DSO 530 Group Project

Options Pricing Prediction

Ge Zeng, Teresa Cao, Xinyue Yu, Xiaoying Zou, Yufeng Xie, Zirui Zhou

1. Executive Summary

This project focuses on predicting European call option prices by building and comparing regression and classification machine learning models.

The original training dataset contains 1,680 records and 6 columns. For each record, we have 4 features, 1 numerical and 1 categorical dependent variables. We started with exploratory data analysis to understand data patterns and preprocess data. After data cleaning for regression and classification, we generated 1,678 new features through feature engineering, and selected around 30 features through feature selection. By randomly splitting the data into training and testing dataset in the proportion of 4:1, we constructed regression and classification models including decision tree, neural network, LGBM and other models with the selected features, performed hyperparameter tuning, and found out our best performers for regression and classification. We chose the gradient boosting tree as our final regression model and LGBM as our final classification model. The gradient boosting tree achieves the out-of-sample R² of 99.89% in testing, and the LGBM model achieves an accuracy score of 93.40% in testing.

Figure 1. Flowchart of Project

2. Data Description

2.1 Summary Statistics Table

Table 1. Numeric Fields Summary

	min	max	mean	std	count	% Populated	# Zero	% Zero
Value	0.13	60.15	15.07	14.04	1679	99.94	0	0.00
S	0.00	455.88	440.64	13.13	1679	99.94	1	0.06
K	375.00	500.00	438.24	23.41	1678	99.88	0	0.00
tau	0.00	250.00	0.44	7.06	1679	99.94	0	0.00
r	0.03	0.03	0.03	0.00	1680	100.00	0	0.00

 Table 2. Categorical Fields Summary

	Data type	# Nonnull records	# Non-zero records	% Populated	# Unique values	
BS	object	1680	1680	100	2	

2.2 Data Distribution Graph

See appendix.

3. Data Cleaning

3.1 Regression

We dropped the record that has 3 missing values, S, K and tau. Then, we dropped the record that does not contain the dependent variable, Value. After dropping two records, we replaced 2 outliers in tau with the mean to correct outliers and filled in the missing S with the mean.

3.2 Classification

We did the same data cleaning procedure except that we didn't drop the record that does not contain Value as it still contains the dependent variable BS.

4. Candidate Variables

4.1 Regression

We implemented feature engineering and created 5 types of variables including basic transformation variables, exponential variables, ratio variables, domain and deviation variables and polynomial variables. Finally we created 1678 candidate variables.

We performed 3 basic transformations on the original variables S, K, tau and r. We also added one variable, S-K. We performed Log Transformation and Square Root Transformation on S, K, tau, and r. Then we used tau as the index to create 6 Exponential Variables, r^tau, exp(r)^tau, S^tau, log(S)^tau, K^tau and log(K)^tau. Next, We used any two of the variables generated above to create Ratio Variables. In addition, we created one Domain Variable and Deviation Variable, which we defined as:

- Domain = $S*(1+r)^t$ au
- Deviation = $(S-mean(S))^2$

In the end, we used any two of the variables generated above to create Quadratic Polynomial Variables with the degree of 2.

4.2 Classification

At first, we used the same variables which we created above for regression. However, the modeling results are dissatisfactory, and we found out that simpler variables would give better model performance. Therefore, we decided to remove some complicated variables. As a result, we removed Log Variables, Nature Exponential Variables and Quadratic Polynomial Variables.

5. Feature Selection Process

After feature engineering, we conducted a feature selection process including filter and wrapper to select the most significant variables. We used mutual information metric as our filter to select the top 80 variables with univariate significance, then used linear regression model as our regression wrapper to select the top 31 variables, and boosted tree classification model as our classification wrapper to select the top 30 variables. The following table shows the methods we used in regression and classification parts.

Table 3. Filters and Wrappers for Feature Selection Process

Attributes	Fil	ter	Wrapper			
	Methods	Number of Selected Features Subset-1	Methods	Number of Selected Features Subset-2*		
Regression	Mutual Information Regression	80	Linear Regression Model	31		
Classification	Mutual Information Classification	80	Boosted Tree Classification Model	30		

^{*} See Selected Feature Subset-2 in Appendix

6. Model Algorithms

6.1 Regression Model Tuning

After feature selection, we used our final 31 candidate variables for model building and hyperparameter tuning. We used the ouf-of-sample R square from 10-fold cross validation as our evaluation metric. We tried four baseline models with default parameters including linear regression (99.72%), decision tree (99.72%), random forest (99.84%), and neural network (99.89%), all of which achieved up to 99% out-of-sample R square. indicating that our feature engineering and selection have been paid off.

Then we continued with 5 different models including Xgboost tree, LGBM tree, Gradient Boosting tree, Support Vector Machine, and K-Nearest Neighbors for regression prediction. For each model, we tuned hyperparameters to achieve best prediction performance. Then, we compared performances among different models with best choices of hyperparameters to finalize our model decision.

After model tuning, we summarized the models with best choices of hyperparameters. The table below shows our models with the optimal set of hyperparameters. According to the result, gradient boosting tree is our best model. With n_estimators=50, max_depth=30, mon_sample_leaf=20, min_sample_split=50, the gradient boosting tree can achieve 99.98% out-of-sample R square. We enclosed our complete hyperparameter tuning process in the Appendix

Figure 2. Regression Best Tuning Results

Model					Parameters				Performance	
Linear	#Variables		fit_intercept		positive		copy_X	normalize	Train	Test
Regression	3	1	TR	UE	TI	RUE	TRUE	TRUE	97.29%	97.24%
Neural	learning_ra te	nodes	max_ iter	layer	mome ntum	alpha	learning_rate _init	nesterovs_momentum	Train	Test
Network	constant	100+100	200	2	0.9	0.0005	0.001	TRUE	99.82%	99.82%
Decision Tree	crite	max_depth		min_samples_leaf		min_samples _split	max_features	Train	Test	
	gini		None 1		1	10	None	99.93%	99.72%	
Valanast	max_depth			eta		lambda		Train	Test	
Xgboost	9			0.05		0.3		99.98%	99.82%	
CYTM	kernel			C		tol		Train	Test	
SVM	default			9		0.00001		99.83%	99.82%	
LGBM	n_esti	mator		leari	ning_rate		max_depth	min_child_samples	Train	Test
LGBM	defa	ault			0.1		20	2	99.96%	99.83%

Model		Parameters							
Gradient	n_estimat ors	max_depth	min_sample_leaf	min_	Train	Test			
Boosting Tree	50	30	20	50		99.89%	99.89%		
Dandam Fanat	bootstrap	n_estimators	min_samples_leaf	min_samples_split		Train	Test		
Random Forest	TRUE	100	1	2		99.98%	99.84%		
IZNINI	# neighbors		p	weights	metric	Train	Test		
KNN	10		1	uniform	minkowski	99.98%	99.84%		

6.2 Classification Model Tuning

To select the most effective classification model, we tried 6 classification models including logistic regression, LDA, decision tree, neural network, random forest and boosted tree models. At first, we tried to used variables created from regression, but we got relatively high classification errors. So we deleted some complicated variables, simplified our feature engineer process and kept 30 features for model fitting.

We experimented with hyperparameter tuning for different models and compared their prediction accuracy under 10-fold cross validation. The table below listed the best performers for different classification models. We attach the complete hyperparameter tuning table in the appendix.

Our optimal performer is the LGBM classifier of 500 trees, maximum depth of 5 and learning rate of 0.01. With 10-fold cross validation, we achieved the average accuracy score of 97.1% for the training set and 93.4% for the test set. Equivalently, we achieved an average classification error of 2.9% for training set and 6.6% for the test set.

Table 4. Classification Tuning Results

Model		Parameters					
Logistic Doguession	penal	ty	sol	trn	tst		
Logistic Regression	12		1b:	lbfgs			
Single Decision Tree	max_de	epth	spl	itter	trn	tst	
	20		rane	random			
Random Forest	n_estimators	max_depth	min_samples_leaf	min_samples_split	trn	tst	
	10	10	1	2	0.992	0.925	
D (I CDM)	n_estimators	max_depth	learnir	ng_rate	trn	tst	
Boosted Tree (LGBM)	500 5		0.	0.971	0.934		
Neural Network	hidden_layer_ sizes	layer	learning_rate	activation	trn	tst	
	20	2	constant	logistic	0.656	0.656	
LDA	n_compo	nents	solver	shrinkage	trn	tst	
	Non	e	svd None		0.926	0.921	

7. Conclusion and Business Insight

Our group walked through a complete machine learning process with the given dataset to make regression predictions for C (Option Value) and classification regression for BS (Black-Scholes estimation). For data preparation, we did exploratory data analysis and data cleaning. We performed feature engineering, feature selection, modeling and hyperparameter tuning. Finally, we selected Gradient Boosting Tree (with n_estimators=50, max_features=None, max_depth=30, min_samples_leaf=20, min_samples_split=50) as our best regression model as it achieved 99.98% out-of-sample R square. For the best classification model, we selected LGBM (with n_estimators= 500, max_depth=5, learning_rate=0.01) as it achieved the average accuracy score of 93.40% for the test set.

When building our models, we weighed the tradeoff between prediction accuracy and interpretation. Although we believe both accuracy and interpretation are important, prediction accuracy is our key focus in this project as achieving high prediction accuracy is our main goal for this project. A more accurate model is viewed as a more valuable model. Interpretability seems to be a subjective model assessment, but it's critical when we want to achieve a real business objective. We included all four predictor variables (S, K, r, t) in our prediction because they are primary factors that determine the value of an option from a business perspective.

After finishing the project, we found that machine learning models may outperform Black-Scholes in prediction accuracy. As we know, Black-Scholes model is limited to European options and restricted to many assumptions, such as lognormal distribution and constant risk-free interest rate. These assumptions may lower the accuracy of model predictions. Thus, the machine learning model outperforms with greater flexibility in working with different data and higher prediction accuracy.

Although we achieved high prediction accuracy with our models, we would not apply it to predict option values for Tesla stock. First, valuing an option is tricky because it depends on the future value of the underlying asset. We have no information about underlying assets and we are not sure if the assets are similar to Tesla stock. Second, machine learning methods make predictions only based on past price movements and do not take external uncertainties into consideration. Also, our model does not factor in volatility, which is critical in predicting the option value for high-volatile stocks like Tesla. However, even if we can obtain the data of historical or implied volatility, it is still difficult to predict its option value since its high volatility not only comes from stock markets but also comes from Tesla's strong connection with cryptocurrency and the influence of their CEO Elon Musk. Thus, predicting option values for Tesla stock with our model is not feasible.

Our group also brainstormed and discussed how to improve our future model-building process. In our model, the filter we used may lower the importance of S and K, which may potentially decreased the accuracy score for the test set of our classification model. We also realized that the filter itself could be problematic in nature, potentially resulting in losing significant variables. Moreover, we learned to avoid over-complicated variables and models, which would lower both accuracy and interpretability. In the future, we will start with the simple variables and basic models and apply advanced models for better prediction and interpretability.

8. Appendix

8.1 Field Distribution

8.1.1 Value

8.1.2 S

8.1.3 K

8.1.4 tau

8.1.5 r

8.1.6 BS

8.2 Result of Hyperparameter Tuning

8.2.1 Regression

Model					Parameters				Perfor	mance
	Iteration	#Var	iables	fīt_iı	ntercept	positive	copy_X	normalize	Train	Test
	Default	3	31	T	RUE	FALSE	FALSE	FALSE	99.743%	99.723%
Linear Regression	2	3	11	T	RUE	FALSE	TRUE	FALSE	99.750%	99.723%
Regression	3	31		T	RUE	FALSE	TRUE	TRUE	99.750%	99.723%
	4	3	31	T	RUE	TRUE	TRUE	TRUE	97.287%	97.239%
	Iteration	layer	nodes	activation		alpha	learning	rate	Train	Test
	Default	1	100	1	relu	0.0001	const	ant	99.403%	99.391%
	2	1	10	relu		0.0001	adaptive		97.782%	97.573%
	3	1	200	1	relu	0.0001	adapt		99.612%	99.602%
Neural Network	4	2	100+100	1	relu	0.0001	adapt		99.814%	99.805%
Network	5	2	100+100	1	relu	0.0001	const	ant	99.811%	99.801%
	6	2	100+100	t	anh	0.0001	const	ant	99.636%	99.629%
	7	1	100	t	anh	0.0001	const	ant	98.644%	98.617%
	8	2	100+100		relu	0.0005	const		99.824%	99.815%
	Iteration	max	depth		mples_leaf	min_samples_split	max fea		Train	Test
	Default		one		1	2	Non		100.000%	99.726%
D. data	2		5		35	60	auto		99.295%	99.143%
Decision Tree	3		.0		35	60	auto		99.320%	99.170%
	4		one		10	2	Non		99.797%	99.645%
	5		one		1	10	Non		99.932%	99.724%
	Iteration max_depth		eta			lamb		Train	Test	
Xgboost	Default		fault	Default			Default		99.990%	99.790%
Agboost	2		9	0.05			0.3		99.980%	99.820%
	Iteration			0.05 C			tol		79.980% Train	79.82078 Test
	Default	kernel Default		Default			Defa		97.700%	96.880%
SVM	2			Default			Defa			
	3	linear		Default 9			0.000		96.960% 99.830%	96.910% 99.820%
	Iteration	default		9 max_depth			min child		99.830% Train	79.820% Test
	Default	n_estimator learning_rate		Default			Defa	_	99.870%	99.740%
	2	Default 1000			Default		Defa			
LGBM	3	default	0.1		8		50		99.920% 99.650%	99.730% 99.570%
	4	default		8			10		99.930%	99.820%
	5		0.1				2		99.930%	
		default	0.1	141	20	i				99.830%
	Iteration	learning_rate	n_estimators	max_depth	max_features	min_sample_leaf	min_sample_split	subsample	Train	Test
	Default	0.1		3	None	l .		1	99.894%	99.793%
Gradient	2	0.1	50	30	None	20	50 2	1	99.894%	99.894%
Boosting Tree	3	0.2	100 100	3	None None	10	2 2	1	99.894% 99.894%	99.796%
		0.1		20		10	2			99.797%
	5 6	0.3 0.1	50 200	10 3	None	20 1	50	1	99.894% 99.894%	99.796% 99.797%
					None	i				
	Iteration	bootstrap	n_estimators	max_depth	max_features	min_samples_leaf	min_samples_split	criterion	Train	Test
Random	Default 2	TRUE	100 100	None 100	auto	1 20	2 2	squared_error	99.978% 99.978%	99.840%
Forest		TRUE			auto	I .		squared_error		99.840%
	3	TRUE	200	100	auto	10	2	squared_error	99.978%	99.838%
	4	TRUE	50	None	auto	1	2	squared_error	99.978%	99.839%
	Iteration		# neighbors			p	weights	metric	Train	Test
	Default		5			2	uniform	minkowski	99.978%	99.838%
1/2/2/	2		10			2	uniform	minkowski	99.978%	99.839%
KNN	3		3			2	uniform	minkowski	99.978%	99.839%
	4		5			1	uniform	minkowski	99.978%	99.839%
	5		3			1	uniform	minkowski	99.978%	99.837%
	6		10	1			uniform	minkowski	99.978%	99.840%

8.2.1 Classification

Model			Accuracy			
	penalt	ty	so	trn	tst	
Logistic Regression	none	;	Sa	0.892	0.891	
	12		Sa	0.892	0.892	
	none	;	16	lbfgs		
	12		16	ofgs	0.918	0.915
	max_de	pth	spl	litter	trn	tst
	None	2	ran	dom	1.000	0.912
	5		b	est	0.946	0.909
Single Decision Tree	10		ran	idom	0.991	0.904
	10		b	est	0.975	0.912
	20		ran	dom	1.000	0.915
	15		b	est	1.000	0.906
	n_estimators	max_depth	min_samples_leaf	min_samples_split	trn	tst
	10	10	1	2	0.992	0.925
	20	10	10	10	0.945	0.916
	20	20	20	20	0.930	0.915
	50	30	20	20	0.932	0.911
Random Forest	50	50	10	10	0.946	0.921
	50	50	20	20	0.931	0.915
	50	50	30	50	0.923	0.911
	50	50	15	20	0.936	0.918
	100	50	10	10	0.947	0.918
	300	50	5	10	0.967	0.923
	n_estimators max_depth			ng_rate	trn	tst
	20 3		(0.934	0.918	
	100	5		.01	0.943 1.000	0.921 0.936
		200 5		0.1 0.01		
Boosted Tree	200	5			0.953	0.930
	500	5	(1.000	0.938	
	500	5	0	0.971	0.934	
	1000	50	0.	0.975	0.933	
	1000 1000	50 100	0.	0.995 0.975	0.934 0.933	
	hidden_layer_sizes		learning_rate	activation	0.973 trn	0.933 tst
	5	1	constant	relu	0.527	0.528
	5	1	adaptive	logistic	0.563	0.563
Neural Network	10	1	constant	relu	0.555	0.555
TIOUTAL TIOUWULK	10	2	adaptive	logistic	0.607	0.606
	20	2	adaptive	relu	0.568	0.567
	20	2	constant	logistic	0.656	0.656
	n compo		solver	shrinkage	trn	tst
	None		svd	None	0.926	0.921
LDA	1		lsqr	auto	0.915	0.912
	1		eigen		0.915	0.912
	l		eigen auto		0.710	U.J.12

8.3 Code Reference

8.3.1 Load & EDA

```
import pandas as pd
from datetime import datetime
start time = datetime.now()
# %pip install plotly
# %pip install playsound
# %pip install xgboost
# %pip install lightgbm
# %pip install mlxtend
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import PLSRegression
import matplotlib.cbook as cbook
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostRegressor
from sklearn.neural network import MLPRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.svm import SVR
from sklearn.metrics import r2_score
from sklearn.model_selection import cross_validate
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
import numpy as np
import xgboost as xgb
import lightgbm as lgb
import matplotlib.pyplot as plt
from IPython.display import display as d
from IPython.display import Audio
print('LOAD DURATION: ', datetime.now() - start_time) # about a minute
```

8.3.2 Imputation

```
S ¢ K ¢ tau ¢ r ¢ BS ¢
    0 21 670404 431 623898 420 0 0 341270 0 03013 Under
    1 0.125000 427.015526 465.0 0.166667 0.03126 Over
  2 20.691244 427.762336 415.0 0.265873 0.03116 Under
   3 1.035002 451.711658 460.0 0.063492 0.02972 Over
  4 39.553020 446.718974 410.0 0.166667 0.02962 Under
 # clean data
 data=data.drop('BS', axis=1)
data=data.drop(axis=0, index=292)
 data=data.drop(axis=0, index=818)
 data.loc[data['S']==0,'S'] = data['S'].mean()
data.loc[data['tau']==250,'tau'] = data['tau'].mean()
data.loc[data['tau']==146,'tau'] = data['tau'].mean()
 data.shape
# clean data
data=data.drop('Value', axis=1)
data['BS']=[1 if i=='Over' else 0 for i in data['BS']]
first_column = data.pop('BS')
data.insert(0, 'BS', first_column)
data=data.drop(axis=0, index=292)
data['K']=data['K'].fillna(data['K'].mean())
data.loc[data['5']==0,'5'] = data['5'].mean()
data.loc[data['tau']==250,'tau'] = data['tau'].mean()
data.loc[data['tau']==146,'tau'] = data['tau'].mean()
data
```

8.3.3 Feature Engineering

```
# add basic variable
 import math
data['5-K']=[data.loc[i,'S']-data.loc[i,'K'] for i in data.index]
var=data.columns[1:5].to_list()
  data[i+' '+'log'] = [math.log(n) for n in data[i]]
data[i+'_'+'sqrt'] = [math.sqrt(n) for n in data[i]]
for i in data.columns[3:5].to_list():
       data[i+'_'+'exp'] = [math.exp(n) for n in data[i]]
 X_trntst = data.iloc[:,1:17]
Y_trntst = data['Value']
  data_cols1=X_trntst.columns.tolist()
 data_cols1
 r_1 = ['r','r_exp']
s_1 = ['S', 'S_log']
K_1 = ['K', 'K_log']
 tmp_name = f'{j}^{i}'
print(tmp_name)
                   X_trntst[tmp_name] = X_trntst[j]**X_trntst[i]
data_cols2=X_trntst.columns.tolist()
for i in data_cols2:
     for j in data_cols2:
   if i < j:</pre>
                  if 0 in X_trntst[j].unique():
                        continue
                  else:
                       # Add ratio variables
tmp_name = f'{i}/{j}'
print(tmp_name)
                        X_{\text{trntst}}[\text{tmp\_name}] = X_{\text{trntst}}[i]/X_{\text{trntst}}[j]
X_trntst.shape
X_trntst['domain'] = [(data.loc[i,'s']*(1+data.loc[i,'r'])**data.loc[i,'tau']) for i in data.index]
X_trntst['deviation'] = [(n-data['S'].mean())**2 for n in data['S']]
data_cols3=X_trntst.columns.tolist()
len(data_cols3)
import re
data_cols3_str=','.join(data_cols3)
remove_sqrt_1 = re.findall(r'(\w+/\w+_sqrt|\w+_sqrt/\w+|\w+_sqrt)',data_cols3_str)
data_cols3 = [i for i in data_cols3 if i not in remove_sqrt_1]
len(data_cols3)
X_trntst.head()
```

8.3.4 Feature Selection

```
from sklearn.model_selection import train_test_split
# train/test split
X_train, X_test, y_train, y_test = train_test_split(X_trntst, Y_trntst, test_size=0.2, random_state=1)

import scipy.stats as sps
from sklearn.feature_selection import mutual_info_classif as MIC

result = MIC(X_train,y_train)
k = result.shape[0] - sum(result <= 0)

from sklearn.model_selection import train_test_split
# train/test split
X_train, X_test, y_train, y_test = train_test_split(X_trntst, Y_trntst, test_size=0.2, random_state=1)

from sklearn.feature_selection import mutual_info_regression as MIR

result = MIR(X_train,y_train)

dd=pd.Series(data=result,index=X_train.columns.tolist())

...

dd=dd.sort_values(ascending=False)
dd[0:80]

filter_columns=list(dd[0:80].index)</pre>
```

SequentialFeatureSelector

```
%%time
import warnings
from lightgbm import LGBMClassifier
warnings.filterwarnings('ignore', category=np.VisibleDeprecationWarning)
num wrapper=30
clf=LGBMClassifier()
sfs=SFS(clf, k_features=num_wrapper, forward=True, verbose=2, scoring='accuracy', n_jobs=-1)
sfs.fit(X_trn_scaled[filter_columns],y_train)
sfs.k feature names
pd.DataFrame.from_dict(sfs.get_metric_dict()).T
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
figsize=(30,4))
plt.ylim([0,1])
plt.xlim([0,30])
plt.title('SFS (w. std_dev)')
plt.grid()
plt.show()
vars_SBS=pd.DataFrame.from_dict(sfs.get_metric_dict()).T
vars_SBS.to_csv('varsFS.csv',index=False)
selected = list(vars_SBS.iloc[29,3])
print('# features selected:', len(selected))
selected
```

8.3.5 Regression Model Tuning

Build best models

```
: # Random forest
   # Kanaom forest
#params={'n_estimators':100, 'max_depth':100, 'max_features':'auto', 'min_samples_leaf':20}
params={'n_estimators':50, 'max_depth':None, 'max_features':'auto', 'min_samples_leaf':1}
rf = RandomForestRegressor()
  clf_score(rf, X_trntst, Y_trntst, 'RF', train_scores, test_scores, n_jobs=-1)
: # KNN
   # params={}
params={'n_neighbors':5}
knn = KNeighborsRegressor(n_neighbors=10,p=1)
  clf_score(rf, X_trntst, Y_trntst, 'KNN', train_scores, test_scores, n_jobs=-1)
: %%time
  # SVR
# for i in range(1,150,10):
params={"C":9 , "tol":0.00001}
svr = SVR(**params)
clf_score(svr, X_trntst, Y_trntst, 'SVR', train_scores, test_scores, n_jobs=-1)
# print(f'max_depth :{i}')
  # I usually comment out this model since it takes a long time to train and doesn't work that well # xgboost 'eta': 0.05, 'lambda': 0.3, 'max_depth': 9
params={} # 確定 eta:0.05 "lambda":0.5
xg = xgb.XGBRegressor(**params)
clf_score(xg, X_trntst, Y_trntst, 'XGB', train_scores, test_scores, n_jobs=-1)
: %%time
  # default
   # I usually comment out this model since it takes a long time to train and doesn't work that well
   # xgboost
  params={}
   xg = xgb.XGBRegressor(**params)
  clf_score(xg, X_trntst, Y_trntst, 'XGB', train_scores, test_scores, n_jobs=-1)
: %%time
   params={'learning_rate':0.1, 'max_depth':20, 'min_child_samples':2}
  lg = lgb.lGBMRegressor(**params)
clf_score(lg, X_trntst, Y_trntst, 'LGB', train_scores, test_scores, n_jobs=-1)
```

15

8.3.6 Classification Model Tuning

Build best models

```
In [66]: labels = []
                train_scores = []
               test_scores = []
In [67]: num_cross_val = 15
nvars = len(X_trntst[1])
print(pp.mean(score['train_score']), pp.mean(score['test_score']))
print(pd.DataFrame(score['test_score'],score['train_score']))
 In [96]: %%time
                # Logistic regression
               # Logistic regression
# params={ 'copy X'.False, 'fit_intercept':False, 'normalize':False}
lr = LogisticRegression(penalty='12', solver='lbfgs')
clf_score(lr, X_trntst, Y_trntst, 'LR', train_scores, test_scores, n_jobs=-1)
in [102]: %%time
               # Single decision tree
# for i in range(1,150,10):
params={'max_depth':50, 'min_samples_leaf':20, 'min_samples_split':30, 'max_features':'auto'}
dt = DecisionTreeClassifier(max_depth=15, splitter='best')
               clf_score(dt, X_trntst, Y_trntst, 'DT', train_scores, test_scores, n_jobs=-1)
# print(f'max_depth :{i}')
in [104]: %%time
                # Neural Network
               params={}
nn = MLPClassifier(hidden_layer_sizes=(20,2), learning_rate='constant', activation='logistic')
clf_score(nn, X_trntst, Y_trntst, 'NN', train_scores, test_scores, n_jobs=-1)
in [112]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
lda=LDA(n_components=1, solver='svd', shrinkage=None)
clf_score(lda, X_trntst, Y_trntst, 'NN', train_scores, test_scores, n_jobs=-1)
in [114]: %%time
                \# \ params = \{ \ 'n\_estimators' : 100, \ 'max\_depth' : 100, \ 'max\_features' : 'auto', 'min\_samples\_leaf' : 20 \}   params = \{ \} 
               params=\{\gamma=\text{randomForestClassifier(n_estimators=1000,max_depth=50,min_samples_leaf=5,min_samples_split=10)} \]
clf_score(rf, X_trntst, Y_trntst, 'RF', train_scores, test_scores, n_jobs=-1)
n [180]: ##### %%time
                # Boosted tree
               # BOOSTEG Gree
params={}
bt = LGBMClassifier(n_estimators=600, max_depth=50, learning_rate=0.01)
clf_score(bt, X_trntst, Y_trntst, 'BT', train_scores, test_scores, n_jobs=-1)
```

8.4 Selected Feature Subset-2

8.4.1 Classification

```
selected=['S-K',
'S-K/r_sqrt',
'S-K/S_sqrt',
 'K/S',
'S-K/tau_sqrt',
 'S-K/r_sqrt^tau',
 'K/K_sqrt',
 'K',
'K_sqrt',
 'K/r',
'K_sqrt/r_sqrt',
 'K_sqrt^tau/tau',
'K_sqrt^tau/r',
  'K_sqrt^tau/S',
 'K_sqrt/tau_sqrt',
 'K/tau',
'K/K_sqrt^tau',
 'K^tau/S',
'K_sqrt^tau/S_sqrt',
 'K_sqrt/tau',
'K^tau/K_sqrt',
 'tau_sqrt',
'K_sqrt/S_sqrt^tau',
 'K/S^tau',
'r_sqrt/tau_sqrt',
 'K_sqrt/S^tau',
'S_sqrt^tau/r^tau',
 'r_sqrt^tau/tau',
  'r_sqrt^tau/tau_sqrt',
 'domain']
```

8.4.2 Regression