Machine Learning, Machine Learning (extended)

10 – Supervised Learning: Ensemble Methods Kashif Rajpoot

k.m.rajpoot@cs.bham.ac.uk
School of Computer Science
University of Birmingham

Outline

- Ensemble methods
 - Boosting
 - Bagging
- Decision tree

Random forests

Ensemble methods

- Combining 'weak classifiers' in order to produce a 'strong classifier'
 - "two heads are better than one"
- Boosting: train a new classifier focusing on training samples misclassified by an earlier classifier
 - Weak classifier: any classifier better than a random guess
 - AdaBoost
- Bagging (bootstrap aggregation): generate new training data as a random subset of original data and train a new classifier on this subset
 - Weak classifier: a decision tree classifier
 - Random forests

Modified from Randomized Forests for Visual Recognition

Jamie Shotton

Tae-Kyun Kim

Björn Stenger

TOSHIBA

ICCV 2009, Kyoto, Japan

Randomized decision forests

- Very fast tool for classification
- Good generalization through randomized training
- Inherently multi-class
- Simple training / testing algorithms

Basics: is the grass wet?

Basics: binary decision tree

category c

Decision tree classification: pseudo-code

```
double[] ClassifyDT(node, x)
   if node.IsSplitNode then
      if node.f(x) >= node.th then
          return ClassifyDT(node.right, x)
      else
          return ClassifyDT(node.left, x)
      end
   else
      return node.P
   end
end
```

- Try several lines,
 'chosen at random'
- Keep line that best separates data
 - Maximize information gain
- Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters a, b:
- threshold determines intercepts:
- four classes: purple, blue, red, green

$$x = [x, y]^{T}$$

$$f_{n}(x) = ax + by$$

$$th_{n}$$

- Try several lines,
 'chosen at random'
- Keep line that best separates data
 - Maximize information gain

Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters a, b:
- threshold determines intercepts:
- four classes: purple, blue, red, green

$$x = [x, y]^{T}$$

$$f_{n}(x) = ax + by$$

$$th_{n}$$

- Try several lines,
 'chosen at random'
- Keep line that best separates data
 - Maximize information gain
- Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters a, b:
- threshold determines intercepts:
- four classes: purple, blue, red, green

$$x = [x, y]^{T}$$

$$f_{n}(x) = ax + by$$

$$th_{n}$$

- Try several lines,
 'chosen at random'
- Keep line that best separates data
 - Maximize information gain
- Recurse

- feature vectors are x, y coordinates:
- split functions are lines with parameters a, b:
- threshold determines intercepts:
- four classes: purple, blue, red, green

$$\begin{aligned}
 x &= [x, y]^T \\
 f_n(x) &= ax + by \\
 th_n
 \end{aligned}$$

Randomness in:

 Bagging: randomly select the subset of data at the root of a tree

- Randomly select the features at a tree node
 - "feature = attribute" in machine learning
- Randomly select the threshold value

- Randomly select X_n examples as a subset from X examples
- Recursively split X_n examples at node n

```
left split X_l = \{x_i \in X_n | f(x_i) < th\} threshold right split X_r = \{x_i \in X_n | f(x_i) \ge th\} function of example i's feature vector
```

- Features f(x) chosen at random from feature pool F
- Threshold th chosen at random in range
 - $th \in (\min(f(x)), \max(f(x)))$
- Choose f and th to maximize an objective function (e.g. information gain, Gini index)
 - Estimates whether it's "good" to distribute data further

- $P_n(c)$ is the histogram (i.e. count) of example labels of class c which reached node n
- For example, at a leaf node, if 200 training example reach and there are 3 classes with following count, then the $P_n(c)$ is estimated as:

	c = 1	c = 2	c = 3
Count of examples	12	134	54
$P_n(c)$	12/200	134/200	54/200
$P_n(c)$	0.06	0.67	0.27

Implementation details

- How many features and thresholds to try?
 - just one = "extremely randomized"
 - few -> fast training, may under-fit
 - many -> slower training, may over-fit
- When to stop growing the tree?
 - maximum depth
 - minimum information gain

Decision tree learning: pseudo-code

```
TreeNode LearnDT(X)
  repeat featureTests times
     let f = RndFeature()
     let r = EvaluateFeatureResponses(X, f)
     repeat threshTests times
        let th = RndThreshold(r)
        let (X 1, X r) = Split(X, r, th)
        let gain = InfoGain(X_1, X_r)
        if gain is best then remember f, th, X_l, X_r
     end
  end
  if best gain is sufficient
     return SplitNode(f, th, LearnDT(X_1), LearnDT(X_r))
  else
     return LeafNode(HistogramExamples(X s))
  end
end
```

Binary decision tree: summary

- Fast greedy training algorithm
 - can search infinite pool of features
 - heterogeneous pool of features
- Fast testing algorithm
- Needs careful choice of hyper-parameters
 - maximum depth
 - number of features and thresholds to try

Information gain and entropy

- Information gain: gain in information (i.e purity of data according to class labels) by split of data from parent to child nodes in the tree
 - $IG(f_n) = E(parent) \frac{|X_l|}{|X_n|} * E(left) \frac{|X_r|}{|X_n|} * E(right)$

where $|X_n|$ denotes number of data samples at node n

 Entropy: measure of disorder (or impurity) in a bunch of data samples

•
$$E = -\sum_{c=1}^{C} P_c \log_2(P_c)$$

Low entropy

High entropy

Information gain and entropy

- $E = -\sum_{c=1}^{C} P_c \log_2(P_c) = ?$
 - $E = -P_{Flu=Y} \log_2(P_{Flu=Y}) P_{Flu=N} \log_2(P_{Flu=N}) = ?$
 - $E = -\frac{5}{8}\log_2\left(\frac{5}{8}\right) \frac{3}{8}\log_2\left(\frac{3}{8}\right) = 0.9544$

chills	runny nose	headache	fever	Flu?	
Y	N	Mild	Y	N	
Y	Y	No	Ν	Y	
Y	N	Strong	Y	Υ	
Ν	Y	Mild	Y	Υ	
N	N	No	Ν	N	
Ν	Y	Strong	Y	Y	
Ν	Y	Strong	Ν	N	
Y	Y	Mild Y		Y	

Information gain and

E(left) =?
$$E(chills = Y) = -P_{Flu=Y} \log_2(P_{Flu=Y}) - P_{Flu=N} \log_2(P_{Flu=N}) =?$$

$$E(chills = Y) = -\frac{3}{4} \log_2\left(\frac{3}{4}\right) - \frac{1}{4} \log_2\left(\frac{1}{4}\right) = 0.8113$$

- $IG(chills) = E(parent) \frac{|X_l|}{|X_n|} * E(left) \frac{|X_r|}{|X_n|} * E(right) = ?$
- IG(chills) = 0.9544 0.5 * 0.8113 0.5 * 1 = 0.0488

$$\frac{|X_l|}{|X_n|} = ?$$

$$E(right) = ?$$
 $E(chills = N) = -P_{Flu=Y} \log_2(P_{Flu=Y}) - P_{Flu=N} \log_2(P_{Flu=N}) = ?$
 $E(chills = N) = -\frac{2}{4} \log_2(\frac{2}{4}) - \frac{2}{4} \log_2(\frac{2}{4}) = 1$

$\frac{-\frac{1}{ X_n }}{ X_n } = ?$
$\frac{ X_{chills=Y} }{ X_n } = \frac{4}{8}$
$\frac{ X_r }{ X_n } = ?$
$\frac{ X_{chills=N} }{ X_n } = ?$
$\frac{ X_{chills=N} }{ X_n } = \frac{4}{8}$

 $|X_{chills=Y}|$

	the etherthertherthertherth	1 (1/ 1	(1)		
chills	runny nose	headache	fever	Flu?	
Υ	N	Mild	Y	N	
Υ	Y	No	Ν	Y	
Υ	N	Strong	Y	Y	
Ν	Y	Mild	Y	Y	
Ν	N	No	N	N	
Ν	Y	Strong	Y	Y	
Ν	Y	Strong	N	N	
Υ	Y	Mild	Y	Υ	

Information gain and

E(left) =?
$$E(runny = Y) = -P_{Flu=Y} \log_2(P_{Flu=Y}) - P_{Flu=N} \log_2(P_{Flu=N}) =?$$

$$E(runny = Y) = -\frac{4}{5} \log_2\left(\frac{4}{5}\right) - \frac{1}{5} \log_2\left(\frac{1}{5}\right) = 0.7219$$

- $IG(runny) = E(parent) \frac{|X_l|}{|X_n|} * E(left) \frac{|X_r|}{|X_n|} * E(right) = ?$
- IG(runny) = 0.9544 0.625 * 0.7219 0.375 * 0.9183 = 0.1589

$$E(right) = ?$$

$$E(runny = N) = -P_{Flu=Y} \log_2(P_{Flu=Y}) - P_{Flu=N} \log_2(P_{Flu=N}) = ?$$

$$E(runny = N) = -\frac{1}{3} \log_2\left(\frac{1}{3}\right) - \frac{2}{3} \log_2\left(\frac{2}{3}\right) = 0.9183$$

$\frac{ X_l }{ X_n } = ?$	
$ X_{runny} $	

$\frac{ X_{runny=Y} }{ X_n } = ?$	chills	runny nose	headache	fever	Flu?
	Y	N	Mild	Υ	N
$\frac{ X_{runny=Y} }{ X_n } = \frac{5}{8}$	Υ	Y	No	Ν	Y
$ X_T $ 2	Y	N	Strong	Y	Y
$\frac{ X_r }{ X_n } = ?$	Ν	Y	Mild	Υ	Y
$\frac{ X_{runny=N} }{ X_n } = ?$	Ν	N	No	Ν	N
$ X_n $	Ν	Y	Strong	Y	Y
$\frac{ X_{runny=N} }{ X_{runny=N} } = \frac{3}{2}$	Ν	Y	Strong	Ν	N
$ X_n $ 8	Y	Y	Mild	Y	Υ

A forest of trees

Forest is ensemble of several decision trees

- Classification
 - $P(c|\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_{tr}(c|\mathbf{x})$

Decision forests: pseudo-code

```
double[] ClassifyDF(forest, x)
   // allocate memory
   let P = double[forest.CountClasses]
   // loop over trees in forest
   for tr = 1 to forest.CountTrees
      let P' = ClassifyDT(forest.Tree[tr], x)
      P = P + P' // sum distributions
   end
   // normalise
   P = P / forest.CountTrees
end
```

Learning a forest

- Divide training examples into T subsets
 - $X_{tr} \subseteq X$
 - improves generalization
 - reduces memory requirements & training time
- Subsets are chosen at random

- Subsets can have overlap (and usually do)
- ullet Train each decision tree tr on subset X_{tr}

Learning a forest: pseudo-code

```
Forest LearnDF(countTrees, X)
   // allocate memory
   let forest = Forest(countTrees)
   // loop over trees in forest
   for tr = 1 to countTrees
      let X tr = RandomSplit(X)
      forest[tr] = LearnDT(X tr)
   end
   // return forest object
   return forest
end
```


6 classes in a 2 dimensional feature space. Split functions are lines in this space.

With a depth 2 tree, you cannot separate all six classes.

With a depth 3 tree, you are doing better, but still cannot separate all six classes.

With a depth 4 tree, you now have at least as many leaf nodes as classes, and so are able to classify most examples correctly.

Different trees within a forest can give rise to very different decision boundaries, none of which is particularly good on its own.

But averaging together many trees in a forest can result in decision boundaries that look very sensible, and are even quite close to the max margin classifier.

Summary

Very fast classification algorithm

Accuracy comparable with other classifiers

Simple to implement

Further reading/References

- ICCV'2009 Tutorial
- Random Forests for Regression and Classification; by Adele Cutler
 - http://www.math.usu.edu/adele/RandomForests/Ovronnaz.
 pdf
- Machine Learning; by Tom Mitchell (Chapter 3)
- Pattern Classification; By Duda, Hart, Stork (Chapter 8)

Thankyou