MATH-UA 329: Homework 2

James Pagan, February 2024

Professor Güntürk

Contents

1	Problem 1	2
	1.1 Part (a)	2
	1.2 Part (b)	2
	1.3 Part (c)	3
2	Problem 2	3
	2.1 Part (b)	5
3	Problem 3	5
	3.1 Part (a)	5
	3.2 Part (b)	6
4	Problem 4	6
	4.1 Part (a)	6
	4.2 Part (b)	7
	4.3 Part (c)	7
5	Problem 5	8
	5.1 Part (a)	8
	5.2 Part (b)	8

1 Problem 1

1.1 Part (a)

Proof. Define $x_1, x_2 \in I$ such that $|x_1 - x_2| \le t_1 + t_2$ and $|f(x_1) - f(x_2)| = \omega_f(t_1 + t_2)$. We will demonstrate that $|f(x_1) - f(x_2)| \le \omega_f(t_1) + \omega_f(t_2)$.

Let $z = x_1 \left(\frac{t_2}{t_1 + t_2}\right) + x_2 \left(\frac{t_1}{t_1 + t_2}\right)$. It is clear that z lies between x_1 and x_2 , so it is an element of I. Then

$$|x_1 - z| = \left| -x_1 \left(\frac{t_1}{t_1 + t_2} \right) - x_2 \left(\frac{t_1}{t_1 + t_2} \right) \right| = \frac{t_1}{t_1 + t_2} |x_1 - x_2| = t_1.$$

Similarly, we have that

$$|x_2 - z| = \left| x_1 \left(\frac{t_2}{t_1 + t_2} \right) + x_2 \left(\frac{t_2}{t_1 + t_2} \right) \right| = \frac{t_2}{t_1 + t_2} |x_1 - x_2| = t_2.$$

This enables us to use the moduli of continuity, $\omega_f(t_1)$ and $\omega_f(t_2)$:

$$\omega_f(t_1 + t_2) = |f(x_1) - f(x)_2|$$

$$\leq |f(x_1) - f(z)| + |f(x_2) - z|$$

$$\leq \sup_{|y,z| \leq t_1} |f(y) - f(z)| + \sup_{|y,z| \leq t_2} |f(y) - f(z)|$$

$$= \omega_f(t_1) + \omega_f(t_2).$$

1.2 Part (b)

Proof. The result from Part (a) ensures that $\omega_f(t_1) \leq \omega_f(t_2) + \omega_f(t_2 - t_1)$; thus we have that $\omega_f(t_1) - \omega_f(t_2) \leq \omega_f(t_1 - t_2)$. Hence we have that

$$\omega_{\omega_f}(t) = \sup_{|x_1 - x_2| \le t} |\omega_f(x_1) - \omega_f(x_2)|$$

$$\le \sup_{|x_1 - x_2| \le t} |\omega_f(x_1 - x_2)|.$$

Since $\omega_f(t)$ is a strictly increasing function, the right-hand side is equal to $\omega_f(t)$. This concludes the proof.

1.3 Part (c)

Proof. It is clear that from the result of Part (a) that for all $t \geq 0$ and integers n > 0, we have

$$\omega_f(nt) = \omega_f\left(\sum_{i=1}^n t\right) \le \sum_{i=1}^n \omega_f(t) = n\omega_f(t).$$

If I = (a, b), let |I| = b - a. It is trivial that $t \ge |I|$ implies $\omega_f(|I|)$; thus we need only concern ourselves with $t \le |I|$. We have two cases:

Case 1: If $|I| \leq t$, we have that

$$\omega_f(t) \ge \left(\frac{t}{|I|}\right) \omega_f(t) \ge t \left(\frac{\omega_f|I|}{|I|}\right) \ge t \left(\frac{\omega_f(|I|/2)}{|I|}\right).$$

Case 2: If |I| > t, there exists an integer n between |I| / (2t) and |I| / t; thus

$$\omega_f(t) \geq \frac{n}{|I|/t} \omega_f(t) \geq \frac{t}{|I|} \omega_f(nt) \geq t \left(\frac{\omega_f(|I|/2)}{|I|} \right).$$

Combining these cases, we attain the theorem if we set $c = \frac{\omega_f(|I|)/2}{|I|}$.

2 Problem 2

Proof. We will use algebra, as unenlightening as this may be. We have that

$$\sum_{k=0}^{n} (nx - k)^{2} P_{n,k}(x) = n^{2} x^{2} \sum_{k=0}^{n} P_{n,k}(x) - 2nx \sum_{k=0}^{n} k P_{n,k}(x) + \sum_{k=0}^{n} k^{2} P_{n,k}(x)$$
$$= n^{2} x^{2} - 2nx \sum_{k=0}^{n} k P_{n,k}(x) + \sum_{k=0}^{n} k^{2} P_{n,k}(x)$$

Our task is to simply these summations. We have

$$\sum_{k=0}^{n} k P_{n,k}(x) = \sum_{k=0}^{n} k \left(\frac{n!}{k!(n-k)!} \right) x^{k} (1-x)^{n-k}$$

$$= nx \sum_{k=1}^{n} {n-1 \choose k-1} x^{k-1} (1-x)^{(n-1)-(k-1)}$$

$$= nx \sum_{k=0}^{n-1} {n-1 \choose k} x^{k} (1-x)^{(n-1)-k}$$

$$= nx (x + (1-x))^{n-1}$$

$$= nx,$$

For the summation k^2 , we find it is easier to work with k(k-1) due to the factorial:

$$\sum_{k=0}^{n} k^{2} P_{n,k}(x) = \sum_{k=0}^{n} k P_{n,k}(x) + \sum_{k=0}^{n} k(k-1) P_{n,k}(x)$$

$$= nx + \sum_{k=0}^{n} k(k-1) P_{n,k}(x)$$

$$= nx + \sum_{k=0}^{n} k(k-1) \left(\frac{n!}{k!(n-k)!}\right) x^{k} (1-x)^{n-k}$$

$$= nx + n(n-1)x^{2} \sum_{k=2}^{n} \binom{n-2}{k-2} x^{k-2} (1-x)^{(n-2)-(k-2)}$$

$$= nx + n(n-1)x^{2} \sum_{k=0}^{n-2} \binom{n-2}{k} x^{k} (1-x)^{(n-2)-k}$$

$$= nx + n(n-1)x^{2} (x + (1-x))^{n-2}$$

$$= nx + n(n-1)x^{2}.$$

We are ready to return to our original series: we have that

$$\sum_{k=0}^{n} (nx - k)^{2} P_{n,k}(x) = n^{2} x^{2} - 2nx(nx) + (nx + n(n-1)x^{2})$$

$$= n^{2} x^{2} - 2n^{2} x^{2} + nx + n^{2} x^{2} - nx^{2}$$

$$= nx - nx^{2}$$

$$= nx(1 - x),$$

completing the proof.

2.1 Part (b)

Proof. Let f(x) = ax + b be a linear function. Then

$$B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

$$= \sum_{k=0}^n \left(a\left(\frac{k}{n}\right) + b\right) P_{n,k}(x)$$

$$= \frac{a}{n} \sum_{k=0}^n k P_{n,k}(x) + b \sum_{k=0}^n P_{n,k}(x)$$

$$= \frac{a}{n} (nx) + b(1) = ax + b = f(x).$$

The story for quadratics is more complex: if we let $f(x) = ax^2 + bx + c$, we attain that

$$B_n(f)(x) = \sum_{k=0}^n \left(a \left(\frac{k}{n} \right)^2 + b \left(\frac{k}{n} \right) + c \right) \binom{n}{k} x^k (1 - x)^{n-k}$$

$$= \frac{a}{n^2} \sum_{k=0}^n k^2 P_{n,k}(x) + bx + c$$

$$= \frac{a}{n^2} \left(nx + n(n-1)x^2 \right) + bx + c$$

$$= \frac{a(n-1)}{n} x^2 + \frac{a+bn}{n} x + c.$$

We are ready to bound the difference between $B_n(f)(x)$ and f(x): since $x \in [0,1]$,

$$|f(x) - B_n(f)(x)| = \frac{a}{n}x - \frac{a}{n}x^2 \le \frac{a}{n}\left(\frac{1}{2}\right) - \frac{a}{n}\left(\frac{1}{2}\right)^2 = \frac{a}{4n}.$$

Setting $C = \frac{a}{4}$ completes the proof.

3 Problem 3

3.1 Part (a)

Proof. We must perform three routine calculations: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

1. **Positivity**: Clearly $\|\mathbf{x}\|_{\mathbf{A}} = \|\mathbf{A}\mathbf{x}\| \ge 0$. The equality condition is as follows:

$$\left\| \mathbf{x} \right\|_{A} = \mathbf{0} \iff A\mathbf{x} = \mathbf{0} \iff \mathbf{x} \in \operatorname{null} A \iff \mathbf{x} = \mathbf{0}.$$

2. Homogeneity: For all $\lambda \in \mathbb{C}$, we have that

$$\|\lambda\mathbf{x}\|_{\mathbf{A}} = \|\mathbf{A}(\lambda\mathbf{x})\| = \|\lambda(\mathbf{A}\mathbf{x})\| = |\lambda|\|\mathbf{A}\mathbf{x}\| = |\lambda|\|\mathbf{x}\|_{\mathbf{A}}$$

3. Triangle Inequality: We have that

$$\|\mathbf{x} + \mathbf{y}\|_{\mathbf{A}} = \|\mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{y}\| \le \|\mathbf{A}\mathbf{x}\| + \|\mathbf{A}\mathbf{y}\| = \|\mathbf{x}\|_{\mathbf{A}} + \|\mathbf{y}\|_{\mathbf{A}}.$$

Thus, $\|\cdot\|_{\mathbf{A}}$ defines a norm on \mathbb{R}^d . If **A** is not invertible, this norm fails to satisfy the positivity condition — namely, we have $\|\mathbf{x}\|_{\mathbf{A}} = \mathbf{0}$ for all nonzero vectors $\mathbf{x} \in \text{null } \mathbf{A}$.

3.2 Part (b)

Proof. We must perform three rather routine calculations: for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

1. Positivity: Clearly $\|\mathbf{x}\|'_{\mathbf{A}} = \|\mathbf{x}\| + \|\mathbf{A}\mathbf{x}\| \ge 0$. The equality condition is as follows:

$$\|x\|_{_{\boldsymbol{A}}}'=0\iff \|x\|+\|Ax\|=0\iff \|x\|=0\iff x=0.$$

2. Homogeneity: For all $\lambda \in \mathbb{C}$, we have that

$$\|\lambda \mathbf{x}\|_{\mathbf{A}}' = \|\lambda \mathbf{x}\| + \|\mathbf{A}(\lambda \mathbf{x})\| = |\lambda| \|\mathbf{x}\| + |\lambda| \|\mathbf{A}\mathbf{x}\| = |\lambda| \|\mathbf{x}\|_{\mathbf{A}}'.$$

3. Triangle Inequality: We have that

$$||\mathbf{x} + \mathbf{y}||_{\mathbf{A}}' = ||\mathbf{x} + \mathbf{y}|| + ||\mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{y}||$$

$$\leq ||\mathbf{x}|| + ||\mathbf{y}|| + ||\mathbf{A}\mathbf{x}|| + ||\mathbf{A}\mathbf{y}||$$

$$= ||\mathbf{x}||_{\mathbf{A}}' + ||\mathbf{y}||_{\mathbf{A}}'.$$

We deduce that $\|\cdot\|'_{\mathbf{A}}$ is a norm on \mathbb{R}^d .

4 Problem 4

4.1 Part (a)

Let $B_{1/2}(x_1), \ldots, B_{1/2}(x_n)$ be a collection of open balls which cover B; without loss of generality, we may assume $x_1, \ldots, x_n \in B$. Let

$$x_i = (y_{1i}, y_{2i}, \ldots),$$

and define k_i as the unique integer such that $n_{k_i i} = \max\{y_{ji} \mid j \in \mathbb{N}\}$. Any point in B must have finitely many entries equal to or greater than $\frac{1}{2}$; thus there exists an integer m such that for each x_i , the entry y_{mi} is less than one-half. Hence

$$\max\{y_{mi} \mid i \in \{1, \dots, n\}\} + \frac{1}{2} < 1.$$

Thus the point in B with m-th coordinate equal to the above real number — and all other coordinates equal to 0 — lies in B and has ℓ_{∞} norm greater than one-half. It thus lies outside the open balls $B_{1/2}(x_1), \ldots, B_{1/2}(x_n)$.

We conclude that no finite collection of open balls of radius $\frac{1}{2}$ can cover B.

4.2 Part (b)

Observe that the sequence (u_1^m) is bounded by 0 and 1. The Bolzano-Weierstrauss Theorem ensures it contains a convergent subsequence: denote it by (u_1^m) . We may now utilize a contradiction argument:

Suppose for contradiction that no such subsequence of (u^m) exists. Then there exists a minimum integer n > 1 such that the sequence (u_n^m) does not contain a convergent subsequence.

By minimality, (u^m) contains a subsequence that converges pointwise for each components $1, \ldots, n-1$: denote this subsequence by (u^{m_k}) . Since the sequence (u^{m_k}) is bounded by 0, and 1, the Bolzano-Weierstrauss Theorem ensures that some infinite subsequence of (u^{m_k}) converges pointwise for component n— a contradiction.

We conclude that there exists a sequence (u^m) which converges pointwise for each component.

4.3 Part (c)

Set One: This set is compact. Given a sequence $(x^n) \in x$, it is easy to establish that it it contains a convergent subsequence; mirroring the argument in Part (b), we find through iterative Bolzano-Weierstrauss application that convergence of later entries is ensured by the convergence of each x^n itself (in the sense of its components) to zero.

Set Two: This set is not compact, since it contains the set

$$(e_n^m) = (\delta_{m,n}, n \in \mathbb{N}),$$

which clearly contains no convergent subsequence.

5 Problem 5

5.1 Part (a)

Proof. Utilizing the properties of the inner product, we have that

$$\|\mathbf{v} + \mathbf{w}\|^{2} + \|\mathbf{v} - \mathbf{w}\|^{2} = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle + \langle \mathbf{v} - \mathbf{w}, \mathbf{v} - \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$+ \langle \mathbf{v}, \mathbf{v} \rangle - \langle \mathbf{v}, \mathbf{w} \rangle - \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= 2 \langle \mathbf{v}, \mathbf{v} \rangle + 2 \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= 2 \|\mathbf{v}\|^{2} + 2 \|\mathbf{w}\|^{2},$$

as required. Geometrically, this corresponds to a famous theorem — that for any parallelogram, the sums of the squares of its sides equals the sums of the squares of its diagonals. \Box

5.2 Part (b)

We first tackle \mathbb{R}^2 , examining the 2-vectors $\mathbf{x} = (2,0)$ and $\mathbf{y} = (0,1)$ under the *p*-norm $\|\cdot\|_p$: if we denote the 2-norm by $\|\cdot\|$, we have that

$$2\|\mathbf{x}\|_{p} + 2\|\mathbf{y}\|_{p} = 6 = \|\mathbf{x} + \mathbf{y}\|^{2} + \|\mathbf{x} - \mathbf{y}\|^{2} > \|\mathbf{x} - \mathbf{y}\|_{p}^{2} + \|\mathbf{x} - \mathbf{y}\|_{p}^{2}.$$
 (1)

The observation that the *p*-norm is strictly decreasing on the interval $(1, \infty)$ follows from the Power Mean Inequality (and noting that the components of neither $\mathbf{x} + \mathbf{y}$ nor $\mathbf{x} - \mathbf{y}$ are equal).

If we suppose for contradiction that an inner product on \mathbb{R}^2 induced a norm equal to the p-norm, the vectors \mathbf{x} and \mathbf{y} would violate the Parallelogram Equality. Hence this is not possible.

The cases \mathbb{R}^n for n > 2 and $\ell^0(\mathbb{N})$ are corollaries of this result — if an inner product on them yielded a p-norm, the fact \mathbb{R}^2 is a subspace would yield an inner-product-induced p-norm on \mathbb{R}^2 . This yields a desired contradiction.