Propositional Logic and Resolution

CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Propositional logic

- Alphabet A:
 - Propositional symbols (identifiers)
 - Connectives:
 - Λ (conjunction),
 - V (disjunction),
 - ¬ (negation),
 - $\bullet \leftrightarrow (logical equivalence),$
 - \rightarrow (implication).
 - *Well-formed formulas (wffs*, denoted by *F*) over alphabet A is the smallest set such that:
 - If p is a predicate symbol in A then p \in F.
 - If the wffs F, G \in F then so are $(\neg F)$, $(F \land G)$, $(F \lor G)$, $(F \rightarrow G)$ and $(F \leftrightarrow G)$.

Interpretation

- An *interpretation* I is a subset of propositions in an alphabet A.
- Alternatively, you can view I as a mapping from the set of all propositions in A to a 2-values Boolean domain {true, false}.
- This name, "interpretation", is more commonly used for predicate logic; in the propositional case, this is sometimes called a "substitution" or "truth assignment".

Semantics of Well-Formed Formulae

• A formula's meaning is given w.r.t. an interpretation I:

Models

- An interpretation I such that I |= F is called "a model" of F.
- "G is a *logical consequence* of F" (denoted by F |=G|) iff every model of F is also a model of G.
 - (in other words, G holds in every model of F; or G is true in every interpretation that makes F true)

Models

- A formula that has at least one model is said to be "satisfiable".
- A formula for which every interpretation is a model is called a "tautology".
- A formula is "inconsistent" if it has no models.
- Checking whether or not a formula is satisfiable is NP-Complete (There are exponentially many interpretations)
- Many interesting combinatorial problems can be reduced to checking satisfiability: hence, there is a significant interest in efficient algorithms/heuristics/systems for solving the "SAT" problem.

Logical Consequence

- Let P be a set of clauses {C1, C2,..., Cn}, where
 - each clause Ci is of the form (L1 V L2 V ... V Lk), and where
 - each Lj is a literal: i.e. a possibly negated proposition
- A model for P makes every one of Ci 's in P true.
- Let G be a literal (called "Goal")
- Consider the question: does P = G?
- We can use a proof procedure, based on *resolution* to answer this question.

Proof System for Resolution

$$\{C\} \cup P \vdash C \qquad (\in P)$$

$$\frac{P \vdash (A \lor C_1) \qquad P \vdash (\neg A \lor C_2)}{P \vdash (C_1 \lor C_2)} \quad \text{Resolution}$$

• The above notation is of "inference rules" where each rule is of the form:

• P | - C is called as a "sequent" (P⊢C means C can be

proved if P is assumed)

Proof System for Resolution

- Given a sequent, a *derivation* of a sequent (sometimes called its "proof") is a tree with:
 - that sequent as the root,
 - empty leaves, and
 - each internal node is an instance of an inference rule.
- A proof system based on Resolution is
 - Sound: i.e. if $F \mid G$ then $F \mid G$.
 - not Complete: i.e. there are F,G s.t. F = G but F not |-G|.
- E.g., $p \mid = (p \ V \ q)$ but there is no way to derive $p \mid (p \ V \ q)$.

Resolution Proof (in pictures)

$$P = \{(p \lor q), (\neg p \lor r), (\neg q \lor r)\}$$

$$\begin{array}{c|c}
\hline
(p \lor q) & \hline
(q \lor r) & \hline
\\
r & \hline
\end{array}$$

$$\begin{array}{c|c}
\hline
(q \lor r) & \hline
\\
r & \hline
\end{array}$$

Resolution Proof (An Alternative View)

- The clauses of P are all in a "pool".
- Resolution rule picks two clauses from the "pool", of the form A V C1 and ¬A V C2.
- and adds C1 V C2 to the "pool".
- The newly added clause can now interact with other clauses and produce yet more clauses.
- Ultimately, the "pool" consists of all clauses C such that P | C.

Resolution Proof (An Example)

- $P = \{ (p V q), (\neg p V r), (\neg q V r) \}$
- Here is a proof for $P \mid = r$:

Clause Number	Clause	How Derived
1	$p \lor q$	$\in P$
2	$\neg p \lor r$	$\in P$
3	$\neg q \lor r$	$\in P$
4	$q \vee r$	Res. 1 & 2
5	r	Res. 3 & 4

Refutation Proofs

- While resolution alone is incomplete for determining logical consequence, resolution is sufficient to show inconsistency (i.e. show when P has no model).
- This leads to Refutation proofs for showing logical consequence.
- Say we want to determine $P \mid = r$?, where r is a proposition.
- This is equivalent to checking if P U $\{ \neg r \}$ has an empty model.
- This we can check by constructing a resolution proof for P \cup $\{\neg r\} \mid -\Box$, where \Box denotes the unsatisfiable empty clause.

Refutation Proofs (An Example)

- Let $P = \{(p \ V \ q), (\neg p \ V \ r), (\neg q \ V \ r), (p \ V \ s)\}, and$
- \bullet G = (r V s)

Clause Number	Clause	How Derived
1	$p \lor q$	$\in P \cup \neg G$
2	$\neg p \lor r$	$\in P \cup \neg G$
3	$\neg q \lor r$	$\in P \cup \neg G$
4	$\neg r$	$\in P \cup \neg G$
5	$\neg s$	$\in P \cup \neg G$
6	q∨r	Res. 1 & 2
7	r	Res. 3 & 6
8		Res. 4 & 7

Soundness of Resolution

- If $F \mid G$ then $F \mid G$:
 - For F | G, we will have a derivation (aka "proof") of finite length.
 - We can show that $F \mid = G$ by induction on the length of derivation.

Refutation-Completeness of Resolution

- If F is inconsistent, then F \mid \square :
 - Note that F is a set of clauses. A clause is called an unit clause if it consists of a single literal.
 - If all clauses in F are unit clauses, then for F to be inconsistent, clearly a literal and its negation will be two of the clauses in F. Then resolving those two will generate the empty clause.
 - A clause with n + 1 literals has "n excess literals". The proof of refutation-completeness is by induction on the number of excess literals in F.

Refutation-Completeness of Resolution

- If F is inconsistent, then F \mid \square :
 - Assume refutation completeness holds for all clauses with n excess literals; show that it holds for clauses with n + 1 excess literals.
 - From F, pick some clause C with excess literals. Pick some literal, say A from C. Consider $C' = C \{A\}$.
 - Both F1=(F-{C})U{C'} and F2=(F-{C}) U {A} are inconsistent and have at most n excess literals.
 - By induction hypothesis, both have refutations. If there is a refutation of F1 not using C', then that is a refutation for F as well.
 - If refutation of F1 uses C', then construct a resolution of F by adding A to the first occurrence of C' (and its descendants); that will end with {A}. From here on, follow the refutation of F2. This constructs a refutation of F.