Examenul național de bacalaureat 2021

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$a_2 = \frac{a_1 + a_3}{2} = \frac{2 + 14}{2} =$	3p
	=8	2p
2.	$f(x) = 0 \Leftrightarrow x^2 - 2x = 0$	3 p
	Abscisele punctelor de intersecție a graficului funcției f cu axa Ox sunt $x = 0$ și $x = 2$	2p
3.	$7^{3-x} = 7^{2x} \Leftrightarrow 3-x = 2x$	3p
	x = 1	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele n din mulțimea A pentru care numărul $n+2$ este impar sunt 1, 3, 5, 7 și 9, deci	2p
	sunt 5 cazuri favorabile	•
	nr. cazuri favorabile 5	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{9}$	1p
5.	$AB = AC \Leftrightarrow \sqrt{3^2 + 4^2} = \sqrt{a^2 + 3^2}$	2p
	$a^2 = 4^2$, de unde obținem $a = -4$ sau $a = 4$	3 p
6.	$\sin 30^\circ = \frac{1}{2}$, $\cos 45^\circ = \frac{\sqrt{2}}{2}$, $\cos 60^\circ = \frac{1}{2}$	3 p
	$(1+\sin 30^\circ)\cdot\cos^2 45^\circ + \cos^2 60^\circ = \left(1+\frac{1}{2}\right)\cdot\frac{2}{4}+\frac{1}{4}=\frac{3}{4}+\frac{1}{4}=1$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$0*3=4\cdot 0+4\cdot 3-3=$	3p
	=12-3=9	2p
2.	x * y = 4x + 4y - 3 = 4y + 4x - 3 =	3 p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție "*" este comutativă	2p
3.	(-3) * x = 4x - 15, pentru orice număr real x	3 p
	4x-15=9, de unde obţinem $x=6$	2p
4.	(-x)*(2x)=4x-3, pentru orice număr real x	2p
	$4x-3=x^2 \Leftrightarrow x^2-4x+3=0$, de unde obţinem $x=1$ sau $x=3$	3 p
5.	$2^x * 2^x = 8 \cdot 2^x - 3$, pentru orice număr real x	2p
	$8 \cdot 2^x - 3 = 1 \Leftrightarrow 2^x = \frac{1}{2}$, de unde obţinem $x = -1$	3 p
6.	$\frac{x}{2} * \frac{x}{4} = 3x - 3, \ x * \left(\frac{x}{2} * \frac{x}{4}\right) = 16x - 15, \text{ pentru orice număr real } x$	3p
	16x-15-x=x-1, de unde obținem $x=1$	2p

SUBIECTUL al III-lea (30 de puncte)

	(50 de punete)		
1.	$\det A = \begin{vmatrix} 1 & 6 \\ -2 & -7 \end{vmatrix} = 1 \cdot (-7) - 6 \cdot (-2) =$	3p	
	=-7+12=5	2 p	
2.	$B(1) = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \Rightarrow 2B(1) - A = \begin{pmatrix} 4 & 6 \\ -2 & -4 \end{pmatrix} - \begin{pmatrix} 1 & 6 \\ -2 & -7 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} =$	3p	
	$=3\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 3I_2$	2p	
3.	$B(3) = \begin{pmatrix} 2 & 5 \\ 1 & -2 \end{pmatrix} \Rightarrow B(1) \cdot B(3) = \begin{pmatrix} 7 & 4 \\ -4 & -1 \end{pmatrix}$	3 p	
	$B(1) \cdot B(3) - 3I_2 = \begin{pmatrix} 4 & 4 \\ -4 & -4 \end{pmatrix} = 2 \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} = 2B(0)$	2p	
4.	$B(x) \cdot B(x) = \begin{pmatrix} 4 + (x^2 - 4) & 2(x+2) - 2(x+2) \\ 2(x-2) - 2(x-2) & (x^2 - 4) + 4 \end{pmatrix} =$	3 p	
	$= \begin{pmatrix} x^2 & 0 \\ 0 & x^2 \end{pmatrix} = x^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = x^2 I_2, \text{ pentru orice număr real } x$	2p	
5.	$\det(B(x)) = -x^2$ și $\det(B(x+1)) = -(x+1)^2$, pentru orice număr real x	3p	
	$-x^2 = -(x+1)^2 \Leftrightarrow 2x+1=0$, de unde obţinem $x = -\frac{1}{2}$	2p	
6.	$B(3) \cdot B(3) = 3^2 I_2$, $B(4) \cdot B(4) = 4^2 I_2$ și $B(n) \cdot B(n) = n^2 I_2$, unde <i>n</i> este număr natural	3p	
	$25I_2 = n^2I_2$, deci $n^2 = 25$ și, cum n este număr natural, obținem $n = 5$	2p	