Section 1.2 – Definitions / Techniques of Limits

Definition of the Limit of a Function

If f(x) becomes arbitrary close to a single number L as x approaches x_0 from either side, then

$$\lim_{x \to x_0} f(x) = L$$

Which is read as "the limit of f(x) as x approaches x_0 is L."

Notation	Terminology		
$x \rightarrow a^{-}$	\boldsymbol{x} approaches \boldsymbol{a} from the left (through values \boldsymbol{less} than \boldsymbol{a})		
$x \rightarrow a^+$	\boldsymbol{x} approaches \boldsymbol{a} from the right (through values <i>greater</i> than a)		

Example

How does the function $f(x) = \frac{x^2 - 1}{x - 1}$ behave near x = 1?

Solution

$$f(x) = \frac{(x-1)(x+1)}{x-1}$$
$$= x+1 \quad \text{for} \quad x \neq 1$$

For x = 1:

$$f(x=1)=1+1=2$$

f(x)	1.9	1.99	1.999	2.001	2.01	2.1

2

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Example

Discuss the behavior of the following function as $x \to 0$.

$$U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

The unit step function U(x) has no limit as $x \to 0$, it jumps, because the values jump at x = 0. To the left of zero $\left(negative\ value\ \mathbf{0}^{-}\right)\ U(x) = 0$. For the positive values of x close to zero $\left(\mathbf{0}^{+}\right)\ U(x) = 1$

One-Sided Limits

To have a limit L as x approaches c, a function f must be defined on **both sides** of c and its values f(x) must approach L as x approaches c from either side. Because of this, ordinary limits are called **two-sided**. If f fails to have two-sided limit at c, it may still have one-sided limit.

If the approach is from the *right*, the limit is a *right-hand limit*. $\lim_{x\to c^+} f(x) = L$

If the approach is from the *left*, the limit is a *left-hand limit*. $\lim_{x\to c^-} f(x) = M$

Example

The domain of $f(x) = \sqrt{4 - x^2}$ is [-2, 2]; its graph is the semicircle.

We have: $\lim_{x \to -2^{+}} \sqrt{4 - x^{2}} = 0$ and $\lim_{x \to 2^{-}} \sqrt{4 - x^{2}} = 0$

The function doesn't have a left-hand limit at x = -2 or a right-hand limit at x = 2. It does not have ordinary two-sided limits at either -2 or 2.

Theorem

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^{-}} f(x) = L \quad and \quad \lim_{x \to c^{+}} f(x) = L$$

Properties of Limits

Constant function
$$(f(x) = k)$$
: $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k$

Identity function
$$(f(x) = x)$$
:
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0$$

Example

Given the function graphed:

At
$$x = 0$$
: $\lim_{x \to 0^+} f(x) = 1$

$$\lim_{x\to 0^{-}} f(x)$$
 and $\lim_{x\to 0} f(x)$ don't exist. The function is not defined to the left of $x=0$

At
$$x = 1$$
: $\lim_{x \to 1^{-}} f(x) = 0$ $\lim_{x \to 1^{+}} f(x) = 1$

 $\lim_{x\to 1} f(x)$ doesn't exist. The right-hand and left-hand limits are not equal.

At
$$x = 2$$
: $\lim_{x \to 2^{-}} f(x) = 1$ $\lim_{x \to 2^{+}} f(x) = 1$

$$\lim_{x \to 2} f(x) = 2 \text{ even though } f(2) = 2$$

At
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3} f(x) = 2$

At
$$x = 4$$
: $\lim_{x \to 4^{-}} f(x) = 1$ even though $f(4) \neq 1$
 $\lim_{x \to 4^{+}} f(x)$ and $\lim_{x \to 4} f(x)$ do not exist.

The function is not defined to the right of x = 4

Definitions

We say that f(x) has right-hand limit L at x_0 and $\lim_{x \to x_0^+} f(x) = L$

If for every number $\varepsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 < x < x_0 + \delta \implies |f(x) - L| < \varepsilon$$

We say that f(x) has left-hand limit L at x_0 and $\lim_{x \to x_0^-} f(x) = L$

If for every number $\varepsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 - \delta < x < x_0 \implies |f(x) - L| < \varepsilon$$

Example

Prove that
$$\lim_{x \to 0^+} \sqrt{x} = 0$$

Solution

Let $\mathcal{E} > 0$ be given. $x_0 = 0$, L = 0, Find $\delta > 0 \ni \forall x$

$$0 < x < \delta \implies \left| \sqrt{x} - 0 \right| < \varepsilon$$

or
$$0 < x < \delta \implies \sqrt{x} < \varepsilon$$

$$\left(\sqrt{x}\right)^2 < \varepsilon^2$$

$$\Rightarrow x < \varepsilon^2 \quad if \quad 0 < x < \delta$$

If we choose $\delta = \varepsilon^2$, we have

$$0 < x < \delta = \varepsilon^2 \implies \sqrt{x} < \varepsilon$$

According to the definition, this shows that $\lim_{x\to 0^+} \sqrt{x} = 0$

Example

Discuss the behavior of the following function as $x \to 0$.

a)
$$g(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

a)
$$g(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 b) $f(x) = \begin{cases} 0, & x \leq 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$

Solution

a)

g(x) has no limit as $x \to 0$ because the values of g(x) grow arbitrary large (negative and positive) value as $x \rightarrow 0$ and do not stay close.

b)

f(x) has no limit as $x \to 0$ because the function's values oscillate between -1 and +1 in every open interval containing 0. The values do not stay close to any one number as $x \to 0$.

Limit Laws

If
$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$

Constant Multiple Rule:
$$\lim_{x \to c} [bf(x)] = b \lim_{x \to c} f(x) = \underline{bL}$$

Sum and Difference Rules:
$$\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x) = \underline{L} \pm \underline{M}$$

Product Rule:
$$\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = \underline{L.M}$$

Quotient Rule:
$$\lim_{x \to c} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M} \qquad M \neq 0$$

Power Rule:
$$\lim_{x \to c} (f(x))^n = \left[\lim_{x \to c} f(x) \right]^n = \underline{L}^n$$

Root Rule:
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} = \sqrt[n]{L} \qquad n > 0, \quad L > 0, \quad n \text{ is even}$$

Example

Find the following limits:

a)
$$\lim_{x \to c} \left(x^3 + 4x^2 - 3 \right)$$
 b) $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$ c) $\lim_{x \to -2} \sqrt{4x^2 - 3}$

b)
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$$

$$c) \quad \lim_{x \to -2} \sqrt{4x^2 - 3}$$

Solution

a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3) = \lim_{x \to c} x^3 + \lim_{x \to c} 4x^2 - \lim_{x \to c} (3)$$

= $c^3 + 4c^2 - 3$

Sum and Difference Rules

b)
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5} = \frac{\lim_{x \to c} (x^4 + x^2 - 1)}{\lim_{x \to c} (x^2 + 5)}$$

Quotient Rule

$$= \frac{\lim_{x \to c} x^4 + \lim_{x \to c} x^2 - \lim_{x \to c} 1}{\lim_{x \to c} x^2 + \lim_{x \to c} 5}$$

Sum and Difference Rules

$$=\frac{c^4 + c^2 - 1}{c^2 + 5}$$

c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)}$$

 $= \sqrt{\lim_{x \to -2} 4x^2 - \lim_{x \to -2} 3}$
 $= \sqrt{4(-2)^2 - 3}$
 $= \sqrt{16 - 3}$
 $= \sqrt{13}$

Root Rule

Difference Rule

Theorem – Limits of Polynomials

If
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, then $\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0$

Theorem – Limits of Rational Functions

If
$$P(x)$$
 and $Q(x)$ are polynomials and $Q(c) \neq 0$, then
$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

Example

Find the limit:
$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5}$$

Solution

$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5} = \frac{(-1)^3 + 4(-1)^2 - 3}{(-1)^2 + 5}$$
$$= \frac{0}{6}$$
$$= 0$$

Eliminating Zero Denominators Algebraically

Example

Evaluate:
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \frac{1^2 + 1 - 2}{1^2 - 1} = \frac{0}{0}$$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{(x + 2)}{x}$$

$$= \frac{1 + 2}{1}$$

$$= 3$$

Example

Evaluate:
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}$$

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{0 + 100} - 10}{0} = \frac{0}{0}$$

$$\frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{x^2 + 100} - 10}{x^2} \cdot \frac{\sqrt{x^2 + 100} + 10}{\sqrt{x^2 + 100} + 10} \qquad (a - b)(a + b) = a^2 - b^2; \quad (\sqrt{a})^2 = a$$

$$= \frac{x^2 + 100 - 100}{x^2 \left(\sqrt{x^2 + 100} + 10\right)}$$

$$= \frac{x^2}{x^2 \left(\sqrt{x^2 + 100} + 10\right)}$$

$$= \frac{1}{\sqrt{x^2 + 100} - 10}$$

$$= \lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 100} + 10}$$

$$= \frac{1}{\sqrt{0 + 100} + 10}$$

$$= \frac{1}{10 + 10}$$

$$= 1$$

The Sandwich (Squeeze) Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L \quad then \quad \lim_{x \to c} f(x) = L$$

Example

Given that $1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$ for all $x \ne 0$, find the $\lim_{x \to 0} u(x)$, no matter how complicated u is.

Solution

$$\lim_{x \to 0} \left(1 - \frac{x^2}{4} \right) = 1 - \frac{0}{4}$$

$$= 1$$

$$\lim_{x \to 0} \left(1 + \frac{x^2}{2} \right) = 1$$

The Sandwich theorem implies that $\lim_{x\to 0} u(x) = 1$

Theorem

Suppose that $f(x) \le g(x)$ for all x in some open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$$

Example

Show that $y = \sin(\frac{1}{x})$ has no limit as x approaches zero from either side.

Solution

As x approaches zero, its reciprocal, $\frac{1}{x}$, grows without bound and the values of $\sin\left(\frac{1}{x}\right)$ cycle repeatedly from -1 to 1.

There is no single number L that the function's values stay increasingly close to as x approaches zero. The function has neither a right-hand limit nor a left-hand limit at x = 0.

Limit Involving $\frac{\sin \theta}{\theta}$

A central fact about $\frac{\sin \theta}{\theta}$ is that in radian measure it limit as $\theta \to 0$ is **1**.

Theorem

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad (\theta \text{ in } rad.)$$

Proof

We need to show that the right-hand limit is 1, $\theta < \frac{\pi}{2}$

Notice that:

 $Area\ \Delta OAP\ < Area\ Sector\ OAP\ < Area\ \Delta OAT$

Area
$$\triangle OAP = \frac{1}{2}base \times height = \frac{1}{2}(1)(\sin\theta)$$

Area Sector
$$\triangle OAP = \frac{1}{2}r^2 \times \theta = \frac{1}{2}(1)^2(\theta) = \frac{\theta}{2}$$

Area
$$\triangle OAP = \frac{1}{2}base \times height = \frac{1}{2}(1)(\tan\theta) = \frac{1}{2}\tan\theta$$

$$\Rightarrow \frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$$

$$\frac{2}{\sin\theta} \frac{1}{2} \sin\theta < \frac{1}{2} \theta \frac{2}{\sin\theta} < \frac{1}{2} \frac{\sin\theta}{\cos\theta} \frac{2}{\sin\theta}$$

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

 $1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$ Taking reciprocals reverses the inequalities

$$1 > \frac{\sin \theta}{\theta} > \cos \theta$$

Since
$$\lim_{\theta \to 0^+} \cos \theta = 1$$
, then

$$\lim_{\theta \to 0^{-}} \frac{\sin \theta}{\theta} = 1 = \lim_{\theta \to 0^{+}} \frac{\sin \theta}{\theta}$$

So
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Example

Show that
$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

Solution

Using the half-angle formula: $\cos x = 1 - 2\sin^2\left(\frac{x}{2}\right)$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = \lim_{x \to 0} \frac{1 - 2\sin^2\left(\frac{x}{2}\right) - 1}{x}$$

$$= \lim_{x \to 0} \frac{-2\sin^2\left(\frac{x}{2}\right)}{x}$$

$$= -\lim_{\theta \to 0} \frac{2\sin^2\left(\theta\right)}{2\theta}$$

$$= -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \sin \theta$$

$$= -(1)(0)$$

$$= 0$$

Example

$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \frac{2}{5}$$

Solution

$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \lim_{x \to 0} \frac{\left(\frac{2}{5}\right)\sin 2x}{\left(\frac{2}{5}\right)5x}$$
$$= \frac{2}{5}\lim_{x \to 0} \frac{\sin 2x}{2x}$$
$$= \frac{2}{5}(1)$$
$$= \frac{2}{5}$$

Since we need 2x in the denominator

Example

Show that
$$\lim_{x\to 0} \frac{\tan x \sec 2x}{3x} = \frac{1}{3}$$

$$\lim_{x \to 0} \frac{\tan x \sec 2x}{3x} = \frac{1}{3} \lim_{x \to 0} \frac{1}{x} \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{\cos 2x}$$

$$= \frac{1}{3} \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} \cdot \frac{1}{\cos 2x} \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{1}{\cos x} = 1, \quad \lim_{x \to 0} \frac{1}{\cos 2x} = 1$$

$$= \frac{1}{3} (1)(1)(1)$$

$$= \frac{1}{3}$$

Exercises Section 1.2 – Definitions / Techniques of Limits

(1-121) Find the limit:

$$\lim_{x \to 3} (-1)$$

$$\begin{array}{ccc}
\mathbf{2.} & \lim_{x \to -1} & 3
\end{array}$$

3.
$$\lim_{x \to 1000} 18\pi^2$$

4.
$$\lim_{x \to 1} \sqrt{5x+6}$$

$$\begin{array}{ccc}
\mathbf{5.} & \lim_{x \to 9} \sqrt{x}
\end{array}$$

$$\mathbf{6.} \quad \lim_{x \to -3} \left(x^2 + 3x \right)$$

7.
$$\lim_{x \to -4} |x-4|$$

$$8. \quad \lim_{x \to 4} (x+2)$$

$$9. \quad \lim_{x \to 4} (x-4)$$

10.
$$\lim_{x \to 2} (5x - 6)^{3/2}$$

11.
$$\lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$$

12.
$$\lim_{x \to 1} (2x + 4)$$

13.
$$\lim_{x \to 1} \frac{x^2 - 4}{x - 2}$$

14.
$$\lim_{x \to 2} \frac{x^2 + 4}{x - 2}$$

$$15. \quad \lim_{x \to 0} \frac{|x|}{x}$$

16.
$$\lim_{x \to 3} \frac{x^2 - x - 1}{\sqrt{x + 1}}$$

17.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

18.
$$\lim_{x \to 0} (3x - 2)$$

19.
$$\lim_{x \to 1} (2x^2 - x + 4)$$

20.
$$\lim_{x \to -2} \left(x^3 - 2x^2 + 4x + 8 \right)$$

21.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

22.
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

23.
$$\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3}$$

24.
$$\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$$

25.
$$\lim_{x \to -2} \frac{5}{x+2}$$

26.
$$\lim_{x \to 0} \frac{3}{\sqrt{3x+1}+1}$$

27.
$$\lim_{x \to 3} \frac{\sqrt{x+1}-1}{x}$$

28.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

29.
$$\lim_{x \to -2} \frac{|x+2|}{x+2}$$

30.
$$\lim_{x\to 0} (2z-8)^{1/3}$$

31.
$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x - 2}$$

32.
$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2}$$

33.
$$\lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1}$$

34.
$$\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$$

35.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$

36.
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$$

37.
$$\lim_{x \to -3} \frac{2 - \sqrt{x^2 - 5}}{x + 3}$$

38.
$$\lim_{x\to 0} (2\sin x - 1)$$

39.
$$\lim_{x \to 0} \sin^2 x$$

40.
$$\lim_{x \to 0} \sec x$$

41.
$$\lim_{x \to 0} \frac{1 + x + \sin x}{3\cos x}$$

42.
$$\lim_{x \to -\pi} \sqrt{x+4} \cos(x+\pi)$$

43.
$$\lim_{x \to -0.5^{-}} \sqrt{\frac{x+2}{x+1}}$$

44.
$$\lim_{x \to 1^+} \sqrt{\frac{x-1}{x+2}}$$

45.
$$\lim_{x \to -2^+} \left(\frac{x}{x+1} \right) \left(\frac{2x+5}{x^2+x} \right)$$

46.
$$\lim_{x \to 0^+} \frac{\sqrt{x^2 + 4x + 5} - \sqrt{5}}{x}$$

47.
$$\lim_{x \to -2^+} (x+3) \frac{|x+2|}{x+2}$$

48.
$$\lim_{x \to 1^+} \frac{\sqrt{2x}(x-1)}{|x-1|}$$

$$49. \quad \lim_{x \to 0^{-}} \frac{x}{\sin 3x}$$

$$\mathbf{50.} \quad \lim_{\theta \to 0} \frac{\sin \sqrt{2}.\theta}{\sqrt{2}.\theta}$$

$$\mathbf{51.} \quad \lim_{x \to 0} \frac{\sin 3x}{4x}$$

$$52. \quad \lim_{x \to 0} \frac{\tan 2x}{x}$$

53.
$$\lim_{x \to 0} 6x^2 (\cot x)(\csc 2x)$$

54.
$$\lim_{\theta \to 0} \frac{\sin \theta}{\sin 2\theta}$$

$$55. \quad \lim_{h \to 0} \frac{\sin(\sin h)}{\sin h}$$

56.
$$\lim_{\theta \to 0} \frac{\theta \cot 4\theta}{\sin^2 \theta \cot^2 2\theta}$$

57.
$$\lim_{\theta \to \pi/4} \frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta - \cos \theta}$$

58.
$$\lim_{x \to \pi/2} \frac{\frac{1}{\sqrt{\sin x}} - 1}{x + \frac{\pi}{2}}$$

59.
$$\lim_{x \to 1} \frac{x^3 - 7x^2 + 12x}{4 - x}$$

60.
$$\lim_{x \to 4} \frac{x^3 - 7x^2 + 12x}{4 - x}$$

61.
$$\lim_{x \to 1} \frac{1 - x^2}{x^2 - 8x + 7}$$

62.
$$\lim_{x \to 3} \frac{\sqrt{3x + 16} - 5}{x - 3}$$

63.
$$\lim_{x \to 3} \frac{1}{x-3} \left(\frac{1}{\sqrt{x+1}} - \frac{1}{2} \right)$$

64.
$$\lim_{x \to 1/3} \frac{x - \frac{1}{3}}{(3x - 1)^2}$$

65.
$$\lim_{x \to 3} \frac{x^4 - 81}{x - 3}$$

66.
$$\lim_{x \to 1} \frac{x^5 - 1}{x - 1}$$

67.
$$\lim_{x \to 81} \frac{\sqrt[4]{x} - 3}{x - 81}$$

68.
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{x - 1}$$

69.
$$\lim_{x \to 2} \frac{x^5 - 32}{x - 2}$$

70.
$$\lim_{x \to 1} \frac{x^6 - 1}{x - 1}$$

71.
$$\lim_{x \to -1} \frac{x^7 + 1}{x + 1}$$

72.
$$\lim_{x \to a} \frac{x^5 - a^5}{x - a}$$

73.
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} \quad n \in \mathbb{Z}^+$$

74.
$$\lim_{h \to 0} \frac{100}{(10h-1)^{11} + 2}$$

75.
$$\lim_{h\to 0} \frac{(5+h)^2 - 25}{h}$$

76.
$$\lim_{x \to 3} \frac{\frac{1}{x^2 + 2x} - \frac{1}{15}}{x - 3}$$

77.
$$\lim_{x \to 1} \frac{\sqrt{10x - 9} - 1}{x - 1}$$

78.
$$\lim_{x \to 2} \left(\frac{1}{x - 2} - \frac{2}{x^2 - 2x} \right)$$

79.
$$\lim_{x \to c} \frac{x^2 - 2cx + c^2}{x - c}$$

80.
$$\lim_{x \to -c} \frac{x^2 + 5cx + 4c^2}{x^2 + cx}$$

81.
$$\lim_{x \to 16} \frac{\sqrt[4]{x} - 2}{x - 16}$$

82.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1}$$

83.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{4x+5}-3}$$

84.
$$\lim_{x \to 4} \frac{3(x-4)\sqrt{x+5}}{3-\sqrt{x+5}}$$

85.
$$\lim_{x \to 0} \frac{x}{\sqrt{ax+1}-1} \quad (a \neq 0)$$

86.
$$\lim_{x \to \pi} \frac{\cos^2 x + 3\cos x + 2}{\cos x + 1}$$

87.
$$\lim_{x \to \frac{3\pi}{2}} \frac{\sin^2 x + 6\sin x + 5}{\sin^2 x - 1}$$

88.
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x - 1}{\sqrt{\sin x} - 1}$$

89.
$$\lim_{x \to 0} \frac{\frac{1}{2 + \sin x} - \frac{1}{2}}{\sin x}$$

90.
$$\lim_{x \to 0} \frac{e^{2x} - 1}{e^x - 1}$$

$$91. \quad \lim_{x \to \frac{\pi}{4}} \csc x$$

92.
$$\lim_{x \to 4} \frac{x - 5}{\left(x^2 - 10x + 24\right)^2}$$

93.
$$\lim_{x \to 0} \frac{\cos x - 1}{\sin^2 x}$$

94.
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{\sin x}$$

95.
$$\lim_{x \to 0} \frac{x^3 - 5x^2}{x^2}$$

96.
$$\lim_{x \to 5} \frac{4x^2 - 100}{x - 5}$$

97.
$$\lim_{x \to 3} \frac{\sqrt{9 - 6x + x^2}}{x - 3}$$

$$105. \lim_{x \to 0} \frac{\sin(\sqrt{5} x)}{\sin(\sqrt{3} x)}$$

113.
$$\lim_{x \to -1} e^{x^3 - 1}$$

98.
$$\lim_{x \to 3} \frac{\sqrt{9 + 6x + x^2}}{x - 3}$$

$$\mathbf{106.} \quad \lim_{x \to 0} \frac{\sin\left(\sqrt{15} \ x\right)}{\sin\left(\sqrt{3} \ x\right)}$$

$$\mathbf{114.} \quad \lim_{x \to 2} \left(e^{x^2} - \ln x \right)$$

99.
$$\lim_{x \to 3} \frac{\sqrt{x^2 - 9}}{x - 3}$$

$$107. \quad \lim_{x \to 0^+} \frac{x - \sqrt{x}}{\sqrt{\sin x}}$$

$$\mathbf{115.} \quad \lim_{x \to 1} \left(e^{x^2} - \ln x \right)$$

$$100. \quad \lim_{x \to \frac{4\pi}{3}} \sin x$$

$$107. \quad \lim_{x \to 0^+} \frac{x - \sqrt{x}}{\sqrt{\sin x}}$$

116.
$$\lim_{x \to e} \ln x$$

101.
$$\lim_{x \to \frac{2\pi}{3}} \cos x$$

$$108. \lim_{x \to 1} \frac{x - \sqrt{x}}{\sqrt{\sin x}}$$

$$117. \lim_{x \to e} \ln x^2$$

$$102. \quad \lim_{x \to \frac{7\pi}{4}} \sin x$$

$$109. \quad \lim_{x \to \pi} \frac{x - \sqrt{x}}{\sqrt{\sin x}}$$

118.
$$\lim_{x \to 0^+} \ln x$$

$$x \rightarrow \frac{7\pi}{4}$$

110.
$$\lim_{x \to 0} e^{x^3}$$

119.
$$\lim_{x \to 1} \frac{1}{\ln x}$$

103.
$$\lim_{x \to 1} \frac{\sin \sqrt{1-x}}{\sqrt{1-x^2}}$$

111.
$$\lim_{x \to 1} e^{x^2}$$

120.
$$\lim_{x \to e} \ln e^{2x}$$

104.
$$\lim_{x \to 2} \frac{\sin \sqrt{2-x}}{\sqrt{4-x^2}}$$

112.
$$\lim_{x \to 1} e^{x^3 - 1}$$

121.
$$\lim_{x \to 1} \ln e^{x^2}$$

122. For the function f(t) graphed, find the following limits or explain why they do not exist.

- a) $\lim_{t \to -2} f(t)$ b) $\lim_{t \to -1} f(t)$
- c) $\lim_{t \to \infty} f(t)$ $t\rightarrow 0$
- d) $\lim_{t \to \infty} f(t)$ $t \rightarrow -0.5$
- **123.** Suppose $\lim_{x \to \infty} f(x) = 5$ and $\lim_{x \to \infty} g(x) = -2$. Find $x \rightarrow c$ $x \rightarrow c$
 - a) $\lim_{x \to c} f(x)g(x)$

c) $\lim_{x \to c} \left(f(x) + 3g(x) \right)$

 $\lim 2f(x)g(x)$ $x \rightarrow c$

- **124.** Explain why the limits do not exist for $\lim_{x\to 0} \frac{x}{|x|}$
- (125 126) Evaluate the limit using the form $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ for
- **125.** $f(x) = x^2, x = 1$

- **126.** $f(x) = \sqrt{3x+1}$, x = 0
- **127.** If $\lim_{x \to 4} \frac{f(x) 5}{x 2} = 1$, find $\lim_{x \to 4} f(x)$
- **128.** If $\lim_{x\to 0} \frac{f(x)}{x^2} = 1$, find $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} \frac{f(x)}{x}$
- **129.** If $x^4 \le f(x) \le x^2$ $-1 \le x \le 1$ and $x^2 \le f(x) \le x^4$ x < -1 and x > 1. At what points c do you automatically know $\lim_{x \to c} f(x)$? What can you say about the value of the limits at these points?
- **130.** Let $f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$

- a) Does $\lim_{x\to 0^+} f(x)$ exist? If so, what is it? If not, why not?
- b) Does $\lim_{x\to 0^{-}} f(x)$ exist? If so, what is it? If not, why not?
- c) Does $\lim_{x\to 0} f(x)$ exist? If so, what is it? If not, why not?

131. Let $g(x) = \sqrt{x} \sin \frac{1}{x}$

- a) Does $\lim_{x\to 0^+} g(x)$ exist? If so, what is it? If not, why not?
- b) Does $\lim_{x\to 0^{-}} g(x)$ exist? If so, what is it? If not, why not?
- c) Does $\lim_{x\to 0} g(x)$ exist? If so, what is it? If not, why not?

132. Let $f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$

- d) Does $\lim_{x\to 0^+} f(x)$ exist? If so, what is it? If not, why not?
- e) Does $\lim_{x\to 0^{-}} f(x)$ exist? If so, what is it? If not, why not?

- f) Does $\lim_{x\to 0} f(x)$ exist? If so, what is it? If not, why not?
- **133.** Which of the following statements about the function y = f(x) graphed here are true, and which are false?

a)
$$\lim_{x \to -1^+} f(x) = 1$$

$$g) \quad \lim_{x \to 0} f(x) = 1$$

$$b) \quad \lim_{x \to 0^{-}} f(x) = 0$$

$$h) \quad \lim_{x \to 1} f(x) = 1$$

$$c) \quad \lim_{x \to 0^{-}} f(x) = 1$$

$$i) \quad \lim_{x \to 1} f(x) = 0$$

d)
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

$$j) \quad \lim_{x \to 2^{-}} f(x) = 2$$

e)
$$\lim_{x \to 0} f(x)$$
 exists

k)
$$\lim_{x \to -1^{-}} f(x) = 0$$
 does not exist

$$f) \quad \lim_{x \to 0} f(x) = 0$$

$$l) \quad \lim_{x \to 2^+} f(x) = 0$$