Assignment 1

1. Design a logic diagram for a full adder

Z	0	0	0	0
X	0	0	1	1
<u>+Y</u>	<u>+0</u>	+1	<u>+0</u>	<u>+1</u>
$\mathbf{C} \mathbf{S}$	0 0	0 1	0 1	10
\mathbf{Z}	1	1	1	1
X	0	0	1	1
<u>+ Y</u>	+0	<u>+1</u>	<u>+0</u>	<u>+1</u>
$\mathbf{C}\mathbf{S}$	0 1	10	10	11

- Truth table of full adder:

	Inputs		Outputs		
X	Y	Z	С	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

- K-Map:

S			YZ					
		00	01	11	10			
V	0		1		1			
Λ	1	1		1				

С			YZ					
		00	01	11	10			
V	0			1				
Λ	1		1	1	1			

- Simplify boolean expression:

$$S = X'Y'Z + X'YZ' + XY'Z' + XYZ$$

$$= X \oplus Y \oplus Z$$

$$C = XY + XZ + YZ$$

$$= XY + Z(XY' + X'Y)$$

$$= XY + Z(X \oplus Y)$$

- a. Create a new project named Adder.
- b. Add a new block diagram file (schematic file) named full adder.bdf into the project.

2. Create a symbol for the block diagram full adder.

3. Design a block diagram of 4-bit ripple carry adder named ripple_carry_adder_4.bdf using the full adder circuit created in the previous step.

4. Simulate the 4-bit ripple carry adder using waveform editor tool

Assignment 2

a) Design a logic diagram for a full adder.

b) Design a block diagram of 4-bit adder-subtractor.

c) Simulate the 4-bit ripple carry adder using waveform editor tool

Assignment 3

a) Truth table:

D : 1		Gray Coo	de (Input)			BCD (0	Output)	
Decimal	A	В	C	D	X	Y	Z	W
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
3	0	0	1	0	0	0	1	1
2	0	0	1	1	0	0	1	0
7	0	1	0	0	0	1	1	1
6	0	1	0	1	0	1	1	0
4	0	1	1	0	0	1	0	0
5	0	1	1	1	0	1	0	1
Invalid	1	0	0	0	1	1	1	1
Invalid	1	0	0	1	1	1	1	1
Invalid	1	0	1	0	1	1	1	1
Invalid	1	0	1	1	1	1	1	1
8	1	1	0	0	1	0	0	0
9	1	1	0	1	1	0	0	1
Invalid	1	1	1	0	1	1	1	1
Invalid	1	1	1	1	1	1	1	1

b) Simplify the function as much as possible:

• X:

	X		CD					
Λ		00	01	11	10			
	00							
AB	01							
AB	11	1	1	1	1			
	10	1	1	1	1			

• Y:

	V		CD					
1		00	01	11	10			
	00							
A.D.	01	1	1	1	1			
AB	11			1	1			
	10	1	1	1	1			

$$\Rightarrow$$
 Y = A'B + AC + AB'
= (A \oplus B) + AC

• Z:

	\mathbf{z}		CD					
L		00	01	11	10			
	00			1	1			
AD	01	1	1					
AB	11			1	1			
	10	1	1	1	1			

$$=> Z = B'C + A'BC' + AC + AB'$$

= B'(C + A) + A'BC' + AC

• W:

v	W		CD					
•			01	11	10			
	00		1		1			
AB	01	1		1				
AD	11		1	1	1			
	10	1	1	1	1			

c) Design a logic diagram for the simplified function:

d) Run the simulation of the logic diagram using Simulation Waveform Editor tool:

Assignment 4

a) Truth table:

	u) 11 util tuote.									
	Inp	uts		Outputs						
A	В	С	D	RNS	YNS	GNS	REW	YEW	GEW	
0	0	0	0	1	0	0	1	0	0	
0	0	0	1	1	0	0	0	0	1	
0	0	1	0	1	0	0	0	0	1	
0	0	1	1	1	0	0	0	0	1	
0	1	0	0	1	0	0	0	0	1	
0	1	0	1	1	0	0	0	0	1	
0	1	1	0	1	0	0	0	1	1	
0	1	1	1	1	0	0	0	0	0	
1	0	0	0	1	0	0	1	0	0	

1	0	0	1	0	0	1	1	0	0
1	0	1	0	0	0	1	1	0	0
1	0	1	1	0	0	1	1	0	0
1	1	0	0	0	0	1	1	0	0
1	1	0	1	0	0	1	1	0	0
1	1	1	0	0	0	1	1	0	0
1	1	1	1	0	1	0	1	0	0

b) Simplify the function as much as possible:

• RNS:

DI	RNS		CD						
KINS		00	01	11	10				
	00		1	1	1				
AB	01	1	1	1	1				
AD	11								
	10	1							

• YNS:

YNS		CD							
Y	13	00	01	11 10					
00									
AD	01								
AB	11			1					
	10								

$$\Rightarrow$$
 YNS $=$ ABCD

• GNS:

CI	NC		С	D	11 10	
GNS		00	01	11	10	
	00					
AB	01					

CI	GNS		CD						
G			01	11	10				
	11	1	1		1				
	10		1	1	1				

$$\Rightarrow$$
 GNS = ABD' + AC'D + AB'C

• REW:

REW		CD						
Kr	. VV	00	01	11	10			
AB 00 01 11 10	1							
	01							
	11	1	1	1	1			
	10	1	1	1	1			

$$\Rightarrow$$
 REW = A + B'C'D'

• YEW:

YE	· · · · · · · · · · · · · · · · · · ·	CD							
11	4 VV	00	01	T T	10				
	00								
AD	01			1					
AB	11								
	10								

• GEW:

GEW		CD							
Gr	L VV	00	01	11 10					
00 01		1	1	1					
	01	1	1		1				
AB	11								
-	10								

\Rightarrow GEW = A'BC' + A'B'D + A'CD'

c) Design a logic diagram for the simplified function:

d) Run the simulation of the logic diagram using Simulation Waveform Editor tool:

Assignment 5

a) Truth table:

Inputs				Outputs						
A	В	С	Y5·	Y4	Y3	Y2	Y1	Y0		
0	0	0	0	0	0	0	0	0		
0	0	1	0	0	0	0	0	1		
0	1	0	0	0	0	1	0	0		
0	1	1	0	0	1	0	0	1		
1	0	0	0	1	0	0	0	0		
1	0	1	0	1	1	0	0	1		
1	1	0	1	0	0	1	0	0		
1	1	1	1	1	0	0	0	1		

b) Simplify the function as much as possible:

- Output Y0:
- Y0 = 1 for 001, 011, 101, 111

-
$$Y0 = A'B'C + A'BC + AB'C + ABC$$

= $C(A'B' + A'B + AB'AB)$
= $C[A'(B' + B) + A(B' + B)]$

$$= C (A'.1 + A.1)$$

= C

- Output Y1:
- Y1 = 0
- Y1 = GND
- Output Y2:
- Y2 = 1 for 010, 110

-
$$Y2 = A'BC' + ABC'$$

= $BC'(A' + A)$
= BC'

- Output Y3:
- Y3 = 1 for 011, 101

-
$$Y3 = A'BC + AB'C$$

= $C (A'B + AB')$
= $C (A \oplus B)$

- Output Y4:
- Y4 = 1 for 100, 101, 111
- Y4 = AB'C' + AB'C + ABC

		BC								
		00	01	11	10					
	0									
A	1	1	1	1						

$$\Rightarrow$$
 AB' + AC

- Output Y5:
- Y5 = 1 for 110, 111
- Y5 = ABC' + ABC = AB (C' + C) = AB

c) Design a logic diagram for the simplified function:

d) Run the simulation of the logic diagram using Simulation Waveform Editor tool:

Name	Value at 0 ps	0 ps 0 ps	10.0 r	ns 20).O ns	30.0	ns 4	0.0 ns	50.0	ns 6	0.0 ns	70.0	ns	80.0 ns
HanhNhi_A	В 0													
HanhNhi_B	B 0							٦						
HanhNhi_C	B 0				7			7						
~ Y	B 000000	0000	000	000001	000	100	001001	X 010	0000	011001	1001	100 🚶	110001	\square X
HanhNhi_Y5	B 0													
HanhNhi_Y4	B 0													
HanhNhi_Y3	B 0							¬						
HanhNhi_Y2	B 0				$\overline{}$									
HanhNhi_Y1	B 0													
HanhNhi_Y0	ВО													