Convex Optimization: Reading Notes 3

GKxx

September 5, 2022

1 Dual cones and generalized inequalities

Definition 1.1 (Dual cone). The dual cone of a cone K is defined as

$$K^* = \{ y \mid \forall x \in K, y^T x \geqslant 0 \}.$$

Geometrically, $y \in K^*$ if and only if -y is the normal of a hyperplane that supports K at the origin.

Proposition 1.2. The dual cone of a linear subspace $V \subseteq \mathbb{R}^n$ is its orthogonal complement.

Proof. Note that whenever $x \in V$, -x is also contained in V, and by definition we can see $V^* = V^{\perp}$.

Proposition 1.3. The nonnegative orthant \mathbb{R}^n_+ is a self-dual cone, i.e. $(\mathbb{R}^n_+)^* = \mathbb{R}^n_+$.

Proposition 1.4. The positive semidefinite cone is self-dual.

Proof. We first show that $(\mathbb{S}^n_+)^* \subseteq \mathbb{S}^n_+$. Suppose $Y \in (\mathbb{S}^n_+)^*$. Assume that $Y \notin \mathbb{S}^n_+$, then there exists $\xi \in \mathbb{R}^n$ such that $\xi^T Y \xi < 0$, which means $\mathbf{Tr} \left(\xi^T Y \xi \right) = \mathbf{Tr} \left(\xi \xi^T Y \right) < 0$, while $\xi \xi^T \in \mathbb{S}^n_+$, a contradiction.

Then suppose $Y \in \mathbb{S}^n_+$ and we show that $Y \in (\mathbb{S}^n_+)^*$. For every $X \in \mathbb{S}^n_+$, we write X as its eigenvalue decomposition

$$X = \sum_{i=1}^{n} \lambda_i u_i u_i^\mathsf{T}, \quad \lambda_i \geqslant 0, u_i \in \mathbb{R}^n.$$

We have that

$$\mathbf{Tr}\left(XY\right) = \mathbf{Tr}\left(\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \, \mathbf{Tr}\left(u_{i}^{T} Y u_{i}\right) \geqslant 0.$$

Hence $(\mathbb{S}^n_+)^* = \mathbb{S}^n_+$.

Definition 1.5 (Dual norm). For any norm $\|\cdot\|$, the dual norm is defined as

$$\|u\|_* = \sup \{u^T x \mid \|x\| \leqslant 1\}.$$

Proposition 1.6. The dual of a norm cone $K = \{(x, t) \in \mathbb{R}^{n+1} \mid ||x|| \leq t\}$ is the cone defined by the dual norm

$$K^{*}=\left\{ \left(y,u\right)\in\mathbb{R}^{n+1}\mid\left\Vert y\right\Vert _{*}\leqslant u\right\}$$
 .

Proof. We have to show that $\|y\|_* \le u$ if and only if for every $x \in \mathbb{R}^n, t \ge 0$ with $\|x\| \le t$, we have $y^Tx + tu \ge 0$.

Suppose $\|y\|_* \leqslant u$, which gives by definition that $\sup \{y^T\xi \mid \|\xi\| \leqslant 1\} \leqslant u$, so $\forall \|\xi\| \leqslant 1$, $y^T\xi \leqslant u$. Therefore $\forall x \in \mathbb{R}^n, t \geqslant 0$ with $\|x\| = \|-x\| \leqslant t$, we have $y^T(-x) \leqslant tu \Rightarrow y^Tx + tu \geqslant 0$.

Now suppose that $y^Tx + tu \ge 0$ holds for every $x \in \mathbb{R}^n$, $t \ge 0$ with $||x|| \le t$. Assume that $||y||_* > u$, which implies that $\exists \xi \in \mathbb{R}^n$ with $||\xi|| \le 1$ such that $y^T\xi > u$. This gives that $y^T(-\xi) + 1 \cdot u < 0$ with $||-\xi|| \le 1$, a contradiction.

Proposition 1.7. The dual of the ℓ_p -norm is the ℓ_q -norm, where 1/p + 1/q = 1, p, q > 0.

Proof. We have to show that

$$\left\|u\right\|_{q} = \sup_{x} \left\{u^{T}x \mid \left\|x\right\|_{p} \leqslant 1\right\}$$

holds for every u and any p, q > 0 satisfying 1/p + 1/q = 1. When u = 0 both sides are zero, so we only consider the case where $u \neq 0$. By Holder's inequality,

$$u^{T}x \leq ||u^{T}x||_{1} \leq ||u||_{q} ||x||_{p} \leq ||u||_{q},$$

so if suffices to find a vector x with $||x||_p \leq 1$ such that $||u||_q = u^T x$. Take

$$y = \left[\operatorname{sgn}(u_i) |u_i|^{q-1}\right]_{i=1}^n,$$

so that

$$u^{T}y = \sum_{i=1}^{n} |u_{i}|^{q} = ||u||_{q}^{q},$$

and

$$\|y\|_p^p = \sum_{i=1}^n |u_i|^{p(q-1)} = \sum_{i=1}^n |u_i|^q = \|u\|_q^q.$$

Now let $x = y/||u||_q^{q-1}$, which satisfies

$$\left\|x\right\|_{p} = \frac{\left\|u\right\|_{q}^{q/p}}{\left\|u\right\|_{q}^{q-1}} = \left\|u\right\|_{q}^{q/p-q+1} = 1, \quad \text{and} \quad u^{T}x = \frac{\left\|u\right\|_{q}^{q}}{\left\|u\right\|_{q}^{q-1}} = \left\|u\right\|_{q},$$

so we are done.

Corollary 1.8. The ℓ_2 -norm is self-dual.

The following will show step-by-step, that the dual cone of a proper cone is a proper cone.

Proposition 1.9. K^{**} is the closure of a convex cone K. (Hence $K^{**} = K$ if K is closed.)

Proof. We know that a nonzero vector $y \in K^*$ if and only if y is the normal vector of a homogeneous halfspace containing K. Since the closure of K is the intersection of all homogeneous halfspaces containing K, we have that

$$\mathbf{cl}\,K = \bigcap_{y \in K^*} \left\{ x \mid y^\mathsf{T} x \geqslant 0 \right\} = \left\{ x \mid y^\mathsf{T} x \geqslant 0 \, \forall y \in K^* \right\} = K^{**}.$$

Proposition 1.10. The dual of a cone is closed and convex.

Proof. The dual of a cone K is defined as

$$K^* = \left\{ y \mid y^T x \geqslant 0 \, \forall x \in K \right\} = \bigcap_{x \in K} \left\{ y \mid y^T x \geqslant 0 \right\},$$

which is the intersection of homogeneous halfspaces, and therefore closed and convex. \Box

Proposition 1.11. If K has nonempty interior, then K* is pointed.

Proof. Assume that K^* is not pointed, i.e. contains a line $\theta \nu, \nu \neq 0, \theta \in \mathbb{R}$. Then both $\nu^T x \geqslant 0$ and $(-\nu)^T x \geqslant 0$ hold for every $x \in K$, so $\nu^T x = 0$ holds for every $x \in K$. Since K has nonempty interior, there must be a ball $B = \{x_c + u \mid ||u||_2 \leqslant r\}$ contained in K, so $\nu^T x = 0$ holds for every $x \in B$ too. It follows that ν must be zero, so K^* is pointed.

Proposition 1.12. If cl K is pointed, then K* has nonempty interior.

Proof. Assume that **int** $K^* = \emptyset$. Since K^* is closed and convex, it must be contained in an affine space of lower dimension. Then the normal vector $v \neq 0$ to that affine space will be contained in $K^{**} = \mathbf{cl} K$, and so is -v. Hence $\mathbf{cl} K$ contains a line, a contradiction.

Corollary 1.13. The dual cone of a proper cone is a proper cone.

2 Strong convexity

Definition 2.1 (Strongly convex function). A function f is said to be μ-strongly convex if

$$g(x) = f(x) - \frac{\mu}{2} ||x||_2^2$$

is convex, where $\mu > 0$ is constant.

Intuitively, strong convexity means that there exists a quadratic lower bound on the growth of the function. It is natural that strong convexity implies convexity and strict convexity. Moreover, we have the following equivalent condition.

Proposition 2.2. A function f is μ -strongly convex if and only if for every $\theta \in [0,1]$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) - \frac{\theta(1 - \theta)\mu}{2} ||x - y||_2^2$$

for any x, y.

Proof. It follows directly from the convexity of $g(x) = f(x) - \mu ||x||_2^2/2$, which gives that $g(\theta x + (1-\theta)y) \leqslant \theta f(x) + (1-\theta)f(y)$ holds for every $x,y \in \text{dom } f$ and $\theta \in [0,1]$.

Suppose further that f(x) is μ -strongly convex differentiable function, we will have the following equivalent conditions.

Proposition 2.3. A function f is μ -strongly convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||_{2}^{2}$$

for every $x, y \in \operatorname{dom} f$.

Proof. It follows directly from the first-order condition of the convexity of $g(x) = f(x) - \mu ||x||_2^2 / 2$, which gives that

$$g(y) \geqslant g(x) + \nabla g(x)^{T} (y - x).$$

(Note that $\nabla ||\mathbf{x}||_2^2 = 2\mathbf{x}$.)

Remark 2.4. From the convexity of a differentiable convex function g(x), we have that

$$g(y) \geqslant g(x) + \nabla g(x)^{\mathsf{T}} (y - x),$$

so

$$(\nabla g(y) - \nabla g(x))^{\mathsf{T}} (y - x) = \nabla g(y)^{\mathsf{T}} (y - x) - \nabla g(x)^{\mathsf{T}} (y - x)$$

$$\geqslant \nabla g(y)^{\mathsf{T}} (y - x) - g(y) + g(x)$$

$$\geqslant 0.$$

Proposition 2.5. A function f is μ -strongly convex if and only if

$$\left(\nabla f(x) - \nabla f(y)\right)^{T}(x - y) \geqslant \mu \left\|x - y\right\|_{2}^{2}$$

for every $x, y \in \operatorname{dom} f$.

Proof. It follows directly from Remark 2.4, noting that $\nabla ||\mathbf{x}||_2^2 = 2\mathbf{x}$.

Proposition 2.6. Suppose f(x) is differentiable and μ -strongly convex. Then for every $x, y \in \text{dom } f$,

$$\left\| \nabla f(x) - \nabla f(y) \right\|_2 \geqslant \mu \left\| x - y \right\|_2$$
.

Proof. By Cauchy-Swartz inequality,

$$\|\nabla f(x) - \nabla f(y)\|_{2} \|x - y\|_{2} \ge (\nabla f(x) - \nabla f(y))^{T} (x - y) \ge \mu \|x - y\|_{2}^{2}.$$

Cancelling $||x - y||_2$ on both sides finishes the proof.

Remark 2.7 (Lipschitz). A function $f:U\to V$ is Lipschitz continuous with Lipschitz constant L if

$$d_{V}\left(f(x) - f(y)\right) \leqslant Ld_{U}(x - y)$$

for every $x,y \in U$. Here $d_U(\cdot)$ and $d_V(\cdot)$ are metrics on U and V respectively.

If a differentiable function f is μ -strongly convex with its gradient $\nabla f(x)$ L-Lipschitz continuous (suppose we use the ℓ_2 -norm), then we would see that

$$\mu \|x - y\| \leqslant \|\nabla f(x) - \nabla f(y)\| \leqslant L \|x - y\|$$

holds for every $x, y \in \text{dom } f$. These concepts are essential in analyzing the rate of convergence of some algorithms.

3 Operations preserving convexity

Proposition 3.1. The maximum eigenvalue of symmetric matrices $\lambda_{\max}(X)$ is a convex function.

Proof. By Rayleigh's Theorem $\lambda_{\max}(X) = \max_{\|y\|_2=1} y^T X y$, which is the maximum of convex functions, thus convex.

Theorem 3.2 (Rayleigh). Let $A \in \mathbb{C}^{n \times n}$ be Hermitian with eigenvalues $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ and corresponding unit eigenvectors x_1, \cdots, x_n . Let i_1, \cdots, i_k be given integers with $1 \leqslant i_1 < \cdots < i_k \leqslant n$. Let $S = \operatorname{span}\{x_{i_1}, \cdots, x_{i_k}\}$. Then

$$\lambda_{i_1} = \min_{\substack{x \in S \\ \|x\|_2 = 1}} x^*Ax, \quad \lambda_{i_k} = \max_{\substack{x \in S \\ \|x\|_2 = 1}} x^*Ax,$$

with minimum and maximum achieved when $x=x_{i_1}$ and $x=x_{i_k}$, respectively. (Here x^* is the conjugate transpose of x.)

Proof. For any $x \in S$ with $||x||_2 = 1$, there exist scalars $\alpha_1, \dots, \alpha_k$ such that $x = \sum_{j=1}^k \alpha_j x_{i_j}$. Since x is a unit norm vector,

$$x^*x = \sum_{i=1}^k \alpha_j^2 x_{i_j}^* x_{i_j} = \sum_{i=1}^k \alpha_j^2 = 1.$$

Moreover, $Ax = \sum_{j=1}^{k} \alpha_j \lambda_{i_j} x_{i_j}$, so

$$x^*Ax = \left(\sum_{j=1}^k \alpha_j x_{i_j}^*\right) \left(\sum_{j=1}^k \alpha_j \lambda_{i_j} x_{i_j}\right) = \sum_{j=1}^k \alpha_j^2 \lambda_{i_j},$$

which is a convex combination of $\lambda_{i_1}, \dots, \lambda_{i_k}$, so it lies between λ_{i_1} and λ_{i_k} . When $x = x_{i_1}$ the minimum is achieved, and when $x = x_{i_k}$ the maximum is achieved.

With regard to eigenvalues there are some other interesting facts. The following can be viewed as generalized versions of the Rayleigh's theorem.

Theorem 3.3 (Courant-Fischer). Let $A \in \mathbb{C}^{n \times n}$ be Hermitian with eigenvalues $\lambda_1 \leqslant \cdots \leqslant \lambda_n$. Then we have

$$\lambda_i = \min_{\dim V = i} \max_{\substack{x \in V \\ \|x\|_2 = 1}} x^* A x,$$

and its dual form

$$\lambda_i = \max_{\dim V = \mathfrak{n} - i + 1} \min_{\substack{x \in V \\ \|x\|_j = 1}} x^* A x.$$

Proof. Let x_1, \dots, x_n be the eigenvectors associated with $\lambda_1, \dots, \lambda_n$. For a given $i \in [n]$, let $S = \operatorname{span}\{x_i, \dots, x_n\}$. For any subspace V with $\dim V = i$, since $\dim V + \dim S = n+1 > n$, it follows that $V \cap S \neq 0$. Then according to the Rayleigh's Theorem we have

$$\max_{\substack{x \in V \\ \|x\|_2 = 1}} x^*Ax \geqslant \max_{\substack{x \in V \cap S \\ \|x\|_2 = 1}} x^*Ax \geqslant \min_{\substack{x \in V \cap S \\ \|x\|_2 = 1}} x^*Ax \geqslant \min_{\substack{x \in S \\ \|x\|_2 = 1}} x^*Ax = \lambda_i.$$

The equality is achieved when $V = \operatorname{span}\{x_1, \dots, x_i\}$, so we have

$$\lambda_i = \min_{\dim V = i} \max_{\substack{x \in V \\ \|x\|_2 = 1}} x^* A x.$$

The dual form can be proved by applying the primal form to -A, noting that the ordered eigenvalues are

$$\lambda_{i}(-A) = -\lambda_{n-i+1}(A).$$

Theorem 3.4. Let $A \in \mathbb{C}^{n \times n}$ be Hermitian with eigenvalues $\lambda_1 \leqslant \cdots \leqslant \lambda_n$. Suppose that $1 \leqslant m \leqslant n$. Then

$$\sum_{i=1}^m \lambda_i = \min_{\substack{V \in \mathbb{C}^{n \times m} \\ V^*V = I_m}} \mathbf{Tr}(V^*AV),$$

and

$$\sum_{i=1}^{m} \lambda_{i+n-m} = \max_{\substack{V \in \mathbb{C}^{n \times m} \\ V^*V = I_{m}}} \mathbf{Tr}(V^*AV).$$

The minimum and maximum are achieved for a matrix V whose columns are orthonormal eigenvectors associated with the m smallest or largest eigenvalues of A.

Moreover, it is not surprising that similar things can apply to singular values of arbitrary matrices. The following theorem could be derived from Courant-Fischer.

Theorem 3.5. Let $A \in \mathbb{C}^{n \times m}$ with singular values $\sigma_1 \geqslant \cdots \geqslant \sigma_q$, where $q = \min\{n, m\}$. Then for every $i \in [q]$ we have

$$\sigma_{i} = \max_{\dim V = i} \min_{0 \neq x \in V} \frac{\left\|Ax\right\|_{2}}{\left\|x\right\|_{2}},$$

and

$$\sigma_{i} = \min_{\dim V = m-i+1} \max_{0 \neq x \in V} \frac{\left\|Ax\right\|_{2}}{\left\|x\right\|_{2}}.$$

Theorem 3.6. If f(x,y) is convex and C is a convex set, then $g(x) = \inf_{y \in C} f(x,y)$ is convex. Here we take $\operatorname{dom} g = \{x \mid (x,y) \in \operatorname{dom} f \text{ for some } y \in C\}$.

Proof. Take any $x_1, x_2 \in \text{dom } g$. For any $\varepsilon > 0$, there exists $y_1, y_2 \in C$ such that $f(x_1, y_1) - \varepsilon \leq g(x_1), f(x_2, y_2) - \varepsilon \leq g(x_2)$. For any $\theta \in [0, 1]$, we have that

$$\begin{split} g(\theta x_1 + (1 - \theta) x_2) &= \inf_{y \in C} f(\theta x_1 + (1 - \theta) x_2, y) \\ &\leqslant f(\theta x_1 + (1 - \theta) x_2, \theta y_1 + (1 - \theta) y_2) \\ &\leqslant \theta f(x_1, y_1) + (1 - \theta) f(x_2, y_2) \\ &\leqslant \theta g(x_1) + (1 - \theta) g(x_2) + \epsilon. \end{split}$$

Since the above inequality holds for every $\varepsilon > 0$, we can conclude that

$$g(\theta x_1 + (1 - \theta)x_2) \le \theta g(x_1) + (1 - \theta)g(x_2),$$

so g is convex.

Definition 3.7 (Perspective). The perspective of a function $f: \mathbb{R}^n \to \mathbb{R}$ is defined as

$$g(x,t) = tf(x/t), \quad dom g = \{(x,t) \mid x/t \in dom f, t > 0\}.$$

Proposition 3.8. The perspective of a convex function is convex.

Proof. There are several ways to prove it. First, we prove it by showing the Jensen's inequality for every $(x, t), (y, s) \in \text{dom } g, \theta \in [0, 1]$. We have that

$$\begin{split} &g(\theta x + (1 - \theta)y, \theta t + (1 - \theta)s) \\ &= (\theta t + (1 - \theta)s) f\left(\frac{\theta x + (1 - \theta)y}{\theta t + (1 - \theta)s}\right) \\ &= (\theta t + (1 - \theta)s) f\left(\frac{\theta t}{\theta t + (1 - \theta)s} \cdot \frac{x}{t} + \frac{(1 - \theta)s}{\theta t + (1 - \theta)s} \cdot \frac{y}{s}\right) \\ &\leq (\theta t + (1 - \theta)s) \left(\frac{\theta t}{\theta t + (1 - \theta)s} f\left(\frac{x}{t}\right) + \frac{(1 - \theta)s}{\theta t + (1 - \theta)s} f\left(\frac{y}{s}\right)\right) \\ &= \theta g(x, t) + (1 - \theta)g(y, s). \end{split}$$

Moreover, there is another important way to prove the convexity of g if we look at the epigraph of g. Note that for t>0, $(x,t,s)\in epig$ if and only if $tf(x/t)\leqslant s$, which is equivalent to $(x,s)/t\in epif$. Therefore, epig is the inverse image of epif under the perspective function

$$P(u,v,w) = (u,v)/w.$$

So **epi** g is convex, and so is g.

4 Conjugate function

Definition 4.1 (Convex conjugate). The convex conjugate of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x)).$$

It is also called the **Fenchel conjugate**, **Fenchel transformation**, or the **Legendre-Fenchel transformation**.

Remark 4.2. The conjugate function of any function is convex.

Proof. f^* is the supremum of affine functions, hence convex.

Theorem 4.3 (Fenchel's inequality). For a function f and its convex conjugate f*, we have that

$$y^T x \leqslant f(x) + f^*(y)$$
.

Proof. It follows immediately from the definition that

$$f^*(y) \geqslant y^T x - f(x), \quad \forall x, y \in \operatorname{dom} f.$$

We are curious about the convex conjugate of the convex conjugate of a function. Below are some known facts, the proof of which is omitted here.

Definition 4.4 (Biconjugate). f** is called the biconjugate of a function f.

Definition 4.5 (Lower semicontinuity). A function $f: X \to \mathbb{R}$ is called lower semicontinuous at a point $x_0 \in X$ if for every real $y < f(x_0)$, there exists a neighborhood U of x_0 such that f(x) > y for all $x \in U$.

Remark 4.6. f is lower semicontinuous if and only if all sublevel sets are closed.

Remark 4.7. f is lower semicontinuous if and only if the epigraph of f is closed.

Similarly we can define the concept of **upper semicontinuity**. A function is continuous if and only if it is both lower and upper semicontinuous.

Proposition 4.8. The biconjugate f^{**} is the largest lower semi-continuous convex function with $f^{**} \leq f$.

Theorem 4.9 (Fenchel-Moreau). $f = f^{**}$ if and only if f is a lower semi-continuous and convex function.

There is a very interesting fact about a function and its convex conjugate. Refer to [2] for a proof of this theorem.

Theorem 4.10. 1. If f is closed and μ -strongly convex, then f^* has a $1/\mu$ -Lipschitz continuous gradient.

2. If f is convex and has an L-Lipschitz continuous gradient, then f* is 1/L-strongly convex.

5 Convex optimization

Theorem 5.1. Any locally optimal point of a convex optimization problem is globally optimal.

Proof. Suppose x is locally optimal, i.e. there exists R > 0 such that $f_0(y) \ge f_0(x)$ holds for every feasible y with $||x - y|| \le R$. Assume that there exists $x' \ne x$ such that $f_0(x') < f_0(x)$. Pick z on the line segment between x and x', with 0 < ||z - x|| < R, so that z can be expressed in the form $z = \theta x + (1 - \theta)x'$ for some $\theta \in [0, 1]$. Then by the convexity of f_0 we have

$$f_0(z) \leqslant \theta f_0(x) + (1-\theta)f_0(x') < \theta f_0(x) + (1-\theta)f_0(x) = f_0(x),$$

contradictory with the fact that $f_0(z) \ge f_0(x)$.

References

- [1] R. A. Horn and C. R. Johnson, *Matrix analysis*. Cambridge university press, 2012.
- [2] X. Zhou, "On the fenchel duality between strong convexity and lipschitz continuous gradient," arXiv preprint arXiv:1803.06573, 2018.