LINGUAGGI E PROGRAMMAZIONE ORIENTATA AGLI OGGETTI

RICCARDO CEREGHINO

Appunti Settembre 2019 – classicthesis v4.6

Parte I PRINCIPI DEI LINGUAGGI DI PROGRAMMAZIONE

INTRODUZIONE AGLI ELEMENTI DI UN LINGUAGGIO DI PROGRAMMAZIONE

I motivi della creazione ed utilizzo di un linguaggio di programmazione di alto livello sono di fornire una descrizione precisa, ovvero una specifica formale, e di offrire un interpretazione tramite interprete da compilare.

Le parti principali di uno specifico linguaggio sono la sintassi e la semantica, la quale può essere statica o dinamica.

1.1 LINGUAGGI STATICAMENTE TIPATI

Sono provvisti di semantica statica, legata alla nozione di *tipo statico*, la compilazione avviene *prima* dell'esecuzione del programma.

In un linguaggio staticamente tipato, gli operatori e gli *statements* devono essere consisenti con il tipo di valore e le variabili devono essere dichiarate ed usate consistentemente rispetto la loro dichiarazione.

I vantaggi risiedono nella preventiva rilevazione degli errori e nell'efficienza.

1.2 LINGUAGGI DI PROGRAMMAZIONE DINAMICAMENTE TIPATI

I linguaggi di programmazione dinamicamente tipati sono compilati durante l'esecuzione del programma, non sono provvisti di semantica statica, utilizzano inconsistemente operatori, statements e variabilii; ma generano errori dinamici. Sono solitamente più semplici ed espressivi.

1.2.1 Esempi di errori

frame

Listing 1.1: Errore di sintassi

x = ;

frame

Listing 1.2: Errore statico

int x=0;

frame

```
x = null;
if(y<0) y=1; else y=x.value;</pre>
```

SINTASSI

2

Definizione 1 *Un alfabeto è un insieme finito non vuoto di simboli.*

Definizione 2 Sia una stringa in un alfabeto A la successione di simboli in u:

$$u:[1\ldots n]\to A$$

Sia:

- [1...n] = m, l'intervallo dei numeri naturali tale che: $1 \le m \ge n$;
- *u* è una funzione totale;
- n sia la lunghezza di u: length(u) = n.

Definizione 3 Definizione 4 *Un programma è una stringa in un alfabeto A.*

- 2.1 STRINGHE
- 2.1.1 Stringa vuota

$$u:[1\ldots 0]\to A$$

Esiste un unica funzione $u: 0 \rightarrow A$

Le notazioni standard di una stringa vuoto sono: ε , λ

2.1.2 Stringa non vuota

Si consideri $A = \{'a', \ldots, 'z'\} \cup \{'A', \ldots, 'Z'\}$, l'alfabeto inglese di lettere minuscole e maiuscole. La funzione $u : [1 \ldots 4] \to A$ rappresenta la stringa "Word" con:

- u(1) = 'W'
- u(1) = 'o'
- u(1) = r'
- u(1) = 'd'

2.1.3 Concatenazione di stringhe

Definizione 5

$$\begin{split} length(u \cdot v) &= length(u) + length(v) \\ Per ogni \ i \in [1 \dots length(u) + length(v)] \\ &(u \cdot v)(i) = \textit{if} \ i \leq < length(u) \textit{then} \ u(i) \textit{else} \ v(i - length(u)) \end{split}$$

Monoide

La concatenazione è associativa, ma non commutativa. La stringa vuota è l'identità dell'elemento.

Iterazione

La definizione di u^n per induzione su $n \in \mathbb{N}$:

$$u^0 = \lambda$$
$$u^{n+1} = u \cdot u^n$$

Per cui u^n si concatena con se stesso n volte.