MEAN-VARIANCE OPTIMIZATION: OPTIMAL ASSET ALLOCATION

WHAT WILL YOU LEARN?

- ► What is the optimal portfolio of risky assets?
 - \blacktriangleright What is the best risky asset portfolio?
 - ►Mean-variance efficient (MVE) portfolio
- ► What is the optimal asset allocation?
 - ► How should we allocate our wealth between this optimal risky portfolio and the risk-free asset?
 - ► Capital allocation line (CAL)
 - ►Sharpe ratio

LET'S START WITH THE SECOND QUESTION

- ▶What is the optimal asset allocation?
 - ► How should we allocate our wealth between this optimal risky portfolio and the risk-free asset?
 - ► Capital allocation line (CAL)
 - ►Sharpe ratio

PORTFOLIO OF ONE RISKY ASSET AND A RISK-FREE ASSET

PORTFOLIO OF ONE RISKY ASSET AND A **RISK-FREE ASSET CAPITAL ALLOCATION LINE**

OPTIMAL CAL PORTFOLIO	
OPTIMAL CAL PORTFOLIO	

SUMMARY

- ► Capital allocation line (CAL) describes the set of portfolio risk-return trade-offs that can be constructed with the risky portfolio and a risk-free asset.
- ▶The slope of the CAL is Sharpe ratio.
- ► The optimal asset allocation over one risky asset and one risk-free asset is the tangency point of the highest indifference curve with the CAL.

CAPITAL ALLOCATION LINE: A NUMERICAL EXAMPLE

WHAT WILL YOU LEARN?

- ▶Let's plug some numbers in with some data.
 - ► How should we allocate our wealth between this optimal risky portfolio and the risk-free asset?
 - ► Capital allocation line (CAL)
 - ►Sharpe ratio

CAPITAL ALLOCATION LINE
CAPITAL ALLOCATION LINE
CAITIAL ALLOCATION LINE

OPTIMAL ALLOCATION DECISION – ANALYTICAL SOLUTION

► Maximize utility

OPTIMAL ALLOCATION DECISION – NUMERICAL EXAMPLE

Risk aversion (A)	W*	(1-w*)	E[r _p]	σ_{p}
1.0	2.972	-1.972	33.4%	56.92%
2.0	1.486	-0.486	17.2%	28.46%
3.0	0.991	0.009	11.8%	18.97%
4.0	0.743	0.257	9.10%	14.23%
5.0	0.594	0.406	7.48%	11.38%
6.0	0.495	0.505	6.40%	9.49%
7.0	0.425	0.575	5.63%	8.13%

OPTIMAL PORTFOLIOS – LEVERAGE

SUMMARY

► Solve the optimal asset allocation problem for a given risky portfolio and a risk-free asset