SCALING ERLANG WEB APPLICATIONS 100 to 100K users at one web server

Fernando Benavides (@elbrujohalcon)

Inaka Labs

March 20, 2012

INAKA NETWORKS

presents ...

INAKA NETWORKS

presents ...

El Brujo Halcón

in . . .

El Brujo Halcón

in . . .

SCALING ERLANG

Based on a true story

SCALING ERLANG

Based on a true story

A not so long time ago

A not so long time ago

in a country far far away...

A FRIEND

Hey! Let's watch the superclásico!!!

BRUJO

I can't, I'm at the office

A Friend

- - -

BRUJC

A Friend

Hey! Let's watch the superclásico!!!

BRUJO

I can't, I'm at the office

A Friend

- - -

Brujo

A FRIEND

Hey! Let's watch the superclásico!!!

BRUJO

I can't, I'm at the office

A FRIEND

. . .

Brujo

A Friend

Hey! Let's watch the superclásico!!!

Brujo

I can't, I'm at the office

A Friend

. . .

BRUJO

Let's call it MATCHSTREAM

A Friend

Ok, then... We know there will be hundreds of thousands of users, right?

We need the system to **scale**

Bruic

Of course! We should use Erlang!

Let's call it MATCHSTREAM

A FRIEND

Ok, then...We know there will be hundreds of thousands of users, right?
We need the system to **scale**

Brillo

Of course! We should use Erlang!

Brujo

Let's call it MATCHSTREAM

A Friend

Ok, then...We know there will be hundreds of thousands of users, right?
We need the system to **scale**

Brujo

Of course! We should use Erlang!

A while later...

MATCHSTREAM System Description

MATCHSTREAM

ARCHITECTURE

Brujo

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

USER I

Wow! MATCHSTREAM is awesome!

. . .

USER. 100

Hey! this system is a total crap! It doesn't even let me connect to it!

Brujo

WTF?! The system doesn't scale!!

A Friend

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

USER 1

Wow! MATCHSTREAM is awesome!

User 100

Hey! this system is a total crap! It doesn't even let me connect to it!

Brujo

WTF?! The system doesn't scale!!

A FRIEND

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

User 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A FRIEND

Boca plays again today, let's try our system out with this game!
What can **possibly** go wrong?

USER 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A Frieni

Brujo

Boca plays again today, let's try our system out with this game!

What can **possibly** go wrong?

User 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A Frieni

Brujo

Boca plays again today, let's try our system out with this game!

What can **possibly** go wrong?

User 1

Wow! MATCHSTREAM is awesome!

. . .

USER 100

Hey! this system is a total crap! It doesn't even let me connect to it!

BRUJO

WTF?! The system doesn't scale!!

A Friend

LESSON LEARNED

Just using Erlang is not enough to make your system scale

So, we made it scale...

We made sure the system was working.

We built a simulator

We improved the logging mechanisms

We tested the system

We made sure the system was working.

- We built a simulator
- We improved the logging mechanisms
- We tested the system

We made sure the system was working.

- We built a simulator
- We improved the logging mechanisms
- We tested the system

We made sure the system was working.

- We built a simulator
- We improved the logging mechanisms
- We tested the system

1024 users / 4 at a time

The system is fine, let's tune up the server where it's installed

So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- IUF backlog sizzen
- TGP memory allocation
- Erland VVII arabasa limit
- Finally via process illilli

The system is fine, let's tune up the server where it's installed So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

The system is fine, let's tune up the server where it's installed So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

The system is fine, let's tune up the server where it's installed So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

STEP 2

The system is fine, let's tune up the server where it's installed So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

STEP 2

The system is fine, let's tune up the server where it's installed So, we checked the kernel variables and system limits for

- Concurrent TCP connections
- Open files limit
- TCP backlog size
- TCP memory allocation
- Erlang VM process limit

4096 users / 4 at a time

STEP 3

I've got a friend that may help us, he has a bag with several tips and tricks for us... MacGyver

STEP 3

I've got a friend that may help us, he has a bag with several tips and tricks for us... MacGyver

STEP 3 CONNECTION TWEAKS

BACKLOG

- Allow more concurrent connections
- Remember HTTP runs on TCP

Connections

- Don't use just one of them
- Check inbound and outbound connections

STEP 3 CONNECTION TWEAKS

BACKLOG

- Allow more concurrent connections
- Remember HTTP runs on TCP

Connections

- Don't use just one of them
- Check inbound and outbound connections

TODO users / TODO at a time

SUP_HANDLER

- Don't use it
- Monitor the processes instead

Long Delivery Queues

Use repeaters

STEP 3

SUP_HANDLER

- Don't use it
- Monitor the processes instead

Long Delivery Queues

• Use repeaters

TODO users / TODO at a time

CALL TIMEOUTS

Remember gen_server:reply/2

Memory Footprint

Remember hibernate

LONG INIT/1

Use 0 timeout

STEP 3 GEN_SERVER

CALL TIMEOUTS

Remember gen_server:reply/2

Memory Footprint

Remember hibernate

LONG INIT/1

Use 0 timeout

STEP 3 GEN_SERVER

CALL TIMEOUTS

Remember gen_server:reply/2

Memory Footprint

Remember hibernate

LONG INIT/1

Use 0 timeout

TODO users / TODO at a time

- Sometimes simple_one_for_one supervisors get overburdened because they have too many children
- Try a supervisor hierarchy with several managers below the main supervisor
- Turn supervisor:start_child/2 calls into something like

TODO users / TODO at a time

STEP 3 OTHER PROCESSES

Timers

- Don't use the timer module
- Use erlang:send_after

Logging

- Don't log too much
- Use a good logging system

REGISTRATION

- Sometimes it's better to register processes instead of keeping track of their pids manually
- You can always register processes both locally and globally

STEP 3 OTHER PROCESSES

Timers

- Don't use the timer module
- Use erlang:send_after

Logging

- Don't log too much
- Use a good logging system

REGISTRATION

- Sometimes it's better to register processes instead of keeping track of their pids manually
- You can always register processes both locally and globally

STEP 3 OTHER PROCESSES

Timers

- Don't use the timer module
- Use erlang:send_after

Logging

- Don't log too much
- Use a good logging system

REGISTRATION

- Sometimes it's better to register processes instead of keeping track of their pids manually
- You can always register processes both locally and globally

64000 users / 8000 at a time

TODO: Img of what the system looks like at this point

Step 4

Well, let's add some nodes to it!

STEP 4 ADDING NODES

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

STEP 4 ADDING NODES

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

STEP 4 ADDING NODES

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

STEP 4 Adding Nodes

Again, it's not as easy as just starting the app in another Erlang node We needed to find the best topology, we considered using:

- connected nodes
- independent nodes

We had to decide which processes needed to communicate and how and of course, test the whole system again

25000 users per node / 8000 per computer at a time with 4 nodes on the same computer... 100K users / 8000 at a time

25000 users per node / 8000 per computer at a time with 4 nodes on the same computer... 100K users / 8000 at a time

25000 users per node / 8000 per computer at a time with 4 nodes on the same computer... 100K users / 8000 at a time

