

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 9_1_1 »

С тудент группы	ИКБО-13-21	Черномуров С.А.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«»2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Постановка задачи	5
Метод решения	7
Описание алгоритма	9
Блок-схема алгоритма	15
Код программы	22
Тестирование	25
ЗАКЛЮЧЕНИЕ	26
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	27

введение

Постановка задачи

Перегрузка арифметических операций.

Перезагрузка операции для объекта треугольник. У треугольника есть стороны a, b, c и они принимают только натуральные значения. Определяем операцию сложения и вычитания для треугольников.

- + сложить значения сторон, если допустимо.
- вычесть значения сторон, если допустимо.

Складываются и вычитаются соответствующие стороны треугольников. Т.е. a1 + a2, b1 + b2, c1 + c2. Если после выполнения операции получается недопустимый треугольник, то результатом операции берется первый аргумент.

Написать программу, которая выполняет операции над треугольниками. В основной программе реализовать алгоритм:

- 1. Ввод количества треугольников n.
- 2. В цикле для каждого треугольника вводятся исходные длины сторон. Далее создается объект, в конструктор которого передаются значения длин сторон. Каждый объект треугольника получает свой номер от 1 до п.
- 3. В цикле, последовательно, построчно вводится «номер первого треугольника» «символ арифметической операции + или -» «номер второго треугольника»
- 4. После каждого ввода выполняется операция, результат присваивается первому аргументу (объекту треугольника).
- 5. Цикл завершается по завершению данных.
- 6. Выводится результат последней операции.

Гарантируется:

- Количество треугольников больше или равно 2;
- Значения исходных длин сторон треугольников задаются корректно.

Реализовать перегрузку арифметических операции «+» и «-» для объектов треугольника посредством самостоятельных функций.

Описание входных данных

Первая строка содержит значение количества треугольников n: «Натуральное значение» Далее строк содержат n «Натуральное значение»«Натуральное значение» «Натуральное значение» 2 Начиная C n строки: значение»«Знак операции»«Натуральное «Натуральное значение»

Описание выходных данных

a = «Натуральное значение»; b = «Натуральное значение»; c = «Натуральное значение».

Метод решения

Для решения поставленной задачи используются:

- Объекты стандартных потоков ввода и вывода cin и cout соответственно. Используются для ввода с клавиатуры и вывода на экран.
- Объекты класса Triangle в количестве, определяемом пользователем.
- Функции-операторы "+" и "-". Используются для объектов класса Triangle.
- Класс Triangle:
 - Свойства/поля:
 - Поле:
 - Наименование a, b, c;
 - Тип целочисленный беззнаковый;
 - Модификатор доступа закрытый.
 - Методы:
 - Meтод Triangle:
 - Функционал параметризированный конструктор.
 - Метод Side1:
 - Функционал константный метод, возвращающий длину первой стороны треугольника.
 - Метод Side2:
 - Функционал константный метод, возвращающий длину второй стороны треугольника.
 - Meтод Side3:

• Функционал - константный метод, возвращающий длину третьей стороны треугольника.

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: Основной алгоритм программы

Параметры: Отсутствуют

Возвращаемое значение: Целочисленный тип данных - код возврата

Алгоритм функции представлен в таблице 1.

Таблица 1. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленной переменной п	2	
2		Считывание с клавиатуры значения переменной п	3	
3		Создание объекта vec класса vector для хранения объектов класса Triangle	4	
4		Объявление целочисленной переменной с инициализацией i=0	5	Использование і в качестве счетчика
5	Значение і меньше значения п	Объявление целочисленных беззнаковых переменных а,b,c	6	
			10	Выход из цикла
6		Считывание с клавиатуры значений переменных a, b, с	7	
7		Создание объекта trg класса Triangle путем вызова	8	

		параметризированного конструктора с аргументами a, b, с		
8		Вызов метода push_back объекта vec с параметром trg	9	
9		Инкрементирование і	5	
10		Объявление целочисленных переменных num1, num2 и символьной переменной орег	11	
11	Значения num1, oper, num2 считаны с клавиатуры	Считывание с клавиатуры значений переменных num1, oper, num2	12	
			13	Выход из цикла
12	Значение oper == '+'	Присвоение значения num1+num2 значению num1	11	
12		Присвоение значения num1- num2 значению num1	11	
13		Вывод на экран "a = ", ";", "b = ", ";", "c = ", соответствующие значения полей объекта trg	Ø	

Конструктор класса: Triangle

Модификатор доступа: public

Функционал: Параметризированный конструктор

Параметры: Целочисленные параметры А, В, С

Алгоритм конструктора представлен в таблице 2.

Таблица 2. Алгоритм конструктора класса Triangle

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение значений А, В, С соответствующим полям a, b, с объекта класса Triangle	Ø	

Класс объекта: Triangle

Модификатор доступа: public

Метод: Side1

Функционал: Константный метод, возвращающий длину первой стороны

треугольника

Параметры: Отсутствуют

Возвращаемое значение: Целочисленный тип данных - длина первой стороны

треугольника

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода Side1 класса Triangle

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возврат методом значения поля а объекта класса Triangle	Ø	

Класс объекта: Triangle

Модификатор доступа: public

Метод: Side2

Функционал: Константный метод, возвращающий длину второй стороны

треугольника

Параметры: Отсутствуют

Возвращаемое значение: Целочисленный тип данных - длина второй стороны треугольника

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода Side2 класса Triangle

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возврат методом значения поля b объекта класса Triangle	Ø	

Класс объекта: Triangle

Модификатор доступа: public

Метод: Side3

Функционал: Константный метод, возвращающий длину третьей стороны треугольника

Параметры: Отсутствуют

Возвращаемое значение: Целочисленный тип данных - длина третьей стороны треугольника

Алгоритм метода представлен в таблице 5.

Таблица 5. Алгоритм метода Side3 класса Triangle

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возврат методом значения поля с объекта класса Triangle	Ø	

Функция: operator+

Функционал: Суммирование длин сторон двух треугольников

Параметры: Ссылки на объекты trg1, trg2 класса Triangle

Возвращаемое значение: Объект класса Triangle

Алгоритм функции представлен в таблице 6.

Таблица 6. Алгоритм функции operator+

No	Предикат	Действия	№ перехода	Комментарий
1	Треугольник со сторонами А,В,С существует	Объявление целочисленных переменных A,B,C с инициализацией значениями сумм соответствующих полей объектов trg1, trg2	2	
		Возврат функцией объекта trg1	Ø	
2		Возврат функцией значений А,В,С для созданного объекта класса Triangle	Ø	

Функция: operator-

Функционал: Вычитание длин сторон двух треугольников

Параметры: Ссылки на объекты trg1, trg2 класса Triangle

Возвращаемое значение: Объект класса Triangle

Алгоритм функции представлен в таблице 7.

Таблица 7. Алгоритм функции operator-

N₂	Предикат	Действия	№ перехода	Комментарий
1	Треугольник со	Объявление	2	

	сторонами А,В,С существует	целочисленных переменных A,B,C с инициализацией значениями разностей соответствующих полей объектов trg1, trg2		
		Возврат функцией объекта trg1	Ø	
2		Возврат функцией значений А,В,С для созданного объекта класса Triangle	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Рис. 3. Блок-схема алгоритма.

Рис. 4. Блок-схема алгоритма.

Рис. 5. Блок-схема алгоритма.

Рис. б. Блок-схема алгоритма.

Рис. 7. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл main.cpp

```
#include "Triangle.h"
#include <iostream>
#include <vector>
using namespace std;
int main()
{
        int n;
        cin>>n;
        vector <Triangle> vec;
        for (int i=0;i<n;i++){
                int a,b,c;
                cin>>a>>b>>c;
                Triangle trg(a,b,c);
                vec.push_back(trg);
        int num1, num2;
        char oper;
        while (cin>>num1>>oper>>num2){
                if (oper=='+') vec[num1-1]=vec[num1-1]+vec[num2-1];
                else vec[num1-1]=vec[num1-1]-vec[num2-1];
        cout<<"a = "<<vec[num1-1].Side1()<<"; b = "<<vec[num1-1].Side2()<<"; c
= "<<vec[num1-1].Side3()<<".";
        return 0;
}
```

Файл Triangle.cpp

```
#include "Triangle.h"
#include <iostream>
#include <cmath>

Triangle :: Triangle(int A, int B, int C){
        a = A;
        b = B;
        c = C;
}
int Triangle :: Perimeter(){
```

```
int P;
        P = a + b + c;
        return P;
}
double Triangle :: Square(){
        double S, p;
        p = (a + b + c) / 2.0;
        S = sqrt(p * (p - a) * (p - b) * (p - c));
        return S;
}
int Triangle::Side1() const{
        return a;
int Triangle::Side2() const{
        return b;
int Triangle::Side3() const{
        return c;
}
Triangle operator+(const Triangle &trg1, const Triangle &trg2){
        int A=trg1.Side1()+trg2.Side1();
        int B=trg1.Side2()+trg2.Side2();
        int C=trg1.Side3()+trg2.Side3();
        if (A+B>C && A+C>B && B+C>A)
                return Triangle(A,B,C);
        else return trg1;
}
Triangle operator-(const Triangle &trg1, const Triangle &trg2){
        int A=trg1.Side1()-trg2.Side1();
        int B=trg1.Side2()-trg2.Side2();
        int C=trg1.Side3()-trg2.Side3();
        if (A+B>C && A+C>B && B+C>A && A>O && B>O && C>O)
                return Triangle(A,B,C);
        else return trg1;
}
```

Файл Triangle.h

```
#ifndef _TRIAN_H
#define _TRIAN_H

class Triangle{
    private:
        int a;
        int b;
        int c;

    public:
        Triangle(int A, int B, int C);
        int Perimeter();
```

```
double Square();
    int Side1() const;
    int Side2() const;
    int Side3() const;

};

Triangle operator+(const Triangle &trg1, const Triangle &trg2);
Triangle operator-(const Triangle &trg1, const Triangle &trg2);
#endif
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
3 1 1 1 2 2 2 3 3 3 1+3 1-2	a = 2; b = 2; c = 2.	a = 2; b = 2; c = 2.
4 5 3 1 2 4 5 3 7 6 1 2 3 2+3 1-2 1-4	a = 5; b = 3; c = 1.	a = 5; b = 3; c = 1.
45312453761231- 4	a = 5; b = 3; c = 1.	a = 5; b = 3; c = 1.

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).