2022.12.5 汇报

周添文

数学科学学院 北京师范大学

考虑坐标为 X = (x, y) 的像素点,在没有反射的情形中,图像的辐照度 (irradiance) 1 是 i(X).

¹单位面积上的辐射通量

考虑坐标为 X = (x, y) 的像素点,在没有反射的情形中,图像的辐照度 (irradiance) 1 是 i(X).

通常情况下,相机内的反射行为有如下两种效果:1、由于反射的作用, 主光束向预期像素携带的能量会减少,其传播率为 T < 1.2、反射得到 的能量成为了耀斑 (Flare),记作 $F(X) \geq 0$ 。

¹单位面积上的辐射通量

考虑坐标为 X = (x, y) 的像素点,在没有反射的情形中,图像的辐照度 $(irradiance)^1$ 是 i(X).

通常情况下,相机内的反射行为有如下两种效果: 1、由于反射的作用,主光束向预期像素携带的能量会减少,其传播率为 T < 1.2、反射得到的能量成为了耀斑 (Flare),记作 $F(X) \ge 0$ 。

总体而言,实际测得的辐照度为:

$$G(X) = I(X) + F(X) \tag{1}$$

其中,I(X) = Ti(X). 而传播率 T 是由镜头的硬件情况决定的,可以事先进行修正和测量。因此,我们真正应该关注的问题是从 F(X) 中分离 I(X) 的部分,二者与拍摄场景高度相关。

¹单位面积上的辐射通量

记 OA 为主光轴 (Optical Axis),其为一条直线,照相机的投影中心 (Center of Projection)*X^{center}* 位于直线 OA 上。记三维世界中的一个点为 **X**,太阳的坐标为 *X^{sol}*.

记 OA 为主光轴 (Optical Axis),其为一条直线,照相机的投影中心 (Center of Projection) Xcenter 位于直线 OA 上。记三维世界中的一个点为 X、太阳的坐标为 X^{sol} .

考虑空间中的平面 Pmeridion,满足

$$OA, X^{sol} \in P^{meridion}$$
 (2)

同时,主光线 (Chief Ray) C 同样在平面 Pmeridion 内,且满足 $X^{center}, X^{sol} \in C$.

记 OA 为主光轴 (Optical Axis),其为一条直线,照相机的投影中心 (Center of Projection)*X^{center}* 位于直线 OA 上。记三维世界中的一个点为 **X**,太阳的坐标为 *X^{sol}*.

考虑空间中的平面 Pmeridion,满足

$$OA, X^{sol} \in P^{meridion}$$
 (2)

同时,主光线 (Chief Ray)C 同样在平面 $P^{meridion}$ 内,且满足 $X^{center}, X^{sol} \in C$.

考虑透镜系统中的一个点 (ρ,ϕ,z) , z 是 OA 轴上的坐标, ρ 是该点与 OA 的距离, ϕ 是方位角。而平面 $P^{meridion}$ 的方位角是一定的。 当主光线 C 进入透镜后,其开始传播并发生反射,同时产生一系列内部 的反射光线 $C_q^{q=1}N_s$ econdary. 由于反射界面并无方位角变化,故主光线 C 并不会离开 $P^{meridion}$ 平面。同理,上述内部反射光线 $C_q^{q=1}N_{secondary}$ 也不会偏离平面。

记像平面为 Psensor,则图像的光学中心可以表示为

$$o = P^{sensor} \cap OA \tag{3}$$

周添文 2022.11.21 日汇报 2022.12.5 4 / 18

记像平面为 Psensor,则图像的光学中心可以表示为

$$o = P^{sensor} \cap OA \tag{3}$$

而 X^{sol} 在像平面上的位置为

$$x^{sol} = P^{sensor} \cap C \tag{4}$$

记像平面为 Psensor,则图像的光学中心可以表示为

$$o = P^{sensor} \cap OA \tag{3}$$

而 X^{sol} 在像平面上的位置为

$$x^{sol} = P^{sensor} \cap C \tag{4}$$

其中,小写的字母 x_{sol} 代表 X_{sol} 的像。

记像平面为 *P^{sensor},*则图像的光学中心可以表示为

$$o = P^{sensor} \cap OA \tag{3}$$

而 X^{sol} 在像平面上的位置为

$$x^{sol} = P^{sensor} \cap C \tag{4}$$

其中,小写的字母 x_{sol} 代表 X_{sol} 的像。 上述平面 $P^{sensor} \cap P^{meridion}$ 的交线记为 I^{flare} ,该直线具有下述性质:

- 由于 I^{flare} ⊂ P^{sensor}, 故其代表了图像中的一条直线
- 由于 o = P^{sensor} ∩ OA,故 f^{flare} 经过 o
- 由于 $x^{sol} = P^{sensor} \cap C$,故 x_{sol} 同样在直线 f^{lare} 上

假设照相机的成像类似小孔成像,即只考虑主光线 C 的像,也就只需考虑 C_q 这一组内部反射光线,其与像平面的交点为

$$\Phi_{\mathcal{C}} = C_q \cap P^{\text{sensor}} \tag{5}$$

周添文 2022.11.21 日汇报 2022.12.5 5 / 18

假设照相机的成像类似小孔成像,即只考虑主光线 C 的像,也就只需考虑 C_q 这一组内部反射光线,其与像平面的交点为

$$\Phi_C = C_q \cap P^{\text{sensor}} \tag{5}$$

上述像平面上的点即为由 X_{sol} 经透镜产生的图像耀斑点。由上述结论可知, $\Phi_C \in I^{flare}$,即图像的耀斑均位于直线 I^{flare} 上。

周添文 2022.11.21 日汇报 2022.12.5 5/18

假设照相机的成像类似小孔成像,即只考虑主光线 C 的像,也就只需考 虑 C_a 这一组内部反射光线,其与像平面的交点为

$$\Phi_C = C_q \cap P^{\text{sensor}} \tag{5}$$

上述像平面上的点即为由 X_{sol} 经透镜产生的图像耀斑点。由上述结论可 知, $\Phi_C \in I^{flare}$,即图像的耀斑均位于直线 I^{flare} 上。

耀斑的去除

取 K_{frames} 个原始图像,记作 $G_k(x), k \in [1, K_{frames}]$,各个图像均在相同的场景下拍摄,不同的是在拍摄过程中,相机进行了不规律的移动,进而导致 X_{sol} 在像平面内,对于不同的 k 成了不同的像 x_{sol} .

耀斑的去除

取 K_{frames} 个原始图像,记作 $G_k(x), k \in [1, K_{frames}]$,各个图像均在相同的场景下拍摄,不同的是在拍摄过程中,相机进行了不规律的移动,进而导致 X_{sol} 在像平面内,对于不同的 k 成了不同的像 x_{sol} 由前文所述,对于每个 k 而言,耀斑都应该聚集于一条直线 f_k^{flare} 上,且该直线过光学中心 o 和 x_s^{sol}

耀斑的去除

取 K_{frames} 个原始图像,记作 $G_k(x), k \in [1, K_{frames}]$,各个图像均在相同的场景下拍摄,不同的是在拍摄过程中,相机进行了不规律的移动,进而导致 X_{sol} 在像平面内,对于不同的 k 成了不同的像 x_{sol} 由前文所述,对于每个 k 而言,耀斑都应该聚集于一条直线 f_k^{flare} 上,且该直线过光学中心 o 和 x_k^{sol} 我们假设经过图像的配准 (Image Registration),可以使得相机的旋转不仅仅围绕着与平面 $P^{meridion}$ 垂直的轴,进而使得不同 k 对应的直线 f_k^{flare} 互不相同。

6/18

鉴于在一张图片中,耀斑都聚集在一条直线上,而不同帧数当中的直线 互不相同(是运动的)。因此,在某一张图片中被耀斑遮挡的部分,很有 可能在其他图片中并未被遮挡。

鉴于在一张图片中,耀斑都聚集在一条直线上,而不同帧数当中的直线 互不相同(是运动的)。因此,在某一张图片中被耀斑遮挡的部分,很有 可能在其他图片中并未被遮挡。

下面,我们讨论场景或相机运动的补偿 (compensate)。图像 k 中的点 \mathbf{x} 可以由配准算子 τ_k 对应到二维全球坐标系 (Global 2D coordinate) 中的 坐标 $\mathbf{x}_{global} = (x_{global}, y_{global})$ 对应关系为

$$\mathbf{x}_{global} = \tau_k(\mathbf{x}) \tag{6}$$

如下图所示:

图: 坐标变换示意图

7/18

经过配准后,方程

$$G(\mathbf{x}) = I(\mathbf{x}) + F(\mathbf{x}) \tag{7}$$

可以转化为

$$\widetilde{G}_k(\mathbf{x}_{global}) = I(\mathbf{x}_{global}) + \widetilde{F}_k(\mathbf{x}_{global})$$
 (8)

原始图像和修正后的图像对比如图所示:

图: 对比图

事实上, 在如下公式中

$$\widetilde{G}_k(\mathbf{x}_{global}) = I(\mathbf{x}_{global}) + \widetilde{F}_k(\mathbf{x}_{global})$$
 (9)

 $I(\mathbf{x}_{global})$ 表示真实世界的景象,其显然与 k 无关,而 $\widetilde{F}_k(\mathbf{x}_{global})$ 是随着不同的 k 而变化的

周添文 2022.11.21 日汇报 2022.12.5 9 / 18

事实上, 在如下公式中

$$\widetilde{G}_k(\mathbf{x}_{global}) = I(\mathbf{x}_{global}) + \widetilde{F}_k(\mathbf{x}_{global})$$
 (9)

 $I(\mathbf{x}_{global})$ 表示真实世界的景象,其显然与 k 无关,而 $\widetilde{F}_k(\mathbf{x}_{global})$ 是随着不同的 k 而变化的

在修正之前,耀斑是随着直线 I_k^{flare} 运动的,且其运动的轨迹与图片的真实运动轨迹并不相同,而修正过程只与 $I(\mathbf{x}_{global})$ 有关。因此,修正的过程并不是与耀斑的变化同步的。

事实上, 在如下公式中

$$\widetilde{G}_k(\mathbf{x}_{global}) = I(\mathbf{x}_{global}) + \widetilde{F}_k(\mathbf{x}_{global})$$
 (9)

 $I(\mathbf{x}_{global})$ 表示真实世界的景象,其显然与 k 无关,而 $\widetilde{F}_k(\mathbf{x}_{global})$ 是随着不同的 k 而变化的

在修正之前,耀斑是随着直线 \int_{k}^{lare} 运动的,且其运动的轨迹与图片的真实运动轨迹并不相同,而修正过程只与 $I(\mathbf{x}_{global})$ 有关。因此,修正的过程并不是与耀斑的变化同步的。

对图像中的每个坐标 \mathbf{x}_{global} ,总有一组图像在此位置可以**获取测量值** (acquire measurement),记这组图像为 $\Omega(\mathbf{x}_{global})$ 。

事实上, 在如下公式中

$$\widetilde{G}_k(\mathbf{x}_{global}) = I(\mathbf{x}_{global}) + \widetilde{F}_k(\mathbf{x}_{global})$$
 (9)

 $I(\mathbf{x}_{global})$ 表示真实世界的景象,其显然与 k 无关,而 $\widetilde{F}_k(\mathbf{x}_{global})$ 是随着不同的 k 而变化的

在修正之前,耀斑是随着直线 f_k^{lare} 运动的,且其运动的轨迹与图片的真实运动轨迹并不相同,而修正过程只与 $I(\mathbf{x}_{global})$ 有关。因此,修正的过程并不是与耀斑的变化同步的。

对图像中的每个坐标 \mathbf{x}_{global} ,总有一组图像在此位置可以**获取测量值** (acquire measurement),记这组图像为 $\Omega(\mathbf{x}_{global})$ 。

由于 $\widetilde{F}_k(\mathbf{x}_{global})$ 是恒非负的,因此有下述 **Deflaring Estimator**

$$\widehat{I}(\mathbf{x}_{global}) = \min_{k \in \Omega(\mathbf{x}_{global})} \widetilde{G}_k(\mathbf{x}_{global})$$
(10)

周添文 2022.11.21 日汇报 2022.12.5 9 / 18

由前文所述,耀斑的位置位于太阳的像与图像光学中心的交点处,因此, 我们需要估计上述两点的位置。

周添文 2022.11.21 日汇报 2022.12.5 10 / 18

由前文所述,耀斑的位置位于太阳的像与图像光学中心的交点处,因此,我们需要估计上述两点的位置。 X^{sol} 代表太阳位置,其为产生耀斑的光源,记其在图像全球坐标系中的位置为 $\mathbf{x}^{sol}_{global}$ 。但是,往往太阳的影像并不会出现在图像当中,因此,我们需要倒推出图像中太阳的位置。本文尝试引入一套打分机制,以此估计太阳在图像中最有可能的位置

由前文所述,耀斑的位置位于太阳的像与图像光学中心的交点处,因此,我们需要估计上述两点的位置。 X^{sol} 代表太阳位置,其为产生耀斑的光源,记其在图像全球坐标系中的位置为 $\mathbf{x}_{global}^{sol}$ 。但是,往往太阳的影像并不会出现在图像当中,因此,我们需要倒推出图像中太阳的位置。本文尝试引入一套打分机制,以此估计太阳在图像中最有可能的位置由于修正后的 \hat{l}_k^{flare} 与修正前的 \hat{l}_k^{flare} 等价,因此由前所述,每个 \hat{l}_k^{flare} 均穿过太阳的像。因此,如下图所示,直线 \hat{l}_k^{flare} 过点 $\mathbf{x}_{global}^{sol}$.

因此,太阳位置 $\mathbf{x}_{global}^{sol}$ 可以视作所有直线 $\widetilde{f}_{k}^{flare}$ 的交集。

周添文 2022.11.21 日汇报 2022.12.5 11/18

因此,太阳位置 $\mathbf{x}_{global}^{sol}$ 可以视作所有直线 \tilde{l}_k^{flare} 的交集。 具体而言,在 \mathbf{a} 平面中,一条直线可以用向量 $\mathbf{l}=(r,\theta)$ 进行描述。其中, $\theta\in[0,\pi]$ 和 r 的意义见下图:

图: $\mathbf{I} = (r, \theta)$ 示意图

考虑函数 $h(\mathbf{a})$ 的拉东变换 (Radon transform)²

$$\mathcal{R}_{\mathbf{l}}\{h(\mathbf{a})\} = \iint h(\mathbf{a})\delta\left(r - \left[\begin{array}{c} \cos\theta\\ \sin\theta \end{array}\right]^t \mathbf{a}\right)d\mathbf{a},$$

其中, R_1 是拉东变换算子,t 表示矩阵的转置, δ 是狄拉克函数,满足

$$\delta(\mathbf{x}) = 0, (\mathbf{x} \neq 0) \tag{11}$$

$$\int_{-\infty}^{\infty} \delta(x) dx = 1 \tag{12}$$

周添文 2022.11.21 日汇报 2022.12.5 12 / 18

 $^{^2}$ 若函数 f(x,y) 表示一个未知的密度,对 f(x,y) 做拉东变换,相当于得到 f(x,y) 投影后的信号

取
$$\mathbf{a} = \mathbf{x}_{global}$$
, $h = \hat{\widetilde{F}}_k(\mathbf{x}_{global})$,其代表修正后的耀斑图像,满足
$$\hat{\widetilde{F}}_k(\mathbf{x}_{global}) = \widetilde{G}_k(\mathbf{x}_{global}) - I(\mathbf{x}_{global}) \tag{13}$$

代入后,得到 $R_1(\hat{F}_k(\mathbf{x}_{global}))$ 的值越高,代表直线 I 的得分越高

周添文 2022.11.21 日汇报 2022.12.5 13 / 18

由下图, 我们可知, 任何一个可能的太阳像点应该位于这一直线上,

图: $\mathbf{I} = (r, \theta)$ 示意图

进而其应该满足如下关系:

$$r = [\cos\theta, \sin\theta] x_{global}^{candidate} \tag{14}$$

周添文 2022.11.21 日汇报 2022.12.5 14 / 18

因此,不同的 $x_{global}^{candidate}$ 应该对应不同的向量族 $\mathbf{l}=(r,\theta)$ 。而这一向量族 描述了穿过 $x_{global}^{candidate}$ 点的所有直线,记作 $\Lambda x_{global}^{candidate}$ 如下图所示:

图: $\mathbf{I} = (r, \theta)$ 示意图

下面,我们依据上述对直线的打分机制,开始对不同的 $x_{global}^{candidate}$ 进行打分。对于一个图像 k, $x_{global}^{candidate}$ 的分数为:

$$s_k(x_{global}^{candidate}) = \max_{\mathbf{I} \in (x_{global}^{candidate})} R_1\{\hat{\widetilde{F}}_k(\mathbf{x}_{global})\}$$
 (15)

得分越高,表明穿过该点 $x_{global}^{candidate}$ 的直线得分越高。综上,对于一个候选点 (candidate point) 的总得分为:

$$S(x_{global}^{candidate}) = \sum_{k=1}^{K_{frames}} s_k(x_{global}^{candidate})$$
 (16)

其中得分最高的,即为预估的太阳像点 $\mathbf{x}_{global}^{s\hat{ol}}$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○

上述过程的示意图见下:

图: 示意图

光轴位置

由前所述,每个 \int_{k}^{n} 均过未修正图像的光学中心 o,因此,o 可以看做上述直线的交集。用与太阳定位类似的方法与打分机制,我们可以推测出最有可能的光学中心位置,如下图所示:

图: 示意图