

COMPUTER ORGANISATION (TỔ CHỨC MÁY TÍNH)

Computer Organisation

Acknowledgement

- The contents of these slides have origin from School of Computing, National University of Singapore.
- We greatly appreciate support from Mr. Aaron Tan Tuck Choy for kindly sharing these materials.

Policies for students

- These contents are only used for students PERSONALLY.
- Students are NOT allowed to modify or deliver these contents to anywhere or anyone for any purpose.

Overview

- The Big Picture
 - Brief History of Computer
 - Current Trend
- The Course (2nd Part)
 - Von Neumann Architecture
 - Instruction Set Architecture
 - Compilation Flow
 - Instruction Execution Flow

The Brief History of Computers

Year	Name	Speed	Remarks
1946	ENIAC	~1900 addition/sec	First electronic computer
1951	UNIVAC	~2000 addition/sec	First commercial computer
1964	IBM 360	500k ops/sec	Best known mainframe
1965	PDP-8	330k ops/sec	First minicomputer
1971	Intel 4004	100k ops/sec	First microprocessor
1977	Apple II	200k ops/sec	"First" PC
1981	IBM PC (Intel 8088 + MS-DOS)	240k ops/sec	Dominated market since then
2003	Intel Pentium 4	6G flops	"Last" Unicore
2011	Intel Core i7	~120G flops	Representative multicores

The Brief History: Supercomputer

The Brief History: Embedded

- Everywhere
 - Smart-phone
 - Game consoles
 - DVD / Blue-Ray player
 - Car, Fridge, Washing Machine..... etc etc

Summary: From a few to manyⁿ

Transistor is the building block of CPU since 1960s

Current World Population = 7 billion about the number of transistors in 3 CPU chips!

Summary: From BIG to small Process size = Minimum length of a transistor

80286

1982

1.5 µm

Pentium

1993

0.80 µm

- 0.25 µm

Pentium 4

2000

0.180 µm

- 0.065 μm

Core i7

2010

0.045 μm

- 0.032 μm

Wave length of visible light = 350nm (violet) to 780nm (red)
Process size now smaller than wavelength of violet light!

Summary: From S-L-O-W to fast

FLOPS = FLoating-point Operation Per Second

80286

1982

1.8 MIPS*

Pentium

1993

200 MFLOPS#

Pentium 4

2000

4 GFLOPS#

Core i7

2011

120 GFLOPS #

Summary: The Age of Computer

- Unprecedented progress since late 1940s
- Performance doubling ~2 years (1971-2005):
 - Total of 36,000X improvement!
 - If transportation industry matched this improvement, we could have travelled from Singapore to Shanghai, China in about a second for roughly a few cents!
- Incredible amount of innovations to revolutionize the computing industry again and again

Moore's Law

Intel co-founder Gordon Moore "predicted" in 1965 that
 Transistor density will double every 18 months

PROCESSOR PERFORMANCE

The Three Walls

 Three major reasons for the unsustainable growth in uniprocessor performance

1. The Memory Wall:

Increasing gap between CPU and Main memory speed

The ILP Wall:

Decreasing amount of "work" (instruction level parallelism) for processor

3. The Power Wall:

Increasing power consumption of processor

The Power Wall

We can now cramp more transistor into a chip than the ability (power) to turn them on!

Breakfast Anyone? Hot enough to cook an egg!

Current State of Computer

- Multicore is the future
 - All PC chip manufacturers have abandoned unicore development
 - Expect to have more cores in a single chip
 - → Parallel programming is more important than ever (CS3210, CS3211)
- Great opportunity for computing professional
 - New programming model is required
 - Parallelising existing software
 - Innovative ways to tap into the computing power

2ND PART OF C.O

So, what do we get to learn?

Computer Organization vs Architecture

Computer Organization:

Electronic Engineer's view of a computer system

Computer Architecture:

- Assembly Programmers' view of a computer system
 - · High level abstract view

This course aims to:

- Give an in-depth understanding of the inner working of a computer system
- Concentrate on <u>conceptual understanding</u> rather than hardware implementation

Von Neumann Architecture

- Proposed by John Von Neumann et al, 1945
- Major components of a computer system:

- Stored-Memory Concept:
 - Data and program are stored in memory

Components of Computer

Datapath:

 Reads data from memory, processes it, writes it back to memory

Control:

 Sends signals that determines the operation of datapath, memory, I/O

Register:

Fast intermediate storage for values and control information

Memory:

· stores program and data

Input:

• feeds data (keyboard, mouse)

Output:

processing result to user (display)

Example: Inside Your Laptop

How do we "control" the hardware?

High-level language program (in C)

Assembly language program (for MIPS)

```
muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31
```


Binary machine language program (for MIPS)

 You write programs in high level programming languages, e.g., C/C++, Java:

Compiler translates this into assembly language statement:

 Assembler translates this statement into machine language instructions that the processor can execute:

1000 1100 1010 0000

Instruction Set Architecture (ISA)

- Instruction Set Architecture (ISA)
 - A subpart of computer architecture that is related to programming, as seen by the programmer and compiler

- ISA exposes the capabilities of the underlying processor as a set of well defined instructions
 - Serves as the interface between hardware and software
 - Serves as an abstraction which allow freedom in hardware implementations

Instruction Set Architecture - Examples

x86-32 (IA32)

Intel 80486, Pentium (2,3, 4), Core i3, i5, i7

AMD K5, K6, Athlon, Duron, Sempron

Dominates the PC market

MIPS

R2000, R3000, ..., R10000

Widely used in Comp. Org/Arch courses as RISC example

ARM

Generations of chips: ARMv1, v2,, v7

StrongARM, ARM Cortex

Most popular embedded system chip

 Observe that each ISA has a family of chips i.e. multiple hardware implementations

The Life of a program

Link multiple Program in High-level language machine-language programs (C, Pascal, etc) to one program **Load** program into **Compile** program into assembly language computer's memory **Assemble** program **Execute** program to machine language

Code Execution

• Instruction Execution Cycle in the Processor:

Fetch:

Fetch next instruction from memory into processor

Decode

Decode the instruction

Execute

- Get operands
- Execute instruction
- Store the execution result

Road Map for 2nd Part

Topic	Lecture Set(s)
Processor Performance	10
MIPS Assembly Language	11, 12, 13
The processor: - Datapath - Control	14 15
Pipelining	16
Memory : Cache	17, 18
Input / Output	19*

- Reading Assignment

 Computer Abstractions and Technology
 - Read up COD sections 1.1 1.3.

Q&A