Mostafa Sabri

Lecture 20

6.2 Orthogonal Sets

6.3 Orthogonal Projections

Orthogonal Sets

A set of vectors $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an *orthogonal set* if $\mathbf{u}_i \cdot \mathbf{u}_j = \mathbf{0}$ for any $i \neq j$.

Show that the set
$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$$
 is orthogonal if $\mathbf{u}_1 = (1, 2, 3), \mathbf{u}_2 = (-6, 0, 2), \mathbf{u}_3 = (1, -5, 3).$

Thm: If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors, then S is linearly independent and hence a basis for $H = \operatorname{Span}(S)$.

<u>Proof.</u> Suppose $\sum_{i=1}^{\rho} c_i \mathbf{u}_i = \mathbf{0}$. Then $\mathbf{u}_j \cdot \sum_{i=1}^{\rho} c_i \mathbf{u}_i = 0$, so $\sum_{i=1}^{\rho} c_i \mathbf{u}_j \cdot \mathbf{u}_i = 0$, so $c_j \mathbf{u}_j \cdot \mathbf{u}_j = 0$, implying $c_j = 0$ since $\mathbf{u}_j \neq \mathbf{0}$. This holds for any j, so S is independent.

Orthogonal Basis

An orthogonal basis for a subspace $W \subset \mathbb{R}^n$ is a basis of W that is also an orthogonal set.

Thm: If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal basis of W, then any $\mathbf{w} \in W$ has the expansion $\mathbf{w} = \sum_{i=1}^p c_i \mathbf{u}_i$ for

$$c_i = \frac{\mathbf{w} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}$$

<u>Proof.</u> Let $\mathbf{w} \in W = \operatorname{Span}(S)$, so $\mathbf{w} = \sum_{i=1}^{\rho} c_i \mathbf{u}_i$ for some $c_i \in \mathbb{R}$. So $\mathbf{u}_j \cdot \mathbf{w} = \mathbf{u}_j \cdot \sum_{i=1}^{\rho} c_i \mathbf{u}_i = \sum_{i=1}^{\rho} c_i \mathbf{u}_j \cdot \mathbf{u}_i = c_j \mathbf{u}_j \cdot \mathbf{u}_j$. \square

Orthogonal Decomposition

Express $\mathbf{w} = (1, 1, 1)$ in the basis $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ of the previous exercise.

Fix a vector \mathbf{u} and suppose we want to decompose an arbitrary $\mathbf{y} \in \mathbb{R}^n$ in the form

$$\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}\,,$$

where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ is in Span{u} and z is orthogonal to u. Assuming this is possible, the vector $\mathbf{y} - \hat{\mathbf{y}} = \mathbf{z}$ is orthogonal to u. Thus,

$$0 = (\mathbf{y} - \widehat{\mathbf{y}}) \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - \widehat{\mathbf{y}} \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - \alpha \mathbf{u} \cdot \mathbf{u}.$$

This shows that we must have $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$.

Orthogonal Projection

Let $L = \text{Span}\{\mathbf{u}\}$. We define the *orthogonal* projection of \mathbf{y} onto \mathbf{u} to be the vector $\hat{\mathbf{y}}$ such that

- $1. \ \mathbf{y} = \widehat{\mathbf{y}} + \mathbf{z},$
- 2. $\hat{\mathbf{y}} \in L$ and $\mathbf{z} \in L^{\perp}$.

In other words,

$$\operatorname{proj}_{L}(\mathbf{y}) = \widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

Let $\mathbf{u} = (1, 2)$ and $\mathbf{y} = (-3, 5)$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then decompose \mathbf{y} as $\hat{\mathbf{y}} + \mathbf{z}$ where $\mathbf{z} \cdot \mathbf{u} = 0$.

Geometric interpretation of the weights in ob

If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal basis of W, then we now deduce that any $\mathbf{w} \in W$ can be expanded as

$$\mathbf{w} = \sum_{i=1}^{\rho} \operatorname{proj}_{L_i}(\mathbf{w})$$

where $L_i = \operatorname{Span}\{\mathbf{u}_i\}$.

Orthonormal Sets

A set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ in \mathbb{R}^n is said to be an orthonormal set if it is an orthogonal set of unit vectors.

If so, S is an orthonormal basis of $H = \operatorname{Span}(S)$.

e.g. $S = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is an orthonormal basis of \mathbb{R}^n .

e.g. By normalizing the vectors in the first exercise we get an orthonormal basis of \mathbb{R}^3 .

Thm: An $m \times n$ matrix U has orthonormal columns iff $U^T U = I_n$.

Orthonormal Columns

Proof. If
$$U = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_n \end{bmatrix}$$
 then

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \mathbf{u}_{1}^{T}\mathbf{u}_{2} & \cdots & \mathbf{u}_{1}^{T}\mathbf{u}_{n} \\ \mathbf{u}_{2}^{T}\mathbf{u}_{1} & \mathbf{u}_{2}^{T}\mathbf{u}_{2} & \cdots & \mathbf{u}_{2}^{T}\mathbf{u}_{n} \\ & & \ddots & \\ \mathbf{u}_{n}^{T}\mathbf{u}_{1} & \mathbf{u}_{n}^{T}\mathbf{u}_{2} & \cdots & \mathbf{u}_{n}^{T}\mathbf{u}_{n} \end{bmatrix}.$$

Thus, $U^TU = I$ iff $\mathbf{u}_i^T\mathbf{u}_i = 1 \ \forall i$ and $\mathbf{u}_i^T\mathbf{u}_j = 0 \ \forall i \neq j$. This occurs iff $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal set.

Thm: If U is an $m \times n$ matrix with orthonormal columns and $\mathbf{x}, \mathbf{v} \in \mathbb{R}^n$, then

- 1. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- 2. $||U\mathbf{x}|| = ||\mathbf{x}||$,
- 3. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0 \iff \mathbf{x} \cdot \mathbf{y} = 0$.

Orthonormal Columns

Proof. 1.
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = (\sum_{i=1}^n x_i \mathbf{u}_i) \cdot (\sum_{j=1}^n y_i \mathbf{u}_j) = \sum_{i,j=1}^n x_i y_j \mathbf{u}_i \cdot \mathbf{u}_j = \sum_{i=1}^n x_i y_i = \mathbf{x} \cdot \mathbf{y}.$$

- 2. $||U\mathbf{x}||^2 = (U\mathbf{x}) \cdot (U\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} = ||\mathbf{x}||^2$ by 1.
- 3. This follows from 1.
- e.g. If $n \le m$, then from any orthonormal basis $S = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ of \mathbb{R}^m we can construct such an $m \times n$ matrix U by taking n vectors in S as columns.

If U is a square matrix with $U^TU = I$, we call U an orthogonal matrix. In this case, U is invertible with $U^{-1} = U^T$.

Orthogonal Decomposition

Thm: Let $W \subset \mathbb{R}^n$ be a subspace. Then any $\mathbf{y} \in \mathbb{R}^n$ can be written uniquely in the form

$$y = \hat{y} + z$$

where $\hat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$. Moreover, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal basis for W, then

$$\widehat{\mathbf{y}} = \sum_{i=1}^{p} \frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} \mathbf{u}_i$$
 (1)

<u>Proof.</u> We can always find an orthogonal basis $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ for W (Lec 21). Given $\mathbf{y} \in \mathbb{R}^n$ and S, we now define $\hat{\mathbf{y}}$ by (1) and define $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

Orthogonal Decomposition

Clearly $\hat{\mathbf{y}} \in W$. Next,

$$\mathbf{u}_j \cdot \mathbf{z} = \mathbf{u}_j \cdot \mathbf{y} - \mathbf{u}_j \cdot \sum_{i=1}^p \frac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} \mathbf{u}_i = \mathbf{u}_j \cdot \mathbf{y} - \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \mathbf{u}_j \cdot \mathbf{u}_j = 0$$

so $\mathbf{z} \in S^{\perp} = W^{\perp}$ as required.

To show uniqueness, suppose $\mathbf{y} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$ is another expansion for \mathbf{y} with $\hat{\mathbf{y}}_1 \in W$ and $\mathbf{z}_1 \in W^\perp$. Then $\hat{\mathbf{y}} + \mathbf{z} = \hat{\mathbf{y}}_1 + \mathbf{z}_1$, so $\hat{\mathbf{y}} - \hat{\mathbf{y}}_1 = \mathbf{z}_1 - \mathbf{z}$. This implies that $\mathbf{v} = \hat{\mathbf{y}} - \hat{\mathbf{y}}_1 \in W \cap W^\perp = \{\mathbf{0}\}$, so $\hat{\mathbf{y}} = \hat{\mathbf{y}}_1$. This implies $\mathbf{z}_1 - \mathbf{z} = \mathbf{0}$, so $\mathbf{z}_1 = \mathbf{z}$, completing the proof.

Find the orthogonal decomposition of \mathbf{y} with respect to $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ if $\mathbf{u}_1 = (1, 2, 3)$, $\mathbf{u}_2 = (-6, 0, 2)$ and $\mathbf{y} = (1, 1, 1)$.

Geometric Interpretatior

Figure: $\hat{\mathbf{y}}$ is the sum of its projections onto mutually orthogonal lines.

We call $\hat{\mathbf{y}}$ in the previous theorem the *orthogonal* projection of \mathbf{y} onto W and denote it $\operatorname{proj}_{W}(\mathbf{y}) = \hat{\mathbf{y}}$.

Thm: If $\mathbf{y} \in W$, then $\text{proj}_W(\mathbf{y}) = \mathbf{y}$.

<u>Proof.</u> This follows from uniqueness of representation since we can write $\mathbf{y} = \mathbf{y} + \mathbf{0}$ with $\mathbf{0} \in W^{\perp}$.

П

Best Approximation Theorem

Thm: If $W \subseteq \mathbb{R}^n$ is a subspace and $\mathbf{y} \in \mathbb{R}^n$, then $\hat{\mathbf{y}} = \operatorname{proj}_W(\mathbf{y})$ is the closest point in W to \mathbf{y} , in the sense that

$$\|\mathbf{y} - \widehat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{w}\|$$

for all $\mathbf{w} \in W$, $\mathbf{w} \neq \hat{\mathbf{y}}$.

This says that the best approximation of \mathbf{y} inside W is $\hat{\mathbf{y}}$.

<u>Proof.</u> Let $\mathbf{w} \in W$, $\mathbf{w} \neq \hat{\mathbf{y}}$. Since $\hat{\mathbf{y}} - \mathbf{w} \in W$, then $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\hat{\mathbf{y}} - \mathbf{w}$. By Pythagoras, we get

$$\|\mathbf{y} - \mathbf{w}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}} + \hat{\mathbf{y}} - \mathbf{w}\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{w}\|^2$$

Since $\hat{\mathbf{y}} - \mathbf{w} \neq \mathbf{0}$, this implies $\|\mathbf{y} - \mathbf{w}\|^2 > \|\mathbf{y} - \hat{\mathbf{y}}\|^2$.

Best Approximation

1. If $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$, $\mathbf{u}_1 = (1, 2, 3)$, $\mathbf{u}_2 = (-6, 0, 2)$ and $\mathbf{y} = (1, 1, 1)$, find the closest point in W to \mathbf{y} .

We define the distance from \mathbf{y} to a subspace W to be the smallest distance of \mathbf{y} to an element in W.

2. Find the distance of **y** to *W* if
$$W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$$
, $\mathbf{u}_1 = (-2, 1, 4)$, $\mathbf{u}_2 = (3, -2, 2)$ and $\mathbf{y} = (1, 5, -3)$.

Thm: If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a susbpace W of \mathbb{R}^n , then

$$\operatorname{proj}_{W}(\mathbf{y}) = \sum_{i=1}^{p} (\mathbf{y} \cdot \mathbf{u}_{i}) \mathbf{u}_{i}.$$
 (2)

Moreover, if
$$U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_p \end{bmatrix}$$
 then $\operatorname{proj}_W(\mathbf{y}) = UU^T\mathbf{y} \quad \forall \mathbf{y} \in \mathbb{R}^n$

Proof. Equation (2) follows from equation (1). Next,
$$UU^T\mathbf{y} = \sum_{i=1}^n (U^T\mathbf{y})_i \mathbf{u}_i = \sum_{i,j=1}^n u_{ji} y_j \mathbf{u}_i = \sum_{i=1}^n (\mathbf{u}_i \cdot \mathbf{y}) \mathbf{u}_i = \text{proj}_W(\mathbf{y}).$$

Conclusion: If U is an $n \times p$ matrix with orthonormal columns and W = Col(U), then we have

$$U^T U = I_p$$
 and $UU^T = \operatorname{proj}_W$

If p = n, i.e. U is an orthogonal matrix, then $proj_W = I_p$.