

Melbourne Veterinary School

Microscopic Anatomy Connective Tissue

Dr Smitha Georgy
Senior Lecturer Veterinary Pathology

s.georgy@unimelb.edu.au

VETS30015 / VETS90121

Intended Learning outcomes

At the end of the lecture, you should be able to:

- Explain how the basic tissue types combine to form body systems
- Explain the basic structure of connective tissues
- Identify the cells and extracellular material found in connective tissues

- Histology is the study of the structure of tissues at microscopic level
- The arrangement of cells within the tissue
- Structural levels of organization in the body

Why is it important to study histology?

- To understand the function of the organ, it is important to know how cells are arranged in the organ
- It is the basis of understanding the pathology

How histological slides are prepared?

Mold with Specimen Paraffin Block in Melted Paraffin Removed from

Trimmed

Removed from Mold Block

Things to consider while examining slides

- Two-dimensional representation of a three-dimensional structure
- When a tubular structure is cut in different planes the appearance will vary
- Various artifacts
 - Post-mortem change
 - Variation in staining
 - Folds in section
 - Air bubbles in mounting medium
 - Shrinking of tissue

Interpreting sections

Harrison Patrick

Artifacts

8

Terminology

Staining Characteristics

- Eosinophilic pink cytoplasm
- Basophilic blue DNA and RNA

Naming of cells

- Cells with 'blast' at the end e.g., Fibroblast
- Cells with 'cyte' at the end e.g., Fibrocyte

Tongue, Dog

Types of tissue

Tissue

Organs

Connective tissue

Epithelial tissue

Muscular tissue

Nervous tissue

https://medlineplus.gov/ency/imagepages/8682.htm

- Introduction to histology
- How to process tissues for histological examination
- Artifacts
- Terminology
- Types of tissue

Melbourne Veterinary School

Microscopic Anatomy Connective Tissue

Dr Smitha Georgy
Senior Lecturer Veterinary Pathology

s.georgy@unimelb.edu.au

VETS30015 / VETS90121

Connective Tissue (CT)

Function of Connective Tissue:

- Support
- Transportation
- Energy source
- Storage
- Inflammation and tissue repair

Composition of connective tissue

Umbilical cord, Cow

Cells (1)

Extracellular material (2,3)

Amorphous (2)— no shape

• Fibrous (3)

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

THE UNIVERSITY OF MELBOURNE COnnective tissue cells

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

- Mesenchymal cell
- Fibroblast
- Fibrocyte
- Adipocyte
- Macrophage
- Mast cell
- Plasma cell
- Melanocyte

Composition of connective tissue

Umbilical cord, Cow

Cells (1)

Extracellular material (2,3)

- Amorphous (2)— no shape
 - ✓ Fluid
 - ✓ Jelly
 - ✓ Solid
- Fibrous (3)

Connective tissue – Jelly like ECM

Extracellular material

- Amorphous
 - ✓ Fluid
 - ✓ Jelly
 - ✓ Solid
- Fibrous

Connective Tissue - Fibrous ECM

Extracellular material

- Amorphous
- Fibrous
 - ✓ Collagen fibers
 - ✓ Reticular fibers
 - ✓ Elastic fibers

Skin, Horse

Connective Tissue - Fibrous ECM

Extracellular material

- Amorphous
- Fibrous
 - ✓ Collagen fibers
 - ✓ Reticular fibers
 - ✓ Elastic fibers

Connective Tissue - Fibrous ECM

Extracellular material

- Amorphous
- Fibrous
 - ✓ Collagen fibers
 - ✓ Reticular fibers
 - ✓ Elastic fibers

Verhoeff-van Gieson's stain

Skin, Horse

Connective Tissue - classification

Connective Tissue - classification

Classification - CT

Tendon

- 7 nucleus
- 3 collagen fiber

Thank you!

