

ls-Universität Heidelberg

Contents

Frequentist paradigm : convergence rates

Bayesian formulation : concentration rate

Contents

Frequentist paradigm : convergence rates

Bayesian formulation : concentration rate

Point-wise comparison of frequentist estimators

Point-wise comparison of frequentist estimators

• Measure the performance of a frequentist estimator $\widehat{\theta}_n$ using quadratic risk for a given parameter θ°

$$\mathbb{E}_{\theta^{\circ}}\left[d(\widehat{\theta}_{n},\theta^{\circ})^{2}\right]$$

 Measure the performance of a frequentist estimator using maximal risk over a class Θ° of parameters

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\widehat{\theta}, \theta^{\circ} \right)^{2} \right]$$

 Measure the performance of a frequentist estimator using maximal risk over a class Θ° of parameters

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\widehat{\theta}, \theta^{\circ} \right)^{2} \right]$$

$$\inf_{\tilde{\theta}} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d(\tilde{\theta}, \theta^{\circ})^{2} \right] \geq C_{1} \cdot \mathcal{R}_{n}^{\star} \left(\Theta^{\circ} \right)$$

 Measure the performance of a frequentist estimator using maximal risk over a class Θ° of parameters

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\widehat{\theta}, \theta^{\circ} \right)^{2} \right]$$

$$\inf_{\tilde{\theta}} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d(\tilde{\theta}, \theta^{\circ})^{2} \right] \geq C_{1} \cdot \mathcal{R}_{n}^{\star} \left(\Theta^{\circ} \right)$$

 Measure the performance of a frequentist estimator using maximal risk over a class Θ° of parameters

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\widehat{\theta}, \theta^{\circ} \right)^{2} \right]$$

$$\inf_{\tilde{\theta}} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d(\tilde{\theta}, \theta^{\circ})^{2} \right] \geq C_{1} \cdot \mathcal{R}_{n}^{\star} \left(\Theta^{\circ} \right)$$

 Measure the performance of a frequentist estimator using maximal risk over a class Θ° of parameters

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\widehat{\theta}, \theta^{\circ} \right)^{2} \right]$$

$$\inf_{\tilde{\theta}} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d(\tilde{\theta}, \theta^{\circ})^{2} \right] \geq C_{1} \cdot \mathcal{R}_{n}^{\star} \left(\Theta^{\circ} \right)$$

 Measure the performance of a frequentist estimator using maximal risk over a class Θ° of parameters

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\widehat{\theta}, \theta^{\circ} \right)^{2} \right]$$

$$\inf_{\tilde{\theta}} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\tilde{\theta}, \theta^{\circ} \right)^{2} \right] \geq C_{1} \cdot \mathcal{R}_{n}^{\star} \left(\Theta^{\circ} \right)$$

 Measure the performance of a frequentist estimator using maximal risk over a class Θ° of parameters

$$\sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\widehat{\theta}, \theta^{\circ} \right)^{2} \right]$$

▶ Goal : finding a lower bound $\mathscr{R}_n^{\star}(\Theta^{\circ})$...

$$\inf_{\tilde{\theta}} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d \left(\tilde{\theta}, \theta^{\circ} \right)^{2} \right] \geq C_{1} \cdot \mathcal{R}_{n}^{\star} \left(\Theta^{\circ} \right)$$

lacktriangleright ... which is reached by an estimator $\widehat{ heta}$

$$\sup_{\theta^0 \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[d(\widehat{\theta}, \theta^{\circ})^2 \right] \leq C_2 \cdot \mathcal{R}_n^{\star} \left(\Theta^{\circ} \right)$$

Contents

Frequentist paradigm: convergence rates

Bayesian formulation : concentration rate

Bayesian paradigm

Founding principles of the Bayesian paradigm

Let (Θ, \mathfrak{A}) be a measurable space $\boldsymbol{\theta}$ is a random variable $(\Omega, \mathfrak{F}) \to (\Theta, \mathfrak{A})$

$$\theta \sim \Pi$$

Denote by p_{θ} the density of Π with respect to a measure μ Posterior distribution

$$\forall \mathfrak{B} \in \mathfrak{A} \quad \Pi_{\boldsymbol{\theta}|Y}(\mathfrak{B}) = \frac{\int_{\mathfrak{B}} p_{\boldsymbol{\theta}}(Y) d\Pi(\boldsymbol{\theta})}{\int_{\Theta} p_{\boldsymbol{\theta}}(X) d\Pi(\boldsymbol{\theta})}$$

Taking a frequentist point of view

- ▶ θ° the true parameter
- ▶ Is $\Pi_{\theta|Y}$ shrinking around θ° as ϵ tends to 0?
- ► How fast?

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\boldsymbol{\theta} \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\boldsymbol{\theta} \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\boldsymbol{\theta} \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\boldsymbol{\theta} \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

• Concentration rate $(\phi_{\epsilon})_{\epsilon \in \mathbb{R}_+}$

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\theta \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

$$\lim_{\epsilon \to 0} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[\Pi_{\theta \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^{\circ} \right)^{2} \geq c \phi_{\epsilon} \right) \right] = 0$$

• Concentration rate $(\phi_{\epsilon})_{\epsilon \in \mathbb{R}_+}$

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\boldsymbol{\theta} \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

$$\lim_{\epsilon \to 0} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[\Pi_{\theta \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^{\circ} \right)^{2} \geq c \phi_{\epsilon} \right) \right] = 0$$

► Concentration rate $(\phi_{\epsilon})_{\epsilon \in \mathbb{R}_+}$

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\theta \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

$$\lim_{\epsilon \to 0} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[\Pi_{\boldsymbol{\theta} \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^{\circ} \right)^{2} \geq c \phi_{\varepsilon} \right) \right] = 0$$

► Concentration rate $(\phi_{\epsilon})_{\epsilon \in \mathbb{R}_+}$

$$\exists c \in \mathbb{R}_+, \quad \lim_{\epsilon \to 0} \mathbb{E}_{\theta^\circ} \left[\Pi_{\theta \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^\circ \right)^2 \geq c \phi_\epsilon \right) \right] = 0$$

$$\lim_{\epsilon \to 0} \sup_{\theta^{\circ} \in \Theta^{\circ}} \mathbb{E}_{\theta^{\circ}} \left[\Pi_{\boldsymbol{\theta} \mid Y} \left(d \left(\boldsymbol{\theta}, \theta^{\circ} \right)^{2} \geq c \phi_{\varepsilon} \right) \right] = 0$$

Contents

Frequentist paradigm: convergence rates

Bayesian formulation : concentration rate

