Journal Club: Mean Flows for One-step Generative Modeling

WU SHENGYE

Institute of Science Tokyo

June 4, 2025

Notation

- Here are some notations used in today's slides.
- ullet The instantaneous velocity field is denoted as $v\left(z_t,t
 ight)$
- The average velocity field is denoted as $u(z_t, t)$
- In the MeanFlow part, we will define that our time range t is in [0,1]. When t=0, $z_0=x$ means the target data; When t=1, $z_1=\epsilon$ means the noise.
- Thus our sampling process will be started from t = 1 to t = 0.

Content

- Background of Flow matching
- Proposed Method: Mean Flow
- Experiment
- Conclusion

- Background of Flow matching
- Proposed Method: Mean Flow
- Experiment
- Conclusion

Flow matching

- Given access to a training dataset of samples from some target distribution q over \mathbb{R}^d , our goal is to build a model capable of generating new samples from it.
- Formally, we want to generate a novel sample $X_1 \sim q$ from the source distribution $X_0 \sim p$.
- There are several ways of generating the samples, such as Flow matching and Diffusion.
- Flow matching is a stimulation-free methods, which leads to the faster generation.

- FM builds a probability path $(p_t)_{0 \le t \le 1}$, from a known source distribution $p_0 = p$ to the data target distribution $p_1 = q$, where each p_t is a distribution over \mathbb{R}^d .
- FM is a regression objective to train the velocity field neural network which convert p_0 into p_1 along the probability path p_t .
- This velocity field determines a time-dependent flow $\psi: [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$, defined as

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi_t(x) = v_t\left(\psi_t(x)\right)$$

where $\psi_t := \psi(t, x)$ and $\psi_0(x) = x$. The velocity field v_t generates the probability path p_t if its flow ψ_t satisfies

$$X_t := \psi_t(X_0) \sim p_t \text{ for } X_0 \sim p_0$$

4□ > 4□ > 4□ > 4 = > = 900

(a) Data.

(b) Path design.

(c) Training.

(d) Sampling.

- Tips: Please notice that here we use v_t instead of u_t since in next part two velocity field will have different meanings.
- Our training objective Flow Matching Loss is as follows:

$$\mathcal{L}_{ ext{FM}}(heta) = \mathbb{E}_{t,X_t} \left\| v_t^{ heta}\left(X_t
ight) - v_t\left(X_t
ight)
ight\|^2, ext{ where } t \sim \mathcal{U}[0,1] ext{ and } X_t \sim p_t$$

During the sampling process, we will try to deal with:

$$X_1 = X_0 + \int_0^1 v(X_\tau, \tau) d\tau$$

ㅁㅏ ◀♬ㅏ◀ㅌㅏ◀ㅌㅏ - ㅌ - 쒸٩@

- The ground truth v_t is intractable, but we can use a conditional velocity field instead of it.
- e.g. If we define random variables X_t as follows:

$$X_t = tX_1 + (1-t)X_0 \sim p_t$$

Then given the instance $X_1 = x_1$ we can write the conditional random variables:

$$X_{t|1} = tx_1 + (1-t)X_0 \sim p_{t|1}(\cdot \mid x_1) = \mathcal{N}(\cdot \mid tx_1, (1-t)^2 I)$$

In that case, the conditional velocity field will be defined as:

$$v_t\left(x\mid x_1\right) = \frac{x_1-x}{1-t}$$

path $p_t(x|x_1)$.

path $p_t(x)$.

 $u_t(x|x_1)$.

(a) Conditional probability (b) (Marginal) Probability (c) Conditional velocity field (d) (Marginal) Velocity field $u_t(x)$.

- Given a fixed target sample $X = x_1$, its conditional velocity field $v_t(x \mid x_1)$ generates the conditional probability path $p_t(x \mid x_1)$.
- The conditional Flow Matching Loss:

$$\mathcal{L}_{ ext{CFM}}(heta) = \mathbb{E}_{t,X_t,X_1} \left\| v_t^{ heta}\left(X_t
ight) - v_t\left(X_t \mid X_1
ight)
ight\|^2$$

where $t \sim U[0,1], X_0 \sim p, X_1 \sim q$

 It can be proved that the FM loss and CFM loss provide the same gradients to learn v_t^{θ} :

$$abla_{ heta} \mathcal{L}_{ ext{FM}}(heta) =
abla_{ heta} \mathcal{L}_{ ext{CFM}}(heta)$$

The limitations

- For the integration $X_1 = X_0 + \int_0^1 v(X_\tau, \tau) d\tau$, we should use some numerical method to approximate it in discrete time steps.
- ullet e.g. Euler Method: $X_{t_{i+1}} = X_{t_i} + (t_{i+1} t_i) \, v \left(X_{t_i}, t_i
 ight)$
- Some higher-order solvers might be adopted.
- It will lead to some inaccurate result while applying coarse dicertizations over curved trajectories.

- Recently, the most popular way of defining the conditional velocity field is to use a linear interpolation assumption.
- However, even when the conditional flows are designed to be straight("rectified"), the marginal velocity field typically induces a curved trajectory.
- To improve the accuracy, higher NFE (Number of Function Evaluations) is needed.

- Background of Flow matching
- Proposed Method: Mean Flow
- Experiment
- Conclusion

Proposed Method: MeanFlow

- Motivation: We want to implement some algorithms which needs less steps of generating.
- We may refer to some physics process.
- E.g. Consider that we have two different velocity v_1 and v_2 for two time intervals [a, b] and [b, c]. We would like to get the average velocity \bar{v} of the total interval [a, c]
- Then we can easily calculate: $\bar{v} = \frac{(b-a)v_1 + (c-b)v_2}{c-a}$
- We can use the average velocity to describe the velocity over a certain period of time

MeanFlow

 We define the average velocity field u_t between two time steps r and t as follows:

$$u(z_t, r, t) \triangleq \frac{1}{t-r} \int_r^t v(z_\tau, \tau) d\tau$$

- Obviously, the definition of u_t can satisfy the certain boundary conditions and "consistency" constraints.
- But in this definition, we still need to evaluate the function v for a lot of steps, can we do better?

MeanFlow

MeanFlow Indentity

From the definition of average velocity field:

$$(t-r)u(z_t,r,t)=\int_r^t v(z_\tau,\tau)\,d\tau$$

We differentiate both sides with respect to t, treating r as independent of t.

$$u(z_t,r,t) = v(z_t,t) - (t-r)\frac{d}{dt}u(z_t,r,t)$$

- Now we can see that we don't need the instantaneous velocity field v_t at every time step t.
- During sampling process, we can use: $z_0 = z_1 u_\theta(z_1, 0, 1)$

4 D > 4 D > 4 D > 4 D > 3 D 9 Q

Training Process

- For the training objective, it is nature to consider about using u_{θ} to approximate the average velocity u_t
- However, for $u(z_t, r, t) = v(z_t, t) (t r) \frac{d}{dt} u(z_t, r, t)$, we still need to know the marginal velocity field v. Besides, we need to calculate the derivative of average velocity field u.
- To deal with this, we define our target field u_{tgt} as:

$$u_{\text{tgt}} = v_t - (t - r) \left(v_t \frac{\partial u_\theta}{\partial_z} + \frac{\partial u_\theta}{\partial_t} \right)$$

where $v_t = a_t'x + b_t'\epsilon$ is the conditional velocity, and by default, $v_t = \epsilon - x$. And we use the parameters of the network t_θ itself to get the derivative, which is called Bootstrapping strategy.

Training Process

• The training object is:

$$L(heta) = \mathbb{E} \|u_{ heta}(z_t, r, t) - \operatorname{sg}(u_{\operatorname{tgt}})\|_2^2$$
 where $u_{\operatorname{tgt}} = v_t - (t - r) \left(v_t rac{\partial u_{ heta}}{\partial_z} + rac{\partial u_{ heta}}{\partial_t}
ight)$

- The sg (u_{tgt}) means the stop gradient operation.
- $u_{\rm tgt}$ has already contained $\frac{\partial u_{\theta}}{\partial z}$ and $\frac{\partial u_{\theta}}{\partial t}$. If we continue calculating its derivative during the process of minimizing the $L(\theta)$, it will lead to double backpropagation.
- Thus we just use $u_{\rm tgt}$ as a constant.

Training process

- The training process of the proposed method comprises the following steps:
- **1** Sample x from data distribution and sample ϵ from noise distribution.
- ② According to the predefined trajectory (e.g. linear interpolation), calculate z_t and condition velocity v_t
- **3** Sample the paired time steps (r, t), where $0 \le r \le t \le 1$
- Evaluate $u_{\theta}(z_t, r, t)$ by the network
- **Solution** Calculate $\frac{d}{d\theta}u_{\theta}\left(z_{t},r,t\right)$ throughout Jacobian-Vector Product.
- **3** Construct the target field $u_{\mathrm{tgt}} = v_t (t-r) \left(v_t \frac{\partial u_{\theta}}{\partial_z} + \frac{\partial u_{\theta}}{\partial_t} \right)$
- **1** Minimize the loss function $L(\theta)$ and update the parameters θ

- Background of Flow matching
- Proposed Method: Mean Flow
- Experiment
- Conclusion

Experiment

Figure 1: One-step generation on ImageNet 256×256 from scratch. Our *MeanFlow* (MF) model achieves significantly better generation quality than previous state-of-the-art one-step diffusion/flow methods. Here, iCT [43], Shortcut [13], and our MF are all 1-NFE generation, while IMM's 1-step result [52] involves 2-NFE guidance. Detailed numbers are in Tab. 2. Images shown are generated by our 1-NFE model.

Experiment

method	params	NFE	FID
1-NFE diffusion/flow from scratch			
iCT-XL/2 [43] [†]	675M	1	34.24
Shortcut-XL/2 [13]	675M	1	10.60
MeanFlow-B/2	131M	1	6.17
MeanFlow-M/2	308M	1	5.01
MeanFlow-L/2	459M	1	3.84
MeanFlow-XL/2	676M	1	3.43
2-NFE diffusion/flow from scratch			
iCT-XL/2 [43] [†]	675M	2	20.30
iMM-XL/2 [52]	675M	1×2	7.77
MeanFlow-XL/2	676M	2	2.93
MeanFlow-XL/2+	676M	2	2.20

- Background of Flow matching
- Proposed Method: Mean Flow
- Experiment
- Conclusion

Conclusion

- Proposed a novel perspective on average velocity modeling: Shifted the core of generative flow modeling from instantaneous velocity to average velocity, providing a new theoretical foundation for few-step or one-step generation.
- Derived and utilized the MeanFlow identity: Starting from the definition of average velocity, rigorously derived a mathematical identity and adopted it as a principled training objective, avoiding reliance on heuristic constraints.
- Achieved state-of-the-art one-step generation performance: MeanFlow demonstrated leading generation quality under 1-NFE and 2-NFE settings across multiple standard datasets, particularly excelling in high-resolution generation on ImageNet 256×256.