- 书面作业讲解
 - -TJ第3章练习3、6、7、17、28、36、38、41、48、52
 - -TJ第4章练习1、12、21、24、32
 - -TJ第5章练习3、5、16、27、29
 - TJ第6章练习11、12、16、21
 - [推迟] TJ第9章练习6、7、8、9

TJ第3章练习7

- 阿贝尔群应满足几个条件?
 - 运算封闭
 - 结合律、单位元、逆元
 - 证明单位元和逆元时, 左、右运算都要证明
 - 还要证明单位元和逆元也在集合中
 - 交换律

TJ第3章练习36

- 证明子群的几种方法
 - 子集&群
 - 命题3.9
 - 命题3.10

TJ第4章练习1(e)

- **G**中不可能存在阶为无穷的元素**a**,否则**a**的每个正次幂都不相等,则存在**<**a¹>、**<**a²>......无穷多个子群,矛盾。
- 因此, G中每个元素都是有穷阶, 而如果G有无穷多个元素, 那么必然存在<a>、......无穷多个子群(因为每个都只包含有穷多个元素),矛盾。

TJ第4章练习12

- How about n generators?
 - Z_{2n}行不行?
 - 利用推论4.7

TJ第4章练习24

- pq以内与pq互质的数: (p-1)+(q-1)
- 0也不能作为generator
- generator数量: pq-(p-1)-(q-1)-1=pq-p-q+1

TJ第4章练习32

- 由定理4.6: y的阶是n/1=n
- 而阶为n的元素一定是generator

TJ第5章练习5

TJ第6章练习16

- g的order为2: gg=e, 即g是自己的逆元
- 除了order为2的元素以外,只有e是自己的逆元
- 剩余元素都不是自己的逆元: 成对出现
- 而|G|=2n, 所以order为2的元素必为奇数个
- 任取一个order为2的元素,与e构成order为2的子群

TJ第6章练习21

- 如果直接用Sylow第一定理,这题就失去意义了
- 任取元素a(非单位元),由推论6.6: a的order为p^k (1≤k≤n)
- 取b = a的 p^{k-1} 次幂: $b^p = e$,因此b的order为p(不可能再小了,因为必须是p的幂)
- 由b可以生成一个p阶循环子群

- 教材讨论
 - TJ第2章
 - -CS第2章第2节

问题1: mathematical induction, well ordering

- 什么是良序原理?
- 你有哪些办法来证明"对于任意自然数n,某个命题都成立"?
 - 数学归纳法
 - 良序原理
 - 用反证法: 不成立的那些自然数的集合没有最小元
 - 例如, 你能证明莱曼引理吗: 8a⁴+4b⁴+2c⁴=d⁴没有正整数解
 - 假设所有解中,(a,b,c,d)使abcd最小
 - 发现d是偶数,将d=2d'代入: 4a⁴+2b⁴+c⁴=8d'⁴
 - 发现c是偶数,将c=2c'代入: 2a⁴+b⁴+8c'⁴=4d'⁴
 - 发现b是偶数,将b=2b′代入: a⁴+8b′⁴+4c′⁴=2d′⁴
 - 发现a是偶数,将a=2a′代入: 8a′4+4b′4+2c′4=d′4
 - 找到了新的解(a',b',c',d')且a'b'c'd'<abcd,矛盾

问题2: inverse, GCD, prime

- Given an element b in Z_n , what can you say in general about the possible number of elements a such that $a \cdot_n b = 1$ in Z_n ?
 - 如果gcd(b,n)>1: 找不到a
 - 如果gcd(b,n)=1: 有且只有一个a

Lemma 2.8 The equation

$$a \cdot_n x = 1$$

has a solution in \mathbb{Z}_n if and only if there exist integers x and y such that

$$ax + ny = 1$$
.

Lemma 2.11 Given a and n, if there exist integers x and y such that ax + ny = 1 then gcd(a, n) = 1.

问题2: inverse, GCD, prime (续)

- Either find an equation of the form $a \cdot_n x = b$ in Z_n that has a unique solution even though a and n are not relatively prime, or prove that no such equation exists. In other words, you are either to prove the statement that if $a \cdot_n x = b$ has a unique solution in Z_n , then a and n are relatively prime or to find a counter example.
- 如果gcd(a,n)=g>1
 - 如果g|b
 - $a \cdot_n x = b \neq g \neq m \alpha \cdot \alpha + n/g \cdot \alpha + 2n/g \dots$
 - 其中, α 是(a/g)·_{n/g} x = (b/g)的唯一解
 - (因为 $(a/g) \cdot_{n/g} x = (b/g)$ 的每个解都是原方程的解)
 - 否则
 - 很容易验证无解

问题3: Euclid's GCD algorithm

• 这个算法利用的基本原理是什么

```
Lemma 2.13 If j, k, q, and r are positive integers such that k = jq + r then gcd(j, k) = gcd(r, j)
```

- 递归的base case是什么?
- 计算GCD(210,126)