Examen CTI

Iunie 2020

1. Fie $f:[0,1]\times[0,2]\to[0,\infty)$, $f(x,y)=k(2x^2y+xy)$ cu $x\in[0,1]$, $y\in[0,2]$, k>0, densitate de probabilitate a vectorului aleator (X,Y).

- a). (0,5 p) Calculati constanta k.
- b) (1p) Determinati functiile de densitate de probabilitate f_X , f_Y corespunzatoare variabilelor aleatoare X si Y.
- c). (0,5 p) Calculati E(Y), Var(Y).
- d) (0,5p) Calculati Cov(X,Y)
- 2) Fie X,Y variabile aleatoare care au repartitia comuna data de tabelul:

Х	Υ	0	1	2	
-1		0,2	0,15	0,1	
0		0	0	0,15	
1		0,1	0,2	0,1	

- i). (1p) Determinati repartitiile marginale.
- ii) (1p) calculati E(X), Var (X), E(Y), Var(Y)
- iii) (0,5p) Calculati cov(X,Y).

3. (1p) Fie X o variabila aleatoare continua cu densitatea

$$f:[0,\infty)\times(0,\infty)\to(0,\infty), f(x,\theta)=\frac{x^2}{16\theta^3}e^{-\frac{x}{2\theta}}, x\geq 0, \theta>0.$$

Pentru o selectie de volum n, determinati un estimator al parametrului $\boldsymbol{\theta}$ prin metoda verosimilitatii maxime.