Get in small groups (about 4 students maximum) and work out these problems on the whiteboard. Ask one of the teaching assistants for help if your group gets stuck. You do **not** need to turn anything in. Since this worksheet contains a lot of problems, a good strategy would be to first skim the worksheet and then discuss and solve the problems which you think are difficult.

- 1. Let $A = \{cat, dog, \{bear\}, fox\}$. Determine whether each of the following are true or false, and explain why.
 - (a) $\{bear\} \in A$
 - (b) $cat \in A$
 - (c) $\emptyset \in A$
 - (d) $\{cat, dog, fox\} \subset A$
 - (e) $\{cat, dog, bear\} \subset A$
 - (f) $\{bear\} \subset A$
 - (g) $\{cat, dog, fox\} \in A$
 - (h) $cat \subset A$
 - (i) $\{\{bear\}\}\subset A$
- 2. Let A, B, and C be sets. Show that:
 - (a) $(A \cup B) \subseteq (A \cup B \cup C)$
 - (b) $(A \cap B \cap C) \subseteq (A \cap B)$
 - (c) $(A-B)-C\subseteq A-C$
 - (d) $(A C) \cap (C B) = \emptyset$
 - (e) $(B-A) \cup (C-A) = (B \cup C) A$
- 3. Show that if A is a subset of the universal set U, then:
 - (a) $A \oplus A = \emptyset$
 - (b) $A \oplus \emptyset = A$
 - (c) $A \oplus U = \bar{A}$
 - (d) $A \oplus \bar{A} = U$
- 4. Prove that $\{(-8)^n \mid n \in \mathbb{Z}\} \subseteq \{(-2)^n \mid n \in \mathbb{Z}\}, \text{ but } \{(-8)^n \mid n \in \mathbb{Z}\} \neq \{(-2)^n \mid n \in \mathbb{Z}\}$

- 5. Prove the following if A, B, C are sets.
 - (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, using set builder notation

(b)
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

- 6. Uncountable/countable sets
 - (a) Prove directly from the definition of countable/uncountable that the set of natural numbers that are multiples of 3 or multiples of 4 is countable.
 - (b) Prove that the set of real numbers in the interval [4, 5] is uncountable.
 - (c) Suppose A and B are both countable sets. Prove whether the Cartesian product $A \times B$ is countable or uncountable.
- 7. Show that if A, B, C, and D are sets with |A| = |B| and |C| = |D|, then $|A \times C| = |B \times D|$.
- 8. Show that if A and B are sets and $A \subset B$ then $|A| \leq |B|$.
- 9. Prove or disprove each of these statements about the floor and ceiling functions
 - (a) $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$ for all real numbers x and y.
 - (b) $|\sqrt{\lceil x \rceil}| = |\sqrt{x}|$ for all positive real numbers x.
- 10. Consider the following functions f(n), where the domain for n is the set of integers, \mathbb{Z} . Fill in the table regarding whether or not each function is one-to-one and/or onto.

f(n)	One-to-One?	Onto?
$f(n) = n^2$		
f(n) = n + 3		
$f(n) = \lfloor \sqrt{n} \rfloor$		
$f(n) = \begin{cases} n - 1 & n \text{ odd} \\ n + 1 & n \text{ even} \end{cases}$		
n+1 n even		

- 11. Give an example of a function from \mathbb{N} to \mathbb{N} that is:
 - (a) one-to-one, but not onto
 - (b) onto, but not one-to-one
 - (c) one-to-one and onto
 - (d) neither one-to-one nor onto
- 12. Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} .

(a)
$$f(x) = -3x + 4$$

(b)
$$f(x) = x^2 + 1$$

(c)
$$f(x) = -3x^2 + 7$$

(d)
$$f(x) = x^5 + 1$$