理解 PLONK (三): 置换证明

Plonkish 电路编码用两个矩阵 (Q,σ) 描述电路的空白结构,其中 Q 为运算开关, σ 为置换关系,用来约束 W 矩阵中的某些位置必须被填入相等的值。本文重点讲解置换证明(Permutation Argument)的原理。

回顾拷贝关系

回顾一下 Plonkish 的 W 表格,总共有三列,行数按照 $\mathbf{2}^2$ 对齐。

i	$w_{a,i}$	$w_{b,i}$	$w_{c,i}$
1	x_6	x_5	out
2	x_1	x_2	x_6
3	x_3	x_4	x_5
4	0	0	out

我们想约束 Prover 在填写 W 表时,满足下面的拷贝关系: $w_{a,1}=w_{c,2}$ $w_{b,1}=w_{c,3}$ 与 $w_{c,1}=w_{c,4}$,换句话说, $w_{a,1}$ 位置上的值需要被拷贝到 $w_{c,2}$ 处,而 $w_{b,1}$ 位置上的值需要被拷贝到 $w_{c,3}$ 处, $w_{c,1}$ 位置上的值被拷贝到 $w_{c,4}$ 处。

问题的挑战性在于,Verifier 要仅通过一次随机挑战就能完成 W 表格中多个拷贝关系的证明,并且在看不到 W 表格的情况下。

Plonk 的「拷贝约束」是通过「置换证明」(Permutation Argument)来实现,即把表格中需要约束相等的那些值进行循环换位,然后证明换位后的表格和原来的表格完全相等。

简化一下问题: 如何证明两个等长向量 \vec{a} 和 \vec{a}' 满足一个已知的置换 σ , 并且 $\vec{a} = \vec{a}'$

$$a_i = a'_{\sigma(i)}$$

举一个例子,假设 $\vec{a}=(a_0,a_1,a_2,a_3)$, $\vec{a}'=(a_1,a_2,a_3,a_0)$,即他们满足一个「左移循环换位」的置换关系,那么 $\sigma=\{0\to 1;1\to 2;2\to 3;3\to 0\}$ 。如何能证明 $\vec{a}=\vec{a}'$,那么两个向量对应位置的值都应该相等,

$ec{a}$	a_0	a_1	a_2	a_3
$ec{a}'$	a_1	a_2	a_3	a_0

那么 $a_0 = a_1$, $a_1 = a_2$, $a_2 = a_3$, $a_3 = a_0$, 于是可以得出结论: $a_0 = a_1 = a_2 = a_3$, 即 \vec{a} 中的全部元素都相等。

对于 W ,我们只需要针对那些需要相等的位置进行循环换位,然后让 Prover 证明 W 和经过循环换位后的 W' 表格相等,那么可实现拷贝约束。证明两个表格相等,这个可以通过多项式编码,然后进行概率检验的方式完成。剩下的工作就是如何让 Prover 证明 W' 确实是(诚实地)按照事先约定的方式进行循环移位。

那么接下来就是理解如何让 Prover 证明两个向量之间满足某一个「置换关系」。 置换证明(Permutation Argument)是 Plonk 协议中的核心部分,为了解释它的工作原理,我们先从一个基础协议开始——连乘证明(Grand Product Argument)。

冷启动: Grand Product

假设我们要证明下面的「连乘关系」:

$$p = q_0 \cdot q_1 \cdot q_2 \cdot \dots \cdot q_{n-2}$$

我们在上一篇文章介绍了如何证明一组「单乘法」,通过多项式编码,把多个单乘法压缩成单次乘法的验证。

这里对付连乘的基本思路是:让 Prover 利用一组单乘的证明来实现多个数的连乘证明,然后再通过多项式的编码,交给 Verifier 进行概率检查。

强调下: 思路中的关键点是如何把一个连乘计算转换成多次的单乘计算。

我们需要通过引入一个「辅助向量」,把「连乘」的计算看成是一步步的单乘计算,然后辅助向量表示每次单乘之后的「中间值」:

q_i	r_i	$q_i \cdot r_i$
q_0	$r_0=1$	$r_1=q_0$
$oldsymbol{q}_1$	r_1	$r_2 = q_0 \cdot q_1$
q_2	r_2	$r_3 = q_0 \cdot q_1 \cdot q_2$
•	:	:
q_{n-2}	r_{n-2}	$r_{n-1}=p$

上面表格表述了连乘过程的计算轨迹(Trace),每一行代表一次单乘,顺序从上往下计算,最后一行计算出最终的结果。

表格的最左列为要进行连乘的向量 $\{q_i\}$, 中间列 $\{r_i\}$ 为引入的辅助变量,记录每次「单乘之前」的中间值,最右列表示每次「单乘之后」的中间值。

不难发现,「中间列」向量 \vec{r} 向上挪一行与「最右列」几乎一致,除了最后一个元素。该向量的第一个元素用了常数 1 作为计算初始值,「最右列」最后一个向量元素为计算结果。

向量 \vec{r} 是一个 Accumulator,即记录连乘计算过程中的每一个中间结果:

$$r_k = \prod_{i=0}^{k-1} q_i$$

那么显然我们可以得到下面的递归式:

$$r_0=1, \qquad r_{k+1}=q_k\cdot r_k$$

于是,表格的三列编码后的多项式也将满足下面三个约束。第一个是初始值为1:

$$L_0(X)\cdot (r(X)-1)=0, \qquad orall X\in H$$

第二个约束为递归的乘法关系:

$$q(X)\cdot r(X) = r(\omega\cdot X), \qquad orall X\in H\setminus \{\omega^{-1}\}$$

第三个约束最后结果 $r_{n-1}=p$:

$$L_{n-1}(X)\cdot (r(X)-p)=0, \qquad orall X\in H$$

我们可以用一个小技巧来简化上面的三个约束。我们把计算连乘的表格添加一行,令 $q_{n-1}=1/p$ (注意: p 为 \vec{q} 向量的连乘积)

q_{i}	r_i	$q_i \cdot r_i$
q_0	1	r_0
q_1	r_0	r_1
q_2	r_1	r_2
:	:	•
q_{n-2}	r_{n-2}	r_{n-1}
$q_{n-1}=rac{1}{p}$	r_{n-1}	1

这样一来, $r_n = r_0 = 1$ 。最右列恰好是 \vec{r} 的循环移位。并且上面表格的每一行都满足「乘法关系」! 于是,我们可以用下面的多项式约束来表示递归的连乘:

$$q(X)\cdot r(X) = r(\omega\cdot X), \qquad orall X\in H$$

接下来, Verifier 可以挑战下面的多项式等式:

$$L_0(X) \cdot (r(X)-1) + lpha \cdot (q(X) \cdot r(X) - r(\omega \cdot X)) = h(X) \cdot z_H(X)$$

其中 α 是用来聚合多个多项式约束的随机挑战数。其中 h(X) 为商多项式,

$$z_H(X) = (X-1)(X-\omega)\cdots(X-\omega^{n-1})_{ullet}$$

接下来,通过 Schwartz-Zippel 定理,Verifier 可以给出挑战数 ζ 来验证上述多项式等式是否成立。

到此为止,如果我们已经理解了如何证明一个向量元素的连乘,那么接下来的问题是如何利用「连乘证明」来实现「Multiset 等价证明」(Multiset Equality Argument)。

从 Grand Product 到 Multiset 等价

假设有两个向量,其中一个向量是另一个向量的乱序重排,那么如何证明它们在集合意义(注意:集合无序)上的等价呢?最直接的做法是依次枚举其中一个向量中的每个元素,并证明该元素属于另一个向量。但这个方法有个限制,就是无法处理向量中会出现两个相同元素的情况,也即不支持「多重集合」(Multiset)的判等。例如 $\{1,1,2\}$ 就属于一个多重集合(Multiset),那么它显然不等于 $\{1,2,2\}$,也不等于 $\{2,1\}$ 。

另一个直接的想法是将两个向量中的所有元素都连乘起来,然后判断两个向量的连乘值是否相等。但这个方法同样有一个严重的限制,就是向量元素必须都为素数,比如 $3\cdot 6=9\cdot 2$,但 $\{3,6\} \neq \{9,2\}$ 。

修改下这个方法,我们假设向量 $\{q_i\}$ 为一个多项式 q(X) 的根集合,即对向量中的任何一个元素 q_i ,都满足 $q(r_i)=0$ 。这个多项式可以定义为:

$$q(X) = (X - q_0)(X - q_1)(X - q_2) \cdots (X - q_{n-1})$$

如果存在另一个多项式 p(X) 等于 q(X),那么它们一定具有相同的根集合 $\{q_i\}$ 。比如

$$\prod_i (X-q_i) = q(X) = p(X) = \prod_i (X-p_i)$$

那么

$$\{q_i\} =_{multiset} \{p_i\}$$

我们可以利用 Schwartz-Zippel 定理来进一步地检验:向 Verifier 索要一个随机数 γ ,那么 Prover 就可以通过下面的等式证明两个向量 $\{p_i\}$ 与 $\{q_i\}$ 在多重集合意义上等价:

$$\prod_{i \in [n]} (\gamma - p_i) = \prod_{i \in [n]} (\gamma - q_i)$$

还没结束,我们需要用上一节的连乘证明方案来继续完成验证,即通过构造辅助向量 (作为一个累积器),把连乘转换成多个单乘来完成证明。需要注意的是,这里的两个 连乘可以合并为一个连乘,即上面的连乘相等可以转换为

$$\prod_{i\in [n]}rac{(\gamma-p_i)}{(\gamma-q_i)}=1$$

到这里,我们已经明白如何证明「Multiset 等价」,下一步我们将完成构造「置换证明」(Permutation Argument),用来实现协议所需的「Copy Constraints」。

从 Multiset 等价到置换证明

Multiset 等价可以被看作是一类特殊的置换证明。即两个向量 p_i 和

 q_i 存在一个「未知」的置换关系。

而我们需要的是一个支持「已知」的特定置换关系的证明和验证。也就是对一个有序的向量进行一个「公开特定的重新排列」。

先简化下问题,假如我们想让 Prover 证明两个向量满足一个奇偶位互换的置换:

$$egin{array}{lll} ec{a} &=& (a_0,a_1,a_2,a_3,\ldots,a_{n-1},a_n) \ ec{b} &=& (a_1,a_0,a_3,a_2,\ldots,a_n,a_{n-1}) \end{array}$$

我们仍然采用「多项式编码」的方式把上面两个向量编码为两个多项式, a(X) 与 b(X)。思考一下,我们可以用下面的「位置向量」来表示「奇偶互换」:

$$ec{i} = (1, 2, 3, 4, \dots, n-1, n), \quad \sigma = (2, 1, 4, 3, \dots, n, n-1)$$

我们进一步把这个位置向量和 \vec{a} 与 \vec{b} 并排放在一起:

$ a_i $	i	b_i	$\sigma(i)$
a_0	0	$b_0=a_1$	1
a_1	1	$b_1=a_0$	0
a_2	2	$b_2=a_3$	3
a_3	3	$b_3=a_2$	2
:	:	:	:
a_n	n	$b_n=a_{n-1}$	n-1
a_{n-1}	n-1	$ig b_{n-1}=a_n$	n

接下来,我们要把上表的左边两列,还有右边两列分别「折叠」在一起。换句话说,我们把 (a_i,i) 视为一个元素,把 $(b_i,\sigma(i))$ 视为一个元素,这样上面表格就变成了:

$a_i^\prime = (a_i,i)$	$b_i' = (b_i, \sigma(i))$
$(a_0,0)$	$(b_0=a_1,1)$
$(a_1,1)$	$\left(b_1=a_0,0\right)$
:	:
$\left(a_{n-1},n-1\right)$	$\left(b_{n-1}=a_n,n\right)$
(a_n,n)	$\left(b_n=a_{n-1},n-1\right)$

容易看出,如果两个向量 \vec{a} 与 \vec{b} 满足 σ 置换,那么,合并后的两个向量 \vec{a}' 和 \vec{b}' 将满足 Multiset 等价关系。

也就是说,通过把向量和位置值合并,就能够把一个「置换证明」转换成一个「多重集合等价证明」,即不用再针对某个特定的「置换关系」进行证明。

这里又出现一个问题,表格的左右两列中的元素为二元组(Pair),二元组无法作为一个「一元多项式」的根集合。

我们再使用一个技巧: 再向 Verifier 索取一个随机数 β , 把一个元组「折叠」成一个值:

$a_i' = (a_i + \beta \cdot i)$	$b_i' = (b + \beta \cdot \sigma(i))$
$(a_0+\beta\cdot 0)$	$(b_0+\beta\cdot 1)$
$(a_1+\beta\cdot 1)$	$(b_1+\beta\cdot 0)$
:	:
$(a_{n-1}+\beta\cdot n-1)$	$(b_{n-1}+\beta\cdot n)$

$$egin{aligned} a_i' &= (a_i + eta \cdot i) & b_i' &= (b + eta \cdot \sigma(i)) \ (a_n + eta \cdot n) & (b_n + eta \cdot (n-1)) \end{aligned}$$

接下来,Prover 可以对 \vec{a}' 与 \vec{b}' 两个向量进行 Multiset 等价证明,从而可以证明它们的置换关系。

完整的置换协议

公共输入: 置换关系 σ

秘密输入: 两个向量 $ec{a}$ 与 $ec{b}$

预处理: Prover 和 Verifier 构造 [id(X)] 与 $[\sigma(X)]$

第一步: Prover 构造并发送 [a(X)] 与 [b(X)]

第二步: Verifier 发送挑战数 β 与 γ

第三步: Prover 构造辅助向量 \vec{z} , 构造多项式 z(X) 并发送 [z(X)]

$$egin{aligned} z_0 &= 1 \ z_{i+1} &= z_i \cdot rac{a_i + eta \cdot i + \gamma}{b_i + eta \cdot \sigma(i) + \gamma} \end{aligned}$$

第四步: Verifier 发送挑战数 lpha

第五步: Prover 构造 f(X) 与 g(X), 并发送 [g(X)]

$$f(X)=L_0(X)(z(X)-1)+lpha\cdot(z(\omega\cdot X)(b(X)+eta\cdot\sigma(X)+\gamma)-z(X)(a(y(X)-1)+a(x))$$
 $q(X)=rac{f(X)}{z_H(X)}$

第六步: Verifier 向 [a(X)],[b(X)],[q(X)] 查询这三个多项式在 $X=\zeta$ 处的取值,得到 $a(\zeta)$, $b(\zeta)$, $q(\zeta)$; 向 [z(X)] 查询 $X=\zeta, X=\omega\cdot\zeta$ 两个位置处的取值,即 $z(\zeta),z(\omega\cdot\zeta)$; 向 $[\sigma(X)]$ 与 [id(X)] 这两个多项式发送求值查询 $X=\zeta$,得到 $id(\zeta)$ 与 $\sigma(\zeta)$; Verifier 自行计算 $z_H(\zeta)$, $L_0(\zeta)$

验证步: Verifier 验证

 $L_0(\zeta)(z(\zeta)-1)+\alpha\cdot(z(\omega\cdot\zeta)(b(\zeta)+\beta\cdot\sigma(\zeta)+\gamma)-z(\zeta)(a(\zeta)+\beta\cdot id(\zeta)+\beta\cdot i$

References:

- [WIP] Copy constraint for arbitrary number of wires. https://hackmd.io/CfFCbA0TTJ6X08vHg0-9_g
- Alin Tomescu. Feist-Khovratovich technique for computing KZG proofs fast. https://alinush.github.io/2021/06/17/Feist-Khovratovich-technique-for-computing-KZG-proofs-fast.html#fn:FK20
- Ariel Gabizon. Multiset checks in PLONK and Plookup. https://hackmd.io/@arielg/ByFgSDA7D