Benchmarking testing for TNLJ, BNLJ, SMJ

Test Plan:

Precondition:

1. Only three tables: Sailors, Reserves, and Boats

Queries: 1. SELECT * FROM Sailors, Reserves WHERE Sailors.A = Reserves.G;
2.SELECT * FROM Sailors, Reserves, Boats WHERE Sailors.A = Reserves.G AND Reserves.H = Boats.D;
3. SELECT * FROM Sailors, Reserves, Boats WHERE Sailors.A = Reserves.G AND Reserves.H = Boats.D AND Sailors.B < 150;

large samples

- 1. Table Name: Sailors, Reserves, Boats
- 2. Schema: Sailors.A, Sailors.B, Sailors.C/ Boats.D, Boats.E, Boats.F, Reserves G, Reserves F
- 3. Number of buffer used for the SMJ: 1 buffer page or 5 buffer page

Case 0: Benchmarking data

```
Boats: Tuples: 5000 Range: 500
Sailor: Tuples: 6000 Range: 600
Reserves: Tuples: 6000 Range: 700
```

Result Pass

Benchmarking data: directory: benchmarking/large3

Table information: Boats: Tuples: 5000 Range: 500

Sailor: Tuples: 6000 Range: 600

Reserves: Tuples: 6000 Range: 600

			<u> </u>
Query 7	Query 8	Query 9	Query 10
8	18377	240868	62429
Q	5093	146207	103444
0	3363	140297	103444
8	5749	140157	104204
7	97	601	9
	8	8 18377 8 5983 8 5749	8 18377 240868 8 5983 146297 8 5749 140157

Based on the graph, we can see sortmerge join greatly reduce the execution time. Block nested loop join is able to reduce the execution time when the join condition comtains multiple equal condition. We also found the time comsumption for BNLJ with 1 buffer page and 5 bffer page are very close. The researn is that saving the outer relation in buffer pages reduces total passes of inner relation. However, if the block size exceeds the memory capacity, extra disk I/Os are needed to fetch different portions of the block. Thus there is a compromise between maximizing outer block size and minimizating inner page passes.

Case 1: large range

```
Boats: Tuples: 5000 Range: 1000
Sailor: Tuples: 6000 Range: 2000
Reserves: Tuples: 2000 Range: 500
```

Time Consumption: see excel file

Result: Pass

Case 2: small range

Time Consumption: see excel file

Result: Pass