Chapter 5 Random Variables. Probability Distributions

- 5.1 Random Variables
- 5.2 Discrete Random Variables and Distributions
- 5.3 Continuous Random Variables and Distributions
- 5.4 Summary

26 February 2018

A function X whose domain is sample space S and whose range $R \subseteq \mathbb{R}$ is called a random variable.

That is the variable X takes numerical values for every event in S. If the sample space $S = \{\omega_1, \omega_2, \cdots, \omega_k, \cdots \omega_n\}$ as domain, then $X(\omega_k)$ is the real number that the function X assigns to the element ω_k .

Example 1

Let $S = \{1, 2, 3, 4, 5, 6\}$ and define X as follows:

$$X(1 \cup 2 \cup 3) = 1$$
, $X(4 \cup 5 \cup 6) = -1$.

X is a random variable defined as a function of the elements of S.

The domain of X is S and its range is the set $\{1, -1\}$.

This is useful to model real variables.

For example, the gain of a player

winning \$1 (+1) if the outcome is 1, 2 or 3

losing \$1 (-1) if the outcome is 4, 5 or 6.

Example 2

Two dice are rolled with the sample space

$$S = \{(1,1), (1,2), \dots, (5,6), (6,6)\}$$
 containing 36 elements.

Let X denote the random variable whose value for any $\omega \in S$ is the sum of numbers on the two dice.

Find the set $\{\omega : \omega \in S \text{ and } X(\omega) = 5 \}$.

Solution

The range of X is $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

Each $\omega \in S$ has associated with it exactly one element of the range.

The range of *X* is made up of the sets

$$\{\omega : \omega \in S \text{ such that } X(\omega) = k, \qquad k = 2, ..., 12\}$$

The set
$$\{X = 5\} = \{(1,4), (2,3), (3,2), (4,1)\}.$$

That is we have 36 possible pairs of results but X can only have 11 different values

We assign a probability measure on the elements of the sample space S, $P(\omega \in S) \rightarrow [0,1]$.

that is a function from the sample space to the real numbers between 0 and 1.

Note: probability measures must be defined carefully, but this is beyond our needs.

Then since X is a random variable defined as a function of S, we can define the probability $P(X = k) = P(\omega \in S: X(\omega) = k)$

Example 3

A fair coin is tossed two times. Define the variable

 $X = number\ of\ heads\ obtained$

Find the sample space (domain) and range of X. Then find

$$P(X = 1).$$

Solution

The sample space is $S = \{HH, HT, TH, TT\}$.

The probability measure on S is $P(\omega \in S) = \frac{1}{4}$.

The range of X, number of Heads, is $\{0, 1, 2\}$ with

$$X\{\omega = TT\} = 0$$
, $X\{\omega = HT \cup \omega = TH\} = 1$ and $X\{\omega = HH\} = 2$

The required probability is $P(X = 1) = P(\{HT \cup TH\}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

By definition, a random variable X is <u>discrete</u> if X assumes only finitely many or countably many values x_1, x_2, x_3, \cdots called the <u>possible values</u> of X, with positive probabilities

$$p_1 = P(X = x_1), \quad p_2 = P(X = x_2), \qquad p_3 = P(X = x_3), \cdots$$

whereas the probability $P(X \in I)$ is zero for any interval I containing no possible value.

The *probability mass function* (pmf) of X is, for $j=1,2,\cdots$,

$$f(x) = \begin{cases} p_j; & x = x_j \\ 0 & \text{otherwise} \end{cases}$$

the <u>cumulative</u> <u>distribution</u> function (cdf)

$$F(x) = P(X \le x) = \sum_{x_j \le x} p_j$$

where for any given x we sum all the probabilities p_j for which x_j is smaller than or equal to that of x.

Note: we often refer to the cdf simply as the distribution

Example 4 (Continued from Example 1)

S=
$$\{1, 2, 3, 4, 5, 6\}$$
, $X = 1$ if $s_i = \{1, 2, 3\}$, $X = -1$ if $s_i = \{4, 5, 6, \}$
Obtain the

- i. probability mass function f(x), and
- ii. cumulative distribution function F(x). Sketch F(x).

Solution

i. pmf

$$f(1) = P(X = 1) = P(\{1, 2, 3\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$
$$f(-1) = P(X = -1) = P(\{4, 5, 6\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

since each outcome has equal probability of occurring.

Probability mass function:
$$f(x) = \begin{cases} \frac{1}{2}; & x = -1\\ \frac{1}{2}; & x = 1\\ 0 & otherwise \end{cases}$$

ii. Cumulative distribution function:

$$F(x) = P(X \le x) = \begin{cases} 0; & x < -1 \\ \frac{1}{2}; & x = -1 \\ 1; & x = 1 \\ 1; & x > 1 \end{cases}$$

$$F(-1) = P(X \le -1) = P(X = -1) = \frac{1}{2},$$

$$F(1) = P(X \le 1) = P(X = -1 \cup X = 1) = \frac{1}{2} + \frac{1}{2} = 1$$

The graph of the cumulative distribution function is:

Properties of the Probability Mass Function (pmf)

- 1. $f(x) \ge 0$
- 2. $\sum f(x) = 1$

Properties of the (Discrete) Cumulative Distribution Function

- $1. \quad \lim_{x \to -\infty} F(x) = 0$
- $2. \quad \lim_{x \to \infty} F(x) = 1$
- 3. $F(x) = P(X \le x) = \sum_{x_i \le x} p_i$
- 4. *F* is non-decreasing function
- 5. $0 \le F(x) \le 1$

Example 5 (Continued from Example 2)

 $S = \{(1, 1), (1, 2), \dots, (5, 6), (6, 6)\}, X \text{ sum of result }$

Obtain the

- i. probability mass function f(x), and
- ii. distribution function F(x).
- iii. Sketch f(x) and F(x).

Solution

i. We obtain the following

$$f(2) = P(X = 2) = P(\{(1,1)\}) = \frac{1}{36}$$

$$f(3) = P(X = 3) = P(\{(1,2),(2,1)\}) = \frac{1}{36} + \frac{1}{36} = \frac{2}{36}$$

$$f(4) = P(X = 4) = P(\{(1,3),(2,2),(3,1)\}) = \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{3}{36}$$

$$\vdots$$

$$f(12) = P(X = 12) = P(\{(6,6)\}) = \frac{1}{36}$$

i. The probability mass function can be represented with a table:

$$x$$
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 $f(x)$
 $\frac{1}{36}$
 $\frac{2}{36}$
 $\frac{3}{36}$
 $\frac{4}{36}$
 $\frac{5}{36}$
 $\frac{6}{36}$
 $\frac{5}{36}$
 $\frac{4}{36}$
 $\frac{3}{36}$
 $\frac{2}{36}$
 $\frac{1}{36}$

ii. The distribution function can be represented with a table:

$\boldsymbol{\chi}$	2	3	4	5	6	7	8	9	10	11	12
F(x)	1	3	6	10	15	21	26	30	33	35	36
	36	36	36	36	36	36	36	36	36	36	36

iii. The sketch of the probability function and distribution function are:

Notice that the distribution function is *nondecreasing*.

One useful formula for discrete distribution is

$$P(a < X \le b) = F(b) - F(a) = \sum_{a < x_i \le b} p_i$$

This is the sum of all probabilities p_j for which x_j satisfies the condition $a < x_i \le b$.

Example 6 (Continued from Example 5)

$$S = \{(1, 1), (1, 2), \dots, (5, 6), (6, 6)\}, X \text{ sum of result }$$

Using the distribution function only, compute the probability of a sum of at least 4 and at most 8.

Solution

$$P(4 \le X \le 8) = P(3 < X \le 8) = F(8) - F(3)$$

$$=\frac{26}{36} - \frac{3}{36} = \frac{23}{36}$$

5.2 Discrete Random Variables: problem

Mr Ali hits a target with probability $p_A = \frac{1}{2}$, Ms Beatrice hits with probability $p_B = \frac{1}{3}$. If both shots once, find the range, pmf and cdf for the variable $X = \{number\ of\ hits\}$

We shall now consider continuous random variables which may take any value on \mathbb{R} .

Instead of the pmf, we now have a <u>probability density function</u> (pdf). This is a continuous function f such that $P(a < X \le b)$ is equal to the area under the graph of f between x = a and x = b.

The probability associated with any particular value X=a is zero. So we need to find the probability of an interval [X, X+dX]

Note

For a continuous variable a particular value has probability zero: that is P(X = a) = P(X = b) = 0. Therefore the following are equivalent

$$P(a \le X \le b) = P(a < X \le b) =$$

 $P(a \le X < b) = P(a < X < b)$

However, for consistency with discrete variables we usually write

$$P(x < X \le y)$$

The <u>cumulative distribution function</u> for a continuous random variable is given by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(v) dv.$$

Furthermore, the probability density function and the distribution function are related by

$$f(x) = F'(x).$$

The probability that a variable X takes values in an interval [a, b] is the area under the pdf in that interval. That is,

$$P(a < X \le b) = \int_{a}^{b} f(x)dx = F(b) - F(a)$$

You can look at this as

$$\int_{a}^{b} f(x)dx = \int_{-\infty}^{b} f(x)dx - \int_{-\infty}^{a} f(x)dx$$

Consider a variable X that takes values in [0,1] with constant density

function:
$$f(x) = k \text{ if } 0 < x \le 1$$
, $f(x) = \text{, otherwise.}$

This is called Uniform variable.

The cdf is
$$P(X \le x) = \int_0^x k \ du = x[u]_0^x = kx \text{ for } 0 < x \le 1$$

Since $P(X \le 1) = F(1) = k = 1$, we have $k = 1$ and

$$f(x) = \begin{cases} 1; \ 0 < x \le 1 \\ 0; \ otherwise \end{cases} \text{ and } F(x) = \begin{cases} 0; x \le 0 \\ x; \ 0 < x \le 1 \\ 1; x > 1 \end{cases}$$

Plot the pdf

$$f(x) = \begin{cases} 1 & \text{if } 0 < x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Prove that $P(X \le x) = x$ by geometric arguments.

Properties of the Probability Density Function (pdf)

- 1. $f(x) \ge 0$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$

Properties of the (Continuous) Distribution Function

- $1. \quad \lim_{x \to -\infty} F(x) = 0$
- $2. \quad \lim_{x \to \infty} F(x) = 1$
- 3. $F(x) = P(X \le x) = \int_{-\infty}^{x} f(v) dv$
- 4. F is differentiable [under special conditions], non-decreasing function
- 5. $0 \le F(x) \le 1$
- 6. f(x) = F'(x)

The cdf is "right continuous". That is, it is allowed to have jumps but only on the left.

That is, for
$$\delta>0$$
 and arbitrary $\epsilon>0$
$$\lim_{\delta\to 0}|F(X+\delta)-F(x)|<\epsilon$$

this is not required for $\delta < 0$.

If f(x) is continuous then also F(x) is continuous.

In probability we use Labesgue integrals and not Riemann ones.

Example 7

Let X be a random variable with probability density function $f(x) = 0.75(1 - x^2)$ for $-1 \le x \le 1$ and zero otherwise.

- i. find the cumulative distribution function.
- ii. Find the probabilities $P\left(-\frac{1}{2} < X \le \frac{1}{2}\right)$ and $P\left(\frac{1}{4} < X \le 2\right)$.

Solution

Integrating,

$$0.75 \int_{-1}^{x} (1 - v^2) dv = 0.5 + 0.75x - 0.25x^3,$$

therefore

$$F(x) = \begin{cases} 0 & \text{; } x \le -1 \\ 0.5 + 0.75x - 0.25x^3 & \text{; } -1 < x \le 1 \\ 1 & \text{; } x > 1 \end{cases}$$

We use the distribution function to obtain the probabilities:

$$P\left(-\frac{1}{2} \le X \le \frac{1}{2}\right) = P\left(-\frac{1}{2} < X \le \frac{1}{2}\right) = F\left(\frac{1}{2}\right) - F\left(-\frac{1}{2}\right) = 0.6875$$

$$P(\frac{1}{4} \le X \le 2) = P(\frac{1}{4} < X \le 2) = F(2) - F(\frac{1}{4}) = 0.3164$$

Example 8

Given that the probability density function for a random variable X is

$$f(x) = \begin{cases} 4x ; & 0 \le x \le \frac{1}{2} \\ -4x + 4 ; & \frac{1}{2} < x \le 1 \end{cases}$$

Obtain the distribution function F(x). Sketch F(x).

Solution

From the pdf, we integrate to obtain:

Between 0 and
$$\frac{1}{2}$$
, $F(x) = \int_0^x 4u \ du = 2x^2$;

Between $\frac{1}{2}$ and 1,

$$F(x) = \int_0^x f(u)du = \left[2x^2\right]_0^{\frac{1}{2}} + \int_{\frac{1}{2}}^x (4 - 4u)du$$
$$= -2x^2 + 4x - 1$$

Hence

$$F(x) = \begin{cases} 0; & x < 0 \\ 2x^2; & 0 \le x \le \frac{1}{2} \\ -2x^2 + 4x - 1; & \frac{1}{2} \le x \le 1 \\ 1; & x > 1 \end{cases}$$

The graph of the distribution function is:

5.4 Summary

- Discrete: probability mass function (pmf) $P(X = x_i)$
- Continuous: probability density function (pdf) f(x)
 - not a probability!
- Cumulative distribution functions (cdf) $F(X) = P(X \le x)$
 - discrete $F(x_j) = \sum_{i \le j} P(X = x_i)$
 - continuous $F(x) = \int_{-\infty}^{x} f(u) du$
- $P(a < X \le b) = F(b) F(a)$