Classification of cardiac dysfunctions using a 3-axis accelerometer and deep learning architectures

Jonas S. Waaler

Monitoring the heart

Espinoza, A. et al. (2011)

3-axis accelerometer

Can deep learning architectures be used to improve detection of cardiac dysfunctions?

(using the 3-axis accelerometer)

ACC data from pigs

Baseline

Esmolol _{β-blockers}

Adrenaline

Nitroprusside

Salt water

Occlusion

Two datasets

From 250 Hz - 650 Hz

21 pigs

Experiment 1: Domain Analysis

Experiment 1: Idea

ACC > ECG?

$$P(\hat{Y}^{\beta} = Y | F_{\alpha \to \beta}(X^{\alpha})) > P(\hat{Y}^{\alpha} = Y | (F_{\beta \to \alpha}(X^{\beta}))$$

"The probability of a neural network transforming the input (X) to the real output (Y), is higher going from α to β than vice versa, if α contains more features than β "

Experiment 1: Baselines

Metric	Measures
Mean Square Error (MSE)	Squared mean distance
Absolute Pearson Correlation	
Coefficient (APCC)	Absolute Linear similarity
MSE of Fast Fourier	Squared mean
Transform (MFFT)	frequency distance

Experiment 1: Networks

Experiment 1: Results D.1

True

400

300

Sample

Predicted

500

Experiment 1: Results D.2

Magnitude 2.0

0.0

100

200

Experiment 1: Results C.1

Sample

True

Sample

200

Predicted

300

400

500

0.2

100

Experiment 1: Results C.AE

Sample

(c)

Experiment 3: Results

Experiment 2: Classifying Cardiac Heart Dysfunctions

Experiment 2: Data preparations

Class	$SD(Magnitude)[\times 10^{-2}]$	Number of cycles
Baseline	7.21	258
Occlusion	7.01	790
Adrenaline	8.81	192
β -blockers	5.49	69
Fluid	5.17	80
Nipride	4.73	85

Experiment 2: Augmentation

$$\mathbf{R} = \begin{bmatrix} a^2 + b^2 - c^2 - d^2 & 2(bc - ad) & 2(bd + ac) \\ 2(bc + ad) & a^2 + c^2 - b^2 - d^2 & 2(cd - ab) \\ 2(bd - ac) & 2(cd + ab) & a^2 + d^2 - b^2 - c^2 \end{bmatrix}$$

$$a = \cos \frac{\theta}{2}$$

$$b = k_x \sin \frac{\theta}{2}$$

$$c = k_y \sin \frac{\theta}{2}$$

$$d = k_z \sin \frac{\theta}{2}$$

$$d = k_z$$

Experiment 2: Context removal

Experiment 2: The network

Experiment 2: Results

Class	Precision	Recall	F1 score
Adrenaline	0.984	1.00	0.99
Baseline	0.641	0.77	0.70
Occlusion	0.777	0.64	0.70
MEAN	0.80	0.80	0.78

core
8
6
2
5
5
6
9

Experiment 2: Results - Context Removal

Experiment 3: Image Classification

Experiment 3: Image Classification

Continuous Wavelet Transform (CWT)

$$A(f,t) = (1 - 2\pi^2 f^2 t^2)e^{-\pi^2 f^2 t^2}$$

R: x-axis

G: y-axis

B: z-axis

Experiment 3: The network

Experiment 3: Results

Class	Precision	Recall	F1 score
Adrenaline	0.795	0.950	0.962
Baseline	0.763	0.619	0.683
Occlusion	0.707	0.831	0.764
MEAN	0.815	0.799	0.803

Experiment 3: Results - Context Removal

Conclusion

Conclusion

Converting between the ACC domain and the ECG domain is not trivial

Deep Learning architectures can be used to classify cardiac dysfunctions

3 classes: F1 = 0.78, F1 = 0.8 (CWT)

6 classes: F1 = 0.75

DL can be used to extract domain knowledge

Discussion

Why does the 3 class classifier and the 6 class classifier achieve so similar results? (Both achieve results of $F1 = \sim 0.7$)

MP study closed chest!

RNN's

Stumpf - Accuracy of 74% DL - Accuracy of 77%

Validation

