

TECHNOLOGIECAMPUS DE NAYER SINT-KATELIJNE-WAVER

How to reach top accuracy for a visual pedestrian detection warning system from a car?

Floris De Smedt¹, Steven Puttemans² (presenting author), Toon Goedemé²

¹Robovision, Antwerpen, Belgium ²EAVISE Research Group, KU Leuven, Campus De Nayer, Sint-Katelijne-Waver, Belgium

Introduction

Detection accuracy

- "How accurate can each pedestrian be localised?"
 - → Accurate localisation of pedestrians is required!
- o "Reasonable setting?": ≥50px and ≥65% visible

System test

- "Is there an alarm when a pedestrian is in front of the car?"
 - → Accurate localisation is **not** required
- Independent of pedestrian size and occlusion level

Conclusion

Dataset: KAIST

- 6 sets for training, 6 sets for testing (videos)
- 95.000 VGA image pairs (Color + LWIR) fully annotated
- 103.128 annotations
- 1.182 unique pedestrians
- LWIR is very beneficial during night conditions due to limited color information

Introduction Dataset Approach Improvements Experiments

Approach

- Own C++ implementation of the ACF (Aggregate Channel Features) detector by Piotr Dollar. [1]
- Study techniques that have shown to be beneficial on other pedestrian detection benchmarks (Caltech, INRIA,...)
 - 1. Combine color and LWIR
 - 2. ACF+ versus ACF
 - 3. Influence of selecting the training set
 - 4. Amount of training data -> only in paper
 - 5. Influence of the model size -> only in paper
 - 6. Using convolution masks to extend the features pool
 - 7. Influence of a ground constraint

[1] Fast feature pyramid for object detection, P. Dollár et al, PAMI2014

1. Combine color and LWIR

- ACF color channels
 - 3 color channels (LUV)
 - 6 gradient orientations
 - 1 gradient magnitude
- LWIR channels
 - o 1 intensity
 - o 6 gradient orientations
 - 1 gradient magnitude

- → Large improvement (green) over state-of-the-art (red/pink) [2]
- → Trained on both day and night images

[2] Multispectral pedestrian detection: benchmark dataset and baseline, Soonmin S. et al, CVPR2015

Introduction Dataset

Approach

Improvements

2. ACF+ versus ACF

ACF

- 2.048 weak classifiers
- Depth-2 decision trees
- 5.000 negatives
- 10.000 accumulated negatives

ACF+[3]

- 4.096 weak classifiers
- Depth-5 decision trees
- 25.000 negatives
- 50.000 accumulated negatives

 \rightarrow **7,5%** drop in miss-rate!

[3] Local decorrelation for improved pedestrian detection, W. Nam, ANIPS2014

Introduction [

Dataset

Approach

Improvements

3. Influence of selecting the training set

- The goal is to learn a decision surface between pedestrians and background training samples.
- Having training conditions similar to the evaluation conditions is beneficial for each trained object detector. [4]
 - Selected features from feature pool are optimized for specific situation
 - o Can we use a separate day and night model?
- We compare
 - Only day images for training
 - Only night images for training
 - Both day and night images for training

[4] Ten years of pedestrian detection, what have we learned?, R. Benenson et al, ECCV 2014 WS

KU LEUVEN
Conclusion

3. Influence of selecting the training set

Distribution of feature selection

No remarkable improvement by training for a specific condition (green/pink) over using both conditions (blue) at the same time.

Using the combined training set is the best in all conditions.

KU LEUVEN

Conclusion

Introduction Dataset A

Feature type

Approach Improvements

6. Using convolution masks

- Convolve each feature channel with convolution masks
- LDCF: 4 convolution filters = 40 channels
- Filtered channel features: [5]
 - 61 convolution filters
 - State-of-the-art detection results
 - o Very slow!
- Rotated channel features: [6]
 - 9 convolution filters
 - 6 x faster
 - 1% miss-rate increase in accuracy

- [5] Filtered channel features for pedestrian detection, S. Zhang et al, CVPR2015
- [6] How far are we from solving pedestrian detection?, S. Zhang et al, CVPR2016

KU LEUVEN
Conclusion

Introduction Dataset

Approach

Improvements

7. Influence of a ground constraint

- Each pedestrian size (height) can only be found in a limited range of y-positions inside the image.
 - Fit a relation between annotations and position in the image.
 - This leads to a strong reduction of the object search space compared to a full multiscale sliding window detection.
 - Allows approximately a 4x speed-up.

Introduction Dataset

Approach

Improvements

Experiments

Conclusion

7. Influence of a ground constraint

- Limited accuracy benefit
- Both in case of convolution filters and ground constraint
- However still a large speed-up when using the ground constraint during processing

Introduction Dataset Approach Improvements Experiments

System test experiments

Required breaking distance (rule of thumb)

$$BD_{dry} = \frac{\left(\frac{v}{10}\right)^2}{2}$$

$$BD_{wet} = BD_{dry} \times 1.5$$

- Speed = 50km/h (13,9m/s) & distance(pedestrian,car) = 20m
 - DRY: 12.5m <-> WET: 18.75m
 - Remaining distance: DRY 7,5m <-> WET 1,25m
 - @13,9m/s this equals: DRY 1,85 sec <-> WET 11,12 sec
 - In this time you need minimal 1 frame
 - → required processing speed = 1.85 fps
 - → required processing speed = 11.12 fps
- Pedestrian size 75px at 20m
- 5% FP-rate is acceptable [Hoedemaeker et al, Foundation research and traffic security 2010]

System test experiments

Technique	≥ 50px (fps)	≥ 75px (fps)	≥ 100px (fps)	TPR (all)	TPR GC (all)	TPR (night)	TPR GC (night)
ACF - color	10.73	18.8	26.03	46.38%	46.14%	23.4%	23.74%
ACF - Both	9.51	11.81	21.13	57-37%	60.08%	67.48%	70.49%
ACF+ - Both	8.75	10.43	19.28	61.57%	62.70%	94.12%	92%
ACF+ - Rot Both	0.875	1.39	1.91	64,94%	65.79%	76.72%	75.99%

- Required speed under dry conditions (1.85 fps) can be reached taking into account the 4x speed up of the ground plane constraint
- Night conditions are the hardest for the driver but we reach a high performance of 94,12%.

KU LEUVEN
Conclusion

Introduction Dataset

Approach

Improvements

Conclusion

- We proposed using current state-of-the-art pedestrian detectors as a warning system for car drivers.
- We used a system test as validation:
 - An alarm should be generated if pedestrians are too close to the car
 - Independent of the amount of occlusion
- Shown a drastic accuracy improvement over the state-of-the-art on the KAIST dataset by study different techniques to improve detection quality.
- Reached top accuracy in night conditions, where the system is most useful.

Thank you for your attention!

Contact:

- floris.desmedt@robovision.eu
- toon.goedeme@kuleuven.be

More info:

- http://www.eavise.be

