Controlador de conducción autónoma

Trabajo final de materia de Visión Artificial Avanzada

Pablo Parada Souto

Daniel Castro Gómez

Índice

- Introdución
- Software necesario
- Desarrollo
 - Main
 - Servicio analizar datos
 - Correlación de las deteccións
 - Analizar mascaras
 - Servicio condución autónoma
- Resultados
- Conclusión

Introducción

Objetivo

Creación de un sistema de conducción autónoma implementado en un robot móvil (Wavesahere JetRacer Ros IA).

Componentes físicos del robot

- NVIDIA Jetson Nano
- Cámara Monocular
- Sensor LIDAR (RPLIDAR)

Softwares necesarios

Sistema Operativo Robótico (ROS)

• Descripción:

Conjunto de herramientas y bibliotecas de software de código abierto para desarrollo de aplicaciones robóticas.

Características:

Arquitectura distribuida, gestión de paquetes, herramientas de desarrollo, soporte de simulación, compatibilidad con múltiples plataformas.

Softwares necesarios

Detector YOLO

Descripción

Modelo de una etapa diseñado para la detección de objetos.

Ventajas

- Rápido.
- Bueno para tiempo real.
- Versión: YOLO 8

Novedades

- Capacidad de segmentar.
- Cálculo de trayectoria.
- Cálculo de Poses.

Softwares necesarios

Detector YOLO para segmentación

Descripción

Modelo con la capacidad de hacer segmentación de instancias.

Novedad

Se le añade una cabeza segmentadora que a partir de las cajas de detección segmenta.

Necesitamos entrenamiento

Esquema de desarrollo

Analizar Datos

- Detecciones de objetos
- Segmentación del carril
- Analizar detecciones
- Analizar las mascaras
- Publicación mascaras
- Publicación detecciones

Main

- Obtención de la información de los sensores
- Distribución de la información entre los distintos servicios

Conducción autónoma

- Analizar los datos recibidos
- Cálculo de velocidades
- Publicación de las velocidades

Main

Obtención de la información de los sensores

- Suscriptor al topic LaserScan
- Suscriptor al topic de la cámara monocular

Distribución de la información entre los distintos servicios

- Envió y recepción de datos del servicio Analizar Datos
- Envió de datos al servicio Conducción

Servicio Analizar Datos

Objetivo:

Analizar los datos de los sensores para obtener información necesaria para próximos cálculos.

Pasos:

- Recepción de los datos y conversión a datos tratables.
- 2. Detección de objetos y correlación con las medidas del láser.
- 3. Segmentación de las líneas del carril.
- 4. Analizar las máscaras.
- 5. Publicación de las imágenes de detección y la de segmentación.

Correlación de las detecciones

Objetivo:

Relacionar la posición de las detecciones con una serie de medidas del sensor láser.

Pasos:

- 1. Calculamos la posición inicial y final de la caja delimitadora.
- 2. Calculamos las medidas que corresponde en el laser.
- 3. Calculamos la media de las medias láser.
- 4. Calculamos el ángulo correspondiente.

Analizar mascaras

Objetivo:

Buscar varios puntos de la línea de los carriles.

 Obtenemos la máscara

2. Calculamos los contornos

Analizar mascaras

3. Dibujamos 2 líneas imaginarias, a la altura 300 y 400 de la imagen.

4. Calculamos los puntos de intersección con el contorno.

Servicio Conducción autónoma

Objetivo:

Calcular la velocidad lineal y angular necesaria.

Pasos:

- Analizar los datos recibidos.
- 2. Comprobación si hay elementos delante.
- 3. Control para mantenernos dentro del carril.

Control para mantenernos dentro del carril

1. Calculamos los centros entre los puntos y el centro de la imagen

2. Calculamos los ángulos

$$\alpha = \arctan(\frac{CentroImagen - Centro}{AltoImagen - AlturaLineal})$$

Control para mantenernos dentro del carril

3. Calculamos la velocidad angular.

$$Va_i = K_p * \alpha$$

4. Calculamos la media de ambas velocidades.

$$Va = \frac{\sum Va_i}{2}$$

Resultados de entrenamiento

Dataset: 182 imágenes 🛘 87% entrenamiento 9% validación 4% test

Épocas: 170

16

Problemas de segmentación

2 posibles casos:

- No segmenta el carril
- Segmenta más elementos

Elección de los puntos de los carriles

No se encuentran los puntos correctos.

18

Resultados finales

Video

Máscaras

<u>Imágen</u>

Detecciones

Conclusiones

1. Objetivo y Resultado

- Objetivo logrado con éxito
- Errores menores no solucionados debido que requieren técnicas avanzadas
- Buena elección de los modelos, debido a buena eficiencia y facilidad de implementación

2. Posibles Mejoras

- Mejorar sensores para mayor precisión
- Optimización de algoritmos
- Implementar nuevas tecnologías como algoritmos de aprendizaje automático para la conducción