Álgebra Universal e Categorias

Exercícios - Folha 7 -

- 46. Sejam \mathcal{A} uma álgebra e $\theta, \theta^* \in \mathrm{Con}\mathcal{A}$. Mostre que (θ, θ^*) é um par de congruências fator em \mathcal{A} se e só se $\theta \cap \theta^* = \triangle_A$ e $\theta \circ \theta^* = \nabla_A$.
- 47. Seja $\mathcal{A}=(A;f^{\mathcal{A}})$ a álgebra de tipo (1) onde $A=\{a,b,c,d\}$ e $f^{\mathcal{A}}:A\to A$ é a operação definida por

- (a) Determine $\Theta(a,b)$ e $\Theta(a,d)$. Justifique que $(\Theta(a,b),\Theta(a,d))$ é um par de congruências fator.
- (b) Justifique que existem álgebras \mathcal{A}_1 e \mathcal{A}_2 não triviais tais que $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$. Dê exemplo de álgebras \mathcal{A}_1 e \mathcal{A}_2 nas condições indicadas e determine a álgebra $\mathcal{A}_1 \times \mathcal{A}_2$.
- 48. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{a,b,c,d\}$ e cujas operações $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são definidas por

Sabendo que o reticulado de congruências de ${\cal A}$ pode ser representado por

onde $\theta_1 = \Theta(a, b), \ \theta_2 = \Theta(a, c), \ \theta_3 = \Theta(b, d) \ e \ \theta_4 = \triangle_A \cup \{(a, c), (c, a), (b, d), (d, b)\}:$

- (a) Determine θ_1 e justifique que (θ_1,θ_4) é um par de congruências fator.
- (b) Justifique que $\mathcal{A}\cong\mathcal{A}/\theta_1\times\mathcal{A}/\theta_4$. Defina as operações da álgebra $\mathcal{A}/\theta_4=(A/\theta_4;f^{\mathcal{A}/\theta_4},g^{\mathcal{A}/\theta_4})$.
- (c) Diga, justificando, se a álgebra A é:
 - i. congruente-distributiva. ii. subdiretamente irredutível.
- 49. (a) Mostre que toda a álgebra finita com um número primo de elementos é diretamente indecomponível.
 - (b) Seja $\mathcal{A}=(A;f^{\mathcal{A}})$ a álgebra tal que $A=\{x\in\mathbb{N}\,|\,x\leq5\}$ e $f^{\mathcal{A}}$ é a operação unária em A definida por

$$f^{\mathcal{A}}(x) = \left\{ \begin{array}{ll} 1 & \text{se} \quad x \in \{2,4\} \\ 2 & \text{se} \quad x \in \{1,3,5\} \end{array} \right.$$

- i. Sejam θ_1 e θ_2 as congruências de $\mathcal A$ definidas por $\theta_1=\Theta(1,2)$ e $\theta_2=\Theta(3,5)$. Determine θ_1 e θ_2 . Verifique que $\theta_1,\theta_2\in\mathrm{Con}\mathcal A\setminus\{\triangle_A\}$ e $\theta_1\cap\theta_2=\triangle_A$.
- ii. Justifique que se θ e ϕ são congruências de $\mathcal A$ tais que $\mathcal A\cong \mathcal A/\theta\times\mathcal A/\phi$, então $\theta=\nabla_A$ ou $\phi=\nabla_A$.
- iii. Diga, justificando, se a álgebra \mathcal{A} é subdiretamente irredutível.
- 50. Seja A = (A; F) uma álgebra cujo reticulado das congruências é o seguinte:

Justifique que:

- (a) A álgebra A não é congruente-distributiva;
- (b) A álgebra A não é subdiretamente irredutível;
- (c) Os reticulados $ConA/\theta_1$ e $ConA/\theta_3$ são isomorfos.