Overview

- Quick Probability Refresh
- Probabilistic Interpretation of Linear Regression
- Probabilistic Interpretation of Logistic Regression
- Probabilistic Interpretation of Regularisation

- **Sample space** *S*: set of possible outcomes, **random event** *E*: subset of *S*, **random variable**: maps event *E* to a real value.
- Can think of probability of an event *E* as the frequency with which it happens when an experiment is repeated many times
- Conditional probability:
 - Events: $P(E|F) = \frac{P(E \cap F)}{P(F)}$ when P(F) > 0.
 - RVs: $P(X = x | Y = y) = \frac{P(X = x \text{ and } Y = y)}{P(Y = y)}$
- Chain rule: P(X = x and Y = y) = P(X = x | Y = y)P(Y = y).

Consequences of chain rule:

Marginalisation:

Suppose RV Y takes values in $\{y_1, y_2, ..., y_n\}$. Then

$$P(X = x) = P(X = x \text{ and } Y = y_1) + \dots + P(X = x \text{ and } Y = y_n)$$
$$= \sum_{i=1}^{n} P(X = x | Y = y_i) P(Y = y_i)$$

Bayes rule:

$$P(X = x | Y = y) = \frac{P(Y=y|X=x)P(X=x)}{P(Y=y)}.$$

Independence: Random variables X and Y are independent if

$$P(X = x \text{ and } Y = y) = P(X = x)P(Y = y)$$

for all x and y, in which case P(X = x | Y = y) = P(X = x).

Continuous-valued random variables:

- P(X = x) = 0 for continuous-valued random variables, instead we need to consider intervals e.g. $P(a \le X \le b)$.
- $F_Y(y) := P(Y \le y)$ is the cumulative distribution function (CDF) and $P(a < Y \le b) = F_Y(b) F_Y(a)$.
- For a continuous-valued random variable Y there exists a probability density function f_Y(y) ≥ 0 such that:

$$F_Y(y) = \int_{-\infty}^{y} f_Y(t) dt$$

and so

$$P(a < Y \le b) = \int_{-\infty}^{b} f_Y(t)dt - \int_{-\infty}^{a} f_Y(t)dt = \int_{a}^{b} f_Y(t)dt$$

- The probability density function f(y) for random variable Y is <u>not</u> a probability e.g. it can take values greater than 1. Its the <u>area</u> under the PDF that is the probability $P(a < Y \le b)$
- $\int_{-\infty}^{\infty} f(y)dy = 1$ (since $\int_{-\infty}^{\infty} f(y)dy = F_Y(\infty) = P(Y \le \infty) = 1$)

- F_{XY}(x, y) = P(X ≤ x and Y ≤ y) is the cumulative distribution function for X and Y. It is well-defined for both continuous and discrete valued RVs
- When X and Y are continuous-valued random variables there exists a probability density function (PDF) $f_{XY}(x, y) \ge 0$ such that:
 - $F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) du \ dv$
- Define conditional PDF:

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

Then chain rule also holds for PDFs:

$$f_{XY}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$$

 So marginalisation, Bayes rule and independence carry over to PDFs similarly to discrete-valued RVs

Y is a **Normal** or **Gaussian** random variable $Y \sim N(\mu, \sigma^2)$ when it has PDF:

$$f_Y(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

- $E[Y] = \mu$, $Var(Y) = \sigma^2$
- Symmetric about μ and defined for all real-valued x

Probabilistic Interpretation: Linear Regression

• Assume output y is generated by:

$$Y = \theta^T x + M = h_{\theta}(x) + M$$

where $h_{\theta}(x) = \theta^T x$ and M is Gaussian noise with mean 0 and variance 1. As usual, we use capitals for random variables.

• So training data d is:

$$\{(x^{(1)},h_{\theta}(x^{(1)})+M^{(1)}),(x^{(2)},h_{\theta}(x^{(2)})+M^{(2)}),\cdots,(x^{(m)},h_{\theta}(x^{(m)})+M^{(m)})\}$$

where $M^{(1)}, M^{(2)}, \dots, M^{(m)}$ are **independent** random variables each of which is Gaussian with mean 0 and variance 1.

Probabilistic Interpretation: Linear Regression

- A Gaussian RV Z with mean μ and variance σ^2 has pdf $f_Z(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(Z-\mu)^2}{2\sigma^2}}$.
- So we are assuming: $f_M(m) = \frac{1}{\sqrt{2\pi}} e^{-\frac{m^2}{2}}$, $f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-h_\theta(x))^2}{2}}$.
- The **likelihood** $f_{D|\Theta}(d|\theta)$ of the training data d is therefore:

$$f_{D|\Theta}(d|\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y^{(i)} - h_{\theta}(x^{(i)}))^2}{2}}$$

- Taking logs: $\log f_{D|\Theta}(d|\theta) = \log \frac{1}{\sqrt{2\pi}} \sum_{i=1}^{m} \frac{(y^{(i)} h_{\theta}(x^{(i)}))^2}{2}$
- And the maximum likelihood estimate of θ maximises

$$\max_{\theta} - \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)}))^2$$

i.e. minimises

$$\min_{\theta} \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)}))^2$$

Probabilistic Interpretation: Who Cares?

- Since probability is about reasoning under uncertainty it would be v odd indeed if our machine learning algorithms did not make good sense from a probability/statistics point of view.
- Casting an ML approach within a statistical framework clarifies the assumptions that have been made (perhaps implicitly). E.g. in linear regression:
 - Noise is additive $Y = \theta^T x + M$
 - Noise on each observation is independent and identically distributed
 - Noise is Gaussian it is this which leads directly to the use of a square loss $(y h_{\theta}(x))^2$. Changing the noise model would lead to a different loss function.
- We can leverage the wealth of results and approaches from probability/statistics, and perhaps gain new insights. E.g. in linear regression:
 - Without regularisation, our estimate of θ is the maximum likelihood estimate. Would a MAP estimate be more/less useful ?

Probabilistic Interpretation: Logistic Regression

Assume

$$P(Y = y | \theta, x) = \frac{1}{1 + e^{-y\theta^T x}}$$

and recall y = 1 or y = -1 only.

• The **likelihood** $f_{D|\Theta}(d|\theta)$ of the training data d is therefore:

$$f_{D|\Theta}(d|\theta) = \prod_{i=1}^{m} \frac{1}{1 + e^{-y\theta^T x}}$$

• Taking logs:

$$\log f_{D|\Theta}(d|\theta) = \sum_{i=1}^{m} \log \frac{1}{1 + e^{-y\theta^{T}x}}$$

• And the maximum likelihood estimate of θ minimises:

$$-\sum_{i=1}^{m}\log\frac{1}{1+e^{-y\theta^{T}x}}=\sum_{i=1}^{m}\log(1+e^{-y\theta^{T}x})$$

since
$$-\log(z) = \log(1/z)$$
.

Probabilistic Interpretation: Logistic Regression

 The probabilistic formulation of logistic regression provides us with a new insight:

$$P(Y = y | \theta, x) = \frac{1}{1 + e^{-y\theta^T x}}$$

• So in addition to prediction $h_{\theta}(x) = sign(\theta^T x)$ we also have an estmate of our confidence in the prediction, namely $\frac{1}{1+e^{-y\theta^T x}}$.

• When $\frac{1}{1+e^{-y\theta^T x}}$ is close to 1, then we are confident in our prediction but when $\frac{1}{1+e^{-y\theta^T x}}$ is small then we are less confident.

Probabilistic Interpretation: Regularisation

Recall Bayes Rule

$$P(\Theta = \vec{\theta}|D = d) = \frac{P(D = d|\Theta = \vec{\theta})P(\Theta = \vec{\theta})}{P(D = d)}$$
posterior likelihood prior

- Likelihood. Probability of seeing the data d given model with parameter $\Theta = \vec{\theta}$
- Prior. Before seeing any data what is our belief about the model i.e. what is probability of parameter values Θ .
- Posterior. After seeing the data, what is our belief about probability of parameter values Θ now that we have seen the data.
- Maximum A Posteriori (MAP) estimate of $\vec{\theta}$ is value that maximises $P(\Theta = \vec{\theta}|D = d)$

Probabilistic Interpretation: Regularisation

- Maximum Likeihood estimation: select value of θ that maximises $P(D=d|\Theta=\theta)$
- Maximum a posteriori (MAP) estimation: select θ that maximises $P(\Theta = \theta | D = d)$.
- Taking logs in Bayes Rule:

$$\log P(\Theta = \theta | D = d) = \log P(D = d | \Theta = \theta) + \log P(\Theta = \theta)$$
$$-\log P(D = d)$$

Can drop the log P(D = d) term since d is fixed, so we select θ to maximise:

$$\underbrace{\log P(D = d | \Theta = \theta)}_{log-likelihood} + \underbrace{\log P(\Theta = \theta)}_{log-prior}$$

or for continuous-valued RVs:

$$\underbrace{\log f_{D|\Theta}(D = d|\Theta = \theta)}_{log-likelihood} + \underbrace{\log f_{\Theta}(\Theta = \theta)}_{log-prior}$$

Probabilistic Interpretation: Regularisation

Ridge regression variant of linear regression:

- $Y = \Theta x + M$, $M \sim N(0,1)$ as before.
- Θ_j , $\sim N(0, \sigma^2)$ (this is our prior on θ_j), $j = 1, \ldots, n$
- log-likelihood: $-\sum_{i=1}^{m}(y^{(i)}-\theta^Tx^{(i)})^2$
- log-prior: $-\theta_i^2/\sigma^2$
- So MAP estimate selects θ to maximise:

$$-\sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2} - \sum_{j=1}^{n} \theta_{j}^{2} / \sigma^{2}$$

i.e. to minimise:

$$\sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2} + \sum_{i=1}^{n} \theta_{i}^{2} / \sigma^{2}$$