Problem:

Job-shop scheduling problem in a setting where \mathbf{m} machines are separated by $(\mathbf{m-1})$ bounded buffers. The objective is to schedule the tasks of \mathbf{n} available jobs such that the total makespan of the jobs is minimum.

Every job goes through every machine.

The tasks in a job are constrained to be completed in a certain order.

Every task of a job takes a fixed amount of duration.

Every machine can carry out only one task at a time.

The buffers do not maintain the FIFO order of the jobs.

The machines and jobs are as follows -

	M ₁	M_2	•••	M _m
J ₁	d ₁₁	d_{12}	•••	d _{1m}
J ₂	d ₂₁	d ₂₂	•••	d _{2m}
•••	•••	•••	•••	
J _n	d _{n1}	d _{n2}	•••	d _{nm}

And the buffers are bounded by the maximum capacities b₁, b₂, b₃, ..., b_(m-1).

Solution:

Variables -

t₁₁, t₁₂, ..., t_{nm}
 Start times of the tasks

O(nm)

2. E_{11} , E_{12} , ..., $E_{1(m-1)}$, ..., $E_{n(m-1)}$

Enqueue operation times for the tasks

O(nm)

3. D₁₂, D₁₃, ..., D_{1m}, ..., D_{nm}

De-queue operation times for the tasks

O(nm)

$$B_{11}@E_{n(m-1)},, B_{1(m-1)}@E_{n(m-1)}, B_{21}@E_{11}, ..., B_{n(m-1)}@E_{n(m-1)}\\ O(n^2m^2)$$

and

$$\begin{split} &B_{11}@D_{12},\ B_{12}@D_{12},\ ...,\ B_{1(m-1)}@D_{12},\ B_{21}@D_{12},\ ...,\ B_{n(m-1)}@D_{12},\\ &B_{11}@D_{13},\,\ B_{n(m-1)}@D_{13},\ B_{21}@D_{13},\ ...,\ B_{n(m-1)}@D_{13}, \end{split}$$

$$B_{11}@D_{nm}$$
,, $B_{1(m-1)}@D_{nm}$, $B_{21}@D_{nm}$, ..., $B_{n(m-1)}@D_{nm}$
 $O(n^2m^2)$

"Job-present-at-buffer" variables.

 $B_{pq}@E_{rs}$ can be described as "whether job p is at buffer q, at the time of enqueue operation of task s of job r.

B_{pq}@D_{rs} can be described as "whether job p is at buffer q, at the time of dequeue operation of task s of job r.

Constraints -

1.
$$(t_{11} > 0) \land (t_{12} >= t_{11} + d_{11}) \land (t_{13} >= t_{12} + d_{12}) \land ... \land (t_{horizon} >= t_{1m} + d_{1m})$$

 $\land (t_{21} > 0) \land (t_{22} >= t_{21} + d_{21}) \land (t_{23} >= t_{22} + d_{22}) \land ... \land (t_{horizon} >= t_{2m} + d_{2m})$
 $\land ...$
 $\land (t_{n1} > 0) \land (t_{n2} >= t_{n1} + d_{n1}) \land (t_{n3} >= t_{n2} + d_{n2}) \land ... \land (t_{horizon} >= t_{nm} + d_{nm})$
 Constraints to ensure the order of the tasks of job don't overlap.

O(nm)

2.
$$((t_{11} >= t_{21} + d_{21}) \lor (t_{21} >= t_{11} + d_{11})) \land ... \land ((t_{n1} >= t_{(n-1)1} + d_{(n-1)1}) \lor (t_{(n-1)1} >= t_{n1} + d_{n1}))$$

$$\land ((t_{12} >= t_{22} + d_{22}) \lor (t_{22} >= t_{12} + d_{12})) \land ... \land ((t_{n2} >= t_{(n-1)2} + d_{(n-1)2}) \lor (t_{(n-1)2} >= t_{n2} + d_{n2}))$$

$$\land ...$$

$$\land ((t_{1m} >= t_{2m} + d_{2m}) \lor (t_{2m} >= t_{1m} + d_{1m})) \land ... \land ((t_{nm} >= t_{(n-1)m} + d_{(n-1)m}) \lor (t_{(n-1)m} >= t_{nm} + d_{1m})) \land ... \land ((t_{nm} >= t_{(n-1)m} + d_{(n-1)m}) \lor (t_{(n-1)m} >= t_{nm} + d_{1m}))$$

 $d_{nm}))$

Constraints to ensure that a machine does not get shared between tasks.

O(nm)

3.
$$(E_{11} == t_{11} + d_{11}) \wedge (E_{12} == t_{12} + d_{12}) \wedge ... \wedge (E_{n(m-1)} == t_{n(m-1)} + d_{n(m-1)})$$

Equality constraints on enqueue times.
 $O(nm)$

4. $(D_{12} == t_{12}) \wedge (E_{13} == t_{13}) \wedge ... \wedge (E_{nm} == t_{nm})$

Equality constraints on dequeue times.

O(nm)

5.
$$B_{11}@E_{11} = 1$$
 if $E_{11} \le E_{11} < D_{12}$ (always true)
0 otherwise
 $B_{12}@E_{11} = 1$ if $E_{12} \le E_{11} < D_{13}$
0 otherwise

```
O(n^2m^2)
6. B_{11}@D_{12} = 1
                                                         if E_{11} \le D_{12} < D_{12} (always false)
                                                         otherwise
      B_{12}@D_{12} = 1
                                                         if E_{12} \le D_{12} < D_{13}
                                                         otherwise
      ITE constraints on the "Job-present-at-buffer" variables at dequeue times.
      O(n^2m^2)
7. \Sigma (B<sub>11</sub>@E<sub>11</sub>, B<sub>21</sub>@E<sub>11</sub>, B<sub>31</sub>@E<sub>11</sub>, ..., B<sub>n1</sub>@E<sub>11</sub>) \leq b<sub>1</sub>
      (i.e. Length of buffer 1 does not increase than its capacity at E<sub>11</sub>)
      \Sigma (B<sub>11</sub>@E<sub>21</sub>, B<sub>21</sub>@E<sub>21</sub>, B<sub>31</sub>@E<sub>21</sub>, ..., B<sub>n1</sub>@E<sub>21</sub>) \leq b<sub>1</sub>
      (i.e. Length of buffer 1 does not increase than its capacity at E<sub>11</sub>)
      \Sigma (B<sub>11</sub>@E<sub>n1</sub>, B<sub>21</sub>@E<sub>n1</sub>, B<sub>31</sub>@E<sub>n1</sub>, ..., B<sub>n1</sub>@E<sub>n1</sub>) \leq b<sub>1</sub>
      (i.e. Length of buffer 1 does not increase than its capacity at E_{n1})
      (i.e. Length of buffer m-1 does not increase than its capacity at E_{1(m-1)} to E_{n(m-1)})
      O(mn)
8. \Sigma (B<sub>11</sub>@D<sub>12</sub>, B<sub>21</sub>@D<sub>12</sub>, B<sub>31</sub>@D<sub>12</sub>, ..., B<sub>n1</sub>@D<sub>12</sub>) > 0
      (i.e. Length of buffer 1 is not 0 at D<sub>11</sub>)
      •••
      O(mn)
```

ITE constraints on the "Job-present-at-buffer" variables at enqueue times.