Name:	Student ID:	
Week7-template		Math 563, Fall 2022

- **Q 1.** (Durrett 4.1.1.) **Bayes's Formula.** Let $G \in \mathcal{G}$.
- **Q 1.** (Durrett 4. **Q 1.1.** Show that

$$\mathbb{P}(G \mid A) = \frac{\int_{G} \mathbb{P}(A \mid \mathcal{G}) d\mathbb{P}}{\int_{\Omega} \mathbb{P}(A \mid \mathcal{G}) d\mathbb{P}}$$

THE PROOF	
	QED

Q 1.2.	Show that when \mathcal{G} is generated by a partition $\{G_1, G_2, \ldots\}$, this reduces to the usual Bayes' for-
	mula: $\mathbb{P}(G_i \mid A) = \frac{\mathbb{P}(A \mid G_i) \mathbb{P}(G_i)}{\sum_j \mathbb{P}(A \mid G_j) \mathbb{P}(G_j)}.$

THE PROOF QED

Q 2.	(Durrett 4.1.2.)	Prove Chebyshev's	sinequality. If $a > 0$ then
------	------------------	-------------------	------------------------------

$$\mathbb{P}(|X| \ge a \mid \mathcal{F}) \le a^{-2} \mathbb{E}(X^2 \mid \mathcal{F})$$

Q 3.	(Durrett 4.1.5.)	Give an example on	$\Omega = \{a,b,c\}$	in which:
------	------------------	--------------------	----------------------	-----------

$$\mathbb{E}(\mathbb{E}(X \mid \mathcal{F}_1) \mid \mathcal{F}_2) \neq \mathbb{E}(\mathbb{E}(X \mid \mathcal{F}_2) \mid \mathcal{F}_1)$$

Q 4. (Durrett 4.1.9.) Show that if X and Y are random variables with $\mathbb{E}(Y \mid \mathcal{G}) = X$ and $\mathbb{E}(Y^2) = \mathbb{E}(X^2) < \infty$, then X = Y a.s.

Q 5. (Durrett 4.1.10.) Bonus problem! The result of the last exercise implies that if $\mathbb{E}Y^2 < \infty$ and $\mathbb{E}(Y \mid \mathcal{G})$ has the same distribution as Y then $\mathbb{E}(Y \mid \mathcal{G}) = Y$ a.s. Prove that under the assumption $\mathbb{E}|Y| < \infty$. Hint: The trick is to prove that $\mathrm{sgn}(X) = \mathrm{sgn}(\mathbb{E}(X \mid \mathcal{G}))$ a.s., and then take X = Y - c to get the desired result.

