Combining patient visual timelines using deep learning to predict mortality

Matthew Lind | lind6 Zachary Moulton | moulton6

General Problem

- Objective:
 - Predicting in-hospital mortality
- Problem:
 - No direct mortality prediction tools exist
 - Existing tools predict need of immediate medical attention, not mortality
- Proposed solution:
 - Deep-learning based mortality prediction tool

Specific Approach

- Convert patient data to visual timelines.
- Choose key variables relevant to mortality
- Normalize according to 'custom' or 'min/max' schemes

Specific Approach

- CNN with recurrent layer
- Outperforms baseline deep learning models
- Combines advantages of CNN and RNN
 - CNN for image prediction
 - RNN for time series prediction

Table 2. Model discrimination for predicting mortality on the test dataset (n = 34,747 admissions).

Model	AUC (95% CI)	P-value (compared to CNN-RL)	
SOFA	0.57 (0.55, 0.59)	< 0.001	
MEWS	0.76 (0.74, 0.78)	< 0.001	
Standard-CNN	0.87 (0.85, 0.88)	< 0.001	
RNN	0.89 (0.88, 0.91)	0.003	
Deep-CNN	0.90 (0.89, 0.91)	0.025	
CNN-RL	0.91 (0.90, 0.92)	-	

SOFA: Sequential Organ Failure Assessment score

MEWS: Modified Early Warning Score

CNN: Convolutional Neural Network

RNN: Recurrent Neural Network

RL: Recurrent Layer

AUC: Area Under the receiver operating characteristic Curve

CI: Confidence Interval

Reproduction Steps

Reproduction Steps: Data Aggregation

- SQL: extract MIMIC data to CSV
 - Parse CSV with Python
 - Generate images
 - Compute MEWS, SOFA
 - Build cohort
 - Shuffle randomly
 - Split into train, test, validation

Reproduction Steps: Deep Learning

- Learning
 - Train and evaluate all models
 - Multiple runs
 - Validate on different cohorts
- Compare results

Reproduction: Results

- Framework was reproducible
 - AUCs imply reasonable predictions
- Default hyperparameters need tuning

n = 337959				
Model	AUC	95% CI-	95% CI+	
SOFA	0.67			
MEWS	0.68	9		
Standard-CNN	0.87	0.86	0.88	
RNN	0.88	0.88	0.89	
Deep-CNN	0.90		10045000000	
CNN-RL	0.75	0.57	0.93	