Exercise 10

Nikolaus Czernin

```
library("tidyverse")
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
              1.1.4
                                     2.1.5
                         v readr
## v forcats 1.0.0
                         v stringr
                                     1.5.1
## v ggplot2 3.5.1
                         v tibble
                                     3.2.1
## v lubridate 1.9.3
                         v tidyr
                                      1.3.1
               1.0.2
## v purrr
## -- Conflicts -----
                                              ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library("knitr")
library(rpart)
library(mgcv)
## Loading required package: nlme
##
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
##
##
       collapse
##
## This is mgcv 1.9-1. For overview type 'help("mgcv-package")'.
library("ISLR")
# install.packages("randomForest")
library("randomForest")
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
##
## The following object is masked from 'package:ggplot2':
##
##
       margin
```

Loading & Preprocessing

```
data("Caravan")
Caravan %>% head()
```

##		MOSTYPE	E MAANT	HUI M	GEMOMV	MGEMLEE	F MOSHO	OFD N	MGODRK	MGODPR	MGODOV	MGOD	GE 1	MRELGE
##	1	33	3	1	3		2	8	0	5	1		3	7
##	2	37	7	1	2		2	8	1	4	1		4	6
##	3	37		1	2		2	8	0	4	2		4	3
##	4	9		1	3		3	3	2	3	2		4	5
##	5	40		1	4	-	2	10	1	4	1		4	7
##	6	23		1	2		1	5	0	5	0		5	0
##				MF'AL.		GEKIND I		_		MOPLMI	_		MBEI	
##	1	0	2		1	2		6 -	1		2	7		1
##	2	2	2		0	4		5	0		5	4		0
##	3	2	4		4	4	·	2	0		5	4		0
##	4	2	2		2	3		4	3		4	2		4
##	5	1 6	2		2 3	4 5		4 2	5 0		4 5	0 4		0 2
##	6	-	_	ו משטם	-	b DD MBERAI	·	_	•	MCVD1	-	-	ISKD	2
##	1	MBERZEI	o riden.	DUER 1	NDEWNTI	DD MDERAI	ndg Mdel		2 1	1 mark	113KD2 11	6 6	13 ND	
##	2		0	0		5	0		4 0	2	3	5	0	
##	3		0	0		7	0		2 0	5	0	4	0	
##	4		0	0		3	1	_	2 3	2	1	4	0	
##	5		5	4		0	0		0 9	0	0	0	0	
##	6		0	0		4	2	2	2 2	2	2	4	2	
##		MHHUUR	MHKOOP	MAUT	1 MAUT2	2 MAUTO I	MZFONDS	MZPA	ART MIN	NKM30 M	INK3045	MINK	457	5
##	1	1	8	;	8 () 1	8		1	0	4		į	5
##	2	2	7		7 :	L 2	6		3	2	0		į	5
##	3	7	2		7 () 2	9		0	4	5			0
##	4	5								-	U		(0
##	5		4	:	9 (0	7		2	1	5			3
##	_	4	4 5		9 (6 2	•	7 5			_			;	
##	6	4 9	_	(6 2	•	•		2	1	5		3	3
##	6	9	5		6 2 5 3	2 1	5 9 LA PWAP	ART F	2 4 0	1 0 5	5 0 2	SAUT	; ;	3 9 3
##	6	9	5 0 12 MINK 0		6 2 5 3 MINKGEN	2 1 3 3 4 MKOOPKI	5 9	0	2 4 0	1 0 5 R PWALA	5 0 2		; ;	3 9 3 SAUT 0
	1 2	9	5 0 12 MINK 0 2	123M 1 0 0	6 2 5 3 MINKGEN	2 1 3 3 4 MKOOPKI	5 9 LA PWAP 3 4	0 2	2 4 0 PWABEDI	1 O 5 R PWALA	5 0 2 ND PPER 0 0	SAUT 6 0	; ;	3 9 3 SAUT 0 0
## ## ##	1 2 3	9	5 0 12 MINK 0 2	123M I 0 0 0	6 2 5 3 MINKGEN 4	2 1 3 3 4 MKOOPKI 1 5	5 9 LA PWAPA 3 4	0 2 2	2 4 0 PWABEDI	1 0 5 R PWALA	5 0 2 ND PPER 0 0	SAUT 6 0 6	; ;	3 9 3 SAUT 0 0
## ## ## ##	1 2 3 4	9	5 0 12 MINK 0 2 0	123M 1 0 0 0 0	6 2 5 3 MINKGEN	2 1 3 3 4 MKOOPKI 4 5	5 9 LA PWAP 3 4 4	0 2 2 0	2 4 0 PWABEDH ((1 0 5 R PWALA	5 0 2 ND PPER 0 0 0	SAUT 6 0 6 6	; ;	3 9 3 SAUT 0 0 0
## ## ## ##	1 2 3 4 5	9	5 0 12 MINK 0 2 0 0	123M 1 0 0 0 0 0	6 2 5 3 MINKGEN 4	1 3 3 4 MKOOPKI 4 5 3	5 9 LA PWAP. 3 4 4 4 3	0 2 2 0 0	2 4 0 PWABEDI ((1 0 5 R PWALA)	5 0 2 ND PPER 0 0 0 0	6 0 6 6 0	; ;	3 9 3 SAUT 0 0 0 0
## ## ## ## ##	1 2 3 4	9 MINK751	5 0 12 MINK 0 2 0 0 0	123M I 0 0 0 0 0	6 2 5 3 MINKGEN 4	1 3 3 4 MKOOPKI 4 5 5 3 4 5 5 3 3 4 5 5 3 5 5 5 5 5 5 5	5 9 LA PWAP. 3 4 4 4 3 3	0 2 2 0 0	2 4 0 PWABEDI ()	1 0 5 R PWALA	5 0 2 ND PPER 0 0 0 0	6 0 6 6 0 6	PBE	3 9 3 SAUT 0 0 0
## ## ## ## ## ##	1 2 3 4 5 6	9 MINK751	5 0 12 MINK 0 2 0 0 0 0	123M I 0 0 0 0 0 0 0	6 2 5 3 MINKGEN 4 4 4 6 3	1 3 3 4 MKOOPKI 4 5 5 3 4 5 5 3 9 PTRACTOI	5 9 LA PWAP. 3 4 4 4 3 3 R PWERK	0 2 2 0 0 0 0	2 4 0 PWABEDI (((((((ROM PLI	1 0 5 R PWALA)))))))	5 0 2 ND PPER 0 0 0 0 0 0 0 0	6 0 6 6 0	PBES	3 9 3 SAUT 0 0 0 0
## ## ## ## ## ##	1 2 3 4 5 6	9 MINK751	5 0 12 MINK 0 2 0 0 0 0 0 0 PVRAA	123M I 0 0 0 0 0 0 0 0 0 0 0	6 2 5 3 MINKGEN 4 4 4 ANHANG 0	2 1 3 3 4 MKOOPKI 4 5 3 4 5 3 PTRACTOI	5 9 LA PWAPA 3 4 4 4 3 3 3 R PWERK	0 2 2 0 0 0 0 T PBF	2 4 0 PWABEDH ((((((ROM PLH	1 O 5 R PWALA O O O O O O O O O O O O O O O O O O O	5 0 2 ND PPER 0 0 0 0 0 0 0 0 0	6 0 6 6 0 6	PBES	3 9 3 SAUT 0 0 0 0
## ## ## ## ## ##	1 2 3 4 5 6	9 MINK751	5 0 12 MINK 0 2 0 0 0 0 0 0 0 PVRAA	123M I 0 0 0 0 0 0 0 0 0 0 0	5 S MINKGEN S S ANHANG O	1 3 3 4 MKOOPKI 4 5 3 4 5 5 3 PTRACTOI	5 9 LA PWAP. 3 4 4 4 3 3 3 R PWERK'	0 2 2 0 0 0 0 T PBF	2 4 0 PWABEDH (((((((((((((((((((1 O 5 R PWALA O O O O O O O O O O O O O O O O O O O	5 0 2 ND PPER 0 0 0 0 0 0 0 0 0 0 0	6 0 6 6 0 6	PBES	3 9 3 SAUT 0 0 0 0
## ## ## ## ## ## ##	1 2 3 4 5 6 1 2 3	9 MINK751 PMOTSCO	5 0 12 MINK 0 2 0 0 0 0 0 0 0 PVRAA	123M I 0 0 0 0 0 0 0 0 0 0 UT PA	5 SMINKGEN MINKGEN SANHANG O O	2 1 3 3 4 MKOOPKI 4 5 3 4 5 3 PTRACTOI	5 9 LA PWAP. 3 4 4 4 3 3 R PWERK' 0	0 2 2 0 0 0 T PBF	2 4 0 PWABEDH (((((((((((((((((((1 0 5 R PWALA))))) EVEN PP 0 0	5 0 2 ND PPER 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 6 6 0 6	PBES	3 9 3 SAUT 0 0 0 0
## ## ## ## ## ##	1 2 3 4 5 6 1 2 3 4	9 MINK751	5 0 12 MINK 0 2 0 0 0 0 0 0 0 PVRAA	123M I 0 0 0 0 0 0 0 0 0 UT PAL 0 0	5 SMINKGEN MINKGEN SANHANG O O O	2 1 3 3 4 MKOOPKI 4 5 3 4 5 3 PTRACTOI	5 9 LA PWAP. 3 4 4 3 3 3 R PWERK' 0 0 0	0 2 2 0 0 0 0 1 PBF	2 4 0 PWABEDH (((((((((((((((((((1 0 5 R PWALA))))))) EVEN PP 0 0	5 0 2 ND PPER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 6 6 0 6	PBES	3 9 3 SAUT 0 0 0 0
## ## ## ## ## ## ##	1 2 3 4 5 6 1 2 3	9 MINK751 PMOTSCO	5 0 12 MINK 0 2 0 0 0 0 0 0 0 PVRAA	123M I 0 0 0 0 0 0 0 0 0 0 UT PA	5 SMINKGEN MINKGEN SANHANG O O	2 1 3 3 4 MKOOPKI 4 5 3 4 5 3 PTRACTOI	5 9 LA PWAP. 3 4 4 4 3 3 3 R PWERK' 0 0 0	0 2 2 0 0 0 T PBF	2 4 0 PWABEDH (((((((((((((((((((1 0 5 R PWALA))))) EVEN PP 0 0	5 0 2 ND PPER 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 6 6 0 6	PBES	3 9 3 SAUT 0 0 0 0

```
PWAOREG PBRAND PZEILPL PPLEZIER PFIETS PINBOED PBYSTAND AWAPART AWABEDR
## 1
            0
                    5
                             0
                                       0
                                               0
                                                        0
                                                                  0
## 2
            0
                    2
                             0
                                       0
                                                        0
                                                                  0
                                                                                    0
## 3
            0
                    2
                             0
                                       0
                                               0
                                                        0
                                                                  0
                                                                           1
                                                                                    0
                    2
                                                        0
## 4
            0
                             0
                                       0
                                               0
                                                                  0
                                                                           0
                                                                                    0
## 5
            0
                    6
                             0
                                       0
                                               0
                                                        0
                                                                  0
                                                                                    0
            0
                    0
                             0
                                       0
                                               0
                                                        0
                                                                  0
     AWALAND APERSAUT ABESAUT AMOTSCO AVRAAUT AAANHANG ATRACTOR AWERKT ABROM
##
## 1
            0
                      1
                               0
                                        0
                                                 0
                                                           0
## 2
            0
                      0
                               0
                                        0
                                                 0
                                                           0
                                                                      0
                                                                                    0
## 3
            0
                      1
                               0
                                        0
                                                 0
                                                           0
                                                                      0
                                                                                    0
## 4
            0
                               0
                                        0
                                                 0
                                                           0
                                                                      0
                                                                              0
                                                                                    0
                      1
## 5
            0
                      0
                               0
                                        0
                                                 0
                                                           0
                                                                      0
                                                                                    0
                               0
                                        0
                                                 0
                                                           0
                                                                      0
## 6
            0
                      1
     ALEVEN APERSONG AGEZONG AWAOREG ABRAND AZEILPL APLEZIER AFIETS AINBOED
## 1
           0
                     0
                              0
                                       0
                                               1
                                                        0
                                                                  0
                                                                          0
## 2
           0
                     0
                              0
                                       0
                                               1
                                                        0
                                                                  0
                                                                          0
                                                                                   0
## 3
                     0
                                       0
                                               1
                                                        0
                                                                  0
                                                                                   0
           0
                              0
                                                                          0
                                                        0
                                                                  0
## 4
           0
                     0
                              0
                                       0
                                               1
                                                                          0
                                                                                   0
                     0
                                       0
                                               1
                                                        0
                                                                  0
                                                                          0
## 5
           0
                              0
                                                                                   0
## 6
           0
                     0
                              0
                                       0
                                               0
                                                        0
                                                                  0
                                                                          0
                                                                                   0
     ABYSTAND Purchase
             0
## 1
## 2
             0
                      No
## 3
             0
                      No
## 4
             0
                      No
                      No
## 5
             0
## 6
             0
                      No
Caravan <- Caravan %>%
  mutate(Purchase = ifelse(grepl("Yes", Purchase), 1, 0))
  # mutate(Purchase = factor(Purchase))
# Caravan$Purchase
N <- nrow(Caravan)</pre>
train idx \leftarrow sample(1:N, N%/%3*2)
train <- Caravan[train_idx,]</pre>
test <- Caravan[-train idx,]</pre>
eval_ <- function(y, yhat){</pre>
  conf.mat <- table(y, yhat)</pre>
  TP <- conf.mat[2, 2]</pre>
  FP <- conf.mat[1, 2]</pre>
  FN <- conf.mat[2, 1]
  TN <- conf.mat[1, 1]
  return (list(TP=TP, FP=FP, FN=FN, TN=TN))
}
# RMSE
RMSE <- function(y, yhat){</pre>
  (y - yhat)^2 %>% mean() %>% sqrt()
}
```

```
# balanced accuracy: (TPR+TNR)/2
BACC <- function(y, yhat){
  metrics <- eval_(y, yhat)
  TPR <- metrics$TP / (metrics$TP + metrics$FN)
  TNR <- metrics$TN / (metrics$TN + metrics$FP)
  (TPR + TNR) / 2
}</pre>
```

Task 1

Initial Tree

```
t0 <- rpart(Purchase~., data=train, cp=0.001, xval=20, method="class")
## n= 3880
##
## node), split, n, loss, yval, (yprob)
        * denotes terminal node
##
     1) root 3880 227 0 (0.94149485 0.05850515)
##
       2) PPERSAUT< 5.5 2290 56 0 (0.97554585 0.02445415)
##
##
          4) PPLEZIER< 2.5 2281 53 0 (0.97676458 0.02323542)
            8) MBERMIDD< 3.5 1564 21 0 (0.98657289 0.01342711) *
##
            9) MBERMIDD>=3.5 717 32 0 (0.95536960 0.04463040)
##
##
             18) MRELGE< 6.5 383
                                 7 0 (0.98172324 0.01827676) *
             19) MRELGE>=6.5 334 25 0 (0.92514970 0.07485030)
##
               38) MSKB2>=2.5 183 6 0 (0.96721311 0.03278689) *
##
##
               39) MSKB2< 2.5 151 19 0 (0.87417219 0.12582781)
                 78) MOSTYPE>=8.5 116 9 0 (0.92241379 0.07758621) *
##
                 79) MOSTYPE< 8.5 35 10 0 (0.71428571 0.28571429)
##
##
                 158) PPERSAUT>=2.5 8 0 0 (1.00000000 0.00000000) *
##
                  159) PPERSAUT< 2.5 27 10 0 (0.62962963 0.37037037)
##
                    318) MHHUUR>=0.5 17 4 0 (0.76470588 0.23529412) *
                    319) MHHUUR< 0.5 10 4 1 (0.40000000 0.60000000) *
##
##
         5) PPLEZIER>=2.5 9
                              3 0 (0.66666667 0.333333333) *
##
       3) PPERSAUT>=5.5 1590 171 0 (0.89245283 0.10754717)
##
          6) MOSTYPE>=8.5 1287 109 0 (0.91530692 0.08469308)
           12) PPLEZIER< 0.5 1278 104 0 (0.91862285 0.08137715)
##
##
             24) PBRAND< 2.5 654 33 0 (0.94954128 0.05045872) *
##
             25) PBRAND>=2.5 624 71 0 (0.88621795 0.11378205)
               50) MOPLLAAG>=4.5 367 27 0 (0.92643052 0.07356948) *
##
##
               51) MOPLLAAG< 4.5 257 44 0 (0.82879377 0.17120623)
                102) MINKGEM< 3.5 66
                                      4 0 (0.93939394 0.06060606) *
##
                103) MINKGEM>=3.5 191 40 0 (0.79057592 0.20942408)
##
                  206) MZFONDS< 6.5 139 22 0 (0.84172662 0.15827338)
##
##
                    412) MSKB1>=1.5 99 11 0 (0.88888889 0.111111111) *
##
                    413) MSKB1< 1.5 40 11 0 (0.72500000 0.27500000)
                      826) MAUTO< 0.5 19 1 0 (0.94736842 0.05263158) *
##
                      827) MAUTO>=0.5 21 10 0 (0.52380952 0.47619048)
##
```

```
##
                     ##
                     1655) MAUT1>=5.5 14 5 1 (0.35714286 0.64285714) *
                207) MZFONDS>=6.5 52 18 0 (0.65384615 0.34615385)
##
##
                  414) MBERMIDD< 4.5 38
                                       9 0 (0.76315789 0.23684211)
##
                    828) MINK7512< 2.5 31 5 0 (0.83870968 0.16129032) *
##
                    ##
                  415) MBERMIDD>=4.5 14 5 1 (0.35714286 0.64285714) *
##
          13) PPLEZIER>=0.5 9 4 1 (0.44444444 0.55555556) *
##
        7) MOSTYPE< 8.5 303 62 0 (0.79537954 0.20462046)
##
         14) MBERARBO< 3.5 289 53 0 (0.81660900 0.18339100)
##
           28) MHKOOP< 8.5 174 21 0 (0.87931034 0.12068966)
             56) MFWEKIND< 5.5 143 13 0 (0.90909091 0.09090909)
##
##
              112) MGODGE< 4.5 111 5 0 (0.95495495 0.04504505) *
##
              113) MGODGE>=4.5 32 8 0 (0.75000000 0.25000000)
##
                226) MINKM30< 1 7
                                  0 0 (1.00000000 0.00000000) *
                227) MINKM30>=1 25 8 0 (0.68000000 0.32000000)
##
##
                  454) PWAPART>=0.5 18 3 0 (0.83333333 0.16666667) *
##
                  455) PWAPART< 0.5 7 2 1 (0.28571429 0.71428571) *
##
             57) MFWEKIND>=5.5 31 8 0 (0.74193548 0.25806452) *
           29) MHKOOP>=8.5 115 32 0 (0.72173913 0.27826087)
##
##
             58) MAUT1>=6.5 58 10 0 (0.82758621 0.17241379) *
##
             59) MAUT1< 6.5 57 22 0 (0.61403509 0.38596491)
##
              118) MINK4575< 3.5 20
                                   4 0 (0.80000000 0.20000000) *
##
              119) MINK4575>=3.5 37 18 0 (0.51351351 0.48648649)
##
                238) MSKB1< 1.5 16 4 0 (0.75000000 0.25000000) *
##
                239) MSKB1>=1.5 21
                                   7 1 (0.33333333 0.66666667) *
##
          15) MBERARBO>=3.5 14 5 1 (0.35714286 0.64285714) *
```

```
t0 %>% plot()
t0 %>% text()
```


The tree as a whole is too complex to interpret fully. In the first node, if PPERSAUT<5.5, the left branch will be evaluated further, otherwise the right branch. A 1 at a leaf node indicates predicting a purchase, otherwise no purchase.

Predictions

Pruning the tree

```
plotcp(t0)
```


The plot suggests the optimal tree complexity to be ~ 0.006 , judging by the 1se-rule.

```
t1 <- prune(t0, cp=0.0051)
t1 %>% plot()
t1 %>% text()
```



```
predicted <- predict(t1, newdata=test, type = "vector")
table(test$Purchase, predicted)</pre>
```

```
## predicted
## 1 2
## 0 1808 13
```

```
## 1 121 0
print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))
## [1] "Balanced accuracy: 0.4964"
```

The tree was pruned nicely, now is more leggible.

Weighting the observations

I apply the ratio of the two classes and use them as weights.

```
weights <- ifelse(train$Purchase == 1, 1 / sum(train$Purchase == 1), 1 / sum(train$Purchase == 0))
t2 <- rpart(Purchase~., data=train, cp=0.001, xval=20, weights = weights, method="class")
predicted <- predict(t2, newdata=test, type = "vector")
table(test$Purchase, predicted)

## predicted
## 1 2
## 0 1478 343
## 1 79 42

print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))

## [1] "Balanced accuracy: 0.5794"
plotcp(t2)
```

size of tree


```
t3 <- prune(t2, cp=0.0036)
t3 %>% plot()
t3 %>% text()
```



```
predicted <- predict(t3, newdata=test, type = "vector")
table(test$Purchase, predicted)

## predicted
## 1 2
## 0 1384 437
## 1 58 63

print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))

## [1] "Balanced accuracy: 0.6403"
```

Applying the weights disappointingly did not improve the performance of the tree, even after pruning to the 1se-rule.

Task 2: Random forests

 \mathbf{a}

```
train <- train %>% mutate(Purchase=Purchase %>% as.factor())
rf <- randomForest(Purchase~., data=train, importance=T)</pre>
```

```
test <- test %>% mutate(Purchase=Purchase %>% as.factor)
predicted <- predict(rf, newdata=test)</pre>
ct <- table(test$Purchase, predicted)</pre>
##
      predicted
##
          0
##
              20
    0 1801
    1 119
print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))
## [1] "Balanced accuracy: 0.5028"
b
rf
##
## randomForest(formula = Purchase ~ ., data = train, importance = T)
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 9
##
           OOB estimate of error rate: 6.55%
## Confusion matrix:
        0 1 class.error
## 0 3619 34 0.009307419
## 1 220 7 0.969162996
plot(rf)
```


The plot shows 3 lines. Across the 500 trees the algorithm created, after about \sim 75 trees, the relative out-of-bag error seems to be kind of stabilized. The red and green line are for the two classes, Purchase being either 1 or 0, the black line is the average of that. The green line shows, that for one of the classes, presumably the successes, nearly 100% of the classifications are false negatives, which is quite bad.

varImpPlot(rf)

 \mathbf{c}

samplisize is by default 63% of the number of observations, which is roughly 2400. It is the number of samples drawn from the training dataset to build a single tree, with replacement that is.

```
rf2 <- randomForest(Purchase~., data=train, importance=T, sampsize=50)
plot(rf2)</pre>
```

rf2


```
##
## randomForest(formula = Purchase ~ ., data = train, importance = T, sampsize = 50)
##
                  Type of random forest: classification
                        Number of trees: 500
##
## No. of variables tried at each split: 9
##
##
           OOB estimate of error rate: 5.85%
## Confusion matrix:
        0 1 class.error
## 0 3653 0
                      0
## 1 227 0
                      1
predicted <- predict(rf2, newdata=test)</pre>
ct <- table(test$Purchase, predicted)</pre>
ct
##
      predicted
          0
##
```

```
## 0 1821 0
## 1 121 0

print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))
```

[1] "Balanced accuracy: 0.5"

When picking an in comparison low sampsize, in this case 50, we get a majority class classifier.

You can also pass a vector of strats to the parameter to balance the classes. So instead of passig 2400 random samples, lets instead pass 140 successes and 2200 failures, which reflects the ratio the 2 classes have.

```
# 3653 vs 227 from total of 3880

rf3 <- randomForest(Purchase~., data=train, importance=T, sampsize=c(2200, 140))
plot(rf3)</pre>
```

rf3


```
##
## Call:
## randomForest(formula = Purchase ~ ., data = train, importance = T, sampsize = c(2200, 140))
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 9
```

```
##
##
           OOB estimate of error rate: 6.21%
## Confusion matrix:
##
          1 class.error
## 0 3636 17 0.004653709
## 1 224 3 0.986784141
predicted <- predict(rf3, newdata=test)</pre>
ct <- table(test$Purchase, predicted)</pre>
ct
##
      predicted
##
               10
##
     0 1811
##
     1 119
print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))
## [1] "Balanced accuracy: 0.5055"
The real way to adjust the sample picking to class weights is the classwt parameter tough.
```

```
rf4 <- randomForest(Purchase~., data=train, importance=T, classwt = 1 / table(train$Purchase))
plot(rf4)</pre>
```

rf4


```
rf4
##
## Call:
    randomForest(formula = Purchase ~ ., data = train, importance = T,
                                                                              classwt = 1/table(train$Pur
##
                  Type of random forest: classification
##
                        Number of trees: 500
## No. of variables tried at each split: 9
##
##
           OOB estimate of error rate: 7.37%
## Confusion matrix:
        0 1 class.error
##
## 0 3579 74 0.02025732
## 1 212 15 0.93392070
predicted <- predict(rf4, newdata=test)</pre>
ct <- table(test$Purchase, predicted)</pre>
##
      predicted
##
          0
     0 1788
              33
##
##
     1 117
print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))
## [1] "Balanced accuracy: 0.5075"
```

If this does not help enough, there is the third parameter, cutoff, which is a ratio vector that ajusts the model's sensitivity to each class. Here we lower the threshold and thus increase the sensitivity for/to the success class:

```
rf5 <- randomForest(Purchase~., data=train, importance=T, cutoff=c(9/10, 1/10))
plot(rf5)</pre>
```



```
##
## Call:
## randomForest(formula = Purchase ~ ., data = train, importance = T, cutoff = c(9/10, 1/10))
## Type of random forest: classification
## No. of variables tried at each split: 9
##
## OOB estimate of error rate: 18.32%
## Confusion matrix:
```

```
0
             1 class.error
## 0 3066 587
                 0.1606898
                 0.5462555
## 1 124 103
predicted <- predict(rf5, newdata=test)</pre>
ct <- table(test$Purchase, predicted)</pre>
ct
##
      predicted
##
          0
                1
##
     0 1514
             307
##
     1
         80
               41
print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))
## [1] "Balanced accuracy: 0.5851"
```

This is the first adjustment that actually led to a noticeable increase in balanced accuracy. The green line in the plot finally gets lowered down, which reflects the model picking the success class more often and lowering the number of false negatives. We end up with a strong increase of false positives too tough.

```
rf6 <- randomForest(Purchase~., data=train, importance=T, cutoff=c(19/20, 1/20))
plot(rf6)</pre>
```



```
##
## Call:
## randomForest(formula = Purchase ~ ., data = train, importance = T, cutoff = c(19/20, 1/20))
## Type of random forest: classification
## No. of variables tried at each split: 9
##
## OOB estimate of error rate: 30.9%
## Confusion matrix:
```

```
## 0 1 class.error
## 0 2533 1120    0.3065973
## 1 79 148    0.3480176

predicted <- predict(rf6, newdata=test)
ct <- table(test$Purchase, predicted)
ct

## predicted
## 0 1
## 0 1249 572
## 1 53 68

print("Balanced accuracy:" %>% paste(BACC(test$Purchase, predicted) %>% round(4)))

## [1] "Balanced accuracy: 0.6239"

varImpPlot(rf6)
```


Here I took it even further and lowered the threshold even more than the disparity between the class ratios, which led to even more false positives, but an overall higher balanced accuracy.

The varimportance plot shows the variables which, when they have been picked, led to a higher predicting accuracy and a stronger decrease of the Gini impurity. The most important variable appears to be MOSTYPE. The left plot actually picked different top predicting variables compared to the random forest model before adjusting the cutoff thresholds.