

- Augmented Reality UNIX C++ Engine for Enhanced
- ² Visual Guidance in Woodworking
- 3 Andrea Settimi ¹ ¶, Hong-Bin Yang ¹ ¶, Julien Gamerro ¹ and Yves
- 4 Weinand 10 1
- 5 1 IBOIS EPFL, Switzerland 2 Independent Researcher, Switzerland ¶ Corresponding author

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🗗
- Archive ♂

Editor: Open Journals ♂

Reviewers:

@openjournals

Submitted: 01 January 1970 **Published:** unpublished

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Summary

Statement of need

Functionalities

Layer-stack flow

The layer stack is primarily responsible for managing the flow control of the AR engine. Designed as a modular system, each layer encapsulates the code for a specific domain of the AR application, such as camera processing, object tracking, UI, and rendering. The general order and expansion of these layers can be configured in the top-level main file ACApp.cpp.

Each layer in the stack inherits from a superclass interface defined in Layer.h, which includes event-like methods triggered at various points during frame processing (e.g., OnFrameAwake(), OnFrameStart(),). These methods are invoked by the main Run() function in the singleton application loop from Application.h. This design allows application tasks to be containerized and executed sequentially while facilitating data exchange between specific layers through the AIAC_APP macro, enabling the retrieval of any particular layer data. Exchange between layers can also take place in a more structured way with the integrated event system (ApplicationEvent.h), which is capable of queuing events from layers and trigger in the next main loop.

Figure 1: Test image captation.

- 22 Geometry framework
- 23 Computed Feedback System
- 24 AR rendering
- 25 Acknowledgements
- 26 References