Poznámka (Literature)

Kechris.

Definice 0.1 (Polish space)

We say TS (X, τ) is polish (PTS) if X is separable and completely metrizable.

Poznámka

Complete compatible metric is not unique: $\tilde{\rho} = \min\{1, \rho\}$.

Například

 \mathbb{R} , \mathbb{C} , \mathbb{R}^n , \mathbb{C}^n , $2 := \{0, 1\}$, $\omega := \{0, 1, 2, \ldots\}$ with discrete topology, Separable Banach space (SBS), metrizable compacts, 2^{ω} , ω^{ω} (both with product topology).

Věta 0.1 (Baire)

X TS metrizable with complete metric. Then countable intersection of open dense subsets of X is dense in X.

 $D\mathring{u}kaz$

Without proof. (We should know it already.)

Věta 0.2

X complete metric space, $\{F_n\}$ is decreasing sequence of closed subsets of X, such that $\operatorname{diam}(F_n) \to 0$. Then $|\bigcap F_n| = 1$.

 $D\mathring{u}kaz$

Without proof. (We should know it already.)

Věta 0.3

- (i) If X_n are PTS, $n \in \omega$. Then $\prod_{n \in \omega} X_n$ is PTS.
 - (ii) X PTS, $H \subset X$. Then H is $PTS \Leftrightarrow H \in \mathcal{G}_{\delta}(X)$

D ukaz ((i))

Let d_n be CCM (complete compatible metric) on X_n , $n \in \omega$. Then

$$d(x,y) := \sum_{n=0}^{\infty} \min \{2^{-n}, d_n(x_n, y_n)\}\$$

is CCM on $X = \prod_{n \in \omega} X_n$, where $x = (x_n)$, $y = (y_n)$. ("Definition is correct" is trivial, "d is metric" straightforward, "d is complete" also easy, compatibility too).

Důkaz ((ii))

 $H = \emptyset$, H = X trivial. Assume $H \neq \emptyset$, X.

$$\subseteq$$
 : $x \in H, n \in \omega, x \in B_{\varrho}(x, 2^{-n-2}) \subset V_n$.

" \supseteq ": $x \in V_n \cap \overline{H}$ for every $n \in \omega \implies \exists$ open sets G_n : $x \in G_n$, $G \cap H \neq \emptyset$, $\operatorname{diam}(G_n \cap H) < 2^{-n}$. We can assume: $G_{n+1} \supset G_n$ (we can use intersection: $G_{n+1} \cap G_n \cap H \neq \emptyset$) \iff $x \in G_n \cap G_{n+1} \cap \overline{H} \neq \emptyset$).

 $\{y\} := \bigcap_{n \in \omega} \overline{G_n \cap H}^H \in H. \text{ For contradiction: } x \neq y \implies \exists O \subset X \text{ open: } x \notin \overline{O}, y \in O, G_n \cap H \subset B(y, 2^{-n}), n \in \omega. \implies \exists n \in \omega G_n \cap H \subset O, x \in G_n \cap (X \setminus \overline{O}) \cap \overline{H} \implies G_n \cap (X \setminus \overline{O}) \cap H \neq \emptyset.$

" \Leftarrow ": fix CCM d on X, $H = \bigcap_{n \in \omega} U_n$, $\emptyset = U_n \neq X$. $F_n := X \setminus U_n$, $\tilde{d}(x,y) = d(x,y) + \sum_{n=0}^{\infty} \min \left\{ 2^{-n}, \left| \frac{1}{\operatorname{dist}(x,F_n)} - \frac{1}{\operatorname{dist}(y,F_n)} \right| \right\}$, $x,y \in H$. Next we verified that \tilde{d} is metric, that \tilde{d} is equivalent with d on H (by convergence), and that (H,\tilde{d}) is complete metric space and separable. TODO?

Definice 0.2 (Notation)

 $A \neq 0$:

- $A^{<\omega}$:= finite sequence of elements of $A = \bigcup_{n \in \omega} A^n$;
- $s \in A^k$, $t \in A^{<\omega} \cup A^{\omega}$: $s \wedge t := (s_0, s_1, \dots, s_{k-1}, t_0, t_1, \dots)$, where $s = (s_0, \dots, s_{k-1})$, $t = (t_0, t_1, \dots)$;
- $s \in A^{<\omega} \cup A^{\omega}$: |s| is the number of elements of sequence s $(|s| \in \omega \cup \{\infty\})$;
- $s \in A^{<\omega} \cup A^{\omega}$, $k \in \omega$, $|s| \ge k$, then we denote restriction of s on first k elements as s/k;
- $s < t \text{ iff } |t| \ge |s| \text{ and } s = t/|s| \ (s \in A^{<\omega}, \ t \in A^{<\omega} \cup A^{\omega}).$

1 Baire space ω^{ω}

Definice 1.1

For $s \in \omega^{<\omega}$ we define Baire interval of s as $\mathcal{N}(s) := \{ \nu \in \omega^{\omega} | s < \nu \}$.

 $\mathcal{N}(s)$ are clopen $(\mathcal{N}(s) = \omega^{\omega} \setminus \bigcup \{\mathcal{N}(t) | |t| = |s|, t \neq s, t \in \omega^{<\omega}\}).$

 $\{\mathcal{N}|s\in\omega^{<\omega}\}$ is base of topology of ω^{ω} .

Věta 1.1 (Alexandrov–Urysohn)

 ω^{ω} is up to homeomorphism unique nonempty multi-dimension PTS such that every compact has empty interior.

 $D\mathring{u}kaz$

Bez důkazu.

Důsledek

 ω^{ω} is homeomorphic to $\mathbb{R}\backslash\mathbb{Q}$.

Věta 1.2

Let $X \neq \emptyset$, PTS. Then X is continuous image of ω^{ω} .

Poznámko

 $X \neq \emptyset$ PTS. Then there $\exists F \subset \omega^{\omega}$, F closed, and continuous injection $\varphi : F \to X$.

 $D\mathring{u}kaz$

Find CCM on X such that diam $X \leq 1$. We inductively construct closed $\emptyset \neq A_s \subset X$ for every $s \in \omega^{<\omega}$ such that 1. $A_{\emptyset} = X$; 2. diam $(A_s) \leq 2^{-|s|}$; 3. $A_s = \bigcup_{i \in \omega} A_{s \hat{i}}$.

Empty set is trivial. Assume we already have A_s . Find $\{x_i|i\in\omega\}\subset A_s$ dense in A_s . $A_{s^{\hat{}}i}:=A_s\cap\overline{B(x_i,2^{-|s|-2})}\neq\varnothing$ closed.

Fix $\forall \nu \in \omega^{\omega} : f(\nu) := x$, where $\{x\} = \bigcap_{k \in \omega} A_{\nu/k} \neq \emptyset$ (intersection of closed nonempty non-increasing sequence of sets). "f is surjection": $x \in A_s \stackrel{3}{\Longrightarrow} \exists n \in \omega : x \in A_{s^{\wedge}n} \stackrel{1}{\Longrightarrow} \forall x \in X \ \exists \alpha \in \omega^{\omega} \ \forall k \in \omega : x \in A_{\alpha/k} \implies x = f(\alpha)$.

"f continuous": $f(\mathcal{N}_{\nu/k}) \subset A_{\nu/k}$ for every $\nu \in \omega^{\omega}$, $k \in \omega$, diam $A_{\nu/k} \leq 2^{-k}$.

1.1 Cantor set 2^{ω}

Tvrzení 1.3

 2^{ω} is up to homeomorphism unique nonempty nuldimensional compact metrizable space without isolated points (without isolated points is called perfect space).

Tvrzení 1.4

Let $X \neq \emptyset$ metrizable, compact. Then X is continuous image of 2^{ω} .

 $D\mathring{u}kaz$

Without proof, but it is similar to the previous one.

1.2 Hilbert cube $[0,1]^{\omega}$

Tvrzení 1.5

Let X be PTS. Then X is homeomorphic to G_{δ} subset of $[0,1]^{\omega}$.

Důkaz

X PTS, case \emptyset is trivial, so assume $X \neq \emptyset$, ϱ is CCM on X, $\varrho \leqslant 1$. Let $\{x_n, n \in \omega\}$ be dense in X. Define $f: [0,1]^{\omega}: f(x) = (\varrho(x,x_n))_{n \in \omega}$. $\varrho \leqslant 1 \implies f(x) \in [0,1]^{\omega}$.

"Continuity of f": $f^{-1}(U) = \bigcap_{i=1}^n B(x_i, b_i) \setminus \overline{B(x_i, a_i)}$ open.

"Injective": $x \neq y \implies \exists n \in \omega : \varrho(x, x_n) < \varrho(y, x_n) \implies f(x) \neq f(y)$.

"Continuity of f^{-1} " $f(y^n) \to f(y) \stackrel{?}{\Longrightarrow} y^n \to y$.

$$f(y^n) \to f(y) \stackrel{?}{\Leftrightarrow} \forall k \in \omega : \varrho(y^n, x_k) \to \varrho(y, x_k).$$

Let $\varepsilon > 0$ be arbitrary:

$$\exists k \in \omega : \varrho(y, x_k) < \frac{\varepsilon}{3}. \ \exists n_0 \ \forall n \geqslant n_0 : \varrho(y^n, x_k) < \frac{2\varepsilon}{3}.$$

Then

$$\forall n \geqslant n_0 : \varrho(y^n, y) \leqslant \varrho(y^n, x_k) + \varrho(x_k, y) < \varepsilon.$$

So f(X) is homeomorphism to $X \implies f(X)$ is PTS $\implies f(X) \in \mathcal{G}_{\delta}([0,1]^{\omega})$.

Důsledek

Let X be compact metrizable space. Then X is homeomorphic to some closed subset of $[0,1]^{\omega}$.

 $D\mathring{u}kaz$

Compact metrizable space is Polish. And compact subset must be closed.

1.3 $\mathcal{K}(X)$: Hyperspace of compact subsets of X

Definice 1.2

Let X be PTS, denote $\mathcal{K}(X) := \{K \subset X | K \text{ is compact}\}$. Vietoris topology on $\mathcal{K}(X)$ is generated by $\{K \in \mathcal{K}(X) | K \subset V\}$ for V open and $\{K \cap \mathcal{K}(X) | K \cap V \neq \emptyset\} = \mathcal{K}(X) \setminus \{K \in \mathbb{K}(X) | K \subset X \setminus V\}$

Tvrzení 1.6

Let X be PTS, ϱ CCM on X, $\varrho \leqslant 1$. Then mapping $h : \mathcal{K}(X) \times \mathcal{K}(X) \mapsto [0, +\infty)$ defined as:

$$h(K,L) = \begin{cases} 0, & K = L = \varnothing, \\ \max\left\{\sup_{x \in K} \varrho(x,L), \sup_{y \in L} \varrho(y,K)\right\}, & K,L \neq \varnothing, \\ 1, & other \ cases, \end{cases}$$

is CCM on K(X) with Vietoris topology. h is known as Hausdorff metric.

Poznámka

 $\mathcal{K}(X)$ is separable if X is PTS. X is compact metrizable $\implies \mathcal{K}(X)$ is compact (totally bounded).

X is separable $\implies \exists D \subset X : \overline{D} = X, |D| = \omega.$

$$M = \{K \subset D | |K| < \omega\} \implies |M| = \omega.$$

 $\overline{M} = \mathcal{K}(X)$. $K \in \mathcal{K}(X)$ arbitrary, $\varepsilon > 0$ arbitrary. Then $\exists \frac{\varepsilon}{2}$ net $P \subset K$, $|P| < \omega$. We find $\{\tilde{x}_0, \dots, \tilde{x}_n\} \subset D : \varrho(x_i, \tilde{x}_i) < \frac{\varepsilon}{2} \wedge h(K, \{\tilde{x}_0, \dots, \tilde{x}_n\}) < \varepsilon$.

X is compact, P is ε -net in X, $|P| < \omega \implies 2^P$ is finite ε -net in $\mathcal{K}(X)$.

 $D\mathring{u}kaz$

 $(\emptyset \neq K, L, P \in \mathcal{K}(X).)$ h is metric, definition is correct, $h \geqslant 0$ trivial, h(K, L) = h(L, K) trivial, $h(K, L) = 0 \implies K = L \ (x \notin L \implies \varrho(x, L) > 0 \implies K \subset L \land L \subset K).$

" " aka "
 $h(K,L) \leqslant h(K,P) + h(P,L)$ ": Let $x \in K, y \in L, p \in P.$ Then

$$\begin{split} \varrho(x,L) \leqslant \varrho(x,y) \leqslant \varrho(x,p) + \varrho(p,y) & \quad \inf y \in L \\ \varrho(x,L) \leqslant \varrho(x,p) + \varrho(p,L) & \quad \sup p \in P \\ \varrho(x,L) \leqslant \varrho(x,p) + h(P,L) & \quad \inf p \in P \\ \varrho(x,L) \leqslant \varrho(x,P) + h(P,L) & \quad \inf p \in P \\ & \quad \sup_{x \in K} \varrho(x,L) \leqslant h(K,P) + h(P,L). \end{split}$$

Similarly $\sup_{y \in L} \varrho(y, K) \leq h(K, P) + h(P, L)$.

TODO!!!

Definice 1.3

X is metrizable space, $1 \leq \alpha < \omega_1$. We define $\Sigma^0_{\alpha}(X)$, $\Pi^0_{\alpha}(X)$, and $\Delta^0_{\alpha}(X)$ by induction:

$$\Sigma_1^0(X) := \{ U \subset X | U \text{ open} \},\,$$

$$\Pi^0_\alpha(X) := \left\{ A \subset X | X \backslash A \in \Sigma^0_\alpha(X) \right\},$$

$$\Sigma^0_\alpha(X) := \left\{ \bigcup_{n \in \omega} A_n | A_n \in \Pi^0_{\alpha_n}(X), \alpha_n < \alpha, n \in \omega \right\},$$

$$\Delta^0_\alpha(X) := \Sigma^0_\alpha \cap \Pi^0_\alpha(X).$$

Poznámka (By induction it can be prooven)

$$\Sigma^0_{\alpha}(X) \subset \Sigma^0_{\beta}(X), \Pi^0_{\alpha}(X) \subseteq \Pi^0_{\beta}(X), \qquad 1 \leqslant \alpha < \beta < \omega_1.$$

Poznámka

$$\forall \alpha, \beta : 1 \leqslant \alpha < \beta < \omega_1 : \Sigma_{\alpha}^0(X) \subset \Pi_{\beta}^0(X).$$

Poznámka

If X contains homeomorphic copy of 2^{ω} then all inclusions are strict.

We denote Borel(X) as σ -algebra of Borel sets (σ -algebra generated by $\Sigma_1^0(X)$).

Poznámka (Also non-trivial theorem)

$$Borel(X) = \bigcup_{1 \leq \alpha < \omega_1} \Sigma_{\alpha}^0(X) = \bigcup_{1 \leq \alpha < \omega_1} (X) = \bigcup_{1 \leq \alpha < \omega_1} \Delta_{\alpha}^0(X).$$

$$A_n \in \bigcup_{1 \leq \alpha < \omega_1} \Sigma_{\alpha}^0(X) \implies \exists 1 \leq \alpha_n < \omega_1 : A_n \in \Sigma_{\alpha_n}^0(X) \implies A_n \in \Sigma_{\sup\{\alpha_n \mid n \in \omega\}}^0 \implies \bigcup_{n \in \omega} A_n \in \Sigma_{\sup\{\alpha_n, n \in \omega\}}^0$$

Poznámka

$$F_{\sigma} = \Sigma_{2}^{0}, G_{\delta} = \Pi_{2}^{0}, F_{\sigma\delta} = \Pi_{3}^{0}, G_{\delta\sigma} = \Sigma_{3}^{0}.$$

 $\Sigma^0_{\alpha}(X)$ is closed under countable union and $\Pi^0_{\alpha}(X)$ under countable intersection.

Věta 1.7

X be metrizable, $1 \leq \alpha < \omega_1$. Then

- 1. $\Sigma^0_{\alpha}(X)$ is closed under finite intersection;
- 2. $\Pi^0_{\alpha}(X)$ is closed under finite union.

 $D\mathring{u}kaz$

"1." Firstly for $\alpha=1$, it is trivial. Then let $A,B\in \Sigma^0_{\alpha}(X),\ \alpha>1$. Then $A=\bigcup_{n\in\omega}A_n$, $A_n\in \Pi^0_{\alpha_n}(X),\ \alpha_n<\alpha,\ B=\bigcup_{m\in\omega}B_m,\ B_m\in \Pi^0_{\beta_m}(X),\ \beta_n<\alpha.\ A\cap B=\bigcup_{(m,n)\in\omega^2}A_n\cap B_m$, $A_n\cap B_m\in \Pi^0_{\max\{\alpha_n,\beta_n\}}(X)\implies A\cap B\in \Sigma^0_{\alpha}(X)$. "2." \Longleftrightarrow de Morgan and 1.

Věta 1.8

X be metrizable, $A \subset Z \subset X$, $1 \leq \alpha < \omega_1$. Then $A \in \Sigma^0_{\alpha}(Z) \Leftrightarrow$ there exists $\tilde{A} \in \Sigma^0_{\alpha}(X)$: $A = \tilde{A} \cap Z$. Similarly for $\Pi^0_{\alpha}, \Delta^0_{\alpha}$.

 $D\mathring{u}kaz$

Firstly $\alpha = 1$ from definition of subspace. Then assume that it is all true for all $\beta < \alpha$. We want to prove it for α . ":

$$A \in \Sigma_{\alpha}^{0}(Z) \implies A = \bigcup A_{n}, A_{n} \in \Pi_{\beta_{n}}^{0}(Z), \beta_{n} < \alpha \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X) : \tilde{A}_{n} \cap Z = A_{n}.$$

$$\tilde{A} = \bigcup \tilde{A}_n \in \Sigma^0_{\alpha}(X), \tilde{A} \cap Z = Z \cap \bigcup \tilde{A}_n = \bigcup (Z \cap \tilde{A}_n) = \bigcup A_n = A.$$

"←=":

$$\tilde{A} \in \Sigma_{\alpha}^{0}(X), A = \tilde{A} \cap Z \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X), \beta_{n} < \alpha, \bigcup \tilde{A}_{n} = \tilde{A}.$$

$$\tilde{A} \cap Z \in \Pi^0_{\beta_n}(Z) \implies A = \tilde{A} \cap Z = \left(\bigcup \tilde{A}_n\right) \cap Z = \bigcup \left(\tilde{A}_n \cap Z\right) = \bigcup A_n \in \Sigma^0_{\alpha}(Z).$$

Věta 1.9

 $X, Y \text{ be metric spaces, } f: X \to Y \text{ is continuous. If } A \in \Sigma^0_{\alpha}(Y) \ (\Pi^0_{\alpha}(Y), \ \Delta^0_{\alpha}(Y)) \text{ then } f^{-1}(A) \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}(X), \ \Delta^0_{\alpha}(Y)).$

 $D\mathring{u}kaz$

 $\alpha = 1$ trivial. Assume it holds true for $\Sigma^0_{\beta}(Y)$, $\Pi^0_{\beta}(Y)$, $\beta < \alpha$, and we want to show for $\Sigma^0_{\alpha}(Y)$ ($\Pi^0_{\alpha}(Y)$). Let $A \in \Sigma^0_{\alpha}(Y)$, $\alpha > 1 \implies A = \bigcup_{n \in \omega} A_n$, $A_n \in \Pi^0_{\beta_n}(Y)$, $\beta_n < \alpha$.

$$f^{-1}(A) = f^{-1}(\bigcup A_n) = \bigcup \underbrace{f^{-1}(A_n)}_{\Pi^0_{\beta^n}(X)} \in \Sigma^0_{\alpha}(X),$$

$$f^{-1}(Y \backslash A) = f^{-1}(Y) \backslash f^{-1}(A) = X \backslash f^{-1}(A).$$

Věta 1.10 (Borel classes in PTS)

X,Y be PTS, $A \in \Sigma^0_{\alpha}(X)$, $\alpha \geq 3$ (resp. $A \in \Pi^0_{\alpha}(X)$, $\alpha \geq 2$), $B \subset Y$. If B and A are homeomorphic then $B \in \Sigma^0_{\alpha}(Y)$ (resp. Π^0_{α}).

 $D\mathring{u}kaz$

 $f: A \to B$ is homeomorphism A onto B. The theorem above (name?) there is extension \tilde{f} of f, \tilde{f} is homeomorphism \tilde{A} onto \tilde{B} , $A \subset \tilde{A}$, $B \subset \tilde{B}$, $\tilde{A} \in \Pi_2^0(X)$, $\tilde{B} \in \Pi_2^0(Y)$. Then $B \in \Sigma^0_{\alpha}(\tilde{B})$ (because $B = (f^{-1})^{-1}(A)$). From the theorem above, $\exists \hat{B} \in \Sigma^0_{\alpha}(Y) : B = \hat{B} \cap \tilde{B} \in \Sigma^0_{\alpha}(Y) \iff \alpha \geqslant 3$.

1.4 Analytic sets

Definice 1.4

X PTS, $A \subset X$. We say that A is analytic set in X if there exists PTS Y and continuous mapping $\varphi: Y \to X$ such that $\varphi(Y) = A$.

We denote collection of analytic subsets of X as $\Sigma_1^1(X)$. We say that A is coanalytic in X if $X \setminus A \in \Sigma_1^1(X)$ and we denote this collection as $\Pi_1^1(X)$. $\Delta_1^1(X) = \Sigma_1^1(X) \cap \Pi_1^1(X)$.

Například

$$Q = \{ \alpha \in 2^{\omega} | \exists n \in \omega \ \forall j \geqslant n : \alpha_j = 0 \} = 2^{<\omega} \in \Sigma_2^0(2^{\omega}) \setminus \Pi_2^0(2^{\omega})$$

TODO?

Poznámka

 $X \text{ PTS}, F : X \to \mathcal{K}(X) \text{ by } F(x) = \{x\}. \text{ Then } F \text{ is continuous, } F^{-1}(\mathcal{K}(A)) = A \Longrightarrow \text{if } \mathcal{K}(A) \in \Sigma^0_{\alpha}(\mathcal{K}(X)) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}) \text{ then } A \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}). \ A \text{ open } \Longrightarrow \mathcal{K}(A) \text{ is open,} A \text{ is closed } \Longrightarrow \mathcal{K}(A) \text{ is closed. } \mathcal{K}(\bigcap A_n) = \bigcap \mathcal{K}(A_n). \text{ Thus for } A \in \Pi^0_2(X) : \mathcal{K}(A) \in \Pi^0_2(\mathcal{K}(X)). \ A \in \Sigma^0_1(X) \ (\Pi^0_1(X), \ \Pi^0_2(X)) \Leftrightarrow \mathcal{K}(A) \in \Sigma^0_1(\mathcal{K}(X)) \ (\Pi^0_1(\mathcal{K}(X)), \ \Pi^0_2(\mathcal{K}(X))).$

Věta 1.11

 $X \ PTS, \ |X| > \omega. \ Assume \ I \subset \mathcal{K}(X), \ I \ is \ \sigma\text{-ideal} \ (K \in I, L \subset K \implies L \in I; \ K_n \in I, \bigcup K_n \in \mathcal{K}(X) \implies \bigcup K_n \in I). \ If \ I \in \Pi_2(\mathcal{K}(X)), \ then \ I \in \Sigma^1_1(\mathcal{K}(X)).$

Důsledek

 $A \notin \Pi_2^0(X) \implies \mathcal{K}(A) \notin \Sigma_1^1(\mathcal{K}(X)).$

Poznámka

 $A \in \Pi_1^1(X), \mathcal{K}(A) = \mathcal{K}(X) \setminus \{K \in \mathcal{K}(X) | \exists x \in (X \setminus A) \cap K\} \{(K, x) \in \mathcal{K}(X) \times X | x \in K\} \text{ is closed.}$

Definice 1.5

$$\Sigma_1^1(X) := \{ A \subset X | \exists Y \text{ PTS}, f : Y \to X \text{ continuous} : f(Y) = A \}.$$

 $Poznámka \quad \bullet \quad \varnothing \in \Sigma_1^1;$

- $\Pi_2^0(X) \subset \Sigma_1^1(X), f = id;$
- $X, Z \text{ PTS}, \psi : X \to Z \text{ continuous}, A \in \Sigma^1_1(X) \implies \psi(A) \in \Sigma^1_1(Z);$
- $\Sigma_{n+1}^1(X) = \{A \subset X | \exists Y \text{ PTS}, \psi : Y \to X \text{ continuous}, B \in \Pi_n^1(X), A = \psi(B)\}, n \in \omega \setminus \{\emptyset\};$
- $\Pi_n^1(X) = \{A \subset X | X \setminus A \in \Sigma_n^1(X)\}, \ \Delta_n^1(X) = \sum_n^1(X) \cap \Pi_n^1(X);$
- $\bigcup_{n\in\mathbb{N}} \Sigma^1_n(X) = \bigcup_{n\in\mathbb{N}} \Pi^1_n = \bigcup_{n\in\mathbb{N}} \Delta^1_n(x) = \mathbb{P}(X);$
- $\#\mathbb{P}(X) \leq 2^{\omega}$, $\mathbb{P}(X)$ is closed under continuous images and inverse images;
- $\Sigma^1_1(X) = \{A \subset X | \exists \psi : \omega^\omega \to X \text{ continuous} : \psi(\omega^\omega) = A\}; Y \text{ PTS}, f : Y \to X : f(Y) = A, g : \omega^\omega \to Y : g(\omega^\omega) = Y, g, f \text{ are constant. So } \psi = f \circ g.$

Věta 1.12

 $X \ PTS, \ A_n \in \Sigma^1_1(X), \ n \in \omega. \ Then \bigcup_{n \in \omega} A_n, \bigcap_{n \in \omega} A_n \in \Sigma^1_1(X).$

Důsledek

Similar for $\Pi_1^1(X)$.

 $D\mathring{u}kaz$

"Union": Assume $A_n \neq \emptyset$, $n \in \omega \implies \varphi_n : \omega^\omega \to X : \varphi_n(\omega^\omega) = A_n$ continuous. Define $\varphi : \omega^\omega \to X$ by $\varphi(\nu_0, \nu_1, \ldots) = \varphi_{\nu_0}(\nu_1, \nu_2, \ldots)$. " φ is continuous": $\nu^j \to \nu \implies \exists n_0 \in \omega \ \forall j \geqslant n_0 : \nu_0^j = \nu_0$.

$$\lim_{j\to\infty}\varphi(\nu^j)=\lim_{j\to\infty}\varphi_{\nu_0^j}(\nu_1^j,\nu_2^j,\ldots)=\lim_{j\to\infty}\varphi_{\nu_0}(\nu_1^j,\ldots)=\varphi_{\nu_0}(\nu_1,\ldots)=\varphi(\nu).$$

$$,\varphi(\omega^{\omega}) = \bigcup_{n \in \omega} A_n$$
":

$$x \in \bigcup A_n \implies \exists n \in \omega : x \in A_n \implies \exists \nu \in \omega^\omega : \varphi_n(\nu) = x \implies \varphi(n^{\hat{\ }}\nu) = x.$$

$$x \in \varphi(\omega^{\omega}) \implies \exists \tilde{\nu} \in \omega^{\omega} : \varphi(\tilde{\nu}) = x \implies x = \varphi_{\tilde{\nu}_0}(\tilde{\nu}_1, \ldots) \implies z \in A_{\tilde{\nu}_0} \implies x \in \bigcup A_n.$$

Poznámka (Intersection)

WLOG: $A_n \neq \emptyset$, $n \in \omega$. $Y := (\omega^{\omega})^{\omega}$, Y PTS by the theorem above (first item). $\varphi_n : \omega^{\omega} \to \omega$

X, meh that $\varphi_n(\omega^{\omega}) = A_n$.

$$F := \{ y = (y_0, y_1, \ldots) \in Y \mid \forall n, m \in \omega : \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_{n, m \in \omega} \{ y \in Y \mid \varphi_n(y_m) = \varphi_m(y_m) \} = \bigcap_$$

intersection of closed, so F is closed and is PTS.

$$,\varphi_0\circ\pi_0(F)=\bigcap_{n\in\omega}A_n$$
":

$$x \in \varphi_0 \circ \pi_0(F) \implies \exists y \in F : x = \varphi_0(y_0) = \varphi_1(y_1) = \varphi_2(y_2) = \dots \implies x \in \bigcap_{n \in \omega} A_n.$$

$$x \in \bigcap A_n \implies \exists y_0, y_1, \ldots \in \omega^\omega : \varphi_0(y_0) = x, \varphi_1(y_1) = x, \ldots \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 = x \implies y = (y_0, y_1, \ldots) \in F, \varphi_0 = x \implies y = (y_0, y_1, \ldots) \in F,$$

Poznámka

 $\Sigma_1^1(X)$ is not closed under complement: $\sigma(\Sigma_1^1(X)) \supset \Sigma_1^1(X) \cup \Pi_1^1(x)$.

$$Borel(X) \subset \Sigma_1^1(X) \cap \Pi_1^1(X) = \Delta_1^1(X).$$

Věta 1.13

 $X, Y PTS, A \in \Sigma^1_1(X)$ (respective $\Pi^1_1(X)$), $B \subset Y$, A and B are homeomorphism. Then $B \in \Sigma^1_1(Y)$ (resp. $\Pi^1_1(Y)$).

 $D\mathring{u}kaz$

For Σ^1_1 trivial. $A \in \Pi^1_1(X)$, $\varphi : A \to B$ homeomorphism. Then from the theorem above, $\exists \tilde{A} \in \Pi^0_2(X), \tilde{B} \in \Pi^0_2(Y)$ and $\tilde{\varphi} : \tilde{A} \to \tilde{B}$ homeomorphism extending $\varphi, A \subset \tilde{A}, B \subset \tilde{B}$. Then $\tilde{A} \backslash A = (X \backslash A) \cap \tilde{A} \in \Sigma^1_1(X) \Longrightarrow \tilde{B} \backslash B \in \Sigma^1_1(Y)$. $B = Y \backslash (\tilde{B} \backslash B \cup Y \backslash \tilde{B}) \in \Pi^1_1(Y)$. \Box

Věta 1.14

X PTS. Then $Borel(X) \subset \Delta_1^1(X)$.

 $D\mathring{u}kaz$

Trivial.

1.5 Luzin theorem

Věta 1.15 (Luzin)

X PTS, $A_1, A_2 \in \Sigma_1^1(X)$, $A_1 \cap A_2 = \emptyset$. Then there exists $B \in Borel(X)$, such that $A_1 \subset B \subset X \setminus A_2$.

Lemma 1.16

 $C_n, D_n \subset X$, $n, m \in \omega$ and $\forall n, m \in \omega$ we can separate C_n, D_m by some Borel set. Then we can separate $\bigcup_{n \in \omega} C_n$ and $\bigcup_{m \in \omega} D_m$ by Borel set.

 $D\mathring{u}kaz$

Let $B_{n,m} \in Borel(X)$ separating C_n from D_m ($C_n \subset B_{n,m} \subset X \setminus D_m$). Put $B := \bigcup_{n \in \omega} \bigcap_{m \in \omega} B_{n,m}$.

Důkaz (Luzin theorem)

Assume $A_1, A_2 \neq \emptyset$. Then exists $\varphi_1, \varphi_2 : \omega^{\omega} \to X \varphi_i(\omega^{\omega}) = A_i$. We assume A_1 can't be separated from A_2 by any Borel set.

$$A_i = \varphi_i(\omega^\omega) \implies A_i = \bigcup_{n \in \omega} \varphi_i(\mathcal{N}(n)) \implies \exists \nu_0, \mu_0 \in \omega : \varphi_i(\mathcal{N}(\mu_0)) \text{ can't be separated from } \varphi_2(\mathcal{N}(\nu_0)).$$

We use lemma again and obtain $\mu, \nu \in \omega^{\omega}$ such that $\forall k \in \omega : \varphi_1(\mathcal{N}(\mu/k))$ can't be separated from $\varphi_2(\mathcal{N}(\nu/k))$

$$\varphi_1(\mu) \in A_1, \varphi_2(\nu) \in A_2 \implies \varphi_1(\mu) \neq \varphi_2(\nu) \implies \exists G_1, G_2 \text{ open }, G_1 \cap G_2 = \emptyset$$

such that $\varphi_1(\mu) \in G_1$, $\varphi_2(\nu) \in G_2$, φ_1, φ_2 are continuous $\implies \exists k \in \omega : \varphi_1(\mathcal{N}(\mu/k)) \subset G_1$, $\varphi_2(\mathcal{N}(\nu/k)) \subset G_2$ which is continuous.

```
\begin{split} &Nap\check{r}\hat{\iota}klad\\ &\{f\in C([0,1])|\forall x\in[0,1]:f'(x)\in\mathbb{R}\}\in\Pi^1_1\backslash\Delta^1_1.\\ &\{f\in C([0,2\pi)|\text{ Fourier series converges to }f\text{ for every }x\in[0,2\pi]\}\in\Pi^1_1\backslash\Delta^1_1.\\ &\{K\in\mathcal{K}([0,1])||K|\leqslant\omega\}\,,\{K\in\mathcal{K}(\mathbb{R})|K\subset\mathbb{Q}\}\in\Pi^1_1\backslash\Delta^1_1. \end{split}
```

Například $\{x \in X | \exists y \in Y : (x, y) \in B\} \in \Sigma^1_1(X).$