Divide and Conquer for Integer Multiplication A Review

Outline

- Quick D&C Integer Multiplication Review
- High level Example for 4X4 D&C simple integer multiplication
- High level Example for 4X4 D&C Karatsuba integer multiplication
- Full worked example of 4X4 simple integer multiplication
- Full worked example of 4X4 Karatsuba integer multiplication

Background

- Straightforward "long multiplication" of 2 n-bit integer words requires $O(n^2)$ time (scalar multiplications and additions).
- In class, we saw how to use divide and conquer ideas to develop two different multiplication algorithms.
- These slides assume you know the algorithms
- The first algorithm satisfied the recurrence

For
$$n > 1$$
, $T(n) = 4T(n/2) + n$. $T(1) = 1$
$$\Rightarrow T(n) = 0(n^2)$$

• The 2nd, Karatsuba Multiplication, satisfied the recurrence

For
$$n > 1$$
, $T(n) = 3T(n/2) + n$. $T(1) = 1$

$$\Rightarrow T(n) = 0(n^{\log_2 3}) = 0(n^{1.585 \dots})$$

Outline

- Quick D&C Integer Multiplication Review
- High level Example for 4X4 D&C simple integer multiplication
- High level Example for 4X4 D&C Karatsuba integer multiplication
- Full worked example of 4X4 simple integer multiplication
- Full worked example of 4X4 Karatsuba integer multiplication

7 13 = 91
0100 1101 = 01011011

$$\mathbf{1} \cdot \mathbf{2}^2 + \mathbf{3}$$
 $3 \cdot \mathbf{2}^2 + \mathbf{1}$ = $\mathbf{1} \cdot \mathbf{3} \times \mathbf{2}^4 + [\mathbf{1} \cdot \mathbf{1} + 3 \cdot \mathbf{3}] \times \mathbf{2}^2 + \mathbf{3} \cdot \mathbf{1}$
 $a\mathbf{2}^2 + b$ \times $c\mathbf{2}^2 + d$ = $ac \times \mathbf{2}^4 + [ad + bc] \times \mathbf{2}^2 + bd$

Outline

- Quick D&C Integer Multiplication Review
- High level Example for 4X4 D&C simple integer multiplication
- High level Example for 4X4 D&C Karatsuba integer multiplication
- Full worked example of 4X4 simple integer multiplication
- Full worked example of 4X4 Karatsuba integer multiplication

4 bit by 4 bit example

7 13 = 91

0100 1101 = 01011011

Old

Method

Rewrite

$$1 \cdot 2^2 + 3$$
 $3 \cdot 2^2 + 1 = 1 \cdot 3 \times 2^4 + [1 \cdot 1 + 3 \cdot 3] \times 2^2 + 3 \cdot 1$

 $a2^{2} + b \times c2^{2} + d = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$

$$1 \cdot 2^2 + 3$$
 $3 \cdot 2^2 + 1$ = $1 \cdot 3 \times 2^4 + [(1+3)(3+1) - 1 \cdot 3 - 3 \cdot 1] \times 2^2 + 3 \cdot 1$

of same expression
$$a\mathbf{2^2} + b \qquad \times \qquad c\mathbf{2^2} + d \qquad = \qquad ac \times \mathbf{2^4} + [(a+b) \times (c+d) - ac - bd] \times \mathbf{2^2} + bd$$

4 bit by 4 bit example

4 bit by 4 bit example

4 bit by 4 bit example

Outline

- Quick D&C Integer Multiplication Review
- High level Example for 4X4 D&C simple integer multiplication
- High level Example for 4X4 D&C Karatsuba integer multiplication
- Full worked example of 4X4 simple integer multiplication
- Full worked example of 4X4 Karatsuba integer multiplication

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [ad + bc] \times 2^2 + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [ad + bc] \times 2^{2} + bd$$

Outline

- Quick D&C Integer Multiplication Review
- High level Example for 4X4 D&C simple integer multiplication
- High level Example for 4X4 D&C Karatsuba integer multiplication
- Full worked example of 4X4 simple integer multiplication
- Full worked example of 4X4 Karatsuba integer multiplication

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [(a+b) \times (c+d) - ac - bd] \times 2^2 + bd$$

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [(a+b) \times (c+d) - ac - bd] \times 2^2 + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [(a + b) \times (c + d) - ac - bd] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [(a + b) \times (c + d) - ac - bd] \times 2^{2} + bd$$

$$(a2^{2} + b)(c2^{2} + d) = ac \times 2^{4} + [(a + b) \times (c + d) - ac - bd] \times 2^{2} + bd$$

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [(a+b) \times (c+d) - ac - bd] \times 2^2 + bd$$

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [(a+b) \times (c+d) - ac - bd] \times 2^2 + bd$$

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [(a+b) \times (c+d) - ac - bd] \times 2^2 + bd$$

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [(a+b) \times (c+d) - ac - bd] \times 2^2 + bd$$

$$(a2^2 + b)(c2^2 + d) = ac \times 2^4 + [(a+b) \times (c+d) - ac - bd] \times 2^2 + bd$$