ELECTRONIC DEVICES AND CIRCUIT THEORY

TENTH EDITION

BOYLESTAD

Chapter 10: Operational Amplifiers

© Modified by Yuttapong Jiraraksopakun ENE, KMUTT 2009

Basic Op-Amp

Operational amplifier or op-amp, is a very high gain differential amplifier with a high input impedance (typically a few meg-Ohms) and low output impedance (less than 100Ω).

Note the op-amp has two inputs and one output.

Op-Amp Gain

Op-Amps have a very high gain. They can be connected open-loop or closed-loop.

- Open-loop refers to a configuration where there is no feedback from output back to the input. In the open-loop configuration the gain can exceed 10,000.
- Closed-loop configuration reduces the gain. In order to control the gain of an op-amp it must have feedback. This feedback is a negative feedback. A negative feedback reduces the gain and improves many characteristics of the op-amp.

Inverting Op-Amp

- The signal input is applied to the inverting (-) input
- The non-inverting input (+) is grounded
- The resistor R_f is the feedback resistor. It is connected from the output to the negative (inverting) input. This is *negative feedback*.

Inverting Op-Amp Gain

Gain can be determined from external resistors: R_f and R_1

$$\mathbf{A_{v}} = \frac{\mathbf{V_{o}}}{\mathbf{V_{i}}} = \frac{\mathbf{R_{f}}}{\mathbf{R_{1}}}$$

Unity gain—voltage gain is 1

$$R_f = R_1$$

$$A_v = \frac{-R_f}{R_1} = -1$$

The negative sign denotes a 180° phase shift between input and output.

Constant Gain—R_f is a multiple of R₁

Virtual Ground

An understanding of the concept of virtual ground provides a better understanding of how an opamp operates.

The *non-inverting* input pin is at ground. *The inverting* input pin is also at 0 V for an AC signal.

The op-amp has such high input impedance that even with a high gain there is no current from inverting input pin, therefore there is no voltage from inverting pin to ground—all of the current is through $R_{\rm f}$.

Practical Op-Amp Circuits

Inverting amplifier
Noninverting amplifier
Unity follower
Summing amplifier
Integrator
Differentiator

Inverting/Noninverting Op-Amps

Inverting Amplifier

$$V_0 = \frac{-R_f}{R_1} V_1$$

Noninverting Amplifier

$$V_0 = (1 + \frac{R_f}{R_1})V_1$$

Unity Follower

$$V_0 = V_1$$

Summing Amplifier

Because the op-amp has a high input impedance, the multiple inputs are treated as separate inputs.

$$V_0 = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

Integrator

The output is the integral of the input. Integration is the operation of summing the area under a waveform or curve over a period of time. This circuit is useful in low-pass filter circuits and sensor conditioning circuits.

$$\mathbf{v_0}(t) = -\frac{1}{\mathbf{RC}} \int \mathbf{v_1}(t) dt$$

Differentiator

The differentiator takes the derivative of the input. This circuit is useful in high-pass filter circuits.

$$v_o(t) = -RC \frac{dv_1(t)}{dt}$$

Frequency Parameters

An op-amp is a wide-bandwidth amplifier. The following affect the bandwidth of the op-amp:

- Gain
- Slew rate

Gain and Bandwidth

The op-amp's high frequency response is limited by internal circuitry. The plot shown is for an open loop gain (A_{OL} or A_{VD}). This means that the op-amp is operating at the highest possible gain with no feedback resistor.

In the open loop, the op-amp has a narrow bandwidth. The bandwidth widens in closedloop operation, but then the gain is lower.

Slew Rate (SR)

Slew rate (SR) is the maximum rate at which an op-amp can change output without distortion.

$$SR = \frac{\Delta V_o}{\Delta t} \quad (in V/\mu s)$$

The SR rating is given in the specification sheets as V/µs rating.

Maximum Signal Frequency

The slew rate determines the highest frequency of the op-amp without distortion.

$$f \leq \frac{SR}{2\pi V_p}$$

where V_P is the peak voltage

General Op-Amp Specifications

Other ratings for op-amp found on specification sheets are:

- Absolute Ratings
- Electrical Characteristics
- Performance

Absolute Ratings

These are common maximum ratings for the op-amp.

Absolu	te Maximum
Ratings	3
Supply voltage	6 22 V
Internal power dissipation	500 mW
Differential input voltage	6 30 V
Input voltage	6 15 V

Electrical Characteristics

Characteristic	MIN	TYP	MAX	Unit
$V_{\rm IO}$ Input offset voltage		1	6	mV
I _{IO} Input offset current		20	200	nA
I _{IB} Input bias current		80	500	nA
V _{ICR} Common-mode input voltage range	±12	±13		V
V _{OM} Maximum peak output voltage swing	±12	±14		V
A _{VD} Large-signal differential voltage amplification	20	200		V/mV
r_i Input resistance	0.3	2		$M\Omega$
r _o Output resistance		2 75		Ω
C _i Input capacitance		1.4		pF
CMRR Common-mode rejection ratio	70	90		dB
I _{CC} Supply current		1.7	2.8	mA
P_D Total power dissipation		50	85	mW

Note: These ratings are for specific circuit conditions, and they often include minimum, maximum and typical values.

Op-Amp Performance

The specification sheets will also include graphs that indicate the performance of the op-amp over a wide range of conditions.

Op-Amp Applications

Constant-gain multiplier
Voltage summing
Voltage buffer
Controlled sources
Active filters

Constant-Gain Amplifier

Inverting Version

more...

Constant-Gain Amplifier

Noninverting Version

Multiple-Stage Gains

The total gain (3-stages) is given by:

$$\mathbf{A} = \mathbf{A}_1 \mathbf{A}_2 \mathbf{A}_3$$

or

$$\mathbf{A} = \left(1 + \frac{\mathbf{R_f}}{\mathbf{R_1}}\right) \left(-\frac{\mathbf{R_f}}{\mathbf{R2}}\right) \left(-\frac{\mathbf{R_f}}{\mathbf{R3}}\right)$$

Voltage Summing

The output is the sum of individual signals times the gain:

$$V_o = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

[Formula 14.3]

Voltage Subtraction

$$V_o = -\left(\frac{R_f}{R_2}V_2 - \frac{R_f}{R_3}\frac{R_f}{R_1}V_1\right)$$

Voltage Buffer

Any amplifier with no gain or loss is called a unity gain amplifier.

The advantages of using a unity gain amplifier:

- Very high input impedance
- Very low output impedance

Realistically these circuits are designed using equal resistors $(R_1 = R_f)$ to avoid problems with offset voltages.

Controlled Sources

Voltage-controlled voltage source Voltage-controlled current source Current-controlled voltage source Current-controlled current source

Voltage-Controlled Voltage Source

The output voltage is the gain times the input voltage. What makes an op-amp different from other amplifiers is its impedance characteristics and gain calculations that depend solely on external resistors.

Noninverting Amplifier Version

more...

Voltage-Controlled Voltage Source

The output voltage is the gain times the input voltage. What makes an op-amp different from other amplifiers is its impedance characteristics and gain calculations that depend solely on external resistors.

Inverting Amplifier Version

Voltage-Controlled Current Source

The output current is:

$$I_o = \frac{V_1}{R_1} = kV_1$$

Current-Controlled Voltage Source

This is simply another way of applying the op-amp operation. Whether the input is a current determined by V_{in}/R_1 or as I_1 :

$$V_{out} = \frac{-R_f}{R_1} V_{in}$$

or

$$V_{out} = -I_1 R_L$$

Current-Controlled Current Source

$$I_o = I_1 + I_2 = I_1 + \frac{I_1 R_1}{R_2} = \left(1 + \frac{R_1}{R_2}\right) I_1 = kI_1$$

Instrumentation Circuits

Some examples of instrumentation circuits using opamps:

- Display driver
- Instrumentation amplifier

Display Driver

Active Filters

Adding capacitors to op-amp circuits provides external control of the cutoff frequencies. The op-amp active filter provides controllable cutoff frequencies and controllable gain.

- Low-pass filter
- High-pass filter
- Bandpass filter

Low-Pass Filter—First-Order

The upper cutoff frequency and voltage gain are given by:

$$f_{OH} = \frac{1}{2\pi R_1 C_1}$$

$$\mathbf{A_{V}} = 1 + \frac{\mathbf{R_{f}}}{\mathbf{R_{1}}}$$

Low-Pass Filter—Second-Order

The roll-off can be made steeper by adding more RC networks.

High-Pass Filter

The cutoff frequency is determined by:

$$f_{OL} = \frac{1}{2\pi R_1 C_1}$$

Bandpass Filter

There are two cutoff frequencies: upper and lower. They can be calculated using the same low-pass cutoff and high-pass cutoff frequency formulas in the appropriate sections.

Homework 5

- Practical Op-Amp Circuits
 - **-** 10.5 (2, 5, 8, 14)
- Constant-Gain Multiplier
 - **11.1 (2, 3)**
- Voltage Summing
 - **11.2 (7)**
- Controlled Sources
 - **11.4 (11)**
- Active Filters
 - **11.6 (17)**