PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burgat

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 98/31700

(51) International Patent Classification 9:	lassification o :		(11) International Publication Number: WC	WO 98/31700	
C07H 21/02, C07K 1/68	C07H 21/02, C07K 4/00, 14/00, C12Q 1/68	A1	(43) International Publication Date: 23 July 19	23 July 1998 (23.07.98)	
(21) International Application Number:		708007	PCT/US98/00807 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,	BB, BG, BR,	
(22) International Filing Date:	ite: 14 January 1998 (14.01.98)	.01.98		KP, KR, KZ,	
(30) Priority Data:			MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent	I, SK, SL, TJ, ARIPO patent	
60/035,963	21 January 1997 (21.01.97)	S		Jurasian patent	
60/064,491	6 November 1997 (06.11.97)	ន		uropean patent R, IE, IT, LU,	
				CG, CI, CM,	
(71) Applicant: THE GEN	(71) Applicant: THE GENERAL HOSPITAL CORPORATION	ATTON			
C TO THE PARTY OF	1				

SS (71) Applicant: THE GENERAL HOSPITAL CORPORATION [US/US]; 55 Fruit Street, Boston, MA 02114 (US). 21 January 1997 (21.01.97) 6 November 1997 (06.11.97) (30) Priority Data: 60/035,963 60/064,491

(72) Inventors: SZOSTAK, Jack, W.; 308 Commonwealth Avenue, Boston, MA 02114 (US), ROBERTS, Richard, W.; Apartment #C, 514 Garfield Avenue, South Pasadena, CA 91030 (US), LIU, Rine, Apartment 102, 2456 Massachusetts Avenue, Cambridge, MA 02140 (US).

(74) Agent: ELBING, Karen, L.; Clark & Elbing LLP, 176 Federal Street, Boston, MA 02110-2214 (US).

Published
With international search report.
Which international search report.
Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: SELECTION OF PROTEINS USING RNA-PROTEIN FUSIONS

(57) Abstract

Described herein are methods and reagents for the selection of protein molecules that make use of RNA-protein fusions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

SI Slovenia	SK Slovakia				TG Togo																			
Lesotho	Lithuania	Laxenbourg	Latvia	Monaco	Republic of Moldova	Madagascar	The former Yugoslav	Republic of Macedonia	Mali	Mongolia	Mauritania	Malswi	Mexico	Niger	Netherlands	Norway	New Zealand	Poland	Portugal	Romania	Russian Federation	Sudan	Sweden	Singapore
87	Ľ	3	2	MC	W	MG	MK				MR													
Spain	Finland	France	Gabon	United Kingdom	Georgia	Ghana	Ouinea	Greece	Hungary	freland	Israel	locland	Italy	Japan	Kenya	Kyrgyzstan	Democratic People's	Republic of Korea	Republic of Korea	Kazakatan	Saint Lucia	Liechtenstein	Sri Lenks	Liberia
23	E	E	Ş	GB	GE	H	8	ğ	丑	2	⊒	S	۲	4	Ž	<u>K</u> G	¥		X	ΚZ	3	3	Ę	Ľ,
Albania	Amenia	Austria	Australia	Azerbaijan	Bosnia and Herzegovina	Barbados	Belgium	Burkina Paso	Bulgaria	Benin	Brazil	Belarus	Canada	Central African Republic	Congo	Switzerland	Côte d'Ivoire	Cameroon	China	Cube	Czech Republic	Сеталу	Denmark	Estonia
VI,	_	Υ				88	æ				Ħ										Z,	30	DK	EE

SELECTION OF PROTEINS

USING RNA-PROTEIN FUSIONS

Background of the Invention

This invention relates to protein selection methods.

F32 GM17776-01 and F32 GM17776-02. The government has certain rights in the The invention was made with government support under grant

2

based on their functions. For example, experiments of Ellington and Szostak (Nature (1990); and J. Mol. Biol 222:739 (1991)) have demonstrated that very rare (i.e., less 346:818 (1990); and Nature 355:850 (1992)) and Tuerk and Gold (Science 249:505 Methods currently exist for the isolation of RNA and DNA molecules

- candidate pools may be screened (> 10^{13}), (ii) host viability and in vivo conditions are complex pools of molecules by repeated rounds of selection and amplification. These not concerns, and (iii) selections may be carried out even if an in vivo genetic screen than 1 in 1013) nucleic acid molecules with desired properties may be isolated out of methods offer advantages over traditional genetic selections in that (i) very large 12
- novel RNA and DNA sequences with very specific protein binding functions (see, for example, Tucrk and Gold, Science 249:505 (1990); Irvine et al., J. Mol. Biol 222:739 250:1104 (1990); Pollock and Treisman, Nuc. Acids Res. 18:6197 (1990); Thicsen does not exist. The power of in vitro selection has been demonstrated in defining (1991); Oliphant et al., Mol. Cell Biol. 9:2944 (1989); Blackwell et al., Science 2
- functions (Green et al., Nature 347:406 (1990); Robertson and Joyce, Nature 344:467 and Bach, Nuc. Acids Res. 18:3203 (1990); Bartel et al., Cell 57:529 (1991); Stormo and Yoshioka, Proc. Natl. Acad. Sci. USA 88:5699 (1991); and Bock et al., Nature 355:564 (1992)), small molecule binding functions (Ellington and Szostak, Nature (1990); Beaudry and Joyce, Science 257:635 (1992); Bartel and Szostak, Science 346:818 (1990); Ellington and Szostak, Nature 355:850 (1992)), and catalytic 25

30

· WO 98/31700

PCT/US98/00807

Szostak, Nature 375:611-614 (1995); Chapman and Szostak, Chemistry and Biology. 2:325-333 (1995); and Lohse and Szostak, Nature 381:442-444 (1996)). A similar scheme for the selection and amplification of proteins has not been demonstrated. 261:1411 (1993); Lorsch and Szostak, Nature 371:31-36 (1994); Cuenoud and

Summary of the Invention

selection and in vitto evolution to be applied to proteins. The invention facilitates the problem of recovering and amplifying the protein sequence information by covalently The purpose of the present invention is to allow the principles of in vitro completely random amino acid sequences. In addition, the invention solves the isolation of proteins with desired properties from large pools of partially or

attaching the mRNA coding sequence to the protein molecule. 10

transcription/ translation protocol that generates protein covalently linked to the 3' end of its own mRNA, i.e., an RNA-protein fusion. This is accomplished by synthesis In general, the inventive method consists of an in vitro or in situ

- translation. In one preferred design, a DNA sequence is included between the end of attached to its 3' end. One preferred peptide acceptor is puromycin, a nucleoside the message and the peptide acceptor which is designed to cause the ribosome to and in vitro or in situ translation of an mRNA molecule with a peptide acceptor analog that adds to the C-terminus of a growing peptide chain and terminates 15
- pause at the end of the open reading frame, providing additional time for the peptide acceptor (for example, puromycin) to accept the nascent peptide chain before hydrolysis of the peptidyl-tRNA linkage. 20

amplification techniques such as 3SR or TSA). The amplified nucleic acid may then be transcribed, modified, and in vitro or in situ translated to generate mRNA-protein fusions for the next round of selection. The ability to carry out multiple rounds of If desired, the resulting RNA-protein fusion allows repeated rounds of amplification as well as any other amplification technique, including RNA-based selection and amplification because the protein sequence information may be recovered by reverse transcription and amplification (for example, by PCR

molecules, e.g., one desired molecule out of a pool of 1015 members. This in turn allows the isolation of new or improved proteins which specifically recognize selection and amplification enables the enrichment and isolation of very rare virtually any target or which catalyze desired chemical reactions. Accordingly, in a first aspect, the invention features a method for selection sequence; (b) in vitro or in situ translating the candidate protein coding sequences to RNA molecules, each of which includes a translation initiation sequence and a start of a desired protein, involving the steps of: (a) providing a population of candidate produce a population of candidate RNA-protein fusions; and (c) selecting a desired codon operably linked to a candidate protein coding sequence and each of which is operably linked to a peptide acceptor at the 3' end of the candidate protein coding RNA-protein fusion, thereby selecting the desired protein.

2

In a related aspect, the invention features a method for selection of a DNA the candidate protein coding sequence; (b) in vitro or in situ translating the candidate protein coding sequences to produce a population of candidate RNA-protein fusions; sequence and each of which is operably linked to a peptide acceptor at the 3' end of initiation sequence and a start codon operably linked to a candidate protein coding molecule which encodes a desired protein, involving the steps of: (a) providing a population of candidate RNA molecules, each of which includes a translation

15

In another related aspect, the invention features a method for selection of a protein having an altered function relative to a reference protein, involving the steps of: (a) producing a population of candidate RNA molecules from a population of

(c) selecting a desired RNA-protein fusion; and (d) generating from the RNA portion

20

of the fusion a DNA molecule which encodes the desired protein.

molecules each comprising a translation initiation sequence and a start codon operably DNA templates, the candidate DNA templates each having a candidate protein coding linked to the candidate protein coding sequence and each being operably linked to a peptide acceptor at the 3' end; (b) in vitro or in situ translating the candidate protein sequence which differs from the reference protein coding sequence, the RNA 25

WO 98/31700

•

PCT/US98/00807

coding sequences to produce a population of candidate RNA-protein fusions; and (c) selecting an RNA-protein fusion having an altered function, thereby selecting the protein having the altered function.

reference protein, involving the steps of: (a) producing a population of candidate RNA In yet another related aspect, the invention features a method for selection reference protein coding sequence, the RNA molecules each comprising a translation of a DNA molecule which encodes a protein having an altered function relative to a initiation sequence and a start codon operably linked to the candidate protein coding templates each having a candidate protein coding sequence which differs from the molecules from a population of candidate DNA templates, the candidate DNA 2

population of RNA-protein fusions; (c) selecting an RNA-protein fusion having an sequence and each being operably linked to a peptide acceptor at the 3' end; (b) in altered function; and (d) generating from the RNA portion of the fusion a DNA vitro or in situ translating the candidate protein coding sequences to produce a molecule which encodes the protein having the altered function.

15

In yet another related aspect, the invention features a method for selection sequence; (b) in vitro or in situ translating the candidate protein coding sequences to RNA molecules, each of which includes a translation initiation sequence and a start produce a population of candidate RNA-protein fusions; and (c) selecting a desired codon operably linked to a candidate protein coding sequence and each of which is operably linked to a peptide acceptor at the 3' end of the candidate protein coding of a desired RNA, involving the steps of: (a) providing a population of candidate RNA-protein fusion, thereby selecting the desired RNA.

20

or further includes a DNA or DNA analog sequence covalently bonded to the 3' end of puromycin; each of the candidate RNA molecules further includes a pause sequence preferably, at least 1014 different RNA molecules; the in vitto translation reaction is In preferred embodiments of the above methods, the peptide acceptor is preferably, at least 1010, more preferably, at least 1011, 1012, or 1013, and, most the RNA; the population of candidate RNA molecules includes at least 109,

25

carried out in a lysate prepared from a eukaryotic cell or portion thereof (and is, for

Ϋ́

example, carried out in a reticulocyte lysate or wheat germ lysate); the in vitro translation reaction is carried out in an extract prepared from a prokaryotic cell (for example, E. coli) or portion thereof; the selection step involves binding of the desired protein to an immobilized binding partner; the selection step involves assaying for a functional activity of the desired protein; the DNA molecule is amplified; the method further involves repeating the steps of the above selection methods; the method

functional activity of the desired protein, the DNA molecule is amplified; the method further involves repeating the steps of the above selection methods; the method further involves transcribing an RNA molecule from the DNA molecule and repeating steps (a) through (d); following the in xito translating step, the method further involves an incubation step carried out in the presence of 50-100 mM Mg²⁺; and the RNA-protein fusion further includes a nucleic acid or nucleic acid analog sequence positioned proximal to the peptide acceptor which increases flexibility.

In other related aspects, the invention features an RNA-protein fusion selected by any of the methods of the invention; a ribonucleic acid covalently bonded though an amide bond to an amino acid sequence, the amino acid sequence being encoded by the ribonucleic acid; and a ribonucleic acid which includes a translation initiation sequence and a start codon operably linked to a candidate protein coding sequence, the ribonucleic acid being operably linked to a peptide acceptor (for example, puromycin) at the 3' end of the candidate protein coding sequence.

15

In a second aspect, the invention features a method for selection of a desired protein or desired RNA through enrichment of a sequence pool. This method involves the steps of: (a) providing a population of candidate RNA molecules, each of which includes a translation initiation sequence and a start codon operably linked to a to a candidate protein coding sequence and each of which is operably linked to a peptide acceptor at the 3' end of the candidate protein coding sequence; (b) in vitto or

20

candidate RNA-protein fusions; (c) contacting the population of RNA-protein fusions with a binding partner specific for either the RNA portion or the protein portion of the RNA-protein fusion under conditions which substantially separate the binding partner-RNA-protein fusion complexes from unbound members of the population; (d) releasing the bound RNA-protein fusions from the complexes; and (e) contacting the

· WO 98/31700

PCT/US98/00807

population of RNA-protein fusions from step (d) with a binding partner specific for the protein portion of the desired RNA-protein fusion under conditions which substantially separate the binding partner-RNA-protein fusion complex from unbound members of said population, thereby selecting the desired protein and the desired

S

In preferred embodiments, the method further involves repeating steps (a) through (e). In addition, for these repeated steps, the same or different binding partners may be used, in any order, for selective enrichment of the desired RNA-protein fusion. In another preferred embodiment, step (d) involves the use of a

binding partner (for example, a monoclonal antibody) specific for the protein portion of the desired fusion. This step is preferably carried out following reverse transcription of the RNA portion of the fusion to generate a DNA which encodes the desired protein. If desired, this DNA may be isolated and/or PCR amplified. This enrichment technique may be used to select a desired protein or may be used to select a protein or may be used to select a protein.

In other preferred embodiments of the enrichment methods, the peptide acceptor is puromycin; each of the candidate RNA molecules further includes a pause sequence or further includes a DNA or DNA analog sequence covalently bonded to the 3' end of the RNA; the population of candidate RNA molecules includes at least

- 20 10°, preferably, at least 10¹°, more preferably, at least 10¹¹, 10¹², or 10¹³, and, most preferably, at least 10¹⁴ different RNA molecules; the in <u>vitro</u> translation reaction is carried out in a lysate prepared from a eukaryotic cell or portion thereof (and is, for example, carried out in a reticulocyte lysate or wheat germ lysate); the in <u>vitro</u> translation reaction is carried out in an extract prepared from a prokaryotic cell or
- portion thereof (for example, <u>E. coli</u>); the DNA molecule is amplified; at least one of the binding partners is immobilized on a solid support; following the in <u>vitro</u> translating step, the method further involves an incubation step carried out in the presence of 50-100 mM Mg²⁺; and the RNA-protein fusion further includes a nucleic acid or nucleic acid analog sequence positioned proximal to the peptide acceptor
- 30 which increases flexibility.

In a related aspect, the invention features kits for carrying out any of the selection methods described herein. In a third and final aspect, the invention features a microchip that includes an array of immobilized single-stranded nucleic acids, the nucleic acids being

hybridized to RNA-protein fusions. Preferably, the protein component of the RNAprotein fusion is encoded by the RNA. S

example, more than one RNA, DNA, or RNA-protein fusion molecule). Because the As used herein, by a "population" is meant more than one molecule (for methods of the invention facilitate selections which begin, if desired, with large

numbers of candidate molecules, a "population" according to the invention preferably means more than 10° molecules, more preferably, more than 1011, 1012, or 1013 molecules, and, most preferably, more than 1013 molecules.

10

fold enrichment of a desired molecule relative to undesired molecules in a population fold, preferably, a 30-fold, more preferably, a 100-fold, and, most preferably, a 1000-By "selecting" is meant substantially partitioning a molecule from other molecules in a population. As used herein, a "selecting" step provides at least a 2following the selection step. As indicated herein, a selection step may be repeated any number of times, and different types of selection steps may be combined in a given approach. 15

By a "protein" is meant any two or more naturally occurring or modified amino acids joined by one or more peptide bonds. "Protein" and "peptide" are used interchangeably herein.

2

naturally occurring or modified ribonucleotides. One example of a modified RNA By "RNA" is meant a sequence of two or more covalently bonded, included within this term is phosphorothioate RNA.

25

By a "translation initiation sequence" is meant any sequence which is capable of providing a functional ribosome entry site. In bacterial systems, this region is sometimes referred to as a Shine-Dalgamo sequence. By a "start codon" is meant three bases which signal the beginning of a

· WO 98/31700

PCT/US98/00807

protein coding sequence. Generally, these bases are AUG (or ATG); however, any other base triplet capable of being utilized in this manner may be substituted.

bond or indirectly through another covalently bonded sequence (for example, DNA acceptor is joined to a "protein coding sequence" either directly through a covalent By "covalently bonded" to a peptide acceptor is meant that the peptide corresponding to a pause site). S

By a "peptide acceptor" is meant any molecule capable of being added to the C-terminus of a growing protein chain by the catalytic activity of the ribosomal peptidyl transferase function. Typically, such molecules contain (i) a nucleotide or

- Ellman et al., Meth. Enzymol. 202:301, 1991), and (iii) a linkage between the two (for acid-like moiety (for example, any of the 20 D- or L-amino acids or any amino acid analog thereof (for example, O-methyl tyrosine or any of the analogs described by methylation at the N-6 amino position is acceptable)), (ii) an amino acid or amino nucleotide-like moiety (for example, adenosine or an adenosine analog (di-13 10
 - example, an ester, amide, or ketone linkage at the 3' position or, less preferably, the 2' position); preferably, this linkage does not significantly perturb the pucker of the ring nucleophile, which may be, without limitation, an amino group, a hydroxyl group, or from the natural ribonucleotide conformation. Peptide acceptors may also possess a mimetics, amino acid mimetics, or mimetics of the combined nucleotide-amino acid a sulfhydryl group. In addition, peptide acceptors may be composed of nucleotide 20

By a peptide acceptor being positioned "at the 3' end" of a protein coding sequence is meant that the peptide acceptor molecule is positioned after the final codon of that protein coding sequence. This term includes, without limitation, a

- coding sequence as well as one which is separated from the final codon by intervening site). This term also includes constructs in which coding or non-coding sequences coding or non-coding sequence (for example, a sequence corresponding to a pause peptide acceptor molecule that is positioned precisely at the 3' end of the protein follow (that is, are 3' to) the peptide acceptor molecule. In addition, this term 25
- encompasses, without limitation, a peptide acceptor molecule that is covalently 3

bonded (either directly or indirectly through intervening nucleic acid sequence) to the protein coding sequence, as well as one that is joined to the protein coding sequence nucleic acid sequence that binds at or near the 3' end of the protein coding sequence by some non-covalent means, for example, through hybridization using a second and that itself is bound to a peptide acceptor molecule.

By an "altered function" is meant any qualitative or quantitative change in the function of a molecule.

By a "pause sequence" is meant a nucleic acid sequence which causes a ribosome to slow or stop its rate of translation.

2

antigen/antibody pairs, protein/inhibitor pairs, receptor/ligand pairs (for example cell By "binding partner," as used herein, is meant any molecule which has a specific, covalent or non-covalent affinity for a portion of a desired RNA-protein surface receptor/ligand pairs, such as hormone receptor/peptide hormone pairs), fusion. Examples of binding partners include, without limitation, members of

enzyme/substrate pairs (for example, kinase/substrate pairs), lectin/carbohydrate pairs, covalent or non-covalent bonds (for example, disulfide bonds) with any portion of an binding site pairs, RNA/protein pairs, and nucleic acid duplexes, heteroduplexes, or ligated strands, as well as any molecule which is capable of forming one or more oligomeric or heterooligomeric protein aggregates, DNA binding protein/DNA RNA-protein fusion. Binding partners include, without limitation, any of the 20 15

sepharose), microchip (for example, silicon, silicon-glass, or gold chip), or membrane By a "solid support" is meant, without limitation, any column (or column material), bead, test tube, microtiter dish, solid particle (for example, agarose or

"selection motifs" presented in Figure 2.

may be bound, either directly or indirectly (for example, through other binding partner intermediates such as other antibodies or Protein A), or in which an affinity complex (for example, the membrane of a liposome or vesicle) to which an affinity complex may be embedded (for example, through a receptor or channel). 25

advantages. To begin with, it is the first example of this type of scheme for the The presently claimed invention provides a number of significant 30

. WO 98/31700

PCT/US98/00807

created by the need to recover nucleotide sequences corresponding to desired, isolated methods that allowed the isolation of proteins from partially or fully randomized selection and amplification of proteins. This technique overcomes the impasse proteins (since only nucleic acids can be replicated). In particular, many prior

- Engng. News 68:26 (1990)), phage display (Smith, Science 228:1315 (1985); Parmley antibody technology (Milstein, Sci. Amer. 243:66 (1980); and Schultz et al., J. Chem. peptide-lac repressor fusions (Cull et al., Proc. Natl. Acad. Sci. USA 89:1865 (1992)), and Smith, Gene 73:305 (1988); and McCafferty et al., Nature 348:552 (1990)), pools did so through an in vivo step. Methods of this sort include monoclonal
- and classical genetic selections. Unlike the present technique, each of these methods information of the protein is retained and can be recovered in readable, nucleic acid relies on a topological link between the protein and the nucleic acid so that the 9

Mattheakis et al., Meth. Enzymol. 267:195 (1996); and Hanes and Pluckthun, Proc. Natl. Acad. Sci. USA 94:4937 (1997)), a technique in which selection is for some translation method (Tuerk and Gold, Science 249:505 (1990); Irvine et al., J. Mol. In addition, the present invention provides advantages over the stalled Biol 222:739 (1991); Korman et al., Proc. Natl. Acad. Sci. USA 79:1844-1848 (1982); Mattheakis et al., Proc. Natl. Acad. Sci. USA 91:9022-9026 (1994); 15

- mRNA. Unlike the stalled translation technique, the present method does not rely on property of a nascent protein chain that is still complexed with the ribosome and its maintaining the integrity of an mRNA: ribosome: nascent chain ternary complex, a complex that is very fragile and is therefore limiting with respect to the types of selections which are technically feasible. 20
- approach proposed by Brenner and Lerner (Proc. Natl. Acad. Sci. USA 89:5381-5383 The present method also provides advantages over the branched synthesis synthesis approach, the present method does not require the regeneration of a peptide (1992)), in which DNA-peptide fusions are generated, and genetic information is from the DNA portion of a fusion (which, in the branched synthesis approach, is theoretically recovered following one round of selection. Unlike the branched 30 25

÷

candidate molecules. In addition, unlike the branched synthesis technique, which is generally accomplished by individual rounds of chemical synthesis). Accordingly, generally limited to the selection of fairly short sequences, the present method is the present method allows for repeated rounds of selection using populations of applicable to the selection of protein molecules of considerable length.

technique can make use of very large and complex libraries of candidate sequences. typically limited to relatively small libraries of somewhat limited complexity. This In yet another advantage, the present selection and directed evolution In contrast, existing protein selection methods which rely on an in vivo step are

2

approaches, and phage display methods, maximum complexities generally fall orders of magnitude below 1013 members. Large library size also provides an advantage for considering, for example, that 1013 possible sequences exist for a peptide of only 10 directed evolution applications, in that sequence space can be explored to a greater advantage is particularly important when selecting functional protein sequences amino acids in length. In classical genetic techniques, lac repressor fusion depth around any given starting sequence. 15

selection step is context-independent. In many other selection schemes, the context in example, on the surface of a phage particle). Alternatively, the expression of a protein viability or infectivity, or lac repressor binding. These problems can result in the loss of functional molecules or in limitations on the nature of the selection procedures that may actually interfere with one or more critical steps in a selection cycle, e.g., phage which, for example, an expressed protein is present can profoundly influence the properly expressed in a particular system or may not be properly displayed (for The present technique also differs from prior approaches in that the nature of the library generated. For example, an expressed protein may not be

20

25

antibody selection), there exists little or no control over the nature of the starting pool. over the repertoire of proteins that may be tested. In certain techniques (for example, Finally, the present method is advantageous because it provides control In yet other techniques (for example, lac fusions and phage display), the candidate

8

· WO 98/31700

PCT/US98/00807

screening. In addition, the candidate pool size has the potential to be as high as RNA fusion constructs provide control over the nature of the candidate pools available for pool must be expressed in the context of a fusion protein. In contrast, RNA-protein or DNA pools ($\sim 10^{15}$ members), limited only by the size of the in vitro translation

reaction performed. And the makeup of the candidate pool depends completely on context of a desired fusion protein, and most if not all possible sequences may be experimental design; random regions may be screened in isolation or within the expressed in candidate pools of RNA-protein fusions. Other features and advantages of the invention will be apparent from the

following detailed description, and from the claims.

2

Detailed Description

The drawings will first briefly be described.

Brief Description of the Drawings

production of RNA-protein fusions. Figure 1A illustrates a sample DNA construct for generation of an RNA portion of a fusion. Figure 1B illustrates the generation of an FIGURES 1A-1C are schematic representations of steps involved in the RNA/puromycin conjugate. And Figure 1C illustrates the generation of an RNAprotein fusion. 15

FIGURE 2 is a schematic representation of a generalized selection protocol according to the invention. 2

of protective groups to the reactive functional groups on puromycin (5'-OH and NH2); minimal translation templates containing 3' puromycin. Step (A) shows the addition FIGURE 3 is a schematic representation of a synthesis protocol for

Approach, The Practical Approach Series (IRL Press, Oxford, 1984)). In step (B), a controlled pore glass (CPG) through the 2'OH group using the standard protocol for attachment of DNA through its 3'OH (Gait, Oligonucleotide Synthesis, A Practical as modified, these groups are suitably protected for use in phosphoramidite based oligonucleotide synthesis. The protected puromycin was attached to aminohexyl 25

bases of RNA at the 5' end followed by 29 bases of DNA attached to the 3' puromycin minimal translation template (termed "43-P"), which contained 43 nucleotides, was deprotected using NH4OH and TBAF, and gel purified. The template contained 13 synthesized using standard RNA and DNA chemistry (Millipore, Bedford, MA),

- 10:2971-2996 (1982); Shine and Dalgarno, Proc. Natl. Acad. Sci. USA 71:1342-1346 (1974); and Steitz and Jakes, Proc. Natl. Acad. Sci. USA 72:4734-4738 (1975)), (ii) a at its 5' OH. The RNA sequence contained (i) a Shine-Dalgarno consensus sequence complementary to five bases of 16S rRNA (Stormo et al., Nucleic Acids Research five base spacer, and (iii) a single AUG start codon. The DNA sequence was dA27dCdCP, where "P" is puromycin.
- FIGURE 4 is a schematic representation of a preferred method for the preparation of protected CPG-linked puromycin.

2

FIGURE 5 is a schematic representation showing possible modes of

- methionine incorporation into a template of the invention. As shown in reaction (A), Fmet tRNA binds to the P site and is base paired to the template. The puromycin at the 3' end of the template enters the A site in an intramolecular fashion and forms an the template binds the ribosome, allowing formation of the 70S initiation complex. amide linkage to N-formyl methionine via the peptidyl transferase center, thereby deacylating the tRNA. Phenol/chloroform extraction of the reaction yields the 2
- As before, the minimal template stimulates formation of the 70S ribosome containing template with methionine covalently attached. Shown in reaction (B) is an undesired intermolecular reaction of the template with puromycin containing oligonucleotides. fract tRNA bound to the P site. This is followed by entry of a second template in trans to give a covalently attached methionine. 20
- RNA sequence of 43-P (also termed "Met template") to produce the DNA-puromycin methionine (35 met) into translation templates. Figure 6A demonstrates magnesium product; the change in mobility shown in this figure corresponds to a loss of the 5' (Mg^{2+}) dependence of the reaction. Figure 6B demonstrates base stability of the FIGURES 6A-6H are photographs showing the incorporation of 35 portion, termed 30-P. The retention of the label following base treatment was 25

ಜ

· WO 98/31700

PCT/US98/00807

formation in the presence of peptidyl transferase inhibitors. Figure 6D demonstrates consistent with the formation of a peptide bond between 35S methionine and the 3' the dependence of 35S methionine incorporation on a template coding sequence. puromycin of the template. Figure 6C demonstrates the inhibition of product

- incorporation. Figure 6F illustrates cis versus trans product formation using templates templates 43-P and 13-P. Figure 6H illustrates cis versus trans product formation 43-P and 25-P. Figure 6G illustrates cis versus trans product formation using Figure 6E demonstrates DNA template length dependence of 35S methionine using templates 43-P and 30-P in a reticulocyte lysate system.
- sequence contains the c-myc monoclonal antibody epitope tag EQKLISEEDL (SEQ peptide fusion formation and selection. Figure 7A shows LP77 ("ligated-product," "77" nucleotides long) (also termed, "short myc template") (SEQ ID NO: 1). This ID NO: 2) (Evan et al., Mol. Cell Biol. 5:3610-3616 (1985)) flanked by a 5' start FIGURES 7A-7C are schematic illustrations of constructs for testing 2
 - codon and a 31 linker. The 5' region contains a bacterial Shine-Dalgarno sequence Jakes, Proc. Natl. Acad. Sci. USA 72:4734-4738 (1975)) and spaced similarly to Shine-Dalgamo sequence complementary to five bases of 168 rRNA (Steitz and identical to that of 43-P. The coding sequence was optimized for translation in bacterial systems. In particular, the 5' UTRs of 43-P and LP77 contained a

- ribosomal protein sequences (Stormo et al, Nucleic Acids Res. 10:2971-2996 (1982)). myc template") (SEQ ID NO: 3). This sequence contains the code for generation of version of the TMV upstream sequence (designated "TE). This 5' UTR contained a Figure 7B shows LP154 (ligated product, 154 nucleotides long) (also termed "long the peptide used to isolate the c-myc antibody. The 5' end contains a truncated 20
- selection. The final seven amino acids from the original myc peptide were included in ACAAAUUAC direct repeats (Gallie et al., Nucl. Acids Res. 16:883 (1988)). Figure the template to serve as the 3' constant region required for PCR amplification of the 7C shows Pool #1 (SEQ ID NO: 4), an exemplary sequence to be used for peptide 22 nucleotide sequence derived from the TMV 5' UTR encompassing two 25
 - template. This sequence is known not to be part of the antibody binding epitope. 30

-15

FIGURE 8 is a photograph demonstrating the synthesis of RNA-protein fusions using templates 43-P, LP77, and LP154, and reticulocyte ("Retic") and wheat germ ("Wheat") translation systems. The left half of the figure illustrates ³³S methionine incorporation in each of the three templates. The right half of the figure

- illustrates the resulting products after RNase A treatment of each of the three templates to remove the RNA coding region; shown are ³⁵S methionine-labeled DNA-protein fusions. The DNA portion of each was identical to the oligo 30-P. Thus, differences in mobility were proportional to the length of the coding regions, consistent with the existence of proteins of different length in each case.
- protein fusion synthesized from LP154 and analyzed by denaturing polyacrylamide protein fusion synthesized from LP154 and analyzed by denaturing polyacrylamide gel electrophoresis. Lane 1 contains ³²P labeled 30-P. Lanes 2-4, 5-7, and 8-10 contain the ³³S labeled translation templates recovered from reticulocyte lysate reactions either without treatment, with RNase A treatment, or with RNase A and proteinase K treatment, respectively.

FIGURE 10 is a photograph showing the results of immunoprecipitation reactions using <u>in yito</u> translated 33 amino acid myc-epitope protein. Lanes 1 and 2 show the translation products of the myc epitope protein and β-globin templates, respectively. Lanes 3-5 show the results of immunoprecipitation of the myc-epitope peptide using a c-myc monoclonal antibody and PBS, DB, and PBSTDS wash buffers, respectively. Lanes 6-8 show the same immunoprecipitation reactions, but using the β-globin translation product.

20

FIGURE 11 is a photograph demonstrating immunoprecipitation of an RNA-protein fusion from an in vitro translation reaction. The picomoles of template used in the reaction are indicated. Lanes 1-4 show RNA124 (the RNA portion of fusion LP154), and lanes 5-7 show RNA-protein fusion LP154. After immunoprecipitation using a c-myc monoclonal antibody and protein G sepharose, the samples were treated with RNase A and T4 polymucleotide kinase, then loaded on a denaturing urea polyacrylamide gel to visualize the fusion. In lanes 1-4, with samples containing either no template or only the RNA portion of the long myc

25

30

· WO 98/31700

PCT/US98/00807

16

template (RNA124), no fusion was seen. In lanes 5-7, bands corresponding to the fusion were clearly visualized. The position of ¹²P labeled 30-P is indicated, and the amount of input template is indicated at the top of the figure.

FIGURE 12 is a graph showing a quantitation of fusion material obtained

- from an <u>in vito</u> translation reaction. The intensity of the fusion bands shown in lanes 5-7 of Figure 11 and the 30-P band (isolated in a parallel fashion on dT₂, not shown) were quantitated on phosphorimager plates and plotted as a function of input LP154 concentration. Recovered modified 30-P (left y axis) was linearly proportional to input template (x axis), whereas linker-peptide fusion (right y axis) was constant.
- 10 From this analysis, it was calculated that $\sim \! 10^{12}$ fusions were formed per ml of translation reaction sample.

FIGURE 13 is a schematic representation of thiopropyl sepharose and dT₂₅ agarose, and the ability of these substrates to interact with the RNA-protein fusions of the invention.

- fusions of the invention. Lane 1 contains ²²P labeled 30-P. Lanes 2 and 3 show
 LP154 isolated from translation reactions and treated with RNase A. In lane 2, LP154
 was isolated sequentially, using thiopropyl sepharose followed by dT₂₃ agarose. Lane
 3 shows isolation using only dT₂₃ agarose. The results indicated that the product
 - 20 contained a free thiol, likely the penultimate cysteine in the myc epitope coding sequence.

FIGURES 15A and 15B are photographs showing the formation of fusion products using β -globin templates as assayed by SDS-tricine-PAGE (polyacrylamide gel electrophoresis). Figure 15A shows incorporation of ^{15}S using either no template

(lane 1), a syn-β-globin template (lanes 2-4), or an LP-β-globin template (lanes 5-7). Figure 15B (lanes labeled as in Fig. 15A) shows ³⁵S-labeled material isolated by oligonucleotide affinity chromatography. No material was isolated in the absence of a 30-p tail (lanes 2-4).

FIGURES 16A-16C are diagrams and photographs illustrating enrichment of myc dsDNA versus pool dsDNA by in vitro selection. Figure 16A is a schematic

-17-

of the selection protocol. Four mixtures of the myc and pool templates were translated in vitro and isolated on dT₂₅ agarose followed by TP sepharose to purify the template fusions from unmodified templates. The mRNA-peptide fusions were then reverse transcribed to suppress any secondary or tertiary structure present in the

5 templates. Aliquots of each mixture were removed both before (Figure 16B) and after (Figure 16C) affinity selection, amplified by PCR in the presence of a labeled primer, and digested with a restriction enzyme that cleaved only the myc DNA. The input mixtures of templates were pure myc (lane 1), or a 1:20, 1:200, or 1:2000 myc;pool (lanes 2-4). The unselected material deviated from the input ratios due to preferential translation and reverse transcription of the myc template. The enrichment of the myc template during the selective step was calculated from the change in the pool:myc

FIGURE 17 is a photograph illustrating the translation of myc RNA templates. The following linkers were used: lanes 1-4, dA₂₇dCdCP; lanes 5-8,

ratio before and after selection.

15 dA₂₇CCCP; and lanes 9-12, dA₂,C₅C₅GAdCdCP. In each lane, the concentration of RNA template was 600 nM, and ²³S-Met was used for labeling. Reaction conditions were as follows: lanes 1, 5, and 9, 30°C for 1 hour; lanes 2, 6, and 10, 30°C for 2 hours; lane 3, 7, and 11, 30°C for 1 hour, -20°C for 16 hours, and lanes 4, 8, and 12, 30°C for 1 hour, -20°C for 16 hours with 50 mM Mg²⁺. In this Figure, "A" represents the peptide, and "B" represent mRNA-peptide fusion.

FIGURE 18 is a photograph illustrating the translation of myc RNA templates labeled with ^{32}P . The linker utilized was $dA_{21}C_9C_9G_4dAdCdCP$.

Translation was performed at 30°C for 90 minutes, and incubations were carried out at -20°C for 2 days without additional Mg^{2*}. The concentrations of mRNA templates were 400 nM (lane 3), 200 nM (lane 4), 100 nM (lane 5), and 100 nM (lane 6). Lane 1 shows mRNA-peptide fusion labeled with ³³S-Met. Lane 2 shows mRNA labeled

with ³³P. In lane 6, the reaction was carried out in the presence of 0.5 mM cap analog.

FIGURE 19 is a photograph illustrating the translation of myc RNA

template using lysate obtained from Ambion (lane 1), Novagen (lane 2), and
Amersham (lane 3). The linker utilized was dA₂₇dCdCP. The concentration of the

· WO 98/31700

PCT/US98/00807

200

template was 600 nM, and 15 S-Met was used for labeling. Translations were performed at 30°C for 1 hour, and incubations were carried out at -20°C overnight in the presence of 50 mM Mg $^{1+}$.

Described herein is a general method for the selection of proteins with desired functions using fusions in which these proteins are covalently linked to their own messenger RNAs. These RNA-protein fusions are synthesized by in vitto or in situ translation of mRNA pools containing a peptide acceptor attached to their 3' ends (Figure 1B). In one preferred embodiment, after readthrough of the open reading frame of the message, the ribosome pauses when it reaches the designed pause site,

and the acceptor moiety occupies the ribosomal A site and accepts the nascent peptide chain from the peptidyl-tRNA in the P site to generate the RNA-protein fusion (Figure 1C). The covalent link between the protein and the RNA (in the form of an amide bond between the 3' end of the mRNA and the C-terminus of the protein which it encodes) allows the genetic information in the protein to be recovered and amplified

15 (e.g., by PCR) following selection by reverse transcription of the RNA. Once the fusion is generated, selection or enrichment is carried out based on the properties of the mRNA-protein fusion, or, alternatively, reverse transcription may be carried out using the mRNA template while it is attached to the protein to avoid any effect of the single-stranded RNA on the selection. When the mRNA-protein construct is used,

both) provides the desired function.

In one preferred embodiment, puromycin (which resembles tyrosyl adenosine) acts as the acceptor to attach the growing peptide to its mRNA.

selected fusions may be tested to determine which moiety (the protein, the RNA, or

20

Puromycin is an antibiotic that acts by terminating peptide elongation. As a mimetic of aminoacyl-tRNA, it acts as a universal inhibitor of protein synthesis by binding the A site, accepting the growing peptide chain, and falling off the ribosome (at a Kd = 10⁻⁴ M) (Traut and Mooro, J. Mol. Biol. 10:63 (1964); Smith et al., J. Mol. Biol. 13:617 (1965)). One of the most attractive features of puromycin is the fact that it forms a stable amide bond to the growing peptide chain, thus allowing for more stable

6-

fusions than potential acceptors that form unstable ester linkages. In particular, the peptidyl-puromycin molecule contains a stable amide linkage between the peptide and the O-methyl tyrosine portion of the puromycin. The O-methyl tyrosine is in turn linked by a stable amide bond to the 3'-amino group of the modified adenosine

portion of puromycin.

Other possible choices for acceptors include tRNA-like structures at the 3' end of the mRNA, as well as other compounds that act in a manner similar to puromycin. Such compounds include, without limitation, any compound which possesses an amino acid linked to an adenine or an adenine-like compound, such as

10 the amino acid nucleotides, phenylalanyl-adenosine (A-Phe), tyrosyl adenosine (A-Pry), and alanyl adenosine (A-Ala), as well as amide-linked structures, such as phenylalanyl 3' deoxy 3' amino adenosine, alanyl 3' deoxy 3' amino adenosine, and tyrosyl 3' deoxy 3' amino adenosine; in any of these compounds, any of the naturally-occurring L-amino acids or their analogs may be utilized. In addition, a combined

Shown in Figure 2 is a preferred selection scheme according to the invention. The steps involved in this selection are generally carried out as follows.

tRNA-like 3' structure-puromycin conjugate may also be used in the invention.

15

Step 1. Preparation of the DNA template. As a step toward generating the RNA-protein fusions of the invention, the RNA portion of the fusion is synthesized. This may be accomplished by direct chemical RNA synthesis or, more commonly, is accomplished by transcribing an appropriate double-stranded DNA

20

20

Such DNA templates may be created by any standard technique (including any technique of recombinant DNA technology, chemical synthesis, or both). In principle, any method that allows production of one or more templates containing a known, random, randomized, or mutagenized sequence may be used for this purpose. In one particular approach, an oligonucleotide (for example, containing random bases)

22

is synthesized and is amplified (for example, by PCR) prior to transcription.

Chemical synthesis may also be used to produce a random cassette which is then

inserted into the middle of a known protein coding sequence (see, for example,

30

· WO 98/31/00

ہے

PCT/US98/00807

chapter 8.2, Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons and Greene Publishing Company, 1994). This latter approach produces a high density of mutations around a specific site of interest in the protein.

An alternative to total randomization of a DNA template sequence is partial randomization, and a pool synthesized in this way is generally referred to as a "doped" pool. An example of this technique, performed on an RNA sequence, is described, for example, by Ekland et al. (Nucl. Acids Research 23:3231 (1995)). Partial randomization may be performed chemically by biasing the synthesis reactions such that each base addition reaction mixture contains an excess of one base and small

10 amounts of each of the others; by careful control of the base concentrations, a desired mutation frequency may be achieved by this approach. Partially randomized pools may also be generated using error prone PCR techniques, for example, as described in Beaudry and Joyce (Science 257:635 (1992)) and Bartel and Szostak (Science 261:1411 (1993)).

Numerous methods are also available for generating a DNA construct beginning with a known sequence and then creating a mutagenized DNA pool. Examples of such techniques are described in Ausubel et al. (Supra chapter 8) and Sambrook et al. (Molecular Cloning: A Laboratory Manual, chapter 15, Cold Spring Harbor Press, New York, 2nd ed. (1989)). Random sequences may also be generated

13

by the "shuffling" technique outlined in Stemmer (Nature 370: 389 (1994)).

To optimize a selection scheme of the invention, the sequences and structures at the 5' and 3' ends of a template may also be altered. Preferably, this is carried out in two separate selections, each involving the insertion of random domains into the template proximal to the appropriate end, followed by selection. These

selections may serve (i) to maximize the amount of fusion made (and thus to maximize the complexity of a library) or (ii) to provide optimized translation sequences. Further, the method may be generally applicable, combined with mutagenic PCR, to the optimization of translation templates both in the coding and non-coding regions.

Step 2. Generation of RNA. As noted above, the RNA portion of an

_:

RNA-protein fusion may be chemically synthesized using standard techniques of oligonucleotide synthesis. Alternatively, and particularly if longer RNA sequences are utilized, the RNA portion is generated by in vitro transcription of a DNA template. In one preferred approach, T7 polymerase is used to enzymatically generate the RNA

strand. Other appropriate RNA polymerases for this use include, without limitation, the SP6, T3 and E. 2011 RNA polymerases (described, for example, in Ausubel et al. (Supra, chapter 3). In addition, the synthesized RNA may be, in whole or in part, modified RNA. In one particular example, phosphorothioate RNA may be produced (for example, by T7 transcription) using modified ribonucleotides and standard techniques. Such modified RNA provides the advantage of being nuclease stable.

Step 3. Ligation of Puromycin to the Template. Next, puromycin (or any other appropriate peptide acceptor) is covalently bonded to the template sequence. This step may be accomplished using T4 RNA ligase to attach the puromycin directly to the RNA sequence, or preferably the puromycin may be attached by way of a DNA

15 "splint" using T4 DNA ligase or any other enzyme which is capable of joining together two nucleotide sequences (see Figure 1B) (see also, for example, Ausubel et al., Supra, chapter 3, sections 14 and 15). IRNA synthetases may also be used to attach puromycin-like compounds to RNA. For example, phenylalanyl IRNA synthetase links phenylalanine to phenylalanyl-IRNA molecules containing a 3' amino and a synthetase links phenylalanine to the puromycin-like 3' and 6 firster and Rich.

group, generating RNA molecules with puromycin-like 3' ends (Fraser and Rich, Proc. Natl. Acad. Sci. USA 70:2671 (1973)). Other peptide acceptors which may be used include, without limitation, any compound which possesses an armino acid linked to an adenine or an adenine-like compound, such as the amino acid nucleotides, phenylalanyl-adenosine (A-Phe), tyrosyl adenosine (A-Tyr), and alanyl adenosine (A-

25 Ala), as well as amide-linked structures, such as phenylalanyl 3' deoxy 3' amino adenosine, alanyl 3' deoxy 3' amino adenosine, and tyrosyl 3' deoxy 3' amino adenosine; in any of these compounds, any of the naturally-occurring L-amino acids or their analogs may be utilized. A number of peptide acceptors are described, for example, in Krayevsky and Kukhanova, Progress in Nucleic Acids Research and Molecular Biology 23:1 (1979).

· WO 98/31700

.

PCT/US98/00807

Step 4. Generation and Recovery of RNA-Protein Fusions. To generate RNA-protein fusions, any in vitro or in situ translation system may be utilized. As shown below, eukaryotic systems are preferred, and two particularly preferred systems include the wheat germ and reticulocyte lysate systems. In principle,

however, any translation system which allows formation of an RNA-protein fusion and which does not significantly degrade the RNA portion of the fusion is useful in the invention. In addition, to reduce RNA degradation in any of these systems, degradation-blocking antisense oligonucleotides may be included in the translation reaction mixture; such oligonucleotides specifically hybridize to and cover sequences within the RNA portion of the molecule that trigger degradation (see, for example, Hanes and Pluckthun, Proc. Natl. Acad. Sci USA 94:4937 (1997)).

As noted above, any number of eukaryotic translation systems are available for use in the invention. These include, without limitation, lysates from yeast, ascites, tumor cells (Leibowitz et al., Meth. Enzymol. 194:536 (1991)), and xenopus oocyte eggs. Useful in yitto translation systems from bacterial systems include, without limitation, those described in Zubay (Ann. Rev. Genet. 7:267 (1973)); Chen and Zubay (Meth. Enzymol. 101:44 (1983)); and Ellman (Meth.

15

In addition, translation reactions may be carried out in situ. In one
particular example, translation may be carried out by injecting mRNA into Xenopus
eggs using standard techniques.

Enzymol. 202:301 (1991)).

Once generated, RNA-protein fusions may be recovered from the translation reaction mixture by any standard technique of protein or RNA purification. Typically, protein purification techniques are utilized. As shown below, for example, purification of a fusion may be facilitated by the use of suitable chromatographic reagents such as dT₂₃ agarose or thiopropyl sepharose. Purification, however, may also or alternatively involve purification based upon the RNA portion of the fusion; techniques for such purification are described, for example in Ausubel et al. (SUDIA, Chanter 4)

22

Step 5. Selection of the Desired RNA-Protein Fusion. Selection of a

-23-

desired RNA-protein fusion may be accomplished by any means available to selectively partition or isolate a desired fusion from a population of candidate fusions. Examples of isolation techniques include, without limitation, selective binding, for example, to a binding partner which is directly or indirectly immobilized on a column,

- bead, membrane, or other solid support, and immunoprecipitation using an antibody specific for the protein moiety of the fusion. The first of these techniques makes use of an immobilized selection motif which can consist of any type of molecule to which binding is possible. A list of possible selection motif molecules is presented in Figure
- Selection may also be based upon the use of substrate molecules attached to an
 affinity label (for example, substrate-biotin) which react with a candidate molecule, or
 upon any other type of interaction with a fusion molecule. In addition, proteins may
 be selected based upon their catalytic activity in a manner analogous to that described
 by Bartel and Szostak for the isolation of RNA enzymes (<u>supra</u>); according to that
 particular technique, desired molecules are selected based upon their ability to link a
- 15 target molecule to themselves, and the functional molecules are then isolated based upon the presence of that target. Selection schemes for isolating novel or improved catalytic proteins using this same approach or any other functional selection are enabled by the present invention.

In addition, as described herein, selection of a desired RNA-protein fusion
(or its DNA copy) may be facilitated by enrichment for that fusion in a pool of
candidate molecules. To carry out such an optional enrichment, a population of
candidate RNA-protein fusions is contacted with a binding partner (for example, one
of the binding partners described above) which is specific for either the RNA portion
or the protein portion of the fusion, under conditions which substantially separate the

binding partner-fusion complex from unbound members in the sample. This step may be repeated, and the technique preferably includes at least two sequential enrichment steps, one in which the fusions are selected using a binding partner specific for the RNA portion and another in which the fusions are selected using a binding partner specific for the protein portion. In addition, if enrichment steps targeting the same
 portion of the fusion (for example, the protein portion) are repeated, different binding

· WO 98/31700

-24-

PCT/US98/00807

partners are preferably utilized. In one particular example described herein, a population of molecules is enriched for desired fusions by first using a binding partner specific for the RNA portion of the fusion and then, in two sequential steps, using two different binding partners, both of which are specific for the protein portion of the fusion. Again, these complexes may be separated from sample components by any

chromatography, centrifugation, or immunoprecipitation. Moreover, elution of an RNA-protein fusion from an enrichment (or

standard separation technique including, without limitation, column affinity

Moreover, elution of an RNA-protein fusion from an enrichment (or selection) complex may be accomplished by a number of approaches. For example, as described herein, one may utilize a denaturing or non-specific chemical elution step to isolate a desired RNA-protein fusion. Such a step facilitates the release of complex components from each other or from an associated solid support in a relatively non-specific manner by breaking non-covalent bonds between the components and/or between the components and the solid support. As described herein, one exemplary

denaturing or non-specific chemical elution reagent is 4% HOAc/H₂O. Other exemplary denaturing or non-specific chemical elution reagents include guanidine, urea, high salt, detergent, or any other means by which non-covalent adducts may generally be removed. Alternatively, one may utilize a specific chemical elution approach, in which a chemical is exploited that causes the specific release of a fusion molecule. In one particular example, if the linker arm of a desired fusion protein

15

20 molecule. In one particular example, if the linker arm of a desired fusion protein contains one or more disulfide bonds, bound fusion aptamers may be eluted by the addition, for example, of DTT, resulting in the reduction of the disulfide bond and release of the bound target.

Alternatively, elution may be accomplished by specifically disrupting affinity complexes; such techniques selectively release complex components by the addition of an excess of one member of the complex. For example, in an ATP-binding selection, elution is performed by the addition of excess ATP to the incubation mixture. Finally, one may carry out a step of enzymatic elution. By this approach, a bound molecule itself or an exogenously added protease (or other

appropriate hydrolytic enzyme) cleaves and releases either the target or the enzyme.

-25

In one particular example, a protease target site may be included in either of the complex components, and the bound molecules eluted by addition of the protease. Alternately, in a catalytic selection, elution may be used as a selection step for isolating molecules capable of releasing (for example, cleaving) themselves from a solid support.

Siep 6. Generation of a DNA Copy of the RNA Sequence using Reverse Transcriptase. If desired, a DNA copy of a selected RNA fusion sequence is readily available by reverse transcribing that RNA sequence using any standard technique (for example, using Superscript reverse transcriptase). This step may be carried out prior to the selection or enrichment step (for example, as described in Figure 16), or following that step. Alternatively, the reverse transcription process may be carried out prior to the isolation of the fusion from the in vitro or in situ translation mixture.

2

Next, the DNA template is amplified, either as a partial or full-length double-stranded sequence. Preferably, in this step, full-length DNA templates are generated, using appropriate oligonucleotides and PCR amplification.

15

These steps, and the reagents and techniques for carrying out these steps, are now described in detail using particular examples. These examples are provided for the purpose of illustrating the invention, and should not be construed as limiting.

GENERATION OF TEMPLATES FOR RNA-PROTEIN FUSIONS

detail below.

20

invention preferably makes use of double-stranded DNA templates which include a number of design elements. The first of these elements is a promoter to be used in conjunction with a desired RNA polymerase for mRNA synthesis. As shown in Figure 1A and described herein, the T7 promoter is preferred, although any promoter capable of directing synthesis from a linear double-stranded DNA may be used.

The second element of the template shown in Figure 1A is termed the 5' untranslated region (or 5'UTR) and corresponds to the RNA upstream of the translation start site. Shown in Figure 1A is a preferred 5'UTR (termed "TE") which is a deletion mutant of the Tobacco Mosaic Virus 5' untranslated region and, in

· WO 98/31700

PCT/US98/00807

-26-

particular, corresponds to the bases directly 5' of the TMV translation start; the sequence of this UTR is as follows: rGrGrG rArCrA rArUrU rArCrU rArUrU rUrArC rArurU rUrArC rA (with the first 3 G nucleotides being inserted to augment transcription) (SEQ ID NO: 5). Any other appropriate 5' UTR may be utilized (see,

5 for example, Kozak, Microbiol. Rev. 47:1 (1983)).

The third element shown in Figure 1A is the translation start site. In general, this is an AUG codon. However, there are examples where codons other than AUG are utilized in naturally-occurring coding sequences, and these codons may also be used in the selection scheme of the invention.

(termed ORF), which encodes the protein sequence. This open reading frame may encode any naturally-occurring, random, randomized, mutagenized, or totally synthetic protein sequence.

The fifth element shown in Figure 1A is the 3' constant region. This sequence facilitates PCR amplification of the pool sequences and ligation of the puromycin-containing oligonucleotide to the mRNA. If desired, this region may also include a pause site, a sequence which causes the ribosome to pause and thereby allows additional time for an acceptor moiety (for example, puromycin) to accept a nascent peptide chain from the peptidyl-IRNA; this pause site is discussed in more

15

To develop the present methodology, RNA-protein fusions were initially generated using highly simplified mRNA templates containing 1-2 codons. This approach was taken for two reasons. First, templates of this size could readily be made by chemical synthesis. And, second, a small open reading frame allowed

critical features of the reaction, including efficiency of linkage, end heterogeneity, template dependence, and accuracy of translation, to be readily assayed.

Design of Construct. A basic construct was used for generating test RNA-protein fusions. The molecule consisted of a mRNA containing a Shine-Dalgamo (SD) sequence for translation initiation which contained a 3 base deletion of the SD

sequence from ribosomal protein L1 and which was complementary to 5 bases of 16S

-52-

rRNA (i.e., rGrGrA rGrGrA rCrGrA rA) (SEQ ID NO: 6) (Stormo et al., Nucleic Acids Research 10:2971-2996 (1982); Shine and Dalgamo, Proc. Natl. Acad. Sci. USA 71:1342-1346 (1974); and Steitz and Jakes, Proc. Natl. Acad. Sci. USA 72:4734-4738 (1975)), (ii) an AUG start codon, (iii) a DNA linker to act as a pause

- site (i.e., 5'-(dA)₂₇), (iv) dCdC-3', and (v) a 3' puromycin (P). The poly dA sequence was chosen because it was known to template tRNA poorly in the A site (Morgan et al., J. Mol. Biol. 26:477-497 (1967); Ricker and Kaji, Nucleic Acid Research 19:6573-6578 (1991)) and was designed to act as a good pause site. The length of the oligo dA linker was chosen to span the ~60-70 Å distance between the decoding site
 - and the peptidyl transfer center of the ribosome. The dCdCP mimicked the CCA end of a tRNA and was designed to facilitate binding of the puromycin to the A site of the ribosome.

Chemical Synthesis of Minimal Template 43-P. To synthesize construct 43-P (shown in Figure 3), puromycin was first attached to a solid support in such a way that it would be compatible with standard phosphoramidite oligonucleotide synthesis chemistry. The synthesis protocol for this oligo is outlined schematically in Figure 3 and is described in more detail below. To attach puromycin to a controlled pore glass (CPG) solid support, the amino group was protected with a trifluoroacetyl group as described in Applied Biosystems User Bulletin #49 for DNA synthesizer model 380 (1988). Next, protection of the 5' OH was carried out using a standard DMT-Cl approach (Gait, Oligonucleotide Synthesis a practical approachThe Practical Approach Series (IRL Press, Oxford, 1984)), and attachment to aminohexyl CPG

20

15

DMT-CPG-linked protected puromycin was then suitable for chain extension with phosphoramidite monomers. The synthesis of the oligo proceeded in the 3' ->5' direction in the order: (i) 3' puromycin, (ii) pdCpdC, (iii) -27 units of dA as a linker, (iv) AUG, and (v) the Shine-Dalgamo sequence. The sequence of the 43-P construct is shown below.

used for attachment of a deoxynucleoside (see Fig. 3 and Gait, supra, p. 47). The 5'

through the 2' OH was effected in exactly the same fashion as the 3' OH would be

Synthesis of CPG Puromycin. The synthesis of protected CPG puromycin

3

· WO 98/31700

٠

PCT/US98/00807

followed the general path used for deoxynucleosides as previously outlined (Gait, Oligonucleotide Synthesis, A Practical Approach, The Practical Approach Series (IRL Press, Oxford, 1984)). Major departures included the selection of an appropriate N blocking group, attachment at the 2' OH to the solid support, and the linkage reaction

5 to the solid support. In the case of the latter, the reaction was carried out at very low concentrations of activated nucleotide as this material was significantly more precious than the solid support. The resulting yield (~20 µmol/g support) was quite satisfactory considering the dilute reaction conditions.

Synthesis of N-Trifluoroacetyl Puromycin. 267 mg (0.490 mmol)

- 10 Puromycin*HCl was first converted to the free base form by dissolving in water, adding pH 11 carbonate buffer, and extracting (3X) into chloroform. The organic phase was evaporated to dryness and weighed (242 mg, 0.513 mmol). The free base was then dissolved in 11 ml dry pyridine and 11 ml dry acetonitrile, and 139 µl (2.0 mmol) triethylamine (TEA) and 139 µl (1.0 mmol) of trifluoroacetic anhydride
- 15 (TFAA) were added with stirring. TFAA was then added to the turbid solution in 20 μl aliquots until none of the starting material remained, as assayed by thin layer chromatography (tlc) (93:7, Chloroform/MeOH) (a total of 280 μl). The reaction was allowed to proceed for one hour. At this point, two bands were revealed by thin layer chromatography, both of higher mobility than the starting material. Workup of the reaction with NH₄OH and water reduced the product to a single band. Silica
- reaction with NH₄OH and water reduced the product to a single band. Silica chromatography (93:7 Chloroform/MeOH) yielded 293 mg (0.515 mmol) of the product, N-TFA-Pur. The product of this reaction is shown schematically in Figure 4.

Synthesis of N-Trifluoroacetyl 5'-DMT Puromycin. The product from the above reaction was aliquoted and coevaporated 2X with dry pyridine to remove water. Multiple tubes were prepared to test multiple reaction conditions. In a small scale reaction, 27.4 mg (48.2 µmoles) N-TFA-Pur were dissolved in 480 µl of pyridine

22

chloride (60 µmol) was added, and the reaction was allowed to proceed to completion with stirring. The reaction was stopped by addition of an equal volume of water 30 (approximately 500 µl) to the solution. Because this reaction appeared successful, a

containing 0.05 eq of DMAP and 1.4 eq TEA. To this mixture, 20.6 mg of trityl

-26-

large scale version was performed. In particular, 262 mg (0.467 mmol) N-TFA-Pur was dissolved in 2.4 ml pyridine followed by addition of 1.4 eq of TEA, 0.05 eq of DMAP, and 1.2 eq of trityl chloride. After approximately two hours, an additional 50 mg (0.3 eq) dimethoxytrityl*Cl (DMT*Cl) was added, and the reaction was allowed

to proceed for 20 additional minutes. The reaction was stopped by the addition of 3 ml of water and coevaporated 3X with CH₃CN. The reaction was purified by 95:5 Chloroform/MeOH on a 100 ml silica (dry) 2 mm diameter column. Due to incomplete purification, a second identical column was run with 97.5:2.5 Chloroform/MeOH. The total yield was 325 mg or 0.373 mmol (or a yield of 72%). The product of this reaction is shown schematically in Figure 4.

Synthesis of N-Trifluoroacetyl, 5'-DMT, 2' Succinyl Puromycin. In a small scale reaction, 32 mg (37 µmol) of the product synthesized above was combined with 1.2 eq of DMAP dissolved in 350 µl of pyridine. To this solution, 1.2 equivalents of succinic anhydride was added in 44 µl of dry CH₃CN and allowed to

2

- stir overnight. Thin layer chromatography revealed little of the starting material remaining. In a large scale reaction, 292 mg (336 μmol) of the previous product was combined with 1.2 eq DMAP in 3 ml of pyridine. To this, 403 μl of 1M succinic anhydride in dry CH₂CN was added, and the mixture was allowed to stir overnight. Thin layer chromatography again revealed little of the starting material remaining.
- were added. The product was coevaporated with toluene 1X and dried to a yellow foam in high vacuum. CH₂Cl₂ was added (20 ml), and this solution was extracted twice with 15 ml of 10% ice cold citric acid and then twice with pure water. The product was dried, redissolved in 2 ml of CH₂Cl₂, and precipitated by addition of 50
- for 10 minutes in the clinical centrifuge. The majority of the elucnt was drawn off, and the rest of the product was approximately 260 mm of a stepwise yield of ~70 %.

· WO 98/31700

PCT/US98/00807

4

Synthesis of N-Trifluoroacetyl 5'-DMT. 2' Succinyl, CPG Puromycin. The product from the previous step was next dissolved with 1 ml of dioxane followed by 0.2 ml dioxane/0.2 ml pyridine. To this solution, 40 mg of p-nitrophenol and 140 mg of dicyclohexylcarbodiimide (DCC) was added, and the reaction was allowed to

- 5 proceed for 2 hours. The insoluble cyclohexyl urea produced by the reaction was removed by centrifugation, and the product solution was added to 5 g of aminohexyl controlled pore glass (CPG) suspended in 22 ml of dry DMF and stirred overnight. The resin was then washed with DMF, methanol, and ether, and dried. The resulting resin was assayed as containing 22.6 µmol of trityl per g, well within the acceptable or range for this type of support. The support was then capped by incubation with 15 ml
- range for this type of support. The support was then capped by incubation with 15 ml of pyridine, 1 ml of acetic anhydride, and 60 mg of DMAP for 30 minutes. The resulting column material produced a negative (no color) ninhydrin test, in contrast to the results obtained before blocking in which the material produced a dark blue color reaction. The product of this reaction is shown schematically in Figure 4.
- Synthesis of mRNA-Puromycin Conjugate. As discussed above, a puromycin tethered oligo may be used in either of two ways to generate a mRNA-puromycin conjugate which acts as a translation template. For extremely short open reading frames, the puromycin oligo is typically extended chemically with RNA or DNA monomers to create a totally synthetic template. When longer open
- 20 reading framcs are desired, the RNA or DNA oligo is generally ligated to the 3' end of an mRNA using a DNA splint and T4 DNA ligase as described by Moore and Sharp (Science 256:992 (1992)).

IN VITRO TRANSLATION AND TESTING OF RNA-PROTEIN FUSIONS

The templates generated above were translated in <u>vitro</u> using both bacterial and eukaryotic in <u>vitro</u> translation systems as follows.

25

In Vitro Translation of Minimal Templates. 43-P and related RNA-puromycin conjugates were added to several different in vitro translation

systems including: (i) the S30 system derived from E. coli MRE600 (Zubay, Ann.

179-209; and Ellman et al., Methods Enzymol. 202:301 (1991)) prepared as described Rev. Genet. 7:267 (1973); Collins, Gene 6:29 (1979); Chen and Zubay, Methods Enzymol, 101:44 (1983); Pratt, in Transcription and Translation: A Practical Approach, B. D. Hammes, S. J. Higgins, Eds. (IRL Press, Oxford, 1984) pp.

described by Lesley et al. (J. Biol. Chem. 266:2632 (1991)). In each case, the premix used was that of Lesley et al. (J. Biol. Chem. 266:2632 (1991)), and the incubations derived from the same strain, prepared as described by Kudlicki et al. (Anal. Chem. 206:389 (1992)); and (iii) the S30 system derived from E. coli BL21, prepared as by Ellman et. al. (Methods Enzymol. 202:301 (1991)); (ii) the ribosomal fraction were 30 minutes in duration. 2

Testing the Nature of the Fusion. The 43-P template was first tested using desired intramolecular (cis) reaction wherein 43-P binds the ribosome and acts as a S30 translation extracts from E. coli. Figure 5 (Reaction "A") demonstrates the template for and an acceptor of fMet at the same time. The incorporation of

- mixture with phenol/chloroform and analysis of the products by SDS-PAGE, an 35S labeled band appeared with the same mobility as the 43-P template. The amount of this material synthesized was dependent upon the Mg2+ concentration (Figure 6A). 35-methionine and its position in the template was first tested, and the results are shown in Figures 6A and 6B. After extraction of the in vitro translation reaction 15
- similar to the optimum for translation in this system (Zubay, Ann. Rev. Genet. 7:267 The optimum Mg2+ concentration appeared to be between 9 and 18 mM, which was Hammes, S. J. Higgins, Eds. (IRL Press, Oxford, 1984) pp. 179-209; Ellman et al., (1973); Collins, Gene 6:29 (1979); Chen and Zubay, Methods Enzymol, 101:44 (1983); Pratt, in Transcription and Translation: A Practical Approach, B. D. 20
- was stable to treatment with NH,OH (Figure 6B), indicating that the label was located Methods Enzymol. 202:301 (1991); Kudlicki et al., Anal. Chem. 206:389 (1992); and Lesley et al., J. Biol. Chem. 266:2632 (1991)). Furthermore, the incorporated label on the 3' half of the molecule (the base-stable DNA portion) and was attached by a base-stable linkage, as expected for an amide bond between puromycin and fMct. 25

Ribosome and Template Dependence. To demonstrate that the reaction

30

· WO 98/31700

PCT/US98/00807

-32-

peptidyl transferase function of the ribosome were tested (Figure 6C), and the effect of changing the sequence coding for methionine was examined (Figure 6D). Figure observed above occurred on the ribosome, the effects of specific inhibitors of the 6C demonstrates clearly that the reaction was strongly inhibited by the peptidyl

- single base in the template from A to C abolished incorporation of 35S methionine at 9 mM Mg2+, and greatly decreased it at 18 mM (consistent with the fact that high levels of Mg2+ allow misreading of the message). These experiments demonstrated that the Vazquez, J. Mol. Biol. 28:161-165 (1967); and Vazquez and Monro, Biochemica et transferase inhibitors, virginiamycin, gougerotin, and chloramphenicol (Monro and Biophysical Acta 142:155-173 (1967)). Figure 6D demonstrates that changing a reaction occurred on the ribosome in a template dependent fashion. 2
- spanned the distance from the decoding site (occupied by the AUG of the template) to length of the linker (Figure 6E). The original template was designed so that the linker Linker Length. Also tested was the dependence of the reaction on the

15

- acceptor stem in a tRNA, or about 60-70 Å. The first linker tested was 30 nucleotides 30 and 21 nucleotides (n = 27 - 18; length \geq 102 - 71 Å), little change was seen in the in length, based upon a minimum of 3.4 Å per base (> 102 Å). In the range between approximately the same length as the distance between the anticodon loop and the the acceptor site (occupied by the puromycin moiety), a distance which was
- of between 21 and 30 nucleotides represents a preferred length, linkers shorter than 80 efficiency of the reaction. Accordingly, linker length may be varied. While a linker nucleotides and, preferably, shorter than 45 nucleotides may also be utilized in the 2

the reaction occurred in an intramolecular fashion (Figure 5, Reaction "A") as desired oligonucleotides with 3' puromycin but no ribosome binding sequence (i.e., templates (Figures 6F, 6G, and 6H). If the reaction occurred by an intermolecular mechanism, Intramolecular vs. Intermolecular Reactions. Finally, we tested whether 25-P, 13-P, and 30-P) to the translation reactions containing the 43-P template or intermolecularly (Figure 5, Reaction "B"). This was tested by adding 25

the shorter oligos would also be labeled. As demonstrated in Figures 6F-H, there was

-33-

little incorporation of ¹³S methionine in the three shorter oligos, indicating that the reaction occurred primarily in an intramolecular fashion. The sequences of 25-P (SEQ ID NO: 10), 13-P (SEQ ID NO: 9), and 30-P (SEQ ID NO: 8) are shown below.

Reticulocyte Lysate. Figure 6H demonstrates that ¹³S-methionine may be incorporated in the 43-P template using a rabbit reticulocyte lysate (see below) for in <u>vitro</u> translation, in addition to the <u>E. coli</u> lysates used above. This reaction occurred primarily in an intramolecular mechanism, as desired.

SYNTHESIS AND TESTING OF FUSIONS CONTAINING A C-MYC EPITOPE TAG

Exemplary fusions were also generated which contained, within the protein portion, the epitope tag for the c-myc monoclonal antibody 9E10 (Evan et al., Mol. Cell Biol. 5:3610 (1985)).

2

Design of Templates. Three initial epitope tag templates (i.e., LP77, LP154, and Pool #1) were designed and are shown in Figures 7A-C. The first two 15 templates contained the c-myc epitope tag sequence EQKLISEEDL (SEQ ID NO: 2), and the third template was the design used in the synthesis of a random selection pool. LP77 encoded a 12 amino acid sequence, with the codons optimized for bacterial translation. LP154 and its derivatives contained a 33 amino acid mRNA sequence in which the codons were optimized for eukaryotic translation. The encoded amino acid sequence of MAEEQKLISEEDLLRKRREQKLKHKLEQLRNSCA (SEQ ID NO: 7) corresponded to the original peptide used to isolate the 9E10 antibody. Pool#1 contained 27 codons of NNG/C (to generate random peptide) followed by a sequence corresponding to the last seven amino acids of the myc peptide (which were not part of the myc epitope sequence). These sequences are shown below.

Reticulocyte vs. Wheat Germ In Vitro Translation Systems. The 43-P, LP77, and LP154 templates were tested in both rabbit reticulocyte and wheat germ extract (Promega, Boehringer Mannheim) translation systems (Figure 8).

Translations were performed at 30°C for 60 minutes. Templates were isolated using dT₁₃ agarose at 4°C. Templates were eluted from the agarose using 15 mM NaOH, 1

25

WO 98/31700

34-

PCT/US98/00807

mM EDTA, neutralized with NaOAc/HOAc buffer, immediately ethanol precipitated (2.5 - 3 vol), washed (with 100% ethanol), and dried on a speedvac concentrator. Figure 8 shows that ³⁵S methionine was incorporated into all three templates, in both the wheat germ and reticulocyte systems. Less degradation of the template was

- observed in the fusion reactions from the reticulocyte system and, accordingly, this system is preferred for the generation of RNA-protein fusions. In addition, in general, eukaryotic systems are preferred over bacterial systems. Because eukaryotic cells tend to contain lower levels of nucleases, mRNA lifetimes are generally 10-100 times longer in these cells than in bacterial cells. In experiments using one particular E. coli translation system, generation of fusions was not observed using a template encoding the c-myc epitope; labeling the template in various places demonstrated that this was likely due to degradation of both the RNA and DNA portions of the template.
- To examine the peptide portion of these fusions, samples were treated with RNase to remove the coding sequences. Following this treatment, the 43-P product
 - ran with almost identical mobility to the ²²P labeled 30-P oligo, consistent with a very small peptide (perhaps only methionine) added to 30-P. For LP77, removal of the coding sequence produced a product with lower mobility than the 30-P oligo, consistent with the notion that a 12 amino acid peptide was added to the puromycin. Finally, for LP154, removal of the coding sequence produced a product of yet lower
 - mobility, consistent with a 33 amino acid sequence attached to the 30-P oligo. No oligo was seen in the RNase-treated LP154 reticulocyte lane due to a loading error. In Figure 9, the mobility of this product was shown to be the same as the product generated in the wheat germ extract. In sum, these results indicated that RNase resistant products were added to the ends of the 30-P oligos, that the sizes of the products were proportional to the length of the coding sequences, and that the
 - 25 products were proportional to the length of the coding sequences, and that the products were quite homogeneous in size. In addition, although both systems produced similar fusion products, the reticulocyte system appeared superior due to higher femulate stability.

Sensitivity to RNase A and Proteinase K. In Figure 9, sensitivity to RNase

30 A and proteinase K were tested using the LP154 fusion. As shown in lanes 2-4,

incorporation of 35S methionine was demonstrated for the LP154 template. When this addition of a 33 amino acid peptide to the 3' end. When this material was also treated product was treated with RNase A, the mobility of the fusion decreased, but was still significantly higher than the 32P labeled 30-P oligonucleotide, consistent with the

Similar results have been obtained in equivalent experiments using the 43-P and LP77 with proteinase K, the 35 signal completely disappeared, again consistent with the notion that the label was present in a peptide at the 3' end of the 30-P fragment.

S

To confirm that the template labeling by 35S Met was a consequence of

fusions.

translation, and more specifically resulted from the peptidyl transferase activity of the ribosome, the effect of various inhibitors on the labeling reaction was examined. The pp. 312 (1979)) all decreased RNA-peptide fusion formation by ~95% using the long emetine (Vazquez, Inhibitors of Protein Biosynthesis (Springer-Verlag, New York), specific inhibitors of eukaryotic peptidyl transferase, anisomycin, gougerotin, and sparsomycin (Vazquez, Inhibitors of Protein Biosynthesis (Springer-Verlag, New York), pp. 312 (1979)), as well as the translocation inhibitors cycloheximide and myc template and a reticulocyte lysate translation extract. 2 15

Immunoprecipitation Experiments. In an experiment designed to illustrate immunoprecipitation of these reaction samples using the c-myc monoclonal antibody the efficacy of immunoprecipitating an mRNA-peptide fusion, an attempt was made to immunoprecipitate a free c-myc peptide generated by in vitro translation. Figure Lanes 1 and 2 show the labeled material from translation reactions containing either 10 shows the results of these experiments assayed on an SDS PAGE peptide gel. RNA124 (the RNA portion of LP154) or β -globin mRNA. Lanes 3-8 show the

20

best case being lane 4 where ~83% of the total TCA precipitable counts were isolated. These results indicated that the peptide coded for by RNA124 (and by LP154) can be that the peptide derived from RNA124 was effectively immunoprecipitated, with the Lanes 6-8 show little of the β -globin protein, indicating a purification of >100 fold. quantitatively isolated by this immunoprecipitation protocol. 3

9E10, under several different buffer conditions (described below). Lanes 3-5 show

22

· WO 98/31700

PCT/US98/00807

myc epitope with 30-P generated by RNase treatment of the LP154 fusion (see above) demonstrates that a product with a mobility similar to that seen for the fusion of the cconcentrations that were tested, approximately 0.8 - 1.0 x 10¹² fusion molecules were was isolated, but no corresponding product was made when only the RNA portion of isolated was determined and was plotted against the amount of unmodified 30-P (not labeled with T4 polynucleotide kinase and assayed by denaturing PAGE. Figure 11 product. A higher fraction of the input RNA was converted to fusion product in the the template (RNA124) was translated. In Figure 12, the quantity of fusion protein peptide fusion shows that 0.2 - 0.7% of the input message was converted to fusion shown in this figure). Quantitation of the ratio of unmodified linker to linker-myc immunoprecipitate a chimeric RNA-peptide product, using an LP154 translation reaction and the c-myc monoclonal antibody 9E10 (Figure 11). The translation products from a reticulocyte reaction were isolated by immunoprecipitation (as described herein) and treated with 1 µg of RNase A at room temperature for 30 minutes to remove the coding sequence. This generated a 5'OH, which was 32P Immunoprecipitation of the Fusion. We next tested the ability to presence of a higher ribosome/template ratio; over the range of input mRNA made per ml of translation extract. 15 2

the puromycin of some other mRNA. No indication of cross-transfer was seen when a amount of long myc fusion produced. Similarly, co-translation of the short and long species were encoded by that mRNA, i.e. the nascent peptide was not transferred to linker (30-P) was coincubated with the long myc template in translation extracts in ratios as high as 20:1, nor did the presence of free linker significantly decrease the observed, as would be expected for fusion of the short template with the long myc In addition, our results indicated that the peptides attached to the RNA peptide. Both of these results suggested that fusion formation occurred primarily templates were translated alone, and no products of intermediate mobility were templates, 43-P and LP154, produced only the fusion products seen when the between a nascent peptide and mRNA bound to the same ribosome. 20 25

Sequential Isolation. As a further confirmation of the nature of the in vitro

-37-

translated LP154 template product, we examined the behavior of this product on two different types of chromatography media. Thiopropyl (TP) sepharose allows the isolation of a product containing a free cysteine (for example, the LP154 product which has a cysteine residue adjacent to the C terminus) (Figure 13). Similarly, dT₂₃ agarose allows the isolation of templates containing a poly dA sequence (for example, 30-P) (Figure 13). Figure 14 demonstrates that sequential isolation on TP sepharose followed by dT₂₃ agarose produced the same product as isolation on dT₂₃ agarose alone. The fact that the in vitro translation product contained both a poly-A tract and a free thiol strongly indicated that the translation product was the desired

The above results are consistent with the ability to synthesize mRNA-peptide fusions and to recover them intact from in <u>vitto</u> translation extracts. The peptide portions of fusions so synthesized appeared to have the intended sequences as demonstrated by immunoprecipitation and isolation using appropriate

RNA-peptide fusion.

2

chromatographic techniques. According to the results presented above, the reactions are intramolecular and occur in a template dependent fashion. Finally, even with a template modification of less than 1%, the present system facilitates selections based on candidate complexities of about 10¹³ molecules.

Iarge library of translation templates (for example, 10¹⁵ members) is generated containing a randomized region (see Figure 7C and below). This library is used to generate ~10¹² - 10¹⁵ fusions (as described herein) which are treated with the anti-c-myc antibody (for example, by immunoprecipitation or using an antibody immobilized on a column or other solid support) to enrich for c-myc-encoding templates in repeated rounds of in <u>vitro</u> selection.

20

Models for Fusion Formation. Without being bound to a particular theory, we propose a model for the mechanism of fusion formation in which translation initiates normally and elongation proceeds to the end of the open reading frame. When the ribosome reaches the DNA portion of the template, translation stalls. At this point, the complex can partition between two fates: dissociation of the nascent

22

2

· WO 98/31700

PCT/US98/00807

-38-

peptide, or transfer of the nascent peptide to the puromycin at the 3'-end of the template. The efficiency of the transfer reaction is likely to be controlled by a number of factors that influence the stability of the stalled translation complex and the entry of the 3'-puromycin residue into the A site of the peptidyl transferase center. After the transfer reaction, the mRNA-peptide fusion likely remains complexed with the

Both the classical model for elongation (Watson, Bull. Soc. Chim. Biol. 46:1399 (1964)) and the intermediate states model (Moazed and Noller, Nature

ribosome since the known release factors cannot hydrolyze the stable amide linkage

between the RNA and peptide domains.

- 10 342:142 (1989)) require that the A site be empty for puromycin entry into the peptidyl transferase center. For the puromycin to enter the empty A site, the linker must either loop around the outside of the ribosome or pass directly from the decoding site through the A site to the peptidyl transferase center. The data described herein do not clearly distinguish between these alternatives because the shortest linker tested (21
 - of ribosome structure (Frank et al., Nature 376:441 (1995)), the mRNA is threaded through a channel that extends on either side of the decoding site, in which case unthreading of the linker from the channel would be required to allow the puromycin to reach the peptidyl transferase center through the A site.
- relative to the elongation process as demonstrated by the homogeneity and length of the peptide attached to the linker. If the puromycin competed effectively with aminoacyl tRNAs during elongation, the linker-peptide fusions present in the fusion products would be expected to be heterogeneous in size. Furthermore, the ribosome
- did not appear to read into the linker region as indicated by the similarity in gel mobilities between the Met-template fusion and the unmodified linker. dA_{1n} should code for (lysine)_n which would certainly decrease the mobility of the linker. The slow rate of unthreading of the mRNA may explain the slow rate of fusion formation relative to the rate of translocation. Preliminary results suggest that the amount of
 - 30 fusion product formed increases markedly following extended post-translation

· WO 98/31700

PCT/US98/00807

-39

incubation at low temperature, perhaps because of the increased time available for transfer of the nascent peptide to the puromycin.

DETAILED MATERIALS AND METHODS

Described below are detailed materials and methods relating to the in <u>vitro</u>

translation and testing of RNA-protein fusions, including fusions having a myc epitone tag.

Sequences. A number of oligonucleotides were used above for the generation of RNA-protein fusions. These oligonucleotides have the following sequences.

10 NAME SEQUENCE

NO:8)

13-P 5'AAA AAA AAA ACC P (SEQ ID NO: 9)

25-P S'CGC GGT TTT TAT TTT TTT TCC P (SEQ ID NO: 10)

15 43-P S'rGrGra rGrGra rCrGra rararu rGaa aaa aaa aaa aaa aaa aaa aaa aac P (SEQ ID No: 11)

20

37-P STGrGrA rGrGrA rCrGrA rArCrU rGAA AAA AAA AAA AAA

25 AAA ACC P (SEQ ID NO: 14)

· WO 98/31700

40

PCT/US98/00807

34-P 5'FGFGFA FGFGFA FCFGFA FAFCFU FGAA AAA AAA AAA ACC P (SEQ ID NO: 15)

31-P SHGrGrA rGrGrA rCrGrA rArCrU rGAA AAA AAA AAA ACC P (SEQ ID NO: 16)

LP154 STGIGIGI RATCIA RATUTU TATCIU TATUTU TUTATC TATATU TUTATC TATUTG IGICIU TOTATA TGTATA TCTATG TATATA TCTUTG TATUTC TUTCIU TGTATA

LP160 5' S'rGrGrG rArCrA rArUrU rArCrU rArUrU rUrArC rArArU rUrArC rA

15 TATUTG TNITHS TNITHS TNITHS TNITHS TNITHS TNITHS TNITHS TNITHS TNITHS
TNITHS TNITHS

20 All oligonucleotides are listed in the 5' to 3' direction. Ribonucleotide bases are indicated by lower case "r" prior to the nucleotide designation; P is puromycin; rN indicates equal amounts of rA, rG, rC, and rU; rS indicates equal amounts of rG and rC; and all other base designations indicate DNA oligonucleotides.

<u>Chemicals.</u> Puromycin HCI, long chain alkylamine controlled pore glass, gougerotin, chloramphenicol, virginiamycin, DMAP, dimethyltrityl chloride, and

4

acetic anhydride were obtained from Sigma Chemical (St. Louis, MO). Pyridine, dimethylformamide, toluene, succinic anhydride, and para-nitrophenol were obtained from Fluka Chemical (Ronkonkoma, NY). Beta-globin mRNA was obtained from Novagen (Madison, WI). TMV RNA was obtained from Boehringer Mannheim (Indianapolis, IN).

Enzymes. Proteinase K was obtained from Promega (Madison, WJ).

DNase-free RNAase was either produced by the protocol of Sambrook et al. (supra) or purchased from Boehringer Mannheim. T7 polymerase was made by the published

protocol of Grodberg and Dunn (J. Bacteriol. 170:1245 (1988)) with the modifications
of Zawadzki and Gross (Nucl. Acids Res. 19:1948 (1991)). T4 DNA ligase was
obtained from New England Biolabs (Beverly, MA).

Quantitation of Radiolabel Incorporation. For radioactive gels bands, the amount of radiolabel (35 or 32P) present in each band was determined by quantitation either on a Betagen 603 blot analyzer (Betagen, Waltham, MA) or using

15 phosphorimager plates (Molecular Dynamics, Sunnyvale, CA). For liquid and solid samples, the amount of radiolabel (35 or 32P) present was determined by scintillation counting (Beckman, Columbia, MD).

Gel Images. Images of gels were obtained by autoradiography (using Kodak XAR film) or using phosphorimager plates (Molecular Dynamics).

Synthesis of CPG Puromycin. Detailed protocols for synthesis of

CPG-puromycin are outlined above.

2

Enzymatic Reactions. In general, the preparation of nucleic acids for kinase, transcription, PCR, and translation reactions using E. coli extracts was the same. Each preparative protocol began with extraction using an equal volume of 1:1 phenol/chloroform, followed by centrifugation and isolation of the aqueous phase. Sodium acetate (pH 5.2) and spermidine were added to a final concentration of 300 mM and 1 mM respectively, and the sample was precipitated by addition of 3 volumes of 100% ethanol and incubation at -70°C for 20 minutes. Samples were centrifuged at >12,000 g, the supernatant was removed, and the pellets were washed

25

with an excess of 95% ethanol, at 0°C. The resulting pellets were then dried under

30

· WO 98/31700

PCT/US98/00807

42

vacuum and resuspended.

Oligonucleotides. All synthetic DNA and RNA was synthesized on a Millipore Expedite synthesizer using standard chemistry for each as supplied from the manufacturer (Milligen, Bedford, MA). Oligonucleotides containing 3' puromycin

- were synthesized using CPG puromycin columns packed with 30-50 mg of solid support (~20 μmole puromycin/gram). Oligonucleotides containing a 3' biotin were synthesized using 1 μmole bioteg CPG columns from Glen Research (Sterling, VA). Oligonucleotides containing a 5' biotin were synthesized by addition of bioteg phosphoramidite (Glen Research) as the 5' base. Oligonucleotides to be ligated to the
 - 3' ends of RNA molecules were either chemically phosphorylated at the 5' end (using chemical phosphorylation reagent from Glen Research) prior to deprotection or enzymatically phosphorylated using ATP and T4 polynucleotide kinase (New England Biolabs) after deprotection. Samples containing only DNA (and 3' puromycin or 3' biotin) were deprotected by addition of 25% NH₄OH followed by incubation for 12 hours at 55°C. Samples containing RNA monomers (e.g., 43-P) were deprotected by addition of ethanol (25% (v/v)) to the NH₄OH solution and incubation for 12 hours at 55°C. The 2'OH was deprotected using 1M TBAF in THF (Sigma) for 48 hours at room temperature. TBAF was removed using a NAP-25 Sephadex column (Pharmacia, Piscataway, NJ).
- Deprotected DNA and RNA samples were then purified using denaturing PAGE, followed by either soaking or electro-eluting from the gel using an Elutrap (Schleicher and Schuell, Keene, NH) and desalting using either a NAP-25 Sephadex column or ethanol precipitation as described above.

Aye_DNA_construction. Two DNA templates containing the c-myc epitope tag were constructed. The first template was made from a combination of the oligonucleotides 64.27 (5'-GTT CAG GTC TTC TTG AGA GAT CAG TTT CTG TTC CAT TTC GTC CTC CCT ATA GTG AGT CGT ATT A-3') (SEQ ID NO: 18) and 18.109 (5'-TAA TAC GAC TCA CTA TAG-3') (SEQ ID NO: 19). Transcription using this template produced RNA 47.1 which coded for the peptide

30 MEQKLISEEDLN (SEQ ID NO: 20). Ligation of RNA 47.1 to 30-P yielded LP77

43

shown in Figure 7A.

The second template was made first as a single oligonucleotide 99 bases in ength, having the designation RWR 99.6 and the sequence 5'AGC GCA AGA GTT ACG CAG CTG TTC CAG TTT GTG TTT CAG CTG TTC ACG ACG TTT ACG

- CTA TAG GGA CAA TTA CTA TTT ACA ATT ACA ATG GCT GAA GAA CAG (SEQ ID NO: 21). Double stranded transcription templates containing this sequence were constructed by PCR with the oligos RWR 21.103 (5'-AGC GCA AGA GTT CAG CAG GTC TTC TTC AGA GAT CAG TTT CTG TTC TTC AGC CAT-3' ACG CAG CTG-3") (SEQ ID NO: 22) and RWR 63.26 (5'TAA TAC GAC TCA
- supra, chapter 15). Transcription using this template produced an RNA referred to as AAA CTG-3') (SEQ ID NO: 23) according to published protocols (Ausubel et al., RNA124 which coded for the peptide 2

MAEEQKLISEEDLLRKRREQLKHKLEQLRNSCA (SEQ ID NO: 24). This peptide contained the sequence used to raise monoclonal antibody 9E10 when

- conjugated to a carrier protein (Oncogene Science Technical Bulletin). RNA124 was 124 nucleotides in length, and ligation of RNA124 to 30-P produced LP154 shown in Figure 7B. The sequence of RNA 124 is as follows (SEQ ID NO: 32): 15
 - IGICIU IGIAIA IGIAIA ICIAIG IAIAIA ICIUIG IAIUIC IUICIU IGIAIA IGIAIA ratata iCraic tatata iCruig iGrafa iCraig iCruig iCrgru tatatc iUrcru IGRAIC ICIUIG ICIUIG ICIGIU IAIAIA ICIGIU ICIGIU IGIAIA ICIAIG ICIUIG S'-rGrGrG rArCrA rArUrU rArCrU rArUrU rUrArC rArArU rUrArC rArArUrG 20

Randomized Pool Construction. The randomized pool was constructed as a single oligonucleotide 130 bases in length denoted RWR130.1. Beginning at the 3'

TTT ACA ATT ACA) (SEQ ID NO: 26) and 21.103 (5'-AGC GCA AGA GTT ACG protocol. S denotes an equal mix of dG and dC bases. PCR was performed with the oligonucleotides 42.108 (5'-TAA TAC GAC TCA CTA TAG GGA CAA TTA CTA GTC GAC GCA TTG AGA TAC CGA-5' (SEQ ID NO: 25). N denotes a random end, the sequence was 3' CCCTGTTAATGATAAATGTTAATGTTAC (NNS) $_{\scriptscriptstyle 17}$ position, and this sequence was generated according to the standard synthesizer 25

30

30

WO 98/31700

PCT/US98/00807

denoted pool 130.1. Ligation of pool 130.1 to 30-P yielded Pool #1 (also referred to as CAG CTG) (SEQ ID NO: 27). Transcription off this template produced an RNA LP160) shown in Figure 7C.

RWR130.1 was 30 nanomolar, (ii) each primer was used at a concentration of 1.5 μM, (Boehringer Mannheim) was used at 5 units per 100 µl. The double stranded product was purified on non-denaturing PAGE and isolated by electroelution. The amount of (Ausubel et al., supra) with the following exceptions: (i) the starting concentration of (iii) the dNTP concentration was 400 µM for each base, and (iv) the Taq polymerase Seven cycles of PCR were performed according to published protocols

DNA was determined both by UV absorbance at 260 nm and ethidium bromide

10

fluorescence comparison with known standards.

above. The pool RNA concentration was estimated using an extinction coefficient of Transcription from the double stranded pool DNA produced ~ 90 nanomoles of pool previously (Milligan and Uhlenbeck, Meth. Enzymol. 180:51 (1989)). Full length RNA was purified by denaturing PAGE, electroeluted, and desalted as described stranded PCR DNA and synthetic oligonucleotides were performed as described Enzymatic Synthesis of RNA. Transcription reactions from double 1300 O.D./µmole; RNA124, 1250 O.D./µmole; RNA 47.1, 480 O.D./µmole. RNA.

15

myc and pool messenger RNA sequences to the puromycin containing oligonucleotide was performed using a DNA splint, termed 19.35 (5'-TTT TTT TTT TAG CGC AAG for one hour at room temperature. For the construction of the pool RNA fusions, the puromycin oligonucleotide (30-P, dA27dCdCP) in a mole ratio of 0.8:0.9:1.0 and conjugate was prepared as described above for enzymatic reactions. The precipitate 1-2.5 units of DNA ligase per picomole of pool mRNA. Reactions were conducted Enzymatic Synthesis of RNA-Puromycin Conjugates. Ligation of the A) (SEQ ID NO: 28) using a procedure analogous to that described by Moore and mRNA concentration was $\sim 6.6 \ \mu molar$. Following ligation, the RNA-puromycin was resuspended, and full length fusions were purified on denaturing PAGE and Sharp (Science 250:992 (1992)). The reaction consisted of mRNA, splint, and 23 ೫

estimated using an extinction coefficient of 1650 $O.D./\mu mole$ and the myc template isolated by electroelution as described above. The pool RNA concentration was 1600 O.D./μmole. In this way, 2.5 nanomoles of conjugate were generated.

(synthesized on bioteg phosphoramidite columns (Glen Research)) was incubated at Rockford, IL) for 1 hour at room temperature in TE (10 mM Tris Chloride pH 8.2, 1 optically by the disappearance of biotin-dT33 from solution and/or by titration of the mM EDTA) and washed. The binding capacity of the agarose was then estimated Preparation of dT2, Streptavidin Agarose. dT2, containing a 3' biotin 1-10 µM with a slurry of streptavidin agarose (50% agarose by volume, Pierce, resin with known amounts of complementary oligonucleotide.

2

general, translation reactions were performed with purchased kits (for example, $\underline{\mathrm{E}}$ <u>coli</u> extracts prepared according to published protocols (for example, Ellman et al., Meth. Translation Reactions using E. coli Derived Extracts and Ribosomes. In MRE600 (obtained from the ATCC, Rockville, MD) was also used to generate S30 reaction mixture consisted of 30% extract v/v, 9-18 mM MgCl₂, 40% premix minus Enzymol. 202:301(1991)), as well as a ribosomal fraction prepared as described by performed in a 50 μl volume with 20-40 μCi of 35S methionine as a marker. The S30 Extract for Linear Templates, Promega, Madison, WI). However, E. coli Kudlicki et al. (Anal. Biochem. 206:389 (1992)). The standard reaction was 12

15

were performed using purchased kits lacking methionine (Promega), according to the Wheat Germ Translation Reactions. The translation reactions in Figure 8 manufacturer's recommendations. Template concentrations were 4 µM for 43-P and $0.8~\mu M$ for LP77 and LP154. Reactions were performed at $25\,^{\circ} \text{C}$ with $30~\mu \text{Ci}\,^{34}\text{S}$ methionine in a total volume of 25 μ l.

place of the lysate. All reactions were incubated at 37°C for 30 minutes. Templates

were purified as described above under enzymatic reactions.

experiments, the oligos 13-P and 25-P were added at a concentration of 5 μΜ. For experiments using ribosomes, 3 μ l of ribosome solution was added per reaction in

methionine (Promega) v/v, and 5 μM of template (e.g., 43-P). For coincubation

20

Reticulocyte Translation Reactions. Translation reactions were performed

3

. WO 98/31700

46

PCT/US98/00807

according to published protocols (Jackson and Hunt, Meth. Enzymol. 96:50 (1983)). both cases, the reaction conditions were those recommended for use with Red Nova Reticulocyte-rich blood was obtained from Pel-Freez Biologicals (Rogers, AK). In either with purchased kits (Novagen, Madison, WI) or using extract prepared

DTT, 20 mM HEPES pH 7.6, 8 mM creatine phosphate, 25 µM in each amino acid Lysate (Novagen). Reactions consisted of 100 mM KCl, 0.5 mM MgOAc, 2 mM experiment but generally ranged from 50 nM to 1 μ M with the exception of 43-P (with the exception of methionine if 35 Met was used), and 40% v/v of lysate. Incubation was at 30°C for 1 hour. Template concentrations depended on the (Figure 6H) which was 4 μM. Ś

2

the amount of material present at each step of the purification and selection procedure. performed at a template concentration of $\sim 0.1~\mu M$ (1.25 nanomoles of template). In addition, 32P labeled template was included in the reaction to allow determination of For generation of the randomized pool, 10 ml of translation reaction was After translation at 30°C for one hour, the reaction was cooled on ice for 30-60 Isolation of Fusion with dT25 Streptavidin Agarose. After incubation, the translation reaction was diluted approximately 150 fold into isolation buffer (1.0 M NaCl, 0.1 M Tris chloride pH 8.2, 10 mM EDTA, 1 mM DTT) containing greater

- incubated with agitation at 4°C for one hour. The agarose was then removed from the washed with cold isolation buffer 2-4 times. The template was then liberated from the than a 10X molar excess of dT35-biotin-streptavidin agarose whose dT25 concentration mixture either by filtration (Millipore ultrafree MC filters) or centrifugation and was $\sim 10~\mu M$ (volume of slurry equal or greater than the volume of lysate) and 20
- NaOH, 1 mM EDTA. The eluent was immediately neutralized in 3M NaOAc pH 5.2, radioactivity recovered indicated approximately 50-70% of the input template was dT₂₅ streptavidin agarose by repeated washing with 50-100 µl aliquots of 15 mM 10 mM spermidine, and was ethanol precipitated. For the pool reaction, the total 25
- Isolation of Fusion with Thiopropyl Sepharose. Fusions containing

In the experiments described herein, isolation was either carried out directly from the translation reaction or following initial isolation of the fusion (e.g., with streptavidin cysteine can be purified using thiopropyl sepharose 6B as in Figure 13 (Pharmacia). agarose). For samples purified directly, a ratio of 1:10 (v/v) lysate to sepharose was

material from 5 ml of reaction mixture. Samples were diluted into a 50:50 (v/v) slurry containing DNase free RNase (Boehringer Mannheim) and incubated with rotation for 1-2 hours at 4°C to allow complete reaction. The excess liquid was removed, and the used. For the pool, 0.5 ml of sepharose slurry was used to isolate all of the fusion of thiopropyl sepharose in 1X TE 8.2 (10 mM Tris-Cl, 1 mM EDTA, pH 8.2)

mM EDTA. The fusion was then concentrated by a combination of evaporation under recovered by centrifugation or filtration. The fusions were eluted from the sepharose using a solution of 25-30 mM dithiothreitol (DTT) in 10 mM Tris chloride pH 8.2, 1 high vacuum and ethanol precipitation as described above. For the pool reaction, the sepharose was washed repeatedly with isolation buffer containing 20 mM DTT and 2

total radioactivity recovered indicated approximately 1% of the template was 15

hour at 4°C. The agarose was rinsed three times with cold isolation buffer, isolated via filtration, and the bound material eluted as above. Carrier tRNA was added, and the fusion product was ethanol precipitated. The sample was resuspended in TE pH For certain applications, dT23 was added to this eluate and rotated for 1 8.2 containing DNase free RNase A to remove the RNA portion of the template. 2

Beverly, MA).

2

mmunoprecipitation Reactions. Immunoprecipitations of peptides from translation reactions (Figure 10) were performed by mixing 4 µl of reticulocyte translation reaction, 2 μ l normal mouse sera, and 20 μ l Protein G + A agarose

NaH,PO,, 68 mM NaCl), dilution buffer (10 mM Tris chloride pH 8.2, 140 mM NaCl, c-myc monoclonal antibody 9E10 (Calbiochem, La Jolla, CA) and 15 µl of Protein G centrifugation at 2500 rpm for 15 minutes. The eluent was removed, and 10 µl of (Calbiochem, La Jolla, CA) with 200 µl of either PBS (58 mM Na2HPO,, 17 mM 1% v/v Triton X-100), or PBSTDS (PBS + 1% Triton X-100, 0.5% deoxycholate 0.1% SDS). Samples were then rotated for one hour at 4°C, followed by 22

ဓ္က

· WO 98/31700

PCT/US98/00807

was loaded on a denaturing PAGE as described by Schagger and von Jagow (Anal. A agarose was added and rotated for 2 hours at 4°C. Samples were then washed loading buffer (Calbiochem Product Bulletin) was added to the mixture, and 20 µl with two 1 ml volumes of either PBS, dilution buffer, or PBSTDS. 40 µl of gel

Biochem. 166:368 (1987)).

sepharose (Sigma), and 10 µl (1 µg) c-myc antibody 9E10 (Calbiochem), followed by Immunoprecipitations of fusions (as shown in Figure 11) were performed rotation for several hours at 4°C. After isolation, samples were washed, treated with by mixing 8 µl of reticulocyte translation reaction with 300 µl of dilution buffer (10 DNase free RNase A, labeled with polynucleotide kinase and ¹³P gamma ATP, and mM Tris chloride pH 8.2, 140 mM NaCl, 1% v/v Triton X-100), 15 µl protein G separated by denaturing urea PAGE (Figure 11). 2

England Nuclear, Boston, MA) and T4 polynucleotide kinase (New England Biolabs, were performed according to the manufacturers recommendation for Superscript II, dCTP was included in some reactions; in other reactions, reverse transcription was monitored using 5' ¹²P-labeled primers which were prepared using ¹³P aATP (New minutes (Gibco BRL, Grand Island, NY). To monitor extension, 50 µCi alpha 32P Reverse Transcription of Fusion Pool. Reverse transcription reactions except that the template, water, and primer were incubated at 70°C for only two

15

Triton X-100) and isolated by centrifugation. The first aliquot was reserved for use as a precolumn prior to the selection matrix. After resuspension of the second aliquot in Preparation of Protein G and Antibody Sepharose. Two aliquots of 50 µl dilution buffer, 40 µg of c-myc AB-1 monoclonal antibody (Oncogene Science) was sepharose was then purified by centrifugation for 15 minutes at 1500-2500 rpm in a dilution buffer (10 mM Tris chloride pH 8.2, 140 mM NaCl, 0.025% NaN,, 1% v/v added, and the reaction incubated overnight at 4°C with rotation. The antibody Protein G sepharose slurry (50 % solid by volume) (Sigma) were washed with microcentrifuge and washed 1-2 times with dilution buffer.

25

Selection. After isolation of the fusion and complementary strand

-49

synthesis, the entire reverse transcriptase reaction was used directly in the selection process. Two protocols are outlined here. For round one, the reverse transcriptase reaction was added directly to the antibody sepharose prepared as described above and incubated 2 hours. For subsequent rounds, the reaction is incubated ~2 hours with washed protein G sepharose prior to the antibody column to decrease the number of binders that interact with protein G rather than the immobilized antibody.

To elute the pool from the matrix, several approaches may be taken. The first is washing the selection matrix with 4% acetic acid. This procedure liberates the peptide from the matrix. Alternatively, a more stringent washing (e.g., using urea or another denaturant) may be used instead or in addition to the acetic acid approach.

PCR of Selected Fusions. Selected molecules are amplified by PCR using standard protocols as described above for construction of the pool.

10

SYNTHESIS AND TESTING OF BETA-GLOBIN FUSIONS

To synthesize a β-globin fusion construct, β-globin cDNA was generated from 2.5 μg globin mRNA by reverse transcription with 200 pmoles of primer 18.155 (5' GTG GTA TTT GTG AGC CAG) (SEQ ID NO: 29) and Superscript reverse transcriptase (Gibco BRL) according to the manufacturer's protocol. The primer sequence was complementary to the 18 nucleotides of β-globin 5' of the stop codon. To add a T7 promoter, 20 μl of the reverse transcription reaction was removed and

subjected to 6 cycles of PCR with primers 18.155 and 40.54 (5° TAA TAC GAC TCA CTA TAG GGA CAC TTG CTT TTG ACA CAA C) (SEQ ID NO: 30). The resulting "syn-β-globin" mRNA was then generated by T7 runoff transcription according to Milligan and Uhlenbeck (Methods Enzymol. 180:51 (1989)), and the RNA gel purified, electroeluted, and desalted as described herein. "LP-β-globin" was then generated from the syn-β-globin construct by ligation of that construct to 30-P according to the method of Moore and Sharp (Science 256:992 (1992)) using primer 20.262 (5° TTT TTT TTT TGG GTA TTT G) (SEQ ID NO: 31) as the splint. The product of the ligation reaction was then gel purified, electroeluted, and desalted as

above. The concentration of the final product was determined by absorbance at 260

· WO 98/31700

PCT/US98/00807

-50-

E.

These β -globin templates were then translated in <u>vitro</u> as described in Table 1 in a total volume of 25 µl each. Mg^{2+} was added from a 25 mM stock solution. All reactions were incubated at 30°C for one hour and placed at -20°C overnight. dT_{33} precipitable CPM's were then determined twice using 6 µl of lysate and averaged minus background.

TABLE

Translation Reactions with Beta-Globin Templates

To prepare the samples for gel analysis, 6 µl of each translation reaction was mixed with 1000 µl of Isolation Buffer (1 M NaCl, 100 mM Tris·Cl pH 8.2, 10 mM EDTA, 0.1 mM DTT), 1 µl RNase A (DNase Free, Boehringer Mannheim), and 20 µl of 20 µM dT₂₃ streptavidin agarose. Samples were incubated at 4°C for one hour with rotation. Excess Isolation Buffer was removed, and the samples were added to a Millipore MC filter to remove any remaining Isolation Buffer. Samples were then washed four times with 50 µl of H₂O, and twice with 50 µl of 15 mM NaOH, 1 mM EDTA. The sample (300 µl) was neutralized with 100 µl TE pH 6.8 (10 mM Tris·Cl, 1 mM EDTA), 1 µl of 1 mg/ml RNase A (as above) was added, and the samples were incubated at 37°C. 10 µl of 2X SDS loading buffer (125 mM Tris·Cl

was then added, and the sample was lyophilized to dryness and resuspended in 20 µl $\mathrm{H}_2\mathrm{O}$ and 1% β -mercaptoethanol. Samples were then loaded onto a peptide resolving pH 6.8, 2% SDS, 2% β-mercaptoethanol 20% glycerol, 0.001% bromphenol blue) gel as described by Schagger and von Jagow (Analytical Biochemistry 166:368

The results of these experiments are shown in Figures 15A and 15B. As (1987)) and visualized by autoradiography.

indicated in Figure 15A, 35S-methionine was incorporated into the protein portion of the syn-\beta-globin and LP-\beglobin fusions. The protein was heterogeneous, but one

strong band exhibited the mobility expected for β -globin mRNA. Also, as shown in Figure 15B, after dT2s isolation and RNase A digestion, no 35S-labeled material 2

remained in the syn- β -globin lanes (Figure 15B, lanes 2-4). In contrast, in the LP-ß-globin lanes, a homogeneously sized 35S-labeled product was observed.

obtained is expected to contain the 30-P linker fused to some portion of \beta-globin. The puromycin. This was confirmed by scintillation counting (see Table 1). The material These results indicated that, as above, a fusion product was isolated by oligonucleotide affinity chromatography only when the template contained a 3' fusion product appeared quite homogeneous in size as judged by gel analysis.

13

(Figures 15A and 15B, control lanes), it was difficult to determine the precise length of the protein portion of the fusion product. ನ

However, since the product exhibited a mobility very similar to natural \(\theta\)-globin

FURTHER OPTIMIZATION OF RNA-PROTEIN FUSION FORMATION

peptide chain from its tRNA to the puromycin moiety at the 3' end of the mRNA, is a formation of RNA-peptide fusions. Fusion formation, i.e., the transfer of the nascent Certain factors have been found to further increase the efficiency of

substantially enhanced by a post-translational incubation in elevated Mg2+ conditions between the mRNA and the puromycin moiety. In addition, long incubations (12-48 slow reaction that follows the initial, relatively rapid translation of the open reading (preferably, in a range of 50-100 mM) and/or by the use of a more flexible linker frame to generate the nascent peptide. The extent of fusion formation may be 23

· WO 98/31700

PCT/US98/00807

-52-

hours) at low temperatures (preferably,

that which occurs during incubation at 30°C. By combining these factors, up to 40% of the input mRNA may be converted to mRNA-peptide fusion products, as shown -20°C) also result in increased yields of fusions with less mRNA degradation than

experiments, puromycin-containing linker oligonucleotides were ligated to the 3' ends of mRNAs using bacteriophage T4 DNA ligase in the presence of complementary DNA splints, generally as described above. Since T4 DNA ligase prefers precise Synthesis of mRNA-Puromycin Conjugates. In these optimization

- base-pairing near the ligation junction and run-off transcription products with T7, T3, approximately 40% of runoff transcription products were ligated to the puromycin or SP6 RNA polymerase are often heterogeneous at their 3' ends (Nucleic Acids Research 15:8783 (1987)), only those RNAs containing the correct 3'-terminal nucleotide were efficiently ligated. When a standard DNA splint was used, 2
- RNA which was fully complementary to the corresponding region of the DNA splint. oligo. The amount of ligation product was increased by using excess RNA, but was particular theory, it appeared that the limiting factor for ligation was the amount of not increased using excess puromycin oligonucleotide. Without being bound to a 2

To allow ligation of those transcripts ending with an extra non-templated

20

- nucleotide at the 3' terminus (termed "N+1 products"), a mixture of the standard DNA splint with a new DNA splint containing an additional random base at the ligation exemplary myc RNA template (that is, RNA124) in the presence of such a mixed junction was used. The ligation efficiency increased to more than 70% for an
- utilized which lacked 3'-termini having any significant, stable secondary structure that would interfere with annealing to a splint oligonucleotide. In addition, because a high mRNA-puromycin conjugate formation was also further optimized by taking into concentration of salt sometimes caused failure of the ligation reaction, thorough account the following three factors. First, mRNAs were preferably designed or In addition to this modified DNA splint approach, the efficiency of 25

lesalting of the oligonucleotides using NAP-25 columns was preferably included as a step in the procedure. Finally, because the ligation reaction was relatively rapid and was generally complete within 40 minutes at room temperature, significantly longer incubation periods were not generally utilized and often resulted in unnecessary degradation of the RNA.

splint (e.g., 5'-TTTTTTTTTAGCGCAAGA) or a splint containing a random base puromycin-containing oligonucleotide was performed using either a standard DNA synthesized as follows. Ligation of the myc RNA sequence (RNA124) to the Using the above conditions, mRNA-puromycin conjugates were

(N) at the ligation junction (e.g., 5'-TTTTTTTTTTTNAGCGCAAGA). The reactions consisted of mRNA, the DNA splint, and the puromyon oligonucleotide in a molar ratio of 1.0:1.5-2.0:1.0. A mixture of these components was first heated at 94 $^{\circ}$ C MgCl,, 10 mM DTT, 1 mM ATP, 25 $\mu g/ml$ BSA, 15 μM puromycin oligo, 15 μM performed for one hour at room temperature in 50 mM Tris-HCl (pH 7.5), 10 mM for 1 minute and then cooled on ice for 15 minutes. Ligation reactions were 15

extracted with phenol/chloroform. Full length conjugates were purified by denaturing mRNA, 22.5-30 μ M DNA splint, RNasin inhibitor (Promega) at 1 U/ μ l, and 1.6 units of T4 DNA ligase per picomole of puromycin oligo. Following incubation, EDTA was added to a final concentration of 30 mM, and the reaction mixtures were PAGE and isolated by electroelution. ಜ

General Reticulocyte Translation Conditions. In addition to improving the different commercial sources (Novagen, Madison, WI; Amersham, Arlington Heights, synthesis of the mRNA-puromycin conjugate, translation reactions were also further optimized as follows. Reactions were performed in rabbit reticulocyte lysates from

Mg(OAc), 1 mM ATP, 0.2 mM GTP, 25 μM of each amino acid (0.7 μM methionine if 35-Met was used), RNasin at 1 U/µl, and 60% (v/v) lysate. The final concentration Madison, WI). A typical reaction mixture (25 µl final volume) consisted of 20 mM IL; Boehringer Mannheim, Indianapolis, IN; Ambion, Austin, TX; and Promega, HEPES pH 7.6, 2 mM DTT, 8 mM creatine phosphate, 100 mM KC1, 0.75 mM of template was in the range of 50 nM to 800 nM. For each incubation, all 25

30

· WO 98/31700

PCT/US98/00807

mixed thoroughly by gentle pipetting and incubated at 30°C to start translation. The optimal concentrations of Mg2+ and K+ varied within the ranges of 0.25 mM - 2 mM thawed immediately before use. After addition of lysate, the reaction mixture was components except lysate were mixed carefully on ice, and the frozen lysate was

determined in preliminary experiments. Particularly for poorly translated mRNAs, the concentrations of hemin, creatine phosphate, tRNA, and amino acids were also sometimes optimized. Potassium chloride was generally preferred over potassium acetate for fusion reactions, but a mixture of KCl and KOAc sometimes produced and 75 mM - 200 mM, respectively, for different mRNAs and was preferably

After translation at 30°C for 30 to 90 minutes, the reaction was cooled on ice for 40 minutes, and Mg2+ was added. The final concentration of Mg2+ added at

better results.

2

this step was also optimized for different mRNA templates, but was generally in the

visualize the labeled fusion products, $2\,\mu l$ of the reaction mixture was mixed with $4\,\mu l$ templates) or an 8% tricine SDS-polyacrylamide gel (for 35-Met-labeled templates). mixture was then loaded onto a 6% glycine SDS-polyacrylamide gel (for 32P-labeled range of 50 mM to 100 mM (with 50 mM being preferably used for pools of mixed templates). The resulting mixture was incubated at -20°C for 16 to 48 hours. To loading buffer, and the mixture was heated at 75°C for 3 minutes. The resulting 15

As an alternative to this approach, the fusion products may also be isolated using dT23 streptavidin agarose or thiopropyl sepharose (or both), generally as described herein. 20

was added after post-translational incubation, and the reaction mixture was desalted conjugate for subsequent analysis by SDS-PAGE, an appropriate amount of EDTA To remove the RNA portion of the RNA-linker-puromycin-peptide

appropriate amount of complementary DNA splint), and the mixture was incubated at 4°C for 45 minutes. RNase H was then added, and digestion was performed at 37°C HCl, pH 7.8, 30 mM (NH₄),SO₄, 8 mM MgCl₂, 1.5 mM β-mercaptoethanol, and an (approximately 25 µl total) was mixed with 18 µl of RNase H buffer (30 mM Trisusing a microcon-10 (or microcon-30) column. 2 µl of the resulting mixture 25

for 20 minutes. 30

-55-

Quality of Puromycin Oligo. The quality of the puromycin oligonucleotide was also important for the efficient generation of fusion products.

The coupling of 5'-DMT, 2'-succinyl, N-Influoroacetyl puromycin with CPG was not as efficient as the coupling of the standard nucleotides. As such, the coupling reaction

s was carefully monitored to avoid the formation of CPG with too low a concentration of coupled puromycin, and unreacted amino groups on the CPG were fully quenched to avoid subsequent synthesis of oligonucleotides lacking a 3'-terminal puromycin. It was also important to avoid the use of CPG containing very fine mesh particles, as these were capable of causing problems with valve clogging during subsequent

10 automated oligonucleotide synthesis steps.

In addition, the synthesized puromycin oligo was preferably tested before large scale use to ensure the presence of puromycin at the 3' end. In our experiments, no fusion was detected if puromycin was substituted with a deoxyadenosine containing a primary amino group at the 3' end. To test for the presence of 3'

hydroxyl groups (i.e., the undesired synthesis of oligos lacking a 3'-terminal puromycin), the puromycin oligo may first be radiolabeled (e.g., by 5'-phosphorylation) and then used as a primer for extension with terminal deoxynucleotidyl transferase. In the presence of a 3'-terminal puromycin moiety, no extension product should be observed.

translation reaction was relatively rapid and was generally completed within 25
minutes at 30°C. The fusion reaction, however, was slower. When a standard linker
(dA₂₇dCdCP) was used at 30°C, fusion synthesis reached its maximum level in an
additional 45 minutes. The post-translational incubation could be carried out at lower
temperatures, for example, room temperature, 0°C, or -20°C. Less degradation of the
mRNA template was observed at -20°C, and the best fusion results were obtained
after incubation at -20°C for 2 days.

The Effect of Mg²⁺ Concentration. A high concentration of Mg²⁺ in the post-translational incubation greatly stimulated fusion formation. For example, for the myc RNA template described above, a 3-4 fold stimulation of fusion formation

20

· WO 98/31700

PCT/US98/00807

-96-

was observed using a standard linker (dA₂₇dCdCP) in the presence of 50 mM Mg²⁺ during the 16 hour incubation at -20°C (Figure 17, compare lanes 3 and 4). Similarly, efficient fusion formation was also observed using a post-translational incubation in the presence of a 50-100 mM Mg²⁺ concentration when the reactions were carried out

5 at room temperature for 30-45 minutes.

Linker Length and Sequence. The dependence of the fusion reaction on the length of the linker was also examined. In the range between 21 and 30 nucleotides (n=18-27), little change was seen in the efficiency of the fusion reaction (as described above). Shorter linkers (e.g., 13 nucleotides in length) resulted in lower fusion. In addition, although particular linkers of greater length (that is, of 45 nucleotides and 54 nucleotides) also resulted in somewhat lower fusion efficiences, it remains likely that yet longer linkers may also be used to optimize the efficiency of

01

With respect to linker sequence, substitution of deoxyribonucleotide residues near the 3' end with ribonucleotide residues did not significantly change the fusion efficiency. The dCdCP (or rCrCP) sequence at the 3' end of the linker was, however, important to fusion formation. Substitution of dCdCP with dUdUP reduced the efficiency of fusion formation significantly.

the fusion reaction.

15

Linker Flexibility. The dependence of the fusion reaction on the flexibility of the linker was also tested. In these experiments, it was determined that the fusion efficiency was low if the rigidity of the linker was increased by annealing with a complementary oligonucleotide near the 3' end. Similarly, when a more flexible linker (for example, dA₂₁C₉C₉C₉dAdCdCP, where C₉ represents HO(CH₂CH₂O)₃PO₃) was used, the fusion efficiency was significantly improved. Compared to the standard

20

linker (dA₂,dCdCP), use of the more flexible linker (dA₂,C₅C₅C₅dAdCdCP) improved the fusion efficiency for RNA124 more than 4-fold (Figure 17, compare lanes 1 and 9). In addition, in contrast to the template with the standard linker whose post-translation fusion proceeded poorly in the absence of a high concentration of Mg²⁺ (Figure 17, lane 3 and 4), the template with the flexible linker did not require elevated

25

30 Mg2+ to produce a good yield of fusion product in an extended post-translational

incubation at -20°C (Figure 17, compare lanes 11 and 12). This linker, therefore, was very useful if post-translational additions of high concentrations of ${\rm Mg^{2^*}}$ were not desired. In addition, the flexible linker also produced optimal fusion yields in the presence of elevated Mg2+.

- Ouantitation of Fusion Efficiency. Fusion efficiency may be expressed as either the fraction of translated peptide converted to fusion product, or the fraction of input template converted to fusion product. To determine the fraction of translated peptide converted to fusion product, 35S-Met labeling of the translated peptide was utilized. In these experiments, when a $\mathrm{d}A_{27}\mathrm{d}\mathrm{Cd}\mathrm{CP}$ or $\mathrm{d}A_{27}\mathrm{r}\mathrm{Cr}\mathrm{CP}$ linker was used,
- about 3.5% of the translated peptide was fused to its mRNA after a 1 hour translation incubation at 30°C. This value increased to 12% after overnight incubation at -20°C. concentration of Mg2*, more than 50% of the translated peptide was fused to the When the post-translational incubation was carried out in the presence of a high 2
- For a template with a flexible linker, approximately 25% of the translated increased to over 50% after overnight incubation at -20°C and to more than 75% if peptide was fused to the template after 1 hour of translation at 30°C. This value the post-translational incubation was performed in the presence of $50\,\mathrm{mM}\,\mathrm{Mg}^{2^+}$. 15

presence of 50 mM Mg2+. The best results were achieved using lysates obtained from When the flexible linker was used and post-translational incubation was performed at template was converted to mRNA-peptide fusion when the concentration of the input RNA template was 800, 400, 200, 100, and 50 nM, respectively (Figure 18). Similar .20°C without addition of Mg^{2*}, about 20%, 40%, 40%, 35%, and 20% of the input product, the translations were performed using 32P-labeled mRNA-linker template. results were obtained when the post-translational incubation was performed in the To determine the percentage of the input template converted to fusion Novagen, Amersham, or Ambion (Figure 19). 25

20

cases, the template may be labeled at the 5' end of the linker with 32P. The long RNA The mobility differences between mRNAs and mRNA-peptide fusions as measured by SDS-PAGE may be very small if the mRNA template is long. In such

30

· WO 98/31700

PCT/US98/00807

portion may then be digested with RNase H in the presence of a complementary DNA quantitation of the ratio of unmodified linker to linker-peptide fusion. Compared to RNase A digestion, which produces 3'-P and 5'-OH, this approach has the advantage splint after translation/incubation, and the fusion efficiency determined by

that the ³²P at the 5' end of the linker is not removed.

reaction that occurred at -20°C in the presence of Mg2+ was intra- or intermolecular in incubation. In addition to the above experiments, we tested whether the fusion Intramolecular vs. Intermolecular Fusion During Post-Translational nature. Free linker (dA27dCdCP or dA21C3C3C3dAdCdCP, where C9 is -

- peptide product, suggesting that post-translational fusion occurred primarily between incubation conditions described above. In these experiments, no detectable amount O(CH₂CH₂O)₃PO₂-) was coincubated with a template containing a DNA linker, but (that is less than 2% of the normal level) of 35. Met was incorporated into linkerwithout puromycin at the 3' end, under the translation and post-translational the nascent peptide and the mRNA bound to the same ribosome. 01
- concentration of Mg2+, fusion efficiencies were increased to approximately 40% of Optimization Results. As illustrated above, by using the flexible linker input mRNA. These results indicated that as many as 1014 molecules of mRNAand/or performing the post-translational incubation in the presence of a high

2

producing pools of mRNA-peptide fusions of very high complexity for use in in vitro peptide fusion could be generated per ml of in vitro translation reaction mix, selection experiments. 20

SELECTIVE ENRICHMENT OF RNA-PROTEIN FUSIONS

from a complex pool of random sequence fusions on the basis of the encoded peptide. amount of random sequence pool (that is, LP160). These mixtures were translated, selection and evolution experiments by enriching a particular RNA-peptide fusion We have demonstrated the feasibility of using RNA-peptide fusions in In particular, we prepared a series of mixtures in which a small quantity of known sequence (in this case, the long myc template, LP154) was combined with some 25

selectively immunoprecipitated with anti-myc monoclonal antibody (Figure 16A). To measure the enrichment obtained in this selective step, aliquots of the mixture of and the RNA-peptide fusion products selected by oligonucleotide and disulfide affinity chromatography as described herein. The myc-template fusions were

amplified by PCR in the presence of a radiolabeled primer. The amplified DNA was digested with a restriction endonuclease that cut the myc template sequence but not cDNA/mRNA-peptide fusions from before and after the immunoprecipitation were indicated that the myc sequence was enriched by 20-40 fold relative to the random he pool (Figures 16B and 16C). Quantitation of the ratio of cut and uncut DNA library by immunoprecipitation. 9

These experiments were carried out as follows.

1-6 contained the amounts of templates described in Table 2. All numbers in Table 2 Translation Reactions. Translation reactions were performed generally as -20°C. Two versions of six samples were made, one containing 35S methionine and one containing cold methionine added to a final concentration of 52 μM. Reactions according to the manufacturer's specifications (Novagen) and frozen overnight at described above. Specifically, reactions were performed at 30°C for one hour represent picomoles of template per 25 µl reaction mixture.

15

12

Selection	LP160	i	i	20	20	20	20
Template Ratios Used in Doped Selection	LP154	ı	S		0.1	0.01	1
Template R	Reaction	_	2	6	4	\$	9
20					25		

resuspended as a 1:1 (v/v) slurry in TE 8.2. 3' biotinyl T25 synthesized using Bioteg Preparation of dT2, Streptavidin Agarose. Streptavidin agarose (Pierce) was washed three times with TE 8.2 (10 mM Tris Cl pH 8.2, 1 mM EDTA) and

30

· WO 98/31700

PCT/US98/00807

CPG (Glen Research) was then added to the desired final concentration (generally 10 streptavidin agarose was then washed three times with TE 8.2 and stored at 4°C until or 20 µM), and incubation was carried out with agitation for 1 hour. The dT23

Purification of Templates from Translation Reactions. To purify templates from translation reactions, 25 µl of each reaction was removed and added to 7.5 ml of cluted from the dT_{15} agarose by washing with 2 volumes of 100 μ l H_2 0, 0.1 mM DTT, for one hour with rotation. The tubes were centrifuged and the eluent removed. One ml of Isolation Buffer was added, the slurry was resuspended, and the mixtures were and 125 μ l of 20 μ M dT₃₅ streptavidin agarose. This solution was incubated at 4°C Isolation Buffer (1 M NaCl, 100 mM Tris-Cl pH 8.2, 10 mM EDTA, 0.1 mM DTT) identical reactions were then combined in a filter Millpore MC filter unit and were transferred to 1:5 ml microcentrifuge tubes. The samples were then washed four imes with 1 ml aliquots of ice cold Isolation Buffer. Hot and cold samples from and 2 volumes of 15 mM NaOH, 1 mM EDTA. 2

sepharose (Pharmacia), and incubation was carried out at 4°C with rotation for 1 hour. removed. One µl of 1 M DTT was added to the solid (total volume approximately 20-30 μl), and the sample was incubated for several hours, removed, and washed four The samples were then washed with three 1 ml volumes of TE 8.2 and the eluent To this eluent was added 40 µl of a 50% slurry of washed thiopropyl

mg/ml, Boehringer Mannheim), and 170 µl 100% EtOH, incubating for 30 minutes at precipitated by adding 6 µl 3 M NaOAc pH 5.2, 10 mM spermine, 1 µl glycogen (10 thiopyridone as judged by UV absorbance. 50 µl of this sample was ethanol -70°C, and centrifuging for 30 minutes at 13,000 rpm in a microcentrifuge. times with 20 μ 1 H₂O (total volume 90 μ 1). The eluent contained 2.5 mM . 20 25

follows. For the ethanol precipitated samples, 30 µl of resuspended template, H₂O to for 5 minutes and cooled on ice. To this sample, 16 μ l of first strand buffer (250 mM 48 μl, and 200 picomoles of primer 21.103 (SEQ ID NO: 22) were annealed at 70°C performed on both the ethanol precipitated and the thiopyridone eluent samples as Reverse Transcriptase Reactions. Reverse transcription reactions were

were performed as above. After incubation for one hour, like numbered samples were Island, NY), 8 µl 100 mM DTT, and 4 µl 10 mM NTP were added and equilibrated at rris-Cl pH 8.3, 375 mM KC1, and 15 mM MgCl₂; available from Gibco BRL, Grand was added. H_2O (13 μ l) was added to the TP sepharose eluent (35 μ l), and reactions combined (total volume 160 µl). 10 µl of sample was reserved for the PCR of each 42°C, and 4 μl Superscript II reverse transcriptase (Gibco BRL, Grand Island, NY) unselected sample, and 150 µl of sample was reserved for immunoprecipitation.

two hours at 4°C. The conjugate was precipitated by microcentrifugation at 2500 rpm antibody (2 $\mu g_{\rm s}$ 12 picomoles) were added, and the sample incubated with rotation for aliquots of ice cold Dilution Buffer. The sample was then washed with 1 ml ice cold 10 mM Tris-Cl, pH 8.2, 100 mM NaCl. The bound fragments were removed using 3 (Calbiochem, La Jolla, CA), and precleared by incubation at 4°C with rotation for 1 reverse transcription reaction was added to 1 ml of Dilution Buffer (10 mM Tris-Cl, for 5 minutes, the eluent removed, and the conjugate washed three times with 1 ml hour. The eluent was removed, and 20 µl G/A conjugate and 20 µl of monoclonal pH 8.2, 140 mM NaCl, 1% v/v Triton X-100) and 20 µl of Protein G/A conjugate Immunoprecipitation. To carry out immunoprecipitations, 170 µl of volumes of frozen 4% HOAc, and the samples were lyophilized to dryness.

15

10

entirety of the selected material and incubating for 5 minutes each at 55°C, 70°C, and PCR of Selected and Unselected Samples. PCR reactions were carried out 42.108, 200 μM dNTP in PCR buffer plus Mg^{2*} (Boehringer Mannheim), and 2 μl of PCR were performed on unselected sample number 2, and 19 cycles were performed 90°C to destroy any RNA present in the sample. The samples were then evaporated by adding 20 µl of concentrated NH4OH to 10 µl of the unselected material and the Taq polymerase (Boehringer Mannheim)) were added to each sample. 16 cycles of to dryness using a speedvac. $200~\mu l$ of PCR mixture (1 μM primers 21.103 and on all other samples.

25

2

21.103 according to Table 3, and purified twice individually using Wizard direct PCR Samples were then amplified in the presence of 5' 32P-labeled primer purification kits (Promega) to remove all primer and shorter fragments

· WO 98/31700

Ġ

PCT/US98/00807

TABLE 3

Amplification of Selected and Unselected PCR Samples

Cycles 5	4 v	5 2 4	n vo	5	4	S	7	7	7
Volume . 20 µl	5 րվ 20 րվ	20 µl	20 ml	20 µl	Σμ1	20 µl	20 µl	20 µl	20 µl
Type unselected	unselected unselected	unselected	unselected unselected	selected	selected	selected	selected	selected	selected
Sample 1	3 2	4 '	o 9	-	7	n	4	5	9
٠									-
'n			10					15	

of AlwnI (5 units, New England Biolabs) was added to each reaction. Samples were buffer (1 ml ultrapure formamide (USB), 20 µl 0.5 M EDTA, and 20 µl 1 M NaOH), reactions according to Table 4. The total volume of each reaction was 25 $\mu l.\,$ 0.5 μl PCR reactions was added in equal amounts (by cpm of sample) to restriction digest incubated at 37°C for 1 hour, and the enzyme was heat inactivated by a 20 minute Restriction Digests. 32P labeled DNA prepared from each of the above incubation at 65°C. The samples were then mixed with 10 μl denaturing loading neated to 90°C for 1 minute, cooled, and loaded onto a 12% denaturing

20

polyacrylamide gel containing 8M urea. Following electrophoresis, the gel was fixed with 10% (v/v) HOAc, 10% (v/v) MeOH, H₂O. 25

Restriction Digest Conditions w/ AlwnI

Total volume		25 µl	25 թվ	25 րվ	25 μl	25 μl
Volume DNA	added to reaction	20 µl	4 µl	20 µl	20 µl	4 µl
Type		unselected	unselected	unselected	unselected	unselected
Sample			2	3	4	5
ć	200					35

8
5
8
9
9
*

-63

25 H 20 μl 20 μl 8 μl selected selected selected selected elected selected 2 W 4 W 4

Quantitation of Digest. The amount of myc versus pool DNA present in a of material present in each band was determined as the integrated volume of identical sample was quantitated using a phosphorimager (Molecular Dynamics). The amount

used: (1) an average of identical squares outside the area where counts occurred on the gel; (2) the com present in the unselected pool lane where the myc band should calculated as the volume minus the background. Three values of background were rectangles drawn around the gel bands. The total cpm present in each band was 2

lanes. Lanes 2, 3, and 4 of Figures 16B and 16C demonstrate enrichment of the target reproduced the closest value to the 10-fold template increments between unselected appear (no band appears at this position on the gel); and (3) a normalized value that (unselected/selected) yielded the largest values (17, 43, and 27 fold using methods versus the pool sequence. The demonstrable enrichment in lane 3 15

1-3, respectively) due to the optimization of the signal to noise ratio for this sample. These results are summarized in Table 5. 20

Enrichment of Myc Template vs. Pool

Lane 4 (2000)	5.7	39	10.2
Lane 3 (200)	16.6	43	27
Lane 2 (20)	7.0	10.4	8.7
Method	_	2	3

25

method (2) above. In these experiments, similar results were obtained; enrichments of In a second set of experiments, these same PCR products were purified once using Wizard direct PCR purification kits, and digests were quantitated by

8

· WO 98/31700

PCT/US98/00807

4

10.7, 38, and 12 fold, respectively, were measured for samples equivalent to those in lanes 2, 3, and 4 above.

USE OF PROTEIN SELECTION SYSTEMS

orms of naturally-occurring sequences, or may be partly or fully synthetic sequences. diagnostic, or industrial problems. This selection technology is useful for improving functions. These proteins may be naturally-occurring sequences, may be altered applications in any area where protein technology is used to solve therapeutic, or altering existing proteins as well as for isolating new proteins with desired The selection systems of the present invention have commercial

RNA-protein fusion technology described herein is useful for the isolation of proteins with specific binding (for example, ligand binding) properties. Proteins exhibiting Isolation of Novel Binding Reagents. In one particular application, the monoclonal antibody technology. Antibody-type reagents isolated by this method nighly specific binding interactions may be used as non-antibody recognition reagents, allowing RNA-protein fusion technology to circumvent traditional 2 15

may be used in any area where traditional antibodies are utilized, including diagnostic

and therapeutic applications.

vitro, eliminating the need for techniques such as cell-fusion or phage display. In one used to improve human or humanized antibodies for the treatment of any of a number libraries (Ward et al., Nature 341:544 (1989); and Goulot et al., J. Mol. Biol. 213:617 of diseases. In this application, antibody libraries are developed and are screened in improvement of Human Antibodies. The present invention may also be important application, the invention is useful for improving single chain antibody

20

may contain a totally randomized cassette (to maximize the complexity of the library). To screen for improved antibody molecules, a pool of candidate molecules are tested (1990)). For this application, the variable region may be constructed either from a human source (to minimize possible adverse immune reactions of the recipient) or for binding to a target molecule (for example, an antigen immobilized as shown in Figure 2). Higher levels of stringency are then applied to the binding step as the 23

such as number of wash steps, concentration of excess competitor, buffer conditions, selection progresses from one round to the next. To increase stringency, conditions length of binding reaction time, and choice of immobilization matrix are altered.

potential applications, including the isolation of anti-autoimmune antibodies, immune indirectly for the design of standard antibodies. Such antibodies have a number of suppression, and in the development of vaccines for viral diseases such as ADDS. Single chain antibodies may be used either directly for therapy or

2

example, direct isolation may be carried out by selecting for covalent bond formation binding to a chemical analog of the catalyst's transition state. In another particular previously for the isolation of novel catalytic RNAs and DNAs, and, in the present Isolation of New Catalysis. The present invention may also be used to example of this approach, a catalyst may be isolated indirectly by selecting for invention, is used for the isolation of novel protein enzymes. In one particular with a substrate (for example, using a substrate linked to an affinity tag) or by select new catalytic proteins. In vitro selection and evolution has been used

2

cleavage (for example, by selecting for the ability to break a specific bond and thereby This approach to the isolation of new catalysts has at least two important iberate catalytic members of a library from a solid support).

12

- Engng. News 68:26 (1990)). First, in catalytic antibody technology, the initial pool is limitation, of variants of known enzymatic structures or protein scaffolds. In addition, the isolation of catalytic antibodies generally relies on an initial selection for binding advantages over catalytic antibody technology (reviewed in Schultz et al., J. Chem. generally limited to the immunoglobulin fold; in contrast, the starting library of RNA-protein fusions may be either completely random or may consist, without 20
 - antibodies; again, in contrast, direct selection for catalysis is possible using an RNA-protein fusion library approach, as previously demonstrated using RNA to transition state reaction analogs followed by laborious screening for active transition-state-analog and direct selection approaches may be combined. libraries. In an alternative approach to isolating protein enzymes, the 52

Enzymes obtained by this method are highly valuable. For example, there

30

· WO 98/31700

PCT/US98/00807

99

improved chemical processes to be developed. A major advantage of the invention is surrently exists a pressing need for novel and effective industrial catalysts that allow novel enzymes or improved variants of existing enzymes that can carry out highly example, to in vivo conditions. The invention therefore facilitates the isolation of that selections may be carried out in arbitrary conditions and are not limited, for specific transformations (and thereby minimize the formation of undesired

S

byproducts) while functioning in predetermined environments, for example,

environments of elevated temperature, pressure, or solvent concentration.

ligated (for example, using the techniques described above for the generation of LP77, each of the candidate cDNAs, a peptide acceptor (for example, as a puromycin tail) is An In Vitro Interaction Trap. The RNA-protein fusion technology is also desired source (for example, by the method of Ausubel et al., supra, chapter 5). To protein-protein interactions. By this method, a cDNA library is generated from a useful for screening cDNA libraries and cloning new genes on the basis of 2

LP154, and LP160). RNA-protein fusions are then generated as described herein, and UTR regions may be avoided in this process by either (i) adding suppressor tRNA to particular molecules is then tested as described above. If desired, stop codons and 3' he ability of these fusions (or improved versions of the fusions) to interact with allow readthrough of the stop regions, (ii) removing the release factor from the 12

translation reaction by immunoprecipitation, (iii) a combination of (i) and (ii), or (iv) removal of the stop codons and 3' UTR from the DNA sequences. 20

The fact that the interaction step takes place in vitto allows careful control

of the reaction stringency, using nonspecific competitor, temperature, and ionic

- conformers of the same molecule. This approach is useful for both the cloning and (e.g., ATP vs. ATPgS) provides for selections that discriminate between different functional identification of many proteins since the RNA sequence of the selected conditions. Alteration of normal small molecules with non-hydrolyzable analogs addition, the technique is useful for identifying functions and interactions of the binding partner is covalently attached and may therefore be readily isolated. In 22
- ~50-100,000 human genes, whose sequences are currently being determined by the 30

-67-

Human Genome project.

USE OF RNA-PROTEIN FUSIONS IN A MICROCHIP FORMAT

"DNA chips" consist of spatially defined arrays of immobilized oligonucleotides or cloned fragments of cDNA or genomic DNA, and have applications such as rapid sequencing and transcript profiling. By annealing a mixture of RNA-protein fusions (for example, generated from a cellular DNA or RNA pool), to such a DNA chip, it is possible to generate a "protein display chip," in which each spot corresponding to one immobilized sequence is capable of annealing to its corresponding RNA sequence in the pool of RNA-protein fusions. By this approach, the corresponding protein is immobilized in a spatially defined manner because of its linkage to its own mRNA, and chips containing sets of DNA sequences display the corresponding set of proteins. Alternatively, peptide fragments of these proteins may be displayed if the fusion library is generated from smaller fragments of cDNAs or genomic DNAs.

2

transferases). By incubating the protein display chip with the enzyme of interest and a enzyme may be readily determined. In addition, the use of this approach with ordered ocation and hence the identity of those proteins that are substrates for the modifying with a protein display chip. By this approach, the identity of proteins that are able to example, they represent powerful tools for the identification of previously unknown bind the probe protein are determined from the location of the spots on the chip that displays of small peptides allows the further localization of such modification sites. labeled (for example, with a fluorescent dye), and the labeled protein is incubated protein-protein interactions. In one specific format, a probe protein is detectably Such ordered displays of proteins and peptides have many uses. For modifying enzymes (for example, protein kinases, acyl transferases, and methyl radioactively labeled substrate, followed by washing and autoradiography, the become labeled due to binding of the probe. Another application is the rapid determination of proteins that are chemically modified through the action of 20 25 15

Protein display technology may be carried out using arrays of nucleic acids

· WO 98/31700

ď.

PCT/US98/00807

(including RNA, but preferably DNA) immobilized on any appropriate solid support. Exemplary solid supports may be made of materials such as glass (e.g., glass plates), silicon or silicon-glass (e.g., microchips), or gold (e.g., gold plates). Methods for attaching nucleic acids to precise regions on such solid surfaces, e.g.,

- photolithographic methods, are well known in the art, and may be used to generate solid supports (such as DNA chips) for use in the invention. Exemplary methods for this purpose include, without limitation, Schena et al., Science 270:467-470 (1995); Kozal et al., Nature Medicine 2:753-759 (1996); Cheng et al., Nucleic Acids Research 24:380-385 (1996); Lipshutz et al., BioTechniques 19:442-447 (1995); Pease et al.,
 - Proc. Natl. Acad. Sci. USA 91:5022-5026 (1994); Fodor et al., Nature 364:555-556
 Pirrung et al., U.S. Patent No. 5,143,854; and Fodor et al., WO 92/10092.

WO 98/31700

PCT/US98/00807

-69

Claims

- 1. A method for the selection of a desired protein, comprising the steps of:
- a) providing a population of candidate RNA molecules, each of which comprises a translation initiation sequence and a start codon operably linked to a
- candidate protein coding sequence and each of which is operably linked to a peptide acceptor at the 3' end of said candidate protein coding sequence;
- b) in vitro or in situ translating said candidate protein coding sequences to produce a population of candidate RNA-protein fusions; and
- c) selecting a desired RNA-protein fusion, thereby selecting said desired
- 10 protein.
- A method for the selection of a DNA molecule which encodes a desired protein, comprising the steps of:
- a) providing a population of candidate RNA molecules, each of which comprises a translation initiation sequence and a start codon operably linked to a candidate protein coding sequence and each of which is operably linked to a peptide

15

- acceptor at the 3' end of said candidate protein coding sequence;
 b) in <u>vitro</u> or in <u>sith</u> translating said candidate protein coding sequences to
- produce a population of candidate RNA-protein fusions;
- c) selecting a desired RNA-protein fusion; and
- 20 d) generating from said RNA portion of said fusion a DNA molecule which encodes said desired protein.
- A method for the selection of a protein having an altered function relative to a reference protein, comprising the steps of:

a) producing a population of candidate RNA molecules from a population

25 of DNA templates, said candidate DNA templates each having a candidate protein coding sequence which differs from said reference protein coding sequence, said RNA molecules each comprising a translation initiation sequence and a start codon operably

· WO 98/31700

PCT/US98/00807

-70

linked to said candidate protein coding sequence and each being operably linked to a peptide acceptor at the 3' end;

- b) in vito or in situ translating said candidate protein coding sequences to produce a population of candidate RNA-protein fusions; and
- 5 c) selecting an RNA-protein fusion having an altered function, thereby selecting said protein having said altered function.
- 4. A method for the selection of a DNA molecule which encodes a protein having an altered function relative to a reference protein, comprising the steps of:
- a) producing a population of candidate RNA molecules from a population of candidate DNA templates, said candidate DNA templates each having a candidate protein coding sequence which differs from said reference protein coding sequence, said RNA molecules each comprising a translation initiation sequence and a start codon operably linked to said candidate protein coding sequence and each being operably linked to a peptide acceptor at the 3' end;
- b) in vitro or in situ translating said candidate protein coding sequences to produce a population of RNA-protein fusions;
- c) selecting an RNA-protein fusion having an altered function; and
- d) generating from said RNA portion of said fusion a DNA molecule
 - 20 which encodes said protein having said altered function.
- 5. A method for the selection of a desired RNA, comprising the steps of:
- a) providing a population of candidate RNA molecules, each of which comprises a translation initiation sequence and a start codon operably linked to a
- candidate protein coding sequence and each of which is operably linked to a peptide acceptor at the 3' end of said candidate protein coding sequence;
- b) in vitto or in situ translating said candidate protein coding sequences to produce a population of candidate RNA-protein fusions; and
- c) selecting a desired RNA-protein fusion, thereby selecting said desired

. WO 98/31700

PCT/US98/00807

-71-

RNA.

- 6. The method of any of claims 1-5, wherein said peptide acceptor is puromycin. \cdot
- 7. The method of any of claims 1-5, wherein each of said candidate RNA molecules further comprises a pause sequence or further comprises a DNA or DNA analog sequence covalently bonded to the 3' end of said RNA molecule.
- 8. The method of any of claims 1-5, wherein said population of candidate RNA molecules comprises at least 10^{13} different RNA molecules.
- 9. The method of any of claims 1-5, wherein said in vitro translation
- 10 reaction is carried out in a lysate prepared from a cukaryotic cell or portion thereof.
- 10. The method of claim 9, wherein said in vitro translation reaction is carried out in a reticulocyte lysate.
- The method of claim 9, wherein said in <u>vitro</u> translation reaction is carried out in a wheat germ lysate.
- 15 12. The method of any of claims 1-5, wherein said in vitto translation reaction is carried out in a lysate prepared from a bacterial cell or portion thereof.
- 13. The method of any of claims 1-5, wherein said selection step comprises binding of said desired protein to an immobilized binding partner.
- 14. The method of any of claims 1-5, wherein said selection stepcomprises assaying for a functional activity of said desired protein.

· WO 98/31700

PCT/US98/00807

-72-

- The method of claims 2 or 4, wherein said DNA molecule is amplified.
- 16. The method of claims 1, 3, or 5, wherein said method further comprises repeating step (a) through (c).
- 17. The method of claims 2 or 4, wherein said method further comprises transcribing an RNA molecule from said DNA molecule and repeating steps (a) through (d).
- 18. The method of any of claims 1-5, wherein said RNA is covalently bonded though an amide bond to said protein in said RNA-protein fusion.
- 10 19. The method of any of claims 1-5, wherein said RNA is covalently bonded to said protein in said RNA-protein fusion, said covalent bond being resistant to cleavage by a ribosome.
- 20. The method of any of claims 1-5, wherein, following the in vitro translating step, an incubation is carried out in the presence of 50-100 mM ${
 m Mg^{2^*}}$:
- 15 21. The method of any of claims 1-5, wherein said RNA-protein fusion further comprises a nucleic acid or nucleic acid analog sequence positioned proximal to said peptide acceptor which increases flexibility.
- 22. An RNA-protein fusion selected by any of the methods of claims 1-5.
- 23. A molecule comprising a ribonucleic acid covalently bonded though
- 20 an amide bond to a protein.
- 24. The molecule of claim 23, wherein said protein is encoded by said

· WO 98/31700

PCT/US98/00807

-73

ribonucleic acid.

- The molecule of claim 23, wherein said ribonucleic acid is a messenger RNA.
- 26. A molecule comprising a ribonucleic acid covalently bonded to a5 protein, said protein being entirely encoded by said ribonucleic acid.
- The molecule of claim 26, wherein said ribonucleic acid is messenger.
 RNA.
- 28. A molecule comprising a ribonucleic acid covalently bonded to a protein, said covalent bond being resistant to cleavage by a ribosome.
- 10 29. The molecule of claim 28, wherein said ribonucleic acid is messenger RNA.
- 30. A ribonucleic acid comprising a translation initiation sequence and a start codon operably linked to a candidate protein coding sequence, said ribonucleic acid being covalently bonded to a peptide acceptor at the 3' end of said candidate protein coding sequence.

15

- A method for the selection of a desired protein or desired RNA, omprising:
- (a) providing a population of candidate RNA molecules, each of which comprises a translation initiation sequence and a start codon operably linked to a
 candidate protein coding sequence and each of which is operably linked to a peptide acceptor at the 3' end of the candidate protein coding sequence;
- (b) in vitro or in situ translating the candidate protein coding sequences to produce a population of candidate RNA-protein fusions;

· WO 98/31700

PCT/US98/00807

-74-

- (c) contacting said population of RNA-protein fusions with a binding partner specific for either the RNA portion or the protein portion of said RNA-protein fusion under conditions which substantially separate said binding partner-RNA-protein fusion complex from unbound members of said population;
- 5 (d) releasing said bound RNA-protein fusions from said complex; and (e) contacting said population of RNA-protein fusions from step (d) with a
 - binding partner specific for the protein portion of said desired RNA-protein fusion under conditions which substantially separate said binding partner-RNA-protein fusion complex from unbound members of said population, thereby selecting the
 - 10 desired protein and the desired RNA.
- 32. The method of claim 31, wherein said method further comprises repeating steps (a) through (e).
- 33. The method of claim 31, wherein said peptide acceptor is puromycin.
- 34. The method of claim 31, wherein each of said candidate RNA
 - 15 molecules further includes a pause sequence or further comprises a DNA or DNA analog sequence covalently bonded to the 3' end of said RNA molecule.
- 35. The method of claim 31, wherein said population of candidate RNA molecules includes at least 10¹³ different RNA molecules.
- 36. The method of claim 31, wherein said in vitro translation reaction is
 - 20 carried out in a lysate prepared from a eukaryotic cell or portion thereof.
- 37. The method of claim 36, wherein said in vitro translation reaction is carried out in a reticulocyte lysate or wheat germ lysate.
- 38. The method of claim 31, wherein said in vitro translation reaction is

· WO 98/31700

PCT/US98/00807

carried out in an extract prepared from a prokaryotic cell or portion thereof.

- 39. The method of claim 31, wherein at least one of said binding partners is immobilized on a solid support.
- 40. The method of claim 31, wherein, following the in vitro translating step, an incubation is carried out in the presence of 50-100 mM Mg^{2^+}

2

- comprises a nucleic acid or nucleic acid analog sequence positioned proximal to said 41. The method of claim 31, wherein said RNA-protein fusion further peptide acceptor which increases flexibility.
- 42. A microchip comprising an array of immobilized single-stranded
 - nucleic acids, said nucleic acids being hybridized to RNA-protein fusions. 2

43. The microchip of claim 42, wherein said protein is encoded by said RNA.

WO 98/31700

1/16

PCT/US98/00807

3' CONSTANT REGION RANDOMIZED REGION ş Fig. 1A т РРОМОТЕК ТЕ

Fig. 1B

V DNA LIGASE PUROMYCIN-TETHERED OLIGO IS LIGATED TO mrna (generated from above Construct) in the presence of A Splint and dna ligase

+ DNA SPLINT

0

NOTE: FOR SHORT ORFS, THIS WHOLE TEMPLATE CAN BE MADE SYNTHETICALLY

<a>O

IN WITHO TRANSLATION PROCEEDS NORMALLY FROM THE 5' TO THE 3' END OF THE MRNA

COVALENTLY LINKED PUROMYCIN ENTERS THE A SITE AND ATTACKS PEPTIDYL IRNA IN P SITE

Baraga

(P)

RELEASE OF RNA-PROTEIN FUSION WITH HIGH SALT WASH OF RIBOSOME

SUBSTITUTE SHEET (RULE 26)

WO 98/31700

2/16

Fig. 3 QCH³ OCH³ 43-P 590 (A) (B) ANG ANA TINKEB ₽N∀ as I HO-CH⁵ DMTO-CH₂

Fig. 2

SUBSTITUTE SHEET (RULE 26)

AMPLIFICATION
VIA PCR
(ADD 17 PROMOTER)

PUROMYCIN TETHERED OLIGO -

GENERALIZED PROTOCAL FOR SELECTION EXPERIMENTS

RNA/PUROMYCIN CONJUGATE

S' RNA ROTEIN-FUSION

IN VITRO TRANSLATION

-PROTEIN -CARBOHYDRATE -RNA -SMALL MOLECULE -DNA -TRANSITION STATE ANALOGS ETC...

ISOLATION VIA IMMOBILIZED SELECTION MOTIF

RNA

WO 98/31700

PCT/US98/00807

PCT/US98/00807

5/16

Fig. 5 <u>@</u> €

DMTO-H2C

DMTO-H₂C

H NH

2) p-NITROPHENOL

PROTECTED, CPG PUROMYCIN

- NHd

USE AS SOLID SUPPORT IN AUTOMATED DNA SYNTHESIZER -CLEAVAGE YIELDS 3' PUROMYCIN TETHERED OLIGONUCLEOTIDE

LINK 2'OH TO SOLID H—N SUPPORT ALKYL AMINE CPG WITH 1) DCC/SUCCINIC ANHYDRIDE PHN

PROTECT 5'OH WITH TRITYL CHLORIDE

PHN

H, NeH

PROTECT AMINO GROUP WITH (CF₃CO)₂

P=PROTECTING GROUP

PUROMYCIN

Fig. 4

SUBSTITUTE SHEET (RULE 26)

91/9

PCT/US98/00807

12 15 18 Lane 1 2 Mg+2 [mM] 32P 6

Fig. 6B

WO 98/31700

PCT/US98/00807

n=18 n=21 <u>n=24</u> Linker (dA)_n n=27 Mg⁺²[mM] 9 18 tena 🕶

SUBSTITUTE SHEET (RULE 26)

Fig. 7A

LP77

S,

Fig. 7C

POOL #1

Fig. 7B

LP154

AUG

LP154

7797

d-64

LP154

43-P

Wheat

Retic

PCT/US98/00807

WO 98/31700

+ RNase A

9//0

PCT/US98/00807

WO 98/31700

PCT/US98/00807

B-Globin

RNA124

IP with c-myc mAb

Q

Lane#

Fig. 10

3-Giobin

CPM 30-P FUSION

-4000

0009-

.3000

PICOMOLES I.P 164

1.0 X 10¹² MOLECULES FUSION/ml TRANSLAITON

SUBSTITUTE SHEET (RULE 26)

PCT/US98/00807

15/16

WO 98/31700

PCT/US98/00807

91/91

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/00807

A. CLA IPC(6) US CL	A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C07H 21/02; C07K 4/00, 14/00; C12Q 1/68 US CL :435/6; 530/300, 350; 536/23.1		
According t	According to International Patent Classification (IPC) or to both national classification and IPC. B. FIELDS SEARCHED	ational classification and IPC	
Minimum d	Minimum documentation searched (classification system followed by classification symbols)	by classification symbols)	
U.S.	435/6; 530/300, 350; 536/23.1		
Documental	ion searched other than minimum documentation to the	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched	8
Electronio o	lata base consulted during the international search (na	Electronio data base consulted during the international search (name of data base and, where practicable, search terms used)	ବ
Please Se	Please See Extra Sheet.		
c. Doc	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	ropriste, of the relevant passages Relevant to claim No.	Β No.
X,P Y,P	ROBERTS et al. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA November 1997, Vol. 94, No. 23, pages 12297-12302, see entire document.	for the in vitro selection of 1, 2, 3-7, 9-8ci. USA November 1997, 12, 15, 18-6c entire document.	, 9 - 1 8 - 39,41
		3,4,8,13,14,16,17	16,17
		3	
	-		
		. [
Pun Pun	Further documents are listed in the continuation of Box C.		
	Special categories of eithed documents: document defining the general state of the art which is not considered	1° lare document published after the situerrational filling data or priversy data and not in conflict with the application but cited to understand the principle or theory underlying the invention	priority
	to be of particular relevance parties document published on or after the international filing data	 Accument of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive sup- 	ve stap
÷	document which may throw doubts on priority claim(s) or which is cited to sushlish the publication date of another citation or other energial reason (as specified)	when the document is taken slone *Y* document of perticular relevance; the claimed invention car	mot be
	document referring to an oral disclosure, use, axhibition or other	comidered to involve an inventive step when the document is combined with one or note other such documents, such combination being obvious to a person skilled in the art	nent is
ŗ	document published prior to the international filing data but later than the priority data claimed	.&. document member of the same patent family	
Date of th	Date of the actual completion of the international search	Date of mailing of the international search report	
06 MAY 1998	8661	Z 6 MAY 1998	7
Name and mailing Commissioner of F Box PCT	Name and mailing address of the ISA/US Commissioner of Patens and Trademarks Box PCT	Authorized of fight HOLLING	<i>⊕</i>
Washington, D Facsimile No.	on, D.C. 20231 No. (703) 305-3230	Telephone No. (703) 308-0196	_

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/00807

B. FIELDS SEARCHED Electronic data base and where practicable terms used):

STN: MEDLINE, BIOSIS, EMBASE, CAPLUS, WPIDS, JAPIO, PATOSEP, PATOSWO.

APS
Scarch Terms: RNA, protein, peptide, polypeptide, fusion, hybrid, chimers, linked, invitro selection, in vitro evolution, directed evolution, library, population