מסנן קלמן – קורס ראייה ממוחשבת

-המטלה

- נתון רובוט קרקע שנע על גבי הרצפה
 - לרובוט 2 חיישני תאוצה וגירוסקופ •
- ישנו GPS שמאפשר למצוא מיקום וכיוון של הרובוט עם דיוק של 3 ס"מ וזווית עם דיוק של 0.3 מעלות
- יש לבנות תוכנית של מסנן קלמן ולמצוא מיקום וכיוון של הרובוט בזמן

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

-המערכת הנתונה

הצגת הנושא

המערכת הנתונה

מסנן קלמן הצגת תוצאות מסקנות

רובוט שנע על גבי רצפה • ישנה תנועה דו מימדית (x,y)

2 חיישני תאוצה 2

y תאוצה לכיוון ציר x ותאוצה לכיוון ציר

-המערכת הנתונה

ג׳יירן •

מדידת מהירות זוויתית

GPS •

מדידה של מיקום (קו אורך + קו רוחב) וזווית הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

מסנן קלמן-

Time Update ("Predict")

(1) Project the state ahead

$$\hat{x}_k = A\hat{x}_{k-1} + Bu_k$$

(2) Project the error covariance ahead

$$P_k = AP_{k-1}A^T + Q$$

(1) Compute the Kalman gain

$$K_k = P_k^{\mathsf{T}} H^T (H P_k^{\mathsf{T}} H^T + R)^{-1}$$

(2) Update estimate with measurement z_k

$$\hat{x}_k = \hat{x}_k + K_k(z_k - H\hat{x}_k)$$

(3) Update the error covariance

$$P_k = (I - K_k H) P_k$$

Initial estimates for \hat{x}_{k-1} and P_{k-1}

הצגת הנושא המערכת הנתונה

מסנן קלמן

הצגת תוצאות

Time Update (Predict) – "תחזית" – שלב ה״תחזית"

k מצב המערכת בזמן -Xk

- אטריצת המעבר שמקדמת את המערכת מהשלב הקודם -F
- פיים שמוסיפה את התאוצה אל תוך המערכת (אצלנו לא קיים -B מערכת בקרה)
 - וקטור הקלטים לחישוב המצב" (חיישני תאוצה והג'יירו) -Uk
 - מטריצה של "רעש המערכת" יחד עם סטיות התקן של החיישנים -Q
 - מטריצת של השגיאה -Pk •

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

Measurement Update – "שלב ה״תיקון" (Correct)

איך המדידה קשורה למצב) -H •

רעש מדידה -R •

שקלול בין ה"תחזית" לבין ה"מדידה בפועל" • Kk •

ערכי המדידה בפועל (של הGPS) - ערכי המדידה בפועל (של -zk •

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

המסלולים ללא רעשים

הצגת הנושא המערכת הנתונה מסנן קלמן <mark>הצגת תוצאות</mark> מסקנות

הערכים מהGPS עם רעשים

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

הערכים מהחיישני תאוצה ומהסקר

הצגת הנושא המערכת הנתונה מסנן קלמן <mark>הצגת תוצאות</mark> מסקנות

(X,Y,Θ) תוצאת המסנן קלמן

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

המכללה האקדמית להנדסה ע"ש סמי שמעון

תוצאת המסנן קלמן יחד עם הצגת המידע מהGPS והצגת המסלול המקורי

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

הפרש תוצאת המסנן לבין המסלול האמיתי והפרש מידע הGPS לבין המסלול האמיתי

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

הפרש תוצאת המסנן לבין המסלול האמיתי והפרש מידע הGPS לבין המסלול האמיתי

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות

מסקנות-

מסנן קלמן הוא הטוב ביותר עבור מערכות ליניאריות ועבור שגיאות . גאוסניות עם ממוצע אפס.

במידה ויש רעשים בGPS המסנן קלמן ייצב את הנתיב •

- המסנן יודע להישען על המידע היותר אמין, בין אם זה מהחיישנים או מהתחזית או מהמדידה)
 - יכולת עבודה עם מספר חיישנים •
- קיבלנו תוצאה קרובה למסלול האמיתי למרות שהGPS הביא ערכים עםשגיאות גדולות יותר

הצגת הנושא

המערכת הנתונה

מסנן קלמן

הצגת תוצאות