UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 16. Vectores y Rectas

Problema 1. Dados los puntos A(1,3,2), B(-1,2,-2), C(1,4,-2) y D(2,-1,-3). Detemine: (i) $\overrightarrow{AB} + \overrightarrow{AC}$; $\frac{1}{2}\overrightarrow{AB} \cdot \overrightarrow{CD}$; $\|\overrightarrow{AB} \times \overrightarrow{CD}\|$. (ii) un punto P, si es posible, tal que \overrightarrow{AP} sea ortogonal a \overrightarrow{AB} y a \overrightarrow{CD} . [En práctica (ii)]

Problema 2. Sean $P_1(x_1, y_1, z_1)$ y $P_2(x_2, y_2, z_2)$ dos puntos en \mathbb{R}^3 . Muestre que el punto medio del segmento que va desde P_1 a P_2 , corresponde al extremo final del vector $\frac{1}{2}(\vec{P_1} + \vec{P_2})$. [En práctica]

Problema 3. Demuestre que para vectores arbitrarios \vec{u} , \vec{v} , \vec{w} , en el espacio, vale la identidad

$$\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w}$$

Problema 4. Dados los vectores \vec{u} y \vec{v} . Encuentre una fórmula para la proyección de \vec{u} sobre \vec{v} . [En práctica]

Problema 5. Considere los vectores $\vec{u} = [2, \alpha, 3]$ y $\vec{v} = [1, -1, 2]$. Determine $\alpha \in \mathbb{R}$, de modo que:

(i) $\vec{u} \perp \vec{v}$; (ii) el vector \vec{u} sea paralelo al vector \vec{v} .

Si además \vec{w} es el vector $\vec{w} = [\beta, 2, 1]$. Determine $\alpha \in \mathbb{R}$, y $\beta \in \mathbb{R}$ de modo que :

(iii) $\vec{u} \perp \vec{v}$, y la proyección de \vec{u} sobre \vec{w} sea $\frac{\pi}{3}$. [En práctica]

Problema 6. Cúal o cuales son las componentes del vector $\vec{r} = [a, b, c]$, de modo que:

- (i) \vec{r} tenga norma 4 y el ángulo director entre \vec{r} e \vec{i} sea $\frac{\pi}{4}$, y entre \vec{r} y \vec{j} sea $\frac{\pi}{3}$.
- (ii) el ángulo director entre \vec{r} e \vec{i} sea $\frac{\pi}{4}$, entre \vec{r} y \vec{j} sea $\frac{\pi}{3}$, y además \vec{r} sea perpendicular a [1,2,-2].

Problema 7. Considere las rectas L_1

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

$$L_2: \qquad \frac{x+1}{3} = \frac{y-2}{2} = z+1.$$

Encuentre, si existe, el valor de α de modo que $L_1 \cap L_2 \neq \emptyset$.

Solución $\alpha = -2$. [En práctica]

Problema 8. Encuentre la recta que pasa por el punto A(2,3,1) y tiene vector director $\vec{r} = [2,-1,2]$.

Problema 9. Considere la recta L

[En práctica]

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

- (i) Dado el punto A(2,3,1) encuentre la distancia de A a L. Lo mismo para el punto B(2,-3,5).
- (ii) Encuentre la ecuación de la recta que pasa por A(2,3,1) y es perpendicular a L.
- (iii) Encuentre la ecuación de la recta que pasa por A(2,3,1) y es paralela a L.
- (iv) En los puntos (i), (ii) y (iii) anteriores, encuentre la distancia entre las dos rectas involucradas.

Problema 10. Sean $P_1(x_1, y_1, z_1)$ y $P_2(x_2, y_2, z_2)$ dos puntos en \mathbb{R}^3 . Muestre que las siguientes rectas son iguales:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + t \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix} \text{ para } t \in \mathbb{R},$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} + t \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix} \text{ para } t \in \mathbb{R},$$