Random forests

Sanjoy Dasgupta

University of California, San Diego

Topics we'll cover

- 1 Ensembles of tree classifiers
- 2 The random forest construction
- 3 An illustrative experiment

From tree to forest

• Decision tree. Starts overfitting beyond a point.

From tree to forest

• Boosted decision trees. Learning is sequential, slow.

Random forests

Given a data set S of n labeled points:

- For t = 1 to T:
 - Choose n' points randomly, with replacement, from S.
 - Fit a decision tree h_t to these points.
 - At each node restrict to one of k features chosen at random.

Example settings:

- n' = n
- $k = \sqrt{d}$ for d-dimensional data

Final predictor: majority vote of h_1, \ldots, h_T .

An ecological prediction problem: "covertype" data

Predict forest type:

- Spruce-fir
- Lodgepole pine
- 5 other classes

54 cartographic/geological features:

- Elevation, slope, amount of shade, ...
- Distance to water, road, ...
- Soil type

Data set details:

- 49,514 training points
- 445,627 test points

Decision tree

Depth 20: training error 1%, test error 12.6%

Boosted decision trees

Trees of depth 20.

Random forest

Recall:

- Decision tree: depth 20, test error 12.6%
- Boosted decision trees, 10 trees, depth 20: test error 8.7%

Random forest setting: 10 trees, 50% features dropped, depth 40.

- Each individual tree has test error 15% to 17%
- Forest test error: 8.8%