AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 - 102. (canceled)

103. (previously presented) A method of increasing the vigor and/or the yield of an agronomic plant comprising treating the plant or its propagation material with a composition which comprises an effective amount of a fungicide which has no significant activity against fungal plant pathogens for such agronomic plant, wherein the plant or its propagation material possesses a transgenic event providing the plant with resistance to a herbicide and the treatment comprises foliar application of said herbicide.

104. (currently amended) The method according to claim 103, wherein the herbicide <u>resistance</u> is selected from the group consisting of <u>resistance to</u> glyphosate, <u>glyfosinate glyphosinate</u>, imidazilinone and STS system.

105. (previously presented) The method according to claim 103, wherein the fungicide comprises a compound having the formula

wherein Z_1 and Z_2 are C or N and are part of an aromatic ring selected from benzene, pyridine, thiophene, furan, pyrrole, pyrazole, thiazole, benzothiophene and isothiazole;

A is selected from --C(X)-amine, --C(O)—SR₃, --NH--C(X)R₄, and --C(=NR₃)--XR₇;

B is $-W_m$ --Q(R₂)₃ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R₄;

Q is C, Si, Ge, or Sn;

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--;

X is O or S;

n is 0, 1, 2, or 3;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

wherein two R groups may be combined to form a fused ring;

each R_2 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R_4 or halogen; and wherein, when Q is C, R_2 may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino;

wherein two R_2 groups may be combined to form a cyclo group with Q; R_3 is C_1 - C_4 alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

106. (previously presented) The method according to claim 103, wherein the fungicide is 4,5-dimethyl-*N*-2-propenyl-2-(trimethylsilyl)-3-thiophenecarboxamide.

107. (canceled)

108. (currently amended) The method according to claim 105 107, wherein the plant or its propagation material possesses a transgenic event providing the plant with resistance to a herbicide selected from the group consisting of glyphosate, glyfosinate glyphosinate, imidazilinone and STS system, and wherein the treatment comprises treating the seed of the plant with an inoculant selected from the group consisting of Azospirillium spp., Rhizobium spp., Bradyrhizobium spp., a mixture of Rhizobium spp. and Bradyrhizobium spp., and a mixture of either Rhizobium spp., or Bradyrhizobium spp. with any other microorganisms, and further includes foliar treatment of the plant with the fungicide, and the treatment further comprises foliar application of said herbicide.

109. (currently amended) The method according to claim 103, A method of increasing the vigor and/or the yield of an agronomic plant comprising treating the plant or its propagation material with a composition which comprises an effective amount of a fungicide which has no significant activity against fungal plant pathogens for such agronomic plant, wherein the step of treating the plant or its propagation material comprises applying the fungicide to the foliage of the plant, and wherein the plant or its propagation material possesses a transgenic event providing the plant with resistance to a herbicide and the step of applying the fungicide to the foliage of the plant comprises the application of the fungicide in combination with said herbicide.

110. (previously presented) The method according to claim 109, wherein the herbicide is glyphosate.

111. (previously presented) The method according to claim 109, wherein the fungicide comprises a compound having the formula

wherein Z_1 and Z_2 are C or N and are part of an aromatic ring selected from benzene, pyridine, thiophene, furan, pyrrole, pyrazole, thiazole, benzothiophene and isothiazole;

A is selected from --C(X)-amine, --C(O)—SR $_3$, --NH--C(X)R $_4$, and --C(=NR $_3$)--XR $_7$;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

Q is C, Si, Ge, or Sn;

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--;

X is O or S;

n is 0, 1, 2, or 3;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;

d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

wherein two R groups may be combined to form a fused ring; each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R₄ or halogen; and wherein, when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino;

wherein two R_2 groups may be combined to form a cyclo group with Q; R_3 is C_1 - C_4 alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

112. (previously presented) The method according to claim 109, wherein the fungicide is 4,5-dimethyl-*N*-2-propenyl-2-(trimethylsilyl)-3-thiophenecarboxamide.

113. (prefiously presented) A method of increasing the vigor and/or the yield of an agronomic plant except for wheat comprising treating an agronomic plant or its propagation material except for wheat with a composition comprising an effective amount of an active agent that has activity against *Gaeumannomyces graminis*, wherein the plant or its propagation material possesses a transgenic event providing the plant with resistance to a herbicide and the treatment comprises foliar application of said herbicide.

114. (previously presented) The method according to claim 113, wherein the *Gaeumannomyces graminis* is of the variety *tritici*.

115. (previously presented) The method according to claim 113, wherein the active agent comprises a compound having the formula

wherein Z_1 and Z_2 are C or N and are part of an aromatic ring selected from benzene, pyridine, thiophene, furan, pyrrole, pyrazole, thiazole, benzothiophene and isothiazole;

A is selected from --C(X)-amine, --C(O)—SR₃, --NH--C(X)R₄, and --C(=NR₃)--XR₇;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

Q is C, Si, Ge, or Sn;

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--;

X is O or S;

n is 0, 1, 2, or 3;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

wherein two R groups may be combined to form a fused ring; each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R₄ or halogen; and wherein, when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino; wherein two R₂ groups may be combined to form a cyclo group with Q;

R₃ is C₁-C₄ alkyl; and

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

- 116. (previously presented) The method according to claim 113, wherein the active agent is 4,5-dimethyl-*N*-2-propenyl-2-(trimethylsilyl)-3-thiophenecarboxamide.
- 117. (previously presented) The method according to claim 113, where the treatment of the plant or its propagation material comprises treatment of a seed with an inoculant comprising *Azospirillium spp.*, or *Rhizobium spp.*, or *Bradyrhizobium spp.*, or a mixture of *Rhizobium spp.* and *Bradyrhizobium spp.*, or a mixture of either *Rhizobium spp.*, or *Bradyrhizobium spp.* with any other microorganisms.
- 118. (currently amended) The method according to claim 113, wherein the herbicide is selected from the group consisting of glyphosate, glyfosinate glyphosinate, imidazilinone and STS system.
 - 119. (canceled)
- agronomic plant except for wheat comprising treating an agronomic plant or its propagation material except for wheat with a composition comprising an effective amount of an active agent that has activity against *Gaeumannomyces graminis*, and treating the seed of the plant with an inoculant selected from the group consisting of *Azospirillium spp.*, *Rhizobium spp.*, *Bradyrhizobium spp.*, a mixture of *Rhizobium spp.* and *Bradyrhizobium spp.*, and a mixture of either *Rhizobium spp.*, or *Bradyrhizobium spp.* with any other microorganisms, where the plant or its propagation material has a transgenic event that provides resistance to glyphosate and the treatment further includes foliar treatment of the plant with The method according to claim 119, wherein the herbicide is glyphosate.

121. (currently amended) The method according to claim 120 119, wherein the active agent comprises a compound having the formula

wherein Z_1 and Z_2 are C or N and are part of an aromatic ring selected from benzene, pyridine, thiophene, furan, pyrrole, pyrazole, thiazole, benzothiophene and isothiazole;

A is selected from --C(X)-amine, --C(O)—SR $_3$, --NH--C(X)R $_4$, and --C(=NR $_3$)--XR $_7$;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

Q is C, Si, Ge, or Sn;

 $W \ \text{is --C}(R_3)_p \ H_{(2\text{-}p)} \ \text{--}; \ \text{or when Q is C, W is selected from --C}(R_3)_p \ H_{(2\text{-}p)} \ \text{--}, \ \text{--}} \\ N(R_3)_m \ H_{(1\text{-}m)} \ \text{--}, \ \text{--S}(O)_p \ \text{--}, \ \text{and --O--};}$

X is O or S;

n is 0, 1, 2, or 3;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;

- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

wherein two R groups may be combined to form a fused ring;

each R_2 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R_4 or halogen; and wherein, when Q is C, R_2 may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino;

wherein two R_2 groups may be combined to form a cyclo group with Q; R_3 is C_1 - C_4 alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino;

 R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

122. (currently amended) The method according to claim 120 119, wherein the active agent is 4,5-dimethyl-*N*-2-propenyl-2-(trimethylsilyl)-3-thiophenecarboxamide.

123 - 133. (canceled)

134. (new) The method according to claim 105, wherein

 Z_1 and Z_2 are C and are part of an aromatic ring which is thiophene;

A is selected from --C(X)-amine, --C(O)—SR₃, --NH--C(X)R₄, and --C(=NR₃)--XR₇;

B is $-W_m$ --Q(R₂)₃ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R₄;

Q is C, Si, Ge, or Sn;

 $W \ is \ --C(R_3)_p \ H_{(2-p)} \ --; \ or \ when \ Q \ is \ C, \ W \ is \ selected \ from \ --C(R_3)_p \ H_{(2-p)} \ --, \ -- \\ N(R_3)_m \ H_{(1-m)} \ --, \ --S(O)_p \ --, \ and \ --O--;$

X is O or S;

n is 0, 1, 2, or 3; m is 0 or 1; p is 0, 1, or 2; each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R₄ or halogen; and wherein, when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino, and further when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino; and further when Q is C, then two R₂ groups may be combined to form a cycloalkyl group with Q;

R₃ is C₁-C₄ alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

135. (new) The method according to claim 105, wherein Z₁ and Z₂ are C and are part of an aromatic ring which is thiophene;

A is selected from --C(X)-amine, wherein the amine is substituted with a first and a second amine substituent or with an alkylaminocarbonyl and a hydrogen, --C(O)--SR₃, --NH--C(X)R₄, and --C(=NR₃)-XR₇;

the first amine substituent is selected from the group consisting of C_1 - C_{10} straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkoxy, alkylthio, nitrile, alkylsulfonate, haloalkylsulfonate, phenyl, C_3 - C_6 cycloalkyl and C_5 - C_6 cycloalkylkenyl; phenyl optionally substituted with one or more C_1 - C_4 straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof, cycloalkyl, cycloalkenyl, haloalkyl, alkoxy and nitro; C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, alkoxy, alkenoxy, alkynoxy, dialkylamino, and alkylthio;

and the second amine substituent is selected from the group consisting of hydrogen; C₁ - C₆ straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, and dialkylphosphonyl;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

```
Q is C, Si, Ge, or Sn; W \text{ is } --C(R_3)_p \ H_{(2-p)} \ --; \text{ or when Q is C, W is selected from } --C(R_3)_p \ H_{(2-p)} \ --, \ -- \\ N(R_3)_m \ H_{(1-m)} \ --, \ --S(O)_p \ --, \text{ and } --O--; \\ X \text{ is O or S;} \\ n \text{ is 2;} \\ m \text{ is 0 or 1;} \\ p \text{ is 0, 1, or 2;} \\
```

wherein two R groups are combined to form a nonheterocyclic ring fused with the thiophene ring, which is not a benzothiophene other than a tetrahydrobenzothiophene, said two R groups being selected from the group consisting of C_1 - C_4 alkyl, alkenyl, C_3 - C_6 cycloalkyl and cycloalkenyl, each optionally substituted with hydroxy, thio, phenyl, C_1 - C_4 alkoxy, alkylthio, alkylsulfinyl, or alkylsufonyl;

each R_2 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R_4 or halogen; and wherein

when Q is C, R_2 may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino; and further when \hat{Q} is C, then two R_2 groups may be combined to form a cycloalkyl group with Q;

 R_3 is C_1 - C_4 alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof

136. (new) The method according to claim 105, wherein

 Z_1 and Z_2 are C and are part of an aromatic ring which is thiophene;

A is --C(X)-amine wherein the amine is an N-bonded heterocyclic compound chosen from the group consisting of morpholine, piperazine, piperidine, and pyrrolidine, each optionally substituted with C_3 - C_6 alkyl groups;

B is $-W_m$ --Q(R₂)₃ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R₄;

Q is C or Si;

```
W is --C(R<sub>3</sub>)<sub>p</sub> H<sub>(2-p)</sub> --; or when Q is C, W is selected from --C(R<sub>3</sub>)<sub>p</sub> H<sub>(2-p)</sub> --, -- N(R<sub>3</sub>)<sub>m</sub> H<sub>(1-m)</sub> --, --S(O)<sub>p</sub> --, and --O--; 
 X is O; 
 n is 2; 
 m is 0 or 1; 
 p is 0, 1, or 2;
```

wherein the two R groups are alkenyl groups and are combined to form a fused ring with the thiophene ring with is benzothiophene; wherein the alkenyl groups are optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C_2 - C_4 alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;

each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and phenyl, each optionally substituted with R₄ or halogen; and wherein when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino; or wherein two R2 groups may be combined to form a cyclo group with Q;

R₃ is C₁-C₄ alkyl; and

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; or an agronomic salt thereof

137. (new) The method according to claim 105, wherein Z_1 and Z_2 are C and are part of a thiophene ring.

138. (new) The method according to claim 137, wherein A is -C(O)-amine, wherein the amino radical is substituted with one or two groups selected from hydrogen; hydroxy; alkyl, alkenyl, and alkynyl, which may be straight or branched chain or cyclic; alkoxyalkyl; haloalkyl; hydroxyalkyl; alkylthio; alkylthioalkyl; alkylcarbonyl; alkoxycarbonyl; aminocarbonyl; alkylaminocarbonyl; cyanoalkyl; mono-or dialkylamino; phenyl, phenylalkyl or phenylalkenyl, each optionally substituted with one or more C_1 - C_4 alkyl, alkoxy, haloalkyl, C_3 - C_6 cycloalkyl, halo, or nitro groups; and C_1 - C_4 alkyl or alkenyl substituted with pyrimidinyl, thienyl, or furanyl; and wherein the amino radical may be a N-bonded heterocycle selected from morpholine, piperazine, piperidine, pyrrole, pyrrolidine, imidazole, and triazoles, each optionally substituted with C_1 - C_6 alkyl groups.

139. (new) The method according to claim 138, wherein in $-W_m$, m is 0.

140. (new) The method according to claim 139, wherein Q is Si.

141. (new) The method according to claim140, wherein each R_2 is C_1 - C_4 alkyl or haloalkyl.

142. (new) The method according to claim 141, wherein each R₂ is methyl.

143. (new) The method according to claim 142, wherein A is alkylaminocarbonyl or dialkylaminocarbonyl.

144. (new) The method according to claim 105, wherein

Z₁ and Z₂ are C and are part of an aromatic ring which is benzothiophene; and

A is selected from --C(X)-amine wherein the amine is an unsubstituted, monosubstituted or disubstituted nonheterocyclic amino radical, --C(O)—SR₃, --NH--C(X)R₄, and --C(=NR₃)--XR₇;

B is $-W_m$ --Q(R₂)₃ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R₄;

Q is C, Si, Ge, or Sn;

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--; X is O or S; n is 0, 1, 2, or 3; m is 0 or 1; p is 0, 1, or 2; each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C_1 - C_4 alkoxy, alkenoxy, alkynoxy, C_3 - C_6 cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

each R_2 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R_4 or halogen; and wherein, when Q is C, R_2 may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino;

wherein two R₂ groups may be combined to form a cyclo group with Q which is 1-methylcyclopropyl, 1-methylcyclopentyl, or 1-methylcyclohexyl;

R₃ is C₁-C₄ alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof

145. (new) The method according to claim 105, wherein

Z₁ and Z₂ are C and are part of an aromatic ring which is benzothiophene; and A is selected from --C(X)-amine wherein the amine is an unsubstituted, monosubstituted or disubstituted nonheterocyclic amino radical, --C(O)—SR₃, --NH--

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

Q is C, Si, Ge, or Sn;

 $C(X)R_4$, and -- $C(=NR_3)$ -- XR_7 ;

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--;

X is O or S:

n is 0, 1, 2, or 3;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R₄ or halogen; and wherein,

when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino;

wherein two R₂ groups may be combined to form a cyclo group with Q which is 1-methylcyclopropyl, 1-methylcyclopentyl, or 1-methylcyclohexyl;

R₃ is C₁-C₄ alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

146. (new) The method according to claim 105, wherein

Z₁ and Z₂ are C or N and are part of an aromatic ring which is furan; and

A is selected from --C(X)-amine wherein the amine is substituted with a first and a second amine substituent or with an alkylaminocarbonyl and a hydrogen, --C(O)— SR_3 , --NH--C(X) R_4 , and --C(= NR_3)--X R_7 ;

the first amine substituent is selected from the group consisting of C_1 - C_{10} straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkoxy, alkylthio, nitrile, alkylsulfonate, haloalkylsulfonate, phenyl, a 5-membered heteroaryl, C_3 - C_6 cycloalkyl and C_5 - C_6 cycloalkylkenyl; phenyl optionally substituted with one or more C_1 - C_4 straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof, cycloalkyl, cycloalkenyl, haloalkyl, alkoxy and nitro; C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, alkoxy, alkenoxy, alkynoxy, dialkylamino, and alkylthio;

and the second amine substituent is selected from the group consisting of hydrogen; C₁ - C₆ straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, and dialkylphosphonyl;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

Q is C, Si, Ge, or Sn;

 $W \ is \ --C(R_3)_p \ H_{(2\text{-}p)} \ --; \ or \ when \ Q \ is \ C, \ W \ is \ selected \ from \ --C(R_3)_p \ H_{(2\text{-}p)} \ --, \ -- N(R_3)_m \ H_{(1\text{-}m)} \ --, \ --S(O)_p \ --, \ and \ --O--;$

X is O or S:

n is 0, 1, or 2; m is 0 or 1; p is 0, 1, or 2; each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

wherein two R groups may be combined to form a fused ring;

each R_2 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R_4 or halogen; and wherein, when Q is C, R_2 may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino;

wherein two R₂ groups may be combined to form a cyclo group with Q which is 1-methylcyclopropyl, 1-methylcyclopentyl, or 1-methylcyclohexyl;

R₃ is C₁-C₄ alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof

147. (new) The method according to claim 105, wherein Z_1 and Z_2 are C and are part of an aromatic ring which is furan; and

A is selected from --C(X)-amine wherein the amine is substituted with a first and a second amine substituent or with an alkylaminocarbonyl and a hydrogen, --C(O)— SR_3 , --NH--C(X) R_4 , and --C(= NR_3)--X R_7 ;

the first amine substituent is selected from the group consisting of C_1 - C_{10} straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkoxy, alkylthio, nitrile, alkylsulfonate, haloalkylsulfonate, phenyl, a 5-membered heteroaryl, C_3 - C_6 cycloalkyl and C_5 - C_6 cycloalkylkenyl; phenyl optionally substituted with one or more C_1 - C_4 straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof, cycloalkyl, cycloalkenyl, haloalkyl, alkoxy and nitro; C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, alkoxy, alkenoxy, alkynoxy, dialkylamino, and alkylthio;

and the second amine substituent is selected from the group consisting of hydrogen; C₁ - C₆ straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, and dialkylphosphonyl;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

```
Q is C, Si, Ge, or Sn;
```

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--;

X is O or S;

n is 0, 1, or 2;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;

- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

wherein two R groups may be combined to form a fused ring; each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R₄ or halogen; and wherein, when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino;

wherein two R₂ groups may be combined to form a cyclo group with Q which is 1-methylcyclopropyl, 1-methylcyclopentyl, or 1-methylcyclohexyl;

R₃ is C₁-C₄ alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

148. (new) The method according to claim 105, wherein

 Z_1 and Z_2 are C and are part of an aromatic ring which is furan; and

A is selected from --C(X)-amine wherein the amine is substituted with a first and a second amine substituent or with an alkylaminocarbonyl and a hydrogen, --C(O)— SR_3 , --NH--C(X) R_4 , and --C(= NR_3)--X R_7 ;

the first amine substituent is selected from the group consisting of C_1 - C_{10} straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkoxy, alkylthio, nitrile, alkylsulfonate, haloalkylsulfonate, phenyl, a 5-membered heteroaryl, C_3 - C_6 cycloalkyl and C_5 - C_6 cycloalkylkenyl; phenyl optionally substituted with one or more C_1 - C_4 straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof, cycloalkyl, cycloalkenyl,

haloalkyl, alkoxy and nitro; C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, alkoxy, alkenoxy, alkynoxy, dialkylamino, and alkylthio;

and the second amine substituent is selected from the group consisting of hydrogen; C₁ - C₆ straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, and dialkylphosphonyl;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

Q is C, Si, Ge, or Sn;

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--; X is O or S:

X 10 0 01

n is 2;

m is 0 or 1;

p is 0, 1, or 2;

wherein the two R groups are combined to form a nonheterocyclic ring fused to said furan ring which is not benzofuran when A is --C(X)--amine, B is --Wm(Q)--(R_2)₃, and Q is C or Si, said R groups being selected from the group consisting of C_1 - C_4 alkyl, alkenyl, C_3 - C_6 cycloalkyl and cycloalkenyl, each optionally substituted with hydroxy, thio, phenyl, C_1 - C_4 alkoxy, alkylthio, alkylsulfinyl, or alkylsulfonyl; and

each R_2 is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R_4 or halogen; and wherein, when Q is C, R_2 may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino; wherein further when Q is C, then two R_2 groups may be combined to form a cyclo group with Q;

 R_3 is C_1 - C_4 alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

149. (new) The method according to claim 105, wherein Z₁ and Z₂ are C and are part of an aromatic ring which is pyridine; and

A is selected from the group consisting of --C(O)—SR₃, --NH--C(X)R₄, and --C(=NR₃)--XR₇ and --C(X)-amine wherein the amine is substituted with alkylaminocarbonyl and a hydrogen or wherein the amine has a first and a second amine substituent:

the first amine substituent is selected from the group consisting of C_1 - C_{10} straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkoxy, alkylthio, nitrile, alkylsulfonate, haloalkylsulfonate, phenyl, a 5-membered heteroaryl, C_3 - C_6 cycloalkyl and C_5 - C_6 cycloalkylkenyl; phenyl optionally substituted with one or more C_1 - C_4 straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof, cycloalkyl, cycloalkenyl, haloalkyl, alkoxy and nitro; C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, alkoxy, alkenoxy, alkynoxy, dialkylamino, and alkylthio;

and the second amine substituent is selected from the group consisting of hydrogen; C₁ - C₆ straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, and dialkylphosphonyl;

B is $-W_m$ --Q(R₂)₃ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R₄:

```
Q is C, Si, Ge, or Sn;
```

W is --C(R₃)_p H_(2-p) --; or when Q is C, W is selected from --C(R₃)_p H_(2-p) --, -- N(R₃)_m H_(1-m) --, --S(O)_p --, and --O--;

X is O or S;

n is 0, 1, or 2;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy.

alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;

- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, alkenyl and phenyl, each optionally substituted with R₄ or halogen; and wherein, when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino; or wherein two R₂ groups may be combined to form a cyclo group with Q which is 1-methylcyclopropyl, 1-methylcyclopentyl, or 1-methylcyclohexyl;

R₃ is C₁-C₄ alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

150. (new) The method according to claim 105, wherein

Z₁ and Z₂ are C and are part of an aromatic ring which is benzene; and

A is selected from the group consisting of --C(X)-amine wherein the amine is substituted with a first and a second amine substituent or with an alkylaminocarbonyl and a hydrogen; --C(O)—SR₃, --NH--C(X)R₄, and --C(=NR₃)--XR₇;

the first amine substituent is selected from the group consisting of C_1 - C_{10} straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkoxy, alkylthio, nitrile, alkylsulfonate, haloalkylsulfonate, phenyl, C_3 - C_6 cycloalkyl and C_5 - C_6 cycloalkylkenyl; phenyl optionally substituted with one or more C_1 - C_4 straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof, cycloalkyl, cycloalkenyl, haloalkyl, alkoxy and nitro;

 C_3 - C_6 cycloalkyl, C_5 - C_6 cycloalkenyl, alkoxy, alkenoxy, alkynoxy, dialkylamino, and alkylthio;

and the second amine substituent is selected from the group consisting of hydrogen; C₁ - C₆ straight or branched alkyl, alkenyl, or alkynyl groups or mixtures thereof optionally substituted with one or more halogen, hydroxy, alkylcarbonyl, haloalkylcarbonyl, alkoxycarbonyl, and dialkylphosphonyl;

B is $--W_m$ $--Q(R_2)_3$ or selected from o-tolyl, 1-naphthyl, 2-naphthyl, and 9-phenanthryl, each optionally substituted with halogen or R_4 ;

```
Q is Si, Ge, or Sn;

W is --C(R_3)<sub>p</sub> H<sub>(2-p)</sub> --;

X is O or S;

n is 0, 1, 2 or 3;

m is 0 or 1;

p is 0, 1, or 2;

each R is independently selected from
```

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁-C₄ alkyl, alkenyl, alkynyl, C₃-C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁-C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C₁-C₄ alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁-C₄ alkoxy, alkenoxy, alkynoxy, C₃-C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo;

each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R₄ or halogen;

R₃ is C₁-C₄ alkyl;

 R_4 is C_1 - C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino; and R_7 is C_1 - C_4 alkyl, haloalkyl, or phenyl, optionally substituted with halo, nitro, or R_4 ; or an agronomic salt thereof.

151. (new) The method according to claim 103, wherein the fungicide comprises a compound having the formula:

$$\begin{array}{c} A \\ \\ R_{n} \end{array} \qquad \begin{array}{c} A \\ \\ R_{p} \end{array} \qquad \begin{array}{c} A \\ \\ B \end{array} \qquad \begin{array}{c} B \\ \\ B$$

$$R_0$$
 (c)

$$\begin{array}{c} A \\ B \\ \hline \\ R_n \end{array} \qquad (d)$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$R_n$$

$$(f)$$

$$B \xrightarrow{A} R_p$$

$$R_n$$

$$(h)$$

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

$$\begin{array}{c|c} & & & \\ & & & \\$$

where A is --C(X)-amine; B is $-W_m$ --Q(R₂)₃; and A can be B when B is A except when the formula is f), then Q cannot be Si;

Q is C or Si;
W is --NH--, --O-- or NCH₃ --;
X is O or S;
m is 0 or 1, provided that m is 0 when Q is Si;
n is 0, 1, 2, or 3;
p is 0, 1 or 2, and n plus p is equal to or less than 3;
each R is independently selected from

- a) halo, formyl, cyano, amino, nitro, thiocyanato, isothiocyanato, trimethylsilyl, and hydroxy;
- b) C₁ –C₄ alkyl, alkenyl, alkynyl, C₃ –C₆ cycloalkyl, and cycloalkenyl, each optionally substituted with halo, hydroxy, thio, amino, nitro, cyano, formyl, phenyl, C₁ C₄ alkoxy, alkylcarbonyl, alkylthio, alkylamino, dialkylamino, alkoxycarbonyl, (alkylthio)carbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfinyl, or alkylsulfonyl;
- c) phenyl, furyl, thienyl, pyrrolyl, each optionally substituted with halo, formyl, cyano, amino, nitro, C_1 – C_4 alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylamino, dialkylamino, haloalkyl, and haloalkenyl;
- d) C₁ –C₄ alkoxy, alkenoxy, alkynoxy, C₃ –C₆ cycloalkyloxy, cycloalkenyloxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, dialkylamino, alkylcarbonylamino, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylcarbonyl, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl, (alkylthio)carbonyl, phenylcarbonylamino, phenylamino, each optionally substituted with halo; each R₂ is independently selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and phenyl, each optionally substituted with R₄ or halogen; and wherein, when Q is C, R₂ may also be selected from halo, alkoxy, alkylthio, alkylamino, and dialkylamino; wherein two R₂ groups may be

combined to form a cyclo group with Q; R_4 is C_1 – C_4 alkyl, haloalkyl, alkoxy, alkylthio, alkylamino, or dialkylamino;

or an agronomic salt thereof.

152. (new) The method according to claim 103, wherein the fungicide comprises a compound having the formula:

wherein R² is ethyl, iso-propyl, propyl or allyl;

A is $N(CH_3)_{1-n}$ H_n R^5 or OR^6 wherein n is 0 or 1, R^5 is $(CH_3)_m$ $(CH_3$ $CH_2)_{3-m}$ C, 1-methyl-1-cyclopentyl, 1-methyl-1-cyclohexyl or 2,3-dimethyl-2-butyl wherein m is 0, 1, 2 or 3 and R^6 is independently R^5 , or 2,3,3-trimethyl-2-butyl;

R³ is H or independently R⁴; and

R⁴ is halo or CH₃;

with the proviso that when A is $N(CH_3)_{1-n}$ H_n R^5 , if R^3 is H and R^5 is 1-methyl-1-cyclohexyl or $(CH_3)_m$ $(CH_2$ $CH_3)_{3-m}$ C, where m is 0 or 3, or if R^3 is halo and R^2 is $(CH_3)_m$ $(CH_3$ $CH_2)_{3-m}$ C, where m is 3, then R^2 cannot be ethyl;

and with the proviso that when A is OR^6 then m is equal to or less than 2, and if R^3 is H or halo and R^2 is ethyl or isopropyl, then R^6 is $(CH_3)_M$ $(CH_3 CH_2)_{3-M}$ C where m is 1;

or an agronomic salt thereof.

153. (new) The method according to claim 103, wherein the agronomic plant is selected from the group consisting of corn, cereals, barley, rye, rice, vegetables, clovers, legumes, beans, peas, alfalfa, sugar cane, sugar beets, tobacco, cotton, rapeseed (canola), sunflower, safflower, and sorghum.

- 154. (new) The method according to claim 103, wherein the agronomic plant is selected from the group consisting of *Pisum spp., Medicago spp., Arachis spp., Glycine spp., Vicia spp., Vigna spp.,* trefoil, clovers and *Phaseolus spp.*
- 155. (new) The method according to claim 103, wherein the agronomic plant is a soybean plant.
- 156. (new) The method according to claim 103, wherein the treatment comprises treatment of a seed, wherein the seed is treated with an amount of the composition sufficient to include the fungicide in an amount that is within the range of about 0.1 gm/100 kg of seed to about 500 gm/100 kg of seed.
- 157. (new) The method according to claim 156, wherein the seed is treated with an amount of the composition sufficient to include the fungicide in an amount that is within the range of about 10 gm/100 kg of seed to about 100 gm/100 kg of seed.
- 158. (new) The method according to claim 156, wherein the seed is treated with an amount of the composition sufficient to include the fungicide in an amount that is within the range of about 20 gm/100 kg of seed to about 50 gm/100 kg of seed.