Calcolo delle Probabilità - Temi Precedenti

Set 1

•	Si consideri la funzione $f(x)=ce^{-3x}+b$ se $x\in [2,+\infty)$ e $f(x)=0$ altrimenti.
	Determinare le costanti $b,c\in\mathbb{R}$ per cui f è una densità
	\square Nessuna delle altre risposte è corretta \square $b=0, c=3e^6$
	,
	$egin{array}{c} b=1,c=2 \ \hline 0,c=2,2 \end{array}$
	$egin{array}{c} b=0, c=3e^2 \ \hline \end{array}$
	$igcap b=0, c=4e^3$
	$egin{array}{c} b=1,c=e^6 \end{array}$
•	Si consideri la funzione $f(x,y)=ae^{-(8x+y)}$ se $(x,y)\in [0,+\infty)^2$ e $f(x,y)=b$ altrimenti.
	Determinare le costanti $a,b\in\mathbb{R}$ per cui f è una densità di un vettore aleatorio
	assolutamente continuo
	$egin{array}{ll} \circ & a=1/5, b=0 \ \circ & a=9, b=0 \end{array}$
	a=9, b=0 $a=8, b=0$
	a=0, b=0 $a=9, b=1$
	a=9, b=1 $a=4, b=1$
	 u = 4, v = 1 Nessuna delle altre risposte è corretta
	Siano $X\sim \Gamma(1,4)$ e $Y\sim \Gamma(1,3)$ due v.a. scorrelate. Si determinino $E[4X-2Y]$ e ${ m var}(-X-3Y)$
	□ Nessuna delle altre risposte è corretta
	\square $-1/2$ e $17/16$
	\square 1/2 e $-11/16$
	\Box -1/3 e 4/5
	\Box -1/4 e 3/4
	\Box 1/3 e 17/16
•	Supponiamo di avere due urne, U e V . L'urna U contiene 4 palline nere e 1 pallina
	bianca. L'urna V contiene 1 pallina bianca e 1 pallina nera. Scegliamo a caso una delle
	due urne, ed estraiamo poi da questa una pallina. Se la pallina estratta è nera, qual è l
	probabilità che l'urna scelta sia stata la U ?
	\square 8/13
	$\ \square\ 11/20$
	\square 7/8
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$oxed{13/20}$
	☐ Nessuna delle altre risposte è corretta
•	Date tre v.a. X_1, X_2, X_3 su uno spazio di probabilità, abbiamo che

 $E[X_1+X_2+X_3]=E[X_1]+E[X_2]+E[X_3].$ Questa affermazione è

	☐ Vera
	$oxed$ Vera solo se X_1,X_2,X_3 sono indipendenti
	☐ Falsa
•	Quali tra questi tipi di v.a. godono della proprietà di assenza di memoria?
	Poisson
	Esponenziale
	☐ Uniforme
	☐ Ipergeometrica
	☐ Geometrica
	☐ Binomiale
	☐ Gaussiana
•	Dalla densità congiunta possiamo ricavare le densità marginali. Questa affermazione è
	vera
	☐ falsa
	vera solo se le v.a. sono indipendenti
•	Dato uno spazio di probabilità e due eventi A,B su di esso, risulta che
	$p(A \diagdown B) = p(A) - p(B)$
	Questa affermazione è
	□ vera
	☐ falsa
•	Dato uno spazio di probabilità (Ω,\mathcal{A},p) e una funzione $X:\Omega\longrightarrow\mathbb{R}$, indicare quali condizioni garantiscono che X è una variabile aleatoria.
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	nessuna delle condizioni elencate
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$\ \square \ X$ assume un numero al più numerabile di valori
•	Dati un modello statistico $(\Omega, \mathcal{A}, p_{ heta})$ e un campione (X_n) , la quantità
	$\frac{1}{n}\sum_{i=1}^n (X_i-\bar{X}_i)^2$
	è uno stimatore corretto per la varianza. Questa affermazione è
	vera
	☐ falsa
	$oxedsymbol{oxed}$ vera se la media μ è nota
•	Si effettui un'estrazione senza reimmissione di 5 palline da un'urna che ne contiene 80,
	numerate da 1 a 80 . Che probabilità che escano entrambe 6 e 7 ?
	\Box 6/500
	$ \Box 5/(80*79) $

	\square nessuna delle altre risposte è corretta \square $8/801$
•	Una ditta confeziona viti in scatole da 6 pezzi. Il $3/100$ delle viti risultano irregolari. Qual è la probabilità che in una confezione vi sia almeno una vite irregolare?
•	Dato uno spazio di probabilità e tre eventi A,B,C su di esso, questi si dicono indipendenti se
	$p(A\cap B\cap C)=p(A)p(B)p(C)$
•	Questa affermazione è
	$X_1+X_2\sim \mathcal{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$
	Questa affermazione è vera se le v.a. sono indipendenti falsa vera
•	Dato uno spazio di probabilità e due eventi A,B su di esso, con $p(A)>0$ e $p(B)>0$, la formula di Bayes afferma che
	$p(B A) = \frac{p(A B)p(B)}{p(A)}$
	vero falso
•	Si consideri la funzione $f(x)=-ae^{-x}$ se $x\geq 0$, e $f(x)=0$ altrimenti. Determinare la costante $a\in\mathbb{R}$ per cui f è una densità di una v.a. assolutamente continua.
	igcup 0

• Sia (X_1,X_2,X_3,X_4) un campione di ampiezza 4 con $X_i\sim (2,q)$. Si consideri lo stimatore della media $H=4X_1+X_2+X_3+3X_4$. Determinare la costante c per cui cH è corretto

nessuna delle altre risposte è corretta
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
\Box 1/8
$oxed{\ }$ 1/4
$ullet$ Siano $X\sim B(1,1/4)$ e $Y\sim B(1,1/2)$ due v.a. scorrelate. Si determinino $E[4X-3Y]$ e
$\mathrm{var}(-X-2Y).$
$\square \ -1/2$ e $-19/16$
nessuna delle altre risposte è corretta
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\square \ -1/2$ e $19/16$

Set 2

Si consideri la funzione

$$f(x) = egin{cases} a - rac{x}{3}, x \in [0, 3a] \ 0, ext{alt.} \end{cases}$$

Determinare la costante $a\in\mathbb{R}$ per cui f è una densità di una v.a. assolutamente continua.

- Siano $X\sim \mathcal{E}(1)$ e $Y\sim \mathcal{N}(1,1)$ due v.a. indipendenti. Si determinino $E[X^2Y]$ e $\mathrm{var}\,(X-2Y)$.
- Date due v.a. X_1, X_2 con momento secondo finito, abbiamo che ${
 m var}\,(X_1+X_2)={
 m var}\,X_1+{
 m var}\,X_2.$ Questa affermazione è

vera

☐ falsa

vera se le v.a. sono indipendenti

• Sia (Ω, \mathcal{A}, p) uno spazio di probabilità e sia $(B_k)_{k \in K}$ una famiglia finita o numerabile di eventi su di esso, con $p(B_k) > 0$. Dato un evento possiamo affermare che

$$p(A) = \sum_{k \in K} p(A|B_k) p(B_k)$$

vero

falso

- Supponiamo di avere dieci urne numerate da 1 a 10. L'urna k-esima contiene k palline bianche e 10-k palline nere. Da un'urna a caso viene estratta una pallina. Qual è la probabilità che la pallina estratta sia bianca?
- ullet Due date v.a. X_1,X_2 su uno spazio di probabilità con media finita, abbiamo che

$$E[c_1X_1+c_2X_2]=c_1E[X_1]+c_2E[X_2]$$

	Questa affermazione è
	□ vera
	☐ falsa
•	Sia (X_1,X_2,X_3,X_4) un campione di ampiezza 4 con $X_i\sim (2,q)$. Si consideri lo stimatore
	della media $H=X_1+2(X_2+X_3)+3X_4$. Determinare la costante c per cui cH è
	corretto
	nessuna delle altre risposte è corretta
	\square 1/8
	$\ \square \ 1/4$
	$oxed{\ }$ 4
•	Dato uno spazio di probabilità (Ω,\mathcal{A},p) e una v.a. $X:\Omega\longrightarrow\mathbb{R}$, risulta che $\{X\in B\}\in\mathcal{A}$
	per ogni $B\subset \mathbb{R}$. Questa affermazione è
	□ vera
	☐ falsa
	vera se lo spazio è discreto
	vera se la v.a. è discreta
•	Dato uno spazio di probabilità e tre eventi A,B,C su di esso, se A è indipendente da B
	e B è indipendente da C , allora A è indipendente da C . Questa affermazione è
	□ vera
	☐ falsa

Set 3

- Se le v.a. sono indipendenti, dalle densità marginali possiamo ricavare la densità congiunta. Questa affermazione è vera o falsa?
- Date una v.a. X su uno spazio di probabilità con momento secondo finito, abbiamo che ${
 m var}\,(c_1X+c_2)=c_1\,{
 m var}\,X+c_2$. Questa affermazione è vera o falsa?
- Si effettui un'estrazione senza reimmissione di 5 palline da un'urna che ne contiene 80, numerate da 1 a 80. Qual è la probabilità che escano entrambe 3, 7?
- Una ditta confeziona uova in scatole da 6. Il 3/100 delle uova risultano rotte. Qual è la probabilità che in una confezione vi sia almeno un uovo rotto?
- Un dado equilibrato viene lanciato più volte finché non si ottiene 4. Qual è la probabilità che servano esattamente 2 lanci?
- Si consideri la funzione

$$f(x) = egin{cases} c(2+x), x \in (0,4) \ 0, ext{alt.} \end{cases}$$

Determinare la costante $c \in \mathbb{R}$ per cui f è una densità

• Date due v.a. indipendenti X_1, X_2 con media finita, abbiamo che

$$E[(c_1X_1)(x_2X_2)] = (c_1E[X_1])(c_2E[X_2])$$

Dire se questa formula sia vera o falsa.

- Supponiamo di avere due urne U, V. L'urna U contiene 4 palline nere e 1 pallina bianca. L'urna V contiene 1 pallina bianca e 1 pallina nera. Scegliendo a caso una delle due urne, ed estraendo poi da questa una pallina, qual è la probabilità che la pallina estratta sia nera?
- Dato uno spazio di probabilità discreto, una variabile aleatoria è una qualsiasi mappa del tipo $X:\Omega\longrightarrow\mathbb{R}$. Dire se questa affermazione sia vera o falsa.
- Un dado equilibrato a sei facce viene lanciato più volte fino a che non si ottiene 5. Qual è la probabilità che il 5 esca per la prima volta al secondo o al terzo lancio?
- Si consideri la funzione in più variabili

$$f(x,y) = egin{cases} ae^{-rac{x^2+y}{2}}, (x,y) \in \mathbb{R} imes \]0, +\infty[\ 0, ext{alt.} \end{cases}$$

Determinare la costante $a \in \mathbb{R}$ per cui f è una densità di un vettore aleatorio assolutamente continuo. Stabilire inoltre se le sue componenti sono indipendenti.

- Si consideri la funzione F(x) = 0 per x < 0, F(x) = x se 0 < x < 2, e F(x) = c se x > 2. Si può affermare che F è una funzione di ripartizione? Se sì, dire per quale valore $c \in \mathbb{R}$ lo è.
- Si effettui un'estrazione senza reimmissione di 6 palline da un'urna che ne contiene 80, numerate da 1 a 80. Qual è la probabilità che tra quelle estratte ci sia la terna $\{1, 2, 3\}$?

S

et 4 - ChatGPT
1. Si consideri la funzione $g(x)=ae^{-2x}+b$ se $x\in [1,+\infty)$ e $g(x)=0$ altrimenti. Determinare le costanti $a,b\in \mathbb{R}$ per cui g è una densità.
☐ Nessuna delle altre risposte è corretta
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$oxed{\ }a=2,b=1$
$oxed{\ }a=2,b=0$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \square \ a=3,b=0$
2. Si consideri la funzione $h(x,y)=ce^{-(4x+2y)}$ se $(x,y)\in [0,+\infty)^2$ e $h(x,y)=d$ altrimenti Determinare le costanti $c,d\in\mathbb{R}$ per cui h è una densità di un vettore aleatorio assolutamente continuo.
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Nessuna delle altre risposte è corretta

3. Siano $X\sim \Gamma(2,5)$ e $Y\sim \Gamma(1,6)$ due v.a. scorrelate. Si determinino $E[3X-5Y]$ e ${ m var}(-2X+4Y).$
4. Supponiamo di avere due urne, U e V . L'urna U contiene 3 palline nere e 2 palline bianche. L'urna V contiene 2 palline bianche e 1 pallina nera. Scegliamo a caso una dell due urne, ed estraiamo poi da questa una pallina. Se la pallina estratta è bianca, qual è la probabilità che l'urna scelta sia stata la V ?
 □ 2/5 □ 3/4 □ 2/3 □ 5/8 □ 1/2 □ Nessuna delle altre risposte è corretta
5. Date tre v.a. Y_1,Y_2,Y_3 su uno spazio di probabilità, abbiamo che $E[Y_1+Y_2+Y_3]=E[Y_1]+E[Y_2]+E[Y_3].$ Questa affermazione è \Box Vera
\square Vera solo se Y_1,Y_2,Y_3 sono indipendenti \square Falsa
6. Quali tra questi tipi di v.a. hanno la proprietà di assenza di memoria?
 Esponenziale Geometrica Uniforme Binomiale Gaussiana Ipergeometrica Poisson
7. Dalla densità congiunta possiamo ricavare le densità marginali. Questa affermazione è
□ Vera□ Falsa□ Vera solo se le v.a. sono indipendenti
8. Dato uno spazio di probabilità e due eventi A,B su di esso, risulta che
$p(A\setminus B)=p(A)-p(B).$ Questa affermazione è $ extstyle $
VEId

☐ Falsa
9. Dato uno spazio di probabilità (Ω,\mathcal{A},p) e una funzione $Z:\Omega\to\mathbb{R}$, indicare quali condizioni garantiscono che Z è una variabile aleatoria.
$igcup orall a,b\in\mathbb{R},\{Z\in(a,b)\}\in\mathcal{A}$ $igcup \mathcal{A}$ è la famiglia di tutti i sottoinsiemi di Ω $igcup \mathrm{Nessuna}$ delle condizioni elencate $igcup orall a,b\in\mathbb{R},\{Z\in[a,b]\}\in\mathcal{A}$ $igcup Z$ assume un numero al più numerabile di valori
10. Dati un modello statistico $(\Omega,\mathcal{A},p_{\theta})$ e un campione (Y_n) , la quantità $\frac{1}{n}\sum_{i=1}^n(Y_i-\bar{Y}_i)^2$ è uno stimatore corretto per la varianza. Questa affermazione è
□ Vera□ Falsa□ Vera se la media µ è nota
11. Si effettui un'estrazione senza reimmissione di 4 palline da un'urna che ne contiene 60, numerate da 1 a 60. Qual è la probabilità che escano sia 10 che 20?
12. Una ditta confeziona bulloni in scatole da 8 pezzi. Il 2/100 dei bulloni risultano difettosi. Qual è la probabilità che in una confezione vi sia almeno un bullone difettoso?
13. Dato uno spazio di probabilità e tre eventi A,B,C su di esso, questi si dicono indipendenti se $p(A\cap B\cap C)=p(A)p(B)p(C)$. Questa affermazione è
$igcup$ Vera $p(A\cap B)=p(A)p(B)$ $igcup$ Falsa
14. Date due v.a. X_1, X_2 su uno spazio di probabilità con $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ e $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ risulta $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. Questa affermazione è
Vera se le v.a. sono indipendentiFalsaVera

15. Dato uno spazio di probabilità e due eventi A,B su di esso, con $p(A)>0$ e $p(B)>0$, la formula di Bayes afferma che $p(B A)=\frac{p(A B)p(B)}{p(A)}$.
□ Vero□ Falso
16. Si consideri la funzione $g(x)=-be^{-2x}$ se $x\geq 0$, e $g(x)=0$ altrimenti. Determinare la costante $b\in\mathbb{R}$ per cui g è una densità di una v.a. assolutamente continua.
$egin{array}{c} e \ \hline -2 \ \hline \end{array}$
 2 Nessuna delle altre risposte è corretta 0
17. Sia (Y_1,Y_2,Y_3) una v.a. normale multivariata con media nulla e matrice di covarianza identica I_3 . Calcolare $E[Y_1Y_2Y_3]$.
 0 1 -1 Nessuna delle altre risposte è corretta
18. Si consideri un processo di Poisson di intensità λ . Se osserviamo l'intervallo $[0,t]$, la probabilità di osservare esattamente k eventi è
$ \begin{array}{c} \frac{(\lambda t)^k e^{-\lambda t}}{k!} \\ \frac{(\lambda t)^{k-1} e^{-\lambda t}}{k!} \\ \frac{(\lambda t)^k e^{\lambda t}}{k!} \\ \frac{e^{-\lambda t}}{k!} \\ \end{array} $ Nessuna delle altre risposte è corretta
19. Quale tra le seguenti affermazioni è vera?
 La funzione di ripartizione è crescente La funzione di ripartizione è non decrescente La funzione di ripartizione è continua La funzione di ripartizione è limitata superiormente da 1 La funzione di ripartizione è limitata inferiormente da 0
20. Dati uno spazio di probabilità (Ω, \mathcal{A}, p) e un sottoinsieme $B \in \mathcal{A}$, si dice che due eventi $A, C \in \mathcal{A}$ sono condizionatamente indipendenti dato B se $p(A \cap C B) = p(A B)p(C B)$. Questa affermazione è
☐ Vera ☐ Falsa

Set 5 - Esame Prova

- 1. Si effettui un'estrazione senza reimmissione di 6 palline da un'urna che ne contiene 85, numerate da 1 and 85. Che probabilità c'è che esca la terna 4, 5 e 8?
- a. 21/85
- b. nessuna delle altre risposte è corretta
- c. 3!/85!
- d. 8/801
- e. 2/9877
- f. 1/8216
- 2. Dati un modello statistico e un campione $(X_k)_k$, la quantità $\frac{1}{k}\sum_k (X_k \mu)^2$ è uno stimatore corretto per la varianza. Questa affermazione è (scegli una o più delle alternative)
- Vera
- Falsa
- Vera se la media μ è nota
- 3. Dalle densità marginali possiamo ricavare la densità congiunta. Questa affermazione è
- Vera se le v.a. sono indipendenti
- Falsa
- Vera
- 4. Dato uno spazio di probabilità (Ω, \mathcal{A}, p) una variabile aleatoria è una qualsiasi mappa $X:\Omega\longrightarrow\mathbb{R}.$ Questa affermazione è
- Vera
- Falsa
- Vera se lo spazio è discreto
- 5. Dato uno spazio di probabilità (Ω, \mathcal{A}, p) e tre eventi A, B, C su di esso, se $A \cap B \cap C = \emptyset$ allora $p(A \cup B \cup C) = p(A) + p(B) + p(C)$. Questa affermazione è
- Vera
- Falsa
- 6. Date due v.a. X_1,X_2 su uno spazio di probabilità (Ω,\mathcal{A},p) con media finita, abbiamo che $E[(c_1X_1)(c_2X_2)]=(c_1E[X_1])(c_2E[X_2])$ per ogni $c_1,c_2\in\mathbb{R}$. Questa affermazione è
- Vera se le v.a. sono indipendenti
- Falsa
- Vera
- 7. Si consideri la funzione f(x)=c(2+x) se $x\in (0,4)$ e f(x)=0 altrove. Dopo aver determinato la costante $c\in \mathbb{R}$ per cui f è una densità di una v.a. X, trovare la probabilità che X sia maggiore di 2
- a. 5/8
- b. 1/16
- c. 3/32
- d. nessuna delle altre risposte è corretta
- e. 1/2
- f. 11/32

- 8. Dato uno spazio di probabilità (Ω, \mathcal{A}, p) e tre eventi A, B, C su di esso, se A è indipendente da B e B è indipendente da C, allora A è indipendente da C. Questa affermazione è
- Vera
- Falsa
- 9. Sia X una v.a. binomiale di parametri (2,1/2) e sia Y una v.a. gaussiana di parametri (1,1). Si suppongano indipendenti. Si determinino $E[X^2Y]$ e $\mathrm{var}\,(2X-2Y)$.
- a. 2 e 6
- b. 1/12 e 13/36
- c. 3/2 e 6
- d. 1 e 6
- e. 1 e −1
- f. nessuna delle altre risposte è corretta
- 10. Esempi di indici di posizione sono
 - mediana
 - moda
 - · scarto quadratico medio
 - media
- 11. Un'azienda produce palloni da pallavolo. E' noto che il diametro dei palloni segue una legge normale con deviazione standard $\sigma=1~{\rm cm}$. Da un campione di n=16 palloni si ottiene una media campionaria $\bar{x}=20~{\rm cm}$. Si fornisca un intervallo di confidenza al livello bel 95% per la media calcolata dal campione.
- a. nessuna delle altre risposte è corretta
- b. (19.0295, 20.0301)
- c. (15, 25)
- d. (19.099, 20.001)
- e. (19.9, 20.1)
- f. (19.51, 20.49)
- 12. Si consideri la funzione $f(x,y)=\frac{1}{\sqrt{8\pi}}e^{-\frac{x^2+y}{2}}$ su $\mathbb{R}\times(0,+\infty)$ e f(x,y)=0 altrove. Dopo aver verificato che è una densità di un vettore assolutamente continuo, calcolare la densità della prima componente.
 - ullet a. la densità richiesta è la gamma di parametri (1/2,2)
- la funzione proposta non è una densità
- la densità richiesta è la gaussiana di media 1 e varianza 1
- la densità richiesta è l'esponenziale di parametro 1/2
- la densità richiesta è la gaussiana standard