Project Update: Team Classifier

Complete:	In Progress:	Not Started:
Updated Project proposal document to implement the review comments.	Place the data into proper data structures	Develop model on train dataset
Identification of the dataset		Anomaly / Outlier Detection
Exploratory Data Analysis		
Clean, Parse and fix class imbalance		

So far no challenges are being faced.

(Code can be viewed under Project folder)

Steps done so far for clean, parse and fix class imbalance for all reviews:

- 1. Tokenization
- 2. Remove punctuation
- 3. Remove stop words
- 4. Lemmatization
- 5. Make lower case

Initial feature extraction steps for all reviews:

- 1. Word count
- 2. Character count
- 3. Capital letters count
- 4. Digit count
- 5. Punctuation count
- 6. Sentiment Score

Exploratory Data Analysis:

Sampling data from the input file

Out[4]: category rating label text_ 40427 Clothing_Shoes_and_Jewelry_5 4.0 OR I had read some reviews saying that this bra r... 40428 Clothing_Shoes_and_Jewelry_5 5.0 CG I wasn't sure exactly what it would be. It is ... 40429 Clothing_Shoes_and_Jewelry_5 2.0 OR You can wear the hood by itself, wear it with ... 40430 Clothing_Shoes_and_Jewelry_5 1.0 CG I liked nothing about this dress. The only rea... 40431 Clothing_Shoes_and_Jewelry_5 5.0 OR I work in the wedding industry and have to wor... In [23]: # get the unique classifier dataset.label.unique() Dut[23]: array(['CG', 'OR'], dtype=object) In [9]: # get the size of unique classifier dataset.label.unique().size Out[9]: 2

Description of Unique Label Values:

OR - Original Review

CG - Computer Generated

```
In [11]: dataset.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 40432 entries, 0 to 40431
        Data columns (total 4 columns):
         # Column
                    Non-Null Count Dtype
                      -----
         0 category 40432 non-null object
         1 rating 40432 non-null float64
         2 label 40432 non-null object
         3 text_
                    40432 non-null object
        dtypes: float64(1), object(3)
        memory usage: 1.2+ MB
In [12]: dataset.isna().sum()
Out[12]: category
        rating
        label
                    0
        text
        dtype: int64
In [13]: dataset = dataset.dropna()
In [14]: dataset.isnull().sum()
Out[14]: category
                    0
        rating
                    0
        label
                    0
                    0
        text_
        dtype: int64
In [16]: #skewness and kurtosis
         #The skew result show a positive (right) or negative (left) skew.
         #Values closer to zero showless skew.
         print("Skewness: ")
         dataset.skew()
         print("Kurtosis: ")
         dataset.kurt()
         Skewness:
         Kurtosis:
Out[16]: rating
                   1.476615
         dtype: float64
```