UFMS

Universidade Federal de Mato Grosso do Sul

Disciplina: Vetores e Geometria Analítica

Período: 2019/2 **Turma:** 08

Professor: Everton Luiz de Oliveira

2^a Prova de Vetores e Geometria Analítica

24/10/2019

Nome: _		
RGA:		

Questão 1. (2,5 pontos) Obtenha as coordenadas do vetor \vec{u} ortogonal a $\vec{v}=(1,0,1)$, tal que $||\vec{u}||=\sqrt{2}$ e a medida angular entre \vec{u} e $\vec{w}=(1,1,0)$ seja $\pi/3$.

Questão 2. (2,5 pontos) Sejam $\vec{j} = (0,1,0)$ e $\vec{k} = (0,0,1)$. Determine os vetores $\vec{u} = (x,y,z)$ de norma $\sqrt{2}$, tais que

 $\operatorname{proj}_{\vec{j}}\vec{u} = \frac{\vec{j}}{2},$

de modo que a medida angular entre \vec{k} e $\vec{v}=(x,0,z)$ seja $\pi/3$.

Questão 3. (2 pontos) Determine o ponto P' simétrico ao ponto P=(2,1,0) com relação à reta

$$r: X = (1, 0, 2) + \alpha(3, 0, 1).$$

Questão 4. (2 pontos) Determine equações simétricas da reta r que contém o ponto P=(2,0,3) e é perpendicular ao plano

$$\pi: X = (5, -2, 1) + \alpha(1, 0, -2) + \beta(0, 1, 1).$$

Questão 5. (2 pontos) Obtenha uma equação geral do plano π , que contém a interseção dos planos

$$\pi_1: x - y + z = -1$$
 e $\pi_2: x + y - z = 1$,

onde π é paralelo à reta

$$r: X = (0, 1, 1) + \alpha(1, 2, 2).$$

Observação: $\operatorname{proj}_{\vec{u}} \vec{v} = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}||^2} \vec{u}$.