系級班別:

姓名:

(無參考資料,可用計算機)請在答案卷右上方畫上成績欄,謝謝。

- (20%) 1. (a) Derive I_{out} as a function of I_{REF}, K and R in Fig.1a, where $K = \frac{u_n C_{ox}}{2} \left(\frac{W}{L} \right)$. (10%)
 - (b) Calculate the current I_{C10} when $I_{REF}=1$ mA and $R_4=5$ k Ω are given in Fig. 1b. Thermal voltage $V_T=$ 25mV is assumed. Q_{10} and Q_{11} are identical, i.e. saturation current $I_{S(Q_{10})} = I_{S(Q_{11})}$. (10%)

Fig. 1a

Fig. 1b

- (20%) 2. (a) A charge-redistribution circuit is initially connected as in Fig. 2a and then the circuit is connected as in Fig. 2b. Find the node voltage V_x in Fig. 2b where $V_{in}=1V$ and $V_{ref}=5V$. (10%)
 - (b) Describe the operational principle of a 2-bit R-2R D/A converter. (10%) (Illustration is needed.)

Fig. 2b

(10%) 3. Derive the normalized polynomial T(s) of a 2^{nd} -order Butterworth filter with $\varepsilon = 1$.

(Butterworth transmission function= $\frac{1}{\sqrt{1+\varepsilon^2(\frac{\omega}{\omega_p})^{2N}}}$)

- (20%) 4. (a) Using a simple (r_{π}, g_m) model for each of the two transistors Q_{18} and Q_{19} in Fig. 4a, find the small-signal resistance between A and A'. Thermal voltage $V_T = 25 \text{mV}$, $\beta_{\text{npn}} = 200$, $\beta_{\text{pnp}} = 50$, $I_{C18} = 165 \text{uA}$ and $I_{C19} = 16 \text{uA}$ are assumed. (10%)
 - (b) Fig. 4b shows the circuit for determining the OPAMP output resistance when v_0 is positive and Q_{14} is conducting most of the current. Using the resistance of Q_{18} - Q_{19} network calculated in (a) and neglecting the large output resistance of Q_{13A} , find R_{out} when Q_{14} is sourcing an output current I_{out} of 5mA. β_{npn} =200, β_{pnp} =50. (10%)

- (20%) 5. (a) For a KHN circuit shown in Fig. 5a, please describe the functions of V_a , V_b , V_c nodes and briefly explain the operational principle of the KHN circuit. (10%)
 - (b) Draw a Tow-Thomas circuit and explain its operational principle. (10%)

Fig. 5a

(20%) 6. Switched-capacitor (SC):

- (a) Explain why a switched-capacitor circuit can behave as a resistor? (10%)
- (b) Draw the circuit diagram of a stray-insensitive SC integrator, which is either inverting or noninverting. Explain why it is stray-insensitive? (10%)