Exercice 1. Déterminer les limites des suites suivantes :

$$a_n = n^{22} - 8n^{20} + 17$$
 $b_n = \frac{n^3 - n + 1}{n^2 - n + 1}$ $c_n = 2n - \ln n$ $d_n = n^2 e^{-n}$

$$e_n = \sqrt{n^2 + 1} - n$$
 $f_n = \frac{(\ln n)^{2026}}{n^2}$ $g_n = \frac{3^n}{n^2}; a \in \mathbb{R}$ $h_n = \frac{(n+2)!}{(2n^2 + 1) \times n!}$

Exercice 2. En factorisant par le terme qui domine en $+\infty$ déterminer les limites des suites suivantes :

$$a_n = \frac{n^3 - n^2 + 1}{n^2 - n + 1}$$
 $b_n = (2n - \ln n) \ln (n + 1)$ $c_n = \sqrt{n^3 + 1} - n$

Exercice 3. On considère la suite u définie pour tout entier naturel n par $u_n = \frac{3^n}{n!}$.

- 1. Montrer qu'il existe un entier N à partir duquel $u_{n+1} \leq \frac{1}{2}u_n$.
- 2. En déduire que pour tout $n \geq N$, $0 \leq u_n \leq \left(\frac{1}{2}\right)^n u_N$. Conclure.

Exercice 4. Critères de convergence

Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites à valeurs dans \mathbb{R}^+ , et soit $l\in\mathbb{R}$.

- 1. Rappeler la définition d'une suite convergente.
- 2. Montrer que :

$$\forall n \in \mathbb{N}, \quad u_n \ge 0 \text{ et } \lim u_n = l \quad \Rightarrow \quad l \ge 0.$$

(On pourra raisonner par l'absurde.)

- 3. Rappeler la définition d'une suite bornée.
- 4. Montrer que :
 - (a) Si (u_n) est convergente, alors (u_n) est bornée.
 - (b) Si $|u_n l| \le v_n$ et $\lim v_n = 0$, alors $\lim u_n = l$.

- (c) Si $|u_n l| \le k^n$ avec |k| < 1, alors $\lim u_n = l$.
- (d) Si $|u_n| \le kv_n$ avec |k| < 1 et $\lim v_n = 0$, alors $\lim u_n = 0$.
- (e) Si $\frac{u_{n+1}}{u_n} \leq \frac{v_{n+1}}{v_n}$ et $\lim v_n = 0$, alors $\lim u_n = 0$.
- (f) Si $\lim \frac{u_{n+1}}{u_n} < 1$, alors $\lim u_n = 0$.
- (g) Si $\lim \frac{u_{n+1}}{u_n} > 1$, alors $\lim u_n = +\infty$.
- (h) (Critère des racines) : Si $\lim u_n^{1/n} < 1$, alors $\lim u_n = 0$.
- 5. Une suite réelle (y_n) est dite de Cauchy si :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall m, n \ge N, \ |y_n - y_m| < \varepsilon.$$

(a) Montrer que cette définition est équivalente à :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ \forall p \in \mathbb{N}, \ |y_{n+p} - y_n| < \varepsilon.$$

(b) Montrer que:

 (u_n) convergente $\Rightarrow (u_n)$ est de Cauchy.

(c) **Application :** Soit $(H_n)_{n>0}$ la suite définie par :

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

i. Montrer que, pour tout $n \in \mathbb{N}$,

$$H_{2n} - H_n \ge \frac{1}{2}.$$

- ii. En déduire que $(H_n)_{n>0}$ n'est pas une suite de Cauchy.
- iii. En déduire que $(H_n)_{n>0}$ n'est pas convergente.
- 6. **Applications:** Pour chaque suite ci-dessous, justifier sa convergence ou sa divergence en appliquant l'un des critères étudiés :
 - (a) $u_n = \frac{1}{n}$
 - (b) $u_n = \frac{1}{2}$
 - (c) $u_n = \frac{n}{n+1}$
 - (d) $u_n = (\frac{2}{3})^r$
 - (e) $u_n = \frac{1}{2^n} + \frac{1}{n}$

- (f) $u_n = \sqrt[n]{\frac{1}{n}}$
- (g) $u_n = \frac{1}{n}$
- $(h) u_n = \frac{3^n}{n!}$
- (i) $u_n = \left(1 + \frac{1}{n}\right)^n$
- $(j) u_n = \frac{n^2}{2^n}$

Exercice 5. On considère la suite u définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n + 2}$.

- 1. Montrer que $\forall n \geq 0, u_n \geq 0$ et déterminer ses limites éventuelles.
- 2. Montrer que, pour tout entier naturel n, $|u_{n+1}-2| \leq \frac{1}{2}|u_n-2|$.
- 3. En déduire que, pour tout entier naturel n, $|u_n-2| \le \frac{1}{2^n} |u_0-2|$. Conclure.

Exercice 6. Soit u la suite définie par $u_{n+1} = \frac{u_n^2}{3u_n+1}$ et $u_0 > 0$. 1. Montrer que $\forall n \geq 0, u_n$ existe et $u_n > 0$. En déduire la monotonie de u.

- 2. La suite est-elle convergente et calculer sa limite éventuelle ?
- 3. Montrer que $\forall n \geq 0, u_{n+1} \leq \frac{u_n}{3}$ puis que $\forall n \geq 0, u_n \leq \left(\frac{1}{3}\right)^n u_0$.

Retrouver ainsi le résultat de la question précédente.

Exercice 7. Soit u la suite définie par $u_0 > 0$ et $u_{n+1} = u_n + \frac{1}{u_n}$.

1. Montrer que $\forall n \geq 0, u_n > 0$. Déterminer la monotonie de u et les limites éventuelles de u?

Exercice 8. On considère une suite u positive telle que $\forall n \geq 0, u_{n+2} \leq \frac{1}{3}u_{n+1} + \frac{1}{3}u_n$. On introduit la suite v définie par $v_{n+2} = \frac{1}{3}v_{n+1} + \frac{1}{3}v_n$ avec $v_0 = u_0$ et $v_1 = u_1$.

- 1. Montrer que $\forall n \geq 0, u_n \leq v_n$.
- 2. Déterminer la forme de la suite v.
- 3. En déduire $\lim_{n\to+\infty} v_n$ et $\lim_{n\to+\infty} u_n$.

Exercice 9. On définit deux suites a et b par $a_n = \sum_{k=0}^n \frac{1}{k!}$ et $b_n = a_n + \frac{1}{n \times n!}$. Montrer que ces deux suites sont adjacentes. Conclusion.

Exercice 10. Soient a et b deux réels tels que 0 < a < b. On définit deux suites u et

 $u_0 = a, v_0 = b$ et $\forall n \ge 0, u_{n+1} = \frac{2u_n v_n}{u_n + v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Montrer que $\forall n \geq 0, 0 < u_n < v_n$.
- 2. Montrer que la suite u est croissante et la suite v est décroissante.
- 3. Démontrer que $\forall n \geq 0, v_{n+1} u_{n+1} \leq \frac{1}{2}(v_n u_n)$.
- 4. Déduire des questions précédentes que les deux suites convergent vers la même limite l.
- 5. Calcul de la limite de u. On note $l = \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n$.
- (a) Déterminer la limite de la suite $(u_n v_n)$.
- (b) Montrer que la suite $(u_n v_n)$ est constante et expliciter la constante.
- (c) En déduire la limite de u et v.

Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes. En déduire que S converge.

Applications: Justifier la convergence des suites suivantes:

$$\left(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}\right)_{n \ge 0}, \quad \left(\sum_{k=0}^{n} (-1)^{k} r^{k}\right)_{n \ge 0} \text{ avec } 0 < r < 1, \left(\sum_{k=2}^{n} \frac{(-1)^{k}}{\ln(k)}\right)_{n \ge 2}.$$

Exercice 12. Limite de Césaro, Soit (u_n) une suite réelle convergeant vers un réel

On pose alors, pour tout $n \ge 1$, $v_n = \frac{u_1 + u_2 + \dots + u_n}{n}$.

- 1. On suppose dans cette question que $\ell = 0$.
 - (a) Soit $\varepsilon > 0$. Justifier qu'il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $n \geq n_0$, $|v_n| \le \left| \frac{u_1 + u_2 + \dots + u_{n_0 - 1}}{n} \right| + \frac{\varepsilon}{2}.$
 - (b) En déduire que $v_n \xrightarrow[n \to +\infty]{} 0$.
- 2. Sans nouveaux calculs, montrer que dans le cas général, on a $v_n \underset{n \to +\infty}{\longrightarrow} \ell$.

Exercice 13. Caractérisation séquentielle de la limite.

Soit $f:D\to\mathbb{R}$ une fonction définie sur un domaine $D\subset\mathbb{R}$, et soit $a\in\mathbb{R}$ un point de

On s'intéresse à l'équivalence suivante :

$$\lim_{x \to a} f(x) = \ell \iff$$

$$\forall (x_n)_{n\in\mathbb{N}} \in (D\setminus\{a\})^{\mathbb{N}}, (\lim_{n\to+\infty} x_n = a \implies \lim_{n\to+\infty} f(x_n) = \ell).$$

- 1. Rappeler la définition de la limite d'une fonction f en un point a, c'est-à-dire la signification de $\lim_{x\to a} f(x) = \ell$.
- 2. Rappeler la définition de la limite d'une suite convergente vers a, c'est-à-dire la signification de $\lim_{n\to+\infty}x_n=a.$
- 3. Sens direct: Montrer que si $\lim_{x\to a} f(x) = \ell$, alors pour toute suite $(x_n)_{n\in\mathbb{N}}$ dans $D\setminus\{a\}$ telle que $\lim_{n\to+\infty} x_n = a$, on a $\lim_{n\to+\infty} f(x_n) = \ell$.
- 4. Sens réciproque : par contraposé Montrer que si pour toute suite $(x_n)_{n\in\mathbb{N}}$ dans $D\setminus\{a\}$ telle que $\lim_{n\to+\infty}x_n=a$, on a $\lim_{n\to+\infty}f(x_n)=\ell$, alors $\lim_{x\to a}f(x)=\ell$.

Remarque : La notation $(D \setminus \{a\})^{\mathbb{N}}$ désigne l'ensemble des suites $(x_n)_{n \in \mathbb{N}}$ telles que $x_n \in D \setminus \{a\}$ pour tout $n \in \mathbb{N}$.

Exercice 14. On considère la fonction f définie sur \mathbb{R} par $f(x) = x \sin x$.

- 1. Trouver une suite (x_n) tendant vers $+\infty$ telle que $f(x_n)$ tende vers $+\infty$.
- 2. Trouver une suite (y_n) tendant vers $+\infty$ telle que $f(y_n)$ tende vers 0.
- 3. La fonction f admet-elle une limite quand x tend vers $+\infty$?

Exercice 15. Démonstration de théorème des valeurs intermidaires

Soit $f:[a,b]\to\mathbb{R}$ une fonction **continue** telle que $f(a)\leq 0$ et $f(b)\geq 0$. On souhaite démontrer qu'il existe $c\in [a,b]$ tel que f(c)=0 en construisant deux suites adjacentes qui convergent vers c.

On définit les suites (a_n) et (b_n) par dichotomie de la manière suivante :

- $a_0 = a, b_0 = b.$
- Pour tout $n \in \mathbb{N}$, on pose $c_n = \frac{a_n + b_n}{2}$.
 - Si $f(c_n) \le 0$, alors $a_{n+1} = c_n$ et $b_{n+1} = b_n$.
 - Si $f(c_n) > 0$, alors $a_{n+1} = a_n$ et $b_{n+1} = c_n$.
- 1. Montrer que pour tout $n \in \mathbb{N}$, $f(a_n) \leq 0$ et $f(b_n) \geq 0$. Indication: Raisonner par récurrence.
- 2. Montrer que les suites (a_n) et (b_n) sont adjacentes, c'est-à-dire :
 - (a_n) est croissante et (b_n) est décroissante.
 - $\lim_{n\to+\infty} (b_n a_n) = 0.$
- 3. En déduire que (a_n) et (b_n) convergent vers une même limite $c \in [a, b]$.
- 4. Montrer que f(c) = 0. Indication: Utiliser la continuité de f et le passage à la limite dans les inégalités $f(a_n) \leq 0$ et $f(b_n) \geq 0$.
- 5. Démontrer à présent la version générale c'est-à-dire : si f est continue sur [a,b] et k est une valeur comprise entre f(a) et f(b), alors il existe $c \in [a,b]$ tel que f(c) = k.