Множественные сравнения для повторных наблюдений

Зенкова Наталья Валентиновна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Алексеева Н. П. Рецензент: к.ф.-м.н., аналитик Уфлянд А. Г.

Санкт-Петербург 2018г.

Модель для повторных наблюдений с пропусками

Модель дисперсионного анализа для повторных наблюдений:

$$x_{ijt} = \mu + \alpha_i + e_{ij}^{(1)} + \beta_t + \gamma_{it} + e_{ijt}$$
, где

- \bullet μ генеральное среднее,
- α_i , β_t , γ_{it} фиксированные эффекты группы, времени и взаимодействия этих двух эффектов,
- ullet $e_{ij}^{(1)}\sim {
 m N}(0,\sigma_1^2)$, $e_{ijt}\sim {
 m N}(0,\sigma^2)$ взаимно независимые ошибки.

Пусть

- ullet $N_{ij}\subset\{1,\ldots,T\}$, где T количество временных точек.
- ullet $M_{it}\subset\{1,\ldots,N\}$, где N- количество индивидов.
- \bullet I количество групп.

Важно: $N_{ij} \neq \{1, ..., T\}$, $M_{it} \neq \{1, ..., N\}$.

Постановка задачи

Задача: Модифицировать критерии множественных сравнений для повторных наблюдений с пропусками и применить их к реальным данным.

В терминах проверки гипотез:

 H_0 отвергается \Rightarrow множественные сравнения.

 $m{Q} H_0^{(i,j)}: t_i
eq t_j \quad eta_{t_i} = eta_{t_j}$ против $H_1^{(i,j)}: \exists \ (t_i,t_j), \ t_i
eq t_j \quad eta_{t_i}
eq eta_{t_j}.$

<u>Опред</u>еление

FWER — вероятность хотя бы один раз отвергнуть гипотезу $H_0^{(i_0,j_0)}$, когда верны $H_0^{(i,j)}$ для $i \neq j$.

Глобальная задача множественной проверки гипотез: $FWER \leq \alpha$.

Смещение модели

$$x_{ijt} = \mu + \alpha_i + e_{ij}^{(1)} + \beta_t + \gamma_{it} + e_{ijt}$$

Разделим модель на 2 части: $x_{ijt} = z_{ij} + y_{ijt}$, где в случае полных данных получим:

$$z_{ij} = x_{ij.}, \quad y_{ijt} = x_{ijt} - x_{ij.},$$

$$\mathbb{E}(z_{ij}) = \mu + \alpha_i, \quad \mathbb{E}(y_{ijt}) = \beta_t + \gamma_{it}.$$

Утверждение

- $lackbox{0}\ \mathbb{E}(z_{ij}) = \mathbb{E}(x_{ij.})$, если $N_{ij} = \{1,\ldots,T\}$.
- $lackbox{2}$ $\mathbb{E}(z_{ij})
 eq \mathbb{E}(x_{ij.})$, если $N_{ij} \subset \{1,\ldots,T\}$ и $N_{ij}
 eq \{1,\ldots,T\}$.

$$x_{ij.} = rac{1}{n_{ij}} \sum_{t \in \mathrm{N}_{ij}} x_{ijt}$$
 — индивидуальное среднее.

Смещение модели: $\mathbb{E}(x_{ij.}) - \mu - \alpha_i = \frac{1}{n_{ij}} \sum_{t \in N_{ij}} (\beta_t + \gamma_{it}).$

Устранение смещения модели

Утверждение

В работе [Alexeyeva, 2017] введены такие G_i (групповая поправка) и H_{ij} (индивидуальная поправка), что

$$\mathbb{E}(G_i + H_{ij}) = \frac{1}{n_{ij}} \sum_{t \in N_{ij}} (\beta_t + \gamma_{it}),$$

где N_{ij} — кол-во вр. точек у индивида j в группе i, $n_{ij} = |N_{ij}|$.

Таким образом, получаем 2 модели:

$$z_{ij} = x_{ij.} - (H_{ij} + G_i) = \mu + \alpha_i + \varepsilon_{ij}^1,$$

$$y_{ijt} = x_{ijt} - x_{ij.} + (H_{ij} + G_i) = \beta_t + \gamma_{it} + \varepsilon_{ijt},$$

где $arepsilon_{ijt}$ — ошибки с ковариационной матрицей $oldsymbol{\Lambda} = \sigma^2 oldsymbol{\Sigma}.$

Дисперсионный анализ для повторных наблюдений с пропусками

В матричном виде:

$$Y = \mathbf{H}\Theta + \mathcal{E}$$
, где

- Y вектор наблюдений, Θ вектор пар-ов длины I(T-1),
- ullet **H** матрица плана размерности $m_{..}$ на I(T-1),
- ullet ${\cal E}$ вектор ошибок с ковариационной матрицей ${f \Lambda}=\sigma^2{f \Sigma}.$

Утверждение [Alexeyeva, 2017]

Несмещённая оценка дисперсии σ^2 имеет вид:

$$\hat{\sigma}^2 = R_0^2 / (m_{..} - N - I(T - 1)),$$

где $R_0^2=(Y-\mathbf{H}\hat{\Theta})^{\mathrm{T}}\mathbf{\Sigma}^{-1}(Y-\mathbf{H}\hat{\Theta})$, $\hat{\Theta}=(\mathbf{H}^{\mathrm{T}}\mathbf{\Sigma}^{-1}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{\Sigma}^{-1}Y$ — оценка Θ .

Дисперсионный анализ для повторных наблюдений с пропусками

Для проверки гипотезы об отсутствии эффекта времени β_t рассматривается усечённая модель с матрицей плана \mathbf{H}_* :

$$Y = \mathbf{H}_* \Theta_* + \mathcal{E}.$$

Модифицированный критерий Фишера [Alexeyeva, 2017]

Статистика критерия Фишера имеет вид:

$$F = \frac{(R_{0*}^2 - R_0^2)/((T-1)(I-1))}{R_0^2/(m_{\cdot \cdot} - N - I(T-1))} \sim F((T-1)(I-1), m_{\cdot \cdot} - N - I(T-1)),$$

где
$$\hat{\Theta}_* = (\mathbf{H}_*^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{H}_*)^{-1} \mathbf{H}_*^{\mathrm{T}} \mathbf{\Sigma}^{-1} Y$$
, $R_{0*} = (Y - \mathbf{H}_* \hat{\Theta}_*)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (Y - \mathbf{H}_* \hat{\Theta}_*)$.

Множественные сравнения для повторных наблюдений с пропусками

Определение

Сравнениями параметров модели eta_1,\dots,eta_T называются линейные комбинации $\sum_{t=1}^T c_t eta_t$, где $\sum_{t=1}^T c_t = 0$.

Обозначим $\hat{\psi} = \sum\limits_{t=1}^{T} c_t \hat{eta}_t$ — оценка сравнений.

В матричном виде:

$$\hat{\psi} = C\hat{\Theta} = C(\mathbf{H}^{\mathrm{T}}\mathbf{\Sigma}^{-1}\mathbf{H})^{-1}\mathbf{H}^{\mathrm{T}}\mathbf{\Sigma}^{-1}Y = \mathbf{A}Y,$$

где
$$\mathrm{rank}(C) := q$$
, $\hat{\psi} = \sum_{t=1}^T c_t \hat{\Theta}_t$ и $\sum_{t=1}^T c_t = 0$.

Утверждение

 $\hat{\psi}$ — несмещённая оценка сравнений: $\mathbb{E}(\hat{\psi}) = C\Theta$.

Множественные сравнения для повторных наблюдений с пропусками

Утверждение

Пусть $\hat{\psi} = \mathbf{A}Y$, $\mathbf{B} = \mathbf{A}\mathbf{A}^{\mathrm{T}}$. Тогда

$$\sigma^{-2}(\hat{\psi} - \mathbb{E}(\hat{\psi}))^{\mathrm{T}}\mathbf{B}^{-1}(\hat{\psi} - \mathbb{E}(\hat{\psi})) \sim \chi(q).$$

Модифицированный критерий Шеффе

Если $Y\sim N(\mathbf{H}\Theta,\sigma^2\mathbf{\Sigma})$, $\mathrm{rank}(\mathbf{H})=I(T-1)$, то случайная величина $\hat{\psi}\sim N(\mathbb{E}(\hat{\psi}),\sigma^2\mathbf{B})$ и не зависит от

$$R_0^2/\sigma^2 = (Y - \mathbf{H}\hat{\Theta})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (Y - \mathbf{H}\hat{\Theta})/\sigma^2 \sim \chi(m_{\cdot\cdot} - N - I(T-1)).$$

Поэтому

$$\frac{(\hat{\psi} - \mathbb{E}(\hat{\psi}))^{\mathrm{T}}\mathbf{B}^{-1}(\hat{\psi} - \mathbb{E}(\hat{\psi}))}{qs^2} \sim F(q, m_{\cdot \cdot} - N - I(T-1)),$$

где
$$s^2 = R_0^2/(m_{..} - N - I(T-1)).$$

Реализация дисперсионного анализа и множественных сравнений

Пусть
$$I=2$$
, $T=3$, $N=29$. Параметры модели: $\sigma^2=1$, $\sigma_1^2=4$ и

Таблица: Параметры модели

μ	α_1	α_2	β_1	β_2	β_3	γ_{11}	γ_{21}	γ_{12}	γ_{22}	γ_{13}	γ_{23}
0	1	2	0	0	0	1.6	2.6	1	2	1	2

Данные имеют вид:

Таблица: Повторные наблюдений с пропусками

group	X1	X2	Х3
1	-1.08	NA	-0.14
1	1.89	-1.41	NA
2	4.50	4.66	4.99
2	6.90	4.86	7.34

Распределение модифицированных критериев Фишера и Шеффе

Рис.: Эмпирические функции распределения полученных р-значений и равномерного распределения

Рис.: Эмпирические функции распределения полученных р-значений и равномерного распределения

Практическое применение множественных сравнений

Дано:

- Данные о систолическом давлении за T=10 лет после операции по замене митрального клапана;
- Количество групп I = 2 мужчины и женщины;
- Количество индивидов N=102.

Проверим гипотезу:

$$H_0: \beta_1 = \ldots = \beta_T.$$

Таблица: Результат применения модифицированного критерия Фишера к реальным данным с уровнем значимости lpha=0.05

F	pvalue
2.08	0.0292

 $pvalue < lpha \Rightarrow H_0$ отвергается \Rightarrow множественные сравнения.

Практическое применение множественных сравнений

Сравнение параметров:

$$\frac{\beta_1 + \beta_2 + \beta_6 + \beta_7 + \beta_{10}}{5} - \frac{\beta_3 + \beta_4 + \beta_5 + \beta_8 + \beta_9}{5}$$

Рис.: Оценки временной компоненты β_t

Таблица: Результат применения модифицированного критерия Шеффе к реальным данным с уровнем значимости lpha=0.05

Значение статистики критерия	pvalue
92.59	0.0000

Заключение

Результаты:

- Структурирована теория для повторных наблюдений с полными данными, реализована соответствующая программа на R.
- Доказана теорема о распределении статистики модифицированного критерия Фишера в случае неполных данных.
- Построен критерий множественных сравнений на основе известного критерия Шеффе для полных данных, корректность которого подтверждена моделированием.
- Разработано необходимое программное обеспечение на R и применены множественные сравнения к реальным данным.