

Foundation of Artificial Intelligence Chapitre 01

Dr. NECIBI Khaled

Faculté des nouvelles technologies

Khaled.necibi@univ-constantine2.dz

Foundation of Artificial Intelligence

- Introduction -

Dr. NECIBI Khaled

Faculté des nouvelles technologies

Khaled.necibi@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
Nouvelles technologies	IFA	Master 01	SDIA

Université Constantine 2 2021/2022. Semestre

Objectif du cours

- Comprendre les concepts de base qui sont liés au domaine de l'Intelligence Artificielle
- Avoir une idée sur les techniques classique de l'Intelligence Artificielle

Introduction à l'Intelligence Artificielle

- Qu'est-ce que l'Intelligence Artificielle (définitions et concepts de base)
 - Historique
 - Domaines d'Applications de l'Intelligence Artificielle

- Naissance de l'Intelligence Artificielle
 - Terme inventé par Jhon McCarthy (1927-2011) : Le principale pionnier de l'intelligence artificielle
 - Avec la collaboration de Marvin Lee Minsky (1927-2016)

- Quelques définitions de l'intelligence artificielle
 - Capacité de saisir une chose par la pensée
 - Qualité de quelqu'un qui manifeste dans un domaine donné un :
 - Souci de comprendre, de réfléchir, et connaître et
 - Qui adapte facilement son comportement à ces finalités
 - Ensemble de fonctions mentales ayant pour objet la connaissance conceptuelle et relationnelle
 - Aptitude d'un être humain à s'adapter à une situation et à choisir des moyens d'action en fonction des circonstances

- Quelques définitions de l'intelligence artificielle
 - L'intelligence Artificielle peut être vue comme étant un domaine universel d'oû la question :
 - Comment peut-on automatiser des tâches intellectuelles ?
 - Pas seulement évoquer pour comprendre le mode de fonctionnement du cerveau ;
 - Mais aussi comprendre comment construire des entités intelligentes, des machines et des agents intelligents
- Définition à base de l'ingénierie
 - Résoudre des problèmes réels en utilisant la connaissance et le raisonnement
 - Développer des concepts, des théories et l'implémentation des entités intelligentes
 - Se focaliser sur la création et le développement des systèmes

- Définition à base scientifique
 - Utiliser les ordinateurs comme une plateforme pour l'étude de l'intelligence elle-même
 - Se focaliser sur la compréhension du comportement intelligent

	Performances humaines	Performances idéals
Raisonnement	Systèmes qui pensent comme les êtres humains	Systèmes qui pensent rationnellement
Comportement	Systèmes qui agissent comme les êtres humains	Systèmes qui agissent rationnellement

- Systèmes qui pensent comme un être humain
 - Comment fonctionne notre cerveau?
 - Requiert des théories scientifiques sur l'activité interne du cerveau (ex : expériences psychologiques)
 - Implémenter les théories et comparer avec les humains
- Comment valider ces systèmes ?
 - Il faut prédire et tester le comportement des êtres humains (Sciences cognitives)
 - Ou bien il faut les valider directement à partir des données neurologiques (neurosciences cognitives)

- Systèmes qui agissent comme un être humain
 - Le test de Turing
 - Créé pour donner une définition opérationnelle satisfaisante de l'intelligence
 - Un ordinateur passe ce test si un homme, après avoir posé des questions écrites, ne sait pas s'il s'adresse à un autre être humain ou à un ordinateur

- Le test de Turing
 - Pour réussir ce test, l'ordinateur doit posséder des capacités dans les domaines suivants :
 - Traitement du langage naturel
 - Représentation de connaissances
 - Raisonnement automatique
 - Apprentissage automatique

- Systèmes qui pensent rationnellement
 - Socrate est un homme, tous les hommes sont mortels; donc Socrate est mortel
 - La logique formelle permet d'écrire des énoncés sur les objets dans le monde et leur interrelation
- Problème :
 - Il est difficile de traduire les connaissances et les états du monde réel en des équations logiques

- Systèmes qui agissent rationnellement
 - Comportement rationnel
 - Effectuer l'action qui, selon les informations disponibles, devrait maximiser l'accomplissement d'un but
 - Agent rationnel :
 - entité qui aperçoit et agit dans un environnement pour accomplir ses buts en fonction de ses capacités et ses connaissances

- Autres définitions de l'intelligence artificielle
 - lA faible : développement d'applications puissantes et utiles
 - lA forte : les systèmes intelligents peuvent avoir un mode de raisonnement similaire à celui de l'être humain
 - Pour être intelligent, l'ordinateur doit être capable de :
 - <u>Traitement Automatique du Langage Naturel (TALN)</u>: et ce pour communiquer avec succès
 - Représentation de connaissances : afin de stocker les informations relatives à ce que la machine doit connaitre ou entendre
 - Raisonnement automatique : afin de répondre aux questions et tirer des conclusions en utilisant les informations stockées
 - Apprentissage automatique : afin de s'adapter aux différentes circonstances

- Historique
 - Apparence
 - 1943 (McCulloch-Pitts): Premier modèle de réseaux de neurones
 - 1944 (von Neumann et Morgenstern) : Théorie des jeux
 - Naissance
 - 1950 le test de Turing
 - 1951 (Strachey): Premier logiciel permettant de jouer aux dames
 - 1955 (Newell et Simon): The Logic Theorist, premier programme capable de démontrer des théorèmes
 - 1956 : Conférence au Dartmouth College organisée par McCarthy
 - Naissance du terme « Intelligence Artificielle »
 - Toute activité intelligente est modélisable et reproductible par une machine
 - 1957 (Simon, Shaw, Newell): The General Problem Solver. Solveur de problèmes universel
 - 1958 (McCarthy): LISP: LISt Processing Language (langage destiné au traitement d'expression symboliques)

- Historique
 - Développement : 1960 (Rosenblatt) : Perceptron, premier ordinateur à utiliser un réseau de neurones permettant à la machine d'apprendre en fonction de ses <u>réussites</u> et ses échecs
 - 1965 (Feigenbaum) : Premier Système Expert
 - 1972 (Colmerauer) : Prolog
 - 1997 : Victoire de Deep Blue sur Kasparov (champion du monde jeu d'échec)
 - 2006 : Monte-Carlo Tree Search Strategy (MCTS)
 - 2009 : Google car
 - 2011: Watson gagne au Jeopardy
 - 2012 : Deep Learning
 - 2016 : AlphaGo (développé par Google DeepMind)

- Exemples d'applications de l'Intelligence Artificielle
 - Compréhension du langage naturel (Natural Langugage Understunding) : vérification et correction automatique de la grammaire et de l'orthographe)
 - Traducteur Intelligent : l'affichage et/ou la prononciation du contenu dans une langue étrangère;
 - Les systèmes avancés peuvent répondre aux questions tout on se basant sur les informations dans le texte et produire ainsi des synthèses utiles
 - PROVERB (Littman 1999) crossword puzzles

• . . .

- Exemples d'applications de l'IA (Systèmes Experts)
 - Domaine de la Géologie : un système expert effectuant une évaluation du potentiel minéral d'une région géologique
 - Domaine médical: les systèmes de diagnostic
 - Pathfinder : un système de diagnostic médical développé par Heckerman & Microsoft
 - MYCIN : un système pour le diagnostic des infections bactériale du sang avec suggestion du traitement adéquat
 - Outils intelligent de configuration de système
 - XCON: (pour une configuration hardware personnalisée) ce système intelligent peut configurer des ordinateurs en faisant le travail de 300 personnes tout en utilisant 10,000 règles
 - Domaine de la Robotique

• . . .

- Les approches utilisées dans l'IA
 - <u>IA Symbolique</u>: le système intelligent est nourri avec de la connaissance (pas d'apprentissage automatique)
- Connexionnisme: Les réseaux de neurones
 - Le système intelligent apprend par lui-même à travers des exemples et s'auto améliore avec le temps

- Références Bibliographiques
 - S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, (3rd Edition/) Prentice-Hall, 2010.
 - Bruno Bouzy, « Intelligence Artificielle, Introduction », LIPADE Université Paris Descartes

• . . .