THE PATCH FRAME AND ITS RELATIONS WITH SEPARATION IN POINT-FREE TOPOLOGY

ABSTRACT.

1. Introduction

Aquí va la introducción.

2. Preliminaries

3. HAUSDORFF PROPERTIES IMPLIES PATCH TRIVIALITY

Gadgets:

A the base frame

Its point space S = pt(A).

NA is the assembly of nucleus of A.

The compact saturated sets of S,

Q(S).

The preframe of open filters of A,

 A^{\wedge} .

The preframe of open filters of $\Omega(S)$.

$$\Omega(S)^{\wedge}$$
.

The set of compact quotients

$$KA = \{j \in NA \mid A_j \text{ is compact}\}.$$

First we recall that every open filter $F \in A^{\wedge}$ has three faces, that is, determines (and its determine) by :

- The compact saturated $Q \in \mathcal{Q}S$.
- $\nabla \in \Omega(S)^{\wedge}$.
- The compact quotient $A \to A_F$.
- The fitted nucleus v_F .

Hoffman-Mislove can be rephrase:

There is a bijection between compact quotients of A and compact saturated sets of S

Definition 3.1. A frame has KC if every compact quotient of A is a closed one. In other words every compact sublocale is close.

Denote by $\mathcal{H}rm$ the subcategory of Frm of Hausdorff frames in the sense of Johnstone and Shu.

In (citar el artículo) Sexton says that $A \in \mathbf{Frm}$ is *tidy* if for all $F \in A^{\wedge}$

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$

where $d = d(\alpha) = f^{\alpha}(0)$, $f = \dot{\bigvee}\{v_y \mid y \in F\}$, $v_y \in NA$ and $0 = 0_A$ (the reason for the last two clarifications will be understood later).

We want translate this same notion, but for A_j when $j \in NA$, so that, for all $F \in A_j^{\wedge}$, if $x \in F$ then $d \vee x = 1$, with d similar to before, because for this case we have that $v_y \in NA_j$ and $0_{A_j} = j(0)$.

Let's note that we need open filters F in A and in A_j , prenuclei f in A and A_j and elements d in A and in A_j . To make writing easier, we will denote by \hat{F} , \hat{f} and \hat{d} , to the open filter, prenuclei and element associated with the prenucleus, respectively, in the frame A. In the frame A_j we use the usual notation, so that, F, f and d for the open filter, prenuclei and element associated to the prenucleus.

We know that every open filter is admissible. This way, let $F = \nabla(k)$ and $\hat{F} = \nabla(g)$ be, where $k \in NA_j$ and $g = j_*kj^* \in NA$. We must see that \hat{F} is indeed an open filter in A. To do this, let us note that $j = j^*$ is a monotonic function, then

$$b \in j^* \hat{F} \Leftrightarrow j_*(b) \in \hat{F}$$
 and $a \in j_* F \Leftrightarrow j^*(a) \in F$

for $a \in A$ and $b \in A_j$. Foremore, if $F \in A_j^{\wedge}$, then $j_*F \in A^{\wedge}$.

Proposition 3.2. With the above notation, $\hat{F} = j_*F$

Proof. First, we note that if $x \in \hat{F}$, then $g(x) = (j_*kj^*)(x) = 1$. Thus $j((j_*kj^*)(x)) = j(1) = 1 \Rightarrow (kj^*)(x) = 1 \Rightarrow j^*(x) \in \nabla(k) = F,$ so that, $x \in j_*F$.

On the other hand, if $x \in j_*F$, then

$$j^*(x)\in F\Rightarrow k(j^*(x))=1\Rightarrow j_*(k(j^*(x)))=1,$$
 so that, $x\in \nabla(g)=\hat{F}$. Therefore $\hat{F}\in A^\wedge$.

Simmons proves in (citar el Vietoris y los resultados) that the diagram

$$A \xrightarrow{f^{\infty}} A$$

$$U_A \downarrow \qquad \qquad \downarrow U_A$$

$$\mathcal{O}S \xrightarrow{F^{\infty}} \mathcal{O}S$$

commutes laxly, so that, $U_A \circ f^{\infty} \leq F^{\infty} \circ U_A$.

In this diagram U_A is the spatial reflection morphism, f^{∞} and F^{∞} represent the associated nuclei asociados to the filters $F \in A^{\wedge}$ and $\nabla \in \mathcal{O}S^{\wedge}$.

We prove something more general here, since we consider the diagram

$$\begin{array}{ccc}
A & \xrightarrow{\hat{f}^{\infty}} & A \\
\downarrow j & & \downarrow j \\
A_j & \xrightarrow{f^{\infty}} & A_j
\end{array}$$

Lemma 3.3. For j, f and \hat{f} as before, it holds that $j \circ \hat{f} \leq f \circ j$.

Proof. By proposition 3.2 is true that

$$\hat{f} = \bigvee \{v_y \mid y \in \hat{F} = j_* F\} \quad \text{ and } \quad f = \bigvee \{v_{j(y)} \mid j(y) \in F\}.$$

then, for $a \in A$ it is hold

$$v_y(a) = (y \succ a) \le \hat{f}(a) \le j(\hat{f}(a)) \le (j(y) \succ j(a)) = v_{j(y)}(j(a)) \le f(j(a)).$$

Therefore
$$j \circ \hat{f} < f \circ j$$
.

For \hat{f} and f be nuclei, we need their idempotent closeds.

Corollary 3.4. For j, f and \hat{f} as before, it is hold that $j \circ \hat{f}^{\infty} \leq f^{\infty} \circ j$

Proof. For an ordinal α we will check that $j \circ \hat{f}^{\alpha} \leq f^{\alpha} \circ j$. We will do it by transfinite induction.

If $\alpha = 0$, it is trivial.

For the induction step, we assume that for α it holds. Then

$$j\circ \hat{f}^{\alpha+1}=j\circ \hat{f}\circ \hat{f}^{\alpha}\leq f\circ j\circ \hat{f}^{\alpha}\leq f\circ f^{\alpha}\circ j=f^{\alpha+1}\circ j,$$

where the first inequality is Lemma 3 and the second is true by the induction hypothesis.

If λ is a limit ordinal, then (HAZLO)

We now have the tools to prove the following:

Proposition 3.5. Si A es un marco arreglado, entonces A_j es arreglado.

Proof. Es sencillo probar que $F \subseteq \hat{F}$. De esta manera, Como A es arreglado y $F \in A^{\wedge}$, se cumple que

$$x \in F \Rightarrow \hat{d} \lor x = 1$$
,

donde $\hat{d} = d(\alpha) = f^{\alpha}(0)$.

Observemos que si $\hat{d} \leq d$, se cumple que $d \vee x = 1$, para $d = d(\alpha) = f^{\alpha}(j(0))$.

Luego, por el Corolario 3.4

$$\hat{d} = \hat{d}(\alpha) \le j(\hat{d}(\alpha)) = j(\hat{f}^{\alpha}(0)) \le f^{\alpha}(j(0)) = d(\alpha) = d.$$

Por lo tanto si $x \in F$, entonces $d \vee x = 1$ y así A_i es arreglado.

Lemma 3.6. Let $A \in \text{Frm}$ and $j, k \in NA$ be. We consider $F \in A_j^{\wedge}$ y $g = j_*kj^*$ where $F = \nabla(k)$. Then $\hat{F} = \nabla(g) \in A^{\wedge}$.

Proof. \hat{F} is a filter, because g is a nucleus. Let us consider $X \subseteq A$ such that $\bigvee X \in \hat{F}$. We must prove that $X \cap \hat{F} \neq \emptyset$.

If
$$\bigvee X \in \hat{F}$$
, then $g(\bigvee X) = (j_*kj^*)(\bigvee X) = 1$. Thus

$$j^*(\bigvee X) \leq j(\bigvee \{j(x) \mid x \in X\}) = j(\bigvee j[X]) = \bigvee_j X$$

and

$$1 = (j_*k)(j^*(\bigvee X)) \le (j_*k)(\bigvee_j X).$$

 $\{j(x)\mid x\in X\}$ is a directed set because X is directed. Then $j(j[X])\subseteq A_j$, $\bigvee_j X\in F$ and $F\in A_j^\wedge$, so that, exists $x\in X$ such that $x=j(x)\in F$. Therefore k(j(x))=1 and $(j_*kj^*)(x)=1$, so that, $x\in \nabla(g)=\hat{F}$. Thus $X\cap \hat{F}\neq\emptyset$. \square

Lemma 3.7. For $F \in A_i^{\wedge}$ and $\hat{F} \in A^{\wedge}$ as above, then $F \subseteq \hat{F}$.

Proof. Let $x \in F$ be, then j(x) = x and k(x) = 1. Thus

$$g(x) = (j_*kj^*)(x) = (j_*k)(j(x)) = j_*(k(x)) = j_*(1) = 1.$$

Therefore
$$x \in \hat{F}$$
.

Lemma 3.8. Let $A \in \text{Frm}$ and $j \in NA$ be. If A is tidy then A_j is tidy.

The block structure on a frame is an important problem and its related with some separation properties of frames.

Proposition 3.9. For $F \in A^{\wedge}$ and $Q \in \mathcal{Q}S$, if $j \in [v_Q, w_Q]$, then $U_*jU^* \in [v_F, w_F]$, where U^* is the morfism spatial reflection U_* is the right adjoint.

Proof. Since N is a functor, we have

$$\begin{array}{c|c}
A & NA \\
U & \stackrel{N(-)}{\longrightarrow} & N(U) \\
OS & NOS
\end{array}$$

and $N(U)_*$ is the right adjoint of $N(U)^{\wedge}$. Note the following:

(1)
$$N(U)(j) \le k \Leftrightarrow j \le N(U)_*k$$
.

- (2) If $k \in NOS$ then $N(U)(j) \le k \Leftrightarrow Uj \le kU$.
- (3) $N(U)_*k = U_*kU^*$ and $UN(U)_*k = k(U)$.

In 3), if
$$j = k$$
, $N(U)_*(j) = U_*jU^*$ and $UN(U)_*j = jU$. For $x \in F$

$$x \in A \xrightarrow{U^*} \mathcal{O}S \xrightarrow{j} \mathcal{O}S \xrightarrow{U_*} A$$

and $U_*(j(U(x))) = \bigwedge(S \setminus j(U(x)))$. Note that $U_*(j(U^*(x))) \subseteq \operatorname{pt} A$. Thus

$$x \in F \Leftrightarrow Q \subseteq U(x) \Leftrightarrow U(x) \in \nabla(j) = \nabla(Q) \Leftrightarrow S \setminus j(U(x)) = \emptyset$$
$$\Leftrightarrow \bigwedge (S \setminus j(U(x))) = 1 = (U_*jU^*)(x)$$
$$\Leftrightarrow x \in \nabla(U_*jU^*)$$

Therefor $F = \nabla (U_* j U^*)$.

In this way we have a function

Proposition 3.10. For every $A \in \mathcal{H}rm$ the interval corresponding to the block determined by a open filter $F \in A^{\wedge}$ is trivial, that is,

$$[v_F, w_F] = \{*\}$$

Proof. We know that for all $F \in A^{\wedge}$ the following holds: $v_F \leq w_F$. As a contradition, suppose that exists $F \in A^{\wedge}$ such that $w_F \nleq v_F$, that is, exists $a \in A$ such that $w_F(a) \not \leq v_F(a)$.

Note that $w_F(a) \neq 1$, otherwise

$$1 = w_F(a) = \bigwedge \{ p \in M \mid a \le p \} \le p$$

and this is a contradition because $p \neq 1$.

Then $1 \neq w_F(a) \nleq v_F(a)$ and for the property (H), exists $u \in A$ such that

(1)
$$u \nleq w_F(a) \quad \text{and} \quad \neg u \nleq v_F(a)$$

Due to monotony, $w_F(0) \leq w_F(a)$ and $v_F(0) \leq v_F(a)$. Thus, for 1 we have that

(2)
$$i) u \not\leq w_F(0)$$
 and $ii) \neg u \not\leq v_F(0)$.

For 2-(i) is true that $u \nleq \bigwedge M$, in particular, $u \nleq p$ for all $p \in M$. Therefore, $\neg u \leq p$ and $\neg u \leq w_F(0)$. If 2-(ii) is true, then $u \notin F$, in otherwise

$$u \in F \Rightarrow v_u \le f \Rightarrow v_u(0) = \neg u \le f(0)$$

and this is a contradition. Thus, for the Birkhoff's separation lemma, exists a completely prime filter G such that $u \notin G \supseteq F$. We take

$$q = \bigvee \{y \in A \mid y \notin G\}$$

the point corresponding to G. Thus, $u \notin G$, $u \leq q$. If $q \notin F$, then $q \in M$ and $u \not\leq q$. Hence $u \leq q$, $u \not\leq q$ and this is a contradition.

A consequence of the Proposition 3.10 is that $v_F = w_F$, so that, $A_{v_F} = A_{w_F}$ and $A_{w_F} \simeq \mathcal{O}M \simeq \mathcal{O}Q$. Thus, for all $j \in KA$ we have that $j = v_F$. Then in the Huasdorff case

$$\begin{array}{ccc}
A & \longrightarrow & A_F \\
\downarrow & & \downarrow g \\
\mathcal{O}S & \longrightarrow & \mathcal{O}S_{\nabla}
\end{array}$$

where g is an isomorphism and $A_F \simeq \mathcal{O}Q \simeq \mathcal{O}S_{\nabla}$.

On the other hand, $U_*u_{Q'}U^* = v_F$ if and only if $u_{Q'}U^* = U^*v_F$, for the adjuntion properties and U^* the spatial reflection morphism. Therefore

$$A \xrightarrow{v_F} A$$

$$U_* \uparrow \downarrow U \qquad U \downarrow \uparrow U_*$$

$$\mathcal{O}S \xrightarrow{v_\nabla} \mathcal{O}S$$

so that, if $A \in \mathcal{H}rm$ then patch trivial implies KC.

The above is the proof of the following theorem.

Theorem 3.11. If $A \in \mathcal{H}rm$. then every compact quotient is isomrphic to a closed quotient of the topology of a Hausdorff space.

Proposition 3.12. Every Hausdorff frame A (in the sense of Johnstone and Shou) is tidy, that is, A is patch trivial.

Proof. \Box

REFERENCES