JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering

Signals and Systems (18B11EC214) - 2020 ODD-SEM TUTORIAL-1

Q.1 A continuous-time signal x(t) is shown in Figure. Sketch and label carefully each of the following signals:

(b)
$$x(2-t)$$

(c)
$$x(2t+1)$$

(d)
$$x\left(4-\frac{t}{2}\right)$$

(e)
$$[x(t) + x(-t)]u(t)$$

(f)
$$x(t) \left[\delta\left(t + \frac{3}{2}\right) - \delta\left(t - \frac{3}{2}\right) \right]$$

Q.2 A discrete-time signal is shown in Figure. Sketch and label carefully each of CO1 the following signals:

(a)
$$x[n-4]$$

(b)
$$x[3-n]$$

(c)
$$x[3n]$$

(d)
$$x[3n+1]$$

(e)
$$x[n]u[3-n]$$

(f)
$$x[n-2]\delta[n-2]$$

(g)
$$\frac{1}{2}x[n] + \frac{1}{2}(-1)^n x[n]$$

(h)
$$x[(n-1)^2]$$

Q.3 Determine whether or not each of the following signals is periodic: **CO1**

(a)
$$x_1(t) = 2e^{j(t+\pi/4)}u(t)$$

(b)
$$x_2[n] = u[n] + u[-n]$$

Determine whether or not each of the following signals is periodic. If a **Q.4** signal is periodic, specify its fundamental period.

(a)
$$x_1(t) = e^{j10t}$$

(b)
$$x_2(t) = e^{(-1+j)t}$$

(c)
$$x_3[n] = e^{j7\pi n}$$

(c)
$$x_3[n] = e^{j7\pi n}$$

(d) $x_4[n] = 3e^{j3\pi(n+1/2)/5}$

(d)
$$x_4[n] = 3e^{j3\pi(n+1/2)/5}$$

(e) $x_5[n] = 3e^{j3/5(n+1/2)}$