

Objective

This report documents the complete machine learning pipeline developed for **predicting T20 cricket match outcomes**. The project encompasses exploratory data analysis, feature engineering, model training and evaluation, API development, and integration with an LLM for explainable AI.

1. Exploratory Data Analysis

1.1 Dataset Overview

The dataset contains T20 cricket match data with the following structure:

- Dataset shape: (15691, 5) after cleaning
- Features: total_runs, wickets, target, balls_left, won (target variable)

```
Dataset shape: (15691, 5)
First few rows:
   total runs
                                  balls left
               wickets
                         target
                                               won
                             125
0
          0.0
                    0.0
                                       119.0
                                                 1
1
                            125
          0.0
                    0.0
                                       118.0
                                                 1
2
          1.0
                    0.0
                                       117.0
                            125
                                                 1
                    1.0
                                       116.0
3
          1.0
                            125
                                                 1
                    1.0
                                       115.0
                                                 1
4
          1.0
                             125
```



```
Descriptive statistics:
                           wickets
         total runs
                                                     balls left
                                           target
                                                                            won
                      15689.000000
       15689.000000
                                                   15689.000000
count
                                     15691.000000
                                                                  15691.000000
                                       156.716462
          71.395691
                                                      63.766652
mean
                          2.538530
                                                                      0.621184
std
          45.430853
                          2.153691
                                        28.713984
                                                       33.006166
                                                                      0.485108
min
           0.000000
                          0.000000
                                        59.000000
                                                       -3.000000
                                                                      0.000000
25%
          34.000000
                                                       36.000000
                          1.000000
                                       136.000000
                                                                      0.000000
50%
          68.000000
                          2.000000
                                       156.000000
                                                      65.000000
                                                                      1.000000
75%
         105.000000
                          4.000000
                                       180.000000
                                                      92.000000
                                                                      1.000000
max
         203.000000
                         10.000000
                                       238.000000
                                                      119.000000
                                                                      1.000000
Missing values:
total runs
wickets
target
              0
balls left
              2
dtype: int64
Correlation matrix:
            total runs
                          wickets
                                              balls left
                                      target
                                                                won
total runs
                                    0.210841
              1.000000
                         0.638929
                                               -0.938889 -0.010967
wickets
              0.638929
                         1.000000
                                   0.121617
                                               -0.761451 -0.291894
target
              0.210841
                         0.121617
                                    1.000000
                                               -0.079779 -0.432581
balls left
              -0.938889 -0.761451 -0.079779
                                                1.000000
                                                           0.058960
              -0.010967 -0.291894 -0.432581
                                                0.058960
                                                           1.000000
won
```

The dataset shows that around **62% of matches are wins.** Correlation analysis highlights that higher targets (-0.43) and more wickets lost (-0.29) significantly reduce win probability, while balls_left alone has very weak predictive power. Overall, the data captures cricket dynamics well, but feature engineering and cleaning are essential to improve model performance and interpretability.

After cleaning, the dataset contains 15,680 matches, with a class distribution of ~62% wins and ~38% losses. Correlation analysis revealed strong multicollinearity between total_runs and balls_left, highlighting the need for engineered features (e.g., run rate, required run rate) for better model performance.

Data Visualization

Feature Engineering

Two new features were engineered to capture cricket-specific match dynamics:

- 1. Required Run Rate (RRR): Calculated as remaining runs divided by overs left.
 - Correlation with winning: -0.28 → Higher RRR reduces the chance of winning, as expected.
- 2. Wickets Remaining: Derived as 10 wickets.
 - Correlation with winning: +0.29 → More wickets in hand increases the chance of winning.

Model Training & Comparison

Three different algorithms were selected for comparison:

- 1. Logistic Regression: Baseline model for binary classification
- 2. Random Forest: Ensemble method handling non-linear relationships
- 3. XGBoost: Gradient boosting known for high performance on structured data

Training Methodology

- Train-Test Split: 80-20 split to maintain class distribution
- Cross-Validation: 5-fold cross-validation to ensure robust performance estimates
- Evaluation Metrics: Focused on **F1-score** as the primary metric due to unbalanced classes

```
=== Model Comparison ===
Logistic Regression:
  CV F1: 0.8313
  Test F1: 0.8275
  Test Accuracy: 0.7790
  Test ROC AUC: 0.8556
Random Forest:
  CV F1: 0.9717
  Test F1: 0.9778
  Test Accuracy: 0.9723
  Test ROC AUC: 0.9957
XGBoost:
  CV F1: 0.9724
  Test F1: 0.9749
  Test Accuracy: 0.9688
  Test ROC AUC: 0.9972
Best model based on Test F1 Score: Random Forest
Saved Random Forest as trained_model.pkl
```


Production API Development

FastAPI Implementation:

A production-ready API was developed with the following endpoints:

- 1. POST /predict: Accepts CSV uploads and returns predictions
- 2. POST /explain/{prediction_id}: Provides human-readable explanations for predictions
- 3. GET /health: Health check endpoint
- 4. GET /predictions/{filename}: Allows downloading prediction results

Key Features

- Input Validation: Comprehensive validation for CSV structure and content
- Filtering Logic: Processes only rows where balls_left < 60 and target > 120
- **Error Handling**: Robust error handling with meaningful error messages
- Logging: Comprehensive logging for debugging and monitoring
- **Model Versioning**: Designed with model versioning considerations for future updates

Prompt Engineering Integration

The **/explain endpoint** integrates with Groq's API to provide natural language explanations of model predictions.

The prompt template was carefully engineered to:

- Include all relevant match situation context
- Request concise, insightful explanations
- Consider different scenarios (high vs. low confidence predictions)
- Provide cricket-specific analysis

Test Coverage:

The test suite covers:

- API endpoint functionality
- Error handling for malformed inputs
- Model prediction consistency
- Explanation generation reliability

Limitations:

- 1. Feature Limitations: Does not incorporate team strength or player form
- 2. API Constraints: Currently supports only CSV file inputs

Swagger UI

Predict Endpoint

Explain Endpoint

Unit Testing

```
• PS D:\cricket_api> python tests/test_unit.py
Prediction: 1
Confidence: 1.0
Explanation: The chase sits at 92/2 with 59 balls left, so 36 runs are needed at just about 3.6 runs per over - well below the 8-
9 runs per over the side has already been scoring. With essentially all ten wickets in hand and almost a full quota of overs, the
situation mirrors countless T20 chases where teams have a >95 % win rate. Historical data shows that when a side needs under 40
runs with >8 overs and >5 wickets, they win more than nine times out of ten. Hence the model confidently predicts a win with 1.00
confidence.
```

Prediction File

1	total_runs	wickets	target	balls_left	won	prediction	prediction	_confidence
2	82	2	125	59	1	1	1	
3	82	2	125	58	1	1	1	
4	84	2	125	57	1	1	1	
5	86	2	125	56	1	1	1	
6	87	2	125	55	1	1	1	
7	91	2	125	54	1	1	1	
8	92	2	125	53	1	1	1	
9	93	2	125	52	1	1	1	
10	93	2	125	51	1	1	1	
11	94	2	125	50	1	1	1	
12	95	2	125	49	1	1	1	
13	99	2	125	48	1	1	1	
14	100	2	125	47	1	1	1	
15	100	2	125	46	1	1	1	
10	400	^	405	45	4	4	4	