#### Automatic Digital Attendance Management System

#### **Project Students**

Pradeep KM – CSE, Year II Ranjeev Ram Prasad – IT, Year II Johann Sylvester J – ECE, Year II Gavutham K – Mechanical, Year II

**Project Guides** 

Dr. A. Beulah, AP, CSE Dept

Date: 19.08.2024



### **Outline of the Presentation**

- Introduction
- Objective
- System design
- Proposed System
- Bluetooth Positioning
- Deliverable
- Timeline
- Budget Utilization
- References



### Introduction

- Traditional attendance systems are slow and can be faulty.
- **ADAMS** is a project that uses an app to enable a fast and proxy free way of marking attendance.
- Student's own phones and Bluetooth beacons combine to determine if the students are inside the classroom.
- Facial recognition is used to confirm student identity.
- Easy maintenance and transfer of the data due to its digitization.
- Data analytics can be performed on the data which will provide useful insights to the students
- Applications: colleges, offices, warehouses, etc.



# **Objective**

To design an app capable of ensuring the person is within the classroom, which uses facial recognition to provide a two step verification and to perform data analytics on the stored attendance data.

#### **Problem Statement:**

- To ensure the person is within the classroom using a smart phone and Bluetooth beacons.
- To ensure if the right person is logging in to the app using facial recognition.
- Create a fast and convenient way for the staff to digitize the attendance.
- Use data analytics to provide insights on attendance details.



# System Design





#### **Peer-to-Peer Verification**

- First step in student location verification.
- The teacher's phone scans the vicinity for student phones. The
  phones are matched to the corresponding student by the UUID that
  is being advertised by the student's phone.
- These first set of students are marked as 'PP Verified'. These student phones then scan their surroundings and the 5 students whose phones are closest to each of them are also marked as 'PP Verified'.
- This process cascades until all the students are either marked present or a timeout occurs.



# Peer-to-Peer Verification





### **Bluetooth Beacon Verification**

- Once this stage is reached, Bluetooth beacons are used to negate the obvious false positives.
- The beacons are installed on the outer walls of classrooms.
- They will be able to detect the phones of students standing outside classrooms and immediately invalidate their attendance request.
- Even those students that have been 'PP Verified' will not get attendance if they fail at this stage as it indicates that the phone is actually not inside the classroom.



## Bluetooth Beacon Verification





# **Proposed System**

- Once a class is over, the teacher will open the attendance portal for that particular period for a certain amount of time.
- The Students who are assigned for that period will have a option to mark attendance when the teacher opens the portal.
- When the student tries to put attendance for a period, the two step verification takes place.
- First PP Verification happens to ensure that the students are grouped together inside the class.
- Firstly, using Bluetooth beacons the app make sure student is inside the classroom, if so then the students face recognition takes place to avoid proxy attendance.
- The app will be built using Flutter with Firebase and the backend will be built using Python Flask, MySQL and MongoDB.



# **THANK YOU**

