05 - Counter

1. Tables

Table with connection of 5 buttons:

Button	Pin No.	Logic Val. When Pressed	Logic Val. When Not Pressed
BTNL	P17	0	1
BTNR	M17	0	1
BTNU	M18	0	1
BTND	P18	0	1
BTNC	N17	0	1

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1a80"	b"110_0001_1010_1000_0000"
10 ms	1 000 000	x"f_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17d_7840"	b"1_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2FA_F080"	b"10_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

2. Bidirectional counter

Listing of VHDL code of the process p_cnt_up_down:

Listing of VHDL reset and stimulus processes from testbench file

```
-- Reset generation process
p_reset_gen : process
begin
   s_reset <= '0';</pre>
   wait for 33 ns;
    -- Reset activated
    s_reset <= '1';</pre>
   wait for 120 ns;
    s_reset <= '0';</pre>
    wait;
end process p_reset_gen;
-- Data generation process
p_stimulus : process
begin
    report "Stimulus process started" severity note;
    -- Enable counting
    s_en <= '1';
    -- Change counter direction
    s_cnt_up <= '1';
    wait for 380 ns;
    s_cnt_up <= '0';
    wait for 220 ns;
    -- Disable counting
    s_en <= '0';
    report "Stimulus process finished" severity note;
    wait;
end process p_stimulus;
```

Screenshot with simulated time waveforms:

3. Top level

Listing of VHDL code from source file top.vhd with all instantiations for the 4-bit bidirectional counter:

```
entity top is
   Port
    (
       CLK100MHZ : in STD_LOGIC;
       BTNC
                   : in STD_LOGIC;
       SW
                   : in STD_LOGIC_VECTOR (1-1 downto 0);
                   : out STD_LOGIC_VECTOR (4-1 downto 0);
       LED
       CA
                   : out STD_LOGIC;
       CB
                   : out STD_LOGIC;
                    : out STD_LOGIC;
       CC
                   : out STD_LOGIC;
       CD
                   : out STD LOGIC;
        CE
        CF
                   : out STD LOGIC;
        CG
                    : out STD_LOGIC;
       AN
                    : out STD_LOGIC_VECTOR (8-1 downto 0)
    );
end top;
-- Architecture body for top level
architecture Behavioral of top is
    -- Internal clock enable
    signal s_en : std_logic;
    -- Internal counter
    signal s_cnt : std_logic_vector(4 - 1 downto 0);
begin
    -- Instance (copy) of clock enable entity
    clk_en0 : entity work.clock_enable
        generic map(
           g MAX => 100000000
        port map(
                   => CLK100MHZ,
           clk
           reset => BTNC,
                   => s_en
           ce_o
        );
    -- Instance (copy) of cnt_up_down entity
    bin_cnt0 : entity work.cnt_up_down
        generic map(
            g_CNT_WIDTH => 4
```

```
port map(
              clk
                          => CLK100MHZ,
              reset => BTNC,
en_i => s_en,
cnt_up_i => SW(0),
              cnt_o
                          => s_cnt
         );
     -- Display input value on LEDs
    LED(3 downto 0) <= s_cnt;</pre>
     -- Instance (copy) of hex_7seg entity
    hex2seg : entity work.hex_7seg
         port map(
              hex_i => s_cnt,
              seg_o(6) \Rightarrow CA,
              seg_o(5) \Rightarrow CB,
              seg_o(4) \Rightarrow CC,
              seg_o(3) \Rightarrow CD,
              seg_o(2) \Rightarrow CE,
              seg_o(1) \Rightarrow CF,
              seg_o(₀) => CG
         );
     -- Connect one common anode to 3.3V
    AN <= b"1111_1110";
end architecture Behavioral;
```

Image of the top layer:

