Przykład:

Nauczmy perceptron rozróżniać punkty powyżej bądź poniżej pewnej arbitralnie wybranej linii.

Problem nr 1: Punkt (0, 0)

ERROR = DESIRED OUTPUT - GUESS OUTPUT

Ozna czema:

wyjście: X

wyjście: Y

wagi; W

shaa waiona: z

funkcja aktynacji: \$

cel: Y

odpowiedź: ŷ

blad: S

a (4)	adhomets (Å)	red (8)
-1	- 1	0
- 1	1	-2
1	- 1	2
1	1	0

Iteracja k = 1:

$$x = [4, 4, 1]$$
 $w = [0, 0, 1]$

$$y = \phi(4 \cdot 0 + 4 \cdot 0 + 1 \cdot 1) = 1$$

$$y = -1$$

$$y = -1$$
 $\hat{y} = 1$ $\delta = -2$ $\eta = 0.05$

$$\Delta w_i = \eta \cdot \delta \cdot x_i$$

$$w_i = w_i + \Delta w_i = w_i + \eta \cdot \delta \cdot x_i$$

$$w[0] = 0 + (-2) \cdot 4 \cdot 0.05 = -0.4$$

$$w[1] = 0 + (-2) \cdot 4 \cdot 0.05 = -0.4$$

$$w[2] = 1 + (-2) \cdot 1 \cdot 0.05 = 0.9$$

	a (y)	adpoweds (ŷ)	red (g)
	-1	- 1	0
•	- 1	1	-2
	1	- 1	2
	1	1	0

Iteracja k = 2:

$$x = [12, 12, 1] w = [-0.4, -0.4, 0.9]$$

$$y = \phi(12 \cdot (-0.4) + 12 \cdot (-0.4) + 1 \cdot (0.9)) = -1$$

$$y = 1$$
 $\hat{y} = -1$ $\delta = 2$ $\eta = 0.05$

$$\Delta w_i = \eta \cdot \delta \cdot x_i$$

$$w_i = w_i + \Delta w_i = w_i + \eta \cdot \delta \cdot x_i$$

$$w[0] = -0.4 + 2 \cdot 12 \cdot 0.05 = 0.8$$

$$w[1] = -0.4 + 2 \cdot 12 \cdot 0.05 = 0.8$$

$$w[2] = 0.9 + 2 \cdot 1 \cdot 0.05 = 1$$

	a (4)	ophomens (A)	૧ ત્વન (§)
	-1	- 1	0
•	- 1	1	-2
	1	-1	2
	1	1	0

Iteracja k = 3:

$$x = [2, 2, 1]$$
 $w = [0.8, 0.8, 1]$

$$y = \phi(2 \cdot (0.8) + 2 \cdot (0.8) + 1 \cdot (1)) = 1$$

$$y = -1$$

$$\hat{y} = 1$$

$$\delta = -2$$

$$y = -1$$
 $\hat{y} = 1$ $\delta = -2$ $\eta = 0.05$

$$\Delta w_i = \eta \cdot \delta \cdot x_i$$

$$w_i = w_i + \Delta w_i = w_i + \eta \cdot \delta \cdot x_i$$

$$w[0] = 0.8 + (-2) \cdot 2 \cdot 0.05 = 0.6$$

$$w[1] = 0.8 + (-2) \cdot 2 \cdot 0.05 = 0.6$$

$$w[2] = 1 + (-2) \cdot 1 \cdot 0.05 = 0.8$$

a (y)	adpoweds (ŷ)	૧ ત્વન ()
-1	– 1	0
-1	1	-2
1	- 1	2
1	1	0

Iteracja k = 4:

$$x = [1, 7, 1]$$
 $w = [0.6, 0.6, 0.8]$

$$y = \phi(1 \cdot (0.6) + 7 \cdot (0.6) + 1 \cdot (0.8)) = 1$$

$$y = -1$$

$$\hat{y} = 1$$

$$\delta = -2$$

$$y = -1$$
 $\hat{y} = 1$ $\delta = -2$ $\eta = 0.05$

$$\Delta w_i = \eta \cdot \delta \cdot x_i$$

$$w_i = w_i + \Delta w_i = w_i + \eta \cdot \delta \cdot x_i$$

$$w[0] = 0.6 + (-2) \cdot 1 \cdot 0.05 = 0.6$$
$$w[1] = 0.6 + (-2) \cdot 7 \cdot 0.05 = 0.6$$
$$w[2] = 1 + (-2) \cdot 1 \cdot 0.05 = 0.8$$

	a (૪)	adpoweds (ŷ)	૧ ૮૦૧ (§)
	-1	– 1	0
•	- 1	1	-2
	1	- 1	2
	1	1	0