Classification

Boston University CS 506 - Lance Galletti

Classification Tasks

- Predicting tumor cells as benign or malignant
- Classifying images
- Classifying credit card transactions as being legitimate or fraudulent
- Many more

Classification Techniques

- Instance-Based Classifiers
- Decision Trees
- Naive Bayes
- Support Vector Machines
- Neural Networks

What is Classification?

- Given a training set where data is labeled with a special attribute called a class (a discrete value)
- We want to find a model describing how the class attribute varies as a function of the values of the other attributes
- Goal: use this model on unlabeled data to assign a class as accurately as possible

Example

Example

What constitutes a good feature?

What constitutes a good feature?

What constitutes a good set of features?

- What constitutes a good feature?
- What constitutes a good set of features?
 - Change in F₁, ..., F_m means expect a change in Y
- Correlation vs causation

Primary goal is to capture the general trend / relationship between class

and features as simply as possible

- Outliers
- Noise

- What constitutes a good feature?
- What constitutes a good set of features?
 - Change in F₁, ..., F_m means expect a change in Y
- Correlation vs causation
- Primary goal is to capture the general trend / relationship between class and features as simply as possible
 - Outliers
 - Noise
- Model performance / evaluations
 - Overfitting vs Underfitting
- All models are wrong but some are useful. What value does your model provide?

Underfitting VS Overfitting

Underfitting VS Overfitting

Model Evaluation (simply)

- Evaluating a model on the data it was trained on is cheating - can just memorize.
- Distinction between data used for training and data left out used for testing / evaluation.

Worksheet Part 1

Instance-Based Classifiers

- Use the stored training records to predict the class label of unseen cases
- Rote-learners:
 - Perform classification only if the attributes of the unseen record exactly match a record in our training set

Instance-Based Classifiers: Training Step

Instance-Based Classifiers: Applying the model

age	Tumor size	malignant?			
20	10	no	200	Tumor size	malignant?
30	15	yes	age	Turrior Size	malignant?
40	20	no	20	10	?
50	25	yes			

Instance-Based Classifiers: Applying the model

age	Tumor size	malignant?			
20	10	no	200	Tumor size	malianant2
30	15	yes	age	Turrior Size	malignant?
40	20	no	20	10	no
50	25	yes			

Instance-Based Classifiers

- Use the stored training records to predict the class label of unseen cases
- Rote-learners:
 - Perform classification only if the attributes of the unseen record exactly match a record in our training set

Instance-Based Classifiers

age	Tumor size	malignant?				
20	10	no		200	Tumor size	malignant?
30	15	yes	*	age	Tulliol Size	mangnant!
40	20	no		25	5	?
50	25	yes			,	

Use **SIMILAR** records to perform classification

Requires:

- Training set
- Distance function
- Value for k

How to classify an unseen record:

- 1. Compute distance of unseen record to all training records
- 2. Identify the k nearest neighbors
- 3. Aggregate the labels of these k neighbors to predict the unseen record class (ex: majority rule)

Aggregation methods:

- Majority rule
- Weighted majority based on distance ($w = 1/d^2$)

Scaling issues:

- Attributes should be scaled to prevent distance measures from being dominated by one attribute. Example:
 - o Age: 0 -> 100
 - o Income: 10k -> 1million

Scaling Attributes

Choosing the value of k:

- If k is too small ->
 - sensitive to noise points + overfitting (doesn't generalize well)
- If k is too big ->
 - neighborhood may include points from other classes

How to choose k

Pros:

Simple to understand why a given unseen record was given a particular class

Cons:

- Expensive to classify new points
- KNN can be problematic in high dimensions (curse of dimensionality)