A Ouick Recap

CMPE 322/327 - Theory of Computation

Week 3: Nondeterministic Finite State Automata & Epsilon Transitions

Burak Ekici

March 7-11, 2022

Epsilon Transitions

Outline

A Ouick Recap

•000

- 1 A Quick Recap
- 2 Nondeterministic Finite Automata

Definitions

A Ouick Recap

0000

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

Epsilon Transitions

A Ouick Recap

0000

- deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with
 - **1 Q**: finite set of states

Epsilon Transitions

A Ouick Recap

0000

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q: finite set of states

② Σ: input alphabet A Ouick Recap

0000

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

1 Q: finite set of states

⑤ δ : $Q \times \Sigma \rightarrow Q$: transition function

Epsilon Transitions

Epsilon Transitions

Definitions

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

1 Q: finite set of states

 Σ : input alphabet **6** $\delta: Q \times \Sigma \rightarrow Q:$ transition function

 \P $s \in Q$: start state

Epsilon Transitions

Definitions

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

1 Q: finite set of states

 Σ : input alphabet

 \bullet $\delta: Q \times \Sigma \rightarrow Q:$ transition function

 $4 s \in Q$: start state

 \bigcirc $F \subseteq Q$: final (accept) states A Ouick Recap

0.00

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q: finite set of states

 Σ : input alphabet

 \bullet $\delta: Q \times \Sigma \rightarrow Q:$ transition function

 $4 s \in Q$: start state

⑤ $F \subseteq Q$: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

Definitions

A Quick Recap

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

 $oldsymbol{\mathcal{Q}}\ \Sigma$: input alphabet

(S) $\delta: Q \times \Sigma \rightarrow Q:$ transition function

 $\bigcirc g : S \in Q$: start state

⑤ $F \subseteq Q$: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

• string $x \in \Sigma^*$ is accepted by M if $\hat{\delta}(s, x) \in F$

A Ouick Recap

0.00

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q: finite set of states

 Σ : input alphabet

 \bullet $\delta: O \times \Sigma \to O:$ transition function

 $\bigcirc S \in Q$: start state

⑤ F ⊂ O: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$

$$\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$$

• string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$

• string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$

A Ouick Recap

0.00

• deterministic finite automaton (DFA) is quintuple $M = (Q, \Sigma, \delta, s, F)$ with

① Q: finite set of states

 Σ : input alphabet

 \bullet $\delta: O \times \Sigma \to O:$ transition function

 $4s \in Q$: start state

⑤ F ⊆ O: final (accept) states

• $\hat{\delta}: Q \times \Sigma^* \to Q$ is inductively defined by

$$\widehat{\delta}(q, \varepsilon) := q$$
 $\widehat{\delta}(q, xa) := \delta(\widehat{\delta}(q, x), a)$

- string $x \in \Sigma^*$ is accepted by M if $\widehat{\delta}(s, x) \in F$
- string $x \in \Sigma^*$ is rejected by M if $\widehat{\delta}(s,x) \notin F$
- language accepted by M is given by $L(M) := \{x \mid \widehat{\delta}(x,s) \in F\}$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

0000

Epsilon Transitions

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

0000

Epsilon Transitions

①
$$Q = \{1, 2, 3\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

0000

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

0000

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

0000

Epsilon Transitions

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

Epsilon Transitions

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

4
$$s = 1$$

6
$$F = \{2\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

6
$$F = \{2\}$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1

 $\in L(M)$

$$M = (Q, \Sigma, \delta, s, F)$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

6
$$F = \{2\}$$

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b а

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$

- **6** $F = \{2\}$

- δ a b
 1 1 2
- 2 3 3 3 3 3

1 1 1 1 1

- a a b b
- 1 1 1 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b а

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b а

A Ouick Recap

0000

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

- b b а

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b а

$$M = (Q, \Sigma, \delta, s, F)$$

а

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

- b b а

Epsilon Transitions

b

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b а

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b а

 $\in L(M)$

Example (DFA → Regular Sets)

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$

- **6** $F = \{2\}$

- δ a b
 1 1 2
- 2 3 3 3 3 3

- 1 1 1 1 1
- a a b b
- 1 1 1 2 3

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

Epsilon Transitions

- b b а

$$M = (Q, \Sigma, \delta, s, F)$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **a** s = 1
- **⑤** $F = \{2\}$

- $\begin{array}{c|cccc} \delta & a & b \\ \hline 1 & 1 & 2 \end{array}$
- 2 3 3 3 3 3

- 1 1 1 1 1
 - a a b b a $\not\in L(M)$

 $\in L(M)$

1 1 1 2 3

$$M = (Q, \Sigma, \delta, s, F)$$

а

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **a** s = 1
- ⑤ $F = \{2\}$

- δ a b
 1 1 2
- 2 3 3 3 3 3

- 1 1 1 1 1 1
 - a a b b a $\notin L(M)$

а

b

1 1 1 2 3 3

$$L(M) := \{x \mid$$

00.00

Example (DFA → Regular Sets)

а

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$
- **4** s = 1
- **⑤** $F = \{2\}$

- - b $\notin L(M)$ а b

а

 $\in L(M)$

3 3

 $L(M) := \{x \mid x = a^n b, n \ge 0\}$

A Quick Recap

0000

set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

Definition

A Ouick Recap

000

set $A \subseteq \Sigma^*$ is regular if A = L(M) for some DFA M

Theorem

regular sets are effectively closed under intersection, complement and union

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Nondeterministic Finite Automata
- 3 Epsilon Transitions

A Ouick Recap

A Ouick Recap

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,S,F)$ with Q:

Definitions

A Ouick Recap

 nondeterministic finite automaton (NFA) is quintuple N = $(Q, \Sigma, \Delta, S, F)$ with

① Q: 2Σ : finite set of states input alphabet

(NFA)

is

quintuple

N =

 $(Q, \Sigma, \Delta, S, F)$

with

A Ouick Recap

• nondeterministic finite automaton • $\mathbf{0}$ Q: finite set of states • $\mathbf{\Sigma}$: input alphabet • $\mathbf{\Delta}: Q \times \Sigma \rightarrow \mathbf{2}^Q$: transition function

7/27

with

A Ouick Recap

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,S,F)$ finite set of states

⑤ $\Delta: Q \times \Sigma \rightarrow {\color{red} 2^Q}:$ transition function

 $4 S \subseteq Q$: set of start states

Definitions

A Ouick Recap

 nondeterministic finite (NFA) quintuple N = $(Q, \Sigma, \Delta, S, F)$ with automaton is

1 Q: finite set of states Σ : input alphabet

transition function

 $\bigcirc S \subseteq Q$: set of start states

 \bigcirc $F \subseteq Q$: final (accept) states

A Quick Recap

①
$$Q = \{1, 2, 3\}$$

$$\bigcirc Q = \{1, 2, 3\}$$

$$\Sigma = \{a, b\}$$

- $\bigcirc Q = \{1, 2, 3\}$
- $\Sigma = \{a, b\}$

①
$$Q = \{1, 2, 3\}$$

Δ	a	b
1	{1,2}	{1}
2	{3}	{1,3}
3	{3}	Ø

A Ouick Recap

①
$$Q = \{1, 2, 3\}$$

$$\mathbf{Q} \Sigma = \{\mathbf{a}, \mathbf{b}\}$$

$$\P$$
 $S = \{1\}$

Δ	a	b
1	{1,2}	{1}
2	{3}	{1,3}
3	{3}	Ø

$$\bigcirc Q = \{1, 2, 3\}$$

$$\mathbf{Q} \Sigma = \{\mathbf{a}, \mathbf{b}\}$$

$$\P S = \{1\}$$

6
$$F = \{3\}$$

A Ouick Recap

• nondeterministic finite automaton (NFA) is quintuple $N=(Q,\Sigma,\Delta,S,F)$ with

1) Q: finite set of states Q: input alphabet

6) $\Delta: Q \times \Sigma \rightarrow 2^Q:$ transition function

 $4 \le Q$: set of start states

⑤ $F \subseteq Q$: final (accept) states

• $\widehat{\Delta} \colon 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

 $\widehat{\Delta}(A, \varepsilon) := A$ $\widehat{\Delta}(A, xa) := \bigcup_{q \in \widehat{\Delta}(A, x)} \Delta(q, a)$

A Ouick Recap

Definitions nondeterministic finite automaton (NFA) is quintuple $(Q, \Sigma, \Delta, S, F)$ with **(1)** O: finite set of states Σ : input alphabet **⑤** $\Delta : O \times \Sigma \rightarrow 2^{Q} :$ transition function $\bigcirc S \subseteq O$: set of start states ⑤ $F \subseteq Q$: final (accept) states • $\widehat{\Delta}: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by $\widehat{\Delta}(A, \varepsilon) := A$ $\widehat{\Delta}(A, xa) :=$ $\Delta(q,a)$ $a \in \widehat{\Delta}(A, x)$ • string $x \in \Sigma^*$ is accepted by N if $\widehat{\Delta}(S, x) \cap F \neq \emptyset$

Example (Unfolding of the multistep function $\widehat{\Delta}$)

Let x = ababba over the alphabet $\Sigma = \{a, b\}$

A Ouick Recap

Example (Unfolding of the multistep function $\widehat{\Delta}$)

Let
$$x = ababba$$
 over the alphabet $\Sigma = \{a, b\}$ $\bigcup (q \in \widehat{\Delta}(A, ababb), a)$

A Ouick Recap

1st rec. call

Epsilon Transitions

Example (Unfolding of the multistep function $\widehat{\Delta}$)

Let
$$x = ababba$$
 over the alphabet $\Sigma = \{a, b\}$ $\bigcup (q \in \widehat{\Delta}(A, ababb), a)$ $\bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \Delta(q, b)) \Delta(q, a))$

A Ouick Recap

1st rec. call 2nd rec. call

Example (Unfolding of the multistep function $\widehat{\Delta}$)

A Ouick Recap

Let x = ababba over the alphabet $\Sigma = \{a, b\}$ $\bigcup (q \in \widehat{\Delta}(A, ababb), a)$ $\bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \, \Delta(q, b)) \, \Delta(q, a))$ $\bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, aba) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))$

1st rec. call 2nd rec. call 3rd rec. call

Epsilon Transitions

Example (Unfolding of the multistep function $\widehat{\Delta}$)

```
 \begin{array}{ll} \text{Let } x = ababba \text{ over the alphabet } \Sigma = \{a,b\} \\ & \bigcup (q \in \widehat{\Delta}(A,ababb),a) & 1^{\text{st}} \text{ rec. call} \\ & \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,abab) \, \Delta(q,b)) \, \Delta(q,a)) & 2^{\text{nd}} \text{ rec. call} \\ & \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba) \, \Delta(q,b)) \, \Delta(q,b)) \, \Delta(q,a)) & 3^{\text{rd}} \text{ rec. call} \\ & \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,ab) \, \Delta(q,a)) \, \Delta(q,b)) \, \Delta(q,a)) & 4^{\text{th}} \text{ rec. call} \\ \end{array}
```

```
Example (Unfolding of the multistep function \widehat{\Delta})
```

A Ouick Recap

```
Let x = ababba over the alphabet \Sigma = \{a,b\} \bigcup (q \in \widehat{\Delta}(A,ababb),a) \qquad \qquad 1^{\text{st}} \text{ rec. call } \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,abab) \, \Delta(q,b)) \, \Delta(q,a)) \qquad \qquad 2^{\text{nd}} \text{ rec. call } \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba) \, \Delta(q,b)) \, \Delta(q,b)) \, \Delta(q,a)) \qquad \qquad 3^{\text{rd}} \text{ rec. call } \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba) \, \Delta(q,b)) \, \Delta(q,b)) \, \Delta(q,b)) \, \Delta(q,a)) \qquad \qquad 4^{\text{th}} \text{ rec. call } \bigcup (q \in \widehat{\Delta}(A,ab) \, \Delta(q,b)) \, \Delta(q,b)) \, \Delta(q,b)) \, \Delta(q,b)) \, \Delta(q,a)) \qquad \qquad 5^{\text{th}} \text{ rec. call }
```

```
Example (Unfolding of the multistep function \widehat{\Delta})
```

```
Let x = ababba over the alphabet \Sigma = \{a,b\} \bigcup (q \in \widehat{\Delta}(A,ababb),a) \qquad \qquad 1^{\text{st}} \text{ rec. call } \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,abab) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 2^{\text{nd}} \text{ rec. call } \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba) \triangle(q,b)) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 3^{\text{rd}} \text{ rec. call } \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba) \triangle(q,a)) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 4^{\text{th}} \text{ rec. call } \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,ab) \triangle(q,a)) \triangle(q,b)) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 5^{\text{th}} \text{ rec. call } \bigcup (q \in \widehat{\Delta}(A,a) \triangle(q,b)) \triangle(q,a)) \triangle(q,b)) \triangle(q,a)) \triangle(q,b) \triangle(q,a)) \qquad 6^{\text{th}} \text{ rec. call }
```

```
Example (Unfolding of the multistep function \widehat{\Delta})
```

```
Let x = ababba over the alphabet \Sigma = \{a,b\}  \bigcup (q \in \widehat{\Delta}(A,ababb),a) \qquad \qquad 1^{\text{st}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,abab) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 2^{\text{nd}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba) \triangle(q,b)) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 3^{\text{rd}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba) \triangle(q,b)) \triangle(q,b)) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 4^{\text{th}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,ab) \triangle(q,a)) \triangle(q,b)) \triangle(q,b)) \triangle(q,a)) \qquad \qquad 5^{\text{th}} \text{ rec. call }   \bigcup (q \in \widehat{\Delta}(A,a) \triangle(q,a)) \triangle(q,b)) \triangle(q,a)) \triangle(q,b)) \triangle(q,a)) \qquad 6^{\text{th}} \text{ rec. call }   \bigcup (q \in A(A,a) \triangle(q,a)) \triangle(q,b)) \triangle(q,a)) \triangle(q,b)) \triangle(q,a)) \qquad 6^{\text{th}} \text{ rec. call }
```

Example (Unfolding of the multistep function $\widehat{\Delta}$)

```
Let x = ababba over the alphabet \Sigma = \{a,b\}  \bigcup (q \in \widehat{\Delta}(A,ababb),a) \qquad \qquad 1^{\text{st}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,abab),\Delta(q,b)) \Delta(q,a)) \qquad \qquad 2^{\text{nd}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba)) \Delta(q,b)) \Delta(q,b)) \Delta(q,a)) \qquad \qquad 3^{\text{rd}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,aba)) \Delta(q,b)) \Delta(q,b)) \Delta(q,b)) \Delta(q,a)) \qquad \qquad 4^{\text{th}} \text{ rec. call }   \bigcup (q \in \bigcup (q \in \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A,ab)) \Delta(q,b)) \Delta(q,b)) \Delta(q,b)) \Delta(q,b)) \Delta(q,a)) \qquad \qquad 5^{\text{th}} \text{ rec. call }   \bigcup (q \in \widehat{\Delta}(A,a)) \Delta(q,b)) \Delta(q,b)) \Delta(q,b)) \Delta(q,b)) \Delta(q,a)) \qquad 6^{\text{th}} \text{ rec. call }   \bigcup (q \in A\Delta(q,a)) \Delta(q,b)) \Delta(q,b)) \Delta(q,b)) \Delta(q,b)) \Delta(q,a))   \bigcup (q \in B\Delta(q,b)) \Delta(q,a)) \Delta(q,b)) \Delta(q,a)) \qquad \text{assuming } \bigcup (q \in A\Delta(q,a)) = B
```

Example (Unfolding of the multistep function $\widehat{\Delta}$)

A Ouick Recap

```
Let x = ababba over the alphabet \Sigma = \{a, b\}
      | | (q \in \widehat{\Delta}(A, ababb), a) |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1st rec. call
      \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2<sup>nd</sup> rec. call
      ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, aba) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3<sup>rd</sup> rec. call
      ||(q \in ||(q \in ||(q \in \Delta(A, ab) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4<sup>th</sup> rec. call
      ||(q \in ||(q \in ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, a) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       5th rec. call
      \bigcup(q \in \bigcap(A, \varepsilon) \Delta(q, a)) \Delta(q, b)) \Delta(q, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       6th rec. call
      \bigcup (q \in A \Delta(q, a)) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
      \bigcup (q \in B \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a)) \quad \text{assuming } \bigcup (q \in A \Delta(q, a)) = B
      ||(q \in ||(q \in ||(q \in ||(q \in C\Delta(q, a))\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  assuming | |(q \in B \Delta(q, b)) = C
```

Example (Unfolding of the multistep function $\widehat{\Delta}$)

```
Let x = ababba over the alphabet \Sigma = \{a, b\}
     | | (q \in \widehat{\Delta}(A, ababb), a) |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1st rec. call
     \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2<sup>nd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, aba) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3<sup>rd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \Delta(A, ab) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        4<sup>th</sup> rec. call
     ||(q \in ||(q \in ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, a) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        5th rec. call
     | | (a \in \widehat{\Delta}(A, \varepsilon) \Delta(q, a)) \Delta(q, b)) \Delta(q, b))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6th rec. call
     \bigcup (q \in A \Delta(q, a)) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
     \bigcup (q \in B \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                                                       assuming \bigcup (q \in A \Delta(q, a)) = B
     ||(q \in ||(q \in ||(q \in ||(q \in C\Delta(q, a))\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                             assuming | |(q \in B \Delta(q, b)) = C
     ||(q \in ||(q \in ||(q \in D\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                              assuming | |(q \in C \Delta(q, a)) = D
```

Example (Unfolding of the multistep function $\widehat{\Delta}$)

```
Let x = ababba over the alphabet \Sigma = \{a, b\}
     | | (q \in \widehat{\Delta}(A, ababb), a) |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1st rec. call
     \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2<sup>nd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, aba) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3<sup>rd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \Delta(A, ab) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4<sup>th</sup> rec. call
     ||(q \in ||(q \in ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, a) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5th rec. call
     | | (a \in \widehat{\Delta}(A, \varepsilon) \Delta(q, a)) \Delta(q, b)) \Delta(q, b))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               6th rec. call
     \bigcup (q \in A \Delta(q, a)) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
     \bigcup (q \in B \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                                    assuming \bigcup (q \in A \Delta(q, a)) = B
     ||(q \in ||(q \in ||(q \in ||(q \in C\Delta(q, a))\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                         assuming | |(q \in B \Delta(q, b)) = C
     ||(q \in ||(q \in ||(q \in D\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                           assuming | |(q \in C \Delta(q, a)) = D
                                                                                                                                                                                                                                                                                                                                                                                                           assuming | |(q \in D \Delta(q, b))| = E
     \bigcup (q \in \bigcup (q \in E \Delta(q, b)) \Delta(q, a))
```

A Ouick Recap

```
Let x = ababba over the alphabet \Sigma = \{a, b\}
     | | (q \in \widehat{\Delta}(A, ababb), a) |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1st rec. call
     \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2<sup>nd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, aba) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3<sup>rd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \Delta(A, ab) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4<sup>th</sup> rec. call
     ||(q \in ||(q \in ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, a) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5th rec. call
     \bigcup (q \in \widehat{\Delta}(A, \varepsilon) \Delta(q, a)) \Delta(q, b)) \Delta(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6th rec. call
     \bigcup (q \in A \Delta(q, a)) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
     \bigcup (q \in B \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                             assuming \bigcup (q \in A \Delta(q, a)) = B
     ||(q \in ||(q \in ||(q \in ||(q \in C\Delta(q, a))\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                assuming | |(q \in B \Delta(q, b)) = C
     ||(q \in ||(q \in ||(q \in D\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                 assuming | |(q \in C \Delta(q, a)) = D
     | | (q \in | | (q \in E \Delta(q, b)) \Delta(q, a)) |
                                                                                                                                                                                                                                                                                                                                                                                                 assuming \bigcup (q \in D \Delta(q, b)) = E
     ||(q \in F \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                 assuming ||(q \in E \Delta(q, b))| = F
```

Example (Unfolding of the multistep function $\widehat{\Delta}$)

```
Let x = ababba over the alphabet \Sigma = \{a, b\}
     | | (q \in \widehat{\Delta}(A, ababb), a) |
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1st rec. call
     \bigcup (q \in \bigcup (q \in \widehat{\Delta}(A, abab) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2<sup>nd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, aba) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3<sup>rd</sup> rec. call
     ||(q \in ||(q \in ||(q \in \Delta(A, ab) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         4<sup>th</sup> rec. call
     ||(q \in ||(q \in ||(q \in ||(q \in ||(q \in \widehat{\Delta}(A, a) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5th rec. call
     \bigcup (q \in \widehat{\Delta}(A, \varepsilon) \Delta(q, a)) \Delta(q, b)) \Delta(
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       6<sup>th</sup> rec. call
     \bigcup (q \in A \Delta(q, a)) \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
     \bigcup (q \in B \Delta(q, b)) \Delta(q, a)) \Delta(q, b)) \Delta(q, b)) \Delta(q, a))
                                                                                                                                                                                                                                                                                                                                                                                   assuming \bigcup (q \in A \Delta(q, a)) = B
     ||(q \in ||(q \in ||(q \in ||(q \in C\Delta(q, a))\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                       assuming | |(q \in B \Delta(q, b)) = C
     ||(q \in ||(q \in ||(q \in D\Delta(q, b))\Delta(q, b))\Delta(q, a))||
                                                                                                                                                                                                                                                                                                                                                                                        assuming | |(q \in C \Delta(q, a)) = D
     | | (q \in | | (q \in E \Delta(q, b)) \Delta(q, a)) |
                                                                                                                                                                                                                                                                                                                                                                                        assuming \bigcup (q \in D \Delta(q, b)) = E
     | | (q \in F \Delta(q, a))|
                                                                                                                                                                                                                                                                                                                                                                                        assuming ||(q \in E \Delta(q, b))| = F
                                                                                                                                                                                                                                                                                                                                                                                       assuming \bigcup (q \in F \Delta(q, a)) = G
     G
```

Lemma ($\widehat{\Delta}$ distributes)

A Ouick Recap

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

Proof.

A Ouick Recap

We argue by induction on |y|:

Lemma ($\widehat{\Delta}$ distributes)

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

Proof.

We argue by induction on |y|:

• base case: |y| = 0 thus $y = \varepsilon$

$$\widehat{\Delta}(A, x\varepsilon) = \widehat{\Delta}(A, x) = \widehat{\Delta}(\widehat{\Delta}(A, x), \varepsilon)$$

Lemma ($\widehat{\Delta}$ distributes)

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

Proof.

We argue by induction on |y|:

• base case: |y| = 0 thus $y = \varepsilon$

$$\widehat{\Delta}(A, x\varepsilon) = \widehat{\Delta}(A, x) = \widehat{\Delta}(\widehat{\Delta}(A, x), \varepsilon)$$

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

A Ouick Recap

We argue by induction on |y|:

• base case: |y| = 0 thus $y = \varepsilon$

$$\widehat{\Delta}(A, x\varepsilon) = \widehat{\Delta}(A, x) = \widehat{\Delta}(\widehat{\Delta}(A, x), \varepsilon)$$

Epsilon Transitions

$$\widehat{\Delta}(A,xzb) = \bigcup_{q \in \widehat{\Delta}(A,xz)} \Delta(q,b)$$
 (by definition of $\widehat{\Delta}$)

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

A Ouick Recap

We argue by induction on |y|:

• base case: |y| = 0 thus $y = \varepsilon$

$$\widehat{\Delta}(A, x\varepsilon) = \widehat{\Delta}(A, x) = \widehat{\Delta}(\widehat{\Delta}(A, x), \varepsilon)$$

Epsilon Transitions

$$\begin{array}{lll} \widehat{\Delta}(\textit{A},\textit{xzb}) & = & \bigcup\limits_{q \in \widehat{\Delta}(\textit{A},\textit{xz})} \Delta(q,b) & \text{(by definition of } \widehat{\Delta}) \\ & = & \bigcup\limits_{q \in \widehat{\Delta}(\widehat{\Delta}(\textit{A},\textit{x}),\textit{z})} \Delta(q,b) & \text{(by IH)} \end{array}$$

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

A Ouick Recap

We argue by induction on |y|:

• base case: |y| = 0 thus $y = \varepsilon$

$$\widehat{\Delta}(A, x\varepsilon) = \widehat{\Delta}(A, x) = \widehat{\Delta}(\widehat{\Delta}(A, x), \varepsilon)$$

Epsilon Transitions

$$\begin{array}{lll} \widehat{\Delta}(\textit{A},\textit{xzb}) & = & \bigcup_{q \in \widehat{\Delta}(\textit{A},\textit{xz})} \Delta(q,b) & \text{(by definition of } \widehat{\Delta}) \\ & = & \bigcup_{q \in \widehat{\Delta}(\widehat{\Delta}(\textit{A},\textit{x}),z)} \Delta(q,b) & \text{(by IH)} \\ & = & \widehat{\Delta}(\widehat{\Delta}(\textit{A},\textit{x}),zb) & \text{(by definition of } \widehat{\Delta}) \end{array}$$

$$\widehat{\Delta}(A, xy) = \widehat{\Delta}(\widehat{\Delta}(A, x), y) \quad \forall A \subseteq Q_N \text{ and } x, y \in \Sigma^*$$

A Ouick Recap

We argue by induction on |y|:

• base case: |y| = 0 thus $y = \varepsilon$

$$\widehat{\Delta}(A, x\varepsilon) = \widehat{\Delta}(A, x) = \widehat{\Delta}(\widehat{\Delta}(A, x), \varepsilon)$$

Epsilon Transitions

$$\begin{array}{lll} \widehat{\Delta}(\textit{A},\textit{xzb}) & = & \bigcup_{q \in \widehat{\Delta}(\textit{A},\textit{xz})} \Delta(q,b) & \text{(by definition of } \widehat{\Delta}) \\ & = & \bigcup_{q \in \widehat{\Delta}(\widehat{\Delta}(\textit{A},\textit{x}),z)} \Delta(q,b) & \text{(by IH)} \\ & = & \widehat{\Delta}(\widehat{\Delta}(\textit{A},\textit{x}),zb) & \text{(by definition of } \widehat{\Delta}) \\ & = & \widehat{\Delta}(\widehat{\Delta}(\textit{A},\textit{x}),y) & \end{array}$$

A Quick Recap

every set accepted by NFA is regular

Theorem

A Ouick Recap

every set accepted by NFA is regular

Proof.

• NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$

Theorem

A Ouick Recap

every set accepted by NFA is regular

- NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with

A Ouick Recap

every set accepted by NFA is regular

- NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with

A Ouick Recap

every set accepted by NFA is regular

- NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with

 - $\forall A \subseteq Q_N \ \forall a \in \Sigma$

A Ouick Recap

every set accepted by NFA is regular

Proof.

- NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with

 - $\bigcirc \delta_M(A,a) := \widehat{\Delta}(A,a)$

 $\forall A \subseteq Q_N \ \forall a \in \Sigma$

Epsilon Transitions

every set accepted by NFA is regular

Proof.

A Ouick Recap

- NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with

 - \bigcirc $\delta_M(A,a) := \widehat{\Delta}(A,a)$ $\forall A \subseteq Q_N \ \forall a \in \Sigma$

A Ouick Recap

every set accepted by NFA is regular

Proof.

• NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$

• L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with

 \bigcirc $\delta_M(A,a) := \widehat{\Delta}(A,a)$ $\forall A \subseteq Q_N \ \forall a \in \Sigma$

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta}(A, x) \quad \forall A \subseteq Q \text{ and } x \in \Sigma^*$

A Ouick Recap

every set accepted by NFA is regular

- NFA $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$
- L(N) = L(M) for some DFA $M = (Q_M, \Sigma, \delta_M, s_M, F_M)$ with

 - $\bigcirc \delta_M(A,a) := \widehat{\Delta}(A,a)$ $\forall A \subseteq Q_N \ \forall a \in \Sigma$

 - claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta}(A, x) \quad \forall A \subseteq Q \text{ and } x \in \Sigma^*$ by induction on |x| see next slide proof:

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A, \varepsilon) = A = \widehat{\Delta_N}(A, \varepsilon)$$

A Ouick Recap

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A, \varepsilon) = A = \widehat{\Delta_N}(A, \varepsilon)$$

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $H : \widehat{\delta_M}(A, y) = \widehat{\Delta_N}(A, y)$

A Ouick Recap

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A,\varepsilon) = A = \widehat{\Delta_N}(A,\varepsilon)$$

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $IH : \widehat{\delta_M}(A, y) = \widehat{\Delta_N}(A, y)$

$$\widehat{\delta_M}(A, ya) = \delta_M(\widehat{\delta_M}(A, y), a)$$
 (by definition of $\widehat{\delta_M}$)

A Ouick Recap

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A, \varepsilon) = A = \widehat{\Delta_N}(A, \varepsilon)$$

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $H : \widehat{\delta_M}(A, y) = \widehat{\Delta_N}(A, y)$

$$\widehat{\delta_M}(A,ya) = \delta_M(\widehat{\delta_M}(A,y),a)$$
 (by definition of $\widehat{\delta_M}$)
$$= \delta_M(\widehat{\Delta_N}(A,y),a)$$
 (by induction hypothesis IH)

12/27

A Ouick Recap

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A, \varepsilon) = A = \widehat{\Delta_N}(A, \varepsilon)$$

Epsilon Transitions

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $H : \widehat{\delta_M}(A, y) = \widehat{\Delta_N}(A, y)$

$$\widehat{\delta_M}(A,ya) = \delta_M(\widehat{\delta_M}(A,y),a)$$
 (by definition of $\widehat{\delta_M}$)
$$= \delta_M(\widehat{\Delta_N}(A,y),a)$$
 (by induction hypothesis IH)
$$= \widehat{\Delta_N}(\widehat{\Delta_N}(A,y),a)$$
 (by definition of δ_M)

A Ouick Recap

claim: $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq Q_N \text{ and } x \in \Sigma^*$

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A, \varepsilon) = A = \widehat{\Delta_N}(A, \varepsilon)$$

Epsilon Transitions

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $H : \widehat{\delta_M}(A, y) = \widehat{\Delta_N}(A, y)$

$$\begin{array}{lll} \widehat{\delta_M}(A,ya) & = & \delta_M(\widehat{\delta_M}(A,y),a) & \text{(by definition of } \widehat{\delta_M}) \\ & = & \delta_M(\widehat{\Delta_N}(A,y),a) & \text{(by induction hypothesis IH)} \\ & = & \widehat{\Delta_N}(\widehat{\Delta_N}(A,y),a) & \text{(by definition of } \delta_M) \\ & = & \widehat{\Delta_N}(A,ya) & \text{(by distributivity of } \widehat{\Delta}) \end{array}$$

A Ouick Recap

 $\widehat{\delta_M}(A, x) = \widehat{\Delta_N}(A, x) \quad \forall A \subseteq O_N \text{ and } x \in \Sigma^*$ claim:

• base case: |x| = 0 thus $x = \varepsilon$

$$\widehat{\delta_M}(A,\varepsilon) = A = \widehat{\Delta_N}(A,\varepsilon)$$

• step case: |x| > 0 thus x = ya s.t. |y| = |x| - 1 with $IH : \widehat{\delta_M}(A, y) = \widehat{\Delta_N}(A, y)$

$$\begin{array}{lll} \widehat{\delta_M}(A,ya) & = & \delta_M(\widehat{\delta_M}(A,y),a) & \text{(by definition of } \widehat{\delta_M}) \\ & = & \delta_M(\widehat{\Delta_N}(A,y),a) & \text{(by induction hypothesis IH)} \\ & = & \widehat{\Delta_N}(\widehat{\Delta_N}(A,y),a) & \text{(by definition of } \delta_M) \\ & = & \widehat{\Delta_N}(A,ya) & \text{(by distributivity of } \widehat{\Delta}) \\ & = & \widehat{\Delta_N}(A,x) & \end{array}$$

Proof. (NFA regularity)

A Ouick Recap

statement: L(M) = L(N)

Proof. (NFA regularity)

statement: L(M) = L(N)

 $\forall x \in \Sigma^*, x \in L(M) \iff \widehat{\delta_M}(s_M, x) \in F_M$

(by definition of acceptance)

Proof. (NFA regularity)

A Ouick Recap

statement: L(M) = L(N)

 $\forall x \in \Sigma^*, x \in L(M)$ $\iff \widehat{\delta_M}(S_M, X) \in F_M$

 $\widehat{\delta_M}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$

(by definition of acceptance) (by definition of s_M and F_M)

Proof. (NFA regularity)

A Ouick Recap

statement: L(M) = L(N)

 $\forall x \in \Sigma^*, \, x \in L(M) \quad \iff \quad \widehat{\delta_M}(s_M, x) \in F_M \qquad \qquad \text{(by definition of acceptance)}$

 \iff $\widehat{\delta_M}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$ (by definition of s_M and F_M)

 \iff $\widehat{\Delta_N}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$ (by claim proven in slide 12)

Proof. (NFA regularity)

A Ouick Recap

statement: L(M) = L(N)

$$\forall x \in \Sigma^*, x \in L(M) \iff \widehat{\delta_M}(s_M, x) \in F_M$$

$$\iff \widehat{\delta_M}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$$

$$\iff \widehat{\Delta_N}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$$

$$\iff \widehat{\Delta_N}(S_N,x) \cap F_N \neq \emptyset$$

(by definition of acceptance)

Epsilon Transitions

(by definition of s_M and F_M) (by claim proven in slide 12)

(by set comprehension)

A Ouick Recap

statement:
$$L(M) = L(N)$$

ement:
$$L(M) = L(N)$$

$$\forall x \in \Sigma^*, x \in L(M) \iff \widehat{\delta_M}(s_M, x) \in F_M$$

$$\iff \widehat{\delta_M}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$$

$$\iff \widehat{\Delta_N}(S_N, x) \in \{A \subseteq Q_N \mid A \cap F_N \neq \emptyset\}$$

$$\iff \widehat{\Delta_N}(S_N, x) \cap F_N \neq \emptyset$$

$$\iff x \in L(N)$$

Epsilon Transitions

(by definition of acceptance) (by definition of s_M and F_M)

(by claim proven in slide 12)

(by set comprehension)

(by definition of acceptance)

$$A = \emptyset$$

 $B = \{1\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

b

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

Δ	а	b
Ε	Н	F
F	Н	В
G	D	F
Н	Н	F

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

$$A = \emptyset$$

 $B = \{1\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$
 $D = \{3\}$ $H = \{1, 2, 3\}$

$$\begin{array}{c|cccc} \Delta & a & b \\ \hline A & A & A \\ B & E & B \end{array}$$

D

Н

Н

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

$$\begin{array}{c|cccc} \Delta & a & b \\ \hline E & H & F \\ F & H & B \\ G & D & F \\ \end{array}$$

Н

Н

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$

$$B = \{1\}$$
 $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$
 $D = \{3\}$ $H = \{1, 2, 3\}$

$$\begin{array}{c|cccc}
\Delta & a & b \\
\hline
A & A & A \\
\hline
B & 5 & B
\end{array}$$

$$A = \emptyset$$

 $B = \{1\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

A Ouick Recap

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$

$$B = \{1\}$$
 $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$
 $D = \{3\}$ $H = \{1, 2, 3\}$

D

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

b

$$A = Q$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$

$$B = \{1\}$$
 $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

$$A = \emptyset$$
 $B = \{1\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

A Ouick Recap

$$A = \emptyset$$

 $B = \{1\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

 $D = \{3\}$ $H = \{1, 2, 3\}$

D

$$A = \emptyset$$
 $B = \{1\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

Н

Н

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

b

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

 $D = \{3\}$ $H = \{1, 2, 3\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

A Ouick Recap

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

 $D = \{3\}$ $H = \{1, 2, 3\}$

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

D

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

$$\begin{array}{c|cccc} \Delta & a & b \\ \hline E & H & F \\ F & H & B \\ G & D & F \\ \end{array}$$

Н Н

$$A = \emptyset$$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

$$B = \{1\}$$
 $F = \{1, 2\}$
 $C = \{2\}$ $G = \{2, 3\}$
 $C = \{3\}$ $C = \{3\}$ $C = \{4\}$

D

Н

Н

abbbaababbaababb<mark>a</mark>

$$A = \emptyset$$
 $B = \{1\}$

$$A = \emptyset$$
 $E = \{1, 2\}$
 $B = \{1\}$ $F = \{1, 3\}$
 $C = \{2\}$ $G = \{2, 3\}$

$$E = \{1, 2\}$$

 $B = \{1\}$ $F = \{1, 3\}$

$$E = \{1, 2\}$$

 $F = \{1, 3\}$

 $H = \{1, 2, 3\}$

$$\Delta$$
 a b

Н

abbbaababbaababba

remove inaccessible states

Epsilon Transitions

Question

A Ouick Recap

Every regular set is accepted by ...

A ... an NFA having exactly one final state,

B ... a DFA having exactly one final state,

C ... an NFA having exactly one start state.

Epsilon Transitions

•00000

A Ouick Recap

- 1 A Quick Recap
- 2 Nondeterministic Finite Automata
- 3 Epsilon Transitions

Definitions

A Ouick Recap

• NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that
 - $\mathbf{0} \ \boldsymbol{\varepsilon} \notin \Sigma$

Epsilon Transitions

000000

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that
 - \bullet $\varepsilon \notin \Sigma$

Epsilon Transitions

000000

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that
 - \bullet $\varepsilon \notin \Sigma$
 - \mathbb{Q} $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ such that
 - $\mathbf{0}$ $\varepsilon \notin \Sigma$
 - Q $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: Q \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\blacksquare \ \varepsilon \notin \Sigma$
 - $Q N_{\varepsilon} = (Q, \Sigma \cup {\varepsilon}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup {\varepsilon}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$

$$C_{\varepsilon}(\{1\}) \qquad = \qquad \{1,2,3\}$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{1} \quad \boldsymbol{\varepsilon} \notin \Sigma$
 - \bigcirc $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left\{ \int \left\{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_{N}(A, x) \right\} \right\}$$

$$C_{\varepsilon}(\{1\}) \qquad = \qquad \{1,2,3\}$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{0} \in \Sigma$
 - $\mathbb{Q} N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left\{ \left| \left\{ \frac{C_{\varepsilon}(\Delta(q, a))}{A_{\varepsilon}(A, x)} \right\} \right| \leq \widehat{\Delta}_{N}(A, x) \right\}$$

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

$$\widehat{\Delta}_{N}(\{1\}, b) =$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{0} \in \Sigma$
 - \bigcirc $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \bigcup \{ \underline{C}_{\mathcal{E}}(\Delta(q, a)) \mid q \in \widehat{\Delta}_{N}(A, x) \}$$

$$C_{\varepsilon}(\{1\})$$
 = $\{1, 2, 3\}$
 $\widehat{\Delta}_{N}(\{1\}, b)$ = $C_{\varepsilon}(\{1\})$

A Ouick Recap

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - **①** ε ∉ Σ
 - \bigcirc $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_{N}(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left\{ \int \left\{ \frac{C_{\varepsilon}(\Delta(q, a))}{C_{\varepsilon}(\Delta(q, a))} \mid q \in \widehat{\Delta}_{N}(A, x) \right\} \right\}$$

$$\begin{array}{lcl} C_{\varepsilon}(\{1\}) & = & \{1,2,3\} \\ \widehat{\Delta}_{N}(\{1\},b) & = & C_{\varepsilon}(\Delta(1,b)) \cup C_{\varepsilon}(\Delta(2,b)) \cup C_{\varepsilon}(\Delta(3,b)) \end{array}$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{1} \quad \boldsymbol{\varepsilon} \notin \Sigma$
 - $Q N_{\varepsilon} = (Q, \Sigma \cup {\varepsilon}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup {\varepsilon}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left\{ \int \left\{ \frac{C_{\varepsilon}(\Delta(q, a))}{C_{\varepsilon}(\Delta(q, a))} \mid q \in \widehat{\Delta}_{N}(A, x) \right\} \right\}$$

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

$$\widehat{\Delta}_{N}(\{1\}, b) = C_{\varepsilon}(\emptyset) \cup C_{\varepsilon}(\{2\}) \cup C_{\varepsilon}(\emptyset)$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - $\mathbf{1} \quad \boldsymbol{\varepsilon} \notin \Sigma$
 - $Q N_{\varepsilon} = (Q, \Sigma \cup {\varepsilon}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup {\varepsilon}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N : 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left\{ \int \left\{ \frac{C_{\varepsilon}(\Delta(q, a))}{C_{\varepsilon}(\Delta(q, a))} \mid q \in \widehat{\Delta}_{N}(A, x) \right\} \right\}$$

$$\begin{array}{lcl} C_{\varepsilon}(\{1\}) & = & \{1,2,3\} \\ \widehat{\Delta}_{N}(\{1\}, {\color{red}b}) & = & \varnothing \cup \{2,3\} \cup \varnothing \end{array}$$

- NFA with ε -transitions (NFA $_{\varepsilon}$) is sextuple $N=(Q,\Sigma,\varepsilon,\Delta,S,F)$ such that
 - **①** ε ∉ Σ
 - \bigcirc $N_{\varepsilon} = (Q, \Sigma \cup \{\varepsilon\}, \Delta, S, F)$ is NFA over alphabet $\Sigma \cup \{\varepsilon\}$
- $\Delta: O \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- ε -closure of set $A \subseteq Q$ is defined as $C_{\varepsilon}(A) = \bigcup \{\widehat{\Delta}_{N_{\varepsilon}}(A, x) \mid x \in \{\varepsilon\}^*\}$
- $\widehat{\Delta}_N: 2^Q \times \Sigma^* \to 2^Q$ is inductively defined by

$$\widehat{\Delta}_N(A, \varepsilon) = C_{\varepsilon}(A)$$

$$\widehat{\Delta}_{N}(A, xa) = \left\{ \left| \left\{ \frac{C_{\varepsilon}(\Delta(q, a))}{C_{\varepsilon}(\Delta(q, a))} \right| q \in \widehat{\Delta}_{N}(A, x) \right\} \right\}$$

$$C_{\varepsilon}(\{1\}) = \{1, 2, 3\}$$

 $\widehat{\Delta}_{N}(\{1\}, b) = \{2, 3\}$

Epsilon Transitions

000000

Let x = baa over the alphabet $\Sigma = \{a, b\}$

Example (Unfolding of the multistep function $\widehat{\Delta}_N$)

Let x = baa over the alphabet $\Sigma = \{a, b\}$

$$\bigcup \{C_{\varepsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,ba)\}$$

1st rec. call

Let x = baa over the alphabet $\Sigma = \{a, b\}$

A Ouick Recap

$$\bigcup \{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_{N}(A, ba) \}$$
$$\bigcup \{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \bigcup \{ C_{\varepsilon}(\Delta(q, a)) \mid q \in \widehat{\Delta}_{N}(A, b) \} \}$$

1st rec. call 2nd rec. call

Epsilon Transitions

Epsilon Transitions

000000

```
Let x = baa over the alphabet \Sigma = \{a, b\}
              | | \{ C_{\varepsilon}(\Delta(q, a)) | q \in \widehat{\Delta}_{N}(A, ba) \} |
                                                                                                                                                                                                                                                           1st rec. call
              \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,b) \right\} \right\} 
 \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in \widehat{\Delta}_{N}(A,\varepsilon) \right\} \right\} \right\} 
                                                                                                                                                                                                                                                           2<sup>nd</sup> rec. call
                                                                                                                                                                                                                                                           3<sup>rd</sup> rec. call
```

Epsilon Transitions

000000

Example (Unfolding of the multistep function $\widehat{\Delta}_N$)

```
Let x = baa over the alphabet \Sigma = \{a, b\}
               | | \{ C_{\varepsilon}(\Delta(q,a)) | q \in \widehat{\Delta}_{N}(A,ba) \} |
                                                                                                                                                                                                                                                                     1st rec. call
               \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,b) \right\} \right\}
                                                                                                                                                                                                                                                                     2<sup>nd</sup> rec. call
             \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in \widehat{\Delta}_{N}(A,\varepsilon) \right\} \right\} 
\bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in C_{\varepsilon}(A) \right\} \right\} 
                                                                                                                                                                                                                                                                     3<sup>rd</sup> rec. call
```

```
Let x = baa over the alphabet \Sigma = \{a, b\}
             | | \{ C_{\varepsilon}(\Delta(q,a)) | q \in \widehat{\Delta}_{N}(A,ba) \} |
                                                                                                                                                                                                                                                          1st rec. call
             \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,b) \right\} \right\}
                                                                                                                                                                                                                                                          2<sup>nd</sup> rec. call
             \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in \widehat{\Delta}_{N}(A,\varepsilon) \right\} \right\} 
 \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in C_{\varepsilon}(A) \right\} \right\} 
                                                                                                                                                                                                                                                          3<sup>rd</sup> rec. call
             \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \mathcal{B} \Big\} \Big\}
                                                                                                                                                                                                                                                          | | \{ C_{\varepsilon}(\Delta(q,b)) | q \in C_{\varepsilon}(A) \} = B
```

Epsilon Transitions

000000

Example (Unfolding of the multistep function $\widehat{\Delta}_N$)

```
Let x = baa over the alphabet \Sigma = \{a, b\}
           | | \{ C_{\varepsilon}(\Delta(q,a)) | q \in \widehat{\Delta}_{N}(A,ba) \} |
                                                                                                                                                                                                             1st rec. call
           \left\{ \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \left\{ \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,b) \right\} \right\} \right\}
                                                                                                                                                                                                             2<sup>nd</sup> rec. call
           \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in \widehat{\Delta}_{N}(A,\varepsilon) \right\} \right\} \right\}
                                                                                                                                                                                                             3<sup>rd</sup> rec. call
           \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in C_{\varepsilon}(A) \right\} \right\} \right\}
          \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in B \Big\} \Big\}
                                                                                                                                                                                                            | | \{ C_{\varepsilon}(\Delta(q,b)) | q \in C_{\varepsilon}(A) \} = B
           \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in C \right\}
                                                                                                                                                                                                             | | \{C_{\varepsilon}(\Delta(q,a)) | q \in B\} = C
```

```
Let x = baa over the alphabet \Sigma = \{a, b\}
           | | \{ C_{\varepsilon}(\Delta(q,a)) | q \in \widehat{\Delta}_{N}(A,ba) \} |
                                                                                                                                                                                                          1st rec call
           \left\{ \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \left\{ \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \widehat{\Delta}_{N}(A,b) \right\} \right\} \right\}
                                                                                                                                                                                                          2<sup>nd</sup> rec. call
           \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \left\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in \widehat{\Delta}_{N}(A,\varepsilon) \right\} \right\} \right\}
                                                                                                                                                                                                          3<sup>rd</sup> rec. call
           \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \Big\{ C_{\varepsilon}(\Delta(q,b)) \mid q \in C_{\varepsilon}(A) \Big\} \Big\} \Big\}
           \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in \bigcup \Big\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in B \Big\} \Big\}
                                                                                                                                                                                                         | | \{ C_{\varepsilon}(\Delta(q,b)) | q \in C_{\varepsilon}(A) \} = B
           \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in C \right\}
                                                                                                                                                                                                         ||\{C_{\varepsilon}(\Delta(q,a))||q\in B\}=C
                                                                                                                                                                                                         \bigcup \left\{ C_{\varepsilon}(\Delta(q,a)) \mid q \in C \right\} = D
```

Epsilon Transitions

000000

A Ouick Recap

 $C_{\varepsilon}(A)$ is least extension of A that is closed under ε -transitions:

$$q \in C_{\varepsilon}(A) \implies \Delta_{N_{\varepsilon}}(q, \varepsilon) \subseteq C_{\varepsilon}(A)$$

 $C_{\varepsilon}(A)$ is least extension of A that is closed under ε -transitions:

$$q \in C_{\varepsilon}(A) \implies \Delta_{N_{\varepsilon}}(q, \varepsilon) \subseteq C_{\varepsilon}(A)$$

Epsilon Transitions

000000

every set accepted by NFA_E is regular

Lemm

A Ouick Recap

 $C_{\varepsilon}(A)$ is least extension of A that is closed under ε -transitions:

$$q \in C_{\varepsilon}(A) \implies \Delta_{N_{\varepsilon}}(q, \varepsilon) \subseteq C_{\varepsilon}(A)$$

Theorem

every set accepted by NFA_{ε} is regular

Proof. (by construction)

• NFA_{ε} $N_1 = (Q, \Sigma, \varepsilon, \Delta_1, S, F_1)$

Lemma

 $C_{\varepsilon}(A)$ is least extension of A that is closed under ε -transitions:

$$q \in C_{\varepsilon}(A) \implies \Delta_{N_{\varepsilon}}(q, \varepsilon) \subseteq C_{\varepsilon}(A)$$

Theorem

every set accepted by NFA_{ε} is regular

Proof. (by construction)

- NFA_{ε} $N_1 = (Q, \Sigma, \varepsilon, \Delta_1, S, F_1)$
- $L(N_1) = L(N_2)$ for NFA $N_2 = (Q, \Sigma, \Delta_2, S, F_2)$ with

Lemm

 $C_{\varepsilon}(A)$ is least extension of A that is closed under ε -transitions:

$$q \in C_{\varepsilon}(A) \implies \Delta_{N_{\varepsilon}}(q, \varepsilon) \subseteq C_{\varepsilon}(A)$$

Theorem

every set accepted by NFA_{ε} is regular

Proof. (by construction)

- NFA_{ε} $N_1 = (Q, \Sigma, \varepsilon, \Delta_1, S, F_1)$
- $L(N_1) = L(N_2)$ for NFA $N_2 = (Q, \Sigma, \Delta_2, S, F_2)$ with

Lemm

 $C_{\varepsilon}(A)$ is least extension of A that is closed under ε -transitions:

$$q \in C_{\varepsilon}(A) \implies \Delta_{N_{\varepsilon}}(q, \varepsilon) \subseteq C_{\varepsilon}(A)$$

Theorem

every set accepted by NFA_{ε} is regular

Proof. (by construction)

- NFA_{ε} $N_1 = (Q, \Sigma, \varepsilon, \Delta_1, S, F_1)$
- $L(N_1) = L(N_2)$ for NFA $N_2 = (Q, \Sigma, \Delta_2, S, F_2)$ with

 - $P_2 := \{ q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset \}$

Epsilon Transitions

NFA $_{\varepsilon}$ $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1	a	b	C	ε
	1	{1}	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

Epsilon Transitions

NFA $_{\varepsilon}$ $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_{1}	a	b	С	ε
	1	{1}	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

•
$$F_2 = \{q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset\}$$

NFA $_{\varepsilon}$ $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1	a	b	C	ε
	1	{1}	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

•
$$F_2 = \{ q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset \}$$

$$\Delta_2$$
 a b c

NFA_{ε} $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_{1}	a	b	С	ε
	1	{1}	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

•
$$F_2 = \{q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset\}$$

$$\Delta_2$$
 a b c

$$\Delta_2(1,a) = \widehat{\Delta}_1(\{1\},a) = \bigcup \{C_{\varepsilon}(\Delta_1(q,a)) \mid q \in \widehat{\Delta}_1(\{1\},\varepsilon)\}$$

NFA $_{\varepsilon}$ $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1	a	~	C	ε
	1	{1}	Ø {2}	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset\}$$

$$\Delta_2$$
 a b c

$$\begin{array}{rcl} \Delta_2(1,a) & = & \widehat{\Delta}_1(\{1\},a) & = & \bigcup \left\{ C_{\varepsilon}(\Delta_1(q,a)) \mid q \in \widehat{\Delta}_1(\{1\},\varepsilon) \right\} \\ & = & C_{\varepsilon}(\Delta_1(1,a)) \cup C_{\varepsilon}(\Delta_1(2,a)) \cup C_{\varepsilon}(\Delta_1(3,a)) \end{array}$$

Epsilon Transitions

NFA_{ε} $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1	а		C	ε
	1	{1}	Ø {2} Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{ a \mid C_{\varepsilon}(\{a\}) \cap F_1 \neq \emptyset \}$$

$$\Delta_2$$
 a b c

Epsilon Transitions

NFA_{ε} $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1	a		С	ε
	1	{1}	Ø {2}	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset\}$$

•
$$\frac{\Delta_2}{1}$$
 $\frac{a}{\{1,2,3\}}$

$$\begin{array}{rcl} \Delta_2(1,a) & = & \widehat{\Delta}_1(\{1\},a) & = & \bigcup \left\{C_{\varepsilon}(\Delta_1(q,a)) \mid q \in \widehat{\Delta}_1(\{1\},\varepsilon)\right\} \\ & = & C_{\varepsilon}(\Delta_1(1,a)) \cup C_{\varepsilon}(\Delta_1(2,a)) \cup C_{\varepsilon}(\Delta_1(3,a)) \\ & = & C_{\varepsilon}(\{1\}) \cup C_{\varepsilon}(\emptyset) \cup C_{\varepsilon}(\emptyset) \\ & = & \{1,2,3\} \end{array}$$

Epsilon Transitions

NFA $_{\varepsilon}$ $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1	a	b	С	ε
	1	{1}	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

•
$$F_2 = \{ q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset \}$$

•
$$\frac{\Delta_2}{1}$$
 $\frac{a}{\{1,2,3\}}$

NFA_{ε} $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1	a		С	ε
	1	{1} Ø Ø	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset\}$$

•
$$\frac{\Delta_2}{1}$$
 $\frac{a}{\{1,2,3\}}$

$$\Delta_2(1,b) = \widehat{\Delta}_1(\{1\},b) = \bigcup \{C_{\varepsilon}(\Delta_1(q,b)) \mid q \in \widehat{\Delta}_1(\{1\},\varepsilon)\}$$

Epsilon Transitions

NFA_{ε} $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_1		b	С	ε
	1	{1}	Ø {2}	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{ q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset \}$$

•
$$\frac{\Delta_2}{1}$$
 $\frac{a}{\{1,2,3\}}$

$$\begin{array}{rcl} \Delta_2(1,b) & = & \widehat{\Delta}_1(\{1\},b) & = & \bigcup \left\{ C_{\varepsilon}(\Delta_1(q,b)) \mid q \in \widehat{\Delta}_1(\{1\},\varepsilon) \right\} \\ & = & C_{\varepsilon}(\Delta_1(1,b)) \cup C_{\varepsilon}(\Delta_1(2,b)) \cup C_{\varepsilon}(\Delta_1(3,b)) \end{array}$$

Epsilon Transitions

000000

Example

A Ouick Recap

NFA_{ε} $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_{1}	a	b	C	ε
	1	{1}	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{ q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset \}$$

•
$$\frac{\Delta_2}{1}$$
 $\frac{a}{\{1,2,3\}}$

$$\begin{array}{rcl} \Delta_2(1,b) & = & \widehat{\Delta}_1(\{1\},b) & = & \bigcup \left\{C_{\varepsilon}(\Delta_1(q,b)) \mid q \in \widehat{\Delta}_1(\{1\},\varepsilon)\right\} \\ & = & C_{\varepsilon}(\Delta_1(1,b)) \cup C_{\varepsilon}(\Delta_1(2,b)) \cup C_{\varepsilon}(\Delta_1(3,b)) \\ & = & C_{\varepsilon}(\emptyset) \cup C_{\varepsilon}(\{2\}) \cup C_{\varepsilon}(\emptyset) \end{array}$$

NFA_{ε} $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

•	Δ_{1}	a	b	C	ε
	1	{1}	Ø {2}	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{ q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset \}$$

•
$$\frac{\Delta_2}{1}$$
 | $\frac{a}{\{1,2,3\}}$ | $\frac{b}{\{2,3\}}$

$$\begin{array}{rcl} \Delta_2(1,b) & = & \widehat{\Delta}_1(\{1\},b) & = & \bigcup \left\{C_{\varepsilon}(\Delta_1(q,b)) \mid q \in \widehat{\Delta}_1(\{1\},\varepsilon)\right\} \\ & = & C_{\varepsilon}(\Delta_1(1,b)) \cup C_{\varepsilon}(\Delta_1(2,b)) \cup C_{\varepsilon}(\Delta_1(3,b)) \\ & = & C_{\varepsilon}(\emptyset) \cup C_{\varepsilon}(\{2\}) \cup C_{\varepsilon}(\emptyset) \\ & = & \{2,3\} \end{array}$$

Epsilon Transitions

000000

Example (cont'd)

NFA $_{\varepsilon}$ $N_1 = (\{1, 2, 3\}, \{a, b, c\}, \varepsilon, \Delta_1, \{1\}, \{3\})$ with

	Δ_1	а	a	С	ε
•	1	{1}	Ø	Ø	{2}
	2	Ø	{2}	Ø	{3}
	3	Ø	Ø	{3}	Ø

NFA $N_2 = (\{1, 2, 3\}, \{a, b, c\}, \Delta_2, \{1\}, F_2)$ with

•
$$F_2 = \{q \mid C_{\varepsilon}(\{q\}) \cap F_1 \neq \emptyset\}$$

	Δ_{2}	a	b	C
•	1	{1, 2, 3}	{2,3}	{3}
	2	Ø	{2,3}	{3}
	3	Ø	Ø	{3}

Outline

A Ouick Recap

- 1 A Quick Recap
- 2 Nondeterministic Finite Automata
- 3 Epsilon Transitions
- 4 Closure Properties

Theoren

A Ouick Recap

regular sets are effectively closed under concatenation

A Ouick Recap

regular sets are effectively closed under concatenation

•
$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
• $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

regular sets are effectively closed under concatenation

Proof. (by construction)

$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

$$B = L(N_2)$$
 for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

• without loss of generality $Q_1 \cap Q_2 = \emptyset$

A Ouick Recap

regular sets are effectively closed under concatenation

$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

$$B = L(N_2)$$
 for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- AB = L(N) for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S_1, F_2)$ with

A Ouick Recap

regular sets are effectively closed under concatenation

Proof. (by construction)

$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

• without loss of generality
$$Q_1 \cap Q_2 = \emptyset$$

•
$$AB = L(N)$$
 for NFA _{ε} $N = (Q, \Sigma, \varepsilon, \Delta, S_1, F_2)$ with

 $B = L(N_2)$ for NFA $N_2 = (O_2, \Sigma, \Delta_2, S_2, F_2)$

$$\bigcirc Q :=$$

$$:= \quad Q_1 \cup Q_2$$

A Ouick Recap

regular sets are effectively closed under concatenation

•
$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
• $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- AB = L(N) for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S_1, F_2)$ with

A Ouick Recap

regular sets are effectively closed under concatenation

•
$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
• $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- AB = L(N) for NFA_{ε} $N = (Q, \Sigma, \varepsilon, \Delta, S_1, F_2)$ with

A Ouick Recap

regular sets are effectively closed under concatenation

•
$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
• $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- AB = L(N) for NFA_{ε} $N = (Q, \Sigma, \varepsilon, \Delta, S_1, F_2)$ with

A Ouick Recap

regular sets are effectively closed under concatenation

•
$$A = L(N_1)$$
 for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
• $B = L(N_2)$ for NFA $N_2 = (Q_2, \Sigma, \Delta_2, S_2, F_2)$

- without loss of generality $Q_1 \cap Q_2 = \emptyset$
- AB = L(N) for NFA_{ε} $N = (Q, \Sigma, \varepsilon, \Delta, S_1, F_2)$ with

A Ouick Recap

regular sets are effectively closed under asterate

regular sets are effectively closed under asterate

Proof. (by construction)

• $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$

A Ouick Recap

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_{ε} $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with

A Ouick Recap

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with
 - **1** 0 $:= O_1 \cup \{s\}$

A Ouick Recap

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with
 - **1** 0 $:= O_1 \cup \{s\}$
 - $\bigcirc S := \{s\}$

A Ouick Recap

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with
 - **1** O $:= O_1 \cup \{s\}$
 - $\bigcirc S := \{s\}$
 - ⑤ F $:= \{s\}$

A Ouick Recap

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with
 - **0** $:= O_1 \cup \{s\}$
 - $\bigcirc S := \{s\}$
 - $:= \{s\}$

$$\Delta_1(q,a) \quad \text{if } q \in Q_1 \text{ and } a \in \Sigma$$

$$\triangle (q,a)$$
 :=

A Ouick Recap

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with
 - **0** $:= O_1 \cup \{s\}$
 - $\bigcirc S := \{s\}$
 - $:= \{s\}$

A Ouick Recap

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with
 - **1** 0 $:= O_1 \cup \{s\}$

 - $:= \{s\}$

$$\Delta(q, a) := \begin{cases} \Delta_1(q, a) & \text{if } q \in Q_1 \text{ and } a \in \Sigma \\ S_1 & \text{if } q = s \text{ and } a = \varepsilon \\ S & \text{if } q \in F_1 \text{ and } a = \varepsilon \end{cases}$$

regular sets are effectively closed under asterate

- $A = L(N_1)$ for NFA $N_1 = (Q_1, \Sigma, \Delta_1, S_1, F_1)$
- $A^* = L(N)$ for NFA_E $N = (Q, \Sigma, \varepsilon, \Delta, S, F)$ with

 - $\bigcirc S := \{s\}$

$$\Delta(q,a) := \begin{cases} \Delta_1(q,a) & \text{if } q \in Q_1 \text{ and } a \in \Sigma \\ S_1 & \text{if } q = s \text{ and } a = \varepsilon \\ S & \text{if } q \in F_1 \text{ and } a = \varepsilon \end{cases}$$

Epsilon Transitions

Example

A Quick Recap

$$(\{a\}^* \{b\}^*)^* = \{a,b\}^*$$

Thanks! & Questions?

Epsilon Transitions