Sistemas Operacionais

CCP/SIF
UNISUL – Tubarão

Cassio Brodbeck Caporal

cassio{NOSPAM}ostec.com.br

Agenda

- Revisão;
- Estrutura de processos;
- Process Control Block;
- Estado de processos;
- Tipos de processos;
- Processos em primeiro e segundo plano;

Agenda

- Processos CPU-bound e I/O-bound;
- Signals;

Processos

- A CPU não tem conhecimento de qual programa está executando;
 - Função esta do sistema operacional;
- Um programa está sempre associado a um processo;
- Gerência de processos é função primordial em sistemas operacionais;

Processos

- Novamente...
 - Processos são executados concorrentemente, compartilhando:
 - Unidade Central de Processamento;
 - Memória principal;
 - Dispositivos de E/S.

- Resumidamente:
 - Processo é um programa em execução.
- Mas não é só isso: (novamente):
 - Um usuário tem idéia de que os recursos são exclusivos para a sessão;
 - Para que um programa possa voltar a ser executado, certas informações devem ser gravadas.

- Hmm ...
 - Além de um programa em execução, faz parte de um processo as informações necessárias para que o mesmo possa voltar a executar futuramente;
 - Processo como um ambiente para a execução de programas: espaço de endereçamento, tempo de CPU, disco, etc.

- Elementos:
 - Contexto de hardware;
 - Contexto de software;
 - Espaço de endereçamento;
- Contexto de hardware:
 - "Local" de armazenamento de registradores gerais e específicos;

- Contexto de hardware:
 - O contexto de hardware é levado aos registradores quando um processo vai ser executado;
 - No momento em que outro processo toma a CPU, o sistema salva as informações no contexto de hardware;

- Contexto de hardware:
 - Mudança de contexto:
 - (1) Salva o conteúdo dos registradores do processo que será "paralizado";
 - (2) Carrega a estrutura de *contexto de hardware* para os registradores (substituição de valores).

- Contexto de software:
 - Mantém informações como:
 - Número máximo de arquivos abertos;
 - Prioridades para execução;
 - Tamanho do buffer para E/S;
- Informações carregadas na criação do processo / Informações que podem ser alteradas durante a execução.

- Grupos de informações:
 - Identificação;
 - Process Identification (PID);
 - Owner (UID);
 - Segurança!
 - Quotas:
 - Especificação de limites: arquivos abertos, buffer para operações de E/S, máx. de operações de E/S pendentes, etc.

- Grupos de informações:
 - Privilégios:
 - Hierarquia de permissões com relação ao próprio processo, demais processos e restante do sistema operacional;
 - Soft e hard limits.

- Espaço de endereçamento:
 - Local de armazenamento de instruções e dados para execução;
 - Cada processo possui seu espaço:
 - É necessário a implementação de mecanismos que garantam o isolamento desta área por demais processos.

- Process Control Block:
 - Local de armazenamento de contexto de hardware, software e espaço de endereçamento;
 - Residente na memória principal, espaço exclusivo de uso do Sistema Operacional;

Estados de Processos

- Classificações:
 - Running, ready e wait;
 - Por que?
 - Novamente... Processos concorrem pelo uso dos recursos computacionais;
 - Não existe alocação exclusiva de CPU por um processo.

Estados de Processos

- Classificações:
 - Running (execução/executando):
 - Ocorre quando está sendo executado pela CPU;
 - Sistemas com múltiplos processadores podem ter processos ao mesmo tempo alocados em CPU's diferentes;

Estados de Processos

- Classificações:
 - Ready (pronto):
 - Esperando (na fila) para ser executado;
 - Algoritmos de escalonamento;
 - Wait (espera ou bloqueado):
 - Aguardando algum evento, como E/S, para ser executado.

Mudança de Estados

- Eventos voluntários;
- Eventos involuntários;
- Transicões de estados:
 - Pronto → execução;
 - Execução → espera;
 - Espera → pronto;
 - Execução → pronto;

- Formas diferentes de implementar concorrência:
 - Processos independentes;
 - Subprocessos;
 - Threads;

- Processos independentes:
 - Inexistência de hierarquia entre processos (pais e filhos);
 - PCB próprio para cada novo processo criado;
 - Maior consumo de recursos computacionais;

- Subprocessos:
 - Estrutura hierarquizada;
 - Existência de processo pai e filhos;
 - Processos órfãos;
 - Existência de um PCB para cada subprocesso;
 - Alto custo para criação e finalização;
 - fork().

Threads:

- Criadas para aumentar desempenho,
 economizar recursos na criação de processos;
- Inexistência de diversos subprocessos para gerenciar partes específicas do programa;
- Compartilha somente contexto de hardware;
- Intercomunicação extremamente rápida.

Processos foreground

- Processamento interativo (primeiro plano);
- Interface direta com o usuário para instruções de E/S;
- Análise de processos em UNIX;
 - Ferramentas:
 - ps, pstree, top, entre outros;

Processos background

- Processamento em segundo plano;
- Não há interação direta com usuário;
- Processos servidores (daemons);
- Análise de processos em UNIX;
 - Ferramentas:
 - ^Z, jobs, fg, bg;

CPU-bound e E/S-bound

CPU-bound:

- Utilização contínua de CPU (execução);
- Pouca leitura e gravação, MUUITO cálculo;

E/S-bound:

- Maior parte do tempo fica no modo espera;
- Grande utilização de operações de E/S;

Sinais

- Sinalização de processos da ocorrência de alguns eventos;
- Funcionamento semelhante a interrupções:
 - Signal handler,
- Sinais em UNIX:
 - SIGINT, SIGKILL, SIGTERM, SIGHUP, etc.