MATH 5431: Advanced Mathematical Statistics I

Final examination

1. Let $X \sim \text{Poisson}(\lambda)$ with pdf

$$P_{\lambda}(X=x) = \lambda^x e^{-\lambda}/x!$$
 $x = 0, 1, 2, \cdots$

Find a variance stabilizing transformation for X.

- 2. Suppose X_1, \dots, X_n are an i.i.d. sample from $N(\mu, \sigma^2)$ with both parameters unknown.
 - (a) Write down the likelihood function of (θ, σ^2) .
 - (b) Find the profile likelihood of μ . (Definition given below.)
 - (c) Derive the profile MLE for μ .

Definition: Given the joint likelihood $L(\theta, \eta)$, the profile likelihood of θ is $L(\theta) = \max_{\eta} L(\theta, \eta)$.

- 3. Suppose we have multinomial data $(N_1, N_2, N_3) \sim \text{multinomial}(p_1, p_2, p_3)$, but it is known that $p_3 = 1/3$. Find the MLE of the unknown probabilities p_1, p_2 , and interpret the result.
- 4. Given iid sample X_1, \dots, X_n , let $S_n^2 = n^{-1} \sum_{i=1}^n (X_i \bar{X})^2$ be an estimator of the population variance σ^2 . Use S_n^2 to derive a Jackknife estimator of σ^2 .

Definition: Suppose that $T_n = T(X_1, ..., X_n)$ estimates $\theta = T(F)$. Let $T_{n-1}^{(-i)}$ be the estimator of θ based on the data after deleting X_i , i.e., $T_{n-1}^{(-i)} = T(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n)$. The jackknife estimate of $\theta = T(F)$ is

$$T_n^{Jack} = nT_n - (n-1)T_{n-1}^{(\cdot)}, \quad \text{where} \quad T_{n-1}^{(\cdot)} = \frac{1}{n} \sum_{i=1}^n T_{n-1}^{(-i)}.$$

5. Let $X \sim N(\mu, \sigma^2)$, and let T(X) = X - g(X) be an estimator of μ . Denote g'(x) to be the derivative of g. Show that

$$E(T(x) - \mu)^2 = \sigma^2 + Eg^2(x) - 2\sigma^2 Eg'(X).$$

Hence, Stein's unbiased risk estimate is $SURE(T(X)) = \sigma^2 + g^2(x) - 2\sigma^2 g'(X)$.

6. Let Y_i be independent $Poisson(\lambda_i)$ with $\lambda_i = \exp{\{\beta x_i\}}$. Derive the score function and find an implicit solution for the MLE of β , and its asymptotic distribution.

1