Lab 8: Hooke's Law With Multiple Springs

Name: Hooke's Law With Multiple Springs

Class: **PHYS 2125 (15921)**

Date: 2025-03-07

Objective

To determine the validity of net spring constant of experimental values with the theoretical values.

Equipment

- (1) small A-base
- (1) long metal rod
- (1) clamp
- (1) short rod
- (1) spring set
 - lacktriangle (3) spring with unknown k value
 - (1) 5g hook
- (1) 40g weight
- (1) 1 meter ruler

Theory

$$F_a = M_H \cdot g$$

$$F_s = -kx$$

$$M_H g = k x$$

$$K=rac{M_H g}{x}$$

where

g is the gravitational constant (9.8m/s).

 F_a is the force of acceleration

 ${\cal F}_s$ is the spring force

k is the spring constant

x is the displacement of the hanging weight.

 M_h is the mass of the hook (5g)

 ${\it M}_a$ is the mass added to the hook with each trial.

 M_H is the total mass of hanging block including the hook and added weight ($M_H=M_h+M_a$)

Critically, when two multiple springs are connected in series then the effective spring constant is the reciprocal of the sum of the reciprocals, e.g. with springs k_1 and k_2 in series the $k_{effective} = (1/k_1 + 1/k_2)^- 1$.

Procedure

The following procedure was followed.

Initial Setup

The pendulum was constructed as follows.

- 1. A small cast iron A-base was placed on the table.
- 2. A 45cm steel rod was secured into the A-frame, raised up as much as possible to maximize the height.
- 3. The vertical mounting side of a steel clamp was secured at the very top of the rod.
- 4. A 15cm rod was attached to the horizontal side of the same steel clamp, to the far end of the smaller rod.
- 5. Three different springs were selected and labeled for later identification.

Trial (completed for every combination of springs)

- 1. The spring(s) were suspended from the rod.
- 2. The 5g hook was suspended from the bottom spring.
- 3. A 40g weight was added to the hook, and x was recorded.

Data

\$	$M_a \ \ lacktriangle$ (kg)	(\mathbf{m})	$M_H \ lacktrianglet$ (kg)	$k_e \ \ lacktriangle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} k_e \\ \text{calculated} & \\ \text{(N/m)} \end{array}$	Error *
Springs 🔷	*	♦	*	♦	A	A
1	0.04	0.0265	0.045	16.642	16.642	
2	0.04	0.0075	0.045	58.800	58.800	
3	0.04	0.0740	0.045	5.959	5.959	
1 & 2	0.04	0.0490	0.045	9.000	12.971	30.614448
1 & 3	0.04	0.1040	0.045	4.240	4.388	3.372835
2 & 3	0.04	0.0870	0.045	5.069	5.411	6.320458
1 & 2 & 3	0.04	0.1370	0.045	3.219	4.083	21.160911

Calculations

See the preceeding Theory and Data table sections.

Results

The results are evident in the data table above.

Discussion

That data isnt great.