NOMBRES ENTIERS ET DÉCIMAUX

I) NUMÉRATION DE POSITION

1) Distinguer « nombres » et « chiffres »

Pour écrire n'importe quel nombre, on utilise seulement 10 symboles appelés « chiffres » :

1;2;3;4;5;6;

Ex 1: « 569 et 12 »

569 est un à trois 12 est un à deux

Ex 2: « J'ai 3 chats »

3 est le de chats que je possède,

mais c'est aussi le qui permet d'écrire ce nombre.

2) Le rang d'un chiffre donne sa « valeur »

En effet : 2222 = 2000 + 200 +

Le 2 le plus à gauche « vaut » donc 1000 fois le 2 de droite!

Exemple: 12345,6789

Attention:

Le chiffre des milliers est :

Mais le nombre de milliers est :

Le chiffre des dixièmes est :

Mais le nombre de dixièmes est :

Ex: Donner les rangs des chiffres soulignés ci-dessous:

65165,2<u>3</u>2

546,540

1460564

120,6506<u>8</u>9

3) Les zéros « inutiles »

Sont inutiles, les zéros qui sont :

- à gauche de la partie entière d'un nombre
- ou à droite de sa partie décimale.

On peut les supprimer sans changer le nombre.

Ex 1: Barrer les zéros inutiles dans les conversions suivantes :

0.020 km = 0020 m

 $20\ 500\ cm = 2{,}0500\ hm$

0,001070 kg = 0001,070 g = 0001070 mg

Ex 2 : Supprimer les zéros inutiles et rétablir les espaces :

002460 =

000130,500 =

08200,08200 =

II) ORTHOGRAPHE D'UN NOMBRE

En orthographe « moderne » :

• Dans un nombre entier, mettre des traits d'union entre tous les chiffres, même quand on emploie un « et » :

Cinq-cent-trente-et-un ; le vingt-et-unième siècle

• En revanche, dans une fraction, pas de trait d'union entre le numérateur et le dénominateur :

On distingue ainsi « trente-et-un tiers » (31/3) de « trente et un tiers » (30+1/3)

• Million et milliard s'accordent normalement : Deux-milliards-six-cent-millions

• Mille est invariable (ne s'accorde jamais) : Dix-mille

• Vingt et cent s'accordent sauf s'ils sont suivis d'un nombre : Quatre-vingts ; quatre-vingt-deux; deux-cent-vingt ; deux-cents-millions

Ex:

5 021

480

485

15 200

3 700 380

31/21

30 et 1/21

III) NOMBRES ENTIERS ET DÉCIMAUX

Définition:

On appelle nombre entier, tout nombre dont la partie décimale est nulle.

Ex: 0 ; 12 ; 15680 ; six tiers

Définition:

On appelle nombre décimal, tout nombre dont la partie décimale contient un nombre fini de chiffres.

Ex: 5,7 ; 10 ; 0,123 ; 11/2 ; trente-cinq centièmes

En revanche 1/3 a pour écriture décimale 0,3333333.... mais n'est pas un nombre décimal!

IV) FRACTIONS DÉCIMALES

Définition:

Une fraction décimale est une fraction dont le dénominateur est égal à 1, 10, 100, 1000, ...

Ex: Écrire en fraction décimale de trois façons:

$$A = 6.4 = \frac{64}{10} = \frac{64}{100} = \frac{64}{1000}$$

$$B = 0.0014 =$$

Attention:

 $\frac{1,4}{1000}$ n'est pas une fraction décimale car dans une fraction, le numérateur et le dénominateur doivent être

Propriété:

Tout nombre décimal peut s'écrire sous forme de fraction décimale. Toute fraction décimale correspond à un nombre décimal.

Ex:
$$A = 56,457 = \frac{56457}{1000} = \frac{10000}{10000}$$

V) UN NOMBRE – PLUSIEURS ÉCRITURES

Un même nombre peut s'écrire de plusieurs façons :

Écriture en lettres		
Écriture décimale	75,29	Partie entière :
		Partie décimale :
Fraction décimale		
Écriture décomposée		

VI) ABSCISSE D'UN POINT

1) Demi-droite graduée

Définition:

On appelle demi-droite « graduée » une demi-droite possédant :

- Une origine (il s'agit d'un point)
- Un sens (représenté par une flèche)
- Une unité de longueur (que l'on reporte régulièrement)

Ex:

Tracer une demi-droite graduée d'origine O et d'unité 2 grands carreaux.

2) Abscisse d'un point

Définition:

Sur une demi-droite graduée :

- À chaque point est associé un nombre appelé « abscisse » permettant de préciser la position de ce point sur la demi-droite.
- À chaque nombre est associé un point.

$\mathbf{E}\mathbf{x}$:

```
Placer ci-dessus les points : I; L; C; E; M et H d'abscisses respectives : 1; 7; 3; 5,5; 0,5 et 4,3.
```

VII) COMPARER DES NOMBRES DÉCIMAUX

Méthode:

Pour comparer des nombres à partir de leur écriture décimale :

- On compare d'abord les parties entières.
- Si elles sont identiques, on compare les chiffres de la partie décimale en commençant par les dixièmes, puis les centièmes et ainsi de suite.

On peut également s'aider d'une droite graduée.

Ex:

Comparer: 12,1 et 12,09

Comparer : 3,85 et $\frac{3850}{1000}$

Ranger par ordre croissant: 56,02; 56,147; 56,714; 56,4; 57,09; 56,14

VIII) VALEURS APPROCHÉES

Définition:

Encadrer un nombre revient à proposer deux nombres plus simples mais proches : l'un inférieur et l'autre supérieur au nombre initial. Ces deux nombres sont respectivement appelés « valeur approchée par défaut » et « valeur approchée par excès » du nombre de départ.

Ex:

Encadrer 6361,25 par deux entiers consécutifs.

Encadrer au dixième (le mieux possible) le nombre 45,852 < 45,852 <

Remarque : L'encadrement 10 < 45,852 < 250 n'est pas faux mais ne présente aucun intérêt !

Ex:

Compléter le tableau ci-dessous :

29,1595784	Valeur approchée par défaut	Valeur approchée par excès
à l'unité :		
au dixième :		
au centième :		
au millième :		