MATLAB

ASSIGNMENT-9

Example The turning moment T on the crankshaft of a steam engine for the crank angle θ degrees is given as follows:

x^o	0	15	30	45	60	75	90	105	120	135	150	165	180
T	0	2.7	5.2	7.0	8.1	8.3	7.9	6.8	5.5	4.1	2.6	1.2	0

Express T in a Fourier series neglecting the harmonic above third.

Code:

for n=1:r

```
clc
clear all
syms x
p=input('enter the period:');
I=p/2;
X=input('enter the X-vector:');
Y=input('enter the Y-vector:');
N=length(X);
r=input('enter the number of terms in series:');
a_0=(2/N)*sum(Y);
for n=1:r
a(n)=(2/N)*sum(Y.*cos(n*pi*X/I));
b(n)=(2/N)*sum(Y.*sin(n*pi*X/I));
end
```

```
H(n)=a(n)*cos(n*pi*x/l)+b(n)*sin(n*pi*x/l);
end
HS=(a \ 0)/2+sum(H);
disp('Harmonic series is given by')
disp(HS)
plot(X,Y,'r')
hold on
ezplot(HS,[0,p])
OUTPUT:
enter the period:
pi/12
enter the X-vector:
[0 pi/12 pi/6 pi/4 pi/3 5*pi/12 pi/2 7*pi/12 2*pi/3 3*pi/4
5*pi/6 11*pi/12 pi]
enter the Y-vector:
[0 2.7 5.2 7.0 8.1 8.3 7.9 6.8 5.5 4.1 2.6 1.2 0]
enter the number of terms in series:
5
Harmonic series is given by
(594*\cos(24*x))/65 + (594*\cos(48*x))/65 +
(594*\cos(72*x))/65 +
(594*\cos(96*x))/65 + (594*\cos(120*x))/65 -
```

(8245035216728501*sin(24*x))/50706024009129176059868 12821504

(8245035216728501*sin(48*x))/25353012004564588029934 06410752 +

(8693247934423919*sin(72*x))/15845632502852867518708 7900672 -

(8245035216728501*sin(96*x))/12676506002282294014967 03205376 +

(3111383652586581*sin(120*x))/1584563250285286751870 87900672 + 297/65

Graph for the example code:

