Scholarly Academic Data Visualization & Analysis

Miguel Yanez (may2114), Michelle Tadmor (mdt2125), Yu Hsuan Shih (ys2898)

1 — Motivation

Why do this?

How to give meaning to the chaos?

Dataset

Where did we get our data?

2,092,356 Papers

8,024,869
Citations

1,712,433
Authors

4,258,615

Collaborations

Feature Extraction Process

Extracted Relationships

Architecture

What approach did we take?

The Tools

To store our dataset

To create visualizations

To communicate with dataset

To perform analysis

Our Setup

4 — Algorithms

A bit of background...

Clustering

Girvan - Newman algorithm

Popular graph clustering algorithm published in 2002

Community: connected graph component

Edge in-between score: measures the probability that a shortest path will travel through an edge.

Goal: remove spurious edges which connect otherwise separate communities.

GM Outline:

- (1) Compute inbetween score for all edges (dijkstra)
- (2) remove top scoring edges
- (3) re-compute score for all edges and repeat (2)

Multi-Level

Modularity: quality score of a partition given a graph structure which compared the intra-community edge count with the expected number of edges for the graph. ML is one of many graph partitioning algorithms that seek to maximize this score.

Goal: Find a partition which maximizes the modularity score for a given graph.

Obstacles: search space is exponential, resolution Limit

Solution: **Multi-Level** - Approximate optimal partition using an iterative greedy passes

ML Outline:

- (1) init: each node is a partition
- (2) max-modularity: merge nodes with neighboring nodes
- (3) aggregate based on the partitioning and repeat (2)

V.D. Blondel et al. "Fast unfolding of communities in large networks," 2008

5 Visualizations

What's the best way to show our results?

Let's see it in action.

A Paper Community Cluster

- Nodes: Papers
- Colors: Clusters
- Edges: References

Bubble Chart

- Bubble
- Color
- Size
- Position

Word Cloud

- Commonly used words are larger and slightly faded in color.
- Less common words are smaller and darker.

Thanks!

Any questions?

Source Code available

https://github.com/mayanez/Scholarly