

Exploration of Wisconsin Based Wastewater Epidemiology

Marlin Lee, Kyllan Wunder, Abe Megahed Data Science Institute, University of Wisconsin-Madison Special thanks to Dagmara Antkiewicz, Adelaide Roguet from the Wisconsin State Lab of Hygiene

Outline:

1. Problem Definition

- What's WBE(Wastewater-Based Epidemiology)
- Data sources where is the data from (collection, analysers, reporters)
- Data challenges

2. Investigations

- Normalization
- Cleaning
- Analysis

3. Conclusions

What is Wastewater-Based Epidemiology (WBE)?

Process:

- Collect samples from sewersheds
- Analyze samples at State Lab of Hygiene
- Report results at Department of Health services

Goals:

- Help people make better policy
- Identify outbreaks before they manifest in the case data

Wisconsin Covid-19 Data Sources

Wastewater Data

- o 82 Sites
- ~3 years
- 1 6 days /week
- 64,000
 samples

Case Data

- o 82 Sites
- ~3 years
- o 7 days / week

WBE is a Multi-Organization Collaboration

Regional

- DHS
- WSLH
- UM Milwaukee

National

• CDC

How WBE Information is Communicated to the Public

WI Department of Health Services (DHS) dashboard

Centers for Disease Control and Prevention (CDC)
dashboard

https://dhs.wisconsin.gov/covid-19/wastewater.htm

https://covid.cdc.gov/covid-data-tracker/#wastewater-surveillance

Challenges of Working with the Data

- Data is inherently noisy
- Sampling differences (once / week vs. many times / week)
- Analysis method differences (qpcr vs. dpcr)
- Many cofactors
 (population, time etc.)

Investigations

- Cleaning
 - Outliers
 - Smoothing
- Normalization
- Analysis
 - Variance analysis
 - Offset analysis

Presented on April 17, 2023 Midwest Chapter SETAC

Outliers

 Wastewater measurement data tends to be noisy

 Removing outliers allows improved detection of trends in the data

Outlier Detection

Solution:

- Look at local spikes
 - Only requires 7 data points / at most 2 week future knowledge
- Pick threshold based on historical spike data
 - Controls for difference frequencies

Problems:

- a. Solution must be able to handle this
- Low minimum frequency
 - a. One measurement / week means 2 future data points is a soft cap on influence
 - b. Removing data means no measurement for the week

site	case freq	waste freq
Madison	7	6
Marshfield	7	2
Black River Falls	7	2

Outlier Removal

• Removing outliers fixes issues on a small time scale

Does not meaningfully improve overall trend

Smoothing

• Smoothing removes high frequency noise in the data

Approach:

• Use right aligned Median smoothing

Issues:

• Sitewise Inconsistent frequency of wastewater collection

Results:

• Smoothed data (lines) provide better trending indicators than non-smoothed data (points)

Normalization

Goals:

• We want measurement to represent the true presence of Covid in the community

Concerns:

- Does the signal scale with population?
- Does the signal scale with the collection method (tests, flow)?

Results:

- Reduced variance
- Better captures underlying signal
- Reduced model error

Before:

After:

Normalization of Gene Copies

Normalization of Reported Cases

Basic Level of Detection (LOD) Filtering

- Reported LOD changed over:
 - Time
 - Location
 - Method
- The occurrence of low case rates appears to be correlated with being below the LOD, independent of variations in gene copies.

Level of Detection Regulating

- Controlling for values below the LOD threshold helps to reveal a more distinct trend.
- There is a decently strong connection between cases and N1/N2 concentration discounting time.

Drop values below LOD

Set values below LOD to LOD / 2

Correlation Between Reported Cases and Gene Copies

Reported cases

 (above) track with
 gene copies
 (below) over time.

N1, N2 = gene markers

Variance Analysis Overview

Made easy:

- WSLH ran a high frequency testing period at 10 sites for 42 days
- Each day 3 filters were collected with 3 measurements each meaning 9 total measurements
- Used to calculate sources of error in each step of collection

Variance Analysis Results

- Normalizers (HF183, CrP, and PMMoV) have lower systemic variance than N1 and N2.
- PMMoV has higher systemic variance than other normalizers
- N2 has higher variance at ever level then N1

Time Series Analysis

Goal:
 Determine temporal offset
 between cases and
 wastewater (N1/N2)
 measurements.

Results:
 Future days more important

Offset Analysis Results

- Offset between wastewater and case data varies by variant.
- Offset is sometimes lagging and sometimes leading case data.
- Variant and population size both affect offset.
- Reasons for differences between variants are unknown.

Offset out of range >10 or <-10

Conclusions

- Outlier detection helps fix local (short term) issues but does nothing for the wider trend.
- Smoothing works but creates lagging issues.
- Normalization has huge impact on signal comparison.
- A more comprehensive breakdown of the sources of variance allows for better, more predictive models.

Future Directions

- Achieve a better understanding of variance in order to create more comprehensive model.
- Improve estimates of shedding and case testing viral load distributions.
- Continue optimizing current methods.

Final Products

- Presented two poster sessions
- GitHub repository
- Contact us if you'd like more information.

Contact:
Marlin Lee
mrlee6@wisc.edu

https://github.com/AFIDSI/Covid19-Wastewater-Analysis