A equação logística aplicada à população brasileira

Em 2019 foi publicado um artigo com o objetivo de estudar, através pas equações diferenciais ordinárias, o crescimento da população brasileira, aplicando a egração logística de Verhulst nos dados obtidos pelo IBGE entre es avos de 1872 e 2010.

Para
$$t = 2$$
, aproximamos: $\frac{dP}{dt}(2) = \frac{P(20) + P(2)}{18} \approx 249.635,39$

tados são discretos. Portanto, faremos a aproximação

de
$$\frac{dP}{dt} \approx \frac{P(t+h) - P(t)}{h}$$

Como a solução da equação logistica é P(t)= Po.K e temos todos os valores, portanto podemos substituir os

valores de r, ke Po e obter a função deségada e com os valores obtidos plotamos o gráfico:

Valor real	Valor aproximado	Erro
9930478	10536831,73	0,0610598737
14333915	17869644,30	0,2466687781
17438434	23835912,95	0,3668608632
30635605	41663322,50	0,3599640844
41236315	70244256,06	0,7034561906
51944397	89457772,66	0,7221832926
70992343	112066519,92	0,5785719302
94508583	137742784,87	0,4574632324
121150573	165753425.84	0.3681604778

146917459 169590693 190755799 Uma solução encontrada foi a aviálise do ponto de inflexão Figura 4: Aproximação obtida através da regressão linear de solução da equação logística, que quando existir, ocorre quando P = k/2. Denotando por t o panto de inflexão, termos $p(\bar{t}) = \frac{K}{2}$, logo: $p(\bar{t}) = \frac{K}{2} = \frac{K}{2}$

Utilizando as propriedades de logaritmos, podemos isolar r na última expressão e obter: $r = \frac{1}{t} . \ln \left(\frac{K - P_0}{P_0} \right)$

- · Pela figura 3, o ponto t deve estar entre 110 e 121, deste modo, o valor do ponto de inflexão K será aproximado pela média entre P(110) c P(121), isto é: K = 268,068032 (em milhões)
- De forma análoga, realizamos a aproximação t = 110+121 🕪 t = 115,5 🏌

Portanto, $V = \frac{1}{1155} \cdot \ln\left(\frac{K-P_0}{P_0}\right)$ c substituindo os valores de K e P_0 , temos: V = 0.028206787740489

Ecom os novos valores de Ker chegou-se a uma nova solução:
$$P(t) = \frac{268,068032}{\left(\frac{268,068032}{9,930438} - 1\right) \cdot \frac{-0.028 \dots t}{2000}}$$
Resolvendo a função para os valores de te recalculando os erros,

temos a nova tabela e gráfico:

Valor real	Valor aproximado	Erro	
9930478	10,4842549826132	0,0557653904085184	
14333915	16,9803052509826	0,184624385660343	
17438434	22,0583363571178	0,264926446785177	
30635605	36,5005312077383	0,191441501081447	
41236315	58,162860816542	0,410476683392829	
51944397	72,023943401452	0,386558465611834	
70992343	87,8065079565311	0,23684476728048	
94508583	105,191802494183	0,113039674864053	
121150573	123,657978319093	0,0206966030535668	
146917459	144,410053680907	0,017066762086412	
169590693	161,068059128179	0,050254136716223	
190755799	178,588018894026	0,0637872094571268	
Tabela 3: Erros obtidos via ponto de inflexão.			

Percebemos que es erros diminuiram e os valores foram melhor aproximados.

Concluímos que, analisando os resultados obtidos, o modelo do ponto de inflexão fornece um resultado mais preciso, com erros menores, se comparado com a tentativa inícial via regressão linear do termo I dP. No entanto, percebemos que ambos os modelos estão distantes de ser perfeitos ou idears, mas podem nos forneces bons modelos para amálise de populações e seu crescimento?