Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona

UNIVERSITAT POLITÈCNICA DE CATALUNYA

15 de Juny de 2010

MICROONES

DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS

PROBLEMA 1

Es disposa d'un quadripol passiu, recíproc i sense pèrdues. Si es connecta la porta 2 a una resistència de 50Ω el coeficient de reflexió d'entrada a la porta 1 referit a 50Ω és:

 $\Gamma_{in}=0.45_{\angle 26,5^{\circ}}$. I si es connecta la porta 1 a una resistència de 50Ω , llavors el coeficient de reflexió de sortida a la porta 2 és $\Gamma_{out}=0.45_{\angle 50^{\circ}}$.

a) Calculi els quatre paràmetres S referits a $Z_0=50\Omega$ del quadripol en mòdul i fase.

Com és passiu, sense pèrdues i recíproc, els quatre paràmetres S cumpliran:

$$\begin{split} S_{11} &= |S_{11}| e^{\varphi_{11}} \\ S_{12} &= S_{21} = \sqrt{1 - |S_{11}|^2} e^{\varphi_{12}} \\ S_{22} &= |S_{11}| e^{\pm \pi + 2\varphi_{12} - \varphi_{11}} \end{split}$$

Quan es connecta a la porta 2 una resistència de 50Ω , a l'entrada es veu el paràmetre S_{11} , per tant:

$$S_{11} = |S_{11}|e^{\varphi_{11}} = 0.45_{.26.5^{\circ}}$$

Quan es connecta a la porta 1 una resistència de 50Ω , a la sortida es veu el paràmetre S_{22} :

$$S_{22} = |S_{11}| e^{\pm \pi + 2\varphi_{12} - \varphi_{11}} = 0.45_{\angle 50^{\circ}}$$

Per tant,

$$\pm \pi + 2\varphi_{12} - 26.5 \frac{\pi}{180} = 50 \frac{\pi}{180}$$

Hi ha dues solucions. Agafem una de les dues.

$$\varphi_{12} = 128,5$$

I el mòdul:

$$|S_{12}| = \sqrt{1 - |S_{11}|^2} = 0.89$$

Podem escriure la matriu de paràmetres S:

$$[S] = \begin{bmatrix} 0.45_{\angle 26,6} & 0.89_{\angle 128,5} \\ 0.89_{\angle 128,5} & 0.45_{\angle 50} \end{bmatrix}$$

b) Si el quadripol està format per una línia de transmissió de longitud $\lambda/4$ i impedància característica ${Z_0}' \neq {Z_0}$, connectada a les portes amb trams de línia de transmissió d'impedància característica ${Z_0} = 50\Omega$ i longituds ℓ_1 i ℓ_2 , calculi ${Z_0}'$, ℓ_1/λ i ℓ_2/λ .

Les línies d'entrada i sortida només canvien les fases. Per tant, podem calcular els

paràmetres S que tindríem només amb la línia $\lambda/4$ que sabem que S₁₁ serà real. Suposem en aquest cas S₁₁ real i negatiu:

$$S_{11} = -0.45 \rightarrow Z_{in} = \frac{1 + S_{11}}{1 - S_{11}} Z_0 = 18,97\Omega$$

I llavors per ser una línia de longitud $\lambda/4$:

$$Z_{in} = \frac{(Z'_0)^2}{Z_0} \rightarrow \boxed{Z'_0 = 30,79\Omega}$$

Ara trobem les longituds de les línies:

$$S'_{11} = 0.45_{\angle 26.6} = 0.45e^{j26.5\frac{\pi}{180}} = 0.45e^{j(\pm \pi - 2\beta\ell_1)}$$

Per tant,

$$\pm \pi - 2\beta \ell_1 = 26.5 \frac{\pi}{180} \rightarrow 2\beta \ell_1 = 153.5 \frac{\pi}{180} \rightarrow \frac{\ell_1}{\lambda} = 0.213$$

I per la porta de sortida:

$$\pm \pi - 2\beta \ell_2 = 50 \frac{\pi}{180} \rightarrow 2\beta \ell_2 = 130 \frac{\pi}{180} \rightarrow \frac{\ell_2}{\lambda} = 0.181$$

PROBLEMA 2

Els circuladors de quatre portes fets amb desfasadors no recíprocs tenen la seva aplicació

en sistemes d'alta potència (figura 1). En la figura 2 es pot veure un circuit equivalent fet amb dos híbrids de 3 dB i dos desfasadors no recíprocs. A partir dels esquemes de la figura 2.

 a) Considerant la numeració dels ports de la figura 2, escriviu la matriu de paràmetres S dels híbrids i dels desfasadors. Els desfasadors tenen els dos ports adaptats (Sii=0).

Fig. 1 Circulador de quatre portes fet amb guies d'ones i ferrites

Fig. 2 Circuit equivalent del circulador

Híbrid de l'esquerra:
$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Híbrido de la dreta:
$$[S] = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & -j & 0 & 1 \\ -j & 0 & 1 & 0 \\ 0 & 1 & 0 & -j \\ 1 & 0 & -j & 0 \end{bmatrix}$$

Desfasador superior:
$$[S] = \begin{bmatrix} 0 & j \\ 1 & 0 \end{bmatrix}$$

Desfasador inferior:
$$[S] = \begin{bmatrix} 0 & 1 \\ j & 0 \end{bmatrix}$$

b) Calculeu la matriu de paràmetres S del circulador. Quin és el sentit de la circulació segons l'esquema b de la figura 2 (justifiqueu la resposta)?

Suposem que entra senyal per la porta 1: $a_1 \neq 0$ i $a_2 = a_3 = a_4 = 0$

Per la porta 1 no surt res (està adaptada i a més no es reflecteix senyal des de cap porta): $b_1=0 \to \overline{S_{11}=0}$

Per la porta 2 surt la suma dels senyals que entren per les portes 1" i 3", però que al final s'anul·len:

$$b_2 = \frac{1}{\sqrt{2}}(a_3'' - ja_1'') = \frac{1}{\sqrt{2}}(jb_2' - jb_4') = \frac{1}{2}(ja_1 - ja_1) = 0 \to \boxed{S_{21} = 0}$$

Per la porta 3 no surt res (està aïllada de la 1 i no es reflecteix res de les altres portes):

$$b_3 = 0 \to \boxed{S_{31} = 0}$$

Finalment a la porta 4 hi arriba també la suma de dues senyals:

$$b_4 = \frac{1}{\sqrt{2}}(-ja_3'' + a_1'') = \frac{1}{\sqrt{2}}(b_2' + b_4') = \frac{1}{2}(a_1 + a_1) = a_1 \to \boxed{S_{41} = 1}$$

Fem al mateix amb el senyal que entra per la porta 2: $a_2 \neq 0$ i $a_1 = a_3 = a_4 = 0$ Senyal a la porta 1:

$$b_1 = \frac{1}{\sqrt{2}}(a_4' + a_2') = \frac{1}{\sqrt{2}}(jb_1'' + b_3'') = \frac{1}{2}(a_2 + a_2) = a_2 \to \boxed{S_{12} = 1}$$

Senyal a la porta 2: $b_2 = 0 \rightarrow S_{22} = 0$

Senyal a la porta 3:

$$b_3 = \frac{1}{\sqrt{2}}(a_4' - a_2') = \frac{1}{\sqrt{2}}(jb_1'' - b_3'') = \frac{1}{2}(a_2 - a_2) = 0 \to \boxed{S_{32} = 0}$$

I finalment a la porta 4 tampoc tenim senyal per estar aïllada:

$$b_4 = 0 \rightarrow \boxed{S_{42} = 0}$$

Quan entra senyal per la porta 3: $a_3 \neq 0$ i $a_1 = a_2 = a_4 = 0$ Sortides:

$$b_1 = 0 \rightarrow \boxed{S_{13} = 0}$$

$$b_{2} = \frac{1}{\sqrt{2}}(a_{3}^{"} - ja_{1}^{"}) = \frac{1}{\sqrt{2}}(jb_{2}^{'} - jb_{4}^{'}) = \frac{1}{2}(-ja_{3} - ja_{3}) = -j \ a_{3} \rightarrow \boxed{S_{23} = -j}$$

$$b_{3} = 0 \rightarrow \boxed{S_{33} = 0}$$

$$b_{4} = \frac{1}{\sqrt{2}}(-ja_{3}^{"} + a_{1}^{"}) = \frac{1}{\sqrt{2}}(b_{2}^{'} + b_{4}^{'}) = \frac{1}{2}(-a_{3} + a_{3}) = 0 \rightarrow \boxed{S_{43} = 0}$$

Només ens queda quan entra senyal per la porta 4: $a_4 \neq 0$ i $a_1 = a_2 = a_3 = 0$ Sortides:

$$b_{1} = \frac{1}{\sqrt{2}}(a'_{4} + a'_{2}) = \frac{1}{\sqrt{2}}(jb''_{1} + b''_{3}) = \frac{1}{2}(ja_{4} + -ja_{2}) = 0 \rightarrow \boxed{S_{41} = 0}$$

$$b_{2} = 0 \rightarrow \boxed{S_{42} = 0}$$

$$b_{3} = \frac{1}{\sqrt{2}}(a'_{4} - a'_{2}) = \frac{1}{\sqrt{2}}(jb''_{1} - b''_{3}) = \frac{1}{2}(ja_{4} + ja_{4}) = ja_{4} \rightarrow \boxed{S_{43} = j}$$

$$b_{4} = 0 \rightarrow \boxed{S_{44} = 0}$$

Resumint, els paràmetres S queden:

$$[S] = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -j & 0 \\ 0 & 0 & 0 & j \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

El sentit de circulació es contrari a les agulles del rellotge doncs el senyal que entra per la porta 1 surt per la 4, la que entra per la 2 surt per la 1, etc.:

Es desitja utilitzar aquest circulador com a duplexor en un sistema radar. Per això es connecta un generador canònic de 10 kW de potència disponible en el port 1, una antena en el port 4, una càrrega Z_3 en el port 3 i un atenuador de 40 dB amb un receptor en el port 2 (figura 2). Tant l'antena com la càrrega Z_3 presenten una SWR=2 ($|\Gamma|$ =(SWR-1)/(SWR+1)). Calcular:

c) La potència que es dissipa en el receptor produïda per la desadaptació de l'antena en transmissió.

La potència dissipada en el receptor serà:

$$P_L = \frac{1}{2}(|b_L|^2 - |a_L|^2) = \frac{1}{2}|b_L|^2 = \frac{1}{2}\alpha^2|b_2|^2$$

On α és l'atenuació de 40 dB en lineal: $\alpha^2 = 10^{-4}$

S'ha de posar el valor de b₂ en funció del senyal d'entrada:

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -j & 0 \\ 0 & 0 & 0 & j \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ 0 \\ \Gamma b_3 \\ \Gamma b_4 \end{bmatrix}$$

$$b_2 = -j\Gamma b_3 = -j\Gamma j\Gamma b_4 = \Gamma^2 a_1$$

Per tant

$$P_L = \frac{1}{2}\alpha^2 |b_2|^2 = \frac{1}{2}\alpha^2 |\Gamma|^4 |a_1|^2 = \alpha^2 |\Gamma|^4 P_{avs}$$

Només queda substituir: $|\Gamma| = \frac{SWR-1}{SWR+1} = \frac{1}{3}$

$$P_L = \alpha^2 |\Gamma|^4 P_{avs} = 10^{-4} \frac{1}{81} 10^4 W = 12{,}35 mW$$

d) Quina potència es reflectiria cap el generador, en el cas de l'apartat anterior, si la càrrega del receptor presentés també una SWR=2

$$\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -j & 0 \\ 0 & 0 & 0 & j \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ \Gamma \alpha^2 b_2 \\ \Gamma b_3 \\ \Gamma b_4 \end{bmatrix}$$

Ara necessitem conèixer b₁:

$$b_1 = \Gamma b_2 = \Gamma^3 \alpha^2 a_1$$

Per tant, la potència reflectida cap a generador és:

$$P_1^+ = |\Gamma|^6 \alpha^4 P_{avs} = 10^{-8} \frac{1}{729} 10^4 W = 0.14 \mu W$$

PROBLEMA 3

Es vol dissenyar un filtre passa-banda de Chebyschev amb un arrissat de 0,5 dB entre les freqüències de 4.8 GHz i 5.2 GHz. El filtre ha de presentar una atenuació mínima de 20 dB a la freqüència de 6 GHz. S'adjunten les gràfiques necessàries per calcular l'ordre del filtre així com les taules dels elements del prototipus passa-baix equivalent. El filtre es farà amb línies acoblades *stripline* amb un substrat de constant dielèctrica relativa $\varepsilon_r = 2,17$. Considereu Z_0 =50 Ω .

ELEMENT VALUES FOR TCHEBYSCHEFF FILTERS HAVING
$$g_0 = 1$$
, $\omega_1' = 1$
Cases of $n = 1$ to 10

VALUE OF n	s 1	8 2	8 3	8 4	8 5	₈ 6	8 7	£ 8	89	8 ₁₀	s ₁₁
					0.5 db	ripple					
1 2 3 4 5 6 7 8 9	0.6986 1.4029 1.5963 1.6703 1.7058 1.7254 1.7372 1.7451 1.7504 1.7543	1.0000 0.7071 1.0967 1.1926 1.2296 1.2479 1.2583 1.2647 1.2690 1.2721	1.9841 1.5963 2.3661 2.5408 2.6064 2.6381 2.6564 2.6678 2.6754	1.0000 0.8419 1:2296 1.3137 1.3444 1.3590 1.3673 1.3725	1.9841 1.7058 2.4753 2.6381 2.6964 2.7239 2.7392	1.0000 0.8696 1.2583 1.3389 1.3673 1.3806	1.9841 1.7372 2.5093 2.6678 2.7231	1.0000 0.8796 1.2690 1.3485	1.9841 1.7504 2.5239	1.0000 0.8842	1.984

Relacions entre constants d'inversió i elements del prototip passa-baix:

$$\begin{split} \overline{J}_{01} &= \sqrt{\frac{\pi W}{2\,g_1}} \;, \qquad \qquad \overline{J}_{i,i+1} = \frac{\pi W}{2\,\sqrt{g_i g_{i+1}}} \;, \\ \overline{J}_{n,n+1} &= \sqrt{\frac{\pi W}{2\,g_n \,g_{n+1}}} \;, \; \text{amb} \; n \; \text{l'ordre del filtre}. \\ \overline{Z}_{0e_i} &= \sqrt{1 + \overline{J}_{i-1,i}^2} + \overline{J}_{i-1,i} \\ \overline{Z}_{0o_i} &= \sqrt{1 + \overline{J}_{i-1,i}^2} - \overline{J}_{i-1,i} \end{split}$$

a) Plantilla del filtre passa-banda i del equivalent pas baix.

Calculem frequència central del filtre i l'ample de banda relatiu:

$$f_0 = \sqrt{f_1 f_2} = 5 GHz, \quad W = \frac{f_2 - f_1}{f_0} = 0.08$$

Per tant, per l'equivalent pas baix apliquem la transformació de freqüència:

$$\frac{\omega'}{\omega'_1} = \frac{1}{W} \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} \right) \text{ i obtenim:}$$

P f	$\frac{\omega'}{\omega'_1}$
4,8	-1
5,2	0
5	+1
6	4,6

b) Ordre del filtre necessari per assolir les especificacions.

Agafem ω_1 '=1. Localitzem a la gràfica la $|\omega'|$ -1=3,6 i veiem que a aquesta freqüència per aconseguir tenir una atenuació de 20 dB com a mínim, necessitem n=2.

c) Constants dels inversors.

De la taula adjunta, trobem els valors dels elements del prototipus pas baix.

ELEMENT VALUES FOR TCHEBYSCHEFF FILTERS HAVING
$$g_0 = 1$$
, $\omega_1' = 1$
Cases of $n = 1$ to 10

VALUE OF n	s 1	8 2	8 3	8 4	8 5	8 6	87	8 8	89	8 10	8 11
					0.5 db	ripple					
1	0.6986	1.0000	1 0041								
3	1.4029	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1:2296	1.7058	1.0000					ľ
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841	1 0000			
8	1.7372	1.2583	2.6381	1.3444	2.6381 2.6964	1.2583	1.7372	1.0000	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	1
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.984

Per tant, les constants dels inversors d'admitàncies son:

$$\overline{J}_{01} = \sqrt{\frac{\pi W}{2 g_1}} = 0.3$$
 $\overline{J}_{1,2} = \frac{\pi W}{2 \sqrt{g_1 g_2}} = 0.126$ $\overline{J}_{2,3} = \sqrt{\frac{\pi W}{2 g_2 g_3}} = \overline{J}_{0,1} = 0.3$

d) Impedàncies en mode parell e imparell.

$$\begin{split} \overline{Z}_{0e_1} &= \sqrt{1 + \overline{J}_{0,1}^2} + \overline{J}_{0,1} = 1,344 = \overline{Z}_{0e_3} \\ \overline{Z}_{0e_1} &= \sqrt{1 + \overline{J}_{0,1}^2} - \overline{J}_{0,1} = 0,744 = \overline{Z}_{0e_3} \\ \overline{Z}_{0e_2} &= \sqrt{1 + \overline{J}_{1,2}^2} + \overline{J}_{1,2} = 1,134 \\ \overline{Z}_{0e_3} &= \sqrt{1 + \overline{J}_{1,2}^2} - \overline{J}_{1,2} = 0,882 \end{split}$$

e) L'amplada de les línies acoblades i la seva separació aproximadament, si el gruix del substrat és $b = 0.8 \ mm$

Desnormalitzem les impedàncies respecte a 50Ω :

$$Z_{0e_1} = Z_{0e_2} = 67,2\Omega$$

$$Z_{0e_2} = 56,7\Omega$$

$$Z_{0o_1} = Z_{0o_3} = 37,2\Omega$$

$$Z_{0o_2} = 44,1\Omega$$

I a partir d'aquests valors fem servir la gràfica adjunta per calcular l'amplada i la separació de les línies:

Primer i últim parell de línees acoblades:

$$\sqrt{\varepsilon_r} Z_{0e_1} = 99$$

$$\sqrt{\varepsilon_r}Z_{0o_1}=54.8$$

El punt que obtenim (línies negres) és:

$$w/b = 0.75 \rightarrow w = 0.6mm$$

$$s/b = 0.05 \rightarrow s = 0.04mm$$

Segon parell de línies acoblades:

$$\sqrt{\varepsilon_r}Z_{0e_2} = 83.5$$

$$\sqrt{\varepsilon_r} Z_{0o_2} = 65$$

El punt que obtenim en aquest cas (línies vermelles) és:

$$w/b = 0.8 \rightarrow w = 0.64mm$$

$$s/b = 0.2 \rightarrow s = 0.16mm$$

Tots són valors molt aproximats!

f) Longitud (en mm) de les línies. Fes un dibuix esquemàtic del filtre.

Les línies totes fan $\lambda_0/4$, per tant, primer calculem la longitud d'ona:

$$\lambda_0 = \frac{c}{\sqrt{\varepsilon_r} f_0} = 40,73mm \to \ell = 10,18mm$$

g) Valor dels acoblaments (en dB) entre les línies acoblades.

$$\alpha_1 = \alpha_3 = \frac{\overline{J}_{01}}{\sqrt{1 + \overline{J}_{01}^2}} = 0,287 \longrightarrow 10,8dB$$

$$\alpha_2 = \frac{\overline{J}_{12}}{\sqrt{1 + \overline{J}_{12}^2}} = 0,125 \longrightarrow 18dB$$

h) Si el filtre s'intercala entre un generador canónic de 10 dBm de potència disponible i una càrrega de 50Ω , trobi la potència dissipada a la càrrega a les freqüències 5 GHz i 6 GHz.

$$P_L = P_{avs}|S_{21}|^2$$

On P_{avs} és la potència disponible de generador.

5 GHz és la freqüència central del filtre, i per tant per ser d'ordre parell presenta una atenuació igual a l'arrissat. Per tant, 0,5dB. Llavors P_L=9,5 dBm

A 6 GHz, mirant la gràfica de les atenuacions del filtre es pot veure que per a aquesta freqüència l'atenuació és de 24 dB. Per tant, P_L=-14 dBm

i) Pèrdues de retorn a la freqüència de 6 GHZ.

Tenint en compte que el filtre no té pèrdues:

$$|S_{11}|^2 + |S_{21}|^2 = 1 \rightarrow |S_{11}|^2 = 0.996 \rightarrow 0.017 dB$$

Per tant, pràcticament tot està retornant per la porta d'entrada.

j) Amplitud dels paràmetres S del filtre a 5 GHz

$$|S_{21}| = 10^{-0.5/20} = 0.94$$

$$|S_{11}|^2 + |S_{21}|^2 = 1 \rightarrow |S_{11}| = 0.33$$

PROBLEMA 4

DADES:

Es vol dissenyar un amplificador, a la freqüència de 5GHz, basat en l'estructura de la figura. Les xarxes d'adaptació estan realitzades amb línea de transmissió *Stripline* de ϵ_r =4. Del transistor se saben els seus paràmetres S, així com el seu coeficient òptim de soroll:

$$[S] = \begin{bmatrix} 0.6_{\angle 150^{\circ}} & 0.04_{\angle 30^{\circ}} \\ 3.0_{\angle 60^{\circ}} & 0.7_{\angle -45^{\circ}} \end{bmatrix} ; \Gamma_{opt} = 0.5_{\angle 180^{\circ}}$$

$$G_{T} = \frac{\left(1 - \left|\Gamma_{g}\right|^{2}\right)\left|S_{21}\right|^{2}\left(1 - \left|\Gamma_{L}\right|^{2}\right)}{\left|\left(1 - S_{11}\Gamma_{g}\right)\left(1 - S_{22}\Gamma_{L}\right) - S_{12}S_{21}\Gamma_{g}\Gamma_{L}\right|^{2}}$$

 $Z_0 = 50\Omega$

$$\ell_2 = 7.89mm$$
; $C = 0.89 pF$

a) Calculi el coeficient de reflexió de càrrega, Γ_{L} .

Longitud d'ona:
$$\lambda = \frac{3.10^8}{\sqrt{4}.5.10^9} = 30 mm$$

Per tant,
$$\frac{\ell_3}{\lambda} = 0.263$$

L'admitància davant la capacitat:

$$\bar{Y}_1=1+j\omega\bar{C}=1+j2\pi f\bar{C}=1+j1,4$$

Situem aquest punt a la carta de Smith (grog) i ens movem cap a generador $\ell_3 = 0.263\lambda$ (verd).

Obtenim:
$$\bar{Y}_L = 0.31 - j0.38$$

I girant al diametralment oposat trobem la impedància i el coeficient de reflexió demanat:

$$\bar{Z}_L = 1,27 + j1,56$$

 $\Gamma_L = 0,57_{\angle 45^{\circ}}$

b) Si es vol dissenyar l'amplificador sota criteri de mínim factor de soroll, calculi, per la

b.1) La solució que assegura la longitud, **en mil·límetres**, més curta per ℓ_2

Mínim factor de soroll:
$$\Gamma_S = \Gamma_{opt} = -0.5$$

xarxa d'entrada:

Dibuixem aquest valor a la C.S. A partir del diametralment oposat (admitància) ens movem cap a càrrega fins que la part real sigui igual a 1. Llavors:

$$\bar{Y}_1 = 1 + j1,15 i \ \ell_2 = 0,084\lambda = 2,52mm$$

b.2) La solució per ℓ_1 , **en mil·límetres**, associada a aquest ℓ_2

Per saber la longitud de l'stub, fixem el valor que es vol sintetitzar:

$$\bar{Y}_{stub} = j1,15$$

Partim del circuit obert d'admitàncies i ens movem cap a generador fins a aquest valor. Llavors: $\ell_2 = 0.136\lambda = 4.08mm$

- c) Sota aproximació de transistor unilateral i assumint les condicions de disseny de l'apartat b), determini:
 - c.1) El guany per a adaptació a l'entrada

$$G_S = \frac{1 - \left|\Gamma_g\right|^2}{\left|1 - S_{11}\Gamma_g\right|^2} = \frac{1 - 0.25}{\left|1 - 0.6 * 0.5_{230}\right|^2} = 1.315 \to G_S(dB) = 1.19 \ dB$$

c.2) El guany per a adaptació a la sortida

$$G_L = \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2} = \frac{1 - 057^2}{|1 - 0.7 * 0.57_{\angle 0}|^2} = 1.87 \to G_L(dB) = 2.72 \ dB$$

c.3) El Guany intrínsec.

$$G_I = |S_{21}|^2 = 9 \rightarrow G_I(dB) = 9.54 dB$$

d) Si es canvien les condicions i ara s'exigeix maximitzar el guany de l'amplificador tot mantenint la xarxa de sortida i la condició de transistor unilateral, determini:

d.1) El valor triat per $\Gamma_{_{g}}$

$$\Gamma_S = S_{11}^* = 0.6_{\angle -150}$$

d.2) una possible solució per ℓ_1 i ℓ_2 (en mil·límetres).

Situem el valor de partida a la Carta de Smith. Partim del diametralment oposat per treballar amb admitàncies. Ens movem cap a càrrega fins que la part real de l'admitància sigui igual a 1. Llavors, $\ell_2=0.032\lambda=0.96~mm$ i l'admitància és igual a: $\bar{Y}_1=1+j1.5$

Igual que abans partint del circuit obert d'admitàncies ens movem cap a generador fins al valor de l'admitància del stub.

Llavors
$$\ell_1 = 0.156\lambda = 4.68 \, mm$$

e) Pel cas de transistor sense aproximació unilateral, i segons els $\Gamma_{\!\scriptscriptstyle L}$ de l'apartat a) i la xarxa calculada en l'apartat b), És el circuit

final estable?, Perquè? (NOTA: Justifiqui-ho tant a l'entrada com a la sortida)

Per saber si és estable, s'ha de calcular els coeficients de reflexió a l'entrada i a la sortida del transistor i veure si el mòdul és més petit que 1.

$$|\Gamma_{in}| = \left| S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L} \right| = \left| 0.6_{\angle 150} + \frac{0.0684_{\angle 135}}{1 - 0.4_{\angle 0^{\circ}}} \right| = |0.6_{\angle 150} + 0.114_{\angle 135}| = 0.71$$

$$|\Gamma_{out}| = \left| S_{22} + \frac{S_{12}S_{21}\Gamma_g}{1 - S_{11}\Gamma_g} \right| = \left| 0.7_{\angle -45} + \frac{0.06_{\angle -90}}{1 - 0.3_{\angle -30^{\circ}}} \right| = 0.75$$

Per tant, aquesta solució és estable tan a l'entrada com a la sortida.