THE UNIVERSAL COEFFICIENT THEOREMS

J. Mensah

Contents

1	Introduction	1
2	Derived Functors	1
	2.1 Tor	1
	2.2 Ext	1
3	Universal Coefficient Theorems	1
	3.1 Homology	1
	3.2 Cohomology	4
4	Künneth Theorems	4
	4.1 Homology	4
	4.2 Cohomology	4
5	Applications	4
1.	Introduction	
2.	Derived Functors	
2.	1. Tor	
2.	2. Ext	
3.	Universal Coefficient Theorems	
3.	1. Homology	

_-

Let R be a commutative ring and let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex of R-modules. One may add "coefficients" to the chain complex by tensoring each C_n with a fixed R-module

J. Mensah

M. This yields a new chain complex

$$\cdots \to C_{n+1} \otimes_R M \xrightarrow{\partial_{n+1} \otimes 1_M} C_n \otimes_R M \xrightarrow{\partial_n \otimes 1_M} C_{n-1} \otimes_R M \to \cdots$$

of R-modules, denoted by $C_{\bullet} \otimes_R M$. Each chain $c \in C_n \otimes_R M$ may be written as an "M-linear" combination of chains

$$c = \sum_{i \in I} c_i \otimes m_i$$

where $c_i \in C_n$ and $m_i \in M$. Note that M is not required to have a ring structure, so after adding coefficients one should still regard $C_n \otimes_R M$ as an R-module. The purpose of the universal coefficient theorem for homology is to relate the homology of $C_{\bullet} \otimes_R M$ to the homology of C_{\bullet} .

Before stating the theorem, we make a few important notational remarks. Let $\phi \colon A \to B$ be a map of R-modules and let B_0 be a subspace containing the image of ϕ . Typically, one denotes the corestriction $\phi|_{B_0} \colon A \to B_0$ by the symbol " ϕ " again. However, this abuse of notation can lead to confusion when dealing with tensor products: the map

$$\phi|^{B_0} \otimes 1_M \colon A \otimes_R M \to B_0 \otimes_R M$$

is not a corestriction of $\phi \otimes 1_M$, unless one can identify $B_0 \otimes_R M$ with a submodule of $B \otimes_R M$ via the inclusion map $\iota \colon B_0 \hookrightarrow B$. In general, this is not possible, since $- \otimes_R M$ fails to preserve monomorphisms. Thus, to avoid confusion, we explicitly denote corestrictions in the proceeding argument as follows: given a chain complex $(C_{\bullet}, \partial_{\bullet})$ and a map $\phi \colon A \to C_{n+1}$ such that im $\phi \subset \ker \partial_n$, let

$$\phi^{\mathbf{Z}} = \phi|^{\ker \partial_n} \colon A \to \ker \partial_n$$

be the corestriction of ϕ to the *n*-cycles in C_{\bullet} .

Theorem 3.1 (Universal Coefficient Theorem for Homology). Let R be a PID, and let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex of free R-modules. Then for any R-module M, there exists a short exact sequence of R-modules

$$0 \to \mathrm{H}_n(C_{\bullet}) \otimes_R M \to \mathrm{H}_n(C_{\bullet} \otimes_R M) \to \mathrm{Tor}_1^R(\mathrm{H}_{n-1}(C_{\bullet}), M) \to 0 \tag{(\star)}$$

for each $n \in \mathbb{Z}$, which is natural in both C_{\bullet} and M. Furthermore, this sequence splits, but not naturally.

Proof. Let $\iota \colon \ker \partial_n \hookrightarrow C_n$ be the inclusion map. Then $\partial_{n+1} = \iota \circ \partial_{n+1}^{\mathbb{Z}}$, which implies that

$$(\partial_{n+1} \otimes_R 1_M)^{\mathbf Z} = (\iota \otimes 1_M)^{\mathbf Z} \circ (\partial_{n+1}^{\mathbf Z} \otimes_R 1_M).$$

J. Mensah

In other words, the diagram

$$\begin{array}{c|c} C_{n+1} \otimes_R M & \xrightarrow{\partial_{n+1}^{\mathbf{Z}} \otimes \mathbf{1}_M} & \ker(\partial_n) \otimes_R M \\ & & & \downarrow^{(\iota \otimes \mathbf{1}_M)^{\mathbf{Z}}} \\ C_{n+1} \otimes_R M & \xrightarrow{(\partial_{n+1} \otimes \mathbf{1}_M)^{\mathbf{Z}}} & \ker(\partial_n \otimes \mathbf{1}_M) \end{array}$$

commutes, so forming cokernels and using the fact that $-\otimes_R M$ preserves cokernels yields a map

$$j \colon \mathcal{H}_n(C_\bullet) \otimes_R M \to \mathcal{H}_n(C_\bullet \otimes_R M); \qquad ([c] \otimes m) \overset{j}{\longmapsto} [c \otimes m]$$

Since R is a PID, and C_{n-1} is a free R-module, it follows that im $\partial_n \subseteq C_{n-1}$ is also free. Thus, the short exact sequence

$$0 \to \ker \partial_n \xrightarrow{\iota} C_n \to \operatorname{im} \partial_n \to 0$$

splits. By functoriality, $\iota \otimes 1_M$ is a split monomorphism, and so is its corestriction $(\iota \otimes 1_M)^Z$. Taking cokernels is once again functorial, so j is also a split monomorphism. This yields the first half of the sequence (\star) ; it remains to determine the cokernel of j.

To this end, observe that the short exact sequence

$$0 \to \operatorname{im} \partial_{n+1} \to \ker \partial_n \to \operatorname{H}_n(C_{\bullet}) \to 0$$

is a free resolution of $H_n(C_{\bullet})$, since im ∂_{n+1} and ker ∂_n are submodules of the free R-module C_n , and R is a PID. Tensoring this sequence with M yields the long exact sequence

Since R is a PID, and C_{n-1} is a free R-module, it follows that im $\partial_n \subseteq C_{n-1}$ is also free. Thus, the short exact sequence of chain complexes

$$0 \to \ker \partial_{-} \to C_{-} \to \operatorname{im} \partial_{-} \to 0$$

splits, where the subcomplexes $\ker \partial_{\bullet}$ and $\operatorname{im} \partial_{\bullet}$ are defined by taking kernels and images degree-wise. The boundary maps on these subcomplexes are all zero. Since this sequence is split, we may apply $-\otimes_R M$ to obtain a new short exact sequence of chain complexes

$$0 \to \ker \partial_{\bullet} \otimes_{R} M \to C_{\bullet} \otimes_{R} M \to \operatorname{im} \partial_{\bullet} \otimes_{R} M \to 0.$$

The associated long exact sequence in homology is

J. Mensah 4

3.2. Cohomology

Let R be a commutative ring and let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex of R-modules. The dual cochain complex $(C^{\bullet}, \delta^{\bullet})$ is formed by taking the dual of each C_n , yielding the sequence of R-modules

$$\cdots \to \operatorname{Hom}_R(C_{n-1},R) \xrightarrow{\delta^{n-1}} \operatorname{Hom}_R(C_n,R) \xrightarrow{\delta^n} \operatorname{Hom}_R(C_{n+1},R) \to \cdots$$

where $\delta^n=\partial_{n+1}^*$ is the pullback along ∂_{n+1} . More generally, one may bake coefficients into the cochain complex by instead taking the R-module of homomorphisms $\operatorname{Hom}_R(C_n,M)$ for a fixed R-module M. This yields a new cochain complex

$$\cdots \to \operatorname{Hom}_R(C_{n-1},M) \xrightarrow{\delta^{n-1}} \operatorname{Hom}_R(C_n,M) \xrightarrow{\delta^n} \operatorname{Hom}_R(C_{n+1},M) \to \cdots$$

of R-modules, denoted by $\operatorname{Hom}_R(C_{\bullet},M)$. Note that this is a fundamentally different process than adding coefficients by tensoring the dual chain complex with M, since $\operatorname{Hom}_R(C_n,M)$ is not generally isomorphic to $\operatorname{Hom}_R(C_n,R)\otimes_R M$. The purpose of the universal coefficient theorem for cohomology is to relate the cohomology of $\operatorname{Hom}_R(C_{\bullet},M)$ to the cohomology of the dual complex C^{\bullet} .

Theorem 3.2 (Universal Coefficient Theorem for Cohomology). Let R be a PID, and let $(C_{\bullet}, \partial_{\bullet})$ be a chain complex of free R-modules. Then for any R-module M, there exists a short exact sequence of R-modules

$$0 \to \operatorname{Ext}^1_R(\operatorname{H}_{n-1}(C_\bullet), M) \to \operatorname{H}^n(\operatorname{Hom}_R(C_\bullet, M)) \to \operatorname{Hom}_R(\operatorname{H}_n(C_\bullet), M) \to 0$$

for each $n \in \mathbb{Z}$, which is natural in both C_{\bullet} and M. Furthermore, this sequence splits, but not naturally.

4. Künneth Theorems

- 4.1. Homology
- 4.2. Cohomology
- 5. Applications