SVM_Company

Prepare a classification model using SVM for salary data

Data Description:

age -- age of a person

workclass -- A work class is a grouping of work

education -- Education of an individuals

maritalstatus -- Marital status of an individulas

occupation -- occupation of an individuals

relationship ---

race -- Race of an Individual

sex -- Gender of an Individual

capitalgain -- profit received from the sale of an investment

capitalloss -- A decrease in the value of a capital asset

hoursperweek -- number of hours work per week

native -- Native of an individual

Salary -- salary of an individual

Importing the libraries

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')

from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split,cross_val_scor

from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score, confusion_matrix
```

Importing the Dataset

In [2]: Train = pd.read_csv("/Users/chethantumkur/Desktop/Data Science/ASSS
Train

Out[2]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	ra
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in- family	Wh
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	Wh
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	Wh
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Bla
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Bla
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	Wh
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	Wh
30158	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	Wh
30159	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	Wh
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	Wh

30161 rows × 14 columns

In [3]: Test = pd.read_csv("/Users/chethantumkur/Desktop/Data Science/ASSSI
Test

Out[3]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	E
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	ν
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	ν
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	E
4	34	Private	10th	6	Never- married	Other- service	Not-in- family	ν
				•••				
15055	33	Private	Bachelors	13	Never- married	Prof- specialty	Own-child	ν
15056	39	Private	Bachelors	13	Divorced	Prof- specialty	Not-in- family	ν
15057	38	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	ν
15058	44	Private	Bachelors	13	Divorced	Adm- clerical	Own-child	A Isla
15059	35	Self-emp- inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	٧

15060 rows × 14 columns

In [4]: Train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object
8	sex	30161 non-null	object
9	capitalgain	30161 non-null	int64
10	capitalloss	30161 non-null	int64
11	hoursperweek	30161 non-null	int64
12	native	30161 non-null	object
13	Salary	30161 non-null	object
dtvp	es: int64(5). o	biect(9)	

dtypes: int64(5), object(9)

memory usage: 3.2+ MB

In [5]: Train.describe()

Out[5]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	30161.000000	30161.000000	30161.000000	30161.000000	30161.000000
mean	38.438115	10.121316	1092.044064	88.302311	40.931269
std	13.134830	2.550037	7406.466611	404.121321	11.980182
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	47.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	4356.000000	99.000000

In [6]: Test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15060 entries, 0 to 15059
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	15060 non-null	int64
1	workclass	15060 non-null	object
2	education	15060 non-null	object
3	educationno	15060 non-null	int64
4	maritalstatus	15060 non-null	object
5	occupation	15060 non-null	object
6	relationship	15060 non-null	object
7	race	15060 non-null	object
8	sex	15060 non-null	object
9	capitalgain	15060 non-null	int64
10	capitalloss	15060 non-null	int64
11	hoursperweek	15060 non-null	int64
12	native	15060 non-null	object
13	Salary	15060 non-null	object
d+vn	oc. $in+64(5)$	hioct(0)	

dtypes: int64(5), object(9)

memory usage: 1.6+ MB

In [7]: Test.describe()

Out[7]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	15060.000000	15060.000000	15060.000000	15060.000000	15060.000000
mean	38.768327	10.112749	1120.301594	89.041899	40.951594
std	13.380676	2.558727	7703.181842	406.283245	12.062831
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	48.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	3770.000000	99.000000

In [8]: Train[Train.isnull().any(axis=1)]

Out[8]:

age workclass education educationno maritalstatus occupation relationship race se

```
In [9]: Train.isnull().sum()
         ## shows the total no of nan value in each columns
         ## there is no nan values in the Train Data set
 Out[9]: age
         workclass
                           0
         education
                           0
         educationno
                           0
         maritalstatus
                           0
                           0
         occupation
                           0
         relationship
         race
                           0
         sex
         capitalgain
                           0
         capitalloss
                           0
         hoursperweek
                           0
         native
                           0
         Salary
         dtype: int64
In [10]: Test[Test.isnull().any(axis=1)].shape
         ## shows the total no of nan value in each columns
         ## there is no nan values in the Train Data set
Out[10]: (0, 14)
In [11]: Train['Salary'].value_counts()
Out[11]:
          <=50K
                    22653
          >50K
                     7508
         Name: Salary, dtype: int64
In [12]: Test['Salary'].value_counts()
Out[12]:
          <=50K
                    11360
          >50K
                     3700
         Name: Salary, dtype: int64
```

In [13]: pd.crosstab(Train['occupation'],Train['Salary'])

Out[13]:

Salary	<=50K	>50K
occupation		
Adm-clerical	3223	498
Armed-Forces	8	1
Craft-repair	3122	908
Exec-managerial	2055	1937
Farming-fishing	874	115
Handlers-cleaners	1267	83
Machine-op-inspct	1720	245
Other-service	3080	132
Priv-house-serv	142	1
Prof-specialty	2227	1811
Protective-serv	434	210
Sales	2614	970
Tech-support	634	278
Transport-moving	1253	319

In [14]: pd.crosstab(Train['workclass'],Train['Salary'])

Out[14]:

Salary	<=50K	>50K
workclass		
Federal-gov	578	365
Local-gov	1458	609
Private	17409	4876
Self-emp-inc	474	600
Self-emp-not-inc	1785	714
State-gov	935	344
Without-pay	14	0

In [15]: pd.crosstab(Train['workclass'], Train['occupation'])

Out[15]:

occupation	Adm- clerical	Armed- Forces	Craft- repair	Exec- managerial	Farming- fishing	Handlers- cleaners	Machine- op- inspct	Other- service	ł
workclass									
Federal- gov	316	9	63	179	8	22	14	34	_
Local-gov	281	0	143	212	29	46	11	189	
Private	2793	0	3146	2647	450	1255	1881	2665	
Self-emp- inc	28	0	99	385	51	2	10	27	
Self-emp- not-inc	49	0	523	383	430	15	35	173	
State-gov	251	0	55	186	15	9	13	123	
Without- pay	3	0	1	0	6	1	1	1	

In [16]: sns.countplot(x='Salary',data= Train)
plt.xlabel('Salary')
plt.ylabel('count')
plt.show()
Train['Salary'].value_counts()

Out[16]: <=50K 22653 >50K 7508

Name: Salary, dtype: int64

```
In [17]: sns.countplot(x='Salary',data= Test)
    plt.xlabel('Salary')
    plt.ylabel('count')
    plt.show()
    Test['Salary'].value_counts()
```


Out[17]: <=50K 11360 >50K 3700

Name: Salary, dtype: int64

In [18]: sns.scatterplot(Train['occupation'], Train['workclass'], hue=Train['S

Out[18]: <AxesSubplot:xlabel='occupation', ylabel='workclass'>

In [19]: pd.crosstab(Train['Salary'], Train['education']).mean().plot(kind='b

Out[19]: <AxesSubplot:xlabel='education'>

In [20]: pd.crosstab(Train['Salary'], Train['occupation']).mean().plot(kind='

Out[20]: <AxesSubplot:xlabel='occupation'>

In [21]: pd.crosstab(Train['Salary'],Train['workclass']).mean().plot(kind='b

Out[21]: <AxesSubplot:xlabel='workclass'>

In [22]: pd.crosstab(Train['Salary'],Train['sex']).mean().plot(kind='bar')

Out[22]: <AxesSubplot:xlabel='sex'>

In [23]: pd.crosstab(Train['Salary'], Train['sex']).mean().plot(kind='bar')

Out[23]: <AxesSubplot:xlabel='sex'>

In [27]: Test

Out [27]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	rac
0	25	2	1	7	4	6	3	
1	38	2	11	9	2	4	0	
2	28	1	7	12	2	10	0	
3	44	2	15	10	2	6	0	
4	34	2	0	6	4	7	1	
•••								
15055	33	2	9	13	4	9	3	
15056	39	2	9	13	0	9	1	
15057	38	2	9	13	2	9	0	
15058	44	2	9	13	0	0	3	
15059	35	3	9	13	2	3	0	

15060 rows × 14 columns

```
In [28]: ##Capturing the column names which can help in futher process
colnames = Train.columns
colnames
```

```
In [29]: len(colnames)
```

Out[29]: 14

In [30]: Train

Out[30]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	rac
0	39	5	9	13	4	0	1	
1	50	4	9	13	2	3	0	
2	38	2	11	9	0	5	1	
3	53	2	1	7	2	5	0	
4	28	2	9	13	2	9	5	
•••								
30156	27	2	7	12	2	12	5	
30157	40	2	11	9	2	6	0	
30158	58	2	11	9	6	0	4	
30159	22	2	11	9	4	0	3	
30160	52	3	11	9	2	3	5	

30161 rows × 14 columns

In [31]: Test

Out[31]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	rac
0	25	2	1	7	4	6	3	
1	38	2	11	9	2	4	0	
2	28	1	7	12	2	10	0	
3	44	2	15	10	2	6	0	
4	34	2	0	6	4	7	1	
15055	33	2	9	13	4	9	3	
15056	39	2	9	13	0	9	1	
15057	38	2	9	13	2	9	0	
15058	44	2	9	13	0	0	3	
15059	35	3	9	13	2	3	0	

15060 rows × 14 columns

```
In [32]: |x_train = Train[colnames[0:13]]
         y_train = Train[colnames[13]]
         x test = Test[colnames[0:13]]
         y test = Test[colnames[13]]
In [33]: ##Normalmization
         def norm_func(i):
             x = (i-i.min())/(i.max()-i.min())
             return (x)
In [34]: | x_train = norm_func(x_train)
         x_{test} = norm_func(x_{test})
         SVM With GRID SEARCH
In [35]: clf= SVC()
         parma_grid = [{'kernel' : ["rbf"], 'random_state': [40], 'gamma': [0.1]
In [36]: | gsv = GridSearchCV(clf,parma_grid,cv=10)
         gsv.fit(x_train,y_train)
Out[36]: GridSearchCV(cv=10, estimator=SVC(),
                       param_grid=[{'C': [1.0], 'gamma': [0.1], 'kernel': ['
         rbf'],
                                    'random state': [40]}])
In [37]: |gsv.best_params_ , gsv.best_score_
Out[37]: ({'C': 1.0, 'gamma': 0.1, 'kernel': 'rbf', 'random_state': 40},
          0.8294490262517703)
In [38]: clf = SVC(C = 15, gamma = 50)
```

```
clf.fit(x_train , y_train)
y_pred = clf.predict(x_test)
```

```
In [39]: |acc = accuracy_score(y_test, y_pred) * 100
         print("Accuracy =", acc)
```

Accuracy = 80.64409030544488

```
In [40]: confusion_matrix(y_test, y_pred)
```

```
Out[40]: array([[10365,
                         995],
                [ 1920, 1780]])
```

```
In [41]: # kernel = linear
         clf= SVC()
         parma_grid = [{'kernel' : ["linear"], 'random_state':[40], 'gamma':[0]
In [42]: |gsv = GridSearchCV(clf,parma_grid,cv=10)
         gsv.fit(x_train,y_train)
Out[42]: GridSearchCV(cv=10, estimator=SVC(),
                       param_grid=[{'C': [1.0], 'gamma': [0.1], 'kernel': ['
         linear'l.
                                    'random state': [40]}])
In [43]: |gsv.best_params_ , gsv.best_score_
Out[43]: ({'C': 1.0, 'gamma': 0.1, 'kernel': 'linear', 'random_state': 40},
          0.8118431562437083)
In [44]: | clf = SVC(C= 15, gamma = 50)
         clf.fit(x_train , y_train)
         y_pred = clf.predict(x_test)
In [45]: | acc = accuracy_score(y_test, y_pred) * 100
         print("Accuracy =", acc)
         Accuracy = 80.64409030544488
In [46]: confusion_matrix(y_test, y_pred)
Out[46]: array([[10365,
                          995],
                 [ 1920, 1780]])
In [47]: # kernel = poly
         clf= SVC()
         parma_grid = [{'kernel' : ["poly"], 'random_state':[40], 'gamma':[0.1]
In [48]: | gsv = GridSearchCV(clf,parma_grid,cv=10)
         gsv.fit(x_train,y_train)
Out[48]: GridSearchCV(cv=10, estimator=SVC(),
                       param_grid=[{'C': [1.0], 'gamma': [0.1], 'kernel': ['
         poly'],
                                    'random_state': [40]}])
In [49]: |gsv.best_params_ , gsv.best_score_
Out[49]: ({'C': 1.0, 'gamma': 0.1, 'kernel': 'poly', 'random_state': 40},
          0.819137640901382)
```

```
In [50]: clf = SVC(C= 15, gamma = 50)
         clf.fit(x_train , y_train)
         y pred = clf.predict(x test)
In [51]: | acc = accuracy_score(y_test, y_pred) * 100
         print("Accuracy =", acc)
         Accuracy = 80.64409030544488
In [52]: # kernel = sigmoid
         clf= SVC()
         parma_grid = [{'kernel' : ["sigmoid"],'random_state':[40],'gamma':[
In [53]: | gsv = GridSearchCV(clf,parma_grid,cv=10)
         gsv.fit(x_train,y_train)
Out[53]: GridSearchCV(cv=10, estimator=SVC(),
                      param_grid=[{'C': [1.0], 'gamma': [0.1], 'kernel': ['
         sigmoid'],
                                    'random_state': [40]}])
In [54]: |gsv.best_params_ , gsv.best_score_
Out[54]: ({'C': 1.0, 'gamma': 0.1, 'kernel': 'sigmoid', 'random state': 40}
          0.7954645932114129)
In [55]: |clf = SVC(C= 15, gamma = 50)
         clf.fit(x_train , y_train)
         y_pred = clf.predict(x_test)
In [56]: | acc = accuracy_score(y_test, y_pred) * 100
         print("Accuracy =", acc)
         Accuracy = 80.64409030544488
 In [ ]:
```

SVM Model

KERNAL= LINEAR

```
In [58]: model_linear = SVC(kernel = "linear", random_state=40, gamma=0.1, C=1.
    model_linear.fit(x_train, y_train)
Out[58]: SVC(gamma=0.1, kernel='linear', random_state=40)
```

```
In [59]: pred_test_linear = model_linear.predict(x_test)
In [60]: np.mean(pred_test_linear==y_test) # Accuracy = 80.98%
Out[60]: 0.8098273572377158
In []:
```

KERNAL= POLYNOMIAL

```
In [61]: # Kernel = poly
model_poly = SVC(kernel = "poly", random_state=40, gamma=0.1, C=1.0)
model_poly.fit(x_train, y_train)
pred_test_poly = model_poly.predict(x_test)
```

```
In [62]: np.mean(pred_test_poly==y_test) # Accuracy = 82.05%
```

Out[62]: 0.8205179282868525

KERNAL= Radial Basis Function

```
In [63]: # kernel = rbf
model_rbf = SVC(kernel = "rbf", random_state=40, gamma=0.1, C=1.0)
model_rbf.fit(x_train,y_train)
pred_test_rbf = model_rbf.predict(x_test)
```

```
In [64]: np.mean(pred_test_rbf==y_test) # Accuracy = 82.80%
```

Out [64]: 0.8280876494023904

KERNAL= Sigmoid

```
In [65]: #'sigmoid'
model_sig = SVC(kernel = "sigmoid", random_state=40, gamma=0.1, C=1.0)
model_sig.fit(x_train, y_train)
pred_test_sig = model_rbf.predict(x_test)
```

```
In [66]: np.mean(pred_test_sig==y_test) #Accuracy = 82.80%
```

Out [66]: 0.8280876494023904

Conclusion:

Kernal Linear is more Accurate.

In []:	
In []:	