3-1 그래프

그래프 (Graph)

그래프 (Graph)

그래프 (Graph) - 예시 1

그래프 (Graph)

그래프 (Graph) - 예시 2

그래프 (Graph)

- 정의: Vertex (V) 와 Edge (E) 로 이루어진 순서쌍 (V,E)
- 필수 용어
 - 가중치 (weight)
 - o 차수 (degree)
 - 경로 (path)

그래프의 데이터 구조

Adjacency List

A: ['B', 'C']

B: ['A', 'D', 'C']

C: ['A', 'D', 'B']

D: ['B', 'C']

graph_undir = {					
'A':	['B',	'C'],			
'B':	['A',	'C',	'D'],		
'C':	['A',	'B',	'D'],		
'D':	['B',	'C']			
}					

Adjacency Matrix

	Α	В	С	D
Α	0	1	1	0
В	1	0	1	1
С	1	1	0	1
D	0	1	1	0

그래프 코드

방향성 그래프 (Directed-Graph)

방향성 그래프 (Directed-Graph) - 예시 3

방향성 그래프 (Directed-Graph)

- 정의: Vertex (V) 와 Edge (E) 로 이루어진 순서쌍 (V,E)
- 필수 용어
 - o 차수 (degree)
 - 경로 (path)
 - 사이클 (cycle)

방향성 그래프 (Directed-Graph)

- 정의: Vertex (V) 와 Edge (E) 로 이루어진 순서쌍 (V,E)
- 실제 적용사례로는 수천, 수만개의 vertex 와 edge들로 이루어짐

방향성 그래프의 데이터 구조

Adjacency List

A: ['B', 'C']

B: ['C', 'D']

C: ['D']

D: []

graph_dir	= {
'A':	['B', 'C'],
'B':	['C', 'D'],
'C':	['D'],
'D':	[]
}	

Adjacency Matrix

	А	В	С	D
А	0	1	1	0
В	0	0	1	1
С	0	0	0	1
D	0	0	0	0

방향성 그래프 코드

그래프 탐색 알고리즘의 필요성

트리 (Tree)

트리 (Tree)

트리 (Tree)

트리 (Tree) - 예시 (Decision Tree)

트리의 데이터 구조

Adjacency List

```
A: ['B', 'C', 'D']

B: ['E', 'F']

C: []

D: ['G']

E: []

F: []

G: []
```

```
tree = {
    'A': ['B', 'C', 'D'],
    'B': ['E', 'F'],
    'C': [],
    'D': ['G'],
    'E': [],
    'F': [],
    'G': []
}
```

트리의 데이터 구조

그래프 탐색 알고리즘의 필요성

테스크 ------ 데이터 구조로 ------ 경로 탐색 ------ 경로 문제를 정의 (목적에 따라) (그래프)

그래프 탐색 알고리즘의 필요성

테스크 ---- 데이터 구조로 --- 경로 탐색 --- 경로 문제를 정의 (목적에 따라) (트리)

강의 요약

01

그래프

그래프

방향성 그래프

데이터 구조

02

트리

디시전 트리

03

서치 알고리즘의 필요성 04

그래프와 트리의 코드 구조