Chapter 12 Omnidirectional Vision

MRGCV Computer Vision

Jesus Bermudez-Cameo

Omnidirectional Vision

- 1. Introduction
- 2. Distortion models
- 3. Radially symmetric models
- 4. Non-radially symmetric models
- 5. Omnidirectional Cameras
 - Technologies
 - Panoramas
 - 3. Dioptric systems
 - 4. Catadioptric systems
 - 5. Empirical central models: Scaramuzza
 - 6. Empirical central models: Kannala-Brandt
- 6. Epipolar geometry
- 7. Points triangulation

PinHole linear projection

$$c_x$$
, c_y principal point

$$lpha_{\chi}=rac{f}{d_{\chi}}$$
 horizontal focal length (pixels) $lpha_{y}=rac{f}{d_{y}}$ vertical focal length (pixels)

Pinhole linear unprojection

$$\mathbf{x} = \mathbf{K}^{-1} \begin{bmatrix} u \\ v \\ s \end{bmatrix} \text{, such that } \mathbf{x} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} \in P^2$$

$$\mathbf{K} = \begin{pmatrix} \alpha_x & 0 & c_x \\ 0 & \alpha_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{x} \sim \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \mathbf{K}^{-1} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \qquad \mathbf{x} \parallel \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \qquad \mathbf{x} \sim Z \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

Lens distortions models

- Real lenses do not exactly follow the pinhole model
- The main component is radial distortion

Lens distortions forward model

- From undistorted to distorted coordinates a polynomial expression
- From distorted to undistorted → solving a system of non-linear equations
- Bouget model/OpenCV model

$$\begin{aligned} r_{u}^{2} &= x_{u}^{2} + y_{u}^{2} \\ d_{ry} &= y_{u} \left(k_{1} r_{u}^{2} + k_{2} r_{u}^{4} + k_{3} r_{u}^{6} \right) \\ d_{rx} &= x_{u} \left(k_{1} r_{u}^{2} + k_{2} r_{u}^{4} + k_{3} r_{u}^{6} \right) \end{aligned} \text{Radial distortion} \\ d_{px} &= p_{2} \left(r_{u}^{2} + 2 y_{u}^{2} \right) + 2 p_{1} x_{u} y_{u} \\ d_{px} &= p_{1} \left(r_{u}^{2} + 2 x_{u}^{2} \right) + 2 p_{2} x_{u} y_{u} \end{aligned} \text{Tangential distortion}$$

 $x_d = x_u + d_{rx} + d_{px}$ $y_d = y_u + d_{ry} + d_{py}$

Lens distortions forward model

- From undistorted to distorted coordinates a polynomial expression
- Cheap for bundle adjustment, expensive for triangulation
- OpenCV model

$$\begin{pmatrix} x_u \\ y_u \\ 1 \end{pmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$r_u^2 = x_u^2 + y_u^2 \qquad \mathbf{X}_{abs}$$

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha_x & 0 & c_x \\ 0 & \alpha_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_d \\ y_d \\ 1 \end{pmatrix}$$

Lens distortions Tsai backward model

- From distorted to undistorted coordinates a polynomial expression
- From undistorted to distorted → solving a system of non-linear equations
- Distortion applied on image plane in millimeters
- Tsai, Photomodeler

$$r_{d}^{2} = x_{d}^{2} + y_{d}^{2}$$

$$d_{rx} = x_{d} \left(k_{1} r_{d}^{2} + k_{2} r_{d}^{4} + k_{3} r_{d}^{6} \right)$$

$$d_{ry} = y_{d} \left(k_{1} r_{d}^{2} + k_{2} r_{d}^{4} + k_{3} r_{d}^{6} \right)$$
Radial distortion

 $d_{px} = p_1(r_d^2 + 2x_d^2) + 2p_2x_dy_d$ $d_{py} = p_2(r_d^2 + 2y_d^2) + 2p_1x_dy_d$ Tangential distortion

$$x_u = x_d + d_{rx} + d_{px}$$
 $y_u = y_d + d_{ry} + d_{py}$

Lens distortions Tsai backward model

- From distorted to undistorted coordinates a polynomial expression
- Cheap for triangulation, expensive for bundle adjustment

$$\begin{pmatrix} x_d \\ y_d \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{d_y} & 0 & c_x \\ 0 & \frac{1}{d_y} & c_y \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix}$$

$$r_d^2 = x_d^2 + y_d^2$$

$$\begin{vmatrix} d_{rx} = x_d \left(k_1 r_d^2 + k_2 r_d^4 + k_3 r_d^6 \right) \\ d_{ry} = y_d \left(k_1 r_d^2 + k_2 r_d^4 + k_3 r_d^6 \right) \end{vmatrix}$$
 Radial distortion
$$\begin{vmatrix} d_{px} = p_1 \left(r_d^2 + 2 x_d^2 \right) + 2 p_2 x_d y_d \\ d_{py} = p_2 \left(r_d^2 + 2 y_d^2 \right) + 2 p_1 x_d y_d \end{vmatrix}$$
 Tangential distortion
$$x_u = x_d + d_{rx} + d_{px}$$

$$y_u = y_d + d_{ry} + d_{py}$$

$$\mathbf{x} \sim \begin{pmatrix} \frac{1}{f} & 0 & 0 \\ 0 & \frac{1}{f} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_u \\ y_u \\ 1 \end{pmatrix}$$

Undistorting images

- Distorted images can be undistorted before applying computer vision algorithms.
- If we want to take advantage of the full field of view of the camera we have to deal with masks.

Limitations of undistorting images

• In the peripheral region (high FOV) the size of the objects is highly deformed.

Figure courtesy of Juan José Gómez Rodríguez

Limitations of distortion models

They are not able to manage fields of view greater than 180 degrees.

Spherical projection

- Projection and unprojection on the unitary sphere
- x and -x are the same homogenous points and correspond to the same pixel.
- v and -v correspond to a different pixel.
- Sense of direction vector v has meaning.
- Norm of v can be greater than 1.
- Can model omnidirectional imaging.

Radially symmetric models

Non-radially symmetric models

Omnidirectional cameras: Technologies

Dioptric

Catadioptric

Multi-camera

Panoramas: Equirectangular projection

Figure courtesy of Bruno Berenguel

Panoramas: Cylindrical projection

Figure courtesy of Bruno Berenguel

Dioptric systems: Classical models

- Radially symmetric models
- Invertible models
- Manufactures design the fisheyes in order to follow these models
- Almost Central (single optical center)

Equiangular Stereographic Or Fisheye Fisheye F

$$f\theta$$
 $r = 2f \tan\left(\frac{\theta}{2}\right)$

Orthogonal Fisheye

Radial distortion related with θ

$$r = f \sin(\theta)$$

Equisolid Fisheye

$$r = 2f \sin\left(\frac{\theta}{2}\right)$$

Dioptric systems: Classical models

Equiangular fisheye

$$r = f\theta$$

$$2\theta_{\text{max}} = FOV$$

Stereographic projection

- Classical mapping: Planisphaerium
- Maps S2\[0,0,1] on a plane

$$r = 2f \tan\left(\frac{\theta}{2}\right)$$

Figure courtesy of Micusik Two-View Geometry of Omnidirectional Cameras PhD Thesis, Branislav Micusik, 2004

Dioptric systems: Classical models

Orthographic fisheye

$$r = f \sin(\theta)$$

Fig. 15 Original and corrected images: (a) Original distorted image taken with the endoscope and (b) the corrected image according to M_{LR} .

Dioptric systems: Classical models

Fig. 17 Some projection methods for lenses with a wide FOV (assuming f is 1): (a) r versus θ , and (b) normalized r versus θ .

Catadioptric Cameras Central vs Non-Central

Figure cortesy of Davide Scaramuzza, Omnidirectional vision: From Calibration To Robot Estimation. Thesis, 2004

Central Catadioptric Systems

Paraboloidal mirror

Figure cortesy of Davide Scaramuzza, Omnidirectional vision: From Calibration To Robot Estimation. Thesis, 2004

Central Catadioptric Systems: Technologies

Para-catadioptric system: Composed by an orthographic camera and a parabolic mirror

• Hyper-catadioptric system: Composed by a perspective camera and an hyperbolic mirror.

Physic model and sphere model

Reflection model based on Snell's law

Abstract model projecting on sphere and then projecting on a plane (no reflections at all)

Sphere projection model for catadioptric systems

$$\mathbf{X} \approx \begin{pmatrix} X & Y & Z & 1 \end{pmatrix}^T, \quad \mathbf{X} \in P^3$$

$$\hbar(\mathbf{x}) = \begin{pmatrix} X \\ Y \\ Z + \xi \sqrt{X^2 + Y^2 + Z^2} \end{pmatrix}$$

$$\bar{\mathbf{x}} = \hbar(\mathbf{x})$$

$$H_{c} = \underbrace{\begin{pmatrix} \alpha_{x} & 0 & c_{x} \\ 0 & \alpha_{y} & c_{y} \\ 0 & 0 & 1 \end{pmatrix}}_{K_{c}} \underbrace{\begin{pmatrix} \psi - \xi & 0 & 0 \\ 0 & -\psi + \xi & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{M_{c}}$$

$$\mathbf{u} = H_c \overline{\mathbf{x}}$$

$$\xi = 0$$
 perspective

$$\xi = 0$$
 perspective $0 < \xi < 1$, hyperbolic mirror $\xi = 1$ parabolic mirror

$$\xi = 1$$
 parabolic mirror

Sphere projection model for catadioptric systems

$$\mathbf{X} \approx \begin{pmatrix} X & Y & Z & 1 \end{pmatrix}^T, \quad \mathbf{X} \in P^3$$

$$\hbar(\mathbf{x}) = \begin{pmatrix} X \\ Y \\ Z + \xi \sqrt{X^2 + Y^2 + Z^2} \end{pmatrix}$$

$$\overline{\mathbf{x}} = \hbar(\mathbf{x})$$

$$H_{c} = \underbrace{\begin{pmatrix} \alpha_{x} & 0 & c_{x} \\ 0 & \alpha_{y} & c_{y} \\ 0 & 0 & 1 \end{pmatrix}}_{K_{c}} \underbrace{\begin{pmatrix} \psi - \xi & 0 & 0 \\ 0 & -\psi + \xi & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{M_{c}}$$

$$\mathbf{u} = H_c \overline{\mathbf{x}}$$

$$\xi = 0$$
 perspective

$$\xi = 1$$
 parabolic mirror

Sphere unprojection model for catadioptric systems

• Analytical bijective unprojection function

also radially symmetric!

$$\mathbf{x} = \hbar(\overline{\mathbf{x}})$$

$$r = \frac{f(\psi - \xi) \tan \theta}{1 + \xi \sqrt{\tan^2 \theta + 1}}$$

$$\hbar^{-1}(\mathbf{x}) = \frac{z\xi + \sqrt{z^2 + (1 - \xi^2)(x^2 + y^2)}}{x^2 + y^2 + z^2} x$$

$$\frac{z\xi + \sqrt{z^2 + (1 - \xi^2)(x^2 + y^2)}}{x^2 + y^2 + z^2} y$$

$$\frac{z\xi + \sqrt{z^2 + (1 - \xi^2)(x^2 + y^2)}}{x^2 + y^2 + z^2} z - \xi$$

	ξ	Ψ
Parabolic	1	1+2p
Hyperbolic	$\frac{d}{\sqrt{d^2 + 4p^2}}$	$\frac{d+2p}{\sqrt{d^2+4p^2}}$

 $\overline{\mathbf{x}} = H_c^{-1} \mathbf{u}$

d: distance between foci

4p: latus rectum

Paracatadioptric camera system

Equivalent to stereographic projection

$$\hbar(\mathbf{x}) = \begin{pmatrix} X \\ Y \\ Z + \xi \sqrt{X^2 + Y^2 + Z^2} \end{pmatrix}$$

$$H_{c} = \underbrace{\begin{pmatrix} \alpha_{x} & 0 & u_{0} \\ 0 & \alpha_{y} & v_{0} \\ 0 & 0 & 1 \end{pmatrix}}_{K_{c}} \underbrace{\begin{pmatrix} 2p & 0 & 0 \\ 0 & -2p & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{M_{c}}$$

Empirical central models: Scarammuza

Scaramuzza undistortion model: Taylor expansion

$$\mathbf{p} = \begin{pmatrix} u \\ v \\ f(u, v) \end{pmatrix} \in P^2$$

$$f(\rho) = a_0 + a_1 \rho + a_2 \rho^2 + a_3 \rho^3 + a_4 \rho^4 + \dots$$

Empirical central models: Kannala-Brandt projection model

Rotational Symmetry

$$\mathbf{X} \approx \begin{pmatrix} X & Y & Z & 1 \end{pmatrix}^T, \quad \mathbf{X} \in P^3$$

$$R = \sqrt{X^2 + Y^2}$$

$$\theta = \arctan 2(R, Z)$$

$$d(\theta) = \theta + k_1 \theta^3 + k_2 \theta^5 + k_3 \theta^7 + k_4 \theta^9$$

$$\mathbf{u} = \begin{pmatrix} \alpha_x & 0 & c_x \\ 0 & \alpha_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d(\theta)\cos\varphi \\ d(\theta)\sin\varphi \\ 1 \end{pmatrix}$$

Empirical central models: Kannala-Brandt unprojection model

- Obtaining theta means solving a 9th degree polynomial.
- In practice there is just 1 real solution and LUTs can be used.

$$d(\theta) = \theta + k_1 \theta^3 + k_2 \theta^5 + k_3 \theta^7 + k_4 \theta^9$$

3D Geometry from rays: Essential matrix

Epipolar lines in omnidirectional projections

Triangulation using planes

• Defining a ray with two planes

$$\Pi_{sym} = \begin{pmatrix} -v_y \\ vx \\ 0 \\ 0 \end{pmatrix} \qquad \Pi_{\perp} = \begin{pmatrix} -v_z v_x \\ -v_z v_y \\ v_x^2 + v_y^2 \\ 0 \end{pmatrix}$$

if
$$\mathbf{v} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T \Rightarrow \Pi_{sym} = \begin{pmatrix} 0 & 1 & 0 & 0 \end{pmatrix}^T, \Pi_{\perp} = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}^T$$

$$\mathbf{n}_{\perp} = -v_z \hat{\mathbf{e}}_r + v_r \hat{\mathbf{e}}_z \qquad \hat{\mathbf{e}}_z \qquad \mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = v_r \hat{\mathbf{e}}_r + v_z \hat{\mathbf{e}}_z \qquad \hat{\mathbf{e}}_r$$

$$n_{sym} = \begin{pmatrix} v_y \\ v_z \end{pmatrix} \qquad \hat{\mathbf{e}}_r \qquad \hat{\mathbf{$$

Triangulation using planes

$$\mathbf{\Pi}_{sym1} = \begin{pmatrix} -v_y \\ v_x \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{\Pi}_{\perp 1} = \begin{pmatrix} -v_z v_x \\ -v_z v_y \\ v_x^2 + v_y^2 \\ 0 \end{pmatrix} \qquad \mathbf{X}_1 = {}^{1}\mathbf{T}_2\mathbf{X}_2$$

$$\left\{\Pi_{sym1}\right\}_{2} = {}^{1}\mathbf{T}_{2}^{T}\Pi_{sym1} \quad \left\{\Pi_{\perp 1}\right\}_{2} = {}^{1}\mathbf{T}_{2}^{T}\Pi_{\perp 1}$$

$$\mathbf{AX} = \mathbf{0} \quad \text{such that} \quad \mathbf{A} = \begin{bmatrix} \left\{ \Pi_{sym1} \right\}_2^T \\ \left\{ \Pi_{\perp 1} \right\}_2^T \\ \Pi_{sym2}^T \\ \Pi_{\perp 2}^T \end{bmatrix}$$

Triangulation using planes

$$\mathbf{AX} = \mathbf{0} \quad \text{such that} \quad \mathbf{A} = \begin{bmatrix} \left\{ \Pi_{sym1} \right\}_{2}^{T} \\ \left\{ \Pi_{\perp 1} \right\}_{2}^{T} \\ \Pi_{sym2}^{T} \\ \Pi_{\perp 2}^{T} \end{bmatrix}$$

 $rank(A) \cong 3$ otherwise the points does not fulfill the epipolar constraint

$$[\mathbf{U}, \mathbf{S}, \mathbf{V}] = \operatorname{svd}(\mathbf{A})$$

$$\mathbf{X} = \mathbf{V}_4 \qquad \qquad \mathbf{V} = \begin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 & \mathbf{V}_3 & \mathbf{V}_4 \end{bmatrix}$$

Bibliography

- [1] Baker, S., & Nayar, S. K. (1999). A theory of single-viewpoint catadioptric image formation. *International journal of computer vision*, 35(2), 175-196.
- [2] Geyer, C., & Daniilidis, K. (2000, June). A unifying theory for central panoramic systems and practical implications. In *European conference on computer vision* (pp. 445-461). Springer, Berlin, Heidelberg.
- [3] Usenko, V., Demmel, N., & Cremers, D. (2018, September). The double sphere camera model. In *2018 International Conference on 3D Vision (3DV)* (pp. 552-560). IEEE.
- [4] Scaramuzza, D., Martinelli, A. and Siegwart, R., (2006). "A Toolbox for Easy Calibrating Omnidirectional Cameras", Proceedings to IEEE International Conference on Intelligent Robots and Systems (IROS 2006), Beijing China, October 7-15, 2006.
- [5] Kannala, J., & Brandt, S. S. (2006). A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. *IEEE transactions on pattern analysis and machine intelligence*, 28(8), 1335-1340.

