Computer Graphics

(Curves and Surfaces, Part 2)

Thilo Kielmann
Fall 2003
Vrije Universiteit, Amsterdam
kielmann@cs.vu.nl

http://www.cs.vu.nl/~graphics/

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Outline for today

- NURBS
- Rendering splines
- The Exam

Bezier curves

Use p_0 and p_3 for interpolation Use p_1 and p_2 to approximate tangents (like with Hermite curves)

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Joins of Bezier curves

We use again $p_0 \dots p_3$ for the first curve and $p_3 \dots p_6$ for the second.

Bezier curves are C^0 continuous, but **not** C^1

Bezier polynomial and its convex hull

The Bezier polynomial in terms of its blending polynomials forms a convex sum. (property of the blending polynomials).

Thus the Bezier polynomial lies within the convex hull of its control points, which is close to by not exactly interpolating all control points.

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Bezier surface patch

completely contained in the convex hull of its control points interpolates $p_{00}, p_{03}, p_{30}, p_{33}$

Cubic B-Splines

To improve smoothness, give up interpolation completely. Let control points define curve only between middle control points.

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

5

Convex hull for B-spline curve

Again, control points define convex hull for the curve.

Continuity of B-Splines

B-Splines have been designed to be C^0 and C^1 continuous.

They happen to be also C^2 continuous.

This is very smooth, like blending metal.

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Spline surface patch

from the blending functions:

$$p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u)b_j(v)p_{ij}$$

defines only the middle patch of the surface

General B-Splines

Set of control points p_0, \ldots, p_m approximation problem: find $p(u) = [x(u) \ y(u) \ z(u)]^T$ over $u_{\min} \le u \le u_{\max}$

Set of values $\{u_k\}$ called **knot array** $u_{\min} = u_0 \le u_1 \le \ldots \le u_n = u_{\max}$

$$p(u) = \sum_{j=0}^{d} c_{jk} u^{j}, \quad u_k < u < u_{k+1}$$

(for d=3 and n knots we have to solve 4n equations)

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Recursively defined B-Splines

Local solution, by combining basis functions for each interval

These **Basis splines** (\rightarrow name B-splines) of degree d are non-zero only in d+1 intervals.

(and they are recursively defined, needs d-1 extra knots for the ends)

 C^{d-1} continuity at the knots

15

Uniform B-Splines

Splines are called **uniform** if their knots are equally spaced.

Also non-uniform spacing and repeated knots possible.

Open splines

If a knot has a multiplicity d+1, a spline of degree d must interpolate it. (We can use this to define the endpoints of a spline.)

Example: $\{0, 0, 0, 0, 1, 2, \dots, n-1, n, n, n, n\}$

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Periodic uniform spline

(example, periodicity depends on knot array)

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

NURBS

B-Splines work in 3D, in 2D, and in 4D \rightarrow homogeneous coordinates

control point $p_i = \begin{bmatrix} x_i & y_i & z_i \end{bmatrix}^T$

weighted homogeneous representation: $q_i = w_i \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix}$

Weights determine the relative importance of a control point.

17

$p(u) = [x(u) \ y(u) \ z(u) \ w(u)]^T$

$$q(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} = \sum_{i=0}^{n} B_{i,d}(u)w_{i}p_{i}$$

$$w(u) = \sum_{i=0}^{n} B_{i,d}(u)w_{i}$$

$$p(u) = \frac{1}{w(u)}q(u) = \frac{\sum_{i=0}^{n} B_{i,d}(u)w_{i}p_{i}}{\sum_{i=0}^{n} B_{i,d}(u)w_{i}}$$

Rendering polynomials

Horner's method:

$$p(u) = c_0 + u(c_1 + u(c_2 + uc_3)))$$

takes n=3 multiplications

The "forward differences" methods only needs additions, but is sensitive to numerical error propagation.

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Nonuniform, Rational B-Spline (NURBS)

- nonuniform (no assumptions about knots)
- rational function, with "built-in perspective division"
- NURBS look better in perspective views (perspective is no affine transformation)
- quadrics can be rendered as special case of NURBS (uniform mechanism)

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Recursive Subdivision (Bezier)

Divide recursively until convex hull gets close to straight line. Best done in screen coordinates / resolution determines recursion depth.

Construction of Subdivision Curves

Subdivision of Bezier Surfaces

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Rendering Other Polynomial Curves

Bezier, interpolation, and B-spline polynomials can be seen as different representations of the same curve.

After transformation (matrix) to Bezier polynomial, do recursive subdivision.

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

First Subdivision

- New points created by subdivision
- Old points discarded after subdivision
- Old points retained after subdivision

Second Subdivision

- New points created by subdivision
- Old points discarded after subdivision
- Old points retained after subdivision

The Utah Teapot

Created by M.Newell at Univ. of Utah, in the 1970s 32 bicubic Bezier patches from 306 control points

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

25

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Rendering Quadrics

- ullet polynomials of the form $x^iy^jz^k,$ with $i+j+k\leq 2$
- can be rendered by raycasting (solving quadratic equation)
- can be rendered by subdivision

A Subdivided Quadrant

Flatness test (recursion end) hard to do, mostly left to the programmer.

~-

Subdivision of Piecewise, Linear Curve

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Triangle subdivision

subdivided surfaces are a refinement of the original surface

Subdivision of Polygonal Mesh

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Curves and Surfaces in OpenGL

- using **evaluators** for generating Bezier polynomials
- 1D up to 4D
- 1D = curves
- 2D = surfaces

Bezier Curves

Define and use a 1D evaluator:

```
glMap1f(type, u_min, u_max, stride, order, point_array)
// type = GL_MAP1_VERTEX_3, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1...
// stride e.g. 3 for 3 points per curve segment
// order = degree+1
glEnable(type);

glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, data);
glBegin(GL_LINE_STRIP);
    for (i=0; i<100; i++) glEvalCoord1f( (float) i/100.0);
glEnd();</pre>
```

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Bezier Surfaces

Define and use a 2D evaluator:

33

```
glMap2f(GL_MAP2_VERTEX_3, 0.0, 1.0, 3, 4, 0.0, 1.0, 12, 4, data);
glEnable(GL_MAP2_VERTEX_3);

for (j=0; j<100; j++){
    glBegin(GL_LINE_STRIP);
    for (i=0; i<100; i++)
        glEvalCoord2f((float) i/100.0), (float) j/100.0);
glEnd();
glBegin(GL_LINE_STRIP);
    for (i=0; i<100; i++)
        glEvalCoord2f((float) j/100.0), (float) i/100.0);
glEnd();
glEnd();
}</pre>
```

Quadrics in GLU

```
GLUquadricObj *p = gluNewQuadric();
gluQuadricDrawStyle(p, GLU_LINE);

// from the picking robot
gluCylinder(p, BASE_RADIUS, BASE_RADIUS, BASE_HEIGHT, 5 ,5);
// 5 and 5 are the subdivision slices in x and y

also:
gluDisk
gluPartialDisk
gluSphere
```

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Summary Curves

- Bezier and B-Spline polynomials
- Rendering by recursive subdivision
- GLU provides some useful quadrics objects

Written Exam

- January 19, 2003 (13:30–16:30), M1.29
- Registration via TISVU
- Second Chance ("Herkansing"):
 June 18, 2003 (13:30–16:30), S2.09
 (with only few participants:
 oral exam, same time, same place)
- Check the announcements of the "onderwijsbureau" for changes of time and/or place. . .

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Written Exam (2)

- New: "closed book exam"
- No materials (books, slides, etc) allowed

Written Exam (3)

- Topics: Intersection between book (**Ch 1–9, 13**) and lecture
- Hint: think about solutions to the exercises in the book
- Questions: more than "how to call it in OpenGL":
 - * Basic concepts
 - ★ "How do things work?"
 - * Applications of techniques
- Check old exam on the WWW page!

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

39

Course Summary / Exam Topics

- 1. Graphics Programming (OpenGL)
- 2. Input and Interaction
- 3. Geometric Objects and Transformations
- 4. Viewing (3D and perspectives)
- 5. Shading (light and matter)
- 6. Object Hierarchies
- 7. Discrete Techniques (texture)
- 8. Implementation of a Renderer

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Pipeline Architecture

Graphics Functions

- 1. primitive functions (objects: "what")
- 2. attribute functions "how"
- 3. viewing functions (camera)
- 4. transformation functions (rotation . . .)
- 5. input functions
- 6. control functions

41

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Primitive Elements

Convexity

"All points on the line segment between any 2 points inside the polygon are inside the polygon."

Additive Color Matching

$$C = T_1 \cdot R + T_2 \cdot G + T_3 \cdot B$$

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Control and the Window System

```
#include <GL/glut.h>
int main(int argc, char** argv){
   glutInit(&argc,argv);
   glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
   glutInitWindowSize(500,500);
   glutInitWindowPosition(0,0);
   glutCreateWindow("Sierpinski Gasket");
   glutDisplayFunc(display); /* register display func. */
   myinit(); /* application-specific inits */
   glutMainLoop(); /* enter event loop */
   return 0;
}
```

Double Buffering

- screen image is refreshed 50-85 times per second
- drawing into the frame buffer is not an atomic action
 - \star (and takes longer than 1/50 sec)
- the flickering we see is from partially drawn images
- solution: double buffering
 - ★ front buffer is used for display
 - * back buffer is used for drawing

51

Vector: $v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3$

Point: $P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3$

Translation

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Homogeneous Coordinates

$$P = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + P_0$$

Define point-scalar "multiplication":

$$0 \cdot P = 0$$

$$1 \cdot P = P$$

$$P = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix} \qquad p = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ 1 \end{bmatrix}$$

$$w = \begin{bmatrix} \delta_1 & \delta_2 & \delta_3 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ P_0 \end{bmatrix} \qquad a = \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \\ 0 \end{bmatrix}$$

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Rotation

rotation (in 2D) about a fixed point

53

Scaling

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Rotation around axes

$$R_z = R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_x = R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y = R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y = R_y(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Orthographic Projection

Projectors are perpendicular to the projection plane.

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Perspective Viewing

Predistortion of Objects

Global Rendering (Ray Tracing)

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Light-Material Interactions

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

The Phong Reflection Model

n normal vector at p v vector to viewer (COP) l vector to light source r direction of reflected light

-

Instance Transformation

M = TRS

converts normalized object into customized instance

Pattern → Surface

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Traversing an Object Tree

```
void traverse(treenode *root){
   if (root == NULL) return;
   glPushMatrix();
   glMultMatrix(root->m);
   root->f();
   if (root->child != NULL) traverse(root->child);
   glPopMatrix();
   if (root->sibling != NULL) traverse(root->sibling);
}
```

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Buffer writing modes

Line-Segment Clipping (start with 2D)

Accept or reject line segments Shorten line segments.

Scan Conversion

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

65

Computer Graphics (Curves and Surfaces), ((68)) © 2000–2003, Thilo Kielmann

Hidden-Surface Removal

Object-space approach: with k objects, compare each with k-1 objects:

 $O(k^2)$ checks

Antialiasing

Finally . . .

- Thank you very much for being here!
- I wish you success with the programming projects and with the exam!