Software Product Quality

Each team member, in the individual report, will be expected to highlight Quality Criteria for their section of the code.

Aspects of Quality

- Quality is not absolute
- Quality is multidimensional
- Quality is subject to constraints
- Quality is about acceptable compromises
- Quality criteria are not independent, but interact with each other causing conflicts.

Defining Quality

'The totality of features and characteristics of a product or service that bear on its ability to satisfy specified or implied needs.'

(ISO, 1986)

- This associates quality with the ability of the product or service to fulfil its function.
- ▶ This is achieved through the features and characteristics of the product.
- Quality is associated both with having the <u>required</u> <u>range of attributes</u> and achieving <u>satisfactory</u> <u>performance</u> within each attribute.

Evaluating Quality

- Hierarchical Quality Models
 - Both Boehm and McCall produced hierarchical quality models in the late 1970's
 - Although Boehm's set of criteria is larger than McCall's many characteristics are closely related
 - Both models were used as the basis of ISO 9126 Standard - Software Product Evaluation: Quality Characteristics and Guidelines for their Use

- McCall's model [1] is aimed at system developers to be used <u>during the development process</u>
- Based on three classes of software work:
 - Product Operation factors affecting <u>normal operation</u> of software
 - Product Revision factors <u>affecting error correction & adaptation</u>
 - Product Transition factors affecting ease of <u>moving to new</u> environment
- Structure of Hierarchical Quality Model
 - High level qualities Quality <u>Factors</u> (Characteristics)
 - Each factor can be decomposed into further criteria (<u>attributes</u>)
 - Quality Criteria may be determined through <u>metrics</u>

Various metrics possible, depend on criterion.

External attributes – can only be measured in relation to environment

Can only be measured indirectly.

Can be measured

- **Correctness** the extent to which a program fulfils its specification.
 - Completeness: The degree to which a full implementation of the required functionality has been achieved
 - Use Validation Testing to check program meets all functional requirements
 - Consistency: Use of uniform design and implementation techniques and notations throughout a project
 - Adopt same programming style, consistent interface design
 - Traceability: Ability to link software components to requirements

- **Reliability** its ability not to fail.
 - Accuracy: The precision of computations and output
 - Check in Unit Tests
 - Check for common errors
 - Consistency: Use of uniform design, implementation, and notations
 - **Error tolerance:** The degree to which continuity of operation is ensured under adverse conditions
 - Exception handling to ensure program can continue
 - Simplicity: The ease with which the software can be understood
 - Keep code simple and well structured
 - Follow a good programming style

- **Efficiency** the amount of computing resources and code required by a program to perform its function.
 - Execution efficiency: Run-time efficiency of the software
 - Storage efficiency: Run-time storage requirements of the software

- **Integrity** the protection of the program from unauthorised access.
 - Access audit: Ease with which software and data can be checked for compliance with standards or other requirements
 - Access control: Provisions for control & protection of software & data

- Usability Effort required to learn, operate, prepare input and interpret output of a program.
 - **Communicativeness:** Provision of useful inputs and outputs that can be easily assimilated.
 - Use Schneiderman's principles & guidelines when designing interfaces
 [2]
 - **Operability:** Ease of operation of the software
 - Good use of widgets to minimise user input
 - Anticipate main user errors
 - Training: Ease with which new users can be made to use the system
 - Use widgets which are familiar to user and appropriate to the task

Quality Factors of Product Revision

- Maintainability the effort required to locate and fix a fault in an operating program.
 - Conciseness: Compactness of the source code, in terms of lines of code
 - Python as a scripting language needs less code to be developed
 - Modularity: Provision of highly independent modules
 - Classes all attributes and methods relate only to class
 - Functions & methods perform one function only
 - Pass only simple data as parameters to ensure loose coupling
 - **Self-documentation:** Provision of in-line documentation that explains the implementation of components
 - Self documenting code, good naming conventions, comments state why not what, docstrings
 - Consistency and Simplicity

Quality Factors of Product Revision

- **Testability** the ease of testing the program, to ensure that it is error-free and meets its specification.
 - **Instrumentation:** Degree to which the software provides for measurements of its use or identification of errors.
 - Automated unit test code at end of modules
 - Modularity, Self-documentation and Simplicity

Quality Factors of Product Revision

- **Flexibility** the ease of making changes required in an operating program.
 - **Expandability:** Degree to which storage requirements or software functions can be expanded
 - Generality: Breadth of the potential application of software components
 - Modularity and Self-documentation

- **Portability** the effort required to transfer a program from one environment to another.
 - Hardware independence: Degree to which the software is dependent on the underlying hardware
 - **Software system independence:** Degree to which the software is independent of its software environment operating system, libraries, database management system...
 - Modularity
 - **Self-documentation:** In-line documentation

- **Reusability** the ease of reusing software in a different context.
 - **Generality:** Breadth of potential application of components
 - Hardware independence
 - Software system independence
 - Modularity
 - Self-documentation

- **Interoperability** the effort required to couple the system to another system.
 - Communication commonality: Degree to which standard protocols and interfaces are used
 - **Data commonality:** Use of standard data representations
 - Modularity

	Correctness	Reliability	Efficiency	Integrity	Usability	Maintainability	Testability	Flexibility	Portability	Reusability	Interoperability
Access Audit				_							
Access Control											
Accuracy											
Comm. Commonality											
Completeness											
Communi- cativeness											
Conciseness											
Consistency											
Data Commonality											
Error Tolerance											
Execution Efficiency											
Expandability											
Generality											
Hardware Independence											
Instrumentati on											
Modularity											
Operability											
Self- documentatio n											
Simplicity											
SW System Independence											
Storage Efficiency											
Traceability											
Training											dantad from [2]

Adapted from [3]

Problems

- Many criteria cannot be measured objectively
- Many measures are subjective
- Objective measures exist for e.g. efficiency and reliability
- How do you measure?
- When do you measure?
 - Before or after system is built?
- Completeness of taxonomy
- Quality factors overlap → trade-offs between factors

Trade-offs

	Correctness	Reliability	Efficiency	Integrity	Usability	Maintainability	Testability	Flexibility	Portability	Reusability	Interoperability
Correctness											
Reliability											
Efficiency											
Integrity											
Usability											
Maintainability											
Testability											
Flexibility											
Portability											
Reusability											
Interoperability											

References

- [1] McCall, J. A., Richards, P. K., and Walters, G. F., "Factors in Software Quality", Nat'l Tech.Information
 Service, no. Vol. 1, 2 and 3, 1977.
- [2] Ben Shneiderman "Designing the User Interface Strategies for effective Human-Computer Interaction" Addison-Wesley
- [3] Hans van Vliet, "Software Engineering. Principles and Practice", Wiley 1993