Normalizzazione

Forme normali

- Una forma normale è una proprietà di uno schema relazionale che ne garantisce la "qualità", cioè l'assenza di determinati difetti.
- Una relazione non normalizzata:
 - > presenta ridondanze;
 - > si presta a comportamenti poco desiderabili durante gli aggiornamenti.
- Le forme normali sono di solito definite sul modello relazionale, ma hanno senso anche in altri contesti, ad esempio nel modello E/R.
- L'attività che permette di trasformare schemi non normalizzati in schemi che soddisfano una forma normale è detta normalizzazione.
- □ La normalizzazione deve essere utilizzata come tecnica di verifica dei risultati della progettazione di una base di dati.

Una relazione con anomalie

<u>Impiegato</u>	Stipendio	<u>Progetto</u>	Bilancio	Funzione
Rossi	20	Marte	2	tecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	55	Venere	15	direttore
Neri	55	Giove	15	consulente
Neri	55	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

In un'unica relazione sono rappresentati gli impiegati con i relativi stipendi, i progetti con i relativi bilanci e la partecipazione degli impiegati ai progetti

Analizziamo la relazione...

- Ogni impiegato ha un solo stipendio (anche se partecipa a più progetti).
- Ogni progetto ha un (solo) bilancio.
- Ogni impiegato in ciascun progetto ha una sola funzione (anche se può avere funzioni diverse in progetti diversi).
- Ma abbiamo usato un'unica relazione per rappresentare tutte queste informazioni eterogenee:
 - ➤ gli impiegati con i relativi stipendi;
 - → i progetti con i relativi bilanci;
 - > le partecipazioni degli impiegati ai progetti con le relative funzioni.

Ridondanze e anomalie

<u>Impiegato</u>	Stipendio	Progetto	Bilancio	Funzione
Rossi	20	Marie	2	iecnico
Verdi	35	Giove	15	progettista
Verdi	35	Venere	15	progettista
Neri	58	Venere	15	direttore
Neri	58	Giove	15	consulente
Neri	58	Marte	2	consulente
Mori	48	Marte	2	direttore
Mori	48	Venere	15	progettista
Bianchi	48	Venere	15	progettista
Bianchi	48	Giove	15	direttore

- Lo stipendio di ciascun impiegato è ripetuto in tutte le tuple relative: ridondanza.
- Se lo stipendio di un impiegato varia, è necessario modificare il valore in diverse tuple: anomalia di aggiornamento
- Se un impiegato interrompe la partecipazione a tutti i progetti, dobbiamo cancellarlo: anomalia di cancellazione.
- Un nuovo impiegato senza progetto non può essere inserito: anomalia di inserimento.

Ridondanze e anomalie

- □ Ridondanza: presenza di dati ripetuti in diverse tuple senza aggiungere informazioni significative.
- Anomalia di aggiornamento: necessità di estendere l'aggiornamento di un dato a tutte le tuple in cui esso compare.
- Anomalia di cancellazione: l'eliminazione di una tupla motivata dal fatto che non è più valido l'insieme dei concetti in essa espressi, può comportare l'eliminazione di dati che conservano la loro validità.
- Anomalia di inserimento: l'inserimento di informazioni relative a uno solo dei concetti di pertinenza di una relazione è impossibile se non esiste un intero insieme di concetti in grado di costituire una tupla completa.

Ridondanze: una precisazione

In una base dati l'informazione può essere duplicata in modo :

NON RIDONDANTE:

la duplicazione dei dati è necessaria, l'eliminazione delle duplicazioni comporta perdita di informazione.

STUDENTE

Matr	Tutor	
125233	Mario	
127988	Carlo	
150444	Carlo	duplicazione di dati non
190787	Mario	ridondante

RIDONDANTE:

la duplicazione dei dati **non è necessaria**, comporta spreco di memoria, è causa di possibili **anomalie e inconsistenze.**

STUDENTE

Matr	Tutor	Tel	
125233	Mario	7575	
127988	Carlo	5566	duplicazione
150444	Carlo	5566	di dati ridondante
190787	Mario	7575	Machadine

Scomposizione di schemi

■ Le ridondanze si possono eliminare mediante scomposizione degli schemi.

STUDENTE

N-mat	Tutor	Tel
125233	Mario	7575
127988	Carlo	5566
150444	Carlo	5566
190787	Mario	7575

STUDENTE

N-mat	Tutor
125233	Mario
127988	Carlo
150444	Carlo
190787	Mario

TUTOR

Tutor	Tel
Mario	7575
Carlo	5566

Dipendenza funzionale

 Per formalizzare i problemi visti si introduce un nuovo tipo di vincolo, la dipendenza funzionale (FD).

Si considerino:

- □ un'istanza r di uno schema R(X);
- due sottoinsiemi (non vuoti) di attributi Y e Z di X.
- Si dice che in r vale la dipendenza funzionale (FD) Y → Z
 (Y determina funzionalmente Z) se

$$\forall t1,t2 \in r : t1[Y] = t2[Y] \rightarrow t1[Z] = t2[Z]$$

per ogni coppia di tuple t1 e t2 di r con gli stessi valori su Y, t1 e t2 hanno gli stessi valori anche su Z

Esempi di FD

- □ Nella relazione Impiegato Stipendio Progetto Bilancio Funzione si hanno diverse FD, tra cui:
 - ➤ Impiegato → Stipendio
 - ➤ Progetto → Bilancio
 - ➤ Impiegato, Progetto → Funzione
- Altre FD sono "meno interessanti" ("banali"), poiché sempre soddisfatte, ad esempio:
 - > Impiegato, Progetto → Progetto
 - •Se Z è un sottoinsieme Y allora sicuramente Y → Z.
 - FD di questo tipo sono dette FD banali.
 - Y → Z è non banale se nessun attributo in Z appartiene a Y.

FD - Precisazioni

- Una dipendenza funzionale è una caratteristica dello schema, aspetto intensionale, e non della particolare istanza dello schema, aspetto estensionale.
- Una dipendenza funzionale è dettata dalla semantica degli attributi di una relazione e non può essere inferita da una particolare istanza dello schema.
- Una istanza di uno schema che rispetti una data dipendenza funzionale è detta istanza legale dello schema rispetto alla data dipendenza funzionale.
- Se X è una chiave in uno schema R allora ogni altro attributo di R dipende funzionalmente da X.
- □ Dire che X → Y significa asserire che i valori della componente Y dipendono (sono determinati) dai valori della componente X.
- \square Se X \rightarrow Y non necessariamente risulta anche Y \rightarrow X

Anomalie e FD

- Le anomalie viste si riconducono alla presenza delle FD:
 - ➤ Impiegato → Stipendio
 - ➤ Progetto → Bilancio
- viceversa la FD
 - ➤ Impiegato, Progetto → Funzione non causa problemi.
- Motivazioni:
 - ▶ la terza FD ha sulla sinistra una chiave e non causa anomalie;
 - ▶ le prime due FD non hanno sulla sinistra una chiave e causano anomalie.
- La relazione contiene alcune informazioni legate alla chiave e altre ad attributi che non formano una chiave.

Evitare le anomalie: schemi normalizzati

- Il processo di normalizzazione fu inizialmente introdotto da Codd (1972) con la definizione delle prime tre forme normali (1NF, 2NF, 3NF). In seguito Boyce e Codd definirono una forma più restrittiva di 3NF denominata BCNF. Tutte queste forme normali si basano sulle dipendenze funzionali tra gli attributi di una relazione.
- □ Più tardi furono definite altre forme normali (4NF, 5NF) basate sulle dipendenze multivalore e sulle dipendenze di join.

1a Forma Normale

- Una relazione è in 1NF se e solo se:
 - > tutte le tuple della relazione hanno lo stesso numero di attributi
 - > tutti i valori di un attributo sono dello stesso tipo (appartengono allo stesso dominio)
 - non presenta gruppi di attributi che si ripetono (ossia ciascun attributo è definito su un dominio con valori atomici)
 - Vedi slide su Progettazione Logica per gestire la presenza di attributi multivalore
 - > esiste una chiave primaria (ossia esiste un insieme di attributi che identifica in modo univoco ogni tupla della relazione)
 - ▶ l'ordine delle righe è irrilevante (non è portatore di informazioni)

2a Forma Normale

- Una relazione è in 2NF se e solo se
 - >è in 1NF
 - tutti gli attributi non-chiave dipendono funzionalmente dall'intera chiave composta (ovvero la relazione non ha attributi che dipendono funzionalmente da una parte della chiave)
- L'esempio:

<u>Articolo</u>	<u>Magazzino</u>	Quantità	Indirizzo
scarpe	VR1	25000	v. Albere 17 - Verona
pantaloni	VR1	18000	v. Albere 17 - Verona
scarpe	BO1	4500	v. Agucchi 3 - Bologna
camicie	VR2	7000	v. Monti 6 - Verona

viola la 2NF perché

➤ Magazzino → Indirizzo

ossia, l'indirizzo dipende solo parzialmente dalla chiave.

Normalizzazione in 2NF

■ La soluzione consiste nell'estrarre la FD che crea i problemi, generando gli schemi:

MAG_ART (<u>Articolo, Magazzino, Quantità</u>) (AM → Q)
 MAG_IND (<u>Magazzino, Indirizzo</u>) (M → I)

Articolo	Magazzino	Quantità
scarpe	VR1	25000
pantaloni	VR1	18000
scarpe	BO1	4500
camicie	VR2	7000

Magazzino	Indirizzo
VR1	v. Albere 17 - Verona
BO1	v. Agucchi 3 - Bologna
VR2	v. Monti 6 - Verona

L'informazione originale si può ricostruire eseguendo un join tra le due tabelle.

3a Forma Normale

- Una relazione è in 3NF se e solo se
 - >è in 2NF
 - > tutti gli attributi non-chiave dipendono dalla chiave soltanto, ossia non esistono attributi che dipendono da altri attributi non-chiave
- L'esempio:

Imp_cod	Nome	Reparto	Caporeparto
001	Rossi	Vendite	Marchi
002	Verdi	Acquisti	Stefani
003	Bianchi	Magazzino	Bielli
004	Neri	Vendite	Marchi

viola la 3NF perché

> Imp_cod → Nome, Reparto, Capo_reparto (I → NRC)

 \triangleright Reparto \rightarrow Capo_reparto (R \rightarrow C)

ossia, C dipende transitivamente dalla chiave I.

Normalizzazione in 3NF

Anche in questo caso la soluzione consiste nell'estrarre la FD che crea i problemi, generando gli schemi:

```
ightharpoonup REP_IMP (Imp\_cod, Nome, Reparto) (I <math>\rightarrow NR)
```

> REP_CAPO (Reparto, Capo_reparto) (R → C)

Imp_cod	Nome	Reparto
001	Rossi	Vendite
002	Verdi	Acquisti
003	Bianchi	Magazzino
004	Neri	Vendite

Reparto	Caporeparto
Vendite	Marchi
Acquisti	Stefani
Magazzino	Bielli

L'informazione originale si può ricostruire eseguendo un join tra le due tabelle.

Esempio di normalizzazione

Anche lo schema di riferimento non è normalizzato (non è in 3NF né in 2NF); la soluzione consiste nel "decomporlo" sulla base delle FD.

- > Impiegato → Stipendio
- ➤ Impiegato, Progetto → Funzione
- ➤ Progetto → Bilancio

<u>Impiegato</u>	Stipendio
Rossi	20
Verdi	35
Neri	55
Mori	48
Bianchi	48

<u>Impiegato</u>	<u>Progetto</u>	Funzione
Rossi	Marte	tecnico
Verdi	Giove	progettista
Verdi	Venere	progettista
Neri	Venere	direttore
Neri	Giove	consulente
Neri	Marte	consulente
Mori	Marte	direttore
Mori	Venere	progettista
Bianchi	Venere	progettista
Bianchi	Giove	direttore

Progetto	Bilancio
Marte	2
Giove	15
Venere	15