Public Key Algorithms

Lesson Introduction

- Modular arithmetic
- RSA
- Diffie-Hellman

Modular Arithmetic

 Public key algorithms are based on modular arithmetic

- Modular addition
- Modular multiplication
- Modular exponentiation

Modular Arithmetic

- Addition modulo (MOD) M
- Additive inverse: addition MOD M yields 0

- Reversible: by adding the inverse
 - Convenient for decryption

Modular Multiplication

- Multiplication modulo M
- Multiplicative inverse: multiplication MOD
 M yields 1
 - ●E.g., M=10, 3 and 7 are inverse of each other because 3×7 MOD 10 = 1
- Only some numbers have inverse
 - But 2, 5, 6, 8 do not have inverse when M=10

与M互质的数才对M有multiplicative inverse

Modular Multiplication

- Use Euclid's algorithm to find inverse
 - Given x, n, it finds y such that x×ymod n = 1
- Only the numbers relatively prime to n
 has MOD n multiplicative inverse

Totient Function

- •x is relatively prime to n: no common factor other than 1
- ◆Totient function ø(n): number of integers smaller than n and relatively prime to n
 - •if n is prime, ø(n)=n-1
 - •if $n=p\times q$, and p, q are primes, $\phi(n)=(p-1)(q-1)$
 - •if $n=p\times q$, and p, q are relative prime to each other, $\phi(n)=\phi(p)\phi(q)$

Modular Exponentiation

 $\bullet x^y \mod n = x^{y \mod \emptyset(n)} \mod n$

•if $y = 1 \mod \emptyset(n)$ then $x^y \mod n = x \mod n$

RSA (Rivest, Shamir, Adleman)

- Widely used, and one of the first (1977)
- Support both public key encryption and digital signature
- Assumption/theoretical basis:
 - Factoring a very large integer is hard

RSA Characteristics

- Variable plaintext block size
 - Plaintext treated as an integer, and must be "smaller" than the key
 - Ciphertext block size is the same as the key length

RSA Algorithm Key Generation

Select p,q	p and q both prime; $p \neq q$
Calculate $n = p \times q$. Calculate $\phi(n) = (p-1)(q-1)$	
Select integer e	$gcd(\phi(n),e) = 1; 1 < e < \phi(n)$
Calculate d Public key	de mod $\phi(n) = 1$ $KU = \{e,n\}$
Private key	$KR = \{d,n\}$

Encryption

Plaintext:	M < n
Plaintext: Ciphertext:	$C = M^{e} \pmod{n}$

Decryption

Plaintext: Ciphertext:	C
Ciphertext:	$M = C^d \pmod{n}$

How Does RSA Work?

•Given KU = <e, n> and KR = <d, n>

•decryption: m = c^d mod n

•signature: s = m^d mod n, m < n

•verification: m = se mod n

Why does RSA Work?

Given pub = <e, n> and priv = <d, n>

- \bullet n =p×q, ϕ (n) =(p-1)(q-1)
- \bullet e×d = 1 mod \emptyset (n)
- $\bullet x^{e \times d} = x \mod n$
- ●encryption: c = m^e mod n
- •decryption: m = c^d mod n =
 m^{e×d} mod n =
 m mod n = m (since m < n)</pre>
- digital signature (similar)

Why does RSA Work?

Why RSA is Secure?

Factoring an integer with at least512-bit is very hard!

- •But if you can factor big number n then given public key
 <e,n>, you can find d, and hence the private key by:
 - Knowing factors p, q, such that, $n = p \times q$
 - Then compute $\phi(n) = (p-1)(q-1)$
 - •Then find d such that $e \times d = 1 \mod \emptyset(n)$

RSA in Practice

Issues with schoolbook RSA

• Deterministic:

- •For the same key, a particular plaintext is always mapped to a particular ciphertext
- •Special-case plaintexts 0, 1, or -1 produce ciphertexts 0, 1, or -1 regardless of keys

• Malleable:

- Transforming a ciphertext into another leads to predictable transformation to plaintext
 - -For $c = m^e \mod n$, attacker change c to $s^e \times c$
 - –Receiver gets s×m instead of m

RSA in Practice

- PKCS (public key cryptography standard) uses OAEP (optimal asymmetric encryption padding)
 - Append padding (seeded from random byte) as prefix to m

Diffie and Hellman Key Exchange

- First published public-key algorithm
- By Diffie and Hellman in 1976 along with the exposition of public key concepts
- Used in a number of commercial products
- Practical method to exchange a secret key securely that can then be used for subsequent encryption of messages
- Security relies on difficulty of computing discrete logarithms

Diffie and Hellman Key Exchange

Publicly known numbers

q = Prime number, of at least 300 digits

 $\alpha =$ an integer that is a primate root of q, often a small number

User C

Knows q, α , Y_A , Y_B Must calculate $X_B = dlog_{\alpha,q}(Y_B)$

User A

Selects a number $X_A < q$. Now has Y_B sent by User B $s = Y_B X_A \mod q$.

$$Y_A = \alpha^{\times_A} \mod q$$

 $Y_B = \alpha^{X_B} \mod q$

User B

Selects a number $X_B < q$. Now has Y_A sent by User A $s = Y_A^{X_B} \mod q$.

Diffie-Hellman Example

Have

- Prime number q = 353
- Prime number $\alpha = 3$

A and B each computer their public keys

- A computes $Y_A = 397 \mod 353 = 40$
- B computes $Y_B = 3^{233} \mod 353 = 248$

- Then exchange and computer secret key:
 For A: $K = (Y_B)^{XA} \mod 353 = 24897 \mod 353 = 160$ For B: $K = (Y_A)^{XB} \mod 353 = 40^{233} \mod 353 = 160$

- Attacker must solve: 3^{α} mod 353 = 40 which is hard
 - · Desired answer is 97, then computer key as B does

Diffie-Hellman Security

- Shared key (the secret) itself never transmitted
- Discrete logarithm is very hard
- \bullet Y = α ^X mod q
- •Conjecture: given Y, α , and q, it is extremely hard to compute the value of X because q is a very large prime (discrete logarithm)

Diffie-Hellman Limitations

- Expensive exponential operation
 - DoS possible
- The scheme itself cannot be used to encrypt anything – it is for secret key establishment
- No authentication, so you cannot sign anything

Implementing the Diffie-Hellman Key Exchange

Alice and Bob share a prime q, and ф, such that ф < q, and ф is a primitive root of q

Alice
generates a
private key
XA such that
XA < q

Alice
calculates a
public key YA
= \$\int X A mod
q

Alice receives Bob's public key Y_B in plaintext Alice
calculates
shared secret
key K =
(YB)X A mod
q

Alice and Bob share a prime q, and a, such that a < q, and a is a primitive root of q.

Bob generates a private key X_B such that X_B < q. Bob calculates a public key $Y_B = \phi X_B$ mod q

Bob receives Alcie's public key Y_A in plaintext Bob calculates shared secret key K = (YA)X B mod q

Bucket Brigade Attack, Man-in-the-Middle(MIM)

$$7_{\text{A}}$$
 7_{X} 7_{R} 7_{R} 7_{R} 7_{A} 7_{A}

Other Public-Key Algorithms

Digital Signal Standard:

- Makes use of SHA-1 and the Digital Signature Algorithm (DSA)
- Originally proposed in 1991, revised in 1993 due to security concerns, and another minor revision in 1996
- Cannot be used for encryption or key exchange
- Uses an algorithm that is designed to provide only the digital signature function

Public Key Algorithms

Lesson Summary

- Modular arithmetic the foundations of several public key algorithms
- RSA can be used for encryption and signature, its security is based on assumption that factoring a larger integer into two primes is hard
- Diffie-Hellman is used for key exchange, its security is based on the assumption that discrete logarithm on large numbers is hard
 - O No authentication means man-in-the-middle attack possible