COMS22202: 2015/16

Language Engineering

Dr Oliver Ray

(csxor@Bristol.ac.uk)

Department of Computer Science University of Bristol

Thursday 21st April, 2016

Natural Operational Semantics p19-32

- Natural operational semantics (aka big step semantics) is somewhere in between the structural and denotational semantics
- It specifies axiom and rule schemata that relate configurations directly to their completed semantic values
- For convenience we use a different arrow (→) to distinguish the natural semantics from the operational semantics (⇒) exactly as done in the textbook

Natural Semantics: Arithmetics

Using our subscript notation, the semantics of numerals is easy

$$\langle n_i, \sigma \rangle \rightarrow i$$

And variables evaluate to integers (with no numerals required)

$$\overline{\langle V, \sigma \rangle \rightarrow \sigma(V)}$$

 The semantics of the arithmetic operators are easier than in the structural semantics since we only require the end result

$$\frac{\langle a, \sigma \rangle \to i \qquad \langle b, \sigma \rangle \to j}{\langle a + b, \sigma \rangle \to i + j}$$

- In these rules $\sigma \in State$ $n_i \in Num v \in Var a, b \in Aexp$
- Analogous rules apply to the other arithmetic operators

Example: Arithmetics

- Suppose σ_{12} is a state that maps x to 1 and y to 2
- Then we have $\langle (x+5)+y, \sigma_{12} \rangle \rightarrow 8$ by the following proof tree

$$\frac{\langle x, \sigma_{12} \rangle \to 1}{\langle x+5, \sigma_{12} \rangle \to 6} \qquad \qquad \frac{\langle y, \sigma_{12} \rangle \to 5}{\langle y, \sigma_{12} \rangle \to 2}$$

$$\langle (x+5)+y, \sigma_{12} \rangle \to 8$$

Natural Semantics: Booleans

The rules for Booleans are similarly defined with two base cases

$$\langle \text{ true, } \sigma \rangle \to \text{tt}$$
 $\langle \text{ false, } \sigma \rangle \to \text{ff}$

There are two cases for inequality (and analogous rules for equality)

$$\langle a, \sigma \rangle \to i \quad \langle c, \sigma \rangle \to j \quad \text{if } i \le j$$

 $\langle a \le c, \sigma \rangle \to tt$

$$\frac{\langle a, \sigma \rangle \to i \quad \langle c, \sigma \rangle \to j}{\langle a \le c, \sigma \rangle \to ff} \quad \text{if } i > j$$

Two cases for negation

$$\frac{\langle b, \sigma \rangle \to ff}{\langle \neg b, \sigma \rangle \to tt}$$

$$\frac{\langle b, \sigma \rangle \to tt}{\langle \neg b, \sigma \rangle \to ff}$$

It is convenient to define three cases for conjunction

• In these rules $\sigma \in State$ b, $d \in Bexp$ a, $c \in Aexp$

Example: Booleans

- Suppose σ_{12} is a state that maps x to 1 and y to 2
- Then we have $\langle \neg(x \le 5), \sigma_{12} \rangle \rightarrow ff$ by the following proof tree

$$\frac{\langle x, \sigma_{12} \rangle \to 1}{\langle x \leq 5, \sigma_{12} \rangle \to 5}$$

$$\underline{\langle x \leq 5, \sigma_{12} \rangle \to tt}$$

$$\langle \neg (x \leq 5), \sigma_{12} \rangle \to ff$$

Natural Semantics: Commands p20

$$\langle \text{ skip, } \sigma \rangle \rightarrow \sigma$$

$$\frac{\langle a, \sigma \rangle \to i}{\langle x := a, \sigma \rangle \to \sigma[x \mapsto i]}$$

$$\frac{\langle S_1, \sigma \rangle \to \sigma' \quad \langle S_2, \sigma' \rangle \to \sigma''}{\langle S_1; S_2, \sigma \rangle \to \sigma''}$$

$$\langle b, \sigma \rangle \to ff \qquad \langle S_2, \sigma \rangle \to \sigma'$$

\(\rangle \text{if b then } S_1 \text{ else } S_2, \sigma \rangle \to \sigma'

$$\frac{\langle b, \sigma \rangle \to tt \quad \langle S, \sigma \rangle \to \sigma' \quad \langle \text{ while b do } S, \sigma' \rangle \to \sigma''}{\langle \text{ while b do } S, \sigma \rangle \to \sigma''}$$

$$\frac{\langle b, \sigma \rangle \to ff}{\langle \text{ while b do S, } \sigma \rangle \to \sigma}$$

Example: Commands cf. ex 2.1 p22-3

```
\begin{array}{c|c} & \langle x \,, \sigma_{570} \rangle \to 5 & \langle y \,, \sigma_{575} \rangle \to 7 \\ \hline \langle z := x \,, \sigma_{570} \rangle \to \sigma_{575} & \langle x := y \,, \sigma_{575} \rangle \to \sigma_{775} & \langle z \,, \sigma_{775} \rangle \to 5 \\ \hline & \langle z := x \,; \, x := y \,, \sigma_{570} \rangle \to \sigma_{775} & \langle y := z \,, \sigma_{775} \rangle \to \sigma_{755} \\ \hline \langle (z := x \,; \, x := y) \,; \, y := z \,, \sigma_{570} \rangle \to \sigma_{755} \end{array}
```

Termination and Looping p25

• The execution of statement S in state σ terminates iff there exists a state σ' such that $\langle S, \sigma \rangle \to \sigma'$

• The execution of statement S in state σ loops iff there exists no state σ' such that $\langle S, \sigma \rangle \to \sigma'$

 A statement S always terminates iff its execution terminates in all states σ

A statement S always loops iff its execution loops in all states or

Determinism and Equivalence p26-8

• A natural semantics is deterministic iff $\langle S, \sigma \rangle \to \sigma'$ and $\langle S, \sigma \rangle \to \sigma''$ imply that $\sigma' = \sigma''$ for all $\sigma, \sigma', \sigma'' \in S$ tate and for all $S \in S$ tm

- Two statements S_1 and S_2 are semantically equivalent (under the natural operational semantics) whenever it holds that
 - $\langle S_1, \sigma \rangle \rightarrow \sigma'$ iff $\langle S_2, \sigma \rangle \rightarrow \sigma'$ for all $\sigma, \sigma' \in S$ tate