Assignment -2 Data visualization and Preprocessing

Assignment Date	21 September 2022
Student Name	Dharunraj.JK
Student Roll Number	610519104033
Maximum Marks	2 Marks

1.DOWNLOAD THE DATASET 2.LOAD THE DATASET

1570

1354

1573

7888

3

Bon

Mit

chel

1

Fran

Spai

n

ma

Fe

ma

le

le

699

850

							.		_					
impo	rt panda	as as pd											I	n [1]:
impo	rt nump	y as np												
impo	rt matpl	otlib.py _l	plot as	plt										
impo	ort se	aborn	as s	ns									I	n [2]:
df = p	d.read	d_csv('/con	tent/C	hurn_N	Mode]	Llin	g.cs	v')					
df													I	n [6]:
αı													0	ut[6]:
	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMem ber	Estima tedSal ary	Ex ite d
0	1	1563 4602	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1

0.00

125

510.

82

93826.

79084.

0

9 9996 1560 Obi jiak 771 Fran Ma 3 5 0.00 2 1 0 96270. 5 64 0

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMem ber	Estima tedSal ary	Ex ite d
9 9 9 6	9997	1556 9892	Joh nsto ne	516	Fran ce	Ma le	3 5	10	573 69.6 1	1	1	1	101699 .77	0
9 9 9 7	9998	1558 4532	Liu	709	Fran ce	Fe ma le	3 6	7	0.00	1	0	1	42085. 58	1
9 9 9 8	9999	1568 2355	Sab bati ni	772	Ger man y	Ma le	4 2	3	750 75.3 1	2	1	0	92888. 52	1
9 9 9	1000	1562 8319	Wal ker	792	Fran ce	Fe ma le	2 8	4	130 142. 79	1	1	0	38190. 78	0

 $10000 \text{ rows} \times 14 \text{ columns}$

In [3]:

df.head()

Out[3]:

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
0	1	1563 4602	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1
3	4	1570 1354	Bon i	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826. 63	0

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
4	5	1573 7888	Mit chel l	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0
df.	shape												I	n [4]:
(10	000,	14)											0	ut[4]:

3.Univariate,Bivariate & MultiVariate Analysis

Univariate Analysis

```
df_france=df.loc[df['Geography']=='France']
df_spain=df.loc[df['Geography']=='Spain']
df_germany=df.loc[df['Geography']=='Germany']

In [9]:

plt.plot(df_france['Balance'],np.zeros_like(df_france['Balance']),'o')
plt.plot(df_spain['Balance'],np.zeros_like(df_spain['Balance']),'o')
plt.plot(df_germany['Balance'],np.zeros_like(df_germany['Balance']),'o')
plt.xlabel('Age')
plt.show()
```

Bivariate Analysis

```
In [18]:
sns.FacetGrid(df,hue="Geography",size=5).map(plt.scatter,"Age","Balance").a
dd_legend();
plt.show()
/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:337: UserWarning
: The `size` parameter has been renamed to `height`; please update your cod
e.
    warnings.warn(msg, UserWarning)
```

Multivariate Analysis

```
In [24]:
```

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarnin g: The `size` parameter has been renamed to `height`; please update your code.

warnings.warn(msg, UserWarning)

Out[24]:

<seaborn.axisgrid.PairGrid at 0x7f9a9f3029d0>

4.Descriptive Statistics

df.head()

Out[29]:

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
0	1	1563 4602	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1
3	4	1570 1354	Bon i	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826. 63	0
4	5	1573 7888	Mit chel l	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0

In [30]:

df.mean() # Get the mean of each column

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[30]:

RowNumber	5.000500e+03
CustomerId	1.569094e+07
CreditScore	6.505288e+02
Age	3.892180e+01
Tenure	5.012800e+00

```
Balance7.648589e+04NumOfProducts1.530200e+00HasCrCard7.055000e-01IsActiveMember5.151000e-01EstimatedSalary1.000902e+05Exited2.037000e-01
```

dtype: float64

In [31]:

```
df.mean(axis=1) # Get the mean of each row
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

```
Out[31]:
0
        1.430602e+06
1
       1.440392e+06
2
       1.444860e+06
3
       1.435993e+06
       1.449399e+06
      1.428483e+06
9995
9996
       1.430866e+06
9997
       1.421579e+06
9998
      1.441922e+06
9999
       1.437044e+06
Length: 10000, dtype: float64
```

df.median()

Get the median of each column

In [32]:

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarni ng: Dropping of nuisance columns in DataFrame reductions (with 'numeric_onl y=None') is deprecated; in a future version this will raise TypeError. Sel ect only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

Out[32]:

```
RowNumber
                 5.000500e+03
CustomerId
                 1.569074e+07
CreditScore
                6.520000e+02
                 3.700000e+01
Aae
                 5.000000e+00
Tenure
Balance
                 9.719854e+04
NumOfProducts
               1.000000e+00
HasCrCard
                 1.000000e+00
IsActiveMember
                1.000000e+00
EstimatedSalary 1.001939e+05
                 0.000000e+00
Exited
dtype: float64
```

```
norm data = pd.DataFrame(np.random.normal(size=100000))
```

In [39]:

```
norm data.plot(kind="density",
```

figsize=(10,10)); plt.vlines(norm_data.mean(), #Plot black line at

mean

```
ymin=0,
ymax=0.4,
```

```
linewidth=5.0);
plt.vlines(norm data.median(),  # Plot red line at median
           ymin=0,
           ymax=0.4,
            linewidth=2.0,
           color="red");
                                                                            In [36]:
skewed data = pd.DataFrame(np.random.exponential(size=100000))
skewed data.plot(kind="density",
               figsize=(10,10),
               xlim=(-1,5));
plt.vlines(skewed_data.mean(),
                                    # Plot black line at mean
           ymin=0,
           ymax=0.8,
           linewidth=5.0);
plt.vlines(skewed data.median(),  # Plot red line at median
           ymin=0,
           ymax=0.8,
           linewidth=2.0,
           color="red");
                                                                            In [40]:
norm data = np.random.normal(size=50)
outliers = np.random.normal(15, size=3)
combined data = pd.DataFrame(np.concatenate((norm data, outliers), axis=0))
combined data.plot(kind="density",
               figsize=(10,10),
               xlim=(-5,20));
plt.vlines(combined_data.mean(),
                                       # Plot black line at mean
            ymin=0,
            ymax=0.2,
            linewidth=5.0);
plt.vlines(combined_data.median(),
                                       # Plot red line at median
           ymin=0,
           ymax=0.2,
           linewidth=2.0,
           color="red");
                                                                            In [42]:
df.mode()
                                                                           Out[42]:
```

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMem ber	Estima tedSala ry	Ex ite d
0	1	1556 5701	Smi th	850.0	Fran ce	Ma le	3 7. 0	2.0	0.0	1.0	1.0	1.0	24924. 92	0. 0
1	2	1556 5706	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
2	3	1556 5714	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
3	4	1556 5779	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
4	5	1556 5796	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
•••														
9 9 9 5	9996	1581 5628	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
9 9 9 6	9997	1581 5645	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
9 9 9 7	9998	1581 5656	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
9 9 9 8	9999	1581 5660	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N
9 9 9	1000	1581 5690	Na N	NaN	NaN	Na N	N a N	Na N	Na N	NaN	NaN	NaN	NaN	Na N

Measures of Spread

```
In [43]:
max(df["Age"]) - min(df["Age"])
                                                                        Out[43]:
74
                                                                         In [45]:
five num = [df["Age"].quantile(0),
            df["Age"].quantile(0.25),
            df["Age"].quantile(0.50),
            df["Age"].quantile(0.75),
            df["Age"].quantile(1)]
five num
[18.0, 32.0, 37.0, 44.0, 92.0]
                                                                        Out[45]:
df["Age"].describe()
                                                                         In [46]:
count 10000.000000
                                                                        Out[46]:
          38.921800
           10.487806
std
min
           18.000000
           32.000000
25%
50%
           37.000000
75%
max
           44.000000
           92.000000
Name: Age, dtype: float64
df["Age"].quantile(0.75) - df["Age"].quantile(0.25)
                                                                         In [47]:
12.0
df.boxplot(column="Age",
                                                                        Out[47]:
               return_type='axes',
               figsize=(8,8))
                                                                         In [49]:
plt.text(x=0.74, y=22.25, s="3rd Quartile")
plt.text(x=0.8, y=18.75, s="Median")
plt.text(x=0.75, y=15.5, s="1st Quartile")
plt.text(x=0.9, y=10, s="Min")
plt.text(x=0.9, y=33.5, s="Max")
plt.text(x=0.7, y=19.5, s="IQR", rotation=90, size=25);
                                                                         In [50]:
df["Age"].var()
                                                                        Out[50]:
109.99408416841683
                                                                         In [51]:
df["Age"].std()
```

```
Out[51]:
10.487806451704609
                                                                          In [52]:
abs median devs = abs(df["Age"] - df["Age"].median())
abs median devs.median() * 1.4826
                                                                          Out[52]:
8.8956
Skewness and Kurtosis
df["Age"].skew() # Check skewness
                                                                          In [53]:
1.0113202630234552
                                                                          Out[53]:
df["Age"].kurt() # Check kurtosis
                                                                          In [54]:
1.3953470615086956
                                                                          Out[54]:
norm data = np.random.normal(size=100000)
                                                                          In [55]:
skewed_data = np.concatenate((np.random.normal(size=35000)+2,
                              np.random.exponential(size=65000)),
                               axis=0)
uniform data = np.random.uniform(0,2, size=100000)
peaked data = np.concatenate((np.random.exponential(size=50000),
                               np.random.exponential(size=50000)*(-1)),
                               axis=0)
data_df = pd.DataFrame({"norm":norm_data,
                        "skewed":skewed data,
                        "uniform":uniform data,
                        "peaked":peaked data})
                                                                          In [56]:
data_df.plot(kind="density",
            figsize=(10,10),
            xlim=(-5,5));
                                                                          In [57]:
data df.skew()
                                                                          Out[57]:
norm -0.007037
          1.002549
skewed
uniform -0.004434
peaked 0.018058
dtype: float64
data df.kurt()
                                                                          In [58]:
       -0.009914
skewed
          1.314497
                                                                          Out[58]:
```

uniform -1.201740 peaked 2.971592

dtype: float64

False

False

5.Handle the Missing values

In [83]: df=pd.read csv('/content/Churn Modelling.csv') In [84]: df.head() Out[84]: Te NumO Ge A Bal Has **IsActiv Estima** $\mathbf{E}\mathbf{x}$ Row Cust Sur Cred Geo fProdu CrCNum itSco nd eMemb tedSala ite omer grap \mathbf{g} nu anc na hy ber d Id me re er e re e cts ard er ry Har Fe 1563 Fran 4 101348 1 0 619 2 0.00 1 1 1 gra ma 2 4602 .88 le ve Fe 838 112542 Spai 4 1564 2 Hill 608 1 07.8 1 0 0 1 ma 7311 1 .58 n le Fe 159 1561 Oni Fran 4 113931 502 3 1 0 2 ma 8 660. 2 9304 ce .57 le 80 Fe 3 93826. 1570 Fran 2 0 0 3 699 0.00 1 ma 9 1354 i 63 ce le 125 Mit Fe 4 79084. 1573 Spai 850 2 510. 1 1 0 chel ma 7888 3 10 n le 82 In [86]: df.isnull() Out[86]: NumO Row Cust Sur Cred Geo Ge Te Bal Has **IsActiv Estima** $\mathbf{E}\mathbf{x}$ A Num **fProdu** CrC eMem tedSala ite omer itSco grap nd nu anc na ge hy Id ber d ber er re cts ard me re e ry

F

al

se

Fal

se

Fal

se

False

False

False

Fa

lse

False

Fal

False

False

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A ge	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMem ber	Estima tedSala ry	Ex ite d
1	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
2	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
3	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
4	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
•••														
9 9 9 5	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
9 9 9 6	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
9 9 9 7	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
9 9 9 8	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse
9 9 9	False	False	Fals e	False	False	Fal se	F al se	Fal se	Fal se	False	False	False	False	Fa lse

 $10000 \text{ rows} \times 14 \text{ columns}$

```
Out[89]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a987d8290>
                                                                        In [93]:
sns.set style('whitegrid')
sns.countplot(x='Geography',data=df)
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a92a88850>
                                                                        Out[93]:
sns.set style('whitegrid')
                                                                        In [94]:
sns.countplot(x='Geography',hue='Gender',data=df,palette='RdBu r')
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a92ec10d0>
                                                                        Out[94]:
sns.set style('whitegrid')
sns.countplot(x='Geography',hue='Gender',data=df,palette='rainbow')
                                                                        In [96]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a92afac50>
                                                                       Out[96]:
sns.distplot(df['Age'].dropna(),kde=False,color='darkred',bins=40)
                                                                        In [97]:
/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: Futur
eWarning: `distplot` is a deprecated function and will be removed in a futu
re version. Please adapt your code to use either `displot` (a figure-level
function with similar flexibility) or `histplot` (an axes-level function fo
r histograms).
  warnings.warn(msg, FutureWarning)
                                                                        Out[97]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a98787590>
                                                                        In [98]:
df['Age'].hist(bins=30,color='darkred',alpha=0.3)
<matplotlib.axes._subplots.AxesSubplot at 0x7f9a92d64c10>
                                                                        Out[98]:
sns.countplot(x='NumOfProducts',data=df)
                                                                       In [100]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a9306f790>
                                                                       Out[100]:
df['Age'].hist(color='green',bins=40,figsize=(8,4))
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a90f52d90>
                                                                       In [101]:
```

Cufflinks for plots

Out[101]:

```
In [102]:
import cufflinks as cf
cf.go_offline()
                                                                                        In []:
df['Age'].iplot(kind='hist',bins=30,color='green')
Data Cleaning
                                                                                     In [107]:
plt.figure(figsize=(12, 7))
sns.boxplot(x='Gender', y='Age', data=df, palette='winter')
                                                                                    Out[107]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a90f59450>
def impute age(cols):
                                                                                     In [307]:
    Age = cols[0]
     Pclass = cols[1]
    if pd.isnull(Age):
          if Pclass == 1:
                return 37
              elif Pclass == 2:
                return 29
          else:
                return 24
     else:
                                                                                     In [122]:
          return Age sns.heatmap(df.isnull(),yticklabels=False,cbar=False,cmap='viridis')
                                                                                    Out[122]:
<matplotlib.axes. subplots.AxesSubplot at 0x7f9a8aa699d0>
                                                                                     In [112]:
df.drop('Gender',axis=1,inplace=True)
df.head()
                                                                                     In [114]:
                                                                                    Out[114]:
                                                                HasC
                                                                       IsActive
    RowN
                   Sur
                         Credi
                                            Te
                                                       NumOf
                                                                                 Estimat
                                                                                          \mathbf{E}\mathbf{x}
            Custo
                                Geog
                                                 Bala
                                                                                 edSalar
    umbe
            merI
                                                                rCar
                                                                       Membe
                  nam
                         tScor
                                 raph
                                            nu
                                                       Product
                                                                                          ite
                                       g
                                                 nce
```

re

e

d

S

d

0 1 15634 Har grav 619 Franc 4 2 0.00 1 1 1 1 101348. 1

	RowN umbe r	Custo merI d	Sur nam e	Credi tScor e	Geog raph y	A g e	Te nu re	Bala nce	NumOf Product s	HasC rCar d	IsActive Membe r	Estimat edSalar y	Ex ite d
1	2	15647 311	Hill	608	Spain	4	1	8380 7.86	1	0	1	112542. 58	0
2	3	15619 304	Oni o	502	Franc e	4 2	8	1596 60.8 0	3	1	0	113931. 57	1
3	4	15701 354	Bon i	699	Franc e	3	1	0.00	2	0	0	93826.6	0
4	5	15737 888	Mitc hell	850	Spain	4 3	2	1255 10.8 2	1	1	1	79084.1 0	0

Converting Categorical Features

In [116]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Age	10000 non-null	int64
6	Tenure	10000 non-null	int64
7	Balance	10000 non-null	float64
8	NumOfProducts	10000 non-null	int64
9	HasCrCard	10000 non-null	int64
10	IsActiveMember	10000 non-null	int64
11	EstimatedSalary	10000 non-null	float64
12	Exited	10000 non-null	int64
dtype	es: float64(2), in	nt64(9), object(2)
memoi	ry usage: 1015.8+	KB	

pd.get_dummies(df['Geography'],drop_first=True).head()

In [118]:

Out[118]: Germany Spain

0

1	0 1								
2	0 0								
3	0 0								
4	0 1								
df.in:	fo								In [124]:
								C	Out[124]:
<box< th=""><th>d method Da</th><th>ataFrame.info</th><th>of</th><th>RowNumbe</th><th>r Cust</th><th>comeri</th><th>d</th><th>Surnam</th><th>ne Cre</th></box<>	d method Da	ataFrame.info	of	RowNumbe	r Cust	comeri	d	Surnam	ne Cre
	ore Geograp		ure \						
0	1	15634602	Hargrave		619	Fra		42	2
1 2	2 3	15647311 15619304	Hill Onio		608 502		ain	41 42	1 8
3	4	15701354	Boni		699	Fra: Fra		39	° 1
4	5	15737888	Mitchell		850		ain	43	2
		13737000	rii ceneii		• • •	БP	•••	•••	
9995	9996	15606229	Obijiaku		771	Fra		39	5
9996	9997	15569892	Johnstone		516	Fra		35	10
9997	9998	15584532	Liu		709	Fra		36	7
9998	9999	15682355	Sabbatini		772	Germ		42	3
9999	10000	15628319	Walker		792	Fra		28	4
\	Balance	NumOfProduc	ts HasCrC	ard IsA	ctiveMe	ember	Est	imatedS	Salary
0	0.00		1	1		1		1013	348.88
1	83807.86		1	0		1			42.58
2	159660.80		3	1		0			31.57
3	0.00		2	0		0			326.63
4	125510.82		1	1		1			84.10
9995	0.00		2	1		0		962	270.64
9996	57369.61		1	1		1		1016	599.77
9997	0.00		1	0		1			85.58
9998	75075.31		2	1		0			888.52
9999	130142.79		1	1		0		381	.90.78
	Desire d								
0	Exited 1								
0	0								
2	1								
3	0								
4	0								
• • •									
9995	0								
9996	0								
9997	1								
9998	1								
	-								

Germany Spain

```
9999 0
```

[10000 rows x 13 columns]>

sex = pd.get_dummies(df['Age'],drop_first=True)
embark = pd.get_dummies(df['Balance'],drop_first=True)

In [127]:

df.drop(['Age','HasCrCard','Surname','CustomerId'],axis=1,inplace=True)

In [129]:

df.head()

Out[129]:

	RowNum ber	CreditSc ore	Geogra phy	Tenu re	Balanc e	NumOfProd ucts	IsActiveMe mber	EstimatedSa lary	Exit ed
0	1	619	France	2	0.00	1	1	101348.88	1
1	2	608	Spain	1	83807.8 6	1	1	112542.58	0
2	3	502	France	8	159660. 80	3	0	113931.57	1
3	4	699	France	1	0.00	2	0	93826.63	0
4	5	850	Spain	2	125510. 82	1	1	79084.10	0

In [130]:

train = pd.concat([df,sex,embark],axis=1)

train.head() In [131]:

Out[131]:

	Ro w ed gr ap be r	Cr eo n u re	G e u m	T _N itS co	B al a n ce	Nu mO fPr odu cts	IsA ctiv eM em ber	Est ima ted Sal ary	E x it e d	1 9	 2 1 2 6 9 2. 9 7	2 1 2 6 9 6. 3 2	2 1 2 7 7 8.	2 1 3 1 4 6.	2 1 4 3 4 6. 9 6	2 1 6 1 0 9. 8	2 2 1 5 3 2.	2 2 2 2 6 7. 6	2 3 8 3 8 7. 5	2 5 0 8 9 8. 0	
0	1	61 9	Fr an ce	2	0. 0 0	1	1	101 348 .88	1	0	 0	0	0	0	0	0	0	0	0	0	
			Sp ai	1	8	1	1	112 542	0	0	0	0	0	0	0	0	0	0	0	0	

1 69 8

2 2 2 Ro 2 1 2 7 7 8. 2 2 1 3 1 4 6. 2 1 1 1 1 2 2 2 6 5 \mathbf{Cr} \mathbf{G} T В Nu IsA Est \mathbf{E} 2 6 9 2. 9 N 2 6 9 6. 3 4 3 4 $\mathbf{e}\mathbf{d}$ eo al mOctiv ima X 3 8 7. 5 8 1 u itS gr a fPr eMted it 0 m co ap Sal n n odu \mathbf{em} \mathbf{e} 6. 9 8. 0 9. 8 be re hy d ce cts ber ary r u 3 r 2. e 7 2 3 6 7. 8 6 0 931 0 . 0 0 0 0 0 0 0 0 0 0 3 1 .57 5 9 Fr 50 6 3 an 2 938 2 6 2 0 26. 0 0 . 0 0 ce 63 0. 8 0 790 1 84. 0 . 0 0 0 0 0 0 0 0 0. Fr 69 3 0 an 0 ce 1 2 5 Sp 5 85 5 ai 2 0 1 n 0. 8 2

6. Find the outliers and replace the outliers

In [147]:

dataset= [11,10,12,14,12,15,14,13,15,102,12,14,17,19,107, 10,13,12,14,12,108,12,11,14,13,15,10,15,12,10,14,13,15,10]

Detecting outlier using Z score

Using Z score

In [148]:

```
outliers=[]
def detect_outliers(data):
    threshold=3
    mean = np.mean(data)
```

```
std =np.std(data)
   for i in data:
        z_score= (i - mean)/std
        if np.abs(z_score) > threshold:
            outliers.append(y)
    return outliers
                                                                       In [151]:
outlier pt=detect outliers(dataset)
                                                                       In [152]:
outlier pt
                                                                      Out[152]:
[0]
         101348.88
         112542.58
1
        113931.57
3
         93826.63
         79084.10
        96270.64
 9995
      101699.77
 9996
 9997
         42085.58
 9998
        92888.52
      38190.78
Name: EstimatedSalary, Length: 10000, dtype: float64, 0 101348.88
        112542.58
        113931.57
 3
        93826.63
         79084.10
        96270.64
 9995
      101699.77
 9996
 9997
         42085.58
 9998
        92888.52
       38190.78
Name: EstimatedSalary, Length: 10000, dtype: float64, 0 101348.88
        112542.58
         113931.57
         93826.63
         79084.10
          . . .
 9995
        96270.64
       101699.77
 9996
         42085.58
 9997
 9998
          92888.52
 9999
          38190.78
Name: EstimatedSalary, Length: 10000, dtype: float64]
                                                                      In [153]:
## Perform all the steps of IQR
sorted(dataset)
                                                                      Out[153]:
[10,
10,
10,
```

```
10,
 10,
 11,
 11,
 12,
 12,
 12,
 12,
 12,
 12,
 12,
 13,
 13,
 13,
 13,
 14,
 14,
 14,
 14,
 14,
 14,
 15,
 15,
 15,
 15,
 15,
 17,
 19,
 102,
 107,
 108]
                                                                              In [155]:
quantile1, quantile3= np.percentile(dataset,[25,75])
print(quantile1,quantile3)
                                                                              In [156]:
12.0 15.0
## Find the IQR
                                                                              In [157]:
iqr value=quantile3-quantile1
print(iqr value)
3.0
## Find the lower bound value and the higher bound value
                                                                              In [159]:
lower_bound_val = quantile1 -(1.5 * iqr_value)
upper_bound_val = quantile3 +(1.5 * iqr_value)
print(lower_bound_val,upper_bound_val)
                                                                              In [160]:
7.5 19.5
```

7. Check for Categorical columns andperform encoding

df=1	<pre>df=pd.read_csv('/content/Churn_Modelling.csv')</pre>														
df.	df.head() In [162]:														
													Out	[162]:	
	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d	
0	1	1563 4602	Har gra ve	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348 .88	1	
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542 .58	0	
2	3	1561 9304	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931 .57	1	
3	4	1570 1354	Bon i	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826. 63	0	
4	5	1573 7888	Mit chel l	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084. 10	0	
'Ba 'Nu	lance mOfPro	', oducts	s','H	asCrCa	ırd',	'IsAc	ctive	Memk	per',	CreditSc 'Estimat 'Gender'	cedSal		, 'Tenu		
_	numer												In	[164]:	
													Out	[164]:	
	RowNu mber			Credit Score	A ge	Ten ure	Balan ce	Nı	ımOfPr oducts		IsActi en	veM E	stimated Salary	Exi ted	
0	1	1563	346 02	619	42	2	0.00		1	. 1		1 10	01348.88	1	

	RowNu mber	Custo merId	Credit Score	A ge	Ten ure	Balan ce	NumOfPr oducts		IsActiveM ember	Estimated Salary	Exi ted
1	2	156473 11	608	41	1	83807 .86	1	0	1	112542.58	0
2	3	156193 04	502	42	8	15966 0.80	3	1	0	113931.57	1
3	4	157013 54	699	39	1	0.00	2	0	0	93826.63	0
4	5	157378 88	850	43	2	12551 0.82	1	1	1	79084.10	0
df_	categor	ical.hea	d()							ln	[165]:
	Surname	Geograph	y Gen	der						Out	t[165]:
0	Hargrave	Franc	e Fen	nale							
1	Hill	Spai	n Fen	nale							
2	Onio	Franc	e Fen	nale							
3	Boni	Franc	e Fen	nale							
4	Mitchell	Spai	n Fen	nale							
pri	nt(df['G	Surname' eography Gender']	'].uni	que (ln	[166]:
[' E		'Spain'				Kashiwa	gi' 'Alc	dridge'	'Burbidge	']	
fro	om sklean	rn.prepr	ocess	ing i	.mpo	: t Labe	lEncode	r			
mar	ry_encod	der = La	belEnd	coder	()					ln	[167]:
mar	ry_encod	er.fit(d	f_cate	egori	cal['Gender	'])				
Lak	elEncode	er()								ln	[168]:
										Out	t[168]:

In [169]:

```
marry_values = marry_encoder.transform(df categorical['Gender'])
                                                                                                                                                             In [170]:
print("Before Encoding:", list(df categorical['Gender'][-10:]))
print("After Encoding:", marry values[-10:])
print("The inverse from the encoding result:",
marry encoder.inverse transform(marry values[-10:]))
Before Encoding: ['Male', 'Female', 'Male', 'Male', 'Female', 'Male', 
', 'Female', 'Male', 'Female']
After Encoding: [1 0 1 1 0 1 1 0 1 0]
The inverse from the encoding result: ['Male' 'Female' 'Male' 'Femal
e' 'Male' 'Male' 'Female' 'Male'
  'Female']
                                                                                                                                                              In [171]:
residence encoder = LabelEncoder()
residence values =
residence_encoder.fit_transform(df_categorical['Geography'])
print("Before Encoding:", list(df_categorical['Geography'][:5]))
print("After Encoding:", residence_values[:5])
print("The inverse from the encoding result:",
residence encoder.inverse transform(residence values[:5]))
Before Encoding: ['France', 'Spain', 'France', 'France', 'Spain']
After Encoding: [0 2 0 0 2]
The inverse from the encoding result: ['France' 'Spain' 'France' 'France' '
Spain']
                                                                                                                                                              In [172]:
from sklearn.preprocessing import OneHotEncoder
gender encoder = OneHotEncoder()
                                                                                                                                                             In [174]:
from sklearn.preprocessing import OneHotEncoder
import numpy as np
gender encoder = OneHotEncoder()
gender reshaped = np.array(df categorical['Gender']).reshape(-1, 1)
gender_values = gender_encoder.fit_transform(gender_reshaped)
print(df categorical['Gender'][:5])
print()
print(gender values.toarray()[:5])
print(gender encoder.inverse transform(gender values)[:5])
Ω
           Female
1
           Female
          Female
3
         Female
         Female
Name: Gender, dtype: object
[[1. 0.]
  [1. 0.]
  [1. 0.]
   [1. 0.]
   [1. 0.]]
```

```
[['Female']
 ['Female']
 ['Female']
 ['Female']
 ['Female']]
                                                                        In [175]:
smoke encoder = OneHotEncoder()
smoke reshaped = np.array(df categorical['Surname']).reshape(-1, 1)
smoke values = smoke encoder.fit transform(smoke reshaped)
print(df categorical['Surname'][:5])
print()
print(smoke values.toarray()[:5])
print()
print(smoke encoder.inverse transform(smoke values)[:5])
0
     Hargrave
1
         Hill
2
         Onio
3
         Boni
    Mitchell
Name: Surname, dtype: object
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]
[['Hargrave']
 ['Hill']
 ['Onio']
 ['Boni']
 ['Mitchell']]
work encoder = OneHotEncoder()
                                                                        In [176]:
work_reshaped = np.array(df_categorical['Geography']).reshape(-1, 1)
work values = work encoder.fit transform(work reshaped)
print(df categorical['Geography'][:5])
print()
print(work_values.toarray()[:5])
print()
print(work_encoder.inverse_transform(work values)[:5])
0
     France
1
      Spain
2
     France
3
    France
      Spain
Name: Geography, dtype: object
[[1. 0. 0.]
 [0. 0. 1.]
 [1. 0. 0.]
 [1. 0. 0.]
 [0. 0. 1.]]
```

```
[['France']
  ['Spain']
  ['France']
  ['France']
  ['Spain']]
                                                                                                                                          In [178]:
df_categorical_encoded = pd.get_dummies(df_categorical, drop_first=True)
df categorical encoded.head()
                                                                                                                                        Out[178]:
                                                                                                                      \mathbf{S}
                                                                                                                             \mathbf{S}
              \mathbf{S}
       \mathbf{S}
                                                                                    \mathbf{S}
                                                                                                                \mathbf{S}
                                                                                                  \mathbf{S}
                                                                                                        Su
                                                                                                                u
                                                                                          \mathbf{S}
                                                                                                ur
                                                                                                        rn
                                                                                                                r
                     \mathbf{S}
                                   \mathbf{S}
                                        Su
                                                 \mathbf{S}
                                                       Su
                                                               Su
                                                                       Su
                                                                                                                       u
                                                                                                                                            \mathbf{G}
              u
       u
                            S
                                                                                                                                   Ge
                                                                                                                                                  \mathbf{G}
                                                                                                na
                                                                                                         a
                                                                                                                n
                                                                       rn
              r
                    ur
                                   u
                                                        rn
                                                                                                 m
                                                                                                        m
                                                                                                                                           eo
       r
                                         rn
                                                ur
                                                                                                                                    og
                           ur
                                                                       a
                                                                                    n
                                                                                                        e_
Z
                                                                                                               m
                                                                      me
                                                                                                 \mathbf{Z}
              n
                    na
                                                         a
       n
                                                                                                                \mathbf{e}
                                                                                                                             n
                                                                                                                                    ra
                           na
                                                                                    a
                                                                                                 u
                                                                                                        ub
                                                                       _A
                                                                                                               \bar{\mathbf{z}}
                                                        m
                                                               me
       a
              a
                    m
                                   n
                                         m
                                                 m
                                                                                                                                    ph
                                                                                                                                            a
                                                                                                ba
                                                                                                        ar
                           m
                                                                       br
                                                                                   m
                                                                                                 re
                                                                                                                      \mathbf{m}
                                         \mathbf{e}_{-}
                                                        e_
      m
             \mathbf{m}
                                                \mathbf{e}_{-}
                                                                       a
                    e_
                                   a
                                                                                                                             m
                                                                                                                                    \mathbf{y}_{-}
                                                                                                                                            p
                                                                                          m
                                                                       m
                                                                                   e_
                                                                                                                       \mathbf{e}
                                                        A
                                                                br
            \mathbf{e}_{-}
                    \mathbf{A}
                                  m
                                                 A
                                                                                                                                   Ge
                                                                                                                                            h
                                                                                                                            \mathbf{e}_{-}
                                                                       ow
                                                                                           \mathbf{e}
                                                                                    \mathbf{Z}
                                                                       itz
             A
                                                        br
                                                                 a
                                                                                                                             \mathbf{Z}
                                         be
                                                \mathbf{br}
                     b
                                   \mathbf{e}
                                                                                                                                     r
                                                                                                                                           y_
                                                                                   ot
                                                                                                                      \mathbf{Z}
      \mathbf{A}
              b
                                                         a
                                                                m
                                                                                                                             u
                                                                                                                                    m
                     d
                                                                                                                                            \mathbf{S}
                                                                                                                                                  \mathbf{M}
                                                                                          \mathbf{Z}
                                                                                    0
                                                                                                                       u
                                                        m
                                                                ov
       b
              b
                                         at
                                                 m
                                                                                                                            ye
                                                                                                                                    an
                    ul
                                  \mathbf{A}
                                                                                                                                            p
                                                                ic
      bi
             ot
                                         hy
                                                ov
                                                        \mathbf{ov}
                    la
                                   b
                                                                                                                                     y
                                                                                                                                            ai
                                                                                                                                                  le
                           ov
                                                                                                                       e
                                                                 h
       e
              t
                     h
                                  el
                                                                                                                                            n
                                                                                    0
                                                         0
                                                                 0
                                                                         0
                                                                                    0
                                                                                          0
                     0
                            0
                                   0
                                          0
                                                 0
                                                         0
                                                                 0
                                                                         0
 1 0
                                                                                    0
                                                                                                                                            0
 2 0
                     0
                            0
                                   0
                                          0
                                                 0
                                                         0
                                                                 0
                                                                         0
                                                         0
                                                                 0
                                                                         0
                     0
                            0
                                   0
                                          0
 3 0
```

.

 $5 \text{ rows} \times 2934 \text{ columns}$

df_new = pd.concat([df_numeric, df_categorical_encoded], axis=1)
df_new.head()
In [179]:

Out[179]:

	R o w N u m b er	C u st o m e rI d	C r e di t S c o r e	A g e	T e n u r e	B a l a n c	N u m Of Pr od uc ts	H a s C r C a r d	Is Ac tiv e M e m be r	Es ti m at ed Sa la ry	 Su rn a m e_ Zo to va	S u r n a m e_Z o x	Su rn a me _Z ub ar ev	Su rn am e_ Zu ba rev a	S ur na m e_Z ue v	Su rn a m e_ Z uy ev	Su rn a m e_ Zu ye va	Ge ogr ap hy _G er ma ny	Ge og ra ph y_ Sp ai n	G e n d er - M al e	
0				4 2	2	0 0 0	1	1	1	10 13 48 .8 8	 0	0	0	0	0	0	0	0	0	0	
1	2	1 5 6 4 7 3 1	6 0 8	4	1	8 3 8 0 7 8 6	1	0	1	11 25 42 .5 8	 0	0	0	0	0	0	0	0	1	0	
2	3	1 5 6 1 9 3 0 4	5 0 2	4 2	8	5 9 6 6 0 8 0	3	1	0	11 39 31 .5 7	 0	0	0	0	0	0	0	0	0	0	
3	4	1 5 7 0 1 3 5 4	6 9 9	3 9	1	0 0 0	2	0	0	93 82 6. 63	0	0	0	0	0	0	0	0	0	0	

 $5 \text{ rows} \times 2945 \text{ columns}$

8. Split the data into dependent and independent variables.

```
In [180]:
 df=pd.read csv('/content/Churn Modelling.csv')
                                                                                                                              In [182]:
 print(df["Balance"].min())
print(df["Balance"].max())
 print(df["Balance"].mean())
0.0
 250898.09
76485.889288
print(df.count(0))

      RowNumber
      10000

      CustomerId
      10000

      Surname
      10000

      CreditScore
      10000

      Geography
      10000

      Age
      10000

      Tenure
      10000

      Balance
      10000

      NumOfProducts
      10000

      HasCrCard
      10000

      IsActiveMember
      10000

      EstimatedSalary
      10000

      Exited
      10000

                                                                                                                              In [183]:
                                10000
Exited
dtype: int64
print(df.shape)
 (10000, 14)
                                                                                                                              In [184]:
print(df.size)
 140000
                                                                                                                              In [185]:
X = df.iloc[:, :-1].values
 print(X)
 [[1 15634602 'Hargrave' ... 1 1 101348.88]
                                                                                                                              In [187]:
   [2 15647311 'Hill' ... 0 1 112542.58]
   [3 15619304 'Onio' ... 1 0 113931.57]
   [9998 15584532 'Liu' ... 0 1 42085.58]
   [9999 15682355 'Sabbatini' ... 1 0 92888.52]
   [10000 15628319 'Walker' ... 1 0 38190.78]]
 Y = df.iloc[:, -1].values
print(Y)
 [1 0 1 ... 1 1 0]
                                                                                                                              In [271]:
```

9. Scale the independent variables

In [215]: df = pd.read csv('/content/Churn Modelling.csv') x = df[['Age', 'Tenure']].values y = df['Gender'].values fig, ax = plt.subplots(ncols=2, figsize=(12, 4)) ax[0].scatter(x[:,0], y)ax[1].scatter(x[:,1], y)plt.show() In [216]: fig, ax = plt.subplots(figsize=(12, 4))ax.scatter(x[:,0], y)ax.scatter(x[:,1], y)<matplotlib.collections.PathCollection at 0x7f9a8a854ad0> Out[216]: fig, ax = plt.subplots(figsize=(12, 4)) In [217]: ax.hist(x[:,0])ax.hist(x[:,1])Out[217]: (array([413., 1035., 1048., 1009., 989., 1012., 967., 1028., 1025., array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]), <a list of 10 Patch objects>) In [220]: from sklearn.preprocessing import StandardScalerfrom sklearn.preprocessing import MinMaxScaler fig, ax = plt.subplots(figsize=(12, 4)) scaler = StandardScaler() x_std = scaler.fit_transform(x) $ax.hist(x_std[:,0])$ ax.hist(x std[:,1])Out[220]: (array([413., 1035., 1048., 1009., 2001., 0., 1995., 0., 1025., 1474.]), array([-1.73331549, -1.38753759, -1.04175968, -0.69598177, -0.35020386,

-0.00442596, 0.34135195, 0.68712986, 1.03290776, 1.37868567,

1.724463581),

<a list of 10 Patch objects>)

```
In [219]:
fig, ax = plt.subplots(figsize=(12, 4))
scaler = StandardScaler()
x_std = scaler.fit_transform(x)
ax.scatter(x_std[:,0], y)
ax.scatter(x std[:,1], y)
                                                                       Out[219]:
<matplotlib.collections.PathCollection at 0x7f9a8a2fde50>
fig, ax = plt.subplots(figsize=(12, 4))
                                                                       In [221]:
scaler = MinMaxScaler()
x_minmax = scaler.fit_transform(x)
ax.hist(x minmax [:,0])
ax.hist(x_minmax [:,1])
                                                                       Out[221]:
(array([ 413., 1035., 1048., 1009., 989., 1012., 967., 1028., 1025.,
        1474.]),
array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]),
<a list of 10 Patch objects>)
                                                                       In [222]:
fig, ax = plt.subplots(figsize=(12, 4))
scaler = MinMaxScaler()
x minmax = scaler.fit transform(x)
ax.scatter(x minmax [:,0], y)
ax.scatter(x_minmax [:,1], y)
<matplotlib.collections.PathCollection at 0x7f9a8a0cae10>
                                                                       Out[222]:
fig, ax = plt.subplots(figsize=(12, 4))
                                                                       In [223]:
scaler = MinMaxScaler()
x minmax = scaler.fit transform(x)
ax.scatter(x minmax [:,0], y)
<matplotlib.collections.PathCollection at 0x7f9a8a0caf10>
                                                                       Out[223]:
fig, ax = plt.subplots(figsize=(12, 4))
scaler = MinMaxScaler()
                                                                       In [224]:
x minmax = scaler.fit transform(x)
ax.hist(x_minmax [:,0])
```

```
Out[224]:
```

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

from sklearn.linear_model import SGDRegressor from sklearn.preprocessing import StandardScalerfrom sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error import sklearn.metrics as metrics

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

Import Data

```
df = pd.read_csv('/content/Churn_Modelling.csv')
x = df[['Age', 'Tenure']].values
y = df['Balance'].values

# Split into a training and testing set

X_train, X_test, Y_train, Y_test = train_test_split(x, y)

# Define the pipeline for scaling and model fitting

pipeline = Pipeline([
         ("MinMax Scaling", MinMaxScaler()),
         ("SGD Regression", SGDRegressor())
])
```

Scale the data and fit the model

```
pipeline.fit(X train, Y train)
```

Evaluate the model

```
Y_pred = pipeline.predict(X_test)
print('Mean Absolute Error: ', mean_absolute_error(Y_pred, Y_test))
print('Score', pipeline.score(X_test, Y_test))
Mean Absolute Error: 57120.533393590835
Score 0.0004207814312172653
```

10.Split the data into training and testing

dataset = pd.read_csv('/content/Churn_Modelling.csv')
print(dataset)

In [267]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
\							_
0	1	15634602	Hargrave	619	France	Female	42
1	2	15647311	Hill	608	Spain	Female	41
2	3	15619304	Onio	502	France	Female	42
3	4	15701354	Boni	699	France	Female	39

4			737888 M		850	-		
9995 9996 9997	99	97 155	 506229 C 569892 Jc 584532	_	51 70	France France France	Male Male Female	39 35 36
9998 9999	99	99 156	582355 Sa 528319	abbatini Walker	772 792	2 Germany 2 France	Male Female	42
0						IsActiveMem		
0 1	2	0.0 83807.8		1 1	1 0		1 1	
2		159660.8		3	1		0	
3		0.0		2	0		0	
4		125510.8		1	1		1	
••• 9995	• • • 5	0.0		2	1		0	
		57369.6		1	1		1	
9997		0.0		1	0		1	
9998	3	75075.3		2	1		0	
9999	4	130142.7	9	1	1		0	
	Estimat	edSalary	Exited					
0		01348.88						
1		12542.58						
2		13931.57 93826.63	1					
4		79084.10	0					
9995		96270.64	0					
		01699.77						
9997 9998		42085.58 92888.52	1 1					
9999		38190.78	0					
[1000	0 rows x	14 colum	nns]					
datase	et.drop(["HasCrCar	d"],axis=1	l,inplace:	=True)			In [287]:
print(da	ataset.shane	e)#no_of_row	s and colume					In [288]:
	•	.head(10)						[200].
(1000		• Head (10)	,					
	stomerId	CreditS	Score Age	Tenure	Balance	IsActiveMe	mber \	
	15634602		619 42				1	•
1	15647311		608 41	. 1	83807.86		1	
	15619304		502 42				0	
	15701354		699 39				0	
	15737888		850 43				1	
	15574012 15592531		645 44 822 50				0 1	
	15656148		376 29				0	
	15792365		501 44				1	
	15592389		684 27				1	
ਜ ਿਵ	timatedSa	alary						
0		48.88						
1		42.58						

```
2
        113931.57
3
         93826.63
         79084.10
4
        149756.71
5
         10062.80
6
7
        119346.88
         74940.50
8
9
          71725.73
                                                                     In [289]:
X=dataset.iloc[:,:-1].values
Χ
                                                                    Out[289]:
array([[1.5634602e+07, 6.1900000e+02, 4.2000000e+01, 2.0000000e+00,
        0.0000000e+00, 1.0000000e+00],
       [1.5647311e+07, 6.0800000e+02, 4.1000000e+01, 1.0000000e+00,
       8.3807860e+04, 1.0000000e+00],
       [1.5619304e+07, 5.0200000e+02, 4.2000000e+01, 8.0000000e+00,
        1.5966080e+05, 0.0000000e+00],
       [1.5584532e+07, 7.0900000e+02, 3.6000000e+01, 7.0000000e+00,
       0.0000000e+00, 1.0000000e+00],
       [1.5682355e+07, 7.7200000e+02, 4.2000000e+01, 3.0000000e+00,
        7.5075310e+04, 0.0000000e+00],
       [1.5628319e+07, 7.9200000e+02, 2.8000000e+01, 4.0000000e+00,
        1.3014279e+05, 0.0000000e+00]])
                                                                     In [290]:
Y=dataset.iloc[:,-1].values
array([101348.88, 112542.58, 113931.57, ..., 42085.58, 92888.52,
                                                                    Out[290]:
        38190.781)
from sklearn.model_selection import train_test_split
                                                                     In [291]:
X train, X test, Y train, Y test = train test split( X, Y, test size = 0.25,
random state = 0 )
                                                                     In [306]:
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
print(X train)
[[-1.34333028 -0.73550706 0.01526571 0.00886037 0.67316003 -1.03446007]
 [-0.65515619 \quad 0.80829492 \quad -0.46178778 \quad 1.39329338 \quad -0.35693706 \quad 0.96668786]
 . . .
  [-1.63542994 \quad 0.90092304 \quad -0.36637708 \quad 0.00886037 \quad 1.36657199 \quad -1.03446007] 
 [-0.38540456 -0.62229491 -0.08014499 1.39329338 -1.20772417 0.96668786]
 [-1.37829524 -0.28265848 0.87396199 -1.37557264 0.51741687 -1.03446007]]
                                                                     In [305]:
print(X test)
 \begin{bmatrix} [-1.05852196 & -0.55025082 & -0.36637708 & 1.04718513 & 0.88494297 & 0.96668786] \end{bmatrix} 
 [-0.51554728 -1.31185979 \ 0.11067641 -1.02946438 \ 0.43586703 -1.03446007]
```