GCAN-600

汽车OBD接口智能解析模块

用户手册

文档版本: V2.10 (2020/11/18)

修订历史

版本	日期	原因
V1.01	2015/04/12	创建文档
V1.12	2015/08/08	修正模块工作参数
V1.21	2015/10/21	添加部分 AT 命令
V1.25	2016/03/20	添加 GCAN-600 EVAL 部分材料
V1.27	2016/12/07	修改部分参数
V1.28	2017/05/05	添加硬件设计材料
V2.00	2018/07/18	调整文档结构
V2.10	2020/11/18	修正文档

目 录

1	功能简	育介	4
	1.1	功能概述	4
	1.2	性能特点	4
	1.3	典型应用	5
2	技术参	>数	6
	2.1	技术规格	6
	2.2	引脚定义及功能	7
	2.3	模块接口功能介绍	7
	2.4	封装信息	8
	2.5	典型焊盘设计(单位: mm)	8
		典型应用电路图	
		工作模式	
		外部复位输入	
		IAP 模式	
3		♦	
	-	· AT 指令	
		ATI 指令	
	3.3	ATRTON 打开车辆实时数据流	.13
		ATUTON 打开用户特定数据流	
		ATPID 获取自定义 PID 数据	
		ATDTC 读取故障码	
		ATCDI 清除 ECU 故障码	
		ATADJ 总里程修正	
		ATVIN 读取 VIN 码	
4		N-600 EVAL 开发板	
		GCAN-600 EVAL V2 硬件概述	
		GCAN-600 EVAL V3 硬件概述	
		GCAN-600 下载程序说明	
		GCAN-600 通信说明	
		GCAN-600 EVAL V3 模拟量配置说明	
5		告明	
	住 与日		31

1 功能简介

1.1 功能概述

GCAN-600 汽车 CAN 总线智能解析模块是我公司专门为汽车电子开发用户、车联网平台商及软件服务商量身打造的一款汽车电子开发、汽车解码专用的模块。

搭载该模块,开发人员无需了解 CAN 总线数据、汽车 CAN 协议方面的知识,即可快速完成相关产品的集成与开发。无需再对汽车进行解码工作,这将节省大量的人力和时间。

该产品外形精致小巧,采用高质量芯片,高集成、低功耗电路设计,简单易用,响应速度快。模块可支持市面上绝大多数的车型,支持汽车实时数据和统计数据,且数据稳定性高。使用标准 UART 接口连接便于集成,AT 指令控制便于使用。

1.2 性能特点

- 通过 OBD 接口与汽车电控系统 ECU 通讯获取汽车各项数据
- 支持多种汽车协议,兼容市面上绝大部分车型
- APP 无需进行任何传感器运算,终端所有数据都以 ascii 码提交
- 支持车辆实时数据流自动发送,APP 直接监听接收数据即可
- 支持瞬时油耗、平均油耗及本次耗油量、累计耗油量等统计数据
- 支持汽车本次行驶里程、累计行驶里程、总里程(需计算)
- 支持急加速次数、急减速次数统计(需独立处理)
- 支持车辆故障码诊断,两条指令即可完成故障码的读取和清除
- 支持自定义模式切换,自由扩展私有指令
- 工作温度范围: -40℃~+85℃
- 尺寸: (长)12mm * (宽)18mm

1.3 典型应用

- 车联网•车载设备集成研发
- 车联网•政府单位/企业车队/校车安全
- 车联网•汽车租赁/保险公司
- 车联网•4S 店/电信运营商
- 车联网•科研教育培训

1.4 支持协议

序号	协议	标准
1	CANBUS_11B_500K	
2	CANBUS_29B_500K	
3	CANBUS_11B_250K	ISO15765
4	CANBUS_29B_250K	

2 技术参数

2.1 技术规格

(E)女/J 20	
10Pin	10Pin, 2.0mm邮票孔
接口特点	
UART接口	波特率支持57600bps
UART电平	标准TTL电平
CAN接口	遵循ISO 11898标准,支持CAN2.0A/B
CAN波特率	250Kbit/s或500Kbit/s
供电电源	
供电电压	+3.3V DC
供电电流	最大70mA
环境试验	
工作温度	-40°C∼+85°C
工作湿度	15%~90%RH,无凝露
EMC测试	EN 55024:2011-09 EN 55022:2011-12
防护等级	IP 20
基本信息	
外形尺寸	12mm *18mm *4mm
重量	10g

2.2 引脚定义及功能

PIN Name	PIN#	Pad type	Description	Note
3.3V	1	3.3V	3.3V电源	
RS232 TX	2	标准TTL电平	UART TXD	
RS232 RX	3	标准TTL电平	UART RXD	
CAN TX	4	标准TTL电平	CAN TX	
CAN RX	5	标准TTL电平	CAN RX	
NC	6			
NC	7			
RST	8	3.3V	0V Reset	
IAP	9	0V	3.3V 升级内 核 0V 运行模式	
GND	10	0V	接电源地	

2.3 模块接口功能介绍

GCAN-600 引脚分为四部分: 电源引脚、UART 引脚、CAN 引脚、IAP 引脚、RST 引脚。

- (1) 1、10 引脚为电源引脚, 供电电压 3.3V。
- (2) 2、3 引脚为 UART 引脚,标准的 TTL 电平,可接收单片机发出的 5V 或 3.3V 的 TTL 电平,可发送 3.3VTTL 电平至单片机。2 引脚为 UART_TX 引出角,连接用户单片机的 RX 引脚: 3 引脚为 UART_RX 引出角,连接用户单片机的 TX 引脚。
- (3) 4、5 引脚为 CAN 引脚,需;连接 CAN 收发器才能成为标准的 CAN 引脚,CAN_TX 与 CAN 收发器的 CAN_RX 相连,CAN_RX 与 CAN 收发器的 CAN_TX 相连引脚引出后可直接连加入 CAN 总线。4 引脚为 CAN_H 接口,连接 CAN 总线上的 CAN_H 接口,5 引脚为 CAN_L 接口,连接 CAN 总线上的 CAN_L 接口。在保证接线正确的的情况下需注意 CAN 总线终端电阻是否正确,详见 2.6。
 - (4) 6、7 引脚为空。
 - (5) 9 引脚为模式切换引脚

2.4 封装信息

2.5 典型焊盘设计(单位: mm)

2.6 典型应用电路图

2.6.1 电源模块

电源电路主要包含 LM2576 电源模块和 AMS1117 模块。

LM2576 电源模块用于电源供电,额定电压 9-30V。

AS1117 模块主要用于电压转换,将 5V 转为 3.3V 给芯片供电。

2.6.2 串口通信

串口通信主要采用 RS232 收发器 SP232EEN。

RS232 的 TX 要接我们 GCAN600 模块的 TX, RX 接我们模块的 RX, VCC 为 5V。

2.6.3 CAN 通信

CAN 通信主要采用高速 CAN 收发器: PCA82C251、TJA1040、TJA1050等。

CAN TX 和 CAN RX 分别接我们 GCAN600 模块的 TX 和 RX。

2.7 工作模式

模式	功能		
正常工作	Normal	通用模式,自动连接 CAN 总线,获取 OBD 数据, UART 按照字符序列间隔 1s 发送数据	
	ASK-ACK	问答模式 , CAN 总线根据 AT 指令 , 获取 OBD 数据 , UART 应答数据结果	
	USER DEFINE	用户定义模式,根据用户特色需求定义	
升级内核	升级内核,将 IAP 连接管脚连接 3.3V,然后系统上电,进入 IAP模式,通过 UART 可以升级内核		

2.8 外部复位输入

可以通过外部复位引脚 RST 使设备进入复位状态。这个信号仅用于紧急复位。当 RST 引脚为低电平时将使模块复位,此引脚已在模块内部上拉。应在 RST 引脚上并接去耦电容来防止干扰。

复位时序图

2.9 IAP 模式

通常情况下要将 IAP 引脚连接 GND,如果将 IAP 连接到高电平(3.3V),系统上电后进入内核升级模式,升级方法及软件详见(GCAN-600 内核升级手册)。

3 AT 命令

AT 指令全为 ASC 码形式发送,所有英文必须全部大写,且所有指令均以回车、换行字符结尾: $\r\$ $\c(0x0D\ 0x0A)$ 。

AT	测试连接指令
ATI	请求设备信息数据返回 设备信息数据流
ATRTON	打开车辆实时数据流
ATRTOFF	关闭车辆实时数据流
ATUTON	打开用户特定数据流
ATUTOFF	关闭用户特定数据流
ATPID	获取自定义 PID 数据
ATDTC	读取故障码
ATCDI	清除 ECU 故障码
ATADJ	总里程修正
ATVIN	读取 VIN 码

3.1 AT 指令

测试模块连接状态。

应用举例:

发送指令

>AT

接收

>OK

3.2 ATI 指令

模块硬件信息数据流。

数据序号	数据头	备注
(ATI)	\$GCAN=	
1	ECU 通讯协议	
2	产品序列号	
3	硬件版本 号	
4		

应用举例:

发送指令

>ATI

接收

>\$GCAN=CANBUS_11B_500K,GC000000000, 312502, V100

3.3 ATRTON 打开车辆实时数据流

打开车辆实时数据流。

数据序号	数据头	备注
(ATRTON)	\$OBDRT=	
1	电瓶电压(v)	
2	发动机转速(rpm)	
3	车速(km/h)	
4	节气门开度(%)	
5	发动机负荷(%)	
6	冷却液温度(℃)	
7	瞬时油耗 (L/h 或 L/100km)	
8	平均油耗(L/100km)	
产品数据手册	Shenyang Guang	gcheng TechnologyCO.LTD.

9	油箱剩余油量(%)
	\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
10	当前故障码数量
11	
11	自发动机起动后的时间
12	
1Z	四一点。

应用举例:

发送指令

> ATRTON (设置命令后,模块间隔 1s 循环发送,使用 ATRTOFF 关闭。)接收

>\$OBDRT=14.0,1500,20,17.00,50.00,80,8.00,8.00,65.00,0

3.4 ATUTON 打开用户特定数据流

打开用户特定数据流。

请注意: 此数据流为部分用户特殊定制,如用户购买的 GCAN-600 模块没经过特殊定制,则模块并无此数据流。

数据序号	数据头	备注
(ATUTON)	\$USERT=	
1	平均车速(km/h)	
2	行驶里程(km)	
3	平均油耗(L/100km)	
4	刹车信号 (0/1)	
5	启动状态 (0/1)	
6	门锁信号 (0/1)	
7	方向盘转角(°)	
8	安全带状态(0/1)	
9	车灯信号(0/1)	
10	手刹信号 (0/1)	
11	尾箱信号 (0/1)	

另外还有空调信号、油门力度、刹车力度、挡位信息等数据。具体信息可咨询广成科技的技术人员。

应用举例:

发送指令

> ATUTON (设置命令后,模块间隔 1s 循环发送,使用 ATUTOFF 关闭。)接收

>\$USERT =57.0,1540,8.00,0, 1, 1.....

3.5 ATPID 获取自定义 PID 数据

PID	数据头	最小值	最大值	单位
01	当前故障码数量	0	127	个
04	计算负荷值	0	100	%
05	发动机冷却液温度	-40	215	$^{\circ}$
06	短时燃油修正(气缸列1和3)	-100	99.22	%
07	长期燃油修正(气缸列1和3)	-100	99.22	%
08	短时燃油修正(气缸列2和4)	-100	99.22	%
09	长期燃油修正(气缸列2和4)	-100	99.22	%
010	燃油压力计量	0	765	kPa
011	进气歧管绝对压力	0	255	kPa
012	发动机转速	0	9999	rpm
013	车速	0	255	km/h
014	第一缸点火正时提前角(不包括机 械提前)	-64	63.5	o
015	进气温度	-40	215	°C
016	空气流量传感器的空气流量	0	655.35	g/s
017	绝对节气门位置	0	100	%
031	自发动机起动的时间	0	65535	S
033	在 MIL 激活状态下行驶的里程	0	65535	km
034	相对于歧管真空度的油轨压力	0	5177.265	kPa

035	相对于大气压力的油轨压力	0	655350	kPa
044	EGR 指令开度	0	100	%
045	EGR 开度误差 (实际开度-指令开度)/指令开度	-100	99.22	%
046	蒸发冲洗控制指令	0	100	%
047	燃油液位输入	0	100	%
048	自故障码被清除之后经历的暖机 循环个数	0	255	N/A
049	自故障码被清除之后的行驶里程	0	65535	km
050	蒸发系统的蒸气压力	-8192	8192	Pa
051	大气压	0	255	kPa
060	催化器温度 B1S1	-40	6513.5	°C
061	催化器温度 B2S1	-40	6513.5	°C
062	催化器温度 B1S2	-40	6513.5	°C
063	催化器温度 B2S2	-40	6513.5	°C
066	控制模块电压	0	65.535	V
067	绝对负荷值	0	25700	%
068	等效比指令	0	2	N/A
069	相对节气门位置	0	100	%
070	环境空气温度	-40	215	°C
产品数	据手册	Shenyang	Guangcheng Techno	ologyCO.LTD.

071	绝对节气门位置 B	0	100	%
072	绝对节气门位置 C	0	100	%
073	加速踏板位置 D	0	100	%
074	加速踏板位置 E	0	100	%
075	加速踏板位置 F	0	100	%
076	节气门执行器控制指令	0	100	%
077	MIL 处于激活状态下的发动机运 转时间	0	65535	min
078	自故障码清除之后的时间	0	65535	min
	·			

应用举例:

发送指令

>ATPID=04

接收

>**PID04** =0.0

3.6 ATDTC 读取故障码

应用举例:

发送指令

>ATDTC

接收

>TCN=2,TCC=P1012P1013

3.7 ATCDI 清除 ECU 故障码

应用举例:

发送指令

>ATCDI

接收

>\$GCAN600,ATCDI OK

3.8 ATADJ 总里程修正

总里程修正。输入里程数之后,该里程数将与PID 049中的"自故障码被清除之后的行驶里程"加和。

应用举例: 发送指令 >ATADJ=224 接收 >\$GCAN600,ATADJ+OK

3.9 ATVIN 读取 VIN 码

应用举例: 发送指令 >ATVIN 接收 >\$OBD-VIN=1G1JC5444R7252367

4 GCAN-600 EVAL 开发板

GCAN-600 EVAL 开发板是专为广成科技 GCAN-600 汽车 CAN 总线解析模块设计的开发调试板。GCAN-600 开发板精致简约、功能丰富。GCAN-600 EVAL 开发板目前有两款可供选择,分别是基础版的 GCAN-600 EVAL V2、模拟器升级版的 GCAN-600 EVAL V3。

两款开发板均提供串口和 USB 接口两种通信方式,方便用户使用电脑或单片机下载程序。供电模式的选择上,GCAN-600 EVAL 开发板均有 USB 供电和外接电源供电两种模式可供选择。除此之外,GCAN-600 EVAL 开发板为客户预留出了 GCAN-600 模块各个引脚、CAN 端和电源端的测试点,为客户开发调试提供便利。

GCAN-600 EVAL V2 开发板可引出一路 CAN 通道,通过 OBD 连接线连入汽车 CAN 总线中。GCAN 600 EVAL V3 开发板除具有 GCAN-600 EVAL V2 开发板的全部功能以外,还可以模拟汽车 ECU 数据,支持 ISO15765 CAN 协议,可模拟多达 150 条数据流,涵盖了 OBD2 协议所有数据流内容。

4.1 GCAN-600 EVAL V2 硬件概述

GCAN-600 EVAL V2 具有 1 个电源指示灯、1 个状态指示灯来指示开发板的运行状态。指示灯的具体功能及运行状态如下表所示。

产品数据手册

指示灯	描述	工作状态	下载内核状态
PWR (LED1)	电源指示灯	常亮	常亮
STATE2 (LED2)	状态指示灯	每1秒钟闪烁一次	快速闪烁
STATE1 (LED3)	厂家预留	N/A	N/A

4.2 GCAN-600 EVAL V3 硬件概述

GCAN-600 EVAL V3 开发板具有 1 个电源指示灯、3 个状态指示灯来指示开发板的运行状态。指示灯的具体功能及运行状态如下表所示。

指示灯	描述	工作状态	下载内核状态
PWR (LED1)	电源指示灯	常亮	常亮
RUN (LED2)	状态指示灯	每1秒钟闪烁一次	快速闪烁
STATE1 (LED3)	厂家预留	N/A	N/A
STATE2 (LED4)	模拟器状态指示灯	N/A	N/A
STATE3 (LED5)	模拟器错误指示灯	N/A	N/A

4.3 GCAN-600 下载程序说明

GCAN-600 EVAL 开发板提供 232 串口和 USB 模拟串口两种通信方式。您可通过 USB/串口跳线,在两种下载模式之间进行切换。

按住 IAP 按键的同时,按下 RST 按键,状态(LED2)指示灯的状态将由慢闪(每1秒钟闪烁一次)变为快闪。表示开发板已进入下载内核状态。

请注意: GCAN-600 EVAL V2 开发板中 USB/串口切换跳线与 ISP 跳线位置 临近,使用时请参照开发板上的图示进行设置。

4.4 GCAN-600 通信说明

GCAN-600 EVAL 开发板进行串口通信时的波特率为 57600bps,数据位为 8,停止位为 1,校验位为无,并以 ASCII 码的形式发送。

4.5 GCAN-600 EVAL V3 模拟量配置说明

AT 指令全为 ASC 码形式发送,所有英文必须全部大写,且所有指令均以回车、换行字符结尾: \r\n(0x0D 0x0A)。

GCAN-600 EVAL V3 开发板可通过发送指定的串口命令,来配置模拟器变量旋钮模拟指定的 PID 数据变量。模拟器 232 接口的通信波特率是 115200bps。自定义 PID 数据变量表详见本文档 3.5 章节。

如果您希望将模拟器变量 1 号旋钮配置成发动机转速,您可以通过位于模拟器左侧的"模拟器 232 接口"发送 AT 指令,ATADC1=12,完成配置。其中,"ADC1"表示模拟器变量 1,"12"表示自定义 PID 数据变量中的"PID=012,发动机转速"。

请注意: "ATADCX="后面的数字必须输入 2 位数, 否则系统不予识别。应用举例:

发送指令"ATADC1=12",表示配置模拟器变量 1 号旋钮为发动机转速;

发送指令"ATADC2=13",表示配置模拟器变量2号旋钮为车速;

发送指令"ATADC3=47",表示配置模拟器变量3号旋钮为燃油液位。

5 免责声明

感谢您购买广成科技的 GCAN 系列软硬件产品。GCAN 是沈阳广成科技有限公司的注册商标。本产品及手册为广成科技版权所有。未经许可,不得以任何形式复制翻印。在使用之前,请仔细阅读本声明,一旦使用,即被视为对本声明全部内容的认可和接受。请严格遵守手册、产品说明和相关的法律法规、政策、准则安装和使用该产品。在使用产品过程中,用户承诺对自己的行为及因此而产生的所有后果负责。因用户不当使用、安装、改装造成的任何损失,广成科技将不承担法律责任。

关于免责声明的最终解释权归广成科技所有。

受 控

附录: GCAN-600 EVAL V3 模拟器操作指令集

AT 指令功能描述

命令	描述
AT+IS015765-4STD_500K	IS015765 500K 标准 CAN 协议启动指令
AT+IS015765-4EXT_500K	IS015765 500K 扩展 CAN 协议启动指令
AT+IS015765-4STD_250K	IS015765 250K 标准 CAN 协议启动指令
AT+IS015765-4EXT_250K	IS015765 250K 扩展 CAN 协议启动指令
AT+DTC	模拟当前故障码指令
AT+07DTC	模拟未决故障码指令
AT+0ADTC	模拟永久状态当前故障码指令
AT+SDS	模拟数据流指令
AT+VIN	模拟 VIN 码指令

激活指令

语法	响应
AT+IS015765-4STD_500K	IS015765-4 11bit 500K 协议模拟启动
AT+IS015765-4EXT_500K	IS015765-4 29bit 500K 协议模拟启动
AT+IS015765-4STD_250K	IS015765-4 11bit 250K 协议模拟启动
AT+IS015765-4EXT_250K	IS015765-4 29bit 250K 协议模拟启动

模拟当前故障码

语法	响应
AT+DTCxx:PXXXX;PXXXX(可同	模拟当前故障码:PXXXX;PXXXX
时模拟 10 个以内故障码)	
AT+DTC02:P1012;P1013	模拟当前故障码:P1012;P1013

模拟未决故障码

De4201100001100	
语法	响应
AT+07DTCxx:PXXXX;PXXXX(可	模拟当前故障码:PXXXX;PXXXX
同时模拟 10 个以内故障码)	
AT+DTC02:P1012;P1013	模拟当前故障码:P1012;P1013

模拟永久状态当前

语法	响应
AT+OADTCxx:PXXXX;PXXXX(可	带永久状态的当前故障码:PXXXX;PXXXX
同时模拟 10 个以内故障码)	
AT+0ADTC02:P1012;P1013	带永久状态的当前故障码:P1012;P1013

模拟数据流

语法	响应
AT+SDSxxx:UP/DOWN/(字符)	
AT+SDS000:UP	模拟(01)ECU 中存储的故障码数量: 3 个, 取值
	范围为:000<=data<=127
AT+SDS001:0N 模拟(01)MIL(故障指示灯)状态:0N, 取值范	
	为:0N、0FF

注: SDSxxx 对应关系请参看下文数据流模拟项目表

模拟车架号(VIN 码)

语法		响应	
1	AT+VIN:XXXXXXXXXXXXXXXXXX	模拟 VIN 码为: XXXXXXXXXXXXXXXXX	
1	AT+VIN:12345678932145678	模拟 VIN 码为:12345678932145678	

注:实车是否支持 VIN 读取的先决条件判断:功能字节 09 00 的数据命令询问后,汽车答复 49 00 紧跟的字节的第 6 位必须为 1。

数据流模拟项目表

编号	项目	操作参数
SDS000	模拟 ECU 中存储的故障码数量	UP/DOWN
SDS001	模拟 MIL(故障指示灯)状态	ON/OFF
SDS002	模拟支持失火监测	支持/不支持
SDS003	模拟支持燃油系统监测	支持/不支持
SDS004	模拟支持综合部件监测	支持/不支持
SDS005	模拟失火监测准备就绪	OK/未完成
SDS006	模拟燃油系统监测准备就绪	OK/未完成
SDS007	模拟综合部件监测准备就绪	OK/未完成
SDS008	模拟支持 NMHC 催化剂监测(清码后)	支持/不支持
SDS009	模拟支持氮氧化合物后处理监测(清码后)	支持/不支持
SDS010	模拟支持增压压力系统监测(清码后)	支持/不支持
SDS011	模拟支持废气传感器监测(清码后)	支持/不支持
SDS012	模拟支持 PM(颗粒物)过滤器监测(清码后)	支持/不支持
SDS013	模拟支持 EGR(废气再循环)系统和/或 VVT(可变	支持/不支持
505010	阀正时)系统监测(清码后)	
SDS014	模拟 NMHC 催化剂监测准备就绪(清码后)	OK/未完成
SDS015	模拟氮氧化合物后处理监测准备就绪(清码后)	OK/未完成
SDS016	模拟增压压力系统监测准备就绪(清码后)	OK/未完成
SDS017	模拟废气传感器监测准备就绪(清码后)	OK/未完成
SDS018	模拟 PM(颗粒物) 监测准备就绪(清码后)	OK/未完成
SDS019	模拟支持 EGR(废气再循环)系统和/或 VVT(可变	OK/未完成
SDS020	阀正时) 系统监测准备就绪(清码后) 模拟失火检测激活	支持/不支持

SDS021	模拟燃油系统检测激活	支持/不支持
SDS022	模拟综合部件检测启用	支持/不支持
SDS023	模拟失火检测完成	OK/未完成
SDS024	模拟燃油系统检测完成	OK/未完成
SDS025	模拟支持 NMHC 催化剂监测(驾驶循环)	支持/不支持
SDS026	模拟支持氮氧化合物后处理监测(驾驶循环)	支持/不支持
SDS027	模拟支持增压压力系统监测(驾驶循环)	支持/不支持
SDS028	模拟支持废气传感器监测(驾驶循环)	支持/不支持
SDS029	模拟支持 PM(颗粒物)过滤器监测(驾驶循环)	支持/不支持
SDS030	模拟支持 EGR(废气再循环)系统和/或 VVT(可变 阀正时)系统监测(驾驶循环)	支持/不支持
SDS031	模拟 NMHC 催化剂监测准备就绪(驾驶循环)	OK/未完成
SDS032	模拟氮氧化合物后处理监测准备就绪(驾驶循环)	OK/未完成
SDS033	模拟增压压力系统监测准备就绪(驾驶循环)	OK/未完成
SDS034	模拟废气传感器监测准备就绪(驾驶循环)	OK/未完成
SDS035	模拟 PM(颗粒物)监测准备就绪(驾驶循环)	OK/未完成
SDS036	模拟支持 EGR(废气再循环)系统和/或 VVT(可变 阀正时)系统监测准备就绪(驾驶循环)	OK/未完成
SDS037	模拟导致冻结帧数据存储的故障码	P***
SDS038	模拟燃油系统 1 状态	OL CL OL-Drive OL-Fault CL-Fault
SDS039	模拟燃油系统 2 状态	OL CL OL-Drive OL-Fault CL-Fault
SDS040	模拟负荷计算值	UP/DOWN
SDS041	模拟发动机冷却液温度	UP/DOWN
SDS042	模拟短期燃油修正(缸组 1)	UP/DOWN
SDS043	模拟长期燃油修正(缸组 1)	UP/DOWN
SDS044	模拟短期燃油修正(缸组 2)	UP/DOWN
SDS045	模拟长期燃油修正(缸组 2)	UP/DOWN
SDS046	模拟油轨压力(表压力)	UP/DOWN
SDS047	模拟进气歧管绝对压力	UP/DOWN
SDS048	模拟发动机转数	UP/DOWN
_		

SDS049	模拟车速传感器	UP/DOWN
SDS049 SDS050	模拟气缸 1 点火提前角	UP/DOWN
		· ·
SDS051	模拟进气温度	UP/DOWN
SDS052	模拟来自质量空气流量传感器的空气流量	UP/DOWN
SDS053	模拟节气门绝对位置	UP/DOWN
SDS054	模拟指令的二次空气喷射状态	
		UPS
		DNS OFF
		DIAG
SDS055	 模拟氧传感器位置	B1:S1
203033	快到外书[]文念[新]立直	B1:S2
		B1:S3
		B1:S4
		B2:S1
		B2:S2
		B2:S3
		B2:S4
SDS056	模拟氧传感器输出电压(缸组 1, 传感器 1)	UP/DOWN
SDS057	模拟短期燃油修正(缸组 1, 传感器 1)	UP/DOWN
SDS058	模拟氧传感器输出电压(缸组 1, 传感器 2)	UP/DOWN
SDS059	模拟短期燃油修正(缸组 1, 传感器 2)	UP/DOWN
SDS060	模拟氧传感器输出电压(缸组 1, 传感器 3)	UP/DOWN
SDS061	模拟短期燃油修正(缸组 1, 传感器 3)	UP/DOWN
SDS062	模拟氧传感器输出电压(缸组 1, 传感器 4)	UP/DOWN
SDS063	模拟短期燃油修正(缸组 1, 传感器 4)	UP/DOWN
SDS064	模拟氧传感器输出电压(缸组 2, 传感器 1)	UP/DOWN
SDS065	模拟短期燃油修正(缸组 2, 传感器 1)	UP/DOWN
SDS066	模拟氧传感器输出电压(缸组 2, 传感器 2)	UP/DOWN
SDS067	模拟短期燃油修正(缸组 2, 传感器 2)	UP/DOWN
SDS068	模拟氧传感器输出电压(缸组 2, 传感器 3)	UP/DOWN
SDS069	模拟短期燃油修正(缸组 2, 传感器 3)	UP/DOWN
SDS070	模拟氧传感器输出电压(缸组 2, 传感器 4)	UP/DOWN
SDS071	模拟短期燃油修正(缸组 2, 传感器 4)	UP/DOWN

SDS072	模拟车辆或发动机认证的 OBD 请求	OBD OBD and OBD II OBDI NO OBD EOBD EOBD AND OBDII EOBD AND OBD EOBD, OBD AND OBDII JOBD JOBD AND OBDII JOBD AND OBDII JOBD AND OBDII
SDS073	模拟氧传感器位置	B1:S1 B1:S2 B2:S1 B2:S2 B3:S1 B3:S2 B4:S1 B4:S2
SDS074	模拟 PTO(动力输出)状态	ON/OFF
SDS075	模拟发动机启动后时间	UP/DOWN
SDS076	模拟 MIL(故障指示灯)点亮后的行驶距离	UP/DOWN
SDS077	模拟相对于歧管真空度的燃油轨压力	UP/DOWN
SDS078	模拟油轨压力	UP/DOWN
SDS079	模拟当量比(λ)(缸组 1, 传感器 1)	UP/DOWN
SDS080	模拟氧传感器电压(缸组 1, 传感器 1)	UP/DOWN
SDS081	模拟当量比(λ)(缸组 1, 传感器 2)	UP/DOWN
SDS082	模拟氧传感器电压(缸组 1, 传感器 2)	UP/DOWN
SDS083	模拟当量比(λ)(缸组 1, 传感器 3)	UP/DOWN
SDS084	模拟氧传感器电压(缸组 1, 传感器 3)	UP/DOWN
SDS085	模拟当量比(λ)(缸组 1, 传感器 4)	UP/DOWN
SDS086	模拟氧传感器电压(缸组 1, 传感器 4)	UP/DOWN
SDS087	模拟当量比(λ)(缸组 2, 传感器 1)	UP/DOWN
SDS088	模拟氧传感器电压(缸组 2, 传感器 1)	UP/DOWN
SDS089	模拟当量比(λ)(缸组 2, 传感器 2)	UP/DOWN
SDS090	模拟氧传感器电压(缸组 2, 传感器 2)	UP/DOWN
SDS091	模拟当量比(λ)(缸组 2, 传感器 3)	UP/DOWN
SDS092	模拟氧传感器电压(缸组 2, 传感器 3)	UP/DOWN
SDS093	模拟当量比(λ)(缸组 2, 传感器 4)	UP/DOWN

产品数据手册

SDS094	模拟氧传感器电压(缸组 2, 传感器 4)	UP/DOWN
SDS095	模拟指令 EGR	UP/DOWN
SDS096	模拟 EGR(废气再循环)故障	UP/DOWN
SDS097	模拟指令的蒸发净化	UP/DOWN
SDS098	模拟燃油液位输入	UP/DOWN
SDS099	模拟清除故障码后的暖机次数	UP/DOWN
SDS100	模拟清除故障码后的行驶距离	UP/DOWN
SDS101	模拟燃油蒸气排放系统蒸气压力	UP/DOWN
SDS102	模拟大气压	UP/DOWN
SDS103	模拟当量比(λ)(缸组 1, 传感器 1)	UP/DOWN
SDS104	模拟氧传感器电流(缸组 1, 传感器 1)	UP/DOWN
SDS105	模拟当量比(λ)(缸组 1, 传感器 2)	UP/DOWN
SDS106	模拟氧传感器电流(缸组 1, 传感器 2)	UP/DOWN
SDS107	模拟当量比(λ)(缸组 1, 传感器 3)	UP/DOWN
SDS108	模拟氧传感器电流(缸组 1, 传感器 3)	UP/DOWN
SDS109	模拟当量比(λ)(缸组 1, 传感器 4)	UP/DOWN
SDS110	模拟氧传感器电流(缸组 1, 传感器 4)	UP/DOWN
SDS111	模拟当量比(λ)(缸组 2, 传感器 1)	UP/DOWN
SDS112	模拟氧传感器电流(缸组 2, 传感器 1)	UP/DOWN
SDS113	模拟当量比(λ)(缸组 2, 传感器 2)	UP/DOWN
SDS114	模拟氧传感器电流(缸组 2, 传感器 2)	UP/DOWN
SDS115	模拟当量比(λ)(缸组 2, 传感器 3)	UP/DOWN
SDS116	模拟氧传感器电流(缸组 2, 传感器 3)	UP/DOWN
SDS117	模拟当量比(λ)(缸组 2, 传感器 4)	UP/DOWN
SDS118	模拟氧传感器电流(缸组 2, 传感器 4)	UP/DOWN
SDS119	模拟催化剂温度(缸组 1, 传感器 1)	UP/DOWN
SDS120	模拟催化剂温度(缸组 2, 传感器 1)	UP/DOWN
SDS121	模拟催化剂温度(缸组 1, 传感器 2)	UP/DOWN
SDS122	模拟催化剂温度(缸组 2, 传感器 2)	UP/DOWN
SDS123	模拟控制模块电压	UP/DOWN
SDS124	模拟绝对负荷值	UP/DOWN
SDS125	模拟燃油/空气指令的当量比	UP/DOWN
SDS126	模拟节气门相对位置	UP/DOWN
SDS127	模拟环境温度	UP/DOWN
SDS128	模拟节气门绝对位置 B	UP/DOWN
SDS129	模拟节气门绝对位置 C	UP/DOWN
SDS130	模拟节气门绝对位置 D	UP/DOWN
SDS131	模拟节气门绝对位置 E	UP/DOWN
SDS132	模拟节气门绝对位置 F	UP/DOWN

产品数据手册

SDS133	模拟指令的节气门执行器控制	UP/DOWN
SDS134	模拟故障指示灯点亮时发动机运转时间	UP/DOWN
SDS135	模拟清除故障码后的发动机运转时间	UP/DOWN
SDS136	模拟车辆当前使用的燃料类型	GAS
		METH
		ETH
		DSL
		LPG
		CNG
		PROP
		ELEC
		BI_GAS BI_METH
		BI ETH
		BI LPG
		BI CNG
		BI_PROP
		BI_ELEC
		ISO/SAE
SDS137	模拟酒精燃料百分比	UP/DOWN
SDS138	模拟燃油蒸气排放系统蒸气绝对压力	UP/DOWN
SDS139	模拟蒸气排放系统蒸气压力	UP/DOWN
SDS140	模拟副氧传感器短期燃油修正-缸组 1	UP/DOWN
SDS141	模拟副氧传感器长期燃油修正-缸组 1	UP/DOWN
SDS142	模拟副氧传感器短期燃油修正-缸组 2	UP/DOWN
SDS143	模拟副氧传感器长期燃油修正-缸组 2	UP/DOWN
SDS144	模拟油轨压力(绝对压力)	UP/DOWN
SDS145	模拟油门踏板相对位置	UP/DOWN
SDS146	模拟混合动力所用电池组剩余使用时间	UP/DOWN
SDS147	模拟发动机机油温度	UP/DOWN
SDS148	模拟喷油正时	UP/DOWN
SDS149	模拟发动机供油率	UP/DOWN
SDS150	模拟车辆排放要求	UP/DOWN

销售与服务

沈阳广成科技有限公司

地址: 辽宁省沈阳市浑南区长青南街 135-21 号 5 楼

邮编: 110000

网址: www.gcgd.net

全国销售与服务电话: 400-6655-220 售前服务电话与微信号: 13889110770 售前服务电话与微信号: 18309815706 售后服务电话与微信号: 13840170070

