Curso de

Sistemas Operacionais

Gerenciamento de Arquivos Parte 3

Prof. Dr. Robson Siscoutto

e-mail: robson@unoeste.br

Otimização do Desempenho do Disco Sumário

- 12.1 Introdução
- 12.2 Evolução do armazenamento secundário
- 12.3 Características do armazenamento em disco de cabeçote móvel
- 12.4 Por que o escalonamento do disco é necessário
- 12.5 Estratégias de escalonamento de disco
 - 12.5.1 Escalonamento de disco do tipo primeira a chegar, primeira a ser atendida (FCFS)
 - 12.5.2 Escalonamento de disco do tipo tempo de busca mais curto primeiro (SSTF)
 - 12.5.3 Escalonamento de disco SCAN
 - 12.5.4 Escalonamento de disco C-SCAN
 - 12.5.5 Escalonamento de disco FSCAN e SCAN de N-fases
 - 12.5.6 Escalonamento de disco LOOK e C-LOOK
- 12.6 Otimização rotacional
 - 12.6.1 Escalonamento SLTF
 - 12.6.2 Escalonamento SPTF e SATF
- 12.7 Considerações de sistemas
- 12.8 Utilização de caches e buffers
- 12.9 Outras técnicas de desempenho de disco

12.1 Introdução

 O armazenamento secundário é um local comum de gargalo.

 Melhorias de desempenho do armazenamento secundário elevaram significativamente o desempenho do sistema como um todo.

 As soluções para isso podem ser feitas no software e no hardware.

12.2 Evolução do armazenamento secundário

- A maioria dos dispositivos de armazenamento secundário consiste em mídias magnéticas
 - Os dados são acessados por um cabeçote de leituraescrita.
 - As primeiras tecnologias usavam o armazenamento sequencial.
 - Os registros tinham de ser acessados um por um, sequencialmente.
 - Não era eficaz para aplicações de acesso direto.
 - Armazenamento de acesso aleatório
 - Também chamado de armazenamento de acesso direto.
 - Os registros podem ser acessados em qualquer sequência.

12.3 Características do armazenamento em disco de cabeçote móvel

Layout físico das unidades de disco

Conjunto de pratos (platters) magnéticos:

Giram em uma haste (spindle).

 Compõem-se de trilhas, que, por sua vez, contêm setores.

 Os conjuntos verticais de trilhas formam os cilindros.

Cilindro

12.3 Características do armazenamento em disco de cabeçote móvel

Avaliação de desempenho

- Latência rotacional
 - Tempo para os dados girarem da posição em que estão até o cabeçote de leitura-escrita.
- Tempo de busca
 - Tempo para o cabeçote de leituraescrita mover-se/ir do cilindro corrente até o cilindro apropriado.
- Tempo de transmissão
 - Tempo para todos os dados desejados girarem por meio do cabeçote de leitura-escrita.

12.4 Por que o escalonamento do disco é necessário

- O escalonamento primeira a chegar, primeira a ser atendida (FCFS) apresenta desvantagens significativas.
 - O tempo de espera da busca de locais distribuídos aleatoriamente é longo.
 - Sob taxas de requisição (cargas) pesadas, o sistema fica sobrecarregado.
- As requisições devem ser atendidas de acordo com uma sequência lógica para diminuir os atrasos.
 - De modo que as requisições de serviço sejam atendidas com uma quantidade mínima de movimento mecânico.
- Os primeiros algoritmos de escalonamento de disco procuravam principalmente diminuir os tempos de busca, componente de acesso a disco que tinha a maior latência.
- Os sistemas modernos também executam otimização rotacional.

12.5 Estratégias de Escalonamento de Disco

Três critérios para avaliar estratégias:

- Rendimento
 - Número de requisições atendidas por unidade de tempo.
- Tempo médio de resposta
 - Tempo médio à espera do atendimento de uma requisição.
- Variância dos tempos de resposta
 - Medida da previsibilidade dos tempos de resposta.
 - Cada requisição deve ser atendida dentro de um período aceitável

Metas gerais

- Maximizar o rendimento.
- Diminuir o tempo de resposta e sua variância.

12.5 Estratégias de escalonamento de disco

Conjunto de Requisições para Demonstrar o Resultado das Políticas

Fila de requisição do cilindro (ordenação FIFO): 33, 72, 47, 8, 99, 74, 52, 75 Posição do cabeçote do disco: Cilindro 63

12.5.1 Escalonamento de disco do tipo 'primeira a chegar, primeira a ser atendida' (FCFS)

O escalonamento FCFS: requisições atendidas em ordem de chegada.

- Vantagens
 - É satisfatório
 - Evita adiamento indefinido:
 - atente tadas as requisições da fila de espera
 - Baixa sobrecarga.
- Desvantagens
 - Possibilidade de rendimento extremamente baixo.
 - → O escalonamento FCFS em geral produz um padrão de busca aleatório porque não reordena as requisições a fim de diminuir a demora no atendimento.
- Esse padrão aleatório resulta em baixa variância pois as requisições que chegam não podem passer à frente das requisições à espera;

12.5.1 Escalonamento de disco do tipo 'primeira a chegar, primeira a ser atendida' (FCFS)

Figura 12.6 Padrão de busca sob a estratégia FCFS.

12.5.2 Escalonamento de disco do tipo 'tempo de busca mais curto primeiro' (SSTF)

SSTF: requisição de serviço que estiver mais próxima do cabeçote de leitura-escrita.

Vantagens

- Maior rendimento e tempos de resposta menores que no FCFS.
- Soluções razoávies para sistemas de processamento em lote.
 - Rendimento e tempos médios de resposta são metas mais importantes;

Desvantagens

- Não garante imparcialidade.
- Possibilidade de adiamento indefinido:
 - uma requisição pode nunca se atendida devido a sua distância;
- Alta variância dos tempos de resposta.
- O tempo de resposta em geral é inaceitável para sistemas interativos.

12.5.2 Escalonamento de disco do tipo 'tempo de busca mais curto primeiro' (SSTF)

Figura 12.7 Padrão de busca sob a estratégia SSTF.

Fila de requisição do cilindro (ordenação FIFO): 33, 72, 47, 8, 99, 74, 52, 75 Posição do cabeçote do disco: Cilindro 63

12.5.3 Escalonamento de disco SCAN

- SCAN: tempo de busca menor na direção preferida.
 - Também conhecido como algoritmo do elevador
 - Não muda a direção até que atinja a extremidade do disco.
 - Definida uma direção escolhe a requisição que requer a menor distância de busca na direção definida;
 - Características semelhantes às do SSTF.
 - Também existe a possibilidade de adiamento indefinido.
 - Requisições novas podem ser atendidas antes das em fila de espera;
 - A variância dos tempos de resposta é melhor.
 - Porque atende as requisições em uma dada direção

12.5.3 Escalonamento de disco SCAN

Figura 12.8 Padrão de busca sob a estratégia SCAN.

Fila de requisição do cilindro (ordenação FIFO): 33, 72, 47, 8, 99, 74, 52, 75 Posição do cabeçote do disco: Cilindro 63

12.5.4 Escalonamento de disco C-SCAN (Scan Circular)

- C-SCAN: semelhante ao SCAN, mas ao fim de uma varredura <u>para dentro</u> o braço do disco pula (sem atender às requisições) para o cilindro mais externo.
 - Diminui ainda mais a variância dos tempos de resposta, bem como o prejuízo de rendimento e o tempo de resposta médio.
 - Pode haver adiamento indefinido se chegarem requisições ao mesmo cilindro continuamente;

12.5.5 Escalonamento de disco FSCAN (freezing Scan) e SCAN de *N*-fases

- Agrupa as requisições dentro de lotes.
- FSCAN: "congela" a fila de requisições do disco periodicamente e atende apenas às que estiverem na fila no momento.
 - Requisições que chegarem durante a varredura são agrupadas e ordenadas para serviço ótimo durante o retorno da verredura
- SCAN de N-fases: atende apenas às primeiras n requisições na fila no momento usando SCAN.
 - Novas requisições vão para o final da fila.
 - Quando as primeiras n requisições forem concluídas, as n requisições seguintes serão atendidas;
 - Divida a fila de requisites em filas de tamanho N;
- Ambas as estratégias evitam o adiamento indefinido.
- Ambas reduzem a variância dos tempos de resposta, em comparação ao SCAN.

12.5.5 Escalonamento de disco FSCAN e SCAN de *N*-fases

Padrão de busca sob a estratégia FSCAN - "congela" a fila .

Escalonamento de disco FSCAN e SCAN de N-fases

Padrão de busca sob a estratégia SCAN de N-fases (n = 3) - apenas às primeiras n requisições

Requisição para 37 chega enquanto 47 é processada. Requisição para 80 chega enquanto 72 é processada.

Fila de requisição do cilindro (ordenação FIFO): 33, 72, 47, 8, 99, 74, 52, 75 Posição do cabeçote do disco: Cilindro 63

12.5.6 Escalonamento de disco LOOK e C-LOOK

LOOK: aperfeiçoamento do escalonamento SCAN.

- Executa apenas varreduras grandes o suficiente para atender a todas as requisições.
 - Move o braço do disco para a extremidade externa do disco, se não houver nenhuma requisição pendente para essas regiões.
 - Melhora a eficácia evitando operações de busca desnecessárias.
 - Alto rendimento.

C-LOOK aperfeiçoa o escalonamento C-SCAN.

- Uma combinação do LOOK e do C-SCAN.
- Menor variância dos tempos de resposta que no Look, à custa do rendimento.

12.5.6 Escalonamento de disco LOOK e C-LOOK

Figura 12.12 Padrão de busca sob a estratégia LOOK.

Fila de requisição do cilindro (ordenação FIFO): 33, 72, 47, 8, 99, 74, 52, 75 Posição do cabeçote do disco: Cilindro 63

12.5.6 Escalonamento de disco LOOK e C-LOOK

Figura 12.13 Resumo de estratégias de otimização de busca.

Estratégia	Descrição
FCFS	Atende a requisições na ordem em que chegam.
SSTF	Atende primeiro à requisição que resultar em distância de busca mais curta.
SCAN	O cabeçote faz varreduras para trás e para a frente em todo o disco, atendendo a requisições segundo a SSTF em uma direção preferida.
C-SCAN	O cabeçote faz varredura para dentro por todo o disco, atendendo a requisições segundo SSTF na direção preferida (para dentro). Ao chegar à trilha mais interna,o cabeçote pula para a trilha mais externa e retoma o atendimento às requisições na próxima passagem para dentro.
FSCAN	Requisições são atendidas do mesmo modo que na SCAN, exceto que as requisições recém- chegadas são adiadas até a próxima varredura. Impede adiamento indefinido.
SCAN de <i>N</i> -fases	Atende a requisições como na FSCAN, mas somente <i>n</i> requisições por varredura. Impede adiamento indefinido.
LOOK	Semelhante à SCAN, exceto que o cabeçote muda de direção ao alcançar a última requisição na direção preferida.
C-LOOK	Semelhante à C-SCAN, exceto que o cabeçote pára após atender à última requisição na direção preferida, e atende à requisição do cilindro mais próximo do lado oposto do disco.

12.6 Otimização rotacional

- O tempo de busca antes era a principal preocupação em relação ao desempenho.
 - Hoje, o tempo de busca e a latência rotacional têm a mesma magnitude.
 - Estratégias recém-desenvolvidas tentam otimizar o desempenho do disco reduzindo a latência rotacional.
 - Importante para acessar pequenas quantidades de dados espalhadas na superfície dos discos.

12.6.1 Escalonamento SLTF Short Latency Time First

Escalonamento tempo de latência mais curto primeiro

- Examine todas as requisições e atende primeiro à que tiver o atraso rotacional mais curto
- Em um determinado cilindro, atende primeiro à requisição de serviço cuja latência rotacional for a mais curta.
- É fácil de implementar.

 Alcança um desempenho quase ideal em relação à latência rotacional.

Figura 12.14 Escalonamento SLTF. As requisições serão atendidas na ordem indicada, independentemente da ordem em que chegaram.

Atende primeiro o clindro 1, depois o 2 e por fim a 3.

12.6.2 Escalonamento SPTF e SATF

SPTF - Escalonamento tempo de posicionamento mais curto primeiro

- SPTF Shortest Positioning Time First
- SPTF primeiro atende à requisição com o menor tempo de posicionamento.
 - Tempo de posicionamento: soma do tempo de busca e da latência rotacional.
- Seu desempenho é bom.
- Pode adiar as requisições indefinidamente.
 - Requisições maiores podem ficar pendentes;

12.6.2 Escalonamento SPTF e SATF

SATF - Escalonamento tempo de acesso mais curto primeiro

- SATF Shortest Acess Time First
- Atende a proxima requisição que requer o tempo de acesso mais curto;
 - Tempo de acesso: tempo de posicionamento + tempo de transmissão.
- Alto rendimento.
 - Novamente, possibilidade de as requisições serem adiadas indefinidamente.

Tanto o SPTF quanto o SATF podem implementar o LOOK para melhorar o desempenho.

Deficiência

Tanto o SPTF quanto o SATF exigem que se conheçam as características de desempenho do disco, o que pode não ser imediamente possível em decorrência dos dados de correção de erros e da reatribuição transparente de setores defeituosos.

12.6.2 Escalonamento SPTF e SATF

Figura 12.15 Exemplos de escalonamento de disco SPTF (a) and SATF (b).

12.7 Considerações de sistemas

O escalonamento de disco em geral é útil, mas nem sempre.

- Não ajudará muito em sistemas orientados a processador.
- Cargas altas de pequenas transações para locais distribuídos aleatoriamente beneficiam-se desse escalonamento.
- Em distribuições razoavelmente uniformes e não aleatórias, a sobrecarga do escalonamento pode prejudicar o desempenho.
- As técnicas de organização de arquivo às vezes neutralizam os algoritmos de escalonamento.

12.8 Utilização de caches e buffers

Buffer de cache: armazena uma cópia dos dados do disco na memória mais rápida.

- Localiza-se na memória principal, no cache embutido ou no controlador de disco.
- O tempo de acesso é imensamente mais rápido que o acesso a disco.
- Pode ser usado como buffer para atrasar a escrita de dados até que a carga do disco fique leve.

Possibilidade de inconsistência.

- O conteúdo da memória principal pode ser perdido se houver interrupção no fornecimento de energia elétrica ou falha no sistema.
- Cache write-back
 - Os dados não são gravados imediatamente no disco.
 - São esvaziados periodicamente.
- Cache de escrita direta
 - Grava no disco e no cache simultaneamente.
 - Reduz o desempenho em comparação ao write-back, mas garante consistência.

12.9 Outras técnicas de desempenho de disco

Outras formas de otimizar o desempenho do disco

- Desfragmentação
 - Coloca os dados que têm relação entre si em setores contíguos.
 - Diminui o número de operações busca necessárias.
 - A partição pode ajudar a reduzir a fragmentação.
- Compressão
 - Os dados consomem menos espaço do disco.
 - Melhora os tempos de transferência e acesso.
 - Maior sobrecarga em tempo de execução para realizar a compressão/descompressão.

12.9 Outras técnicas de desempenho de disco

Outras formas de otimizar o desempenho do disco (continuação)

- Diversas cópias dos dados acessados frequentemente
 - Acessa a cópia mais próxima do cabeçote de leitura-escrita.
 - Pode ocorrer uma sobrecarga de armazenamento significativa.
- Blocagem de registros
 - Lê/grava vários registros como um bloco de dados único.
- Antecipação de braço de disco
 - Quando ocioso, move o braço do disco para um lugar que tem maior probabilidade de ser acessado em seguida.
 - Se o braço do disco prevê incorretamente o acesso seguinte ao disco, o desempenho pode ser prejudicado de modo significativo.