Disciplina: Arquitetura de Computadores

Tema: Máquina Multinível e Von Neumann

Prof. Plínio Andrade Passos

Software x Hardware ?????

Software x Hardware

Software

- Conjunto de instruções e programas que permitem que um computador execute tarefas;
- Inclui <u>sistemas operacionais</u>, <u>aplicativos</u>, <u>jogos e</u> <u>outros programas</u>

Hardware

- Componentes físicos e tangíveis de um sistema de computador
- Inclui processadores, memória, discos rígidos, placasmãe, periféricos, etc.

Software

Sistema Operativo

Antivirus

Hardware

 Para facilitar a relação ser humano e máquina é usada uma arquitetura de computadores dividida em camadas

 Quanto maior o nível da linguagem utilizada, mais próxima da linguagem humana ela está;

Nível Zero

 São determinados os componentes eletrônicos dos circuitos

Nível 1

 Circuitos digitais (são sistemas eletrônicos que executam operações lógica)

Nível 2

 Aqui se define o conjunto de instruções que determinada CPU é capaz de reconhecer

 Que tipo de trabalho determinado computador é capaz de realizar, dentre outras c

Nível 3

 Criado o Sistema Operacional do computador

Capaz **de controlar todo o funcionamento** do sistema, tanto em nível de software, quanto em

Nível 4

 Tem-se a linguagem de montagem (assembly);

• São programações necessárias de se executar

diretamente no hardwara

Nível 5	Linguagem Orientada a Problemas	
Nível 4	Linguagem de Montagem (assembly)	
Nível 3	Sistema Operacional	
Nível 2	Conjunto de Instruções	
.		
Nível 1	Microarquitetura (circuitos digitais)	
Nível 0	Lágica Digital /circuitan alatvánican)	
Mivero	Lógico Digital (circuitos eletrônicos)	
	Esquema de niveis das arquiteturas de computadores	

Exemplo:

C	ASSEMBLY
a = b;	MOV A, B
a = a + b;	ADD A, B
a = b + c;	ADD A, B, C
a = a - b;	SUB A, B
a = b - c;	SUB A, B, C
a = a*b;	MUL A, B
a = b*c;	MUL A, B, C
a = a/b;	DIV A, B
a = b/c;	DIV A, B, C

Nível 5

- Tem-se a linguagem de alto nível
- Java, Python, C++, C etc...

John Von Neumann

 Matemático húngaro, naturalizado norteamericano

 Propôs nos anos 40 do século XX, um padrão de arquitetura de computadores que ainda hoje é seguido

As características da arquitetura Von Neumann

Composta por:

- CPU
- Memória principal
- Sistema de entrada e saída

A CPU (unidade central de processamento) é formada por 3 componentes:

- Unidade de controle (UC)
- Unidade lógico-aritmética (ALU)
- Registradores

Central processing unit (CPU) Control unit Arithmetic logical unit (ALU) I/O devices Registers Main Disk Printer memory Bus

Arquitetura Harvard

- Baseia-se em um conceito mais recente que a de Von Neumann
- Características

- Existem dois barramentos independentes: <u>Dados</u>
 - + Endereço
- Memória separada para dados e instruções
- Melhor desempenho e Mais caro

Arquitectura de Von Neumann

Arquitetura Harvard

Central processing unit (CPU)

Harvard Machine

Sistemas Embarcados

Uma combinação de <u>hardware</u> e <u>software</u> de computador, e talvez partes adicionais mecânicas e outras, projetada para realizar uma função dedicada

Ex.: sistema de freios ABS em um carro

Sistemas Embarcados

Mercado	Dispositivo embutido
Automotivo	Sistema de ignição Controle de motor Sistema de freio
Eletrônico	TV, DVD, PDAs, Aparelhos de cozinha (refrigeradores, torradeiras, fornos de micro- ondas, Brinquedos/jogos, Telefones/celulares, Câmeras, GPS
Controle Industrial	Robótica e sistemas para manufatura Sensores
Médico	Bombas de infusão, Monitores cardíacos
Automação de escritório	Fax, Xerox, Impressoras, Monitores, Escâneres

Disciplina: Arquitetura de Computadores

Tema: Arquitetura RISC x CISC

Prof. Plínio Andrade Passos

Introdução

 As arquiteturas de processadores desempenham um papel vital na maneira como os dispositivos eletrônicos executam tarefas

 RISC e CISC são tipos de arquitetura de CPU (processador)

Arquitetura RISC

- RISC: <u>Instruções Reduzidas</u>
- Caracterizada por um conjunto de instruções simplificado e uniforme.
- Com instruções mais simples, o RISC busca otimizar o desempenho executando tarefas mais rapidamente.

Instruções de transferência de dados:

- Load (LD): Carrega dados da memória para registradores.
- Store (ST): Armazena dados dos registradores na memória.

2. Instruções aritméticas e lógicas:

- Add (ADD): Realiza adição.
- Subtract (SUB): Realiza subtração.
- Multiply (MUL): Realiza multiplicação.
- Divide (DIV): Realiza divisão.
- AND, OR, XOR: Realiza operações lógicas bit a bit.
- Shift Left (SHL) e Shift Right (SHR): Realiza deslocamentos de bits.

Instruções de comparação e desvio condicional:

- Compare (CMP): Compara dois valores.
- Branch Equal (BEQ): Salta para uma instrução se duas entradas forem iguais.
- * Branch Not Equal (BNE): Salta se duas entradas não forem iguais.
- * Branch Less Than (BLT): Salta se a primeira entrada for menor que a segunda.

4. Instruções de controle de fluxo:

- Jump (JMP): Salto incondicional para outra instrução.
- Call (CALL): Chama uma sub-rotina ou função.
- Return (RET): Retorna de uma sub-rotina.
- Halt (HLT): Para a execução do programa.

Vantagens do RISC

- Desempenho previsível devido à execução de instruções em ciclos consistentes
- A simplicidade das instruções leva a um menor consumo de energia
- Ideal para dispositivos móveis e sistemas embarcados.
- Mais baratos

Desafio do RISC

• Tamanho do **código é maior** e mais difícil que o CISC

Ocupa mais espaço na memória

Mais complexo para o programador

CISC (Complex Instruction Set Computer)

 Se destaca por um conjunto de instruções mais abrangente e complexo

 Ela busca oferecer instruções mais poderosas que executam tarefas mais complexas em uma única instrução

Vantagens do CISC

 Visa simplificar a programação, permitindo que tarefas complexas sejam realizadas com menos instruções.

 Permite programas mais compactos <u>"menos</u> <u>código"</u>

Desafios do CISC

 Instruções mais complexas podem resultar em um consumo de energia maior em comparação com a arquitetura RISC.

Mais lento em relação CISC devido à complexidade da instrução

Mais caros

E atualmente?

- Arquitetura híbrida
- São <u>essencialmente processadores CISC, mas</u> incorporam muitas características dos processadores RISC (ou vice-versa).

Aspecto	Arquitetura RISC	Arquitetura CISC
Definição	Conjunto de instruções reduzido e uniforme.	Conjunto de instruções amplo e variado.
Tamanho do Conjunto de Instruções	Menor número de instruções.	Maior número de instruções.
Complexidade das Instruções	Instruções simples e uniformes.	Instruções complexas e variadas
Ciclos por Instrução	Menor quantidade de ciclos por instrução.	Varia, pode requerer mais ciclos.
Desempenho	Desempenho previsível e consistente.	Desempenho variável em instruções complexas.
Consumo de Energia	Menor consumo de energia.	Pode consumir mais energia devido a instruções complexas.
Facilidade de Programação	Pode ser mais complexa para alguns cenários.	Geralmente mais intuitiva para programadores.
Exemplos de Processadores	ARM Cortex-A53, MIPS R2000, SPARC V9.	Intel 80486, Intel Pentium, Intel Core i7.

centro universitário de excelência