Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con modulo dispari e fase pari
- B) reale e pari
- C) con parte reale pari e parte immaginaria pari
- D) immaginaria e dispari

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- E) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

1

- **A)** x[n] = 0 per n > 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 4 e x[4] = A
- C) x[n] = 0 per n > 4 e x[4] = A
- **D)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è vera.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) Nessuna delle altre risposte
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 7. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

2

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A) x[n] = 0 per n < 4 e x[4] = A

B) x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C) x[n] = 0 per n > 4 e x[4] = A

D) $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 6. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 7. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) immaginaria e dispari
- B) con parte reale pari e parte immaginaria pari
- C) con modulo dispari e fase pari
- D) reale e pari

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 4 e $x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$
- C) x[n] = 0 per n < 4 e x[4] = A
- **D)** x[n] = 0 per n > 4 e x[4] = A

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 - t_2 = 0$.

- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 5. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **B)** y(t) è un processo casuale gaussiano con valor medio nullo
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 7. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- **A)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

- **D)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **E)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- \mathbf{A}) la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

$$\xrightarrow{x(t)} \qquad \xrightarrow{\frac{d}{dt}} \qquad (\cdot)^2 \qquad \xrightarrow{y(t)}$$

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)

Esercizio 5. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) x[n] = 0 per n < 3 e x[3] = A
- **D)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita

C)
$$\mu_n = \frac{2}{T+j2\pi n}$$

D)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

E) nessuna delle altre risposte

Esercizio 8. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio nullo
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **D)** Nessuna delle altre risposte

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 5. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- **A)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- E) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è vera.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

2

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 8. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

B)
$$\mu_n = \frac{2}{T + j2\pi n}$$

- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 5. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 6. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- **A)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **B)** y(t) è un processo casuale gaussiano con valor medio nullo
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **B)** y(t) è un processo casuale gaussiano con valor medio nullo
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- D) Nessuna delle altre risposte

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) la serie di Fourier di x(t) non è definita
- **D)** nessuna delle altre risposte
- **E)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0=t_1-t_2=0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Nessuna delle altre risposte è corretta.

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- E) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n < 2 e x[2] = A

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 8. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- E) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 3 e x[3] = A
- **B)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n < 3 e x[3] = A
- **D)** $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A_{\frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}}$

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **B)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- D) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 7. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

A) h[n] assume valori non nulli solo per $0 \le n < N$.

- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{T + j2\pi n}$
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **E)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 8. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **B)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Figura 1:

- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- B) $\mu_n = \frac{2}{T+j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 7. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

2

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

1

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con modulo dispari e fase pari
- B) immaginaria e dispari
- C) con parte reale pari e parte immaginaria pari
- D) reale e pari

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 7. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio nullo
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

D) Nessuna delle altre risposte

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- B) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

1

A)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

Figura 1: Sistema LTI.

D) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 7. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Nessuna delle altre risposte è corretta.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 3. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) reale e pari
- B) immaginaria e dispari

- C) con modulo dispari e fase pari
- D) con parte reale pari e parte immaginaria pari

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{T + i2\pi n}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e x[2] = A

Esercizio 6. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 7. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

2

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- B) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- E) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

1

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** x[n] = 0 per n < 4 e x[4] = A
- C) $x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Figura 1: Sistema LTI.

D)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è corretta.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 5. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 6. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B**) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{2}{T + j2\pi n}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

1

Figura 1: Sistema LTI.

- A) Nessuna delle altre risposte è corretta.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 5. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

Figura 2:

Esercizio 8. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- D) Nessuna delle altre risposte

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 2. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** $x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 7. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

2

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 4 e x[4] = A
- **C)** x[n] = 0 per n > 4 e x[4] = A
- **D)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

E)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

Esercizio 4. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)

Esercizio 5. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con parte reale pari e parte immaginaria pari
- B) con modulo dispari e fase pari
- C) reale e pari
- D) immaginaria e dispari

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

A) Si ha
$$h[n] = 2^n u[n]$$

B) h[n] è anticausale.

- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) reale e pari
- B) con modulo dispari e fase pari
- C) immaginaria e dispari
- D) con parte reale pari e parte immaginaria pari

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) $\mu_n = \frac{2}{T+j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è vera.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 7. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Figura 2:

Esercizio 8. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t)è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **B)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.

D) H(z) non contiene poli nell'origine.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

D)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** $\mu_n = \frac{1}{2T + j2\pi n}$
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{1}{2T + i2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Figura 1: Sistema LTI.

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è corretta.

Esercizio 5. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) reale e pari
- B) con modulo dispari e fase pari
- C) con parte reale pari e parte immaginaria pari
- **D)** immaginaria e dispari

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) H(z) non contiene poli nell'origine.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n < 2 e x[2] = A

Figura 2:

Esercizio 8. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio nullo
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è corretta.

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** $\mu_n = \frac{1}{2T + i2\pi n}$
- E) nessuna delle altre risposte

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e x[2] = A
- **B)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 5. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **B)** I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 6. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 7. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

1

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

Figura 2: Sistema LTI.

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0=t_1-t_2.$
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0=t_1-t_2=0$.
- ${f C}$) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte

D)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

E)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

Esercizio 3. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) reale e pari
- B) con parte reale pari e parte immaginaria pari
- C) con modulo dispari e fase pari
- D) immaginaria e dispari

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

1

Figura 1: Sistema LTI.

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 5. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 6. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

A) h[n] assume valori non nulli solo per $0 \le n < N$.

- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

1

A) Il sistema non è causale e h[n] = 0 per n > 0.

- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** x[n] = 0 per n < 4 e x[4] = A
- C) $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** $x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è corretta.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 7. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 8. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{T + j2\pi n}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- E) nessuna delle altre risposte

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** x[n] = 0 per n > 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **C)** x[n] = 0 per n < 4 e x[4] = A
- **D)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

Figura 2: Sistema LTI.

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0=t_1-t_2=0$.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- ${\bf C})$ Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

C)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

Figura 2:

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 6. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$$

B) nessuna delle altre risposte

C)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E) la serie di Fourier di x(t) non è definita

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n < 4 e x[4] = A
- **D)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** Nessuna delle altre risposte

Esercizio 4. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) reale e pari
- B) con parte reale pari e parte immaginaria pari
- C) immaginaria e dispari
- D) con modulo dispari e fase pari

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- D) Nessuna delle altre risposte è vera.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] è non causale.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esercizio 2. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 - t_2 = 0$.

- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 4. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 5. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- $\mathbf{B)} \ \mu_n = \frac{2}{T + j2\pi n}$
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 8. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Figura 2: Sistema LTI.

- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

Esercizio 5. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - \left(\frac{\pi}{N}\right)^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 6. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{T + i2\pi n}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è corretta.

Figura 1: Sistema LTI.

D) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 - t_2$.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 5. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con parte reale pari e parte immaginaria pari
- B) con modulo dispari e fase pari
- C) immaginaria e dispari
- D) reale e pari

Esercizio 6. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- D) Nessuna delle altre risposte

Esercizio 7. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.

C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è corretta.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{2}{T + j2\pi n}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 5. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

Esercizio 7. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

$$\begin{array}{c|c} x(t) & \hline & \frac{d}{dt} & \hline \\ \hline & & \end{array}$$

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 8. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte

C)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

D)
$$\mu_n = \frac{2}{T+j2\pi n}$$

E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- C) Si ha $h[n] = 2^n u[n]$
- **D)** H(z) non contiene poli nell'origine.

Esercizio 8. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$$

B)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

Esercizio 3. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Figura 1:

- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 4. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- **A)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **B)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- E) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è vera.

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.

- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 8. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 6. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- **A)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **B)** y(t) è un processo casuale gaussiano con valor medio nullo
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 8. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 3. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

1

A) con parte reale pari e parte immaginaria pari

- B) immaginaria e dispari
- C) reale e pari
- D) con modulo dispari e fase pari

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

2

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=1/a.

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- **B**) $\mu_n = \frac{1}{2T + j2\pi n}$
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- **A)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- E) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e x[2] = A

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Figura 2:

D) Nessuna delle altre risposte è vera.

Esercizio 8. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) immaginaria e dispari
- B) con parte reale pari e parte immaginaria pari
- C) con modulo dispari e fase pari
- D) reale e pari

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **D)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N = 10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Figura 2:

Esercizio 8. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** $x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 4 e x[4] = A

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

1

- **A)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- **B)** la serie di Fourier di x(t) non è definita
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- E) nessuna delle altre risposte

Esercizio 5. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 6. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 7. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- B) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- E) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Figura 2: Sistema LTI.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- E) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 4 e x[4] = A
- C) $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 4 e x[4] = A

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **D)** $\mu_n = \frac{2}{T + j2\pi n}$
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

A) I dati non sono sufficienti per calcolare media e varianza di y(t)

Figura 2:

- B) y(t)è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 8. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **C)** x[n] = 0 per n < 4 e x[4] = A
- **D)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- E) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 3. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- C) Si ha $h[n] = 2^n u[n]$
- **D)** H(z) non contiene poli nell'origine.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e x[2] = A

Esercizio 3. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Figura 2: Sistema LTI.

D) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 5. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{\sigma})^2}$$

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte

C)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

D)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

A) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

- B) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=1/a.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)

Esercizio 3. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

D) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 4 e x[4] = A
- C) x[n] = 0 per n < 4 e x[4] = A
- **D)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 5. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è corretta.

D) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 - t_2$.

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- $\mathbf{B)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- **E)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{T + i2\pi n}$
- B) la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema è causale.

- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è vera.

Esercizio 5. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 6. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 8. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) immaginaria e dispari
- B) con parte reale pari e parte immaginaria pari
- C) reale e pari
- D) con modulo dispari e fase pari

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) non è definita
- D) nessuna delle altre risposte
- **E)** $\mu_n = \frac{2}{T + j2\pi n}$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 3. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

E) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 6. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Figura 2: Sistema LTI.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0=t_1-t_2.$
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Nessuna delle altre risposte è vera.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.

C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **B)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n < 3 e x[3] = A

Esercizio 6. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 7. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

2

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - \left(\frac{\pi}{N}\right)^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Figura 2:

Esercizio 8. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) x[n] = 0 per n < 3 e x[3] = A
- **D)** x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 5. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Figura 2:

Esercizio 8. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

Figura 2:

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t-kT)\right] u(t-kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + i2\pi n}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 6. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{2})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è vera.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con parte reale pari e parte immaginaria pari
- B) immaginaria e dispari
- C) con modulo dispari e fase pari
- D) reale e pari

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n > 2 e x[2] = A

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 7. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Figura 2:

Esercizio 8. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- **B)** $\mu_n = \frac{1}{2T + i2\pi n}$
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **C)** x[n] = 0 per n < 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

- **A)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c k\pi)^2 (\frac{\pi}{N})^2}$
- B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 7. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **B)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- C) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

Figura 2: Sistema LTI.

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0=t_1-t_2=0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0=t_1-t_2.$
- **D)** Nessuna delle altre risposte è vera.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 3. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.

Figura 1: Sistema LTI.

D) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 - t_2$.

Esercizio 5. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi f T_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi f T)}{(\pi f T_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 6. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

B)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha support limitato, allora X(f) ha support limitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

D) Nessuna delle altre risposte è corretta.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e x[2] = A
- **B)** x[n] = 0 per n > 2 e $x[2] = A_{n_1 n_2 n_3 n_4}^{21 z_2 z_3}$
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t-kT)\right] u(t-kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 7. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte

- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 8. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 3 e x[3] = A
- **B)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n < 3 e x[3] = A
- **D)** $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp \left[-2\pi^2 \frac{n^2}{T^2} \right]$
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 3. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

E) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 5. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è vera.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.

- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 8. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con modulo dispari e fase pari
- B) immaginaria e dispari
- C) reale e pari
- D) con parte reale pari e parte immaginaria pari

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è vera.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- E) $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$

Esercizio 6. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 7. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

2

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Figura 2:

Esercizio 8. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 2 e x[2] = A
- **C)** x[n] = 0 per n > 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Nessuna delle altre risposte è corretta.

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 8. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) immaginaria e dispari
- B) con parte reale pari e parte immaginaria pari
- C) reale e pari
- D) con modulo dispari e fase pari

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{T})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** $\mu_n = \frac{1}{2T + i2\pi n}$
- E) nessuna delle altre risposte

Esercizio 5. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 6. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

Figura 2: Sistema LTI.

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0=t_1-t_2=0$.
- ${f C}$) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

C)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{1}{2T + i2\pi n}$

Esercizio 3. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- **A)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio nullo
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- D) Nessuna delle altre risposte

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 8. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - \left(\frac{\pi}{N}\right)^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **D)** Nessuna delle altre risposte

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 4. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è corretta.

Esercizio 3. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **B)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{2}{T + i2\pi n}$
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 7. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 8. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte

C)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 6. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 7. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)

D) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** Si ha $h[n] = 2^n u[n]$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 6. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) la serie di Fourier di x(t) non è definita

B)
$$\mu_n = \frac{1}{2T + i2\pi n}$$

C)
$$\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$$

- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- E) nessuna delle altre risposte

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **E)** $\mu_n = \frac{2}{T + i2\pi n}$

Esercizio 3. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **E)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 4. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio nullo
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- D) Nessuna delle altre risposte

Esercizio 5. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 3 e x[3] = A
- C) x[n] = 0 per n > 3 e x[3] = A
- **D)** $x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 7. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 8. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con parte reale pari e parte immaginaria pari
- B) immaginaria e dispari
- C) reale e pari
- D) con modulo dispari e fase pari

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{2}{T + j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- D) nessuna delle altre risposte

E)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

Figura 2:

Esercizio 8. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) non è definita
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

D)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

E)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n < 3 e x[3] = A
- **D)** x[n] = 0 per n > 3 e x[3] = A

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 7. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{2\pi})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) immaginaria e dispari
- B) con modulo dispari e fase pari
- C) con parte reale pari e parte immaginaria pari
- D) reale e pari

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Nessuna delle altre risposte è corretta.

Esercizio 2. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con modulo dispari e fase pari
- B) immaginaria e dispari
- C) con parte reale pari e parte immaginaria pari
- D) reale e pari

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.

- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 5. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

D) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

E)
$$\mu_n = \frac{1}{2T + j2\pi n}$$

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

A) Nessuna delle altre risposte è vera.

- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** x[n] = 0 per n > 2 e $x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$

Esercizio 5. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{1}{2T + j2\pi n}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 7. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) Nessuna delle altre risposte

- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- E) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 5. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 7. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è anticausale.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 4. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 3 e x[3] = A
- **B)** $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) $x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n < 3 e x[3] = A

Esercizio 7. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 3 e x[3] = A
- **C)** x[n] = 0 per n < 3 e x[3] = A
- **D)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

- **A)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c k\pi)^2 (\frac{\pi}{N})^2}$
- B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) h[n] è anticausale.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

Figura 2: Sistema LTI.

- A) Nessuna delle altre risposte è corretta.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0=t_1-t_2.$
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) immaginaria e dispari
- B) con parte reale pari e parte immaginaria pari
- C) con modulo dispari e fase pari
- **D)** reale e pari

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** x[n] = 0 per n > 2 e x[2] = A

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Nessuna delle altre risposte è corretta.

Figura 2:

Esercizio 8. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t)è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- **A)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.

Figura 2: Sistema LTI.

C) Il sistema è causale.

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B**) $\mu_n = \frac{1}{2T + j2\pi n}$
- C) la serie di Fourier di x(t) non è definita
- **D)** nessuna delle altre risposte
- **E)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 8. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con modulo dispari e fase pari
- B) reale e pari
- C) con parte reale pari e parte immaginaria pari
- D) immaginaria e dispari

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- **A)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **E)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- **A)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A) nessuna delle altre risposte

B)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

C)
$$\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$$

- **D)** la serie di Fourier di x(t) non è definita
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è vera.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{2\pi})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 5. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)

Esercizio 7. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- **A)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

1

A) Nessuna delle altre risposte è corretta.

Figura 2: Sistema LTI.

- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) x[n] = 0 per n > 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n > 2 e x[2] = A

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

Esercizio 8. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n > 3 e x[3] = A

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

1

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **B)** $\mu_n = \frac{2}{T + j2\pi n}$
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) non è definita
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 7. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- D) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esercizio 3. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

1

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Figura 2: Sistema LTI.

C) Il sistema è causale

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 5. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **C**) $\mu_n = \frac{2}{T + j2\pi n}$
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 7. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 8. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	75

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) la serie di Fourier di x(t) non è definita
- **D**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 5. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 7. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **E)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 8. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	76

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con parte reale pari e parte immaginaria pari
- B) immaginaria e dispari
- C) con modulo dispari e fase pari
- D) reale e pari

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.

D) h[n] è non causale.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

Esercizio 5. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{2\pi})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- **D)** nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Figura 2: Sistema LTI.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	77

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Figura 2: Sistema LTI.

Esercizio 4. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è corretta.

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 8. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	78

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) immaginaria e dispari
- B) reale e pari
- C) con modulo dispari e fase pari
- D) con parte reale pari e parte immaginaria pari

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

1

- **A)** $x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 4 e x[4] = A
- C) $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

D) x[n] = 0 per n > 4 e x[4] = A

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

- **A)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 (\frac{\pi}{N})^2}$
- B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - \left(\frac{2\pi}{N}\right)^2}$$

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{2}{T+j2\pi n}$
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- **D)** la serie di Fourier di x(t) non è definita
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

2

Figura 2: Sistema LTI.

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- ${\bf B)}\,$ Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	79

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è vera.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- E) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 3. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Figura 2:

- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 3 e x[3] = A
- **C)** x[n] = 0 per n < 3 e x[3] = A
- **D)** $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 5. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 6. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 7. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{T_c})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \sqrt{2\pi} \exp \left[-2\pi^2 n^2 \right]$$

$$\mathbf{B)} \ \mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$$

- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	80

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- E) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

1

- A) nessuna delle altre risposte
- **B)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **C**) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n < 4 e x[4] = A
- **D)** x[n] = 0 per n > 4 e x[4] = A

Esercizio 6. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

- **A)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 (\frac{2\pi}{N})^2}$
- **B)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c k\pi)^2 (\frac{\pi}{N})^2}$
- C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.
- **D)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c k\pi)^2 (\frac{2\pi}{N})^2}$
- **E)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 (\frac{\pi}{N})^2}$

Esercizio 7. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

Figura 2: Sistema LTI.

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0=t_1-t_2=0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	81

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) Nessuna delle altre risposte
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Nessuna delle altre risposte è corretta.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **B)** la serie di Fourier di x(t) non è definita
- **C**) $\mu_n = \frac{1}{2T + j2\pi n}$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 6. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **E)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 7. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

2

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	82

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi f T_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi f T)}{(\pi f T_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **B)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

1

A) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Figura 1:

- **B)** I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è corretta.

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

2

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **B)** $\mu_n = \frac{1}{2T + j2\pi n}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- E) nessuna delle altre risposte

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	83

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **B)** $\mu_n = \frac{1}{2T + j2\pi n}$
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con modulo dispari e fase pari
- B) immaginaria e dispari

- C) reale e pari
- D) con parte reale pari e parte immaginaria pari

Esercizio 8. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	84

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

1

A) nessuna delle altre risposte

- **B)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** la serie di Fourier di x(t) non è definita
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 5. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **E)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 6. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **B)** y(t) è un processo casuale gaussiano con valor medio nullo
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 - t_2 = 0$.

- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	85

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 5. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 6. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- **A)** y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 7. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con parte reale pari e parte immaginaria pari
- B) con modulo dispari e fase pari
- C) immaginaria e dispari
- D) reale e pari

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

2

Figura 2: Sistema LTI.

- A) Nessuna delle altre risposte è vera.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0=t_1-t_2.$
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	86

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Figura 2: Sistema LTI.

D) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 - t_2 = 0$.

Esercizio 4. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 5. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

A)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

B)
$$\mu_n = \frac{2}{T+j2\pi n}$$

- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- D) nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 8. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	87

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

1

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Figura 1:

Esercizio 4. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** la serie di Fourier di x(t) non è definita
- **E)** $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 6. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) reale e pari
- B) con modulo dispari e fase pari
- C) immaginaria e dispari
- D) con parte reale pari e parte immaginaria pari

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

2

- **A)** x[n] = 0 per n < 4 e x[4] = A
- **B)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **C)** x[n] = 0 per n > 4 e x[4] = A
- **D)** $x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Figura 2: Sistema LTI.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è corretta.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- C) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) Nessuna delle altre risposte
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n > 3 e x[3] = A

Esercizio 5. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

- **A)** $Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c k\pi}{(\pi fT_c k\pi)^2 (\frac{\pi}{N})^2}$
- **B)** $Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 (\frac{\pi}{N})^2}$
- C) $Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c k\pi}{(\pi fT_c k\pi)^2 (\frac{2\pi}{N})^2}$
- **D)** La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.
- **E)** $Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 (\frac{2\pi}{N})^2}$

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- **D)** nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=1/a.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Figura 2: Sistema LTI.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è vera.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	89

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 2. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- C) I dati non sono sufficienti per calcolare media e varianza di y(t)
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n > 3 e x[3] = A
- **D)** x[n] = 0 per n < 3 e x[3] = A

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **B)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** nessuna delle altre risposte
- **E)** la serie di Fourier di x(t) non è definita

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- D) Nessuna delle altre risposte è corretta.

Esercizio 8. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	90

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 1 per $0 \le t \le T/3$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - T/3)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è corretta.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **B)** y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 7. (1.5 Punti.)

Figura 2:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) Nessuna delle altre risposte
- **D)** y(t) è un processo casuale gaussiano con valor medio nullo

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- \mathbf{A}) la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{2}{T+j2\pi n}$
- **D)** nessuna delle altre risposte
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	91

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- C) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- E) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 3. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) non è definita
- **D)** $\mu_n = \frac{2}{T + j2\pi n}$
- **E)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 5. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 7. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

A) Si ha
$$h[n] = 2^n u[n]$$

B) h[n] assume valori non nulli solo per $0 \le n \le 3$.

- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è anticausale.

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- E) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.

Esercizio 6. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** Nessuna delle altre risposte

Esercizio 7. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

2

- **A)** $\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$
- B) nessuna delle altre risposte
- C) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **D)** $\mu_n = \frac{2}{T+j2\pi n}$
- **E)** la serie di Fourier di x(t) non è definita

Figura 2: Sistema LTI.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0=t_1-t_2.$
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **B)** y(t) è un processo casuale gaussiano con valor medio nullo
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** Nessuna delle altre risposte

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **E)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

- A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.
- **B)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 (\frac{\pi}{N})^2}$
- C) $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c k\pi)^2 (\frac{\pi}{N})^2}$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 7. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e x[2] = A
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **D)** $\mu_n = \frac{1}{2T + j2\pi n}$
- **E)** la serie di Fourier di x(t) non è definita

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	94

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ ed $h_2(t)$ valgono 1/2 per $0 \le t \le T$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- C) Nessuna delle altre risposte è vera.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.

Esercizio 3. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 2 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

Figura 2:

- A) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- B) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale gaussiano con valor medio nullo
- D) Nessuna delle altre risposte

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 5. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) nessuna delle altre risposte
- **B**) $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- C) la serie di Fourier di x(t) non è definita
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E**) $\mu_n = \frac{1}{2T + j2\pi n}$

Esercizio 6. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 7. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 8. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	95

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** la serie di Fourier di x(t) non è definita
- B) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- C) nessuna delle altre risposte
- **D)** $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **E)** $\mu_n = \sqrt{2\pi} \exp\left[-2\pi^2 n^2\right]$

Esercizio 2. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- B) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- C) Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- **D)** Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- E) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esercizio 3. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è corretta.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 5. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 6. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n > 3 e x[3] = A

Esercizio 7. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Figura 2:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) I dati non sono sufficienti per calcolare media e varianza di y(t)
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$

- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$

Esercizio 8. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	96

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 5. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- **A)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)

Esercizio 6. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 0 (quadratore in cascata ad un derivatore).

Figura 1:

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- **B)** I dati non sono sufficienti per calcolare media e varianza di y(t)
- C) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- **D)** y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ ed $h_2(t)$ valgono 2 per $0 \le t \le T/2$ e 0 altrove, ed $h_3(t) = \delta(t) - \delta(t - T/2)$. Dire quali delle seguenti affermazioni è vera:

- A) Nessuna delle altre risposte è vera.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 8. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$
- **B)** la serie di Fourier di x(t) non è definita
- C) $\mu_n = \frac{1}{2T + j2\pi n}$
- D) nessuna delle altre risposte
- E) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	97

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n > 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 4. (1.5 Punti.)

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

Figura 1:

- A) y(t) è un processo casuale gaussiano con valor medio nullo
- B) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- C) y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$
- **D)** Nessuna delle altre risposte

Esercizio 5. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 2: Sistema LTI.

mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Nessuna delle altre risposte è corretta.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-2(t - kT)\right] u(t - kT)$$

dove u(t) è la funzione gradino unitario. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- A) $\mu_n = \frac{1}{2T + j2\pi n}$
- **B)** la serie di Fourier di x(t) non è definita
- C) nessuna delle altre risposte
- **D)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)
- **E)** $\mu_n = \frac{2}{4T^2 + 4\pi^2 n^2}$

Esercizio 7. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

2

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 8. (1 Punto.) Sia X(f) la trasformata di Fourier del segnale x(t). Quale delle seguenti affermazioni è vera?

- A) Se x(t) ha supporto illimitato, allora X(f) ha sempre supporto limitato.
- **B)** Se x(t) ha supporto limitato, allora X(f) ha supporto illimitato.
- C) Se X(f) ha supporto illimitato, allora x(t) è un segnale ad energia finita.
- **D)** Se x(t) ha supporto limitato, allora X(f) ha supporto limitato.
- E) Se x(t) ha supporto illimitato, allora x(t) è un segnale ad energia finita.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	98

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 Punti.)

Figura 1:

Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (estrattore del valore assoluto in cascata ad un derivatore). Dire quale delle seguenti affermazioni è vera

- A) Nessuna delle altre risposte
- B) y(t) è un processo casuale gaussiano con valor medio nullo
- C) y(t) è un processo casuale gaussiano con valor medio $4\sqrt{\pi B^3/3}$
- **D)** y(t) è un processo casuale con valor medio $4\sqrt{\pi B^3/3}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e x[2] = A

Esercizio 5. (1 Punto.) E' dato il segnale $x(t) = \sin(2\pi f_0 t) e^{-3t^4}$. La sua trasformata di Fourier è una funzione

- A) con modulo dispari e fase pari
- B) con parte reale pari e parte immaginaria pari
- C) immaginaria e dispari
- D) reale e pari

Esercizio 6. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-\frac{(t-kT)^2}{2}\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

- **A)** $\mu_n = \sqrt{2\pi} \exp[-2\pi^2 n^2]$
- B) nessuna delle altre risposte
- C) $\mu_n = \frac{\sqrt{2\pi}}{T} \exp\left[-2\pi^2 \frac{n^2}{T^2}\right]$
- **D)** la serie di Fourier di x(t) non è definita
- **E)** la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

Esercizio 7. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 8. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI mostrato in figura 2, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- **A)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- B) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- C) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.
- **D)** Nessuna delle altre risposte è corretta.

Figura 2: Sistema LTI.

Esame accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	99

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) E' dato il segnale y(t) = 2x(2t), dove x(t) è un segnale reale a banda limitata.

- A) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è minore di quella di x(t)
- B) y(t) ha banda limitata maggiore di quella di x(t) e la sua energia è maggiore di quella di x(t)
- C) y(t) ha banda illimitata e la sua energia è maggiore di quella di x(t)
- **D)** y(t) ha banda limitata minore di quella di x(t) e la sua energia è maggiore di quella di x(t)

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n > 3 e x[3] = A

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 Punti.) Si consideri il segnale periodico

$$x(t) = \sum_{k=-\infty}^{\infty} \exp\left[-|t - kT|\right]$$

dove T è una costante reale maggiore di zero. I coefficienti μ_n dello sviluppo del segnale in serie di Fourier di x(t) valgono:

1

A) la serie di Fourier di x(t) diverge (esiste almeno un coefficiente $\mu_n \to \infty$)

B)
$$\mu_n = \frac{2}{T + j2\pi n}$$

C) nessuna delle altre risposte

D)
$$\mu_n = \frac{2T}{T^2 + 4\pi^2 n^2}$$

E) la serie di Fourier di x(t) non è definita

Esercizio 5. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 6. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 7. (1.5 Punti.) Un processo casuale gaussiano bianco n(t) costituisce l'ingresso del sistema LTI

Figura 1: Sistema LTI.

mostrato in figura 1, dove $h_1(t)$ vale 2 per $0 \le t \le 3T$ e 0 altrove, $h_2(t) = -h_1(t)$, ed $h_3(t) = \delta(t) - \delta(t - 3T)$. Dire quali delle seguenti affermazioni è vera:

- A) Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per ogni $\tau_0 = t_1 t_2$.
- **B)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono correlati per ogni $\tau_0 = t_1 t_2$.
- C) Nessuna delle altre risposte è corretta.
- **D)** Le variabili casuali $x(t_1)$ ed $y(t_2)$ sono statisticamente indipendenti per $\tau_0 = t_1 t_2 = 0$.

Figura 2:

Esercizio 8. (1.5 Punti.) Un processo casuale x(t) gaussiano con spettro di potenza $S_x(f) = 1$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B, viene posto all'ingresso del sistema indicato in figura 1 (quadratore in cascata ad un derivatore).

Ricordando che il quarto momento di una variabile casuale gaussiana a valor medio nullo e varianza σ^2 è pari a $3\sigma^4$, dire quale delle seguenti affermazioni è vera

- A) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $128B^6\pi^4/9$
- B) y(t) è un processo casuale con valor medio $8B^3\pi^2/3$ e varianza $384B^6\pi^4/9$
- C) y(t) è un processo casuale gaussiano con valor medio $8B^3\pi^2/3$
- **D)** I dati non sono sufficienti per calcolare media e varianza di y(t)