Линейная алгебра

Линейные отображения и их матричное представление.

Глеб Карпов

МНаД ФКН ВШЭ

Линейные отображения

Введение и мотивация

Линейные отображения

і Определение

Пусть V,W — векторные пространства. Отображение $\varphi:V o W$ называется *линейным*, если

- 1. $\varphi(\mathbf{u} + \mathbf{v}) = \varphi(\mathbf{u}) + \varphi(\mathbf{v})$ для всех $\mathbf{u}, \mathbf{v} \in V$
- 2. $\varphi(\alpha \mathbf{v}) = \alpha \varphi(\mathbf{v})$ для всех $\mathbf{v} \in V$ и всех скаляров $\alpha \in \mathbb{R}$.

Свойства 1 и 2 вместе иногда объединяют в одно:

$$\varphi(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \varphi(\mathbf{u}) + \beta \varphi(\mathbf{v}), \quad \forall \mathbf{u}, \mathbf{v} \in V, \quad \forall \alpha, \beta \in \mathbb{R}.$$

Аналитическое представление отображения

Основные действующие лица

• На этом этапе мы подключаем аппарат линейной алгебры и предпологаем, что в пространствах $\mathbb V$ и $\mathbb W$. Предположим, что $\varphi:V o W$, набор векторов $B=\{v_1,v_2\}$ образует базис в $\mathbb V$, а набор векторов $C=\{\omega_1,\omega_2\}$ образует базис в $\mathbb W$.

Мы хотим исследовать, как φ действует на произвольный $x\in\mathbb{V}$. По свойствам базиса можем представить x как:

$$x = x_1 v_1 + x_2 v_2, \quad [x]_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

И используем это разложение вместе со свойствами линейного преобразования:

$$\varphi(x)=\varphi(x_1v_1+x_2v_2)=x_1\varphi(v_1)+x_2\varphi(v_2).$$

• На этом этапе мы подключаем аппарат линейной алгебры и предпологаем, что в пространствах $\mathbb V$ и $\mathbb W$. Предположим, что $\varphi:V o W$, набор векторов $B=\{v_1,v_2\}$ образует базис в $\mathbb V$, а набор векторов $C=\{\omega_1,\omega_2\}$ образует базис в $\mathbb W$.

Мы хотим исследовать, как φ действует на произвольный $x\in\mathbb{V}$. По свойствам базиса можем представить x как:

$$x = x_1 v_1 + x_2 v_2, \quad [x]_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

И используем это разложение вместе со свойствами линейного преобразования:

$$\varphi(x)=\varphi(x_1v_1+x_2v_2)=x_1\varphi(v_1)+x_2\varphi(v_2).$$

• Вывод: чтобы узнать результат действия функции $\varphi(x)$ достаточно только знать, как функция действует на базисные векторы пространства $\mathbb V$ в нашем примере это $\varphi(v_1), \, \varphi(v_2)$. Помните, что $\varphi(v_1), \, \varphi(v_2)$ — это тоже векторы, т.е. абстрактные элементы, жители векторного пространства W.

Давайте посмотрим на элементы $\varphi(v_1)$, $\varphi(v_2)$ в базисе C:

$$\begin{split} \varphi(v_{\mathbf{1}}) &= a_{1\mathbf{1}}\omega_{1} + a_{2\mathbf{1}}\omega_{2}, \\ \varphi(v_{\mathbf{2}}) &= a_{1\mathbf{2}}\omega_{1} + a_{2\mathbf{2}}\omega_{2} \end{split}$$

Теперь вернемся к $\varphi(x) = x_1 \varphi(v_1) + x_2 \varphi(v_2)$.

$$\begin{split} \varphi(x) &= x_{1} \left(a_{11} \omega_{1} + a_{21} \omega_{2} \right) + x_{2} \left(a_{12} \omega_{1} + a_{22} \omega_{2} \right) = \\ & \left(a_{11} x_{1} + a_{12} x_{2} \right) \omega_{1} + \left(a_{21} x_{1} + a_{22} x_{2} \right) \omega_{2} = \\ & \gamma_{1} \omega_{1} + \gamma_{2} \omega_{2} \end{split}$$

ullet Мы получили разложение элемента arphi(x) по базису пространства $\mathbb W.$ Можем записать координаты как:

$$\left[\varphi(x)\right]_C = \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix}$$

Умножение матрицы на вектор... снова...

Наконец:

$$\left[\varphi(x)\right]_C = \begin{pmatrix} a_{11} & a_{1\mathbf{2}} \\ a_{21} & a_{2\mathbf{2}} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A_{\varphi} \left[x\right]_B.$$

Wow!

🂡 Матрица линейного преобразования

Для любого линейного преобразования существует его матрица, которая через mat-vec связывает координаты аргумента функции с координатами значения функции в выбранных заранее базисах.

Если у нас есть два базиса $B=\{v_1,v_2,\dots,v_n\}$ и $C=\{\omega_1,\omega_2,\dots,\omega_m\}$, то матрица линейного преобразования $L_{\omega_-(B,C)}$ строится как:

$$L_{\varphi,\,(B,C)} = \begin{pmatrix} | & | & \cdots & | \\ [\varphi(v_1)]_C & [\varphi(v_2)]_C & \cdots & [\varphi(v_n)]_C \\ | & | & \cdots & | \end{pmatrix},$$

где $[\varphi(v_i)]_C$ — это координаты образа базисного вектора v_i в базисе C.

Общий многомерный случай

Предположим, что существует линейное преобразование $\varphi: \mathbb{V} \to \mathbb{W}$, набор векторов $B = \{v_1, \dots, v_n\}$ образует базис в \mathbb{V} , а набор векторов $C = \{\omega_1, \dots, \omega_m\}$ образует базис в \mathbb{W} .

Мы хотим исследовать, как φ действует на произвольный $x \in \mathbb{V}$.

$$x=x_1v_1+\ldots+x_nv_n,$$

$$\varphi(x)=\varphi(x_1v_1+\ldots+x_nv_n)=x_1\varphi(v_1)+\ldots+x_n\varphi(v_n).$$

Помните, что $\varphi(v_1),\dots,\varphi(v_n)$ — это *векторы*, au.e. абстрактные элементы векторного пространства $\mathbb{W}.$

Общий многомерный случай

Давайте посмотрим на $\varphi(v_1), \dots, \varphi(v_n)$ в базисе C:

$$\begin{split} \varphi(v_{\mathbf{1}}) &= a_{11}\omega_{1} + a_{2\mathbf{1}}\omega_{2} + \ldots + a_{m\mathbf{1}}\omega_{m}, \\ \varphi(v_{\mathbf{2}}) &= a_{12}\omega_{1} + a_{2\mathbf{2}}\omega_{2} + \ldots + a_{m\mathbf{2}}\omega_{m}, \\ &\vdots \\ \varphi(v_{\mathbf{n}}) &= a_{1\mathbf{n}}\omega_{1} + a_{2\mathbf{n}}\omega_{2} + \ldots + a_{m\mathbf{n}}\omega_{m} \end{split}$$

Теперь вернемся к $\varphi(x) = x_1 \varphi(v_1) + \dots + x_n \varphi(v_n)$.

$$\begin{split} \varphi(x) &= x_{\mathbf{1}} \left(a_{1\mathbf{1}} \omega_1 + \ldots + a_{m\mathbf{1}} \omega_m \right) + x_{\mathbf{2}} \left(a_{1\mathbf{2}} \omega_1 + \ldots + a_{m\mathbf{2}} \omega_m \right) \\ &+ x_{\mathbf{n}} \left(a_{1\mathbf{n}} \omega_1 + \ldots + a_{m\mathbf{n}} \omega_m \right) \end{split}$$

Общий многомерный случай

$$\begin{split} \varphi(x) &= x_{\mathbf{1}} \left(a_{11} \omega_1 + \ldots + a_{m1} \omega_m \right) + x_{\mathbf{2}} \left(a_{12} \omega_1 + \ldots + a_{m2} \omega_m \right) \\ &\quad + x_{\mathbf{n}} \left(a_{1n} \omega_1 + \ldots + a_{mn} \omega_m \right) \\ &= \left(a_{11} x_{\mathbf{1}} + a_{12} x_{\mathbf{2}} + \ldots + a_{1n} x_{\mathbf{n}} \right) \omega_1 + \left(a_{21} x_{\mathbf{1}} + a_{22} x_{\mathbf{2}} + \ldots + a_{2n} x_{\mathbf{n}} \right) \omega_2 \\ &\quad + \left(a_{m1} x_{\mathbf{1}} + a_{12} x_{\mathbf{2}} + \ldots + a_{mn} x_{\mathbf{n}} \right) \omega_m \end{split}$$

Умножение матрицы на вектор... снова...

Наконец:

$$\left[\varphi(x)\right]_C = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = A_{\varphi} \left[x\right]_B.$$

Wow!

Для построения матрицы A_{φ} линейного отображения φ нам нужно знать только координаты образов базисных векторов: $\varphi(v_1), \dots, \varphi(v_n)$, $\tau.e.$

$$v_1 \overset{\varphi}{\rightarrow} a_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, v_2 \overset{\varphi}{\rightarrow} a_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, v_n \overset{\varphi}{\rightarrow} a_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$