

PROVA SCRITTA DI ELETTROTECNICA

Corso di Laurea in Ingegneria Informatica

~ .	00		
Pisa,	23	giugno	2000

Allievo:

1) Per il circuito di figura determinare l'espressione temporale della corrente sul condensatore C a seguito dell'applicazione in ingresso dell'impulso rettangolre di figura.

2) Per il circuito di figura determinare R ed α affinchè la funzione di trasferimento $W(s) = V_u(s)/V_i(s)$ abbia uno zero reale in 1000 rad/sec ed il circuito risulti marginalnente stabile (1 polo nell'origine). Tracciare quindi i diagrammi di Bode del modulo e della fase.

23/6/00

NESS

3) Il circuito rappresentato in figura è in condizione di regime stazionario per effetto. dei generatori applicati. Determinare l'equivalente Thevenin del bipolo a monte della sezione A-B e le potenze attiva e reattiva sul bipolo serie R_1 e $\hat{C_1}$.

$$e(t) = 50\cos(314t + \pi/3)$$
 V;

$$j(t) = 3\sin(314t + \pi/4)$$
 A

$$j(t) = 3\sin(314t + \pi/4)$$
 A $M = 10$ H $C = C_1$
 $R = 10 \Omega$, $L_1 = 15mH$; $L_2 = 20mH$ M $C_1 = 100 \mu F$ $R_1 = 5\Omega$, $\beta = 10$,

4) Dato il sistema di figura determinare i parametri h del doppio bipolo in corrispondenza della pulsazione 1000 rad/sec assumendo $\alpha = 10$. Determinare inoltre nella condizioni di porta 2 corto circuitata il valore di α che l'impedenza di ingresso risulti una pura reattanza.

$$L = 10 \ mH; \quad C = 50 \ \mu F; \quad R = 2 \ \Omega;$$

