OLIMPIADA NAȚIONALĂ DE INFORMATICĂ

Piatra-Neamţ, 15-22 aprilie 2011 **Baraj, Proba 1**

Terenuri - Descriere solutie

stud. Gabriel Biţiș - Universitatea Oradea stud. Andrei Pârvu - Universitatea Politehnica Bucuresti

Descrierea soluției

Impartirea pe care o vor efectua taranii va forma diagrama Voronoi a setului de puncte format de casele acestora. Diagrama Voronoi a unui set de puncte S imparte planul in N poligoane convexe (inchise sau deschise). Fiecare poligon P_i are proprietatea ca toate punctele de pe suprafata acesteia sunt mai aproape de casa taranului i decat de casa oricarui alt taran.

Diagrama Voronoi a unui set S are proprietatea ca toate punctele care nu au asociat un poligon inchis vor fi cele de pe infasuratoarea convexa a lui S.

Problema se reduce la gasirea numarului de puncte de pe infasuratoarea convexa.

Solutie 60p

Se construieste infasuratoarea convexa pentru punctele initiale si se repeta algoritmul de fiecare data cand un nou punct se adauga in set.

Complexitate: O(M * N * log N)

Solutie 100p

Pentru inceput, vom face infasuratoarea convexa a primelor N puncte. Aceasta infasuratoare va genera un poligon convex, pentru care ii gasim punctul G (centrul de greutate). Vom sorta punctele dupa unghiul format cu punctul G, astfel incat vor forma o multime ordonata $S = \{S_1, S_2, ..., S_p\}$, unde p este numarul de puncte de pe infasuratoare. S va fi implementat ca un arbore de cautare echilibrat (se poate folosi structura set din STL).

Cand primim un nou punct (x, y) cautam intre care doua elemente din S il putem plasa dupa unghi. Avem doua cazuri:

- punctul (x, y) se afla in interiorul poligonului; in acest caz nu se intampla nimic
- punctul (x, y) se afla in exteriorul poligonului. Trebuie determinat intervalul [st, dr] din S astfel incat S_i (st <= i <= dr) nu va mai face parte din infasuratoarea convexa. Fiecare dintre aceste puncte se va scoate din S intr-o complexitate de O(logN), dupa care noul punct va fi inserat in S.

Deoarece fiecare punct este introdus si scos cel mult o data se obtine complexitatea finala de O(N * log N + M * log N).