LOGARITMICKÁ FUNKCIA – pracovný list

1. Zostrojte graf funkcie:

- a) $y = 2^x$
- b) pomocou osovej súmernosti zostrojte graf funkcie súmerný podľa osi 1. a 3. kvadrantu

- c) $y = (1/2)^x$
- d) graf súmerný s (c) podľa osi 1. a 3. kvadrantu

logaritmická funkcia: $y = log_a x$ $x \in R^+ \Rightarrow D(f) = R^+$ $a \in R^+ \land a \neq 1$

- 2. Pomocou grafu rozhodnite, ktoré z čísel sú záporné
 - a) log 5 0,5 záporné

Riešenie: a=5 > 1 ... rastúca logaritmická funkcia $y=\log_5 x$

=> x = 0,5 sa nachádza vľavo od bodu x = 1 => funkčná hodnota v bode x = 0,5, t.j. f(0,5) = log₅ 0,5 sa premietne dolu do záporných y-ov

b) log _{0,5} 5 záporné

Riešenie: a=0,5 < 1 ... klesajúca logaritmická funkcia $y=\log_{0.5} x$

- => x = 5 sa nachádza vpravo od bodu x = 1 => funkčná hodnota v bode x = 5, t.j.
- $f(5) = \log_{0.5} 5$ sa premietne dolu do záporných y-ov
- $=> f(5) = \underline{\log_{0.5} 5 < 0}$

 $=> f(0,5) = log_5 0,5 < 0$

- c) $\log_{0.5} 0.5$
- d) log 5 5
- 3. Určte $x \in R$, pre ktoré platí:
 - a) $\log_{0,2} x = 0$ x = 1

Riešenie: a=0,2 < 1 ... klesajúca logaritmická funkcia $y=\log_{0,2} x$

=> graf funkcie prechádza x-ovou osou, kde platí $y = 0 = \log_{0.2} x$ práve v bode x = 1

b)
$$\log_3 x < 0$$
 $0 < x < 1$

Riešenie: a=3 > 1 ... rastúca logaritmická funkcia y= log₃ x

=> graf funkcie bude mať hodnoty $y = log_3 x < 0$ (t.j. pod x-ovou osou) pre všetky prípady, pre ktoré je 0 < x < 1

- c) $\log_3 x \ge 0$
- d) $\log_2 x < \log_2 4$

4. Načrtnite graf funkcie:

a)
$$y = -\log_2(x+1)$$

b)
$$y = \log_{0.5} x + 2$$

c)
$$y = \log_4(x+1) - 2$$

d)
$$y = \log_{0,4}(x-2) + 1$$

Základné vlastnosti logaritmickej funkcie:

2. ak $0 < a < 1 \Rightarrow$ klesajúca funkcia

3. graf prechádza bodom [1,0]

4. ak
$$a > 1 \land x > 1 \Rightarrow \log_a x > 0$$

ak $a > 1 \land 0 < x < 1 \Rightarrow \log_a x < 0$

5.
$$ak \ 0 < a < 1 \land x > 1 \Rightarrow \log_a x < 0$$

 $ak \ 0 < a < 1 \land 0 < x < 1 \Rightarrow \log_a x > 0$

6.
$$D(f) = R^+ = (0,\infty)$$

 $H(f) = R$

- 4. Určte D(f):
 - a) f_1 : $y = \log x$
 - b) f_2 : y = log(x-4)
 - $c) f_3: y = \log x 4$
 - d) $y = \log_2(7 3x)$
 - e) $y = \log_{0.5}(x^2 x 12)$
- 5. Pomocou grafu $y = \log_2 x$ určte:
 - a) $\log_2 2 =$

d) y = 1 $\Rightarrow \log_2 x = 1$ x = 1

- b) $\log_2 4 =$
- c) $\log_2 1/2 =$

e) y = 0 $\Rightarrow \log_2 x = 0$ x = 0

- 6. Vypočítajte:
 - a) $\log_2 2^6 =$

- b) $\log_3 3^7 =$
- c) $\log_2 8 =$

d) $\log_3 1/3 =$

e) $\log_{7} 1 =$

- 7. Vypočítajte:
 - a) $\log_2 x = 4$
- b) $\log_2 x = -3$
- c) $\log_{3} x = 1/2$

$$\mathbf{x} =$$

$$\mathbf{x} =$$

 $\mathbf{x} =$

- d) $\log_{10} x = 0$
- e) $\log_2 x = -1$

 $\mathbf{x} =$

 $\mathbf{x} =$

- 8. Vypočítajte:
 - a) $\log_{z} 36 = 2$
- b) $\log_{z} 100 = 2$
- c) $\log_z 1/8 = -1$

 $\mathbf{z} =$

$$z =$$

$$z =$$

- d) $\log_z 0.001 = -3$
- e) $\log_{z} 5 = 1$

z =

$$z =$$

- 9. Vypočítajte: a) log z z =

 - a) $\log_{z}(1/z) =$
 - b) $\log_{z} z^{1/2} =$
 - c) $\log_z z^3 =$
- 10. Určte hodnotu mocniny:
 - a) $10^{\log_2 8}$

b) 4 log 4 2