

Computación Gráfica

Class 16. Quadtrees. k-d trees. Voronoi diagram. Delaunay triangulation.

Professor: Eric Biagioli

Today

- Quadtrees.
- k-d trees.
- Overall ideas on voronoi diagram and delaunay triangulation.

References for the class of today: (part of the first partial exam)

- Berg, M. d., Cheong, O., Kreveld, M. v., and Overmars, M. Computational Geometry: Algorithms and Applications, 3rd ed. ed.
 Springer-Verlag TELOS, Santa Clara, CA, USA, 2008.
 - Sections 7.1 and 7.2 (Voronoi Diagrams)
 - Sections 5.2 (kd-trees), 5.3 (range trees)
 - Section 14.2 (quadtrees)
 - Sections 9.1, 9.2, 9.3 (Delaunay triangulation)
- Other sources:
 - https://www.geeksforgeeks.org/voronoi-diagram/ (Fortune's algorithm)
 - https://www.cs.cornell.edu/info/people/chew/Delaunay.html
 - https://jacquesheunis.com/post/fortunes-algorithm/
 - https://www.youtube.com/watch?v=ysLCuqcyJZA

Voronoi diagram

Voronoi diagram

- Divides the space into regions based on the distance to a set of the points called "seeds" or "sites".
- the region of the seed s is formed by the points whose closest seed is s.
- Voronoi diagrams have many applications in multiple fields. Among them:
 - Geographical Information Systems.
 - Computer Vision.
 - Terrain generation.
 - Texture generation.
 - Collision detection
 - Rendering.
 - Texture maping.

Voronoi diagrams: how to compute it?

The Fortune's algorithm

Voronoi diagrams: how to compute it?

The Fortune's algorithm

- > The name is due to its inventor: Steven Fortune
- > Invented in 1986 (38 years ago)
- > Sweep line.
- > Runtime O(n log n) and memory O(n), where n is the number of initial seeds.

Voronoi diagrams: how to compute it?

https://www.youtube.com/watch?v=k2P9yWSMaXE

Delaunay triangulation

Delaunay triangulation

- It is (almost) the dual graph of the Voronoi diagram.
- Can be computed on its own and compute, from it, the Voronoi diagram.
- Can be computed from the Voronoi diagram.

Figure 14.4 A node at depth i corresponds to a square of side length $s/2^i$

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage and can be built in $O(n \log n)$ time. A rectangular range query on the kd-tree takes $O(\sqrt{n} + k)$ time, where k is the number of reported points.

Figure 5.4 orrespondence between nodes in a kd-tree and regions in the plane

Section 5.2

KD-TREES

Figure 5.5 A query on a kd-tree

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage and can be built in $O(n \log n)$ time. A rectangular range query on the kd-tree takes $O(\sqrt{n} + k)$ time, where k is the number of reported points.

Exercises (100 points is the perfect score. You can exceed the perfect score by doing the additional exercises)

- (50 points) Find the closest pair of points in a set of N points using quadtrees.
- (50 points) And using a two dimensional kd-tree.
- (100 points) How many pizzerias are in miraflores?