CS 726: Quiz 1

Jan	14.	2020.	4:00pm	-4:20pm

Roll: _____

Name:

This quiz is open notes.

- 1. Let P(I), P(A) denote the probability that a student gets grade A in the Introductory ML and Advanced ML course respectively. P(A|I) denote the probability that the student will get grade A in A if (s)he got grade A in course I. If P(I) = 0.3, P(A|I) = 0.7,
 - (a) What is P(A)? Cannot be determined with the above information.
 - (b) Assume P(A) = 0.4. What is the probability that a student who got grade A in I will get grade A in A
 - (c) X and Y are independent 0

..1

- (d) Let X and Y be two continuous uniformly distributed random variables between 0 and 1. Calculate the probability $\Pr(X+Y<1|X>1/2)$...2 1/4
- (e) Let A and B be two discrete random variables for which the $\Pr(A|B)$ and P(B) distributions are specified below. For example, from the table we know that $\Pr(A=3|B=2)=0.2$

	B=1	B=2
A=1	0.4	0.3
A=2	0.3	0.5
A=3	0.3	0.2

B=1	B=2
0.4	0.6

- i. What is $\operatorname{argmax}_{a,b} \Pr(A = a, B = b)$? That is, the values of A and B for which the probability highest is: $A = \underline{\hspace{1cm}}$ and $B = \underline{\hspace{1cm}}$ A=2, B=2
- ii. The value of $\Pr(A=B)$ is ______ $\Pr(B=1)\Pr(A=1|B=1) + \Pr(B=2)\Pr(A=2|B=2) = 0.4*0.4 + 0.6*0.5$
- iii. The probability that (A + B) > 1 is ______1
- (f) Let a random variable x follow a Gaussian distribution with mean $\mu=10$ and variance 1.
 - i. The median value of x is 10
 - ii. The value of a for which the probability of $x \in [a, a+1]$ is maximized is 9.5
 - iii. If the probability that x < 1 is p, then the probability that |x 10| > 9 is 2p
 - iv. The expected value of x^2 is $1 + 10^2$
 - v. The range of real values that are impossible to generate from this distribution is:
 - vi. Which of the following samples of size 4 has the largest probability of being generated from this distribution

B. 1, 2, 0, 11

C. 9.9, 10.1, 9.8, 10.3

D. 11, 9, 12, 8

E. 10, 10, 10, 1

 \mathbf{c}

Total: 3