Домашнее задание по алгебре №5.

Михайлов Никита Маратович, ПМИ-167.

Задание 1.

Найдите все обратимые элементы, все делители нуля и все нильпотентные элементы в коль- це $R = \{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} | a, b, c \in \mathbb{R} \}$ с обычными операциями сложения и умножения.

Решение. Пусть $r = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \in R$.

- 1. Найдем все обратимые элементы. Заметим, что матрица обратима тогда и только тогда, когда она невырождена. Так же стоит отметить, что $\forall r \in R$ матрица r нижнетреугольная, следовательно, det(r) = ac. Составим $det(r) \neq 0 \Leftrightarrow ac \neq 0 \Leftrightarrow \begin{bmatrix} a=0 \\ c=0 \end{bmatrix}$ Покажем, что обратная матрица будет лежать в кольце. Для этого достаточно посчитать алгебраическое дополнение элемента $r_{2,1}: A_{2,1} = 0$, откуда следует, что в обнатной матрице в первой строке, втором столбце будет стоять 0, а следовательно лежать в кольце.
- 2. Что такое нуль? Очевидно, что элемент $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$, так как 0+r=r+0=r Найдем все делители нуля. Для этого $x=\begin{pmatrix} x_1 & 0 \\ x_2 & x_3 \end{pmatrix} \in R$ и $r\neq 0$. Заметим, что делители нуля необратимы, поэтому ac=0.
 - (a) Левые делители нуля. Составим $rx=0\Leftrightarrow \begin{pmatrix} a&0\\b&c\end{pmatrix}\cdot \begin{pmatrix} x_1&0\\x_2&x_3\end{pmatrix}=0,$ откуда получим:

$$\begin{cases} ax_1 = 0 \\ b \in \mathbb{R} \\ c \neq 0 \\ x_1 = 1 \\ x_2 = -\frac{b}{c} \\ x_3 = 0 \end{cases}$$

$$\begin{cases} a = 0 \\ b \in \mathbb{R} \\ c \neq 0 \\ x_1 = 1 \\ x_2 = -\frac{b}{c} \\ x_3 = 0 \end{cases}$$

$$\begin{cases} a \in \mathbb{R} \\ b \in \mathbb{R} \\ c = 0 \\ x_1 = 0 \\ x_2 = 1 \\ x_3 = 1 \end{cases}$$

Рассмотрены все случаи для a, b, c. Таким образом, делители нуля имеют вид:

$$egin{pmatrix} 0 & 0 \ b & c \end{pmatrix}$$
 или $egin{pmatrix} a & 0 \ b & 0 \end{pmatrix}$, где $a,b \in \mathbb{R}, c \in \mathbb{R} \setminus \{0\}.$

(b) Правые делители нуля. Составим $xr=0\Leftrightarrow \begin{pmatrix} x_1 & 0 \\ x_2 & x_3 \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = 0,$ откуда получим:

$$\begin{cases} ax_1=0\\ b\in\mathbb{R}\\ c\in\mathbb{R}\\ x_1=1\\ x_2=0\\ x_3=0\\ \begin{cases} a\neq 0\\ b\in\mathbb{R}\\ c=0\\ x_1=0\\ x_2=-\frac{b}{a}\\ x_3=1 \end{cases}$$
 наи для a,b,c . Таким образом, делител

Рассмотрены все случаи для a,b,c. Таким образом, делители нуля имеют вид:

- $\begin{pmatrix} 0 & 0 \\ b & c \end{pmatrix}$ или $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$, где $b, c \in \mathbb{R}, a \in \mathbb{R} \setminus \{0\}$.
- 3. Найдей нильпотентные элементы. Пусть r нильпотент, тогда $\exists n: r^n = 0 \Rightarrow a^n = c^n = 0 \Leftrightarrow a = c = 0$. Получается все нильпотенты лежат в множестве матриц вида: $X = \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix}$, где $x \in \mathbb{R}\{0\}$. Проверим все ли такие матрицы нильпотенты: $X^2 = 0$. Да, все. Следовательно, все нильпотенты имеют такой вид.

Задание 2.

Приведите пример идеала в кольце $\mathbb{Z}[x]$, не являющегося главным.

Решение. Возьмем идеал I, состоящий из многочленов, у которых все свободные члены четные. Это идеал, так как 1) I — образует подгруппу(обратные тоже с четным свободным членом и сумма четных четна, 0 — четный); 2) пусть $r \in R$, $a \in I$, тогда $ar = ra \in I$, так как произведение любого на четное — четно. Пусть I — главный идеал, тогда $\exists a: I=(a)$. Следовательно, $\exists r: 2=ar$. Заметим, что $a\neq \pm 1$, так как тогда I=R. Но тогда $a=\pm 2$. Следовательно, можно "породить" многочлен равный $x\in I$. Составим $\exists m: x=2\cdot m$, но такого m не существует. Получили противоречие. I — идеал, не являющийся главным.

Задание 3.

Найдите размерность \mathbb{R} -алгебры $\mathbb{R}[x]/\{x^3-x^2+2\}$

Решение. Заметим, что $\mathbb{R}[x]/(x^3-x^2+2)$ – факторкольцо по идеалу $I=(A)=(x^3-x^2+2)$. Рассмотрим гомоморфизм φ – взятие остатка многочлена из $\mathbb{R}[x]$ от деления на A. Тогда φ . Тогда I в точности является $Ker\varphi$. По ТГК: $\mathbb{R}[x]/\{x^3-x^2+2\} \simeq R[x]_A$ (остатки от деления на A). Степень остатка строго меньше 3 и имеют вид квадратного многочлена с вещественными коэффициентами. Рассмотрим данное фактор кольцо как векторное пространство. Возьмем в нем базис: $x^2, x, 1$. Очевидно, что они линейно независимы и их кол-во максимально. То есть размерность этого векторного пространства 3, следовательно и данной алгебры тоже 3.

Задание 4.

Пусть F – поле, R – кольцо $u \varphi : F \to R$ – гомоморфизм колец. Докажите, что либо $\varphi(x) = 0$ при всех $x \in F$, либо $Im \varphi \simeq F$.

Решение. Из курса лекций: $Ker(\varphi)$ – несобственный идеал в F, так как F – поле. Заметим, что $Im\varphi \simeq F/Ker\varphi$. Из несобственности $Ker\varphi$:

- 1. $Ker\varphi = 0$, тогда $Im\varphi \simeq F/Ker\varphi \simeq F$
- 2. $Ker\varphi=F$, тогда $Im\varphi\simeq F/Ker\varphi\simeq F/\simeq\{0\}$. Следовательно, в $Im\varphi$ есть только 1 элемент, но $\varphi(0)=0$ всегда. Следовательно, $Im\varphi=\{0\}\Rightarrow \forall x\in F\ \varphi(x)=0$.