深度學習

Deep Learning

作業二

HW #2

B053012010 蔡宗穎

作業二、Gradient descent

Part 1. Linear regression with one variable

1.1 Plotting the Data

在使用資料之前,將資料以視覺化的方式呈現出來。但要能以視覺化的方式呈現的先決條件是:維數不會太多。若資料的維度超過3維,其實也非常難直接以此次作業的方式繪圖出來觀察。圖1.1是作業附檔 data 的 2D 圖,呈現的是人口與餐廳利潤的關係。

圖 1.1:作業附檔資料圖

1.2 Gradient Descent

1.2.1 Update Equations

闡述 theta 的值如何在每一次的 iteration 中更新。由於 Gradient Descent 是要找出最小的斜率,而斜率即是一次微分,所以就計算 Cost Function 對 theta 的一次微分,再乘上一個常數 alpha 作為 theta 更替的變化值。

1.2.2 Implementation

(1) Take a look at X and y. (註:由於做作業時發現沒有 pandas 這個 library,因此使用 my_array[:k]代替 my_array. head())

此處就是將 X 和 y 以矩陣的方式顯示出來,此次僅顯示到第 5 列。

```
In [10]: X[:5]
matrix([[1.
               , 6.1101],
               , 5.5277],
        [1.
                 8.5186],
        [1.
                 7.0032],
        [1.
                 5.8598]])
In [11]: y[:5]
matrix([[17.592],
        [ 9.1302],
        [13.662],
        [11.854],
         6.8233]])
```

(2) Convert X and y, initialize theta.

此處顯示 X, theta 和 y 的維度。(a, b) 為 a 列 b 行,即 a*b 的矩陣。

```
In [12]: X.shape,theta.shape,y.shape
Out[12]: ((97, 2), (1, 2), (97, 1))
```

(3) Compute the cost for initial solution.

此處以 X, theta, y 值加上前面建立的 computeCost 函式來計算第一次的 Cost 值。

```
In [13]: computeCost(X,y,theta)
Out[13]: 32.072733877455676
```

(4) Get g and cost from "gradientDescent" and "computeCost".

此處的 g 即為 gradientDescent 函式中的 theta 值,並且經過遞迴運算之後計算出 Cost 為 4.52 左右。可以看見,相對於前面用 0 當作 theta 的初始值,經過遞迴後的 theta 值計算出的 cost 比一開始下降非常多。

```
In [47]: g
Out[47]: matrix([[-3.24140214,    1.1272942 ]])
In [48]: computeCost(X,y,g)
Out[48]: 4.515955503078912
```

(5) Plot the linear model along with the data and see how well it fits.

此處將 data 與計算出的預測值線進行疊圖比較,可發現仍然有一定的誤差。圖 1.2.1 是其疊圖。

圖 1.2.1:Data with prediction

(6) Error function at each training iteration.

看看 error function 與遞迴數的關係。可以明顯看出,在遞迴前期下降速度非常快速,隨後慢慢趨緩,到 1000 次左右已經接近水平線。

圖 1.2.2:Cost 值與 iteration 次數的關係

*討論 1:

從上圖可看出,在經過一定的遞迴次數之後,即使遞迴數繼續增加,對 cost 值的優化效果並不佳,所以我們可以設定當 cost 值小於某個值時可以停止遞迴,減少不必要的計算。

*討論 2:

雖然嘗試但無法直接另外寫一個函式來找出最適合的 iteration 次數,所以這邊我就用手動的方式改變 iteration 次數與 alpha 值來進行觀察。表 1.2.1 為同樣 1000 次時改變 alpha 值其 cost 值的變化;表 1.2.2 為 alpha 固定為 0.01 時 iteration 改變其 cost 值的變化。

a l pha	cost
0.01 (base)	4. 515955503078912
0. 02	4.478020743321126 (decrease)
0. 021	4.477702136928591 (decrease)
0. 022	4.477480231721616 (decrease)
0. 023	4.477325687748957 (decrease)
0. 024	4.477218063976344 (decrease)
0. 0241	4.477209291457483 (decrease)
0. 0242	4.477200864169786 (decrease)
0. 02425	4.477329826672877 (decrease)
0. 0245	80310164278956. 2(increase)
0. 025	2.569410453446089e+48(increase)
0.03	N/A
0.1	N/A
0.005	4.714002349533667 (increase)
0.001	5.480269332020322(increase)

表 1. 2. 1: 同樣 1000 次時改變 alpha 值其 cost 值的變化

iteration	cost
1000 (base)	4. 515955503078912
2000	4. 4780276098799705
3000	4. 476999993521461
4000	4. 476972151337483
5000	4. 476971396982805

表 1. 2. 2: alpha 固定為 0. 01 時 iteration 改變其 cost 值的變化

由表 1.2.1 可知,cost 值確實是 converge 在 4.47 左右,且最低點位應可在 alpha 介於 $0.0242^{\circ}0.02425$ 之間的取值獲得;由表 1.2.2 可知,當 alpha 固定為 0.01 時,iteration 次數越多則 cost 值越小,但減小的幅度隨 iteration 越大而趨緩。因此若我們可以接受的容錯範圍較大,我們只需要做 1000 次即可;若我們要求精確度高,在時間及硬體允許下可做到 5000 次以上。並且,若 alpha 與 iteration 同時進行調整則 cost 值可能可以達到比單個調整更佳的效果,主要需要考量的是,時間與硬體成本是 否符合自己的需求。

*討論 3:

在 Cost function 的選擇上,除了講義給的 MSE 外,常見的還有 MAE (Mean Average Error)和 MSLE (Mean Squared Logarithmic Error)兩種。其中,MAE 和 MSE 又稱為 L1 和 L2 Loss,這邊主要討論這兩者 ^{1.2}。由於 MSE 有平方,因此對異常點會特別敏感。簡單地說,異常點本身就與 prediction 值相差較大,再平方就會更大,是故其會遠離異常點,計算出來的值偏向整體資料的平均數。而 MAE 就不太一樣,MAE 對異常點沒有 MSE 那樣敏感,會犧牲其他資料的準確度來進行預測,降低整體模型性能,所以計算出來的值會偏向整體資料的中位數。另外,由於中位數比平均數更穩定,MAE 的結果其實比 MSE 對於異常值更加穩定。

從上面的討論可以知道,如果要應用在能夠偵測出異常點的情況下, 使用 MSE 效果較佳;若沒有要特別去偵測異常點的話,使用 MAE 即可,計 算速度也較快。

(7) Apply scikit-learn's linear regression algorithm to the data from part 1 and see what the predictions look like.

此處是讓我們知道還有 sckit-learn 的套件可以直接拿來使用,這個 prediction 的圖與前面的 prediction 圖基本上相同。(因為 cost 都很接近 4.47。) 結果請見下頁圖 1.2.3。

圖 1.2.3: Data with prediction, using scikit-learn's algorithm

Part 2. Reference

[1] 機器學習\統計方法: 模型評估-驗證指標(validation index)
https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8%E5%A
D%B8%E7%BF%92-%E7%B5%B1%E8%A8%88%E6%96%B9%E6%B3%95%E6%A8%A1%E5%9E%8B%E8%A9%95%E4%BC%B0-

%E9%A9%97%E8%AD%89%E6%8C%87%E6%A8%99-b03825ff0814

[2] L1 vs. L2 Loss function

http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/