Math 104 Worksheet 17 UC Berkeley, Summer 2021 Wednesday, August 4

Consider the function

$$f(x) = \begin{cases} e^{-1/x} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

Exercise 1. Show that f'(0) = 0. (Hint: Consider the left and right limits separately.)

$$\lim_{x\to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0^{-}} \frac{Q}{X} = 0.$$

$$\lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0^{+}} \frac{Q}{X} = 0.$$

$$\lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0^{+}} \frac{Q}{X} = 0.$$

$$\lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0^{+}} \frac{Q}{X} = 0.$$

$$\lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0^{+}} \frac{Q}{X} = 0.$$

$$\lim_{x\to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0^{+}} \frac{Q}{X} = 0.$$

Exercise 2. Show by induction that for x > 0, $f^{(n)}(x)$ has the form

$$q_n\left(\frac{1}{x}\right)e^{-1/x}$$

where $q_n(t)$ is a polynomial in t.

Here
$$q_n(t)$$
 is a polynomial in t .

Base case: $n=0$. $f(x)=q_n(\frac{1}{x})e^{-\frac{1}{x}}$ where $q_n(x)=1$.

Induction: Suppose true for some n : $f^{(n)}(x)=q_n(\frac{1}{x})e^{-\frac{1}{x}}$.

Then $f^{(n+1)}(x)=q_n(\frac{1}{x})\cdot\frac{1}{x^2}e^{-\frac{1}{x}}+q_n(\frac{1}{x})e^{-\frac{1}{x}}\cdot\frac{1}{x^2}$.

$$=\left[-q_n'(\frac{1}{x})\cdot\frac{1}{x^2}+\frac{1}{x^2}q_n(\frac{1}{x})\right]e^{-\frac{1}{x}}.$$

Polynomial $q_{n+1}(x)=x^2(q_n(x)-q_n(x))$

Exercise 3. Show by induction that $f^{(n)}(0) = 0$ for all n. (Therefore, $T^{f,0}(x) \equiv 0$, so $f(x) \neq T^{f,0}(x)$ for all x > 0.)

evaluated at
$$\frac{1}{2}$$
.

Base f(0)(0) = f(0) = 0.

Induction: Suppose
$$f^{(n)}(0)=0$$
 for some n .

$$\lim_{x\to 0+} \frac{f^{(n)}(x)-f^{(n)}(0)}{x-0}=\lim_{x\to 0+} \frac{q_n\left(\frac{1}{x}\right)e^{-\frac{1}{x}}}{x}=\lim_{x\to 0+} \frac{1}{x}\frac{q_n\left(\frac{1}{x}\right)e^{\frac{1}{x}}}{x}$$

$$T^{f_{10}}(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k=0.$$

$$p(x)=xq_n(x) \text{ eval.}$$

Math 104 Worksheet 18 UC Berkeley, Summer 2021

Thursday, August 5

Recall. Let f be a bounded function on [a,b]. For a **partition** $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$ we define

$$U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k]) \cdot (t_k - t_{k-1}) \text{ and } L(f, P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k]) \cdot (t_k - t_{k-1})$$

where $M(f, S) = \sup\{f(x) : x \in S\}$ and $m(f, S) = \inf\{f(x) : x \in S\}$. Then we define

$$U(f) = \inf\{U(f,P) : P \in \Pi_{[a,b]}\} \ \text{ and } \ L(f) = \sup\{L(f,P) : P \in \Pi_{[a,b]}\}$$

where $\Pi_{[a,b]}$ is the set of all partitions of [a,b].

Definition. If $P, P^* \in \Pi_{[a,b]}$ and $P \subseteq P^*$, P^* is called a **refinement** of P.

Exercise 1. Prove that if P^* is a refinement of P, then

$$L(f,P) \le L(f,P^*) \le U(f,P^*) \le U(f,P).$$

Proof. Let $P=\{a=t_0< t_1<\ldots< t_n=b\}$. For each subinterval $I_k=[a_{k-1},a_k],$ P^* induces a partition $P_k^*=\{s\in P^*: a_{k-1}\leq s\leq a_k\}=\{a_{k-1}=s_0<\ldots< s_m=a_k\}$ of I_k . (Complete the proof.)

Exercise 2. Prove that if $P, Q \in \Pi_{[a,b]}$, then $L(f, P) \leq U(f, Q)$. (Hint: Use Exercise 1.)

Let
$$g(t) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (t - x_0)^k + \frac{M(t - x_0)^n}{n!} - f(t)$$
 (teI)

$$g(x_0) = f(x_0) - f(x_0) = 0$$

$$g'(t) = \sum_{k=1}^{n-1} \frac{f(k)(x_0)}{(k-1)!} (t-x_0)^{k-1} + \frac{M(t-x_0)^{n-1}}{(n-1)!} - f'(t)$$

$$g'(x_0) = f'(x_0) - f'(x_0) = 0$$

$$g''(x_0) = 0$$

$$g(x) = 0, \qquad g(x_0) = 0.$$

Rolle's theorem \Rightarrow there exists x_i between x_i and x_i such that $g'(x_i) = 0$.

$$g'(\chi_0)=0$$
, $g'(\chi_1)=0$ \Rightarrow there exists χ_2 : $g^{(2)}(\chi_2)=0$.

there exists $\chi_n: g^{(n)}(\chi_n) = 0$.

$$g^{(n)}(t) = M - f^{(n)}(t)$$

$$O = g^{(n)}(x_n) = M - f^{(n)}(x_n) \implies f^{(n)}(x_n) = M$$

Riemann integral

Let f be a bounded function on a closed interval [a,b].
For S = [a,b], define

 $M(f,S) = \sup \{f(x): x \in S\}$, $m(f,S) = \inf \{f(x): x \in S\}$. $= \sup \{f(x): x \in S\}$. $= \sup \{f(x): x \in S\}$.

Def: A partition of [a,b] is a finite ordered subset of the

form P= { a= to < t, < tz < . . < tn = b }.

Et. $P = \{0, \frac{1}{4}, \frac{1}{2}, 1\}$ is $A = \{0, \frac{1}{4}, \frac{1}{2}, 1\}$ is

Def: The upper Darboux sum U(f,P) of f w.r.t. $P = \{t_0, ..., t_n\}$.

 $U(f,P) = \sum_{k=1}^{\infty} M(f,I_k) \cdot l(I_k)$ where $I_k = [t_{k-1},t_k]$, $l(I_k) = t_k - t_{k-1}$.

The lower Darboux sum L(f,P) ... $L(f,P) = \sum_{k=1}^{\infty} m(f,I_k) l(I_k).$

Observe: $-\infty < m(f,[a,b])(b-a) \le L(f,P) \le U(f,P) \le M(f,[a,b])(b-a) < \infty$

Def: The upper Darboux integral U(f) of f over [a,b] is $U(f) = \inf \left\{ U(f,P) : P \in \prod_{[a,b]} \right\}.$ Def: The lower Darboux integral $L(f) = \sup \left\{ L(f,P) : P \in \prod_{[a,b]} \right\}.$

By previous observation, U(f), $L(f) \in \mathbb{R}$.

Taylor's theorem: Let f be defined on an open interval I containing to such that the n^{th} derivative of f exists at every point in I.

Then for each $x \in I \setminus [x_0]$, \Rightarrow first n derivatives there exists dx between x and x_0 such that $R_n (x) = \frac{f(n)(\alpha x)}{n!} (x - x_0)^n, \quad i.e.$ $f(x) = \sum_{k=0}^{n-1} \frac{f(k)(x_0)}{k!} (x - x_0)^k + \frac{f(n)(\alpha x)}{n!} (x - x_0)^n.$ "error term"

Proof

Scratch work: Rearrange the above:

Taylor polynomial

$$f_{(N)}(x^{\chi}) = \frac{(x-x^{\circ})_{\mu}}{\sum_{k=0}^{\chi=0}} \left\{ f(x) - \sum_{k=0}^{\chi=0} \frac{k!}{f(\kappa)(k^{\circ})} (x-x^{\circ})_{\kappa} \right\}$$

=: M

Want to show that there exists α_x between x and x_0 such that $f^{(n)}(\alpha_x) = M$.

Ideally, would like $f(x) = \sum_{k=0}^{\infty} \frac{f(k)}{(x_0)} (x - x_0)^k$ $f(x) = \sum_{k=0}^{\infty} \frac{f(k)}{(x_0)} (x - x_0)^k$ $f(x) = \sum_{k=0}^{\infty} \frac{f(k)}{(x_0)} (x - x_0)^k$ $+ \frac{f(n)}{(\alpha_x)} (x - x_0)^k$

Corollary: If f is infinitely differentiable on an interval I containing Xo and there exists M>0 such that $|f^{(n)}(x)| \leq M$ for all $n \geq 0$, $x \in I$ then $f(x) = T^{f, x_0}(x)$ for all $x \in I$. By Taylor's theorem, for each nEIN and rEI, there exists $dx^{(n)}$ between x and x_0 such that $\left| R_n^{f, \chi_0}(\chi) \right| = \left| \frac{f^{(n)}(\alpha \chi^{(n)})}{n!} (\chi - \chi_0)^n \right| \leq \frac{M}{n!} \left| \chi - \chi_0 \right|^n \xrightarrow[n \to \infty]{} 0.$ Ex $f(x) = e^x$ infinitely differentiable on $(-\infty, \infty)$. $T_{k=0}^{(k)}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} \chi^k = \sum_{k=0}^{\infty} \frac{1}{k!} \chi^k.$ Let $\chi^* \in \mathbb{R}$. $\chi^* \in (-|\chi^*|-1, |\chi^*|+1)$. $|f^{(n)}(\chi)| \leq e^{\chi} \leq e^{|\chi^*|+1}$ for all $\chi \in \mathbb{I}$. By corollary, $T^{f,o}(x^*) = f(x^*)$, i.e. $e^{x} = \sum_{k} \frac{x^{k}}{k!}$ for all $x \in \mathbb{R}$.

Thursday, August 5

Taylor series Def: f⁽ⁿ⁾ denotes the nth derivative of f. Def: f is infinitely differentiable at xo if f(n)(xo) exists for all neIN. existence implies

fin-i) exists on an Def: Let f be a function défined on an open interval I containing Xo. open interval containing

If is infinitely differentiable at Xo, define the Taylor series for f about xo

the power series

converge of the Taylor series.

nth remainder (of the above) is $R_n^{f,x_o}(x) = f(x) - \sum_{k=1}^{n-1} f^{(k)}(x_o)(x-x_o)^k$.

Observation: for any $x \in I$, $f(x) = \sum_{k=0}^{\infty} \frac{f(k)(x_0)}{k!} (x-x_0)^k \iff R_n^{f_1 x_0}(x) \to 0$ as $n \to \infty$.