المتفاوتة المثلثية وواسط قطعة

1) - المتفاوتة المثلثية:

* خاصية 1:

A و B و C ثلاث نقط مختلفة

- $\mathbf{AB} = \mathbf{AC} + \mathbf{BC}$: فإن $\mathbf{AB} = \mathbf{AC} + \mathbf{BC}$ تنتمي إلى القطعة
- إذا كانت C لا تنتمي إلى القطعة [AB] فإن C إذا كانت C

* مثال :

 $\mathbf{AB} = \mathbf{AC} + \mathbf{BC}$

BC < AB + AC و کذلك : AC < AB + BC

و منه نستنتج ما يلي:

في مثلث طول أي ضلع من أضلاعه أصغر من مجموع طولي الضلعين الآخرين.

تطبيق:

AC = 17و AB = 7و AB = 7 و AB = 7 و AB = 7 الله في مكن رسم المثلث AB = 7 بحيث AB = 7 الله في المحظ أن AB = 7 و أن AB = 7 و أن AB = 7 و أن AB = 7 الله في المثلث AB = 7 الله ف

2) - واسط قطعة:

* تعریف:

واسط قطعة هو مستقيم يمر من منتصف القطعة و عمودي على حاملها

* مثال :

لنرسم قطعة [AB] قطعة و (D) واسطها

* خاصية 2 :

كل نقطة تنتمي إالى واسط قطعة تكون متساوية المسافة عن طرفيها

* بتعبير آخر:

(AB] قطعة و (Δ) واسطها و M نقطة من امستوى . MA = MB يعني أن $M \in (\Delta)$

* خاصية 3 :

كل نقطة متساوية المسافة عن طرفي قطعة تنتمي إلى واسط هذه القطعة

* بتعبير آخر:

و المستوى . (Δ) قطعة و (Δ) واسطها و (Δ) قطعة من المستوى . $M\in(\Delta)$ يعني أن MA=MB

3) - واسطات مثلث:

* تعریف 2 :

واسط مثلث هو واسط كل ضلع من أضلاعه

مثال:

ABC مثلث و (Δ) واسط الضلع

 \overline{ABC} نسمي المستقيم (Δ) واسط المثلث

*خاصية 4:

واسطات مثلث تتلاقى في نقطة واحدة تسمى مركز الدائرة المحيطة بهذا المثلث

مثال:

