CS601-01: HEAP DATA STRUCTURE

NEHA HATTIHOLI & SWETHA BANAGIRI

AGENDA

- Overview
- Properties
- Heap Implementation using Array
- Types of Heap Min Heap/ Max Heap
- Heapify Algorithms
- Insert/Delete Operations
- Time/Space Complexity
- Applications of Heap

OVERVIEW

- Binary Tree based Data Structure
- A complete tree that satisfies heap property
- Efficient Implementation of Priority Queue
- Implemented using arrays
- If node A is the parent of node B, then node A is ordered with respect to node B with the same ordering applied to the whole heap

THINK TONK

From the following images, select the ones that follows the rules

of Complete Binary Tree

CHECK POINT

PROPERTIES

Heap Data Structure has the following rules:

- The tree must satisfy the rules of complete binary tree
- Must satisfy Heap Ordering
 - Max Heap: Value of each node is <= Value of its parent
 - Min heap: Value of each node is >= Value of its parent

HEAP IMPLEMENTATION USING ARRAY

ARRAY TO HEAP REPRESENTATION

For a root element at index 'i'
Index of LeftChild = 2i + 1
Index of RightChild = 2i+2

TYPES OF HEAP

MIN HEAP

10

0

 Value of every node is less than or equal to its decedent nodes. Hence, root node has the lowest value

MAX HEAP

 Value of every node is greater than or equal to its decedent nodes. Hence, root node has the highest value

44	42	35	33	31	19	27	10	26	14
0	1	2	3	4	5	6	7	8	9

THINK TONK

From the following images, validate if it's a heap and if yes, mark them as min/max heaps

CHECK POINT

MAX HE(ALP) **X** (2

HEÆB MIN

HEAP OPERTIONS

- HEAPIFY
- INSERT ELEMENT INTO HEAP
- DELETE ELEMENT FROM THE HEAP

HEAPIFY

- The process of maintaining Heap ordering given a non-heap structure
- Algorithm for maintaining Max Heap
 - if **currentNode** is greater than children, then the heap properties are satisfied
 - Else
 - Swap currentNode with Max child
 - Heapify() that subtree

 Following shows the step by step heapify() recursive algorithm on the non-heap array that does not satisfy

All leaf nodes are valid heaps

- Heapify() loops from first index of non-leaf node to index zero.
 - Index of first non-leaf node: floor[n/2] -1 where n is the total number
 of elements in the array

- Heapify(3)
 - First subtree is root element 5 at index 3
 - No swap is needed as the subtree follows heap properties

1	6	3	5	8	4	7	2
0	1	2	3	4	5	6	7

- Heapify(2)
 - Second subtree is root element 3 at index 2
 - Children elements 4 and 7 > Parent element 3
 - Swap Parent 3 with element 7

- Heapify(1)
 - Third subtree is root element 6 at index 1
 - Child element 8 > Parent element 6 (Swap)

1	8	7	5	6	4	3	2
0	1	2	3	4	5	6	7

- Heapify(0)
 - Fourth subtree is root element 1 at index 0
 - Child element 8 > Parent element 1 (Swap)

- Heapify(0)
 - Subtree with root element 7 is already heapified
 - Subtree with root element 1 needs heapification
 - Children elements 6 and 5 > Parent element 1 (Swap)

- Final Max Heap after Heapification
 - Subtree with element 7 is already heapified
 - Subtree with element 1 needs heapification
 - Children elements 6 and 5 > Parent element 1 (Swap)


```
Heapify(array, i) {
 largest = i
 leftChild = 2i + 1
  rightChild = 2i + 2
 if array[leftChild] > array[largest] {
    if array[rightChild] > array[leftChild] {
      set rightChild as largest }
   else
      set leftChild as largest }}
 else if array[rightChild] > array[largest] {
    set rightChild as largest }
 if largest != I {
    swap array[i] and array[largest]
   Heapify(array, largest) } }
MaxHeap(array, size) {
 loop from the i = (n/2)-1 to zero {
   Heapify(array, i) }}
```

LET'S HEAPIFY..

 Heapify the following non-heap structure that follows max heap property

HEAPIFICATION

INSERT OPERATION

Insert new element at the end of the heap and heapify

Add element 30 in the following heap

- Increase the heap size by 1
- Insert the new element at the end of the Heap.

3

4

30

 Heapify this newly inserted element following a bottom-up approach.

Inserting 7 into this heap

Starting with this max heap

Step 2: Because 7 is bigger than its parent, the 3 node, it gets swapped

Step 1: 7 is inserted at the bottom most, right most position

Step 3: Once again, 7 is bigger than its parent, the 6 node, so it gets swapped

DELETE OPERATION

· Let us delete root element in the below heap

30	15	20	4	3	12
0	1	2	3	4	5

- Replace the root or element to be deleted by the last element.
- Delete the last element from the Heap.

Heapify the last node placed at the new position.

3

Deleting from this heap

Starting with this max heap

Step 2: Because 1 is less than both of its children, it swaps with the larger element, the 8 node

Step 1: the bottom most, left most node, the 1 node, gets placed at the root

Step 3: Once again, 7 is bigger than its parent, the 6 node, so it gets swapped

TIME COMPLEXITY OF HEAP OPERATIONS

Time Complexity Using Binary Tree

	Best Case	Worst Case
Insert	O(1)	O(log ₂ n)
Delete	O(1)	O(log ₂ n)

APPLICATIONS OF HEAP

- Heap Sort Uses binary heap to sort an array in O(nlogn) time
- Priority Queue Uses binary heap to implement insert/delete/update operations in O(logn) time
- Graph Algorithms Dijkstra's algorithm and Minimum Spanning Tree use heap as internal traversal data structures to reduce time complexity

THANK YOU!