

Total Body Irradiation (TBI)

Scott W. Hadley PhD

Joann I. Prisciandaro, PhD

University of Michigan Medical School

Medical Goals of TBI

- Immunosuppression Eliminate lymphocytes for grafting of donor bone marrow in hematopoietic stem cell transplantation
- Eradication of malignant cells Leukemia, lymphoma
- Eradication of cells with genetic disorders: Fanconi's anemia, thalassemia

- No sparing of "sanctuary sites" such as the testes
- Dose is homogenous throughout the body independent of blood supply
- No cross-resistance with other agents
- No alteration of dose through detoxification or excretion, independent of hepatic/renal function
- Dose distribution can be tailored by blocking normal tissues and boosting areas at risk

- Acute: Nausea, parotitis, xerostomia, diarrhea, skin erythema, alopecia, fatigue, headaches.
- Late: Pneumonitis, cataracts, growth/developmental delay, infertility, thyroid dysfunction, cardiac toxicity, veno-occlusive disease, renal damage, secondary malignancies

Physics Goals of TBI

- Deliver Whole Body dose
- ±10% Dose homogeneity
- 8-12 cGy/minute dose rate

- Multiple Radioactive Sources
- Two Fields using Linac
 - -AP/PA
 - Lying on Side
 - TBI Stand
 - -R/L Lateral

Multiple Radioactive Sources

Cs-137

or

Co-60

Four Sources

Large Field – Extended SSD

Two Fields Four Fields

Loooong SSD

Patient Simulation for a Lateral TBI Setup

- Gantry is set to 90°.
- TBI tray is inserted into gantry head.
- Patient positioned in lateral orientation relative to beam.
- Chair is translated and inclines adjusted until patient is comfortable and completely within light field.

Patient Simulation

Constructing a Compensator

Treatment Planning (Mayo)

Equiv. Sq.

- Prescribed dose of 13.2
 Gy to the umbilicus with 6 MV beam.
- Source-to-midplane distance 400 cm.
- Dose to entire body calculated by dividing body into smaller field sizes.

Dose Calculation

To calc. MU to umbilicus:

$$MU = \frac{TD}{TPR(d, r_d) \times IVS \times S_c(r_{40x40}) \times S_p(r_{blocked}) \times TF}$$

Dose to other parts of the body:

$$Dose = MU \times TPR(d, r_d) \times IVS \times S_c(r_{40x40}) \times S_p(r_{blocked}) \times TF$$

Total thickness of Pb compensator for each region calculated:

$$t = -\frac{\ln(Dose/TD)}{\mu} = -\frac{\ln(Dose/TD)}{\ln(2)/HVL}$$

Treatment Setup and Delivery

- Diode measurements acquired for first three fractions.
- If readings too high or low, number of Pb compensators adjusted.
- Physics present for all fractions to verify position of patient and compensators.

Pro's and Con's of Lateral Technique

Pro's

 Dose to lung and kidneys less of an issue compared with AP/PA technique.

Con's

- Labor intensive:
 - Patient specificcompensators required.
 - Doses should be verified at least for the first two treatments.
- Although positioning arms at sides limits lung dose, could also results in underdose of marrow at the manubrium and ribs.

- Patient in a box of bolus
 - -Plexi Glass Box
 - -Fill with rice bolus
 - -Equalizes separation

Standing position

 Bicycle seat and hand holds

Rapid block placement

Beam Spoiler

Blocking for Systemic Sclerosis

Large Field AP/PA

- AP/PA, 16MV, MPD Rx
- Patient Decubitus
- Arms Crossed to cover chest
- Legs Bent

Simulation

- Patient is a box!
- Length
- Three Widths
- Three Separations
 - -MPD Calc' on umbilicus

Calculation

Rx to MPD to umbilicus

-Depth

(separation/2)

 $-\overline{\text{SSD}}$

(6m-depth)

−EQSQ for S_p

(patient is a box)

• ~ 4500 MUs per Beam

Example Calculation

- 2Gy/fx, MPD, 12 Gy Total BID 6 hours
 - -Length 59cm
 - -Shoulders 42/19
 - -Umbilicus 32/25
 - -Pelvis 35/24
 - 4498 MU per beam!

Department	of Radiation Oncol	logy, Universit	y of Michigar	Medical Cen
Patient Name:	\$bob, billy	Nick Name:	\$bob007	
Reg#.	02112007	THOIR HUMBS	4505001	
	Dose/Fx (Gy)	1	1	
	Script Dose (Gy)	12	12	
	No. of Fractions	6	6	
	Machine:	EX-3	EX-3	
	Field/Seg #	1	2	
	Field Name	PA	AP	
	Energy	16X	16X	
	Gantry Angle	90	90	
	Colimator Angle	0	0	
	Table Angle	0	0	
	SSD@CX	587.5	587.5	
	MDP Depth	12.5	12.5	
	Coll width	30	30	
	Coll Length	40	40	
	Sc EqSq@iso	28.2	28.2	s
	Sc	1.038	1.038	"
	TPR	0.953	0.953	12 -
	Sp EqSq@iso	7.50	7.50	
	Sp	1.038	1.038	
	ISL	0.028	0.028	··
	Yes Spoiler	0.976	0.976	
	Plan Dnorm(%)	50	50	
	Dose (Gy)	1	1	L '1
	cGy/MU (Table)	0.0223	0.0223	2-
	cGy/MU (Calc)	0.0223	0.0223	
	Dose rate mu/min	400	400	2511
	Dose rate cGy/min	8.90	8.90	
	Check %Error	-0.01%	-0.01%	
	MU	4493	4493	
	Backup Timer	11.3	11.3	
	Dosimetry by Scott W Hadley			
	Checked by	,		
	sinos 51			
	MII-Dv/C·J*D	\/(TDD*c -*c -*	C *C! *C-	
	MU=Rx(Gy)*Dnorn	THER SC SPT	ist Spoil Cal	,

Separation

Lung Dose

- † Dose to lungdue to \ density
- Cross arms over chest
 - -110% of Rx Dose
- Lung Blocks
 - -Difficult to place at treatment

Block Thickness Calculation

Umbilicus Separation for MU Calculation $Sep_C =$	cm
Sp equivalent square (SpEQSQ)	cm

Lung Block Calculation: Measurements at center of larger block. Pick an area that represents the separation of the lung well.

cm	Chest separation from CT
cm	Lung separation from CT
cm	Equivalent path length of chest (EPL) (SepChest-SepLung) + 0.3 x SepLung =
	$Lung TMR_L(EPL, S_pEQSQ) =$
	Calculation $TMR_C(Sep_C, S_pEQSQ) =$
Between 0 and 1	Transmission Factor LDR x $TMR_C / TMR_L =$
cm	(from Transmission Table) Lung Block Thickness =
cm	(measured using caliper) Block Thickness as Made =

Transmission Table: Circle the value used for block thickness.

Transmission racie. Chere		
Т	Block Thickness (cm)	
<u>'</u>	(CITI)	
0.20	5.0	
0.25	4.1	
0.30	3.5	
0.35	3.0	
0.40	2.6	
0.45	2.2	
0.50	1.9	
0.55	1.7	
0.60	1.4	
0.65	1.2	
0.70	1.0	
0.75	0.9	

- Measure Transmission of Blocks
 - Transmission = PV Block/PV Open + 0.038
- Look for defects

Lung Block Filming

Portable X-Ray Unit for TBI Blocks

bye bye film processor

TBITxPC SWH 2013

Beam Spoiler`

- 4x8 Feet Plastic Sheet
- ~1cm Thick
- Increase the skin dose
- Pre-Build Up

Skin Dose

- No Spoiler
 - -As Sep' ↑
 - Skin Dose ↓
- With Spoiler
 - -As Sep' ↑
 - -Skin Dose $\rightarrow 110\%$

In-vivo Dosimetry

Site	Monday AM	1	Monday PM	Tuesday AM
Post Back	97%		96%	96%
Ant Belly	95%		98%	95%
Post Neck	101%	1		
Right Flank	109%			
Ankle	116%			
Lt Arm Pit			113%	
Testicles			104%	
Inner Thigh	Univ	er	101%	/lichida
Knee Cap			108%	shool

• 2 Gy/fx to 12 Gy BID

• 2 Gy/fx for single fraction

• 1 Gy/fx for single fraction

Dose Rate

Targeted for 10cGy/Min

• 2Gy/fx dose → 10 Min/beam

Medical School

EX3 Treatments

- 16MV Photons
- 6 meters Source to MPD
 - -Distance from wall
- 30x40
- TBIX accessory to allow 1000s of MUs

EX2 vs EX3

	EX2	EX3
Source to MPD	383.5cm	600cm
Field Size	40x40 45° Coll'	40x30
FS at MPD	< 217cm	240cm