LECTURE 5: Discrete random variables: probability mass functions and expectations

- Random variables: the idea and the definition
 - Discrete: take values in finite or countable set
- Probability mass function (PMF)
- Random variable examples
- Bernoulli
- Uniform
- Binomial
- Geometric
- Expectation (mean) and its properties
- The expected value rule
- Linearity

1

Random variables: the idea

Random variables: the formalism

- A random variable ("r.v.") associates a value (a number) to every possible outcome
- ullet Mathematically: A function from the sample space Ω to the real numbers
- It can take discrete or continuous values

Notation: random variable X numerical value x

- We can have several random variables defined on the same sample space
- A function of one or several random variables is also a random variable
 - meaning of X + Y: r.u takes value $x + \gamma$,
 when X takes value x, Y takes value γ

Probability mass function (PMF) of a discrete r.v. X

- ullet It is the "probability law" or "probability distribution" of X
- If we fix some x, then "X = x" is an event

$$\alpha = 5 \quad X = 5 \quad \{ \omega : X(\omega) = 5 \} = \{ \alpha, b \}$$

$$P_{x}(5) = 1/2$$

$$p_X(x) = P(X = x) = P(\{\omega \in \Omega \text{ s.t. } X(\omega) = x\})$$

• Properties: $p_X(x) \ge 0$ $\sum_x p_X(x) = 1$

1

Py (y)

PMF calculation

- Two rolls of a tetrahedral die
- Let every possible outcome have probability 1/16

 $p_Z(z)$

- Z = X + Y Find $p_Z(z)$ for all z
- repeat for all z:
 - collect all possible outcomes for which Z is equal to z
 - add their probabilities

$$P_{z}(2) = I(Z = 2) = 1/16$$

$$P_{z}(3) = I(Z = 3) = 2/16$$

$$P_{z}(4) = I(Z = 4) = 3/16$$

The simplest random variable: Bernoulli with parameter $p \in [0,1]$

$$X = \begin{cases} 1, & \text{w.p. } p \\ 0, & \text{w.p. } 1 - p \end{cases}$$

$$\begin{cases} 1, & \text{w.p. } p \\ 0, & \text{w.p. } 1 - p \end{cases}$$

$$\begin{cases} \gamma_{x}(x) = 1 - p \\ \gamma_{y}(x) = p \end{cases}$$

- Models a trial that results in success/failure, Heads/Tails, etc.
- Indicator r.v. of an event A: $I_A = 1$ iff A occurs

$$P_{L_A}(1) = P(I_A = 1) = P(A)$$

Discrete uniform random variable; parameters a, b

- Parameters: integers a, b; $a \le b$
- **Experiment:** Pick one of a, a + 1, ..., b at random; all equally likely
- Sample space: $\{a, a+1, \ldots, b\}$
- Random variable X: $X(\omega) = \omega$
- Model of: complete ignorance

Special case: a = bconstant/deterministic r.v.

Binomial random variable; parameters: positive integer n; $p \in [0, 1]$

- Experiment: n independent tosses of a coin with P(Heads) = p
- Sample space: Set of sequences of H and T, of length n
- Random variable X: number of Heads observed
- Model of: number of successes in a given number of independent trials

$$P_{x}(2) = P(x=2)$$

$$= P(HHT) + P(HTH) + P(THH)$$

$$= 3p^{2}(1-p) = {3 \choose 2}p^{2}(1-p)$$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \text{ for } k = 0, 1, \dots, n$$

8

Geometric random variable; parameter p: 0

- Experiment: infinitely many independent tosses of a coin; P(Heads) = p
- Sample space: Set of infinite sequences of H and T

 TTTTHHT**
- Random variable X: number of tosses until the first Heads $\chi = 5$

• Model of: waiting times; number of trials until a success

$$p_X(k) = P(X=k) = P(T=0TH) = (1-p)^{K-1}P$$
 $k=1,2,$

P(no Heads ever)
$$\leq P\left(T - \frac{1}{2}\right) = \left(1 - \frac{1}{2}\right)^{k}$$

$$= 0$$

$$= 0$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/3$$

$$= 1/$$

Here P(X = inf) is upper bounded by an event P(k consecutive tails) and now limiting k to inf we get upper bound of P(X = inf) as 0

Expectation/mean of a random variable

- Motivation: Play a game 1000 times.
 Random gain at each play described by:
- "Average" gain:

$$\frac{1.200 + 2.500 + 4.300}{1000}$$

$$= 1.\frac{2}{10} + 2.\frac{5}{10} + 4.\frac{3}{10}$$

• Definition: $\mathbf{E}[X] = \sum_{x} x p_{X}(x)$

- Interpretation: Average in large number of independent repetitions of the experiment
- Caution: If we have an infinite sum, it needs to be well-defined. We assume $\sum_{x} |x| \, p_X(x) < \infty$

Expectation of a Bernoulli r.v.

$$X = \begin{cases} 1, & \text{w.p. } p \\ 0, & \text{w.p. } 1 - p \end{cases} \qquad E[X] = 1 \cdot p + 0 \cdot (1 - p) = p$$

If X is the indicator of an event A, $X = I_A$:

$$X=1$$
 iff A occurs $p=2(A)$
 $E[I_A]=P(A)$

Expectation of a uniform r.v.

• Uniform on $0, 1, \ldots, n$

Expectation as a population average

- n students
- Weight of ith student: x_i
- Experiment: pick a student at random, all equally likely
- Random variable X: weight of selected student
- assume the x_i are distinct

$$p_X(x_i) = \frac{1}{n}$$

$$E[X] = \sum_{i} \alpha_{i} \frac{1}{n} = \frac{1}{n} \sum_{i} \alpha_{i}$$

Elementary properties of expectations

• If $X \ge 0$, then $\mathbf{E}[X] \ge 0$ for all ω : $X(\omega) > 0$

• Definition:
$$\mathbf{E}[X] = \sum_{x} x p_X(x)$$

• If $a \le X \le b$, then $a \le \mathbf{E}[X] \le b$ for all w: $a \le X(w) \le \overline{b}$ $E[X] = \sum_{n} x P_{n}(x) = \sum_{n} a P_{n}(x)$ $= a \sum_{n} P_{n}(x) = a \cdot 1 = a$

The expected value rule, for calculating E[g(X)]

- Let X be a r.v. and let Y = g(X)
- Averaging over y: $E[Y] = \sum y p_Y(y)$

Well the beside proof is as follows:-

 \rightarrow we are summing over all values of X(x) that are that contribute to the probab the specific value of Y(y).

-> Now we are summing all such values of Y(y) in outer sigma
$$\mathbf{E}[X^2] = \mathbf{E}[X^2] = \mathbf{E$$

prob

• Caution: In general, $E[g(X)] \neq g(E[X])$

0.4 5

0.3

0.2

$$E[x^2] + (E[x])^2$$

Linearity of expectation: E[aX + b] = aE[X] + b

$$X = Salany$$
 $E[X] = average salany$
 $Y = new salany = 2X + 100$ $E[Y] = E[2X + 100] = 2E[X] + 100$

- Intuitive
- Derivation, based on the expected value rule: g(x) = ax + b

=
$$\sum (ax+b) P_{x}(x) = a \sum x P_{x}(x) + b \sum P_{x}(x)$$

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.