大学物理(王少杰教材)第6套阶段训练题目 量子力学(14章5-10节)

— 、	填空题	(共30	分)

· · · · · · · · · · · · · · · · · · ·
1 、(本题 4 分)设氢原子的动能等于氢原子处于温度为 T 时的热平衡状态时的平均平动动能,氢原子的质量为 m ,则此氢原子的德布罗意波长 $\lambda =$ 。
2、(本题 4 分) 已知中子的质量为 $m=1.67\times10^{-27}$ kg, 当中子的动能等于温度为
T = 300K 的热平衡中子气体分子的平均动能时,其德布罗意波长 $λ =$ nm。
3 、(本题 4 分)波长为 $\lambda = 5000$ A 的光沿 x 轴正向传播,若光的波长的不确定量
$\Delta \lambda = 10^3 \text{Å}$,则利用不确定关系式 $\Delta x \cdot \Delta P \geq h$,可得光子的 x 坐标的不确定量至
少为µm。
4、(本题 4 分)根据量子理论,氢原子核外电子的状态可以由四个量子数来确定,其中主量子数 n 可取的值为,它可决定。
5 、(本题 4 分)原子内电子的量子态由 n , l , m_l , m_s 四个量子数表征,当 n , l , m_l
定时,不同的量子态数目为
6、(本题 4 分)多电子原子中,电子在核外的排列需遵循原理和
7、(本题 3 分) 在主量子数 $n=2$,自旋磁量子数 $m_s = \frac{1}{2}$ 的量子态中,能够填充的
最大电子数为。
8、(本题 3 分)按照量子理论,即使电子的能量小于方势垒的能量,依然有一定的穿透系数,这是微观粒子的表现。
二、 推导证明题(共6分)
9、(本题 6 分) 在一维无限深势阱中运动的粒子, 由于边界条件的限制,势阱 宽度 a 必须等于德布罗意波半波长的整数倍。试用这一条件导出能量量子化公式。
三、 计算题 (共 58 分)
10、(本题 8 分) 已知第一玻尔轨道半径为 a ,试计算当氢原子中的电子沿第 n

玻尔轨道运动时,其相应的德布罗意波长是多少?

- 11、(本题 10 分) 求下列两种情况下的实物粒子德布罗意波长与粒子动能 E_{K} 和静止质量 m_{0} 的关系。
- 1) 当 $E_K = m_0 c^2$ 时, λ 的表达式?
- 2) 当 E_{κ} ? m_0c^2 时, λ 的表达式?
- 12、(本题 10 分)已知光子的波长为 $\lambda = 3000$ Å,如果确定此波长的精确度 $\frac{\Delta \lambda}{\lambda} = 10^{-6}$,按照如下关系式 $\Delta x \cdot \Delta P \ge \frac{h}{2\pi}$ 计算此光子的位置不确定量。
- 13、(本题 10 分)设有一个电子在宽为 0.20 nm 一维无限深的方势阱中,(1) 计算电子在最低能级的能量;(2)当电子处于第一激发态时,在势阱何处出现的概率最小,其值为多少?
- 14、(本题 10 分) H_2 分子中原子的振动相当于一个谐振子,其劲度系数为 k=1.13 × 10^3 N/m,质量是 m=1.67 × 10^{-27} kg。此分子的能量本征值(以 eV 为单位)多大?当此谐振子由某一激发态跃迁到相邻的下一激发态时,所放出的光子的能量和波长各是多少?
- 15、(本题 10 分)假设氢原子处于n=3,l=2的激发态,则原子的轨道角动量在空间有哪些可能的取向?计算各可能取向的角动量与z轴之间的夹角。

四、设计应用题(共6分)

16、(本题 6 分)根据所学量子知识,设计测量普朗克常数,包括原理和设计方案、结论。