Лекции курса «Алгебра», лекторы И.В. Аржанцев и Р.С. Авдеев ФКН НИУ ВШЭ, 1-й курс ОП ПМИ, 4-й модуль, 2014/2015 учебный год

Лекция 9

Примеры полей. Характеристика поля. Расширения полей, алгебраические и трансцендентные элементы. Минимальные многочлен. Конечное расширение и его степень. Присоединение корня многочлена. Поле разложения многочлена: существование и единственность.

Мы знаем не так много примеров полей. Это бесконечные поля \mathbb{Q} , \mathbb{R} , \mathbb{C} и конечные поля \mathbb{Z}_p , где p — простое число. Конструкция поля отношений позволяет строить новые поля из уже имеющихся. А именно, если K — произвольное поле, то можно рассмотреть поле отношений K(x) кольца многочленов K[x] (это поле называется *полем рациональных дробей* над K). Элементами поля K(x) являются дроби f(x)/g(x), где $f(x), g(x) \in K[x]$ и $g(x) \neq 0$.

Несколько других примеров полей:

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}, \quad \mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} \mid a, b, c \in \mathbb{Q}\}, \quad \mathbb{Q}(\sqrt{-1}) = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Q}\}.$$

Определение 1. Пусть K — произвольное поле. Xарактеристикой поля K называется такое наименьшее натуральное число p, что $\underbrace{1+\ldots+1}_{}=0$. Если такого натурального p не существует, говорят, что

характеристика поля равна нулю. Обозначение: $\operatorname{char} K$.

Например, $\operatorname{char} \mathbb{Q} = \operatorname{char} \mathbb{R} = \operatorname{char} \mathbb{C} = 0$ и $\operatorname{char} \mathbb{Z}_p = \operatorname{char} \mathbb{Z}_p(x) = p$.

Из определения следует, что всякое поле характеристики нуль бесконечно. Примером бесконечного поля характеристики p>0 является поле $\mathbb{Z}_p(x)$.

Предложение 1. Xарактеристика произвольного поля K либо равна нулю, либо является простым числом.

Доказательство. Положим $p = \operatorname{char} K$ и предположим, что p > 0. Так как $0 \neq 1$ в K, то $p \geqslant 2$. Если число p не является простым, то p = mk для некоторых $m, k \in \mathbb{N}, 1 < m, k < p$. Тогда в K верно равенство

$$0 = \underbrace{1 + \ldots + 1}_{mk} = \underbrace{(1 + \ldots + 1)}_{m} \underbrace{(1 + \ldots + 1)}_{k}.$$

В силу минимальности числа p в последнем выражении обе скобки отличны от нуля, но такое невозможно, так как в поле нет делителей нуля.

Упраженение 1. Пересечение любого семейства подполей фиксированного поля K является подполем в K. В частности, для всякого подмножества $S \subseteq K$ существует наименьшее по включению подполе в K, содержащее S. Это подполе совпадает с пересечением всех подполей в K, содержащих S.

Из приведённого выше упражнения следует, что в каждом поле существует наименьшее по включению подполе, оно называется npocmым nodnonem.

Предложение 2. Пусть K — поле и K_0 — его простое подполе. Тогда:

- (1) $ec_{\Lambda}u \operatorname{char} K = p > 0, mo K_0 \cong \mathbb{Z}_p;$
- (2) $ecnu \operatorname{char} K = 0, mo K_0 \cong \mathbb{Q}.$

Доказательство. Пусть $\langle 1 \rangle \subseteq K$ — циклическая подгруппа по сложению, порождённая единицей. Заметим, что $\langle 1 \rangle$ — подкольцо в K. Поскольку всякое подполе поля K содержит единицу, оно содержит и множество $\langle 1 \rangle$. Следовательно, $\langle 1 \rangle \subseteq K_0$.

Если char K=p>0, то мы имеем изоморфизм колец $\langle 1 \rangle \simeq \mathbb{Z}_p$. Но, как мы уже знаем из лекции 6, кольцо \mathbb{Z}_p является полем, поэтому $K_0=\langle 1 \rangle \simeq \mathbb{Z}_p$.

Если же char K=0, то мы имеем изоморфизм колец $\langle 1 \rangle \cong \mathbb{Z}$. Тогда K_0 содержит все дроби вида a/b, где $a,b\in \langle 1 \rangle$ и $b\neq 0$. Ясно, что все такие дроби образуют поле, изоморфное полю \mathbb{Q} .

Определение 2. Если K — подполе поля F, то говорят, что F — расширение поля K.

Например, всякое поле есть расширение своего простого подполя.

Определение 3. *Степенью* расширения полей $K \subseteq F$ называется размерность поля F как векторного пространства над полем K. Обозначение [F:K].

Например, $[\mathbb{C}:\mathbb{R}]=2$ и $[\mathbb{R}:\mathbb{Q}]=\infty$.

Определение 4. Расширение полей $K \subseteq F$ называется *конечным*, если $[F:K] < \infty$.

Предложение 3. Пусть $K \subseteq F$ и $F \subseteq L$ — конечные расширения полей. Тогда расширение $F \subseteq L$ также конечно и [L:K] = [L:F][F:K].

Доказательство. Пусть e_1,\dots,e_n — базис F над K и f_1,\dots,f_m — базис L над F. Достаточно доказать, что множество

(1)
$$\{e_i f_i \mid i = 1, \dots, n; j = 1, \dots, m\}$$

является базисом L над K. Для этого сначала покажем, что произвольный элемент $a \in L$ представим в виде линейной комбинации элементов (1) с коэффициентами из K. Поскольку f_1, \ldots, f_m — базис L над F, имеем $a = \sum_{j=1}^m \alpha_j f_j$ для некоторых $\alpha_j \in F$. Далее, поскольку e_1, \ldots, e_n — базис F над K, для каждого $j = 1, \ldots, m$ имеем $\alpha_j = \sum_{j=1}^n \beta_{ij} e_i$ для некоторых $\beta_{ij} \in K$. Отсюда получаем, что $a = \sum_{j=1}^n \sum_{j=1}^n \beta_{ij} (e_i f_j)$.

Теперь проверим линейную независимость элементов (1). Пусть $\sum_{i=1}^n \sum_{j=1}^n \gamma_{ij}(e_j f_i) = 0$, где $\gamma_{ij} \in K$. Переписав это равенство в виде $\sum_{j=1}^m (\sum_{i=1}^n \gamma_{ij} e_i) f_j = 0$ и воспользовавшись тем, что элементы f_1, \ldots, f_m линейно независимы над F, мы получим $\sum_{i=1}^n \gamma_{ij} e_i = 0$ для каждого $j = 1, \ldots, m$. Теперь из линейной независимости элементов e_1, \ldots, e_n над K вытекает, что $\gamma_{ij} = 0$ при всех i, j. Таким образом, элементы (1) линейно независимы.

Пусть $K \subseteq F$ — расширение полей.

Определение 5. Элемент $\alpha \in F$ называется алгебраическим над подполем K, если существует ненулевой многочлен $f(x) \in K[x]$, для которого $f(\alpha) = 0$. В противном случае α называется трансцендентным элементом над K.

Определение 6. *Минимальным многочленом* алгебраического элемента $\alpha \in F$ над подполем K называется ненулевой многочлен $h_{\alpha}(x)$ наименьшей степени, для которого $h_{\alpha}(\alpha) = 0$.

Лемма 1. Пусть $\alpha \in F$ — алгебраический элемент над K и $h_{\alpha}(x)$ — его минимальный многочлен. Тогда:

- (a) $h_{\alpha}(x)$ определён однозначно с точностью до пропорциональности;
- (б) $h_{\alpha}(x)$ является неприводимым многочленом над полем K;
- (в) для произвольного многочлена $f(x) \in K[x]$ равенство $f(\alpha) = 0$ имеет место тогда и только тогда, когда $h_{\alpha}(x)$ делит f(x).

Доказательство. (а) Пусть $h'_{\alpha}(x)$ — ещё один минимальный многочлен элемента α над K. Тогда $\deg h_{\alpha}(x) = \deg h'_{\alpha}(x)$. Умножив многочлены $h_{\alpha}(x)$ и $h'_{\alpha}(x)$ на подходящие константы, добьёмся того, чтобы их старшие коэффициенты стали равны единице. После этого положим $g(x) = h_{\alpha}(x) - h'_{\alpha}(x)$. Тогда $g(\alpha) = 0$ и $\deg g(x) < \deg h_{\alpha}(x)$. Учитывая определение минимального многочлена, мы получаем g(x) = 0.

- (б) Пусть $h_{\alpha}(x) = h_1(x)h_2(x)$ для некоторых $h_1(x), h_2(x) \in K[x]$, причём $0 < \deg h_i(x) < \deg h_{\alpha}(x)$ при i = 1, 2. Так как $h_{\alpha}(\alpha) = 0$, то либо $h_1(\alpha) = 0$, либо $h_2(\alpha) = 0$, что противоречит минимальности $h_{\alpha}(x)$.
- (в) Очевидно, что если $h_{\alpha}(x)$ делит f(x), то $f(\alpha)=0$. Докажем обратное утверждение. Разделим f(x) на $h_{\alpha}(x)$ с остатком: $f(x)=q(x)h_{\alpha}(x)+r(x)$, где $q(x),r(x)\in K[x]$ и $\deg r(x)<\deg h_{\alpha}(x)$. Тогда условие $f(\alpha)=0$ влечёт $r(\alpha)=0$. Из минимальности многочлена $h_{\alpha}(x)$ получаем r(x)=0.

Для каждого элемента $\alpha \in F$ обозначим через $K(\alpha)$ наименьшее подполе в F, содержащее K и α .

Предложение 4. Пусть $\alpha \in F$ — алгебраический элемент над K и n — степень его минимального многочлена над K. Тогда

$$K(\alpha) = \{\beta_0 + \beta_1 \alpha + \ldots + \beta_{n-1} \alpha^{n-1} \mid \beta_0, \ldots, \beta_{n-1} \in K\}.$$

Кроме того, элементы $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ линейно независимы над K. В частности, $[K(\alpha):K]=n$.

Доказательство. Легко видеть, что

$$K(\alpha) = \{ \frac{f(\alpha)}{g(\alpha)} \mid f(x), g(x) \in K[x], f(\alpha) \neq 0 \}.$$

Действительно, такие элементы лежат в любом подполе поля F, содержащем K и α , и сами образуют поле. Теперь возьмём произвольный элемент $\frac{f(\alpha)}{g(\alpha)} \in K(\alpha)$ и покажем, что он представим в виде, указанном в условии. Пусть $h_{\alpha}(x) \in K[x]$ — минимальный многочлен элемента α над K. Поскольку $g(\alpha) \neq 0$, в силу леммы $1(\mathbf{B})$ многочлен $h_{\alpha}(x)$ не делит g(x). Но $h_{\alpha}(x)$ неприводим по лемме $1(\delta)$, поэтому $(g(x), h_{\alpha}(x)) = 1$. Значит, существуют такие многочлены $u(x), v(x) \in K[x]$, что $u(x)g(x) + v(x)h_{\alpha}(x) = 1$. Подставляя в последнее равенство $x = \alpha$, мы получаем $u(\alpha)g(\alpha) = 1$. Отсюда $\frac{f(\alpha)}{g(\alpha)} = f(\alpha)u(\alpha)$, и мы избавились от знаменателя. Теперь уменьшим степень числителя. Пусть r(x) — остаток от деления f(x)u(x) на $h_{\alpha}(x)$. Тогда $f(\alpha)u(\alpha) = r(\alpha)$ и, значит, $\frac{f(\alpha)}{g(\alpha)} = r(\alpha)$, что показывает представимость элемента $\frac{f\alpha}{g(\alpha)}$ в требуемом виле.

Остаётся показать, что элементы $1, \alpha, \dots, \alpha^{n-1}$ поля F линейно независимы над K. Если

$$\gamma_0 + \gamma_1 \alpha + \ldots + \gamma_{n-1} \alpha^{n-1} = 0$$

для некоторых $\gamma_0, \gamma_1, \dots, \gamma_{n-1} \in K$, то для многочлена $w(x) = \gamma_0 + \gamma_1 x + \dots + \gamma_{n-1} x^{n-1} \in K[x]$ получаем $w(\alpha) = 0$. Тогда из леммы 1(в) и условия $\deg w(x) < \deg h_{\alpha}(x)$ вытекает, что w(x) = 0, то есть $\gamma_0 = \gamma_1 = \dots = \gamma_{n-1} = 0$.

Теорема 1. Пусть K — произвольное поле u $f(x) \in K[x]$ — многочлен положительной степени. Тогда существует конечное расширение $K \subseteq F$, в котором многочлен f(x) имеет корень.

Доказательство. Достаточно построить конечное расширение, в котором имеет корень один из неприводимых делителей p(x) многочлена f(x).

Покажем сначала, что факторкольцо K[x]/(p(x)) является полем. В самом деле, если многочлен $g(x) \in K[x]$ не делится на p(x), то (g(x),p(x))=1, и тогда существуют многочлены $u(x),v(x)\in K[x]$, для которых u(x)g(x)+v(x)p(x)=1. Взяв образ последнего равенства в факторкольце K[x]/(p(x)), мы получим

$$(u(x) + (p(x)))(g(x) + (p(x))) = 1 + (p(x)),$$

т. е. элемент u(x) + (p(x)) является обратным к g(x) + (p(x)). Значит, K[x]/(p(x)) — поле, и мы возьмём его в качестве F.

Заметим теперь, что расширение $K \subseteq F$ является конечным. Действительно, для всякого многочлена $g(x) \in K[x]$ в поле F = K[x]/(p(x)) имеем g(x) + (p(x)) = r(x) + (p(x)), где r(x) — остаток от деления g(x) на p(x). Отсюда следует, что F порождается как векторное пространство над K элементами

$$1 + (p(x)), x + (p(x)), \dots, x^{n-1} + (p(x)),$$

где $n = \deg p(x)$. (Так же легко показать, что эти элементы образуют базис в F над K.)

Остаётся показать, что в поле F многочлен p(x) имеет корень. Это похоже на обман, но корнем будет... x+(p(x)). Действительно, пусть $p(x)=a_nx^n+a_{n-1}x^{n-1}+a_1x+a_0$, где $a_0,a_1,\ldots,a_n\in K$. Тогда

$$p(x + (p(x))) = a_n(x + (p(x)))^n + a_{n-1}(x + (p(x)))^{n-1} + \dots + a_1(x + (p(x))) + a_0 =$$

$$= (a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0) + (p(x)) = p(x) + (p(x)) = (p(x)),$$

а (p(x)) есть не что иное, как нуль в F.

Говорят, что поле K[x]/(p(x)) получено из поля K присоединением корня неприводимого многочлена p(x). Нетрудно проверить, что если α — некоторый корень многочлена p(x) в K[x]/(p(x)), то поле K[x]/(p(x)) совпадает с подполем $K(\alpha)$.

Определение 7. Пусть K — некоторое поле и $f(x) \in K[x]$ — многочлен положительной степени. Полем разложения многочлена f(x) называется такое расширение F поля K, что

- (1) многочлен f(x) разлагается над F на линейные множители;
- (2) корни многочлена f(x) не лежат ни в каком собственном подполе поля F, содержащем K.

Пример 1. Рассмотрим многочлен $f(x) = x^4 + x^3 + x^2 + x + 1$ над \mathbb{Q} . Так как $(x-1)f(x) = x^5 - 1$, корнями многочлена f(x) являются все корни степени 5 из единицы, отличные от единицы. Если присоединить к \mathbb{Q} один из корней ϵ многочлена f, то его остальные корни можно получить, возводя число ϵ в натуральные степени. Таким образом, присоединение одного корня сразу приводит к полю разложения многочлена.

Пример 2. Многочлен $f(x)=x^3-2$ неприводим над полем $\mathbb Q$. Присоединение к полю $\mathbb Q$ корня этого многочлена приводит к полю $\mathbb Q[x]/(x^3-2)\cong\mathbb Q(\sqrt[3]{2})$. Данное поле не является полем разложения многочлена f(x), поскольку в нём f(x) имеет только один корень и не имеет двух других корней. Поскольку корнями данного многочлена являются числа

$$\sqrt[3]{2}$$
, $\sqrt[3]{2}(-\frac{1}{2} + \frac{\sqrt{-3}}{2})$, $\sqrt[3]{2}(-\frac{1}{2} - \frac{\sqrt{-3}}{2})$,

полем разложения многочлена f(x) является поле

$$F = \{\alpha_0 + \alpha_1 \sqrt[3]{2} + \alpha_2 \sqrt[3]{4} + \alpha_3 \sqrt{-3} + \alpha_4 \sqrt[3]{2} \sqrt{-3} + \alpha_5 \sqrt[3]{4} \sqrt{-3} \mid \alpha_i \in \mathbb{Q}\},\$$

которое имеет над $\mathbb Q$ степень 6.

Пусть F и F' — два расширения поля K. Говорят, что изоморфизм $F \xrightarrow{\sim} F'$ является тоже дественным на K, если при этом изоморфизме каждый элемент поля K переходит в себя.

Теорема 2. Поле разложения любого многочлена $f(x) \in K[x]$ существует и единственно с точностью до изоморфизма, тождественного на K.

Доказательство этой теоремы можно найти, например, в книге Э.Б. Винберга «Курс алгебры». Мы не включаем это доказательство в программу нашего курса.

Список литературы

- [1] Э.Б. Винберг. Курс алгебры. М.: Факториал Пресс, 2002 (глава 1, §§ 3-6 и глава 9, § 5)
- [2] А. И. Кострикин. Введение в алгебру. Основы алгебры. М.: Наука. Физматлит, 1994 (глава $4, \S 3$)
- [3] А.И. Кострикин. Введение в алгебру. Основные структуры алгебры. М.: Наука. Физматлит, 2000 (глава 5, § 1)
- [4] Сборник задач по алгебре под редакцией А.И. Кострикина. Новое издание. М.: МЦНМО, 2009 (глава 14, §§ 66-67)