Project Report: Policy Optimization for Financial Decision-Making

BY Pushkar Jain: (102215170)

1. Introduction

The goal is to compare:

- 1. A **Deep Learning (DL) model** that predicts default probability.
- 2. An **Offline RL agent** that makes profit-aware approval decisions based on expected rewards.

2. Data Preparation and Problem Setup

The dataset used represents real-world lending scenarios, containing information such as **loan amount, interest rate, FICO score, DTI ratio, employment length,** and other applicant features.

Feature Engineering

- All numeric features were normalized.
- Categorical features were one-hot encoded.
- The target variable:
 - 1 → Defaulted (Bad Loan)
 - o 0 → Fully Paid (Good Loan)

The dataset was divided into training (80%) and testing (20%) subsets.

3. Supervised Deep Learning Model

Model Architecture

A **Multi-Layer Perceptron (MLP)** was implemented in PyTorch with the following structure: - Hidden layers: [256, 128, 64, 32] - Activation: ReLU - Dropout: 0.3 - Loss: Weighted Binary Cross-Entropy (to handle class imbalance)

Training and Evaluation

The model was trained for 15 epochs with a learning rate of 5e-4 and a batch size of 256.

Performance Metrics:

AUC: 0.6938

F1 (0.5 threshold): **0.4127**

Best F1: 0.4158 at threshold 0.58

Interpretation

- AUC (Area Under ROC Curve): Measures how well the model separates defaulters from non-defaulters across thresholds.
- **F1-Score**: Balances precision (avoiding false approvals) and recall (approving genuine good applicants).

These metrics evaluate **classification accuracy**, not business profit. While the model can identify risk well, it doesn't optimize financial returns — which is where the RL approach improves the decision-making process.

4. Offline RL Agent: Reward-Greedy Policy

The RL agent was designed to **learn a policy** that maximizes **expected profit per loan approval** rather than just minimizing classification error.

Reward Function

A reward was defined for each decision (approve or deny):

```
	ext{reward} = egin{cases} +	ext{loan\_amount} 	imes 	ext{interest\_rate}, & 	ext{if approved and fully paid} \ -	ext{loan\_amount}, & 	ext{if approved and defaulted} \ 0, & 	ext{if denied} \end{cases}
```

This explicitly models the business objective: maximize net gain per applicant.

Offline Dataset Construction

Each applicant's state (financial profile) was paired with: - Action: **approve (1)** or **deny (0)** - Observed reward - Terminal flag (single-step episode)

The agent was then evaluated using a **reward-greedy policy**, which approves only if expected reward > 0.

5. Comparative Results

Metric Supervised (DL) RL (Greedy Policy)

Expected Reward / -394.67 **+7.91**

Applicant (EPV)

Metric Supervised (DL) RL (Greedy Policy)

Total Reward on Test -5.31M **+106,394.20**

Set

 Approval Rate
 68.05%
 2.15%

 Avg Observed Reward
 -579.95
 +600.27

per Approved Loan

Interpretation

• The **supervised model** approves a large number of loans, many of which result in losses.

• The **RL policy** is conservative — approving only the most profitable loans — resulting in fewer approvals but positive total profit.

This demonstrates that **accuracy-based metrics** (AUC/F1) don't guarantee profit optimization, while **policy value metrics** (EPV) directly reflect financial performance.

6. Example of Policy Differences

Index	Greedy Action	Supervised Action	Prob(Default)	Loan Amt	Int Rate	True Default	Exp Reward	Obs Reward
5	0 (deny)	1 (approve)	0.547	13,000	0.0976	1	-6545.70	-13,000.00
8	0 (deny)	1 (approve)	0.422	10,000	0.0797	0	-3764.52	+797.00

Analysis:

- The **supervised model** approved these applicants because their predicted default probability was moderate.
- The **RL policy denied them**, realizing that even with low default risk, the **expected** reward (factoring potential loss) was negative.
- This highlights how the RL framework aligns decision-making with economic objectives, not just statistical risk.

7. Metric Comparison: Why Different Metrics Matter

AUC / F1 for DL

- Measure the model's ability to separate classes and balance recall vs. precision.
- Useful for **risk modeling** but **not sufficient for financial optimization**.

Estimated Policy Value (EPV) for RL

- Measures average expected profit per decision, integrating both reward and action probability.
- Represents the true business metric how much the policy earns or loses on average per applicant.

In short: > AUC tells us *how well* we predict defaults.

> EPV tells us *how much* money we make when applying those predictions.

8. Visual Insights

- ROC Curve (AUC = 0.694) shows moderate discrimination between good and bad borrowers.
- Policy EPV Plot clearly demonstrates that the reward-greedy policy yields the highest net return per applicant.

Confusion Matrix confirms that the RL policy makes fewer approvals but drastically reduces financial loss.

9. Future Steps and Recommendations

a. Next Steps

- 1. **Combine DL + RL:** Use the supervised model for default prediction, and the RL policy to approve only those loans with positive expected reward.
- Retrain RL Agent (CQL / TD3+BC): Once version compatibility issues are resolved, train a full offline RL agent using d3rlpy.
- 3. **Expand Reward Modeling:** Incorporate repayment timelines, recovery rates, and transaction fees for more realistic profit estimates.

b. Limitations

- RL model currently relies on a **greedy policy approximation** (due to d3rlpy API limitations).
- The reward formulation is simplified and ignores **temporal dynamics** and **regulatory constraints**.

No online feedback loop yet — the policy cannot adapt to changing borrower behaviors.

c. Data and Algorithm Improvements

- Collect more granular data (e.g., payment histories, income-to-loan ratio, credit utilization trends).
- Experiment with offline policy gradient methods or conservative Q-learning (CQL) for smoother decision boundaries.
- Explore fairness-aware RL, ensuring approvals remain equitable across demographic group

End of Report

Prepared by Pushkar Jain