This exercise sheet is meant to be discussed at the blackboard during a "traditional" seminar, and is also intended for self-study (that is, is plays no role in the grading). Nevertheless, it is strongly recommended to look at it before the exam.

Spectra

- **5.1.** Show that for each subset $S \subset \mathbb{C}$ there exist a unital algebra A and $a \in A$ such that $\sigma_A(a) = S$. (Do not forget about $S = \emptyset$.)
- **5.2.** Show that for each nonempty compact subset $K \subset \mathbb{C}$ there exists a bounded linear operator T on a Banach space such that $\sigma(T) = K$.
- **5.3.** Prove that the spectrum of a bijective isometry on a Banach space is contained in $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.
- **5.4.** Find the point spectrum, the continuous spectrum, and the residual spectrum of the diagonal operator on ℓ^{∞} .
- **5.5.** Let (X, μ) be a measure space, and let $f: X \to \mathbb{C}$ be a measurable function. Recall (see the lectures) that $\lambda \in \mathbb{C}$ is an *essential value* of f if for each neighborhood $U \ni \lambda$ we have $\mu(f^{-1}(U)) > 0$. The set of all essential values of f is called the *essential range* of f. Also recall (see the lectures) that, if f is essentially bounded, then the spectrum $\sigma_{L^{\infty}(X,\mu)}(f)$ is equal to the essential range of f.
- (a) Show that f(X) is not necessarily contained in the essential range of f.
- (b) Show that the essential range of f is not necessarily contained in f(X).
- (c) Show that, if X = [a, b] or $X = \mathbb{T}$ with the Lebesgue measure, and if f is continuous, then the essential range of f is equal to f(X).
- **5.6.** Let (X, μ) be a σ -finite measure space, f be an essentially bounded measurable function on X, and M_f be the multiplication operator on $L^p(X, \mu)$ acting by the rule $g \mapsto fg$ (where $1 \leqslant p \leqslant \infty$). Find the point spectrum, the continuous spectrum, and the residual spectrum of M_f . Pay special attention to the case of $M_t: L^2[0,1] \to L^2[0,1]$, $(M_t g)(t) = tg(t)$.
- **5.7.** Find the point spectrum, the continuous spectrum, and the residual spectrum of the operator $T: L^2[-\pi, \pi] \to L^2[-\pi, \pi]$ acting by the rule

$$(Tf)(t) = \int_{-\pi}^{\pi} \sin^2(t-s)f(s) ds.$$

(*Hint*: replace T by a unitary equivalent operator on $\ell^2(\mathbb{Z})$.)

- **5.8.** Find the point spectrum, the continuous spectrum, and the residual spectrum of the left and right shift operators on (a) c_0 ; (b) ℓ^1 ; (c)-B ℓ^{∞} .
- **5.9.** Given $\zeta \in \mathbb{T}$, define the shift operator $T_{\zeta} \colon L^{2}(\mathbb{T}) \to L^{2}(\mathbb{T})$ by $(T_{\zeta}f)(z) = f(\zeta^{-1}z)$. Find the point spectrum, the continuous spectrum, and the residual spectrum of T_{ζ} .
- **5.10** (the Volterra operator). Let I = [a, b], let $H = L^2(I)$, and let $K \in L^2(I \times I)$. The Volterra operator $V_K : L^2(I) \to L^2(I)$ is given by

$$(V_K f)(x) = \int_a^x K(x, y) f(y) \, dy$$

- (a) Prove that V_K is quasinilpotent whenever K is bounded.
- (b)-B Prove that V_K is quasinilpotent for each $K \in L^2(I \times I)$.

Compact operators

- **5.11.** Let X be a normed space, let $f \in X^* \setminus \{0\}$, and let $X_0 = \text{Ker } f$. Show that there exists a 0-perpendicular to X_0 in X iff f is norm-attaining (which means that there exists $x \in X$, ||x|| = 1, such that |f(x)| = ||f||). Give an example showing that this is not always the case.
- **5.12.** (a) Prove that a subset $S \subset c_0$ is relatively compact iff there exists $y \in c_0$ such that $|x_n| \leq |y_n|$ for all $x \in S$ and all $n \in \mathbb{N}$. (b) Does a similar result hold for ℓ^p ?
- **5.13.** Are the left and right shift operators on ℓ^p and on c_0 compact?
- **5.14.** Can the image of a compact operator between Banach spaces contain an infinite-dimensional closed vector subspace?
- **5.15.** Prove that the inclusion $C^1[a,b] \to C[a,b]$ is a compact operator.
- **5.16.** (a) Let $f \in C[a, b]$, and let M_f denote the respective multiplication operator on C[a, b]. Find a condition on f that is necessary and sufficient for M_f to be compact.
- (b) Let $I \subset \mathbb{R}$ be an interval (not necessarily open or closed, not necessarily bounded), let $f: I \to \mathbb{C}$ be an essentially bounded measurable function, and let M_f denote the respective multiplication operator on $L^p(I)$ $(1 \le p \le \infty)$. Find a condition on f that is necessary and sufficient for M_f to be compact.
- **5.17.** Given an integrable function f on [0,1], define a function Tf on [0,1] by

$$(Tf)(x) = \int_0^x f(t) dt.$$

Is T a compact operator (a) from C[0,1] to C[0,1]? (b) from $L^p[0,1]$ to C[0,1] (where $1)? (c) from <math>L^p[0,1]$ to $L^p[0,1]$ (where $1)? (d) from <math>L^1[0,1]$ to C[0,1]? (e) from $L^1[0,1]$ to $L^1[0,1]$?

5.18. Let I = [a, b], and let $K \in C(I \times I)$. Prove that the integral operator $T: C(I) \to C(I)$,

$$(Tf)(x) = \int_a^b K(x, y)f(y) \, dy,$$

is compact.

5.19. Let (X, μ) be a measure space, and let $K \in L^2(X \times X, \mu \times \mu)$. Prove that the *Hilbert–Schmidt* integral operator $T_K : L^2(X, \mu) \to L^2(X, \mu)$,

$$(T_K f)(x) = \int_X K(x, y) f(y) d\mu(y),$$

is compact.

Hint: show that functions of the form K(x,y) = f(x)g(y), where $f,g \in L^2(X,\mu)$, span a dense subspace of $L^2(X \times X, \mu \times \mu)$, and use the fact that $||T_K|| \leq ||K||_2$ (see Exercise 2.8).

5.20. Calculate the norm of the operator $T: L^2[0,1] \to L^2[0,1]$ defined in Exercise 5.17.

Hint: T^*T is compact and selfadjoint.

Answer: see Exercise 2.6.