Chapter 5

Top-Down Parsing

Recursive Descent Parsing

A (Limited) Recursive Descent Parser (3)

- For production $E \rightarrow T$ bool $E_1()$ { return T(); }
- For production $E \rightarrow T + E$ bool $E_2()$ { return T() && term(PLUS) && E(); }
- For all productions of E (with backtracking)

```
bool E() {
   TOKEN *save = next;
   return (next = save, E_1())
   || (next = save, E_2()); }
```

A (Limited) Recursive Descent Parser (4)

- Functions for non-terminal T
- $\cdot T \rightarrow int \mid int * T \mid (E)$

```
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && T() && term(CLOSE); }
bool T() {
    TOKEN *save = next;
    return (next = save, T_1())
    || (next = save, T_2())
    || (next = save, T_3()); }
```

Practice

- A Recursive Descent Parser for Grammar S
- \cdot 5 \rightarrow ()|(5)

```
bool S_1() {return term(OPEN) && term(CLOSE); }
bool S_2() { return term(OPEN) && S() && term(CLOSE); }
bool S() {
    TOKEN *save = next;
    return (next = save, S_1())
    || (next = save, S_2()); }
```

Example

```
E \rightarrow T \mid T + E
                                                                                 (int)
     T \rightarrow int \mid int * T \mid (E)
bool term(TOKEN tok) { return *next++ == tok; }
bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next; return (next = save, E_1())
                                        || (next = save, E_2()); | 
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next; return (next = save, T_1())
                                        || (next = save, T_2())
                                         || (next = save, T_3()); }
                                                                                  int
```

What happened?

```
E \rightarrow T \mid T + E
                                                               Input1: int
     T \rightarrow int \mid int * T \mid (E)
                                                               Input2: int*int
bool term(TOKEN tok) { return *next++ == tok; }
bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next; return (next = save, E_1())
                                        || (next = save, E_2()); | 
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next; return (next = save, T_1())
                                        || (next = save, T_2())
                                        || (next = save, T_3()); }
```

Elimination of Left Recursion

• Consider the left-recursive grammar $5 \rightarrow 5 \alpha \mid \beta$

• 5 generates all strings starting with a
$$\beta$$
 and followed by a number of α

Can rewrite using right-recursion

$$S \rightarrow \beta S'$$
 G[S]:
 $S \rightarrow \alpha S' \mid \varepsilon$ S->a|;|(T)
T->T,S|S

28

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from S start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' \mid ... \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid ... \mid \alpha_n S' \mid \varepsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha \mid \delta$$
 $A \rightarrow S \beta$
is also left-recursive because
 $S \rightarrow^+ S \beta \alpha$

- This left-recursion can also be eliminated
- See Dragon Book for general algorithm
 - Section 4.3

Practice

G[S]:

```
S\rightarrow a|;|(T)
T->T,5|S
G'[S]:
S->a|;|(T)
T->ST'
T'->,ST' | \varepsilon
```

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to <u>left-factor</u> the grammar

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow int Y \mid (E)$
 $Y \rightarrow * T \mid \varepsilon$

Practice Left-recursion and Left-factoring Elimination

```
G[M]:
M->MaH|H
H->b(M)|(M)|b
```

```
G'[M]:

M->HM'

M'->aHM'|\varepsilon

H->bH'|(M)

H'->(M)|\varepsilon
```

LL(1) Parsing Table Example

· Left-factored grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

• The LL(1) parsing table: __next input token

	int	*	+	()	\$
Ε	ΤX			ΤX		
X			+ E		\mathcal{E}	\mathcal{E}
Т	int Y			(E)		
У		* T	${\cal E}$		${\cal E}$	\mathcal{E}

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

LL(1) Parsing Table Example

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \to T X$ "
 - This can generate an int in the first position

	int	*	+	()	\$
E	TX			ΤX		
X			+ E		${\cal E}$	${\cal E}$
T	int Y			(E)		
У		* T	${\cal E}$		${\cal E}$	${\cal E}$

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y \quad Y \rightarrow^* T \mid \varepsilon$

LL(1) Parsing Tables Example

- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if Y $\rightarrow \varepsilon$

	int	*	+	()	\$
E	ΤX			ΤX		
X			+ E		${\cal E}$	${\cal E}$
T	int Y			(E)		
У		* T	\mathcal{E}		\mathcal{E}	${\cal E}$

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$ $Y \rightarrow * T \mid \varepsilon$

LL(1) Parsing Tables. Errors

- Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"
 - Blank entries indicate error situations

	int	*	+	()	\$
E	ΤX			ΤX		
X			+ E		${\cal E}$	${\cal E}$
T	int Y			(E)		
У		* T	${\cal E}$		\mathcal{E}	${\cal E}$

LL(1) Parsing Example
$$\begin{array}{ccc} E \to T X & T \to \text{int } Y \mid (E) \\ X \to + E \mid \varepsilon & Y \to * T \mid \varepsilon \end{array}$$

Stack	Input	<u>Action</u>
E \$	int * int \$	TX
TX\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	${\cal E}$
X \$	\$	${\cal E}$
\$	\$	ACCEPT

First Sets: Example 1

Recall the grammar

```
E \rightarrow T X
T \rightarrow (E) \mid int Y
```

First sets

```
First(() = {(}
First()) = {)}
First(int) = {int}
First(+) = {+}
First(*) = {*}
```

```
X \rightarrow + E \mid \varepsilon
      Y \rightarrow * T \mid \varepsilon
First(E) \supseteq First(T) = First(T)
First(T) = { (,int }
First(X) = {+, \varepsilon}
 First(\forall) = {*, \varepsilon}
```

First Sets: Example 2

```
G[E]: (1) E \rightarrow TE' (2) E' \rightarrow +TE' (3) E' \rightarrow \epsilon (4) T \rightarrow FT' (5) T' \rightarrow *FT' (6) T' \rightarrow \epsilon (7) F \rightarrow (E) (8) F \rightarrow i
```

FIRST SETS:

```
N FIRST(E)=FIRST(T)=FIRST(F)= {(,i)
Y FIRST(E')= {+,ε}
N FIRST(T) =FIRST(F)= {(,i)
Y FIRST(T')= {*,ε}
N FIRST(F)= {(,i)
```

Computing Follow Sets

· Definition:

Follow(X) = {
$$\dagger$$
 | $S \Rightarrow \beta X \dagger \delta$ }

- Intuition
 - If $X \rightarrow A$ B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - if $B \Rightarrow^* \varepsilon$ then $Follow(X) \subseteq Follow(A)$
 - If S is the start symbol then $\$ \in Follow(S)$

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. $\$ \in Follow(S)$
- 2. For each production $A \rightarrow \alpha X \beta$
 - First(β) { ε } \subseteq Follow(X)
- 3. For each production $A \rightarrow \alpha X \beta$ where $\varepsilon \in \text{First}(\beta)$
 - Follow(A) ⊆ Follow(X)

Follow Sets: Example 1

Recall the grammar

```
E \rightarrow T X
T \rightarrow (E) \mid int Y
X \rightarrow +E \mid \varepsilon
Y \rightarrow *T \mid \varepsilon
```

```
Follow(E) = "$" \cup ")" \cup Follow(X) = {}), $}

Follow(X) = Follow(E) = {}), $}

Follow(T) = {First(X)-$\varepsilon$} \cup Follow(Y) = {+, }, $}

Follow(Y) = Follow(T) = {+, }, $}
```

Follow Sets: Example 2

```
G[E]: (1) E \rightarrow TE' (2) E' \rightarrow +TE' (3) E' \rightarrow \epsilon (4) T \rightarrow FT' (5) T' \rightarrow *FT' (6) T' \rightarrow \epsilon (7) F \rightarrow (E) (8) F \rightarrow a
```

FOLLOW SETS:

```
FOLLOW(E)={),$}

FOLLOW(E')= FOLLOW(E)={), $}

FOLLOW(T)={FIRST(E')-\epsilon} \cup FOLLOW(E)= {+, ), $}

FOLLOW(T')= FOLLOW(T)={+,), $}

FOLLOW(F)={FIRST(T')-\epsilon} \cup FOLLOW(T)={*,+, ),$}
```

Constructing LL(1) Parsing Tables

$$E \to T X$$
 $X \to + E \mid \varepsilon$
 $T \to (E) \mid \text{int } Y$ $Y \to * T \mid \varepsilon$

	()	+	*	int	\$
Ε	ΤX				TX	
Т	(E)				int Y	
X		\mathcal{E}	+ E			E
У		ε	\mathcal{E}	* T		\mathcal{E}

Follow(X) = Follow(E) =
$$\{\$, \}$$

Follow(Y) = Follow(T) = First(X)- ε U Follow(E) = $\{*, \$, \}$

Constructing LL(1) Parsing Tables

Constructing LL(1) Parsing Tables: Example 2

```
G[E]: (1) E \rightarrow TE'

(2) E' \rightarrow +TE'

(3) E' \rightarrow \epsilon

(4) T \rightarrow FT'

(5) T' \rightarrow *FT'

(6) T' \rightarrow \epsilon

(7) F \rightarrow (E)

(8) F \rightarrow a
```

FIRST & FOLLOW Sets

G[E]: (1) E
$$\rightarrow$$
 TE' (2) E' \rightarrow +TE' (3) E' \rightarrow ϵ (4) T \rightarrow FT' (5) T' \rightarrow *FT' (6) T' \rightarrow ϵ (7) F \rightarrow (E) (8) F \rightarrow a

• FIRST SETS: FIRST(E)= {(,α} FIRST(E')= {+,ε} FIRST(T) = {(,α} FIRST(T')= {*,ε} FIRST(F)= {(,α} • FOLLOW SETS:
FOLLOW(E)={),\$}
FOLLOW(E')={), \$}
FOLLOW(T)={+, }, \$}
FOLLOW(T')={+,}, \$}
FOLLOW(F)={*,+, },\$}

(2) E' -> +TE' (3) $E' -> \varepsilon$ **G**[**E**]: $(1) \quad E \longrightarrow TE'$

> (5) T' -> *FT' (6) $T' -> \varepsilon$ **(8) (7)** $F \rightarrow (E)$ $F \rightarrow a$

T -> FT'

(4)

LL(1) Parsing Tables

	а	+	*	()	\$
E	TE'			TE'		
E'		+ TE '			3	3
Т	FT'			FT'		
T'		3	*FT'		3	3
F	a			(E)		

PARSING PROCEDURE -- Input: \$ a+a \$

STACK	TOP	CURRENT	M[X,b]
1 \$E	Е	а	E —> TE'
2 \$E'T	Т	а	T —> FT'
3 \$E'T'F	F	а	F —> a
4 \$E'T'a	а	а	MATCH
5 \$E'T'	T'	+	T' -> ε
6 \$E'	E'	+	E' —> +TE'
7 \$E'T+	+	+	MATCH
8 \$E'T	Т	а	T —> FT'
9 \$E'T'F	F	а	F —> a
10 \$E'T'a	а	a	MATCH
11 \$E'T'	Τ'	\$	T' -> ε
12 \$E'	Ε'	\$	E',—>ε
13 \$	\$	\$	ACCEPT