

Introduction to Data Science

Capstone Project Name: FIFA 2021 Clustering

Assistant Lecturer: PhD. Muriel Visani

Group number: 14

Nguyen Nho Trung - 20204894

Nguyen Thi Thu Giang - 20194750

Tong Thi Thu Anh - 20194728

Introduction

Our subject for the Capstone is applying Machine Learning to cluster football players. In detail, our project aims to look at the class of young players and cluster them into groups based on their attributes. We will filter and consider the players who are promised based on their potential attributes.

DATASET

- Name
- Age
- Height
- Overall: Rated between 1-99
- Potential: Rated between 1-99
- Work Rate: Effort the player puts in the game
- Team Position
- Playing Skills: Rated between 1-99
- Positional Skills: Rating of a player when play at a specified position rated between 1-99

Exploring Data Analysis

Plot the number of players in each position:

Plot the relationship between team positions and positional skills.

Correlation between the position and playing skills features

																2000					· · · · · · · · · · · · · · · · · · ·					*******
<u>w</u> -	1	1	1	0.89	0.95	0.95	0.95	0.89	0.87	0.87	0.87	0.82				0.82				0.00034						
ы	1	1	1	0.89	0.95	0.95	0.95	0.89	0.87	0.87	0.87	0.82				0.82				0.00034						
6	1	1	1	0.89	0.95	0.95	0.95	0.89	0.87	0.87	0.87	0.82				0.82				0.00034	0.00034					
<u>×</u>	0.89	0.89	0.89	1	0.97	0.97	0.97	1	0.97	0.97	0.97	0.98	0.77	0.77	0.77	0.98										0.043
= .	0.95	0.95	0.95	0.97	1	1	1	0.97	0.97	0.97	0.97	0.94	0.75	0.75	0.75	0.94	0.049	0.049	0.049							
ъ.	0.95	0.95	0.95	0.97	1	1	1	0.97	0.97	0.97	0.97	0.94	0.75	0.75	0.75	0.94	0.049	0.049	0.049							
₽.	0.95	0.95	0.95	0.97	1	1	1	0.97	0.97	0.97	0.97	0.94	0.75	0.75	0.75	0.94	0.049	0.049	0.049							
N.	0.89	0.89	0.89	1	0.97	0.97	0.97	1	0.97	0.97	0.97	0.98	0.77	0.77	0.77	0.98	0.088	0.088	0.088			0.043				0.043
lam -	0.87	0.87	0.87	0.97	0.97	0.97	0.97	0.97	1	1	1	0.97	0.86	0.86	0.86	0.97							-0.097		-0.097	
E .	0.87	0.87	0.87	0.97	0.97	0.97	0.97	0.97	1	1	1	0.97	0.86	0.86	0.86	0.97							-0.097	-0.097	-0.097	
E -	0.87	0.87	0.87	0.97	0.97	0.97	0.97	0.97	1	1	1	0.97	0.86	0.86	0.86	0.97							-0.097	-0.097	-0.097	
€ .	0.82	0.82	0.82	0.98	0.94	0.94	0.94	0.98	0.97	0.97	0.97	1	0.86	0.86	0.86	1	0.25	0.25	0.25	0.35	0.35	0.2				0.2
E.				0.77	0.75	0.75	0.75	0.77	0.86	0.86	0.86	0.86	1	1	1	0.86										
8				0.77	0.75	0.75	0.75	0.77	0.86	0.86	0.86	0.86	1	1	1	0.86										
E.				0.77	0.75	0.75	0.75	0.77	0.86	0.86	0.86	0.86	1	1	1	0.86										
E-	0.82	0.82	0.82	0.98	0.94	0.94	0.94	0.98	0.97	0.97	0.97	1	0.86	0.86	0.86	1										
₩.	-0.052	-0.052	-0.052	0.088	0.049	0.049	0.049	0.088	0.19	0.19	0.19	0.25	0.62	0.62	0.62	0.25	1	1	1	0.96	0.96	0.96	0.92	0.92	0.92	0.96
E -				0.088	0.049	0.049	0.049										1	1	1	0.96	0.96	0.96	0.92	0.92	0.92	0.96
튵.				0.088	0.049	0.049	0.049										1	1	1	0.96	0.96	0.96	0.92	0.92	0.92	0.96
dw.	0.00034	0.00034	0.00034													0.35	0.96	0.96	0.96	1	1	0.98	0.87	0.87	0.87	0.98
W.	0.00034	0.00034	0.00034														0.96	0.96	0.96	1	1	0.98	0.87	0.87	0.87	0.98
۹.								0.043								0.2	0.96	0.96	0.96	0.98	0.98	1	0.93	0.93	0.93	1
g.										-0.097						-0.032	0.92	0.92	0.92	0.87	0.87	0.93	1	1	1	0.93
8									-0.097	-0.097	-0.097					-0.032	0.92	0.92	0.92	0.87	0.87	0.93	1	1	1	0.93
g ·									-0.097	-0.097	-0.097					-0.032	0.92	0.92	0.92	0.87	0.87	0.93	1	1	1	0.93
e -				0.043				0.043								0.2	0.96	0.96	0.96	0.98	0.98	1	0.93	0.93	0.93	1
	ls	gt	rs	lw	lf	ď	rf	rw	lam	cam	ram	lm	Icm	cm	rcm	m	ldm	cdm	rdm	lwb	rwb	lb	lcb	do	rcb	rb

Data Modeling

Step 1: Drop unused attributes for clustering

Step 2: Reduce Dimension

Step 3: Standardized data.

```
Explained variance ratio for Striker PCA application: [1.]
Explained variance ratio for Forward PCA application: [1.]
Explained variance ratio for Attack Winger PCA application: [1.]
Explained variance ratio for Midfielder PCA application: [0.70388172]
Explained variance ratio for Defensive Winger PCA application: [1.]
Explained variance ratio for Back PCA application: [1.]
```

```
Explained variance ratio for defensive skills PCA application: [0.98299723]
Explained variance ratio for movement PCA application: [0.82825812]
Explained variance ratio for control skills PCA application: [0.91608148]
Explained variance ratio for passing skills PCA application: [0.92329027]
Explained variance ratio for defending skills PCA application: [0.91549397]
```

Principal Component Analysis (PCA)

```
Explained variance ratio for Striker PCA application: [1.]
Explained variance ratio for Forward PCA application: [1.]
Explained variance ratio for Attack Winger PCA application: [1.]
Explained variance ratio for Midfielder PCA application: [0.70388172]
Explained variance ratio for Defensive Winger PCA application: [1.]
Explained variance ratio for Back PCA application: [1.]
```

```
Explained variance ratio for defensive skills PCA application: [0.98299723] Explained variance ratio for movement PCA application: [0.82825812] Explained variance ratio for control skills PCA application: [0.91608148] Explained variance ratio for passing skills PCA application: [0.92329027] Explained variance ratio for defending skills PCA application: [0.91549397]
```

Discover the relationship between Work Rate and other skills

	attacking_crossing	attacking_finishing	attacking_short_passing	attacking_volleys
attack_work_rate				
0.0	37	26	56	29
0.5	49	48	59	42
1.0	55	56	60	47

defending_standing_tackle defending_sliding_tackle

defense_work_rate		
0.0	28	26
0.5	52	49
1.0	62	59

Method to find optimal K

Silhouette method

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n clusters = 3

The silhouette plot for the various clusters.

Silhouette analysis for KMeans clustering on sample data with n clusters = 4

Hierarchical Clustering

$$L(r,s) = \max(D(x_{ri},x_{sj}))$$

Birch Algorithm

Birch is a Hierarchical clustering algorithm using top-down

- Idea: Each successful iteration, a cluster is split into smaller clusters according to the value of some similarity measure until each object is a cluster or until the stopping condition is satisfied.
- This approach into using divide and conquer strategy in the clustering process

Comparision three Algorithms

	K cluster	kmean_silhouette_scores	birch_silhouette_scores	agg_silhouette_scores
0	2	0.282726	0.238964	0.238964
1	3	0.308363	0.236685	0.236685
2	4	0.279544	0.212797	0.212797
3	5	0.229999	0.193872	0.193872
4	6	0.219155	0.185722	0.185722
5	7	0.206945	0.154607	0.154607
6	8	0.191965	0.155710	0.155710
7	9	0.185837	0.155961	0.155961

Result

cluster_Kmeans	potential	overall
2	79.738211	67.549593
1	74.443060	59.176157
0	74.352570	58.725879

2 11090 6151 562

Name: cluster_Kmeans, dtype: int64 running time of Kmeans 70.96637034416199

Result

	striker	forward	d attack_win	nger midfielder	defensive_w	inger	bac
cluster_Kmeans							
	defe	nsive	movement	control	passing	finishing	
cluster_Kme	eane						
oluster_Ittlik	earis						
oluster_rank	earrs	attac	k_work_rate	defense_work_rate	defensive	23.755704	_
	cluster_Kmean		k_work_rate	defense_work_rate	defensive	23.755704	
			0.494662	defense_work_rate 0.588968		5.300393	
		ıs			21.025102		

THANK YOU FOR LISTENING

