

SCC0261 - Multimídia

Prof.: Dr. Rudinei Goularte (rudinei@icmc.usp.br)

Aula 9 - Vídeo

Instituto de Ciências Matemáticas e de Computação - ICMC Sala 4-234

1. Vídeo Analógico

- Por quê estudar vídeo analógico?
 - Indústria da TV.
 - Digitalização = passo posterior.
- O que é necessário saber?
 - Varredura.
 - Parâmetros.
 - Padrões para sistemas em cores.

2

1. Vídeo Analógico

- Uma imagem pode ser capturada eletricamente através de uma leitura seqüencial dos valores de brilho de uma série de pontos que a compõem, convertendo assim a imagem inteira
- Isso é chamado de rastreamento ou varredura (scanning).
 Um sinal analógico (voltagem) é gerado, representando o brilho de um ponto da imagem. Se o processo é feito rapidamente (30 a 60 vezes por segundo), os olhos vêem uma imagem contínua.

3

1. Vídeo Analógico

- 1.1 Varredura
 - Quadro = seqüência de linhas separadas por intervalos em branco.
 - Informações extras nos retraços.
 - Closed caption, p.e. (VBI 21).

5

1. Vídeo Analógico

- 1.2 Parâmetros de varredura.
 - Taxa de Aspecto (Aspect ratio).
 - Também chamada de razão de aspecto.
 - É definida como a razão entre a largura e a altura do quadro.
 - A taxa de aspecto define o "formato" da imagem (linhas x colunas).
 - A razão de aspecto dos sistemas de televisão convencionais é padronizada em 4:3.
 - HDTV = 16:9.

1. Vídeo Analógico

- 1.2 Parâmetros de varredura.
 - Número de linhas.
 - É o número de linhas de varredura em um quadro.
 - Quanto mais linhas, maior a resolução.
 - 525 (EUA), 625 (Europa).

1. Vídeo Analógico

- 1.2 Parâmetros de varredura.
 - Taxa de quadros.
 - Em sistemas convencionais: 25 ou 30 fps.
 - Depende do país.
 - Essas taxas produzem flickering.
 - > 50 fps.
 - Entrelaçamento (interlace).
 - Permite aumentar a taxa de refresh sem aumentar a quantidade de amostras.

1. Vídeo Analógico

10

1. Vídeo Analógico

- 1.3 Padrões para sistemas em cores.
 - Vídeo composto (composite video): sinais R, G, e B são combinados em um único sinal composto de vídeo.
 - Vídeo componente (component video): possui dois componentes (com 2 ou mais canais), um para a luminância e outro para a crominância. Ex.: YPbPr

1. Vídeo Analógico

- 1.3 Padrões para sistemas em cores.
 - Sistemas de transmissão (terrestre) de TV utilizam vídeo composto.
 - Requer menos canais que RGB -> menos banda.
 - Padrões para cores em vídeo composto mais comuns: NTSC, SECAM e PAL.

12

1. Vídeo Analógico

- 1.3 Padrões para sistemas em cores.
 - NTSC (National Television Standards Committee) -Criado nos Estados Unidos em 1953 . Conhecido como: Never Twice the Same Color, devido à susceptibilidade do sinal. Taxa de quadros é de 29.97/segundo com 525 linhas/quadro.
 - SECAM (Systeme En Coleur Avec Memoire) Criado na França no final dos anos 60, e usado por alguns outros países. Taxa de quadros é 25/segundo com 625 linhas/quadro. Alguns chamam o padrão de System Essentially Contrary to the American Method.
 - PAL (Phase Alternate Line) Desenvolvido pela
 Alemanha/Inglaterra no final dos anos 60. Usado na Inglaterra e em muitos países da Europa. Taxa de quadros 25/segundo com 625 linhas/quadro. Também chamado de Perfect At Last.

2. Vídeo Digital

- Antes de poder ser utilizado em um computador um sinal analógico de vídeo precisa ser digitalizado.
 - Armazenamento, edição, transmissão.
- Muitas vezes, o vídeo também sofre um processo chamado codificação.

14

2. Vídeo Digital

- Codificação de vídeo.
 - Processo de compressão e descompressão de sinais digitais de vídeo.
 - Para melhor entender codificação é necessário entender alguns conceitos fundamentais.

15

2. Vídeo Digital

1/

2. Vídeo Digital

- Captura
 - Envolve amostragem espacial (uma área retangular da cena) e temporal (uma série de quadros).

2. Vídeo Digital

- Captura
 - Cada amostra espaço-temporal é representada como um conjunto de números que descreve o brilho e a cor da amostra.
 - Responsável por obter a amostra: CCD.
 - Sensor fotossensível de câmeras.

2. Vídeo Digital

- Amostragem espacial
 - Saída do CCD = sinal analógico de vídeo.
 - Amostragem = obter valores do sinal em um ponto no tempo.
 - Formato mais comum de amostragem = grid.

19

2 grids soprepostos.

- Pixel (picture element).
- Quantas amostras?

20

2. Vídeo Digital

- Amostragem temporal
 - Vídeo é capturado tomando amostras retangulares do sinal em intervalos regulares.
 - O 'play back' da série de amostras produz a sensação de movimento.
 - Quanto maior a taxa de amostragem, mais suave o movimento parece. Contudo, mais amostras são capturadas e armazenadas.
 - Taxas:
 - < 10 fps very low bit rate. Movimentos não naturais.
 Ente 10 e 20 não 'capta' corretamente movimentos
 - Entre 25 e 30 padrão de TV.
 - Entre 50 e 60 qualidade muito boa. Muitas amostras.

2. Vídeo Digital

Quadros e campos

- Amostragem progressiva produz quadros completos.
- Amostragem entrelaçada produz uma série de campos entrelaçados.
 - Dois campos: linhas pares e linhas impares.

2. Vídeo Digital

- Quadros e campos
 - Dois campos = 1 quadro. Cada campo contém metade da informação do quadro.
 - Vantagem: é possível enviar o dobro de campos por segundo que quadros por segundo, com a mesma taxa de dados, produzindo movimentos suaves.
 - Desvantagens: ruído.

2. Vídeo Digital

- Espaços de cores
 - Espaço de cor refere-se ao método escolhido para representar luminância e cor em cada amostra espacial de vídeo.
 - Os mais comuns para vídeo colorido:
 - RGB
 - YCbCr

25

2. Vídeo Digital

- RGB
 - Necessita de três valores para indicar a proporção relativa das cores primárias.
 - Bom para captura e exibição de imagens.

26

2. Vídeo Digital

- Subamostragem de crominância
 - Motivação.
 - Como fazer?

27

__ 2. Vídeo Digital

- YCbCr
 - YCbCr: MPEG e JPEG; YIQ: NTSC; YUV: PAL.
 - É um modo mais eficiente de se representar cor.
 - Baseado no HVS (Human Visual System).
 - Luminância (Y) e Crominância (Cb, Cg e Cr).
 - $Y = {}_{Kr}R + {}_{Kq}G + {}_{Kb}B$

Cr. Cg and Cb component

2. Vídeo Digital

- YCbCr
 - $Y = {}_{Kr}R + {}_{Kg}G + {}_{Kb}B$
 - Cr = R Y
 - Cq = G Y
 - \bullet Cb = B Y
 - YCbCr tem 4 componentes e RGB tem 3!
 - Eficiência?

2. Vídeo Digital

- YCbCr
 - Cr + Cg + Cb é uma constante!
 Cg não é armazenado.
 - Kr + Kg + Kg = 1.
 - G pode ser extraído de YCbCr.
 - G não é representado. Menos informação.
 - Cr e Cb são representados com resolução menor que Y (HVS).

3. Princípios de Compressão de Vídeo

- 3.1 Tipos de Quadros
- 3.2 Estimativa e Compensação de Movimento

3. Princípios de Compressão de Vídeo

- Em compressão, vídeo é uma seqüência de imagens digitalizadas.
 - Imagens moventes.
- JPEG
 - MJPEG.
 - 10:1 a 20:1 de compressão.
 - Redundância espacial.

44

3. Princípios de Compressão de Vídeo

- Redundância entre quadros adjacentes
 - Redundância temporal.
- Técnicas para remoção de redundância temporal
 - Prever ("predizer") o conteúdo de quadros sucessivos.
 - Apenas as diferenças são codificadas.
- Acuidade da predição
 - Quão bem movimento é estimado.
 - Operação é chamada de Estimativa de Movimento.
 Predição não é perfeita.
 - Compensação de Movimento.

45

3.1 Tipos de Quadros

- Dois tipos básicos de quadros:
 - Quadros codificados independentemente e quadros predicted.
 - Intracoded frames ou I-frames ou quadros I.
 - Predicted frames:
 - Predictive ou P-frames ou quadros P.
 - Bidirectional ou B-frames ou quadros B.

46

3.1 Tipos de Quadros

- Quadros I.
 - São codificados sem nenhuma referência a outros quadros.
 - Cada quadro é tratado como uma imagem independente sendo Y, Cb e Cr codificados usando o algoritmo JPEG.
 - Aparecem no stream de saída em intervalos regulares.
 - N = GOP (group of pictures) span: número de quadros (3 a 12) entre dois quadros I sucessivos.

3.1 Tipos de Quadros

- Quadros P
 - São codificados em relação ao conteúdo de um quadro I ou de um quadro P anterior.
 - Usam combinação de estimativa e compensação de movimento - alcançam maiores taxas de compressão do que quadros I.
 - Propagam erros número de quadros P entre quadros I é limitado.
 - M = prediction span número de quadros entre um quadro P e o quadro I ou P imediatamente anterior.
 - Desempenho: taxe de compressão ente 20:1 e 30:1.

3.1 Tipos de Quadros

- Quadros B
 - São codificados em relação ao conteúdo de um quadro I ou de um quadro P anterior e de um posterior.
 - Envolve o processamento de 3 quadros: o quadro I ou P anterior, o quadro atual e o quadro I ou P posterior.
 Todos não codificados.
 - Aumento no tempo (delay) para codificação e decodificação. É o tempo de esperar o próximo quadro
 - Provêem alta taxa de compressão: entre 30:1 e 50:1.
 - Não propagam erros.

51

3.2 Estimativa e Compensação de Movimento

 Consiste em achar regiões na imagem que podem ser encontradas nas imagens seguintes.

3.2 Estimativa e Compensação de Movimento

- Para codificar Quadros P, cada macrobloco do quadro-alvo é comparado, pixel a pixel, com o macrobloco correspondente do quadroreferência.
 - Se o conteúdo combina (match), apenas o endereço do macrobloco é codificado. Senão, estende-se a busca para macroblocos vizinhos.

55

3.2 Estimativa e Compensação de Movimento

- Quando a busca em macroblocos vizinhos encontra um macrobloco-par, dois parâmetros são codificados:
 - Um vetor de movimento (motion vector).
 - Indica o deslocamento (offset) do macrobloco.
 - Erro de predição: três matrizes uma para cada componente (Y, Cb e Cr) – contendo as diferenças de valores entre os pixels do macrobloco-alvo e os pixels da área de busca.
 - É necessário pois a Estimativa de movimento não é um método exato.

57

3.2 Estimativa e Compensação de Movimento

- Se um "casamento" não é encontrado:
 - Macrobloco é codificado independentemente.
 - Codificação segue os passos de um quadro I:
 DCT, quantização e codificação por entropia.
- Erro de predição também é codificado como um quadro !!
 - Mas as matrizes contém apenas as diferenças entre os macroblocos do quadro alvo e os do quadro referência.

3.2 Estimativa e Compensação de Movimento

- Quadros B:
 - Estima-se, primeiro, o vetor de movimento e as matrizes de diferenças usando-se o quadro P ou I anterior.
 - Depois, estima-se os mesmos parâmetros usando-se o quadro P ou I posterior.
 - Calcula-se um terceiro conjunto de parâmetros usando-se macrobloco-alvo e a média dos valores previstos nos dois passos anteriores.
 - O conjunto com os menores valores é escolhido para ser codificado – como em um quadro P.

F0

4. Padrões para Compressão de Vídeo

4.1 - H.261

4.2 - H.263

4.3 - MPEG-1

4.4 - MPEG-2 4.5 - MPEG-4

4.6 – H.264

4.1 H.261

- Padrão de compressão de vídeo definido pela ITU-T em 1990.
- Projetado para:
 - Videoconferência.
 - Aplicações de vídeo-telefone em linhas ISDN.
- Codificador de vídeo para transmissão a px64 Khit/s
 - p varia de 1 a 30 (64 a 1920Kbps).
- Padrão também é conhecido como px64.

62

4.1 H.261

- Define dois formatos de imagem:
 - CIF: Y = 352 x 288, Cb = Cr = 176 x 144.
 - Varredura progressiva, 30 fps.
 - Videoconferência.
 - QCIF: Y = 176 x 144, Cb = Cr = 88 x 72.
 - Varredura progressiva, 15 ou 7.5 fps.
 - Vídeo-telefonia.
- Macroblocos de 16 x 16 pixels.
- Dois tipos de quadros: I e P.
- GOP Span: N = 4.
 - Três quadros P entre dois quadros I.

4.1 H.261

- Algoritmo de compressão baseado em DCT
- Otimiza a utilização de largura de banda estabelecendo um compromisso entre qualidade contra movimento.
 - Imagens com rápidas mudanças têm pior qualidade que imagens quase estáticas.

64

4.2 H.263

- Video Coding for Low Bit Rate Communication
- Padrão de compressão de vídeo definido pela ITU-T em 1995.
- Projetado para:
 - Videoconferência.
 - Vídeo sobre redes sem fio e PSTN.
- PSTN requer modems para envio de dados digitais, o que limita a taxa de transmissão para algo em torno de 28Kbps-56Kbps.

4.2 H.263

- Baseado no padrão H.261:
 - Algoritmo de codificação semelhante ao do H.261
- Qualidade de imagem superior.
- H.263 inclui um conjunto de opções avançadas de codificação que permitem uma taxa de compressão extremamente alta.
- O padrão não limita o número de quadros entre quadros I sucessivos.

4.2 H.263

- Formatos e Tipos de Quadro
 - Mandatórios:
 - SQCIF: Y=128x96, Cb = Cr = 64x68.
 - QCIF: Y=176x144, Cb = Cr = 88x72.
 - Opcionais:
 - CIF: Y=352x288, Cb = Cr = 176x144.
 - 4CIF: Y=704x576, Cb = Cr = 356x288.
 - 16CIF: Y=1408x1152, Cb = Cr = 704x576.
- H263 possui quadros dos tipos I, P, B e

4.3 MPEG-1

- Recomendação ISO 11172
- Características gerais:
 - Domínio de aplicação:
 - Armazenamento de áudio e vídeo, com qualidade VHS, a taxas de 1,5 Mbps.
 - Resolução de vídeo baseada no formato SIF (Source Intermediate Format).
 - NTSC: Y=352 x 240, Cr e Cb = 176 x 120.
 - PAL: Y=352 x 288, Cr e Cb = 176 x 144.
 - Varredura progressiva.
 - 30Hz p/ NTSC e 25 Hz p/ PAL.

4.3 MPEG-1

- Utiliza compressão:
 - Intra-quadros: redundância espacial: mesma técnica do JPEG.
 - Inter-quadros: redundância temporal: estimativa e compensação de movimento.
- Tipos de quadros:
 - MPEG-1 usa três tipos de quadros I, P e B.
- Não utiliza quadros D.
 - Acesso aleatório (VCR-like) usa-se quadros I. Isso implica em 0.5 segundo como tempo máximo para acesso aleatório.
 - IBBPBBPBBI... (PAL). IBBPBBPBBPBBI... (NTSC). 69

4.3 MPEG-1

- Maior diferença para métodos de compressão anteriores (H.261, p.e.):
 - Quadros B.
- Exemplos:
 - Vídeo AVI vídeo: 320x240, 15fps, 24 bits, cinepack; áudio: pcm 8bits, 22.05 KHz, mono. 3.5 MB.
 - <u>Vídeo MPEG-1</u>: 352 x 240, 29.97fps, 24 bits. Áudio: 44.1KHz, 16 bits, mono. 3.2MB

4.4 MPEG-2

- Recomendação ISO 13818
- Características gerais:
 - O padrão é definido em uma série de documentos, subconjuntos da
 - recomendação 13818. Domínio de aplicação:
 - Armazenamento e transmissão de áudio e vídeo com qualidade de estúdio.

 - Utiliza compressão:
 Intra-quadros e Inter-quadros.
 - Possui 4 Níveis de resolução de vídeo:

 - Low, Main, High 1440 e High.
 Cada nível possui cinco Perfis: simple, main, spatial resolution, quantization accuracy e high.
 - Tradeoff entre necessidades da aplicação e características do
 - Níveis superiores são compatíveis com níveis inferiores.

4.4 MPEG-2

- Nível Low:
 - Resolução: 352 x 288 (SIF).
 - Compatível com MPEG-1.
 - Taxa de bits: 4Mbps.
- Nível Main:
 - Resolução: 720 x 576.
 - Áudio e vídeo com qualidade de estúdio.
 - Múltiplos canais de áudio.
 - Taxa de bits: 15Mbps.

4.4 MPEG-2

- Nível High 1440:
 - Resolução: 1440 x 1152.
 - HDTV.
 - Taxa de bits: 60Mbps.
- Nível High:
 - Resolução: 1920 x 1152.
 - Wide-screen HDTV.
 - Taxa de bits: 80Mbps.

4.4 MPEG-2

- Main Profile at the Main Level
 - MP@ML
 - Broadcasting de TV Digital.
 - Formato de digitalização 4:2:0 a 30Hz para NTSC ou 25 para PAL.
 - Taxa de bits entre 4 e 15 Mbps.
 - Esquema de codificação similar ao MPEG-1.
 - Principal diferença: uso de varredura entrelaçada.
 - Codificação poder ser progressiva ou entrelaçada.

4.5 MPEG-4

- Visa atender a três áreas
- Televisão digital.
- Aplicações gráficas interativas.
- www.

Convergência

- Visa fornecer padrões para integrar a produção, distribuição e acesso ao conteúdo audiovisual.
- Principal diferença em relação aos outros padroes MPEG: conceito de Objetos.

75

4.5 MPEG-4

- Parte 1: Systems (ISO/IEC 14496-1) Parte 2: Visual (ISO/IEC 14496-2)
- Parte 3: Audio (ISO/IEC 14496-3)
- Parte 4: Conformance Testing (ISO/IEC 14496-4)
- Parte 5: Reference Software (ISO/IEC 14496-5)
 Parte 6: Delivery Multimedia Integration Framework (DMIF) (ISO/IEC 14496-6)
- Parte 7: Optimized Visual Reference Software (ISO/IEC 14496-
- Parte 8: MPEG-4 over IP (ISO/IEC 14496-8:2002)
- Parte 9: Reference Hardware Description (ISO/IEC 14496-9:2003-TR)
- Parte 10: Advanced Video Coding (ISO/IEC 14496-10:2003)

4.5 MPEG-4

- Características:
 - Prevê um conjunto de tecnologias para atender a:
 - Autores: possibilita a criação de conteúdo reusável e flexível (HDTV, animações, WWW), e proteção de direitos autorais.
 - Provedores de serviços de rede: descritores genéricos de QoS para cada tipo de mídia MPEG-4.
 - Usuários finais: altos níveis de interação com o conteúdo.
 - Objetivos são alcançados através da padronização de:
 - composição de objetos, criação de objetos complexos. • codificação de objetos de mídia (naturais ou sintéticos).
 - multiplexação e sincronização.
 - interação com a cena audiovisual.
 - compressão.

77

4.5 MPEG-4

- Codificação de Vídeo
 - Base: compressão intra e inter-quadros. Utilização de quadros I, P e B.
 - Altas taxas de compressão.
 - DivX, AVI, .mp4...
 - Novas ferramentas em compensação de movimento.
 - Codificação de formas arbitrárias.
 - Escalabilidade (vídeo em múltiplas camadas):
 - Espacial.
 - Temporal.
 - Amplo range de taxas de dados: 5Kbps-1Gbps
 - Formatos: SQCIF HDTV.
 - Progressivo e entrelaçado.

79

4.5 MPEG-4

- Exemplo 1. Objetos de forma arbitrária.
- Exemplo 2. Compressão x Qualidade.

80

4.6 H.264

- Advanced video coding (AVC) for generic audiovisual services
- Padrão de compressão de vídeo definido pela JVT em 2002.
- H.264/AVC/H26L
- Mais avançado padrão de compressão disponível atualmente.
- Usa técnicas de compressão não disponíveis em MPEG2, MPEG4 e H.263

81

4.6 H.264

- Codificador extremamente escalonável.
- Aplicação:
 - Broadcast;
 - DVD;
 - Videoconferência;
 - Vídeo em demanda;
 - Transmissão e mensagens multimídia.

82

4.6 H.264

Cenário de Uso	Resolução e Taxa de Frame	Exemplo de Taxa de Dados
Conteúdo Móvel	176x144, 10-24 fps	50-60 Kbps
Internet/Definição Padrão	640x480, 24 fps	1-2 Mbps
Alta Definição	1280x720, 24p	5-6 Mbps
Alta Definição em Tela Cheia	1920x1080, 24p	7-8 Mbps

5. Outras Mídias de Representação

- Mais comuns:
 - AVI (microsoft)
 - MOV (apple)
- Servem como "pacotes" de dados.
- Usam codificadores diversos para comprimir vídeo.
 - Indeo, Cinepack, DivX, ADPCM

Para Saber Mais

- Luther, A. C. Using Digital Video. AP Professional, 1995. (capítulo 2 e apêndice A).
- Richardson, L. E. G. H.264 and MPEG-4 Video Compression, Wiley, 2003. (capítulos 2 e 3).
- Halsall, F. Multimedia Communications: Applications, Networks, Protocols, and Standards, Addison-Wesley Publishing, 2001. ISBN: 0201398184. Capítulo 3, seção 4.3.
- H.261 e H.263:
 - http://www.compression-links.info/H.261_H.263
- Padrões MPEG:
 - http://www.chiariglione.org/mpeg/