550.420 Probability - SPRING 2016

- **1.** Suppose that X is a continuous random variable having pdf $f(x) = \begin{cases} \frac{3x^2}{2} & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$
- (a) Compute the cdf $F_X(x)$ of X. Recall that (just as a pdf) a cdf should be defined on the entire real line. For x < -1, f(x) = 0 which implies $F_X(x) = 0$.

For
$$-1 \le x \le 1$$
, $f(x) = \frac{3}{2}x^2$ which implies $F_X(x) = \int_{-1}^x \frac{3}{2}u^2 du = \frac{u^3}{2}\Big|_{u=-1}^{u=x} = \frac{1}{2} + \frac{x^3}{2}$.

For x > 1, $F_X(x) = 1$ since all the probability mass under this pdf would have been accumulated already.

For
$$x > 1$$
, $F_X(x) = 1$ since all the probability in Therefore, $F_X(x) = \begin{cases} 0 & \text{if } x < -1 \\ \frac{1+x^3}{2} & \text{if } -1 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$

- (b) Compute $P(0 < X \le \frac{1}{2})$. $P(0 < X \le \frac{1}{2}) = F_X(\frac{1}{2}) F_X(0) = (\frac{1 + (\frac{1}{2})^3}{2}) (\frac{1 + (0)^3}{2}) = \frac{1}{16}$.
- 2. Suppose that X has a Gamma(α, β) distribution where $\alpha > 0$ is the shape parameter and $\beta > 0$ is the scale parameter.
- (a) By performing an appropriate integration, clearly show why $E(X) = \alpha \beta$. $E(X) = \int_0^\infty x \cdot \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)} dx = \frac{1}{\beta^{\alpha}\Gamma(\alpha)} \int_0^\infty x^{(\alpha+1)-1}e^{-x/\beta} dx = \frac{\beta^{\alpha+1}\Gamma(\alpha+1)}{\beta^{\alpha}\Gamma(\alpha)} \int_0^\infty \frac{x^{(\alpha+1)-1}e^{-x/\beta}}{\beta^{\alpha+1}\Gamma(\alpha+1)} dx = \frac{\beta^{\alpha+1}\Gamma(\alpha+1)}{\beta^{\alpha}\Gamma(\alpha)}$ since the last integral is 1 because $\frac{x^{(\alpha+1)-1}e^{-x/\beta}}{\beta^{\alpha+1}\Gamma(\alpha+1)}$ is a pdf on $0 < x < \infty$. But then by the reduction property of the Euler Gamma function: $E(X) = \frac{\beta^{\alpha+1}\Gamma(\alpha+1)}{\beta^{\alpha}\Gamma(\alpha)} = \frac{\beta\alpha\Gamma(\alpha)}{\Gamma(\alpha)} = \alpha\beta$.
- (b) If we further assume $\alpha > 1$, compute $E(\frac{1}{X})$. For an extra bonus point, why assume $\alpha > 1$? In a very similar way $E(\frac{1}{X}) = \int_0^\infty \frac{1}{x} \cdot \frac{x^{\alpha 1} e^{-x/\beta}}{\beta^\alpha \Gamma(\alpha)} \, dx = \frac{1}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty x^{(\alpha 1) 1} e^{-x/\beta} \, dx = \frac{\beta^{\alpha 1} \Gamma(\alpha 1)}{\beta^\alpha \Gamma(\alpha)} \int_0^\infty \frac{x^{(\alpha 1) 1} e^{-x/\beta}}{\beta^{\alpha 1} \Gamma(\alpha 1)} \, dx = \frac{\beta^{\alpha 1} \Gamma(\alpha 1)}{\beta^\alpha \Gamma(\alpha)} = \frac{\Gamma(\alpha 1)}{\beta(\alpha 1)\Gamma(\alpha 1)} = \frac{1}{(\alpha 1)\beta}.$ Since $\Gamma(\alpha 1)$ is only defined when $\alpha 1 > 0$, we see this is equivalent to $\alpha > 1$.
 - Since I $(\alpha 1)$ is only defined when $\alpha 1 > 0$, we see this is equivalent to $\alpha > 1$.
- 3. Suppose that X and Y are jointly discrete random variables having the following joint pmf:

$p_{X,Y}(x,y)$	y = 1	y = 2	y = 3	
x = 1	.30	.18	.12	$p_X(1) = .6$ $p_X(2) = .4$
x = 2	.20	.12	.08	$p_X(2) = .4$
	$p_Y(1) = .5$	$p_Y(2) = .3$	$p_Y(3) = .2$	

- (a) Clearly verify whether or not X and Y are independent. Be sure to state your conclusion. X and Y are independent since $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ for every x = 1, 2 and y = 1, 2, 3. Check: $.3 = .5 \times .6$, $.18 = .3 \times .6$, $.12 = .2 \times .6$, $.2 = .5 \times .4$, $.12 = .3 \times .4$, $.08 = .2 \times .4$.
- (b) Compute
 - (i) $P(Y > X) = p_{X,Y}(1,2) + p_{X,Y}(1,3) + p_{X,Y}(2,3) = .18 + .12 + .08 = .38.$
 - (ii) $P(Y = 1) = p_Y(1) = .5$.
 - (iii) $P(X = 1|Y \le 2) = P(X = 1) = .6$ since X and Y are independent.
- (c) Compute
 - (i) $E(X) = 1 \times .6 + 2 \times .4 = 1.4$.
 - (ii) $E(Y|X=1) = E(Y) = 1 \times .5 + 2 \times .3 + 3 \times .2 = 1.7$.

- 4. (a) If Z is a standard normal random variable, compute P(-2.1 < Z < 2.1). From the standard normal table: $P(-2.1 < Z < 2.1) = \Phi(2.1) = \Phi(-2.1) = \Phi(2.1) - (1 - \Phi(2.1)) = 2\Phi(2.1) - 1 = 2(.9821) - 1 = .9642$.
- (b) Suppose W represents the score on a certain exam. Assume that W is normally distributed having a mean $\mu = 50$ points and variance $\sigma^2 = 400$ points² (i.e., $\sigma = 20$ points). Compute the probability that W will be between 8 and 92 inclusive.

will be between 8 and 92 inclusive. $P(8 \le W \le 92) = P(\frac{8-50}{20} \le \frac{W-\mu}{\sigma} \le \frac{92-50}{20}) = P(-2.1 \le Z \le 2.1) = .9642 \text{ (from part (a) since } Z \text{ is a continuous random variable the two probabilities are the same.}$

5. Suppose $U \sim \text{uniform}(0, \frac{1}{2})$, i.e., U is a continuous random variable with pdf f(x) = 2 for $0 < x < \frac{1}{2}$. Compute the n-th moment of U, i.e., $E(U^n)$, where $n \geq 0$ is an integer.

For any
$$n \ge 0$$
, $E(U^n) = \int_0^{1/2} u^n \cdot 2 \, du = \frac{2u^{n+1}}{n+1} \Big|_{u=0}^{u=1/2} = \frac{1}{2^n(n+1)}$.

(bonus question) Show that $\sum_{n=0}^{\infty} \frac{1}{2^n(n+1)} = 2\ln(2)$ by computing $E(\frac{1}{1-U})$ two different ways.

On the one hand,
$$E(\frac{1}{1-U}) = \int_0^{1/2} \frac{1}{1-u} \cdot 2 \, du = -2 \ln(1-u)|_{u=0}^{u=1/2} = 2 \ln(2)$$
.
On the other hand, since $|U| \leq \frac{1}{2} < 1$, we have $\sum_{n=0}^{\infty} U^n = \frac{1}{1-U}$ so $E(\frac{1}{1-U}) = E(\sum_{n=1}^{\infty} U^n) = \sum_{n=0}^{\infty} E(U^n) = \sum_{n=0}^{\infty} \frac{1}{2^n(n+1)}$.
Therefore, $\sum_{n=0}^{\infty} \frac{1}{2^n(n+1)} = 2 \ln(2)$.

6. Suppose $X|Y=y\sim \mathrm{uniform}(0,y)$ and $Y\sim \mathrm{Gamma}(2,1)$. That is,

$$f_{X|Y}(x|y) = \begin{cases} \frac{1}{y} & \text{if } 0 < x < y \\ 0 & \text{otherwise} \end{cases}$$
 and $f_Y(y) = \begin{cases} ye^{-y} & \text{if } y > 0 \\ 0 & \text{otherwise} \end{cases}$.

- (a) Find the marginal pdf of X. Be careful with your ranges of integration! First we find the joint pdf of X and Y: $f_{X,Y}(x,y) = f_{X|Y}(x|y)f_Y(y) = \frac{1}{y} \cdot ye^{-y} = e^{-y}$ for 0 < x < y, y > 0. Therefore, the marginal of X is $f_X(x) = \int_x^\infty e^{-y} dy = e^{-x}$ for x > 0; and, $f_X(x) = 0$ for $x \le 0$.
- (b) Compute only one of the following (you choose): P(3 < X < 7|Y = 10) or $P(3 < X < 7|Y \le 10)$. Do not compute both!

The easiest one to compute is the first one: $P(3 < X < 7|Y = 10) = \int_3^7 f_{X|Y}(x|10) dx = \int_3^7 \frac{1}{10} dx = .4$.

7. Suppose X_1 and X_2 are independent random variables with $X_i \sim \text{Poisson}(\lambda_i)$ for i = 1, 2. Suppose we observe $X_1 + X_2 = n$. Find the probability that $X_1 = x$, that is, compute $P(X_1 = x | X_1 + X_2 = n)$ for appropriate x.

Feel free to use any results you may recall from homework about sums of independent Poisson random variables.

I will use the fact that a sum of independent Poisson random variables is again a Poisson with the parameters adding; i.e., $X_1 + X_2$ has a Poisson $(\lambda_1 + \lambda_2)$ distribution. In this case, for any $x = 0, 1, \ldots, n$ (x cannot be bigger than n)

$$P(X_{1} = x | X_{1} + X_{2} = n) = \frac{P(X_{1} = x, X_{1} + X_{2} = n)}{P(X_{1} + X_{2} = n)} = \frac{P(X_{1} = x, X_{2} = n - x)}{\frac{e^{-(\lambda_{1} + \lambda_{2})(\lambda_{1} + \lambda_{2})^{n}}}{n!}}$$

$$= \frac{P(X_{1} = x)P(X_{2} = n - x)}{\frac{e^{-(\lambda_{1} + \lambda_{2})(\lambda_{1} + \lambda_{2})^{n}}}{n!}} = \frac{\frac{e^{-\lambda_{1} \lambda_{1}^{x}} e^{-\lambda_{2} \lambda_{2}^{n - x}}}{x!}}{\frac{e^{-(\lambda_{1} + \lambda_{2})(\lambda_{1} + \lambda_{2})^{n}}}{n!}}$$

$$= \frac{n!}{x!(n - x)!} \cdot (\frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}})^{x} (\frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}})^{n - x}$$

i.e., the conditional distribution is binomial with parameters n and $p = \lambda_1/(\lambda_1 + \lambda_2)$.