Solve System of Algebraic Equations

1. Given the following matrices:

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 5 & 2 \\ 1 & 0 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Perform the following MATLAB operations, if they can be done. If not, explain why.

2. Analyzing electric circuits can be accomplished by solving sets of equations. For a particular circuit, the voltages V1, V2, and V3 are found through the system:

$$\begin{cases}
V1 = 5 \\
-6V1 + 10V2 - 3V3 = 0 \\
-V2 + 51V3 = 0
\end{cases}$$

Put these equations in matrix form and solve in MATLAB.

3. Re-write the following system of equations in matrix form:

$$\begin{cases} 4x_1 - x_2 + 3x_3 = 10 \\ -1x_1 + 3x_2 + x_3 - 5x_4 = -3 \\ 2x_1 + x_2 - x_3 + 2x_4 = 2 \\ 3x_1 + 2x_2 - 4x_3 = 4 \end{cases}$$

Set it up in MATLAB and use any method to solve

4. For a 2x2system of equations, Cramer's rule states that the unknowns x are fractions of determinants. The numerator is found by replacing the column of coefficients of the unknown by constants b. So:

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{D}$$
 and, $x_2 = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{D}$

Use Cramer's rule to solve the following 2x2system of equations:

$$\begin{cases} 4x_1 - 2x_2 = -2 \\ -3x_1 + 2x_2 = -1 \end{cases}$$

1

5. use

```
>> help lu
```

or look for lu in MATLAB documentation. Read Entire the article and solve examples :-)

- **6.** solve question number 2 in this homework using solve function .
- 7. solve question number 3 in this homework using solve function.

7. To analyze electric circuits, it is often necessary to solve simultaneous equations. To find the voltages Va, Vb, and Vc at nodes a, b, and c, the equations are

```
2(Va-Vb) + 5(Va-Vc) - exp(-t) = 0

2(Vb - Va) + 2Vb + 3(Vb - Vc) = 0

Vc = 2 sin(t)
```

Find out how to use the **solve** function to solve for Va, Vb, and Vc so that the solution will be returned in terms of t.

8. The reproduction of cells in a bacterial colony is important for many environmental engineering applications such as wastewater treatments. The formula

$$\log(N) = \log(N0) + t/T \log(2)$$

can be used to simulate this, where N is the original population, N is the population at time t, and T is the time it takes for the population to double. Use the **solve** function to determine the following: if $N_0 = 10^2$, $N = 10^8$, and t = 8 hours, what will be the doubling time T? Use **double** to get your result in hours.