Package 'splitSelect'

October 14, 2022

Type Package
Title Best Split Selection Modeling for Low-Dimensional Data
Version 1.0.3
Date 2021-11-08
Author Anthony Christidis <anthony.christidis@stat.ubc.ca>, Stefan Van Aelst <stefan.vanaelst@kuleuven.be>, Ruben Zamar <ruben@stat.ubc.ca></ruben@stat.ubc.ca></stefan.vanaelst@kuleuven.be></anthony.christidis@stat.ubc.ca>
Maintainer Anthony Christidis <anthony.christidis@stat.ubc.ca></anthony.christidis@stat.ubc.ca>
Description Functions to generate or sample from all possible splits of features or variables into a number of specified groups. Also computes the best split selection estimator (for low-dimensional data) as defined in Christidis, Van Aelst and Zamar (2019) <arxiv:1812.05678>.</arxiv:1812.05678>
License GPL (>= 2)
Biarch true
Imports multicool, glmnet, parallel, doParallel, foreach
RoxygenNote 7.1.1
Suggests testthat, mvnfast
NeedsCompilation no
Repository CRAN
Date/Publication 2021-11-09 06:00:02 UTC
R topics documented:
coef.cv.splitSelect
coef.splitSelect
generate_partitions
generate_splits
predict.cv.splitSelect
predict.splitSelect

2 coef.cv.splitSelect

coef.cv.splitSelect

Coefficients for splitSelect object

Description

coef.cv.splitSelect returns the coefficients for a cv.splitSelect for new data.

Usage

```
## S3 method for class 'cv.splitSelect'
coef(object, optimal.only = TRUE, ...)
```

Arguments

object An object of class cv.splitSelect.

optimal.only A boolean variable (TRUE default) to indicate if only the coefficient of the op-

timal split are returned.

.. Additional arguments for compatibility.

Value

A matrix with the coefficients of the cv.splitSelect object.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
splitSelect
```

```
# Setting the parameters p <-4 n <-30 n.test <-5000 beta <-rep(5,4) rho <-0.1 r <-0.9 SNR <-3 # Creating the target matrix with "kernel" set to rho target_cor <- function(r, p){
```

coef.splitSelect 3

```
Gamma <- diag(p)</pre>
  for(i in 1:(p-1)){
    for(j in (i+1):p){
      Gamma[i,j] \leftarrow Gamma[j,i] \leftarrow r^(abs(i-j))
    }
  }
  return(Gamma)
}
# AR Correlation Structure
Sigma.r <- target_cor(r, p)</pre>
Sigma.rho <- target_cor(rho, p)</pre>
sigma.epsilon <- as.numeric(sqrt((t(beta) %*% Sigma.rho %*% beta)/SNR))\\
# Simulate some data
x.train <- mvnfast::rmvn(30, mu=rep(0,p), sigma=Sigma.r)</pre>
y.train <- 1 + x.train %*% beta + rnorm(n=n, mean=0, sd=sigma.epsilon)</pre>
# Generating the coefficients for a fixed split
split.out <- cv.splitSelect(x.train, y.train, G=2, use.all=TRUE,</pre>
                              fix.partition=list(matrix(c(2,2),
                                                   ncol=2, byrow=TRUE)),
                              fix.split=NULL,
                              intercept=TRUE, group.model="glmnet", alphas=0, nfolds=10)
coef(split.out)
```

coef.splitSelect

Coefficients for splitSelect object

Description

coef.splitSelect returns the coefficients for a splitSelect object.

Usage

```
## S3 method for class 'splitSelect'
coef(object, ...)
```

Arguments

object An object of class splitSelect.

... Additional arguments for compatibility.

Value

A matrix with the coefficients of the splitSelect object.

4 cv.splitSelect

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
splitSelect
```

Examples

```
# Setting the parameters
p <- 4
n <- 30
n.test <- 5000
beta \leftarrow rep(5,4)
rho <- 0.1
r <- 0.9
SNR <- 3
# Creating the target matrix with "kernel" set to rho
target_cor <- function(r, p){</pre>
  Gamma <- diag(p)</pre>
  for(i in 1:(p-1)){
    for(j in (i+1):p){
      Gamma[i,j] \leftarrow Gamma[j,i] \leftarrow r^(abs(i-j))
    }
  }
  return(Gamma)
# AR Correlation Structure
Sigma.r <- target_cor(r, p)</pre>
Sigma.rho <- target_cor(rho, p)</pre>
sigma.epsilon <- as.numeric(sqrt((t(beta) %*% Sigma.rho %*% beta)/SNR))</pre>
# Simulate some data
x.train <- mvnfast::rmvn(30, mu=rep(0,p), sigma=Sigma.r)</pre>
y.train <- 1 + x.train %*% beta + rnorm(n=n, mean=0, sd=sigma.epsilon)</pre>
# Generating the coefficients for a fixed partition of the variables
split.out <- splitSelect(x.train, y.train, G=2, use.all=TRUE,</pre>
                   fix.partition=list(matrix(c(2,2), ncol=2, byrow=TRUE)), fix.split=NULL,
                           intercept=TRUE, group.model="glmnet", alphas=0)
coef(split.out)
```

cv.splitSelect

Split Selection Modeling for Low-Dimensional Data - Cross-Validation

cv.splitSelect 5

Description

cv.splitSelect performs the best split selection algorithm with cross-validation

Usage

```
cv.splitSelect(
    x,
    y,
    intercept = TRUE,
    G,
    use.all = TRUE,
    family = c("gaussian", "binomial")[1],
    group.model = c("glmnet", "LS", "Logistic")[1],
    alphas = 0,
    nsample = NULL,
    fix.partition = NULL,
    fix.split = NULL,
    nfolds = 10,
    parallel = FALSE,
    cores = getOption("mc.cores", 2L)
)
```

Arguments

x	Design matrix.
у	Response vector.
intercept	Boolean variable to determine if there is intercept (default is TRUE) or not.
G	Number of groups into which the variables are split. Can have more than one value.
use.all	Boolean variable to determine if all variables must be used (default is TRUE).
family	Description of the error distribution and link function to be used for the model. Must be one of "gaussian" or "binomial".
group.model	Model used for the groups. Must be one of "glmnet" or "LS".
alphas	Elastic net mixing parameter. Should be between 0 (default) and 1.
nsample	Number of sample splits for each value of G. If NULL, then all splits will be considered (unless there is overflow).
fix.partition	Optional list with G elements indicating the partitions (in each row) to be considered for the splits.
fix.split	Optional matrix with p columns indicating the groups (in each row) to be considered for the splits.
nfolds	Number of folds for the cross-validation procedure.
parallel	Boolean variable to determine if parallelization of the function. Default is FALSE.
cores	Number of cores for the parallelization for the function.

6 cv.splitSelect

Value

An object of class cv.splitSelect.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
coef.cv.splitSelect, predict.cv.splitSelect
```

```
# Setting the parameters
p <- 4
n <- 30
n.test <- 5000
beta \leftarrow rep(5,4)
rho <- 0.1
r <- 0.9
SNR <- 3
# Creating the target matrix with "kernel" set to rho
target_cor <- function(r, p){</pre>
  Gamma <- diag(p)</pre>
  for(i in 1:(p-1)){
    for(j in (i+1):p){
      Gamma[i,j] \leftarrow Gamma[j,i] \leftarrow r^(abs(i-j))
    }
  }
  return(Gamma)
}
# AR Correlation Structure
Sigma.r <- target_cor(r, p)</pre>
Sigma.rho <- target_cor(rho, p)</pre>
sigma.epsilon <- as.numeric(sqrt((t(beta) %*% Sigma.rho %*% beta)/SNR))</pre>
# Simulate some data
x.train <- mvnfast::rmvn(30, mu=rep(0,p), sigma=Sigma.r)</pre>
y.train <- 1 + x.train %*% beta + rnorm(n=n, mean=0, sd=sigma.epsilon)</pre>
# Generating the coefficients for a fixed partition of the variables
split.out <- cv.splitSelect(x.train, y.train, G=2, use.all=TRUE,</pre>
                              fix.partition=list(matrix(c(2,2),
                                                   ncol=2, byrow=TRUE)),
                              fix.split=NULL,
                              intercept=TRUE, group.model="glmnet", alphas=0, nfolds=10)
```

generate_partitions 7

generate_partitions Generate Splits Partitions Possibilities

Description

generate_partitions returns a matrix with the number of possible objects in each group using splits.

Usage

```
generate_partitions(p, G, use.all = TRUE)
```

Arguments

p Number of variables or objects to split.

G Number of groups into which the variables are split.

use.all Boolean variable to determine if all variables must be used (default is TRUE).

Value

A matrix or list with the number of possible objects in each group using splits.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

```
# Generating the possible split partitions of 6 variables in 3 groups
# Using all the variables
split.3groups.all <- generate_partitions(6, 3)
split.3groups.all
# Without using all the variables
split.3groups <- generate_partitions(6, 3, use.all=FALSE)
split.3groups</pre>
```

generate_splits

generate_	colite
generate_	PITTE

Generate Splits Possibilities

Description

generate_splits returns a matrix with the different splits of the variables in reach row.

Usage

```
generate_splits(p, G, use.all = TRUE, fix.partition = NULL, verbose = TRUE)
```

Arguments

р	Number of variables or objects to split.
G	Number of groups into which the variables are split.
use.all	Boolean variable to determine if all variables must be used (default is TRUE).
fix.partition	Optional matrix with G columns (or list if more than one value of G) indicating the partitions (in each row) to be considered for the splits.
verbose	Boolean variable to determine if console output for cross-validation progress is printed (default is TRUE).

Value

A matrix with the different splits of the variables in the groups.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

```
# Generating the possible splits of 6 variables in 3 groups
# Using all the variables
split.3groups.all <- generate_splits(6, 3)
split.3groups.all
# Without using all the variables
split.3groups <- generate_splits(6, 3, use.all=FALSE)
split.3groups</pre>
```

nsplit 9

HOL	υ.	 ·

Compute Total Number of Possible Splits

Description

nsplits returns the total number of possible splits of variables into groups.

Usage

```
nsplit(p, G, use.all = TRUE, fix.partition = NULL)
```

Arguments

p	Number of variables or objects to split.
G	Number of groups into which the variables are split.
use.all	Boolean variable to determine if all variables must be used (default is TRUE).
fix.partition	Optional matrix with G columns (or list if more than one value of G) indicating the partitions (in each row) to be considered for the splits.

Value

A numeric vector with the total number of possible splits.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

```
# Compute the total number of possible splits of 6 variables into 3 groups
# We use all the variables
out.n.splits.all <- nsplit(p=6, G=3, use.all=TRUE)
out.n.splits.all
# We don't enforce using all the variables
out.n.splits <- nsplit(p=6, G=3, use.all=FALSE)
out.n.splits</pre>
```

10 predict.cv.splitSelect

```
predict.cv.splitSelect
```

Predictions for cv.splitSelect object

Description

predict.cv.splitSelect returns the prediction for cv.splitSelect for new data.

Usage

```
## S3 method for class 'cv.splitSelect'
predict(object, newx, optimal.only = TRUE, ...)
```

Arguments

object An object of class cv.splitSelect.

newx A matrix with the new data.

optimal.only A boolean variable (TRUE default) to indicate if only the predictions of the

optimal split are returned.

... Additional arguments for compatibility.

Value

A matrix with the predictions of the cv.splitSelect object.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
cv.splitSelect
```

```
# Setting the parameters
p <- 4
n <- 30
n.test <- 5000
beta <- rep(5,4)
rho <- 0.1
r <- 0.9
SNR <- 3
# Creating the target matrix with "kernel" set to rho
target_cor <- function(r, p){
   Gamma <- diag(p)
   for(i in 1:(p-1)){
      for(j in (i+1):p){</pre>
```

predict.splitSelect 11

```
Gamma[i,j] \leftarrow Gamma[j,i] \leftarrow r^(abs(i-j))
    }
  }
  return(Gamma)
}
# AR Correlation Structure
Sigma.r <- target_cor(r, p)</pre>
Sigma.rho <- target_cor(rho, p)</pre>
sigma.epsilon <- as.numeric(sqrt((t(beta) %*% Sigma.rho %*% beta)/SNR))</pre>
# Simulate some data
x.train <- mvnfast::rmvn(30, mu=rep(0,p), sigma=Sigma.r)</pre>
y.train <- 1 + x.train %*% beta + rnorm(n=n, mean=0, sd=sigma.epsilon)</pre>
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)</pre>
y.test <- 1 + x.test %*% beta + rnorm(n.test, sd=sigma.epsilon)</pre>
# Generating the coefficients for a fixed split
split.out <- cv.splitSelect(x.train, y.train, G=2, use.all=TRUE,</pre>
                              fix.partition=list(matrix(c(2,2),
                                                   ncol=2, byrow=TRUE)),
                              fix.split=NULL,
                              intercept=TRUE, group.model="glmnet", alphas=0)
predict(split.out, newx=x.test)
```

Description

predict.splitSelect returns the prediction for splitSelect for new data.

Usage

```
## S3 method for class 'splitSelect'
predict(object, newx, ...)
```

Arguments

object An object of class splitSelect.

newx A matrix with the new data.

... Additional arguments for compatibility.

Value

A matrix with the predictions of the splitSelect object.

12 rsplit

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
splitSelect
```

```
# Setting the parameters
p <- 4
n <- 30
n.test <- 5000
beta \leftarrow rep(5,4)
rho <- 0.1
r <- 0.9
SNR <- 3
# Creating the target matrix with "kernel" set to rho
target_cor <- function(r, p){</pre>
  Gamma <- diag(p)</pre>
  for(i in 1:(p-1)){
    for(j in (i+1):p){
      Gamma[i,j] \leftarrow Gamma[j,i] \leftarrow r^(abs(i-j))
    }
  }
  return(Gamma)
# AR Correlation Structure
Sigma.r <- target_cor(r, p)</pre>
Sigma.rho <- target_cor(rho, p)</pre>
sigma.epsilon <- as.numeric(sqrt((t(beta) %*% Sigma.rho %*% beta)/SNR))\\
# Simulate some data
x.train <- mvnfast::rmvn(30, mu=rep(0,p), sigma=Sigma.r)</pre>
y.train <- 1 + x.train %*% beta + rnorm(n=n, mean=0, sd=sigma.epsilon)</pre>
x.test \leftarrow mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% beta + rnorm(n.test, sd=sigma.epsilon)</pre>
# Generating the coefficients for a fixed split
split.out <- splitSelect(x.train, y.train, G=2, use.all=TRUE,</pre>
                   fix.partition=list(matrix(c(2,2), ncol=2, byrow=TRUE)), fix.split=NULL,
                           intercept=TRUE, group.model="glmnet", alphas=0)
predict(split.out, newx=x.test)
```

splitSelect 13

Description

rsplit returns a matrix with random splits of the variables in groups.

Usage

```
rsplit(n, p, G, use.all = TRUE, fix.partition = NULL, verbose = TRUE)
```

Arguments

n	Number of sample splits.
р	Number of variables or objects to split.
G	Number of groups into which the variables are split.
use.all	Boolean variable to determine if all variables must be used (default is TRUE).
fix.partition	Optional matrix with G columns indicating the partitions (in each row) to be considered for the splits.
verbose	Boolean variable to determine if console output for cross-validation progress is printed (default is TRUE).

Value

A matrix or list with the number of possible objects in each group using splits.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

```
# Generating sample splits of 6 variables in 3 groups
# Using all the variables
random.splits <- rsplit(100, 6, 3)
# Using fixed partitions
random.splits.fixed <- rsplit(100, 6, 3, fix.partition=matrix(c(2,2,2), nrow=1))</pre>
```

splitSelect

Best Split Selection Modeling for Low-Dimensional Data

Description

splitSelect performs the best split selection algorithm.

splitSelect

Usage

```
splitSelect(
 Х,
 у,
 intercept = TRUE,
 G,
 use.all = TRUE,
 family = c("gaussian", "binomial")[1],
 group.model = c("glmnet", "LS", "Logistic")[1],
 lambdas = NULL,
 alphas = 0,
 nsample = NULL,
 fix.partition = NULL,
 fix.split = NULL,
 parallel = FALSE,
 cores = getOption("mc.cores", 2L),
 verbose = TRUE
)
```

Arguments

х	Design matrix.
У	Response vector.
intercept	Boolean variable to determine if there is intercept (default is TRUE) or not.
G	Number of groups into which the variables are split. Can have more than one value.
use.all	Boolean variable to determine if all variables must be used (default is TRUE).
family	Description of the error distribution and link function to be used for the model. Must be one of "gaussian" or "binomial".
group.model	Model used for the groups. Must be one of "glmnet" or "LS".
lambdas	The shinkrage parameters for the "glmnet" regularization. If NULL (default), optimal values are chosen.
alphas	Elastic net mixing parameter. Should be between 0 (default) and 1.
nsample	Number of sample splits for each value of G. If NULL, then all splits will be considered (unless there is overflow).
fix.partition	Optional list with G elements indicating the partitions (in each row) to be considered for the splits.
fix.split	Optional matrix with p columns indicating the groups (in each row) to be considered for the splits.
parallel	Boolean variable to determine if parallelization of the function. Default is FALSE.
cores	Number of cores for the parallelization for the function.
verbose	Boolean variable to determine if console output for cross-validation progress is printed (default is TRUE).

splitSelect 15

Value

An object of class splitSelect.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

See Also

```
coef.splitSelect, predict.splitSelect
```

```
# Setting the parameters
p <- 4
n <- 30
n.test <- 5000
beta \leftarrow rep(5,4)
rho <- 0.1
r <- 0.9
SNR <- 3
# Creating the target matrix with "kernel" set to rho
target_cor <- function(r, p){</pre>
  Gamma <- diag(p)</pre>
  for(i in 1:(p-1)){
    for(j in (i+1):p){
      Gamma[i,j] \leftarrow Gamma[j,i] \leftarrow r^(abs(i-j))
    }
  }
  return(Gamma)
}
# AR Correlation Structure
Sigma.r <- target_cor(r, p)</pre>
Sigma.rho <- target_cor(rho, p)</pre>
sigma.epsilon <- as.numeric(sqrt((t(beta) %*% Sigma.rho %*% beta)/SNR))</pre>
# Simulate some data
x.train <- mvnfast::rmvn(30, mu=rep(0,p), sigma=Sigma.r)</pre>
y.train <- 1 + x.train %*% beta + rnorm(n=n, mean=0, sd=sigma.epsilon)</pre>
# Generating the coefficients for a fixed partition of the variables
split.out <- splitSelect(x.train, y.train, G=2, use.all=TRUE,</pre>
                           fix.partition=list(matrix(c(2,2),
                                                 ncol=2, byrow=TRUE)),
                           fix.split=NULL,
                           intercept=TRUE, group.model="glmnet", alphas=0)
```

splitSelect_coef

splitSelect_coef

Split Selection for Regression - Coefficients Generation

Description

splitSelect_coef generates the coefficients for a particular split of variables into groups.

Usage

```
splitSelect_coef(
    x,
    y,
    variables.split,
    intercept = TRUE,
    family = c("gaussian", "binomial")[1],
    group.model = c("glmnet", "LS", "Logistic")[1],
    lambdas = NULL,
    alphas = 0
)
```

Arguments

Design matrix. Х Response vector. variables.split A vector with the split of the variables into groups as values. intercept Boolean variable to determine if there is intercept (default is TRUE) or not. Description of the error distribution and link function to be used for the model. family Must be one of "gaussian" or "binomial". Model used for the groups. Must be one of "glmnet" or "LS". group.model 1ambdas The shinkrage parameters for the "glmnet" regularization. If NULL (default), optimal values are chosen. alphas Elastic net mixing parameter. Should be between 0 (default) and 1.

Value

A vector with the regression coefficients for the split.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

splitSelect_coef 17

```
# Setting the parameters
p <- 6
n <- 30
n.test <- 5000
group.beta <- -3
beta <- c(rep(1, 2), rep(group.beta, p-2))</pre>
rho <- 0.1
r <- 0.9
SNR <- 3
# Creating the target matrix with "kernel" set to rho
target_cor <- function(r, p){</pre>
  Gamma <- diag(p)</pre>
  for(i in 1:(p-1)){
    for(j in (i+1):p){
      Gamma[i,j] \leftarrow Gamma[j,i] \leftarrow r^(abs(i-j))
    }
  }
  return(Gamma)
}
# AR Correlation Structure
Sigma.r <- target_cor(r, p)</pre>
Sigma.rho <- target_cor(rho, p)</pre>
sigma.epsilon <- as.numeric(sqrt((t(beta) %*% Sigma.rho %*% beta)/SNR))</pre>
# Simulate some data
x.train <- mvnfast::rmvn(30, mu=rep(0,p), sigma=Sigma.r)</pre>
y.train <- 1 + x.train %*% beta + rnorm(n=n, mean=0, sd=sigma.epsilon)</pre>
x.test \leftarrow mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% beta + rnorm(n.test, sd=sigma.epsilon)</pre>
# Generating the coefficients for a fixed split
splitSelect_coef(x.train, y.train, variables.split=matrix(c(1,2,1,2,1,2), nrow=1))
```

Index

```
coef.cv.splitSelect, 2, 6
coef.splitSelect, 3, 15
cv.splitSelect, 4, 10
generate_partitions, 7
generate_splits, 8
nsplit, 9
predict.cv.splitSelect, 6, 10
predict.splitSelect, 11, 15
rsplit, 12
splitSelect, 2, 4, 12, 13
splitSelect_coef, 16
```