Procesy stochastyczne Zestaw zadań nr 4

19 listopada 2018

Zadanie 1. Niech proces $\{S_n\}_{n\in\mathbb{N}}$ będzie submartyngałem względem pewnej filtracji $\{\mathcal{F}_n\}$ oraz niech τ będzie momentem stopu względem tej filtracji. Udowodnij, że zastopowany proces $\{S_n^{\tau}\}_{n\in\mathbb{N}}$ jest również submartyngałem. Czy to samo zachodzi dla supermartyngałów?

Zadanie 2. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o tym samym rozkładzie, nieujemnymi z wartością oczekiwaną równą 1. Udowodnij, że dla dowolnego ograniczonego momentu stopu T zachodzi

$$\mathbb{E}\prod_{i=1}^{T}X_{i}=1.$$

Zadanie 3. Niech X_0, X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych oo tym samym rozkładzie. Niech F będzie dystrybuantą tego rozkład oraz niech $\tau = \inf\{n \colon X_n > X_0\}$. Wyznacz rozkład τ oraz jego wartość oczekiwaną.

Zadanie 4. Niech $\{M_n\}$ będzie nieujemnym submartyngałem całkowalnym w p- tej potędze, p > 1 i niech $\lambda > 0$. Udowodnij, że zachodzi wtedy

$$\mathbb{P}\left(\max_{k\leqslant n}M_{k}\geqslant \lambda\right)\leqslant \frac{1}{\lambda^{p}}\int_{\{\max_{k\leqslant n}M_{k}\geqslant \lambda\}}M_{n}^{p}d\mathbb{P}\leqslant \frac{1}{\lambda^{p}}\mathbb{E}M_{n}^{p}.$$

Zadanie 5. Nierówność Doob'a w L^p

• Niech X, Y będą nieujemnymi zmiennymi losowymi i niech $Y \in {}^{p}(\Omega)$, p > 1. Ponadto niech dla dowolnego x > 0 zachodzi

$$x\mathbb{P}(X \geqslant x) \leqslant \int_{\{X \geqslant x\}} Y d\mathbb{P}.$$

Udowodnij, że $wtedy X \in L^p(\Omega)$ oraz

$$||X||_p \leqslant \frac{p}{p-1}||Y||_p.$$

• Korzystając z faktu wykazanego powyżej udowodnij, że dla dowolnego nieujemnego submartyngału M takiego, że dal dowolnego n $\mathbb{E}M_n^p < \infty$ zachodzi

$$\left(\mathbb{E}(\max_{k\leqslant n} M_k)^p\right)^{1/p} \leqslant \frac{p}{p-1} \left(\mathbb{E}M_n^p\right)^{1/p}.$$

Zadanie 6. Niech X będzie symetrycznym błądzeniem losowym postaci $X_n = \sum_{i=1}^n Y_n$ i niech $\{\mathcal{F}_n\}$ będzie filtracją generowaną przez zmienne Y_1, Y_2, \ldots Niech $T = \inf\{n \colon |X_n| = K\}$. Udowodnij

- proces $Z_n = (-1)^n \cos(\pi \cdot (X_n + K))$ jest martyngałem,
- \bullet proces Z_n spełnia założenia twierdzenia o opcjonalnym stopowaniu,
- $znajd\acute{z} \mathbb{E}\left[(-1)^T\right]$.

Zadanie 7. Udowodnij, że dla dowolnego submartyngału M i dla dowolnego $\lambda > 0$ zachodzi

$$\mathbb{P}\left(\min_{k\leqslant n}M_k\leqslant -\lambda\right)\leqslant \frac{1}{\lambda}\int_{\{\min_{k\leqslant n}M_k\geqslant -\lambda\}}M_nd\mathbb{P}-\mathbb{E}M_0\leqslant \frac{1}{\lambda^p}\mathbb{E}M_n^+-\mathbb{E}M_0\leqslant \frac{1}{\lambda^p}\mathbb{E}|M_n|-\mathbb{E}M_0.$$

Zadanie 8. Pokażemy, że 2 jest najlepszą stałą w nierówności Doob'a dla martyngałów w L^2 .

Niech $\Omega = [0, 1], \mathcal{F} = \mathcal{B}_{(0,1)}, \mathbb{P} = \lambda$. Określmy filtrację

$$\mathcal{F}_t = \{ A \in \mathcal{F} : (t,1) \subset A \ lub \ A \subset (0,t] \} \}.$$

• Pokaż, że dla dowolnego $Y \in L^1(\Omega)$ martyngał $M_t = \mathbb{E}(Y|\mathcal{F}_t)$ jest dany jako

$$M_t(\omega) = \begin{cases} Y(\omega), \ 0 < \omega \leqslant t \\ \frac{1}{1-t} \int_t^1 Y(s) ds, \ t < \omega < 1 \end{cases}$$

• Niech $Y(\omega) = (1 - \omega)^{-a}$ dla 0 < a < 1/2. Pokaż, że $Y \in L^2(\Omega)$ oraz martyngał zdefiniowany jako $M_t = \mathbb{E}(Y|\mathcal{F}_t)$ jest postaci

$$M_t(\omega) = \frac{1}{1-a} \frac{1}{(1-t)^a} = \frac{1}{1-a} Y(t), \ t < \omega < 1.$$

• Udowodnij, że dla każdego ω $sup_t M_t = \frac{1}{1-a}$ oraz

$$||sup_t M_t||_2 = \frac{1}{1-a}||Y||_2 = \frac{1}{1-a}||M_\infty||_2.$$

• Rozważmy granicę funkcji $(1-a)^{-1}$ przy $a \to 1/2$. Jaki stąd wniosek?

Zadanie 9. Udowodnij, że jeżeli ciąg zmiennych losowych X_1, X_2, \ldots jest dominowany przez pewną dodatnią i całkowalną zmienną losową Y, to ciąg ten jest jednostajnie całkowalny.

Zadanie 10. Niech ciągi $X_1, X_2, \ldots, Y_1, Y_2, \ldots$ oraz zmienna losowa Y będzie określona na tej samej przestrzeni probabilistycznej. Niech ponadto zachodzi, że $|X_n - Y_n| \stackrel{P}{\to} 0$ oraz $Y_n \stackrel{d}{\to} Y$. Udowodnij, że wtedy $X_n \stackrel{d}{\to} Y$.

Zadanie 11. Niech F_1, F_2, \ldots, F będą dystrybuantami pewnych rozkładów. Udowodnij, że ciąg $\{F_n\}$ zbiega słabo do F wtedy i tylko wtedy, gdy dla dowolnego $\epsilon > 0, h > 0$ oraz t istnieje $N(\epsilon, h, t)$ takie, że dla każdego $n > N(\epsilon, h, t)$ zachodzi

$$F(t-h) - \epsilon < F_n(t) < F(t+h) + \epsilon.$$

Zadanie 12. Niech F będzie dystrybuantą pewnego rozkładu o zerowej wartości oczekiwanej i jednostkowej wariancji. Wybierzmy pewien ciąg liczb dodatnich $\{\sigma_k\}$ i określmy ciąg dystrybuant $F_k(x) = F(x/\sigma_k)$. Przez s_n^2 oznaczmy sumę wariancji z n pierwszych rozkładów F_k . Wykaż, że warunek Lindeberga jest spełniony wtedy i tylko wtedy, gdy $s_n \to \infty$ oraz $\sigma_n/s_n \to 0$.

Zadanie 13. Na przestrzeni probabilistycznej $(\Omega, \mathcal{G}, \mathbb{P})$ niech będzie dany ciąg całkowalnych zmiennych losowych X_1, X_2, \ldots , całkowalna zmienna losowa X oraz pod- σ -ciało \mathcal{F} . Udowodnij

- $X_n \stackrel{p.n.}{\to} X$ to $\mathbb{E}(X_n | \mathcal{F}) \stackrel{p.n.}{\to} \mathbb{E}(X | \mathcal{F})$,
- $X_n \xrightarrow{P} X$ to $\mathbb{E}(X_n | \mathcal{F}) \xrightarrow{P} \mathbb{E}(X | \mathcal{F})$,
- $X_n \stackrel{L^p}{\to} X$ to $\mathbb{E}(X_n | \mathcal{F}) \stackrel{L^p}{\to} \mathbb{E}(X | \mathcal{F})$,
- $X_n \stackrel{d}{\to} X$ to $\mathbb{E}(X_n | \mathcal{F}) \stackrel{d}{\to} \mathbb{E}(X | \mathcal{F})$.