

Verification & Implementation of SoC Design SPICE and Library for SoC Design

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

Library of SoC Design

Role and Importance of Library Physical Library Data

Libraries used in SoC Design
Physical Library
Types of Cells used in Digital Design

LEF: Library Exchange Format

Cadence Original, Industry Standard

Libraries used in an SoC Design

Electrical view for all IP blocks

- Logic and I/O cells (GPIO, PCI, SSTL, PECL etc.)
- Embedded Memory (SRAM, ROM, Register files, CAM etc.)
- Custom digital blocks (COT, datapath etc.)
- Interface IP and analog blocks (USB, SerDes, DDR etc)

5 (SUMMER 2018 UCAS, Beijing)

CMOS Device

- A CMOS logic gate
- An Inverter
- Silicon
- Many details ...

Cross section of CMOS

Layout: GDSII

Physical Library Timing Library Noise Library (cdB) Power Library (PGV)

LEF: Technology Data

- Header and basic Information
- Routing Information
 - Routing metal layers, thickness, width, spacing, pitch
 - Connecting and cut layers, vias
 - Stacking and spacing
 - Wide wire, via arrays, via generation rules etc
- Minimum Pitch (SITE)

LEF v5.6 Technology Syntax

```
[VERSION statement]
[BUSBITCHARS statement]
[DIVIDERCHAR statement]
[UNITS statement]
[MANUFACTURINGGRID statement]
[USEMINSPACING statement]
[CLEARANCEMEASURE statement :]
[PROPERTYDEFINITIONS statement]
[LAYER (Nonrouting) statement
  LAYER (Routing) statement]
[SPACING statement ]
[MAXVIASTACK statement]
[VIA statement] ...
[VIARULE statement] ...
[VIARULE GENERATE statement]
[NONDEFAULTRULE statement] ...
[SITE statement] ...
[BEGINEXT statement] ...
[END LIBRARY]
```

Physical Data: I/O Pad Cell Layout

- Layout of I/O (Pad) Cell
 - Standard height or multiple heights (ex. staggered I/O)
 - Most I/O Pad are the same height
 - Signal Pad and Power/Ground Pad Cells

SPICE & Library

- Physical Library: LEF
- Timing Library: Delay, Noise, IR and EM
- Device Modeling and SPICE Models
- Advanced Devices
- Discussion

Library Characterization: Timing Models

Timing Delay as a Function of ...

Semiconductor Device Modeling

Left side icons show typical manufacturing issues; right side icons reflect MOS scaling results based on TCAD. (Prof. Robert Dutton)

Addressing fundamental IP challenges Increased number of PVT/Corners in design flows

The Simulation Programs:

The SPICE Model

- The SPICE Model UCB
 - The most successful simulation program
- Good Simulation Program for
 - Better accuracy or computational
 - efficiency and robustness
- The Basic Diode SPICE Model
 - I_D: nonlinear current source
 - C_D: nonlinear capacitance

PWL


```
Above: piecewise{10 -> 100;20 -> 200;40} ship[o][d];
```

Reference: IBM OPL (optimum programming language)

Conditions of Characterization

PVT (Process, Voltage, Temperature) Derating

- PVT
 - Process, Voltage, Temperature
- Corners
 - worst, typical, best; slow, typical, fast; TT, SS, FF (tt, ss, ff)
- Derating
 - |30%-70%|=40%, then 2X in .lib or derate is 0.5x,
 - versus |10%-90%|=80%

Actual cell delay = Original delay $x K_{PVT}$

Timing Model – Driver and Receiver

Delay Models for LC

•NLDM (Non-Linear Delay Model, 1997, Synopsys)

$$V_{out} = Z(s) \cdot V_S / [Z(s) + R)]$$

SPDM (Scalable Polynomial Delay Model, 2000, SNPS)

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{Y_i - y_i}{\sigma_i} \right)$$

• ECSM (Effective Current Source Model, 2001, Cadence)

$$I_{out}(t_1, t_2) = \frac{\int_{t_1}^{t_2} I_{out}(t)dt}{t_2 - t_1} = C_{load} \frac{\int_{t_1}^{t_2} V_{out}(t)dt}{t_2 - t_1}$$

CCS Model (Composite Current Source Model, 2004, Synopsys)

Library Characterization using NLDM Timing only

Tasks of Library Characterization Timing, Noise, Power

Feature	Goals		
Standard cells	Delay is the key		
Multi-bit Cells, Memory	full automatic vector generation for up to 8 bits (extending to 64 bits in 13.1)		
ЕМ	To support EM characterization with increased automation		
Leakage characterization	leakage is not prone to oscillation and extended simulation duration times making it more accurate and more efficient, it also considers all output states		
Delay characterization	To consider all internal states in sequential cells resulting in a more worst-case Clk->Q delay– over 40% difference seen in a commercial complex flop		
Constraint characterization	Constraint characterization vector generation considers all the states of internal nodes not just a sin state like the competition and hence finds more worst-case values. Liberate supports "minimize D-> to include the "degrade" effect on Clk->Q arc a potential source of optimism in static timing analysis		
I/O cells	To permit per arc low level control for characterizing complex cells without needing to define a "logic function" for each arc. It can generate CCSN for I/Os. Liberate + Spectre APS offers the best accuracy/performance for complex I/Os.		

Electromigration and IR Drop Overview

SPICE & Library

- Physical Library: LEF
- Timing Library: Delay, Noise, IR and EM
- Device Modeling and SPICE Models
- Advanced Devices
- Discussion

Device Modeling and Simulation Meet Shrink, Processing Challenges We need mathematicians

Generations of SPICE Models

表2-7 SPICE模型特征与应用范围 (2008)

SPICE Level	年代	模型特征	应用范围
第一代 SPICE Level 1	1968	Shichman-Hodges模型(电流-电压平 方字特性)	适用于精度要求不高的长均道MOS 晶体管
SPICE Level 2	1970	二维解折模型(考虑MOS器伴二阶效应), Gummel-Poon模型	适用于BJT
SPICE Level 3	1979	半经验短构道模型	适用于MOS晶体管、>0.9 um
第二代 SPICE Level 28, BSIM1	1987	半经验式,适合DSM设计的(短构道) 模型	适用于数字和模拟设计, 0.3-0.5 um
SPICE Level 39, BSIM2	1989	半经验式,适合DSM设计的模型	适用于MOS晶体管, > 0.2 um
第三代 SPICE Level 49, BSIM3v3	1995	S/D 电阻, W/L	适用于MOS晶体管、0.18 um
BSIM4v6	2001	考虑到栅极泄漏,非对称S/D电流分布	适用于130 nm,90 nm,65 nm
PSP Model	2006	表面电势模型	适用于90 nm. 65 nm. 45 nm

SPICE and BSIM models from UCB (as of 2015)

- SPICE1 (Laurence Nagel/Prof. Donald Pederson, 1973, UCB, Fortran)
- SPICE2 (Stable release, 1975, Fortran)
- SPICE3 (Thomas Quarles/Prof. A. Richard Newton, 1989, C)
- BSIM3 (BSIM3v3), for DSM
- BSIM4, used for 0.13um, 90nm, 65nm,

- BSIM6, for RF/analog
- BSIMSOI, based on BSIM3, used by IBM, AMD
- BSIMCMG, for common multi-gate or FinFET
- BSIMIMG, for independent multi-gate, the latest
 - ex. ind. double-gate (ultra-thin body) & BOS SOI transistors (UTBB)

BSIM4 – Basic Effects modeled in

- Short and narrow channel effects on threshold voltage
- Non-uniform doping effects
- Mobility reduction due to vertical field
- Bulk charge effect
- Carrier velocity saturation
- Drain induced barrier lowering (DIBL)
- Channel length modulation (CLM)
- Substrate current induced body effect (SCBE)
- Parasitic resistance effects
- Quantum mechanic charge thickness model

Ebers-Moll Model (BJT, ?1987) Gummel-Poon Model (BJT, 1970)

Ebers-Moll Model for an NPN transistor.

Ebers-Moll Model for an PNP transistor.

E-M model: EM1,EM2,EM3. More Complex, for big DC signal

G-P model: good physics; simple math; high resolution

Final Expression of Vth

$$\begin{split} &V_{th} = V_{th0} + K_{1}(\sqrt{\Phi_{s} - V_{bseff}} - \sqrt{\Phi_{s}}) - K_{2}V_{bseff} \\ &+ K_{1}(\sqrt{1 + \frac{N_{LX}}{L_{eff}}} - 1)\sqrt{\Phi_{s}} + (K_{3} + K_{3b}V_{bseff})\frac{T_{ox}}{W_{eff}' + W_{0}}\Phi_{s} \\ &- D_{VT0w}(exp(-D_{VT1w} \frac{W_{eff}'L_{eff}}{2l_{tw}}) + 2exp(-D_{VT1w} \frac{W_{eff}'L_{eff}}{l_{tw}}))(V_{bi} - \Phi_{s}) \\ &- D_{VT0}(exp(-D_{VT1} \frac{L_{eff}}{2l_{t}}) + 2exp(-D_{VT1} \frac{L_{eff}}{l_{t}}))(V_{bi} - \Phi_{s}) \\ &- (exp(-D_{sub} \frac{L_{eff}}{2l_{t0}}) + 2exp(-D_{sub} \frac{L_{eff}}{l_{t0}}))(E_{ta0} + E_{tab}V_{bseff})V_{ds} \end{split}$$

SPICE & Library

- Physical Library: LEF
- Timing Library: Delay, Noise, IR and EM
- Device Modeling and SPICE Models
- Advanced Devices
- Discussion

Why FinFET?

The gate controls a thin body from more than one side

- Thin body
- Gate fully control
- Suppress leak and SCE

Problem with MOSFET Shrinking

- Off-state Leakage
 - Sub-threshold swing limitation
 - Punch-through
- Strong short channel effect
 - DIBL, Vth,
- Strong variation (Vth and Swing)
 - Sensitive to channel length
 - Sensitive channel doping
 - Low yield and high design cost
- Reliability
 - HCI, NBTI, PBTI, TDDB, ...
- Electron transportation scattering
 - High channel doping
 - High vertical electric field

BSIMCMG

- FinFET
 - To cover: geometry, bias, temperature, DC,
 - AC, RF, and noise characteristics
- Compact Modeling for Circuit Simulation

SPICE & Library

- Physical Library: LEF
- Timing Library: Delay, Noise, IR and EM
- Device Modeling and SPICE Models
- Advanced Devices
- Discussion

Analog Simulation *Multi-mode Simulation Solution*

- Single solution for all simulation needs: analog, RF, AMS & full-chip
- Shared technology
 enables common device
 models, equations and
 consistency in results
 between simulators
- Maximize your investment with the token licensing model

SPICE Models

SPICE Netlists

Schematics

Proprietary Models

Behavioral Models Inputs Spectre/Spectre RF Cell & Block Design

APS

Parallel simulator

AMS

Mix-signal simulator

XPS/Ultrasim
Fast Spice
Simulators

USB 2.0 Phy/Memory

Low Jitter Ring/LC PLLs

2.4GHz RF Xcvrs

Outputs

Evaluating Simulator Speed and Capacity

Monte Carlo **MMSIM 10-SSO**

Understanding the Newton-Raphson Iteration Method

To accurately represent the tangent, both the slope (G_{eq}) and the intercept (I_{eq}) are needed. This preserves the diode terminal characteristics at only the point where the tangent is taken. The device current and the tangent are supplied

by the device model.

On the third iteration, delta-V and sigma-I would be very small, and the linear solution would be very close to the nonlinear solution.

Who cares about IO-SSO?

Who are the target users for IO-SSO analysis?

- Memory Interface Designers
 - <u>IO Chip Designer</u> (SoC with DDR interface or memory provider companies Examples: Micron, nVidia, AMD, etc)
 - IO-SSO Analysis Suite Opportunity
 - IC Package Designer (Allegro Sigrity Power-Aware SI opportunity)
 - PCB Designer (Allegro Sigrity Power-Aware SI opportunity)

Choose Real Number Modeling for Performance

- Model analog block operation as discrete real data
 - Signal flow based modeling approach
- Key advantages of RNM
 - Discrete solver only
 - Very high simulation performance
 - Event driven or sampled data modelling of analog operation
 - No analog solver, no convergence problems!
 - Can be written by analog designers and/or digital verification engineers
- ●RNM languages include
 - Verilog-AMS (wreal), VHDL
 - SystemVerilog, e

Al-Big Data & SoC Design

39 (SUMMER 2018 UCAS, Beijing)

Summary

- Physical Library LEF
 - Physical, std Cells, I/O (ESD),
 - Antenna Cell (PID/ESD)
- Timing Library .lib (TLF)
 - Device Modeling & SPICE models
 - Delay Models NLDM, ECSM, CCS
 - Noise, power
- Simulation and Timing
 - Analog/RF/AMS
 - Accuracy and Speed
 - I/O SSO