Resumen de la materia

Pablo Chehade pablo.chehade@ib.edu.ar

Métodos Numéricos en Fluidos I, Instituto Balseiro, CNEA-UNCuyo, Bariloche, Argentina, 2022

El objetivo es hacer un cuadro sinóptico de la materia como la hoja de fórmulas

I. PVI

Una ec. de orden n se puede transformar en n ecuaciones de orden 1

1. Problema en R¹

■ Problema gral: encontrar y(t) : $R \rightarrow R/\frac{dy}{dt} = f(y,t); t > 0 \ y(0) = y_0$

Error Hay que diferenciar entre

- Error local: error en el paso n asumiento que y_{n-1} es conocido. Se obtiene a partir de serie de Taylor sobre el esquema numérico y comparando con la serie de Taylor correcta.
- Error global: error en un punto considerando el error de aproximación en todos los y_n anteriores. Si un método es de orden local p, entonces el error global será de orden o, de otra manera, "converge con velocidad", p-1.

Estabilidad numérica En la práctica se dice que un método es

- Inestable
- Estable: si no magnifica los errores que aparecen. Puede explotar la solución como no.
- ullet Condicionalmente estable: condición sobre Δt

Estabilidad lineal Es un modo de estudiar la estabilidad de un método. Propone estudiar la ecuación modelo $y'=\lambda y$ cuya solución es $y(t)=y_0e^{\lambda t}$. Permite estudiar para soluciones reales acotadas si la solución numérica es acotada

¿Cómo hacer la cuenta con métodos implícitos? Método de biyección, newton rapson, de punto fijo

2. Sistemas de EDOs

 $y_vec'=f(y_vec,t), t>0, y_vec\in R^ny_vec(0)=y_vec_0$ Problemas modelo en $R^m(ec.)Condiciones de estabilidad similares a R^1 perosobre <math>\rho()$ de una matriz.

Problemas rígidos

- Por razones de estabilidad (debido a que unas componentes varían mucho más que las demás) se necesitaría usar un h muy pequeño.
- Solución: si solo interesan tiempos largos ->métodos implícitos
- Ej: ec. de difusión

Problema no lineal $y_v ec' = f_v ec(y_v ec, t)! = Ay_v ecLinealizacinsobreelesquemanum rico$

3. Normas

Existen distintas normas, aunque están relacionadas" por la propiedad de equivalencia entre normas.

- Normas vectoriales
- Normas matriciales
- Normas matriciales inducidas

A. Solución numérica de EDPs

1. Procedimiento estándar

- 1. Discretizar el dominio
- 2. Semidiscretizar la ecuación diferencial, planteando un esquema para las variables espaciales
- 3. Se obtiene un sistema de EDOs Esto es gral?

2. "Caballitos de batalla"

Ecuación de advección Ecuación de difusión

3. Consistencia

- Si al poner la sol exacta en la ec en diferencias el residuo tiende a cero cuando $\Delta t, \Delta x \leftarrow 0$.
- Permite hacer elecciones adecuadas de los parámetros del método numérico para disminuir el error, aunque hay que verificar estabilidad bajo esas condiciones
- Teorema de Lax-Richtryer sobre consistencia en un problema lineal

4. Estabilidad

- Existen distintas definiciones
- Métodos para evaluar la estabilidad en EDPs
 - Método matricial: exacto pero costoso
 - Método de Von Neumann: simple, asume varias hipótesis
 - Método del nro de onda modificado: más gral que el anterior, asume las mismas hipótesis

B. Problemas multidimensionales

Se pueden aplicar métodos explícitos (caros para problemas stiff) o implícitos. A mayor dimensión, mayor costo computacional

1. Resolución eficiente de problemas $A\vec{u}^{n+1} = \vec{f}^n$

Existen distintos métodos

- Método directo
 - Muy eficiente si la malla es uniforme

- Ej: Transformada discreta de Fourier. Limitada para condiciones de borde y grillas particulares
- Métodos iterativos:
 - Más gral
 - Ej: multigrid
- \bullet Método de Factorización aproximada
 - Factorizar los operadores en diferencias finitas, manteniendo el orden, para trabajar con problemas unidimensionales
 - Útil para problemas difusivos
 - En el camino es necesario introducir aproximaciones y, por lo tanto, hay que estudiar consistencia y estabilidad.

Llegué hasta esquemas mixtos sin incluir