Fall 2025 / EC311 Pre-Lab-B: Simplification of Boolean Functions

1. Goals

- Design simple combinational circuits.
- Simplify Boolean Functions.
- Program the FPGA board.

2. Overview

This lab demonstrates the design of a system that counts a sequence of binary numbers. In addition, this lab utilizes simplification of Boolean function to generate a simplified logic circuit.

3. Tasks

1. Learn to program the FPGA Board

Complete the tutorial on Programming the FPGA board in the Vivado. This tutorial has been posted on Blackboard.

2. Design a combinational logic for Flashing Lights

Design a combinational circuit using logic gates that takes as input a 4-bit binary number, represented via the positions of four switches, and has its outputs control two LEDs as described below. The LEDs should change according to the following table:

Input Values	Light setting	
	Left LED	Right LED
0-3	On	On
4-7	On	Off
8	Off	On
9	Off	Off
10-11	Off	On
12-15	Off	Off

Your design and implementation process should use the following steps:

- (a) Create a truth table for all of the possible inputs and outputs.
- (b) Derive a standard Boolean expression from the truth table.
- (c) Use K-maps to determine the minimal expression for each of the desired outputs.
- (d) Write the Verilog code for your design.
- (e) Use User Constraint File (UCF) to connect your inputs to switches on the board, and your outputs to LEDs on the board. You should use the 4 rightmost switches for the 4-bit inputs with the rightmost one corresponding to the least significant bit. For output, you should use the 2 rightmost LEDs.
- (f) Synthesize your design and generate the bitstream.

- (g) To program the FPGA using .bit file, follow the instructions for programming the FPGA board in the Vivado Tutorial.
- (h) Test the circuit to determine if it works correctly for all inputs. To do so, you will need to manually make the switches count from 0 to 15, and compare the lights to your truth table.

4. Deliverables

Show your K-map and minimized expressions to TA, and also demo your design on FPGA board.