Research Design & Biostatistics

Lecture 1

John J. Chen, Ph.D.
Office of Biostatistics & Quantitative Health Sciences
UH JABSOM

OB/GYN Friday Conference

August 12, 2016

Lecture Note: http://biostat.jabsom.hawaii.edu/Education/training.html

Outline

Lecture 1 (08/12/2016)

- Introduction to descriptive biostatistics
 - The goal of statistics
 - Descriptive statistics
 - Different ways of presenting data
- Some research design and data presentation issues

Lecture 2 (10/14/2016)

- Introduction to inferential statistics
- Some commonly used statistical approaches

Lies, Damned Lies, And Statistics

Medical Research, Media, and Public Health

Biomedical Research Process

Identifying a research question and a hypothesis

Designing study and developing research protocol

Gathering preliminary data and revising the protocol

Conducting the study

Analyzing data and interpreting results

Drawing conclusions and disseminating the results

The Importance of Research Design

"To consult the statistician after an experiment is finished is often merely to ask him to conduct a post mortem examination. He can perhaps say what the experiment died of."

Sir R.A. Fisher, Presidential Address to the First Indian Statistical Congress (1938)

Clinical Research & Scientific Evidence

Barnett Kramer (NIH)

Tan et al. Long-term Survival Following Partial vs Radical Nephrectomy Among Older Patients With Early-Stage Kidney Cancer. *JAMA* 2012; 307:1629-1635.

SURVIVAL AFTER PARTIAL OR RADICAL NEPHRECTOMY

naturally occurring variation within observational data to balance both measured and unmeasured variables among treatment groups. ^{14,15} By applying this technique to a population-based patient cohort, we can clarify the comparative effectiveness of partial vs radical nephrectomy in the treatment of patients with early-stage kidney cancer.

METHODS

Data Source

After this study was deemed exempt by the Institutional Review Board at the University of Michigan, we used linked data from the SEER program and the Centers for Medicare & Medicaid Services (using only Medicare data) to identify patients diagnosed with incident kidney cancer from 1992 through 2007. SEER is a nationally representative, population-based registry that collects data regarding cancer incidence, treatment, and mortality. *DSUccessful linkage with hospital and physician claims is achieved for more than 90% of patients whose primary health insurance is provided by the Medicare program. *A.*I

Cohort Identification

After limiting our sample to patients with Medicare fee-for-service coverage, we identified a preliminary cohort of 9111 patients diagnosed with localized, nonurothelial kidney tumors 4 cm in size or less (ie, clinical stage T1a kidney cancer). We then excluded patients lacking claims for kidney cancer surgery, and those with claims suggesting a solitary kidney, bilateral tumors, and/or multifocal disease. This process yielded a sample comprising 7398 patients with early-stage kidney cancer.

Treatment Variable and Patient Covariates

Next, we used a validated claims-based algorithm to identify patients treated with partial or radical nephrectomy by either an open or laparoscopic approach. ¹⁹ This served as the treatment variable for our analyses

For each patient, we used SEER data to ascertain demographic information including age, sex, race and ethnicity, marital status, income and education, and cancer severity (grade and histology). ²⁰ We also assigned each patient to a rural or urban locale using rural-urban commuting area codes. ²¹ We measured preexisting comorbidity using a modification of the Charlson index based on inpatient and outpatient claims submitted during the 12 months prior to surgery. ²² We also used established claims algorithms to identify postoperative complications that occurred during the index hospitalization or within 30 days of surgery (eMethods 1 available at http://www.jama.com). ²² ²⁶

Outcome Measures

Our primary outcome was overall survival. We ascertained the occurrence of death from any cause based on the date of death provided in the Medicare files. We defined survival time as the interval from the date of surgery until the date of death or until May 31, 2010, (the last month for which vital status data were available). Using cause of death codes available through SEER for patients who died on or before December 31, 2008, we measured kidney cancer-specific survival as a secondary outcome.

Statistical Methods

We used χ^2 tests to evaluate associations between surgical treatment (partial vs nadical nephrectomy) and patient-level covariates. Next, we calculated Kaplan-Meier estimates for all-cause and kidney—cancer specific mortality, stratified by treatment. We compared mortality between treatment groups using the log-rank test.

One important concern with studies based on observational data is the potential for residual confounding due to unmeasured patient characteristics (or other relevant variables). If present, such confounding can lead to incorrect inferences regarding the effectiveness of different treatments. One strategy to address this limitation is the use of an instrumental variable analysis that is designed to balance both measured and unmeasured variables between treatment groups. ¹⁴

To be considered valid, an instrumental variable must satisfy 2 conditions: (1) the variable must be highly associated with the treatment of interest (in this case, receipt of partial nephrectomy); and

(2) the variable cannot be associated with the outcome (in this case, survival) except through its effect on the treatment received. Once a suitable instrument is identified, it can be used to generate pseudorandomization, thereby allowing estimation of the treatment effect. However, in contrast to a randomized controlled trial that identifies the average treatment effect, an instrumental variable analysis estimates the treatment effect for the marginal patient—or the patient in whom the likelihood of undergoing the treatment is based on the instrumental variable. "As is shased on the instrumental variable suits based on the instrumental variable."

Guided by the published literature, we selected the differential distance to a partial nephrectomy physician as our instrumental variable; we defined this as the distance from the patient's residence to the nearest physician performing at least 1 partial nephrectomy in the year of treatment minus the distance from the patient's residence to the nearest surgeon performing any kidney cancer surgery.14 We calculated distances using the linear distance function in SAS version 9.2, which measures the number of miles between the centers of 2 ZIP codes. We were able to calculate differential distance for 7138 patients (97% of our preliminary sample) (eMethods 2).

For this group of patients, we created a 4-category instrumental variable by assigning patients with a differential distance of zero (ie, the closest kidney cancer surgeon was also a partial nephrectomy surgeon) to a single category, and partitioning the remaining patients into 3 equally sized terciles. To assess its validity as an instrument, we confirmed that differential distance was highly correlated with receipt of partial nephrectomy (F statistic >10).27 but not associated with survival in a standard multivariable proportional hazards model. We also examined covariate balance across the differential distance categories; we noted greater balance in patient-level covariates across the categories of our instrument compared with the pooled sample (eMethods 2).

We used a 2-stage residual inclusion estimation framework for the instrumental variable analysis. ^{28,20} The residual inclusion approach has been shown to generate more consistent (and less biased) SURVIVAL AFTER PARTIAL OR RADICAL NEPHRECTOMY

estimates for a variety of nonlinear models and has been applied specifically to nonparametric survival models using a Weibull distribution.28,29 In the firststage model, we measured the association between partial nephrectomy and our instrument, adjusting for patientlevel covariates including surgical approach (laparoscopic vs open). From this model, we determined the raw residual for each patient by calculating the difference between the model-predicted probability of receiving partial nephrectomy and the actual treatment received. The residuals were then included as an additional covariate in our

second-stage survival model. In the second-stage model, we specified a Weibull distribution and estimated the association between treatment and survival (both overall and kidnev-cancer specific), adjusting for patient-level covariates, surgical approach, and postoperative complications. We then calculated modelderived estimates (ie, predicted probabilities) of 2-, 5-, and 8-year survival for patients treated with partial or radical nephrectomy. Using the estimated differences in survival between treatment groups, we also calculated the number needed to treat (with partial rather than radical nephrectomy) to avoid 1 death following kidney cancer surgery.

We performed several additional analyses to more clearly identify patient subgroups (based on age and comorbidity status) that might derive particular benefit from partial nephrectomy. To assess the robustness of our findings, we also performed 3 sensitivity analyses. First, because a small proportion of patients who undergo treatment are found to have less common pathological diagnoses (eg, oncocytoma, lymphoma, nephroblastoma), 3,9,12,30 we repeated our analyses after limiting our sample to patients with histologically confirmed renal cell carcinoma. Second, because access to partial nephrectomy may differ across urban vs rural environments (a consideration that could influence our instrumental variable),31 we also fit separate models for these patient groups. Third, to better estimate the contemporary treatment effect, we fit separate models for patients treated

from 1992-1999 and from 2000-2007. All statistical testing was 2-sided and carried out at the 5% significance level. Analyses were performed using SAS version 9.2 and STATA version 11.0.

RESULTS

Among 7138 patients treated surgidally for clinical stage T1a kidney cancer, we identified 1925 (27.0%) and 5213 (73.0%) treated with partial or radical nephrectomy, respectively.

	No. (%) Undergo	No. (%) Undergoing Nephrectomy		
	Partial (n = 1925)	Radical (n = 5213)	P Valu	
Age, y	000 (00.0)	4000 005 00 7		
65-69 70-74	632 (32.8)	1336 (25.6)		
	571 (29.7)	1465 (28.1)	- 00	
75-79	476 (24.7)	1369 (26.3)	<.00	
80-84 >85	205 (10.7)	761 (14.6)		
	41 (2.1)	282 (5.4)		
Race/ethnicity White	1584 (82.3)	4362 (83.7)		
African American	150 (7.8)	404 (7.8)	00	
Hispanic	99 (5.1)	289 (5.5)	.00	
Other	92 (4.8)	158 (3.0)		
Women	803 (41.7)	2419 (46.4)	<.00	
Married	1250 (64.9)	3206 (61.5)	.00	
ncome ^b				
Low	584 (30.3)	1735 (33.3)		
Intermediate	599 (31.1)	1717 (32.9)	<.00	
High	698 (36.3)	1620 (31.1)		
Education ^b	E60 (00 E)	1754 (22.6)		
Low Intermediate	569 (29.5) 594 (30.9)	1754 (33.6) 1722 (33.0)	<.00	
			<.00	
High Rural residence	718 (37.3)	1596 (30.6)	.07	
Charlson Index score	301 (15.6)	910 (17.5)	.07	
O O	1108 (57.6)	3017 (57.9)		
1	468 (24.3)	1264 (24.2)	.96	
≥2	349 (18.1)	932 (17.9)	-	
Turnor histology		, ,		
Clear cell	1421 (73.8)	4391 (84.2)		
Papillary	282 (14.7)	404 (7.7)		
Chromophobe	126 (6.5)	192 (3.7)	<.00	
Oncocytoma	11 (0.6)	19 (0.4)		
Other histology	85 (4.4)	207 (4.0)		
Turnor grade Well differentiated	364 (18.9)	921 (17.7) 🗆		
Moderately differentiated	,	· , ,		
Poorly differentiated	803 (41.7) 228 (11.8)	2027 (38.9) 581 (11.1)	.00	
Undifferentiated			.00	
Unknown	17 (0.9) 513 (26.7)	66 (1.3) 1618 (31.0)		
			.51	
aparoscopic surgery Postoperative complication	527 (27.4) 645 (33.5)	1468 (28.2) 1801 (34.5)	.51	
ear of surgery	040 (00.0)	1001 (34.3)	.41	
1992-1995	82 (4.2)	589 (11.3)		
1996-1999	119 (6.2)	699 (13.4)	<.00	
2000-2003	610 (31.7)	1806 (34.6)	<.00	
	1114 (57.9)	2119 (40.7)		

©2012 American Medical Association. All rights reserved.

©2012 American Medical Association. All rights reserved.

JAMA, April 18, 2012-Vol 307, No. 15 1631

Definition of Statistics

The theory and methodology for research (study) design, and for describing, analyzing, and interpreting information (data) generated from such studies, in which the data is subject to chance variation.

Population & Sample

- <u>Population</u>: the set of all subjects of interest having a common observable characteristic. For example, all newborns in US.
- <u>Sample:</u> a subset of a population, e.g., all newborns at KMC in 2015.
- Parameter: a summary measure of the population,
 e.g., the average birth weight of the above population.
- Statistic: a summary measure of the sample, e.g., the average birth weight of the above sample.

The Goal of Statistics

Population [Parameters] (μ, σ)

Sample [Statistics] (X, S)

Properties of A "Good" Sample

- Adequate sample size (statistical power)
- Random selection (representative)

Commonly used sampling techniques

- 1. Simple random sample
- 2. Stratified sample
- 3. Systematic sample
- 4. Cluster sample
- 5. Convenience sample

Types of Data & Scales of Measurement

1. Qualitative variables - categorical

- Nominal: Categories, names (e.g., gender, eye color)
- Ordinal: Ordered data, intervals are not equal (e.g., satisfaction scores, grades of tumor)

2. Quantitative variables - numerical

- Discrete no intermediate values (e.g., number of children per family)
- Continuous intermediate values (e.g., temperature, birth weight)

Types of Variables

Notes:

Dependent (response) versus Independent (explanatory) variables

In linear regression analysis:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Sources of Data (Types of Studies)

Two major types of investigations: Surveys versus experiments

Major difference: whether the investigator has control over which subjects enter each study group.

Some examples of survey researches

Prospective (cohort) studies

Retrospective (case-control) studies

Cross-sectional studies

Some examples of experimental studies:

Lab experiments

Clinical trials

Descriptive Statistics

Qualitative data:

- Frequencies
- Percentages

Quantitative data:

- Measures of central tendency Mean, Median, Mode
- Measures of variability (dispersion)
 Standard deviation, Variance, Range, Interquartile range

Measures of Variability

1. Variance:

Sample variance =
$$s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$$

Population variance = $\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N!}$

Measures of Variability (cont.)

2. Standard deviation (SD): The square root of the variance

Sample SD =
$$s = \sqrt{s^2}$$

Population SD =
$$\sigma = \sqrt{\sigma^2}$$

Ways of Presenting Data

SPSS: Honolulu Heart Study (partial data)

honolulu h	honolulu_heart.sav [DataSet1] - IBM SPSS Statistics Data Editor									
<u>F</u> ile <u>E</u> dit	<u>File Edit View Data Transform Analyze Direct Marketing Graphs Utilities Add-ons Window Help</u>									
			M *5			ABG				
9 :										
	ID Educa	ationalLevel	Weightkg	Heightcm	Age	SmokingStatus	PhysicalActivityatH	BloodGlucose	SerumCholesterol	SystolicBloodPress
							ome			ure
1	1	2	70	165	61	1	1	107		
2	2	1	60	162	52	0	2	145		
3	3	1	62	150	52	1	1	237		
4	4	2	66	165	51	1	1	91		
5	5	2	70	162	51	0	1	185		
6	6	4	59	165	53	0	2	106		
7	7	1	47	160	61	0	1	177		
8	8	3	66	170	48	1	1	120		
9	9	5	56	155	54	0	2	116		
10	10	2	62	167	48	0	1	105	190	104
11	11	4	68	165	49	1	2	109	240	116
12	12	1	65	166	48	0	1	186	209	152
13	13	1	56	157	55	0	2	257	210	134
14	14	2	80	161	49	0	1	218		
15	15	3	66	160	50	0	2	164	255	130
16	16	4	91	170	52	0	2	158	232	118
17	17	3	71	170	48	1	1	117	147	136
18	18	5	66	152	59	0	2	130	268	108
19	19	1	73	159	59	0	2	132	231	108
20	20	4	59	161	52	0	1	138	199	128
21	21	1	64	162	52	1	1	131	255	118
22	22	3	55	161	52	1	1	88	199	134

Data Dictionary

An example:

Variable	Education
Description/Label	Education Level
Data Type	Num – Categorical variable
Length	8
Allowable Values	1=none 2=primary 3=intermediate 4=senior high 5=technical school 6=university or above
Notes	Required field. No missing allowed.

Data Management: Importance of Data Prep & Cleaning

A Clinical Data Example:

	Α	В	С	D	E	
1	ID	Center	Birthday	Weight	Male (Yes/No)	
2	101	1	5/4/1967	1180	Yes	
3	102	1	7/4/1965	175	yes	
4	103	1	1/1/1847	165	Yes	
5	201	2	12/31/1958	155	MALE	
6	202	2	11/25/1945	745	Male	
7	203	2	Apr-78	156	male	
8	301	3	3/2/1989	176		1
9	302	3	6/4/1995	188	1 (empty in questionnair, but "male" from pt chart).	
10	303	3	8/3/2978	145		1

Summary table: one categorical variable

Statistics

Educational Level

N	Valid	100		
	Missing	0		

Educational Level

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	none	25	25.0	25.0	25.0
	primary	32	32.0	32.0	57.0
	intermediate	24	24.0	24.0	81.0
	senior high	9	9.0	9.0	90.0
	technical school	10	10.0	10.0	100.0
	Total	100	100.0	100.0	

Bar chart: one categorical variable

Histogram: one continuous variable

Box plot: one continuous variable, one categorical variable

Cross-tabulation: two categorical variables

Physical Activity at Home * Smoking Status Crosstabulation

			Smoking Status		
			no	yes	Total
Physical Activity at Home	mostly sitting	Count	31	18	49
		% within Physical Activity at Home	63.3%	36.7%	100.0%
		% within Smoking Status	49.2%	48.6%	49.0%
	moderate	Count	32	19	51
		% within Physical Activity at Home	62.7%	37.3%	100.0%
		% within Smoking Status	50.8%	51.4%	51.0%
Total		Count	63	37	100
		% within Physical Activity at Home	63.0%	37.0%	100.0%
		% within Smoking Status	100.0%	100.0%	100.0%

Scatterplot: two continuous variables

Basic Principles of Experimental Design

- Replications
- Randomization
- Blocking (stratification)
- Blinding
- Factorial experiments

Handling A Confounding Variable

- If you can, fix a variable.
- If you can't, stratify it.
- If can't fix or stratify a variable, randomize it.

Technical vs Biological Replicates

Different Scales

Different Error Bars

Warning Signs

Data generation

Data consumption

Data Analysis: Analytic Approaches

Variable Type:

Numerical data

- count: # of circulating cancer cells

- continuous: 6MWT

Categorical data

dichotomous: Type II diabetes status (yes/no)

- multilevel: BMI (under-weight, normal, over-weight, obese)

Survival data: time to readmission

Notes: Univariate vs. multivariate analysis

Parametric vs. non-parametric approaches

Transformation or not: log-transformed

Derived variable: percentage changes

UNIVERSITY OF HAWAI'I

Office of Biostatistics & Quantitative Health Sciences

JOHN A. BURNS SCHOOL OF MEDICINE

http://biostat.jabsom.hawaii.edu

U54MD007584 G12MD007601 P20GM103466