

Desenvolvimento de Base de Dados para Treinamento de Redes Neurais de Reconhecimento de Voz Através da Geração de Áudios com Resposta ao Impulso Simuladas por Técnicas de Data Augmentation

Bruno Machado Afonso

bruno.ma@poli.ufrj.br

Departamento de Engenharia Eletrônica e de Computação - Escola Politécnica

Universidade Federal do Rio de Janeiro

12 de julho de 2021

Sumário

- Motivação
- 2 Metodologia
- 3 Resultados
- 4 Conclusão

Crescimento no número de aplicações de algoritmos de processamento de áudio.

- Detecção e reconhecimento de voz
 - Smartphones
 - Automação residencial
 - Comunicação online
- Cancelamento de eco
- Separação de fontes

Deep Learning

Motivação

000000

Aumento no número de artigos que envolvem *deep learning* publicados em grandes conferências.

Amostra de Voz em Campo Distante (AVCD)

Sinal de voz anecóico que é corrompido pela reverberação do ambiente fechado e ruído.

(a) Sala anecóica

(b) Sala reverberante

$$Y(t) = s(t) * h(t) + n(t)$$

 $Y(t) \rightarrow \mathsf{AVCD}$

Motivação ○○○●○○

- $s(t) \rightarrow$ Amostra de Voz Anecóica
- $h(t) \rightarrow \text{Resposta ao Impulso de Sala (RIR)}$
- $n(t) \rightarrow \text{Sinal de Ruído}$

000000

Resposta ao Impulso de Sala (RIR)

Representa um modelo acústico de um ambiente para um par fonte/receptor.

Desafios

Motivação

000000

- Baixa quantidade e variedade de bases de dados contendo RIRs anotadas para treinamento de redes de deep learning.
- Dificuldade para realizar gravações de RIRs (equipamentos especializados, variedade de ambientes, etc.)

Data Augmentation (DA)

Proposta de duas técnicas de data augmentation para gerar AVCDs artificialmente.

- DA para gerar RIRs simuladas (RIRSM)
 - Razão Direto-Reverberante (DRR)
 - Tempo de Reverberação (T60)
- DA para gerar AVCDs, usando RIRSMs e ruídos

As técnicas de DA de RIRSM e AVCDs foram baseadas, respectivamente, nos artigos abaixo.

- [1] "Impulse Response Data Augmentation and Deep Neural Networks for Blind Room Acoustic Parameter Estimation", N. J. Bryan, ICASSP 2020
- [2] "A study on data augmentation of reverberant speech for robust speech recognition", T. Ko et al, ICASSP 2017

$$h_e(t) = egin{cases} h(t), & t_d - t_0 \leq t \leq t_d + t_0 \\ 0, & ext{caso contrário.} \end{cases}$$
 $h_l(t) = egin{cases} h(t), & t < t_d - t_0 \\ h(t), & t > t_d + t_0 \\ 0, & ext{caso contrário.} \end{cases}$

Resultados

 $h(t) \rightarrow RIR$

Motivação

 $h_e(t) \rightarrow \text{Resposta inicial}$

 $h_l(t) \rightarrow \text{Resposta atrasada}$

 $t_d \rightarrow$ Tempo levado pelo impulso sonoro da fonte até o receptor

 $t_0 \rightarrow \text{Janela de tolerância} (t_0 = 2, 5 \text{ ms, definido por [1]})$

DA - Razão Direto-Reverberante (DRR)

Definição do DRR:

$$DRR_{dB} = 10 \log_{10} \left(\frac{\sum_{t} h_{e}^{2}(t)}{\sum_{t} h_{l}^{2}(t)} \right)$$

DA do DRR:

$$h'_{e}(t) = \alpha w_{d}(t)h_{e}(t) + [1 - w_{d}(t)]h_{e}(t)$$

 $w_d(t) o$ Janela de Hann de duração 2 t_0

DA - Razão Direto-Reverberante (DRR)

Substituindo $h_e(t)$ por $h'_e(t)$ na definição do DRR:

$$\alpha^{2} \sum_{t} w_{d}^{2}(t) h_{e}^{2}(t) + 2\alpha \sum_{t} [1 - w_{d}(t)] w_{d}(t) h_{e}^{2}(t) +$$

$$\sum_{t} [1 - w_{d}(t)]^{2} h_{e}^{2}(t) - 10^{DRR_{dB}/10} \sum_{t} h_{l}^{2}(t) = 0$$

O parâmetro α desejado é a raiz de maior valor.

DA - Tempo de Reverberação (T60)

Definição do T60:

$$\begin{cases} t_i, \text{ onde } h(t_i) = max(h(t)) \\ t_f, \text{ onde } 10 \log_{10} \left(h^2(t_i) - h^2(t_f) \right) = 60 \text{dB} \\ \text{T60} = t_f - t_i \end{cases}$$

Modelo de $h_i(t)$:

$$h_m(t) = Ae^{-(t-t_o)/\tau}n(t)u(t-t_o) + \sigma n(t)$$

 $A \rightarrow Ganho da RIR$

 $\tau \rightarrow \mathsf{Taxa}$ de decaimento

 $\sigma \rightarrow$ Desvio padrão do ruído de chão

 $n(t) \rightarrow \text{Ruído gaussiano padrão}$

 $t_o \rightarrow \text{Balor temporal onde } h_l(t) \text{ tem seu primeiro valor não nulo}$

 $u(t) \rightarrow \text{Degrau unitário}$

DA - Tempo de Reverberação (T60)

Taxa de decaimento:

$$T60 = \ln(1000)\tau T_s$$

 $T_s \rightarrow \text{Tempo de amostragem}$

DA do T60:

$$h'_{l}(t) = h_{l}(t)e^{-(t-t_{o})\frac{\tau-\tau_{d}}{\tau\tau_{d}}}$$

RIRSM completa:

$$h'(t) = h'_e(t) + h'_l(t)$$

DA - Amostra de Voz em Campo Distante (AVCD)

Modelo de uma AVCD:

$$S_{cd}[t] = S_a[t] * h[t] + \sum_i n_{pi}[t] * h[t] + n_f[t]$$

 $S_a[t] o \mathsf{Amostra}$ de Voz Anecóica (AVA)

 $h[t] \rightarrow \mathsf{RIRSM}$

 $n_p[t] \rightarrow \text{Sinal de Ruído Pontual (SRP)}$

 $n_f[t] \rightarrow \text{Sinal de Ruído de Fundo (SRF)}$

DA - Amostra de Voz em Campo Distante (AVCD)

Resultados

Primeira etapa: Adição do SRP

$$S_r[t] = S_a[t] * h[t] + \alpha \operatorname{offset}(n_{pi}[t] * h[t], o_t)$$

OBS: $SNR_t = SNR(S_r[t], \alpha(n_{pi}[t] * h[t])) \rightarrow Razão Sinal-Ruído alvo$

 $S_a[t] \rightarrow \text{Amostra de Voz Anecóica (AVA)}$

 $h[t] \rightarrow \mathsf{RIRSM}$

 $n_{ni}[t] \rightarrow \mathsf{SRP}$

 $\alpha \rightarrow$ Fator de correção da intensidade de $n_{pi}[t]$ para obter o SNR_t offset $(X, o_t) \rightarrow Deslocamento de X para uma posição dentro do$ intervalo de $S_a[t]$

DA - Amostra de Voz em Campo Distante (AVCD)

Resultados

Segunda etapa: Adição do SRF

$$S_{cd}[t] = S_r[t] + \alpha n_f[t]$$

OBS: $SNR_t = SNR(S_{cd}[t], \alpha n_f[t]) \rightarrow Razão Sinal-Ruído alvo$

 $S_r[t] o \mathsf{Amostra}$ de Voz Reverberada + SRP $n_f[t] o \mathsf{SRF}$

Implementação dos algoritmos

Os algoritmos apresentados foram implementados com a ajuda dos seguintes softwares.

- MATLAB® R2018a
- ITA Toolbox (plugin para MATLAB) [3]

São utilizadas três bases de dados para gerar as RIRSMs e AVCDs.

- Base de amostras de voz anecóicas
- Base de RIRs Aachen Impulse Response database
- Base de ruídos MUSAN

Implementação dos algoritmos

Configurações das características desejadas.

Parâmetro	Faixa
DRR _{alvo} (dB)	$-6 \le DRR_{alvo} \le 18$
<i>T</i> 60 _{alvo} (s)	$760_{org}-1 \leq 760_{alvo} \leq 760_{org}+1$, onde o limite inferior de $760_{alvo}=0.2$
SNR_{alvo}	$3 \leq \mathit{SNR}_{\mathit{alvo}} \leq 20$

Resultados

00000000000000000

Resultados - DRR

Exemplo	Sala RIR	Distância (m)	Amostra de Voz
D1	lecture	7.1	H2-T2
D2	booth	1	H2-T1
D3	office	2	M2-T2

Exemplo	DRR _{org} (dB)	DRR _{alvo} (dB)	DRR _{res} (dB)	ρ _{DRR} (%)
D1	-4,5	10	10	0
D2	4,7	-2	-2	0
D3	0,5	18	18	0

$$\rho_{DRR} = |DRR_{res} - DRR_{alvo}|/DRR_{alvo}$$

Resultados - DRR

Motivação

Experimento empírico: sensação subjetiva de "distância", ordenado de mais para menos distante.

Exemplo	DRR _{org} (dB)	DRR _{res} (dB)	Comparação	Ordem
D1	-4,5	10	original	2
D2	4,7	-2	simulado	1
D3	0,5	18	original	3

amostra de voz reverberada - RIRO

amostra de voz reverberada - RIRO

Resultados - T60

Exemplo	Sala RIR	Distância (m)	Amostra de Voz
T1	lecture	7.1	M2-T1
T2	booth	1	H1-T2
Т3	office	2	H2-T2

Exemplo	T60 _{org} (s)	T60 _{alvo} (s)	T60 _{res} (s)	ρ ₇₆₀ (%)
T1	1,38	1,15	1,01	12.1
T2	1,01	1,88	1,89	0,5
Т3	0,75	0,61	0,60	1,6

$$\rho_{T60} = |T60_{res} - T60_{alvo}|/T60_{alvo}$$

Resultados - T60

Experimento empírico: sensação subjetiva de "eco", ordenado de mais para menos ecoante.

Exemplo	T60 _{org} (s)	T60 _{res} (s)	Comparação	Ordem
T1	1,38	1,01	original	2
T2	1,01	1,89	simulado	1
Т3	0,75	0,60	original	3

amostra de voz reverberada - RIRO

amostra de voz reverberada - RIRO

Resultados - AVCD

Exemplo	Sala RIR	Distância (m)	AVA	SRP	SRF
N1	lecture	7.1	M2-T1	RP-6	RF-1
N2	booth	1	H2-T1	RP-12	RF-4
N3	office	2	H1-T1	RP-4	RF-4
N4	meeting	1.7	M1-T2	RP-11	RF-2
N5	stairway	1	H2-T1	RP-7	RF-4

Ex.	DRR _{org} (dB)	DRR _{res} (dB)	T60 _{org} (s)	T60 _{res} (s)	SNR_{alvo}
N1	-4,5	17	1,38	0,56	5
N2	4,7	17	1,01	1,39	10
N3	0,5	14	0,75	0,60	14
N4	6,0	16	0,81	1,16	19
N5	5,0	18	2,70	3,68	3

Resultados - AVCD

Experimento empírico: análise subjetiva de nível de ruído, ordenado de mais para menos ruidoso.

Exemplo	SNR _{alvo} (s)	Ordem
N1	5	3
N2	10	4
N3	14	1
N4	19	5
N5	3	2

Exemplo N4

amostra de voz reverberada

amostra de voz em campo distante

Exemplo N5

amostra de voz reverberada

Conclusões

Motivação

- Em grande parte, os resultados alcançados estão condizentes com os valores esperados.
- Discrepância nos valores de T60 podem ser explicados pelas diferenças de implementação entre este projeto e [1].
- Avaliação empírica das sensações subjetivas de "distância" e "eco" condizentes com as modificações esperadas.

Trabalhos Futuros

- Implementação de uma metodologia de data augmentation de T60 mais próxima à usada no artigo [1].
- Comparação entre as RIRs geradas com a metodologia implementada e RIRs geradas através de programas de simulação acústicas (RAIOS [4]).
- Proposta de um modelo de rede de deep learning para estimação de T60 e DRR em AVCDs para observação da eficácia das RIRs como aprimoradoras do treinamento de redes neurais.

Obrigado!

Referências I

- [1] N. J. Bryan. "Impulse Response Data Augmentation and Deep Neural Networks for Blind Room Acoustic Parameter Estimation". Em: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 1–5. DOI: 10.1109/ICASSP40776.2020.9052970.
- [2] T. Ko et al. "A study on data augmentation of reverberant speech for robust speech recognition". Em: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017, pp. 5220–5224. DOI: 10.1109/ICASSP.2017. 7953152.
- [3] Marco Berzborn et al. "The ITA-Toolbox: An Open Source MA-TLAB Toolbox for Acoustic Measurements and Signal Processing". Em: 43th Annual German Congress on Acoustics, Kiel (Germany), 6 Mar 2017 - 9 Mar 2017. 2017. URL: http:// publications.rwth-aachen.de/record/687308.

Referências II

Motivação

[4] Roberto Tenenbaum et al. "Hybrid method for numerical simulation of room acoustics: Part 2-validation of the computational code RAIOS 3". Em: Journal of the Brazilian Society of Mechanical Sciences and Engineering 29 (abr. de 2007). DOI: 10.1590/S1678-58782007000200013.