

## **Nutrient Removal Project**

- Project Expectations
- Project rationale (context)
- Nitrogen Removal
- Sequencing Batch Reactor Operation
- Software that makes decisions
- Research Ideas

#### **Project Expectations**

- 3 weeks of plant operation 4 hours per week outside of class
- Data collection and data analysis used for plant control (evidence of good engineering)
- Maintain good records of what you did and what you learned
- Collaboration between teams is encouraged\_
- What is success? measure oxygen uptake rate as a function of time!

SBR design

# SBR OPERATION for Activated Sludge



#### Plant Flow Rate

- HRT of approximately 6 hours
- MLVSS (mixed liquor volatile suspended solids)
  - 3000 mg/L using clarifier
- 4 L tank therefore \_\_\_ L/day (per plant)

16 L/d \* 6 weeks \* 7 d/week \* 8 plants = 5400 L

# Suspended Solids Targets and Measurements

- Key to reactor success is keeping adequate MLVSS in the reactor
- Solids retention time is approximately 10 days
- Target MLVSS of approximately 3 g/L
- If reactor volume is 4 L then waste \_\_\_\_\_g/day
- Effluent concentration of solids needs to be very low

#### SBR Feed and Waste Volumes

- What is the recycle volume?
- What is the volume of waste (tap+concentrate)
  - What is the volume of tap water?
  - What is the volume of concentrated waste?



## SBR States and Exit Decision Variables



| State           | Exit decision variable |
|-----------------|------------------------|
| Fill with water | <b>*</b>               |
| Fill with waste |                        |
| Aerate          |                        |
| Settle          |                        |
| <u>Drain</u>    |                        |
|                 |                        |

### **Synthetic Feed Composition**

| Stock 1 (100x) | Compound            | Chemical<br>Formula                                               | Molecular<br>Weight<br>g/mol | Concentration<br>mg/L |
|----------------|---------------------|-------------------------------------------------------------------|------------------------------|-----------------------|
| refrigerator   | Starch              |                                                                   | ~40,000                      | 84.40                 |
|                | Casein              |                                                                   | ~30,000                      | 125.00                |
| -,۲            | Sodium acetate      | C <sub>2</sub> H <sub>3</sub> O <sub>2</sub> Na•3H <sub>2</sub> 0 | 136.1                        | 31.90                 |
| <del></del> )  | Capric acid         | C <sub>10</sub> H <sub>20</sub> O <sub>2</sub>                    | 172.3                        | 11.60                 |
| <i>₽</i> ≻     | Ammonium chloride   | NH <sub>4</sub> Cl                                                | 53.5                         | 75.33                 |
| ام/ ====       | Potassium phosphate | K <sub>2</sub> HPO <sub>4</sub>                                   | 174.2                        | 6.90                  |
|                | Sodium hydroxide    | NaOH                                                              | 40.0                         | 1.75                  |
| \ <u>+</u> (   | Glycerol            | C <sub>3</sub> H <sub>8</sub> O <sub>3</sub>                      | 92.1                         | 12.00                 |
|                | Magnesium sulfate   | MgSO <sub>4</sub> ·7H <sub>2</sub> O                              | 246.5                        | 69.60                 |
| Stock 2        | Sodium molybdate    | NaMoO <sub>4</sub> ·2H <sub>2</sub> O                             | 241.9                        | 0.15                  |
| 1000x          | Manganese sulfate   | MnSO <sub>4</sub> ·H <sub>2</sub> O                               | 169.0                        | 0.13                  |
| 1000x          | Cupric sulfate      | CuSO <sub>4</sub> ·4H <sub>2</sub> O                              | 249.7                        | 0.08                  |
| 7              | Zinc suflate        | ZnSO <sub>4</sub> ·7H <sub>2</sub> O                              | 287.5                        | 0.48                  |
| Stock 3        | Calcium chloride    | CaCl <sub>2</sub> ·2H <sub>2</sub> O                              | 147.0                        | 22.50                 |
|                | Iron chloride       | FeCl <sub>3</sub> ·6H <sub>2</sub> O                              | 270.3                        | 18.33                 |
| 1000x          | Cobalt chloride     | CoCh-6H <sub>2</sub> O                                            | 237.9                        | 0.42                  |

#### **Feed Characteristics**

- Completely soluble at feed concentration
- 325 mg/L COD (Chemical Oxygen Demand)
- 40.9 mg/L nitrogen

#### **Organic Feed Lines**

- What will happen if the organic feed line holds a high concentration of organics at room temperature for several weeks?
- Why might this be a problem?
- How can you solve this problem?

Not necessary for 1 week of operation

## Dissolved Oxygen Control

- Suppose the fill cycle just ended
- How could you set the initial aeration
- How could you correct the aeration rate?
- What are some potential control strategies?

| • |      |      |      |   |
|---|------|------|------|---|
| • |      |      |      |   |
|   | <br> | <br> | <br> | - |

On-off controller is available as an external function

#### **Project Constraints**

- 1 peristaltic pump
- 6-24 V devices (Valves, stirrer)
- 1-110 V device can be turned on and off using a 24 V control
  - The 110 V device can be controlled by a 24 V control that also controls a valve
- 1 pH sensor, 1 DO sensor, 4 pressure sensors

#### This Week's Objectives

- Build a sequencing batch reactor that includes:
- Aeration
  - Cycled valve in air line using accumulator
- Stirring
- Automated Empty/Fill-Dilute cycle
- Configured sensors, set points, rules, and states

#### This Week's Objectives (continued)

- Add the DO probe
- Run Plant in automatic mode
- Run your plant with fake synthetic waste!
- Manually add sodium sulfite to mimic oxygen demand and see how your plant responds to low oxygen levels
- Eliminate all leaks!
- Ready for waste Wednesday after break

#### **Duty Cycle Function**

Note that the "on value" could also be calculated!

on time

On ti

How could you set up the process controller to measure oxygen uptake rate using this code?

time

### Startup Checklist

- Verify that all sensors are working
- Replace DO membrane
- Calibrate dissolved oxygen probe in saturated water
- Fill reactor with mixed liquor from IWWTP activated sludge tank
- Fill organic waste bottle with organic waste
- Measure MLVSS (mixed liquor volatile suspended solids)
- Begin in settle phase (make sure time is long enough)

# Standard Operating Procedure (SOP)

- What is in the data files?
  - All sensors
  - All variables
- What is in the state log files?
  - Times, states, rule that caused state to change
- How often must you add organic waste in the refrigerator?
- Scrape sides of reactor to keep solids in suspension
- Verify that fill and drain times are reasonable (no clogged valves)

#### PROCESS CONTROL SOFTWARE

- Data Acquisition
- Process Control
  - Make decisions based on data
  - Send command to ProCoDA hardware to Control valves, pumps, stirrers
- Data logging to file (and variable set points)
- Plot data on graph
- Handle Operator Commands

## Organize your Tasks

- Goal is sequencing batch reactor with controlled aeration
- What tasks must you accomplish?
- How can you maximize your productivity?

### Proportional Integral Derivative Control

$$u(t) = K_c \left( \varepsilon + \frac{1}{T_I} \sum_{\varepsilon} \varepsilon \cdot \Delta t + T_D \frac{\Delta \varepsilon}{\Delta t} \right)$$

K<sub>c</sub> is controller gain (tuning parameter)

 $R_c$  is the integral time (tuning parameter)  $T_I$  is the derivative time (tuning parameter)

 $\Delta \varepsilon / \Delta t$  is the error rate of change (Note that this is the same as the dissolved

oxygen concentration rate of change)  $\sum \varepsilon \cdot \Delta t \quad \text{is the area under the curve of the error as a function of time.}$  u(t) is the airflow rate that the controller sets

The Error (8) is the difference between the Process Variable and the desired Setpoint. The controller uses the proportional gain,  $K_c$ , the integral time constant,  $T_i$ , and the derivative time constant, Td, to determine an Output which drives the Error to zero.

## Proportional



## **Proportional Integral**



## Global Need for Better Nutrient Management

- Coastal dead zones
- Fish kills
- Migratory routes blocked
- Loss of diverse ocean ecosystems
- Human Population
- Agribusiness

## Long Island Sound: August 1998



## Long Island Sound Study

- The LISS adopted a plan in 1998 to reduce nitrogen loads from human sources in the Sound by 58.5%
- The greatest human sources of nitrogen in the Sound are from wastewater treatment plants discharging into waters within the Long Island Sound watershed, or directly into the Sound itself
- A major component of the nitrogen reduction plan includes the need for wastewater treatment upgrades that emphasize nitrogen removal
- As a result of BNR upgrades to STPs, there has been a reduction of 19.2 percent in nitrogen loading to Long Island Sound from STPs in the 1990's (10% reduction of total)

http://www.longislandsoundstudy.net/pubs/slides/soundhealth/ch2.pdf

#### **Gulf of Mexico**

- The "Dead Zone", or hypoxic zone, is a 7,000 square mile expanse of oxygen-depleted waters that cannot sustain most marine life
- Human activity has resulted in a significant increase in nitrogen flux
- Nitrogen sources include
  - Industry
  - Municipal waste water treatment
  - Agriculture
    - Fertilizer
    - Livestock manure

## Bottom water hypoxia: Frequency of midsummer occurrence 1985-1999



## Reducing the Footprint of a **Growing Global Population**

- Conventional activated sludge process
  - Removes BOD (organic carbon to CO<sub>2</sub>)
- Nitrification
  - Removes TKN (organic nitrogen and ammonia to nitrite and nitrate)
- Denitrification
  - Removes nitrite and nitrate by conversion to N<sub>2</sub> gas

#### NITROGEN REMOVAL



- Protect watersheds and coastal areas from eutrophication
- Treatment of high nitrogen wastes
  - Agricultural runoff
  - Feedlot wastewater
  - Centrate from Wastewater Treatment Plants
- Treatment of drinking waters that contain elevated nitrite and nitrate

### Requirements for Nitrogen Removal

- Electron Donor
- Organic (heterotrophs)  $\frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O \rightarrow \frac{1}{4}CO_2 + H^+ + e^-$ 
  - Organic carbon (BOD) present in the waste
    - Methanol (often added when organic carbon is already depleted)
  - Inorganic (autotrophs)
    - H<sub>2</sub> or reduced sulfur (H<sub>2</sub> can be added using bubbleless membrane dissolution)
- - Optimal range of 7-8
  - Denitrification produces strong base

$$CH_{3}COOH + \frac{8}{5}NO_{3}^{-} + \frac{4}{5}H_{2}O \rightarrow \frac{4}{5}N_{2} + 2H_{2}CO_{3} + \frac{8}{5}OH^{-}$$

# Denitrification Reactions and Enzymes

- Reaction
- Enzyme
- $NO_3^- + 2e^- + 2H^+ = NO_2^- + H_2O$  Nitrate Reductase
- $NO_2^+ + e^- + 2H^+ = NO + H_2O$  Nitrite Reductase
- $2NO + 2e^{-} + 2H^{+} = N_{0}O + H_{0}O$  Nitric Oxide Reductase
- $N_2O + 2e^- + 2H^+ = N_{2(g)} + H_2O$  Nitrous Oxide Reductase
- Overall process requires 5 electron equivalents per nitrogen

## Reactor Designs for Denitrification

- Activated Sludge
- Biofilm Processes
- One sludge
  - Biomass storage and decay
  - Classical pre-denitrification
  - Simultaneous nitrification with denitrification
- Barnard Process
- Sequencing Batch Reactor

Trick: Reserve some electron donor (organic carbon) for denitrification

## Role of Oxygen Concentration

- Inhibition of nitrogen-reductase genes
  - Genes are repressed when oxygen concentration exceeds 2.5 – 5 mg O<sub>3</sub>/L
  - Denitrifiers can produce reductase at relatively high O<sub>2</sub> concentration
- Inhibition of nitrogen-reductase activity
  - Reaction inhibited when oxygen concentration exceeds a few tenths of a mg O<sub>3</sub>/L
  - Denitrification can only occur if oxygen levels are very low somewhere in the reactor!

# Tertiary Denitrification using Activated Sludge

- SRT (5 d) >>HRT
- $SRT = \frac{\text{Mass Sludge In System}}{\text{Mass Sludge Leaving System Per Day}}$
- High cell concentration increases reaction rate



#### **Biofilm Processes**

- Submerged fixed beds of rocks, sand, limestone, or plastic media
- Fluidized beds of sand, activated carbon, and pellets of ion-exchange resin
- Circulating beds of a range of lightweight particles
- Membrane bioreactors (membrane supplies H<sub>2</sub> and is the attachment surface)
- HRT can be less than 10 minutes!

## Biomass Storage and Decay

- Uses \_\_\_\_\_ as electron donor for denitrification
- Slow kinetics of endogenous decay



#### Classical Pre-Denitrification

- Uses as electron donor for denitrification
- Requires high mixed liquor recycle (4Q<sub>plant</sub>) Low BOD



## Simultaneous Nitrification with Denitrification

- Uses \_\_\_\_ as electron donor
- Low oxygen levels permit denitrification
- Can achieve 100% N removal!



#### **Barnard Process**

• Greater than 90% removal of TKN!



### Barnard Sequencing Batch Reactor

 Same process as Barnard carried out in a single tank

