

SECOND SEMESTER 2019-2020 MODIFIED Course Handout Part II

Date: Jan-2020

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CS G520/SS G520

Course Title : Advanced Data Mining
Instructor-in-Charge : Jabez Christopher

Course Description & Scope:

Advanced Data Mining is a specialization course of Data Mining. Topics covered go beyond conventional record data mining to mining complex data structures and complex data: Tree/graph, biological data, web/text data, stream data, spatiotemporal data, time series data, high-dimensional data. A substantial portion of the course will focus on research projects, where students will study and work on a well-defined research problem. The course also deals with applications such as mining social networking sites, bioinformatics and medical informatics.

Objectives of the Course:

- To expose key research areas in data mining.
- Emphasize on the design and implementation of efficient and optimized algorithms for data mining.
- Emphasize the use of WEKA, MATLAB and R to implement Data preprocessing and Data Mining tasks.
- To improve research and presentation quality thereby enable students to comprehend and critically analyze data mining research.

Text Book

TB: Aggarwal, Charu C. **Data mining: the textbook**. Springer, 2015.

Reference books

- 1. R1: Hadzic F., Tan H. & Dillon T. S. "Mining data with Complex Structures" Springer, 2011
- 2. R2: Han J. & Kamber M., "*Data Mining: Concepts and Techniques*", Morgan Kaufmann Publishers, Second Edition, 2006
- 3. R3: Tan P. N., Steinbach M & Kumar V. "Introduction to Data Mining" Pearson Education, 2006
- 4. R4: Mitsa, Theophano. Temporal data mining. Chapman and Hall/CRC, 2010.
- 5. R5: Chowriappa, Pradeep, and Sumeet Dua. **Data mining for bioinformatics**. CRC Press, 2012.
- 6. R6: Dunham, Margaret H. Data mining: Introductory and advanced topics. Pearson Education India, 2006.
- 7. R7: Ross, T. J. (2005). Fuzzy logic with engineering applications. John Wiley & Sons.

Reading Material: Research papers and other reading material will be provided on the course website.

[RM 01] Bradley, Paul S., Usama M. Fayyad, and Olvi L. Mangasarian. "Mathematical programming for data mining: Formulations and challenges." INFORMS Journal on Computing 11, no. 3 (1999): 217-238.

[RM 02] Mangasarian, Olvi L. "Mathematical programming in data mining." Data mining and knowledge discovery 1, no. 2 (1997): 183-201

Course Plan:

Lectur e No.	Learning objectives	Topics to be covered	Reference			
1	To understand the objectives of the course	Introduction to the course & Lab Topics				
2,3		Overview of Knowledge Discovery	R2 Ch 1, 2, 3; TB Ch 1 [RM 01]			
4-8	Refresh the basics of KDD and Data Mining tasks.	Overview of Data Mining	R2 Ch 6, 8, 10; [RM 02]			
9,10		Statistics for Data Mining	Class Notes			
	WEB DATA MINING					
11-15	Concentrate on use of Data Mining techniques to Web and Social Networks, and understand their their use in Web analytics, user profiling and personalization.	Social Network Analysis: Preliminaries and Properties	TB Ch. 19			
	BIOLOGICAL DATA MINING					
16-20	Enable students to find patterns and statistical dependencies in large biological databases and to gain an understanding of the underlying system from which the data were obtained.	 Data Transformations Normalization Techniques for Gene Expression Analysis. Data Preprocessing of Mass Spectrometry Data Data Preprocessing for Genomic Sequence Data Ontologies in Bioinformatics 	R5 Ch. 5			
	Use computational biology & data mining tasks to analyze vast	 Applications of Classification & Clustering in Bioinformatics. Distance Metric in Gene Expressions for Coexpressed Genes 	R5 Ch. 6			

1 itle	: Advanced Data Mining						
	experimental data generated by high- throughput technologies, and thereby enables the generation of new hypotheses.	 Gene Expression Clustering Using Mutual Information Distance Measure Gene Expression Data Clustering Using a Local Shape-Based Clustering Fuzzy k-Means Clustering on Gene Expression Temporal Data Mining in Medicine and Bioinformatics 					
	SPATIAL & TEMPORAL DATA MINING						
	To study how to investigate temporal data and understand models and methods for	Mining with Contextual Spatial Attributes. Trajectory Mining Temporal Data Similarity Computation,	TB Ch.16				
21-25	representation.	 Representation, and Summarization Temporal Data Types and Preprocessing Temporal Data Preprocessing Time Series Similarity Measures Time Series Summarization Methods Temporal Event Representation Temporal Knowledge Representation in Case-Based Reasoning Systems 	R4 Ch. 2				
26-28		Forecasting Model and Error Measures Event Prediction Time Series Forecasting	R4 Ch. 4 TB Ch. 14				
		RECENT TRENDS					
29-36	Understand the use of Optimization techniques to catalyze the performance of Algorithms and parameter-tuning.	Optimization Algorithms for Data Mining Lagrangian Methods Gradient Descent Algorithm Simulated Annealing Evolutionary Algorithms (GA) Swarm Intelligence Algorithms • Particle Swarm Optimization	Research articles (to be decided)				
37-40	Understand how to handle uncertainty in decision- making systems by incorporating fuzzy logic and FIS	Soft Computing Approaches for Data Mining Handling Uncertainty in Data Resolving Uncertainty using Fuzzy Logic Fuzzy Inference Systems Evolving Fuzzy Systems	R7 Ch 1, 4, Class notes & Research articles (to be decided)				
41, 42		RESEARCH GAPS & FUTURE DIRECTIONS					

EXISTING EVALUATION SCHEME:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Semester Test	1½ hours	20	Completed	Closed
Quizzes (2)	½ hour	5	Quiz 1 - Completed	Closed
Labs Assignments & Projects*		30	Completed	Open
Term Paper & Seminar		10	Completed	Open
Comprehensive Exam	3 Hours	35		Closed

^{*}Lab-projects will emphasize on the use of WEKA/MATLAB/R to implement preprocessing and data mining algorithms on datasets from open repositories. In addition to this the students are expected to survey, review & compare research works in similar areas and prepare articles and reports. Evaluation would be a continuous assessment model during the practical sessions.

Chamber Consultation Hours: To be announced in the class.

Make-up Policy:

Notices: All the notices concerning this course will be displayed on the CMS.

MODIFIED EVALUATION SCHEME

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Mid-Semester Test	1½ hours	20	-	Closed
Quizzes (1)	½ hour	5		Closed
Labs Assignments & Projects*		30	ŀ	Open
Term Paper & Seminar		10		Open
Comprehensive Exam	3 Hours	35	To be Announced	Closed

Pre compre marks will be posted shortly with reference to the modified Handout.

INSTRUCTOR-IN-CHARGE

