Efficiently Detecting Multiple Structural Breaks in Multiple Equations Linear Regressions with Integrated and Stationary Regressors — Supplementary Material A

Karsten Schweikert*
University of Hohenheim

[Latest update: September 30, 2021]

1 Group LARS algorithm

We define some notation used in the exposition of the algorithm. Since our system is vectorized and the columns of Z have a specific structure in the change-point setting, we do not need to extend the correlation criterion as in Similä and Tikka (2006) to account for multiple responses. A simple re-partitioning before the most correlated set is computed allows us to use a modified version of the algorithm proposed by Chan et al. (2014) which itself is a specific adaptation of the group LARS algorithm outlined in Yuan and Lin (2006) to the univariate change-point setting.

We define the $Tq \times d$ matrix $\overline{Z} = I \otimes Z$, where the columns of Z contain the identical regressors for all responses. For $j = 1, \ldots, Tq$, we define the d vector

$$oldsymbol{B}_{j}(
u) = \sum_{l=j}^{T} ar{Z}_{l}'
u_{l}.$$

Moreover, we define the $Tq \times d$ matrix $\boldsymbol{B}(\nu) = (\boldsymbol{B}'_1(\nu), \dots \boldsymbol{B}'_{Tq}(\nu))'$ which has q blocks of dimension $T \times d$. Now, we define the $T \times qd$ matrix $\boldsymbol{B}^*(\nu)$ re-partitioning $\boldsymbol{B}(\nu)$ so that the q blocks are concatenated horizontally. $\boldsymbol{B}_j^*(\nu)$ denotes the j-th row of $\boldsymbol{B}^*(\nu)$. The matrix $\boldsymbol{Z}_{\mathcal{A}}$ consists of all columns of \boldsymbol{Z} that belong to the change-points contained in \mathcal{A} . The implementation of the modified group LARS algorithm on multiple change-points estimation is given below:

^{*}Address: University of Hohenheim, Core Facility Hohenheim & Institute of Economics, Schloss Hohenheim 1 C, 70593 Stuttgart, Germany, e-mail: karsten.schweikert@uni-hohenheim.de

- 1. Initialization: specify K, the maximum number of change-points, and Δ , the minimum distance between change-points. Set $\mu^{[0]} = 0$, k = 1, $\nu^{[0]} = \mathbf{Y}$, $\mathcal{A}_0 = \{\emptyset\}$, and $\mathcal{T} = \{1, \ldots, T\}$.
- 2. Compute the current "most correlated set"

$$\mathcal{A}_k = \underset{j \in \mathcal{T}}{\operatorname{arg\,max}} \|\boldsymbol{B}_j^*(\boldsymbol{\nu}^{[k-1]})\|_2.$$

3. Descent direction computation

$$\gamma_{\mathcal{A}_k} = (\mathbf{Z}'_{\mathcal{A}_k} \mathbf{Z}_{\mathcal{A}_k})^{-1} \mathbf{Z}'_{\mathcal{A}_k} \nu^{[k-1]}.$$

4. Descent step search: For $j \in \mathcal{T} \setminus \mathcal{A}_k$ define

$$a_j = \|\boldsymbol{B}_j(\nu^{[k-1]})\|^2, \qquad b_j = \boldsymbol{B}'_j(\boldsymbol{Z}_{\mathcal{A}_k}\gamma_{\mathcal{A}_k})\boldsymbol{B}_j(\nu^{[k-1]}),$$

$$c_j = \|\boldsymbol{B}_j(\boldsymbol{Z}_{\mathcal{A}_k}\gamma_{\mathcal{A}_k})\|^2, \quad d_j = \max_{j \in \mathcal{T} \setminus \mathcal{A}_k} a_j.$$

Set $\alpha = \min_{j \in \mathcal{T} \setminus \mathcal{A}_k} a_j \equiv \alpha_{j^*}$, where

$$\alpha_j^+ = \frac{(b_j - d_j) + \sqrt{(b_j - d_j)^2 - (a_j - d_j)(c_j - d_j)}}{c_j - d_j},$$

$$\alpha_j^- = \frac{(b_j - d_j) - \sqrt{(b_j - d_j)^2 - (a_j - d_j)(c_j - d_j)}}{c_j - d_j},$$

and

$$\alpha_j = \begin{cases} \alpha_j^+ & \text{if } \alpha_j^+ \in [0, 1], \\ \alpha_j^- & \text{if } \alpha_j^- \in [0, 1]. \end{cases}$$

5. If $\alpha \neq 1$ or k < K, update $\mathcal{A}_{k+1} = \mathcal{A}_k \cup \{j^*\}$, $\mu^{[k]} = \mu^{[k-1]} + \alpha \mathbf{Z}_{\mathcal{A}_k} \gamma_{\mathcal{A}_k}$ and $\nu^{[k]} = Y - \mu^{[k]}$. Set k = k+1 and go back to step 3. Otherwise, return \mathcal{A}_k as the estimated change-points.

2 Backward elimination algorithm

The Backward elimination algorithm (BEA) successively eliminates breakpoints until no improvement in terms of the chosen criterion can be reached. For this purpose, we define

$$IC(m, \mathbf{t}) = S_T(t_1, \dots, t_m) + m\omega_T,$$

where $S_T(t_1, ..., t_m)$ is the least squares objective function for the pre-selected set of breakpoints and ω_T is the penalty function. The implementation of the BEA is given below:

1. Set
$$K = |A_T|$$
, $t_K = (t_{K,1}, \dots, t_{K,K}) = A_T$ and $V_K^* = IC(K, A_T)$.

2. For
$$i = 1, ..., K$$
, compute $V_{K,i} = IC(K - 1, t_K \setminus \{t_{K,i}\})$. Set $V_{K-1}^* = \min_i V_{K,i}$.

- 3. If $V_{K-1}^* > V_K^*$, then the estimated changepoints are $\mathcal{A}_T^* = \mathbf{t}_K$.
 - If $V_{K-1}^* \ge V_K^*$ and K=1, then $\mathcal{A}_T^*=\emptyset$
 - If $V_{K-1}^* \geq V_K^*$ and K > 1, then set $j = \underset{i}{\operatorname{arg\,min}} V_{K,i}$, $\boldsymbol{t}_{K-1} = \boldsymbol{t}_K \setminus \{t_{K-1,j}\}$) and K = K 1. Go to step 2.

3 Additional simulation results

Table 1: Estimation of (multiple) structural breaks in the full model using the group LASSO with BEA (c = 0.5)

	SB1: $(\tau =$	= 0.5)									
T	pce	hd/T	au								
100	67.9	1.09	$0.502 \ (0.023)$								
200	99.4	0.59	0.500 (0.012)								
400	99.9	0.33	$0.500 \ (0.008)$								
SB2: $(\tau_1 = 0.33, \tau_2 = 0.67)$											
æ	(-	, -	/								
T	pce	hd/T	$ au_1$	$ au_2$							
150	79.6	3.38	$0.338 \ (0.034)$	$0.661\ (0.026)$							
300	97.2	1.99	0.335(0.019)	0.666 (0.016)							
600	99.9	1.03	0.332 (0.010)	$0.667\ (0.008)$							
	SB4: $(\tau_1 = 0.2, \tau_2 = 0.4, \tau_3 = 0.6, \tau_4 = 0.8)$										
T	pce	hd/T	$ au_1$	$ au_2$	$ au_3$	$ au_4$					
250	64.7	5.57	0.213 (0.034)	0.407 (0.031)	0.597 (0.030)	0.792 (0.028)					
500	88.2	2.53	$0.201\ (0.016)$	0.403(0.012)	0.598(0.010)	0.801 (0.014)					
1000	99.7	1.34	0.200 (0.008)	0.401 (0.007)	0.598 (0.005)	0.800 (0.007)					

Note: We use 1,000 replications of the data-generating process given in Equation (10) of the main text with c=0.5. The variance of the error terms is $\sigma_{\xi}^2=\sigma_e^2=\sigma_u^2=1$. The first panel reports the results for one active breakpoint at $\tau=0.5$, the second panel considers two active breakpoints at $\tau_1=0.33$ and $\tau_2=0.67$ and the third panel has four active breakpoints at $\tau_1=0.2$, $\tau_2=0.4$, $\tau_3=0.6$, and $\tau_4=0.8$. Standard deviations are given in parentheses.

೮

Table 2: Estimation of (multiple) structural breaks in the full model using the group LASSO with BEA (c = 1.5)

SB1: $(\tau = 0.5)$											
T	pce	hd/T	au								
100	99.9	0.33	0.501 (0.010)								
200	99.9	0.15	0.500 (0.004)								
400	100	0.07	0.500 (0.002)								
SB2: $(\tau_1 = 0.33, \tau_2 = 0.67)$											
T	pce	hd/T	$ au_1$	$ au_2$							
150	93.7	3.17	0.338 (0.030)	0.660 (0.024)							
300	97.9	1.69	$0.332\ (0.016)$	0.667 (0.014)							
600	99.9	0.93	$0.332 \ (0.009)$	$0.668 \; (0.007)$							
TI.	SB4: $(\tau_1 = 0.2, \tau_2 = 0.4, \tau_3 = 0.6, \tau_4 = 0.8)$										
T	pce	hd/T	$ au_1$	$ au_2$	$ au_3$	$ au_4$					
250	89.0	5.22	$0.217 \ (0.031)$	$0.404 \ (0.020)$	$0.597 \ (0.017)$	$0.788 \; (0.028)$					
500	98.1	2.38	$0.203 \ (0.017)$	$0.402 \ (0.012)$	$0.598 \; (0.009)$	$0.803 \ (0.012)$					
1000	99.8	1.33	$0.199 \ (0.008)$	$0.401\ (0.005)$	$0.599 \ (0.005)$	$0.800 \ (0.008)$					

Note: We use 1,000 replications of the data-generating process given in Equation (10) of the main text with c=1.5. The variance of the error terms is $\sigma_{\xi}^2=\sigma_e^2=\sigma_u^2=1$. The first panel reports the results for one active breakpoint at $\tau=0.5$, the second panel considers two active breakpoints at $\tau_1=0.33$ and $\tau_2=0.67$ and the third panel has four active breakpoints at $\tau_1=0.2$, $\tau_2=0.4$, $\tau_3=0.6$, and $\tau_4=0.8$. Standard deviations are given in parentheses.

References

- Chan, N.H., Yau, C.Y., Zhang, R.M., 2014. Group LASSO for Structural Break Time Series. Journal of the American Statistical Association 109, 590–599. doi:10.1080/01621459. 2013.866566.
- Similä, T., Tikka, J., 2006. Common subset selection of inputs in multiresponse regression. Proceedings of the 2006 International Joint Conference on Neural Networks, 1908–1915.
- Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society. Series B: Statistical Methodology 68, 49–67. doi:10.1111/j.1467-9868.2005.00532.x.