

Circuit Modelling

Felix Dreßler

JOHANNES KEPLER UNIVERSITY LINZ

Altenberger Straße 69 4040 Linz, Austria iku at

Formulating a Mathematical Model

2025-03-30 2/40

Formulating a Mathematical Model

Network Topology

2025-03-30 3/40

Incidence Matrix $A = (a_{ij}) \in \mathbb{R}^{k \times l}$:

$$\tilde{a}_{ij} = \begin{cases} 1 & \text{edge } j \text{ starts at node } i, \\ -1 & \text{edge } j \text{ ends at node } i, \\ 0 & \text{else.} \end{cases}$$

With $N=(n_0,n_1,n_2,...,n_k)$ nodes and $E=\{e_j:j=1,...,l\}$ edges, where |N|=k is the number of nodes and |E|=l

 $u = (u_0, u_1, u_2, ...)$ the corresponding electrical potentials to the nodes.

→ reduced incidence matrix

Formulating a Mathematical Model

Energy Conservation Laws

2025-03-30 5/40

Kirchhoff's voltage law (KVL):

The sum of voltages along each loop of the network must equal to zero. Using the incidence matrix A this law can be formulated as

$$A^{2}u=v. (1)$$

• Kirchhoff's current law (KCL):

For any node, the sum of currents flowing into the node is equal to the sum of currents flowing out of the node. Using the incidence matrix A again, this law can be formulated as

$$Ai = 0. (2)$$

Formulating a Mathematical Model

Electrical Components and their Relations

2025-03-30 7/40

Resistor

$$v = R i$$
 or $i = G u$. (3)

Figure: resistor symbol

Capacitor

$$Q = C v$$
 and by derivation in t $I = C \frac{d}{dt} v = C v'$. (4)

• Inductor (Coil)

$$\Phi = L i$$
 and by derivation in t $v = L i'$. (5)

Figure: inductor symbol

Voltage Source

$$v = v_{src} \tag{6}$$

• Current Source

$$i = i_{src} \tag{7}$$

Figure: current source symbol

Formulating a Mathematical Model

Modified Nodal Analysis - MNA

2025-03-30 11/40

$$\begin{pmatrix} A_{C}CA_{C}^{\square} & 0 & 0 \\ 0 & L & 0 \\ 0 & 0 & 0 \end{pmatrix} * \begin{pmatrix} u' \\ i'_{L} \\ i'_{V} \end{pmatrix} + \begin{pmatrix} A_{R}GA_{R}^{\square} & A_{L} & A_{V} \\ -A_{L}^{\square} & 0 & 0 \\ -A_{V}^{\square} & 0 & 0 \end{pmatrix} * \begin{pmatrix} u \\ i_{L} \\ i_{V} \end{pmatrix} = \begin{pmatrix} -A_{I}i_{src} \\ 0 \\ -v_{crc} \end{pmatrix}, \tag{8}$$

Differential Algebraic Equations

2025-03-30 13/40

Differential Algebraic Equations

Types of DAEs

2025-03-30 14/40

In the most general form a DAE can be written as: Find $y : \mathbb{R} \to \mathbb{R}^n$ such that

$$F(t, y(t), y'(t)) = 0, \qquad \forall t \in I$$
 (9)

with $F: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ sufficiently smooth and I the time-interval.

• Linear systems with constant coefficients are systems of the form: find y such that

$$Ay'(t) + By(t) = f(t), \tag{10}$$

with $A, B \in \mathbb{R}^{n \times n}$, A singular, B regular and $f : \mathbb{R} \to \mathbb{R}^n$ a function in time.

• Linear time dependent systems are systems of the form: find y such that

$$A(t)y'(t) + B(t)y(t) = f(t),$$

with $A, B : \mathbb{R} \to \mathbb{R}^{n \times n}$, $f : \mathbb{R} \to \mathbb{R}^n$ functions, such that for every $t \in \mathbb{R}$ the matrix A(t) is singular and the matrix B(t) regular.

Structured (non-linear) systems
are semi-explicit systems of the form: find (y, z) such that

$$y'(t) = f(t, y(t), z(t)),$$
 (11)

$$0 = g(t, y(t), z(t)), (12)$$

with $f: \mathbb{R} \to \mathbb{R}^n$ and $g: \mathbb{R} \to \mathbb{R}^d$ functions.

Differential Algebraic Equations

Weierstrass-Kronecker Normalform

2025-03-30 17/40

prerequisites

Theorem

Let $\{A, B\}$ be a regular matrix pencil. There exist $P, Q \in \mathbb{C}^{n \times n}$ such that

$$PAQ = \begin{pmatrix} I_d & 0 \\ 0 & N \end{pmatrix}, PBQ = \begin{pmatrix} R & 0 \\ 0 & I_{n-d} \end{pmatrix}$$

where

$$N = diag(N_1, ..., N_r) \quad with \quad N_i = \begin{pmatrix} 0 & 1 & 0 \\ & ? & ? & \\ & & 0 & 1 \\ 0 & & 0 \end{pmatrix} \in \mathbb{R}^{n_i \times n_i}$$

and R has Jordan Normalform. By I_{k} we denote the identity matrix of size $k \times k$.

Proof on blackboard

Differential Algebraic Equations

Index of a Differential Algebraic Equation

2025-03-30 20/40

Definition

Consider the differential algebraic equation (9) to be uniquely locally solvable and F sufficiently smooth. For a given $m \in \mathbb{N}$ consider the equations

$$F(t, y, y') = 0,$$

$$\frac{dF(t, y, y')}{dt} = 0,$$

$$\frac{d^m F(t, y, y')}{dt^m} = 0.$$

The smallest natural number m for which the above system results in an explicit system of ordinary differential equations (ODEs), i.e. it has the form

$$y' = \phi(t, y),$$

Definition

Let y(t) be the exact solution of Abstract-DAE!!!!!!!! and $\tilde{y}(t)$ be the solution of the perturbed system $F(t, \tilde{y}, \tilde{y}') = \delta(t)$. The smallest number $k \in \mathbb{N}$ such that

$$\|y(t) - \tilde{y}(t)\| \le C \left(\|y(t_0) - \tilde{y}(t_0)\| + \sum_{j=0}^k \max_{t_0 \le \xi \le T} \left\| \int_{t_0}^{\xi} \frac{\mathrm{d}^j \delta}{\mathrm{d} \tau^j}(\tau) d\tau \right\| \right)$$

for all $\tilde{y}(t)$, is called the **perturbation index** of this system.

Differential Algebraic Equations

Consistent Initial Values

2025-03-30 23/40

index v = 0.

Case: Index v = 1.

By rewriting our system into the form

$$y'(t) = f(t, y(t), z(t)),$$

 $0 = g(t, y(t), z(t)).$

we are able to give conditions for consistent initial values. Namely y_0 and z_0 are consistent initial values for this system, if $g(t_0, y_0, z_0) = 0$ holds.

Case: Index v = 2.

For index-2 systems we rewrite our system into

$$y' = f(t, y(t), z(t)),$$

 $0 = g(t, y(t)).$

Consistent initial values y_0 , z_0 for this case not only have to fulfill $g(t_0, y_0) = 0$ but also the *hidden constraint* $g_t(t_0, y_0) + g_y(t_0, y_0) f(t_0, y_0, z_0)$. By g_t and g_y we denote the derivative of g with respect to t or y, respectively.

Index Analysis of the Modified Nodal Analysis

2025-03-30 26/40

Index Analysis of the Modified Nodal Analysis

General Index Analysis

2025-03-30 27/40

content...

Index Analysis of the Modified Nodal Analysis

Topological Conditions

2025-03-30 29/40

Theorem (Index conditions [shashkov_tuprints27452])

Let the matrices of the capacitances, inductances and resistances be positive definite.

• If

$$ker([A_R, A_C, A_V, A_I]^{2}) = \{0\}$$
 and $ker(A_V) = \{0\}$ (13)

holds, then the MNA (8) leads to a system with index $v \le 2$.

• If additionally

$$ker([A_R, A_C, A_V]^{\square}) = \{0\} \quad and \quad ker([A_C, A_V]) = \{0\}$$
 (14)

holds, then the system is of index $v \le 1$

If further

$$ker(A_C^{\Box}) = \{0\} \quad and \quad dim(v_{src}) = 0$$
 (15)

holds, then the system has index v = 0.

- Condition (13) can be interpreted, as the circuit neither containing loops of voltage sources nor cutsets of current sources.
- Condition (14) can be interpreted, as the circuit containing neither loops of capacitors and/or voltage sources nor cutsets of inductors and/or current sources.
- Condition (15) can be interpreted, as every node in the circuit being connected to the reference node (ground) through a path containing only the capacitors.

2025-03-30

Numerical Solutions

2025-03-30 32/40

Numerical Solutions

Single-Step Methods

2025-03-30 33/40

content...

Numerical Solutions

Multistep Methods

2025-03-30 35/40

content...

Numerical Solutions

Implicit Linear Multistep Formulas

2025-03-30 37/40

content...

Numerical Solutions

Numerical Examples

2025-03-30 39/40

content...

