Санкт-Петербургский государственный университет
Факультет прикладной математики - процессов управления

Работа по эмпирическому анализу алгоритма построения дерева Гомори-Ху из взвешенного графа

Выполнила:

Кильдякова Ю. А.

группа 18.Б13-пу

Содержание:

1.	Краткое описание алгоритма	3
	Математический анализ алгоритма	
3.	Входные данные	3
4.	Генерация входных данных	4
5.	Реализация алгоритма	4
6.	Вычислительный эксперимент	4
	Характеристики использованной вычислительной среды и	
	оборудования	5
	Источники.	

1. Краткое описание алгоритма

Задачи разбиения графа — это семейство задач комбинаторной оптимизации, в которых граф должен быть разбит на две или более частей с дополнительными ограничениями.

s-t-разрезом графа называется разбиение вершин графа на два непересекающихся множества S и T, такие что $s \in S$, $t \in T$

Алгоритм, опубликованный Гомори и Xy в 1961 году, применяется для нахождения минимальной пропускной способности s-t-разрезов для всех пар вершин s, t в неориентированном графе G с пропускными способностями ребер u: $E(G) \to R$ +. А дерево Гомори-Xy - взвешенный остовной граф, веса ребер которого содержат информацию о минимальных пропускных способностях s-t-разрезов для всех пар вершин s, t графа.

С помощью этой структуры данных можно решать задачу о наименьшем k-разрезе, которая имеет приложения при разработке сверхбольших интегральных схем, интеллектуальном анализе данных и информационном обмене при параллельных вычислениях.

Сам алгоритм можно найти в источнике [1] стр. 221.

2. Математический анализ алгоритма

n - количество вершин в графе.

т - количество ребер.

Время работы алгоритма доминируется (n-1)-кратным вычислением минимального s-t-разреза (равного максимальному s-t-потоку), которое можно выполнить с помощью алгоритма Диница за время $O(n^2m)$. Все остальные действия можно выполнять за время $O(n^3)$.

Таким образом мы получаем оценку алгоритма $O(n^3m)$.

3. Входные данные

Количество вершин п: возьмем диапазон [20; 200] с шагом 20.

Количество ребер m возьмем равное n. Таким образом на таких входных данных сложность должна быть порядка $O(n^4)$.

Пропускные способности ребер (веса): целые числа в промежутке (0; 9].

Единица измерения трудоемкости: время выполнения алгоритма в секундах, измеренное с помощью библиотеки time для языка python.

4. Генерация входных данных

На вход подается количество вершин п.

Создается матрица смежности графа, вершины, соединенные ребрами, и веса выбираются случайно.

Матрица смежности преобразуется к классу Graph библиотеки NetworkX, который используется в алгоритме построения дерева.

5. Реализация алгоритма

Реализация алгоритма взята из библиотеки NetworkX (источник [2]). Для поиска минимального разреза используется алгоритм dinitz, также реализованный в этой библиотеке.

Код представлен в репозитории на github:

https://github.com/JuliaKil/empirical-analysis

6. Вычислительный эксперимент

Алгоритм выполняется repeats=10 раз для каждого значения n из диапазона входных данных. На каждом повторении генерируется новый граф с количеством вершин и ребер n. Вычисляется среднее время работы для каждого значения n.

Результаты эксперимента представлены и описаны вместе с программным кодом в файле gomory_hu.ipynb.

7. Характеристики использованной вычислительной среды и оборудования.

Процессор: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx 2.10 GHz

Тип системы: 64-разрядная

Вычислительная среда: Jupyter Notebook

8. Источники

- 1. Корте Б., Фиген Й. Комбинаторная оптимизация. Теория и алгоритмы. стр. 218-224
- 2. Software for Complex Networks NetworkX 2.5 documentation https://networkx.org/documentation/stable/index.html
- 3. Gomory-Hu Tree https://www.geeksforgeeks.org/gomory-hu-tree-introduction/
- 4. Левитин А. В. Алгоритмы: введение в разработку и анализ алгоритмов. стр. 127