Városok

Egy ország városait síkbeli pontokként reprezentáljuk. Bármelyik városból indulva kétféle autópályát tudunk építtetni: egy *vízszintes* autópályát, ami minden olyan városon átmegy, aminek második koordinátája a kiinduló városéval azonos; illetve egy *fiiggőleges* autópályát, ami minden olyan városon átmegy, aminek első koordinátája a kiinduló városéval azonos.

Az útépítéseket végző építőbrigádnál a petákba kerül, hogy elutazzanak egy kiválasztott városba, és azután egy onnan induló autópálya megépítése b petákba kerül. Így, ha a kiválasztott városból egy vízszintes, vagy egy függőleges autópályát építünk, az a+b petákba kerül. Ha mindkét autópályát megépítjük ugyanabból a városból indulva, az a+2·b petákba kerül. Az építőbrigád kezdetben nem tartózkodik egyik városban sem.

Célunk elérni, hogy minden városon menjen át egy vízszintes és egy függőleges autópálya. Készíts programot, amely kiszámítja, hogy mekkora a minimális építési költség, amivel ez teljesíthető!

Bemenet

A standard bemenet első sorában a városok száma ($1 \le N \le 50000$), illetve a és b értéke szerepel ($0 \le a$, $b \le 10^9$). A következő N sor mindegyike egy-egy város első és második koordinátáját tartalmazza ($1 \le X_i$, $Y_i \le 10^9$, nincs két olyan város, amelyek első és második koordinátája is megegyezik).

Kimenet

A standard kimenetre a minimális építési költséget kell kiírni!

Példa

Bemenet	Kimenet
5 1 3 1 2 2 1 2 3 3 3 3 2	(2,1)
	(1,2)
	(2,3) (3,3)

Magyarázat: az (1,2),(2,1) és (3,3) városokból építtetünk egy-egy függőleges és egy-egy vízszintes autópályát. Ekkor összesen 3 városba kell elmenni és 6 autópályát kell megépíteni, így 3· a+6· b=3· 1+6· 3=21 petákba kerül az építkezés.

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Pontozás

Részfeladat	Korlátok	Pontszám
1	a minta	0
2	1≤N≤20	10
3	a=0	5
4	minden i-re $X_i=1$, vagy létezik olyan j, amire $X_j+1=X_i$ és minden i-re $Y_i=1$, vagy létezik olyan j, amire $Y_j+1=Y_i$	40
5	nincsenek további korlátok	45