Confidence intervals

Consider two scenarios focusing on a server that executes jobs individually, in order of arrival and without interruption. In each case, jobs arrive and are served according to the following inter-arrival time and service time distribution:

Scenario	Arrival	Service
I	Two stages hyper-exponential distribution with:	Weibull with:
	$\lambda_1 = 0.025, \ \lambda_2 = 0.1, \ p_1 = 0.35$	$k = 0.333, \lambda = 2.5$
II	Erlang with:	Uniform with:
	$k = 8, \lambda = 1.25$	a = 1, b = 10

For each scenario, using batches of M = 5000 jobs, compute the 95% confidence interval, with a 2% relative error, of the following performance indices:

- Utilization
- Throughput
- Average number of jobs in the system
- Average response time

For each scenario, report the number of batches K required to reach the required accuracy.