Hamner & Kalkan Replication

Nick Thompson 10/12/2016

Pull in Data

```
setwd("~/Documents/GitHubRepo/729_Reed_MLE_git/Exam/hanmer")
#data <- read.csv(file = "https://raw.githubusercontent.com/Neilblund/729A/master/data/voterid.csv", he
#or
#data <- read.dta(file = "hk1.dta")
#or
# data <- read.dta13(file = "hyperlink or filename goes here")
#save(data, file = "data.RData")
load("data.RData")
#View(data)</pre>
```

Introduction:

```
#descriptive statistics for all variables
#stargazer(voterid, type = 'text')
# run probit, show results
data <- na.omit(data)</pre>
#View(data)
#View(data) - here we put the point prediction that we're looking for.
# If you're using mean, then keep mean.
# If you're using a SD up and down from the mean, then use that.
# If you're using a different range, then use that.
data$mean_gopleg <- mean(data$gopleg)</pre>
## Warning in mean.default(data$gopleg): argument is not numeric or logical:
## returning NA
data$sd_gopleg <- 0.5*sd(data$gopleg)</pre>
data$med_g = median(data$gopleg)
## Warning in is.na(x): is.na() applied to non-(list or vector) of type 'NULL'
Descriptive statistics
stargazer(data, header = F)
# type = 'text',
```

Plot a histogram to see what the data looks like. Identify skewness for determining if using mean, median, or tail.

Table 1:

Statistic	N	Mean	St. Dev.	Min	Max
caseid	383	593.086	352.376	3	1,211
retecon	383	-0.159	0.568	-1.000	1.000
white	383	0.791	0.407	0	1
female	383	0.551	0.498	0	1
age	383	48.005	16.586	18	88
educ1_7	383	4.608	1.596	1	7
income	383	15.856	5.628	1	23
partyid	383	2.966	2.245	0	6
bushiraq	383	0.400	0.427	0.000	1.000
bushvote	383	0.512	0.501	0	1
ideol	383	4.305	1.412	1	7

Calculate the average effect of variable name using observed values.

The logit model.

A table of the logit model.

The logit predicted probabilities.

Calculate the average effects with a logit model.

A way to do this with probit.

```
##
## Call: glm(formula = "bushvote ~ retecon + partyid +\n
                                                                           bushiraq + ideol + \n
##
       family = binomial(link = "probit"), data = data)
##
## Coefficients:
## (Intercept)
                   retecon
                                partyid
                                             bushiraq
                                                             ideol
##
     -2.611185
                   0.871338
                                0.583033
                                             2.130149
                                                           0.180547
                                              educ1_7
##
         white
                     female
                                     age
                                                            income
##
      0.091140
                  -0.080501
                               -0.003582
                                            -0.076131
                                                           0.014432
## Degrees of Freedom: 382 Total (i.e. Null); 373 Residual
## Null Deviance:
                        530.7
## Residual Deviance: 120.8
                                AIC: 140.8
```

A table printout of the probit model.

```
# summary(model_1p)
# stargazer(model_1p, title = "H&K Probit Table 1 - Replication")
# type = 'text',
# header=F,
```

Calculate the predicted probabilities in the probit model.

A summary of the probit test.

Calculate the average effects and difference for a probit model.

Summary: Interpreting the Coefficients, include the AIC

Log Likelihood

Deviances

Bayes

AIC

Simulations:

Violin Plots of the Simulation