Control Aerobalancín

Daniel Ramírez Juan Camilo Olaya Joan Pinilla

IDENTIFICACIÓN

PROBLEMA DE CONTROL

"Hacer un control robusto para estabilizar la planta en valores lejanos del punto de operación"

MODELO DE LA PLANTA

$$I\ddot{ heta} = eta \dot{ heta} + FL + C \sin heta$$

$$= \frac{\frac{dm}{I}}{s^2 + s \frac{eta}{I} + g(-dc \cdot mc + dm \cdot mm + db \cdot mb) \frac{\cos(30)}{I}}$$

IDENTIFICACIÓN

Experimento para calcular K

```
while (PWM<100) {
    analogWrite(In1, PWM*255/100);
    Serial.print(PWM);
    Serial.print(",");
    sensor = analogRead(sensorPin);
    sensor = map(sensor, 0, 1023, 0, 360);
    Serial.println(sensor-130);
    delay(1000);
    PWM+=1;
```

Cálculo de K

K = 0.0008776

Prueba de fricción

Obtención de la exponencial

$$y = 105.2254188e^{(-0.384540871 \cdot t)}$$

Modelo de simulación

Iteración de I y validación

Función de transferencia para diseño

$$G = \frac{dm/I}{s^2 + s * \frac{beta}{I} + g * (-dc * mc + dm * mm + db * mb) * cos(30)}$$

$$tf_polo_real = \frac{K}{(1/polo_real)*s+1}$$

$$TF = \frac{360}{2*pi} *G*tf_polo_real$$

Comparación identificación en freq. y simulación

Comparación del sistema no lineal y FT lineal

ANÀLISIS

Incertidumbres

PESOS: Se realizaron los pesajes varias veces para reducir el error aleatorio.

DISTANCIAS: Tienen muy poca incertidumbre porque se hallaron del plano.

FRICCIÓN: Tiene incertidumbre de repetibilidad y de procedimiento.

INERCIA: No se modeló completamente ni exactamente el brazo. Pero se compensa con la validación.

Retos de diseño

Como la inercia se relaciona con la fricción, aumenta la incertidumbre de esta.

De la inercia depende la velocidad del sistema.

Posibles mejoras

Favorecer la repetibilidad de experimentos como el de la fricción y la fuerza.

Tener mejores instrumentos de medida para poder modelar más precisamente y disminuir la incertidumbre de la inercia.

CONTROL

PROBLEMA DE CONTROL

Se requiere que la planta sea lo más rápida y robusta posible.

- Sobrepico < 15%
- Tiempo de establecimiento tan bajo como sea posible.
- Aumentar márgenes de fase lo máximo posible.

DISEÑO CONTROLADOR PID

El controlador PID se diseñó por tanteo y con ayuda de las herramientas PID Tuner de Matlab.

Se obtuvieron los valores de:

$$KP = 0.5$$

$$KI = 0.7$$

$$KD = 0.02$$

$$N = 2$$

$$P + I \cdot T_s \frac{1}{z - 1} + D \frac{N}{1 + N \cdot T_s \frac{1}{z - 1}}$$

Se eligió una red de adelanto debido a que era necesario aumentar el margen de fase.

Mayor velocidad y robustez

$$\phi_m = 74.7$$

$$b = 55.62$$

$$T_2 = 0.0130$$

$$\phi_m = 45 - m_{factual} + 5$$

$$b = \frac{1 + \sin\frac{\phi_m \cdot \pi}{180}}{1 - \sin\frac{\phi_m \cdot \pi}{180}}$$

$$T_2 = \frac{1}{\sqrt{(b) \cdot \omega_{2g}}}$$

IMPLEMENTACIÓN

Discretización

Por tanto, la función de control será la siguiente

$$C = \frac{(b \cdot T_2) \cdot s + 1}{(T_2) \cdot s + 1} \cdot \text{PID}$$

Para discretizar la función, utilizamos aproximación de Tustin

$$s = \frac{1}{T} \cdot ln(z) \approx \frac{2z+1}{Tz+1}$$

Discretización

Y por último igualamos en controlador a:

$$C(z) = \frac{U(z)}{E(z)}$$

Lo que nos da como ecuación final para controlar en Arduino

$$U = \frac{(T + 2 \cdot b \cdot T_2)\text{PID} + (T - 2 \cdot b \cdot T_2)\text{PIDp} - (T - 2 \cdot T_2)U_p}{T + 2T_2}$$

Comparación de resultados (a 30 deg)

ANÁLISIS Desempeño en seguimiento (a 80 deg)

ANÁLISIS Desempeño en seguimiento (a 100 deg)

Rechazo a perturbaciones (a 100 deg)

Análisis y conclusiones

Pruebas de seguimiento: Oscila menos que la simulación pero tiene error de posición pequeño. Para el ángulo objetivo menos oscilaciones

Rechazo a perturbaciones: Fallos en repetibilidad de las perturbaciones pero buen desempeño.

La planta tiene buen desempeño siguiendo referencias y soporta perturbaciones tipo impulso.