Practice Problems 14 - Solutions: Constrained optimization and Convex sets

EXERCISES

1. *Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x,y) = -(x - \alpha)^2 - (y - \alpha)^2$$

Consider the following optimization problem parametrized by $\alpha \in \mathbb{R}$

$$\max_{x,y} f(x,y)$$

subject to the constraint

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : xy \le 1\}$$

(a) Explain why this optimization problem has a solution (an intuitive explanation suffices). Is a solution guaranteed if instead it was a minimization problem?

Answer: The objective function is continuous, and the feasible set is closed. Furthermore, we know that the solutions must live in a bounded subset of the feasible set because the function decreases when x and y grow further apart from α . A formal way to say this is that (x,y)=(0,0) is feasible and any point with a larger distance with respect to (α,α) should be less desirable, this is, the solution must satisfy that $\|(x,y)\| \leq \|(\alpha,\alpha)\|$. By taking the intersection of this set and the feasible set we have that it is bounded and closed, thus compact, and Weierstrass ensures the existence of a solution. This will no longer be true if it is a minimization because it is always feasible to decrease the objective function by taking a point with a larger distance from (α,α) .

(b) Is the Qualification Constraint of the Theorem of Kuhn-Tucker satisfied?

Answer: Yes, if we happen to be in a situation where the constrain is binding, then $x, y \neq 0$ and the jacobian is $DG(\cdot) = [y \ x]$ which has rank 1 as desired.

(c) Write the Lagrangean and the Kuhn-Tucker conditions. Denote the multiplier by λ .

$$\mathcal{L}(x, y, \lambda) = -(x - \alpha)^2 - (y - \alpha)^2 + \lambda(1 - xy)$$

$$x] -2(x - \alpha) = \lambda y \tag{1}$$

$$y] -2(y - \alpha) = \lambda x \tag{2}$$

$$\lambda] xy \le 1 (3)$$

$$cs] \quad \lambda(1 - xy) = 0 \tag{4}$$

(d) Argue that the analysis can be split in three cases: $\lambda = 0, 2$ and all other lambdas. **Answer** From 4 we see that there is a case when $\lambda = 0$, and from 1 and 2 we see that if $\lambda = 2$ those two conditions are the same, so that is another case and when all of the other possible λ 's are the third case.

(e) In each case impose conditions on α to ensure the existence of $(x,y) \in \mathbb{R}^2$ that satisfies the Kuhn-Tucker conditions, and the value (if any) for which the constraint is active.

Answer: Case 1: $\lambda = 0$, then from 1 and 2 $x = y = \alpha$ and from 3 $\alpha^2 \le 1$ i.e. we need $|\alpha| \le 1$.

Case 2: $\lambda = 2$. From 4 we know that 3 binds and by combining it with 1 we have that x = 1/y and $x^2 - \alpha x + 1 = 0$, so $x = \frac{\alpha \pm \sqrt{\alpha^2 - 4}}{2}$ so we need $|\alpha| \ge 2$.

Case 3: $\lambda \notin \{0,2\}$, By subtracting 2 from 1 we learn that $(x-y)(2-\lambda)=0$. So x=y and from 3, $x=\pm 1$ and so $\lambda=2(\alpha-1)$ when x=1 for which we need a>1 and $\lambda=-2(\alpha+1)$ hence we need $\alpha<-1$. Then in general for this case to work we need $|\alpha|>1$.

(f) Assume that given some α , there exists a global max (x^*, y^*) where the constraint is effective and with associated multiplier λ^* . What is the interpretation of λ^* . What do we know about the multiplier if the constrain is not active?

Answer: λ^* approximates the increase in the objective function when the constraint is relaxed. In this case $xy \leq 1$ changing to $xy \leq 1 + \epsilon$ for example. If the constraint is not active, relaxing it, should not change the local max found, and thus the value objective, Therefore, $\lambda^* = 0$.

(g) Describe the optimal solution of the maximization problem as a function of α .

Answer:

- If $|\alpha| \leq 1$, the global max is (α, α) .
- If $\alpha < -1$ the global max is (-1, -1).
- If $1 < \alpha$ the global max is (1,1)
- 2. Billy optimizes a C^1 quasi-concave utility with respect to cheese curds and brats u(c, b). He can spend at most \$50 on these goods, and wants to buy at least 20 units combined in order to support the industry. Keep in mind that, of course, he cannot buy or eat negative quantities.
 - (a) What are the minimal conditions on the parameters or on the utility function to ensure the Kuhn-Tucker theorem applies for all critical points we might find.

Answer: We only need to have a non-empty set: $20 \le \min\{50/P_c, 50/P_b\}$. and if $P_c = P_b = 5/2$, we must re-write the problem as one with one equality constraints: b + c = 20 and non-negativity constraints.

(b) Assuming that the utility satisfies local non-satiation, that a solution exists, and that the price of cheese curds is smaller than the price of brats: $P_c < P_b$ what are the possible combination of constraints that can bind?

Answer: Lets call the non-negativity on c the constraint c, similarly for b, the budget constraint, bc and the last constraint, s for support. With local non-satiation, we can rule out solutions in the interior of the feasible set, you can have binding the following

combinations: $\{c\}, \{c, s\}, \{c, bc\}, \{c, bc, s\}, \{bc\}, \{bc, s\}, \{bc, b\}, \{bc, b, s\}, \{b\}, \{b, s\}$ and $\{s\}.$

(c) Non-negativity constraints are usually dealt with a slightly different formulation: they are not added to the Lagrangean; instead the conditions are that $\partial \mathcal{L}/\partial x \leq 0$ for any variable, x, with non-negativity constraints and a complementary slackness condition that $x(\partial \mathcal{L}/\partial x) = 0$. Show that the two formulations are equivalent.

Answer: Let the traditional Kuhn Tucker conditions be denoted by: $\partial \mathcal{L}'/\partial x$, we know they must be equal to zero. By arbitrarily eliminating the multiplier associated with the non-negativity constraint, we conclude the new condition on the lagrange must be that $\partial \mathcal{L}/\partial x \leq 0$ as desired. This inequality holds with equality whenever the removed multiplier is zero, and this multiplier is zero if x > 0. Similarly, if the inequality is strict it must be because the restriction binds, and so x = 0. These two factors are summarized in the complementary slackness condition that states that the restriction binds, x = 0 or the modified condition binds, $\partial \mathcal{L}/\partial x = 0$.

3. Show that the following sets are convex

(a) *The set of functions whose integral equals 1

Answer: Let $f \neq g$ be two functions in the set, and let $h = \lambda f + (1 - \lambda)g$ with $\lambda \in (0,1)$ then $\int h = \lambda \int f + (1 - \lambda) \int g = 1$.

(b) *The set of positive definite matrices

Answer: Take an arbitrary $x \neq 0$ and two pd matrices, A, B. For $C = \lambda A + (1 - \lambda)B$ we have that $x'Cx = \lambda x'Ax + (1 - \lambda)x'Bx > 0$.

(c) Any set of the form $\{x \in X : G(x) \leq 0\}$ where $G: X \to \mathbb{R}$ is affine.

Answer: Take arbitrary x_1, x_2 in the set, then for x_{λ} being the linear combination of those two in the usual way we have $G(x_{\lambda}) = ax_{\lambda} + b = \lambda ax_1 + (1 - \lambda)ax_2 + b \le G(x_1) + G(x_2)$ with equality if b = 0, and $G(x_1) + G(x_2) \le 0$.

(d) *The cartesian product of 2 convex sets.

Answer: Denote the two sets by A and B, let $a_1, a_2 \in A$ and $b_1, b_2 \in B$. then $(a_{\lambda}, b_{\lambda})$ is the linear combination of $(a_1, b_1) \in A \times B$ and $a_2, b_2) \in A \times B$ which is also in the cartesian product because it is coordinate-by-coordinate.

(e) Any vector space

Answer: By definition for any vector space X $\lambda x + (1 - \lambda)y \in X$ so long as λ is a scalar (and to define a convex combination we only need it to have a norm strictly less than 1) and x, y are in the set.

(f) The set of contraction mappings

Answer: Let h be the convex combination of two contractions, f, g. Then $h(x) - h(y) = \lambda(f(x) - f(y)) + (1 - \lambda)(g(x) - g(y)) \le \lambda \beta_f(x - y) + (1 - \lambda)\beta_g(x - y) = (\lambda \beta_f + (1 - \lambda)\beta_g)(x - y) = \beta_h(x - y)$ where $\beta_f, \beta_g < 1$, so $\beta_h < 1$; hence h is also a contraction.

(g) *Supermodular functions If f and g are SPM:

$$f(x \lor x') + f(x \land x') \ge f(x) + f(x')$$

$$g(x \lor x') + g(x \land x') \ge g(x) + g(x')$$

By multiplying both sides of the first inequality by λ , both sides of the other by $1 - \lambda$ and adding them together, we obtain the desired resilt.

4. Give an example of a set of functions that is not convex

Answer: Consider the set of discontinuous functions.

5. The set of invertible matrices is not convex, provide a counterexample to show this.

Answer: Let A be an invertible matrix, then -A is also invertible, but the linear combination with $\lambda = 1/2$ is the zero matrix, which is not invertible.

6. Are finite intersections of open sets in \mathbb{R}^n convex?

Answer: No, consider \mathbb{R} open and $(-1,0) \cup (1,2)$ open. Note that the second is equal to the intersection of these two sets and is not convex.

7. Show that the set of sequences in \mathbb{R}^n that posses a convergent subsequent is not a convex set

Answer: Take $x_n = 1$ if n is odd and $x_n = n$ if n is even and $y_n = 1$ if n is even and $y_n = n$ if n is odd.