In [1]:

```
import pandas as pd
import numpy as np
```

In [2]:

```
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
```

In [3]:

```
housingfile = 'housing_boston.csv'
```

In [4]:

```
df= pd.read_csv (housingfile, header=None)
```

In [5]:

```
names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
'TAX', 'PTRATIO', 'AA', 'LSTAT', 'MEDV']
```

In [6]:

```
df = pd.read_csv(housingfile, names=names)
df.head()
```

Out[6]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	AA	LST.
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.
4													•

```
In [7]:
```

```
df.isnull().sum()
Out[7]:
CRIM
             0
\mathsf{ZN}
             0
INDUS
             0
CHAS
             0
NOX
             0
RM
             0
AGE
             0
DIS
             0
RAD
TAX
             0
PTRATIO
             0
AΑ
LSTAT
             0
```

In [8]:

dtype: int64

MEDV

```
df2= df[['CRIM','INDUS', 'TAX','MEDV']]
```

In [9]:

df2.head()

Out[9]:

	CRIM	INDUS	TAX	MEDV
0	0.00632	2.31	296	24.0
1	0.02731	7.07	242	21.6
2	0.02729	7.07	242	34.7
3	0.03237	2.18	222	33.4
4	0.06905	2.18	222	36.2

In [10]:

```
print(df2.shape)
```

(452, 4)

In [11]:

```
print(df2.dtypes)
```

CRIM float64 **INDUS** float64 int64 TAX MEDV float64 dtype: object

In [12]:

print(df2.describe())

	CRIM	INDUS	TAX	MEDV
count	452.000000	452.000000	452.000000	452.000000
mean	1.420825	10.304889	377.442478	23.750442
std	2.495894	6.797103	151.327573	8.808602
min	0.006320	0.460000	187.000000	6.300000
25%	0.069875	4.930000	276.750000	18.500000
50%	0.191030	8.140000	307.000000	21.950000
75%	1.211460	18.100000	411.000000	26.600000
max	9.966540	27.740000	711.000000	50.000000

In [13]:

```
df2.hist(edgecolor= 'black',figsize=(14,12))
plt.show()
```


In [14]:

```
scatter_matrix(df2, alpha=0.8, figsize=(15, 15))
plt.show()
```


In [15]:

sns.jointplot(data=df2, x="CRIM", y="MEDV", kind="reg")

Out[15]:

<seaborn.axisgrid.JointGrid at 0x1f33dd95fd0>

In [16]:

```
sns.jointplot(x = 'CRIM', y = 'MEDV', data = df2, kind = 'kde', height = 5,
joint_kws={'color':'green'})
plt.show()
```


In [17]:

```
sns.jointplot(x = 'TAX', y = 'MEDV', data = df2, kind = 'hex', height = 5,
joint_kws={'color':'purple'})
plt.show()
```


In [18]:

```
sns.jointplot(x = 'INDUS', y = 'MEDV', data = df2, kind = 'hist', height = 5,
joint_kws={'color':'orange'}, binwidth=(3,5), cbar=True)
plt.show()
```


In [19]:

```
g = sns.PairGrid(df2, height= 10)
g.map_upper(sns.histplot, bins= 20, binwidth=3, cbar=True)
g.map_lower(sns.kdeplot, fill=True, cbar=True)
g.map_diag(sns.histplot, kde=True, cbar=True)
```

Out[19]:

<seaborn.axisgrid.PairGrid at 0x1f33e821430>

In [25]:

```
array = df2.values
X = array [:, 0:3]
Y = array [:, 0:3]
test_size = 0.33
seed = 7
X_train, X_test, Y_train, Y_test= train_test_split(X,Y, test_size=0.2, random_state=seed)
```

In [26]:

```
model = DecisionTreeRegressor(random_state=seed)
model.fit(X_train,Y_train)
```

Out[26]:

DecisionTreeRegressor(random_state=7)

In [27]:

```
tree.plot_tree(model, feature_names=X_train, class_names=Y_train, filled =
True, fontsize=10)
plt.show()
```


In [29]:

```
R_squared = model.score(X_test, Y_test)
print('R-Squared = ', R_squared)
```

R-Squared = 0.9940259709554544

In [28]:

```
model.predict([[12,10,450]])
model.predict([[2,30,50]])
```

Out[28]:

```
array([[ 0.38735, 25.65 , 188. ]])
```

In [34]:

```
num_folds = 10
seed = 7
kfold= KFold(n_splits=num_folds, random_state=seed, shuffle=True)
scoring = 'neg_mean_squared_error'
results = cross_val_score(model, X, Y, cv=kfold, scoring=scoring)
print("Average of all results from the K-fold Cross Validation, using negative mean squared
```

Average of all results from the K-fold Cross Validation, using negative mean squared error: -3.506226311646305

In	- 1	•
TII	- 1	٠
	-	