I) Alapok

- 1. Melyik SI-mértékegységre vonatkozó állítás **HELYTELEN**?
- a. A tömeg SI-alapegysége a gramm.
- b. A távolság SI-alapegysége a méter.
- c. Az idő SI-alapegysége a másodperc.
- d. A térfogat SI-alapegysége a köbméter.
- e. Az anyagmennyiség SI-alapegysége a mól.
- 2. 'Kémiai reakciókban a teljes tömeg nem változik.' Minek a megfogalmazása ez?
- a) tömegmegmaradás törvénye
- b) állandó súlyviszonyok törvénye
- c) többszörös súlyviszonyok törvénye
- d) vegyülő gázok térfogati törvénye
- e) Avogadro törvénye
- 3. A kalcium-karbonát nevű vegyület 40 %-a kalcium, 12 %-a szén és 48 %-a oxigen. Melyik törvényt illusztrálja ez a tény?
- a. állandó súlyviszonyok
- b. tömegmegmaradás
- c. energiamegmaradás
- d. többszörös súlyviszonyok
- e. töltésmegmaradás
- 4. A felsoroltak közül melyik mennyiség **NEM** SI egységgel együtt van megadva?
- a. Távolság méterben kifejezve.
- b. Energia kalóriában kifejezve.
- c. Idő másodpercben kifejezve.
- d. Tömeg kilogrammban kifejezve.
- e. Hőmérséklet kelvinben kifejezve.
- 5. A víz mindig 89 tömeg% oxigént és 11 tömeg% hidrogént tartalmaz. Melyik törvényt példázza ez a tény?
- a. anyagmegmaradás
- b. energiamegmaradás
- c. többszörös súlyviszonyok
- d. állandó súlyviszonyok
- e. tömegmegmaradás

- 6. Melyik sorozatot lehetne a többszörös súlyviszonyok törvényének bemutatására használni?
- a. Li_2O , Na_2O , K_2O
- b. KCl, CaCl₂, ScCl₃
- c. O, O_2, O_3
- d. BrF, BrF_3 , BrF_5
- 7. 'Az anyagok összesített tömege kémiai és fizikai folyamatokban változatlan marad.' Melyik törvény megfogalmazása ez?
- a. Állandó súlyviszonok törvénye.
- b. A kémiai reaktivitás törvénye.
- c. Az anyagmegmaradás törvénye.
- d. Többszörös súlyviszonyok törvénye.
- e. A töltésmegmaradás törvénye.
- 8. Melyik az állandó súlyviszonyok törvénye?
- a. Azonos elemeket tartalmazó, de különböző összetételű vegyületekben az összetevők aránya mindig kifejezhető kis egész számok arányával.
- b. Egy vegyületben az alkotórészek súlyaránya mindig ugyanaz, bárhol, bármikor és bármilyen körülmények között is keletkezett a vegyület.
- c. Azonos nyomáson és hőmérsékleten a vegyülő gázok térfogatarányai egész számokkal adhatók meg.
- d. Azonos hőmérséklet és nyomás mellett gázok azonos térfogataiban a részecskék száma azonos.
- e. Az elemek a reakciókörülményektől függően bármilyen arányban vegyületeket alkothatnak.
- 9. Melyik a többszörös súlyviszonyok törvénye?
- a. Azonos elemeket tartalmazó, de különböző összetételű vegyületekben az összetevők aránya mindig kifejezhető kis egész számok arányával.
- b. Egy vegyületben az alkotórészek súlyaránya mindig ugyanaz, bárhol, bármikor és bármilyen körülmények között is keletkezett a vegyület.
- c. Azonos nyomáson és hőmérsékleten a vegyülő gázok térfogatarányai egész számokkal adhatók meg.
- d. Azonos hőmérséklet és nyomás mellett gázok azonos térfogataiban a részecskék száma azonos.
- e. Az elemek a reakciókörülményektől függően bármilyen arányban vegyületeket alkothatnak.
- 10. Melyik állítás nem szerepel Dalton atomelméletében?

- a. Az elemek kicsiny, atomnak nevezett részecskékből állnak.
- b. Az atomokat csak nukleáris reakciókkal lehet egyszerűbb anyagokra bontani.
- c. Minden elem atomjainak jellemző tömege van. Azonos elemek atomjainak tömege azonos, különbözőké különböző.
- d. Új anyagok képződése során az atomok a kis egész számok arányában vegyülnek.
- e. A kémiai reakciókban csak az atomok közötti kötések rendeződnek át, maguk az atomok változatlanok maradnak.
- 11. Ki vezette be a vegyjeleket a kémiában?
- a. Antoine Laurent Lavoisier
- b. Hevesy György
- c. John Dalton
- d. Jöns Jakob Berzelius
- e. Dmitrij Ivanovics Mengyelejev
- 12. Melyik nem az egyik alapelem Arisztotelész szerint?
- a. föld
- b. levegő
- c. vas
- d. víz
- e. tűz
- 13. Melyik a legkisebb mértékegységeknél használt előtag?
- a. $mikro(\square)$
- b. deci (d)
- c. milli (m)
- d. hekto (h)
- e. kilo (k)
- 14. Melyik NEM SI alapmennyiség?
- a. hőmérséklet

b. elektromos vezetőképesség

- c. elektromos áramerősség
- d. idő
- e. anyagmennyiség
- 15. Melyik állítás IGAZ?
- a. Az alkímisták fő célja a gyógyszer és méregkészítés volt.
- b. A bölcsek kövéről azt gondolták, hogy minden folyadékot borrá változtat.

c. A flogisztonelmélet szerint minden éghető anyagból flogiszton szabadul fel az égés során.

- d. Antoine Laurent Lavoisier nevezte el az oxigén, a hidrogén és a foszfor elemeket.
- e. Nicholas Flamel alkimista a Harry Potter regények kitalált szereplője.
- 16. Mi fűződik Robert Boyle nevéhez?
- a) a flogisztonelmélet kidolgozása
- b) a flogisztonelmélet megdöntése
- c) a jatrokémia megalapítása

d) A kétkedő kémikus (The Sceptical Chemist) című könyv megírása és a kémiai elem definiálása

- e) a többszörös súlyviszonyok törvényének megfogalmazása
- 17. Miből állított elő Hennig Brand foszfort?
- a) Vérből
- b) Izzadságból
- c) Könnyből
- d) Vizeletből
- e) Anyatejből
- 18. A felsorolt átváltások közül melyik helytelen?
- a) $1 \text{ kilogramm} = 10^4 \text{ decigramm}$
- b) $1 \text{ nanogramm} = 10^3 \text{ mikrogramm}$
- c) 1 mikroliter = 10^{-6} liter
- d) $1 \text{ kilogramm} = 10^6 \text{ milligramm}$
- e) 100 centiméter = 1 méter
- 19. Melyik pontban vannak a prefixumok növekvő sorrendbe állítva?
- a) nano, milli, mikro
- b) deci, mega, kilo
- c) deci, mikro, kilo
- d) mikro, deci, centi
- e) nano, milli, centi
- 20. Melyik univerzális állandó szokásos mértékegysége mol⁻¹?
- a) Planck-állandó
- b) gázállandó
- c) Faraday-állandó
- d) fénysebesség
- e) Avogadro-állandó

- 21. Melyik univerzális állandó szokásos mértékegysége C mol⁻¹?
- a) Planck-állandó
- b) gázállandó
- c) Faraday-állandó
- d) fénysebesség
- e) Avogadro-állandó
- 22. Melyik univerzális állandó szokásos mértékegysége J mol⁻¹ K⁻¹?
- a) Planck-állandó
- b) gázállandó
- c) Faraday-állandó
- d) fénysebesség
- e) Avogadro-állandó
- 23. Melyik állítás hamis?
- a) az üveggyártás, az ecetkészítés és a szappanfőzés alapjait több ezer éve rakták le
- b) az 'atomos' görög szó oszthatatlant jelent
- c) Arisztotelész őselemeinek definíciói egészen jól megfeleltethetők a mai, klasszikus halmazállapotoknak
- d) a jatrokémia Amerika felfedezése (1492) után terjedt el Európában
- e) a flogisztonelmélet alkalmatlan a szilárd fém-oxidok képződését kísérő tömegnövekedés értelmezésére
- 24. Az alkimisták szerint mit lehetett megvalósítani a "bölcsek kövével"?
- a) vizet lehetett átalakítani tűzzé
- b) vasat lehetett átalakítani higannyá
- c) ólmot lehetett átalakítani ezüstté
- d) ként lehetett átalakítani oxigénné
- e) fémeket lehetett átalakítani arannyá
- 25. Mikorra tehető az arisztotelészi őselemek elméletének elvetése?
- a) XVI. sz. (Paracelsus munkái)
- b) XVII. sz. (Robert Boyle: A kétkedő kémikus c. műve)
- c) XVIII. sz. (Cavendish és Lavoisier eredményei
- d) XIX-XX. századforduló (radioaktivitás felfedezése)
- e) XX. sz. (Manhattan-projekt)
- 26. Kit neveznek a toxikológia atyjának?
- a) Roger Bacon

- b) Tycho Brahe
- c) Paracelsus
- d) Hennig Brand
- e) Sir Isaac Newton
- 27. Mely jelenség/folyamat leírására dolgozták a flogisztonelméletet?
- a) sejtlégzés
- b) égés
- c) festékkészítés
- d) balzsamozás
- e) sörkészítés
- 28. Mely kémiai elem kapta a nevét a nyelvújítás korában (1825-1845)?
- a) antimon
- b) réz
- c) vas
- d) higany
- e) oxigén
- 29. Az alábbiak közül melyik elem ismert már évezredek óta?
- a) hélium
- b) rádium
- c) vas
- d) oxigén
- e) foszfor

II) Periódusos rendszer, kémiai kötések

- 1. A felsorolt állítások közül melyik **HIBÁS**?
- a) Az elemek sok tulajdonsága a protonszám periodikus függvénye.
- b) A periódusos törvényt Mengyelejev a XIX. század második felében ismerte fel.
- c) Mengyelejev az atomtömegek (atomsúlyok) szerint rakta sorba az elemeket és néhány esetben szándékosan a nagyobb tömegűt sorolta előrébb.
- d) Mengyelejev idejében az összes nem radioaktív elem ismert volt.
- e) Mengyelejev több, akkor még ismeretlen elem kémiai és fizikai sajátságait is megjósolta.
- 2. A felsorolt állítások közül melyik **HIBÁS**?
- a) Mengyelejev a függőleges oszlopokat csoportnak nevezte.
- b) Mengyelejev a vízszintes sorokat periódusnak nevezte el.

c) Mengyelejev a periódusos rendszerének megalkotáskor még nem ismerhette pontosan, hogy mi a periodicitás magyarázata.

d) A vízszintes sorokban lévő elemek tulajdonságai nagyon hasonlóak.

- e) Nem Mengyelejev volt az első, aki néhány elem tulajdonságaiban nagyfokú kémiai hasonlóságot fedezett volt (pl: triádok).
- 3. Mi igaz egy 1 kg tömegű, 1 m/s sebességgel mozgó test hullámhosszára?
- a) Nagyjából megegyezik a test méretével.
- b) Nagyjából megegyezik az atomokban lévő elektronok hullámhosszával.
- c) Az atomi méretekhez képest nagy.
- d) Bármilyen értelmes mérethez képest elenyészően kicsi.
- 4. A de Broglie-egyenlet szerint az atommag körül mozgó elektron hullámhossza...
- a) a csillagok átmérőjétől is sokkal nagyobb.
- b) nagyjából megegyezik az atom méretével.
- c) az atomi méretekhez viszonyítva nagyon nagy.
- d) bármilyen értelmes mérethez képest elenyészően kicsi.
- 5. Az elektromágneses sugárzásra vonatkozó, felsorolt állítások közül melyik igaz?
- a) A hullámhossz növekedésével a frekvencia csökken.
- b) Az energia növekedésével a frekvencia csökken.
- c) A hullámhossz növekedésével az energia nő.
- d) A hullámhossz és a frekvencia hányadosa állandó.
- 6. Melyik állítás jellemző a Thomson-féle atommodellre?
- a) nagyon kicsi térrészre koncentrálódó atommag körül keringenek az elektronok, mint a bolygók a nap körül
- az atom pozitív töltéssel rendelkező tömör golyó, melyben az elektronok lazán beágyazva helyezkednek el
- c) atommag körül mozgó elektron leírása a kvantummechanika statisztikus megközelítéseivel történik
- d) fényelnyelés vagy fotonkibocsátás két stacionárius energiaállapot közötti átmenet eredménye
- 7. Melyik állítás jellemző a Rutherford-féle atommodellre?
- a) nagyon kicsi térrészre koncentrálódó atommag körül keringenek az elektronok, mint a bolygók a nap körül
- b) az atom pozitív töltéssel rendelkező tömör golyó, melyben az elektronok lazán beágyazva helyezkednek el

- c) atommag körül mozgó elektron leírása a kvantummechanika statisztikus megközelítéseivel történik
- d) fényelnyelés vagy fotonkibocsátás két stacionárius energiaállapot közötti átmenet eredménye
- 8. Melyik állítás jellemző a Bohr-féle atommodellre?
- a) nagyon kicsi térrészre koncentrálódó atommag körül keringenek az elektronok, mint a bolygók a nap körül
- b) az atom pozitív töltéssel rendelkező tömör golyó, melyben az elektronok lazán beágyazva helyezkednek el
- c) atommag körül mozgó elektron leírása a kvantummechanika statisztikus megközelítéseivel történik
- d) fényelnyelés vagy fotonkibocsátás két stacionárius energiaállapot közötti átmenet eredménye
- 9. Melyik állítás jellemző a Schrödinger-féle atommodellre?
- a) nagyon kicsi térrészre koncentrálódó atommag körül keringenek az elektronok, mint a bolygók a nap körül
- b) az atom pozitív töltéssel rendelkező tömör golyó, melyben az elektronok lazán beágyazva helyezkednek el
- c) atommag körül mozgó elektron leírása a kvantummechanika statisztikus megközelítéseivel történik
- d) fényelnyelés vagy fotonkibocsátás két stacionárius energiaállapot közötti átmenet eredménye
- 10. Mi az az atomi sajátság, ami a periódusos rendszerben végighaladva kivétel nélkül mindig növekszik?
- a) atomsugár
- b) atomtömeg
- c) rendszám
- d) elektronegativitás
- e) elektronaffinitás
- 11. Az atom a következő részecskékből áll:
- a) proton, neutron, elektron
- b) proton, ion, elektron
- c) kation, neutron, elektron
- d) anion, neutron, elektron
- e) ion, neutron, elektron

- 12. Az alábbiak közül mi köthető Isaac Newton nevéhez?
- a) Fotoelektromos hatás magyarázata
- b) Feketetest-sugárzás magyarázata
- c) Fehér fény komponensekre bontása
- d) Részecske-hullám dualizmus felismerése
- e) Színképelemzés megalapozása
- 13. Az alábbiak közül mi köthető Louis-Victor de Broglie nevéhez?
- a) Fotoelektromos hatás magyarázata
- b) Feketetest-sugárzás magyarázata
- c) Fehér fény komponensekre bontása
- d) Részecske-hullám dualizmus felismerése
- e) Színképelemzés megalapozása
- 14. Az alábbiak közül mi köthető Gustav Kirchhoff nevéhez?
- a) Fotoelektromos hatás magyarázata
- b) Feketetest-sugárzás magyarázata
- c) Fehér fény komponensekre bontása
- d) Részecske-hullám dualizmus felismerése
- e) Színképelemzés megalapozása
- 15. Az alábbiak közül mi köthető Max Planck nevéhez?
- a) Fotoelektromos hatás magyarázata
- b) Feketetest-sugárzás magyarázata
- c) Fehér fény komponensekre bontása
- d) Részecske-hullám dualizmus felismerése
- e) Színképelemzés megalapozása
- 16. Az alábbiak közül mi köthető Albert Einstein nevéhez?
- a) Fotoelektromos hatás magyarázata
- b) Feketetest-sugárzás magyarázata
- c) Fehér fény komponensekre bontása
- d) Részecske-hullám dualizmus felismerése
- e) Színképelemzés megalapozása
- 17. Kinek az érdeme a periódusos rendszer bevezetése és használatának elterjesztése?
- a) Antoine Laurent Lavoisier
- b) Hevesy György
- c) John Dalton
- d) Jöns Jakob Berzelius

e) Dmitrij Ivanovics Mengyelejev

- 18. Melyik állítás IGAZ?
- a. A fény is képes részecskesajátságokat mutatni.
- b. A makroszkopikus testek hullámhossza jellemzően néhány méter.
- c. A zöld, a kék, vagy a fehér fény monokromatikus hullám.
- d. A periódusos rendszer oszlopait periódusoknak hívják
- e. A kémiai nyelvújítás (XIX. sz. első fele) a legtöbb addig ismert elem új nevet kapott, melyeket még ma is használunk.
- 19. Melyik az az intermolekuláris kölcsönhatás, amely a víz más, hasonló molekulákhoz képest kiemelkedően magas forráspontjáért felelős?
- a) ion-ion kölcsönhatás
- b) London-kölcsönhatás
- c) hidrogénkötés
- d) dipól-dipól vonzás
- e) diszperziós kölcsönhatás
- 20. Milyen kölcsönhatás hozza létre a folyékony neonban (Ne) az atomok közötti vonzást?
- a) ion-ion kölcsönhatás
- b) kovalens kötés
- c) hidrogénkötés
- d) dipól-dipól vonzás
- e) diszperziós kölcsönhatás
- 21. Az elektronegativitások ismeretében (F = 4.0; O = 3.5; H = 2.1; S = 2.5; és Cl = 3.0) a felsoroltak közül melyik kötést lehet a legpolárosabbnak tartani?
- a) O□F
- b) OOH
- c) SDH
- d) H□Cl
- e) S□Cl
- 22. A felsoroltak közül melyik számít a leggyengébb kölcsönhatásnak hasonló molekulatömegű anyagokat összevetve?
- a. dipól-dipól
- b. diszperziós
- c. ionkötés
- d. hidrogénkötés

- kovalens kötés e. 23. A felsorolt anyagok közül melyikben van jelentős erősségű hidrogénkötés? a. NH_3 b. H_2S **HC1** c. CH_4 d. NaH e. 24. A felsoroltak közül melyik molekulában nincs értelme kötésszögről beszélni? a. H_2O b. NH_3 c. CH_4 HBr d. CO_2 e. 25. A felsoroltak közül melyik NEM elsőrendű kémiai kölcsönhatás? kovalens kötés a. fémes kötés b. hidrogénkötés c. ionos kötés d. 26. A felsoroltak közül melyik NEM másodendű kémiai kölcsönhatás? dipól-dipól kölcsönhatás a) fémes kötés b) c) hidrogénkötés d) diszperziós kölcsönhatás 27. Melyik kölcsönhatás jön létre jellemzően, ha a kötést alkotó atomok elektronegativitásának különbsége nagy? a. kovalens kötés fémes kötés b. c. hidrogénkötés ionos kötés d. 28. Melyik kölcsönhatás jön létre jellemzően, ha a kötést alkotó atomok elektronegativitása nagy? kovalens kötés a.
- b. fémes kötésc. hidrogénkötés
- d. ionos kötés

- 29. Melyik kölcsönhatás jön létre jellemzően, ha a kötést alkotó atomok elektronegativitása kicsi?
- a. kovalens kötés
- b. fémes kötés
- c. hidrogénkötés
- d. ionos kötés
- 30. Melyik kölcsönhatás tartja össze az apoláris molekulák kondenzált fázisát?
- a. diszperziós kötés
- b. fémes kötés
- c. hidrogénkötés
- d. ionos kötés
- 31. Melyik állítás HAMIS?
- a. A rácsenergia jellemzően nagy pozitív érték (> 1000 kJ/mol)
- b. Az ellentétes töltésű ionok közötti elektrosztatikus vonzás révén jön létre az ionos kötés
- c. A DNS két láncát diszperziós kölcsönhatások tartják össze
- d. A hidrogénkötés a legerősebb másodrendű kölcsönhatás.
- e. Ionok és poláris molekulák (pl. víz) között is jöhetnek létre másodrendű kölcsönhatások

III) Halmazállapotok

- 1. Melyik az a halmazállapot, amely **NEM** tölti be a teljes rendelkezésre álló teret és **NINCSEN** saját alakja?
- a) gáz
- b) folyadék
- c) szilárd
- d) nincs ilyen halmazállapot
- 2. Melyik halmazállapot nyomható össze a legkönnyebben?
- a) gáz
- b) folyadék
- c) szilárd
- d) nem tér el az összenyomhatóságuk
- 3. A felsoroltak közül melyik a gázok és folyadékok közös sajátsága?
- a) melegítésre nagyon kis mértékben tágulnak
- b) áramoltathatóak
- c) merevek
- d) könnyen összenyomhatók
- e) maradéktalanul betöltik a rendelkezésre álló teret
- 4. Melyik tulajdonság a folyadékok és szilárd anyagok közös jellemzője?
- a) melegítés hatására nagy mértékben kiterjednek
- b) fluidumok
- c) merevek
- d) nagyon nehezen nyomhatók össze
- e) állandó az alakjuk
- 5. A felsorolt tulajdonságok közül melyik **NEM** jellemzője a gázoknak?
- a) a részecskék messze vannak egymástól
- b) merev alak
- c) könnyen összenyomható
- d) viszonylag kicsi sűrűség
- 6. Egy gázminta térfogata 25 °C-on és 1 atm nyomáson 1 liter. A minta nyomását növeljük, hőmérsékletét pedig csökkentjük. Milyen irányba változik a térfogat?
- a) csökken
- b) növekszik
- c) változatlan marad

- d) csökkenhet, növekedhet vagy változatlan is maradhat a térfogat- és hőmérsékletváltozás mértékétől függően
- 7. Egy gázminta térfogata 25 °C-on és 1 atm nyomáson 1 liter. A minta nyomását csökkentjük, hőmérsékletét pedig növeljük. Milyen irányba változik a térfogat?
- a) csökken
- b) növekszik
- c) változatlan marad
- d) csökkenhet, növekedhet vagy változatlan is maradhat a térfogat- és hőmérsékletváltozás mértékétől függően
- 8. Egy gázminta térfogata 25 °C-on és 1 atm nyomáson 1 liter. A minta hőmérsékletét növeljük, térfogatát pedig csökkentjük. Milyen irányba változik a nyomás?
- a) csökken
- b) növekszik
- c) változatlan marad
- d) csökkenhet, növekedhet vagy változatlan is maradhat a térfogat- és hőmérsékletváltozás mértékétől függően
- 9. A felsorolt gázok közül azonos hőmérsékleten melyiknek legnagyobb az effúziós sebessége?
- a) C_3H_8 (M = 44 g/mol)
- b) $CO_2 (M = 44 \text{ g/mol})$
- c) $N_2 (M = 28 \text{ g/mol})$
- d) $O_2 (M = 32 \text{ g/mol})$
- e) Ar (M = 40 g/mol)
- 10. A felsorolt, tökéletes (vagy ideális) gázokra vonatkozó állítások közül melyik **HIBÁS**?
- a) A hélium minden hőmérsékleten és nyomáson tökéletes gázként viselkedik.
- b) A gázmolekulák ütközése egymással és a fallal tökéletesen rugalmas.
- c) Az ütközések közötti időtartamban a részecskék semmilyen kölcsönhatásba nem lépnek egymással.
- d) A gázokban a molekulák saját méreteikhez képest nagyon messze vannak egymástól.
- e) A gáz a fallal történő ütközések révén fejt ki nyomást.
- 11. A felsorolt állítások közül melyik **HIBÁS**?
- a) Amikor egy folyadék gőznyomása eléri a külső nyomást, forrni kezd.
- b) A forráspont az a hőmérséklet, ahol a gőznyomás eléri a külső nyomást.
- c) Egy anyag gőznyomása függ a külső nyomástól.
- d) Egy folyadék gőznyomása a hőmérséklet növekedésével növekszik.

- e) A könnyen párolgó folyadékokat illékonynak nevezzük, ezek gőznyomása viszonylag nagy.
- 12. A felsorolt értékek közül melyik lehet a glicerin felületi feszültsége (20°C)?
- a) 1,12 bar
- b) 8,314 J/mol/K
- c) $2.8 \square 10^{\square 2} \text{ Ns/m}^2$
- d) $5.2 \, s^{\Box 1}$
- e) 0.063 J/m^2
- 13. Melyik állítás IGAZ?
- a) szuperkritikus állapotban ugrásszerűen megnő a felületi feszültség
- b) kis felületi feszültségű folyadékoknak kicsi a gőznyomása
- c) a felületi feszültség független a hőmérséklettől
- d) a felületi feszültséget a fázishatáron lévő molekulák aszimmetrikus erőtere okozza
- e) a felületi feszültség SI egysége N/m²
- 14. Melyik állítás HAMIS?
- a) a nagy sűrűségű anyagok viszkozitása nagy
- b) a viszkozitás függ a hőmérséklettől
- c) a viszkozitás a folyással szembeni ellenállás mértéke
- d) a méznek nagyobb a viszkozitása, mint a víznek
- e) nagyon alacsony hőmérsékleten a He viszkozitása zérus
- 15. Melyik a Boyle□Mariotte-törvény?
- a) Adott mennyiségű tökéletes gáz térfogata állandó nyomáson egyenesen arányos az abszolút hőmérséklettel.
- Adott mennyiségű tökéletes gáz térfogata állandó hőmérsékleten fordítottan arányos a nyomással.
- c) Egy gázelegy teljes nyomása a komponensek parciális nyomásainak összegével egyenlő.
- d) Egy tökéletes gáz nyomása, térfogata és hőmérséklete tetszés szerint változtatható.
- e) Egy gáz effúziójának sebessége fordítottan arányos a molekulatömeg négyzetgyökével.
- 16. Melyik Charles törvénye?
- a) Adott mennyiségű tökéletes gáz térfogata állandó nyomáson egyenesen arányos az abszolút hőmérséklettel.
- b) Adott mennyiségű tökéletes gáz térfogata állandó hőmérsékleten fordítottan arányos a nyomással.
- c) Egy gázelegy teljes nyomása a komponensek parciális nyomásainak összegével egyenlő.

- d) Egy tökéletes gáz nyomása, térfogata és hőmérséklete tetszés szerint változtatható.
- e) Egy gáz effúziójának sebessége fordítottan arányos a molekulatömeg négyzetgyökével.
- 17. Mi jellemző az atomrácsra?
- a) A rácspontokban ionok vannak.
- b) A rácspontokban molekulák vannak.
- c) A rácspontokban kovalens kötéssel kapcsolódó atomok vannak.
- d) A rácspontokban atomtörzsek vannak, amelyeket delokalizált elektronok kapcsolnak össze.
- 18. Mi jellemző az ionrácsra?
- a) A rácspontokban ionok vannak.
- b) A rácspontokban molekulák vannak.
- c) A rácspontokban kovalens kötéssel kapcsolódó atomok vannak.
- A rácspontokban atomtörzsek vannak, amelyeket delokalizált elektronok kapcsolnak össze.
- 19. Mi jellemző a molekularácsra?
- a) A rácspontokban ionok vannak.
- b) A rácspontokban molekulák vannak.
- c) A rácspontokban kovalens kötéssel kapcsolódó atomok vannak.
- d) A rácspontokban atomtörzsek vannak, amelyeket delokalizált elektronok kapcsolnak össze.
- 20. Mi jellemző a fémrácsra?
- a) A rácspontokban ionok vannak.
- b) A rácspontokban molekulák vannak.
- c) A rácspontokban kovalens kötéssel kapcsolódó atomok vannak.
- A rácspontokban atomtörzsek vannak, amelyeket delokalizált elektronok kapcsolnak össze.
- 21. Milyen típusú rácsot alkot a gyémánt?
- a) fémrács
- b) ionrács
- c) molekularács
- d) atomrács
- 22. A felsoroltak közül melyik ionrácsos vegyület?
- a) Metán, CH₄
- b) Hidrogén-peroxid, H₂O₂

- c) Konyhasó, NaCl
- d) Ammónia, NH₃
- e) Kvarc, SiO₂
- 23. Hogyan nevezik az O₂ és O₃ molekulák egymáshoz való viszonyát?
- a) gyökök
- b) polimorfok
- c) allotrópok
- d) izotópok
- e) nukleonok
- 24. Az alábbiak közül melyek NEM allotróp módosulatok?
- a) Dioxigén (O₂) és ózon (O₃)
- b) Fehérfoszfor és vörösfoszfor
- c) Grafit és grafén
- d) Tengervíz és édesvíz
- e) Fullerén és gyémánt
- 25. Melyik NEM a szén egy allotróp módosulata?
- a) grafén
- b) fullerén
- c) obszidián
- d) gyémánt
- e) grafit
- 26. A felsorolt anyagok közül melyik vezeti jól az elektromos áramot?
- a) NaCl-kristály
- b) cukoroldat
- c) gyémánt
- d) jég
- e) NaCl-olvadék
- 27. Melyik sor tartalmazza azokat a tulajdonságokat, amelyek a fémrácsos és ionrácsos anyagokat egyaránt jellemzik?
- a) Szilárd halmazállapotban vezetik az elektromosságot, nagy keménységűek.
- Olvadékuk vezeti az elektromosságot, képviselőik mind szilárd halmazállapotúak (25 °Con, standard nyomáson).
- c) Vízben oldódnak, a rácsösszetartó erő elsőrendű kötés.
- d) Olvadékuk vezeti az elektromosságot, a rácsösszetartó erő elsőrendű kötés.
- e) Magas olvadáspontúak, nagy keménységűek.

- 28. A felsorolt állítások közül melyik **HIBÁS**?
- a) A víz a Mount Everesten alacsonyabb hőmérsékleten forr, mint Debrecenben.
- b) A forrás lényegében a folyadék belsejében is végbemenő párolgás.
- c) Egy folyadék forráspontja növekszik, ha a környezet nyomása csökken.
- d) A hőmérséklet növelésével egy anyag gőznyomása is növekszik.
- e) A víz gőznyomása 100 °C-on 101325 Pa.
- 29. Mi a jelentősége a természetben annak, hogy a jég sűrűsége azonos hőmérsékleten kisebb a vízénél?
- a) Nincs ismert biológiai jelentősége.
- b) Ha nem így lenne, akkor nem lehetne tengeralattjárókat építeni.
- c) A természetes vizek felülről fagynak meg, s a felszíni jég alatt folyékony víz marad.
- d) A jéghegyek az Antarktiszról leszakadva gyorsan a mélybe süllyednek.
- e) Ezért folynak lefelé a gleccserek.
- 30. Előfordulhat-e, hogy a jég közvetlenül gőzzé alakul (szublimál)?
- a) Igen, ha a nyomás a hármasponti nyomás alatt van.
- b) Nem, mert a kritikus pont alatti nyomáson nem lehet egyensúlyban szilárd anyag és gőz.
- c) Igen, ha elég kicsi a deutériumtartalma.
- d) Igen, elég nagy nyomáson.
- e) Igen, a Szahara legszárazabb területein.
- 31. Mi a víz hármaspontja?
- a) Az az állapot, ahol nincs különbség a folyékony víz és a vízgőz között.
- b) Az az állapot, ahol egyszerre lehet jelen víz, jég, és gőz.
- c) Az a hőmérséklet, ahol a víz csökkentett nyomáson forrni kezd.
- d) Az az állapot, ahol nincs különbség a folyékony víz és a jég között.
- 32. Miért lehet gyorsabban főzni kuktákban?
- a) Mert olyan speciális fémből készülnek, ami elősegíti a főzést.
- b) Zárt tartályban minden kémiai folyamat gyorsabb, mint nyitott reaktorban.
- c) A lezárt kuktában megnövekedhet a nyomás, ezért a víz forráspontja magasabb, így főzni is magasabb hőmérsékleten lehet.
- d) Több különböző elven működő kuktatípus is létezik, és mindegyik más mechanizmus szerint működik.
- e) A kukták belső részén lévő speciális műanyagbevonat minden kémiai reakciót gyorsít.
- 33. Melyik Graham törvénye?

a)	Adott mennyiségű tökéletes gáz térfogata állandó nyomáson egyenesen arányos az
b)	abszolút hőmérséklettel. Adott mennyiségű tökéletes gáz térfogata állandó hőmérsékleten fordítottan arányos a
,	nyomással.
c) d)	Egy gázelegy teljes nyomása a komponensek parciális nyomásainak összegével egyenlő. Egy tökéletes gáz nyomása, térfogata és hőmérséklete tetszés szerint változtatható.
e)	Egy gáz effúziójának sebessége fordítottan arányos a molekulatömeg négyzetgyökével.
34.	Hawaiin a Mauna Kea csúcsa 4205 méterrel van a tengerszint felett. I. A felsoroltak közül melyik lehet a Mauna Kea csúcsán uralkodó légköri nyomás?
	a) 0,23 Pa b) 12,6 MPa c) 1,27 bar d) 101325 Pa e) 63 kPa
	II. A felsoroltak közül melyik lehet a Mauna Kea csúcsán a víz forráspontja? a) 4365 K b) 100 \(\text{C} \) c) 87 \(\text{C} \) d) \(\text{D} \) 4365 K
	III. A felsoroltak közül melyik lehet a Mauna Kea csúcsán a jég olvadáspontja? a) 200 K b) 0 □C c) 5 □C d) □5 □C e) 373 K
	a) 200 K b) 0 bC c) 3 bC d) b3 bC e) 3/3 K
35.	Pakisztánban a K2 csúcsa 8611 méterrel van a tengerszint felett.
	I. A felsoroltak közül melyik lehet a K2 csúcsán uralkodó légköri nyomás?
	a) 0,39 bar b) 101,325 MPa c) 0,101325 MPa d) 0,0054 kPa e) $4.2 \square 10^{\square 7}$ Pa
II. A f	elsoroltak közül melyik lehet a K2 csúcsán a víz forráspontja?
	a) 800 K b) 74 DC c) 115 DC d) D22 DC e) 373 K
	III. A felsoroltak közül melyik lehet a K2 csúcsán a jég olvadáspontja?
	a) 200 K b) 0 □C c) 5 □C d) □5 □C e) 373 K
36.	A Dobogó-kő csúcsa 699 méterrel van a tengerszint felett. I. A felsoroltak közül melyik lehet a Dobogó-kő csúcsán uralkodó légköri nyomás?
	a) 2,2 bar b) 200 hPa c) 101325 kPa d) 93000 Pa e) 2,2 mbar
	II. A felsoroltak közül melyik lehet a Dobogó-kő csúcsán a víz forráspontja?
	a) 3 kK b) 400 K c) 98 □C d) □196 □C e) 78 □C
	III. A felsoroltak közül melyik lehet a Dobogó-kő csúcsán a jég olvadáspontja?
	a) 200 K b) 0 □C c) 5 □C d) □5 □C e) 373 K
37.	Melyik rácstípusra jellemző, hogy szerkezetét pozitív ionokat körülvevő nagy mennyiségű elektronként logikusan leírhatjuk?
a)	fémrács

- b) ionrács
- c) molekularács
- d) atomrács
- 38. Mit jelent a "hasonló hasonlót old" elv?
- a) Illékony anyagok csak illékony oldószerekben oldódnak
- b) Poláris molekulák poláris, míg apoláris molekulák jellemzően apoláris oldószerben oldódnak
- c) A gyémánt atomrácsos oldószerekben jól oldódik
- d) Poláris molekulák apoláris, míg apoláris molekulák jellemzően poláris oldószerben oldódnak
- e) Szerves vegyületek csak szerves oldószerekben oldódnak
- 39. Az alábbi ábra egy gáztartályt mutat. Milyen jelenség bemutatásához használhatjuk?

- a) diffúzió
- b) szupravezetés
- c) effúzió
- d) fúzió
- **40.** Melyik állítás HAMIS?
- a) a kvázikristályos anyag szerkezete rendezett, de nem periodikus
- b) az üvegszerű anyag szerkezete periodikus, de nem rendezett
- c) a kristályos anyag szerkezete rendezett és periodikus
- d) a folyadékkristályos anyag sok szempontból átmenetet képez a kristályos szilárd anyagok és a folyadékok között
- e) a szuperfolyadékok viszkozitása nulla
- **41.** Melyik halmazállapot-változás exoterm?
- a) olvadás
- b) szublimáció
- c) fagyás
- d) párolgás
- **42.** Melyik állítás HELYES?
- a) Nagyobb tengerszint feletti magasságon nagyobb a légnyomás és magasabb hőmérsékleten forr a víz

- b) Nagyobb tengerszint feletti magasságon kisebb a légnyomás és magasabb hőmérsékleten forr a víz
- c) Nagyobb tengerszint feletti magasságon kisebb a légnyomás és alacsonyabb hőmérsékleten forr a víz
- d) A légnyomás és a víz forráspontja független a tengerszint feletti magasságtól
- e) Nagyobb tengerszint feletti magasságon kisebb a légnyomás, de ettől független a víz forráspontja
- **43.** A víz fázisdiagramján melyik ponthoz tartozik a legalacsonyabb hőmérséklet?
- a) kritikus pont
- b) normál fagyáspont
- c) hármaspont (szilárd jég/folyadék víz/vízgőz)
- d) normál forráspont
- 44. Melyik állítás HAMIS?
- a) Folyadékfázis nem létezhet a hármasponti nyomás alatt
- b) A hármaspont olyan p-T adatpár, amely körülmények között három halmazállapot van egyensúlyban
- c) Kritikus hőmérséklet megszabja egy gáz cseppfolyósításának felső hőmérsékleti határát
- d) Szuperkritikus extrakcióval koffeinmentesíteni lehet a kávébabot
- e) A víz fagyáspontja nő a nyomással
- 45. A következő kérdések a felrajzolt fázisdiagramra vonatkoznak:

- I. Melyik megállapítás **HIBÁS**?
 - a) Az A pont szublimációként és lecsapódásként is értelmezhető.
 - b) A B pont a kritikus pont.
 - c) A C pont a folyadéktartományban van.
 - d) A D pont által definiáltnál nagyobb nyomáson és hőmérsékleten az anyag szuperkritikus fluidumként létezik.

	e) A nyomás növelése az E pontból a C pontig az anyag cseppfolyósodását okozza.
	II. Melyik pont a hármaspont?
	A) B) C) D) E)
	III. Melyik pont a kritikus pont?
	A) B) C) D) E)
	IV. Melyik pont van a gázfázis belsejében?
	A) B) C) D) E)
	V. Melyik pont van a folyadékfázis belsejében?
	A) B) C) D) E)
	VI. Mely pontok közötti átmenet során olvad meg az anyag egy része?
	, , , , , , , , , , , , , , , , , , , ,
	VII. Mely pontok közötti átmenet során olvad meg az anyag teljes egészében?
	A) $E\square C$ B) $C\square E$ C) $A\square B$ D) $B\square E$ E) egyik sem
16	Mi NIEM ICAZ a ammadaritilma fluidumana?
46.	Mi NEM IGAZ a szuperkritikus fluidumra? oldószerként is használható
a)	
b)	fontos ipari alkalmazásai is lehetnek
c)	képes átjutni szilárd anyagok pórusain
d)	sűrűsége kisebb folyadék- és a gázállapotú anyag sűrűségétől
e)	viszkozitása a folyadék- és a gázállapotú anyag viszkozitása között van
47.	Mi a víz kritikus pontja?
a)	Az az állapot, ahol megszűnik folyékony víz és a vízgőz közötti fázishatár.
b)	Az az állapot, ahol egyszerre lehet jelen víz, jég, és gőz.
c)	Az a hőmérséklet, ahol a víz csökkentett nyomáson forrni kezd.
d)	Az az állapot, ahol megszűnik folyékony víz és a jég közötti fázishatár.
u)	The de disapos, and megazanik for the of a jeg nozoti fazionatari
48.	Melyik állítás hamis?
a)	kenőolajok viszkozitása jelentősen változhat a hőmérséklettel
b)	melegedéskor a kenőolaj besűrűsödnek, a viszkozitás növekszik, míg el nem érik a
	szivattyúzhatóság határát
c)	a magas viszkozitási indexű olajok csak kisebb mértékben változtatják meg a
	viszkozitásukat a hőmérséklet változásakor
d)	a többfokozatú kenőolajok feladata, hogy évszaktól függetlenül garantálják az elvár
	viszkozitási sajátságokat
e)	a kenőolajok az alapolaj mellett számos adalékanyagot (detergensek kopásgátlók,
	súrlódásmódosítók, antioxidánsok stb) is tartalmaznak
49.	Melyik jellemzően nem feladata a kenőolajnak?

- a) a fém-fém érintkezés megakadályozása
- b) a motor mozgó alkatrészeinek kenése
- c) a kén-dioxid-emisszió csökkentése
- d) védelem a korrózió ellen
- e) a súrlódás csökkentése
- 50. Mit jelent az, hogy szobahőmérsékleten és légköri nyomáson a gyémánt a szén metastabil módosulata?
- a) A gyémánt a szén olyan formája, amely szobahőmérsékleten és légköri nyomáson azonnal átalakul grafittá.
- b) A gyémánt a szén olyan formája, amely szobahőmérsékleten és légköri nyomáson nem a legstabilabb, de átalakulása grafittá nagyon lassan megy végbe.
- c) A gyémánt a szén olyan formája, amely szobahőmérsékleten és légköri nyomáson könnyen oldódik vízben.
- d) A gyémánt a szén olyan formája, amely szobahőmérsékleten és légköri nyomáson azonnal szublimál.
- e) A gyémánt a szén olyan formája, amely szobahőmérsékleten és légköri nyomáson rendkívül instabil és robbanékony
- 51. Az alábbi anyagok szobahőmérsékleten, légköri nyomáson mind gázok. A nevük mellett a kritikus hőmérsékletük van feltüntetve. Melyik cseppfolyósítható szobahőmérsekleten (25°C)? a) neon, -229°C
- b) hidrogén, -240°C
- c) xenon, 16°C
- d) klór, 144°C
- e) oxigén, -119°C
- 52. Mi az a fázisdiagram?
- a) A fázisdiagram egy diagram, amely az anyag molekuláris szerkezetét mutatja be.
- b) A fázisdiagram egy grafikon, amely az anyag elektromos vezetőképességét ábrázolja különböző hőmérsékleten.
- c) A fázisdiagram egy ábra, amely a kémiai reakciók sebességét mutatja be különböző nyomásokon.
- A fázisdiagram egy grafikus ábrázolás, amely megmutatja egy anyag különböző halmazállapotainak stabilitási tartományait különböző hőmérséklet és nyomás mellett.
- e) A fázisdiagram egy grafikus ábrázolás, amely megmutatja egy anyag oxidációs állapotainak változásait különböző pH-n.

IV) Oldatok

- 1. Az alábbiak közül melyik valódi oldat?
- a. keményítőoldat
- b. konyhasóoldat
- c. szappanoldat
- d. fehérjeoldat
- e. szilárd oldat típusú ötvözet
- 2. Miért hatásos télen az utak sózása jegesedés ellen?
- a. Mert így az autógumik a sóval érintkeznek és nem a jéggel.
- b. A sóoldatoknak nagyobb az ozmózisnyomása, mint a vízé, így pedig nő a súrlódási együttható.
- c. Mert a só a jégben savas kémhatást okoz.
- d. Mert a jég keményebb, érdesebb változatú formába alakul át só hatására.
- e. A sóoldatok fagyáspontja a fagyáspontcsökkenés jelensége miatt alacsonyabb, mint a tiszta vízé.
- 3. A felsoroltak közül melyik lehet a tengervíz átlagos fagyáspontja?
- a. 105 K
- b. 10 □C
- c. 0 □C
- d. □2 □C
- e. 279 K
- 4. A következő vegyületek közül melyik vizes oldata erős elektrolit?
- a. ammónia (NH₃)
- b. sósav (HCl)
- c. ecetsav (CH₃COOH
- d. glükóz (C6H12O6)
- e. szén-dioxid (CO₂)
- 5. Miért nem ajánlott édesvíz helyett tengervizet inni szomjúság oltására?
- a. Mert a tengervíz az ozmózis jelensége miatt a szervezet kiszáradását (a sejtek dehidratálódását) okozza.
- b. Mert a tengerben oldott só mérgező.
- c. Mert a tengervízben nagy a rákkeltő anyagok koncentrációja.
- d. Mert a tengervíz fagyáspontja 0 °C alatt van.
- e. Mert a tengervíz forráspontja 100 °C felett van.

- 6. Milyen jelenség az ozmózis?
- a) A vízgőz közvetlen átalakulása jéggé.
- b) A jég egy speciális olvadása nagy nyomáson.
- Oldószermolekulák mozgása kisebb koncentrációjú oldatból nagyobb koncentrációjú oldatba féligáteresztő hártyán át.
- d) Egy molekula véletlenszerű mozgása a térben.
- 7. A felsorolt állítások közül melyik HAMIS?
- a) A rácsenergia endoterm (energiabefektetést igényel).
- b) Az oldáshó lehet exoterm és endoterm is.
- c) Az atomrácsos anyagok (pl: a gyémánt) jól oldódnak vízben.
- d) A gázok oldhatósága csökken a hőmérséklet emelésével.
- e) A szolvatáció során energia szabadul fel.
- 8. Melyik állítás HAMIS?
- a) Az utak sózása növeli a fémtárgyak korróziójának esélyét
- b) Az utak sózása károsan hat a növények vízfelvételére
- c) Fordított ozmózissal lehetséges a tengervíz ivóvízzé való alakítása
- d) Az ioncserélt víz tartós fogyasztása nem tesz jót az egészségnek
- e) Ugyanolyan koncentrációjú konyhasó (NaCl) és etanol (C2H5OH) ugyanolyan mértékben csökkenti a víz fagyáspontját.
- 9. Melyik tulajdonság **NEM** jellemző erős elektrolitokra?
- a) Az erős elektrolitok mindig molekulavegyületek.
- b) Az erős elektrolitok vizes oldata vezeti az elektromos áramot.
- c) Az erős elektrolitok vizes oldatban disszociálnak.
- d) Egy erős elektrolit erős sav, erős bázis és só is lehet.
- 10. A felsorolt anyagok közül melyik vizes oldata vezeti jól az elektromos áramot?
- a) szacharóz
- b) nátrium-klorid
- c) metil-alkohol
- d) ecetsav
- e) glükóz
- 11. Mi a molaritás (anyagmennyiség-koncentráció)?
- a) Egy kilogramm oldószerben az oldott anyag anyagmennyisége.
- b) Egy mól oldószerben az oldott anyag anyagmennyisége.
- c) Egy liter oldatban az oldott anyag tömege grammban.
- d) Egy liter oldatban az oldott anyag anyagmennyisége mólban.

- e) Egy liter oldatban az oldószer anyagmennyisége mólban.
- 12. Mi a molalitás (Raoult-koncentráció)?
- a) Egy kilogramm oldószerben az oldott anyag anyagmennyisége.
- b) Egy mól oldószerben az oldott anyag anyagmennyisége.
- c) Egy liter oldatban az oldott anyag tömege grammban.
- d) Egy liter oldatban az oldott anyag anyagmennyisége mólban.
- e) Egy liter oldatban az oldószer anyagmennyisége mólban.
- 13. Az alábbiak közül melyik NEM kolligatív sajátság?
- a) ozmózisnyomás
- b) fagyáspontcsökkenés
- c) kompressziótűrés
- d) forráspont-emelkedés
- e) gőznyomáscsökkenés
- 14. Melyik állítás HELYES?
- a) Egy gáz oldhatósága egy folyadékban egyenesen arányos a termodinamikai hőmérséklettel
- b) Azonos hőmérsékleten és parciális nyomáson a hélium (He) jobban oldódik vízben, mint az ammónia (NH₃).
- c) A keszonbetegséget a hirtelen fellépő nyomáscsökkenés okozza.
- d) A magassággal csökken a hőmérséklet, nő a gázok vízben való oldhatósága, így pedig könnyebb a légzés.
- 15. A következő vegyületek közül melyik vizes oldata erős elektrolit?
- a) ammónia, NH₃
- b) sósav, HCl
- c) ecetsav, CH₃COOH
- d) etanol, C_2H_5OH
- e) szén-dioxid, CO₂
- 16. A felsorolt állítások közül melyik IGAZ?
- a) a tengervíz fagyáspontja alacsonyabb, mint a tiszta vízé
- b) a tengervíz forráspontja alacsonyabb, mint a tiszta vízé
- c) a tengervíz ozmózisnyomása alacsonyabb, mint a tiszta vízé
- d) a tengervíz gőznyomása nagyobb, mint a tiszta vízé
- 17. Melyik jelenségnek nincs köze a Henry-törvényhez?
- a) könnyűbúvárok keszonbetegsége

- b) üdítók szénsavtartalmának távozása a palack kinyitása után
- c) hegymászók magassági betegsége
- d) konyhasó vízben való oldhatósága
- 18. Az alábbiak közül melyik alkalmas ablakmosó folyadéknak?
- a) motorolaj
- b) növényi étolaj
- c) víz és ipari benzin elegye
- d) propilén-glikol és víz elegye
- e) hígított kénsav
- 19. Miért akadályozza az utak sózása a növények vízfelvételét?
- a) A só a bontja a talaj vízmolekuláit, így nem marad mit felvenni.
- b) A só kiülepszik a növényi sejtek falára, így elzárja a vízfelvételi helyeket.
- c) A só elpusztítja a talajban lévő gombákat és baktériumokat, amelyek lebontásához víz kell.
- d) A só megnöveli a talaj pH-értékét, ami ellehetetleníti a víz felszívódását.
- e) A sótartalom csökkenti a talajoldat és a gyökérsejtek koncentrációkülönbségét, így csökken az ozmózisnyomás.

Elektrokémia, redoxireakciók

- 1. A felsorolt állítások közül melyik **HIBÁS**?
- a) A redukció egy elem oxidációs számának csökkenése, és elektronfelvétellel jár.
- b) A metán égése redoxireakció.
- c) Az oxidáció egy elem oxidációs számának növekedése, és elektronleadással jár.
- d) Az oxidálószer egy redoxireakcióban oxidálódik.
- e) Kémiai reakcióban redukció nem történhet oxidáció nélkül.
- 2. A felsoroltak közül melyik fém a legaktívabb?
- a) Sn, ón
- b) Zn, cink
- c) Cu, réz
- d) Ag, ezüst
- e) Li, lítium
- 3. A következő, redukálószerre vonatkozó állítások közül melyik **HIBÁS**?
- a) Redukciót okoz.
- b) Hidrogénionokat vesz fel.
- c) Egy vagy több elektront veszít.
- d) Oxidálódik.
- e) Legalább egy atomjának oxidációs száma növekszik.
- 4. A következő, oxidálószerre vonatkozó állítások közül melyik **HIBÁS**?
- a) Oxidációt okoz.
- b) Egy vagy több elektront vesz fel.
- c) Redukálódik.
- d) Legalább egy atomjának oxidációs száma csökken.
- e) Energiát nyel el.
- 5. Spontán kémiai reakciót valósítunk meg az alábbi galvánelemben. Mi történik az anódon? $\Box^{\circ}(Zn/Zn^{2+}) = -0.76 \ V; \ \Box^{\circ}(Cu^{2+}/Cu) = 0.34 \ V \quad a) \quad A \ Zn^{2+} \ redukálódik.$
- b) A Cu²⁺ redukálódik.
- c) A Cu oxidálódik.
- d) A Zn oxidálódik.
- 6. Melyik a helyes megállapítás a Daniell-elemmel kapcsolatban?
- a) Az anódon redukció történik.
- b) A cink a negatív polaritású elektród.
- c) A rézelektródban oxidáció történik.

- d) A Daniell-elem egy elektrolizáló cella.
- e) A működtetés során az anód tömege nő, a katód tömege csökken.
- 7. Melyik állítás igaz az elektrolízisre?
- a) Az anódon oxidáció játszódik le.
- b) A folyamat során kémiai energia elektromos energiává alakul át.
- c) Az elektrolizáló cellában a katód a pozitív pólus.
- d) A NaCl-olvadék elektrolízisekor hidrogén- és klórgáz fejlődik.
- e) Az alumíniumot timföld oldatelektrolízisével állítják elő.
- 8. Melyik állítás hamis?
- a) abszolút cellapotenciál nem mérhető
- b) a galvánelemben spontán kémiai reakció elektromos energiát termel
- c) elektrolízis során kémiai reakció kiváltása történik elektromos energia segítségével
- d) az üzemanyagcellák izolált rendszerek, melyekben égés játszódik le szobahőmérsékleten
- e) újratölthető elemekben a redoxireakció reverzibilis
- 9. Melyik állítás igaz az égésre?
- a) fém felületének károsodása oxidációs folyamatok eredményeképpen
- b) különböző anyagok színének csökkentése redoxireakciók révén
- c) valamilyen üzemanyag reakciója a levegő oxigénjével, mely jellemzően nagy mennyiségű energia felszabadulásával jár
- d) fémek előállítása érceikből többnyire redoxireakciók segítségével
- e) biológiai folyamatok energiatermelése a levegő oxigénjének felhasználásával
- 10. Melyik állítás igaz a fehérítésre?
- a) fém felületének károsodása oxidációs folyamatok eredményeképpen
- b) különböző anyagok színének csökkentése redoxireakciók révén
- c) valamilyen üzemanyag reakciója a levegő oxigénjével, mely jellemzően nagy mennyiségű energia felszabadulásával jár
- d) fémek előállítása érceikből többnyire redoxireakciók segítségével
- e) biológiai folyamatok energiatermelése a levegő oxigénjének felhasználásával
- 11. Melyik állítás igaz a fémkohászatra?
- a) fém felületének károsodása oxidációs folyamatok eredményeképpen
- b) különböző anyagok színének csökkentése redoxireakciók révén
- c) valamilyen üzemanyag reakciója a levegő oxigénjével, mely jellemzően nagy mennyiségű energia felszabadulásával jár
- d) fémek előállítása érceikből többnyire redoxireakciók segítségével
- e) biológiai folyamatok energiatermelése a levegő oxigénjének felhasználásával

- 12. Melyik állítás igaz a korrózióra?
- a) fém felületének károsodása oxidációs folyamatok eredményeképpen
- b) különböző anyagok színének csökkentése redoxireakciók révén
- c) valamilyen üzemanyag reakciója a levegő oxigénjével, mely jellemzően nagy mennyiségű energia felszabadulásával jár
- d) fémek előállítása érceikből többnyire redoxireakciók segítségével
- e) biológiai folyamatok energiatermelése a levegő oxigénjének felhasználásával
- 13. Melyik állítás igaz a légzésre?
- a) fém felületének károsodása oxidációs folyamatok eredményeképpen
- b) különböző anyagok színének csökkentése redoxireakciók révén
- c) valamilyen üzemanyag reakciója a levegő oxigénjével, mely jellemzően nagy mennyiségű energia felszabadulásával jár
- d) fémek előállítása érceikből többnyire redoxireakciók segítségével
- e) biológiai folyamatok energiatermelése a levegő oxigénjének felhasználásával
- 14. Melyik állítás HAMIS?
- a) a standard hidrogénelektród potenciálja minden hőmérsékleten zérus
- b) áramtermeléshez a spontán redoxireakció félreakcióit térben el kell választani
- c) az elemi fémek vegyületeikból való előállítása mindig a fémion oxidációjával történik
- d) a higanyelem a ma legelterjedtebb nem újratölthető elemtípus
- e) az ólomakkumulátor működése során mindkét elektródon ólom-szulfát (PbSO4) képződik
- 15. Melyik állítás HAMIS?
- a) felfedezésé után (XIX. sz. első fele) az alumínium a legdrágább fémek közé tartozott
- b) az alumíniumot ipari mennyiségben timföldből állítják elő
- c) az alumínium ipari előállítása a timföld oldatának elektrolízisével történik
- d) az alumíniumgyártás során az anód anyaga szén-dioxiddá oxidálódik
- e) alumíniumvegyületeket az ókor óta ismer az emberiség
- 16. Melyik állítás HAMIS?
- a) az elektrolízis közben képződő anyag tömege egyenesen arányos az elektrolizáló cellán áthaladó töltésmennyiséggel
- b) az elektrolízis közben képződő anyag tömege egyenesen arányos az elektrolizáló cellán átfolyó áram erősségével
- c) az elektrolízis közben képződő anyag tömege egyenesen arányos az elektrolízis időtartamával
- d) az elektrolízis elindításához szükséges feszültség pontosan megegyezik a fordított reakcióban elképzelhető galvánelem elektromotoros ereje

- e) elektrolízishez elektromosan vezető közegre van szükség
- 17. Mi az elektromos potenciál SI mértékegysége?
- a) Joule
- b) Coulomb
- c) Watt
- d) Volt
- e) Farad
- 18. Az alábbiak közül melyik állíts HAMIS?
- a) A higanyelemek elterjedtek voltak a XX. sz. második felében, de a higany toxicitása miatt mára sok helyen betiltották.
- b) A szárazelemek csak annyi nedvességet tartalmaznak, hogy áram tudjon folyni a rendszerben.
- c) Az ólomakkumulátor egyik előnye "igénytelensége", azaz kevésbé érzékeny a túltöltésre, az elégtelen töltésre, ill. a mélykisütésre, mint a Li-akkumulátorok.
- d) Az üzemanyagcellákban lényegében hagyományos égési folyamatok játszódnak le, de magas hőmérséklet nélkül.
- e) Az alkálielem a manapság legelterjedtebb újratölthető elemtípus.
- 19. Melyik állítás HAMIS?
- a) A galváncella katódján redukció játszódik le
- b) Az elektrolizáló cella anódján redukció játszódik le
- c) A galváncella anódja negatív töltésű
- d) A galváncellában lejátszódó spontán redoxireakció nem mindig fordítható meg
- e) Az elektrolízis végtermékei változhatnak a körülményekkel (U, I, elektród anyag stb).
- 20. A következő standardpotenciálok ismeretében mely partnerek tudnak spontán reagálni egymással? $\Box^{\circ}(Zn/Zn^{2+}) = -0.76 \text{ V}; \ \Box^{\circ}(Co^{2+}/Co) = -0.28 \text{ V}$
- a) Zn + Co
- b) $Co^{2+} + Zn^{2+}$
- c) $Co + Zn^{2+}$
- d) $Zn + Co^{2+}$
- 21. Melyik állítás jellemző a Leclanché-elemre?
- a) A II. világháború idején nagyon népszerű volt, de mára sok helyen betiltották egyik komponensének toxicitása miatt.
- b) Nem újratölthető elem, mely a modern elemek előfutára volt.
- c) Az autók szokásos akkumulátora, mely az indításhoz szükséges áramot is biztosítja.
- d) Manapság a leggyakoribb nem újratölthető elemtípus.

- e) A múlt század második felében az egyik legelterjedtebb újratölthető elem volt, azonban egyik komponensének toxicitása miatt mára háttérbe szorult.
- 22. Melyik állítás jellemző a nikkel-kadmium elemre?
- a) A II. világháború idején nagyon népszerű volt, de mára sok helyen betiltották egyik komponensének toxicitása miatt.
- b) Nem újratölthető elem, mely a modern elemek előfutára volt.
- c) Az autók szokásos akkumulátora, mely az indításhoz szükséges áramot is biztosítja.
- d) Manapság a leggyakoribb nem újratölthető elemtípus.
- e) A múlt század második felében az egyik legelterjedtebb újratölthető elem volt, azonban egyik komponensének toxicitása miatt mára háttérbe szorult.
- 23. Melyik állítás jellemző a higanyelemre?
- a) A II. világháború idején nagyon népszerű volt, de mára sok helyen betiltották egyik komponensének toxicitása miatt.
- b) Nem újratölthető elem, mely a modern elemek előfutára volt.
- c) Az autók szokásos akkumulátora, mely az indításhoz szükséges áramot is biztosítja.
- d) Manapság a leggyakoribb nem újratölthető elemtípus.
- e) A múlt század második felében az egyik legelterjedtebb újratölthető elem volt, azonban egyik komponensének toxicitása miatt mára háttérbe szorult.
- 24. Melyik állítás jellemző az alkálielemre?
- a) A II. világháború idején nagyon népszerű volt, de mára sok helyen betiltották egyik komponensének toxicitása miatt.
- b) Nem újratölthető elem, mely a modern elemek előfutára volt.
- c) Az autók szokásos akkumulátora, mely az indításhoz szükséges áramot is biztosítja.
- d) Manapság a leggyakoribb nem újratölthető elemtípus.
- e) A múlt század második felében az egyik legelterjedtebb újratölthető elem volt, azonban egyik komponensének toxicitása miatt mára háttérbe szorult.
- 25. Melyik állítás jellemző az ólomakkumulátorra?
- a) A II. világháború idején nagyon népszerű volt, de mára sok helyen betiltották egyik komponensének toxicitása miatt.
- b) Nem újratölthető elem, mely a modern elemek előfutára volt.
- c) Az autók szokásos akkumulátora, mely az indításhoz szükséges áramot is biztosítja.
- d) Manapság a leggyakoribb nem újratölthető elemtípus.
- e) A múlt század második felében az egyik legelterjedtebb újratölthető elem volt, azonban egyik komponensének toxicitása miatt mára háttérbe szorult.
- 26. Melyik állítás NEM igaz az üzemanyagcellákról?

- a) nyitott rendszerek
- b) magas hőmérséklet nélkül játszódnak le klasszikus tüzelőanyagok (hidrogén, metán, metanol) oxidációs folyamatai
- c) a modern gépjárművek legelterjedtebb energiaforrása
- d) az űrkutatásban és a haditechnikában évtizedek óta használják
- e) hidrogén alapú tüzelőanyag-cella a hidrogént tartályból, az oxigént a levegőből veszi
- 27. Mit jelent a raffinálás?
- a) fémek (pl: réz) tisztítása elektrolízissel
- b) adott vastagságú fém-oxidréteg kialakítása fémen elektrolízissel
- c) adott vastagságú védő fémréteg kialakítása egy másik fém felületén elektrolízissel
- d) nagy tisztaságú hidrogén előállítása elektrolízissel
- e) alumínium előállítása timföldből
- 28. Mire használják a Bayer-eljárást?
- a) alumínium előállítására timföldből
- b) hidrogén előállítására vízből
- c) benzin előállítására kőolajból
- d) timföld előállítására bauxitból
- e) vas előállítására magnetitből
- 29. Mi az elektromos töltés SI mértékegysége?
- a) Joule
- b) Coulomb
- c) Watt
- d) Volt
- e) Farad
- 30. Mi az elektromos áramerősség SI mértékegysége?
- a) Joule
- b) Coulomb
- c) Amper
- d) Volt
- e) Farad
- 31. Mit jelent a túlfeszültség az elektrokémiában?
- a) extra áramerősség, amelyet az áramkörben mérhetünk
- b) az az állapot, amikor az elektródák közötti potenciálkülönbség nulla
- az az extra feszültség, amelyet az elektrokémiai reakciók beindulásáho szükséges alkalmazni az elméleti feszültséghez képes

- d) az az extra hő, amely az elektrokémiai reakció során keletkezik
- e) az a jelenség, amikor az elektródák anyaga átalakul más anyaggá
- 32. Milyen módon történik az alumínium ipari előállítása?
- a) desztillációval történik bauxitból
- b) termikus bontással történik alumínium-oxidból
- c) elektrolízissel történik timföldből
- d) kémiai redukcióval történik kriolitból
- e) heterogén katalízissel történik bauxitból
- 33. Mit fejeznek ki a Faraday-törvények?
- a) Az elektromos áram hőhatásának mértékét különböző anyagokon.
- b) Az elektrolízis során az elektromos töltés és a kivált anyag mennyisége közötti összefüggést.
- c) A vezetők ellenállásának változását a hőmérséklet függvényében.
- d) Az elektromos tér erősségének hatását egy töltött részecske sebességére.
- e) A különböző ionok mozgékonyságát az oldatokban hőmérséklet-változás hatására.

Fémek

- 1. Melyik NEM nemesfém?
- a) arany
- b) platina
- c) króm
- d) ezüst
- e) palládium
- 2. Az ismert elemek hány százaléka fémes elem?
- a) 75-80%
- b) nagyjából 50%
- c) kb 95%
- d) kevesebb, mint 10%
- e) 20-25%
- 3. Az alábbiak közül melyik könnyűfém?
- a) alumínium
- b) platina
- c) króm

d)	vas
e)	higany
4.	Melyik fémnek a legalacsonyabb az olvadáspontja?
a)	ozmium
b)	platina
c)	nátrium
d)	vas
e)	higany high the second of the
~	
5.	Az alábbiak közül melyik az alumínium érce?
a)	magnetit
b)	galenit
c)	kalkopirit
d)	bauxit
e)	kromit
6.	Az alábbiak közül melyik a vas érce?
a)	magnetit
b)	galenit
c)	kalkopirit
d)	cinnabarit
e)	szfalerit
7.	Melyik NEM jellemző lépése a fémek előállításának?
a)	dúsítás
b)	fordított ozmózis
c)	tisztítás
d)	ötvözés
e)	redukció
0	Az alábbiak közül malvik definísiá falal mag a katádas fámyádalamnak
8.	Az alábbiak közül melyik definíció felel meg a katódos fémvédelemnek?
a)	korróziónak ellenálló oxidréteg kialakítása elektrolízissel
b)	pozitívabb potenciálú fémmel vonják be a védendő fémet
c)	negatívabb potenciálú fémmel vonják be a védendő fémet
d)	a védendő fémet elektromos vezető segítségével egy negatívabb standardpotenciálú fémmel kötik össze
	ICHIHICI KULIK USSZC

- Az alábbiak közül melyik definíció felel meg az eloxálásnak? korróziónak ellenálló oxidréteg kialakítása elektrolízissel 9.
- a)

- b) pozitívabb potenciálú fémmel vonják be a védendő fémet
- c) negatívabb potenciálú fémmel vonják be a védendő fémet
- d) a védendő fémet elektromos vezető segítségével egy negatívabb standardpotenciálú fémmel kötik össze
- 10. Az alábbiak közül melyik definíció felel meg az aktív fémbevonatnak?
- a) korróziónak ellenálló oxidréteg kialakítása elektrolízissel
- b) pozitívabb potenciálú fémmel vonják be a védendő fémet
- c) negatívabb potenciálú fémmel vonják be a védendő fémet
- d) a védendő fémet elektromos vezető segítségével egy negatívabb standardpotenciálú fémmel kötik össze
- 11. Az alábbiak közül melyik definíció felel meg a passzív fémbevonatnak?
- a) korróziónak ellenálló oxidréteg kialakítása elektrolízissel
- b) pozitívabb potenciálú fémmel vonják be a védendő fémet
- c) negatívabb potenciálú fémmel vonják be a védendő fémet
- d) a védendő fémet elektromos vezető segítségével egy negatívabb standardpotenciálú fémmel kötik össze
- 12. Az alábbiak közül melyik nem a fémek korróziójára példa?
- a) vas rozsdásodása
- b) ezüsttárgyak megfeketedése
- c) patina képződése réztárgyakon
- d) fémtartalmú kőzetek mállása
- e) fehérbádog vörös elszíneződése
- 13. Melyik fém előállításának egyik lépése a ciánlúgozás?
- a) alumínium
- b) arany
- c) vas
- d) nátrium
- e) ólom
- 14. Melyik fémet jellemzően NEM elektrolízissel állítják elő?
- a) alumínium
- b) lítium
- c) vas
- d) nátrium
- e) magnézium

- 15. Mi jellemző az alábbiak közül az intersticiális ötvözetekre?
- a) homogének, adott összetétellel és olvadásponttal
- b) az ötvözőatom az eredeti fémkristály szerkezetének üregeit foglalja el
- c) ilyen ötvözet a bronz
- d) a fématom sugara közel megegyező nagyságú, mint az ötvözőatom sugara
- e) összetételük változatos, gyakran nem magyarázható a fémek szokásos vegyértékével
- 16. Mi jellemző az alábbiak közül a vegyület típusú ötvözetekre?
- a) ilyen ötvözet a rozsdamentes acél
- b) az ötvözőatom az eredeti fémkristály szerkezetének üregeit foglalja el
- c) ilyen ötvözet a bronz
- d) a fématom sugara közel megegyező nagyságú, mint az ötvözőatom sugara
- e) összetételük változatos, gyakran nem magyarázható a fémek szokásos vegyértékével
- 17. Mi jellemző az alábbiak közül a helyettesítéses ötvözetekre?
- a) homogének, adott összetétellel és olvadásponttal
- b) az ötvözőatom az eredeti fémkristály szerkezetének üregeit foglalja el
- c) intersticiális ötvözeteknek is nevezik őket
- d) a fématom sugara közel megegyező nagyságú, mint az ötvözőatom sugara
- e) összetételük változatos, gyakran nem magyarázható a fémek szokásos vegyértékével
- 18. A felsorolt tulajdonságok közül melyek jellemzik legjobban a fémes kötésű anyagokat?
- a) puha, nagyon alacsony olvadáspont, rossz elektromos vezető
- b) amorf szilárd anyag, jó elektromos vezető, rossz hővezető
- c) nagyon kemény, nagyon magas olvadáspont, rossz elektromos vezető
- d) változó keménység, változó olvadáspont, jó hővezető
- 19. Melyik sajátság NEM a fémes kötés következménye
- a) szabad elektronok gyorsan át tudják adni egymásnak az energiát (jó hővezetés)
- b) elmozdulás után a rácspontok ugyanolyan környezetbe kerülnek (jó megmunkálhatóság)
- c) lazán kötött elektronok könnyű leadása (nagy reaktivitás)
- d) az elektronok könnyen elmozdulnak a rácson belül (jó elektromos vezetés)
- 20. Melyik fémnek a legnagyobb az elektromos vezetése?
- a) nátrium
- b) ozmium
- c) ezüst
- d) arany
- e) réz

- 21. Melyik állítás HAMIS?
- a) nyújthatóság az anyag húzófeszültség hatására való deformálódó képességét értjük
- b) az arany (Au) a legjobban hengerelhető fém
- c) a platina (Pt) a legjobban nyújtható fém
- d) hengerelhetőség az anyag azon képessége, hogy nyomás hatására deformálódik
- e) fémekben a hővezetés és az elektromos vezetőképesség adott hőmérsékleten fordítottan arányos
- 22. Melyik fém ércét bányásszák globálisan a legnagyobb mennyiségben?
- a) arany
- b) kobalt
- c) alumínium
- d) vas
- e) lítium
- 23. Melyik NEM a korrózió elleni fémbevonat elkészítésének egy lehetséges módja?
- a) galvanizálás
- b) ciánlúgozás
- c) fémszórás
- d) tüzi horganyzás
- 24. Melyik állítás HAMIS?
- a) galvanizálás során elektrolízis segítségével fémréteget hoznak létre
- b) tüzi fémbevonás során a védendő fémtárgyat magas hőmérsékleten kiégetik védő oxidréteget kialakítva
- c) az arany ellenáll az oldott oxigénnek, a savak többségének is
- d) a rozsdamentes acél jellemzően viszonylag nagy krómtartalmú (>10,5%)
- e) egy föld alatti üzemanyagtartály korrózióvédelme kivitelezhető katódos fémvédelemmel
- 25. Jellemzően milyen vegyületeket képeznek a kalkofil fémek?
- a) oxidok
- b) karbonátok
- c) foszfátok
- d) szulfidok
- e) szilikátok
- 26. A periódusos rendszer mely részén helyezkednek el a fémek?
- a) felső két sorban
- b) az utolsó két oszlopban
- c) jobb felül

d) az ún. bór-asztácium (B-At) vonaltól balra

- e) pont középen
- 27. Mik az ércek?
- a) olyan fémek, amelyek már tiszta formában találhatók a természetben, és nem igényelnek további feldolgozást
- b) olyan fémek, amelyeket mesterségesen hoznak létre nukleáris reakciók során
- c) olyan természetes ásványi anyagok, amelyekből gazdaságosan lehet fémeket kinyerni ipari folyamatok során
- d) olyan fémötvözetek, amelyeket közvetlenül a kohókban állítanak elő különböző fémek összekeverésével
- e) olyan fémek, amelyeket kizárólag újrahasznosított anyagokból nyernek ki különböző ipari folyamatok során
- 28. Mi a meddő?
- a) az a fémötvözet, amelyet nem lehet újrahasznosítani a kohászatban
- b) az az anyag, amely a fémek bányászata során keletkezik, de nem tartalmaz gazdaságosan kinyerhető mennyiségű fémet
- c) az a melléktermék, amely a fémek olvasztása során keletkezik és tiszta fémeket tartalmaz
- d) az a salakanyag, amely a fémek öntése során képződik és amelyet építőipari alapanyagként használnak fel
- e) az a folyadék, amely a fémek elektrolízise során marad vissza, és amelyet újra felhasználnak a következő elektrolízis folyamatban
- 29. Mi jellemző az ezüst korróziójára?
- a) az ezüst rozsdásodik, hasonlóan a vashoz, vöröses-barnás bevonatot képezve.
- b) az ezüst korróziója során zöld színű patinát képez, mint a réz
- c) az ezüst teljesen feloldódik a levegő nedvességtartalmának hatására
- d) az ezüst egyáltalán nem korrodálódik
- e) az ezüst korróziója során fekete ezüst-szulfid képződik, ami a levegőben lévő kénhidrogénnel való reakció következménye
- 30. Mi a tűzi horganyzás?
- a) olyan korrózióvédelmi eljárás, amely során az acél- vagy vasalkatrészeket olvadt cinkbe mártják, így védőréteget képezve rajtuk
- b) egy olyan folyamat, amely során az acélfelületeket krómréteggel vonják be, hogy ellenállóbbá váljon
- c) egy festési technika, amely speciális korróziógátló festékeket használ az acél felületén.
- d) egy eljárás, amely során az acélt foszfátozzák a korrózió elleni védelem érdekében. egy módszer, amely során az acélfelületeket műanyagbevonattal látják el

Reakciókinetika

1.	Egy reakciómechanizmus a következő két elemi lépésből áll:									
	$N_2O \square N_2 + O$									
	$N_2O + O \square N_2 + O_2$									
	I. Mi a bruttó reakc	I. Mi a bruttó reakció?								
	a) $N_2 + O \square N_2O$		b) $N_2O \square N_2 + O$ c) $N_2O + O \square N_2 +$			$N_2 + O_2$				
	d) $2N_2O \square 2N_2 + O_2$		e) $N_2 + O_2 \square N_2O + O$							
	II. Mi a reaktáns?									
	a) N ₂	b) O ₂	c) N ₂ O	d) O e)	a felsorolta	k egyike sem				
	III. Mi a köztitermé	k?								
	a) N ₂	b) O ₂	c) N_2O	d) O e)	a felsorolta	k egyike sem				
	IV. Mi a katalizátor									
	a) N_2 b) O_2	$_2$ c) N_2O	d) O e) a fe	lsoroltak eg	gyike sem	V. Mik a				
termé		I) O (N) N O (O	1) 0 1 1		2 / N				
	a) N_2 és O	b) O_2 és N_2	c) N ₂ O és O	a) O_2 es O_2) e) (), (J_2 es N_2				
2.	Egy reakciómechan	uizmus a követko	ező két elemi lé	enésből áll:						
	$H_2O_2 + I^{\square} \square$		ozo nov oromi re	pessor um.						
Н₂О₂	$+ IO^{\square} \square H_2O + O_2 + \square$	_								
11202	I. Mi a bruttó reakc									
	a) $2 \text{ H}_2\text{O}_2 \square 2 \text{ H}_2\text{O} + \text{O}_2$ b) $10^{\square} + \text{H}_2\text{O} \square \text{H}_2\text{O}_2 + 10^{\square}$									
		,								
	•	c) $IO^{\square} + I^{\square} + 2H^{+} \square I_{2} + H_{2}O$ d) $H_{2}O_{2} + IO^{\square} \square H_{2}O + O_{2} + IO^{\square}$ e) $H_{2}O_{2} + I^{\square} \square H_{2}O + IO^{\square}$								
н м	$e_1 H_2 O_2 + 12$ a reaktáns?	$\Box H_2O + IO^2$								
11. 1111		b) O ₂	c) H_2O_2	d) I□	e) IO□					
	III. Mi a köztitermé	, =	$C)$ Π_2 O_2	u) I	6) 10					
		tak egyike sem	b) O ₂	c) H ₂ O ₂	d) I□	e) IO [[]				
	IV. Mi a katalizátor		0) \mathbf{O}_2	C) 11 ₂ O ₂	u) I	e) 10				
o) U			0 4) 10 0) 100	V Mile o t	ormálzalz?					
а) П ₂	₂ O b) a felsoroltak eg	· -				-) IO				
0	a) H ₂ O es O	$_2$ b) O_2 és I^{\square}	c) H ₂ O ₂ és H	₂ O a)	I□ és IO□	e) IO [□] , H ₂ O és				
O_2										
3.	 Az elemi hidrogén (H₂) és az elemi jód (I₂) gázhalmazállapotú reakciójában hidrogénjodi (HI) képződik. A folyamat sebességi egyenlete: r = k[H₂][I₂] 5.1. Mennyi a reakció rendűsége a hidrogénre nézve? a) 0 b) 1 c) 2 d) □1 e) 1/2 f) 3/2 									
٥.										

	5.2. Mennyi a reakció rendűsége a jódra nézve?						
	a) 0 b) 1 c) 2 d) \Box 1 e) 1/2 f) 3/2						
	5.3. Mennyi a reakció bruttó rendűsége?						
	a) 0 b) 1 c) 2 d) \Box 1 e) 1/2 f) 3/2						
4.	Az elemi bróm (Br ₂) és hangyasav (HCOOH) vizes oldatban lezajló reakciójában széndioxid (CO ₂) és hidrogén-bromid (HBr) képződik. A folyamat sebességi egyenlete: <i>r</i>						
	= k[Br ₂] 6.1. Mennyi a reakció rendűsége a hangyasavra nézve?						
	a) 0 b) 1 c) 2 d) □1 e) 1/2 f) 3/2						
	6.2. Mennyi a reakció rendűsége a brómra nézve?						
	a) 0 b) 1 c) 2 d) \Box 1 e) 1/2 f) 3/2						
	6.3. Mennyi a reakció bruttó rendűsége?						
	a) 0 b) 1 c) 2 d) \Box 1 e) 1/2 f) 3/2						
5.	Melyik állítás HAMIS?						
a.	az autokatalizátor gyorsítja a saját képződését						
b.	a katalizátor a reakció végén mindig visszaképződik						
c.	az inhibítor a reakció végén mindig visszaképződik						
d.	nem minden kémiai reakció sebessége növekszik a hőmérséklettel						
e.	az ózonbomlást a freonokból képződő klóratomok katalizálják						
6.	Melyik elmélet NEM a kémiai reakciók sebességének hőmérsékletfüggését jellemzi? a.						
	zési elmélet						
b.	Arrhenius-elmélet						
c.	átmenetiállapot-elmélet						
d.	Lewis-elmélet						
7.	Milyen dimenziójú a reakciósebesség mértékegysége?						
a.	koncentráció×idő ^{□1}						
b.	idő□ı						
c.	koncentráció ^{□1}						
d.	koncentráció×idő ^{□2}						
e.	(koncentráció×idő) ^{□1}						
8.	Milyen kapcsolat van 'A' anyag koncentrációja és a reakciósebesség között, ha 'A'						
részr	endje egy (1).						
a.	nem függ tőle						

- b. egyenes arányosság
- c. négyzetes összefüggés
- d. fordított arányosság
- e. gyökös kapcsolat
- 9. Milyen kapcsolat van 'A' anyag koncentrációja és a reakciósebesség között, ha 'A' részrendje egy (2).
- a) nem függ tőle
- b) egyenes arányosság
- c) négyzetes összefüggés
- d) fordított arányosság
- e) gyökös kapcsolat
- 10. Melyik állítás a homogén katalízisre?
- a. olyan kémiai folyamat, melynek terméke katalizálja saját képződését
- b. olyan kémiai folyamat, melynek katalizátora azonos fázisban van a reaktánsokkal
- c. olyan kémiai folyamat, melynek katalizátora a reaktánsokétól eltérő fázisban van
- d. olyan élő szervezetben lejátszódó metabolikus folyamat, melyet enzimek katalizálnak
- 11. Melyik állítás igaz a heterogén katalízisre?
- a) olyan kémiai folyamat, melynek terméke katalizálja saját képződését
- b) olyan kémiai folyamat, melynek katalizátora azonos fázisban van a reaktánsokkal
- c) olyan kémiai folyamat, melynek katalizátora a reaktánsokétól eltérő fázisban van
- d) olyan élő szervezetben lejátszódó metabolikus folyamat, melyet enzimek katalizálnak
- 12. Melyik állítás igaz az autokatalízisre?
- a) olyan kémiai folyamat, melynek terméke katalizálja saját képződését
- b) olyan kémiai folyamat, melynek katalizátora azonos fázisban van a reaktánsokkal
- c) olyan kémiai folyamat, melynek katalizátora a reaktánsokétól eltérő fázisban van
- d) olyan élő szervezetben lejátszódó metabolikus folyamat, melyet enzimek katalizálnak
- 13. Mit jelent az elemi lépés a reakciókinetikában?
- a) Csak elemek vesznek részt benne
- b) Olyan egyszerű molekuláris esemény, amely néhány kötés hasadásával és létrejöttével
- c) Eldobható elemek áramtermelő folyamata
- d) Újratölhető elemek áramtermelő folyamata
- e) Kémiai elemekből egyszerű vegyületek képződnek
- 14. Melyik állítás HAMIS?
- a) Minden kémiai folyamat sebessége növekszik a hőmérséklettel

- b) A köztitermékek általában rövid életűek és reaktívak
- c) A legtöbb robbanáshoz vezető reakciót biztonságosan is le lehet játszatni
- d) Az oszcillációs reakciókban valamely anyag koncentrációja és valamilyen tulajdonság (pl: szín) periodikusan váltakozik.
- 15. A felsorolt állítások közül melyik **HIBÁS**?
- a. A katalizátor lehet azonos vagy eltérő fázisban a reaktánsokkal.
- b. Az enzimek élő szervezetben előforduló katalizátorok.
- c. A katalizátor a folyamat végén visszaképződik.
- d. A katalizátor növeli a reakciósebességet.
- e. A katalizátor növeli a reaktánsok mozgási energiáját.
- 16. Melyik folyamat NEM megfelelő példa az inhibícióra?
- a) A kadmium egy toxikus nehézfém, mely cinktartalmú enzimek működését képes gátolni.
- b) A penicillin a baktériumok sejtfalának szintéziséért felelős enzimet dezaktiválja.
- c) Hidrazintartalmű festékek lassítják a fémtárgyak korrózióját.
- d) A kataláz enzim a szervezetben képződött hidrogén-peroxid bontását végzi.
- e) Amino-etoxi-vinilglicin (AVG) képes növelni a gyümölcsök eltarthatóságát, mert akadályozza az érést okozó etilén szintézisét.
- 17. A felsorolt állítások közül melyik **HELYES**?
- a) Az ütközési szenzor feladata, hogy a legkisebb érzékelhető ütközés esetén is beinduljon a légzsák felfújását okozó kémiai reakció.
- b) A légzsákban, ütközéskor két folyadék pillanatszerű összekeverése történik, mely során gáz szabadul fel.
- c) A légzsák biztonságos működése megköveteli, hogy nátrium-azidon kívül egyéb segédanyagok is jelen legyenek.
- d) A nátrium-azid hőbomlása során képződő nátriumgőz fújja fel a légzsákot.
- e) A kereskedelmi forgalomban elérhető légzsákok többsége sűrített levegőt tartalmaz.
- 18. Melyik állítás HAMIS?
- a) gyökök párosítatlan elektronnal rendelkező részecskék
- b) a robbanások lángterjedési sebessége jellemzően meghaladja a hangsebességet
- c) az oszcillációs reakciók összetett mechanizmus szerint játszódnak le
- d) az autokatalízisre jellemző a szigmoid alakú kinetikai görbe
- e) biztonságos működés miatt a légzsákba nátrium-azid mellett elemi nátriumot és káliumot is tesznek
- 19. Mit fejez ki a felezési idő?

- a. Az az idő, amely alatt egy adott anyag mennyiségének fele lebomlik vagy átalakul.
- b. Az az idő, amely alatt egy reakciósebesség megduplázódik.
- c. Az az idő, amely alatt egy oldat pH-ja eléri a semleges értéket.
- d. Az az idő, amely alatt egy gáz térfogata feleződik állandó hőmérsékleten.
- e. Az az idő, amely alatt egy katalizátor elveszíti aktivitásának felét.
- 20. Mi az a hideggázas légzsák?
- a) Egy olyan légzsák, amely a környezeti levegőt használja fel felfújódáskor.
- b) Egy légzsák, amely vegyi reakcióval keletkező hőt és gázt használ a felfújódáshoz.
- c) Egy olyan légzsák, amely kizárólag elektromos árammal fújódik fel.
- d) Egy olyan légzsák, amely sűrített gázzal van feltöltve, és mechanikusan nyílik ki.
- e) Egy speciális légzsák, amelyet csak alacsony hőmérsékletű környezetben használnak.
- 21. Mi az a kémiai oszcilláció?
- a. Egy reakció, amely csak nagyon alacsony hőmérsékleten játszódik le.
- b. Egy kémiai reakció, amelyben az anyagok koncentrációja periodikusan változik az időben.
- c. Egy kémiai reakció, amelyben az anyagok keveredése nem teljes.
- d. Egy reakció, amely során az energia kizárólag fény formájában szabadul fel.
- e. Egy reakció, amely csak külső mechanikai hatásra indul el.

Termokémia

- 1. Melyik NEM a potenciális energia egyik típusa?
- a. kémiai energia
- b. nukleáris energia
- c. rugalmas energia
- d. gravitációs energia
- e. termikus energia
- 2. Melyik NEM a kinetikus energia egyik típusa?
- a. kémiai energia
- b. mozgási energia
- c. elektromágneses energia
- d. elektromos energia
- e. termikus energia
- 3. Melyik NEM az energia mértékegysége?
- a. elektronvolt

- b. joule
- c. erg
- d. volt
- e. kalória
- 4. Mit NEM tárgyal a termodinamika?
- a. fázisátalakulások entalpiaváltozását
- b. kémiai folyamatok hőváltozását
- c. energiafajták egymásba alakíthatóságát
- d. spontán folyamatok irányát
- e. redoxireakciók sebességét
- 5. Mi NEM igaz a hőre?
- a. mindig a melegebb test felől a hidegebb irányába áramlik spontán folyamatban
- b. a részecskék rendezetlen mozgásából származik
- c. átalakítható más energiafajtává, de nem teljes mértékben
- d. állapotfüggvény
- e. ha egy rendszer hőt vesz fel, belső energiája nő
- 6. Melyik elemnek NEM zérus a standard képződési entalpiája?
- a. $I_2(s)$
- b. $Br_2(1)$
- c. $O_3(g)$
- d. C(sz, grafit)
- e. $O_2(g)$
- 7. Melyik termodinamikai mennyiségnek nem joule az SI mértékegysége?
- a. hő
- b. szabadentalpia
- c. entalpia
- d. entrópia
- e. belső energia
- 8. Egy fékező autó kinetikus energiát hővé alakít át. Melyik törvényre példa ez?
- a. energiamegmaradás törvénye
- b. Coulomb-törvény
- c. tömegmegmaradás törvénye
- d. gravitáció törvénye
- 9. Melyik állítás HELYTELEN az entrópiával kapcsolatban?

- a. állapotfüggvény
- b. egy rendszer rendezetlenségét jellemzi
- c. relatív mennyiség
- d. izolált rendszerben a spontán folyamatok irányát jelzi
- e. SI egysége J/K
- 10. Melyik NEM állapotfüggvény?
- a. entrópia
- b. belső energia
- c. hő
- d. entalpia
- e. szabadentalpia
- 11. Melyik állítás HAMIS a belső energiára?
- a. abszolút értéke nem határozható meg
- b. állapotfüggvény
- c. izolált rendszerben mennyisége állandó
- d. rendszer teljes energiáját jellemzi beleértve a részecskék mozgásából származó kinetikus energiát, valamint a kémiai és nukleáris energiát e. SI mértékegysége J/K
- 12. Melyik állítás HELYTELEN a szabadentalpiával kapcsolatban?
- a. állapotfüggvény
- b. korábbi elnevezése Gibbs-energia
- c. abszolút mennyiség
- d. zárt rendszerben a spontán folyamatok irányát jelzi
- e. SI egysége J
- 13. A felsorolt reakciók közül melyik használható a nátrium-hipoklorit (NaOCl) képződési entalpiájának a definiálásához?
- a. $Na_2O(s) + Cl_2(g) \square NaOCl(s) + NaCl(s)$
- b. Na $(s) + O(g) + Cl(g) \square NaOCl(s)$
- c. Na (s) + $\frac{1}{2}O_2$ (g) + $\frac{1}{2}Cl_2$ (g) \square NaOCl (s)
- d. NaCl (s) + $\frac{1}{2}O_2$ (g) \square NaOCl (s)
- e. NaClO₃ (s) \square NaOCl (s) + O₂ (g)
- 14. A felsorolt reakciók közül melyik használható a hidrogén-peroxid képződési entalpiájának a definiálásához?
- a. $2H_2O(1) \square H_2O_2(1) + H_2(g)$
- b. $2H(g) + O_2(g) \square H_2O_2(l)$

- c. $H_2(g) + O_2(g) \square H_2O_2(l)$
- d. $2H(g) + 2O(g) \square H_2O_2(1)$
- e. $H_2O(1) + \frac{1}{2}O_2(g) \square H_2O_2(1)$
- 15. Mennyi a belső energia megváltozása olyan folyamatban, amelyben a rendszer 120 kJ hőt ad le a környezetének és egyúttal 80 kJ munkát végez a környezeten?
- a. –200 kJ
- b. –40 kJ
- c. 40 kJ
- d. 200 kJ
- 16. Melyik állítás igaz a belső energiára?
- a. megadja a rendszer maximális (nem térfogati) munkáját állandó hőmérsékleten és nyomáson
- b. a rendszer a molekuláris rendezetlenségének mértékét jellemzi
- c. rendszer teljes energiáját jellemzi beleértve a részecskék mozgásából származó kinetikus energiát, valamint a kémiai és nukleáris energiát
- d. megadja az állandó nyomáson mért hőváltozást
- 17. Melyik állítás igaz a szabadentalpiára?
- a. megadja a rendszer maximális (nem térfogati) munkáját állandó hőmérsékleten és nyomáson
- b. a rendszer a molekuláris rendezetlenségének mértékét jellemzi
- c. rendszer teljes energiáját jellemzi beleértve a részecskék mozgásából származó kinetikus energiát, valamint a kémiai és nukleáris energiát
- d. megadja az állandó nyomáson mért hőváltozást
- 18. Melyik állítás igaz az entalpiára?
- a. megadja a rendszer maximális (nem térfogati) munkáját állandó hőmérsékleten és nyomáson
- b. a rendszer a molekuláris rendezetlenségének mértékét jellemzi
- c. rendszer teljes energiáját jellemzi beleértve a részecskék mozgásából származó kinetikus energiát, valamint a kémiai és nukleáris energiát
- d. megadja az állandó nyomáson mért hőváltozást
- 19. Melyik állítás igaz az entrópiára?
- a. megadja a rendszer maximális (nem térfogati) munkáját állandó hőmérsékleten és nyomáson
- b. a rendszer a molekuláris rendezetlenségének mértékét jellemzi

- c. rendszer teljes energiáját jellemzi beleértve a részecskék mozgásából származó kinetikus energiát, valamint a kémiai és nukleáris energiát
- d. megadja az állandó nyomáson mért hőváltozást
- 20. Mi a lobbanáspont definíciója?
- a) az a legalacsonyabb hőmérséklet, amelynél egy éghető folyadék gőzei a gyújtóforrás eltávolítása után is folyamatosan égnek
- b) az a legalacsonyabb hőmérséklet, amelyen az anyagból felszabaduló gőzök vagy gázok atmoszférikus nyomáson levegővel keveredve spontán meggyulladnak
- c) az a legalacsonyabb hőmérséklet, amelynél egy éghető folyadék olyan mennyiségű gázt vagy gőzt bocsát ki, hogy egy gyújtóforrás hatására belobban
- d) az a hőmérséklet, amelyen folyadék gőznyomása eléri a külső nyomást
- 21. Mi az öngyulladási hőmérséklet definíciója?
- a) az a legalacsonyabb hőmérséklet, amelynél egy éghető folyadék gőzei a gyújtóforrás eltávolítása után is folyamatosan égnek
- b) az a legalacsonyabb hőmérséklet, amelyen az anyagból felszabaduló gőzök vagy gázok atmoszférikus nyomáson levegővel keveredve spontán meggyulladnak
- c) az a legalacsonyabb hőmérséklet, amelynél egy éghető folyadék olyan mennyiségű gázt vagy gőzt bocsát ki, hogy egy gyújtóforrás hatására belobban
- d) az a hőmérséklet, amelyen folyadék gőznyomása eléri a külső nyomást
- 22. Mi a gyulladáspont definíciója?
- a) az a legalacsonyabb hőmérséklet, amelynél egy éghető folyadék gőzei a gyújtóforrás eltávolítása után is folyamatosan égnek
- b) az a legalacsonyabb hőmérséklet, amelyen az anyagból felszabaduló gőzök vagy gázok atmoszférikus nyomáson levegővel keveredve spontán meggyulladnak
- c) az a legalacsonyabb hőmérséklet, amelynél egy éghető folyadék olyan mennyiségű gázt vagy gőzt bocsát ki, hogy egy gyújtóforrás hatására belobban
- d) az a hőmérséklet, amelyen folyadék gőznyomása eléri a külső nyomást
- 23. Melyik anyagnak van csak egy féle fűtőértéke (azaz nincs különbség az alsó és felső fűtőérték között)?
- a) grafit
- b) gázolaj
- c) kerozin
- d) bioetanol
- e) metán
- 24. Melyik állítás HAMIS?

a) elvárás, hogy a benzinnak viszonylag alacsony lobbanáspontja legyen a könnyű gyújthatóság miatt

b) elvárás, hogy a gázolajnak alacsony lobbanáspontja legyen, hogy gyújtóforrás könnyen elindítsa az égést

- c) elvárás, hogy a benzinnek magas öngyulladási hőmérséklete legyen, mert káros, ha szikragyújtás előtt beindul az égés
- d) elvárás, hogy a gázolajnak viszonylag alacsony öngyulladási hőmérséklete legyen, mert nincs a dízelmotorban gyújtóforrás
- 25. Mit mond ki a Hess-tétel?
- a) egy kémiai reakció során az energia nem vész el, csak átalakul más formába.
- b) a reakció sebessége függ a reagensek koncentrációjától és a hőmérséklettől
- c) a kémiai reakciók csak akkor mennek végbe, ha a Gibbs-szabadentalpia-változása negatív
- d) egy kémiai reakció entalpiaváltozása csak a kezdeti és végállapot entalpiájától függ, és független a reakció útjától
- e) az exoterm reakciók során a termékek mindig stabilabbak, mint a kiindulási anyagok
- 26. Mikor zérus egy kémiailag tiszta anyag standard képződési entrópiája?
- a) abszolút nulla fokon (0 K hőmérsékleten)
- b) ha a nyomás 1 atm és a hőmérséklet 25°C
- c) amikor az anyag folyékony fázisban van és a hőmérséklet 100°C
- d) ha az anyag gázhalmazállapotban van standard körülmények között
- e) abszolút nulla fokon (0°C hőmérsékleten)
- 27. Mit jelent az, hogy egy anyag pirofóros?
- a) magas hőmérsékleten bomlik el
- b) levegővel érintkezve spontán meggyullad
- c) nagy nyomáson képes égni
- d) csak vízzel érintkezve gyullad meg
- e) színtelen lánggal ég
- 28. Az alábbiak közül mi igaz a nyílt termodinamikai rendszerre?
- a) energiaáramlás NEM, de anyagáramlás lehetséges a rendszer és környezete között
- b) anyag- és energiaáramlás is lehetséges a rendszer és környezete között
- c) anyagáramlás NEM, de energiaáramlás lehetséges a rendszer és környezete között
- d) sem anyag --, sem energiaáramlás nem lehetséges a rendszer és környezete között
- 29. Az alábbiak közül mi igaz a zárt termodinamikai rendszerre?
- a) energiaáramlás NEM, de anyagáramlás lehetséges a rendszer és környezete között
- b) anyag- és energiaáramlás is lehetséges a rendszer és környezete között

c) anyagáramlás NEM, de energiaáramlás lehetséges a rendszer és környezete között

- d) sem anyag --, sem energiaáramlás nem lehetséges a rendszer és környezete között
- 30. Az alábbiak közül mi igaz az izolált termodinamikai rendszerre?
- a) energiaáramlás NEM, de anyagáramlás lehetséges a rendszer és környezete között
- b) anyag- és energiaáramlás is lehetséges a rendszer és környezete között
- c) anyagáramlás NEM, de energiaáramlás lehetséges a rendszer és környezete között
- d) sem anyag --, sem energiaáramlás nem lehetséges a rendszer és környezete között

Hajtóanyaggyártás

1) Melyik NEM jellemző komponense a földgáznak? a)

Etán

- b) Propán
- c) Metán
- d) Etanol
- e) Bután
- 2) Mi NEM jellemző nyers kőolaj frakcionált desztillációjának maradékára? a) Nagy moláris tömeg
- b) Magas forráspont
- c) Nagy viszkozitás
- d) Magas gyúlékonyság
- e) Kis illékonyság
- 3) Miért van szükség a nyersbenzin kénmentesítésére? a)

A kén zöld színűre festi a benzint.

- b) A kén növeli a nyersbenzin fagyáspontját
- c) A kén és vegyületei jellemzően katalizátormérgek
- d) A kén katalitikusan elbontja a benzint hidrogénre és szénre.
- e) A kén és vegyületeinek elégetéskor erősen bázikus anyagok szabadulnak fel.
- 4) Mi a viszkozitástörés?
- a) kisebb szénhidrogének katalitikus összekapcsolása
- b) olyan kémiai átalakítás, melyben a kiindulási anyagok és termékek összegképlete azonos, de szerkezete eltérő
- c) enyhe (kis konverziójú) termikus krakkolás
- d) erélyes (nagy konverziójú) termikus krakkolás
- 5) Mi az alkilezés?
- a) kisebb szénhidrogének katalitikus összekapcsolása
- b) olyan kémiai átalakítás, melyben a kiindulási anyagok és termékek összegképlete azonos, de szerkezete eltérő
- c) enyhe (kis konverziójú) termikus krakkolás
- d) erélyes (nagy konverziójú) termikus krakkolás
- 6) Mi a kokszolás?
- a) kisebb szénhidrogének katalitikus összekapcsolása
- b) olyan kémiai átalakítás, melyben a kiindulási anyagok és termékek összegképlete azonos, de szerkezete eltérő
- c) enyhe (kis konverziójú) termikus krakkolás

d) erélyes (nagy konverziójú) termikus krakkolás

- 7) Mi az izomerizáció?
- a) kisebb szénhidrogének katalitikus összekapcsolása
- olyan kémiai átalakítás, melyben a kiindulási anyagok és termékek összegképlete azonos, de szerkezete eltérő
- c) enyhe (kis konverziójú) termikus krakkolás
- d) erélyes (nagy konverziójú) termikus krakkolás
- 8) Melyik petrolkémiai eljárásnak nem alapvető célja a benzin oktánszámnövelése? a) katalitikus reformálás
- b) alkilezés
- c) kéntelenítés
- d) izomerizáció
- 9) Melyik állítás HAMIS?
- a) definíció szerint a kőolaj vákuumdesztillációja nem petrolkémiai eljárás
- b) a földgáz szénhidrogén alapú gázok gyúlékony elegye
- c) műanyagok, festékek és kozmetikumok között is vannak petrolkémiai termékek
- d) a kőolaj antropogén eredetű ásványi termék
- e) a kőolaj sötét színű, vízzel nem elegyedő folyadék
- 10) Az alábbiak közül melyik NEM katalitikus eljárás? a)

hidrokrakkolás

- b) alkilezés
- c) kokszolás
- d) izomerizáció
- e) reformálás
- 11) Az alábbiak közül melyik NEM a nyers kőolaj egy komponenscsaládját jelöli?
- a) aromások
- b) paraffinok
- c) polimerek
- d) naftének
- 12) Melyik állítás NEM igaz?
- a) Oxigenátoknak nevezik azokat az adalékanyagokat, amelyek növelik a benzin oxigéntartalmát
- b) A reformálás során képződő hidrogént a hidrokrakkolás során fel lehet használni.
- c) Krakkolás során C-C kötés vagy C-H kötés felszakadása következik be
- d) Frakcionált desztilláció során a hasonló forráspontú komponensek kinyerése a cél

e) A nyers kőolaj természetes eredetű, sötét színű, a víznél nagyobb sűrűségű folyadék.

- 13) Az alábbiak közül melyik NEM oxigenát típusú adalékanyag? a) Metil-terc-butil-éter, MTBE
- b) Etanol
- c) Etil-terc-butil-éter, ETBE
- d) Benzol
- e) Metanol
- 14) Melyik állítás HAMIS?
- a) A polimerek döntő többségét földgázból és kőolajból állítják elő
- b) A világ legnagyobb mennyiségben gyártott polimere a teflon
- c) Az 5-10 szénatomos, elágazó láncú szénhidrogének jellemzően értékes benzinkomponensek
- d) A motorhajtóanyagok kéntelenítése hidrogénezéssel történik
- e) A lepárlási (straight-run) benzin mennyisége túl kevés ahhoz, hogy a globális igényt fedezze.
- 15) Melyik ország rendelkezik a világ legnagyobb ismert kőolajkészletével?
- a) USA
- b) Szaúd-Arábia
- c) Oroszország
- d) Venezuela
- e) Magyarország
- 16) Melyik ország termeli ki a legtöbb kőolajat az alábbiak közül?
- a) USA
- b) Kanada
- c) Ausztrália
- d) Venezuela
- e) Magyarország
- 17) Mely elemből van a legnagyobb mennyiségben (tömeg%) a nyers kőolajban? a) hidrogén
- b) kén
- c) vas
- d) szén
- e) oxigén
- 18) Melyik állítás IGAZ?

a) az elmúlt 40 évben gyorsabban ismertek meg új kőolajlelőhelyeket, mint amilyen ütemben az emberiség felhasználta a kőolajat

b) természetes eredetű kőzetek bomlásával, átalakulásával keletkezett a kőolaj

- c) desztilláció során az illékonyabb komponens a forrásban lévő folyadékfázisban dúsul fel
- d) a nyers kőolaj lepárlási maradékát autógázként hasznosítják
- e) a lepárlási benzin kiváló oktánszámú (90-100), a kőolajfinomítás során már csak a mennyiségét kell növelni
- 19) Jellemzően mely fosszilis energiahordozónak a legkisebb a kéntartalma? a) kőolaj
- b) feketekőszén
- c) barnakőszén
- d) földgáz
- 20) Mire lehet használni a katalitikus reformálás során képződő hidrogéngázt? a) alumíniumgyártás

b) kénmentesítés

- c) sörfőzés
- d) kipufogógáz-kezelés
- e) katódos fémyédelem
- 21) Mi a kokszolás?
- a) egy eljárás, amely során a kőolajat magas hőmérsékleten elpárologtatják és az így keletkező gőzt desztillálják
- b) egy kőolajfinomítási eljárás, amelynek során a nehéz kőolajfrakciókból hőkezeléssel kokszot állítanak elő
- c) egy kémiai folyamat, amely során a kőolajból alkoholt állítanak elő
- d) egy olyan finomítási eljárás, amelynek célja a kőolajból származó szilárd szennyeződések eltávolítása
- e) egy eljárás, amely során a kőolajat alacsony hőmérsékleten folyékony fázisban tartják, hogy könnyű frakciókat nyerjenek ki belőle
- 22) Melyik kőolajfrakciót használják jellemzően repülőgép-hajtóanyagként? a) gázolaj
- b) fűtőolaj
- c) dízelolaj
- d) kerozin
- e) LPG
- 23) Melyik állítás NEM igaz?

- a) Oxigenátoknak nevezik azokat az adalékanyagokat, amelyek növelik a benzin oxigéntartalmát
- b) A reformálás során képződő hidrogént a kénmentesítés során fel lehet használni.
- c) Krakkolás során O-O kötés vagy O-H kötés felszakadása következik be
- d) A földgáz jellemzően kevesebb ként tartalmaz, mint a kőszenek.
- e) A nyers kőolaj természetes eredetű, sötét színű, a víznél kisebb sűrűségű folyadék.
- 24) Az alábbiak közül melyik NEM egy kőolajfinomítási termék? a) alkilátum
- b) reformátum
- c) asszociátum
- d) izomerizátum
- 25) Melyik vegyület NEM aromás? a)

benzol

- b) sztirol
- c) izooktán
- d) toluol
- e) α-metil-naftalin

ICEV

- 1. Az alábbiak közül mi NEM jellemző a benzinre?
- a. kisebb sűrűségű, mit a gázolaj
- b. kisebb sűrűségű, mint a víz
- c. a kőolaj viszonylag kis forráspontú (fp < 200°C) komponensei alkotják
- d. jellemzően karbonsavak, savamidok és észterek alkotják
- e. a magas oktánszán előnyös sajátsága
- 2. Az alábbiak közül mi jellemző a gázolajra?
- a. kisebb sűrűségű, mit a benzin
- b. nagyobb sűrűségű, mint a víz
- c. a kőolaj viszonylag kis forráspontú (fp < 200°C) komponensei alkotják
- d. a magas cetánszám előnyös sajátsága
- e. a jó kompressziótűrés előnyös sajátsága
- 3. Mi a légfelesleg tényező?
- a. az égéshez vezetett levegő mennyisége és az elméleti levegőszükséglet hányadosa
- b. az elméleti levegőszükséglet és égéshez vezetett levegő mennyiségének hányadosa
- c. az égéshez vezetett levegő mennyisége

- d. az elméleti levegőszükséglet
- 4. Milyen légfelesleg optimális a maximális teljesítményhez a benzinmotorokban?
- a. picit kisebb, mint sztöchiometrikus ($\Box\Box = 0.90-0.95$)
- b. picit nagyobb, mint sztöchiometrikus ($\square \square = 1,1-1,2$)
- c. jóval kisebb, mint sztöchiometrikus ($\square \square = 0,2-0,4$)
- d. jóval nagyobb, mint sztöchiometrikus (□□=10-15)
- 5. Milyen légfelesleg optimális a kedvező fajlagos fogyasztáshoz a benzinmotorokban?
- a. picit kisebb, mint sztöchiometrikus ($\square \square = 0.90-0.95$)
- b. picit nagyobb, mint sztöchiometrikus ($\square \square = 1,05-1,1$)
- c. jóval kisebb, mint sztöchiometrikus ($\Box\Box=0,2-0,4$)
- d. jóval nagyobb, mint sztöchiometrikus ($\square \square = 10-15$)
- 6. Milyen légfelesleg optimális a háromutas katalizátor megfelelő működéséhez?
- a. picit kisebb, mint sztöchiometrikus ($\square \square = 0.90-0.95$)
- b. picit nagyobb, mint sztöchiometrikus ($\square \square = 1,05-1,1$)
- c. jóval kisebb, mint sztöchiometrikus ($\Box\Box=0,2-0,4$)
- d. jóval nagyobb, mint sztöchiometrikus ($\square \square = 10-15$)
- e. sztöchiometrikus (□□=1)
- 7. Mit jelent az, hogy a benzin 98-as oktánszámú?
- a. 98 V/V% izooktánt és 2 V/V% n-heptánt tartalmaz
- b. 98 V/V% n-heptánt és 2 V/V% izooktánt tartalmaz
- c. olyan a kompressziótűrése, mint a 98 V/V% izooktánt és 2 V/V% n-heptánt tartalmazó elegynek
- d. olyan a kompressziótűrése, mint a 98 V/V% n-heptánt és 2 V/V% izooktánt tartalmazó elegynek
- e. olyan az öngyulladási hajlama, mint a 98 V/V% izooktánt és 2 V/V% n-heptánt tartalmazó elegynek
- 8. Mit jelent az, hogy a gázolaj 45-ös cetánszámú?
- a. 45 V/V% n-cetánt és 55 V/V% □-metilnaftalint tartalmaz
- b. 45 V/V% □-metilnaftalint és 55 V/V% n-cetánt tartalmaz
- c. olyan az öngyulladási hajlama, mint a 45 V/V% n-cetánt és 55 V/V% □-metilnaftalint tartalmazó elegynek
- d. olyan a kompressziótűrése, mint a 45 V/V% n-cetánt és 55 V/V% □-metilnaftalint tartalmazó elegynek

- e. olyan az öngyulladási hajlama, mint a 45 V/V% □-metilnaftalint és 55 V/V% n-cetánt tartalmazó elegynek
- 9. Az üzemanyag mely sajátsága előnyös a dízelmotorokban?
- a. termikus instabilitás
- b. erősen savas kémhatás
- c. erős oxidáló hatás
- d. jó kompressziótűrés
- e. intenzív fényelnyelés
- 10. Az üzemanyag mely sajátsága előnyös a benzinmotorokban?
- a. termikus instabilitás
- b. erősen savas kémhatás
- c. erős oxidáló hatás
- d. jó kompressziótűrés
- e. intenzív fényelnyelés
- 11. Mit jelent az, hogy kopog a motor?
- a. fékezés során leszakadó apró szemcsék nekiütődnek a gépkocsi alvázának
- b. a sűrítési ütemben, az elektromos szikra után, az égéstér több pontjából is elindul az égés
- c. az elektromos szikra hatására sem indul meg az égés a motorban
- d. a tökéletlen égés során képződő koromrészecskék nekiütődnek a katalizátor falának
- e. a tökéletlen égés során képződő koromrészecskék kilyukasztják a motor falát
- 12. Mely vegyület NEM alkalmas az oktánszám növelésére?
- a. ólom-tetraetil
- b. etanol
- c. n-hexadekán (cetán)
- d. toluol
- e. metanol
- 13. Mi NEM igaz a bioetanolt is tartalmazó benzinnel hajtott autó kibocsátására?
- a. kevesebb szén-monoxidot bocsát ki, mint a tisztán benzines
- b. kevesebb kormot bocsát ki, mint a tisztán benzines
- c. kevesebb szénhidrogént bocsát ki, mint a tisztán benzines
- d. kevesebb acetaldehidet bocsát ki, mint a tisztán benzines
- 14. Mi NEM igaz a biodízelt is tartalmazó gázolajjal hajtott autó kibocsátására?
- a. kevesebb szén-monoxidot bocsát ki, mint a csak gázolajjal hajtott
- b. kevesebb kormot bocsát ki, mint a csak gázolajjal hajtott

- c. kevesebb szénhidrogént bocsát ki, mint a csak gázolajjal hajtott
- d. kevesebb nitrogén-oxidot bocsát ki, mint a csak gázolajjal hajtott
- 15. Mit jelent az E10 jelölés?
- a) a benzin 10V/V% bioetanolt tartalmaz
- b) a dízelolaj 10V/V% biodízelt tartalmaz
- c) a dízelolaj 10V/V% biometanolt tartalmaz
- d) a benzin 10V/V% biogázt tartalmaz
- e) a benzin 10V/V% biooktánt tartalmaz
- 16. Hogyan lehet biodízelt nyerni növényi olajokból?
- a. oxidációval
- b. redukcióval
- c. sav-bázis reakcióval
- d. termikus bontással
- e. átészteresítéssel
- 17. Az alábbiak közül melyik NEM a dízelmotorra jellemző?
- a) Az első ütemben csak levegő kerül az égéstérbe
- b) A mennyiségszabályozás elvén alapul a fordulatszám módosítása
- c) Működés során többnyire oxigénben dús körülmények közt történik az égés
- d) A gázolaj-levegő elegy begyújtása nem igényel elektromos szikrát
- e) Az égéstermékek a negyedik ütemben ürülnek az égéstérből
- 18. Az alábbiak közül melyik nem tekinthető tüzelőanyagnak?
- a) benzin
- b) gázolaj
- c) tűzifa
- d) ablakmosó folyadék
- e) kerozin
- 19. Az alábbiak közül melyik nem tekinthető egy gépkocsi üzemanyagának?
- a) benzin
- b) gázolaj
- c) tűzifa
- d) hűtőfolyadék
- e) fékolaj
- 20. Az alábbiak közül melyik nem tekinthető egy gépkocsi hajtóanyagának?
- a) benzin
- b) gázolaj

c)	bioetanol
d)	fékolaj
e)	biodízel
C)	biodizei
21.	Az alábbiak közül melyik járműtípus tekinthető tisztán elektromosnak?
a)	REX
b)	BEV
c)	PHEV
d)	HEV
22.	Milyen színű az etanol-levegő előkevert elegyének lángja?
a)	színtelen
b)	sárga
c)	<mark>kék</mark>
d)	vörös
e)	zöld
23.	Milyen színű a kormozó láng?
a)	színtelen
b)	<mark>sárga</mark>
c)	kék
d)	vörös
e)	fekete
2.4	
24.	Az alábbiak közül melyiknek 100 a cetánszáma?
a)	n-heptán
b)	izocetán
	n-hexadekán
d)	izooktán
e)	□-metilnaftalin
25	A 1211: 1 1:11:11 " / / "
25.	Az alábbiak melyik külső égésű motor?
a.	benzinmotor
b.	dízelmotor
c.	gőzgép
d.	Otto-motor
26.	Mi a különbség az égés és a robbanás között?
a.	az égés mindig alacsony hőmérsékleten zajlik, míg a robbanás magas hőmérsékleten
a.	történik

- b. az égéshez oxigén szükséges, míg a robbanáshoz nem
- c. az égés folyékony anyagok esetén történik, míg a robbanás csak szilárd anyagokkal fordul elő
- d. az égés egy lassabb oxidációs folyamat, míg a robbanás egy nagyon gyors oxidációs reakció.
- e. az égés során nincs hőfejlődés, míg a robbanás mindig nagy hőfelszabadulással jár.
- 27. Mi NEM tartozik az égés alapvető feltételei közé?
- a. az égést katalizáló anyag
- b. megfelelő hőmérséklet
- c. oxidálószer
- d. éghető anyag
- 28. Mit jelent a mennyiségszabályozás elve belső égésű motoroknál?
- a) hogy a motor teljesítményét a hűtőfolyadék mennyiségének szabályozásával változtatják.
- b) hogy a motor teljesítményét az égéstér térfogatának változtatásával szabályozzák.
- c) hogy a motor teljesítményét a kipufogógáz mennyiségének szabályozásával változtatják.
- d) hogy a motor teljesítményét az éghető keverék (levegő-üzemanyag keverék) mennyiségének szabályozásával változtatják.
- e) hogy a motor teljesítményét az olajnyomás szabályozásával változtatják.
- 29. Mire használták az ólom-tetraetilt belső égésű motoroknál?
- a) oktánszámnövelőként használták, hogy csökkentsék a kopogást a motorokban
- b) hűtőfolyadékként használták, hogy megakadályozzák a motor túlmelegedését
- c) kenőanyagként használták, hogy csökkentsék a motor súrlódását
- d) tisztítószerként használták, hogy eltávolítsák a lerakódásokat a motorból
- e) üzemanyag-adalékként használták, hogy növeljék az üzemanyag energiatartalmát

Emissziócsökkentés

- 1. Az alábbiak közül négy a gépjárművek ún. nem kipufogógáz eredetű légszennyezési formája. Melyik nem az? a) gumi kopása
- b) aszfalt (út) kopása
- c) útra ülepedett por reszuszpenziója
- d) autómosáskor keletkező szennyvíz kiöntése
- e) fék kopása
- 2. Mi HAMIS a koromképződésre- és kibocsátásra?
- a) apró szénszemcsék nagyobb fajlagos felülettel rendelkeznek
- b) dízelmotorokra jobban jellemző, mint benzinmotorokra
- c) a szénhidrogének oxidációja során először a hidrogéntartalom ég el
- d) a korom és a PAH vegyületek egyaránt károsak az emberi szervezetre
- e) szelektív katalitikus redukcióval hatékonyan csökkenthető a koromkibocsátását
- 3. Az alábbiak közül melyik kipufogógáz-komponens NEM a tökéletlen égés miatt keletkezik?
- a) Szén-monoxid
- b) PAH-gázok
- c) Szén-dioxid
- d) Korom
- 4. Az alábbiak közül melyik származhat nem kipufogógáz eredetű emisszióból?
- a) Szén-monoxid
- b) PAH-gázok
- c) Szén-dioxid
- d) Szilárd részecskék (PM)
- e) Nitrogén-dioxid
- 5. Mi a katalitikusan aktív komponens a háromutas katalizátorban?
- a) Egy méhsejtes kerámiatest
- b) A karbamid
- c) Egy szilícium-alumínium-tartalmú réteg
- d) Különböző nemesfémek
- e) A lambda-szonda
- 6. Melyik állítás IGAZ?
- a) A lambda-szonda feladata a koromrészecskék eltávolítása
- b) A kétutas katalizátor hatékonyan eltávolítja a nitrogén-oxidokat

- c) A háromutas katalizátor dízelmotoros járművekben elterjedt
- d) A háromutas katalizátor a kéntartalmú szennyezőket oxidatív és reduktív módon is átalakíthatja
- e) A dízelmotoros járművekben a szelektív katalitikus redukció hatékonyan csökkenti a koromkibocsátást.
- 7. Az alábbi kipufogógáz-komponensek közül melyik NEM mérgező?
- a) szén-monoxid
- b) szén-dioxid
- c) nitrogén-dioxid
- d) PAH-vegyületek
- e) acetaldehid
- 8. A háromutas katalizátor melyik anyag emisszióját NEM csökkenti?
- a) szén-monoxid
- b) szén-dioxid
- c) nitrogén-dioxid
- d) nitrogén-monoxid
- e) elégetetlen szénhidrogének
- 9. Milyen típusú folyamatot katalizál a kétutas katalizátor?
- a) redukció
- b) polimerizáció
- c) sav-bázis reakció
- d) oxidáció
- e) termikus krakkolás
- 10. Milyen típusú folyamatot katalizál a háromutas katalizátor?
- a) redoxireakció
- b) polimerizáció
- c) sav-bázis reakció
- d) alkilezés
- e) termikus krakkolás
- 11. Mi(k) nem jellemző komponensei a gépjárművek kipufogógázának?
- a) vízgőz
- b) szén-dioxid
- c) freonok
- d) szén-monoxid
- e) nitrogén-oxidok

- 12. Az alábbiak közül mely körülmény kedvez a tökéletlen égésnek?
- a) hosszú égési idő
- b) jó keveredés
- c) nagy levegőfelesleg
- d) alacsony égési hőmérséklet
- e) magas oxigéntartalom
- 13. Hogyan működik a dízel részecskeszűrő?
- a) a kipufogógázokban lévő szén-dioxidot redukcióval szilárd részecskékké alakítja.
- b) a kipufogógázokat vízzel permetezi le, hogy a szilárd részecskék leülepedjenek.
- a kipufogógázokban lévő szilárd részecskéket mágneses mezővel vonzza magához és gyűjti össze
- d) felfogja és eltávolítja a kipufogógázokban található szilárd részecskéket, majd szakaszos módon elégeti ezeket
- e) a kipufogógázokat alacsony hőmérsékletre hűti, hogy a szilárd részecskék lecsapódjanak és összegyűjthetők legyenek
- 14. Mi a lambda-szonda feladata?
- a) hogy mérje a motor hőmérsékletét és megakadályozza a túlmelegedést
- b) hogy szabályozza a kipufogógázok nyomását a megfelelő kipufogási teljesítmény érdekében
- c) hogy mérje a kipufogógázok zajszintjét és biztosítsa a csendes működést
- d) hogy mérje a kipufogógáz oxigéntartalmát, és ezáltal segítse az üzemanyag-levegő arány szabályozását
- e) hogy mérje az üzemanyag-tartály szintjét és figyelmeztessen, amikor az üzemanyag szintje alacsony
- 15. Mit tartalmaz az AdBlue adalék?
- a) héliumot, ami csökkenti a kipufogógázok átlagos sűrűségét
- karbamidot, amely segít csökkenteni a dízelüzemű járművek kipufogógázainak
 NOxkibocsátását
- c) etil-alkoholt, ami növeli a jármű teljesítményét
- d) hidrogént, ami növeli a motor élettartamát
- e) ammóniát, ami javítja a kipufogórendszer hatékonyságát
- 16. Mi az a katalizátorablak?
- a) egy ablak típusa a motorházban, amely segíti a hűtést
- b) egy beépített ajtó a motorházban, amelyen keresztül a motorhoz lehet hozzáférni
- c) a katalizátor hatékony működéséhez szükséges üzemanyag-levegő keverék arányának optimális tartománya
- d) egy szoftveralkalmazás a belső égésű motorok szabályozására és optimalizálására

- e) egy füstszűrő rendszer a kipufogórendszerben, ami csökkenti a károsanyag-kibocsátást
- 17. Milyen károsanyag emisszióját csökkenti a kipufogógáz visszavezető rendszer?
- a) NO_x
- b) SO_2
- CO_2
- d) korom
- e) O_3
- 18. Hogyan csökkenti a NOx emisszióját a kipufogógáz visszavezető rendszer?
- a) azzal, hogy növeli az égésteret a motorban, ami hűti a gázokat
- b) azzal, hogy megszűri a káros anyagokat a kipufogógázokból
- c) azzal, hogy hozzáad károsanyagokat a kipufogógázhoz, amelyek reakcióba lépnek a nitrogén-oxidokkal
- d) azzal, hogy növeli az üzemanyag-levegő keverék arányát, ami alacsonyabb hőmérsékletet eredményez a motorban
- e) azzal, hogy visszavezeti egy részét a kipufogógázoknak a motor égésterébe, így csökkentve a hőmérsékletet és gátolva a nitrogén-oxidok kialakulását.
- 19. Mit jelent az, hogy dús az égési elegy?
- a) energiában dús
- b) hajtóanyagban dús
- c) levegőben dús
- d) oxigénben dús
- e) vízgőzben dús
- 20. Mivé alakítja a nitrogén-oxidokat a szelektív katalitikus redukciós rendszer?
- a) nitrogénné
- b) ammóniává
- c) karbamiddá
- d) dinitrogén-oxiddá
- e) salétromsavvá
- 21. Milyen típusú katalizátort használnak azokon a repülőgépeken, amelyek hosszabb ideig repülnek az alsó sztratoszférában?
- a. háromutas katalizátort, amely a CO-t, szénhidrogéneket és NOx-okat átalakítja CO2-ra, N2-re és vízre.
- b. oxidáló katalizátort katalizátort, amely oxidálja a CO-ot és szénhidrogéneket CO₂-ra és vízre.
- c. SCR-t, amely redukálja a NO_x-okat N₂-re.
- d. ózonkonvertert, amely az O₃-t O₂-re bontja.