FMI, Info, Anul I

Logică matematică și computațională

Seminar 7

(S7.1) Să se arate că pentru orice formulă φ ,

$$\vdash (\neg \varphi \to \varphi) \to \varphi.$$

(S7.2) Să se arate că pentru orice formule φ , ψ , χ avem:

- (i) $\{\varphi \wedge \psi\} \vdash \varphi$;
- (ii) $\{\varphi \wedge \psi\} \vdash \psi$;
- (iii) $\{\varphi, \psi\} \vdash \varphi \land \psi$;
- (iv) $\{\varphi, \psi\} \vdash \chi \text{ ddacă } \{\varphi \land \psi\} \vdash \chi$.

(S7.3) Fie $n \in \mathbb{N}$ şi $\varphi_1, \dots, \varphi_n$ formule. Să se arate că (Propoziția 2.62 din curs):

- (i) Pentru orice formulă ψ , $\{\varphi_1, \dots, \varphi_n\} \vdash \psi$ dacă și numai dacă $\vdash \varphi_1 \land \dots \land \varphi_n \rightarrow \psi$ dacă și numai dacă $\{\varphi_1 \land \dots \land \varphi_n\} \vdash \psi$.
- (ii) $\{\varphi_1,\ldots,\varphi_n\}$ este consistentă dacă şi numai dacă $\{\varphi_1\wedge\ldots\wedge\varphi_n\}$ este consistentă.