Which vector is the orthogonal projection of $\mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ onto $W = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix} \right\}$?

1/1 punto

- $\bigcirc \ \frac{1}{3} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}$

- $\bigcirc \ \frac{1}{3} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$

(V) Correcto

2. Suppose we have data points given by $(x_n,y_n)=(1,1)$, (2,1), and (3,3). If the data is to be fit by the line $y=\beta_0+\beta_1 x$, which is the overdetermined equation for β_0 and β_1 ?

1/1 punto

- $\begin{array}{ccc}
 \begin{pmatrix}
 1 & 1 \\
 1 & 1 \\
 3 & 1
 \end{pmatrix}
 \begin{pmatrix}
 \beta_0 \\
 \beta_1
 \end{pmatrix} = \begin{pmatrix}
 1 \\
 2 \\
 3
 \end{pmatrix}$
- $\bigcirc
 \begin{pmatrix}
 1 & 1 \\
 2 & 1 \\
 3 & 1
 \end{pmatrix}
 \begin{pmatrix}
 \beta_0 \\
 \beta_1
 \end{pmatrix} = \begin{pmatrix}
 1 \\
 1 \\
 3
 \end{pmatrix}$
- $\bigcirc \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

3. Suppose we have data points given by $(x_n,y_n)=(1,1),(2,1),$ and (3,3). Which is the best fit line to the data?

- $\bigcirc \ \ y = \frac{1}{3} + x$
- $O_{y=1+\frac{1}{3}x}$
- $O_{y=1-\frac{1}{3}x}$
 - **⊘** Correcto