

DESCRIPTION

The 100N03 uses advanced trench technology

And design to provide excellent RDS (ON) with

Low gate charge. It can be used in a wide

Vanety of applications.

V _{DS}	Rds(ON)	lσ
30V	3.5mΩ	100A

GENERAL FEATURES

- $V_{DS} = 30 \text{ V}, I_{D} = 100 \text{ A}$ $R_{DS(ON)} < 5.5 \text{ m}\Omega @ V_{GS} = 10 \text{ V} (Typ:4m\Omega)$
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stabilty and unifomity with high EAS
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard Switched and High Frequency Circuits
- Uninterruptible Power Supply

Ordering Information

PART NUMBER	PACKAGE	BRAND
100N03	TO-220	OGFD

Absolute Maximum Ratings (TC=25°C, unless otherwise noted)

Symbol	Parameter	100N03	Units
VDS	Drain-to-Source Voltage	30	V
ls.	Continuous Drain Current	100	
ID	Drain Current-Continuous(Tc=100 °C)	70	Α
Ірм	Pulsed Drain Current@VG=10V	400	
Po	Power Dissipation	180	W
Vgs	Gate-to-Source Voltage	± 20	V
Eas	Single PulseAvalanche Energy (L=1mH, IAS=40A)C	350	mJ
Т J and Тsтg	Operating Junction and Storage Temperature Range	-55 to 175	°C

Thermal Resistance

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Page Junction to Case				0.83	°C/W	Water cooled heatsink, PD adjusted for
Rejc Junction-to-Case	07**				a peak junction temperature of +175℃.	

OFF Characteristics TJ=25°C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Bvdss	Drain-to-Source Breakdown Voltage	30		1	V	Vgs=0, ID=250μA
Igss	Gate-to-Source Forward Leakage	1		±100	nA	V _{DS} =0V, V _{GS} =±20V
IDSS	Zero Gate Voltage Drain Current	1		1	μΑ	V _{DS} =30V, V _{GS} =0V

ON Characteristics TJ=25 $^{\circ}$ C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max	Units	Test Conditions
RDS(ON)	Static Drain-to-Source On-Resistance		4.0	5.5	mΩ	Vgs=10V,ID=20A
VGS(TH)	Gate Threshold Voltage, Figure 12.	1.0	1.5	3.0	٧	Vps=10V, lp=250μA
Gfs	Forward Transconductance	50			S	VDS=10V, ID=20A

Dynamic Characteristics Essentially independent of operating temperature

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ciss	Input Capacitance		3300			
Coss	Output Capacitance		1300		pF	V _{DS} =25V,V _{GS} =0V, f=1.0MHZ
Crss	Reverse Transfer Capacitance		200			
Qg	Total Gate Charge		100			Vps=15V, Vgs=5V,
Qgs	Gate-to-Source Charge		25		nC	ID=30A
Qgd	Gate-to-Drain ("Miller") Charge		45			

Drain-Source Diode Characteristics

Diode Forward Voltage	VsD	Vgs=0V,Is=20A			1.2	V	
Diode Forward Current	Is				100	Α	
Reverse Recovery Time	trr	TJ=25℃,IF=60A		56		nS	
Reverse Recovery Charge	Qrr	Di/dt = 100 A/μs		110		nC	
Forword Tum-On Time	t on	Intrinsic turn-on time is negligible (turn-on is dominated by LS+L					

Notes:

- 1. Repetitive Rating:Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \leq 10$ sec.
- 3. Pulse Test:Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production.
- 5. EAS condition: Tj=25 $^{\circ}$ C,VDD=100V,VG=10V,L=0.5mH,Rg=25 Ω .

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

www.goford.cn TEL: 0755-86350980 FAX: 0755-86350963

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Single Pulse

1

Figure 9 BV_{DSS} vs Junction Temperature

100

Figure 11 Normalized Maximum Transient Thermal Impedance