AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- (Currently amended) A method for producing a coil,
 comprising the steps of: coating electrical wire using UV-curable
 baking enamels containing
- a) 50%-95% by weight of oxirane-based binders,
- b) 1%-10% by weight of UV crosslinking catalysts,
- c) 0-80% by weight of reactive diluents,
- d) 0-40% by weight of chain transfer agents, and
- e) 1%-8% of further additives; and winding the wire to form a coil, wherein, as baking enamel, cycloaliphatic oxirane compounds are used of the general form

where R_1 can be a hydrogen, a carboxylate radical of the indicated form

$$R_2$$

a polyether radical of the formula

$$\begin{bmatrix} 0 \\ \end{bmatrix}_{n} O \xrightarrow{R_3}$$

with n=1-50 or a polyester radical of the following form

$$R_4$$
 R_5 R_5 R_6

where R_2 is a methyl, ethyl, propyl or butyl radical or a further oxirane compound of the following form

and R_3 is a hydroxyethyl radical or an oxirane compound of the following form

 R_4 and R_5 describes an aliphatic hydrocarbon chain of 2-6 carbon units, it being possible in addition for R_5 to be a phenylene

radical, and R_6 is a hydroxyalkyl radical having 2-6 carbons or an oxirane compound of the following form

- 2. (Previously presented) The method of claim 1, wherein baking enamels are used containing
- a) 60%-93% by weight of oxirane-based binders,
- b) 2%-6% by weight of crosslinking catalysts,
- c) 0-70% by weight of reactive diluents,
- d) 0-30% by weight of chain transfer agents, and
- e) 1%-3% of further additives.

(Canceled)

4. (Previously presented) The method of claim 1, wherein at least one photoinitiator suitable for cationic photopolymerization is added.

FI-82

5. (Previously presented) The method of claim 4, wherein, as a photoinitiator, a mixed arylsulfonium hexafluorophosphate salt of the following form

is added.

- 6. (Previously presented) The method of claim 1, wherein a baking enamel is used whose component a) is prepared using methyl 3,4-epoxycyclohexanecarboxylate.
- 7. (Previously presented) The method of claim 6, wherein a baking enamel is used whose component a) has been prepared using polyethylene glycol.
 - 8. (Canceled)
 - 9. (Canceled)
- 10. (Previously presented) The method of claim 1, wherein component d) comprises polyester polyols having molecular weights

of between 500 and 2000 g/mol.

- 11. (Previously presented) The method of claim 1, wherein component d) comprises polyester polyols having an average molecular weight of between 500 and 1000 g/mol.
- 12. (Previously presented) The method of claim 1, wherein component e) comprises additives or stabilizers or mixtures thereof.
- 13. (Previously presented) The method of claim 1, wherein after the electrical wire has been coated with baking enamel, said enamel is cured by means of ultraviolet radiation.
- 14. (New) A method for producing a coil, comprising the steps of: coating electrical wire using UV-curable baking enamels containing
- a) 50%-95% by weight of oxirane-based binders,
- b) 1%-10% by weight of UV crosslinking catalysts,
- c) 0-80% by weight of reactive diluents,
- d) 0-40% by weight of chain transfer agents, and
- e) 1%-8% of further additives; curing the baking enamels with UV light; winding the wire to form a coil; and baking the

FI-82

enamels, wherein, as baking enamel, cycloaliphatic oxirane compounds are used of the general form

$$O \longrightarrow R_1$$

where R_1 can be a hydrogen, a carboxylate radical of the indicated form

a polyether radical of the formula

$$\begin{bmatrix} 0 \\ n \end{bmatrix}$$

with n=1-50 or a polyester radical of the following form

$$R_{4}$$
 R_{5} R_{6}

where R_2 is a methyl, ethyl, propyl or butyl radical or a further oxirane compound of the following form

and R_3 is a hydroxyethyl radical or an oxirane compound of the following form $\ensuremath{\mathsf{O}}$

 R_4 and R_5 describes an aliphatic hydrocarbon chain of 2-6 carbon units, it being possible in addition for R_5 to be a phenylene radical, and R_6 is a hydroxyalkyl radical having 2-6 carbons or an oxirane compound of the following form