Logistic regression predicts whether something is *True* or *False*, instead of predicting something continuous like *size*.

...also, instead of fitting a line to the data, logistic regression fits an "S" shaped "logistic function".

Although logistic regression tells the probability that a mouse is obese or not, it's usually used for classification.

For example, if the probability a mouse is obese is > 50%, then we'll classify it as obese, otherwise we'll classify it as "not obese".

With linear regression, we fit the line using "least squares".

We also use the residuals to calculate R^2 and to compare simple models to complicated models.

Logistic regression doesn't have the same concept of a "residual", so it can't use least squares and it can't calculate **R**².

Instead it uses something called "maximum likelihood".

You pick a probability, scaled by weight, of observing an obese mouse - just like this curve...

(i)

...and you use that to calculate the likelihood of observing a non-obese mouse that weighs this much...

Info

...and lastly you multiply all of those likelihoods together. That's the likelihood of the data given this line.

