Abstract Algebra Homework 9

Joe Loser

April 11, 2016

This problem set includes problems 5*b*, 8, 18*c*, and 27 from section 16.6.

5b) For the given ring R with an ideal I, give an addition and multiplication table for R/I.

Solution: Recall that

$$R/I := \{r + I \mid r \in R\}.$$

We can easily see that the three elements of R/I are the following:

$$0 + I = \{0, 3, 6, 9\}$$
$$1 + I = \{1, 4, 7, 10\}$$
$$2 + I = \{2, 5, 8, 11\}.$$

Below is the addition table for R/I. Note that it is implicit, but worth noting, that we are talking about the addition of the three cosets here in R/I.

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Similarly, here is the multiplication table for R/I. Again, we are talking about multiplication of the cosets in R/I.

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

8) Prove or disprove: The ring $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is isomorphic to the ring $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$.

<u>Proof</u>: We will show that $\mathbb{Q}(\sqrt{2}) \ncong \mathbb{Q}(\sqrt{3})$. To do this, we need to show that no homomorphism from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{3})$ can be an isomorphism.

Suppose that $\phi: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3})$ is a homomorphism. We will begin by showing that ϕ fixes \mathbb{Z} and \mathbb{Q} .

We first show that $\phi(1) = 1$ since we do not get this for free by our definition of a ring homomorphism. Let $x \in \mathbb{Z}$. Suppose $\phi(1) = a + b\sqrt{3}$ where $a, b \in \mathbb{Q}$. Then we have that

$$\phi(x) = \phi(x \cdot 1)$$

$$= \phi(x)\phi(1)$$

$$= \phi(x\dot{1})\phi(1)$$

$$= \phi(x)\phi(1)^{2}$$

$$= \vdots$$

$$= \phi(x)\phi(1)^{n}.$$

So $\phi(x) = \phi(x)\phi(1)^n$. Thus $1 = \phi(1)^n$. Hence $\phi(1) = 1$.

We now use this result of $\phi(1) = 1$ to show that ϕ fixes \mathbb{Z} . That is, we extend it to show $\phi(n) = n$ for all $n \in \mathbb{Z}$. To show this, let $n \in \mathbb{Z}^+$. Then

$$\phi(n) = \phi(\underbrace{1 + \dots + 1}_{n-\text{times}})$$

$$= \underbrace{\phi(1) + \dots + \phi(1)}_{n-\text{times}}$$

$$= \underbrace{1 + \dots + 1}_{n-\text{times}}$$

$$= n.$$

The proof is similar for $n \in \mathbb{Z}^-$ and we conclude that $\phi(n) = n$ for all $n \in \mathbb{Z}$.

Next, we show that ϕ fixes \mathbb{Q} . That is, $\phi(y) = y$ for all $y \in \mathbb{Q}$. Let $y = \frac{a}{b}$ where $a, b \in \mathbb{Z}$. Then

$$\phi(y) = \phi\left(\frac{a}{b}\right)$$

$$= \phi(ab^{-1})$$

$$= \phi(a)\phi(b^{-1})$$

$$= \phi(a)\phi(b)^{-1}$$

$$= \frac{\phi(a)}{\phi(b)}$$

$$= \frac{a}{b}$$

since we just showed $\phi(n) = n$ for all $n \in \mathbb{Z}$ and both $a, b \in \mathbb{Z}$. Thus $\phi(y) = y$ for all $y \in \mathbb{Q}$.

Therefore, if $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ we see that

$$\phi(a+b\sqrt{2}) = \phi(a) + \phi(b\sqrt{2})$$
$$= \phi(a) + \phi(b)\phi(\sqrt{2})$$
$$= a + b\phi(\sqrt{2}).$$

So we need to figure out what exactly $\phi(\sqrt{2})$ is.

If $\phi(\sqrt{2}) = c + d\sqrt{3}$ for some $c, d \in \mathbb{Q}$ then what are the possible values of c and d? First notice that $\phi(2) = 2$ since $2 \in \mathbb{Z}$. We also know that $2 = (\sqrt{2})^2$. So then

$$\phi(2) = \phi((\sqrt{2})^2)$$

$$= \phi(\sqrt{2})\phi(\sqrt{2})$$

$$= (c + d\sqrt{3})^2$$

$$= c^2 + 3d^2 + 2cd\sqrt{3}.$$

Thus $2 = c^2 + 3d^2$ and $0 = 2cd\sqrt{3}$. Hence cd = 0. So either c = 0 or d = 0.

If c=0 then we have $2=3d^2$. So $d=\sqrt{\frac{2}{3}}\notin\mathbb{Q}$ which is a contradiction since $d\in\mathbb{Q}$. Similarly, if d=0 then we have that $2=c^2$. So $c=\sqrt{2}\notin\mathbb{Q}$ which is a contradiction since $c\in\mathbb{Q}$.

Thus $\phi(\sqrt{2}) = c + d\sqrt{3}$ for $c, d \in \mathbb{Q}$. But we have shown that we cannot find a suitable c or $d \in \mathbb{Q}$ such that this is satisfied. Hence we have shown that there is no isomorphism from $\mathbb{Q}(\sqrt{2})$ to $\mathbb{Q}(\sqrt{3})$. Therefore, as rings, $\mathbb{Q}(\sqrt{2}) \ncong \mathbb{Q}(\sqrt{3})$.

18c) Let $\phi : R \to S$ be a ring homomorphism. Let 1_R and 1_S be the identities for R and S, respectively. If ϕ is onto, show that $\phi(1_R) = 1_S$.

<u>Proof</u>: Let *R* and *S* be rings with identities 1_R and 1_S . Suppose ϕ is a ring homomorphism from *R* to *S*.

Let $e = \phi(1_R)$. So $e \in S$. Also let $s \in S$. Since ϕ is onto, there exists an element $r \in R$ so that $\phi(r) = s$. Then we have that

$$es = \phi(1_R)\phi(r)$$

$$= \phi(1_R \cdot r)$$

$$= \phi(r)$$

$$= s.$$

So es = s. We now show that that se = s as well.

$$se = \phi(r)\phi(1_R)$$
$$= \phi(r \cdot 1_R)$$
$$= \phi(r)$$
$$= s.$$

Therefore $e \in S$ and es = s = se for all $s \in S$. Hence e is a multiplicative identity for the ring S. However, 1_S is an identity as well. We have shown in class that if a ring has a multiplicative identity, it must be unique. We did this by showing that the set of units in a ring is a group and we know that the identity in a group is unique, hence the 1 in a ring is unique. Thus, it must be the case that $e = 1_S$. Since we defined e as $e = \phi(1_R)$ we conclude that $\phi(1_R) = 1_S$.

27) Let R be a commutative ring. An element $a \in R$ is nilpotent if $a^n = 0$ for some positive integer n. Show that the set of all nilpotent elements forms an ideal in R.

<u>Proof</u>: Let *N* be the set of all nilpotent elements, i.e. the nilradical. To show *N* is an ideal, we need to show

- (i) (N, +) < (R, +)
- (ii) $rx \in N$ and $xr \in N$ for all $r \in R$ and for all $x \in N$.

Clearly N is nonempty as $0 = 0^1 \in N$. Let $x, y \in N$. Then $x^n = y^m = 0$ for some $n, m \in \mathbb{N}$. By the Binomial Theorem we have that

$$(x+y)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} x^k y^{n+m-k}.$$

Note that if $k \ge n$, $x^k = 0$. So $x^k y^{n+m-k} = 0$. Similarly, if k < n, $y^{n+m-k} = 0$ so $x^k y^{n+m-k} = 0$. Thus $(x + y)^{n+m} = 0$ and hence $(x + y) \in N$. Notice that we needed the fact that R is commutative for this to hold.

To show that additive inverses exist in N, note that for $x \in N$ we have

$$(-x)^n = (-1)^n x^n$$
$$= (-1)^n \cdot 0$$
$$= 0.$$

So $-x \in N$. Thus N is an additive subgroup of R.

Lastly, let $r \in R$ and $x \in N$. Since R is commutative, we should only need to show $(xr)^n = 0$ and then automatically would we have $(rx)^n = 0$. We show both calculations here nonetheless.

$$(xr)^n = r^n x^n$$
$$= r^n \cdot 0$$
$$= 0.$$

Similarly,

$$(rx)^n = x^n r^n$$
$$= 0 \cdot r^n$$
$$= 0.$$

So both $rx \in N$ and $xr \in N$.

Since N is an additive subgroup of R and N absorbs R on the left and right, N is an ideal of R.