Übungen zum Ferienkurs Analysis II

Differenzierbarkeit und Taylor-Entwicklung

Übungen, die mit einem Stern ★ markiert sind, werden als besonders wichtig erachtet.

1.1 Jacobi-Matrix *

Man bestimme die Jacobi-Matrix der Funktion $f: \mathbb{R}^3 \to \mathbb{R} \ (x,y,z) \mapsto 3x^2y + \exp(xz^2) + 4z^3$.

1.2 Richtungsableitung \star

Berechne für $f(x,y) = \frac{y}{1+x^2}$ die Richtungsableitung $\partial_v f$ von f an der Stelle $x_0 = (1,1)$ in Richtung eines Vektors v = (-1,-1).

1.3 Differenzierbarkeit *

Ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) := \sqrt{|xy|}$ im Nullpunkt partiell oder total differenzierbar?

1.4 Totale Differenzierbarkeit und Kettenregel

- (a) Zeigen Sie, dass die Funktion $f: \mathbb{R}^3 \to \mathbb{R}^2, f(x,y,z) \mapsto (yz,z^2+x)^T$ in $(1,0,-1)^T$ total differenzierbar ist mit $f'(1,0,-1) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -2 \end{pmatrix}$.
- (b) Zeigen Sie, dass die Funktion $g: \mathbb{R}^2 \to \mathbb{R}^3, g(x,y) = (x^2 + y^2, 2x, yx^2)^T$ in $f(1,0,-1) = (0,2)^T$ total differenzierbar ist mit $g'(0,2) = \begin{pmatrix} 0 & 4 \\ 2 & 0 \\ 0 & 0 \end{pmatrix}$
- (c) Berechnen Sie die Ableitung von $g \circ f$ in $(1,0,-1)^T$.

1.5 Totale Differenzierbarkeit vs. Richtungsableitung

Man definiert eine Funktion $f:\mathbb{R}^2 \to \mathbb{R}$ durch die Vorschrift

$$f(x,y) = \left\{ \begin{array}{ll} 1 & \text{falls } \exists \, t \in \mathbb{R}, t \neq 0 \text{ mit } (x,y) = (t,t^2) \\ 0 & \text{sonst.} \end{array} \right\}$$

Beweisen Sie:

- (a) f ist im Punkte (0,0) nicht total differenzierbar.
- (b) Im Punkte (0,0) ist f in jede Richtung v richtungsableitbar.

1.6 Kettenregel

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine stetige differenzierbare Abbildung. Man drücke die Ableitung der Funktion $g: \mathbb{R} \to \mathbb{R}, g(t) := f(te^t, t^2)$ durch die partiellen Ableitungen von f aus.

1.7 Taylorentwicklung

Man berechne die Taylorentwicklung der Funktion $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^3 - 3xy^2$ bis zu den Gliedern einschließlich zweiter Ordnung um den Entwicklungspunkt $\zeta = (1,1)$.

1.8 Taylorentwicklung mit Reihe *

Man berechne die Taylorreihe in dritter Ordnung der Funktion $f(x, y, z) = y \exp(x^2 z)$ um den Punkt (0, 0, 0).

1.9 Taylor und Extrema \star

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ zweimal stetig differenzierbar mit $f(0,0)=0,\, f$ hat bei (0,0) einen stationären Punkt und

$$H_f = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$$

Beweisen Sie, es existiert eine Umgebung U von (0,0), sodass für alle $(x,y) \in U$ gilt $f(x,y) \ge x^2 + y^2$ (Tipp: Taylor-Entwicklung).

1.10 Taylorentwicklung II

Berechnen Sie die Taylorentwicklung bis zur zweiten Ordnung der Funktion $f: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x,y) = x^y$ im Punkt (1,1) und geben Sie einen Näherungswert für $1,05^{1,02}$ an (ohne Fehlerabschätzung).

1.11 Taylorentwicklung III

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch

$$f(x,y) = \frac{x-y}{x+y}.$$

Berechnen Sie das zugehörige Taylorpolynom in (1,1).