

Alumnos:

Christian Hernandez

Docente:

Ing. Diego Quisi

Materia:

Sistemas Expertos.

Tema

Vino

Ciclo

9no Ciclo

Cuenca 22 mayo 2020

1. Para resolver este ejercicio lo aremos con el método de jaccard, este método calcula la distancia entre dos vectores mediante la siguiente formula.

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A|+|B|-|A \cap B|}$$

2. Datos Extraídos para la Comparación:

A	II.	(C)	D	E	F	G H	1	J	K	L
fixed ac	idity volatile a	icid citric acid	residua	sugi chlorides	free sulfur d to	tal sulfur cidensity	рН	sulphates	alcohol	quality
9.1	0.45	0.35	2.4	0.08	23	78 0.9987	3.38	0.62	9.5	5
7.1	0.735	0.16	1.9	0.1	15	77 0.9966	3.27	0.64	9.3	5
9.9	0.4	0.53	6.7	0.097	6	19 0.9986	3.27	0.82	11.7	7
8.8	0.52	0.34	2.7	0.087	24	122 0.9982	3.26	0.61	9.5	5
10.6	0.48	0.64	2.2	0.111	6	20 0.997	3.26	0.66	11.7	6
	7 0.58	0.12	1.9	0.091	34	124 0.9956	3.44	0.48	10.5	
11.9	0.38	0.51		2 0.121	7	20 0,9996	3.24	0.76	10.4	- 6
6.8	0.77		0 1.8	0.066	34	52.0.9976	3.62	0.68	9.9	5
9.5	0.56	0.33	2.4	0.089	35	67 0.9972	3.28	0.73	11.8	7
6.6	0.84	0.03	2.3	0.059	32	48 0.9952	3.52	0.56	12.3	7
7.7	0.96	0.2		2 0.047	15	60 0.9955	3.36	0.44	10.9	.5
10.5	0.24	0.47	2.1	0.066	6	24 0.9978	3.15	0.9	11	7
7.7	0.96	0.2		2 0.047	15	60 0.9955	3.36	0.44	10.9	3
6.6	0.84	0.03	2.3	0.059	32	48 0.9952	3.52	0.56	12.3	1 5
6.4	0.67	0.08	2.1	0.045	19	48 0.9949	3.49	0.49	11.4	
9.5	0.78	0.22	1.9	0.077	6	32 0.9988	3.26	0.56	10.6	
9.1	0.52	0.33	1.3	0.07	9	30 0.9978	3.24	0.6	9.3	
12.8	0.84	0.63	2.4	0.088	13	35 0.9997	3.1	0.6	10.4	
10.5	0.24	0.47	2.1	0.066	6	24 0.9978	3.15	0.9	11	
7.8	0.55	0.35	2.2	0.074	21	66.0,9974	3.25	0.56	9.2	
11.9	0.37	0.69	2.3	0.078	12	24 0.9958		3 0.65	12.8	
10.4	0.41	0.55	3.2	0.076	22	54 0.9996	3.15	0.89	9.9	- 6
	8 0.67	0.3		2 0.06	38	62 0.9958	3.26	0.56	10.2	
11.1	0.45	0.73	3.2	0.066	- 6	22 0.9986	3.17	0.66	11.2	
10.4	0.41	0.55	3.2	0.076	22	54 0.9996	3.15	0.89	9.9	- 6
	7 0.62	0.18	1.5	0.062	7	50 0,9951	3.08	0.6	9.3	3
12.6	0.31	0.72	2.2	0.072	6	29 0.9987	2.88	0.82	9.8	
11.9	0.4	0.65	2.15	0.068	7	27 0.9988	3.06	0.68	11.3	ō
	10 0.44	0.49	2.7	0.077	11	19 0.9963	3.23	0.63	11.6	7
5.3	0.57	0.01	1.7	0.054	5	27 0.9934	3.57	0.84	12.5	7
9.5	0.735	0.1	2.1	0.079	6	31 0.9986	3.23	0.56	10.1	
12.5	0.38	0.6	2.6	0.081	31	72 0.9996	3.1	0.73	10.5	
9,3	0.48	0.29	2.1	0.127	6	16 0,9968	3.22	0.72	11.2	5
8.6	0.53	0.22		2 0.1	7	27 0.9967	3.2	0.56	10.2	
11.9	0.39	0.69	2.8	0.095	17	35 0.9994	3.1	0.61	10.8	6
11.9	0.39	0.69	2.8	0.095	17	35 0,9994	3.1	0.61	10.8	
8.4	0.37	0.53	1.8	0.413	9	26 0.9979	3.06	1.06	9.1	
6.8	0.56	0.03	1.7	0.084	18	35.0.9968	3.44	0.63	10	

3. Ejecución del programa

• El tema propuesto para el programa es medir la calidad del vino en función de algunos parámetros de entrada, que tienen una medida o peso permitido

4. Resultados las similitudes

5. El resultado de la calidad es variado en cuanto a sus componentes que se especifiquen, ya que los datos usados para la especificación son datos reales de vinos catalogados previamente, con lo que se busaca la calidad.

