Mathematical Logic Assignment 2

522030910158 Song Yuanyi

October 2024

- 1. Suppose Q is the algorithm to list all members of the set Q. P contains all first element of the pairs in Q. Therefore, we can construct an algorithm to list all members of the set P from Q.
 - 1. for $i := 0, 1, 2, \dots$
 - (a) run Q i + 1 times to get a list $\{(a_{11}, a_{12}), \dots, (a_{i+1,1}, a_{i+1,2})\}$
 - (b) print $a_{i+1,1}$
 - 2. halt when Q halts

So P is effectively enumerable.

- **2.** Assume \mathcal{A} is an algorithm for computing function f which is totally effectively computable. $\mathcal{A}(n)$ outputs f(n) for every $n \in dom(f)$. f is strictly increasing, so the number between two adjacent values f(i), f(i+1) is not in the rng(f). Then we construct the algorithm for deciding the membership in rng(f) as follows.
 - 1. give an input x, a bool flag to mark the existence of x
 - 2. for $i := 0, 1, 2, \dots$
 - (a) run $value := \mathcal{A}(n)$
 - i. if value < x, continue
 - ii. if value = x, print 'yes' and break
 - iii. if value > x, print 'no' and break

So the range of f is effectively decidable.

- 3. From the definition we know that $B = \{(m,n) | m \in A_n\}$. $A_0, A_1, \ldots, A_n, \ldots$ is effectively decidable \Rightarrow effectively enumerable, we can enumerate a table which lines are A_i and columns are outputs of enumerating. Define $A_i(j)$ is the j_{th} element in A_i . Suppose B is effectively decidable. Let $S_k = \{a_i | a_i \neq A_i(i), i = 0, 1, 2, \ldots\} \Rightarrow \forall i \in \mathbb{N} : S_k \neq A_i \text{ so } S_k \text{ is not effectively decidable.}$ Construct a subset of $B, B' = \{(m,n) | m = A_n(n), n = 0, 1, 2, \ldots\}$. B is effectively decidable so as B'. Therefore, we can construct a decidable algorithm for S_k from B'. Let correspondent deciding algorithm be $B(m,n) = A_n(m) = 1$ if $(m,n) \in B, m \in A_n$ otherwise 0, and S(m) = 1 B(m,n). $A_i(i)$ can be get because of effectively enumerable. Therefore, S(m) = 1 means $m \in S_k$ otherwise $0 \Rightarrow S$ is an deciding algorithm of membership $\Rightarrow S_k$ is effectively decidable, which makes a contradiction. In conclusion, B is not effectively decidable.
- **4.** Basic facts: A_1 : Cancer will be cured. A_2 : The cause of cancer is determined. A_3 : A new drug for cancer is found. Logical relations: $(\neg A_1)$ unless A_2 and A_3 is equal to $(\neg A_1)$ if not A_2 and A_3 . Therefore, the well-formed formula is $((\neg (A_2 \land A_3)) \to (\neg A_1))$.
 - **5.** Proof by induction:
 - Step 1: First considering about simplest situation, suppose α and β are both single sentence symbol (simplest wff) in which s = 1 and c = 0.

$$-(\alpha \wedge \beta) : s = 2 \text{ and } c = 1$$
$$-(\alpha \vee \beta) : s = 2 \text{ and } c = 1$$
$$-(\alpha \rightarrow \beta) : s = 2 \text{ and } c = 1$$
$$-(\alpha \leftrightarrow \beta) : s = 2 \text{ and } c = 1$$

We found that they all satisfy s = c + 1.

- Step 2: Then let α and β be two well-formed formula, and check four binary connectives.
 - $-(\alpha \wedge \beta)$: $c = c(\alpha) + c(\beta) + 1$ and $s = s(\alpha) + s(\beta) = c(\alpha) + 1 + c(\beta) + 1 = c + 1$ $-(\alpha \vee \beta), (\alpha \to \beta), (\alpha \leftrightarrow \beta)$ are similar to process above.
- To sum up, for any wff α , the number of occurrence of sentences symbols in α is 1 greater than the number of binary connectives.

PS: Considering about $\neg \alpha$: $s(\neg \alpha) = s(\alpha), c(\neg \alpha) = c(\alpha)$