Cours de Physique : Le temps, la distance, outils mathématiques et l'énigme du mouvement

A. Arciniegas N. Wilkie-Chancellier

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Mouvement

L'expérience de Galilée d'après le cours de Feynman.

Mouvement

L'expérience de Galilée d'après le cours de Feynman.

L'étude du mouvement, traite les questions : où ? et quand ?

Les échelles de l'Univers

 $\verb|https://www.youtube.com/watch?v=gzGUio7rBQk|\\$

Le temps

Ordres de grandeur du temps

Années	Secondes	Mesure
10 ¹⁰		Âge de l'Univers
		Âge de la Terre
10 ⁹		
10 ⁵		Apparition de Sapiens
10 ²		
		Âge d'un humain
10 ⁰		
	10 ⁵	Durée d'un jour
	10 ²	Temps lumière Soleil-Terre
	10 ⁻¹	Battement du cœur
	10 ⁻³	Période d'une onde sonore
	10 ⁻⁶	Période d'une onde radio
	10 ⁻⁴³	Temps de Planck

Le temps

Concept de temps en physique moderne :

L'illusion du temps: Qu'est-ce que le temps? https://www.youtube.com/watch?v=tvYF0_sZ0rk

La distance

Ordres de grandeur de la distance

Années-lumière	Mètres	Mesure
10 ¹⁰		Univers observable
10 ⁰		Distance à l'étoile plus proche
	10 ¹²	Distance Terre-Pluton
	1011	Distance Terre-Soleil
	10 ⁸	Distance Terre-Lune
	10 ⁷	Diamètre moyen de la Terre
	10 ³	
		Tour Eiffel
	10 ²	
	10 ⁰	Taille d'un enfant (<5 ans)
	10 ⁻⁷	Longueur d'onde de la lumière visible
	10 ⁻⁸	Taille d'un coronavirus
	10 ⁻¹¹	Rayon d'un atome

La distance

Concept d'espace en physique moderne :

Extension spatiale : Qu'est-ce que l'espace ?
https://www.youtube.com/watch?v=lhI6UpXMm6M

Considérons deux voitures qui se déplacent suivant une droite (mouvement rectiligne) mais dans des directions opposées.

Considérons deux voitures qui se déplacent suivant une droite (mouvement rectiligne) mais dans des directions opposées.

Supposons en outre que leurs vitesses soient constantes, donc *uniformes*, et égales, c-à-d que toutes les deux couvrent la même distance Δx dans le même intervalle de temps Δt .

Considérons deux voitures qui se déplacent suivant une droite (mouvement rectiligne) mais dans des directions opposées.

Supposons en outre que leurs vitesses soient constantes, donc *uniformes*, et égales, c-à-d que toutes les deux couvrent la même distance Δx dans le même intervalle de temps Δt .

$$V = \frac{\Delta x}{\Delta t}$$

avec:

$$\Delta x = x_f - x_0$$

$$\Delta t = t_f - t_0$$

Considérons deux voitures qui se déplacent suivant une droite (mouvement rectiligne) mais dans des directions opposées.

Supposons en outre que leurs vitesses soient constantes, donc *uniformes*, et égales, c-à-d que toutes les deux couvrent la même distance Δx dans le même intervalle de temps Δt .

$$V = \frac{\Delta X}{\Delta t}$$

avec:

$$\Delta x = x_f - x_0$$

$$\Delta t = t_f - t_0$$

Est-il correct de dire que les deux voitures ont la même vitesse ?

Considérons deux voitures qui se déplacent suivant une droite (mouvement rectiligne) mais dans des directions opposées.

Supposons en outre que leurs vitesses soient constantes, donc *uniformes*, et égales, c-à-d que toutes les deux couvrent la même distance Δx dans le même intervalle de temps Δt .

$$V = \frac{\Delta x}{\Delta t}$$

avec:

$$\Delta X = X_f - X_0$$
$$\Delta t = t_f - t_0$$

Est-il correct de dire que les deux voitures ont la même vitesse?

Pas pour le physicien! Il est avantageux de dire que les vitesses des deux voitures se déplaçant dans des directions différentes sont différentes.

Caractériser une vitesse :

- Direction : représentée par une flèche
- Valeur : longueur de la flèche

La situation précédente est représentée par deux flèches de même longueur mais directions différentes :

Deuxième situation : une voiture avance à une vitesse constante puis elle accélère pour atteindre une deuxième vitesse.

Le pointillé indique le changement de vitesse.

Troisième situation : une voiture avance à une vitesse constante puis elle décélère pour atteindre une deuxième vitesse.

Le pointillé indique le changement de vitesse.

Outils mathématiques : Formalisme

Mathématiquement...

Vitesse moyenne:

$$\overline{v}(t) = \frac{x_f - x_0}{t_f - t_0} = \frac{\Delta x}{\Delta t}$$

Lorsque on s'intéresse à la **vitesse instantanée** ($\Delta t \to 0$) :

$$v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \frac{dx}{dt}$$

La vitesse instantanée est donc la dérivée de la fonction x(t) qui décrit le déplacement de l'objet en fonction du temps.

Outils mathématiques : Formalisme

Mathématiquement...

Vitesse moyenne :

$$\overline{v}(t) = \frac{x_f - x_0}{t_f - t_0} = \frac{\Delta x}{\Delta t}$$

Lorsque on s'intéresse à la **vitesse instantanée** ($\Delta t \rightarrow 0$) :

$$v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \frac{dx}{dt}$$

La vitesse instantanée est donc la dérivée de la fonction x(t) qui décrit le déplacement de l'objet en fonction du temps.

Avec le même raisonnement :

Accélération moyenne :

$$\overline{a}(t) = \frac{v_f - v_0}{t_f - t_0} = \frac{\Delta v}{\Delta t}$$

Accélération instantanée :

$$a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{dv}{dt}$$

La accélération instantanée est donc la dérivée de la fonction v(t) de la vitesse de l'objet en fonction du temps.

Outils mathématiques : Formalisme

Mathématiquement...

Vitesse moyenne:

$$\overline{V}(t) = \frac{x_f - x_0}{t_f - t_0} = \frac{\Delta x}{\Delta t}$$

Lorsque on s'intéresse à la **vitesse instantanée** ($\Delta t \rightarrow 0$) :

$$v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t} = \frac{dx}{dt}$$

La vitesse instantanée est donc la dérivée de la fonction x(t) qui décrit le déplacement de l'objet en fonction du temps.

Avec le même raisonnement :

Accélération moyenne :

$$\overline{a}(t) = \frac{v_f - v_0}{t_f - t_0} = \frac{\Delta v}{\Delta t}$$

Accélération instantanée :

$$a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{dv}{dt}$$

La accélération instantanée est donc la dérivée de la fonction v(t) de la vitesse de l'objet en fonction du temps.

Remarque

Dans l'autre sens :

La vitesse est la primitive de l'accélération.

La distance parcourue est la primitive de la vitesse.

Qu'en est-il dans le cas général du mouvement sur une ligne courbe ?

Qu'en est-il dans le cas général du mouvement sur une ligne courbe?

Nous représentons notre voiture par un point : particule.

Qu'en est-il dans le cas général du mouvement sur une ligne courbe ?

(On pourrait placer un vecteur $\overrightarrow{r}(t)$ qui relie à un instant t la position de la particule dans l'espace par rapport à une origine.)

Qu'en est-il dans le cas général du mouvement sur une ligne courbe?

Tangente = vitesse instantanée, sa « longueur » représente la valeur indiquée par exemple par le compteur.

Qu'en est-il dans le cas général du mouvement sur une ligne courbe ?

On parle toujours du vecteur vitesse $\overrightarrow{V}(t)$.

Qu'en est-il dans le cas général du mouvement sur une ligne courbe?

La direction et la valeur de la vitesse varient pendant le mouvement.

Qu'en est-il dans le cas général du mouvement sur une ligne courbe?

La flèche en pointillé représente le changement de vitesse.

Qu'en est-il dans le cas général du mouvement sur une ligne courbe?

On a la généralisation des relations mathématiques précédentes :

$$\overrightarrow{V}(t) = \frac{\overrightarrow{dr}(t)}{dt}$$

$$\overrightarrow{a}(t) = \frac{\overrightarrow{dV}(t)}{\overrightarrow{dt}}$$

Référentiel

Besoin d'une origine spatiale et temporelle :

Référentiel

Besoin d'une origine spatiale et temporelle : on parle d'un référentiel

