1. Selection

Theorem 1.1. If $h\sqrt{n}b_n \stackrel{p}{\to} \infty$ then $P\left\{\hat{\beta}_{(b)}(s) = 0\right\} \to 1$.

Proof. The proof is by contradiction.

Recall that the objective to be minimized by $\hat{\beta}_{(p)}(s)$ is

$$Q\left\{\hat{\boldsymbol{\beta}}(s)\right\} = (1/2)\left\{\boldsymbol{Y} - \boldsymbol{Z}(s)\hat{\boldsymbol{\beta}}(s)\right\}^{T}\boldsymbol{W}(s)\left\{\boldsymbol{Y} - \boldsymbol{Z}(s)\hat{\boldsymbol{\beta}}(s)\right\} + \sum_{j=1}^{p} \lambda_{j}\|\hat{\boldsymbol{\beta}}_{p}(s)\|$$
(1)

Let $\hat{\beta}_p(s) \neq 0$. Then (1) is differentiable w.r.t. $\beta_p(s)$ and Q is maximized at

$$\begin{split} 0 &= \boldsymbol{Z}_{(p)}^{T}(\boldsymbol{s}) \boldsymbol{W}(\boldsymbol{s}) \left\{ \boldsymbol{Y} - \boldsymbol{Z}_{(-p)}(\boldsymbol{s}) \hat{\boldsymbol{\beta}}_{(-p)}(\boldsymbol{s}) - \boldsymbol{Z}_{(p)}(\boldsymbol{s}) \hat{\boldsymbol{\beta}}_{(p)}(\boldsymbol{s}) \right\} - \lambda_{p} \frac{\boldsymbol{\beta}_{(p)}(\boldsymbol{s})}{\|\hat{\boldsymbol{\beta}}_{(p)}(\boldsymbol{s})\|} \\ &= \boldsymbol{Z}_{(p)}^{T}(\boldsymbol{s}) \boldsymbol{W}(\boldsymbol{s}) \left[\boldsymbol{Y} - \boldsymbol{Z}(\boldsymbol{s}) \boldsymbol{\beta}(\boldsymbol{s}) - \frac{h^{2} \kappa_{2}}{2\kappa_{0}} \left\{ \boldsymbol{\beta}_{uu}(\boldsymbol{s}) + \boldsymbol{\beta}_{vv}(\boldsymbol{s}) \right\} \right] \\ &+ \boldsymbol{Z}_{(p)}^{T}(\boldsymbol{s}) \boldsymbol{W}(\boldsymbol{s}) \boldsymbol{Z}_{(-p)}(\boldsymbol{s}) \left[\boldsymbol{\beta}_{(-p)}(\boldsymbol{s}) + \frac{h^{2} \kappa_{2}}{2\kappa_{0}} \left\{ \boldsymbol{\beta}_{(-p),uu}(\boldsymbol{s}) + \boldsymbol{\beta}_{(-p),vv}(\boldsymbol{s}) \right\} - \hat{\boldsymbol{\beta}}_{(-p)}(\boldsymbol{s}) \right] \\ &+ \boldsymbol{Z}_{(p)}^{T}(\boldsymbol{s}) \boldsymbol{W}(\boldsymbol{s}) \boldsymbol{Z}_{(p)}(\boldsymbol{s}) \left[\boldsymbol{\beta}_{(-p)}(\boldsymbol{s}) + \frac{h^{2} \kappa_{2}}{2\kappa_{0}} \left\{ \boldsymbol{\beta}_{(p),uu}(\boldsymbol{s}) + \boldsymbol{\beta}_{(p),vv}(\boldsymbol{s}) \right\} - \hat{\boldsymbol{\beta}}_{(p)}(\boldsymbol{s}) \right] \\ &- \lambda_{p} \frac{\hat{\boldsymbol{\beta}}_{(p)}(\boldsymbol{s})}{\|\hat{\boldsymbol{\beta}}_{(p)}(\boldsymbol{s})\|} \end{split}$$

(2)

So

$$\lambda_{p} \frac{\hat{\beta}_{(p)}(s)}{\|\hat{\beta}_{(p)}(s)\|} = Z_{(p)}^{T}(s)W(s) \left[Y - Z(s)\beta(s) - \frac{h^{2}\kappa_{2}}{2\kappa_{0}} \left\{ \beta_{uu}(s) + \beta_{vv}(s) \right\} \right] \\
+ \left\{ Z_{(p)}^{T}(s)W(s)Z_{(-p)}(s) \right\} \left[\beta_{(-p)}(s) + \frac{h^{2}\kappa_{2}}{2\kappa_{0}} \left\{ \beta_{(-p),uu}(s) + \beta_{(-p),vv}(s) \right\} - \hat{\beta}_{(-p)}(s) \right] \\
+ \left\{ Z_{(p)}^{T}(s)W(s)Z_{(-p)}(s) \right\} \left[\beta_{(-p)}(s) + \frac{h^{2}\kappa_{2}}{2\kappa_{0}} \left\{ \beta_{(p),uu}(s) + \beta_{(p),vv}(s) \right\} - \hat{\beta}_{(p)}(s) \right] (3)$$

From Lemma 2 of ?, $n^{-1}\left\{Z_{(p)}^{T}(s)W(s)Z_{(-p)}(s)\right\} = O_{p}(1)$ and $n^{-1}\left\{Z_{(p)}^{T}(s)W(s)Z_{(p)}(s)\right\} = O_{p}(1)$. From Theorem 3 of ?, we have that $hn^{1/2}\left[\hat{\boldsymbol{\beta}}_{(-p)}(s) - \boldsymbol{\beta}_{(-p)}(s) - \frac{h^{2}\kappa_{2}}{2\kappa_{0}}\left\{\beta_{(p),uu}(s) + \beta_{(p),vv}(s)\right\}\right] = O_{p}(1)$ and $hn^{1/2}\left[\hat{\boldsymbol{\beta}}_{(p)}(s) - \boldsymbol{\beta}_{(p)}(s) - \frac{h^{2}\kappa_{2}}{2\kappa_{0}}\left\{\beta_{(p),uu}(s) + \beta_{(p),vv}(s)\right\}\right] = O_{p}(1)$. So the second and third terms of the sum in (2) are $O_{p}(1)$. We showed in the proof of ?? that $hn^{-1/2}Z_{(p)}^{T}(s)W(s)\left\{Y - Z(s)\beta(s)\right\} = O_{p}(1)$.

Because the first three terms of the sum in 2 are $O_p(1)$, for $\hat{\beta}_{(p)}(s)$ to be a solution, we must have that $hn^{1/2}\lambda_p \frac{\hat{\beta}_{(p)}(s)}{\|\hat{\beta}_{(p)}(s)\|} = O_p(1)$.

But since by assumption $\hat{\beta}_{(p)}(s_i) \neq 0$, there must be some $k \in \{1, ..., d_p\}$ such that $|\hat{\beta}_{(p),k}(s)| = \max\{|\hat{\beta}_{(p),k'}(s)| : 1 \leq k' \leq d_p\}$. And for this k, we have that $|\hat{\beta}_{(p),k}(s)|/\|\hat{\beta}_{(p)}(s)\| \geq 1/\sqrt{d_p} > 0$.

Now since $\sqrt{n}b_n \to \infty$, we have that $hn^{1/2}\lambda_p \frac{\hat{\beta}_{(p)}(s)}{\|\hat{\beta}_{(p)}(s)\|}$ is unbounded and therefore dominates the $O_p(1)$ terms of the sum in (2). So for large enough n, $\hat{\beta}_{(p)}(s) \neq 0$ cannot maximize Q.

Theorem 1.2. If $h\sqrt{n}a_n \stackrel{p}{\to} 0$ then $P\left\{\hat{\beta}_{(a)}(s) \neq 0\right\} \to 1$.

Proof. Again, the proof is by contradiction.

Assume that $\hat{\beta}_{(k)} = 0$ for some $k < p_0$. For the adaptive group lasso, the covariate group k is

shrunk to zero if

$$\left\| \left\{ \boldsymbol{Z}_{(k)}^{T}(\boldsymbol{s}) \boldsymbol{W}(\boldsymbol{s}) \boldsymbol{Z}_{(k)}^{T}(\boldsymbol{s}) \right\}^{-1} \boldsymbol{Z}_{(k)}^{T}(\boldsymbol{s}) \boldsymbol{r}_{(k)}(\boldsymbol{s}) \right\|^{2} \leqslant \frac{h^{2} n \lambda^{2}}{\|\tilde{\boldsymbol{\beta}}_{(k)}\|^{2}}$$

where $r_{(k)}(s)$ is the residual after accounting for all covariate groups except group k. That is, $r_{(k)}(s) = Y - Z_{(-k)}(s)\beta_{(-k)}(s)$. But $\|\tilde{\boldsymbol{\beta}}_{(k)}\| > 0$ implies that $\|\left\{\boldsymbol{Z}_{(k)}^T(s)\boldsymbol{W}(s)\boldsymbol{Z}_{(k)}^T(s)\right\}^{-1}\boldsymbol{Z}_{(k)}^T(s)r_{(k)}(s)\|^2 > 0$ and $\frac{h^2n\lambda^2}{\|\tilde{\boldsymbol{\beta}}_{(k)}\|^2} \leq h^2na_n^2 \to 0$. So

$$P\left\{\hat{\boldsymbol{\beta}}_{(k)}(\boldsymbol{s}) \neq 0\right\} \leqslant P\left[\left\|\left\{\boldsymbol{Z}_{(k)}^{T}(\boldsymbol{s})\boldsymbol{W}(\boldsymbol{s})\boldsymbol{Z}_{(k)}^{T}(\boldsymbol{s})\right\}^{-1}\boldsymbol{Z}_{(k)}^{T}(\boldsymbol{s})\boldsymbol{r}_{(k)}(\boldsymbol{s})\right\|^{2} \leqslant h^{2}na_{n}^{2}\right] \to 0.$$
(4)