Classical Deep Models

- Convolutional Neural Networks (CNN)
 - First proposed by Fukushima in 1980
 - Improved by LeCun, Bottou, Bengio and Haffner in 1998

filters

		K	
task	hours of	DNN-HMM	GMM-HMM
	training data		with same data
Switchboard (test set 1)	309	18.5	27.4
Switchboard (test set 2)	309	16.1	23.6
English Broadcast News	50	17.5	18.8
Bing Voice Search	24	30.4	36.2
(Sentence error rates)			
Google Voice Input	5,870	12.3	
Youtube	1,400	47.6	52.3

Deep Networks Advance State of Art in Speech

deep learning results

Rank	Name	Error rate	Description	
1	U. Toronto	0.15315	Deep learning	
2	U. Tokyo	0.26172	Hand-crafted	
3	U. Oxford	0.26979	features and	
4	Xerox/INRIA	0.27058	learning models. Bottleneck.	

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

Examples from ImageNet

ImageNet 2013 – image classification challenge

Rank	Name	Error rate	Description
1	NYU	0.11197	Deep learning
2	NUS	0.12535	Deep learning
3	Oxford	0.13555	Deep learning

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto Top 20 groups all used deep learning

ImageNet 2013 – object detection challenge

Rank	Name	Mean Average Precision	Description
1	UvA-Euvision	0.22581	Hand-crafted features
2	NEC-MU	0.20895	Hand-crafted features
3	NYU	0.19400	Deep learning

- Deep learning achieves 99.53% face verification accuracy on Labeled Faces in the Wild (LFW), higher than human performance
 - Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification. NIPS, 2014.
 - Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. CVPR, 2015.

Illustration: Learning an "eye" detector

Related work: Convnets by LeCun et al., 1989

Convolutional Neural Networks

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by back-propagating classification error

Slide: R. Fergus

Components of Each Layer

Slide: R. Fergus

Filtering

- Convolutional
 - Translation equivariance
 - Tied filter weights

(same at each position → few parameters)

Input

Feature Map

Filtering

Tiled

- Filters repeat everyn
- More filters than convolution for given # features

Filters

Input

Feature maps

Non-Linearity

- Non-linearity
 - Per-element (independent)
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear
 - Simplifies backprop
 - Makes learning faster
 - Avoids saturation issues
 - → Preferred option

Slide: R. Fergus

Pooling

- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis

2D Convolution

Three Operations

- Convolution: like matrix multiplication
 - Take an input, produce an output (hidden layer)
- "Deconvolution": like multiplication by transpose of a matrix
 - Used to back-propagate error from output to input
 - Reconstruction in autoencoder / RBM
- Weight gradient computation
 - Used to backpropagate error from output to weights
 - Accounts for the parameter sharing

Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Figure 9.2

Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Figure 9.3

Growing Receptive Fields

Parameter Sharing

Convolution
shares the same
parameters
across all spatial
locations

Traditional
matrix
multiplication
does not share
any parameters

Edge Detection by Convolution

Figure 9.6

Efficiency of Convolution

Input size: 320 by 280

Kernel size: 2 by 1

Output size: 319 by 280

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	319*280*320*280 > 8e9	2*319*280 = 178,640
Float muls or adds	319*280*3 = 267,960	$> 16\mathrm{e}9$	Same as convolution $(267,960)$

Convolutional Network Components

Max Pooling and Invariance to Translation

Cross-Channel Pooling and Invariance to Learned Transformations

Pooling with Downsampling

Example Classification Architectures

Convolution with Stride

Zero Padding Controls Size

With zero padding

Figure 9.13

Kinds of Connectivity

Figure 9.14

Partial Connectivity Between Channels

Figure 9.15

Tiled convolution

Figure 9.16

Local and Global Representations

Image classification result

