LLM模型压缩与推理 加速实践

小红书中台技术部-推理加速团队负责人/陈磊

LLM 模型压缩与推理加速实践

- 领域背景
- 大语言模型压缩
- 推理框架与计算优化
- 总结与展望

领域背景 - LLM推理难点

- 巨大的内存/显存需求量
 - ✓对于如下模型和场景:
 - ✓Llama 65B 模型
 - √max_batchsize=64
 - ✓max_input_seq_length = 1024
 - ✓max_output_seq_length = 512

类别	参数量	显存用/GB
Weights	12/h^2	120
Key/Value cache	4bIh(s+n)	240

巨大的部署代价(高延迟、低吞吐、昂贵的高性能 GPU),

是 LLM 模型能力在产品中真正落地的拦路虎

• 自回归生成过程无法充分并行

领域背景 - LLM推理难点

模型压缩一量化原理

• 对称量化&反量化:

Quant(X)

=
$$clip(round(X * scale), -2^{b-1} + 1, -2^{b-1} - 1)$$

scale =
$$|\frac{2^{N-1} - 1}{\text{alpha}}|$$
, $N = 8 \text{ or } 4$

Dequant(X) = (Quant(X))/scale

$$MSE(X) = |X - Dequant(X)|$$

• Example:

scale = 1
$$X = [10, 2, 3, 4, 127] \longrightarrow Xq = [10, 2, 3, 4, 127]$$

MSE(X) = [0,0,0,0,0]

$$Scale = 1/10$$

$$X = [10, 2, 3, 4, 1270] \longrightarrow Xq = [0, 0, 0, 0, 127]$$

$$MSE(X) = [10,2,3,4,0]$$

异常值 (outliers) 是影响量化误差的重要因素

• LLM量化难点:

- Activation异常值能达到其他值的100x以上;
- Weight数值分布均衡,容易量化;
- Activation异常值分布基本集中在特定的若干通道;

SmoothQuant:

$$Y = \left(\frac{X}{param}\right) * (W * param) = X_p * W_p,$$

$$param = \frac{\max(|X|)^{alpha}}{\max(|W|)^{1-alpha}}$$

- $alpha = 0.5 \sim 0.75$ is good enough for most models
- Apply per-tensor-quant on Weight
- Apply per-tensor/per-token-quant on Activation

图片来自smoothquant paper

- •量化方案:
 - •以LLAMA为例,W8A8量化算法设计如图;
- 实际落地碰到问题及分析:
 - Decoder-only 模型架构,误差逐级累计放大,最终模型精度影响较大;
 - 不同位置的量化带来的误差对精度损失不同,比如mlp.fc2;
 - alpha=0.5 ~ 0.8并非对所有层都合适;

改进1:

• 只对部分decode layer 进行量化;

Type	MMCU-Accuracy
FP16	50.04%
ALL-Layer	46.53%
Pre-N-Layer	48.15%
Post-N-Layer	49.17%

Pre-N-layer QuantError
Quant QuantDecoder

QuantDecoder

QuantDecoder

QuantDecoder

QuantError
QuantError
QuantError
QuantError
QuantDecoder

QuantDecoder

QuantDecoder

N通过搜索得到

改进2:

• Weight采用per-channel

改进3:

· 分层制定不同的 smooth 超参数 (alpha)

原数据分布

使用 *∂*=0.7 smooth 后数据分布

 $MSE_{Qerror} = 0.00789$

- · 基于opencompass 的评测实验
 - 在大部分评测集上,SQ (V2)相比于原算法有明显 的精度提升;

• 框架架构及功能总览

模块	功能
http server	stream / non-stream 访问模式
Tokenrizer	可插拔多款tokenrizer
Filter	对output tokens进行 规则过滤
Batch Scheduler	实现continuous batch 推理机制
KV Cache Manager	实现 paged attention等 cache 管理机制
Model shards	多卡分布式推理

• 服务性能观测指标:

- First-token-latency;
- Avg-token-package-cost;
- Avg-tokens-per-second;

•

Continuous Batch Inference策略:

- Decoding阶段可被周期性打断,清理已结束请求,穿插执行新请求的prefill;
- 当batch队列有空位时,waiting请求直接加入;
- 显存不足时,按优先级回退进行中的请求,并回收cache,下轮加入重新计算;

•改良策略:

- decoding batchsize 动态自适应;
- decoding 中断interval 动态自适应;
- input batch 在一定范围内更加总长度自动做循序调整;

- paged attention 机制与实现
 - 将原来连续的k/v cache 改成离散分块 存储
 - 根据decoding实际需求按需分配 block, 降低显存浪费

seq1

seq2

• 优化 generate decoding 环节 attention 实现

• 新增实现 MQA/GQA

• 优化 generate decoding 环节 attention 实现

• Tiling 优化

• KV Cache排布优化

• 伪码

Step1: Tiling Key&Value around [bs*hn]

Step2: Tiling Key around [*,tokens,*]

Step3: Tiling Value around [*,*,dims]

Step4: Get P=softmax(Q*K^T) done in Loop1

Step5: Get O=P*V done in Loop2

- 优化 generate decoding 环节 attention 实现
 - Weigh-only-Quant:
 - Per-channel
 - Per-group

WaAb Quant:

- Weight: Per-channel

- Activation: Per-tensor

- GEMM优化
 - 针对不同 Device & TensorShape, 搜索最高效的GEMM实现

phase	op	GEMM-M	GEMM-N	GEMM-K
Prefill	QKV	SeqLen*B	HD * 3	HD
	Out-proj	SeqLen*B	HD	HD
	FFN1	SeqLen*B	FD	HD
	FFN2	SeqLen*B	HD	FD
Decode	QKV	В	HD * 3	HD
	Out-proj	В	HD	HD
	FFN1	В	FD	HD
	FFN2	В	HD	FD

llama模型中所有的gemm input tensor shape

针对不同的Gemm shape 和 不同的device, 找到不同的最佳实现

Compare with TensorRT-LLM

•测试硬件: A100 (80G)

•测试对象:

TensorRT-LLM

• Xformer (小红书自研框架)

展望与挑战

- 更新的模型架构
- 更大的模型参数量
- 更有效的模型压缩方案
- 更长的输入/输出 token 长度
- 更多的应用场景:对话、推荐、安全等
- 多模态大模型
- 适配不同异构加速计算平台

THANKS

软件正在重新定义世界 Software Is Redefining The World

