СИГНАЛИ И СИСТЕМИ

Задачи за домашна работа бр. 6

Домашните да се предадат на аудиториски вежби.

1. Даден е сигналот $x(t) = e^{-5t}u(t) + e^{-\beta t}u(t)$. За кои вредности на параметарот β Лапласовата трансформација на сигналот x(t) е:

$$X(s) = \frac{1}{s+5} + \frac{1}{s+\beta}, \Re\{e\} > -3$$

- 2. Преносната функција на LTI систем е $H(s) = \frac{1}{(s-3)(s+2)}$. Да се одреди импулсниот одзив на системот ако:
 - а) системот е стабилен;
 - б) системот е каузален;
- 3. Каузален LTI систем кој не е во релаксирана состојба е зададен со неговата преносна функција $H(s) = \frac{s+1}{s^2+2s+1}$ и состојбата на неговата меморија во t=0: $y(0_-)=1$ и $\frac{dy(t)}{dt}\Big|_{t=0}=0$.
- а) Да се одреди импулсниот одзив на системот;
- б) Ако влезниот сигнал е $x(t) = 2e^{-t}u(t) + 3 \cdot u(t)$, да се одреди форсираниот одзив на системот;
- в) Да се одреди слободниот одзив на системот.
- г) Да се одреди комплетниот одзив на системот.
- 4. На сликата е прикажана каскадна врска на два LTI каузални системи A и B. Системот A е зададен со неговиот импулсен одзив $h_A(t) = e^{-2t}u(t)$, системот B е зададен со диференцијална равенка: $\frac{dy(t)}{dt} + y(t) = \frac{dw(t)}{dt} + 3w(t)$.
- а) Да се одредат преносната функција на целиот систем, областа на конвергенција и да се скицира пол-нула дијаграмот;
- б) Да се одреди диференцијалната равенка која ги поврзува влезниот сигнал x(t) и излезниот сигнал y(t) на целиот систем.
- в) Да се нацрта паралелна реализација на целиот систем.

