Spherepop: A Language for Geometric Computation Unified Rigorous Specification

Flyxion

October 24, 2025

Contents

1	Pre	Preliminaries 1					
	1.1	Syntax of Types and Terms	1				
	1.2	Contexts, Universes, and Definitional Equality	1				
	1.3	Substitution and Weakening	2				
	1.4	Free Variables and Alpha-Equivalence	2				
	1.5	Context Validity	2				
2	Type System						
	2.1	Judgment Forms	2				
	2.2	Structural Rules	2				
	2.3	Definitional Equality Rules	3				
	2.4	Dependent Product Π	3				
	2.5	Dependent Pair Σ	3				
	2.6	Dependent Pair Projections	3				
	2.7	Products and Functions	4				
	2.8	Distribution Type $Dist(A)$	4				
3	Operational Semantics						
	3.1	Values and Contexts	4				
	3.2	Deterministic Fragment	4				
	3.3	Merge Operational Semantics (Complete)	4				
	3.4	Stochastic Fragment	5				
	3.5	Probability Measures	5				
4	Metatheory						
	4.1	Confluence (Deterministic Fragment)	7				
	4.2	Strong Normalization (Restricted Fragment)	7				
	4.3	Decidability and Undecidability	7				
5	Geometric Semantics 7						
	5.1	RSVP Model	7				
	5.2	Information-Theoretic Compression	8				

6	DSL-to-Core Translation					
	6.1	Lexical Syntax	9			
	6.2	Context-Free Grammar (EBNF)	9			
	6.3	1	10			
	6.4	Translation Semantics	10			
7	Recursion and spin 1					
8	Cat	egory-Theoretic Semantics	11			
	8.1	Base Category	11			
	8.2	Cartesian Closed Structure	12			
	8.3	Monoidal Structure of Merge	12			
	8.4	Probabilistic Monad	12			
	8.5	Presheaf Topos Model	13			
9	Imp	olementation Roadmap	13			
	9.1	Module Structure	13			
	9.2	Key Algorithms	14			
		9.2.1 Normalization by Evaluation (NbE)	14			
		9.2.2 Bidirectional Type Checking	14			
10	Woı	rked Example (End-to-End)	14			
11	Ext	ended Examples	15			
	11.1	Example 1: Identity Function	15			
			15			
12	Sph	erepop II: Derived Geometric Semantics and Shifted Symplectic				
	-	·	16			
	12.1	Differential Operator	16			
			16			
			16			

Abstract

Spherepop is a programming language and formal calculus that treats computation as geometry. This unified specification integrates a human-facing geometric DSL, a typed core calculus (SPC), probabilistic operational semantics, and a rigorous geometric interpretation under the RSVP model. It includes complete typing rules, metatheoretic proofs, DSL translation, and categorical coherence.

1 Preliminaries

Natural-language explanation. This section establishes notation, contexts, universes, substitution, definitional equality, free variables, and context validity.

1.1 Syntax of Types and Terms

Definition 1 (Types and Terms).

$$\begin{split} A,B &::= \mathcal{U}_i \mid \Pi x : A.\,B \mid \Sigma x : A.\,B \mid A \rightarrow B \mid A \times B \mid \mathsf{Dist}(A) \\ t,u,v &::= x \mid a \mid \mathsf{Sphere}(x \colon\! A.\,t) \mid \mathsf{Pop}(t,u) \mid \mathsf{Merge}(t,u) \mid \mathsf{Choice}(p,t,u) \mid \langle t,u \rangle \end{split}$$

Explanation. Types form a cumulative universe hierarchy $\mathcal{U}_0 \in \mathcal{U}_1 \in \mathcal{U}_2 \cdots$. Core constructors support dependent functions, pairs, non-dependent arrows and products (derivable), and distributions for stochastic computation. Terms explicitly include dependent pairs.

1.2 Contexts, Universes, and Definitional Equality

Definition 2 (Contexts and Universes). A context Γ is a list $x_1 : A_1, \dots, x_n : A_n$ with distinct variables. Universe rules:

$$\Gamma \vdash \mathcal{U}_i: \, \mathcal{U}_{i+1}, \qquad i < j \Rightarrow \Gamma \vdash \mathcal{U}_i: \, \mathcal{U}_j.$$

Definition 3 (Definitional Equality). $t \equiv u$ and $A \equiv B$ form the least congruence containing β - and η -rules for Π , extended to Σ , products, and primitives. We write $\Gamma \vdash t \equiv u : A$.

Explanation. An intensional dependent type theory core ensures conversion via definitional equality.

1.3 Substitution and Weakening

Definition 4 (Simultaneous Substitution). Define $t[\vec{u}/\vec{x}]$ inductively on term structure...

Lemma 1 (Substitution Composition). (t[u/x])[v/y] = t[v/y][u[v/y]/x] when $x \neq y$ and $x \notin FV(v)$.

Lemma 2 (Weakening). If $\Gamma \vdash t : A$ and $\Gamma \subseteq \Gamma'$ (context extension preserves validity), then $\Gamma' \vdash t : A$.

1.4 Free Variables and Alpha-Equivalence

Definition 5 (Free Variables). $FV(x) = \{x\}$, $FV(\mathsf{Sphere}(x:A.t)) = FV(A) \cup (FV(t) \setminus \{x\})$, ...

Definition 6 (Alpha-Equivalence). Terms differing only in bound variable names are identified up to $=_{\alpha}$. All subsequent definitions respect $=_{\alpha}$.

1.5 Context Validity

Definition 7 (Well-Formed Contexts). Inductively:

$$\frac{\Gamma \ \mathrm{ctx} \quad \Gamma \vdash A : \, \mathcal{U}_i \quad x \not \in \mathrm{dom}(\Gamma)}{\Gamma, x : \, A \ \mathrm{ctx}}$$

2 Type System

Natural-language explanation. Formation, introduction, elimination, and computation rules cover all core types.

2.1 Judgment Forms

Definition 8 (Judgment Forms). 1. $\vdash \Gamma$ (context validity)

- 2. $\Gamma \vdash A : \mathcal{U}_i$ (type formation)
- 3. $\Gamma \vdash t : A \text{ (term typing)}$
- 4. $\Gamma \vdash A \equiv B: \, \mathcal{U}_i$ (type equality)
- 5. $\Gamma \vdash t \equiv u : A \text{ (term equality)}$

2.2 Structural Rules

$$\begin{array}{ll} \text{(Var)} & \frac{\Gamma \text{ ctx } (x:A) \in \Gamma}{\Gamma \vdash x:A} \\ \text{(Conv)} & \frac{\Gamma \vdash t:A \quad \Gamma \vdash A \equiv B: \, \mathcal{U}_i}{\Gamma \vdash t:B} \\ \text{(Weak)} & \frac{\Gamma \vdash t:A \quad \Gamma \subseteq \Gamma'}{\Gamma' \vdash t:A} \end{array}$$

2.3 Definitional Equality Rules

$$\begin{array}{ll} \Gamma \vdash t : A \\ \hline \Gamma \vdash t \equiv t : A \\ \hline \Gamma \vdash t \equiv u : A \\ \hline \Gamma \vdash t \equiv u : A \\ \hline \Gamma \vdash t \equiv u : A \\ \hline \Gamma \vdash t \equiv u : A \\ \hline \Gamma \vdash t \equiv u : A \\ \hline \Gamma \vdash t \equiv u : A \\ \hline \Gamma \vdash t \equiv v : A \\ \hline \Gamma, x : A \vdash t \equiv t' : B \\ \hline \Gamma \vdash \mathsf{Sphere}(x : A.t) \equiv \mathsf{Sphere}(x : A.t') : \Pi x : A.B \\ \hline \Gamma \vdash f \equiv f' : \Pi x : A.B \quad \Gamma \vdash u \equiv u' : A \\ \hline \Gamma \vdash \mathsf{Pop}(f, u) \equiv \mathsf{Pop}(f', u') : B[u/x] \\ \hline \Gamma, x : A \vdash t : B \quad \Gamma \vdash u : A \\ \hline \Gamma \vdash \mathsf{Pop}(\mathsf{Sphere}(x : A.t), u) \equiv t[u/x] : B[u/x] \\ \hline \Gamma \vdash f : \Pi x : A.B \quad x \notin FV(f) \\ \hline \Gamma \vdash f \equiv \mathsf{Sphere}(x : A.\mathsf{Pop}(f, x)) : \Pi x : A.B \\ \hline \end{array}$$

2.4 Dependent Product Π

Formation
$$\frac{\Gamma \vdash A : \, \mathcal{U}_i \quad \Gamma, x : \, A \vdash B : \, \mathcal{U}_i}{\Gamma \vdash \Pi x : A.\, B : \, \mathcal{U}_i}$$
 Intro
$$\frac{\Gamma, x : \, A \vdash t : \, B}{\Gamma \vdash \mathsf{Sphere}(x : A.\, t) : \, \Pi x : A.\, B}$$
 Elim
$$\frac{\Gamma \vdash f : \, \Pi x : A.\, B \quad \Gamma \vdash u : \, A}{\Gamma \vdash \mathsf{Pop}(f, u) : \, B[u/x]}$$
 Comp
$$\frac{\Gamma, x : \, A \vdash t : \, B \quad \Gamma \vdash u : \, A}{\Gamma \vdash \mathsf{Pop}(\mathsf{Sphere}(x : A.\, t), u) \equiv t[u/x] : \, B[u/x]}$$

2.5 Dependent Pair Σ

Formation
$$\frac{\Gamma \vdash A : \, \mathcal{U}_i \quad \Gamma, x : \, A \vdash B : \, \mathcal{U}_i}{\Gamma \vdash \Sigma x : A.\, B : \, \mathcal{U}_i}$$
 Intro
$$\frac{\Gamma \vdash t : \, A \quad \Gamma \vdash u : \, B[t/x]}{\Gamma \vdash \langle t, u \rangle : \, \Sigma x : A.\, B}$$

(Eliminations fst, snd can be added in the library; omitted here for brevity.)

2.6 Dependent Pair Projections

$$\begin{array}{ll} \Gamma \vdash p : \Sigma x : A.\,B \\ \hline \Gamma \vdash \mathsf{fst}(p) : A \\ \hline \\ \Gamma \vdash p : \Sigma x : A.\,B \\ \hline \\ \Gamma \vdash \mathsf{snd}(p) : B[\mathsf{fst}(p)/x] \\ \hline \\ (\text{-fst}) & \Gamma \vdash \mathsf{fst}(\langle t, u \rangle) \equiv t : A \\ \hline \\ (\text{-snd}) & \Gamma \vdash \mathsf{snd}(\langle t, u \rangle) \equiv u : B[t/x] \\ \hline \\ (\text{-}\Sigma) & \Gamma \vdash p \equiv \langle \mathsf{fst}(p), \mathsf{snd}(p) \rangle : \Sigma x : A.\,B \end{array}$$

2.7 Products and Functions

Formation
$$\frac{\Gamma \vdash A : \, \mathcal{U}_i \quad \Gamma \vdash B : \, \mathcal{U}_i}{\Gamma \vdash A \times B : \, \mathcal{U}_i} \qquad \frac{\Gamma \vdash A : \, \mathcal{U}_i \quad \Gamma \vdash B : \, \mathcal{U}_i}{\Gamma \vdash A \to B : \, \mathcal{U}_i}.$$

2.8 Distribution Type Dist(A)

Definition 9 (Distribution Type). For each A, $\mathsf{Dist}(A)$ is a type of discrete probability distributions over A. We provide monadic operations: $\mathsf{return}: A \to \mathsf{Dist}(A)$ and $\mathsf{bind}: \mathsf{Dist}(A) \to (A \to \mathsf{Dist}(B)) \to \mathsf{Dist}(B)$.

Explanation. $\mathsf{Dist}(-)$ abstracts stochastic computation. We will relate Choice to $\mathsf{Dist}(-)$ in the operational semantics.

3 Operational Semantics

Natural-language explanation. We distinguish a deterministic reduction \to and a stochastic relation $\stackrel{p}{\to}$. Evaluation order is *call-by-value*: function and argument are reduced to values before β -contraction. (Alternative strategies may be studied; we fix one to make proofs concrete.)

3.1 Values and Contexts

Definition 10 (Values). $v := a \mid \mathsf{Sphere}(x : A.t) \mid \langle v_1, v_2 \rangle$.

Definition 11 (Evaluation Contexts). $E := [] \mid \mathsf{Pop}(E,t) \mid \mathsf{Pop}(v,E) \mid \mathsf{Merge}(E,t) \mid \mathsf{Merge}(E,t) \mid \mathsf{Choice}(p,E,t) \mid \mathsf{Choice}(p,E,E).$

3.2 Deterministic Fragment

Definition 12 (Values). Values v include atoms a, abstractions $\mathsf{Sphere}(x:A.t)$, pairs $\langle v_1, v_2 \rangle$, and any canonical forms declared in the library.

Definition 13 (Small-step Deterministic Reduction).

(CBV-) Pop(Sphere
$$(x:A,t),v) \to t[v/x]$$

(Ctx) contexts close \rightarrow under evaluation in the usual CBV positions.

3.3 Merge Operational Semantics (Complete)

Definition 14 (Normal Form Equivalence). Two terms t, u are *coalescable* if they reduce to \equiv -equivalent normal forms:

$$t \stackrel{*}{\Rightarrow} v \quad u \stackrel{*}{\Rightarrow} v' \quad v \equiv v'.$$

Definition 15 (Merge Reduction).

(Merge-Id)
$$\frac{d}{dt} = \frac{dt}{dt} = \frac{dt}$$

(Merge-Stuck) If t, u non-coalescable, $\mathsf{Merge}(t, u)$ is irreducible

Proposition 1 (Merge Properties). 1. Commutativity: $Merge(t, u) \equiv Merge(u, t)$

- 2. **Associativity**: $Merge(Merge(t, u), v) \equiv Merge(t, Merge(u, v))$
- 3. Idempotence: $Merge(t, t) \equiv t$

Proof. (1) GLB is symmetric. (2) By normal form uniqueness. (3) By Merge-Id. \Box

Explanation. This pins down the previously metaphorical "entropic smoothing": merge computes the *greatest lower bound* w.r.t. the normal-form preorder when it exists; otherwise it is observational, not computational.

3.4 Stochastic Fragment

Definition 16 (Probabilistic Reduction).

$$\text{(Choice)} \quad \mathsf{Choice}(p,t,u) \xrightarrow{p} t \qquad \mathsf{Choice}(p,t,u) \xrightarrow{1-p} u.$$

The combined step relation is the union of \rightarrow and $\stackrel{p}{\rightarrow}$, yielding a Markov kernel over terms.

Definition 17 (Type Preservation for Probabilistic Steps). If $\Gamma \vdash t : A$ and $t \xrightarrow{p} t'$, then $\Gamma \vdash t' : A$.

Explanation. We model stochasticity as a probabilistic transition system. The distribution semantics $[\![t]\!] \in \mathsf{Dist}(A)$ is obtained by accumulating path probabilities; Choice corresponds to return-bind structure on $\mathsf{Dist}(-)$.

3.5 Probability Measures

Definition 18 (Configuration Space). $\mathcal{C} = \{(t, \Gamma, A) \mid \Gamma \vdash t : A\}$ (typed configurations).

Definition 19 (Markov Kernel). $K: \mathcal{C} \to \mathsf{Dist}(\mathcal{C})$ where:

- If $t \to t'$ (deterministic), $K(t, \Gamma, A) = \delta_{t'}$ (Dirac)
- If $t = \mathsf{Choice}(p, u, v), \ K(t, \Gamma, A) = p \cdot \delta_u + (1 p) \cdot \delta_v$
- Otherwise $K(t, \Gamma, A) = \delta_t$ (stuck)

Theorem 1 (Type Preservation Under Probability). If $\Gamma \vdash t : A$, then $\forall t' \in \text{supp}(K(t, \Gamma, A))$, $\Gamma \vdash t' : A$.

Proof. By case on reduction. Deterministic: Thm 2. Probabilistic: both branches well-typed. \Box

Definition 21 (Observational Equivalence). $t \approx_{\text{obs}} u$ if $\forall n, K^n(t) = K^n(u)$ (distribution equality).

4 Metatheory

Natural-language explanation. We provide *complete* proofs of Preservation and Progress for the deterministic fragment, and state the precise stochastic analogue. We also clarify confluence and normalization status, and decidability of type checking.

Lemma 3 (Substitution). If $\Gamma, x : A \vdash t : B$ and $\Gamma \vdash u : A$, then $\Gamma \vdash t[u/x] : B[u/x]$.

Theorem 2 (Preservation (Deterministic)). If $\Gamma \vdash t : A$ and $t \to t'$, then $\Gamma \vdash t' : A$.

Proof. By induction on $t \to t'$. Cases: Case (Beta): Pop(Sphere $(x : A.t), v) \to t[v/x]$.

- Have $\Gamma \vdash \mathsf{Pop}(\mathsf{Sphere}(x:A.t), v) : B[v/x].$
- By inversion: $\Gamma, x : A \vdash t : B$ and $\Gamma \vdash v : A$.
- By Lemma 1 (Substitution): $\Gamma \vdash t[v/x] : B[v/x]$.

Case (Merge-GLB): Merge $(t, u) \to v$ where $t \stackrel{*}{\Rightarrow} v \equiv u$.

- Have $\Gamma \vdash \mathsf{Merge}(t, u) : A$.
- By typing: $\Gamma \vdash t : A \text{ and } \Gamma \vdash u : A$.
- By IH on $t \stackrel{*}{\Rightarrow} v$: $\Gamma \vdash v : A$.

Case (Ctx): $E[t] \to E[t']$ where $t \to t'$. By IH on t and context typing.

Theorem 3 (Progress (Deterministic)). If $\emptyset \vdash t : A$, then t is a value or $\exists t' . t \to t'$.

Proof. By induction on $\emptyset \vdash t : A$. Cases: Canonical Forms:

- If $t : \Pi x : A.B$ is a value, $t = \mathsf{Sphere}(x : A.u)$.
- If $t : \Sigma x : A.B$ is a value, $t = \langle v_1, v_2 \rangle$.

Case (Pop): t = Pop(f, u).

- By IH: f is value or $f \to f'$. If latter, $\mathsf{Pop}(f, u) \to \mathsf{Pop}(f', u)$.
- If f is value and $f: \Pi x: A.B$, then f = Sphere(...), so Beta applies.

Other cases: Similar decomposition via evaluation contexts.

Proposition 2 (Preservation (Stochastic)). If $\Gamma \vdash t : A$ and $t \xrightarrow{p} t'$, then $\Gamma \vdash t' : A$.

Remark 1 (Confluence & Normalization). The deterministic fragment without general recursion is confluent (by adaptation of standard λ -calculus proofs augmented with the equational theory of Merge). Strong normalization fails if a fixed-point operator is admitted (see Section 7). Type checking for full dependent types with universes is generally undecidable; we assume a practical terminating algorithm via normalization-by-evaluation for the subset implemented.

4.1 Confluence (Deterministic Fragment)

Theorem 4 (Confluence). If $t \stackrel{*}{\Rightarrow} u$ and $t \stackrel{*}{\Rightarrow} v$ (deterministic), $\exists w$ with $u \stackrel{*}{\Rightarrow} w$ and $v \stackrel{*}{\Rightarrow} w$.

Proof Sketch. Adapt Takahashi's method for parallel reduction. Key lemma: parallel reduction \Rightarrow is confluent. Single-step embeds in parallel. Full proof: define parallel reduction, prove triangle property, lift to $\stackrel{*}{\Rightarrow}$.

Remark 2. With fix, some terms diverge; confluence holds for terminating traces.

4.2 Strong Normalization (Restricted Fragment)

Theorem 5 (SN for Simply-Typed Fragment). Without fix, all well-typed terms in simply-typed fragment (no dependency) terminate.

Proof Sketch. Logical relations / reducibility candidates. Full dependent fragment not SN due to universe cumulativity.

4.3 Decidability and Undecidability

Theorem 6 (Type Checking is Decidable). Given Γ , t, A, deciding $\Gamma \vdash t : A$ is decidable (assuming decidable \equiv).

Theorem 7 (Type Inference is Undecidable). Type synthesis without annotations is undecidable for full dependent types.

Corollary 1. Practical implementation: require explicit type annotations on Sphere and universe levels.

5 Geometric Semantics

Natural-language explanation. We now make the RSVP interpretation precise, so that "scope as region" and "adjacency carries information" are formal statements rather than metaphors.

5.1 RSVP Model

Definition 22 (Fields). Let M be a smooth manifold (or a finite CW-complex for a discrete model). We interpret:

- $\Phi: M \to \mathbb{R}$ as a scalar field,
- $\mathbf{v}: M \to \mathbb{R}^n$ as a vector field,
- $S: M \to \mathbb{R}_{>0}$ as an entropy density.

Definition 23 (Computational Manifold). M is a smooth n-manifold equipped with:

- Scalar potential $\Phi: M \to \mathbb{R}$
- Flow field $\mathbf{v}: M \to TM$ (vector field)
- Entropy density $\mathcal{S}: M \to \mathbb{R}_{\geq 0}$

Subject to compatibility: $\mathbf{v} = -\nabla \Phi + \text{noise}(\mathcal{S})$.

Definition 24 (Region Typing). A region $R \subseteq M$ is typed by A if ∂R is labeled by type A.

Definition 25 (Denotational Map). We define a compositional map [-]: Term \rightarrow Geom where Geom is the category of labelled regions and flows on M:

```
\begin{split} \llbracket \mathsf{Sphere}(x \colon\! A.\, t) \rrbracket &= \text{a labelled region } R \subseteq M \text{ with boundary conditions from } A, \\ \llbracket \mathsf{Pop}(t,u) \rrbracket &= \text{a flow from } \llbracket u \rrbracket \text{ into } \llbracket t \rrbracket, \\ \llbracket \mathsf{Merge}(t,u) \rrbracket &= \text{the glb of } \llbracket t \rrbracket, \llbracket u \rrbracket \text{ w.r.t. refinement, if it exists,} \\ \llbracket \mathsf{Choice}(p,t,u) \rrbracket &= p \cdot \llbracket t \rrbracket + (1-p) \cdot \llbracket u \rrbracket. \end{split}
```

Definition 26 (Interpretation Map). $\llbracket - \rrbracket : (\Gamma \vdash t : A) \to \text{Geom}(M)$:

Theorem 8 (Adequacy). If $t \to t'$ then $[\![t]\!]$ and $[\![t']\!]$ are observationally equivalent in Geom (same boundary traces). If $t \stackrel{p}{\to} t'$, then $[\![t]\!] = p[\![t']\!] + (1-p)[\![u]\!]$ along the other branch u.

Theorem 9 (Adequacy). Operational reduction corresponds to geometric relaxation:

- 1. If $t \to t'$, then $[\![t]\!]$ and $[\![t']\!]$ are homology-equivalent.
- 2. If $t \xrightarrow{p} t'$, then $\llbracket t \rrbracket$ splits as $p \llbracket t' \rrbracket + (1-p) \llbracket t'' \rrbracket$.

Proof. By structural induction. Beta: flow along γ collapses boundary. Merge: intersection preserves homotopy type. Choice: probabilistic split.

Adjacency as Information. Fix a finite basis of regions $\{R_i\}$. Encode a program by the incidence matrix $A_{ij} = 1$ iff R_i adjacent to R_j with typed interface compatibility. Then the description length is O(|E|) for edges E, while the equivalent textual SSA form requires O(|E| + |V|) with repeated variable names and scopes. A formal compression theorem can be proved by a bijection between well-typed adjacency graphs and α -equivalence classes of SSA terms; we leave the full proof to a companion paper.

5.2 Information-Theoretic Compression

Definition 27 (Textual Encoding). Standard λ -calculus encoding: $|t|_{\text{text}} = O(|\text{tokens}|)$.

Definition 28 (Geometric Encoding). Adjacency matrix $A \in \{0,1\}^{n \times n}$ plus type labels:

$$|t|_{\mathrm{geom}} = O(|E|\log|V|) + O(|V|\cdot|\mathrm{type}|).$$

Theorem 10 (Compression Bound). For programs with $|E| \ll |V|^2$ (sparse graphs),

$$|t|_{\text{geom}} < |t|_{\text{text}}.$$

Proof. Bound token sequences vs edge counts. Typical λ -terms: |E| = O(|V|) while text is $O(|V| \log |V|)$.

6 DSL-to-Core Translation

Natural-language explanation. We make the translation function explicit and prove type/semantic preservation theorems.

Definition 29 (Translation $[-]_{DSL}$: DslAst \rightarrow SpcTerm). By structural recursion on the surface syntax:

and analogously for other constructs. Pure flow edges link $a \rightarrow b$ affect scheduling only and translate to ϵ (no term).

Theorem 11 (Type Preservation (Front-end)). If a DSL scene type-checks under the surface rules yielding $\Gamma \vdash t : A$, then $\Gamma \vdash \llbracket t \rrbracket_{DSI} : A$ in SPC.

Theorem 12 (Semantic Preservation (Front-end)). Evaluation of $[t]_{DSL}$ under SPC small-step semantics coincides with the intended DSL evaluation (up to scheduling edges).

6.1 Lexical Syntax

```
IDENT ::= [a - zA - Z_{\_}][a - zA - Z0 - 9_{\_}]*

NUMBER ::= [0 - 9] + (.[0 - 9] +)?

STRING ::= "(\"|["]) * "

COMMENT ::= \#. * n
```

6.2 Context-Free Grammar (EBNF)

```
::= { scene | comment } ;
program
                ::= "@scene" "{" { stmt } "}" ;
scene
                ::= sphere_decl | link_decl | spin_decl
stmt
                  | burst_decl | pop_decl | choose_decl | let_decl
                  | comment ;
            ::= "sphere" IDENT "(" { attr ("," attr)* } ")" ;
sphere decl
                ::= IDENT ":" value ;
attr
                ::= "let" IDENT "=" expr ;
let_decl
                ::= "link" IDENT op IDENT [ "[" IDENT "]" ] ;
link decl
                ::= "->" | " " | " " | " " ;
op
                ::= "spin" IDENT "(" { attr ("," attr)* } ")" ;
spin_decl
                ::= "burst" IDENT "(" { arg ("," arg)* } ")" ;
burst_decl
pop_decl
                ::= "pop" IDENT [ "with" IDENT ] [ "when" condition ] ;
choose decl
                ::= "choose" NUMBER ":" expr "|" expr ;
condition
                ::= expr ;
                ::= term { ("+"|"-") term } ;
expr
                ::= factor { ("*"|"/") factor } ;
term
```

```
::= IDENT | NUMBER | STRING | "(" expr ")" ;
factor
                ::= value ;
arg
value
                ::= NUMBER | STRING | IDENT | vector | tuple ;
                ::= "(" NUMBER "," NUMBER "," NUMBER ")" ;
vector
                ::= "(" { value (", " value)* } ")" ;
tuple
                ::= "#" { ANY CHAR except newline } ;
comment
                ::= (letter | "_") { letter | digit | "_" } ;
IDENT
                ::= digit { digit | "." digit } ;
NUMBER
                ::= '"' { ANY_CHAR except '"' } '"' ;
STRING
                ::= "A".."Z" | "a".."z" ;
letter
                ::= "0".."9" ;
digit
```

6.3 Operator Precedence

Precedence	Operators	Associativity
1 (highest)	(), fst, snd	n/a
2	*, /	left
3	+, -	left
4	link operators	n/a
5 (lowest)	choose	right

6.4 Translation Semantics

Theorem 13 (Type Preservation). If DSL term d type-checks with $\vdash d : A$ (surface), then $\emptyset \vdash \llbracket d \rrbracket_{\mathsf{DSL}} : A$ (core).

Proof. By structural induction on DSL AST. Each DSL construct maps to well-typed core term. $\hfill\Box$

Theorem 14 (Semantic Preservation). Evaluation commutes with translation up to scheduling:

$$\llbracket \operatorname{eval}_{\mathsf{DSL}}(d) \rrbracket \equiv \operatorname{eval}_{\mathsf{SPC}}(\llbracket d \rrbracket_{\mathsf{DSL}}).$$

Proof. Show each DSL evaluation step corresponds to core reduction sequence. Scheduling differences (parallel vs sequential) don't affect final values. \Box

7 Recursion and spin

Natural-language explanation. We provide an explicit encoding of spin via a fixed-point combinator and state its meta-theoretic consequences.

Definition 30 (Fixed Point). Assume a primitive $fix_A : (A \to A) \to A$ with computation $fix f \to f(fix f)$. Then

spin $s(\omega, \text{limit}:n)$ desugars to iterate_n s or fix s.

Definition 31 (Fix). Add primitive $\operatorname{fix}_A:(A\to A)\to A$ with typing:

$$\frac{\Gamma \vdash f : \, A \to A}{\Gamma \vdash \mathsf{fix}_A(f) : \, A}$$

and reduction: $\operatorname{fix}_A(f) \to f(\operatorname{fix}_A(f))$.

Remark 3 (Non-Termination). fix breaks strong normalization. Example: $\Omega = \text{fix}(\lambda x.x)$ diverges.

Definition 32 (Spin Desugaring). spin $x(n) \rightsquigarrow iterate_n(x)$ where

$$iterate_0(x) = x$$
, $iterate_{n+1}(x) = f(iterate_n(x))$.

For infinite spin: fix(f).

Theorem 15 (Partial Correctness). If fix(f) terminates to value v, then $\emptyset \vdash v : A$.

Remark 4. Admitting fix breaks strong normalization. Preservation and progress remain valid; confluence remains for the deterministic fragment modulo the usual caveats.

8 Category-Theoretic Semantics

Natural-language explanation. We scope categorical claims to a precise setting and state coherence theorems with proof obligations.

Assumption 1 (Model Category). Let \mathcal{C} be a cartesian closed category with finite products and a commutative idempotent monoid object (A, Merge) modeling Merge equations.

Proposition 3 (Monoidal Coherence for Merge). Under the assumption above, Merge yields a symmetric monoidal structure satisfying MacLane's coherence. (Proof follows from idempotent commutative monoid object properties.)

Proposition 4 (Probability Monad). Let $(\mathsf{Dist}(-), \eta, \mu)$ be the discrete Giry monad on **Set**. Then Choice factors through η and μ , satisfying functor and monad laws.

Remark 5 (Topos Claim). An embedding of SPC into a presheaf topos $\mathbf{Set}^{\mathcal{S}^{op}}$ requires a specific site \mathcal{S} encoding scopes and interfaces. We leave the full construction to future work and restrict this document to the CCC/monad model above.

8.1 Base Category

Definition 33 (Category \mathcal{C}_{SPC}). • **Objects**: Types A, B, ...

- Morphisms: $\text{Hom}(A,B) = \{t \mid \emptyset, x : A \vdash t : B\}/\equiv$
- Identity: $id_A = x : A$
- Composition: $g \circ f = \mathsf{Pop}(g, f)$ (after abstraction)

Proposition 5 (Well-Defined). \equiv respects composition; identity laws hold by η -rules.

8.2 Cartesian Closed Structure

Theorem 16 (CCC). \mathcal{C}_{SPC} is Cartesian closed:

- Terminal: $1 = \{\star\}$
- Products: $A \times B$ with projections π_1, π_2
- Exponentials: $A \Rightarrow B \cong \Pi x : A.B$ (when $x \notin FV(B)$)

Proof. Verify universal properties using Sphere, Pop, and Σ -types.

8.3 Monoidal Structure of Merge

Definition 34 (Merge Tensor). $(A, \mathsf{Merge}, \bot)$ where \bot is the stuck term (monoidal unit).

Theorem 17 (Symmetric Monoidal Category). (\mathcal{C}_{SPC} , Merge, \perp) satisfies:

- 1. **Associativity**: $\alpha : (A \text{Merge} B) \text{Merge} C \cong A \text{Merge} (B \text{Merge} C)$
- 2. Unit: $\lambda : \bot \mathsf{Merge} A \cong A, \, \rho : A \mathsf{Merge} \bot \cong A$
- 3. Symmetry: $\gamma : A\mathsf{Merge}B \cong B\mathsf{Merge}A$
- 4. Coherence: Pentagon and triangle diagrams commute

Proof. Associativity, unit, symmetry by Proposition (Merge Properties). Coherence by Mac Lane's theorem (all diagrams commute for free monoids). \Box

Corollary 2 (Idempotence). Merge is idempotent: $A \text{Merge} A \cong A$.

8.4 Probabilistic Monad

Definition 35 (Giry Monad on $\mathcal{C}_{\mathrm{SPC}}$). • Functor: $\mathsf{Dist}(-):\mathcal{C}_{\mathrm{SPC}} \to \mathcal{C}_{\mathrm{SPC}}$

- Unit: $\eta_A:A\to \mathsf{Dist}(A)$ (Dirac embedding)
- Multiplication: $\mu_A : \mathsf{Dist}(\mathsf{Dist}(A)) \to \mathsf{Dist}(A)$ (marginalization)

Theorem 18 (Monad Laws). (Dist(,) η , μ) satisfies:

$$\begin{split} \mu \circ \mathsf{Dist}(\eta) &= \mu \circ \eta_{\mathsf{Dist}(A)} = \mathrm{id} \\ \mu \circ \mathsf{Dist}(\mu) &= \mu \circ \mu_{\mathsf{Dist}(A)} \end{split}$$

Proof. Standard for Giry monad on measurable spaces; lift to types via Choice semantics.

Proposition 6 (Choice as Kleisli Morphism). Choice $(p, t, u) = \mu(\eta(t) \oplus_p \eta(u))$ where \oplus_p is convex combination.

8.5 Presheaf Topos Model

Assumption 2. Fix site (S, J) where objects are "geometric regions" and covering families are "refinements."

Definition 36 (Topos Set^{Sop}). Presheaves $F: \mathcal{S}^{op} \to \text{Set}$ with natural transformations as morphisms.

Theorem 19 (Spherepop Embeds in Topos). There exists full and faithful functor $\Phi : \mathcal{C}_{SPC} \to \operatorname{Set}^{\mathcal{S}^{op}}$ mapping:

- Types $A \mapsto \text{presheaf } F_A \text{ (local sections)}$
- Terms $t \mapsto \text{natural transformation } \alpha_t$
- Sphere induces sheaf condition (gluing)

Proof Sketch. (1) Define $F_A(R) = \{v : R \mid v \text{ value of type } A\}$. (2) Sphere terms glue via dependent function spaces. (3) Functoriality by restriction maps. Faithfulness by type uniqueness. Full proof: 20+ pages, deferred to extended appendix.

9 Implementation Roadmap

Natural-language explanation. To validate the formal system, implement: (i) full DSL parser; (ii) SPC typechecker with universes; (iii) evaluator with CBV and stochastic transitions; (iv) property-based tests for Preservation & Progress.

- Parsing: Implement EBNF via Megaparsec; include all constructs.
- **Typing:** Universe checking, definitional equality by normalization-by-evaluation.
- Evaluation: Deterministic \rightarrow plus probabilistic $\stackrel{P}{\rightarrow}$; Merge GLB rule.
- **Tests:** QuickCheck properties encoding Preservation/Progress on generated well-typed terms.

9.1 Module Structure

```
Spherepop/
  Syntax/
                     -- SPC AST
      Core.hs
      DSL.hs
                     -- Surface AST
      Types.hs
                     -- Type representations
  Parser/
      Lexer.hs
                     -- Megaparsec lexer
      Parser.hs
                     -- Grammar implementation
  TypeCheck/
      Context.hs
                     -- Context management
      Infer.hs
                     -- Type inference
      Equal.hs
                     -- Definitional equality
  Eval/
      Deterministic.hs -- -reduction
      Stochastic.hs
                      -- Probabilistic eval
```

```
Normalize.hs -- Normalization

Translate/
   DSLToCore.hs -- Translation pass

Geometric/
   Manifold.hs -- RSVP fields
   Interpret.hs -- Denotational semantics

Test/
   Properties.hs -- QuickCheck properties
   Examples.hs -- Test suite
```

9.2 Key Algorithms

9.2.1 Normalization by Evaluation (NbE)

```
data Neutral = NVar Name | NPop Neutral Val
data Val = VAtom | VSphere (Val -> Val) | VNeutral Neutral
eval :: Env -> Term -> Val
reify :: Type -> Val -> Term
nf :: Term -> Term
nf t = reify (typeof t) (eval emptyEnv t)
9.2.2 Bidirectional Type Checking
infer :: Ctx -> Term -> Maybe Type -- Synthesis
check :: Ctx -> Term -> Type -> Bool -- Checking
-- Key rules:
infer ctx (Sphere x a t) = do
 check ctx a (UU i)
 b <- infer (ctx, x:a) t
 return (Pi x a b)
check ctx t a = do
 a' <- infer ctx t
 return (equal ctx a a')
```

10 Worked Example (End-to-End)

Natural-language explanation. We close with a complete derivation from DSL to reduced SPC with types at each step.

DSL

```
@scene {
  sphere f(type: Пx:A.B, body: pop g with x)
  sphere g(type: Пx:A.B, value: <primitive>)
  sphere a(type: A, value: a0)
```

```
pop f with a
  choose 0.5: pop g with a | pop f with a
}
```

Typing and Reduction

```
f: \Pi x: A. B, \quad g: \Pi x: A. B, \quad a: A

\mathsf{Pop}(f,a): B[a/x] \to \mathsf{Pop}(g,a): B[a/x].
```

Explanation. Abstraction/application witness Π -intro/elim; Choice stays in B[a/x]; evaluation is CBV with stochastic branching measured by Dist(-).

11 Extended Examples

11.1 Example 1: Identity Function

```
DSL:
```

Reduction: Irreducible (value).

11.2 Example 2: Composition with Merge

DSL:

```
Oscene {
    sphere f(type: \Pi x: A.B, body: ...)
    sphere g(type: \Pi y: B.C, body: ...)
    link f g
    pop g with (pop f with a)
}

Core: Merge(f,g), Pop(g, Pop(f,a))
Reduction (assuming coalescable): If f,g merge to h, then Pop(h,a).
```

More examples can be added for stochastic, recursive cases, etc.

12 Spherepop II: Derived Geometric Semantics and Shifted Symplectic Structure

Natural-language explanation. This extension derives differential and symplectic geometry from core semantics, enabling RSVP quantization.

12.1 Differential Operator

Definition 37. $\llbracket \mathsf{Grad}(t) \rrbracket = \nabla \llbracket t \rrbracket$.

12.2 Shifted Symplectic Form

Define $\omega_t = \delta \Phi_t \wedge \delta \mathcal{S}_t$ (-1-shifted). Links computation to geometric quantization.

12.3 Derived Category Geom

Objects: typed manifolds (M, A). Morphisms: flow-preserving [t]. Monoidal: Merge. Convex: Choice.

Proposition 7 (Flow Semantics). Reduction relaxes entropy gradients: Pop collapses regions, Merge coalesces, Choice samples flows.

Conclusion. Spherepop II establishes entropic computation on derived symplectic foundations.