

Trabalho de ERTGP mais uma linha aqui

Nome do professor aqui Ano

> Aluno1 Aluno2 Aluno3

${\bf \acute{I}ndice}$

1	Conversor DC-DC Buck 3							
	1.1	Análise teórica	3					
	1.2	Dimensionamento dos componentes	6					
	1.3	Simulação do núcleo do conversor	9					
2	Cor	mparador	11					
3	Ma	lha de realimentação com retroação	11					
	3.1	Divisor de tensão resistivo	11					
	3.2	Comparador com latch	12					
Íı	ndio	ce de figuras						
	1	Núcleo do conversor DC-DC Buck	3					
	2	Fase 1 (ϕ_1)	3					
	3	Fase $2(\phi_2)$	3					
	4	Andamento temporal	3					
	5	Fase 1 (ϕ_1)	5					
	6	Fase 2 (ϕ_2)	5					
	7	Fase 1 (ϕ_1) com R_{on}	6					
	8	Fase 2 (ϕ_2) com R_{on}	6					
	9	Andamento temporal de carga do condensador	7					
	10	Parametrização do transístor NMOS	8					
	11	R_{on} em função de W	8					
	12	Circuito do núcleo do conversor	9					
	13	Onda à entrada (verde) e à saída (Rosa) do conversor	10					
	14	Divisor resistivo	11					
	15	Ondas à entrada e à saída do comparador	12					
Íı	-	ce de tabelas Dimensionamento de interruptores	8					
		Dimensionamento de interruptores	- 8					

1 Conversor DC-DC Buck

1.1 Análise teórica

Este capitulo tem como objetivo analisar o conversor DC-DC Buck. Assim, será determinada a função transferência $\frac{V_{out}}{V_i}$ do conversor, que permitirá chegar a um fator de conversão, bem como a eficiência do mesmo. Esta analise será feita sem ter em conta as capacidades parasitas. O conversor Buck está representado na figura 1.

Figura 1: Núcleo do conversor DC-DC Buck

A análise do conversor será realizada em três instantes, em que cada um está associado a uma fase. Se o circuito estiver a funcionar na fase 1 (ϕ_1) obtém-se o circuito representado na figura 2, mas se estiver a funcionar na fase 2 (ϕ_2) obtém-se o circuito da figura 3.

De forma a obter a relação $\frac{V_{out}}{V_i}$ considera-se que existe conservação de carga entre fases. Em ambos os casos existe conservação de carga no nó de saída e considerando o seguinte andamento temporal (figura 4).

Figura 4: Andamento temporal

Considerando a conservação de carga da fase 1 para a fase 2 $(\phi_1 \to \phi_2)$ obtém-se a seguinte equação.

$$Q_{C_1}^{\phi_2} + Q_{C_{out}}^{\phi_2} + \Delta Q_{Rout} = Q_{C_1}^{\phi_1} + Q_{C_{out}}^{\phi_1}$$
(1)

Tendo em consideração que $\Delta Q_{Rout} = \frac{T_{clk}}{2} I_{out}$ a equação 1 pode ser escrita da seguinte forma:

$$V_{out}[n-\frac{1}{2}]C_1 + V_{out}[n-\frac{1}{2}]C_{out} + V_{out}[n-\frac{1}{2}](\frac{T_{clk}}{2}\frac{1}{R_{out}}) = (V_i - V_{out}[n-1])C_1 + V_{out}[n-1]C_{out} \quad (2)$$

Considerando agora a conservação de carga da fase 2 para a fase 1 $(\phi_2 \to \phi_1)$ obtém-se a seguinte equação.

$$-Q_{C_1}^{\phi_1} + Q_{C_{out}}^{\phi_1} + \Delta Q_{Rout} = -Q_{C_1}^{\phi_2} + Q_{C_{out}}^{\phi_2}$$

$$-(V_i - V_{out}[n])C_1 + V_{out}[n]Cout + V_{out}[n](\frac{T_{clk}}{2} \frac{1}{R_{out}}) = -V_{out}[n - \frac{1}{2}]C_1 + V_{out}[n - \frac{1}{2}]C_{out}$$
(3)

Resolvendo a equação 3 em ordem a $V_{out}[n-\frac{1}{2}]$ e substituindo na equação 2 obtém-se a seguinte expressão de $\frac{V_{out}}{V_i}$.

$$\frac{V_{out}}{V_i} = \frac{C_1(2 + \frac{T_{clk}}{2} \frac{1}{CoutR_{out}})}{4C_1 + \frac{C_1Tclk}{CoutR_{out}} + \frac{T_{clk}}{R_{out}} + \frac{T_{clk}^2}{4R_{out}^2 - Cout}}$$
(4)

Considerando $C_{out} >> C_1$ e que $F_{clk} = \frac{1}{Tclk}$ obtém-se:

$$\frac{V_{out}}{V_i} = \frac{2F_{clk}R_{out}C_1}{4F_{clk}R_{out}C_1 + 1} \tag{5}$$

Como $4F_{clk}R_{out}C_1 > 1$ então:

$$\frac{V_{out}}{V_i} = \frac{1}{2} \tag{6}$$

Assim sendo, a razão de conversão do conversor é de $\frac{1}{2}$. Através da equação 5 é possível chegar á F_{clk} do conversor.

$$F_{clk} = \frac{V_{out}}{2R_{out}C_1(V_i - 2V_{out})} \tag{7}$$

A eficiência do conversor é dada por: $\eta = \frac{P_{out}}{P_i}$ onde $P_{out} = V_{out}I_{out}$ e $P_{in} = V_iI_i$

$$\eta = \frac{P_{out}}{P_{in}} = \frac{V_{out}I_{out}}{V_{i}I_{i}} = \frac{|V_{out}(\Delta Q_{out}^{\phi_{1}} + \Delta Q_{out}^{\phi_{2}})F_{clk}|}{|V_{i}(\Delta Q_{i}^{\phi_{1}} + \Delta Q_{i}^{\phi_{2}})F_{clk}|}$$
(8)

De forma a calcular a variação da carga à saída e à entrada nas duas fases, recorreu-se às figuras 5 e 6.

Figura 5: Fase 1 (ϕ_1)

Figura 6: Fase 2 (ϕ_2)

Considerando a conservação de carga da fase 1 para a fase 2 $(\phi_1 \to \phi_2)$ é possível retirar a variação da carga á entrada e á saída da fase 2.

Nó de saída:

$$Q_{C_1}^{\phi_2} + \Delta Q_{out}^{\phi_2} = Q_{C_1}^{\phi_1}$$

$$V_{out}C_1 + \Delta Q_{out}^{\phi_2} = (V_i - V_{out})C_1$$

$$\Delta Q_{out}^{\phi_2} = (V_i - 2V_{out})C_1$$
(9)

No nó de entrada a $\Delta Q_i^{\phi_2} = 0$.

Considerando agora a conservação de carga da fase 2 para a fase 1 $(\phi_2 \to \phi_1)$ é possível retirar a variação da carga á entrada e á saída da fase 1.

Nó de saída:

$$-Q_{C_{1}}^{\phi_{1}} + \Delta Q_{out}^{\phi_{1}} = -Q_{C_{1}}^{\phi_{2}}$$

$$-(V_{i} - V_{out})C_{1} + \Delta Q_{out}^{\phi_{1}} = -V_{out}C_{1}$$

$$\Delta Q_{out}^{\phi_{1}} = (V_{i} - 2V_{out})C_{1}$$
(10)

Nó de entrada:

$$Q_{C_1}^{\phi_1} + \Delta Q_i^{\phi_1} = Q_{C_1}^{\phi_1}$$

$$(V_i - V_{out})C_1 + \Delta Q_i^{\phi_1} = V_{out}C_1$$

$$\Delta Q_i^{\phi_1} = (2V_{out} - V_i)C_1$$
(11)

Substituindo a equação 8 pelas expressões obtidas para a variação na carga á entrada e á saída das duas fases obtém-se:

$$\eta = \frac{|V_{out}((V_i - 2V_{out})C_1 + (V_i - 2V_{out})C_1)F_{clk}|}{|V_i((2V_{out} - V_i)C_1 + 0)F_{clk}|} = |-\frac{2V_{out}}{V_i}|$$

$$\eta = \frac{2V_{out}}{V_i}$$
(12)

1.2 Dimensionamento dos componentes

Para dimensionar corretamente o conversor, começou-se por escolher o tipo de transístores a utilizar, optando assim que S_1 seria PMOS visto que para o conversor começar a trabalhar necessita de uma tensão mais elevada e que S_4 seria NMOS para puxar essa tensão. Quanto aos outros dois transístores estes podiam ser tanto NMOS como PMOS, assim optou-se por utilizar uma configuração Transmission Gate.

Quando o interruptor está fechado existe uma resistência intrínseca denominada por R_{on} na figura 7 e na figura 8 está representada a resistência R_{on} para a fase (ϕ_1) e $(\phi_2).7$

Figura 7: Fase 1 (ϕ_1) com R_{on}

Figura 8: Fase 2 (ϕ_2) com R_{on}

Considerando quando o circuito da figura 7 está a funcionar, na fase 1 verificase que estamos perante um circuito RC de segunda ordem. Contudo este pode ser aproximado a um de primeira ordem considerando os valores de R_{out} e C_{out} elevados face ao valor de R_{on} (resistência do interruptor) e C_1 , respetivamente. Assim, a constante de tempo (τ) associada à carga e descarga do condensador é dada por $2R_{on}C_1$, assumindo um erro de 1% no fator de conversão é possível chegar ao valor de R_{on} e posteriormente ao valor de W do transístor uma vez que L = 120[nm]. Realizando uma análise semelhante quando o circuito funciona na fase 2 verifica-se que a constante de tempo não sofre alteração.

Com base nas especificações:

•
$$V_i = 1.2 [V]$$

•
$$C_1 = 0.5[\text{nF}]$$

•
$$R_{out} = 500[\Omega]$$

E tendo em conta que V_{out} é metade do valor de entrada considerou-se $V_{out}=0.58$ [V]. Assim pela equação 7 chegou-se a um valor de $F_{CLK}=30$ [MHz]. Sabendo que a tensão no condensador para um circuito de primeira ordem é dado pela equação 13 e o andamento temporal de carga no condensador está representado na figura 9, é possível calcular um erro de 1 % face ao valor máximo de carga. Considerando que $V_f=0$ a equação 13 simplifica-se para $\frac{V_{out}}{V_i}=e^{-(\frac{T}{\tau})}=erro$ sendo a carga máxima dada quando $T=\frac{T_{CLK}}{2}$.

Figura 9: Andamento temporal de carga do condensador

Com base na explicação feita anteriormente, estamos em condições de retirar o valor de R_{on} .

$$erro = e^{-\left(\frac{T}{\tau}\right)}$$

$$erro = e^{-\left(\frac{T_{CLK}}{2(2R_{on}C_1)}\right)}$$

$$R_{on} = -\frac{T_{CLK}}{4C1ln(erro)}$$
(14)

Através da equação 14 chegou-se a um valor de R_{on} de 3.74 $[\Omega]$. A resistência também pode ser calculada a partir da equação 15. Contudo, já tendo este valor é possível chegar ao valor de W para cada tipo de interruptor através de uma parametrização no programa Cadance, onde se considera $\frac{L}{K(V_{(GS/SG)}-V_{(THN/THP)})} = K_r$

$$R_{on} = \frac{L}{WK(V_{(GS/SG)} - V_{(THN/THP)})}$$

$$\tag{15}$$

O esquemático para realizar a parametrização encontra-se representado na figura 10. O exemplo apresentado é para o interruptor S_4 que irá ser implementado com um transistor NMOS e por este motivo coloca-se uma tensão de 1.2 [V] na gate. Através do programa Cadance obtém-se um gráfico representado na figura 11 que relaciona R_{on} com W, a variação do eixo das ordenadas corresponde a K_r mencionado em cima. Para os restantes interruptores o raciocínio é semelhante, tendo em atenção os valores a colocar nas fonte de tensão V_0 e V_1 . Na tabela 1 encontra-se o dimensionamento para todos os interruptores considerando um erro de 1%.

Figura 10: Parametrização do transístor NMOS

Figura 11: R_{on} em função de W

Tabela 1: Dimensionamento de interruptores

Interruptores	Tipo	V_0 V_0	V_1 $[V]$	$Ron [\Omega]$	Kr	$W [\mu m]$	L[nm]
S1	PMOS	1.2	0	3.7439	0.0020	527.95	120
S2/S3	T. Gate - PMOS	1.2	0.6	7.4878	0.0053	117.52	120
S2/S3	T. Gate - NMOS	0.6	1.2	7.4878	0.0012	156.06	120
S4	NMOS	0	1.2	3.7439	0.0004	708.58	120

1.3 Simulação do núcleo do conversor

Nesta secção serão apresentados os resultados obtido para o núcleo do conversor. Na figura 12 encontra-se o circuito utilizado na simulação, as fases 1 (ϕ_1) e 2 (ϕ_2) foram implementadas através de uma fonte V_{pulse} em que a fase (ϕ_1) é o inverso da fase 2 (ϕ_2) .

Figura 12: Circuito do núcleo do conversor

Numa primeira análise considerou-se que $C_{out} = 10$ [pF] e $R_{out} = 500$ [Ω], contudo a onda à saída encontrava-se cerca de 300 [mV] abaixo do valor pretendido. Ao realizar vários testes observou-se que ao aumentar R_{out} o tempo de descarga do condensador diminuía e por sua vez quanto maior fosse o valor de C_{out} menor era o valor de ripple e o valor de tensão à saída também diminuía significativamente. De forma a ter um valor de ripple o mais baixo possível e o valor de saída perto 600 [mV], optou-se por aumentar $C_{out} = 10$ [nF] e $R_{out} = 1$ [$k\Omega$].

Os resultados obtidos encontram-se representados na figura 13.

A tensão à saída do conversor é de 580.21[mV] tendo um valor de ripple de 0.841~[mV], sendo estes valores bastante aceitáveis para o núcleo do conversor.

Figura 13: Onda à entrada (verde) e à saída (Rosa) do conversor

2 Comparador

Hello World

3 Malha de realimentação com retroação

A malha de realimentação com retroação tem como objetivo recolher a informação da saída do controlador (saída do núcleo do conversor) compará-la com um sinal de referência e corrigir a saída caso esta se esteja a desviar dos parâmetros pretendidos. A malha de realimentação é composta por :

- Divisor de tensão
- Comparador com latch

3.1 Divisor de tensão resistivo

O divisor de tensão resistivo está colocado à saída do núcleo do conversor, este tem como função diminuir a tensão do mesmo, neste caso, para que seja possível obter uma tensão de 0.5 [V] á entrada do comparador. Na figura 14 está representado o divisor de tensão resistivo, sendo necessário calcular os valores de R_A e R_B .

Figura 14: Divisor resistivo

Sabendo que:

•
$$Vo_{convensor} = 0.6 [V]$$

•
$$Vi_{comparador} = 0.5 [V]$$

Assumindo $R_B=500~[\Omega],$ resolvendo a equação 16 em ordem a R_A obtém-se:

$$R_A = \frac{R_B - (R_B \times \frac{0.6}{0.5})}{\frac{0.6}{0.5}} = 100[\Omega]$$
 (17)

3.2 Comparador com latch

Como foi referido na secção 2 o comparador irá trabalhar em duas fases distintas consoante o valor de CLK (fase Reset e fase de comparação). Na fase de comparação, o comparador irá comparar a tensão de referência 0.5 [V] com o sinal à saída do divisor resistivo. Quando a tensão a saída do divisor resistivo está abaixo da tensão de referência, Vo_p encontra-se a VDD, enquanto que Vo_n está a zero, a partir do momento em que são iguais há uma inversão de sinal. É de salientar que sempre que as duas tensões são iguais há uma mudança de sinal nas duas saídas do comparador e estas encontram-se em oposição uma em relação à outra.

Na figura 15 encontra-se representada a tensão de referência a azul, o sinal à saída do divisor resistivo a rosa, Vo_n a a laranja e Vo_p a a roxo. É possível verificar o comportamento do comparador descrito em cima quando as duas tensões são iguais.

Figura 15: Ondas à entrada e à saída do comparador