

GRAFICKÝ PRIESTOR A OBJEKTY

doc. Ing. Branislav Sobota, PhD. Katedra počítačov a informatiky, FEI TU v Košiciach

© 2024

P 03

Počítačová Grafilia

VRSTVY VIZUALIZAČNÉHO PROCESU

- Definovanie/spracovanie modelu (reprezentácia, súradnicové systémy)
- 2. Transformácie nad objektami
- 3. Riešenie viditeľnosti
- 4. Tieňovanie
- 5. Osvetľovanie
- 6. Realistické zobrazovanie
- 7. Kompozícia a Vykresľovanie

PRIESTOR A JEHO PARAMETRE

Podľa charakteru priestoru (definuje aj DOF):

- 1. Translačný priestor (T)
- 2. Rotačný priestor (R)
- 3. Kombinovaný priestor

Podľa typu dimenzie:

- Celočíselné topologické (I)
- 2. Neceločíselné (F)

Podľa štruktúry dimenzií (primárne geometria) a ich počtu:

- Homogénna štruktúra (N+0) ND priestor (Uniform)
- 2. Heterogénna štruktúra $(N_1+N_2+....N_n) (N_1+N_2+....N_n)D$ priestor (H)

Príklady:

- celočíselný 3D translačný priestor (IU3DT),
- neceločíselný 2+1D rotačný priestor (FH2d1DR)

OBJEKTY V POČÍTAČOVEJ GRAFIKE

- 0-rozmerný objekt (bod)
- 2. 1-rozmerný objekt (priamka, úsečka)
- 2-rozmerný objekt (plocha)
- 4. 3-rozmerný objekt (teleso)
- Všetky geometrické objekty, sa dajú spojitou transformáciou previesť na vyššie uvedené objekty ak majú rovnakú topologickú dimenziu.
- Všetky geometrické objekty, môžu reprezentovať vyššie uvedené objekty, ak majú rovnakú alebo nižšiu topologickú dimenziu
- Počet menených súradníc/parametrov transformácií v danej aktuálnej topologickej dimenzii (ATD) je určený vzťahovými objektami (VZO, napr. rotácia voči VZO (bod, ós a pod) je daný doplnkovo k ATD. A naopak ak v ATD je počet menených parametrov transformácie N, potom maximálna dimenzia VZO bude doplnok k ATD (t.j. ATD-N)
 - Napríklad ak sa bude v 3D priestore zrkadliť voči osi (1-rozmerný objekt) počet menených parametrov bude 3 1 = 2. Naopak, ak bude v 2D priestore požadovaná rotácia (mení 2 parametre) potom táto je možná len okolo počiatku sústavy (0-rozmerný objekt, 2 2 = 0).

POPIS A REPREZENTÁCIA OBJEKTOV

Pri spracovaní objektov sú zaujímavé dve hľadiská:

- popis objektu
- reprezentácia objektu

Pre modelovanie telies sú používané tri základné spôsoby popisu:

- hraničná reprezentácia a jej štruktúrovaná derivácia B-rep
- konštruktívna geometria telies (CSG)
- vypočítavanie obsadených častí priestoru

POPIS A REPREZENTÁCIA OBJEKTOV

 systémy založené na množine bodov – mračná bodov (Points clouds)

• 0

 systémy založené na drôtovom modely (Wire Frame Model)

-]
- systémy založené na povrchovom modely (Surface Model)
- 2
- systémy založené na objemovom modely (Solid Model)
- 3

POPIS A REPREZENTÁCIA OBJEKTOV

HRANIČNÁ REPREZENTÁCIA

Vychádza z predstavy, že najvýznamnejšou časťou telesa sú jeho hraničné elementy ako napr. hrany alebo povrch, ktorý tvorí hranicu medzi hmotou telesa a okolitým priestorom.

Hraničné plochy môžeme deliť na časti rovín, analytické plochy a na špeciálne parametrické plochy.

Najjednoduchšia metóda popisu hranice telies spočíva v stanovení hrán a vrcholov na povrchu telesa (drôtový model).

Môže byť nejednoznačná

HRANIČNÁ REPREZENTÁCIA

10

HRANIČNÁ REPREZENTÁCIA

ŠTRUKTUROVANÁ B-REP METÓDA

B-REP (Boundary Representation) definuje objekt svojím povrchom. Povrch je zložený zo stien, ktoré sa môžu vzájomne dotýkať iba na spoločných hranách, pričom každá hrana je orientovaná (dá sa jednoznačne určiť, či sa jedná o vnútornú, alebo vonkajšiu hranu).

Objekt je reprezentovaný dynamickou údajovou štruktúrou nazývanou **Winged Edge Structure**, zloženou zo štyroch druhov uzlov:

- vrchol (Vertex),
- hrana (Edge),
- stena, plocha (Face),
- teleso (Solid)

HRANIČNÁ REPREZENTÁCIA

ŠTRUKTUROVANÁ B-REP METÓDA

Rozšírená hranová (winged-edge) štruktúra

KONŠTRUKTÍVNA GEOMETRIA TELIES

CSG - CONSTRUCTIVE SOLID GEOMETRY

Je definovaná abstraktnou údajovou štruktúrou: **strom**

- Listy stromu definujú jednotlivé atomárne elementy, z ktorých sa následne objekt skladá
- Uzly stromu definujú operácie medzi atomárnymi elementami/objektami a/alebo prípadne vzniknutými subobjektami na danej úrovni stromu (zjednotenie, rozdiel, prienik)
- Hrany stromu definujú transformácie atomárnych elementov a/alebo subobjektov vstupujúcich do rodičovského uzla
- v Koreni stromu je už definovaný celý objekt

CSG REPREZENTÁCIA

CSG REPREZENTÁCIA

CSG REPREZENTÁCIA

PRIESTOR A JEHO KOORDINAČNÝ SYSTÉM

SÚRADNICOVÁ SÚSTAVA

- Koordinačný systém (súradnicová sústava) umožňuje parametrizovať priestor a definovať jeho počiatočný bod (stred koordinačného systému, origin) a smery rozvoja fyzikálnej veličiny v príslušnej dimenzii priestoru popisovaného koordinačným systémom (jeho osi).
- Súradnice (parametre, koordináty) definujú jednoznačne polohu v rámci koordinačného systému podľa charakteru a štruktúry dimenzií priestoru

PRIESTOR A JEHO KOORDINAČNÝ SYSTÉM

SÚRADNICOVÁ SÚSTAVA

- Súradnicová sústava umožňuje parametrizovať priestor a definovať jeho počiatočný bod
- 1. Počiatok (stred súradnicovej sústavy)
- 2. Os definuje smer rozvoja fyzikálnej veličiny v príslušnej dimenzii priestoru popisovaného súradnicovou sústavou
- 3. Súradnice (parametre) definujú jednoznačne polohu v rámci súradnicovej sústavy podľa charakteru a štruktúry dimenzií priestoru (Počet súradníc podľa počtu dimenzií priestoru)
- 4. Smer rozvoja zoradenia súradníc najčastejšie točivosť (ľavo alebo pravotočivá)

LINEARITA A PRAVOUHLOSŤ

Podľa rozvoja hodnôt veličín príslušných dimenzií priestoru ktorému je súradnicová sústava priradená:

- 1. Lineárne súradnicové sústavy
- 2. Nelineárne súradnicové sústavy

Podľa vzťahu osí súradnicového systému:

- 1. Pravouhlé
- 2. Nepravouhlé

Pre počítačovú grafiku sa primárne používajú celočíselné translačné alebo rotačné lineárne súradnicové sústavy

TYPY

- 1. 2D (topologicky, 2+0) translačná pravouhlá lineárna súradnicová sústava
- 2. 3D (topologicky, 3+0) translačná pravouhlá lineárna súradnicová sústava
- 3. 4D (topologicky, 4+0) translačná pravouhlá lineárna súradnicová sústava (projekcia do 3D, disfenoid)

19

20

SÚRADNICOVÉ SÚSTAVY

POUŽÍVANÉ 2D TYPY

- Karteziánska 2D pravouhlá súradnicová sústava
- 2. Polárna súradnicová sústava

POUŽÍVANÉ 3D TYPY

- Karteziánska 3D pravouhlá súradnicová sústava
- 2. Sférická súradnicová sústava

ŠTANDARDNÉ PRACOVNÉ PRIESTORY

- USS Univerzálna (Používateľská, Globálna) Súradnicová Sústava
- 2. SSO Súradnicová Sústava Objektu
- 3. NSS Normalizovaná Súradnicová Sústava
- 4. SSZ Súradnicová Sústava Zariadenia
- 5. SSC Súradnicová Sústava kamery
- 6. SST Súradnicová Sústava Textúry

SÚRADNICOVÉ SÚSTAVY VZŤAHY

VZŤAHY – SÚRADNICOVÝ REŤAZEC

Q&A

branislav.sobota@tuke.sk

Katedra počítačov a informatiky, FEI TU v Košiciach

© 2024

