Scalable Spatiotemporal Graph Neural Networks

Andrea Cini*1

Ivan Marisca*1

Filippo Maria Bianchi²³

Cesare Alippi¹⁴

¹The Swiss AI Lab IDSIA, Università della Svizzera italiana ³NORCE Norwegian Research Centre ⁴Politecnic

era italiana ²UiT the Arctic University of Norway

⁴Politecnico di Milano *Equal contribution

Figure 1. Scalable Graph Predictor

SGP: Scalable Graph Predictor

A novel approach based on an **encode-decoder** architecture with a **training-free spatiotemporal encoding** scheme and where the only learned parameters are in the **node-level trainable decoder** (an MLP).

- ► Representations for each point in time and space can be precomputed.
- ► The decoder can be trained by sampling uniformly time and space.
- ▶ This enables scalability at training time: $\mathcal{O}(ET) \to \mathcal{O}(1)$.

Spatiotemporal Encoder

Temporal encoding: $T \times N \times d_x \to N \times d_h$ Spatial encoding: $N \times d_h \to K d_h$ $\boldsymbol{x}_{t-W:t}^i$ $\boldsymbol{S}_t^{(K)}$ $\boldsymbol{x}_{t-W:t}^j$ $\boldsymbol{S}_t^{(1)}$ $\boldsymbol{x}_{t-W:t}^k$ $\boldsymbol{S}_t^{(1)}$

Figure 2. Spatiotemporal encoding scheme.

The spatiotemporal encoder relies on two modules.

- ► A randomized recurrent neural network for encoding sequences.
- ► A propagation process through the graph structure.

TEMPORAL ENCODING

We adopt the deep echo state network framework [1].

$$egin{aligned} oldsymbol{h}_t^{i,(0)} &= \left[oldsymbol{x}_t^i \| oldsymbol{u}_t^i
ight], \ \hat{oldsymbol{h}}_t^{i,(l)} &= anh\left(oldsymbol{W}_u^{(l)} oldsymbol{h}_t^{i,(l-1)} + oldsymbol{W}_h^{(l)} oldsymbol{h}_{t-1}^{i,(l)} + oldsymbol{b}^{(l)}
ight), \ oldsymbol{h}_t^{i,(l)} &= (1-\gamma_l) oldsymbol{h}_{t-1}^{i,(l)} + \gamma_l \hat{oldsymbol{h}}_t^{i,(l)}. \qquad l=1,\dots,L \end{aligned}$$

- ► Weight matrices are randomly generated.
- ► Proper normalization makes the system **stable**.
- ► The concatenated multilayer state representations encode rich, multi-scale, dynamics

$$\overline{oldsymbol{H}}_t = \left(oldsymbol{H}_t^{(0)} \|oldsymbol{H}_t^{(1)}\| \dots \|oldsymbol{H}_t^{(L)}
ight).$$

SPATIAL PROPAGATION

The extracted temporal encodings are propagated by using **powers of a graph shift operator**.

$$egin{aligned} oldsymbol{S}_t^{(0)} &= \overline{oldsymbol{H}}_t^{(0)} \|oldsymbol{H}_t^{(1)}\| \dots \|oldsymbol{H}_t^{(L)} \end{pmatrix}, \ oldsymbol{S}_t^{(k)} &= \widetilde{oldsymbol{A}} oldsymbol{S}_t^{(k-1)} = \left(\widetilde{oldsymbol{A}}^k oldsymbol{H}_t^{(0)} \|\widetilde{oldsymbol{A}}^k oldsymbol{H}_t^{(1)} \| \dots \|\widetilde{oldsymbol{A}}^k oldsymbol{H}_t^{(L)}
ight), \ \overline{oldsymbol{S}}_t &= \left(oldsymbol{S}_t^{(0)} \|oldsymbol{S}_t^{(1)} \| \dots \|oldsymbol{S}_t^{(K)}
ight). \end{aligned}$$

► This can be done either **recursively** or **in parallel**.

Motivation

Scalablity in Spatiotemporal GNNs is challenging to achieve due to the large amounts of input data.

- \blacktriangleright Standard STGNNs have **time and space complexity** of $\mathcal{O}(ET)$.
- ► If an attention component is included, **complexity becomes quadratic** in either time or space.
- ► Subsampling strategies can break long-range spatiotemporal dependencies and are prone to failure.

Multi-Scale Decoder

Could be a standard MLP, however, we can exploit the structure of the embedding.

► We make the connectivity of the first MLP layer sparse.

$$egin{aligned} oldsymbol{Z}_t^{(k)} &= \sigma \left(\widetilde{oldsymbol{A}}^k oldsymbol{H}_t^{(0)} oldsymbol{\Theta}_k^{(0)} \| \dots \| \widetilde{oldsymbol{A}}^k oldsymbol{H}_t^{(L)} oldsymbol{\Theta}_k^{(L)}
ight) \ &= \sigma \left(oldsymbol{S}_t^{(k)} \begin{bmatrix} oldsymbol{\Theta}_k^{(0)} & \mathbf{0} \\ \mathbf{0} & \ddots & oldsymbol{\Theta}_k^{(L)} \end{bmatrix}
ight), \ \overline{oldsymbol{Z}}_t &= \left(oldsymbol{Z}_t^{(0)} \| oldsymbol{Z}_t^{(1)} \| \dots \| oldsymbol{Z}_t^{(K)}
ight). \end{aligned}$$

- ► Standard fully connected layers can then be used to obtain predictions.
- ► Trained by sampling minibatches of representations over time and space as if they were iid.

Some Results

We tested the scalability of the approach by imposing a limit on training time (1 hour) and capping GPU memory utilization (12 GB).

		Prediction error (MAE)			Resource utilization		
		30 mins	7 hours 30 mins	11 hours	Batch/s	Memory	Batch size
PV-US 100	DCRNN GWNet GatedGN	1.45 ± 0.13	3.34 ± 0.22 5.09 ± 0.63 2.94 ± 0.05	5.26 ± 1.34	2.01 ± 0.02	9.63 GB 11.64 GB 11.46 GB	2 2 5
	SGP	1.09 ± 0.01	$\textbf{3.14} \pm \textbf{0.21}$	3.16 ± 0.19	116.58 ± 8.74	2.21 GB	4096
PV-US Full	DCRNN GWNet GatedGN	1.65 ± 0.23	4.10 ± 0.27 6.93 ± 0.58 3.25 ± 0.04	7.93 ± 0.17	0.77 ± 0.00	11.59 GB 11.35 GB 11.14 GB	1* 2 1*
A	SGP	1.09 ± 0.00	3.06 ± 0.11	3.13 ± 0.13	118.64 ± 8.35	2.21 GB	4096

Table 1. Results on large-scale datasets.

Figure 3. Learning curve on PV-US.

References

[1] C. Gallicchio, A. Micheli, and L. Pedrelli. Deep reservoir computing: A critical experimental analysis. *Neurocomputing*, 268: 87–99, 2017.

Our library for spatiotemporal data processing:

TorchSpatiotemporal/tsl

