Building Local Knowledge Graphs for OSINT

Bypassing Rate Limits and Maintaining OPSEC

Donald Anthony Pellegrino Jr., Ph.D.

DeciSym.AI

Recon Village • DEF CON 33 • August 9, 2025

Speaker's Background

- Software Development
- Graph Analytics
- Data Integration
- Good Old-Fashioned Artificial Intelligence (GOFAI) / Symbolic Artificial Intelligence
- Decision Symbols (DeciSym.AI)

Objectives

- Present a method for building local knowledge graphs for OSINT
 - Bypass LLM rate limits through local caching
 - Maintain OPSEC with Tor + local LLMs
 - Enable data reuse and scientific repeatability
- Demonstrate with working Rust implementation for enhanced performance, reliability, and security
 - collect: Privacy-preserving web scraping
 - enrich: Local LLM information extraction
- Case study: Recon Village speaker analysis
 - Compare manual vs automated approaches
 - Show knowledge graph benefits

Challenges in OSINT Investigations

- LLM rate limits prevent comprehensive analysis
- Each query reveals investigative focus
 - Target searches expose your interests
 - Pattern of queries reveals investigation tradecraft
- Data reuse between investigations is limited
 - Same sources downloaded repeatedly
 - Prior work cannot be securely shared

OPSEC Risks

- Confidentiality Your investigation gets exposed
 - Data providers see your queries and targets
 - LLM providers log your investigative prompts
- Integrity Your data is incomplete or tampered
 - Web scraping misses JavaScript-rendered content
 - LLM providers filter or modify responses
- Availability You can't access what you need when you need it
 - Rate limits block continued investigation
 - Previous work isn't safely reusable

See also: Bazzell & Edison, OSINT Techniques, 11th Ed.

Confidentiality risk - data provider tip-offs

Targeted queries reveal focus

- Search: "John Doe, ACME"
- API: /users?name=John&company=ACME
- Result: Provider knows your target

Solution: Bulk collection

- Download entire conference speaker data
- Process locally for specific targets
- Provider sees only generic access

Confidentiality risk - LLM tip-offs

Hosted LLMs can log

- Prompts reveal targets
- Providers actively monitor for "misuse"
- Creates audit trail

Solution: Local LLMs

- Run models on your on-prem hardware
- No external API calls
- Complete prompt privacy

Refs: Anthropic (2025) on Claude misuse; Similar to search engine query logs

Logs: "Find John Doe"

No logs

Integrity risk - incomplete source data

The Problem

- Sites built for browsers, not scrapers
- JavaScript renders content dynamically
- iframes load external data

Solution: Browser automation

- Playwright + Chromium
- Full JavaScript execution
- Captures everything humans see

wget/curl Missing: speakers Missing: schedule

Automated browser
Complete data
All content visible

Integrity risk - LLM data

- LLM providers filter and control results
- Examples: Claude blocks certain queries; ChatGPT modifies sources

Availability risk - access when needed

Current challenges

- LLM rate limits block analysis
- Sites go offline
- Content changes/disappears

Solution: Local caching

- Download once, analyze many times
- Version control for changes
- Securely share datasets

Online only
Hit rate limit
Analysis stops

Local cache

Unlimited queries Always available

Availability risk - LLM access

Cloud LLM limitations

- API rate limits (requests/minute)
- Token quotas exhaust quickly
- Models deprecated without warning

Solution: Local LLMs

- No API limits
- Process entire datasets
- Models never disappear

429: Rate limited

Process 24/7

DeciSym.AI

Methodology: Local Knowledge Graphs

Methods

Traditional Approach

- Query external sources repeatedly
- Process with cloud LLMs
- Discard after analysis

Our Approach

- Download once, store locally
- Process with local LLMs
- Build reusable knowledge graph

Procedure

Collect Sources

- Download via Tor
- Capture JavaScript content
- **Extract Information**
 - Local LLM extraction
 - Create Resource Description Framework (RDF) triples

Build Knowledge Graph

- Store in triplestore
- Link with ontologies/semantic lavers

Query & Analyze

- SPARQL queries
- GraphRAG insights

5000

Collect Sources

Our implementation

- Rust + Arti (Tor client)
- Playwright + Chromium
- Full JavaScript execution
- collect CLI tool

Why not alternatives?

- wget/curl: No JavaScript
- HTTrack: Incomplete iframes
- Direct browser: Exposes IP and cumbersome to script

Extract Information

Local LLM extraction

- No data leaves your system
- Process entire datasets.
- enrich CLI tool

What we extract

- Named entities (people, orgs)
- Relationships
- Structured JSON/RDF

Example: Speakers

- Input: HTML pages
- Output: Speaker + affiliation list **JSON**

DeciSym.AI

Build Knowledge Graph

RDF Triple Store

- Standard W3C format
- Interoperable data

Link with ontologies

- Friend of a Friend (FOAF) for people/orgs
- Domain-specific
- Enables reasoning

Benefits

- Combine multiple sources
- Query across datasets

Query & Analyze

SPARQL queries

- Standard query language
- Complex relationships
- Cross-dataset ioins

GraphRAG insights

- Graph-based reasoning
- Pattern discovery
- Hidden connections

Example queries

- "Who knows whom?"
- "Common speakers?"
- "Network clusters?"

DeciSym.AI

Read website with eyeballs. Click things.

Manual Sociogram

Manual data reduction and transformation by reading browser rendering and clicking on Graphical User Interface (GUI).

Automated Collection

Challenge: "wget --mirror" speaker and schedule information missing due to use of <iframe> and JavaScript.

Automated Collection Risks and Limitations

- The web browser may generate unexpected network traffic over Tor
- Browser fingerprinting can still occur despite Tor usage
- Tor exit nodes may log or modify traffic
- Performance limitations: Tor + browser automation is slower
- Some sites detect and block automated browsers
- J. Schmetz, "Your privacy on Chrome is at risk, here's what you can do,"
 TechRadar, Oct. 08, 2024.

collect CLI

```
File: collect-help.txt
Download content from URLs through Tor for privacy
Usage: decisym_defcon33 collect [OPTIONS] <URL>
Arguments:
 <ur>URL to download
Options:
  -o, --output <FILE>
                                 Write output to FILE instead of using the server-provided name
  -0 <FILE>
                                 Output file name (alternative to --output)
  -A, --user-agent <STRING>
                                 Set User-Agent header (default: Chrome)
                                 Enable quiet mode (suppress non-error messages)
  -a, --auiet
  -v, --verbose
                                 Enable verbose output
                                 Wait SECONDS between requests (rate limiting) [default: 1]
  -w. --wait <SECONDS>
      --max-redirect <NUM>
                                 Maximum number of redirects to follow [default: 5]
                                 Accept invalid TLS certificates (insecure)
  -k, --insecure
      --buffer-size <BYTES>
                                 Download buffer size in bytes [default: 8192]
      --default-filename <NAME>
                                 Default filename for URLs without a filename [default: index.html]
      --browser
                                 Download using headless browser for JavaScript rendering
      --page-wait <SECONDS>
                                 Wait time in seconds for page to fully load (browser mode only) [default: 5]
      --no-iframes
                                 Skip downloading iframe contents separately
                                 JSON array of actions: [{"action": "click". "selector": "button:contains('Saturday')". "wait": 3}]
      --browser-actions <JSON>
  -h, --help
                                 Print help
```

Salient Information Extraction

Found by LLM, missed by human:

- Sinwindie
- Kumar Ashwin
- Rohit Grover
- Kalovan Ivanov

Why manual search failed:

- CTRL+F didn't work
- Hidden in Saturday iframe
- Not in main speaker grid

Friend of a Friend (FOAF) Ontology

Generate RDF, align to FOAF ontology

```
File: ../tests/configs/generate_foaf_rdf.yaml
api url: "http://localhost:8000/v1"
model: "Owen/Owen3-30B-A3B-Instruct-2507"
messages:
 - role: "system"
    content: |
      You are an expert in RDF/OWL and the FOAF (Friend of a Friend) ontology.
      Your task is to convert a JSON array of speaker names into valid RDF/XML
      that complies with the FOAF ontology specification.
      FOAF Ontology Requirements:
      - Use the FOAF namespace: http://xmlns.com/foaf/0.1/
      - Each speaker should be represented as a foaf:Person
      - Use foaf: name for the full name
      - Use foaf:firstName and foaf:lastName for name components when possible
      - Generate unique URIs for each person (e.g., using hash of their name)
      - Include proper RDF/XML structure with namespaces
      RDF Structure Template:
      <?xml version="1.0" encoding="UTF-8"?>
         xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
```


Knowledge Graph Integration: Speaker Company Analysis

Linked FOAF to Wikidata

- 28 speakers extracted
- 7 companies matched in Wikidata
- Founded 1935-2012

Industry Distribution

- Computer Security: 3
- Information Technology: 2
- Cybersecurity: 1
- Agriculture: 1
- Key Insight: Mix of established companies (Microsoft, 50 years) and newer security firms (Synack, 13 years)

Company	Age
Tyson Foods	90 years
Microsoft	50 years
Fortinet	25 years
OWASP	24 years
Palo Alto Networks	20 years
Recorded Future	17 years
Synack	13 years

DeciSym.AI

Knowledge Graph Integration: Dashboard

User decisions

- - Source selection (e.g., websites)
 - Salient feature identification (e.g., Speakers)
 - Ontology selection (e.g., FOAF)
- Tools
 - Workflow support (e.g., scripts, DeciSym.AI Engine, LM Studio)
 - Crawlers (e.g., Tor Arti)
 - Triplestore (e.g., DeciSym.AI Engine, Oxigraph)
- LLM
 - Model (e.g., Qwen3-30B-A3B-Instruct-2507)
 - Runtime (e.g., vLLM, Docker image rocm/vllm)
- Linux Distribution (e.g., Ubuntu 24.04.2 LTS)
- Hardware (e.g., AMD or Nvidia GPU)

- Bypass LLM rate limits by building a local cache of sources over time.
 - Sources can be reused and shared
 - Sources can be integrated
- Maintain OPSEC by working on local cache.
- Enable scientific repeatability and reusability with workflow management.

Contacts

- Recon Village: https://www.reconvillage.org
- Supplementary Materials: https://github.com/DeciSym
- Email: don@decisym.ai

Summary 00