- [1] Milton Abramowitz and Irene A. Stegun, editors. *Handbook of Mathematical Functions*. Dover, 1965.
- [2] G. M. Adel'son-Vel'skiĭ and E. M. Landis. An algorithm for the organization of information. *Soviet Mathematics Doklady*, 3(5):1259–1263, 1962.
- [3] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related problems. *Communications of the ACM*, 31(9):1116–1127, 1988.
- [4] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics, 160(2):781–793, 2004.
- [5] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. *The Design and Analysis of Computer Algorithms*. Addison-Wesley, 1974.
- [6] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. *Data Structures and Algorithms*. Addison-Wesley, 1983.
- [7] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. *Network Flows: Theory, Algorithms, and Applications*. Prentice Hall, 1993.
- [8] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert E. Tarjan. Faster algorithms for the shortest path problem. *Journal of the ACM*, 37(2):213–223, 1990.
- [9] Ravindra K. Ahuja and James B. Orlin. A fast and simple algorithm for the maximum flow problem. *Operations Research*, 37(5):748–759, 1989.
- [10] Ravindra K. Ahuja, James B. Orlin, and Robert E. Tarjan. Improved time bounds for the maximum flow problem. *SIAM Journal on Computing*, 18(5):939–954, 1989.
- [11] Miklós Ajtai, Nimrod Megiddo, and Orli Waarts. Improved algorithms and analysis for secretary problems and generalizations. *SIAM Journal on Discrete Mathematics*, 14(1):1–27, 2001.
- [12] Selim G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, 1989.
- [13] Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations. *Computational Optimization and Applications*, 10(2):195–210, 1998.
- [14] Susanne Albers. Online algorithms: A survey. Mathematical Programming, 97(1-2):3–26, 2003.
- [15] Noga Alon. Generating pseudo-random permutations and maximum flow algorithms. *Information Processing Letters*, 35:201–204, 1990.

- [16] Arne Andersson. Balanced search trees made simple. In *Proceedings of the Third Workshop on Algorithms and Data Structures*, volume 709 of *Lecture Notes in Computer Science*, pages 60–71. Springer, 1993.
- [17] Arne Andersson. Faster deterministic sorting and searching in linear space. In *Proceedings* of the 37th Annual Symposium on Foundations of Computer Science, pages 135–141, 1996.
- [18] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time? *Journal of Computer and System Sciences*, 57:74–93, 1998.
- [19] Tom M. Apostol. Calculus, volume 1. Blaisdell Publishing Company, second edition, 1967.
- [20] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multiprogrammed multiprocessors. *Theory of Computing Systems*, 34(2):115–144, 2001.
- [21] Sanjeev Arora. *Probabilistic checking of proofs and the hardness of approximation problems*. PhD thesis, University of California, Berkeley, 1994.
- [22] Sanjeev Arora. The approximability of NP-hard problems. In *Proceedings of the 30th Annual ACM Symposium on Theory of Computing*, pages 337–348, 1998.
- [23] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. *Journal of the ACM*, 45(5):753–782, 1998.
- [24] Sanjeev Arora and Boaz Barak. *Computational Complexity: A Modern Approach*. Cambridge University Press, 2009.
- [25] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: A meta-algorithm and applications. *Theory of Computing*, 8(1):121–164, 2012.
- [26] Sanjeev Arora and Carsten Lund. Hardness of approximations. In Dorit S. Hochbaum, editor, *Approximation Algorithms for NP-Hard Problems*, pages 399–446. PWS Publishing Company, 1997.
- [27] Mikhail J. Atallah and Marina Blanton, editors. *Algorithms and Theory of Computation Handbook*, volume 1. Chapman & Hall/CRC Press, second edition, 2009.
- [28] Mikhail J. Atallah and Marina Blanton, editors. *Algorithms and Theory of Computation Handbook*, volume 2. Chapman & Hall/CRC Press, second edition, 2009.
- [29] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, 1999.
- [30] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. *ACM Transactions on Graphics*, 26(3), article 10, 2007.
- [31] László Babai, Eugene M. Luks, and Ákos Seress. Fast management of permutation groups I. *SIAM Journal on Computing*, 26(5):1310–1342, 1997.
- [32] Eric Bach. Private communication, 1989.
- [33] Eric Bach. Number-theoretic algorithms. In *Annual Review of Computer Science*, volume 4, pages 119–172. Annual Reviews, Inc., 1990.
- [34] Eric Bach and Jeffrey Shallit. *Algorithmic Number Theory—Volume I: Efficient Algorithms*. The MIT Press, 1996.
- [35] Nikhil Bansal and Anupam Gupta. Potential-function proofs for first-order methods. CoRR, abs/1712.04581, 2017.

[36] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in transportation networks. In Algorithm Engineering - Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80. Springer, 2016.

- [37] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths. *Journal of Algorithms*, 62(2):74–92, 2007.
- [38] R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms. *Acta Informatica*, 1(4):290–306, 1972.
- [39] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered indexes. *Acta Informatica*, 1(3):173–189, 1972.
- [40] Pierre Beauchemin, Gilles Brassard, Claude Crépeau, Claude Goutier, and Carl Pomerance. The generation of random numbers that are probably prime. *Journal of Cryptology*, 1(1):53–64, 1988.
- [41] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. *IBM Systems Journal*, 5(2):78–101, 1966.
- [42] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chaining message authentication code. *Journal of Computer and System Sciences*, 61(3):362–399, 2000.
- [43] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In CCS '93, Proceedings of the 1st ACM Conference on Computer and Communications Security, pages 62–73, 1993.
- [44] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.
- [45] Richard Bellman. On a routing problem. *Quarterly of Applied Mathematics*, 16(1):87–90, 1958.
- [46] Michael Ben-Or. Lower bounds for algebraic computation trees. In *Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing*, pages 80–86, 1983.
- [47] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious B-trees. *SIAM Journal on Computing*, 35(2):341–358, 2005.
- [48] Samuel W. Bent and John W. John. Finding the median requires 2n comparisons. In *Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing*, pages 213–216, 1985.
- [49] Jon L. Bentley. Writing Efficient Programs. Prentice Hall, 1982.
- [50] Jon L. Bentley. More Programming Pearls: Confessions of a Coder. Addison-Wesley, 1988.
- [51] Jon L. Bentley. *Programming Pearls*. Addison-Wesley, second edition, 1999.
- [52] Jon L. Bentley, Dorothea Haken, and James B. Saxe. A general method for solving divide-and-conquer recurrences. *SIGACT News*, 12(3):36–44, 1980.
- [53] Claude Berge. Two theorems in graph theory. *Proceedings of the National Academy of Sciences*, 43(9):842–844, 1957.
- [54] Aditya Y. Bhargava. *Grokking Algorithms: An Illustrated Guide For Programmers and Other Curious People*. Manning Publications, 2016.

- [55] Daniel Bienstock and Benjamin McClosky. Tightening simplex mixed-integer sets with guaranteed bounds. *Optimization Online*, 2008.
- [56] Patrick Billingsley. Probability and Measure. John Wiley & Sons, second edition, 1986.
- [57] Guy E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, Department of Electrical Engineering and Computer Science, MIT, 1989. Available as MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-463.
- [58] Guy E. Blelloch. Programming parallel algorithms. *Communications of the ACM*, 39(3):85–97, 1996.
- [59] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally deterministic parallel algorithms can be fast. In 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 181–192, 2012.
- [60] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in the binary-forking model. In *Proceedings of the 32nd Annual ACM Symposium on Parallelism in Algorithms and Architectures*, pages 89–102, 2020.
- [61] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling for languages with fine-grained parallelism. *Journal of the ACM*, 46(2):281–321, 1999.
- [62] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. Time bounds for selection. *Journal of Computer and System Sciences*, 7(4):448–461, 1973.
- [63] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work stealing. *Journal of the ACM*, 46(5):720–748, 1999.
- [64] Robert L Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel programming must be deterministic by default. In *Proceedings of the First USENIX Conference on Hot Topics in Parallelism (HotPar)*, 2009.
- [65] Béla Bollobás. Random Graphs. Academic Press, 1985.
- [66] Leonardo Bonacci. Liber Abaci, 1202.
- [67] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American Elsevier, 1976.
- [68] A. Borodin and R. El-Yaniv. *Online Computation and Competitive Analysis*. Cambridge University Press, 1998.
- [69] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- [70] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice Hall, 1996.
- [71] Richard P. Brent. The parallel evaluation of general arithmetic expressions. *Journal of the ACM*, 21(2):201–206, 1974.
- [72] Gerth Stølting Brodal. A survey on priority queues. In Andrej Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient Data Structures, Streams, and Algorithms: Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume 8066 of Lecture Notes in Computer Science, pages 150–163. Springer, 2013.
- [73] Gerth Stølting Brodal, George Lagogiannis, and Robert E. Tarjan. Strict Fibonacci heaps. In *Proceedings of the 44th Annual ACM Symposium on Theory of Computing*, pages 1177–1184, 2012.

[74] George W. Brown. Some notes on computation of games solutions. *RAND Corporation Report*, P-78, 1949.

- [75] Sébastien Bubeck. Convex optimization: Algorithms and complexity. *Foundations and Trends in Machine Learning*, 8(3-4):231–357, 2015.
- [76] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-dual approach. *Foundations and Trends in Theoretical Computer Science*, 3(2–3):93–263, 2009.
- [77] J. P. Buhler, H. W. Lenstra, Jr., and Carl Pomerance. Factoring integers with the number field sieve. In A. K. Lenstra and H. W. Lenstra, Jr., editors, *The Development of the Number Field Sieve*, volume 1554 of *Lecture Notes in Mathematics*, pages 50–94. Springer, 1993.
- [78] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. SRC Research Report 124, Digital Equipment Corporation Systems Research Center, May 1994.
- [79] Neville Campbell. Recurrences. Unpublished treatise available at https://nevillecampbell.com/Recurrences.pdf, 2020.
- [80] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. *Journal of Computer and System Sciences*, 18(2):143–154, 1979.
- [81] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. *Using OpenMP: Portable Shared Memory Parallel Programming*. The MIT Press, 2007.
- [82] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: An object-oriented approach to non-uniform cluster computing. In ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA), pages 519–538, 2005.
- [83] Bernard Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. *Journal of the ACM*, 47(6):1028–1047, 2000.
- [84] Ke Chen and Adrian Dumitrescu. Selection algorithms with small groups. *International Journal of Foundations of Computer Science*, 31(3):355–369, 2020.
- [85] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew F. Stark. Detecting data races in Cilk programs that use locks. In *Proceedings of the 10th Annual ACM Symposium on Parallel Algorithms and Architectures*, pages 298–309, 1998.
- [86] Joseph Cheriyan and Torben Hagerup. A randomized maximum-flow algorithm. *SIAM Journal on Computing*, 24(2):203–226, 1995.
- [87] Joseph Cheriyan and S. N. Maheshwari. Analysis of preflow push algorithms for maximum network flow. *SIAM Journal on Computing*, 18(6):1057–1086, 1989.
- [88] Boris V. Cherkassky and Andrew V. Goldberg. On implementing the push-relabel method for the maximum flow problem. *Algorithmica*, 19(4):390–410, 1997.
- [89] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms: Theory and experimental evaluation. *Mathematical Programming*, 73(2):129–174, 1996.
- [90] Boris V. Cherkassky, Andrew V. Goldberg, and Craig Silverstein. Buckets, heaps, lists and monotone priority queues. *SIAM Journal on Computing*, 28(4):1326–1346, 1999.
- [91] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. *Annals of Mathematical Statistics*, 23(4):493–507, 1952.

- [92] Brian Christian and Tom Griffiths. *Algorithms to Live By: The Computer Science of Human Decisions*. Picador, 2017.
- [93] Kai Lai Chung. Elementary Probability Theory with Stochastic Processes. Springer, 1974.
- [94] V. Chvátal. Linear Programming. W. H. Freeman and Company, 1983.
- [95] V. Chvátal, D. A. Klarner, and D. E. Knuth. Selected combinatorial research problems. Technical Report STAN-CS-72-292, Computer Science Department, Stanford University, 1972.
- [96] Alan Cobham. The intrinsic computational difficulty of functions. In *Proceedings of the 1964 Congress for Logic, Methodology, and the Philosophy of Science*, pages 24–30. North-Holland, 1964.
- [97] H. Cohen and H. W. Lenstra, Jr. Primality testing and Jacobi sums. *Mathematics of Computation*, 42(165):297–330, 1984.
- [98] Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu. Negative-weight shortest paths and unit capacity minimum cost flow in $\widetilde{O}(m^{10/7}\log w)$ time (extended abstract). In *Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms*, pages 752–771, 2017.
- [99] Douglas Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.
- [100] Stephen Cook. The complexity of theorem proving procedures. In *Proceedings of the Third Annual ACM Symposium on Theory of Computing*, pages 151–158, 1971.
- [101] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex Fourier series. *Mathematics of Computation*, 19(90):297–301, 1965.
- [102] Don Coppersmith. Modifications to the number field sieve. *Journal of Cryptology*, 6(3):169–180, 1993.
- [103] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progression. *Journal of Symbolic Computation*, 9(3):251–280, 1990.
- [104] Thomas H. Cormen. Algorithms Unlocked. The MIT Press, 2013.
- [105] Thomas H. Cormen, Thomas Sundquist, and Leonard F. Wisniewski. Asymptotically tight bounds for performing BMMC permutations on parallel disk systems. SIAM Journal on Computing, 28(1):105–136, 1998.
- [106] Don Dailey and Charles E. Leiserson. Using Cilk to write multiprocessor chess programs. In H. J. van den Herik and B. Monien, editors, *Advances in Computer Games*, volume 9, pages 25–52. University of Maastricht, Netherlands, 2001.
- [107] Sanjoy Dasgupta, Christos Papadimitriou, and Umesh Vazirani. Algorithms. McGraw-Hill, 2008.
- [108] Abraham de Moivre. De fractionibus algebraicis radicalitate immunibus ad fractiones simpliciores reducendis, deque summandis terminis quarundam serierum aequali intervallo a se distantibus. *Philosophical Transactions*, 32(373):162–168, 1722.
- [109] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pătrașcu. Dynamic optimality—almost. *SIAM Journal on Computing*, 37(1):240–251, 2007.
- [110] Camil Demetrescu, David Eppstein, Zvi Galik, and Giuseppe F. Italiano. Dynamic graph algorithms. In Mikhail J. Attalah and Marina Blanton, editors, *Algorithms and Theory of Computation Handbook*, chapter 9, pages 9-1–9-28. Chapman & Hall/CRC, second edition, 2009.

[111] Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic all pairs shortest paths with real edge weights. *Journal of Computer and System Sciences*, 72(5):813–837, 2006.

- [112] Eric V. Denardo and Bennett L. Fox. Shortest-route methods: 1. Reaching, pruning, and buckets. *Operations Research*, 27(1):161–186, 1979.
- [113] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable randomized algorithm for the closest-pair problem. *Journal of Algorithms*, 25(1):19–51, 1997.
- [114] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. *SIAM Journal on Computing*, 23(4):738–761, 1994.
- [115] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. *IEEE Transactions on Information Theory*, IT-22(6):644–654, 1976.
- [116] Edsger W. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1(1):269–271, 1959.
- [117] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
- [118] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. Race detection in two dimensions. *ACM Transactions on Parallel Computing*, 4(4):1–22, 2018.
- [119] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power estimation. *Soviet Mathematics Doklady*, 11(5):1277–1280, 1970.
- [120] Brandon Dixon, Monika Rauch, and Robert E. Tarjan. Verification and sensitivity analysis of minimum spanning trees in linear time. *SIAM Journal on Computing*, 21(6):1184–1192, 1992.
- [121] John D. Dixon. Factorization and primality tests. *The American Mathematical Monthly*, 91(6):333–352, 1984.
- [122] Dorit Dor, Johan Håstad, Staffan Ulfberg, and Uri Zwick. On lower bounds for selecting the median. *SIAM Journal on Discrete Mathematics*, 14(3):299–311, 2001.
- [123] Dorit Dor and Uri Zwick. Selecting the median. *SIAM Journal on Computing*, 28(5):1722–1758, 1999.
- [124] Dorit Dor and Uri Zwick. Median selection requires $(2 + \epsilon)n$ comparisons. SIAM Journal on Discrete Mathematics, 14(3):312–325, 2001.
- [125] Alvin W. Drake. Fundamentals of Applied Probability Theory. McGraw-Hill, 1967.
- [126] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data structures persistent. *Journal of Computer and System Sciences*, 38(1):86–124, 1989.
- [127] Ran Duan, Seth Pettie, and Hsin-Hao Su. Scaling algorithms for weighted matching in general graphs. *ACM Transactions on Algorithms*, 14(1):8:1–8:35, 2018.
- [128] Richard Durstenfeld. Algorithm 235 (RANDOM PERMUTATION). *Communications of the ACM*, 7(7):420, 1964.
- [129] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup versus efficiency in parallel systems. *IEEE Transactions on Computers*, 38(3):408–423, 1989.
- [130] Jack Edmonds. Paths, trees, and flowers. *Canadian Journal of Mathematics*, 17:449–467, 1965.

- [131] Jack Edmonds. Matroids and the greedy algorithm. *Mathematical Programming*, 1(1):127–136, 1971.
- [132] Jack Edmonds and Richard M. Karp. Theoretical improvements in the algorithmic efficiency for network flow problems. *Journal of the ACM*, 19(2):248–264, 1972.
- [133] Jeff Edmonds. How To Think About Algorithms. Cambridge University Press, 2008.
- [134] Mourad Elloumi and Albert Y. Zomaya, editors. *Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications*. John Wiley & Sons, 2011.
- [135] Jeff Erickson. Algorithms. https://archive.org/details/Algorithms-Jeff-Erickson, 2019.
- [136] Martin Erwig. Once Upon an Algorithm: How Stories Explain Computing. The MIT Press, 2017.
- [137] Shimon Even. Graph Algorithms. Computer Science Press, 1979.
- [138] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. *Journal of the ACM*, 28(1):1–4, 1981.
- [139] William Feller. *An Introduction to Probability Theory and Its Applications*. John Wiley & Sons, third edition, 1968.
- [140] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in Cilk programs. In *Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures*, pages 1–11, 1997.
- [141] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and Neal E. Young. Competitive paging algorithms. *Journal of Algorithms*, 12(4):685–699, 1991.
- [142] Amos Fiat and Gerhard J. Woeginger, editors. *Online Algorithms, The State of the Art*, volume 1442 of *Lecture Notes in Computer Science*. Springer, 1998.
- [143] Sir Ronald A. Fisher and Frank Yates. *Statistical Tables for Biological, Agricultural and Medical Research*. Hafner Publishing Company, fifth edition, 1957.
- [144] Robert W. Floyd. Algorithm 97 (SHORTEST PATH). Communications of the ACM, 5(6):345, 1962.
- [145] Robert W. Floyd. Algorithm 245 (TREESORT). Communications of the ACM, 7(12):701, 1964.
- [146] Robert W. Floyd. Permuting information in idealized two-level storage. In Raymond E. Miller and James W. Thatcher, editors, Complexity of Computer Computations, pages 105–109. Plenum Press, 1972.
- [147] Robert W. Floyd and Ronald L. Rivest. Expected time bounds for selection. *Communications of the ACM*, 18(3):165–172, 1975.
- [148] L. R. Ford. Network Flow Theory. RAND Corporation, Santa Monica, CA, 1956.
- [149] Lestor R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
- [150] Lestor R. Ford, Jr. and Selmer M. Johnson. A tournament problem. *The American Mathematical Monthly*, 66(5):387–389, 1959.
- [151] E. W. Forgy. Cluster analysis of multivariate efficiency versus interpretations interpretations. *Biometrics*, 21(3):768–769, 1965.

[152] Lance Fortnow. *The Golden Ticket: P, NP, and the Search for the Impossible*. Princeton University Press, 2013.

- [153] Michael L. Fredman. New bounds on the complexity of the shortest path problem. *SIAM Journal on Computing*, 5(1):83–89, 1976.
- [154] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with *O*(1) worst case access time. *Journal of the ACM*, 31(3):538–544, 1984.
- [155] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data structures. In *Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing*, pages 345–354, 1989.
- [156] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. *Journal of the ACM*, 34(3):596–615, 1987.
- [157] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with fusion trees. *Journal of Computer and System Sciences*, 47(3):424–436, 1993.
- [158] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. *Journal of Computer and System Sciences*, 48(3):533–551, 1994.
- [159] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of Computer and System Sciences*, 55(1):119–139, 1997.
- [160] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Reducers and other Cilk++ hyperobjects. In *Proceedings of the 21st Annual ACM Symposium on Parallelism in Algorithms and Architectures*, pages 79–90, 2009.
- [161] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. *Proceedings of the IEEE*, 93(2):216–231, 2005.
- [162] Hannah Fry. Hello World: Being Human in the Age of Algorithms. W. W. Norton & Company, 2018.
- [163] Harold N. Gabow. Path-based depth-first search for strong and biconnected components. *Information Processing Letters*, 74(3–4):107–114, 2000.
- [164] Harold N. Gabow. The weighted matching approach to maximum cardinality matching. *Fundamenta Informaticae*, 154(1-4):109–130, 2017.
- [165] Harold N. Gabow, Z. Galil, T. Spencer, and Robert E. Tarjan. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. *Combinatorica*, 6(2):109–122, 1986.
- [166] Harold N. Gabow and Robert E. Tarjan. A linear-time algorithm for a special case of disjoint set union. *Journal of Computer and System Sciences*, 30(2):209–221, 1985.
- [167] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network problems. *SIAM Journal on Computing*, 18(5):1013–1036, 1989.
- [168] Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-matching problems. *Journal of the ACM*, 38(4):815–853, 1991.
- [169] D. Gale and L. S. Shapley. College admissions and the stability of marriage. *American Mathematical Monthly*, 69(1):9–15, 1962.
- [170] Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer length edges. *Information and Computation*, 134(2):103–139, 1997.

- [171] Zvi Galil and Oded Margalit. All pairs shortest paths for graphs with small integer length edges. *Journal of Computer and System Sciences*, 54(2):243–254, 1997.
- [172] Zvi Galil and Kunsoo Park. Dynamic programming with convexity, concavity and sparsity. *Theoretical Computer Science*, 92(1):49–76, 1992.
- [173] Zvi Galil and Joel Seiferas. Time-space-optimal string matching. *Journal of Computer and System Sciences*, 26(3):280–294, 1983.
- [174] Igal Galperin and Ronald L. Rivest. Scapegoat trees. In *Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms*, pages 165–174, 1993.
- [175] Michael R. Garey, R. L. Graham, and J. D. Ullman. Worst-case analysi of memory allocation algorithms. In *Proceedings of the Fourth Annual ACM Symposium on Theory of Computing*, pages 143–150, 1972.
- [176] Michael R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, 1979.
- [177] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity flow and other fractional packing problems. *SIAM Journal on Computing*, 37(2):630–652, 2007.
- [178] Saul Gass. *Linear Programming: Methods and Applications*. International Thomson Publishing, fourth edition, 1975.
- [179] Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. *SIAM Journal on Computing*, 1(2):180–187, 1972.
- [180] Alan George and Joseph W-H Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice Hall, 1981.
- [181] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. *Bell System Technical Journal*, 38(4):933–967, 1959.
- [182] Ashish Goel, Sanjeev Khanna, Daniel H. Larkin, and Rober E. Tarjan. Disjoint set union with randomized linking. In *Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms*, pages 1005–1017, 2014.
- [183] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *Journal of the ACM*, 42(6):1115–1145, 1995.
- [184] Michel X. Goemans and David P. Williamson. The primal-dual method for approximation algorithms and its application to network design problems. In Dorit S. Hochbaum, editor, *Approximation Algorithms for NP-Hard Problems*, pages 144–191. PWS Publishing Company, 1997.
- [185] Andrew V. Goldberg. *Efficient Graph Algorithms for Sequential and Parallel Computers*. PhD thesis, Department of Electrical Engineering and Computer Science, MIT, 1987.
- [186] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. *SIAM Journal on Computing*, 24(3):494–504, 1995.
- [187] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. *Journal of the ACM*, 45(5):783–797, 1998.
- [188] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum flow problem. *Journal of the ACM*, 35(4):921–940, 1988.

[189] D. Goldfarb and M. J. Todd. Linear programming. In G. L. Nemhauser, A. H. G. Rinnooy-Kan, and M. J. Todd, editors, *Handbooks in Operations Research and Management Science*, *Vol. 1, Optimization*, pages 73–170. Elsevier Science Publishers, 1989.

- [190] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. *Journal of Computer and System Sciences*, 28(2):270–299, 1984.
- [191] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive chosen-message attacks. *SIAM Journal on Computing*, 17(2):281–308, 1988.
- [192] Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. The Johns Hopkins University Press, third edition, 1996.
- [193] G. H. Gonnet and R. Baeza-Yates. *Handbook of Algorithms and Data Structures in Pascal and C*. Addison-Wesley, second edition, 1991.
- [194] Rafael C. Gonzalez and Richard E. Woods. *Digital Image Processing*. Addison-Wesley, 1992.
- [195] Michael T. Goodrich and Roberto Tamassia. *Algorithm Design: Foundations, Analysis, and Internet Examples*. John Wiley & Sons, 2001.
- [196] Michael T. Goodrich and Roberto Tamassia. *Data Structures and Algorithms in Java*. John Wiley & Sons, sixth edition, 2014.
- [197] Ronald L. Graham. Bounds for certain multiprocessor anomalies. *Bell System Technical Journal*, 45(9):1563–1581, 1966.
- [198] Ronald L. Graham and Pavol Hell. On the history of the minimum spanning tree problem. *Annals of the History of Computing*, 7(1):43–57, 1985.
- [199] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. *Concrete Mathematics*. Addison-Wesley, second edition, 1994.
- [200] David Gries. The Science of Programming. Springer, 1981.
- [201] M. Grötschel, László Lovász, and Alexander Schrijver. *Geometric Algorithms and Combinatorial Optimization*. Springer, 1988.
- [202] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In *Proceedings of the 19th Annual Symposium on Foundations of Computer Science*, pages 8–21, 1978.
- [203] Dan Gusfield and Robert W. Irving. *The Stable Marriage Problem: Structure and Algorithms*. The MIT Press, 1989.
- [204] Gregory Gutin and Abraham P. Punnen, editors. *The Traveling Salesman Problem and Its Variations*. Kluwer Academic Publishers, 2002.
- [205] Torben Hagerup. Improved shortest paths on the word RAM. In *Proceedings of 27th International Colloquium on Automata*, *Languages and Programming*, *ICALP 2000*, volume 1853 of *Lecture Notes in Computer Science*, pages 61–72. Springer, 2000.
- [206] H. Halberstam and R. E. Ingram, editors. *The Mathematical Papers of Sir William Rowan Hamilton*, volume III (Algebra). Cambridge University Press, 1967.
- [207] Yijie Han. Improved fast integer sorting in linear space. *Information and Computation*, 170(1):81–94, 2001.
- [208] Frank Harary. *Graph Theory*. Addison-Wesley, 1969.

- [209] Gregory C. Harfst and Edward M. Reingold. A potential-based amortized analysis of the union-find data structure. *SIGACT News*, 31(3):86–95, 2000.
- [210] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. *Transactions of the American Mathematical Society*, 117:285–306, 1965.
- [211] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the history of the Fast Fourier Transform. *IEEE ASSP Magazine*, 1(4):14–21, 1984.
- [212] Monika R. Henzinger and Valerie King. Fully dynamic biconnectivity and transitive closure. In *Proceedings of the 36th Annual Symposium on Foundations of Computer Science*, pages 664–672, 1995.
- [213] Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with polylogarithmic time per operation. *Journal of the ACM*, 46(4):502–516, 1999.
- [214] Monika R. Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connectivity: New bounds from old techniques. *Journal of Algorithms*, 34(2):222–250, 2000.
- [215] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. *ACM Transactions on Mathematical Software*, 16(4):352–368, 1990.
- [216] Nicholas J. Higham. *Accuracy and Stability of Numerical Algorithms*. SIAM, second edition, 2002.
- [217] W. Daniel Hillis and Jr. Guy L. Steele. Data parallel algorithms. *Communications of the ACM*, 29(12):1170–1183, 1986.
- [218] C. A. R. Hoare. Algorithm 63 (PARTITION) and algorithm 65 (FIND). *Communications of the ACM*, 4(7):321–322, 1961.
- [219] C. A. R. Hoare. Quicksort. *The Computer Journal*, 5(1):10–15, 1962.
- [220] Dorit S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing problems. *Discrete Applied Mathematics*, 6(3):243–254, 1983.
- [221] Dorit S. Hochbaum, editor. *Approximation Algorithms for NP-Hard Problems*. PWS Publishing Company, 1997.
- [222] W. Hoeffding. On the distribution of the number of successes in independent trials. *Annals of Mathematical Statistics*, 27(3):713–721, 1956.
- [223] Micha Hofri. Probabilistic Analysis of Algorithms. Springer, 1987.
- [224] John E. Hopcroft and Richard M. Karp. An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs. *SIAM Journal on Computing*, 2(4):225–231, 1973.
- [225] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata The-ory, Languages, and Computation*. Addison Wesley, third edition, 2006.
- [226] John E. Hopcroft and Robert E. Tarjan. Efficient algorithms for graph manipulation. *Communications of the ACM*, 16(6):372–378, 1973.
- [227] John E. Hopcroft and Jeffrey D. Ullman. Set merging algorithms. *SIAM Journal on Computing*, 2(4):294–303, 1973.
- [228] John E. Hopcroft and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley, 1979.
- [229] Juraj Hromkovič. Algorithmics for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics. Springer-Verlag, 2001.

[230] T. C. Hu and M. T. Shing. Computation of matrix chain products. Part I. *SIAM Journal on Computing*, 11(2):362–373, 1982.

- [231] T. C. Hu and M. T. Shing. Computation of matrix chain products. Part II. SIAM Journal on Computing, 13(2):228–251, 1984.
- [232] T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-length alphabetic codes. *SIAM Journal on Applied Mathematics*, 21(4):514–532, 1971.
- [233] David A. Huffman. A method for the construction of minimum-redundancy codes. *Proceedings of the IRE*, 40(9):1098–1101, 1952.
- [234] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and sum of subset problems. *Journal of the ACM*, 22(4):463–468, 1975.
- [235] E. J. Isaac and R. C. Singleton. Sorting by address calculation. *Journal of the ACM*, 3(3):169–174, 1956.
- [236] David S. Johnson. Approximation algorithms for combinatorial problems. *Journal of Computer and System Sciences*, 9(3):256–278, 1974.
- [237] David S. Johnson. The NP-completeness column: An ongoing guide—The tale of the second prover. *Journal of Algorithms*, 13(3):502–524, 1992.
- [238] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. *Journal of the ACM*, 24(1):1–13, 1977.
- [239] Richard Johnsonbaugh and Marcus Schaefer. Algorithms. Pearson Prentice Hall, 2004.
- [240] Neil C. Jones and Pavel Pevzner. *An Introduction to Bioinformatics Algorithms*. The MIT Press, 2004.
- [241] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A local search approximation algorithm for *k*-means clustering. *Computational Geometry*, 28:89–112, 2004.
- [242] A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on automata. *Soviet Physics—Doklady*, 7(7):595–596, 1963. Translation of an article in *Doklady Akademii Nauk SSSR*, 145(2), 1962.
- [243] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. *Journal of the ACM*, 42(2):321–328, 1995.
- [244] David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hidden path: Time bounds for all-pairs shortest paths. *SIAM Journal on Computing*, 22(6):1199–1217, 1993.
- [245] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction. *Journal of the ACM*, 53(6):918–936, 2006.
- [246] Howard Karloff. Linear Programming. Birkhäuser, 1991.
- [247] N. Karmarkar. A new polynomial-time algorithm for linear programming. *Combinatorica*, 4(4):373–395, 1984.
- [248] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, *Complexity of Computer Computations*, pages 85–103. Plenum Press, 1972.
- [249] Richard M. Karp. An introduction to randomized algorithms. *Discrete Applied Mathematics*, 34(1–3):165–201, 1991.

- [250] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms. *IBM Journal of Research and Development*, 31(2):249–260, 1987.
- [251] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows. *Soviet Mathematics Doklady*, 15(2):434–437, 1974.
- [252] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-common-prefix computation in suffix arrays and its applications. In *Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching*, volume 2089, pages 181–192. Springer-Verlag, 2001.
- [253] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC Press, second edition, 2015.
- [254] Valerie King. A simpler minimum spanning tree verification algorithm. *Algorithmica*, 18(2):263–270, 1997.
- [255] Valerie King, Satish Rao, and Robert E. Tarjan. A faster deterministic maximum flow algorithm. *Journal of Algorithms*, 17(3):447–474, 1994.
- [256] Philip N. Klein and Neal E. Young. Approximation algorithms for NP-hard optimization problems. In *CRC Handbook on Algorithms*, pages 34-1–34-19. CRC Press, 1999.
- [257] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006.
- [258] Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions. In *Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms*, pages 630–631, 2005.
- [259] Donald E. Knuth. *Fundamental Algorithms*, volume 1 of *The Art of Computer Programming*. Addison-Wesley, third edition, 1997.
- [260] Donald E. Knuth. *Seminumerical Algorithms*, volume 2 of *The Art of Computer Programming*. Addison-Wesley, third edition, 1997.
- [261] Donald E. Knuth. *Sorting and Searching*, volume 3 of *The Art of Computer Programming*. Addison-Wesley, second edition, 1998.
- [262] Donald E. Knuth. Combinatorial Algorithms, volume 4A of The Art of Computer Programming. Addison-Wesley, 2011.
- [263] Donald E. Knuth. *Satisfiability*, volume 4, fascicle 6 of *The Art of Computer Programming*. Addison-Wesley, 2015.
- [264] Donald E. Knuth. Optimum binary search trees. Acta Informatica, 1(1):14–25, 1971.
- [265] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8(2):18–23, 1976.
- [266] Donald E. Knuth. Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms, volume 10 of CRM Proceedings and Lecture Notes. American Mathematical Society, 1997.
- [267] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast pattern matching in strings. *SIAM Journal on Computing*, 6(2):323–350, 1977.
- [268] Mykel J. Kochenderfer and Tim A. Wheeler. Algorithms for Optimization. The MIT Press, 2019.
- [269] J. Komlós. Linear verification for spanning trees. *Combinatorica*, 5(1):57–65, 1985.
- [270] Dexter C. Kozen. The Design and Analysis of Algorithms. Springer, 1992.

[271] David W. Krumme, George Cybenko, and K. N. Venkataraman. Gossiping in minimal time. *SIAM Journal on Computing*, 21(1):111–139, 1992.

- [272] Joseph B. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling salesman problem. *Proceedings of the American Mathematical Society*, 7(1):48–50, 1956.
- [273] Harold W. Kuhn. The Hungarian method for the assignment problem. *Naval Research Logistics Quarterly*, 2:83–97, 1955.
- [274] William Kuszmaul and Charles E. Leiserson. Floors and ceilings in divide-and-conquer recurrences. In *Proceedings of the 3rd SIAM Symposium on Simplicity in Algorithms*, pages 133–141, 2021.
- [275] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs. *IEEE Transactions on Computers*, C-28(9):690–691, 1979.
- [276] Eugene L. Lawler. *Combinatorial Optimization: Networks and Matroids*. Holt, Rinehart, and Winston, 1976.
- [277] Eugene L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors. *The Traveling Salesman Problem*. John Wiley & Sons, 1985.
- [278] François Le Gall. Powers of tensors and fast matrix multiplication. In *Proceedings of the* 2014 International Symposium on Symbolic and Algebraic Computation, (ISSAC), pages 296–303, 2014.
- [279] Doug Lea. A Java fork/join framework. In ACM 2000 Conference on Java Grande, pages 36–43, 2000.
- [280] C. Y. Lee. An algorithm for path connection and its applications. *IRE Transactions on Electronic Computers*, EC-10(3):346–365, 1961.
- [281] Edward A. Lee. The problem with threads. *IEEE Computer*, 39(3):33–42, 2006.
- [282] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim Sukha. On-the-fly pipeline parallelism. *ACM Transactions on Parallel Computing*, 2(3):17:1–17:42, 2015.
- [283] I-Ting Angelina Lee and Tao B. Schardl. Efficient race detection for reducer hyperobjects. *ACM Transactions on Parallel Computing*, 4(4):1–40, 2018.
- [284] Mun-Kyu Lee, Pierre Michaud, Jeong Seop Sim, and Daehun Nyang. A simple proof of optimality for the MIN cache replacement policy. *Information Processing Letters*, 116(2):168–170, 2016.
- [285] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear programs in $O(\sqrt{rank})$ iterations and faster algorithms for maximum flow. In *Proceedings of the 55th Annual Symposium on Foundations of Computer Science*, pages 424–433, 2014.
- [286] Tom Leighton. Tight bounds on the complexity of parallel sorting. *IEEE Transactions on Computers*, C-34(4):344–354, 1985.
- [287] Tom Leighton. Notes on better master theorems for divide-and-conquer recurrences. Class notes. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.1636, 1996.
- [288] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. *Journal of the ACM*, 46(6):787–832, 1999.

- [289] Daan Leijen and Judd Hall. Optimize managed code for multi-core machines. *MSDN Magazine*, 2007.
- [290] Charles E. Leiserson. The Cilk++ concurrency platform. *Journal of Supercomputing*, 51(3):244–257, March 2010.
- [291] Charles E. Leiserson. Cilk. In David Padua, editor, *Encyclopedia of Parallel Computing*, pages 273–288. Springer, 2011.
- [292] Charles E. Leiserson, Tao B. Schardl, and Jim Sukha. Deterministic parallel random-number generation for dynamic-multithreading platforms. In *Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP)*, pages 193–204, 2012.
- [293] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. There's plenty of room at the Top: What will drive computer performance after Moore's law? *Science*, 368(6495), 2020.
- [294] Debra A. Lelewer and Daniel S. Hirschberg. Data compression. *ACM Computing Surveys*, 19(3):261–296, 1987.
- [295] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The number field sieve. In A. K. Lenstra and H. W. Lenstra, Jr., editors, *The Development of the Number Field Sieve*, volume 1554 of *Lecture Notes in Mathematics*, pages 11–42. Springer, 1993.
- [296] H. W. Lenstra, Jr. Factoring integers with elliptic curves. *Annals of Mathematics*, 126(3):649–673, 1987.
- [297] L. A. Levin. Universal sequential search problems. *Problems of Information Transmission*, 9(3):265–266, 1973. Translated from the original Russian article in *Problemy Peredachi Informatsii* 9(3): 115–116, 1973.
- [298] Anany Levitin. *Introduction to the Design & Analysis of Algorithms*. Addison-Wesley, third edition, 2011.
- [299] Harry R. Lewis and Christos H. Papadimitriou. *Elements of the Theory of Computation*. Prentice Hall, second edition, 1998.
- [300] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. *Machine Learning*, 2(4):285–318, 1988.
- [301] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. *Information and Computation*, 108(2):212–261, 1994.
- [302] C. L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, 1968.
- [303] Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. In *Proceedings of the 52nd Annual ACM Symposium on Theory of Computing*, pages 803–814, 2020.
- [304] S. P. Lloyd. Least squares quantization in PCM. *IEEE Transactions on Information Theory*, 28(2):129–137, 1982.
- [305] Panos Louridas. Real-World Algorithms: A Beginner's Guide. The MIT Press, 2017.
- [306] László Lovász and Michael D. Plummer. *Matching Theory*, volume 121 of *Annals of Discrete Mathematics*. North Holland, 1986.
- [307] John MacCormick. 9 Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers. Princeton University Press, 2012.

[308] Aleksander Madry. Navigating central path with electrical flows: From flows to matchings, and back. In *Proceedings of the 54th Annual Symposium on Foundations of Computer Science*, pages 253–262, 2013.

- [309] Bruce M. Maggs and Serge A. Plotkin. Minimum-cost spanning tree as a path-finding problem. *Information Processing Letters*, 26(6):291–293, 1988.
- [310] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar *k*-means problem is NP-hard. In S. Das and R. Uehara, editors, *WALCOM 2009: Algorithms and Computation*, volume 5431 of *Lecture Notes in Computer Science*, pages 274–285. Springer, 2009.
- [311] Michael Main. Data Structures and Other Objects Using Java. Addison-Wesley, 1999.
- [312] Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches. *SIAM Journal on Computing*, 22(5):935–948, 1993.
- [313] David F. Manlove. Algorithmics of Matching Under Preferences, volume 2 of Series on Theoretical Computer Science. World Scientific, 2013.
- [314] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. *Journal of the ACM*, 48(3):407–430, 2001.
- [315] Mario Andrea Marchisio, editor. *Computational Methods in Synthetic Biology*. Humana Press, 2015.
- [316] William J. Masek and Michael S. Paterson. A faster algorithm computing string edit distances. *Journal of Computer and System Sciences*, 20(1):18–31, 1980.
- [317] Yu. V. Matiyasevich. Real-time recognition of the inclusion relation. *Journal of Soviet Mathematics*, 1(1):64–70, 1973. Translated from the original Russian article in *Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Institute im. V. A. Steklova Akademii Nauk SSSR* 20: 104–114, 1971.
- [318] H. A. Maurer, Th. Ottmann, and H.-W. Six. Implementing dictionaries using binary trees of very small height. *Information Processing Letters*, 5(1):11–14, 1976.
- [319] Ernst W. Mayr, Hans Jürgen Prömel, and Angelika Steger, editors. *Lectures on Proof Verification and Approximation Algorithms*, volume 1367 of *Lecture Notes in Computer Science*. Springer, 1998.
- [320] Catherine C. McGeoch. All pairs shortest paths and the essential subgraph. *Algorithmica*, 13(5):426–441, 1995.
- [321] Catherine C. McGeoch. A Guide to Experimental Algorithmics. Cambridge University Press, 2012.
- [322] Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Record, 43(1):9–20, 2014.
- [323] M. D. McIlroy. A killer adversary for quicksort. *Software—Practice and Experience*, 29(4):341–344, 1999.
- [324] Kurt Mehlhorn and Stefan Näher. *LEDA: A Platform for Combinatorial and Geometric Computing*. Cambridge University Press, 1999.
- [325] Kurt Mehlhorn and Peter Sanders. *Algorithms and Data Structures: The Basic Toolbox*. Springer, 2008.
- [326] Dinesh P. Mehta and Sartaj Sahni. *Handbook of Data Structures and Applications*. Chapman and Hall/CRC, second edition, 2018.

- [327] Gary L. Miller. Riemann's hypothesis and tests for primality. *Journal of Computer and System Sciences*, 13(3):300–317, 1976.
- [328] Marvin Minsky and Seymore A. Pappert. *Perceptrons*. The MIT Press, 1969.
- [329] John C. Mitchell. Foundations for Programming Languages. The MIT Press, 1996.
- [330] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, *k*-MST, and related problems. *SIAM Journal on Computing*, 28(4):1298–1309, 1999.
- [331] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press, second edition, 2017.
- [332] Louis Monier. Algorithmes de Factorisation D'Entiers. PhD thesis, L'Université Paris-Sud, 1980.
- [333] Louis Monier. Evaluation and comparison of two efficient probabilistic primality testing algorithms. *Theoretical Computer Science*, 12(1):97–108, 1980.
- [334] Edward F. Moore. The shortest path through a maze. In *Proceedings of the International Symposium on the Theory of Switching*, pages 285–292. Harvard University Press, 1959.
- [335] Rajeev Motwani, Joseph (Seffi) Naor, and Prabhakar Raghavan. Randomized approximation algorithms in combinatorial optimization. In Dorit Hochbaum, editor, *Approximation Algorithms for NP-Hard Problems*, chapter 11, pages 447–481. PWS Publishing Company, 1997.
- [336] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
- [337] James Munkres. Algorithms for the assignment and transportation problems. *Journal of the Society for Industrial and Applied Mathematics*, 5(1):32–38, 1957.
- [338] J. I. Munro and V. Raman. Fast stable in-place sorting with O(n) data moves. Algorithmica, 16(2):151-160, 1996.
- [339] Yoichi Muraoka and David J. Kuck. On the time required for a sequence of matrix products. *Communications of the ACM*, 16(1):22–26, 1973.
- [340] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.
- [341] S. Muthukrishnan. Data streams: Algorithms and applications. *Foundations and Trends in Theoretical Computer Science*, 1(2), 2005.
- [342] Richard Neapolitan. *Foundations of Algorithms*. Jones & Bartlett Learning, fifth edition, 2014.
- [343] Yurii Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*, volume 87 of *Applied Optimization*. Springer, 2004.
- [344] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. *SIAM Journal on Computing*, 2(1):33–43, 1973.
- [345] Ivan Niven and Herbert S. Zuckerman. *An Introduction to the Theory of Numbers*. John Wiley & Sons, fourth edition, 1980.
- [346] National Institute of Standards and Technology. Hash functions. https://csrc.nist.gov/projects/hash-functions, 2019.
- [347] Alan V. Oppenheim and Ronald W. Schafer, with John R. Buck. *Discrete-Time Signal Processing*. Prentice Hall, second edition, 1998.

[348] Alan V. Oppenheim and Alan S. Willsky, with S. Hamid Nawab. *Signals and Systems*. Prentice Hall, second edition, 1997.

- [349] James B. Orlin. A polynomial time primal network simplex algorithm for minimum cost flows. *Mathematical Programming*, 78(1):109–129, 1997.
- [350] James B. Orlin. Max flows in O(nm) time, or better. In *Proceedings of the 45th Annual ACM Symposium on Theory of Computing*, pages 765–774, 2013.
- [351] Anna Pagh, Rasmus Pagh, and Milan Ruzic. Linear probing with constant independence. https://arxiv.org/abs/cs/0612055, 2006.
- [352] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
- [353] Christos H. Papadimitriou and Kenneth Steiglitz. *Combinatorial Optimization: Algorithms and Complexity*. Prentice Hall, 1982.
- [354] Michael S. Paterson. Progress in selection. In *Proceedings of the Fifth Scandinavian Work-shop on Algorithm Theory*, pages 368–379, 1996.
- [355] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. *Theoretical Computer Science*, 312(1):47–74, 2004.
- [356] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. *Journal of the ACM*, 49(1):16–34, 2002.
- [357] Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for real-weighted undirected graphs. *SIAM Journal on Computing*, 34(6):1398–1431, 2005.
- [358] Steven Phillips and Jeffery Westbrook. Online load balancing and network flow. *Algorithmica*, 21(3):245–261, 1998.
- [359] Serge A. Plotkin, David. B. Shmoys, and Éva Tardos. Fast approximation algorithms for fractional packing and covering problems. *Mathematics of Operations Research*, 20:257–301, 1995.
- [360] J. M. Pollard. Factoring with cubic integers. In A. K. Lenstra and H. W. Lenstra, Jr., editors, *The Development of the Number Field Sieve*, volume 1554 of *Lecture Notes in Mathematics*, pages 4–10. Springer, 1993.
- [361] Carl Pomerance. On the distribution of pseudoprimes. *Mathematics of Computation*, 37(156):587–593, 1981.
- [362] Carl Pomerance, editor. *Proceedings of the AMS Symposia in Applied Mathematics: Computational Number Theory and Cryptography*. American Mathematical Society, 1990.
- [363] William K. Pratt. Digital Image Processing. John Wiley & Sons, fourth edition, 2007.
- [364] Franco P. Preparata and Michael Ian Shamos. *Computational Geometry: An Introduction*. Springer, 1985.
- [365] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. *Numerical Recipes in C++: The Art of Scientific Computing*. Cambridge University Press, second edition, 2002.
- [366] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. *Numerical Recipes: The Art of Scientific Computing*. Cambridge University Press, third edition, 2007.
- [367] R. C. Prim. Shortest connection networks and some generalizations. *Bell System Technical Journal*, 36(6):1389–1401, 1957.

- [368] Robert L. Probert. On the additive complexity of matrix multiplication. *SIAM Journal on Computing*, 5(2):187–203, 1976.
- [369] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM, 33(6):668–676, 1990.
- [370] Simon J. Puglisi, W. F. Smyth, and Andrew H. Turpin. A taxonomy of suffix array construction algorithms. *ACM Computing Surveys*, 39(2), 2007.
- [371] Paul W. Purdom, Jr. and Cynthia A. Brown. *The Analysis of Algorithms*. Holt, Rinehart, and Winston, 1985.
- [372] Michael O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, *Algorithms and Complexity: New Directions and Recent Results*, pages 21–39. Academic Press, 1976.
- [373] Michael O. Rabin. Probabilistic algorithm for testing primality. *Journal of Number Theory*, 12(1):128–138, 1980.
- [374] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good algorithms and algorithmic proofs. *Combinatorica*, 7(4):365–374, 1987.
- [375] Rajeev Raman. Recent results on the single-source shortest paths problem. *SIGACT News*, 28(2):81–87, 1997.
- [376] James Reinders. *Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism*. O'Reilly Media, Inc., 2007.
- [377] Edward M. Reingold, Kenneth J. Urban, and David Gries. K-M-P string matching revisited. Information Processing Letters, 64(5):217–223, 1997.
- [378] Hans Riesel. *Prime Numbers and Computer Methods for Factorization*, volume 126 of *Progress in Mathematics*. Birkhäuser, second edition, 1994.
- [379] Ronald L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 block cipher. In *First Advanced Encryption Standard (AES) Conference*, 1998.
- [380] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and public-key cryptosystems. *Communications of the ACM*, 21(2):120–126, 1978. See also U.S. Patent 4,405,829.
- [381] Herbert Robbins. A remark on Stirling's formula. *American Mathematical Monthly*, 62(1):26–29, 1955.
- [382] Julia Robinson. An iterative method of solving a game. *The Annals of Mathematics*, 54(2):296–301, 1951.
- [383] Arch D. Robison and Charles E. Leiserson. Cilk Plus. In Pavan Balaji, editor, *Programming Models for Parallel Computing*, chapter 13, pages 323–352. The MIT Press, 2015.
- [384] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis. An analysis of several heuristics for the traveling salesman problem. *SIAM Journal on Computing*, 6(3):563–581, 1977.
- [385] Tim Roughgarden. *Algorithms Illuminated, Part 1: The Basics*. Soundlikeyourself Publishing, 2017.
- [386] Tim Roughgarden. *Algorithms Illuminated, Part 2: Graph Algorithms and Data Structures*. Soundlikeyourself Publishing, 2018.
- [387] Tim Roughgarden. Algorithms Illuminated, Part 3: Greedy Algorithms and Dynamic Programming. Soundlikeyourself Publishing, 2019.

[388] Tim Roughgarden. *Algorithms Illuminated, Part 4: Algorithms for NP-Hard Problems*. Soundlikeyourself Publishing, 2020.

- [389] Salvador Roura. Improved master theorems for divide-and-conquer recurrences. *Journal of the ACM*, 48(2):170–205, 2001.
- [390] Y. A. Rozanov. Probability Theory: A Concise Course. Dover, 1969.
- [391] Stuart Russell and Peter Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, fourth edition, 2020.
- [392] S. Sahni and T. Gonzalez. P-complete approximation problems. *Journal of the ACM*, 23(3):555–565, 1976.
- [393] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. *Sequential and Parallel Algorithms and Data Structures: The Basic Toolkit*. Springer, 2019.
- [394] Piotr Sankowski. Shortest paths in matrix multiplication time. In *Proceedings of the 13th Annual European Symposium on Algorithms*, pages 770–778, 2005.
- [395] Russel Schaffer and Robert Sedgewick. The analysis of heapsort. *Journal of Algorithms*, 15(1):76–100, 1993.
- [396] Tao B. Schardl, I-Ting Angelina Lee, and Charles E. Leiserson. Brief announcement: Open Cilk. In *Proceedings of the 30th Annual ACM Symposium on Parallelism in Algorithms and Architectures*, pages 351–353, 2018.
- [397] A. Schönhage, M. Paterson, and N. Pippenger. Finding the median. *Journal of Computer and System Sciences*, 13(2):184–199, 1976.
- [398] Alexander Schrijver. *Theory of Linear and Integer Programming*. John Wiley & Sons, 1986.
- [399] Alexander Schrijver. Paths and flows—A historical survey. *CWI Quarterly*, 6(3):169–183, 1993
- [400] Alexander Schrijver. On the history of the shortest paths problem. *Documenta Mathematica*, 17(1):155–167, 2012.
- [401] Robert Sedgewick. Implementing quicksort programs. *Communications of the ACM*, 21(10):847–857, 1978.
- [402] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, fourth edition, 2011.
- [403] Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. *Journal of Computer and System Sciences*, 51(3):400–403, 1995.
- [404] Raimund Seidel and C. R. Aragon. Randomized search trees. *Algorithmica*, 16(4–5):464–497, 1996.
- [405] João Setubal and João Meidanis. *Introduction to Computational Molecular Biology*. PWS Publishing Company, 1997.
- [406] Clifford A. Shaffer. A Practical Introduction to Data Structures and Algorithm Analysis. Prentice Hall, second edition, 2001.
- [407] Jeffrey Shallit. Origins of the analysis of the Euclidean algorithm. *Historia Mathematica*, 21(4):401–419, 1994.
- [408] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis. *Computers and Mathematics with Applications*, 7(1):67–72, 1981.

- [409] David B. Shmoys. Computing near-optimal solutions to combinatorial optimization problems. In William Cook, László Lovász, and Paul Seymour, editors, *Combinatorial Optimization*, volume 20 of *DIMACS Series in Discrete Mathematics and Theoretical Computer Science*. American Mathematical Society, 1995.
- [410] Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer weights. In *Proceedings of the 40th Annual Symposium on Foundations of Computer Science*, pages 605–614, 1999.
- [411] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge University Press, second edition, 2009.
- [412] Julian Shun. Shared-Memory Parallelism Can Be Simple, Fast, and Scalable. Association for Computing Machinery and Morgan & Claypool, 2017.
- [413] Michael Sipser. *Introduction to the Theory of Computation*. Cengage Learning, third edition, 2013.
- [414] Steven S. Skiena. *The Algorithm Design Manual*. Springer, second edition, corrected printing, 2012.
- [415] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. *Journal of Computer and System Sciences*, 26(3):362–391, 1983.
- [416] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update rules. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pages 488–492, 1984.
- [417] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules. *Communications of the ACM*, 28(2):202–208, 1985.
- [418] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees. *Journal of the ACM*, 32(3):652–686, 1985.
- [419] Michael Soltys-Kulinicz. *An Introduction to the Analysis of Algorithms*. World Scientific, third edition, 2018.
- [420] Joel Spencer. *Ten Lectures on the Probabilistic Method*, volume 64 of *CBMS-NSF Regional Conference Series in Applied Mathematics*. Society for Industrial and Applied Mathematics, 1993.
- [421] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. *Journal of the ACM*, 51(3):385–463, 2004.
- [422] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.
- [423] Gilbert Strang. *Linear Algebra and Its Applications*. Thomson Brooks/Cole, fourth edition, 2006.
- [424] Volker Strassen. Gaussian elimination is not optimal. *Numerische Mathematik*, 14(3):354–356, 1969.
- [425] T. G. Szymanski. A special case of the maximal common subsequence problem. Technical Report TR-170, Computer Science Laboratory, Princeton University, 1975.
- [426] Robert E. Tarjan. Depth first search and linear graph algorithms. *SIAM Journal on Computing*, 1(2):146–160, 1972.
- [427] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm. *Journal of the ACM*, 22(2):215–225, 1975.

[428] Robert E. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint sets. *Journal of Computer and System Sciences*, 18(2):110–127, 1979.

- [429] Robert E. Tarjan. *Data Structures and Network Algorithms*. Society for Industrial and Applied Mathematics, 1983.
- [430] Robert E. Tarjan. Amortized computational complexity. *SIAM Journal on Algebraic and Discrete Methods*, 6(2):306–318, 1985.
- [431] Robert E. Tarjan. Class notes: Disjoint set union. COS 423, Princeton University, 1999. Available at https://www.cs.princeton.edu/courses/archive/spr00/cs423/handout3.pdf.
- [432] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. *Journal of the ACM*, 31(2):245–281, 1984.
- [433] George B. Thomas, Jr., Maurice D. Weir, Joel Hass, and Frank R. Giordano. *Thomas' Calculus*. Addison-Wesley, eleventh edition, 2005.
- [434] Mikkel Thorup. Faster deterministic sorting and priority queues in linear space. In *Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms*, pages 550–555, 1998.
- [435] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in linear time. *Journal of the ACM*, 46(3):362–394, 1999.
- [436] Mikkel Thorup. On RAM priority queues. SIAM Journal on Computing, 30(1):86–109, 2000.
- [437] Mikkel Thorup. High speed hashing for integers and strings. http://arxiv.org/abs/1504. 06804, 2015.
- [438] Mikkel Thorup. Linear probing with 5-independent hashing. http://arxiv.org/abs/1509. 04549, 2015.
- [439] Richard Tolimieri, Myoung An, and Chao Lu. *Mathematics of Multidimensional Fourier Transform Algorithms*. Springer, second edition, 1997.
- [440] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. *Information Processing Letters*, 6(3):80–82, 1977.
- [441] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue. *Mathematical Systems Theory*, 10(1):99–127, 1976.
- [442] Charles Van Loan. *Computational Frameworks for the Fast Fourier Transform*. Society for Industrial and Applied Mathematics, 1992.
- [443] Benjamin Van Roy. A short proof of optimality for the MIN cache replacement algorithm. *Information Processing Letters*, 102(2–3):72–73, 2007.
- [444] Robert J. Vanderbei. *Linear Programming: Foundations and Extensions*. Kluwer Academic Publishers, 1996.
- [445] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In *Proceedings of the 44th Annual ACM Symposium on Theory of Computing*, pages 887–898, 2012.
- [446] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.
- [447] Rakesh M. Verma. General techniques for analyzing recursive algorithms with applications. *SIAM Journal on Computing*, 26(2):568–581, 1997.

- [448] Berthold Vöcking, Helmut Alt, Martin Dietzfelbinger, Rüdiger Reischuk, Christian Scheideler, Heribert Vollmer, and Dorothea Wager, editors. Algorithms Unplugged. Springer, 2011.
- [449] Antony F. Ware. Fast approximate Fourier transforms for irregularly spaced data. *SIAM Review*, 40(4):838–856, 1998.
- [450] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.
- [451] Mark Allen Weiss. *Data Structures and Problem Solving Using C++*. Addison-Wesley, second edition, 2000.
- [452] Mark Allen Weiss. *Data Structures and Problem Solving Using Java*. Addison-Wesley, third edition, 2006.
- [453] Mark Allen Weiss. *Data Structures and Algorithm Analysis in C++*. Addison-Wesley, third edition, 2007.
- [454] Mark Allen Weiss. *Data Structures and Algorithm Analysis in Java*. Addison-Wesley, second edition, 2007.
- [455] Herbert S. Wilf. Algorithms and Complexity. A K Peters, second edition, 2002.
- [456] J. W. J. Williams. Algorithm 232 (HEAPSORT). *Communications of the ACM*, 7(6):347–348, 1964.
- [457] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. *SIAM Journal on Computing*, 47(5):1965–1985, 2018.
- [458] David P. Williamson. Network Flow Algorithms. Cambridge University Press, 2019.
- [459] David P. Williamson and David B. Shmoys. *The Design of Approximation Algorithms*. Cambridge University Press, 2011.
- [460] Shmuel Winograd. On the algebraic complexity of functions. In *Actes du Congrès International des Mathématiciens*, volume 3, pages 283–288, 1970.
- [461] Yifan Xu, I-Ting Angelina Lee, and Kunal Agrawal. Efficient parallel determinacy race detection for two-dimensional dags. In *Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP)*, pages 368–380, 2018.
- [462] Chee Yap. A real elementary approach to the master recurrence and generalizations. In M. Ogihara and J. Tarui, editors, *Theory and Applications of Models of Computation. TAMC* 2011, volume 6648 of *Lecture Notes in Computer Science*, pages 14–26. Springer, 2011.
- [463] Yinyu Ye. Interior Point Algorithms: Theory and Analysis. John Wiley & Sons, 1997.
- [464] Neal E. Young. Online paging and caching. In *Encyclopedia of Algorithms*, pages 1457–1461. Springer, 2016.
- [465] Raphael Yuster and Uri Zwick. Answering distance queries in directed graphs using fast matrix multiplication. In *Proceedings of the 46th Annual Symposium on Foundations of Computer Science*, pages 389–396, 2005.
- [466] Jisheng Zhao and Vivek Sarkar. The design and implementation of the Habanero-Java parallel programming language. In *Symposium on Object-Oriented Programming*, *Systems*, *Languages and Applications* (OOPSLA), pages 185–186, 2011.
- [467] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. *Journal of the ACM*, 49(3):289–317, 2002.
- [468] Daniel Zwillinger, editor. *CRC Standard Mathematical Tables and Formulae*. Chapman & Hall/CRC Press, 31st edition, 2003.

This index uses the following conventions. Numbers are alphabetized as if spelled out; for example, "2-3-4 tree" is indexed as if it were "two-three-four tree." When an entry refers to a place other than the main text, the page number is followed by a tag: ex. for exercise, pr. for problem, fig. for figure, and n. for footnote. A tagged page number often indicates the first page of an exercise or problem, which is not necessarily the page on which the reference actually appears.

```
\alpha(n), 533
                                                           Ø
\alpha-strongly convex function, 1041
                                                              (empty language), 1052
\beta-smooth function, 1041
                                                              (empty set), 1153
δ
                                                           \subseteq (subset), 1154
   (shortest-path distance), 558
                                                           \subset (proper subset), 1154
   (shortest-path weight), 604
                                                           : (such that), 54 n., 1154
\phi (golden ratio), 69
                                                           \cap (set intersection), 1154
\phi (conjugate of the golden ratio), 69
                                                           \cup (set union), 1154
\phi(n) (Euler's phi function), 920
                                                           - (set difference), 1154
   (predecessor in a breadth-first tree), 555
                                                              (flow value), 672
   (predecessor in a shortest-paths tree), 608
                                                              (length of a string), 959
\rho(n)-approximation algorithm, 1104, 1120
                                                              (set cardinality), 1156
o-notation, 60
                                                           × (Cartesian product), 1157
O-notation, 50, 54–55
                                                           ()
O'-notation, 73 pr.
                                                              (sequence), 1162
\widetilde{O}-notation, 73 pr.
                                                              (standard encoding), 1052
\omega-notation, 61
                                                           : (subarray), 19, 23
\Omega-notation, 51, 54 fig., 55–56
                                                           [a, b] (closed interval), 1157
\overset{\infty}{\Omega}-notation, 73 pr.
                                                           (a, b) (open interval), 1157
                                                           [a, b) or (a, b] (half-open interval), 1157
\widetilde{\Omega}-notation, 73 pr.
                                                           \binom{n}{k} (choose), 1180
\Theta-notation, 33, 51, 54 fig., 56
                                                           | | (euclidean norm), 1219
\Theta-notation, 73 pr.
                                                           ! (factorial), 67–68
{ } (set), 1153
                                                           [ ] (ceiling), 63
\in (set member), 1153
                                                           | (floor), 63
∉ (not a set member), 1153
```

∂ (partial derivative), 1023	accepting state, 967
\sum (sum), 1140	accounting method, 453–456
[] (product), 1144	for binary counters, 455
→ (adjacency relation), 1165	for dynamic tables, 463
	for stack operations, 454–455
∧ (AND), 659, 1065	Ackermann's function, 544
(concatenation), 291	activity-selection problem, 418–425
¬ (NOT), 1065	acyclic graph, 1166
∨ (OR), 659, 1065	ADD-BINARY-INTEGERS, 25 ex.
« (left shift), 305	add instruction, 26
>>> (logical right shift), 285	addition
(of matrices, 1217
(group operator), 917	modulo $n (+_n)$, 917
(semiring operator), 651 n.	of polynomials, 877
(symmetric difference), 706	additive group modulo n , 918
⊗	addressing, open, <i>see</i> open-address hash table
(convolution operator), 880	ADD-SUBARRAY, 783 pr.
(semiring operator), 651 n.	adjacency-list representation, 550–551
* (closure operator), 1052	replaced by a hash table, 553 ex.
(divides relation), 904	adjacency-matrix representation, 551–552
(does-not-divide relation), 904	adjacency relation (\rightarrow) , 1165
= (mod n) (equivalent, modulo n), 64	adjacent vertices, 1165
\neq (mod n) (not equivalent, modulo n), 64	Advanced Encryption Standard (AES), 291
$[a]_n$ (equivalence class modulo n), 905	adversary, 204, 286, 805, 807, 941
$+_n$ (addition modulo n), 917	AES, 291
\cdot_n (multiplication modulo n), 917	aggregate analysis, 449–453
$\left(\frac{a}{p}\right)$ (Legendre symbol), 954 pr.	for binary counters, 451–453
ε (empty string), 959, 1052	for breadth-first search, 558
□ (prefix relation), 959	for depth-first search, 566–567
☐ (suffix relation), 959	for Dijkstra's algorithm, 623-624
// (comment symbol), 22	for disjoint-set data structures, 525-526,
(much-greater-than relation), 533	527 ex.
(much-less-than relation), 761	for dynamic tables, 462–463
≤ _P (polynomial-time reducibility relation),	for the Knuth-Morris-Pratt algorithm,
1062, 1071 ex.	977–978
1002, 1071 011	for Prim's algorithm, 597
AA-tree, 358	for rod cutting, 370
abelian group, 917	for shortest paths in a dag, 617
absent child, 1173	for stack operations, 449–451
absolutely convergent series, 1140	aggregate flow, 864
absorption laws for sets, 1155	Akra-Bazzi recurrence, 115–119
abstract problem, 1048	solving by Akra-Bazzi method, 117–118
abuse of asymptotic notation, 55, 59–60	algorithm, 1–1226
acceptable pair of integers, 950	analysis of, 25–34
acceptance	approximation, 1104–1136
by an algorithm, 1053	compare-exchange, 222 pr.
by a finite automaton, 968	correctness of, 6
	decision, 1053

algorithm, continued	for stacks on secondary storage, 517 pr.
deterministic, 135	for weight-balanced trees, 472 pr.
lookahead, 815 ex.	amortized cost
nondeterministic, 765	in the accounting method, 453
oblivious, 222 pr.	in aggregate analysis, 449
offline, 791	in the potential method, 456
online, see online algorithm	amortized progress, 1028
origin of word, 48	analysis of algorithms, 25–34
parallel, see parallel algorithm	see also amortized analysis, competitive
push-relabel, 702	analysis, probabilistic analysis
randomized, see randomized algorithm	ancestor, 1172
recursive, 34	lowest common, 543 pr.
reduction, 1046, 1062	AND function (\land) , 659, 1065
running time of, 29	AND gate, 1065
scaling, 641 pr., 699 pr.	and, in pseudocode, 24
streaming, 818	antiparallel edges, 673–674
as a technology, 13	antisymmetric relation, 1160
verification, 1058	approximation
algorithmic recurrence, 77–78	by least squares, 841–845
Allocate-Node, 506	of summation by integrals, 1150
all-pairs shortest paths, 605, 646-669	approximation algorithm, 1103-1136
in dynamic graphs, 669	for bin packing, 1131 pr.
in ϵ -dense graphs, 668 pr.	for MAX-CNF satisfiability, 1124 ex.
Floyd-Warshall algorithm for, 655-659	for maximum clique, 1131 pr.
Johnson's algorithm for, 662–667	for maximum matching, 1132 pr.
by matrix multiplication, 648-655, 668-669	for maximum spanning tree, 1134 pr.
by repeated squaring, 652–653	for maximum-weight cut, 1124 ex.
α -balanced, 472 pr.	for MAX-3-CNF satisfiability, 1120–1121
$\alpha(n)$, 533	for parallel machine scheduling, 1133 pr.
α -strongly convex function, 1041	randomized, 1120
alphabet, 967, 1052	for set cover, 1115–1119
alternating path, 705	for subset sum, 1124–1130
amortized analysis, 448–475	for traveling-salesperson problem,
by accounting method, 453–456	1109–1115
by aggregate analysis, 370, 449–453	for vertex cover, 1106–1109, 1121–1124
for breadth-first search, 558	for weighted set cover, 1132 pr.
for depth-first search, 566–567	for 0-1 knapsack problem, 1134 pr.
for Dijkstra's algorithm, 623–624	approximation error, 842
for disjoint-set data structures, 525–526,	approximation ratio, 1104, 1120
527 ex., 531 ex., 534–540, 541 ex.	approximation scheme, 1105
for dynamic tables, 460–471	APPROX-MIN-WEIGHT-VC, 1123
for the Knuth-Morris-Pratt algorithm,	APPROX-SUBSET-SUM, 1128
977–978	APPROX-TSP-TOUR, 1111
for making binary search dynamic, 472 pr.	APPROX-VERTEX-COVER, 1107
by potential method, 456–460	arbitrage, 641 pr.
for Prim's algorithm, 597	arc, see edge
for restructuring red-black trees, 473 pr.	argument of a function, 1161–1162
for shortest paths in a dag, 617	arithmetic instructions, 26

arithmetic, modular, 64, 916–923	balanced search tree
arithmetic series, 1141	AA-trees, 358
arithmetic with infinities, 611	AVL trees, 357 pr., 358
arm in a disk drive, 498	B-trees, 497–519
array	k-neighbor trees, 358
indexing into, 22–23, 26 n., 252	left-leaning red-black binary search trees,
inversion in, 47 pr.	358
Monge, 123 pr.	red-black trees, 331–359
passing as a parameter, 24	scapegoat trees, 358
in pseudocode, 22–23	splay trees, 359, 478
storage of, 26 n., 252	treaps, 358
articulation point, 582 pr.	2-3-4 trees, 502, 518 pr.
assignment	2-3 trees, 358, 519
optimal, 723–739	weight-balanced trees, 358, 472 pr.
satisfying, 1066, 1074	balls and bins, 143–144, 1212 pr.
truth, 1066, 1073	base-a pseudoprime, 944
assignment problem, 723–739	base case
associative laws for sets, 1155	of a divide-and-conquer algorithm, 34, 76
associative operation, 917	of a recurrence, 41, 77–78
asymptotically larger, 62	base, in DNA, 393
asymptotically nonnegative, 54	basis function, 841
asymptotically positive, 54	Bayes's theorem, 1189
asymptotically smaller, 62	BELLMAN-FORD, 612
asymptotically tight bound, 56	Bellman-Ford algorithm, 612–616
asymptotic lower bound, 55	for all-pairs shortest paths, 647
asymptotic notation, 53–63, 72 pr.	in Johnson's algorithm, 664–666
and graph algorithms, 548	and objective functions, 632 ex.
and linearity of summations, 1141	to solve systems of difference constraints,
asymptotic running time, 49	630–631
asymptotic upper bound, 54	Yen's improvement to, 640 pr.
attribute	Bernoulli trial, 1196
in clustering, 1006	and balls and bins, 143–144
in a graph, 552	in bucket sort analysis, 217
of an object, 23	in finding prime numbers, 943
augmentation of a flow, 678	in randomized selection analysis, 232
augmented primal linear program, 870	and streaks, 144–150
augmenting data structures, 480–496	best-case running time, 34 ex.
augmenting path, 681–682, 705	β -smooth function, 1041
widest, 700 pr.	BFS, 556
authentication, 309 pr., 938–939, 942	see also breadth-first search
automaton, 967–974	BIASED-RANDOM, 129 ex.
auxiliary hash function, 295	biconnected component, 582 pr.
average-case running time, 32, 128	big-oh notation (O) , 50, 54–55
AVL tree, 357 pr., 358	
Av L uce, 337 pt., 330	big-omega notation (Ω), 51, 54 fig., 55–56 bijective function, 1162
back edge, 569, 573	binary character code, 431
back edge, 309, 373 back substitution, 823	omary character code, 431
Dack Substitution, 020	

Linementon	Line i-1 dietelletie 1100 1201
binary counter	binomial distribution, 1198–1201
analyzed by accounting method, 455	and balls and bins, 143
analyzed by aggregate analysis, 451–453	in bucket sort analysis, 217
analyzed by potential method, 458–459	maximum value of, 1202 ex.
binary entropy function, 1182	tails of, 1203–1210
binary gcd algorithm, 953 pr.	binomial expansion, 1181
binary heap, see heap	binomial theorem, 1181
binary logarithm (lg), 66	bin packing, 1131 pr.
binary reflected Gray code, 471 pr.	bipartite graph, 1167
binary relation, 1158	complete, 716
binary search, 44 ex.	corresponding flow network of, 694
with fast insertion, 472 pr.	<i>d</i> -regular, 716 ex., 740 pr.
in insertion sort, 45 ex.	matching in, 693–697, 704–743
in parallel merging, 777–778	bipartite matching, 693–697, 704–743
in searching B-trees, 512 ex.	birthday paradox, 140–143
binary search tree, 312–330	bisection of a tree, 1177 pr.
AA-trees, 358	bitonic euclidean traveling-salesperson
AVL trees, 357 pr., 358	problem, 407 pr.
deletion from, 322–325, 326 ex.	bitonic sequence, 644 pr.
with equal keys, 327 pr.	bitonic tour, 407 pr.
insertion into, 321–322	bit operation, 904
<i>k</i> -neighbor trees, 358	in Euclid's algorithm, 954 pr.
left-leaning red-black binary search trees,	bit-reversal permutation, 897
358	bit vector, 274 ex.
maximum key of, 317–318	black-height, 332
minimum key of, 317–318	black vertex, 554, 564
optimal, 400–407	block
persistent, 355 pr.	in a cache, 440, 802
predecessor in, 318–319	on a disk, 499, 512 ex., 517 pr.
querying, 316–320	blocking flow, 702
randomly built, 328 pr.	blocking pair, 716
red-black trees, 331–359	block representation of matrices, 254
right-converting of, 337 ex.	block structure in pseudocode, 21–22
scapegoat trees, 358	body, 1032
searching, 316–317	Boole's inequality, 1190 ex.
for sorting, 326 ex.	boolean combinational circuit, 1065
splay trees, 359	boolean combinational element, 1065
successor in, 318–319	boolean connective, 1073
weight-balanced trees, 358	boolean data type, 26
see also red-black tree	boolean formula, 1043, 1060 ex., 1073–1074
binary-search-tree property, 313–314	boolean function, 1182 ex.
vs. min-heap property, 315 ex.	boolean operators, 24
binary tree, 1173	Borůvka's algorithm, 603
full, 433, 1174	bottleneck spanning tree, 601 pr.
number of different ones, 329 pr.	bottleneck traveling-salesperson problem,
representation of, 265	1115 ex.
see also binary search tree	bottoming out, 76
binomial coefficient, 1181–1182	bottom of a stack, 254

BOTTOM-UP-CUT-ROD, 369	BUBBLESORT, 46 pr.
bottom-up method, for dynamic programming,	bucket, 215
368	bucket sort, 215–219
bound	BUCKET-SORT, 216
asymptotically tight, 56	BUILD-MAX-HEAP, 167
asymptotic lower, 55	BUILD-MAX-HEAP', 179 pr.
asymptotic upper, 54	BUILD-MIN-HEAP, 169
on binomial coefficients, 1181–1182	Burrows-Wheeler transform (BWT), 1000 pr.
on binomial distributions, 1201	butterfly operation, 894
polylogarithmic, 67	BWT (Burrows-Wheeler transform), 1000 pr.
on the tails of a binomial distribution, 1203–1210	by , in pseudocode, 22
see also lower bounds	cache, 27, 301, 440, 802
bounding a summation, 1145–1152	cache block, 301, 440, 802
box, nesting, 640 pr.	cache hit, 440, 803
B ⁺ -tree, 501	cache line, see cache block
branch instructions, 26	cache miss, 440, 803
breadth-first forest, 728	cache obliviousness, 519
breadth-first search, 554–563	caching
in the Hopcroft-Karp algorithm, 711	offline, 440–446
in the Hungarian algorithm, 727–728	online, 802–815
in maximum flow, 689–691	call
and shortest paths, 558–561, 605	in a parallel computation, 753
similarity to Dijkstra's algorithm, 624,	of a subroutine, 26, 29 n.
625 ex.	by value, 23
breadth-first tree, 555, 561	cancellation lemma, 886
bridge, 582 pr.	cancellation of flow, 679
B^* -tree, $502 n$.	capacity
B-tree, 497–519	of a cut, 682
compared with red-black trees, 497, 503	of an edge, 671
creating, 505–506	residual, 677, 681
deletion from, 513–516	of a vertex, 676 ex.
full node in, 502	capacity constraint, 672
height of, 502–504	cardinality of a set $()$, 1156
insertion into, 506–511	Carmichael number, 945, 953 ex.
minimum degree of, 502	Cartesian product (\times) , 1157
properties of, 501–504	Cartesian sum, 885 ex.
searching, 504–505	Catalan numbers, 329 pr., 375
splitting a node in, 506–508	CBC-MAC,291, 306
2-3-4 trees, 502	<i>c</i> -competitive, 793
B-Tree-Create, 506	ceiling function ($\lceil \rceil$), 63
B-TREE-DELETE, 513	in recurrences, 116–117
B-Tree-Insert, 508	ceiling instruction, 26
B-Tree-Insert-Nonfull, 511	center of a cluster, 1008
B-Tree-Search, 505, 512 ex.	centralized scheduler, 759
B-Tree-Split-Child, 507	centroid of a cluster, 1009
B-Tree-Split-Root, 509	certain event, 1185

certificate	closure
in a cryptosystem, 942	group property, 917
for verification algorithms, 1058	of a language (*), 1052
Chained-Hash-Delete, 278	transitive, see transitive closure
CHAINED-HASH-INSERT, 278	cluster, 1008
CHAINED-HASH-SEARCH, 278	for parallel computing, 748
chaining, 277–281, 308 pr.	clustering, 1005–1013
changing variables, to solve a recurrence,	Lloyd's procedure for, 1011–1013
120 pr.	primary, 303
character code, 431	CNF (conjunctive normal form), 1043, 1076
character data type, 26	CNF satisfiability, 1124 ex.
chess-playing program, 768–769	coarsening leaves of recursion
child	in merge sort, 45 pr.
	in quicksort, 198 ex.
in a binary tree, 1173 in a parallel computation, 753	when recursively spawning, 764
in a rooted tree, 1172	code, 431–432
Chinese remainder theorem, 928–931	Huffman, 431–439
chirp transform, 893 ex.	codeword, 432
choose $\binom{n}{k}$, 1180	codomain, 1161
choose $\binom{k}{k}$, 1760 chord, 486ex .	coefficient
Cilk, 750, 790	binomial, 1181
ciphertext, 938	of a polynomial, 65, 877
circuit	coefficient representation, 879
boolean combinational, 1065	and fast multiplication, 882–884
depth of, 894	cofactor, 1221
for fast Fourier transform, 894–897	coin changing, 446 pr.
CIRCUIT-SAT, 1067	coin flipping, 131–132
circuit satisfiability, 1064–1071	collection of sets, 1156
circular, doubly linked list with a sentinel, 262	collision, 275
circular linked list, 259	resolution by chaining, 277–281
class	resolution by open addressing, 293–301
complexity, 1054	collision-resistant hash function, 941
equivalence, 1159	coloring, 425 ex., 1100 pr., 1176 pr.
classification of edges	color, of a red-black-tree node, 331
in breadth-first search, 581 pr.	column-major order, 222 pr., 253
in depth-first search, 569–570, 571 ex.	column rank, 1220
clause, 1075–1076	columnsort, 222 pr.
clean area, 222 pr.	column vector, 1215
climate change, 845	combination, 1180
clique, 1081	combinational circuit, 1065
CLIQUE, 1081	combinational element, 1065
clique problem	combine step, in divide-and-conquer, 34, 76
approximation algorithm for, 1131 pr.	comment, in pseudocode (//), 22
NP-completeness of, 1081–1084	commodity, 864
closed convex body, 1032	common divisor, 906
closed interval ($[a, b]$), 1157	greatest, see greatest common divisor
closed semiring, 669	common multiple, 916 ex.
closest-point heuristic, 1115 ex.	common subexpression, 894
point neurone, 1110 viii	

common subsequence, 394	component
longest, 393–399	biconnected, 582 pr.
commutative laws for sets, 1154	connected, 1166
commutative operation, 917	strongly connected, 1166
compact list, 269 pr.	component graph, 576
COMPACT-LIST-SEARCH, 269 pr.	composite number, 905
COMPACT-LIST-SEARCH', 270 pr.	witness to, 946
Compare-Exchange, 222 pr.	composition
COMPARE-EXCHANGE-INSERTION-SORT,	of logarithms, 66
223 pr.	of parallel traces, 762 fig.
compare-exchange operation, 222 pr.	compression
comparison sort, 205	by Huffman code, 431–439
and binary search trees, 315 ex.	of images, 412 pr.
randomized, 219 pr.	compulsory miss, 440
and selection, 241	computational depth, see span
compatible activities, 418	computational problem, 5–6
compatible matrices, 1218	computation dag, 754 n.
competitive analysis, 792	COMPUTE-LCP, 993
competitive ratio, 793	COMPUTE-PREFIX-FUNCTION, 978
expected, 808	COMPUTE-SUFFIX-ARRAY,988
unbounded, 804	COMPUTE-TRANSITION-FUNCTION, 974
complement	concatenation
of an event, 1186	of languages, 1052
of a graph, 1085	operator (\parallel), 291
of a language, 1052	of strings, 959
Schur, 825, 839	concrete problem, 1049
of a set, 1155	conditional branch instruction, 26
complementary slackness, 873 pr.	conditional independence, 1190 ex.
complete graph, 1167	conditional probability, 1187, 1189
bipartite, 716	configuration, 1068
complete k -ary tree, 1174	conjugate of the golden ratio $(\hat{\phi})$, 69, 70 ex.
see also heap	conjugate transpose, 838 ex.
completeness of a language, 1072 ex.	conjunctive normal form, 1043, 1076
complete step, 759	connected component, 1166
completion time, 446 pr., 816 pr., 1133 pr.	identified using depth-first search, 572 ex.
COMPLETION-TIME-SCHEDULE, 817 pr.	identified using disjoint-set data structures
complexity class, 1054	521–523
co-NP, 1059	CONNECTED-COMPONENTS, 522
NP, 1043, 1058, 1060 ex.	connected graph, 1166
NPC, 1044, 1063	connective, 1073
P, 1043, 1050, 1054, 1055 ex.	co-NP (complexity class), 1059
complexity measure, 1054	conquer step, in divide-and-conquer, 34, 76
complex numbers	conservation of flow, 672
inverting matrices of, 838 ex.	consistency
multiplication of, 90 ex.	of literals, 1082
complex root of unity, 885	sequential, 756
interpolation at, 891–892	constrained gradient descent, 1032–1034

constraint	cross a cut, 587, 701 pr.
difference, 627	cross edge, 569
equality, 632 ex.	cryptographic hash function, 291
linear, 851, 853–854	cryptosystem, 936–942
nonnegativity, 854	cubic spline, 847 pr.
constraint graph, 628–630	currency exchange, 641 pr.
contain, in a path, 1165	curve fitting, 841–845
continuous master theorem, 112	cut
proof of, 107–115	capacity of, 682
continuous uniform probability distribution,	of a flow network, 682–685
1187	global, 701 pr.
contraction	minimum, 682
of a dynamic table, 465–470	net flow across, 682
of an undirected graph by an edge, 1168	of an undirected graph, 587
contraction algorithm, 701 pr.	weight of, 1124 ex.
control instructions, 26	CUT-ROD, 366
convergence property, 611, 634–635	cycle of a graph, 1165–1166
convergent series, 1140	hamiltonian, 1043, 1056, 1085–1090
converting binary to decimal, 910 ex.	minimum mean-weight, 642 pr.
convex body, 1032	negative-weight, see negative-weight cycle
convex function, 1025–1027, 1194	and shortest paths, 607-608
α -strongly convex, 1041	cycle cover, 741 pr.
convex set, 675 ex.	cyclic group, 932
convolution (\otimes) , 880	
convolution theorem, 892	dag, see directed acyclic graph
copy instruction, 26	DAG-SHORTEST-PATHS, 617
correctness of an algorithm, 6	d-ary heap, 179 pr.
corresponding flow network for bipartite	in shortest-paths algorithms, 668 pr.
matching, 694	data-movement instructions, 26
countably infinite set, 1156	data-parallel model, 789
counter, see binary counter	data science, 14–15
counting, 1178–1184	data structure, 9, 249–359, 477–545
probabilistic, 153 pr.	AA-trees, 358
counting sort, 208–211	augmentation of, 480–496
in computing suffix arrays, 992	AVL trees, 357 pr., 358
in radix sort, 213	binary search trees, 312–330
Counting-Sort, 209	bit vectors, 274 ex.
coupon collector's problem, 144	B-trees, 497–519
cover	deques, 258 ex.
path, 698 pr.	dictionaries, 249
by a subfamily, 1116	direct-address tables, 273–275
vertex, 1084, 1106	for disjoint sets, 520–545
credit, 453	for dynamic graphs, 479
critical edge, 690	dynamic sets, 249–251
critical path	dynamic trees, 478
in a dag, 619	exponential search trees, 226, 478
of a PERT chart, 617	Fibonacci heaps, 478
of a task-parallel trace, 757	fusion trees, 226, 478

from direct-address tables, 274
from dynamic tables, 465–470
from hash tables with linear probing,
302–303
from heaps, 178 ex.
from interval trees, 491
from linked lists, 261
from open-address hash tables, 294–295
from order-statistic trees, 484–485
from queues, 256
from red-black trees, 346–355
from stacks, 254
DeMorgan's laws
for propositional logic, 1078
for sets, 1155, 1158 ex.
dense graph, 549
ϵ -dense, 668 pr.
dense matrix, 81
density
of prime numbers, 943
of a rod, 372 ex.
dependence
and indicator random variables, 131
linear, 1220
see also independence
depth
average, of a node in a randomly built binary
search tree, 328 pr.
of a circuit, 894
of a node in a rooted tree, 1173
of quicksort recursion tree, 191 ex.
of a stack, 202 pr.
depth-determination problem, 542 pr.
depth-first forest, 564
depth-first search, 563–572
in finding articulation points, bridges, and
biconnected components, 582 pr.
in finding strongly connected components,
576–581
in the Hopcroft-Karp algorithm, 711
in topological sorting, 573–576
depth-first tree, 564
deque, 258 ex.
DEQUEUE, 257
derivative of a series, 1142
descendant, 1172
destination vertex, 605
det. 1221

determinacy race, 765–768	directed equality subgraph, 727
determinant, 1221	directed graph, 1164
deterministic algorithm, 135	all-pairs shortest paths in, 646–669
parallel, 765	constraint graph, 628
DETERMINISTIC-SEARCH, 154 pr.	Euler tour of, 583 pr., 1043
DFS, 565	hamiltonian cycle of, 1043
see also depth-first search	incidence matrix of, 553 ex.
DFS-VISIT, 565	and longest paths, 1042
DFT, 888	path cover of, 698 pr.
diagonal matrix, 1215	PERT chart, 617, 619 ex.
diameter	semiconnected, 581 ex.
of a network, 646	shortest path in, 604
of a tree, 563 ex.	single-source shortest paths in, 604–645
dictionary, 249 difference	singly connected, 572 ex.
	square of, 553 ex.
of sets (–), 1154	transitive closure of, 659
symmetric, 706	transpose of, 553 ex.
difference constraints, 626–632	universal sink in, 553 ex.
differentiation of a series, 1142	see also directed acyclic graph, graph,
digital signature, 938	network
digraph, see directed graph	directed version of an undirected graph, 1166
DIJKSTRA, 620	dirty area, 222 pr.
Dijkstra's algorithm, 620–626	discovered vertex, 554, 564
for all-pairs shortest paths, 646, 666	discovery time, 565
with edge weights in a range, 626 ex.	discrete Fourier transform, 888
implemented with a Fibonacci heap,	discrete logarithm, 933
623–624	discrete logarithm theorem, 933
implemented with a min-heap, 623	discrete probability distribution, 1186
with integer edge weights, 625–626 ex.	discrete random variable, 1191–1196
in Johnson's algorithm, 664	disjoint-set data structure, 520–545
similarity to breadth-first search, 624,	analysis of, 534–540
625 ex.	in connected components, 521–523
similarity to Prim's algorithm, 624	in depth determination, 542 pr.
d-independent family of hash functions, 288	disjoint-set-forest implementation of,
DIRECT-ADDRESS-DELETE, 274	527–531
direct addressing, 273–275	in Kruskal's algorithm, 593
DIRECT-ADDRESS-INSERT, 274	linear-time special case of, 545
DIRECT-ADDRESS-SEARCH, 274	linked-list implementation of, 523–527
direct-address table, 273–275	lower bound for, 545
directed acyclic graph (dag), 1167	in offline lowest common ancestors, 543 pr.
and back edges, 573	in offline minimum, 541 pr.
and component graphs, 578	disjoint-set forest, 527–531
and hamiltonian paths, 1060 ex.	analysis of, 534–540
longest simple path in, 407 pr.	rank properties of, 533–534, 540 ex.
for representing a parallel computation, 754	see also disjoint-set data structure
single-source shortest-paths algorithm for,	disjoint sets, 1156
616–619	disjunctive normal form, 1078
topological sort of, 573–576	

disk drive, 498–500	dolphins, allowing to vote, 850
see also secondary storage	domain, 1161
DISK-READ, 500	double hashing, 295–297, 301 ex.
DISK-WRITE, 500	doubly linked list, 258–259, 264 ex.
dissimilarity, 1006	circular, with a sentinel, 262
distance	downto, in pseudocode, 22
edit, 409 pr.	d-regular graph, 716 ex., 740 pr.
Manhattan, 244 pr.	driving function, 101
of a shortest path (δ) , 558	duality, 734, 866–873, 874 pr.
distributed memory, 748	weak, 868–869, 874 pr.
distribution	dual linear program, 866
binomial, see binomial distribution	dummy key, 400
continuous uniform, 1187	dynamic graph, 523
discrete, 1186	all-pairs shortest paths algorithms for, 669
geometric, see geometric distribution	data structures for, 479
of inputs, 128, 134	minimum-spanning-tree algorithm for,
of prime numbers, 943	599 ex.
probability, 218 ex., 1185	transitive closure of, 667 pr., 669
uniform, 1186	dynamic graph algorithm, 817
distributive laws for sets, 1155	dynamic multiset, 460 ex.
divergent series, 1140	dynamic order statistics, 480–486
divide-and-conquer method, 34, 76	dynamic-programming method, 362-416
analysis of, 39–41, 90–119	for activity selection, 424 ex.
for binary search, 44 ex.	for all-pairs shortest paths, 648-659
for conversion of binary to decimal, 910 ex.	for bitonic euclidean traveling-salesperson
for fast Fourier transform, 888–891, 895	problem, 407 pr.
for matrix inversion, 834–837	bottom-up, 368
for matrix multiplication, 81–90, 770–775,	for breaking a string, 412 pr.
783 pr.	compared with greedy method, 384–385,
for merge sort, 34–44, 775–782	393 ex., 421, 426–430
for multiplication, 899 pr.	for edit distance, 409 pr.
for quicksort, 182–204	elements of, 382–393
relation to dynamic programming, 362	for Floyd-Warshall algorithm, 655–659
for selection, 230–243	for inventory planning, 414 pr.
solving recurrences for, 90–119	for longest common subsequence, 393–399
for Strassen's algorithm, 85–90, 773–774	for longest palindrome subsequence, 407 pr.
divide instruction, 26	for longest simple path in a weighted
divides relation (), 904	directed acyclic graph, 407 pr.
divide step, in divide-and-conquer, 34, 76	for matrix-chain multiplication, 373–382
division method, 284, 292 ex.	and memoization, 390–392
division theorem, 905	for optimal binary search trees, 400–407
divisor, 904	optimal substructure in, 382–387
common, 906	overlapping subproblems in, 387–390
see also greatest common divisor	for printing neatly, 408 pr.
DNA, 6, 393–394, 409 pr.	reconstructing an optimal solution in, 390
DNF (disjunctive normal form), 1078	relation to divide-and-conquer, 362
does-not-divide relation (∤), 904	for rod cutting, 363–373
Dog River, 717	for seam carving, 412 pr.

dynamic-programming method, continued	empty set laws, 1154
for signing free agents, 414 pr.	empty stack, 255
top-down with memoization, 368	empty string (ε) , 959, 1052
for transitive closure, 659–661	empty tree, 1173
for Viterbi algorithm, 411 pr.	encoding of problem instances, 1049–1052
for the 0-1 knapsack problem, 430 ex.	encryption, 936
dynamic set, 249–251	endpoint of an interval, 489
see also data structure	ENQUEUE, 257
dynamic table, 460–471	entering a vertex, 1164
analyzed by accounting method, 463	entropy function, 1182
analyzed by aggregate analysis, 462–463	epoch, 805
analyzed by potential method, 463–470	ϵ -dense graph, 668 pr.
load factor of, 461	ϵ -universal family of hash functions, 287,
dynamic tree, 478	292 ex.
	equality
E[], see expected value	of functions, 1162
e (base of the natural logarithm), 65	linear, 853
edge, 1164	of sets, 1153
antiparallel, 673–674	equality constraint, 632 ex.
attributes of, 552	equality subgraph, 724
back, 569	directed, 727
bridge, 582 pr.	equations and asymptotic notation, 58–59
capacity of, 671	equivalence class, 1159
classification in breadth-first search, 581 pr.	modulo $n([a]_n), 905$
classification in depth-first search, 569–570,	equivalence, modular $(= (\text{mod } n))$, 64
571 ex.	equivalence relation, 1159
critical, 690	error bound, 1027
cross, 569	error, in pseudocode, 24
forward, 569	escape problem, 697 pr.
light, 587	EUCLID, 912
negative-weight, 606–607	Euclid's algorithm, 911–916, 954 pr.
residual, 678	euclidean norm (), 1219
safe, 587	Euler's constant, 921
tree, 561, 564, 569	Euler's phi function, 920
weight of, 551	Euler's theorem, 932, 953 ex.
edge connectivity, 692 ex.	Euler tour, 583 pr., 740 pr.
edge set, 1164	and hamiltonian cycles, 1043
edit distance, 409 pr.	evaluation of a polynomial, 46 pr., 879, 884 ex
Edmonds-Karp algorithm, 689–691	derivatives of, 900 pr.
elementary event, 1185	at multiple points, 900 pr.
elementary insertion, 461	event, 1185
element of a set (\in) , 1153	event-driven simulation, 173, 181
ellipsoid algorithm, 857	EXACT-SUBSET-SUM, 1125
elliptic-curve factorization method, 956	example, in clustering, 1006
elseif , in pseudocode, 22 n.	exclusion and inclusion, 1158 ex.
else, in pseudocode, 22	execute a subroutine, 29 n.
empty language (\emptyset) , 1052	expansion of a dynamic table, 461–465
empty set (\emptyset) , 1153	expectation, see expected value

expected competitive ratio, 808	Fermat's theorem, 932
expected running time, 32, 129	FFT, 890
expected value, 1192–1194	see also fast Fourier transform
of a binomial distribution, 1198	FFTW, 902
of a geometric distribution, 1197	Fib, 751
of an indicator random variable, 130	Fibonacci heap, 478
explored edge, 565	in Dijkstra's algorithm, 623–624
exponential function, 65–66	in Johnson's algorithm, 666
exponential search tree, 226, 478	in Prim's algorithm, 597
exponentiation	Fibonacci numbers, 69, 70 ex., 121 pr.
of logarithms, 66	computation of, 750–753, 954 pr.
modular, 934–935	FIFO, see first-in, first-out; queue
exponentiation instruction, 27	final-state function, 968
EXTENDED-BOTTOM-UP-CUT-ROD, 372	FIND-AUGMENTING-PATH, 738
EXTENDED-EUCLID,914	FIND-DEPTH, 542 pr.
EXTEND-SHORTEST-PATHS, 650	find path, 528
external node, 1172	FIND-POM, 496 pr.
external path length, 1175 ex.	FIND-SET, 521
extracting the maximum key	disjoint-set-forest implementation of, 530,
from d -ary heaps, 179 pr.	544
from max-heaps, 174	linked-list implementation of, 523
extracting the minimum key	FIND-SPLIT-POINT, 778
from Young tableaus, 179 pr.	finished vertex, 564
EXTRACT-MAX, 173–174	finish time
EXTRACT-MIN, 173	in activity selection, 418
EXTRACT MIN, 175	in depth-first search, 565
factor, 904	and strongly connected components, 578
twiddle, 891	finite automaton, 967–975
factorial function (!), 67–68	FINITE-AUTOMATON-MATCHER, 971
factorization, 956	finite group, 917
unique, 909	finite sequence, 1162
failure, in a Bernoulli trial, 1196	finite set, 1156
fair coin, 1186	finite sum, 1140
family of hash functions, 286–288, 292 ex.	first-fit heuristic, 1131 pr.
fan-out, 1066	*
Farkas's lemma, 869	first-in, first-out (FIFO), 254, 803–804, 814 ex.
	implemented with a priority queue, 178 ex.
FASTER-APSP, 653, 655 ex.	see also queue
fast Fourier transform (FFT), 877–902	fixed-length code, 432
circuit for, 894–897	floating-point data type, 26
multidimensional, 899 pr.	floor function ($\lfloor \rfloor$), 63
recursive implementation of, 888–891	in recurrences, 116–117
using modular arithmetic, 901 pr.	floor instruction, 26
feasibility problem, 627, 873 pr.	flow, 671–676
feasible linear program, 854	aggregate, 864
feasible region, 854	augmentation of, 678
feasible solution, 627, 854	blocking, 702
feasible vertex labeling, 724, 742 pr.	cancellation of, 679
feature vector, 1006	integer-valued, 695

flow, continued	function, 1161–1163
net, across a cut, 682	Ackermann's, 544
value of, 672	α -strongly convex, 1041
flow conservation, 672	basis, 841
flow network, 671–676	β -smooth, 1041
corresponding to a bipartite graph, 694	boolean, 1182 ex.
cut of, 682–685	convex, 1025-1027, 1194
with multiple sources and sinks, 674	driving, 101
FLOYD-WARSHALL, 657	final-state, 968
FLOYD-WARSHALL', 661 ex.	hash, see hash function
Floyd-Warshall algorithm, 655–659,	iterated, 68, 74 pr.
661–662 ex.	linear, 30, 853
flying cars, highways for, 850	objective, 626, 852, 854
FORD-FULKERSON, 686	potential, 456
Ford-Fulkerson method, 676–693	prefix, 975–977
FORD-FULKERSON-METHOD, 676	probability distribution, 218 ex.
Foresee, 797	quadratic, 31
forest, 1167, 1169	reduction, 1062
breadth-first, 728	suffix, 968
depth-first, 564	transition, 967, 973–974
disjoint-set, 527–531	watershed, 103
for, in pseudocode, 22	functional iteration, 68
and loop invariants, 21 n.	fundamental theorem of linear programming,
fork-join parallelism, 749–770	872
see also parallel algorithm	furthest-in-future, 441
fork-join scheduling, 759–761, 769 ex.	fusion tree, 226, 478
formal power series, 121 pr.	fuzzy sorting, 203 pr.
formula satisfiability, 1073–1076	
forward edge, 569	Gabow's scaling algorithm for single-source
forward substitution, 822–823	shortest paths, 641 pr.
Fourier transform, see discrete Fourier	gadget, 1086, 1097
transform, fast Fourier transform	GALE-SHAPLEY, 719
fractional knapsack problem, 429	Gale-Shapley algorithm, 718–722
fractional matching, 741 pr.	Galois field of two elements $(GF(2))$, 1224 pr.
free tree, 1167, 1169–1171	gap character, 961 ex., 975 ex.
frequency count, 802 ex.	gate, 1065
frequency domain, 877	Gaussian elimination, 825
full binary tree, 1174	gcd, see greatest common divisor
relation to optimal code, 433	GCD recursion theorem, 911
full node, 502	general arithmetic series, 1141
full rank, 1220	general number-field sieve, 956
full walk of a tree, 1112	generating function, 121 pr.
fully parenthesized matrix-chain product, 374	generation of partitioned sets, 234
fully polynomial-time approximation scheme,	generator
1105	of a subgroup, 922
for subset sum, 1124–1130	of \mathbb{Z}_n^* , 932

GENERIC-MST, 587	subproblem, 370–371
geometric distribution, 1196–1198	tour of, 1090
and balls and bins, 143–144	weighted, 551
in finding prime numbers, 943	see also directed acyclic graph, directed
in randomized selection analysis, 232	graph, flow network, undirected graph
geometric series, 1142	tree
GF(2) (Galois field of two elements), 1224 pr.	GRAPH-ISOMORPHISM, 1060 ex.
global cut, 701 pr.	Gray code, 471 pr.
global minimizer, 1022, 1024 fig., 1026 fig.	gray vertex, 554, 564
global variable, 22	greatest common divisor (gcd), 906–907,
golden ratio (ϕ) , 69, 70 ex.	910 ex.
gossiping, 475	binary gcd algorithm for, 953 pr.
gradient descent, 1022–1038	Euclid's algorithm for, 911–916, 954 pr.
constrained, 1032–1034	with more than two arguments, 916 ex.
in machine learning, 1035–1037	recursion theorem for, 911
for solving systems of linear equations,	GREEDY-ACTIVITY-SELECTOR, 424
1034–1035	Greedy-Bipartite-Matching, 726
stochastic, 1040 pr.	greedy-choice property, 427–428
unconstrained, 1023–1031	of activity selection, 420–421
Gradient-Descent, 1025	of Huffman codes, 436–437
GRADIENT-DESCENT-CONSTRAINED, 1032	of offline caching, 442–445
gradient of a function, 1023	greedy method, 417-447
GRAFT, 542 pr.	for activity selection, 418–425
grain size in a parallel algorithm, 783 pr.	for coin changing, 446 pr.
graph, 1164–1169	compared with dynamic programming,
adjacency-list representation of, 550-551	384–385, 393 ex., 421, 426–430
adjacency-matrix representation of, 551-552	Dijkstra's algorithm, 620-626
and asymptotic notation, 548	elements of, 426–431
attributes of, 548, 552	for the fractional knapsack problem, 429
breadth-first search of, 554–563	greedy-choice property in, 427–428
coloring of, 1100 pr.	for Huffman code, 431–439
complement of, 1085	Kruskal's algorithm, 592-594
component, 576	for maximal bipartite matching, 726
constraint, 628–630	for minimum spanning tree, 591–599
dense, 549	for offline caching, 440–446
depth-first search of, 563–572	optimal substructure in, 428
dynamic, 523, 817	Prim's algorithm, 594–597
ϵ -dense, 668 pr.	for set cover, 1115–1119
hamiltonian, 1056	for task-parallel scheduling, 759–761,
interval, 425 ex.	769 ex.
matching in, 693–697, 704–743	for task scheduling, 446 pr.
nonhamiltonian, 1056	for weighted set cover, 1132 pr.
planar, 584 pr.	greedy scheduler, 759
regular, 716 ex., 740 pr.	Greedy-Set-Cover, 1117
shortest path in, 558	grid, 697 pr.
singly connected, 572 ex.	group, 916–923
sparse, 549	cyclic, 932
static, 522	operator (\oplus) , 917

growth step, 736	universal, 286–290, 309 pr.
guessing the solution, in the substitution	of variable-length inputs, 290–291
method, 92	of vectors, 290–291
metrod, 72	HASH-INSERT, 294, 300 ex.
Habanero-Java, 750	HASH-SEARCH, 294, 300 ex.
half 3-CNF satisfiability, 1099 ex.	hash table, 275–282
half-open interval $([a, b)$ or $(a, b])$, 1157	dynamic, 470 ex.
Hall's theorem, $715 \mathrm{ex}$.	used within a priority queue, 174
	* * *
halting, 6	see also hashing
halting problem, 1042	hash value, 275
halving lemma, 887	hat-check problem, 134 ex.
HAM-CYCLE, 1056	head
hamiltonian cycle, 1043, 1056	in a disk drive, 498
NP completeness of, 1085–1090	of a linked list, 259
hamiltonian graph, 1056	of a queue, 256
hamiltonian path, 1060 ex., 1098 ex.	heap, 161–181
HAM-PATH, 1060 ex.	analyzed by potential method, 459 ex.
handle, 173	building, 167–170, 178 pr.
handshaking lemma, 1168 ex.	in constructing Huffman codes, 436
harmonic number, 1142, 1149	<i>d</i> -ary, 179 pr., 668 pr.
harmonic series, 1142, 1149	deletion from, 178 ex.
HASH-DELETE, 300 ex.	in Dijkstra's algorithm, 623
hash function, 275, 282–292	extracting the maximum key from, 174
auxiliary, 295	Fibonacci, 478
collision-resistant, 941	height of, 163
cryptographic, 291	increasing a key in, 174–175
division method for, 284, 292 ex.	insertion into, 175
for hierarchical memory, 304–307	in Johnson's algorithm, 666
multiplication method for, 284–286	max-heap, 162
multiply-shift method for, 285–286	maximum key of, 174
random, 286–290	mergeable, 268 pr.
static, 282, 284–286	min-heap, 163
universal, 286–290	in Prim's algorithm, 597
wee, 305–307	as a priority queue, 172–178
see also family of hash functions	HEAP-DECREASE-KEY, 176 ex.
hashing, 272–311	HEAP-EXTRACT-MIN, 176 ex.
with chaining, 277–281, 308 pr.	HEAP-MINIMUM, 176 ex.
double, 295–297, 301 ex.	heap property, 162
independent uniform, 276	maintenance of, 164–167
with linear probing, 297, 302–304	vs. binary-search-tree property, 315 ex.
in memoization, 368, 391	heapsort, 161–181
with open addressing, 293–301, 308 pr.	lower bound for, 207
perfect, 310	HEAPSORT, 170
random, 286–290	HEDGE, 1039 pr.
to replace adjacency lists, 553 ex.	height
of static sets, 308 pr.	black-, 332
of strings, 290–291, 292 ex.	of a B-tree, 502–504
uniform, 278	of a d -ary heap, 179 pr.
	÷ ÷

1 1 1 2 2 7	·e · 1 1 00
height, continued	if, in pseudocode, 22
of a decision tree, 207	ill-defined recurrence, 77
of a heap, 163	image, 1162
of a node in a heap, 163, 170	
of a node in a tree, 1173	incidence, 1164–1165
of a red-black tree, 332	incidence matrix
of a tree, 1173	and difference constraints, 628
height-balanced tree, 357 pr.	of a directed graph, 553 ex.
helpful partitioning, 232	inclusion and exclusion, 1158 ex.
Hermitian matrix, 838 ex.	incomplete step, 759
Hessian matrix, 1035	INCREASE-KEY, 173
heuristic	increasing a key, in a max-heap, 174-175
first-fit for bin packing, 1131	pr. INCREMENT, 451
path compression, 528	incremental design method, 34
in the Rabin-Karp algorithm,	965 incrementing, 21
for the set-covering problem,	1116, 1132 pr. in-degree, 1165
table doubling, 461	indentation in pseudocode, 21–22
for the traveling-salesperson	problem, independence
1115 ex.	of events, 1188, 1190 ex.
union by rank, 528	of random variables, 1192
weighted union, 525	of subproblems in dynamic programming,
high endpoint of an interval, 489	
high side of a partition, 183	independent family of hash functions, 288
HIRE-ASSISTANT, 127	independent set, 1099 pr.
hiring problem, 126–127, 135–1	
online, 150–152	independent uniform hashing, 276, 278
probabilistic analysis of, 132-	
hit, 965	indexing into an array, 22–23, 26 n., 252
HOARE-PARTITION, 199 pr.	index of an element of \mathbb{Z}_n^* , 933
HOPCROFT-KARP, 709	indicator random variable, 130–133
Hopcroft-Karp algorithm, 709–7	
HORNER, 47 pr.	MAX-3-CNF satisfiability, 1120–1121
Horner's rule, 46 pr., 879, 963	in birthday paradox analysis, 142–143
HUFFMAN, 434	in bounding the right tail of the binomial
Huffman code, 431–439	distribution, 1207–1208
Human Genome Project, 6	in coin flipping analysis, 131–132
Hungarian, 737	expected value of, 130
Hungarian algorithm, 723–739,	
hybrid cryptosystem, 941	in the hat-check problem, 134 ex.
hyperedge, 1167	in hiring-problem analysis, 132–133
hypergraph, 1167	and linearity of expectation, 131
hypotheses, 1003	in quicksort analysis, 197–198, 200 pr.
hypotheses, 1003	in randomized caching analysis, 812
ideal parallal computer 756	in randomized-selection analysis, 245 pr.
ideal parallel computer, 756	· · · · · · · · · · · · · · · · · · ·
idempotency laws, 1154	in streak analysis, 148–150
identity, 917	induced subgraph, 1166
identity matrix, 1215	inequality, linear, 853
identity permutation, 138 ex.	infeasible linear program, 854

infeasible solution, 854	in quicksort, 198 ex.
inference, 1004	using binary search, 45 ex.
infinite sequence, 1162	Insertion-Sort, 19, 30, 51
infinite set, 1156	instance
infinite sum, 1140	of an abstract problem, 1045, 1049
infinity, arithmetic with, 611	of a problem, 6
initialization of a loop invariant, 20	instructions of the RAM model, 26
Initialize-Single-Source, 609	integer data type, 26
injective function, 1162	integer linear programming, 857, 874 pr.,
inner product, 1219	1098 ex.
inorder tree walk, 314, 320 ex.	integers (\mathbb{Z}) , 1153
INORDER-TREE-WALK, 314	integer-valued flow, 695
in-place permuting, 136	integrality theorem, 696
in-place sorting, 158, 220 pr.	integral, to approximate summations, 1150
in play, 232	integration of a series, 1142
input	interior-point methods, 857
to an algorithm, 5	internediate vertex, 655
to a combinational circuit, 1066	internal node, 1172
distribution of, 128, 134	internal path length, 1175 ex.
to a logic gate, 1065	interpolation by a cubic spline, 847 pr.
size of, 28	interpolation by a polynomial, 880, 885 ex.
input alphabet, 967	at complex roots of unity, 891–892
INSERT, 173, 250, 460 ex.	intersection
insertion	of chords, 486 ex.
into binary search trees, 321–322	of languages, 1052
into B-trees, 506–511	of sets (\cap) , 1154
into chained hash tables, 278	interval, 489–490, 1157
into d -ary heaps, 179 pr.	fuzzy sorting of, 203 pr.
into direct-address tables, 274	INTERVAL-DELETE, 490, 496 pr.
into dynamic tables, 461–465	interval graph, 425 ex.
elementary, 461	INTERVAL-INSERT, 490, 496 pr.
into heaps, 175	INTERVAL-SEARCH, 490, 492
into interval trees, 491	INTERVAL-SEARCH-EXACTLY, 495 ex.
into linked lists, 260	interval tree, 489–495
into open-address hash tables, 293-294	interval trichotomy, 490
into order-statistic trees, 484	intractability, 1042
into queues, 256	invalid shift, 957
into red-black trees, 338–346	inventory planning, 414 pr.
into stacks, 254	inverse
into Young tableaus, 179 pr.	of a bijective function, 1163
insertion sort, 17–21, 29–31, 51–53, 56–57	in a group, 917
in bucket sort, 216–218	of a matrix, 784 pr., 833–837, 1220
compared with merge sort, 12–13, 15 ex.	multiplicative, modulo n , 927
compared with quicksort, 191 ex.	inversion
decision tree for, 206 fig.	in an array, 47 pr.
lower bound for, 52–53	in linked lists, 798
in merge sort, 45 pr.	in a sequence, 134 ex., 486 ex.

	1 406 4400
inversion count, 798	<i>k</i> -permutation, 136, 1180
inverter, 1065	Kraft inequality, 1176 ex.
invertible matrix, 1220	Kruskal's algorithm, 592–594
invocation tree, 756	with integer edge weights, 598 ex.
isolated vertex, 1165	k-sorted, 221 pr.
isomorphic graphs, 1166	<i>k</i> -string, 1179
iterated function, 68, 74 pr.	<i>k</i> -subset, 1156
iterated logarithm function (lg*), 68	k-substring, 1179
ITERATIVE-TREE-SEARCH, 316	k th power, $910 \mathrm{ex}$.
iter function, 536	
	label
Java Fork-Join Framework, 750	in machine learning, 1003, 1035
Jensen's inequality, 1194	of a vertex, 724, 742 pr.
JOHNSON, 666	Lagrange's formula, 881
Johnson's algorithm, 662–667	Lagrange's theorem, 921
joining	Lamé's theorem, 913
of red-black trees, 356 pr.	language, 1052
of 2-3-4 trees, 518 pr.	completeness of, 1072 ex.
joint probability density function, 1191	proving NP-completeness of, 1072–1073
Josephus permutation, 496 pr.	verification of, 1058
1 1 / 1	lasers, sharks with, 850
Karmarkar's algorithm, 876	last-in, first-out (LIFO), 254, 803-804
Karp's minimum mean-weight cycle algorithm,	implemented with a priority queue, 178 ex.
642 pr.	see also stack
k-ary tree, 1174	latency, 499
k-clustering, 1008	LCA, 544 pr.
k-CNF, 1043	lcm (least common multiple), 916 ex.
<i>k</i> -coloring, 1100 pr., 1176 pr.	LCP, see longest common prefix array
k-combination, 1180	LCS, 393–399
k-conjunctive normal form, 1043	LCS-LENGTH, 397
Keeling curve, 845 fig.	leading submatrix, 839
key, 17, 157, 173, 249, 283–284	leaf, 1172
in a cryptosystem, 936, 939	least common multiple, 916 ex.
dummy, 400	least frequently used (LFU), 803, 814 ex.
median, of a B-tree node, 506	least recently used (LRU), 445 ex., 803–805
keywords, in pseudocode, 21–22, 24	least-squares approximation, 841–845,
parallel, 750, 752–754, 762–763	1035–1037
Kleene star (*), 1052	leaving a vertex, 1164
k-means problem, 1008	LEFT, 162
KMP algorithm, 975–985	left child, 1173
KMP-MATCHER, 978	left-child, right-sibling representation, 265,
knapsack problem	268 ex.
decision version, 1096	left-leaning red-black binary search tree, 358
fractional, 429	LEFT-ROTATE, 336, 495 ex.
0-1, 428, 430 ex., 1134 pr.	left rotation, 335
<i>k</i> -neighbor tree, 358	left shift (\ll), 305
knot, of a spline, 847 pr.	left subtree, 1173
Knuth-Morris-Pratt algorithm, 975–985	Legendre symbol $\left(\frac{a}{p}\right)$, 954 pr.

length	simplex algorithm for, 857
of a cycle, 1165	and single-pair shortest path, 861
of a path, 1165	and single-source shortest paths, 626–632
of a sequence, 1162	standard form for, 854
of a string, 959, 1179	see also integer linear programming, 0-1
level	integer programming
of a function, 532	linear-programming relaxation, 1122
of a node in a disjoint-set forest, 535	linear regression, 1036
of a tree, 1173	linear search, 25 ex.
lexicographically less than, 327 pr.	linear speedup, 758
lexicographic sorting, 327 pr., 986 n.	line search, 1031
LFU (least frequently used), 803, 814 ex.	Link, 530
lg (binary logarithm), 66	linked list, 258–264
lg* (iterated logarithm function), 68	compact, 269 pr.
\lg^k (exponentiation of logarithms), 66	deletion from, 261
lg lg (composition of logarithms), 66	to implement disjoint sets, 523–527
LIFO, see last-in, first-out; stack	insertion into, 260
light edge, 587	maintained by an online algorithm, 795–802
linear constraint, 853–854	searching, 260, 292 ex.
linear dependence, 1220	linking of trees in a disjoint-set forest, 529
linear equality, 853	list, see linked list
linear equations	LIST-DELETE, 261
solving modular, 924–928	LIST-DELETE', 262
solving systems of, 819–833, 1034–1035	List-Insert, 261
solving tridiagonal systems of, 847 pr.	List-Insert', 263
linear function, 30, 853	LIST-PREPEND, 260
linear independence, 1220	LIST-SEARCH, 260
linear inequality, 853	List-Search', 263
linear-inequality feasibility problem, 873 pr.	literal, 1076
linearity of expectation, 1192–1193	little-oh notation (o) , 60
and indicator random variables, 131	little-omega notation (ω) , 61
linearity of summations, 1141	Lloyd's procedure, 1011–1013, 1039 pr.
linear order, 1160	ln (natural logarithm), 66
linear permutation, 1224 pr.	load factor
linear probing, 297, 302–304	of a dynamic table, 461
LINEAR-PROBING-HASH-DELETE, 303	of a hash table, 278
linear programming, 850–876, 1121–1124	load instruction, 26, 756
applications of, 860–866	local minimizer, 1026 fig.
duality in, 866–873	local variable, 22
ellipsoid algorithm for, 857	logarithm function (log), 66–67
fundamental theorem of, 872	discrete, 933
integer, 857, 874 pr.	iterated (lg*), 68
interior-point methods for, 857	logical parallelism, 753
Karmarkar's algorithm for, 876	logical right shift (>>>), 285
and maximum flow, 862	logic gate, 1065
and minimum-cost circulation, 875 pr.	longest common prefix (<i>LCP</i>) array, 986,
and minimum-cost flow, 862–864	992–994
and multicommodity flow, 864–865	longest common subsequence, 393–399

longest common substring, 995 ex.	for median finding, 247
longest monotonically increasing subsequence,	for merging, 222 pr.
399 ex.	and potential functions, 475
longest palindrome subsequence, 407 pr.	for simultaneous minimum and maximum,
LONGEST-PATH, 1055 ex.	229 ex.
LONGEST-PATH-LENGTH, 1055 ex.	for sorting, 205–208, 219 pr., 225
longest repeated substring, 987	for streaks, 147–148, 153 ex.
longest simple cycle, 1098 ex.	on summations, 1148, 1150
longest simple path, 1042	for task-parallel computations, 757
in an unweighted graph, 385	for traveling-salesperson tour, 1110–1113
in a weighted directed acyclic graph, 407 pr.	for vertex cover, 1108, 1121–1123, 1132 pt
lookahead algorithm, 815 ex.	lower median, 227
LOOKUP-CHAIN, 391	lower-triangular matrix, 1216
loop, in pseudocode, 22	lowest common ancestor, 543 pr.
parallel, 762–765	low side of a partition, 183
loop invariant, 19–20	LRU (least recently used), 445 ex., 803–805
for breadth-first search, 555	LU decomposition, 824–827
for building a heap, 167	parallel algorithm for, 784 pr.
for counting sort, 211 ex.	LU-DECOMPOSITION, 827
for determining the rank of an element in an	LUP decomposition, 821
order-statistic tree, 483	computation of, 828–832
and for loops, 21 n.	in matrix inversion, 833–834
for the generic minimum-spanning-tree	and matrix multiplication, 838 ex.
method, 586	parallel algorithm for, 784 pr.
for heapsort, 172 ex.	use of, 821–824
for Horner's rule, 46 pr.	LUP-DECOMPOSITION, 830
for increasing a key in a heap, 177 ex.	LUP-Solve, 824
for insertion sort, 19–20	
for partitioning, 184	machine learning, 14, 1003–1041
for Prim's algorithm, 597	main memory, 498
for the Rabin-Karp algorithm, 965	maintenance of a loop invariant, 20
for randomly permuting an array, 137	MAKE-RANKS, 988
for red-black tree insertion, 340	MAKE-SET, 521
for string-matching automata, 970, 973	disjoint-set-forest implementation of, 530
loss function, 1036	linked-list implementation of, 523
low endpoint of an interval, 489	makespan, 1133 pr.
lower bounds	MAKE-TREE, 542 pr.
asymptotic, 55	Manhattan distance, 244 pr.
on binomial coefficients, 1181, 1184 ex.	MARKING, 807, 815 ex.
for comparing water jugs, 220 pr.	Markov's inequality, 1196 ex.
for competitive ratios for online caching,	master method for solving a recurrence,
804–806	101–107
for constructing binary search trees, 315 ex.	master recurrence, 101
for disjoint-set data structures, 545	master theorem, 102
for finding the minimum, 228	continuous, 112
for insertion sort, 52–53	proof of, 107–115
for k -sorting, 221 pr.	matched vertex, 693, 705

	MATTERY CHAIN MULTIPLY 201
matching, 704–743	MATRIX-CHAIN-MULTIPLY, 381 ex.
bipartite, 693–697, 704–743	MATRIX-CHAIN-ORDER, 378
fractional, 741 pr.	matrix multiplication, 80–90, 1218
by Hopcroft-Karp algorithm, 709–715	for all-pairs shortest paths, 648–655,
maximal, 705, 1108, 1132 pr.	668–669
maximum, 704–716, 1132 pr.	divide-and-conquer method for, 81–90,
and maximum flow, 693-697	770–775, 783 pr.
perfect, 715 ex., 740 pr.	and LUP decomposition, 838 ex.
stable, 716	and matrix inversion, 834–837
of strings, 957–1002	Pan's method for, 89 ex.
unstable, 717	parallel algorithm for, 770–775, 783 pr.
matrix, 1214–1226	Strassen's algorithm for, 85–90, 124–125,
addition of, 1217	773–774
adjacency, 551–552	and transitive closure, 838 ex.
conjugate transpose of, 838 ex.	MATRIX-MULTIPLY, 81
dense, 81	MATRIX-MULTIPLY-RECURSIVE, 83
determinant of, 1221	matrix-vector multiplication, 762–765, 767,
diagonal, 1215	1218
Hermitian, 838 ex.	MAX-CNF satisfiability, 1124 ex.
Hessian, 1035	MAX-CUT problem, 1124 ex.
	•
identity, 1215	MAX-FLOW-BY-SCALING, 700 pr.
incidence, 553 ex.	max-flow min-cut theorem, 684
inverse of, 784 pr., 833–837, 1220	max-heap, 162
lower-triangular, 1216	building, 167–170
minor of, 1221	<i>d</i> -ary, 179 pr.
multiplication of, see matrix multiplication	deletion from, 178 ex.
negative of, 1217	extracting the maximum key from, 174
permutation, 1217	in heapsort, 170–172
positive-definite, 1222	increasing a key in, 174–175
positive-semidefinite, 1222	insertion into, 175
predecessor, 647, 655 ex., 657–659, 661 ex.	maximum key of, 174
product of, with a vector, 762–765, 767,	as a max-priority queue, 172–178
1218	mergeable, 268 n.
pseudoinverse of, 843	MAX-HEAP-DECREASE-KEY, 176 ex.
representation of, 253–254	MAX-HEAP-DELETE, 178 ex.
scalar multiple of, 1217	MAX-HEAP-EXTRACT-MAX, 175
sparse, 81	MAX-HEAPIFY, 165
subtraction of, 1218	MAX-HEAP-INCREASE-KEY, 176
symmetric, 1217	MAX-HEAP-INSERT, 176
symmetric positive-definite, 838–841	building a heap with, 178 pr.
transpose of, 1214	MAX-HEAP-MAXIMUM, 175
tridiagonal, 1216	max-heap property, 162
unit lower-triangular, 1216	maintenance of, 164–167
unit upper-triangular, 1216	maximal element, 1160
upper-triangular, 1216	maximal matching, 705, 1108, 1132 pr.
Vandermonde, 881, 1223 pr.	greedy method for, 726
matrix-chain multiplication, 373–382	maximization linear program, 853
maura-chain munupheadon, 3/3–362	maximization inicar program, 633

maximum, 227	MERGE-SORT, 39
in binary search trees, 317–318	merging
of a binomial distribution, 1202 ex.	of k sorted lists, $178 \mathrm{ex}$.
finding, 228–229	lower bounds for, 222 pr.
in heaps, 174	parallel algorithm for, 776–780
in red-black trees, 334	of two sorted subarrays, 35–38
MAXIMUM, 173–174, 250	MILLER-RABIN, 946
maximum bipartite matching, 693–697,	Miller-Rabin primality test, 945–953
705–716	MIN-GAP, 495 ex.
maximum flow, 670–703	min-heap, 163
Edmonds-Karp algorithm for, 689-691	analyzed by potential method, 459 ex.
Ford-Fulkerson method for, 676–693	building, 167–170
as a linear program, 862	in constructing Huffman codes, 436
and maximum bipartite matching, 693-697	<i>d</i> -ary, 668 pr.
push-relabel algorithms for, 702	in Dijkstra's algorithm, 623
scaling algorithm for, 699 pr.	in Johnson's algorithm, 666
updating, 699 pr.	mergeable, 268 n.
maximum matching, 693, 704, 1132 pr.	as a min-priority queue, 176 ex.
see also maximum bipartite matching	in Prim's algorithm, 597
maximum spanning tree, 1134 pr.	MIN-HEAPIFY, 166 ex.
max-priority queue, 173	MIN-HEAP-INSERT, 176 ex.
MAX-3-CNF satisfiability, 1120–1121	min-heap property, 163
MAYBE-MST-A, 602 pr.	maintenance of, 166 ex.
MAYBE-MST-B, 602 pr.	vs. binary-search-tree property, 315 ex.
MAYBE-MST-C, 602 pr.	minimization linear program, 853
mean	minimizer of a function, 1022, 1024 fig.,
of a cluster, 1009	1026 fig.
see also expected value	minimum, 227
mean weight of a cycle, 642 pr.	in binary search trees, 317–318
median, 227–247	finding, 228–229
weighted, 244 pr.	offline, 541 pr.
median key, of a B-tree node, 506	in red-black trees, 334
median-of-3 method, 203 pr.	MINIMUM, 173, 228, 250
member of a set (\in) , 1153	minimum-cost circulation, 875 pr.
memoization, 368, 390–392	minimum-cost flow, 862–864
MEMOIZED-CUT-ROD, 369	minimum-cost multicommodity flow, 866 ex
MEMOIZED-CUT-ROD-AUX, 369	minimum-cost spanning tree, see minimum
MEMOIZED-MATRIX-CHAIN, 391	spanning tree
memory hierarchy, 27, 301	minimum cut, 682
hash functions for, 304–307	global, 701 pr.
MERGE, 36	minimum degree, of a B-tree, 502
mergeable heap, 268 pr.	minimum mean-weight cycle, 642 pr.
MERGE-LISTS, 1125	minimum path cover, 698 pr.
merge sort, 34–44, 57	minimum spanning tree, 585–603
compared with insertion sort, 12–13, 15 ex.	in approximation algorithm for
lower bound for, 207	traveling-salesperson problem, 1110
parallel algorithm for, 775–782	Borůvka's algorithm for, 603
use of insertion sort in, 45 pr.	on dynamic graphs, 599 ex.

minimum spanning tree, continued	multiplication
generic method for, 586–591	of complex numbers, 90 ex.
Kruskal's algorithm for, 592–594	divide-and-conquer method for, 899 pr.
Prim's algorithm for, 594–597	of matrices, see matrix multiplication
second-best, 599 pr.	of a matrix chain, 373–382
minimum-weight spanning tree, see minimum	matrix-vector, 762–765, 767, 1218
spanning tree	modulo $n(\cdot_n)$, 917
minimum-weight vertex cover, 1121–1124	of polynomials, 878
minor of a matrix, 1221	multiplication method, 284–286
min-priority queue, 173	multiplicative group modulo n , 919
in constructing Huffman codes, 434	multiplicative inverse, modulo n , 927
in Dijkstra's algorithm, 623–624	multiplicative weights, 1015–1022
in Prim's algorithm, 596–597	multiply instruction, 26
missing child, 1173	multiply-shift method, 285–286
mod, 64, 905	MULTIPOP, 450
modeling, 851	multiset, 1153 n.
modifying operation, 250	dynamic, 460 ex.
modular arithmetic, 64, 901 pr., 916–923	mutually exclusive events, 1185
modular equivalence (= $(\text{mod } n)$), 64, 905	mutually independent events, 1188
modular exponentiation, 934–935	mutually noninterfering strands, 767
MODULAR-EXPONENTIATION, 935	mutually hommerrering strands, 707
modular linear equations, 924–928	N (set of natural numbers) 1152
MODULAR-LINEAR-EQUATION-SOLVER,	N (set of natural numbers), 1153
926	naive algorithm for string matching, 960–962 NAIVE-STRING-MATCHER, 960
modulo, 64, 905	
Monge array, 123 pr.	National Resident Matching Program, 704, 722 ex.
monotone sequence, 181	natural cubic spline, 847 pr.
monotonically decreasing, 63	natural logarithm (ln), 66
monotonically increasing, 63	natural numbers (\mathbb{N}) , 1153
Monty Hall problem, 1210 pr.	keys interpreted as, 283–284
MOVE-TO-FRONT, 796–797	nearest-center rule, 1008
MST-Kruskal, 594	negative of a matrix, 1217
MST-PRIM, 596	negative-weight cycle
MST-REDUCE, 601 pr.	and difference constraints, 629
much-greater-than (\gg), 533	and relaxation, 639 ex.
much-less-than (\ll), 761	and shortest paths, 606–607, 614–615,
multicommodity flow, 864–865	655 ex., 662 ex.
multicore computer, 748	negative-weight edges, 606–607
multidimensional fast Fourier transform,	neighbor, 1167
899 pr.	neighborhood, 715 ex.
1	nesting boxes, 640 pr.
multigraph, 1167 multiple, 904	net flow across a cut, 682
1	network
of an element modulo n , 924–928	
least common, 916 ex. scalar, 1217	flow, see flow network residual, 677–681
Scarar, 1217	
multiple sources and sinks, 674	for sorting, 789

new request, 810	of scheduling with profits and deadlines,
Newton's method, 1038 pr.	1102 pr.
NIL, 23	of the set-covering problem, 1119 ex.
node, 1172	of the set-partition problem, 1098 ex.
see also vertex	of the subgraph-isomorphism problem,
nondeterministic algorithm, 765	1098 ex.
nondeterministic polynomial time, 1058 n.	of the subset-sum problem, 1092–1095
see also NP	of the 3-CNF-satisfiability problem,
nonempty suffix, 997 pr.	1076–1079
nonhamiltonian graph, 1056	of the traveling-salesperson problem,
noninstance, 1051 n.	1090–1092
noninvertible matrix, 1220	of the vertex-cover problem, 1084–1085
nonnegativity constraint, 854	of 0-1 integer programming, 1098 ex.
nonoblivious adversary, 807	NP-hard, 1063
nonoverlappable string pattern, 974 ex.	<i>n</i> -set, 1156
nonsample position, 997 pr.	<i>n</i> -tuple, 1157
nonsample suffix, 997 pr.	null event, 1185
nonsingular matrix, 1220	null tree, 1173
nontrivial power, 910 ex.	null vector, 1221
nontrivial square root of 1, modulo n , 934	number-field sieve, 956
no-path property, 611, 634	numerical stability, 819, 821
normal equation, 843	<i>n</i> -vector, 1215
norm of a vector ($\ \ $), 1219	
NOT function (¬), 1065	o-notation, 60
not a set member (∉), 1153	O-notation, 50, 54–55
not equivalent $(\neq \pmod{n})$, 64	O'-notation, 73 pr.
NOT gate, 1065	\widetilde{O} -notation, 73 pr.
NP (complexity class), 1043, 1058, 1060 ex.	object, 23
NPC (complexity class), 1044, 1063	objective function, 626, 852, 854
NP-complete, 1044, 1063	objective value, 854
NP-completeness, 9–10, 1042–1103	oblivious adversary, 807
of the circuit-satisfiability problem,	oblivious compare-exchange algorithm, 222 pr
1064–1071	occurrence of a pattern, 957
of the clique problem, 1081–1084	offline algorithm, 791
of the formula-satisfiability problem,	Offline-Minimum, 542 pr.
1073–1076	offline problem
of the graph-coloring problem, 1100 pr.	caching, 440–446
of the half 3-CNF satisfiability problem,	lowest common ancestors, 543 pr.
1099 ex.	minimum, 541 pr.
of the hamiltonian-cycle problem,	old request, 810
1085–1090	Omega-notation, 51, 54 fig., 55–56
of the hamiltonian-path problem, 1098 ex.	1-approximation algorithm, 1105
of the independent-set problem, 1099 pr.	one-pass method, 544
of integer linear programming, 1098 ex.	one-to-one correspondence, 1163
of the longest-simple-cycle problem,	one-to-one function, 1162
1098 ex.	online algorithm, 791–818
proving, of a language, 1072–1073	for caching, 802–815
reduction strategies for, 1095–1098	for the cow-path problem, 815 pr.

online algorithm, continued	ord function, 987
for hiring, 150–152	OR gate, 1065
for maintaining a linked list, 795–802	or, in pseudocode, 24
for task scheduling, 816 pr.	orthonormal, 849
for waiting for an elevator, 792–794	OS-KEY-RANK, 485 ex.
_	OS-RANK, 483
online learning, 1003	
ONLINE-MAXIMUM, 150	OS-SELECT, 482
online task-parallel scheduler, 759	outcome, 1185
onto function, 1162	out-degree, 1165
open-address hash table, 293–301, 308 pr.	outer product, 1219
with double hashing, 295–297, 301 ex.	output
with linear probing, 297, 302–304	of an algorithm, 5
open interval $((a,b))$, 1157	of a combinational circuit, 1066
OpenMP, 750	of a logic gate, 1065
optimal assignment, 723–739	overdetermined system of linear equations, 821
optimal binary search tree, 400–407	overflow
OPTIMAL-BST, 405	of a queue, 257
optimal objective value, 854	of a stack, 255
optimal solution, 854	overflowing vertex, 703
optimal substructure, 382–387	overlapping intervals, 489
of activity selection, 419	finding all, 495 ex.
of binary search trees, 402–403	point of maximum overlap, 496 pr.
of the fractional knapsack problem, 429	overlapping rectangles, 495 ex.
in greedy method, 428	overlapping subproblems, 387–390
of Huffman codes, 438	overlapping-suffix lemma, 959
of longest common subsequences, 394–395	
of matrix-chain multiplication, 376	P (complexity class), 1043, 1050, 1054,
of offline caching, 441–442	1055 ex.
of rod cutting, 365	page, in virtual memory, 440
of shortest paths, 605–606, 649, 655–656	pair
of unweighted shortest paths, 385	blocking, 716
of the 0-1 knapsack problem, 429	ordered, 1156
optimal vertex cover, 1106	pairwise disjoint sets, 1156
optimization problem, 362, 1045, 1049	pairwise independence, 1188
approximation algorithms for, 1104-1136	pairwise relatively prime, 908
and decision problems, 1045	palindrome, 407 pr., 995 ex.
OR function (\vee) , 659, 1065	Pan's method for matrix multiplication, 89 ex.
order	parallel algorithm, 748–790
of a group, 922	for computing Fibonacci numbers, 750–753
of growth, 32	grain size in, 783 pr.
linear, 1160	for LU decomposition, 784 pr.
partial, 1160	for LUP decomposition, 784 pr.
total, 1160	for matrix inversion, 784 pr.
ordered pair, 1156	for matrix multiplication, 770–775, 783 pr.
ordered tree, 1173	for matrix-vector product, 762–765, 767
order statistics, 160, 227–247	for merge sort, 775–782
dynamic, 480–486	for merging, 776–780
order-statistic tree, 480–486	for prefix computation, 784 pr.

parallel algorithm, continued	Hoare's method for, 199 pr.
for quicksort, 789 pr.	randomized, 192, 198 ex., 200 pr., 203 pr
randomized, 789 pr.	partition of a set, 1156, 1159
for reduction, 784 pr.	Pascal's triangle, 1183 ex.
for a simple stencil calculation, 787 pr.	path, 1165
for solving systems of linear equations,	alternating, 705
784 pr.	augmenting, 681–682, 705
Strassen's algorithm, 773–774	critical, 619
for well-formed parentheses, 786 pr.	find, 528
parallel computer, 10, 748, 756	hamiltonian, 1060 ex., 1098 ex.
parallel for, in pseudocode, 762–763	longest, 385, 1042
parallelism	shortest, see shortest paths
logical, 753	simple, 1165
of a randomized parallel algorithm, 789 pr.	weight of, 407 pr., 604
spawning, 753	PATH, 1045, 1053
syncing, 754	path compression, 528
of a task-parallel computation, 758	path cover, 698 pr.
parallel keywords, 750, 752, 762	path length, of a tree, 328 pr., 1175 ex.
parallel loop, 762–765, 783 pr.	path-relaxation property, 611, 635
parallel-machine-scheduling problem, 1133 pr.	pattern, 957
parallel prefix, 784 pr.	nonoverlappable, 974 ex.
parallel random-access machine, 789	pattern matching, see string matching
parallel slackness, 758	perfect hashing, 310
rule of thumb, 761	perfect linear speedup, 758
parallel, strands logically in, 756	perfect matching, 715 ex., 740 pr.
parallel trace, 754–756	permutation, 1163, 1179–1180
series-parallel composition of, 762 fig.	bit-reversal, 897
parameter, 23	identity, 138 ex.
costs of passing, 120 pr.	in place, 136
parent	Josephus, 496 pr.
in a breadth-first tree (π) , 555	<i>k</i> -permutation, 136, 1180
in a parallel computation, 753	linear, 1224 pr.
in a rooted tree, 1172	random, 136–138
PARENT, 162	uniform random, 128, 136
parenthesis theorem, 567	permutation matrix, 1217
parenthesization of a matrix-chain product, 374	PERMUTE-BY-CYCLE, 139 ex.
Pareto optimality, 722 ex.	PERMUTE-WITH-ALL, 139 ex.
parse tree, 1077	PERMUTE-WITHOUT-IDENTITY, 138 ex.
partial derivative (∂), 1023	persistent data structure, 355 pr., 478
partial order, 1160	PERSISTENT-TREE-INSERT, 355 pr.
Partition, 184	PERT chart, 617, 619 ex.
PARTITION', 200 pr.	P-Fib, 753
PARTITION-AROUND, 237	phi function $(\phi(n))$, 920
partition function, 363 n.	pivot
partitioning, 183–186	in LU decomposition, 826
around median of 3 elements, 198 ex.	in quicksort, 183
helpful, 232	in selection, 230

P[:k] (prefix of a pattern), 959	potential function, 456
planar graph, 584 pr.	for lower bounds, 475
platter in a disk drive, 498	potential method, 456–460
P-MATRIX-MULTIPLY, 771	for binary counters, 458–459
P-MATRIX-MULTIPLY-RECURSIVE, 772	for disjoint-set data structures, 534–540,
P-MAT-VEC, 763	541 ex.
P-MAT-VEC-RECURSIVE, 763	for dynamic tables, 463–470
P-MAT-VEC-WRONG, 768	for maintaining a linked list, 799–801
P-MERGE, 779	for min-heaps, 459 ex.
P-MERGE-AUX, 779	for restructuring red-black trees, 473 pr.
P-MERGE-SORT, 775	for stack operations, 457–458
P-NAIVE-MERGE-SORT, 775	potential of a data structure, 456
pointer, 23	power
trailing, 321	of an element, modulo n , 932–936
point, in clustering, 1006	kth, 910 ex.
point-value representation, 880	nontrivial, 910 ex.
polylogarithmically bounded, 67	power series, 121 pr.
polynomial, 65, 877–885	power set, 1156
addition of, 877	Pr { } (probability distribution), 1185
asymptotic behavior of, 71 pr.	PRAM, 789
coefficient representation of, 879	predecessor
derivatives of, 900 pr.	in binary search trees, 318–319
evaluation of, 46 pr., 879, 884 ex., 900 pr.	in breadth-first trees (π) , 555
interpolation by, 880, 885 ex.	in linked lists, 259
multiplication of, 878, 882–884, 899 pr.	in red-black trees, 334
point-value representation of, 880	in shortest-paths trees (π) , 608
polynomial-growth condition, 116–117	PREDECESSOR, 250
polynomially bounded, 65	predecessor matrix, 647, 655 ex., 657–659,
polynomially related, 1051	661 ex.
polynomial-time acceptance, 1053	
	predecessor subgraph
polynomial-time algorithm, 904, 1042	in all-pairs shortest paths, 647 in breadth-first search, 561
polynomial-time approximation scheme, 1105 for maximum clique, 1131 pr.	
for subset sum, 1124–1130	in depth-first search, 564
polynomial-time computability, 1051	in single-source shortest paths, 608
- · ·	predecessor-subgraph property, 611, 637–638
polynomial-time decision, 1053	prediction, 1004
polynomial-time reducibility ($\leq P$), 1062,	prediction phase, 1003
1071 ex.	preemption, 446 pr., 816 pr.
polynomial-time solvability, 1050	prefix
polynomial-time verification, 1056–1061	of a sequence, 395
POP, 255, 449	of a string (□), 959
pop from a runtime stack, 202 pr.	prefix computation, 784 pr.
positional tree, 1174	prefix-free code, 432
positive-definite matrix, 1222	prefix function, 975–977
positive-semidefinite matrix, 1222	prefix-function iteration lemma, 980
post-office location problem, 244 pr.	preflow, 703
postorder tree walk, 314	preimage of a matrix, 1224 pr.

preorder, total, 1160	of collisions, 281 ex.
preorder tree walk, 314	of file comparison, 967 ex.
Prim's algorithm, 594–597	of fuzzy sorting of intervals, 203 pr.
with an adjacency matrix, 598 ex.	of hashing with chaining, 278–281
in approximation algorithm for	of hiring problem, 132–133, 150–152
traveling-salesperson problem, 1110	of insertion into a binary search tree with
with integer edge weights, 598 ex.	equal keys, 327 pr.
similarity to Dijkstra's algorithm, 624	of longest probe bound for hashing, 308 pr
for sparse graphs, 599 pr.	of lower bound for sorting, 219 pr.
primality testing, 942–953, 956	of Miller-Rabin primality test, 948–953
Miller-Rabin test, 945–953	of online hiring problem, 150–152
pseudoprimality testing, 944–945	of open-address hashing, 297–300
primal linear program, 866	and parallel algorithms, 789 pr.
augmented, 870	of partitioning, 191 ex., 198 ex., 200 pr.,
primary clustering, 303	203 pr.
prime distribution function, 943	of probabilistic counting, 153 pr.
prime factorization of integers, 909	of quicksort, 194-198, 200 pr., 203 pr.
prime number, 905	of Rabin-Karp algorithm, 965-966
density of, 943	and randomized algorithms, 134-136
prime number theorem, 943	of randomized online caching, 809–814
primitive root of \mathbb{Z}_n^* , 932	of randomized selection, 232–236, 245 pr.
principal root of unity, 886	of randomized weighted majority, 1022 ex
principle of inclusion and exclusion, 1158 ex.	of searching a sorted compact list, 269 pr.
PRINT-ALL-PAIRS-SHORTEST-PATH, 648	of slot-size bound for chaining, 308 pr.
Print-Cut-Rod-Solution, 372	of sorting points by distance from origin,
PRINT-LCS,397	218 ex.
Print-Optimal-Parens, 381	of streaks, 144–150
Print-Path, 562	of universal hashing, 286–290
Print-Set, 531 ex.	probabilistic counting, 153 pr.
priority queue, 172–178	probability, 1184–1191
in constructing Huffman codes, 434	probability axioms, 1185
in Dijkstra's algorithm, 623-624	probability density function, 1191
heap implementation of, 172–178	probability distribution, 1185
max-priority queue, 173	probability distribution function, 218 ex.
min-priority queue, 173, 176 ex.	probe sequence, 293
with monotone extractions, 181	probing, 293
in Prim's algorithm, 596-597	see also linear probing, double hashing
see also Fibonacci heap	problem
probabilistically checkable proof, 1103, 1136	abstract, 1048
probabilistic analysis, 127–128, 140–153	computational, 5–6
of approximation algorithm for	concrete, 1049
MAX-3-CNF satisfiability, 1120–1121	decision, 1045, 1049
and average inputs, 32	intractable, 1042
of average node depth in a randomly built	optimization, 362, 1045, 1049
binary search tree, 328 pr.	solution to, 6, 1049
of balls and bins, 143–144	tractable, 1042
of birthday paradox, 140-143	procedure, 18
of bucket sort, 216–218, 218 ex.	calling, 23, 26, 29 n.

	:-1
product (∏), 1144	quicksort, 182–204
Cartesian (×), 1157	analysis of, 187–191, 193–198
inner, 1219	average-case analysis of, 194–198
of matrices, see matrix multiplication	compared with insertion sort, 191 ex.
outer, 1219	compared with radix sort, 214
of polynomials, 878	with equal element values, 200 pr.
rule of, 1179	good worst-case implementation of, 241 ex.
scalar flow, 675 ex.	with median-of-3 method, 203 pr.
professional wrestler, 563 ex.	parallel algorithm for, 789 pr.
program counter, 1068	randomized version of, 191–193, 200 pr.,
programming, see dynamic programming,	203 pr.
linear programming	stack depth of, 202 pr.
projection, 1032	and tail recursion, 202 pr.
proper ancestor, 1172	use of insertion sort in, 198 ex.
proper descendant, 1172	worst-case analysis of, 193–194
proper prefix, 959	QUICKSORT, 183
proper subgroup, 921	QUICKSORT', 200 pr.
proper subset (\subset) , 1154	quotient, 905
proper suffix, 959	
P-SCAN-1, 785 pr.	\mathbb{R} (set of real numbers), 1153
P-SCAN-1-AUX, 785 pr.	Rabin-Karp algorithm, 962–967
P-SCAN-2, 786 pr.	RABIN-KARP-MATCHER, 966
P-SCAN-2-AUX, 786 pr.	race condition, 765–768
P-SCAN-3,787 pr.	RACE-EXAMPLE, 766
P-SCAN-DOWN, 787 pr.	radix sort, 211–215
P-SCAN-UP, 787 pr.	compared with quicksort, 214
pseudocode, 18, 21–24	in computing suffix arrays, 992
pseudoinverse, 843	RADIX-SORT, 213
pseudoprime, 944–945	radix tree, 327 pr.
PSEUDOPRIME, 945	RAM, 26–27
pseudorandom-number generator, 129	RANDOM, 129
P-Transpose, 770 ex.	random-access machine, 26–27
public key, 936, 939	parallel, 789
public-key cryptosystem, 936–942	random hashing, 286–290
Push, 255, 449	randomized algorithm, 128–129, 134–140
push onto a runtime stack, 202 pr.	and average inputs, 32
push-relabel algorithms, 702	comparison sort, 219 pr.
push-related argorithms, 702	for fuzzy sorting of intervals, 203 pr.
quadratic convergence, 1039 pr.	for hiring problem, 135–136
quadratic function, 31	for insertion into a binary search tree with
quadratic residue, 954 pr.	equal keys, 327 pr.
quantile, 242 ex.	for MAX-3-CNF satisfiability, 1120–1121
÷	
query, 250	Miller-Rabin primality test, 945–953
queue, 254, 256–257	for online caching, 807–814
in breadth-first search, 554	parallel, 789 pr.
implemented by stacks, 258 ex., 460 ex.	for partitioning, 192, 198 ex., 200 pr., 203 pr.
linked-list implementation of, 264 ex.	for permuting an array, 136–138
priority, see priority queue	and probabilistic analysis, 134–136

randomized algorithm, continued	reachability in a graph (⋄), 1165
quicksort, 191–193, 200 pr., 203 pr.	real numbers (\mathbb{R}), 1153
random hashing, 286–290	reconstructing an optimal solution, in dynamic
randomized rounding, 1136	programming, 390
for searching a sorted compact list, 269 pr.	record, 17, 157
for selection, 230–236, 245 pr.	rectangle, 495 ex.
universal hashing, 286–290	RECTANGULAR-MATRIX-MULTIPLY, 374
for weighted majority, 1022 ex.	recurrence, 39, 76–80, 90–125
RANDOMIZED-HIRE-ASSISTANT, 135	Akra-Bazzi, 115–119
RANDOMIZED-MARKING, 808	algorithmic, 77–78
RANDOMIZED-PARTITION, 192	inequalities in, 78
RANDOMIZED-PARTITION, 200 pr.	master, 101
RANDOMIZED-QUICKSORT, 192	solution by Akra-Bazzi method, 117-118
relation to randomly built binary search	solution by master method, 101–107
trees, 328 pr.	solution by recursion-tree method, 95–101
randomized rounding, 1136	solution by substitution method, 90–95
RANDOMIZED-SELECT, 230	recursion, 34
randomly built binary search tree, 328 pr.	recursion tree, 42, 95–101
RANDOMLY-PERMUTE, 136, 138 ex.	in matrix-chain multiplication analysis,
random-number generator, 129	388–390
random oracle, 276	in merge sort analysis, 42–44
random permutation, 136–138	in proof of continuous master theorem,
uniform, 128, 136	108–110
RANDOM-SAMPLE, 139 ex.	in quicksort analysis, 188–190
RANDOM-SEARCH, 154 pr.	in rod cutting analysis, 366–367
random variable, 1191–1196	and the substitution method, 98
indicator, see indicator random variable	RECURSIVE-ACTIVITY-SELECTOR, 422
range, 1162	recursive case, 34
of a matrix, 1224 pr.	of a divide-and-conquer algorithm, 76
rank	of a recurrence, 77
column, 1220	RECURSIVE-MATRIX-CHAIN, 389
in computing suffix arrays, 987	red-black properties, 331–332
full, 1220	red-black tree, 331–359
of a matrix, 1220, 1224 pr.	augmentation of, 487–489
of a node in a disjoint-set forest, 528,	compared with B-trees, 497, 503
533–534, 540 ex.	deletion from, 346–355
of a number in an ordered set, 480	for enumerating keys in a range, 355 ex.
in order-statistic trees, 482–484, 485–486 ex.	height of, 332
row, 1220	insertion into, 338–346
rate of growth, 32	in interval trees, 490–495
RB-DELETE, 348	joining of, 356 pr.
RB-DELETE-FIXUP, 351	left-leaning, 358
RB-ENUMERATE, 355 ex.	maximum key of, 334
RB-INSERT, 338	minimum key of, 334
RB-Insert-Fixup, 339	in order-statistic trees, 480–486
RB-JOIN, 356 pr.	persistent, 355 pr.
RB-TRANSPLANT, 347	predecessor in, 334
RC6, 304	properties of, 331–335

rad blook trae continued	racidua 64 005 054 pr
red-black tree, <i>continued</i> relaxed, 334 ex.	residue, 64, 905, 954 pr. respecting a set of edges, 587
restructuring, 473 pr.	return, in pseudocode, 24
rotation in, 335–338	return, in pseudocode, 24
searching in, 334	reweighting
successor in, 334	
see also interval tree, order-statistic tree	in all-pairs shortest paths, 662–664
	in single-source shortest paths, 641 pr.
REDUCE, 784 pr.	$\rho(n)$ -approximation algorithm, 1104, 1120
reducibility, 1061–1063	RIGHT, 162
reduction algorithm, 1046, 1062 reduction function, 1062	right child, 1173
,	right-conversion, 337 ex. RIGHT-ROTATE, 336
reduction, of an array, 784 pr.	,
reduction strategies, 1095–1098	right rotation, 335
reference, 23	right shift (>>>), 285
reflexive relation, 1158	right subtree, 1173
reflexivity of asymptotic notation, 61	rod cutting, 363–373, 393 ex.
region, feasible, 854	root
register, 301, 756	of a tree, 1171
regret, 1016	of unity, 885–886
regular graph, 716 ex., 740 pr.	of \mathbb{Z}_n^* , 932
regularity condition, 103, 112, 114ex.	rooted tree, 1171
regularization, 1012, 1036–1037	representation of, 265–268
reindexing summations, 1143–1144	rotation, 335–338
reinforcement learning, 1004	rounding, 1122
rejection	randomized, 1136
by an algorithm, 1053	row-major order, 253, 396
by a finite automaton, 968	row rank, 1220
relation, 1158–1161	row vector, 1215
relatively prime, 908	RSA public-key cryptosystem, 936–942
RELAX, 610	rule of product, 1179
relaxation	rule of sum, 1178
of an edge, 609–611	running time, 29
linear programming, 1122	asymptotic, 49
relaxed red-black tree, 334 ex.	average-case, 32, 128
release time, 446 pr., 816 pr.	best-case, 34 ex.
remainder, 64, 905	expected, 32, 129
remainder instruction, 26	of a graph algorithm, 548
repeated squaring	order of growth, 32
for all-pairs shortest paths, 652–653	parallel, 757–758
for raising a number to a power, 934	and proper use of asymptotic notation,
repeat, in pseudocode, 22	56–57
repetition factor, of a string, 996 pr.	rate of growth, 32
REPETITION-MATCHER, 996 pr.	worst-case, 31
representative of a set, 520	
RESET, 456 ex.	SA, see suffix array
residual capacity, 677, 681	sabermetrics, 415 n.
residual edge, 678	safe edge, 587
residual network, 677–681	SAME-COMPONENT, 522

sample position, 997 pr.	secondary storage
sample space, 1185	search tree for, 497–519
sample suffix, 997 pr.	stacks on, 517 pr.
sampling, 139 ex.	second-best minimum spanning tree, 599 pr.
SAT, 1074	secret key, 936, 939
satellite data, 17, 157, 249	SELECT, 237
satisfiability, 1066, 1073–1079, 1120–1121,	used in quicksort, 241 ex.
1124 ex.	SELECT3, 247 pr.
satisfiable formula, 1043, 1074	selection, 227
satisfying assignment, 1066, 1074	of activities, 418–425
scalar, 1217	and comparison sorts, 241
scalar flow product, 675 ex.	in order-statistic trees, 481–482
scaling	randomized, 230–236, 245 pr.
in maximum flow, 699 pr.	in worst-case linear time, 236–243
in single-source shortest paths, 641 pr.	selection sort, 33 ex., 53 ex.
scan, 784 pr.	selector vertex, 1087
SCAN, 785 pr.	self-loop, 1164
scapegoat tree, 358	semiconnected graph, 581 ex.
schedule, 1133 pr.	semiring, 651 n., 669
scheduler for task-parallel computations, 753,	sentinel
759–761, 769 ex., 789	in linked lists, 261–264
scheduling, 446 pr., 816 pr., 1102 pr., 1133 pr.	in red-black trees, 332
Schur complement, 825, 839	sequence $(\langle \rangle)$, 1162
Schur complement lemma, 840	bitonic, 644 pr.
SCRAMBLE-SEARCH, 154 pr.	inversion in, 134 ex., 486 ex.
seam carving, 412 pr.	probe, 293
SEARCH, 250	sequential consistency, 756
searching	serial algorithm versus parallel algorithm, 748
binary search, 44 ex., 777–778	serial projection, 750, 753
in binary search trees, 316–317	series, 1141–1144
in B-trees, 504–505	strands logically in, 756
in chained hash tables, 278	series-parallel composition of parallel traces,
in direct-address tables, 274	762 fig.
for an exact interval, 495 ex.	set ({ }), 1153–1158
in interval trees, 492–494	cardinality (), 1156
linear search, 25 ex.	collection of, 1156
in linked lists, 260	convex, 675 ex.
in open-address hash tables, 294	difference (–), 1154
in red-black trees, 334	independent, 1099 pr.
in sorted compact lists, 269 pr.	intersection (\cap) , 1154
of static sets, 308 pr.	member (\in) , 1153
in an unsorted array, 154 pr.	not a member $(\not\in)$, 1153
search list, see linked list	partially ordered, 1160
search tree, see balanced search tree, binary	static, 308 pr.
search tree, B-tree, exponential search	union (∪), 1154
tree, interval tree, optimal binary search	set-covering problem, 1115–1119
tree, order-statistic tree, red-black tree,	weighted, 1132 pr.
splay tree, 2-3 tree, 2-3-4 tree	set-partition problem, 1098 ex.

SHA-256, 291	single-source, 604–645
shared memory, 748	tree of, 608–609, 635–638
sharks with lasers, 850	triangle inequality of, 611, 633
Shell's sort, 48	in an unweighted graph, 385, 558
shift	upper-bound property of, 611, 633–634
left (≪), 305	in a weighted graph, 604
right (\$\infty\$), 285	weight in (δ) , 604
in string matching, 957	shortest remaining processing time (SRPT),
shift instruction, 27	816 pr.
short-circuiting operator, 24	sibling, 1172
SHORTEST-PATH, 1045	signature, 938
shortest paths, 604–669	simple cycle, 1165–1166
all-pairs, 605, 646–669	simple graph, 1166
Bellman-Ford algorithm for, 612–616	simple graph, 1165
with bitonic shortest paths, 644 pr.	longest, 385, 1042
and breadth-first search, 558–561, 605	SIMPLER-RANDOMIZED-SELECT, 243 pr.
convergence property of, 611, 634–635	simplex, 857
and cycles, 607–608	simplex algorithm, 626, 857, 876
and difference constraints, 626–632	simulation, 173, 181
Dijkstra's algorithm for, 620–626	single-destination shortest paths, 605
in a directed acyclic graph, 616–619	single-pair shortest paths, 385, 605
distance in (δ) , 558	as a linear program, 861
in ϵ -dense graphs, 668 pr.	single-source shortest paths, 604–645
estimate of, 609	Bellman-Ford algorithm for, 612–616
Floyd-Warshall algorithm for, 655–659,	with bitonic shortest paths, 644 pr.
662 ex.	and difference constraints, 626–632
Gabow's scaling algorithm for, 641 pr.	Dijkstra's algorithm for, 620–626
Johnson's algorithm for, 662–667	in a directed acyclic graph, 616–619
as a linear program, 861	in ϵ -dense graphs, 668 pr.
and longest paths, 1042	Gabow's scaling algorithm for, 641 pr.
by matrix multiplication, 648–655, 668–669	and longest paths, 1042
and negative-weight cycles, 606–607,	singleton, 1156
614–615, 655 ex., 662 ex.	singly connected graph, 572 ex.
with negative-weight edges, 606–607	singly linked list, 259
no-path property of, 611, 634	singular matrix, 1220
optimal substructure of, 605–606, 649,	singular value decomposition, 849
655–656	sink vertex, 553 ex., 671, 674
path-relaxation property of, 611, 635	size
predecessor in (π) , 608	of an algorithm's input, 28, 903–904,
predecessor-subgraph property of, 611,	1049–1052
637–638	of a boolean combinational circuit, 1067
problem variants, 605	of a clique, 1081
and relaxation, 609–611	of a group, 917
by repeated squaring, 652–653	of a set, 1156
single-destination, 605	of a vertex cover, 1084, 1106
single-pair, 385, 605	skip list, 359

slackness	sorting network, 789
complementary, 873 pr.	source vertex, 554, 605, 671, 674
parallel, 758	span, 757
slot	span law, 758
of a direct-access table, 273	spanning tree, 585
of a hash table, 275	bottleneck, 601 pr.
SLOW-APSP, 652	maximum, 1134 pr.
smoothed analysis, 876	verification of, 603
solution	see also minimum spanning tree
to an abstract problem, 1049	sparse graph, 549
to a computational problem, 6	all-pairs shortest paths for, 662–667
to a concrete problem, 1049	and Prim's algorithm, 599 pr.
feasible, 627, 854	sparse matrix, 81
infeasible, 854	spawn, in pseudocode, 752–754
optimal, 854	spawning, 753
to a system of linear equations, 820	speedup, 758
sorted linked list, 259	of a randomized parallel algorithm, 789 pr.
sorting, 5, 17–21, 34–44, 51–53, 56–57,	spindle in a disk drive, 498
157–226, 775–782	spine of a string-matching automaton, 970
bubblesort, 46 pr.	splay tree, 359, 478
bucket sort, 215–219	splicing
columnsort, 222 pr.	in a binary search tree, 324–325
comparison sort, 205	in a linked list, 260–261
counting sort, 208–211	spline, 847 pr.
fuzzy, 203 pr.	splitting
heapsort, 161–181	of B-tree nodes, 506–508
in place, 158, 220 pr.	of 2-3-4 trees, 518 pr.
insertion sort, 12–13, 17–21, 51–53, 56–57	splitting summations, 1148–1149
k-sorting, 221 pr.	spurious hit, 965
lexicographic, 327 pr., 986 n.	square matrix, 1215
in linear time, 208–219, 220 pr.	square of a directed graph, 553 ex.
lower bounds for, 205–208, 225	square root, modulo a prime, 954 pr.
merge sort, 12–13, 34–44, 57, 775–782	squaring, repeated
by an oblivious compare-exchange	for all-pairs shortest paths, 652-653
algorithm, 222 pr.	for raising a number to a power, 934
parallel merge sort, 775–782	SRPT (shortest remaining processing time),
parallel quicksort, 789 pr.	816 pr.
probabilistic lower bound for, 219 pr.	stability
quicksort, 182–204	numerical, 819, 821
radix sort, 211–215	of sorting algorithms, 210
selection sort, 33 ex., 53 ex.	stable-marriage problem, 716–723
Shell's sort, 48	stable matching, 716
stable, 210	stable-roommates problem, 723 ex.
table of running times, 159	stack, 254–255
topological, 573–576	implemented by queues, 258 ex.
using a binary search tree, 326 ex.	implemented with a priority queue, 178 ex.
with variable-length items, 220 pr.	linked-list implementation of, 264 ex.
0-1 sorting lemma, 222 pr.	

stack, continued	strongly connected graph, 1166
operations analyzed by accounting method,	subarray (:), 19, 23
454–455	subgraph, 1166
operations analyzed by aggregate analysis,	equality, 724
449–451	predecessor, see predecessor subgraph
operations analyzed by potential method,	subgraph-isomorphism problem, 1098 ex.
457–458	subgroup, 921–923
for procedure execution, 202 pr.	subpath, 1165
on secondary storage, 517 pr.	subproblem graph, 370–371
STACK-EMPTY, 255	subroutine, 23, 26, 29 n.
standard deviation, 1195	subsequence, 394
standard encoding $(\langle \rangle)$, 1052	subset (⊆), 1154, 1156
standard form of a linear program, 854	SUBSET-SUM, 1092
start state, 967	subset-sum problem
start time, 418	approximation algorithm for, 1124–1130
state of a finite automaton, 967	NP-completeness of, 1092–1095
static graph, 522	with unary target, 1098 ex.
static hashing, 282, 284–286	substitution method, 90–95
static set, 308 pr.	in quicksort analysis, 191 ex., 193-194
stencil, 787 pr.	and recursion trees, 98
Stirling's approximation, 67	in selection analysis, 240–241
stochastic gradient descent, 1040 pr.	substring, 962, 1179
STOOGE-SORT, 202 pr.	rank of, 987
store instruction, 26, 756	subtracting a low-order term, in the substitution
strand, 754	method, 92–93
mutually noninterfering, 767	subtract instruction, 26
Strassen's algorithm, 85–90, 124–125	subtraction of matrices, 1218
parallel algorithm for, 773–774	subtree, 1172
streaks, 144–150, 153 ex.	maintaining size of, in order-statistic trees,
streaming algorithms, 818	484–485
strict Fibonacci heap, 478	success, in a Bernoulli trial, 1196
strictly decreasing, 63	successor
strictly increasing, 63	in binary search trees, 318–319
string, 957, 1179	finding i th, of a node in an order-statistic
interpreted as a key, 290–291, 292 ex.	tree, 486 ex.
string matching, 957–1002	in linked lists, 259
based on repetition factors, 996 pr.	in red-black trees, 334
by finite automata, 967–975	Successor, 250
with gap characters, 961 ex., 975 ex.	such that (:), 1154
Knuth-Morris-Pratt algorithm for, 975–985	suffix (\Box) , 959
naive algorithm for, 960–962	suffix array (SA), 985–996, 997 pr.
Rabin-Karp algorithm for, 962–967	suffix function, 968
by suffix arrays, 985–996	suffix-function inequality, 971
string-matching automaton, 968–975	suffix-function recursion lemma, 972
strongly connected component, 1166	$\operatorname{sum}\left(\sum\right), 1140$
decomposition into, 576–581	Cartesian, 885 ex.
STRONGLY-CONNECTED-COMPONENTS, 577	of matrices, 1217

sum (C), continued of polynomials, 877 rule of, 1178 telescoping, 1143 studescoping, 1143 studescoping, 1143 studescoping, 1144 stask scheduling, 759–761, 769 ex. task scheduling, 749 rule of, 1178 telescoping series, 1143 telescoping series, 1143 telescoping series, 1143 telescoping series, 1143 telescoping sum, 1143 telescoping series, 1143 telescoping sum, 1143 telesco	sum (Σ) , continued	Tools Donallol Library, 750
rule of, 1178 telescoping, 1143 SUM-ARRAYS, 783 pr. SUM-ARRAY, 25 ex. SUM-ARRAY, 25 ex. SUM-ARRAYS, 783 pr. SUM-ARRAYS, 783 pr. SUM-ARRAY, 25 ex. SUM-ARRAY, 278 pr. SUM-Bridescoping series, 1143 telescoping series, 1142 telescoping um, 1143 telescoping series, 1142 telescoping mrillity, 194-945 text, 957 Theta-notation (Θ),	·——	•
telescoping, 1143 SUM-ARRAY, 25 ex. SUM-ARRAYS, 783 pr. SUM-ARRAYS, 783 pr. SUM-ARRAYS, 783 pr. SUM-ARRAYS, 783 pr. summation, 1140–1152 approximated by integrals, 1150 in asymptotic notation, 58, 1141 bounding, 1145–1152 finearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersource, 674 supersource, 674 supersource, 674 symbol table, 272 symmetric difference, 706 symmetric difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 tautology, 1060 ex. Taylor series, 329 pr. telescoping sum, 1143 termination of a loop invariant, 20 testing of primality, 942–953, 956 of pseudoprimality, 944–945 tetex, 957 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 Threading Building Blocks, 750 thread parallelism, 748 3-CNF, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1076–1079 approximation of a loop invariant, 20 testing of primality, 942–953, 956 of pseudoprimality, 944–945 tetsting of primality, 942–953, 956 of pseudoprimality, 942–953, 956 of pseudoprimality, 944-945 tetsting of primality, 942–953, 956 of pseudoprimality, 942–953, 956 of pseudoprimality, 1076–1079 act, 957 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 Threading Building Blocks, 750 thread, 748 3-CNF, 1076 3-CNF-SatT, 1076 3-CNF-SatT, 1076 3-CNF-satSfability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF atsifiability		
SUM-ARRAY; 783 pr. SUM-ARRAYS; 783 pr. summation, 1140–1152 approximated by integrals, 1150 in asymptotic notation, 58, 1141 bounding, 1145–1152 formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersink, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetry of O-notation, 61 symc, in pseudocode, 752–754 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 Taylor series, 329 pr. telescoping series, 1143 telescoping sum, 1143 termination of a loop invariant, 20 testing of primality, 942–953, 956 of pseudoprimality, 944–945 text, 957 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 Threading Building Blocks, 750 thread, 748 3-CNF, 8atisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNFs atsisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNFs atsisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-C		
SUM-ARRAYS, 783 pr. SUM-ARRAYS, 783 pr. Summation, 1140–1152 approximated by integrals, 1150 in asymptotic notation, 58, 1141 bounding, 1145–1152 formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersink, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric key cryptosystem, 941 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 telescoping sum, 1143 telescoping sum, 1142 text, 957 Theta-notation (©), 33, 51, 54 fig., 56 thread, 748 Threading Building Blocks, 750 thread parallelism, 748 3-CNF, SAT, 1076 3-CNF-SAT, 1076 3-CNF-SAT, 1076 3-CNF-SAT, 1076 3-CNF-SAT, 1076 3-CNF-SAT, 1076 3-CNF, SAT, 1076		
SUM-ARRAYS', 783 pr. summation, 1140–1152 approximated by integrals, 1150 in asymptotic notation, 58, 1141 bounding, 1145–1152 formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersource, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-exe cyrptosystem, 941 symmetric matrix, 1217 symmetric relation, 1159 symmetric relation, 1159 symmetric relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 telescoping sum, 1143 termination of a loop invariant, 20 testing of primality, 942–953, 956 of pseudoprimality, 944–945 text, 957 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 Threading Building Blocks, 750 thread parallelism, 748 3-CNF, 1076 3-CNF-SAT, 1076 3-CNF-SAT, 1076 3-CNF, satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF, satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 timestemp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 980 T[:k] (prefix of a text), 980 T[:k] (pr		
summation, 1140–1152 approximated by integrals, 1150 in asymptotic notation, 58, 1141 bounding, 1145–1152 formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric matrix, 1217 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 Target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 termination of a loop invariant, 20 testing of primality, 942–953, 956 of pseudoprimality, 944–945 text, 957 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 Threading Building Blocks, 750 strex, 750 thread parallelism, 748 3-CNF, SAT, 1076 3-CNF, SAT, 1076 3-CNF, Satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1076–1079 sq. CNF, SAT, 1076 3-CNF, SAT, 1076	*	
approximated by integrals, 1150 in asymptotic notation, 58, 1141 bounding, 1145–1152 formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersource, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetric relation, 1159 symmetric relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 testing of primality, 942–953, 956 of pseudoprimality, 944–945 text, 957 Theta-notation (©), 33, 51, 54 fig., 56 thread, 748 Threadning Building Blocks, 750 thread parallelism, 748 3-CNF, 1076 3-CNF, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[ik] (prefix of a text), 986 T[ik] (*	
in asymptotic notation, 58, 1141 bounding, 1145–1152 formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry of Θ-notation, 61 symc, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 of pseudoprimality, 942–953, 956 of pseudoprimality, 944–945 text, 957 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 superpolynomial time, 1042 surjection, 1162 S-CNF, Satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-CONF, 849 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time., see running time time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[i:] (suffix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090		÷
bounding, 1145–1152 formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry of Θ-notation, 61 symc, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 of pseudoprimality, 944–945 text, 957 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 Threading Building Blocks, 750 thread parallelism, 748 3-CNF, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr.		•
formulas and properties of, 1140–1145 linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric entairix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetric relation, 1159 symmetric relation, 1159 symmetric of difference constraints, 626–632 system of difference constraints, 626–632 system of linear equations, 784 pr., 1034–1035 to fa binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 texts.		÷ •
linearity of, 1141 lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supervised learning, 1004 surjection, 1162 SVD, 849 3-CNF, 847 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 1217 symmetric relation, 1159 symmetric relation, 1159 system of difference constraints, 626–632 system of difference constraints, 626–632 system of linear equations, 784 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 Theta-notation (Θ), 33, 51, 54 fig., 56 thread, 748 thread, 748 thread, 748 superpolynomial time, 1148—1150 thread, 748 3-CNF, 1076 Threading Building Blocks, 750 thread parallelism, 748 3-CNF, 1076 3-CNF, SAT, 1076 3-CNF, SAT, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 986 T[:k] (prefix of a text), 986 T[:k] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT,573 total order, 1160 total predict, 1160 total relation, 1163 of a graph, 1090	_	· · · · · ·
lower bounds on, 1148, 1150 splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersink, 674 supersink, 674 superside learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetry of Θ-notation, 61 syne, in pseudocode, 752–754 system of difference constraints, 626–632 system of difference constraints, 626–632 system of linear equations, 784 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 thread, 748 Threading Building Blocks, 750 thread parallelism, 748 3-CNF, 1076 3-CNF, satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 timestamplit, 307 threading Building Blocks, 750 sthread parallelism, 748 3-CNF, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 timeshold constant, 77 to timestamp, 564, 571 ex. T[::] (suffix of a text), 986 T[::k] (prefix of a text), 980 T[::k] (pre	* *	text, 957
splitting, 1148–1149 summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersource, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric matrix, 1217 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 Threading Building Blocks, 750 thread parallelism, 748 superpolymania time day alcleism, 748 s-CNF, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 s-CNF-SAT, 1076 3-CNF-SAT, 1	linearity of, 1141	Theta-notation (Θ) , 33, 51, 54 fig., 56
summation lemma, 887 supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetric relation, 1159 symmetric relation, 1159 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 thread parallelism, 748 3-CNF, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-COLOR, 1100 pr. 3-COLOR, 1100 pr. 3-COLOR, 1100 pr. 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. S-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[i:k] (prefix of a text), 986 T[i:k] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total preorder, 1160 total preorder, 1160 total preorder, 1160 total relation, 1160	lower bounds on, 1148, 1150	thread, 748
supercomputer, 748 superpolynomial time, 1042 supersink, 674 supersource, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric of Genotation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 3-CNF, SAT, 1076 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[: k] (prefix of a text), 986 T[: k] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	splitting, 1148–1149	Threading Building Blocks, 750
superpolynomial time, 1042 supersink, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetry of Θ -notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 3-CNF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1076–1079 approximation algorithm for, 120–1121 and 2-CNF satisfiability, 1076–1079 approximation algorithm for, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time stime, see running time time domain, 877 tight bounds, 56 time, see running time stime, see running	summation lemma, 887	thread parallelism, 748
supersink, 674 supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetric relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 1034–1035 TABLE-DELETE, 467 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 3-CNLF satisfiability, 1076–1079 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total relation, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	supercomputer, 748	3-CNF, 1076
supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 Symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 time-stamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 986 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 totur bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	superpolynomial time, 1042	3-CNF-SAT, 1076
supersource, 674 supervised learning, 1004 surjection, 1162 SVD, 849 Symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 approximation algorithm for, 1120–1121 and 2-CNF satisfiability, 1043 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 time-stamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 986 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 totur bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	supersink, 674	3-CNF satisfiability, 1076–1079
surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 time-sempory trade-off, 367 time-sempory trade-off, 367 time-sempory trade-off, 367 time-sempory trade-off, 367 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 time-sempory trade-off, 367 time-sempory trade-off, 367 time-sempory trade-off, 367 time-sempory trade-off, 367 time-semory trade-off, 367 time-semory trade-off, 367 time-semory trade-off, 367 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 time-sempor trade-off, 367 time-sempor tyrade-off, 367 time-sempor tyrade-off, 367 time-sempor t		approximation algorithm for, 1120–1121
surjection, 1162 SVD, 849 symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetric relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 3-COLOR, 1100 pr. 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 time-semory trade-off, 367 time-semory trade-off, 367 time-semory trade-off, 367 time, see running time time domain, 877 time-semory trade-off, 367 time-semory trade-off, 367 time, see running time time domain, 877 time-memory trade-off, 367 time-semory trade-off, 36	supervised learning, 1004	and 2-CNF satisfiability, 1043
symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 3-conjunctive normal form, 1076 threshold constant, 77 tight bounds, 56 time, see running time time domain, 877 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 986 T[:k] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	· ·	3-COLOR, 1100 pr.
symbol table, 272 symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetry relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 time shold constant, 77 tight bounds, 56 time, see running time time domain, 877 time-memory trade-off, 367 time-memory trade-off, 367 time-stoel of, 367 time-memory trade-off, 367 to least the policy and the	· ·	*
symmetric difference, 706 symmetric-key cryptosystem, 941 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 time, see running time time domain, 877 time-seer unning time time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total relation, 1160		
symmetric-key cryptosystem, 941 symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 time, see running time time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[i:] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing sime time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. T[i:] (suffix of a text), 986 T[:k] (prefix of a text), 986 T[:k] (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing sime	· ·	
symmetric matrix, 1217 symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 symmetry of Θ -notation, 61 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. time domain, 877 time-memory trade-off, 367 timestamp, 564, 571 ex. $T[i:]$ (suffix of a text), 986 $T[:k]$ (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 total relation, 1160 totur bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	· ·	•
symmetric positive-definite matrix, 838–841 inverse of, 784 pr. symmetric relation, 1159 $T[i:]$ (suffix of a text), 986 symmetry of Θ -notation, 61 $T[:k]$ (prefix of a text), 959 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 time-memory trade-off, 367 timestamp, 564, 571 ex. $T[i:]$ (suffix of a text), 986 $T[i:k]$ (prefix of a text), 959 to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 $TOPOLOGICAL$ -SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 total relatio	• • • • •	•
inverse of, 784 pr. symmetric relation, 1159 $T[i:]$ (suffix of a text), 986 symmetry of Θ -notation, 61 $T[i:]$ (prefix of a text), 959 sync, in pseudocode, 752–754 to, in pseudocode, 22 top-down method, for dynamic programming, system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 $TOPOLOGICAL-SORT, 573$ of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 total preorder, 1160 total path length, 328 pr. of a queue, 256 total preorder, 1160 total relation, 1160 total path length, 328 pr. $TOPOLOGICAL-SORT, 573$ total relation, 1160 tota	•	
symmetric relation, 1159 $T[i:]$ (suffix of a text), 986 symmetry of Θ -notation, 61 $T[:k]$ (prefix of a text), 959 $T[:k]$	•	· · · · · · · · · · · · · · · · · · ·
symmetry of Θ-notation, 61 sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. too, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160		*
sync, in pseudocode, 752–754 system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. to, in pseudocode, 22 top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160		
system of difference constraints, 626–632 system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 tail recursion, 202 pr., 422 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. top-down method, for dynamic programming, 368 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	•	
system of linear equations, 784 pr., 819–833, 847 pr., 1034–1035 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. task parallelism, 749 algorithm 100 top of a stack, 254 top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	• •	•
top of a stack, 254 topological sort, 573–576 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. top of a stack, 254 topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090		
topological sort, 573–576 TABLE-DELETE, 467 TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. topological sort, 573–576 in computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	•	
TABLE-DELETE, 467 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. tin computing single-source shortest paths in a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 total relation, 1160 tour Euler, 583 pr., 1043 of a graph, 1090	647 pr., 1654–1655	-
TABLE-INSERT, 462 tail of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 tail recursion, 202 pr., 422 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. take parallelism, 749 a dag, 616 TOPOLOGICAL-SORT, 573 total order, 1160 total path length, 328 pr. total preorder, 1160 total relation, 1160 tour bitonic, 407 pr. Euler, 583 pr., 1043 of a graph, 1090	Table Delete 467	
tail TOPOLOGICAL-SORT, 573 of a binomial distribution, 1203–1210 total order, 1160 of a linked list, 259 total path length, 328 pr. of a queue, 256 total preorder, 1160 tail recursion, 202 pr., 422 total relation, 1160 target, 1092 tour Tarjan's offline lowest-common-ancestors algorithm, 543 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090		1 0 0
of a binomial distribution, 1203–1210 of a linked list, 259 of a queue, 256 total path length, 328 pr. total preorder, 1160 total preorder, 1160 total relation, 1160 total relation, 1160 tour Tarjan's offline lowest-common-ancestors algorithm, 543 pr. tour bitonic, 407 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090		
of a linked list, 259 of a queue, 256 total path length, 328 pr. total preorder, 1160 tail recursion, 202 pr., 422 total relation, 1160 target, 1092 Tarjan's offline lowest-common-ancestors algorithm, 543 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090		
of a queue, 256 total preorder, 1160 tail recursion, 202 pr., 422 total relation, 1160 target, 1092 tour Tarjan's offline lowest-common-ancestors algorithm, 543 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090		*
tail recursion, 202 pr., 422 total relation, 1160 target, 1092 tour Tarjan's offline lowest-common-ancestors algorithm, 543 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090		
target, 1092 tour Tarjan's offline lowest-common-ancestors algorithm, 543 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090		-
Tarjan's offline lowest-common-ancestors algorithm, 543 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090	* · · · · · · · · · · · · · · · · · · ·	
algorithm, 543 pr. Euler, 583 pr., 1043 task parallelism, 749 of a graph, 1090		
task parallelism, 749 of a graph, 1090		
*		
see also parallel algorithm	•	of a graph, 1090
	see also parallel algorithm	

trace, 754–756	left-leaning red-black binary search trees,
series-parallel composition of, 762 fig.	358
track in a disk drive, 498	minimum spanning, see minimum spanning
tractability, 1042	tree
trailing pointer, 321	optimal binary search, 400–407
training data, 1003	order-statistic, 480–486
training phase, 1003	parse, 1077
transition function, 967, 973–974	recursion, 42, 95–101
transitive closure, 659–661	red-black, see red-black tree
and boolean matrix multiplication, 838 ex.	rooted, 265–268, 1171
of dynamic graphs, 667 pr., 669	scapegoat, 358
Transitive-Closure, 660	search, see search tree
transitive relation, 1159	shortest-paths, 608–609, 635–638
transitivity of asymptotic notation, 61	spanning, see minimum spanning tree,
Transplant, 324, 346	spanning tree
transpose	splay, 359, 478
conjugate, 838 ex.	treap, 358
of a directed graph, 553 ex.	2-3, 358, 519
of a matrix, 1214	2-3-4, 502, 518 pr.
transpose symmetry of asymptotic notation, 62	van Emde Boas, 478
traveling-salesperson problem	walk of, 314, 320 ex., 1112
approximation algorithm for, 1109-1115	weight-balanced trees, 358
bitonic euclidean, 407 pr.	TREE-DELETE, 325, 326 ex., 346–347
bottleneck, 1115 ex.	tree edge, 561, 564, 569
NP-completeness of, 1090–1092	Tree-Insert, 321, 338
with the triangle inequality, 1110–1113	Tree-Maximum, 318
without the triangle inequality, 1113-1114	Tree-Minimum, 318
traversal of a tree, 314, 320 ex., 1112	Tree-Predecessor, 319
treap, 358	Tree-Search, 316
tree, 1169–1176	Tree-Successor, 319
AA-trees, 358	tree walk, 314, 320 ex., 1112
AVL, 357 pr., 358	TRE-QUICKSORT, 202 pr.
binary, see binary tree	trial division, 943
bisection of, 1177 pr.	triangle inequality, 1110
breadth-first, 555, 561	for shortest paths, 611, 633
B-trees, 497–519	triangular matrix, 1216
decision, 206–207, 219 pr.	trichotomy, interval, 490
depth-first, 564	trichotomy property of real numbers, 62
diameter of, 563 ex.	tridiagonal linear systems, 847 pr.
dynamic, 478	tridiagonal matrix, 1216
free, 1167, 1169–1171	trie (radix tree), 327 pr.
full walk of, 1112	Trim, 1127
fusion, 226, 478	trimming a list, 1126
heap, 161–181	trivial divisor, 904
height-balanced, 357 pr.	tropical semiring, 651 n.
height of, 1173	truth assignment, 1066, 1073
interval, 489–495	truth table, 1065
k-neighbor, 358	TSP, 1091

tuple, 1157	Union, 264 ex., 521
twiddle factor, 891	disjoint-set-forest implementation of, 530
2-CNF-SAT, 1080 ex.	linked-list implementation of, 524–526
2-CNF satisfiability, 1080 ex.	union by rank, 528
and 3-CNF satisfiability, 1043	unit (1), 905
two-pass method, 529	unit lower-triangular matrix, 1216
•	
2-3-4 tree, 502, 518 pr.	unit upper-triangular matrix, 1216
2-3 tree, 358, 519	unit vector, 1215
40.50	universal family of hash functions, 286–287
unary, 1050	universal hash function, 278
unbounded competitive ratio, 804	universal hashing, 286–290, 309 pr.
unbounded linear program, 854	universal sink, 553 ex.
uncle, 340	universe, 273, 1155
unconditional branch instruction, 26	unmatched vertex, 693, 705
unconstrained gradient descent, 1023-1031	unsorted linked list, 259
uncountable set, 1156	unstable matching, 717
underdetermined system of linear equations,	unsupervised learning, 1004
820	until, in pseudocode, 22
underflow	unweighted longest simple paths, 385
of a queue, 256	unweighted shortest paths, 385
of a stack, 255	upper bound, 54
undirected graph, 1164	upper-bound property, 611, 633–634
articulation point of, 582 pr.	upper median, 227
biconnected component of, 582 pr.	upper-triangular matrix, 1216
bridge of, 582 pr.	apper triangular matrix, 1210
clique in, 1081	valid shift, 957
coloring of, 1100 pr., 1176 pr.	value
computing a minimum spanning tree in,	of a flow, 672
585–603	of a flow, 072 of a function, 1161
d-regular, 716 ex., 740 pr.	objective, 854
grid, 697 pr.	Vandermonde matrix, 881, 1223 pr.
hamiltonian, 1056	van Emde Boas tree, 478
independent set of, 1099 pr.	Var [], see variance
matching in, 693–697, 704–743	variable
nonhamiltonian, 1056	decision, 851
vertex cover of, 1084, 1106	in pseudocode, 22
see also graph	random, 1191–1196
undirected version of a directed graph, 1167	see also indicator random variable
uniform family of hash functions, 287	variable-length code, 432
uniform hash function, 278	variable-length input
uniform hashing, 295	interpreted as a key, 290–291
uniform probability distribution, 1186-1187	to the wee hash function, 306
uniform random permutation, 128, 136	variance, 1194
union	of a binomial distribution, 1200
of languages, 1052	of a geometric distribution, 1198
of linked lists, 264 ex.	vector, 1215, 1219–1221
of sets (\cup) , 1154	convolution of, 880
× //	,