Displaced Photon Background Studies Update LL Meeting Nov 02 2012

Tambe E. Norbert, Shin-chuan Kao, Yuichi Kubota, Giovanni Franzoni, Roger Rusack

DataSet & Triggers

DataSets:

- /SinglePhoton/Run2012C/Prompt-Reco V1&2
- Int Lumi = 6.7 /fb

HLT Trigger:

 HLT_DisplacedPhoton65_CaloIdVL_IsoL_ PFMET25

Signal from Background

• Ecal Time Calibration:

$$\langle t_{\gamma_{true}} \rangle \! \simeq \! 0$$
 but $t_{\gamma_{Sig}} \!
eq \! 0$

2 Types of Backgrounds

- Left B1 w/ Right B2
- Left B2 w/ Right B1
- LeftB2 w/ Right B2

Non-Collision:

 Beam halo (beam dump or P+Gas -> muons which Brem/shower in ECAL.

02/11/2012

Tambe E. Norbert(UMN US)

Cosmic muons.

Event Selection

- Selection :
 - $Gamma_Pt1(2) > 60(45)GeV$
 - |eta| < 2.5, Jet_pt > 35 GeV
 - Egamma VL Iso cuts,
 - MET > 0 GeV
- Photon Tagging:
 - CSC Segment |eta| > 1.6
 - Halo tagged if dphi(cscSeg, gamma) < 0.6

Photon time vs Phi

Cosmic muons?

- Observed in 2012B dataset
- High intensity inphi = 0, +/- pi
- Most photons arriving early in Ecal time indicate source could be beam halo muons.

Photon time vs Eta

Cosmic muons?

- Intense at impact point in EB then slowly decreases towards IP.
- Eta dependence in early Ecal time.
- Surely photons do not all come from a unique source.

Photon time vs Phi

Cosmic muons?

- Similar
 phenomenon in

 2012C dataset.
- Increased intensity with luminosity.
- Phi dependence in Ecal time of photons.

02/11/2012

Tambe E. Norbert(UMN US)

Photon time vs Eta

Cosmic muons?

- 2012C dataset.
- Increased intensity with luminosity.
- Spikes with time between -10 and -15ns.

Spikes failing spike cleaning.

02/11/2012

Tambe E. Norbert(UMN US)

Definition

• Egamma Photon:

* Egamma + VL Iso selection criteria + Sminor.

Halo Photon :

Tag as Halo photon if:

* CSC Segment matching: dphi (cscsegment, gamma) < 0.6

Photon Time Vs Eta

 $\overset{\scriptscriptstyle{02/11/2012}}{Egamma}\ Photon$

Tambe E. Norbert(UMN US)

Halo Photon

Photon Time Vs Phi

Egamma Photon Tambe E. Norbert(UMN US)

Halo Photon

11

-0.3858

1.96

1.911

Photon Time EB

02/11/2012

Tambe E. Norbert(UMN US)

Photon Time EE

02/11/2012

Tambe E. Norbert(UMN US)

13

Egamma(Blue) Halo(Red) Photon Ecal time

Region of Interest: EB

02/11/2012

Tambe E. Norbert(UMN US)

Egamma photons

Halo photons.

Region of Interest: EB

Egamma photons

Tambe E. Norbert(UMN US)

Halo photons.

Region of Interest: EE

Few early time Halo photon than in EB

02/11/2012

Tambe E. Norbert(UMN US)

16

Egamma photons

Halo photons.

Region of Interest: EE

Not quit clear origin of structure, satellite bunch collision?

02/11/2012

Tambe E. Norbert(UMN US)

Halo photons.

Egamma photons

Halo Tagging & Egamma Photon Efficiency.

t > 2ns	Total Number of Photons	Egamma Photons	% of Non- Halo- candidates	CSC Halo Tagged Photons	% of Halo candidates.
EB	25277	12040	48	13237	52
EE (eta < 2.5)	9370	7185	77	2185	23

- For photons with time outside 2ns window:
 - Halo tagging efficiency : EB(EE) = 52(23)%
 - Egamma non-Halo photon % : EB(EE) =

48 (77)%

Summary

- There are many non trivial background sources to delayed photon.
- CSC tagging can be use to reject beam halo photons with good efficiency, however not every background photon.
- With current background understanding, we are ready for Moriond although identifying the different sources is yet to come, nevertheless, we are working on it.

BACK UP

Region of Interest EB & EE

02/11/2012

Tambe E. Norbert(UMN US)

Egamma Photon Id variables.

Ecal Isolation

Hcal Isolation

02/11/2012

Tambe E. Norbert(UMN US)

22

Photon Iso and Id variables.

SMinor

SMajor

Egamma and Halo have very similar isolation criteria.

Egamma Photon Id variables.

Track Isolation

Leading photon pt

02/11/2012

Tambe E. Norbert(UMN US)

24

Egamma Photon Id variables.

Sigma Ieta Ieta

Number of Crystals in BC

02/11/2012

Tambe E. Norbert(UMN US)

25