Vowel Harmony is Local

Eileen Blum

Rutgers University

NecPhon MIT Nov. 4, 2018

Introduction

► A unified theory of surface markedness constraints captures a variety of vowel harmony patterns

Introduction

- A unified theory of surface markedness constraints captures a variety of vowel harmony patterns
- Vowel harmony analysed as a phonotactic constraint rather than a transformation from an underlying form into the surface form (Goldsmith, 1976; Clements, 1976; a.o.)

Introduction

- A unified theory of surface markedness constraints captures a variety of vowel harmony patterns
- ▶ Vowel harmony analysed as a phonotactic constraint rather than a transformation from an underlying form into the surface form (Goldsmith, 1976; Clements, 1976; a.o.)
- ► Transparent vowels don't rely on underspecification

Locality

▶ Autosegmental surface representations of vowel harmony patterns need two relations between elements: association (|) and adjacency (\rightarrow)

Locality

- ▶ Autosegmental surface representations of vowel harmony patterns need two relations between elements: association (|) and adjacency (\rightarrow)
- Attested patterns are captured by static surface well-formedness constraints: forbidden substructure constraints (FSCs) (Jardine 2016, 2017)

Autosegmental Representations (ARs)

► Tone patterns have been represented with two autosegmental tiers (Goldsmith, 1976; Jardine, 2016, 2017, etc.)

Autosegmental Representations (ARs)

- ► Tone patterns have been represented with two autosegmental tiers (Goldsmith, 1976; Jardine, 2016, 2017, etc.)
- Vowel harmony can be represented with multiple featural tiers

Autosegmental Representations (ARs)

- ▶ Tone patterns have been represented with two autosegmental tiers (Goldsmith, 1976; Jardine, 2016, 2017, etc.)
- Vowel harmony can be represented with multiple featural tiers

Full Specification (FS):

each featural element must be associated to at least one vowel

Full Specification (FS):

- each featural element must be associated to at least one vowel
- each vowel must be associated to at least one element on each feature tier

(5) Violates FS

Full Specification (FS):

- each featural element must be associated to at least one vowel
- each vowel must be associated to at least one element on each feature tier

(6) Violates FS

consonants are not associated to vowel features

No Crossing Constraint (NCC):

 association lines between the segmental tier and a feature tier never cross

(7) Violates NCC

No Crossing Constraint (NCC):

 association lines between the segmental tier and a feature tier never cross

(8) Violates NCC

► FS and NCC prevent gapped structures (Archangeli & Pulleyblank, 1994; Ringen & Vago, 1998)

Obligatory Contour Principle (OCP):

adjacent featural elements must be distinct

(9) Violates OCP

▶ A well-formed AR obeys FS, the NCC, and the OCP

Concatenation

- NCC and OCP derived by concatenation operation (⋄) (Jardine & Heinz, 2015)
 - ► Concatenation merges autosegmental graph primitives, like (1)
- (11) Concatenation of adjacent autosegmental graph primitives

Concatenation

- NCC and OCP derived by concatenation operation (⋄) (Jardine & Heinz, 2015)
 - ► Concatenation merges autosegmental graph primitives, like (1)
- (12) Concatenation of adjacent autosegmental graph primitives

▶ Assimilation: vowels have the same feature

- ► Assimilation: vowels have the same feature
- ► Spreading: multiple association

- Assimilation: vowels have the same feature
- ► Spreading: multiple association

(15) Spreading

 Agreement: different vowels associated to different iterations of the same feature

► Agreement: different vowels associated to different iterations of the same feature

(17) Agreement

Forbidden Substructure Grammar

▶ Previous work applied logical descriptions of formal languages to phonological well formedness constraints (Heinz et al., 2011; Rogers et al., 2013)

Forbidden Substructure Grammar

- Previous work applied logical descriptions of formal languages to phonological well formedness constraints (Heinz et al., 2011; Rogers et al., 2013)
- ► Forbidden substructure grammar generates a set of well-formed structures and rules out ill formed substructures, r₁ through r_n

Forbidden Substructure Grammar

- Previous work applied logical descriptions of formal languages to phonological well formedness constraints (Heinz et al., 2011; Rogers et al., 2013)
- \triangleright Forbidden substructure grammar generates a set of well-formed structures and rules out ill formed substructures, r_1 through r_n

(20) Forbidden substructure grammar (Jardine, 2017)
$$\neg r_1 \wedge \neg r_2 \wedge \neg r_3 \wedge ... \wedge \neg r_n$$

Forbidden Substructure Constraints (FSCs)

Phonotactic restriction that combines the OT (Prince & Smolensky, 1993, 2004) representation of surface markedness
 (*) with forbidden substructures, like r₁

Forbidden Substructure Constraints (FSCs)

- Phonotactic restriction that combines the OT (Prince & Smolensky, 1993, 2004) representation of surface markedness
 (*) with forbidden substructures, like r₁
- ► FSCs can define locality because they refer to elements in a structure connected by an ordering or association relation

Akan ATR harmony:

▶ If a word contains a sequence of -low vowels they will be associated to a single ATR feature (Clements, 1976)

Akan ATR harmony:

- ▶ If a word contains a sequence of -low vowels they will be associated to a single ATR feature (Clements, 1976)
- ► The vowels on either side of a +low vowel can be associated to different ATR features

Table 1: Akan Vowels

	+ATR	-ATR
-low	i	I
	u	υ
	е	3
	0	Э
+low	3	а

▶ -low vowels in sequence are associated to a single ATR feature: [obejii] 'he came and removed it'

Table 1: Akan Vowels

	+ATR	-ATR
-low	i	I
	u	υ
	е	3
	0	Э
+low	3	a

- -low vowels in sequence are associated to a single ATR feature: [obejii] 'he came and removed it'
- -low vowels on either side of a +low vowel can be associated to different ATR features: [pɪrɜko] 'pig'

- Akan ATR harmony pattern captured by a single FSC
 - forbids two adjacent vowels associated to a single -low feature from being associated to different ATR features

- ▶ Akan FSC in (21) allows grammatical spreading AR
- (22) [obejii] 'he came and removed it'

▶ and (21) rules out an ungrammatical disharmonic AR because it contains the forbidden substructure

(23) Ungrammatical AR

Blocking Vowels: Akan

► The same FSC in (21) also allows a grammatical disharmonic AR with a +low vowel

(24) [pɪrɜko] 'pig'

Spreading is local

Spreading ARs...

 consist of an unbounded span of contiguous vowels associated to a single ATR feature node

Spreading is local

Spreading ARs...

- consist of an unbounded span of contiguous vowels associated to a single ATR feature node
- OR when two different ATR features are present, the features are adjacent to each other regardless of how many vowels are associated to each

Spreading is local

Spreading ARs...

- consist of an unbounded span of contiguous vowels associated to a single ATR feature node
- ▶ OR when two different ATR features are present, the features are adjacent to each other regardless of how many vowels are associated to each
- ▶ the FSC posited in (21) captures the Akan ATR harmony pattern for words with and without blocking +low vowels

Finnish Back harmony:

 Harmonizing vowels in a root are associated to a single back feature

Finnish Back harmony:

- Harmonizing vowels in a root are associated to a single back feature
- Harmonizing suffix vowels are associated to the same back feature as the harmonizing root-final vowel (Nevins, 2010; Ringen & Heinamaki, 1999; van der Hulst, 2017; Välimaa-Blum, 1986)

Finnish Back harmony:

- Harmonizing vowels in a root are associated to a single back feature
- ▶ Harmonizing suffix vowels are associated to the same back feature as the harmonizing root-final vowel (Nevins, 2010; Ringen & Heinamaki, 1999; van der Hulst, 2017; Välimaa-Blum, 1986)
- ► Harmony appears to skip over [-back, -round, -low] vowels

Table 2: Finnish Vowels

	-round	+round		
-low	i, iː	y, y:	u, uː	
	e, er	ø, øi	o, or	
+low		æ, æ:	a, a:	-round
	-back		+back	

▶ Default -back suffix vowel: [tienæ] 'road'

Table 2: Finnish Vowels

	-round	+round		
-low	i, iː	y, y:	u, uː	
	e, er	ø, øi	o, or	
+low		æ, æ:	a, a:	-round
	-back		+back	

- Default -back suffix vowel: [tienæ] 'road'
- ► Two harmonizing vowels in sequence are associated to a single back feature: [pouta] 'fine weather'

Table 2: Finnish Vowels

	-round	+round		
-low	i, iː	y, y:	u, uː	
	e, er	ø, ø:	o, or	
+low		æ, æ:	a, a:	-round
	-back		+back	

- Default -back suffix vowel: [tienæ] 'road'
- ► Two harmonizing vowels in sequence are associated to a single back feature: [pouta] 'fine weather'
- ► Harmonizing vowels on either side of a transparent vowel are associated to the same back feature: [ruveta] 'start'

Table 2: Finnish Vowels

	-round	+round		
-low	i, iː	y, y:	u, uː	
	e, er	ø, ø:	o, or	
+low		æ, æ:	a, a:	-round
	-back		+back	

- Default -back suffix vowel: [tienæ] 'road'
- ► Two harmonizing vowels in sequence are associated to a single back feature: [pouta] 'fine weather'
- ► Harmonizing vowels on either side of a transparent vowel are associated to the same back feature: [ruveta] 'start'
- ► The transparent vowel is associated to a different back feature on the same tier

► Set of Finnish FSCs forbid +round or +low vowels from being associated to a -back feature that succeeds a +back feature

(25) Finnish FSCs

▶ and +round or +low vowels from being associated to a -back feature that precedes a +back feature

(26) Finnish FSCs

▶ A fully harmonic word does not violate any Finnish FSCs

(27) [pouta] 'fine weather'

► A disharmonic word is ungrammatical because it contains the forbidden structure of (25a)

(28) Ungrammatical disharmonic word

► Transparent vowels [i, iz, e, er] do not require underspecification

(29) [ruveta] 'start'

▶ A disharmonic word with a transparent vowel is ungrammatical because it contains the forbidden structure of (25a)

(30) Ungrammatical word with transparent vowel

Agreement is local

Agreemnt ARs...

consist of multiple iterations of the same feature, with a different intervening feature on the same tier

Agreement is local

Agreemnt ARs...

- consist of multiple iterations of the same feature, with a different intervening feature on the same tier
- result from adjacency between assimilating and intervening features

Agreement is local

Agreemnt ARs...

- consist of multiple iterations of the same feature, with a different intervening feature on the same tier
- result from adjacency between assimilating and intervening features
- ► The FSCs posited in (25) and (26) capture the Finnish back harmony pattern for words with and without transparent vowels

Discussion

- Well-formed surface ARs of vowel harmony are local
- Autosegmental representations of vowel harmony utilize adjacency and association relations
- ► FSCs capture attested vowel harmony patterns that use neutral vowels: Akan, Finnish
- ► Transparent vowels do not require underspecification

Discussion

ARs can also represent boundaries

- ► FSCs can capture morphologically-conditioned harmony: morpheme boundaries on feature tiers in Turkish
- ► FSCs over multi-tiered ARs can also capture an unattested pattern: sour grapes

Future Work

► Are multi-tiered ARs too powerful?

Future Work

- Are multi-tiered ARs too powerful?
- Can multi-tiered ARs be restricted further to exclude unattested patterns?

Thank you

- QP chair- Adam Jardine
- ▶ QP committee- Bruce Tesar, Simon Charlow

References

- Archangeli, D., & Pulleyblank, D. (1994). Grounded phonology (Vol. 25). MIT Press.
- ▶ Clements, G. (1976). Vowel harmony in non-linear generative phonology: An autosegmental model.
- Goldsmith, J. (1976). Autosegmental phonology (PhD thesis). Massachusetts Institute of Technology.
- ▶ Heinz, J., Rawal, C., & Tanner, H. G. (2011). Tier-based strictly local constraints for phonology. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies: Short papers (Vol. 2). Association for Computational Linguistics.
- ▶ Jardine, A., & Heinz, J. (2015a). A concatenation operation to derive autosegmental graphs. In Proceedings of the 14th annual meeting on the mathematics of language (mol 2015) (pp. 139–151). Chicago, USA: Association for Computational Linguistics.

References

- ▶ Jardine, A. (2016). Locality and non-linear representations in tonal phonology (PhD thesis). University of Delaware.
- ▶ Jardine, A. (2017). The local nature of tone association patterns. Phonology, 34(2), 385–405.
- ▶ Nevins, A. (2010). Locality in vowel harmony. Linguistic Inquiry Monographs (Vol. 55). MIT Press.
- Prince, A., & Smolensky, P. (1993). Optimality theory: Constraint interaction in generative grammar (No. 2). Rutgers University Center for Cognitive Science.
- Ringen, C., & Heinamaki, O. (1999). Variation in finnish vowel harmony: An ot account. Natural Language and Linguistic Theory, 17, 303–337.
- ▶ Ringen, C., & Vago, R. (1998). Hungarian vowel harmony in optimality. Phonology, 15, 393–416.

References

- Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Cognitive and sub-regular complexity. Formal Grammar, 90–108.
- Välimaa-Blum, R. (1986). Finnish vowel harmony as a prescriptive and descriptive rule: An autosegmental account. In F. Marshall (Ed.), Proceedings of the third eastern states conference on linguistics. University of Pittsburgh.
- van der Hulst, H. (2017). A representational account of vowel harmony in terms of variable elements and licensing. In Approaches to hungarian (Vol. 15). John Benjamins Publishing Company.