Grafos

Algoritmo de Bellman-Ford

Prof. Edson Alves

Faculdade UnB Gama

Proponentes

Proponentes

Lester Randolph Ford Jr. (1956)

Proponentes

Lester Randolph Ford Jr. (1956)

Richard Ernest Bellman (1958)

 \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s

 \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s

* É capaz de processar arestas negativas

- \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos

- \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s
- * É capaz de processar arestas negativas
- * Não processa, mas identifica ciclos negativos
- \star Complexidade: O(VE)

Entrada: um grafo G(V,E) e um vértice $s\in V$

Entrada: um grafo G(V,E) e um vértice $s\in V$

Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

1. Faça d[s]=0 e $d[u]=\infty$ para todos vértices $u\in V$ tais que $u\neq s$

Entrada: um grafo G(V,E) e um vértice $s \in V$

- 1. Faça d[s]=0 e $d[u]=\infty$ para todos vértices $u\in V$ tais que $u\neq s$
- 2. Para cada aresta $(u,v,w) \in E$, se d[u]+w < d[v], faça d[v]=d[u]+w

Entrada: um grafo G(V, E) e um vértice $s \in V$

- 1. Faça d[s]=0 e $d[u]=\infty$ para todos vértices $u\in V$ tais que $u\neq s$
- 2. Para cada aresta $(u,v,w) \in E$, se d[u]+w < d[v], faça d[v]=d[u]+w
- 3. Se o vetor d foi atualizado ao menos uma vez, volte ao passo 2.

Entrada: um grafo G(V, E) e um vértice $s \in V$

- 1. Faça d[s]=0 e $d[u]=\infty$ para todos vértices $u\in V$ tais que $u\neq s$
- 2. Para cada aresta $(u,v,w) \in E$, se d[u]+w < d[v], faça d[v] = d[u]+w
- $3. \;$ Se o vetor d foi atualizado ao menos uma vez, volte ao passo $2. \;$
- 4. Retorne d


```
vector<int> bellman_ford(int s, int N, const vector<edge>& edges)
{
    const int oo { 1000000010 };
    vector<int> dist(N + 1, oo);
    dist[s] = 0:
    for (int i = 1; i \le N - 1; i++)
        for (auto [u, v, w] : edges)
            dist[v] = min(dist[v], dist[u] + w);
    return dist;
```

Problemas sugeridos

- 1. AtCoder Beginner Contest 088 Problem D: Repainting
- 2. Codeforces Beta Round #3 Problem A: Shortest path of the king
- 3. OJ 10000 Longest Paths
- 4. OJ 10959 The Party, Part I

Referências

- 1. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 2. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 3. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.
- 4. Wikipédia, Bellman-Ford algorithm. Acesso em 07/07/2021.
- 5. Wikipédia. L. R. Ford Jr. Acesso em 07/07/2021.
- 6. Wikipédia, Richard E. Bellman. Acesso em 07/07/2021.