Kamskivedesign

1 Introduksjon

Skurtreskere, samlebåndsmaskiner, roterende trykkpresser, gravemaskiner, symaskiner og vaskemaskiner er noen eksempler på mekaniske maskiner som finnes overalt i samfunnet rundt oss. Mekaniske maskiner utfører fysiske arbeidsoppgaver og frigjør menneskelige ressurser til andre formål. Selv om hver av disse maskinene er kompliserte i seg selv, bygger de ofte på enkle fysiske prinsipper som kan skjule interessant matematikk.

Et vanlig element i mange maskiner er *kamskiven*. En kamskive brukes til å omsette rotasjonsbevegelse til lineær bevegelse, som vist i figur 1. Kamskiver brukes ofte i enkle elektromekaniske kontrollere og i girkasser. Du finner for eksempel kamskiver i bilen, der de kontrollerer ventilene som står for innsprøyting av drivstoff i sylindrene.

Et enkelt kamsystem består som vist i figur 1 av en kamskive og en følger. Det er variasjonen i radien til kamskiven som omsetter rotasjonsbevegelsen til akslingen kamskiven sitter på, til den lineære bevegelsen til følgeren. Posisjonen s til følgeren relativt til kamakslingen er dermed gitt av vinkelposisjonen θ til kamskiven, $s = s(\theta)$.

I denne oppgaven skal vi begynne med å se på kamfunksjonen $s(\theta)$, og du skal få designe din egen kamskive hvis du vil. Deretter skal vi se på hvordan vi kan oversette denne funksjonen til formen på kamskiven, som vist i figur 3 nedenfor. Til slutt skal du få prøve din egen, 3D-printede kamskive.

Figur 1 Kamskive med følger. Rotasjonen til kamskiven omsettes til en lineær vertikal bevegelse i følgeren. Følgerens høyde s over kamakslingen er gitt av vinkelposisjonen θ til kamskiven, $s = s(\theta)$.

2 Kamfunksjonen

For de aller fleste anvendelser er det umulig å konstruere én enkelt matematisk funksjon $s(\theta)$ som gir den ønskede oppførselen for kamskiven. I stedet bruker man stykkevis definerte funksjoner. Begrensningene disse funksjonene må oppfylle er bestemt av hva kamskiven skal brukes til.

En vanlig type kamskive, som for eksempel kan brukes til å kontrollere en ventil, er typen *rise–dwell–fall–dwell*. Det er denne typen kamskive som er vist i figur 1 og 3. En slik kamskive har økende radius for $\theta \in [a,b]$, konstant radius for $\theta \in (b,c)$, synkende radius for $\theta \in [c,d]$ og konstant radius for $\theta \in (d,a+2\pi)$.

Vi skal se på et enkelt eksempel på en slik kamskive der alle de fire intervallene har bredden $\beta = \pi/2$. Det vil si at a = 0, $b = \beta$, $c = 2\beta$ og $d = 3\beta$. For enkelhets skyld innfører vi variabelen $\phi = \theta/\beta$.

Vi setter $s(\phi) = 2h$ på intervallet $\phi \in (1,2)$ og $s(\phi) = h$ på intervallet $\phi \in (3,4)$. På intervallene [0,1] og [2,3] skal vi bruke lineære funksjoner. Hele den stykkevis definerte funksjonen s er altså

$$s(\phi) = \begin{cases} c_0 + c_1 \phi & \phi \in [0, 1] \\ 2h & \phi \in (1, 2) \\ d_0 + d_1 \phi & \phi \in [2, 3] \\ h & \phi \in (3, 4) \end{cases}$$

Denne funksjonen er vist i figur 2.

1. Kamfunksjonen $s(\phi)$ skal være kontinuerlig. Bruk kriteriene

$$s(0) = h$$
, $s(1) = 2h$, $s(2) = 2h$, $s(3) = h$,

til å bestemme c_0 , c_1 , d_0 og d_1 .

2. Finn hastigheten v der den er definert. Hvorfor er ikke hastigheten kontinuerlig? Bruk derivasjonsbegrepet og forskjellen mellom én- og tosidige grenser i forklaringen din.

Figur 2 Kamfunksjonen $s(\phi)$ fra oppgave 1.

Hint: Hastigheten v, akselerasjonen a og rykket j er definert som

$$v = \frac{\mathrm{d}s}{\mathrm{d}t}, \qquad a = \frac{\mathrm{d}v}{\mathrm{d}t}, \qquad j = \frac{\mathrm{d}a}{\mathrm{d}t}.$$

Bruk kjerneregelen til å finne for eksempel v fra definisjonen $v=\mathrm{d}s/\mathrm{d}t$. Du kan anta at vinkelhastigheten $\mathrm{d}\theta/\mathrm{d}t=\omega$ er konstant. Uttrykk v, a og j ved hjelp av ϕ .

3. Plott hastighetsfunksjonen. Bruk plottet til å forklare hvorfor akselerasjonen ikke kan være kontinuerlig.

Hint: Bruk biblioteket matplotlib og funksjonen matplotlib.pyplot.plot til plottingen. I denne og seinere oppgaver med plotting kan du anta at h = 1.

En kamskive som roterer i stor hastighet må ha en kontinuerlig akselerasjonsfunksjon for å unngå vibrasjoner. Derfor må vi endre på kamfunksjonen. Vi skal først se på intervallet $\phi \in [0,1]$.

4. Ta utgangspunkt i polynomet $p(\phi) = c_0 + c_1\phi + c_2\phi^2 + \cdots + c_n\phi^n$ av nte grad og de fire betingelsene

$$p(0) = h, \qquad \frac{\mathrm{d}p}{\mathrm{d}\phi}\bigg|_{\phi=0} = 0,$$

$$p(1) = 2h, \quad \frac{\mathrm{d}p}{\mathrm{d}\phi}\Big|_{\phi=1} = 0.$$

Hva er den laveste graden n som er mulig for et polynom som oppfyller disse fire betingelsene? Bruk betingelsene til å bestemme koeffisientene til polynomet.

Vi ser så på intervallet $\phi \in [0, 2)$ og kamfunksjonen

$$s(\phi) = \begin{cases} p(\phi) & \phi \in [0, 1] \\ 2h & \phi \in (1, 2) \end{cases}$$

på dette intervallet.

5. Finn akselerasjonen a for denne kamfunksjonen der den er definert. Plott a på intervallet $\phi \in (1,2)$ og bruk plottet til å forklare hvorfor $p(\phi)$ også må ha andrederivert lik null, $d^2p/d\phi^2=0$, i $\phi=1$ for at a skal være kontinuerlig.

For å få en kontinuerlig akselerasjon må vi endre på kamfunksjonen på nytt. Vi ser igjen på $\phi \in [0,1]$.

6. Finn et nytt polynom $p(\phi) = c_0 + c_1 \phi + c_2 \phi^2 + \dots + c_n \phi^n$ av lavest mulig

3

grad n som oppfyller betingelsene

$$p(0) = h, \quad \frac{\mathrm{d}p}{\mathrm{d}\phi}\Big|_{\phi=0} = 0, \quad \frac{\mathrm{d}^2p}{\mathrm{d}\phi^2}\Big|_{\phi=0} = 0,$$
$$p(1) = 2h, \quad \frac{\mathrm{d}p}{\mathrm{d}\phi}\Big|_{\phi=1} = 0, \quad \frac{\mathrm{d}^2p}{\mathrm{d}\phi^2}\Big|_{\phi=1} = 0.$$

7. Hvor stort er rykket i $\phi = 0$ og $\phi = 1$?

Vi skal nå se på resten av intervallet $\phi \in [0, 4)$. Vi kan skrive kamfunksjonen ved hjelp av polynomet $p(\phi)$ fra oppgave 6 og et annet polynom $q(\phi)$:

$$s(\phi) = \begin{cases} p(\phi) & \phi \in [0, 1] \\ 2h & \phi \in (1, 2) \\ q(\phi) & \phi \in [2, 3] \\ h & \phi \in (3, 4) \end{cases}$$

- 8. Polynomet $q(\phi)$ kan finnes ved å speile $p(\phi)$. Finn $q(\phi)$.
- 9. (Valgfri) Konstruer en mer komplisert kamskive.

Hint: Du kan finne inspirasjon på sidene det lenkes til under. Husk at du kan finne de nye polynomene $f(\phi), g(\phi), h(\phi), \ldots$ du trenger ved å speile, forskyve og skalere $p(\phi)$. Du kan også prøve å bytte ut polynomene som rampefunksjoner med en sigmoid funksjon.

- https://en.wikipedia.org/wiki/Cam
- https://www.cs.cmu.edu/%7Erapidproto/mechanisms/chpt6.html
- https://en.wikipedia.org/wiki/Sigmoid_function

3 Kamskiven

Vi går nå videre til å se på hvordan uttrykket for kamfunksjon $s(\theta)$ kan oversettes til formen på kamskiven. Vi tar utgangspunkt i figur 3.

10. Anta at trekanten til høyre i figur 3 er en 30–60–90-trekant, dvs. at $\theta = 120^{\circ}$. Finn x og y uttrykt ved $s(\theta)$.

Figur 3 Sammenheng mellom formen til kamskiven og kamfunksjonen $s(\theta)$.

11. Bruk trigonometri til å uttrykke koordinatene (x, y) på periferien til kamskiven ved hjelp av θ og $s(\theta)$.

Hint: Det kan være nyttig å se på sammenhengen mellom polarform og kartesisk form av komplekse tall for å finne generelle uttrykk for x og y.

Når vi parametriserer koordinatene (x, y) til en kurve ved hjelp av en tredje variabel (θ) på denne måten, kaller vi det for en parametrisk kurve. Nå skal vi bruke uttrykkene for x og y fra oppgave 11 til å tegne kamskiven du har designet. Vi antar at h = 1 og $\omega = 1$.

- 12. Skriv et program som evaluerer funksjonen $s(\theta)$ i 361 punkter på intervallet $[0,2\pi]$ og lagrer verdiene i en liste. Plott funksjonen.
- 13. Bruk listen med verdier for θ og $s(\theta)$ fra oppgave 12 til å tegne kamskiven for hånd på rutepapir. Du velger selv hvor mange av punktene du vil bruke.
- 14. Gjør om programmet fra oppgave 12 til en funksjon som returnerer $s(\theta)$. Bruk funksjonen til å skrive et program som lagrer koordinatene (x,y) til periferien til kamskiven i to lister. Plott koordinatene.

Hint: Bruk biblioteket math og funksjonene math.cos og math.sin til å evaluere de trigonometriske funksjonene.