

L'algorithme de Dijkstra est un parcours en largeur d'un graphe **pondéré** et orienté. Il permet de calculer l'ensemble des plus courts chemins entre un sommet vers tous les autres sommets du graphe.

Pour modéliser le graphe, on utilisera une matrice d'adjacence M pour laquelle $M_{ij} = w(i, j)$ et w(i, j) représente le poids de l'arête de i vers j. Lorsqu'il n'y a pas d'arc entre deux sommets, on aura $M_{ij} = \infty$.

Définition Poids d'un chemin Soit un un graphe pondéré G = (V, E, w) où V désigne l'ensemble des sommets, E l'ensemble des arêtes et w, la fonction poids définie par $w : E \to \mathbb{R}$ (w(u, v) est le poids de l'arête de u vers v).

On appelle poids du chemin C et on note w(C) la somme des poids des arêtes du chemin.

Un chemin de $u \in V$ à $v \in V$ est un plus court chemin s'il n'existe pas de chemin de poids plus petit.

■ **Exemple** Pour le chemin C = 0, 1, 2, 4, on a w(C) = 6. Pour le chemin C' = 0, 1, 3, 4, on a w(C') = 3. C' est un plus court chemin.

Définition Distance La distance d(u, v) est le poids d'un plus court chemin de u à v. On peut alors noter $d(u, v) = \inf\{w(C)|C \text{ est un chemin de } u \text{ à } v\}$.

Si v n'est pas atteignable depuis u on poser $d(u, v) = \infty$.

■ Exemple Dans le cas précédent, d(0,4) = 3, d(2,4) = 3 et $d(4,1) = \infty$

Propriété Sous-optimalité – Soit C un plus court chemin de u à v ainsi que u' et v' deux sommets de C. Alors le sous-chemin de C de u' à v' est aussi un plus court chemin.

Exemple C' = 0, 1, 3, 4 est un plus court chemin; donc C' = 1, 3, 4 ou C' = 0, 1, 3 aussi.

Objectif Soit un graphe pondéré G = (V, E, w) où V désigne l'ensemble des sommets, E l'ensemble des arêtes et w, la fonction poids.

Soit s un sommet de V. L'objectif est de déterminer la liste de l'ensemble des distances entre s et l'ensemble des sommets de V.

Pour répondre à l'objectif, on peut formuler l'algorithme de Dijkstra ainsi.

Entrées: un graphe pondéré donné par liste ou marrice d'adjacence, un sommet s du graphe

Sortie: D liste des distances entre s et chacun des sommets

 $\begin{aligned} & \text{Initialisation de D: D = } & n \times [\infty] \\ & \text{Initialisation de D: D[s] = } & = [0] \end{aligned}$

Initialisation de $T:T = n \times [False]$ liste des sommets traités Initialisation d'une file de priorité avec le sommet de départ $F = \{s\}$

Tant que F n'est pas vide:

Recherche du sommet u tel que d [u] minimal parmi les sommets de F

Pour tout voisin v de u **faire**:

| Si v n'est ni dans T ni dans F alors | Ajouter v à F| D=min(d[v], d[u] + w(u, v)) | T[u] = True

Renvoyer D

Une des étapes qui diffère avec le parcours en largeur notamment, est l'utilisation d'une file de priorité et la recherche du sommet vérifiant d[u] minimal. Cela signifie que lorsqu'on partira d'un sommet $\mathfrak s$, on déterminera alors l'ensemble des distances permettant d'atteindre les voisins de $\mathfrak s$. À l'itération suivante, on visitera alors le sommet ayant la distance la plus faible.

Définition File de priorité Une file de priorité est une structure de données sur laquelle on peut effectuer les opérations suivantes :

insérer un élement;

- extraire l'élément ayant, dans notre cas, la plus petite valeur;
- tester si la file de priorité est vide ou pas.
- Exemple Soit une file de priorité comprenant les éléments suivants: file = [12,1,4,5]. La file de priorité est dotée d'une méthode pop permettant d'extraire la plus petite valeur. Ainsi, file.pop() renvoie 1 et la file contient alors les éléments [12,4,5]. En réitérant file.pop() renverra la valeur 4 et la file contient désormais les éléments [12,5].

Soit une file de priorité comprenant les éléments suivants : file = [(1,2),(2,5),(0,1)]. La méthode pop permetttra d'extraire le couple pour lequel la première valeur est la plus petite.

Ainsi, file.pop() renvoie (0,1) et la file contient alors les éléments [(1,2),(2,5)] etc.

■ **Exemple** [Jules Svartz] La figure suivante représente le déroulement de l'algorithme de Dijkstra sur un graphe à 5 sommets, depuis la source s. Pour chaque sommet u on a fait figurer la valeur d[u] à l'intérieur du cercle. Les arcs en gras représentent l'évolution de la liste des prédecesseurs.

$$H=\{s,y,z\},\,F=\{t,x\}$$

$$H = \{s, y, z, t\}, F = \{x\}$$

$$H = \{s, y\}, F = \{t, x, z\}$$

$$H = \{s, y, z, t, x\}, F = \emptyset$$

On peut donc commencer par implémenter une fonction cherche_min permettant de trouver le sommet i vérifiant d[i] minimal parmi les sommets n'ayant pas été traités.

On donne alors l'algorithme de Dijkstra.

```
def dijkstra_mat(G,s):
    """

G donné par matrice d'adjacence. Renvoie les poids chemins de plus petits poids depuis s.
    """

n=len(G)
    d = [float('inf')]*n
    d[s]=0
    traites = [False]*n
    while True:
        x=cherche_min(d,traites)
        if x==-1:
            return d
        for i in range(n):
            d[i]=min(d[i], d[x]+G[x][i])
        traites[x]=True
```

Propriété Pour n sommets et a arcs, on peut montrer que, la complexité de l'algorithme est en $\mathcal{O}(a+n\log n)$.

Exemple Reprendre le graphe précédent et utiliser l'algorithme de Dijkstra en partant du sommet t.

Sources

- Cours de Quentin Fortier.
- Cours de Jules Svartz, Lycée Masséna.