Diskrete Mathematik

Patrick Bucher & Lukas Arnold

8. Mai 2017

Inhaltsverzeichnis

1	Dis	Diskrete Wahrscheinlichkeitsrechnung I	
	1.1	Wahrscheindlichkeit nach Laplace	
	1.2	Komplement der Wahrscheindlichkeit	
	1.3	Additionsregel	
	1.4	Bedingte Wahrscheinlichkeit	
	1.5	Unabhängige Ereignisse	
	1.6	Satz der totalen Wahrscheindlichkeit	
	1.7	Satz von Bayes	

$\begin{aligned} \textit{Spezialfall für 2 Mengen:} \\ p(B|A) &= \frac{P(A|B) \; p(B)}{p(A|B) \cdot p(B) + p(A|\neg B) \cdot p(\overline{B})} \end{aligned}$

1 Diskrete Wahrscheinlichkeitsrechnung I

1.1 Wahrscheindlichkeit nach Laplace

$$p(A) = \frac{|A|}{|S|} = \frac{Anzahl\ guenstige}{Anzahl\ moegliche}$$

1.2 Komplement der Wahrscheindlichkeit

$$p(\overline{A}) = 1 - p(A)$$

1.3 Additionsregel

$$p(A_1 \cup A_2) = p(A_1) + p(A_2) - p(A_1 \cap A_2)$$

1.4 Bedingte Wahrscheinlichkeit

$$p(A|B) = \frac{p(A \cap B)}{p(B)}$$

1.5 Unabhängige Ereignisse

$$p(A|B) = \frac{p(A \cap B)}{p(B)} = \frac{p(A)p(B)}{p(B)} = p(A)$$

1.6 Satz der totalen Wahrscheindlichkeit

$$p(A) = \sum_{i=1}^{k} p(A \cap B_i) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i)$$

$$p(A|C) = \frac{1}{p(C)} \sum_{i=1}^{k} p(A \cap (B_i \cap C))$$

$$p(A|C) = \sum_{i=1}^{k} p(A|B_i) \cdot p(B_i|C)$$

Spezialfall für 2 Mengen:
$$p(A) = p(A|B) \cdot p(B) + p(A|\overline{B}) \cdot p(\overline{B})$$

1.7 Satz von Bayes

$$p(B_j|A) = \frac{P(A|B_j) \ p(B_j)}{p(A)} = \frac{p(A|B_j) \ p(B_j)}{\sum_{i=1}^k p(A|B_i) \cdot p(B_i)}$$