CNS HW2 REPORT

Question 1. Encryption Algorithm

	Symmetric	Asymmetric
Time	Fast	Slow
Key size	Small	Big
example	RC4, DH	RSA, ElGamal
mechanism	share same key	public key, private key
Digital Signature	Yes	No

速度,Assymetric Cryptographic 因為需要大量次方運算與求餘數,所以較耗時。

KEY SIZE,因為Assymetric Cryptographic如RSA需要兩個非常大的質數來確保不易被分解,而Symmetric有許多擴充方法,以達到類似Perfect XOR的效果。

Question 2. Three-way Diffie-Hellman

A cyclic group with generator g

- 1. A, B, C each generate their private keys x_A, x_B, x_C
- 2. A, B, C each calculate $y_A=g^{x_A},y_B=g^{x_B},y_C=g^{x_C}$
- 3. A sends y_A to B, B sends y_B to C, C sends y_C to A.
- 4. A calculates $z_{CA}=y_C^{x_A}$, B calculates $z_{AB}=y_A^{x_B}$, C calculates $z_{BC}=y_B^{x_C}$.
- 5. A sends z_{CA} to B, B sends z_{AB} to C, C sends z_{BC} to A.
- 6. A calculates $k_{BCA}=z_{BC}^{x_A}$, B calculates $k_{CAB}=z_{CA}^{x_B}$, C calculates $k_{ABC}=z_{AB}^{x_C}$.

It's trivial that $k_{BCA}=k_{ABC}=k_{CAB}$ and it's the shared key

Question 3. ElGamal threshold decryption

KeyGen

- Choose a prime p such that p = 2q + 1, q is also a prime
- Find a generator g of order q
- ullet Choose a random $a\in Z_q$ and compute $eta=g^a$, $y=eta^x$
- Compute a random degree t 1 polynomial $f(x) = a + \sum\limits_{i=1}^{t-1} lpha_i x^i \ mod \ p$
- Compute n shares of a: $s_i = f(x_i)$ for each user i

public key $pk = (p, q, \beta)$, private key sk = x

Encrypt

- ullet Choose a random $k\in Z_q$ and compute $c_1=g^k\ mod\ p$
- Compute $c_2 = m \beta^k \ mod \ p$

The ciphertext is $c=(c_1,c_2)=(g^k,m\beta^k)$

Decrypt

$$d_i = c_1^{s_i} = (g^k)^{s_i} \; mod \; p$$
 for each user i

$$d=\prod\limits_{i\in I}d_i^{Y_i}\equiv\prod\limits_{i\in I}g^{kf(x_i)^{Y_i}}\equiv g^{k\sum\limits_{i\in I}f(x_i)Y_i}\equiv g^{kf(0)}\equiv g^{ka}\,\, mod\, p$$

$$m = c_2 d^{-1} = (m eta^k) (g^{ka})^{-1} = m g^{ka} g^{-ka} = m \ mod \ p$$

Question 4. ECB Encryption

BALSN{W0w_y0u4r3r3411y4cu74nd_p4st3m4st3r}

Solution

因為系統是採用ECB加密,也就是以同一組Key去加密所有東西,因此,我們可以透過多次詢問去拼貼出想要的 buffer。

先送 username = "bals", password="gg3be", 得到 login=bals&role=user&pwd=gg3be 的encode, 然後我們只取前十六個也就是 login=bals&role=。接下來,我們送 username="balsnbalsnadmin", password="gg3be", 取第十七個字以後的全部,得到 admin&role=user&pwd=gg3be ,跟前面的合起來,則可與 username="blas", password="gg3be" 一起submit。

Question 5. Beginner's RSA

Part 1

BALSN{V3RYW311}

因為加密的長度不長,因此猜測可以暴力破解。透過 RsaCtfTool 即可得解。

\$./RsaCtfTool.py --publickey ./public.pem --uncipher ./flag.enc

Part 2

BALSN{Forty Years of Attacks on the RSA Cryptosystem}

因為二者共用n,且我們有一組private key。假設我們的private key為d,public key為e,Alice的public key 為 e1, cipher為c。

$$e * d \equiv 1 \pmod{\phi(n)}, e * d - 1 = k\phi(n)$$

若我們求出e1在模 $k\phi(n)$ 空間下的反元素為b,則 $e^{e*b} \equiv m^{k\phi(n)+1} \equiv m \pmod{n}$

Part 3

BALSN{Keep calm and count prime numbers}

因為Alice跟Bob共用n,且我們有二者的cipher。假設Alice的cipher為 c_A ,public key為 e_A ,Bob的cipher為 c_B ,public key為 e_B 。

$$c_A = m^{e_A} \pmod{n}$$
, $c_B = m^{e_B} \pmod{n}$

根據Extended Euclidean algorithm,我們可以求出a,b使 $a*e_A+b*e_B=\gcd(e_A,e_B)=1$

則
$$c_A^a*c_B^b\equiv m\ (mod\ n)$$

Question 6 Digital Certificate

BALSN{b451c_s3!f_51gn3d_c3rt1fic4t3}

簡單來說就是要自己產一個Certificate。

openssl req -new -x509 -days 6666 -out -ca.crt 然後再base64 encode即可。

Question 7 I need your help

BALSN{Now_you_know_the_secret}

ref: https://crypto.stackexchange.com/questions/21102/what-is-the-ssl-private-key-file-format

先將 private.key 中的 - 換成 x decode然後dump成hex。根據標準,我們知道 02 為每個整數的開頭,並且緊接著的是代表數有多長。

得到

028201

718181

00

 $e06f755205d1063502ac8044127f4aeada8ac5adf8830c61f5ea0c71714c8ea1a8106a2a6949807d2d0f7dc03877f35221\\b69726cdc2e6ab351152dbab547d52c1719b7e7976ab2d5ae662a2dfe2e57151ef1fcedca7e8e8947c346d32b66e764c44\\93cb71f548a4ddc07b8d63e2fe8d8bfcaacbe0529a22fb8acd8f7bdfc923$

028181

00

 $\label{eq:dosonormal} d080094320 bef16c0cd45538d1136b1328a68ac990f338d3077 de18e036718b39a17478496fbffd89341fb39838a00350c436bf31a7bc073bb6cc1deeff4b0379878b543a3c6c190052489725b0246f1116152cb141bc67a17bdeffae7108dc55ea92f2be0fa76a4aba72c9b8b12d6a03eb55b57378706c7eeaca86268dca47b$

028181

00

caacfca690a81d51dbd34995af9a925e19f33de70847d7f3d2ee844421cbbff64e5e5c7166594116498df6c2927c0818c0673282914813a4c2ac9d45d0a7e0f0cdce395c7275eec96b9027bcec2feb81753b5b5f24b6e146bf6896b3921b5b0fab7a36797fb4c0e0597d0c5637c0f29d82b02ed124079438492e24ca11549b3f

028180

 $0a03dc6e0908a2f819b5a9524d58ad700227ddcac8d7a6071cf902f89b593c6a84205223204d828098b236ab1092746817\\ eab528bc40ed81a1a31bbce5b1cf351c71cfe32bdec43572c9ca805fb6c0499c181cadfc8d48ff5c5c97466a0af5846183\\ a6ec68a61f44d1a9fa0e8ea39d039d7f809fb3df1c884602ad23ecfd8c39$

028181

00

9862c02f29dd2c9a5a03e117f9c83f1d6eeb475b88aefe5d42a301b5273c78ba583830fad22db60ef7164742887baae915ad97a878f6cea9fb58bc8c39e4e9c184ddd30a0be27281d72e09fc0e141fe72f0838e121579426fc4a3be76e23bfbf8df64c91ed53aa320a7ab03e7d80c373ed1cf387e040c1474f42e60db24cf230

其中,718181那組為猜測,因為如果長度大於 0xFF 需要先在前面加個 81 ,因此 81 也是個重要的指標,而 71 為 x所產生出的結果,所以有可能是 02 。

結果, 那個欄位的確是 02。

因此我們有 p 跟 q ,先利用套件 rsatool 重新製造出 private.pem

./rsatool.py -p

 $0 \times e06f755205d1063502ac8044127f4aeada8ac5adf8830c61f5ea0c71714c8ea1a8106a2a6949807d2d0f7dc03877f352\\ 21b69726cdc2e6ab351152dbab547d52c1719b7e7976ab2d5ae662a2dfe2e57151ef1fcedca7e8e8947c346d32b66e764c\\ 4493cb71f548a4ddc07b8d63e2fe8d8bfcaacbe0529a22fb8acd8f7bdfc923 -q$

 $0 \times d080094320 \\ bef16c0cd45538d1136b1328a68ac990f338d3077 \\ de18e036718b39a17478496fbffd89341fb39838a00350c436bf31a7bc073bb6cc1deeff4b0379878b543a3c6c190052489725b0246f1116152cb141bc67a17bdeffae7108dc55ea92f2be0fa76a4aba72c9b8b12d6a03eb55b57378706c7eeaca86268dca47b-oprivate.pem$

然後透過openssl解密,即得到flag。

openssl rsautl -decrypt -inkey private.pem -in flag.enc -out flag.bin

Question 8 I will look for you, and I will find you

Part1

BALSN{Don't underestimate the power of the Dark Web}

Download tor browser and connect to it.

Part2

BALSN{128.199.198.162}

因為使用https,所以有certificate,然後發現email為 balsn@servers.tw 用whois看一下擁有者,是曾助教的名字。因此 dig servers.tw 即得到ip。

Part3

BALSN{140.112.31.96}

這題的關鍵是SSH的fingerprint。

首先 torsocks ssh-keyscan ztczadd4tipwhwyl.onion 找到所有可能的fingerprint。但是因為預設是SHA256,所以再用 ssh-keygen -1 -E md5 -f 檔名 `轉。最後把結果丟到shodan.io。

Part4

BALSN{104.198.2.240}

ftp有active mode。可以讓ftp server對client連線,因此可以得到ip。

先在linux1.csie.org 用 python3 -m http.server 9487 架設一個http server用來接收資料。然後 torsocks ncat 7zysy3s1gt7qxhek.onion 21 連上FTP server。

USER anonymous PORT 140,112,30,32,37,15 LIST

然後就會得到IP

Part5 (Bonus)

因為執行 cat <(echo Knock, knock) - | torify ncat su7twnwqamobiytx.onion 31337 會得到回覆,因此目前想到的方法是暴搜全部的ip,判斷回覆。但是因為目前人住學校,如果做大規模的掃瞄會被ban,因此仍在想辦法。