Rutherford scattering 1

Use the following formula to compute the cross section for Rutherford scattering.

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 \varepsilon_0^2} \left(\frac{mQ}{2\pi\hbar^2}\right)^2, \quad Q = \int \exp\left(\frac{i\mathbf{p} \cdot \mathbf{r}}{\hbar}\right) V(\mathbf{r}) d\mathbf{r}^3$$

Convert Q to polar coordinates.

$$Q = \int_0^{2\pi} \int_0^{\pi} \int_0^{\infty} \exp\left(\frac{ipr\cos\theta}{\hbar}\right) V(r,\theta,\phi) r^2 \sin\theta \, dr \, d\theta \, d\phi$$

For Rutherford scattering $V(\mathbf{r})$ is the Coulomb potential.

$$V(\mathbf{r}) = V(r) = -\frac{Ze^2}{r}$$

Substitute the Coulomb potential for $V(r, \theta, \phi)$ and note r^2 becomes r.

$$Q = -Ze^{2} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} \exp\left(\frac{ipr\cos\theta}{\hbar}\right) r\sin\theta \, dr \, d\theta \, d\phi$$

Integrate over ϕ .

$$Q = -2\pi Z e^2 \int_0^{\pi} \int_0^{\infty} \exp\left(\frac{ipr\cos\theta}{\hbar}\right) r\sin\theta \, dr \, d\theta$$

Change the complex exponential to rectangular form.

$$Q = -2\pi Z e^2 \int_0^{\pi} \int_0^{\infty} \left[\cos \left(\frac{pr \cos \theta}{\hbar} \right) + i \sin \left(\frac{pr \cos \theta}{\hbar} \right) \right] V(r) r \sin \theta \, dr \, d\theta$$

By the integrals

$$\int_0^{\pi} \cos(a\cos(\theta)) \sin\theta \, d\theta = \frac{2\sin a}{a}, \quad \int_0^{\pi} \sin(a\cos(\theta)) \sin\theta \, d\theta = 0$$

we obtain (note r in the integrand is canceled)

$$Q = -\frac{4\pi\hbar Z e^2}{p} \int_0^\infty \sin\left(\frac{pr}{\hbar}\right) dr$$

To solve the integral, multiply the integrand by $\exp(-\epsilon r)$.

$$Q = -\frac{4\pi\hbar Z e^2}{p} \int_0^\infty \sin\left(\frac{pr}{\hbar}\right) \exp(-\epsilon r) dr$$

Convert the integrand to exponential form.

$$Q = -\frac{4\pi\hbar Ze^2}{p} \int_0^\infty \frac{i}{2} \left[\exp\left(-\frac{ipr}{\hbar} - \epsilon r\right) - \exp\left(\frac{ipr}{\hbar} - \epsilon r\right) \right] dr$$

Solve the integral.

$$Q = -\frac{4\pi\hbar Z e^2}{p} \frac{i}{2} \left(\frac{1}{ip/\hbar + \epsilon} + \frac{1}{ip/\hbar - \epsilon} \right) \tag{1}$$

Set $\epsilon = 0$.

$$Q = -\frac{4\pi\hbar^2 Z e^2}{p^2}$$

Compute the differential cross section.

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 \varepsilon_0^2} \left(\frac{mQ}{2\pi\hbar^2}\right)^2 = \frac{1}{16\pi^2 \varepsilon_0^2} \frac{m^2 Z^2 e^4}{p^4} \tag{2}$$

Substitute $(4\pi\varepsilon_0\alpha\hbar c)^2$ for e^4 .

$$\frac{d\sigma}{d\Omega} = \frac{m^2 Z^2 \alpha^2 (\hbar c)^2}{p^4}$$

Symbol p is momentum transfer $|\mathbf{p}_i| - |\mathbf{p}_f|$ such that

$$p^2 = 2mE(1 - \cos\theta)$$

Hence

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 (\hbar c)^2}{4E^2 (1 - \cos \theta)^2} \tag{3}$$

Noting that

$$4\sin^4\frac{\theta}{2} = (1-\cos\theta)^2$$

we have the alternative form of (3)

$$\frac{d\sigma}{d\Omega} = \frac{Z^2 \alpha^2 (\hbar c)^2}{16E^2 \sin^4(\theta/2)}$$

Experimental data

The following data is from Geiger and Marsden's 1913 paper where y is the number of scattering events.

$$\begin{array}{cccc} \theta & y \\ 150 & 22.2 \\ 135 & 27.4 \\ 120 & 33.0 \\ 105 & 47.3 \\ 75 & 136 \\ 60 & 320 \\ 45 & 989 \\ 37.5 & 1760 \\ 30 & 5260 \\ 22.5 & 20300 \\ 15 & 105400 \\ \end{array}$$

Let

$$x_i = \frac{1}{(1 - \cos \theta_i)^2}$$

The scattering probability for angle θ_i is x_i normalized by $\sum x = 4529$.

$$\Pr(\theta_i) = \frac{x_i}{4529}$$

Predicted values \hat{y}_i are $\Pr(\theta_i)$ times total scattering events $\sum y = 134295$.

$$\hat{y}_i = \Pr(\theta_i) \times 134295$$

The following table shows the predicted values \hat{y} .

θ	y	\hat{y}
150	22.2	34.1
135	27.4	40.7
120	33.0	52.7
105	47.3	74.9
75	136	216
60	320	474
45	989	1383
37.5	1760	2778
30	5260	6608
22.5	20300	20471
15	105400	102162

The coefficient of determination \mathbb{R}^2 measures how well predicted values fit the data.

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}} = 0.999$$

The result indicates that x explains 99.9% of the variance in the data.