Informations

Mes coordonnées

Abdulrahman ALLOUCHE Bâtiment Brillouin (2ème) allouchear@univ-lyon1.fr

Enseignants

Cédric Ray; cedric.ray@univ-lyon1.fr (3 premières séances de TP) Abdulrahman Allouche; allouchear@univ-lyon1.fr (CM+reste des TP)

Supports

moodle.univ-lyon1.fr
Mes cours actuels:
Intelligence Artificielle pour la physique
Tableau de bord

Informations

Prérequis

- Quelques notions en algèbre linéaire
- Avoir déjà programmé

Modalité de contrôle de connaissance :

- Contrôle partiel: Projet (binôme) début vers 8 décembre: 2semaines pour rendre le projet
- 1^{ère session}: Examen individuel sur machine: 1h30
- 2^{ème session}: Examen individuel sur machine: 1h00

Note Finale: 0,4 Projet + 0,6 Examen individuel

Logiciels nécessaires: Anaconda. 3 méthodes possibles:

- jupyter.univ-lyon1.fr (serveur M2):

 machine personnelle ou machine en salle des TP
- Machine dans les salles des TP. Tout est déjà installé
- Machine personnelle en local :

Installer Anacanda AVANT le début de TP

Voir le fichier InstallAnacanda.pdf sur moodle (Students/Courses/Tutorials)

Some definitions

Artificial Intelligence (AI):

A field of computer science thats aims to make computers achieve human-style intelligence.

Machine Learning (ML):

- Subset of AI.
- The science (art) of programming computers how to learn from data.
- ML algorithms are **not only "instructions"** to the computer but **dynamic models that analyze how well things are working**, using the information they get to improve. it changes and ouputs an algorithm as well as an ouput

Deep Learning:

- Subset of Machine Learning
- Use artificial neural networks réseau de neurone
- Analyzes data with a **logical structure similar to how a human** would draw conclusions

Applications

Applications

iLM

- Machine learning interatomic potential for transformation-induced plasticity of zirconia
- Repulsive potentials for the DFTB method from neural networks
- Control of non-equilibrium systems
- Biomedical image analysis with CNNs
- Imagerie LIBS et Intelligence Artificielle : une belle combinaison !
- Prediction of laboratory quakes with machine learning
- Imagerie LIBS et Intelligence Artificielle : Etude des mortiers archéologique
- Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollens towards pollen classification
- Quantum Mechanics and Machine-Learning Calculations for Vibrational Frequencies
- Neural network approach for a rapid prediction of metal-supported borophene properties

•																								
	٠	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	٠	•	•	•	•	•	•	٠	•

TP

- Project : Prediction of atomization energies of molecules. ML methods without Schrodinger eq will be used, multiple approaches
- COVID-19 can be detected from the Raman spectrum of serum using machine learning. an exam exercice example
- Model capable of classifying images of moles into benign and malignant
- Recurrent Neural Networks, forecast weather based on input features (T, P, ...)

optional

Précédent

Suivant

Update: 10/11/23

A.R. ALLOUCHE

Page : 5/16

Machine Learning vs. Traditional Programming

Précédent

Suivant

Update: 10/11/23

A.R. ALLOUCHE

Page: 6/16

The methodology

Machine learning Life cycle

3. Build Model

Determination of the machine learning techniques

Build the model

2. Data Preparation

- Data exploration: characteristics, format, quality
- Missing Values
- Duplicate data
- Invalid data
- Noise
- Data pre-processing:
 Standardization,
 Convert categorical data

03 04

4. Train Model

Train the model using various machine learning algorithms

5. Test Model

Check the accuracy of our model using a test dataset

6. Deployement

We deploy the model in the real-world system.

1. Gathering Data

- Identify various data sources
- Collect data
- Integrate the data/different sources

Supervised Learning and Unsupervised Learning will be treated

Machine Learning Methods

Supervised Learning

- •Map input data with the output data.
- Supervision, as student learns in the supervision of the teacher.
- Example: spam filtering
- Can be grouped in two categories :
 - Classification un entier/ true false compte aussi
 - Regression les labels sont des reels ex spectre d'energie

Unsupervised Learning

- Data not labeled, classified, or categorized
- The algorithm needs to act on that data without any supervision.
- Can be grouped in two categories :
 - Clustering
 - Dimensionality Reduction
 - diminuer le nombre de varaible en eliminant des colonnes de var redondant ou tres correlée

Reinforcement Learning

- Feedback-based learning method
- Agent gets a reward for each right action and gets a penalty for each wrong action.
- Example : The robotic dog, which automatically learns the movement of his arms,

Précédent

Suivant

Update: 10/11/23

A.R. ALLOUCHE

Page: 8/16

Supervised learning

Supervised learning

• You have **input variables** (X) **and an output** variable (Y) and you use model to learn the **mapping function from the input to the output**.

$$Y = f(X)$$

• When you have new input data (X) that you can **predict** the output variables (Y) for that data.

Model: Given algorithm (the form of the function)

on donne la forme de la fonction avec des parametre aleatoire initial que la machine va optimiser et trouver

Train: Search the optimal parameters of the function

Page: 10/16

Supervised learning

Supervised Learning

Regression

The output variable is a real value such as "dollars" or "weight"

Linear regression

Polynomial Regression

Ridge Regression

Lasso Regression

Support vector Regression

Trees Regression

k-Nearest Neighbors

Random Forest Regression

Neural Networks

Classification

The output variable is an integer or a category, such as "red" or "blue"

Logistic Regression

Support vector Machines

Decision Trees

k-Nearest Neighbors

Random Forest

Neural Networks

Unsupervised learning

Précédent

Suivant

Update: 10/11/23

A.R. ALLOUCHE

Page: 12/16

Unsupervised learning methods

Unsupervised Learning

Dimensionality Reduction

Conducted to reduce the variable space before analysis

- PCA: Principal Component Analysis la (+) utilisé, pour # de var grd
- t-NSE : t-distributed Stochastic Neighbor Embedding
 - 1,2,3 dimensions, pour la visualisation
- Neural Networks

Pour de tres grande base de données

Clustering

Discover groupings inside the input data

- K-means clustering
- DBSCAN : Density-based spatial clustering of applications with noise
 - (+) de tps de calcul
- Isolation Forest(Anomaly)
 efficace mais cherche seulmnt des annomalies
 ex: spam d'e-mail
- Neural Networks

Précédent

Suivant

Update: 10/11/23

A.R. ALLOUCHE

Page: 13/16

au depart: V=0 partout; on applique les rewards apres action, V des cases change apres le chemin parcouru, a la fin le best policy devient le choix de parcour qui maximise les V

Reinforcement Learning

- Agent(): An entity that can perceive/explore the environment and act upon it.
- Environment(): A situation in which an agent is present or surrounded by.
- Action(): Actions are the moves taken by an agent within the environment.
- State(): State is a situation returned by the environment after each action taken by the agent.
- **Reward**(): A feedback returned to the agent from the environment to evaluate the action of the agent.
- **Value**(): It is expected long-term retuned with the discount factor and opposite to the short-term reward.
- **Policy**(): Policy is a strategy applied by the agent for the next action based on the current state.

Précédent

Suivant

Update: 10/11/23

A.R. ALLOUCHE

Page: 14/16

Tools needed to make Machine Learning

- Anaconda: Environment management for any language: Python, R, C/++, Fortran,
- Python: The reference language for Machine Learning.
- NumPy stands for Numerical Python
- Matplotlib is a comprehensive library for visualizations in Python.
- **Seaborn** is a Python data visualization library based on matplotlib. It provides a high-level interface for **drawing attractive and informative statistical graphics**.
- Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.
- **Scikit-learn** (formerly scikits.learn and also known as sklearn) is a free software machine learning library for the Python programming language. It features **various** classification, regression and clustering **algorithms**
- **Tensorflow**: TensorFlow is the Google open source platform for machine learning. We use it for deep learning models.

See **InstallAnaconda.pdf** document to install all these tools (under anaconda) (~ 10 GB without Tensorflow)

Précédent

Suivant

Update: 10/11/23

Course agenda

CM (9h00)

- General Introduction, 1h00
- Python Tutorial, 1h30
- NumPy Tutorial, 30 mn
- Pandas Tutorial, 30 mn
- Data Visualization Tutorial, 30 mn
- Supervised Learning Methods, 2h00
- Unsupervised Learning Methods, 1h00
- Introduction to Deep Methods, 2h00

Practical (13h30)

- Python, 1h30
- NumPy, 30mn
- Pandas & Visualization, 2h00
- Supervised & Unsupervised Methods, 3h30
- Project using ML Standard Methods, 1h30
- Deep Learning Methods, 3h00
- Project using Deep Learning, 1h30

To do at home

Before the first Practical session:

- Read InstallAnaconda.pdf
- Install Anaconda on your machine
- Read JupyterTutorial.pdf

- Before the Visualization Tutorial session :
 - Read CrashCoursesMathPlotLib.pdf