Homework Assignment 5

Due: No need to submit

Problem 1. The message signal m(t), whose Fourier transform is shown in Figure 1, is transmitted from Point A to Point B.

Figure 1: Frequency spectrum for the message in Problem 2.

- a) If LSSB AM is employed, what is the bandwidth of the modulated signal?
- **b)** If DSB-SC AM is employed, what is the bandwidth of the modulated signal?
- c) If conventional AM is employed where $k_a = 0.8$, what is the bandwidth of the modulated signal?

Problem 2. A SSB-14M signification producting an XIII parrier bothernessage signal

$$m(t) = 2B\operatorname{sinc}^2(2Bt),$$

where B = 2kHz. The applitude tunt carries acom.

- a) $\hat{m}(t)$ is the Hilbert transform of m(t). Draw the frequency spectrum (both magnitude spectrum and phase spectrum of $\hat{p}(t)$ hat CS tutores b) Find $S_{\text{USSB}}(f)$, the Fourier transform of the USSB AM signal. Draw its the magnitude spectrum.

Problem 3. A QAM system is shown in Figure 2. Consider $m_1(t) = sinc(t)$ and $m_2(t) = sinc^2(t)$.

Figure 2: A QAM system in Problem 4.

- a) Find $\varphi_{QAM}(t)$ and its bandwidth in Hz.
- **b**) Find the required bandwidth for the low-pass filters at the receiver.
- c) If $m_2(t) = \frac{1}{2} sinc^2(2t)$, repeat parts (a) and (b).
- d) what does happen if $m_2(t)$ is the Hilbert transform of $m_1(t)$? Comment on the type of the modulation of $\varphi_{QAM}(t)$.