

AD-A105 763

STETSON-DALE UTICA NY

NATIONAL DAM SAFETY PROGRAM. CLINTON RESERVOIR DAM (INVENTORY N--ETC(U)
AUG 81 J B STETSON

F/G 13/13

DACW51-81-C-0009

NL

UNCLASSIFIED

1 OF 2
40 A
105705

AD A105763

MOHAWK RIVER BASIN

3

CLINTON RESERVOIR DAM

LEVEL

NEW YORK

INVENTORY No. NY 212

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

NEW YORK DISTRICT CORPS OF ENGINEERS

JULY 1981

T 13 11 19

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		AD-A105 763
4. TITLE (and Subtitle) Phase I Inspection Report Clinton Reservoir Dam Mohawk River Basin, Oneida County, N.Y. Inventory No. 212	5. TYPE OF REPORT & PERIOD COVERED Phase I Inspection Report National Dam Safety Program	
7. AUTHOR(s) <u>JOHN B. STETSON</u>	6. PERFORMING ORG. REPORT NUMBER DACW51-81-C-0009	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Stetson-Dale 185 Genesee Street Utica, New York 13501	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Army 26 Federal Plaza New York District, CofE New York, New York 10287	12. REPORT DATE 31 August 1981	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Department of the Army 26 Federal Plaza New York District, CofE New York, NY 10287	15. SECURITY CLASS. (If Report is a supplement to a previous report) UNCLASSIFIED	
16. DISTRIBUTION STATEMENT Approved for public release; Distribution unlimited.	SIFICATION/DOWNGRADING LE	
17. DISTRIBUTION STATEMENT (if not abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continued on reverse side if necessary and identify by block number) Dam Safety National Dam Safety Program Visual Inspection Hydrology, Structural Stability Clinton Reservoir Dam Oneida County Mohawk River Basin		
20. ABSTRACT (Continued on reverse side if necessary and identify by block number) This report provides information and analysis on the physical condition of the dam as of the report date. Information and analysis are based on visual inspection of the dam by the performing organization. The Phase I inspection of the Clinton Reservoir Dam did not indicate conditions which would constitute an immediate hazard to human life or property. However, the dam has some deficiencies which require further investigations and remedial work.		

The structural analysis indicates unsatisfactory stability against overturning for the conditions of the reservoir at spillway crest plus ice loading and the 1/2 PMF and PMF conditions. A stability investigation of the spillway section should be undertaken to determine the factors of safety during extreme loading conditions. A structural stability investigation should be commenced within 3 to 6 months to determine the characteristics of the uplift forces acting on the dam, the properties of the existing dam and foundation, and the effect of these conditions on the stability of the dam. Remedial work should be undertaken depending on the results of this investigation and completed within 18 to 24 months.

The hydrologic/hydraulic analysis establishes the spillway capacity as 35 percent of the Probable Maximum Flood (PMF). The dam will be overtopped by 0.7 feet by the PMF and 0.25 feet under the 1/2 PMF. However, a dam break analysis indicates that a dam failure would not significantly increase the downstream hazard to loss of life from that which would occur just prior to the failure. Therefore, the spillway is assessed as inadequate according to the Corps of Engineers' screening criteria.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A	

D

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

	<u>Page</u>
Preface	
Assessment of General Conditions	i-ii
Overview Photograph	
Section 1 - Project Information	1-4
Section 2 - Engineering Data	5-6
Section 3 - Visual Inspection	7-8
Section 4 - Operation and Maintenance Procedures	9
Section 5 - Hydrologic/Hydraulic	10-12
Section 6 - Structural Stability	13-17
Section 7 - Assessment/Remedial Measures	18-19

APPENDIX

Photographs	A
Visual Inspection Checklist	B
Hydrologic/Hydraulic, Engineering Data and Computations	C
References	D
Previous Inspection Reports/Available Documents	E
Drawings:	F
Figure 1 - Location Map	
Figure 2 - Plan View of Reservoir	
Figure 3 - Typical Sections	
Figure 4 - Spillway Channel Plan & Profile	
Figure 5 - Plan of Former Reservoir	
Figure 6 - Plan & Sections of Former Dam	

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Clinton Reservoir Dam ID. No. NY 212
State Located: New York
County: Oneida
Watershed: Mohawk River Basin
Stream: Unnamed
Date of Inspection: March 13, 1981

ASSESSMENT OF GENERAL CONDITIONS

The Phase I inspection of the Clinton Reservoir Dam did not indicate conditions which would constitute an immediate hazard to human life or property. However, the dam has some deficiencies which require further investigations and remedial work.

The structural analysis indicates unsatisfactory stability against overturning for the conditions of the reservoir at spillway crest plus ice loading and the 1/2 PMF and PMF conditions. A stability investigation of the spillway section should be undertaken to determine the factors of safety during extreme loading conditions. A structural stability investigation should be commenced within 3 to 6 months to determine the characteristics of the uplift forces acting on the dam, the properties of the existing dam and foundation, and the effect of these conditions on the stability of the dam. Remedial work should be undertaken depending on the results of this investigation and completed within 18 to 24 months.

The hydrologic/hydraulic analysis establishes the spillway capacity as 35 percent of the Probable Maximum Flood (PMF). The dam will be overtopped by 0.7 feet by the PMF and 0.25 feet under the 1/2 PMF. However, a dam break analysis indicates that a dam failure would not significantly increase the downstream hazard to loss of life from that which would occur just prior to the failure. Therefore, the spillway is assessed as inadequate according to the Corps of Engineers' screening criteria.

The following remedial work should be undertaken by the Owner within 12 months:

1. The channel at the downstream end of the spillway should be repaired to provide a stable channel for the discharge flows.
2. Trees and brush should be removed from the embankment and a suitable sod cover established to allow for inspection of the embankment.
3. Woodchucks should be eliminated from the embankment and the burrows filled.
4. A flood warning and emergency evacuation system should be implemented to alert the public in the event conditions occur which could result in failure of the dam.

5. A formalized inspection system should be initiated to develop data on conditions and maintenance operations at the facility.

Dale Engineering Company

John B. Stetson, President

Col. W. M. Smith, Jr.
New York District Engineer

Approved By:
Date:

31 Aug 81

1. Overview of Clinton Reservoir Dam as viewed from downstream. Spillway is located in left portion of photo. Note extensive tree and brush growth on embankment.

PHASE I INSPECTION REPORT
CLINTON RESERVOIR DAM I.D. NO. NY 212
MOHAWK RIVER BASIN
ONEIDA COUNTY, NEW YORK

SECTION 1: PROJECT INFORMATION

1.1 GENERAL

a. Authority

Authority for this report is provided by the National Dam Inspection Act, Public Law 92-367 of 1972. It has been prepared in accordance with a contract for professional services between Dale Engineering Company and The U.S. Army Corps of Engineers.

b. Purpose of Inspection

The purpose of this inspection is to evaluate the existing condition of the Clinton Reservoir Dam and appurtenant structures, owned by the Village of Clinton, New York, and to determine if the dam constitutes a hazard to human life or property and to transmit findings to the U.S. Army Corps of Engineers.

This Phase I inspection report does not relieve an Owner or Operator of a dam of the legal duties, obligations or liabilities associated with the ownership or operation of the dam. In addition, due to the limited scope of services for these Phase I investigations, the investigators had to rely upon the data furnished to them. Therefore, this investigation is limited to visual inspection, review of data prepared by others, and simplified hydrologic, hydraulic and structural stability evaluations where appropriate. The investigators do not assume responsibility for defects or deficiencies in the dam or in the data provided.

1.2 DESCRIPTION OF PROJECT

a. Description of Dam and Appurtenances

The Clinton Reservoir Dam is located in the town of Kirkland and formerly served as the source of water for the Village of Clinton. At present, the system operates as a standby source of water. The dam consists of an earthen embankment approximately 440 feet long with a maximum height of approximately 34 feet. The upstream slope of the dam is 2-1/2 horizontal to 1 vertical. The surface is protected by riprap for its entire length. The downstream slope is 2 horizontal on 1 vertical. The dam, as it presently exists, was constructed over an existing dam which was situated at the site. A concrete corewall extends from just above the crest of the earth embankment down to the clay puddle core of the old dam embankment. A 30 foot long ogee shaped spillway is situated near the south abutment of the dam. This spillway discharges through a natural channel. The main inlet into the impoundment flows immediately adjacent to Bloosfield Road. A small sedimentation chamber is located along the roadway. This chamber collects sediment and prevents its deposition in the impoundment.

b. Location

The Clinton Reservoir Dam is located in the Town of Kirkland, Oneida County, New York, at the intersection of Reservoir Road and Bloosfield Road approximately 1/2 mile from Route 12B.

c. Size Classification

The maximum height of the dam is approximately 34 feet. The volume of the impoundment is approximately 71 acre feet to the top of dam. Therefore, the dam is in the small size classification as defined by the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

The impoundment is located immediately above a residential property. An additional residence is located approximately 1/2 mile downstream on the receiving stream. Therefore, the dam is in the high hazard category as defined in the Recommended Guidelines for Safety Inspection of Dams.

e. Ownership

The dam is owned by the Village of Clinton, New York.

Contact: Harlan Lewis, Mayor
Village of Clinton
Village Hall
Box 242
Clinton, New York 13323
Telephone: (315) 853-5231

f. Purpose of the Dam

The dam was originally developed as a source of water supply for the Village of Clinton. At present, the dam is used only as an emergency supply and is not directly connected into the water system of the Village of Clinton.

g. Design and Construction History

The original reservoir was constructed at the site in approximately 1884. The plans included in this report indicate that the dam was reconstructed to a height of 10 feet above the original dam in approximately 1936. The 1936 plans substantially conform to the present configuration.

h. Normal Operational Procedures

At the present time, water level is uncontrolled in the impoundment. The reservoir has not been used as a part of the public water supply and the water level is allowed to fluctuate with runoff.

1.3 PERTINENT DATA

a. Drainage Area

The drainage area of Clinton Reservoir Dam is 0.6 square miles.

b. Discharge at Dam Site

No discharge records are available for this site.

Computed discharges:

Ungated spillway, top of dam	465 cfs
Reservoir Drain Capacity*	29 cfs

c. Elevation (feet above MSL; estimated from USGS mapping)

Top of dam	830+
Emergency spillway crest	827.5+
Stream bed at centerline of dam	796+ —

d. Reservoir

Length of normal pool	520 feet
-----------------------	----------

e. Storage

Top of dam	71 acre feet
Normal pool (@ spillway crest)	58 acre feet

f. Reservoir Area

Top of dam	5.5 acres
Normal pool (@ spillway crest)	4.8 . acres

g. Dam

Type - earth fill

Length - 440+ feet

Height - 34 feet

Freeboard between normal reservoir and top of dam - 2.5 feet

Top width - 8 feet

Side slopes- Upstream: 2-1/2 horizontal:1 vertical

Downstream: 2 horizontal:1 vertical

Zoning - None

Impervious core - concrete corewall

Grout Curtain - center puddle

* 16 inch diameter drain with water level at spillway crest. Additional drain capacity can be provided through water distribution system.

h. Spillway

Type - Ogee shaped
Length - 30 feet
Crest elevation - 827.5
Gates - None
U/S Channel - Impoundment
D/S Channel - stream channel

i. Regulating Outlets

Reservoir levels can be regulated by flow through the 16 inch diameter cast iron pipe which extends from the reservoir to the gatehouse where it branches to a 16 inch diameter mud pipe and a 16 inch diameter water supply main. Both the mud pipe and water supply pipe are controlled by valves (presumably gate valves) at the gatehouse.

SECTION 2: ENGINEERING DATA

2.1 GEOTECHNICAL DATA

a. Geology

Geologically, Clinton Reservoir is located in the southern New York section of the Appalachian Plateaus Province, which is part of the Appalachian Highlands, the major physiographic division. The Mohawk section is located to the north of this section. The reservoir is on the western valley wall of the Oriskany glacial valley. The stream feeding the reservoir is considered to be flowing in a hanging valley. Bedrock in the site area is the Vernon Shale, a formation of the Salina Group of Late Silurian age. The formation consists of a red, crumbly, shaly claystone with some greenish layers or zones of green spots. The rock, upon exposure, weathers easily and crumbles. The Vernon is exposed along the valley downstream of the spillway apron. About fifty feet down valley of the spillway toe there is an exposure of tufa overlying the Vernon. This calcareous material extends for about thirty feet along the west bank of the stream and has a maximum exposed thickness of approximately six feet. The tufa had most likely formed by precipitation from the spray of the highly calcareous waters flowing through the valley. The carbonate precipitate coated all debris encountered, including twigs, branches, and logs. In time decomposition of the encrusted vegetable matter left a honeycombed tufa deposit with numerous tubes and channels. It is most likely that the "horse bone" referred to in the 1935 report is the tufa described above. Present stream flow from the spillway channel is removing the weak Vernon Shale and undercutting the tufa downstream. In several places, along the spillway stream channel, this sapping has led to collapse of blocks of tufa resulting in a partial blockage of the channel. Other blocks are on the verge of dropping into the valley which would add to the presently existing obstructions.

b. Subsurface Investigations

The early reports and plans of 1924, 1926 and 1935 indicate that the dam site was keyed into bedrock whereas the walls were sited on shale and clay. The clay referred to would be a glacial till-clay and is relatively impermeable. According to the plans of 1935, the puddle core, near the east end of the site, penetrated the "horse-bone" (tufa) bed. (Although not stated in the 1935 report, it is believed that the excavated "horse-bone" waste was used as part of the downstream dam face fill. A large woodchuck hole about 1/2 way down the face and about 1/4 of the way north of the spillway was ringed with spoil of the tufa. This material, subjected to rainwater, is highly soluble.

2.2 DESIGN RECORDS

No reports are available from the original design of the dam. Drawings for the original dam and its reconstruction are included in Appendix G of this report.

2.3 CONSTRUCTION RECORDS

No information was available regarding the original construction of the dam.

2.4 OPERATIONAL RECORDS

There are no operational records available for this dam.

2.5 EVALUATION OF DATA

The data presented in this report was obtained from the Department of Environmental Conservation files and from the Village of Clinton. The information available appears to be reliable and adequate for a Phase I inspection report.

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. General

The Clinton Reservoir Dam was inspected on March 13, 1981. The Dale Engineering Company Inspection Team was accompanied on the inspection by Robert Galinski of the Village of Clinton, Department of Public Works and John Lane, Trustee of the Village of Clinton.

b. Dam

At the time of the inspection, the water level in the impoundment was approximately at the spillway level. A small flow was cresting the spillway. The slopes of the earthen dike were uniform and no evidence of displacement was detected. The downstream face of the dam was heavily overgrown with trees and brush. Woodchuck burrows were found on the downstream face of the earthen dike. The crest of the dam was uniform and no evidence of settlement or subsidence was detected. The corewall of the facility extends above the surface of the ground and forms a portion of the upstream face of the impoundment. This wall was generally in good condition, although there was a slight angle change in its alignment with a small crack at the apex of this angle. The abutments of the embankment showed no signs of erosion or seepage. The downstream slope at the toe of the embankment was also uniform in slope and showed no signs of sloughing or seepage. The heavy growth of brush and trees extends to the toe of the slope. This growth has resulted in the loss of sod cover on the embankment slope due to the shading of the foliage. A developed spring is situated at the toe of slope near the center of the embankment. This spring consists of a concrete springbox with cover. The spring supplies water to the residence downstream from the dam. Plans dated 1884 indicate the presence of a spring in the general area of this facility. Observations in the springbox show no signs of piping of material or boils. The flow is clear and moderate in quantity.

c. Appurtenant Structures

A sedimentation chamber is located on the inlet stream approximately 200 feet above the impoundment. This structure is used to intercept sediment and prevent deposition in the impoundment. At the time of the inspection, there was a small quantity of sediment in the upstream end of the chamber. Personnel from the Village of Clinton indicate that this facility was cleaned during 1980.

d. Spillway

The outlet of the impoundment consists of a 30 foot long ogee shaped weir discharging through a concrete channel. The concrete of this spillway section is generally in good condition with some minor deterioration. Significant erosion has occurred at the end of the concrete spillway channel. The left wall of the spillway is undermined and erosion has occurred at the end of the wall.

e. Reservoir Drain and Water Supply Pipe

A 16 inch diameter cast iron pipe extends from the reservoir to the gatehouse where it branches into a 16 inch diameter mud pipe and a 16 inch diameter water supply main. Valves at the gatehouse control flow through these two pipes. It is not known whether the valve for the mud pipe is operable, as it has not been used in several years. The valve for the water supply line is believed to be in operating condition, as this system is used as a supplement to the Hamilton College water supply system and as an emergency supply of water to the Village of Clinton.

f. Reservoir Area

The reservoir area covers approximately 4.8 acres. Significant growth of cattails is evident near the inlet to the impoundment indicating that some sedimentation has occurred in the impoundment. The shoreline of the impoundment is planted in coniferous trees and no indication of slope instability was detected along the banks of the impoundment.

g. Downstream Channel

The downstream channel of the spillway shows signs of erosion at the end of the concrete spillway.

3.2 EVALUATION

The visual inspection revealed that the embankment is generally in good condition. The following remedial work should be addressed by the Owner:

- 1) The channel at the downstream end of the spillway is seriously eroded. Continued erosion could result in damage to the embankment. This area should be repaired to provide a stable channel for the discharge flows.
- 2) The growth of trees and brush on the embankment should be removed to allow inspection of the embankment and to allow the establishment of a durable sod cover on the embankment.
- 3) Woodchucks should be eliminated from the embankment and the burrows filled.

SECTION 4: OPERATION AND MAINTENANCE PROCEDURES

4.1 PROCEDURES

This reservoir is used as an emergency source of water for the Village of Clinton Water Supply system. At present, the valve controlling flow from the reservoir is fully closed. The reservoir level is allowed to fluctuate with runoff through the spillway channel.

4.2 MAINTENANCE OF THE DAM

Maintenance and operation of the dam is controlled by the Village of Clinton. Periodic visits are made to the site to check on conditions of the facilities. No formal operating system is in effect at the site.

4.3 MAINTENANCE OF OPERATION FACILITIES

The valves controlling flow from the impoundment have not been operated recently but are believed are to be in operating condition.

4.4 DESCRIPTION OF WARNING SYSTEM

No warning system is in effect at the present.

4.5 EVALUATION

The dam and appurtenances are inspected by representatives of the Village of Clinton. The facility at present shows signs of lack of maintenance. The following operation and maintenance procedures should be implemented by the Owner:

- 1) Since the dam is in the high hazard classification, a warning system should be implemented to alert the public should conditions occur which could result in failure of the dam.
- 2) A formalized inspection system should be initiated to develop data on conditions and maintenance operations of the facility.

SECTION 5: HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

The Clinton Reservoir Dam is located in the Town of Kirkland, southwest of the Village of Clinton. The dam has a drainage area of 0.60 square miles, which is characterized by moderately steep to steeply sloping hills. The watershed is essentially undeveloped. The reservoir has a surface area of approximately 4.7 acres and outlets into an unnamed tributary to Oriskany Creek.

5.2 ANALYSIS CRITERIA

The purpose of this investigation is to evaluate the dam and spillway with respect to their flood control potential and adequacy. This has been assessed through the evaluation of the Probable Maximum Flood (PMF) for the watershed and the subsequent routing of the flood through the reservoir and the dam's spillway system. The PMF event is that hypothetical flow induced by the most critical combination of precipitation, minimum infiltration loss and concentration of run-off of a specific location that is considered reasonably possible for a particular drainage area.

The hydrologic analysis was performed using the unit hydrograph method to develop the flood hydrograph. Due to the limited scope of this Phase I investigation, certain assumptions, based on experience and existing data were used in this analysis and in the determination of the dam's spillway capacity to pass the PMF. In the event that the dam could not pass 1/2 the Probable Maximum Flood without overtopping, additional analyses are to be performed on potential dam failures if the dam is designated as a High Hazard Classification. This process was done with the concept that if the dam was unable to satisfy this criteria, further refined hydrologic investigations would be required.

The U.S. Army Corps of Engineers' Hydrologic Engineering Center's Computer Program HEC-1 DB using the Modified Puls Method of flood routing was used to evaluate the dam, spillway capacity, and downstream hazard.

Unit hydrographs were defined by Snyder coefficients, C_t and C_p . Snyder's C_t was estimated to be 2.0 for the drainage area and C_p was estimated to be 0.625. In this analysis, the reservoir pool was assumed to be at the spillway crest elevation at the start of the storm and flow through the reservoir drain and water distribution pipe was assumed to be zero.

The Probable Maximum Precipitation (PMP) was 19.8 inches according to Hydrometeorological Report (HMR #33) for a 24-hour duration storm, 200 square mile basin. Loss rates were set at 1.0 inch initial loss and 0.1 inch/hour constant loss. These assumptions yielded 84 percent run-off from the PMF. The peak for the PMF inflow hydrograph was 1,330 cfs and the 1/2 PMF inflow peak was 665 cfs. The small storage capacity of the reservoir above the spillway reduced these peak flows a negligible amount.

5.3 SPILLWAY CAPACITY

The spillway is an ogee shaped weir with a length of 30 feet. Weir coefficients ranging from 2.98 to 4.12 over the heads encountered in routing the PMF were assigned for the spillway rating curve development. The discharge capacity of the spillway at the top of dam elevation is 465 cfs.

SPILLWAY CAPACITY

<u>Flood</u>	<u>Peak Discharge</u>	<u>Capacity as % of Flood Discharge</u>
PMF	1,332 cfs	35%
1/2 PMF	666 cfs	70%

5.4 RESERVOIR CAPACITY

The reservoir storage capacity was obtained from the plans included in Appendix G and USGS mapping. The resulting estimates of the reservoir storage capacity are shown below:

Top of Dam	71 Acre Feet
Spillway Crest	58 Acre Feet

5.5 FLOODS OF RECORD

There is no information on water levels at the dam site.

5.6 OVERTOPPING POTENTIAL

The HEC-1 DB analysis indicates that the dam will be overtopped as follows:

<u>Flood</u>	<u>Peak Inflow</u>	<u>Peak Outflow</u>	<u>Maximum Depth Over Dam</u>
PMF	1,330 cfs	1,332 cfs	0.69 feet
1/2 PMF	665 cfs	666 cfs	0.23 feet

The stability analysis indicates unsatisfactory stability against overturning for the spillway section under the 1/2 PMF loading. Therefore, a dam break analysis was performed to determine the significance of various failures of the spillway section only on the downstream hazard. This analysis was performed with the 1/2 PMF assuming the spillway section of the dam to fail at the maximum elevation resulting from the 1/2 PMF. The flood elevations, due to various dam failures and the flood elevations that would exist just before the corresponding dam break induced flood wave are shown on the next page. These flood elevations are compared in the area of the closest downstream hazard, which is some 500 feet downstream of the dam.

Flood Elevations @ Downstream Hazard

	<u>Just Prior to Dam Break</u>	<u>Due to Dam Break</u>
Failure Time = 0.1 hrs.	777.2	779.4
Failure Time = 0.3 hrs.	777.2	779.2
Failure Time = 0.5 hrs.	777.2	779.0

The above elevations were estimated from USGS quad sheets. These elevations are not exact and their significance is in the difference between the elevations for the flood levels with and without the dam failure. The worst of these three cases indicates that the flood depth would increase from 3.2 feet to 5.4 feet due to a dam failure.

The first floor of the house which constitutes the downstream hazard is located about 5 feet above the stream bed. Therefore, it appears from this analysis that this flood depth increase of 2 feet will not significantly increase the downstream hazard.

5.7 EVALUATION

The hydrologic/hydraulic analysis establishes the spillway capacity as 35% of the Probable Maximum Flood (PMF). The dam will be overtopped by 0.7 feet by the PMF and 0.25 feet under the 1/2 PMF. However, failure of the spillway section of the dam during the 1/2 PMF event will not significantly increase the downstream hazard from that which would occur just prior to the dam failure. Therefore, the spillway is assessed as inadequate according to the Corps of Engineers screening criteria.

SECTION 6: STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

The Clinton Reservoir has been created by the construction of an earthen embankment dam which establishes a necessary easterly limit for an otherwise natural impounding area. This embankment, having a generally north-south alignment, is provided with a concrete core wall which extends slightly higher than the earthen section. The concrete core in fact serves alone as the upper two feet, approximately, of the dam's upstream side. Soil fill to the top of the core wall backs up the downstream side of the wall. A concrete ogee spillway section 30 feet in length near to the dam's southerly limit, is incorporated into the overall dam structure and generally aligned with the core wall of the embankment near to the dam's southerly limit. The concrete abutments for the spillway extend to become training walls for the spillway apron which directs spillway flow to the site's apparently natural discharge channel which begins near the dam's downstream toe.

The downstream face of the embankment is generally covered with a relatively heavy growth of trees and brush. Brush and trees were bare at the time of the field inspection (early spring season, vegetation not yet leafed), and the alignment of the cross-section could be evaluated with some confidence. No indication of misalignment or sloughing was noted, and no indication of through-dam seepage was detected. The exposed upper zone of the concrete core wall was similarly noted as retaining structural alignment (a slight change in the alignment near to the dam's midlength, discussed in Section 3.1(b), appears to be the result of planned construction and not a condition of post-construction movement).

The upstream side of the embankment has been provided with a cobble-size riprap which, to the limited depth visible through the water surface, appeared to be properly retained in position as a protective facing.

Observation indicates the concrete spillway to be in relatively good condition and retaining stability. A crack of significant size has developed where the northside abutment meets the adjoining concrete core wall. The stability of the endmost section of the concrete abutment training wall near the downstream discharge channel and which forms the southerly side of the spillway apron, suffers from a significant degree of cracking and spalling plus some undermining of its foundation.

A town road borders the southerly limit of the reservoir at elevations higher than the impounded water with a result that some sections of steep slope exist between the road edge/shoulder and the edge of the reservoir. In the area adjacent to the spillway training wall, severe erosion/sloughing has required that dumped cobble-size crushed rock be provided to protect the roadway shoulder and the fence bordering the reservoir site. This condition does not endanger the spillway section, but does present some danger to the outermost length of spillway training wall.

b. Design and Construction Data

Drawings are available which indicate that an embankment dam constructed to create the Clinton Village reservoir at the present site was completed in 1884. This dam included a core wall which penetrated original ground. The dam was raised ten feet to achieve a maximum height of about 34 feet, and the embankment cross-section was correspondingly enlarged to the present dimensions by the construction of 1936. The new construction included a core wall. The present spillway was built as part of the new construction.

No calculations regarding the stability of the spillway or embankment sections have been located. However, correspondence on record between the New York State Department of Engineering and the Design Engineer for the dam allude to stability analysis for the concrete spillway section while embankment slopes (2.5 to 1 upstream, 2 to 1 downstream) were apparently selected on the basis of experience and/or empirical data. Similarly, no specific information referring to properties of the dam and foundation materials, nor field construction records, have been located.

Observations indicate that the dimensions of the existing embankment and spillway substantially conform to the information shown on the Drawings prepared in 1935 and reproduced for Appendix G of this report.

c. Operating Records

There are no available operating records for the facility.

d. Post Construction Changes

There is no information available to indicate post construction changes to the facility since the aforementioned 1936 enlargement of the structure.

e. Seismic Stability

No known faults exist in the immediate vicinity of this dam. The closest known fault is found on Lairdville gorge just north of Route 5, about three miles north-northwest of the dam. Displacement along this fault is minor, less than one foot. Several lineaments in the general area, which suggest possible fault lines, are noted on the Brittle Structures Map applicable to this area (Ref. 17). The closest lineament is about one-fifth mile west-southwest of the dam. Zones of high angle faults also noted on that map are approximately three miles west and southwest of the dam.

Numerous slickensided joint planes are found in the Vernon Formation. Such surfaces are indicative of movement. The Vernon Formation is structurally incompetent and is considered to be the weakest member of the entire rock series in the Oriskany Valley. Any movement in the area would be concentrated upon the Vernon because it is highly susceptible and incompetent when stress is applied as compared to other rocks in the area. None of the other rock units in the area exhibit slickensided surfaces similar to those of the Vernon.

Rock bedding dips less than 1° to the southwest. Joints are close to vertical and strikes and spacing are as follows:

<u>Strike</u>	<u>Spacing</u>
N50W	6-8 in.
N20E	6-8 in.
N80E	2-3 feet
N75W	6 in. -3 ft.

The area is located within Zone 2 of the Seismic Probability Map. Only minor earthquake activity has occurred in this region. The most severe, indicated as intensity V-VII on the Modified Mercalli scale, occurred in 1849 in the Utica area, about 22 miles east of the dam site. Another of intensity II occurred in 1930 about 8 miles northeast of the dam. The most recent earthquake (1979) was less than II and about 8 miles to the east.

6.2 STRUCTURAL STABILITY ANALYSIS

Drawings available for review show a generalized plan alignment and cross-sections for the dam embankment and spillway, but do not include information on the properties of the dam and foundation materials, nor stability analysis. As part of the present study, stability evaluations have been performed for the spillway section. Actual properties of the dam's construction materials and foundation were not determined as part of this study; where information on properties was necessary for computations but lacking, assumptions felt to be practical were made. The stability computations assumed a structural cross-section based on dimensions indicated by the plans included in this report. The results of the stability computations are summarized in the table following this page. The stability analyses are presented in Appendix E.

The loading conditions studied are:

1. normal summer-type operation, with the reservoir at the spillway crest;
2. winter conditions with the reservoir at the spillway crest plus ice effects;
3. reservoir level at the 1/2 PMF elevation;
4. reservoir level at the PMF elevation;
5. reservoir pool at the spillway crest plus seismic effects.

The results of the stability computations indicate satisfactory stability against overturning and sliding for the normal summer operations case, and the normal operation case with seismic effects. Unsatisfactory stability against overturning is indicated for the condition of winter pool plus ice loading, and the 1/2 PMF and the PMF conditions, according to the

Recommended Guidelines for Safety Inspection of Dams (i.e., factors of safety less than unity, and/or the resultant of forces acting on the dam is located outside the middle third of the base since tensile stresses would develop in the dam section, a condition which is structurally undesirable).

Lateral water pressures were computed from the water surface elevations calculated in the hydraulic analysis.

Critical to the analysis and resulting indication of stability are the items of uplift water pressure acting on the base of the dam and the relative permeability of the site's foundation material. For the "normal operating conditions" case, the analysis uplift force was based on a full headwater hydrostatic pressure acting on the dam's upstream corner and a zero tailwater hydrostatic pressure acting on the dam's downstream corner. Uplift pressures were assumed to vary linearly between the dam's upstream and downstream corners, and to act upon 100 percent of the dam base. The resulting uplift force represents a condition that is significant to the indications of instability.

Uplift as computed for the normal operating condition was also assigned to the flood conditions studied, assuming that uplift pressures would not increase significantly over a relatively short flood stage time period because of an expected low permeability for the foundation material.

The drawings available for review indicate that the spillway has a foundation section which penetrates to rock. However, design records provide no information on the extent of such foundation dimensions, and field records to substantiate the foundation extension have not been found. For the analysis performed as part of this report, the possibility of a foundation extending to rock was disregarded as a conservative measure. It should be noted that a foundation extension of appreciable magnitude would improve the resistance to overturning and sliding.

The following items should be addressed by the Owner to insure the structural integrity of the spillway:

1. Some concrete repair to the spillway abutments is indicated as an undertaking considered important to the spillway retaining stability. Additional slope protection should be provided for the severely eroded road shoulder area immediately adjacent to the spillway abutment/apron.
2. Further investigation of the as-built section of the spillway is recommended to be followed by stability computations for the PMF, 1/2 PMF and ice loading conditions. This information would serve as the basis for planning modifications which may be necessary to assure the spillway is stable when exposed to these severe loading cases. It is understood that the reservoir may be drained in the near future for purposes of removing silt accumulations which appear to be reducing the reservoirs holding capacity. A dewatered reservoir would offer a good opportunity to investigate the foundation for the spillway.

RESULTS OF STABILITY COMPUTATIONS

<u>Loading Condition</u>	<u>Factor of Safety*</u> Overturning	<u>Factor of Safety*</u> Sliding**	<u>Location of Resultant Passing through Base***</u>
(1) Water level at elevations of spillway crest uplift acts on base, no ice.	1.61	31 ₊	0.34b
(2) Water level at crest elevation, uplift on base, 7.5 kips per linear foot ice load.	0.45	10 ₊	(FS<1)
(3) Water levels against upstream face and downstream face based on 1/2 PMF elevations, uplift acting on base as computed for the normal operating condition.	1.15	20 ₊	0.12b
(4) Water level against upstream face and downstream face based on PMF elevations, uplift acting on base as computed for the normal operating condition.	1.10	19 ₊	0.08b
(5) Water level at crest elevation, uplift on base, seismic effect for Zone 2	1.41	27 ₊	0.27b

* These factors of safety indicate the ratio of moments resisting overturning to those moments causing overturning, and the ratio of forces resisting sliding to those causing sliding.

** As determined applying the friction-shear method.

*** Indicated in terms of the dam's base dimension, "b", measured from the toe of the dam.

SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety

The Phase I inspection of the Clinton Reservoir Dam did not indicate conditions which would constitute an immediate hazard to human life or property.

The hydrologic/hydraulic analysis establishes the spillway capacity as 35 percent of the Probable Maximum Flood (PMF). The dam will be overtopped by 0.7 feet by the PMF and 0.25 feet under the 1/2 PMF. A dam break analysis of a failure of the spillway section of the dam during the 1/2 PMF indicates that the downstream hazard would not be significantly increased from that which would occur just prior to the failure. Therefore, the spillway is assessed as inadequate according to the Corp of Engineers screening criteria.

The structural stability analysis indicates unsatisfactory stability against overturning for the conditions of the reservoir at the spillway crest plus ice loading and the 1/2 PMF and PMF conditions.

The following specific safety assessments are based on the Phase I visual examination and analysis of hydrology and hydraulics and structural stability:

1. The channel at the downstream end of the spillway is seriously eroded. Continued erosion could result in damage to the embankment.
2. A growth of trees and brush has been established on the downstream face of the embankment. This growth has resulted in loss of sod cover due to shading.
3. Woodchuck burrows were found to exist on the exterior slopes of the embankment.
4. No warning system is presently in effect to alert the public should conditions occur which could result in failure of the dam.
5. No formalized inspection system is in effect at the facility.

b. Adequacy of Information

The information available is adequate for a Phase I investigation.

c. Urgency

The items listed in the Safety Assessment should be addressed by the Owner and appropriate actions taken within 12 months of this notification. The recommended investigations should begin within 3 to 6 months.

APPENDIX A
PHOTOGRAPHS

2. View along downstream slope of embankment

3. View along crest of embankment. Reservoir on left

4. Close-up of deflection in concrete core wall

5. Spillway as viewed from downstream.

6. Spillway channel just downstream of dam as viewed from dam.

7. Close-up of deteriorated portions of right spillway channel wall.

8. Spillway channel just downstream of training wall. Note pink shale forming channel.

9. Animal burrow on downstream slope of embankment.

10. Large diameter tree trunk near downstream toe of embankment.

11. Outlet to reservoir drain located at toe of slope.

12. Spring box located just beyond the toe of slope.

APPENDIX B
VISUAL INSPECTION CHECKLIST

d. Need for Additional Investigations

Further investigation of the as-built section of the spillway is recommended to be followed by stability computations for the PMF, 1/2 PMF, and the ice loading conditions. This information should serve as the basis for planning modifications which may be necessary to assure the spillway is stable when exposed to these severe cases of loading.

7.2 RECOMMENDED MEASURES

The following is a list of recommended measures to be undertaken to insure safety of this facility:

1. A stability investigation of the spillway section should be undertaken to determine the factors of safety during extreme loading conditions. Remedial work should be undertaken depending on the results of this investigation.
2. The channel at the downstream end of the spillway should be repaired to provide a stable channel for the discharge flows.
3. Trees and brush should be removed from the embankment and a suitable sod cover established to allow for inspection of the embankment.
4. Woodchucks should be eliminated from the embankment and the burrows filled.
5. A flood warning and emergency evacuation system should be implemented to alert the public in the event conditions occur which could result in failure of the dam.
6. A formalized inspection system should be initiated to develop data on conditions and maintenance operations at the facility.

3-15-3(9/80)

VISUAL INSPECTION CHECKLIST

1) Basic Data

a. General

Name of Dam CLINTON RESERVOIR DAM

Fed. I.D. # N.Y. Z1Z DEC Dam No. _____

River Basin MOHAWK RIVER

Location: Town KIRKLAND County CNEIDA

Stream Name UN NAMED

Tributary of ORISKANY CREEK

Latitude (N) 43-02.2 Longitude (W) 75-25.0

Type of Dam EARTH

Hazard Category HIGH

Date(s) of Inspection MARCH 13, 1981

Weather Conditions OVERCAST 40°

Reservoir Level at Time of Inspection @ SPILLWAY LEVEL

b. Inspection Personnel F.W.BUSLEWSKI, J.A.GOMEZ, D.F.MCCARTHY
H.MUSKATT - DALE ENGINEERING COMPANY, ROBERT GALINSKI, JOHN
LANE - VILLAGE OF CLINTON

c. Persons Contacted (Including Address & Phone No.) _____

HARLAN LEWIS - MAYOR

VILLAGE OF CLINTON TELEPHONE 315-853-5231

VILLAGE HALL

BOX 242

CLINTON, N.Y. 13323

d. History:

Date Constructed 1884 Date(s) Reconstructed 1936

Designer JAMES P. WELLS.

Constructed By UNKNOWN

Owner VILLAGE OF CLINTON

93-15-3(9/80)

2) Embankment

a. Characteristics

- (1) Embankment Material REPUTEDLY CLAY FILL.
- (2) Cutoff Type CENTER PUDDLE EXTENDS INTO RED SHALE
- (3) Impervious Core CENTER PUDDLE - ORIGINAL CONSTRUCTION
CONCRETE CORE WALL - 1936 RECONSTRUCTION.
- (4) Internal Drainage System NONE
- (5) Miscellaneous NONE

b. Crest

- (1) Vertical Alignment NO MISALIGNMENT DETECTED
- (2) Horizontal Alignment NO SUBSIDENCE NOTED
- (3) Surface Cracks NONE OBSERVED.
- (4) Miscellaneous NONE

c. Upstream Slope

- (1) Slope (Estimate) (V:H) 1 : 2 1/2
- (2) Undesirable Growth or Debris, Animal Burrows NONE
- (3) Sloughing, Subsidence or Depressions NONE OBSERVED

(4) Slope Protection NONE OBSERVED DUE TO ICE COVER AND HIGH WATER ELEVATION

(5) Surface Cracks or Movement at Toe NOT OBSERVED.

d. Downstream Slope

(1) Slope (Estimate - V:H) 1 : 2

(2) Undesirable Growth or Debris, Animal Burrows HEAVILY OVERGROWN WITH BRUSH: TREES NUMEROUS WOODCHUCK BURROWS.

(3) Sloughing, Subsidence or Depressions NONE OBSERVED SLOPE IS UNIFORM - VOID OF SOD PROBABLY DUE TO SHADING BY HEAVY BRUSH.

(4) Surface Cracks or Movement at Toe NONE OBSERVED

(5) Seepage NONE OBSERVED. (A DEVELOPED SPRING WITH CONCRETE SPRING BOX LOCATED AT TOE OF CENTER OF DAM SUPPLIES WATER TO NEARBY RESIDENCE FLOW WAS MODERATE, CLEAR, NO PIPING.)

(6) External Drainage System (Ditches, Trenches; Blanket) OBSERVED NONE

(7) Condition Around Outlet Structure EROSION AT SPILLWAY OUTLET COULD CAUSE DAMAGE TO

(8) Seepage Beyond Toe EMBANKMENT (SEE REFERENCE TO SPRING ABOVE) NO OTHER SEEPAGE DETECTED

e. Abutments - Embankment Contact

GOOD CONDITION NO EROSION DUE TO SURFACE FLOW OF DRAINAGE

33-15-3(9/80)

(1) Erosion at Contact NONE

(2) Seepage Along Contact NONE

3) Drainage System

a. Description of System NONE

b. Condition of System —

c. Discharge from Drainage System —

4) Instrumentation (Monumentation/Surveys, Observation Wells, Weirs, Piezometers, Etc.)

NONE

3-15-3(9/80)

5) Reservoir

- a. Slopes MODERATE SLOPES NO SIGNS OF INSTABILITY
- b. Sedimentation CAT TAIL GROWTH AT INLET INDICATES SOME EROSION. HOWEVER A SEDIMENT
- c. Unusual Conditions Which Affect Dam CHAMBER ON THE INLET STREAM EXISTS JUST UPSTREAM FROM RESERVOIR.
SEDIMENT WOULD BE THE RESULT OF POOR MAINTENANCE

6) Area Downstream of Dam OF THIS STRUCTURE

- a. Downstream Hazard (No. of Homes, Highways, etc.) ONE HOME IMMEDIATELY BELOW DAM ADDITIONAL HOME APPROX 1/2 MILE DOWN STREAM
- b. Seepage, Unusual Growth NONE OBSERVED
- c. Evidence of Movement Beyond Toe of Dam NONE OBSERVED
- d. Condition of Downstream Channel GOOD, NO EXTENSIVE RECENT EROSION EXCEPT AT END OF SPILLWAY.

7) Spillway(s) (Including Discharge Conveyance Channel)

- a. General GOOD CONDITION, MINOR SPALLING OF CONCRETE, SOME UNDERMINING OF BASE OF SPILLWAY WALL. SUBSTANTIAL EROSION AT END OF SPILLWAY TRAINING WALL.
- b. Condition of Service Spillway GOOD CONDITION, FREE OF DEBRIS MINOR SURFACE EROSION

3-15-3(3/80)

c. Condition of Auxiliary Spillway NONE

d. Condition of Discharge Conveyance Channel OPEN FREE FLOWING

8) Reservoir Drain/Outlet

Type: Pipe CAST IRON Conduit _____ Other _____

Material: Concrete _____ Metal Other _____

Size: 12" Length _____

Invert Elevations: Entrance UNKNOWN Exit UNKNOWN

Physical Condition (Describe): Unobservable

Material: _____

Joints: _____ Alignment _____

Structural Integrity: _____

Hydraulic Capability: _____

Means of Control: Gate _____ Valve Uncontrolled _____

Operation: Operable Inoperable _____ Other _____

Present Condition (Describe): _____

9) Structural

a. Concrete Surfaces N/A

b. Structural Cracking N/A

c. Movement - Horizontal & Vertical Alignment (Settlement) N/A

d. Junctions with Abutments or Embankments N/A

e. Drains - Foundation, Joint, Face N/A

f. Water Passages, Conduits, Sluices N/A

g. Seepage or Leakage N/A

h. Joints - Construction, etc. N/A

i. Foundation N/A

j. Abutments N/A

l. Approach & Outlet Channels N/A

m. Energy Dissipators (Plunge Pool, etc.) N/A

n. Intake Structures N/A

o. Stability N/A

p. Miscellaneous N/A

3-15-3(9/80)

10) Appurtenant Structures (Power House, Lock, Gatehouse, Other)

a. Description and Condition None

11) Operation Procedures (Lake Level Regulation):

RESERVOIR IS NOT USED AS WATER SUPPLY. THE
FACILITY IS SELDOM VISITED. THERE IS LITTLE
EVIDENCE OF MAINTENANCE AT THE SITE. SEDIMENT
CHAMBER WAS CLEARED RECENTLY.

APPENDIX C

HYDROLOGIC/HYDRAULIC, ENGINEERING DATA AND COMPUTATIONS

SCALE: 1" = 2000'

LEGEND

— — — WATERSHED AREA

DRAINAGE BASIN

STETSON•DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME

N.Y.S. Dam Inspections - 1981

DATE

SUBJECT

Clinton Reservoir

PROJECT NO.

Hydrologic Parameters

DRAWN BY JAG

$$\text{Drainage Area} = 0.603 \text{ mi}^2$$

$$L = 1.515 \text{ mi}$$

$$LCA = 0.701$$

$$C_f = 2.0 \text{ (assumed)}$$

$$t_t = t_f (L \times LCA)^{0.3} = 2.04 \text{ hr.}$$

$$C_p = 0.625 \text{ (assumed)}$$

STETSON·DALE

BANKERS TRUST BUILDING
UTICA · NEW YORK · 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME N.Y.S. Dam Inspections 1981 DATE 12-19-80
UB. # Clinton Reservoir Dam ID# 212 PROJECT NO. 2520
Depth-Area-Duration DRAWN BY JAG

PMP

FROM HMR #33
for Lat. ~ $43^{\circ}02'$ Long. ~ $75^{\circ}25'$
Index Rainfall = 19.8" for 200 mi^2 , 24 hr.
Zone I

<u>Duration</u>	<u>% Index*</u>	<u>Depth</u>
6 hrs.	111	22.0"
12 hrs.	123	24.4
24 hrs	133	26.3
48 hrs.	142	28.1

* Adjusted for site area, Drainage Area = 0.013 mi^2
(which is less than the lower limit of the area
adjustment graph, 10 mi^2 , therefore the values
were adjusted for this lower limit)

STETSON•DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME N.Y.S. Dam Inspections - 1981 DATE 3-30-81
SUBJECT Clinton Reservoir PROJECT NO. 2520
Spillway Rating DRAWN BY JAG

Ogee Shaped Section

Shape of Spillway indicates a design need
at approximately 3'

$$L = 30'$$

$$Q = CL H^{3/2}$$

C - based on discharge head: Fig. 14-4 +

"Open Channel Hydraulics - Chow & R.

$$h/H_d \geq 1.33, h = \text{spillway height}$$

$$C_d = 4.03$$

Note: Elevations estimated from USGS (based on
top of dam elev. = 830)

Elev.	H	H/H_d	C/C_d	C	Q
827.8	0.3'	0.1	0.74	2.98	14.7 cfs
	0.6	0.2	0.785	3.16	44
	0.9	0.3	0.83	3.34	86
	1.2	0.4	0.87	3.51	138
829	1.5	0.5	0.90	3.63	200
	1.8	0.6	0.925	3.73	270
	2.1	0.7	0.95	3.83	350
	2.4	0.8	0.97	3.91	436
830.5	2.7	0.9	0.985	3.97	528
	3.0	1.0	1.0	4.03	628
	831	3.5	1.17	4.11	807
		4.0	1.33	4.13	991
832	4.5	1.5	1.03	4.15	1188
	5.0	1.67	1.03	4.15	1392
	5.5	1.83	1.03	4.15	1606
	6.0	2.0	1.03	4.15	1830
833	6.5	2.17	1.03	4.15	2063
	7.0	2.33	1.03	4.15	2306

STETSON • DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME N.Y.S. Dam Inspections - 1981

DATE _____

PROJECT SUBJECT Clinton Reservoir

PROJECT NO. _____

ITEM Area-Capacity CurveDRAWN BY JAS

STETSON • DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME

N.Y.S. Law Inspections

DATE _____

JECT

Clinton Reservoir

PROJECT NO _____

Area Capacity Calculations

DRAWN BY _____

E.I.C.	Area (ac.)	AS (ac.)	E.C. (ac.)
7926	0	2.35	
807	0.5	14.75	2.35
817	2.45	36	17.1
827	4.15	50.9	53.1
832	7.6		84

STETSON·DALE

BANKERS TRUST BUILDING
UTICA - NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME

N.Y.S. I am Inspector's 1981

DATE

SUBJECT

Clinton RESERVOIR

PROJECT NO.

RESERVOIR DRAIN CAPACITY

DRAWN BY

16" Ø PIPE
Inlet invert ~ elev. 79.2
length ~ 155'

Discharge Capacity with RESERVOIR E
Spillway Crest : elev. 82.25

Headwater = 35.5' (conservative assuming min. max.
slope, use H = 35.5')

FULL FLOW

$$Q = A \sqrt{\frac{2gH}{14K_e + K_b + K_f L}}$$

K_e = entrance loss ~ 0.5

$$K_b = bend loss = \frac{n \beta}{3} = \frac{0.013(40)}{3} = 0.173$$

$$K_f = \text{friction loss} = \frac{5100 n^2}{D^{4.8}} = \frac{5100 (0.013)^2}{(16)^{4.8}} = 0.021318$$

Effective length:

value opening effective loss ~ $\frac{4}{10} = 0.2$; $L = \frac{4}{2}(n) = 4'$

$$\text{eff. length} = 155 + 4 = 159'$$

$$K_f = 3.506$$

$$A = \pi \frac{D^2}{4} = \frac{\pi (16)^2}{4} = 201.06 \text{ ft}^2$$

$$Q = 1.3963 \text{ ft}^2 \sqrt{\frac{64.4 (35.5)}{5.119}} = 29.34 \text{ cfs}$$

Checking inlet control by Fig B-8 "DESIGN 2021".

$$Q_{inlet\ control} = 35 \text{ cfs}$$

i.e. full flow controls

$Q = 29 \text{ cfs}$ with RESERVOIR @ SPILLWAY CREST

Clinton Reservoir
NY 212

1

CHECK LIST FOR DAMS
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

AREA-CAPACITY DATA:

	Elevation (ft.)	Surface Area (acres)	Storage Capacity (acre-ft.)
1) Top of Dam	<u>830</u>	<u>5.5</u>	<u>71</u>
2) Design High Water (Max. Design Pool)	<u>N.A.</u>	_____	_____
3) Auxiliary Spillway Crest	<u>N.A.</u>	_____	_____
4) Pool Level with Flashboards	<u>N.A.</u>	_____	_____
5) Service Spillway Crest	<u>827.5</u>	<u>4.8</u>	<u>58</u>

DISCHARGES

	Volume (cfs)
1) Average Daily	<u>Unknown</u>
2) Spillway @ Maximum High Water (Top of Dam)	<u>465 cfs</u>
3) Spillway @ Design High Water	<u>N.A.</u>
4) Spillway @ Auxiliary Spillway Crest Elevation	<u>N.A.</u>
5) Low Level Outlet (W/ RESERVOIR @) Top of Dam	<u>30 cfs</u> *
6) Total (of all facilities) @ Maximum High Water	<u>495 cfs</u>
7) Maximum Known Flood	<u>Unknown</u>
8) At Time of Inspection	<u>Unknown</u>

* Low level outlet would not normally be utilized under flood events.

CREST:

ELEVATION: 830Type: Earthfill with concrete corewallWidth: 8' Length: 440'Spillover None (except spillway at right abutment)

Location _____

SPILLWAY:

PRINCIPAL

EMERGENCY

Elevation 827.5Type OgeeWidth 30'Type of ControlUncontrolled _____

Controlled:

Type
(Flashboards; gate)

Number _____

Size/Length _____

Invert Material _____

Anticipated Length
of operating service _____

Chute Length _____

Height Between Spillway Crest _____
& Approach Channel Invert 10'
(Weir Flow)

HYDROMETEROLOGICAL GAGES:

Type : None

Location: _____

Records:

Date - _____

Max. Reading - _____

FLOOD WATER CONTROL SYSTEM:

Warning System: None

Method of Controlled Releases (mechanisms) :

Through water distribution system
and reservoir drain

DRAINAGE AREA: 0.6 mi²

DRAINAGE BASIN RUNOFF CHARACTERISTICS:

Land Use - Type: Forest & agricultural

Terrain - Relief: Moderately steep to steep

Surface - Soil: _____

Runoff Potential (existing or planned extensive alterations to existing
(surface or subsurface conditions)

No known planned alterations to
drainage basin

Potential Sedimentation problem areas (natural or man-made; present or future)

Sedimentation chamber is located on
inlet stream just above
impoundment

Potential Backwater problem areas for levels at maximum storage capacity
including surcharge storage:

None at present

Dikes - Floodwalls (overflow & non-overflow) - Low reaches along the
Reservoir perimeter:

Location: N.A.

Elevation: _____

Reservoir:

Length @ Maximum Pool 0.1 ± (Miles)

Length of Shoreline (@ Spillway Crest) 0.4 ± (Miles)

(0039)	Y1	1	0	C	-1	C	C	C
(0040)	Y6	.063	.015	.000	22	0.15	0	C
(0041)	Y7	1.0	1.6	125	150	150.1	96	175
(0042)	Y7	175.1	194	200	155	176	96	175
(0043)	K	44	5	0	0	0	0	C
(0044)	A							
(0045)	A							
(0046)	A							
(0047)	A							
(0048)	A							

PARTITION OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	100
ROUTE HYDROGRAPH TO	100
ACUTE HYDROGRAPH TO	13
ROUTE HYDROGRAPH TO	25
END OF NETWORK	

FLUOU HYDROGRAPH PACKAGE (MEC-1)
CAM SAFETY VERSION JULY 1976
LAST MODIFICATION 20 FEB 76

DATE? MON APR 2 1961
TIME? 14:40:40

CLINTON PESERVOIR DAM FILE IS ABSL-1
HEC-102 (SNYDER PARAMETERS)
FNF - DAM JACKETTUPPING ANALYSIS

```

      46          11R      AVIN      10AY      11HR      11WY      1FLT      1PRT      1STAN
      50          SGG      15          C          0          0          0          4          0
      51          JFTR      KWT      LKFT      TRACE      3
      52          5

```

MULTI-FLAN ANALYSES TO BE PERFORMED

FLAN	NFLAN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917	918	919	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	960	961	962	963	964	965	966	967	968	969	970	971	972	973	974	975	976	977	978	979	980	981	982	983	984	985	986	987	988	989	990	991	992	993	994	995	996	997	998	999	1000
------	-------	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------

UNIVERSITY OF CALIFORNIA

11 - 2.04 17-0.02 114- 0

RECEDSION DATA
STRTQ= -2.04 GRCSN= -C.10 RTRN= 1.60

UNIT HYDROGRAPH END-OF-PERIOD ORDINATES, LAG= 2.03 HOURS, CP= 0.63 VOL= 1.00
 2. 19. 59. 82. 102. 116. 123. 113.
 4. 66. 75. 66. 50. 44. 38. 29.
 25. 22. 14. 17. 15. 13. 11. 7.
 6. 5. 4. 5. 5. 3. 3. 2.
 1. 1. 1. 1.

HR.MN PERIOD RAIN EXCS LCSS END-OF-PERIOD FLOW MO.DA HR.MN PERIOD RAIN EXCS LOSS CORF Q

HR.MN	PERIOD	RAIN	EXCS	LCSS	END-OF-PERIOD FLOW	MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	CORF Q
					SUM	22.49			18.86	3.63	51.11.	
					(571.)(479.)	(92.)(877.13)						

HYDROGRAPH ROUTING
ROUTE THRU RESEVOIR AND OVER SPILLWAY

INSTAG	ICLNF	LECON	ITATE	JPLT	JFRT	INAME	ISTAGE	IATU	
1-1	1	2	3	4	5	6	7	8	
QLOSS	CLSS	Avg	ARES	ISAME	ICPT	IMP	LSTR	C	
C.C	C.CC	C.CC	1	1	1	0	C	C	
NSTPS	NSTL	LAG	AMSKK	X	TSK	STORA	ISFRAT	-	
1	1	1	0.000	0.000	0.000	-8228.	-1	-	
START	127.5	127.61	828.41	828.71	829.01	829.31	b29.60	829.9C	
	127.5	127.61	831.51	832.01	833.00	833.50	834.00	834.5C	
FLG.	15.0	15.0	44.01	86.21	138.00	200.00	270.00	350.00	
	127.01	127.01	591.01	1168.11	1392.31	1606.01	1830.00	2063.00	436.0C
CAPACITY=	1.	1.	2.	6.	17.	32.	55.	66.	
ELEVATION=	77.	77.	96.	103.	115.	117.	125.		
	167.	167.	171.	177.	182.	187.	192.		
	31.	31.	32.	33.	34.	35.	36.	37.	
C-tl	SP-ID	C-link	EFW	ELFL	CQAL	CAREA	EXFL		
27.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
DAM DATA	COND	EXFC	DAMID						
TUPEL	COND	EXFC	DAMID						

		C.J.C.U.	C.O.O	T.O.T	W.E.L.
PEAK OUTFLW IS	262. AT TIME	42.03	HOURS		
PEAK OUTFLW IS	393. AT TIME	41.75	HOURS		
PEAK OUTFLW IS	532. AT TIME	41.75	HOURS		
PEAK OUTFLW IS	666. AT TIME	41.75	HOURS		
PEAK OUTFLW IS	799. AT TIME	41.75	HOURS		
PEAK OUTFLW IS	1066. AT TIME	41.75	HOURS		
PEAK OUTFLW IS	1322. AT TIME	41.75	HOURS		

SILKMOUL DEATH CHANNEL RUITTE

WOODS AND BUILDINGS

CPUSS SECTION COORDINATES--STA ELEV STA ELEV--ETC
 113.00 115.00 125.00 114.00 150.00 113.00
 114.00 115.00 125.00 114.00 150.00 114.00
 115.00 116.00 126.00 115.00 151.00 115.00

BUFFL ^W	12112.24	512.85	969.32	1896.45	2990.19	4237.61	5614.94	7104.20	8690.90
STAGE	96.0	15629.15	15607.37	17746.99	19724.97	21754.87	24167.24	26860.86	29836.26
FLUM	101.26	96.55	97.65	97.56	98.11	98.63	99.16	99.66	100.21
	101.74	102.32	102.64	103.37	103.89	104.42	104.95	105.47	
MAXIMUM STAGE IS	96.4								
MAXIMUM STAGE IS	96.6								
MAXIMUM STAGE IS	96.7								
MAXIMUM STAGE IS	96.8								
MAXIMUM STAGE IS	96.9								
MAXIMUM STAGE IS	97.1								
MAXIMUM STAGE IS	97.5								

PEAK FLOW AND STREAM (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	RATIOS APPLIED TO FLOWS						
			PLAN	RATIO 1	RATIO 2	RATIO 3	RATIO 4	RATIO 5	RATIO 6
HYDROGRAPH AT	160	5.00 (1.56)	1	266.	399.	532.	665.	798.	1064.
ROUTED T.	1	1.62 (1.56)	1	262.	395.	532.	666.	799.	1066.
ROUTED T.	25	0.00 (1.56)	1	262.	395.	532.	666.	799.	1066.
KOLLEO T.	25	0.00 (1.56)	1	262.	395.	532.	666.	799.	1066.

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOF OF DAM
STORAGE	827.50	627.50	830.00
OUTFLOW	58. 0.	58. C.	71. 467.

RATIO OF RESERVOIR F/E	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP	TIME OF FAILURE
0.20	0.05	67.	262.	0.00	0.00
0.30	0.06	70.	395.	0.00	0.00
0.40	0.10	72.	532.	1.50	0.00
0.50	0.23	72.	666.	2.75	0.00
0.60	0.34	73.	799.	3.75	0.00
0.70	0.53	74.	1066.	4.75	0.00
0.80	0.69	75.	1332.	5.75	0.00

PLAN 1 STATION C3

RATIO	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT	TIME HOURS
0.20	602.	100.3	42.00
0.30	595.	100.4	41.75
0.40	532.	100.6	41.75
0.50	666.	100.7	41.75
0.60	799.	100.8	41.75
0.80	1,666.	100.9	41.75
1.00	1,332.	101.1	41.75

PLAN 1 STATION 25

RATIO	MAXIMUM FLOW, CFS	MAXIMUM STAGE, FT	TIME HOURS
0.20	462.	96.4	42.00
0.30	395.	96.6	41.75
0.40	532.	96.7	41.75
0.50	666.	96.8	41.75
0.60	799.	96.9	41.75
0.80	1,666.	97.1	41.75
1.00	1,332.	97.3	41.75

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

```
RUNOFF HYDROGRAPH AT 1(1)
ROUTE HYDROGRAPH TO 1C1
ROUTE HYDROGRAPH TO C3
ROUTE HYDROGRAPH TO 25
ROUTE HYDROGRAPH TO 7J
ROUTE HYDROGRAPH TO 75
ROUTE HYDROGRAPH TO 275
ROUTE HYDROGRAPH TO 521
END OF NETWORK
```

FLUL HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 15/86
LAST MODIFICATION 25 FEB 74

MUN DATE: 24 NOV 1988 2 1621

CLINTON RESERVOIR DAM FILE IS ABSL
HEC-1DH (SNYDER PARAMETERS)
KWA - DAM BREAK ANALYSIS

MULTI-PLAN ANALYSES TO BE PERFORMED MPLANE 3 MPTIME = 1 MRTIME = 1

ESTIMATES

```

*****
***** SUB-AREA RUNOFF COMPUTATION *****
*****
      RUNCODE SUBAREA 1
      1STAG 1CONE 1ECON 1TAPE 1PLT 1PRP 1NAME 1STAGE 1AUTO
      1J0 0 0 0 0 0 0 1 C 0

      HYDROGRAPH DATA
      SNAP TRSDA TRSPC RATIO ISNOW ISAME LOCAL
      1.00 0.00 0.00 0.00 0.00 0.00 0.00

      PRECIP DATA
      SPFF PMS RCG R12 R24 R48 R72 R96
      1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

```

STARTQ = -2.7C RECEDSION DATA
 QRCN= -0.1J RTIOR= 1.6D
 UNIT HYDROGRAPH OF END-OF-PERIOD ORDINATES, LAG= 2.04 HOURS, CP= 0.63 VOL= 1.CC
 121. 11. 22. 55. 49. 64. 79. 94. 1C6.
 121. 124. 125. 117. 108. 99. 91. 83. 115.
 58. 58. 53. 49. 44. 41. 57. 34. 69.
 24. 22. 20. 18. 18. 17. 15. 14. 29.
 11. 1C. Y. 8. 8. 7. 6. 6. 12.
 4. 4. 3. 3. 3. 3. 5. 5. 5.
 4. 2. 2. 1. 1. 1. 1. 1. 2.
 C MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q FLOW
 END-OF-PERIOD FLOW COMP Q MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q
 SUM (571.)(479.) 18.86 5.63 43779.
 (92.)(1239.67)

HYDROGRAPH ROUTING

ROUTE TURU RESERVOIR AND OVER SPILLWAY
 INSTG ICIMP IECON ITAPE JFLT JPRT INAME ISTANCE TAUTO
 1.0 1 U 0 0 0 0 0 0 C

ALL PLANS HAVE SAME
ROUTING DATA

QLOSS	CLSS	Avg	IRES	ISAVE	IOPF	IPMP	LSTR
C.C	0.50	0.00	1	1	0	0	C
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT
1	J	J	0.00	0.00	0.00	-828.	-1

STATUT	827.8C	826.1C	828.4C	829.7C	829.00	829.3C	829.60
831.5C	831.0C	832.00	832.50	833.00	833.5C	834.00	834.5C
FLGR	15.5	44.0	66.0	138.00	200.00	270.00	350.00
	17.0	49.0	1118.0	1398.00	1616.00	1835.00	2055.00

CAPACITY	"	1.	2.	d.	17.	32.	55.	66.
77.	4.	90.	96.	103.	110.	117.	125.	71.
ELZ, ZTIC=	c.5	c.7	c.7	c.12.	c.17.	c.22.	c.25.	c.29.
c31.	c.52.	c.33.	c.34.	c.35.	c.36.	c.37.	c.38.	c.39.

CFL	SPNLD	CGW	EXPW	ELFWL	COFL	CAREA	EXFL
-----	-------	-----	------	-------	------	-------	------

		DAM DATA			DAM ID		
		TOFEL	CQD	EXP0	DAMID		
		d30.0	2.0	1.5	420.		
DAM BREACH DATA							
		BWID	Z	ELB0	TFAIL	WSEL	FAIL0
		3C.	0.00	817.00	0.10	827.50	830.22

BEGIN DAM FAILURE AT 41.50 HOURS							
PEAK OUTFLOW IS 5564. AT TIME 41.60 HOURS							
DAM BREACH DATA							
		BWID	Z	ELB0	TFAIL	WSEL	FAIL0
		3C.	0.00	817.00	0.30	827.50	830.22

BEGIN DAM FAILURE AT 41.50 HOURS							
PEAK OUTFLOW IS 2462. AT TIME 41.61 HOURS							
DAM BREACH DATA							
		BWID	Z	ELB0	TFAIL	WSEL	FAIL0
		3C.	0.20	817.00	0.50	827.50	830.22

BEGIN DAM FAILURE AT 41.50 HOURS							
PEAK OUTFLOW IS 1754. AT TIME 41.60 HOURS							
DAM BREACH DATA							
		BWID	Z	ELB0	TFAIL	WSEL	FAIL0
		3C.	0.00	817.00	0.30	827.50	830.22

HYDROGRAPH ROUTING							
SPILLWAY CHANNEL ROUTE							
		ISTAG	ICOMP	IECON	ITAPE	JPLT	JFRT
		.3	1	0	0	0	0
ALL PLANS HAVE SAME							
ROUTING DATA							
		QLOSS	ULSS	AUG	ISAME	IOP0	IFMP
		C.C.	F.C.C.	C.C.C	1	0	0
		ASTPS	NSTUL	LAG	AMSKK	X	TSK
		1		0.00	0.00	C.00	C.00
STORA ISFRAT -1.							

IN(1) .N(2) QN(3) ELNVT ELMAX RLNTW SEL
 0.0600 C.0150 C.0600 100.0 115.0 3. 0.1500

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC					
180.00	115.00	125.00	114.00	150.00	113.00
180.10	115.00	205.00	114.00	230.00	115.00
STRAUT	0.00	0.00	0.00	C.01	0.01
	0.00	C.02	C.02	C.02	0.01
OUTLDR	27231.00	31214.97	2304.81	4392.98	6890.18
			35316.45	39522.96	43823.85
STAGE	100.00	100.74	101.50	102.37	103.16
	107.89	108.60	109.47	110.26	111.05
FLO.	27231.00	31214.97	2304.81	4392.98	6890.18
			35316.45	39522.96	43823.85
MAXIMUM STAGE IS	101.0				
MAXIMUM STAGE IS	101.0				
MAXIMUM STAGE IS	101.4				

HYDROGRAPH ROUTING

SPILLWAY CHANNEL ROUTE	ISTAG	ICOMP	IECON	ITAPE	JFLT	JFRT	I NAME	I STAGE	I AUTO
25	1	1	0	0	0	0	C	C	0
ALL PLANS HAVE SAME									
GLOSS	GLOSS	Avg	IRES	ISAME	I OPT	I PMP	LSTR		
0.00	0.00	0.00	1	1	0	0	C		
NSTPS	NSTDL	LAG	AMSKK	X	TSK	STORA	ISPRAT		
1		0	0.00	C.00	C.00	-1.	C		

ROUTINE CHANNEL ROUTING

ROUTINE CHANNEL ROUTING
 100.00 100.00 100.00 100.00 100.00 100.00

גנום ע. ו. א. נ. ג.

גנום ע. ו. א. נ. ג.

גנום ע. ו. א. נ. ג.

MAXIMUM STAGE IS 47.0
MAXIMUM STAGE IS 96.0
MAXIMUM STAGE IS 47.0

卷之三

WYDOWOCZARN POLITIČN/

ELEMNT DRIFT CHANNEL EQUIL

CROSS SECTION	COORDINATES--STA.	ELEV.	STA.	ELEV.	ETC
1-2	113.00	100.00	100.00	100.00	
1-3	113.00	105.00	105.00	105.00	
1-4	113.00	106.00	106.00	106.00	
1-5	113.00	107.00	107.00	107.00	
1-6	113.00	108.00	108.00	108.00	
1-7	113.00	109.00	109.00	109.00	
1-8	113.00	110.00	110.00	110.00	
1-9	113.00	111.00	111.00	111.00	
1-10	113.00	112.00	112.00	112.00	
1-11	113.00	113.00	113.00	113.00	
1-12	113.00	114.00	114.00	114.00	
1-13	113.00	115.00	115.00	115.00	
1-14	113.00	116.00	116.00	116.00	
1-15	113.00	117.00	117.00	117.00	
1-16	113.00	118.00	118.00	118.00	
1-17	113.00	119.00	119.00	119.00	
1-18	113.00	120.00	120.00	120.00	
1-19	113.00	121.00	121.00	121.00	
1-20	113.00	122.00	122.00	122.00	
1-21	113.00	123.00	123.00	123.00	
1-22	113.00	124.00	124.00	124.00	
1-23	113.00	125.00	125.00	125.00	
1-24	113.00	126.00	126.00	126.00	
1-25	113.00	127.00	127.00	127.00	
1-26	113.00	128.00	128.00	128.00	
1-27	113.00	129.00	129.00	129.00	
1-28	113.00	130.00	130.00	130.00	
1-29	113.00	131.00	131.00	131.00	
1-30	113.00	132.00	132.00	132.00	
1-31	113.00	133.00	133.00	133.00	
1-32	113.00	134.00	134.00	134.00	
1-33	113.00	135.00	135.00	135.00	
1-34	113.00	136.00	136.00	136.00	
1-35	113.00	137.00	137.00	137.00	
1-36	113.00	138.00	138.00	138.00	
1-37	113.00	139.00	139.00	139.00	
1-38	113.00	140.00	140.00	140.00	
1-39	113.00	141.00	141.00	141.00	
1-40	113.00	142.00	142.00	142.00	
1-41	113.00	143.00	143.00	143.00	
1-42	113.00	144.00	144.00	144.00	
1-43	113.00	145.00	145.00	145.00	
1-44	113.00	146.00	146.00	146.00	
1-45	113.00	147.00	147.00	147.00	
1-46	113.00	148.00	148.00	148.00	
1-47	113.00	149.00	149.00	149.00	
1-48	113.00	150.00	150.00	150.00	
1-49	113.00	151.00	151.00	151.00	
1-50	113.00	152.00	152.00	152.00	
1-51	113.00	153.00	153.00	153.00	
1-52	113.00	154.00	154.00	154.00	
1-53	113.00	155.00	155.00	155.00	
1-54	113.00	156.00	156.00	156.00	
1-55	113.00	157.00	157.00	157.00	
1-56	113.00	158.00	158.00	158.00	
1-57	113.00	159.00	159.00	159.00	
1-58	113.00	160.00	160.00	160.00	
1-59	113.00	161.00	161.00	161.00	
1-60	113.00	162.00	162.00	162.00	
1-61	113.00	163.00	163.00	163.00	
1-62	113.00	164.00	164.00	164.00	
1-63	113.00	165.00	165.00	165.00	
1-64	113.00	166.00	166.00	166.00	
1-65	113.00	167.00	167.00	167.00	
1-66	113.00	168.00	168.00	168.00	
1-67	113.00	169.00	169.00	169.00	
1-68	113.00	170.00	170.00	170.00	
1-69	113.00	171.00	171.00	171.00	
1-70	113.00	172.00	172.00	172.00	
1-71	113.00	173.00	173.00	173.00	
1-72	113.00	174.00	174.00	174.00	
1-73	113.00	175.00	175.00	175.00	
1-74	113.00	176.00	176.00	176.00	
1-75	113.00	177.00	177.00	177.00	
1-76	113.00	178.00	178.00	178.00	
1-77	113.00	179.00	179.00	179.00	
1-78	113.00	180.00	180.00	180.00	
1-79	113.00	181.00	181.00	181.00	
1-80	113.00	182.00	182.00	182.00	
1-81	113.00	183.00	183.00	183.00	
1-82	113.00	184.00	184.00	184.00	
1-83	113.00	185.00	185.00	185.00	
1-84	113.00	186.00	186.00	186.00	
1-85	113.00	187.00	187.00	187.00	
1-86	113.00	188.00	188.00	188.00	
1-87	113.00	189.00	189.00	189.00	
1-88	113.00	190.00	190.00	190.00	
1-89	113.00	191.00	191.00	191.00	
1-90	113.00	192.00	192.00	192.00	
1-91	113.00	193.00	193.00	193.00	
1-92	113.00	194.00	194.00	194.00	
1-93	113.00	195.00	195.00	195.00	
1-94	113.00	196.00	196.00	196.00	
1-95	113.00	197.00	197.00	197.00	
1-96	113.00	198.00	198.00	198.00	
1-97	113.00	199.00	199.00	199.00	
1-98	113.00	200.00	200.00	200.00	
1-99	113.00	201.00	201.00	201.00	
1-100	113.00	202.00	202.00	202.00	
1-101	113.00	203.00	203.00	203.00	
1-102	113.00	204.00	204.00	204.00	
1-103	113.00	205.00	205.00	205.00	
1-104	113.00	206.00	206.00	206.00	
1-105	113.00	207.00	207.00	207.00	
1-106	113.00	208.00	208.00	208.00	
1-107	113.00	209.00	209.00	209.00	
1-108	113.00	210.00	210.00	210.00	
1-109	113.00	211.00	211.00	211.00	
1-110	113.00	212.00	212.00	212.00	
1-111	113.00	213.00	213.00	213.00	
1-112	113.00	214.00	214.00	214.00	
1-113	113.00	215.00	215.00	215.00	
1-114	113.00	216.00	216.00	216.00	
1-115	113.00	217.00	217.00	217.00	
1-116	113.00	218.00	218.00	218.00	
1-117	113.00	219.00	219.00	219.00	
1-118	113.00	220.00	220.00	220.00	
1-119	113.00	221.00	221.00	221.00	
1-120	113.00	222.00	222.00	222.00	
1-121	113.00	223.00	223.00	223.00	
1-122	113.00	224.00	224.00	224.00	
1-123	113.00	225.00	225.00	225.00	
1-124	113.00	226.00	226.00	226.00	
1-125	113.00	227.00	227.00	227.00	
1-126	113.00	228.00	228.00	228.00	
1-127	113.00	229.00	229.00	229.00	
1-128	113.00	230.00	230.00	230.00	
1-129	113.00	231.00	231.00	231.00	
1-130	113.00	232.00	232.00	232.00	
1-131	113.00	233.00	233.00	233.00	
1-132	113.00	234.00	234.00	234.00	
1-133	113.00	235.00	235.00	235.00	
1-134	113.00	236.00	236.00	236.00	
1-135	113.00	237.00	237.00	237.00	
1-136	113.00	238.00	238.00	238.00	
1-137	113.00	239.00	239.00	239.00	
1-138	113.00	240.00	240.00	240.00	
1-139	113.00	241.00	241.00	241.00	
1-140	113.00	242.00	242.00	242.00	
1-141	113.00	243.00	243.00	243.00	
1-142	113.00	244.00	244.00	244.00	
1-143	113.00	245.00	245.00	245.00	
1-144	113.00	246.00	246.00	246.00	
1-145	113.00	247.00	247.00	247.00	
1-146	113.00	248.00	248.00	248.00	
1-147	113.00	249.00	249.00	249.00	
1-148	113.00	250.00	250.00	250.00	
1-149	113.00	251.00	251.00	251.00	
1-150	113.00	252.00	252.00	252.00	
1-151	113.00	253.00	253.00	253.00	
1-152	113.00	254.00	254.00	254.00	
1-153	113.00	255.00	255.00	255.00	
1-154	113.00	256.00	256.00	256.00	
1-155	113.00	257.00	257.00	257.00	
1-156	113.00	258.00	258.00	258.00	
1-157	113.00	259.00	259.00	259.00	
1-158	113.00	260.00	260.00	260.00	
1-159	113.00	261.00	261.00	261.00	
1-160	113.00	262.00	262.00	262.00	
1-161	113.00	263.00	263.00	263.00	
1-162	113.00	264.00	264.00	264.00	
1-163	113.00	265.00	265.00	265.00	
1-164	113.00	266.00	266.00	266.00	
1-165	113.00	267.00	267.00	267.00	
1-166	113.00	268.00	268.00	268.00	
1-167	113.00	269.00	269.00	269.00	
1-168	113.00	270.00	270.00	270.00	
1-169	113.00	271.00	271.00	271.00	
1-170	113.00	272.00	272.00	272.00	
1-171	113.00	273.00	273.00	273.00	
1-172	113.00	274.00	274.00	274.00	
1-173	113.00	275.00	275.00	275.00	
1-174	113.00	276.00	276.00	276.00	
1-175	113.00	277.00	277.00	277.00	
1-176	113.00	278.00	278.00	278.00	
1-177	113.00	279.00	279.00	279.00	
1-178	113.00	280.00	280.00	280.00	
1-179	113.00	281.00	281.00	281.00	
1-180	113.00	282.00	282.00	282.00	
1-181	113.00	283.00	283.00	283.00	
1-182	113.00	284.00	284.00	284.00	
1-183	113.00	285.00	285.00	285.00	
1-184	113.00	286.00	286.00	286.00	
1-185	113.00	287.00	287.00	287.00	
1-186	113.00	288.00	288.00	288.00	
1-187	113.00	289.00	289.00	289.00	
1-188	113.00	290.00	290.00	290.00	
1-189	113.00	291.00	291.00	291.00	
1-190	113.00	292.00	292.00	292.00	
1-191	113.00	293.00	293.00	293.00	
1-192	113.00	294.00	294.00	294.00	
1-193	113.00	295.00	295.00	295.00	
1-194	113.00	296.00	296.00	296.00	
1-195	113.00	297.00	297.00	297.00	
1-196	113.00	298.00	298.00	298.00	
1-197	113.00	299.00	299.00	299.00	
1-198	113.00	300.00	300.00	300.00	

	$\text{C}_{\text{RA}, \text{E}}$	$\text{C}_{\text{RA}, \text{L}}$	$\text{C}_{\text{RA}, \text{R}}$	$\text{C}_{\text{DEC}, \text{E}}$	$\text{C}_{\text{DEC}, \text{L}}$	$\text{C}_{\text{DEC}, \text{R}}$
$\text{C}_{\text{RA}, \text{E}}$	0.05 0.06	C-0.01 C-0.31	C-0.03 0.57	0.04 0.44	C-0.06 C-0.51	0.08 0.59
$\text{C}_{\text{RA}, \text{L}}$	0.05 0.06	C-0.01 C-0.31	C-0.03 0.57	0.04 0.44	C-0.06 C-0.51	0.08 0.59
$\text{C}_{\text{RA}, \text{R}}$	0.05 0.06	C-0.01 C-0.31	C-0.03 0.57	0.04 0.44	C-0.06 C-0.51	0.08 0.59
$\text{C}_{\text{DEC}, \text{E}}$	0.05 0.06	C-0.01 C-0.31	C-0.03 0.57	0.04 0.44	C-0.06 C-0.51	0.08 0.59
$\text{C}_{\text{DEC}, \text{L}}$	0.05 0.06	C-0.01 C-0.31	C-0.03 0.57	0.04 0.44	C-0.06 C-0.51	0.08 0.59
$\text{C}_{\text{DEC}, \text{R}}$	0.05 0.06	C-0.01 C-0.31	C-0.03 0.57	0.04 0.44	C-0.06 C-0.51	0.08 0.59

47-6

卷之三

卷之三

CHANNEL ROUTE INSTAG

	0	0	0	0	1	C	0
ALL PLANS HAVE SAME ROUTING DATA							
IPRES	ISAME	1	0	1			LSTR
LAU	AMSKK	X	X	X			SYRA
	0.000	0.000	0.000	0.000			ISPRAT

卷之三

1180 [Vol. 20, No. 10]

SEL	SOL	MIN	MAX
ELMAX	ELMIN	ELMIN	ELMAX
113.2	5.2	5.2	113.2
5.2	5.2	5.2	5.2
5.2	5.2	5.2	5.2

THE JOURNAL OF POLITICAL ECONOMY

STORAGE	0.00 0.06	112.50 227.50	140.00 95.00	70.00 95.00	116.00 222.00	70.00 106.00	116.00 222.00	70.00 106.00	62.00
OUTFLOW	0.00 59122.05	570.61 75054.91	0.07 93179.20	0.06 113569.78	0.31 136304.00	0.10 162104.59	0.01 162104.59	0.14 162104.59	0.03 0.17
STAGE	85.00 99.74	86.47 101.21	87.95 102.68	89.42 104.16	95.89 105.63	92.37 107.11	93.84 108.58	95.32 110.05	96.79 111.53
FLOW	59122.05	576.01 75054.91	1892.07 93179.20	3910.25 113569.78	6680.77 136304.00	10807.43 162104.59	16583.25 190582.91	24046.88 221542.13	33599.96 255005.69

MAXIMUM STAGE IS 88.3
 MAXIMUM STAGE IS 88.1
 MAXIMUM STAGE IS 88.3

HYDROGRAPH ROUTING

CHANNEL ROUTE	ICSTA# 2/5	ICOMP 1	IECON ij	ITATE G	JPLT j	JPRI j	I NAME j	I STAGE j	I AUTO j
ALL PLANS HAVE SAME									
QLOSS	CLLOSS J.CCG	AVB G.CCG	IPRS 1	ISAME 1	IOPF 1	IPMP j	LSTR j		
NSTPS	NSTDL 1	LAG 0	AMSKK 0.CCG	X C.CCG	TSK C.CCG	STORA -1.	ISFRAT G		

VERTICAL CHANNEL ROUTING

ELMAX	ELMIN	RLNTH	SEL
97.0	76.0	29.0	J.J.G.J.

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC
 1 1.0 17.0 14.0,CC 15.5,C 23.0,CC 01.0,0 235.00 76.00 243.07 76.07
 2 6 2.3,0 0.0,0 0.0,0 0.0,0 0.0,0 0.0,0 0.0,0 0.0,0 0.0,0
 3 1.0 4.0 4.0,CC 4.0,CC 4.0,CC 4.0,CC 4.0,CC 4.0,CC 4.0,CC 4.0,CC

HYDROCARBONS

CHANNEL	ROUTE	TC	HOUSE	DOWNTREAM	ICOMP	IECON	ITAPE	JPLT	JFRIT	JNAME	I STAGE	IAUTO
1STAG	1									1	C	0
S2	2											
ALL PLANS HAVE SAME ROUTING DATA												
GLOSS	CLSS	Avg	IRES	ISAME	1OPT						LSTR	C
S.C.	JO.GJO	0.39	1	1	3							
NSTS	NSTDL		LAG	AMSK							STORM	ISPRAT
1	C	0	0	0.CCG	0.CCG						-1	C

INCREMENTAL DEPTH CHANNEL ROUTING

$\alpha_N(1)$	$\alpha_N(2)$	$\alpha_N(3)$	ELNFT	ELMAX	RLNT	SEL
-0.735	-0.977	774.1	265.7	267.7	265.0	265.0
-0.735	-0.977	774.1	265.7	267.7	265.0	265.0
-0.735	-0.977	774.1	265.7	267.7	265.0	265.0
-0.735	-0.977	774.1	265.7	267.7	265.0	265.0

CROSS SECTION COORDINATES--STATION ELEVATION--Etc
 8.7' 15° C. 167.00 212.00 177.00 228.00 174.00
 233.00 777.50 280.00 774.00 362.00 749.00

1110.4	1110.3	1110.2	1110.1	1110.0	1110.-1	1110.-2	1110.-3	1110.-4
1128.2	1128.1	1128.0	1128.1	1128.3	1128.5	1128.7	1128.9	1129.1
1126.7	1126.6	1126.5	1126.4	1126.3	1126.2	1126.1	1126.0	1126.8
1125.6	1125.5	1125.4	1125.3	1125.2	1125.1	1125.0	1125.0	1125.9
1124.9	1124.8	1124.6	1124.5	1124.4	1124.3	1124.2	1124.1	1124.3
1124.5	1124.4	1124.4	1124.4	1124.4	1124.4	1124.4	1124.3	1124.3

	PEAK CFS	6-HOUR CFS	24-HOUR CFS	72-HOUR CFS	TOTAL VOLUME
INCHES	2240.	514.	165.	80.	23880.
	65.	15.	5.	2.	676.
		8.01	10.15	17.23	10.23
AC-F1		2C3.49	257.90	259.92	259.92
AC-F7		25b.	326.	329.	329.
THOUS. CU. M		31b.	403.	406.	406.

1

THE STATE IS 774

STATION 5261, PLAN 2, RT10 1

FEAR	C-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	2116.	535.	169.	24455.
CMS	60.	15.	5.	693.
INCHES		8.26	1.40	1C-48
MM		c. 9.75	204.16	266.18
AC-FT		265.	334.	337.
FEET		327.	412.	416.
THOUS CU M				

EXTRAM STURAGE =

1640

STATION 520, PLAN 3, RTIC 1

OUTLOOK

PEAK FLOW AND STREAM STURGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

RATIOS APPLIED TO FLOWS						
OPERATION	STATION	AREA	PLAN	RATIO	1 S.5E.	
HYDROGRAPH AT	100 (1.60 1.56)	1 (604. 16.79)	1 (604. 16.79)
MOUNTED T.	100 (0.60 1.56)	1 (2395. 67.82)	1 (2395. 67.82)
ACTED T.	100 (0.60 1.56)	1 (2395. 1934.)	1 (2395. 1934.)
MOUNTED T.	100 (0.60 1.56)	1 (2395. 67.01)	1 (2395. 67.01)
ACTED T.	100 (0.60 1.56)	1 (2395. 56.20)	1 (2395. 56.20)
MOUNTED T.	100 (0.60 1.56)	1 (2395. 54.75)	1 (2395. 54.75)
ACTED T.	100 (0.60 1.56)	1 (2395. 54.74)	1 (2395. 54.74)
MOUNTED T.	100 (0.60 1.56)	1 (2395. 67.61)	1 (2395. 67.61)
ACTED T.	100 (0.60 1.56)	1 (2395. 54.71)	1 (2395. 54.71)

	1-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
C-1	14.4.	544.	1,1.	24771.
C-3	54.	15.	5.	701.
L-C-CH ₃		8.34	1.53	1C.61
		213.18	267.59	265.61
P-C-F-T		271.	359.	341.
Trisulfide		533.	416.	421.

1774

MAXIMUM STORAGE = 1.

卷之三

卷之三

大會會長

中華書局影印

金言錄

金言錄

☆☆☆☆☆

KGUTD T	275	(1.56)	0.00	1 (67.60) 2382. (67.60) 2095.
KGUTD T	52	(1.56)	0.00	1 (64.86) 2116. (59.91) 1915. (54.54) 2240.

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	ELEVATION, STORAGE OUTFLOW	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
PLAN 1	827.50 58. 0.	827.50 58. 0.	827.50 58. 0.	830.00 71. 467.
PLAN 2	MAXIMUM DEPTH AC-FT 0.23	MAXIMUM STORAGE AC-FT 0.23	MAXIMUM OUTFLOW CFS 3564.	DURATION OVER TOP HOURS 1.04
PLAN 3	MAXIMUM DEPTH AC-FT 0.23	MAXIMUM STORAGE AC-FT 0.23	MAXIMUM OUTFLOW CFS 2472.	DURATION OVER TOP HOURS 1.03
PLAN 4	MAXIMUM DEPTH AC-FT 0.23	MAXIMUM STORAGE AC-FT 0.23	MAXIMUM OUTFLOW CFS 1934.	DURATION OVER TOP HOURS 1.11
PLAN 5	MAXIMUM DEPTH AC-FT 0.23	MAXIMUM STORAGE AC-FT 0.23	MAXIMUM STAGE FT 2395.	MAXIMUM STAGE FT 171.0
PLAN 6	RATIO 0.50	RATIO 0.50	STATION 0.3	STATION 0.3

TIME OF FAILURE HOURS

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

41.50

• 2. C 1. 1. 1. 41.5

PLAN 3 STATION 03

RATIO	MAXIMUM FLOW, CFS	STAGE, FT	TIME HOURS
1.50	1,54.	111.4	42.0C

PLAN 1 STATION 25

RATIO	MAXIMUM FLOW, CFS	STAGE, FT	TIME HOURS
1.50	2,53.	97.8	41.67

PLAN 2 STATION 25

RATIO	MAXIMUM FLOW, CFS	STAGE, FT	TIME HOURS
1.50	2,91.	97.7	41.83

PLAN 3 STATION 25

RATIO	MAXIMUM FLOW, CFS	STAGE, FT	TIME HOURS
1.50	1,53.	97.6	42.00

PLAN 1 STATION 75

RATIO	MAXIMUM FLOW, CFS	STAGE, FT	TIME HOURS
1.50	2,387.	97.6	41.67

PLAN 2 STATION 75

RATIO	MAXIMUM FLOW, CFS	STAGE, FT	TIME HOURS
1.50	2,15.	97.2	41.83

PLAN 3 STATION 75

RATIO	MAXIMUM FLOW, CFS	STAGE, FT	TIME HOURS
1.50	1,12.	97.	42.17

	MAXIMUM FLOW	MAXIMUM FLOWS	STATION NUMBER	TIME HOURS
PLAY 3	PLAY 3	PLAY 3	775.2	41.83
PLAY 5	PLAY 5	PLAY 5	775.1	42.10

PLAN 1 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	2387.	84.3	41.67

PLAN 2 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	2450.	85.1	41.83

PLAN 3 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	1632.	72.3	42.00

PLAN 4 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	2377.	76.1	41.67

PLAN 5 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	2450.	76.1	41.83

PLAN 6 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	1722.	76.1	42.00

PLAN 7 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	2377.	76.1	41.67

PLAN 8 STATION 75

RATIO	MAXIMUM FLOW CFS	MAXIMUM STAGE FT	TIME HOURS
.5	2450.	76.1	41.83

PLAN 9 STATION 75

PLAN 10 STATION 75

APPENDIX D
REFERENCES

APPENDIX D

REFERENCES

1. Department of the Army, Office of the Chief of Engineers. National Program of Investigation of Dams; Appendix D: Recommended Guidelines for Safety Inspection of Dams, 1976
2. U.S. Nuclear Regulatory Commission: Design Basis Floods for Nuclear Power Plants, Regulating Guide 1.59, Revision 2, August 1977
3. Linsley and Franzini: Water Resources Engineering, Second Edition, McGraw-Hill (1972)
4. W. Viessman, Jr., J. Knapp, G. Lewis, 1977, 2nd Edition, Introduction to Hydrology
5. Ven Te Chow: Handbook of Applied Hydrology, McGraw-Hill, 1964
6. The Hydrologic Engineering Center: Computer Program 723-X6-L2010, HEC-1 Flood Hydrograph Package, User's Manual, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616, January 1973
7. The Hydrologic Engineering Center, Computer Program: Flood Hydrograph Package (HEC-1) Users Manual For Dam Safety
8. Soil Conservation Service (Engineering Division): Urban Hydrology for Small Watersheds, Technical Release No. 55, U.S. Department of Agriculture, January 1975
9. H.W. King, E.F. Brater: Handbook of Hydraulics, McGraw-Hill, 5th Edition, 1963
10. Ven Te Chow: Open Channel Hydraulics, McGraw-Hill, 1959
11. Bureau of Reclamation, United States Department of the Interior, Design of Small Dams: A Water Resources Technical Publication, Third Printing, 1965
12. J.T. Riedel, J.F. Appleby and R.W. Schloemer: Hydrometeorological Report No. 33, U.S. Department of Commerce, U.S. Department of Army, Corps of Engineers, Washington, D.C., April 1956. Available from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
13. North Atlantic Regional Water Resources Study Coordinating Committee: Appendix C, Climate, Meteorology and Hydrology, February 1972

14. Sherard, Woodward, Gizienski, Clevenger: Earth and Earth - Rock Dams, John Wiley and Sons, Inc., 1963.
15. U.S. Soil Conservation Service, Stillwater Outdoor Hydraulic Laboratory: Handbook of Channel Design for Soil and Water Conservation, SCS-TP-61, March 1974; revised June 1954.
16. The University of the State of New York - The State Education Department, State Museum and Science Service, Geological Survey: Geologic Map of New York, 1970
17. Y.W. Isachsen and W.G. McKendree, 1977, Preliminary Brittle Structures Map of New York, Hudson-Mohawk Sheet, New York State Museum Map and Chart Series No. 31B
18. N.C. Dale, 1953 Geology and Mineral Resources of the Oriskany Quadrangle, New York State Museum Bulletin 345.

APPENDIX E
STABILITY ANALYSIS

STETSON • DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME CLINTON RESERVOIR DAMDATE 4/11/81SUBJECT STABILITY ANALYSIS - SPILLWAY SECTION

PROJECT NO.

DRAWN BY DFMAssumed Section and Loading Conditions

$$\text{Weight of dam} = .150 \text{ kcf} \left(\frac{3+8}{2} \right) (11) = 9.07 \text{ k}/\text{ft of length}$$

$$M_{\text{toe}} \text{ due to weight of dam} = .150 \left[\left(\frac{1}{2} \times 11 \times 5 \times \frac{2}{3} \times 5 \right) + (3 \times 11) \left(\frac{2}{3} + 5 \right) \right] = 45.9 \text{ ft}$$

STETSON·DALE

BANKERS TRUST BUILDING
UTICA · NEW YORK · 13501

TEL 315-797-5800

DESIGN BRIEF

PROJECT NAME CLINTON

DATE

SUBJECT

PROJECT NO

DRAWN BY

CASE I, II: WL & Spillway Elevation (No Ice Load, Ice Load)

OVERTURNING

M_{toe} causing overturning due to horiz. water pressure, ice, uplift

$$= \left(\frac{1}{2} \times 11 \times 686 \times \frac{11}{3} \right) + (7.5 \text{ ft} \times 10') + \left(\frac{1}{2} \times 8 \times 686 \times \frac{2}{3} \times 8 \right) =$$

$$= 13.83^{\text{k}} + 75^{\text{k}} + 14.63 = 103.5^{\text{k ft}}$$

M_{toe} resisting overturning due to mass of dam = $45.9^{\text{k ft}}$

$$(I) \text{ FS against overturning (no ice)} = \frac{45.9^{\text{k ft}}}{(103.5 - 75)^{\text{k ft}}} = 1.61 \quad (\text{no ice})$$

$$(II) \text{ FS against overturning (ice load acting)} = \frac{45.9^{\text{k ft}}}{103.5^{\text{k ft}}} = 0.45 \quad (\text{ice load acting})$$

(unsafe)

$$(I) \text{ Position of Resultant, } R : d = \frac{\sum M_{\text{toe}}}{\sum V}$$

$$\text{where } \sum V = \text{wt. of dam} - \text{uplift} = 9.07^{\text{k}} - \left(\frac{1}{2} \times 8 \times 686 \right) = 6.33^{\text{k}}$$

$$d = \frac{(45.9 - 28.5)^{\text{k ft}}}{6.33^{\text{k}}} = 2.75' \text{ from toe} = 0.34 \text{ b} \quad (\text{within width})$$

(II) Position of Resultant Outside of Base Since $\text{FS} < 1$

STETSON•DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

5/

PROJECT NAME CLINTON

DATE _____

JECT _____

PROJECT NO. _____

DRAWN BY _____

SLIDING

(I) FS against sliding (friction - shear/bond method, assume $T = 100 \text{ ps}$.
bond between dam and shale face)

$$\text{FS} = \frac{\mu(W - \text{uplift}) + \tau b}{\text{Lateral water pressure}} = \frac{(0.65)(9.07 - 2.74) + (0.100 \times 144 \times 8)}{\left(\frac{1}{2} \times 11 \times 1666\right)} = \frac{119.3}{3.77} = 31$$

(II) FS = $\frac{119.3}{\text{Lat. H}_2\text{O} + \text{ice}} = \frac{119.3}{(3.77 + 7.5)} = 10.6 \quad (\text{ok})$

AD-A105 763

STETSON-DALE UTICA NY
NATIONAL DAM SAFETY PROGRAM. CLINTON RESERVOIR DAM (INVENTORY N--ETC(U)
AUG 81 J B STETSON

F/6 13/13
DACP51-81-C-0009

NL

UNCLASSIFIED

2 OF 2
AD A
105763

END
DATE
FILED
11-81
DTIC

STETSON-DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

4

PROJECT NAME

CLINTON

DATE

SUBJECT

PROJECT NO

DRAWN BY

CASE III : WL @ $\frac{1}{2}$ PMF, uplift as for case IOVERTURNING M_{toe} causing out due to horiz. water pressures, uplift

$$= (.190 \times 11 \times \frac{11}{2}) + (28.5^{\text{k ft}}) = 40^{\text{k ft}}$$

$$\text{FS against overturning} = \frac{45.9^{\text{k ft}}}{40^{\text{k ft}}} = 1.15$$

Position of Resultant, R: $d = \frac{\sum M_{\text{toe}}}{\sum V}$ where $\Sigma V = 6.33^{\text{k}}$

$$d = \frac{(45.9 - 40)^{\text{k ft}}}{6.33} = 0.93^{\text{ft}} = 0.12 \text{ b (outside min. thk)}$$

SLIDING

$$\text{FS against sliding} = \frac{119.3^{\text{k}}}{\sum \text{Int. H}_2\text{O pressure}} = \frac{119.3^{\text{k}}}{(.190 + .87)(11)} = \frac{119.3}{5.87} = 20.1$$

STETSON • DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

DESIGN BRIEF

5/

TEL 315-797-5800

PROJECT NAME CLINTON DATE _____

OBJECT _____ PROJECT NO _____

DRAWN BY _____

CASE IV: WL @ PMF, uplift as for case I

OVERTURNING

M_{toe} causing cut due to horiz. water pressures, uplift

$$= (.22 \times 11 \times \frac{11}{2}) + (28.5) = 41.8 \text{ kft}$$

$$\text{FS against overturning} = \frac{45.9 \text{ kft}}{41.8 \text{ kft}} = 1.10$$

Position of Resultant, R: $d = \frac{\sum M_{\text{toe}}}{\sum V}$

$$d = \frac{(45.9 - 41.8) \text{ kft}}{6.33 \text{ k}} = 0.65' = 0.08 \text{ b} \text{ (outside min. limit)}$$

SLIDING

$$\text{FS against sliding} = \frac{\sum V}{\sum \text{lat. H}_2\text{O pressure}} = \frac{119.3 \text{ k}}{(\frac{.722 + .908}{2})(11)} = 19 \pm 1 \text{ ok}$$

STETSON • DALE

BANKERS TRUST BUILDING
UTICA • NEW YORK • 13501

TEL 315-797-5800

DESIGN BRIEF

4

PROJECT NAME CLINTON

DATE _____

SUBJECT _____

PROJECT NO. _____

DRAWN BY _____

CASE II : WL @ Spillway Elevation plus Zone 2 Seismic Effects

Seismic coefficients: Horiz. = 0.05
Vert. = 0.025

Location of C.G. with respect to ②

$$\bar{x} = \frac{M_{tot}}{\Sigma V} = \frac{45.9}{9.07} = 5.06 \text{ ft}$$

$$\bar{y} = \frac{.15[(1/2 \times 5 \times 11 \times \frac{11}{3}) + (3 \times 11 \times \frac{11}{3})]}{9.07} = \frac{42.35}{9.07} = 4.61 \text{ ft}$$

OVERTURNING

 M_a causing overturning due to:upstream H_2O pressure = 13.83 k-ftuplift H_2O pressure = 14.63 k-ft

seismic effect on mass of dam = (.05W)(4.67 ft) + (.025W)(5.06 ft) = 2.12 + 1.15 = 3.27

seismic effect - water/dam = (0.30)(73)(0.05)(.0624 \times 11 \times 11 \times 11) = 0.91 k-ft

$$FS \text{ against overturning} = \frac{45.9}{(13.83 + 14.63 + 3.27 + 0.91)} = \frac{45.9}{32.64} = 1.41$$

Position of Resultant, R : $d = \frac{\Sigma M_a}{\Sigma V}$

$$= \frac{45.9 - 32.64}{6.33 - .025(4.67)} = 2.18 \text{ ft. from } a = 0.27 \text{ b}$$

(outside of the third)

In front of face

SLIDING

$$FS \text{ against sliding} = \frac{0.05(W - \text{uplift}) + Tb}{\text{lateral } H_2O \text{ pressure} + \text{horiz. seismic} + \text{water/dam effect}}$$

$$= \frac{119.3}{3.77 + (0.05 \times 9.07) + (73)(0.05 \times 0.0624 \times 11 \times 11 \times 7.3)} = \frac{119.3}{4.43} = 27 \pm$$

APPENDIX F

PREVIOUS INSPECTION REPORTS/AVAILABLE DOCUMENTS

DEC DAM INSPECTION REPORT

Superior Lake 6/115-1061

<input type="text"/> C3	<input type="text"/> 33	<input type="text"/> 24	<input type="text"/> 00862A	<input type="text"/> C51E73	<input type="text"/> C03	<input type="text"/> 4
RB	CTY	YR. AP.	DAM NO.	INS. DATE	USE	TYPE

AS BUILT INSPECTION Location of Spillway
and outlet Elevations Size of Spillway
and outlet Geometry of
Non-overflow sectionGENERAL CONDITION OF NON-OVERFLOW SECTION Settlement Cracks Deflections Joints Surface of
Concrete Leakage Undermining Settlement of
Embankment Crest of Dam Downstream
Slope Upstream
Slope Toe of
SlopeGENERAL CONDITION OF SPILLWAY AND OUTLET WORKS Auxiliary
Spillway Service or
Concrete Spillway Stilling
Basin Joints Surface of
Concrete Spillway
Toe Mechanical
Equipment Plunge
Pool Drain Maintenance A Hazard Class Evaluation S InspectorCOMMENTS:

FECTION REPORT / 115-11061

<input type="checkbox"/> 1	<input type="checkbox"/> 2	<input type="checkbox"/> 3	<input type="checkbox"/> 4	<input type="checkbox"/> 5	<input type="checkbox"/> 6	<input type="checkbox"/> 7	<input type="checkbox"/> 8	<input type="checkbox"/> 9	<input type="checkbox"/> 10	<input type="checkbox"/> 11	<input type="checkbox"/> 12	<input type="checkbox"/> 13	<input type="checkbox"/> 14	<input type="checkbox"/> 15	<input type="checkbox"/> 16	<input type="checkbox"/> 17	<input type="checkbox"/> 18	<input type="checkbox"/> 19	<input type="checkbox"/> 20	<input type="checkbox"/> 21	<input type="checkbox"/> 22	<input type="checkbox"/> 23	<input type="checkbox"/> 24	<input type="checkbox"/> 25	<input type="checkbox"/> 26	<input type="checkbox"/> 27	<input type="checkbox"/> 28	<input type="checkbox"/> 29	<input type="checkbox"/> 30	<input type="checkbox"/> 31	<input type="checkbox"/> 32	<input type="checkbox"/> 33	<input type="checkbox"/> 34	<input type="checkbox"/> 35	<input type="checkbox"/> 36	<input type="checkbox"/> 37	<input type="checkbox"/> 38	<input type="checkbox"/> 39	<input type="checkbox"/> 40	<input type="checkbox"/> 41	<input type="checkbox"/> 42	<input type="checkbox"/> 43	<input type="checkbox"/> 44	<input type="checkbox"/> 45	<input type="checkbox"/> 46	<input type="checkbox"/> 47	<input type="checkbox"/> 48	<input type="checkbox"/> 49	<input type="checkbox"/> 50	<input type="checkbox"/> 51	<input type="checkbox"/> 52	<input type="checkbox"/> 53	<input type="checkbox"/> 54	<input type="checkbox"/> 55	<input type="checkbox"/> 56	<input type="checkbox"/> 57	<input type="checkbox"/> 58	<input type="checkbox"/> 59	<input type="checkbox"/> 60	<input type="checkbox"/> 61	<input type="checkbox"/> 62	<input type="checkbox"/> 63	<input type="checkbox"/> 64	<input type="checkbox"/> 65	<input type="checkbox"/> 66	<input type="checkbox"/> 67	<input type="checkbox"/> 68	<input type="checkbox"/> 69	<input type="checkbox"/> 70	<input type="checkbox"/> 71	<input type="checkbox"/> 72	<input type="checkbox"/> 73	<input type="checkbox"/> 74	<input type="checkbox"/> 75	<input type="checkbox"/> 76	<input type="checkbox"/> 77	<input type="checkbox"/> 78	<input type="checkbox"/> 79	<input type="checkbox"/> 80	<input type="checkbox"/> 81	<input type="checkbox"/> 82	<input type="checkbox"/> 83	<input type="checkbox"/> 84	<input type="checkbox"/> 85	<input type="checkbox"/> 86	<input type="checkbox"/> 87	<input type="checkbox"/> 88	<input type="checkbox"/> 89	<input type="checkbox"/> 90	<input type="checkbox"/> 91	<input type="checkbox"/> 92	<input type="checkbox"/> 93	<input type="checkbox"/> 94	<input type="checkbox"/> 95	<input type="checkbox"/> 96	<input type="checkbox"/> 97	<input type="checkbox"/> 98	<input type="checkbox"/> 99	<input type="checkbox"/> 100	<input type="checkbox"/> 101	<input type="checkbox"/> 102	<input type="checkbox"/> 103	<input type="checkbox"/> 104	<input type="checkbox"/> 105	<input type="checkbox"/> 106	<input type="checkbox"/> 107	<input type="checkbox"/> 108	<input type="checkbox"/> 109	<input type="checkbox"/> 110	<input type="checkbox"/> 111	<input type="checkbox"/> 112	<input type="checkbox"/> 113	<input type="checkbox"/> 114	<input type="checkbox"/> 115	<input type="checkbox"/> 116	<input type="checkbox"/> 117	<input type="checkbox"/> 118	<input type="checkbox"/> 119	<input type="checkbox"/> 120	<input type="checkbox"/> 121	<input type="checkbox"/> 122	<input type="checkbox"/> 123	<input type="checkbox"/> 124	<input type="checkbox"/> 125	<input type="checkbox"/> 126	<input type="checkbox"/> 127	<input type="checkbox"/> 128	<input type="checkbox"/> 129	<input type="checkbox"/> 130	<input type="checkbox"/> 131	<input type="checkbox"/> 132	<input type="checkbox"/> 133	<input type="checkbox"/> 134	<input type="checkbox"/> 135	<input type="checkbox"/> 136	<input type="checkbox"/> 137	<input type="checkbox"/> 138	<input type="checkbox"/> 139	<input type="checkbox"/> 140	<input type="checkbox"/> 141	<input type="checkbox"/> 142	<input type="checkbox"/> 143	<input type="checkbox"/> 144	<input type="checkbox"/> 145	<input type="checkbox"/> 146	<input type="checkbox"/> 147	<input type="checkbox"/> 148	<input type="checkbox"/> 149	<input type="checkbox"/> 150	<input type="checkbox"/> 151	<input type="checkbox"/> 152	<input type="checkbox"/> 153	<input type="checkbox"/> 154	<input type="checkbox"/> 155	<input type="checkbox"/> 156	<input type="checkbox"/> 157	<input type="checkbox"/> 158	<input type="checkbox"/> 159	<input type="checkbox"/> 160	<input type="checkbox"/> 161	<input type="checkbox"/> 162	<input type="checkbox"/> 163	<input type="checkbox"/> 164	<input type="checkbox"/> 165	<input type="checkbox"/> 166	<input type="checkbox"/> 167	<input type="checkbox"/> 168	<input type="checkbox"/> 169	<input type="checkbox"/> 170	<input type="checkbox"/> 171	<input type="checkbox"/> 172	<input type="checkbox"/> 173	<input type="checkbox"/> 174	<input type="checkbox"/> 175	<input type="checkbox"/> 176	<input type="checkbox"/> 177	<input type="checkbox"/> 178	<input type="checkbox"/> 179	<input type="checkbox"/> 180	<input type="checkbox"/> 181	<input type="checkbox"/> 182	<input type="checkbox"/> 183	<input type="checkbox"/> 184	<input type="checkbox"/> 185	<input type="checkbox"/> 186	<input type="checkbox"/> 187	<input type="checkbox"/> 188	<input type="checkbox"/> 189	<input type="checkbox"/> 190	<input type="checkbox"/> 191	<input type="checkbox"/> 192	<input type="checkbox"/> 193	<input type="checkbox"/> 194	<input type="checkbox"/> 195	<input type="checkbox"/> 196	<input type="checkbox"/> 197	<input type="checkbox"/> 198	<input type="checkbox"/> 199	<input type="checkbox"/> 200	<input type="checkbox"/> 201	<input type="checkbox"/> 202	<input type="checkbox"/> 203	<input type="checkbox"/> 204	<input type="checkbox"/> 205	<input type="checkbox"/> 206	<input type="checkbox"/> 207	<input type="checkbox"/> 208	<input type="checkbox"/> 209	<input type="checkbox"/> 210	<input type="checkbox"/> 211	<input type="checkbox"/> 212	<input type="checkbox"/> 213	<input type="checkbox"/> 214	<input type="checkbox"/> 215	<input type="checkbox"/> 216	<input type="checkbox"/> 217	<input type="checkbox"/> 218	<input type="checkbox"/> 219	<input type="checkbox"/> 220	<input type="checkbox"/> 221	<input type="checkbox"/> 222	<input type="checkbox"/> 223	<input type="checkbox"/> 224	<input type="checkbox"/> 225	<input type="checkbox"/> 226	<input type="checkbox"/> 227	<input type="checkbox"/> 228	<input type="checkbox"/> 229	<input type="checkbox"/> 230	<input type="checkbox"/> 231	<input type="checkbox"/> 232	<input type="checkbox"/> 233	<input type="checkbox"/> 234	<input type="checkbox"/> 235	<input type="checkbox"/> 236	<input type="checkbox"/> 237	<input type="checkbox"/> 238	<input type="checkbox"/> 239	<input type="checkbox"/> 240	<input type="checkbox"/> 241	<input type="checkbox"/> 242	<input type="checkbox"/> 243	<input type="checkbox"/> 244	<input type="checkbox"/> 245	<input type="checkbox"/> 246	<input type="checkbox"/> 247	<input type="checkbox"/> 248	<input type="checkbox"/> 249	<input type="checkbox"/> 250	<input type="checkbox"/> 251	<input type="checkbox"/> 252	<input type="checkbox"/> 253	<input type="checkbox"/> 254	<input type="checkbox"/> 255	<input type="checkbox"/> 256	<input type="checkbox"/> 257	<input type="checkbox"/> 258	<input type="checkbox"/> 259	<input type="checkbox"/> 260	<input type="checkbox"/> 261	<input type="checkbox"/> 262	<input type="checkbox"/> 263	<input type="checkbox"/> 264	<input type="checkbox"/> 265	<input type="checkbox"/> 266	<input type="checkbox"/> 267	<input type="checkbox"/> 268	<input type="checkbox"/> 269	<input type="checkbox"/> 270	<input type="checkbox"/> 271	<input type="checkbox"/> 272	<input type="checkbox"/> 273	<input type="checkbox"/> 274	<input type="checkbox"/> 275	<input type="checkbox"/> 276	<input type="checkbox"/> 277	<input type="checkbox"/> 278	<input type="checkbox"/> 279	<input type="checkbox"/> 280	<input type="checkbox"/> 281	<input type="checkbox"/> 282	<input type="checkbox"/> 283	<input type="checkbox"/> 284	<input type="checkbox"/> 285	<input type="checkbox"/> 286	<input type="checkbox"/> 287	<input type="checkbox"/> 288	<input type="checkbox"/> 289	<input type="checkbox"/> 290	<input type="checkbox"/> 291	<input type="checkbox"/> 292	<input type="checkbox"/> 293	<input type="checkbox"/> 294	<input type="checkbox"/> 295	<input type="checkbox"/> 296	<input type="checkbox"/> 297	<input type="checkbox"/> 298	<input type="checkbox"/> 299	<input type="checkbox"/> 300	<input type="checkbox"/> 301	<input type="checkbox"/> 302	<input type="checkbox"/> 303	<input type="checkbox"/> 304	<input type="checkbox"/> 305	<input type="checkbox"/> 306	<input type="checkbox"/> 307	<input type="checkbox"/> 308	<input type="checkbox"/> 309	<input type="checkbox"/> 310	<input type="checkbox"/> 311	<input type="checkbox"/> 312	<input type="checkbox"/> 313	<input type="checkbox"/> 314	<input type="checkbox"/> 315	<input type="checkbox"/> 316	<input type="checkbox"/> 317	<input type="checkbox"/> 318	<input type="checkbox"/> 319	<input type="checkbox"/> 320	<input type="checkbox"/> 321	<input type="checkbox"/> 322	<input type="checkbox"/> 323	<input type="checkbox"/> 324	<input type="checkbox"/> 325	<input type="checkbox"/> 326	<input type="checkbox"/> 327	<input type="checkbox"/> 328	<input type="checkbox"/> 329	<input type="checkbox"/> 330	<input type="checkbox"/> 331	<input type="checkbox"/> 332	<input type="checkbox"/> 333	<input type="checkbox"/> 334	<input type="checkbox"/> 335	<input type="checkbox"/> 336	<input type="checkbox"/> 337	<input type="checkbox"/> 338	<input type="checkbox"/> 339	<input type="checkbox"/> 340	<input type="checkbox"/> 341	<input type="checkbox"/> 342	<input type="checkbox"/> 343	<input type="checkbox"/> 344	<input type="checkbox"/> 345	<input type="checkbox"/> 346	<input type="checkbox"/> 347	<input type="checkbox"/> 348	<input type="checkbox"/> 349	<input type="checkbox"/> 350	<input type="checkbox"/> 351	<input type="checkbox"/> 352	<input type="checkbox"/> 353	<input type="checkbox"/> 354	<input type="checkbox"/> 355	<input type="checkbox"/> 356	<input type="checkbox"/> 357	<input type="checkbox"/> 358	<input type="checkbox"/> 359	<input type="checkbox"/> 360	<input type="checkbox"/> 361	<input type="checkbox"/> 362	<input type="checkbox"/> 363	<input type="checkbox"/> 364	<input type="checkbox"/> 365	<input type="checkbox"/> 366	<input type="checkbox"/> 367	<input type="checkbox"/> 368	<input type="checkbox"/> 369	<input type="checkbox"/> 370	<input type="checkbox"/> 371	<input type="checkbox"/> 372	<input type="checkbox"/> 373	<input type="checkbox"/> 374	<input type="checkbox"/> 375	<input type="checkbox"/> 376	<input type="checkbox"/> 377	<input type="checkbox"/> 378	<input type="checkbox"/> 379	<input type="checkbox"/> 380	<input type="checkbox"/> 381	<input type="checkbox"/> 382	<input type="checkbox"/> 383	<input type="checkbox"/> 384	<input type="checkbox"/> 385	<input type="checkbox"/> 386	<input type="checkbox"/> 387	<input type="checkbox"/> 388	<input type="checkbox"/> 389	<input type="checkbox"/> 390	<input type="checkbox"/> 391	<input type="checkbox"/> 392	<input type="checkbox"/> 393	<input type="checkbox"/> 394	<input type="checkbox"/> 395	<input type="checkbox"/> 396	<input type="checkbox"/> 397	<input type="checkbox"/> 398	<input type="checkbox"/> 399	<input type="checkbox"/> 400	<input type="checkbox"/> 401	<input type="checkbox"/> 402	<input type="checkbox"/> 403	<input type="checkbox"/> 404	<input type="checkbox"/> 405	<input type="checkbox"/> 406	<input type="checkbox"/> 407	<input type="checkbox"/> 408	<input type="checkbox"/> 409	<input type="checkbox"/> 410	<input type="checkbox"/> 411	<input type="checkbox"/> 412	<input type="checkbox"/> 413	<input type="checkbox"/> 414	<input type="checkbox"/> 415	<input type="checkbox"/> 416	<input type="checkbox"/> 417	<input type="checkbox"/> 418	<input type="checkbox"/> 419	<input type="checkbox"/> 420	<input type="checkbox"/> 421	<input type="checkbox"/> 422	<input type="checkbox"/> 423	<input type="checkbox"/> 424	<input type="checkbox"/> 425	<input type="checkbox"/> 426	<input type="checkbox"/> 427	<input type="checkbox"/> 428	<input type="checkbox"/> 429	<input type="checkbox"/> 430	<input type="checkbox"/> 431	<input type="checkbox"/> 432	<input type="checkbox"/> 433	<input type="checkbox"/> 434	<input type="checkbox"/> 435	<input type="checkbox"/> 436	<input type="checkbox"/> 437	<input type="checkbox"/> 438	<input type="checkbox"/> 439	<input type="checkbox"/> 440	<input type="checkbox"/> 441	<input type="checkbox"/> 442	<input type="checkbox"/> 443	<input type="checkbox"/> 444	<input type="checkbox"/> 445	<input type="checkbox"/> 446	<input type="checkbox"/> 447	<input type="checkbox"/> 448	<input type="checkbox"/> 449	<input type="checkbox"/> 450	<input type="checkbox"/> 451	<input type="checkbox"/> 452	<input type="checkbox"/> 453	<input type="checkbox"/> 454	<input type="checkbox"/> 455	<input type="checkbox"/> 456	<input type="checkbox"/> 457	<input type="checkbox"/> 458	<input type="checkbox"/> 459	<input type="checkbox"/> 460	<input type="checkbox"/> 461	<input type="checkbox"/> 462	<input type="checkbox"/> 463	<input type="checkbox"/> 464	<input type="checkbox"/> 465	<input type="checkbox"/> 466	<input type="checkbox"/> 467	<input type="checkbox"/> 468	<input type="checkbox"/> 469	<input type="checkbox"/> 470	<input type="checkbox"/> 471	<input type="checkbox"/> 472	<input type="checkbox"/> 473	<input type="checkbox"/> 474	<input type="checkbox"/> 475	<input type="checkbox"/> 476	<input type="checkbox"/> 477	<input type="checkbox"/> 478	<input type="checkbox"/> 479	<input type="checkbox"/> 480	<input type="checkbox"/> 481	<input type="checkbox"/> 482	<input type="checkbox"/> 483	<input type="checkbox"/> 484	<input type="checkbox"/> 485	<input type="checkbox"/> 486	<input type="checkbox"/> 487	<input type="checkbox"/> 488	<input type="checkbox"/> 489	<input type="checkbox"/> 490	<input type="checkbox"/> 491	<input type="checkbox"/> 492	<input type="checkbox"/> 493	<input type="checkbox"/> 494	<input type="checkbox"/> 495	<input type="checkbox"/> 496	<input type="checkbox"/> 497	<input type="checkbox"/> 498	<input type="checkbox"/> 499	<input type="checkbox"/> 500	<input type="checkbox"/> 501	<input type="checkbox"/> 502	<input type="checkbox"/> 503	<input type="checkbox"/> 504	<input type="checkbox"/> 505	<input type="checkbox"/> 506	<input type="checkbox"/> 507	<input type="checkbox"/> 508	<input type="checkbox"/> 509	<input type="checkbox"/> 510	<input type="checkbox"/> 511	<input type="checkbox"/> 512	<input type="checkbox"/> 513	<input type="checkbox"/> 514	<input type="checkbox"/> 515	<input type="checkbox"/> 516	<input type="checkbox"/> 517	<input type="checkbox"/> 518	<input type="checkbox"/> 519	<input type="checkbox"/> 520	<input type="checkbox"/> 521	<input type="checkbox"/> 522	<input type="checkbox"/> 523	<input type="checkbox"/> 524	<input type="checkbox"/> 525	<input type="checkbox"/> 526	<input type="checkbox"/> 527	<input type="checkbox"/> 528	<input type="checkbox"/> 529	<input type="checkbox"/> 530	<input type="checkbox"/> 531	<input type="checkbox"/> 532	<input type="checkbox"/> 533	<input type="checkbox"/> 534	<input type="checkbox"/> 535	<input type="checkbox"/> 536	<input type="checkbox"/> 537	<input type="checkbox"/> 538	<input type="checkbox"/> 539	<input type="checkbox"/> 540	<input type="checkbox"/> 541	<input type="checkbox"/> 542	<input type="checkbox"/> 543	<input type="checkbox"/> 544	<input type="checkbox"/> 545	<input type="checkbox"/> 546	<input type="checkbox"/> 547	<input type="checkbox"/> 548	<input type="checkbox"/> 549	<input type="checkbox"/> 550	<input type="checkbox"/> 551	<input type="checkbox"/> 552	<input type="checkbox"/> 553	<input type="checkbox"/> 554	<input type="checkbox"/> 555	<input type="checkbox"/> 556	<input type="checkbox"/> 557	<input type="checkbox"/> 558	<input type="checkbox"/> 559	<input type="checkbox"/> 560	<input type="checkbox"/> 561	<input type="checkbox"/> 562	<input type="checkbox"/> 563	<input type="checkbox"/> 564	<input type="checkbox"/> 565	<input type="checkbox"/> 566	<input type="checkbox"/> 567	<input type="checkbox"/> 568	<input type="checkbox"/> 569	<input type="checkbox"/> 570	<input type="checkbox"/> 571	<input type="checkbox"/> 572	<input type="checkbox"/> 573	<input type="checkbox"/> 574	<input type="checkbox"/> 575	<input type="checkbox"/> 576	<input type="checkbox"/> 577	<input type="checkbox"/> 578	<input type="checkbox"/> 579	<input type="checkbox"/> 580	<input type="checkbox"/> 581	<input type="checkbox"/> 582	<input type="checkbox"/> 583	<input type="checkbox"/> 584	<input type="checkbox"/> 585	<input type="checkbox"/> 586	<input type="checkbox"/> 587	<input type="checkbox"/> 588	<input type="checkbox"/> 589	<input type="checkbox"/> 590	<input type="checkbox"/> 591	<input type="checkbox"/> 592	<input type="checkbox"/> 593	<input type="checkbox"/> 594	<input type="checkbox"/> 595	<input type="checkbox"/> 596	<input type="checkbox"/> 597	<input type="checkbox"/> 598	<input type="checkbox"/> 599	<input type="checkbox"/> 600	<input type="checkbox"/> 601	<input type="checkbox"/> 602	<input type="checkbox"/> 603	<input type="checkbox"/> 604	<input type="checkbox"/> 605	<input type="checkbox"/> 606	<input type="checkbox"/> 607	<input type="checkbox"/> 608	<input type="checkbox"/> 609	<input type="checkbox"/> 610	<input type="checkbox"/> 611	<input type="checkbox"/> 612	<input type="checkbox"/> 613	<input type="checkbox"/> 614	<input type="checkbox"/> 615	<input type="checkbox"/> 616	<input type="checkbox"/> 617	<input type="checkbox"/> 618	<input type="checkbox"/> 619	<input type="checkbox"/> 620	<input type="checkbox"/> 621	<input type="checkbox"/> 622	<input type="checkbox"/> 623	<input type="checkbox"/> 624	<input type="checkbox"/> 625	<input type="checkbox"/> 626	<input type="checkbox"/> 627	<input type="checkbox"/> 628	<input type="checkbox"/> 629	<input type="checkbox"/> 630	<input type="checkbox"/> 631	<input type="checkbox"/> 632	<input type="checkbox"/> 633	<input type="checkbox"/> 634	<input type="checkbox"/> 635	<input type="checkbox"/> 636	<input type="checkbox"/> 637	<input type="checkbox"/> 638	<input type="checkbox"/> 639	<input type="checkbox"/> 640	<input type="checkbox"/> 641	<input type="checkbox"/> 642	<input type="checkbox"/> 643	<input type="checkbox"/> 644	<input type="checkbox"/> 645	<input type="checkbox"/> 646	<input type="checkbox"/> 647	<input type="checkbox"/> 648	<input type="checkbox"/> 649	<input type="checkbox"/> 650	<input type="checkbox"/> 651	<input type="checkbox"/> 652	<input type="checkbox"/> 653	<input type="checkbox"/> 654	<input type="checkbox"/> 655	<input type="checkbox"/> 656	<input type="checkbox"/> 657	<input type="checkbox"/> 658	<input type="checkbox"/> 659	<input type="checkbox"/> 660	<input type="checkbox"/> 661	<input type="checkbox"/> 662	<input type="checkbox"/> 663	<input type="checkbox"/> 664	<input type="checkbox"/> 665	<input type="checkbox"/> 666	<input type="checkbox"/> 667	<input type="checkbox"/> 668	<input type="checkbox"/> 669	<input type="checkbox"/> 670	<input type="checkbox"/> 671	<input type="checkbox"/> 672	<input type="checkbox"/> 673	<input type="checkbox"/> 674	<input type="checkbox"/> 675	<input type="checkbox"/> 676	<input type="checkbox"/> 677	<input type="checkbox"/> 678	<input type="checkbox"/> 679	<input type="checkbox"/> 680	<input type="checkbox"/> 681	<input type="checkbox"/> 682	<input type="checkbox"/> 683	<input type="checkbox"/> 684	<input type="checkbox"/> 685	<input type="checkbox"/> 686	<input type="checkbox"/> 687	<input type="checkbox"/> 688	<input type="checkbox"/> 689	<input type="checkbox"/> 690	<input type="checkbox"/> 691	<input type="checkbox"/> 692	<input type="checkbox"/> 693	<input type="checkbox"/> 694	<input type="checkbox"/> 695	<input type="checkbox"/> 696	<input type="checkbox"/> 697	<input type="checkbox"/> 698	<input type="checkbox"/> 699	<input type="checkbox"/> 700	<input type="checkbox"/> 701	<input type="checkbox"/> 702	<input type="checkbox"/> 703	<input type="checkbox"/> 704	<input type="checkbox"/> 705	<input type="checkbox"/> 706	<input type="checkbox"/> 707	<input type="checkbox"/> 708	<input type="checkbox"/> 709	<input type="checkbox"/> 710	<input type="checkbox"/> 711	<input type="checkbox"/> 712	<input type="checkbox"/> 713	<input type="checkbox"/> 714	<input type="checkbox"/> 715	<input type="checkbox"/> 716	<input type="checkbox"/> 717	<input type="checkbox"/> 718	<input type="checkbox"/> 719	<input type="checkbox"/> 720	<input type="checkbox"/> 721	<input type="checkbox"/> 722	<input type="checkbox"/> 723	<input type="checkbox"/> 724	<input type="checkbox"/> 725	<input type="checkbox"/> 726	<input type="checkbox"/> 727	<input type="checkbox"/> 728	<input type="checkbox"/> 729	<input type="checkbox"/> 730	<input type="checkbox"/> 731	<input type="checkbox"/> 732	<input type="checkbox"/> 733	<input type="checkbox"/> 734	<input type="checkbox"/> 735	<input type="checkbox"/> 736	<input type="checkbox"/> 737	<input type="checkbox"/> 738	<input type="checkbox"/> 739	<input type="checkbox"/> 740	<input type="checkbox"/> 741	<input type="checkbox"/> 742	<input type="checkbox"/> 743	<input type="checkbox"/> 744	<input type="checkbox"/> 745	<input type="checkbox"/> 746	<input type="checkbox"/> 747	<input type="checkbox"/> 748	<input type="checkbox"/> 749	<input type="checkbox"/> 750	<input type="checkbox"/> 751	<input type="checkbox"/> 752	<input type="checkbox"/> 753	<input type="checkbox"/> 754	<input type="checkbox"/> 755	<input type="checkbox"/> 756	<input type="checkbox"/> 757	<input type="checkbox"/> 758	<input type="checkbox"/> 759	<input type="checkbox"/> 760	<input type="checkbox"/> 761	<input type="checkbox"/> 762	<input type="checkbox"/> 763	<input type="checkbox"/> 764	<input type="checkbox"/> 765	<input type="checkbox"/> 766	<input type="checkbox"/> 767	<input type="checkbox"/> 768	<input type="checkbox"/> 769	<input type="checkbox"/> 770	<input type="checkbox"/> 771	<input type="checkbox"/> 772	<input type="checkbox"/> 773	<input type="checkbox"/> 774	<input type="checkbox"/> 775	<input type="checkbox"/> 776	<input type="checkbox"/> 777	<input type="checkbox"/> 778	<input type="checkbox"/> 779	<input type="checkbox"/> 780	<input type="checkbox"/> 781	<input type="checkbox"/> 782	<input type="checkbox"/> 783	<input type="checkbox"/> 784	<input type="checkbox"/> 785	<input type="checkbox"/> 786	<input type="checkbox"/> 787	<input type="checkbox"/> 788	<input type="checkbox"/> 789	<input type="checkbox"/> 790	<input type="checkbox"/> 791	<input type="checkbox"/> 792	<input type="checkbox"/> 793	<input type="checkbox"/> 794	<input type="checkbox"/> 795	<input type="checkbox"/> 796	<input type="checkbox"/> 797	<input type="checkbox"/> 798	<input type="checkbox"/> 799	<input type="checkbox"/> 800	<input type="checkbox"/> 801	<input type="checkbox"/> 802	<input type="checkbox"/> 803	<input type="checkbox"/> 804	<input type="checkbox"/> 805	<input type="checkbox"/> 806	<input type="checkbox"/> 807	<input type="checkbox"/> 808	<input type="checkbox"/> 809	<input type="checkbox"/> 810	<input type
----------------------------	----------------------------	----------------------------	----------------------------	----------------------------	----------------------------	----------------------------	----------------------------	----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	-----------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	------------------------------	-------------

75° 25.0
43 02.2

~~1/2(138)(430)~~
$$V = \frac{1}{2}(138)(430)(32) = 3516\text{ ft}^3$$

EVALUATION REPORT - C. C. A. R. I. V. A. S.

INS.	DATE	USE	TYPE
1	2/16/24	1	12

Elevations

Geometry of
Non-overflow section

CONDITION

- Settlement
 Joints
 Undermining

- Cracks
 Surface of
Concrete
 Embankment

- Upstream
Slope
 Downstream
Slope

Deflections

Leakage

Crest of Dam
 Toe of
Slope

GENERAL CONDITION OF SPILLWAY AND OUTLET WORKS

- Auxiliary
Spillway
 Joints
 Mechanical
Equipment

- Service or
Concrete Spillway
 Surface of
Concrete
 Plunge
Pool

- Stilling
Basin
 Spillway
Toe
 Drain

- Maintenance
 Evaluation

- Hazard Class
 Inspector

DEC DAM INSPECTION REPORT

CLINTON KCS.

<input checked="" type="checkbox"/> 03	<input checked="" type="checkbox"/> 33	<input checked="" type="checkbox"/> 24	<input checked="" type="checkbox"/> 0000	1061	<input checked="" type="checkbox"/> 12/16/71	<input checked="" type="checkbox"/> 0P3	<input checked="" type="checkbox"/> 2
RB	CTY	YR. AP.	DAM NO.		INS. DATE	USE	TYPE

AS BUILT INSPECTION Location of Spillway and outlet Elevations Size of Spillway and outlet Geometry of Non-overflow sectionGENERAL CONDITION OF NON-OVERFLOW SECTION Settlement Cracks Deflections Joints Surface of Concrete Leakage Undermining Settlement of Embankment Crest of Dam Downstream Slope Upstream Slope Toe of SlopeGENERAL CONDITION OF SPILLWAY AND OUTLET WORKS Auxiliary Spillway Service or Concrete Spillway Stilling Basin Joints Surface of Concrete Spillway Toe Mechanical Equipment Plunge Pool Drain Maintenance Hazard Class Evaluation InspectorCOMMENTS:

BUILT ~~CONTRACTED~~ IN CONFORMANCE WITH PLANS
 AND Specs FOR OPEN ~~STRUCTURE~~, ~~CONSTRUCTION~~
~~CONTRACTED~~

August 3, 1936.

MEMORANDUM

On July 29, 1936, in company with Mr. William Robinson, I inspected the water supply dam being reconstructed for the Village of Clinton.

The corewall was nearing completion and appeared to be of good quality. The embankment was well placed but was composed principally of clay and would have been better to have had sand and gravel mixed with it. The conditions at the spillway end of the dam were somewhat different than the plans show in the following regard: The plans show abutment wall extending to the toe of the embankment and the apron below the dam also extending to the toe of the embankment. The way the dam is being constructed, both the abutment wall and apron will fall short of extending to the toe of the embankment. The attention of the foreman in charge was drawn to this matter and it was agreed to by him that both the wall and apron would be carried to the toe of the earth embankment wherever the latter might finally be located.

JOHN P. NEWTON
Senior Civil Engineer.

JPN:R

STATE OF NEW YORK

DEPARTMENT OF PUBLIC WORKS

DIVISION OF ENGINEERING

ALBANY

Received Dec. 4, 1935
Disposition Dec. 4, 1935
Foundation inspected.....
Structure inspected.....

Dam No. 115-1061
Watershed Mohawk

Application for the Construction or Reconstruction of a Dam

Application is hereby made to the Superintendent of Public Works, Albany, N. Y., in compliance with the provisions of Section 948 of the Conservation Law (see last page of this application) for the approval of specifications and detailed drawings, marked

WATER SUPPLY
CLINTON, N.Y.

herewith submitted for the { construction } of a dam herein described. All provisions of law will be complied with in the erection of the proposed dam. It is intended to complete the work covered by the application about

APRIL 1, 36
(Date)

1. The dam will be on SMALL TRIBUTARY flowing into ORISKANY CR. in the town of KIRKLAND, County of ONEIDA and 1 MILE S.W. OF HAMILTON COLLEGE
(give exact distance and direction from a well-known bridge, dam, village main cross-roads or mouth of a stream)

2. Location of dam is shown on the ORISKANY quadrangle of the United States Geological Survey.

3. The name of the owner is VILLAGE OF CLINTON
4. The address of the owner is CLINTON, N.Y.
5. The dam will be used for WATER SUPPLY PURPOSES
6. Will any part of the dam be built upon or its pond flood any State lands? No
7. The watershed above the proposed dam is FLOOD FLOW FROM ABOUT 1/3 0 MILE square miles
8. The proposed dam will create a pond area at the spillcrest elevation of 34 acres
and will impound ABOUT 2,500,000 cubic feet of water.

The maximum height of the proposed dam above the bed of the stream is 32 feet _____ inches.

10. The lowest part of the natural shore of the pond is _____ feet vertically above the spillcrest, and everywhere else the shore will be at least _____ feet above the spillcrest.

11. State if any damage to life or to any buildings, roads or other property could be caused by any possible failure of the proposed dam.

DAMAGE To PROPERTY

AND POSSIBLE LOSS OF LIFE

12. The natural material of the bed on which the proposed dam will rest is (clay, sand, gravel, boulders, granite, shale, slate, limestone, etc.)

13. Facing down stream, what is the nature of material composing the right bank? ~~BS~~ CLAY

14. Facing down stream, what is the nature of the material composing the left bank? CLAY

15. State the character of the bed and the banks in respect to the hardness, perviousness, water bearing, effect of exposure to air and to water, uniformity, etc.

16. Are there any porous seams or fissures beneath the foundation of the proposed dam? HORSER BONE
ON ONE END PENETRATED BY PUDDE CORE

17. WASTES. The spillway of the above proposed dam will be 20 feet long in the clear; the waters will be held at the right end by an ABUTMENT the top of which will be _____ feet above the spillcrest, and have a top width of _____ feet; and at the left end by an ABUT MENT the top of which will be _____ feet above the spillcrest, and have a top width of _____ feet.

18. The spillway is designed to safely discharge 250 cubic feet per second.

19. Pipes, sluice gates, etc., for flood discharge will be provided through the dam as follows:

20. What is the maximum height of flash boards which will be used on this dam?

21. APRON. Below the proposed dam there will be an apron built of CONCRETE feet long across the stream, _____ feet wide and _____ feet thick.

22. Does this dam constitute any part of a public water supply? YES

INSTRUCTIONS

Read carefully on the last page of this application the law setting forth the requirements to be complied with in order to construct or reconstruct a dam.

Each application for the construction or reconstruction of a dam must be made on this standard form, copies of which will be furnished upon request to the Chief Engineer, Division of Engineering, Department of Public Works, Albany, N. Y. The application must be accompanied by three sets of plans, and specifications. The information furnished must be in sufficient detail in order that the stability and safety of the dam can be determined. In cases of large and important dams assumptions made in calculating stresses and stability should be given.

Samples of materials to be used in the dam and of the material on which the dam is to be founded may be asked for, but need not be furnished unless requested.

If the dam constitutes a part of a public water supply, application should be made to the Water Power and Control Commission under Article XI of the Conservation Law.

An application for the construction or reconstruction of a dam must be signed by the prospective owner of the dam or his duly authorized agent. The address of the signer and the date must be given as provided for on the last page of the application form.

SECTION 948 OF THE CONSERVATION LAW

§ 948. Structures for impounding water; inspection of docks; penalties. No structure for impounding water and no dock, pier, wharf or other structure used as a landing place on waters shall be erected or reconstructed by any public authority or by any private person or corporation without notice to the superintendent of public works, nor shall any such structure be erected, reconstructed or maintained without complying with such conditions as the superintendent of public works may by order prescribe for safeguarding life or property against danger therefrom. No order made by the superintendent of public works shall be deemed to authorize any invasion of any property rights, public or private, by any person in carrying out the requirements of such order. The superintendent of public works shall have power, whenever in his judgment public safety shall so require, to make and serve an order directing any person, corporation, officer or board, constructing, maintaining, or using any structure hereinbefore referred to, remove, repair or reconstruct the same within such reasonable time and in such manner as shall be specified in such order, and it shall be the duty of every such person, corporation, officer or board, to obey, observe and comply with such order and with the conditions prescribed by the superintendent of public works for safeguarding life or property against danger therefrom, and every person, corporation, officer or board failing, omitting or neglecting so to do, or who hereafter erects or reconstructs any such structure hereinbefore referred to without submitting to the superintendent of public works and obtaining his approval of plans and specifications for such structures when required so to do by his order or who hereafter fails to remove, erect or to reconstruct the same in accordance with the plans and specifications so approved shall forfeit to the people of this state a sum not to exceed five hundred dollars to be fixed by the court for each and every offense; every violation of any such order shall be a separate and distinct offense, and, in case of a continuing violation, every day's continuance thereof shall be and be deemed to be a separate and distinct offense. This section shall not apply to a dam where the area draining into the pond formed thereby does not exceed one square mile, unless the dam is more than ten feet in height above the natural bed of the stream at any point or unless the quantity of water which the dam impounds exceeds one million gallons; nor to a dock, pier, wharf or other structure under the jurisdiction of the department of docks, if any, in a city of over one hundred and seventy-five thousand population. This section as hereby amended shall not impair the effect of an order heretofore made by the conservation commission or commissioner under this section prior to the taking effect of chapter four hundred and ninety-nine of the laws of nineteen hundred and twenty-one, nor require the approval by the superintendent of public works of plans and specifications heretofore approved by such commission or commissioner under this section.

The foregoing information and accompanying plans and specifications are correct to the best of my knowledge and belief.

..... Owner
By..... *James P. Wells* authorized agent of owner.
Address of signer..... 42 EAST AVE Date DEC 3, '35
ROCHESTER, N.Y.

WATER SUPPLY APPLICATION NO. 500

STATE OF NEW YORK
DEPARTMENT OF

State Engineer and Surveyor

ALBANY

OFFICE ST. 11, ALBANY

Received

Feb 25th 1924

Dam No. 862 Mohawk Watershed

Disposition

Withdrew April 8-1924

Serial No. 5527 New York

Site inspected

Foundation inspected

Structure inspected

NOTE:

This dam not built at original location. Final location west of Franklin Springs. Dam No. 862 A

of a Dam 12-14-71

Application for the Construction

Application is hereby made to the State Engineer, Albany, N. Y., in compliance with the provisions of Chapter LXV of the Consolidated Laws and Chapter 647, Laws of 1911, Section 22 as amended, for the approval of specifications and detailed plans, marked **Proposed White Creek Water Supply for Clinton, N.Y.**

herewith submitted for the **construction** of a dam located as stated below. All provisions of law will be complied with in the erection of the proposed dam.

1. The dam will be on **White Creek** branch of in the town of **Kirkland**, County of **Oneida, N.Y.**

and **about 3 miles southerly of the village of Clinton, N.Y.**
(Give exact distance and direction from a well-known bridge, dam, village, main cross-roads or mouth of a stream)

2. The name and address of the owner is **Village of Clinton, N.Y., W.E. Brockway, Clerk.**

3. The dam will be used for **impounding water for said village**

4. Will any part of the dam be built upon or its pond flood any State lands? **No**

5. The watershed at the proposed dam draining into the pond to be formed thereby is **about 3 1/2 Sq miles** square miles.

6. The proposed dam will have a pond area at the spillcrest elevation of **about 5,3/4** acres and will impound **20,000,000 Gals** **1414** feet of water.

7. The lowest part of the natural shore of the pond is **15 to 20** feet vertically above the spillcrest, and everywhere else the shore will be at least **20** feet above the spillcrest.

8. The maximum known flow of the stream at the dam site was **2** cubic feet per second on **Cot. 5-1920**

9. State if any damage to life or to any buildings, roads or other property could be caused by any possible failure of the proposed dam. **No**

10. The natural material of the bed on which the proposed dam will rest is **clay, sand, gravel, boulders, sandy shale, slate, limestone, etc.** The shale formation, as developed by test pits, lays at an average of about 4 to 5 feet below the top soil of sand, gravel, etc.

and shale

11. The material of the right bank, in the direction with the current, is ~~earth~~ above the spillcrest elevation this material has a top slope of 6 inches vertical to a foot horizontal on the center line of the dam, a vertical thickness at this elevation of feet, and the top surface extends for a vertical height of feet above the spillcrest.

12. The material of the left bank is ~~as above~~; has a top slope of inches to a foot horizontal, a thickness of feet, and a height of feet.

13. State the character of the bed and the banks in respect to the hardness, perviousness, water bearing, effect of exposure to air and to water, uniformity, etc. **good**.

14. If the bed is in layers, are the layers horizontal or inclined? **horizontal**. If inclined what is the direction of the slope relative to the center line of the dam and the inches vertical to a foot horizontal?

15. What is the thickness of the layers? **Earth, about 4 to 5 feet, Shale, unknown; see yet discovered**

16. Are there any porous seams or fissures?

17. WASTES. The spillway of the above proposed dam will be 85 feet long in the clear; the waters will be held at the right end by a the top of which will be feet above the spillcrest, and have a top width of feet; and at the left end by a the top of which will be feet above the spillcrest, and have a top width of feet.

18. There will be also for flood discharge a pipe 16 inches in diameter and the bottom will be feet below the spillcrest, a sluice or gate feet wide in the clear by feet high, and the bottom will be feet below the spillcrest.

19. APRON. Below the proposed dam there will be an apron built of feet long, feet wide and feet thick. The downstream side of the apron will have a thickness of feet for a width of feet.

20. PLANS. Each application for a permit of a dam over 12 feet in height must be accompanied by a location map and complete working drawings of the proposed structure. Each drawing should have a title giving the parts shown, the name of the town and county in which the dam site is located, and the name of the owner and of the engineer.

The location map (U. S. Geological Quadrangle or other map) should show the exact location of the proposed dam; of buildings below the dam which might be damaged by any failure of the dam; of roads adjacent to or crossing the stream below the dam, giving the lowest elevation of the roadway above the stream bed and giving the shape, the height and the width of stream openings; and of any embankments or steep slopes that any flood could pass over. Also indicate the character and use made of the ground.

The complete working drawings should give all the dimensions necessary for the calculations of the stability of the structure, and all the information asked for below under "Sketches." There may be attached to the plans any written reports, calculations, investigations or opinions that may aid in showing the data and method used by the designer.

21. SKETCHES. For small and unimportant structures, if plans have not been made, on the back sheet of this application make a sketch to scale for each different cross-section at the highest point; showing the height and the depth from the surface of the foundation, the bottom width, the top width (for a concrete or masonry spill at 18 inches below the crest), the elevation of the top in reference to the spillcrest, the length of the section, and the material of which the section is to be constructed. Mark each section with a capital letter. Also sketch a plan; show the above sections by their top lines, giving the mark and the length of each; the openings by their horizontal dimensions; and the abutments by their top width and top lengths from the upstream face of the spillcrest and give the elevation of the top in reference to the spillcrest.

22. ELEVATIONS. Also give the elevations, if possible from the Mean Sea Level, of at least two permanent Bench Marks; of the spillcrest for any existing dam on the proposed dam site, at the middle and at both ends of the spill; and of the spillcrest for the above proposed dam.

23. SAMPLES. When so instructed, send samples of the materials to be used in the construction of the proposed dam, using shipping tags which will be furnished. For sand one-half a cubic foot is desired; for cement, three pints; and for the natural bed, twenty cubic inches.

24. INSPECTION. State how inspection is to be provided for during construction by the Engineer in charge or by an experienced Inspector in his employ.

W G. Stene, C.E.
Mann Building,
Utica, N.Y.

and the first half of the 19th century, the British Empire was the dominant power in the world, and its influence extended far beyond its borders.

• [View Details](#) • [Edit](#) • [Delete](#) • [Print](#)

For more information about the study, please contact Dr. Michael J. Koenig at (314) 747-2100 or via email at koenig@dfci.harvard.edu.

Digitized by srujanika@gmail.com

Yale University Press
New Haven and London

Digitized by srujanika@gmail.com

The above information is correct to the best of my knowledge and belief.

—June 8th, 1862. —

(Handwritten notes)

(Date) _____
(A person signing for Applicant should indicate his title or authority.)

Digitized by srujanika@gmail.com

[View Details](#) | [Edit](#) | [Delete](#)

Digitized by srujanika@gmail.com

862 Moh

Board of Village Trustees
CLINTON, N.Y.

Trustees: Fred A. Restle, John Phillips, Frank Blake, Douglas Ross

Dr. George R. Taylor, President
John M. O'Rourke, Clerk

April 14, 1924.

OFFICE OF THE
BOARD OF TRUSTEES
APR 1 1924
McKee

Mr. Arnold G. Chapman,
Deputy State Engineer,
Albany, N. Y.

Dear Sir -

Your letter of April 5th addressed to W. H. Brockway, Clerk of the Village of Clinton, N. Y. was not turned over to the New Board until Saturday, April 12th. The Present Clerk is John M. O'Rourke, and Mr. Brockway has no connection with the present Village Board; he has been out of office since the 18th of March, 1924.

You are correct in your understanding that the Village of Clinton has withdrawn its application for the proposed new dam on White Creek, and the writer is at a loss to understand how any additional matters could be filed with the Conservation Commission or your office after the 17th of March, inasmuch as the firm of W. G. Stone & Company were no longer in the employ of the village after that date.

Very truly yours,

Chairman,
Board of Water Commissioners.

D.M.R./JW

AGO/K.

Dam No. 862, Mohawk.

April 5, 1924.

Mr. W. H. Brockway,
Village Clerk,
Clinton, New York.

Dear Sir:

We have under recent date received from
W. G. Stone & Company a blueprint marked "Details of
Spillway of Dam of Proposed White Creek Water Supply
for Clinton, N. Y., Amended Sheet No. 4."

It is our understanding that the village
has withdrawn its application for the creation of this
district and therefore no action will be taken on these
plans until such time as the Water Control Commission
shall have considered and passed upon the application
authorizing such construction.

Very truly yours,

Deputy State Engineer.

STATE OF NEW YORK
STATE ENGINEER AND SURVEYOR
ALBANY

DWIGHT B. LA DU,
STATE ENGINEER
ARNOLD G. CHAPMAN
DEPUTY

ADDRESS ALL COMMUNICATIONS TO
DWIGHT B. LA DU, STATE ENGINEER

April 4, 1924.

Dam No. 862, Mohawk.

Not sent as with draw.

Mr. W. H. Brockway,
Village Clerk,
Clinton, N. Y.

Dear Sir:

We have received from your engineer, W. G. Stone & Son, a print marked "Details of Spillway of Dam of Proposed White Creek Water Supply for Clinton, N. Y., Amended Sheet No. 4." We have designated this dam on our records as No. 862, Mohawk watershed.

If the excavations made in the bed are entirely refilled with the concrete core we will require that the core be carried perpendicular to the surface into a solid rock foundation bed and banks for a distance from any point of the natural bed equal to at least one foot plus $1/10$ the depth of that point below the proposed upstream highest water surface, and into an impervious compact earth foundation bed and banks equal to at least $1/4$ of the depth below the proposed upstream highest water surface; that the core wall have a batter on each face of $1/2$ horizontal to 12 vertical or a thickness equal to that which would be obtained from the batter; that the slope of the earth embankment be at least 2 horizontal to 1 vertical on the downstream side, and that your engineer submit a report to this department on the bed and banks as soon as excavations are made for any section, stating the character of the material, the compactness and the permeability, and if any pervious strata are found a report from your engineer should be sent to this office at once.

The construction of the above dam in accordance with the plan submitted is approved, subject to the above requirements, in so far as the matter involves the jurisdiction conferred upon this office by Chapter LIV of the Consolidated Laws and Chapter 647, Laws of 1911, Section 22, as amended, and permission is given for the construction of this work up to November 1, 1925, and subject before commencement to the approval of the Water Control Commission, Albany, N. Y., in accordance with the provisions of Article IX of the Conservation Law.

Mr. W.H.B. #2

4/4/24.

This approval shall not be deemed to authorize any invasion of property rights, either public or private, in carrying out the above work; nor to create any claim against the State of New York; nor to be considered as authorizing the flooding or the use of State lands, nor as acquiescing in the flooding of such lands.

We will require two additional prints of the above drawing for this department.

We enclose shipping tag No. 54 in order that you may ship to our laboratory for testing 1/2 cubic foot, exclusive of any stones over 1/4 inch in size mixed therewith, of the sand to be used for the concrete in the above dam.

Please acknowledge the receipt of this letter and advise us when the work is started.

Very truly yours,

Deputy State Engineer.

Copy to-

W. G. Stone & Son,
Mann Building,
Utica, N.Y.

ARMK/F.

WILLIAM G. STONE / AM SOC C.E.
WILLIAM D. STONE, C.E.

ENGINEERING OFFICE
OF
W. G. STONE & SON
MANN BUILDING
UTICA, N.Y.

CIVIL, HYDRAULIC AND
MECHANICAL ENGINEERS

April 3rd, 1924.

In re Dam No 862
Mohawk-Clinton, N.Y.

OFFICE STATE ENG.

4/3 - 1924

RECEIVED
4/3/24

State Engineer and Surveyor,
Albany, N.Y.

Sir,

Herewith find amended plan of spillway as requested, which we
trust will meet your approval.

Very truly yours,

W. G. Stone

WGS/DAC.

March 24, 1924.

Dam No. 862, Mohawk,
Clinton.

W. G. Stone & Son,
Mann Building,
Utica, N. Y.

Gentleman:

We have received your two letters of March 21,
1924.

For a shale rock such as you describe, very little
uplift pressure on the dam section would be necessary. We
believe this should be taken at the base as one-third the
maximum head at the upstream face and diminished uniformly
to zero at the downstream face extended.

A 2 ft. thick core wall, if not reinforced, is
difficult to construct for the height shown without being
cracked. The core should be let into the bed sufficiently
to break the line of creep in order that there will be as little
underseepage as possible.

The abutment walls where not supported by the dam
section should be thick enough to resist the pressure of the
earth.

The slopes of the embankment are not marked on the
print submitted. Canal banks and dam embankments are not
quite analogous, but our minimum requirement for the downstream
slope of 1 vertical to 2 horizontal is the same as quoted by
you from the "History of New York State Canals"; and for the
upstream slope of 1 vertical to 2-1/2 horizontal is the same
as you gave for the proposed dam.

W.G.S. & Son

3/24/24.

As you have found the baffle flanges satisfactory
in preventing the creeping of water along pipes, we will
approve of their use.

We await your reply to the second and third paragraphs
of our letter of March 15th.

Very truly yours,

Deputy State Engineer.

ARMOK/P

WILLIAM G. STONE | AM DEC 5
WILLIAM D. STONE, C. E. | AM DEC 5

ENGINEERING OFFICE

or

W. G. STONE & SON
MANN BUILDING
UTICA, N. Y.

CIVIL, HYDRAULIC AND
MECHANICAL ENGINEERS

In re Dam No 862, Mohawk. March 21st, 1924.

RECORDED
RECORDED

State Engineer and Surveyor,
Albany, N. Y.

Sir,

I find that in another communication of this date I failed to answer the query as to baffle flanges.

The enclosed sketch illustrates the method I have used in many similar situations and that has proven entirely satisfactory.

The bell of the flange is made sufficiently large to slip over the bead of the pipe. The pipe joint is made in the usual manner with lead and jute. The flange is then slipped back to meet the pipe bell, centered and then leaded and caulked in the usual manner. This makes an absolutely water tight joint, which is not always the case with sectional flanges or concrete collars and has the further qualification of compelling any water percolating along the pipe to make four abrupt bends before it again strikes the pipe.

I personally consider this a better arrangement than the usual concrete collars.

Very truly yours,

A handwritten signature in ink, appearing to read "W.G. Stone".

WGS/DAC.

WILLIAM G. STONE | AM DEC 8
WILLIAM D. STONE, C. E. | AM DEC 9

ENGINEERING OFFICE

OF

W. G. STONE & SON

MANN BUILDING

UTICA N.Y.

CIVIL, HYDRAULIC AND
MECHANICAL ENGINEERS

WILLIAM G. STONE
WILLIAM D. STONE CO.

No. 2090
LICENSE

ENGINEERING OFFICE

OF

W. G. STONE & SON
MANN BUILDING
UTICA, N.Y.

CIVIL HYDRAULIC AND
MECHANICAL ENGINEERS

2

March 21st, 1924.

In re Dam 863, Mohawk.

State Engineer and Surveyor,
Albany, N.Y.

Sir,

Replying to yours of March 15th. Assuming that this will be referred to Mr A R. McKim, I feel that I can discuss the matters therein referred to with less formality than with a stranger.

The thickness of spillway base is 8 feet. I do not know the permeability of the underlying rock. Tests pits disclose a firm, hard, solid red shale. This when unexposed to the air, remains solid. When exposed to air it disintegrates, as is the case with all the shales in this vicinity.

I am unable to conceive of any appreciable lifting effect of the water on the structures founded on this shale. When the solid shale is reached and the cavity filled with concrete and thus sealed against air or water, it seems to me that the structure, below the shale, becomes a part of the permanent geology. I can see no reason why it should lift, any more than the entire bottom of the reservoir, which is not possible.

The core wall rock bond is fully met by the dimensions shown on the plans though I can see no reason why a core wall should go lower than impervious foundation.

A 6" pipe drains the water cushion basin, though it is not shown on plans.

Your criticism as to the section of top of spillway is well founded and should be as you suggest.

In the matter of the spillway abutments or retaining walls, it seems to me, in consideration of the fact that they are tied to the core wall on one side and supported by the spillway on the other, that the rigid requirement, as to retaining walls could be modified. Personally I consider them perfectly safe.

As to the batter of the core wall. It was made straight for structural reasons. It is practically impossible to make a Contractor follow a batter of 1/2" to 12". The wall is almost universally distorted in construction. It is much easier to construct and maintain straight forms than battered ones. While a core wall of the dimensions shown may add somewhat to the impermeability of a dam, its prime function, in my opinion, is to act as a bar to burrowing animals, crabs, etc. For this reason I prefer it to a puddle core.

In the matter of bank slopes I think I have abundant authority for those shown. The "History of N.Y State Canals, Vol 11, gives earth slopes as follows

ENGINEERING OFFICE

OF

WILLIAM G. STONE
WILLIAM D. STONEW. G. STONE & SON
MANN BUILDING
UTICA, N. Y.CIVIL HYDRAULIC AND
MECHANICAL ENGINEERS

water slopes, 1 on 1.25. Earth slopes, 1 on 2. These slopes were used from 1825-1834 down to the construction of the Barge Canal. The "Barge Canal Report" of 1801 gives slopes as follows; Water slopes 1 on 2; earth slopes 1 on 1.50. The Clinton dam shows water slope of 1 on 2.50 and earth slope of 1 on 1.1.50 a more generous proportion than used by the State. In no case were core walls demanded.

Your request for larger scale drawing of spillway and appurtenances will be complied with as soon as possible.

Very truly yours,

WGS/DAC.

ARMOK/BR

March 15, 1924.

Dam #862-Mohawk
Clinton

W. G. Stone & Son,
Maan Building,
Utica, New York.

Gentlemen:

We received your letter of March 11th and prints
in triplicate for the proposed dam for the village of Clinton.

What is the spillway section thickness at the base,
or at the pool bottom level? There is no provision for ice
pressure. For low dams the ice pressure can be provided by
a baffle at the top of the upstream face; for a spillway
section make the baffle at least one foot horizontal to two
feet vertical, rounded at the crest. The thickness at 18
inches below the crest should be at least four feet. What
is the assumed uplift pressure and the permeability and
quality of the shale under the spillway section? The re-
sultant pressure must fall within the middle third of the
section, assuming the concrete to weigh not more than 141
pounds per cubic foot and at high flow that due to the
velocity of the current over the spillway crest there would
be no weight of water on the crest, on the downstream face
or no back pressure.

We will require a larger scale sketch of the
proposed crest of the spillway.

Is there a drain to empty the water cushion pool
when water is not flowing over the spillway?

An abutment wall of concrete acting as an earth
retaining wall must not be less than 18 inches thick; the
thickness at any depth must be at least one-half the ver-
tical depth of the embankment.

The concrete core wall must be carried perpen-
dicular to the surface into a solid rock foundation bed
and banks for a distance from any point of the natural bed
equal to at least one foot plus one-tenth the depth of
that point below the proposed upstream highest water sur-

J. S. Stone & Son

3/15/24.

face; and into an impervious compact earth foundation bed and banks equal to at least one-fourth of the depth below the proposed upstream highest water surface. The top of the core wall should be at least as high as the proposed upstream highest water surface with a top width of not less than two feet and the batter of one-half horizontal to twelve vertical on each side down to the surface of the natural bed.

We note you have baffle flanges instead of concrete collars to stop the flow of the water along the outlet pipes. Are these baffle flanges part of the pipe and cast with it?

The slopes of the embankment should be at least two and one-half horizontal to one vertical on the upstream side and two to one on the downstream side. For fine materials the slopes must be less.

Very truly yours,

.....
State Engineer.

ARMCK/BW

WILLIAM G. STONE, J.A.M. SOC.C.E.
WILLIAM D. STONE, C.E.

ENGINEERING OFFICE
OF
W. G. STONE & SON
MANN BUILDING
UTICA, N.Y.

CIVIL, HYDRAULIC AND
MECHANICAL ENGINEERS

In re Dam No 862, Clinton, N.Y.

March 11th, 1924.

State Engineer and Surveyor,
Albany, N.Y.

Sir.

Enclosed find plans, in triplicate, of the proposed dam
bearing your number, 862.

The specifications therefor are now in the hands of
the printer and copy will be forwarded as soon as pos-
sible.

We were not advised that triplicate plans were required.

Very truly yours,

WGS/DAC.

March 7, 1924.

Dam 862, Mohawk,
Clinton,

Mr. W. G. Stone,
Mann Building,
Utica, N. Y.

Dear Sir:

We have received an application for the reconstruction of Dam 862, Mohawk Watershed at Clinton, and U. S. G. S. Sheet locating a dam owned by the Village of Clinton, N. Y. However, we have not received a copy of the specifications nor plans in triplicate for the reconstruction of the above dam, which will be required before we can approve of the reconstruction.

Very truly yours,

Deputy State Engineer.

ARMOK/7.

2.7223 2.4031205
2.543 2.3551048
2.2673 2.0287578
2.062

7.8 m 10.3 m 10.3 m 10.3 m

2.4031205
2.2571780
2.1454418
1.0727205
11.82 base East

$\frac{1}{8} \frac{43}{11} \frac{3}{11} = -45^{\circ} 45'$

base 10.562 15 Mar 24-24
shale
Uplift area, as seen with bridge & V line
10' base soft iron
at .1266 constant 1.5:1 ratio

Plan 1863, Mount Pleasant Clinton

County - Village of Clinton

Plans on file in map filing cabinet.

APPENDIX G

DRAWINGS

LOCATION PLAN

SCALE 1:24,000

1000 1000 2000 3000 4000

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

**DAU
ILM**