Géométrie de l'information et apprentissage distribué

Dell'Aiera Clément

FIGURE 1 – Neurone grossi63fois, image de Kieran Boyle

Table des matières

1	Point de vue géométrique en statistique		3
	1.1	Géométrie de l'information	9
	1.2	Algorithme de descente de gradient naturel	4
2	Rése	au de neurones	5
	2.1	Présentation	5
	2.2	Point de vue géométrique	Ę
	2.3	Présentation	7
	2.4	Cas du perceptron	7
3	Appl	lication à la reconnaissance de caractères manuscrits	g
	$3.\overline{1}$	lication à la reconnaissance de caractères manuscrits Rappel sur les ondelettes	ć
		Description de l'algorithme	
4	Deep Learning vs Support Vector Machine		g
5	Appe	endice	10
	5.1^{-1}	Géométrie différentielle	10

1 Point de vue géométrique en statistique

Parmi les premières méthodes d'apprentissage figurent celles utilisant des réseaux neuronaux. Brève explication de ce qu'est un RN? Rapidement remplacés par des méthodes plus robustes ou plus souples telles que les SVM, les réseaux neuronaux ont bénéficiés d'un regain d'intérêt depuis l'avènement en année des techniques d'apprentissage profonds, ou deeplearning. Ces dernières se révèlent de façon surprenante très efficace, sans que l'on ne comprenne exactement pourquoi.

par des méthodes convexes. Bof rapidement

Le but de ce travail est d'étudier ce réseau et d'appliquer les méthodes de géométrie de l'information pour peut-être mieux comprendre les raisons de leur efficacité. Petit topo sur la géometrie de l'info?

1.1 Géométrie de l'information

La géométrie de l'information propose d'utiliser les méthodes de la géométrie différentielle en statistique afin d'optimiser les algorithmes. Pour le lecteur apeuré par les gros mots mathématiques, qu'il se rassure : il n'est pas question ici d'étudier les propriétés géométriques fines des objets statistiques, mais plutôt d'appliquer des outils à peine plus sophistiqués que ceux d'un cours de calcul différentiel classique dans une optique d'optimisation.

L'idée première est de donner une structure de variété différentielle au modèle statistique étudié : si $\mathcal{S} = \{p_{\theta}\}_{\theta}$ est notre honnête famille paramétrique de lois de probabilté, on peut voir $\theta \in \Theta$ comme une coordonnées, ou, pour parler le langage des géomètres, l'application :

$$p_{\theta} \mapsto \theta$$

fournit une carte locale. Petite remarque : cette application n'est définie que si le modèle est identifiable. On supposera d'ailleurs que le modèle a toute les propriétés que l'on voudrait.

La deuxième étape est de donner une structure de variété riemannienne au modèle S. Sans rentrer dans les détails, l'important est de savoir que l'on peut définir une métrique grâce à la log-vraisemblance l du modèle par :

$$g_{ij}(\theta) = \mathbb{E}_{\theta}[\partial_i l(X, \theta) \partial_j l(X, \theta)]$$

En pratique, cela signifie que l'on peut mesurer des distances et des angles sur l'espace tangent à $\mathcal S$:

$$\forall w_1, w_2 \in T_\theta \mathcal{S}, \langle w_1, w_2 \rangle = w_1^T G w_2$$

où
$$G(\theta) = (g_{i,j}(\theta))_{ij}$$
.

Donnons un exemple important : celu des familles exponentielles. Le modèle est donné par :

$$\mathcal{E}xp(C, F, \psi) = \{p(x, \theta) = \exp[C(x) + \sum_{i=1}^{n} \theta^{i} F_{i}(x) - \psi(\theta)] : \theta \in \mathbb{R}^{n}\}$$

où $F=(F_1,...,F_n)$ est une famille linéairement indépendante de fonctions C^{∞} . Un simple calcul donne :

$$\partial_i \partial_j l(x, \theta) = -\partial_i \partial_j \psi(\theta)$$

Donc:

$$g_{ij}(\theta) = \mathbb{E}[\partial_i l(x,\theta)\partial_j l(x,\theta)] = -\mathbb{E}[\partial_i \partial_j l(x,\theta)] = \partial_i \partial_j \psi(\theta)$$

La matrice G est donc la hessienne de ψ et on a calculé la métrique riemannienne :

$$ds^2 = \sum_{i,j} \partial_i \partial_j \psi \ dx^i dx^j$$

1.2 Algorithme de descente de gradient naturel

Amari décrit dans ses différents articles une méthode de descente de gradient adapté au cadre riemannien : on va corriger le pas par un facteur qui va se révéler être l'inverse de la matrice de Fisher. idéeintuitive avec les ellipses, peut-être une illustration?

On se donne une fonction de perte $L: \mathcal{S} \to \mathbb{R}$ que l'on évalue en w, et on veut minimiser L(w+dw) où la norme $|dw|=\epsilon$ est fixée.

Théorème 1. La direction optimale de descente dw^* est donnée par :

$$dw^* = -\hat{\nabla}L(w) = -G^{-1}(w)\nabla L(w)$$

Donnons un sketch de preuve. Posons $dw=\epsilon a,$ le problème de minimisation devient alors :

$$\min L(w + \epsilon a) \quad s.c. \quad |a|^2 = \sum_{i,j} g_{ij}(w)a_i a_j = 1$$

Mais $L(w+\epsilon a)-L(w)-\epsilon(\nabla L(w))^Ta$ est un petit o de ϵ et minimiser $(\nabla L(w))^Ta$ sous la contrainte $a^TGa=1$ est simple avec les conditions de Lagrange qui donnent :

$$\frac{\partial}{\partial a_i} ((\nabla L(w))^T a - \lambda a^T G a) = 0$$

Finalement : $\nabla L(w) = 2\lambda Ga$ et donc

$$a = \frac{1}{2\lambda} G^{-1} \nabla L(w)$$

L'algorithme de pas d'apprentissae ϵ_n qui en découle est décrit par la formue de récurrence suivante :

$$w_{n+1} = w_n - \epsilon_n \hat{\nabla} L(w_n)$$

2 Réseau de neurones

2.1 Présentation

Les réseaux de neurones ont initialement été développé comme des algorithmes, initialement dans le domaine de *l'intelligence artificielle*, ce qui en fait naturellement une discipline du *machine learning*. L'idée première était de s'inspirer du fonctionnement du cerveau humain pour créer des algorithmes adaptatifs. Bien que ce rôle fondateur de modèle pour le cerveau humain n'ai pas été un franc succès, les réseaux neuronaux ont donné des modèles statistiques intéressants. Ce changement d'interprétation est reflétée dans le nom de réseau de neurones *artificiels* que certains auteurs utilisent désormais.

Ces réseux peuvent se reformuler en termes de modèles statistiques, comme Herbert K.H.Lee l'expose dans Bayesian Non Parametrics via Neural Networks. Rappelons qu'un réseau est composé de plusieurs couches : la couche d'entrée, les couches cachées et la couche de sortie. Chaque noeud du réseau applique une fonction ψ , en général une sigmoïde, à une combinaison linéaire des signaux d'entrée. Si y est le signal de sortie, x l'entrée, le modèle statistique que représente le réseau à m couches cachées prend souvent la forme :

$$y = \beta_0 \sum_{i=1}^{m} \beta_i \psi(w_i^T x_i) + \eta_i$$
$$\eta_i \sim \mathcal{N}(0, \sigma^2)$$

Cet équation montre qu'un réseau neuronal peut s'interpréter comme un modèle de régression non paramétrique sur une base donnée. Par exemple, si

$$\psi(x) = \frac{1}{1 + \exp(-x)}$$
 ref

est la fonction logistique, on sait que l'espace engendré par les translatés-échelonnés de cette fonction est tout l'espace des fonctions de carré intégrable.

2.2 Point de vue géométrique

Nous présentons dans cette section les idées de différents articles d'Amari, ainsi que de son livre *Methods of information Geometry*.

Contradictoire

Comme nous l'avons remarqué, les réseaux de neurones peuvent s'interpréter comme un modèle statistique à réponse non linéaire : y = f(x, w), et en supposant que les données suivent la densité q(x) et qu'on a la densité conditionnelle p(y|x, w), l'ensemble des données (x, y) suivent la loi :

Les modèles de perceptrons que nous présenterons ensuite sont considérés pa Amari comme des points d'une variété qu'il appelle Neuromanifold, où les coordonnées sont les w et la métrique est donnée par l'information de Fisher.

Un autre exemple fortement lié aux réseaux de neurones est celui de la **machine de Boltzmann**, qui est un réseau totalement connecté de n neurones stochastiques. Chacun des neurones N_i possède un état x_i qui est 0 ou 1, qu'il communique en *output* aux autres neurones. Chaque neurone calcule la quantité

$$u_i = \sum_{j \neq i} w_{ij} x_j - h_i$$

en fonction des signaux qu'il reçoit. Le poids w_{ij} , appelé poids de la connexion synaptique, mesure l'influence du neurone N_j sur le neurone N_i , et h_i est appelé le seuil de N_i . On suppsoe que la matrice des poids $W = [w_{ij}]$ est symmetrique à diagonale nulle.

A chaque étape, chaque neurone N_i détermine s'il sera dans l'état excité 1 ou dans l'état de repos 0 selon la probabilité :

$$\mathbb{P}(x_i = 1) = \frac{e^{u_i}}{1 + e^{u_i}}$$

L'état de la machine de Boltzmann est représenté par le vecteur $x = (x_1, ..., x_n)$, qui suit une chaîne de Markov sur l'espace de tous les états possibles, espaces à 2^n points. Cet chaîne admet comme loi stationnaire :

$$p^{W,h}(x) = \frac{1}{Z} \exp\{-E(x)\}$$

$$\text{avec} \quad E(x) = -\frac{1}{2}x^T W x + h^T x$$

$$\text{et} \quad Z = \sum_x \exp\{-E(x)\}$$

On peut prendre le point de vue géométrique en se représentant la machine de Boltzmann comme une système qui se comporte selon la loi stationnaire $p^{W,h}(x)$, donc comme un point de coordonnées (W,h) dans la variété de toutes les machines de Boltzmann. (Encore un exemple de famille exponentielle.)

2.3 Multilayer Neural Network

On se donne un réseau de neurones spécifié par un paramètres $w \in \mathbb{R}^n$, qui représente les poids modifiables des connexions entre les synapses. En entrée du réseau, le signal x, qui suit une loi de probabilité inconnue q(x), est traité, et le réseau calcule une sortie f(x, w).

Le but est d'entraîner les neurones : on est en apprentissage supervisé. Lorsque l'on donne l'entrée x au réseau,on peut donc lui spécifier quelle sortie y lui correspond. La discussion qui suit permettra de comprendre comment nous pouvons élaborer un algorithme qui, par itération, améliore les poids jusqu'à atteindre un poids possiblement optimal w^* .

Soit L une fonction de perte, typiquement :

$$L(x, y, w) = ||y - f(x, w)||^2.$$

En considérant un modèle statistique où le but est une version bruité du signal de sortie, avec un bruit normal centré, ie :

$$y = f(x, w) + \eta$$

avec
$$\eta \sim \mathcal{N}(0, I_n)$$

la densité du couple (x, y) prend la forme :

$$cq(x) \exp\{-\frac{1}{2}||y - f(x, w)||^2\}.$$

Face à une série d'exemples $(x_1, y_1), ..., (x_N, y_N)$, l'algorithme naturel de descente est donné par :

$$w_{n+1} = w_n - \epsilon_n \nabla l(x_n, y_n, w_n),$$

où l est le log de la densité du couple (x,y), et ϵ_n est le pas d'apprentissage. Cet algorithme nous fait nous déplacer sur l'espace des réseau de neurones paramétrés pas w. Dans Amari1985, on peut donner une structure de variété riemannienne à cet espace, structure dont la métrique est donnée par :

$$g_{ij}(w) = \mathbb{E}[\partial_i p(x, y, w) \partial_j p(x, y, w)].$$

2.4 Cas du perceptron

On peut obtenir une forme explicite pour le perceptron multicouche. Ici, la fonction signal est donnée par :

$$f(u) = \frac{1 - e^{-u}}{1 + e^{-u}}$$

, et
$$y = f(w.x) + \eta$$
, $\eta \sim \mathcal{N}(0, \sigma^2)$.

La densité conditionnelle de y sachant x est alors :

$$p(y|x, w) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{1}{2\sigma^2}||y - f(x, w)||^2\},\$$

ce qui, combiné à l'hypothèse q(x) gaussienne, donne une densité jointe :

$$p(x, y, w) = q(x)p(y|x, w)$$

Le théorème suivant, dont la preuve se trouve dans *Natural Gradient work-sefficiently in learning*, donne explicitement la forme de la métrique de Fisher dans le cas du perceptron multicouches, sous nos hypothèses.

Théorème 2. (Amari) La métrique de Fisher vaut :

$$G(w) = |w|^2 c_1(w) I_n + (c_2(w) - c_1(w)) w \otimes w$$

où:

$$c_1(w) = \frac{1}{4\sqrt{2\pi}\sigma^2|w|^2} \int (f^2(wt) - 1)^2 \exp(-\frac{1}{2}t^2)dt$$

$$c_2(w) = \frac{1}{4\sqrt{2\pi}\sigma^2|w|^2} \int (f^2(wt) - 1)^2 t^2 \exp(-\frac{1}{2}t^2) dt$$

La matrice inverse est:

$$G^{-1}(w) = \frac{1}{|w|^2 c_1(w)} I_n + \frac{1}{|w|^4} \left(\frac{1}{c_2(w)} - \frac{1}{c_1(w)}\right) w \otimes w$$

Nous pouvons alors donner une formule explicite pour l'algorithme de gradient naturel :

$$w_{n+1} = w_n + \epsilon_n (y_n - f(w_n \cdot x_n)) f'(w_n \cdot x_n) \left\{ \frac{1}{|w_n|^2 c_1(w_n)} x_n + \frac{1}{|w_n|^4} \left(\frac{1}{c_2(w)} - \frac{1}{c_1(w)} \right) w_n \cdot x_n w_n \right\}$$

En guise de remarque finale pour cette partie, mentionnons que cette méthode se généralise facilement (bien qu'avec plus de calculs) au cas d'un perceptron multicouche à sortie linéaire, possédant m couches. La relation input-output s'écrit ici :

$$y = \sum_{i=1}^{m} v_i f(w_i.x) + \eta$$
$$\eta \sim \mathcal{N}(0, I_n)$$

Le calcul de G^{-1} est plus facile que dans le cas classique (comparez l'inversion d'une matrice $(n+1) \times m$ à celle d'une matrice $2 \times (m+1)$), et Amari et G. Yang ont effectué des études sur cette méthode : elle pourrait éviter l'effet plateau que les méthodes classiques peinent tant à eviter.

3 Application à la reconnaissance de caractères manuscrits

3.1 Rappel sur les ondelettes

Les ondelettes forment des bases hilbertiennes de $L^2(\mathbb{R})$ en partant d'une fonction ϕ , appelée fonction mère, que l'on translate-échelonne ensuite :

$$\{2^{j/2}\phi(2^j.-k)\}_{k\in\mathbb{Z},j\in\mathbb{Z}}.$$

Par exemple la fonction mère $\phi(u)=1_{0< u<\frac{1}{2}}-1_{\frac{1}{2}< u<1}$ donne la base de Haar, très utilisée en traitement d'image. Voici quelques une de ces fonctions :

FIGURE 2 – Ondelettes tracées avec Scilab

3.2 Description de l'algorithme

On entraı̂ne le réseau de neurones avec des images de lettres manuscrites et de la lettre correspondante. Les images sont représentées par un vecteur N dimensionnel, dont les coordonnées sont les N premiers coefficients sur la base d'ondelette.

4 Deep Learning vs Support Vector Machine

Première Deep Learning architecture: Neocognitron.

Idée : entraîner une couche à la foisen la tratiant comme une machine de Boltzmann restreinte (RBM), et ensuite appliquer un algorithme de Backpropagation. Rôle de Yan Lecun : première utilisation de l'algorithme de Backpropagation. Disponible depuis les années 70s, cet algorithme était considéré comme trop lent

en pratique : problème du vanishing gradient. Algo em et EM?

5 Appendice

5.1 Géométrie différentielle