Санкт-Петербургский государственный университет Математико-механический факультет Информационно-аналитические системы

Ким Юния Александровна 18.Б07-мм

Вычислительный практикум

Отчёт по заданию №13

Преподаватель: Евдокимова Т.О.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2021

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
3.	Теоретическая часть	3
4.	Численный эксперимент	3
	4.1. Описание	3
	4.2. Результаты	3
	4.3 Анализ	4

1. Ссылка на код

https://github.com/yuniyakim/MethodsOfComputation/pull/21

2. Постановка задачи

Задача – реализация метода Монте-Карло нахождения приближённого значения определённого интеграла.

3. Теоретическая часть

Исходная задача — нахождение приближённого значения интеграла $\int_a^b g(x) \, dx$.

Классическая идея метода Монте-Карло состоит в том, что, если вписать исходную фигуру в прямоугольник и случайно «набросать» в этот прямоугольник точек, то отношение числа точек, попавших под кривую, к общему числу точек, равно отношению площади фигуры к площади прямоугольника. Однако существует трудность в генерации хороших случайных двумерных точек.

Пусть задана ξ — случайная величина, определённая на отрезке (a,b) с плотностью вероятности $p_{\xi}(x)$.

Рассмотрим случайную величину $\eta = \frac{g(\xi)}{p_{\xi}(\xi)}$. Тогда $E_{\eta} = \int_a^b p_{\eta}(x) = \int_a^b \frac{g(x)}{p_{\xi}(x)} p_{\xi}(x) = \int_a^b g(x)$. Таким образом, имеем формулу для приближённого вычисления определённого интеграла: $\int_a^b g(x) \approx \frac{1}{N} \sum_{i=1}^N \frac{g(\xi_i)}{p_{\xi}(\xi_i)}$.

4. Численный эксперимент

4.1. Описание

Для численного эксперимента в качестве функции g(x) бралась функция $\cos(x)$ на отрезке $(0,\pi/2)$. Линейная плотность задавалась формулой $p_{\xi}(x) = 4/\pi - 8x/\pi^2$ – нормированный интерполяционный многочлен Лагранжа функции $\cos(x)$ на $(0,\pi/2)$.

Параметр N варьировался от 10^2 до 10^5 .

4.2. Результаты

Рисунок 4.1. Результаты функции $\cos(x)$

4.3. Анализ

В результате эксперимента было выявлено, что формула с линейной плотностью даёт наилучшие результаты. Кроме того, было замечено, что при небольших N формула с отношениями площадей даёт лучшие результаты, чем формула с равномерной плотностью.