(十二) 图论: 对偶

(Duality: Matching, Network Flow, and Connectivity)

魏恒峰

hfwei@nju.edu.cn

2021年05月27日

let's get married today Ø The Marriage Problem (Philip Hall, 1935)

If there is a finite set of girls, each of whom knows several boys, under what conditions can all the girls marry boys in such a way that each girl marries a boy that she knows?

The Marriage Problem (Philip Hall, 1935)

If there is a finite set of girls, each of whom knows several boys, under what conditions can all the girls marry boys in such a way that each girl marries a boy that she knows?

Philip Hall (1904 \sim 1982)

Definition (Matching (匹配))

A matching in a graph G is a set of edges with no shared endpoints.

Definition (X-Perfect Matching (X-Saturating Matching))

Let G = (X, Y, E) be a bipartite graph.

An X-perfect matching of G is a matching which covers each vertex in X.

$$|X| \le |Y|$$

1 1 1 1

$$|X| \le |Y|$$

 $\forall W \subseteq X. \ \Big|W\Big| \leq \Big|N(W)\Big|$

Theorem (Hall Theorem; 1935)

Let G = (X, Y, E) be a bipartite graph. There is an X-perfect matching of G iff

$$\forall W \subseteq X. |W| \le |N_G(W)|$$

Basis Step:
$$|X| = 1$$
. $|X| \le |N_G(X)|$.

Basis Step:
$$|X| = 1$$
. $|X| \le |N_G(X)|$. I am married!

Induction Hypothesis: Suppose that it holds if |X| < m.

(十二) 图论: 对偶

Basis Step: |X| = 1. $|X| \le |N_G(X)|$. I am married!

Induction Hypothesis: Suppose that it holds if |X| < m.

Induction Step: Consider the case |X| = m.

Consider the case $\left|X\right|=m.$

Consider the case
$$|X| = m$$
.

Consider the case |X| = m.

▶ Case I: Every k < m girls in X know $\geq k + 1$ boys in Y.

Take any girl x and marry her to any boy y she knows.

Consider the case |X| = m.

▶ Case I: Every k < m girls in X know $\geq k + 1$ boys in Y.

Take any girl x and marry her to any boy y she knows.

$$G' = G - \{x, y\}$$

Consider the case |X| = m.

▶ Case I: Every k < m girls in X know $\geq k + 1$ boys in Y.

Take any girl x and marry her to any boy y she knows.

$$G' = G - \{x, y\}$$

The Hall's Condition still holds for G'.

Consider the case
$$|X| = m$$
.

Take any girl x and marry her to any boy y she knows.

$$G' = G - \{x, y\}$$

The Hall's Condition still holds for G'.

$$\forall W \subseteq X - \{x\}. \ |W| \le |N_{G'}(W)|$$

Consider the case
$$|X| = m$$
.

Take any girl x and marry her to any boy y she knows.

$$G' = G - \{x, y\}$$

The Hall's Condition still holds for G'.

$$\forall W \subseteq X - \{x\}. \ |W| \le |N_{G'}(W)|$$

There is a $(X - \{x\})$ -perfer matching in G'.

Consider the case
$$|X| = m$$
.

Take any girl x and marry her to any boy y she knows.

$$G' = G - \{x, y\}$$

The Hall's Condition still holds for G'.

$$\forall W \subseteq X - \{x\}. \ |W| \le |N_{G'}(W)|$$

There is a $(X - \{x\})$ -perfer matching in G'.

Therefore, there is a $(X - \{x\})$ -perfer matching in G.

▶ Case II: There is a set of k < m girls in X who know k boys in Y.

Theorem (Hall Theorem; 1935)

Let G = (X, Y, E) be a bipartite graph. There is a X-perfect matching of G iff

$$\forall W \subseteq X. |W| \le |N_G(W)|$$

Definition (M-alternating Paths)

Definition (M-alternating Paths)

Definition (M-augmenting Paths)

Suppose that there is ${\it no}$ X-perfect matching.

Suppose that there is no X-perfect matching.

We show that Hall's Condition is violated for some $S \subseteq X$.

(十二)图论:对偶

Suppose that there is no X-perfect matching.

We show that Hall's Condition is violated for some $S \subseteq X$.

Suppose that there is ${\it no}$ X-perfect matching.

We show that Hall's Condition is violated for some $S \subseteq X$.

Let M be a maximum matching.

Suppose that there is ${\it no}$ X-perfect matching.

We show that Hall's Condition is violated for some $S \subseteq X$.

Let M be a maximum matching.

Let $u \in X$ be a vertex of X not saturated by M.

By contradiction.

Suppose that there is no X-perfect matching.

We show that Hall's Condition is violated for some $S \subseteq X$.

Let M be a maximum matching.

Let $u \in X$ be a vertex of X not saturated by M.

Consider all M-alternating paths starting from u.

 $T \triangleq$ the set of vertices in Y reachable from u by M-alternating paths.

 $T \triangleq$ the set of vertices in Y reachable from u by M-alternating paths. $S \triangleq$ the set of vertices in X reachable from u by M-alternating paths.

 $T \triangleq$ the set of vertices in Y reachable from u by M-alternating paths. $S \triangleq$ the set of vertices in X reachable from u by M-alternating paths.

We will show that

$$T = N(S) \land \left| T \right| = \left| S - \{u\} \right|$$

 $T \triangleq$ the set of vertices in Y reachable from u by M-alternating paths. $S \triangleq$ the set of vertices in X reachable from u by M-alternating paths.

We will show that

$$T = N(S) \land \left| T \right| = \left| S - \{u\} \right|$$

$$|N(S)| = |T| = |S| - 1 < |S|$$

$$\left|T\right| = \left|S - \{u\}\right|$$

$$\left|T\right| = \left|S - \{u\}\right|$$

We show that there is a bijection from T to $S - \{u\}$.

$$\left|T\right| = \left|S - \{u\}\right|$$

We show that there is a bijection from T to $S - \{u\}$. M matches T with $S - \{u\}$.

By contradition: $N(S) \not\subseteq T$

$$|T| = |S - \{u\}| \implies T \subseteq N(S)$$

$$|T| = |S - \{u\}| \implies T \subseteq N(S)$$

$$\exists y \in Y - T. \ \exists s \in S. \ \{s, y\} \in E$$

$$|T| = |S - \{u\}| \implies T \subseteq N(S)$$

$$\exists y \in Y - T. \ \exists s \in S. \ \{s, y\} \in E$$

 $s \neq u$

$$|T| = |S - \{u\}| \implies T \subseteq N(S)$$

$$\exists y \in Y - T. \ \exists s \in S. \ \{s, y\} \in E$$

$$s \neq u \implies s \in S - \{u\}$$

$$|T| = |S - \{u\}| \implies T \subseteq N(S)$$

$$\exists y \in Y - T. \ \exists s \in S. \ \{s, y\} \in E$$

$$s \neq u \implies s \in S - \{u\} \implies \{s, y\} \notin M$$

$$|T| = |S - \{u\}| \implies T \subseteq N(S)$$

$$\exists y \in Y - T. \ \exists s \in S. \ \{s, y\} \in E$$

$$s \neq u \implies s \in S - \{u\} \implies \{s, y\} \notin M \implies y \in T$$

Theorem (Hall Theorem; 1935)

Let G = (X, Y, E) be a bipartite graph. There is a X-perfect matching of G iff

$$\forall W \subseteq X. |W| \le |N_G(W)|$$

 ${\it algorithm}$

Definitions (Vertex Cover (点覆盖))

A vertex cover of a graph G is a set $Q \subseteq V(G)$ that covers all edges.

$$\forall e \in E(G). \ e \cap Q \neq \emptyset$$

examples

Theorem (König (1931), Egerváry (1931))

If G is a bipartite graph, then the maximum size of a mathching in G equals the minimum size of a vertex cover of G

$$R = Q \cap X \qquad T = Q \cap Y$$

$$R = Q \cap X \qquad T = Q \cap Y$$

 $H \triangleq (R \cup (Y - T))$ -induced subgraph of G $H' \triangleq (T \cup (X - R))$ -induced subgraph of G

$$R = Q \cap X \qquad T = Q \cap Y$$

 $H \triangleq (R \cup (Y - T))$ -induced subgraph of G $H' \triangleq (T \cup (X - R))$ -induced subgraph of GG has no edges from X - R to Y - T.

$$R = Q \cap X \qquad T = Q \cap Y$$

 $H \triangleq (R \cup (Y - T))$ -induced subgraph of G $H' \triangleq (T \cup (X - R))$ -induced subgraph of GG has no edges from X - R to Y - T.

H has a R-perfect matching and H' has a T-perfect matching.

By contradition.

By contradition.

$$\exists S \subseteq R. \ |N_H(S)| < |S|$$

By contradition.

$$\exists S \subseteq R. \ \left| N_H(S) \right| < \left| S \right|$$

 $T \cup (R - S + N_H(S))$ is a smaller vertex cover than Q

independent sets and covers

Definition (Network (网络))

A network is a digraph with

- ightharpoonup a distinguished source vertex s,
- ightharpoonup a distinguished sink vertex t,
- ▶ a capacity $c(e) \ge 0$ on each edge e

Definition (Flow (流))

A flow f is a function that assigns a value f(e) to each edge e.

Definition (Flow (流))

A flow f is a function that assigns a value f(e) to each edge e.

$$f^+(v) = \sum_{vw \in E} f(vw)$$

Definition (Flow (流))

A flow f is a function that assigns a value f(e) to each edge e.

$$f^{+}(v) = \sum_{vw \in E} f(vw)$$
 $f^{-}(v) = \sum_{uv \in E} f(uv)$

Definition (Feasible)

A flow f is feasible if it satisfies

Capacity Constraints:

$$\forall e \in E(G). \ 0 \le f(e) \le c(e)$$

Conservation Constraints:

$$\forall v \in V(G) - \{s, t\}. \ f^+(v) = f^-(v)$$

33 / 47

Definition (Value (值))

The value val(f) of a flow f is

$$val(f) = f^{-}(t) = f^{+}(s).$$

34 / 47

Definition (Value (值))

The value val(f) of a flow f is

$$val(f) = f^{-}(t) = f^{+}(s).$$

Definition (Value (值))

The value val(f) of a flow f is

$$val(f) = f^{-}(t) = f^{+}(s).$$

(十二) 图论: 对偶

Definition (Maximum Flow (最大流))

A maximum flow is a feasible flow of maximum value.

$$s \to x \xrightarrow{} v \to t$$

$$s \to x \to v \to t$$

Definition (f-augmenting Paths (增广路径))

$$\min_{e \in E(P)} \epsilon(e)$$

Definition (Source/Sink Cut (割))

In a network, a source/sink cut [S,T] consists of the edges from a source set S to a sink set T, where

$$V = S \uplus T \land s \in S \land t \in T$$

(十二) 图论: 对偶

Definition (Capacity of Cut (割的容量))

$$\operatorname{cap}(S,T) = \sum_{u \in S, v \in T, uv \in E} c(uv)$$

Definition (Minimum Cut (最小割))

A minimum cut is a cut of minimum value.

$$val(f) \leq cap(S,T).$$

$$val(f) \leq cap(S,T).$$

$$\mathsf{val}(f) = f^+(S) - f^-(S)$$

$$val(f) \leq cap(S,T).$$

$$\operatorname{val}(f) = f^+(S) - f^-(S) \le f^+(S)$$

$$val(f) \leq cap(S,T).$$

$$\mathsf{val}(f) = f^+(S) - f^-(S) \le f^+(S) \le \mathsf{cap}(S,T)$$

Lemma

$$\max_{f} \mathit{val}(f) \leq \min_{[S,T]} \mathit{cap}(S,T)$$

$${\rm val}(f) = f^+(S) - f^-(S) = f^+(S) = {\rm cap}(S,T)$$

$$val(f) = f^{+}(S) - f^{-}(S) = f^{+}(S) = cap(S, T)$$

$$f^{-1}(S) = 0 \wedge f^{+}(S) = \mathsf{cap}(S, T)$$

$$val(f) = f^{+}(S) - f^{-}(S) = f^{+}(S) = cap(S, T)$$

$$f^{-1}(S) = 0 \wedge f^{+}(S) = \mathsf{cap}(S, T)$$

Theorem (Max-flow Min-cut Theorem (Ford and Fulkerson; 1956))

$$\max_{f} \mathit{val}(f) = \min_{[S,T]} \mathit{cap}(S,T)$$

(Strong Duality)

L. R. Ford Jr. $(1927 \sim 2017)$

D. R. Fulkerson (1924 ~ 1976)

43 / 47

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn