Lagrangian density

 $\alpha_{\theta} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_{5} \partial_{\theta} \omega_{\lambda} \alpha_{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} +$ $_{\theta}\partial^{\kappa}f_{\lambda}^{\theta} + \frac{1}{3}\,r_{2}\,\partial_{\kappa}\omega^{\alpha\beta\theta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}\,r_{2}\,\partial_{\kappa}\omega^{\theta\alpha\beta}\,\partial^{\kappa}\omega_{\alpha\beta\theta} _{\kappa}^{-}$ $_{F}$ $_{S}$ $\partial_{\theta}\omega_{\lambda}^{\alpha}{}_{\alpha}^{\alpha}$ $\partial^{\lambda}\omega^{\theta\kappa}{}_{\kappa}$ $_{\kappa}^{\beta}\partial^{\prime}\omega_{\lambda}^{\alpha}+$ $_{\kappa}\partial^{\kappa}f_{\alpha\lambda}+\frac{1}{3}t_{2}\omega_{,\theta\kappa}\partial^{\kappa}f^{'\theta}.$ $\frac{2}{3}r_2\,\partial^\beta\omega^{\theta\alpha}_{\kappa}\,\partial_\theta\omega^{\kappa}_{\beta}-\frac{1}{3}r_2\,\partial_\theta\omega^{\kappa}_{\beta}\,\partial_\kappa\omega^{\alpha\beta\theta}-\frac{2}{3}r_2\,\partial_\theta\omega^{\kappa}_{\beta}\,\partial_\kappa\omega^{\theta\alpha\beta}.$ $\frac{2}{3}t_{2} \, \omega_{IK\theta} \, \partial^{K} f^{I\theta} - \frac{1}{3}t_{2} \, \omega_{\theta IK} \, \partial^{K} f^{I\theta} + \frac{2}{3}t_{2} \, \omega_{\theta K I} \, \partial^{K} f^{I\theta} - \frac{1}{6}t_{2} \, \partial^{\alpha} f^{\lambda}_{K}$ $\frac{1}{6}t_2 \partial_{\kappa} f_{\beta}^{\ \lambda} \partial^{\kappa} f_{\lambda}^{\ \theta} + \frac{1}{6}t_2 \partial_{\kappa} f^{\lambda}_{\ \theta} \partial^{\kappa} f_{\lambda}^{\ \theta} + \frac{1}{3}r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3}r_2 \partial^{\beta} \omega_{\lambda}^{\ \lambda\alpha} \partial_{\lambda} \omega_{\alpha\beta}^{\ \mu} + r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta\kappa}$ $\theta - \frac{1}{6}t_2 \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\ \theta} + \frac{1}{6}t_2 \partial^{\alpha} f^{\lambda}$ $r_5 \, \partial_{\alpha} \omega_{\lambda}^{\ \ \alpha} \, \partial_{\kappa} \omega^{\theta \kappa \lambda} + r_5 \, \partial_{\theta} \omega_{\lambda}^{\ \ c}$

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	$\frac{1}{k^2 r_5}$	0	0	0
$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
$r_1^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$a_{1}^{*1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$
	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} -$	$\frac{1}{k^2 r_5} - \frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} - \frac{i \sqrt{2}}{k r_5 + k^3 r_5} = 0 = 0$ $\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} \frac{3k^2 r_5 + 2t_2}{(k+k^3)^2 r_5 t_2} \frac{i(3k^2 r_5 + 2t_2)}{k(1+k^2)^2 r_5 t_2} = 0 = 0$	$\frac{1}{k^2 r_5} - \frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} - \frac{i \sqrt{2}}{k r_5 + k^3 r_5} = 0 0 0$ $\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} \frac{3k^2 r_5 + 2t_2}{(k+k^3)^2 r_5 t_2} \frac{i(3k^2 r_5 + 2t_2)}{k(1+k^2)^2 r_5 t_2} 0 0 0$ $\frac{i \sqrt{2}}{k r_5 + k^3 r_5} - \frac{i(3k^2 r_5 + 2t_2)}{k(1+k^2)^2 r_5 t_2} \frac{3k^2 r_5 + 2t_2}{(1+k^2)^2 r_5 t_2} 0 0 0$	$\frac{1}{k^2 r_5} - \frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} - \frac{i \sqrt{2}}{k r_5 + k^3 r_5} = 0 0 0 0$ $\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} \frac{3k^2 r_5 + 2t_2}{(k+k^3)^2 r_5 t_2} \frac{i(3k^2 r_5 + 2t_2)}{k(1+k^2)^2 r_5 t_2} 0 0 0$ $\frac{i \sqrt{2}}{k r_5 + k^3 r_5} - \frac{i(3k^2 r_5 + 2t_2)}{k(1+k^2)^2 r_5 t_2} \frac{3k^2 r_5 + 2t_2}{(1+k^2)^2 r_5 t_2} 0 0 0$ $0 0 0 0 0 0$	$\frac{1}{k^2 r_5} - \frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} - \frac{i\sqrt{2}}{k r_5 + k^3 r_5} = 0 0 0 0$ $\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} \frac{3k^2 r_5 + 2t_2}{(k+k^3)^2 r_5 t_2} \frac{i(3k^2 r_5 + 2t_2)}{k(1+k^2)^2 r_5 t_2} 0 0 0$ $\frac{i\sqrt{2}}{k r_5 + k^3 r_5} - \frac{i(3k^2 r_5 + 2t_2)}{k(1+k^2)^2 r_5 t_2} \frac{3k^2 r_5 + 2t_2}{(1+k^2)^2 r_5 t_2} 0 0 0$ $0 0 0 0 0 0 0$	$\frac{1}{k^2 r_5} - \frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} - \frac{i\sqrt{2}}{k r_5 + k^3 r_5} = 0 0 0 0$ $\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5} \frac{3k^2 r_5 + 2t_2}{(k + k^3)^2 r_5 t_2} \frac{i(3k^2 r_5 + 2t_2)}{k(1 + k^2)^2 r_5 t_2} 0 0 0 0$ $\frac{i\sqrt{2}}{k r_5 + k^3 r_5} - \frac{i(3k^2 r_5 + 2t_2)}{(k + k^3)^2 r_5 t_2} \frac{3k^2 r_5 + 2t_2}{(1 + k^2)^2 r_5 t_2} 0 0 0 0$ $0 0 0 0 0 0 0 0 0$ $0 0 0 0 0 0 0$

$f_{1^-}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	2 7 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 + \frac{2 t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_{1}^{\#1} + ^{lphaeta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_1} \dagger^\alpha$	$\omega_{1^{\bar{-}}}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} +^{\alpha}$

 $k^2 r_2 + t_2$

0

0

0

0

0

0

0

#

SO(3) irreps

Source constraints

 \vdash

 $\tau_0^{\#2} == 0$

$f_{0}^{#2}$ †	$\omega_{0}^{\#1} +$		_	$\sigma_{0}^{\#1}$	$\tau_{0}^{*1} + \tau_{0}^{*}$	1, ±0,	σ_{0}^{\sharp} $^{+}$		
1	1	3	Э	3	Э	2	2	2	30
$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} == 0$	$t_{1}^{\#1}{}^{\alpha}=0$	$\sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\sigma_{2^{-}}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1}\alpha\beta==0$	$\sigma_{2+}^{\#1}\alpha\beta==0$	Total #:

?	$J^P = 0^- /$	
?	$\frac{1}{k^{\mu}}$?	

	Massive particle			
$J^P = 0^-$	Pole residue:	$-\frac{1}{r_2} > 0$		
	Polarisations:	1		
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$		
?	Spin:	0		
	Parity:	Odd		

(No
mas
nassless
par
ticles
(S