

Problem R-13C (C₁₁H₁₆O₇S). You are given the structure of a pentose thiol triacetate and asked to determine the relative stereochemistry and conformation from the 270 MHz ¹H NMR spectrum presented on the next page.

(a) Analyze the individual sets of signals and show coupling constants in the standard format. When you have completed the analysis, <u>assign the individual protons</u> (e.g., H_{5ax}). Use the numbering system given on the structure in part (b).

δ 3.75

δ 4.05

δ 4.95

 δ 5.07

 δ 5.55

(b) Determine the stereochemistry of **R-05K**. Place the appropriate substituents in each of the boxes on the structure below.

(c) Briefly describe how you made the assignment at C-4.

Problem R-13C. You are given the structure of a pentose thiol triacetate and asked to determine the relative stereochemistry and conformation from the 270 MHz ¹H NMR spectrum presented on the next page.

- (a) Analyze the sets of signals and show coupling constants in the standard format. When you have completed the analysis, <u>assign the individual protons</u> (e.g., H_{5ax}). Use the numbering system given on the structure in part (b).
- 2 δ 3.75 dd, J = 12, 9 Hz This must be H^{5a} from the chemical shift coupled gem and ax-ax. Thus H⁴ must be axial.
- $\frac{2}{2} \qquad \qquad \delta \text{ 4.05} \quad \text{ddd, J} = 11.5, \, 4.5, \, 1 \text{ Hz} \qquad \text{This must be H}^{5e} \text{ coupled gem and eq-ax. There is also a} \\ \quad \text{W-coupling to the equatorial H}^3$
- 4 δ 4.95 dd, 8, 2.5 H² This is an AB pattern, one half is coupled to an X proton by ca 2.5 Hz, the other half is broadened. These must be the H¹ and H² protons, the H¹ is broadened by exchange of the SH (which is a broad singlet at δ 2.17). The 8 Hz coupling between H¹ and H² means both protons are axial. The small coupling (2.5 Hz) of H² to H³ means H³ is equatorial
- 2 δ 5.07 ddd, J = 8.5, 4.5, 3 This is the proton at H⁴, coupled to the axial proton at C⁵ (9 Hz) and to the eq protons at C⁵ and C³. Thus H³ must be equatorial.
- 2 δ 5.55 td, 2.5, 1 This is the equatorial H³ proton, coupled twice eq-ax (2.5 Hz) to H⁴ and H². There is a small W coupling to H⁵e.
 - (b) Determine the stereochemistry of **R-05K**. Place the appropriate substituents in each of the boxes on the structure below.

- (c) Briefly describe how you made the assignment at C-4.
- H^{5a} and H^{5e} can be assigned from their chemical shifts (most upfield of the ring protons) and coupling patterns. H^{5a} shows, in addition to the 12 Hz gem coupling, a 9 Hz vicinal coupling, which means H⁴ must be axial. H⁴ can be assigned from the three couplings, two of which are to the H⁵ protons.

