DAT (DATA ANALYTICS TEAM) PRESENTS: Predicting Crime in Queens.

OUR DATASET:

NEW YORK CITY CRIMES 2014-2015.

DATA CLEANING/PRE-PREPROCESSING:

```
nycrime_data <- read.csv(filepath)
nycrime_data <- nycrime_data[nycrime_data$BORO_NM == 'QUEENS',]</pre>
nycrime_data <- nycrime_data[nycrime_data$PREM_TYP_DESC == 'BAR/NIGHT CLUB',]</pre>
nycrime_data <- na.omit(nycrime_data)
write.csv(nycrime_data, 'Clean_NYPD_Data.csv')
nycrime_data <- read.csv('clean_NYPD_Data.csv')
num \leftarrow c(3,4,9,12,13,16,17)
nycrime_data.clean <- subset(nycrime_data, select = c(num))</pre>
colnames(nycrime_data.clean) <- c('Date', 'Time', 'Desc', 'Success', 'LVO', 'Precinct', 'Occurence')</pre>
nycrime_data.clean$Precinct <- as.factor(nycrime_data.clean$Precinct)
nycrime_data.clean$Date <- as.Date(nycrime_data.clean$Date, "%m/%d/%Y")
nycrime_data.clean <- nycrime_data.clean %>%
mutate(month = format(Date, "%m"), year = format(Date, "%Y")) %>%
group_by(month,year)
nycrime_data.clean <- nycrime_data.clean[,-1]
z <- lapply(str_split(nycrime_data.clean$Time, ":"), '[',1)</pre>
nycrime_data.clean$Hour <- as.character(z)
nycrime_data.clean <- nycrime_data.clean[,-1]
cols <- c('month', 'year', 'Hour')</pre>
nycrime_data.clean[cols] <- lapply(nycrime_data.clean[cols], factor)</pre>
```


DESCRIPTIVE STATISTICS:

DESCRIPTIVE STATISTICS:

DESCRIPTIVE STATISTICS:

	CMPLNT_FR_DT	Exact date of occurrence for the reported event (or starting date of occurrence, if CMPLNT_TO_DT exists)				
	CMPLNT_FR_TM	Exact time of occurrence for the reported event (or starting time of occurrence, if CMPLNT_TO_TM exists)				
	OFNS_DESC	Description of offense corresponding with key code				
	CRM_ATPT_CPTD_CD	Indicator of whether crime was successfully completed or attempted, but failed or was interrupted prematurely				
	LAW_CAT_CD	Level of offense: felony, misdemeanor, violation				
	ADDR_PCT_CD	The precinct in which the incident occurred				
4	LOC OF OCCUR DESC	Specific location of occurrence in or around the premises; inside, opposite of, front of, rear of				

OUR RESULTS:

Reference				
Prediction	FELONY	MISDEMEANOR	VIOLATION	
FELONY	164	12	0	
MISDEMEANOR	12	235	0	
VIOLATION	0	0	43	

MAIN SPLITTING ATTRIBUTES

- Crime Description
- Precinct


```
nycrime.nb <- train(x = train_x, y = train_y, method = 'nb', trControl=trainControl(method='cv', number=10)) nycrime.nb
```

nycrime.nb.predict <- predict(nycrime.nb\$finalModel, test_x)

```
confusiontable.nb <- table(test_y,nycrime.nb.predict$class,dnn=c('Actual','Prediction'))
accuracy_initial <- sum(diag(confusiontable.nb)) / sum(confusiontable.nb)
accuracy_initial</pre>
```

DT Predictors

```
x <- nycrime_data.clean[,c(1,4)]
train_x <- x[index,]
test_x <- x[-index,]

nycrime.nb.updated <- train(x = train_x, y = train_y, method = 'nb', trControl=trainControl(method='cv', number=10))
nycrime.nb.updated
nycrime.nb.updated.predict <- predict(nycrime.nb.updated$finalModel, test_x)</pre>
```

confusiontable.nb.updated <- table(test_y,nycrime.nb.updated.predict\$class,dnn=c('Actual','Prediction'))
accuracy_updated <- sum(diag(confusiontable.nb.updated)) / sum(confusiontable.nb.updated)
accuracy_updated</pre>

OUR RESULTS:

<u>Initial</u>

Prediction				
Actual	FELONY	MISDEMEANOR	VIOLATION	
FELONY	161	18	0	
MISDEMEANOR	7	250	0	
VIOLATION	0	0	30	

DT Predictors

Prediction				
Actual	FELONY	MISDEMEANOR	VIOLATION	
FELONY	161	18	0	
MISDEMEANOR	8	249	0	
VIOLATION	0	0	30	

OUR RESULTS:

<u>Initial</u>

3			
Prediction	FELONY	MISDEMEANOR	VIOLATION
FELONY	172	21	0
MISDEMEANOR	7	236	0
VIOLATION	0	0	30

DT Predictors

5000 T 100 T 100			
Prediction	FELONY	MISDEMEANOR	VIOLATION
FELONY	149	0	0
MISDEMEANOR	30	257	0
VIOLATION	0	0	30

