COQ875 – Química Quântica de Moléculas e Sólidos - 2025/2

Aula 01 - Apresentação do Curso Onde queremos chegar?

Prof. Elvis Soares

elvis@peq.coppe.ufrj.br

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H} |\Psi\rangle$$

$$|\Psi\rangle = |\psi\rangle e^{-iEt/\hbar}$$

$$\hat{H} |\psi\rangle = E |\psi\rangle$$

Infos

https://github.com/elvissoares/COQ875-QuimicaQuantica

https://elvissoares.com/ensino

Horário de aulas: 3a e 5a, 13:00-15:00

Sala de Aula: G127

Calendário: 24/Jun - 11/Set (~24 encontros)

CRITÉRIOS DE AVALIAÇÃO

- 20% de Presença e Participação
- 40% de Listas de Exercícios (~8 listas)
- 40% de Projeto Final

EMENTA

- 1) Fundamentos da Mecânica Quântica;
- 2) Estrutura Eletrônica de Átomos e Moléculas;
- 3) Teoria do Funcional da Densidade;
- 4) Estrutura Eletrônica de Sólidos;
- 5) Aplicações na Engenharia Química.

1)Fundamentos da Mecânica Quântica;

- i. Experimentos Fundadores da Mecânica Quântica
- ii. Bases Teóricas da Mecânica Quântica
- iii. Postulados da Mecânica Quântica
- iv. Operadores na Mecânica Quântica: posição, momento linear, momento angular e spin
- v. Álgebra de Operadores: Auto-valores, autovetores, mudança de base, comutadores
- vi. Equação de Schroedinger
- vii. Interpretação Probabilística da função de onda
- viii. Aplicações: Poço Quadrado, Tunelamento, Rotor rígido, Oscilador harmônico
- ix. Átomo de Hidrogênio

2) Estrutura Eletrônica de Átomos e Moléculas;

- i. O problema eletrônico
- ii. Aproximação de Born-Oppenheimer
- iii. Teorema Variacional: aplicação no Átomo de He e molécula de H2
- iv. Determinante de Slater
- v. Método de Hartree-Fock
- vi. Conjunto de Base
- vii. Equações de Roothan e método autoconsistente
- viii. Discussão de métodos pós-HF e semiempíricos
- ix. Teorias de perturbação
- x. Densidade eletrônica, momento de dipolo elétrico e polarizabilidade
- xi. Interação da radiação com moléculas
- xii. Espectro micro-ondas e a rotação molecular
- xiii. Espectro IR e Raman e a vibração molecular
- xiv. Calor específico de gases
- xv. Ressonância magnética nuclear e de spin eletrônico

3) Teoria do Funcional da Densidade;

- i. Modelo de Thomas-Fermi
- ii. Teoremas de Kohn Hohenberg
- iii. Cálculo Variacional
- iv. Orbitais de Kohn-Sham
- v. Funcionais de troca e correlação
- vi. Discussão sobre TDDF e outras formulações de DFT

4) Estrutura Eletrônica de Sólidos;

- i. Redes de Bravais, Estruturas Cristalinas
- ii. Rede Recíproca: 1ª zona de Brillouin, Índices de Miller
- iii. Difração de raios-X por cristais
- iv. Teorema de Bloch
- v. Densidade de Estados
- vi. Estrutura de Bandas
- vii. Discussão de métodos avançados: Método tight-binding, projetor de onda aumentada, pseudopotenciais
- viii. Propriedades óticas de sólidos
- ix. Vibrações cristalinas e fônons
- x. Espectro Raman de sólidos
- xi. Calor específico de sólidos

- 5) Aplicações na Engenharia Química.
 - i. Reação química
 - ii. Adsorção
 - iii. Catálise
 - iv. Métodos para estados intermediários
 - v. Cálculo de Espectros
 - vi. Métodos de Dinâmica Ab-Initio

Relative electronic energy:

$$\Delta E = E_{product} - E_{reactant}$$

Ferramentas Computacionais

Contexto

Brasil, H., Bittencourt, A. F. B., Yokoo, K. C. E. S., Mendes, P. C. D., Verga, L. G., Andriani, K. F., Landers, R., Da Silva, J. L. F., & Valença, G. P. (2021). Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio. Journal of Catalysis, 404, 802–813. https://doi.org/10.1016/j.jcat.2021.08.050

2.3. Theoretical calculations

All total energy calculations were based on spin-polarized DFT [45,46] adopting the semilocal Perdew–Burke–Ernzerhof (PBE) formulation for the exchange–correlation functional [47]. The semiempirical D3 van der Waals (vdW) correction proposed by Grimme [48] was used to improve the description of long-range vdW interactions. We employed the Vienna *ab initio* simulation package (VASP), version 5.4.1, which implements the all-electron projected augmented-wave (PAW) method [49–52]. The electron–ion interactions were described by the PAW projectors provided within VASP along with a plane-wave cutoff energy of 489 eV, which is 12.5% higher than the largest recommended value considering all chemical elements (C, Ca, H, O, and P).

The initial geometries of the isolated gas-phase molecules were obtained from the PubChem database [53] and optimized using a 20 Å cubic box. The clean hexagonal HAP(0001) surface was modeled using a repeated slab geometry with a thickness of four layers (one formula unit, $Ca_5(PO_4)_3(OH)$, per layer and Ca/P ratio of 1.67), and a vacuum region of 15 Å. To search for the lowest energy configurations, 30 distinct structures were built for each adsorbed system using a 1 \times 1 surface unit cell with $a_0 = b_0 = 9.497$ Å (88 atoms within the unit cell). The adsorption structures were built by symmetrically placing adsorbates on both sides of the slab with respect to its center of inversion. As a result, dipole correction was no longer required. Once the lowest energy configurations were identified, the optimized adsorbed structures were placed on the surface 2 \times 2 unit cell ($a_0 = b_0 = 18.995$ Å, 352 atoms within the unit cell) for a final structure optimization. All optimized structures were calculated allowing all atoms to relax through the conjugate gradient algorithm. The total energy convergence criterion was set to 10^{-5} eV with a force convergence of 0.025 eV Å⁻¹ on each atom. Only the Γ -point was employed for the Brillouin zone integration.

Referências

- Vianna, D. M., Fazzio, A., Canuto, S. (2018). Teoria Quântica de Moléculas e Sólidos: Simulação Computacional. Livraria da Física.
- Levine, I. N. (2013). Quantum Chemistry,
 7th Edition. Pearson
- McQuarrie, D. A. (2008). Quantum chemistry, 2nd Edition. University Science Books.
- Teixeira-Dias, J. J. (2017). Molecular
 Physical Chemistry. Springer International Publishing AG.

Referências

- Szabo, A., & Ostlund, N. S.
 (1996). Modern quantum chemistry: introduction to advanced electronic structure theory. Courier Corporation.
- Jensen, F. (2017). Introduction to computational chemistry. John wiley & sons.
- Cramer, C. J. (2013). Essentials of computational chemistry: theories and models. John Wiley & Sons.
- Martin, R. M. (2020). Electronic structure: basic theory and practical methods.
 Cambridge university press.

FÍSICA QUÂNTICA

(1900 - 2025)

1900 Hipótese Quântica

Envolvido: Max Planck

Planck propôs que energia é emitida pequenos pacotes, chamados quanta. Segundo a teoria, os quanta são os menores pacotes de energia existentes.

1905 Efeito Fotoelétrico

Envolvido: Albert Einstein

Einstein demonstrou que a luz é composta por partículas, que, posteriormente, ficaram conhecidas como fótons, propondo que a quantização apresentada por Planck era uma propriedadeválida para todas as interações envolvendo radiação eletromagnética.

1913

Modelo Atômico de Bohr

Envolvido: Niels Bohr

Bohr propôs que os elétrons orbitam o núcleo do átomo em níveis de energia quantizados, abrindo caminho para a mecânica quântica.

1924

Dualidade Onda-Partícula

1 1 1

111

111

Envolvido: Louis de Broglie

De Broglie sugeriu que partículas, como os elétrons, podem apresentar um comportamento tanto de partícula, como de onda.

1925

Formulação da Mecânica Quântica

Envolvido: Werner Heisenberg

Heisenberg apresentou a mecânica matricial, que consistiu na primeira teoria geral dos fenômenos quânticos aceita pelos físicos.

1926

Equação de Schrödinger

Envolvido: Erwin Schrödinger

41111

11111

100 100 100

.

.....

.

111111

Schrödinger desenvolveu a mecânica ondulatória e descreveu como o estado quântico de um sistema físico muda com o tempo.

1927 Princípio da Incerteza

Envolvido: Werner Heisenberg

O princípio afirma que a posição e o momento de uma particula não podem ser determinados com precisão simultaneamente. Ou seja, quanto mais uma propriedade é medida, menos se sabe da outra.

1935 Paradoxo EPR

Envolvidos: Einstein, Podolsky, Rosen

O paradoxo EPR questionou se a descrição da realidade a partir da mecânica quântica era completa. O trio apontou a possível existência de variáveis ocultas que deveriam ser consideradas e introduziram o conceito de emaranhamento quântico.

1981 Conceito de Computação Quântica

Envolvido: Richard Feynman
Feynman propôs utilizar a mecânica quântica para desenvolver computadores melhores e
com maior capacidade de processamento: os computadores
quânticos. Esse se tornou um
dos principais desafios científicos e tecnológicos da contemporaneidade.

2001

Primeiro Algoritmo Quântico Demonstrado 1111

Envolvidos: Pesquisadores da IBM

O algoritmo de Shor, demonstrou a viabilidade da computação quântica ao utilizar bits quânticos para a fatoração de números.

2019 Vantagem Quântica

Envolvidos: Equipe Google Al Quantum

A Google anunciou que seu computador quântico superou a capacidade de um clássico em tarefas específicas.

2025

Ano Internacional da Ciência e Tecnologia Quânticas

Arte: Equipe de Arte ACI

unesp* QCi