

Análisis de las banderas de estado en las instrucciones condicionales.

Las banderas de Negativo (N), Acarreo (C), Cero (Z) y Desbordamiento (OV) obtenidas en la ALU nos sirven para poder determinar cuando una condición se cumple en las instrucciones de brinco condicional BEQI, BNEI, BGTI, BGETI, BLTI, BLETI.

Para empezar a analizar los estados de las banderas de la ALU cuando ejecutamos instrucciones condicionales, vamos a considerar los valores representados con un número de 4 bits. Estos valores pueden representar cantidades diferentes dependiendo si se considera la cantidad con signo o sin signo. Esto se muestra en la tabla 2.

Α	В	С	D	SIN SIGNO	CON SIGNO
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	-8
1	0	0	1	9	-7
1	0	1	0	10	-6
1	0	1	1	11	-5
1	1	0	0	12	-4
1	1	0	1	13	-3
1	1	1	0	14	-2
1	1	1	1	15	-1

Tabla 1 Representación de números con 4 bits.

Casos a analizar.

	Números sin signo.	Números con signo.
Condición $A = B$	Ejemplo1: $A = B = 4$	Ejemplo1: $A = B = 4$
	Ejemplo2: $A = B = 10$	Ejemplo2 : $A = B = -6$
Condición <i>A</i> > <i>B</i>	Ejemplo1 : $A = 7, B = 3$	Ejemplo1 : $A = 7, B = 3$
	Ejemplo2: $A = 10, B = 9$	Ejemplo2 : $A = -2, B = -5$
		Ejemplo3 : $A = 7, B = -5$

Estado de las banderas para números sin signo.

Vamos a analizar las 4 condiciones cuando las cantidades no tienen signo, es decir, son siempre positivos.

Condición A = B.

La primera condición a verificar es A=B. En este caso se tiene A- B=0. En este caso nunca se producirá un desbordamiento (overflow), ni se toma en cuenta la bandera de signo (N), por ser números positivos. Analicemos esto con los siguientes ejemplos:

Si
$$A = B = 4$$

Tenemos: $4 = 4 \Rightarrow 4 - 4 = 0 \Rightarrow 4 + (-4) = 0$

	C4	C3	C2	C1	C0
	1	1	0	0	0
4		0	1	0	0
-4		1	1	0	0
		0	0	0	0

Bandera	Valor
Z	1
С	1
N	0
OV	0

Si
$$A = B = 10$$

Tenemos: $10 = 10 \Rightarrow 10 - 10 = 0 \Rightarrow 10 + (-10) = 0$

	C4	C3	C2	C1	C0
	1	1	1	0	0
10		1	0	1	0
-10		0	1	1	0
		0	0	0	0

Bandera	Valor
Z	1
С	1
N	0
OV	0

En ambos ejemplos las banderas Z = C = 1.

Condición A > B.

Para analizar esta condición observemos los siguientes ejemplos:

Si
$$A = 7, B = 3$$

Tenemos:
$$7 > 3 \Rightarrow 7 - 3 > 0 \Rightarrow 7 + (-3) > 0$$

	C4	C3	C2	C1	C0
	1	1	1	1	0
7		0	1	1	1
-3		1	1	0	1
		0	1	0	0

Bandera	Valor
Z	0
С	1
N	0
OV	0

Tenemos: $10 > 9 \Rightarrow 10 - 9 > 0 \Rightarrow 10 + (-9) > 0$

	C4	C3	C2	C1	C0
	1	1	1	0	0
10		1	0	1	0
-9		0	1	1	1
		0	0	0	1

Bandera	Valor
Z	0
С	1
N	0
OV	0

En este caso las banderas $Z=0\,$ y $C=1\,$.

En resumen las condiciones para números sin signo son las siguientes:

Condición	Banderas
A = B	Z = 1, C = 1
	$EQ = Z \cdot C$
	En la práctica: $EQ = Z$
$A \neq B$	$NEQ = \overline{Z \cdot C}$
	En la práctica: $NEQ = \overline{Z}$
A > B	Z=0,C=1
	$G = \overline{Z} \cdot C$
$A \ge B$	$GE = \overline{Z} \cdot C + Z \cdot C$
	$GE = C \cdot (\overline{Z} + Z)$
	GE = C
A < B	$L = \overline{C}$
$A \leq B$	$LE = \overline{C} + Z \cdot C$
	$LE = \overline{C} \cdot 1 + Z \cdot C$
	$LE = \overline{C} \cdot (Z+1) + Z \cdot C$
	$LE = \overline{C} \cdot Z + \overline{C} + Z \cdot C$
	$LE = Z \cdot (\overline{C} + C) + \overline{C}$
	$LE = Z + \overline{C}$

Estado de las banderas para números con signo.

Vamos a analizar las 4 condiciones cuando las cantidades tienen signo.

Condición A > B.

Vamos a analizar el caso de A > B cuando las cantidades tienen signos iguales. Observemos el siguiente ejemplo donde los números son positivos.

Si
$$A = 7, B = 3$$

Tenemos: $7 > 3 \Rightarrow 7 - 3 > 0 \Rightarrow 7 + (-3) > 0$

	C4	C3	C2	C1	C0
	1	1	1	1	0
7		0	1	1	1
-3		1	1	0	1
		0	1	0	0

Bandera	Valor
Z	0
С	1
N	0
OV	0

Observemos el siguiente ejemplo donde los números son negativos.

Si
$$A = -2, B = -5$$

Tenemos: $-2 > -5 \Rightarrow -2 + 5 > 0$

	C4	C3	C2	C1	C0
	1	1	0	0	0
-2		1	1	1	0
5		0	1	0	1
		0	0	1	1

Bandera	Valor
Z	0
С	1
N	0
OV	0

Vamos a analizar el caso de A > B cuando las cantidades tienen signos diferentes. Observemos el siguiente ejemplo:

Si
$$A = 7, B = -5$$

Tenemos: $7 > -5 \Rightarrow 7 + 5 > 0$

	C4	C3	C2	C1	C0
	0	1	1	1	0
7		0	1	1	1
5		0	1	0	1
		1	1	0	0

Bandera	Valor
Z	0
С	0
N	1
OV	1

Podemos observar que las banderas de signo (N) y la de overflow (OV) son iguales. Además la bandera Z=0.

En resumen las condiciones para números con signo son las siguientes:

Condición	Banderas
A = B	Z = 1, C = 1
	$E = Z \cdot C$
	En la práctica: $E=Z$
$A \neq B$	$NE = \overline{Z \cdot C}$
	En la práctica: $NE = \overline{Z}$
A > B	Z = 0, N = 0, OV = 0
	Z = 0, N = 1, OV = 1
	$G = (N \oplus OV) \cdot \overline{Z}$
$A \ge B$	$GE = \overline{Z} \cdot \overline{N \oplus OV} + Z$
	$GE = \overline{Z} \cdot \overline{N \oplus OV} + Z \cdot 1$
	$GE = \overline{Z} \cdot \overline{N \oplus OV} + Z \cdot ((\overline{N \oplus OV}) + 1)$
	$GE = \overline{Z} \cdot \overline{N \oplus OV} + Z \cdot \overline{N \oplus OV} + Z$
	$GE = \overline{N \oplus OV} \cdot (\overline{Z} + Z) + Z$
	$GE = (\overline{N \oplus OV}) + Z$
A < B	$L = \overline{(N \oplus OV) + Z}$
	$L = (N \oplus OV) \cdot \overline{Z}$
$A \leq B$	$LE = (N \oplus OV) \cdot \overline{Z} + Z$
	$LE = (N \oplus OV) \cdot \overline{Z} + Z \cdot 1$
	$LE = (N \oplus OV) \cdot \overline{Z} + Z \cdot (1 + (N \oplus OV))$
	$LE = (N \oplus OV) \cdot \overline{Z} + Z + Z \cdot (N \oplus OV)$
	$LE = (N \oplus OV) \cdot (\overline{Z} + Z) + Z$
	$LE = (N \oplus OV) + Z$