Content Outline (Unit 3)

- Data Link Layer
 - Introduction
 - Error Detection and Correction
 - Block Coding and Hamming Distance
 - Error Detection
 - Parity checking
 - Cyclic Redundancy Check (CRC)
 - Check Sum
 - Forward Error Correction
 - Hamming Code

Objectives of this Unit

- Describe the major functions at link layer
- Understand the idea of block coding and Hamming distance for error detection and correction.
- Describe the three commonly used error detection methods (parity checking, Cyclic Redundancy Check (CRC) and Check Sum) and their limitations
- Introduce the forward error correction and describe Hamming codes for error correction.

Data Link Layer

- Hosts and routers are nodes
- Communication channels that connect adjacent nodes along communication path are links
 - wired links
 - wireless links
 - LANs
- Layer-2 packet is a **frame**, encapsulates packet (from network layer)

Data link layer has responsibility of transferring data (a frame) from one node to adjacent node over a link.

Nodes and Links

a. A small part of the Internet

b. Nodes and links

Communications at Link Layer

Functions of Data Link Layer

- Framing
- Flow Control
- Error Control
- Access Control

LANs

Addressing

LLC and MAC Sublayers

 Data Link Layer: carrying data (frame) from one hop to the next hop

Data link control sublayer

Media access control sublayer

a. Data-link layer of a broadcast link

b. Data-link layer of a point-to-point link

LLC and MAC Sublayers

- Logical Link Control (LLC): Interoperability for different LANs
- Media Access Control (MAC): Operation of the access methods

IEEE Model on Data Link Layer

Project 802

Types of Errors

- Data can be corrupted during transmission. For reliable communication, errors must be detected and corrected.
- Types of Error
 - Single-Bit Error: only one bit in the data unit has changed
 - Burst Error: 2 or more bits in the data unit have changed
- A single-bit error can occur in the presence of white noise.
- Burst errors can be caused by impulse noise.
 The effects of burst errors are greater at higher data rate.

Error Detection and Correction

• Error detection

- To see if any error has occurred.
- The answer is a simple yes or no.
- We are not even interested in the number of corrupted bits.
- A single-bit error is the same as a burst error.

• Error correction

- To know the exact number of bits that are corrupted.
- To locate the error location in the message.

Redundancy

• To detect or correct errors, redundant bits of data must be added

Block Coding

- Message is divided into *k*-bit blocks
 - Known as **datawords**
- r redundant bits are added
 - Blocks become n=k+r bits
 - Known as *codewords*

2^k Datawords, each of k bits

n bits ••• n bits

2ⁿ Codewords, each of n bits (only 2^k of them are valid)

Error Detection in Block Coding

- The receiver has (or can find) a list of valid codewords.
- The original codeword has changed to an invalid one \Rightarrow an error is declared.
- There is no way to detect every possible error!

Example: Parity Check

Parity check for k=2 and n=3

Datawords	Codewords	Datawords	Codewords
00	000	10	101
01	011	11	110

Assume the sender encodes the dataword 01 as 011 and sends it to the receiver. Consider the following cases:

- 1. The receiver receives 011. It is a valid codeword. The receiver extracts the dataword 01 from it.
- 2. The codeword is corrupted during transmission, and 111 is received (the leftmost bit is corrupted). This is not a valid codeword and is discarded.
- 3. The codeword is corrupted during transmission, and 000 is received (the right two bits are corrupted). This is a valid codeword. The receiver incorrectly extracts the dataword 00. Two corrupted bits have made the error undetectable.

Hamming Distance

The Hamming Distance between two words is the number of differences between corresponding bits.

- d(01, 00) = 1
- d(11,00) = 2
- d(010, 100) = 2
- d(0011, 1000) = 3

Minimum Hamming Distance

The minimum Hamming distance is the smallest
Hamming distance between
all possible pairs of codewords in a codebook

• Find the minimum Hamming Distance of the following codebook

Detection Capability of Code

• To guarantee the **detection** of up to *s*-bit errors, the minimum Hamming distance in a block code must be

Error Detection Methods

- Most common, least complex
- Single bit is added to a block
- Two schemes:
 - Even parity Maintain even number of 1s
 - E.g., $1011 \rightarrow 1011\underline{1}$
 - Odd parity Maintain odd number of 1s
 - E.g., $1011 \rightarrow 1011\underline{0}$
- What is the minimum Hamming distance of the codewords of single parity check?

Simple parity-check code C(5, 4)

Datawords	Codewords	Datawords	Codewords
0000	00000	1000	10001
0001	00011	1001	10010
0010	00101	1010	10100
0011	00110	1011	10111
0100	01001	1100	11000
0101	01010	1101	11011
0110	01100	1110	11101
0111	01111	1111	11110

 A parity bit is added to every data unit so that the total number of 1s is even (or odd for odd-parity)

- Single Parity Check
 - Problems: Only detects an odd number of errors
 - When the data block is badly garbled by a long burst error, the probability of detecting the error is 0.5 and therefore not acceptable

Parity Check -Implementation

• The parity bit is obtained by adding the k bits of the codewords (modulo-2), for example, for a 4-bit block

$$r_0 = a_3 \oplus a_2 \oplus a_1 \oplus a_0 \pmod{1}$$

Example

Suppose the sender wants to send the word world. In ASCII the five characters are coded as

1110111 1101111 1110010 1101100 1100100

The following shows the actual bits sent

1110111<u>0</u> 1101111<u>0</u> 1110010<u>0</u> 1101100<u>0</u> 1100100<u>1</u>

Now suppose the word world is received by the receiver without being corrupted in transmission

The receiver counts the 1s in each character and comes up with even numbers (6, 6, 4, 4, 4). The data are accepted

- Simple parity check can detect all single-bit errors
- It <u>cannot</u> detect burst errors only if the total number of errors in each data unit is even (even parity check!)
- E.g. 1101111010 = 111101010

Cyclic Redundancy Check

- Unlike the parity check which is based on addition, cyclic redundancy check (CRC) is based on binary division
- Instead of adding bits, <u>a sequence of redundant bits</u> is appended to the end of a data unit so that the resulting data unit becomes exactly divisible by a second predetermined binary number

XOR Operation

- Main operation for computing error detection/correction codes
- Similar to modulo-2 addition

$$0 \oplus 0 = 0$$

$$1 + 1 = 0$$

a. Two bits are the same, the result is 0.

$$0 + 1 = 1$$

$$1 \oplus 0 = 1$$

b. Two bits are different, the result is 1.

c. Result of XORing two patterns

Modulo-2 Arithmetic

- Modulo-2 arithmetic uses binary addition with no carries, which is just the exclusive-OR (XOR) operation.
- Binary subtraction with no carries is also interpreted as the XOR operation.

CRC Encoder and Decoder

CRC Generator

Modulo 2 Arithmetic

EIE3333 DCC

CRC Checker

1 1 1 1 0 1 Data plus The divisor in a Divisor 1 1 0 1 CRC received cyclic code is normally called 1 0 0 0 Modulo 2 Arithmetic the generator 1 1 0 1 polynomial or simply the 1 1 0 1 generator. When the leftmost bit 0 1 1 of the remainder is zero, 0 0 0 0 we must use 0000 instead of the original divisor. 1 1 0 1 EIE3333 DCC Result 0 0 0

Quotient

CRC Example

CRC Example

CRC Codes

- In a cyclic code,
 - If $s(x) \neq 0$, one or more bits is corrupted.
 - If s(x) = 0, either
 - No bit is corrupted. or
 - Some bits are corrupted, but the decoder failed to detect them. (In a cyclic code, those errors that are divisible by g(x) are not caught.)

Polynomial Representation

- More common representation than binary form
- Easy to analyze
- Divisor is commonly called generator polynomial

a. Binary pattern and polynomial

b. Short form

Division Using Polynomial

Strength of CRC

- Can be analyzed using polynomial
 - M(x) Original message
 - G(x) Generator polynomial of degree **n**
 - R(x) Generated CRC

$$M(x)\cdot x^n = Q(x)\cdot G(x) + R(x)$$

• Transmitted message is

$$M(x) \cdot x^n - R(x)$$

which is divisible by G(x)

Strength of CRC

Received message is

$$M(x) \cdot x^n - R(x) + E(x)$$

where E(x) represents bit errors

- Receiver does not detect any error when E(x) is divisible by G(x), which means either:
 - $E(x) = 0 \rightarrow \text{No error}$
 - $E(x) \neq 0 \rightarrow \text{Undetectable error}$

Standard Polynomials

Name	Polynomial	Used in
CRC-8	$x^8 + x^2 + x + 1$	ATM
	100000111	header
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^2 + 1$	ATM
	11000110101	AAL
CRC-16	$x^{16} + x^{12} + x^5 + 1$	HDLC
	1000100000100001	
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$	LANs
	100000100110000010001110110110111	

40

Checksum

• Main ideas:

- Checksum generator subdivides the data unit into equal segments of n bits
- These segment are added using ones complement in such a way that the total is n bits long
- That total is then complemented and appended to the end of the original data unit as redundancy bits
- The sum of data segment is T, the checksum will be -T

Checksum

Checksum

Example

Suppose the following block of 16 bits is to be sent using a checksum of 8 bits

10101001 00111001

The numbers are added using one's complement

10101001

00111001

Sum 11100010

Checksum **00011101**

The pattern sent is 10101001 00111001 **00011101**

Example

Now suppose the receiver receives the pattern sent in Example 3 and there is no error.

10101001 00111001 00011101

When the receiver adds the three sections, it will get all 1s, which, after complementing, is all 0s and shows that there is no error.

10101001

00111001

00011101

Sum 11111111

Complement 00000000 means that the pattern is OK.

Example

1	l	0	1	3		Carries
		4	6	6	F	(Fo)
		7	2	6	F	(ro)
		7	5	7	Α	(uz)
		6	1	6	Ε	(an)
		0	0	0	0	Checksum (initial)
		8	F	С	6	Sum (partial)
'				\longrightarrow	<u> </u>	
		8	F	C	7	Sum
		7	0	3	8	Checksum (to send)

a. Checksum at the sender site

a. Checksum at the receiver site

4	5	0						
	1		0	0				
4	ļ.	17		A				
10.12.14.5								
12.6.7.9								

Example:

Checksum of IP Header

$4, 5, \text{ and } 0 \longrightarrow$	01000101	00000000
28 →	00000000	00011100
1 →	00000000	00000001
$0 \text{ and } 0 \longrightarrow$	00000000	00000000
4 and 17 \longrightarrow	00000100	00010001
$0 \longrightarrow$	00000000	00000000
10.12 →	00001010	00001100
14.5 →	00001110	00000101
12.6 →	00001100	00000110
7.9 →	00000111	00001001
Sum —→	01110100	01001110
Checksum>		
CHECKSUIII	10001011	10110001 _

Error Correction

- Once error is detected, correction can be handled
- Retransmission
 - The receiver asks the sender to retransmit the entire data unit (will be discussed)
- Forward Error Correction
 - The receiver can use an error-correcting code, which automatically corrects certain errors

Correction Capability of Code

• To guarantee the correction of up to *t*-bit errors, the minimum Hamming distance in a block code must be

Forward Error Correction

- Consider only a single-bit error in *k* bits of data
 - *k* possibilities for an error
 - One possibility for no error
 - No. of possibilities = k + 1
- Add r redundant bits to distinguish these possibilities; we need

$$2^r \ge k + 1$$

• But the r bits are also transmitted along with data; hence

$$2^r \ge k + r + 1$$

Number of Redundant Bits

Number of data bits	Number of redundancy bits	Total bits k + r
1	2	3
2	3	5
3	3	6
4	3	7
5	4	9
6	4	10
7	4	11

Hamming Code

- Hamming Code is type of Error Correcting Code (ECC)
- Provides error detection and correction mechanism
- Adopt parity concept, but have more than one parity bit
- Hamming codes can detect up to two-bit errors or correct one-bit errors without detection of uncorrected errors
- Simple, powerful FEC
- Widely used in computer memory
 - Known as ECC memory

Hamming Code

Hamming (11,7)

error-correcting bits

Redundant Bit Calculation

 r_1 will take care of these bits.

11		9		7		5		3		1
d	d	d	<i>r</i> ₈	d	d	d	r_4	d	r_2	r_1

 r_2 will take care of these bits.

11	10			7	6			3	2	
d	d	d	<i>r</i> ₈	d	d	d	r_4	d	r_2	r_1

 r_4 will take care of these bits.

					6		_			
d	d	d	<i>r</i> ₈	d	d	d	r_4	d	r_2	r_1

 r_8 will take care of these bits.

	10									
d	d	d	<i>r</i> ₈	d	d	d	r_4	d	r_2	r_1

Example: Hamming Code

Example: Correcting Error

• Receiver receives 1001**0**100101

Burst Error Correction - Interleaving

Reading

- B. A. Forouzan, "Data Communications and Networking," 5th Edition, McGraw-Hill 2013 (Chapter 10)
- William Stallings, "Data and Computer Communications," 10th Edition, Pearson 2015 (Chapter 6)