DIGITAL LOGIC DESIGN

by

Dr. Fenghui Yao

Tennessee State University
Department of Computer Science
Nashville, TN

Definitions

- Switching network
 - One or more inputs
 - One or more outputs
 - Two Types
 - Combinational
 - The output depends only on the present values of the inputs
 - Logic gates are used
 - Sequential
 - The output depends on present and past input values

Boolean Algebra

- Boolean Algebra is used to describe the relationship between inputs and outputs
- Boolean Algebra is the logic mathematics used for understanding of digital systems

Basic Operations

COMPLEMENT (INVERSE)

$$0' = 1$$
 and $1' = 0$

$$A' = 1$$
 if $A = 0$ and $A' = 0$ if $A = 1$

F
1
0

0 is low voltage

1 is high voltage

Basic Operations

AND

F is 1 if and only if
A and B are both 1

Basic Operations

OR

А	В	F
0	0	0
0	1	1
1	0	1
1	1	1

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} F = A + B \end{array}$$

F is 1 if and only if

A or B (or both) are 1

Basic Theorems

$$X + 0 = X$$
 $X \cdot 1 = X$
 $X + 1 = 1$ $X \cdot 0 = 0$
 $X + X = X$ $X \cdot X = X$
 $(X')' = X$ $X + XY = X$
 $X + X' = 1$ $X(X + Y) = X$

Let's prove each one

Simplification Theorems

1.
$$XY + XY' = X$$

2.
$$(X + Y)(X + Y') = X$$

$$X + XY = X$$

$$4. \quad X(X+Y)=X$$

$$5. \quad (X+Y')Y=XY$$

$$6. \quad XY^{'} + Y = X + Y$$

Proof 6.

R.H.S. = X+Y

$$= X(Y+Y')+Y(X+X')$$

$$= XY + XY' + XY + X'Y$$

$$= XY + XY' + X'Y$$

$$=(X+X')Y+XY'$$

$$= Y + XY'$$

Truth Table

- It can represent a boolean function
- For possible input combinations it shows the output value
- There are 2^n rows (n is the number of input variables)
- It ranges from 0 to 2^n-1

Examples

Show the truth table for

$$F = X' + YZ$$

 Show the followings by constructing truth tables

$$X(Y+Z) = XY + XZ$$
$$X + YZ = (X + Y)(X + Z)$$

Example

Draw the network diagram for

$$F = X' + YZ$$

Example

Draw the network diagram for

$$F = XYZ' + XY'Z + X'Y'$$

Operator Precedence

- Parenthesis
- NOT
- AND
- OR

Inversion

$$(X+Y)' = X'Y'$$
 $(XY)' = X'+Y'$

Prove with the truth tables...

$$(X_1 + X_2 + ... + X_n)' = X_1' X_2' ... X_n'$$

 $(X_1 X_2 ... X_n)' = X_1' + X_2' + ... + X_n'$

- The complement of the product is the sum of the complements
- The complement of the sum is the product of the complements

Examples

Find the complements of

$$[(A' + B)C']' = ?$$
 $[(AB' + C)D' + E]' = ?$
 $[A + ((BC')' + D)']' = ?$

Study Problems

1. Draw a network to realize the following by using only one AND gate and one OR gate

$$Y = ABCD + ABCE + ABCF$$

2. Draw a network to realize the following by using two OR gates and two AND gates

$$F = (V + W + X)(V + X + Y)(V + Z)$$

3. Prove the following equations using truth table

$$W'XY + WZ = (W' + Z)(W + XY)$$

 $(A + C)(AB + C') = AB + AC'$

Solution of problem 2

$$L.H.S.=(V+X+W)(V+X+Y)(V+Z)$$

$$=[(V+X)+W(V+X)+Y(V+X)+WY](V+Z)$$

$$=[(V+X)(1+W+Y)+WY](V+Z)$$

$$=(V+X+WY)(V+Z)$$

This can be implemented by two OR gates and two AND gate.

Minterms

- Consider variables A and B
- Assume that they are somehow combined with AND operator
- There are 4 possible combinations

$$AB$$
, AB , AB , AB

- Each of those terms is called a minterm (standard product)
- In general, if there are n variables, there are 2ⁿ minterms

Exercise

List the minterms for 3 variables

Α	В	C	Minterm	Designation
0	0	0	A'B'C'	m_0
0	0	1	A'B'C	m_1
0	1	0	A'BC'	m_2
0	1	1	A'B C	m_3
1	0	0	A B'C'	m_4
1	0	1	A B'C	m_5
1	1	0	A B C'	m_6
1	1	1	ABC	m_7

Maxterms

- Consider variables A and B
- Assume that they are somehow combined with OR operator
- There are 4 possible combinations

$$A+B$$
, $A'+B$, $A+B'$, $A'+B'$

- Each of those terms is called a maxterm (standard sums)
- In general, if there are n variables, there are 2ⁿ maxterms

Exercise

List the maxterm for 3 variables

A	В	С	Maxterm	Designation
0	0	0	A+B+C	M_0
0	0	1	A+B+C'	M_1
0	1	0	A+B'+C	M_2
0	1	1	A+B'+C'	M_3
1	0	0	A'+B+C	M_4
1	0	1	A'+B+C'	M_{5}
1	1	0	A'+B'+C	M_6
1	1	1	A'+B'+C'	M_7

Example

 Express F in the sum of minterms and product of maxterms formats

$$F = A + BC'$$

$$F = A + BC' = A(B + B')(C + C') + (A + A')BC'$$

$$= ABC + ABC' + AB'C + AB'C' + ABC' + A'BC'$$

$$= ABC + ABC' + AB'C + AB'C' + A'BC'$$

$$= m_7 + m_6 + m_5 + m_4 + m_2$$

$$= \sum (2,4,5,6,7)$$

$$= \prod (0,1,3)$$

Sum-of-Products

 All products are the product of single variable only

$$AB^{'}+CD^{'}E+AC^{'}E^{'}$$
 YES
 $A+B^{'}+C+D^{'}E$ YES
 $(A+B)CD+EF$

Sum-of-Products

 One or more AND gates feeding a single OR gate at the output

$$AB' + CD'E + AC'E'$$

Product-of-Sums

 All sums are the sums of single variables

$$(A + B')(C + D' + E)(A + C' + E')$$
 YES
$$AB'C(D' + E)$$
 YES
$$(A + B)(C + D) + EF$$
 NO

Product-of-Sums

 One or more OR gates feeding a single AND gate at the output

$$(A+B')(C+D'+E)(A+C'+E')$$

Logic Gates

NAND

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

NOR

$$F = A \downarrow B$$

Exclusive-OR (XOR)

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	1

Exclusive-NOR (XNOR)

 $F = A \uparrow B$

Exclusive-OR

А	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive-OR (XOR)

$$A \oplus 0 = A$$

$$A \oplus 1 = A'$$

$$A \oplus A = 0$$

$$A \oplus A' = 1$$

$$A \oplus B = B \oplus A$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$$

$$A(B \oplus C) = AB \oplus AC$$

$$(A \oplus B)' = A \oplus B' = A' \oplus B = AB + A'B'$$

 $A \oplus B = 1 \Leftrightarrow A = 1$ or B = 1 but not both

Equivalence

Equivalence is the complement of exclusive-OR

$$(A \oplus B)' = (A'B + AB')' = (A + B')(A' + B) =$$

= $AB + A'B' = (A \equiv B)$

$$F = (A'B \equiv C) + (B \oplus AC')$$

Simplify it...

Integrated Circuits

- SSI (Small Scale)
 - Less than 10 gates in a package
- MSI (Medium Scale)
 - > 10-1000 gates in a package
- LSI (Large Scale)
 - > 1000s of gates in a single package
- VLSI (Very Large Scale)
 - Hundred of thousands of gates in a single package

Study Problems

- Course Book Chapter 2 Problems
 - > 2 − 1
 - > 2 − 3
 - > 2 − 5
 - > 2 − 8
 - > 2 − 12
 - > 2 − 14

