Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern Evaluation Methods
- Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Market Basket Analysis

- INPUT: list of purchases by purchaser
 - do not have names
- identify purchase patterns
 - what items tend to be purchased together
 - obvious: tea-sugar; bread-butter
 - what items are purchased sequentially
 - obvious: phone-cover; computer-mouse
 - what items tend to be purchased by season

Market Basket Analysis

Market Basket Benefits

- selection of promotions, merchandising strategy
 - layout or catalogs
 - select products for promotion
 - space allocation, product placement
- uncover consumer spending patterns
 - correlations: orange juice & waffles
- joint promotional opportunities

Market Basket Analysis

- Retail outlets
- Telecommunications
- Banks
- Insurance
 - link analysis for fraud
- Medical
 - symptom analysis

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought	
10 Beer, Nuts, Diaper		
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40 Nuts, Eggs, Milk		
50	Nuts, Coffee, Diaper, Eggs, Milk	

itemset: A set of one or more items

```
    k-itemset X = {x<sub>1</sub>, ..., x<sub>k</sub>}
    {Beer}, {Diaper}, {Beer,Diaper}, {Beer,Diaper},
```

- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
 - Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

Basic Concepts: Association Rules

Tid	Tid Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30 Beer, Diaper, Eggs		
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Find all the rules $X \square Y$
 - {Beer }□ {Diaper}
 - {Beer,Nuts} □ {Milk}
- **Rule Evaluation Matrix**
 - support, s, probability that a transaction contains $X \cup S$
 - confidence, c, conditional probability that a transaction having X also contains Y Association rules:
 - - Beer → Diaper

•
$$S = \frac{\sigma (Beer, Diaper)}{|T|} = \frac{3}{5} = 0.6$$

$$C = \frac{\sigma (Beer, Diaper)}{\sigma (Beer)} = \frac{3}{3} = 1$$

Basic Concepts: Association Rules

Tid	Items bought	
10 Beer, Nuts, Diaper		
20	20 Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Association rules:
 - *Beer* □ *Diaper* (60%, 100%)
 - Diaper □ Beer (60%, 75%)
 - {Beer, Diaper} \square {*Eggs*}
- Let minsup = 50%, minconf = 50%
 - Beer □ Diaper (60%, 100%)
 - Diaper □ Beer (60%, 75%)
- A data set that contains k items can generate upto 2^K-1 item set
- Total number of possible rules extracted from a data set contains d item is:

$$R = 3^d - 2^{d+1} + 1.$$

Brute-Force Approach for association rule

- Compute support and confidence for each rule
- Remove all the rules not satisfying min_support and min_confidence

Disadvantage:

Waste of time in computing rules

Association Rule mining: Two step process

- 1. Find all frequent itemsets
 - min_support

E.g.

{Bread, Egg, Milk}

- 2. Generate strong association rules from the frequent itemsets
 - min_support
 - min_confidenceE.g.
 - {Bread → Egg, Milk},
 - {Bread, Egg → Milk}

1. Frequent Itemset Mining Methods

- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

The Downward Closure Property

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}

Apriori: A Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Also known as anti-monotone property.
 - If a set cannot pass a test, all of its supersets will fail the same test as well.

Apriori Algorithm

- Used for mining frequent itemsets for Boolean association rules.
- Use priori knowledge (use L1 to design C2)
- Level-wise search (use K-itemsets to explore (K+1)-itemsets)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 C_I 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 $Sup_{min} = 2$

 L_{l}

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

L_{2}	Itemset	sup
2	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

C_3	Itemset
	{B, C, E}

3 rd	scan	<u>.</u>	L_3

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code) - 1

```
C_{\nu}: Candidate itemset of size k
L_{\nu}: frequent itemset of size k
(1)
        L_1 = \text{find\_frequent\_1-itemsets}(D);
        for (k = 2; L_{k-1} \neq \phi; k++) {
(2)
            C_k = \operatorname{apriori\_gen}(L_{k-1});
(3)
            for each transaction t \in D { // scan D for counts
(4)
(5)
                  C_t = \text{subset}(C_k, t); // get the subsets of t that are candidates
                 for each candidate c \in C_t
(6)
(7)
                       c.count++;
(8)
            L_k = \{c \in C_k | c.count > min\_sup\}
(9)
(10)
        return L = \bigcup_k L_k;
```

The Apriori Algorithm (Pseudo-Code) -2

```
How to generate candidates?
procedure apriori_gen(L_{k-1}:frequent (k-1)-itemsets)
(1)
       for each itemset l_1 \in L_{k-1}
                                                                              Step 1: self-joining L_{\nu}
           for each itemset l_2 \in L_{k-1}
(2)
                                                                              Step 2: pruning
               if (l_1[1] = l_2[1]) \land (l_1[2] = l_2[2])
(3)
                    \wedge ... \wedge (l_1[k-2] = l_2[k-2]) \wedge (l_1[k-1] < l_2[k-1]) then {
                    c = l_1 \bowtie l_2; // join step: generate candidates
(4)
(5)
                    if has_infrequent_subset(c, L_{k-1}) then
                        delete c; // prune step: remove unfruitful candidate
(6)
(7)
                    else add c to C_k;
(8)
(9)
       return C_k;
procedure has_infrequent_subset(c: candidate k-itemset;
           L_{k-1}: frequent (k-1)-itemsets); // use prior knowledge
(1)
        for each (k-1)-subset s of c
(2)
           if s \notin L_{k-1} then
                return TRUE;
(3)
(4)
        return FALSE;
```

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - *L*₃={*abc, abd, acd, ace, bcd*}
 - Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L_3
 - $C_4 = \{abcd\}$

Exercise

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

minimum support count is 2

Solution

Generating Association Rule

- The data contain frequent itemset $X = \{I1, I2, I5\}$. What are association rules that can be generated from X?
- The non-empty subsets of X are
 - {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, {I5}
 - $\{I1, I2\} => I5$, confidence = 2/4 = 50%
 - $\{I1, I5\} => I2$, confidence = 2/2 = 100%
 - $\{I2, I5\} => I1$, confidence = 2/2 = 100%
 - I1 => {I2, I5}, confidence = 2/6 = 33%
 - $I2 = \{I1, I5\}$, confidence = 2/7 = 29%
 - $I5 => \{I1, I2\}$, confidence = 2/2 = 100%

Advantage of apriori over brute_force approach

TID	Items
1	{Bread, Milk}
2	{Bread, Diapers, Beer, Eggs}
3	{Milk, Diapers, Beer, Cola}
4	{Bread, Milk, Diapers, Beer}
5	{Bread, Milk, Diapers, Cola}

itemset generated using brute_force method:

$$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 6 + 15 + 20 = 41$$

itemset generated using apriori:

$$6 + 6 + 1 = 13$$

Count

Itemset

{Bread, Diapers, Milk}

Generating Association Rules from Frequent Itemsets

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support_count(A \cup B)}{support_count(A)}.$$

- For each frequent itemset /, generate all nonempty subsets of /.
- For every nonempty subset s of l, output the rule "s⇒(l-s)"
 - If $\frac{support_count(l)}{support_count(l-s)} \ge \min_conf$

Improving the Efficiency of Apriori

Limitations:

- Require many database scan
- Assume transaction database is memory resident

Strategies to improve efficiency of Apriori

- Hash-based technique
- Transaction reduction
- Partitioning
- Sampling
- Dynamic itemset counting

Hash-based technique

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

bucket address	0	1	2	3	4	5	6
bucket count	2	2	4	2	2	4	4
oucket contents	$\{I1, I4\}$	{I1, I5}	{I2, I3}	{I2, I4}	{I2, I5}	{I1, I2}	{I1, I3}
	{I3, I5}	{I1, I5}	{I2, I3}	{I2, I4}	{I2, I5}	{I1, I2}	{I1, I3}
			$\{I2, I3\}$			{I1, I2}	{I1, I3}
			{I2, I3}			{I1, I2}	{I1, I3}
	bucket count bucket contents	bucket count 2 bucket contents {I1, I4}	bucket count 2 2 bucket contents {I1, I4} {I1, I5}	bucket count 2 2 4 bucket contents {I1, I4} {I1, I5} {I2, I3} {I3, I5} {I1, I5} {I2, I3} {I2, I3}	bucket count 2 2 4 2 bucket contents {I1, I4} {I1, I5} {I2, I3} {I2, I4} {I3, I5} {I1, I5} {I2, I3} {I2, I4} {I2, I3}	bucket count 2 2 4 2 2 bucket contents {I1, I4} {I1, I5} {I2, I3} {I2, I4} {I2, I5} {I3, I5} {I1, I5} {I2, I3} {I2, I4} {I2, I5} {I2, I3}	bucket count 2 2 4 2 2 4 bucket contents {\(\begin{array}{c ccccccccccccccccccccccccccccccccccc

Hash table, H_2 , for candidate 2-itemsets. This hash table was generated by scanning Table 6.1's transactions while determining L_1 . If the minimum support count is, say, 3, then the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included in C_2 .

Hash-based technique

	Support Count	Order of x
I1	6	1
I2	7	2
I3	6	3
I 4	2	4
I 5	2	5

ItemSet	Count	HashFunction
I1, I2	4	$(1*10+2) \mod 7 = 5$
I1, I3	4	$(1*10+3) \mod 7 = 6$
I1, I4	1	$(1*10+4) \mod 7 = 0$
I1, I5	2	$(1*10+5) \mod 7 = 1$
I2, I3	4	$(2*10+3) \mod 7 = 2$
I2, I4	2	$(2*10+4) \mod 7 = 3$
I2, I5	2	••
I3, I4	0	
I3, I5	1	
I4, I5	0	

Transaction reduction

- Reducing the number of transactions scanned in future iterations:
- A transaction that does not contain any frequent k-itemsets cannot contain any frequent (k+1)-itemsets.
- Therefore, such a transaction can be marked or removed from further consideration because subsequent scans of the database for j-itemsets, where j > k, will not require it.

TID	Items
T100	I1, I2, I5
T200	I2, I4
T300	I6,I7
T400	I1, I2, I4
T500	I1, I3

Transaction reduction

TID	Items
T1	I1, I2, I5
T2	I2, I3, I4
T3	I3,I4
T4	I1, I2, I3, I4

	I1	I2	I3	I4	I5
T1	1	1	0	0	1
T2	0	1	1	1	0
T3	0	0	1	1	0
T4	1	1	1	1	0
	2	3	3	3	0

	I1	I2	I3	I4
T1	1	1	0	0
T2	0	1	1	1
T3	0	0	1	1
T4	1	1	1	1

Min_support = 2, Remove I5

Transaction reduction

TID	Items
T1	I1, I2, I5
T2	I2, I3, I4
T3	I3,I4
T4	I1, I2, I3, I4

	I1,I2	I1,I3	I1,I4	12,13	12,14	I3,I4
T1	1	•	0	0	0	0
T2	0	ø	0	1	1	1
T3	0	•	0	0	0	1
T4	1	1	1	1	1	1

 $Min_support = 2$

	I1,I2	12,13	12,14	13,14
T2	0	1	1	1
T4	1	1	1	1

	I1, I2,I3	I1,I2,I4	12,13,14
T 2	0	0	1
T4	1	1	1

Partitioning

- Partitioning the data to find candidate itemsets
- It consists of two phases.

Partitioning

Phase I:

- subdivides the transactions of D into n no overlapping partitions
- For each partition, all frequent itemsets within the partition are found.
- local frequent itemset may or may not be frequent with respect to the entire database, D.
- Any itemset that is potentially frequent with respect to D must occur as a frequent itemset in at least one of the partitions.
- All local frequent itemsets are candidate itemsets with respect to D.
- The collection of frequent itemsets from all partitions forms the global candidate itemsets with respect to D.

Partitioning

Phase II

 second scan of D is conducted in which the actual support of each candidate is assessed in order to determine the global frequent itemsets.

Advantage:

 Partition size and the number of partitions are set so that each partition can fit into main memory and therefore be read only once in each phase.

Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- The sample size of S is such that the search for frequent itemsets in S can be done in main memory
- L^S is Frequent itemsets local to S.
- it is possible that we will miss some of the global frequent itemsets
- Check entire database for L^S, do we get all the items as a frequent?
- If L^S actually contains all of the frequent itemsets in D, then only one scan of D is required. Otherwise, a second pass can be done in order to find the frequent itemsets that were missed in the first pass

Dynamic itemset counting (DIC)

- Apriori algorithm:
 - To identify candidate 3-itemset groupings, it will require a minimum of 3 scans of the database and to identify candidate 4-itemset groupings, it will require four scans of the database
- Dynamic Itemset Counting (DIC) algorithm is that it requires only 2 scans of the database to identify frequent item pairs in the whole database.
- On the assumption that data is homogenous throughout in each partition, data is processed for the DIC algorithm.

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc \square abcd is a frequent pattern

Construct FP-tree from a Transaction Database

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency in the order of descending support count. list is denoted L.
- 3. Scan DB again, construct FP-tree

TID	List of item_IDs	Items After Rearrangeme
T100	I1, I2, I5	I2, I1, I5
T200	12, 14	I2,I4 I2, I3
T300	12, 13	I2, I1, I4
T400	I1, I2, I4	I1, I3 I2, I3
T500	I1, I3	I1, I3 I2, I1, I3, I5
T600	12, 13	I2, I1, I3
T700	I1, I3	
T800	I1, I2, I3, I5	
T900	I1, I2, I3	

minimum support = 2

Construct FP-tree from a Transaction Database

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency in the order of descending support count. list is denoted L.
- 3. Scan DB again, construct FP-tree

TID	List of item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	I1, I2, I3, I5
T900	I1, I2, I3

Items After Rearrangement

I2, I1, I5 I2,I4 I2, I3 I2, I1, I4 I1, I3 I2, I3 I1, I3 I2, I1, I3, I5 I2, I1, I3

minimum support = 2

FP-tree Mining

- Start from each frequent length-1 pattern (as an initial suffix pattern).
- Construct its conditional pattern base (a "subdatabase,"which consists of the set of prefix paths in the FP-tree co-occurring with the suffix pattern),
- construct its (conditional) FP-tree, and perform mining recursively on such a tree.
- The pattern growth is achieved by the concatenation of the suffix pattern with the frequent patterns generated from a conditional FP-tree.

Mining the FP-tree by creating conditional (sub-) pattern bases

ltem	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	\langle I2: 2, I1: 2 \rangle	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4	$\{\{I2, I1: 1\}, \{I2: 1\}\}$	$\langle I2:2\rangle$	{I2, I4: 2}
I3	$\{\{I2, I1: 2\}, \{I2: 2\}, \{I1: 2\}\}$	$\langle I2: 4, I1: 2 \rangle$, $\langle I1: 2 \rangle$	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	$\langle I2:4\rangle$	{I2, I1: 4}

conditional FP-tree associated with the conditional node I3

ltem	Conditional Pattern Base	Conditional FP-tree	Frequent Patterns Generated
I5	{{I2, I1: 1}, {I2, I1, I3: 1}}	$\langle I2: 2, I1: 2 \rangle$	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
<u>I</u> 4	$\{\{I2, I1: 1\}, \{I2: 1\}\}$	⟨I2: 2⟩	{I2, I4: 2}
I3	{{I2, I1: 2}, {I2: 2}, {I1: 2}}	$\langle I2: 4, I1: 2 \rangle$, $\langle I1: 2 \rangle$	{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1	{{I2: 4}}	$\langle I2:4\rangle$	{I2, I1: 4}

FP-growth algorithm for discovering frequent itemsets without candidate generation

- 1. The FP-tree is constructed in the following steps:
 - (a) Scan the transaction database D once. Collect F, the set of frequent items, and their support counts. Sort F in support count descending order as L, the *list* of frequent items.
 - (b) Create the root of an FP-tree, and label it as "null." For each transaction Trans in D do the following. Select and sort the frequent items in Trans according to the order of L. Let the sorted frequent item list in Trans be [p|P], where p is the first element and P is the remaining list. Call insert_tree([p|P], T), which is performed as follows. If T has a child N such that N. transaction Trans in transaction Transaction Trans in <math>transaction Trans in transaction Transaction
- 2. The FP-tree is mined by calling FP_growth(FP_tree, null), which is implemented as follows.

```
(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path P
(3) generate pattern β ∪ α with support_count = minimum support count of nodes in β;
(4) else for each a<sub>i</sub> in the header of Tree {
(5) generate pattern β = a<sub>i</sub> ∪ α with support_count = a<sub>i</sub>.support_count;
(6) construct β's conditional pattern base and then β's conditional FP_tree Tree<sub>β</sub>;
(7) if Tree<sub>β</sub> ≠ 0 then
(8) call FP_growth(Tree<sub>β</sub>, β); }
```

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database

Vertical Data Format (ECLAT)

- Both the Apriori and FP-growth methods
 - Horizontal data format
 - TID-itemset format

- ECLAT (Equivalence CLASS Transformation algorithm)
 - developed by Zaki
 - Vertical data format
 - item-TID set format

TID	List of item_ID:
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

itemset	TID_set
I1	{T100, T400, T500, T700, T800, T900}
I2	$\{T100, T200, T300, T400, T600, T800, T900\}$
I3	{T300, T500, T600, T700, T800, T900}
I4	{T200, T400}
I5	{T100, T800}

Mining frequent itemsets using vertical data format

Intersecting the TID sets of every pair of frequent single items.

minimum support count = 2
The 2 items at a rearright data format.

itemset	TID_set
I1	{T100, T400, T500, T700, T800, T900}
I2	$\{T100, T200, T300, T400, T600, T800, T900\}$
<u>I</u> 3	$\{T300, T500, T600, T700, T800, T900\}$
I4	{T200, T400}
I5	{T100, T800}

Generated based on intersection of transactions

The 2-itemsets in vertical data format.		
itemset	TID_set	
{I1, I2}	{T100, T400, T800, T900}	
$\{I1, I3\}$	{T500, T700, T800, T900}	
$\{I1, I4\}$	{T400}	
$\{I1, I5\}$	{T100, T800}	
$\{I2, I3\}$	{T300, T600, T800, T900}	
$\{I2, I4\}$	{T200, T400}	
$\{I2, I5\}$	{T100, T800}	
$\{I3, I5\}$	{T800}	

Generated based on intersection of transactions. The table displays only frequent itemsets. As other itemset like {I1,I3,I5}, {I2,I3,I4}, {I2,I3,I5}, {I2,I4,I5} are removed as it does not full

fill support count conditions.

The 3-itemsets in vertical data format.

itemset	TID_set
{I1, I2, I3}	{T800, T900}
{I1, I2, I5}	{T100, T800}

vertical data format

Advantages:

no need to scan the database to find the support of (k+1) itemsets (for k>1)

Disadvantage:

- If, the TID sets can be quite long (Huge transaction database)
 - More space as well as computation time for intersecting the long sets

Improvement/solution for huge TID:

- Diffset
 - {I1} = {T100, T400, T500, T700, T800, T900}
 - {I1, I2} = {T100,T400, T800, T900}.
 - diffset({I1, I2}, {I1}) = {T500, T700}

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of sub-patterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{1}{100} + \binom{1}{100} + ... + \binom{100}{100} = 2^{100} 1 = 1.27*10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead

Closed Patterns

- X is closed itemset
 - X is **frequent**
 - No immediate superset of X has same support as X

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	${A,B,C,D}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	2
${A,B,C,D}$	2

Closed Patterns

- X is closed itemset
 - X is frequent
 - No immediate superset of X has same support as X
 - For ex., ac has support of 3, the superset of ac: abc (2), acd(2) and ace (1) have support less than ac. Therefore ac is closed itemset.

maximal frequent itemset

- X is a maximal frequent itemset
 - X is frequent
 - No immediate superset of X is frequent
 - Abc is maximum frequent (because a is frequent, its immediate superset ab is frequent, its immediate superset abc is frequent.)

Closed Patterns and Max-Patterns

- Exercise. DB = $\{ <a_1, ..., a_{100} >, <a_1, ..., a_{50} > \}$
 - Min_sup = 1.
- What is the set of all patterns?
 - **2**¹⁰⁰ 1
- What is the set of max-pattern?
 - <a₁, ..., a₁₀₀>: 1
- What is the set of closed itemset?
 - <a₁, ..., a₁₀₀>: 1
 - $a_1, ..., a_{50} > : 2$

Association Rules classification (continue..)

- Based on the levels of abstractions involved in the rule
 - Single level association rule
 - buys(X, "Computer") \Rightarrow buys (X, "printer")
 - Multilevel association rule
 - Age(X,"30..39") \Rightarrow buys (X, "computer")
 - Age(X,"30..39") \Rightarrow buys (X, "laptop computer")
 - Age(X,"30..39") \Rightarrow buys (X, "Desktop computer")

Multiple-level or

Multilevel association

Lower Level:

"IBM-ThinkPad-R40/P4M" → "Symantec-Norton-Antivirus-2003"

Higher Level:

"IBM laptop computer"

→ "antivirus software"

Task-relevant data, *D*.

TID	Items Purchased
T100	IBM-ThinkPad-T40/2373, HP-Photosmart-7660
T200	Microsoft-Office-Professional-2003, Microsoft-Plus!-Digital-Media
T300	Logitech-MX700-Cordless-Mouse, Fellowes-Wrist-Rest
T400	Dell-Dimension-XPS, Canon-PowerShot-S400
T500	IBM-ThinkPad-R40/P4M, Symantec-Norton-Antivirus-2003
	•••

Multilevel association

- Based on support threshold
 - Using uniform minimum support for all levels (uniform support)
 - Using reduced minimum support at lower levels (reduced support)
 - Using item or group-based minimum support (group-based support)
 - user-specific, item, or group based minimal support thresholds

uniform support threshold

Advantage:

- Search procedure is simplified
- Optimized by avoiding examining of descendants if ancestors does not satisfy the min_support

Disadvantage:

- Items at lower level may not be as frequent as higher level
 - If min_support is high then very few patterns at lower level
 - If min_support is low, then very large patterns at higher level

- Level-by-level independent
- Level cross filtering by single item
- Level cross filtering by k-itemset

- Level-by-level independent
 - Independent weather its parent node is frequent or not
 - Very relaxed as compared to other two.

- Level cross filtering by single item
 - Item at ith level is examined if its parent at (i-1)th level is frequent
 - may be miss few association between lower level items.
 - desktop computer => color monitor
 - Solution: level passage threshold

Level 1
Min_sup = 12%

Level 2
Min_sup = 3%

b/w monitor (not examined)

color monitor (not examined)

- Level cross filtering by k-itemset
 - A k-itemset at ith level is examined if its corresponding parent k-itemset at (i-1)th level is frequent
 - Strong restriction that there are not many k-itemsets that when combined are also frequent

level passage threshold

- level passage threshold
 - Passing down relatively frequent items (sub-frequent items)
 - min_sup of lower level (i) < level passage threshold < min_sup of higher level (i-1)

Cross-level association rules

- Same concept-level
 - Computer = > printer
 - Desktop computer => b/w printer
- Cross-level
 - Computer = > b/w printer
 - Lower conceptual level min_supp should be used

Challenge in Multilevel association

 Many redundant rules across multiple levels of abstraction due to the "ancestor" relationships among items.

```
buys(X, "laptop computer") \Rightarrow buys(X, "HP printer")

[support = 8\%, confidence = 70\%]
```

```
buys(X, "IBM \ laptop \ computer") \Rightarrow buys(X, "HP \ printer")

[support = 2\%, confidence = 72\%]
```

Mining Association Rules from Relational Databases and Data Warehouses

Based on the number of dimensions/predicate handled in the rule

- Single dimensional association rule (intradimensional association rule)
 - predicate occurs more than once within the rule
 - from transactional data
 - buys(X, "Computer") ⇒ buys (X, "printer")

Multi dimensional association rule (interdimensional association rule)

- relational database or data warehouse
- association rules containing multiple predicates
- No repeated predicates
- Age(X,"30..39") \land income (X, "42K...48K) \Rightarrow buys (X, high resolution TV)
- **hybrid-dimensional association rules** $age(X, "20...29") \land buys(X, "laptop") \Rightarrow buys(X, "HP printer")$

Association Rules classification

Based on the types of values handled in the rule

- Categorical attributes
 - occupation, brand, color
- Quantitative attributes
 - age, income, price
- Boolean association rule:
 - Presence and absence of item
 - buys(X, "Computer") ⇒ buys (X, "printer")
- Quantitative rule
 - Age(X,"30..39") \land income (X, "42K...48K) \Rightarrow buys (X, high resolution TV)

multidimensional association rules using static discretization of quantitative attributes

- Quantitative attributes are discretized prior to mining using predefined concept hierarchies
- E.g income: 0...20K, 21K...30K,31K...40K,41K...50K etc...
- Categorical attributes may also be generalized to higher concept hierarchy level
- Task relevant data stored in relational table
 - Treating each attribute-value pair as an itemset
 - Find all frequent predicate sets using any algorithm
- Task relevant data stored in data cube
 - Lattice of cuboid
 - Each cuboid correspond to the predicate sets and aggregated data

multidimensional association rules using dynamic discretization of quantitative attributes

- dynamically discretized during the mining process
- two-dimensional quantitative association rules

```
A_{quan1} \land A_{quan2} \Rightarrow A_{cat}

age(X, "30...39") \land income(X, "42K...48K") \Rightarrow buys(X, "HDTV")
```

- How to find such rules?
 - ARCS (Association Rule Clustering System)

ARCS (Association Rule Clustering System)

$$A_{quan1} \land A_{quan2} \Rightarrow A_{cat}$$
 $age(X, "30...39") \land income(X, "42K...48K") \Rightarrow buys(X, "HDTV")$

- Maps pairs of quantitative attributes onto a 2-D grid for tuples satisfying a given categorical attribute condition
- The grid is then searched for clusters of points from which the association rules are generated.
- Binning
 - Equal-width binning,
 - Equal-frequency binning,
 - Clustering-based binning
- ARCS uses equal-width binning

ARCS (Association Rule Clustering System)

- A 2-D array is created
 - Age and income with all possible combination
- Finding frequent predicate sets (find the frequent predicate sets those satisfying minimum support) and generate association rules that satisfying and minimum confidence.

$$age(X, 34) \land income(X, "31K...40K") \Rightarrow buys(X, "HDTV")$$
 71K...80K $age(X, 35) \land income(X, "31K...40K") \Rightarrow buys(X, "HDTV")$ 61K...70K $age(X, 34) \land income(X, "41K...50K") \Rightarrow buys(X, "HDTV")$ 41K...50K $age(X, 35) \land income(X, "41K...50K") \Rightarrow buys(X, "HDTV")$. 2. Clustering the association rules $age(X, "34...35") \land income(X, "31K...50K") \Rightarrow buys(X, "HDTV")$ $age(X, "34...35") \land income(X, "31K...50K") \Rightarrow buys(X, "HDTV")$ $age(X, "34...35") \land income(X, "31K...50K") \Rightarrow buys(X, "HDTV")$

Interestingness Measure: Correlations (Lift)

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

lift —	$P(A \cup B)$
lift =	$\overline{P(A)P(B)}$

	Basketball	Not basketball	Sum (row)	
Cereal	2000	1750	3750	
Not cereal	1000	250	1250	
Sum(col.)	3000	2000	5000	

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$
 <1 so, (Negative correlation)

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$
 >1 so, (Positive correlation)

Can not be identified by support-confidence framework

If A corresponds to the sale of computer games and B corresponds to sale of videos, then the sale of games is said to "lift" the likelihood of the sale of videos by a factor of lift.

Correlation Analysis using χ^2

50	game	game	Σ_{row}
video	4,000 (4,500)	3,500 (3,000)	7,500
video	2,000 (1,500)	500 (1,000)	2,500
Σ_{col}	6,000	4,000	10,000

Probability of purchasing a computer game is $p(\{game\}) = 0.6$ Probability of purchasing a video is $p(\{video\}) = 0.75$ Probability of purchasing both is $p(\{game, video\}) = 0.4$

 $P(\{game, video\}) / p(\{game\}) X p(\{video\}) = 0.4 / (0.6 X 0.75) = 0.89$

 corr value is less than one, buying game and buying video are negatively correlated.

Correlation Analysis using χ^2

		game	<u>game</u>	Σ_{row}	
	video	4,000 (4,500)	3,500 (3,000)	7,500	
	video	2,000 (1,500)	500 (1,000)	2,500	
	Σ_{col}	6,000	4,000	10,000	
$\chi^2 = \Sigma$	(observ	ed - expected) ²	$(4,000-4,500)^2$	(3,500 -	$-3,000)^{2}$
$\chi - 2$	expected		4,500	3,	000
(2	2,000 – 1,5		$\frac{-1,000)^2}{1,000} = 555.6.$		

• χ_2 value is **greater than one**, and the observed value of the slot (*game*, *video*) = 4,000, which is less than the expected value 4,500, *buying game* and *buying video* are *negatively correlated*.

Rule X -> Y Support, Confidence and lift

- Support
 - Freq(x,y)/N
 - Frequency of items bought over all transaction
- Confidence
 - freq(x,y)/freq(x)
 - Support(x,y)/support(x)
 - How often X and Y occurred together based on number of X occur (left side)
- Lift/correlation
 - How much more frequently the left-hand item is found with the right than without the right
 - Support(x,y)/support(x) * support (y)

Summary

- Basic concepts: association rules, support-confident framework, closed and max-patterns
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (ECLAT, CHARM, ...)
- Association rule classification
- Which patterns are interesting?
 - Pattern evaluation methods