Machine Learning Homework: Week 5 & 6

2000013060@stu.pku.edu.cn

April 12, 2022

1

Statement

Prove the following propositions about the algorithm of AdaBoost.

1.
$$\alpha_t = \arg\min_{\alpha} Z_t = \arg\min_{\alpha} \sum_{i=1}^n D_t(i) \exp(-\alpha y_i h_t(x_i)).$$

2.
$$\prod_{t=1}^{T} Z_t = \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i \sum_{t=1}^{T} \alpha_t h_t(x_i)\right) = \frac{1}{n} \sum_{i=1}^{n} \exp\left(-y_i f(x_i)\right).$$

3.
$$\sum_{i=1}^{n} D_{t+1}(i) \mathbb{I}[y_i \neq h_t(x_i)] = \frac{1}{2}$$
.

Solution

1. Recall that $\varepsilon_t = \sum_{i=1}^n D_t(i) \mathbb{I}[y_i \neq h_t(x_i)]$, by applying **AM-GM inequality** we have

$$Z_t = \sum_{i=1}^n D_t(i) \exp(-\alpha y_i h_t(x_i)) = \varepsilon_t \exp(\alpha) + (1 - \varepsilon) \exp(-\alpha) \geqslant 2\sqrt{\varepsilon_t (1 - \varepsilon_t)}$$

where the equality holds if and only if

$$\varepsilon_t e^{\alpha} = (1 - \varepsilon_t) e^{-\alpha} \Leftrightarrow \alpha = \frac{1}{2} \ln \frac{1 - \varepsilon_t}{\varepsilon_t} = \frac{1}{2} \ln \frac{1 + \gamma_t}{1 - \gamma_t} = \alpha_t$$

where $\gamma_t = 1 - 2\varepsilon$ in the assignment of α_t . This suggests that $\alpha_t = \arg\min_{\alpha} Z_t$ as desired.

2. Notice that $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$, by iteratively substitute the term of $D_t(i)$ in the expression of Z_T ($Z_T = \sum_{i=1}^n D_T(i) \exp(-\alpha_T y_i h_T(x_i))$), we can eventually obtain the following equality.

$$\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T-1} Z_t \sum_{i=1}^{n} D_T(i) \exp(-\alpha_T y_i h_T(x_i))$$

$$= \prod_{t=1}^{T-2} Z_t \sum_{i=1}^{n} D_{T-1}(i) \exp(-\alpha_T y_i h_T(x_i) - \alpha_{T-1} y_i h_{T-1}(x_i))$$

$$= \cdots$$

$$= \sum_{i=1}^{n} D_0(i) \exp\left(-y_i \sum_{t=1}^{T} \alpha_t h_t(x_i)\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i f(x_i))$$

3.

$$\begin{split} \sum_{i=1}^n D_{t+1}(i)\mathbb{I}[y_i \neq h_t(x_i)] &= \sum_{i=1}^n \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \mathbb{I}[y_i \neq h_t(x_i)] \\ &= \frac{\sum_{i=1}^n D_t(i) \exp(\alpha_t) \mathbb{I}[y_i \neq h_t(x_i)]}{\sum_{i=1}^n D_t(i) \exp(\alpha_t) \mathbb{I}[y_i \neq h_t(x_i)] + \sum_{i=1}^n D_t(i) \exp(-\alpha_t) \mathbb{I}[y_i = h_t(x_i)]} \\ &= \frac{\varepsilon_t e^{\alpha_t}}{\varepsilon_t e^{\alpha_t} + (1 - \varepsilon_t) e^{-\alpha_t}} \end{split}$$

Since α_t is chosen so that $\varepsilon_t e^{\alpha_t} = (1 - \varepsilon_t)e^{-\alpha_t}$, we can prove that $\sum_{i=1}^n D_{t+1}(i)\mathbb{I}[y_i \neq h_t(x_i)] = \frac{1}{2}$.

 $\mathbf{2}$

Statement

Suppose (x, y) is a data point from the sample space, $\mathbf{h}(x) = (h_1(x), \dots, h_T(x)) \in \mathbb{R}^T$ is a classifier. Denote $\alpha = (\alpha_1, \dots, \alpha_T)^T$ with $\sum_{t=1}^T \alpha_t = 1$ and $\alpha_i > 0$ as the normal vector of hyperplane $\mathcal{P} = \{\xi \in \mathbb{R}^T | \alpha^T \xi = 0\}$, and $f(x) = \sum_{t=1}^T \alpha_t h_t(x)$ a linear combinator of classifiers. Show that |f(x)| gives the <u>Chebyshev distance</u> $(L_{\infty} \text{ distance})$ from $\mathbf{h}(x)$ to the hyperplane \mathcal{P} .

Solution

The problem is obviously equivalent to the following programming problem.

$$\begin{aligned} & \text{minimize}_{\beta \in \mathbb{R}^T} & & \max_{t=1}^T |\beta_t| \\ & \text{s.t.} & & \sum_{t=1}^T \alpha_t (\beta_t - h_t(x)) = 0 \end{aligned}$$

- The solution is not greater than $\left|\sum_{t=1}^{T} \alpha_t h_t(x)\right|$, since when $\beta_t = \sum_{i=1}^{T} \alpha_i h_i(x)$ for all t, the result is $\left|\sum_{t=1}^{T} \alpha_t h_t(x)\right|$.
- The solution is not smaller than $\left|\sum_{t=1}^{T} \alpha_t h_t(x)\right|$, otherwise $\sum_{t=1}^{T} \alpha_t \beta_t \leqslant \sum_{t=1}^{T} \alpha_t |\beta_t| < \sum_{t=1}^{T} \alpha_t \left|\sum_{t'=1}^{T} \alpha_{t'} h_{t'}(x)\right| = \left|\sum_{t=1}^{T} \alpha_t h_t(x)\right|$ rises a contradiction with the programming condition.