Leia atentamente as instruções:

Professor: Fábio Kravetz

- Responder a todas as questões apresentadas abaixo. O objetivo da atividade em questão é a consolidação da compreensão sobre o conteúdo.
- As soluções devem ser realizadas de maneira e escrita e com a linguagem R.
- A participação de estudantes em olimpíadas de matemática das escolas públicas do Brasil vem aumentando a cada ano. O quadro abaixo indica o percentual de medalhistas de ouro, por região, nas edições de 2022 a 2025.

Região	2022	2023	2024	2025
Norte	3%	3%	4%	5%
Nordeste	20%	22%	21%	26%
Centro-Oeste	5%	6%	8%	9%
Sudeste	50%	61%	45%	40%
Sul	20%	12%	10%	11%

Em relação às edições de 2022 a 2025, qual o percentual médio de medalhistas de ouro em cada região?

Região Norte:

$$media = \frac{3+3+4+5}{4} = 3,75$$

Região Nordeste:

$$media = \frac{20 + 22 + 21 + 26}{4} = 22,25$$

Região Centro-Oeste:

$$media = \frac{5+6+8+9}{4} = 7$$

Região Sudeste:

$$media = \frac{50 + 61 + 45 + 40}{4} = 49$$

Região Sul:

$$media = \frac{20 + 12 + 10 + 11}{4} = 13,25$$

2. Uma equipe de metereologistas da cidade de Curitiba mediu a temperatura do ambiente, sempre no mesmo horário, durante 15 dias intercalados, a partir do primeiro dia do mês de abril. As medições captadas nesse período estão indicadas na tabela abaixo.

Disciplina: Estatística orientada à Ciência de Dados – Média, Mediana, Moda, Amplitude, Variância e Desvio Padrão

Dia do mês	Temperatura (°C)
1	15,5
3	14
5	13,5
7	18
9	19,5
11	20
13	13,5
15	13,5
17	18
19	20
21	18,5
23	13,5
25	21,5
27	20
29	16

Em relação à temperatura, os valores da média, mediana e moda são, respectivamente iguais a:

- a) 17°C, 17°C e 13°C
- b) 17°C, 18°C e 13,5°C
- c) 17°C, 13,5°C e 18°C
- d) 17°C, 18°C e 21,5°C
- e) 17°C, 13,5°C e 21,5°C

Média:

$$\mu = \frac{\sum_{i=1}^{n} x_{i}}{N}$$

$$\mu = \frac{15,5+14+13,5+18+19,5+20+13,5+13,5+18+20+18,5+13,5+21,5+20+16}{15} = \frac{255}{15} = 17$$

Para o cálculo da **mediana** é necessário ordenar a sequência de valores apresentados na tabela acima. 13,5; 13,5; 13,5; 13,5; 14; 15,5; 16; 18; 18; 18,5; 19,5; 20; 20; 20; 21,5

Observe que temos 15 termos e a mediana será o valor 18, visto que este é o termo central desta distribuição.

Em relação a moda, tem-se que é o termo que aparece com a maior frequência, logo, é o valor 13,5, pois este apareceu 4 vezes na distribuição apresentada.

3. Suponha que você possui os seguintes dados referente a altura (em centímetros) de 10 funcionários de uma empresa: 165, 158, 170, 184, 177, 162, 170, 168, 150, 174. Calcule a média, mediana, moda, amplitude, variância e desvio padrão das alturas.

Média:

$$\mu = \frac{\sum_{i=1}^{n} x_i}{N}$$

$$\mu = \frac{165 + 158 + 170 + 184 + 177 + 162 + 170 + 168 + 150 + 174}{10} = \frac{1678}{10} = 167.8$$

Mediana:

Para o cálculo da **mediana** é necessário ordenar a sequência de valores apresentados na tabela acima. 150, 158, 162, 165, 168, 170, 170, 174, 177, 184

$$mediana = \frac{168 + 170}{2} = 169$$

Moda:

Em relação a moda, tem-se que é o termo que aparece com a maior frequência, logo, é o valor 170, pois este apareceu 2 vezes na distribuição apresentada.

Amplitude:

A amplitude é a diferença entre o maior e o menor valor em um conjunto de dados.

$$A = valor_{máximo} - valor_{mínimo}$$

$$A = 184 - 150$$

$$A = 34$$

Variância:

Para calcular a variância primeiro precisamos achar a média aritmética, na questão tem-se um conjunto de dados (população) igual a $150,\,158,\,162,\,165,\,168,\,170,\,170,\,174,\,177,\,184.$

O valor da variância é dado pela fórmula abaixo:

$$\sigma^2 = \frac{\left(\sum_{i=1}^n x_i - \mu\right)^2}{N}$$

Calculando a soma dos quadrados da diferença de cada ponto em relação à média, obtém-se:

$$(150-167,8)^{2} = (-17,8)^{2} = 316,84$$

$$(158-167,8)^{2} = (-9,8)^{2} = 96,04$$

$$(162-167,8)^{2} = (-5,8)^{2} = 33,64$$

$$(165-167,8)^{2} = (-2,8)^{2} = 7,84$$

$$(168-167,8)^{2} = 0,2^{2} = 0,04$$

$$(170-167,8)^{2} = 2,2^{2} = 4,84$$

$$(170-167,8)^{2} = 2,2^{2} = 4,84$$

$$(174-167,8)^{2} = 6,2^{2} = 38,44$$

$$(177-167,8)^{2} = 9,2^{2} = 84,64$$

$$(184-167,8)^{2} = 16,2^{2} = 262,44$$

Desta forma

$$\sigma^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} - \mu\right)^{2}}{N}$$

$$\sigma^{2} = \frac{316,84 + 96,04 + 33,64 + 7,84 + 0,04 + 4,84 + 4,84 + 38,44 + 84,64 + 262,44}{10}$$

$$\sigma^{2} = \frac{849,6}{10} = 84,96$$

O desvio padrão é a raiz quadrada da variância, logo:

$$\sigma = \sqrt{84,96}$$
$$\sigma = 9,21$$

4. Os dados apresentados abaixo são relativos à quantidade de empregados de 5 pequenas empresas: 6, 5, 8, 5 e 6. Considerando que as empresas representam nossa população, a variância e o desvio padrão da quantidade de empregados dessas 5 empresas são iguais a quanto?

Para calcular a variância primeiro precisamos achar a média aritmética, na questão tem-se um conjunto de dados (população) igual a 6, 5, 8, 5 e 6.

O cálculo da média se dá por:

$$\mu = \frac{\sum_{i=1}^{n} x_i}{N}$$

$$\mu = \frac{6+5+8+5+6}{5} = 6$$

O valor da variância é dado pela fórmula abaixo:

$$\sigma^2 = \frac{\left(\sum_{i=1}^n x_i - \mu\right)^2}{N}$$

Calculando a soma dos quadrados da diferença de cada ponto em relação à média, obtém-se:

$$(6-6)^2=0$$

$$(5-6)^2 = 1$$

$$(8-6)^2 = 4$$

$$(5-6)^2=1$$

$$(6-6)^2 = 0$$

Desta forma:

$$\sigma^2 = \frac{\left(\sum_{i=1}^n x_i - \mu\right)^2}{N} = \frac{0 + 1 + 4 + 1 + 0}{5} = 1, 2$$

O desvio padrão é a raiz quadrada da variância, logo:

$$\sigma = \sqrt{1,2}$$

$$\sigma = 1.095$$

- 5. O dono de uma grande rede de cafés chamada "SunBucks" decidiu calcular como estavam as vendas do último mês, em uma amostra de 21 franquias da rede. Para medir a variância das vendas, ele obteve uma soma dos quadrados dos erros igual a 2.685,24 cafés² para essa amostra. O desvio padrão de cafés vendidos nessa amostra é igual a:
 - a) 16,39
 - b) 134,26

 - c) 11,59 d) 127,87
 - e) 11.31

$$s^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} - \overline{x}\right)^{2}}{n-1}$$

A descrição do problema nos diz que 2.685,24 cafés² é o valor do que está entre parênteses e elevado ao quadrado na equação acima. Deste modo, esse valor tem que ser dividido pelo fator (n-1). Portanto:

$$s^2 = \frac{2685,24}{21-1} = 134,262$$

O desvio padrão é a raiz quadrada da variância, logo:

$$s = \sqrt{134, 262}$$

$$s = 11,59$$

6. Um estudo dos efeitos do tabagismo nos padrões de sono é conduzido. A medida, referente a amostra, observada é o tempo, em minutos, que se leva para dormir. Os dados obtidos são:

Fumantes	69,3	56,0	22,1	47,6	53,2	48,1	52,7	34,4	60,2	43,8	23,2	13,8			
Não- fumantes	28,6	25,1	26,4	34,9	29,8	28,4	38,5	30,2	30,6	31,8	41,6	21,1	36,0	37,9	13,9

Determine qual grupo possui menor variação com relação ao tempo que se leva para dormir.

Distribuição 1 - Fumantes

O cálculo da média se dá por:

$$\frac{1}{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\frac{1}{x} = \frac{69,3+56,0+22,1+47,6+53,2+48,1+52,7+34,4+60,2+43,8+23,2+13,8}{12} = 524,4$$

$$\frac{1}{x} = 43,7$$

O valor da variância amostral é dado pela fórmula abaixo:

$$s^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} - \overline{x}\right)^{2}}{n-1}$$

Calculando a soma dos quadrados da diferença de cada ponto em relação à média, obtém-se:

$$(22,1-43,7)^{2} = (-21,6)^{2} = 466,56$$

$$(47,6-43,7)^{2} = (3,9)^{2} = 15,21$$

$$(53,2-43,7)^{2} = (9,5)^{2} = 90,25$$

$$(48,1-43,7)^{2} = (4,4)^{2} = 19,36$$

$$(52,7-43,7)^{2} = (9,0)^{2} = 81,00$$

$$(34,4-43,7)^{2} = (-9,3)^{2} = 86,49$$

$$(60,2-43,7)^{2} = (16,5)^{2} = 272,25$$

$$(43,8-43,7)^{2} = (0,1)^{2} = 0,01$$

$$(23,2-43,7)^{2} = (-20,5)^{2} = 420,25$$

$$(13,8-43,7)^{2} = (-29,9)^{2} = 894,01$$

Desta forma:

$$s^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} - \overline{x}\right)^{2}}{n-1}$$

$$s^{2} = \frac{466,56+15,21+90,25+19,36+81,00+86,49+272,25+0,01+420,25+894,01}{12-1} = \frac{3152,04}{11} = 286,55$$

O desvio padrão é a raiz quadrada da variância, logo:

$$s = \sqrt{286,55}$$

$$s = 16,93$$

Distribuição 2 - Não-fumantes

O cálculo da média se dá por:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\overline{x} = \frac{28,6+25,1+26,4+34,9+29,8+28,4+38,5+30,2+30,6+31,8+41,6+21,1+36,0+37,9+13,9}{15} = 454,8$$

$$\overline{x} = 30,32$$

O valor da variância amostral é dado pela fórmula abaixo:

$$s^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} - \overline{x}\right)^{2}}{n-1}$$

Calculando a soma dos quadrados da diferença de cada ponto em relação à média, obtém-se:

$$(28,6-30,32)^2 = 2,96$$

 $(25,1-30,32)^2 = 27,25$
 $(26,4-30,32)^2 = 15,37$
 $(34,9-30,32)^2 = 20,98$
 $(29,8-30,32)^2 = 0,27$
 $(28,4-30,32)^2 = 3,69$
 $(38,5-30,32)^2 = 66,91$
 $(30,2-30,32)^2 = 0,01$
 $(30,6-30,32)^2 = 0,08$
 $(31,8-30,32)^2 = 2,19$
 $(41,6-30,32)^2 = 127,24$
 $(21,1-30,32)^2 = 85,01$
 $(36,0-30,32)^2 = 32,26$
 $(37,9-30,32)^2 = 57,46$
 $(13,9-30,32)^2 = 269,6$

Desta forma:

$$s^{2} = \frac{\left(\sum_{i=1}^{n} x_{i} - \overline{x}\right)^{2}}{n-1}$$
$$s^{2} = \frac{711,28}{15-1} = 50,81$$

O desvio padrão é a raiz quadrada da variância, logo:

$$s = \sqrt{50,81}$$
$$s = 7,13$$

O grupo dos não-fumantes possui menor desvio padrão, logo possui menor variação com relação ao tempo que se leva para dormir.

7. Vinte embalagens plásticas foram pesadas. Os pesos, em gramas, após realizado o agrupamento, forneceram a distribuição de frequências abaixo.

pesos	freqüências				
32	8				
33	2				
34	5				
35	3				
36	2				
total	20				

Qual é o valor do desvio padrão?

- a) 1,43 gramas
- b) 2,05 gramas
- c) 4,05 gramas
- d) 3,52 gramas
- e) 12,05 gramas

A fórmula da média para dados agrupados é:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i \cdot f_i}{n}$$

Portanto, a média dos pesos é:

$$\overline{x} = \frac{(32 \cdot 8) + (33 \cdot 2) + (34 \cdot 5) + (35 \cdot 3) + (36 \cdot 2)}{20}$$

$$\overline{x} = \frac{669}{20} = 33,45$$

O valor da variância amostral com dados agrupados é dado pela fórmula abaixo:

$$s^{2} = \frac{\left(\sum_{i=1}^{n} f_{i} \cdot \left(x_{i} - \overline{x}\right)^{2}\right)}{n-1}$$

Calculando a soma dos quadrados da diferença de cada ponto em relação à média, obtém-se:

$$(32-33,45)^{2} = (-1,45)^{2} = 2,10$$

$$(33-33,45)^{2} = (-0,45)^{2} = 0,20$$

$$(34-33,45)^{2} = (0,55)^{2} = 0,30$$

$$(35-33,45)^{2} = (1,55)^{2} = 2,40$$

$$(36-33,45)^{2} = (2,55)^{2} = 6,50$$

Desta forma, deve-se calcular na sequência a frequência multiplicada pelos valores obtidos logo acima.

$$\sum_{i=1}^{n} f_i \cdot \left(x_i - \overline{x}\right)^2$$

$$(8 \cdot 2, 10) + (2 \cdot 0, 20) + (5 \cdot 0, 30) + (3 \cdot 2, 40) + (2 \cdot 6, 50) = 38,90$$

O valor da variância amostral é:

$$s^2 = \frac{(38,90)}{19} = 2,05$$

O desvio padrão é a raiz quadrada da variância, logo:

$$s = \sqrt{2,05}$$
$$s = 1,43$$