MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 3 - DECEMBER 2014 SOLUTION KEY

O|D

 Q^{E}

Round 6

A) A quick sketch of heptagon ABCDEFG will confirm that diagonals \overline{AC} and \overline{AF} have the same length, as do the longer diagonals \overline{AD} and \overline{AE} .

There are 2 pairs of congruent diagonals starting at each vertex and ending at some other vertex.

That's total of $\frac{4 \cdot 7}{2} = 14$ diagonals, 7 short and 7 long.

A short diagonal "skips" one vertex;

a long one "skips" two. As a long diagonal \overline{PQ} "skips" two vertices. Think of the heptagon inscribed in a circle.

Each side determines a central angle at O of $\frac{360}{7}^{\circ}$.

Thus, a = 154.

The difference is simply $s = \frac{4}{5}$, so we have nothing to do. Amen.

C) For all the pieces, the measures of the interior angles are either 45°, 90° or 135°. Since the sides of the isosceles right triangle are always in a 1:1: $\sqrt{2}$ ratio, we have

$$AC = 4\sqrt{2}$$
, $CD = 1 \Rightarrow CE = \frac{\sqrt{2}}{2}$ $EG = DR = 8\sqrt{2}$

$$PR = 8$$
, $PQ = 4\sqrt{2} \Rightarrow QR = 8 - 4\sqrt{2} \Rightarrow FG = TR = \frac{QR}{\sqrt{2}} = 4\sqrt{2} - 4$ $GB = QS - FG = 4\sqrt{2} + 4$

$$AB = AC + CE + EG + GB =$$

$$4\sqrt{2} + \frac{\sqrt{2}}{2} + 8\sqrt{2} + \left(4\sqrt{2} + 4\right) = 16.5\sqrt{2} + 4 = \frac{33\sqrt{2} + 8}{2}$$

$$\Rightarrow$$
 $(a,b,c)=(33,8,2)$.

