Customer Churn Prediction

In this project, we will predict whether a customer will leave the bank or not based on many factors

Following Factors are:

- 1. Credit score
- 2. Location of the Customer
- 3. Gender
- 4. Age
- 5. Tenure
- 6. Account Balance
- 7. Number of Bank Products Customer Uses
- 8. Has Credit Card
- 9. Is Active Member
- 10. Estimated Salary

In [1]:

```
from IPython.display import Image
Image(url='https://miro.medium.com/max/844/1*MyKDLRda6yHGR_8kgVvckg.png')
```

Out[1]:

In [2]:

```
# Importing the essential Libraries
import pandas as pd
import numpy as np
```

In [3]:

```
# Reading the Dataset
df = pd.read_csv('Churn_Modelling.csv')
```

In [4]:

```
df.head()
```

Out[4]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43
4							•

In [5]:

df.shape

Out[5]:

(10000, 14)

In [6]:

df.columns

Out[6]:

In [7]:

df.dtypes

Out[7]:

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

In [8]:

```
# Printing Unique Values of the categorical variables
print(df['Geography'].unique())
print(df['NumOfProducts'].unique())
print(df['HasCrCard'].unique())
print(df['IsActiveMember'].unique())
['France' 'Spain' 'Germany']
['Female' 'Male']
[1 3 2 4]
[1 0]
[1 0]
```

In [9]:

```
# Checking if there are null values or not
df.isnull().sum()
```

Out[9]:

RowNumber 0 CustomerId 0 Surname 0 CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

In [10]:

df.describe()

Out[10]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	1
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	2

→

In [11]:

df.head()

Out[11]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39
4	5	15737888	Mitchell	850	Spain	Female	43
4							•

In [12]:

```
# Including only Potential Predictors as independent varibles
final_dataset = df[['CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Ba
```

In [13]:

```
final_dataset.head()
```

Out[13]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts
0	619	France	Female	42	2	0.00	1
1	608	Spain	Female	41	1	83807.86	1
2	502	France	Female	42	8	159660.80	3
3	699	France	Female	39	1	0.00	2
4	850	Spain	Female	43	2	125510.82	1
4							•

In [14]:

Converting the categorical variables into numerical and avoiding Dummy Varib
final_dataset = pd.get_dummies(final_dataset, drop_first=True)

In [15]:

```
final_dataset.head()
```

Out[15]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActive N
0	619	42	2	0.00	1	1	
1	608	41	1	83807.86	1	0	
2	502	42	8	159660.80	3	1	
3	699	39	1	0.00	2	0	
4	850	43	2	125510.82	1	1	
4							•

In [16]:

import seaborn as sns

In [17]:

sns.pairplot(final_dataset)

Out[17]:

<seaborn.axisgrid.PairGrid at 0x1e497be0>

In [18]:

import matplotlib.pyplot as plt
%matplotlib inline

In [19]:

```
# Plotting The Correlations between all the features
corrmat = final_dataset.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(20,20))
sns.heatmap(final_dataset[top_corr_features].corr(), annot=True, cmap='RdYlGn'
```

Out[19]:

<AxesSubplot:>

From the heatmap , we find that teh Age, Balance and the Geography of the Customer are Most important features

In [20]:

```
final_dataset.head()
```

Out[20]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveN
0	619	42	2	0.00	1	1	
1	608	41	1	83807.86	1	0	
2	502	42	8	159660.80	3	1	
3	699	39	1	0.00	2	0	
4	850	43	2	125510.82	1	1	
4							>

In [21]:

```
# Splitting the Dataset into Dependent and Independent Variables
X = final_dataset.iloc[:, [0,1,2,3,4,5,6,7,9,10,11]]
y = final_dataset.iloc[:, 8].values
```

In [22]:

X.head()

Out[22]:

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveN
0	619	42	2	0.00	1	1	
1	608	41	1	83807.86	1	0	
2	502	42	8	159660.80	3	1	
3	699	39	1	0.00	2	0	
4	850	43	2	125510.82	1	1	
4							•

```
In [23]:
У
Out[23]:
array([1, 0, 1, ..., 1, 1, 0], dtype=int64)
In [24]:
# Splitting the dataset into Training and Testing Data
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X,y,test size=0.2, random
In [25]:
# Standardizing the Dataset
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X train)
X test = sc.transform(X test)
In [26]:
print(X train)
                       0.34567966 ... -0.57946723 -0.576388
[[ 0.35649971 -0.6557859
02
  0.91324755]
 02
  0.91324755]
 [-0.96147213 -1.41636539 -0.69539349 \dots -0.57946723 1.734942]
38
  0.91324755]
 [ 0.86500853 -0.08535128 -1.38944225 ... -0.57946723 -0.576388
02
  -1.09499335]
                       1.03972843 ... -0.57946723 -0.576388
 [ 0.15932282  0.3900109
02
  0.91324755]
02
  0.91324755]]
```

```
In [27]:
## Feature Importance
from sklearn.ensemble import ExtraTreesRegressor
model = ExtraTreesRegressor()
model.fit(X,y)
Out[27]:
ExtraTreesRegressor()
In [28]:
print(model.feature_importances_)
[0.11928469 0.23785024 0.10399456 0.13005991 0.1414219
                                                       0.03120
769
0.04501133 0.11796912 0.02857235 0.02124091 0.0233873 ]
Random Forest Classifier
In [29]:
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(X train,y train)
Out[29]:
RandomForestClassifier()
In [30]:
```

y pred = rf.predict(X test)

In [31]:

```
from sklearn.metrics import accuracy_score, confusion_matrix
cm = confusion_matrix(y_test,y_pred)
print(cm)
print(accuracy_score(y_test,y_pred))
```

```
[[1546 61]
[ 207 186]]
0.866
```

In [32]:

```
# pickling the Model
import pickle
file = open('Customer_Churn_Prediction.pkl', 'wb')
pickle.dump(rf, file)
```