ECE 421 Programming Assignment Question

Member One: Mark Qi Student ID: 1006764645 Member Two: Richard Zhao Student ID: 1006750614

Part 3 Questions:

Part 3 Code:

```
# Part 3 Question
def test Part3():
    from sklearn.datasets import load_iris
    X_train, y_train = load_iris(return_X_y = True)
    X_train, X_test, y_train, y_test = train_test_split(X_train[50:], y_train[50:],
test size = 0.2, random state = 1)
    for i in range(80):
        if y_train[i] == 1:
            y_{train[i]} = -1
        else:
            y_{train[i]} = 1
    for j in range(20):
        if y_test[j] == 1:
            y_{\text{test}[j]} = -1
        else:
            y test[j] = 1
    list = [(5, 5), (10, 10), (30, 10)]
    for item in list:
      NN = MLPClassifier(solver='adam', alpha=0.00001, hidden_layer_sizes=item,
random state=1)
      NN.fit(X_train, y_train)
      NN_pred = NN.predict(X_test)
      sciKit = confusion_matrix(y_test, NN_pred)
      NN_pred = NN.predict(X_train)
      scikkit = confusion_matrix(y_train, NN_pred)
      print("For ", item)
      print("Confusion Matrix for train data from Part 3 question is", scikkit)
      print("Confusion Matrix for test data from Part 3 question is:", sciKit)
test Part3()
```

Terminal Output:

For (5, 5)

Confusion Matrix for train data from Part 3 question is [[42 0] [38 0]]

Confusion Matrix for test data from Part 3 question is: [[8 0] [12 0]]

For (10, 10)

Confusion Matrix for train data from Part 3 question is [[40 2] [1 37]]

Confusion Matrix for test data from Part 3 question is: [[7 1] [0 12]]

For (30, 10)

Confusion Matrix for train data from Part 3 question is [[39 3] [0 38]]

Confusion Matrix for test data from Part 3 question is: [[7 1] [1 11]]

Training Accuracy:

- (5, 5) training accuracy is 52.5%, test accuracy is 40%
- (10, 10) training accuracy is 96.25%, test accuracy is 95%
- (30, 10) training accuracy is 96.25%, test accuracy is 90%

Confusion Matrix:

• (5, 5)

(5, 5) Training Confusion Matrix				
	Predicted			
Label		-1	+1	
	-1	42	0	
	+1	38	0	

Training Accuracy =
$$\frac{42}{42+38} = 52.5\%$$

(5, 5) Testing Confusion Matrix			
	Predicted		
Label		-1	+1
	-1	8	0
	+1	12	0

Testing Accuracy =
$$\frac{8}{8+12}$$
 = 40%

• (10, 10)

(10, 10) Training Confusion Matrix			
	Predicted		
Label		-1	+1
	-1	40	2
	+1	1	37

Training Accuracy =
$$\frac{40 + 37}{40 + 2 + 1 + 37} = 96.25\%$$

(10, 10) Testing Confusion Matrix				
	Predicted			
Label		-1	+1	
	-1	7	1	
	+1	0	12	

$$Testing\ Accuracy = \frac{7+12}{7+1+12} = 95\%$$

• (30, 10)

(30, 10) Training Confusion Matrix				
	Predicted			
Label		-1	+1	
	-1	39	3	
	+1	0	38	

Training Accuracy =
$$\frac{39 + 38}{39 + 3 + 38} = 96.25\%$$

(30, 10) Testing Confusion Matrix				
	Predicted			
Label		-1	+1	
	-1	7	1	
	+1	1	11	

Testing Accuracy =
$$\frac{7+11}{7+1+1+11} = 90\%$$