JESSICA IMLAU DAGOSTINI MARCOS VINICIUS DE MOURA LIMA

MINICURSO LATEX

LISTA DE ILUSTRAÇÕES

Figura 1	_	Configuração Tex Maker	2
Figura 2	_	Configuração Tex Maker 2	2
Figura 3	_	Exemplo de Figura	12

LISTA DE QUADROS

Quadro 1 –	Exemplo Simbolos Especiais	6
Quadro 2 –	Comandos para Divisão Textual	7
Quadro 3 –	Comandos para Estilo de Texto	9
Quadro 4 –	Exemplo de Quadro	3

LISTA DE TABELAS

LISTA DE ABREVIATURAS E SIGLAS

ABNT Associação Brasileira de Normas Técnicas

DECOM Departamento de Computação

LISTA DE SÍMBOLOS

- Γ Letra grega Gama
- λ Comprimento de onda
- ∈ Pertence

LISTA DE ALGORITMOS

Algoritmo 1 – Exemplo de Algoritmo	•		•													•			•						1	5
------------------------------------	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	---	--	--	--	--	--	---	---

SUMÁRIO

1	INTRODUÇAO
1.1	Histórico
1.2	Instalação
1.2.1	Windows
1.2.2	Ubuntu
1.3	Compilação Tex Maker
1.4	Compilação por Linha de Comando
1.5	Ferramentas em Nuvem
2	ESTRUTURA E COMANDOS
2.1	Trabalhando com Projetos Grandes
2.2	Parâmetros Obrigatórios e Opcionais
2.3	Comentários
2.4	Parágrafos
2.5	Espaços
3	SIMBOLOS E ACENTUAÇÃO 6
4	DIVISÃO TEXTUAL 7
5	ESTILO DA PÁGINA 8
6	FORMATAÇÃO DO TEXTO 9
6.1	Comandos de Estilo de Texto
6.2	Alinhamento
6.3	Quebra de Linhas e Página
6.4	Tamanho do texto
6.4.1	Alterando em Todo Documento
6.4.2	Alterando o Tamanho da Fonte Localmente
7	SOBRE AS ILUSTRAÇÕES 11
8	FIGURAS
9	QUADROS E TABELAS
10	EOUACÕES

11	ALGORITMOS	15
12	SOBRE AS LISTAS	16
13	SOBRE AS CITAÇÕES E CHAMADAS DE REFERÊNCAS	17
14	CITAÇÕES INDIRETAS	18
15	CITAÇÕES DIRETAS	19
16	DETALHES SOBRE AS CHAMADAS DE REFERÊNCIAS	20
17	SOBRE AS REFERÊNCIAS BIBLIOGRÁFICAS	21
18	NOTAS DE RODAPÉ	22
	REFERÊNCIAS	23

1 INTRODUÇÃO

LATEX é um conjunto de macros de alto nível para TEX que torna mais fácil e rápida a produção de todo o tipo de documentos como, por exemplo, livros, relatórios e artigos.

O objetivo do LATEX é que o autor se possa distanciar da apresentação visual do trabalho e assim se concentrar no seu conteúdo. Possui formas de lidar com bibliografias, citações, formatos de páginas, referências e tudo mais que não seja relacionado com conteúdo do documento em si.

1.1 Histórico

Em 1978 Donald E. Knuth começou a desenvolver uma linguagem cujo objetivo era permitir a qualquer um formatar textos com muitas equações e com alta qualidade de saída, chamada de TeX. Em 1985 Leisle Lamport desenvolveu um conjunto de macros denominado LATeX, que simplifica o uso da linguagem TeX. Atualmente este projeto é mantido e desenvolvido pelo LATeX3 Project

O som final dos nomes TEX e LATEX deve ser pronunciado como se fosse um "K".

1.2 Instalação

LATEX é um software livre e gratuito, é possível instalar nos principais sistemas operacionais modernos como: Windows 7, 8, 8.1 e 10; Mac OS e várias distribuições Linux.

1.2.1 Windows

MiKTeX é uma distribuição TeX / LaTeX para o Microsoft Windows. Baixe o instalador pelo link oficial: Download MiKTeX

A instalação do MiKTeX é simples, basicamente é só clicar no "Avançar". Caso houver problemas na instalação o seguinte vídeo poderá servir de ajuda: Vídeo Instalação MiKTeX. Junto com a instalação do MiKTeX o editor TeXworks é instalado. Existem outros editores como o Texmaker.

O Texmaker é mais simples de usar e é o editor de código aberto mais popular entre a comunidade LaTeX. Baixe o instalador pelo link oficial: Download TeXMaker

1.2.2 Ubuntu

O TeX Live é uma distribuição para produção de documentos TeX. Para instalar no ubuntu 16.04 digite o seguinte comando:

```
$ sudo apt-get install texlive-full
```

Apos a instalação do TeX Live pode-se obtar por instalar um editor específico para LaTeX o Texmaker, para instalar digite o seguinte comando:

\$ sudo apt-get install texmaker

1.3 Compilação Tex Maker

Para Compilar o arquivo .*tex* junto com o arquivo .*bib* no TeX Maker é necessário uma configuração, como mostra as Figuras 1 e 2.

Figura 1 – Configuração Tex Maker

Fonte: Autor

Figura 2 – Configuração Tex Maker 2

Fonte: Autor

1.4 Compilação por Linha de Comando

Para compilar pela linha de comando (windows e Linux) deve-se fazer os seguintes passos:

1. Compilar o arquivo principal .tex:

2. Montar os índices:

3. Compilar o arquivo das bibliografias .bib

4. Por fim, gerar o PDF:

1.5 Ferramentas em Nuvem

Existem ferramentas que possibilitam a edição e a colaboração online de documentos LaTeX. Uma dessas ferramentas é o Overleaf.

Para usar o Overleaf basta criar uma conta, começar um projeto e escrever. Uma outra grande vantagem do Overleaf é a comunidade que compartilha templates prontos, como por exemplo: principais templates.

2 ESTRUTURA E COMANDOS

Um documento em LATEX começa pelo comando \documentclass [opcionais] {classe}. Abaixo desse comando são declarados os pacotes e outras configurações do documento.

Os comandos \begin{document} e \end{document} marcam o início do ambiente onde por exemplo, as seções, subseções e o texto do documento serão inseridos. O seguinte trecho de código exemplifica a estrutura básica de um documento em LATEX.

\end{document}

As principais¹ classes que podem ser passadas para o comando \documentclass são:

- {article} para produzir artigos curtos;
- {report} para produzir artigos mais longos, relatórios e monografias;
- {book} para produzir livros.

Nas opções é possível utilizar os seguintes parâmetros:

- 11pt fonte de 11 pontos;
- 12pt fonte de 12 pontos;
- twoside imprime em ambos os lados da folha;
- twocolumn produz o documento formatado em duas colunas;

2.1 Trabalhando com Projetos Grandes

O comando \include{nome_do_arquivo} inclui um arquivo ao documento principal. Este comando deve ser usado quando existem capítulos com quantidades maiores de conteúdo.

¹pode se encontrar encontrar outros parâmetros para classes e opções nesse link: Classes e Opções

2.2 Parâmetros Obrigatórios e Opcionais

Os comandos em LaTeX são precedidos por \ e seguidos por [] e/ou { }, onde:
[] Parâmetros opcionais.
{ } Parâmetros Obrigatórios.

2.3 Comentários

Comentários em um documento $T_E\!X$ são ignorados pelo compilador. Para utilizar comentários ao longo do texto utilize %

2.4 Parágrafos

Para iniciar um novo parágrafo no LATEX, deve-se deixar uma linha em branco entre os textos.

2.5 Espaços

Para produzir espaço durante texto pode-se usar \space{}. O comando ~ produz um espaço que não pode ser divido em uma quebra de linha, por exemplo um número de telefone: 54 11111-1111.

Ainda é possível utilizar o comando \vspace{espaço} para colocar espaços verticais. Assim como também é possível colocar espaços horizontais com o comando \hspace{espaço}.

Em espaço deve-se passar a quantidade do espaço desejado. Pode-se usar as dimensões em pontos (pt), polegadas (in), milímetros (mm), centímetros (cm) etc.

3 SIMBOLOS E ACENTUAÇÃO

TEX usa ASCII por padrão. Mas para que acentos e outros caracteres especiais apareçam diretamente no arquivo de origem, deve-se dizer ao TEX usar uma codificação diferente.

LATEX suporta a composição de caracteres especiais. Isto é conveniente se o seu teclado não tiver alguns acentos desejados e outros diacríticos.

Os seguintes acentos podem ser colocados em letras. Embora a letra 'o' seja usada na maioria dos exemplos, os acentos podem ser colocados em qualquer letra. Os acentos podem até ser colocados acima de uma letra "ausente"; por exemplo, \ ~ {} produz um til sobre um espaço em branco.

Para que a acentuação ocorra de forma automática deve-se usar os seguintes pacotes:

```
\usepackage[brazilian]{babel}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
```

LaTeX tem muitos símbolos à sua disposição. A maioria deles está no domínio matemático e os capítulos posteriores abordarão como obter acesso a eles. Para os símbolos de texto mais comuns, use os seguintes comandos:

Quadro 1 – Exemplo Simbolos Especiais.

Comando em LaTeX	Exemplo
\\$	\$
\&	&
\%	%
\#	#
_	_
\{	{
\}	}

4 DIVISÃO TEXTUAL

Textos costumam ser separados em "pedaços". LATEX permite que o autor divida seu texto de diversas formas. Os comandos para dividir o texto são:

Quadro 2 – Comandos para Divisão Textual.

Comando em LATEX	Nível	Observações
\part{'parte'}	-1	não usado em cartas
\chapter{'capítulo'}	0	apenas livros e relatórios
\section{'seção'}	1	não usado em cartas
\subsection{'subseção'}	2	não usado em cartas
\subsubsection{'subsubseção'}	3	não usado em cartas
\paragraph{'parágrafo'}	4	não usado em cartas
\subparagraph{'subparágrafo'}	5	não usado em cartas

O LATEX enumera automaticamente as seções, subseções e capítulos. Dessa forma se o autor inserir uma nova seção no começo do texto ele não precisa re-enumerar todas as seções seguintes.

5 ESTILO DA PÁGINA

As informações exibidas no rodapé e no cabeçalho de um documento LATEX dependem do estilo de página atualmente ativo. Para configurar o estilo da todas as páginas do documento, deve-se usar o comando \pagestyle{estilo}. Para configurar uma página diferente das demais usa-se o comando \thispagestyle{estilo}.

Os principais estilos são:

- plain: número da página centralizado no rodapé (default);
- headings: capítulo corrente e número da página no cabeçalho;
- empty: cabeçalho e rodapé vazios.

6 FORMATAÇÃO DO TEXTO

Existem vários comandos em LATEX para definir vários estilos de texto como: alinhamento, negrito, itálico etc.

6.1 Comandos de Estilo de Texto

É possível definir o estilo de um texto e juntar comandos com declarações. Os comandos produzem seu efeito somente sobre seu argumento. Comandos e/ou declarações podem ser acumulados: \textbf{\itshape negrito e itálico} produz *negrito e itálico*.

Os principais comandos e declarações são apresentados a seguir:

Quadro 3 – Comandos para Estilo de Texto.

Definição	Comando	Declaração					
Negrito	\textbf{texto}	{\bfseries}					
Máquina de escrever	\texttt{texto}	{\ttfamily}					
Itálico	\textit{texto}	{itshape}					

6.2 Alinhamento

Por padrão todo texto em LATEX já está justificado.

Para centralizar um texto pode-se usar:

Para alinhar o texto à direita:

```
\begin{flushleft}
    % Texto Alinhado à Esquerda
\end{flushleft}
```

Para alinhar o texto à esquerda:

```
\begin{flushright}
    % Texto Alinhado à Direita
\end{flushright}
```

6.3 Quebra de Linhas e Página

O comando \newline ou \\ resultam em uma quebra de linha. O comando newline resulta em uma quebra de página.

6.4 Tamanho do texto

A alteração do tamanho da fonte no LATEX pode ser feita em dois níveis, afetando todo o documento ou partes / elementos dele. Usar um tamanho de fonte diferente em um nível global afetará todo o texto de tamanho normal, bem como o tamanho dos cabeçalhos, notas de rodapé etc. Alterando o tamanho da fonte localmente, no entanto, uma única palavra, algumas linhas de texto, uma tabela grande ou um título em todo o documento pode ser modificado.

6.4.1 Alterando em Todo Documento

As classes *article*, *report* e *book* suportam 3 tamanhos de fonte diferentes, 10pt, 11pt, 12pt (por padrão 12pt). O tamanho da fonte é definido por meio do argumento opcional, por exemplo:

\documentclass[12pt]{report}

6.4.2 Alterando o Tamanho da Fonte Localmente

LATEX contém vários comandos para modificar o tamanho da fonte por exemplo: (do maior para o menor):

\Huge

\huge

\LARGE

\Large

\large

\normalsize (padrão)

\small

\footnotesize

\scriptsize

\tiny

7 SOBRE AS ILUSTRAÇÕES

A seguir exemplifica-se como inserir ilustrações no corpo do trabalho. As ilustrações serão indexadas automaticamente em suas respectivas listas. A numeração sequencial de figuras, tabelas e equações também ocorre de modo automático.

Referências cruzadas são obtidas através dos comandos \label{} e \ref{}. Sendo assim, não é necessário por exemplo, saber que o número de certo capítulo é ?? para colocar o seu número no texto. Outra forma que pode ser utilizada é esta: ??, facilitando a inserção, remoção e manejo de elementos numerados no texto sem a necessidade de renumerar todos esses elementos.

8 FIGURAS

Exemplo de como inserir uma figura. A Figura 3 aparece automaticamente na lista de figuras. Para saber mais sobre o uso de imagens no LATEX consulte literatura especializada (GOOSSENS et al., 2007).

Os arquivos das figuras devem ser armazenados no diretório de "/dados".

Figura 3 – Exemplo de Figura

Fonte: IRL (2014)

9 QUADROS E TABELAS

Exemplo de como inserir o Quadro 4 e a Tabela 1. Ambos aparecem automaticamente nas suas respectivas listas. Para saber mais informações sobre a construção de tabelas no LATEX consulte literatura especializada (MITTELBACH et al., 2004).

Ambos os elementos (Quadros e Tabelas) devem ser criados em arquivos separados para facilitar manutenção e armazenados no diretório de "/dados".

Quadro 4 – Exemplo de Quadro.

BD Relacionais	BD Orientados a Objetos
Os dados são passivos, ou seja, certas ope-	Os processos que usam dados mudam
rações limitadas podem ser automatica-	constantemente.
mente acionadas quando os dados são usa-	
dos. Os dados são ativos, ou seja, as soli-	
citações fazem com que os objetos execu-	
tem seus métodos.	

Fonte: Barbosa et al. (2004)

A diferença entre quadro e tabela está no fato que um quadro é formado por linhas horizontais e verticais. Deve ser utilizado quando o conteúdo é majoritariamente não-numérico. O número do quadro e o título vem acima do quadro, e a fonte, deve vir abaixo. E Uma tabela é formada apenas por linhas verticais. Deve ser utilizada quando o conteúdo é majoritariamente numérico. O número da tabela e o título vem acima da tabela, e a fonte, deve vir abaixo, tal como no quadro.

Tabela 1 – Resultado dos testes.

	Valores 1	Valores 2	Valores 3	Valores 4
Caso 1	0,86	0,77	0,81	163
Caso 2	0,19	0,74	0,25	180
Caso 3	1,00	1,00	1,00	170

Fonte: Barbosa et al. (2004)

10 EQUAÇÕES

Exemplo de como inserir a Equação (1) e a Eq. 2 no corpo do texto ¹. Observe que foram utilizadas duas formas distintas para referenciar as equações.

$$X(s) = \int_{t=-\infty}^{\infty} x(t) e^{-st} dt$$
 (1)

$$F(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \exp\left[-j2\pi \left(\frac{um}{M} + \frac{vn}{N}\right)\right]$$
 (2)

¹Deve-se atentar ao fato de a formatação das equações ficar muito boa esteticamente.

11 ALGORITMOS

Exemplo de como inserir um algoritmo. Para inserção de algoritmos utiliza-se o pacote algorithm2e que já está devidamente configurado dentro do template.

Os algoritmos devem ser criados em arquivos separados para facilitar manutenção e armazenados no diretório de "/dados".

Algoritmo 1: Exemplo de Algoritmo

```
Input: o número n de vértices a remover, grafo original G(V, E)

Output: grafo reduzido G'(V, E)

removidos \leftarrow 0

while removidos < n do

v \leftarrow \text{Random}(1, ..., k) \in V

for u \in adjacentes(v) do

remove aresta (u, v)

removidos \leftarrow removidos + 1

end

if h\acute{a} componentes desconectados then

remove os componentes desconectados end

end
```

12 SOBRE AS LISTAS

Para construir listas de "bullets" ou listas enumeradas, inclusive listas aninhadas, é utilizado o pacote paralist.

Exemplo de duas listas não numeradas aninhadas, utilizando o comando \itemize. Observe a indentação, bem como a mudança automática do tipo de "bullet" nas listas aninhadas.

- item não numerado 1
- item não numerado 2
 - subitem não numerado 1
 - subitem não numerado 2
 - subitem não numerado 3
- item não numerado 3

Exemplo de duas listas numeradas aninhadas, utilizando o comando \enumerate. Observe a numeração progressiva e indentação das listas aninhadas.

- 1. item numerado 1
- 2. item numerado 2
 - a) subitem numerado 1
 - b) subitem numerado 2
 - c) subitem numerado 3
- 3. item numerado 3

13 SOBRE AS CITAÇÕES E CHAMADAS DE REFERÊNCAS

Citações são trechos de texto ou informações obtidas de materiais consultadas quando da elaboração do trabalho. São utilizadas no texto com o propósito de esclarecer, completar e embasar as ideias do autor. Todas as publicações consultadas e utilizadas (por meio de citações) devem ser listadas, obrigatoriamente, nas referências bibliográficas, para preservar os direitos autorais. São classificadas em citações indiretas e diretas.

14 CITAÇÕES INDIRETAS

É a transcrição, com suas próprias palavras, das idéias de um autor, mantendo-se o sentido original. A citação indireta é a maneira que o pesquisador tem de ler, compreender e gerar conhecimento a partir do conhecimento de outros autores. Quanto à chamada da referência, ela pode ser feita de duas maneiras distintas, conforme o nome do(s) autor(es) façam parte do seu texto ou não. Exemplo de chamada fazendo parte do texto:

Enquanto Maturana e Varela (2003) defendem uma epistemologia baseada na biologia. Para os autores, é necessário rever

A chamada de referência foi feita com o comando \citeonline{chave}, que produzirá a formatação correta.

A segunda forma de fazer uma chamada de referência deve ser utilizada quando se quer evitar uma interrupção na sequência do texto, o que poderia, eventualmente, prejudicar a leitura. Assim, a citação é feita e imediatamente após a obra referenciada deve ser colocada entre parênteses. Porém, neste caso específico, o nome do autor deve vir em caixa alta, seguido do ano da publicação. Exemplo de chamada não fazendo parte do texto:

Há defensores da epistemologia baseada na biologia que argumentam em favor da necessidade de ... (MATURANA; VARELA, 2003).

Nesse caso a chamada de referência deve ser feita com o comando \cite{chave}, que produzirá a formatação correta.

15 CITAÇÕES DIRETAS

É a transcrição ou cópia de um parágrafo, de uma frase, de parte dela ou de uma expressão, usando exatamente as mesmas palavras adotadas pelo autor do trabalho consultado.

Quanto à chamada da referência, ela pode ser feita de qualquer das duas maneiras já mencionadas nas citações indiretas, conforme o nome do(s) autor(es) façam parte do texto ou não. Há duas maneiras distintas de se fazer uma citação direta, conforme o trecho citado seja longo ou curto.

Quando o trecho citado é longo (4 ou mais linhas) deve-se usar um parágrafo específico para a citação, na forma de um texto recuado (4 cm da margem esquerda), com tamanho de letra menor e espaçamento entrelinhas simples. Exemplo de citação longa:

Desse modo, opera-se uma ruptura decisiva entre a reflexividade filosófica, isto é a possibilidade do sujeito de pensar e de refletir, e a objetividade científica. Encontramo-nos num ponto em que o conhecimento científico está sem consciência. Sem consciência moral, sem consciência reflexiva e também subjetiva. Cada vez mais o desenvolvimento extraordinário do conhecimento científico vai tornar menos praticável a própria possibilidade de reflexão do sujeito sobre a sua pesquisa (SILVA; SOUZA, 2000, p. 28).

Para fazer a citação longa deve-se utilizar os seguintes comandos:

\begin{citacao}
<texto da citacao>
\end{citacao}

No exemplo acima, para a chamada da referência o comando \cite[p.~28] {Silva2000} foi utilizado, visto que os nomes dos autores não são parte do trecho citado. É necessário também indicar o número da página da obra citada que contém o trecho citado.

Quando o trecho citado é curto (3 ou menos linhas) ele deve inserido diretamente no texto entre aspas. Exemplos de citação curta:

A epistemologia baseada na biologia parte do princípio de que "assumo que não posso fazer referência a entidades independentes de mim para construir meu explicar" (MATURANA; VA-RELA, 2003, p. 35).

A epistemologia baseada na biologia de Maturana e Varela (2003, p. 35) parte do princípio de que "assumo que não posso fazer referência a entidades independentes de mim para construir meu explicar".

16 DETALHES SOBRE AS CHAMADAS DE REFERÊNCIAS

Outros exemplos de comandos para as chamadas de referências e o resultado produzido por estes:

Maturana e Varela (2003) \citeonline{Maturana2003}

Barbosa et al. (2004) \citeonline{Barbosa2004}

(SILVA; SOUZA, 2000, p. 28) \cite[p.~28]{Silva2000}

Silva e Souza (2000, p. 33) \citeonline[p.~33]{v}

(MATURANA; VARELA, 2003, p. 35) \cite[p.~35] {Maturana2003}

Maturana e Varela (2003, p. 35) \citeonline[p.~35]{Maturana2003}

(BARBOSA et al., 2004; MATURANA; VARELA, 2003) \cite{Barbosa2004, Maturana2003}

17 SOBRE AS REFERÊNCIAS BIBLIOGRÁFICAS

A bibliografia é feita no padrão BIBTEX. As referências são colocadas em um arquivo separado. Neste template as referências são armazenadas no arquivo "base-referencias.bib".

Existem diversas categorias documentos e materiais componentes da bibliografia. A classe abnT_EX define as seguintes categorias (entradas):

@book

@inbook

@article

@phdthesis

@mastersthesis

@monography

@techreport

@manual

@proceedings

@inproceedings

@journalpart

@booklet

@patent

@unpublished

@misc

Cada categoria (entrada) é formatada pelo pacote abnTeX2 e Araujo (2014b) de uma forma específica. Algumas entradas foram introduzidas especificamente para atender à norma ABNT (2002), são elas: @monography, @journalpart,@patent. As demais entradas são padrão BIBTEX. Para maiores detalhes, refira-se a abnTeX2 e Araujo (2014b), abnTeX2 e Araujo (2014a), Araujo e abnTeX2 (2014).

18 NOTAS DE RODAPÉ

As notas de rodapé pode ser classificadas em duas categorias: notas explicativas¹ e notas de referências. A notas de referências, como o próprio nome ja indica, são utilizadas para colocar referências e/ou chamadas de referências sob certas condições.

¹é o tipo mais comum de notas que destacam, explicam e/ou complementam o que foi dito no corpo do texto, como esta nota de rodapé, por exemplo.

REFERÃŁNCIAS

ABNTEX2; ARAUJO, L. C. A classe abntex2: Documentos técnicos e científicos brasileiros compatíveis com as normas abnt. [S.l.], 2014. 46 p. Disponível em: http://abntex2.googlecode.com/. Acesso em: 12 de setembro de 2014. Citado na página 21.

ABNTEX2; ARAUJO, L. C. **O pacote abntex2cite**: Estilos bibliográficos compatíveis com a abnt nbr 6023. [S.l.], 2014. 91 p. Disponível em: http://abntex2.googlecode.com/>. Acesso em: 12 de setembro de 2014. Citado na página 21.

ARAUJO, L. C.; ABNTEX2. **O pacote abntex2cite**: Tópicos específicos da abnt nbr 10520:2002 e o estilo bibliográfico alfabético (sistema autor-data). [S.l.], 2014. 23 p. Disponível em: http://abntex2.googlecode.com/>. Acesso em: 12 de setembro de 2014. Citado na página 21.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6023**: Informação e documentação — referências — elaboração. Rio de Janeiro, 2002. 24 p. Citado na página 21.

BARBOSA, C. et al. **Testando a utilização de "et al."**. 2. ed. Cidade: Editora, 2004. Citado 2 vezes nas páginas 13 e 20.

GOOSSENS, M. et al. **The LaTeX graphics companion**. 2. ed. Boston: Addison-Wesley, 2007. Citado na página 12.

IRL. **Internet Research Laboratory**. 2014. Disponível em: http://irl.cs.ucla.edu/topology>. Acesso em: 8 de março de 2014. Citado na página 12.

MATURANA, H. R.; VARELA, F. J. **A Árvore do Conhecimento**: as bases biológicas da compreensão humana. 3. ed. São Paulo: Editora Palas Athena, 2003. Citado 3 vezes nas páginas 18, 19 e 20.

MITTELBACH, F. et al. **The LaTeX companion**. 2. ed. Boston: Addison-Wesley, 2004. Citado na página 13.

SILVA, J.; SOUZA, J. a. L. **A Inteligência da Complexidade**. São Paulo: Editora Petrópolis, 2000. Citado 2 vezes nas páginas 19 e 20.