梦之河上,一叶扁舟!

. . .

(III)

访问: 2199397次

积分: 23616

等级: **BLOC** 7

排名: 第301名

原创: 478篇 转载: 42篇 译文: 0篇 评论: 488条

文章搜索

文章分类

数论 (69)

图论 (30)

搜索 (14)

字符串 (22)

基础数学 (76)

计算几何 (40)

组合数学 (27)

动态规划 (28)

数据结构 (61)

文学类 (39)

C/C++ (29) HTML5 (8)

Python (17)

Java编程 (15)

人工智能 (24)

技术拓展 (9)

数学之美 (11)

文章存档

2015年10月 (1)

2015年06月 (4)

2015年05月 (3)

2015年04月 (4)

之道、质量保障、技术解密)

异步赠书:10月Python畅销书升级

中国剩余定理

2012-10-08 21:20 18900人阅读 评论(:

≔分类:

数论(68)-

■ 版权声明:本文为博主原创文章,未经博主允许不得转载。

中国剩余定理 (CRT)的表述如下

设正整数 $m_1, m_2, ..., m_k$ 两两互素,则同余方程组

$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv a_2 \pmod{m_2}$$

$$x \equiv a_3 \pmod{m_3}$$

$$\vdots$$

$$\vdots$$

$$x \equiv a_k \pmod{m_k}$$

有整数解。并且在模 $M=m_1\cdot m_2\cdot ...\cdot m_k$ 下的解是唯一的,解为

$$x \equiv (a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1} + \ldots + a_k M_k M_k^{-1}) mod \ M$$

其中 $M_i = M/m_i$,而 M_i^{-1} 为 M_i 模 m_i 的逆元。

代码:

```
[cpp]
01.
      int CRT(int a[],int m[],int n)
02.
03.
           int M = 1;
04.
           int ans = 0;
05.
           for(int i=1; i<=n; i++)</pre>
06.
               M *= m[i];
           for(int i=1; i<=n; i++)</pre>
97.
08.
09.
               int x, y;
10.
               int Mi = M / m[i];
               extend_Euclid(Mi, m[i], x, y);
11.
               ans = (ans + Mi * x * a[i]) % M;
12.
13.
14.
           if(ans < 0) ans += M;
15.
           return ans;
16.
```

2015年03月 (38)

展开

阅读排行	
BP神经网络	
模拟退火算法	(85576)
决策树之ID3算法	(59194)
	(42663)
莫比乌斯反演 	(37738)
协同过滤算法	,
决策树之CART算法	(37679)
softmax回归	(35164)
逆元详解	(34118)
	(33285)
相对熵(KL散度)	(33284)
石子合并问题	(28234)

评论排行	
BP神经网络	(33)
深度理解链式前向星	(24)
莫比乌斯反演	(17)
网络刷博器	(15)
决策树之ID3算法	(14)
softmax回归	(13)
决策树之CART算法	(12)
协同过滤算法	(12)
逆元详解	(12)
BFGS算法	(11)

推荐文章

* CSDN邀请您来GitChat赚钱啦!

* 行为驱动开发(BDD)你准备好了吗?

* 如何更加安全、高效地利用开源项目?

*程序员业余时间修炼指南

* DevOps 在公司项目中的实践落地

*Jenkins + Django 完整实战,细 化到每一步操作

最新评论

HDU4372(第一类斯特林数)

milesgu: @Flynn_curry:代码确实 有问题,需要特判x+y>n+1的 时候输出0

逆元详解

Ifb637: 能不能转载一下,方便学习

深度理解链式前向星

伪学渣: 意外发现一个好博客

K-D树

yxlshk: C++那一版的建树时,没有按照方差大小选举用来比较的维度?目测是根据深度依次选取维度

中国剩余定理

海边拾贝的言: poj2891 可以用欧几里得扩展直接求吧

题目:http://poj.org/problem?id=1006

题意:人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一

天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日

期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少

再过多少天后三个峰值同时出现。

代码:

```
[cpp]
      #include <iostream>
01.
      #include <string.h>
02.
03.
      #include <stdio.h>
04.
05.
      using namespace std;
06.
      int a[4], m[4];
07.
08.
09.
      void extend Euclid(int a, int b, int &x, int &y)
10.
           if(b == 0)
11.
12.
           {
13.
               x = 1;
14.
               y = 0;
15.
               return;
16.
17.
          extend_Euclid(b, a % b, x, y);
          int tmp = x;
18.
19.
          x = v:
20.
          y = tmp - (a / b) * y;
21.
22.
23.
      int CRT(int a[],int m[],int n)
24.
25
          int M = 1:
26.
          int ans = 0:
          for(int i=1; i<=n; i++)</pre>
27.
28.
               M *= m[i]:
29.
          for(int i=1; i<=n; i++)</pre>
30.
31.
               int x, y;
32.
               int Mi = M / m[i];
33.
               extend_Euclid(Mi, m[i], x, y);
               ans = (ans + Mi * x * a[i]) % M;
34.
35.
          if(ans < 0) ans += M;
36.
37.
          return ans:
38.
      }
39.
40.
      int main()
41.
      {
42.
           int p, e, i, d, t = 1;
43.
          while(cin>>p>>e>>i>>d)
44.
               if(p == -1 && e == -1 && i == -1 && d == -1)
45.
46.
                   break:
47.
               a[1] = p;
               a[2] = e;
48.
49.
               a[3] = i;
50.
               m[1] = 23;
51.
               m[2] = 28;
52.
               m[3] = 33;
```

0x5f3759df的数学原理 lindexi_gd: 厉害

决策树之ID3算法 Timmy_Y: 学习了

ISODATA算法

维克多、宇哥: @wzr22:运行可以 按ctrl+f5, 而不是只按f5

二次同余方程的解

<mark>墙角的花</mark>: @u010510549:x一定 是整数,所以(a+sqrt(w))^((p-1)/2)也一定是整数,只...

数学公式及定理

snbsczw: 大神你好第一个公式把n=1,k=2,带入怎么算的是0

普通的中国剩余定理要求所有的 m_i 互素,那么如果不互素呢,怎么求解同余方程组?

这种情况就采用两两合并的思想, 假设要合并如下两个方程

$$x = a_1 + m_1 x_1$$
$$x = a_2 + m_2 x_2$$

那么得到

$$a_1 + m_1 x_1 = a_2 + m_2 x_2 \implies m_1 x_1 + m_2 x_2 = a_2 - a_1$$

在利用扩展欧几里得算法解出 x_1 的最小正整数解,再带入

$$x = a_1 + m_1 x_1$$

得到 * 后合并为一个方程的结果为

$$y \equiv x \pmod{lcm(m_1, m_2)}$$

这样一直合并下去,最终可以求得同余方程组的解。

题目:http://poj.org/problem?id=2891

代码:

```
[cpp]
01.
      #include <iostream>
02.
      #include <string.h>
      #include <stdio.h>
03.
04.
95.
      using namespace std:
      typedef long long LL;
06.
      const int N = 1005;
07.
08.
09.
      LL a[N], m[N];
10.
11.
      LL gcd(LL a,LL b)
12.
13.
          return b? gcd(b, a % b) : a;
14.
15.
      void extend Euclid(LL a, LL b, LL &x, LL &y)
16.
17.
          if(b == 0)
18.
19.
20.
              x = 1;
21.
              y = 0;
22.
              return;
23.
24.
          extend_Euclid(b, a % b, x, y);
```

```
25.
          LL tmp = x;
26.
          x = y;
27.
          y = tmp - (a / b) * y;
28.
29
30
      LL Inv(LL a, LL b)
31.
32.
          LL d = gcd(a, b);
33.
          if(d != 1) return -1;
          LL x, y;
34.
35.
          extend_Euclid(a, b, x, y);
36.
          return (x % b + b) % b;
37.
38.
      bool merge(LL a1, LL m1, LL a2, LL m2, LL &a3, LL &m3)
39
40
41.
          LL d = gcd(m1, m2);
42.
          LL c = a2 - a1;
          if(c % d) return false;
43.
44.
          c = (c \% m2 + m2) \% m2;
45.
          m1 /= d;
46.
          m2 /= d;
47.
          c /= d;
48.
          c *= Inv(m1, m2);
49
          c %= m2;
          c *= m1 * d;
50.
          c += a1;
51.
52.
          m3 = m1 * m2 * d;
53.
          a3 = (c \% m3 + m3) \% m3;
54.
          return true;
55.
      }
56.
57.
      LL CRT(LL a[], LL m[], int n)
58.
59.
          LL a1 = a[1];
          LL m1 = m[1];
60.
          for(int i=2; i<=n; i++)</pre>
61.
62.
63.
              LL a2 = a[i];
              LL m2 = m[i];
65.
              LL m3, a3;
66.
              if(!merge(a1, m1, a2, m2, a3, m3))
67.
                  return -1;
68.
              a1 = a3;
69.
              m1 = m3;
70.
71.
          return (a1 % m1 + m1) % m1;
72.
      }
73.
74.
      int main()
75.
      {
76.
          int n;
77.
          while(scanf("%d",&n)!=EOF)
78.
79.
              for(int i=1; i<=n; i++)</pre>
                  scanf("%I64d%I64d",&m[i], &a[i]);
80.
              LL ans = CRT(a, m, n);
81.
82.
              printf("%I64d\n",ans);
83.
84.
          return 0;
85. }
```

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1573

分析:这个题由于数据范围小,那么直接可以通过枚举在这m个数的最小公倍数范围内的所有数,找到最小的正整

数解,然后后面的所有解都可以通过这个得到。

代码:

```
[cpp]
01.
      #include <iostream>
      #include <string.h>
02.
      #include <stdio.h>
03.
04.
05.
      using namespace std;
06.
      const int N = 25;
07.
08.
      int a[N], b[N];
09.
      int gcd(int a, int b)
10.
11.
12.
          return b ? gcd(b, a % b) : a;
13.
      }
14.
15.
      int main()
16.
      {
17.
          int T;
18.
          cin>>T;
          while(T--)
19.
20.
21.
              int n, m;
22.
              cin>>n>>m;
              for(int i=0; i<m; i++)</pre>
23.
24.
                 cin>>a[i];
25.
              for(int i=0; i<m; i++)</pre>
26.
                  cin>>b[i];
27.
              int lcm = 1;
28.
              for(int i=0; i<m; i++)</pre>
29.
                  lcm = lcm / gcd(lcm, a[i]) * a[i];
              bool f = 1;
30.
31.
              for(int i=1; i<=lcm&&i<=n; i++)</pre>
32.
              {
33.
                  f = 1;
34.
                  for(int j=0; j<m; j++)</pre>
35.
36.
                      if(i % a[j] != b[j])
37.
                          f = 0;
                  }
38.
                  if(f)
39.
40.
41.
                       printf("%d\n",(n - i) / lcm + 1);
42.
                       break;
43.
                  }
44.
              if(f == 0)
45.
46.
                  printf("0\n");
47.
48.
          return 0;
49. }
```

顶 踩

相关文章推荐

- OJ C++读取数据 cin关闭同步
- 用户画像系统应用与技术解析--汪剑
- c++中关于cin.tie以及sync_witch_stdio同步
- 2017 求职面试集训营之VIP服务版--刘道宽
- · POJ-DP题目列表【开启疯狗模式】
- 如何优雅地编写Java
- 中国剩余定理(详解)
- MySQL特性详解

- SG函数模板
- React全家桶之Web基础应用
- 对于SG函数的理解
- OpenStack从入门到放弃
- 莫比乌斯反演
- hdu 6004 Periodical Cicadas [2016 CCPC-Final ...
- · 只有20%的iOS程序员能看懂:详解intrinsia
- 中国剩余定理——另一种证明

查看评论

4楼 海边拾贝的言 2017-10-07 21:00发表

poj2891 可以用欧几里得扩展直接求吧

3楼 OrdinaryCrazy 2017-09-10 20:31发表

博主,能做OpenJudge百炼2793吗?也是不互质的情况

2楼 sinat_35951073 2016-08-24 10:21发表

应该是a1+m1*x1=a2+m2*x2 -->m1*x1-m2*x2=a2-a1 这里好像打错了==

Re: just_sort 2017-01-13 16:43发表

回复sinat_35951073:这个是没错的,m1和m2可以取任意整数,负无穷到正无穷反过来是一样的。

1楼 n-1 2014-10-08 21:48发表

博主。merge()函数里面能解释一下吗

您还没有登录,请[登录]或[注册]

*以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

公司简介 | 招贤纳士 | 广告服务 | 联系方式 | 版权声明 | 法律顾问 | 问题报告 | 合作伙伴 | 论坛反馈

网站客服 杂志客服 微博客服 webmaster@csdn.net 400-660-0108 | 北京创新乐知信息技术有限公司 版权所有 | 江苏知之为计算机有限公司 |

江苏乐知网络技术有限公司

京 ICP 证 09002463 号 | Copyright © 1999-2017, CSDN.NET, All Rights Reserved 🥊

