# An introduction to analyzing cryptographic protocols using Tamarin prover





### **Outline**

- 1. Overview of computer-aided cryptography
- 2. Introduction to Tamarin
- 3. Example: KEM-based key exchange
- 4. Advanced example: authenticated key exchange
- 5. Hands-on exercises

# Overview of computer-aided cryptography

Key resource:

Barbosa, Barthe, Bhargavan, Blanchet, Cremers, Liao, Parno. SoK: Computer-Aided Cryptography. IEEE S&P 2021. <a href="https://eprint.iacr.org/2019/1393">https://eprint.iacr.org/2019/1393</a>



# Design-level security

 Use of mathematical and logical arguments to analyze the security of a cryptographic design (protocol, primitive) against a class of attacks

# Components of design-level security

- 1. Definition of the type of object being analyzed
  - e.g.: key encapsulation mechanism
- 2. Security definition for that type of object
  - e.g.: indistinguishability under chosen ciphertext attack
- 3. A specific scheme being analyzed
  - e.g.: Kyber / ML-KEM
- 4. A formal argument that the scheme satisfies the desired security property, possibly under some cryptographic assumptions
  - e.g. Theorem and proof that Kyber is IND-CCA under the module-LWE assumption in the random oracle model.

### Motivation for computer-aided analysis

- Arguments can have errors
  - Hand-written proofs often have errors
- Security modelling might be inappropriate
  - Model and protocol might be simplified to a "cryptographic core" but an attack might exist outside that core

# Symbolic model

- Abstract model for modeling and analyzing protocols
- Objects (messages, keys, nonces) are represented as opaque / atomic terms
- Cryptographic primitives are black-box over terms with an equational theory
  - e.g. Dec(Enc(m, k), k) = m
- Adversaries can only compute new terms based on terms they already know and the equational theory
  - e.g. Given c = Enc(m, k), can only learn m if one knows all of k and applies Dec(c, k), otherwise know nothing about m

### Security in the symbolic model

- Symbolic model is a simplified model of protocols
- Enables analysis using symbolic logic
- Suitable for automatically search for and verifying logical flaws in a complex system
- Two types of security properties:
  - Trace properties: a specific bad event can never occur on any trace of execution of the system
    - e.g. Confidentiality: data meant to be secret is never learned by the adversary
  - Equivalence properties: the adversary cannot distinguish between two protocols

# Computational model

- Objects (messages, keys, nonces) are bitstrings or mathematical elements with internal structure
- Cryptographic primitives are probabilistic algorithmics
- Adversaries are probabilistic Turing machines operating on bitstrings / mathematical elements
  - Adversaries can try to compute partial information by employing computational resources

# Security in the computational model

Basic structure of a security statement:

• If there exists an adversary A that can break property X of scheme S in runtime t with probability ε, then there exists an adversary A', which uses A, that can break property X' of scheme S' in runtime t' with probability ε'.





### Introduction to Tamarin

# Formal verification using Tamarin

- Tamarin prover is a model checker for security protocols in the symbolic model
- Protocol and adversary powers are specified as a set of state machine transitions ("multiset rewriting rules")
- Security property is specified as a predicate over actions recorded during state machine transitions
- Tamarin prover explores (infinite) state space of all possible executions to find an execution trace that violates the security property or verifies that none exists (or fails to terminate)

# Formal verification using Tamarin

- Tamarin successfully used on many academic and real-world cryptographic protocols
- Especially effective on key exchange protocols
  - Note Tamarin models key exchange security based on *learning* session key, not *indistinguishability*

- Tamarin model of TLS 1.3 drafts [CHSV,CHHSV] found several flaws
  - Especially in interactions between different protocols modes
    - e.g. in TLS 1.3 pre-shared key resumption
  - Expensive: months of personeffort, 1 week of computation time, 100 GB RAM

### Tamarin: high-level

- Modeling protocol & adversary done using multiset rewriting
  - Specifies transition system; induces set of traces
- Property specification using fragment of firstorder logic
  - Specifies "good" traces
- Tamarin tries to
  - provide proof that all system traces are good, or
  - construct a counterexample trace of the system (attack)

### Modeling in Tamarin

- Multiset rewriting; surprisingly similar to "oracles"
- Basic ingredients:

```
Terms (think "messages")
Facts (think "sticky notes on the fridge")
Special facts: Fr(t), In(t), Out(t), K(t)
```

- State of system is a multiset of facts
  - **Initial state** is the empty multiset
  - Rules specify the transition rules ("moves")
- Rules are of the form:

```
- 1 --> r
- 1 --[ a ]-> r
```

#### The model

#### Term algebra

#### Equational theory

- $dec(enc(m,k),k) =_{F} m$ ,
- $(x^{y})^{z} =_{E} x^{y}(y^{z}),$
- $(x^{-1})^{-1} =_{F} x, ...$

#### Facts

#### Transition system

- State: multiset of facts
- Rules:  $I [a] \rightarrow r$

#### Tamarin-specific

- Built-in Dolev-Yao attacker rules
  - In(), Out(), K()
- Special Fresh rule:
  - [] --[]--> [ Fr(x) ]
    - With additional constraints on systems such that x unique

#### **Semantics**

#### Transition relation

$$S - [a] \rightarrow_R ((S \mid I) \cup \# r)$$
  
where  $I - [a] \rightarrow r$  is a ground instance of a rule and  $I \subseteq \# S$ 

#### Executions

Exec( R) = 
$$\{ [] -[a_1] \rightarrow ... -[a_n] \rightarrow S_n \mid \forall n . Fr(n) \text{ appears only once on rhs } \}$$

#### Traces

Traces(R) = { 
$$[a_1,...,a_n]$$
  
|  $[] -[a_1] \rightarrow ... -[a_n] \rightarrow S_n \in Exec(R)$  }

### Semantics: example 1

#### Rules

#### Execution example

```
[]
-[ Init() ]→ [ A('5') ]
-[ Init() ]→ [ A('5'), A('5') ]
-[ Step('5') ]→ [ A('5'), B('5') ]
```

#### Corresponding trace

• [Init(), Init(), Step('5')]

### Semantics: example 2 (persistent facts)

#### Rules

```
    rule1: [ ] –[ Init() ] → [ !C('ok'), D('1') ]
    rule2: [ !C(x), D(y) ] –[ Step(x,y) ] → [ D(h(y)) ]
```

#### Execution example

```
    []
    -[ Init() ]→[!C('ok'), D('1')]
    -[ Step('ok','1') ]→[!C('ok'), D(h('1'))]
    -[ Step('ok',h('1')) ]→[!C('ok'), D(h(h('1')))]
```

#### Corresponding trace

[Init(), Step('ok', '1'), Step('ok', h('1'))]

#### Tamarin tackles complex interaction with adversary



### Property specification

first order logic interpreted over a trace

```
    False
    Equality
    Timepoint ordering
    Timepoint equality
    Action at timepoint #i
    False
    t_1 = t_2
    #i < #j</li>
    A@#i
```

 Actions stored as (action) trace
 Additionally: adversary knows facts: K()

### Algorithm intuition

- Constraint solving algorithm
- Main ingredients:
  - Dependency graphs
  - Deconstruction (decryption) chains
  - Finite variant property (more this afternoon)
- Invariant: if adversary knows M then either
  - M was sent in plain
  - Adversary can construct M by knowing subterms
  - Adversary can deconstruct M .... from message sent by protocol rule

### Basic principles

- Backwards search using constraint reduction rules (27!)
- Turn negation of formula into set of constraints
- Case distinctions
  - E.g.: Possible sources of a message or fact
- Try to establish:
  - no solutions exist for constraint system, or
  - there exists a "realizable" execution (trace)
- If multiple rules can be applied: use heuristics

#### Heuristics?

- If Tamarin terminates, one of two options:
  - **Proof**, or
  - counterexample (in this context: attack)
- At each stage in proof, multiple constraint solving rules might be applicable
  - Similar to "how shall I try to prove this?"
  - Choice influences speed & termination, but not the outcome after termination
- Complex heuristics choose rule
  - user can give hints or override

#### Lemmas

- When it doesn't terminate...
- Guide the proof manually; export
- Write lemmas
  - "Hints" for the prover
    - They don't change the proof obligation, only help finding a proof
  - Specify lemma that can be used to prune proof trees at multiple points
  - ... more this afternoon and at TLS:DIV

# Example: KEM-based key exchange

### Key encapsulation mechanisms

 $\mathsf{KGen}() \mathrel{\$} \to (\mathsf{pk}, \mathsf{sk})$ 

 $\mathsf{KGen}(\mathsf{sk}) \to \mathsf{pk}$ 

 $\mathsf{Encaps}(\mathsf{pk}) \mathrel{\$} \to (\mathsf{ct}, \mathsf{ss})$ 

 $\mathsf{Encaps}(\mathsf{pk},\mathsf{coins}) \to (\mathsf{ct},\mathsf{ss})$ 

 $\mathsf{Decaps}(\mathsf{sk},\mathsf{ct}) \to \mathsf{ss}$ 

 $\mathsf{Decaps}(\mathsf{sk},\mathsf{ct}) \to \mathsf{ss}$ 

#### Correctness:

Decaps(sk, Encaps(KGen(sk), coins)[1])

 $= \mathsf{Encaps}(\mathsf{KGen}(\mathsf{sk}), \mathsf{coins})[2]$ 

# Key encapsulation mechanisms

 $\mathsf{KGen}() \ {}_{\$} \!\! \to (\mathsf{pk}, \mathsf{sk})$ 

 $\mathsf{Encaps}(\mathsf{pk}) \mathrel{\$} \to (\mathsf{ct}, \mathsf{ss})$ 

 $\mathsf{Decaps}(\mathsf{sk},\mathsf{ct}) \to \mathsf{ss}$ 

 $\mathsf{KGen}(\mathsf{sk}) \to \mathsf{pk}$ 

Encaps\_ct(pk, coins)  $\rightarrow$  ct Encaps\_ss(pk, coins)  $\rightarrow$  ss

 $Decaps(sk, ct) \rightarrow ss$ 

#### Correctness:

Decaps(sk, Encaps\_ct(KGen(sk), coins))
= Encaps\_ss(KGen(sk), coins)

# A basic KEM-based key exchange



### Tamarin rules

- 1. (Shorthand declarations)
- 2. Requirements
- 3. Produces
- 4. Action facts recorded

```
rule RULENAME:
    let
        SHORTHAND_DECLARATION_1
        SHORTHAND_DECLARATION_2
    in
        [ REQUIREMENTS ]
      --[ ACTION_FACTS_RECORDED ]->
        [ PRODUCES ]
```

### Tamarin rule

```
rule ClientAction1:
                                 Rule name
  let
                                 Shorthand
    pk_e = KEM_PK(\sim sk_e)
                                 declaration
  in
    [ Fr(~sk_e), Fr(~tid) ] Requirements
  --[ ]->
    [ Out(pk_e),
      ClientState(~tid, pk_e, ~sk_e)
                                 Produces
```

### Correctness

```
If an honest client thread accepts a session key
ss c with session id sid c,
and an honest server thread accepts a session key
ss s with session id sid s,
and they have the same session ids (sid c =
sid s),
then they have the same shared secret (ss c =
ss s)
```

# Security

If an honest client thread accepts a session key ss\_c, then the adversary does not know ss\_c.

For all threads tid c and shared secrets ss c, if Role(tid c, 'client') and SessionKey(tid c, ss c), then the adversary does not know ss c.

#### Lemmas are predicates over "action facts" that we recorded in our rules

## Security

For all threads tid\_c and shared secrets ss c, if Role(tid c, 'client') and SessionKey(tid c, ss c), then the adversary does not know ss c.

```
lemma ss_secure:
  "
    All tid_c ss_c
    Role(tid_c, 'client')
    & SessionKey(tid_c, ss_c)
    ==>
    not(K(ss_c))
  "
```

## Security

For all threads tid c and shared secrets ss c, if Role(tid c, 'client') and SessionKey(tid c, ss c), then the adversary does not know ss c.

```
lemma ss_secure_take1:
  "
    All tid_c ss_c #t1 #t2
    Role(tid_c, 'client') @ #t1
   & SessionKey(tid_c, ss_c) @ #t2
    ==>
    not(Ex #t . K(ss_c) @ #t)
  "
```

All action facts are timestamped (Can use this to order events if needed)

### **Attack found!**



Start interactive Tamarin session: tamarin-prover interactive . Open example1\_complete.spthy
For lemma ss\_secure\_take1, click "Sorry" then "autoprove"

## Security against a passive adversary

```
If an honest client thread accepts a session key ss_c, and the adversary was passive, then the adversary does not know ss_c.
```

## Security against a passive adversary

If an honest client thread accepts a session key ss\_c,

and there exists a server thread with a matching session identifier,

then the adversary does not know ss\_c.

# Advanced example: authenticated key exchange

## Authenticated key exchange

| Alice                                     |              | $\operatorname{Bob}$                                                                                  |
|-------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------|
|                                           |              | $sk_B \leftarrow \!\!\! ^{_{\$}} SIG.\mathcal{K}$                                                     |
| $(pk_B, \mathrm{``Bob''})$                |              | $pk_B \leftarrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$              |
| $sk_e \leftarrow \$KEM.\mathcal{K}$       |              |                                                                                                       |
| $pk_e \leftarrow KEM.KGen(sk)$            |              |                                                                                                       |
|                                           | $pk_e$       | <b>→</b>                                                                                              |
|                                           |              | $coins \leftarrow \$  KEM.\mathcal{C}$                                                                |
|                                           |              | $(ct, ss) \leftarrow KEM.Encaps(pk_e, coins)$                                                         |
|                                           |              | $\sigma \leftarrow \hspace{-0.1em} \$ \operatorname{SIG.Sign}(\operatorname{sk}_B,\operatorname{ct})$ |
| <del>&lt;</del>                           | $ct, \sigma$ |                                                                                                       |
| reject if $\neg SIG.Vf(pk_B, ct, \sigma)$ |              |                                                                                                       |
| $ss \leftarrow KEM.Decaps(sk,ct)$         |              |                                                                                                       |
| $\mathrm{accept}\ H(ss,pk_B\ pk_e\ ct)$   |              | $\mathrm{accept}\ H(ss,pk_B\ pk_e\ ct)$                                                               |
| session id $(pk_B, pk_e, ct)$             |              | session id $(pk_B, pk_e, ct)$                                                                         |
| owner $\perp$                             |              | owner "Bob"                                                                                           |
| peer "Bob"                                |              | peer $\perp$                                                                                          |

### Threat model

- Attacker can compromise long-term keys of parties
- Attacker can compromise session keys of parties

## **Security properties**

 Client session key: secure if no session key reveal at owner or partner, and no long-term key reveal of peer before client accepted

## Hands-on exercise

## **Getting started**

- Tamarin website:
  - https://tamarinprover.github.io/

 Fairly easy to install on Linux or macOS using brew package manager

- Fairly detailed manual
- Lots of examples in the Github repository

#### **Exercises**

- Download from https://github.com/dstebila/tamarin-examples
- Example 3: PRF security
- Example 4: stream cipher built from a PRF

## **Example 3: PRF security**

- Fully commented file with all the answers
- You should carefully read through the file
- Then run the proofs
- Examine the attack traces found and try to understand them

- Scenario:
  - Let f(k, m) be a function
  - Imagine honest user generates key k
  - Adversary can submit m and get f(k, m)
  - Adversary shouldn't be able to learn f(k, m') for any m' not previously queried
- Note: keys have associated keyid's; the adversary isn't given the key but is given the keyid as a handle

## Example 4: stream cipher built from a PRF

- You need to fill in the details
- Stream cipher: Enc(k, m) = f(k, nonce) XOR m for randomly chosen nonce
- Part 1: security against ciphertext-only attacks
- Part 2: correctness
- Part 3: insecurity against chosen plaintext + ciphertext attacks