

Hierarchical Search on DisCSPs

Michael Orlov orlovm@cs.bgu.ac.il

Department of Computer Science Ben-Gurion University

Advisor: Prof. Amnon Meisels

July 2006

Introduction

- What is Constraint Satisfaction?
- What is Distributed CSP?
- Why do we use search?
- Why binary CSPs?

Introduction

Introduction

CSPs

Sudoku

DisCSPs

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Constraint Satisfaction Problems

Sudoku as a CSP

- \blacksquare n^4 variables in $n^2 \times n^2$ grid
- Domain of each variable: $\{1, ..., n^2\}$, except for the "open" cells
- Constraints: values for each row, column, major $n \times n$ block are *alldifferent*

Introduction

Introduction

CSPs

Sudoku

DisCSPs

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Constraint Satisfaction Problems

Sudoku as a CSP

		7	5			
	3		4	8	2	
1						6
	4					8
7	9				3	1
2					7	
5						7
	8	3	2		4	
			6	9		

-				4			
- 11	n	tr	0	d	11	cti	OT
		LI.	•	u	ıu	$-\iota$	w

Introduction

CSPs

Sudoku

DisCSPs

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- ABT is the classical approach [Yokoo and Hirayama, 2000]
- Timetabling
- Privacy considerations
- Message delays
- Algorithm performance: CCs, messages [Meisels et al., 2002]

Introduction

Introduction

CSPs

Sudoku

DisCSPs

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Motivation

Introduction

Motivation

Motivation

PAs

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- More parallelism and less backtracking
- Hierarchy facilitates smart PAs combination
- Independency of hierarchy and search

Introduction

Motivation

Motivation

PAs

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Motivation: Combining PAs

- Theoretic motivation of DisHS
- Constraint weight: probability that a pair of values is not in conflict
- *Virtual constraint:* combination of constraints, weight approximated by multiplication
- Expected CCs when ordering k constraints by weight:

$$1 + w(k-1) \le E_k(w) \le \frac{1-w}{1-\sqrt[k]{w}}$$

Introduction

Motivation

Motivation

PAs

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Algorithms Overview

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Hierarchical Search

- Partition
- Distributed Hierarchical Search
- Descending Requirements Search

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Consider a small graph-coloring problem
- Domains of a, c and d are $\{1,2,3\}$
- **Domain** of *b* is $\{1, 2, 3, 4\}$

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Each agent sends Join to a minimal-weight neighbor
- $\blacksquare \quad a \to c, b \to a, c \to d, d \to c$
- lacksquare c and d join, send each other components info
- lacktriangleright c sends Done to a, b

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- \blacksquare a and b remove c from neighbors list
- \blacksquare a and b join, and send Done to c
- \blacksquare a, b, c, d send Leader messages to chosen leaders
- Leaders are activated at the next level (can't be confused by previous levels messages)

lacksquare b and c join, picking leader d

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- We now have a hierarchy of agents
- d sends Search message to all agents in order to initiate the search process

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- $a, c, d \text{ send } \langle x = 1 \rangle, \langle x = 2 \rangle, \langle x = 3 \rangle \text{ to leaders } b$ and c
- b sends $\langle x = 1 \rangle, \dots, \langle x = 4 \rangle$ to itself (actually, primitive agent to a leader)
- **b**, c prune inconsistent pairs and send results to d

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

b sends consistent pairs to d:

a	b
1	2
1	3
1	4
2	1
2	3
2	4
3	1
3	2
3	4

-	_					
	n	tr	α	m	cti	OI
-		LL	w	ıи	CLI	w

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

c sends consistent pairs to d:

С	d
1	2
1	3
2	1
2	3
3	1
3	2

-					
۱n	ıtr	റ	11	cti	Of

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

d prunes inconsistencies using Check queries to a, b, c and produces solutions

a	b	C	d
1	2	3	1
1	2	3	2
1	3	2	1
1	3	2	3
1	4	2	1
1	4	2	3

. . .

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

d prunes inconsistencies using Check queries to a, b, c and produces solutions

a	b	c	d
1	2	3	1
1	2	3	2
1	3	2	1
1	3	2	3
1	4	2	1
1	4	2	3

. . .

Not necessary in this order!

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Each agent initiates a backtracking process
- Processes are independent, so let's consider one originating at *a*
- Note: numbers of processes and agents can be independent

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- \blacksquare a to leader b: $\langle a=1 \rangle$
- Leader b forwards to leaf b, which sends $\langle a=1,b=2 \rangle$ up
- Leader b forwards tp leaf d via leaders d, c
- d to leader c: $\langle a = 1, b = 2, d = 1 \rangle$

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Leaf c sends to leader c a complete solution $\langle a=1,b=2,d=1,c=3 \rangle$
- Leader c forwards it to USER via leader d

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Leaf c sends to leader c a complete solution $\langle a=1,b=2,d=1,c=3 \rangle$
- Leader c forwards it to USER via leader d

No backtracking! But backtracking works as expected.

Introduction

Motivation

Algorithms Overview

Hierarchical Search

Partition

DisHS

DesRS

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Group Partition

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Agents try to join neighbors with minimal weight: Join and NoJoin messages Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Agents try to join neighbors with minimal weight: Join and NoJoin messages
- Joining agents exchange component information with Components messages

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Agents try to join neighbors with minimal weight: Join and NoJoin messages
- Joining agents exchange component information with Components messages
- Removing joined neighbors and environment for next level: Done messages

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Agents try to join neighbors with minimal weight: Join and NoJoin messages
- Joining agents exchange component information with Components messages
- Removing joined neighbors and environment for next level: Done messages
- Leader activation: Leader messages

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search


```
Input : agent s, its neighbors N
Output : components C, pairs, leader, parent ← USER
Locals : Ñ, N<sub>Idr</sub>, g, level ← p, start ← TRUE, next-level
SEND(s, Leader⟨N, {(s,N,0)}, TRUE, 0⟩)
loop forever do
    switch RECEIVE() do
    ...
```

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search


```
 \begin{aligned} &\textbf{case } \mathsf{Join} \langle \mathsf{t} \rangle \\ &\textbf{if } \mathsf{t} = \mathsf{g} \textbf{ then} \\ & & \mathsf{SEND}(\mathsf{g}, \mathsf{Components} \langle \mathsf{C} \rangle) \\ &\textbf{else} \\ & & \mathsf{SEND}(\mathsf{t}, \mathsf{NoJoin}) \\ &\textbf{case } \mathsf{NoJoin} \\ & & \mathsf{g} \leftarrow \mathsf{SELECT}(\tilde{\mathsf{N}}) \\ & & \mathsf{SEND}(\mathsf{g}, \mathsf{Join} \langle \mathsf{s} \rangle) \end{aligned}
```

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search


```
\label{eq:case_components} \begin{split} \textbf{case} & \, \mathsf{Components} \langle C_g \rangle \\ & \quad \textbf{if} \, \mathsf{s} \neq \mathsf{g} \, \textbf{then} \\ & \quad \{\mathsf{leader}, \mathsf{C}\} \leftarrow \mathsf{SELECT\text{-}LEADER}(\mathsf{C}, \, \mathsf{C}_g, \, \mathsf{next\text{-}level}) \\ & \quad \textbf{if} \, \mathsf{parent} = \mathsf{USER} \, \, \textbf{then} \\ & \quad \mathsf{parent} \leftarrow \mathsf{leader} \\ & \quad \mathsf{else} \\ & \quad \mathsf{leader} \leftarrow \mathsf{s} \\ & \quad \mathsf{leader} \leftarrow \mathsf{s} \\ & \quad \mathsf{foreach} \, \, \mathsf{t} \in \mathsf{N} \cup \{\mathsf{s}\} \, \, \textbf{do} \\ & \quad \mathsf{SEND}(\mathsf{t}, \, \mathsf{Done} \langle \mathsf{s}, \, \mathsf{leader} \rangle) \end{split}
```

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search


```
\begin{split} &\textbf{if} \ t \neq s \ \textbf{then} \\ & \quad N_{ldr} \leftarrow U \text{PDATE}(N_{ldr}, \ N, \ t, \ leader_t) \\ & \quad \tilde{N} \leftarrow \tilde{N} \smallsetminus \{t\} \\ & \quad \textbf{if} \ \tilde{N} = \text{NIL} \ \textbf{then} \\ & \quad level \leftarrow \mathfrak{p} \\ & \quad S \text{END}(leader, \ Leader \langle N_{ldr} \smallsetminus \{leader\}, \ C, \ s = g, \ next-level \rangle) \end{split}
```

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search


```
 \begin{array}{l} \textbf{case Leader} \langle N', \, C', \, \text{single, level'} \rangle \\ \textbf{if start then} \\ N \leftarrow N', \, C \leftarrow C', \, N_{ldr} \leftarrow \text{NIL} \\ \textbf{else} \\ \text{pairs} \leftarrow \left\{ (\{t,r\},w): \, (t,\hat{N}) \in C \, \wedge \, r \in C' \, \wedge \, (r,w) \in \hat{N} \right\} \\ N \leftarrow COMBINE(N,N'), \, C \leftarrow C \cup C' \\ \text{start} \leftarrow \neg \text{start} \vee \text{single} \\ \cdots \\ \end{array}
```

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search


```
 \begin{array}{l} \textbf{case Leader} \langle \mathsf{N', C', single, level'} \rangle \\ \dots \\ \textbf{if start then} \\ \textbf{if N} = \mathtt{NIL then} \\ \textbf{leader} \leftarrow \mathtt{USER} \\ \textbf{foreach t} \in \mathtt{C do} \\ \mathtt{SEND}(\mathtt{t, Search}) \\ \textbf{else} \\ \textbf{level} \leftarrow \textbf{level', next-level} \leftarrow \textbf{level} + 1 \\ \tilde{\mathsf{N}} \leftarrow \mathtt{N} \cup \{(\mathtt{s}, 1.5)\} \\ \mathtt{g} \leftarrow \mathtt{SELECT}(\tilde{\mathsf{N}}) \\ \mathtt{SEND}(\mathtt{g, Join} \langle \mathtt{s} \rangle) \\ \end{array}
```

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Algorithm: Partition (Example)

■ Initial CSP, $p_1 = p_2 = 0.4$.

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Algorithm: Partition (Example)

Subsequent levels during partitioning

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Algorithm: Partition (Example)

Resulting hierarchy

Introduction

Motivation

Algorithms Overview

Group Partition

Partition

Algorithm: Partition

Example

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Distributed Hierarchical Search

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending

Requirements Search

Experimental Results

Beyond Search

Agents send consistent PAs up in the hierarchy with Assignment messages

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending

Requirements Search

Experimental Results

Beyond Search

- Agents send consistent PAs up in the hierarchy with Assignment messages
- Representative agents combine PAs

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending

Requirements Search

Experimental Results

Beyond Search

- Agents send consistent PAs up in the hierarchy with Assignment messages
- Representative agents combine PAs
- Check and Answer messages are used for value compatibility queries

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending

Requirements Search

Experimental Results

Beyond Search

- Agents send consistent PAs up in the hierarchy with Assignment messages
- Representative agents combine PAs
- Check and Answer messages are used for value compatibility queries
- Problem: message queues saturation

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending

Requirements Search

Experimental Results

Beyond Search

- Agents send consistent PAs up in the hierarchy with Assignment messages
- Representative agents combine PAs
- Check and Answer messages are used for value compatibility queries
- **Problem:** message queues saturation
- **Extensions:** on-demand assignments, query caching, message priority

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending

Requirements Search

Experimental Results

Beyond Search


```
: agent s, partition output, domain D
Input
Output: a global solution is sent to USER
Locals: row \leftarrow 0, Pending[\cdot] \leftarrow 0, Solutions[\cdot],
          Iterator \leftarrow NIL, requests \leftarrow 1
loop forever do
   switch RECEIVE() do
      case Search
          |eve| \leftarrow \mathfrak{s}
          forall v \in D do
             SEND(parent, Assignment\langle s, \{\langle s, v \rangle \} \rangle)
          SEND(parent, Assignment(s, STOP))
```

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending Requirements Search

Experimental Results

Beyond Search


```
case Check\langle t, row', \{\langle s, v \rangle, \langle r, w \rangle \} \rangle
   SEND(t, Answer\langle row', CHECK(v, r, w) \rangle)
case Answer(row', ok)
   if Pending[row'] \neq 0 then
      if \neg ok then
          Pending[row'] \leftarrow 0
          requests \leftarrow requests +1
          PROCESS-REQUEST()
      else
          Pending[row'] \leftarrow Pending[row'] -1
          if Pending[row'] = 0 then
             SEND(leader, Assignment(s, Solutions[row']))
```

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

DisHS

Algorithm: DisHS

Descending

Requirements Search

Experimental Results

Beyond Search


```
case Request
  requests ← requests + 1
  PROCESS-REQUEST()
case Assignment⟨t, partial⟩
  ITERATOR-ADD(Iterator, t, partial)
  PROCESS-REQUEST()
```

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

DisHS

Algorithm: DisHS

Descending Requirements Search

Experimental Results

Beyond Search

Descending Requirements Search

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search

■ Each agent initiates a backtracking search

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search

- Each agent initiates a backtracking search
- Representative agents serve as routers

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search

- Each agent initiates a backtracking search
- Representative agents serve as routers
- Search processes are independent

-	_				-					
	T	١1	t٠	· (1)		ш	IC	H1	0	T
	ш	ш	u	u	u	u	ı	ш	u	ч

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search

- Each agent initiates a backtracking search
- Representative agents serve as routers
- Search processes are independent
- Assignment and Nogood messages

-			1		
In	tr.	α	m	Ct1	OT
111	u	\mathcal{O}	ıu	Cu	UI

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search


```
 \begin{array}{c} \textbf{Input} & : \text{agent s, partition output, domain } \textit{D}, \text{ child agents} \\ & c_{0,1}, \text{ primitive child indicators } \text{prim}_{0,1} \\ \textbf{Output} & : \text{a global solution is sent to USER} \\ \textbf{Locals} & : \text{Id-Map}[\cdot] \\ \textbf{loop } \textit{forever do} \\ & \textbf{switch Receive() do} \\ & \textbf{case Search} \\ & \text{level} \leftarrow \mathfrak{s} \\ & \text{Send(s, Assignment(s, s, NIL, True))} \\ & \cdots \\ \end{array}
```

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search


```
case Assignment(t, id, PA, primitive)
   if primitive then
        \mathsf{Id}\text{-}\mathsf{Map}[\mathsf{id}] \leftarrow \langle \mathsf{PA}, D, \emptyset \rangle
    else if \exists i : t = c_i then
        if c_{1-i} \in PA then
            SEND(leader, Assignment(s, id, PA, FALSE))
        else
            SEND(c_{1-i}, Assignment(s, id, PA, prim<sub>1-i</sub>))
    else
        i \leftarrow \text{RANDOM}(\{0,1\})
        SEND(c_i, Assignment(s, id, PA, prim<sub>i</sub>))
case Nogood(id, exp)
    \langle \cdot, \cdot, \mathsf{united\text{-}exp} \rangle \leftarrow \mathsf{Id\text{-}Map[id]}
    united-exp \leftarrow united-exp \cup exp
```

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search


```
 \begin{aligned} &\textbf{case} \; \mathsf{Assignment}\langle \cdot, \, \mathsf{id}, \, \cdot, \, \mathsf{TRUE}\rangle \; \vee \; \mathsf{Nogood}\langle \mathsf{id}, \, \cdot \rangle \\ & \langle \mathsf{PA}, \mathsf{Values}, \mathsf{exp}\rangle \leftarrow \mathsf{Id}\text{-Map}[\mathsf{id}] \\ & v \leftarrow \mathsf{NIL} \\ & \textbf{while} \; v = \mathsf{NIL} \; \wedge \; \mathsf{Values} \neq \emptyset \; \textbf{do} \\ & v \leftarrow \mathsf{RANDOM}(\mathsf{Values}) \\ & \mathsf{Values} \leftarrow \mathsf{Values} \smallsetminus \{v\} \\ & \textbf{for} \; (\mathsf{r} = w) \in \mathsf{PA} \; (\textit{left-to-right, neighbors of s only)} \; \textbf{do} \\ & \textbf{if} \; \mathsf{CHECK}(v, \, \mathsf{r}, \, w) \; \textbf{then} \\ & \mathsf{exp} \leftarrow \mathsf{exp} \cup \{\mathsf{r}\} \\ & v \leftarrow \mathsf{NIL} \\ & \textbf{break} \\ & \dots \end{aligned}
```

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search


```
case Assignment\langle \cdot, \operatorname{id}, \cdot, \operatorname{TRUE} \rangle \vee \operatorname{Nogood} \langle \operatorname{id}, \cdot \rangle ...

if v \neq \operatorname{NIL} then

\operatorname{SEND}(\operatorname{parent}, \operatorname{Assignment} \langle \operatorname{s}, \operatorname{id}, \langle \operatorname{PA}, (\operatorname{s} = v) \rangle, \operatorname{FALSE} \rangle)
else if \exp \neq \emptyset then
\operatorname{for} r \in \operatorname{PA} \ (\operatorname{right-to-left}) \ \operatorname{do}
\operatorname{if} r \in \operatorname{exp} \ \operatorname{then}
\operatorname{SEND}(r, \operatorname{Nogood} \langle \operatorname{id}, \operatorname{exp} \setminus \{r\} \rangle)
\operatorname{break}
else
\operatorname{SEND}(\operatorname{USER}, \operatorname{Nogood} \langle \operatorname{id}, \operatorname{exp} \rangle)
```

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

DesRS

Algorithm: DesRS

Experimental Results

Beyond Search

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending
Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DisHS, ABT on random problems with 10 agents, domain size of 10, and $p_1 = 0.5$

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DisHS, ABT on random problems with 10 agents, domain size of 10, and $p_1 = 0.5$

Messages: DisHS and ABT

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ABT on random problems with 10 agents, domain size of 10, and $p_1 = 0.5$

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ABT on random problems with 10 agents, domain size of 10, and $p_1 = 0.5$

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ABT on random problems with 20 agents, domain size of 10, and $p_1 = 0.4$

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ABT on random problems with 20 agents, domain size of 10, and $p_1 = 0.4$

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ConcDB [Zivan and Meisels, 2006] on random problems with 10 agents, domain size of 10, and $p_1 = 0.5$

Constraint checks: DesRS and ConcDB

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ConcDB [Zivan and Meisels, 2006] on random problems with 10 agents, domain size of 10, and $p_1 = 0.5$

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ConcDB on random problems with 20 agents, domain size of 10, and $p_1 = 0.4$

Constraint checks: DesRS and ConcDB

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

DesRS, ConcDB on random problems with 20 agents, domain size of 10, and $p_1 = 0.4$

Messages: DesRS and ConcDB

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

Importance of partition: DisHS vs. AntiDisHS

What if we change the order of neighbors during partition (10 agents, 10 values, $p_1 = 0.5$)?

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

Importance of partition: DisHS vs. AntiDisHS

What if we change the order of neighbors during partition (10 agents, 10 values, $p_1 = 0.5$)?

Constraint checks: DisHS and AntiDisHS

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

Importance of partition: DisHS vs. AntiDisHS

What if we change the order of neighbors during partition (10 agents, 10 values, $p_1 = 0.5$)?

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

Importance of partition: DesRS vs. AntiDesRS

What if we change the order of neighbors during partition (20 agents, 10 values, $p_1 = 0.4$)?

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

Importance of partition: DesRS vs. AntiDesRS

What if we change the order of neighbors during partition (20 agents, 10 values, $p_1 = 0.4$)?

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

Importance of partition: DesRS vs. AntiDesRS

What if we change the order of neighbors during partition (20 agents, 10 values, $p_1 = 0.4$)?

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending

Paguirements Soci

Requirements Search

Experimental Results

DisHS

DesRS, ABT

DesRS, ConcDB

AntiDisHS

AntiDesRS

Beyond Search

Beyond Search

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Influence in social networks

			C		

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Influence in social networks
- Load balancing

-				- 1					
- 1	n	f1	rn		ш	C	1	\cap	r

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- Influence in social networks
- Load balancing
- Partition is fast!

_		1		. •	
1	1+11	α	luc	111	Or
- 11		C)(I	1116		. , ,

Motivation

Algorithms Overview

Group Partition

Distributed

Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed Hierarchical Search

Descending

Requirements Search

Experimental Results

Beyond Search

- A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing performance of distributed constraints processing algorithms. In *Proceedings of the Third Workshop on Distributed Constraint Reasoning*, pages 86–93, Bologna, Italy, July 2002.
- M. Yokoo and K. Hirayama. Algorithms for distributed constraint satisfaction: A review. *Autonomous Agents and Multi-Agent Systems*, 3(2):185–207, June 2000.
- R. Zivan and A. Meisels. Concurrent search for distributed CSPs. *Artificial Intelligence Journal*, 170(4–5):440–461, Apr. 2006.

Introduction

Motivation

Algorithms Overview

Group Partition

Distributed
Hierarchical Search

Descending
Requirements Search

Experimental Results

Beyond Search