典型卷积神经网络模型

目录

- ◆ 卷积神经网络模块
- ◆ LeNet5网络

卷积神经网络模块

卷积神经网络基本结构

◆ 典型深度卷积神经网络结构

卷积模块

◆ 一般由卷积操作, 池化操作, 激活函数, 标准化操作等组成

卷积与激活函数:必要标准化和池化:非必要

全连接模块

◆ 一般由多个线性变换层,激活函数等组成

非输出的线性变换层必须要后接激活函数,输出变换层根据实际任务决定

LeNet5网络

LeNets5网络

◆ 1998年Yann LeCun等提出LeNets5 ,是第一个成功应用于手写数字识别问题并产生实际商业(邮政行业)价值的卷积神经网络。

来自于论文《Gradient-based learning applied to document recognition》

◆ 一共七层, 3个卷积层, 2个池化层, 2个全连接层

输入图像: 32×32

三个卷积层: C1包括6个5×5卷积核 C3包括60个5×5卷积核 C5包括120×16个5×5卷积核

两个池化层S2和S4: 都是2×2的平均池化,并添加了非线性映射第一个全连接层: 84个神经元 第二个全连接层: 10个神经元

所有激活函数采用Sigmoid

LeNets5网络细节

◆ C1层-卷积层

输入图片: 32*32

卷积核大小: 5*5

卷积核种类: 6

• 输出特征图大小: 28*28 (32-5+1) =28

可训练参数: (5*5+1) * 6 (每个滤波器

5*5=25个unit参数和一个bias参数,一共6

个滤波器)

◆ S2层-池化层 (下采样层)

输入: 28*28

• 采样区域: 2*2

• 采样方式:输入相加,乘以一个可训练参数, 再加上一个可训练偏置,使用sigmoid激活

• 输出特征图大小: 14*14 (28/2)

LeNets5网络细节

◆ C3层-卷积层

输入: S2中所有6个或者几个特征图组合

卷积核大小: 5*5

卷积核种类: 60

输出特征图大小: 10*10 (14-5+1)

可训练参数:

6*(3*5*5+1)+6*(4*5*5+1)+3*(4*5*5+1)

+1*(6*5*5+1)=1516

◆ C3层-非密集的特征图连接关系

C3 S2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
0	X				X	X	X			X	X	X	X		X	X
1	X	X				X	X	X			X	X	X	X		X
2	X	X	X				X	X	X			X		X	X	X
3		X	X	X			X	X	X	X			X		X	X
4			X	X	X			X	X	X	X		X	X		X
5				X	X	X			X	X	X	X		X	X	X

C3的前6个特征图与S2层相连的3个特征图相连接,后面6个特征图与S2层相连的4个特征图相连接,后面3个特征图与S2层部分不相连的4个特征图相连接,最后一个与S2层的所有特征图相连。 采用非密集连接的方式,打破对称性,同时减少计算量,共60组卷积核

LeNets5网络细节

◆ S4层-池化层 (下采样层)

• 输入: 10*10

• 采样区域: 2*2

• 采样方式: 输入相加, 乘以一个可训练参数, 再

加上一个可训练偏置,使用sigmoid激活

• 输出特征图大小: 5*5 (10/2)

◆ C5层-卷积层

输入:S4层的全部16个单元特征map

卷积核大小: 5*5 卷积核种类: 120

输出特征图大小: 1*1 (5-5+1)

可训练参数/连接: 120* (16*5*5+1) =48120

LeNets5网络细节

◆ F6层-全连接层

输入: c5 120维向量

• 计算方式: 计算输入向量和权重向量之间的点积,再加上一个偏置,结果通过sigmoid函数输出。

可训练参数: 84*(120+1)=10164

◆ F6全连接层的输出设计为什么是84个节点

计算机中字符的编码是ASCII编码,这些图是用7×12大小的位图表示,-1表示白色,1表示黑色,84可以用于对每一个像素点的值进行估计。

LeNets5网络细节

◆ Output层-全连接层,共有10个节点,分别代表数字0到9

x是激活后的输出,y是RBF的输出(误差值,最小的即为分类结果),w_{ij}是参数(人为设定的,取值-1或者1),i从0~9,j从0~83

下次预告: 深度学习优化