Video Streaming and CDNs

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Video Streaming

Internet Video

37% of residential ISP traffic in 2015

16% of residential ISP traffic in 2015

Video characteristics

- Series of frames, 24 to 30 frames per second
 - each frame is an array of pixels
 - 640x480 (SD), 1280x720 (HD), 1920x1080 (full HD), 3840x2160 (4K)
- Lossless and lossy compression can reduce bit rate but may also reduce quality
- Typical compressed bitrates: 100kbps (low quality), 3 Mbps (HD), 10 Mbps (4K)
- 2 Mbps compressed video, 67 minutes = 1 GB

HTTP Streaming and DASH

- DASH: Dynamic Adaptive Streaming over HTTP
- store video on server
 - divide into 2 second chunks
 - encode each chunk with multiple bit rates
- client downloads using HTTP GET requests
 - fetch a low quality version
 - if received in plenty of time, fetch higher quality next time
 - if not going to be received in time, abort and fetch lower quality
 - constantly adjust rate as congestion allows
- allows client to easily adapt to varying conditions mobile to high-speed connectivity
- able to avoid freezing if adaptive algorithm is good
- able to use HTTP caches

Content Distribution Networks

Motivation

- streaming from a massive data center is infeasible
 - clients may be far away, with a transcontinental bottleneck
 - wasted bandwidth as popular videos sent many times to different clients
 - single point of failure

Content Distribution Network

- replicate content at many caches, in geographically diverse areas
- private (Google) or third-party (Akamai for Netflix and Hulu)

Content Distribution Network

- **enter deep**: locate servers in many ISPs close to users (Akamai)
- **bring home**: locate servers near IXPs and POPs near many ISPs, connect them with high-speed private links (Limelight)

CDN Operation

DNS

- company places content on CDN servers
- forwards DNS queries, e.g. video.company.com to server1.cdn.com

cluster selection

- CDN wants to forward client to nearest cluster
- geographical: route to cluster geographically closest to the requesting DNS server – may not be lowest delay
- real-time measurements: measure delay and loss between clusters and DNS servers, collect and use for selection
- IP anycast: give all CDN servers the same IP address and use BGP to route to closest one

Case Studies

Netflix

originally rented CDN servers from a third party, now has private CDN in IXPs and ISPs

YouTube

- private CDN
- use DNS to redirect client to a cluster
 - usually smallest RTT between client and cluster
 - may be directed to more distant cluster for load balancing
 - may also be redirected if cluster doesn't have the file
- does not use adaptive streaming

Kankan

- P2P video distribution, in China
- similar to BitTorrent
 - contact tracker
 - download chunks of video from peers in parallel
 - focus on downloading chunks needed soon
- swarms of 10,000+ peers for popular videos
- recently added a CDN for initial loading of video and as a fallback if P2P download rate is too slow