Dados da Tabela 6-2 ...Livro de Montgomery

Table 6-2 Compressive Strength (psi) of									
Aluminum-Lithium Specimens									
105	221	183	186	121	181	180	143		
97	154	153	174	120	168	167	141		
245	228	174	199	181	158	176	110		
163	131	154	115	160	208	158	133		
207	180	190	193	194	133	156	123		
134	178	76	167	184	135	229	146		
218	157	101	171	165	172	158	169		
199	151	142	163	145	171	148	158		
160	175	149	87	160	237	150	135		
196	201	200	176	150	170	118	149		

Modelo Empírico: critério Sturges

K	CLASSES			MODELO EMPÍRICO GERAL	TOTAL (ni)
1ª	76	 	99		3
2ª	99		122		7
3 <u>a</u>	122	 	145		10
<u>4</u> ª	145		168		25
5 <u>a</u>	168	<u> </u>	191		20
6 <u>ª</u>	191	Ti	214		9
7 <u>a</u>	214	1	237		4
8 <u>a</u>	237		260		2
	TOTAL				80

Medidas Descritivas

1- **VALOR CENTRAL** □ VALOR A PARTIR DO QUAL AS MEDIÇÕES SE DISPERSAM (DISTANCIAM).

Média aritmética ou **Média**: valor de equilíbrio.

Para dados ponderados... $X = \Sigma [xi^*(ni/n] = \Sigma xi^*pi = 163,7]$

2- DISPERSÃO ou VARIABILIDADE:

VARIÂNCIA
$$\rightarrow s^2 = \Sigma (xi - \overline{X})^2 = 1198,1$$

2.1 – Variância (ou Quadrado Médio): é a SQDP em relação à média..

Para dados ponderados: Var = SQDP

2.2 – **Desvio padrão (s)**: é a raiz quadrada da variância = **34,6**

Medidas Descritivas

CLASSES		ni	pi	Xi	Xi*pi	(xi- M)^2*pi	
76	<u> </u>	99	3	0,0375	87,5	3,3	217,67
99	<u> </u>	122	7	0,0875	110,5	9,7	247,53
122	<u> </u>	145	10	0,1250	133,5	16,7	113,91
145	\vdash	168	25	0,3125	156,5	48,9	16,14
168	<u> </u>	191	20	0,2500	179,5	44,9	62,51
191	<u> </u>	214	9	0,1125	202,5	22,8	169,47
214	<u> </u>	237	4	0,0500	225,5	11,3	191,04
237	\vdash	260	2	0,0250	248,5	6,2	179,83
			80			163,7	1198,1
						Média (X)	Var (s^2)
						IVICUIA (X)	, ,
							34,6
							DesvPad

Exemplo2- Exemplo da Tabela 6-2 do livro-texto (Cap. 6)

TESTE DE ADERÊNCIA PELO QUI-QUADRADO:

As sete etapas de teste de hipóteses pode ser aplicado, fixando previamente o erro tipo I (nível de significância) de $\alpha = 0.05$:

- 1. Parâmetro de interesse: A variável de interesse é testar a forma do Modelo de Gauss para a "Resistência à compressão (Psi) dos corpos de prova da liga Al-Li" considerando o Modelo Empírico construído dos dados da Tabela 6-2.
- 2. Hipótese nula: H_0 : $O_i = E_i$

A forma do modelo **é** Gaussiano.

3. Hipótese alternativa: H_1 : $O_i \neq E_i$

A forma do modelo <u>não é</u> Gaussiano.

4. Teste estatístico: Sob H₀ é dado por $\chi_0^2 = \sum_{i=1}^k \frac{(o_i - E_i)^2}{E_i}$

Exemplo2- Exemplo da Tabela 6-2 do livro-texto (Cap. 6)

5. Rejeição de *H*₀:

Rejeita H_0 se ao comparar ao nível de 0,05 de significância (erro tipo I) o valor crítico da tabela com o valor calculado sob H_0 .

6. Cálculos:

Considerando o modelo empírico, tem que calcular as frequências esperadas (Ei) com a média e o desvio padrão da amostra (estimativas dos parâmetros do modelo de Gauss).

Os valores de $z_1 = (Li_1 - 163,7)/34,6$ e de $z_2 = (Ls_1 - 163,7)/34,6$ Obtendo as probabilidades para cada intervalo de classe na Tabela Normal Padrão. Os valores de Ei = $80*P(z_1 < Z < z_2)$.

CLASSES			Oi	Z 1	Z 2	P(z1 <z<z2)< th=""><th>Ei</th></z<z2)<>	Ei
76	<u> </u>	99	3	-2,53	-1,87	0,0307	2,5
99	<u> </u>	122	7	-1,87	-1,21	0,0824	6,6
122	<u> </u>	145	10	-1,21	-0,54	0,1815	14,5
145		168	25	-0,54	0,12	0,2532	20,3
168		191	20	0,12	0,79	0,2375	19,0
191	<u> </u>	214	9	0,79	1,45	0,1412	11,3
214	<u> </u>	237	4	1,45	2,12	0,0565	4,5
237	<u> </u>	260	2	2,12	2,78	0,0170	1,4
TOTAL			80			1,0000	80

Exemplo2- Exemplo da Tabela 6-2 do livro-texto (Cap. 6)

6. Cálculos:

Considerando a regra prática que recomenda que Ei>5 e como a 1ª classe e as duas últimas classes não obedecem à regra, agrupamos com as classes adjacentes de forma a obter mais de 5. Assim,

k	CI	LASSES		Oi	Ei	(Oi – Ei)²/Ei
1	Me	nos de 12	22	10	9,1	0,099
2	122	<u> </u>	145	10	14,5	1,405
3	145	<u> </u>	168	25	20,3	1,113
4	168	<u> </u>	191	20	19,0	0,053
5	191	<u> </u>	214	9	11,3	0,468
6	Mín	imo de 2	14	6	5,9	0,002
		TOTAL		80	80	3,14
						Oui-quadrado

7. Conclusão/Decisão estatística:

Valor calculado com base na amostra $\rightarrow \chi^2_0 = 3,14$ Da Tabela 5 do livro-texto tem-se o valor crítico:

- para erro I de 5% $\to \chi^2_{0,05; 3}$ = 7,81 ...sendo os graus de liberdade; k – p – 1 =3 já que temos k=6 classes,p=2 parâmetros estimados do modelo com a amostra. Assim, ao nível de 5% não se rejeita H_0 , podendo empregar o modelo de Gauss para a situação!