Ejercicio 1 Parameter Estimation

jueves, 30 de noviembre de 2023 1:44 p. m.

1. (Theoretical) Sea $\mathcal{A}(x_1, x_2, ..., x_n)$, donde $\mathcal{A} \sim \mathcal{N}(\mu, \sigma)$ con parámetros μ y σ . Muestre que los estimadores máximo verosímiles son:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
(9.49)

La función de densidad de probabilidad normal está dada por:

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \qquad \underbrace{(\mathcal{X}^{-} \ \ \mathcal{Y}^{-})^2}_{2 \ \mathcal{S}^{2}}$$
(7.64)

donde $\mu \in \mathbb{R}$ y $\sigma^2 \in \mathbb{R}^+$ son los parámetros que caracterizan las distribución. Se puede demostrar que el valor medio está dado por $\mathbb{E}(X) = \mu$.

Ejemplo 1:

Sea $\mathcal{A}(x_1, x_2, ..., x_n)$, donde $\mathcal{A} \sim Pois(\lambda)$ tiene distribución de Poisson con parámetro λ .

$$\mathcal{L}(\vec{x};\lambda) = \prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} = \frac{e^{-n\lambda} \lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}$$
(9.36)

Tomando logaritmo natural tenemos:

$$Ln(\mathcal{L}(\vec{x};\lambda)) = -n\lambda + \sum_{i=1}^{n} x_i Ln(\lambda) - Ln(\prod_{i=1}^{n} x_i!)$$
(9.37)

El parámetro máximo verosímil es la media muestral.

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{X}.$$
(9.38)

In
$$(\mathcal{L}(x, \mu, \sigma)) = \ln \left(\frac{1}{2\pi 6^2} e^{-2\sigma^2} \right)$$

$$= \sum_{i=0}^{\infty} \ln \left(\frac{1}{2\pi 6^2} e^{-\frac{(x_i - \omega)^2}{2\sigma^2}} \right)$$

$$= \sum_{i=0}^{\infty} \ln \left(\frac{1}{2\pi 6^2} \right) + \ln \left(e^{-\frac{(x_i - \omega)^2}{2\sigma^2}} \right)$$

$$= \sum_{i=0}^{\infty} \ln \left(\frac{1}{2\pi 6^2} \right) - \frac{(x_i - \omega)^2}{2\sigma^2}$$

$$= \sum_{i=0}^{\infty} \ln \left(\frac{1}{2\pi 6^2} \right) - \frac{(x_i - \omega)^2}{2\sigma^2}$$

$$= \frac{d \ln (\mathcal{L})}{d \cdot \omega} = \frac{d}{d \cdot \omega} \sum_{i=1}^{\infty} \ln \left(\frac{1}{2\pi 6^2} \right) - \frac{(x_i - \omega)^2}{2\sigma^2}$$

$$= \sum_{i=1}^{\infty} 0 + 2 \frac{x_i - \omega}{2\sigma^2}$$

$$= \sum_{i=1}^{\infty} \frac{x_i - \omega}{6^2}$$

$$= \sum_{i=1}^{\infty} \frac{x_i - \omega}{6^2}$$

$$= 0$$

$$= 0$$

$$= 0$$

$$0 = \sum_{i=1}^{n} x_{i} - u$$

$$u = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$u = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
Ahana durinamos con respecto a σ^{2}

$$\frac{d \ln (x)}{d \sigma^{2}} = \frac{d}{d \sigma^{2}} \sum_{i=1}^{n} \ln(2\pi \sigma^{2}) - \frac{(x_{i} - u)^{2}}{2 \sigma^{2}}$$

$$= \frac{d}{d \sigma^{2}} \sum_{i=1}^{n} -\ln(2\pi \sigma^{2}) - \frac{(x_{i} - u)^{2}}{2 \sigma^{2}}$$

$$= \sum_{i=1}^{n} -\frac{1}{2\pi \sigma^{2}} \cdot 2\pi c + \frac{(x_{i} - u)^{2}}{2 \sigma^{2}}$$

$$= \sum_{i=1}^{n} -\frac{1}{2\pi \sigma^{2}} \cdot 2\pi c + \frac{1}{2\sigma^{2}} \cdot 2$$

Cuando do	ln (L) = 0			
	0 = \frac{\sqrt{1}}{1=1}	(xi-u)2 -	7	
	$\frac{M}{6^2} - \frac{M}{6^2}$	$\frac{1}{26} \frac{(x_i - \mu)^2}{26}$		
	264 M	$\sum_{i=1}^{n} (xi)$	- u) ²	
		$= \sum_{i=1}^{n} (x_i)^{i+1}$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Teniendo es	r Cuenka (
	2 1 S (a)			
	$\frac{1}{2} = \frac{1}{M} \sum_{i=1}^{M} (x_i)^2$,1 — 1		