Structures of Five New Carotenoids from the Oyster Crassostrea gigas

Takashi Maoka, †.§ Keiji Hashimoto, † Naoshige Akimoto, ‡ and Yasuhiro Fujiwara*.†

Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received October 5, 2000

Five new minor carotenoids, 1-5, were isolated from the oyster *Crassostrea gigas*. The structure of 1 was determined to be (3.S,5R,6R,6'S)-3,5,6'-trihydroxy-3'-oxo-6,7-didehydro-5,6'-dihydro-10,11,20-trinor- β , ϵ -caroten-19',11'-olide 3-acetate by detailed analyses of NMR and CD data. The structures of the other carotenoids, 2-5, were also determined in a similar manner. In the FAB-MS/MS of 2-4, having the 5-hydroxy-3,6-epoxy-5,6-dihydro- β -carotene moiety, the characteristic product ions resulting from the sequential cleavage of C-C bonds in the polyene chain were observed.

In the course of the studies on new carotenoids in natural products, we reported the isolation and structure elucidation of the retro-carotenoid anhydroeschscholtzxanthin, 1a the di-Z-carotenoid cucumariaxanthins, 1b the purple carotenoid rhodobacterioxanthin, 1c the C₆₉ carotenoids pittosporumxanthins, 1d and carotenoids possessing the unique end group of the crassostreaxanthins.² In the previous paper, we reported the isolation and structure elucidation of crassostreaxanthins A and B from the oyster Crassostrea gigas Thunberg (Ostreidae).2

Recently, we have isolated five new minor carotenoids, 1-5, from the same species.

This paper deals with the isolation and structural elucidation of these five carotenoids and with the observed characteristic ions in FAB-MS/MS of 2, 3, and 4.

Results and Discussion

Acetone extraction of the oyster C. gigas (10 kg), followed by treatment with Et_2O-n -hexane (1:1), gave a crude mixture of carotenoids. Repeated separations of the crude mixture of carotenoids by silica gel column chromatography and by HPLC on silica gel and on ODS furnished the new carotenoids 1 (0.5 mg), 2 (1 mg), 3 (0.5 mg), 4 (1 mg), and **5** (0.5 mg).

Carotenoid 1 was obtained as a red, amorphous solid exhibiting a molecular ion peak (HREIMS) at m/z 628.3395 corresponding to $C_{39}H_{48}O_7$. The UV-vis spectrum of 1 in Et₂O showed an absorption maximum at 457 nm. The ¹³C NMR and HSQC spectra of 1 in CDCl3 confirmed the presence of 39 carbons and 46 carbon-bonded protons. In the ¹H and ¹³C NMR spectra of **1** the noticeable signals due to three carbonyl carbons and allene groups were observed at δ_C 170.4, 168.7, and 197.7 and at δ_C 202.7 and $\delta_{\rm H}$ 6.06. The NMR and the UV-vis data suggested that 1 was an analogue of peridinin.^{3,4} Thus, the NMR data of 1 were compared with those of peridinin.4

The ¹H and ¹³C NMR signal assignments of 1 in CDCl₃ were made by ¹H-¹H COSY, HSQC, HMBC, and NOESY experiments. The ¹H assigned data of 1 are given in Table 1, together with those of the other carotenoids (2-5). The ¹³C data of **1** and **4** are presented in the Experimental Section. The ¹H and ¹³C data of 1 were almost identical with those of peridinin4 except for the signals of the end

group (C1' to C6'). The connections of the unassigned end group in 1 were determined by the HMBC experiment. The HMBC data are summarized in Figure 1. The ¹H and ¹³C signals for the unassigned end group of 1 showed crosspeaks in the HMBC spectrum between the following proton—carbon pairs: H16', H17'—C1', C2', C6', H2'—C3', H18'-C5', C6', H4'-C18', and H7'-C6'. On the basis of the HMBC connectivities, the partial structure of the end group (C1' to C6') was deduced (Figure 1). Thus, the whole chemical structure of 1 was determined. The structure of 1 was also supported by the data of ¹H−¹H COSY.

The stereochemistry of 1 was confirmed by NOESY and CD data. The NOESY spectrum showed NOE cross-peaks between H17' and H7' and between H16' and hydroxy

^{*} To whom correspondence should be addressed. Tel: $\pm 81-75-595-4637$. Fax: +81-75-595-4766. E-mail: fujiwara@mb.kyoto-phu.ac.jp. † Kyoto Pharmaceutical University.

[†] Kyoto University. § Present address: Sun Biorex Co., LTD., Shimogamo-Morimoto-cho 15, Sakyo-ku, Kyoto 606-0805, Japan.

Table 1. ¹H NMR (500 MHz) Data of Carotenoids **1–5** in CDCl₃^{a,b}

	1	2	3	4	5
¹ H no.	δ mult. (<i>J</i> , Hz)				
Η-2α	2.00 ddd (12, 4, 2)	1.61 d (11.5)	1.61 d (11.5)	1.61 d (11.5)	1.95 ddd (12, 4, 2)
$H-2\beta$	1.41 dd (12, 12)	1.84 ddd (11.5, 6, 2)	1.84 dm(11.5)	1.84 ddd(11.5, 6, 2)	1.34 dd (12, 12)
H-3	5.37 m	4.39 t (6)	4.39 t (6)	4.39 t (6)	4.32 m
$H-4\alpha$	2.29 ddd (13, 4, 2)	1.67 d (12)	1.67 d (12)	1.67 d (12)	2.26 ddd (13, 4, 2)
$H-4\beta$	1.51 dd (13, 13)	2.06 ddd (12, 6, 2)	2.06 ddd (12, 6, 2)	2.06 ddd (12, 6, 2)	1.41 dd (13, 13)
H-7		5.75 d (16)	5.75 d (16)	5.75 d (16)	
H-8	6.06 s	6.38 d (16)	6.38 d (16)	6.38 d (16)	6.04 s
H-10		6.21 d (11.5)	6.20 d (11.5)	6.21 d (11.5)	6.12 d (11.5)
H-11		6.66 dd (15. 11.5)	6.63 dd (15, 11.5)	6.64 dd (15, 11.5)	6.59 dd (15, 11.5)
H-12	6.12 d (11.5)	6.37 d (15)	6.36 d (15)	6.37 d (15)	6.35 d (15)
H-13	6.62 dd (14.5, 11.5)				
H-14	6.36 dd (14.5, 11.5)	6.27 d (11.5)	6.26 d (10)	6.28 d (11)	6.26 d (11.5)
H-15	6.53 dd (14.5, 11.5)	6.74 dd (14.5, 11.5)	6.63 m	6.72dd (14.5, 11.5)	6.72dd(14.5,11.5)
H-16	1.39 s	1.44 s	1.44 s	1.44 s	1.34 s
H-17	1.07 s	0.89 s	0.89 s	0.89 s	1.07 s
H-18	1.35 s	1.22 s	1.22 s	1.22 s	1.35 s
H-19	1.80 s	1.96 s	1.96 s	1.96 s	1.81 s
H-20		1.99 s	1.97 s	1.98 s	1.98 s
CH_{3CO}	2.04 s				
Η-2'α	2.55 d (18)	2.52 dd (15, 5)	1.84 ddd(12.5,4,2)	2.19 dd (13.5, 8)	2.19 dd (13.5, 8)
$H-2'\beta$	2.30 d (18)	2.69 dd (15, 7)	1.46 dd (12.5, 12.5)	1.72 dd (13.5, 4.5)	1.72 dd (13.5, 4.5)
H-3'		4.21 m	4.00 m	4.53 m	4.53 m
Η-4'α	5.95 br s	1.31 ddd (12, 11, 10)	2.43 ddd (18, 5.5, 2)	2.88 dd (14.5, 8.5)	2.88 dd (14.5, 8.5)
$H-4'\beta$		2.17 ddd (12, 7, 5)	2.09 dd (18, 9)	1.55 dd (14.5, 2.5)	1.55 dd (14.5, 2.5)
H-5'		2.32 ddq (11, 7, 7)			
H-7'	6.97 d (15)	2.86 d (13.5)		5.86 s	5.86 s
	• •	2.93 d (13.5)			
H-8'	6.55 d (15)				
H-10'	7.10 s	7.26 d (11)	6.46 d (11)	7.24 d (11)	7.24 d (11)
H-11'		6.59 dd (15, 11)	6.51 dd (14.5, 11.5)	6.60 dd (15, 11)	6.59 dd (15, 11)
H-12'	5.72 s	6.68 d (15)	6.36 d (14.5)	6.66 d (15)	6.65 d (15)
H-14'	6.48 d (11.5)	6.42 d (11.5)	6.27 d (10)	6.38 d (11.5)	6.37 d (11.5)
H-15'	6.61 dd (14.5, 11.5)	6.66 dd (14.5, 11.5)	6.63 m	6.63 dd (14.5, 11.5)	6.63 dd (14.5, 11.5)
H-16'	1.11 s	2.14 s	1.15 s	0.85 s	0.85 s
H-17'	1.04 s	1.10 s	1.20 s	1.19 s	1.19 s
H-18'	1.91 d (1.2)	0.99 d (7)	1.92 s	1.35 s	1.35 s
H-19'		1.93 s	1.95 s	1.99 s	1.98 s
H-20'	2.23 s	1.99 s	2.01 s	1.99s	1.99 s
OH-8'				16.30 s	16.30 s

^a ¹H chemical shifts are reported downfield from internal TMS (=0.00). ^b ¹H NMR signals were assigned by gmq-COSY and NOESY experiments and by comparison with those of related compounds (ref 4).

Figure 1. Structure and HMBC correlations for carotenoid 1.

proton(s). The other observed NOE cross-peaks between the remaining protons in 1 were almost identical with those in peridinin. Thus, the relative stereochemistry of 1 was assigned as shown in Figure 1. The CD spectrum of 1 showed characteristic Cotton effects similar to those of amarouciaxanthin A,5 which possesses 3S,5R,6R,6'S chiralities. Consequently, the absolute structure of 1 was determined to be (3S,5R,6R,6'S)-3,5,6'-trihydroxy-3'-oxo-6,7didehydro-5,6-dihydro-10,11,20-trinor- β , ϵ -caroten-19',11'-

Carotenoids 2 and 3 were obtained as orange amorphous solids. The UV-vis spectra of 2 and 3 in Et₂O showed absorption maxima at 443 and 468 and at 446 and 476 nm, respectively. The molecular formulas of 2 and 3 were determined as $C_{40}H_{56}O_5$ and $C_{40}H_{54}O_3$ by HREIMS, re-

As can be seen from Table 1, the ¹H chemical shifts and the spin-couplings of H2 to H20 in 2 and 3 were almost identical with those in cycloviolaxanthin.6 That is, the data indicated the presence of a cycloviolaxanthin partial structure in 2 and 3. The NMR signals of the remaining unassigned protons (H2' to H20') of 2 and 3 were similar to those of a partial structure in crassostreaxanthin A² and alloxanthin, 4 respectively. Consequently, the structures of 2 and 3, each of which was made up of the corresponding partial structures in cycloviolaxanthin and crassostreaxanthin A and in cycloviolaxanthin and alloxanthin, respectively, were determined to be that shown. The relative stereochemistries of 2 and 3 were also supported by the results of NOESY and ¹H-¹H COSY experiments. The NOESY data summary is given in Figure S1 of the Supporting Information.

Carotenoid 4 was obtained as a red, amorphous solid, with the molecular formula C40H56O5, as established by HREIMS. The UV-vis spectrum of 4 in Et₂O showed an absorption maximum at 464 nm. As shown in Table 1, the ¹H chemical shifts and the spin-couplings of H2 to H20 in 4 were almost identical with those in cycloviolaxanthin.⁶ The ¹H NMR signals of the remaining protons in **4** were similar to those in mytiloxanthin.⁷ Thus, the structure of **4** was determined to be made up of the corresponding partial structures in cycloviolaxanthin and mytiloxanthin. The relative stereochemisty of **4** was also supported by the results of the NOESY (Figure S1) and ¹H-¹H COSY experiments and the ¹³C chemical shifts listed in the Experimental Section.

Figure 2. Structure and FAB MS/MS spectrum of carotenoid 4.

The absolute structures of **2**, **3**, and **4** were tentatively postulated on the basis of the NOESY and the CD data. The CD spectrum of **3** showed characteristic Cotton effects similar to the combined CD spectra of cycloviolaxanthin $(3S,5R,6R)^{6b}$ and alloxanthin (3R), by the use of the additivity rules of CD spectra of dichiral carotenoids. In carotenoid **2**, the 3S,5R,6R chiralities were postulated on the basis of the fact that the CD spectrum of **2** exhibits the same Cotton effects as that of cycloviolaxanthin.

The CD spectrum of **4** showed characteristic Cotton effects similar to those of capsanthin 3,6-epoxide (3.5,5.6,6.3.3.5,5.7.8), which possesses the same asymmetric carbons and the same chromophore. ^{6b}

Taking the results of their CD and relative stereochemistries into account, the structures of **2**, **3**, and **4** were determined to be (3S,5R,6R)-5-hydroxy-3,6:3′,6′-diepoxy-5,6,1′,2′,5′,6′,7′,8′-octahydro-6′-methyl-16′-nor- β , φ -carotene-1′,8′-dione, (3S,5R,6R,3'R)-3,6-epoxy-7′,8′-didehydro-5,6-dihydro- β , β -carotene-5,3′-diol, and (3S,5R,6R,3'S,5'R)-5,3′,8′-trihydroxy-3,6-epoxy-5,6-dihydro- β , κ -caroten-6′-one, respectively.

Carotenoid **5** was obtained as a red, amorphous solid exhibiting a molecular ion peak (HREIMS) at m/z 616.4119 corresponding to $C_{40}H_{56}O_5$. The UV—vis spectrum of **5** in Et₂O showed an absorption maximum at 457 nm. The chemical structure of **5** was deduced to be that shown by comparing the 1H NMR data of **5** with those of the corresponding partial structures in fucoxanthinol⁴ and mytiloxanthin.⁷ The relative stereochemistries in the end groups of **5** were supported by the NOESY correlations and the magnitudes of 1H — 1H spin-couplings in Table 1. The CD spectrum of **5** was similar to that of fucoxanthinol,⁸ and the absolute stereochemistry of the other end group (C1' to C6') was deduced to be the same as in **4**. Thus,

the absolute structure of **5** was determined to be (3.5,5R,6R,3'S,5'R)-3,5,3',8'-tertahydroxy-6,7-didehydro-5,6-dihydro- β , κ -caroten-6'-one.

Finally, the FAB-MS/MS spectrum of **4** is shown in Figure 2. As can be seen from Figure 2, the CID (collision-induced dissociation) MS spectra of the $M^{\bullet+}$ (616) showed the characteristic product ions resulting from the sequential cleavage of C–C bonds in the polyene chain in addition to the $[M-18]^{\bullet+}$ and $[M-80]^{\bullet+}.9$ The characteristic product ions were also observed for the CID MS spectra of the $M^{\bullet+}$ of **2** and **3**.

In addition to the new carotenois **1–5**, 17 known carotenoids (see Experimental Section) were isolated and identified by UV–vis, EIMS, CD, and ¹H NMR. Their structures are presented in the Supporting Information data, Figure S2.

Experimental Section

General Experimental Procedures. The UV-visible (vis) spectra were recorded on a Shimadzu UV-240 spectrophotometer in Et₂O. The EIMS, FABMS, and FAB-MS/MS spectra were recorded using a JEOL JMS-HX/HX 110A mass spectrometer. The EIMS spectra were recorded with a direct inlet system with ionization energy of 70 eV. The positive ion FAB MS/MS measurement conditions were as follows: matrix, 3-nitrobenzyl alcohol; accelerating voltage, 10 kV; emitter current, 5 mV; collision gas, argon; collision cell voltage, 3 kV. The ¹³C (125 MHz) and ¹H NMR (500 MHz) spectra were recorded on a Varian UNITY INOVA 500 spectrometer in $CDCl_{3}$ with TMS as an internal standard. The $^{13}\mbox{C}$ NMR spectra of 1 (0.5 mg) and 4 (1 mg) were measured in 40 μ L of CDCl₃ solution using a Nanoprobe (Varian). All two-dimensional experiments were carried out without sample spinning. The gmq (pulsed field gradient multi-quantum) COSY, NOESY (mixing time 1.3 s), gHSQC (1JCH optimized for 142 Hz), and gHMBC ("JCH optimized for 8 Hz) spectra were acquired using

the standard Varian pulse programs. and the software used to obtain 2D spectra was from Varian, version 6.1A. CD spectra were recorded in Et₂O at room temperature with a JASCO J-500 spectropolarimeter. HPLC was performed on a Shimadzu LC-6AD instrument with a Shimadzu SPD-6AV spectrophotometer set at 450 nm. The columns used were a Shim-Pack PREP-SIL (Shimadzu, 20 mm \times 250 mm, 5 μ m) and a Lichrospher 100 RP-18 (Cica Merck, 20 \times 250 mm, 10 μ m).

Animal Material. C. gigas was purchased at the fish market in Kyoto City in February. Voucher specimens² have been deposited at Kyoto Pharmaceutical University.

Extraction and Isolation of Carotenoids. The Me₂CO extract of the edible parts of C. gigas (10 kg) was partitioned between *n*-hexanes-Et₂O (1:1) and aqueous NaCl. The organic layer was dried over Na₂SO₄ and then concentrated to dryness. The residue was subjected to column chromatography (CC) on Si gel using an increasing percentage of Me₂CO in *n*-hexane. The fraction eluted with *n*-hexane–Me₂CO (1:1) from a Si gel column was purified by HPLC on silica with n-hexane-Me₂-CO (7:3) and further purified by HPLC on ODS with CHCl₃-MeCN (1:9) to yield $\bar{\mathbf{1}}$ (0.5 mg), $\mathbf{2}$ (1 mg), $\mathbf{3}$ (0.5 mg), and $\mathbf{4}$ (1 mg). The fraction eluted with Me₂CO from a Si gel column was further purified by HPLC on silica with n-hexane-Me₂-CO (6:4) and on ODS with CHCl₃-MeCN (1:9) to yield 5 (0.5 mg).

In the present isolation, the following additional known carotenoids^{3,4,8,9} were isolated and identified by UV-vis, EIMS, ¹H NMR, and CD spectral data: alloxanthin (5 mg) and its 3-acetate (3 mg), 8'-apo-alloxanthinal (5 mg), crassostreaxanthin A (10 mg) and its 3-acetate (4 mg), crassostreaxanthin B (6 mg) and its 3-acetate (4 mg), diatoxanthin (4 mg), fucoxanthin (4 mg), fucoxanthinol (2 mg), halocynthiaxanthin (20 mg)and its 3'-acetate (5 mg), mytiloxanthin (12 mg), pectenol A (2 mg), peridinin (5 mg), peridininol (1 mg), pyrrhoxanthinol

Carotenoid 1: red, amorphous solid; UV-vis (Et₂O) λ_{max} 457 nm; CD (Et₂O) $\lambda_{\rm ext}(\Delta\epsilon)$ 225 (-6.8), 255 (+10.2), 352 (-6.1); ¹H NMR (CDCl₃), Table 1; ¹³C NMR (CDCl₃) δ 14.0 (q, C-19), 15.4 (q, C-20'), 18.9 (q, C-18'), 21.4 (q, CH₃CO), 23.0 (q, C-16'), 24.3 (q, C-17'), 29.1 (q, C-16), 31.2 (q, C-18), 32.0 (q, C-17), 35.8 (s, C-1), 41.6 (s, C-1'), 45.2 (t, C-4), 45.4 (t, C-2), 49.7 (t, C-2'), 67.9 (d, C-3), 72.6 (s, C-5), 79.7 (s, C-6'), 103.3 (d, C-8), 117.6 (s, C-6), 119.9 (d, C-12'), 122.6(d, C-8'),124.4(s, C-9'), 127.3 (d, C-4'), 128.1 (d, C-12), 128.8 (d, C-15'), 131.7 (d, C-13), 132.9 (s, C-9), 133.8 (d, C-14), 134.1 (s, C-13'), 136.2 (d, C-7'), 136.9 (d, C-10'), 137.6 (d, C-15), 138.6 (d, C-14'), 146.6(s, C-11'), 161.4 (s, C-5'), 168.7 (s, C-19'), 170.4 (s, CH₃CO), 197.7 (s, C-3'), 202.7 (s, C-7); EIMS m/z 628 [M]+ (18), 610 (100), 550 (74), 536 (12), 416 (20), 397 (20), 297 (20), 223 (42), 197 (34), 152 (34), 43 (34); HREIMS m/z 628.3395 (calcd for $C_{39}H_{48}O_{7}$, 628.3394).

Carotenoid 2: orange, amorphous solid; UV-vis (Et₂O) λ_{max} 443, 468 nm (%III/II = 65); CD (Et₂O) $\lambda_{\text{ext}}(\Delta \epsilon)$ 235 (-1), 285 (+1), 325 (-1); ¹H NMR (CDCl₃), Table 1; EIMS *m*/*z* 616 [M]+ (30), 598 (2), 558 (4), 524 (4), 462 (15), 221 (13), 155 (100), 113(20), 43(16); HREIMS m/z, 616.4137 (calcd for $C_{40}H_{56}O_5$,

Carotenoid 3: orange, amorphous solid; UV-vis (Et₂O) λ_{max} 446, 476 nm (%III/II = 65); CD (Et₂O) $\lambda_{\text{ext}}(\Delta \epsilon)$ 240 (-2), 275 (0), 320 (-1.7); ¹H NMR (CDCl₃), Table 1; EIMS m/z 582 $[M]^+$ (100), 564 (5), 502 (5), 490(10), 299 (12), 286 (21), 221 (37), 181(13), 160 (15), 43 (12); HREIMS m/z, 582.4080 (calcd for $C_{40}H_{54}O_3$, 582.4072).

Carotenoid 4: red, amorphous solid; UV-vis (Et₂O) λ_{max} 464 nm; CD (Et₂O) $\lambda_{\text{ext}}(\Delta\epsilon)$ 240 (-0.5), 280 (+1), 360 (-2); ¹H NMR (CDCl₃), Table 1; 13 C NMR (CDCl₃) δ 12.5 (q, C-20'),-12.8 (q, C-20), 12.9 (q, C-19), 12.9 (q, C-19'), 22.2 (q, C-18'), 25.0 (q, C-17'), 25.7 (q, C-16), 25.9 (q, C-16'), 31.6 (q, C-18), 32.2 (q, C-17), 44.0 (s, C-1), 44.7 (s, C-1'), 45.2 (t, C-4'), 47.7 (t, C-4), 48.5 (t, C-2), 50.8 (t, C-2'), 56.1 (s, C-5'), 70.5 (d, C-3'), 75.4 (d, C-3), 82.5 (s, C-5), 91.7 (s, C-6), 94.5 (d, C-7'), 123.2 (d, C-7), 123.3 (d, C-14), 123.6 (d, C-11'), 125.5 (d, C-11), 129.6 (d, C-15), 131.5 (d, C-10), 132.6 (d, C-15'), 134.8 (d, C-8), 135.3 (s, C-9), 135.7 (s, C-13), 135.8 (d, C-10'), 135.8 (d, C-14'), 136.4 (s, C-9'), 137.6 (d, C-12), 137.8 (s, C-13'), 144.0 (d, C-12'), 182.0 (s, C-8'), 202.3 (s, C-6'); EIMS m/z 616 [M]⁺ (100), 598 (15), 580 (5), 536 (7), 524 (20), 506 (10), 419 (5), 313 (17), 287 (23), 221 (63), 179(35), 109 (43), 83 (25), 43 (22); HREIMS m/z 616.4133 (calcd for C₄₀H₅₆O₅, 616.4125).

Carotenoid 5: red, amorphous solid; UV-vis (Et₂O) λ_{max} 468 nm; CD (Et₂O) $\lambda_{\text{ext}}(\Delta\epsilon)$: 227 (-1.5), 290 (-3), 370 (-1); ¹H NMR (CDCl₃), Table 1; EIMS m/z 616 [M]⁺ (32), 598 (33), 580 (10), 524 (5), 386 (10), 237 (23), 197 (42), 179 (25), 127 (35), 109 (100), 83 (40), 43 (32); HREIMS m/z 616.4119 (calcd for $C_{40}H_{56}O_5$, 616.4125).

Supporting Information Available: Figure S1 indicating NOE-SY data summary of 1-5. Figure S2 indicating structures of 17 known carotenoids. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) (a) Ida, K.; Masamoto, K.; Maoka, T.; Fujiwara, Y.; Takeda, S.; (a) Idd, K., Masailioto, K., Maoka, I., Fujiwara, I., Takeda, S., Hasegawa, E. *J. Plant Res.* **1995**, *108*, 369–376. (b) Tsushima, M.; Fujiwara, Y.; Matsuno, T. *J. Nat. Prod.* **1996**, *59*, 30–34. (c) Maoka, T.; Mochida, K.; Okuda, Y.; Ito, Y.; Fujiwara, Y. *Chem. Pharm. Bull.* **1997**, *45*, 1225–1227. (d) Fujiwara, Y.; Maoka, T. *Tetrahedron Lett.* **2001**, 42, 2693-2696.
- (2) Fujiwara, Y.; Maoka, T.; Ookubo, M.; Matsuno, T. Tetrahedron Lett. 1992, 33, 4941–4944.
 (3) Britton, G. In *UV/Visible Spectroscopy in Carotenoids*; Britton, G.,
- Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Verlag: Basel, 1995; Vol. 1B, pp 13-62.
- (a) Englert, G. In NMR Spectroscopy in Carotenoids; Britton, G.; Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Verlag: Basel, 1995; Vol. 1B, pp 147–260. (b) Haugan, J. A.; Englert, G.; Aakermann, T.; Glinz, E.; Liaaen-Jensen, S. *Acta Chem. Scand.* 1994, 48, 769–778.
 (5) Matsuno, T.; Ookubo, M.; Komori, T. *J. Nat. Prod.* 1985, 48, 606–
- (6) (a) Deli, L.; Molanar, P.; Toth, G., Baumeler, A.; Eugster, C. H. Helv. Chim. Acta 1991, 74, 819–824. (b) Deli, L.; Molnar, P.; Matus, Z.; Toth, G.; Steck, A. Helv. Chim. Acta 1996, 79, 1435–1443. (a) Khare, A.; Moss, G. P.; Weedon, B. C. L. Tetrahedron Lett. 1973,
- 3921-3922. (b) Maoka, T.; Fujiwara, Y. J. Jpn. Oil Chem. Soc. 1996, 45, 667-670.
- Buchecker, R.; Noack, K. Circular Dichroism in Carotenoids, Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Verlag: Basel,
- 1995; Vol. 1B, Chapter 3, pp 63–116. (a) Johannes, B.; Brzezinka, H.; Budzikiwiez, H. *Org. Mass Spectrom.* **1974**, *9*, 1095–1113. (b) Budzikiwiez, H. In *Mass Spectra of Caro*tenoids-Labeling Studies in Carotenoid Chemistry and Biochemistry; Britton, G., Goodwin, T. W., Eds.; Pergamon Press: Oxford, 1983; pp 155–165.

NP000476W