Reihens. 460, 465, 1066

Zahlenreihens, 460

 $s_n = \sum_{k=1}^n a_k$ ist eine (unendliche) Reihe. Sie ist die Folge von Partialsummen einer bestehenden Folge a_n .

1.1.1 Konvergenz, Divergenzs, 460

Konvergiert die Reihe $\langle s_n \rangle$ gegen die Summe $s = \sum_{k=1}^{\infty} a_k$ so ist sie konvergent. Existiert der GW nicht, so ist sie divergent.

1.1.2 Geometrische Reihe

Es sei $a_1 \in \mathbb{R}$ und $q \in \mathbb{R} \setminus \{0; 1\}$, dann erhält man aus der geometrischen Folge $\langle a_k \rangle$ mit $a_k = a_1 \cdot q^{k-1}$ die geometrische Reihe $\langle s_n \rangle$ mit $s_n = \sum_{n=1}^{\infty} a_1 \cdot q^{n-1} = a_1 \cdot \frac{1-q^n}{1-q}$

$$\begin{array}{lll} \textbf{Monotonie} & \begin{array}{ccc} s_n \leq 0 & \rightarrow \text{(streng) monoton Fallend} \\ s_m \geq 0 & \rightarrow \text{(streng) monoton Steigend} \\ 0 < q \leq 1 & \rightarrow \text{(streng) monoton Fallend} \\ 0 < q \geq 1 & \rightarrow \text{(streng) monoton Steigend} \end{array}$$

1.1.3 Harmonische Reihe

Aus der Folge $\langle a_n \rangle$ mit $a_n = \frac{1}{n}$ erhalten wir die harmonisch Reihe mit $\langle s_n \rangle$ mit $s_n = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots = \infty$

1.1.4 Alternierende Harmonische Reihe

$$\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{n} = \ln(2) \text{ (bedingt konvergent)}$$

$$\sum_{n=1}^n \frac{x^n}{n^\alpha} \left\{ \begin{array}{l} x=1: \left\{ \begin{array}{l} \text{konvergiert f\"{u}r } \alpha > 1 \\ \text{konvergiert f\"{u}r } \alpha \leq 1 \end{array} \right. \\ x=-1: \left\{ \begin{array}{l} \text{konvergiert f\"{u}r } \alpha > 0 \\ \text{konvergiert f\"{u}r } \alpha \leq 0 \end{array} \right. \end{array} \right.$$

1.1.5 Konvergenzkriterien

Eine konvergente oder divergente Reihe bleibt konvergent oder divergent auch wenn man endlich viele Summanden entfernt! Abschätzung Restglied = Fehlerabschätzung.

Cauchy-Kriterium Wenn zu jedem $\varepsilon > 0$ ein Index n_0 existiert, so dass für alle $m > n > n_0$ gilt:

$$\left|\sum_{k=n}^{m} a_k\right| < \varepsilon$$
, dann konvergiert die Reihe, ansonsten divergiert sie.

Nullfolgenkriterium (lim = 0)_{S. 461} Wenn eine Reihe $\sum_{n=1}^{\infty} a_n$ konvergiert, dann ist a_n eine Nullfolge ($\lim_{n\to\infty} a_n = 0$). Warnung: Dass a_k eine Nullfolge ist, ist nur ein notwendiges, aber kein hinreichendes Kriterium für die Konvergenz der Reihe.

Divergenz Ist $< a_n >$ divergent oder ist $\lim_{n \to \infty} a_n \neq 0$, so ist die Reihe $\sum_{n=1}^{\infty} a_n$ divergent.

Teleskopsumme (Raffsumme) Eine Teleskopsumme ist eine Summe der Form $\sum_{n=1}^{\infty} (a_n - a_{n+1})$.

Hier heben sich benachbarte Summanden auf. Man erthält: $\sum_{n=1}^{\infty} (a_{n+1} - a_n) = a_{k+1} - a_1$

MajorantenkriteriumS. 469 Ist die Reihe $\sum_{n=1}^{\infty} c_n$ konvergent, so konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n$ für $|a_n| \le c_n$ (absolut). Dies gilt auch für $|a_n| \le c_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$.

Minorantenkriterium Ist die Reihe $\sum_{n=1}^{\infty} d_n$ gegen $+\infty$ divergent, so gilt dies auch für die Reihe $\sum_{n=1}^{\infty} a_n$ bei $a_n \ge d_n$. Dies gilt auch für $a_n \ge d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$.

Reziprokkriterium $s = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ist konvergent für $\alpha > 1$ und divergent für $\alpha \le 1$.

Quotientenkriteriums. 464
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \alpha$$
 der Reihe $\sum_{n=1}^{\infty} a_n$ $\alpha < 1 \Rightarrow$ (absolut) konvergent $\alpha > 1 \Rightarrow$ divergent

 $\alpha = 1 \Rightarrow$ keine Aussage!

Wurzelkriterium_{S. 464f}
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = \alpha$$
 der Reihe $\sum_{n=1}^{\infty} a_n$ $\alpha < 1 \Rightarrow$ (absolut) konvergent $\alpha > 1 \Rightarrow$ divergent

 $\alpha = 1 \Rightarrow$ keine Aussage!

Integralkriterium_{S. 465} $\sum_{n=1}^{\infty} f(n)$ ist konvergent, wenn das uneigentliche Integral $\int_{1}^{\infty} f(x)dx$ konvergent ist. Gilt nur, wenn f auf $[1,\infty)$ definiert und monoton fallend ist. Zudem muss $f(x) \geq 0$ für alle $x \in [1,\infty)$ sein.

Leibniz-Kriterium_{S. 466} Die alternierende Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, wenn die Folge $<|a_n|>$ eine monoton fallende Nullfolge $(\lim_{n\to\infty}|a_n|=0)$ ist.

Monotonie mittels Verhältnis $\left(\left|\frac{a_{n+1}}{a_n}\right|\right)$, Differenz $\left(\left|a_{n+1}\right|-\left|a_n\right|\right)$ oder *vollständiger Induktion* beweisen.

Abschätzung Restglied einer alternierenden konvergenten Reiheg. 466,470 (Fehlerabschätzung) $|R_n| = |s - s_n| \le |a_{n+1}|$

1.1.6 Bedingte und Absolute Konvergenzs, 465

Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst **absolut konvergent**, wenn die Reihe $\sum_{n=1}^{\infty} |a_n|$ konvergent ist.

Bedingt Konvergent: Eine Reihe hat durch Umordnen einen anderen Grenzwert oder wird divergent.

Unbedingt Konvergent: Durch Umordnen ändert sich der Grenzwert nicht.

1.1.7 Produkt von absolut konvergenten Reihens, 466

Gegeben sei:
$$\sum a_n = a$$
, $\sum b_n = b$, $\sum c_n = (\sum a_n) \cdot (\sum b_n) = c$ so ist $c_n = \sum a_k b_{n-k+1}$ und $c = a \cdot b$

1.1.8 Fehlerformel

$$|s_n - s| \le |a_{n+1}|$$

1.2 Potenzreihen

Definitions. 432 Die Reihe $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ heisst Potenzreihe mit Entwicklungspunkt x_0 und Koeffizienten a_n . Die durch Differentiation entstehende Potenzreihe hat denselben Konvergenzradius wie die ursprüngliche.

Geometrische Reihes. 19
$$\frac{a}{1-x} = a \cdot \sum_{n=0}^{\infty} x^n \qquad (|x| < 1) \qquad \text{Beidseitiges } \int \Rightarrow \quad a \cdot \sum_{n=1}^{\infty} \frac{x^n}{n} = -a \cdot \ln|x-1|$$
 Binominalreihe
$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n \qquad x \in (-1,1)$$
 Taylor-Reihes. 474
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x-x_0)^n \quad \text{Taylor-Reihe von f bezüglich der Stelle } x_0$$
 E-Funktion
$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1} + \frac{x^2}{1 \cdot 2} + \frac{x^3}{1 \cdot 2 \cdot 3} + \frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4} + \cdots$$

$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} \cdot x^n \qquad \text{für } x_0 = 0$$

Konvergenzs, 472

Gegeben sei die Potenzreihe $\sum\limits_{n=0}^{\infty}a_nx^n$ mit $\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=a$ Für a=0 ist die Potenzreihe für alle $x\in\mathbb{R}$ absolut konvergent.

Für a > 0 ist die Potenzreihe für alle x mit $\begin{cases} |x| < \frac{1}{a} = \rho \Rightarrow \text{ absolut konvergent.} \\ |x| > \frac{1}{a} = \rho \Rightarrow \text{ divergent.} \end{cases}$ Ist die Folge $< \sqrt[n]{|a_n|} > \text{nicht beschränkt, so ist die Potenzreihe nur für } x = 0 \text{ konvergent.}$

1.2.2 Konvergenzradiuss 472

Jeder Potenzreihe kann ein Konvergenzradius ρ zugeordnet werden. Wobei gilt $\rho = \frac{1}{a}$ mit $a = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

Für a=0 gilt $\rho=\infty.$ Wenn a nicht exisitiert (Folge divergent) ist $\rho=0.$

Berechnung mittels Quotientenkriterium: $\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

1.2.3 Differentiation

Alle Potenzreihen mit einem $\rho > 0$ sind für alle $x \in (-\rho, \rho)$ beliebig oft (gliedweise) differenzierbar.

Der Potenzradius ρ ist bei allen Ableitungen gleich demjenigen der Ursprungsfunktion. $\rho_f = \rho_{f(i)}$.

Potenzreihe. Die durch Differentiation entstehende Potenzreihe hat denselben Konvergenzradius wie die ursprüngliche Potenzreihe.

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \qquad f'(x) = \sum_{n=1}^{\infty} n \cdot a_n x^{n-1} \qquad f''(x) = \sum_{n=2}^{\infty} n(n-1) \cdot a_n x^{n-2} \qquad f^{(i)}(x) = \sum_{n=i}^{\infty} n(n-1) \cdot \dots \cdot (n-i+1) \cdot a_n x^{n-i}$$

Bemerkung: Startwert (n=0) nur erhöhen, wenn bei x^n, n negativ werden würde!

1.2.4 Integration

Unbestimmtes Integral
$$\int \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} a_n \int x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} \cdot x^{n+1}$$
 für alle $x \in (-\rho, \rho)$.

Bestimmtes Integral $\int_{0}^{x} \sum_{n=0}^{\infty} a_n t^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} \cdot x^{n+1}$ für alle $x \in (-\rho, \rho)$.

Einige Reihen

Leibniz-Reihe:
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + = \frac{\pi}{4}$$

 $\sum_{n=1}^{\infty} \frac{1}{n} \to \text{Ist divergent}$

 $\sum_{n=1}^{\infty} \frac{1}{n^2} \to \text{Absolut konvergent gegen 1 (Beweis durch Integralkriterium)}$

Grenzwerte einiger Reihen

$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x$	$\lim_{n\to\infty} (\sqrt[n]{a}) = 1(a > 0 \text{ und const.})$	$\lim_{n\to\infty} (\sqrt[n]{n}) = 1$
$\lim_{n\to\infty} (\sqrt[n]{ p(n) }) = 1(p(n) \neq 0)$	$\lim_{n\to\infty} \left(\frac{K}{n!}\right) = 0(K \text{ const. })$	$\lim_{n\to\infty}(\sqrt[n]{n!})=+\infty$
$\lim_{n \to \infty} \left(\frac{n}{\sqrt[n]{n!}} \right) = e$	$\lim_{n\to\infty} \left(\sqrt[n]{n^a}\right) = 1(a \text{ const. })$	$\lim_{n\to\infty} \left(\sqrt[n]{\frac{K^n}{n!}} \right) = 0 (K > 0 \text{ und const.})$

2 Anwendung der Differential- und Integralrechnung

2.1 Orthogonale Trajektorien

Die orthogonalen Trajektorien schneiden alle Kurven der gegebenen Kurvenschar y = f(x, c) im rechten Winkel (orthogonal).

Vorgehen:

- 1. Kurvenschar y = f(x, c) nach c auflösen
- $2.\ c$ in der abgeleiteten Gleichung ersetzen
- 3. y' durch $-\frac{1}{y'}$ ersetzen
- 4. DGL auflösen (sofern nötig...)

Beispiel:

Gesucht: Orthogonalen Trajektorien der Kurvenschar $y = c \cdot x$ mit $c \in \mathbb{R}$.

Die Differentialgleichung ergibt sich mit c = y' zu $y = y' \cdot c$.

Für die orthogonalen Trajektorien gilt also: $y = -\frac{1}{y'} * x$.

Diese Gleichung kann zu $y \cdot y' = -x$ umgeformt werden.

Durch Integration folgt: $\frac{1}{2}y^2 = -\frac{1}{2}x^2 + c_1$, also $x^2 + y^2 = k$

Das sind für k > 0 konzentrische Kreise um den Nullpunkt.

Info: Die Kreise sind Orthogonaltrajektorien der Hyperbeln und umgekehrt.

$$\frac{r'}{r} = f(\varphi, r)$$
 $\xrightarrow{\text{orthogonal}}$ $\frac{r'}{r} = -\frac{1}{f(\varphi, r)}$

3 Differentialgleichungen S. 543

3.1 Lösen von Differentialgleichungen 1. Ordnung

3.1.1 Picard-Lindelöf

Die Funktion $f(x, u, u_1, \dots, u_{n-1})$ sei in einer Umgebung der Stelle $(x_0, y_0, y_1, \dots, y_{n-1}) \in \mathbf{R}^{\mathbf{n}+1}$ stetig und besitzt dort stetige partielle Ableitungen nach u, u_1, \dots, u_{n-1} , dann existiert in einer geeigneten Umgebung des Anfangspunktes x_0 genau eine Lösung des Anfangswertproblems.

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$
 mit $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$

 $\frac{\partial f(x,y,y,\ldots)}{\partial y}\ldots\frac{\partial f}{\partial f^{(n-1)}}$ endlich beschränkt \Rightarrow eindeutige Lösbarkeit

3.1.2 Trennung von Variabeln / Separation $_{S. 545}$

Form: y' = f(x)g(y) Vorgehen: 1. DGL umstellen: $\frac{y'}{g(y)} = f(x)$

- 2. Beidseitig nach x integrieren wobei $dx = \frac{dy}{y'}$
- 3. Genzen anpassen: $\int_{y_0=y(x_0)}^{y} \frac{1}{g(y)} dy = \int_{x}^{x_0} f(x) dx$

3.1.3 Linearterm substitution S. 545

Form: y' = f(ax + by + c) Vorgehen: 1. Substitution: z = ax + by + c

- 2. Einsetzen in z' = a + by' = a + bf(z)
- 3. Separation: $\int_{x_0}^x \frac{z'}{a+bf(z)} d\tilde{x} = \int 1 d\tilde{x}$

$$\Rightarrow \int_{z_0}^z \frac{1}{a+bf(\tilde{z})} d\tilde{z} = \int_{x_0}^x 1 d\tilde{x} \quad \left[d\tilde{z} = \underbrace{(a+by')}_{z'} d\tilde{x} \right]$$

3.1.4 Gleichgradigkeit

Form: $y' = f(\frac{y}{x})$

Vorgehen: 1. Substitution: $z = \frac{y}{x}$

- 2. Einsetzen in $z' = \frac{1}{\pi}(f(z) z)$
- 3. Separation: $\frac{z'}{f(z)-z}=\frac{1}{x}$ which we will be written as $z_0=\frac{y_0}{x_0}$

Lineare Differentialgleichungen 1. Ordnung S. 546

Form: y' + f(x)y = g(x) Vorgehen: Homogene Rechunug: $y_H = k \cdot e^{-\int f(x) \cdot dx}$

Inhomogene Rechung: $y_P = (\int g(x) \cdot e^{\int f(x) \cdot dx} \cdot dx) \cdot e^{-\int f(x) \cdot dx}$

Allgemeine Lösung: $y = y_H + y_P$ wobei $k = \frac{y_0 - y_P(x_0)}{e^{\int f(x_0) \cdot dx}}$

3.2 Lineare Differentialgleichung 2. Ordnung mit konstanten Koeffizienten S. 564

Form: $y'' + a_1 \cdot y' + a_0 \cdot y = f(x)$

Störglied: f(x)

Homogene Differentialgleichung: f(x) = 0

Inhomogene Differentialgleichung: $f(x) \neq 0$

Allgemeine Lösung einer homogenen DGL: $y = Y_H$

Charakteristisches Polynom
$$\lambda^2 + a_1 \cdot \lambda + a_0 = 0$$
 von $y'' + a_1 \cdot y' + a_0 \cdot y = 0$ $\left(\lambda_{1,2} = -\frac{a_1}{2} \pm \frac{\sqrt{a_1^2 - 4a_0}}{2}\right)$

2 Lösungen

(D>0) Falls $\lambda_1 \neq \lambda_2$ und $\lambda_{1,2} \in R$: $Y_H = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$

}starke Dämpfung

1 Lösung

(D=0) Falls $\lambda_1 = \lambda_2$ und $\lambda_{1,2} \in R$: $Y_H = e^{\lambda_1 x} (A + B \cdot x)$

}aperiodischer Grenzfall

Komplex. Lösung (D < 0) Falls $\lambda_{1,2} = -\frac{a_1}{2} \pm j\alpha$: $Y_H = e^{-\frac{1}{2}a_1x}(A\cos(\alpha x) + B\sin(\alpha x))$ }schwache Dämpfung /

Schwingfall

Eigenfrequenz: $\omega = \alpha = \frac{\sqrt{|a_1^2 - 4a_0|}}{2}$ Dämpfung: $|\delta| = |\lambda| = |\lambda|$

3.2.2 Allgemeine Lösung einer inhomogenen DGL: $y = Y_H + Y_P$

3.2.3 Grundlöseverfahren (Faltungsintegral)

$$Y_H = g(x)$$
 und $Y_P = f(t)$

Anfangsbedingungen: $g(x_0) = g'(x_0) = g''(x_0) = \dots = g^{(n-2)}(x_0) = 0$ und $g^{(n-1)}(x_0) = 1$ (Mit $x_0 = 0$)

$$y_P(x) = \int_{x_0}^x g(x + x_0 - t) \cdot f(t)dt$$

3.2.4 Ansatz in Form des Störglieds

Allgemeines Vorgehen:

- 1. Ermitteltes y_P m mal ableiten (m = Grad des Polynoms)
- 2. Ableitungen in DGL einsetzen
- 3. Koeffizientenvergleich

$$f(x) = p_n(x)$$

 $a_0 \neq 0$:

 $y_P = q_n(x)$

 $a_0 = 0, a_1 \neq 0$:

 $y_P = x \cdot q_n(x)$

 $a_0 = a_1 = 0$:

 $y_P = x^2 \cdot q_n(x)$

$$f(x) = e^{bx} \cdot p_n(x)$$

b nicht Nullstelle des char. Polynoms: $y_P = e^{bx} \cdot q_n(x)$

b einfache Nullstelle des char. Polynoms: $y_P = e^{bx} \cdot x \cdot q_n(x)$

b zweifache Nullstelle des char. Polynoms: $y_P = e^{bx} \cdot x^2 \cdot q_n(x)$

$$f(x) = e^{cx}(p_n(x)\cos bx + q_n(x)\sin bx)$$

c+jb nicht Lösung der char. Gleichung $y_n=e^{cx}(r_n(x)\cos bx+s_n(x)\sin bx)$

c+jb Lösung der char. Gleichung $y_p=e^{cx}x(r_n(x)\cos bx+s_n(x)\sin bx)$

3.2.5 Superpositionsprinzip

$$f(x) = c_1 f_1(x) + c_2 f_2(x)$$

 y_1 ist spezielle Lösung der DGL $y'' + a_1 \cdot y' + a_0 \cdot y = c_1 f_1(x)$

 y_2 ist spezielle Lösung der DGL $y'' + a_1 \cdot y' + a_0 \cdot y = c_2 f_2(x)$

dann ist: $y_P = c_1 y_1 + c_2 y_2$

3.2.6 Faltung

 $f(x) = \int_0^x f_1(x-t)f_2(t)dt$ Schreibweise $f = f_1 * f_2$

3.3 Lineare Differentialgleichung n. Ordnung mit konstanten Koeffizienten S. 554

Form:
$$\sum_{k=0}^{n} a_k y^{(k)} = y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \ldots + a_0 \cdot y = f(x)$$

3.3.1 Homogene Lösungen

$$Y_H = Ay_1 + By_2 + Cy_3 + \ldots + Ny_n$$

Charakteristische Gleichung hat die

a) r-fache Lösung (NS) $\lambda_1 \in \mathbb{R}$: $y_1 = e^{\lambda_1 x}, y_2 = e^{\lambda_1 x}$

 $y_1 = e^{\lambda_1 x}, y_2 = xe^{\lambda_1 x}, \dots, y_r = x^{r-1}e^{\lambda_1 x}$ Starke Dämpfung

b) k-fache Lösung (NS) $\lambda_2 \in \mathbb{C}$ mit $\lambda_2 = \alpha + j \cdot \beta$ $y_1 = e^{\alpha x} \cos(\beta x), \ldots, y_k = e^{\alpha x} x^{k-1} \cos(\beta x)$ Schwache Dämpfung

sowie $\lambda_3 = \overline{\lambda_2}$ $y_{k+1} = e^{\alpha x} \sin(\beta x), \dots, y_{2k} = e^{\alpha x} x^{k-1} \sin(\beta x)$

3.3.2 Inhomogene Lösungen

Grundlösungsverfahren

Integral siehe 3.2.3 Grundlösungsverfahren

$$\begin{pmatrix}
g(x_0) = 0 = c_1 g_1(x_0) + c_2 g_2(x_0) + \dots + c_n(x_0) \\
g'(x_0) = 0 = c_1 g'_1(x_0) + c_2 g'_2(x_0) + \dots + c_n g'_n(x_0) \\
\vdots & \vdots \\
g^{(n-1)}(x_0) = 1 = c_1 g_1^{(n-1)}(x_0) + c_2 g_2^{(n-1)}(x_0) + \dots + c_n g_n^{(n-1)}(x_0)
\end{pmatrix}$$
Ergibt c_1, \dots, c_n für $y_P(x) = \int_{x_0}^x g(x + x_0 - t) f(t) dt$ $g_1(x_0) = Y_H$

Ansatz in Form des Störgliedes

$$\sum_{k=0}^{n} a_k y^{(k)}_{f(y,y',y'',\dots)} = \underbrace{e^{\alpha x} (p_{m1}(x)\cos(\beta x) + q_{m2}(x)\sin(\beta x))}_{\text{Störglied}} \quad \text{mit } m = max(m1, m2)$$

- a) $\alpha + j \cdot \beta$ ist nicht Lösung der charakt. Gleich. $y_P = e^{\alpha x} (r_m(x) \cos(\beta x) + s_m(x) \sin(\beta x))$
- b) $\alpha + j \cdot \beta$ ist r-fache Lösung der charakt. Gleich. $y_P = e^{\alpha x} x^r (r_m(x) \cos(\beta x) + s_m(x) \sin(\beta x))$ r-fache Resonanz

3.3.3 Anfangswertproblem

$$y(x_0) = y_0$$
 $y'(x_0) = y_1$ $y''(x_0) = y_2$... $y^{(n-1)}(x_0) = y_{n-1}$

3.3.4 Hornerschemas, 914

- Pfeile \Rightarrow Multiplikation
- Zahlen pro Spalte werden addiert

 $x_1 \Rightarrow$ Nullstelle (muss erraten werden!!) oberste Zeile = zu zerlegendes Polynom

Beispiel:

$$f(x) = x^{3} - 67x - 126$$

$$x_{1} = -2$$

$$\begin{vmatrix}
1 & 0 & -67 & -126 \\
-2 & 4 & +126
\end{vmatrix}$$

$$\begin{vmatrix}
1 & -2 & -63 & 0 = f(-2) \\
\uparrow & \uparrow & \uparrow \\
b_{2} & b_{1} & b_{0}
\end{vmatrix}$$

$$\Rightarrow f(x) = (x - x_{1})(b_{2}x^{2} + b_{1}x + b_{0}) = (x + 2)(x^{2} - 2x - 63)$$

3.4 Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten

Allgemeine Lösung ergibt sich aus der DGL: $\underbrace{\ddot{x} - (a+d)\dot{x} + (ad-bc)x = \dot{f}(t) - df(t) + bg(t)}_{\text{normale DGL 2. Ordnung} \rightarrow \text{ nach } x \text{ auflösen}}$

Anfangsbedienung: $x_0(t_0) = x_0, \dot{x}_0(t_0) = ax_0 + by_0 + f(t_0)$

Anordnung beachten! Gesuchte Grösse immer zu oberst (in diesem Fall ist die gesuchte Grösse x)

Anhang: Tabellen

4.1 Wichtige Formelns. FF S60			
Geometrischer Begriff	karthesische Koordianten	Parameter Darstellung	Polarkoordinaten
Anstieg in $P_0 \in \mathcal{C}$	$y' = f'(x_0)$	$y' = \frac{\dot{y}}{\dot{x}} \ y'' = \frac{x\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$	$y' = \frac{f'(\varphi_0)\sin \varphi_0 + f(\varphi_0)\cos \varphi_0}{f'(\varphi_0)\cos \varphi_0 - f(\varphi_0)\sin \varphi_0}$
Bogenlänge zwischen $P_1, P_2 \in \mathcal{C}$	$s = \int_{b}^{a} \sqrt{1 + (f'(x))^2} dx$	$ s = \int_{t_1}^{t_2} \sqrt{\dot{x}^2 + \dot{y}^2(t)} dt$	$ s = \int_{\varphi_1}^{\varphi_2} \sqrt{(f'(\varphi))^2 + (f(\varphi))^2} d\varphi$
Krümmung in $P_0 \in \mathcal{C}$	$\kappa = rac{f''(x_0)}{(\sqrt{1 + (f'(x_0))^2})^3}$	$\kappa = rac{\dot{x}(t_0)\ddot{y}(t_0) - \dot{y}(t_0)\ddot{x}(t_0)}{(\sqrt{\dot{x}(t_0)})^2 + (\dot{y}(t_0))^2)^3}$	$\kappa = \frac{2(f'(\varphi))^2 - f(\varphi_0)f''(\varphi) + (f(\varphi_0))^2}{(\sqrt{(f'(\varphi_0))^2 + (f(\varphi_0))^2})^3}$
Flächeninhalt einer Fläche mit dem Rand $A = \int\limits_{b}^{a} f(x) dx$		y(t)]dt	$A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (f(\varphi))^2 d\varphi$
Volumen eines Rotationskörpers mit dem $V = \pi \int_a^b (f(x))^2 dx$ Meridian C (Rotation um x)		$V = \pi \left \int_{t_1}^{t_2} (y(t))^2 \dot{x}(t) dt \right $	$V = \pi \left \int_{\varphi_1}^{\varphi_2} f^2(\varphi) \sin^2 \varphi [f'(\varphi) \cos \varphi - f(\varphi) \sin \varphi] d\varphi \right $
Oberlächeninhalt eines Rotationskörpers mit dem Meridian C	$O = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx$	$O = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$	Oberlächeninhalt eines Rotationskörpers $O = 2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} dx O = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt O = 2\pi \int_{\varphi_1}^{\varphi_2} f(\varphi) \sin \varphi \sqrt{(f'(\varphi))^2 + (f(\varphi))^2} d\varphi$ mit dem Meridian C

4.2 Einige unbestimmte Integrales, 1074

$\int dx = x + C$	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}$
$\int \frac{1}{x} dx = \ln x + C, \ x \neq 0$	$\int e^x dx = e^x + C$
$\int a^x dx = \frac{a^x}{\ln a} + C, \ a\epsilon \mathbb{R}^+ \setminus \{1\}$	$\int \sin x dx = -\cos x + C$
$\int \cos x dx = \sin x + C$	$\int \frac{dx}{\sin^2 x} = -\cot x + C, \ x \neq k\pi \text{ mit } k\epsilon\mathbb{Z}$
$\int \frac{dx}{\cos^2 x} = \tan x + C, \ x \neq \frac{\pi}{2} + k\pi \text{ mit} k\epsilon \mathbb{Z}$	$\int \sinh x dx = \cosh x + C$
$\int \cosh x dx = \sinh x + C$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C, \ x \neq 0$
$\int \frac{dx}{\cosh^2 x} = \tanh x + C$	$\int \frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C, \ a \neq 0, x \neq -\frac{b}{a}$
$\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0$	$\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left \frac{ax - b}{ax + b} \right + C, \ a \neq 0, \ b \neq 0, \ x \neq \frac{b}{a}, \ x \neq -\frac{b}{a}$
$\int \sqrt{a^2 x^2 + b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 + b^2} + \frac{b^2}{2a} \ln(ax + \sqrt{a^2 x^2 + b^2}) + C, \ a \neq 0, \ b \neq 0$	$\int \sqrt{a^2 x^2 - b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 - b^2 - b^2} \ln ax + \sqrt{a^2 x^2 - b^2} + C, \ a \neq 0, \ b \neq 0, a^2 x^2 \ge b^2$
$\int \sqrt{b^2 - a^2 x^2} dx = \frac{x}{2} \sqrt{b^2 - a^2 x^2} + \frac{b^2}{2a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 \le b^2$	$\int \frac{dx}{\sqrt{a^2 x^2 - b^2}} = \frac{1}{a} \ln(ax + \sqrt{a^2 x^2 + b^2}) + C, \ a \neq 0, \ b \neq 0$
$\int \frac{dx}{\sqrt{a^2 x^2 - b^2}} = \frac{1}{a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 > b^2$	$\int \frac{dx}{\sqrt{b^2 - a^2 x^2}} = \frac{1}{a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 < b^2$
Die Integrale $\int \frac{dx}{X}$, $\int \sqrt{X} dx$, $\int \frac{dx}{\sqrt{X}}$ mit $X = ax^2 + 2bx + c$, $a \neq 0$ werden durch	$\int \frac{x dx}{X} = \frac{1}{2a} \ln X - \frac{b}{a} \int \frac{dx}{X}, \ a \neq 0, \ X = ax^2 + 2bx + c$
die Umformung $X = a(x + \frac{b}{a})^2 + (c - \frac{b^2}{a})$ und die Substitution $t = x + \frac{b}{a}$ in die	
oberen 4 Zeilen transformiert.	
$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \cdot \sin 2ax + C, \ a \neq 0$	$\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \cdot \sin 2ax + C, \ a \neq 0$
$\int \sin^n ax dx = -\frac{\sin^{n-1} ax \cdot \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int \cos^n ax dx = \frac{\cos^{n-1} ax \cdot \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax dx, \ n \in \mathbb{N}, \ a \neq 0$
$\int \frac{dx}{\sin ax} = \frac{1}{a} \ln \left \tan \frac{ax}{2} \right + C, \ a \neq 0, \ x \neq k^{\frac{\pi}{a}} \text{ mit } k \in \mathbb{Z}$	$\int \frac{dx}{\cos ax} = \frac{1}{a} \ln \left \tan(\frac{ax}{2} + \frac{\pi}{4}) \right + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k\frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$
$\int \tan ax dx = -\frac{1}{a} \ln \cos ax + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \text{mit } k \in \mathbb{Z}$	$\int \cot ax dx = \frac{1}{a} \ln \sin ax + C, \ a \neq 0, \ x \neq k \frac{\pi}{a} \text{mit} k \in \mathbb{Z}$
$\int x^n \sin ax dx = -\frac{x^n}{a} \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx, n \in \mathbb{N}, a \neq 0$	$\int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, n \in \mathbb{N}, a \neq 0$
$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, n \in \mathbb{N}, a \neq 0$	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C, \ a \neq 0, \ b \neq 0$
$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C, \ a \neq 0, \ b \neq 0$	$\int \ln x dx = x(\ln x - 1) + C, \ x \in \mathbb{R}^+$
$\int x^{\alpha} \cdot \ln x dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} \left[(\alpha+1) \ln x - 1 \right] + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}$	