0.1 Résolution par la méthode d'Euler implicite

Definition des variables et des paramètres : On définit tout d'abord les différentes variables dont on a besoin pour décrire les équations du schéma d'Euler implicite :

- On fixe comme paramètres a = 0.2 et b = 1.3 pour satisfaire les conditions $(a + b)^3 > b a$ et b > a.
- On appelle N_x le nombre d'itérations sur la variable d'espace, avec x variant entre 0 et 1, on a donc $dx = \frac{1}{N_x}$. On a pris ici $N_x = 30$.
- On garde la notation $c = \begin{pmatrix} u \\ v \end{pmatrix}$, qui sera de taille $2N_x$.
- Le pas de temps doit être assez petit, $dt=10^{-3}$ suffit, en dessous, le schéma diverge. On prend de plus une plage de temps suffisamment grande pour que les modes puissent apparaître, par exemple $N_t=50000$, voire plus si nécessaire.
- Dans une variable stock (tableau de taille $(2N_x, N_t)$)sont stockées toutes les valeurs de u et v.

Initialisation autour de la solution d'équilibre :

On se place autour de la solution d'équilibre, calculée comme étant $u_{eq} = a + b$ et $v_{eq} = \frac{b}{(a+b)^2}$, en ajoutant un nombre aléatoire compris entre -10^{-4} et 10^{-4} .

Figure 1 – Conditions initiales aléatoires autour de l'équilibre

Matrices du Laplacien et de Diffusion :

Nous avons besoin de l'opérateur Laplacien discret dont la matrice, de taille (N_x, N_x) , s'écrit :

$$Lp = \frac{1}{dx^2} \begin{pmatrix} -2 & 1 & 0 & \cdots & 1\\ 1 & -2 & \ddots & \ddots & \vdots\\ 0 & \ddots & \ddots & \ddots & 0\\ \vdots & \ddots & \ddots & \ddots & 1\\ 1 & \cdots & 0 & 1 & -2 \end{pmatrix}$$

Ce qui donne, écrite par blocs (1^{er} bloc appliqué à u, le 2^{nd} à v) :

$$A = \begin{pmatrix} Lp & 0\\ 0 & Lp \end{pmatrix}$$

Il nous faut également la matrice de diffusion, qui s'écrit simplement par blocs, pour un coefficient de diffusion d et en notant I la matrice identité de dimensions (N_x,N_x) :

$$D = \begin{pmatrix} I & 0 \\ 0 & dI \end{pmatrix}$$

Si on note $c^n=\binom{u^n}{v^n}$ le vecteur c à l'instant $t_n=ndt,$ le schéma d'Euler implicite s'écrit :

$$c^{n+1} = c^n + dt(DAc^{n+1} + \delta f(c^{n+1}))$$
(1)

On utilise ici un schéma d'Euler simplifié dans le sens où on remplace $f(c^{n+1})$ par simplement $f(c^n)$. On obtient ainsi :

$$c^{n+1} = c^n + dt(DAc^{n+1} + \delta f(c^n))$$

$$c^{n+1} = (I + dtDA)^{-1}(c^n + dt\delta f(c^n))$$
 (2)

On itère ainsi ce schéma N_t fois, et à chaque itération, on stock le résultat en remplissant la $n^{i\grave{e}me}$ ligne de la matrice stock:

$$stock(n, 1: 2N_x) = c^n \tag{3}$$

Résultats:

On se place à d=30 et $\delta=120$. Sur le diagramme de Turing, on anticipe la stabilité des deux premiers modes, et on s'attend à voir apparapître le mode 2. C'est en effet ce que l'on observe :

FIGURE 2 – Diagramme de Turing : instabilité du mode 2

Figure 3 – Concentrations u et v pour d=30 et $\delta=120$

On peut examiner d'autres cas, où les modes instables se superposent :

Remarque : plus on est proche du $d_critique$, environ 23, plus les concentrations mettent du temps à converger vers une solution indépendante du temps.

FIGURE 4 – Diagramme de Turing : superposition de modes instables

Figure 5 – Concentrations pour d=100 et $\delta=400$

Figure 6 – Diagramme de Turing : superposition de modes instables $2\,$

Figure 7 – Concentrations pour d=30 et $\delta=400$ (mode 3 instable

FIGURE 8 – Diagramme de Turing : instabilité du mode $4\,$

Figure 9 – Concentrations u et v pour d=26 et $\delta=500$ (mode 4 instable)

Figure 10 – Concentrations pour d=23.1 et $\delta=150$: convergence après 50 secondes de temps