CogSys: Efficient and Scalable Neuro-Symbolic Cognition System via Algorithm-Hardware Co-Design

¹Georgia Tech, Atlanta, GA, USA ²IBM Research, Yorktown Heights, NY, USA

Zishen Wan^{1*}, Hanchen Yang^{1*}, Ritik Raj^{1*}, Che-Kai Liu¹, Anand Samajdar², Arijit Raychowdhury¹, Tushar Krishna¹

MOTIVATION: WHY NEURO-SYMBOLIC AI?

- **Compositional system** to enhance cognitive capability
- Applications: complex QA, abstract reasoning, math proving, etc

✓ Neuro-Symbolic AI bridges neural learning & symbolic reasoning

SYSTEM CHARACTERISTICS AND CHALLENGES

- System Challenges: Latency, memory, heterogeneity
 - Latency: large end-to-end runtime; symbolic critical path bottleneck

- **Memory:** symbolic memory-bound; low ALU util, low cache hit rate
- Heterogeneity: neuro (GEMM, conv), symbolic (vector, circular conv)

METHODOLOGY: SOFTWARE-HARDWARE CO-DESIGN FOR REAL-TIME AND EFFICIENT NEURO-SYMBOLIC AI

CROSS-LAYER OPTIMIZATION: ALGORITHM, HARDWARE ARCHITECTURE, SYSTEM SCHEDULING

- * Hardware: Reconfigurable neuro-symbolic architecture
- Overview: scalable compute array ✓ **PE**: reconfigurable N/S modes

Algorithm: Efficient symbolic factorization

System: Adaptive workload-aware scheduling

Dataflow: bubble streaming dataflow; adaptive spatial-temporal mapping

EVALUATION RESULTS

Layout: 28nm node

Latency & Energy: 90x speedup vs. edge GPU

Compared with ML accelerators: 1.7-15.9x speedup

