2.22: Let event *S* represent "sick" and *T* represent "positive test". We are told:

$$P(S) = 0.03$$
$$P(T|S) = 0.99$$
$$P(T^{c}|S^{c}) = 0.98$$

We are asked to determine P(S|T). To do so, we can make a tree.

I like to make a contingency table.

	pos	neg	total
sick	0.0297	0.0003	
not sick	0.0194	0.9506	0.97
total	0.0491	0.9509	1

Then, it is easy to calculate the conditional probability.

$$P(\text{sick}|\text{pos}) = \frac{P(\text{sick and pos})}{P(\text{pos})}$$
$$= \frac{0.0297}{0.0491}$$
$$\approx \boxed{0.605}$$

2.23: We are told:

$$P(\text{sick}) = 0.259$$

$$P(\text{pos}|\text{sick}) = 0.997$$

$$P(\text{neg}|\text{not sick}) = 0.926$$

We are asked to determine P(sick|pos). To do so, we can make a tree.

I like to make a contingency table.

		pos	neg	total
•	sick	0.2582	0.0008	0.259
	not sick	0.0548	0.6862	0.741
	total	0.313	0.687	1

Then, it is easy to calculate the conditional probability.

$$P(\text{sick}|\text{pos}) = \frac{P(\text{sick and pos})}{P(\text{pos})}$$
$$= \frac{0.2582}{0.313}$$
$$\approx \boxed{0.825}$$

$$P(\text{scott}) = 0.53$$

 $P(\text{college}|\text{scott}) = 0.37$
 $P(\text{college}|\text{not scott}) = 0.44$

We are asked to determine P(scott|college). To do so, we can make a tree.

I like to make a contingency table.

	college	not college	total
scott	0.1961	0.3339	0.53
not scott	0.2068	0.2632	0.47
total	0.4029	0.5971	1

Then, it is easy to calculate the conditional probability.

$$P(\text{scott}|\text{college}) = \frac{P(\text{scott and college})}{P(\text{college})}$$
$$= \frac{0.1961}{0.0.4029}$$
$$\approx \boxed{0.825}$$

2.25: We are told:

$$P(\text{lupus}) = 0.02$$

 $P(\text{pos}|\text{lupus}) = 0.98$
 $P(\text{neg}|\text{not lupus}) = 0.74$

We want to determine P(lupus|pos). To do so, we could make a tree, but I'll just use the formula.

$$P(\text{lupus}|\text{pos}) = \frac{P(\text{lupus and pos})}{P(\text{pos})}$$

$$= \frac{P(\text{pos}|\text{lupus}) \cdot P(\text{lupus})}{P(\text{pos}|\text{lupus}) \cdot P(\text{lupus}) + P(\text{pos}|\text{not lupus}) \cdot P(\text{not lupus})}$$

$$= \frac{0.98 \times 0.02}{0.98 \times 0.02 + 0.26 \times 0.98}$$

$$= 0.071$$

So, even when someone tests positive for lupus, we only think there is about a 7% chance of them actually having lupus. This kind of supports the notion that often when you think it might be lupus, it actually is not. Of course, about 2% of the time overall, it really is lupus...

2.26: We are told that for twins,

$$P(\text{identical}) = 0.3$$

 $P(2 \text{ girls}|\text{identical}) = 0.5$
 $P(2 \text{ girls}|\text{not identical}) = 0.25$

We want to determine P(identical|2 girls). To do so, we could make a tree, but I'll just use the formula.

$$P(\text{identical}|2 \text{ girls}) = \frac{P(\text{identical AND 2 girls})}{P(2 \text{ girls AND identical})}$$

$$= \frac{P(2 \text{ girls AND identical})}{P(2 \text{ girls AND identical}) + P(2 \text{ girls AND not identical})}$$

$$= \frac{P(2 \text{ girls}|\text{identical}) \cdot P(\text{identical})}{P(2 \text{ girls}|\text{identical}) \cdot P(\text{identical}) + P(2 \text{ girls}|\text{not identical}) \cdot P(\text{not identical})}$$

$$= \frac{0.5 \times 0.3}{0.5 \times 0.3 + 0.25 \times 0.7}$$

$$= \boxed{0.46}$$