Conference on next steps for the Japanese SNA Tokyo, 25 March 2005

Measuring Productivity

Paul Schreyer, OECD

Contents of presentation

- 1. Why is productivity important?
- 2. Concepts: labour and multi-factor productivity
- 3. Measuring output
- 4. Measuring labour input
- 5. Measuring capital input
- 6. OECD Productivity database
- 7. OECD Factbook
- 8. Conclusions

"Productivity isn't everything but in the long run it is almost everything"

Paul Krugman *The Age of Diminishing Expectations*

1. Why is productivity important?

- Basis for improvements in real incomes and economic well-being:
- Monetary policy (inflationary pressures)
- Fiscal policy (financing of health, education, welfare)
- Slow productivity growth = conflicting demands for distribution of income more likely

2. Concepts: labour productivity

- Every measure of productivity is a ratio between output and input(s)
- Simplest and most frequently-encountered measure: labour productivity:

Labour productivity (LP) =
$$\frac{Q}{L}$$

- Indicates how efficiently labour is used in production
- Not necessarily an indicator of effort per worker

Table of productivity measures

	Type of input measure			
Type of output measure:	Labour	Capital	Capital & labour	Capital, labour & intermediate inputs (energy, materials, services)
Gross output	Labour productivity (based on gross output)	Capital productivity (based on gross output)	Capital - labour MFP (based on gross output)	KLEMS multi-factor productivity
Value-added	Labour productivity (based on value- added)	Capital productivity (based on value- added)	Capital – labour MFP (based on value-added)	-
	Single factor productivity measures		Multi-factor productivity (MFP) measures	

2. Concepts: multi-factor productivity

• Ratio of output and combined capital and labour input

Multi-factor productivity (MFP) =
$$\frac{Q}{F(L, K)}$$

• Indicates how efficiently combined labour and capital are used in production

7

MFP and labour productivity

• Useful tool – decomposition of labour productivity

$$\ln\left(\frac{Q^{t}}{Q^{t-1}}\right) - \ln\left(\frac{L^{t}}{L^{t-1}}\right) = (1 - s_{L}) \left(\ln\left(\frac{K^{t}}{K^{t-1}}\right) - \ln\left(\frac{L^{t}}{L^{t-1}}\right)\right) + \ln\left(\frac{A^{t}}{A^{t-1}}\right)$$

% change labour productivity

Effect of capital intensity

Effect of MFP

MFP and labour productivity

- Decomposition of labour productivity important:
 - Is labour productivity driven by investment in 'traditional' capital (--> rise in capital intensity)?
 - Is labour productivity driven by investment in 'intangible' capital, i.e., innovation, organisational change, R&D (--> change in MFP)
- Example: Canada

Decomposition of labour productivity, Canada

MFP - framework

MFP framework: measurement issues

Tricky areas:
-Implicit pricing
-Non-market
services
-Quality change

Measuring output: 3 tricky areas

- 1) Output measures for industries where there is implicit pricing so that even *nominal* output measures are debated:
 - Banking (FISIM, how to deal with new financial instruments and risk?)
 - Insurance (how to deal with catastrophes?)
 - → OECD Taskforce recommends to measure insurance output as premiums minus *expected* claims, not actual claims
- Otherwise sharp drop in output when there is a catastrophe

Measuring output: 3 tricky areas

- 2) Output measures for industries where technology moves fast and where rapid quality change makes price measurement difficult
 - Example ICT: computer production, communication services
- 3) Output measures for industries with non-market producers
 - Traditionally from input side
 - But increasingly demand for output-based measures \rightarrow *Atkinson Report UK*

Measuring output: 3 tricky areas

Chart 5. Real value added per employed person in the health and social work industry

Indices, 1982=100

Multi-factor productivity framework: measurement issues

Comparability of GDP growth rates:

-Non-market services -High-tech industries Measuring user costs

Splitting mixed income

Multi-factor productivity framework: measurement issues

OECD ((

OCDE

4. Measuring labour input

- Ideal measure: total number of hours worked, broken down by type of labour input
- Number of persons employed or number of jobs can generate biased measures of productivity if hours per person change or if there are multiple job holdings
- Total hours should comprise the hours of employees, the hours of self-employed and the hours of unpaid workers (e.g. family members in agriculture)

Example: impact of different measures of labour input on labour productivity, France

Industry (mining, manufacturing and construction)

220.0 Value-added per hour: 3.7% per 200.0 vear 180.0 Value-added per employee Value-added 160.0 (headcount): 3.3% per fullper year time 140.0 equivalent person: Value-added per 3.4% per 120.0 person employed year (headcount): 3.4% 100.0 per year

Market services

^{*}Output is measured as a quantity index of value-added.

Labour input: statistical issues

- 1) Two main statistical sources for hours worked:
 - Labour force surveys (LFS)
 - Establishment or firm-based surveys (ES)
 - Results are not normally consistent
- → Important role for national accountants:

Bring together these sources and provide labour input measures by industry (and sector) that are consistent with output measures

Labour input: statistical issues

2) Splitting mixed income:

- Important for productivity measurement: how big is labour income?
- To date: crude approximations are made
- → National accounts could help by putting forward higher quality estimates
- 3) Information on composition of hours worked and relative remuneration:
 - What is skill composition of hours?
 - What is the wage difference between skill levels?

5. Measuring capital input

- Conceptually correct measure: capital services
 (Theory see Griliches, Jorgenson, Diewert)
- Capital services = flow of productive services that capital delivers in production
- Measurement assumption: capital services = fixed proportion of productive capital stock

Productive capital stock of a particular asset type

Capital services of a particular asset type

Growth of capital services of a particular asset type = Growth of productive stock of this asset type

$$\ln\left(\frac{S_{t}}{S_{t-1}}\right) = \ln\left(\frac{K_{t}}{K_{t-1}}\right) \text{ because } S_{t} = \lambda K_{t}$$
Normally assumed as constant

Price of capital service = user costs

How much would the owner of a capital good charge in a competitive market to rent the capital good out for one period (Diewert 1974)?

Price and quantity of capital services

Value of capital services for asset $i = u_t^i S_t^i$

User costs and the rate of capital service for each asset type are brought together to form an index of overall capital input = the rate of change of total capital services

$$\ln\left(\frac{K^{t}}{K^{t-1}}\right) = \sum_{i} w_{i}^{t} \ln\left(\frac{K_{i}^{t}}{K_{i}^{t-1}}\right)$$

Average share of each asset in total value of capital services

Capital services and net capital stock, Australia

Capital services and national accounts

Capital services are different from net and gross capital stock

But different does not mean unrelated

Desirable: consistent entity of

OECD ((

- Net capital stock and balance sheets
- Productive stock and capital services
- •Consumption of fixed capital (=depreciation)

This is one important topic of SNA revision, discussed next week in Canberra by Canberra II Group 28

Capital services and national accounts

Some measurement issues:

- Availability and quality of investment series
- •Breakdown by type of asset important
- •Scope of assets
- •Investment deflators

6. OECD Productivity database

- •Since March 2004, OECD productivity data available on the internet:
- Productivity: Statistics Portal
- •For total economy:
 - •Growth of GDP, hours worked and capital services
 - Labour productivity growth
 - •MFP growth
 - Labour productivity levels

Average rates of MFP growth

7. OECD Factbook

- •Since last week: OECD Factbook
- •Online version is freely available at http://new.purceOECD.org/factbook and enables the downloading of the data underlying the tables and graphs
- •First compilation of economic, social and environment indicators across OECD countries
- •Chapter on macro-economic indicators includes productivity comparisons, in particular MFP growth rates

8. Conclusions

- •Productivity is a key indicator for analysis of economic growth --> significant demand from policy makers
- •Simple ratio but sometimes difficult to measure
- •Desirable: close integration of productivity measures and their ingredients with the national accounts
- •Release of 'official' productivity statistics by statistical agencies

Thank you for your attention!

