# ASEN 5010 - HW 3 Spring 2025 Jash Bhalavat

#### **Problem 1**



# Problem 2

| Paldona               | Egn 316 - 5= - 02 + 2 (1+02) 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.34                  | Egn. 3.160 > 0 = 4 (1-03) I3x3 + 2 (0) + 200 ) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3-147 n , vector form | $ \frac{F_{0} \times 3 \times 1}{\sigma} \Rightarrow \sigma_{1}^{2} = \frac{1}{\sigma^{2}}, i=1,2,3 $ $ \frac{\sigma}{\sigma} = \frac{\sigma}{\sigma^{2}}, \sigma^{2} = \sigma^{2} = \sigma^{2} $ $ \frac{\sigma}{\sigma} = \frac{\sigma}{\sigma^{2}}, \sigma^{2} = \sigma^{2} = \sigma^{2} $ $ \frac{\sigma}{\sigma^{2}} = \frac{\sigma^{2}}{\sigma^{2}}, \sigma^{2} = \sigma^{2} = \sigma^{2} $ $ \frac{\sigma}{\sigma^{2}} = \frac{\sigma^{2}}{\sigma^{2}}, \sigma^{2} = \sigma^{2} $ $ \frac{\sigma}{\sigma^{2}} = \frac{\sigma^{2}}{\sigma^{2}}, \sigma^{2} = \sigma^{2} $ $ \frac{\sigma^{2}}{\sigma^{2}} = \frac{\sigma^{2}}{\sigma^{2}}, $                                                                                                                                                                                                                                                                                                        |
|                       | $ \frac{1}{\sigma^{4/2}} \qquad \frac{1}{\sigma^{4/2$ |
|                       | Sul 5 - 5 = 52 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (20'[x]) is           | 0 veranse = - 0 10 1 [07. I3x3 - 20 [0] + 20 00 ] 5 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| I is crossed with     | verence = - \( \omega \) \( \frac{1}{2} \left[ \sigma^T \] \( \frac{1} \left[ \sigma^T \] \( \frac{1}{2} \le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| lota, b, c be eli     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | i.e. 5 to [I3x3] = 5 6 5 o T. Use this is (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | $\frac{\dot{\sigma}^{5} = -\dot{\sigma}}{\sigma^{4}} + (\sigma)(\frac{1}{2}[\sigma^{T}]_{3\times3} + \sigma^{T}\sigma^{T}\sigma]^{\beta}\omega = -\dot{\sigma} + \frac{1}{2}(1 + \sigma^{T}\sigma)\sigma\sigma^{T}\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2                     | $ \frac{\dot{\sigma}^{5}}{\sigma^{4}} + \frac{1}{2} \frac{(1+\sigma^{2})}{\sigma^{4}} \underline{\sigma} \underline{\sigma}^{T} \underline{\beta} \underline{w} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ¥                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# Problem 3

| FIODI <del>C</del> III 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Jam Braland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | AS EN SO D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                        | SPLLY 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                        | Hw#3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Proven 3 -1              | C-center of mass, P-Point where rod towns tre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.7                      | surface with it slips L 18/7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                          | Ic= 12 m2, J= 12 m2+ m2 (Paralle gris theorem) It I LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | = 1 M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| the inter                | 0= = 100, 0= - = 0 sho = = = 0 sho = = = 0 sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          | x= 2500, x= 2000, x= 2000 / 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | n= coo 2, -sin 0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| sum of forces            | $m\ddot{s} \hat{n}_{2} = (N - mg) \hat{n}_{2} \rightarrow N = mg - \frac{mL\theta^{2}}{2} \Leftrightarrow \theta = \frac{mL\theta}{2} \Leftrightarrow \theta = \frac{mL\theta}{2} \Leftrightarrow \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | @ Point of suppage -> Sum of porces in x -> mx n, = fg = MNn,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | M= mx 20 [= (- 0 sin 0 + 0 con 0)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | N M[9- \frac{1}{2}(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tert{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\tetx{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi{\text{\text{\texi} |
| Energy function          | V(8) = mg/s = mg/2 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                        | T(0,0) = 252 + 2×2 + 1/2 02 = 2 [ 2 502 0 0 2 + 1/2 0 20 0 0 + 24 m2 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | $E(t_0) = V_0 + T_0 = \frac{MSL}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | $E(t_0) = V(0) + 7(0,0) = \frac{mox}{2} = \frac{mox}{2} + \frac{m(t_0)^2}{8} + \frac{m(t_0)^2}{24} \rightarrow \frac{3}{2} = \frac{9}{2} + \frac{100}{5} + \frac{100}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | $\frac{1}{8} = \frac{30}{L}(1-400) - 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Torque & -               | Lp= Ip = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10-00                    | = = = mgsin 0 ez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                          | $\theta = \frac{1}{2} \text{ masin } \theta - \frac{3}{100} = \frac{39}{21} \sin \theta - \beta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Plus (2), (2) into       | $\theta = \frac{5}{2} \text{ mosin } \theta - \frac{3}{30} = \frac{39}{21} \sin \theta - 8$ $\mu = \frac{1}{2} \left[ -\frac{39}{2} (1 - (100) \sin \theta + \frac{39}{21} \sin \theta \cos \theta) \right] - \frac{38}{2} (\sin \theta - \sin \theta \cos \theta) + \frac{38}{21} \sin \theta \cos \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | 5- \(\frac{1}{2}\left(\frac{1}{2}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | $\mu = -\frac{3}{2}\sin\theta + 3\sin\theta\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | $1 - \frac{3}{2} \omega_0 + \frac{3}{2} \omega_0 - \frac{3}{2} \omega_0^2 \Theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### **Problem 4**

This problem can be divided into 3 different equations of motions: translational, rotational, and Euler angles. All these equations of motion are differential equations (either 1st order or 2nd order) and can be numerically integrated using Matlab's ODE45 solver. At the least, the solver requires an initial condition and a function that implements the equation of motion. All three sets of equations can be augmented into one vector to compactly script in Matlab. The augmented state vector is as follows:

$$state = \left[ x_{CN}^{N}, y_{CN}^{N}, z_{CN}^{N}, x_{CN}^{N}, x_{CN}^{N}, y_{CN}^{N}, z_{CN}^{N}, \omega_{PN,1}^{N}, \omega_{PN,2}^{N}, \omega_{PN,3}^{N}, \alpha, \beta, \gamma \right]^{T}$$

The equations of motion for each of the 3 sets are as follows:

Translational Equations of Motion:

| frollen 4 -> | Translational EOMo:                                                  |
|--------------|----------------------------------------------------------------------|
|              | NX=[x, y,z, x, y, z] →NX=[x, y, z, x, y, z] where all these elements |
|              | represent com from inertial origin in inertial frame                 |
|              | Voirs owner- partial trepren:                                        |
|              | mx or = Tx Ty Tz are components of theust is irestead frome          |
|              | m 500 = 15 m= 1kg g= 9.81 ==                                         |
|              | m'z = NTz-mg                                                         |
|              | Thrust is principal frame = [0, -T(D) 500, T(D) 500 T(D)             |
|              | T(t)=15N (qt510) &ON (4t>10A), 0=25°                                 |
|              | NT can be found - T = [NP] T = [PN] T                                |
|              | where PN(t) = R3(8(t)) R(B(t)) R(A(t))                               |
|              |                                                                      |

#### **Rotational Equations of Motion:**

| Rotational,                             | PLC=PRNoysle X Tit) where rnoysle = [0 0,-3] m                          |
|-----------------------------------------|-------------------------------------------------------------------------|
| £0mb                                    | I, wp. () = - (I33 - I22) WP. (1) WP. (1) + L. (1) 7 where I = 325 5 m2 |
| 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | In WANGED = - (In-Iss) WANGO WANGO + PUCO > IN-38.5 kg m?               |
|                                         | Is was = - (I2-I1) Was (1) Was (2) + L( (3) ] Is = 5 kg m2              |
|                                         |                                                                         |

Euler angles Equations of Motion:



All the initial conditions for the equations of motion are as follows:



The plots are as follows:

# Part a)



### Part b)



# Part c)



# Part d)



# Part e)

Rocket's nose in inertial XY plane is calculated by this equation:

$$r_{Nose}^{N} = r_{CN}^{N} + \left[PN\right]^{T} * r_{Nose}^{P}$$

where 
$$r_{Nose}^P = [0, 0, 4] meters$$



#### **Table of Contents**

```
clear; clc; close all;
% ASEN 5010 - HW 3, Problem 4
% Spring 2025
% Jash Bhalavat
mass = 1; % kg
v_{N_p} = [0, 0, 0]'; % m/s
v_CN_N_0 = v_CN_P_0;
omega_PN_P_0 = [0, 0, 0.85]'; % rad/sec
euler_PN_0 = [0, 0, 0]'; % rad
g = 9.81; % km/s2
I_c_P = [32.5, 32.5, 5]'; % kg-m2
r_NozzleC_P = [0, 0, -3]'; % m
r NoseC P = [0, 0, 4]'; % m
r_{N_0} = [0, 0, 0]'; % [m]
tspan = [0, 60]; % sec
function thrust P = thrust(time)
  % Thrust in Principal frame
  thruster_misalignment = deg2rad(2.5); % rad
  thruster_mag = 15; % N
  thruster duration = 10; % sec
  thrust_parallel = 0; % [N] Passes CoM
  thrust_perp = 0; % [N]
  if time <= thruster_duration</pre>
     thrust_parallel = thruster_mag * cos(thruster_misalignment);
     thrust_perp = thruster_mag * sin(thruster_misalignment);
  end
  thrust_P = [0, -thrust_perp, thrust_parallel]'; % [N]
end
function out = L_c_P(time, r)
  % Torque at CoM in P frame
  thrust_at_time_P = thrust(time);
  out = cross(r, thrust_at_time_P); % [Nm]
end
```

### **EOM**

```
state0 = [r_CN_N_0; v_CN_N_0; omega_PN_P_0; euler_PN_0];
[tout state, state out] = ode45(@(t, state)state eom(t, state, mass, g,
I c P, r NozzleC P), [tspan(1), tspan(2)], state0);
function state dot = state eom(time, state, mass, q, I, r NozzleC P)
    % state - [x_N, y_N, z_N, x_N_dot, y_N_dot, z_N_dot, omega_PN_P(1),
omega PN P(2),
    % omega PN P(3), alpha, beta, gamma]'
    % state dot - [x N dot, y N dot, z N dot, x N dotdot, y N dotdot,
z N dotdot, omega PN P(1), omega PN P(2),
    % omega PN P(3), alpha, beta, gamma]'
    gravity N = [0 \ 0 \ -g]';
    r CN N = state(1:3);
    v \in N = state(4:6);
    omega PN P = state(7:9);
    euler PN = state(10:12);
    r CN N dot = v CN N;
    PN = R3(euler PN(3))*R2(euler PN(2))*R1(euler PN(1));
    thrust at time P = thrust(time);
    thrust at time N = PN' * thrust at time P;
    v CN N dot = (thrust at time N + mass*gravity N)/mass;
    L c P at time = L c P(time, r NozzleC P);
    omega PN P dot(1,1) = -1/I(1) * (I(3) - I(2)) *
omega PN P(2)*omega PN P(3) + L c P at time(1)/I(1);
    omega_PN_P_dot(2,1) = -1/I(2) * (I(1) - I(3)) *
omega PN P(1)*omega PN P(3) + L c P at time(2)/I(2);
    omega PN P dot(3,1) = -1/I(3) * (I(2) - I(1)) *
omega PN P(1)*omega PN P(2) + L c P at time(3)/I(3);
    B theta = 1/\cos(\text{euler PN}(2)) .* [\cos(\text{euler PN}(3)), -\sin(\text{euler PN}(3)), 0];
                cos(euler PN(2))*sin(euler PN(3)),
cos(euler PN(2))*cos(euler PN(3)), 0;
                -sin(euler PN(2))*cos(euler PN(3)),
sin(euler PN(2))*sin(euler PN(3)), cos(euler PN(2))];
    euler PN dot = B theta * omega PN P;
    state dot = [r CN N dot; v CN N dot; omega PN P dot; euler PN dot];
end
```

### Part a

```
omega_PN_P_out = state_out(:,7:9);
```

```
figure()
subplot(3,1,1)
plot(tout_state, omega_PN_P_out(:,1), 'LineWidth',2)
ylabel("omega_{PN}^P(1) [rad/s]")
grid on
subplot(3,1,2)
plot(tout_state, omega_PN_P_out(:,2), 'LineWidth',2)
ylabel("omega_{PN}^P(2) [rad/s]")
grid on
subplot(3,1,3)
plot(tout_state, omega_PN_P_out(:,3), 'LineWidth',2)
ylabel("omega_{PN}^P(3) [rad/s]")
xlabel("Time [sec]")
grid on
sgtitle("Angular velocity of rocket in principal frame")
```

#### Angular velocity of rocket in principal frame



### Part b

```
v_CN_N_out = state_out(:, 4:6);
for i = 1:length(tout_state)
    euler_PN = state_out(i, 10:12);
    PN = R3(euler_PN(3))*R2(euler_PN(2))*R1(euler_PN(1));
    v_CN_P_out(i,:) = (PN * v_CN_N_out(i,:)')';
```

#### end

```
figure()
subplot(3,1,1)
plot(tout_state, v_CN_P_out(:,1), 'LineWidth',2)
ylabel("v_{CN}^P(1) [m/s]")
grid on

subplot(3,1,2)
plot(tout_state, v_CN_P_out(:,2), 'LineWidth',2)
ylabel("v_{CN}^P(2) [m/s]")
grid on

subplot(3,1,3)
plot(tout_state, v_CN_P_out(:,3), 'LineWidth',2)
ylabel("v_{CN}^P(3) [m/s]")
xlabel("v_{CN}^P(3) [m/s]")
xlabel("Time [sec]")
grid on
sgtitle("Translational velocity of rocket's COM in principal frame")
```





# Part c

```
euler_PN_out = state_out(:, 10:12);
figure()
subplot(2,1,1)
```

```
plot(tout_state, euler_PN_out(:,1), 'LineWidth',2)
ylabel("\alpha [rad]")
grid on

subplot(2,1,2)
plot(tout_state, euler_PN_out(:,2), 'LineWidth',2)
xlabel("Time [sec]")
ylabel("\beta [rad]")
grid on
sgtitle("\alpha and \beta Euler angles")
```



#### Part d

```
figure()
plot3(state_out(:,1), state_out(:,2), state_out(:,3), 'LineWidth',2)
xlabel('$$\hat{n}_{1}$$ [m]','Interpreter','Latex', 'FontSize',18)
ylabel('$$\hat{n}_{2}$$ [m]','Interpreter','Latex', 'FontSize',18)
zlabel('$$\hat{n}_{3}$$ [m]','Interpreter','Latex', 'FontSize',18)
hold on
scatter3(state_out(1,1), state_out(1,2), state_out(1,3), 'filled', 'black')
scatter3(state_out(end,1), state_out(end,2), state_out(end,3), 'filled',
'blue')
legend("CoM", "CoM @ t=0 sec", "CoM @ t=60 sec")
grid on
title("Center of Mass in 3D inertial space")
```

Time [sec]

```
figure()
subplot(3,1,1)
plot(tout_state, state_out(:,1), 'LineWidth',2)
ylabel("r_{CN}^N(1) [m]")
subplot(3,1,2)
plot(tout_state, state_out(:,2), 'LineWidth',2)
ylabel("r_{CN}^N(2) [m]")
subplot(3,1,3)
plot(tout_state, state_out(:,3), 'LineWidth',2)
ylabel("r_{CN}^N(3) [m]")
xlabel("Time [sec]")
sgtitle("Center of Mass in inertial space")
```





### Part e

```
euler_PN = state_out(:,10:12);
r_CN_N = state_out(:,1:3);

for i = 1:length(tout_state)
    PN = R3(euler_PN(i, 3))*R2(euler_PN(i, 2))*R1(euler_PN(i, 1));
    r_NoseN_N(i,:) = (r_CN_N(i,:)' + PN' * r_NoseC_P)';
end

figure()
plot(r_NoseN_N(:,1), r_NoseN_N(:,2), 'LineWidth',2)
hold on
scatter(r_NoseN_N(1,1), r_NoseN_N(1,2), 'filled', 'black')
scatter(r_NoseN_N(end,1), r_NoseN_N(end,2), 'filled', 'blue')
legend("Rocket Nose", "Starting Point", "Final Point")
xlabel('$$\hat{n}_{1}$$ [m]', 'Interpreter', 'Latex', 'FontSize',18)
ylabel('$$\hat{n}_{2}$$ [m]', 'Interpreter', 'Latex', 'FontSize',18)
title("Projection of rocket's nose in inertial XY plane")
grid on
```



Published with MATLAB® R2024a