```
## Warning in RecdistriMt$DistriMtMax[(RecdistriMt$Simul == "wRmAmHMt0" | RecdistriMt$Simul
== : le nombre d'objets remplacer n'est pas multiple de la taille du remplacement
    [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.795 1.000 0.802
   [12] 1.000 1.000 1.000 1.000 0.583 1.000 0.947 0.821 1.000 0.519 0.355
   [23] 0.934 0.850 1.000 1.000 1.000 1.000 0.906 1.000 1.000 0.154
   [34] 1.000 1.000 1.000 1.000 1.000 1.000 1.000
##
     [1] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.795 1.000 0.802
    [12] 1.000 1.000 1.000 1.000 0.583 1.000 0.947 0.821 1.000 0.519 0.355
##
    [23] 0.934 0.850 1.000 1.000 1.000 1.000 0.906 1.000 1.000 0.154
##
    [34] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.786 0.711 0.302
##
    [45] 1.000 0.989 0.149 0.544 1.000 1.000 0.453 0.990 1.000 0.908 0.381
    [56] 1.000 1.000 0.112 0.621 1.000 0.605 0.770 1.000 1.000 1.000 1.000
    [67] 1.000 1.000 1.000 1.000 0.993 0.264 1.000 1.000 0.864 1.000 1.000
##
    [78] 1.000 1.000 0.830 1.000 1.000 0.990 0.734 0.619 1.000 1.000 1.000
   [89] 0.971 0.431 0.950 0.743 0.760 0.504 1.000 1.000 1.000 1.000 1.000
##
   [100] 1.000
##
   [1] 0.78367
   [1] 0.81763
   [1] 0.76742
##
   [1] 0.3268576
##
   [1] 0.2793721
## [1] 0.3183194
```


Number of local adaptation loci

Number of local adaptation loci

```
NbRun FixMt IntMt MtExo IntAut IntAut10 FixAut MeanExoAut
          100 0.56
                   1 0.46378 0.9357143 0.8482143 0.05892857 0.4766393
## BDb0
         100 0.52
                       1 0.42324 0.9500000 0.8288462 0.03173077 0.4318587
##
         SDExoAut
                     FstAut
                                 FstZ
                                          FstW
                                                   FstMt Introgq0
## BDb0 0.3142080 0.09511372 0.09078571 0.2305357 0.2157143
  BDDS0 0.2964481 0.10215486 0.11173077 0.2477115 0.2313077
##
        Introgq025 Introgq50 Introgq975 Introgq100 Introg10q0 Introg10q025
             0.85
                      0.95
                              1
                                      1
                                                      0.6
## BDb0
                       0.95
## BDDS0
             0.85
                                   1
                                             1
                                                      0.6
                                                               0.60000
        Introg10q50 Introg10q975 Introg10q100 Fixq0 Fixq025 Fixq50 Fixq975
## BDb0
             0.85
                        0.95
                                    1.00
                                             0
                                                      0 0.05 0.15000
                                                      0 0.00 0.13625
## BDDS0
              0.85
                          0.95
                                      0.95
                                              0
        Fixq100 MeanExoq0 MeanExoq025 MeanExoq50 MeanExoq975 MeanExoq100
## BDb0 0.25 0.32500 0.3508938 0.469225 0.6064812 0.61820
```

BDDS0 0.15 0.16875 0.2933812 0.436150 0.5518550 0.56515

Param NbL Neu R TS

BDb0 1 1 0.5 0.5 0.9

BDDS0 1 20 0.5 0.5 0.9

Intra pair recombination rate

Intra pair recombination rate

All nuclear selection together:

(B) Mitochondrial introgression

(A) Mito-nuclear discordance

(A) Mitochondrial introgression

(A) Sex-biased hybrid fitness

(A) Mitochondrial introgression

(B) Asymmetric crosses between taxa

ymmetric crosses between taxa (20 loci for mate c

(A) Whole area

(B) Invaded area

[1] 0.08150453

Pearson's product-moment correlation

data: lmallcombi DistriMtDistriMtMax
andlmallcombi DistriMtDistriNuMtMax
 t = 11.58, df = 20052, p-value ; 2.2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.06774042 0.09523761 sample estimates: cor 0.08150453

(A) Mitochondrial introgression

(B) Autosomal introgression

(B) Autosomal introgression

(B) Mitochondrial introgression

(C) Autosomal introgression

(A) Mito-nuclear discordance

(B) Mitochondrial introgression

(C) Autosomal introgression

(A) Mito-nuclear discordance

(B) Mitochondrial introgression

(C) Autosomal introgression

(A) Mito-nuclear discordance

[1] 0.001994615 ## [1] 0.736

(A) Whole area, mitochondrial introgression

(B) Whole area, autosomal introgression

(A) Whole area

(A) Invaded area, mitochondrial introgression

(B) Invaded area, autosomal introgression

					Table 1:				
	ϕ_M	f(M=1)	\overline{M}	\bar{D}	$\mathrm{f}(p_D<0.05)$	$ar{F_s}$	$f(p_{F_s} < 0.05)$		
1	1.000	0.000	0.009	-0.112	0.037	8.521	0	0.004	0.005
2	0.998	0.000	0.011	-0.086	0.036	8.592	0	0.006	0.005
3	0.995	0.000	0.011	-0.092	0.045	9.059	0	0.005	0.005
4	0.993	0.000	0.014	0.077	0.057	10.437	0	0.008	0.005
5	0.990	0.000	0.015	0.803	0.062	12.274	0	0.009	0.005
6	0.975	0.000	0.058	2.194	0.035	17.906	0	0.052	0.006
7	0.950	0.003	0.261	2.375	0.049	19.797	0	0.254	0.006
8	0.925	0.061	0.575	2.143	0.036	15.982	0	0.568	0.007
9	0.900	0.424	0.873	0.413	0.098	10.065	0	0.865	0.007
10	0.800	1.000	1.000	-0.167	0.000	2.454	0	0.992	0.008
11	0.700	1.000	1.000	-0.184	0.006	2.826	0	0.993	0.007