Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

15ª Aula Teórica

Sumário:

Cap. 9

Ondas

Bibliografia: Serway Cap. 16

N osciladores acoplados

Propagação de um sinal em N osciladores acoplados

Acoplamentos de osciladores: Transmissão de energia, não instantânea

N osciladores acoplados

Propagação de um sinal em N osciladores acoplados

Acoplamentos de osciladores: Transmissão não instantânea de informação e de energia

MODOS NORMAIS

20 osciladores acoplados: modo normal 16º

N osciladores acoplados

6 osciladores acoplados: modos normais

Figure 4. Normal modes displacements for the 6 mass system. These curves look like sine curves.

Os modos normais são um coseno ou seno em cada corpo!

MODOS NORMAIS Longitudinais e Transversais

https://phet.colorado.edu/sims/html/normal-modes/latest/normal-modes_en.html

Onda sinusoidal

N osciladores acoplados

Cada oscilador com movimento sinusoidal:

$$u_i = A\cos(\omega t + \phi_i)$$

$$u_i = x_i - x_{i eq.}$$

Transmissão de energia, não instantânea:

$$\phi_i$$
 varia com a posição $x_{i eq.}$: $\phi_i = -cx_{i eq.}$

c constante

variaveis contínuas:

$$\phi = -cx$$

$$u = A\cos(\omega t - cx)$$
 \Rightarrow Onda sinusoidal

$$\frac{d^2u}{dt^2} = -\omega^2 u \qquad \qquad \frac{d^2u}{dx^2} = -k^2 u$$

Ondas

Ondas longitudinais

perturbação do meio tem a mesma direção da propagação da onda

Ondas

Ondas transversais

a perturbação do meio é perpendicular à direção de propagação da onda

Onda

Repetição no tempo

$$T$$

$$f=\frac{1}{T}$$

$$\omega=2\pi f=\frac{2\pi}{T}$$
 frequência angular

Repetição no espaço

λ

$$k = \frac{2\pi}{\lambda}$$
 número de onda

Velocidade de propagação

$$v = \lambda f$$

https://phet.colorado.edu/pt/simulations/wave-on-a-string

Com transmissão de energia, o movimento não é necessáriamente sinusoidal

Número grande de osciladores acoplados,

Posições x_i a distância $\delta x = x_{i+1} - x_i$

Massa $m = M \delta x$

Ligadas por molas de coeficiente $k = K/\delta x$

(se aumentar o número de osciladores, k deve aumentar e m deve diminuir)

 $u_i =$ desvio do ponto de equilíbrio Longitudinal ou transversal

Equação de Newton:

$$m \frac{d^2 u_i}{dt^2} = k(u_{i+1} - u_i) - k(u_i - u_{i-1})$$
$$= k(u_{i+1} - 2u_i + u_{i-1})$$

Número grande de osciladores acoplados,

$$m\frac{d^2u_i}{dt^2} = k(u_{i+1} - 2u_i + u_{i-1})$$

Escrever $u_i = u(x_i, t)$, função contínua de variáveis x e t

Expansão de Taylor:

Expansion deflayion:
$$u_{i+1} = u_i + \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 + \sigma(\delta x^3), \qquad u_{i-1} = u_i - \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 + \sigma(\delta x^3)$$

$$\Rightarrow m \frac{\partial^2 u_i}{\partial t^2} = k \left\{ \left(u_i + \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 \right) - 2u_i + \left(u_i - \frac{\partial u}{\partial x}\Big|_{u_i} \delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 \right) \right\} + \sigma(\delta x^3)$$

$$= k \frac{\partial^2 u}{\partial x^2}\Big|_{u_i} \delta x^2 + \sigma(\delta x^3)$$

$$\lim_{\delta x \to 0} \frac{\partial^2 u}{\partial t^2} = \frac{k}{m} \frac{\partial^2 u}{\partial x^2} \delta x^2 = \frac{K}{M \delta x^2} \frac{\partial^2 u}{\partial x^2} \delta x^2 = \frac{K}{M} \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial^2 u}{\partial x^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

Equação da onda em 1D

Equação da onda em 1D

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

Equação da onda em 3D

$$\frac{\partial^2 u}{\partial t^2} = v^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]$$

u(x,t) =desvio da posição de equilíbrio a posição x e tempo t Pode ser longitudinal ou transversal

- Propagação de som
- Ondas no oceano
- Vibração de uma corda
- Ondas eletromagnéticas

• ...

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

Solução geral meio infinito

Ex: corda muita comprida, fluido num tubo, agua num canal...

Condição inicial: u(x, 0) = f(x)

Duas soluções:

 $u_1(x,t) = f(x-vt)$ movimento à direita com velocidade v $u_2(x,t) = f(x+vt)$ movimento à esquerda com velocidade v

mantem-se a forma original da onda.

Sem outras condições, a solução geral é a sobreposição de u_1 e u_2 :

$$u(x,t) = \frac{1}{2} [f(x - vt) + f(x + vt)]$$

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

Principal de sobreposição

Se $u_1(x,t)$ é uma solução, e $u_2(x,t)$ e outra solução, então

$$u_1(x,t) + u_2(x,t)$$

é também uma solução

Ex: 2 pulsos movendo em sentidos apostos:

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

meio finito: corda fixa nas extremidades 0 e L

Condições de fronteira:
$$u(0,t) = 0, u(L,t) = 0$$

Tentar solução da forma $u(x,t) = A \sin(kx) \cos(\omega t)$

$$\Rightarrow \quad \frac{\partial^2 u}{\partial x^2} = -k^2 u, \qquad \quad \frac{\partial^2 u}{\partial t^2} = -\omega^2 u = v^2 \frac{\partial^2 u}{\partial x^2} \qquad \quad \Rightarrow \omega = \frac{k}{v}$$

$$u(0,t) = 0,$$
 $u(L,t) = A\sin(kL)\cos(\omega t) = 0$ $\Rightarrow kL = \pi, 2\pi, 3\pi, \dots \Rightarrow k = \frac{n\pi}{L}$

$$u(x,t) = A\sin(\frac{n\pi}{L}x)\cos(\frac{n\pi}{Lv}t), \qquad n = 1, 2, 3, \dots$$

Modos normais de vibração

$$\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$$

corda fixa nas extremidades 0 e L

$$u(x,t) = A\sin(\frac{n\pi}{L}x)\cos(\frac{n\pi}{Lv}t), \qquad n = 1, 2, 3, \dots$$

Modos normais de vibração

Qualquer movimento da corda é uma sobreposição dos MODOS NORMAIS

Compare: série de Fourier

Sinais

Um <u>sinal</u> é uma função que varia em espaço e tempo, usada para transmitir informação

Ex. sinal elétrico ou ótico em telecomunicações, sinal eletromagnético para rádio ou televisão

Sinais

Função de um sinal f(t)

pode ser representado como a soma de funções sinusoidais, a série de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \{a_n \cos \omega_n t + b_n \sin \omega_n t\}$$

$$a_n = \frac{2}{T} \int_0^T f(t) \cos \omega_n t \, dt \qquad n = 0, 1, 2, \dots$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin \omega_n t \, dt \qquad n = 1, 2, 3, \dots$$
ou
$$f(t) = \frac{a_0}{2} + \sum_{n=-\infty}^{\infty} c_n \exp(i\omega_n t)$$

$$c_n = \frac{1}{T} \int_0^T f(t) \exp(i\omega_n t) \, dt \qquad n = \dots, -2, -1, 0, 1, 2, \dots$$

$$\omega_n = n2\pi/T$$

Os coeficientes (a_n e b_n , ou c_n) podem ser considerados uma função de frequência ω

No limite $T \to \infty$ os valores de ω_n são contínuas: **Transformada de Fourier**

Sinais

Um sinal pode ser representado:

no domínio de tempo: f(t) = forma de onda (waveform)

OU no domínio de frequências: $c(\omega)$ = espectro

as duas representações contêm a mesma informação

Frequency (Hz)

Digitalização de sinais

Para representar perfeitemente um sinal contínua f(t), durante um período T, precisamos de um número infinito de coeficientes de Fourier.

Se os dados foram em tempos discretos, $f(t_i)$ com intervalo $\delta t = t_{i+1} - t_i$, é só preciso um número finito de coeficientes.

Teorema de Nyquist:

Se um sinal não contém frequências maiores do que f , o sinal pode ser completamente determinado com valores medidos em pontos separados por menos do que $\delta t=\frac{\pi}{\omega}$

 \Leftrightarrow

Se os dados consiste de uma sequência de valores em tempos com intervalo δt , a frequência máxima necessário para representar o sinal é $\omega=\frac{\pi}{\delta t}$.

Digitalização de sinais

Aplicação: <u>Digitalização de sinal áudio</u>

O sistema auditivo humano está limitado a perceber frequências entre 20 Hz e 20 000 Hz.

 $f = 20000 \, Hz \iff$ amostragem com $\delta t = 1/40000s$ é suficiente para determinar o sinal dentro dos limites de percepção.

Um sinal audio pode ser digitalizado sem nenhum perda aparente de qualidade

Ex: Audio CD e MP3: 44100 valores por segundo

Digitalização de sinais

Compressão de sinal áudio

Algoritmo MP3 (muito simplificado):

- 1. Amostragem do sinal audio 44100 valores/s, amplitude 16--24bit /canal
- 2. Transformação discrete de Fourier representação no domínio de frequências
- 3. Modelo psicoacústica eliminar soms inaudíveis, redução seletiva de resolução
- 4. Compressão dos dados

Processamento de sinais

Outras aplicações:

Processamento e compressão de video e imagens

Telecommunicações (ex: dados fibra, cellular)

Reconhecimento de fala

Aprendizagém de máquina (ex: feature extraction)

• • •

3º Teste

- 23 de Junho, 9h00, salas para avisar (e-learning)
- Duas partes:
 - Cálculo analítico 50 %

Duração ½ h

• Cálculo computacional-numérico - 50 %

Duração 1 h

- de consulta
- sem acesso ao internet (incluindo documentação do python)

• Matéria:

- aulas teóricas Slides 10-15, aulas práticas 10-13:
 - Oscilações: oscilador harmónico simples, amortecido, forcado (ressonância), quártico,...
 - Caos
 - Osciladores acoplados, modos normais
 - Ondas

Exame

- 23 de Junho, 9h00, salas para avisar (e-learning)
- Duas partes:
 - Cálculo analítico 50 %

Duração1h15m

• Cálculo computacional-numérico - 50 %

Duração 2 h

- de consulta
- sem acesso ao internet (incluindo documentação do python)

• Matéria:

- todo!
- aulas teóricas Slides 1-15, aulas práticas 1-13