CONCEITO DE PROCESSO

Pode-se dizer que um processo é um programa em execução (ativo) e que programa é um conjunto de códigos (passivo) que quando carregado em memória vira um processo.

Desta forma é possível, por exemplo, ter um mesmo programa executando vários processos, como um editor de textos (um programa), com vários documentos distintos abertos (processos).

BLOCO DE CONTROLE DO PROCESSO (PCB)

Quando da criação de um processo, o sistema operacional cria uma estrutura chamada de Bloco de Controle do Processo (PCB – Process Control Block) responsável por gerenciar todos os contextos do processo (hardware, software e endereços do programa). É fundamental que o PCB armazene:

- Nome do processo e/ou número do processo
- Ponteiros
- Estado do processo
- Prioridade.
- Registradores.
- Limites de memória.
- Listas de arquivos abertos.

O PCB é armazenado em uma área de memória reservada de acesso exclusivo do sistema operacional, é possível limitar a quantidade de processos que podem ser executados no sistema operacional, limitando o tamanho dessa área de memória.

ESTADOS DO PROCESSO

Um processo não pode executar exclusivamente, monopolizando a CPU, pois dessa forma caracterizaria um sistema monotarefa (executando apenas uma tarefa por vez). Assim é necessário que se faça a troca dos processos (escalonamento) para que todos executem uma determinada fatia do tempo.

Para que a troca de processo ocorra, é necessário que os mesmos mudem de estado, identificando a situação em que se encontram. Os cinco estados possíveis são:

- Novo (new): quando o processo é criado, iniciado com os valores padrão dos seus registradores e aceito pelo sistema operacional, seu estado inicial é novo.
- Pronto (ready): o processo encontra-se nesse estado quando aguarda apenas que o mecanismo de escalonamento do sistema operacional o coloque para executar na CPU.
- Execução (running): estado em que o processo entra quando a CPU executa suas instruções. Apenas um processo pode estar nesse estado por vez (em sistemas monoprocessados), contudo, se o hardware possuir mais de um processador (multiprocessado), pode-se ter mais de um processo no estado de execução.
- Espera: o processo encontra-se esperando quando aguarda a ação de algum evento externo.
 Podemos subdividir o estado de espera em dois grupos:
 - Espera (wait): quando o processo aguarda a conclusão de uma operação em um recurso que já foi garantido.
 - Bloqueado (blocked): quando o processo aguarda a liberação de um recurso que está alocado para outro processo.
- Encerrado (finish): quando o processo termina sua execução, que pode ocorrer de forma normal ou por erro de execução.

Conforme o processo executa, vai mudando de estado, seja por determinação do escalonador ou por algum evento que ocorreu e gerou uma interrupção.

As mudanças de estado de um processo são:

- Novo Pronto: quando o PCB (processo) é criado e alocado na área reservada ao sistema operacional, seguindo então para a lista de prontos.
- Pronto Executando: é realizada pelo escalonador de acordo com a política implementada pelo sistema operacional.
- Executando Pronto: quando o processo é interrompido por outro de maior prioridade, ou quando termina de executar em sua fatia de tempo conforme as regras de escalonamento implementadas pelo sistema operacional.
- Executando Espera: quando o processo realiza uma operação de I/O ele entra na fila de espera, até que a solicitação seja realizada.
- Espera Pronto: é realizado pelo escalonador quando este recebe um sinal indicando que a solicitação de I/O do processo foi realizada com sucesso.
- Executando Terminado: acontece quando o programa termina sua execução com sucesso ou com erro, quem realiza essa transição é o escalonador de processos.

SUBPROCESSO

Quando o processo cria um novo processo hierarquicamente, denomina-se processo filho ou subprocesso. É possível assim, dividir a aplicação em várias partes que trabalham concorrentemente

.Os subprocessos são processos como outro qualquer, possuindo PCB, contexto e concorrem com os processos já existentes, diferenciando-se pelo fato de que estão relacionados numa hierarquia de pais e filhos, onde no momento de encerramento do processo pai, todos os seus processos filhos também são encerrados.

Na figura a seguir podemos observar a hierarquia dos processos e seus subprocessos.

THREAD

A thread possui a mesma ideia de um subprocesso, entretanto, compartilha a mesma área de dados com o programa principal. Sua principal vantagem é a economia de recursos do sistema, pois não há criação de PCB, já que o contexto da thread é comum ao programa principal.

Com threads pode-se, por exemplo, fazer a correção ortográfica de um documento, no mesmo instante que é realizada sua transmissão para um e-mail sem atrapalhar a digitação de texto novo pelo usuário.

Na figura a seguir temos um gráfico demonstrando o compartilhamento de recursos do processo com suas threads. Note que o processo é um só compartilhando, a mesma área de memória com suas threads, diferenciando apenas os dados processados por cada uma delas.

