EXERCICE N° 1: Pendule élastique horizontal

de longueur au repos ℓ_0 , dont une extrémité est fixe et dont l'autre est reliée à un corps M ponctuel de masse m qui peut glisse sans frottement sur un plan horizontal (figure 1).

- ① Établir l'équation différentielle du mouvement du corps M. On utilisera un axe Ox dont l'origine O correspond à la position de M lorsque le ressort est au repos.
- (2) La solution de l'équation différentielle précédente est de la forme

$$x(t) = x_m \cos(\frac{2\pi}{T_0} t + \varphi) \tag{1}$$

On considère les conditions initiales de mouvement suivantes:

- t=0 le corps M est en $x=x_0>0$ et la vitesse initiale de M est nulle.
- t=0 le corps M est en $x=x_0$ et la vitesse de M est $\overrightarrow{v_0}=v_0\overrightarrow{i}$ avec $v_0>0$.

Déterminer l'équation horaire du mouvement du corps M dans les situations précédentes

EXERCICE N° 2 :Pendule élastique vertical

Un ressort à spires non jointives de masse négligeable de constante de raideur K est lié à un corps (S), supposé ponctuel et de masse m, qui peut se déplacer verticalement dans le champ de pesanteur terrestre. (voir figure ci-contre) .

On choisit comme origine de l'énergie potentielle de pesanteur la position d'équilibre O et comme origine de l'énergie potentielle élastique l'état ou le ressort n'est pas allongé

- (1) Déterminer l'allongement Δl_0 du ressort dans la position d'équilibre du corps (S) .
- 2 Établir l'équation différentielle du mouvement de (S)(S) vérifié par sa position z(t)z(t).
- (3) Déterminer l'expression de l'énergie potentielle totale du système et calculer sa valeur dans la position d'équilibre
- (4) En déduire l'expression de l'énergie mécanique du système
- (5) Montrer que l'énergie mécanique du système se conserve et calculer la vitesse maximale v_{max}
- (6) Retrouver l'équation différentielle par méthode énergétique.

EXERCICE 3

un solide S de masse m=800g est accroché à l'extrémité de deux ressorts identiques de constante de raideur k=40N/m voir figure 1

à la date t = 0s =, on déplace le solide de sa position d'équilibre O sur l'axe horizontal OX dans le sens positif de $x_0 = 4cm$ et lui communique une vitesse initiale $v_0 = 0, 2m/s$ dans le sens négatif les frottements sont supposées négligeables.

- $\widehat{\ \ }$ appliquer la $2^{\mathrm{\`e}me}$ loi de Newton pour trouver l'équation différentielle vérifiée par l'abscisse x(t)
- \bigodot Retrouver cette équation différentielle par conservation de l'énergie mécanique E_m
- (3) Trouver les dates du passage du solide par l'origine en allant dans le sens positif

4 la solution de l'équation différentielle précédente est $x(t) = X_m cos(\frac{2\pi t}{T} + \phi)$. Trouver X_m , T et ϕ .

EXERCICE 4

un solide S de masse m=200g est astreint à se mouvoir horizontalement sur un plan sans frottement à l'aide de deux ressort à spires non jointives de masses négligeable de longueur à vide l_{01} et l_{02} de raideurs respectives ; $k_1=20N/m$ et k_2 .(voir figure) la distance $AB>l_{01}+l_{02}$.

- (1) Étudier l'équilibre et en déduire la relation entre les allongement Δl_{01} et Δl_{02}
- ② On écarte S de $x_0 = 2cm$ dans le sens positif et on lui communique une vitesse initiale $v_0 = -0, 2m/s$ à la date t = 0s. il effectue alors des oscillations rectiligne sinusoïdales de période propre $T_0 = 4s$
 - 2.1 Montrer que l'équation différentielle vérifiée par la 'abscisse $\mathbf{x}(t)$ est :

$$\frac{d^2x}{dt^2} + \frac{k_e}{m}x = 0\tag{2}$$

préciser l'expression de k_e en fonction de k_1 et k_2 .

2.2 La solution de l'équation différentielle précédente est de la forme

$$x(t) = x_m \cos(\frac{2\pi}{T_0} \cdot t + \varphi) \tag{3}$$

EXERCICE N° 5

dans le dispositif qui suit, les ressorts sont de masses négligeable, de constantes de raideurs respectifs K_1 et k_2 et la masse du corps (S) est m Trouver l'équation différentielle vérifiée par $\mathbf{x}(t)$ par deux méthodes

EXERCICE N° 6

Le but de cet exercice est d'étudier les oscillations libres d'un oscillateur mécanique.

On dispose d'un mobile (A) de masse m=0,25 kg, fixé à l'une des extrémités d'un ressort à spires non jointives, de masse négligeable et de raideur k=10 N/m; l'autre extrémité du ressort est accrochée à un support fixe (C) (figure 1).

(A) peut glisser sur un rail horizontal et son centre d'inertie G peut alors se déplacer suivant un axe horizontal x'Ox.

À l'équilibre, G coïncide avec l'origine O de l'axe x 'x. À un instant t, la position de G est repérée, sur l'axe (O, \vec{i}) , par son abscisse $x = \overline{OG}$; sa vitesse est $\vec{v} = v\vec{i}$ où $v = x' = \frac{dx}{dt}$.

EXERCICE N° 6 (suite)

Le plan horizontal contenant G est pris comme niveau de référence de l'énergie potentielle de pesanteur.

Étude théorique

Dans cette partie, on néglige toute force de frottement.

- - 1.2 Établir l'équation différentielle en x qui régit le mouvement de G.
- ② La solution de cette équation différentielle a pour expression $x = X_m \sin\left(\frac{2\pi}{T_0}t + \varphi\right)$ où X_m et φ sont des constantes et T_0 la période propre de l'oscillateur.
 - 2.1 Déterminer l'expression de T_0 en fonction de m et k et calculer sa valeur.
 - 2.2 À la date $t_o=0,G$ passe par le point d'abscisse $x_o=2$ cm avec une vitesse de valeur algébrique $V_0=-0.2$ m/s. Déterminer X_m et φ .

Étude expérimentale

Dans cette partie, la force de frottement est donnée par $\vec{f} = -\mu \vec{v}$ où μ est une constante positive. Un dispositif approprié a permis de tracer

- la courbe donnant les variations de x = f(t (figure 2))
- les courbes donnant les variations de l'énergie cinétique $E_c(t)$ de G et de l'énergie potentielle élastique $E_p(t)$ du ressort (figure 3).
- 1 quel est le phénomène mis en jeu?
- (2) nommes le régime des oscillations
- \bigcirc En se référant à la figure 2, donner la valeur de la pseudo-période T du mouvement de G. Comparer sa valeur à celle de la période propre T_0 .
- (4) En se référant aux figures 2 et 3, préciser parmi les courbes A et B celle qui représente $E_p(t)$.
- - 5.2 Sachant que a = $e^{-\frac{\mu T}{2m}}$, calculer, en SI, la valeur de μ .

$$a = e^{\frac{\mu T}{2m}}$$

- \bigcirc Sur la figure 3 sont repérés deux instants particuliers notés t_1 et t_2 .
 - 6.1 En se référant à la figure 3, indiquer, en le justifiant, à quel instant t_1 ou t_2 la valeur de la vitesse du mobile est :
 - maximale;
 - nulle.
 - 6.2 Que peut-on conclure quant à la valeur de la force de frottement à chacun de ces instants ?
 - 6.3 Déduire autour de quel instant t_1 ou t_2 , la diminution de l'énergie mécanique est-elle la plus grande? Fig. 2

EXERCICE N° 7 :Pendule élastique incliné

On considère le dispositif ci-contre où le ressort est à spires non jointives de masse négligeable de raideur K et le solide (S) est considéré comme ponctuel de masse m à l'équilibre , il se trouve en O . l'allongement du ressort est Δl_0

- (1) Trouver l'expression de Δl_0 en fonction de m , g et α
- (2) Déterminer l'équation différentielle vérifié par la position x(t), par application de la $2^{\grave{e}me}$ loi de Newton
- (3) on choisit comme référence de l'énergie potentielle totale, l'état d'équilibre du système. montrer que l'expression de l'énergie totale est : $E_P = \frac{1}{2}K.x^2$.
- 4) à partir de courbes qui représentent v(t) et $E_P = f(x)$. On demande de déterminer
 - $4.1 X_m \text{ et K}$
 - 4.2 la période T_0 et la masse m

EXERCICE N° 8

Un pendule élastique horizontal est constitué par un solide (S) de masse m=500 g, attaché à l'une des extrémités d'un ressort horizontal, parfaitement élastique, de raideur K et de masse négligeable par rapport à celle du solide, l'autre extrémité du ressort étant fixe (figure 1).

On néglige tout type de frottement et on étudie le mouvement du solide (S) relativement à un repère galiléen (O, \vec{i}) horizontal, d'origine O coïncidant avec la position d'équilibre du centre d'inertie du solide.

On écarte le solide (S) de sa position d'équilibre d'une distance X_m puis on le lâche sans vitesse.

Lorsque le solide passe par sa position d'abscisse x_0 ($x_0 \neq 0$) avec une vitesse initiale v_0 ($v_0 \neq 0$) en se dirigeant dans le sens positif, on déclenche le chronomètre (c'est l'instant t = 0s) pour commencer l'étude du mouvement.

EXERCICE N° 8 (suite)

- 1.1 En appliquant la $2^{\grave{e}me}$ loi de Newton au solide (S), établir l'équation différentielle de son mouvement. Quelle est la nature de ce mouvement?
 - 1.2 Montrer que $x(t) = X_m \sin(\omega_0 t + \varphi_x)$ est une solution de l'équation différentielle précédente à condition que la pulsation ω_0 vérifie une expression qu'on donnera en fonction de K et m.

 Donner l'expression de la période propre T_0 des oscillations du solide (S).
 - 1.3 Déduire l'expression de la vitesse du solide en fonction de X_m, ω_0, t et φ_x .
- ② Montrer que x_0 et v_0 vérifient la relation $x_{02} + \frac{v_0^2}{\omega_0^2} = X_m^2$
- \bigcirc Un ordinateur muni d'une interface et d'un capteur a enregistré les variations de l'énergie cinétique du solide (S) au cours du temps t, le graphe obtenu sur l'écran de l'ordinateur est donné par la figure 2.
 - 3.1 Donner l'expression de l'énergie mécanique E du système $S_0 = \{(S) + \text{ ressort }\}$ en fonction de x, v, K et m avec x élongation du solide (S) et v sa vitesse à un instant t quelconque.
 - 3.2 Montrer que l'énergie E est constante puis donner son expression en fonction de m et V_m ; V_m amplitude de la vitesse v du solide.
 - 3.3 Établir l'expression de l'énergie cinétique du solide (S) en fonction m, V_m, ω_0, t et φ . Montrer qu'on peut l'écrire sous la forme :

$$E_c = \frac{E_{c \max}}{2} \left(1 + \cos \left(2\omega_0 t + 2\varphi_x \right) \right)$$

- 3.4 En utilisant le graphe, trouver :
 - L'amplitude de la vitesse V_m .
 - La période propre T_0 . En déduire X_m .
 - La phase initiale φ_x de l'élongation x(t).
- 3.5 Écrire la loi horaire du mouvement.
- 3.6 Calculer l'abscisse initiale $x_0(x(t=0))$ du solide (S) dans le repère (O, \vec{i}) , déduire sa vitesse initiale v_0 . Dans quel sens débute le mouvement du solide (S)?
- 3.7 Calculer la raideur K du ressort.

EXERCICE N° 9

Les frottements sont supposées négligeables et $g = 10m.s^{-2}$.

On considère une poulie à double gorge, de rayons : $R_2 = 2R_1 = 4cm$, pouvant tourner au tour de son axe fixe Δ horizontal passant par son centre de gravité.

Le moment d'inertie de la polie par rapport à Δ est $J_{\Delta} = 2.10^{-4} \text{ kg} \cdot \text{m}^2$.

On enroule sur la gorge de rayon R_1 , un fil qui supporte un solide S_1 de masse $m_1 = 500$ g pouvant glisser sur un plan incliné de $\alpha = 30^{\circ}$ par rapport à l'horizontale.

On enroule sur l'autre gorge un autre fil lui-même relié à un ressort à spires non jointives de constante de raideur k = 50 N/m.

Les fils inextensibles sont de masse négligeable et ne glissent pas sur la poulie.

- (1) Déterminer l'allongement Δl_0 du ressort à l'équilibre.
- (2) On écarte S_1 vers le bas sur le plan incliné à partir de sa position d'équilibre O ' d'une distance d et on le lâche sans vitesse initiale.
 - 2.1 Trouver l'équation différentielle du mouvement de S_1 (vérifiée par l'abscisse x).
 - 2.2 En déduire l'équation horaire du mouvement de S_1 en prenant l'instant ou il passe par O' dans le sens positif à la vitesse $V_0=0,42$ m/s comme origine des dates
 - 2.3 Trouver l'expression de la tension du fil T_{2z} en fonction du temps t et calculer sa valeur maximale

EXERCICE N° 10

On considère le système S représenté dans la figure qui suit et qui comporte :

- Une poulie de rayon r=5 cm soudée à une tige de longueur MN=2 L=40 cm son centre de gravité coïncide avec le centre de gravité G de la poulie. ce système de moment d'inertie J_{Δ} peut tourner au tour de l'axe Δ fixe passant par G.
- Un fil inextensible de masse négligeable est enroulé sur la gorge de la poulie, où il ne glisse pas, est fixé à l'extrémité d'un solide S_1 de masse m=800 g qui glisse sur un plan incliné d'un angle $\alpha=30^\circ$ par rapport au plan horizontal.

On abandonne le système sans vitesse initial à la date t=0 s où S_1 est à l'origine du repère (O,i). Une étude expérimentale a permis de tracer les variations du carrée de la vitesse V^2 de S_1 et fonction de son abscisse x. Prendre $g=10 \text{ m} \cdot \text{s}^{-2}$ les frottements son négligeables.

EXERCICE N° 10 (suite et fin)

- (1) 1.1 .Par étude dynamique, trouver l'expression de l'accélération a du solide S_1
 - 1.2 En utilisant le graphe, calculer l'accélération a et en déduire J_{Δ}
- ② Arrivé en $B(x_B = 0, 8m)$, S_1 se détache du fil et tombe en chute libre en I sur le plan horizontal situé à la hauteur de h = 1m au dessous de B.
 - 2.1 Calculer la vitesse linéaire de l'extrémité M de la tige au moment où S_1 arrive en B.
 - 2.2. Trouver les coordonnées du point I dans le repère (B, X,Y).
- ③ On accroche S_1 de nouveau et on accroche en un point M'; $MM' = \frac{L}{2}$, un ressort à spires non jointives de masse négligeable et de constante de raideur K = 50N/m.

A l'équilibre le ressort est horizontal son allongement est Δl_0 , la tige est verticale et G_1 (centre de gravité de S_1) est sur le même plan horizontal passant par l'origine O de l'axe (OZ) (voir figure).

- 3.1 calculer Δl_0 .
- 3.2 On écarte S_1 vers le bas de d = 1cm sur la ligne de plus grande pente du plan incliné et on le libère à la date t = 0s sans vitesse initial.

Soit z son ordonné sur l'axe(OZ) à l'instant t.

On considère que le ressort reste horizontal au cour du mouvement.

La référence de l'énergie potentielle de pesanteur est l'horizontale passant par O et celle de l'énergie élastique, lorsque le ressort n'est pas allongé .

(a) Montrer, en se basant sur l'étude énergétique, que l'équation différentielle, pour les faibles oscillations, s'écrit ou la forme :

$$\ddot{z} + \frac{KL^2}{4\left(mr^2 + J_\Delta\right)}z = 0$$

(b) écrire l'équation horaire z(t) sachant que la durée de 10 oscillations est $\Delta t = 10$ s

EXERCICE N° 11

Prendre g = 10 m · s^-2 et π^2 = 10 On considère une tige homogène OA de longueur OA = l=1 m et de masse m = 500 g

Cette tige peut tourner dans un plan vertical autour d'un axe horizontal passant par son extrémité O.

La position de la tige est repérée par son abscisse angulaire θ et le moment d'inertie de la tige par rapport à l'axe de rotation est donné par l'expression $J=ml^2/3$

- ① On écarte la tige d'un angle 9° par rapport à sa position d'équilibre verticale puis on la lâche sans vitesse initiale à la date t = 0 s.
 - 1.1 Trouver l'équation différentielle vérifiée par du mouvement de la tige en déduire l'équation horaire : $\theta = f(t)$.
 - 1.2 Trouver les composantes R_T et R_N de la réaction de l'axe Δ lors du premier passage de la tige par sa position d'équilibre.et en déduire la valeur de l'intensité R de cette réaction.
- ② On change la position de l'axe en O' loin de O tq: OO' = x < l/2. On écarte de nouveau la tige de sa position d'équilibre de 9° et on la libère à la date t = 0 s sans vitesse initiale
 - 2.1 Montrer que l'expression du moment d'inertie de la tige par rapport à l'axe est donnée par la relation :

$$J_{\Delta} = \frac{m}{3l} \left[x^3 + (l - x)^3 \right]$$

- $\overline{2.2}$ Trouver alors l'expression de la période propre T_0 en fonction de x, g et l
- 2.3 La durée de 10 oscillations est 40 s
 - (a) Déterminer x
 - (b) Donner l'expression de l'énergie cinétique E_C et fonction du temps t.

EXERCICE N°12

Sur un cylindre homogène de rayon r = 5cm on fixe une tige AB de longueur 2L=40cm2L=40 cm dont le centre de gravité coïncide avec le centre de gravité GG du cylindre tel que AG = BG.

Ce système, noté (E), est astreint à se mouvoir sans frottement au tour d'un axe Δ fixe horizontal et passant par G.

I. Partie I

① On enroule sur le cylindre un fil inextensible de masse négligeable sur lequel il ne glisse pas et qui supporte un solide (S) de masse, m = 1,7kg.

À la date t = 0s: on libère le système sans vitesse initiale.

L'étude expérimentale nous a permis de tracer la courbe qui représente l'évolution du carré de la vitesse vv du solide (S) en fonction de l'ordonnée z : $v^2 = f(z)$.

- 1.1 Déterminer la nature du mouvement de (S) et calculer l'accélération a de son mouvement
- 1.2 Trouver l'expression de l'équation horaire z(t)) et en déduire l'équation horaire du mouvement de(E) $\theta = g(t)$.
- 1.3 Calculer le nombre de tours effectués par (E) entre les dates $t_0 = 0s$ et $t_1 = 1s$.
- 1.4 Par étude dynamique déterminer l'expression du moment d'inertie de (E) par rapport à l'axe de rotation J_{Δ} et calculer sa valeur
- (2) Lorsque le solide (S) parcourt d = 1,25cm le fil coupe
 - 2.1 Montrer que (E) est mouvement de rotation uniforme en précisant sa vitesse angulaire. ω
 - 2.2 Pour arrêter (E) on exerce sur le cylindre un couple de frottement de moment constant M_f . Calculer M_f sachant que (E) fait 3 tours avant de s'arrêter.

EXERCICE N° 12 (suite)

Partie II

On fixe l'extrémité de la tige à un axe fixe horizontal Δ' passant par son extrémité B le système peut alors tourner sans frottement au tours de Δ' On fixe au point H un ressort à spires non jointives de masse négligeable de raideur k = 40N/m tel que BH = L/2 (voir figure).

À l'équilibre, la tige est verticale et le ressort non allongé.

La masse totale du pendule est $M_0 = 540kg$ et $J_{\Delta'}$ son moment d'inertie par rapport à l'axe de rotation Δ '.

On écarte AB de sa position verticale d'un angle $\theta_0=9^\circ$ et on la libère sans vitesse initiale à l'instant t=0s. Prendre E_P totale nulle lors du passage par la position d'équilibre verticale

- ① Soit θ l'angle que fait AB avec la verticale à un instant t et x l'allongement du ressort. En considérant que la trajectoire de H reste horizontale (angle petit) Établir l'équation différentielle vérifié par $\theta(t)$
- ② La courbe qui suit représente les variation de l'accélération angulaire $\ddot{\theta} = f(\theta)$. En exploitant cette courbe déterminer le moment d'inertie $J_{\Delta'}$
- (3) Montrer que l'expression de l'énergie potentielle est :

$$E_P = \frac{L}{2} \left(\frac{K.L}{4} + M_0 g \right) \theta$$

(4) Retrouver l'équation différentielle par méthode énergétique

