MODÉLISATION DES BRAS MANIPULATEURS

Viviane CADENAT. Enseignant-chercheur à l'UPS. LAAS-CNRS, équipe Robotique, Action, Perception.

MGD d'un bras manipulateur industriel R,: REPÈRE LIÉ À

L'ORGANE TERMINAL

MGD d'un bras manipulateur industriel

Principe de la méthode Étape 1 : Déterminer T R,: REPÈRE LIÉ À q_2 L'ORGANE TERMINAL O REPÈRE **DE BASE**

MGD d'un bras manipulateur industriel

Principe de la méthode **O**_{n+1} Étape 1: Déterminer T_{on} I 23 $\mathsf{T}_{\mathsf{n-1},\mathsf{n}}$ → Dépend → Dépend de q, seul de q, seul → Dépend de q, seul T₀₁ → Dépend de q₁ seul

MGD d'un bras manipulateur industriel

Principe de la méthode

Étape 2 : Déduire x

- Extraire R_{0n} et $\overrightarrow{O_0O}_{n+1(0)}$ de T_{0n}
- Faire un choix de coordonnées opérationnelles pour la position et l'orientation adapté à la tâche à réaliser
- Calculer x avec les résultats du chapitre précédent

Autres modèles d'un bras manipulateur industriel

- Modèle géométrique inverse (MGI)
 - ☐ But : Trouver q en fonction de x
 - Principe de la méthode
 - Calculer T* la matrice de passage homogène à partir de x
 - Calculer T_{0n}(q) (si cela n'a pas été fait)
 - Trouver q | T_{on}(q) = T*
 - Calcul analytique ou numérique
 - Attention ! Il existe en général plusieurs solutions au problème

Autres modèles d'un bras manipulateur industriel

- Modèles cinématiques (MC)
 - □ Relation entre les vitesses articulaires et les vitesses opérationnelles
 - Modèle cinématique direct (MCD)
 - Structure $\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial q_1} & \dots & \frac{\partial f_1}{\partial q_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial q_1} & \dots & \frac{\partial f_m}{\partial q_n} \end{bmatrix} \begin{pmatrix} \dot{q}_1 \\ \vdots \\ \dot{q}_n \end{pmatrix} = J(q)\dot{q}$ Jacobienne du robot
 - Méthodes de calcul → analytique ou numérique
 - Dérivation directe du MGD (robots simples seulement)
 - Méthode basée sur la propagation des vitesses (cas général)
 - Modèle cinématique inverse → Inversion du MCD (attention à l'inversibilité de J et aux singularités)

Exemple : Modèles d'un bras manipulateur simple

