1.1

a. Demuestra que un conjunto de medida cero no tiene puntos interiores. Primeramente fijaremos algunas definiciones que usaremos para demostrar la proposición.

Definición 1.1.1.

Sea $\vec{x_0} \in \mathbb{R}^n$ y $\epsilon > 0$. Se define la bola abierta de \mathbb{R}^n con centro en $\vec{x_0}$ y radio ϵ por:

$$B(\vec{x_0}, \epsilon) = V_{\epsilon}(\vec{x_0}) = \{\vec{x} \in \mathbb{R}^n | ||\vec{x} - \vec{x_0}||\}$$

Definición 1.1.2.

Sea $A \subseteq \mathbb{R}^n$ y sea $\vec{x_0} \in A$. Entonces $\vec{x_0}$ se llama punto interior de A si existe $\epsilon > 0$ tal que $B(\vec{x_0}, \epsilon) \subseteq A$.

Definición 1.1.3.

Un rectángulo cerrado en \mathbb{R}^n es un conjunto de la forma

$$[a_1,b_1] \times [a_2,b_2] \times \cdots \times [a_n,b_n]$$

con $a_i, b_i \in \mathbb{R}$, $1 \leq i \leq n$. Se define el volumen del rectángulo $S = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$ por:

$$Vol(S) = v(s) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n) = \prod_{i=1}^{n} (b_i - a_i)$$

 $si \ a_i \leqslant b_i, \ \forall 1 \leqslant i \leqslant n \ y \ Vol(s) = 0 \ si \ S = \varnothing.$

Definición 1.1.4.

Un conjunto $A \subseteq \mathbb{R}^n$ se dice que tiene medida 0 si dado $\epsilon > 0$, existe un recubrimiento a lo más numerable $\{U_n\}_{n=1}^{\infty}$ de A de rectángulos cerrados es decir

$$A \subseteq \bigcup_{n=1}^{\infty} U_n$$

con U_n un rectángulo cerrado de \mathbb{R}^n , tal que

$$\sum_{i=1}^{\infty} Vol(U_i) < \epsilon.$$

Demostración

Sea un $A \subseteq \mathbb{R}^n$ un conjunto de medida 0. Supongamos que A poseé un punto interior x_0 por definición existe un cierto $\epsilon > 0$ tal que $B(x_0, \epsilon) \subseteq A$, ello implica que $B(x_0, \epsilon)$ consta de todos los puntos x tal que $\|x - x_0\| < \epsilon$. Ahora dado que A tiene medida 0 existe un recubrimiento de rectángulos que satisface $A \subseteq \bigcup_{n=1}^{\infty} U_n$ tal que

$$\sum_{i=1}^{\infty} Vol(U_i) < \varepsilon.$$

Para todo $\varepsilon > 0$.Lo que a su vez implica que $B(x_0, \epsilon) \subseteq A \subseteq \bigcup_{n=1}^{\infty} U_n$. Puesto que la desigualdad

$$\sum_{i=1}^{\infty} Vol(U_i) < \varepsilon.$$

se satisface para cualquier $\varepsilon > 0$. Por lo tanto se tiene que para cualquiera de los subrectángulos U_k con $k \in \mathbb{N}$, se satisface que $Vol(U_k) < \sum_{i=1}^{\infty} Vol(U_i) < \varepsilon$. Si tomamos un punto $x_0 \in A$ con $\epsilon > \varepsilon$ se hace evidente que $B(x_0, \epsilon) \not \subset \bigcup_{n=1}^{\infty} U_n$ lo cual contradice el hecho de que $B(x_0, \epsilon) \subseteq A \subseteq \bigcup_{n=1}^{\infty} U_n$. Analogamente si tomamos $\epsilon \leqslant \varepsilon, \forall \varepsilon > 0$ implica que $B(x_0, \epsilon) \subseteq U_k$ para algun $k \in \mathbb{N}$ o $B(x_0, \epsilon) \subseteq \bigcup_{n=1}^{\infty} U_n$, se tiene entonces necesariamente que $\epsilon = 0$ lo cual es una contradicción puesto que hemos supuesto que $\epsilon > 0$. Por tanto podemos concluir que si A tiene medida cero entonces A no poseé puntos interiores.

1.2

b. Construye un conjunto que tenga medida cero pero que su cerradura sea \mathbb{R}^n .

De igual forma establecemos primeramente algunas definiciones que nos ayudaran a demostrar la proposición.

Definición 1.2.1.

Dado $A \subseteq \mathbb{R}^n$. Un punto $\vec{x_0} \in \mathbb{R}^n$. Se llama punto de adherencia de A si para todo $\epsilon > 0$, $B(x_0, \epsilon) \cap A \neq \emptyset$. El conjunto

$$\overline{A} = {\{\vec{x} \in \mathbb{R}^n | \vec{x} \text{ es un punto de adherencia de } A\}}$$

recibe el nombre de cerradura de A.

Demostración

Sabemos que un conjunto que tiene medida por el ejercicio no contiene puntos interiores por lo que podemos proponer un conjunto que tenga medida 0 en \mathbb{R} y cuya cerradura sea precisamente \mathbb{R} . Tomando en consideracion lo anteriormente mencionado sea $A = \mathbb{Q}$, con \mathbb{Q} el conjunto de números racionales procederemos a demostrar que \mathbb{Q} tiene medida cero en \mathbb{R} para ello consideremos la colección de todos los números racionales De la forma p/q con $p, q \in \mathbb{Z}$ y con la condición de que p y q sean primos relativos. Sea dicho conjunto $A = \{r_n\}_{n=1}^{\infty}$ y definamos los intervalos

$$I_n = \left(r_n - \frac{\epsilon}{2^n}, r_n + \frac{\epsilon}{2^n}\right)$$

Si consideramos la unión de los infinitos intervalos, se cumple que

$$A \subseteq \bigcup_{n=1}^{\infty} I_n$$

Ahora puesto que $Vol(U_k) = \frac{\epsilon}{2^{k-1}}, \forall k \in \mathbb{N}$, se tiene que

$$\sum_{k=1}^{\infty} \frac{\epsilon}{2^{k-1}} \leqslant \epsilon$$

la serie anterior converge para cualquier ϵ que escojamos y preserva la desigualdad, ahora puesto que podemos hacer ϵ tan pequeño como queramos se tiene necesariamente que el conjunto A tiene medida cero en \mathbb{R} . Es decir el conjunto $\mathbb{Q} \subset \mathbb{R}$ es de medida cero. Ahora puesto que \mathbb{Q} , es de medida cero y se tiene que la cerradura $\overline{\mathbb{Q}}$ es precisamente \mathbb{R} , tomemos el conjunto

$$\mathbb{Q}^n = \mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$$

formado al realizar el producto cartesiano de \mathbb{Q} con sigo mismo n veces. Entoces se hace evidente que $\mathbb{Q}^n \subset \mathbb{R}^n$ es de medida cero, esto se sigue del hecho de que podemos verificar esto siguiendo los pasos anteriormente descritos, de que \mathbb{Q} es de medida cero considerando unicamente rectángulos en \mathbb{R}^n . Con ello obtenemos que \mathbb{Q}^n es de medida cero y su cerradura $\overline{\mathbb{Q}}^n$ es \mathbb{R}^n .

2 Ejercicio 2

Construye una función acotada $f: I \to \mathbb{R}$ que sea igual a cero en casi todo punto del intervalo I y que no sea Riemann integrable.

Definición 2.0.1 (Riemann-integrabilidad).

Una función f definida en [a, b] es Riemann integrable (R-integrable) si existe un número real \mathfrak{R} tal que para cualquier $\epsilon > 0$, $\exists \delta > 0$, tal que $\forall \mathcal{P}$ partición de [a, b] con $\|\mathcal{P}\| < \delta$ y toda elección ξ se tiene

$$|\mathcal{R}(f, \mathcal{P}, \xi) - \mathfrak{R}| < \epsilon$$

En este sentido la función $\mathcal{R}(f, \mathcal{P}, \xi)$ esta dada por

$$\mathcal{R}(f, \mathcal{P}, \xi) = \sum_{i=1}^{n} f(\xi_i) |x_i - x_{i-1}|$$

A esta suma la llamaremos **Suma de Riemann** de f relativa a la partición $\mathcal{P} = \{a = x_0 < x_2 < \dots < x_n = b\}$ de [a, b] y la elección $\xi = \{\xi_1, \xi_2, \dots, \xi_n\}$, donde $\xi_i \in [x_{i-1}, x_i], 1 \leq i \leq n$. A este número \mathfrak{R} lo denotaremos mediante el símbolo

$$\int_{a}^{b} f(x)dx = \lim_{\|\mathcal{P}\| \to 0} \mathcal{R}(f, \mathcal{P}, \xi)$$

Demostración

Sea la función $f:[0,1]\subseteq\mathbb{R}\to\mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [0, 1] \\ 0 & x \in [0, 1] \setminus \mathbb{Q} \end{cases}$$

es claro que la función f es igual a 0 en casi todos los puntos del intervalo [0,1], se demostrara que la función f no es Riemann-integrable. De acuerdo a lo anteriormente mencionado se tiene que si f es R-integrable entonces debe existir un número real \Re tal que $\forall \epsilon > 0, \exists \delta > 0$ de tal modo que

$$\|\mathcal{P}\| < \delta \Rightarrow |\mathcal{R}(f, \mathcal{P}, \xi) - \mathfrak{R}| < \epsilon$$

Para toda partición \mathcal{P} de el intervalo [0,1] y toda elección ξ .

Sea $\mathcal{P} = \{x_0 = 0 < x_1 < x_2 < \dots < x_n = 1\}$ una partición de intervalo [0,1] tal que $\|\mathcal{P}\| < \delta$, para algún $\delta > 0$ y sea $\xi = \{\xi_1, \xi_2, \dots, \xi_n\}$ una elección de tal forma que $\xi_i \in [x_{i-1}, x_i]$. Queda claro entonces que el valor de $\mathcal{R}(f, \mathcal{P}, \xi)$ dependera de la elección ξ que escojamos puesto que independientemente de que $\|\mathcal{P}\| \to 0$ se tendra que cuando menos el intervalo $[x_{i-1}, x_i]$ contendra un número $a \in \mathbb{Q} \cap [0, 1]$ y otro $b \in [0, 1] \setminus \mathbb{Q}$, sin importar cuan fina sea la partición \mathcal{P} . Ello implica que en este caso la elección ξ determinara el valor de $\mathcal{R}(f, \mathcal{P}, \xi)$ puesto que si tomamos la elección $\xi_{\mathbb{Q}}$ de tal forma que $\forall \xi_i \in \xi_{\mathbb{Q}}, \xi_i \in \mathbb{Q} \cap [0, 1]$ se tendra que

$$\mathcal{R}(f, \mathcal{P}, \xi_{\mathbb{Q}}) = \sum_{i=1}^{n} f(\xi_i) |x_i - x_{i-1}| = \sum_{i=1}^{n} 1 * |x_i - x_{i-1}| = 1$$

Analogamente si tomamos la elección $\xi_{\mathbb{I}}$ de tal forma que $\forall \xi_i \in \xi_{\mathbb{I}}, \xi_i \in [0, 1] \setminus \mathbb{Q}$ se tendra que

$$\mathcal{R}(f, \mathcal{P}, \xi_{\mathbb{I}}) = \sum_{i=1}^{n} f(\xi_i) |x_i - x_{i-1}| = \sum_{i=1}^{n} 0 * |x_i - x_{i-1}| = 0.$$

Por tanto el resultado de $\mathcal{R}(f, \mathcal{P}, \xi)$ dependera de la elección ξ y por tanto de existir un número real \mathfrak{R} este deberia de cumplir que $\|\mathcal{P}\| < \delta \Rightarrow |1 - \mathfrak{R}| < \epsilon$ y a su vez $\|\mathcal{P}\| < \delta \Rightarrow |0 - \mathfrak{R}| < \epsilon$. Esto implica que si \mathfrak{R} existe entonces \mathfrak{R} debe de cumplir

$$\Re \in (-\epsilon + 1, \epsilon + 1)$$
 y $\Re \in (-\epsilon, \epsilon)$

Por lo tanto dicho número $\mathfrak R$ no puede existir puesto que de existir deberia pertenecer a dos entornos distintos al mismo tiempo. Con ello queda demostrado que la función f no es Riemann-integrable.

Demuestra que si f es Riemann integrable sobre un intervalo I y f(x) = 0 en casi todos los puntos del intervalo I, entonces

$$\int_{I} f(x)dx = 0$$

Demostración Supongamos que f es Riemann-integrable en el intervalo [a,b].Por definición ello implica que $\exists \mathfrak{R} \in \mathbb{R}$ tal que $\forall \mathcal{P}$ partición de [a,b] y $\forall \xi$ elección. Se cumple que $\forall \epsilon > 0, \exists \delta > 0$ tal que

$$|\mathcal{R}(f,\mathcal{P},\xi) - \mathfrak{R}| < \varepsilon.$$

Ahora supongamos que f(x) = 0 en casi todo el intervalo I y existe un conjunto a lo más numerable de puntos \hat{x} que satisfacen $f(\hat{x}) \neq 0$. Es evidente entonces que para cualquier elección $\xi = \{\xi_1, \xi_2, \dots, \xi_n\}$ donde $\xi_i \in [x_i, x_{i+1}]$. Es decir ξ_i pertenece al subintervalo $[x_i, x_{i+1}]$ de la partición

$$\mathcal{P} = \{ a = x_1 < x_2 < \dots < x_n = b \}$$

y se cumple que cuando menos $\exists \hat{\xi}_1, \hat{\xi}_2 \in [x_i, x_{i+1}]$ tal que $f(\hat{\xi}_1) = 0$ y $f(\hat{\xi}_2) \neq 0$. Por tanto si consideramos la elección $\xi_{\mathcal{O}} = \{\xi_i \in \xi_{\mathcal{O}} : f(\xi_i) = 0\}$ y la elección $\xi_{\mathcal{Q}} = \{\xi_i \in \xi_{\mathcal{Q}} : f(\xi_i) \neq 0\}$, con $1 \leq i \leq n$. Si tomamos las sumas de Riemann relativas para las elecciones $\xi_{\mathcal{O}}, \xi_{\mathcal{Q}}$ y la partición \mathcal{P} . Resulta entonces evidente que $\mathcal{R}(f, \mathcal{P}, \xi_{\mathcal{O}}) = 0$, ahora si consideramos $\mathcal{R}(f, \mathcal{P}, \xi_{\mathcal{Q}})$ se tiene que puesto que f es R-integrable se satisface que

$$|\mathcal{R}(f,\mathcal{P},\xi_{\mathcal{Q}}) - \mathfrak{R}| < \varepsilon$$

Ahora sabemos que si hacemos $\|\mathcal{P}\| \to 0$, puesto que hemos supuesto que los puntos donde la función f son distintos de 0 son un conjunto a lo más numerable implica necesariamente que no importa cuan fina se la partición se tendra que la elección ξ tendra necesariamente puntos para los cuales $f(\xi_i)$ sea 0. Por tanto se tiene que cuando menos

$$0 \leq |\mathcal{R}(f, \mathcal{P}, \xi_{\mathcal{O}}) - \mathfrak{R}| < \varepsilon$$

como podemos hacer ε tan pequeño como queramos podemos concluir que puesto que \Re existe y cumple que

$$-\varepsilon - \mathcal{R}(f, \mathcal{P}, \xi_{\mathcal{Q}}) < \mathfrak{R} < \varepsilon - \mathcal{R}(f, \mathcal{P}, \xi_{\mathcal{Q}})_{(1)}$$

Puesto que hemos supuesto que la desigualdad anterior se conserva para cualquier partición y elección que tomemos, puesto que f es R-integrable. Y

considerando la elección $\xi_{\mathcal{O}}$ de igual forma satisface la desigualdad podemos concluir que

$$\int_{I} f(x)dx = 0$$

Es decir si $\mathfrak R$ existe la desigualdad (1) se cumple para cualquier suma de Riemann relativa $\mathcal R(f,\mathcal P,\xi)$, podemos concluir entonces que necesariamente $\mathfrak R=0.$

Usando la definición de suma de Riemann con ayuda del criterio de Darboux, encuentra

$$\int_{[0,1]\times[0,1]} (x^2y + x) dx dy$$

Definición 4.0.1 La integral doble de una función de dos variables f, sobre el rectángulo R es

$$\iint_{R} f(x,y) = \lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

Sea \mathcal{P} una partición del rectángulo $[0,1] \times [0,1]$, de tal modo que $\mathcal{P} = \{\mathcal{P}_1, \mathcal{P}_2\}$, donde \mathcal{P}_1 y \mathcal{P}_2 son una partición del intervalo [0,1], de tal forma que \mathcal{P}_1 sea dividida en m intervalos iguales y \mathcal{P}_2 se dividida en n partes iguales.

Por tanto si consideramos las partición \mathcal{P}_1 y \mathcal{P}_2 divididos en 4 subintervalos es decir si consideramos $\mathcal{P}_1 = \{0 < 1/4 < 2/4 < 3/4 < 1\}$, de igual forma para \mathcal{P}_2 y considerando los puntos de muestra (x_{ij}^*, y_{ij}^*) la esquina superior derecha de cada R_{ij} . Con ello tenemos que $Vol(R_{ij}) = \frac{1}{16}$, haciendo l suma de riemman considerando esta partición obtenemos que

$$\sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A =$$

$$= f(\frac{1}{4}, \frac{1}{4}) * Vol(R_{ij}) + f(\frac{1}{2}, \frac{1}{4}) * Vol(R_{ij}) + f(\frac{3}{4}, \frac{1}{4}) * Vol(R_{ij}) +$$

$$f(1, \frac{1}{4}) * Vol(R_{ij}) + f(\frac{1}{4}, \frac{1}{2}) * Vol(R_{ij}) + f(\frac{1}{2}, \frac{1}{2}) * Vol(R_{ij}) + f(\frac{3}{4}, \frac{1}{2}) * Vol(R_{ij})$$

$$f(1, \frac{1}{2}) * Vol(R_{ij}) + f(\frac{1}{4}, \frac{3}{4}) * Vol(R_{ij}) + f(\frac{1}{2}, \frac{3}{4}) * Vol(R_{ij}) + f(\frac{3}{4}, \frac{3}{4}) * Vol(R_{ij})$$

$$f(1, \frac{3}{4})*Vol(R_{ij}) + f(\frac{1}{4}, 1)*Vol(R_{ij}) + f(\frac{1}{2}, 1)*Vol(R_{ij}) + f(\frac{3}{4}, 1)*Vol(R_{ij}) + f(1, 1)*Vol(R_{ij})$$

$$^{0}.6666666667$$

Tomando el limite cuando $\|\mathcal{P}_1\| \to 0$ y $\|\mathcal{P}_2\| \to 0$ llegaremos a que

$$\lim_{m,n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_{ij}^*, y_{ij}^*) \Delta A = \frac{2}{3}$$

.

Sea $f(x, y, z) = z \sin(x + y)$ y considerando el intervalo $[0, \pi] \times [-\pi/2, \pi/2] \times [0, 1]$. Usa el teorema de Fubini para calcular:

$$\int_{I} f(x, y, z) dx dy dz$$

Teorema 5.0.1 Teorema de Fubini

Sea $A \subseteq \mathbb{R}^n$, $B \subseteq \mathbb{R}^m$ rectángulos cerrados y sea $f: A \times B \subseteq \mathbb{R}^{n+m} \to \mathbb{R}$ una función acotada e integrable. Entonces las siguientes integrales existen y son iguales

$$\int_{A \times B} f(x, y) dx dy = \int_{A} \left[\int_{B} f(x, y) dy \right] dx = \int_{B} \left[\int_{A} f(x, y) dx \right] dy$$

Corolario 5.0.1 Si $f: A \to \mathbb{R}$ es continua, con

$$S = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$$

entonces

$$\int_{S} f = \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \cdots \int_{a_{n}}^{b_{n}} f(x_{1}, \dots, x_{n}) dx_{n} dx_{n-1} \dots dx_{1}$$

De acuerdo a lo anteriormente mencionado la integral esta dada por

$$\int_{E} f(x,y,z)dxdydz = \int_{0}^{1} \int_{-\pi/2}^{\pi/2} \int_{0}^{\pi} z \sin(x+y)dxdydz$$

$$\int_{0}^{1} \int_{-\pi/2}^{\pi/2} \int_{0}^{\pi} z \sin(x+y) = \int_{0}^{1} \int_{-\pi/2}^{\pi/2} z \left[\int_{0}^{\pi} \sin(x+y)dx \right] dydz$$

$$= \int_{0}^{1} \int_{-\pi/2}^{\pi/2} z \left[-\cos(x+y)|_{y}^{y+\pi} \right] dydz = \int_{0}^{1} \int_{-\pi/2}^{\pi/2} z \left[2\cos(y) \right] dydz$$

$$= \int_{0}^{1} 2z \left[\int_{-\pi/2}^{\pi/2} \cos(y)dy \right] dz = \int_{0}^{1} 2z \left[\sin(y)|_{-\pi/2}^{\pi/2} \right] dz$$

$$= \int_{0}^{1} 4zdz = 4 \int_{0}^{1} zdz = 4(\frac{z^{2}}{2}|_{0}^{1}) = 2$$

Usa el teorema de Fubini para mostrar que si una función $f:D\subset\mathbb{R}^2\to\mathbb{R}^m$ para algún $m\geqslant 1$, entonces

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}.$$

Demostración

De acuerdo al teorema fundamental del cálculo sabemos que si tenemos $\int f(x)dx = F(x)$ donde F(x) es una primitiva de la función f, que cumple $\frac{dF(x)}{dx} = f(x)$. Si consideramos una función $f: A \times B \subseteq \mathbb{R}^2 \to \mathbb{R}$, de tal forma que f es integrable se tiene entonces que

$$\iint_{A \times B} f(x, y) dx dy = \iint_{B} \left[\iint_{A} f(x, y) dx \right] dy = \iint_{A} \left[\iint_{B} f(x, y) dy \right] dx$$

Consideremos primeramente la integral

$$\int_{B} \left[\int_{A} f(x, y) dx \right] dy$$

se tiene de acuerdo al teorema fundamental del cálculo que existe una primitiva F_0 tal que

$$\int_{A} f(x,y)dx = F_0(x,y) \longrightarrow \frac{\partial F_0}{\partial x} = f(x,y)$$

Ahora si consideramos la integral

$$\int_{B} F_0(x,y)dy$$

se tiene que existe una primitiva F_1 tal que

$$\int_{B} F_0(x,y)dy = F_1(x,y) \longrightarrow \frac{\partial F_1}{\partial y} = F_0(x,y)$$

si derivamos ambos lados de la igualdad con respecto de x llegamos a que

$$\frac{\partial F_1}{\partial y} = F_0(x, y) \longrightarrow \frac{\partial^2 F_1}{\partial y \partial x} = \frac{\partial F_0}{\partial x} = f(x, y)$$

Analogamente consideremos la integral

$$\int_{A} \left[\int_{B} f(x, y) dy \right] dx$$

se tiene de acuerdo al teorema fundamental del cálculo que existe una primitiva F_0 tal que

$$\int_{B} f(x,y)dy = F_{0}(x,y) \longrightarrow \frac{\partial F_{0}}{\partial y} = f(x,y)$$

Ahora si consideramos la integral

$$\int_{A} F_0(x, y) dx$$

se tiene que existe una primitiva F_1 tal que

$$\int_{A} F_0(x, y) dx = F_1(x, y) \longrightarrow \frac{\partial F_1}{\partial x} = F_0(x, y)$$

si derivamos ambos lados de la igualdad con respecto de y llegamos a que

$$\frac{\partial F_1}{\partial x} = F_0(x, y) \longrightarrow \frac{\partial^2 F_1}{\partial x \partial y} = \frac{\partial F_0}{\partial y} = f(x, y)$$

Con ello queda demostrada la Proposición.∎