离散数学基础习题答案

Answers to Exercises in Elementary Discrete Mathematics

周晓聪 乔海燕

中山大学数据科学与计算机学院,广州 510275

2021年1月19日

版权所有, 翻印必究

目录

目录		
第五章	集合	1

第五章 集合

练习 5.1 分别使用元素枚举法和性质概括法定义下面的集合。

- (1) 1到100 (包括1和100) 的完全平方数构成的集合;
- (2) 1到100中17的倍数构成的集合;
- (3) 24的所有正因子构成的集合;
- (4) 长度为4且含有偶数个1的二进制串构成的集合。

解答: (1) 1到100的完全平方数构成的集合,用元素枚举法则是集合 $\{1,4,9,16,25,36,49,64,81,100\}$,用性质概括法则是: $\{k^2 \mid k \in \mathbb{N} \land 1 \leq k \leq 10\}$ 。

- (2) 1到100中17的倍数构成的集合,用元素枚举法则是集合 $\{17,34,51,68,85\}$,用性质概括法则是: $\{17k \mid k \in \mathbb{N} \land 1 \le 17k \le 100\}$ 。
- (3) 24的所有正因子构成的集合,用元素枚举法则是集合 $\{1,2,3,4,6,8,12,24\}$,用性质概括法则是: $\{k\in\mathbb{N}\mid k\mid 24\}$ 。
 - (4) 长度为4且含有偶数个1的二进制串构成的集合,用元素枚举法则是

$$\{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111\}$$

用性质概括法则是: $\{w \in \Sigma^* \mid w$ 的长度为4且含有偶数个1 $\}$,其中字母集 $\Sigma = \{0,1\}$ 。

练习* 5.2 设全集U是自然数集 \mathbb{N} , 定义集合A:

$$A = \{x + y \mid x, y \in \mathbb{N}, 1 \le x \le 4, 1 \le y^2 \le 10\}$$

- (1) 使用元素枚举法给出集合A;
- (2) 判断下面公式的真值 (注意,个体变量的论域是全集N)。
 - (1) $\forall x (x \in A \leftrightarrow \exists y \exists z (1 \le y \le 4 \land 1 \le z^2 \le 10 \land x = y + z))$
 - (2) $\forall x \forall y ((x+y) \in A \rightarrow (1 \le x \le 4 \land 1 \le y^2 \le 10))$
 - (3) $\forall x \forall y ((1 \le x \le 4 \land 1 \le y^2 \le 10) \rightarrow (x+y) \in A)$
 - (4) $\exists x \exists y ((x+y) \in A \land (x > 5 \lor y^2 > 10))$

解答: (1) 在A的定义中,实际上x的取值只能是1,2,3,4,而y的取值只能是1,2,3,因此有:

$$A = \{2, 3, 4, 5, 6, 7\}$$

(2) 公式 $\forall x(x \in A \leftrightarrow \exists y \exists z (1 \le y \le 4 \land 1 \le y^2 \le 10 \land x = y + z))$ 就是集合A的定义的含义,因此真值为真。

而公式 $\forall x \forall y ((x+y) \in A \to (1 \le x \le 4 \land 1 \le y^2 \le 10))$ 的真值为假,例如取x=1,y=6,则 $x+y=7 \in A$,但却没有 $1 \le y^2 \le 10$ 。

公式 $\forall x \forall y ((1 \le x \le 4 \land 1 \le y^2 \le 10) \rightarrow (x+y) \in A)$ 的真值为真,因为对于蕴涵式 $(1 \le x \le 4 \land 1 \le y^2 \le 10) \rightarrow (x+y) \in A$,只有当x=1,2,3或4,且y=1,2或3时才为真,而不管哪一种情况,都有 $x+y \in A$ 。

公式 $\exists x\exists y((x+y)\in A\land (x>5\lor y^2>10))$ 的真值为真,例如取x=1,y=6则, $x+y\in A$,而 $y^2>10$ 。

练习 5.3 设全集U是自然数集, A, B, C, D是它的子集, 且

计算下列集合表达式:

$$(1) A \cup (C \cap D)$$

$$(2) A \cap (B \cup (C \cap D))$$

$$(3) B - (A \cap C) \qquad (4) \wp(A)$$

解答: 首先我们使用元素枚举法给出各集合:

$$A = \{1, 2, 8, 10\}$$

$$B = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

$$C = \{0, 3, 6, 9, 12, 15, 18\}$$

$$D = \{1, 2, 4, 8, 16, 32\}$$

可看到 $C \cap D = \emptyset \exists A \cap C = \emptyset$, 因此:

(1)
$$A \cup (C \cap D) = A = \{1, 2, 8, 10\}$$

(2)
$$A \cap (B \cup (C \cap D)) = A \cap B = \{1, 2\}$$

(3)
$$B - (A \cap C) = B = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

$$(4) \quad \wp(A) = \{\varnothing, \{1\}, \{2\}, \{8\}, \{10\}, \{1, 2\}, \{1, 8\}, \{1, 10\}, \{2, 8\}, \{2, 10\}, \{8, 10\}, \{1, 2, 8\}, \{1, 2, 10\}, \{1, 8, 10\}, \{2, 8, 10\}, \{1, 2, 8, 10\}\}$$

练习 5.4 设全集 $U = \{x \in \mathbb{N} \mid 1 \le x \le 20\}$,集合A, B, C都是全集U的子集,且 $A = \{x \mid x \in \mathbb{N} \mid x \in \mathbb{N} \mid x \in \mathbb{N} \in \mathbb{N} \}$,从算下面的集合表达式。

(1)
$$A \cap B$$
 (2) $A \cup B$ (3) $A - B$
(4) $A \cap (B \cup C)$ (5) $A - (B - C)$ (6) $\overline{A - C}$

解答: 首先我们使用元素枚举法给出各集合:

$$A = \{3, 6, 9, 12, 15, 18\}$$
 $B = \{4, 8, 12, 16, 20\}$ $C = \{5, 10, 15, 20\}$

因此有:

- (1) $A \cap B = \{12\}$
- (2) $A \cup B = \{3, 4, 6, 8, 9, 12, 15, 16, 18, 20\}$
- (3) $A B = \{3, 6, 9, 15, 18\}$
- (4) $A \cap (B \cup C) = A \cap \{4, 5, 8, 10, 12, 15, 16, 20\} = \{12, 15\}$
- (5) $A (B C) = A \{4, 8, 12, 16\} = \{3, 6, 9, 15, 18\}$
- (6) $\overline{A-C} = \overline{\{3,6,9,12,18\}} = \{1,2,4,5,7,8,10,11,13,14,15,16,17,19,20\}$

练习* 5.5 设全集U是自然数集,集合A和B都是全集U的子集,且 $A = \{3k \mid k \in \mathbb{N}\}$, $B = \{4k \mid k \in \mathbb{N}\}$,计算 $A \cap B$, $A \cup B$ 和A - B。

解答:根据A的定义,对任意自然数x, $x \in A$ 当且仅当 $3 \mid x$;而根据B的定义,对任意自然数x, $x \in B$ 当且仅当 $4 \mid x$,因此:

(1) 对任意自然数x, $x \in A \cap B$ 当且仅当 $x \mid 3$ 且 $x \mid 4$,当且仅当 $x \mid 12$,因此:

$$A \cap B = \{12k \mid k \in \mathbb{N}\}\$$

(2) 对任意自然数x, $x \in A \cup B$ 当且仅当 $x \mid 3$ 或 $x \mid 4$,当且仅当 $x \bmod 12 = 0, 3, 4, 6, 8$ 或9,因此:

$$A \cup B = \{x \mid \exists k \in \mathbb{N} (x = 12k \lor x = 12k + 3 \lor x = 12k + 4 \lor x = 12k + 6 \lor x = 12k + 8 \lor x = 12k + 9)\}$$

(3) 对任意自然数x, $x \in A - B$ 当且仅当 $x \mid 3$ 且 $x \nmid 4$, 当且仅当 $x \mod 12 = 3, 6, 9$, 因此:

$$A - B = \{x \mid \exists k \in \mathbb{N}(x = 12k + 3 \lor x = 12k + 6 \lor x = 12k + 9)\}\$$

练习 5.6 设 A_n 是n的所有正因子构成的集合,集合族 $A = \{A_{12}, A_{18}, A_{24}, A_{36}\}$,计算 $\bigcap A$ 和 $\bigcup A$ 。

解答: 首先我们有:

$$A_{12} = \{1, 2, 3, 4, 6, 12\}$$
 $A_{18} = \{1, 2, 3, 6, 9, 18\}$
 $A_{24} = \{1, 2, 3, 4, 6, 8, 12, 18, 24\}$ $A_{36} = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$

从而有:

$$\bigcap \mathcal{A} = A_{12} \cap A_{18} \cap A_{24} \cap A_{36} = \{1, 2, 3, 6\}$$
$$\bigcup \mathcal{A} = A_{12} \cup A_{18} \cup A_{24} \cup A_{36} = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36\}$$

不难看到 \bigcap A是12,18,24,36的所有公因子的集合。

练习 5.7 设 A_n 是n的所有正因子构成的集合,集合族 $A = \{A_{4k} \mid k \in \mathbb{Z}^+\}$,计算 $\bigcap A$ 和 $\bigcup A$ 。

解答: 由于 $A_4 = \{1, 2, 4\}$,而对任意 $k \in \mathbb{Z}^+$,1, 2, 4都是4k的正因子,也即 $1, 2, 4 \in A_{4k}$,从而:

$$\bigcap \mathcal{A} = A_4 = \{1, 2, 4\}$$

而对任意正整数 $k \in \mathbb{Z}^+$,显然有 $k \in A_{4k}$,从而 $k \in \bigcup A$,这表明 $\bigcup A = \mathbb{Z}^+$ 。

练习 5.8 计算下面集合的幂集。

$$(1) \{a\}$$

$$(2) \{a, b\}$$

(1)
$$\{a\}$$
 (2) $\{a,b\}$ (3) $\{a,b,c\}$

解答: 根据幂集的定义有:

$$\wp(\{a\}) = \{\varnothing, \{a\}\}$$

$$\wp(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$$

$$\wp(\{a,b,c\}) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$$

练习* 5.9 计算下面集合的幂集。

$$(1) \{\emptyset, \{\emptyset\}\}$$

(1)
$$\{\emptyset, \{\emptyset\}\}\$$
 (2) $\{a, \{b\}, \{\{c\}\}\}\$ (3) $\emptyset(\{\{a\}\})$

(3)
$$\wp(\{\{a\}\})$$

解答: 很容易根据幂集的定义计算:

(1)
$$\wp(\{\varnothing, \{\varnothing\}\})$$

$$= \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}$$

(2)
$$\wp(\{a,\{b\},\{\{c\}\}\})$$

$$= \{\emptyset, \{a\}, \{\{b\}\}, \{\{c\}\}\}, \{a, \{b\}\}, \{a, \{\{c\}\}\}\}, \{\{b\}, \{\{c\}\}\}\}, \{a, \{b\}, \{\{c\}\}\}\}\}$$

(3)
$$\wp(\{\{a\}\}) = \wp(\{\emptyset, \{\{a\}\}\})$$

练习* 5.10 设a是全集的某个元素,判断下面的命题是否为真。

$$(1) \quad a \in \{a\}$$

$$(2) \{a\} \in \{a\}$$

$$(3) \{a\} \in \{a, \{a\}\}\$$

$$(4) \{a\} \subset \{a\}$$

$$\{a\} \subset \{a, \{a\}\}$$

$$(4) \ \{a\} \subseteq \{a\} \qquad \qquad (5) \ \{a\} \subseteq \{a, \{a\}\} \qquad \qquad (6) \ \{\{a\}\} \subseteq \{a, \{a\}\}$$

解答:

命题(1) 为真,因为a是 $\{a\}$ 的元素;

命题(2) 为假,因为 $\{a\}$ 不是 $\{a\}$ 的元素, $\{a\}$ 的元素只有a;

命题(3) 为真, 因为 $\{a, \{a\}\}$ 有两个元素, 其中一个为a, 而另一个元素就是 $\{a\}$;

命题(4) 为真,因为 $\{a\} = \{a\};$

命题(5) 为真,因为 $\{a\}$ 只有元素a,而 $\{a,\{a\}\}$ 有两个元素,一个是a,一个是 $\{a\}$;

命题(6) 为真,因为 $\{\{a\}\}$ 只有一个元素 $\{a\}$,而这个元素属于 $\{a,\{a\}\}$,后者有两个元素,一个 是a,一个是 $\{a\}$;

练习 5.11 设U是全集,A,B,C是U的子集,使用文氏图表示下面的集合表达式。

$$(1)$$
 $A \cap (B \cup C)$

(2)
$$A - (B \cup C)$$
 (3) $A - (B - C)$

(3)
$$A - (B - C)$$

解答: 下面从左至右分别给出了集合表达式 $A \cap (B \cup C), A - (B \cup C)$ 和A - (B - C)的文氏图。

练习 5.12 设U是全集,A, B, C是U的子集,使用成员关系表表示下面的集合表达式。

(1)
$$A \cap (B \cup C)$$

(2)
$$A - (B \cup C)$$
 (3) $A - (B - C)$

$$(3) \quad A - (B - C)$$

解答: 我们使用下面的成员关系表给出这些集合表达式。

\overline{A}	B	C	$B \cup C$	B-C	$A \cap (B \cup C)$	$A - (B \cup C)$	A - (B - C)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	1	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	1	1
1	0	1	1	0	1	0	1
1	1	0	1	1	1	0	0
1	1	1	1	0	1	0	1

(1) 对于该命题,下面证明有什么错误?

证明 设 $x \notin B$ 。由于 $x \in A$ 且 $A \subseteq C$,因此 $x \in C$ 。既然 $x \notin B$ 且 $B \subseteq C$,所以 $x \notin C$ 。但前面已经 证明 $x \in C$, 矛盾! 因此由反证法, 我们有 $x \in B$ 。

(2) 给出一个例子说明上面命题不成立。

解答: (1) 上面证明的错误在于,由 $x \notin B$ 和 $B \subseteq C$ 不能得到 $x \notin C$,因为 $B \subseteq C$ 是意味着 若 $x \in B$,则 $x \in C$,但若 $x \notin B$,并不能得到 $x \notin C$,否定蕴涵式的前件,不能得到后件的否定。

(2) 很容易举一个例子,例如 $A = \{1\}, B = \{2\}, C = \{1,2\}$ 且x = 1,显然 $A \subseteq C$ 且 $B \subseteq C$,且 $1 \in A$,但不能得到 $1 \in B$ 。

练习* 5.14 设A, B是任意集合, 试给出下列各式成立的充分必要条件, 并说明理由。

(1) $A \cap B = A$

(2) $A \cup B = A$

(3) $A \oplus B = A$

(4) $A \cap B = A \cup B$

解答: (1) $A \cap B = A$ 的充要条件是 $A \subseteq B$ 。因为当 $A \cap B = A$ 时,对任意 $x \in A$,就有 $x \in A \cap B$,从而 $x \in B$,因此 $A \subseteq B$ 。反之若 $A \subseteq B$,则对任意的x,若 $x \in A \cap B$,则显然 $x \in A$,反之,若 $x \in A$,则由于 $A \subseteq B$,从而 $x \in B$,从而 $x \in A \cap B$,这就证明了 $A = A \cap B$ 。

- (2) $A \cup B = A$ 的充要条件是 $B \subseteq A$ 。因为当 $A \cup B = A$ 时,对任意 $x \in B$,显然有 $x \in A \cup B$,从而 $x \in A$,因此 $B \subseteq A$ 。反之若 $B \subseteq A$,则对任意x,若 $x \in A \cup B$,则要么 $x \in A$,要么 $x \in B$,而当 $x \in B$ 时由 $x \in B$ 日由 $x \in A$,因此总有 $x \in A$,即 $x \in B$ 日由 $x \in A$,因此总有 $x \in A$,即 $x \in B$ 日由 $x \in A$,因此总有 $x \in A$,即 $x \in B$ 日由 $x \in A$,因此总有 $x \in A$,即 $x \in B$ 日由 $x \in A$,因此总有 $x \in A$,即 $x \in B$ 日由 $x \in A$,因此总有 $x \in A$,即 $x \in B$ 日由 $x \in A$,即 $x \in B$ 日由 $x \in B$ 日由 $x \in A$,因此总有 $x \in A$,即 $x \in B$ 日由 $x \in B$ 日本 $x \in B$ 日由 $x \in B$ 日本 $x \in B$ 日本x
- (3) $A \oplus B = A$ 的充要条件是 $B = \varnothing$,显然当 $B = \varnothing$ 时,根据对称差的定义有 $A \oplus \varnothing = A$ 。另一方面,若 $A \oplus B = A$,而 $B \neq \varnothing$,即存在元素 $b \in \varnothing$ 。分情况讨论: (i) 若 $b \in A$,则 $b \in A \cap B$,从而根据对称差的定义有 $b \notin A \oplus B$,这表明 $A \neq A \oplus B$,矛盾! (ii) 若 $b \notin A$,则这时 $b \in A \cup B \sqcup b \notin A \cap B$,从而 $b \in A \oplus B$,这也表明 $A \neq A \oplus B$,矛盾! 这就证明了当 $A \oplus B = A$ 时必有 $B = \varnothing$ 。
- (4) $A \cap B = A \cup B$ 的充要条件是A = B。显然当A = B时有 $A \cap B = A \cup B$ 。另一方面,设 $A \cap B = A \cup B$ 但 $A \neq B$ 。由 $A \neq B$ 得存在元素 $a \in A$ 且 $a \notin B$,或者存在元素 $b \in B$ 且 $b \notin B$ 。不难看到这两种情况的证明是类似的,因此不失一般性,假设存在 $a \in A$ 且 $a \notin B$,从而 $a \in A \cup B$ 但 $a \notin A \cap B$,这表明 $A \cap B \neq A \cup B$,矛盾!因此当 $A \cap B = A \cup B$ 时必有A = B。

练习 5.15 设A, B, C和D是集合。集合等式(A - B) - (C - D) = (A - C) - (B - D)是否成立,如成立请证明,如不成立请举例说明。

解答: 这个等式不成立,例如 $A = \{1\}, B = \{1, 2\}, C = \{2\}, D = \{1, 2\}, 则$:

$$A-B=\varnothing$$
 $C-D=\varnothing$ $A-C=\{1\}$ $B-D=\varnothing$

从而 $(A-B)-(C-D)=\varnothing$,而 $(A-C)-(B-D)=\{1\}$,两者不相同。

练习* 5.16 设A, B, C是集合,证明:若 $A \cap B = A \cap C \perp A \cup B = A \cup C$,则B = C。

练习 5.17 设A, B, C是集合, 证明: 若 $A \cap B = A \cap C$ 且 $\overline{A} \cap B = \overline{A} \cap C$, 则B = C。

证明 对任意x, 若 $x \in B$, 我们分两种情况:

- (1) $x \in A$, 则 $x \in A \cap B$, 而 $A \cap B = A \cap C$, 从而 $x \in A \cap C$, 从而 $x \in C$;
- (2) $x \notin A$, 从而 $x \in \overline{A} \cap B$, 而 $\overline{A} \cap B = \overline{A} \cap C$, 从而 $x \in \overline{A} \cap C$, 从而也有 $x \in C$ 。

综上当 $x \in B$ 时总有 $x \in C$,即 $B \subset C$ 。类似可证明 $C \subset B$,因此B = C。

练习 5.18 证明对称差运算满足交换律: 即对任意集合 $A, B, A \oplus B = B \oplus A$ 。

证明 由对称差的定义由 $A\oplus B=(A-B)\cup(B-A)$,因此 $B\oplus A=(B-A)\cup(A-B)$,因此 $A\oplus B=B\oplus A$ 。

练习 5.19 设A, B, C是集合,判断 $A \cup (B \oplus C) = (A \cup B) \oplus (A \cup C)$ 是否成立,并说明理由。

解答:我们使用集合的成员关系表来判断上面的等式是否成立。

\overline{A}	B	C	$B \oplus C$	$A \cup (B \oplus C)$	$A \cup B$	$A \cup C$	$(A \cup B) \oplus (A \cup C)$
0	0	0	0	0	0	0	0
0	0	1	1	1	0	1	1
0	1	0	1	1	1	0	1
0	1	1	0	0	1	1	0
1	0	0	0	1	1	1	0
1	0	1	1	1	1	1	0
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	0

可以看到等式不成立,根据上面的成员关系表我们也可举例说明上述等式不成立,设 $A=\{1\},B=\{2\},C=\{3\}$,则:

$$B \oplus C = \{2,3\}$$
 $A \cup (B \oplus C) = \{1,2,3\}$ $A \cup B = \{1,2\}$ $A \cup C = \{1,3\}$ $(A \cup B) \oplus (A \cup C) = \{2,3\}$

练习 5.20 设A, B, C是集合,判断 $A \cap (B \oplus C) = (A \cap B) \oplus (A \cap C)$ 是否成立,并说明理由。

解答: 我们使用集合的成员关系表来判断上面的等式是否成立。

\overline{A}	B	C	$B \oplus C$	$A\cap (B\oplus C)$	$A \cap B$	$A \cap C$	$(A \cap B) \oplus (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	0	0	1	1	0

第五章 集合

可以看到等式成立。我们也可使用逻辑演算证明如下:对任意x,

因此等式成立。

练习 5.21 证明下面的集合等式。

(1)
$$(A-B)-C=(A-C)-B$$
 (2) $(A-B)-C=(A-C)-(B-C)$ 证明

$$(1) \quad (A-B)-C = (A\cap \overline{B})\cap \overline{C} \qquad \qquad // 集合差的性质 \\ = (A\cap \overline{C})\cap \overline{B} \qquad \qquad // 集合交满足交换律 \\ = (A-C)-B \qquad \qquad // 集合交满足交换律 \\ (2) \quad (A-B)-C = (A\cap \overline{B})\cap \overline{C} \qquad \qquad // 集合差的性质 \\ (A-C)-(B-C) = (A\cap \overline{C})\cap \overline{B\cap \overline{C}} \qquad \qquad // 集合差的性质 \\ = (A\cap \overline{C})\cap (\overline{B}\cup C) \qquad \qquad // 德摩尔根律、双重否定律 \\ = (A\cap \overline{C}\cap \overline{B})\cup (A\cap \overline{C}\cap C) \qquad // 分配律 \\ = A\cap \overline{C}\cap \overline{B} \qquad // 矛盾律、同一律$$

这就证明了(1)和(2)给出的等式都成立。

练习 5.22 考虑下面的命题:

对任意集合A, B, C,如果 $A - B \subseteq C$ 且 $A \not\subseteq C,$ 则 $A \cap B \neq \emptyset$ 。

对于该命题的下面证明是否正确?如果正确,它使用了什么证明策略?如果不正确,能否更正? 这个命题是否为真?

证明 既然 $A \not\subseteq C$,则可选择某个x使得 $x \in A$ 且 $x \not\in C$ 。既然 $x \not\in C$ 且 $A - B \subseteq C$,所以 $x \not\in A - B$,因此,要么 $x \not\in A$,要么 $x \in B$,但是前面已经假定 $x \in A$,因此必有 $x \in B$ 。既然 $x \in A$ 且 $x \in B$,因此 $x \in A \cap B$

解答:上述证明是正确的,总体上使用的是直接证明的策略。具体来说, $A \subseteq C$,即 $\neg(\forall x (x \in A))$

 $A \to x \in C$)),也即 $\exists x (x \in A \land x \notin C)$,因此存在 $x, x \in A$ 且 $x \notin C$ 。由 $x \notin C$ 且 $A - B \subseteq C$ 得到 $x \notin A - B$ 是假言易位,因为 $A - B \subseteq C$ 意味着 $x \in A - B \to x \in C$ 。而 $x \notin A - B$,即 $\neg (x \in A \land x \notin B)$,也即 $x \notin A \lor x \in B$ 。而 $x \in A$,因此由析取三段论得到 $x \in B$,从而由合取规则得到 $x \in A \land x \in B$,即 $x \in A \cap B$,从而 $x \in A \cap B$,从 $x \in A \cap B$

练习 5.23 考虑下面的命题:

 $\partial A, B, C$ 是集合且 $A \subseteq B \cup C$,则要么 $A \subseteq B$ 要么 $A \subseteq C$ 。

对于该命题的下面证明是否正确?如果正确,它使用了什么证明策略?如果不正确,能否更正? 这个命题是否正确?

证明 设x是A的任意元素,因为 $A \subseteq B \cup C$,因此有要么 $x \in B$,要么 $x \in C$:

情况一: $x \in B$ 。由于 $x \in A$ 的任意元素,这意味着 $\forall x \in A(x \in B)$,即 $A \subseteq B$ 。

情况二: $x \in C$ 。由于 $x \in A$ 的任意元素,类似地,这意味着 $\forall x \in A(x \in C)$,即 $A \subseteq C$ 。

因此, 这表明要么 $A \subseteq B$, 要么 $A \subseteq C$ 。

解答: 这个证明是不正确的,虽然开始时假设x是A的任意元素,但在由 $A \subseteq B \cup C$ 得到 $x \in B$ 或 $x \in C$ 后,分情况考虑 $x \in B$ 时,这时的x已经不是A的任意元素,所以不能得到 $\forall x (x \in A \to x \in B)$ 。

这个不是正确的,例如 $A=\{1,2\}$, $B=\{1\}$ 且 $C=\{2\}$,显然 $A\subseteq B\cup C$,但没有 $A\subseteq B$,也没有 $A\subseteq C$ 。

练习* 5.24 设*A*, *B*, *C*是集合, 证明:

- (1) $A \cap (B \cup C) \subseteq (A \cap B) \cup C$;
- (2) $(A \cap B) \cup C = A \cap (B \cup C)$ 当且仅当 $C \subseteq A$ 。

证明 (1) 由于 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,由于 $A \cap C \subseteq C$,且 \cup 保持子集关系,从而就得到

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \subseteq (A \cap B) \cup C$$

(2) 首先若 $(A \cap B) \cup C = A \cap (B \cup C)$,则对任意的x,若 $x \in C$,则 $x \in (A \cap B) \cup C$,而 $(A \cap B) \cup C = A \cap (B \cup C)$,从而 $x \in A \cap (B \cup C)$,从而 $x \in A$,这就得到 $C \subseteq A$;

另一方面, 若 $C \subseteq A$, 则由 $C \subseteq B \cup C$ 可得 $C \subseteq A \cap (B \cup C)$, 而显然 $A \cap B \subseteq A$, 且 $A \cap B \subseteq B \cup C$, 因此也有 $A \cap B \subseteq A \cap (B \cup C)$, 从而就有 $(A \cap B) \cup C$) $\subseteq A \cap (B \cup C)$ 。

练习 5.25 设A, B, C是集合且 $A - B \subseteq C$, 证明 $A - C \subseteq B$ 。

证明 对任意x,若 $x \in A - C$,则 $x \in A \perp x \notin C$,若这时 $x \notin B$,则 $x \in A \perp x \notin B$,从而 $x \in A - B$,从而由 $x \in A - B$,从而由 $x \in C$,与 $x \notin C$,矛盾! 因此这时必有 $x \in B$,这就证明了 $x \in C \cap B$ 。

练习* 5.26 证明如果集合A和B-C不相交,则 $A \cap B \subseteq C$ 。

证明 注意,集合A和B-C不相交的意思是 $A\cap(B-C)=\varnothing$ 。对任意x,若 $x\in A\cap B$,即 $x\in A$ 且 $x\in B$ 。由于 $A\cap(B-C)=\varnothing$,因此有 $x\not\in(B-C)$,这时若 $x\not\in C$,则 $x\in B$ 且 $x\not\in C$,即 $x\in(B-C)$,矛盾! 因此这时必有 $x\in C$,这就证明了 $A\cap B\subseteq C$ 。

练习 5.27 设A, B, C是集合。证明 $(A \cup B) - C \subseteq A \cup (B - C)$

证明 对任意x,若 $x \in (A \cup B) - C$,即 $x \in A \cup B \perp x \notin C$ 。分情况考虑: (1) 若 $x \in A$,则显然有 $x \in A \cup (B - C)$,而(2) 若 $x \in B$,则 $x \in B \perp x \notin C$,从而 $x \in B - C$,从而也有 $x \in A \cup (B - C)$ 。因此当 $x \in (A \cup B) - C$ 时总有 $x \in A \cup (B - C)$,即 $(A \cup B) - C \subseteq A \cup (B - C)$ 。

练习 5.28 设A, B, C是集合,证明 $A - (B - C) \subseteq (A - B) \cup C$ 。

证明 对任意x,若 $x \in A - (B - C)$,即 $x \in A$ 且 $x \notin (B - C)$,即 $x \in A$ 且 $(x \notin B \lor x \in C)$,从而 若 $x \in C$,则 $x \in (A - B) \cup C$,而若 $x \notin B$,则由 $x \in A$ 且 $x \notin B$ 得到 $x \in A - B$,也有 $x \in (A - B) \cup C$,因此总有 $x \in A$ 0 $x \in A$ 1 $x \in A$ 2 $x \in A$ 3 $x \in A$ 4 $x \in A$ 5 $x \in A$ 7 $x \in A$ 8 $x \in A$ 9 $x \in A$

练习 5.29 设A, B, C是集合。证明 $A - C \subseteq (A - B) \cup (B - C)$ 。

证明 对任意x,若 $x \in A - C$,即 $x \in A$ 且 $x \notin C$ 。这时若(1) $x \notin B$,则 $x \in A$ 且 $x \notin B$,从 而 $x \in A - B$,从而 $x \in (A - B) \cup (B - C)$;而若(2) $x \in B$,则 $x \in B$ 且 $x \notin C$,从而 $x \in B - C$,从而也有 $x \in (A - B) \cup (B - C)$ 。总之,这时总有 $x \in (A - B) \cup (B - C)$,因此 $A - C \subseteq (A - B) \cup (B - C)$ 。□

练习* 5.30 设A, B是集合,证明A = B当且仅当 $\wp(A) = \wp(B)$ 。

证明 显然当A = B时有 $\wp(A) = \wp(B)$,因此我们只要证明 $\wp(A) = \wp(B)$ 蕴涵A = B。对任意x,若 $x \in A$,则 $\{x\} \in \wp(A)$,而 $\wp(A) = \wp(B)$,从而 $\{x\} \in \wp(B)$,从而 $\{x\} \subseteq B$,从而 $x \in B$,这就证明了当 $\wp(A) = \wp(B)$ 时有 $A \subseteq B$,类似地可证明这时也有 $B \subseteq A$,因此有A = B。

练习 5.31 设A, B是集合,证明 $\wp(A \cap B) = \wp(A) \cap \wp(B)$ 。

证明 对任意集合S,若 $S \in \wp(A \cap B)$,则 $S \subseteq A \cap B$,从而 $S \cap A \coprod S \cap B$,即 $S \in \wp(A) \coprod S \in \wp(B)$,从而 $S \in \wp(A) \cap \wp(B)$,这表明 $\wp(A \cap B) \subseteq \wp(A) \cap \wp(B)$ 。

反之,对任意集合S,若 $S \in \wp(A) \cap \wp(B)$,则 $S \subseteq A \perp S \subseteq B$,从而 $S \subseteq A \cap B$,从而 $S \in \wp(A \cap B)$,这表明 $\wp(A) \cap \wp(B) \subseteq \wp(A \cap B)$ 。

练习 5.32 证明对任意集合A, B, 若 $\wp(A) \cup \wp(B) = \wp(A \cup B),$ 则 $A \subseteq B$ 或 $B \subseteq A$ 。

证明 对任意集合A, B,设 $\wp(A) \cup \wp(B) = \wp(A \cup B)$ 。这时若没有 $(A \subseteq B$ 或 $B \subseteq A)$,即 $A \not\subseteq B$ 且 $B \not\subseteq A$ 。注意到 $A \not\subseteq B$ 意味着存在a, $a \in A$ 但 $a \not\in B$,而 $B \not\subseteq A$ 意味着存在b, $b \in B$ 但 $b \not\in A$ 。从而 $\{a,b\} \subseteq A \cup B$,即 $\{a,b\} \in \wp(A \cup B)$,但 $\{a,b\} \not\subseteq A$,即 $\{a,b\} \not\in \wp(A)$,且 $\{a,b\} \not\subseteq B$,即 $\{a,b\} \not\in \wp(B)$,从而 $\{a,b\} \not\in \wp(A) \cup \wp(B)$,这与 $\wp(A) \cup \wp(B) = \wp(A \cup B)$ 矛盾! 因此由反证法,当 $\wp(A) \cup \wp(B) = \wp(A \cup B)$ 时有 $A \subseteq B$ 或 $B \subseteq A$ 。

练习 5.33 设A是集合族且B是集合,证明如果 $\bigcup A \subseteq B$,则 $A \subseteq \wp(B)$ 。

证明 对任意集合S,若 $S \in \mathcal{A}$,则对任意元素 $x \in S$,根据 $\bigcup \mathcal{A}$ 的定义有 $x \in \bigcup \mathcal{A}$,而 $\bigcup \mathcal{A} \subseteq \mathcal{B}$,因此 $x \in \mathcal{B}$,这就表明 $S \subseteq \mathcal{B}$,从而 $S \in \wp(\mathcal{B})$,这就表明 $\mathcal{A} \subseteq \wp(\mathcal{B})$ 。

【讨论】实际上,这个命题的逆命题也成立: 若 $A \subseteq \wp(B)$,则 $\bigcup A \subseteq B$ 。因为对任意元素x,若 $x \in \bigcup A$,则存在集合 $S \in A$ 使得 $x \in S$,而 $A \subseteq \wp(B)$,因此 $S \in \wp(B)$,即 $S \subseteq B$,从而由 $x \in S$ 得到 $x \in B$,这就表明 $\bigcup A \subseteq B$ 。

练习 5.34 假设全集U的元素都是字符,例如小写字母构成的集合,编写程序实现U的子集之间的集合并、集合交、集合差、集合补和U的子集的幂集运算。