

COMPUTER ARCHITECTURE AND SOFTWARE EXECUTION PROCESS

MEMORY MANAGEMENT

Bachelor in Artificial Intelligence, Data and Management Sciences

m CentraleSupelec and ESSEC Business School - 2023/2024

OUTLINE

- **>** Classification
- Cache memory
- Memory Management

Back to the outline - Back to the begin

OUTLINE

- Classification
- Cache memory
- Memory Management

Back to the outline - Back to the begin

LOCALISATION

- Internal processor memory
- Main memory
- External memory

PHYSICAL CHARACTERISTICS

- Volatile / non-volatile
- Read only / read and write
- Destructive / non-destructive reading
- Erasable / non-erasable

ACCESS METHOD

- Random access
- FIFO or LIFO access
- Associative access
- Direct access
- Sequential access

TWO IMPORTANT ACRONYMS

- 1. RAM (Random Access Memory)
 - read/write access
 - random access
 - volatile
- 2. ROM (Read-Only Memory)
 - read-only access
 - random access
 - non-volatile

OUTLINE

- Classification
- > Cache memory
- Memory Management

Back to the outline - Back to the begin

TWO OBSERVATIONS

1. Temporal Locality

- When a processor searches for a word in memory, it is highly probable that it will need the same word soon after.
- Keep recently used words in quick memory.

2. Spatial Locality

- When a processor searches for a word in memory, it is highly probable to need a neighbouring word shortly after.
- Do not store an isolated word in fast memory, but a block of contiguous words.

CACHE PRINCIPLE

CACHE PRINCIPLE

- The main memory is virtually divided into blocks containing $M=2^m$ words.
- ullet A cache is organized in N lines; each line can contain one block.
- Each line has a descriptor allowing to know which block it contains.

HOW CACHE WORKS

HOW CACHE WORKS

OUTLINE

- Classification
- Cache memory
- Memory Management

Back to the outline - Back to the begin

SOME QUESTIONS

- Each process must use a separate memory area (address space) for security reasons.
 - What mechanism for allocating this space?
 - How to ensure the protection of this area?
 - How can we ensure the transparency of the position of this space concerning a program?

ADDRESS SPACE USAGE

- What does a process's memory space contain?
 - Code (known size)
 - Global variables (known size)
 - Stack (unknown size)
 - Dynamic memory area (unknown size)

MULTIPROGRAMMING WITH PARTITIONS

MULTIPROGRAMMING WITH PARTITIONS

Pros

- ✓ Material simplicity
- Transparency for programs
- Checking the validity of addresses

Cons

- **X** Fragmentation
- Fixed size of memory spaces

MULTIPROGRAMMING WITH PAGING

- The Main Memory is virtually divided into blocks (frames) allocated independently to processes.
- The address space of a process is divided into pages.
 - the size of a page is the same as the block size.

MULTIPROGRAMMING WITH PAGING

MULTIPROGRAMMING WITH PAGING

MULTIPROGRAMMING WITH VIRTUAL MEMORY

- Space of usable pages larger than space of physical memory
- The pages are either in the main memory or on the hard disk.

THANK YOU

Back to the begin - Back to the outline