Summary

Shuang Hu

2022年6月14日

1 广义函数与 Sobolev 空间

例 1.1. 考虑以下函数列:

$$\varphi_n(x) = \begin{cases} e^{\frac{1}{n^2 x^2 - 1}}, |x| < \frac{1}{n} \\ 0, |x| \ge \frac{1}{n} \end{cases}$$
 (1)

当 $n \to \infty$ 时, $\varphi_n(x)$ 在常义函数的意义下不收敛。**能否进一步扩充函数的定义,使得这样的"极限函数"存在?**

定义 1.1 (基本空间). 基本空间指满足一定条件的函数所构成的函数空间。对于区域 $\Omega \subset \mathbb{R}^n$, 本书主要讨论三个常见的基本空间: $C_c^\infty(\Omega)$, $C^\infty(\Omega)$, $C^\infty(\Omega)$.

定义 1.2 $(C_c^{\infty}(\Omega))$. $C_c^{\infty}(\Omega)$ 是由 Ω 上无限次连续可微且有紧支集的函数所构成的线性空间。其上的拓扑定义如下:

若一列函数 $\varphi_n \to \varphi \in C_c^{\infty}(\Omega)$, 则这列函数满足下面两个条件:

• $\bigcup_{n=1}^{\infty} supp(\varphi_n) \subset K, K \not\in \mathbb{R}^n$ 中的紧集。

 $\|\partial^{\alpha}\varphi_{n}(x) - \partial^{\alpha}\varphi(x)\| \rightrightarrows 0 \forall \alpha \in \mathbb{Z}^{n}.$ (2)

定义 1.3 $(C^{\infty}(\Omega))$. $C^{\infty}(\Omega)$ 是由 Ω 上无限次连续可微且在无穷远处趋于 0 的函数所构成的线性空间。其上的拓扑定义如下:

若一列函数 $\varphi_n \to \varphi \in C^{\infty}(\Omega)$,则对任意紧集 K 和多重指标 α ,

$$\|\partial^{\alpha}\varphi_n(x) - \partial^{\alpha}\varphi(x)\| \rightrightarrows 0. (x \in K). \tag{3}$$

定义 1.4 $(\mathcal{S}(\Omega))$. $\mathcal{S}(\Omega)$ 由满足如下条件的函数组成:

$$\lim_{|x| \to \infty} x^{\alpha} \partial^{\beta} \varphi(x) \to 0 \forall \alpha, \beta.$$
 (4)

2

其上的拓扑:

$$\sup_{x \in \mathbb{R}^n} x^{\alpha} \partial^{\beta} \varphi_n(x) = 0. \tag{5}$$

定理 1.1.

$$C_c^{\infty}(\Omega) \subset \mathscr{S}(\Omega) \subset C^{\infty}(\Omega).$$
 (6)

定理 1.2. $C_c^{\infty}(\mathbb{R}^n)$ 在 $L^p(\mathbb{R}^n)$ 和 $C^0(\mathbb{R}^n)$ 中稠密。

证明提示: L^p 函数定义, Lusin 定理, 利用卷积实现光滑化。

定义 1.5. 定义

$$\varphi(x) = \begin{cases} e^{\frac{1}{|x|^2 - 1}}, |x| < 1\\ 0, |x| \ge 1 \end{cases}$$
 (7)

由此导出光滑化子 $\alpha_{\epsilon} := \frac{1}{\epsilon^n} \varphi(\frac{x}{\epsilon})$ 。该函数满足两个条件:

- $\alpha_{\epsilon} \in C_c^{\infty}(\mathbb{R}^n)$.
- $\int_{\mathbb{R}^n} \alpha_{\epsilon}(x) dx = 1$.

定义 1.6 (局部可积). 如果 Ω 上的一个函数 φ 在任意紧集 $K \subset \Omega$ 上 Lebesgue 可积,则称该函数在 Ω 上**局部可积**,记 $\varphi \in L^1_{loc}(\Omega)$.

定义 1.7. 设 $u \in L^1_{loc}(\mathbb{R}^n)$, 则 $u_{\epsilon}(x) := u * \alpha_{\epsilon} \in C^{\infty}(\mathbb{R}^n)$. 当 $\epsilon \to 0$, 若 $u \in X$, $X = C^0(\mathbb{R}^n)$ 或 $X = L^p(\mathbb{R}^n)$, 则 $u_{\epsilon} \to u(X)$.

定义 1.8. 对于基本空间 X,X 上的**有界线性泛函**称为 X 上的**广义函数**。如,我们称 $C_c^{\infty}(\mathbb{R}^n)$ 上的有界线性泛函为 $\mathcal{D}'(\mathbb{R}^n)$ 广义函数。

定理 1.3.

$$\epsilon'(\mathbb{R}^n) \subset \mathscr{S}'(\mathbb{R}^n) \subset \mathcal{D}'(\mathbb{R}^n)$$
 (8)

定理 1.4.

$$L^1_{loc}(\Omega) \subset \mathcal{D}'(\Omega).$$
 (9)

定义 1.9. 定义基本函数空间 X 上的泛函 δ 为: 对 $\phi \in X$,

$$\delta(\phi) := \phi(0). \tag{10}$$

定理 1.5. $\delta \notin L^1_{loc}(\Omega)$.

定理 1.6. $\delta \in \mathcal{D}'(\Omega), \delta \in \mathcal{S}'(\Omega), \delta \in \epsilon'(\Omega)$.