WP Projekt (WPS90) Stand: 16.12.2019

Inhaltsverzeichnis

WP Projekt (WPS90)	1
Projektziel	1
Vorbereitung	1
HW Bauteile	2
Arduino MEGA 2560	2
Anschlussbelegung im Programm zu Arduino MEGA 2560	5
Anzeige	5
Sensoren	6
Temperatur	6
Sicherheit	6
Netzteil	7
Sonstiges	7

Projektziel

Steuereinheit für eine Wärmepumpe (hier am Beispiel einer Buderus WPS90). Schritt für Schritt erklärt und geeignet auch für Neueinsteiger!

Die Kosten für die HW beginnen je nach Quelle ab 20€.

Infos

Video-Anleitungen unter Youtube-Kanal: mytest4u https://youtu.be/o-gwlNiRjjg

Vorbereitung

Download: https://www.arduino.cc/en/Main/Software Entwicklungsumgebung Arduino IDE z.B. 1.8.5 oder höher.

Software zur Wärmepumpe

https://github.com/mytest4u/heat_pump_WPS

YT: Mytest4u 1von7

HW Bauteile

Übersicht:

- Arduino MEGA 2560 z.B. https://amzn.to/2YC9jKm oder https://amzn.to/2E97GdL

- 8-Relais Modul z.B. https://amzn.to/2qIHKTj oder

https://amzn.to/2DCvTcD

- Halbleiterrelais-Modul z.B. https://amzn.to/2PbuiAy

- OLED LCD Display Module SSD1306 z.B. https://amzn.to/2PE23JM

- Leiterplatten für Anschluß Sensoren z.B. https://amzn.to/2PzzX2E

- Alle Bauteile in einem Set (4 Tasten, 8x 1kOhm, 2x 10 kOhm) z.B. https://amzn.to/35fbiqr

Werkzeuge

- Lötzinn:

- Lötstation: https://amzn.to/2vrhxqW

Arduino MEGA 2560

Power

The Mega 2560 has a resettable polyfuse that protects your computer's USB ports. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed. The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may supply less than five volts and the board may become unstable.

The power pins are as follows:

• Vin. The input voltage to the board when it's using an external power source (as opposed to 5 volts from the USB connection or other regulated power source). You can supply voltage through this pin, or, if supplying voltage via the power jack, access it through this pin.

YT: Mytest4u 2von7

- 5V. This pin outputs a regulated 5V from the regulator on the board. The board can be supplied with power either from the DC power jack (7 12V), the USB connector (5V), or the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins bypasses the regulator, and can damage your board. We don't advise it.
- 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
- GND. Ground pins.
- IOREF. This pin on the board provides the voltage reference with which the microcontroller operates. A properly configured shield can read the IOREF pin voltage and select the appropriate power source or enable voltage translators on the outputs for working with the 5V or 3.3V.

Memory

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of SRAM and 4 KB of EEPROM (which can be read and written with the EEPROM library).

Anschlussübersicht Arduino MEGA 2560

Pin Number	Pin Name	Mapped Pin Name	Projekt WP
1	PG5 (OC0B)	Digital pin 4 (PWM)	
2	PE0 (RXD0/PCINT8)	Digital pin 0 (RX0)	X
3	PE1 (TXD0)	Digital pin 1 (TX0)	X
4	PE2 (XCK0/AIN0)		
5	PE3 (OC3A/AIN1)	Digital pin 5 (PWM)	
6	PE4 (OC3B/INT4)	Digital pin 2 (PWM)	
7	PE5 (OC3C/INT5)	Digital pin 3 (PWM)	
8	PE6 (T3/INT6)		
9	PE7 (CLKO/ICP3/INT7)		
10	VCC	VCC	X
11	GND	GND	X
12	PH0 (RXD2)	Digital pin 17 (RX2)	
13	PH1 (TXD2)	Digital pin 16 (TX2)	
14	PH2 (XCK2)		
15	PH3 (OC4A)	Digital pin 6 (PWM)	X
16	PH4 (OC4B)	Digital pin 7 (PWM)	X
17	PH5 (OC4C)	Digital pin 8 (PWM)	X
18	PH6 (OC2B)	Digital pin 9 (PWM)	X
19	PB0 (SS/PCINT0)	Digital pin 53 (SS)	
20	PB1 (SCK/PCINT1)	Digital pin 52 (SCK)	
21	PB2 (MOSI/PCINT2)	Digital pin 51 (MOSI)	
22	PB3 (MISO/PCINT3)	Digital pin 50 (MISO)	
23	PB4 (OC2A/PCINT4)	Digital pin 10 (PWM)	X
24	PB5 (OC1A/PCINT5)	Digital pin 11 (PWM)	X
25	PB6 (OC1B/PCINT6)	Digital pin 12 (PWM)	X
26	PB7 (OC0A/OC1C/PCINT7)	Digital pin 13 (PWM)	X
27	PH7 (T4)		
28	PG3 (TOSC2)		
29	PG4 (TOSC1)		
30	RESET	RESET	

YT: Mytest4u 3von7

31	VCC	VCC	
32	GND	GND	
33	XTAL2	XTAL2	
34	XTAL1	XTAL1	
35	PL0 (ICP4)	Digital pin 49	
36	PL1 (ICP5)	Digital pin 48	
37	PL2 (T5)	Digital pin 47	
38	PL3 (OC5A)	Digital pin 46 (PWM)	
39	PL4 (OC5B)	Digital pin 45 (PWM)	
40	PL5 (OC5C)	Digital pin 44 (PWM)	
41	PL6	Digital pin 43	
42	PL7	Digital pin 42	
43	PD0 (SCL/INT0)	Digital pin 21 (SCL)	
44	PD1 (SDA/INT1)	Digital pin 20 (SDA)	
45	PD2 (RXDI/INT2)	Digital pin 19 (RX1)	
46	PD3 (TXD1/INT3)	Digital pin 18 (TX1)	
47	PD4 (ICP1)		
48	PD5 (XCK1)		
49	PD6 (T1)		
50	PD7 (T0)	Digital pin 38	
51	PG0 (WR)	Digital pin 41	
52	PG1 (RD)	Digital pin 40	
53	PC0 (A8)	Digital pin 37	
54	PC1 (A9)	Digital pin 36	
55	PC2 (A10)	Digital pin 35	
56	PC3 (A11)	Digital pin 34	
57	PC4 (A12)	Digital pin 33	
58	PC5 (A13)	Digital pin 32	
59	PC6 (A14)	Digital pin 31	
60	PC7 (A15)	Digital pin 30	
61	VCC	VCC	
62	GND	GND	
63	PJ0 (RXD3/PCINT9)	Digital pin 15 (RX3)	
64	PJ1 (TXD3/PCINT10)	Digital pin 14 (TX3)	
65	PJ2 (XCK3/PCINT11)		
66	PJ3 (PCINT12)		
67	PJ4 (PCINT13)		
68	PJ5 (PCINT14)		
69	PJ6 (PCINT 15)		
70	PG2 (ALE)	Digital pin 39	
71	PA7 (AD7)	Digital pin 29	
72	PA6 (AD6)	Digital pin 28	
73	PA5 (AD5)	Digital pin 27	
74	PA4 (AD4)	Digital pin 26	
75	PA3 (AD3)	Digital pin 25	
76	PA2 (AD2)	Digital pin 24	
77	PA1 (AD1)	Digital pin 23	
78	PA0 (AD0)	Digital pin 22	
79	PJ7		
80	VCC	VCC	
81	GND	GND	
82	PK7 (ADC15/PCINT23)	Analog pin 15	

YT: Mytest4u 4von7

83	PK6 (ADC14/PCINT22)	Analog pin 14	
84	PK5 (ADC13/PCINT21)	Analog pin 13	
85	PK4 (ADC12/PCINT20)	Analog pin 12	
86	PK3 (ADC11/PCINT19)	Analog pin 11	
87	PK2 (ADC10/PCINT18)	Analog pin 10	
88	PK1 (ADC9/PCINT17)	Analog pin 9	
89	PK0 (ADC8/PCINT16)	Analog pin 8	
90	PF7 (ADC7)	Analog pin 7	
91	PF6 (ADC6)	Analog pin 6	
92	PF5 (ADC5/TMS)	Analog pin 5	
93	PF4 (ADC4/TMK)	Analog pin 4	
94	PF3 (ADC3)	Analog pin 3	X
95	PF2 (ADC2)	Analog pin 2	X
96	PF1 (ADC1)	Analog pin 1	X
97	PF0 (ADC0)	Analog pin 0	X
98	AREF	Analog Reference	X
99	GND	GND	GND
100	AVCC	VCC	

Anschlussbelegung im Programm zu Arduino MEGA 2560

Eingänge Sensoren:

A0 Aussen Temperatur

A1 Temperatur Sole

A2 Tempfühler Hz

A3 Tempfühler WW

Display:

(A5 nano) SLC

(A4 nano) SDA

Ausgänge:

Pumpen (1 HIGH = Aus / 0 LOW = Ein):

D2 Verdichter / Kompresssor

D3 M16 Ladepumpe Speicher

D4 M11 Sole / Außen Wärmekörbe im Boden

D5 M18 WW / Heizung umschalter

D6 M13 Heizung

Sicherheit:

D9 Hochdruck Schalter (Öffner)

D8 Niederdruck Schalter (Öffner)

Tastatur / Eingabe:

D10 Tastatur T2 [Menue]

D11 Tastatur T3 [Enter]

D12 Tastatur T0 [up +]

D13 Tastatur T1 [down -]

YT: Mytest4u 5von7

Anzeige

SD1306 (0,96 Zoll OLED Display I²C mit 128×64 Pixel)

Pixel Size (mm): 0.159 × 0.159 Color Depth: Monochrome (White)
Number of Pixels: 128 × 32 PCB: 20mm x 35mm (0.8" x 1.4")

Die Verkabelung zwischen unserem OLED-Display und dem Arduino ist, mit lediglich 4 Kabeln, denkbar einfach und geschieht nach folgendem Schema:

Arduino (Uno, Nano, Pro Mini)	0,96 OLED Display I ² C
A4 (SDA)	SDA
A5 (SCL)	SCL
3,3V oder 5V	VCC
GND	GND

Benötigte Library:

SSD → https://github.com/adafruit/Adafruit SSD1306 → #include <Adafruit_SSD1306.h>

Tip: "Einstellen der Display-Auflösung z.B. 64 Linien durch Anpassung der library"

Nach Installation der Library suche und mit Editor öffnen von → Adafruit_SSD1306.h

// #define SSD1306_128_64

// #define SSD1306_128_32 ← diesen auswählen durch löschen der "//" // #define SSD1306_96_16

Nicht notwendig wenn alle Dateien von https://github.com/mytest4u/ArduinoFeinstaubTest genutzt werden!!

GFX → https://github.com/adafruit/Adafruit-GFX-Library → #include <Adafruit_GFX.h>

Tastenbelegung:

astenderegung	
MENUE	+
	Up
ENTER	-
	Down

Tastatur / Eingabe:

D10 Tastatur T2 [Menue] D11 Tastatur T3 [Enter]

D12 Tastatur T0 [up +]

D13 Tastatur T1 [down -]

YT: Mytest4u 6von7

4x Taster gegen GND. Wenn Port mit Pullup-Wiederstand konfiguriert sonst 10kOhm gegen Vcc.

Sensoren

Temperatur

WPS90: Sole-Temperaturfühler

Bauseitig: Warmwasser, Heizung und Außenfühler

Hier sind NTC-Wiederstände verbaut. Diese werden über 1kOhm an AREF

angeschlossen.

Sicherheit

WPS90

Die Überwachung erfolgt entweder mit Öffner (WPS90) oder Schließer.

Öffner → Anschluss gegen GND mit 10kOhm gegen Vcc

Schließer → Anschluss gegen Vcc mit 1kOhm und 10kOhm GND

Jeweils für Hochdruck als auch Niederdruck Element.

Netzteil

5V Standardladegerät oder 7V BNC-Buchse ca. 300mA

Sonstiges

4x 1KOhm Widerstäne

3x 10kOhm Widerstände

4x Klemmen

1x Platine

1x 5 Relais

Kabel und Stecker

Menüstruktur

Hauptmenue Sonderfunktionen

display.print("Einstellungen"); display.print("Sole Temp messen");

display.print(" Pumpen-Test"); display.print(" Sicherheit");

display.print(" Messwerte"); display.print(" EEPROM lesen");

display.print(" Werte L-Zeit"); display.print("Max/Min MemReset");

display.print("SonderFunktion") display.print(" Celsius Test");

YT: Mytest4u 7von7