Topološke lastnosti grup

Gašper Rotar

Fakulteta za matematiko in fiziko

9. april 2020

Definicija

Naj bo N podgrupa grupe G. N je podgrupa edinka grupe G, označimo $N \triangleleft G$, če za vse $a \in G$ in $n \in N$ velja ana $^{-1} \in N$.

Definicija

Naj bo N podgrupa grupe G. N je podgrupa edinka grupe G, označimo $N \triangleleft G$, če za vse $a \in G$ in $n \in N$ velja ana $^{-1} \in N$.

Trditev

Naj bo G grupa in $\Delta(G) = \{(g,g) \mid g \in G\} \subseteq G \times G$ njena diagonala. Grupa G je komutativna natanko takrat, ko je $\Delta(G)$ podgrupa edinka grupe G, $\Delta(G) \triangleleft G$.

Dokaz

 (\Rightarrow) Ker je G komutativna je seveda tudi $G \times G$ komutativna.

Dokaz

(\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$

Dokaz

(\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha,1),(\alpha^{-1},1),(\beta,\beta)\in G\times G$

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ Potem: $(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta)$.

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ Potem: $(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta)$. Velja: $(\alpha \beta \alpha^{-1}, \beta) \in \Delta$

- (\Rightarrow) Ker je G komutativna je seveda tudi G \times G komutativna. $a \cdot b = (\alpha, \alpha) \cdot (\beta, \beta) = (\alpha \cdot \beta, \alpha \cdot \beta) \in \Delta(G)$ $(\alpha, \alpha) \cdot (\alpha^{-1}, \alpha^{-1}) = (\alpha \cdot \alpha^{-1}, \alpha \cdot \alpha^{-1}) = (1, 1)$
- (\Leftarrow) Naj bodo $(\alpha, 1), (\alpha^{-1}, 1), (\beta, \beta) \in G \times G$ Potem: $(\alpha, 1) \cdot (\beta, \beta) \cdot (\alpha^{-1}, 1) = (\alpha \beta \alpha^{-1}, \beta)$. Velja: $(\alpha \beta \alpha^{-1}, \beta) \in \Delta$ Torej: $\alpha \beta \alpha^{-1} = \beta \Rightarrow \alpha \beta = \beta \alpha$

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

(i) Prostor X je Hausdorffov.

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

- (i) Prostor X je Hausdorffov.
- (ii) Za poljuben $x \in X$ je $\bigcap_{U \in \mathcal{U}} \overline{U} = \{x\}$, kjer je \mathcal{U} družina vseh okolic x.

Definicija

Topološki prostor X je Hausdorffov, če za vsaki različni točki $x_1, x_2 \in X$ obstajata odprti okolici U_1 in U_2 za točki x_1 in x_2 , da $U_1 \cap U_2 = \emptyset$.

Trditev

Naslednje izjave so ekvivalentne:

- (i) Prostor X je Hausdorffov.
- (ii) Za poljuben $x \in X$ je $\bigcap_{U \in \mathcal{U}} \overline{U} = \{x\}$, kjer je \mathcal{U} družina vseh okolic x.
- (iii) Diagonala $\Delta(X) = \{(x,x) \mid x \in X\}$ je zaprt podprostor produkta $X \times X$

Dokaz

Tu pride dokaz haudorf

Definicija

Element y grupe G je konjugiran elementu x iz G, če obstaja tak $g \in G$, da je $y = gxg^{-1}$.

Definicija

Element y grupe G je konjugiran elementu x iz G, če obstaja tak $g \in G$, da je $y = gxg^{-1}$.

Trditev

Konjugiranost je ekvivalenčna relacija.

Dokaz

tu pride dokaz Konjugiranostni

Zgled

Če je G komutativna potem za vsak $x, g \in G$ velja:

$$gxg^{-1} = xgg^{-1} = x$$

Zgled

Če je G komutativna potem za vsak $x, g \in G$ velja:

$$gxg^{-1} = xgg^{-1} = x$$

Zgled

Kvaternionska grupa $Q=\{\pm 1,\pm i,\pm j,\pm k\}$ ni komutativna

Zgled

Če je G komutativna potem za vsak $x, g \in G$ velja:

$$gxg^{-1} = xgg^{-1} = x$$

Zgled

Kvaternionska grupa $Q=\{\pm 1,\pm i,\pm j,\pm k\}$ ni komutativna Konjugiranostni razredi so $\{1\},\{-1\},\{\pm i\},\{\pm j\},\{\pm k\}$

Zgled

Če je G komutativna potem za vsak $x, g \in G$ velja:

$$gxg^{-1} = xgg^{-1} = x$$

Zgled

Kvaternionska grupa $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ ni komutativna Konjugiranostni razredi so $\{1\}, \{-1\}, \{\pm i\}, \{\pm j\}, \{\pm k\}$

Zgled

Podobne matrike: $B = P^{-1}AP$

