Дифференциальные уравнения.

Лекция (02.09.19) 1

Определение 1.1. Пусть y = y(x) - k - значная функция. Тогда $F(y^{(n)}, \dots, y', y, x)$ 0- обыкновенное дифференциальное уравнение (ОДУ) (бывают и необыкновенные, если что, но это не к нам.)

Look, a *►*!

Определение 1.2. Порядок старшей производной, входящей в уравнение, называется его порядком.

Лемма 1.1. Систему дифференциальных уравнений можно привести к эквивалентной системе первого порядка, сделав все производные, кроме старшей, новыми переменными.

Доказательство. Рассмотрим систему $F(y^{(n)},\ldots,y'',y',y,x)=0$. Она эквивалентна

$$\begin{cases}
F(y'_{n-1}, y_{n-1}, \dots, y_1, y_0, x) = 0 \\
y'_{n-2} - y_{n-1} = 0 \\
\dots \\
y'_0 - y_1 = 0
\end{cases}$$

Пример 1.1. $y'=f(x), \ f\in C(a,b)$. Тогда $y(x)=\int f(x)dx+C$. Пример 1.2. (ВАЖНЫЙ). y'=g(y). Тогда $\frac{y'}{g(y)}=1$, следовательно, x-

$$x_0 = \int_{x_0}^x \frac{y'(\varepsilon)d\varepsilon}{g(y(\varepsilon))} = \int_{x_0}^x \frac{d(y(\varepsilon))}{g(y(\varepsilon))} = \int_{y(x_0)}^{y(x)} \frac{d(\eta)}{g(\eta)}$$

- y'=y. По доказанному выше $\int\limits_{y(x_0)}^{y(x)} \frac{d\eta}{\eta} = x x_0$. Отсюда $\ln \frac{|y(x)|}{|y(x_0)|} = x x_0$. Таким образом, $y(x) = Ce^x$.
- $y' = y^2 + 1$. Аналогично получаем, что $y = tg(x_C)$.

Дальше привели какие-то неинтересные примеры.

Задача Коши (постановка).

$$\begin{cases} \vec{y}' = G(\leftrightarrow y, x) \\ \vec{y}(x_o) = y_0 \end{cases}$$

Сформулируем теорему, которую докажем потом.

Теорема о существовании и единственности решения задачи Коши. Пусть $F:\Omega\to\mathbb{R}^n$, где $\Omega\in\mathbb{R}^{n+1}$ открыто (координаты в \mathbb{R}^{n+1} будем обозначать $(x_1,\ldots,x_n,t))$ удовлетворяет следующим условиям

- F непрерывна;
- F липшицева по x.

Тогда для любого $(x_0,t_0)\in\Omega$

(1) существует интервал $I\subset\mathbb{R},$ содержащий t_0 и функция $x:I\to\mathbb{R}^n,$ являющаяся решением задачи Коши

$$\begin{cases} \dot{x} = F(x, t) \\ x(t_0) = x_0 \end{cases};$$

(2) Для любого еще одного решения $\hat{x}: J \to \mathbb{R}^n$ выполнено $\hat{x}|_{I \cap J} = x|_{I \cap J}$.

Следствие 1.1. Если производная f по первым n+1 аргументам существует и непрерывна, то она липшицева и теорема применима.

Доказательство. Достаточно доказать липшицевость. Выберем внутри области Ω прямоугольник K, содержащий нашу точку (t_0,x_0) . Пусть $L=\sup_{x\in K}|F'(x)|$. Рассмотрим какие-то произвольные точки $x,y\in K$ и соединим их отрезком $z(t)=x+t(y-x),\,t\in[0,1]$. По формуле Ньютона-Лейбница имеем:

$$F(y) - F(x) = \int_{0}^{1} \frac{d}{dt} (f(z(\tau))) d\tau = \int_{0}^{1} F'(z(\tau)) z(\tau) d\tau \leqslant \int_{0}^{1} L|y - x| d\tau = L|y - x|.$$

2 Лекция 2 (03.09.19)

Напоминание: принцип сжимающих отображений. Если X — полное метрическое пространство, $\varphi: X \to X$ липшицево отображение с константой q < 1, то существует единственная неподвижная точка (решение $\varphi(z) = z$).

Немного изменив условия, мы можем добавить параметр $\lambda \in \Lambda$ — метрическое пространство и получить следующую теорему.

Теорема 2.1. Если Λ — метрическое пространство, а X — полное метрическое пространство, $\varphi: X \times \Lambda \to X$ непрерывное по λ липшицево отображение с константой q < 1 (не зависящей от λ), то неподвижная точка $z(\lambda)$ непрерывно движется по λ .

2

Доказательство. Будем обозначать $\varphi_{\lambda}(x) = \varphi(x,\lambda)$. Пусть $\lambda_0 \in \Lambda$, $z_0 = z(\lambda_0)$.

Лемма 2.1. В условиях теоремы, если y — неподвижная точка (λ в лемме фиксировано), то для любой точки y_0 выполнено

$$\rho(y_0, y) \leqslant \frac{\rho(y_0, \varphi(y_0))}{1 - q}.$$

Доказательство. Пусть $y_n = \varphi^n(y_0)$. Тогда $\rho(y_n, y_m) \leqslant \sum q^k \rho(y_0, \varphi(y_0)) \leqslant \frac{\rho(y_0, \varphi(y_0))}{1 - q}$. Теперь положим $n = 0, m \to \infty$ и получим требуемое.

По лемме 2.1.

$$\rho(z(\lambda_0), z(\lambda)) = \rho(z_0, z(\lambda)) \leqslant \frac{\rho(z_0, \varphi(z_0, \lambda))}{1 - q} = \frac{\rho(\varphi(z_0, \lambda_0), \varphi(z_0, \lambda))}{1 - q}.$$

В силу непрерывности по параметру, для любого ε можно выбрать такое δ , $\rho(\varphi(z_0,\lambda_0),\varphi(z_0,\lambda))<\varepsilon(1-q)$, при $\rho(\lambda,\lambda_0)<\delta$, тогда $\rho(z(\lambda_0),z(\lambda))<\varepsilon$.

Лемма 2.2. Непрерывная функция $x: I \to \mathbb{R}^n$

$$\dot{x}(t) = F(x, t, \lambda),$$

$$x(t_0) = x_0(\lambda)$$

является решением задачи Коши при некотором значении λ тогда и только тогда, когда она удовлетворяет

$$x(t) = x_0(\lambda) + \int_{t_0}^{t} F(x(\tau), \tau, \lambda) d\tau.$$

Доказательство. Предположим, что x — решение задачи Коши. Тогда x непрерывна, а значит, непрерывна и функция $t \to F(x(t),t,\lambda)$ (ведь F непрерывна).

Проинтегрируем обе части уравнения $\dot{x} = F(x,t,\lambda)$: $x(t)-x(t_0) = \int_{t_0}^t F(x(\tau),\tau,\lambda)d\tau$.

Обратно, если x — решение интегрального уравнения, то второе условие проверяется подстановкой, а первое — дифференцированием.

Рассмотрим в пространстве функций отображение, заданное формулой

$$(\varphi_{\lambda}(x))(t) = x_0(\lambda) + \int_{t_0}^t F(x(\tau), \tau, \lambda) d\tau.$$

Неподвижные точки такого отображения и будут решениями задачи Коши по лемме.

Сформулируем теорему, которая является более общей, чем самая первая.

Теорема о существовании, единственности и о непрерывной зависимости от параметра. Пусть $F:\Omega\to\mathbb{R}^n$, где $\Omega\in\mathbb{R}^{n+1+m}$ открыто (координаты в \mathbb{R}^{n+1+m} будем обозначать $(x_1,\ldots,x_n,t,\lambda_1,\ldots,\lambda_m)$) удовлетворяет следующим условиям

- F непрерывна;
- F липшицева по x.

Пусть также дана непрерывная функция $x_0:\Lambda\to\mathbb{R}^n$, где $\Lambda\subset\mathbb{R}^m$ открыто. Тогда для любого $(x_0(\lambda),t_0,\lambda)\in\Omega,\lambda_0\in\Lambda$

(1) существует интервал $I \subset \mathbb{R}$, содержащий t_0 , открытое множество $V \in \Lambda$, $\lambda_0 \in \Lambda$ и функция $x: I \to \mathbb{R}^n$, являющаяся решением задачи Коши

$$\begin{cases} \dot{x}(t,\lambda) = F(x,t,\lambda) \\ x(t_0) = x_0(\lambda) \end{cases};$$

(2) Для любого еще одного решения $\hat{x}: J \to \mathbb{R}^n$ при некотором $\hat{\lambda} \in V$ выполнено $\hat{x}|_{I \cap J} = x|_{I \cap J}$.

Доказательство. • Рассмотрим уже определенное отображение φ_{λ} . В качестве пространства, где «живут» функции x рассмотрим

$$E_{I,\varepsilon} = \{x : \bar{I} \to B_{\varepsilon}(x_0(\lambda_0)) \mid x \text{ непрерывна;} \}$$

 $\varepsilon>0$ и $I\ni t_0$ выберем ниже. Пространство $C(\bar I\to\mathbb R^n)$ с нормой $||x||=\sup_{t\in \bar I}|x(t)|$ будет полно(по какой-то там теореме.) Тогда полно и $E_{I,\varepsilon}$ как его замкнутое подмножество.

• Мы хотим применить к $\varphi_{\lambda}: E_{I,\varepsilon} \to E_{I,\varepsilon}$ параметрическую версию теоремы о сжимающих отображениях. Для этого мы хотим проверить, что φ_{λ} корректно определено (i), непрерывно (ii), образ лежал где нужно (iii) и действительно сжимало (iv).

(i) Под корректностью имеется правильный выбор переменных так, чтобы подынтегральное выражение было определено, то есть $(x(\tau), \tau, \lambda)$ лежали в Ω . Для этого выберем такие $\varepsilon_0 > 0$, $I_0 > 0$, $V_0 \supset \lambda$, что $B_{\varepsilon_0} \times \bar{I_0} \times \bar{V_0} \subset \Omega$. Тогда при любых

$$\varepsilon < \varepsilon_0, \ , I \in I_0, \ V \subset V_0$$

все корректно.

(ii) Теперь хотим доказать непрерывность $\varphi: E_{I,\varepsilon} \times V \to C((I) \to \mathbb{R}^n)$. Действительно, F непрерывна на компакте $B_{\varepsilon_0} \times \bar{I}_0 \times \bar{V}_0$, а значит, равномерно непрерывно на нем. В частности, для любого γ существует такая $\delta_1(\gamma)$, что если $|\lambda - \hat{\lambda} < \delta_1$ и $|y - \hat{y}| < \delta_1$, то $|F(y,t,\lambda) - F(\hat{y},t,\hat{\lambda})| < \gamma$. Аналогично, равномерная непрерывность x_0 на \bar{V}_0 дает, что для любого γ существует такое $\delta_2(\gamma)$, что для $|\lambda - \hat{\lambda}| < \delta_2$, то $||x_0(\lambda) - x_0(\hat{\lambda})| < \gamma||$. Таким образом, в маленькой окрестности

$$|\varphi(x,\lambda)(t) - \varphi(\bar{x},\bar{\lambda})(t)| \le \gamma + |t - t_0|\gamma.$$

(iii) Далее, нам нужно, чтобы $\varphi(E_{I,\varepsilon} \times V) \subset E_{I,\varepsilon}$. Потребуем даже большего: $\varphi(E_{I,\varepsilon} \times V) \subset E_{I,\frac{5}{6}}$, потом поймем зачем(для единственности).

$$|\varphi(x,\lambda)(t) - x_0(\lambda_0)| \le |x_0(\lambda) - x_0(\lambda_0)| + \int_{t_0}^t |F(x(\tau),\tau,\lambda)d\tau|.$$

Первое слагаемое будет меньше $\frac{\varepsilon}{2}$, если выбрать $\lambda \in V_1(\varepsilon) = V_0 \cap B_{\delta_2(\frac{\varepsilon}{2})}(\lambda_2)$. Пусть M — максимум, который принимает функция F на уже выбранном компакте. Тогда второе слагаемое не больше $M|t-t_0|$. Потребуем

$$V \subset V_1(\varepsilon), \ I \subset \left(t_0 - \frac{\varepsilon}{3M}, t_0 + \frac{\varepsilon}{3M}\right).$$

(iv) Теперь хотим добиться, чтобы φ_{λ} сжимало с коэффициентом $q = \frac{1}{2}$.

$$|\varphi_{\lambda}(x) - \varphi_{\lambda}(\hat{x})| \leqslant L|t - t_0|||x - \hat{x}||.$$

 $L rac{arepsilon}{3M}$ — коэффициент сжатия. Все хорошо, если

$$\varepsilon < \frac{3M}{2L}$$
.

- Аккуратно доказав все условия, мы заключаем, что теорема о сжимающих отображениях применима и такое $x: \bar{I} \times V \to \mathbb{R}^n$ существует.
- Для доказательства единственности, хочется сказать, что у сжимающего отображения всего одна неподвижная точка. Проблема в том, что $\hat{x}|_{I \cap J}$ не обязано лежать в $I \cap J$.

Итак, давайте выберем компактно вложенное $J'\subset J$ так, чтобы $\hat{x}|_{\overline{I\cap J'}}\notin E_{I\cap J'}$. С другой стороны, $|\hat{x}(t_0)-x_0(\lambda_0)|=|x_0(\hat{\lambda})-x_0(\lambda_0)|\leqslant \frac{\varepsilon}{2}$. Тогда существует такой интервал $K\subset I\cap J'$, содержащий t_0 такой, что $\hat{x}|_{\bar{K}}\in E_{K,\varepsilon}\backslash E_{K,\frac{5}{6}\varepsilon}$. Но тогда $\hat{x}|_{\bar{K}}$ — неподвижная точка $\varphi_{\lambda}:E_{K,\varepsilon}\to E_{K,\varepsilon}$, а значит, $\hat{x}|_{\bar{K}}\in E_{K,\frac{5}{6}\varepsilon}$.

Поскольку всевозможные J^\prime покрывают весь J, то единственность доказана.

3 Лекция (10.09.19)

Продолжение решений. Тут мы будем доказывать, что на самом деле у задачи Коши существует единственное не продолжимое решение, а все остальные решения — это его ограничения.

Глобальная теорема о единственности. Пусть $x^{(j)}:I_j\to\mathbb{R}^n,\ j=1,2,$ решения задачи Коши

$$\begin{cases} \dot{x} = F(x,t) \\ x(t_0) = x_0 \end{cases}.$$

Тогда $x^{(1)}(t) = x^{(2)}(t)$ при $t \in I_1 \cap I_2$.

Доказательство. Предположим, что существует $t > t_0$, для которого $x^{(1)}(t) \neq x^{(2)}(t)$. Тогда множество всех таких t-T — непусто и имеет inf $T=\tau$.

Заметим, что $\tau > t_0$ (по теореме о единственности в некоторой окрестности t_0 все решения совпадают, следовательно, T отделено от τ).

Заметим еще, что $x^{(1)}(\tau)=x^{(2)}(\tau)$ (в противном случае по непрерывности $x^{(j)}$ это не инфинум).

Теперь рассмотрим решения другой задачи Коши:

$$\begin{cases} \dot{x} = F(x,t) \\ x(\tau) = y_0 \end{cases}, \text{ где } y_0 = x^{(1)}(\tau) = x^{(2)}(\tau).$$

Оно существует и единственно в некоторой окрестности τ , тогда τ не инфинум.

Теорема о существовании максимального решения. Существет такое $x^*: I^* \to \mathbb{R}^n$ — решение задачи Коши, что для любого другого ее решения $\hat{x}: \hat{I} \to \mathbb{R}^n$ верно, что $\hat{I} \subset I^*$ и $\hat{x} = x^*|_{\hat{I}}$.

Доказательство. Определим I^* как множество всех точек, в окрестности которых существует решение. Оно открыто, как объединение открытых множеств. В каждой точке этого множества определим x^* как \hat{x} для которого в окрестности этой точки существует решение. Все корректно по предыдущей теореме.

Теорема о неограниченности. Пусть $f, f_x^* \in C(\Omega), x : I \to \mathbb{R}$ — максимальное решение. Тогда для любого компакта $K \subset \Omega$ существует такое $t > t_0$, что $(x(t), t) \notin K$.

Доказательство. Выберем единое для всех точек компакта ε , такое, что существует решение на $(t-\varepsilon,t+\varepsilon)$ (этого можно добиться, поскольку мы на компакте). Тогда максимальное решение выбьется из компакта.

Упражнение. Существует интервал $(\sup I - \delta, \sup I)$, значения на котором лежат вне компакта.

Определение 3.1. Оператором Коши (оператором сдвига) называется $\mathcal{X}_{t_0,t_1}(x_0) = y(t_1)$.

Свойства:

- $\mathcal{X}_{t,t} = Id;$
- $\mathcal{X}_{t_1,t_3} = \mathcal{X}_{t_2,t_3} \circ \mathcal{X}_{t_1,t_2}$.

Лемма 3.1. Для любой точки $(t_0, x_0) \in \Omega$ существует такая окрестность $B_{P\delta}(t_0)$, что $\mathcal{X}_{t_0,t}$ — локальный гомеоморфизм.

Теорема 3.1. Для любого отрезка $[t,s]\in\Omega$ $\mathcal{X}_{t_0,t}$ — локальный гомеоморфизм.

Доказательство. По лемме для любой точки отрезка существует интервал, в котором это верно. У этих интервалов есть конечное подпокрытие. \Box

4 Сразу две лекции (17.09.19)

Автономные дифференциальные уравнения: $\dot{x} = f(x)(*)$ — не зависит от t.

Предложение 4.1. Пусть $\hat{x}: I \to \mathbb{R}^n$ — решение автономного дифференциального уравнения (*). Тогда $\tilde{x}(t) = \hat{x}(t+a)$ — тоже решение (*).

Доказательство. Действительно, $\frac{d\tilde{x}}{dt} = \frac{d\hat{x}(t+a)}{dt} = f(\hat{x}(t)).$

Следствие 4.1. Для автономного дифференциального уравнения $\mathcal{X}_{t,s} = \mathcal{X}_{t+a,s+a}$. Определение 4.1. Потоком дифференциального уравнения (*) называется функция $g^t = \mathcal{X}_{0.t}$.

Если $\mathcal{X}_{0,t}$ определено при всех t,x, то $\{q^t\}$ — группа $t\in\mathbb{R}$ гомеоморфизмов.

Линейные дифференциальные уравнения. $\dot{x} = A(t)x(**), x \in \mathbb{R}^n, A$: $I \to Mat_{n \times n}(\mathbb{R}).$

Теорема 4.1. Пусть A непрерывно по t, тогда любое решение дифференциального уравнения (**) определено при всех $t \in I$.

Доказательство. Поскольку f(x,t) = A(t)x, то f, f'_x непрерывны, поэтому теорема о существовании и единственности применима.

Пусть $\hat{x}: J \to \mathbb{R}^n$ — максимальное решение (**).

Предположим, что supJ < supI. Выберем $t_0 \in J$, $t_1 \in (supJ, supI)$.

Пусть $C = \max_{t \in [t_0,t_1]} ||A(t)||$. Рассмотрим функцию $y(t) = e^{-Ct}\hat{x}(t)$. Тогда $\dot{y} = -Ce^{-Ct}\hat{x} + e^{-Ct}A(t)\hat{x} = (-CE + A(t))\hat{y}$.

$$-Ce^{-Ct}\hat{x} + e^{-Ct}A(t)\hat{x} = (-CE + A(t))\hat{y}.$$

$$\frac{d}{dt}(||y||^2) = 2(y, \dot{y}) \le 0.$$

Пусть $|x(t_0)| \leq r$.

Рассмотрим компакт

$$\mathcal{K} = \{(x,t) \mid t \in [t_0, t_1], |x| \leqslant re^{c(t-t_0)} \}.$$

По уже доказанному $e^{-Ct_0}|\hat{x}(t_0)| \leq e^{-Ct}|\hat{x}(t)|$. Таким образом, кривая целиком лежит в компакте, что противоречит теореме о продолжении за компакт.

Касательное пространство к \mathbb{R}^n (Это я писала в сладких.)

Геометрический взгляд на дифференциальные уравнения.

Автономное дифференциальное уравнение — векторное поле.

Решение дифференциального уравнения — траектория/орбита.

Определение 4.2. Векторное поле — это правило, сопоставляющее каждой точке некоторой области вектор $v = \dot{x} = f(x)$.

Лемма 4.1. Векторное поле не зависит от выбора системы координат.

Доказательство. x'^i — другая система координат. Нужно расписать производную сложной функции...

5 Лекция (23.09.19)

Теорема 5.1. Решения (*) — это

- **(1)** если f(a) = 0, то x(t) = a;
- (2) остальные решения определены на интервалах, где $f \neq 0$ и $t(x) t(x_0) = \int_{x_0}^x \frac{d\varepsilon}{f(\varepsilon)}$.

Доказательство. Нетрудно убедиться что это решение. Рассмотрим какое-то решение, содержащее точку (x_0,t_0) в одной из полос. Если это решение не пересекает полосы, мы уже победители. Предположим, пересекло. Тогда в точке пересечения у задачи Коши два решени

Автономные системы на плоскости.

Теорема 5.2. Решения системы $\begin{cases} \dot{x} = f(x,t) \\ \dot{y} = g(x,t) \end{cases}$ это в точности решения

 $\dfrac{dy}{dx}=\dfrac{g(x,y)}{f(x,y)}$ (ДД) кроме случаев, когда $x(t)=x_0,\ y(t)=y_0$ и $f(x_0,y_0)=g(x_0,y_0)=0.$

Доказательство. Пусть $\Omega = \{(x,y) \mid (f(x,y),g(x,y)) = (0,0)\}$. Если решение (\mathscr{D}) лежит в Ω при некотором $t=t_0$, то оно лежит там целиком, иначе получаем противоречие с единственностью решения.

Если $\dot{x}(t_0) \neq 0$ (без ограничения общности это так), то локально t=t(x). $\frac{dt}{dx}(x_0)=\frac{1}{\dot{x}(t_0)}.$

$$\frac{dy}{dx}|_{x_0} = \frac{d(y(t(x)))}{dx}|_{x_0} = \dot{y}(t_0)\frac{dt}{dx}|_{x_0} = \frac{\dot{y}(t_0)}{\dot{x}(t_0)} = \frac{g(x_0, y_0)}{f(x_0, y_0)}.$$

Обратно, пусть γ — решение (\mathscr{D}). $(x_0, y_0) \in \gamma$, локально y = y(x). Пусть (x(t), y(t)) — такая параметризация, при которой $\dot{x} = f(x(t), y(t))$. Это локальное решение (\mathscr{D}).

Пусть $T = \{t \mid (x(t), y(t)) \in \gamma\}$. Это множество одновременно открыто (очевидно), замкнуто (по непрерывности) и непусто (содержит начальную точку). Таким образом, T — совпадает со всем интервалом существования.

6 Лекция (01.10.19)

Определение 6.1. $\mathcal{A}u\phi\phi$ еренциальной 1-формой называется задание в каждой точке некоторого элемента кокасательного пространства $T_n^*\mathbb{R}^n$.

Теорема 6.1. Пусть $\omega = df$. Тогда решения $\omega = 0$ — это гладкие линии уровня функции $f\left(F_c := \left\{x \mid f(x) = c\right\}\right)$.

Доказательство. Это вроде понятно.

Kaк строить f?

Например, выберем какой-то путь γ . $f(p)-f(p_0)=f(\gamma(1))-f(\gamma(0))=\int\limits_0^1 \frac{d}{dt}f\gamma(t)|_{\tau}d\tau$ $\int\limits_0^1 d(f(\dot{\gamma(\tau)}))d\tau=\int\limits_0^1 \omega(\dot{\gamma}(\tau))d\tau.$

П

Такое определение не зависит от выбора пути. Почему? Достаточно проверить, что для γ — цикла интеграл зануляется, тогда определение корректно.

Действительно,
$$\int\limits_0^{\tau}\omega(\dot{\gamma}(\tau))d\tau=\int\limits_{\gamma}(a(x,y)dx+b(x,y)dy)=\pm\int\limits_{D}(\frac{\partial b}{\partial x}-\frac{\partial a}{\partial y})dxdy=0,$$

где D — внутренность цикла. Последнее равенство называется формулой Грина-Стокса, нам было предложено в это поверить, но будет на гладких.

Определение 6.2. Форма ω *точна*, если $\omega = df$ для некоторого f.

Определение 6.3. ω — замкнута, если $\frac{da}{dy} = \frac{db}{dx}$.

Предложение 6.1. Из точности следует замкнутость.

Теорема 6.2. Если форма ω достаточно гладкая, определена в односвязной области и замкнута, то она точна.

7 Лекция (08.10.19)

Пусть $A:I\to Mat_{n\times n}$ непрерывно. $\dot{x}=A(t)x$ (*), где x-n-мерный вектор, — линейная однородная система.

Пусть \mathfrak{X} — множество всех решений (*). Очевидно, что \mathfrak{X} — векторное пространство.

Лемма 7.1. dim $\mathfrak{X}=n$, для любого $\hat{t}\in I$ отображение $\mathfrak{X}\xrightarrow{\varepsilon_{\hat{t}}}\mathbb{C}^n, \ x\mapsto x(\hat{t})$ изоморфизм.

Доказательство. Это сюръекция. Следует из теоремы о **существовании** и единственнности.

Это инъекция. Следует из теоремы о существовании и единственнности.

Определение 7.1. Фундаментальная система решений (ΦCP) — базис в пространстве решений.

Определение 7.2. Фундаментальная матрица решений (Φ MP) — матрица, составленная из Φ MP как из вектор-столбцов.

$$M(t) = (x_1(t), \dots, x_n(t)).$$

По условию $\dot{M} = AM$.

Определение 7.3. Определитель Вронского это определитель Φ MP $W(t) = \det M(t)$.

Лемма 7.2.
$$\dot{W}(t) = \sum_{i=1}^{n} \det(x_1(t), \dots, x_{i-1}(t), \dot{x}_i(t), x_{i+1}(t), \dots, x_n(t)).$$

Доказательство. Нужно расписать производную по определению и просто много раз вычесть и добавить одно и то же.

Теорема. Формула Лиувилля-Остроградского. $\dot{W}(t) = tr A(t) \cdot W(t).$

 \Box

Доказательство. Пусть при $t=t_0$ выполнено $M(t_0)=E$. Тогда $\dot{W}(t_0)=\sum a_{ii}(t_0)=tr A(t_0)$, по предыдущей лемме.

Пусть $M(t_0)$ — произвольная матрица. Тогда $\hat{M}(t) = M(t)M^{-1}(t_0)$. Применяя предыдущий случай получаем требуемое.

Неоднородные линейные дифференциальные уравнения.

$$\dot{x}(t) = A(t)x + b(t) \ (\heartsuit).$$

Чтобы решить это ДУ, нужно сначала решить вспомогательное однородное уравнение.

Пусть $x_1(t), ..., x_n(t) - \Phi$ СР.

Тогда общее решение (\heartsuit) нужно искать в виде $x(t) = c_1(t)x_1(t) + \ldots + c_n(t)x_n(t)$.

Если решение такого вида подставить в (\heartsuit) и сократить подобные, получится уравнение $b(t) = \sum_{i=1}^n \dot{c}_i(t) x_i(t)$. Таким образом, коэффициенты можно найти, если проинтегрировать $M^{-1}(t)b(t)$.

Линейные уравнения n-ого порядка.

$$x^{(n)} + \ldots + a_0(t) = 0$$
 (\spadesuit)

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \dots & -a_{n-1} \end{pmatrix}.$$

Замечание 7.1. Аналогично тому, как делали раньше, очевидно заключаем, что пространство решений (\spadesuit) — векторное.

8 Лекция 9 (15.10.19)

В этой лекции нас еще раз научили решать линейные рекурренты и показали, что линейные ДУ с постоянными коэффициентами та же малина.

9 Сразу две лекции (29.10.19)

Определение 9.1.
$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$$
.

Теорема 9.1. $e^{At} - \Phi MP$.

Матричная норма $||A|| = \sup \frac{Av}{v}$.

Эта норма зависит от нормы на векторном пространстве. $||v||_1 = \sum |v_i|, ||v||_{\infty} = \max |v_i|.$

П

Предложение 9.1.
$$||A||_1 = \max_j \sum_i |a_{ij}|, ||A||_\infty = \max_i \sum_j |a_{ij}|.$$

Доказательство. Это простая проверка.

Лемма 9.1. Ряд $\sum \frac{A^k}{k!}$ сходится даже абсолютно.

Доказательство. Абсолютно это обычная экспонента.

Рабочая схема для нахождения матричной экспоненты. Способ 1.

• Пусть $\alpha(\lambda) = \prod_{i=1}^s (\lambda - \lambda_i)^{m_i}$ — минимальный многочлен (или любой многочлен, аннулирующий матрицу).

• Напишем систему

$$Q_t^{\ell}(\lambda_i) = \frac{d^{\ell}}{(d\lambda)^{\ell}}|_{\lambda = \lambda_i}(e^{\lambda t})$$
$$\ell = 0, 1, \dots, m_i - 1$$
$$i = 0, \dots, s$$

- У такой системы есть решение многочлен ($\deg \alpha 1$)-ой степени $Q_t(\lambda)$.
- Тогда матрица $Q_t(A)$ искомая экспонента.

Способ 2.

- Приведем матрицу к жордановой нормальной форме: $A = CJC^{-1}$, где J- матрица в ЖН Φ , а C- матрица перехода, составленная из вектор-столбцов соответствующего жорданова базиса, записанных в исходном.
- Для ЖНФ считать экспоненту просто (такую матрицу нужно представить в виде суммы диагональной и нильпотентной, для каждой из них экспонента вычисляется легко, потом эти экспоненты нужно перемножить.) На самом деле, в этом пункте мы пользуемся леммой, которая будет сформулирована ниже.
- Теперь воспользуемся равенством $e^{At} = Ce^{Jt}C^{-1}$ и победим.

Тут я про теорему Арцела-Асколи и Пеано не поняла... Лекпии 12–17.