Contextual Bandits

Subrahmanya Swamy Peruru

News article Recommendation systems

- Articles arms
- Like / Dislike Reward
- User State

Different users have different preferences for articles

Multi-arm Bandits – One state

Arms /
Articles

Each arm has only one expected reward associated with it

Arms / Articles

Users / States

X

y

4

• Expected reward of an arm changes with user $\mu_a(x)$

• Expected reward of an arm changes with user $\mu_a(x)$

- Expected reward of an arm changes with user $\mu_a(x)$
- How to deal with it?

- Expected reward of an arm changes with user $\mu_a(x)$
- Treat each user as a separate bandit problem

- Expected reward of an arm changes with user $\mu_a(x)$
- Treat each user as a separate bandit problem
- Practically infeasible with millions of users!

Bandits + Unsupervised Learning

- Form user groups by clustering similar users together
- Solve a separate bandit problem for each cluster

Bandits + Supervised Learning

Bandits + Supervised Learning

User (state) represented by features such as age, income $\overline{x} = (x_1, x_2)$

Bandits + Supervised Learning

- User (state) represented by features such as age, income $\overline{x} = (x_1, x_2)$
- Model the expected reward for user \bar{x} for pulling arm a as $\mu_a(\bar{x}) = \theta_1^a x_1 + \theta_2^a x_2$

Contextual (Linear) Bandits

- Users (state) represented by features such as age, gender
 - State feature vector: $\bar{x} = (x_1, x_2)^T$ Eg: (50, 1), (25, 0), (80, 1)
- Each article (arm) has a different expected reward associated with each user (state)
 - The expected reward of an arm is characterized by **unknown** $\theta^a = (\theta_1^a, \theta_2^a)^T$
 - State-specific expected reward: $\mu_a(\bar{x}) = \theta_1^a x_1 + \theta_2^a x_2$ (Linear Bandits)
- The reward for playing arm a_t under state $\bar{x_t}$ is $R_t = \mu_{a_t}(\bar{x_t}) + \epsilon_t$, where ϵ_t is independent mean-zero noise.
- If T arbitrary users visit our website sequentially, How to maximize the total reward $\sum_{t=1}^{T} R_t$?

Multi-arm Bandits: Parameter Estimation

- Explore each arm N times and
- Estimate the mean parameters based on sample rewards

One-state Multi-arm Bandits

$$\mu(a) = 2$$
 Unknown parameter

Sample reward: $R_t = \mu(a) + noise$

Rewards from 3 rounds of exploration

$$\mu(a) \approx R_1 = 2.7$$

 $\mu(a) \approx R_2 = 1.6$
 $\mu(a) \approx R_3 = 2.1$

Best estimate:
$$\hat{\mu}(a) = \arg\min_{x} (R_1 - x)^2 + (R_2 - x)^2 + (R_3 - x)^2$$

Optimal solution:
$$\hat{\mu}(a) = \overline{\mu(a)} = \frac{R_1 + R_2 + R_3}{3}$$

Linear Bandits – Parameter Estimation

Unknown parameter: (θ_1^a, θ_2^a)

Sample reward: $R_t = \mu_a(x) + noise$ = $\theta_1^a x_1 + \theta_2^a x_2 + noise$

Exploration:

3 users with features: (50, 1), (25, 4), (80, 7)

Observed rewards: 0.7, 0.4, 0.5

$$R_1 = 0.7 \approx \theta_a^1 50 + \theta_a^2 1$$

 $R_2 = 0.4 \approx \theta_a^1 25 + \theta_a^2 4$
 $R_3 = 0.5 \approx \theta_a^1 80 + \theta_a^2 7$

Best estimate:
$$\widehat{\theta^a} = \arg\min_{(\theta_1^a, \theta_2^a)} \frac{(0.7 - \theta_a^1 \, 50 + \theta_a^2 \, 1)^2 + }{(0.4 - \theta_a^1 \, 25 + \theta_a^2 \, 4)^2 + }$$

$$\frac{(0.7 - \theta_a^1 \, 50 + \theta_a^2 \, 1)^2 + }{(0.5 - \theta_a^1 \, 80 + \theta_a^2 \, 7)^2}$$

Optimal Sol (with Regularizer):
$$\widehat{\theta^a} = \left(D_a^T D_a + I_d\right)^{-1} D_a^T b_a$$

$$D_a \theta^a = b_a$$

$$\begin{bmatrix} 50 & 1 \\ 25 & 4 \\ 80 & 7 \end{bmatrix} \begin{bmatrix} \theta_a^1 \\ \theta_a^2 \end{bmatrix} = \begin{bmatrix} 0.7 \\ 0.4 \\ 0.5 \end{bmatrix}$$

ETC algorithm for Linear Bandits

- Explore each arm N times
- Based on the history $\{(\bar{x_t} \ a_t, R_t)\}_{t=1}^{NK}$, estimate the parameters for all $a \in \mathcal{A}$ using Ridge regression.
 - $\widehat{\theta}^{a} = \left(D_{a}^{T} D_{a} + I_{d}\right)^{-1} D_{a}^{T} b_{a}$
 - D_a is $N \times d$ context matrix whose rows represent user feature vectors
 - b_a is $N \times 1$ reward vector with rewards obtained during N exploration rounds

•
$$D_a = \begin{bmatrix} x_1^1 & x_2^1 \\ x_1^2 & x_2^2 \\ x_1^3 & x_2^3 \end{bmatrix}$$
 feature dimension $d=2$, arm a played $N=3$ times

• At any round t > NK, play the arm $a_t = \arg\max_{a} x_t^T \widehat{\theta^a}$

ϵ —greedy for Linear Bandits

• Explore each arm for d rounds

• Estimate the θ^a parameters for all $a \in \mathcal{A}$ using Ridge regression.

- At any round t > Kd, if the user has features x_t
 - With probability 1ϵ : Play the arm $a_t = \arg \max_{a} x_t^T \widehat{\theta}^a$
 - With probability ϵ : Play any arm at random

LinUCB (UCB for Linear Bandits)

• Explore each arm for d rounds

• At time t, based on the history $\{(\bar{x_s}, a_s, R_s)\}_{s=1}^{t-1}$, estimate the θ^a parameters for all $a \in \mathcal{A}$ using Ridge regression.

• Pick the arm $a_t = \arg\max_a x_t^T \widehat{\theta^a} + \sqrt{x_t^T (D_a^T D_a + I_d)^{-1} x_t}$

Exploit

Explore