Министерство образования и науки Украины <u>Харьковский национальный университет радиоэлектроники</u>

<u>Дисциплина:</u> «Организация баз данных и знаний»

для студентов дневной формы обучения по направлению 6.050101 «Компьютерные науки»

Проектирование схемы базы данных

Основные задачи:

- . Обеспечение хранения в БД всей необходимой информации.
- . Обеспечение возможности получения данных по всем необходимым запросам.
- . Сокращение избыточности и дублирования данных.
- . Обеспечение целостности базы данных.

Основные этапы проектирования баз данных

Концептуальное (инфологическое) проектирование — построение семантической модели предметной области, то есть информационной модели наиболее

высокого уровня абстракции. Такая модель создаётся без ориентации на какую-либо конкретную СУБД и модель данных. Термины «семантическая модель», «концептуальная модель» и «инфологическая модель» являются синонимами. Кроме того, в этом контексте равноправно могут использоваться слова «модель базы данных» и «модель предметной области» (например, «концептуальная модель базы данных» и «концептуальная модель базы данных» и «концептуальная модель предметной области»), поскольку такая модель является как образом реальности, так и образом проектируемой базы данных для этой реальности.

Конкретный вид и содержание концептуальной модели базы данных определяется выбранным для этого формальным аппаратом. Обычно используются графические нотации, подобные ER-диаграммам.

Чаще всего концептуальная модель базы данных включает в себя:

- . описание информационных объектов или понятий предметной области и связей между ними.
- . описание ограничений целостности, т.е. требований к допустимым значениям данных и к связям между ними.

Логическое (даталогическое) проектирование — создание схемы базы данных на основе конкретной модели данных, например, реляционной модели данных. Для реляционной модели данных даталогическая модель — набор схем отношений с указанием первичных ключей, а также «связей» между отношениями, представляющих собой внешние ключи.

На этапе логического проектирования учитывается специфика конкретной модели данных и специфика конкретной СУБД.

Физическое проектирование — создание схемы базы данных для конкретной СУБД. Специфика конкретной СУБД может включать в себя ограничения на именование объектов базы данных, ограничения на поддерживаемые типы данных и т.п. Кроме того, специфика конкретной СУБД при физическом проектировании включает выбор решений, связанных с физической средой хранения данных (выбор методов управления дисковой памятью, разделение БД по файлам и устройствам, методов доступа к данным), создание индексов и т.д.

**

Для дальнейшего ознакомления с возможностями конкретной СУБД необходимо вспомнить терминологию БД, основы проектирования БД, а также методы организации реляционных баз данных.

Основы проектирования БД

ЦЕЛЬ ПРОЕКТИРОВАНИЯ — создание рациональной схемы БД, абстрагирование структур данных от конечных пользователей.

Схема – представление администратора о логической структуре БД

Способы задания схем БД

- графический;
- в терминах языка (SQL, PL/SQL).

Требования к графическому заданию схем:

- 1. Отображение всех объектов и связей ПрО;
- 2. Отображение типов информационных связей;
- 3. Отображение спецификации типов элементов данных.

4.

Описание сущностей ПрО

Объект Свойство

Сущность Атрибут

 $m{Ampuбym}$ – упорядоченная пара $<\!\!m{A,V}\!\!>$, где

 $m{A}$ – имя атрибута, $m{V}$ – множество его значений.

Домен – множество **допустимых** значений атрибута.

ПОЛ_ЧЕЛОВЕКА **МУЖСКОЙ ЖЕНСКИЙ**

Пример

Сущности БД

Сущность – объект, который может быть идентифицирован определенным способом, который отличает его от других объектов.

Тип сущности – объединение сущностей, которые характеризуются одинаковым набором свойств.

Классификация сущностей

Сильный тип Слабый тип

Связи БД

Связь — ассоциация, установленная между сущностями различных типов.

Типы информационных связей

Информационная связь – свойство

предметной области.

- 1. Один к одному: $(1 \rightarrow 1)$;
- 2. Один ко многим: $\langle l \rightarrow N \rangle$;
- 3. Многие ко многим: « $M \rightarrow N$ ».

Связи устанавливаются между СУЩНОСТЯМИ,

а не их свойствами!

Диаграмма «Сущность-связь» ER-диаграмма (англ. Entity-relationship) Нотация П. Чена

DATABASE

Пример ER-диаграммы в нотации Чена

ER-диаграмма БД Human Resource (HR) (тестовая БД СУБД Oracle)

Реляционная модель данных (РМД)

Классическое описание **реляционной модели** данных содержит три основные функциональные компоненты:

SRM - структурная компонента; I - ограничения целостности; O - операционная спецификация.

Структурная компонента реляционной модели данных (SRM) - n-арное отношение.

$$SRM = \{R, D, A, dom\}$$

где R - множество имен отношений;

D - множество доменов;

А - множество имен атрибутов;

dom - отображение из A в D $dom: A \rightarrow D$

$$R_i = domA_1 \times ... \times domA_n$$

Сотрудники

Код	Код Фамилия Ок	
2	Петров	2000
3	Сидоров	3000

<u>Ограничения целостности РМД.</u> <u>Идентификация данных. Ключи</u>

Целостность данных – непротиворечивость.

Идентификация данных – возможность уникального определения каждого отдельного кортежа отношения по значениям его атрибутов.

Реляционная целостность:

- 1. *целостность сущности* обеспечивается заданием **первичного** ключа;
- 2. *ссылочная целостность* обеспечивается заданием **внешних** ключей.

Ключи отношений БД

Первичный ключ (ПК) – наименьшее подмножество атрибутов, которое уникально идентифицирует кортеж отношения.

н проекта	ПРОЕКТ
100	Космос
200	Климат

Составной ПК – ключ, состоящий из нескольких атрибутов.

<u>СОТРУДНИК</u>	<u>ОТДЕЛ</u>	должность
Иванов	ПФО	Экономист
Иванов	Бухгалтерия	Бухгалтер

Ключи отношений БД (1)

Суррогатный ключ – дополнительный атрибут отношения, значения которого генерируются искусственно.

<u>ID</u>	ФАМИЛИЯ	имя	ОТЧЕСТВО	ДАТА_РОЖД	ИНН
1	Иванов	Иван	Иванович	12.01.1990	3021506909
2	Иванов	Иван	Иванович	12.01.1990	_

Внешний ключ – атрибут / множество атрибутов одного отношения, значения которых совпадают со значениями первичного ключа другого отношения.

ID ОТДЕЛА	НАИМЕНОВАНИЕ
10	библиотека
20	бухгалтерия
30	канцелярия

ID COTP	ID_ОТДЕЛА			
1	10			
2	10			
3	30			

Реляционная база данных

- 1. Уникальные имена отношений (таблиц);
- 2. Уникальные имена атрибутов в таблице;
- 3. Значения атрибута принадлежат одному домену;
- 4. Каждый кортеж уникален;
- 5. Значения атрибутов атомарны;
- 6. Отношения нормализованы.

Нормализация отношений БД

Нормализация – процесс дальнейшего усовершенствования схемы БД. Метод создания набора отношений с заданными свойствами на основе требований, которые предъявляются к данным.

Базируется на понятии

Функциональная зависимость (ФЗ): Пусть R – отношение. Множество атрибутов Y функционально зависимо от множества атрибутов X (X функционально определяет Y) тогда и только тогда, когда для любого состояния отношения R для любых кортежей имеющих одинаковые значения атрибутов X, значения атрибутов Y также совпадают в любом состоянии отношения X

$$X \rightarrow Y$$

Цель нормализации

Избыточная функциональная зависимость – зависимость, содержащая информацию, которая может быть получена на основе других ФЗ, занесенных в БД.

н проекта	ПРОЕКТ
100	Космос
200	Климат

ID COTP	н проекта	ПРОЕКТ
1	200	Климат
1	100	Космос
2	100	Космос

Цель нормализации:

- устранение избыточных функциональных зависимостей;
- обеспечение целостности данных;
- устранение аномалий.

Аномалии при работе с БД

Аномалии проявляются при выполнении операций, **изменяющих состояние** базы данных.

Различают:

- Аномалии вставки (INSERT).
- Аномалии обновления *(UPDATE)*.
- Аномалии удаления (DELETE).

H_COTP	ФАМ	н_отд	ТЕЛ	Н_ПРО	ПРОЕКТ	Н_ЗАДАН
1	Иванов	1	11-22-33	1	Космос	1
1	Иванов	1	11-22-33	2	Климат	1
2	Петров	1	11-22-33	1	Космос	2
3	Сидоров	2	33-22-11	1	Космос	3
3	Сидоров	2	33-22-11	2	Климат	2

<u>ОГРАНИЧЕНИЯ</u> Н_СОТР, Н_ОТД, Н_ПРО **↓**

обязательны

1НФ (Первая Нормальная Форма)

1НФ: Отношение находится в первой нормальной форме тогда, и только тогда, когда:

- отношение не содержит повторяющихся кортежей;
- кортежи следуют в произвольном порядке;
- атрибуты имеют уникальные имена;
- все значения атрибутов атомарны.

H COTP	ФАМ	н_отд	ТЕЛ	<u>Н ПРО</u>	ПРОЕКТ	Н_ЗАДАН
1	Иванов	1	11-22-33	1	Космос	1
1	Иванов	1	11-22-33	2	Климат	1
2	Петров	1	11-22-33	1	Космос	2
3	Сидоров	2	33-22-11	1	Космос	3
3	Сидоров	2	33-22-11	2	Климат	2

Функциональные зависимости в отношении

В отношении «СОТРУДНИКИ_ОТДЕЛЫ_ПРОЕКТЫ» зависимость атрибутов от потенциального ключа отношения: {H_COTP, H_ПРО}:

```
\{H\_COTP, H\_\PiPO\} \rightarrow \Phi AM

\{H\_COTP, H\_\PiPO\} \rightarrow H\_OTД

\{H\_COTP, H\_\PiPO\} \rightarrow TEЛ

\{H\_COTP, H\_\PiPO\} \rightarrow \PiPOEKT

\{H\_COTP, H\_\PiPO\} \rightarrow H\_3AДAH
```


2НФ (Вторая Нормальная Форма)

2*НФ*: Отношение находится во второй нормальной форме тогда и только тогда, когда отношение находится в 1НФ и все *неключевые* атрибуты функционально не зависят от части составного ключа.

H COTP	ФАМ	н_отд	ТЕЛ	Н ПРО	ПРОЕКТ	Н_ЗАДАН
1	Иванов	1	11-22-33	1	Космос	1
1	Иванов	1	11-22-33	2	Климат	1
2	Петров	1	11-22-33	1	Космос	2
3	Сидоров	2	33-22-11	1	Космос	3
3	Сидоров	2	33-22-11	2	Климат	2

 $H_COTP \rightarrow \Phi AM$ $H_COTP \rightarrow H_OTД$ $H_COTP \rightarrow TЕЛ$

Н_ПРО →ПРОЕКТ

Декомпозиция отношений

<u>н сотр</u>	ФАМ	н_отд	ТЕЛ	<u>н про</u>	ПРОЕКТ	Н_ЗАДАН
1	Иванов	1	11-22-33	1	Космос	1
1	Иванов	1	11-22-33	2	Климат	1
2	Петров	1	11-22-33	1	Космос	2
3	Сидоров	2	33-22-11	1	Космос	3
3	Сидоров	2	33-22-11	2	Климат	2

H_COTP	ФАМ	н_отд	ТЕЛ
1	Иванов	1	11-22-33
2	Петров	1	11-22-33
3	Сидоров	2	33-22-11

Н_ПРО	ПРОЕКТ
1	Космос
2	Климат

3НФ (Третья Нормальная Форма)

ЗНФ: Отношение находится в третьей нормальной форме тогда, и только тогда, когда отношение находится в 2НФ и все *неключевые* атрибуты взаимно независимы.

H COTP	ФАМ	н_отд	ТЕЛ
1	Иванов	1	11-22-33
2	Петров	1	11-22-33
3	Сидоров	2	33-22-11

H_COTP	ФАМ	н_отд
1	Иванов	1
2	Петров	1
3	Сидоров	2

н_отд	ТЕЛ
1	11-22-33
2	33-22-11

Декомпозированные отношения

 $\{H_COTP, H_\Pi PO\} \rightarrow H_3АДАН$

$\mathbf{H}_{\mathbf{L}}$	_COTP	$\rightarrow \Phi A$	M
$H_{}$	_COTP	→ H_	_ОТД
$H_{}$	COTP	\rightarrow TE	Л

H_COTP	н_про	Н_ЗАДАН
1	1	1
1	2	1
2	1	2
3	1	3
3	2	2

Н_ПРО	ПРОЕКТ
1	Космос
2	Климат

Н_ПРО →ПРОЕКТ

H_COTP	ФАМ	н_отд	ТЕЛ
1	Иванов	1	11-22-33
2	Петров	1	11-22-33
3	Сидоров	2	33-22-11

н_отд →тел

H_COTP	ФАМ	н_отд
1	Иванов	1
2	Петров	1
3	Сидоров	2

н_отд	ТЕЛ
1	11-22-33
2	33-22-11

Реляционная схема БД

Рекомендованная литература

- **1.** Дейт, К. Дж. Введение в системы баз данных: пер. с англ. / К. Дж. Дейт. М.: Вильямс, 2005. 1328 с.
- **2.** Конноли, Т. М. Базы данных. Проектирование, реализация, сопровождение. Теория и практика : пер. с англ. / Т. М. Конноли, К. Бегг: 3-е изд. Москва-Санкт-Петербург-Киев, 2003. 1436 с.
- 3. Тиори Т., Фрай Дж. Проектирование структур баз данных, Москва, 1985. 275 с.
- 4. Кевин Луни, Oracle Database 10g. Полный справочник, 1,2 том. Изд. «Лори»,2006.
- **5.** Прайс Дж. Oracle 10g SQL. Операторы SQL и программы PL/SQL. Изд. «Лори», 2007. 565 с.
- **6.** Кайт Т. Oracle для профессионалов. Изд «DiaSoft», 2003. 1831 с.
- 7. Кайт Т., Oracle для профессионалов: архитектура, методики программирования и особенности версий 9i, 10g и 11g.,2 издание Изд. «Вильямс», 2013. 848 с.
- 8. Мишра С., Бьюли А. Секреты Oracle SQL. Изд. «Символ»,2003. 366 с.
- 9. Аллен К. Как писать мощные и гибкие программы на PL/SQL. Изд. «Лори»,2001.
- 10. Урман С. Программирование на языке PL/SQL Изд. «Лори», 2001.

