PHI251 - Logic

Grant Griffiths

Spring 2012

Contents

1	Fun	Fundamental Concepts and Truth-Functional Analysis						
	1.1	Introduction						
	1.2	Truth-Functional Representation						
	1.3	Truth-Functional Analysis						
	1.4	Conditionals						
	1.5	Truth Tables						
2	Derivations and Models							
	2.1	Inference Rules						
	2.2	Equivalence Rules						
	2.3	Conditional Proof and Indirect Proof						
3	Quantificational Logic							
	3.1	The Language						
	3.2	Derivations						
	3.3	Predicate Logic Truth-Trees						
	3.4	Unrestricted Quantification						
	3.5	English Arguments						
	3.6	Identity, Definite Descriptions, and Function Symbols						
	3.7	Quantifier Semantics						

Chapter 1: Fundamental Concepts and Truth-Functional Analysis

Lesson 1.1: Introduction

- Argument: When reasons are given to justify a belief
- Argument Indicator Words: indicate that an conclusion is being presented
 - So
 - Hence
 - Thus
 - Therefore
 - It must be that
- Premise Indicator Words: indicate that a premise is being presented
 - For
 - Since
 - Because
 - Due to the fact that

Validity

- In a valid argument, if the premises were all true, the conclusion would also be true
- In a valid argument, it is not possible for the conclusion to be false when all the premises are true

• Invalidity

- When the premises are true and the conclusion is false.
- When an argument's premises do not truly prove it's conclusion.
- Soundness: A sound argument is an argument with both of the following features:
 - It is valid
 - All of its premises are true

• Validity and Consistency

- Any argument is valid if and only if it would be inconsistent to assert all of it's premises but deny it's conclusion.

• Considering the possibilities

- To establish that an argument is valid, it seems that we must somehow show that no possible situation exists in which the premises are true with the conclusion false.
- Need just one possible situation to show invalidity

Lesson 1.2: Truth-Functional Representation

• Conjunction

- First conjunct, Conjunct, Second Conjunct
- $-A \wedge B = AND$

• Disjunction

- First Disjunct, Disjunct, Second Disjunct
- $-A \vee B = OR$

• Formulas

- We use formulas to represent sentences
- if P is any formula, then so is P
- if P and Q are formulas, then $P \wedge Q$ is a formula
- if P and Q are any formulas, then $P \vee Q$ is a formula

• Advantages of Formulas

- Formulas can be very complex
- They can express complex claims clearly and compactly
- English sentences can be long

• Major connective

- The logical connector used last in the process of constructing the formula out of its parts

• Sentence Forms

- Patterns or structural frameworks, for sentences
- Look like formulas

Lesson 1.3: Truth-Functional Analysis

	Shown by Considering Every Possible Case	Shown by Example
Argument	Valid: In every possible case, if premises are true, conclusion is also true.	Invalid : In at least one possible case, premises are true, conclusion is false.
Set of Sentences	Inconsistent : In every possible case, at least one is false.	Consistent: In at least one possible case, all are true
Pair of Sentences	Equivalent : In every possible case, they have the same truth-value.	Not equivalent: In at least one possible case, they have different truth-values.
Sentence	Tautologous: In every possible case, true Contradictory: In every possible case, false.	Contingent: True in at least one possible case and false in at least one possible case

Lesson 1.4: Conditionals

- False ONLY when the antecedent is true and the consequent is false.
- For this outline, I've represented false as 0 and true as 1.

Lesson 1.5: Truth Tables

• Conjunction (AND)

P	Q	$\mathbf{P}\wedge\mathbf{Q}$
0	0	0
0	1	0
1	0	0
1	1	1

• Disjunction (OR)

P	Q	$\mathbf{P} ee \mathbf{Q}$
0	0	0
0	1	1
1	0	1
1	1	1

• Conditional (If/then)

P	Q	$\mathbf{P}\Rightarrow\mathbf{Q}$
0	0	1
0	1	1
1	0	0
1	1	1

Chapter 2: Derivations and Models

Lesson 2.1: Inference Rules

Lesson 2.2: Equivalence Rules

Lesson 2.3: Conditional Proof and Indirect Proof

Chapter 3: Quantificational Logic

Lesson 3.1: The Language

Lesson 3.2: Derivations

Lesson 3.3: Predicate Logic Truth-Trees

Lesson 3.4: Unrestricted Quantification

Lesson 3.5: English Arguments

Lesson 3.6: Identity, Definite Descriptions, and Function Symbols

Lesson 3.7: Quantifier Semantics

Bibliography

Book used: Modern Formal Logic (Second Edition) Professor: Notes from Dr. Mark Brown's Spring 2012 course