LSML #7

Рекуррентные сети

Recurrent Neural Networks (RNN)

- Работают с последовательностями
 - Слов в предложении
 - Букв в предложении
 - Отсчетов в аудио сигнале (амплитуда, частота)
 - Пикселей изображения

• ...

Как устроена простая RNN

- Работает **одинаково** для каждого элемента последовательности x_t , но вычисления зависят от предыдущих элементов x_t
- Можно сказать, что у RNN есть память (**скрытое состояние** s_t), в которой хранится информация о предыдущих элементах последовательности

A как же Hidden Markov Model (HMM)?

$$O_t \in \{y_1, y_2, ..., y_K\}$$

 $S_t \in \{1, ..., I\}$

Пример:

 s_t – POS tag o_t – слово в предложении

$$p(S_1, \dots, S_T, O_1, \dots, O_T) = \prod_{t=1}^{T} p(O_t|S_t) \prod_{t=1}^{T} p(S_t|S_{t-1})$$

1st order Markov assumption on hidden states $\{S_t\}$ t = 1, ..., T (can be extended to higher order).

Backpropagation through time (BPTT)

- Если развернуть сеть по времени t, то получим обычную feed-forward сеть c shared параметрами
- Применяем backpropagation, считаем градиенты для каждого параметра
- Далее (так же, как в случае сверток CNN) суммируем градиенты по shared параметрам и делаем шаг SGD

ВРТТ на примере

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$E(y, \hat{y}) = \sum_t E_t(y_t, \hat{y}_t)$$

$$= -\sum_t y_t \log \hat{y}_t$$

ВРТТ на примере

$$\frac{\partial E_3}{\partial W} = \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial W}$$

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \frac{\partial s_3}{\partial s_k} \frac{\partial s_k}{\partial W}$$

$$\frac{\partial s_3}{\partial s_1} = \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1}$$

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \left(\prod_{j=k+1}^{3} \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$$

$$s_t = \tanh(Ux_t + Ws_{t-1})$$
$$\hat{y}_t = \operatorname{softmax}(Vs_t)$$

Проблема с затухающими градиентами

$$\frac{\partial E_3}{\partial W} = \sum_{k=0}^{3} \frac{\partial E_3}{\partial \hat{y}_3} \frac{\partial \hat{y}_3}{\partial s_3} \left(\prod_{j=k+1}^{3} \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$$

$$s_t = \tanh(Ux_t + Ws_{t-1})$$

$$\frac{\partial s_t}{\partial s_{t-1}} = \frac{\partial f}{\partial x} W, \qquad f(x) = \tanh(x)$$

Быстро убывает или взрывается $\left(\prod_{j=k+1}^{3} \frac{\partial s_{j}}{\partial s_{j-1}}\right)$

Gradient clipping

• Градиенты могут взорваться – ограничим их норму

$$egin{aligned} \hat{\mathbf{g}} \leftarrow rac{\partial \mathcal{E}}{\partial heta} \ \mathbf{if} & \|\hat{\mathbf{g}}\| \geq threshold \ \hat{\mathbf{g}} \leftarrow rac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \ \mathbf{end} & \mathbf{if} \end{aligned}$$

Простая RNN плохо работает

$$h_t = \tanh(Ux_t + Wh_{t-1})$$

Спасет LSTM

LSTM cell state

• C_t проходит через все ячейки, LSTM может забывать или добавлять информацию в C_t

• Gates учат маски для забывания (**forget**), добавления (**input**) и вывода (**output**) вектора состояний C_t

LSTM forget gate

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM input gate и вклад ячейки в состояние

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Обновление состояния

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

15

Выдача скрытого состояния наружу

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

16

Encoder-decoder (seq2seq)

Слабое место – связь между encoder и decoder только через последний скрытый слой encoder

Поможет attention

Машинный перевод (seq2seq + attention)

Multi-language перевод от Google

• Обучение encoder и decoder для каждого языка на разных парах языков одновременно

Training

seq2seq + attention на 8 GPU

Zero-shot learning

- Система начинает неплохо переводить даже для тех пар языков, для которых не было пар примеров в обучении
 - **Zero-Shot**: обучили на English ↔ {Belarusian, Russian, Ukrainian}
 - From-Scratch: добавили еще Russian ↔ {Belarusian, Ukrainian}
 - Incremental: fine-tuning zero-shot на ~3% Russian ↔ {Belarusian, Ukrainian}

Table 6: BLEU scores for English ↔ {Belarusian, Russian, Ukrainian} models.

	Zero-Shot	From-Scratch	Incremental
$\overline{\text{English}} \rightarrow \text{Belarusian}$	16.85	17.03	16.99
$English \rightarrow Russian$	22.21	22.03	21.92
$\operatorname{English} \rightarrow \operatorname{Ukrainian}$	18.16	17.75	18.27
$Belarusian \rightarrow English$	25.44	24.72	25.54
$Russian \rightarrow English$	28.36	27.90	28.46
${\bf Ukrainian}{\rightarrow} {\bf English}$	28.60	28.51	28.58
$\overline{\text{Belarusian}} \rightarrow \text{Russian}$	56.53	82.50	78.63
$Russian {\rightarrow} Belarusian$	58.75	72.06	70.01
$Russian {\rightarrow} Ukrainian$	21.92	25.75	25.34
$\underline{ \text{Ukrainian} {\rightarrow} \text{Russian}}$	16.73	30.53	29.92

Pаспознавание голоса (seq2seq + attention)

Text to speech (WaveNet)

US English

Mean Opinion Scores (MOS) are a standard measure for subjective sound quality tests, and were obtained in blind tests with human subjects (from over 500 ratings on 100 test sentences)

Image captioning (CNN encoder – RNN decoder)

Ссылки

- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
- http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech
 2010 IS100722.pdf
- http://distill.pub/2016/augmented-rnns/
- Multilingual Neural Machine Translation https://arxiv.org/abs/1611.04558
- Pixel Recurrent Neural Networks https://arxiv.org/abs/1601.06759
- https://deepmind.com/blog/wavenet-generative-model-raw-audio/
- https://www.tensorflow.org/tutorials/recurrent
- https://www.tensorflow.org/tutorials/seq2seq