第1回 演習課題

1026-30-8137 多田 拓生*¹

2020年10月29日

 $^{^{\}ast 1}~$ tada.takumi.34w@st.kyoto-u.ac.jp

電気電子計算工学及演習

1026-30-8137

多田 拓生

説明日 2020/10/8

課題 1.1

二分法およびニュートン法を用いて非線形方程式を解くプログラムをそれぞれソースコード 1、 ソースコード 2 に示す。

まず二分法を用いたソースコード1について説明する。

bisection_method 関数は、引数として range、e、f、expected_value を受け取る。これらはそれぞれ範囲、許容誤差、関数、真値である。まず初期区間を range として与えると、bisection_method は bisection_method_inner 関数に range、e、f、expected_value を渡し、さらに回数として times に 1 を、また反復回数と近似解のデータを書き込むバッファ data を渡す。bisection_method_inner 関数は範囲を半分に区切り、解が存在すると思われる範囲を再帰的に渡して times を一つ進める。この時その範囲が許容誤差内に収まったなら、半分に区切った時の値を近似解として返す。

次にニュートン法を用いたソースコード2について説明する。

まず、ニュートン法で非線形方程式を解くには関数を微分する必要がある。関数の微分には、微 分係数の定義である

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1}$$

を用いて微分した関数を返す differential f 関数を作成した。

newton_raphson_method 関数は次のようなアルゴリズムで方程式を解く。まず、関数には f(x) と初期近似解を与える。すると、その関数を微分し、

$$g(x) = x - \frac{f(x)}{f'(x)} \tag{2}$$

となる g(x) を計算する newton_transform 関数に f(x)、f'(x) を渡し、また閾値と回数として 1、反復回数上限として 1,000,000、バッファとしての data、真値 expected_value とともに newton_method 関数に渡す。

newton_method 関数では、g(x) を用いて近似解の候補を求め、元のx との距離が閾値よりも小さい時、その計算した値を近似解として返す。閾値よりも大きかった場合は計算した値を再帰的に

newton_method に渡す。それを繰り返すことで非線形方程式を解く。最初に next の値をチェックしているのは、g(x) の値が想定していない値になった時の処理をまとめてあるだけであり、アルゴリズムに直接は影響しない。これについては後で言及する。

ソースコード 1 bisection_method.rs

```
#![allow(dead_code)]
pub use std::ops::Range;
pub use std::rc::Rc;
pub fn bisection_method(
     range: Range<f64>,
     e: f64,
     f: \operatorname{Rc} < \operatorname{dyn} \operatorname{Fn}(f64) \longrightarrow f64 >
     expected_value: f64,
\rightarrow (f64, Vec<(f64, f64)>) {
     let data: Vec < (f64, f64) > = Vec :: new();
     bisection_method_inner(
          range, e, f, 1, expected_value, data
     )
}
fn bisection_method_inner(
     mut range: Range< f64 >,
     e: f64,
     f: \operatorname{Rc} < \operatorname{dyn} \operatorname{Fn}(f64) \longrightarrow f64 >
     times: usize,
     expected_value: f64,
     mut data: Vec < (f64, f64) >,
) \rightarrow (f64, Vec<(f64, f64)>) {
     let x_new = (range.end + range.start) / 2.;
     if f(x_new) * f(range.start) >= 0. {
          range.start = x_new;
```

```
} else {
        range.end = x_new;
    data.push((times as f64, (x_new - expected_value).abs()));
    if range.end - range.start <= e {
        (x_new, data)
    } else {
        bisection_method_inner(
            range, e, f, times + 1, expected_value, data
        )
    }
}
#[cfg(test)]
mod tests_bisection_method {
    use crate::bisection_method::*;
    #[test]
    fn tests_bisection_method() {
        let f = Rc :: new(|x: f64|)
            x.powf(5.) - 3. * x.powf(4.) + x.powf(3.)
                + 5. * x.powf(2.) - 6. * x + 2.
        });
        assert_eq!(
            (bisection_method(
                -2f64..0f64, 1e-3, f.clone(), -1.414213566237)
            ).0,
            -1.4150390625
        );
        assert_eq!(
            (bisection_method(
                -2f64..0f64, 1e-4, f.clone(), -1.414213566237)
            ).0,
            -1.41424560546875
```

```
);
         assert_eq!(
             (bisection_method(
                 -2f64..0f64, 1e-5, f.clone(), -1.414213566237)
             ).0,
             -1.4142074584960938\\
         );
    }
}
                     ソースコード 2 newton_raphson_method.rs
#![allow(dead_code)]
// pub mod newton_raphson_method {
pub use std::rc::Rc;
pub use std::result::Result;
pub fn newton_raphson_method(
    f: Rc < dyn Fn(f64) \rightarrow f64 >
    init: f64,
    expected_value: f64,
) -> Result <(f64, Vec <(f64, f64)>), String> {
    let threshold = 0.1e-10;
    let f_dir = differential_f(f.clone());
    let data: Vec < (f64, f64) > = Vec :: new();
    newton\_method(
         newton_transform(f, f_dir),
         init,
         threshold,
         1,
         1_{-}000_{-}000 ,
         expected_value,
        data,
}
```

```
fn differential_f(
     f: \operatorname{Rc} < \operatorname{dyn} \operatorname{Fn}(f64) \longrightarrow f64 >
) \rightarrow Rc<dyn Fn(f64) \rightarrow f64> {
     let dx = 0.1e-10;
     let f_{\text{dir}} = \text{move } |x: f64| \rightarrow f64 \{ (f(x + dx) - f(x)) / dx \};
     Rc::new(f_dir)
}
unsafe fn partial_derivative (
     f: Rc < dyn Fn(Vec < f64 >) -> f64 >,
     i: usize,
) \rightarrow Rc<dyn Fn(Vec<f64>) \rightarrow f64> {
     let dx = 0.1e-10;
     let f_der = move | v: Vec < f64 > | -> f64 
           let mut v_dx = v.clone();
           v_dx[i] += dx;
           (f(v_dx) - f(v)) / dx
     };
     Rc :: new(f_der)
}
fn\ newton\_transform\,(
     f: Rc < dyn Fn(f64) \rightarrow f64 >
     f_dir: Rc < dyn Fn(f64) -> f64>,
) \rightarrow Rc<dyn Fn(f64) \rightarrow f64> {
     Rc::new (move \mid x: \ f64 \mid \ -\!\!\!> \ f64 \ \{ \ x - \ f(x) \ / \ f\_dir(x) \ \})
}
fn newton_method(
     f: Rc < dyn Fn(f64) -> f64>,
     guess: f64,
     threshold: f64,
     times: usize,
```

```
limit: usize,
    expected_value: f64,
    mut data: Vec < (f64, f64) >,
) \rightarrow \text{Result} < (\text{f64}, \text{Vec} < (\text{f64}, \text{f64}) >), \text{String} > \{
    let next = f(guess);
    if next = f64 :: NEG\_INFINITY
    \parallel next = f64::INFINITY
    | |  next. is_nan() {
         return Err(format!(
              "x^{(k+1)} is not a number: last value is \{\}.", guess)
         );
    }
    if limit = times + 1 {
         return Err (format!(
              "solution doesn't converge: last value is {}.",
              next
         ));
    }
    data.push((times as f64, (next - expected_value).abs()));
    if (next - guess).abs() <= threshold {
         Ok((next, data))
    } else {
         newton_method(
              f, next, threshold, times + 1,
              limit, expected_value, data
         )
    }
}
\#[cfg(test)]
mod tests_newton_raphson_method {
    use crate::newton_raphson_method::newton_method;
    use crate::newton_raphson_method::*;
```

```
#[test]
fn test_newton_raphson_method_newton_raphson_method() {
    let f: Rc < dyn Fn(f64) \rightarrow f64 > = Rc :: new(|x: f64| \rightarrow f64)
         x.powf(5.) - 3. * x.powf(4.) + x.powf(3.)
             + 5. * x.powf(2.) - 6. * x + 2.
    });
    assert_eq!(
         newton\_raphson\_method(f, -1., -1.414213566237).unwrap().0
         -1.4142135623730951\\
    );
}
#[test]
fn test_newton_raphson_method_newton_method_neg_inf() {
    let f: Rc < dyn Fn(f64) \rightarrow f64 > = Rc::new(|x: f64| \rightarrow f64 \{ x \});
    assert_eq!(
         newton_method(
             f,
              f64::NEG_INFINITY,
              0.1e - 10,
              1,
              10000,
              -1.41,
             vec![(0f64, 0f64)]
         ),
         Err("x^(k+1) \text{ is not a number: last value is } -\inf.".to\_string())
    );
}
#[test]
fn test_newton_raphson_method_newton_method_inf() {
    let f: Rc < dyn Fn(f64) \rightarrow f64 > = Rc :: new(|x: f64| \rightarrow f64 \{ x \});
    assert_eq!(
         newton_method(
```

```
f,
                  f64::INFINITY,
                  0.1e - 10,
                  1,
                  10000,
                  -1.41,
                  vec![(0f64, 0f64)]
             ),
             Err("x^(k+1) is not a number: last value is inf.".to_string())
         );
    }
    #[test]
    fn test_newton_raphson_method_newton_method_nan() {
         let f: Rc < dyn Fn(f64) \rightarrow f64 > = Rc::new(|x: f64| \rightarrow f64 \{ x \});
         assert_eq!(
             newton\_method(f, f64::NAN, 0.1e-10, 1, 10000, -1.41, vec![(0 f64, 0 f64)]
             Err("x^(k+1) is not a number: last value is NaN.".to_string())
         );
    }
}
```

1 課題 1.1.1

$$f(x) = x^5 - 3x^4 + x^3 + 5x^2 - 6x + 2 (3)$$

とする。5 次方程式 f(x)=0 の解を最初に説明した二分法およびニュートン法を用いたプログラムを実行して解く。

二分法の初期期間を [-2, 0] とし、ニュートン法の初期近似解を-1 とする。そして反復回数を横軸に、それぞれの手法で得られた近似解と真値 $(-\sqrt{2})$ との誤差の絶対値を縦軸にとった片対数グラフをそれぞれ図に作成し、示す。

図1より、二分法 (青色) は収束にこそ時間がかかるが比較的誤差の大きさは小さいので初めからある程度は真値近くの値を示すのに対し、ニュートン法では収束の速さが速いが収束する前は真値とよりかけ離れた値を解の候補として提示することがわかる。

これは、二分法がもともと限られた範囲を二分していくためそこまで誤差が大きくなく安定して

解に収束していくのに対し、ニュートン法では関数の形に依存する。今回のグラフでは収束の様子が図 2 のように観測できた。このグラフでは候補の点の接線が x 軸と交わった点が次の候補点になる様子がわかった。

図1 二分法・ニュートン法の収束の速さ

図 2 ニュートン法による収束の様子

2 課題 1.1.2

電気電子計算工学及演習

1026-30-8137

多田 拓生

説明日 2020/10/*

課題 1.2

- 3 課題 1.2.1
- 4 課題 1.2.2
- 5 課題 1.2.3

電気電子計算工学及演習

1026-30-8137 多田 拓生

説明日

2019/*/*

課題 1.3

- 6 課題 1.3.1
- 7 課題 1.3.2

参考文献

- [1] 森正武. 『数値解析 (第 2 版)』. 共立出版, 2018.
- [2] 藤野和建伊理正夫. 『数値計算の常識』. 共立出版, 2011.