CLASSIFICATION

FOR LATER DOWNLOAD THE "Exercise - Classification.zip" NOTEBOOK & DATASET FROM THE COURSE SITE

CLASSIFICATION

Classification and Types of Classifiers Some simple classification algorithms k-nearest neighbors (kNN) Naïve Bayes Data Story Presentations Test/Train & Cross-Validation Procedures **Evaluation** A Few More Clustering Techniques

MACHINE LEARNING APPROACHES

continuous categorical classification supervised regression dimension clustering unsupervised reduction

CLUSTERING VS. CLASSIFICATION

Unsupervised

We think there are categories or groupings, but we don't know exactly what they are.

For example — Different types of people, countries, animals, etc.

Often **supervised** (or semi-supervised)

We know specific categories and want to apply them:

Spam versus Not-spam
English versus Spanish versus French
Pop versus Classical

CLUSTERING VS. CLASSIFICATION

Clustering

Tries to separate groups by using (dis)simillarity Is player 1 like player 2 but unlike player 3?

Classification

Tries to find important features and weights What features distinguish a point guard from a center?

CLASSIFICATION PIPELINE

GETTING LABELS

USUALLY THIS IS DATA YOU DON'T HAVE IF YOU DID, YOU WOULDN'T NEED A CLASSIFIER

The painful part

Often human labor

Hire a bunch of out of work musicians to label your music for you Use Mechanical Turk

Can distribute the pain

Every time an individual hits the "spam" button in gmail

Can infer labels

Predict gender by writing style

Find articles with a byline \rightarrow guess gender by name (database of names) \rightarrow tag article by guessed gender Noisy, but might be mostly right

Can generate

Can sometimes generate artificial datasets

Make images of cats and dogs in different poses

Since we generated, we know the labels

TRADEOFFS

How much data do I need?
How hard/expensive is it to label?
How accurate do I need the labels to be?
How much will the "experts" agree?

CLASSIFICATION PIPELINE

FEATURES

Same idea as in clustering

Some set of "descriptions" for an object

Explicit: Petal length, player height, miles per gallon, number of times word V1@gra is seen in text, shares sold last period

Inferred/calculated: average rate of change in shares sold in last month

FEATURE ENGINEERING

Could fill an entire course by itself...

Some rules/suggestions:

If you have lots of features you need lots of examples

Use EDA techniques!

Look at distributions

(is MPG for sports cars obviously different than MPG for station wagons?)

Start with the **most discriminative features**

CLASSIFICATION PIPELINE

SOME BASIC/POPULAR CLASSIFIERS

kNN (k-Nearest-Neighbor)

Naïve Bayes

Logistic Regression

Decision Trees

Random Forests

SVM (Support-Vector Machines)

Neural Nets ("Deep Learning")

K-NEAREST NEIGHBOR

(Classification via similarity.)

PICK THE CLOSEST & POINTS

K-NEAREST NEIGHBOR CLASSIFIER

Advantages

No training needed

Can be applied to **any distance measure** and feature representation

Empirically **effective**

Disadvantages

Finding nearest neighbors has high time complexity

Need to keep the **whole training set**

Imprecise with small numbers of examples

- often true in high-dimensional spaces (neighbors aren't similar enough to be trusted)

NAIVE BAYES CLASSIFICATION

(Classification via probabilistic reasoning.)

BAYES THEOREM

$$Prob(A \ given \ B) = \frac{Prob(A \ and \ B)}{Prob(B)}$$

GIVES THE PROBABILITY OF AN EVENT OCCURRING GIVEN THAT ANOTHER EVENT HAS ALREADY OCCURRED

BAYES THEOREM

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

GIVES THE PROBABILITY OF AN EVENT OCCURRING GIVEN THAT ANOTHER EVENT HAS ALREADY OCCURRED

PREDICTING LABELS

POSTERIOR PROBABILITY

(LIKELIHOOD OF LABEL GIVEN FEATURES)

LIKELIHOOD OF FEATURES GIVEN LABEL

LABEL PRIOR PROBABILITY

$$) = \frac{P(F|L) \times P(L)}{P(F)}$$

FEATURE PRIOR PROBABILITY

THE PROBABILITY OF AN ITEM GETTING A PARTICULAR LABEL (L) GIVEN THAT IT CONTAINS A PARTICULAR FEATURE (F)

MULTIPLE FEATURES

POSTERIOR PROBABILITY
(LIKELIHOOD OF LABEL GIVEN FEATURES)

LIKELIHOOD OF MULTIPLE FEATURES GIVEN LABEL

LABEL PRIOR PROBABILITY

$$P(L|F) = \frac{P(f_1|L) \times P(f_2|L) \times \dots \times P(f_n|L) \times P(L)}{P(F)}$$

FEATURE PRIOR PROBABILITY

ASSUMES (NAIVELY) THAT ALL FEATURES
ARE COMPLETELY INDEPENDENT
BUT CAN STILL BE REALLY EFFECTIVE!

FOR EXAMPLE

POSTERIOR PROBABILITY (LIKELIHOOD OF LABEL GIVEN FEATURES)

LIKELIHOOD OF FEATURES GIVEN **LABEL**

LABEL PRIOR PROBABILITY

 $P(spam|words) = \frac{P(viagra, rich, ... friend|spam) \times P(spam)}{P(spam|words)}$ P(viagra, rich, ... friend)

AN EVEN EASIER EXAMPLE - THE GOLF DATASET

Outlook	Temperature	Humidity	Windy	Play Golf
overcast	hot	high	FALSE	yes
overcast	cool	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
			TRUE	no
HOW CAN	WE USE THIS TO	O PREDICT	FALSE	yes
WHFTHER	OR NOT WE'LL I	PLAV GOLF	TRUE	no
			FALSE	no
	DAY? (EVEN IF V		TRUE	no
A PARTICU	LAR COMBINATIC	FALSE	no	
			FALSE	yes
sunny	mild	normal	TRUE	yes

COMPUTE PROBABILITY TABLES

Outlook			Temperature			Humidity			Wind										
	Yes	No	P(Yes)	P(No)		Yes	No	P(Yes)	P(No)		Yes	No	P(Yes)	P(No)		Yes	No	P(Yes)	P(No)
Sunny	2	3	2/9	3/5	Hot	2	2	2/9	2/5	High	3	4	3/9	4/5	False	6	2	6/9	2/5
Overcast	4	0	4/9	0/5	Mild	4	2	4/9	2/5	Normal	6	1	6/9	1/5	True	3	3	3/9	3/5
Rainy	3	2	3/9	2/5	Cool	3	1	3/9	1/5										
Total	9	5	100%	100%	Total	9	5	100%	100%	Total	9	5	100%	100%	Total	9	5	100%	100%

Play		P/Total
Yes	9	9/14
No	5	5/14
Total	14	100%

THEN USE THEM TO COMPUTE PROBABILITIES

For a new day that's rainy, cool, high humidity, and windy:

$$P(Yes|NewDay) = \frac{P(RainyOutlook|Yes) \times P(CoolTemperature|Yes) \times P(HighHumidity|Yes) \times P(WithWind|Yes) \times P(Yes)}{-P(NewDay)}$$

$$P(No|NewDay) = \frac{P(RainyOutlook|No) \times P(CoolTemperature|No) \times P(HighHumidity|No) \times P(WithWind|No) \times P(No)}{-P(NewDay)}$$

P(Yes|NewDay)+P(No|NewDay)=1

COMPUTE

$$P(Yes|NewDay) \propto rac{3}{9}.rac{3}{9}.rac{3}{9}.rac{3}{9}.rac{9}{14} pprox 0.0079 \ P(No|NewDay) \propto rac{2}{5}.rac{1}{5}.rac{4}{5}.rac{3}{5}.rac{5}{14} pprox 0.0137$$

NORMALIZE

$$egin{array}{lcl} P(Yes|NewDay) & = & rac{0.0079}{0.0079 + 0.0137} & = & 0.36 \ P(No|NewDay) & = & rac{0.0137}{0.0079 + 0.0137} & = & 0.63 \ \end{array}$$

CHOOSE A LABEL

NO GOLF!

NAÏVE BAYESIAN CLASSIFIER

Advantages:

Easy to implement

Very efficient

Good results for many applications

Disadvantages

Assumes feature independence, and can break when that assumption is seriously violated (highly correlated data sets).

LET'S TRY SOME CLASSIFYING

TO FOLLOW ALONG
DOWNLOAD THE CLASSIFICATION
NOTEBOOK & DATASET FROM THE
COURSE PAGE

kNN (k-NEAREST NEIGHBORS)

NAÏVE BAYES CLASSIFICATION

$$P(Yes/NewDay) = \frac{P(RainyOutlook|Yes) \times P(CoolTemperature|Yes) \times P(HighHumidity|Yes) \times P(WithWind|Yes) \times P(Yes)}{P(NewDay)}$$

$$P(No|NewDay) = \frac{P(RainyOutlook|No) \times P(CoolTemperature|No) \times P(HighHumidity|No) \times P(WithWind|No) \times P(No)}{P(NewDay)}$$

	Yes	No	P(Yes)	P(No)		Yes
Sunny	2	3	2/9	3/5	Hot	2
Overcast	4	0	4/9	0/5	Mild	4
Rainy	3	2	3/9	2/5	Cool	3
Total	9	5	100%	100%	Total	9

COMPUTE

$$P(Yes|NewDay) \propto \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{9}{14} \approx 0.0079$$

 $P(No|NewDay) \propto \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{5}{14} \approx 0.0137$

NORMALIZE

$$egin{array}{lcl} P(Yes|NewDay) & = & rac{0.0079}{0.0079+0.0137} & = & 0.36 \ P(No|NewDay) & = & rac{0.0137}{0.0079+0.0137} & = & 0.63 \end{array}$$

THERE ARE MANY OTHER OPTIONS AT YOUR DISPOSAL

Just a few of the classifiers available in scikit-learn:

```
from sklearn.neighbors import <a href="MLPClassifier">MLPClassifier</a>
from sklearn.neighbors import <a href="KNeighborsClassifier">KNeighborsClassifier</a>
from sklearn.svm import <a href="SVC">SVC</a>
from sklearn.gaussian_process import <a href="GaussianProcessClassifier">GaussianProcessClassifier</a>
from sklearn.gaussian_process.kernels import <a href="RBF">RBF</a>
from sklearn.tree import <a href="DecisionTreeClassifier">DecisionTreeClassifier</a>
from sklearn.ensemble import <a href="RandomForestClassifier">RandomForestClassifier</a>
from sklearn.naive_bayes import <a href="GaussianNB">GaussianNB</a>
from sklearn.discriminant_analysis import <a href="QuadraticDiscriminantAnalysis">QuadraticDiscriminantAnalysis</a>
```


Different classifiers can give dramatically different results.

BUT FIRST...

TRAINING

CLASSIFICATION TRAINING

All our algorithms need to be "trained" Our algorithm also needs to be "tested"

What happens if we use all our data for training?

"Overfitting!"

CLASSIFICATION TRAINING

First impulse (usually a reasonable one)
Split the data into train and test (aka "holdout")
e.g., 70% to train, 30% retained to test

Still need to be careful

You might need to train again!
Some algorithms work best with "balanced" training
Too many positive or negative examples can cause problems
Sometimes we don't have enough data to do this (expensive labels)
Can still overfit

THREE-WAY SPLIT

Training Validation

Use to tune parameters

Test

After running this one, you're done

CROSS-VALIDATION

An even better option - Try many holdouts
Randomly select test/train data
Pick a different 70% each time
Average scores at the end

EXTENSION: K-FOLD CROSS-VALIDATION

Move a sliding window

Makes sure that all data is used

EXTENSION: LEAVE-ONE-OUT

Extreme version of k-fold Remove one at a time, train on all the others

GENERAL GUIDANCE ON FOLDS

Many folds
Accurate but expensive (variance might be high)
More data = get away with less folds
Sparse = use more folds
Common choice = 10

OK... SO DOES IT WORK?

EVALUATION

Accuracy

Precision

Recall

F1 score

Confusion Matrix

Precision-Recall curve ROC curve

ACCURACY

Simplest of evaluations Count the percentage of times we classified correctly.

Algorithm:

For each item:

Compare the label we generated to the ground truth Add 1 if correct, otherwise add 0

Divide by number of items

PROBLEMS WITH ACCURACY

Think of a spam filter, why might accuracy be the wrong measure?

Hint: What's the distribution of messages? How many spam and how many good?

To win at spam detection (or any unequal task)

just guess the majority type.

If 90% of messages are good: guess that all are good

Accuracy is guaranteed to be 90%

PRECISION AND RECALL

Heavily used in Information Retrieval

Assumption: we have a query "apple"
Our corpus contains documents about apples (positive) and documents about other topics (negative)

Documents actually about apples

Documents the system says are about apples

Documents the system says are not about apples

CONFUSION MATRIX (SIMPLE)

	Actually Positive	Actually Negative
Predicted Positive	True Positive	False Positive
Predicted Negative	False Negative	True Negative

Documents actually about apples

Documents the system says are about apples

Documents the system says are not about apples

Precision → % of the items returned that are true positive

TP/(TP + FP)

Documents actually about apples

Documents the system says are about apples

Documents the system says are not about apples

Recall → % of the positive items returned

TP / (TP + FN)

HOW MANY OF THE POSITIVE LABELS WERE CORRECT?

Precision: TP / Predicted positive

Recall: TP / Real positive

HOW MANY OF THE REAL POSITIVES DID WE LABEL?

F1 SCORE

Annoying to deal with two measures
Why not just combine them into one?
F1 Measure: weighted average of precision and recall:

```
F1 = 2 * (Recall * Precision)/(Recall + Precision)
```

Good if you think false positives and false negatives are relatively the same "badness"

FOR MULTI-CLASSIFIERS

If instead of two classes (positive / negative) we have multiple classes ("spam"/ "high priority" / "normal"), we can compute precision and recall in several ways.

```
One option – take class one at a time:

"spam" = positive, all other classes = negative

"high priority" = positive, all other classes = negative

"normal" = positive, all other classes = negative

Calculate mean Precision/Recall
```

CONFUSION MATRIX (MULTI-CLASS)

CONFUSION MATRIX (MULTI-CLASS)

http://quietlyamused.org/blog/2014/03/12/language-confusion/

BACKTOTHE NOTEBOOK!

DECISION TRES

Classification as sets of (usually) binary decisions based on data attributes.

REALLY USEFUL IF YOU CAN CARVE UP THE ATTRIBUTE SPACE USING A SET OF IF-THEN RULES

DECISION TREES

Advantages:

Easy to interpret (not all classifiers can be explained)

Prediction process obvious

Can handle mixed data types

INTUITION FOR CONSTRUCTING DTs

Ask the question with the most valuable answer

If I knew the answer to this, how much closer to the solution would I be?

Solutions that divide the **space 50/50** are better than solutions that divide the **space 2/98**.

MEASURING "INFORMATION GAIN"

Use **entropy** or **purity** metrics to assess information gain.

For a set of items **S** with **J** classes

Entropy:
$$H(S) = -\sum_{i=1}^{J} p_i log_2 p_i$$

 p_i = fraction of items in the set with that class

Entropy =
0 for a homogeneous sample
1 for an equally divided one

TO ASSESS THE INFORMATION GAIN OF A SPLIT

Entropy of Tree Sum of Entropy of Children after Splitting on Attribute a Gain(T,a) = H(T) - H(T,a)

Gain will be high if a split produces pure subtrees.

Can compute information gain for all possible splits and then choose the one with the greatest gain.

FOR EXAMPLE... HOUSING LOAN DATA

Approved or not

ID	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

A RECURSIVE ALGORITHM

- 1. **Split** on the best feature (lowest partition entropy)
- **2.** Add a decision node
- 3. Repeat (recursively) with each group of children
- 4. Stop if we hit an entropy threshold or partitions get too small

A DECISION TREE FOR THIS DATA

Decision nodes and leaf nodes (classes)

CS583, Bing Liu, UIC

MULTIPLE VALID TREES ARE POSSIBLE

HANDLING CONTINUOUS ATTRIBUTES

Split into two (or more) intervals.

Use **information gain** or **gain ratio** again

Sort the values in increasing order $\{v_1, v_2, ... v_r\}$,

Consider **possible thresholds** between adjacent values v_i and v_{i+1} .

Test possible thresholds and choose one that maximizes the gain.

AN EXAMPLE IN A CONTINUOUS SPACE

MANY FORMS OF DECISION TREES

By Ross Quinlan what we just saw **ID3** – Basic entropy-based decision trees (discrete only)

- Most similar to | C4.5 — Handles continuous and discrete attributes

C5.0 – Enhanced version of C4.5

sk-learn

CART (Classification And Regression Trees)

supports – Similar to C4.5 but uses "Gini Index" for purity instead of entropy

from sklearn.tree import DecisionTreeClassifier

And others ... CHAID/MARS/etc.

DECISION TREE

Advantages:

Easy to interpret – not all classifiers can be "explained" Prediction process obvious Handle mixed data types

Disadvantages:

Expensive to calculate Tendency to overfit Can get large

RISK OF OVERFITTING

Different training samples can give really different results.

RANDOM FOREST

"Ensemble" classifiers Create many trees and have them vote.

Verikas et al. (2016)

Problem: how to generate many trees from one dataset?

Various way of randomizing

Pick different data subsets (often using bootstrapping "with replacement")

Pick different features

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100, random_state=0)

Single Decision Tree

Random Forest with 100 Trees

NEURALNETS

(and "Deep Learning")

MIMICING LEARNING IN THE BRAIN

"Neurons"

EACH NEURON OUTPUTS A **WEIGHTED SUM** OF ALL OUTPUTS FROM THE PREVIOUS LAYER

Multiple layers with weighted "feed-forward" connections

inputs

output

Learning via back-propagation

EVERY EDGE HAS A UNIQUE **WEIGHT** THAT CAN CHANGE OVER TIME

LEARNING PREDICTABLY

Smooth activation functions
Sigmoid, Tanh, etc. (not stepwise)

Randomize weights initially

Adjust weights slowly

Epoch 000,000 Learning rate

Activation

Regularization

Regularization rate

Problem type

Classification

0.03

Tanh

None

NEURAL NETS IN PYTHON

Supported in SciKitLearn (but not very scalable)

from sklearn.neural_network import MLPClassifier

```
A bunch of other libraries...
tensorflow
pylearn2
sklearn_theano
nolearn
keras
lasagne
```

TensorFlow + Colaboratory

If you're going to start really diving into ML – this is a good place to start.

BUT... NEURAL NETS ARE BASICALLY BLACK BOXES

To perform well, NNs usually require large numbers of nodes, multiple hidden layers, and lots of edges!

Internal behavior can be really difficult to understand.

Especially true with "deep learning" (5, 10, or even more hidden layers).

OTHER APPROACHES

Logistic Regression

 Multiple linear regression extended to support categorical outputs instead of just quantitative ones.

from sklearn.linear_model import LogisticRegression

Support Vector Machines (SVM)

 Find a hyperplane in multidimensional space that best splits items with a label from items without it.

from sklearn.linear_model import LogisticRegression

ROLL-YOUR-OWN ENSEMBLE METHOD

Use a VotingClassifier to combine multiple classifiers.

```
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

clf1 = LogisticRegression()
clf2 = RandomForestClassifier()
clf3 = GaussianNB()
eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)])
```

Can also weight models, tweak voting schemes, etc.

SUMMARY

Classification

Useful when we know something about the structure Use a few labeled examples to classify many more

If you're interested - start playing or take a machine learning course (like DATA 607)!

A NICE STARTING POINT

A nice, recent (Sept 2019) Machine Learning reference built around Python examples.

Available online via the UofC.

https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

