BDA - Assignment 8

21/11/2021

Contents

Seprate model
1
2
3
4
Pooled model
1
2
4
Hierarchical
1
2
3
5. 1

Seprate model

1.

We copy the model from assignment 7 and modify it to add the log likelihood in the "generated quantaties" block.

```
data {
  int<lower=0> N;
  int<lower=0> J;
  vector[J] y[N];
  real mean_mu_prior;
  real<lower=0> mean_sigma_prior;
  real<lower=0> sigma_prior;
}

parameters {
  vector[J] mu;
  vector <lower=0>[J] sigma;
}

model {
  //priors
  for (j in 1:J){
   mu[j] ~ normal(mean_mu_prior, mean_sigma_prior);
}
```

```
sigma[j] ~ inv_chi_square(sigma_prior);
 }
 //likelihoods
 for (j in 1:J)
 y[,j] ~ normal(mu[j], sigma[j]);
generated quantities {
 //for the first machine
real ypred;
vector[J] log_lik[N];
 ypred = normal_rng(mu[6], sigma[6]);
 for (j in 1:J){
  for (n in 1:N){
      log_lik[n,j] = normal_lpdf(y[n,j] | mu[j], sigma[j]);
   }}
}
mean_mu_prior = 100
mean_sigma_prior = 10
sigma_prior = 10
separate_data <- list(</pre>
 y = factory,
 N = nrow(factory),
 J = ncol(factory),
mean_mu_prior = mean_mu_prior,
mean_sigma_prior = mean_sigma_prior,
sigma_prior = sigma_prior
)
fit_separate = sampling(separatemodel,
 data = separate_data,
                                   # named list of data
  chains = 4,
                          # number of Markov chains
 warmup = 1000,
                        # number of warmup iterations per chain
 iter = 2000,
                        # total number of iterations per chain
  cores = 1,
                         # number of cores (could use one per chain)
  refresh = 0
                          # no progress shown
 )
print(fit_separate)
## Inference for Stan model: c220590bd7aa17b9434e50848db1ac01.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                                                                        97.5%
                   mean se_mean
                                         2.5%
                                                  25%
                                                          50%
                                                                  75%
## mu[1]
                  83.45
                           0.10 6.08
                                        72.69
                                                79.24
                                                        82.97
                                                                87.19
                                                                        96.45
## mu[2]
                 105.45
                           0.05
                                3.61
                                        98.07 103.16
                                                       105.56 107.79
                                                                      112.35
## mu[3]
                 89.63
                           0.05 3.99
                                        82.27
                                               87.07
                                                                        98.23
                                                        89.37
                                                                91.91
## mu[4]
                 110.91
                           0.04 2.53 105.77 109.33 110.95 112.55 115.96
## mu[5]
                 91.03
                           0.05 3.32
                                        84.59
                                               88.80
                                                        90.96
                                                                93.11
                                                                        97.71
## mu[6]
                 89.93
                           0.08 5.47
                                        79.52
                                                86.35
                                                        89.78
                                                                93.34 101.47
## sigma[1]
                 15.28
                           0.07 4.45
                                        9.27
                                                12.26
                                                        14.41
                                                                17.31
                                                                        26.17
## sigma[2]
                  8.58
                           0.04 2.34
                                         5.45
                                               6.97
                                                         8.19
                                                                        14.10
                                                                 9.67
                           0.04 2.60
                                         5.93
## sigma[3]
                  9.43
                                                 7.60
                                                         8.93
                                                                10.61
                                                                        15.68
```

```
## sigma[4]
                     5.61
                              0.03 1.57
                                             3.52
                                                      4.53
                                                               5.30
                                                                        6.31
                                                                                 9.50
                                             4.97
## sigma[5]
                     7.87
                              0.03
                                    2.10
                                                      6.42
                                                               7.49
                                                                        8.93
                                                                                12.90
                                                                                23.67
## sigma[6]
                    14.14
                              0.06
                                    3.81
                                             8.87
                                                     11.48
                                                              13.41
                                                                       15.99
                                            59.29
                                                                               121.23
## ypred
                    89.76
                              0.25 15.44
                                                     79.99
                                                              89.53
                                                                       99.28
## log_lik[1,1]
                    -3.69
                              0.01
                                    0.27
                                            -4.29
                                                     -3.86
                                                              -3.66
                                                                       -3.50
                                                                                -3.21
                              0.01
                                    0.66
                                            -5.82
## log_lik[1,2]
                    -4.18
                                                     -4.53
                                                              -4.07
                                                                       -3.71
                                                                                -3.23
                                            -5.87
                                                              -3.99
                                                                                -3.28
## log_lik[1,3]
                    -4.15
                              0.01
                                    0.67
                                                     -4.45
                                                                       -3.69
                    -3.39
## log_lik[1,4]
                              0.01
                                    0.54
                                            -4.76
                                                     -3.68
                                                              -3.29
                                                                       -3.00
                                                                                -2.64
## log_lik[1,5]
                    -4.39
                              0.01
                                    0.78
                                            -6.32
                                                     -4.81
                                                              -4.24
                                                                       -3.83
                                                                                -3.29
## log_lik[1,6]
                    -6.76
                              0.02
                                    1.47
                                           -10.48
                                                     -7.53
                                                              -6.51
                                                                       -5.68
                                                                                -4.75
## log_lik[2,1]
                    -3.93
                              0.00
                                    0.31
                                            -4.66
                                                     -4.09
                                                              -3.89
                                                                       -3.72
                                                                                -3.45
                    -3.22
                                            -3.90
                                                              -3.19
                                                                                -2.71
## log_lik[2,2]
                              0.01
                                    0.31
                                                     -3.40
                                                                       -3.00
                             0.01
                                                                                -2.83
                                    0.28
                                            -3.95
                                                     -3.47
                                                              -3.28
                                                                       -3.12
## log_lik[2,3]
                    -3.31
                                            -5.80
## log_lik[2,4]
                    -3.94
                              0.01
                                    0.78
                                                     -4.34
                                                              -3.79
                                                                       -3.36
                                                                                -2.87
                                    0.39
                                            -4.34
                                                              -3.34
                                                                                -2.82
## log_lik[2,5]
                    -3.40
                              0.01
                                                     -3.60
                                                                       -3.13
## log_lik[2,6]
                    -3.63
                              0.00
                                    0.26
                                            -4.17
                                                     -3.80
                                                              -3.61
                                                                       -3.45
                                                                                -3.19
                                            -4.66
                                                              -3.89
                    -3.93
                              0.00
                                    0.31
                                                     -4.09
                                                                       -3.72
                                                                                -3.45
## log_lik[3,1]
## log_lik[3,2]
                    -3.70
                              0.01
                                    0.47
                                            -4.82
                                                     -3.95
                                                              -3.61
                                                                       -3.37
                                                                                -2.98
## log_lik[3,3]
                                            -3.88
                                                              -3.24
                                                                                -2.80
                    -3.27
                              0.01
                                    0.27
                                                     -3.43
                                                                       -3.07
                                                                       -2.86
                                                                                -2.52
## log_lik[3,4]
                    -3.19
                              0.01
                                    0.47
                                            -4.30
                                                     -3.43
                                                              -3.11
                             0.01
## log_lik[3,5]
                    -4.45
                                    0.88
                                            -6.64
                                                     -4.88
                                                              -4.27
                                                                       -3.81
                                                                                -3.31
                    -4.25
                              0.01
                                    0.50
                                            -5.53
                                                              -4.14
                                                                       -3.91
                                                                                -3.58
## log_lik[3,6]
                                                     -4.45
                    -7.16
                                           -10.99
                                                              -6.90
                                                                                -5.05
## log_lik[4,1]
                              0.02
                                    1.51
                                                     -7.94
                                                                       -6.06
                                            -3.73
                                                              -3.12
## log_lik[4,2]
                    -3.14
                              0.01
                                    0.27
                                                     -3.31
                                                                       -2.95
                                                                                -2.68
## log_lik[4,3]
                    -3.29
                              0.01
                                    0.31
                                            -4.02
                                                     -3.47
                                                              -3.25
                                                                       -3.06
                                                                                -2.78
## log_lik[4,4]
                    -4.26
                              0.01
                                    0.95
                                            -6.56
                                                     -4.78
                                                              -4.05
                                                                       -3.54
                                                                                -2.97
                    -4.39
                              0.01
                                    0.78
                                            -6.32
                                                     -4.81
                                                              -4.24
                                                                       -3.83
                                                                                -3.29
## log_lik[4,5]
                                                                       -3.79
                                                                                -3.43
## log_lik[4,6]
                    -4.07
                              0.01
                                    0.40
                                            -5.02
                                                     -4.30
                                                              -4.03
                                    0.45
                              0.01
                                            -5.34
                                                              -4.26
## log_lik[5,1]
                    -4.31
                                                     -4.57
                                                                       -3.99
                                                                                -3.58
## log_lik[5,2]
                    -5.92
                              0.02
                                    1.53
                                            -9.77
                                                     -6.69
                                                              -5.62
                                                                       -4.77
                                                                                -3.88
## log_lik[5,3]
                    -6.57
                              0.02
                                    1.59
                                           -10.40
                                                     -7.44
                                                              -6.29
                                                                       -5.42
                                                                                -4.33
## log_lik[5,4]
                    -3.19
                              0.01
                                    0.47
                                            -4.30
                                                     -3.43
                                                              -3.11
                                                                       -2.86
                                                                                -2.52
## log_lik[5,5]
                    -3.05
                              0.01
                                    0.27
                                            -3.65
                                                     -3.22
                                                              -3.02
                                                                       -2.86
                                                                                -2.59
                                            -4.79
                                                              -3.90
                    -3.95
                              0.01
                                    0.36
                                                     -4.12
                                                                       -3.71
                                                                                -3.41
## log_lik[5,6]
   lp__
                 -167.75
                              0.06
                                    2.66 -173.73 -169.32 -167.31 -165.83 -163.63
##
##
                 n_eff Rhat
## mu[1]
                   4054
## mu[2]
                   5044
                            1
## mu[3]
                   5487
                            1
## mu[4]
                   4248
                            1
## mu[5]
                   4530
                            1
## mu[6]
                   5012
                            1
## sigma[1]
                   3573
                           1
## sigma[2]
                   3439
                            1
## sigma[3]
                   3969
                            1
## sigma[4]
                   3301
                            1
## sigma[5]
                   3749
                            1
## sigma[6]
                   4039
                            1
   ypred
                   3912
                            1
## log_lik[1,1]
                   2846
                            1
                   7538
## log_lik[1,2]
                            1
## log_lik[1,3]
                   6503
## log_lik[1,4]
                   6745
                            1
## log_lik[1,5]
                  6781
```

```
## log_lik[1,6]
                 7190
                          1
## log_lik[2,1]
                 4606
                          1
## log_lik[2,2]
                 3076
## log_lik[2,3]
                 3056
                          1
## log_lik[2,4]
                 6262
                          1
## log_lik[2,5]
                 5016
                          1
## log_lik[2,6]
                  3429
## log_lik[3,1]
                  4606
                          1
## log_lik[3,2]
                  6185
                          1
## log_lik[3,3]
                  2815
                          1
## log_lik[3,4]
                  4251
                          1
## log_lik[3,5]
                  5897
                          1
## log_lik[3,6]
                 5327
                          1
## log_lik[4,1]
                  8015
## log_lik[4,2]
                  2377
                          1
## log_lik[4,3]
                  3215
                          1
## log_lik[4,4]
                 6763
                          1
## log_lik[4,5]
                 6781
                          1
## log_lik[4,6]
                 4137
                          1
## log_lik[5,1]
                 4416
## log_lik[5,2]
                 6409
                          1
## log_lik[5,3]
                 6114
## log_lik[5,4]
                 4251
                          1
                          1
## log_lik[5,5]
                 2825
## log_lik[5,6]
                 4927
                          1
## lp__
                  1723
##
## Samples were drawn using NUTS(diag_e) at Wed Nov 17 20:48:14 2021.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
2
log_like_separate = extract_log_lik(fit_separate, merge_chains = FALSE)
r_eff <- relative_eff(exp(log_like_separate), cores = 4)</pre>
loo_separate <- loo(log_like_separate, r_eff = r_eff, cores = 4)</pre>
p_loo_separate <- loo_separate$p_loo</pre>
print(loo_separate)
## Computed from 4000 by 30 log-likelihood matrix
##
##
            Estimate
                        SE
## elpd loo
              -137.8 9.8
## p_loo
                19.6 5.3
## looic
               275.7 19.7
## Monte Carlo SE of elpd_loo is NA.
##
## Pareto k diagnostic values:
##
                             Count Pct.
                                            Min. n_eff
## (-Inf, 0.5]
                  (good)
                             22
                                   73.3%
                                            746
                                            320
## (0.5, 0.7]
                  (ok)
                              3
                                   10.0%
```

```
## (0.7, 1] (bad) 4 13.3% 15
## (1, Inf) (very bad) 1 3.3% 10
## See help('pareto-k-diagnostic') for details.
plot(loo_separate)
```

PSIS diagnostic plot

3.

We can the effective number of paramters, p_{eff} using the "p_loo" value from the above table which is $p_{loo-cv} = 19.6253022$

4.

From the table above we can see that the \hat{k} values are mostly good, but the are some very bad values as well. Hence, the model is unreliable.

Pooled model

1.

```
data {
  int<lower=0> N;
  int<lower=0> J;
  vector[N*J] y;
  real mean_mu_prior;
  real<lower=0> mean_sigma_prior;
  real<lower=0> sigma_prior;
```

```
parameters {
real mu;
real <lower=0> sigma;
model {
 //prior
 mu ~ normal(mean_mu_prior, mean_sigma_prior);
  sigma ~ inv_chi_square(sigma_prior);
 //likelihoods
  y ~ normal(mu, sigma);
generated quantities {
real ypred;
vector[N*J] log_lik;
ypred = normal_rng(mu, sigma);
  for (n in 1:(N*J)){
      log_lik[n] = normal_lpdf(y[n] | mu, sigma);
}
mean_mu_prior = 100
mean_sigma_prior = 10
sigma_prior = 10
pooled_data <- list(</pre>
  y = unlist(factory),
  N = nrow(factory),
 J = ncol(factory),
mean_mu_prior = mean_mu_prior,
mean_sigma_prior = mean_sigma_prior,
 sigma_prior = sigma_prior
fit_pooled = sampling(pooledmodel,
                                  # named list of data
  data = pooled_data,
  chains = 4,
                         # number of Markov chains
  warmup = 1000,
                        # number of warmup iterations per chain
                         # total number of iterations per chain
  iter = 2000,
                         # number of cores (could use one per chain)
  cores = 1,
                         # no progress shown
  refresh = 0
2.
log_like_pooled = extract_log_lik(fit_pooled, merge_chains = FALSE)
r_eff <- relative_eff(exp(log_like_pooled), cores = 4)</pre>
loo_pooled <- loo(log_like_pooled, r_eff = r_eff, cores = 4)</pre>
p_loo_pooled <- loo_pooled$p_loo</pre>
print(loo_pooled)
## Computed from 4000 by 30 log-likelihood matrix
```

}

```
##
##
             Estimate
                        SE
## elpd_loo
                       5.3
               -131.1
                  2.3
                      1.0
  p_loo
##
  looic
                262.2 10.5
##
## Monte Carlo SE of elpd_loo is 0.1.
##
## Pareto k diagnostic values:
##
                              Count Pct.
                                             Min. n_eff
##
   (-Inf, 0.5]
                  (good)
                              29
                                    96.7%
                                             1419
    (0.5, 0.7]
                                     3.3%
                                             276
##
                  (ok)
                               1
      (0.7, 1]
                  (bad)
                               0
                                     0.0%
                                             <NA>
##
##
      (1, Inf)
                  (very bad)
                               0
                                     0.0%
                                             <NA>
##
## All Pareto k estimates are ok (k < 0.7).
## See help('pareto-k-diagnostic') for details.
plot(loo_pooled)
```

PSIS diagnostic plot

3. As in the separate model, we can the value using the "p_loo" value from the above table which is $p_{loo-cv} = 2.3327397$

4.

From the above table we can see that all the k values are good (at the time of writing). The value is hence reliable.

Hierarchical

```
1.
data {
 int<lower=0> N;
 int<lower=0> J;
vector[J] y[N];
real mean_mu_prior;
real<lower=0> mean_sigma_prior;
real<lower=0> sigma_prior;
}
parameters {
real mu;
real <lower=0> sigma;
real <lower=0> tau;
vector[J] mu_i;
model {
  //hyperpriors
  mu ~ normal(mean_mu_prior, mean_sigma_prior);
  tau ~ inv_chi_square(sigma_prior);
 //prior
  for(j in 1:J){
    mu_i[j] ~ normal(mu, tau);
  sigma ~ inv_chi_square(tau);
 //likelihoods
 for(j in 1:J){
   y[,j] ~ normal(mu_i[j], sigma);
}
generated quantities {
real ypred;
real ypred_7;
vector[J] log_lik[N];
ypred = normal_rng(mu_i[6], sigma);
ypred_7 = normal_rng(mu, sigma);
for (j in 1:J){
  for (n in 1:N){
      log_lik[n,j] = normal_lpdf(y[n,j] | mu_i[j], sigma);
   }}
}
mean_mu_prior = 100
mean_sigma_prior = 10
sigma_prior = 10
hierarchical_data <- list(
y = factory,
```

```
N = nrow(factory),
 J = ncol(factory),
mean_mu_prior = mean_mu_prior,
mean_sigma_prior = mean_sigma_prior,
 sigma_prior = sigma_prior
fit_hierarchical = sampling(hierarchicalmodel,
  data = hierarchical_data,
                                        # named list of data
  chains = 4,
                         # number of Markov chains
 warmup = 1000,
                         # number of warmup iterations per chain
                        # total number of iterations per chain
# number of cores (could use one per chain)
 iter = 2000,
  cores = 1,
  refresh = 0
                         # no progress shown
2.
log_like_hierarchical = extract_log_lik(fit_hierarchical, merge_chains = FALSE)
r_eff <- relative_eff(exp(log_like_hierarchical), cores = 4)</pre>
loo_hierarchical <- loo(log_like_hierarchical, r_eff = r_eff, cores = 4)</pre>
print(loo_hierarchical)
## Computed from 4000 by 30 log-likelihood matrix
##
            Estimate SE
##
## elpd_loo -130.9 4.6
               2.1 0.9
## p_loo
## looic
               261.9 9.2
## Monte Carlo SE of elpd_loo is 0.1.
## Pareto k diagnostic values:
##
                             Count Pct.
                                           Min. n_eff
## (-Inf, 0.5]
                 (good)
                             29
                                96.7%
                                           225
                                   3.3%
                                           69
## (0.5, 0.7]
                 (ok)
                            1
##
      (0.7, 1]
                 (bad)
                              0
                                    0.0%
                                           <NA>
      (1, Inf)
##
                 (very bad) 0
                                    0.0%
                                           <NA>
##
## All Pareto k estimates are ok (k < 0.7).
```

See help('pareto-k-diagnostic') for details.

plot(loo_hierarchical)

PSIS diagnostic plot

p_loo_hierarchical <- loo_hierarchical\$p_loo</pre>

3.

As in the separate model, we can the value using the "p_loo" value from the above table which is $p_{loo-cv} = 2.0666404$. ## 4. From the above table we can see that the \hat{k} are mostly good with 1 ok value, so in overall they are all at least ok. Hence, the value is somewhat reliable.

5.

loo_compare(loo_separate,loo_pooled,loo_hierarchical)

```
## elpd_diff se_diff
## model3 0.0 0.0
## model2 -0.2 0.7
## model1 -6.9 7.5
```

From the results we can see that the difference in the hierarchical and pooled model are marginal, if any at all, while the separate receives mmuch worse score then the two other. However, since the standard errors are so large, it's hard to be sure of the result.