# Entretien de suivi de thèse

LIPN - Université Sorbonne Paris Nord

**Boris Eng** 

De la logique linéaire à la géométrie de l'interaction

**Correspondance de Curry-Howard.**  $A \Rightarrow B$  fonction de A vers  $B \mapsto$  exécution = élimination des coupures.

De la logique linéaire à la géométrie de l'interaction

**Correspondance de Curry-Howard.**  $A \Rightarrow B$  fonction de A vers B

→ exécution = élimination des coupures.

**Logique linéaire (Girard).**  $A \Rightarrow B = !A \multimap B$   $A, B := X_i \mid X_i^{\perp} \mid A \otimes B \mid A ?? B (MLL).$ 

De la logique linéaire à la géométrie de l'interaction

#### **Correspondance de Curry-Howard.** $A \Rightarrow B$ fonction de A vers B

→ exécution = élimination des coupures.

**Logique linéaire (Girard).**  $A \Rightarrow B = !A \multimap B$   $A, B := X_i \mid X_i^{\perp} \mid A \otimes B \mid A \nearrow B \text{ (MLL)}.$ 

$$A,B:=X_i\mid X_i^\perp\mid A\otimes B\mid A^{\mathfrak{B}}B \text{ (MLL)}.$$





De la Géométrie de l'Interaction à la Syntaxe Transcendantale

Géométrie de l'Interaction (Girard). S'abstraire des preuves. Mathématiser les réseaux.

De la Géométrie de l'Interaction à la Syntaxe Transcendantale

**Géométrie de l'Interaction (Girard).** S'abstraire des preuves. Mathématiser les réseaux. **Syntaxe Transcendantale (Girard).** 

• successeur, 4 articles informels;

De la Géométrie de l'Interaction à la Syntaxe Transcendantale

- successeur, 4 articles informels;
- introduction d'un modèle de calcul (proche de la programmation logique);

De la Géométrie de l'Interaction à la Syntaxe Transcendantale

- successeur, 4 articles informels;
- introduction d'un modèle de calcul (proche de la programmation logique);
- logique (linéaire) comme emergente du calcul.

De la Géométrie de l'Interaction à la Syntaxe Transcendantale

- successeur, 4 articles informels;
- introduction d'un modèle de calcul (proche de la programmation logique);
- logique (linéaire) comme emergente du calcul.
- → Formalisation (pour MLL) avec Thomas Seiller.

De la Géométrie de l'Interaction à la Syntaxe Transcendantale

- successeur, 4 articles informels;
- introduction d'un modèle de calcul (proche de la programmation logique);
- logique (linéaire) comme emergente du calcul.
- → Formalisation (pour MLL) avec Thomas Seiller.
- $\longrightarrow$  Usage de la GdI pour la complexité en espace du  $\lambda$ -calcul avec *Damiano Mazza*.









Formalisation naïve des étoiles et constellations



Constellation  $\Phi$  (n étoiles)  $\downarrow$ Diagrammes (connexions)  $\downarrow$ Constellation  $Ex(\Phi)$ 

Formalisation naïve des étoiles et constellations



Développement du modèle ←→ Simulation de la logique ←→ Exemples de calcul.

Formalisation naïve des étoiles et constellations



Développement du modèle ←→ Simulation de la logique ←→ Exemples de calcul.

1. Liens (conjecturés) : programmation logique, tuiles de Wang, pavages biologiques.

Formalisation naïve des étoiles et constellations



Développement du modèle ←→ Simulation de la logique ←→ Exemples de calcul.

1. Liens (conjecturés) : programmation logique, tuiles de Wang, pavages biologiques.  $[g(x), -b(x), +a(x)] + [-a(f(y)), +c(y)] \longrightarrow [g(f(y)), -b(f(y)), +c(y)].$ 

Formalisation naïve des étoiles et constellations



Développement du modèle ←→ Simulation de la logique ←→ Exemples de calcul.

1. Liens (conjecturés) : programmation logique, tuiles de Wang, pavages biologiques.  $[g(x), -b(x), +a(x)] + [-a(f(y)), +c(y)] \longrightarrow [g(f(y)), -b(f(y)), +c(y)].$ 

Formalisation naïve des étoiles et constellations



Développement du modèle ←→ Simulation de la logique ←→ Exemples de calcul.

- 1. Liens (conjecturés) : programmation logique, tuiles de Wang, pavages biologiques.  $[g(x), -b(x), +a(x)] + [-a(f(y)), +c(y)] \longrightarrow [g(f(y)), -b(f(y)), +c(y)].$
- 2. Vérification de propriétés essentielles (confluence, terminaison, ...).





Double nature, preuve = calcul + logique.



Double nature, preuve = calcul + logique.

**Calcul.** Encoder les structures de preuves  $\mathcal S$  de MLL (hyperarête = étoile).



Double nature, preuve = calcul + logique.

**Calcul.** Encoder les structures de preuves  $\mathscr S$  de MLL (hyperarête = étoile).

**Logique.**  $\mathscr{S} \sim \Phi_{\mathscr{S}}$  . Est-ce que  $\Phi_{\mathscr{S}}$  est une vraie preuve?



Double nature, preuve = calcul + logique.

**Calcul.** Encoder les structures de preuves  $\mathcal S$  de MLL (hyperarête = étoile).

**Logique.**  $\mathscr{S} \leadsto \Phi_{\mathscr{S}}$  . Est-ce que  $\Phi_{\mathscr{S}}$  est une vraie preuve?

 $\bullet\,$  Critère de Danos-Regnier : faire passer des tests  $\Phi_1,...,\Phi_n.$ 



Double nature, preuve = calcul + logique.

**Calcul.** Encoder les structures de preuves  $\mathcal S$  de MLL (hyperarête = étoile).

**Logique.**  $\mathscr{S} \leadsto \Phi_{\mathscr{S}}$  . Est-ce que  $\Phi_{\mathscr{S}}$  est une vraie preuve?

- Critère de Danos-Regnier : faire passer des tests  $\Phi_1,...,\Phi_n$ .
- $\operatorname{Ex}(\Phi_{\mathscr{S}} \uplus \Phi_i)$  satisfait une propriété  $P \longrightarrow \operatorname{orthogonalité} \Phi_{\mathscr{S}} \perp \Phi_i$ .



Double nature, preuve = calcul + logique.

**Calcul.** Encoder les structures de preuves  $\mathcal S$  de MLL (hyperarête = étoile).

**Logique.**  $\mathscr{S} \leadsto \Phi_{\mathscr{S}}$ . Est-ce que  $\Phi_{\mathscr{S}}$  est une vraie preuve?

- Critère de Danos-Regnier : faire passer des tests  $\Phi_1,...,\Phi_n$ .
- $\operatorname{Ex}(\Phi_{\mathscr{S}} \uplus \Phi_i)$  satisfait une propriété  $P \longrightarrow \operatorname{orthogonalité} \Phi_{\mathscr{S}} \perp \Phi_i$ .
- Formules par réalisabilité  $A = \{\Phi_1, \Phi_2, ...\}, A^{\perp}, A \otimes B, A ? B.$



Double nature, preuve = calcul + logique.

**Calcul.** Encoder les structures de preuves  $\mathcal S$  de MLL (hyperarête = étoile).

**Logique.**  $\mathscr{S} \leadsto \Phi_{\mathscr{S}}$ . Est-ce que  $\Phi_{\mathscr{S}}$  est une vraie preuve?

- Critère de Danos-Regnier : faire passer des tests  $\Phi_1,...,\Phi_n$ .
- $\operatorname{Ex}(\Phi_{\mathscr{S}} \uplus \Phi_i)$  satisfait une propriété  $P \longrightarrow \operatorname{orthogonalité} \Phi_{\mathscr{S}} \perp \Phi_i$ .
- Formules par réalisabilité  $A = \{\Phi_1, \Phi_2, ...\}, A^{\perp}, A \otimes B, A ? B.$
- Correction et complétude : on simule/capture bien MLL (et MLL+MIX).



Double nature, preuve = calcul + logique.

**Calcul.** Encoder les structures de preuves  $\mathcal S$  de MLL (hyperarête = étoile).

**Logique.**  $\mathscr{S} \leadsto \Phi_{\mathscr{S}}$ . Est-ce que  $\Phi_{\mathscr{S}}$  est une vraie preuve?

- Critère de Danos-Regnier : faire passer des tests  $\Phi_1,...,\Phi_n$ .
- $\operatorname{Ex}(\Phi_{\mathscr{S}} \uplus \Phi_i)$  satisfait une propriété  $P \longrightarrow \operatorname{orthogonalité} \Phi_{\mathscr{S}} \perp \Phi_i$ .
- Formules par réalisabilité  $A = \{\Phi_1, \Phi_2, ...\}, A^{\perp}, A \otimes B, A ? B.$
- Correction et complétude : on simule/capture bien MLL (et MLL+MIX).

**Soumission d'article (rejetée).** "Stellar Resolution : Multiplicatives", CSL 2020 (Été).

• Notes personnelles :

- Notes personnelles :
  - machines à compteur, automates cellulaires / à pile, machines de Turing;

- Notes personnelles :
  - machines à compteur, automates cellulaires / à pile, machines de Turing;
  - extensions informelles vers MALL: non-déterminisme, connexions interdites



- Notes personnelles :
  - machines à compteur, automates cellulaires / à pile, machines de Turing;
  - extensions informelles vers MALL: non-déterminisme, connexions interdites



- extensions informelles vers MELL : gérer la duplication/l'effacement en logique ;

- Notes personnelles :
  - machines à compteur, automates cellulaires / à pile, machines de Turing;
  - extensions informelles vers MALL: non-déterminisme, connexions interdites



- extensions informelles vers MELL : gérer la duplication/l'effacement en logique ;
- Amélioration/développement des définitions et preuves de l'article CSL2020.

- Notes personnelles :
  - machines à compteur, automates cellulaires / à pile, machines de Turing;
  - extensions informelles vers MALL: non-déterminisme, connexions interdites



- extensions informelles vers MELL: gérer la duplication/l'effacement en logique;
- Amélioration/développement des définitions et preuves de l'article CSL2020.
- Preuve de simulation des "modèles d'assemblage de tuiles abstraites" (bioinformatique).

- Notes personnelles :
  - machines à compteur, automates cellulaires / à pile, machines de Turing;
  - extensions informelles vers MALL: non-déterminisme, connexions interdites



- extensions informelles vers MELL: gérer la duplication/l'effacement en logique;
- Amélioration/développement des définitions et preuves de l'article CSL2020.
- Preuve de simulation des "modèles d'assemblage de tuiles abstraites" (bioinformatique).

Systèmes de types atypiques?

### Exploration en largeur et rédaction (début 2ème année)

- Notes personnelles :
  - machines à compteur, automates cellulaires / à pile, machines de Turing;
  - extensions informelles vers MALL: non-déterminisme, connexions interdites



- extensions informelles vers MELL : gérer la duplication/l'effacement en logique ;
- Amélioration/développement des définitions et preuves de l'article CSL2020.
- Preuve de simulation des "modèles d'assemblage de tuiles abstraites" (bioinformatique).

Systèmes de types atypiques?

Soumission d'article (rejetée). LICS 2020 (Fin automne).

Lambda-calcul et complexité en espace

**Thèse de Church-Turing.** Machines de Turing et Lambda-calcul → même "puissance".

Lambda-calcul et complexité en espace

Thèse de Church-Turing. Machines de Turing et Lambda-calcul  $\mapsto$  même "puissance". Thèse d'invariance. Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?

Lambda-calcul et complexité en espace

Thèse de Church-Turing. Machines de Turing et Lambda-calcul  $\mapsto$  même "puissance". Thèse d'invariance. Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?  $\mapsto$  Géométrie de l'interaction = exploration statique de  $\lambda$ -terme (Schöpp).

Lambda-calcul et complexité en espace

**Thèse de Church-Turing.** Machines de Turing et Lambda-calcul → même "puissance".

**Thèse d'invariance.** Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?

- $\mapsto$  Géométrie de l'interaction = exploration statique de λ-terme (Schöpp).
- $\mapsto$  relation entre  $\lambda$ Space et Space(O(f)) (stage Master 1).

Lambda-calcul et complexité en espace

**Thèse de Church-Turing.** Machines de Turing et Lambda-calcul → même "puissance".

**Thèse d'invariance.** Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?

- $\rightarrow$  Géométrie de l'interaction = exploration statique de  $\lambda$ -terme (Schöpp).
- $\mapsto$  relation entre  $\lambda$ Space et Space(O(f)) (stage Master 1).

Durant la thèse:

Lambda-calcul et complexité en espace

**Thèse de Church-Turing.** Machines de Turing et Lambda-calcul → même "puissance".

**Thèse d'invariance.** Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?

- $\rightarrow$  Géométrie de l'interaction = exploration statique de  $\lambda$ -terme (Schöpp).
- $\mapsto$  relation entre  $\lambda$ Space et Space(O(f)) (stage Master 1).

#### Durant la thèse:

• exportation vers PCF ou le  $\lambda$ -calcul CBPV.

Lambda-calcul et complexité en espace

**Thèse de Church-Turing.** Machines de Turing et Lambda-calcul → même "puissance".

**Thèse d'invariance.** Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?

- $\rightarrow$  Géométrie de l'interaction = exploration statique de  $\lambda$ -terme (Schöpp).
- $\mapsto$  relation entre  $\lambda$ Space et Space(O(f)) (stage Master 1).

#### Durant la thèse:

- exportation vers PCF ou le  $\lambda$ -calcul CBPV.
- outils catégoriques pour approximation du calcul : proto-(op)fibrations.

Lambda-calcul et complexité en espace

**Thèse de Church-Turing.** Machines de Turing et Lambda-calcul → même "puissance".

**Thèse d'invariance.** Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?

- $\rightarrow$  Géométrie de l'interaction = exploration statique de  $\lambda$ -terme (Schöpp).
- $\mapsto$  relation entre  $\lambda$ Space et Space(O(f)) (stage Master 1).

#### Durant la thèse:

- exportation vers PCF ou le  $\lambda$ -calcul CBPV.
- outils catégoriques pour approximation du calcul : proto-(op)fibrations.
- "Interacting Seems Unreasonable, in Time and Space" (Accattoli, Dal Lago, Vanoni).

Lambda-calcul et complexité en espace

**Thèse de Church-Turing.** Machines de Turing et Lambda-calcul → même "puissance".

**Thèse d'invariance.** Même "efficacité"? Comment mesurer l'espace du  $\lambda$ -calcul?

- $\rightarrow$  Géométrie de l'interaction = exploration statique de  $\lambda$ -terme (Schöpp).
- $\mapsto$  relation entre  $\lambda$ Space et Space(O(f)) (stage Master 1).

#### Durant la thèse:

- exportation vers PCF ou le  $\lambda$ -calcul CBPV.
- outils catégoriques pour approximation du calcul : proto-(op)fibrations.
- "Interacting Seems Unreasonable, in Time and Space" (Accattoli, Dal Lago, Vanoni).

Résolution stellaire  $\mapsto$  MLL  $\mapsto$  MELL  $\mapsto$   $\lambda$ -calcul. Pas d'intérêt évident...

**Rédaction d'article.** LMCS – Logical Methods in Computer Science.

• Détails de toutes les preuves, preuves de simulations :

- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;

- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;
  - modèle d'assemblage de tuiles abstraites.

- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;
  - modèle d'assemblage de tuiles abstraites.
- Résolution stellaire : transfert de données local dans un réseau (hypergraphe).



- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;
  - modèle d'assemblage de tuiles abstraites.
- Résolution stellaire : transfert de données local dans un réseau (hypergraphe).



$$[-i(w), +a(w, \mathbf{q}_0)] +$$

- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;
  - modèle d'assemblage de tuiles abstraites.
- Résolution stellaire : transfert de données local dans un réseau (hypergraphe).



$$[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] +$$

- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;
  - modèle d'assemblage de tuiles abstraites.
- Résolution stellaire : transfert de données local dans un réseau (hypergraphe).



$$[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0), +a(w, q_0), +a(w, q_0), +a(w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)$$

- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;
  - modèle d'assemblage de tuiles abstraites.
- Résolution stellaire : transfert de données local dans un réseau (hypergraphe).



$$[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] +$$

- Détails de toutes les preuves, preuves de simulations :
  - automates, machines de Turing, circuits booléens/arithmétiques;
  - modèle d'assemblage de tuiles abstraites.
- Résolution stellaire : transfert de données local dans un réseau (hypergraphe).



$$[-i(w), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_0)] + [-a(1 \cdot w, q_0), +a(w, q_0)] + [-a(0 \cdot w, q_0), +a(w, q_1)] + [-a(0 \cdot w, q_1), +a(w, q_2)] + [-a(\epsilon, q_2), accept]$$

Deux notions de types unifiées :

• types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;
- reliés par adéquation : si  $\Phi$  : A alors  $\Phi \Vdash A$ ;

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;
- reliés par adéquation : si  $\Phi$  : A alors  $\Phi \Vdash A$ ;
- interprétation en syntaxe transcendantale.

Deux notions de types unifiées :

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;
- reliés par adéquation : si  $\Phi$  : A alors  $\Phi \Vdash A$ ;
- interprétation en syntaxe transcendantale.

**Extensions possibles** 

#### Deux notions de types unifiées :

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;
- reliés par adéquation : si  $\Phi$  : A alors  $\Phi \Vdash A$ ;
- interprétation en syntaxe transcendantale.

#### **Extensions possibles**

• transposer les résultats à MELL (déjà un peu exploré)  $\mapsto \lambda$ -calcul.

#### Deux notions de types unifiées :

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;
- reliés par adéquation : si  $\Phi$  : A alors  $\Phi \Vdash A$ ;
- interprétation en syntaxe transcendantale.

#### **Extensions possibles**

- transposer les résultats à MELL (déjà un peu exploré)  $\mapsto \lambda$ -calcul.
- étendre à la logique du second ordre → System F.

#### Deux notions de types unifiées :

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;
- reliés par adéquation : si  $\Phi$  : A alors  $\Phi \Vdash A$ ;
- interprétation en syntaxe transcendantale.

#### **Extensions possibles**

- transposer les résultats à MELL (déjà un peu exploré)  $\mapsto \lambda$ -calcul.
- étendre à la logique du second ordre → System F.
- étendre à la logique du premier ordre → complexité descriptive?

### Deux notions de types unifiées :

- types primitifs (programmation f: A, calcul des séquents  $\vdash \pi: A, ...$ );
- types par réalisabilité  $t \Vdash A$  (description comportementale) avec  $A = \{t_1, t_2, ...\}$ ;
- reliés par adéquation : si  $\Phi$  : A alors  $\Phi \Vdash A$ ;
- interprétation en syntaxe transcendantale.

#### **Extensions possibles**

- transposer les résultats à MELL (déjà un peu exploré)  $\mapsto \lambda$ -calcul.
- étendre à la logique du second ordre → System F.
- étendre à la logique du premier ordre → complexité descriptive?
- application à l'étude des classes de complexité.

#### Merci d'avoir écouté ma présentation.