优化模型与软件工具

主讲教师: 董庆兴

华中师范大学 信息管理学院 qxdong@mail.ccnu.edu.cn All rights reserved

2017年11月14日

大纲

- 1. 分离定理
- 2. 广义不等式
- 3. 对偶锥与广义不等式
- 4. 最小元与极小元

分离定理 广义不等式 最小元与极小元

投影定理

投影定理

对于非空闭凸集 $C \in \mathbb{R}^n$ 和向量 $\mathbf{z} \in \mathbb{R}^n$,则存在一个唯一的向量 $\mathbf{x}^* \in C$ 为 $\min_{\mathbf{x} \in C} \|\mathbf{z} - \mathbf{x}\|_2$ 的解, \mathbf{x}^* 被称作 \mathbf{z} 在 C 上的投影并且满足

$$(\mathbf{z} - \mathbf{x}^*)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*) \le 0, \forall \mathbf{x} \in C$$
 (1)

主讲教师: 董庆兴 优化模型与软件工具

分离定理 广义不等式 对偶锥与广义不等式 最小元与极小元

支撑超平面定理

支撑超平面定理

设 $C \in \mathbb{R}^n$ 中的非空凸集,向量 $\bar{x} \in \mathbb{R}^n$,若 $\bar{x} \notin \text{int } C$,则存在一个穿过 \bar{x} 的超平面使得 X 属于它的一个闭半空间,即存在向量 $a \neq 0$ 满足

$$\mathbf{a}^{\mathrm{T}}\bar{\mathbf{x}} \leq \mathbf{a}^{\mathrm{T}}\mathbf{x}, \ \forall \mathbf{x} \in C$$
 (2)

主讲教师: 董庆兴

超平面分离定理

超平面分离定理

对于两个不相交的非空凸集 C 和 D, 存在 $\mathbf{a} \neq 0$ 和 \mathbf{b} 使得对于所有的 $\mathbf{x}_1 \in C$ 和 $\mathbf{x}_2 \in D$ 有 $\mathbf{a}^T \mathbf{x}_1 \leq \mathbf{b}, \mathbf{a}^T \mathbf{x}_2 \geq \mathbf{b}$, 也就是存在分离超平面 $H = \{\mathbf{a}^T \mathbf{x} = \mathbf{b}\}$

为证明上述定理,我们首先给出一种特殊情况(作业:证明更普通的情况),定义两集合之间的距离为

 $\mathbf{dist}(C, D) = \inf\{\|\mathbf{u} - \mathbf{v}\|_2 | \mathbf{u} \in C, \mathbf{v} \in D\} > 0$, 并且存在 $\mathbf{c} \in C, \mathbf{d} \in D$ 达到这个最小距离,也就是 $\|\mathbf{c} - \mathbf{d}\|_2 = \mathbf{dist}(C, D)$,

超平面分离定理

- 考虑上述特殊情况,则我们可以构建一个超平面 $H = {\mathbf{a}}^{\mathrm{T}} \mathbf{x} = \mathbf{b}$ 垂直并且平分线段 \mathbf{cd}
- 已知 \mathbf{c} , \mathbf{d} 坐标,可以很方便的求 出超平面 $H = \{\mathbf{a}^T\mathbf{x} = \mathbf{b}\}$ 的具 体值
- 令 $\mathbf{a} = \mathbf{d} \mathbf{c}, \mathbf{b} = \frac{\|\mathbf{d}\|_2^2 \|\mathbf{c}\|_2^2}{2}$,仿射函数 $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} \mathbf{b} = (\mathbf{d} \mathbf{c})^T (\mathbf{x} \frac{\mathbf{d} + \mathbf{c}}{2})$ 在 C 中非正而在 D 中非负,即超平面 $\{\mathbf{x}|\mathbf{a}^T\mathbf{x} = \mathbf{b}\}$ 分离了 C 和 D

• 首先我们用反证法证明 f 在 D 中非负 (证明 f 在 C 中非正思路相同,只需交换 C,D 并考虑 -f),假设存在一点 $\mathbf{u} \in D$,且 $f(\mathbf{u}) = (\mathbf{d} - \mathbf{c})^{\mathrm{T}}(\mathbf{u} - \frac{(\mathbf{d} + \mathbf{c})}{2}) = (\mathbf{d} - \mathbf{c})^{\mathrm{T}}(\mathbf{u} - \mathbf{d}) + \frac{\|\mathbf{d} - \mathbf{c}\|_{2}^{2}}{2} < 0$,可知

$$(\mathbf{d} - \mathbf{c})^{\mathrm{T}} (\mathbf{u} - \mathbf{d}) < 0 \qquad (3)$$

而由于 d 是 D 中离 c 最近的点,那么 d 是 c 在 D 中的投影,从而由式(1)有

$$(\mathbf{c} - \mathbf{d})^{\mathrm{T}} (\mathbf{u} - \mathbf{d}) \le 0$$

● 这与式 (3) 矛盾。因此 *f* 在 *D* 中非 负

仿射集与凸集分离

- 设 C 为凸集,D 为仿射集,也就是 $D = \{F\mathbf{y} + \mathbf{g} | \mathbf{y} \in \mathbb{R}^m\}$,其中 $F \in \mathbb{R}^{n \times m}$ 。设 C, D 不相交,那么根据超平面分离定理,存在 $a \neq 0$ 和 b 使得 $\mathbf{a}^T\mathbf{x} \leq \mathbf{b}, \forall \mathbf{x} \in C$; $\mathbf{a}^T\mathbf{x} \geq \mathbf{b}, \forall \mathbf{x} \in D$
- 从而对于任意的 $\mathbf{y} \in \mathbb{R}^m$ 都有 $\mathbf{a}^T F \mathbf{y} + \mathbf{a}^T \mathbf{g} \ge \mathbf{b}$,也就是 $\mathbf{a}^T F \mathbf{y} \ge \mathbf{b} \mathbf{a}^T \mathbf{g}$
- 在 \mathbb{R}^m 上,只有当一个线性函数为零的时候它才是有界的,因此可 知 $\mathbf{a}^{\mathrm{T}}F=0,\mathbf{b}-\mathbf{a}^{\mathrm{T}}\mathbf{g}\leq 0$
- 从而仿射集与凸集分离等价于:存在 $a \neq 0$ 使得 $\mathbf{a}^T F = 0$ 和 $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{g}$ 对于所有 $\mathbf{x} \in C$ 都成立

广义不等式 对偶锥与广义不等式 最小元与极小元

严格分离

分离定理

• 称集合 C_1 C_2 被超平面 $H = \{\mathbf{a^T x} = \mathbf{b}\}$ 严格分离如果两集合分别位于 H 的不同的半空间内,也就是

$$\mathbf{a}^{\mathrm{T}}\mathbf{x}_{1} < \mathbf{b} < \mathbf{a}^{\mathrm{T}}\mathbf{x}_{2}, \forall \mathbf{x}_{1} \in C_{1}, \forall \mathbf{x}_{2} \in C_{2}$$

或

$$\mathbf{a}^{\mathrm{T}}\mathbf{x}_{2} < \mathbf{b} < \mathbf{a}^{\mathrm{T}}\mathbf{x}_{1}, \forall \mathbf{x}_{1} \in C_{1}, \forall \mathbf{x}_{2} \in C_{2}$$

● 不相交的凸集并不一定能够被超平面严格分离(即使集合是闭集): 例如 $C = \{ \mathbf{x} \in \mathbb{R}^2 | x_1 = 0 \}$ 和 $D = \{ \mathbf{x} \in \mathbb{R}^2 | x_1 > 0, x_1 x_2 > 1 \}$

主讲教师:董庆兴

点和凸集的严格分离

点和凸集的严格分离

令集合 C 为闭凸集, $\mathbf{x}_0 \notin C$, 那么存在将 \mathbf{x}_0 与 C 严格分离的超平面

- 对于足够小的 $\varepsilon > 0$,存在两个不相交的集合 C 和 $\mathcal{B}(\mathbf{x}_0, \epsilon)$ 。根据超平面分离定理,存在 $\mathbf{a} \neq 0$ 和 \mathbf{b} ,使得对于任意 $\mathbf{x} \in C$ 有 $\mathbf{a}^T \mathbf{x} \leq \mathbf{b}$;对于任意 $\mathbf{x} \in D$ 有 $\mathbf{a}^T \mathbf{x} > \mathbf{b}$
- 由于 $\mathcal{B}(\mathbf{x}_0, \varepsilon) = \{\mathbf{x}_0 + \mathbf{u} | \|\mathbf{u}\|_2 \le \epsilon\}$ 从而有

$$\mathbf{a}^{\mathrm{T}}(\mathbf{x}_o + \mathbf{u}) \ge \mathbf{b}, \ \forall \|\mathbf{u}\|_2 \le \epsilon$$

- 由于 $\mathbf{u} = \frac{-\varepsilon \mathbf{a}}{\|\mathbf{a}\|_2} = \arg\min \mathbf{a}^{\mathrm{T}}(\mathbf{x}_o + \mathbf{u}),$ 代入上式可得 $\mathbf{a}^{\mathrm{T}}\mathbf{x}_o \varepsilon \|\mathbf{a}\|_2 \geq b$
- ullet 所以仿射函数 $f(\mathbf{x}) = \mathbf{a}^{\mathrm{T}}\mathbf{x} b \frac{\varepsilon \|\mathbf{a}\|_2}{2}$ 在 C 上是负的,而在 \mathbf{x}_0 点是正的,从而 C 和 \mathbf{x}_0 被严格分离
- 作为一个直接的结果,我们可以得到:一个闭凸集是包含它的所有半空间的交集
- ullet 令 C 为闭凸集, S 为所有包含 C 的半空间, 显然 $\mathbf{x} \in C \Rightarrow \mathbf{x} \in S$ 。也就是 $C \subseteq S$
- 接下来要证明 $S \subseteq C$,假设不成立则存在 $\mathbf{x} \in S$, $\mathbf{x} \notin C$,那么根据点和凸集严格分离定理,存在一个将 C 和 \mathbf{x} 严格分离的超平面,也就是存在一个包含 C 但是并不包含 \mathbf{x} 的半空间。也就是 $\mathbf{x} \notin S$,从而矛盾,有 $S \subseteq C$

超平而分离定理的逆定理

- ullet 分离超平面的存在表明 C 和 D 不相交是不成立的
- 例子: $C = D = \{0\} \subseteq \mathbf{R}$, 超平面 x = 0 可以分离 C 和 D
- 凸性之外加条件可以成立: 例如 C,D 为凸集且 C 为开集,如存在一个仿射函数 f 在 C 中非正而在 D 中非负,那么 C 和 D 不相交
- $f \in C$ 上非正,那么如果 f 在开集 C 上某一点为零,那么必然会在这个点附近取正值,这与前述矛盾,所以 f 在 C 上为负

分离定理 广义不等式 对偶锥与广义不等式 最小元与极小元

择一定理

严格线性不等式的择一定理

严格线性不等式

$$A\mathbf{x} \prec \mathbf{b}$$
 (4)

无解的充要条件是凸集 $C = \{\mathbf{b} - A\mathbf{x} | \mathbf{x} \in \mathbb{R}^n \}$ 与集合 $D = \mathbb{R}^m_{++} = \{\mathbf{y} \in \mathbb{R}^m | \mathbf{y} \succ 0 \}$ 相交

- 集合 D 是开集,集合 C 是仿射集合。根据前述的结论,C 和 D 不相交的充要条件是,存在分离超平面,即存在非零的 $\lambda \in \mathbb{R}^m$ 和 $\mu \in \mathbb{R}$ 使得 C 中 $\lambda^{\mathrm{T}}\mathbf{y} \leq \mu$ 而 D 中 $\lambda^{\mathrm{T}}\mathbf{y} \geq \mu$
- 第一个条件意味着对于所有的 \mathbf{x} 都有 $\lambda^{\mathrm{T}}(\mathbf{b} A\mathbf{x}) \leq \mu$, 这说明 $A^{\mathrm{T}}\lambda = 0, \lambda^{\mathrm{T}}\mathbf{b} \leq \mu$
- 第二个条件意味着 $\lambda^{\mathrm{T}}\mathbf{y} \ge \mu$ 对于所有的 $\mathbf{y} \succ 0$ 均成立,这表明 $\mu \le 0$ 且 $\lambda \succeq 0, \lambda \ne 0$
- 将上述结果放在一起,可知不等式组 (4) 无解的充要条件是存在 $\lambda \in \mathbb{R}^m$ 使得 $\lambda \neq 0, \lambda \succeq 0, A^{\mathsf{T}}\lambda = 0, \lambda^{\mathsf{T}}\mathbf{b} \leq 0$ (5)

$$\lambda \neq 0, \lambda \succeq 0, A^{\mathrm{T}} \lambda = 0, \lambda^{\mathrm{T}} \mathbf{b} \leq 0$$
 (5)

● 这些不等式和等式关于 $\lambda \in \mathbb{R}^m$ 也是线性的,因此我们称 (4) 和 (5) 构成一对择 一选择:对于任意的 A 和 b,两者中仅有一组有解

正常锥

称锥 $K \subseteq \mathbb{R}^n$ 为正常锥(**Proper Cone**),如果它满足:

- K 是凸的
- K 是闭的,包含边界
- K 是实的,即具有非空内部
- K 是尖的(有端点),即不包含直线(或者等价地, $\mathbf{x} \in K, -\mathbf{x} \in K \Rightarrow \mathbf{x} = 0$)

例子: 平面上包含数轴的第一象限(非负象限)

离定理 最小元与极小元

广义不等式

• 正常锥 $K \subseteq \mathbb{R}^n$ 下的偏序关系为

$$\mathbf{x} \preceq_K \mathbf{y} \Longleftrightarrow \mathbf{y} - \mathbf{x} \in K$$

- 当 $K = \mathbb{R}_+$ 时,偏序关系 \preceq_K 就是通常意义上 \mathbb{R} 中的序 \leq
- 例子: 非负象限 $K = \mathbb{R}^n_+$ 是一个正常锥。相应的广义不等式 \preceq_K 对应于向量间的分量不等式,及 $\mathbf{x} \preceq_K y$ 等价于 $x_i \leq y_i, i = 1, \cdots, n$
- 正常锥 $K \subseteq \mathbb{R}^n$ 下的严格偏序关系为

$$\mathbf{x} \prec_K \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in \mathbf{int} \ K$$

- 当 $K = \mathbb{R}_+$ 时,严格偏序关系 \prec_K 就是通常意义上 \mathbb{R} 中的序 <
- 因此广义不等式包含了 ℝ 中的(不严格和严格)不等式

冷窩定理 最小元与极小元

广义不等式性质

广义不等式 \leq_K 有如下性质 (课后作业证明):

- 加法保序: 如果 $\mathbf{x} \preceq_K \mathbf{y}$,且 $\mathbf{u} \preceq_K \mathbf{v}$,那么 $\mathbf{x} + \mathbf{u} \preceq_K \mathbf{y} + \mathbf{v}$
- 传递性: 如果 $\mathbf{x} \preceq_K \mathbf{y}$, 且 $\mathbf{y} \preceq_K \mathbf{z}$, 那么 $\mathbf{x} \preceq_K \mathbf{z}$
- 非负数乘保序: 如果 $\mathbf{x} \preceq_K \mathbf{y}$,且 $\alpha \geq 0$,那么 $\alpha \mathbf{x} \preceq_K \alpha \mathbf{y}$
- 自反: x ≤_K x
- 反对称: 如果如果 $\mathbf{x} \preceq_K \mathbf{y}$,且如果 $\mathbf{y} \preceq_K \mathbf{x}$,那么 $\mathbf{x} = \mathbf{y}$
- 极限运算保序: 如果对于 $i=1,2,\cdots$ 均有 $\mathbf{x}_i \preceq_K \mathbf{y}_i$,当 $i \to \infty$ 有 $\mathbf{x}_i \to \mathbf{x}$ 和 $\mathbf{y}_i \to \mathbf{y}$,那么 $\mathbf{x} \preceq_K \mathbf{y}$

最小与极小元

- 如果对于 \forall **y** ∈ S 都有 **x** \preceq_K **y**, 则称 **x** ∈ S 是 S(关于广义不等式 \preceq_K) 的最小元(minimum element)
- 类似地,我们可以定义关于广义不等式的最大元。并且如果一个集合有最小(或最大)元,那么它们是唯一的
- 对于 $\mathbf{y} \in S$ 如果有 $\mathbf{y} \preceq_K \mathbf{x}$, 则有 $\mathbf{y} = \mathbf{x}$, 则称 $\mathbf{x} \in S$ 是 S(关于广义 不等式 \preceq_K) 的极小元(minimal element)
- 同样地,可以定义关于广义不等式的极大元,一个集合可以有多个极小(大)元

分离定理 **广义不等式** 对偶锥与广义不等式 最小元与极小元

最小元和极小元的集合描述

- 元素 $\mathbf{x} \in S$ 是 S 中的一个最小元当且仅当 $S \subseteq \mathbf{x} + K$,其中 $\mathbf{x} + K$ 表示可以与 \mathbf{x} 相比并且大于等于(根据 \preceq_K) \mathbf{x} 的所有元素
- 元素 $\mathbf{x} \in S$ 是 S 中的一个极小元当且仅当 $\mathbf{x} K \cap S = \{\mathbf{x}\}$,其中 $\mathbf{x} K$ 表示可以与 \mathbf{x} 相比并且小于等于(根据 \preceq_K) \mathbf{x} 的所有元素

图: 集合 S_1 关于 \mathbb{R}^2 上的分量不等式有最小元 \mathbf{x}_1 。点 \mathbf{x}_2 是 S_2 的极小元

对偶锥

● 令 K 为一个锥, 集合 $K^* = \{\mathbf{y} | \mathbf{x}^T \mathbf{y} \ge 0, \forall \mathbf{x} \in K\}$ 称为 K 的对偶锥

- 从几何上看, $\mathbf{y} \in K^*$ 当且仅当 $-\mathbf{y}$ 是 K 在原点上的一个支撑超平面的法线
- ullet 非负象限:锥 \mathbb{R}^n_+ 的对偶是它本身 $\mathbf{y}^{\mathrm{T}}\mathbf{x} \geq 0, \forall \mathbf{x} \succeq 0 \Longleftrightarrow \mathbf{y} \succeq 0$

图: 以 y 为内法向量的半空间包含锥 K,因此 $y \in K^*$ 。以 z 为内法向量的半空间不包含锥 K,因此 $z \in K^*$

对偶锥性质

对偶锥有如下性质(课后作业证明):

- 无论 K 是不是闭凸锥, K^* 是闭凸锥(由几何意义可见,两个支撑超平面的凸组合一定也是支撑超平面)
- $K_1 \subseteq K_2$ 可导出 $K_2^* \subseteq K_1^*$
- 如果 K 有非空内部,那么 K^* 是尖的
- ullet 如果 K 的闭包是尖的,那么 K^* 有非空内部
- \bullet K^{**} 是 K 的对偶锥 K^* 的对偶锥,也是 K 的凸包的闭包
- 如果 K 是闭凸锥,那么 $K^* = K$
- 上述性质表明,如果 K 是一个正常锥,那么它的对偶 K^* 也是正常锥,且 $K^* = K$

广义不等式的对偶

- 正常锥 K 可以导出一个广义不等式 \preceq_K , 其对偶锥 K^* 也是正常的, 所以也能到处一个广义不等式 \prec_{K^*} ,我们称 \prec_{K^*} $\stackrel{!}{=}$ \prec_K 的对偶
- 广义不等式及其对偶有如下重要性质:
 - $\mathbf{x} \preceq_K \mathbf{y}$ 当且仅当对于任意 $\lambda \succeq_{K^*} 0$ 有 $\lambda^T \mathbf{x} \leq \lambda^T \mathbf{y}$
 - $\mathbf{x} \prec_K \mathbf{y}$ 当且仅当对于任意 $\lambda \succeq_{K^*} 0$ 和 $\lambda \neq 0$ 有 $\lambda^{\mathrm{T}} \mathbf{x} < \lambda^{\mathrm{T}} \mathbf{y}$
- 由于 $K^{**} = K$,与 \preceq_{K^*} 相关的对偶广义不等式为 \preceq_K ,因此交换广义不等式及其对偶以后,上述性质依然成立
- 例: $\lambda \preceq_{K^*} \mu$ 的充要条件是对于所有 $\mathbf{x} \preceq_K 0$ 有 $\lambda^{\mathrm{T}} \mathbf{x} \leq \mu^{\mathrm{T}} \mathbf{x}$

线性严格广义不等式的择一定理

ullet 设有正常锥 $K \subseteq \mathbb{R}^n$,考虑严格广义不等式 \prec_K

$$A\mathbf{x} \prec_K \mathbf{b}, \mathbf{x} \in \mathbb{R}^n \tag{6}$$

不可行,也就是仿射集合 $\{\mathbf{b}-A\mathbf{x}|\mathbf{x}\in\mathbb{R}^n\}$ 与开凸集 $\mathbf{int}\ K$ 不相交

- 那么存在一个分离超平面,即非零的 $\lambda \in \mathbb{R}^m$ 和 $\mu \in \mathbb{R}$ 使得对于任意 \mathbf{x} 有 $\lambda^{\mathrm{T}}(\mathbf{b} A\mathbf{x}) \leq \mu$,对于任意的 $\mathbf{y} \in K$ 有 $\lambda^{\mathrm{T}}\mathbf{y} \geq \mu$,这种情况当且仅当 $\lambda \in K^*$ 和 $\mu \leq 0$ 才可能发生
- 综上可知当式 (6) 不可行时,存在 λ 使得

$$\lambda \neq 0, \ \lambda \succeq_{K^*} 0, \ A^{\mathrm{T}}\lambda = 0, \ \lambda^{\mathrm{T}}\mathbf{b} \leq 0$$
 (7)

- 反方向证明,假设式 (6) 与式 (7) 同时成立,由 $\lambda \neq 0, \lambda \succeq_{K^*} 0, \mathbf{b} A\mathbf{x} \succ_K 0, \ \mathfrak{X}$ 们有 $\lambda^{\mathrm{T}}(\mathbf{b} A\mathbf{x}) > 0$ 。又因为 $A^{\mathrm{T}}\lambda = 0$ 我们可以找到 $\lambda^{\mathrm{T}}(\mathbf{b} A\mathbf{x}) = \lambda^{\mathrm{T}}\mathbf{b} \geq 0$,这就与 $\lambda^{\mathrm{T}}\mathbf{b} \leq 0$ 产生了矛盾
- 式 (4) 和式 (5) 是本择一定理在 $K = \mathbb{R}_{+}^{m}$ 上的特殊情况

离定理 **最小元与极小元**

最小元的对偶性质

- 我们可以用对偶广义不等式来刻画集合 $S \subseteq \mathbb{R}^m$ (可能非凸)关于正常锥 K 导出的广义不等式的最小元和极小元
- x 是 S 上关于广义不等式 ≤_K 的 最小元的充要条件是,对于所有的 λ ≻_{K*} 0,x 是 z ∈ S 上极小化 λ^Tz 的唯一最优解
- 几何上看,这意味着对于任意的 $\lambda \succ_{K^*} 0$ 超平面 $\{\mathbf{z} | \lambda^{\mathrm{T}} (\mathbf{z} \mathbf{x}) = 0\}$ 是 \mathbf{x} 处对 S 的 一个严格支撑超平面(所谓严格就是与 S 只相交于 \mathbf{x})
- 上述结论对 S 是不是凸集无要求

图: 最小元的对偶性质: 点 \mathbf{x} 是集合 S 中关于 \mathbb{R}^2_+ 的最小元 \iff 对于任意的 $\lambda \succ_{K^*} 0$ 超平面 $\{\mathbf{z} | \lambda^{\mathrm{T}}(\mathbf{z} - \mathbf{x}) = 0\}$ 在 \mathbf{x} 处对 S 的一个严格支撑,即超平面规定的一个半空间包含了 S,且只在 \mathbf{x} 处与 S 接触