Frühjahr 14 Themennummer 2 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei
$$f: \mathbb{C}\setminus\{-1,1\} \to \mathbb{C}, \ z \mapsto \frac{z^2}{z^2-1}$$
.

- a) Bestimmen Sie für jede der Singularitäten von f den Typ und berechnen Sie das Residuum.
- b) Zeigen Sie, dass für $U:=\{z\in\mathbb{C}:|z|>2\}$ die Einschränkung $f_U:U\to\mathbb{C},z\mapsto\frac{z^2}{z^2-1}$ eine holomorphe Stammfunktion besitzt.

Lösungsvorschlag:

- a) Beide Singularitäten (±1) sind einfache Nullstellen des Nenners, für die der Zähler nicht verschwindet. Es handelt sich also um Pole erster Ordnung, für die wir das Residuum mittels $\operatorname{Res}_f(\pm 1) = \frac{(\pm 1)^2}{2 \cdot (\pm 1)} = \pm \frac{1}{2}$ berechnen können.
- b) Sei $\gamma:[a,b]\to U$ ein geschlossener, stückweise stetig differenzierbarer Weg. Weil f holomorph auf der konvexen offenen Menge $\mathbb C$ ist, abgesehen von den beiden, demnach endlich vielen, Singularitäten und der Weg keine Singularität berührt, können wir mit dem Residuensatz das Wegintegral $\int_{\gamma} f(z) \, \mathrm{d}z$ berechnen. Weil γ nur in U verläuft stimmen die Windungszahlen um -1 und 1 überein. Es gilt also $\int_{\gamma} f(z) \, \mathrm{d}z = \frac{1}{2} \mathrm{Ind}_1(\gamma) \frac{1}{2} \mathrm{Ind}_{-1}(\gamma) = 0$ für alle solchen Wege γ . Weil U offen und wegzusammenhängend ist, f stetig auf U ist, und jedes Pfadintegral über einen geschlossenen Weg verschwindet, existiert eine holomorphe Stammfunktion von f auf U ($z \mapsto \int_{\gamma} f(z) \, \mathrm{d}z$, wobei $\gamma: [0,1] \to U$ ein C^1 -Weg mit $\gamma(0) = 2, \gamma(1) = z$ ist).

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$