Gradient Boosting Explained

(Classification Example)

		Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

When we use **Gradient Boost for Classification**, the initial **Prediction** for every individual is the **log(odds)**.

I like to think of the log(odds) as the Logistic Regression equivalent of the average.

		Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...which we will put into our initial leaf.

$$\log(\frac{4}{2}) = 0.7$$

And let's save that up here for now.

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

Probability of Loving =
$$\frac{e^{\log(4/2)}}{1 + e^{\log(4/2)}} = 0.7$$
Troll 2

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

NOTE: These two numbers, the **log(4/2)** and the **Probability** are the same only because I'm rounding. If I allowed **4** digits passed the decimal place...

$$\log(\frac{4}{2}) = 0.6931$$

$$\frac{e^{\log(4/2)}}{1 + e^{\log(4/2)}} = 0.6667$$

Probability of Loving Troll 2 = 0.7

		Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

We can measure how bad the initial **Prediction** is by calculating **Pseudo Residuals**, the difference between the **Observed** and the **Predicted** values.

Residual = (Observed - Predicted)

Probability of Loving Troll 2 = 0.7

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

In other words, the **Red** and **Blue** dots are the **Observed** values...

Probability of Loving Troll 2 = 0.7

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...and the dotted line is the **Predicted** value.

Probability of Loving Troll 2 = 0.7

...and we save the **Residual** in a new column.

Residual = (1 - 0.7) = 0.3

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	
No	44	Blue	No	
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

Probability of Loving Troll 2 = 0.7

Then we calculate the rest of the **Residuals**...

Residual = (0 - 0.7) = -0.7

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

Probability of Loving Troll 2 = 0.7

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	-0.7
No	32	Green	Yes	0.3
No	14	Blue	Yes	0.3

Hooray! We've calculated the **Residuals** for the leaf's initial **Prediction**.

Now we will build a **Tree**, using **Likes Popcorn**, **Age** and **Favorite Color**...

...to **Predict** the **Residuals**.

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	-0.7
No	32	Green	Yes	0.3
No	14	Blue	Yes	0.3

In this simple example, we are limiting the number of leaves to **3**.

In practice people often set the maximum number of leaves to be between 8 and 32

Yes	12	Blue	0.3
Yes	87	Green	0.3
No	44	Blue	-0.7
Yes	19	Red	-0.7
No	32	Green	0.3
No	14	Blue	0.3

Now let's calculate the **Output Values** for the leaves.

together to get a new

log(odds) Prediction without

some sort of transformation.

When we use **Gradient Boost** for **Classification**, the most common transformation is the following formula.

 \sum [Previous Probability_i × (1 – Previous Probability_i)]

NOTE: Just like before, the new tree is scaled by a Learning Rate.

This example uses a relatively large **Learning Rate** for illustrative purposes. However, **0.1** is more common.

Likes Popcorn	Age	Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...and the new log(odds)

Prediction = 1.8.

log(odds) Prediction =
$$0.7 + (0.8 \times 1.4) = 1.8$$

Likes Popcorn	Age	Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

Now we convert the new log(odds) Prediction into a Probability...

Probability =
$$\frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$$

 $\log(\text{odds})$ Prediction = 0.7 + (0.8 × 1.4) = 1.8

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Predicted Prob.
Yes	12	Blue	Yes	0.9
Yes	87	Green	Yes	
No	44	Blue	No	
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

We save the new **Predicted Probability** here.

Probability =
$$\frac{e^{1.8}}{1 + e^{1.8}} = 0.9$$

 $log(odds) Prediction = 0.7 + (0.8 \times 1.4) = 1.8$

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Predicted Prob.
Yes	12	Blue	Yes	0.9
Yes	87	Green	Yes	0.5
No	44	Blue	No	0.5
Yes	19	Red	No	0.1
No	32	Green	Yes	0.9
No	14	Blue	Yes	0.9

Then we calculate the **Predicted Probabilities** for the remaining people.

And we save that value here.

Residual =
$$(1 - 0.9) = 0.1$$

		Favorite Color	Loves Troll 2	Predicted Prob.	Residual
Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	
No	44	Blue	No	0.5	
Yes	19	Red	No	0.1	
No	32	Green	Yes	0.9	
No	14	Blue	Yes	0.9	

And we save that value here.

Residual =
$$(1 - 0.5) = 0.5$$

		Favorite Color	Loves Troll 2	Predicted Prob.	Residual
Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	
Yes	19	Red	No	0.1	
No	32	Green	Yes	0.9	
No	14	Blue	Yes	0.9	

Likes Popcorn	Age	Favorite Color	Loves Troll 2		Residual
Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	-0.5
Yes	19	Red	No	0.1	-0.1
No	32	Green	Yes	0.9	0.1
No	14	Blue	Yes	0.9	0.1

...and then we need to calculate the **Output Values** for each leaf.

Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	-0.5
Yes	19	Red	No	0.1	-0.1
No	32	Green	Yes	0.9	0.1
No	14	Blue	Yes	0.9	0.1

0.1 Yes 12 0.9 Blue Yes Yes 87 Yes 0.5 0.5 Green No 44 No 0.5 -0.5 Blue Yes 19 Red No 0.1 -0.10.9 0.1 No 32 Yes Green 0.9 0.1 No 14 Blue Yes

...and the Output Value for this leaf is 2.

 \sum Previous Probability, $\times (1 - \text{Previous Probability}_i)$

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Predicted Prob.	Residual
Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	-0.5
Yes	19	Red	No	0.1	-0.1
No	32	Green	Yes	0.9	0.1
No	14	Blue	Yes	0.9	0.1

So we plug the **Residuals** into the formula for the **Output Values**...

$$0.1 + -0.1 + 0.1 + 0.1$$

$$(0.9 \times (1 - 0.9)) + (0.1 \times (1 - 0.1)) + (0.9 \times (1 - 0.9)) + (0.9 \times (1 - 0.9))$$

Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	/5/
Yes	19	Red	No	0.1	/ 6.1
No	32	Green	Yes	0.9	0.1
No	14	Blue	Yes	0.9	0.1

...and we plug in the **Predicted Probability** for each individual in the leaf...

Yes 12 Yes 87 Yes 0.5 0.5 Green No 44 No 0.5 -0.5 Blue Yes 19 Red No 0.1 -0.1 0.1 No 32 Yes 0.9 Green

Yes

0.9

0.1

Blue

No

14

...and the **Output Value** for this leaf is **0.6**.

Then we built another tree based on the new Residuals, the difference between the Observed values and the values Predicted by the leaf and the first tree...

This process repeats until we have made the maximum number of trees specified, or the residuals get super small.

Likes opcorn	Age	Favorite Color	Loves Troll 2
Yes	25	Green	???

^ [
	K	1		2
-2			0.	6

Now we need to convert this **Log(odds)** into a **Probability**.

Log(odds) Prediction

Likes	Age	Favorite	Loves
Popcorn		Color	Troll 2
Yes	25	Green	???

...and the **Predicted Probability** that this individual will **Love Troll 2** is **0.9**.

Log(odds) Prediction that someone **Loves**
$$= 0.7 + (0.8 \times 1.4) + (0.8 \times 0.6) = 2.3$$
 Troll 2:

Probability =
$$\frac{e^{2.3}}{1 + e^{2.3}} = 0.9$$

Likes	Age	Favorite	Loves
Popcorn		Color	Troll 2
Yes	25	Green	???

...we will **Classify** this person as someone who **Loves Troll 2**.

$$= 0.7 + (0.8 \times 1.4) + (0.8 \times 0.6) = 2.3$$

Probability =	e ^{2.3}	= 0.9
1 Tobability =	$1 + e^{2.3}$	- 0.5