Math 560 Project: Representation Theory

Connor Leipelt, Rapha Coutin June 2023

Contents

1	Representations	3
2	Homomorphisms of Representations	5
3	Regular and Complex Representations	7
4	Subrepresentations	8
5	Direct Sums	8
6	Maschke's Theorem	9

1 Representations

Definition 1.1: A representation of a group G is a pair (V, ρ) where V is a vector space and $\rho: G \to GL(V)$ is a group homomorphism.

Note: Because they are isomorphic, we will often use $GL_n(V)$, the set of $n \times n$ invertible matrices, in place of GL(V).

Definition 1.2: The *dimension* of a representation (V, ρ) is the dimension of V.

Definition 1.3: The *order* of a representation (V, ρ) is the order of the image of ρ . In other words, the order of a representation is the number $|im(\rho)|$.

Example 1.4: Let G be any group. We can define a one-dimensional representation of G by (V, ρ) , where V is any one-dimensional vector space and $\rho(g) = (1) \in M_{1\times 1}(\mathbb{R})$ for all $g \in G$. We call this the *trivial representation*.

Example 1.5: Let $G = \langle i \rangle = \{i, -1, -i, 1\} \subseteq \mathbb{C}$. We define a two-dimensional representation of G by (\mathbb{C}^2, ρ) , with

$$\rho(a+bi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix},$$

Example 1.6: Let G be the permutation group S_n . Then, we can define an n-dimensional representation by (V, ρ) , where $\rho(g)$ is the corresponding $n \times n$ permutation matrix. We give a more detailed example of this for S_3 in Example 2.2.

Example 1.7: Let $G = D_n$ where D_n is the dihedral group of size 2n. Take n = 4, so $G = D_8$. This can be seen as reflections and symmetries of a square. We will denote a counterclockwise rotation of $\pi/2$ as r and a symmetrical flip across the y-axis as s. We can write

$$D_8 = \langle r, s | r^4 = e, s^2 = e, rs = sr^3 \rangle$$

We can also write out all elements of D_8 .

$$D_8 = \{e, r, r^2, r^3, s, sr, sr^2, sr^3\}$$

We can create a 2-dimensional representation where $\rho(g) = A$ is the matrix such that the map $v \to Av, v \in \mathbb{R}^2$ is the associated reflection or rotation in \mathbb{R}^2 . Since reflections and and symmetries are unique to each other, we will have two $\rho(g)$ representations.

For a counterclockwise rotation of θg is:

$$\rho(g)\begin{pmatrix} \cos(2\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

For g a reflection about the line which makes angle θ with x-axis is:

$$\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

For our case of D_8 , $\theta = \pi n/2$ for rotation.

For symmetric across y-axis: $\theta = \pi/2$.

We will now list all elements of D_8 in their representation form.

Note: $\rho(g) = \rho(s)$ is reflection on x = 0, $\rho(g) = \rho(sr)$ is reflection on y = x, $\rho(g) = \rho(sr^2)$ is reflection on y = 0, $\rho(g) = \rho(s)$ is reflection on y = -x.

$$\text{For } g = 1 = e, \, \rho(e) = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \rho(r^4) = \rho(s^2)$$

$$g = r, \rho(r) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \, g = r^2, \rho(r^2) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$g = r^3, \rho(r^3) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \, g = s, \rho(s) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$g = sr, \rho(sr) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \, g = sr^2, \rho(sr^2) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\text{For } g = sr^3, \, \rho(sr^3) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

Example 1.8: Let $G = S_n$ and consider the one-dimensional representation where $\rho(g) = (\text{sign}(g))$, the sign of permutation g.

Notable Definition:

The sign of a permutation σ , denoted (sign(g)), is defined as +1 if σ is even and -1 if σ is odd.

Let's look at n=4, so $G=S_4$.

We have listed out all of the permutations of S_4 :

$$S_4 = \{e, (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142), (143), (234), (243), (1234), (1243), (1324), (1342), (1423), (1423), (1432)\}$$

The decomposition of the three cycle and four cycle elements are as follows:

Since all transposition are odd, we have 12 odd elements, and since e and composition of transpositions are even, we have 12 even elements.

Therefore all even elements can be represented as:

even =
$$(1) = \{e, (12)(34), (13)(24), (14)(23), (123), (124), (132), (134), (142), (143), (234), (243)\}$$

And all odd elements can be represented as:

odd =
$$(-1) = \{(12), (13), (14), (23), (24), (34), (1234), (1243), (1324), (1342), (1423), (1432)\}$$

This is a one-dimensional representation of S_4 of order 2.

2 Homomorphisms of Representations

Definition 2.1: A homomorphism of representations $T:(V,\rho)\to (V',\rho')$ is a linear map $T:V\to V'$ such that

$$T \circ \rho(g) = \rho'(g) \circ T \tag{1}$$

for all $g \in G$. The homomorphism of representations T is an isomorphism if the linear map T itself is an isomorphism. We say two representations are isomorphic if there exists an isomorphism between them.

Example 2.2: For this example we will be looking S_3 .

We will define:

$$S_3 = \{e, (12), (13), (23), (123), (132)\}$$
 (2)

where the parentheses signify a permutations of the given numbers following from left to right. Our goal is to find a homomorphism of representations for S_3 . To do this we define a matrix representation of S_3 as follows:

$$\rho(e) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \, \rho(12) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \, \rho(13) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\rho(23) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \, \rho(123) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \, \rho(132) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Now, we define a second representation of S_3 by $\rho'(g) = \rho(13) \circ \rho(g)$ where $\rho(g)$ is defined as above. Suppose T is a homomorphism $T: (V, \rho) \to (V, \rho')$. Since T is a homomorphism, $T \circ \rho(g) = \rho'(g) \circ T$ for all $g \in S_3$

First, let g = (23). From above we wish to determine our matrix T. To do this we look at the formula:

$$T \circ \rho(g) = \rho'(g) \circ T \tag{3}$$

Letting M(T) = $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ We plug in our values:

Note: $\rho(g)$ is e(g) = g and $\rho'(g) = (13)g$.

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

After matrix multiplication we see:

$$\begin{pmatrix} a & c & b \\ d & f & e \\ g & i & h \end{pmatrix} = \begin{pmatrix} d & e & f \\ g & h & i \\ a & b & c \end{pmatrix}$$

This means that a = d = g and b = c = e = f = h = i.

Therefore, we can write $M(T) = \begin{pmatrix} a & b & b \\ a & b & b \\ a & b & b \end{pmatrix}$

To refine our M(T) let's try this same process by letting g=(23). For $T \circ \rho(g) = \rho'(g) \circ T$ we get:

$$\begin{pmatrix} a & b & b \\ a & b & b \\ a & b & b \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a & b & b \\ a & b & b \\ a & b & b \end{pmatrix}$$

After multiplication we get: $\begin{pmatrix} b & a & b \\ b & a & b \\ b & a & b \end{pmatrix} = \begin{pmatrix} a & a & a \\ b & b & b \\ b & b & b \end{pmatrix}$

So
$$a = b$$
 and $M(T) = \begin{pmatrix} a & a & a \\ a & a & a \\ a & a & a \end{pmatrix}$

This means that our homomorphism of representations is a matrix of the form:

$$M(T) = a \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Note: T is a non-injective, non-surjective homomorphism.

Example 2.3: Let $G = S_2$. Let's define two representations, ρ and ρ' , where

$$\rho(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \, \rho(12) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \, \text{and} \, \, \rho'(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \, \rho'(12) = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix}$$

Then, since $\rho(e) = \rho'(e) = I$, any homomorphism between these representations only need satisfy $T \circ \rho(g) = \rho'(12) \circ T$. So, solving the following gives us

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow M(T) = \begin{pmatrix} \frac{3}{4}c + \frac{1}{4}d & \frac{1}{4}c + \frac{3}{4}d \\ c & d \end{pmatrix}$$

The above M(T) is the general form for any homomorphism between representations. If we take c=0 and d=1, we see $M(T)=\begin{pmatrix} \frac{1}{4} & \frac{3}{4} \\ 0 & 1 \end{pmatrix}$, an isomorphism. Thus, the T given by this matrix representation is our first view of an isomorphism between representation. Additionally, we can say that these two representations of S_2 are isomorphic.

3 Regular and Complex Representations

Definition 3.1: If X is a finite set, define the complex vector space $\mathbb{C}[X]$ of linear combinations of the elements of X:

$$\mathbb{C}[X] := \{ \sum_{x \in X} a_x x | a_X \in \mathbb{C} \}$$
 (4)

Here, addition and scalar multiplication is done coefficientwise:

$$\lambda \sum_{x \in X} a_x x + \mu \sum_{x \in X} b_x x := \sum_{x \in X} (\lambda a_x + \mu b_x) x \tag{5}$$

Definition 3.2: Let G be a finite group. Let X be the set X := G together with the action $G \times X \to X$ given by left multiplication, $g \cdot x = gx$. Then, the resulting representation is $(\mathbb{C}[X], \rho)$. This is known as the regular representation of X.

Note: Since X := G, we can drop the X and write this representation as $(\mathbb{C}[G], \rho)$.

Example 3.3: Consider the group $G = S_3$. Then, the regular representation of G is $(\mathbb{C}[S_3], \rho)$, where

$$\mathbb{C}[S_3] = \{a_1e + a_2(12) + a_3(13) + a_4(23) + a_5(123) + a_6(132) \mid a_i \in \mathbb{C}\}$$
 (6)

and $\rho(g)(x) = g \cdot x$ for all $g, x \in S_3$, which linearly extends to all of $\mathbb{C}[S_n]$ by:

$$\rho(g)(\sum_{x \in S_3} a_x x) = \sum_{x \in S_3} a_x (g \cdot x) \tag{7}$$

Example 3.4: Consider the previously given regular representation of S_3 . Now, examine the elements g = (12) and x = 2e + (13) - i(132). Then, we calculate $\rho(g)(x)$ as follows"

$$\rho(g)x = \rho(12)(2e + (13) - i(132)) = 2(12)e + (12)(13) - i(12)(132) = 2(12) + (132) - i(13)$$

4 Subrepresentations

Definition 4.1 A subrepresentation of a representation (V, ρ) is a vector space $W \subseteq V$ such that $\rho(g)(W) \subseteq W$ for all $g \in G$. Such a W is also called a G-invariant subspace. Thus, $(W, \rho|_W)$ is a representation, where $\rho|_W : G \to GL(W)$ is defined by $\rho|_W(g) := \rho(g)|_W$. An important note here is that we are not restricting the domain of ρ , but rather the domain of each $\rho(g)$.

Note 4.2: This is the textbook's notation, and it is kinda of clunky and we don't like it. They define a subrepresentation by $\rho(g)W \subseteq W$ for all $g \in G$. What this really means is $Range(\rho(g)) \subseteq W$ for all $g \in G$. In other words, the range of each $\rho(g)$ is a subspace of W. A final way we could rewrite this is $\rho(g)w \in W \ \forall w \in W$.

The best way to think about a subrepresentation is that it is a $\rho(g)$ -invariant subspace for each $g \in G$.

Definition 4.3: A subrepresentation is *proper* if $W \subsetneq V$ and *nonzero* if $W \neq \{0\}$.

Example 4.4: Consider the representation of S_2 given by (\mathbb{R}^2, ρ) , where

$$\rho(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } \rho(12) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Notice that the eigenvalues of $\rho(e)$ are $\lambda_{1,2}=1$ and the eigenvalues of $\rho(12)$ are $\lambda_1=1,\lambda_2=-1$. Then, we see $E(\lambda=1,\rho(e))=\mathbb{R}^2, \ E(\lambda=1,\rho(12))=\mathrm{span}(1,1)$, and $E(\lambda=-1,\rho(12))=\mathrm{span}(1,-1)$. Thus, the two non-trivial, proper subrepresentations are $W_1=\mathrm{span}(1,1)$ and $W_2=\mathrm{span}(1,-1)$.

Definition 4.5: A representation is (V, ρ) is *irreducible* (or *simple*) if it is nonzero and there does not exist any proper nonzero subrepresentation of V. It is *reducible* if it has a proper nonzero subrepresentation.

Proposition 4.6: For W finite-dimensional, show that $\rho(g)(W) \subseteq W$ implies $\rho(g)(W) = W$.

Proof: Let's define (V, ρ) for a group G. Suppose $W \subseteq V$ is a finite dimensional subspace and $\rho(g)(W) \subseteq W$. To show $\rho(g)(W) = W$, we need only show $\rho(g)(W) \supseteq W$. This is easy to show since $\rho(g) \in GL(V)$, meaning $\rho(g)$ is bijective. So since $\rho(g)(W) \subseteq W$, we see $dim(\rho(g)|_W) = dim(W)$. Thus, since $\rho(g)|_W$ is surjective, $\rho(g)(W) = W$.

5 Direct Sums

Definition 5.1: Given two vector spaces V_1 and V_2 , the external direct sum of V_1 and V_2 is defined $V_1 \oplus V_2 := V_1 \times V_2$. **Note:** This is a different idea from

the internal direct sum, which is the usual notion of direct sum from Linear Algebra. Here, $V_1 \oplus_{\text{int}} V_2 := V_1 + V_2$, where $V_1 \cap V_2 = \{0\}$.

Definition 5.2: Given two representations (V_1, ρ_1) and (V_2, ρ_2) , the external direct sum is the representation $(V_1, \rho_1) \oplus_{\text{ext}} (V_2, \rho_2) := (V, \rho)$ where $V = V_1 \oplus_{\text{ext}} V_2$ and $\rho(g)(v_1, v_2) = (\rho_1(g)(v_1), \rho_2(g)(v_2))$.

Definition 5.3: Given a representation (V, ρ) and subrepresentations $V_1, V_2 \subseteq V$, we say that (V, ρ) is the *internal direct sum* of $(V_1, \rho|_{V_1})$ and $(V_2, \rho|_{V_2})$ if $V = V_1 \oplus_{\text{int}} V_2$.

Definition 5.4: A nonzero representation is *decomposable* if it is a direct sum of two proper nonzero subrepresentations. Otherwise, we say the representation is *indecomposable*.

Example 5.5: Recall Example 4.4, where we have W_1 =span(1,1) and W_2 = span(1,-1). Then, we notice that span(1,1) \cap span(1,-1) = {0} so span(1,1) \oplus_{int} span(1,-1). Thus, we see our (\mathbb{R}^2 , ρ) is decomposable into (span(1,1), $\rho|_{\text{span}(1,1)}$) and (span(1,-1), $\rho|_{\text{span}(1,-1)}$).

Definition 5.6: A representation is *semisimple* or *completely reducible* if it is an (internal) direct sum of irreducible representations.

6 Maschke's Theorem

Definition 6.1: Let (V, ρ) be a representation of G and $W \subseteq V$ a subrepresentation. A complementary representation is a subrepresentation $U \subseteq V$ such that $V = W \oplus_{\text{int}} U$.

Theorem 6.2: Maschke's Theorem

Let (V, ρ) be a finite-dimensional representation of a finite group G. Let $W \subseteq V$ be any subrepresentation. Then there exists a complementary subrepresentation $U \subseteq V$.

References

- [1] Group Representation Theory, Lecture Notes Imperial College London, www.imperial.ac.uk/people/t.schedler/document/8765/lecture-notes/?lecture-notes.pdf. Accessed 16 June 2023.
- [2] Anderson, Joel (2023, June 13th) Master's Thesis, San Luis Obispo, California, United States
- [3] Tully-Doyle, Ryan(2023, June 13th) Office Hours, San Luis Obispo, California, United States