Домашняя работа №2

по дисциплине "Дифференциальная геометрия и топология"

Винницкая Дина Сергеевна

Группа: Б9122-02.03.01сцт

1 Задание

- 1. Доказать, что открытые множества, введённые в доказательстве бесконечности \mathbb{P} , образуют топологию на \mathbb{Z} .
- 2. Набор Σ открытых множеств является базой au:

$$\tau \iff \forall U \in E \ \forall x \in U \ \exists \mathbb{Z} \subset U : x \in \mathbb{Z} \subset U$$

2 Доказать, что открытые множества, введённые в доказательстве бесконечности \mathbb{P} , образуют топологию на \mathbb{Z} .

Решение:

Известно, что для того чтобы множество являлось топологией, оно должно удовлетворять следующим условиям:

$$\emptyset, \mathbb{Z} \in \tau$$

По определению, U может быть пустым множеством \emptyset .

Также $\forall a \in U \ \exists b=1>0 \in \mathbb{Z}: U=\mathbb{Z} \subset \mathbb{Z} \implies \mathbb{Z} \in \tau$

Если $\{U_i \in \tau | i \in J\}$, **то** объединение $(U_1 \cup U_2 \cup \cdots \cup U_n) \in \tau$

$$U = \bigcup U_i \implies \forall a \in U \ \exists U_i : a \in U_i$$

$$U_i \in \tau \implies \exists b > 0 \in \mathbb{Z} : N_{a,b} \subset U_i \subset U \implies N_{a,b} \subset U$$

Следовательно:

$$\forall a \in U \ \exists b > 0 \in \mathbb{Z} : N_{a,b} \subset U \implies U \in \tau$$

$$\forall U_1, U_2 \in \tau; \quad U_1 \cap U_2 \in \tau$$

$$U = \bigcap U_i$$

$$\forall a = a_1 = a_2 \in U \ \exists b = \prod_{i=1}^2 b_i > 0 \in \mathbb{Z} : N_{a,b} \subset U_i \implies N_{a,b} \subset U \implies U \in \tau$$
$$\{a + b \cdot k \cdot n\} \subset \{a + b \cdot n\}$$

3 Набор Σ открытых множеств является базой τ :

$$\tau \iff \forall U \in \tau \ \forall x \in U \ \exists \mathbb{V} \in \Sigma : x \in \mathbb{V} \subseteq U$$

Решение:

Из определения базы топологии B. Пусть набор $B = \{V_i | i \in I\}$:

$$B = \{V_i\} : \forall U \in \tau \implies \exists I \subset \mathbb{N} : U = \bigcup_{i \in I} V_i$$

Необходимое условие: Необходимо доказать, что если Σ — база, то выполняется данное условие. Предпологаем, что Σ — база топологии:

$$\forall U \in \tau \implies U = \bigcup_{i \in I} V_i, \quad V_i \in \Sigma$$

$$U = \bigcup V_i \implies \forall x \in U \ \exists V_i : x \in V_i$$
$$\implies \forall x \in U \ \exists V_i \in \Sigma : x \in V_i \subset U$$

Достаточное условие: Теперь покажем, что если выполняется данное условие, то Σ является базой. Из условия следует, что

$$\exists I \subset \mathbb{N} : V_i \subset U, \quad i \in I$$

$$\forall U \in \tau \ \exists I \subset \mathbb{N} : U = \bigcup_{i \in I} V_i$$

Следовательно, $\Sigma = \{V_i\}$ — это база топологии.