

# **School of Biological Sciences**

### **ASSESSMENT COVER SHEET AND TEMPLATE**

**Section A** – to be completed by the student

| Student Number         | 2228202                      |                 |                           |
|------------------------|------------------------------|-----------------|---------------------------|
| Programme              | MSc Bioinformatics           |                 |                           |
| Unit Name              | Genome Biology and Genomics  | Unit Code:      | BIOLM0030                 |
| Assessment name        | Genome Biology and Ger       | nomics Coursewo | ork 2023                  |
| Word Count             | 1193                         |                 |                           |
| Do you give permission | for you work to be used anon | mously in examp | oles given to students in |

the future? (type Yes or No)

# By submitting this assignment cover sheet, I confirm that I understand and agree with the following statements:

- 'I have not committed plagiarism, cheated or otherwise committed academic misconduct as defined in the University's Assessment Regulations (available at <a href="https://www.bristol.ac.uk/media-library/sites/academic-quality/documents/taught-code/annexes/university-examination-regulations.pdf">https://www.bristol.ac.uk/media-library/sites/academic-quality/documents/taught-code/annexes/university-examination-regulations.pdf</a>)
- 'I have not submitted this piece, in part or in its entirety, for assessment in another
  unit assignment (including at other institutions) as outlined in section 4 of the
  University's Assessment regulations (available at <a href="https://www.bristol.ac.uk/media-library/sites/academic-quality/documents/taught-code/annexes/university-examination-regulations.pdf">https://www.bristol.ac.uk/media-library/sites/academic-quality/documents/taught-code/annexes/university-examination-regulations.pdf</a>)
- I understand that this piece will be scrutinised by anti-plagiarism software and that I may incur penalties if I am found to have committed plagiarism, as outlined in sections 3 of the University's Examination Regulations (available at <a href="https://www.bristol.ac.uk/media-library/sites/academic-quality/documents/taught-code/annexes/university-examination-regulations.pdf">https://www.bristol.ac.uk/media-library/sites/academic-quality/documents/taught-code/annexes/university-examination-regulations.pdf</a>)

# 1a) Evaluate the quality of raw sequencing data.

- 3 The FastQC analysis confirms that the sequences are Illumina short read due to no variation
- 4 in the sequence length distribution (Table 1.0) and the drop in base quality above the 210bp
- 5 threshold (Figure 1.0)

1

2

6 7

8

| Filename coursework2023_R1.fastq | coursework2023_R1_trimmed.fastq.gz |
|----------------------------------|------------------------------------|
|----------------------------------|------------------------------------|

| File type                               | Conventional base calls | Conventional base calls |
|-----------------------------------------|-------------------------|-------------------------|
| Encoding                                | Sanger / Illumina 1.9   | Sanger / Illumina 1.9   |
| <b>Total Sequences</b>                  | 200001                  | 199906                  |
| Sequences<br>flagged as poor<br>quality | 0                       | 0                       |
| Sequence length                         | 301                     | 18-301                  |
| %GC                                     | 41                      | 41                      |

# Table 1.0 - Fastqc basic statistics on raw and trimmed sequencing data



**Figure 1.0** – FastQC per base sequence quality. coursework2023\_R1\_fastqc.zip

- 9 There is a high PHRED score for the untrimmed sequence files with 90,000 being above 32
- indicating 99.9% base call accuracy (Figure 2.0).



Figure 2.0 – Per sequence quality score of raw sequences.

# 11 1b) Trimming and assembly contig statistics

|                              | final.contigs |
|------------------------------|---------------|
| Statistics without reference |               |
| # contigs                    | 606           |
| # contigs (>= 1000 bp)       | 305           |
| # contigs (>= 50000 bp)      | 38            |
| Largest contig               | 291886        |
| Total length                 | 6226606       |
| Total length (>= 1000 bp)    | 6020893       |
| Total length (>= 50000 bp)   | 4638750       |
| N50                          | 115654        |

- 12 **Table 2.0** Quast contig analysis of the MEGAHIT assembly.
- 13 The total contig length of this assembly is 6,226,606. The N50 value is 115,654 bp which is
- the smallest contig that covers half of the assembly, providing a partial indication of
- contiguous assembly. Mean coverage x15 was calculated from a bam file by read mapping
- back to the assembled contigs (Supplementary 5).

17 18

# Table 3 – Quast reference genome statistics

19 There is a high fraction of alignment in this assembly with *C.P. syntrophicum*.

| Genome statistics    | final.contigs |    |  |
|----------------------|---------------|----|--|
| Genome fraction (%)  | 99.189        | 21 |  |
| Duplication ratio    | 1.002         | 22 |  |
| Largest alignment    | 291886        | 22 |  |
| Total aligned length | 4402517       |    |  |
| NGA50                | 145153        |    |  |

BUSCO completeness is at 90% indicating a good level of gene content, which provides an indication of completeness alongside to mean coverage.



23



Figure 2.1 – BUSCO Completeness of Megahit assembly

2627

28

29

30

C) Methods of analysis (295 / 300 words)

# **Data Summary**

Data was obtained from an online repository hosted by the University of Bristol. The pool of genetic material is likely to be prokaryotic DNA sequences generated by Illumina paired

31 short reads.

32

# File Description

| coursework2023 R1.fastq        | FASTQ file with assumed prokaryotic DNA |
|--------------------------------|-----------------------------------------|
|                                | sequences.                              |
| coursework2023_R2.fastq        | FASTQ file with assumed prokaryotic DNA |
|                                | sequences.                              |
| GCF_008000775.1_genomic.fna.gz | Genome of Candidatus                    |
|                                | Prometheoarchaeum syntrophicum          |

Table 3.1 - Data sources

34 35

33

36

#### Quality checking with FASTQC

- FASTQC was used to assess the quality of the two fastq files (Andrews, 2010), providing
- information on sequence length distribution and phred scores. FASTQC was used before
- 40 and after trimming.

41 42

37

### Pre-processing of sequences

- 43 Trimmomatic (Bolger et al., 2014) was used to remove adaptor sequences and low quality
- bases using a newly created bash script looping through files and renaming outputs
- 45 (Supplementary 1). Custom Biopython scripts were used to filter and analyse the fasta/fastqc
- 46 files (Supplementary 2).

47 48

# De-novo genome assembly using MEGAHIT

- 49 The software MEGAHIT was used for a fast parallel assembly utilizing de bruijn graphs,
- to create a de novo genome assembly and contig outputs (Li et al., 2015).

51 52

### Similarity searches

- Blast was used to search sequences to determine the type of organisms in the sample
- 54 (Altschul et al., 1990). This helped with defining the BUSCO lineage parameters below and
- 55 species identification.

56

57

### Assessing genome assembly quality and completeness

- 58 Quast was used to provide basic assembly statistics such as the number of contigs and N50
- 59 against a reference (Gurevich et al., 2013). The default parameters of contigs <500bp were
- removed from the results. BWA was used to align trimmed reads back to the assembly. The
- samtools depth function generated mean coverage of the aligned assembly. BUSCO was
- 62 used to provide a quantitative estimation of genome assembly completeness via the
- expected gene content of the prokaryote assembly. All the Prokka and Ghost Koala results
- were collated in excel (Kanehisa et al., 2016), outputs were cleaned and joined in R for
- grouping sequences by taxonomy (Supplementary 3).

66 67

2) How many organisms were sequenced in this sample? (198/200 words, 10%)

68

- The blastn resulted in archaeal identification justifying using Prokka to annotate the
- assembly and predict microbial genes (Seemann, 2014). Prokka amino acid outputs were
- 71 used for further searches detecting the species Candidatus Prometheoarchaeum
- 72 syntrophicum and Methanogenium cariaci (Table 4).

73

### 74 Table 4 – Summary of blastP results

75 Similarity searches from Prokka protein prediction.

| Description                             | Scientific Name                                 | Max<br>Score | Total<br>Score | Query<br>Cover | E<br>value | Per.<br>ident | Acc.<br>Len | Accession      |
|-----------------------------------------|-------------------------------------------------|--------------|----------------|----------------|------------|---------------|-------------|----------------|
| PAS<br>domain-<br>containing<br>protein | Candidatus<br>Prometheoarchaeum<br>syntrophicum | 2076         | 2076           | 100%           | 0          | 100           | 1023        | WP_147661239.1 |
| ATP-<br>dependent<br>protease<br>LonB   | Methanogenium<br>cariaci                        | 1275         | 1275           | 100%           | 0          | 100           | 631         | WP_062399716.1 |
| ATP-<br>dependent<br>protease<br>LonB   | Methanogenium<br>marinum                        | 1172         | 1172           | 99%            | 0          | 93.95         | 675         | WP_274924851.1 |
| hypothetical<br>protein                 | Candidatus<br>Prometheoarchaeum<br>syntrophicum | 729          | 729            | 100%           | 0          | 100           | 362         | WP_147662554.1 |
| hypothetical<br>protein                 | Candidatus<br>Prometheoarchaeum<br>syntrophicum | 1503         | 1503           | 100%           | 0          | 100           | 751         | WP_147663367.1 |

- 76
- 77 Ghost Koala provided an improved taxonomic estimation, confirming a sample with an
- Archaeal species richness in the proposed phyla Lokiarchaeota and Euryarchaeota.
- 79 The genera Candidatus Prometheoarchaeum (N = 3941) and Methanogenium (N = 1563)
- 80 were the highest proportion of species detected. Genera such as Methanofollis and
- 81 Methanolacinia were observed in small quantities also from Euryarchaeota. There are small
- quantities of the bacterial genus Actinomycetota (1.88%) and species Streptomyces
- 83 (16/6489) present but the low quantities are inconclusive.



Figure 3 – Taxonomic analysis of sequence data

### Table 5- Subset of ghost Koala taxonomic results.

| Taxonomy                     | Ghost count | Proportion |
|------------------------------|-------------|------------|
| Archaea                      | 5944        | 91.6%      |
| Lokiarchaeota                | 3945        | 60.8%      |
| Candidatus Prometheoarchaeum | 3941        | 60.7%      |
| Candidatus Lokiarchaeum      | 4           | 0.1%       |
| Euryarchaeota                | 1990        | 30.7%      |
| Methanogenium                | 1563        | 24.1%      |
| Methanofollis                | 73          | 1.1%       |
| Methanolacinia               | 72          | 1.1%       |
| Methanoplanus                | 70          | 1.1%       |
| Bacteria                     | 545         | 8.40%      |
| Actinomycetota               | 122         | 1.88%      |
| Total                        | 6489        |            |

To conclude, this is a metagenomic sample with the two primary organisms estimated to be *Candidatus Prometheoarchaeum syntrophicum* and *Methanogenium cariaci*. However, there are four smaller quantities of organisms in different phyla such as Euyarchaeota and Actinomycetota. The co-culture may be contaminated with bacterial strains but it is not possible to determine the species from the data provided.

3) Propose and justify, with evidence from your analyses, a hypothesis for the core energy metabolism of each of the predominant community members (280 Up to 300 words, 30%).

A hypothesis is that *Candidatus Prometheoarchaeum syntrophicum* (CP-S1) has a syntrophic relationship with *Methanogenium*, utilizing the latter's amino acid and methane production as a core metabolite for growth. GhostKoala and Prokka results infer the metabolisms of these prominent community members (Figure 3). The Asgard group has interesting eukaryotic protein coding regions with a range of physiological properties. Studies have shown that CP-S1 is largely anaerobic and undergoes syntrophic amino acid utilization with its co-culture partner *Methanogenium*. It has been demonstrated that it produces both formate and hydrogen from methane and CO2 substrates depending on the type of partner (Imachi et al., 2020). Identification in the analysis of genes encoding for enzymes such as formate dehydrogenase corresponds with this paper (Table 5.1). Interestingly, CP-S1 can grow syntrophically with methane producing bacteria when replaced in vitro further supporting its dependence on other microbes (Imachi et al., 2011). Additionally, CP-S1 is likely to switch between syntrophic oxidation and hydrolysis of the amino acid intermediates such as 2-oxoacid.

Methanogenium is a strictly anaerobic methanogen which uses substrates such as CO2 and hydrogen as substrates to produce methane. The Prokka and Ghost koala results have provided functional gene annotations for a group of enzymes called methyl-coenzyme M reductases (MCRs) in Methanogenium (Table 5.1). MCRs are central to anaerobic methane metabolism, providing the final catalysation step in methanogenesis and the first step in the anaerobic oxidation of methane. The enzymes also exhibit novel post-translational modifications assumed to be important in metabolic enzyme function (Chen et al., 2020). These findings have required the evolution of methanogenesis to be revisited and reexamined.

**Table 5.1** – Structural, functional and taxonomic links by Prokka and GhostKoala.

| Prokka locus_tag | ftype | genus                           | COG     | KEGG_annotation                                                                                 |
|------------------|-------|---------------------------------|---------|-------------------------------------------------------------------------------------------------|
| BJMNOHND_00887   | CDS   | Methanogenium                   | COG4058 | mcrA; methyl-                                                                                   |
|                  |       |                                 |         | coenzyme M                                                                                      |
|                  |       |                                 |         | reductase alpha                                                                                 |
|                  |       |                                 |         | subunit [EC:2.8.4.1]                                                                            |
| BJMNOHND_04214   | CDS   | Candidatus                      | NA      | fdhB; formate                                                                                   |
|                  |       | Prometheoarchaeum               |         | dehydrogenase                                                                                   |
|                  |       |                                 |         | (coenzyme F420)                                                                                 |
|                  |       |                                 |         | beta subunit                                                                                    |
|                  |       |                                 |         | [EC:1.17.98.3                                                                                   |
|                  |       |                                 |         | 1.8.98.6]                                                                                       |
| BJMNOHND_02154   | CDS   | Candidatus<br>Prometheoarchaeum | NA      | mvhA, vhuA, vhcA;<br>F420-non-reducing<br>hydrogenase large<br>subunit [EC:1.12.99<br>1.8.98.5] |

4) Isolation of co-culture in vitro. (223 / 300 words)

The metagenomic sample is very difficult to grow in isolation because the natural deep sea sediment environment is not easily replicated in vitro. There is significant microbial diversity within deep sea sediment ecosystems including Lokiarchaeota and Euryarchaeota phyla. The anaerobic conditions result in syntrophic amino acid utilisation and symbiotic metabolic relationships that are difficult to control experimentally. The slow growth rate and low cell yields of Lokiarchaeota are problematic and require advanced bioreactors with a continuous methane supply which is not widely accessible. Repeated sub-culturing is also required for successful enrichment over a long period of time, eventually leading to appropriate isolation

| 133 | of the co-culture (Imachi et al., 2020). During this process it is important to remove any   |
|-----|----------------------------------------------------------------------------------------------|
| 134 | competitive bacterial strains that can produce compounds that reduce the growth rate of the  |
| 135 | desired species. As demonstrated by Imachi et al. (2020) a 12 year bioreactor enrichment     |
| 136 | study was required to obtain a pure non-bacterial co-culture of the deep sea sediment        |
| 137 | targets Methanogenium and Candidatus Prometheoarchaeum syntrophicum. Within this time        |
| 138 | frame there were 7 years of in-vitro enrichment for this co-culture to be successful. During |
| 139 | the isolation process it is important to carry out quantitative DNA analysis such as         |
| 140 | quantitative PCR (qPCR) to monitor microbial growth. Evidently, the complex and time         |
| 141 | consuming methods required to isolate this co-culture is challenging compared to other       |
| 142 | microbes.                                                                                    |
| 143 |                                                                                              |
| 144 |                                                                                              |
| 145 |                                                                                              |
| 146 | <u>References</u>                                                                            |
| 147 |                                                                                              |
| 148 | Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. 1990. Basic local        |
| 149 | alignment search tool. Journal of molecular biology, 215, 403-410.                           |
| 150 | Andrews, S. 2010. Fastqc: A quality control tool for high throughput sequence data [Online]. |
| 151 | Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.                      |
| 152 | Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc [Accessed                |
| 153 | 16/03/2023].                                                                                 |
| 154 | Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: A flexible trimmer for illumina     |
| 155 | sequence data. Bioinformatics, 30, 2114-2120.                                                |
| 156 | Chen, H., Gan, Q. & Fan, C. 2020. Methyl-coenzyme m reductase and its post-translational     |
| 157 | modifications. Frontiers in Microbiology, 11.                                                |
| 158 | Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. 2013. Quast: Quality assessment tool for |
| 159 | genome assemblies. Bioinformatics, 29, 1072-1075.                                            |
| 160 | Imachi, H., Aoi, K., Tasumi, E., Saito, Y., Yamanaka, Y., Saito, Y., Yamaguchi, T., Tomaru,  |
| 161 | H., Takeuchi, R. & Morono, Y. 2011. Cultivation of methanogenic community from               |
| 162 | subseafloor sediments using a continuous-flow bioreactor. The ISME journal, 5,               |
| 163 | 1913-1925.                                                                                   |
| 164 | Imachi, H., Nobu, M. K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y.,      |
| 165 | Uematsu, K., Ikuta, T., Ito, M., Matsui, Y., Miyazaki, M., Murata, K., Saito, Y., Sakai,     |
| 166 | S., Song, C., Tasumi, E., Yamanaka, Y., Yamaguchi, T., Kamagata, Y., Tamaki, H. &            |
| 167 | Takai, K. 2020. Isolation of an archaeon at the prokaryote-eukaryote interface.              |
| 168 | Nature, 577, 519-525.                                                                        |

| 169 | Kanehisa, M., Sato, Y. & Morishima, K. 2016. Blastkoala and ghostkoala: Kegg tools for   |
|-----|------------------------------------------------------------------------------------------|
| 170 | functional characterization of genome and metagenome sequences. J Mol Biol, 428,         |
| 171 | 726-731.                                                                                 |
| 172 | Li, D., Liu, CM., Luo, R., Sadakane, K. & Lam, TW. 2015. Megahit: An ultra-fast single-  |
| 173 | node solution for large and complex metagenomics assembly via succinct de bruijn         |
| 174 | graph. Bioinformatics, 31, 1674-1676.                                                    |
| 175 | Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30, 2068- |
| 176 | 2069.                                                                                    |
| 177 |                                                                                          |