

WHAT IS CLAIMED IS:

1. A liquid electrophotographic toner composition comprising:
 - a) a liquid carrier having a Kauri-Butanol number less than about 30 mL; and
 - b) a plurality of toner particles dispersed in the liquid carrier, wherein the toner particles comprise polymeric binder comprising at least one amphipathic copolymer comprising one or more S material portions and one or more D material portions, wherein one or more of the S or D material portions comprises the residue of a Soluble High T_g Monomer having a T_g at least about 20°C, wherein:
 - the absolute difference in Hildebrand solubility parameters between the Soluble High T_g Monomer and the liquid carrier is less than about 3 MPa^{1/2}; and
 - the D portions of the amphipathic copolymer each have a T_g at least about 30°C.
2. The liquid electrophotographic toner composition according to claim 1 further comprising at least one visual enhancement additive.
- 20 3. The liquid electrophotographic toner composition according to claim 2 wherein the Soluble High T_g Monomer has a T_g at least about 40°C.
4. The liquid electrophotographic toner composition according to claim 2 wherein the Soluble High T_g Monomer has a T_g at least about 60°C.
- 25 5. The liquid electrophotographic toner composition according to claim 2 wherein the Soluble High T_g Monomer has a T_g at least about 100°C.
6. The liquid electrophotographic toner composition according to claim 2 wherein the D portions of the amphipathic copolymer each have a T_g at least about 40°C.

7. The liquid electrophotographic toner composition according to claim 2 wherein the D portions of the amphipathic copolymer each have a T_g at least about 45°C.

8. The liquid electrophotographic toner composition according to claim 2 wherein
5 the absolute difference in Hildebrand solubility parameters between the Soluble High T_g Monomer and the liquid carrier is less than about 2.2 MPa^{1/2}.

9. The liquid electrophotographic toner composition according to claim 2 wherein
the Soluble High T_g Monomer is selected from the group consisting of t-butyl
10 methacrylate, n-butyl methacrylate, isobornyl (meth)acrylate, TCHMA, and
combinations thereof.

10. The liquid electrophotographic toner composition according to claim 2 wherein
the Soluble High T_g Monomer is present at a concentration of between about 5 and 30%
15 by weight of the amphipathic copolymer.

11. The liquid electrophotographic toner composition according to claim 1 wherein
the S portions and the D portions of the amphipathic copolymer each have a T_g greater
than about 45°C.

20
12. The liquid electrophotographic toner composition according to claim 1 wherein
the Soluble High T_g Monomer is in the D material portion of the amphipathic copolymer.

13. The liquid electrophotographic toner composition according to claim 1 wherein
25 the Soluble High T_g Monomer is in the S material portion of the amphipathic copolymer.

14. The liquid electrophotographic toner composition according to claim 1 wherein
the Soluble High T_g Monomer is TCHMA.

15. The liquid electrophotographic toner according to claim 1, wherein the S portion has a glass transition temperature calculated using the Fox equation (excluding grafting site components) of at least about 90°C.

5 16. The liquid electrophotographic toner according to claim 1, wherein the S portion has a glass transition temperature calculated using the Fox equation (excluding grafting site components) of from about 100°C to about 130°C.

10 17. The liquid electrophotographic toner according to claim 1, wherein the S portion has a glass transition temperature calculated using the Fox equation (excluding grafting site components) of at least 90°C, and wherein the absolute difference in Hildebrand solubility parameter between the S portion and the liquid carrier is from about 2 MPa^{1/2} to about 3 MPa^{1/2}.

15 18. The liquid electrophotographic toner according to claim 1, wherein the S portion (excluding grafting site components) has a calculated Hildebrand solubility parameter of from about 16 MPa^{1/2} to about 17.5 MPa^{1/2}.

20 19. The liquid electrophotographic toner according to claim 1, wherein at least about 75% of the S portion (excluding grafting site components) is derived from ingredients selected from the group consisting of trimethyl cyclohexyl methacrylate; t-butyl methacrylate; n-butyl methacrylate; isobornyl (meth)acrylate; 1,6-Hexanediol di(meth)acrylate and combinations thereof.

25 20. The liquid electrophotographic toner according to claim 1, wherein at least about 90% of the S portion (excluding grafting site components) is derived from ingredients selected from the group consisting of trimethyl cyclohexyl methacrylate; t-butyl methacrylate; n-butyl methacrylate; isobornyl (meth)acrylate; 1,6-Hexanediol di(meth)acrylate and combinations thereof.

21. A method of making a liquid electrophotographic toner composition comprising steps of:

- a) providing a dispersion of amphipathic copolymer in a liquid carrier having a Kauri-Butanol number less than about 30 mL, wherein said amphipathic polymeric comprises one or more S material portions and one or more D material portions, wherein one or more of the S or D material portions comprises the residue of a Soluble High T_g Monomer having a T_g at least about 20°C, wherein:
5 the absolute difference in Hildebrand solubility parameters between the Soluble High T_g Monomer and the liquid carrier is less than about 3 MPa^{1/2}; and
10 the D portions of the amphipathic copolymer each have a T_g at least about 30°C; and
- b) mixing the dispersion with one or more ingredients comprising at least one visual enhancement additive under conditions effective to form a
15 plurality of toner particles.

22. A method of electrophotographically forming an image on a substrate surface comprising steps of:

- a) providing a liquid toner composition of claim 1;
- b) causing an image comprising the toner particles to be formed on
20 the substrate surface;
- c) fusing said image on the substrate surface.