Active Filters (Butterworth)

1. Low pass 2nd order Butterworth filter.

Procedure:

Construct the circuit shown, then Fill the following table with $V_{in} = 20 \text{ mV}_{P-P}$ Calculate the output voltage (V_0) and gain (A_0) with frequency starting from 10 Hz till 1 M Hz.

Frequency (H	10	20	30	50	100	150	200	400	500	800
V _{in} (mV)					20 m	V_{pp}				
V _{out} (mV)										
Gain= A _V										

Frequency (KH z)	1	2	5	10	20	50	80	100	200	500
V _{in} (mV)	20 mV _{pp}									
V _{out} (mV)										
Gain= A _v										

Frequency (MH z)	1	1.5	2	2.5	3	3.5	4	4.5	5	10
V _{in} (mV)		20 mV _{pp}								
V _{out} (mV)										
Gain= A _v										

Plot a graph showing the relation between the gain (A_V) and frequency (Hz).

From graph determine:

Maximum gain $A_o = \dots$

Cut-off frequency f_c =

2. High pass 2nd order Butterworth filter.

Procedure:

Construct the circuit shown, then Fill the following table with $V_{in} = 20 \text{ mV}_{P-P}$ Calculate the output voltage (V_0) and gain (A_0) with frequency starting from 10 Hz till 1 M Hz.

Frequency (H	10	20	30	50	100	150	200	400	500	800
V _{in} (mV)	20 mV _{pp}									
V _{out} (mV)										
Gain= A _v										

Frequency (KH z)	1	2	5	10	20	50	80	100	200	500
V _{in} (mV)	20 mV _{pp}									
V _{out} (mV)										
Gain= A _v										

Frequency (MH z)	1	1.5	2	2.5	3	3.5	4	4.5	5	10
V _{in} (mV)		20 mV _{pp}								
V _{out} (mV)										
Gain= A _v										

Plot a graph showing the relation between the gain (A_V) and frequency (Hz).

From graph determine:

Maximum gain $A_o = \dots$

Cut-off frequency $f_c = \dots$

3. Band pass 2nd order Butterworth filter.

Plot a graph showing the relation between the gain (A_V) and frequency (Hz).
From graph determine:
Maximum gain $A_0 = \dots$
Cut-off frequencies f_{c1} , $f_{c2} = \dots$