STEPUP OA: Script used to process 'minimal' dataset required to generate figures in our Quality-Control (QC) Manuscript

Contents

Purpose of this vignette:	1
Directory structure and the minimal data:	1
Required R packages and file path:	1
Assessment of Synovial Fluid Standardisation Procedures:	2
Investigate the drivers of PC1 – Intracellular Protein Score (IPS)	5
Variation explained by the top 10 PCs after standardisation and adjustment for IPS	5
Visualization of PC1 driver – protein abundance	7
Correlation with PC1 for 18 paired spun/unspun samples	7
Intracellular protein score vs PC1 using either IPS adjusted and non-IPS adjusted data	8
Investigation of drivers of PC1 (regression model)	10
Investigate the drivers of PC2 – bimodal signal	11
UMAP before and after batch correction	11
Investigate one of the strongest bimodal signal marker proteins, TSG101, against processing	
batch	13
Invetigate one of the strongest bimodal signal marker proteins, TSG101, when re-processed $$.	14
Agreement between SOMAscan and immunoassay: comparing correlation coefficient values for raw,	
standardized, non-IPS/IPS adjusted data	15
UMAP visualisation on filtered data for non-IPS adjusted and IPS adjusted data	17

Purpose of this vignette:

The full STEpUP OA dataset may be made available by application to the Data Access and Publication Group of STEpUP OA (stepupoa@kennedy.ox.ac.uk) once the primary analysis manuscript is published, in accordance with what is stipulated in our Consortium Agreement. The minimal datasets necessary for replicating figures along with the required R code are provided here.

Directory structure and the minimal data:

Required R packages and file path:

```
### load in required R packages used to generate plots in the manuscript
library(ggplot2)
library(cowplot)
library(GGally)
```

```
library(ggpubr)
library(factoextra)
library(ggforce)
library(scales)

### Set the file path to where the minimal data are downloaded on your personal machine
intermidiate.out <- "/Users/ydeng/Documents/QCpaper.Code/minimal datasets/"</pre>
```

Assessment of Synovial Fluid Standardisation Procedures:

% CV and non-technical variation of each protein, correlation coefficient between SomaScan measure and immunoassay were investigated, and the comparisons across different standardization procedures were displayed as below.

```
### read in mean % CV values and mean R2 values for each protein and correlation coefficients assessin
meanCV <- read.csv(paste0(intermidiate.out, "Standardisation/meanCV.csv"), row.names = 1)</pre>
meanR2 <- read.csv(paste0(intermidiate.out, "Standardisation/meanR2.csv"), row.names = 1)</pre>
CorDatP.OA <- read.csv(pasteO(intermidiate.out, "Standardisation/CorDatP.OA.csv"), row.names = 1)</pre>
CorDatP.INJ <- read.csv(paste0(intermidiate.out, "Standardisation/CorDatP.INJ.csv"), row.names = 1)</pre>
### Figure 1:
StandardisationLabel = c("Raw Data", "HN", "HN + PS", "HN + PS + MN", "HN + PS + MN + PC", "HN + PS + PC") #
p.meanCV <- ggplot(data = meanCV) + geom_point(aes(x=NormalisationSteps,y=100*as.numeric(meanCV),group=
  xlab("") + ylab("\n\nMean %CV") + labs(color = "Disease Group") + scale_x_discrete(breaks=seq(1:lengt)
  theme(axis.text.x = element_text(size=10, angle=30,face="bold",hjust=1),axis.text.y = element_text(size=10, angle=30,face="bold",hjust=1)
        legend.title =element_text(size = 9,face="bold"), legend.text = element_text(size = 9,face="bold")
        axis.title.y =element text(size=10,face="bold"),axis.title.x =element text(size=10))
p.meanR2 <- ggplot(data = meanR2) + geom_point(aes(x=NormalisationSteps,y=100*as.numeric(meanR2),group=
  xlab("") + ylab(bquote(atop("\n","" ~ bold("Mean R") ^ bold("2")))) + labs(color = "Disease Group") +
  theme(axis.text.x = element_text(size=10, angle=30, face="bold", hjust=1), axis.text.y = element_text(si
        legend.title =element_text(size = 9,face="bold"), legend.text = element_text(size = 9,face="bold")
        axis.title.y =element_text(size=10,face="bold"),axis.title.x =element_text(size=10))
p.immunoassay.OA <- ggplot(data = CorDatP.OA) + geom_line(aes(x=as.character(CorC),y=as.numeric(CorDatY
  xlab("") + ylab("Correlation Coefficient\n(OA Samples)") +labs(color = "Protein") + scale_x_discrete(
  theme(axis.text.x = element_text(size=10, angle=30,face="bold",hjust=1),axis.text.y = element_text(size=10, angle=30,face="bold",hjust=1)
        legend.title =element_text(size = 9,face="bold"), legend.text = element_text(size = 9,face="bold")
        axis.title.y =element_text(size=10,face="bold"),axis.title.x =element_text(size=10))
p.immunoassay.INJ <- ggplot(data = CorDatP.INJ) + geom_line(aes(x=as.character(CorC), y=as.numeric(CorDa
  xlab("") + ylab("Correlation Coefficient\n(Injury Samples)") +labs(color = "Protein") + scale_x_discr
  theme(axis.text.x = element_text(size=10, angle=30, face="bold", hjust=1), axis.text.y = element_text(si
        legend.title =element_text(size = 9,face="bold"), legend.text = element_text(size = 9,face="bold")
        axis.title.y =element_text(size=10,face="bold"),axis.title.x =element_text(size=10))
### Figure 1:
p.meanCV
```


80.0

77.5

p.immunoassay.INJ

Investigate the drivers of PC1 – Intracellular Protein Score (IPS)

After data standardisation, PC1 explained 48% of data variance which was driven by intracellular protein. The intracellular protein signal can be effectively adjusted for using the limma package.

Variation explained by the top 10 PCs after standardisation and adjustment for IPS

Visualization of PC1 driver – protein abundance

```
### read in protein abundance values and correlation with PC1 after standardisation
corPerPro.beforeIPS <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/corPe
albminSeq.LDHseq <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/albminSe
albminSeq <- albminSeq.LDHseq["ALBUMIN",1]</pre>
LDHseq <- albminSeq.LDHseq["LDH",1]</pre>
p.abundance.PC1 <- ggplot(data=corPerPro.beforeIPS[is.finite(corPerPro.beforeIPS$Abundance),],aes(x=log
  geom_point(aes(x=log(corPerPro.beforeIPS[albminSeq, "Abundance"]), y=corPerPro.beforeIPS[albminSeq, "Cor.
  annotate(geom="text",x=log(corPerPro.beforeIPS[albminSeq,"Abundance"])-0.3, y=corPerPro.beforeIPS[albminSeq,"Abundance"])-0.3,
  geom_point(aes(x=log(corPerPro.beforeIPS[LDHseq, "Abundance"]),y=corPerPro.beforeIPS[LDHseq, "Correlati
  annotate(geom="text",x=log(corPerPro.beforeIPS[LDHseq,"Abundance"])+2, y=corPerPro.beforeIPS[LDHseq,"
  xlab("Log Mean Protein Abundance") + ylab("Correlation Coefficient with PC1") + theme_bw() +
  theme(axis.title.x = element_text(size=10, face="bold"), axis.text.x = element_text(size=10, face="bold")
        axis.title.y =element_text(size=12.5,face="bold",vjust=-1),axis.text.y = element_text(size=10,f
        legend.position = c(0.8,0.1),legend.title =element_text(size = 11,face="bold"), legend.text = e
        panel.grid.major = element_blank(), panel.grid.minor = element_blank())
### Replicate subplot of Figure 2:
p.abundance.PC1
```


Correlation with PC1 for 18 paired spun/unspun samples

Intracellular protein score vs PC1 using either IPS adjusted and non-IPS adjusted data

p.RegProAfter

Investigation of drivers of PC1 (regression model)

```
### read in protein subcellular location information from Human Protein Atalas https://www.proteinatlas
SubLocation <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/subcellular_1
SubLocationDat = SubLocation[,c("Gene.name","Main.location")]
CytoplasmL <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/Cytoplasm.txt"
NucleusL <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/Nucleus.txt"), he
EndomembraneL <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/Endomembran
secreted <- SubLocation$Gene.name[which(SubLocation$Extracellular.location=="Predicted to be secreted")
# for each protein define whether it is a 'secreted nuclear protein' (here we excluded the multiple loc
for (indexCounter in 1:nrow(SubLocationDat)){
  x = SubLocationDat$Main.location[indexCounter]
  pro = SubLocationDat$Gene.name[indexCounter]
  mainLoc = strsplit(x,";")[[1]]
  if(any(CytoplasmL %in% mainLoc)){newLocation = "Cytoplasm"
  }else if(any(EndomembraneL %in% mainLoc)){newLocation = "Endomembrane"
  }else if(any(NucleusL %in% mainLoc) & !(any(pro %in% secreted))){newLocation = "Nucleus"
  }else{newLocation = NA}
  SubLocationDat$Broad.location[indexCounter] = newLocation
}
NucleusGenes <- SubLocationDat$Gene.name[which(SubLocationDat$Broad.location=="Nucleus")]
ProMeta <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/ProMeta.csv"))
```

```
keepseq <- which(ProMeta$Organism=="Human" & ProMeta$Type=="Protein")</pre>
Nucleus <- sapply(keepseq,function(x) {ifelse(any(ProMeta[x,"EntrezGeneSymbol"] %in% NucleusGenes),1,0)
# Visualize the significant drivers: nuclear protein and protein abundance
### non-IPS adjusted data
driverNuclear.beforeIPS <- summary(lm(corPerPro.beforeIPS$Correlation[keepseq] ~ as.factor(Nucleus) + 1
driverNuclear.beforeIPS$coefficients
##
                                                 Estimate
                                                           Std. Error
                                                                         t value
## (Intercept)
                                               1.19309121 0.0083427405 143.009508
## as.factor(Nucleus)1
                                               0.03277124 0.0054273648
                                                                       6.038149
## log(corPerPro.beforeIPS$Abundance[keepseq]) -0.05517403 0.0008454898 -65.256883
                                                  Pr(>|t|)
## (Intercept)
                                              0.000000e+00
## as.factor(Nucleus)1
                                              1.635458e-09
## log(corPerPro.beforeIPS$Abundance[keepseq]) 0.000000e+00
### IPS adjusted data
corPerPro.afterIPS <- read.csv(paste0(intermidiate.out, "PC1 Driver - Intracellular Protein Score/corPer
driverNuclear.afterIPS <- summary(lm(corPerPro.afterIPS$Correlation[keepseq] ~ as.factor(Nucleus) + log
driverNuclear.afterIPS$coefficients
##
                                                 Estimate
                                                           Std. Error
                                                                         t value
## (Intercept)
                                             ## as.factor(Nucleus)1
                                              0.012423007 0.0108146603
                                                                        1.148719
## log(corPerPro.afterIPS$Abundance[keepseq]) -0.007812608 0.0009930221 -7.867506
                                                  Pr(>|t|)
```

7.086765e-153

2.507095e-01

Investigate the drivers of PC2 – bimodal signal

log(corPerPro.afterIPS\$Abundance[keepseq]) 4.140385e-15

We also found a strong bimodal signal on PC2 which is highly correlated with laboratory processing batch

UMAP before and after batch correction

(Intercept)

as.factor(Nucleus)1

```
axis.title.y =element_text(size=11,face="bold"), axis.text.y = element_text(size=10,face="bold"
    legend.position="bottom", legend.title =element_text(size = 9,face="bold"), legend.text = element_text(size = 9,face="bold"), legend.text = element_text(size = 9,face="bold"), legend.text = element_text(size=10,face="bold")
    legend.margin=margin(0,0,0,0), legend.box.margin=margin(-4,-4,-4,-4))

### Generate subplots of Figure 3:
p.umap.BimodalBefore
```


p.umap.BimodalAfter

Investigate one of the strongest bimodal signal marker proteins, TSG101, against processing batch

Invetigate one of the strongest bimodal signal marker proteins, TSG101, when re-processed

```
### read in TSG101 values for three samples which were reprocessed
reprocessFrame <- read.csv(paste0(intermidiate.out, "PC2 Driver - Bimodal Signal/reprocessFrame.csv"))

p.reprocess <- ggplot(data=reprocessFrame) + geom_point(aes(x=Sample,y=as.numeric(TSG101),group=Process
    geom_line(aes(x=Sample,y=as.numeric(TSG101),group=Processing,color=Processing)) + labs(color="") + xl
    theme(axis.text.x = element_text(size=8,face="bold"),
        axis.title.y =element_text(size=10,face="bold"), axis.text.y = element_text(size=10,face="bold")
        legend.position="top",legend.title =element_text(size = 8,face="bold"), legend.text = element_t
        legend.margin=margin(0,0,0,0),legend.box.margin=margin(-10,-10,-10,-10))

### replication subplot of Figure 2:
p.reprocess</pre>
```


Agreement between SOMAscan and immunoassay: comparing correlation coefficient values for raw, standardized, non-IPS/IPS adjusted data

```
### read in correlation coefficient values assessing agreement between SomaScan and immunoassays for ea
CorDatP.OA.IPS <- read.csv(pasteO(intermidiate.out, "Compare to Immunoassay/CorDatP.OA.IPS.csv"))</pre>
CorDatP.INJ.IPS <- read.csv(pasteO(intermidiate.out, "Compare to Immunoassay/CorDatP.INJ.IPS.csv"))</pre>
NormalisationLabel = c("Raw Data", "Optimized Standardisation", "Processed without IPS Adjustment", "Proce
p.immunoassay.OA.IPS <- ggplot(data = CorDatP.OA.IPS) + geom_line(aes(x=as.character(CorC),y=as.numeric
  xlab("") + ylab("Correlation Coefficient for OA Samples") +labs(color = "Protein") + scale_x_discrete
  theme(axis.text.x = element_text(size=10, angle=20, face="bold", hjust=1), axis.text.y = element_text(si
        legend.title =element_text(size = 10,face="bold"), legend.text = element_text(size = 10,face="b
        axis.title.y =element_text(size=10,face="bold"),axis.title.x =element_text(size=10))
p.immunoassay.INJ.IPS <- ggplot(data = CorDatP.INJ.IPS) + geom_line(aes(x=as.character(CorC),y=as.numer
  xlab("") + ylab("Correlation Coefficient for Injury Samples") +labs(color = "Protein") + scale_x_disc
  theme(axis.text.x = element_text(size=10, angle=20, face="bold", hjust=1), axis.text.y = element_text(si
        legend.title =element_text(size = 10,face="bold"), legend.text = element_text(size = 10,face="b
        axis.title.y =element_text(size=10,face="bold"),axis.title.x =element_text(size=10))
### replicate Figure 4:
p.immunoassay.OA.IPS
```


UMAP visualisation on filtered data for non-IPS adjusted and IPS adjusted data

```
### read in data for the reduced dimensions on Umap for non-IPS adjusted data
myUmap.BC.final.F <- read.csv(paste0(intermidiate.out, "Disease Group After Filtering/non-IPS adjusted.c
### read in data for the reduced dimensions on Umap for IPS adjusted data
myUmap.IPS.final.F <- read.csv(paste0(intermidiate.out, "Disease Group After Filtering/IPS adjusted.csv"
DiseaseSize1=ifelse(myUmap.BC.final.F$DiseaseGroup==4, "Big", ifelse(myUmap.BC.final.F$DiseaseGroup==3, "M
p.umap.BC.Dis <- ggplot(data=myUmap.BC.final.F) + geom_point(aes(x=D1,y=D2,color=as.character(DiseaseGr
  xlab("D1") + ylab("D2") + scale_colour_manual(name="Before IPS Adjustment", values = c("#D55E00","#00
  scale_size_manual (values= c(2,2,1.5)) + guides(size=FALSE,color = guide_legend(override.aes = list(s
  theme(axis.title.x = element_text(size=12,face="bold"),axis.text.x = element_text(size=12,face="bold")
        axis.title.y =element_text(size=12,face="bold"), axis.text.y = element_text(size=12,face="bold")
        legend.title =element_text(size = 13,face="bold"), legend.text = element_text(size = 12,face="b
DiseaseSize2=ifelse(myUmap.IPS.final.F$DiseaseGroup==4, "Big", ifelse(myUmap.IPS.final.F$DiseaseGroup==3,
p.umap.IPS.Dis <- ggplot(data=myUmap.IPS.final.F) + geom_point(aes(x=D1,y=D2,color=as.character(Disease
  xlab("D1") + ylab("D2") + scale_colour_manual(name="After IPS Adjustment", values = c("#D55E00","#009
  scale size manual (values= c(2,2,1.5)) + guides(size=FALSE,color = guide legend(override.aes = list(s
  theme(axis.title.x = element_text(size=12,face="bold"),axis.text.x = element_text(size=12,face="bold")
        axis.title.y =element_text(size=12,face="bold"), axis.text.y = element_text(size=12,face="bold")
        legend.title =element_text(size = 13,face="bold"), legend.text = element_text(size = 12,face="b
### plot Figure 7:
p.umap.BC.Dis
```


Before IPS Adjustment

- OA
- Injury
- Healthy control
- Inflammatory control

p.umap.IPS.Dis

