Outline for section 1 Quantum computers – introduction

Postulates of quantum mechanics

Quantum state

Evolution of quantum systems

Quantum measurement

Composition of quantum systems

Quantum machine learning with quantum circuits

Machine learning and information encoding Simple application of gate model for quantum classification problem

Adiabatic quantum computing

Basics

D-Wave annealer

Application in machine learning

Quantum APIs

Summary

Conclusions

Bibliography

Quantum computation control loop

Computation as experiment

Outline for section 2

Quantum computers - introduction

Postulates of quantum mechanics

Quantum state

Evolution of quantum systems

Quantum measurement

Composition of quantum systems

Quantum machine learning with quantum circuits

Machine learning and information encoding

Simple application of gate model for quantum classification problem

problem

Adiabatic quantum computing

Basics

D-Wave annealer

Application in machine learning

Quantum APIs

Summary

Conclusions

Bibliography

Quantum state I

We recall the postulates of quantum mechanics, upon which the proposed method is derived.

- ▶ The state of quantum system is represented by a complex unit vector from n-dimensional Euclidean vector space \mathbb{C}^n .
- Let us introduce an orthonormal complete set of vectors (computational basis)

$$|0\rangle = \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, |n-1\rangle = \begin{bmatrix} 0 \\ \vdots \\ 1 \end{bmatrix}.$$
 (1)

Quantum state II

- ► The $|x\rangle$ vector is called 'ket' and its Hermitian conjugation $(|x\rangle)^{\dagger} = \langle x|$ is called 'bra'.
- We can represent any valid state of a n-level quantum state $|\psi\rangle$ as normalized **linear combination** of the basis vectors:

$$|\psi\rangle = \alpha_1 |0\rangle + \cdots + \alpha_n |n-1\rangle,$$
 (2)

where
$$\alpha_1, \ldots, \alpha_n \in \mathbb{C}$$
 and $\sum_{i=1}^n |\alpha_i|^2 = 1$.

We assume that two vectors $|\psi\rangle$ and $|\phi\rangle$ represent the same physical state if $|\psi\rangle = e^{\mathrm{i}\theta} |\phi\rangle$, for $\theta \in \mathbb{R}$.

Qubit, Bloch sphere

Time evolution of a quantum system I

► The evolution of quantum systems is governed by the **Schrödinger equation**

$$\frac{\mathrm{d}\left|\psi\right\rangle}{\mathrm{d}t} = -\mathrm{i}H\left|\psi\right\rangle,\tag{3}$$

where H is a hermitian operator *i.e.* $H = H^{\dagger}$ called **Hamiltonian** of the system. Here we put Planck constant equal to one.

Solutions of the (3) are given by

$$|\psi_{t_1}\rangle = U(t_0, t_1) |\psi_{t_0}\rangle, \qquad (4)$$

where $|\psi_{t_0}\rangle$ is the initial state of the system, $|\psi_{t_1}\rangle$ is final state of the system, and $U(t_0,t_1)$ is **unitary operator** driving the system from time t_0 to t_1 .

Time evolution of a quantum system II

- An operator is unitary iff $UU^{\dagger} = U^{\dagger}U = 1$
- Assuming that Hamiltonian H is time is constant between time t_0 and t_1 $U(t_0, t_1)$ can be obtained from equation

$$U(t_0, t_1) = e^{-i(t_1 - t_0)H}.$$
 (5)

Unitary gates, quantum evolution

Rotation around y-axis

Unitary gates, quantum evolution

Rotation around z-axis

Measurement

In order to measure the state of a quantum system one has to chose a **quantum measurement** that is a function μ from finite set of measurements outcomes $A = \{a_i\}_{i=1}^n$ to set the of projection operators $P = \{P_i\}_{i=1}^n$ such that

$$\sum_{i=1}^{n} P_{i} = 1 \text{ and } P_{i}^{2} = P_{i}.$$
 (6)

► The probability of measuring outcome a_i given the quantum system in in state $|\psi\rangle$ is

$$p(a_i) = \langle \psi | P_i | \psi \rangle. \tag{7}$$

The state of the quantum system after the measurement outcome a_i was obtained becomes

$$|\psi\rangle_{\mathbf{a}_{i}} = \frac{P_{i}|\psi\rangle}{\sqrt{\langle\psi|P_{i}|\psi\rangle}}.$$
 (8)

Measurement

Measurement

Composition of quantum systems

The operation which allows us to join two independent quantum systems is the **tensor product**. Lets take **two qubit** states

$$|\psi\rangle = \begin{bmatrix} \psi_0 \\ \psi_1 \end{bmatrix} = \psi_0 |0\rangle + \psi_1 |1\rangle,$$

$$|\phi\rangle = \begin{bmatrix} \phi_0 \\ \phi_1 \end{bmatrix} = \phi_0 |0\rangle + \phi_1 |1\rangle,$$
(9)

then we can write their joint state in $\mathbb{C}^2 \otimes \mathbb{C}^2$ as

$$|\psi\rangle\otimes|\phi\rangle = \begin{bmatrix} \psi_0\phi_0\\ \psi_0\phi_1\\ \psi_1\phi_0\\ \psi_1\phi_1 \end{bmatrix}. \tag{10}$$

Entanglement

Bell state

$$\begin{aligned} \left| \Phi^{+} \right\rangle &= \frac{1}{\sqrt{2}} (\left| 0 \right\rangle \otimes \left| 0 \right\rangle + \left| 1 \right\rangle \otimes \left| 1 \right\rangle) \stackrel{?}{=} \\ &\stackrel{?}{=} \psi_{0} \phi_{0} \left| 0 \right\rangle \otimes \left| 0 \right\rangle + \psi_{0} \phi_{1} \left| 0 \right\rangle \otimes \left| 1 \right\rangle + \psi_{1} \phi_{0} \left| 1 \right\rangle \otimes \left| 0 \right\rangle + \psi_{1} \phi_{1} \left| 1 \right\rangle \otimes \left| 1 \right\rangle \end{aligned}$$

Contradiction

$$\psi_0 \phi_0 = \psi_1 \phi_1 = \frac{1}{\sqrt{2}},$$

 $\psi_0 \phi_1 = \psi_1 \phi_0 = 0.$

Gate model of quantum computation I

$$\begin{split} & \text{UNITARY} \, \left| \, \begin{array}{c|c} \hline U \end{array} \right| \, U \, |\psi_1\rangle = |\psi_2\rangle, \, U^\dagger \, |\psi_2\rangle = |\psi_1\rangle \\ & U = e^{i\varphi/2} \begin{bmatrix} e^{i\psi} & 0 \\ 0 & e^{-i\psi} \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} e^{i\Delta} & 0 \\ 0 & e^{-i\Delta} \end{bmatrix} \end{split}$$

Gate model of quantum computation II

HADAMARD
$$\left| -\frac{H}{H} \right| \left| 0 \right\rangle \mapsto \frac{1}{\sqrt{2}} (\left| 0 \right\rangle + \left| 1 \right\rangle), \left| 1 \right\rangle \mapsto \frac{1}{\sqrt{2}} (\left| 0 \right\rangle - \left| 1 \right\rangle)$$

Gate model of quantum computation III

Gate model of quantum computation IV

$$|0\rangle\otimes|0\rangle\rightarrow\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\otimes|0\rangle\rightarrow\frac{1}{\sqrt{2}}(|0\rangle\otimes|0\rangle+|1\rangle\otimes|1\rangle)$$

Figure: Bell state preparation circuit.

Gate model of quantum computation V

Executed on: May 9, 2016 1:53:01 PM Results date: May 9, 2016 1:53:17 PM

Number of shots: 1024

Figure: Histogram of measurements obtained from IBM 5Q machine.

Outline for section 3

Quantum computers – introduction

Postulates of quantum mechanics

Quantum state

Evolution of quantum systems

Quantum measurement

Composition of quantum systems

Quantum machine learning with quantum circuits

Machine learning and information encoding Simple application of gate model for quantum classification problem

Adiabatic quantum computing

Basics

D-Wave annealer

Application in machine learning

Quantum APIs

Summary

Conclusions

Bibliography

Quantum classification algorithm

- Input data is classical.
- Output data is classical.
- Information processing is quantum.

Starting point

Schuld, Maria, Mark Fingerhuth, and Francesco Petruccione. "Implementing a distance-based classifier with a quantum interference circuit." EPL (Europhysics Letters) 119.6 (2017): 60002.

- ► A quantum algorithm that recovers classical classification algorithm.
- ► A set of quantum basis states is a product of features number, classes number and training set size.