Introduction to Computer for Engineers

Lecture 12 Interpolation

Dr. Vo Tan Phuoc School of Electrical Engineer — International University

Interpolation & Curve fitting

- A common task
- 2 important facts of DATA
 - Discrete value
 - Noisy
- Empirical Modeling
 - Use curve fitting to obtain local model (algebraic equations) then use it to obtain the internal or external value
- Mathematical Modeling
 - Physical laws → ODE

Interpolation vs. Estimation

Set of data time vs. rotation speed collected during experiment :

Rotation speed take discrete values (measure rpm each 0.0005 second)

What is the value of rmp at t = 0.3982? \rightarrow Interpolation

What is the value of rmp at t = 0.7005? \rightarrow Predict

The predict value is consistent?

Linear Interpolation

Suppose that from x=1 to x=5, y is "LINEAR"

The interpolation value is given as

Matlab function interp1(x,y,x_value,'linear')

Non-linear interpolation

Table 13.1 Interpolation Options in the Interp1 Function

```
'linear'
                                                      interp1(x,y,3.5,'linear')
               linear interpolation, which is the default
                                                      ans =
'nearest'
                                                      interp1(x,y,3.5,'nearest')
               nearest-neighbor interpolation
                                                      ans =
'spline'
                                                      interp1(x,y,3.5,'spline')
               piecewise cubic spline interpolation
                                                      ans =
                                                        3.9417
                                                      interp1(x,y,3.5,'pchip')
'pchip'
               shape-preserving piecewise cubic
               interpolation
                                                      ans =
                                                        3.9048
                                                      interp1(x,y,3.5,'cubic')
'cubic'
               same as 'pchip'
                                                      ans =
                                                        3.9048
               the cubic interpolation from MATLAB®
'v5cubic'
                                                      interp1(x,y,3.5,'v5cubic')
               5, which does not extrapolate and uses
                                                      ans =
                                                        3.9375
               'spline' if x is not equally spaced
```

interp1(x,y,x_value,'linear')

End of Interpolation