Community Detection Problem Based on Polarization Measures. An application to Twitter: the COVID-19 case in Spain

Here we attach the obtained results when applying the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$ for several values of the balancing factor γ , considering the scenarios in which $\varphi=\max$ and $\phi=\min$ as well as $\varphi=\max$ and $\phi=\min$. For both cases, the negation operator considered is N(x)=1-x. We also include the performance of the Louvain algorithm considering the graph G=(V,E).

Figure 1: Partitions obtained with the Louvain algorithm in the graph G=(V,E).

Figure 2: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\gamma=0.1;\ \varphi=\max;\ \phi=\min;\ N(x)=1-x.$

Figure 3: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.2;$ $\varphi=\max;$ $\phi=\min;$ N(x)=1-x.

Figure 4: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\gamma=0.3;\ \varphi=\max;\ \phi=\min;\ N(x)=1-x.$

Figure 5: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.4;$ $\varphi=\max;$ $\phi=\min;$ N(x)=1-x.

Figure 6: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P).$ $\gamma=0.5;$ $\varphi=\max;$ $\phi=\min;$ N(x)=1-x.

Figure 7: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\gamma=0.1;\ \varphi=\max;\ \phi=prod;\ N(x)=1-x.$

Figure 8: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\gamma=0.2;\ \varphi=\max;\ \phi=prod;\ N(x)=1-x.$

Figure 9: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\gamma=0.3;\ \varphi=\max;\ \phi=prod;\ N(x)=1-x.$

Figure 10: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\gamma=0.4;\ \varphi=\max;\ \phi=prod;\ N(x)=1-x.$

Figure 11: Partitions obtained with the Polarization Louvain algorithm in the non-polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\gamma=0.5;\ \varphi=\max;\ \phi=prod;\ N(x)=1-x.$