Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

ЛАБОРАТОРНАЯ РАБОТА № 11

по курсу «Адаптивное и робастное управление» АДАПТИВНАЯ КОМПЕНСАЦИЯ ВНЕШНЕГО ВОЗМУЩЕНИЯ

Вариант № 20

	Авторы работы: Кирбаба Д.Д.,
	Кравченко Д.В.
	Группа: R3438
	Преподаватель: Парамонов А.В.
"29" ноября 2023 г.	

Работа выполнена с оценкой

Дата защиты "__" ____ 2023 г.

Санкт-Петербург

СОДЕРЖАНИЕ

1.	Цель работы	2
2.	Постановка задачи	3
	Ход работы	
	Исходные данные	
2.	Задание 1	5
	Проверка системы на управляемость	5
	Нахождение матрицы эталонной модели	
	Поиск матрицы ЛСОС	6
3.	Задание 2	7
4.	Задание 3	7
	$\gamma = 10$	8
	$\gamma = 250$	9
4.	Выводы	11

1. Цель работы

Освоение принципа адаптивной компенсации возмущения на примере решения задачи стабилизации многомерного линейного объекта.

2. Постановка задачи

Рассмотрим задачу компенсации внешнего возмущения, действующего на объект

$$\dot{x} = Ax + bu + df,$$
 $x(0)$
 $y = Cx,$

где $x \in \mathbb{R}^n$ — измеряемый вектор состояния, u, y — измеряемые вход и выход объекта, A, b, C, d — известные матрицы соответствующих размерностей, f — неизмеряемое мультисинусоидальное возмущение с априори неизвестными амплитудами, частотами и фазами гармоник. Предполагается, что f моделируется с помощью автономного генератора

$$f^{(r)} + l_{r-1}f^{(r-1)} + \dots + l_0f = 0$$
,

где $f^{(i)}(0)$ и l_i , $i=\overline{0,r-1}$ — неизвестные параметры модели. Корни характеристического полинома модели автономного генератора являются чисто мнимыми и некратными.

Имеется также допущение, что сигналы u и f согласованы и b=d. Цель задачи заключается в построении управления, компенсирующего неизвестное возмущение так, чтобы

$$\lim_{t\to\infty}||x(t)||=0.$$

На основе принципа параметризации выходной переменной объекта, представим величину f в следующей форме:

$$f = (k_{f r-1} - l_{r-1}) \frac{s^{r-1}}{K_f(s)} [f] + (k_{f r-2} - l_{r-2}) \frac{s^{r-2}}{K_f(s)} [f] + \cdots + (k_{f 0} - l_0) \frac{1}{K_f(s)} [f] = \theta_f^T \xi_f,$$

где

$$\theta_f^T = \left[k_{f \ 0} - l_0, \dots, k_{f \ r-1} - l_{r-1} \right],$$

$$\xi_f^T = \left[\frac{1}{K_f(s)} [f], \frac{s}{K_f(s)} [f], \dots, \frac{s^{n-1}}{K_f(s)} [f] \right].$$

Вектор ξ_f является вектором состояния фильтра

$$\dot{\xi}_f = A_{0\,f} \xi_f + b_{0\,f} f,$$

$$A_{0f} = \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -k_{f0} & -k_{f1} & \cdots & -k_{fr-1} \end{bmatrix}, b_{0f} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

- известные матрицы.

На матрицу $A_{0\,f}$ накладываются следующие ограничения:

- Матрица должна быть гурвицева
- Порядок матрицы должен быть больше либо равен порядку автономного генератора, создающего возмущение f
- Пара $(A_{0\,f},b_{0\,f})$ должна быть полностью управляема

Так как вход фильтра f неизмеряемый, то вектор состояния ξ_f не доступен прямому измерению, в связи с чем возникает необходимость в его оценке. Предложим следующую структуру наблюдателя вектора ξ_f :

$$\hat{\xi}_f = \eta + Nx,$$

$$\dot{\eta} = A_{0f}\eta + (A_{0f}N - NA)x - Nbu,$$

где матрица N находится из равенства

$$Nd = b_{0f}$$
.

Тогда можем представить объект в виде:

$$\dot{x} = Ax + b(u + \theta_f^T \hat{\xi}_f), \qquad x(0).$$

Далее, используя метод непосредственной компенсации, построим стабилизирующее управление в виде

$$u = -KX - \hat{\theta}_f^T \hat{\xi}_f,$$

где K — матрица линейных обратных стационарных связей такая, что матрица замкнутой системы $A_M = A - bK$ гурвицева и рассчитывается методом модального управления, $\widehat{\theta}_f^T$ — вектор оценки.

Динамическая модель ошибок с измеряемым состоянием:

$$\dot{x} = A_M x + b \tilde{\theta}_f^T \tilde{\xi}_f,$$

где $\tilde{ heta}_f = heta_f^T - \hat{ heta}_f^T$ — вектор параметрических ошибок.

Алгоритм адаптации:

$$\dot{\hat{\theta}} = \gamma \hat{\xi}_f b^T P x, \qquad \hat{\theta}(0) = 0,$$

где P — симметричная положительно определенная матрица, являющаяся решением уравнения Ляпунова:

$$A_M^T P + P A_M^T = -Q,$$

где Q — произвольно выбранная симметричная положительно определенная матрица.

3. Ход работы

1. Исходные данные

Матрица А	Матрица <i>b</i>	Время переходного процесса, <i>t</i> _n	Максимальное перерегулирова ние, $\overline{\sigma}$, %
$\begin{bmatrix} 1 & -4 \\ -7 & -5 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$	1.2	0

Таблица 1. Исходные данные (20 вариант).

2. Задание 1

Проверка системы на управляемость

Проверим объект управления на предмет управляемости:

$$C = \begin{bmatrix} b & Ab \end{bmatrix} = \begin{bmatrix} 0 & -8 \\ 2 & -10 \end{bmatrix}, \quad rank(C) = 2$$

Система полностью управляема.

Нахождение матрицы эталонной модели

Матрица $A_{\rm ж}$ определяет желаемое качество поведения системы при отсутствии возмущения, представляется, как правило, в каноническом управляемом базисе и составляется из коэффициентов стандартного полинома (Ньютона или Баттерворта):

В нашем случае, так как модель второго порядка и имеет описанные в таблице выше показатели качества, то стандартный полином будет полиномом Ньютона второго порядка.

$$D^*(\lambda) = \lambda^2 + 2\omega_o \lambda + \omega_o^2$$

Пусть $\Delta=0.05$ ед. от установившейся величины, тогда $t_n^*=4.75$ с и

$$\omega_o = \frac{4.75}{1.2} = 3.958$$

$$D^*(\lambda) = \lambda^2 + 7.916\lambda + 15.6658\omega_0^2$$

Тогда матрицы эталонной модели:

$$A_{M} = \begin{bmatrix} 0 & 1 \\ -15.6684 & -7.9167 \end{bmatrix}, b_{M} = \begin{bmatrix} 0 \\ 15.6684 \end{bmatrix},$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Рисунок 1. Схема моделирования эталонной модели.

Рисунок 2. Графики задающего воздействия и переходного процесса эталонной модели.

Как видно, перерегулирование =0 и время переходного процесса примерно равно 1.2 с (примерно, так как при расчете параметров модели мы ставили точность $\Delta=0.05$ ед. от установившейся величины).

Поиск матрицы ЛСОС

Построим матрицу линейных обратных стационарных связей K с помощью метода модального управления.

$$K = HM^{-1},$$

где H — матрица, выбранная из условия полной наблюдаемости пары (A_{κ}, H) :

$$H = [1 \ 0],$$

М находится из решения уравнения Сильвестра:

$$AM - MA_{xx} = bH$$

$$M = \begin{bmatrix} -0.12 & 0.02 \\ 0.0795 & 0.095 \end{bmatrix}$$

$$K = HM^{-1} = \begin{bmatrix} -6.5 & 1.9 \end{bmatrix}$$

3. Задание 2

Построим наблюдатель вектора состояния модели возмущения $\hat{\xi}_f$.

$$A_{0\,f} = \begin{bmatrix} 0 & 1 \\ -9 & -3\sqrt{2} \end{bmatrix}, \qquad b_{0\,f} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Функция возмущающего воздействия:

$$f = 5\cos(5t + 1.5)$$

$$N = \frac{b_{0\,f}}{d} = \begin{bmatrix} 0 & 0\\ 0 & 0.5 \end{bmatrix}$$

Наблюдатель вектора ξ_f :

$$\hat{\xi}_f = \eta + Nx,$$

$$\dot{\eta} = A_{0f}\eta + (A_{0f}N - NA)x - Nbu$$

4. Задание 3

Построим и промоделируем замкнутую систему с адаптивным компенсирующим управлением.

Рисунок 3. Схема моделирования.

Рисунок 4. График компонент вектора состояния объекта при $\gamma=10.$

Рисунок 5. График управляющего воздействия при $\gamma = 10$.

Рисунок 6. График компонент вектора состояния объекта при $\gamma = 250$.

Рисунок 7. График компонент вектора состояния объекта при $\gamma=250$ при меньшем диапазоне времени.

Рисунок 8. График управляющего воздействия при $\gamma = 250$.

Анализируя графики переходных процессов, можно заключить, что цель управления $\lim_{t\to\infty} \|x(t)\| = 0$ выполняется. При чём при увеличении коэффициента адаптации скорость переходных процессов становится выше.

4. Выводы

В данной лабораторной работе был изучен метод адаптивной компенсации внешнего возмущения. Для выполнения задачи управления было проведено 4 этапа:

- 1. Формирование и поиск параметров эталонной модели с помощью метода стандартных полиномов;
- 2. Поиск матрицы ЛСОС с помощью методов модального управления для реализации желаемого поведения ОУ;
- 3. Синтез наблюдателя вектора состояния модели возмущения;
- 4. Поиск симметричной положительно определенной матрицы P, являющаяся решением уравнения Ляпунова, необходимой для реализации алгоритма адаптации.

Итого, получили:

1. Эталонная модель:

$$A_M = \begin{bmatrix} 0 & 1 \\ -15.6684 & -7.9167 \end{bmatrix}, b_M = \begin{bmatrix} 0 \\ 15.6684 \end{bmatrix},$$
 $C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$

2. Наблюдатель вектора ξ_f :

$$\hat{\xi}_f = \eta + Nx,$$

$$\dot{\eta} = A_{0f} \eta + (A_{0f} N - NA) x - Nbu.$$

3. Закон стабилизирующего управления:

$$u = -KX - \hat{\theta}_f^T \hat{\xi}_f.$$

4. Алгоритм адаптации:

$$\dot{\hat{\theta}} = \gamma \hat{\xi}_f b^T P x.$$

Данный метод позволяет произвести адаптивную компенсацию неизвестного внешнего возмущения (необходимо только знать порядок автономного генератора, создающего реализацию внешнего возмущения) вместе со стабилизацией объекта управления к эталонной модели.