JP5279043

Laid-open

publication no.

JP5279043

Publication date:

1993-10-26

Inventor:
Applicant:
Classification:

- international:

C01G43/00; C01G43/00; (IPC1-7): C01G43/00;

B01J2/02; B01J2/04

- european:

C01G43/00

Application number: JP19920071699 19920327 Priority number(s): JP19920071699 19920327

Abstract of JP5279043

PURPOSE:To easily produce ammonium diuranate having high sphericity with a smallsized device by spraying the mist of an aq. ammoniacal soln, to the liquid drops of an uranyl nitratesol. CONSTITUTION: The liquid drops 2 of the ammonium diuranate soln. are dropped by vibration from a dropping nozzle 1. A liquid drop forming section 3 has the distance sufficient for the liquid drops 2 to be made spherical. The gaseous ammonia is sufficiently discharged from a discharge port 5 so as to prevent the leakage of the gas to the liquid drop forming section 3. The mists (<=30mum average diameter) 8 of the aq. ammoniacal soln. (e.g.: satd. ammonia water) are sprayed to the liquid drops 2 entering a surface gelatinizing section 6. The liquid drops 9 having the gelatinized surfaces arrive at the liquid surface of the aq. ammoniacal soln. 12 which is a complete gelatinizing section 14. While the liquid drops fall in the aq. ammoniacal soln. 12 in a setting chamber 13, the surfaces of the liquid drops 9 are completely gelatinized to form the ammonium diuranate particles 15. A pump 11 feeds the liquid and a circulating pump 18 circulates the settling chamber 13.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-279043

(43)公開日 平成5年(1993)10月26日

(51)Int.CL ⁵		識別記号	庁内整理番号	FI	技術表示箇所
C 0 1 G	43/00	Α			
B01J	2/02	Z			
	2/04				

審査請求 未請求 請求項の数6(全 7 頁)

(21)出顧番号	特顯平4-71699	(71)出顧人	000165697	
(22)出顧日	平成 4年(1992) 3月27日	原子燃料工業株式会社 東京都港区西新橋3丁目23番5号		
		(72)発明者	吉牟田 秀治 茨城県那珂郡東海村大字村松1220番地の13	
		(74)代理人	弁理士 福村 直樹	

(54)【発明の名称】 重ウラン酸アンモニウム粒子の製造方法と製造装置

(57)【要約】

【目的】 本発明の目的は、真球度の高い重ウラン酸アンモニウム粒子を小型の装置で製造することのできる、重ウラン酸アンモニウム粒子の製造方法およびその製造方法に使用される重ウラン酸アンモニウム粒子製造装置を提供することにある。

【構成】 本発明の重ウラン酸アンモニウム粒子の製造方法は、硝酸ウラニル溶液から外部ゲル化法によって重ウラン酸アンモニウム粒子を製造する方法において、硝酸ウラニル溶液の液滴に、アンモニア性水溶液のミストを噴霧することを特徴とする。

【効果】 本発明で提供された重ウラン酸アンモニウム 粒子の製造方法およびその製造方法に使用される重ウラン酸アンモニウム粒子製造装置によって、真球度の高い 重ウラン酸アンモニウム粒子を小型の装置で製造することができる。

10

【特許請求の範囲】

【請求項1】 硝酸ウラニル溶液から外部ゲル化法によ って重ウラン酸アンモニウム粒子を製造する方法におい て、硝酸ウラニル溶液の液滴に、アンモニア性水溶液の ミストを噴霧することを特徴とする重ウラン酸アンモニ ウム粒子の製造方法。

【請求項2】 前記アンモニア性水溶液が飽和アンモニ ア水である前記請求項1に記載の重ウラン酸アンモニウ ム粒子の製造方法。

【請求項3】 前記ミストが超音波方式の噴霧器により 形成される前記請求項 1 に記載の重ウラン酸アンモニウ ム粒子の製造方法。

【請求項4】 前記ミストはその平均直径が30μm以 下である前記請求項3に記載の重ウラン酸アンモニウム 粒子の製造方法。

【請求項5】 硝酸ウラニル溶液から外部ゲル化法によ って重ウラン酸アンモニウム粒子を製造する重ウラン酸 アンモニウム粒子製造装置において、硝酸ウラニル溶液 を滴下する液滴滴下手段と、前記液滴滴下手段から滴下 された硝酸ウラニル溶液の液滴を受容するアンモニア性 20 水溶液を有する沈殿槽とを備え、前記液滴滴下手段と前 記沈殿槽との間に、アンモニア性水溶液の前記ミストを 噴霧する霧化器を設けてなることを特徴とする重ウラン 酸アンモニウム粒子製造装置。

【請求項6】 前記沈殿槽から前記霧化器へアンモニア 性水溶液を送液する手段を有してなる前記請求項5 に記 載の重ウラン酸アンモニウム粒子製造装置。

【発明の詳細な説明】

[0001]

ウム粒子の製造方法およびその製造方法に使用される重 ウラン酸アンモニウム粒子製造装置に関し、さらに詳し くは、真球度の高い重ウラン酸アンモニウムを小型の装 置で簡易に製造することのできる、重ウラン酸アンモニ ウム粒子の製造方法およびその製造方法に使用される簡 易な構造の重ウラン酸アンモニウム粒子製造装置に関す る。

[0002]

【従来の技術と発明が解決しようとする課題】一般に重 ウラン酸アンモニウム粒子は図2に示すように外部ゲル 40 化法によって製造される。液滴滴下手段1によって形成 された硝酸ウラニル溶液の液滴2は、液滴形成区間3を 落下中にそれ自身の粘性と表面張力とによって真球にな る。 真球となった前記液滴は液滴落下口4から表面ゲル 化区間6に落下する。次いで、完全ゲル化区間であるア ンモニア性水溶液中で前記液滴は完全にゲル化して、重 ウラン酸アンモニウム粒子となる。

【0003】重ウラン酸アンモニウム粒子の真球性はア ンモニア性水溶液中に着水した硝酸ウラニル溶液の液滴 の真球性に支配されており、変形した液滴の真球性が完 50

全ゲル化区間で復元することはない。したがって、表面 ゲル化区間の目的は、硝酸ウラニル溶液の液滴がアンモ ニア性水溶液中に着水したときの衝撃に耐えて、その真 球性を保持することができるように、前記液滴の表面を アンモニアガスで十分にゲル化することである。

【0004】表面をゲル化させる一般的な方法として は、アンモニアなどのゲル化剤雰囲気中に前記液滴を通 過させる方法が使用される。その具体的方法として従来 は、アンモニアガス供給口16から空気の層の中にアン モニアガスを噴流として吹き込み、前記液滴の表面ゲル 化を促進する方法が取られていた。通常の液滴形成条件 では液滴の終端落下速度は約0.5m/秒以上である。 この速度では、落下する液滴が液滴形成区間でその周囲 に空気(または不活性ガス)を取り込むので、表面ゲル 化区間においても、図2に示すように、液滴2の周囲に 空気の層17が形成されている。この空気の層が、液滴 とアンモニアガスとの反応を阻害するので、アンモニア ガスを空気の層の中に噴流として吹き込む必要があるの である。

【0005】上記の方法による第一の欠点は、アンモニ アガスが噴流状態で供給されるので、これによって液滴 が変形することである。さらに、アンモニアガスの使用 量が増加するので、環境汚染を防止する目的のアンモニ アガス回収装置が大型化し、したがって、重ウラン酸ア ンモニウム粒子製造装置全体が大型化することである。 【0006】第二の欠点は、液滴の表面ゲル化を十分に 行なうために、表面ゲル化区間の距離を長くすれば、液 滴がアンモニア性水溶液に着水するときの終端落下速度 もまた増大し、着水時の衝撃が大きくなる。したがっ 【産業上の利用分野】との発明は、重ウラン酸アンモニ 30 て、アンモニアガスで液滴の表面を十分ゲル化していて も、着水時の衝撃で真球性が破壊されてしまうことであ る。

> 【0007】本発明は前記課題を解決することを目的に する。即ち、本発明の目的は、真球度の高い重ウラン酸 アンモニウム粒子を小型の装置で製造することのでき る、重ウラン酸アンモニウム粒子の製造方法およびその 製造方法に使用される重ウラン酸アンモニウム粒子製造 装置を提供することである。

[8000]

【前記課題を解決するための手段】前記課題を解決する ために本発明者らが鋭意研究した結果、請求項1に記載 の発明は、硝酸ウラニル溶液から外部ゲル化法によって 重ウラン酸アンモニウム粒子を製造する方法において、 硝酸ウラニル溶液の液滴に、アンモニア性水溶液のミス トを噴霧することを特徴とする重ウラン酸アンモニウム 粒子の製造方法であり、請求項2に記載の発明は、前記 アンモニア性水溶液が飽和アンモニア水である前記請求 項1に記載の重ウラン酸アンモニウム粒子の製造方法で あり、請求項3に記載の発明は、前記ミストが超音波方 式の噴霧器により形成される前記請求項1に記載の重ウ

3

ラン酸アンモニウム粒子の製造方法であり、請求項4に 記載の発明は、前記ミストはその平均直径が30μm以 下である前記請求項3に記載の重ウラン酸アンモニウム 粒子の製造方法であり、請求項5 に記載の発明は、硝酸 ウラニル溶液から外部ゲル化法によって重ウラン酸アン モニウム粒子を製造する重ウラン酸アンモニウム粒子製 造装置において、硝酸ウラニル溶液を滴下する液滴滴下 手段と、前記液滴滴下手段から滴下された硝酸ウラニル 溶液の液滴を受容するアンモニア性水溶液を有する沈殿 **櫓とを備え、前記液滴滴下手段と前記沈殿櫓との間に、** アンモニア性水溶液の前記ミストを噴霧する霧化器を設 けてなることを特徴とする重ウラン酸アンモニウム粒子 製造装置であり、請求項6に記載の発明は、前記沈殿槽 から前記霧化器へアンモニア性水溶液を送液する手段を 有してなる前記請求項5に記載の重ウラン酸アンモニウ ム粒子製造装置である。

【0009】以下、本発明についてさらに詳しく説明する。

(1)硝酸ウラニル溶液・

硝酸ウラニル溶液は、硝酸ウラニル原液と、純水と、増 20 粘剤等とから調製される。硝酸ウラニル原液は、U,O。粉末を硝酸に溶解することにより得ることができる。硝酸ウラニル原液中のウラン濃度は、通常、465~475gU/リットルである。

【0010】増粘剤は、滴下された硝酸ウラニル溶液の液滴が、落下中に、それ自身の表面張力と粘度とによって真球状になるために添加される。増粘剤としては、例えば、ポリビニルアルコール樹脂あるいはアルカリ条件下で凝固する性質を有する樹脂、ポリエチレングリコール、メトローズなどを挙げることができる。アルカリ条 30件下で凝固する性質を有する樹脂としては、樹脂単独でもアルカリ雰囲気中で凝固性能を有するもの、例えばポリビニルアセタール/N;Nージメチルアミノアセテート酸中和物(商品名 AEA、三共製薬(株)製)などを挙げることができる。増粘剤は、その一種を単独で使用することもできるし、またその二種以上を併用することもできる。

【0011】硝酸ウラニル溶液におけるウラン濃度は、通常100gU/リットル~400gU/リットル、好ましくは120~250gU/リットルである。増粘剤 40の一般的な含有量としては2g/リットル~50g/リットルであるが、増粘剤としてメトローズを使用する場合その濃度は、通常4~10g/リットルである。なお、この硝酸ウラニル溶液には、光分解停止剤や、原液の表面張力を調製するための界面活性剤等の添加剤を適宜に含有していてもよい。光分解停止剤としては、バインダー樹脂の光分解(ウランが触媒となる)を防止する効果のある物質、例えばテトラハイドロフリルアルコール(4HF)などを挙げることができる。

【0012】硝酸ウラニル溶液の調製方法には特に制限 50 スを発生させながら液滴に付着して液滴の表面をゲル化

がないが、通常の場合には、増粘剤と純水とを混合して 増粘剤水溶液を予め調製し、この増粘剤水溶液と硝酸ウ ラニルとを混合し、次いで、濃度あるいは粘度の調製と して純水を添加することにより調製される。

【0013】(2)硝酸ウラニル溶液液滴の形成方法上記のようにして調製された硝酸ウラニル溶液は、所定の温度に冷却することによりその粘度が調製され、滴下ノズルから、アンモニア水溶液に滴下される。このとき、滴下ノズルから滴下する硝酸ウラニル溶液の冷却温度は、その粘度をどのように調製するかにより決定される。例えば硝酸ウラニル溶液の粘度を70~100cp(センチボイズ)に保持させようとするのであれば、冷却温度を18~20℃にするのが良い。

【0014】硝酸ウラニル溶液の液滴化方法は、特に制限がないのであるが、例えば、細径の滴下ノズルを適宜の手段で振動させることにより実現することができる。滴下ノズルを振動させる際、滴下ノズルの直径方向に振動させてもよい。振動数は、通常、40~200Hzであるが、150Hz程度が最も一般的である。滴下ノズルの径としては、通常、0.4~1.5mmを挙げることができる。滴下ノズルから送出する硝酸ウラニル容液の送出量は、通常、15~30cc/分である。このような硝酸ウラニルの滴下条件にて、約、1.2~2.8mmの径を有する硝酸ウラニル溶液の液滴が、滴下ノズルにより形成される。滴下ノズルは、その開口部を下方に向けると共に後述するアンモニア水溶液に臨むように配置される。

【0015】(3)硝酸ウラニル溶液液滴の表面ゲル化 方法

滴下ノズルの振動により形成した硝酸ウラニル溶液の液 滴は、後述するアンモニア水溶液を有する沈殿槽のアン モニア水溶液表面に着水するまでの空間において、液滴 の表面が十分にゲル化されていることが、着水時の変形 を防止するために必要である。但し、振動ノズルから落 下直後の液滴は未だ真球ではないから、振動ノズル先端 がアンモニアガスに接触すると、振動ノズル先端が瞬時 に閉塞するので、滴下ノズルから下方にむけての一定の 空間には、空気あるいは窒素などの不活性ガスの雰囲気 にしておくのが望ましい。

【0016】本発明は、液滴の表面をゲル化させる手段として、アンモニア性水溶液のミストを液滴に噴霧させる。ゲル化剤であるアンモニア性水溶液としては、アンモニアガスを発生するものであれば特に制限がないが、アンモニア水または加熱したヒドラジン水溶液等が好ましく、特に飽和アンモニア水が好適である。アンモニア水溶液の濃度は、通常、20重量%~飽和濃度である。【0017】アンモニア性水溶液のミストは、空気もしくは不活性ガスの層の中に取り込まれて、アンモニアガ

する。ゲル状の表面は、重ウラン酸溶液がアンモニアとの反応により金属塩、例えば硝酸ウラニルが重ウラン酸アンモン(ADU)のようなアンモニウム化合物に転化することにより形成される。この液滴の表面ゲル化作用は、アンモニアガスだけによるよりもミストの方がはるかに効率が良い。

【0018】ミストの直径は小さいほど良い。これは、小さいミストの方が液滴表面に均一に付着することと、ミストの比表面積が大きくなってミストから蒸発するアンモニアガスが増加するためである。ミストの直径が、約30μm以下であれば十分に効果的である。

【0019】ミストを発生させる噴霧器としては、圧縮ガス方式の噴霧器と超音波方式の噴霧器とのいずれをも使用することができる。圧縮ガス方式では、圧縮ガスの噴流によって液滴が変形することもあり得る。一方、超音波方式の噴霧器を使用すると、超音波を発振するノズル先端部に若干の発熱がある。このためにアンモニア性水溶液を超音波方式の霧化器に供給すればミストの中からより多くのアンモニアガスが蒸発するので、表面ゲル化作用の効率がさらに良くなる。したがって、本発明に20粒いては、超音波式の噴霧器がより好適に使用される。【0020】ミストとして噴霧するアンモニア性水溶液の流量は振動ノズル1本当たりの液流量に対して、通常、1倍から3倍であり、好ましくは2倍から2.5倍である。ミストの量が1倍より少ないと液滴の真球性が十分に確保できず、3倍より多いとミストのロスが多

【0021】本発明の方法では、表面ゲル化手段による 液滴の変形がないが、その理由は以下のとおりである。 空気もしくは不活性ガスの層は液滴とほぼ同じ速度で下 30 方に流れている。このため空気もしくは不活性ガスの層 に取り込まれたミストもまた、空気もしくは不活性ガス の流れとともに下方へ流れる。つまり霧化器の位置を通 過して液滴はアンモニアガスとアンモニア性水溶液のミ ストとの気液二相流と共に落下するので、表面ゲル化に よる変形がないのである。

4.5

【0022】(4)アンモニア性水溶液を有する沈殿櫓表面がゲル化された液適は、沈殿槽に蓄えられたアンモニア性水溶液に着水し、沈殿槽の底に向かって沈降しながら、完全にゲル化される。沈殿槽中のアンモニア水溶 40液は、ミストを発生させるときに使用したものと同じものが好ましい。沈殿槽から輸送管とポンプとを用いて汲み出し、ミストとして噴霧し、ミストは沈殿槽中に回収される、という循環使用が可能になるからである。

【0023】とのようにして沈殿槽中で完全にゲル化した重ウラン酸アンモニウム粒子は純水とエタノールもしくはメタノールとで洗浄され、さらに、乾燥・焙焼・焼結行程を経て、球状UO、核燃料粒子になる。これらの各処理は、公知の方法で行なうことができる。

【0024】(5)重ウラン酸アンモニウム粒子製造装 50 ル1から振動によって重ウラン酸アンモニウム溶液の液

習

本発明の重ウラン酸アンモニウム粒子製造装置は、上記で説明した製造方法を実施するためのものである。図1 に装置の概略を示す。以下は、図1を参照しながら説明する。

6

【0025】図1に示すように、重ウラン酸アンモニウム粒子製造装置は、液滴滴下手段と沈殿槽13とを備える。前記液滴滴下手段は、硝酸ウラニル溶液性給部から供給される硝酸ウラニル溶液を滴下する滴下ノズル1を備える。その滴下ノズル1は、下方に開口する開口部を有すると共に、前記沈殿槽13の上方において垂直に配置されている。この滴下ノズル1は例えば水平方向に適宜の手段により振動が付与され、その開口部に付着する液滴を落下させることができるようになっている。

【0026】沈殿槽13は上部に液滴落下口4を有する有底の筒状体をなす。との沈殿槽13内には、アンモニア性水溶液12が所定の量だけ貯留されている。沈殿槽13における周側面であって、液滴落下口4の下側であり、かつ沈殿槽13中の液面よりも上方には、一対の排気口5が相対向して設けられている。との排気口5には、液滴2が落下するときの雰囲気を乱さない程度の排気量をもってアンモニアガスを回収するパイプが接続されている。なお、パイプを介してアンモニアガスを排気するために、図示しない排気ボンブが前記パイプに装着されている。

【0027】沈殿槽13の周側面には、前記排気口5と 沈殿槽13内のアンモニア性水溶液12の液面との間 に、液滴にアンモニア性水溶液のミストを噴霧する霧化 器7が設置されている。なお、この霧化器7は、

「(2)硝酸ウラニル溶液液滴の形成方法」の項で説明したものを好適に使用することができるのであるが、この図1に示す装置にあっては、超音波を利用してミストを生成させるようになっている。沈殿槽13の、アンモニア性水溶液と接している部分の壁面には輸送管10が取り付けられており、ポンプ11によってアンモニア性水溶液12を霧化器7に供給することができるようになっている。また、沈殿槽13の、底部とアンモニア性水溶液と接している部分の上部の壁面とを結ぶように輸送管19が取り付けられており、アンモニア性水溶液循環ポンプ18によってアンモニア性水溶液を底部から上方へ循環するようになっている。

【0028】この図1に示す装置にあっては、滴下ノズル1から液滴落下口4近傍までが液滴形成区間3であり、液滴落下口4近傍からアンモニア性水溶液面12までが表面ゲル化区間6であり、アンモニア性水溶液12中が完全ゲル化区間14となっている。

【0029】図1に示す重ウラン酸アンモニウム粒子製造装置の作用について以下に説明する。まず、滴下ノズル1から振動によって重ウラン酸アンモニウム溶液の液

商2が商下される。液滴形成区間3は液滴2が真球になるのに十分な距離を有しており、空気中または不活性ガス雰囲気中に配置されているので、落下直後の液滴2がたとえ真球となっていなかったとしても、液滴2は液滴形成区間3を落下しながら真球になる。アンモニアガスが液滴落下口4から液滴形成区間3に漏洩しないように、排気口5から十分な排気を行なっている。したがって、これによっても液滴形成区間3において、真球になっていない液滴にアンモニアガスが作用して表面をゲル化させることによる液滴形状の変形がない。また、滴下ノズルの開口部にアンモニアガスが作用してその開口部

【0030】液滴落下口4より表面ゲル化区間6に入った液滴2には、霧化器7よりアンモニア性水溶液のミスト8が噴霧される。霧化器7は、二器装着されているので、液滴2の全体に渡って均一にミスト8を噴霧することができる。次いで、表面がゲル化された液滴9は完全ゲル化区間14であるアンモニア性水溶液12の液面に、着水する。このとき、前記アンモニア性水溶液のミスト8によって液滴2の表面はゲル化されているので、着水時においても液滴が損傷することもない。沈殿槽13中のアンモニア性水溶液12中を落下しつつ、表面がゲル化された液滴9は完全にゲル化して、重ウラン酸アンモニウム粒子15となる。

が閉塞することもない。

【0031】本発明では、沈殿槽13中のアンモニア性水溶液12を採取して、輸送管10とポンプ11とにより霧化器7に送液する。噴霧されたアンモニア性水溶液のミスト8は沈殿槽13に回収される。したがって、本発明は、従来の方法のようにアンモニアガスを新たに供給する必要がないので、排気口5の先に接続されるアン 30モニアガス回収装置を小型化することができる。また、アンモニア性水溶液循環ポンプ18によって沈殿槽13中のアンモニア性水溶液を底部から上方へ循環させているので、沈殿槽13の底部で重ウラン酸アンモニウム粒子15が滯留し、その自重で変形することを防ぐことができる。

【0032】なお、液滴形成区間3、表面ゲル化区間6、完全ゲル化区間14の長さ、霧化器7の位置などは、液滴の大きさやミストの直径・量などを考慮して、実験によって適宜定めることができる。

【0033】本発明の重ウラン酸アンモニウム粒子製造 装置は、図1に示したものに限定されるものではなく、 この発明の要旨の範囲内で様々に設計変更をすることが 8

できる。例えば、液滴滴下ノズルを複数設けてもよい し、それに伴って、霧化器の数を増やしてもよい。 【0034】

【実施例】次に本発明の実施例を示すが、本発明を何等 限定するものではない。

【0035】(実施例1)ウラン濃度250g/リットル、高分子化合物としてのポリビニルアルコール樹脂30g/リットルで粘度92cp(30℃)の硝酸ウラニル溶液を調製した。この硝酸ウラニル溶液を用いて、振助ノズルの振動数100Hz、振幅0.36mmの条件で直径2.1mmの液滴を形成させた。

【0036】次いで、この液滴を以下の条件でミストを噴霧した表面ゲル区間に滴下した。超音波式霧化器(ソノテック製、ノズル内径:1.32mm、周波数:120KHz)を用いて、アンモニア性水溶液の送液量30cc/minの運転条件でミストを発生させた。ミストの平均直径18μmであった。2台の超音波霧化器を使用したため、全ミスト発生量は60cc/minであった。

20 【0037】液滴は振動ノズル下端からアンモニア性水溶液の水面までの距離35cmを落下し、着水時の終端落下速度は3.5m/秒であった。本実施例の液滴は、着水時の衝撃にも十分耐えてその真球性を維持した。さらに、液滴の形成条件を変えて終端落下速度を8.7m/秒まで高くした場合でもその真球性を保持することができた。アンモニアガスを噴流として吹き込んで液滴の表面をゲル化させる場合の終端落下速度の許容限界は、通常、約4m/秒であった。この結果は、従来のアンモニアガスによる方法よりも、アンモニア性水溶液のミス10トを用いる方法のほうが液滴の表面をゲル化させる効率が良いことを示している。

【0038】本発明の、重ウラン酸アンモニウム粒子生成装置を使用して製造した重ウラン酸アンモニウム粒子を純水とエタノールとで洗浄した後、その真球性を評価した。真球度は、次のような手法で評価された。すなわち、パーティクルサイズアナライザーを用いて1粒子の直径をランダムに50回測定する。この直径測定値の最大と最小との比によって真球度を表わす(真球度=最大直径/最小直径)。つまり、幾何学的な真球は1になる。表1に本発明と従来法の粒子の真球度の比較を示す。

[0039]

【表1】

10

平均直径(mu)	本発明の真珠度	従来法の真球度
2.12	1.03	1.08
1.81	1.05	1.10
1.53	1.04	1.09

【0040】さらに、本発明の方法では、表面ゲル化区間で新たにアンモニアガスを供給する必要がないため、環境汚染を防止する目的のアンモニアガス回収装置の処理量を約40%迄、低減することができる。

[0041]

【発明の効果】本発明によると、真球度の高い重ウラン 20酸アンモニウム粒子を小型の装置で製造することのできる、重ウラン酸アンモニウム粒子の製造方法およびその製造方法に使用される重ウラン酸アンモニウム粒子製造装置を提供することができる。

[0042]

【図面の簡単な説明】

【図1】図1は、本発明による重ウラン酸アンモニウム 粒子の製造装置の説明図である。

【図2】図2は、従来の外部ゲル化法による重ウラン酸で アンモニウム粒子の製造装置の説明図である。

【符合の説明】

1 滴下ノズル

2 液滴

- 3 液滴形成区間
- 4 液滴落下口
- 5 排気口
- 6 表面ゲル化区間
- 7 霧化器
- 8 アンモニア性水溶液のミスト
- 9 表面がゲル化された液滴
- 10 輸送管
- 11 ポンプ
- 12 アンモニア性水溶液
- 13 沈殿槽
- 14 完全ゲル化区間
- 15 重ウラン酸アンモニウム粒子
- 16 アンモニアガス供給口
- 30 17 空気の層
 - 18 アンモニア性水溶液循環ポンプ
 - 19 輸送管

.

•