Teoría de Grafos I

Tipos de Grafos

Grafo Fuertemente Conexo

Un grafo dirigido se denomina fuertemente conexo si para cada par de vértices (u, v) existe un camino dirigido de ida (de u hacia v) y de regreso (de v hacia u).

Subgrafo

Un subgrafo de un grafo G = (V, E) es un grafo $H = (V_H, E_H)$ tal que $V_H \subseteq V$ y $E_H \subseteq E$

Subgrafo

Componente Fuertemente Conexa

☐ Es un subgrafo fuertemente conexo maximal de un grafo dirigido.

Grafo Transpuesto

El grafo transpuesto se da al transponer todas las aristas de un grafo dirigido

Se observa que las componentes fuertemente conexas se mantienen al transponer el grafo.

Grafo Condensado

Es un grafo basado en las componentes fuertemente conexas del grafo original. Cada SCC es un nodo y si existe alguna arista que una algún SCCi y SCCj entonces habrá una arista entre ambos nodos.

Grafo Condensado

Propiedades:

- Grafo dirigido
- Grafo acíclico

En otras palabras, el grafo condensado en un DAG (Directed aciclic graph) por lo que se puede utilizar DP en este tipo de grafo.

Algoritmo de kosaraju

Algoritmo que nos identificara las componentes fuertemente conexas en un grafo dirigidos. Principales observaciones:

Si existe una arista entre SCC_i y SCC_j entonces el out[SCC_i] > out[SCC_j]

Algoritmo de kosaraju

Algoritmo que nos identificara las componentes fuertemente conexas en un grafo dirigidos. Principales observaciones:

• En un DAG existe almenos un nodo con in-degree = 0.

Algoritmo de kosaraju

Correr el DFS y ordenar los nodos por la lista de out's.

Condensation Graph

Problemas

<u>Codechef – Chef and Reversing</u>

UVA - Ordering tasks

<u>Live archive – The Dueling Philosophers Problem</u>

Referencias

☐ Cormen, Introduction to Algorithms

Good luck and have fun!