#### Лекция 2

# Алгоритмы безусловной нелинейной оптимизации. Прямые методы

Курс "Анализ и разработка алгоритмов"



# Содержание

- 1 Литература
- 2 Задача оптимизации
- 3 Виды задач. Безусловная нелинейная оптимизация
- Типы методов поиска минимума
- 5 Одномерные прямые методы
- 6 Многомерные прямые методы

## Литература

- Сухарев А.Г., Тимохов А.В., Федоров В.В. Курс методов оптимизации;
- Покорный Ю.В. Оптимальные задачи;
- Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление;
- Гилл Ф., Мюррей У., Райт М. Практическая оптимизация;
- Штойер Р. Многокритериальная оптимизация: теория, вычисления и приложения;
- Nocedal J., Wright Stephen J. Numerical Optimization;
- Дэннис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений;
- Жиглявский А.А., Жилинскас А.Г. Методы поиска глобального экстремума;
- и многие другие.



## Задача оптимизации

**Методы оптимизации** — методы построения оптимальных (в некотором смысле) решений для математических моделей

Разнообразные приложения, в т.ч. в машинном обучении и анализе данных

Математическую модель объекта зачастую можно представить в виде **целевой функции** f=f(x), где x, вообще говоря, — многомерный вектор, или критерия оптимальности (с ограничениями или без).

#### Задача оптимизации

Решить задачу оптимизации  $f(x) o \max_{x \in Q} (\min_{x \in Q})$  означает найти  $x^* \in Q$ , где Q — область допустимых значений, для которых достигается максимум (минимум) функции f. Обозначение:  $x^* = \arg\max_{x \in Q} (\min_{x \in Q}) f(x)$ .

Если  $x^*$  найдено, то можно найти и  $f(x^*)$ 

- Локальная (проще) и глобальная (сложнее) оптимизация (совпадают для некоторых классов f)
- ullet Задачу тах можно свести к задаче  $\min$ , рассмотрев функцию -f

## Виды задач. Безусловная нелинейная оптимизация

Q, область допустимых значений, может быть

• не задана (сведена к незаданной) (задача безусловной оптимизации); например, минимизировать  $f(x)=x^2$  при  $x\in [-1,1]$  (Q задано) = безусловно минимизировать функцию

$$\tilde{f}(x) = \begin{cases} 1, & x \notin [-1, 1], \\ x^2, & x \in [-1, 1]. \end{cases}$$

• задана с помощью условий — системы S линейных или нелинейных уравнений или неравенств (задача условной оптимизации)

$$f$$
 или  $S$  (не)линейны  $\to$  (не)линейное программирование (не)линейная оптимизация

Для нужд машинного обучения и анализа данных нас интересует

#### безусловная нелинейная оптимизация

Линейное программирование и условная нелинейная оптимизация

## Типы методов поиска минимума

Инфо об f o прямые методы, методы первого или второго порядка

#### Прямые методы или методы нулевого порядка

используют только значения f, но не ее производных.

🕲 оптимизация широкого класса функций; 🕲 медленная сходимость

#### Методы первого порядка

используют значения f и  $f^\prime$  (градиентные методы).

© относительно быстрая сходимость; © необходимо знать аналитические выражения для функции и ее первой производной

#### Методы второго порядка

используют значения f, f' и f'' (метод Ньютона и его модификации).

© быстрая сходимость; © необходимо знать аналитические выражения для функции и ее первой и второй производной

Одномерные прямые методы

# Метод перебора=метод равномерного поиска

Пусть  $f(x): [a, b] \to \mathbb{R}$ . Решим приближенно задачу оптимизации  $f(x) \to \min_{x \in [a, b]}$ , найдя  $x^*$  с погрешностью  $\varepsilon > 0$ .

#### Алгоритм

Рассмотрим на отрезке [a, b] следующие точки:

$$x_k = a + k \frac{b-a}{n}, \quad k = 0, \ldots, n,$$

где n выбрано из условия  $\frac{b-a}{n}\leqslant \varepsilon.$ 

Вычисляем значения  $f(x_k)$   $\overset{...}{u}$  находим точку  $x_m$ ,  $m \in \{1, \ldots, n\}$ , такую, что

$$f(x_m) = \min_{k=0,\ldots,n} f(x_k).$$

Тогда  $|x_m-x|<arepsilon$ . Используем полученное  $x_m$  в качестве приближения  $x^*$ .

Этот метод можно иногда применять для поиска начальных приближений.

4□ > 4□ > 4□ > 4□ > 4□ > 9



## Метод дихотомии

Пусть  $f(x): [a_0,\ b_0] \to \mathbb{R}$  — выпукла. Решим приближенно задачу  $f(x) \to \min_{x \in [a_0,\ b_0]}$ , найдя  $x^*$  с погрешностью  $\varepsilon > 0$ .

#### Алгоритм

Вычисляем значения  $f(x_1)$  и  $f(x_2)$  в точках

$$x_1 = \frac{a_0 + b_0 - \delta}{2}, \qquad x_2 = \frac{a_0 + b_0 + \delta}{2}, \qquad 0 < \delta < \varepsilon.$$

Далее сокращаем интервал неопределенности и получаем интервал  $[a_1,b_1]$ :

- ullet если  $f(x_1) \leqslant f(x_2)$ , то  $a_1 = a_0$  и  $b_1 = x_2$ ;
- в противном случае  $a_1 = x_1$  и  $b_1 = b_0$ .

Далее по аналогичным формулам на интервале  $[a_1,b_1]$  вычисляем следующую пару точек  $x_1$  и  $x_2$ . С помощью найденных точек определяем неопределенности  $[a_2,b_2]$ , и так далее.

Поиск заканчивается, если на текущей итерации k имеем

$$|a_k-b_k|<\varepsilon$$
  $(x^*\in[a_k,b_k]).$ 

При  $\delta=0$  вырождается в метод бисекции.

Алгоритмы Лекция 2 10/22



## Метод золотого сечения

Позволяет найти точку минимума на  $[a_0,b_0]$  с меньшими вычислительными затратами. По сути, особый выбор  $\delta$  в методе дихотомии.

#### Алгоритм

Вычисляем значения  $f(x_1)$  и  $f(x_2)$  в точках

$$x_1=a_0+rac{3-\sqrt{5}}{2}(b_0-a_0), \quad x_2=b_0+rac{\sqrt{5}-3}{2}(b_0-a_0), \quad$$
 причем  $rac{x_1+x_2}{2}=rac{a_0+b_0}{2}.$ 

(На первой итерации находим 2 точки и дважды вычисляем значения f.) Далее сокращаем интервал неопределенности и получаем интервал  $[a_1, b_1]$ :

- ullet если  $f(x_1) \leqslant f(x_2)$ , то  $a_1 = a_0$ ,  $b_1 = x_2$ ,  $x_2 = x_1$ ;
- в противном случае  $a_1 = x_1$  и  $b_1 = b_0$ ,  $x_1 = x_2$ .

На последующих итерациях производим расчет только той точки и значение функции в ней, которые необходимо обновить: в первом случае вычисляем новое значение  $x_1$  и  $f(x_1)$ ; во втором — вычисляем  $x_2$  и  $f(x_2)$ . Поиск заканчивается, если на текущей итерации k имеем

$$|a_k - b_k| < \varepsilon$$
  $(x^* \in [a_k, b_k]).$ 

Алгоритмы Лекция 2 12 / 22



Многомерные прямые методы (на примере функций двух переменных)

# Метод перебора

Пусть  $f(x): D \to \mathbb{R}$ , где  $x=(x_1,x_2)$ ,  $D=\{[0,1]\times [0,1]\}$ . Решим приближенно задачу оптимизации  $f(x)\to \min_{(x,y)\in D}$  с погрешностью  $\varepsilon>0$ .



# Метод Гаусса

На каждой итерации минимизация осуществляется только по одной компоненте вектора переменных x. Мы рассматриваем  $x=(x_1,x_2)$ .

#### Алгоритм

Пусть нам дано начальное приближение  $x^0=(x_1^0,x_2^0)$ . На первой итерации находим значение минимума функции при изменяющейся первой координате и фиксированных остальных, т.е.  $x_1^1=\arg\min_{x_1}f(x_1,x_2^0)$ . Получаем новую точку  $x^1=(x_1^1,x_2^0)$ .

Далее из точки  $x^1$  ищем минимум функции, изменяя только вторую координату. В результате получаем значение  $x_2^1 = \arg\min_{x_2} f(x_1^1, x_2)$  и новую точку  $x^2 = (x_1^1, x_2^2)$ .

Процесс поиска возобновляется по первой переменной. В качестве условий прекращения поиска можно использовать следующие критерии:

1) 
$$|x_i^{k+1}-x_i^k| или 2)  $|f(x^{k+1})-f(x^k)|$$$

Метод прост, но не очень эффективен. Проблемы возникают, когда линии уровня сильно вытянуты вдоль прямых  $x_1=x_2$ . Если начальное приближение оказывается на  $x_1=x_2$ , то процесс так и останется в этой точке.

Алгоритмы Лекция 2 16 / 22



# Метод Нелдера-Мида (Nelder-Mead)

В процессе поиска используются симплексы в пространстве  $\mathbb{R}^n$ .

В нашем случае (n = 2) — треугольник.

Эвристический подход – может застревать в локальных минимумах или сходиться не к точкам минимума.



Numerical Methods Using Matlab, 4th Edition, 2004 John H. Mathews and Kurtis K. Fink

# Алгоритм (нахождения минимума функции $f(x^{(1)},x^{(2)})$ )

**Параметры**: коэф. отражения  $\alpha>0$  (обычно  $\alpha=1$ ), коэф. сжатия  $\beta>0$  (обычно  $\beta=0.5$ ), коэф. растяжения  $\gamma>0$  (обычно  $\gamma=2$ ).

**Шаг 1** (подготовка). Вначале выбираются три точки  $x_i = (x_i^{(1)}, x_i^{(2)})$ , i = 1, 2, 3, образующие симплекс (в нашем случае — треугольник). В этих точках вычисляются значения функции:  $f_1 = f(x_1)$ ,  $f_2 = f(x_2)$ ,  $f_3 = f(x_3)$ .

**Шаг 2** (сортировка). Из вершин симплекса выбираем три точки:  $x_h$  с наибольшим (из выбранных) значением функции  $f_h$ ,  $x_g$  со следующим по величине значением  $f_g$  и  $x_l$  с наименьшим значением функции  $f_l$ . Целью дальнейших манипуляций будет уменьшение по крайней мере  $f_h$ .

**Шаг 3** (центр тяжести). Найдем центр тяжести всех точек, за исключением  $x_h$ :  $x_c = \frac{1}{2} \sum_{i \neq h} x_i$ .

**Шаг 4** (отражение). Отразим точку  $x_h$  относительно  $x_c$  с коэффициентом  $\alpha$  (при  $\alpha=1$  это будет центральная симметрия), получим точку  $x_r=(1+\alpha)x_c-\alpha x_h$  и вычислим  $f_r=f(x_r)$ .

#### Алгоритм (продолжение)

**Шаг 5.** Далее смотрим, насколько нам удалось уменьшить функцию, ищем место  $f_r$  в ряду  $f_h, f_g, f_l$ .

- Если  $f_r < f_I$ , то направление выбрано удачное и можно попробовать увеличить шаг. Производим растяжение. Новая точка  $x_e = (1-\gamma)x_c + \gamma x_r$  и значение функции  $f_e = f(x_e)$ .
- Если  $f_e < f_r$ , то можно расширить симплекс до этой точки: присваиваем точке  $x_h$  значение  $x_e$  и заканчиваем итерацию (на Шаг 7).
- Если  $f_r < f_e$ , то переместились слишком далеко: присваиваем точке  $x_h$  значение  $x_r$  и заканчиваем итерацию (на Шаг 7).
- Если  $f_l < f_r < f_g$ , то выбор точки неплохой (новая лучше двух прежних). Присваиваем точке  $x_h$  значение  $x_r$  и переходим на Шаг 7.
- Если  $f_g < f_r < f_h$ , то меняем местами значения  $x_r$  и  $x_h$ . Также нужно поменять местами значения  $f_r$  и  $f_h$ . После этого идем на Шаг 6.
- ullet Если  $f_h < f_r$ , то идем на Шаг 6.

В результате  $f_l < f_g < f_h < f_r$ .

## Алгоритм (продолжение)

**Шаг 6** (сжатие). Строим точку  $x_s = \beta x_h + (1 - \beta)x_c$  и вычисляем  $f_s = f(x_s)$ .

- ullet Если  $f_s < f_h$ , то присваиваем точке  $x_h$  значение  $x_s$  и идем на Шаг 7.
- ullet Если  $f_s > f_h$ , то первоначальные точки оказались самыми удачными.

Делаем «глобальное сжатие» симплекса — гомотетию к точке с наименьшим значением  $x_l: x_i:=x_l+(x_i-x_l)/2,\ i\neq l.$ 

**Шаг 7** (проверка сходимости). Проверяем взаимную близость полученных вершин симплекса, что предполагает и близость их к искомому минимуму (например, оценкой дисперсии набора точек).

Если требуемая точность не достигнута, переходим к Шагу 2.

Демонстрация 1 Демонстрация 2 Спасибо за внимание!