Final Exam

Due Dec 12 at 11:59pm **Time Limit** 75 Minutes

Points 45

Questions 15

Available Dec 9 at 12am - Dec 12 at 11:59pm 4 days

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	59 minutes	32 out of 45

(!) Correct answers are hidden.

Score for this quiz: **32** out of 45 Submitted Dec 9 at 5:16pm This attempt took 59 minutes.

Question 1	3 / 3 pts
Consider the fitbit mobile application, that measures your activity, heart rate and sleep and shows it to you. Is this a Cyber Physical	l System?
○ True	
False	

Question 2	3 / 3 pts
Consider the hydro cooling unit of a nuclear power plant that changes the injection rate Physical System?	of cold water based on reaction rate. Is this a Cyber-
True	
○ False	

Question 3	3 / 3 pts
What is the data provenance problem?	
It is a problem where data source cannot be identified to be trustworthy	
It is a data integrity problem where some entity has tampered with the data during wireless communication	
It is an encryption problem, where data is sent in plaintext and is stolen	
It is a type of presentation attack where false data is entangled with valid data It is a type of presentation attack where false data is entangled with valid data	

Question 4	3 / 3 pts
What are the advantages of Fog server over cloud server?	
Communication to fog server is faster than cloud server	
fog server has pre-trained machine learning models that can accessed faster than the cloud	
☐ It is never advantageous to use fog server over cloud. We only use fog server to test applications but in the real world we always use cloud	
Fog servers tend to be more available than cloud servers	

Question 5 3 / 3 pts

Consider the following scenario: A mobile app (ChargeBuddy) has been developed that an Electric Vehicle owner can use to wirelessly search for a local charging station (CGS). The app lists the nearby CGSs, along with providing relevant information such as current price of charging, and distance from owner's current location. The EV owner selects the preferred CGS and undertakes responsibility to reach the chosen CGS within a specified time-period. On reaching the chosen CGS, the EV owner starts charging the EV.

Please answer the following questions on how loss of privacy through hacking of the mobile app can cause the problems for the power grid.

Which action can cause the demand in a particular substation increase beyond the supply cap?

Increasing price of a given CGS

https://canvas.asu.edu/courses/99654/quizzes/780660

Final Exam:	CSE 535: Mobile	Computing (2021 Fall)

Drastically decreasing the price of CGSs in a given area	
Not showing the nearest CGS but showing the second farthest and so on	
Only showing the nearest CGS and not showing others	

Question 6	3 / 3 pts
Why do we need IP-in-IP tunneling?	
Used by the home agent to forward messages from correspondent host to care of address	
Used by foreign agent to send acknowledgment back to home agent	
Used by mobile host to communicate with foreign agent	
Used by correspondent host to communicate with home agent	

Consider that the ChargeBuddy app now uses historical data to identify busiest CGS in a given smart city. Whenever an EV reaches a CGS it uploads a message to the ChargeBuddy server with its location and time of arrival. This data is used to determine busiest CGS. The smart grid uses the busiest CGS each day and parameterizes power supply to meet the power demands of the CGS that is predicted to be busiest that day. The prediction is performed using the same principle of a recommendation system which ranks the CGS with the most busiest as the top recommendation. An attacker now introduces spurious training data into this recommendation system with false labels of CGS locations. How will this false data injection affect the power grid?

A wrong classification of busiest CGS can be induced by tampering the training process, which will in-turn cause overload in the truly busiest CGS. It will not affect the power grid because it always provisions for the peak load on any substation.

It will not affect the power grid because it always provisions for the busiest CGS, which are costly and bad for the environment.

It will stop EVs from using other CGS

Question 8	3 / 3 pts
Is heart rate a valid biometric (select the correct reason also)?	
Yes, because it comes from human body	
Yes, because heart rate is unique for a given person	
No, because it varies between individuals	
No, because it varies over time and there is no unique pattern	

Unanswered

Question 9 0 / 3 pts

We are in the age of semi-autonomous cars, where the driver is in control most of the time, but during critical scenarios when the system understands that the driver is incapable of taking actions, the car takes over the decision making. In such a system, consider a brain mobile interface application that assists drivers in a freeway by monitoring their drowsiness. The driver wears a Neurosky headset that senses brain signals (EEG) at 500 Hz. Each brain data point is a 32 bit floating point number. The brain signal is collected by a smartphone and sent to a server, where complex machine learning algorithms are employed to determine the drowsiness level of the driver. In addition, the car is equipped with sensors on the wheel and 360° camera, which are again interfaced with the smartphone of the individual. The data rate from the sensors is 2 kbps, while that from the camera is 200 kbps. Using such data the driver assist system also attempts to predict impending accidents. If the driver is detected to be drowsy and an impending accident is predicted, the driver assist system should react with some actuation, either automatic braking or steering. The driver assist system only has 3 seconds to decide after collecting 5 seconds worth of data. There are two options for performing all the related computation: a) use a data center, and b) use a fog server such as a laptop with internet connectivity that is travelling with the driver. The data center upload speed is 1 Mbps, while that of the fog server is 3 Mbps. However, computation speed of the data center is 750 kbps, i.e., it can finish the computation on 750 kb of data in 1 second, on the other hand the fog server has a computational speed of 400 kbps.

What is the communication time to cloud and fog server (write two numbers in the format X,Y round up to the nearest integer in ms)?

Partial

Question 10 2 / 3 pts

That Example 2000 Mostle Companing (2021 Fall)	
The eternal problem with deep learning systems is the following question:	
"How much data do we need to ensure that a deep learning system does not overfit?"	
What factors are relevant for an answer to this question?	
Complexity (number of layers, or number of neurons in a layer)	
Sensor noise while collecting data	
Feature extraction methods before providing the input to the deep learning system	
The correctness of class labels	

Incorrect

Question 11 0 / 3 pts

We are in the age of semi-autonomous cars, where the driver is in control most of the time, but during critical scenarios when the system understands that the driver is incapable of taking actions, the car takes over the decision making. In such a system, consider a brain mobile interface application that assists drivers in a freeway by monitoring their drowsiness. The driver wears a Neurosky headset that senses brain signals (EEG) at 500 Hz. Each brain data point is a 32 bit floating point number. The brain signal is collected by a smartphone and sent to a server, where complex machine learning algorithms are employed to determine the drowsiness level of the driver. In addition, the car is equipped with sensors on the wheel and 360° camera, which are again interfaced with the smartphone of the individual. The data rate from the sensors is 2 kbps, while that from the camera is 200 kbps. Using such data the driver assist system also attempts to predict impending accidents. If the driver is detected to be drowsy and an impending accident is predicted, the driver assist system should react with some actuation, either automatic braking or steering. The driver assist system only has 3 seconds to decide after collecting 5 seconds worth of data. There are two options for performing all the related computation: a) use a data center, and b) use a fog server such as a laptop with internet connectivity that is travelling with the driver. The data center upload speed is 1 Mbps, while that of the fog server is 3 Mbps. However, computation speed of the data center is 750 kbps, i.e., it can finish the computation on 750 kb of data in 1 second, on the other hand the fog server has a computational speed of 400 kbps.

Suppose the failure rate of the cloud server is 0.1. This means that 10% of the time the cloud will send a failure message back to the driver assist system. At this time it will have to again transfer all information to the cloud and redo the computation. The time taken to communicate that a failure has occurred is 210 ms. What is the average total time taken for communication and computation to be performed in the cloud? (write one number and round up to the nearest integer in ms).

2,723

Question 12	3 / 3 pts
Why do we use context models?	
☑ Easier storage of raw data	
Faster knowledge extraction	
Can be used for context prediction	
Improve reliability of sensors	

Incorrect

What are the advantages of Registration area based location information as opposed to cell based location information? Lesser update cost Lesser handoff cost Lesser search cost Lesser registration cost

Question 14	3 / 3 pts
What is the ground Truth Challenge?	
No ground truth available for test data in a Machine learning system	
Ground Truth of Training data cannot be trusted	
No ground truth available for both training and test data	
 Training data has noise 	

https://canvas.asu.edu/courses/99654/quizzes/780660

Incorrect

0 / 3 pts

Quiz Score: 32 out of 45