

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 40V,9A, $R_{DS(on),max} = 16m\Omega@V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- ♦ UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 40V \\ R_{DS(on),max} @ V_{GS} \text{=} 10V & 16m\Omega \\ I_D & 9A \end{array}$

Pin Configuration

SOP-8

Schematic

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	40	V
Continuous drain current (T _A = 25°C)		9	A
(T _A = 100°C)	I _D	5	A
Pulsed drain current ¹⁾	I _{DM}	27	А
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	E _{AS}	4	mJ
Power Dissipation	P _D	2.1	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	60	°C/W
Thermal Resistance Junction-to-Ambient	R _{θJA}	60	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VST04N160-S8	SOP-8	VST04N160-S8

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics			•			1
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	40			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	1.2	1.7	2.5	V
Drain-source leakage current	I _{DSS}	V _{DS} =40 V, V _{GS} =0V			1	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance		V _{GS} =10 V, I _D =6 A		12.8	16	mΩ
	R _{DS(on)}	V _{GS} =4.5 V, I _D =5 A		18.8	25	mΩ
Forward transconductance	gfs	V _{DS} =5V , I _D =6A		31		S
Dynamic characteristics						
Input capacitance	C _{iss}	45,47,4		378		pF
Output capacitance	Coss	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		242		
Reverse transfer capacitance	Crss	- F = 1MHz		19.5		
Turn-on delay time	t _{d(on)}			12.5		
Rise time	tr	$V_{DD} = 20V, V_{GS} = 10V, I_D = 6A$		5.5		ns -
Turn-off delay time	t _{d(off)}	R _G =3.3Ω		18.3		
Fall time	t _f			9.2		
Gate resistance	Rg	V _{GS} =0 V,V _{DS} =0 V, F=1MHz		2.2		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}	V 00V I 0A		2.8		
Gate to drain charge	Q _{gd}	V _{DS} =32V, I _D =6A, V _{GS} = 10 V		1.1		nC
Gate charge total	Qg	- VGS- 10 V		7.6		
Drain-Source diode characteris	tics and Maxi	mum Ratings				
Continuous Source Current	Is				1.7	А
Pulsed Source Current ³⁾	Ism				5.1	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =6A, T _J =25℃			1.2	V
Reverse recovery time	t _{rr}	I _F =6A,dI _F /dt=100 A/μs		20.2		ns
Reverse recovery charge	Qrr			35.3		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS}=9A, Starting T_J=25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width \leq 300 \upmu s, Duty Cycle \leq 2%.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature

Figure 8. V_{GS(th)}-Junction Temperature

Figure 9. On-Resistance vs. Gate-to-Source voltage

Figure 10: Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

