

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 19 pages. Hierdie nasienriglyne bestaan uit 19 bladsye.

QUESTION 1/VRAAG 1

1.10	A 🗸 🗸	(2) [20]
1.9	A 🗸	(2)
1.8	D✓✓	(2)
1.7	$D\checkmark\checkmark$	(2)
1.6	C✓✓	(2)
1.5	A 🗸	(2)
1.4	C✓✓	(2)
1.3	C✓✓	(2)
1.2	D✓✓	(2)
1.1	B√√	(2)

QUESTION 2/VRAAG 2

2.1 $2.1.1 C \& D \checkmark$ (1)

2.1.2 Functional/Funksionele \checkmark (1)

2.1.3 $C_nH_{2n-2} \checkmark$ (1)

2.1.4 Hydroxyl (group)/Hidroksiel(groep) \checkmark (1)

2.2

۷.۷

2.2.1 4-bromo-3,3-dimethylhexane/4-bromo-3,3-dimetielheksaan ✓ ✓ ✓

Marking criteria:

- Correct stem i.e. <u>hexane</u>. ✓
- All substituents (bromo and dimethyl) correctly identified. ✓
- IUPAC name completely correct including numbering, sequence, hyphens and commas. √

Nasienkriteria:

- Korrekte stam d.i. <u>heksaan</u>. √
- Alle substituente (bromo en dimetiel) korrek geïdentifiseer. √
- IUPAC-naam heeltemal korrek insluitende nommering, volgorde, koppeltekens en kommas. √

(3)

2.2.2 4,4-dimethylpent-2-yne/4,4-dimethyl-2-pentyne ✓ ✓ 4,4-dimetielpent-2-yn/4,4-dimetiel-2-pentyn

Marking criteria/Nasienkriteria:

- Correct stem and substituents: dimethyl and pentyne ✓ Korrekte stam en substituente: dimetiel en pentyn
- IUPAC name completely correct including numbering, sequence, hyphens and commas. √

IUPAC-naam heeltemal korrek insluitende nommering, volgorde, koppeltekens en kommas.

2.2.3 Butanal/Butanaal ✓ ✓

Marking criteria/Nasienkriteria:

- Correct functional group: -al / Korrekte funksionele groep: -aal √
- IUPAC name correct/IUPAC-naam korrek √

2.3

2.3.1 Esterification/condensation ✓ Esterfikasie/verestering/kondensasie

(1)

(2)

(2)

2.3.2 $M(C_3H_6O) = 58 \text{ g} \cdot \text{mol}^{-1}$

 $\frac{\text{molecular mass of molecular formula}}{\text{molecular mass empirical formula}}$ $= \frac{116}{58} = 2$

Compound S =
$$C_6H_{12}O_2 \checkmark$$

 $C_2H_4O_2 \checkmark \checkmark$

Marking criteria/Nasienkriteria:

- C₆H₁₂O₂ √
- C₂H₄O₂ √√
- If only correct answer given ✓✓✓

 Indien slegs korrekte antwoord gegee

NOTE/LET WEL

 Condensed or structural formula/Gekondenseerde of struktuurformule: Max./Maks. ²/₃

(3) **[15]**

QUESTION 3/VRAAG 3

3.1.1 Ketone/ $Ketoon \checkmark$ (1)

3.1.2 Functional group/homologous series ✓ Funksionele groep/homoloë reeks

(1)

3.1.3 Marking criteria:

- Compare structures. ✓
- Compare the strength of intermolecular forces. ✓
- Compare the energy required to overcome intermolecular forces. ✓
- State the difference in melting point. ✓

Nasienkriteria:

- Vergelyk strukture. ✓
- Vergelyk die sterkte van intermolekulêre kragte. ✓
- Vergelyk die energie benodig om intermolekulêre kragte te oorkom. ✓
- Noem die verskil in smeltpunte. ✓

Pentan-2-one/C

Structure:

<u>Longer chain length</u>/less branched/less compact/less spherical/larger surface area (over which intermolecular forces act). ✓

• Intermolecular forces:

<u>Stronger/more intermolecular forces/</u>Van der Waals forces/*London forces/* dipole-dipole forces. ✓

Energy:

More energy needed to overcome or break intermolecular forces/Van der Waals forces/dipole-dipole forces. ✓

Higher melting point. ✓

NOTE

IF higher boiling point - Max. $\frac{3}{4}$

OR

3-methylbutanone/D

• Structure:

<u>Shorter chain length/more</u> branched/more compact more spherical/smaller surface area (over which intermolecular forces act). ✓

• Intermolecular forces:

Weaker/less intermolecular forces/Van der Waals forces/London forces/dipole-dipole forces. ✓

Energy:

<u>Less energy needed to overcome or break intermolecular forces</u>/Van der Waals force/dipole-dipole forces. ✓

Lower melting point.√

NOTE

IF lower boiling point - Max. $\frac{3}{4}$

Pentan-2-oon/C

Struktuur:

<u>Langer kettinglengte</u>/minder vertak/minder kompak/minder sferies/groter oppervlak (waaroor intermolekulêre kragte werk). ✓

• Intermolekulêre kragte:

<u>Sterker/meer intermolekulêre kragte</u>/Van der Waalskragte/Londonkragte/dipool-dipoolkragte. ✓

- <u>Meer energie benodig om intermolekulêre kragte</u>/Van der Waalskragte/ Londonkragte/dipool-dipoolkragte te oorkom/breek. √
- Hoër smeltpunt. ✓

LET WEL

INDIEN hoër kookpunt - Maks. ³/₄

OF

3-metielbutanoon/D

• Struktuur:

<u>Korter kettinglengte</u>/meer vertak/meer kompak/meer sferies/kleiner oppervlak (waaroor intermolekulêre kragte werk). ✓

• <u>Intermolekulêre kragte:</u>

<u>Swakker/minder intermolekulêre kragte</u>/Van der Waalskragte/ Londonkragte/dipool-dipoolkragte. ✓

Energie:

<u>Minder energie benodig om intermolekulêre kragte</u>/Van der Waalskragte/ Londonkragte/dipool-dipoolkragte <u>te oorkom/breek</u>. ✓

Laer smeltpunt. ✓

LET WEL

INDIEN laer kookpunt - Maks. 3/4

(4)

(2)

3.2.1 Marking criteria/Nasienkriteria

If any one of the underlined key words phrases in the **correct context** (vapour pressure) is omitted, deduct 1 mark./Indien enige van die onderstreepte sleutelwoorde of frases in die **korrekte konteks** (dampdruk) uitgelaat is, trek 1 punt af.

The pressure exerted by a vapour at equilibrium with its liquid in a closed system. $\checkmark\checkmark$

Die <u>druk uitgeoefen deur 'n damp</u> in <u>ewewig met sy vloeistof</u> in 'n <u>geslote sisteem.</u>

3.2.2 Marking criteria/Nasienkriteria:

- Dependent and independent variables correctly identified. ✓
 Afhanklike en onafhanklike veranderlikes korrek geïdentifiseer.
- Correct relationship between dependent and independent variables stated. ✓ Korrekte verwantskap tussen die afhanklike en onafhanklike veranderlikes gestel.

<u>Vapour pressure decreases</u> with <u>increase in number of C atoms/chain</u> length. $\checkmark\checkmark$

<u>Dampdruk neem af met toename in aantal C-atome/kettinglengte.</u>

OR/OF

<u>Vapour pressure increases</u> with <u>decrease in number of C atoms/chain length</u>. <u>Dampdruk neem toe</u> met <u>afname in aantal C-atome/kettinglengte</u>.

(2)

3.2.3 Hexan-1-ol/1-Hexanol

Heksan-1-ol/1-Heksanol

Marking criteria/Nasienkriteria

- Correct chain length i.e. hex ✓ Korrekte kettinglengte d.i. heks
- IF hexanol/INDIEN heksanol Max/Maks: ²/₃
- Whole name correct./Volledige naam korrek. ³/₃

Thole hame correct./ volledige haam korrex. $\frac{9}{3}$ (3)

3.2.4 Increases/Toeneem √

(1) **[14]**

QUESTION 4/VRAAG 4

4.1 Tertiary/*Tersiêre* ✓

The halogen/bromine/functional group (-X) is bonded to a C atom that is bonded to three other C atoms/ a tertiary C atom. ✓ Die halogeen/broom/funksionele groep (-X) is gebind aan 'n C-atoom wat aan drie ander C-atome gebind is/ 'n tersiêre C-atoom.

OR/OF

The functional group (— \dot{C} —) is bonded to three other C atoms.

Х/Вr

Die funksionele groep (— C—) is gebind aan drie ander C-atome.

(2)

4.2.1 Concentrated strong base ✓

OR

<u>Concentrated</u> NaOH/KOH/LiOH/sodium hydroxide/ potassium hydroxide/ lithium hydroxide

OR

<u>Strong base/NaOH/KOH/LiOH/sodium hydroxide/ potassium hydroxide/lithium hydroxide in ethanol.</u>

Gekonsentreerde sterk basis

OF

<u>Gekonsentreerde NaOH</u> /KOH/ LiOH /natriumhidroksied/ kaliumhidroksied/ litiumhidroksied

OF

<u>Sterk basis</u>/NaOH /KOH/ LiOH / natriumhidroksied/kaliumhidroksied/litiumhidroksied <u>in etanol</u>

(1)

4.2.2 Elimination/dehydrohalogenation/dehydrobromination √
Eliminasie/dehidrohalogenering/dehidrohalogenasie/dehidrobrominasie/
dehidrobromonering

(1)

4.2.3 Marking criteria:

- Whole structural formula correct for compound A. ✓
- React (2-bromo-2-methylbutane) with NaOH/KOH/LiOH. ✓
- Functional group of alkene correct. ✓
- Whole structural formula of alkene correct. ✓
- NaBr/KBr/LiBr + H₂O √

Nasienkriteria:

- Hele struktuurformule vir verbinding A korrek. √
- Reageer (2-bromo-2-metielbutaan) met NaOH/KOH/LiOH. ✓
- Funksionele groep van alkeen korrek. ✓
- Hele struktuurformule van alkeen korrek. ✓
- NaBr/KBr/LiBr + H₂O √

IF/INDIEN

- Any error e.g. omission of H atoms, condensed or semi structural formula/Enige fout bv. weglating van H-atome, gekondenseerde of semi-struktuurformule: Max/Maks. ³/₅
- Any additional reactants or products / Enige addisionele reaktanse of produkte: Max./Maks. ⁴/₅
- Molecular formulae used:/Molekulêre formule gebruik: Max./Maks. ²/₅
- No or incorrect inorganic reactants or products:/ Geen of verkeerde anorganiese reaktanse of produkte: Max./Maks. ³/₅
- Marking rule 6.3.10/Nasienreël 6.3.10

4.3.1

Marking criteria/Nasienkriteria:

- Functional group correct √
 Funksionele groep korrek
- Whole structure correct √
 Hele struktuur korrek

(2)

(5)

4.3.2 Water/H₂O ✓ (1) 4.3.3 Hydration/*Hidrasie* ✓ (1) 4.4.1 Substitution/Hydrolysis/Substitusie/Hidrolise ✓ (1) 4.4.2 Dilute strong base ✓ OR: Dilute NaOH/KOH/LiOH/sodium hydroxide/potassium hydroxide/lithium hydroxide OR: NaOH(aq)/KOH(aq)/LiOH(aq) **OR:** (Add) water/H₂O Verdunde sterk basis **OF:** Verdunde NaOH/KOH/LiOH/natriumhidroksied/ kaliumhidroksied/ litiumhidroksied **OF**: NaOH(aq)/KOH(aq)/LiOH(aq) **OF:** (Voeg) water/H₂O (by) (1) [15] **QUESTION 5/VRAAG 5** 5.1 B✓ The catalyst provides an alternative route of lower activation energy. ✓ More molecules have enough/sufficient (kinetic) energy./More molecules have (kinetic) energy equal to or higher than the activation energy. ✓ More effective collisions per unit time./Higher frequency of effective collisions. ✓ Die katalisator verskaf 'n alternatiewe roete van laer aktiveringsenergie. Meer molekule het genoeg/voldoende (kinetiese) energie./Meer molekule het (kinetiese) energie gelyk aan of groter hoër as die aktiveringsenergie. Meer effektiewe botsings per eenheidtyd./Hoër frekwensie van effektiewe botsings. (4) 5.2 Y < < (2)5.3

 $560 \text{ (cm}^3) / 0.56 \text{ dm}^3 \checkmark \checkmark$

5.3.1

(2)

5.3.2 **POSITIVE MARKING FROM QUESTION 5.3.1. POSITIEWE NASIEN VANAF VRAAG 5.3.1.**

Marking criteria:

- (a) Substitute 24 000 and 560/24 and 0,56 in $n = \frac{V}{M}$
- (b) USE mol ratio:

 $n(H_2O) : n(O_2) = 2 : 1 \checkmark$

- (c) Substitute 18 and $n(H_2O)$ in $m = nM \checkmark$
- (d) Final answer: 0,83 g ✓ Range: 0,72 to 0,9 g

Nasienkriteria:

- (a) Vervang $24\ 000\ en\ 560/24\ en\ 0.56$ in $n = \frac{V}{V}$
- (b) GEBRÜİK molverhouding: $n(H_2O): n(O_2) = 2: 1 \checkmark$
- (c) Vervang 18 en $n(H_2O)$ in $m = nM \checkmark$
- (d) Finale antwoord: 0,83 g ✓ Gebied: 0,72 tot 0,9 g

OPTION 1/OPSIE 1

OPTION 2/OPSIE 2

1 mol24 000 cm³
x mol560 cm³

$$x = 0.023$$
 mol (0,0233)
 $n(H_2O) = 2n(O_2)$
 $n(H_2O) = 2(0.023) \checkmark (b)$
 $= 0.046$ mol (0,0467)
 $= 0.0466 \times 18$
 $= 0.83 \text{ g} \checkmark (d)$

(4)

(1)

- 5.4
- 5.4.1 0 (g·s⁻¹) / zero / $nul \checkmark$
- 5.4.2 Greater than/Groter as ✓

(1)

5.4.3 Marking criteria

- a) Substitute 0,9 g in $\frac{m}{M}$ \checkmark
- b) Substitute 32 in $\frac{m}{M}$ \checkmark
- c) USE mol /rate ratio: $n(H_2O_2)$: $n(O_2) = 2$: 1 \checkmark
- d) Substitute 2.1×10^{-3} and $n(H_2O_2)$ in rate formula \checkmark

OR: Substitute $\underline{\text{rate O}_2}$ (1,05 x 10⁻³) and n(O₂) in rate formula

OR: Substitute rate O₂ (0,0336 g·s⁻¹) in rate formula

e) Final correct answer: 26,67 (s) ✓ Range: 26,67 to 28,57 (s)

Nasienkriteria:

- a) Vervang 0,9 g in $\frac{m}{M}$ \checkmark
- b) Vervang 32 in $\frac{m}{M}$
- c) GEBRUIK mol-/tempoverhouding: $n(H_2O_2)$: $n(O_2) = 2$: $1 \checkmark$
- d) Vervang 2.1×10^{-3} en $n(H_2O_2)$ in tempoformule \checkmark

OF: Vervang <u>tempo O₂</u> $(1,05 \times 10^{-3})$ en $n(O_2)$ in tempoformule

OF: Vervang tempo O_2 (0,0336 g·s⁻¹) in tempoformule

e) Finale korrekte antwoord: 26,67 (s) ✓ Gebied: 26,67 tot 28,57 (s)

OPTION 1/OPSIE 1

$$n(O_{2}) = \frac{m}{M}$$

$$= \frac{0.9 \checkmark (a)}{32 \checkmark (b)}$$

$$= 0.028 \text{ mol } (0.0281)$$

$$n(H_{2}O_{2}) = 2n(O_{2})$$

$$= 2(0.028) \checkmark (c)$$

$$= 0.056$$

$$rate/tempo = \frac{\Delta n}{\Delta t}$$

$$2.1 \times 10^{-3} = \frac{0.056 - 0}{\Delta t}$$

$$\Delta t = 26,67 \text{ (s) } \checkmark \text{(e)}$$

OPTION 2/OPSIE 2

OPTION 3/OPSIE 3

$$n(O_{2}) = \frac{1}{M}$$

$$= \frac{0.9 \checkmark (a)}{32 \checkmark (b)}$$

$$= 0.028 \text{ mol } (0.0281)$$

$$Rate(O_{2}) = \frac{1}{2} \text{ rate}(H_{2}O_{2})$$

$$= \frac{1}{2} (2.1 \times 10^{-3}) \checkmark (c)$$

$$= 1.05 \times 10^{-3}$$

$$rate/tempo = \frac{\Delta n}{\Delta t}$$

$$1.05 \times 10^{-3} = \frac{\Delta n}{\Delta t}$$

$$\Delta t = 26.67 \text{ (s) } \checkmark (e)$$

OPTION 4/OPSIE 4

rate
$$H_2O_2 = 2.1 \times 10^{-3} \text{ mol} \cdot \text{s}^{-1}$$

Rate(O₂) =
$$\frac{1}{2}$$
 rate(H₂O₂)
= $\frac{1}{2}$ (2,1 x 10⁻³) \checkmark (c)
= 1,05 x 10⁻³

In one second:

$$n(O_2) = \frac{m}{M}$$

$$1,05 \times 10^{-3} = \frac{m}{32} \checkmark \textbf{(b)}$$

$$m(O_2) = 0,0336 \text{ g}$$

$$rate = 0,0336 \text{ g} \cdot \text{s}^{-1}$$

$$rate = \frac{\Delta m}{\Delta t} \checkmark \textbf{(a)}$$

$$0,0336 = \frac{0,9-0}{\Delta t}$$

$$\Delta t = 26,79 \text{ (s)} \checkmark \textbf{(e)}$$

(5) **[19]**

QUESTION 6/VRAAG 6

6.1 Marking criteria/Nasienkriteria

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

When the <u>equilibrium in a closed system is disturbed</u>, the system will <u>reinstate a new equilibrium</u> by <u>favouring the reaction that will cancel/oppose the disturbance</u>. ✓✓

Wanneer <u>die ewewig in 'n geslote sisteem</u> versteur word, sal die sisteem 'n <u>nuwe ewewig instel</u> deur die <u>reaksie te bevoordeel wat die versteuring</u> kanselleer/teenwerk.

(2)

6.2
$$K_c = \frac{[CS_2]}{[S]^2} \checkmark$$
 $9,4 = \frac{0,5}{[S]^2}$

 $[S] = 0.23 \text{ mol} \cdot \text{dm}^{-3} \checkmark$

NOTE/LET WEL

- Wrong K_c expression/Verkeerde K_cuitdrukking: Max./Maks. ²/₄
- No K_c expression but correct substitution/Geen K_c-uitdrukking but korrekte vervanging: Max/Maks. ³/_A

(4)

(1)

- 6.3 Increases/Neem toe ✓
- Increasing/doubling the volume will <u>decrease the pressure</u>. ✓
 - The reaction that produces a greater number of moles/amount of gas (1 mole gas to 2 moles gas) is favoured. ✓
 - Reverse reaction is favoured. ✓
 - Verhoging/verdubbeling van volume sal die <u>druk verlaag</u>.
 - Die reaksie wat 'n groter aantal mol/hoeveelheid gas (1 mol gas na 2 mol gas) lewer word bevoordeel.
 - Terugwaartse reaksie word bevoordeel.
 (3)

6.5 **POSITIVE MARKING FROM 6.2./POSITIEWE NASIEN VAN VRAAG 6.2.**

CALCULATIONS USING CONCENTRATION BEREKENINGE WAT KONSENTRASIE GEBRUIK Marking criteria:

- (a) Initial concentration is halved. ✓
- (b) Change in [CS₂] and [S] **USING** ratio: S: CS₂ = 2: 1 \checkmark
- (c) Equilibrium [S] = initial [S] + change in [S] ✓
- (d) Equilibrium $[CS_2]$ = initial $[CS_2]$ change in $[CS_2]$ \checkmark
- (e) **CORRECT** final answer. ✓

Nasienkriteria:

- (a) Aanvanklike konsentrasie is gehalveer.√
- (b) Verandering in [CS₂] en [S] deur **GEBRUIK** van verhouding S : CS₂ = 2 : 1 \checkmark
- (c) Ewewig [S] = aanvanklike [S] + verandering in [S] ✓
- (d) Ewewig $[CS_2]$ = aanvanklike $[CS_2]$ verandering in $[CS_2]$ \checkmark
- (e) **KORREKTE** finale antwoord. ✓

	S	CS ₂			
Initial concentration (mol·dm ⁻³) Aanvangskonsentrasie (mol·dm ⁻³)	0,23 x ½ = 0,115	$0.5 \times \frac{1}{2}$ = 0.25	√(a)		
Change in concentration (mol·dm ⁻³) Verandering in konsentrasie (mol·dm ⁻³)	2x	X	√(b)		
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	0,115 + 2x	0,25 - x			
[CS ₂]	√(c)	√(d)	_		
$K_{c} = \frac{[CS_{2}]}{[S]^{2}}$ $9,4 = \underbrace{\begin{pmatrix} 0,25-x \\ (0,115+2x)^{2} \end{pmatrix}} \checkmark \textbf{(e)}$ Wrong K_{c} expression $Verkeerde \ K_{c}\text{- uitdrukking: Max./Maks. }^{4}/_{5}$					

CALCULATIONS USING NUMBER OF MOLES BEREKENINGE WAT GETAL MOL GEBRUIK

Marking criteria:

- (a) $n(initial) = c(initial) \times 2. \checkmark$
- (b) Change in n(S) and n(CS₂) **USING** ratio: S: CS₂ = 2: 1 \checkmark
- (c) Equilibrium n(S) = initial n(S) + change in n(S) ✓
- (d) Equilibrium $n(CS_2)$ = initial $n(CS_2)$ change in $n(CS_2)$ \checkmark
- (e) **CORRECT** final answer. ✓

Nasienkriteria:

- (a) n(aanvanklik) = c(aanvanklik) x 2 √
- (b) Verandering in n(S) en $n(CS_2)$ deur **GEBRUIK** van verhouding: $S: CS_2 = 2: 1 \checkmark$
- (c) Ewewig $n(S) = aanvanklike n(S) + verandering in n(S) \checkmark$
- (d) Ewewig $n(CS_2)$ = aanvanklike $n(CS_2)$ verandering in $n(CS_2)$ \checkmark
- (e) **KORREKTE** finale antwoord. ✓

OPTION 2/OPSIE 2

			_
	S	CS_2	
Initial quantity (mol)	0,46	1	√(a)
Aanvangshoeveelheid (mol)			` ′
Change (mol)	8x	4x	√(b)
Verandering (mol)			(2)
Quantity at equilibrium (mol)/	(0.46 + 8x)	(1-4x)	/ (N
Tibeveelineid by evvevily (IIIOI)			√ (d)
Equilibrium concentration (mol·dm ⁻³)	0,46 + 8x	1 - 4x	
Ewewigskonsentrasie (mol·dm ⁻³)	4	4	

$$K_{c} = \frac{\frac{[CS_{2}]}{[S]^{2}}}{9.4 = \left(\frac{\frac{1-4x}{4}}{\left(\frac{0.46+8x}{4}\right)^{2}}\right)} \checkmark (e)$$

Wrong K_c expression Verkeerde K_c-uitdrukking: Max./Maks. ⁴/₅

6.6

6.6.1 (Chemical) equilibrium / Rate of the forward and reverse reactions are equal. / Concentrations of reactants and products are constant. ✓ (Chemiese) ewewig / Tempo van voorwaartse en terugwaartse reaksie dieselfde./Konsentrasies van reaktante en produkte is konstant.

(1)

(5)

- 6.6.2 Increase in the amount/concentration of S/reactant **OR** S was added. ✓ Toename in die hoeveelheid/konsentrasie S/reaktans **OF** S is bygevoeg. (1)
- 6.6.3 Decrease in temperature/Verlaging in temperatuur ✓ (1)

- 6.6.4 The rates of the forward and reverse reactions decrease. ✓
 - The reverse reaction is favoured / faster than the forward reaction.

OR

The forward reaction decreases more. ✓

- A decrease in temperature favours the exothermic reaction. ✓
- Die voorwaartse en terugwaartse reaksietempo neem af.
- Die terugwaartse reaksie word bevoordeel/is vinniger as die voorwaartse reaksie.

OF

Die voorwaartse reaksie neem meer af.

'n Verlaging in die temperatuur bevoordeel die eksotermiese reaksie.

(3) **[21]**

QUESTION 7/VRAAG 7

7.1

- 7.1.1 (An acid is a) proton donor/ H^+ (ion) donor. $\checkmark\checkmark$ (2 or 0) ('n Suur is 'n) protonskenker/ H^+ (-ioon) skenker. (2 of 0) (2)
- 7.1.2 (Weak acids) ionise/dissociate incompletely/partially (in water)/have a low K_a value. √
 (Swak sure) ioniseer/dissosieer onvolledig/gedeeltlik (in water)/het 'n lae K_a-waarde.

7.1.3 $H_2O \checkmark$ and $CH_3COO^-\checkmark$ (2)

7.2

7.2.1 $n(NaOH) = cV \checkmark$ $n = (0,167)(0,300) \checkmark$ $\therefore n(NaOH) = 0,05 \text{ mol } \checkmark (5 \times 10^{-2} \text{ mol})$ (3)

7.2.2 Marking criteria:

- a) Any formula: $pH = -log[H_3O^+] / pH = -log[H^+] / pOH = -log[OH^-] / [H_3O^+][OH^-] = 10^{-14} / pH + pOH = 14 \checkmark$
- b) Substitute 11,4 in pH = $-\log[H_3O^+]/$ pH + pOH = 14 \checkmark
- c) Substitute calculated $[H_3O^+]$ in $[H_3O^+][OH^-]$ / 2,6 in pOH = -log[OH $^-$] \checkmark
- d) Final answer: $2,51 \times 10^{-3} \text{ mol dm}^{-3} \checkmark$ (0,003 mol dm⁻³)

Nasienkriteria:

- a) Enige formule: $pH = -\log[H_3O^+] / pH = -\log[H^+] / pOH = -\log[OH^-] / [H_3O^+][OH^-] = 10^{-14} / pH + pOH = 14 \checkmark$
- b) Vervang 11,4 in pH = $-\log[H_3O^+]/$ pH + pOH = 14 \checkmark
- c) Vervang berekende [H_3O^+] in [H_3O^+][OH^-] / 2,6 in pOH = -log[OH^-] /
- d) Finale antwoord: 2,51x 10⁻³ mol·dm⁻³ √ (0,003 mol·dm⁻³)

```
OPTION 1/OPSIE 1
```

```
pH = -\log[H_3O^+]

11,4 \checkmark (b) = -\log[H_3O^+] OR/OF [H_3O^+] = 10^{-11,4} Any one/Enige een \checkmark (a)

[H_3O^+] = 3,98 \times 10^{-12}

[H_3O^+] = 10^{-14}
```

$$\sqrt{(c)}$$
 (3,98 x 10⁻¹²)[OH⁻] = 1 x 10⁻¹⁴

 $[OH] = 2.51 \times 10^{-3} \text{ mol dm}^{-3} \checkmark (d) \quad (0.003)$

OPTION 2/OPSIE 2

pH + pOH = 14

$$11.4 + pOH = 14$$
 \(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\fr

 $[OH] = 2.51 \times 10^{-3} \text{ mol dm}^{-3} \checkmark (d) (0.003)$

(4)

7.2.3 **POSITIVE MARKING FROM QUESTION 7.2.1. AND 7.2.2.** *POSITIEWE NASIEN VANAF VRAAG 7.2.1. EN 7.2.2.*

Marking criteria:

- a) Substitute [NaOH] = $0.00251 \text{ mol} \cdot \text{dm}^{-3}$ (answer from Q7.2.2) and $0.8 \text{ in c} = \frac{\text{n}}{\text{V}}$
- b) Subtract: n(NaOH)_{initial} (from Q7.2.1) n(NaOH)_{mixture} √√
- c) Use of ratio: $n(OH^{-}) = n(CH_3COOH) \checkmark$
- d) Substitute 0.5 and $\Delta n(CH_3COOH)$ [calculated by subtraction] into $c = \frac{n}{V}$
- e) Final correct answer: 0,096 mol·dm⁻³ ✓ Range: 0,095 to 0,1 mol·dm⁻³

Nasienkriteria:

- a) Vervang [NaOH] = 0.00251 mol dm⁻³ (antwoord van Q7.2.2) en 0.8 in $c = \frac{n}{V}$
- b) Trek af: n(NaOH)_{aanvanklik} (vanaf Q7.2.1) n(NaOH)_{mengsel} √ √
- c) Gebruik verhouding: n(OH⁻) = n(CH₃COOH) ✓
- d) Vervang <u>0,5 en $\Delta n(CH_3COOH)$ [bereken deur aftrekking]</u> in $c = \frac{n}{V} \checkmark$
- e) Finale korrekte antwoord: 0,096 mol·dm⁻³ ✓ Gebied: 0,095 tot 0,1 mol·dm⁻³

 $= 0.096 \text{ mol} \cdot \text{dm}^{-3} \sqrt{\text{(e)}}$

n(NaOH)mixture = cV
=
$$0.00251 \times 0.8 \checkmark$$
 (a)
= $0.002 \text{ mol } (0.0024)$
n(NaOH)_{reacted} = $0.05 - 0.002 \checkmark \checkmark$ (b)
= $0.048 \text{ mol } (0.0476)$
n(NaOH)_{reacted} = n(CH₃COOH)_{used}
= $0.048 \text{ mol } \checkmark$ (c)
[CH₃COOH] = $\frac{n}{V}$
= $\frac{0.048}{0.5} \checkmark$ (d)

NOTE/LET WEL

IF/INDIEN:

(0,0952)

• Answer from Q7.2.1 substituted in $c = \frac{n}{V}$ to obtain an answer of 0,01 mol·dm⁻³./

Antwoord van Q7.2.1 vervang in $c = \frac{n}{V}$ om 0,01 mol·dm⁻³ as antwoord te kry.

Max./Maks. $\frac{1}{6}$

(6) **[18]**

QUESTION 8/VRAAG 8

8.1

8.1.1 $Zn/zinc/sink \checkmark$ (1)

MnO₄ is a stronger oxidising agent \checkmark than Zn²⁺/Zn(II) ions \checkmark and will oxidise Zn \checkmark (to Zn²⁺/Zn(II) ions).

 MnO_4^- is 'n sterker oksideermiddel as $Zn^{2+}/Zn(II)$ -ione en sal Zn oksideer (na $Zn^{2+}/Zn(II)$ -ione).

OR/OF

 $Zn^{2+}/Zn(II)$ ion is a weaker oxidising agent \checkmark than $MnO_4^ \checkmark$ and therefore MnO_4^- will be reduced \checkmark (to $Mn^{2+}/Mn(II)$ ions).

 $Zn^{2+}/Zn(II)$ ione is 'n swakker oksideermiddel as MnO_4^- en dus word MnO_4^- gereduseer (to $Mn^{2+}/Mn(II)$ -ione).

8.2

8.2.1 Provides path for movement of ions. / Completes the circuit. / Ensures electrical neutrality in the cell. / Restore charge balance. ✓

Verskaf pad vir beweging van ione. / Voltooi die stroombaan. / Verseker elektriese neutraliteit in die sel. / Herstel balans van lading.

8.2.2 Mn to/*na* Ni ✓ ✓

(2)

(1)

(3)

8.2.3 **OPTION 1/OPTION 1**

 $E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \\
= -0.27 \checkmark - (-1.18) \checkmark \\
= 0.91 \text{ V} \checkmark$

NOTE/LET WEL

- Accept any other correct formula from the data sheet. /Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. E°_{cell} = E°_{OA} E°_{RA} followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik, bv. E°_{sel} = E°_{OM} E°_{RM} gevolg deur korrekte vervangings ³/_A

OPTION 2/OPSIE 2

$$\sqrt{\frac{\text{Ni}^{2^{+}} + 2e^{-} \rightarrow \text{Ni}}{\text{Mn} \rightarrow \text{Mn}^{2^{+}} + 2e^{-}}}$$

$$E = -0,27 \checkmark$$

$$E = 1,18 \checkmark$$

$$Ni^{2^{+}} + \text{Mn} \rightarrow \text{Mn}^{2^{+}} + \text{Ni}$$

$$E = 0,91 \lor \checkmark$$

8.2.4 $Ni^{2+} + Mn \checkmark \rightarrow Mn^{2+} + Ni \checkmark$ Bal. \checkmark

Marking criteria/Nasienkriteria:

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse ✓ Produkte ✓ Balansering ✓
- Ignore/Ignoreer

 and phases/en fases
- Marking rule 6.3.10/Nasienreël 6.3.10

8.2.5 Increase/Toeneem ✓

(1)

(3)

(4)

[15]

(2)

(2)

QUESTION 9/VRAAG 9

9.1 **ANY ONE**:

- The chemical process in which <u>electrical energy is converted to</u> chemical energy. ✓✓ (2 or 0)
- The use of electrical energy to produce a chemical change.
- The process during which an <u>electric current passes through a solution /</u> molten ionic compound.

ENIGE EEN:

- Die chemiese proses waarin <u>elektriese energie omgeskakel word na</u> <u>chemiese energie.</u> (2 of 0)
- Die gebruik van <u>elektriese energie om 'n chemiese verandering te</u> veroorsaak.
- Die proses waar 'n <u>elektriese stroom deur 'n oplossing / gesmelte ioniese verbinding beweeg.</u>
- 9.2.1 $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr \checkmark \checkmark$

Marking criteria/Nasienkriteria:

•
$$\operatorname{Cr} \leftarrow \operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \quad (\frac{2}{2})$$
 $\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightleftharpoons \operatorname{Cr} \quad (\frac{1}{2})$
 $\operatorname{Cr} \rightleftharpoons \operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \quad (\frac{0}{2})$
 $\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \leftarrow \operatorname{Cr} \quad (\frac{0}{2})$

- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (+) omitted on Cr³⁺/Indien lading (+) weggelaat op Cr³⁺:
 Example/Voorbeeld: Cr³(aq) + 3e⁻ → Cr Max./Maks: ½

9.2.2
$$q = I\Delta t \checkmark$$

$$= (2.5)(10 \times 60 \times 60) \checkmark$$

$$= 9 \times 10^4 \text{ C} \checkmark (90\ 000\ \text{C})$$
(3)

9.2.3 **POSITIVE MARKING FROM QUESTION 9.2.2. POSITIEWE NASIEN VANAF VRAAG 9.2.2.**

Marking criteria:

- a) Substitute 1,6 x 10^{-19} C in n = $\frac{Q}{e}$ \checkmark
- b) N(Cr) = n(electrons) divide by $3 \checkmark$
- c) n(Cr) = N(Cr) divided by $N_A \checkmark$
- d) Substitution of 52 into n = $\frac{m}{M}$ \checkmark
- e) m(Cr) <u>+ 2,2</u> √
- f) Final answer: 18,32 (g) ✓ Range: 18,32 to 18,40 (g)

Nasienkriteria:

- a) Vervang 1,6 x 10^{-19} C in $n = \frac{Q}{e}$
- b) N(Cr) = n(elektrone) gedeel deur $3 \checkmark$
- c) n(Cr) = N(Cr) gedeel deur $N_A \checkmark$
- d) Vervang 52 in $n = \frac{m}{M} \checkmark$
- e) $m(Cr) + 2.2 \checkmark$
- f) Finale antwoord: 18,32 (g) ✓ Gebied: 18,32 tot 18,40 (g)

OPTION 1/OPSIE 1

$$n = \frac{Q}{e} / \frac{Q}{q_e}$$

$$= \frac{9 \times 10^4}{1.6 \times 10^{-19}} / \textbf{(a)}$$

$$= 5.63 \times 10^{23} \text{ electrons}$$

$$N(\text{Cr atoms}) = \frac{5.63 \times 10^{23}}{3 / \textbf{(b)}}$$

$$= 1.88 \times 10^{23}$$

$$n(Cr) = \frac{N}{N_A}$$

$$= \frac{1,88 \times 10^{23}}{6,02 \times 10^{23}} \checkmark (c)$$

$$= 0,31 \text{ mol}$$

$$n(Cr) = \frac{m}{M}$$

$$m(Cr) = 0,31 \times 52 \checkmark (d)$$

$$= 16,12 \text{ g}$$

$$m(X) = 16,12 + 2,2 \checkmark (e)$$

 $= 18.32 (q) \checkmark (f)$

OPTION 2/OPSIE 2

$$n(Cr) = \frac{9 \times 10^{4}}{3 \times 96500} \checkmark (a \& c)$$

$$= 0.31 \text{ mol}$$

$$m(Cr) = 0.31 \times 52 \checkmark (d)$$

$$= 16.12 \text{ g}$$

$$m(X) = 16.12 + 2.2 \checkmark (e)$$

$$= 18.32 (g) \checkmark (f)$$

(6) **[13]**

TOTAL/TOTAAL: 150