2020

PHYSICS — HONOURS

Paper : CC-11
Full Marks : 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions:

 2×5

- (a) The 2p state for hydrogen atom is known to be $re^{-r/2a_0}(\cos\theta)$. Find out the expectation value of r in this state.
- (b) Find the eigenfunction and eigen value of the operator $\frac{d}{d\theta}$, assuming the eigenfunction to be single valued in θ , i.e. $f(\theta + 2\pi) = f(\theta)$.
- (c) Prove that energy eigenfunction of free particle is doubly degenerate.
- (d) In Stern Gerlach experiment why is it necessary to use a beam of neutral atoms and not of ions?
- (e) What is Paschen Back effect?
- (f) Explain why normal Zeeman effect occurs only in atoms with even number of electrons.
- (g) Find out the magnetic moment of an atom in the state ${}^2D_{3/2}$.
- 2. (a) Show that Fourier transform of a Gaussian wave function is also Gaussian.
 - (b) Consider a linear harmonic oscillator for which the total energy is given by $E = \frac{p_x^2}{2m} + \frac{1}{2}m\omega^2x^2$. where the symbols have their usual meanings. The particle is assumed to be confined to a region $\sim a$. Use the uncertainty principle to obtain the minimum (ground state) of the oscillator.
 - (c) An electron of energy 342 eV is confined in one-dimensional box of length 1 $\overset{\circ}{A}$. Find out the quantum number of the energy level of the electron and energy needed to excite it in the next higher level.
- 3. (a) If a particle is confined between $-\frac{l}{2}$ to $+\frac{l}{2}$, show that there will be two sets of energy eigenfunctions depending on whether n is odd or even.

Please Turn Over

T(5th Sm.)-Physics-H/CC-11/CBCS

- (b) A particle in the infinite square well has the initial wave function $\psi(x, 0) = \begin{cases} Ax, & 0 \le x \le \frac{a}{2} \\ A(x-a), & \frac{a}{2} \le x \le a \end{cases}$ Find $\psi(x, t)$.
- (c) Find the quantum number corresponding to an oscillator of mass 2 gm, angular velocity 1 rad/sec, amplitude 1 cm and using correspondence principle comment on its nature.

 4+4+2
- **4.** (a) Write down the Schrödinger equation for the electron of Tritium (H₃) atom, assuming the nucleus to be stationary. Obtain the radial equation by separation of variables with special emphasis on effective potential.
 - (b) The wave function of hydrogen atom is $\psi(\vec{r}, 0) = \frac{1}{\sqrt{10}} \left(2\psi_{100} + \psi_{210} + \sqrt{2}\psi_{211} + \sqrt{3}\psi_{21-1} \right)$ Find out the expectation value for the energy, L^2 and L_z of this system. 4+(2+2+2)
- 5. (a) The wave function corresponding to the first excited state of a harmonic oscillator of frequency ω_0 is given by $\psi(x) = Axe^{-\alpha x^2/2}$; $\alpha = m\omega_0/\hbar$. Sketch $\psi(x)$ and determine A.
 - (b) Find the expectation value of the operator xp_x in this state.

(c) Find
$$\langle \hat{S}_z \rangle$$
 in the state $\chi = A \begin{pmatrix} 1 - 2i \\ 2 \end{pmatrix}$. (1+2)+4+3

- **6.** (a) Write down the fine-structure formula mentioning each correction term with respect to the Bohr energy for hydrogen atom.
 - (b) Using first-order perturbation theory, obtain the relativistic correction term to the kinetic energy.
 - (c) Find the g-value for 3S_1 and 3P_1 energy levels. Draw the schematic diagram of various allowed transmissions between the above levels due to anomalous Zeeman effect. 3+3+4
- 7. (a) For normal Zeeman effect of hydrogen, explain how Lorentz triplet occurs. How are the π and σ lines polarized?
 - (b) The quantum numbers of two electrons in a two electron atom are

$$l_1 = 3$$
, $S_1 = \frac{1}{2}$ and $l_2 = 2$, $S_2 = \frac{1}{2}$.

(i) Assuming LS coupling, find the possible values of L and hence J.

(ii) Assuming JJ coupling, find the possible values of J. (3+2)+(3+2)