meromorphe Funktionen, Moebiustransformationen

Definition

Es sei ∞ irgendein Element $\notin \mathbb{C}$. $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ heißt die Vollebene. ∞ heißt "der Punkt ∞ ". Wir definieren:

$$\begin{array}{c} z+\infty:=\infty+z:=\infty-z:=z-\infty:=\infty\;\forall z\in\mathbb{C};\\ \infty z:=z\infty:=\infty\;\forall z\in\mathbb{C}\{0\};\;\frac{z}{\infty}:=0(z\in\mathbb{C}),\;\frac{z}{0}:=\infty\;(z\in\hat{\mathbb{C}}\backslash\{0\}) \end{array}$$

 $S := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + (x_3 - \frac{1}{2})^2 = \frac{1}{4}\}$ heißt **Riemannsche Zahlenkugel**. N := (0, 0, 1) wird als **Nordpol** bezeichnet .

Definition

 $\sigma: S \to \hat{\mathbb{C}}$ durch

$$\sigma(N) := \infty$$

$$\sigma(x_1, x_2, x_3) := \frac{x_1}{1 - x_3} + i \frac{x_2}{1 - x_3} \text{ für } (x_1, x_2, x_3) \in S \setminus \{N\}$$

 σ heißt stereographische Projektion. Anschaulich (nachrechnen!): Ist $P \in S \setminus \{N\}$, so trifft die Gerade durch N und P die komplexe Ebene im Punkt $\sigma(P)$.

Satz 15.1

 σ ist injektiv auf S und $\sigma(S)=\hat{\mathbb{C}}.$ $\sigma^{-1}:\hat{\mathbb{C}}\to S$ ist gegeben durch $\sigma^{-1}(\infty)=N,$ $\sigma^{-1}(z)=\frac{1}{1+|z|^2}(\mathrm{Re}z,\mathrm{Im}z,|z|^2),$ falls $z\in\mathbb{C}.$

Satz 15.2 (Der chordale Abstand)

Seien $z, w \in \hat{\mathbb{C}}$. $d(z, w) := ||\sigma^{-1}(z) - \sigma^{-1}(w)||$ heißt der **chordale Abstand** von z und w (wobei $||\cdot|| = \text{eukl}$. Norm im \mathbb{R}^3).

Für $z,w,u\in \hat{\mathbb{C}}:d(z,w)\geq 0;$ $d(z,w)=0\Leftrightarrow z=w;$ d(z,w)=d(w,z); $d(z,w)\leq d(z,u)+d(u,w)$ (\triangle -Ungl.)

 (\mathbb{C},d) ist also ein metrischer Raum.

Für
$$z, w \in \mathbb{C}$$
: $d(z, \infty) = (1 + |z|^2)^{-\frac{1}{2}}$; $d(z, w) = |z - w|(1 + |z|^2)^{-\frac{1}{2}}(1 + |w|^2)^{-\frac{1}{2}}$

Beweis

Übung!

Definition

Sei (z_n) eine Folge in $\hat{\mathbb{C}}$ und $z_0 \in \hat{\mathbb{C}}.(z_n)$ konvergiert in $\hat{\mathbb{C}}$ gegen $z_0 : \Leftrightarrow d(z_n, z_0) \to 0 (n \to \infty)$

Aus 15.2 folgt:

Satz 15.3

Sei (z_n) eine Folge in $\hat{\mathbb{C}}, z_0 \in \hat{\mathbb{C}}$

- (1) $d(z_n, z_0) \to 0 \Leftrightarrow |z_n z_0| \to 0$
- (2) $d(z_n, \infty) \to 0 \Leftrightarrow |z_n| \to \infty$

Ersetzt man |z-w| $(z,w\in\mathbb{C})$ durch d(z,w) $(z,w\in\hat{\mathbb{C}})$, so lassen sich die topologischen Begriffe der §en 2,3 auch in $\hat{\mathbb{C}}$ definieren.

Beispiele:

- (1) Sei $A \subseteq \hat{\mathbb{C}}$. Eine Funktion $f: A \to \hat{\mathbb{C}}$ heißt stetig in $z_0 \in A :\Leftrightarrow$ für jede Folge (z_n) in A mit $d(z_n, z_0) \to 0$ gilt: $d(f(z_n), f(z_0)) \to 0$.
- (2) $A \subseteq \hat{\mathbb{C}}$ heißt offen : $\Leftrightarrow \forall a \in A \ \exists \delta = \delta(a) > 0 : \{z \in \hat{\mathbb{C}} : d(z,a) < \delta\} \subseteq A$.

Konvention

Sei $D \subseteq \mathbb{C}$ offen. $z_0 \in D.f \in H(D \setminus \{z_0\})$ und z_0 sei ein Pol von f. Wegen 13.5 und 15.3 setzt man $f(z_0) := \infty$. Dann ist f auf ganz D definiert, also $f: D \to \hat{\mathbb{C}}$ und in jedem $z \in D$ stetig.

Definition

Sei $D \subseteq \mathbb{C}$ und $f: D \to \hat{\mathbb{C}}$ und $P(f) := \{z \in D : f(z) = \infty\}.f$ heißt auf D meromorph : \Leftrightarrow

- (i) P(f) ist in D diskret
- (ii) $f_{|D\setminus P(f)} \in H(D\setminus P(f))$
- (iii) jedes $z_0 \in P(f)$ ist ein Pol von f.

$$M(D) := \{ f : D \to \hat{\mathbb{C}} : f \text{ ist auf } D \text{ meromorph } \}$$

Beispiele:

- (1) $P(f) = \emptyset$ zugelassen. Dann: $H(D) \subseteq M(D)$.
- (2) Seien $f, g \in H(D), g \neq 0$ auf D. Dann $\frac{f}{g} \in M(D).P(\frac{f}{g}) \subseteq Z(g)$.
- (3) $f(z) = \frac{1}{\sin(\frac{1}{z})}$, $P(f) = \{\frac{1}{k\pi}, k \in \mathbb{Z} \setminus \{0\}\}$.0 ist kein Pol von f, 0 ist HP der Pole $\frac{1}{k\pi}$. Also: $f \notin M(\mathbb{C})$, aber $f \in M(\mathbb{C} \setminus \{0\})$.

Moebiustransformationen:

Seien $a,b,c,d\in\mathbb{C}$ und es gelte $ad-bc\neq 0$. Eine Abbildung der Form $T(z):=\frac{az+b}{cz+d}$ heißt eine **Moebiustransformation** (MB) $(z\in\hat{\mathbb{C}})$. Also: $T:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$. Die Matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}:=\Phi_T$ heißt die zu T gehörende **Koeffizientenmatrix**.

Bemerkungen:

(1) Die Bedingung $ad - bc \neq 0$ sichert, dass T nicht konstant ist.

- (2) Sei $c = 0 \Rightarrow d \neq 0 \Rightarrow T(z) = \frac{a}{d}z + \frac{b}{d}$. $T(\infty) = \infty, T_{|\mathbb{C}} \in H(\mathbb{C})$.
- (3) $c \neq 0$. $T(\infty) = \frac{a}{c}$; $T(-\frac{d}{c}) = \infty$. $-\frac{d}{c}$ ist ein Pol der Ordnung 1 von T; $T \in M(\mathbb{C})$.

 $\mathcal{M} :=$ Menge aller Moebiustransformationen.

Satz 15.4

Seien $T, S \in \mathcal{M}$.

- (1) $T(\hat{\mathbb{C}}) = \hat{\mathbb{C}}; T$ ist stetig und injektiv auf $\hat{\mathbb{C}}; T^{-1} \in \mathcal{M}; T^{-1}(w) = \frac{-dw+b}{cw-a}$
- (2) $T \circ S \in \mathcal{M}. \ \Phi_{T \circ S} = \Phi_T \cdot \Phi_S$

 \mathcal{M} ist also eine Gruppe.

Beweis

Übung!

spezielle Moebiustransformationen:

- T(z) := az (Drehstreckung)
- T(z) := z + a (Translation)
- $T(z) := \frac{1}{z}$ (Inversion)

Satz 15.5

 $T \in \mathcal{M}$ lässt sich darstellen als Hintereinandersausführung von Drehstreckung, Translation und Inversion.

Beweis

Sei
$$T(z) = \frac{az+b}{cz+d}$$
.

Fall 1: c=0. Dann $d\neq 0$ und $T(z)=\frac{a}{d}z+\frac{b}{d}$. Setze $T_1=\frac{a}{d}z$ und $T_2=z+\frac{b}{d}\Rightarrow T=T_2\circ T_1$.

Fall 2:
$$c \neq 0$$
. $T(z) = \frac{a}{c} + \frac{\frac{b}{c} - \frac{ad}{c^2}}{z + \frac{d}{c}} = \alpha + \frac{\beta}{z + \gamma}$. $T_1(z) := z + \gamma$; $T_2(z) := \frac{1}{z}$; $T_3(z) := \beta z$; $T_4(z) := z + \alpha \Rightarrow T = T_4 \circ T_3 \circ T_2 \circ T_1$.

Satz 15.6

Sei $T \in \mathcal{M}$. Dann hat T einen oder zwei Fixpunkte oder es ist T(z) = z.

Beweis

Sei
$$T(z) = \frac{az+b}{cz+d}$$

Fall 1: $T(\infty) = \infty$. Dann ist $c = 0, d \neq 0$. $\Rightarrow T(z) = \frac{a}{d}z + \frac{b}{d} = \alpha z + \beta$. Sei z_1 ein Fixpunkt von $T, z_1 \neq \infty$. Also $z_1 = \alpha z_1 + \beta \Leftrightarrow (1 - \alpha)z_1 = \beta$.

73

Fall 1.1:
$$\alpha = 1 \Rightarrow \beta = 0 \Rightarrow T(z) = z$$
.

Fall 1.2:
$$\alpha \neq 1 \Rightarrow z_1 = \frac{\beta}{1-\alpha}$$
.

Fall 2: $T(\infty) \neq \infty$. Sei $z_0 \in \mathbb{C}$. $T(z_0) = z_0 \Leftrightarrow az_0 + b = z_0(cz_0 + d)$ quadratische Gleichung \Rightarrow ein oder zwei Lösungen.

Definition

Seien $z_1, z_2, z_3 \in \hat{\mathbb{C}}$ paarweise verschieden. Für $z \in \hat{\mathbb{C}}$ heißt

$$DV(z, z_1, z_2, z_3) := \begin{cases} \frac{z - z_1}{z - z_3} : \frac{z_2 - z_1}{z_2 - z_3} &, \text{ falls } z_1, z_2, z_3 \in \mathbb{C} \\ \frac{z_2 - z_3}{z_2 - z_3} &, \text{ falls } z_1 = \infty \\ \frac{z - z_1}{z - z_3} &, \text{ falls } z_2 = \infty \\ \frac{z - z_1}{z_2 - z_1} &, \text{ falls } z_3 = \infty \end{cases}$$

das **Doppelverhältnis** von z, z_1, z_2, z_3 .

Satz 15.7

Seien $z_1, z_2, z_3 \in \hat{\mathbb{C}}$ wie oben.

- (1) Sind $T_1, T_2 \in \mathcal{M}$ und gilt $T_1(z_j) = T_2(z_j)$ $(j = 1, 2, 3) \Rightarrow T_1 = T_2$.
- (2) Es ist $T(z) := DV(z, z_1, z_2, z_3)$ $(z \in \hat{\mathbb{C}})$ eine Moebiustransformation. T ist die einzige Moebiustransformation mit $T(z_1) = 0$; $T(z_2) = 1$; $T(z_3) = \infty$.
- (3) Sind $w_1, w_2, w_3 \in \hat{\mathbb{C}}$ paarweise verschieden, so existiert genau ein $S \in \mathcal{M} : S(z_j) = w_j \ (j = 1, 2, 3)$
- (4) $DV(z, z_1, z_2, z_3) = DV(S(z), S(z_1), S(z_2), S(z_3)) \ \forall z \in \hat{\mathbb{C}} \ \forall S \in \mathcal{M}$ (Invarianz des Doppelverhältnisses)

Beweis

- (1) $T := T_2^{-1} \circ T_1$. $15.4 \Rightarrow T \in \mathcal{M}$. $T(z_j) = T_2^{-1}(T_1(z_j)) = T_2^{-1}(T_2(z_j)) = z_j$ (j = 1, 2, 3). $15.6 \Rightarrow T(z) = z \ \forall z \in \hat{\mathbb{C}} \Rightarrow T_1 = T_2$.
- (2) Klar: $T \in \mathcal{M}$. Nachrechnen: $T(z_1) = 0$; $T(z_2) = 1$; $T(z_3) = \infty$. Eindeutigkeit folgt aus (1).
- (3) Eindeutigkeit: (1). Existenz: $T_1(z) := DV(z, z_1, z_2, z_3); \ T_2(z) := DV(z, w_1, w_2, w_3). \ S := T_2^{-1} \circ T_1. \ S(z_1) = T_2^{-1}(T_1(z_1)) \stackrel{(2)}{=} T_2^{-1}(0) \stackrel{(1)}{=} w_1. \ \text{Analog:} \ S(z_2) = w_2; \ S(z_3) = w_3.$
- (4) Übung. ■

Kreisgleichung:

Sei
$$z_0 \in \mathbb{C}$$
, $r > 0$. $|z - z_0| = r \Leftrightarrow (z - z_0)(\bar{z} - \bar{z_0}) = r^2 \Leftrightarrow |z|^2 - \bar{z_0}z - z_0\bar{z} + |z_0|^2 - r^2 = 0 \Leftrightarrow |z|^2 + \bar{\alpha}z + \alpha\bar{z} + \beta = 0$, wobei $\alpha = -z_0 \in \mathbb{C}$. $\beta = |z_0|^2 - r^2 \in \mathbb{R}$ und $|\alpha|^2 - \beta = |z_0|^2 - |z_0|^2 + r^2 > 0$, also $\beta < |\alpha|$.

Geradengleichung:

 $\begin{aligned} mx + ny + d &= 0 \ (m,n,d,x,y \in \mathbb{R}). \ x = \text{Re}z, \ y = \text{Im}z; \alpha = \frac{m}{2} + i\frac{n}{2} \in \mathbb{C}, \ \beta := d \in \mathbb{R}.mx + ny + d = 0 \Leftrightarrow \bar{\alpha}z + \alpha\bar{z} + \beta = 0. \end{aligned}$

Fazit:

Sind $\alpha \in \mathbb{C}$, $\beta \in \mathbb{R}$, so ist $\varepsilon |z|^2 + \bar{\alpha}z + \alpha \bar{z} + \beta = 0$

- Die Gleichung eines Kreises, falls $\varepsilon=1$ und $\beta<|\alpha|^2$
- Die Gleichung einer Geraden, falls $\varepsilon = 0$.

Satz 15.8

Sei $T \in \mathcal{M}$. T bildet eine Gerade (einen Kreis) auf eine Gerade oder einen Kreis ab.

Beweis

Die Behauptung ist klar für Drehstreckungen und Translationen. Wegen 15.5 genügt es die Behauptung für Inversionen $(T(z) = \frac{1}{z})$ zu zeigen. Sei $\varepsilon |z|^2 + \bar{\alpha}z + \alpha \bar{z} + \beta = 0$. die Gleichung einer Geraden oder eines Kreises und $w = \frac{1}{z}$. Dann: $\varepsilon \frac{1}{|w|^2} + \bar{\alpha} \frac{1}{w} + \alpha \frac{1}{\bar{w}} + \beta = 0 \Rightarrow \varepsilon + \bar{\alpha} \bar{w} + \alpha w + \beta |w|^2 = 0$.

Fall 1: $\beta = 0 \rightarrow \text{Gerade}$.

Fall 2:
$$\beta \neq 0$$
. Dann: $\frac{\varepsilon}{\beta} + \overline{\left(\frac{\alpha}{\beta}\right)} \overline{w} + \frac{\alpha}{\beta} w + |w|^2 = 0 \to \text{Kreis.}$

Beispiel

Bestimme ein
$$T \in \mathcal{M}$$
 mit: $T(\partial \mathbb{D}) = \mathbb{R} \cup \{\infty\}. z_1 = 1; \ z_2 = i; \ z_3 = -1.T(z) := DV(z, 1, i, -1) = -i\frac{z-1}{z+1}. \ 15.7 \Rightarrow T(1) = 0; \ T(i) = 1; \ T(-1) = \infty. \ 15.8 \Rightarrow T(\partial \mathbb{D}) = \mathbb{R} \cup \{\infty\}.$