•	☑ Chapter 1: 计算机组成概述	
	☑ 理解计算机的分类 (嵌入式计算机(Embedded computers)、个人计算机(Personal computers))、
	服务器和企业系统(Servers and enterprise systems)、超级计算机和网格计算机	
	(Supercomputers and grid computers))	
	☑ 掌握计算机的五大功能部件 (运算器(Arithmetic Logic Unit, ALU)、控制器(Control Unit, CU)、	
	存储器(Memory)、输入设备(Input Device)、输出设备(Output Device))	
	☑ 了解计算机的发展历程 (第一代:真空管(Vacuum Tubes);第二代:晶体管(Transistors);第	\equiv
	代: 集成电路(Integrated Circuits); 第四代: LSI & VLSI)	
•	✓ Chapter 2: 指令系统	
	□ 理解指令集(Instruction Set)的概念	
	□ 掌握指令的基本组成元素 (操作码(Opcode),地址码(Address code))	
	□ 掌握指令长度(Instruction Length)、寻址字段格式(Address Field Format)(零地址(Zero-	
	address)、一地址(One-address)、二地址(Two-address)、三地址(Three-address))	
	□ 掌握扩展操作码(Expanding Opcode)方法,并能够设计指令格式	
	□ 掌握各种寻址方式 (立即寻址(Immediate Addressing),绝对寻址(Absolute Addressing),间接	妄
	寻址(Indirect Addressing),寄存器寻址(Register Addressing),寄存器间接寻址(Register	~
	Indirect Addressing),变址寻址(Index Addressing))	
	□ 理解RISC(Reduced Instruction Set Computer)和CISC(Complex Instruction Set Computer)的	1
	区别 (寻址模式(Addressing Modes),条件码(Condition Code),特点)	
	□ 了解CISC的寻址模式: 自增模式(Autoincrement Mode)、自减模式(Autodecrement Mode)、	相
	对寻址模式(Relative Mode)	
	□ 掌握条件码(Condition Code): N(Negative)、Z(Zero)、C(Carry)、V(Overflow)	
•	✓ Chapter 3: I/O系统	
	□ 掌握I/O接口(I/O Interface)的组成部分 (地址译码器(Address Decoder)、数据寄存器(Data	
	Register)、状态寄存器(Status Register)、控制寄存器(Control Register)、控制电路(Control	
	Circuitry))	
	□ 理解I/O接口的寻址方式 (内存映射 I/O(Memory-mapped I/O)、独立 I/O(Isolated I/O))	
	□ 掌握程序控制 I/O (Program Controlled I/O) 的工作原理,并理解其优缺点	
	□ 理解中断(Interrupt)的概念和中断处理过程 (中断请求(Interrupt Request)、中断响应(Interrupt	
	Acknowledge)、中断处理程序(Interrupt Handler)、中断延迟(Interrupt Latency))	
	□ 比较子程序(Subroutine)和中断服务程序(Interrupt Service Routine, ISR)的区别	
	□ 了解中断处理过程 (流程图(Flowchart))	
	□ 理解中断使能(Interrupt Enable)和禁止机制(Interrupt Disable) (处理器端(Processor End)和设	Ļ
	备端(Device End))	
	□ 了解多设备中断系统(Multiple Device Interrupt System)的设计问题	
	□ 识别中断源(Identify Interrupt Source) (轮询(Polling)、向量中断(Vectored Interrupt))	
	□ 多级中断(Multiple-level Interrupt)/(中断嵌套(Interrupt Nesting))	
	□ 同时中断(Simultaneous Interrupt) (软件轮询(Software Polling)、菊花链(Daisy Chain))	

		理解DMA(Direct Memory Access)的操作步骤
		掌握DMA控制器的寄存器 (数据寄存器(Data Register)、计数寄存器(Count Register)、地址寄
		存器(Address Register)、控制寄存器(Control Register))
		掌握DMA的三种数据传输方式 (突发(Burst)、周期窃取(Cycle Stealing)、透明(Transparent))
•	~	Chapter 5: CPU
		理解指令的执行步骤 (能画出流程图)
		理解数据通路图(Datapath Diagram) (图5.8)
		能够写出Add、Load、Store、Branch、Subroutine Call指令的执行步骤
		记住指令格式(Instruction Format) (图5.12)
		理解指令执行过程中各步骤需要的控制信号(结合图5.18)
		理解硬布线控制单元(Hardwired Control Unit)的工作原理,并能绘制图5.21
		理解微程序控制单元(Microprogrammed Control Unit)的工作原理,能够画出图5.27,并描述原
		理
		理解硬布线控制单元(Hardwired Control Unit)的优缺点
•	~	Chapter 6: 流水线
		理解流水线(Pipeline)的概念,掌握流水线的基本原理
		掌握流水线的术语 (流水段(Pipeline Stage)、流水深度(Pipeline Depth)、流水线延迟(Pipeline
		Latency)、流水线吞吐率(Pipeline Throughput))
		理解数据冒险(Data Hazard)、指令冒险(Instruction Hazard)/(控制冒险(Control Hazard))和结构
		冒险(Structural Hazard) 的定义
		掌握引起三种冒险的原因
		掌握数据相关性的概念,并且了解操作数转发(Operand Forwarding)
		了解控制转移的延迟(Branch Penalty)
		了解分支延迟槽(Branch Delay Slot)
		掌握解决结构冲突的方法
•	~	Chapter 8: 存储器
		掌握存储器基本概念(字(Word),字长(Word Length),地址(Address),地址空间(Address
		Space),字节编址(Byte Addressable),大小端(Big-endian, little-endian),存储器读写操作
		(Read and Write operation),物理存储器类型(Physical types of memory),主存容量(Main
		memory capacity),传输单位(Unit of transfer),访问方式(Access Methods),性能
		(Performance),物理特性(Physical characteristic))
		理解静态RAM(Static RAM, SRAM) 芯片的外部引脚,并掌握读写操作原理
		理解动态RAM(Dynamic RAM, DRAM)芯片为什么需要refresh(Refresh),掌握DRAM芯片的外
		部引脚
		掌握Burst操作,以及Latency和Bandwidth的概念
		知道DDR(Double Data Rate)和SDRAM(Synchronous Dynamic Random Access Memory)的概
		念

□ 掌握使用指定芯片构造大容量存储器的方法 (位扩展法(Bit Expansion)、字扩展法(Word
Expansion)、字位同时扩展法(Word and Bit Expansion))
□ 会计算存储器的地址范围(如课本8.10的2M×32存储器)
□ 理解存储器分层体系结构(Memory Hierarchy),并能画出图8.14,并理解程序访问的局部性原
理 (时间局部性(Temporal Locality)、空间局部性(Spatial Locality))
□ 理解 Cache 的作用,并掌握 Cache 的基本原理,读操作(Cache Read Operation)
□ 掌握 Load Through/Early Restart Policy
□ 理解 Valid Bit 和 Hit & Miss 的概念
□ 掌握 Cache 替换策略 (Replacement Policy) LRU (Least Recently Used) 和 Random
□ 掌握 Cache 写策略 (Write Policy)
□ 理解 Dirty bit
□ 理解Cache容量(Cache Capacity)的概念
□ 理解 Cache 的三种映射方式 (直接映射(Direct Mapping)、全相联映射(Associative Mapping)、
组相联映射(Set Associative Mapping)),并能写出映射函数、划分 fields 并分析优缺点
□ 会使用三种映射方式解决实际问题。
□ 理解多级 Cache (Multilevel Cache) 的概念,会计算访问时间公式
□ 了解虚拟存储器(Virtual Memory, VM)的动机 (为什么要虚拟存储器)
□ 理解什么是虚拟存储器
□ 掌握地址转换的原理
□ 理解缺页(Page Fault) 和页命中 (Page Hit) 的概念
□ 了解TLB (Translation Lookaside Buffer)的用途
□ 理解页表(Page Table)和页表项(Page Table Entry)
□ 了解页面替换算法(Page Replacement Algorithm)
□ 理解写策略(Write Policy)
□ 理解内部碎片(Internal Fragmentation)
□ 理解页面的大小(Page Size),掌握页面的大小对性能的影响
✓ Chapter 9: 算术运算
□ 熟练将十进制数转成二进制原码(Sign-magnitude)、补码(Two's Complement)
□ 给定一个二进制数,确定其采用不同机器数表示的范围
□ 掌握负数原码和补码的互相转换
□ 掌握负数原码和补码转换成真值
□ 掌握加减运算规则,并判断是否溢出(Arithmetic Overflow)
□ 能够写出1位全加器(Full Adder)中和与进位输出的逻辑表达式,并画出逻辑图。
□ 能够画出行波进位加法器(Ripple Carry Adder)的原理图
□ 掌握用小加法器构造多位加法器的方法
□ 理解半加器(Half Adder)的概念
□ 分析行波讲位加法器各位和讲位的时间延迟