Numerical simulation of platelets adhesion on structured artificial surfaces.

Corentin RAVELEAU¹, Marlene Schadow², Michael Neidlin², Johanna C. Clauser², Simon MENDEZ¹, Franck NICOUD^{1,3}

¹CNRS, Université de Montpellier, IMAG, Montpellier, France.

²Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, University Hospital RWTH Aachen University, Aachen

³Institut Universitaire de France, IUF, France.

ntroduction

In-vitro

Numerical model

The hemocompatibility of blood contacting medical devices remains a key challenge to their development.

Artificial surface structuring as a bioinspired technique has shown interesting results in reducing platelets adhesion, the initial event in thrombus formation.

Y. Ding et al., J Biomed Mater Res, 2013.

A numerical understand the interaction between the platelet adhesion and dynamics and the structured surface.

Methods

The numerical model is implemented in the YALES2BIO solver developed at IMAG and dedicated to the simulation of blood flows [1]. The surrounding fluid is described by the incompressible Navier-Stokes continuity (1) and momentum equations (2).

$$\nabla \cdot u = 0 \tag{1}$$

$$\rho \frac{Du}{Dt} = -\nabla p + \mu \nabla^2 u + f(x, t) \tag{2}$$

$$f_i(x,t) = F_i \Delta(x - Y(t)) + G_{ij} \frac{\partial}{\partial x_i} \Delta_d(x - Y(t))$$
 (3)

The force density f(x,t) detailed in (3) accounts for the presence of the particle in the flow as prescribed by the Force Coupling Method [2] by spreading the external force and torque over Gaussian supports \Delta and Δ_d . The linear and angular velocity of the particle are measured by averaging the fluid velocity and vorticity over the Gaussian supports.

Validation

Flipping motion of a particle with aspect ratio 0.5 near a flat wall in

Results: Single particle dynamics over grooved surfaces

Increasing the size of the grooves shifts the mean particle-structure distance to higher values. This might influence the platelets adhesion potential.