Seminar 3 Criteriul de decizie Maximum Likelihood

DEPI

- 1. Fie detecția între două semnale constante, $s_0(t) = -1$ și $s_1(t) = 4$. Semnalele sunt afectate de zgomot alb cu distribuția \mathcal{N} ($\mu = 0, \sigma^2 = 4$). Receptorul ia un singur eșantion la momentul $t_0 = 0.75$, și valoarea obținută este r = 1.8.
 - a. Scrieți expresiile celor două distribuții condiționate și reprezentați-le
 - b. Ce decizie se ia cu criteriul Maximum Likelihood?
- 2. Fie detecția între două semnale, $s_0(t) = cos(2\pi t)$ și $s_1(t) = sin(2\pi t)$. Semnalele sunt afectate de zgomot alb cu distribuția $\mathcal{N}(\mu = 0, \sigma^2 = 2)$. Receptorul ia un singur eșantion la momentul $t_0 = 0.75$, și valoarea obținută este $r(t_0) = 3.5$.
 - a. Reprezentați grafic cele două distribuții condiționate și scrieți-le expresia matematică
 - b. Ce decizie se ia conform criteriului Maximum Likelihood?
 - c. Găsiți regiunile de decizie pentru ambele criterii
 - d. Calculați probabilitățile condiționate ale celor 4 scenarii (rejecție corectă, alarmă falsă, pierdere, detecție corectă)
 - e. Care ar fi cel mai bun moment t_0 de eșantionare, pentru a decide între semnale? Justificați
 - f. Care ar fi cel mai rău moment t_0 de eșantionare, pentru a decide între semnale? Justificati
 - g. Repetați a) și b) dacă zgomotul are distribuție uniformă $\mathcal{U}[-4,4]$. Există valori pentru care nu se poate lua o decizie?
 - h. Care este varianța maximă a unui zgomot uniform, cu media 0, pentru care se poate lua o decizie cu criteriul ML pentru r = 3.5?