Группа:
Дата выполнения работы:
Лабораторная работа
ХИМИЧЕСКОЕ РАВНОВЕСИЕ
Цель работы:
Основные понятия: химическое равновесие, закон действующих масс, динамический характер химического равновесия, подвижность химического равновесия, принцип подвижности равновесия. Ле Шателье – Брауна, равновесный состав реакционной смеси, константа равновесия.
Химическое равновесие (определение):
Термодинамическое условие равновесия:
Кинетическое условие равновесия:
Константа равновесия (определение):
Способы выражения констант равновесия K_{C} , K_{p} , K_{x} :
Связь между константами равновесия:
Принцип Ле-Шателье – Брауна:

Общая химия

Студент:

Практическая часть

Опыт 1. Влияние концентрации веществ на смещение химического равновесия

Реагенты: растворы FeCl₃, NH₄NCS

Уравнение реакции:

Таблица 1. Результаты опыта

Наблюдения		Изменение концентрации				Выводы
Добавляемое вещество	Изменение окраски раствора	FeCl ₃	NH ₄ NCS	Fe(NCS) ₃	NH ₄ Cl	Смещение равновесия (вправо, влево)
Эталон	красная	Установившееся равновесие			≒	
FeCl ₃		увел-ся				
NH ₄ NCS			увел-ся			
NH ₄ Cl					увел-ся	

Выводы: (Укажите направление смещения равновесия при изменении концентраций реагентов или продуктов реакции, напишите выражение константы равновесия K_C , объясните, изменяется или остается постоянной константа равновесия при изменении концентрации реагентов)

Опыт 2. Влияние кислотности среды на положение химического равновесия

Реагенты: растворы K₂CrO₄, H₂SO₄

Уравнение реакции

в молекулярной форме:

в ионно-молекулярной форме:

Реагенты: растворы K2Cr2O7, KOH

Уравнение реакции

в молекулярной форме:

в ионно-молекулярной форме:

Таблица 2. Результаты опыта

Исходный раствор		Добавляемое вещество	Изменение окраски	Уравнение реакции в ионно- молекулярной форме	Смещение положения равновесия
состав	окраска				$CrO_4^{2-} \leftrightharpoons Cr_2O_7^{2-}$
K ₂ CrO ₄		кислота			
K ₂ Cr ₂ O ₇		щелочь			

Bbloodbl: (Объясните смещение положения равновесия при изменении pH среды, укажите, в какой среде устойчив каждый ион)

Опыт 3. Влияние температуры на смещение равновесия

Реагенты: водный раствор йода I_2 , крахмал $(C_6H_{10}O_5)_n$

Уравнение реакции:

Таблица 3. Результаты опыта

Образец	Окраска раствора	Смещение равновесия	Знак $\Delta_{ m r} { m H}^0$	
Эталон		₩	прямой	обратной
После нагревания				
После охлаждения				

Выводы: (Укажите, какая из реакций - прямая или обратная - является эндотермической, объясните, как согласуются наблюдения с принципом Ле Шателье – Брауна, сформулируйте принцип)