Chapter 2: Discrete Random Variables

2023 Oct 15

Nemo

Contents

1 Basic Comcepts	2
Definition 1: Random Variable	2
Definition 2: Discrete Random Variable	2
2 Probability Mass Function	2
Definition 3: Probability Mass Function	2
2.1 The Bernoulli Random Variable	2
2.2 The Binomial Random Variable	2
2.3 The Geometric Random Variable	2
2.4 The Poisson Random Variable	3
3 Function of Random Variables	3
4 Expectation, Mean, And Variance	3
Definition 4: Expectation	3
4.1 Variance, Moments, and Expected Value Rule	3
Definition 5: Moment	3
Definition 6: Variance	3
Theorem 1: Expceted Value Rule for Function of Random Variable	3
4.1.1 Properties of Mean and Variance	4
Theorem 2: Mean and Variance of a Linear Function of a Random Variable	4
4.1.2 Mean and variance of Some Common Random Variables	4
5 Joint PMFs of Multiple Random Variables	4
Definition 7: Joint PMF	4
5.1 Function of Multiple Random Variables	4
5.2 More Than Two Random Variables	4
6 Conditioning	5
6.1 Conditioning a Random Variable on an Event	5
Definition 8: Conditional PMF on an event	
6.2 Conditioning one Random Variable on Another	5
Definition 9: Conditional PMF on a ramdom variable	
6.3 Conditional Expcetation	
6.4 Independence	5
Definition 10: Independence from an Event	
Definition 11: Independence of Random Variables	

1 Basic Comcepts

In many probability models, the outcome are numerical. Then the outcome can be discribed using a *random variable*.

Definition 1: Random Variable

A random variable is a real-valued function of the experimental outcome.

A random variable is called discrete if its range is either finit or countably infinite. So furthermore,

Definition 2: Discrete Random Variable

A discrete random variable is a real-valued function of the outcome of the expression that can take a finit or countably infinite number of values.

2 Probability Mass Function

The most impartant way to characterize a random variable is through the probabilities of the values that it can take. For a *discrete random variable*, these are captured by the *probability mass function*.

Definition 3: Probability Mass Function

A discrete random variable has an associated probability mass function (PMF), which gives the probability of each numerical value that the random variable can take.

For a discrete random variable X, if x is any value that X can take, then the *probability mass* of x, denoted $p_X(x)$ is the probability of the event $\{X = x\}$. So, the PMF

$$p_X(x) = P(\{X=x\})$$

Note that $\sum_x p_X(x) = 1$

2.1 The Bernoulli Random Variable

A very simple variable that has only two possible outcomes: 1 and 0, which is

$$X = \begin{cases} 1, \text{ when } \dots \\ 0, \text{ when } \dots \end{cases}$$

Its PMF is

$$p_X(x) = \begin{cases} p, & \text{if } k = 1 \\ 1 - p, \text{if } k = 0 \end{cases}$$

2.2 The Binomial Random Variable

Think of tossing a coin n times.

$$p_X(k) = P(X = k) = \binom{n}{k} p^{k(1-p)^{n-k}}, \quad k = 0, 1, ..., n$$

2.3 The Geometric Random Variable

The geometric random variable is the number X of trails needed for the first success.

2.4 The Poisson Random Variable

A Poisson random variable has a PMF given by $p_X(k)=e^{-\lambda}\frac{\lambda^k}{k!}$, where λ is a positive parameter characterizing the PMF.

When the parameters of binomial PMF n is very big and p is very small, the Poisson PMF is a good approximation for a binomial PMF.

3 Function of Random Variables

From a random variable, one can generate other random variables by doing some transformations. Like Y = aX + b. More generally, we can derive a random variable Y = g(X) from the random variable X. And the PMF of $Y p_Y(y)$ can be calculated using the PMF of X:

$$p_Y(y) = \sum_{\{x \mid g(x) = y\}} p_X(x)$$

4 Expectation, Mean, And Variance

Definition 4: Expectation

We define the **expected** value (also called the **expectation** or the **mean**) of a random variable X, with PMF p_X , by

$$E[X] = \sum_x x p_X(x)$$

4.1 Variance, Moments, and Expected Value Rule

Besides the mean, there are several other quantities that we can associate with a random variable and its PMF.

Definition 5: Moment

The n^{th} moment of the random variable X is $E[X^n]$, the expected value of the variable X^n .

The most important quantity associated with a random variable X, other than the mean, is the variance, which is denoted by var(X).

Definition 6: Variance

The variance of a random variable X is $\operatorname{var}(X) = E\left[\left(X - E[X]\right)^2\right]$

The variance provides a measure of dispersion of X around its mean. Another measurement is through the **standard deviation** of X, which is the square root of the variance, denoted by $\sigma_X = \sqrt{\operatorname{var}(X)}$

Theorem 1: Expected Value Rule for Function of Random Variable

Let X be a random variable with PMF p_X , and let g(X) be a function of X. Then the expected value of the random variable g(X) in given by

$$E[g(X)] = \sum_x g(x) p_X(x).$$

3

So the $\mathrm{var}(X)$ can be calculated by $\sum_x \left(X - E[X]\right)^2 p_X(x) = E\big[X^2\big] - \left(E[X]\right)^2$

4.1.1 Properties of Mean and Variance

Using the expected value rule, we can derive some important properties of the mean and the variance. Starting with a random variable X, we define a random variable Y of the form Y = aX + b.

So the mean of the random variable is:

$$E[Y] = \sum_x (ax+b)p_X(x) = \sum_x axp_X(x) + \sum_x bp_X(x) = aE[X] + b$$

And the variance:

$$\operatorname{var}(Y) = \sum_{x} (Y - E[Y])^{2} p_{X}(x)$$

$$= \sum_{x} (ax + b - (aE[X] + b))^{2} p_{X}(x)$$

$$= \sum_{x} (ax - aE[x])^{2} p_{X}(x)$$

$$= a^{2} \operatorname{var}(X)$$

Theorem 2: Mean and Variance of a Linear Function of a Random Variable

Let *X* be a random variable and let Y = aX + b.

Then
$$E[Y] = aE[X] + b$$
, $var(Y) = a^2 var(X)$.

4.1.2 Mean and variance of Some Common Random Variables

Mean of poisson: $E[X] = \lambda$

5 Joint PMFs of Multiple Random Variables

Definition 7: Joint PMF

The *joint PMF* of X and Y is $p_{X,Y}(x,y) = P(\{X = x\} \cup \{Y = y\})$.

The joint PMF determines the porbability of any event that can be specified in term of the random variables X and Y. For example if A is the set of all paris (x,y) that have a certain property, then $P((X,Y)\in A)=\sum_{(x,y)\in A}p_{X,Y}(x,y)$, and $p_X=\sum_y p_{X,Y}(x,y)$, $p_Y=\sum_x p_{X,Y}(x,y)$. Sometimes we refer to p_X, p_Y as marginal PMFs

5.1 Function of Multiple Random Variables

Let g(X,Y) of the random variables X and Y defines another random variable Z=g(X,Y), so we have

$$p_Z(z) = \sum_{\{(x,y) \; | \; g(x,y) = z\}} p_{X,Y}(x,y)$$

$$E[g(X,Y)] = \sum_x \sum_y g(x,y) p_{X,Y}(x,y)$$

5.2 More Than Two Random Variables

Similiar to section before, skipping...

Mean of the Binomial We know the binomial random variable X is the number of "success" in a repeated independent trails, calculate the mean of the variable.

Method 1: By definition

We know the PMF of the Binomial random variable, $p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$, so the mean should be $E[X] = \sum_x x p_X(x)$ which is a huge amount of calculation (there is a tricky way through, not covered here. Hint: using the sum of PMF = 1).

Method 2: Using combination of Bernoulli random variable

The Binomial random variable can be seen as the combination of Bernoulli random variables: $X = X_1 + X_2 + X_3 + \ldots + X_n$, so it's obvious that $E[X] = E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i] = np$

6 Conditioning

6.1 Conditioning a Random Variable on an Event

Definition 8: Conditional PMF on an event

The conditional PMF of a random variable X, conditioned on a particular event A with P(A) > 0, is defined by

$$p_{X \mid A}(X) = P(X = x \mid A) = \frac{P(\{X = x\} \mid A)}{P(A)}$$

6.2 Conditioning one Random Variable on Another

Definition 9: Conditional PMF on a ramdom variable

Let X and Y be two random variables associated with the same experiment. The conditional PMF $p_{X\mid Y}(x\mid y)=\frac{P(X=x,Y=y)}{P(Y=y)}=\frac{p_{X,Y}(x,y)}{p_Y(y)}$

It is just an new notation which con be considered as $p_{X \mid A}(x)$ where A is the event Y = y.

6.3 Conditional Expectation

Similiar to normal expcetion...

6.4 Independence

Definition 10: Independence from an Event

We say that a random variable X is independent of the event A if

$$P(X = x \text{ and } A) = P(X = x)P(A) = p_X(x)P(A), \text{ for all } x$$

Definition 11: Independence of Random Variables

We say two random variables X and Y are independent if

$$p_{X,Y} = p_X(x)p_Y(y), \quad \text{for all } x,y$$