2.6 Exercícios

2.1 Apresente a lista dos elementos para os seguintes conjuntos:

(a)
$$C_1 = \{x \mid x \in \mathbb{N} \land x < 7\}$$
 (e) $C_5 = C_1 - C_2$

(e)
$$C_5 = C_1 - C_2$$

(b)
$$C_2 = \{x \mid x \in \mathbb{N} \land 3 < x < 10\}$$
 (f) $C_6 = C_2 - C_1$

(f)
$$C_6 = C_2 - C_3$$

(c)
$$C_3 = C_1 \cup C_2$$

(g)
$$C_7 = \{x \mid x \neq x\}$$

(d)
$$C_4 = C_1 \cap C_2$$

(h)
$$C_8 = (C_1 \cup C_2) - (C_1 \cap C_2)$$

- 2.2 Dado o conjunto $A = \{a, b, c, d\}$, responda se as seguintes afirmações são verdadeiras ou falsas:
 - (a) $a \in A$
 - (b) $\{a\} \in A$
 - (c) $a \subset A$
 - (d) $\{a\} \subset A$
- $2.3\,$ O conjunto potência de um dado conjunto C é definido como o conjunto que contém todos os possíveis subconjuntos de C. Dado o conjunto $C_1 =$ $\{1, 2, 3\},\$
 - (a) Qual é o conjunto potência de C_1 ?
 - (b) Apresente uma partição para o conjunto potência de C_1 tal que cada partição contenha apenas subconjuntos com o mesmo número de elementos.
- 2.4 Para o alfabeto binário $B + \{0, 1\}$, apresente exemplos de sentenças para cada uma das seguintes linguagens:

(a)
$$\{0^n 1^m 0^n | m > 0 \land n > 0\}$$

(b)
$$\{1^n 0^{2n} | n > 0\}$$

(c)
$$\{(01)^n 0^n | n \ge 0\}$$

- 2.5 Represente cada uma das linguagens da questão anterior por meio de uma gramática.
- 2.6 Dada a gramática G_1 (Seção 2.3), mostre que as seguintes formas sentenciais são válidas, ou seja, podem ser obtidas por uma sequência de derivações a partir do símbolo sentencial:
 - (a) 000Z111
 - (b) 01
 - (c) 00001111
- 2.7 Considere a gramática $G_a = (\{a\}, \{S, N, Q, R\}, P, S)$, com o conjunto de produções P com os elementos

$$S \to QNQ$$

$$QN \to QR$$

$$RN \to NNR$$

$$RQ \to NNQ$$

$$N \to a$$

$$Q \to \varepsilon$$

- (a) Qual é a classificação de G_a pela hierarquia de Chomsky?
- (b) Dê quatro exemplos de sentenças que podem ser derivadas a partir do símbolo sentencial S.
- (c) A partir de sua resposta para o item anterior, descreva informalmente qual é a linguagem representada por essa gramática.
- 2.8 Apresente com a notação formal de conjuntos a gramática regular equivalente à expressão regular (aa)*. Dê três exemplos de sentenças válidas na correspondente linguagem regular.
- 2.9 Apresente com a notação formal de conjuntos a gramática regular equivalente à expressão regular a(b|c)*. Dê três exemplos de sentenças válidas na correspondente linguagem regular.

- 2.10 Apresente com a notação formal de conjuntos a gramática regular equivalente à expressão regular ba|a*b. Dê três exemplos de sentencas válidas na correspondente linguagem regular.
- 2.11 Apresente com a notação formal de conjuntos a gramática regular equivalente à expressão regular x*(y|z)z*. Dê três exemplos de sentencas válidas na correspondente linguagem regular.
- 2.12 Apresente, para a seguinte gramática expressa em notação BNF, na qual o símbolo sentencial é <S>:

- (a) A notação formal de conjuntos.
- (b) A representação na notação de diagrama sintático.
- (c) Três exemplos de sentenças da linguagem descrita pela gramática, com a sequência de derivações para cada caso.
- 2.13 Considere a gramática $G_b = \{V_t, V_n, P, S\}$, com $V_t = \{a, b\}$, $V_n = \{A, S\}$ e as produções $P = \{S \to A, A \to aAb, A \to ab\}.$
 - (a) Qual é a classificação dessa gramática pela hierarquia de Chomsky?
 - (b) Represente a gramática em notação BNF.
 - (c) Represente a gramática em diagramas sintáticos.
 - (d) Apresente uma sequência de derivações que resulte na sentença *aabb*.
- 2.14 Considere a gramática G_c com $V_n = \{S, A, B, C\}, V_t = \{x, y, z\}$, símbolo sentencial S e produções $S \to AxByC$, $A \to xAx$, $A \to \varepsilon$, $B \to By$, $B \to \varepsilon$, $C \to zAz$.
 - (a) Represente a gramática em notação BNF.
 - (b) Represente a gramática em notação de diagramas sintáticos.
 - (c) Apresente uma derivação para a sentença x x x y y z x x z.

2.15 Considere a gramática $G_d = (\{x, y, +, \times, (,)\}, \{E\}, P, E)$ onde P é o conjunto com as seguintes produções:

$$E \to E + E$$

$$E \to E \times E$$

$$E \to (E)$$

$$E \to x$$

$$E \to y$$

- (a) Classifique a gramática pela hierarquia de Chomsky.
- (b) Represente a gramática em notação BNF.
- (c) Represente a gramática em notação de diagramas sintáticos.
- (d) Apresente duas derivações distintas cujo resultado seja a sentença $x + x \times y$.
- $2.16\,$ A gramática G_e tem a seguinte descrição na notação BNF:

```
<line> ::= [<line><term>]
<term> ::= <expr>newline
<expr> ::= integer | -<expr>
<expr> ::= <expr>+<expr> | <expr>-<expr>
<expr> ::= <expr>*<expr> | <expr>/<expr></pr>
```

- (a) Apresente a representação dessa gramática em termos da notação formal de conjuntos.
- (b) Apresente a representação dessa gramática em notação de diagramas sintáticos.
- (c) Apresente dois exemplos de sentenças produzidas por essa gramática.
- 2.17 Uma gramática livre de contexto G_f , que tem S como o símbolo sentencial, tem as seguintes produções:

$$S \rightarrow aSz$$
 $S \rightarrow TU$ $T \rightarrow bT$ $T \rightarrow x$ $U \rightarrow Ux$ $U \rightarrow b$

- (a) Apresente a representação formal para essa gramática.
- (b) Apresente três sentenças na linguagem representada por essa gramática com as correspondentes seqüências de derivações.