What is claimed is:

1	1.	A wafer chuck comprising:
2		a. a chuck body having:
3		i. a wafer holding face for holding a wafer;
4		ii. a cavity structurally separated and below said wafer holding face;
5		iii. at least three pin channels extending between said holding face and
6		said cavity substantially perpendicular to said holding face;
7		b. at least three pinlifters correspondingly shaped to and slide ably embedded
8		in said pin channels, each of said pinlifters having a bottom face and a top
9		face;
10		c. a pinlifter assembly embedded in said cavity, said pinlifter assembly
11		having:
12		i. a wedge guide providing an angled movement path that is in an
13		wedge angle with respect to said wafer holding face;
14		ii. a pin actuator correspondingly shaped to said wedge guide and
15		slide ably guided by said wedge guide such that said pin actuator is
16		moved along said movement path as a result of an imposed driving
17		force;
18		iii. a driving means for said imposing of said driving force onto said
19		pin actuator;
20		wherein said bottom faces are in contact with a pin contact face of said pin
21		actuator such that said pinlifters are simultaneously moved along said pin
22		channels and said top faces are moved between a bottom position below said
23		holding face and a top position above said holding face while said pin actuator
24		is moved along said movement path.
25		
1		2. The wafer chuck of claim 1, wherein said guides are provided by guide
2		structures attached inside said cavity to said chuck body.
2		

l 2	3. The wafer chuck of claim 1, wherein said guides are integral part of a shape of said cavity.
3	
1	4. The wafer chuck of claim 1, wherein said pin contact face is substantially
2	parallel to said holding face.
3	
1	5. The wafer chuck of claim 1, wherein said pin contact face is angled with
2	respect to said holding face and said wedge angle is substantially zero.
3	
1	6. The wafer chuck of claim 1, wherein said guides are linear such that said
2	movement path is linear.
3	
1	7. The wafer chuck of claim 1, wherein said guides are circular and
2	rotationally symmetric arranged such that said movement path is a
3	rotation.
4	
1	8. The wafer chuck of claim 7, wherein said guides are arranged such
2	that a rotation axis of said movement path substantially
3	coincides with a center axis of said wafer chuck.
4	
1	9. The wafer chuck of claim 1 further comprising a vacuum connect having a
2	vacuum channel for connecting a vacuum across said cavity to a
3	vacuum groove recessed from said wafer holding face.
4	
1	10. The wafer chuck of claim 2, wherein said pin actuator has a cutout
2	such that said pin actuator may be moved between two end
3	positions without interfering with said vacuum connect.
4	
1	11. The wafer chuck of claim 1, wherein said driving means include a
2	motored rotating crank and a connecting rod transmitting a rotating
2	motion of said motored rotating graph anto said nin actuator

4	
1	12. The wafer chuck of claim 4, wherein said driving crank is motored
2	by a stepper motor.
3	
1	13. The wafer chuck of claim 6, wherein said stepper motor has
2	a rotation axis that is substantially perpendicular to said
3	wafer holding face.
4	
1	14. The wafer chuck of claim 1, wherein said cavity is substantially sealed and
2	communicating a vacuum substantially unimpeded between a vacuum
3	channel and a vacuum connect, said vacuum channel connecting said
4	cavity with a vacuum groove recessed from said wafer holding face,
5	said vacuum connect extending from a bottom face of said wafer
6	chuck.
7	
1	15. The wafer chuck of claim 1 being part of a rotary stage.
2	
1	16. The wafer chuck of claim 15, wherein said cavity is at least
2	partially provided by said rotary stage.
3	
1	17. The wafer chuck of claim 1 being part of a single axis linear stage.
2	
1	18. The wafer chuck of claim 17, wherein said cavity is at least
2	partially provided by said single axis linear stage.
3	
1	19. The wafer chuck of claim 1 being part of a dual axis linear stage.
2	
1	20. The wafer chuck of claim 19, wherein said cavity is at least
2	partially provided by said dual axis linear stage.
3	
1	21. The wafer chuck of claim 1 being part of a wafer testing device.