

DD 288387

1/9/2

DIALOG(R) File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.
008742221
WPI Acc No: 1991-246237/199134 XRAM Acc No: C91-106926

Prepn. of new poly(ester anhydride) derivs. - via mixed anhydride intermediate with polycondensation at elevated temp. and reduced pressure

Patent Assignee: FR-SCHILLER-UNIV JENA (UYJE)

Inventor: HARTMANN M; PINTHER P; SCHULZ V

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
DD 288387	A	19910328	DD 333599	A	19891016	199134 B

Priority Applications (No Type Date): DD 333599 A 19891016

Abstract (Basic): DD 288387 A

Prepn. of new polyester anhydride derivs. of formula (I) comprises polycondensation of aromatic dicarboxylic acid derivs. in which the carboxy phenyl gp. is bonded via ester gps. to (oxy) alkyl gps.. The reaction proceeds via a mixed anhydride intermediate at elevated temp. and reduced pressure. R = $(CH_2)_m$; $CH_2CH_2OCH_2CH_2$; $CH_2CH_2O(CH_2)_xCH_2CH_2$; $CH_2CH_2O(CH_2)_yOCH_2CH_2$; $CH_2CH_2OCH(CH_3)CH_2OCH_2CH_2$; $CH_2CH_2OCH(CH_3)CH_2CH_2OCH_2CH_2$ or $CH_2CH_2OCH(CH_2CH_3)CH_2OCH_2CH_2$. m is between 2 and 8. x = 2 or 3. y is between 2 and 8.

The mixed anhydride contains aromatic dicarboxylic acid and a lower aliphatic dicarboxylic acid esp. acetic acid. It may be isolated. The temp. is 140-220 pref. 150-180 deg.C and pressure is 1Pa - 3kPA esp. 1-2 PA.

USE - (I) are useful in pharmacy and agriculture.

In an example 5g adipic acid bis(4-carboxyphenolate) were refluxed with 60 ml. acetic anhydride for 20 mins.. The mixt. was filtered and worked up to give 4.5g mixed anhydride of bis-4-carboxyphenylate adipic acid anhydride and acetic acid. The mixt. was polycondensed under Ar at 180 deg.C.. (4pp Dwg.No.0/0)

Title Terms: PREPARATION; NEW; POLY; DERIVATIVE; MIX; ANHYDRIDE; INTERMEDIATE; POLYCONDENSATION; ELEVATE; TEMPERATURE; REDUCE; PRESSURE

Index Terms/Additional Words: POLYESTER

Derwent Class: A23; A96; A97; B07; C03

International Patent Class (Additional): C08G-067/04; C08L-073/02

File Segment: CPI

BEST AVAILABLE COPY

(12) Ausschließungspatent

Erteilt gemäß § 17 Absatz 1
Patentgesetz der DDR
vom 27.10.1983
in Übereinstimmung mit den entsprechenden
Festlegungen im Einigungsvertrag

PATENTSCHRIFT

(11) DD 288 387 A5

5(51) C 08 G 67/04
C 08 L 73/02

DEUTSCHES PATENTAMT

In der vom Anmelder eingereichten Fassung veröffentlicht

(21) DD C 08 G / 333 599 6

(22) 16.10.89

(44) 28.03.91

(71) siehe (73)

(72) Pinther, Peter, Dr.; Hartmann, Manfred, Prof. Dr.; Schulz, Volker, DE

(73) Friedrich-Schiller-Universität Jena, August-Bebel-Straße 4, D - 6900 Jena, DE

(54) Verfahren zur Herstellung von Poly(esteranhydriden)

(55) Poly(anhydride); Poly(esteranhydride); aromatische Dicarbonsäuren; Alkylen- und Oxyalkylengruppen; Esterbindung; gemischtes Anhydrid; Polykondensation; Depotmaterialien; biologisch aktive Verbindung; Pharmazie
 (57) Die Erfindung betrifft ein Verfahren zur Herstellung von Poly(esteranhydriden) mit dem Grundstrukturelement. Das Verfahren ist dadurch gekennzeichnet, daß aromatische Dicarbonsäuren, in denen die Carboxyphenylreste mit den Alkylen- und Oxyalkylengruppen über Esterbindungen verknüpft sind, über die Zwischenstufe der gemischten Anhydride bei erhöhter Temperatur und verminderter Druck zu Poly(esteranhydriden), polykondensiert werden. Die Poly(esteranhydride) eignen sich insbesondere als Depotmaterialien für biologisch aktive Verbindungen und können in der Pharmazie und der Landwirtschaft Verwendung finden. Grundstrukturelement

Patentansprüche:

- 1. Verfahren zur Herstellung von Poly(esteranhydriden), gekennzeichnet dadurch, daß aromatische Dicarbonsäuren, in denen die Carboxyphenylreste mit Alkylen- und Oxyalkylengruppen über Esterbindungen verknüpft sind, über die Zwischenstufe der gemischten Anhydride bei erhöhter Temperatur und verminderter Druck zu Poly(esteranhydriden) der Struktur**

worin R gleich $-(\text{CH}_2)_m-$ mit $2 \leq m \leq 8$

oder $\cdots\text{CH}_2\text{-CH}_2\text{-O-CH}_2\text{-CH}_2\cdots$

oder $-\text{CH}_2-\text{CH}_2-\text{O}-(\text{CH}_2-\text{CH}_2-\text{O})_x-\text{CH}_2-\text{CH}_2-$ mit $x = 2, 3$

oder $-\text{CH}_2-\text{CH}_2-\text{O}-(\text{CH}_2)_y-\text{O}-\text{CH}_2-\text{CH}_2-$ mit $2 \leq y \leq 8$

oder $-\text{CH}_2-\text{CH}_2-\text{O}-\text{CH}-\text{CH}_2-\text{O}-\text{CH}_2-\text{CH}_2-$

$$\text{CH}_2$$

oder $-\text{CH}_2-\text{CH}_2-\text{O}-\text{CH}-$

3

oder $-\text{CH}_2-\text{CH}_2-\text{O}-\text{CH}_2-$

CH₂

CH_2

utet, polykondensiert werden.
Darauf nach Anspruch 1, reaktionstraktiert, abgetrennt,

mit

bedeutet, polykondensiert werden.

2. Verfahren nach Anspruch 1, gekennzeichnet dadurch, daß die gemischten Anhydride der aromatischen Dicarbonsäuren mit einer anderen niedermolekularen aliphatischen Dicarbonsäure, vorzugsweise mit Essigsäure, verwendet werden.
 3. Verfahren nach den Ansprüchen 1 und 2, gekennzeichnet dadurch, daß das gemischte Anhydrid als Zwischenstufe in gereinigter Form isoliert wird.
 4. Verfahren nach den Ansprüchen 1 bis 3, gekennzeichnet dadurch, daß bei Temperaturen zwischen 140°C und 220°C, vorzugsweise zwischen 150°C bis 180°C und bei Drücken von 1PA bis 3kPA, vorzugsweise zwischen 1 bis 2PA, gearbeitet wird.

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Herstellung von Poly(esteranhydriden), die vorrangig in der Pharmazie und in der Landwirtschaft Verwendung finden können.

Charakteristik des bekannten Standes der Technik

Über Poly(anhydride) wurde erstmals von Bucher und Slade (J. Am. Chem. Soc. 31, 1319 [1909]) berichtet. Carothers und Hill (J. Am. Chem. Soc. 52, 4110 [1930] und J. Am. Chem. Soc. 54, 1569 [1932]) beschrieben aliphatische Poly(anhydride), die aufgrund ihrer niedrigen Schmelzpunkte und hohen Hydrolyseempfindlichkeit keiner technischen Bedeutung erlangt haben. Rein aromatische und heterocyclische Poly(anhydride) wie sie z. B. in Bull. Chem. Soc. Jpn. 32, 1120 (1959) oder in Makromol. Chem. 32, 1 (1959) beschrieben sind, besitzen demgegenüber eine höhere Hydrolysesestabilität, jedoch erschweren Unlöslichkeit und hohe Schmelzpunkte die technische Verarbeitbarkeit. Gemäß Makromol. Chem. 24, 76 (1957) und J. Polym. Sci. 29, 343 (1958) zeigen Poly(bis(p-carboxyphenoxy)alkananhidride/gute film- und faserbildende Eigenschaften sowie ein Hydrolyseverhalten, das zwischen dem der rein aliphatischen und der aromatischen Polyanhydride liegt. Die durch Variation des aliphatischen Restes unter Verwendung von Oligoethylenglykol-, Oligopropylenglykol- oder Propantriolderrivaten herstellbaren Bis(p-carboxyphenoxy)-Verbindungen liefern lösliche Poly(anhydride), die zu hydrolytisch abbaubaren Mikrokapseln verarbeitet werden können (DE 3632251 A 1). Durch Copolykondensation von aliphatischen und aromatischen Dicarbonsäuren lässt sich das Polymerrückgrat ebenfalls variieren. So bietet Copoly(anhydride), wie die aus Bis(p-carboxyphenoxy)propan und Sebacinsäure (EP 0260415 A 2; J. Am. Chem. Soc. 25, 201 [1984]; Biomaterials 4, 131 [1983]; J. Polymer Sci., Part A, Polymer Chem. 25, 3313 [1987]) den Vorzug, daß sich Schmelzpunkt und Hydrolyseverhalten durch Variation der Monomerbausteine steuern lassen. In allen diesen gemischten aliphatisch-aromatischen Poly(anhydriden) sind aliphatischer und aromatischer Rest über die relativ

stabile Etherbindung verknüpft, so daß ein Abbau zu kleinen Spaltprodukten nur schwer erfolgen kann. Gleiches trifft für die Verknüpfung dieser Reste in der Struktureinheit über Amlidbindungen zu. Griffin und MacDonald (EP 0055527 A1) synthetisierten Copolykondensate mit 5–80% Anhydridverknüpfung und entsprechend 95–20% Ester- oder Amlidverknüpfung der Monomerbausteine. Nachteilig ist die geringe Löslichkeit und die hohen Schmelzpunkte dieser thermotropen Polymeren. Poly(esteranhydride) mit gleichen molaren Anteilen an Ester- und Anhydridbindungen im Strukturelement sind bisher nicht bekannt.

Ziel der Erfindung

Das Ziel der Erfindung besteht darin, ein Verfahren zur Herstellung von Poly(esteranhydriden) zu finden, die unter hydrolytischen und/oder enzymatischen Bedingungen zu kleinen Spaltprodukten abgebaut werden können, wodurch eine Verringerung der Rückstandsbelastung zum Einsatz dieser Poly(esteranhydride) erzielt wird.

Darlegung des Wesens der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Poly(esteranhydriden) zu finden, die aufgrund ihrer chemischen Zusammensetzung unter hydrolytischen und/oder enzymatischen Bedingungen zu kleinen Spaltprodukten abgebaut werden können, wodurch eine Verringerung der Rückstandsbelastung beim Einsatz dieser Poly(anhydride) erzielt wird.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß aromatische Dicarbonsäuren, in denen die Carboxyphenylreste mit den Alkenyl- und Oxyalkylengruppen über Esterbindungen verknüpft sind, über die Zwischenstufe der gemischten Anhydride bei erhöhter Temperatur und verminderter Druck zu Poly(esteranhydriden) polykondensiert werden. Die erfundungsgemäß hergestellten Poly(esteranhydride) besitzen folgendes Grundstrukturelement:

worin R gleich $-(\text{CH}_2)_m-$ mit $2 \leq m \leq 8$

oder $\text{CH}_2\text{-CH}_2\text{-O-CH}_2\text{-CH}_2\text{-}$

oder $-\text{CH}_2-\text{CH}_2-\text{O}-(\text{CH}_2-\text{CH}_2-\text{O})_x-\text{CH}_2-\text{CH}_2-$ mit $x = 2, 3$

oder $-\text{CH}_2-\text{CH}_2-\text{O}-(\text{CH}_2)_v-\text{O}-\text{CH}_2-\text{CH}_2-$ mit $2 \leq v \leq 8$

oder $-\text{CH}_2-\text{CH}_2-\text{O}-\text{CH}(\text{CH}_3)-\text{CH}_2-\text{O}-\text{CH}_2-\text{CH}_2-$

oder -CH₂-CH₂-O-CH(CH₃)CH₂-CH₂-O-CH₂-CH₂-

oder -CH₂-CH₂-O-CH(CH₃)CH₂-O-CH₂-CH₂-

bedeutet.

Die erfundungsgemäßen Poly(esteranhydride) werden in einfacher Weise dadurch gewonnen, daß zunächst die gemischten Anhydride der verwendeten aromatischen Dicarbonsäuren mit niedermolekularen aliphatischen Carbonsäuren, vorzugsweise mit Essigsäure hergestellt und als Zwischenstufe in gereinigter Form isoliert werden, was zur Erzielung von höheren Molmassen von Bedeutung ist. Die gemischten Anhydride werden anschließend bei Temperaturen zwischen 140°C und 220°C, vorzugsweise zwischen 150°C bis 180°C und bei Drücken zwischen 1 PA bis 3 kPA, vorzugsweise zwischen 1 bis 2 PA, polykondensiert. Die erfundungsgemäß hergestellten Poly(esteranhydride) sind in geeigneten Lösungsmitteln wie Chloroform oder Tetrahydrofuran löslich. Dabei weisen die Poly(esteranhydride) mit Oxyalkylengruppen als Rest R eine bessere Löslichkeit auf. Die Schmelztemperaturen lassen sich ebenfalls durch die Struktur des Restes R und die Molmasse variieren und liegen zwischen 100°C und 200°C. Die erfundungsgemäß hergestellten Poly(esteranhydride) eignen sich als Trägerpolymere zur physikalischen Einlagerung von biologisch aktiven Verbindungen. Dabei können sowohl herkömmliche Methoden des Schmelzpressens zur Darstellung der physikalischen Kombinationen als auch aktivstoffhaltige Poly(anhydrid)lösungen zu Filmen gegossen oder durch Sprührocknen bzw. durch Fällverfahren Mikrokapseln hergestellt werden. Besonders vorteilhaft erscheint beim Einsatz dieser Poly(esteranhydride), daß durch die in der Struktureinheit vorhandenen Esterbindungen ein Abbau bis zu kleinen Spaltprodukten erfolgen kann, was zu einer Verringerung der Rückstandsbelastung führt.

Ausführungsbeispiele**Beispiel 1**

Gemischtes Anhydrid von Adipinsäure-bis(4-carboxyphenolat) und Essigsäure

5 g (0,013 mol) Adipinsäure-bis(4-carboxyphenolat) werden mit 60 ml Acetanhydrid 25 min unter Rückfluß erhitzt. Anschließend wird die Lösung über eine Schlenkritte abgezogen und das Filtrat durch Abdestillieren von überschüssigem Acetanhydrid/Essigsäuregemisch auf $\frac{1}{2}$ eingeengt. Die über Nacht bei 5°C ausgefallenen Kristalle werden abgesaugt, zweimal mit trockenem Ether gewaschen, 4 h in Ether gerührt und im Vakuum über CaCl_2 getrocknet.

Ausbeute 4,5 g (73,9 % d.Th.)

Schmp. 85°C.

Polykondensation

2,7 g (0,0057 mol) des gemischten Anhydrides 1 werden in einem Schlenkgefäß mit Gaseinleitungsrohr unter leichtem Argonstrom im Ölbad auf 180°C erwärmt. Anschließend wird unter Vakuum (1 bis 2 PA) 160 min polykondensiert. In Intervallen von jeweils 15 min wird 30 s Argon durchgeblasen. Das Poly(esteranhydrid) wird aus Chloroform/Hexan umgefällt, 4 h in Ether gerührt, abgesaugt und im Vakuum über CaCl_2 getrocknet.

 T_m (Maximum im DSC-Peak) = 166°C M_n (Osmometrie) = 4300IR (KBr-Preßling): 1775cm^{-1} , 1720cm^{-1} Anhydrid, 1760cm^{-1} Ester.**Beispiel 2**

Gemischtes Anhydrid von 1,2-Bis(4-carboxyphenoxy carbonyloethoxy)-butan und Essigsäure

Entsprechend Beispiel 1 aus 6 g (0,0105 mol) 1,2-Bis(4-carboxyphenoxy carbonyloethoxy)butan und 60 ml Acetanhydrid. Nach Abdestillieren des überschüssigen Acetanhydrid/Essigsäuregemisches verbleibt ein öliges Produkt.

Ausbeute 4,9 g (83 % d.Th.)

Polykondensation

2,2 g (0,0039 mol) des gemischten Anhydrides 2 werden in einem Schlenkgefäß mit Gaseinleitungsrohr unter leichtem Argonstrom im Ölbad auf 155°C erhitzt. Anschließend wird unter Vakuum (1 bis 2 PA) 360 min polykondensiert. In Intervallen von jeweils 15 min wird 30 s Argon durchgeblasen. Das Poly(esteranhydrid) wird aus Chloroform/Hexan umgefällt, 4 h in Ether gerührt, abgesaugt und im Vakuum über CaCl_2 getrocknet.

 T_m (Maximum im DSC-Peak) = 100°C M_n (GPC) = 5500 M_w (GPC) = 15500IR (KBr-Preßling): 1777cm^{-1} , 1725cm^{-1} Anhydrid, 1760cm^{-1} Ester.