LECTURE 36

Dec. 15/03

D<0 some discriminant $R_D = Z + Z \left(\frac{D + \sqrt{D}}{2} \right) \leq D$ is Cattice $0 \neq I \subset R_D$ Conteindex automatically: $(R_D: I) = M \cdot I$ tohere $N = nom \geq 1$ e.g.: if $I = \angle R_D$ for some $\alpha \neq 0$ in R_D ,

then $N = \alpha \alpha$

Questions How far is Ro from being a puncipal ideal domain?

Defin A fractionalideal IC D(VD) (=
field of fractions of Ro) is a lattice
in a Con particular a subgroup;
also discrete) which is stable under
multiplication by Ro.

- · For example, if BEQ(JD) and B+0 then I = BRD is a fractional ideal for RD. Also any ideal I of RD is a fractional ideal.
- · Multiplication of ideals generalizes to multiplication of fractional ideals $I.J = J.I = \{\hat{\Sigma}a_i|b_i: n \text{ not }fixw_{a_i}\in J\}$ C.g.: (RD). (BRD) = (KB)RD.

Propositions (Kummer, Dedekurd)
1) The fractional ideals form an abelia group under multiplication, with idealy the ideal $R=(1)$.
(3) The puncipal ideals form a subgroup. (3) The quotient group. (4):= fractional ideals? Thur cipal ideals?
wholes called the ideal class group. is a finite group.
ho:= order of the ideal class group CD.
· Karions mathematicians calculated hs for discriminants DXO and faund that (experimentally) · they could get hp = 1 for D<-163 · hp ~ D 1/2
His known that Ic st. ho < c D '2 log P
It is expected that $\exists c' sh$ $c' 10 '2 log 101 < h_D$ Int this is whown & linked to Remann tryf.
And I so the comment of boulders, in

Rmk: Gren I C Q (JD) fractional ideal there is N st. NICRO. Thus every coset in Co is represented by an ideal of (not just a practional ideal). Amagnaly enough: all of this is related to analysis. $\frac{1}{p^{s}} = \frac{1}{p^{s}} =$ does not converge (= 0) Divichlet (1837):

 $\int_{\mathcal{B}} (s) = \sum_{n \in \mathbb{N}} (N I_n) s \qquad \qquad \int_{\mathbb{N}} (1 - \frac{1}{N P_n} s)^{-1}$ $\int_{\mathbb{N}} (s) + I = R_0$ $\lim_{n \in \mathbb{N}} (s) + I = R_0$ $\lim_{n \to \infty} (s) + I = R_0$ $\lim_{n \to \infty}$

Suppose p 3 Ther extres 0 a rational prime. pR is a pune ideal M (pk)=p2 @ There are two district puns ideals P.P' PROPERD St. PP=pR & N(P)=N(P')=~ (3) There is a unique pune ideal PRCPCRCPCR of Ro = ZZ[i] then we are on case (1) if p = 3(mod 4) ② if $p \equiv 1 \pmod{4}$ ③ if p = 2. $f_{RD}(s) = TT \left(1 - \frac{1}{p^s}\right)^{-1} \left(1 + \frac{1}{p^s}\right)^{-1}$ p in case 1 · TT (1- 1-)-1 (1- 1-5)-1
p in case (2) -11 (1- 1)-1. pin come (B)

Hence
$$J(s) = L_D(s) \cdot J(s)$$

where $L_D(s) = TT (1 + \frac{1}{p^s})^{-1} \cdot TT (1 - \frac{1}{p^s})^{-1}$

Pincard pincard

For example, for $Z[i]:$
 $L(s) = TT (1 - \frac{1}{s})^{-1} \cdot T(1 + \frac{1}{s})^{+1} \cdot T($

Dirichlet dass # formula
$$L_{D}(1) = \frac{2\pi L}{\sqrt{101}} \cdot \frac{h_{D}}{\#R_{D}^{\times}} > 0$$

For example:
for
$$D=-4$$

$$\frac{1}{4} = \frac{2\pi}{4} \cdot \frac{h_D}{4}$$

$$\Rightarrow h_D = 1 \quad (\text{which we knew already}) - \frac{1}{4} \cdot \frac{$$

Thus to get asymptotic information about how we want to show something about $L_D(1)$ as $D \rightarrow -\infty$:

e. gif $L(1) \approx 1$ then $h_D \approx |D|^{\frac{1}{2}}$.

Relation to Romann hypothesis: RH controls vige of JRs near 1.

•

. ...

..