Нормальное распределение N(0, 36)

Объём выборки 100 (n) и количество выборок 100 (m):

	\overline{X}_n	med_n	$rac{x_{(1)}\!+\!x_{(2)}}{2}$
$\sigma_{ ext{Teop}}$	0.6000	0.7520	1.7683
$\sigma_{ m прак}$	0.7116	0.8544	1.7764

Объём выборки 10000 (n) и количество выборок 100 (m):

	\overline{X}_n	med_n	$rac{x_{(1)}\!+\!x_{(2)}}{2}$
$\sigma_{ ext{Teop}}$	0.0600	0.0752	1.2504
$\sigma_{ m npak}$	0.0645	0.0798	1.3956

Равномерное распределение U(-0.6, 0.6)

Объём выборки 100 (n) и количество выборок 100 (m):

	\overline{X}_n	med_n	$rac{x_{(1)}\!+\!x_{(2)}}{2}$
$\sigma_{ ext{reop}}$	0.0173	0.0300	0.0042
$\sigma_{ m npak}$	0.0175	0.0320	0.0039

Объём выборки 10000 (n) и количество выборок 100 (m):

	\overline{X}_n	med_n	$rac{x_{(1)}\!+\!x_{(2)}}{2}$
$\sigma_{ ext{reop}}$	0.0017	0.0030	0.000042
$\sigma_{ m npak}$	0.0016	0.0028	0.000040

Распределение Лапласа L(0, 5)

Объём выборки 100 (n) и количество выборок 100 (m):

	\overline{X}_n	med_n	$rac{x_{(1)}\!+\!x_{(2)}}{2}$
$\sigma_{ ext{reop}}$	0.8485	0.6000	5.6921
$\sigma_{ m npak}$	0.8741	0.6746	4.8588

Объём выборки 10000 (n) и количество выборок 100 (m):

	\overline{X}_n	med_n	$rac{x_{(1)}\!+\!x_{(2)}}{2}$
$\sigma_{ ext{reop}}$	0.0849	0.0600	5.6921
$\sigma_{ m max}$	0.0791	0.0528	5.5099

Вывод

Смотря на полученные данные, отметим, что теоритические значения примерно равны практическим.

Так же можно сделать вывод, что наилучшей оценкой, с точки зрения квадратичного риска, для каждого распределения являются:

- Для нормального выборочное среднее.
- Для равномерного полу сумма минимума и максимума вариационного ряда.
- Для Лапласа выборочная медиана.

Стоит отметить, что для распределения Лапласа оценка полусуммой минимума и максимума вариационного ряда является несостоятельной.