Le lemme

Soit X une variable aléatoire discrète intégrable sur l'univers Ω .

Question 0 Montrer qu'il existe $x \geq \mathbb{E}X$ tel que $x \in X(\Omega)$.

Correction

 \triangleright On suppose par l'absurde que $X(\Omega) \subset]-\infty, x[.$

$$\mathbb{E} X = \sum_{a \in X(\omega)} a \mathbb{P} \{X = a\} < x \sum_{a \in X(\Omega)} \mathbb{P} \{X = a\} = x$$

Un peu de chauffe

Soit G = (S, A) avec n := |S|, m := |A| et $m \ge 4n$. On note $\operatorname{cr}(\overline{G})$ le nombre de croisements d'une représentation planaire \overline{G} de G. Alors on définit $\operatorname{cr}(G) := \min \operatorname{cr}(\overleftarrow{G})$.

D'après *la formule d'Euler*, pour tout graphe H, $cr(H) \ge m(H) - 3n(H)$.

On note $S^\dagger \subset S$ une partie aléatoire de S où chaque sommet est choisi indépendamment avec une probabilité p. On note ensuite $H := G[S^{\dagger}]$ et $\overline{H} := \overline{G}[S^{\dagger}]$.

Question 1 Montrer que $\operatorname{cr}(\overline{H}) \geq m(H) - 3n(H)$.

Correction

$$\operatorname{cr}\!\left(\overline{H}\right) \geq \operatorname{cr}(H) \geq m(H) - 3n(H)$$

d'après la formule d'Euler.

Question 2 Déterminer $\mathbb{E}[m(H)]$ et $\mathbb{E}[n(H)]$.

Correction

Chaque sommet est choisi avec une probabilité p donc $\mathbb{E}[n(H)] = \sum_{s \in S} p = np$.

Pour qu'une arête existe, il faut que ses deux sommets soient choisis, $\mathbb{E}[m(H)] =$ $\sum_{\{uv\}\in A} \mathbb{P}(u \text{ choisi et } v \text{ choisi}) = \sum_{\{uv\}\in A} p^2 = mp^2.$

 $rac{1}{H}$ Question 3 Exprimer $\mathbb{E}\left[\operatorname{cr}\left(\overline{H}\right)\right]$ en fonction de $\operatorname{cr}(G)$.

Correction

Pour qu'un croisement existe, il faut que deux arêtes existent, donc que les quatre sommets existent

$$\begin{split} \mathbb{E} \Big[\mathrm{cr} \Big(\overline{H} \Big) \Big] &= \sum_{\{uv\}, \{wx\} \text{ se croisent}} \mathbb{P} (\{uv\} \text{ existe et } \{wx\} \text{ existe}) \\ &= \sum_{\{uv\}, \{wx\} \text{ se croisent}} \mathbb{P} \big(\big\{ u \in S^\dagger \big\} \cap \big\{ v \in S^\dagger \big\} \cap \big\{ w \in S^\dagger \big\} \cap \big\{ x \in S^\dagger \big\} \big) \\ &= p^4 \ \mathrm{cr} \Big(\overline{G} \Big) \ \mathrm{car} \ u, v, w, x \text{ sont distincts} \end{split}$$

On est conscient de la possibilité d'un croisement de type " α ", mais on choisit de faire comme s'ils n'existaient pas.

Question 4 Démontrer $cr(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

Correction

On choisit $p=4\frac{n}{m}$ et reprend les résultats précédents.

$$p^4 \,\operatorname{cr}(G) \geq \mathbb{E} \Big(\operatorname{cr} \Big(\overline{H} \Big) \Big) \geq \mathbb{E} (m(H)) - 3 \mathbb{E} (n(H)) = mp^2 - 3np$$

En réarrangeant, on a bien $\operatorname{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}$.

Une question d'originalité

Soit $M \in \mathcal{M}_n(\mathbb{N})$ telle que tout $k \in [1, n]$ apparaît exactement n fois dans M.

ho Question 5 Montrer qu'il existe une ligne ou une colonne contenant au moins \sqrt{n} valeurs distinctes.

Correction

Soit L une ligne ou colonne aléatoire de M, puis N le nombre de valeurs distinctes. Si I_k est le nombre d'occurrences de k dans M, on a $N=\sum_k \mathbb{P}\{I_k\geq 1\}$. Pour cette variable en particulier, le pire cas est si les n occurrences de k sont dans une même mineure $\sqrt{n} \times \sqrt{n}$. Ainsi, $\mathbb{P}\{I_k \geq 1\} \geq \frac{2\sqrt{n}}{2n}$.

En sommant, $\mathbb{E}N \geq \sqrt{n}$, et on conclut par le lemme de la méthode probabiliste.

De la géométrie

Soit ${m a} \in \mathbb{C}^{10}.$ On dira que ${m p} \in \mathbb{C}^{10}$

• couvre a si

• est sans superposition si

$$\boldsymbol{a}\subset\bigcup_{x\in\boldsymbol{p}}\overline{\mathcal{B}}(x,1)$$

$$\forall x,y \in \pmb{p}, x \neq y \Rightarrow \overline{\mathcal{B}}(x,1) \cap \overline{\mathcal{B}}(y,1) = \emptyset$$

Question 6 Montrer qu'il existe $p \in \mathbb{C}^{10}$ couvrant a sans superposition.

Ind: $\frac{\pi\sqrt{3}}{6}\approx 0.907$

Correction

On commence par montrer le résultat suivant: "il existe $\ell \in \mathbb{C}^{\mathbb{N}}$ couvrant a sans superposition".

¶ On considère l'empilement de Lagrange :

On note ${\cal A}_H$ l'aire de l'hexagone et ${\cal A}_C$ l'aire du cercle. Un peu de géométrie donne :

•
$$A_C = \frac{\pi}{4}$$

•
$$A_H = \frac{3\sqrt{3}}{2}$$

En répétant cet empilement à l'infini, on couvre donc une proportion $\eta := \frac{A_C}{A_B}$ de l'aire du plan.

On introduit donc une variable aléatoire N le nombre de points de a couverts avec une translation aléatoire de notre motif. Cette variable aléatoire est d'espérance $10\eta=10\times\frac{\pi\sqrt{3}}{6}>9$, donc il existe une translation telle que l'empilement de Lagrange couvre a.

Comme ℓ est sans recouvrement, au plus 10 éléments de ℓ couvrent un élément de a. On pose alors $m{p}$ ces éléments, et d'autres s'il le faut pour compléter. On a donc construit $m{p} \in \mathbb{C}^{10}$ couvrant a sans recouvrement.

Du rab

Soit $k \in \mathbb{N}$.

La propriété à laquelle on s'intéresse ici est la propriété de distance

$$\mathcal{D}(a_1...a_k) \coloneqq \left(\forall i,j, |a_i - a_j| \leq 2 \right) \vee \left(\forall i \neq j, |a_i - a_j| \geq 1 \right)$$

On pose enfin $\mathcal{P}(n)\coloneqq \forall A\in \mathfrak{P}(\mathbb{C}), (|A|=n)\Longrightarrow (\exists \{a_1...a_k\}\subset A, \mathcal{D}(a_1...a_k))$

U Ouestion 7 Calculer $\inf\{n \in \mathbb{N}, \mathcal{P}(n)\}$.

Correction

Honnêtement j'ai oublié comment faire... vous êtes libres de PR une réponse probabiliste!