For problems 1, 2 and 3, use finite-difference method to solve for u(x,y) where $\nabla^2 u = 0$.

Problem 1

- (a) Plot u (x,2) versus x. (Take $h_x = h_y = 0.1.$)
- (b) u(2.5, 2) = _____.

Problem 2

- (a) Plot u (2,y) versus y. (Take $h_x = h_y = 0.1.$)
- (b) u(2, 1) = _____.

Problem 3

- (a) Plot u (x,y) using contourf with color bars. (Take $h_x = h_y = 0.1$.)
- (b) u(2.5, 2) = _____.

CAUTION: The right edge has a derivative boundary condition!

For problems 4,5 and 6, use finite-difference method to solve for u(x,y,t). This time:

 $\partial u/\partial t = c \nabla^2 u$, where $c = k / (\rho c_p)$

Material are aluminum, where $c = 56.4 \times 10^{-6} \text{ m}^2/\text{s}$.

Take $T_{initial} = 200^{\circ}C$ everywhere in domain, and solve until $T_{max} < 125^{\circ}C$ before answering following questions. Also take r = 0.1.

Problem 4

- (a) $T_{max} < 125^{\circ}C$ when $t = ____s$
- (b) Plot u(x,2) versus x. (Take $h_x = h_y = 0.1$.)
- (c) u(2.5, 2) = _____.

Problem 5

- (a) $T_{max} < 125$ °C when $t = ____s$.
- (b) Plot u(2,y) versus y. (Take $h_x = h_y = 0.1$.)
- (c) u(2, 1) = _____.

Problem 6

- (a) $T_{max} < 125^{\circ}C$ when $t = _____s$.
- (b) Plot u(x,y) using contourf with color bars. (Take $h_x = h_y = 0.1$.)
- (c) u(2.5, 2) =_____.

CAUTION: The right edge has a derivative boundary condition!

