Exercise 1

1. When learning the axioms of rational number, student KWAELEN found that the operation of subsets of a non-empty set X is somewhat similar to that of rational number: if we regard " \cup " as "+", and " \cap " as "·", then the equation $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ is just the distributivity law. Help him check whether P1 – P9 also hold for such operations

Proof: To solve such kind of problem, what we need to do is simply check the axioms one by one:

P1: (associativity) $A \cup (B \cup C) = (A \cup B) \cup C$ holds

P2: (existence of neutral element) $A \cup \emptyset = \emptyset \cup A$, so the empty set is our neutral element

P3: (inverse element) For any $A \neq \emptyset$, $\forall B \subseteq X$, $A \cup B \neq \emptyset$. Therefore, the inverse element doesn't exist. P3 fails

P4: (commutativity) $A \cup B = B \cup A$ holds

P5: (associativity) $A \cap (B \cap C) = (A \cap B) \cap C$ holds

P6: (existence of neutral element) $A \cap X = X \cap A = A$, so the neutral element is the total set X

P7: (existence of inverse element) $A \cap B \subseteq A \subseteq X$, so $A \cap B \neq X$ is A or B is proper set of X. This means: given an A, A^{-1} doesn't necessarily exists

P8: (commutativity) $A \cap B = B \cap A$ holds

Exercise 6

6. Please identify the interior, exterior, and boundary point of the set

$$\left\{\frac{1}{z}: z \in \mathbb{Z} \setminus \{0\}\right\} \cup \left(\bigcap_{i=1}^{\infty} \left(-2 - \frac{1}{i}, -1 + \frac{1}{i}\right)\right)$$

For problems like this one, we first need to simplify the expression of our set. For this exercise, the set is $\{\frac{1}{z}: z \in \mathbb{Z} \setminus \{0\}\} \cup [-2, -1]$. The reason is $\lim_{n \to \infty} \left(\frac{1}{n}\right) = 0$. Any $x \in (-2, -1)$ is an interior point. Any point $x \notin \{0\} \cup \{\frac{1}{z}: z \in \mathbb{Z} \setminus \{0\}\} \cup [-2, -1]$ is an exterior point. Any $x \in \{0\} \cup \{-1\} \cup \{-2\} \cup \{\frac{1}{z}: z \in \mathbb{Z} \setminus \{0\}\}$ is a boundary point.

Exercise* 9

9. Let A be bounded set in \mathbb{R} (which means that the total set is \mathbb{R}), for any $\varepsilon > 0$ there is an element x in A such that $|x - \sup A| < \varepsilon$

Proof: Suppose this is not true, i.e., there is an $\varepsilon > 0$ such that for all x in A we have $|x - \sup A| \ge \varepsilon$. Then $\sup A - \frac{1}{2}\varepsilon$ is an upper bound of A, leading to a contradiction.