

Lengoaia eta Sistema Informatikoak Saila

Bilboko Ingeniaritza Eskola (UPV/EHU)

Lengoaiak, Konputazioa eta Sistema Adimendunak

Kudeaketaren eta Informazio Sistemen Informatikaren Ingeniaritzako Gradua

2. maila

2019-2020 ikasturtea

Ariketen soluzioak 3. Gaia: Automata finituak eta lengoaia erregularrak AFDen minimizazioa

José Gaintzarain Ibarmia

Azken eguneraketa: 2019 - 08 - 30

GAIEN AURKIBIDEA

<i>3.</i>	Arik	keten soluzioak: Automata finituak eta lengoaia erregularrak (AFDen minimizazioa)	1
	3.3	AFDen minimizazioa	2

3. ARIKETEN SOLUZIOAK: AUTOMATA FINITUAK ETA LENGOAIA ERREGULARRAK (AFDEN MINIMIZAZIOA)

3.3 AFDen minimizazioa

1. Honako AFD hau minimizatu.

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	a	b
q_0	q_1	q_5
q_1	q_6	q_2
q_2	q_3	q_4
q_3	q_2	q_4
q_4	q_4	q_4
q_5	q_6	q_2
q_6	q_7	q_4
q_7	q_6	q_4

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala izendatuko dugu.

$$[q_0] = \{q_0, q_1, q_3, q_4, q_5, q_7\}$$
$$[q_2] = \{q_2, q_6\}$$

Orain egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz taula hori eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean a sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_2]$ multzoan dagoenez, q_6 ipini beharrean $[q_2]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_0]$	$[q_0]$
q_1	$[q_2]$	$[q_2]$
q_2	$[q_0]$	$[q_0]$
q_3	$[q_2]$	$[q_0]$
q_4	$[q_0]$	$[q_0]$
q_5	$[q_2]$	$[q_2]$
q_6	$[q_0]$	$[q_0]$
q_7	$[q_2]$	$[q_0]$

Bigarren zatiketa

Jarraian $[q_0]$ eta $[q_2]$ multzoak zatitu behar al diren aztertuko da.

 $[q_0]$ multzoan q_0 eta q_4 egoerek jokabide bera dutela ikus dezakegu: bai a irakurtzen denean eta bai b irakurtzen denean $[q_0]$ multzoko egoera batera igaro beharko da. Aldiz, q_1 eta q_5 egoerek beste jokabide bat dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_2]$ multzoko egoera batera igaro beharko da. Bestalde, q_3 eta q_7 egoerek hirugarren jokabide bat erakusten dute: a irakurriz $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ multzoa hiru jokabide horiek kontuan hartuz zatituko da. $[q_2]$ multzoari dagokionez, bere osagai biek jokabide bera dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_0]$ multzoko egoera batera igaro beharko da. Ondorioz, honako lau multzo hauek geldituko zaizkigu:

$$[q_0] = \{q_0, q_4\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_6\}$$

$$[q_3] = \{q_3, q_7\}$$

GARRANTZITSUA: q_0 eta q_4 egoerek q_2 eta q_6 egoeren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Bigarren zatiketa kontuan hartuz trantsizio-taula eguneratu egingo dugu, baina egoerak ipini beharrean multzoak ipiniz. Esate baterako, q_1 -etik a irakurriz q_6 egoerara igarotzen da, baina q_6 ipini beharrean bere multzoa ipiniko dugu, hau da, $[q_2]$. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_1]$	$[q_1]$
q_1	$[q_2]$	$[q_2]$
q_2	$[q_3]$	$[q_0]$
q_3	$[q_2]$	$[q_0]$
q_4	$[q_0]$	$[q_0]$
q_5	$[q_2]$	$[q_2]$
q_6	$[q_3]$	$[q_0]$
q_7	$[q_2]$	$[q_0]$

Hirugarren zatiketa

 $[q_0]$, $[q_1]$, $[q_2]$ eta $[q_3]$ multzoak zatitu beharrik ba al dagoen erabaki behar da.

 $[q_0]$ multzoan q_0 eta q_4 egoerek jokabide desberdina dute: bai a irakurtzen denean eta bai b irakurtzen denean q_0 egoeratik $[q_1]$ multzoko egoera batera igaro beharko da, baina bai a irakurtzen denean eta bai b irakurtzen denean q_4 egoeratik $[q_0]$ multzoko egoera batera igaro beharko da. Aldiz, q_1 eta q_5 egoerek jokabide bera dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_2]$ multzoko egoera batera igaro beharko da. Bestalde, q_3 eta q_7 egoerek ere jokabide bera dute: a irakurriz $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, bakarrik $[q_0]$ multzoa zatitu behar da. Ondorioz, bost multzo geldituko dira:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_6\}$$

$$[q_3] = \{q_3, q_7\}$$

$$[q_4] = \{q_4\}$$

Hirugarren zatiketa kontuan hartuz, trantsizio-taula eguneratu egingo dugu, baina egoerak ipini beharrean multzoak ipiniz. Esate baterako, q_1 -etik a irakurriz q_6 egoerara igarotzen da, baina q_6 ipini beharrean bere multzoa ipiniko dugu, hau da, $[q_2]$. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_1]$	$[q_1]$
q_1	$[q_2]$	$[q_2]$
q_2	$[q_3]$	$[q_4]$
q_3	$[q_2]$	$[q_4]$
q_4	$[q_4]$	$[q_4]$
q_5	$[q_2]$	$[q_2]$
q_6	$[q_3]$	$[q_4]$
q_7	$[q_2]$	$[q_4]$

Ez dago laugarren zatiketarik

 $[q_0]$, $[q_1]$, $[q_2]$, $[q_3]$ eta $[q_4]$ multzoak zatitu beharrik ba al dagoen erabaki behar da. $[q_0]$ eta $[q_4]$ multzoak ezin dira zatitu, egoera bakarra baitute. Horregatik, $[q_1]$, $[q_2]$ eta $[q_3]$ multzoak aztertuko ditugu orain.

 $[q_1]$ multzoan q_1 eta q_5 egoerek jokabide bera dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_2]$ multzoko egoera batera igaro beharko da. $[q_2]$ multzoan q_2 eta q_6 egoerek jokabide bera dute: a irakurriz $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_4]$ multzoko egoera batera igaro beharko da. $[q_3]$ multzoan ere antzekoa gertatzen da, q_3 eta q_7 egoerek jokaera bera baitute: a irakurriz $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_4]$ multzoko egoera batera igaro beharko da. Ondorioz, ez da zatiketa berririk sortuko.

AFD txikiena

Honako bost multzo hauek ditugu guztira:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_6\}$$

$$[q_3] = \{q_3, q_7\}$$

$$[q_4] = \{q_4\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	a	b
q_0	$[q_1]$	$[q_1]$
q_1	$[q_2]$	$[q_2]$
q_2	$[q_3]$	$[q_4]$
q_3	$[q_2]$	$[q_4]$
q_4	$[q_4]$	$[q_4]$
		•

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, bi zirkulu izango dituen egoera bakarra $[q_2]$ izango da, $[q_2]$ baita hasierako AFD-an bi zirkulu dituzten egoerez osatutako multzo bakarra.

Egoerak $0, 1, 2, 3, \ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ([]) kentzeko, egoerak berrizendatu egin ohi dira.

2. Honako AFD hau minimizatu.

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	a	b
q_0	q_1	q_3
q_1	q_3	q_2
q_2	q_6	q_3
q_3	q_3	q_3
q_4	q_0	q_3
q_5	q_3	q_4
q_6	q_5	q_3

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala izendatuko dugu.

$$[q_0] = \{q_0, q_6\}$$
$$[q_1] = \{q_1, q_2, q_3, q_4, q_5\}$$

Lehenengo zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean a sinboloa irakurriz q_3 egoerara joango garenez, eta q_3 egoera $[q_1]$ multzoan dagoenez, q_3 ipini beharrean $[q_1]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_1]$	$[q_1]$
q_1	$[q_1]$	$[q_1]$
q_2	$[q_0]$	$[q_1]$
q_3	$[q_1]$	$[q_1]$
q_4	$[q_0]$	$[q_1]$
q_5	$[q_1]$	$[q_1]$
q_6	$[q_1]$	$[q_1]$

Bigarren zatiketa

 $[q_0]$ eta $[q_1]$ multzoak zatitu behar al diren aztertuko dugu orain.

 $[q_0]$ multzoan q_0 eta q_6 egoerek jokaera bera dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_1]$ multzoko egoera batera igaro beharko da. Bestalde, $[q_1]$ multzoan q_1 , q_3 eta q_5 egoerek jokaera bera dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_1]$ multzoko egoera batera igaro beharko da. Baina q_2 eta q_4 egoerek beste jokaera bat dute: a irakurriz $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_1]$ multzoko egoera batera igaro beharko da. Beraz, jokaera desberdin horiek kontuan hartuz, $[q_1]$ multzoa bi multzotan zatituko dugu. Ondorioz, hiru multzo izango ditugu:

$$[q_0] = \{q_0, q_6\}$$
$$[q_1] = \{q_1, q_3, q_5\}$$
$$[q_2] = \{q_2, q_4\}$$

GARRANTZITSUA: q_0 eta q_6 egoerek q_1 , q_3 eta q_5 egoeren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean a sinboloa irakurriz q_3 egoerara joango garenez, eta q_3 egoera $[q_1]$ multzoan dagoenez, q_3 ipini beharrean $[q_1]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_1]$	$[q_1]$
q_1	$[q_1]$	$[q_2]$
q_2	$[q_0]$	$[q_1]$
q_3	$[q_1]$	$[q_1]$
q_4	$[q_0]$	$[q_1]$
q_5	$[q_1]$	$[q_2]$
q_6	$[q_1]$	$[q_1]$

Hirugarren zatiketa

Orain $[q_0]$, $[q_1]$ eta $[q_2]$ multzoak zatitu beharrik ba al dagoen erabaki behar da.

 $[q_0]$ multzoan q_0 eta q_6 egoerek jokaera bera dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_1]$ multzoko egoera batera igaro beharko da. $[q_1]$ multzoan q_1 eta q_5 egoerek jokabide bera dute: a irakurriz $[q_1]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_2]$ multzoko egoera batera igaro beharko da. Aldiz, q_3 egoeran bai a irakurtzen denean eta bai b irakurtzen denean $[q_1]$ multzoko egoera batera igaro beharko da. Beraz, $[q_1]$ multzoa zatitu egin behar da: alde batetik q_1 eta q_5 geldituko dira eta, bestetik, q_3 . $[q_2]$ multzoari dagokionez, bere osagai biek jokabide bera dute: a irakurriz $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_1]$ multzoko egoera batera igaro beharko da. Ondorioz, lau multzo izango ditugu:

$$[q_0] = \{q_0, q_6\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3\}$$

GARRANTZITSUA: q_0 eta q_6 egoerek q_3 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Hirugarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_5 egoeran gaudenean b sinboloa irakurriz q_4 egoerara joango garenez, eta q_4 egoera $[q_2]$ multzoan dagoenez, q_4 ipini beharrean $[q_2]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

Ez dago laugarren zatiketarik

Taula berri hori kontuan hartuz, $[q_0]$, $[q_1]$, $[q_2]$ eta $[q_3]$ multzoak zatitu behar al diren erabaki behar da. $[q_3]$ multzoan elementu bakarra dagoenez, ezingo da zatitu. Beraz, $[q_0]$, $[q_1]$ eta $[q_2]$ multzoak aztertuko ditugu.

 $[q_0]$ multzoan q_0 eta q_6 egoerek jokabide bera dute: a irakurriz $[q_1]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_3]$ multzoko egoera batera igaro beharko da. $[q_1]$ multzoan q_1 eta q_5 egoerek jokabide bera dute: a irakurriz $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_2]$ multzoko egoera batera igaro beharko da. $[q_2]$ multzoan q_2 eta q_4 egoerek jokabide bera dute: a irakurriz $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurriz $[q_3]$ multzoko egoera batera igaro beharko da. Ondorioz, ez dago zatiketa berririk.

AFD txikiena

Guztira lau multzo gelditu dira:

$$[q_0] = \{q_0, q_6\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	a	b
q_0	$[q_1]$	$[q_3]$
q_1	$[q_3]$	$[q_2]$
q_2	$[q_0]$	$[q_3]$
q_3	$[q_3]$	$[q_3]$

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, bi zirkulu izango dituen egoera bakarra $[q_0]$ izango da, $[q_0]$ baita hasierako AFD-an bi zirkulu dituzten egoerez osatutako multzo bakarra.

Egoerak $0, 1, 2, 3, \ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ([]) kentzeko, egoerak berrizendatu egin ohi dira.

3. Honako AFD hau minimizatu.

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	a	b
q_0	q_3	q_5
q_1	q_0	q_6
q_2	q_1	q_3
q_3	q_5	q_4
q_4	q_6	q_4
q_5	q_2	q_5
q_6	q_2	q_6

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala identifikatuko dugu.

$$[q_0] = \{q_0, q_1, q_2, q_3, q_4\}$$
$$[q_5] = \{q_5, q_6\}$$

Lehenengo zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean b sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_5]$ multzoan dagoenez, q_6 ipini beharrean $[q_5]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_0]$	$[q_5]$
q_1	$[q_0]$	$[q_5]$
q_2	$[q_0]$	$[q_0]$
q_3	$[q_5]$	$[q_0]$
q_4	$[q_5]$	$[q_0]$
q_5	$[q_0]$	$[q_5]$
q_6	$[q_0]$	$[q_5]$

Bigarren zatiketa

 $[q_0]$ eta $[q_5]$ multzoak zatitu behar al diren aztertu behar da orain.

 $[q_0]$ multzoan hiru jokabide desberdin daude. Hasteko, q_0 eta q_1 egoerek jokaera bera dute: a irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Bestalde, q_2 egoeraren jokaera $[q_0]$ multzoko beste egoera denen jokaeraren desberdina da: bai a irakurtzen denean eta bai b irakurtzen denean $[q_0]$ multzoko egoera batera igaro beharko da. Azkenik, q_3 eta q_4 egoerek hirugarren jokera bat dute: a irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ multzoa hiru multzotan zatitu behar da: $[q_0] = \{q_0, q_1\}$, $[q_2] = \{q_2\}$ eta $[q_3] = \{q_3, q_4\}$. Jarraian $[q_5]$ multzoa aztertuko dugu. Multzo horretan, q_5 eta q_6 egoerek jokabide bera dute: a irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Ondorioz, $[q_5]$ zatitu beharrik ez dago. Guztira lau multzo geldituko dira:

$$[q_0] = \{q_0, q_1\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = \{q_3, q_4\}$$

$$[q_5] = \{q_5, q_6\}$$

GARRANTZITSUA: q_0 eta q_1 egoerek q_5 eta q_6 egoeren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean b sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_5]$ multzoan dagoenez, q_6 ipini beharrean $[q_5]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_3]$	$[q_5]$
q_1	$[q_0]$	$[q_5]$
q_2	$[q_0]$	$[q_3]$
q_3	$[q_5]$	$[q_3]$
q_4	$[q_5]$	$[q_3]$
q_5	$[q_2]$	$[q_5]$
q_6	$[q_2]$	$[q_5]$

Hirugarren zatiketa

 $[q_2]$ multzoan elementu bakarra dagoenez, dagoen bezala geldituko da. Jarraian, $[q_0]$, $[q_3]$ eta $[q_5]$ zatitu behar al diren aztertuko dugu.

 $[q_0]$ multzoan q_0 eta q_1 egoerek jokaera desberdina dute: q_0 egoeran gaudenean, a irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da; aldiz, q_1 egoeran gaudenean, a irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ bitan zatitu beharko da: $[q_0] = \{q_0\}$ eta $[q_1] = \{q_1\}$. Bestalde, $[q_3]$ multzoan q_3 eta q_4 egoerek jokabide bera dute: a irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da. Hori horrela izanda, $[q_3]$ multzoa zatitu beharrik ez dago. Azkenik, gauza bera gertatzen da $[q_5]$ multzoan ere, q_5 eta q_6 egoerek jokabide bera baitute: a irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Beraz, $[q_5]$ multzoa ez da zatitu behar. Ondorioz, bost multzo geldituko zaizkigu:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = \{q_3, q_4\}$$

$$[q_5] = \{q_5, q_6\}$$

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_4 egoeran gaudenean b sinboloa irakurriz q_4 egoerara joango garenez, eta q_4 egoera $[q_3]$ multzoan dagoenez, q_4 ipini beharrean $[q_3]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_3]$	$[q_5]$
q_1	$[q_0]$	$[q_5]$
q_2	$[q_1]$	$[q_3]$
q_3	$[q_5]$	$[q_3]$
q_4	$[q_5]$	$[q_3]$
q_5	$[q_2]$	$[q_5]$
q_6	$[q_2]$	$[q_5]$

Ez dago laugarren zatiketarik

 $[q_0]$, $[q_1]$, $[q_2]$, $[q_3]$ eta $[q_5]$ multzoak zatitu beharrik ba al dagoen aztertu behar da orain. $[q_0]$, $[q_1]$ eta $[q_2]$ multzoak ezin dira zatitu, multzo horietako bakoitzak elementu bakarra baitu. Beraz, $[q_3]$ eta $[q_5]$ multzoak aztertuko ditugu.

 $[q_3]$ multzoan, q_3 eta q_4 egoerek jokabide bera dute: a irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da. Beraz, $[q_3]$ multzoa ez da zatitu behar. $[q_5]$ multzoan ere hori bera gertatzen da, q_5 eta q_6 egoerek jokaera bera baitute: a irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Beraz, $[q_5]$ multzoa ere ez da zatitu behar. Ondorioz, ez da zatiketarik egin behar.

AFD txikiena

Honako bost multzo hauek ditugu guztira:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = \{q_3, q_4\}$$

$$[q_5] = \{q_5, q_6\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	a	b
q_0	$[q_3]$	$[q_5]$
q_1	$[q_0]$	$[q_5]$
q_2	$[q_1]$	$[q_3]$
q_3	$[q_5]$	$[q_3]$
q_5	$[q_2]$	$[q_5]$

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, bi zirkulu izango dituen egoera bakarra $[q_5]$ izango da, $[q_5]$ baita hasierako AFD-an bi zirkulu dituzten egoerez osatutako multzo bakarra.

Egoerak $0,1,2,3,\ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ($[\]$) kentzeko, egoerak berrizendatu egin ohi dira.

4. Honako AFD hau minimizatu. (2011-12)

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	a	b
q_0	q_3	q_5
q_1	q_0	q_6
q_2	q_1	q_3
q_3	q_5	q_4
q_4	q_6	q_4
q_5	q_2	q_5
q_6	q_2	q_6

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala identifikatuko dugu.

$$[q_0] = \{q_0, q_1, q_3, q_4\}$$
$$[q_2] = \{q_2, q_5, q_6\}$$

Lehenengo zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean b sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_2]$ multzoan dagoenez, q_6 ipini beharrean $[q_2]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_0]$	$[q_2]$
q_1	$[q_0]$	$[q_2]$
q_2	$[q_0]$	$[q_0]$
q_3	$[q_2]$	$[q_0]$
q_4	$[q_2]$	$[q_0]$
q_5	$[q_2]$	$[q_2]$
q_6	$[q_2]$	$[q_2]$

Bigarren zatiketa

 $[q_0]$ eta $[q_2]$ zatitu beharrik ba al dagoen aztertuko dugu orain.

 $[q_0]$ multzoan bi jokabide desberdin daude. Alde batetik, q_0 eta q_1 egoerek jokaera bera dute: a irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da. Beste aldetik, q_3 eta q_4 egoerek ere jokabide bera dute, baina q_0 eta q_1 egoeren jokabidearekiko desberdina: a irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Hau ikusi ondoren, badakigu $[q_0]$ multzoa bi multzotan zatitu behar dela: $[q_0] = \{q_0, q_1\}$ eta $[q_3] = \{q_3, q_4\}$. Orain $[q_2]$ multzoa aztertuko dugu. Hor ere bi jokaera desberdin daude. Alde batetik, q_2 egoeraren jokabidea $[q_2]$ multzoko beste egoeren jokabidearekiko desberdina da: bai a irakurtzen denean eta bai b irakurtzen denean $[q_0]$ multzoko egoera batera igaro beharko da. Bestalde, q_5 eta q_6 egoerek jokaera bera dute: bai a irakurtzen denean eta bai b irakurtzen denean $[q_2]$ multzoko egoera batera igaro beharko da. Beraz, $[q_2]$ multzoa bitan zatitu behar da: $[q_2] = \{q_2\}$ eta $[q_5] = \{q_5, q_6\}$. Ondorioz, lau multzo izango ditugu:

$$[q_0] = \{q_0, q_1\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = \{q_3, q_4\}$$

$$[q_5] = \{q_5, q_6\}$$

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean b sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_5]$ multzoan dagoenez, q_6 ipini beharrean $[q_5]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_3]$	$[q_5]$
q_1	$[q_0]$	$[q_5]$
q_2	$[q_0]$	$[q_3]$
q_3	$[q_5]$	$[q_3]$
q_4	$[q_5]$	$[q_3]$
q_5	$[q_2]$	$[q_5]$
q_6	$[q_2]$	$[q_5]$

Hirugarren zatiketa

 $[q_2]$ multzoak elementu bakarra duenez, ezingo da zatitu. $[q_0]$, $[q_3]$ eta $[q_5]$ multzoak aztertuko ditugu jarraian.

 $[q_0]$ multzoan q_0 eta q_1 egoerek portaera desberdina dute: q_0 egoeratik, a irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ bitan zatitu behar da: $[q_0] = \{q_0\}$ eta $[q_1] = \{q_1\}$. Bestalde, $[q_3]$ multzoan, q_3 eta q_4 egoerek jokaera bera dute: a irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da. Beraz, $[q_3]$ zatitu beharrik ez dago. $[q_5]$ multzoan gauza bera gertatzen da, izan ere q_5 eta q_6 egoerek jokaera bera dute: a irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Beraz, $[q_5]$ multzoa ez da zatitu behar. Ondorioz, bost multzo gelditzen dira:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = \{q_3, q_4\}$$

$$[q_5] = \{q_5, q_6\}$$

Hirugarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_4 egoeran gaudenean b sinboloa irakurriz q_4 egoerara joango garenez, eta q_4 egoera $[q_3]$ multzoan dagoenez, q_4 ipini beharrean $[q_3]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_3]$	$[q_5]$
q_1	$[q_0]$	$[q_5]$
q_2	$[q_1]$	$[q_3]$
q_3	$[q_5]$	$[q_3]$
q_4	$[q_5]$	$[q_3]$
q_5	$[q_2]$	$[q_5]$
q_6	$[q_2]$	$[q_5]$

Ez dago laugarren zatiketarik

 $[q_0]$, $[q_1]$ eta $[q_2]$ multzoak ezingo dira zatitu, elementu bakarrekoak baitira. Hori horrela, $[q_3]$ eta $[q_5]$ aztertzea gelditzen zaigu.

 $[q_3]$ multzoan q_3 eta q_4 egoerek jokaera bera dute: a irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da. Beraz, $[q_3]$ ez da zatitu behar. $[q_5]$ multzoan ere antzekoa gertatzen da, q_5 eta q_6 egoerek portaera bera baitute: a irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da. Beraz, $[q_5]$ multzoa ere ez da zatitu behar. Ondorioz, ez da zatiketa berririk gertatu.

AFD txikiena

Honako bost multzo hauek ditugu guztira:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = \{q_3, q_4\}$$

$$[q_5] = \{q_5, q_6\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	a	b
q_0	$[q_3]$	$[q_5]$
q_1	$[q_0]$	$[q_5]$
q_2	$[q_1]$	$[q_3]$
q_3	$[q_5]$	$[q_3]$
q_5	$[q_2]$	$[q_5]$

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, $[q_2]$ eta $[q_5]$ egoerek bi zirkulu izango dituzte, hasierako AFD-ko Y multzoko egoerez osatuta baitaude.

Egoerak $0,1,2,3,\ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ([]) kentzeko, egoerak berrizendatu egin ohi dira.

5. Honako AFD hau minimizatu. (2011-12)

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	a	b
q_0	q_1	q_2
q_1	q_3	q_4
q_2	q_5	q_6
q_3	q_3	q_4
q_4	q_5	q_6
q_5	q_3	q_4
q_6	q_5	q_6

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala identifikatuko dugu.

$$[q_0] = \{q_0, q_1, q_2, q_4\}$$
$$[q_3] = \{q_3, q_5, q_6\}$$

Lehenengo zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean b sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_2]$ multzoan dagoenez, q_6 ipini beharrean $[q_2]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_0]$	$[q_0]$
q_1	$[q_3]$	$[q_0]$
q_2	$[q_3]$	$[q_3]$
q_3	$[q_3]$	$[q_0]$
q_4	$[q_3]$	$[q_3]$
q_5	$[q_3]$	$[q_0]$
q_6	$[q_3]$	$[q_3]$

Bigarren zatiketa

Orain $[q_0]$ eta $[q_3]$ multzoak zatitu beharrik ba al dagoen aztertuko dugu.

 $[q_0]$ multzoan, q_0 egoeraren jokaera ez dator bat $[q_0]$ multzoko beste egoerekin: bai a irakurtzen denean eta bai b irakurtzen denean $[q_0]$ multzoko egoera batera igaro beharko da; q_1 egoeraren jokabidea ere ez dator bat $[q_0]$ multzoko beste egoeren jokabidearekin: a irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da; bestalde, q_2 eta q_4 egoeren portaerak bat datoz: bai a irakurtzen denean eta bai b irakurtzen denean $[q_3]$ multzoko egoera batera igaro beharko da. Hau dena kontuan hartuz, $[q_0]$ multzoa hiru multzotan zatitu behar da: $[q_0] = \{q_0\}$, $[q_1] = \{q_1\}$ eta $[q_2] = \{q_2, q_4\}$. Orain $[q_3]$ multzoa aztertuko dugu. Hor, q_6 -ren portaera $[q_3]$ multzoko beste egoeren portaerekiko

desberdina da: bai a irakurtzen denean eta bai b irakurtzen denean $[q_3]$ multzoko egoera batera igaro beharko da. Beste aldetik, q_3 eta q_5 egoeren portaerak bat datoz: a irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_3]$ multzoa bitan zatitu beharko da: $[q_3] = \{q_3, q_5\}$ eta $[q_6] = \{q_6\}$. Ondorioz, bost multzo geldituko dira:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3, q_5\}$$

$$[q_6] = \{q_6\}$$

GARRANTZITSUA: q_2 eta q_4 egoerek q_6 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar. Gau za bera gertatzen da q_3 eta q_5 egoerekin q_1 egoerarekiko.

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean b sinboloa irakurriz q_4 egoerara joango garenez, eta q_4 egoera $[q_2]$ multzoan dagoenez, q_4 ipini beharrean $[q_2]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	a	b
q_0	$[q_1]$	$[q_2]$
q_1	$[q_3]$	$[q_2]$
q_2	$[q_3]$	$[q_6]$
q_3	$[q_3]$	$[q_2]$
q_4	$[q_3]$	$[q_6]$
q_5	$[q_3]$	$[q_2]$
q_6	$[q_3]$	$[q_6]$

Ez dago hirugarren zatiketarik

 $[q_0]$, $[q_1]$ eta $[q_6]$ multzoak elementu bakarrekoak direnez, ezingo dira zatitu. Hori dela eta, bakarrik $[q_2]$ eta $[q_3]$ aztertu behar dira.

 $[q_2]$ multzoan q_2 eta q_4 egoeren jokabideak bat datoz: a irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_6]$ multzoko egoera batera igaro beharko da. Beraz, $[q_2]$ ez da zatitu behar. $[q_3]$ multzoarekin antzekoa gertatzen da, q_3 eta q_5 egoeren portaerak bat baitatoz: a irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta b irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da. Beraz, $[q_3]$ ere ez da zatitu behar. Ondorioz, bigarren zatiketaren ostean lortutako bost multzoak izango ditugu:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3, q_5\}$$

$$[q_6] = \{q_6\}$$

GARRANTZITSUA: q_2 eta q_4 egoerek q_6 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar. Gau za bera gertatzen da q_3 eta q_5 egoerekin q_1 egoerarekiko.

AFD txikiena

Honako bost multzo hauek ditugu guztira:

$$[q_0] = \{q_0\}$$

$$[q_1] = \{q_1\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3, q_5\}$$

$$[q_6] = \{q_6\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	a	b
q_0	$[q_1]$	$[q_2]$
q_1	$[q_3]$	$[q_2]$
q_2	$[q_3]$	$[q_6]$
q_3	$[q_3]$	$[q_2]$
q_6	$[q_3]$	$[q_6]$

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, $[q_0]$ eta $[q_6]$ egoerek bi zirkulu izango dituzte, hasierako AFD-ko Y multzoko egoerez osatuta baitaude.

Egoerak $0, 1, 2, 3, \ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ([]) kentzeko, egoerak berrizendatu egin ohi dira.

6. Honako AFD hau minimizatu. (2012-13)

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	0	1
q_0	q_1	q_4
q_1	q_5	q_2
q_2	q_0	q_2
q_3	q_6	q_4
q_4	q_2	q_5
q_5	q_5	q_3
q_6	q_5	q_2

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala identifikatuko dugu.

$$[q_0] = \{q_0, q_1, q_3, q_4, q_5, q_6\}$$
$$[q_2] = \{q_2\}$$

Lehenengo zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_3 egoeran gaudenean 0 sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_0]$ multzoan dagoenez, q_6 ipini beharrean $[q_0]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_0]$	$[q_0]$
q_1	$[q_0]$	$[q_2]$
q_2	$[q_0]$	$[q_2]$
q_3	$[q_0]$	$[q_0]$
q_4	$[q_2]$	$[q_0]$
q_5	$[q_0]$	$[q_0]$
q_6	$[q_0]$	$[q_2]$

Bigarren zatiketa

 $[q_0]$ eta $[q_2]$ zatitu beharrik ba al dagoen erabaki behar da orain.

 $[q_2]$ multzoan egoera bakarra dagoenez, ezin da zatitu. $[q_0]$ multzoan hiru jokabide desberdin aurki ditzakegu: hasteko, jokaera bera duten q_0 , q_3 eta q_5 egoerak ditugu: bai 0 irakurtzen denean eta bai 1 irakurtzen denean $[q_0]$ multzoko egoera batera igaro beharko da; bestalde, q_1 eta q_6 egoerek beste jokaera bat dute: 0 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da; azkenik, q_4 egoerak hirugarren jokaera bat erakusten du: 0 sinboloa irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ multzoa hiru azpimultzotan zatitu beharko da: $[q_0] = \{q_0, q_3, q_5\}$, $[q_1] = \{q_1, q_6\}$ eta $[q_4] = \{q_4\}$. Ondorioz, honako lau multzo hauek izango ditugu:

$$[q_0] = \{q_0, q_3, q_5\}$$

$$[q_1] = \{q_1, q_6\}$$

$$[q_2] = \{q_2\}$$

$$[q_4] = \{q_4\}$$

GARRANTZITSUA: q_1 eta q_6 egoerek q_2 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_1 egoeran gaudenean 0 sinboloa irakurriz q_5 egoerara joango garenez, eta q_5 egoera $[q_0]$ multzoan dagoenez, q_5 ipini beharrean $[q_0]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_1]$	$[q_4]$
q_1	$[q_0]$	$[q_2]$
q_2	$[q_0]$	$[q_2]$
q_3	$[q_1]$	$[q_4]$
q_4	$[q_2]$	$[q_0]$
q_5	$[q_0]$	$[q_0]$
q_6	$[q_0]$	$[q_2]$

Hirugarren zatiketa

 $[q_2]$ eta $[q_4]$ multzoek elementu bana dutenez, ezin dira zatitu. Beraz, $[q_0]$ eta $[q_1]$ multzoak zatitu behar al diren aztertuko da orain.

 $[q_0]$ multzoan bi jokabide desberdin aurki ditzakegu. Alde batetik, q_0 eta q_3 egoerek jokaera bera dute: 0 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_4]$ multzoko egoera batera igaro beharko da; beste aldetik, q_5 egoeratik bai 0 sinboloa irakurtzen denean eta bai 1 sinboloa irakurtzen denean, $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ multzoa bitan zatitu behar da: $[q_0] = \{q_0, q_3\}$ eta $[q_5] = \{q_5\}$. $[q_1]$ multzoari dagokionez, q_1 eta q_6 egoerek portaera bera dute: 0 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da. Beraz, $[q_1]$ ez da zatitu behar. Ondorioz, honako bost multzo hauek izango ditugu:

$$[q_0] = \{q_0, q_3\}$$

$$[q_1] = \{q_1, q_6\}$$

$$[q_2] = \{q_2\}$$

$$[q_4] = \{q_4\}$$

$$[q_5] = \{q_5\}$$

GARRANTZITSUA: q_1 eta q_6 egoerek q_2 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Hirugarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_3 egoeran gaudenean 0 sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_1]$ multzoan dagoenez, q_6 ipini beharrean $[q_1]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_1]$	$[q_4]$
q_1	$[q_5]$	$[q_2]$
q_2	$[q_0]$	$[q_2]$
q_3	$[q_1]$	$[q_4]$
q_4	$[q_2]$	$[q_5]$
q_5	$[q_5]$	$[q_0]$
q_6	$[q_5]$	$[q_2]$

Ez dago laugarren zatiketarik

 $[q_2]$, $[q_4]$ eta $[q_5]$ multzoak ezin dira zatitu, osagai bakarra baitute. $[q_0]$ eta $[q_1]$ zati al daitezkeen aztertzea gelditzen zaigu beraz.

 $[q_0]$ multzoa osatzen duten q_0 eta q_3 egoerek portaera bera dute: 0 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_4]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ ez da zatitu behar. $[q_1]$ multzoari dagokionez, q_1 eta q_6 egoerek portaera bera dute: 0 sinboloa irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da. Beraz, $[q_1]$ ere ez da zatitu behar. Ondorioz, ez da zatiketa berririk egin behar.

AFD txikiena

Honako bost multzo hauek ditugu guztira:

$$[q_0] = \{q_0, q_3\}$$

$$[q_1] = \{q_1, q_6\}$$

$$[q_2] = \{q_2\}$$

$$[q_3] = \{q_4\}$$

$$[q_5] = \{q_5\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	0	1
q_0	$[q_1]$	$[q_4]$
q_1	$[q_5]$	$[q_2]$
q_2	$[q_0]$	$[q_2]$
q_4	$[q_2]$	$[q_5]$
q_5	$[q_5]$	$[q_0]$

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, bi zirkulu izango dituen egoera bakarra $[q_2]$ izango da, $[q_2]$ baita hasierako AFD-an bi zirkulu dituzten egoerez osatutako multzo bakarra.

Egoerak $0,1,2,3,\ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ($[\]$) kentzeko, egoerak berrizendatu egin ohi dira.

7. Honako AFD hau minimizatu. (2012-13)

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	0	1
q_0	q_1	q_4
q_1	q_5	q_2
q_2	q_0	q_2
q_3	q_6	q_4
q_4	q_2	q_5
q_5	q_5	q_3
q_6	q_5	q_2

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala identifikatuko dugu.

$$[q_0] = \{q_0, q_3, q_4\}$$
$$[q_1] = \{q_1, q_2, q_5, q_6\}$$

Lehenengo zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_3 egoeran gaudenean 0 sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_1]$ multzoan dagoenez, q_6 ipini beharrean $[q_1]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_1]$	$[q_0]$
q_1	$[q_1]$	$[q_1]$
q_2	$[q_0]$	$[q_1]$
q_3	$[q_1]$	$[q_0]$
q_4	$[q_1]$	$[q_1]$
q_5	$[q_1]$	$[q_0]$
q_6	$[q_1]$	$[q_1]$

Bigarren zatiketa

 $[q_0]$ eta $[q_1]$ multzoak zatitu behar al diren aztertuko da orain.

 $[q_0]$ multzoan bi jokabide desberdin ditugu. Alde batetik, q_0 eta q_3 egoerek jokabide bera dute: 0 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da; beste aldetik, q_4 egoerak q_0 eta q_3 egoeren jokabidearekiko desberdina den jokabidea du: bai 0 sinboloa irakurtzen denean eta bai 1 sinboloa irakurtzen denean, $[q_1]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ multzoa bi azpimultzotan zatitu beharko da: $[q_0] = \{q_0, q_3\}$ eta $[q_4] = \{q_4\}$. $[q_1]$ multzoari dagokionez, bertan hiru portaera desberdin ikus ditzakegu: hasteko, q_1 eta q_6 egoeretan, bai 0 sinboloa irakurtzen denean eta bai 1 sinboloa irakurtzen denean, $[q_1]$ multzoko egoera batera igaro beharko

da; bestalde, q_2 egoerak $[q_1]$ multzoko beste egoerek duten jokabidearekiko desberdina den jokabidea du: 0 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da; bukatzeko, q_5 egoerak hirugarren jokaera bat du: 0 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_1]$ multzoa hiru azpimultzotan zatitu behar da: $[q_1] = \{q_1, q_6\}$, $[q_2] = \{q_2\}$ eta $[q_5] = \{q_5\}$. Ondorioz, honako bost multzo hauek izango ditugu:

$$[q_0] = \{q_0, q_3\}$$

$$[q_1] = \{q_1, q_6\}$$

$$[q_2] = \{q_2\}$$

$$[q_4] = \{q_4\}$$

$$[q_5] = \{q_5\}$$

GARRANTZITSUA: q_1 eta q_6 egoerek q_4 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Gauza bera gertatzen da q_0 eta q_3 egoerekin q_5 egoerarekiko, hau da, ez dira multzo berean ipini behar q_5 egoera beste multzo batekoa baita lehenengo zatiketa egin denetik. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_3 egoeran gaudenean 0 sinboloa irakurriz q_6 egoerara joango garenez, eta q_6 egoera $[q_1]$ multzoan dagoenez, q_6 ipini beharrean $[q_1]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_1]$	$[q_4]$
q_1	$[q_5]$	$[q_2]$
q_2	$[q_0]$	$[q_2]$
q_3	$[q_1]$	$[q_4]$
q_4	$[q_2]$	$[q_5]$
q_5	$[q_5]$	$[q_0]$
q_6	$[q_5]$	$[q_2]$

Ez dago hirugarren zatiketarik

 $[q_2]$, $[q_4]$ eta $[q_5]$ multzoek elementu bana dutenez, ezin dira zatitu. Hori horrela, $[q_0]$ eta $[q_1]$ multzoak aztertzea gelditzen zaigu.

 $[q_0]$ multzoa osatzen duten q_0 eta q_3 egoerek portaera bera dute: 0 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_4]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ ez da zatitu behar. Bestalde, $[q_1]$ multzoa osatzen duten q_1 eta q_6 egoerek ere portaera bera dute: 0 sinboloa irakurritakoan $[q_5]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da. Beraz, $[q_1]$ multzoa ere ez da zatitu behar. Ondorioz, ez da zatiketa berririk sortu.

AFD txikiena

Honako bost multzo hauek ditugu guztira:

$$[q_0] = \{q_0, q_3\}$$

$$[q_1] = \{q_1, q_6\}$$

$$[q_2] = \{q_2\}$$

$$[q_4] = \{q_4\}$$

$$[q_5] = \{q_5\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	0	1
q_0	$[q_1]$	$[q_4]$
q_1	$[q_5]$	$[q_2]$
q_2	$[q_0]$	$[q_2]$
q_4	$[q_2]$	$[q_5]$
q_5	$[q_5]$	$[q_0]$

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, $[q_1]$, $[q_2]$ eta $[q_5]$ egoerek bi zirkulu izango dituzte, hasierako AFD-ko Y multzoko egoerez osatuta baitaude.

Egoerak $0, 1, 2, 3, \ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ([]) kentzeko, egoerak berrizendatu egin ohi dira.

8. Honako AFD hau minimizatu. (2012-13)

 δ trantsizio-funtzioari dagokion taula honako hau da:

δ	0	1
q_0	q_1	q_0
q_1	q_0	q_2
q_2	q_3	q_1
q_3	q_3	q_0
q_4	q_3	q_5
q_5	q_6	q_4
q_6	q_5	q_6

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $\lceil q_j \rceil$ bezala identifikatuko dugu.

$$[q_0] = \{q_0, q_1, q_2, q_4, q_5, q_6\}$$
$$[q_3] = \{q_3\}$$

Lehenengo zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_2 egoeran gaudenean 1 sinboloa irakurriz q_1 egoerara joango garenez, eta q_1 egoera $[q_0]$ multzoan dagoenez, q_1 ipini beharrean $[q_0]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_0]$	$[q_0]$
q_1	$[q_0]$	$[q_0]$
q_2	$[q_3]$	$[q_0]$
q_3	$[q_3]$	$[q_0]$
q_4	$[q_3]$	$[q_0]$
q_5	$[q_0]$	$[q_0]$
q_6	$[q_0]$	$[q_0]$

Bigarren zatiketa

 $[q_0]$ eta $[q_3]$ multzoak zatitu beharrik ba al dagoen aztertu behar dugu orain.

 $[q_3]$ multzoan bakarrik q_3 egoera dagoenez, multzo hori horrelaxe geldituko da. $[q_0]$ multzoan bi portaera desberdin daude: alde batetik q_0 , q_1 , q_5 eta q_6 jokabide bera dute: bai 0 sinboloa irakurtzen denean eta bai 1 sinboloa irakurtzen denean, $[q_0]$ multzoko egoera batera igaro beharko da; beste aldetik, q_2 eta q_4 egoerek q_0 , q_1 , q_5 eta q_6 egoeren portaerarekiko desberdina den portaera dute, biek portaera bera: 0 sinboloa irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Guztira, $[q_0]$ bi azpimultzotan zatitu beharko da: $[q_0] = \{q_0, q_1, q_5, q_6\}$ eta $[q_2] = \{q_2, q_4\}$. Ondorioz, hiru multzo geratuko zaizkigu:

$$[q_0] = \{q_0, q_1, q_5, q_6\}$$
$$[q_2] = \{q_2, q_4\}$$
$$[q_3] = \{q_3\}$$

GARRANTZITSUA: q_2 eta q_4 egoerek q_3 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Bigarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_4 egoeran gaudenean 1 sinboloa irakurriz q_5 egoerara joango garenez, eta q_5 egoera $[q_0]$ multzoan dagoenez, q_5 ipini beharrean $[q_0]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_0]$	$[q_0]$
q_1	$[q_0]$	$[q_2]$
q_2	$[q_3]$	$[q_0]$
q_3	$[q_3]$	$[q_0]$
q_4	$[q_3]$	$[q_0]$
q_5	$[q_0]$	$[q_2]$
q_6	$[q_0]$	$[q_0]$

Hirugarren zatiketa

 $[q_3]$ multzoak osagai bakarra duenez, ezingo da zatitu. $[q_0]$ eta $[q_2]$ multzoak zatitu beharrik ba al dagoen aztertuko dugu orain.

 $[q_0]$ multzoan bi portaera desberdin ditugu. Alde batetik, q_0 eta q_6 egoerek jokaera bera dute: bai 0 sinboloa irakurtzen denean eta bai 1 sinboloa irakurtzen denean, $[q_0]$ multzoko egoera batera igaro beharko da; aldiz, q_1 eta q_5 egoeretan, 0 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ multzoa bitan zatitu beharko da: $[q_0] = \{q_0, q_6\}$ eta $[q_1] = \{q_1, q_5\}$. Bestalde, $[q_2]$ multzoan, q_2 eta q_4 egoerek jokabide bera dute: 0 sinboloa irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_2]$ multzoa ez da zatitu behar. Ondorioz, honako la multzo geldituko zaizkigu:

$$[q_0] = \{q_0, q_6\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3\}$$

GARRANTZITSUA: q_0 eta q_6 egoerek q_3 egoeraren jokabide bera izan arren, ez dira multzo berean sartu behar. Metodo honetan multzoak azpimultzotan zatituz joan behar dugu, baina egoerak multzo desberdinetan banandu ondoren ez dira berriro nahastu edo elkartu behar.

Hirugarren zatiketa hori kontuan hartuz, egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz trantsizio-taula eraldatu egingo dugu. Horrela, q_4 egoeran gaudenean b sinboloa irakurriz q_5 egoerara joango garenez, eta q_5 egoera $[q_1]$ multzoan dagoenez, q_5 ipini beharrean $[q_1]$ ipiniko dugu. Kasu guztietan horrela egin behar da:

δ	0	1
q_0	$[q_1]$	$[q_0]$
q_1	$[q_0]$	$[q_2]$
q_2	$[q_3]$	$[q_1]$
q_3	$[q_3]$	$[q_0]$
q_4	$[q_3]$	$[q_1]$
q_5	$[q_0]$	$[q_2]$
q_6	$[q_1]$	$[q_0]$

Ez dago laugarren zatiketarik

 $[q_3]$ multzoa osagai bakarrekoa da eta ez da zatitu beharko. Orain $[q_0]$, $[q_1]$ eta $[q_2]$ multzoak zatitu behar al diren aztertuko dugu.

 $[q_0]$ multzoa osatzen duten q_0 eta q_6 egoerek jokabide bera dute: 0 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da. Beraz, $[q_0]$ multzoa ez da zatitu behar. $[q_1]$ multzoa osatzen duten q_1 eta q_5 egoerek jokabide bera dute: 0 sinboloa irakurritakoan $[q_0]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_2]$ multzoko egoera batera igaro beharko da. Beraz,

 $[q_1]$ ere ez da zatitu behar. Azkenik, $[q_2]$ multzoa osatzen duten q_2 eta q_4 egoerek jokabide bera dute: 0 sinboloa irakurritakoan $[q_3]$ multzoko egoera batera igaro beharko da eta 1 sinboloa irakurritakoan $[q_1]$ multzoko egoera batera igaro beharko da. Beraz, $[q_2]$ multzoa ere ez da zatitu behar. Ondorioz, ez da zatiketa berririk sortu.

AFD txikiena

Honako lau multzo hauek ditugu guztira:

$$[q_0] = \{q_0, q_6\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_4\}$$

$$[q_3] = \{q_3\}$$

Multzo bakoitza egoera bat izango da. Trantsizioak azkeneko taula kontuan hartuz kalkulatuko dira:

δ	0	1
q_0	$[q_1]$	$[q_0]$
q_1	$[q_0]$	$[q_2]$
q_2	$[q_3]$	$[q_1]$
q_3	$[q_3]$	$[q_0]$

Hasierako AFD-ko hasierako egoera q_0 denez, AFD berrian $[q_0]$ izango da hasierako egoera, $[q_0]$ multzoan baitago q_0 egoera. Bestalde, bi zirkulu izango dituen egoera bakarra $[q_3]$ izango da, $[q_3]$ baita hasierako AFD-an bi zirkulu dituzten egoerez osatutako multzo bakarra.

Egoerak $0, 1, 2, 3, \ldots$ ordenan zenbatuta gelditzeko helburuarekin eta gainera kortxeteak ([]) kentzeko, egoerak berrizendatu egin ohi dira.

