\angle COD$

ये कोण रैखिक युग्म बनाते हैं। अत: प्रत्येक कोण समकोण है।

प्रश्नावली 3.4

- 1. बताइए. कथन सत्य है या असत्य :
 - (a) सभी आयत वर्ग होते हैं
 - (b) सभी सम चतुर्भुज समांतर चतुर्भुज होते हैं
 - (c) सभी वर्ग सम चतुर्भुज और आयत भी होते हैं
 - (d) सभी वर्ग समांतर चतुर्भुज नहीं होते।
- 2. उन सभी चतुर्भुजों की पहचान कीजिए जिनमें
 - (a) चारों भुजाएँ बराबर लंबाई की हों
- 3. बताइए कैसे एक वर्ग
 - (i) एक चतुर्भज
- (ii) एक समांतर चतुर्भुज (iii) एक सम चतुर्भुज
- (iv) एक आयत है।
- 4. एक चतुर्भुज का नाम बताइए जिसके विकर्ण
 - (i) एक दूसरे को समद्विभाजित करते हैं
- (ii) एक दूसरे पर लंब समद्विभाजक हो

- (iii) बराबर हों।
- 5. बताइए एक आयत उत्तल चतुर्भुज कैसे है।
- 6. ABC एक समकोण त्रिभुज है और 'O' समकोण की सम्मुख भुजा का मध्य बिंदु है। बताइए कैसे 'O' बिंदु A, B तथा C से समान दुरी पर स्थित है। (बिंदुओं से चिह्नित अतिरिक्त भुजाएँ आपकी सहायता के लिए खींची गई हैं)

- (e) सभी पतंगें सम चतुर्भुज होती हैं
- (f) सभी सम चतुर्भुज पतंग होते हैं
- (g) सभी समांतर चतुर्भुज समलंब होते हैं
- (h) सभी वर्ग समलंब होते हैं।
- (b) चार समकोण हों

सोचिए, चर्चा कीजिए और लिखिए

- 1. एक राजिमस्त्री एक पत्थर की पट्टी बनाता है। वह इसे आयताकार बनाना चाहता है। कितने अलग-अलग तरीकों से उसे यह विश्वास हो सकता है कि यह आयताकार है।
- 2. वर्ग को आयत के रूप में परिभाषित किया गया था जिसकी सभी भुजाएँ बराबर होती हैं। क्या हम इसे सम चतुर्भुज के रूप में परिभाषित कर सकते हैं जिसके कोण बराबर माप के हों? इस विचार को स्पष्ट कीजिए।
- 3. क्या एक समलंब के सभी कोण बराबर माप के हो सकते हैं? क्या इसकी सभी भुजाएँ बराबर हो सकती हैं? वर्णन कीजिए।

हमने क्या चर्चा की? चतुर्भुज गुण समांतर चतुर्भुज: (1) सम्मुख भुजाएँ बराबर होती हैं। एक चतुर्भुज जिसमें (2) सम्मुख कोण बराबर होते हैं। सम्मुख भुजाओं का (3) विकर्ण एक दूसरे को समद्विभाजित करते हैं। प्रत्येक युग्म समांतर होता है। सम चतुर्भुज : (1) समांतर चतुर्भुज के सभी गुण होते हैं। एक चतुर्भुज जिसकी सभी भुजाएँ (2) विकर्ण परस्पर लंब होते हैं। बराबर माप की होती हैं। (1) समांतर चतुर्भुज के सभी गुण होते हैं। आयत: (2) प्रत्येक कोण समकोण होता हैं। एक समांतर चतुर्भुज जिसमें एक कोण (3) विकर्ण बराबर माप के होते हैं। समकोण होता है। समांतर चतुर्भुज, सम चतुर्भुज तथा आयत सभी वर्ग : के गुण होते हैं। एक आयत जिसकी सभी भुजाएँ बराबर होती हैं। पतंग : (1) विकर्ण एक दूसरे पर लंब होते हैं। एक चतुर्भुज जिसमें दो (2) एक विकर्ण दूसरे विकर्ण को समद्विभाजित आसन्न भुजाओं के युग्म करता है। बराबर होते हैं। (3) आकृति में, $m \angle B = m \angle D$ परंतु $m\angle A \neq m\angle C$

नोट