DEEP LEARNING WITH PYTORCH

- ◆ 인공신경망 (ANN : Artificial Neural Network)
 - ❖ 동작원리

[STEP1] 순전파 FORWARD PROPAGATION

- 입력층 ====> 출력층 방향 계산 과정
- 신호와 가중치 곱한 값 출력층까지 차례대로 계산
- 피쳐1*가중치1 + 피쳐2*가중치2 + + 피쳐n*가중치n + b
 - → 활성화함수AF(피쳐가중치합+b) → 결과값

- ◆ 인공신경망 (ANN : Artificial Neural Network)
 - ❖ 동작원리

[STEP2] 역전파 BACKWARD PROPAGATION

- 입력층 <==== 출력층 방향 계산 과정
- 오류에 대한 미분값, 학습률, 경사하강법 이용 최적화 값 입력층으로 전달
- 현재 W, b ((정답-예측값)의 미분값 * 학습률)
 - → 새로운 W, b 업데이트
 - → 이전 층으로 전달

- ◆ 오류역전파 알고리즘 (Backward Propagation)
 - →1986년 제안된 효율적 최적화 알고리즘
 - → 경사하강법 이용 파라미터(w, b) 업데이트하며 학습 진행
 - → 각 Layer에서 손실함수 미분값 계산에 어려움을 해결한 알고리즘
 - → 미분학의 '체인툴 ' 착안 → 연쇄법칙
 - → 출력층에서 입력층로 오류를 전달하며 파라미터(w, b) 업데이트

◆ 가중치/절편 최적화

❖ 잔차/오차와 가중치, 절편 관계

→ **잔차(Residual)** : 표본 회귀식과 관측치 차이

→ 오차(Error) : 모집단의 회귀식과 관측치 차이

→ 최적화(Optimizer)

잔차/오차 최소화 하는 것

- ❖ 목적함수(Objective Function)
 - → 최소화 또는 최대화 하고 싶어하는 함수
 - → 최소화 함수
 - 비용함수(cost function) : 전체 데이터 셋 대한 예측값과 실제값 차이 측정 함수
 - 손실함수 (loss function) : 한 개 데이터 셋 대한 예측값과 실제값 차이 측정 함수
 - 오류함수 (error function) : 딥러닝에서 손실 함수의 다른 말
 - 최대화 함수
 - MLE, KL-Divergence

- ◆ 가중치/절편 최적화
 - ❖ 최적화 방법 경사하강법(Gradient Descent)
 - → 수학적 기법 중 하나
 - → 손실함수 값을 최소화하기 위해 기울기를 이용하는 사용
 - → **step-size 간격**으로 수행, 보통 0.1~0.001 속도가 적당
 - → 학습 데이터 수, 학습률에 따른 다양한 방법 존재

- ❖ 최적화 방법 경사하강법(Gradient Descent)
 - ① 처음 시작점(Initial starting point)은 랜덤으로 시작하여 시작점의 기울기,▽f(x) 구하여 기울기의 경사정도(절대값)과 음 또는 양의 방향인지 확인
 - ② Learning rate/step size라 불리는 r의 값을 임의적으로 수정하여 이동하고자 하는 거리만큼 점 이동
 - ② 업데이트된 점에서 기울기를 구하여 0의 수렴하는지 확인
 - ③ 기울기가 0의 수렴하지 않으면 1번으로 돌아가서 반복실행

◆ 가중치/절편 최적화

❖ 최적화 방법 - 경사하강법(Gradient Descent)

Local Minimum
실제 최적화 지점이 아닌 지점
최저점을 제외한 나머지 지점들

Global Minimum
최저점

weight

◆ 가중치/절편 최적화

❖ 최적화 방법 - 경사하강법(Gradient Descent)

Local Minima Problem

Global minimum 아닌 Local minimum에서 멈추는 현상 사실상 고차원공간에서 발생하기 힘든 현상

- → Momentum, Adagrad, Adam 등의 회피 최적화기법
- → Learning Rate 적절히 조절

◆ 가중치/절편 최적화

❖ 다양한 경사하강법(Gradient Descent)

Batch Gradient Descent	전체 데이터 학습 후 검증 및 업데이트 진행, 많은 시간 및 계산량 소요	
SGD	일부 학습 데이터(mini-batch) 선택 후 진행	
(Stochastic Gradien Descent)	BGD에 비해 다소 부정확, 속도 빠름	
Momentum	업데이트 시 이전 값과 비교하여 같은 방향으로 업데이트 진행 -> 관성	
AdaGrad	변수들 update 시 각각의 변수마다 Ir 즉 step size 다르게 설	
(Adaptive Gradient)	정 갱신 정도 약해져 전혀 갱신되지 않는 경우 발생	
RMSProp / AdaDelta	AdaGrad의 단점 보완, 과거 기울기는 조금 반영 + 최신 기울기 많이 반영	
Adam	과거 미분값 계속 가중평균 내면서 효율적 업데이	
(Adaptive Moment Estimation)	트 RMSProp + Momentum 방식 결합	

- torch.autograd
 - ❖ 자동미분 기능
 - 모델 복잡해질수록 경사 하강법을 넘파이 등으로 직접 코딩하는 것은 까다로움
 - 파이토치에서는 이런 수고를 하지 않도록 자동 미분(Autograd) 지원


```
❖ 데이터 업데이트 조건
```

- .requires_grad = True
- .is_leaf = True

torch.autograd

◆ 손실함수(Loss Function)

◆ 손실함수(Loss Function)

torch.nn.functional / torch.nn

C	우형 손실함수		손실함수
회귀		torch.nn. MSELoss	평균 제곱 오차(Mean Squared Error)
노	<u>4</u> 171	torch.nn. L1Loss	평균 절대 오차(Mean Absolute Error)
낸	다중	torch.nn.CrossEntropyLoss	교차 엔트로피 손실(Cross Entropy Loss)
바마	이진	torch.nn. BCELoss	이진 교차 엔트로피 손실(Binary Cross Entropy Loss)

◆ 가중치/절편 최적화 클래스

❖ torch.optim 클래스

- W, b 업데이트 처리 클래스
- 필수 매개변수 : 모델 파라미터(model.parameters()와 학습률(lr)

torch.optim. SGD	가장 기본적인 최적화 알고리즘 각각의 파라미터에 대해 학습률(learning rate) 곱한 값 사용 가중치 업데이트
torch.optim. Adam	학습률을 각 파라미터마다 적응적으로 조절하는 최적화 알고리즘 현재 그래디언트와 이전 그래디언트의 지수 가중 평균 이용 가중치 업데이트
torch.optim. RMSprop	그래디언트의 제곱값의 이동 평균을 이용하여 학습률 조절하는 최적화 알고리즘 Adam과 유사한 방식으로 학습률 조절
torch.optim. Adagrad	각 파라미터에 대한 학습률을 조절하는 최적화 알고리즘 이전 그래디언트 제곱의 누적 값 사용하여 학습률 조절

◆ 가중치/절편 최적화 클래스

❖ Model Parameters

■ 충별 W, b 텐서들로 역전파 시 업데이트

model .parameters()	 모델의 학습 가능한 파라미터들 반환 모델의 모든 레이어 및 모듈에서 정의된 파라미터들 포함 모델이 학습 중에 업데이트되는 값들 최적화 알고리즘 통해 업데이트되는 대상 학습 데이터와 손실 함수를 통해 계산된 그라디언트를 사용하여 업데이트
model .named_parameters()	• parameters()와 동일 기능 • 파라미터 이름과 값을 전달

```
* torch.optim 클래스

# 가중치/절편 최적화 방법 설정
from torch.optim import Adam

# W, b 업데이트위한 모델 파라미터 설정
optimizer = Adam( linear_model.parameters(), lr=LR )

Adamb
```

◆ 가중치/절편 최적화

❖ torch.optim 클래스

```
# 가중치 기울기 0 초기화
optimizer.zero_grad()

# 학습 진행
pre_y = linear_model(x)

# 손실 계산
loss = nn.MSELoss()(pre_y, y.reshape(-1,1))

# 역전파 진행
loss.backward()

# 가중치/절편 업데이트
optimizer.step()
```

◆ 학습 과정

- ❖ 데이터 분석
 - 피쳐와 타겟 선정
 - 학습 방법 선정
 - → 지도 학습: 문제/속성/피쳐 + 정답/라벨/타겟
 - → 비지도학습: 문제
 - → 강화 학습: 문제 + 피드백(상과 벌)
 - 학습 종류 선정 : 회귀 / 분류
 - → 회귀(Regression) : 수치값 예측
 - → 분류(Classification) : 데이터 그룹/묶음 나누기

◆ 학습

 ❖ 데이터셋 분리

 ■ 학습용 데이터셋
 : 학습 전용 데이터 셋

 ■ 테스트용 데이터셋
 : 학습 후 성능평가 위한 데이터 셋

 ■ 검증용 데이터셋
 : 모델 성능 개선 체크용 데이터 셋

◆ 학습

❖ 학습용 데이터셋 분리

■ 딥러닝 대량 데이터 학습 시간/비용 많이 소요 부분 대책

■ 에포크(epochs) : 처음부터 끝까지 학습하는 횟수

■ 배치크기(batch size) : 전체 데이터를 작은 단위로 나눈 크기

2의 제곱수 크기

• 이터레이션(iteration) : 에포크, 배치크기로 계산한 반복 횟수

W,b 업데이터 횟수

■ 예) 100개 데이터, 배치크기 20개, 에포크 10번


```
❖ 학습용 데이터 준비

# DataFrame ===> Feature 추출

X = bostonDF.iloc[:, :13].values

Y = bostonDF['medv'].values

print(f'X : {type(X)}, {X.shape}\nY : {type(Y)}, {Y.shape}')
```

◆ 학습

❖ 학습 설정

```
# 학습 횟수 및 한번에 학습할 데이터 크기 설정
EPOCHS = 500
BATCH_SIZE = 100
LR = 0.001
```

◆ 학습

❖ 학습 설정

```
# 가중치/절편 최적화 방법 설정
from torch.optim import Adam

optimizer = Adam(linear_model.parameters(), lr=LR)
```

◆ 학습

❖ 학습 설정 - 모델 동작모드 설정

유형	설정 함수	
학 습 모 드	model.train()	* 모델 학습 전 호출 → 훈련 데이터에 대해 학습 시작할 준비 - 정규화(regularization) 기법들 동작 설정 - 모델 파라미터 업데이트를 위해 역전파(backpropagation) 수행 - 그래디언트 계산 수행 - 최적화(optimizer) 알고리즘에 따라 모델 파라미터 업데이트

◆ 학습

❖ 학습 설정 - 모델 동작모드 설정

유형	설정 함수	
평 가 모 드	model.eval()	* 모델 평가/추론 모드 전환 * 테스트 데이터나 검증 데이터 사용하여 모델 평가할 때 사용 - 정규화(regularization) 기법들 비활성화 설정 - 드롭아웃 비활성화, 배치 정규화 이동 평균/이동 분산 업데이트 않됨 - 역전파 비활성화로 모델 파라미터 업데이트 않됨

```
◆ 학습 진행

for epoch in range(EPOCHS):
    for i in range(len(X)//BATCH_SIZE):
        start = i*BATCH_SIZE
        end = start + BATCH_SIZE

# ndarray ==> tensor변환

x = torch.FloatTensor(X[start:end])
y = torch.FloatTensor(Y[start:end])
```

```
❖ 모델 평가
# 모델 성능 평가
pre = linear_model(torch.FloatTensor(X[0, :13]))
pre, Y[0]
```