Note del corso di Geometria 1

Gabriel Antonio Videtta

5 maggio 2023

Affinità e spazio proiettivo

Nota. Qualora non specificato diversamente, con E si indicherà un generico spazio affine di dimensione n su cui agisce lo spazio vettoriale V.

Sia f un'applicazione affine di E. Allora, per ogni $O \in E$, $\underline{v} \in V$, $f(O + \underline{v}) = f(O) + g(\underline{v})$, dove $g \in \operatorname{End}(V)$ è l'applicazione lineare associata ad f. Pertanto $f(O + \underline{v}) = O + (f(O) - O) + g(\underline{v})$, ossia f è una traslazione di vettore f(O) - O composta ad un'applicazione lineare.

In particolare, passando alle coordinate rispetto al punto O e una base \mathcal{B} di V, si può riscrivere $[f(P)]_{O,\mathcal{B}}$ secondo la seguente identità:

$$[f(P)]_{O,\mathcal{B}} = \underbrace{[f(O) - O]_{\mathcal{B}}}_{\underline{b}} + \underbrace{[g(P - O)]_{\mathcal{B}}}_{A[\underline{v}]_{\mathcal{B}}} = A[P - O]_{\mathcal{B}} + \underline{b},$$

dove $A = M_{\mathcal{B}}(g)$. In particolare, in $\mathcal{A}_{n}(\mathbb{K})$, scegliendo $O = \underline{0}$ come origine e la base canonica come base \mathcal{B} , si ottiene che:

$$f(v) = Av + b,$$

per ogni $\underline{v} \in \mathcal{A}_{n}(\mathbb{K})$. Se $f \in A(E)$, allora vale anche che:

$$f^{-1}(O+\underline{w}) = f^{-1}(f(O) + (O-f(O)) + \underline{w}) = O - g^{-1}(f(O) - O) + g^{-1}(\underline{w}),$$

dove si è usato che g è invariante per cambiamento del punto d'origine O. Pertanto, in questo caso, passando alle coordinate, vale che:

$$[f^{-1}(P)]_{O,\mathcal{B}} = A^{-1}[P-O]_{\mathcal{B}} - A^{-1}\underline{b}.$$

Considerando questa identità in $\mathcal{A}_{n}(\mathbb{K})$, risulta che:

$$f^{-1}(\underline{v}) = A^{-1}\underline{v} - A^{-1}\underline{b},$$

per ogni $\underline{v} \in \mathcal{A}_{n}(\mathbb{K})$.

Sia $\iota: \mathcal{A}_{\mathbf{n}}(\mathbb{K}) \to H_{n+1}$ l'applicazione che associa \underline{x} a $\left(\frac{\underline{x}}{1}\right) \in H_{n+1}$, dove vale che:

$$H_{n+1} = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} \middle| x_{n+1} = 1 \right\},\,$$

ossia l'iperpiano affine di $\mathcal{A}_{n+1}(\mathbb{K})$ dei vettori con l'ultima coordinata pari a 1. Per comodità si indica $\iota(\underline{x})$ con $\hat{\underline{x}}$.

Proposizione. ι è un'isomorfismo affine.

Dimostrazione. Si verifica innanzitutto che ι è un'applicazione affine. Siano $\lambda_1, ..., \lambda_k \in \mathbb{K}$ tali che $\sum_{i=1}^k \lambda_i = 1$, e siano $x_1, ..., x_k \in E$. Allora vale che:

$$\iota\left(\sum_{i=1}^k \lambda_i \underline{x_i}\right) = \begin{pmatrix} \sum_{i=1}^k \lambda_i \underline{x_i} \\ 1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^k \lambda_i \underline{x_i} \\ \sum_{i=1}^k \lambda_i \end{pmatrix} = \sum_{i=1}^k \lambda_i \iota(\underline{x_i}).$$

Si consideri¹ ora l'applicazione lineare g associata a ι . Allora, posto $O = \underline{0}$, $g(\underline{v}) = f(O + \underline{v}) - f(O) = f(\underline{v}) - f(\underline{0}) = f(\underline{v}) - \begin{pmatrix} 0 & \cdots & 0 & 1 \end{pmatrix}^{\top}$. Dal momento che la direzione di H_{n+1} è n-dimensionale (scegliendo O come origine, tutti i vettori ottenibili scartano l'ultima coordinata, sempre pari a 0), g mappa due spazi vettoriali di stessa dimensione.

Pertanto, è sufficiente dimostrare che g è surgettiva affinché sia invertibile (e dunque ι sia un isomorfismo affine). Chiaramente g è surgettiva, dal momento che ad ogni vettore $\underline{\hat{v}} = (\underline{v} \ 0) \in \text{Giac}(H_{n+1})$ è tale che $g(\underline{v}) = \underline{\hat{v}}$. Si conclude dunque che g è invertibile, e che ι è un isomorfismo affine. \square

Proposizione. Sia $f \in A(\mathcal{A}_n(\mathbb{K}))$ e sia $f' = \iota \circ f \circ \iota^{-1} \in A(H_{n+1})$ l'identificazione di f in H_{n+1} . Allora si può estendere f' ad un'applicazione lineare invertibile \hat{f} di \mathbb{K}^{n+1} (ossia ad un'applicazione \hat{f} tale per cui $\hat{f}|_{H_{n+1}} = f'$).

¹Per concludere in modo più diretto la dimostrazione è sufficiente anche esibire l'inverso di g, ottenuto ignorando l'ultima coordinata di un vettore di H_{n+1} .

Viceversa, data un'applicazione lineare invertibile $g \in \operatorname{End}(\mathbb{K}^{n+1})$ tale che $g|_{H_{n+1}} = H_{n+1}$, allora la restrizione $g|_{H_{n+1}}$ è un'affinità di H_{n+1} ed induce un'affinità f di $\mathcal{A}_n(\mathbb{K})$ in modo tale che $f = \iota^{-1} \circ g|_{H_{n+1}} \circ \iota$.

In particolare, una tale \hat{f} è tale che $\hat{f}(\underline{x}') = A'\underline{x}' \ \forall \underline{x}' \in \mathbb{K}^{n+1}$, dove vale che:

$$A' = \begin{pmatrix} A & \underline{b} \\ 0 & 1 \end{pmatrix}, \qquad f(\underline{v}) = A\underline{v} + \underline{b} \quad \forall \, \underline{v} \in \mathcal{A}_{\mathrm{n}}(\mathbb{K}).$$

Dimostrazione. Si consideri $\hat{f} \in \text{End}(\mathbb{K}^{n+1})$ tale che $\hat{f}(\underline{x}') = A'\underline{x}'$. \hat{f} è invertibile dal momento che A' lo è. Infatti vale che:

$$(A')^{-1} = \left(\begin{array}{c|c} A^{-1} & -A^{-1} \underline{b} \\ \hline 0 & 1 \end{array}\right).$$

Sia $\hat{x} = (\underline{x} \quad 1)^{\top} \in H_{n+1}$. Sia ora $\hat{x} \in H_{n+1}$. Allora $\hat{f}(\hat{x}) = (A\underline{x} + \underline{b} \quad 1)^{\top} = (f(\underline{x}) \quad 1)^{\top} = \iota(f(\underline{x})) = \iota(f(\iota^{-1}(\hat{x}))) = f'(\hat{x}) \in H_{n+1} \quad \forall \hat{x} \in H_{n+1}$. Pertanto $\hat{f}|_{H_{n+1}} = f'$.

Si consideri adesso $g\in \mathrm{GL}(\mathbb{K}^{n+1})$ tale che $g|_{H_{n+1}}=H_{n+1}$. Sia A' tale che $g(\underline{x}')=A'\underline{x}'\ \forall \underline{x}'\in \mathbb{K}^{n+1}$. Poiché $g|_{H_{n+1}}=H_{n+1}$, allora $(A')_{n+1,n+1}=g(\underline{e_{n+1}})_{n+1}=1$. Poiché $g(\underline{e_n}+\underline{e_{n+1}})_{n+1}=1$, allora $(A')_{n+1,n}=0$. In particolare, partendo da j=n fino a j=1, si deduce, per induzione, che $g(\underline{e_j}+\ldots+\underline{e_{n+1}})_{n+1}=1 \Longrightarrow (A')_{n+1,j}=0$.

Allora A' è della seguente forma:

$$A' = \begin{pmatrix} A & \underline{b} \\ 0 & 1 \end{pmatrix}, \quad A \in M(n, \mathbb{K}), \, \underline{b} \in \mathbb{K}^n.$$

Considerando allora l'applicazione affine $f \in \mathcal{A}_{n}(\mathbb{K})$ tale che $f(\underline{v}) = A\underline{v} + \underline{b}$, g è l'applicazione lineare invertibile che estende $f' = \iota \circ f \circ \iota^{-1}$, come visto prima, da cui la tesi.

Osservazione. Le matrici della forma:

$$\begin{pmatrix} A & \underline{b} \\ 0 & 1 \end{pmatrix}$$
, $A \in M(n, \mathbb{K}), \underline{b} \in \mathbb{K}^n$,

formano un sottogruppo di $(M(n+1,\mathbb{K}),\cdot)$ canonicamente isomorfo a $A(\mathcal{A}_n(\mathbb{K}))$. In particolare si osserva che un'affinità dipende da esattamente

 $n^2+n,$ dove n^2 sono i parametri su cui si basa A, e n sono i parametri su cui si basa b.

Se $D \subseteq E$ è un sottospazio affine di E, l'insieme $T = \{f \in A(E) \mid f(D) = D\}$ forma un sottogruppo di $(A(E), \circ)$. In particolare, se dim D = k, un'affinità di T dipende da esattamente (k+1)k + (n-k)n parametri.

Infatti in tal caso, scegliendo una base opportuna di D_0 , estesa poi a base di E_0 , e riferendosi ad un'origine di D, A conterrà un blocco k^2 relativo alle immagini della base di D ed un blocco (n-k)n relativo alle immagini degli altri vettori, non appartenenti a D. Inoltre dovranno essere scelti i parametri riguardanti il vettore \underline{b} , che, essendo stato scelto come riferimento un punto d'origine appartenente a D, richiederà la scelta di k parametri.

Definizione (spazio proiettivo). Si definisce lo **spazio proiettivo** $\mathbb{P}(\mathbb{K}^{n+1}) = \mathbb{P}^n(\mathbb{K})$ come l'insieme dei sottospazi di dimensione unitaria di \mathbb{K}^{n+1} .

Osservazione. Se si definisce la relazione di equivalenza \sim su V in modo tale che $\underline{x} \sim \underline{y} \iff \exists \, \alpha \in \mathbb{K}^* \mid \underline{x} = \alpha \underline{y}, \, V/\sim$ è in bigezione con lo spazio proiettivo. In particolare, ogni elemento di V/\sim è un unico elemento dello spazio proiettivo a cui è stato tolto il vettore 0.

Osservazione. Ogni elemento $\hat{x} = (\underline{x} \ 1)^{\top}$ di H_{n+1} identifica un unico elemento dello spazio proiettivo, ossia $\mathrm{Span}(\hat{x})$, dal momento che due vettori di H_{n+1} appartengono alla stessa retta se e solo se sono linearmente dipendenti, ossia se sono uguali.

Gli elementi di $\mathbb{P}^n(\mathbb{K})$ che non contengono elementi di H_{n+1} sono esattamente i sottospazi contenenti vettori la cui ultima coordinata è nulla. Pertanto questi elementi, detti **punti all'infinito** di $\mathbb{P}^n(\mathbb{K})$, si possono identificare in particolare come elementi di $\mathbb{P}^{n+1}(\mathbb{K})$.

Osservazione. Si può ricoprire $\mathbb{P}^n(\mathbb{K})$ con iperpiani analoghi ad H_{n+1} , ossia con gli iperpiani della seguente forma:

$$T_i = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} \middle| x_i = 1 \right\}.$$

Ogni elemento di $\mathbb{P}^n(\mathbb{K})$ interseca infatti almeno uno di questi iperpiani, dacché in esso deve esistervi obbligatoriamente un vettore non nullo. In particolare, se esiste un'intersezione tra T_i e un elemento di $\mathbb{P}^n(\mathbb{K})$, questa è unica.

Teorema. Sia E uno spazio affine sullo spazio V di dimensione n. Allora valgono i seguenti due risultati.

- (i) Se $f \in A(E)$ e i punti $P_1, ..., P_k$ sono affinemente indipendenti, allora anche i punti $f(P_1), ..., f(P_k)$ sono affinemente indipendenti.
- (ii) Se i punti $P_1, ..., P_{n+1}$ sono affinemente indipendenti, e lo sono anche i punti $Q_1, ..., Q_{n+1}$, allora esiste un'unica affinità $f \in A(E)$ tale che $f(P_i) = Q_i \ \forall \ 1 \le i \le n+1$.

Dimostrazione. Si dimostrano i due risultati separatamente.

- (i) Poiché $f \in A(E)$, allora $g \in GL(V)$, ed è dunque invertibile. Si considerino i vettori $f(P_i) f(P_1) = g(P_i P_1)$ con $2 \le i \le k$. Dal momento che è invertibile, g mappa vettori linearmente indipendenti a vettori ancora linearmente indipendenti.
 - Allora, poiché i punti P_1 , ..., P_k sono affinemente indipendenti, i vettori $P_i P_1$ sono linearmente indipendenti per $2 \le i \le k$. Pertanto anche i vettori $g(P_i P_1) = f(P_i) f(P_1)$ con $2 \le i \le k$ sono linearmente indipendenti, da cui si conclude che i punti $f(P_1)$, ..., $f(P_k)$ sono affinemente indipendenti.
- (ii) Dal momento che i punti $P_1, ..., P_{n+1}$ sono affinemente indipendenti, allora i vettori $P_i P_1$ con $2 \le i \le n+1$ sono linearmente indipendenti, e formano dunque una base di V, essendo tanti quanti la dimensione di V. Analogamente anche i vettori $Q_i Q_1$ con $2 \le i \le n+1$ formano una base di V.

In particolare esiste una sola applicazione lineare g che associa a P_i-P_1 il vettore Q_i-Q_1 , con $2 \le i \le n+1$. Dacché le immagini formano una base di V, g è suriettiva, e dunque, poiché $g \in \text{End}(V)$, g è anche invertibile. Un'affinità $f \in A(E)$ tale che $f(P_i) = Q_i$ con $1 \le i \le n+1$ è per esempio $f(P) = Q_1 + g(P - P_1)$.

Si mostra che tale f è anche unica. Se esistesse $f' \in A(E)$ con le stesse proprietà di f, varrebbe che $Q_i - Q_1 = f'(P_i) - f'(P_1) = g'(P_i - P_1)$ $\forall 2 \leq i \leq n+1$. Tuttavia una g' tale che mappi $P_i - P_1$ a $Q_i - P_1$ $\forall 2 \leq i \leq n+1$ è unica, e quindi g' = g. Allora $f'(P) = Q_1 + g(P - P_1) = f(P)$ $\forall P \in E \implies f' = f$.

Proposizione. Sia $f \in A(E)$ e sia D un sottospazio affine di E. Allora anche f(D) è un sottospazio affine di E della stessa dimensione di D.

Dimostrazione. Sia $P_0 \in D$. Allora $(f(D))_0 = \{f(P) - f(P_0) \forall P \in D\} = \{g(\underline{v}) \forall \underline{v} \in D_0\} = g(D_0)$. Dal momento che f è un'affinità, g è invertibile, e quindi preserva la dimensione di D_0 . Pertanto $\dim(f(D))_0 = \dim D_0 \implies \dim f(D) = \dim D$.

Osservazione. Siano D e D' due sottospazi affini di E. Allora $D \cap D'$ è sempre o vuoto o un sottospazio affine. Se infatti $D \cap D'$ non è vuoto, presa una sua combinazione affine, essa è in particolare una combinazione affine sia di punti di D che di punti di D', per cui appartiene a $D \cap D'$.

Proposizione. Siano D e D' due sottospazi affini di E con $D \cap D' \neq \emptyset$. Allora valgono i seguenti due risultati:

- (i) $Aff(D \cup D')_0 = D_0 + D'_0$,
- (ii) $(D \cap D')_0 = D_0 \cap D'_0$.

Dimostrazione. Si dimostrano i due risultati separatamente.

(i) Si dimostra l'identità mostrando che vale la doppia inclusione dei due spazi vettoriali. Sia innanzitutto $\underline{u} \in D_0 + D_0'$. Allora esistono $\underline{v} \in D_0$, $\underline{w} \in D_0'$ tali che $\underline{u} = \underline{v} + \underline{w}$. Dal momento che $D \cap D' \neq \emptyset$, esiste un punto $P \in D \cap D'$.

Dacché allora $\underline{v} \in D_0$, esiste $P_1 \in D$ tale che $\underline{v} = P_1 - P$. Analogamente $\exists P_2 \in D'$ tale che $\underline{w} = P_2 - P$. Allora $\underline{u} = \underline{v} + \underline{w} = (P_1 - P) + (P_2 - P) = (P_1 + P_2 - P) - P$, dove $P_1 + P_2 - P$ è una combinazione affine di Aff $(D \cup D')$. Allora, poiché $P \in \text{Aff}(D \cup D')$, $\underline{u} \in \text{Aff}(D \cup D')_0$, da cui si deduce che $D_0 + D'_0 \subseteq \text{Aff}(D \cup D')$.

Sia ora $\underline{u} \in \text{Aff}(D \cup D')_0$. Allora esistono $P_1, ..., P_k$ punti di $D, Q_1, ..., Q_{k'}$ punti di D' e $\lambda_1, ..., \lambda_k, \mu_1, ..., \mu_{k'} \in \mathbb{K}$ tali che:

$$\underline{u} = \left(\sum_{i=1}^k \lambda_i P_i + \sum_{j=1}^{k'} \mu_j Q_j\right) - P, \qquad \sum_{i=1}^k \lambda_i + \sum_{j=1}^{k'} \mu_j = 1.$$

Allora si può riscrivere u come:

$$\underline{u} = \underbrace{\left(\sum_{i=1}^{k} \lambda_i P_i + \sum_{j=1}^{k'} \mu_j P\right)}_{\in D} - P + \underbrace{\left(\sum_{i=1}^{k} \lambda_i P + \sum_{j=1}^{k'} \mu_j Q_j\right)}_{\in D'} - P,$$

dove, ricordando che $P \in D \cap D'$, vale che:

$$\left(\sum_{i=1}^{k} \lambda_{i} P_{i} + \sum_{j=1}^{k'} \mu_{j} P\right) - P \in D_{0}, \quad \left(\sum_{i=1}^{k} \lambda_{i} P + \sum_{j=1}^{k'} \mu_{j} Q_{j}\right) - P \in D'_{0},$$

da cui si conclude che $\underline{u} \in D_0 + D_0' \implies \text{Aff}(D \cup D')_0 \subseteq D_0 + D_0'$, e quindi che $\text{Aff}(D \cup D')_0 = D_0 + D_0'$.

(ii) Come prima, si dimostra l'identità mostrando che vale la doppia inclusione dei due spazi vettoriali. Sia $\underline{u} \in D_0 \cap D'_0$. Sia $P \in D \cap D'$. Allora esiste $P_1 \in D$ tale che $\underline{u} = P - P_1$. Analogamente esiste $P_2 \in D'$ tale che $\underline{u} = P - P_2$. Poiché V agisce liberamente su E, esiste un solo punto P' tale che $P = P' + \underline{u}$. Si conclude dunque che $P_1 = P_2$, e dunque che P_1 appartiene anche a D'. Pertanto $\underline{u} \in (D \cap D')_0 \implies D_0 \cap D'_0 \subseteq (D \cap D')_0$.

Sia ora invece $\underline{u} \in (D \cap D')_0$. Allora esiste $P_1 \in D \cap D'$ tale che $\underline{u} = P - P_1$. In particolare, dal momento che $P \in P_1$ appartengono a $D, \underline{u} \in D_0$. Analogamente $\underline{u} \in D'_0$. Pertanto $\underline{u} \in D_0 \cap D'_0 \Longrightarrow (D \cap D')_0 \subseteq D_0 \cap D'_0$, da cui si conclude che $(D \cap D')_0 = D_0 \cap D'_0$. \square

Definizione (somma affine). Siano D e D' due sottospazi affini di E. Si definisce allora la **somma affine** D + D' come $Aff(D \cup D')$.

Proposizione (formula di Grassmann per i sottospazi affini). Siano D e D' due sottospazi affini di E con $D \cap D' \neq \emptyset$. Allora $\dim(D + D') = \dim D + \dim D' - \dim(D \cap D')$.

Dimostrazione. Per la proposizione precedente, dim Aff $(D \cup D') = \dim(D_0 + D'_0)$. Allora, applicando la formula di Grassmann per i sottospazi vettoriali, $\dim(D_0 + D'_0) = \dim D_0 + \dim D'_0 - \dim(D_0 \cap D'_0) = \dim D + \dim D' - \dim(D_0 \cap D'_0)$. Sempre per la proposizione precedente, $D_0 \cap D'_0 = (D \cap D')_0$, da cui si deduce che $\dim(D_0 \cap D'_0) = \dim(D \cap D')_0 = \dim D \cap D'$. Pertanto $\dim(D + D') = \dim \operatorname{Aff}(D \cup D') = \dim D + \dim D' - \dim(D \cap D')$.

Osservazione. Si definisce $\ell_{P,Q} = \{\lambda P + (1 - \lambda)Q \mid \lambda \in \mathbb{K}\}$ con $P, Q \in E$ come la retta passante per due punti. Allora, in generale, se D e D' sono due sottospazi affini di $E, D + D' = \bigcup_{Q \in D'} \ell_{P,Q}$.

Infatti ogni elemento di $\ell_{P,Q}$ è una combinazione affine di due elementi di D+D', e quindi appartiene a $D+D' \Longrightarrow D+D' \supseteq \bigcup_{\substack{P \in D \ Q \in D'}} \ell_{P,Q}$.

Infine, se $T \in D+D'$, esistono $\lambda_1, ..., \lambda_k, \mu_1, ..., \mu_{k'} \in \mathbb{K}, P_1, ..., P_k \in D$ e $Q_1, ..., Q_{k'} \in D'$ tali che $T = \sum_{i=1}^k \lambda_i P_i + \sum_{j=1}^{k'} \mu_j Q_j^2$, con $\sum_{i=1}^k \lambda_i + \sum_{j=1}^{k'} \mu_j = 1$. Se $\alpha = \sum_{i=1}^k \lambda_i$ e $\beta = \sum_{j=1}^{k'} \mu_j$, si può riscrivere T nel seguente modo:

$$T = \alpha \underbrace{\sum_{i=1}^{k} \frac{\lambda_i}{\alpha} P_i}_{=P'} + \beta \underbrace{\sum_{j=1}^{k'} \frac{\mu_j}{\beta} Q_j}_{=Q'},$$

dove si osserva che $P' \in D$, essendo combinazione affine di elementi di D, e che analogamente $Q' \in D'$. Allora T giace sulla retta passante per P' e per Q', ossia $T \in \ell_{P',Q'} \implies D + D' \subseteq \bigcup_{Q \in D'} \ell_{P,Q}$.

Osservazione. Siano fissati $P_0 \in D$ e $P_0' \in D'$, e siano $P \in D$ e $Q \in D'$. Allora vale la seguente identità:

$$P - Q = \underbrace{(P - P_0)}_{\in D_0} + \underbrace{(P_0 - P_0')}_{\in \operatorname{Span}(P_0 - P_0')} + \underbrace{(P_0' - Q)}_{\in D_0'}.$$

Si osserva che in generale vale che $(D+D')_0 = D_0 + D'_0 + \operatorname{Span}(P_0 - P'_0)$. Chiaramente vale che $(D+D')_0 \supseteq D_0 + D'_0 + \operatorname{Span}(P_0 - P'_0)$, dal momento che D_0 , D'_0 e $\operatorname{Span}(P_0 - P'_0)$ sono tutti sottospazi vettoriali di $(D+D')_0$.

Sia ora $P' \in D + D'$. Allora esistono $P'' \in D$, $Q'' \in Q$ tali per cui $P' \in \ell_{P'',Q''}$, e quindi esiste $\lambda \in \mathbb{K}$ per cui $P' = P'' + \lambda(Q'' - P'')$. Poiché $P'' \in D$, esiste $\underline{v} \in D_0$ tale per cui $P'' = P_0 + \underline{v}$. Allora $P' - P_0 = \underline{v} - \lambda(P'' - Q'') \in D_0 + D'_0 + \operatorname{Span}(P_0 - P'_0)$, pertanto $(D + D')_0 \subseteq D_0 + D'_0 + \operatorname{Span}(P_0 - P'_0)$, da cui si conclude che $(D + D')_0 = D_0 + D'_0 + \operatorname{Span}(P_0 - P'_0)$.

Proposizione (formula di Grassmann modificata). Se $D \cap D' = \emptyset$, allora $\dim(D + D') = \dim D + \dim D' - \dim(D_0 \cap D'_0) + 1$.

 $^{^2}$ Al più T è un elemento di solo D o D'. In tal caso <math display="inline">T appartiene già a una qualsiasi retta passante per T. Pertanto si può anche assumere successivamente che $\alpha,\,\beta \neq 0$ – se infatti uno dei due parametri fosse nullo, T apparterrebbe a D o D'.

Dimostrazione. Dalla precedente osservazione, vale che $(D+D')_0 = D_0 + D'_0 + \operatorname{Span}(P_0 - P'_0)$. Si dimostra che $P_0 - P'_0 \notin D_0 + D'_0$. Se infatti $P_0 - P'_0$ appartenesse a $D_0 + D'_0$, esisterebbero $P \in D$, $Q \in D'$ tali per cui $P_0 - P'_0 = (P_0 - P) + (Q - P'_0)$.

Allora, facendo agire questo vettore su P_0' , $P_0 = Q + (P_0 - P)$. Tuttavia, poiché l'azione di V su E è un'azione di gruppo, esiste un solo punto P' tale per cui $P_0 = P' + (P_0 - P)$, e in particolare P' = P. Pertanto $P = Q \Longrightarrow P \in D'$. Tuttavia $D \cap D' = \varnothing$, \mathscr{I} . Pertanto $P_0 - P_0' \notin D_0 + D_0'$. In particolare questo equivale a constatare che $(D_0 + D_0') \cap \operatorname{Span}(P_0 - P_0') = \{\underline{0}\}$, ossia ad osservare che:

$$(D+D')_0 = D_0 + D'_0 \oplus \operatorname{Span}(P_0 - P'_0).$$

Si conclude dunque che $\dim(D+D') = \dim(D_0+D'_0) + \dim \operatorname{Span}(P_0-P'_0) = \dim D + \dim D' - \dim(D_0 \cap D'_0) + 1$, da cui la tesi.

Osservazione. In generale vale che Span $(P_0 - P_0') \subseteq D_0 + D_0' \iff D \cap D' \neq \emptyset$. Infatti Span $(P_0 - P_0') \subseteq D_0 + D_0' \iff D \cap D' \neq \emptyset$, come appena dimostrato. Inoltre, se $D \cap D' \neq \emptyset$, esiste un punto $P \in D \cap D'$. Allora $P_0 - P_0' = \underbrace{(P_0 - P)}_{\in D_0} + \underbrace{(P - P_0')}_{\in D_0'} \implies \operatorname{Span}(P_0 - P_0') \subseteq D_0 + D_0'$.

Si poteva dunque dimostrare la formula di Grassmann (non modificata, per $D \cap D' \neq \emptyset$) utilizzando questa osservazione, così come si sarebbe potuto dimostrare che $(D + D')_0 = D_0 + D'_0$.