-) A binary operation on a non-empty set Gr u a function $\mu: G \times G \rightarrow G$
- ·> Yeverelized Associativity:- a, * a, * --- * an nuds no parantieses

Semgroup: A semigroup (G,*) is a non-empty set G equipped with an associative property

Go be a semigeroup than, for a = G, a = a and for n>1 we have

amn = am * am * - * am

N + ever

anta = an * am

A group is a simigroup of combaining on element e (*) (j zons ;such that: -

- (i) e*a = a = a *e + a & G
- (ii) for every acG, I anderwort beG such that, a+6 = e = b * a

SX > It holds associative property

So it is a semigroup it is a group If axb = bxa holds to, b ∈ G then it is a abelian group (on semigroup) •> Concertation is (a,, a,, , an) + (b, b,, , bn) = (a,, a,, -.., a, b,, b,, ..., bn) = (a,, a,, -..., a, b,, b,, ..., bn) (a,,a≥,-) a(b,,b)-)+G

Sanigroup a; *b; ‡ b; *a;

The a group of I a might element e with exa = a = a x e

Yat G.

Frof: Cuppor I on two such elements

exa = axe = a and e/xa = axe = a

exa = axe = a

lener unique e=e*e'=e' > = | Lever unique

·) Fu group G, a ∈ G then, (a^t)⁻¹ = a $a^{-1} \in G_{1}(a^{-1})^{-1}(a^{-1})^{-1} = (a^{-1})^{-1} * a^{-1} = e$ a*ai=a*a=e >> By uniqueness, a=(a-)

 $\Rightarrow a^{-n} = (a^{-1})^{n} / a^{\circ} = e$

Theorem'- If Giva conigrany with on element e such trat:

- (i) e*a=a fae G and
- (11) for each $a \in G$ for elements $b \in G$ with $b \neq 0$ = C

Then G is a group.

Proof: $0 = e * a * a \in G$, 3 = e9b*a*a = b*(a*a) = e*a = a

C* C = C

$$b * e * e = e$$

Suppose $9 * 9 = g$ then $b * (9 * 9) = b * 9 = e$
 $b * 9 * 9 = g$
 $b * 9 * 9 = e$

b*a = e = a*e*b = a*b

(a*b) *(a+b) =(a*b) = a+b=c

ex = $a + a \in G$ a + b = e = b + a a + c = a + (b + a) = (a + b) + a = e + a = a $\Rightarrow a + e = e + a = a$

Hence Gr a group

a) In a group G, either of the equations a*b = a*c ord b*a = c*a implies b = C.

Au. $a \in G$, $\exists d \in G$ $a \star d = e = d \star \alpha$ $d \star a \star b = c$ $b \star a \star d = c \star a \star d \Rightarrow b = c$

B) A group in which x*x=e $\forall x\in G$ tem G must be obtain Prove it.

 $Awi- a*b = b*a *a_b = 6$ b*b = e a*a = e b*b = e

a*a*b*(a*b) = a*e = a

e * b * (a * b) = a e * b * a * b * b * a = a * b

mi 12 G be a groop, a & G) and m, n are relatively prime

Q) Let G_1 be a group, $a \in G_1$ and m, n are relatively prime integers. If $a^m = e$ show that $\exists b \in G_1$ such that $a = b^m$.

Aw: $-\frac{1}{4} \frac{1}{1} \frac{1}{1}$