Exercises on Program Semantics

Theory of Programming Languages
Master's Degree in Formal Methods in Computer Science
Year 2021–2022

- 1. Given the set **AExp** of arithmetic expressions:
 - (a) Define a function cst: **AExp** $\rightarrow \mathcal{P}(\mathbb{Z})$ such that cst(e) is the set of all integer constants appearing in e.

Solution

```
\begin{array}{rcl} cst(n) & = & \{n\} \\ cst(x) & = & \emptyset \\ cst(e_1 + e_2) & = & cst(e_1) \cup cst(e_2) \\ cst(e_1 - e_2) & = & cst(e_1) \cup cst(e_2) \\ cst(e_1 * e_2) & = & cst(e_1) \cup cst(e_2) \end{array}
```

(b) Define a function $highest : \mathbf{AExp} \to \mathbb{Z} \cup \{-\infty\}$ such that highest(e) is the highest integer constant appearing in e. If there are no constants in e, then $highest(e) = -\infty$. Your definition must be compositional (i.e. you cannot use cst).

Solution

```
highest(n) = n

highest(x) = -\infty

highest(e_1 + e_2) = \max\{highest(e_1), highest(e_2)\}

highest(e_1 - e_2) = \max\{highest(e_1), highest(e_2)\}

highest(e_1 * e_2) = \max\{highest(e_1), highest(e_2)\}
```

(c) Prove that, for every $e \in \mathbf{AExp}$, $highest(e) \in cst(e) \cup \{-\infty\}$.

Solution

By structural induction on *e*. We distinguish cases according to the structure of *e*:

```
    Case e = n.
        We get cst(e) = {n}, highest(e) = n, and n ∈ {n} ∪ {−∞} holds.
    Case e = x.
        We get cst(e) = Ø, highest(e) = −∞, and −∞ ∈ Ø ∪ {−∞} holds.
```

• Case $e = e_1 + e_2$. We can assume the following induction hypotheses:

```
(H1) highest(e_1) \in cst(e_1) \cup \{-\infty\}
(H2) highest(e_2) \in cst(e_2) \cup \{-\infty\}
```

We know that $highest(e_1 + e_2) = \max\{highest(e_1), highest(e_2)\}$, so $highest(e_1 + e_2)$ is either $highest(e_1)$ or $highest(e_2)$.

- If $highest(e_1+e_2) = highest(e_1)$, then by (H1) we get $highest(e_1+e_2) \in cst(e_1) \cup \{-\infty\}$. Since $cst(e_1) \subseteq cst(e_1+e_2)$ we finally get $highest(e_1+e_2) \in cst(e_1+e_2) \cup \{-\infty\}$.
- If $highest(e_1+e_2) = highest(e_2)$, then by (H2) we get $highest(e_1+e_2) \in cst(e_2) \cup \{-\infty\}$. Since $cst(e_2) \subseteq cst(e_1+e_2)$ we finally get $highest(e_1+e_2) \in cst(e_1+e_2) \cup \{-\infty\}$.
- Case $e = e_1 e_2$. Since $highest(e_1 e_2) = highest(e_1 + e_2)$, and $cst(e_1 e_2) = cst(e_1 + e_2)$ and we have already proved the case $e = e_1 + e_2$, the property follows from the latter.
- Case $e = e_1 * e_2$. The same as above.
- 2. Assume an expression e and two states σ_1 and σ_2 . Prove that, if $\sigma_1(x) = \sigma_2(x)$ for all $x \in FV(e)$, then $\mathcal{A}[\![e]\!] \sigma_1 = \mathcal{A}[\![e]\!] \sigma_2$.

Solution

By structural induction on *e*. We distinguish cases:

• Case e = n. For any σ_1 and σ_2 we get:

$$\mathcal{A}[n] \sigma_1 = n = \mathcal{A}[n] \sigma_2$$

• Case e = x. In this case $FV(e) = \{x\}$, so by assumption we get that $\sigma_1(x) = \sigma_2(x)$. Therefore:

$$\mathcal{A}[\![x]\!] \sigma_1 = \sigma_1(x) = \sigma_2(x) = \mathcal{A}[\![x]\!] \sigma_2$$

• Case $e = e_1 + e_2$. The induction hypotheses are:

(H1) If
$$\sigma_1(x) = \sigma_2(x)$$
 for all $x \in FV(e_1)$, then $\mathcal{A}[e_1] \sigma_1 = \mathcal{A}[e_1] \sigma_2$

(H2) If
$$\sigma_1(x) = \sigma_2(x)$$
 for all $x \in FV(e_2)$, then $\mathcal{A}[\![e_2]\!] \sigma_1 = \mathcal{A}[\![e_2]\!] \sigma_2$

We know that $\sigma_1(x) = \sigma_2(x)$ for all $x \in FV(e)$. Since $FV(e_1) \subseteq FV(e)$ and $FV(e_2) \subseteq FV(e)$ it follows that $\sigma_1(x) = \sigma_2(x)$ also holds for all $x \in FV(e_1)$ and for all $x \in FV(e_2)$. Therefore we get $\mathcal{A}[e_1]$ $\sigma_1 = \mathcal{A}[e_1]$ σ_2 and $\mathcal{A}[e_2]$ $\sigma_1 = \mathcal{A}[e_2]$ σ_2 . By unfolding the semantic definitions of $e_1 + e_2$ we get:

$$A[e_1 + e_2] \sigma_1 = A[e_1] \sigma_1 + A[e_2] \sigma_1 = A[e_1] \sigma_2 + A[e_2] \sigma_2 = A[e_1 + e_2] \sigma_2$$

• Cases $e = e_1 - e_2$ and $e = e_1 * e_2$. Similarly as above.

3. Assume we extend our syntax for arithmetic expressions with a new construct or:

$$e := n | x | e_1 + e_2 | e_1 - e_2 | e_1 * e_2 | e_1 \text{ or } e_2$$

An expression of the form e_1 or e_2 may be evaluated to either e_1 or e_2 . Whether to execute e_1 or e_2 is chosen nondeterministically. Add the necessary rules to the big-step and small-step semantics of arithmetic expressions to deal with this new construct. How would be our denotational semantics affected?

Solution

Big-step rules:

$$\frac{\langle e_1, \sigma \rangle \Downarrow v}{\langle e_1 \text{ or } e_2, \sigma \rangle \Downarrow v} \qquad \frac{\langle e_2, \sigma \rangle \Downarrow v}{\langle e_1 \text{ or } e_2, \sigma \rangle \Downarrow v}$$

Small-step rules:

$$\overline{\sigma \vdash e_1 \text{ or } e_2 \longrightarrow e_1}$$
 $\overline{\sigma \vdash e_1 \text{ or } e_2 \longrightarrow e_2}$

These semantic definitions are no longer deterministic. An expression could be evaluated to different values. For example, we get $\langle 1 \text{ or } 4, \sigma \rangle \downarrow 1$ and $\langle 1 \text{ or } 4, \sigma \rangle \downarrow 4$ for any σ . This means that the value of $\mathcal{A}[e_1 \text{ or } e_2] \sigma$ is no longer a single value, but a **set** of values.

$$\mathcal{A}$$
 []: AExp \rightarrow State $\rightarrow \mathcal{P}(\mathbb{Z})$

4. Given the following *While* program *S*:

$$x := 0$$
; while $n > 0$ do $(x := x + n; n := n - 1)$

Build the big-step derivation tree that results from executing *S* under the state $\sigma = [n \mapsto 1]$.

Solution

$$\frac{\langle x := 0, \sigma \rangle \Downarrow \sigma[x \mapsto 0]}{\langle x := 0; \text{ while } n > 0 \text{ do } (x := x + n; n := n - 1), [x \mapsto 1, n \mapsto 0] \rangle \Downarrow [x \mapsto 1, n \mapsto 0]}{\langle \text{while } n > 0 \text{ do } (x := x + n; n := n - 1), \sigma[x \mapsto 0] \rangle \Downarrow [x \mapsto 1, n \mapsto 0]}}{\langle x := 0; \text{ while } n > 0 \text{ do } (x := x + n; n := n - 1), \sigma \rangle \Downarrow [x \mapsto 1, n \mapsto 0]}$$

Where (*) is the following derivation tree:

$$\frac{\langle x := x + n, \sigma[x \mapsto 0] \rangle \Downarrow \sigma[x \mapsto 1]}{\langle x := x + n; n := n - 1, \sigma[x \mapsto 0] \rangle \Downarrow [x \mapsto 1, n \mapsto 0]}$$

5. Prove that S_1 ; $(S_2; S_3)$ is semantically equivalent to $(S_1; S_2)$; S_3 .

Solution

We have to prove, for any σ and σ' :

$$\langle S_1; (S_2; S_3), \sigma \rangle \Downarrow \sigma' \iff \langle (S_1; S_2); S_3, \sigma \rangle \Downarrow \sigma'$$

We first prove the (\Longrightarrow) direction, then we prove the (\Longleftrightarrow) direction.

(⇒)

Assume that $\langle S_1; (S_2; S_3), \sigma \rangle \downarrow \sigma'$. We must have applied the [Seq] rule in order to obtain this derivation:

$$\frac{\langle S_1, \sigma \rangle \Downarrow \sigma_1 \quad \langle S_2; S_3, \sigma_1 \rangle \Downarrow \sigma'}{\langle S_1; (S_2; S_3), \sigma \rangle \Downarrow \sigma'}$$

So we know that there exists some σ_1 such that:

$$\langle S_1, \sigma \rangle \Downarrow \sigma_1$$
 (1)

Moreover, the judgement $\langle S_2; S_3, \sigma_1 \rangle \Downarrow \sigma'$ must have been obtained by using the [Seq] rule:

$$\frac{\langle S_2, \sigma_1 \rangle \Downarrow \sigma_2 \quad \langle S_3, \sigma_2 \rangle \Downarrow \sigma'}{\langle S_2; S_3, \sigma_1 \rangle \Downarrow \sigma'}$$

Therefore, there exists some σ_2 such that:

$$\langle S_2, \sigma_1 \rangle \downarrow \sigma_2$$
 (2)

$$\langle S_3, \sigma_2 \rangle \downarrow \sigma' \tag{3}$$

We can now apply the [Seq] rule by using (1) and (2) as assumptions:

$$\frac{\langle S_1, \sigma \rangle \Downarrow \sigma_1 \quad \langle S_2, \sigma_1 \rangle \Downarrow \sigma_2}{\langle S_1; S_2, \sigma \rangle \Downarrow \sigma_2}$$

We have derived thus the judgement $\langle S_1; S_2, \sigma \rangle \Downarrow \sigma_2$, which we can use with (3) to get:

$$\frac{\langle S_1; S_2, \sigma \rangle \Downarrow \sigma_2 \quad \langle S_3, \sigma_2 \rangle \Downarrow \sigma'}{\langle (S_1; S_2); S_3, \sigma \rangle \Downarrow \sigma'}$$

(⇐=)

Assume that $\langle (S_1; S_2); S_3, \sigma \rangle \Downarrow \sigma'$. We must have applied the [Seq] rule:

$$\frac{\langle S_1; S_2, \sigma \rangle \Downarrow \sigma_1 \quad \langle S_3, \sigma_1 \rangle \Downarrow \sigma'}{\langle (S_1; S_2); S_3, \sigma \rangle \Downarrow \sigma'}$$

So there exists some σ_1 such that

$$\langle S_3, \sigma_1 \rangle \Downarrow \sigma'$$
 (4)

If we focus on the judgement $\langle S_1; S_2, \sigma \rangle \Downarrow \sigma_1$, it must have been obtained by using the [Seq] rule:

$$\frac{\langle S_1, \sigma \rangle \Downarrow \sigma_2 \quad \langle S_2, \sigma_2 \rangle \Downarrow \sigma_1}{\langle S_1; S_2, \sigma \rangle \Downarrow \sigma_1}$$

Hence there exists some σ_2 such that:

$$\langle S_1, \sigma \rangle \downarrow \sigma_2$$
 (5)

$$\langle S_2, \sigma_2 \rangle \downarrow \sigma_1$$
 (6)

Now we use (4), (5), (6) and apply the [Seq] rule twice in order to obtain the required judgement:

$$\frac{\langle S_2, \sigma_2 \rangle \Downarrow \sigma_1 \quad \langle S_3, \sigma_1 \rangle \Downarrow \sigma'}{\langle S_1, \sigma \rangle \Downarrow \sigma_2} \frac{\langle S_2, S_3, \sigma_2 \rangle \Downarrow \sigma'}{\langle S_1; (S_2; S_3), \sigma \rangle \Downarrow \sigma'}$$

6. Prove that while b do S is semantically equivalent to (if b then (S; while b do S) else skip).

Solution

We have to prove for any σ , $\sigma' \in$ **State**:

$$\langle \mathtt{while}\ b\ \mathtt{do}\ S, \sigma \rangle \Downarrow \sigma' \Longleftrightarrow \langle \mathtt{if}\ b\ \mathtt{then}\ (S; \mathtt{while}\ b\ \mathtt{do}\ S)\ \mathtt{else}\ \mathtt{skip}, \sigma \rangle \Downarrow \sigma'$$

(⇒)

Assume that $\langle \text{while } b \text{ do } S, \sigma \rangle \Downarrow \sigma'$. If $\mathcal{B}[\![b]\!] \sigma = false$ we get that $\sigma = \sigma'$. In this case we can build the following derivation:

$$\frac{\langle \text{skip}, \sigma \rangle \Downarrow \sigma \quad \mathcal{B}\llbracket b \rrbracket \ \sigma = true}{\langle \text{if } b \text{ then } (S; \text{ while } b \text{ do } S) \text{ else skip}, \sigma \rangle \Downarrow \sigma}$$

and we are done. In the case in which $\mathcal{B}\llbracket b \rrbracket \ \sigma = true$ we know that we have the following derivation for $\langle \text{while } b \text{ do } S, \sigma \rangle \downarrow \sigma'$:

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma'' \quad \langle \text{while } b \text{ do } S,\sigma''\rangle \Downarrow \sigma'}{\langle \text{while } b \text{ do } S,\sigma\rangle \Downarrow \sigma'}$$

That is, there exists some σ'' such that $\langle S, \sigma \rangle \Downarrow \sigma''$ and $\langle \text{while } b \text{ do } S, \sigma'' \rangle \Downarrow \sigma'$. We can apply the [Seq] rule as follows:

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma'' \quad \langle \text{while } b \text{ do } S,\sigma''\rangle \Downarrow \sigma'}{\langle S; \text{while } b \text{ do } S,\sigma\rangle \Downarrow \sigma'}$$

and, finally, the [IfT] rule:

$$\frac{\langle S; \mathtt{while}\ b\ \mathtt{do}\ S, \sigma\rangle \Downarrow \sigma' \quad \mathcal{B}\llbracket b \rrbracket\ \sigma = \mathit{true}}{\langle \mathsf{if}\ b\ \mathsf{then}\ (S; \mathtt{while}\ b\ \mathsf{do}\ S)\ \mathsf{else}\ \mathsf{skip}, \sigma\rangle \Downarrow \sigma'}$$

• (<==)

Assume that $\langle \text{if } b \text{ then } (S; \text{while } b \text{ do } S) \text{ else skip, } \sigma \rangle \Downarrow \sigma'$. Let us distinguish cases on whether $\mathcal{B} \llbracket b \rrbracket \sigma = false$ or $\mathcal{B} \llbracket b \rrbracket \sigma = true$. In the first case, we must have obtained the following derivation:

$$\frac{\langle \mathtt{skip}, \sigma \rangle \Downarrow \sigma' \quad \mathcal{B} \llbracket b \rrbracket \ \sigma = \mathit{false}}{\langle \mathtt{if} \ b \ \mathtt{then} \ (S; \mathtt{while} \ b \ \mathtt{do} \ S) \ \mathtt{else} \ \mathtt{skip}, \sigma \rangle \Downarrow \sigma'}$$

But because of [Skip] rule, we get that $\sigma = \sigma'$. Therefore, we can use the [WhileF] rule in order to derive the following:

$$\frac{\mathcal{B}[\![b]\!] \ \sigma = false}{\langle \text{while} \ b \ \text{do} \ S, \sigma \rangle \Downarrow \sigma}$$

and hence $\langle \text{while } b \text{ do } S, \sigma \rangle \Downarrow \sigma' \text{ since } \sigma = \sigma'.$ Now assume that $\mathcal{B}\llbracket b \rrbracket \sigma = true$. The judgement $\langle \text{if } b \text{ then } (S; \text{while } b \text{ do } S) \text{ else skip}, \sigma \rangle \Downarrow \sigma' \text{ must have been obtained from the [IfT] and [Seq] rules:$

$$\frac{\langle S, \sigma \rangle \Downarrow \sigma'' \quad \langle \text{while } b \text{ do } S, \sigma'' \rangle \Downarrow \sigma'}{\langle S; \text{ while } b \text{ do } S, \sigma \rangle \Downarrow \sigma'} \quad \mathcal{B}\llbracket b \rrbracket \sigma = true}{\langle \text{if } b \text{ then } (S; \text{ while } b \text{ do } S) \text{ else skip}, \sigma \rangle \Downarrow \sigma'}$$

So there exists some σ'' such that $\langle S, \sigma \rangle \Downarrow \sigma''$ and $\langle \text{while } b \text{ do } S, \sigma'' \rangle \Downarrow \sigma'$. We can then apply the [WhileT] rule as follows:

$$\frac{\langle S,\sigma\rangle \Downarrow \sigma'' \quad \langle \text{while } b \text{ do } S,\sigma''\rangle \Downarrow \sigma' \quad \mathcal{B} \llbracket b \rrbracket \ \sigma = true}{\langle \text{while } b \text{ do } S,\sigma\rangle \Downarrow \sigma'}$$