

A monitoring system for Heart Failure patients *Project Specifications*

Tutors:

Pierluigi Reali (pierluigi.reali@polimi.it)
Davide Coluzzi (davide.coluzzi@polimi.it)

MEDICAL INFORMATICS 2019-2020 Politecnico di Milano - 04/03/2020

SCHEDULE OVERVIEW

DEADLINE

12th March:

Team proposals: **6** students per team.

Each team must send an email to ALL of the following addresses:

annamaria.bianchi@polimi.it (To)

pierluigi.reali@polimi.it, davide.coluzzi@polimi.it (Cc)

- ... providing members': name, surname, student ID (matricola), email address
- 18th 26th March → UML (introduction; examples; work on project)
- 1st April → Use Case Diagram: presentation (3 teams) + discussion (all together); work on project
- 2nd April → Activity Diagram: presentation + discussion; work on project
- 8th 9th April → UML (work on project)
- 15th April → Class Diagram: presentation + discussion; work on project
- 16th April → ER Diagram (work on project)
- 22nd 23rd April → SQL (introduction; examples; work on project)
- 29th April → Forms on MS Access (introduction; examples; work on project)
- 30th April → Project implementation: presentation + discussion; work on project
- DEADLINE □ 30th April: Delivery of the modeling report on BeeP
- 6th 28th May → Project implementation (1 presentation per week; 2-3 teams each time)
- DEADLINE □ 4th June: Delivery of the <u>project report</u> on BeeP
- 10 th 11th June → Final presentations of the project, with practical demonstration

SYSTEM DESCRIPTION

- The system allows the **at-home** and **in-hospital** monitoring of several biological parameters with the aim of tracking physiological changes to detect early deterioration of heart failure patients.
- Heart failure (HF) is a cardiovascular disease characterized by a
 weakened heart muscle, affecting at least 26 million people
 worldwide and is increasing in prevalence. HF health expenditures
 are considerable and will also increase with an ageing population.
 Therefore, continuous monitoring of patients with chronic heart failure
 could greatly improve life quality (e.g., preventing the insurgence of
 acute episodes), and reduce the health expenditure associated with
 the pathology.
- This goal requires the regular assessment of several clinical indices.
 <u>Some</u> of these parameters can be collected either at-home or in-hospital, while <u>others</u> must be collected in hospitals.
- The complexity of the pathology requires appropriate evaluation of comorbidities and risk factors.

SYSTEM USERS

- The system is used by patients and specialized practitioners with different user interfaces because of their different aims.
- Moreover, the system requires a technical administrator for the registration of new users (patients, specialized practitioners and other technical administrators).

SYSTEM USERS: Specialized practitioners

Specialized practitioners can:

- Log in
- Visualize their profile
- Visualize the list of patients along with the last visit
- Visualize the list of visits of the day
- Book a visit for a patient
- Book an exam for a patient
- Manage patients' prescriptions / therapy
- During a visit, the doctor can insert the measured parameters (hereafter named as "in hospital" parameters), add notes, and, if needed, book a follow-up visit
- Set thresholds for all the parameters to identify abnormalities (even the one inserted at-home)
- Visualize diagrams and statistics regarding the temporal trend of the inserted parameters, in a selected time window, for a specific subject and, for comparison and research purposes, across the entire list of patients
- Count how many times a certain parameter was labeled as abnormal

SYSTEM USERS: Patients

Patients can:

- Log in
- Manage their profile and booked visits
- Insert or upload parameters (hereafter named as "at-home" parameters) that
 were measured at home. Let's assume these parameters are collected
 through wearables, medical devices or mobile apps. Some of them are
 manually inserted into the system, while others (data streams and temporal
 trends) are uploaded into it through formatted files
- Visualize a set of statistics and diagrams regarding the temporal trend of his/her inserted parameters in chosen time frames
- Fill in clinical questionnaires

SYSTEM USERS: Technical administrators

Technical administrators can:

- Log in
- Visualize their profile
- Add/Modify/Delete a user among the three categories. For simplicity, the
 password is decided by the technical administrator for all the users, but you
 might decide to release this constraint as well ...
- Visualize a set of statistics regarding the number of users and the number of logins per day. You might also include other system performance metrics, like access time, query execution time, user session duration and so on.
- Create and update risk evaluation models, based on the latest indications from the literature.

PARAMETERS

<u>At-home</u> measured parameters must include:

Parameter	Insertion mode	How often?
Blood pressure (from BP monitor)	From file	Daily
Heart rate (from BP monitor)	From file	Daily
Sleep quality index (from smartwatch)	From file	Daily
Height, weight (from smart scale), BMI	Manually	Weekly
Glycemia (from glucose meter)	Manually	Daily
Physical activity (from smartwatch)	From file or Manually	Daily
Therapy adherence (from Morisky Medication Adherence Scale) *	Manual insertion of the inputs	Weekly
Sleep efficiency *	Manual insertion of the inputs	Daily

^{*} Computed as in the following slide

Example of a structured file (CSV)

File Modifica	Formato Visualizza	?	
Dates HR			
31/12/18	109		
01/01/19	115		
02/01/19	67		
03/01/19	115		
04/01/19	98		
05/01/19	65		
06/01/19	76		
07/01/19	93		
08/01/19	118		
09/01/19	118		
10/01/19	69		
11/01/19	119		
12/01/19	118		
13/01/19	89		
14/01/19	108		
15/01/19	68		
16/01/19	85		
17/01/19	115		
18/01/19	108		
19/01/19	118		
20/01/19	100		
21/01/19	62		

Sleep efficiency calculation

1. I went to bed at: HH:MM:SS

5. The total duration of these awakenings was:

2. I turned out the lights after:

6. After awakening for the last time I was in bed for:

3. I fell asleep in:

- 7. I got up at: HH:MM:SS
- I woke up ___ times during the night.

A = time between bedtime (1) and rise time (7) in minutes B= sum of 2, 3, 5 and 6 (all these parameters are measured in minutes)

Sleep efficiency = [(A - B)/A]*100

Sleep quality scale assessment - PSQI index

Once at month

Material on beep

Sleep Quality Assessment (PSQI)

What is PSQI, and what is it measuring?

The Pittsburgh Sleep Quality Index (PSQI) is an effective instrument used to measure the quality and patterns of sleep in adults. It differentiates "poor" from "good" sleep quality by measuring seven areas (components): subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medications, and daytime dysfunction over the last month.

INSTRUCTIONS:

The following questions relate to your usual sleep habits during the past month only. Your answers should indicate the most accurate reply for the majority of days and nights in the past month. Please answer all questions.

During the past month,

- 1. When have you usually gone to bed?
- . How long (in minutes) has it taken you to fall asleep each night?
- 3. What time have you usually gotten up in the morning?
- 4. A. How many hours of actual sleep did you get at night?
 B. How many hours were you in bed?

During the past month, how often have you had trouble sleeping because you	Not during the past month (0)	Less than once a week (1)	Once or twice a week (2)	Three or more times a week (3)
A. Cannot get to sleep within 30 minutes				
B. Wake up in the middle of the night or early morning				
C. Have to get up to use the bathroom				
D. Cannot breathe comfortably				
E. Cough or snore loudly				

Scoring

Component 1	#9 Score	C1
Component 2	#2 Score (<15min (0), 16-30min (1), 31-60 min (2), >60min (3))	
100 mm (100 mm)	+ #5a Score (if sum is equal 0=0; 1-2=1; 3-4=2; 5-6=3)	C2
Component 3	#4 Score (>7(0), 6-7 (1), 5-6 (2), <5 (3)	C3
Component 4	(total # of hours asleep) / (total # of hours in bed) x 100	
	>85%=0, 75%-84%=!, 65%-74%=2, <65%=3	C4
Component 5	# sum of scores 5b to 5j (0=0; 1-9=1; 10-18=2; 19-27=3)	C5
Component 6	#6 Score	C6
Component 7	#7 Score + #8 score (0=0; 1-2=1; 3-4=2; 5-6=3)	C7

Add the seven component scores together _____ Global PSQI _

Therapy adherence (Morisky Medication Adherence Scale)

Q1 - I will ask you few questions about your medication that you were using after Heart Failure

-		_		
SNO	MMAS-8 Adherence Questions	Patients Response		
Q1_1	Do you sometimes forget to take your prescribed medicines?	Yes[0] No[1]		
Q1_2	Over the past 2 weeks, were there any days when you did not take your prescribed medicines?	Yes[0] No[1]		
Q1_3	Have you stopped taking medications because you feel worse when you took it?	Yes[0] No[1]		
Q1_4	When you travel or leave home, do you sometimes forget to bring along your meds?	Yes[0] No[1]		
Q1_5	Did you take your prescribed medicine yesterday?	☐ Yes[0] ☐ No[1]		
Q1_6	When you feel like your health is under control, do you sometime stop taking your meds?	Yes[0] No[1]		
Q1_7	Do you feel hassled about sticking to your prescribed treatment plan?	Yes[0] No[1]		
Q1_8	How often do you have difficulty remembering to take all your prescribed medicine?	Never/rarely[1] Once in a while[0] Sometimes[0] Usually[0] All the time[0]		
	Total Score			

- The total MMAS-8 score is calculated by adding all of the eight individual question scores. Patients with a score of eight are classified as adherent, otherwise non-adherent.

Rehman et al. 2019

PARAMETERS

In hospital measured parameters must include:

Parameter	Insertion mode	How often?
Heart rate (from clinical device)	From file	During visit
Blood pressure supine and standing (sphygmomanometer)	Manually	During visit
JVP (Jugular Venous Pressure)	Manually	During visit
Cardiac Auscultation (textual report)	Manually	During visit
Blood exam results (values and comment)	Manually	During visit (not always)
Medical report (textual report)	Manually	During visit

IMPORTANT: Visits are planned <u>at least every 6 months</u>, but could be planned more frequently if needed.

PERIODICAL REPORTS and FINAL PRESENTATION STRUCTURE

AIM OF THE WORK

SYSTEM DESIGN

Context analysis

Modeling and describing the system in UML (Use case, activity, class diagrams)

Modeling and describing the database (via E-R Diagram)

Modeling Report

SYSTEM IMPLEMENTATION

Technical description of the tables

Description of the queries (with some examples)

Description of the Graphical User Interface (GUI)

CONCLUSIONS

Including limitations and future work

REFERENCES

Project Report

HOW TO START

1. Make teams: we will (try to) create a "separate room" for each team...

 Send us an email with the required information of your team (see the first slide)

3. Start by analyzing the context: look for Heart Failure related topics on the internet/literature, together with your current team members

Today and tomorrow's exercises will be dedicated to **making teams**, **context** and **requirements analysis** (don't hesitate to ask questions!)

