Computational Content of the Classical Axiom of Countable Choice

Vladimir Ivanov

July 20, 2023

1 The Computational System

Definition 1 (Lambda Terms). Let Var be a countably infinite set of variable names. The notions of free variable and closed term are defined as usual. We define the set Λ_{open} of not necessarily closed lambda terms, and take Λ to be the set of closed terms of Λ_{open} . When we say lambda term, we mean closed lambda term. Λ_{open} is defined as follows

```
\begin{array}{lll} \Lambda_{open} := \mid x \in \mathsf{Var} & & & \\ \mid \Lambda_{open} \ \Lambda_{open} & & & \\ \mid \lambda x. \Lambda_{open} & & & where \ x \in \mathsf{Var} \\ \mid 0 \mid \mathsf{succ} \mid \mathsf{rec}_{\mathbb{N}} & & constructors \ and \ the \ recursor \ for \ naturals \\ \mid \mathsf{cons} \mid \mathsf{nil} \mid \mathsf{rec}_{\mathsf{list}} & & the \ constructors \ and \ recursor \ for \ lists \\ \mid \Phi & & the \ bar \ recursion \ operator \\ \mid \lambda k. t_n \ where \ (t_n)_{n \in \mathbb{N}} \subseteq \Lambda & when \ applied \ to \ \mathsf{succ}^n 0, \ reduces \ to \ t_n \\ \mid \mathsf{cc} & & call/cc \\ \mid \mathsf{k}_\pi & & continuation, \ where \ \pi \ is \ a \ stack \\ \end{array}
```

cons should be thought of as appending an element at the end of a list and not at the beginning. Note that this implies that the head of a list is a list and the tail of a list is an element, contrary to what's usual.

Definition 2 (Stacks). A stack is a finite list of lambda terms. We write Π for the set of all stacks. We write $t \cdot \pi$ for prepending a lambda term to a stack and $\pi \cdot \pi'$ for concatenating two stacks. We write π_{empty} for the empty stack.

Definition 3 (Prooflike Term). A lambda term is prooflike if it does not contain k or λk .

Notation 1. We write \overline{n} for $\operatorname{succ}^n 0$.

We write [] for nil and $\ell_{\mathsf{head}} :: x_{\mathsf{tail}}$ for cons $\ell_{\mathsf{head}} x_{\mathsf{tail}}$, the associativity of $\ell :: x_1 :: x_2 :: \cdots :: x_n$ is $((\ldots (\ell :: x_1) :: x_2) \ldots) :: x_n$. We write $[x_1, x_2, \ldots, x_n]$ for nil $:: x_1 :: x_2 :: \cdots :: x_n$.

Notation 2. Let $\vec{t} \subseteq \Lambda$ and $\vec{\pi} \subseteq \Pi$. We write $\vec{t} \cdot \vec{\pi}$ for $\{t \cdot \pi \mid t \in \vec{t}, \pi \in \vec{\pi}\}$. For $t \in \Lambda$ and $\pi \in \Pi$, we write $t \cdot \vec{\pi}$ for $\{t\} \cdot \vec{\pi}$ and $\vec{t} \cdot \pi$ for $\vec{t} \cdot \{\pi\}$.

Definition 4 (Process). A process is a pair $\langle t \mid \pi \rangle$ of a lambda term and a stack. We write $\Lambda \times \Pi$ for the set of all processes.

Definition 5 (Reduction Relation). The big step reduction relation \succ is the smallest transitive and reflexive relation which staisfies the following. The term nth used in the rule for Φ will be defined right after.

$$\langle tu \mid \pi \rangle \succ \langle t \mid u \cdot \pi \rangle \\ \langle \lambda x.t \mid u \cdot \pi \rangle \succ \langle t[x := u] \mid \pi \rangle \\ \langle \operatorname{rec}_{\mathbb{N}} \mid t_0 \cdot t_{\operatorname{succ}} \cdot 0 \cdot \pi \rangle \succ \langle t_0 \mid \pi \rangle \\ \langle \operatorname{rec}_{\mathbb{N}} \mid t_0 \cdot t_{\operatorname{succ}} \cdot \operatorname{succ} \ n \cdot \pi \rangle \succ \langle t_{\operatorname{succ}} \ n \ (\operatorname{rec}_{\mathbb{N}} \ t_0 \ t_{\operatorname{succ}} \ n) \mid \pi \rangle \\ \langle \operatorname{rec}_{\operatorname{list}} \mid t_{\operatorname{nil}} \cdot t_{\operatorname{cons}} \cdot [] \cdot \pi \rangle \succ \langle t_{\operatorname{nil}} \mid \pi \rangle \\ \langle \operatorname{rec}_{\operatorname{list}} \mid t_{\operatorname{nil}} \cdot t_{\operatorname{cons}} \cdot (\ell_{\operatorname{head}} :: x_{\operatorname{tail}}) \cdot \pi \rangle \succ \langle t_{\operatorname{cons}} \ x_{\operatorname{tail}} \ \ell_{\operatorname{head}} \ (\operatorname{rec}_{\operatorname{list}} \ t_{\operatorname{nil}} \ t_{\operatorname{cons}} \ \ell_{\operatorname{head}}) \mid \pi \rangle \\ \langle \Phi \mid H \cdot P \cdot \ell \cdot \pi \rangle \succ \langle P \ (\lambda m. \ \operatorname{nth} \ m \ (\ell :: H \ (\lambda z. \ \Phi \ H \ P \ (\ell :: z)))) \mid \pi \rangle \\ \langle \lambda n.t_n \mid \overline{n} \cdot \pi \rangle \succ \langle t_n \mid \pi \rangle \\ \langle \operatorname{cc} \mid t \cdot \pi \rangle \succ \langle t \mid \mathsf{k}_\pi \cdot \pi \rangle \\ \langle \mathsf{k}_{\pi'} \mid t \cdot \pi \rangle \succ \langle t \mid \pi' \rangle$$

Notation 3. For $t, u \in \Lambda$, we write $t \succ u$ for $\forall \pi \in \Pi . \langle t \mid \pi \rangle \succ \langle u \mid \pi \rangle$.

Definition 6 (nth). We use $\operatorname{rec}_{\text{list}}$ and $\operatorname{rec}_{\mathbb{N}}$ to define a (prooflike) lambda term nth such that for all $n \in \mathbb{N}$ and $x_0, \ldots, x_{k-1} \in \Lambda$,

$$\begin{array}{ll} \text{nth } \overline{n} \ [x_0,\ldots,x_{k-1}] \succ x_n & \text{ if } n < k \\ \text{nth } \overline{n} \ [x_0,\ldots,x_{k-1}] \succ x_{k-1} & \text{ if } n \geq k \ and \ k > 0 \end{array}$$

Definition 7 (Length of a List). For a term ℓ of the form $[x_0, \ldots, x_{k-1}]$, we define, in the metatheory, $|\ell|$ to be k.

2 Realizability

2.1 Logic

We define higher order logic in this section.

types Types are syntactically defined as $\tau, \sigma, \dots := \mathsf{nat} \mid \mathsf{prop} \mid \tau \to \sigma$

variables For each type τ , take a countably infinite set of variables of this type denoted $x^{\tau}, y^{\tau}, \dots$ or x, y, \dots , where x and x^{τ} is the same variable name.

Formulas Formulas are tied with a type and defined inductively as follows

variable If x^{τ} is a variable of type τ , then x^{τ} is a formula of type τ .

abstraction If x^{τ} is a variable of type τ and M is a formula of type σ , then $\lambda x^{\tau}.M$ is a term of type $\tau \to \sigma$.

application If M is a formula of type $\tau \to \sigma$ and N is a formula of type τ , then MN is a formula of type σ .

zero 0 is a formula of type nat.

successor succ is a formula of type $nat \rightarrow nat$.

recursor for naturals For every type τ , recnat_{τ} is a formula of type $\tau \to (\mathsf{nat} \to \tau \to \tau) \to \mathsf{nat} \to \tau$.

implication If M and N are formulas of type prop, then $M \Rightarrow N$ is a formula of type prop.

universal quantification If x^{τ} is a variable of type τ and M is a formula of type prop, then $\forall x^{\tau}.M$ is a formula of type prop.

dependent universal quantification If x^{nat} is a variable of type nat and M is a formula of type prop, then $\forall^{\mathbb{N}} x.M$ is a formula of type prop.

equality If M and N are formulas of type nat , then M = N is a formula of type prop (should I define equality for any type?).

top and bottom \top and \bot are formulas of type prop.

As usual, we write $\neg M$ for $M \to \bot$.

Note that since cc realizes Peirce's law, we do not need to define existential quantification since it can be replaced by $\neg \forall \neg$.

2.2 The Realizability Relation

Definition 8 (\bot). We define the pole \bot $\subseteq \Lambda \times \Pi$ to be TO DO.

Note that \bot is closed by anti-reduction, that is, if $p \succ q$ and $q \in \bot$, then $p \in \bot$.

Definition 9 (interpretation of types). The interpretation $[\![\tau]\!]$ of a type τ is a set defined by induction over the syntax of τ by

Definition 10 (valuation). A valuation ρ is a partial function from the set of variables which to each variable of type τ associates an element of the set $\llbracket \tau \rrbracket$. We furthermore require that ρ be defined at at most finitely many points.

For a valuation ρ , a variable x of type τ , and $y \in [\![\tau]\!]$, we write $\rho; x \mapsto y$ for the valuation which maps x to y and every $x' \neq x$ to $\rho(x')$.

The empty valuation ρ_{empty} is the valuation which is defined nowhere.

Definition 11. For $\vec{\pi} \subseteq \Pi$, let

$$\vec{\pi}^{\perp} \subseteq \Lambda = \{ t \in \Lambda \mid \forall \pi \in \vec{\pi}. \langle t \mid \pi \rangle \in \perp \}$$

Definition 12 (interpretation of terms). Let ρ be a valuation. For a term M of type τ such that ρ is defined at all the free variables of M, we define the falsity interpretation $\|M\|_{\rho} \in [\![\tau]\!]$ by syntactic induction over M as follows

$$\begin{split} \|x\|_{\rho} &:= \rho(x) \\ \|\lambda x^{\tau}.M\|_{\rho} &:= v \in \llbracket\tau\rrbracket \mapsto \|M\|_{\rho;x\mapsto v} \\ \|MN\|_{\rho} &:= \|M\|_{\rho}(\|N\|_{\rho}) \\ \|0\|_{\rho} &:= 0 \\ \|\operatorname{succ}\|_{\rho} &:= n \mapsto n+1 \end{split}$$

$$\begin{aligned} \|\operatorname{recnat}_{\tau}\|_{\rho} &:= P_{0} \mapsto P_{\operatorname{succ}} \mapsto n \mapsto \begin{cases} P_{0} & \text{if } n = 0 \\ P_{\operatorname{succ}}(n-1)(\|\operatorname{recnat}_{\tau}\|_{\rho}(P_{0})(P_{\operatorname{succ}})(n-1)) & \text{otherwise} \end{cases} \\ \|M &= N\|_{\rho} &:= \begin{cases} \emptyset & \text{if } \|M\|_{\rho} = \|N\|_{\rho} & \text{in the standard model of } \mathbb{N} \\ \mathcal{P}(\Pi) & \text{otherwise} \end{cases} \\ \|M &\Rightarrow N\|_{\rho} &:= \|M\|_{\rho}^{\perp} \cdot \|N\|_{\rho} \\ \|\forall x^{\tau}.M\|_{\rho} &:= \bigcup_{v \in \llbracket\tau\rrbracket} \|M\|_{\rho,x\mapsto v} \\ \|\forall^{\mathbb{N}}x.M\|_{\rho} &:= \bigcup_{n \in \mathbb{N}} \overline{n} \cdot \|M\|_{\rho;x\mapsto \overline{n}} \\ \|\top\|_{\rho} &:= \emptyset \\ \|\bot\|_{\rho} &:= \mathcal{P}(\Pi) \end{aligned}$$

Notation 4. Let M be a formula, t be a term, and $\vec{\pi} \subset \Pi$. We write $|M|_{\rho}$ for $||M||_{\rho}^{\perp}$, $t \Vdash_{\rho} M$ for $t \in |M|_{\rho}$, and $t \Vdash \vec{\pi}$ for $t \in \vec{\pi}^{\perp}$.

We write $||\cdot||$ for $||\cdot||_{\rho_{\mathsf{empty}}}$, $|\cdot|$ for $|\cdot|_{\rho_{\mathsf{empty}}}$, and $||\cdot|$ for $||\cdot|_{\rho_{\mathsf{empty}}}$.

2.3 Properties

Propetry 1. If $t \succ u$ and $u \Vdash_{\rho} M$, then $t \Vdash_{\rho} M$.

This property will be used a lot without being explicitly mentioned.

Proof. Suppose $t \succ u$ and $u \Vdash_{\rho} M$, that is, $\forall \pi \in ||M||_{\rho}.\langle u \mid \pi \rangle \in \bot$. Let $\pi \in ||M||_{\rho}$, we need to show that $\langle t \mid \pi \rangle \in \bot$. This is true because $\langle t \mid \pi \rangle \succ \langle u \mid \pi \rangle$ and the pole is closed by anti-reduction.

Propetry 2. If $t \Vdash_{\rho} M \Rightarrow N$ and $u \Vdash_{\rho} M$ then $tu \Vdash_{\rho} N$.

Proof. Suppose $t \Vdash_{\rho} M \Rightarrow N$ and let $u \in \Lambda$ be such that $u \Vdash_{\rho} M$. Let $\pi \in ||N||_{\rho}$. We need to show that $\langle tu \mid \pi \rangle \in \bot$. But $\langle tu \mid \pi \rangle \succ \langle t \mid u \cdot \pi \rangle$ and $\langle t \mid u \cdot \pi \rangle \in \bot$ since $u \cdot \pi \in ||M \Rightarrow N||_{\rho}$.

Propetry 3. Suppose that for all lambda term u, if $u \Vdash_{\rho} M$, then $t[x := u] \Vdash_{\rho} N$. Then $\lambda x.t \Vdash_{\rho} M \Rightarrow N$.

Proof. Let $\pi \in ||M \Rightarrow N||_{\rho}$, that is, $\pi = u \cdot \pi'$ for some $v \in |M|_{\rho}$ and $\pi' \in ||N||_{\rho}$. We need to show that $\langle \lambda x.t \mid u \cdot \pi' \rangle \in \bot$, but this reduces to $\langle t[x := u] \mid \pi' \rangle$, which is in the pole by assumption.

Propetry 4 (Consistency). There is no ρ and prooflike t such that $t \Vdash_{\rho} \bot$.

Proof. TO DO □

Propetry 5. If $t \Vdash_{\rho} \bot$ then $t \Vdash_{\rho} M$ for all formula M.

Proof. Realizing \bot is a universal quantification over a bigger set than realizing M.

Propetry 6. If $t \Vdash_{\rho} \forall^{\mathbb{N}} x.M$ then for all $n \in \mathbb{N}$, $t\overline{n} \Vdash_{\rho; x \mapsto \overline{n}} M$.

Proof. Suppose $t \Vdash_{\rho} \forall^{\mathbb{N}} x.M$. Let $n \in \mathbb{N}$ and $\pi \in ||M||_{\rho;x \mapsto \overline{n}}$. We need to show that $\langle t\overline{n} \mid \pi \rangle \in \mathbb{L}$. It suffices to show that $\langle t \mid \overline{n} \cdot \pi \rangle \in \mathbb{L}$, which is the case since $\overline{n} \cdot \pi \in \overline{n} \cdot ||M||_{\rho:x \mapsto \overline{n}} \subseteq ||\forall^{\mathbb{N}} x.M||_{\rho}$.

Propetry 7. Suppose that for all $n \in \mathbb{N}$, $t[x := \overline{n}] \Vdash_{\rho;x \mapsto \overline{n}} M$. Then $\lambda x.t \Vdash_{\rho} \forall^{\mathbb{N}} x.M$.

Proof. Let $\pi \in \|\forall^{\mathbb{N}} x.M\|_{\rho}$, that is, $\pi = \overline{n} \cdot \pi'$ for some $n \in \mathbb{N}$ and $\pi' \in \|M\|_{\rho; x \mapsto \overline{n}}$. We need to show $\langle \lambda x.t \mid \overline{n} \cdot \pi' \rangle \in \mathbb{L}$. But this process reduces to $\langle t[x := \overline{n}] \mid \pi' \rangle$, which is in the pole by assumption.

Propetry 8 (Continuity). Let t be a term with one free variable x. Let M be a formula. Let $u_0, u_1, \dots \in \Lambda$. Suppose that $t[x := \lambda \!\!\! \lambda \, n.u_n] \Vdash_{\rho} M$. Then there exists $N \in \mathbb{N}$ such that for all $f \in \Lambda$ such that $\forall n < N$. $f \overline{n} \succ u_n$ we have $t[x := f] \Vdash_{\rho} M$.

Proof. TO DO

Propetry 9. For all type τ , the set $\llbracket \tau \rrbracket$ is nonempty.

Proof. An element of $[\![\tau]\!]$ can be defined by induction over the syntax of τ as follows:

$$\begin{split} e(\mathsf{nat}) &:= 0 \\ e(\mathsf{prop}) &:= \emptyset \\ e(\tau \to \sigma) &:= x \mapsto e(\sigma) \end{split}$$

3 The Induced Evidenced Frame

Definition 13. Define an evidenced frame by taking

propositions Φ is $\mathcal{P}(\Pi)$

evidence E is the set of prooflike lambda terms.

evidence relation For $\phi_1, \phi_2 \in \Phi$ and $e \in E$, $\phi_1 \stackrel{e}{\to} \phi_2$ if and only if $e \Vdash \phi_1^{\perp} \cdot \phi_2$.

top $\top = \emptyset$.

conjunction For $\phi_1, \phi_2 \in \Phi$, $\phi_1 \wedge \phi_2$ is $\bigcup_{\phi \in \Phi} (\phi_1^{\perp} \cdot \phi_2^{\perp} \cdot \phi)^{\perp} \cdot \phi$.

universal implication For $\phi_1 \in \Phi$ and $\vec{\phi} \subseteq \Phi$, $\phi_1 \supset \vec{\phi}$ is $\phi_1^{\perp} \cdot \bigcup \vec{\phi}$.

We now prove that it satisfies all the axioms of an evidenced frame.

Proof. We will be using the fact that if for all term u such that $u \Vdash \phi_1$ we have $t[x := u] \Vdash \phi_2$, then $\phi_1 \xrightarrow{\lambda x.t} \phi_2$. This can be proved the same way as property 3.

reflexivity Take $e_{id} = \lambda x.x$. If $t \Vdash \phi$ then $x[x := t] = t \Vdash \phi$.

- top Take $e_{\mathsf{top}} = \lambda x.x$. If $t \Vdash F$ then $x[x := t] = t \Vdash \top$ since every lambda term realizes \top , which can be seen by unfolding the definitions of \top and \Vdash .
- **conjunction elimination** Take $e_{\mathsf{fst}} = \lambda t. t(\lambda x. \lambda y. x)$. $\lambda x. \lambda y. x \Vdash \phi_1^{\perp} \cdot \phi_2^{\perp} \cdot \phi_1$ since if $t \Vdash \phi_1$ and $u \Vdash \phi_2$ then $x[x := t, y := u] = t \Vdash \phi_1$. Thus if $t \Vdash \phi_1 \wedge \phi_2$ we have $t \Vdash (\phi_1^{\perp} \cdot \phi_2^{\perp} \cdot \phi_1)^{\perp} \cdot \phi_1$ so $t(\lambda x. \lambda y. x) \Vdash \phi_1$, which concludes. We do the same thing for e_{snd} .
- **conjunction introduction** Take $\langle |e_1, e_2| \rangle = \lambda t. \lambda u. u(e_1 t)(e_2 t)$. Suppose $e_1 \Vdash \phi^{\perp} \cdot \phi_1$, $e_2 \Vdash \phi^{\perp} \cdot \phi_2$, and $t \Vdash \phi$. We need to show $\lambda u. u(e_1 t)(e_2 t) \Vdash \phi_1 \wedge \phi_2$. Let $\phi' \in \Phi$ and $u \Vdash \phi_1^{\perp} \cdot \phi_2^{\perp} \cdot \phi'$. We need to show $u(e_1 t)(e_2 t) \Vdash \phi'$, which is the case since $e_1 t \Vdash \phi_1$ and $e_2 t \Vdash \phi_2$.
- universal implication introduction Take $\lambda e = \lambda t. \lambda u. e(\lambda v. vtu)$. Let $\phi_1, \phi_2 \in \Phi$, $\vec{\phi} \subseteq \Phi$, and $e \in E$ such that $\forall \phi \in \vec{\phi}. \phi_1 \wedge \phi_2 \xrightarrow{e} \phi$. We need to show that for all $t \Vdash \phi_1$, $\lambda u. e(\lambda v. vtu) \Vdash \phi_1 \supset \vec{\phi}$, that is, for all $u \Vdash \phi_2$ and $\phi \in \vec{\phi}$, $e(\lambda v. vtu) \Vdash \phi$, which is true since $e \Vdash (\phi_1 \wedge \phi_2)^{\perp \! \! \perp} \cdot \phi$ and $\lambda v. vtu \Vdash \phi_1 \wedge \phi_2$, as seen for conjunction introduction.
- universal quantification elimination Take $e_{\mathsf{eval}} = \lambda t.(t(\lambda x.\lambda y.x))(t(\lambda x.\lambda y.y))$. Suppose $t \Vdash (\phi_1 \supset \vec{\phi}) \land \phi_1$ and let $\phi \in \vec{\phi}$, we need to show $(t(\lambda x.\lambda y.x))(t(\lambda x.\lambda y.y)) \Vdash \phi$, which is the case since $t(\lambda x.\lambda y.x) \Vdash \phi_1^{\perp} \phi$ and $t(\lambda x.\lambda y.y) \Vdash \phi_1$, as seen for conjunction elimination.

4 Realizability of Countable Choice

Throughout this section, let τ be a type.

Definition 14 (Axiom of Countable Choice). We define

$$AC_{\mathbb{N},\tau} := \forall R^{\mathsf{nat} \to \tau \to \mathsf{prop}}. (\forall n^{\mathsf{nat}}. \neg \forall i^\tau. \neg R(n,i)) \to \neg \forall f^{\mathsf{nat} \to \tau}. \neg \forall^{\mathbb{N}} n. R(n,f(n))$$

Theorem 1. We have

$$\lambda H. \ \lambda P. \ \Phi \ H \ P \ [] \Vdash AC_{\mathbb{N}.\tau}$$

Proof. Let $R_0 \in (\mathcal{P}(\Pi)^{\llbracket \tau \rrbracket})^{\mathbb{N}}$. Let $\rho = (\rho_{\mathsf{empty}}; R \mapsto R_0)$. Let

$$H \Vdash_{\rho} \forall n. \neg \forall i. \neg R(n, i)$$
$$P \Vdash_{\rho} \forall f. \neg \forall^{\mathbb{N}} n. R(n, f(n))$$

By property 3, it suffices to show that

$$\Phi H P [] \Vdash_{\rho} \bot$$

Definition 15 (Cache). $[r_0, r_1, \ldots, r_n]$ is a cache if for all $k \leq n$, there exists some $i_k \in [\![\tau]\!]$ such that $r_k \Vdash_{\rho; i \mapsto i_k} R(\overline{k}, i)$.

Lemma 1. Let ℓ be a cache. Suppose that Φ H P ℓ $\not \vdash_{\rho} \bot$. Then, there exists $i_{|\ell|} \in \llbracket \tau \rrbracket$ and $r_{|\ell|} \in \Lambda$ such that $\ell :: r_{|\ell|}$ is a cache and Φ H P $(\ell :: r_{|\ell|}) \not \vdash_{\rho} \bot$.

Proof. Since ℓ is a cache, for all $k < |\ell|$, there exists an $i_k \in [\![\tau]\!]$ such that $\mathsf{nth}\,\overline{k}\,\ell \Vdash_{\rho;i\mapsto i_k} R(\overline{k},i)$. Define $f_0(k)$ to be such an i for $k < |\ell|$ and an arbitrary element of $[\![\tau]\!]$ for $k \ge |\ell|$ (this set is nonempty by property 9).

There exist $r_{|\ell|} \in \Lambda$, $i_{|\ell|} \in [\![\tau]\!]$ such that $r_{|\ell|} \Vdash_{\rho; i \mapsto i_{|\ell|}} R([\![\ell]\!], i)$. Indeed, if none did exists, then for all i, any term would realize $\neg R([\![\ell]\!], i)$, thus, any term would realize $\forall i. \neg R([\![\ell]\!], i)$. Thus, H applied to any term would realize \bot , namely,

$$H(\lambda z. H P(l :: z)) \Vdash_{\rho} \bot$$

. Thus

$$\lambda m.$$
nth $m \ (\ell :: H \ (\lambda z. \ H \ P \ (l :: z))) \Vdash_{\rho} \forall^{\mathbb{N}} n. R(n, f_0(n))$

In effect, the body applied to \overline{k} for $k < |\ell|$ reduces to the k^{th} element of the cache and thus realizes $R(k, f_0(k))$ and the body applied to \overline{k} for $k \ge |\ell|$ reduces to $H(\lambda z. HP(l::z))$, which realizes \bot and therefore by property 5 any realizes formula. Thus,

$$P(\lambda m.\mathsf{nth}\ m\ (\ell :: H\ (\lambda z.\ H\ P\ (l :: z)))) \Vdash_{\rho} \bot$$

but Φ H P ℓ reduces to this term and was supposed to not realize \bot , which is a contradiction.

Now, suppose that for all $r_{|\ell|} \in \Lambda$, $i_{|\ell|} \in [\![\tau]\!]$ such that $r_{|\ell|} \Vdash_{\rho; i \mapsto i_{|\ell|}} R(\overline{|\ell|}, i)$,

$$\Phi H P (\ell :: r_{|\ell|}) \Vdash_{\rho} \bot$$

it suffices to find a contradiction. Then by property 2 and property 5, for all $i_{|\ell|} \in [\![\tau]\!],$

$$\lambda z. \ \Phi \ H \ P \ (\ell :: z) \Vdash_{\rho; i \mapsto i_{|\ell|}} \neg R(\overline{k}, i)$$

and so by the hypothesis on H,

$$H (\lambda z. \Phi H P (\ell :: z)) \Vdash_{\rho} \bot$$

which has already been shown to lead to a contradiction.

Now, suppose

$$\Phi H P \parallel \not \parallel_{\rho} \perp$$

it suffices to find a contradiction.

By applying lemma 1 repeatedly, we get a sequence r_0, r_1, \ldots such that for all k there exists $i_k \in [\![i]\!]$ such that $r_k \Vdash_{i \mapsto i_k} R(\overline{k}, i)$. For each k, take $f_0(k)$ to be such an i_k .

Then, for all $n, r_n \Vdash_{\rho} R(\overline{n}, f_0(\overline{n}))$. Thus, $\lambda n.r_n \Vdash_{\rho} \forall^{\mathbb{N}} n.R(n, f_0(n))$ and so

$$P (\lambda n.r_n) \Vdash_{\rho} \bot$$

But then, by continuity, there exists K such that for all f, if $\forall k < K$. $f \overline{k} \succ r_k$ then $P \ f \Vdash_{\rho} \bot$. Now, take $\ell = [r_0, \ldots, r_{K-1}]$ and $f = \lambda m$.nth $m \ (\ell :: H \ (\lambda z. \Phi \ H \ P \ (\ell :: z)))$. On the one hand, $\Phi \ H \ P \ \ell \succ P \ f$ and $\phi \ H \ P \ \ell \not\Vdash_{\rho} \bot$ by construction, so $P \ f \not\Vdash_{\rho} \bot$. On the other hard, for k < K, $f \ \overline{k} \succ r_k$, thus $P \ f \Vdash_{\rho} \bot$. We thus obtain the sought contradiction.

8