Numerical Methods for Financial Derivatives

Hwan C. Lin

Department of Economics University of North Carolina at Charlotte

Lecture 5: Monte Carlo Simulation for American Options (Ch. 3)

Introduction

- We discuss risk-neutral pricing of American options.
- We present two classes of Monte Carlo simulation methods for the pricing American options. methods.
 - Parametric Methods
 - Regression Methods

Risk-Neutral Valuation of European Options

The risk-neutral valuation of European options is

$$V(S_0, 0) = e^{-rT} E_Q[\Psi(S_T)|S_0]$$
 (1)

where

- Q is the risk neutral probability measure;
- r is riskless interest rate;
- $\Psi(S_T)$ denotes the payoff;
- S_0 is the time 0 of the underlying asset (S);
- S_T is the price of S at maturity date T.
- We have discussed how to apply Monte Carlo simulation for the pricing of European options.

Risk-Neutral Valuation of American Options

The risk-neutral valuation of American options is

$$V(S_0, 0) = \sup_{0 < \tau < T} e^{-r\tau} E_Q[\Psi(S_\tau)|S_0]$$
 (2)

- where
 - \bullet au is stopping time.
 - ullet $\Psi(S_{ au})$ is the payoff when the option is exercised optimally.

Definition (Stopping Time)

A stopping time τ with respect to a filtration \mathcal{F}_t is a random variable, which is \mathcal{F}_t -measurable for all t.

Early Exercise Curves S_f

• At any moment t < T, if the American option is not exercised, its continuation value is

$$V(S_t, t)^{Cont} = \sup_{t \leq au \leq T} e^{-r au} E_Q[\Psi(S_ au)|S_t]$$

- $V(S_t, t) = \Psi(S_t)$ if $\Psi(S_i) \geq V(S_t, t)^{Cont}$:
 - This occurs when S_t is stopping region.
 - One encounters the "stopping time."
- $V(S_t, t) = V(S_t, t)^{Cont}$ if $\Psi(S_i) < V(S_t, t)^{Cont}$:
 - This occurs when S_t is in holding region.

Parametric Methods for American Options

• Lower Bound to $V(S_0,0)$: In terms of (2), the value of American options, $V(S_0,0)$, is given by taking the supremum over all stopping times. Thus a lower bound to the $V(S_0,0)$ can be obtained by taking a specific stopping strategy. To illustrate this idea, we choose the stopping strategy to be the level of parameter β . If the resulting stopping time for each simulated path is denoted by $\tilde{\tau} \in [0,T]$. A lower bound to $V(S_0,0)$ is given by

$$V^{low(\beta)}(S_0,0) = E_Q[e^{-r\tilde{\tau}}\Psi(S_{\tilde{\tau}})|S_0]$$
 (3)

• **Approximation:** $V(S_0,0)$ can be approximated by:

$$\sup_{\beta} V^{low(\beta)} \approx V(S_0, 0)$$

Parametric Methods for American Options (2)

Application of the Parametric Method:

- ① Construct a curve depending on a parameter vector β such that the curve approximates the early-exercise curve.
- ② The stopping strategy is to stop when the path S_t crosses the curve defined by β .
- **③** For N such paths, evaluate the payoff and evaluate (approximate) the value $V^{low(\beta)}$.
- **1** Next, attempt to maximize the value $V^{low(\beta)}$ by repeating the procedure for a "better" β vector.
- **3** To complete the procedure, one should also construct an upper bound V^{up} . As a crude example, the entire path S_t for $t \in [0, T]$ may be simulated and the option is exercised **in retrospect** when

$$e^{-rt}\Psi(S_t)$$

is maximal.

- As a by-product of approximating $V(S_0,0)$, the corresponding parameters β provide an approximation of the early exercise curve.
- \bullet But this is just a crude method and an optimization in the β parameter space is costly.
- Literature: P. Glasserman: Monte Carlo Methods in Financial Engineering (2004).

Introduction to Regression Methods

The central Ideas of approximating the value of American options using regression methods:

- Use the value of a <u>Bermuda</u> option as an approximation of the <u>American</u> option
- The value of the Bermudan option is calculated <u>recursively</u> in a backward fashion, and

$$V^{Am}(S_{t_j}, t_j) \approx V^{Be}(S_{t_j}, t_j) = \max\{\Psi(S_{t_j}), V^{cont}\} = \max\{excise, hold\}$$

- That is, at each t_j, the holder of the option decides which of the two
 possibilities exercise, hold is optimal based on the principle of
 dynamic programming.
- ullet For a Bermuda option, we define the continuation value V^{cont} at t_j according to

$$C_j(x) \equiv e^{-r\triangle t} E_Q[V(S_{t_j+1}, t_{j+1}) | S_{t_j} = x],$$

and these functions $C_j(x)$ are approximated at each t_j by **least** squares regression.

Bermuda Options as Approximation of American Options

Definition (Bermuda Options)

A Bermudan option is an option that can be exercised only at a finite number M of discrete time instances t_i .

• Specifically, for $t_j = j \triangle t$, $\triangle t = \frac{T}{M}$, j = 0, 1, ..., M, we denote by $V^{Be(M)}$ the value of a Bermudan option. Because of the additional exercise possibilities, it holds that

$$V^{Eur} \le V^{Be(M)} \le V^{Am} \tag{4}$$

and one can show that

$$\lim_{M\to\infty}V^{Be(M)}=V^{Am}.$$

• For suitable M the value $V^{Be(M)}$ is used as approximation of V^{Am} .

Use of Dynamic Programming Principle

Principle 3.11 (Dynamic Programming)

- Set $V_M(x) = \Psi(x)$.
- For i = M 1, ..., 1, calculate $C_i(x)$ for x > 0 and

$$V_i(x) \equiv V(x, t_i) = \max\{\Psi(x), C_i(x)\}$$

• For i = 0, calculate

$$V_0 \equiv V(S_0,0) = C_0(S_0)$$

- Note:
 - The C_i(x) are calculated by least squares (see Appendix C4 of the Textbook)
 - Sample paths $S_i = x \in [0, \infty)$ are calculated starting from S_0 according to the underlying risk-neutral model.

Monte Carlo Setting for Regression Methods N = 5 trajectories; M = 5 exercise times; horizontal axis: S; vertical axis: t; * marked as S_{ik}

Regression I

Algorithm 3.12 (regression I)

• Simulate N paths $S_1(t), \ldots, S_N(t)$ and store the values

$$S_{ik} \equiv S_k(t_i), \quad i = 1, \dots, M, \quad k = 1, \dots, N$$

- ② For i = M, set $V_{MK} \equiv \Psi(S_{Mk})$ for all k.
- **9** For $i = M 1, \dots, 1$:
 - **o** Approximate $C_i(x)$ using suitable basis functions ϕ_0, \ldots, ϕ_L

$$C_i(x) \approx \sum_{l=0}^{L} a_l \phi_l(x) \equiv \hat{C}_i(x)$$
 (5)

by least squares over the N points:

$$(x_k, y_y) \equiv (S_{ik}, e^{-r\triangle t}V_{i+1,k}), \quad k = 1, \dots N,$$

- $and set V_{ik} = \max\{\Psi(S_{ik}), C_i(\hat{S}_{ik})\}.$
- Calculate $V_0 = e^{-r\triangle t} \frac{1}{N} (V_{11} + \ldots + V_{1N})$

Schematic Illustration of Regression I

Source: Rüdiger Seydel, Tools of Computational Finance, chapter (version 2014)

Regression II

Algorithm 3.13 (regression II)

• Simulate N paths $S_1(t), \ldots, S_N(t)$ and store the values

$$S_{ik} \equiv S_k(t_i), \quad i = 1, \ldots, M, \quad k = 1, \ldots, N$$

- **②** For i = M, set $g_K \equiv \Psi(S_{Mk})$, $\tau_k = M$ for all k.
- **9** For $i = M 1, \dots, 1$:
 - For the subset of in-the-money points

$$(x_k, y_y) \equiv (S_{ik}, e^{-r(\tau_k - i)\triangle t}g_k), \quad \{k\} \subseteq \{1, \dots N\},$$

approximate $C_i(x)$ by $\hat{C}_i(S_{ik})$ using (5),

2 and if $\Psi(S_{ik}) \geq \hat{C}_i(S_{ik})$, update cash flow and exercise time:

$$g_k = \Psi(S_{ik}), \quad \tau_k = i$$

• Calculate $\hat{C}_0 = \frac{1}{N} \sum_{k=1}^N e^{-r \triangle t} g_k$, $V_0 = \max\{\Psi(S_0), \hat{C}_0\}$

Accuracy of Monte Carlo Simulation Control for sampling errors

Denote

$$\hat{\mu} \equiv \frac{1}{N} \sum_{k=1}^{N} f(x_k), \quad \hat{\mathfrak{s}}^2 = \frac{1}{N-1} \sum_{k=1}^{N} [f(x_k) - \hat{\mu}]^2,$$

and $E(\hat{\mu}) = \mu$.

• According to the **central limit theorem**, the approximation $\hat{\mu}$ obeys $\mathcal{N}(\mu, \sigma)$ with distribution function F:

$$F(a) = P(\hat{\mu} - \mu \le a \frac{\sigma}{\sqrt{N}}).$$

- In practice, σ^2 is replaced with its approximation \hat{s}^2 and the error behaves as \hat{s}/\sqrt{N} .
- How to reduce this sampling error \hat{s}/\sqrt{N} in Monte Carlo simulation? There are choices:
 - Reduce the numerator (variance reduction);
 - Enlarge the denominator. This means to increase the number of simulations (N), and is very costly.

Accuracy of Monte Carlo Simulation(2)

Another error, the bias

- In several cases, the computation of $f(x_i)$ gives rise to another error, namely, the **bias**.
- Let \hat{x} be an estimator of x, then the bias is defined as

$$bias(\hat{x}) = E[\hat{x}] - x$$

Example 1: For a lookback option, the payoff involves the variable

$$x \equiv E \left[\max_{0 \le t \le T} \{S_t\} \right]$$

An approximation is

$$\hat{x} = \max_{0 \le j \le M} \{S_{t_j}\}$$

clearly, $\hat{x} \leq x$ almost surely; i.e., $E[\hat{x}] < x$. Hence $bias \neq 0$.

Accuracy of Monte Carlo Simulation (3)

Another error, the bias

 Example 2: Compared to the analytic solution of GBM, the explicit Euler method provides biased results. For GBM,

$$S_{t_{j+1}} = S_{t_j} \exp \left[(r - \frac{1}{2}\sigma^2) \triangle t + \sigma \triangle W \right]$$

is unbiased, whereas the explicit Euler method

$$S_{t_{j+1}} = S_{t_j} + rS_{t_j} \triangle t + \sigma S_{t_j} \triangle W$$
), $j = 0, 1, \dots, M$

is biased, with a bias due to the weak error.

Accuracy Enhancement

• The overall error is measured by the **mean squared error**:

$$MSE(\hat{x}) = E[(\hat{x} - x)^{2}]$$

$$= (E[\hat{x}] - x)^{2} + E[(\hat{x} - E[\hat{x}])^{2}]$$

$$= \underbrace{(bias(x))^{2}}_{approximation\ error} + \underbrace{Var(\hat{x})}_{sampling\ error}$$

- To reduce the errors, one can apply one of the following possibilities, or all of them:
- **1** apply variance reduction $\Rightarrow \hat{s}$ smaller in \hat{s}/\sqrt{N}
- ② increase N (i.e. more sample paths) $\Rightarrow N$ larger in \hat{s}/\sqrt{N}
- increase M (i.e. $\triangle t$ smaller) \Rightarrow reduce the bias.
- We must compare costs and benefits of accuracy.

Methods of Variance Reduction

There are several methods of variance reduction. The simplest (and maybe the least powerful) is the method of **antithetic variates**:

- Let us denote by \hat{V} the MC approximation of an European option, for instance.
- The idea of antithetic variates is to use in parallel the numbers $-Z_1, -Z_2, \ldots$, which are also $\sim \mathcal{N}(0,1)$, to calculate "mirror paths" S_t^- , from which the payoff values $\Psi(S_T^-)$ are calculated. This leads to a second Monte Carlo value V^- . It turns out that the mean $V_{AV} \equiv \frac{1}{2}(\hat{V} + V^-)$ carries a much smaller variance:

$$Var(V_{AV}) < rac{1}{2} Var(\hat{V})$$

Methods of Variance Reduction (2)

• Why does V_{AV} carry a much smaller variance?

•

$$Var(V_{AV}) = \frac{1}{4}Var(\hat{V} + V^{-})$$

$$= \frac{1}{4}\left[Var(\hat{V}) + Var(V^{-}) + 2Cov(\hat{V}, V^{-})\right]$$

$$= \frac{1}{2}Var(\hat{V}) + \frac{1}{2}Cov(\hat{V}, V^{-}), \ Var(\hat{V}) = Var(V^{-})$$

- Given $Cov(\hat{V}, V^-) < 0$, we have $Var(V_{AV}) < \frac{1}{2}Var(\hat{V})$.
- This approach at most **doubles** the costs. In comparison, an error reduction $(factor < \frac{1}{2})$ by merely increasing N requires at least **fourfold** costs.