Exercise sheet 3

- 1. (for submission) If $D_n: C_n(X) \to C_{n+1}(X)$ are a family of homomorphisms, and $\rho := Id D_{n-1} \circ \partial_n \partial_{n+1} \circ D_n$, then prove that ρ is a chain map.
- 2. (for submission) Recall that for v_i in some convex set K, $[v_0, \ldots, v_n]$ denotes the linear simplex $\lambda(\Sigma_i \alpha_i e_i) = \Sigma_i \alpha_i v_i$, and $\hat{b}([v_0, \ldots, v_n]) := [b, v_0, \ldots, v_n]$, where b is $\lambda(\frac{e_0 + \ldots + e_n}{n+1})$. Prove that if a family of maps. is defined inductively as, $S_n(\lambda) := \hat{b}(S_{n-1}(\partial \lambda))$, where $S_0 = Id$, then $\lambda_\#(S_n(Id_{\Delta_n})) = S_n(\lambda)$ (Here, we are viewing λ as $\lambda \circ Id$ or equivalently, $\lambda_\#(Id)$ and, therefore, the S_n on the left hand side is acting on linear chains of Δ_n and is a different map from the S_n on the right hand side, which is acting on linear chains of K)
- 3. Let $f_0, f_i : [0,1] \to X$ be two loops, i.e. continuous maps such that $f_i(0) = f_i(1)$. Therefore, both maps can be realized as singular 1-simplices in X, that also happen to be cycles (because $f_i(0) = f_i(1)$). Let $H: [0,1] \times [0,1] \to X$ define a homotopy between f_0 and f_1 (i.e. $H(s,0) = f_0(s)$ and $H(s,1) = f_1(s)$) such that H(0,t) and H(1,t) are constant, i.e. the end points of the loop are fixed throughout the homotopy. This is called a path homotopy between the two loops. Prove that $[f_0] = [f_1] \in H_1(X)$, i.e. both loops represent the same homology class.
- 4. Prove the equivalence of these two versions of the excision theorem:
- a) If X is a topological space and $A, B \subset X$ such that $X = Int \ A \cup Int \ B$, then $k : (B, A \cap B) \hookrightarrow (X, A)$ induces an isomorphism $k_* : H_n(B, A \cap B) \rightarrow H_n(X, A)$
- b) If X is a topological space, $A \subset X$, and $Z \subset A$ such that $\bar{Z} \subset Int \ A$ $i: (X \setminus Z, A \setminus Z) \hookrightarrow (X, A)$ induces, $i_*: H_n(X \setminus Z, A \setminus Z) \hookrightarrow H_n(X, A)$ is an isomorphism