Embarrassingly Parallel GFlowNets

Tiago da Silva, Luiz Carvalho, Amauri Souza, Samuel Kaski, Diego Mesquita

Keywords — GFlowNets, Distributed Bayesian inference

TL:DR

- we introduce the contrastive balance condition (CBC) as a provably sufficient and minimally parameterized criterion for sampling correctness in GFlowNets,
- we develop the first general-purpose algorithm, called Embarrassingly Parallel GFlowNets (EP-GFlowNets), enabling minimum-communication parallel and federated inference for probabilistic models with compositional and finite supports,
- we show that EP-GFlowNets can accurately and efficiently learn to sample from a target in a distributed setting in many benchmark tasks, including phylogenetic inference and Bayesian structure learning,
- we verify that minimizing the **CB loss**, derived from the CBC, often leads to faster convergence than alternative learning objectives.

I. Background: GFlowNets

GFlowNets are amortized algorithms for sampling from distributions over discrete and compositional objects (such as graphs).

Figure 1: A GFlowNet learns a forward policy on a state graph.

Briefly, a flow network is defined over an extension $\mathcal S$ of $\mathcal G$, which then represents the sink nodes. To navigate within this network and sample from $\mathcal G$ proportionally to a reward function $R:\mathcal G\to\mathbb R_+$, a forward (resp. backward) policy $p_F(\tau)$ ($p_B(\tau|x)$) is used.

$$\mathbf{p}_{\mathbf{F}}(\boldsymbol{\tau}) = \prod_{(s,s')\in\boldsymbol{\tau}} p_{F(s'\mid s)} \text{ and } \sum_{\boldsymbol{\tau} \rightsquigarrow g} \mathbf{p}_{\mathbf{F}}(\boldsymbol{\tau}) = R(g). \tag{1}$$

To achieve this, we parameterize $p_F(\tau)$ as a neural network trained by minimizing

$$\mathcal{L}_{TB}(p_F) = \mathbb{E}\left[\left(\log \frac{p_F(\tau)Z}{p_B(\tau \mid x)R(x)}\right)^2\right]. \tag{2}$$

for a given $p_B(\tau|x)$. GFlowNets can be trained in an **off-policy** fashion and the above expectation can be under any full-support distribution over trajectories.

II. Background: Embarrassingly Parallel Inference

Reward functions can often be multiplicatively decomposed in simpler primitives, $R(g) = \prod \ R_{\pmb{i}}(g).$

Each R_i may be a **subposterior** conditioned on a subsample of the data (Figure 2). Often, the R_i 's cannot be disclosed due to privacy or computational constraints.

Figure 2: Approximated and embarrassingly parallel Bayesian inference.

Commonly, an approximation q_i to each R_i is locally learned and publicly shared to a centralizing server. An approximation to R, then, is obtained by approximating

$$q(g) \approx \prod_{1 \le i \le n} \mathbf{q_i}(g). \tag{4}$$

III. Contrastive Balance Condition

Our objective is to solve the approximation problem in Equation 4 when each q_i is a trained GFlowNet. To achieve this, we develop the CB condition.

Contrastive balance condition. Let p_F and p_B be the policies of a GFlowNet. Then, $\frac{p_F(\tau)}{R(x)p_B(\tau|x)} = \frac{p_F(\tau')}{R(x')p_B(\tau'|x')}$

for all trajectories τ, τ' finishing at x, x' is a sufficient condition for ensuring that a GFlowNet samples sink nodes from $\mathcal G$ proportionally to R.

Differently from alternative balance conditions, the CB does not rely on auxiliary quantities such as Z. Clearly, enforcing CB is a sound learning objective for training GFlowNets.

Contrastive balance loss. Let p_F and p_B be the policies of a GFlowNet. Define $\mathcal{L}_{CB}(p_F) = \mathbb{E}\left[\left(\log\frac{p_F(\tau)}{R(x)p_B(\tau|x)} - \log\frac{p_F(\tau')}{R(x')p_B(\tau'|x')}\right)^2\right]. \tag{6}$

Then, $p_F^\star = \operatorname{argmin} \, \mathcal{L}_{CB}(p_F)$ samples from $\mathcal G$ proportionally to R.

Our empirical analysis shows that minimizing \mathcal{L}_{CB} , which has minimal parameterization, often leads to faster convergence relatively to previously proposed methods.

Figure 3: \mathcal{L}_{CB} often outperforms \mathcal{L}_{TB} , \mathcal{L}_{DB} , and $\mathcal{L}_{DB \, \mathrm{mod}}$ in terms of convergence speed.

IV. EP-GFlowNets and Aggregating Balance Condition

Figure 4: An overview of EP-GFlowNets for learning GFlowNets in a distributed setting. We develop a divide-and-conquer algorithm to train GFlowNets in a parallel.

The condition below shows how to aggregate locally trained GFlowNets in a **single communication step** without directly evaluating the individual reward functions in the server.

Aggregating balance condition. Let $\left(p_F^{(1)},p_B^{(1)}\right),...,\left(p_F^{(N)},p_B^{(N)}\right)$ be the policies of N independently trained GFlowNets. Assume each $\left(p_F^{(i)},p_B^{(i)}\right)$ samples proportionally to R_i . If

$$\frac{\left(\prod_{1 \le i \le N} p_F^{(i)}(\tau)\right)}{\left(\prod_{1 \le i \le N} p_B^{(i)}(\tau \mid x)\right)} p_F(\tau') p_B(\tau \mid x) = \frac{\left(\prod_{1 \le i \le N} p_F^{(i)}(\tau')\right)}{\left(\prod_{1 \le i \le N} p_B^{(i)}(\tau' \mid x')\right)} p_F(\tau) p_B(\tau' \mid x'), \tag{9}$$

then the GFlowNet (p_F,p_B) samples from $\mathcal G$ proportionally to $\prod_{1\leq i\leq N}R_i.$

Similarly to the CB condition, we enforce the condition above by minimizing the expected log-squared difference between the left- and right-hand sides.

Aggregating balance loss. Under the conditions of Equation 7, define

$$\mathcal{L}_{AB}(p_F) = \mathbb{E}\left[\left(\log\frac{\left(\prod_{1\leq i\leq N}p_F^{(i)}(\tau)\right)}{\left(\prod_{1\leq i\leq N}p_B^{(i)}(\tau\mid x)\right)}\frac{p_F(\tau')}{p_B(\tau'\mid x')} - \log\frac{\left(\prod_{1\leq i\leq N}p_F^{(i)}(\tau')\right)}{\left(\prod_{1\leq i\leq N}p_B^{(i)}(\tau'\mid x')\right)}\frac{p_F(\tau)}{p_B(\tau\mid x)}\right)^2\right]. \tag{8}$$
 Then, \mathcal{L}_{AB} is globally minimized at a policy p_F sampling proportionally to $\prod_{1\leq i\leq N}R_i$.

Realistically, each GFlowNet will **only partially satisfy** their local balance conditions. Yet, we show the aggregated model can be **accurate** even under such **imperfect conditions**.

Influence of local failures. Under the notations of Equation 7, assume that

$$1 - \alpha_n \leq \min_{x \in \mathcal{G}, \tau \rightsquigarrow x} \frac{p_F^{(n)}(\tau)}{p_B^{(n)}(\tau \mid x) R_n(x)} \leq \max_{x \in \operatorname{cal}\{X\}, \tau \rightsquigarrow x} \frac{p_F^{(n)}(\tau)}{p_B^{(n)}(\tau \mid x) R_n(x)} \leq 1 + \beta_n \tag{9}$$

for each $n \in [[1, N]]$. Also, assume that the aggregated model satisfies Equation 7. Then, the Jeffrey divergence between the learned \hat{R} and target R distributions is bounded by

$$\mathcal{D}_J \Big(R, \hat{R} \Big) \le \sum_{n=1}^N \log \left(\frac{1 + \beta_n}{1 - \alpha_n} \right). \tag{1}$$

V. Empirical results on benchmark tasks

We assess the performance of EP-GFlowNets in distributed versions of set and sequence generation, grid exploration, Bayesian phylogenetic inference and structure learning.

Figure 5: Results for the Grid environment showcasing the correctness of EP-GFlowNets.

Figure 6: Results for Bayesian phylogenetic inference highlight that EP-GFlowNets can achieve a significant speed-up in learning while incurring a negligible accuracy loss.