Algorithm Selection for Maximum Common Subgraph

'aulius Dilka

Algorithm selection

Labelling

Algorithms

Doculto

What happens when labelling changes?

Algorithm Selection for Maximum Common Subgraph

Paulius Dilkas

FATA seminar

16th January 2018

Outline

Algorithm Selection for Maximum Common Subgraph

Algorithm selection

Labelling

Algorithms

Random forests

Results

Algorithm selection

Algorithm Selection for Maximum Common Subgraph

aulius Dilka

Algorithm selection

_abelling

Algorithms

D. ... J.

Results

What happens when labelling changes?

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i,s(i))]$.

Algorithm selection

Algorithm Selection for Maximum Common Subgraph

Paulius Dilkas

Algorithm selection

Labellinį

Algorithm

Aigorithm

Result

What happens when labelling changes?

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i,s(i))]$.

LLAMA (Kotthoff 2013)

Algorithm Selection for Maximum Common Subgraph

Paulius Dilkas

Algorithm selection

Labelling

Algorithms

. .

Result

What happens when labelling

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003

Algorithm Selection for Maximum Common Subgraph

Paulius Dilkas

Algorithm selection

Labelling

Algorithms

3

Results

What happens when labelling changes?

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003

Definition

A graph G = (V, E) is said to have a p% (vertex) labelling if

$$N = \max\left\{2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor rac{p}{100\%} imes |V|
ight
floor
ight\}.$$

Algorithm Selection for Maximum Common Subgraph

Labelling

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003

Definition

A graph G = (V, E) is said to have a p\% (vertex) labelling if

$$N = \max \left\{ 2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor \right\}.$$

- 5% labelling 20 vertices per label (on average)
- 50% labelling 2 vertices per label (on average)

Algorithm Selection for Maximum Common Subgraph

Paulius Dilkas

Algorithm selection

Labelling

Algorithms

Results

What happens when labelling changes?

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003

Definition

A graph G = (V, E) is said to have a p% (vertex) labelling if

$$N = \max \left\{ 2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor \right\}.$$

- 5% labelling 20 vertices per label (on average)
- 50% labelling 2 vertices per label (on average)
- 3 subproblems
 - no labels
 - vertex labels
 - vertex and edge labels

Distribution of vertices per label

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Algorithms

Ŭ

Result

What happens when labelling changes?

For each graph and label

- C is the number of vertices with that label
- E(C) is the number we would expect from a (discrete) uniform distribution

Algorithms

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Algorithms

....

Reculto

Results

- McSplit, McSplit↓
 - (McCreesh, Prosser and Trimble 2017)
- clique encoding
 - (McCreesh, Ndiaye et al. 2016)
- k ↓
 - (Hoffmann, McCreesh and Reilly 2017)

Random forests

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Algorithm

Random

forests Results

What happens when labelling changes?

Source: Tae-Kyun Kim & Bjorn Stenger, Intelligent Systems and Networks (ISN) Research Group, Imperial College London

Results

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

.

Random

Results

Results (27%)

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Random

torests

Results

Results

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

·

Dandan

forests

Results

Results (86%)

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Randon

forests

Results

Results

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Pandon

forests

Results

Results (88%)

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Dandon

forests

Results

Results

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Algorithm:

,

Results

- Most important features
 - labelling percentage
 - standard deviation of degrees (for both graphs)

Errors

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

_ .

forests

Results

What happens when labelling changes?

- Out-of-bag
- ullet (for each algorithm) 1- recall

Definition

For an algorithm A, recall is

the number of instances that were correctly predicted as A the number of instances where A is the correct prediction

Errors (%)

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Randon

Results

Error	Labelling		
	no	vertex	both
out-of-bag	17	13	14
clique	30	8	7
McSplit	29	22	29
$McSplit \downarrow$	11	11	11
$k\downarrow$	80		

Convergence of errors for unlabelled graphs

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka:

Algorithm selection

Labelling

Algorithm

Results

What happens when labelling

What happens when labelling changes?

Algorithm Selection for Maximum Common Subgraph

^Paulius Dilka

Algorithm selection

Labelling

Algorithm

. .

D . . . Iu

What happens when labelling changes?

Algorithm Selection for Maximum Common Subgraph

Paulius Dilka

Algorithm selection

Labelling

Algorithm

. . . . Is .

