ODTÜ Bilimsel Araştırma Yetenekleri ve Potansiyeli

Deniz Üner Kimya Mühendisliği Bölümü ODTÜ

Turgut Tümer Makine Mühendisliği Bölümü ODTÜ

Erol Taymaz İktisat Bölümü ODTÜ

Özet: Bu çalışmada ODTÜ'nün bilimsel araştırma ve yetenekleri bilimsel yayınlar temelinde incelenmiştir. Çalışmada, araştırmacı başına yayın sayıları, bölüm-içi ve bölümdışı araştırma işbirlikleri ve yayınlara yapılan atıflardaki değişimler bölüm bazında değerlendirilmiştir. Yayınlarda kullanılan anahtar kelimeler kullanılarak, araştırma alanlarının saptanmasına çalışılmıştır. Çalışma sonuçlarına göre, bilimsel yayınlar ölçü olarak alındığında, ODTÜ'nün kimya, fizik, matematik ve biyoloji gibi temel alanlarda oldukça güçlü bir temele sahip olduğu, psikoloji, iktisat ve sosyoloji gibi sosyal bilimler alanlarında da küçümsenmeyecek bir birikim oluşturduğu görülmektedir. Ayrıca biyoteknoloji ve bilgisayar mühendisliği uygulamaları gibi yeni gelişen teknoloji alanlarında da ODTÜ'nün güçlü olduğu anlaşılmaktadır.

Anahtar kelimeler: ODTÜ, bibliometrik analiz, araştırma alanları, araştırma yetenekleri

Abstract: This paper summarizes the findings of a bibliometric study on scientific research potential and capabilities of a public university, Middle East Technical University, in Turkey. Research potential at the department level was studied on the basis of various measures, like the number of scientific publications per researcher, within- and between-department research collaborations, and citations received. Main research fields at METU were identified by bibliometric mapping of keywords used in article titles. It is found that METU has a solid research capability in basic sciences (chemistry, physics, mathematics and biology), and has developed competence in a number of social sciences (psychology, economics and sociology). METU has also a strong position in rapidly developing technological fields like biotechnology and computer engineering.

Keywords: METU, bibliometric analysis, research fields, research capabilities

I. Giriş

Son yıllarda bilim ve teknoloji arasındaki sınırın daha da muğlak hale gelmesi ve uluslararası rekabet gücünün teknolojik yenilik kapasitesi tarafından belirlenmesi, bilim, teknoloji ve yenilik politikalarının önemini arttırmıştır. Bu politikalar ile, ülke düzeyinde bilim ve teknoloji yetenekleri, hedefleri ve öncelikleri saptanmaktadır. 2003-2004 yıllarında TÜBİTAK'ın koordinasyonunda gerçekleştirilen *Vizyon 2023* projesi, bu alanda Türkiye'de de önemli çalışmaların yapıldığını göstermektedir.¹

Bilim, teknoloji ve yenilik politikalarının etkin bir şekilde tasarlanması ve uygulanması, sadece ulusal düzeyde yapılacak çalışmalar ile sağlanamaz. Ulusal yenilik sistemini oluşturan unsurların, genel ülke vizyonu ile uyumlu olarak, kendi politika ve stratejilerini de oluşturmaları gerekmektedir. Geliştirilecek politika ve stratejilerin tutarlı, anlamlı ve uygulanabilir olmaları için mevcut yeteneklerin saptanması özel bir önem taşımaktadır. Bu çalışmada, bilimsel araştırma açısından Türkiye'de öncü konumda olan üniversitelerden birinde, ODTÜ'de, bilimsel araştırma yetenek ve potansiyeli incelenmiştir. Benzeri çalışmaların diğer üniversiteler ve araştırma kurumları için de yapılması ile Türkiye Araştırma Alanı'nın mevcut konumu hakkında ayrıntılı bir bilgi birikimi sağlanabilecektir.

Bu çalışmada, ODTÜ'deki bilimsel araştırmaların yoğunlaştığı alanların ve alanlar arası ilişkilerin tespit edilmesi amacıyla bilimsel yayınlar temel veri kaynağı olarak kullanılmıştır. Kullanılan verilerin tüm alanlar için benzer bir yapıda olmasını sağlamak için bilimsel yayınlar *Science Citation Index* (SCI) ve *Social Science Citation Index* (SSCI) tarafından taranan dergiler/makaleler ile kısıtlı tutulmuştur. Bilimsel araştırma ve yayın performansının bu iki kaynak ile kısıtlanmasının bazı sorunlara ve yanlılığa yol açtığı bilinmektedir. Bu sorunlara karşın, bu iki endeks temelinde yapılacak bir çalışmanın, ODTÜ'nün mevcut araştırma eğilimi ve potansiyelini genel olarak yansıtabileceği düşünülmüştür. Çalışmanın amacı mevcut durumun saptanmasına yönelik olduğu için sadece *halen ODTÜ'de görevli olan* öğretim üyelerinin yayınları incelenmiş, eskiden ODTÜ'de görevli olan öğretim üyelerinin yayınları analize dahil edilmemiştir. Bu nedenle çalışma ODTÜ adresli tüm yayınları kapsamamakta, fakat halen ODTÜ'de görevli öğretim

_

¹ Vizyon 2023 projesi konusunda ayrıntılı bilgi için, bkz. http://vizyon2023.tubitak.gov.tr

² SCI ve SSCI'in, özellikle sosyal bilimler alanında, yanlı olması, kitaplar başta olmak üzere pek çok yayının bu endeksler tarafından taranmaması, her bilimsel araştırmanın yayın ile sonuçlanmaması, vb.

üyelerinin ODTÜ'de bulunmadıkları dönemde yayınlamış oldukları yayınları da içermektedir.

Çalışmada kapsanan yayınlar, ODTÜ Personel Dairesi'nden alınan öğretim üye listesindeki tüm isimlerin *Web of Science*'da taranması ile bulunmuştur.³ Tarama sonucu bulunan tüm yayınlar bir veri tabanına aktarılmış, bu çalışmada sadece "makale" niteliğinde olan yayınlara ilişkin veriler kullanılmıştır.⁴ Web of Science'daki tarama isimler üzerinden yapıldığı için, özellikle soyadının değişmesi gibi durumlardan dolayı bazı yayınların tespit edilememesi veya isim benzerliğinden dolayı ilgili olmayan yayınların da veri tabanına aktarılması gibi hatalar sözkonusudur. Ulakbim'in web sayfasında bulunan ODTÜ adresli yayın sayıları ile mevcut veriler karşılaştırıldığında, mevcut verilerdeki eksikliğin en fazla %10-15 düzeyinde olabileceği görülmektedir.

Bu çalışmada, bölümler bazındaki yayınlar, yayın sayılarının zaman içinde değişimi, araştırmacı başına yayın sayısı, yayınların aldığı atıf sayıları gibi değişkenler kullanılarak değerlendirilmiştir. Ayrıca, uluslararası karşılaştırma açısından, ABD'deki araştırma üniversitelerindeki yayın oranları ile de bir karşılaştırma yapılmıştır. Bölümler arası işbirlikleri, ortak yayınlar kapsamında tespit edilmiştir. Araştırma alanlarının belirlenmesinde, 4. bölümde daha ayrıntılı olarak açıklandığı gibi, makale başlıklarında kullanılan anahtar kelimelerden yararlanılmıştır. Anahtar kelimelerin ortak kullanılma sıklığından yola çıkılarak araştırma alanları, bu alanlardaki yayın sayıları ve son beş yıldaki gelişme tespit edilmiştir.

II. ODTÜ Bilimsel Yayınları: Genel Değerlendirme

Bu bölümde ODTÜ adresli yayınlar ile ODTÜ'de halen görev yapan öğretim üyelerinin yayınlarının zaman içinde değişimi incelenmektedir. Şekil 1 ve 2'de 1990-2003 döneminde ODTÜ, Bilkent ve Boğaziçi üniversiteleri ile Türkiye adresli SCI ve SSCI'de yer alan makalelerin sayıları görülmektedir. ⁵ 2003 verileri 27 Mayıs 2003 tarihinden güncellendiği için yıl toplamını yansıtmamaktadır.

³ Yayınların taranması işini büyük bir sabırla gerçekleştiren Beril Okay ve Burak Ersoy'a teşekkür ederiz.

⁴ Oluşturulan veritabanında 4387 yayın mevcuttur. Bu yayınların 4039'u makale (478'i mükerrer), 98'i not, 77'si toplantı özeti, 49'u editoryal yazı, 47'si mektup, 27'si düzeltme, 25'i yazın taraması, 15'i kitap eleştirisi, 6'sı tartışma ve 4'ü çeşitli türde yayındır.

⁵ Kaynak: www.ulakbim.gov.tr 1995 yılında genel bir düşüş gözlenmektedir. Bu düşüş verilerdeki bir sorundan kaynaklanmış olabilir.

Bu şekillerde görüldüğü gibi gerek söz konusu üniversitelerin, gerekse Türkiye'nin yayın⁶ sayısında 1990'ların ortasından itibaren büyük bir artış gözlenmektedir. Bu artış sonucu 2002 yılında Türkiye adresli makale sayısı SCI'de 12061 ve SSCI'de 384'e ulaşmıştır. 1990-2002 arası SCI'deki artış 12.6, SSCI'deki artış ise 5.6 kat olmuştur. ODTÜ, Bilkent ve Boğaziçi üniversitelerindeki artış oranları doğal olarak Türkiye ortalamasının altında olmuştur (SCI'da, sırasıyla, 3.5, 6.0 ve 5.9, SSCI'da 3.4, 4.0 ve 3.6). 1990-2002 döneminde ODTÜ'nün yayın artış oranının Bilkent ve Boğaziçi'nden düşük olmasının en önemli nedeni, 1990-1996 döneminde Bilkent ve Boğaziçi üniversitelerindeki artıştır. Şekil 3'de görüldüğü gibi, 1996'dan sonra özellikle SSCI yayınlarında ODTÜ daha yüksek bir artış oranına ulaşmış, ODTÜ'nün Bilkent ve Boğaziçi'ne karşı konumu iyileşmiştir.

Yayınların SCI ve SSCI kapsamındaki dağılımına bakıldığında da üniversitelerin farklı özellikler taşıdığı görülmektedir. Türkiye genelinde sosyal bilimler alanında yapılan yayınların (SSCI) toplam yayınlar içerisindeki oranı, tüm dönem için, %5'den az olmuştur. Fakat bu oran ODTÜ'de Türkiye ortalamasının iki katıdır (%8-9). Sosyal bilimlerin toplam yayınlar içerisindeki payı Boğaziçi'nde biraz daha fazla (%10-13) ve Bilkent'de çok yüksektir (son yıllarda artmakla birlikte dönem ortalaması %20'den fazla).

⁶ Bu çalışmada sadece makaleler göz önüne alındığı için "yayın" ve "makale" aynı anlamda kullanılmaktadır.

Yayınlanan makalelerin toplam sayısı, ilgili kurumun araştırma birikimi ve yeteneğini genel olarak yansıtmakla beraber, araştırmacıların bilimsel üretkenliği konusunda bir bilgi vermemektedir. Araştırmacıların üretkenliği ve yetkinliğini değerlendirebilmek için o kurumda araştırmacı sayısının da göz önüne alınması gerekmektedir.

Tablo 1'de, ODTÜ Personel Müdürlüğü'nden alınan ve araştırmada kullanılan veritabanındaki 761 öğretim üyesinin ODTÜ'de işe başlama tarihi, doktora derecesini aldığı tarih ve doktora derecesini aldığı üniversiteye göre, fakülteler bazında, dağılımı görülmektedir. "Toplam" sütunu, beş fakülteye ek olarak enstitü ve yüksek okullardaki öğretim üyelerini de kapsamaktadır. Personel Müdürlüğü'nden alınan ve öğretim üyelerinin ODTÜ'de işe başlama ve doktora derecesini aldığı tarihleri içeren veri setinde 439 öğretim üyesine ait veriler mevcuttur. Bu veri setinde elde edilen dağılımların genel için (761 öğretim üyesi) geçerli olduğu varsayılmıştır.

ODTÜ'de mevcut görevli öğretim üyelerinin yaklaşık %20'si 1998-2002 döneminde doktora derecesini almış ve ODTÜ'de göreve başlamıştır. Son beş yıl içerisinde göreve başlayanların oranı Mühendislik Fakültesi'nde yüksek (%25), İktisadi ve İdari Bilimler Fakültesi'nde (İİBF) (%10) düşüktür. Buna karşın son beş yıl içerisinde doktora derecesini alanların oranının en yüksek olduğu fakülte İİBF (%38), en düşük olduğu fakülte de Fen ve Edebiyat Fakültesi (FEF) (%16) olmaktadır. Bu oranlar arasındaki farklılığın nedenleri, ODTÜ'de doktora derecesi almadan önce (araştırma

görevlisi/öğretim görevlisi olarak) göreve başlama ve/veya doktora derecesini aldıktan çok sonra ODTÜ'de göreve başlama olabilir.

Tablo 1. ODTÜ'de 2003 yılında görevli öğretim üyelerinin dağılımı

	Mimarlık	Fen-edebiyat	Mühendislik	İİBF	Eğitim	Toplam
ODTÜ'de göreve başlam	na tarihi	•				•
1988 öncesi	49	47	39	29	24	39
1988-1992	16	7	16	25	14	14
1993-1997	16	29	16	31	38	24
1998-2002	14	14	25	10	14	18
Doktora derecesini alma	tarihi					
1988 öncesi	21	42	36	25	19	32
1988-1992	9	14	18	13	16	17
1993-1997	33	26	21	21	24	31
1998-2002	33	16	22	38	32	20
Doktora derecesini aldığ	ıyer					
ODTÜ	38	35	35	9	32	34
Diğer yurt içi	24	8	3	14	39	10
Yurt dışı	38	57	62	77	29	56
Toplam	68	196	329	69	56	761

Doktora derecesini ODTÜ'den alan öğretim üyelerinin oranı Mimarlık (%38), Fen-Edebiyat (%35), Mühendislik (%35) ve Eğitim (%32) fakültelerinde görece yüksek iken İİBF'de çok düşüktür (sadece %9). ODTÜ'deki öğretim üyelerinin yaklaşık %56'sı doktora derecesini yurt dışında almıştır (en yüksek oran %77 ile İİBF).

ODTÜ'deki mevcut öğretim üyelerinin yayın performansına ilişkin genel veriler Tablo 2'de sunulmuştur. İlk sütundaki veriler toplam makale sayılarını, ikinci sütundaki veriler de bu makaleler arasında ODTÜ adresli olanları göstermektedir. Doğal olarak makale sayısında zaman içerisinde önemli bir artış gözlenmekte, ODTÜ adresleri yayınların toplam içerisindeki payı da artmaktadır. ODTÜ'de halen görevli olan öğretim üyeleri, yayınlarının %22'sini ODTÜ'de olmadıkları dönemde gerçekleştirmiştir.

Üç ve dördüncü sütundaki veriler yazar sayısına göre düzeltilmiş (YSD) makale sayılarını göstermektedir. Yazar sayısına göre düzeltmede, bir makale yazarları arasında eşit dağıtılmaktadır (örneğin, iki yazarlı bir makalede, her bir yazar 0.5 makale yayınlamış olarak kabul edilmektedir). Yazar sayısı 10 ve daha fazla olan az sayıda makale göz önüne alınmamıştır.

Tablo 2. ODTÜ öğretim üyelerinin bilimsel yayınları ve niteliği

	Makale s	sayısı	Makale sa	ayısı***	Kişi başına	Ortalama	sayfa	Ortalama	atıf*	Ortalama ya	ızar say** C	DDTÜ adr ya	azar say**
•	Toplam	ODTÜ	Toplam	ODTÜ	yillık makale	Toplam	ÖDTÜ	Toplam	ODTÜ	Toplam	ODTÜ	Toplam	ODŤÜ
	·	adresli	•	adresli	sayısı	•	adresli	·	adresli	•	adresli	•	adresli
1985	78	37	41	19		6.61	6.51	7.59	7.60	2.24	2.33	1.01	1.03
1986	11	6	6	3		5.63	3.67	7.91	9.33	1.91	2.00	1.00	1.00
1987	14	9	6	4		6.12	5.64	6.58	6.89	2.57	2.22	1.00	1.00
1988	23	17	12	7	0.042	6.94	6.70	3.82	3.76	2.52	2.65	1.13	1.06
1989	118	75	68	45	0.225	9.32	8.91	4.31	4.26	2.25	2.16	1.08	1.08
1990	117	63	61	33	0.191	8.54	8.37	4.86	4.82	2.58	2.49	1.04	1.03
1991	120	77	65	44	0.182	9.64	9.49	4.97	5.03	2.51	2.31	1.08	1.12
1992	99	66	50	34	0.133	9.03	8.28	5.22	3.98	2.69	2.55	1.09	1.12
1993	123	80	60	41	0.146	8.90	8.27	5.23	4.65	2.53	2.40	1.07	1.08
1994	167	114	75	53	0.162	10.35	9.24	5.13	4.08	2.97	2.79	1.09	1.11
1995	165	112	72	51	0.146	8.51	8.33	4.02	3.37	2.87	2.84	1.06	1.08
1996	197	140	96	71	0.178	9.79	9.25	4.02	3.83	2.85	2.80	1.13	1.16
1997	279	205	137	106	0.241	8.92	8.52	3.89	3.68	2.71	2.61	1.11	1.13
1998	264	204	127	104	0.209	9.48	9.48	3.46	3.07	2.83	2.76	1.14	1.18
1999	297	233	148	120	0.233	10.01	9.84	2.81	2.88	2.90	2.89	1.19	1.23
2000	380	305	191	159	0.281	9.69	9.66	1.86	1.86	2.73	2.64	1.13	1.15
2001	435	379	218	199	0.307	9.94	9.92	1.14	1.07	2.80	2.69	1.15	1.17
2002	482	384	251	214	0.340	10.32	10.19	0.39	0.40	2.74	2.57	1.16	1.19
2003	192	161	95	85	0.125	9.80	9.88	0.03	0.02	2.78	2.65	1.20	1.24
Toplam	3561	2667	1780	1393	0.218								

^{* &}gt;25 atıflı makaleler hariç

^{** &}gt;9 yazarlı makaleler hariç

^{***} Yazar sayısına göre düzeltilmiş

Tablo 1'in beşinci sütununda öğretim üyesi başına (YSD) yayın sayıları bulunmaktadır. Bu verilerde de görüldüğü gibi araştırmacı başına yayın sayısı 1995'den itibaren ciddi bir artış göstermiştir. 1995 yılında bir öğretim üyesi başına (YSD) yayın sayısı 0.146'dan, 2002 yılında 0.340'a çıkmıştır. Bu durum, ODTÜ'nün artan yayın performansının öğretim üyesi sayısının artmasından çok, öğretim üyelerinin yayın üretkenliğindeki artış sonucu gerçekleştiğini göstermektedir.

Yayınlanan makalerin uzunluğu, 1990 başlarından itibaren pek fazla değişmemiştir (9-10 sayfa). Makalelerin aldığı atıf sayısında (1988 öncesi yayınlar göz önüne alınmazsa) 1990'ların ortalarından itibaren bir düşüş görülmektedir. Atıf sayısı zamanla arttığı, pek çok alanda atıf yarı ömrü oldukça uzun olduğu için bu düşüşün nedenini sadece "makalelerin kalitesindeki düşüş" ile açıklamak mümkün görünmemektedir. Yayın sayısı arttıkça makalelerin kalitesinde veya yayınlandıkları dergilerin kalitesinde bir düşüş olması beklenmekle birlikte bu konuda kesin sonuçlara ulaşılabilmesi için daha detaylı bir çalışmayı gereksinim vardır.

Makalelerdeki yazar sayısı 1990'ların başlarına kadar bir miktar artmış, daha sonra 2.5-3.0 aralığında sabit kalmıştır. Makalelerdeki ODTÜ'lü yazar sayısı tüm dönem boyunca kısmi fakat düzenli bir artış göstererek 1.2'ye ulaşmıştır. Bu durum ODTÜ içinde yayın konusunda işbirliğin tedrici bir artış yaşandığını, fakat işbirliği yapılan kişilerin daha cok ODTÜ dışından olduğunu göstermektedir.

III. Konulara Göre Yayınların Niteliği

Bu bölümde yayınların niteliği bilimsel alan (bölüm) bazında incelenmiştir. Bu amaçla bölümler bazında yayınlara ilişkin bazı veriler beşer yıllık dönemler halinde Tablo 3'de özetlenmiştir. Toplam (YSD) makale sayısı 10'dan az olan bölümler analize dahil edilmemiştir.⁸

Tablo 1'de görüldüğü gibi tüm bölümlerin yayın sayılarında son yıllarda önemli artışlar görülmektedir. Yayın artış hızları farklı olduğu için bölümlerin toplam içerisindeki payı zamanla değişmektedir. Kimya, Jeoloji Müh, Endüstri Müh, Petrol Müh ve Fizik

Öğretim üyesi başına yayın sayıları hesaplanırken sadece doktoradan sonraki dönem göz önüne alınmıştır.

⁸ Siyaset Bilimi ve Kamu Yönetimi, Mimarlık, İşletme, Şehir ve Bölge Planlama, Mühendislik Bilimleri, Tarih, Endüstri Ürünleri Tasarımı, Uluslararası İlişkiler ve Felsefe.

bölümleri incelenen dönem içerisinde ODTÜ yayınları içerisindeki paylarını en az 2 puan arttırmışlardır. Elektrik/Elektronik Müh, Matematik, Makine Müh ve Metalurji Müh bölümlerinin yayın oranları da aynı dönemde 2 puandan fazla düşmüştür. 1998-2002 döneminde (YSD) sayıları en yüksek olan bölümler Kimya, Fizik, Kimya Müh ve Matematik olmuştur.

Yayınların ortalama sayfa sayısı, bölümler bazında, zaman içerisinde fazla bir değişiklik göstermemiştir. Bölümler arasında ise önemli farklılıklar vardır (en uzun makaleler İktisat ve İstatistik, en kısa makaleler de Biyoloji, Kimya, Gıda Müh, Metalurji Müh, Maden Müh ve Fizik alanlarındadır).

Daha önce de belirtildiği gibi, makalelere yapılan atıf sayılarında zaman içerisinde bir düşme beklenebilir. Buna karşın, 1988-92 ve 1992-1997 dönemleri arasında yayınlanan makalelere yapılan atıf sayısında gözlenen düşüş çok fazla değildir (4.8'den 4.3'e). Bazı bölümlerde 1992-97 dönemindeki yayınların atıf sayıları bir önceki döneme göre önemli bir artış göstermiştir (İktisat, Elektrik/Elektronik Müh ve Psikoloji bölümlerinde %50'den fazla artış). Genel olarak atıf sayısı Biyoloji, Deniz Bilimleri ve Kimya bölümlerinde yüksektir.

Makale başına ortalama yazar sayısının en yüksek olduğu bölümler Deniz Bilimleri, Biyoloji, Kimya ve Gıda bölümleridir. Bu bölümlerdeki öğretim üyelerinin yayınlarında ortalama yazar sayısı 3'den fazla olmuştur. İktisat, Eğitim Bilimleri, Matematik ve Sosyoloji bölümlerindeki öğretim üyeleri ise yalnız yayın yapma eğilimindedir (ortalama yazar sayısı yaklaşık 1.5). ODTÜ'deki öğretim üyelerinin en çok birlikte yayın yaptığı bölüm Bilgisayar Müh bölümüdür.

Yayınların dağılımına bakıldığında, yayınların öğretim üyeleri arasında eşit olarak dağılmadığı görülmektedir. ODTÜ'deki 761 öğretim üyesinin toplam YSD makale sayısı 1780'dir. Bu makalelerin % 31'i öğretim üyelerinin %4'ü tarafından yayınlanmıştır. Benzer şekilde atıf sayılarında da belirli yayınlarda yoğunlaşma görülmektedir. ODTÜ öğretim üyeleri tarafından yapılan yayınların 5'i 100'den fazla atıf almıştır.

Tablo 3. Konularına göre yayınların niteliği

Bölüm		Mak	ale sayıs	۱^	Mak	ale sayıs	۱^^	Ortala	ma sayfa	sayısı	Ortala	ma atıf sa	ayısı*	Ortalan	na yazar s	sayısı**	ODTÜ'	lü yazar sa	ayısı**
		1988-1992 1	993-1997	1998-2002	1988-1992	1993-1997	1998-2002	1988-1992	1993-1997	1998-2002	1988-1992	1993-1997	1998-2002	1988-1992	1993-1997	1998-2002	1988-1992	1993-1997	1998-2002
AEE	Uzay va havacılık	21	26	43	8	12	16	9	9	10	4.7	3.4	1.2	2.6	2.5	2.9	1.0	1.1	1.1
BIOL	Biyoloji	37	84	136	16	32	43	6	8	8	6.7	5.2	2.3	2.9	3.2	3.7	1.1	1.1	1.2
CE	İnşaat müh	34	65	87	17	28	46	13	12	12	4.0	3.0	8.0	2.1	2.3	2.5	1.1	1.1	1.2
CENG	Bilgisayar müh	13	14	50	13	13	42	10	11	14	1.1	1.0	0.5	2.0	2.6	2.8	2.0	2.1	2.1
CHE	Kimya müh	34	68	158	15	24	57	10	9	10	3.6	5.0	1.8	2.3	3.1	3.4	1.1	1.2	1.3
CHEM	Kimya	103	186	377	32	66	161	7	7	7	6.6	5.4	2.2	3.4	3.4	2.9	1.0	1.1	1.1
ECON	İktisat	5	11	17	5	6	12	17	19	15	1.8	4.2	0.8	1.0	1.9	1.6	1.0	1.0	1.1
EDS	Eğitim bilimleri	1	8	12		7	7		11	11		1.8	0.4		1.3	1.9		1.0	1.1
EE	Elektrik/elektro müh	52	98	125	29	30	48	10	9	10	2.4	4.9	1.3	2.0	3.1	3.1	1.0	1.1	1.1
ENVE	Çevre müh	14	17	40	7	8	16	8	7	8	5.5	3.0	1.7	2.4	2.9	3.1	1.2	1.2	1.1
FDE	Gıda müh	17	33	50	6	12	22	7	7	7	5.1	4.3	1.6	3.5	2.6	2.8	1.2	1.0	1.2
GEOE	Jeoloji müh	9	46	98	4	21	39	11	13	14	4.6	4.6	2.4	2.5	2.4	2.7	1.0	1.0	1.1
ΙE	Endüstri müh	3	11	45	1	5	24	8	14	12	5.7	3.8	0.5	2.7	2.3	2.4	1.0	1.0	1.3
MASC	Deniz bilimleri	13	44	47	4	16	17	16	11	13	7.9	5.1	3.0	3.8	3.2	3.6	1.0	1.0	1.0
MATH	Matematik	32	45	78	21	32	54	9	11	12	2.7	3.2	0.8	1.7	1.7	1.8	1.0	1.0	1.1
ME	Makine müh	44	52	68	23	30	37	9	10	13	3.9	1.6	8.0	2.0	2.1	2.4	1.0	1.1	1.2
METE	Metalurji müh	28	37	45	17	20	24	6	7	7	1.9	2.7	0.6	2.2	2.5	2.2	1.2	1.2	1.1
MINE	Maden müh	7	22	55	2	9	22	7	8	7	2.0	2.0	1.2	2.3	2.4	2.7	1.0	1.1	1.1
PETE	Petrol ve dg müh	2	9	88	1	4	43	16	10	11	2.0	2.3	0.6	2.5	2.5	2.4	1.0	1.0	1.1
PHYS	Fizik	65	117	311	28	42	140	6	7	8	6.2	4.1	1.8	2.1	2.7	2.7	1.0	1.0	1.1
PSY	Psikoloji	3	8	47	2	4	24	15	10	12	1.5	4.4	1.4	1.0	2.6	2.8	1.0	1.0	1.0
SOC	Sosyoloji	1	11	9	1	7	7	6	14	14	10.0	1.5	0.1	2.0	1.2	1.6	1.0	1.2	1.0
STAT	İstatistik	7	8	25	3	5	13	17	12	17	3.9	2.9	1.2	2.3	1.8	2.4	1.0	1.0	1.1
Toplan	n/ortalama	545	1020	2011	252	433	915	9	9	10	4.8	4.3	1.7	2.5	2.8	2.8	1.1	1.1	1.2

[^] Bölümdeki öğretim üyeleri tarafından yayımlanan toplam makale sayısı (bölüm dışındaki yazar sayısına göre düzeltilmemiş)

^{^^} Yazar sayısına göre düzeltilmiş

^{* &}gt;25 atıflı makaleler hariç

^{** &}gt;9 yazarlı makaleler hariç

Tablo 4. ABD araştırma üniversiteleri ve ODTÜ'de öğretim üyesi başına beş yılda yapılan yayın sayısı

Bölüm			ABD araş	tırma üniv	ersiteleri		ODTÜ
	•	1st tier	2nd tier	3rd tier	4th tier	Ortalama	
AEE	Uzay va havacılık	5.6	4.5	3.5	2.9	4.1	1.4
BIOL	Biyoloji	11.9	8.3	5.8	4.6	7.6	2.1
CE	İnşaat müh	4.9	4.1	3.2	2.0	3.5	0.9
CENG	Bilgisayar müh	4.5	3.5	2.8	1.6	3.1	2.3
CHE	Kimya müh	12.4	9.0	6.7	4.2	8.0	2.3
CHEM	Kimya	16.6	11.4	8.4	5.7	10.5	4.6
ECON	İktisat	3.6	2.8	2.7	1.7	2.7	0.6
EDS	Eğitim bilimleri						0.5
EE	Elektrik/elektro müh	8.9	5.7	3.1	2.5	5.0	1.0
ENVE	Çevre müh						1.6
FDE	Gıda müh						1.7
GEOE	Jeoloji müh	8.0	4.9	3.7	2.4	4.7	2.1
ΙE	Endüstri müh	4.7	3.3	3.9	2.9	3.7	1.2
MASC	Deniz bilimleri	7.1	4.8	5.3	3.9	5.3	
MATH	Matematik	4.5	3.7	3.1	2.7	3.5	1.7
ME	Makine müh	6.4	5.6	3.3	2.2	4.4	0.9
METE	Metalurji müh	18.4	14.5	8.7	6.1	11.8	1.1
MINE	Maden müh						2.0
PETE	Petrol ve dg müh						5.5
PHYS	Fizik	9.8	8.7	7.1	5.8	7.8	2.7
PSY	Psikoloji	5.7	4.6	3.0	1.6	3.7	1.7
SOC	Sosyoloji	2.6	2.5	1.9	1.6	2.1	0.4
STAT	İstatistik	7.0	5.2	6.5	5.0	5.9	2.6

Kaynak: ABD araştırma üniversiteleri için, Koç Üniversitesi, Faculty Handbook

Not: ODTÜ yayın sayıları 1998-2002 dönemi için (YSD) yayın sayılarıdır.

Uluslararası düzeyde bir araştırma üniversitesi olmayı hedefleyen ODTÜ'nün yayın ve araştırma performasını değerlendirirken uluslararası karşılaştırmaların önemli olduğu bilinmektedir. Doğal olarak karşılaştırmaların benzer konumdaki üniversiteler ile yapılması yararlı olacaktır, fakat böyle bir karşılaştırma, karşılaştırma yapılan üniversite için de kapsamlı bir çalışma yapılmasını gerektirmektedir. Bu çalışma kapsamında, zaman kısıtından dolayı, karşılaştırma ABD'deki araştırma üniversiteleri ile yapılmıştır. Tablo 4'de ODTÜ'de ve ABD'deki araştırma üniversitelerinde öğretim üyesi başına 5 yılda yapılan yayın sayıları görülmektedir. ABD'deki verilerin nasıl hazırlandığı konusunda ayrıntılı bir bilgi olmamakla birlikte bölümler bazında yapılacak bir karşılaştırmanın, bölümlerin araştırma konularından kaynaklanan yayın performansındaki farklılıkların anlasılmasına yardımcı olacağı düsünülmektedir. 9

.

⁹ ODTÜ'deki yayın sayıları yazar sayısına göre düzeltilmiş makale sayılarıdır. Tablo 2'de görüldüğü gibi bu sayının toplam makale sayısından daha düşük olduğu hatırlanmalıdır.

Bir bütün olarak bakıldığında, ODTÜ'deki öğretim üyesi başına yayın sayısı, ABD ortalamasının yaklaşık %35'i düzeyindedir. Fen bilimleri ile sosyal bilimlerin (İktisat, Sosyoloji ve Psikoloji) göreli performansı arasında önemli bir fark olmaması ilginçtir, çünkü Denkel ve arkadaşlarının yapmış olduğu bir çalışmaya göre sosyal bilimlerin yerel özelliği ve dil faktörü gibi nedenlerle anadili İngilizce olmayan ülkelerde SSCI'de yer alan yayınların oranı çok düşüktür.¹⁰

Şekil 4. ODTÜ göreli yayın performansı

Bölüm bazında göreli yayın performansı Şekil 4'de görülmektedir. Bilgisayar müh, Matematik, Psikoloji, Jeoloji, İstatistik ve Kimya bölümlerinin göreli performansları oldukça yüksektir. Makine müh, Elektrik/Elektronik müh ve Metalurji bölümlerinin göreli performansları %20'den düşüktür.

Tablo 5'da yayın faaliyetlerinde bölüm içi ve bölüm dışı işbirliklerine ilişkin genel veriler sunulmuştur. Bu tabloda görüldüğü gibi Biyoloji, Bilgisayar müh, Kimya müh, Gıda müh, Metalurji müh ve Maden müh bölümleri, yayınladıkları makalelerin en az %10'unu diğer bölümlerden öğretim üyeleri ile birlikte yazmışlardır. Bölüm içinde ortak yayın faaliyeti Bilgisayar mühendisliği bölümünde son derece yüksektir. Bu bölümü, Çevre müh, Gıda müh, Endüstri müh ve Metalurji müh bölümleri izlemektedir.

12

¹⁰ A. Denkel, Ç. Kağıtçıbaşı, N.K. Pak ve Ş. Pamuk (1999), *Türkiye'de Sosyal Bilimlerin Uluslararası Yayın Performansı*, Ankara: TÜBA. Bu çalışmaya göre anadili İngilizce olan 4 ülkede fen/sosyal bilim yayın oranı sadece 3.1 olduğu halde bu oran gelişmiş olan ülkelerde 13.4, gelişmekte olan ülkelerde 19.4 ve Türkiye'de 18.6'dir.

Tablo 5. Yayın faaliyetlerinde işbirliği

	Toplam	Bölüm dışı i	şbirliği	Bölüm içi iş	birliği	Toplam işl	oirliği
	makale*	Sayı	Oran	Sayı	Oran	Sayı	Oran
AEE	93	6	6	1	1	7	8
BIOL	287	29	10	16	6	45	16
CE	194	10	5	17	9	27	14
CENG	85	10	12	103	121	113	133
CHE	282	32	11	41	15	73	26
CHEM	700	64	9	43	6	107	15
ECON	38	0	0	2	5	2	5
EDS	22	2	9	0	0	2	9
EE	296	23	8	19	6	42	14
ENVE	75	4	5	11	15	15	20
FDE	106	14	13	12	11	26	25
GEOE	166	12	7	6	4	18	11
ΙE	68	2	3	13	19	15	22
MASC	109	8	7	0	0	8	7
MATH	157	1	1	6	4	7	4
ME	171	9	5	13	8	22	13
METE	119	13	11	16	13	29	24
MINE	96	14	15	1	1	15	16
PETE	106	9	8	8	8	17	16
PHYS	647	18	3	48	7	66	10
PSY	60	1	2	0	0	1	2
SOC	22	0	0	1	5	1	5
STAT	42	2	5	2	5	4	10

^{*} Bölümdeki öğretim üyeleri tarafından yayımlanan makale sayısı (bir makale iki ayrı bölümdeki öğretim üyeleri tarafından yayımlanmışsa, iki defa sayılmaktadır)

Tablo 6'de hangi bölümler arasında yayın faaliyetinde işbirliği yapıldığı görülmektedir. Bu tablodaki sayılar, her iki bölümde ortak yayını olan öğretim üyelerinin sayısını göstermektedir. Örneğin Uzay ve Havacılık müh (AEE) ve Elektrik/Elektronik müh (EE) bölümlerindeki öğretim üyeleri 6 yayını birlikte yapmışlardır. En yoğun işbirliği Kimya ve Kimya müh bölümleri arasında gerçekleşmiştir. Ayrıca Kimya-Fizik, Kimya-Biyoloji, Kimya-Metalurji, Bilgisayar müh-Elektrik/Elektronik müh ve Maden müh-Petrol ve Doğal Gaz müh bölümleri arasında önemli sayıda işbirliği yapılmıştır. Bir bütün olarak yayın alanındaki işbirliklerine bakıldığında, gerek bölüm-içi, gerekse bölümler-arası işbirliklerinin çok düşük düzeyde olduğu anlaşılmaktadır. Tablo 2'deki ortalama yazar sayıları ile karşılaştırıldığında, ODTÜ öğretim üyelerinin daha çok ODTÜ dışındaki araştırmacılar ile ortak yayın yapma eğiliminde olduğu görülmektedir. ODTÜ-dışındaki araştırmacılar yurt içi/yurt dışı dağılımı konusunda istatistiksel bilgi olmamasına karşın, işbirliklerin çoğunluğunun yurt dışındaki araştırmacılar ile yapıldığını söylemek yanlış olmayacaktır.

Tablo 6. Bölümler arası işbirliği

	AEE	BIOL	CE (CENG	CHE	СНЕМ Е	CON	EDS	EE	ENVE	FDE G	EOE	IE M	IASC M	ИТА	ME N	ЛЕТЕ	MINE	PETE	PHYS	PSY	SOC	STAT
AEE	1				_				6	_	_												
BIOL		16			5	9			1	3	6												
CE			17							1		4	2					1					2
CENG				103					8									2					
CHE		5			41	20			2		2									3			
CHEM		9			20	43			1		5	1		1			9	2		15			
ECON							2																
EDS																					1		
EE	6	1		8	2	1			19						1	4							
ENVE		3	1							11													
FDE		6			2	5					12					1							
GEOE			4			1						6		7									
ΙE			2										13										
MASC						1						7											
MATH									1			-			6								
ME									4		1				Ť	13	4						
METE						9			•		•					4	16						
MINE			1	2		2										•		1	9				
PETE			•	_		_												9	8				
PHYS					3	15												3	U	48			
PSY					3	13		1												+0			
SOC								ı														1	
STAT			2																			ı	2
SIAI																							2

IV. ODTÜ Araştırma Alanları

Çalışmanın önceki bölümlerinde, yayınların niteliği bölüm bazında incelenmiştir. Bu bölümde ise, yayın başlıklarında geçen kelimeler listesinden oluşturulan anahtar kelimeler kullanılarak araştırma alanlarının saptanmasına çalışılmıştır. Çalışma kapsamında oluşturulan veritabanındaki 3561 makalenin başlıklarındaki bilimsel ifade içeren terimler seçilerek 4230 anahtar kelimeden oluşan bir liste oluşturulmuştur. En az on yayında kullanılan anahtar kelimeler üzerinden ayrıntılı bir çalışma yapılarak anahtar kelime sayısı 193'e indirilmiştir. Anahtar kelimelerin tespit edilmesi ve uyumlulaştırılması, aslında ilgili teknolojilerin de bilinmesini gerektirmekte ve oldukça uzun bir zaman almaktadır.

Tablo 7'de en çok kullanılan 20 anahtar kelime örnek olarak sunulmuştur. Bu talodaki anahtar kelimeler, ODTÜ'de üzerinde en çok araştırma yapılan konular hakkında genel bir fikir vermekte ve bölüm bazındaki yapılan değerlendirme sonuçlarıyla uyumluluk göstermektedir.

Tablo 7. ODTÜ'deki yayınlarda en çok kullanılan 20 anahtar kelime

Anahtar kelime	Kullanıldığı	Anahtar kelime	Kullanıldığı
	makale		makale
	sayısı		sayısı
polymer	138	kinetics	64
characterization	109	behaviour	60
design	89	derivative	51
decay	81	coupling	51
simulation	79	combustion	50
algorithm	76	gamma	49
composites	71	parameter	48
catalys	70	calculation	47
characteristics	68	optimization	46
acid	65	membranes	46

193 anahtar kelimenin ortak kullanım oranını gösteren bir Anahtar Kelime Benzerlik Matrik'si (*S*) oluşturulmuştur. *S* matriksinin elemanları

$$s_{ij} = n_{ij} / \min\{n_i, n_j\}$$

formülü kullanılarak hesaplanmıştır. Bu formulde, s_{ij} , S matriksinin i satır ve j sütunundaki elemanı, n_i (n_j) i (j) anahtar kelimesinin kullanıldığı makale sayısını, n_{ij} i ve j anahtar kelimelerinin ortak olarak kullanıldığı makale sayısını göstermektedir.

S matriksi kullanılarak kümeleme analizi yapılmış ve anahtar kelimelerin ortak kullanıldığı kümeler tespit edilmiştir. Elde edilen kümeler ve tarafımızdan verilen tanımlar Ek Tablo 1'de görülmektedir. Bu tabloda anahtar kelimeler, o anahtar kelimenin

kullanıldığı toplam makale sayısı, yenilik oranı (son beş yıl içinde yayınlanan makalelerin toplam makale sayısına oranı) ve küme tanımları (varsa iki hiyerarşik düzeyde) sunulmuştur. Makale sayısı, bir anlamda ODTÜ'nün ilgili alandaki birikim düzeyini göstermektedir. Yenilik oranı ise, ilgili alanın (ODTÜ'de) gelişmekte olup/olmadığını tespit etmek amacıyla kullanılmıştır. Kümelerin tanımlanmaları ancak ilgili alanı bilen araştırmacılar tarafından sağlıklı bir şekilde yapılabilecektir. Bu nedenle bazı kümeler net bir şekilde çalışma grubu tarafından tanımlanamamıştır. Bazı anahtar kelimeler farklı bağlamlarda farklı anlamlarda kullanılabileceği için teknolojik olarak birbiriyle çok yakından ilişkili olmayan anahtar kelimelerin de bir araya gelmesi olasıdır. Bu durumda elde edilen kümenin yorumlanması mümkün olmamaktadır.

Ek Tablo 1'de sunulan kümeleme analizi sonuçlarına göre ODTÜ'nün birikimin güçlü olduğu alanlar, ortalama yayın sayısına göre, sırasıyla, electrochemistry, oxidation reactions, molecular simulations, polymers, waste water treatment, quantum physics, high energy physics, chiral catalysis, image processing, microwave spectroscopy, control, biological waste treatment, adsorption and catalysis, combustion and kinetics, infrared spectroscopy, fuel cells, structure and materials, atomic spectroscopy, biotechnology, CFD ve eartquake olmaktadır. Bu alanlar arasında, ortalama yenilik oranına göre, microwave spectroscopy, high energy physics, combustion and kinetics, eartquake, biotechnology, control ve electrochemistry en hızlı gelişen alanlardır. Bu alanlarda yapılan yayınların %65'i son beş yıl içerisinde (1998 ve sonrasında) yapılmıştır.

Anahtar kelimeler üzerinden yapılan bu çalışma ODTÜ'nün kimya ve fizik gibi temel bilimlerde güçlü olduğunu, atıkların işlenmesi, görüntü işleme, yakıt hücreleri, biyoteknoloji ve deprem gibi teknolojik uygulamalarda da önemli bir potansiyelinin olduğunu göstermektedir.

V. Sonuçlar

Bu çalışmada ODTÜ'nün güçlü olduğu bilimsel ve teknolojik alanların saptanmasına yönelik olarak bilimsel alanlar (bölümler) ve araştırma alanları kapsamında SCI ve SSCI'de taranan dergilerde yayınlanan makaleler üzerinden bir çalışma yapılmıştır. Bölümler bazında yapılan çalışma ODTÜ'nün Türkiye'deki konumuna ve son on yıllık

¹¹ Üç alan net olarak tanımlanamamıştır.

dönemdeki gelişimine ilişkin önemli veriler sunmaktadır. Bilimsel yayınlar ölçü olarak alındığında, ODTÜ'nün kimya, fizik, matematik ve biyoloji gibi temel alanlarda oldukça güçlü bir temele sahip olduğu, psikoloji, iktisat ve sosyoloji gibi sosyal bilimler alanlarında da küçümsenmeyecek bir birikim olduğu görülmektedir. Ayrıca biyoteknoloji ve bilgisayar mühendisliği uygulamaları gibi yeni gelişen teknoloji alanlarında da ODTÜ'nün güçlü olduğu anlaşılmaktadır. ODTÜ'deki öğretim üyelerinin üniversite dışındaki araştırmacılar ile işbirliği yapma eğilimi güçlü olup, ortak yayın eğilimleri zayıftır.

Yayınlar düzeyindeki çalışmanın maliyeti görece düşük olduğu için, daha kapsamlı çalışmaların sistemli ve sürekli olarak yapılması, yurt içi ve yurt dışında seçilen belirli "benchmark"larla karşılaştırmaların sürdürülmesi ve farklı yayın biçimlerinin de inceleme kapsamına alınması yararlı olacaktır.

Anahtar kelimeler kullanılarak yapılan kümeleme çalışması, araştırma alanlarının belirlenmesinde pek çok ülkede kullanılan bir yöntemdir. Fakat bu yönetimin iki önemli kısıtı vardır: 1) Anahtar kelimelerin oluşturulması oldukca emek-yoğun bir süreçtir. Gerek anahtar kelimelerin tespiti, gerekse analiz sonuçlarının değerlendirilmesi farklı uzmanlık alanlarına ihtiyaç duymaktadır. Bu nedenle bu çalışmanın kısa aralıklarla tekrarlanmasının maliyeti yüksek olmaktadır. 2) Analizde kullanılan veriler, örneğin yeni yayınların eklenmesiyle, değiştiği zaman, aynı anahtar kelimeler kullanılsa bile elde edilen kümelerin değişmesi söz konusu olabilmektedir. Bu durum, çalışmaların tekrarlanabilirliği ve karşılaştırılabilirliği açısından sorunlar oluşturmaktadır. Bu iki kısıtdan dolayı, özgül araştırma alanlarına ilişkin bilgilerin dolaysız olarak ilgili öğretim üyelerinden temin edilmesi alternatif bir yöntem olarak düşünülebilir. Örneğin araştırma faaliyetlerinde aktif olan üniversite içinden ve dışından araştırmacılar, ODTÜ'nün hangi alanlarda birikimi ve araştırma potansiyeli olduğu konusunda daha güvenilir bilgi sağlayabilirler.

Ek Tablo 1. ODTÜ araştırma alanları

Anahtar kelime	Makale	Yenilik	1. hiyerarşi	2. hiyerarşi
	sayısı		küme	küme
coplanar	22	82	Microwave	Spectroscopy
quasistatic	10	90	spectroscopy	' ' '
asymmetric	24	79		
microwave	13	85		
wave	62	60		
absorption	11	45	Atomic	Spectroscopy
atomic	22	50	spectroscopy	
spectrometry	19	68		
concentration	25	52		
generation	34	56		
silica	19	84		
chloride	11	36		
molecular	41		Molecular	Molecular
simulation	73		simulations	simulations
dynamic	104			
calculations	18			
cluster	39			
energy	60			
gas	18			
quantum	32	59		
doped	15			
density	26		Polymers	
polyethylene	16	69		
radiat	49	65		
electromagnetic	20		Electromagnetic	
magnetic	57	46		
gas	54	59		
hydrate	11	91		
array	13	54		
discrete	16	63		
hybrid	15	53		
electric	46			
imaging	16			
current neutrino	27		Quantum physics	
	19	42 45		
electron emission	86 15			
	15 26			
x-ray calcium	16		Infrared	Spectroscopy
infrared	11		spectroscopy	ореспоссору
fluorescence	14			
interface	18			
plasma	45			
μιαοιτια	43	ं ।		

Ek Tablo 1. Devam

Anahtar kelime	Makale	Yenilik	1. hiyerarşi	2. hiyerarşi
	sayısı		küme	küme
algorithm	65		Image	Data processing
genetic	41		processing	and control
adaptive	10	50		
filter	21	33		
construction	18	39		
image	23	48		
detection	14	79		
database	20	55	Control	Data processing
fuzzy	10	80		and control
kinematic	10	60		
robot	23	78		
control	67	57		
anatolia	29		Eartquake	
evolution	22	86		
basin	22	64		
ankara	20	70		
rock	12	58		
building	13	62		
seismic	21	43		
damage	13	54		
earthquake	18	83		
velocity	12	67		
cyclacen	26	85		
concrete	17	53		
cost	12	58		
optimum	17	53		
active	27	70		
correlation	13	46		
solar	14	36		
cake	10	40		
compressible	10	30		
resistance	13	23		
optimization 	38	53		
acoustic	17	24		
computation	16	50		
deformation	13	38		
flux	11	82		
human	24	38		
development	23	70		
education	11	55		
algebraic	10	70		
flame	10	50		
bromination	17	35		
channel	12	42		

Ek Tablo 1. Devam

Anahtar kelime	Makale	Yenilik	1. hiyerarşi	2. hiyerarşi
	sayısı		küme	küme
element	45	42	CFD	
finite-element	12	8		
atmosphere	11	36		
oscillat	31	35		
differential	18	61		
chain	14	36		
collision	18	72		
vibration	19	37		
damping	11	64		
resonance	16	69		
carbon	79		Oxidation	
hydrocarbon	18		reactions	
dioxide	13	38		
oxid	124	47		
decomposition	12	75		
phenyl	31	68		
thermal	48	77		
combustion	24		Combustion and	
lignite	14		kinetics	
crude	13	69		
kinetics	40	68		
pyrolysis	15	80		
alloy	26		Structure and	
crack	26		materials	
bond	28	61		
clay	13	46		
environment	21	67		
sedimen	26	46		
coating	15	67		
diffusion	10	60		
fluid	34	44		
resin	19	58		
behavio	58	45		
activated	28	43	Adsorption and	
effluent	15		catalysis	
adsorption	22			
coal	23	65		
methane	18	67		
catalys	37	57		
anaerobic	15		Waste water	
reactor	26	62	treatment	
waste	27	59		
water	85			

Ek Tablo 1. Devam

Anahtar kelime	Makale	Yenilik	1. hiyerarşi	2. hiyerarşi
	sayısı		küme	küme
cytochrome	32	25	Biotechnology	
purification	12	42		
alkaline	16	88		
bacillus	22	68		
ftir	10	70		
membrane	48	52		
aqueous	11	82		
protein	23	52		
enzyme	19	63		
immobilization	26	62		
separation	20	70		
biodegradable	10	100		
foam	12	100		
dna	30	57		
transient	13	46		
wheat	16			
boron	21	81	Fuel cells	
deposition	17	71		
fuel	14	50		
cadmium	11	55		
zinc	16	50		
cell	49	59		
electrode	17	47		
bacteria	16	56	Biological waste	
contaminant	15	53	treatment	
porous	28	43		
hydrogen	35	66		
sulfide	10	40		
film	30	67		
substrate	24			
crystal	36	58		
copper	17	35		
electroinitiated	14	14		
anhydride	15	40		
complex	65			
graft	18		Polymers	
pyrrole	41	73		
block	13			
polymer	124			
ероху	11	73		
glass	15			
fiber	36			
composite	74			
chemical	79		Electrochemistry	
characteri	147	68		

Ek Tablo 1. Devam

Anahtar kelime	Makale	Yenilik	1. hiyerarşi	hiyerarşi
	sayısı	oranı	küme	küme
gamma	55	87	High energy	
sigma	18	94	physics	
constant	26	54		
coupling	45	67		
baryon	12	58		
cone	27	70		
decay	69	84		
polarization	13	85		
enantioselective	11	73	Chiral catalysis	
ketone	21	57		
alpha	45	69		
acetate	22	55		
chiral	16	50		
derivative	35	51		
alcohol	10	70		
amino	18	56		
acid	74	62		