Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2019

Contents

Congruency

Chinese Remainder Theorem Wilson's Theorem

Algorithm

Algorithms
Time Complexity

Recurrence Relations

Recurrence Relations
Linear Recurrence Relations

Theorem (Chinese Remainder Theorem)

Let $m_1, \ldots, m_n \in \mathbb{N} \setminus \{0\}$ be pairwise relatively prime and let $a_1, \ldots, a_n \in \mathbb{Z}$. Then the system of congruences

$$x \equiv a_1 \pmod{m_1}$$
 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

$$(1)$$

has a unique solution (mod m) where $m = m_1 \cdots m_n$.

Proof.

We first prove the existence of a solution. For all $1 \le k \le n$, define

$$M_k = \frac{m}{m_k} = \prod_{i \neq k} m_i$$

Note that since m_1, \ldots, m_n are pairwise relatively prime, it follows that for all $1 \le k \le n$, $\gcd(m_k, M_k) = 1$. Therefore for all $1 \le k \le n \ [M_k]_{m_k} \in (\mathbb{Z}/m_k\mathbb{Z})^*$ and there exists $y_k \in \mathbb{Z}$ such that

$$[M_k y_k]_{m_k} = [M_k]_{m_k} \otimes_{m_k} [y_k]_{m_k} = [1]_{m_k} \text{ or } M_k y_k \equiv 1 \pmod{m_k}$$

Proof(Continued).

Let

$$x = \sum_{k=1}^{n} a_k M_k y_k$$

since for all $1 \le i, j \le n$, if $i \ne j$, then $M_i \equiv 0 \pmod{m_j}$, it follows that x is a solution to (1).

We now turn to showing uniqueness. Let $x,x'\in\mathbb{Z}$ be such that for all $1\leq k\leq n$,

$$x \equiv a_k \equiv x' \, (\bmod \, m_k)$$

We will show that x and x' must be congruent $(\bmod m)$. Now, for all $1 \leq k \leq n$, $m_k | (x-x')$. An elementary induction argument applied to one of the consequences of Bézout's Lemma that we proved shows that since for all $1 \leq i,j \leq n$ with

$$i \neq j, \gcd(m_i, m_j) = 1$$

Proof(Continued).

$$m=m_1\cdots m_n|(x-x')$$

This shows that

$$x \equiv x' (\bmod m)$$

Useful Conclusion:

Given that b, c relatively prime, a < b, a < c

$$\begin{cases} x \equiv a \pmod{b} \\ x \equiv a \pmod{c} \end{cases} \Leftrightarrow x \equiv a \pmod{bc}$$

Wilson's Theorem

Theorem (Wilson's Theorem)

Let $p \in \mathbb{N}$ be prime. Then

$$(p-1)! \equiv -1 (mod \ p)$$

Theorem

There are infinitely many composite numbers in the form n!+1

Classification of Algorithms

- By Function
 - 1. Sorting Algorithm:
 - Binary Sort
 - Insertion Sort
 - Selection Sort
 - Merge Sort
 - Quick Sort
 - 2. Searching Algorithm:
 - Linear Search
 - Binary Search
- By Form
 - Recursive Algorithm
 - Iterative Algorithm

Time Complexity

- 1. Classification
 - ▶ Time Complexity
 - Space Complexity (not covered in this course)
- 2. Cases
 - Best Case
 - Average Case
 - Worst Case

Attention:

- Only two cases with the same # of input n can be compared.
- It is usually hard to calculate T(n) for the average case, but easier for the best or the worst case.

Landau Symbol

Definitions:

- 1. big oh (O): Let A be $\mathbb R$ or $\mathbb N$. Let $f:A\longrightarrow \mathbb R$ and $g:A\longrightarrow \mathbb{R}$. We say f is O(g), pronounced "f is big-oh of g'', if there exists $k, C \in \mathbb{N}$ such that for all $x \in A$ with |x| > k, $|f(x)| \le C|g(x)|$. We call O the Landau symbol big-oh.
- 2. big omega (Ω) : If g is O(f), then f is $\Omega(g)$.
- 3. big theta (Θ) : If f is O(g) and f is $\Omega(g)$, then f is $\Theta(g)$.

Theorem

Let $f: \mathbb{N} \longrightarrow \mathbb{R}$ and $g: \mathbb{N} \longrightarrow \mathbb{R}$. If there exists $C \in \mathbb{R}$ with C > 0such that

$$\lim_{n\to\infty}\frac{|f(n)|}{|g(n)|}=C$$

then f is O(g).

Landau Symbol

Theorem

ln(n!) is order n ln(n)

Theorem

Let $n \in \mathbb{N} \setminus \{0\}$. If $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a polynomial of degree n, then f is order x^n .

Theorem

Let $p, q \in \mathbb{R}$ with $0 . Then <math>n^q$ is not $O(n^p)$

Theorem

n is not $O(\ln(n))$

Recurrence Relations

Definition:

Let $f: \mathbb{N} \times \mathbb{C}^k \longrightarrow \mathbb{C}$ and let $a_0, \dots, a_{k-1} \in \mathbb{C}$. A function $g: \mathbb{N} \longrightarrow \mathbb{C}$ that satisfies:

$$g(n) = a_n$$
 $0 \le n < k$
 $g(n) = f(n, g(n-1), \dots, g(n-k))$ $n \ge k$

is said to satisfy recurrence relation defined by f with initial conditions a_0, \dots, a_{k-1} . (P306)

Theorem

Let $f: \mathbb{N} \times \mathbb{C}^k \longrightarrow \mathbb{C}$ and let $a_0, \dots, a_{k-1} \in \mathbb{C}$. Then there exists a unique $g: \mathbb{N} \longrightarrow \mathbb{C}$ that satisfies the recurrence relation define by f with initial conditions a_0, \dots, a_{k-1} . (P308)

Linear Recurrence Relations

Definition:

linear recurrence relation (P316):

- 1. degree *k*
- 2. homogeneous & inhomogeneous

Theorem

Let (a_n) and (b_n) satisfy the homogeneous linear recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (2)

Then for all $A, B \in \mathbb{C}$, the sequence $(Aa_n + Bb_n)$ also satisfies (2).

Characteristic Polynomial

Definition:

characteristic polynomial: If $\alpha \in \mathbb{C}$ and the sequence (a_n) defined by $a_n = \alpha^n$ satisfies the homogeneous linear recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (3)

Then $\alpha^n = c_1 \alpha^{n-1} + \cdots + c_k \alpha^{n-k}$. So, if $\alpha \neq 0$, then α is a root of the polynomial

$$\lambda^k - c_1 \lambda^{k-1} - \dots - c_k \tag{4}$$

(4) is the characteristic polynomial of the recurrence relation (3).

Characteristic Polynomial

Theorem

If $\alpha_1, \ldots, \alpha_k$ are roots of the characteristic polynomial of the linear recurrence relation (3) then for all $A_1, \ldots, A_k \in \mathbb{C}$, the sequence (a_n) defined by

$$a_n = A_1 \alpha_1^n + \dots + A_k \alpha_k^n$$

satisfies (3).

Vandermonde Matrix

Lemma

Let $\alpha_1, \ldots, \alpha_k$ be distinct roots of the polynomial

$$\lambda^k - c_1 \lambda^{k-1} - \cdots - c_k$$

Then the $k \times k$ matrix

$$M = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & \cdots & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_k^2 \\ \vdots & & & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_k^{k-1} \end{pmatrix}$$

is invertible.

Theorem

Let $a_0, \ldots, a_{k-1} \in \mathbb{C}$. Let $\alpha_1, \ldots, \alpha_k$ be k distinct roots of the characteristic polymial of the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (5)

Then there exists a sequence (a_n) in the form

$$a_n = q_1 \alpha_1^n + \cdots + q_k \alpha_k^n$$

that satisfies (5) with initial conditions a_0, \ldots, a_{k-1} .

Theorem

Let $a_0, \ldots, a_{k-1} \in \mathbb{C}$. Let $\alpha_1, \ldots, \alpha_t$ be roots of the characteristic polymial of the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (6)

with multiplicities m_1, \ldots, m_t , respectively. Then there exists a sequence (a_n) in the form

$$a_n = Q_1 lpha_1^n + \cdots + Q_t lpha_t^n$$
 with $Q_i = \sum_{j=0}^{m_i-1} q_{i,j} n^j$ for $1 \leq i \leq t$

that satisfies (6) with initial conditions a_0, \ldots, a_{k-1}

Suppose that the sequences (a_n) and (b_n) both satisfy the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + f'(n)$$
 (7)

So
$$a_n - b_n = c_1 (a_{n-1} - b_{n-1}) + \cdots + c_k (a_{n-k} - b_{n-k})$$

And $(a_n - b_n)$ satisfies the recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k}$$
 (8)

Theorem

Let (a_n) satisfy the recurrence relation (12). If (b_n) satisfies the recurrence relation (12) then (b_n) is of the form

$$b_n = c_n + a_n$$

where (c_n) satisfies the recurrence relation (8).

This means that by finding a single sequence (a_n) satisfying

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + f'(n)$$
 (9)

we can determine a sequence (b_n) satisfying (9) with any prescribed initial conditions.

Theorem

Let $c_1, \ldots, c_k \in \mathbb{R}$ and consider the inhomogenoeous recurrence relation

$$x_n = c_1 x_{n-1} + \dots + c_k x_{n-k} + f'(n) \text{ with } f'(n) = \left(\sum_{i=0}^{\tau} b_i n^i\right) s^n$$
(10)

Then (10) has a particular solution in the form

$$n^m \left(\sum_{i=0}^t q_i n^i \right) s^n$$

Theorem (Continued)

where m=0 if s is not a root of the characteristic polynomial of the homogeneous recurrence relation associated with (10), and if s is a root of the characteristic polynomial of the homogeneous recurrence relation associated with (10), then m is the multiplicity of that root.

Examples for Recurrence Relations

- ► Homogeneous Linear Recurrence Relation:
 - 1. Distinct Solutions for Characteristic Polynomial

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$

2. Solutions with Multiplicities for Characteristic Polynomial

$$a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$$

- ► Inhomogeneous Linear Recurrence Relation:
 - 1. f(x) where x is not the solution for characteristic polynomial

$$a_n = 5a_{n-1} - 6a_{n-2} + 7^n$$

2. f(x) where x is the solution for characteristic polynomial

$$a_n = 6a_{n-1} - 9a_{n-2} + 3^n$$

Examples for Recurrence Relations

e.g.

Let (a_n) be the sequence such that $a_0 = 0, a_1 = 1$,

$$a_n = 5a_{n-1} - 6a_{n-2} + 2^n + 3^n$$

Determine a_n as function of n ($n \in \mathbb{N}$).