DM6 : Transferts thermiques Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	

01-08	Récupération d'énergie thermique dans la chaussée	
01-08	Dimensionnement des aquifères	
1	$\vec{j}_Q = -\lambda \overrightarrow{grad}(T), \ \vec{j}_Q = j_Q(r)\vec{e}_r = -\lambda \frac{\partial T}{\partial r}\vec{e}_r$	
2	$\Phi(r) = \iint \vec{j}_Q \cdot \vec{e}_r dS = -\lambda \frac{dT}{dr} 4\pi r^2$	
3	On applique le 1er principe à la coquille sphérique pendant dt :	
	$CdT = [\Phi(r) - \Phi(r + dr)]dt$ en régime permanent $\frac{dT}{dt} = 0$ donc	
	$\Phi(r) = \Phi(r + dr) = \Phi$	
4	On a donc $dT = -\frac{\Phi}{4\pi\lambda_{terre}} \frac{dr}{r^2}$ donc $\int_{T_E}^{T_S} dT = -\frac{\Phi}{4\pi\lambda_{terre}} \int_{R_a}^{+\infty} \frac{dr}{r^2}$	
	donc $T_S - T_E = \frac{\Phi}{4\pi\lambda_{terre}} \left(-\frac{1}{R_a}\right)$ soit $\Phi = 4\pi\lambda_{terre} R_a (T_E - T_S)$	
5	On applique maintenant le 1er principe à l'aquifère pendant un	
	temps $dt: \rho_{eau} \frac{4}{3}\pi R_a^3 c_{eau} dT_E = -\Phi dt = -4\pi \lambda_{terre} R_a (T_E - T_S) dt$	
	soit $\frac{dT_E}{dt} + \frac{T_E}{\tau} = \frac{T_S}{\tau}$ avec $\tau = \frac{\rho_{eau}c_{eau}R_a^2}{3\lambda_{terre}}$ $T_E = T_S + \alpha e^{-\frac{t}{\tau}}$ or $T_E(0) = T_S + \alpha = T_{E0}$ donc $T_E(t) = T_S + C_{E0}$	
6	$T_E = T_S + \alpha e^{-\frac{t}{\tau}}$ or $T_E(0) = T_S + \alpha = T_{E0}$ donc $T_E(t) = T_S + \alpha$	
	$(T_{E0} - T_S)e^{-\frac{t}{\tau}}$	
7	$T_{E0} - T_E(t) < \Delta T \text{ si } T_{E0} - T_S - (T_{E0} - T_S)e^{-\frac{t_H}{\tau}} < \Delta T \text{ soit}$	
	$ au > -rac{t_H}{ln\left(1 - rac{\Delta T}{T_{E0} - T_S} ight)}$	
8	$\tau \ge 11, 8.10^7 \text{ s, donc } R_{a,limite} = \sqrt{\frac{3\lambda_{terre}\tau}{\rho_{eau}c_{eau}}} = 9, 2 \text{ m}$	