Duality, Sensitivity, KKT Computational Intelligence, Lecture 13

by Sergei Savin

Spring 2025

CONTENT

- Lagrange dual function
- Duality gap, strong and weak duality
- KKT conditions
- Sensitivity

LAGRANGIAN

Consider an optimization problem:

minimize
$$f_0(\mathbf{x})$$
,
subject to
$$\begin{cases} f_i(\mathbf{x}) \le 0, \\ h_j(\mathbf{x}) = 0. \end{cases}$$
 (1)

It's *Lagrangian* is given as:

$$L(\mathbf{x}, \lambda_i, \nu_j) = f_0(\mathbf{x}) + \sum_i \lambda_i f_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x})$$
 (2)

where λ_i and ν_j are Lagrange multipliers; they are sometimes called dual variables.

LAGRANGE DUAL FUNCTION

Given Lagrangian $L(\mathbf{x}, \lambda_i, \nu_j) = f_0(\mathbf{x}) + \sum_i \lambda_i f_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}),$ the associated Lagrange dual function is given as:

$$g(\lambda_i, \nu_j) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda_i, \nu_j).$$
 (3)

Lagrange dual function is **always concave**. If p^* is the optimal value of the cost function of the original problem, then $g(\lambda_i, \nu_j)$ gives as a *lower bound* on its possible values.

In fact, substituting any ν_j and $\lambda_i > 0$ gives us a valid lower bound on the cost. Maximum of $g(\lambda_i, \nu_j)$ over the domain given by $\lambda_i > 0$ provides us optimal (largest) lower bound of the problem, denoted as g^* .

DUALITY GAP, STRONG AND WEAK DUALITY

If p^* is the optimal value of the cost function of the original problem and g^* is the optimal lower bound of the problem, then $p^* - q^*$ is called optimal duality qap.

If optimal duality gap is zero, the problem is said to have *strong duality*. If optimal duality gap greater than zero, the problem is said to have *weak duality*.

Lagrange dual function for a QP, 1

Consider the following QP:

minimize
$$\mathbf{x}^{\top} \mathbf{H} \mathbf{x}$$
, subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}$. (4)

Its Lagrangian is:

$$L(\mathbf{x}, \lambda) = \mathbf{x}^{\top} \mathbf{H} \mathbf{x} + \lambda^{\top} (\mathbf{A} \mathbf{x} - \mathbf{b})$$
 (5)

In order to minimize the Lagrangian with respect to \mathbf{x} we find the gradient and set it to zero:

$$\frac{\partial L(\mathbf{x}, \lambda)}{\partial \mathbf{x}} = 2\mathbf{x}^{\top} \mathbf{H} + \lambda^{\top} \mathbf{A} = 0$$
 (6)

With that we can compute \mathbf{x} as a function of λ :

$$\mathbf{x} = -0.5\mathbf{H}^{-1}\mathbf{A}^{\mathsf{T}}\lambda\tag{7}$$

LAGRANGE DUAL FUNCTION FOR A QP, 2

Knowing that $\mathbf{x} = -0.5\mathbf{H}^{-1}\mathbf{A}^{\top}\lambda$ we can compute $g(\lambda)$ by substituting the \mathbf{x} we found into the Lagrangian:

$$g(\lambda) = \frac{1}{4} \lambda^{\top} \mathbf{A} \mathbf{H}^{-1} \mathbf{H} \mathbf{H}^{-1} \mathbf{A}^{\top} \lambda - \frac{1}{2} \lambda^{\top} \mathbf{A} \mathbf{H}^{-1} \mathbf{A}^{\top} \lambda - \lambda^{\top} \mathbf{b}$$
(8)

$$g(\lambda) = -\frac{1}{4}\lambda^{\top} \mathbf{A} \mathbf{H}^{-1} \mathbf{A}^{\top} \lambda - \lambda^{\top} \mathbf{b}$$
 (9)

In order to find the optimal lower bound we solve the following problem:

maximize
$$-\frac{1}{4}\lambda^{\top} \mathbf{A} \mathbf{H}^{-1} \mathbf{A}^{\top} \lambda - \lambda^{\top} \mathbf{b},$$

subject to $\lambda \ge 0.$ (10)

Solution of this problem is the solution of the original problem.

KKT CONDITIONS

Karush-Kuhn-Tucker (KKT) conditions certify optimality of an optimization problem:

minimize
$$f_0(\mathbf{x})$$
,
subject to
$$\begin{cases} f_i(\mathbf{x}) \le 0, \\ h_j(\mathbf{x}) = 0. \end{cases}$$
(11)

- Primal feasibility: $f_i(\mathbf{x}) \leq 0$ and $h_j(\mathbf{x}) = 0$.
- ② Dual feasibility: $\lambda_i \geq 0$.
- **3** Complementarity slackness: $\lambda_i f_i(\mathbf{x}) = 0$.
- 4 Lagrangian stationarity:

$$\frac{\partial}{\partial \mathbf{x}} \left(f_0(\mathbf{x}) + \sum_i \lambda_i f_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \right) = 0.$$

Sensitivity, 1

Optimal values of Lagrange variables λ determine local sensitivity of the system with respect to small perturbations of constraints.

Consider perturbed optimization problem:

minimize
$$f_0(\mathbf{x})$$
,
subject to
$$\begin{cases} f_i(\mathbf{x}) \le u_i, \\ h_j(\mathbf{x}) = v_j. \end{cases}$$
(12)

where u_i and v_j - perturbations of the constraints. Let $p(\mathbf{u}, \mathbf{v})$ be optimal value of the cost function for given values of u_i and v_j . Then p(0,0) is the optimal value of the unperturbed problem.

SENSITIVITY, 2

Sensitivity of the optimal value of the cost function to the constraint perturbation is given as:

$$\left. \frac{\partial p(\mathbf{u}, \mathbf{v})}{\partial \mathbf{u}} \right|_{\mathbf{u} = 0, \mathbf{v} = 0} = -\lambda^*; \tag{13}$$

$$\left. \frac{\partial p(\mathbf{u}, \mathbf{v})}{\partial \mathbf{v}} \right|_{\mathbf{u} = 0, \mathbf{v} = 0} = -\nu^*. \tag{14}$$

Thus, analysing values of lagrange variables allows us to assess local sensitivity to constraint perturbation.

READ MORE

- Convex Optimization, Lecture 12: KKT conditions, Ryan Tibshirani.
- EE 227A: Convex Optimization and Applications, Lecture 13: Optimality Conditions for Convex Problems, Laurent El Ghaoui.
- The Karush-Kuhn-Tucker (KKT) Conditions (video). Visually Explained.

Lecture slides are available via Github, links are on Moodle:

github.com/SergeiSa/Computational-Intelligence-2025

