

Introduction of Machine Learning

Hung-yi Lee

Modified by Huan Jin

YouTube Channel

https://www.youtube.com/@cnliziqi

The function we want to find ...

等選器

影片	流量來源	地理位置	觀眾年齡	觀眾性別	日期		訂閱狀態	訂閱來源	播放清	單
日期↓					喜歡的人數		訂閱人數		観看次數	
2021年1月	26日				54	4.9%	69	5.5%	6,788	5.29
2021年1月	27日				60	5.4%	71	5.6%	6,242	4.79
2021年1月	28日				36	3.2%	63	5.0%	5,868	4.5
2021年1月	29日				27	2.4%	40	3.2%	4,413	3.4
2021年1月	30日				40	3.6%	40	3.2%	4,372	3.3
2021年1月	31日				47	4.2%	51	4.0%	5,135	3.9
2021年2月	18				61	5.5%	29	2.3%	5,527	4.2
2021年2月	28				49	4.4%	43	3.4%	5,911	4.5
2021年2月	3日				26	2.3%	44	3.5%	5,248	4.0
2021年2月	4日				43	3.9%	33	2.6%	4,771	3.6
2021年2月	5日				45	4.0%	49	3.9%	3,850	2.9
2021年2月	6日				29	2.6%	42	3.3%	3,828	2.9
2021年2月	7日				26	2.3%	46	3.6%	4,559	3.5
2021年2月	8日				38	3.4%	26	2.1%	4,772	3.6
2021年2月	9日				29	2.6%	25	2.0%	3,847	2.9
2021年2月	10日				31	2.8%	35	2.8%	3,382	2.6

y = f(no. of views on 2/26

1. Function with Unknown Parameters

Model $y = b + wx_1$ based on domain knowledge

feature

y: no. of views on 2/26, x_1 : no. of views on 2/25 w and b are unknown parameters (learned from data) weight bias

2. Define Loss from Training Data > Loss: how good a set of

- Loss is a function of parameters L(b, w)
- values is.

$$L(0.5k, 1)$$
 $y = b + wx_1 \longrightarrow y = 0.5k + 1x_1$ How good it is?

Data from 2017/01/01 – 2020/12/31

2. Define Loss from Training Data > Loss: how good a set of

- Loss is a function of parameters L(b, w)
- values is.

$$L(0.5k, 1)$$
 $y = b + wx_1 \longrightarrow y = 0.5k + 1x_1$ How good it is?

Data from 2017/01/01 – 2020/12/31

2. Define Loss from Training Data > Loss: how good a set of

- Loss is a function of parameters L(b, w)
- values is.

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

$$e = |y - \hat{y}|$$
 L is mean absolute error (MAE)

$$e = (y - \hat{y})^2$$
 L is mean square error (MSE)

If y and \hat{y} are both probability distributions Cross-entropy

2. Define Loss from Training Data > Loss: how good a set of Model $y = b + wx_1$

Large *L*

- Loss is a function of parameters L(b, w)
 - values is.

Gradient Descent

Gradient Descent

$$w^*, b^* = arg \min_{w,b} L$$

- \triangleright (Randomly) Pick initial values w^0 , b^0
- Compute

$$\frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}} \qquad w^{1} \leftarrow w^{0} - \eta \frac{\partial L}{\partial w}|_{w=w^{0},b=b^{0}}$$

$$\frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}} \qquad b^{1} \leftarrow b^{0} - \eta \frac{\partial L}{\partial b}|_{w=w^{0},b=b^{0}}$$

Can be done in one line in most deep learning frameworks

 \triangleright Update w and b interatively

Model
$$y = b + wx_1$$

 $w^*, b^* = arg \min_{w,b} L$

Machine Learning is so simple

 $y = b + wx_1$

 $w^* = 0.97, b^* = 0.1k$ $L(w^*, b^*) = 0.48k$

Step 1: function with unknown

Step 2: define loss from training data

Step 3: optimization

Machine Learning is so simple

Training

 $y = 0.1k + 0.97x_1$ achieves the smallest loss L = 0.48k on data of 2017 – 2020 (training data)

How about data of 2021 (unseen during training)?

$$L' = 0.58k$$

$$y = 0.1k + 0.97x_1$$

Red: real no. of views

blue: estimated no. of views

$$y = b + wx_1$$

$$L = 0.48k$$

$$L' = 0.58k$$

$$y = b + \sum_{i=1}^{r} w_i x_i$$

$$L = 0.38k$$

$$L' = 0.49k$$

b	w_1^*	w_2^*	w_3^*	w_4^*	w_5^*	w_6^*	w_7^*
0.05k	0.79	-0.31	0.12	-0.01	-0.10	0.30	0.18

$$y = b + \sum_{j=1}^{28} w_j x_j$$

$$L = 0.33k$$

$$L' = 0.46k$$

$$y = b + \sum_{i=1}^{56} w_i x_i$$

$$L = 0.32k$$

$$L'=0.46k$$

Linear models

- Linear models are too simple ...
- we need more sophisticated models

Linear models have severe limitation. *Model Bias*We need a more flexible model!

All Piecewise Linear Curves

= constant + sum of a set of

More pieces require more

Beyond Piecewise Linear?

To have good approximation, we need sufficient pieces.

red curve = constant + sum of a set of

How to represent this function?

Hard Sigmoid

Sigmoid Function

$$y = c \frac{1}{1 + e^{-(b + wx_1)}}$$

$$= c sigmoid(b + wx_1)$$

 χ_1

New Model: More Features

$$y = b + wx_1$$

$$y = b + \sum_{i} c_{i} sigmoid(b_{i} + w_{i}x_{1})$$

$$y = b + \sum_{j} w_{j} x_{j}$$

$$y = b + \sum_{i} c_{i} sigmoid \left(\underbrace{b_{i} + \sum_{j} w_{ij} x_{i}}_{j} \right)$$

$$y = b + \sum_{i} c_{i} \ sigmoid \left(b_{i} + \sum_{j} w_{ij} x_{j}\right) \ \begin{array}{c} j: 1,2,3 \\ \text{no. of features} \\ i: 1,2,3 \end{array} \right)$$

 $r_1 = b_1 + w_{11}x_1 + w_{12}x_2 + w_{13}x_3$

 w_{ij} : weight for x_j for i-th sigmoid

$$r_2 = b_2 + w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

$$r_3 = b_3 + w_{31}x_1 + w_{32}x_2 + w_{33}x_3$$

$$y = b + \sum_{i} c_{i} \operatorname{sigmoid} \left(b_{i} + \sum_{i} w_{ij} x_{j} \right) \qquad i: 1, 2, 3$$
$$j: 1, 2, 3$$

$$r_1 = b_1 + w_{11}x_1 + w_{12}x_2 + w_{13}x_3$$

$$r_2 = b_2 + w_{21}x_1 + w_{22}x_2 + w_{23}x_3$$

$$r_3 = b_3 + w_{31}x_1 + w_{32}x_2 + w_{33}x_3$$

$$\begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} + \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$|r| = |b| + |w|$$

$$y = b + \sum_{i} c_{i} \operatorname{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$
 i: 1,2,3 j: 1,2,3

$$|r| = |b| + |W| x$$

$$y = b + \sum_{i} \frac{c_{i}}{sigmoid} \left(\frac{b_{i}}{b_{i}} + \sum_{j} \frac{w_{ij}}{w_{ij}} x_{j} \right)$$
 i: 1,2,3 j: 1,2,3

$$a_{1} \leftarrow r_{1} \leftarrow r_{1} \leftarrow r_{1} \leftarrow r_{1}$$

$$a_{1} = sigmoid(r_{1}) = \frac{1}{1 + e^{-r_{1}}}$$

$$a_{2} \leftarrow r_{2} \leftarrow r_{2} \leftarrow r_{3} \leftarrow r_{3}$$

$$a_{3} \leftarrow r_{3} \leftarrow r_{3$$

$$y = b + \sum_{i} c_{i} \operatorname{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$
 i: 1,2,3 j: 1,2,3

Function with unknown parameters

$$y = b + c^T \sigma(b + W x)$$

x feature

Unknown parameters

W b

 c^T b

Back to ML Framework

Loss

- \triangleright Loss is a function of parameters $L(\theta)$
- > Loss means how good a set of values is.

Loss:
$$L = \frac{1}{N} \sum_{n} e_n$$

Back to ML Framework

Optimization of New Model

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

$$oldsymbol{ heta} = egin{bmatrix} heta_1 \\ heta_2 \\ heta_3 \\ heta_3 \end{bmatrix}$$

(Randomly) Pick initial values $oldsymbol{ heta}^0$

$$oldsymbol{g} = egin{bmatrix} rac{\partial L}{\partial heta_1} |_{oldsymbol{ heta} = oldsymbol{ heta}^0} \ rac{\partial L}{\partial heta_2} |_{oldsymbol{ heta} = oldsymbol{ heta}^0} \end{bmatrix}$$

$$\mathbf{g} = \nabla L(\mathbf{\theta}^0)$$

$$\boldsymbol{\theta}^1 \leftarrow \boldsymbol{\theta}^0 - \boldsymbol{\eta} \boldsymbol{g}$$

Optimization of New Model

$$\boldsymbol{\theta}^* = arg \min_{\boldsymbol{\theta}} L$$

- \succ (Randomly) Pick initial values $m{ heta}^0$
- ightharpoonup Compute gradient $g = \nabla L(\theta^0)$

$$\theta^1 \leftarrow \theta^0 - \eta g$$

ightharpoonup Compute gradient $g = \nabla L(\theta^1)$

$$\theta^2 \leftarrow \theta^1 - \eta g$$

ightharpoonup Compute gradient $g = \nabla L(\theta^2)$

$$\theta^3 \leftarrow \theta^2 - \eta g$$

Back to ML Framework

More variety of models ...

Sigmoid → ReLU

How to represent this function?

 $\longrightarrow x_1$

Rectified Linear Unit (ReLU)

 $c \max(0, b + wx_1)$

 $c' max(0, b' + w'x_1)$

Sigmoid → ReLU

$$y = b + \sum_{i} c_{i} \underline{sigmoid} \left(b_{i} + \sum_{j} w_{ij} x_{j} \right)$$

Activation function

$$y = b + \sum_{i=1}^{\infty} c_i \max\left(0, b_i + \sum_{j=1}^{\infty} w_{ij} x_j\right)$$

Which one is better?

Experimental Results

$$y = b + \sum_{2i} c_i \max \left(0, b_i + \sum_j w_{ij} x_j\right)$$

	linear
2017 – 2020	0.32k
2021	0.46k

Back to ML Framework

Even more variety of models ...

Experimental Results

- Loss for multiple hidden layers
 - 100 ReLU for each layer
 - input features are the no. of views in the past 56 days

	1 layer
2017 – 2020	0.28k
2021	0.43k

Back to ML Framework

It is not *fancy* enough.

Let's give it a *fancy* name!

Neural Network This mimics human brains ... (???)

Many layers means **Deep** Deep Learning

Deep = Many hidden layers

101

Why don't we go deeper?

- Loss for multiple hidden layers
 - 100 ReLU for each layer
 - input features are the no. of views in the past 56 days

	1 layer	2 layer	3 layer
2017 – 2020	0.28k	0.18k	0.14k
2021	0.43k	0.39k	0.38k

Why don't we go deeper?

- Loss for multiple hidden layers
 - 100 ReLU for each layer
 - input features are the no. of views in the past 56 days

	1 layer	2 layer	3 layer	4 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k
2021	0.43k	0.39k	0.38k	0.44k

Better on training data, worse on unseen data

Let's predict no. of views today!

 If we want to select a model for predicting no. of views today, which one will you use?

	1 layer	2 layer	3 layer	4 layer
2017 – 2020	0.28k	0.18k	0.14k	0.10k
2021	0.43k	0.39k	0.38k	0.44k

We will talk about model selection next time. ©

Overfitting

- Training data
- Testing data

Acknowledgments

 I would like to express my sincere gratitude to the online course of Machine learning delivered by Professor Hyung-Yi Lee form National Taiwan University.