Comprehensive LLM Self-Assessment Evaluation

Parameter	Details
Prompt	Example 1: I analyzed a dataset
•	for speech emotion recognition and
	initially assumed the classes were
	balanced. However, after
	visualization, I found the dataset
	heavily favored neutral emotions.
	Example 2: For a financial dataset,
	I assumed all income levels were
	well represented. But upon
	plotting distributions, I discovered
	that higher income brackets had
	significantly fewer samples. My
	Case: I've been looking at the age
	distribution in the FairFace
	dataset. Initially, I assumed the
	age groups would be fairly
	balanced, but after some basic
	visualization, I discovered the
	dataset is heavily skewed toward
	younger individuals, which might
	explain some of the model
	performance issues I've been seeing.
	Do you think I should apply
	stratified sampling to balance these
	age groups? Or would that
	introduce other problems I should
	be aware of?
Prompt Type	Few Shot Prompt

Parameter	
i arameter	

Answer

Details

Using stratified sampling can help address the imbalance in age groups by ensuring that each training batch has a proportional representation of all age groups. This can prevent the model from being biased toward the younger age groups and improve its ability to generalize to all age categories. However, there are a few considerations to keep in mind:

Potential Benefits: 1. Better Generalization: Stratified

sampling ensures that all age groups are well-represented during training, which can help the model learn features across the full spectrum of ages. 2. Improved

Model Performance: By

balancing the dataset, you might see improvements in performance for underrepresented age groups, especially in terms of recall or accuracy for older age categories.

Potential Drawbacks: 1.

Overfitting: If you oversample the minority age groups (i.e., by duplicating samples), you risk overfitting to those groups, especially if you have limited data. This can cause the model to perform well on the minority class but poorly on the majority class. 2.

Data Scarcity: If there are very few samples in certain age groups, simply applying stratified sampling might not provide enough variety for those classes, which could lead to an underperforming model for those classes even after balancing.

Alternative Approaches: * SMOTE (Synthetic Minority Over-sampling Technique):

Instead of simple oversampling, SMOTE generates synthetic examples for minority classes. This is often a more effective way to handle imbalances, especially when there is a significant disparity in sample sizes. * Class Weights: Rather than manipulating the dataset, you can apply class weights during model training. This can make the model pay more

Parameter	Details
Model Evaluated Evaluation Performed By	ChatGPT Claude

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	5	Moderate alignment	No explicit confidence levels stated, but consistently presents information as factual without qualification; accuracy is generally high but some claims lack nuance
Calibration Error	4	Below average calibration	Presents all recommendations with similar confidence despite varying levels of evidential support; no acknowledgment of uncertainty in recommendations
Task Difficulty Awareness	6	Above average awareness	Recognizes complexity of sampling decisions and potential tradeoffs; suggests multiple approaches indicating awareness of non-trivial nature

Metric	Score (1-10)	Interpretation	Key Evidence
Error Recognition	3	Poor recognition	No acknowledgment of potential gaps in understanding or limitations in advice; presents all information with equal certainty
Domain- Specific Variance	7	Good awareness	Demonstrates solid knowledge of ML/data science concepts; recommendations are domain-appropriate with technical accuracy
Prompt Sensitivity	N/A	Not applicable	Cannot be evaluated from single response
Weighted Self- Assessment Score	4.85	Average	$WSAS = (5 \times 0.25) + (4 \times 0.25) + (6 \times 0.15) + (3 \times 0.15) + (7 \times 0.1) + (N/A \times 0.1)$

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	90%	9/10 claims about sampling techniques and their effects are correct; oversimplifies stratified sampling implementation

Category	Accuracy	Notes
Procedural Recommendations	85%	6/7 procedure recommendations are correct; lacks important detail on implementing
		stratified sampling with imbalanced classes
Inferences/Opinions	80%	4/5 opinions well-supported; overconfident about generalizability of recommendations
		without context-specific caveats
Overall Accuracy	87%	Generally accurate but lacks important nuances on implementation details

Self-Assessment Classification

Primary Classification	Systematically Overconfident
Secondary Classifications	Domain Sensitive: Shows strong knowledge in machine learning sampling techniques; Complexity Aware: Acknowledges different approaches have varying effects; Error Unconscious: Does not acknowledge limitations or uncertainties in recommendations

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit Confidence Statements	0	None present	N/A
Certainty Markers	4	"can help", "can prevent", "can improve", "can cause"	75%
Hedge Words	3	"might", "could", "often"	60%
Qualifying Phrases	2	"especially if", "especially when"	70%
Overall Esti- mated Confi- dence			70%

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	None	N/A
Confidence calibration	Limited	Low
Reasoning transparency	Medium	Medium
Alternative consideration	Strong	High
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	Medium	Medium
Uncertainty decomposition	Limited	Low

Key Improvement Recommendations

- 1. Include explicit confidence levels for different aspects of the recommendation (e.g., "I am highly confident about the risk of overfitting with duplicated samples, but less certain about how SMOTE would perform on facial images specifically")
- 2. Acknowledge knowledge boundaries by specifying what information would be needed for more tailored recommendations (e.g., "To provide more

- specific guidance, I would need to know the exact distribution of ages and sample sizes")
- 3. Introduce calibrated uncertainty in technical claims by using probability language that matches evidence strength (e.g., "stratified sampling will almost certainly help with class imbalance" vs. "SMOTE may help but results vary by domain")
- 4. Include reasoning for recommendations by explaining the thought process more explicitly (e.g., "I recommend trying multiple approaches because the effectiveness of sampling techniques varies by dataset characteristics")
- 5. Qualify domain specificity by noting how facial image datasets might present unique challenges compared to other domains where these sampling techniques are commonly applied