Equazioni differenziali

1. Premessa

Definizione

Si chiama **equazione differenziale ordinaria** un'equazione che coinvolga una funzione incognita y(x), la sua derivata prima y'(x) e eventualmente alcune derivate di ordine superiore.

Spesso la variabile indipendente viene omessa:

invece di scrivere
$$y''(x) + 5y'(x) - y(x) = 3$$
 si scrive $y'' + 5y' - y = 3$.

Molto spesso la variabile indipendente viene indicata con t poiché molti fenomeni dipendenti dal tempo vengono modellizzati mediante equazioni differenziali.

L'**ordine** di un'equazione differenziale è l'ordine più alto delle derivate che vi compaiono per esempio:

y' + 2y = 2 equazione differenziale del **primo** ordine

y'' - y = 1 equazione differenziale del **secondo** ordine

Soluzione (o integrale) di un'equazione differenziale è una funzione che con le sue derivate la soddisfi.

Integrale generale è l'insieme di tutte le soluzioni dell'equazione differenziale.

Per esempio

Risolvere l'equazione y'-2=0 significa trovare le funzioni la cui derivata prima sia uguale a 2. Osserviamo che y=2x è una soluzione (particolare), così come sono soluzione tutte le funzioni del tipo

$$y = 2x + c$$
.

Diremo quindi che y = 2x + c è *l'integrale generale* dell'equazione y' - 2 = 0.

L'integrale generale di una equazione differenziale del primo ordine dipende da un parametro, quello di una equazione del secondo ordine dipende da due parametri.

Problema di Cauchy

Risolvere il problema di Cauchy relativo a un'equazione lineare significa determinare quella soluzione che soddisfa la o le condizioni iniziali date.

Per esempio il seguente problema di Cauchy

$$\begin{cases} y' - 2 = 0 \\ y(1) = 0 \end{cases}$$

chiede di determinare tra le infinite soluzioni $y=2x+c\,$ quella che soddisfi la condizione y(1)=0; la soluzione richiesta è y=2x-2.

Un esempio del problema di Cauchy per una equazione del secondo ordine è il seguente

$$\begin{cases} y'' + 2y' - 3y = 1\\ y(0) = 1\\ y'(0) = 0 \end{cases}$$