Territorially Based Linguistic Minorities in Western Europe

Austria: Slovenes West Germany: Danes

> Magyars North Frisians

Croats

Ireland: Gaels Belgium: **Flemings**

Walloons Friulians Italy:

Ladins Germans

Valdotians

Great Britain: South Tyroleans Gaels (Scotland)

Gaels (Isle of Man) Slovenes Gaels (N. Ireland) Sards

Welsh Greeks

Channel Islanders **Albanians Occitans**

Denmark: Germans

> **Faroe Islanders** Netherlands: West Frisians

Greenlanders

Norway: Lapps

Finland: Swedes (mainland)

Swedes (Aaland) Spain: Catalans **Basques** Lapps

Galicians

France: **Occitans**

> Corsicans Sweden: Lapps

Alsatians Finns

Flemings

Switzerland: **Bretons Jurassians**

SUMMARY PRESENTATION OF PREDICTIONS OF THREE THEORIES OF ETHNIC POLITICAL MOBILIZATION

Guiding Perspective

Characteristic		Developmental	Reactive	Competitive
Size of Subnation	(S)	(1) ^a	(1) ^a	1
Linguistic Base	(L)	1	0	(1) ^a
Relative Wealth	(W)	(0) ^a	0	1
Economic Status	(G)	0	? ^b	? ^b

^a Predictions in parentheses are only weakly indicated by the theories.

b Question marks indicate that no clear prediction is made.

DATA ON TERRITORIALLY BASED LINGUISTIC MINORITIES

Minority	S	L	W	G	E
Lapps, Finland	0	0	0	0	0
Finns, Sweden (Torne Valley)	0	0	0	0	0
Lapps, Sweden	0	0	0	0	0
Lapps, Norway	0	0	0	0	0
Albanians, Italy	0	0	0	0	0
Greeks, Italy	0	0	0	0	0
North Frisians, Germany	0	0	0	1	1
Danes, Germany	0	0	0	1	1
Basques, France	0	0	0	1	1
Ladins, Italy	0	0	1	0	0
Magyars, Austria	0	1	0	0	0
Croats, Austria	0	1	0	0	0
Slovenes, Austria	0	1	0	0	1
Greenlanders, Denmark	0	1	0	0	1
Aalanders, Finland	0	1	1	0	2
Slovenes, Italy	0	1	1	1	1
Valdotians, Italy	0	1	1	1	2
Sards, Italy	1	0	0	0	1
Galicians, Spain	1	0	0	0	1
West Frisians, Netherlands	1	0	0	1	1
Catalans, France	1	0	0	1	1
Occitans, France	1	0	0	1	1
Welsh, Great Britain	1	0	0	1	2
Bretons, France	1	0	0	1	2
Corsicans, France	1	0	0	1	2
Friulians, Italy	1	0	1	1	1
Occitans, Italy	1	0	1	1	1
Basques, Spain	1	0	1	1	2
Catalans, Spain	1	0	1	1	2
Flemings, France	1	1	0	0	1
Walloons, Belgium	1	1	0	1	2
Swedes, Finland	1	1	1	0	2
South Tyroleans, Italy	1	1	1	0	2
Alsatians, France	1	1	1	1	1
Germans, Belgium	1	1	1	1	2
Flemings, Belgium	1	1	1	1	2

S = Size of subnation

L = Linguistic ability

W = Relative wealth of subnation

G = Growth vs. decline of subnational region

E = Degree of ethnic political mobilization

TRUTH TABLE REPRESENTATION OF DATA ON CAUSES OF ETHNIC POLITICAL MOBILIZATION

S	L	W	G	E	N
0	0	0	0	0	6
0	0	0	1	0	3
	0	1	0	0	1
0	0	1	1	0 ? 0 ?	0
0	1	0	0	0	4
0	1	0	1	?	0
0 0 0 0 0	1	1	0	1	1
0	1	1	1	1	2
1	0	0	0	0	2
1	0	0	1	1	6
1	0	0 1	0	1 ?	0
1	0	1	1	1	4
1	1	0	0	0	1
1	1	0	1	1	1
1 1 1 1 1 1	1	1	0	1	6 3 1 0 4 0 1 2 2 6 0 4 1 1 2 3
1	1	1	1	1	3

S = Size of subnation

L = Linguistic ability

W = Relative wealth of subnation

G = Growth vs. decline of subnational region

E = Degree of ethnic political mobilization

EQUATION: E = SG + LW

Solution for Presence of Ethnic Political Mobilization

	raw	unıque	
	coverage	coverage	consistency
L •W+	0.421053	0.263158	1.000000
S-G	0.736842	0.578947	1.000000

solution coverage: 1.000000

solution consistency: 1.000000

Solution for Absence of Ethnic Political Mobilization

	raw	unique	
	coverage	coverage	consistency
w•g+	0.764706	0.411765	1.000000
s·l	0.588235	0.235294	1.000000

solution coverage: 1.000000

solution consistency: 1.000000

This solution includes remainders as "don't cares."

USING BOOLEAN ALGEBRA TO EVALUATE THEORIES

1. Intersection with the reactive ethnicity perspective

$$R = IW$$

 $E = SG + LW$
 $R(E) = SIwG$

Conforming cases (6): West Frisians (Netherlands), Catalans (France), Occitans (France), Bretons (France), Corsicans (France), and Welsh (Great Britain)

2. Intersection with the ethnic competition perspective

$$C = SW$$

 $E = SG + LW$
 $C(E) = SW(G + L)$

Conforming cases (9): Germans (Belgium), Flemings (Belgium), Swedes (Finland), Alsatians (France), Friulians (Italy), Occitans (Italy), South Tyroleans (Italy), Basques (Spain), Catalans (Spain)

3. Intersection with the developmental perspective

One case uniquely covered: Aalanders (Finland)

4. Cases not covered by any theoretical perspective

$$H = Iw + SW + Lg$$

 $h = (L + W)(s + w)(I + G)$ (using De Morgan's Law)
 $= sIW + sLG + sWG + LwG$

$$h(E) = (sIW + sLG + sWG + LwG)(SG + LW)$$

= $sLWG + SLwG$

Cases covered by sLWG: Slovenes (Italy) and Valdotians (Italy)

Case covered by SLwG: Walloons (Belgium)

FREQUENCIES AND CODES FOR VARIABLES USED IN BOOLEAN ANALYSIS OF CHALLENGING GROUPS

	Value	Freq.	Percent
Bureaucracy			
•	0	29	54.7
	1	24	45.3
Lower Strata Constituency			
	0	28	52.8
	1	25	47.2
Displacement as Primary Goa	al		
	0	37	69.8
	1	16	30.2
Help From Outsiders			
	0	35	66.0
	1	18	34.0
Acceptance Achieved			
	0	28	52.8
	1	25	47.2
New Advantages Won			
	0	27	50.9
	1	26	49.1

Values show coding in qualitative comparative analysis: 1 indicates presence; 0 indicates absence.

Truth Table For Causes of New Advantages*

						mber Cases	Nev Adv		No New Adv.
BUR	LOW	DIS	HLP	AC	P				
0	0	0	0	0		4		2	2
0	0	0	0	1		2		2	0
0	0	0	1	0		2		2	0
0	0	0	1	1		2		2	0
0	0	1	0	0		4		0	4
0	0	1	0	1		1		1	0
0	0	1	1	0		2		0	2
0	0	1	1	1		1		0	1
0	1	0	0	0		2		0	2
0	1	0	0	1		0		rema	inder
0	1	0	1	0		0		rema	inder
0	1	0	1	1		2		2	0
0	1	1	0	0		5		0	5
0	1	1	0	1		0		rema	inder
0	1	1	1	0		2		0	2
0	1	1	1	1		0		rema	inder
1	0	0	0	0		3		0	3
1	0	0	0	1		4		1	3
1	0	0	1	0		1		1	0
1	0	0	1	1		1		1	0

1	0	1	0	0	1	0	1
1	0	1	0	1	0	rema	inder
1	0	1	1	0	0	rema	inder
1	0	1	1	1	0	remai	inder
1	1	0	0	0	2	1	1
1	1	0	0	1	7	6	1
1	1	0	1	0	0	rema	inder
1	1	0	1	1	5	5	0
1	1	1	0	0	0	rema	inder
1	1	1	0	1	0	rema	inder
1	1	1	1	0	0	rema	inder
1	1	1	1	1	0	rema	inder

^{*}Column headings: BUR = bureaucratic organization; LOW = lower strata constituency; DIS = displacement as primary goal; HLP = help from outsiders; ACP = acceptance of the organization. 1 indicates presence; 0 indicates absence. The output is coded as follows: U = uniform new advantages; L = new advantages likely; P = new advantages possible. The <u>don't care</u> output coding is indicated with a dash.

Truth Table Spreadsheet for Gamson's Data (Sorted by Frequency)

bur	low	dis	hlp	аср	number	adv	consistency
1	1	0	0	1	7	1	0.857
0	1	1	0	0	5	0	0
1	1	0	1	1	5	1	1
0	0	0	0	0	4	0	0.5
0	0	1	0	0	4	0	0
1	0	0	0	1	4	0	0.25
1	0	0	0	0	3	0	0
0	0	0	0	1	2	1	1
0	0	0	1	0	2	1	1
0	0	0	1	1	2	1	1
0	0	1	1	0	2	0	0
0	1	0	0	0	2	0	0
0	1	0	1	1	2	1	1
0	1	1	1	0	2	0	0
1	1	0	0	0	2	0	0.5
0	0	1	0	1	1	?	1
0	0	1	1	1	1	?	0
1	0	0	1	0	1	?	1
1	0	0	1	1	1	?	1
1	0	1	0	0	1	?	0

QCA RESULTS: GAMSON DATA

--- COMPLEX SOLUTION --- frequency cutoff: 2.000000 consistency cutoff: 0.857143

	raw coverage	uni que coverage	consi stency
<pre>~bur*~low*~dis*hlp ~bur*~low*~dis*acp bur*low*~dis*acp ~bur*~dis*hlp*acp low*~dis*hlp*acp</pre>	0. 153846	0. 076923	1. 000000
	0. 153846	0. 076923	1. 000000
	0. 423077	0. 230769	0. 916667
	0. 153846	-0. 000000	1. 000000
	0. 269231	-0. 000000	1. 000000

solution coverage: 0.730769 solution consistency: 0.950000

--- PARSIMONIOUS SOLUTION --- frequency cutoff: 2.000000 consistency cutoff: 0.857143

	raw coverage	uni que coverage	consi stency
~di s*hl p	0. 500000	0. 153846	1. 000000
~bur*acp	0. 269231	0. 115385	0.875000
low*acp	0.500000	0. 230769	0. 928571
	coverage: 0.846	515 <i>4</i>	

solution coverage: 0.846154 solution consistency: 0.916667

--- INTERMEDIATE SOLUTION --- frequency cutoff: 2.000000 consi stency cutoff: 0.857143

j	raw coverage	uni que coverage	consi stency
hlp*~dis*~low	0. 230769	0. 115385	1. 000000
acp*hl p*~di s	0. 384615	0. 076923	1. 000000
acp*~dis*~low*~bur	0. 153846	0. 076923	1. 000000
acp*~dis*low*bur	0. 423077	0. 230769	0. 916667
· · + ! - · · · · · · · · · · · · · ·	007/00		

solution coverage: 0.807692 solution consistency: 0.954545

Factoring the solution by constituency

SMOs representing lower strata groups (the poor, workers, minorities):

```
acp*hl p*~di s +
acp*~di s*bur
= acp*~di s(hl p + bur)
```

SMOs representing not-lower strata groups (~low):

```
hl p*~di s +
acp*hl p*~di s +
acp*~di s*~bur

= hl p*~di s + acp*~di s*~bur
= ~di s(hl p + acp*~bur)
```

Parsing the solution of lower strata constituency

The two recipes for SMOs representing lower strata share two ingredients, acp and ~dis. ~dis is a necessary condition for all SMOs.

Is acp a necessary condition for SMOs representing lower strata?

Here's the test for all cases:

Outcome variable: adv Conditions tested:

acp

Consi stency

Consi stency Coverage 0.769231 Coverage 0.800000

Here's the test for cases with low = 1

Outcome variable: adv Conditions tested:

Consi stency Coverage acp 0. 928571 0. 928571

An alternate formulation of the outcome

This data set also could be analyzed by nesting the outcome: (1) uniform new advantages versus (2) uniform or probable new advantages versus (3) uniform or probable or possible new advantages.

bur	low	dis	hlp	аср	number	uniform	probable	possible	consist
1	1	0	0	1	7	0	1	1	0.857143
0	1	1	0	0	5	0	0	0	0
1	1	0	1	1	5	1	1	1	1
0	0	0	0	0	4	0	0	1	0.5
0	0	1	0	0	4	0	0	0	0
1	0	0	0	1	4	0	0	1	0.25
1	0	0	0	0	3	0	0	0	0
0	0	0	0	1	2	1	1	1	1
0	0	0	1	0	2	1	1	1	1
0	0	0	1	1	2	1	1	1	1
0	0	1	1	0	2	0	0	0	0
0	1	0	0	0	2	0	0	0	0
0	1	0	1	1	2	1	1	1	1
0	1	1	1	0	2	0	0	0	0
1	1	0	0	0	2	0	0	1	0.5

Here are the first two:

Uniform

--- INTERMEDIATE SOLUTION --- frequency cutoff: 2.000000 consistency cutoff: 1.000000

	ncy
hl p*~di s*~l ow 0. 230769 0. 115385 1. 000000 acp*hl p*~di s 0. 384615 0. 269231 1. 000000 acp*~di s*~l ow*~bur 0. 153846 0. 076923 1. 000000	

solution coverage: 0.576923 solution consistency: 1.000000

Uniform or Probable

--- INTERMEDIATE SOLUTION --- frequency cutoff: 2.000000 consistency cutoff: 0.857143

	raw coverage	uni que coverage	consi stency
hlp*~dis*~low	0. 230769	0. 115385	1. 000000
acp*hl p*~di s	0. 384615	0. 076923	1.000000
acp*~dis*~low*~bur	0. 153846	0. 076923	1. 000000
acp*~di s*l ow*bur	0. 423077	0. 230769	0. 916667
ì	007/00		

solution coverage: 0.807692 solution consistency: 0.954545

Notice that the second solution is more inclusive—an additional combination is appended to the first solution.

uni aua