

SSPS6001: Quantitative Methods in the Social Sciences

Lecture 7:

Normal Distribution

Lecturer: Dr. Gina Anghelescu

Department of Political Economy

School of Social and Political Sciences, FASS

University of Sydney

The following slides are based on G. Argyrous 2011 "Statistics for Research" textbook

Review

- In the previous lectures we discussed methods for describing raw data; we have raw data from research, and we agreggate that data down into graphs, tables, and/or numerical measures depending on our purpose
- This process presumes we have the raw data in front of us (such as in an SPSS data file)
- Sometimes, however, we do not have such detailed data from which we can investigate the characteristics of a given distribution.
- We may only have the final calculations, such as the mean and standard deviation, generated from these data
- In such a situation we are sometimes able to 'work backwards' from these descriptions in order to determine the detailed frequency breakdown of the distribution, if that is what we require

Outline

- We will see that given the following bits of information about a distribution:
 - the mean
 - the standard deviation

and provided

we can assume that the shape of the distribution is normal

we can infer from these statistics detailed information about the frequency distribution in which we are interested.

Example

- I am interested in whether the students' grades have improved since 1990
- To answer this broad question I decide I need to generate the following details about the frequency distribution of scores in 1990 and in 2005:
 - What percentage of students received a 'decent' grade, defined as between 60-65?
 - What percentage of students did very well, defined as a grade in excess of 65?
 - What percentage of students failed (i.e. less than 50)?
 - What range of scores did the middle 50% of students receive (i.e. what is the *IQR*)?

Summary data

- I have original data for the 2005 cohort of first year students.
 These are the individual grades for each student
- With these raw data I can use the techniques we have learnt in previous lectures to describe the distribution in various ways
- Given my specific research questions, I generate the following statistics:

Exam results for first year students, 2009

Students failing	14%
Students between 60-65	23%
Students higher than 65	34%
IQR	12 marks

Summary data cont.

- Unfortunately, I do not have the raw data for first year students in 1990
- The only information I have are the results of someone else's analysis, and the only descriptive statistics they have generated are that:
 - the mean grade for 1990 was 60
 - the standard deviation of grades in 1990 was 10
- It may seem that I can't compare the 2 distributions because I do not have the individual exam scores for 1990 that will allow me to calculate the percentage that failed, etc.
- We shall see, however, that knowledge of the mean and the standard deviation allows us to 'tease out' other aspects of a distribution that are not directly provided to us.

The assumption of approximate normality

- To be able to make deductions based on only 2 bits of information about a distribution (the mean and the standard deviation) I need to make an assumption.
- I need to assume that the shape of the distribution is approximately normal
- In other words I need to assume that if I graphed the exam scores for the 1990 students, it would look something like:

The normal curve

- Being able to assume normality is very useful because the properties of the normal curve are very well known
- In particular the normal curve is:
 - smooth,
 - unimodal
 - perfectly symmetrical.
 - it has 68.3% of the area under the curve within one standard deviation of the mean.

Determining the frequency of cases around the mean

- We can already make some conclusions about the 1990 distribution of marks, based on this assumption of normality
- We can conclude that approximately 68.3% of the 1990 students had grades somewhere between:

•
$$60 - 10 = 50$$

and

•
$$60 + 10 = 70$$

Frequency of cases between the mean and a point on the scale

- Since the curve is perfectly symmetrical we can take the logic further and deduce that:
 - 34.15% of students (half of 68.3%) have grades within one standard deviation above the mean (i.e. range from 60 to 70)
 - 34.15% of students (half of 68.3%) have grades within one standard deviation below the mean (i.e. range from 50 to 60)

Determining the frequency of cases beyond points on the scale

- Since the whole area under the curve is 100%, we can take the logic still further and deduce that:
 - 15.85% of students have grades above one standard deviation from the mean (i.e. above 70)
 - 15.85% of students have grades below one standard deviation from the mean (i.e. below 50)

The normal curve: extending the definition

- The properties of the normal curve are actually more well-defined than this
 - Between ± 1 standard deviations from the mean of a normal distribution lies 68.3 per cent of the area under the curve
 - Between ± 2 standard deviations from the mean of a normal distribution lies 95.4 per cent of the area under the curve
 - Between ±3 standard deviations from the mean of a normal distribution lies 99.7 per cent of the area under the curve

The normal table: Simple version

 We can summarize this information in a table that allows us to look up the relevant areas of the curve

- For example, if I wanted to know the percentage of cases that had a grade more than 2 standard deviations above the mean (exam grades of more than 80) I refer to the last column and the second row for +2
- This indicates that 0.023 (2.3%) of students had grades of more than 80

The standard normal curve

- Statisticians have elaborated the definition of the normal curve and calculated the relative frequency for any range of scores that are normally distributed
- These relative frequencies, expressed as proportions, are presented in a table that is found in every statistics text
- This table is usually called The Areas Under the Standard Normal Curve

z.-scores

- When we use the table for the areas under the standard normal curve, we don't work with original scores such as grades, but rather z-scores (number of standard deviations from the mean)
- For example, with exam grades a score of 75 is 15 marks above the mean.
- The standard deviation is 10. Therefore 15 marks represents 1.5 standard deviations above the mean, which we abbreviate to z = +1.5
- Similarly, an exam grade of 55 is -5 marks below the mean, which is -0.5 z-scores

Calculating z-scores

- We can convert any score measured in original units into a z-score by using the following formulas, where:
 - X_i is the actual value measured in original units
 - μ is the mean of the population
 - σ is the standard deviation of the population
 - X is the mean of the sample
 - s is the standard deviation of the sample

$$z = \frac{X_i - \overline{X}}{s}$$
 (sample

$$Z = \frac{X_i - \mu}{\sigma}$$
 (populatic

The frequency between the mean and a point on the scale

- What percentage of 1990 students received a 'decent' grade, defined as between 60-65?
- The question requires us to find the frequency of cases between the mean and another score on the scale
- To answer this question we firstly convert the 65 into a z-score:

$$z = \frac{X_i - \overline{X}}{s} = \frac{65 - 60}{10} = 0.5$$

Using the normal table

- We then refer to the table and read off the relative frequency (i.e. the proportion) associated with that z-score
- In other words, 0.383 (38%) of all cases will have a grade of 5 marks *above or below* the mean

Standard deviations from the mean (<i>z</i> -scores)	Area under curve between both points	Area under curve beyond both points (two tails)	Area under curve beyond one point (one tail)
±0.1	0.080	0.920	0. 4600
± 0.2	0.159	0.841	0.4205
± 0.3	0.236	0.764	0.3820
± 0.4	0.311	0.689	0.3445
±0.5	0.383	0.617	0.3085
±0.6	0.451	0.549	0.2745
± 0.7	0.516	0.484	0.2420
± 0.8	0.576	0.424	0.2120
± 0.9	0.632	0.368	0.1840
± 1	0.683	0.317	0.1585
•••	•••		
±3	0.997	0.003	0.0015

- Since we are interested in only those students that are 5 marks above the mean, we divide 0.383 in half
- In other words, 19.15% of students received such grades

$$\frac{0.383}{2} = 0.1915$$

$$\frac{0.383}{2} = 0.1915$$

Using z-scores to determine the frequency beyond a point

- What percentage of students did very well, defined as a grade in excess of 65?
- This question requires us to determine the frequency beyond a point on the distribution
- We therefore refer to the last column in the Table for the areas under the standard normal curve (next slide)
- From the previous example we know the z-score associated with a grade of 65 is 0.5
- This indicates that 0.3085 (30.85%) of students scored over
 65

$$z = \frac{X_i - \overline{X}}{s} = \frac{65 - 60}{10} = 0.5$$

Using the normal table

Standard deviations from the mean (z-scores)	Area under curve between both points	Area under curve beyond both points (two tails)	Area under curve beyond one point (one tail)
± 0.1	0.080	0.920	0. 4600
± 0.2	0.159	0.841	0.4205
± 0.3	0.236	0.764	0.3820
± 0.4	0.311	0.689	0.3445
± 0.5	0.383	0.617	0.3085
± 0.6	0.451	0.549	0.2745
± 0.7	0.516	0.484	0.2420
± 0.8	0.576	0.424	0.2120
± 0.9	0.632	0.368	0.1840
±1	0.683	0.317	0.1585
•••	•••	•••	
± 3	0.997	0.003	0.0015

Using z-scores to determine the frequency beyond a point

- What percentage of students failed (i.e. received a grade of less than 50)?
- We firstly determine the *z*-score for 50:

$$z = \frac{X_i - \overline{X}}{s} = \frac{50 - 60}{10} = -1$$

- The question requires us to determine the area beyond a point on the distribution
- We therefore refer to the last column for the *Table for the area* under the standard normal curve (next slide)
- This shows that there is 0.1586 of the curve beyond a z-score of 1, which indicates that nearly 16% of students failed

Using the normal table

Standard deviations from the mean (z-scores)	Area under curve between both points	Area under curve beyond both points (two tails)	Area under curve beyond one point (one tail)
± 0.1	0.080	0.920	0. 4600
± 0.2	0.159	0.841	0.4205
± 0.3	0.236	0.764	0.3820
± 0.4	0.311	0.689	0.3445
± 0.5	0.383	0.617	0.3085
± 0.6	0.451	0.549	0.2745
± 0.7	0.516	0.484	0.2420
± 0.8	0.576	0.424	0.2120
± 0.9	0.632	0.368	0.1840
±1	0.683	0.317	0.1585
± 3	0.997	0.003	0.0015

The points on a scale associated with a particular frequency

- In the previous examples, we had a particular range of exam grades and we wanted to work out the frequency of students in that grade range
- Sometimes the problem is slightly different; we might have a particular section of the frequency distribution in mind, and want to determine what the range of grades for that section is
- For example, we might be interested in the grades that define the top 10% of students
- Similarly, we might be interested in the range of grades that defines the middle 50% of students (i.e. the *IQR*)
- Since we already know the relative frequency of cases we are interested in (the middle 50%) we look down the column for the Area under curve between both points and find the cell that has a probability of 0.5 (or the closest to it)

Using the normal table

Standard deviations from the mean (z-scores)	Area under curve between both points	Area under curve beyond both points (two tails)	Area under curve beyond one point (one tail)
± 0.1	0 <mark>.</mark> 080	0.920	0. 4600
± 0.2	0.159	0.841	0.4205
± 0.3	0.236	0.764	0.3820
±0.4 ←	0.311	0.689	0.3445
± 0.5	0.383	0.617	0.3085
± 0.6	0.451	0.549	0.2745
± 0.7	0.516	0.484	0.2420
±0.8	0.576	0.424	0.2120
± 0.9	0.632	0.368	0.1840
±1	0.683	0.317	0.1585
•••			
±3	0.997	0.003	0.0015

- The closest value to 0.5 is 0.516, which is associated with z-scores of + 0.7 and -0.7
- Since a z-score is the number of standard deviations a particular value is above/below the mean, a z-score of 0.7 is 0.7 standard deviations away from the mean
- The standard deviation for these exam scores is 10, so that a z-score of 0.7 is 7 marks away from the mean of 60 i.e. 0.7 = 10 = 7
- Thus z-scores of -0.7 and +0.7 are associated with grades of:
 - -60 7 = 53
 - -60 + 7 = 67
- To convert any z-scores into the actual units in which a given variable is measured, we use the formula:

$$X_i = \overline{X} \pm z(s)$$

Limitations

- In all these examples we simply assumed that the distribution of 1990 exam scores was normal
- If we did actually get our hands on the raw data and graphed them
 we might find that the distribution is not exactly normal: it may be
 close but not exactly the same as the normal curve
- This should be expected: very few variables will be exactly normal
- This means that our calculations of frequencies may not be exactly true; for example we calculated that 16% of students failed, assuming that the distribution is normal
- If we were able to tally up the actual exam scores we may find that 18% of students actually failed
- This is because the assumption of normality may not be perfectly correct; the distribution of exam grades may only be approximately normal
- Our calculation of the percentage of students failing therefore is also only approximately correct
- Therefore whenever we derive frequencies on the assumption of normality we use such as "the percentage of students failing is approximately 16%"