データロギングシステムの研究

藤井岳寛(指導教員 伊藤恒平,林道大)

1. 緒言

1.1 研究の背景

本研究室では毎年高専ロボコンに参加し,昨年まで3年連続で全国大会に出場している。今年は地区大会を優勝し,全国大会に出場することを目標とした。試合に勝つための作戦を考え,その作戦を実行できるロボットを設計・製作した。しかし,地区大会初戦で原因不明のマシントラブルに見舞われ敗退した。原因不明というのは,1)試合後は正常に動作し現象が再現されないこと。2)ロボットのデータログを記録していなかったため,状況を再現して検証が行えないこと。学校での動作試験でも原因不明の不具合に幾度が見舞われたが,現象を再現できず,対応に遅れ結果的にロボット完成が遅れた。これらのことから,ロボットのデータログを記録していれば多くの不具合を修正でき、上位入賞できたのではないかと考える。

1.2 研究の目的

今まではロボットの制御システムから設計を始め、マイコンの選定などを行ってきた.しかし、毎回そこから始めるのは大変で、時間がかかるため効率的ではない.今回ロボットの制御に使用した、Arduinoはユーザーの作ったライブラリがたくさんあるためプログラムの開発には便利である.しかし、機能を追加するにはShieldと呼ばれる基盤を重ねなければならないのは不便である.そのため、USBhostやSDカードソケットなどを備えていてArduinoに似た開発環境を使えるGR-SAKURAをメインとしたロボットのデータログを記録する機能を備えたロボット制御システムと仕様や導入方法をまとめたマニュアルを作成し、来年度以降の活動を支援する.

2. メインマイコンの選定

今回はArduinoMegaをメインとして使用した制御システムを構成したが、本当にロボコンにふさわしいマイコンは何なのかを再検討する。今年度のロボットをもとにマイコンに要求される項目を表1にまとめる。

表 1 要求スペック

項目	数	理由
デジタル	IO 16	ソレノイドや LED を使うのに多く必要
アナログ	IO 4	アナログデータが必要なアクチュエータやセンサをする場合
		に必要
PWM ピ	ン 16	サーボモータの制御に使うため
シリアルポ	ート 4	今年度は3輪オムニの制御に3つ使用したが,4輪メカナムや
		4輪オムニなどを使用するには4つ必要である
SD カードソ	ケット 1	データログを記録するために SD カード使う
USB ホス	۱ ۱	Bluetooth ドングルを使い Bluetooth 通信するため
PWM ピ シリアルポ SD カードソ	プン 16 ート 4 ケット 1	に必要 サーボモータの制御に使うため 今年度は3輪オムニの制御に3つ使用したが,4輪メカナムや 4輪オムニなどを使用するには4つ必要である データログを記録するためにSDカード使う

2.1 Arduino の性能比較

今回の高専ロボコンではライブラリが豊富であり比較的開発が簡単であるArduinoシリーズの中でSerialポートが3つあるArdinoMegaを使用したが,Arduinoの性能を調べ比較してみる。各Arduinoの性能をまとめた表2を下に示す。

表 2 Arduino スペック一覧

名前	ArduinoUNO	Arduino101	ArduinoPRO	ArduinoProMini	ArduinoMega2560
大きさ	68.6×53.4mm	68.6×53.4mm	43×18mm	101.52×53.3mm	$56 \times 25 \text{mm}$
重さ	25g		9g		37g
価格	3200	4980	1868	1243	5830
マイコン	ATmega328P	InrelCurie	ATmega328	ATmega328	ATmega2560
動作電圧	5V	3.3V	3.3or5V	5V	3.3or5V
電源電圧	7-20V	7-20V	3.35-12V	3.35-12V	6-20V
デジタル IO	14	14	14	14	54
アナログ IO	6	6	6	8	16
pwm ピン	6	4	6	6	15
シリアルポート	1	1	1	1	4
フラッシュメモリ	32kB	196kB	32kB	32kB	256kB
SRAM	2kB	24kB	2kB	2kB	8kB
EEPROM	1kB		1kB	1kB	4kB
クロック	16MHz	32MHz	8or16MHz	8or16MHz	16MHz
名前	ArduinoYUN	ArduinoDUE	ArduinoMegaADK	ArduinoEthrnet	ArduinoLeonardo
大きさ	$101.52 \times 53.3 \text{mm}$	$101.52 \times 53.3 \text{mm}$	68.6×53.3mm	68.6×53.4mm	28×65mm
重さ	36g	36g	28g	20g	9g
価格	9990	6264	8208	7676	3132
マイコン	ATmega32U4	AT91SAM3X8E	ATmega2560	ATmega328	ATmega32U4
動作電圧	5V	3.3V	5V	5V	5V
電源電圧	5V	6-16V	6-20V	6-20V	7-12V
デジタル IO	20	54	54	14	20
アナログ IO	12	12	16	6	12
pwm ピン	7	12	15	5	7
シリアルポート	1	4	4	1	1
フラッシュメモリ	32kB	256kB	256kB	32kB	32kB
SRAM	2.5kB	96kB	8kB	2kB	2.5kB
EEPROM 1kB		4kB	1kB	1kB	1kB
16MHz	84MHz	16MHz	16MHz	16MHz	16MHz

2.2 **GR** シリーズ

より汎用性の高いGRシリーズのスペックをまとめ検 討する. GRシリーズの性能をまとめた表3を下に示す.

RS485 トランシーバ

主 9	CD	7 0° W	ク一覧
₹ ₹ 3	C+R.	スヘッ	ク一覧

4 34:	CD CATZIDA	CD KARDE	CD DEACH
名前	GR-SAKURA	GR-KAEDE	GR-PEACH
大きさ	53.34×65.58mm	53.84×91.83mm	53.84×67.58 mm
価格	4640	7500	9690
マイコン	RX63N	RX64N	RZ/A1H
動作電圧	3.3V	3.3V	3.3V
電源電圧	5V	5V	5V
デジタル IO	55	29	52
アナログ IO	16	12	6
pwm ピン	9	9	6
シリアルポート	4	4	7
フラッシュメモリ	32kB	64kB	8MB
SRAM	128kB	552kB	10MB
EEPROM	1MB	4MB	8MB
クロック	96MHz	96MHz	400MHz

Digital i/o GR-Sakura Analog i/o I2C JTAG Ethrnet Serial 1 Serial 2 Serial 3 Serial 4

図 2 Shield ブロック図

2.3 GR-SAKURA

GR-SAKURA FULLをメインマイコンに選定した. GR-SAKURAは豊富なIOに加えてLANコネクタ,USB ホストコネクタ,SDカードソケットを備えている. GR-SAKURAを図1に示す.

図 1 GR-SAKURA

3. 自作 Shield について

3.1 今年度の構成

今年度はArduinoMegaにコントローラーと通信する ためのUSBhostShieldとサーボモータを制御するため のServoShieldを載せ、さらに各種IOを使いやすくする ための自作Shieldも搭載した.

3.2 ロボコン Shield

GR-SAKURAはUSBhostやSDカードソケットが搭載されているため、シリアル通信の規格をRS485に変換するトランシーバと各種IOを外側に出し、接続しやすくするものを作成する。ロボコンシールドのブロック図を図2に示す。

4. データログシステム開発

4.1 プログラム

データを記録するメインプログラムと,記録するデータを取得するためのファイルを作成した. プログラムの機能を以下に示す.

- 記録するデータログリストファイルの読み取り
- リストにもとづいて必要なデータをログデータと してまとめる
- 必要データを1レコードとして記録する
- 1レコードごとにタイムスタンプをつける
- レコードごとにテキストファイルとして書き出す

5. 結言

ロボコン標準制御システムの考案にあたり、メインマイコンに豊富なI/OやUSBhost、SDカードソケットが既存で備えられているGR-SAKURAを選定した.しかし、開発環境はArduinoIDEに似ているIDEforGRを使う予定だったが、現状はオンライン環境のRenesasWebコンパイラを使うしかない.ログシステムはGR-SAKURAでSDカードにテキストファイルを生成し、データログが書き込まれているのを確認をした.標準制御システムを考案したことにより開発にかかる時間の短縮、ログシステムの開発によりデバッグにかかる時間が短縮されロボットの完成度の向上が見込める.

参考文献

[1] http://gadget.renesas.com/ja/product/sakura.html