

## **Quantum Computing**

The Future of Computation

Luke Keely



## Introduction to Quantum Computing

Quantum computing is likely to become a new standard for complex calculation and big data.

This presentation covers its fundamental principles, historical development, current status, and potential future applications.



## Basics of Quantum Mechanics

Quantum Mechanics is the physics that deals with really small particles.

Key principles;

**Superposition**, is the idea that a quantum system can exist in multiple states at once.

**Entanglement**, is a connection between particles where the state of one instantly influences another.



## Quantum vs Classical Computers

Classical computers use **bits** that are either 0 or 1 while quantum computers have **qubits** which can exist in **superposition**.

These qubits can be entangled.

These quantum principles allow complex operations, where some computations to be done over **100 million times faster**.



# Evolution of Quantum Computing

Milestones in Quantum Computing History:

- **1981**: Richard Feynman proposes the need for quantum computing to simulate quantum systems.
- **1994**: Peter Shor devises an algorithm for faster factorization of large numbers.
- **2019**: Google solves a problem in **200** seconds that would take a supercomputer **10,000** years.



Photograph of Theoretical Physicist Richard Feynman

#### **Current Advancements**

Big tech companies are working hard on quantum computing application.

- Microsoft: Developing Azure Quantum 'ecosystem' for cloud-based quantum programming.
- **Google**: Focusing on building fault-tolerant quantum computers and quantum chemistry simulations.
- **IBM**: Building advanced quantum hardware and offering cloud-based quantum computing services.



#### Future Advancements

**Advancements**: More reliable qubits and improved error correction algorithms, wider range of applications.

**Applications**: Short-term focus on database searching and material science; long-term potential in healthcare and AI.

**Hybrid Systems**: Algorithms that use both quantum and classical resources for real-world problem-solving.



#### Challenges

- **Security Risks**: Algorithms like Shor's could crack current encryption standards, leaving data vulnerable.
- Accessibility: High costs and technical expertise required could widen the digital divide.
- Ethical Concerns: Increased computing power could enable higher levels of mass surveillance and impact personal privacy.





## Thank you

Luke Keely

