# Retrieval augmented diffusion models for time-series forecasting

Neural Networks 2024/25 21/07/2025

Valerio Baldi 1940729 Saverio Dieni 1946039

## Task: time-series forecasting

**Minimization problem**: find the probability distribution p parameterized by  $\theta$  of having  $\mathbf{x}^{P}$  given  $\mathbf{x}^{H}$  that best fits the the real probability distribution

## Conditional Time Series Diffusion Models

Idea: in the forward process you can inject some controlled noise into the signal, then in the backward process you learn how to reconstruct the original signal.

#### Dataset:

House price dataset HouseTS from Kaggle, we considered 34 features and took 24 timesteps series (each step of 1 month) where 12 steps were given to forecast the last 12.



#### Retrieval database

There are 2 main problems in time-series generation:lack of a meaningful guidance

- insufficient size
- unbalance of the dataset

We embed the head of each time-series using a pre-trained autoencoder model, we build the retrieval database on the embeddings indexed with FAISS. Now we can find top k nearest neighbours based on those embeddings and take the tails of those series as a reference for the generation process.



## Reference Moduled Attention (RMA)

The main novelty of the model presented in the paper is the Reference Moduled Attention (RMA) which uses the time-series references to guide the denoising process. It is an alternative to the Cross-Attention Module and it is specifically designed to exploit the references and the side information.



### Retrieval Augmented Time series Diffusion model (RATD)



### **Experiment**

We trained our RATD model for 100 epochs and reached a MSE on the validation dataset of 0.0847.



## Results





#### Multimodal RATD

We expanded our RATD model by exploiting satellite images in the HouseTS dataset related to the time-series. We used the FiLM (Feature-wise Linear Modulation) technique to integrate the images in the model.

FiLM(x | 
$$\gamma_x$$
,  $\beta_x$ ) =  $\gamma_x \circ x + \beta_x$   
FiLM(xr |  $\gamma_{xr}$ ,  $\beta_{xr}$ ) =  $\gamma_{xr} \circ xr + \beta_{xr}$ 

where  $\gamma$ ,  $\beta$  are two modulation parameter computed from an embedding y:

Concat(
$$\gamma$$
,  $\beta$ ) =  $f_{\theta}(y)$ 

#### CLIP encoder

To embed the images we used an encoder based on the pre-trained CLIP encoder, then we appropriately reshaped y to obtain the parameters  $\gamma$ ,  $\beta$ .

$$y = CLIPEnc(img_x)$$

$$f_{o}(y) = MLP(Conv1D(LN(y)))$$

## Results



