Problemas de Análisis Funcional Avanzado

Tema 2: Espacios localmente convexos. Teorema de Krein-Milman

David Cabezas Berrido

Ejercicio 1:

Sea X un espacio vectorial sobre \mathbb{C} , X' su dual algebraico y $X_{\mathbb{R}}$, $(X')_{\mathbb{R}}$ los correspondientes espacios reales subyacentes. Prueba que la aplicación $f \mapsto \operatorname{Re} f$ es una biyección \mathbb{R} -lineal de $(X')_{\mathbb{R}}$ en $(X_{\mathbb{R}})'$.

Solución:

Si $f \in (X')_{\mathbb{R}}$, en particular $f \in X'$ (son idénticos como conjuntos), luego $f(\lambda x + y) = \lambda f(x) + f(y)$ para cada $\lambda \in \mathbb{C}$ y $x, y \in X$. Podemos escribir f como $f = \operatorname{Re} f + i \operatorname{Im} f$, de modo que $\operatorname{Re} f(\lambda x + y) + i \operatorname{Im} f(\lambda x + y) = \lambda (\operatorname{Re} f(x) + i \operatorname{Im} f(x)) + \operatorname{Re} f(y) + i \operatorname{Im} f(y)$ para cada $\lambda \in \mathbb{C}$ y $x, y \in X$. En el caso de que λ sea real tendremos $\operatorname{Re} f(\lambda x + y) = \lambda \operatorname{Re} f(x) + \operatorname{Re} f(y)$, lo que demuestra $(\lambda \in \mathbb{R} \text{ y } x, y \in X \text{ son arbitrarios})$ que $\operatorname{Re} f \in (X_{\mathbb{R}})'$.

Dado $g \in (X_{\mathbb{R}})'$, tomando f(x) := g(x) - ig(ix) para cada $x \in X$ se tiene

$$f(\lambda x + y) = g(\lambda x + y) - ig(i\lambda x + iy) = \lambda g(x) + g(y) - i(\lambda g(ix) + g(iy))$$
$$= \lambda g(x) - \lambda ig(ix) + g(y) - ig(iy) = \lambda f(x) + f(y)$$

para $x, y \in X$ y $\lambda \in \mathbb{R}$. Esto demuestra que f es \mathbb{R} -lineal, pero además

$$f(ix) = g(ix) - ig(-x) = i(-i)g(ix) + ig(x) = i(g(x) - ig(ix)) = if(x)$$

para cada $x \in X$. Concluimos que f es (\mathbb{C} -)lineal y por tanto $f \in X' = (X')_{\mathbb{R}}$ (como conjuntos). Como es claro que $\operatorname{Re} f = g$, deducimos que la aplicación es sobreyectiva.

La identidad Im f(x) = Re(-if(x)) = -Ref(ix) sugiere que f viene univocamente determinado por su parte real, luego en realidad tenemos una biyección.

Finalmente, es claro que la función parte real es \mathbb{R} -lineal.

Ejercicio 2:

Sean X e Y espacios vectoriales y $g:X\to Y$ una aplicación. Prueba que las siguientes afirmaciones son equivalentes:

- i) g es afín.
- ii) Existe una aplicación \mathbb{R} -lineal $f: X \to Y$ y un vector $b \in Y$ tales que g(x) = f(x) + b para todo $x \in X$.

Solución:

Supongamos primero (ii). Dados $x, y \in X$ y $t \in [0, 1]$, tenemos

$$g((1-t)x + ty) = f((1-t)x + ty) + b = (1-t)f(x) + tf(y) + (1-t)b + tb$$
$$= (1-t)(f(x) + b) + t(f(y) + b) = (1-t)g(x) + tg(y),$$

lo que demuestra que g es afín.

Suponiendo (i), tomamos $f: X \to Y$ dada por f(x) = g(x) - g(0). Sólo necesitamos probar que f es \mathbb{R} -lineal. Primero comprobamos que f preserva el producto por escalares de [0,1], sean $x \in X$ y $t \in [0,1]$:

$$f(tx) = g(tx) - g(0) = g(tx + (1-t)0) - g(0) = tg(x) + (1-t)g(0) - g(0) = tg(x) - tg(0) = tf(x).$$

Ahora vemos que f separa sumas. Si $x, y \in X$, tenemos

$$f(x+y) = g\left(\frac{2x+2y}{2}\right) - g(0) = \frac{1}{2}g(2x) + \frac{1}{2}g(2y) - \frac{1}{2}g(0) - \frac{1}{2}g(0)$$
$$= \frac{1}{2}f(2x) + \frac{1}{2}f(2y) = f(x) + f(y),$$

1

donde hemos aplicado lo anterior para cancelar los $\frac{1}{2}$ de fuera con los 2 de dentro de f.

Utilizando la aditividad un número arbitrario de veces podemos concluir que f(nx) = nf(x) para cada $n \in \mathbb{N} \cup \{0\}$ y $x \in X$. Todo real positivo $r \in \mathbb{R}^+$ se puede escribir como r = n + t con $n \in \mathbb{N} \cup \{0\}$ y $t \in [0, 1]$. Por tanto,

$$f(rx) = f(nx + tx) = f(nx) + f(tx) = nf(x) + tf(x) = rf(x),$$

lo que demuestra que f preserva homotecias de razón positiva. Finalmente, la igualdad

$$0 = f(0) = f(x + (-x)) = f(x) + f(-x)$$

lleva a f(-x) = -f(x) para todo $x \in X$. Concluimos así que f es \mathbb{R} -lineal.

Ejercicio 3:

Sea X un espacio vectorial, n un natural, B_j con subconjunto convexo de X para todo $j \in \{1, ..., n\}$ y $B = \bigcup_{j=1}^{n} B_j$. Prueba que

$$co(B) = \left\{ \sum_{j=1}^{n} t_j x_j : t_j \in [0,1], \ x_j \in B_j \ \forall j = 1, \dots, n, \ \sum_{j=1}^{n} t_j = 1 \right\}.$$

Observa como consecuencia que si b_1, \ldots, b_n son elementos de X,

$$co(\{b_1,\ldots,b_n\}) = \left\{ \sum_{j=1}^n t_j b_j : t_j \in [0,1] \ \forall j=1,\ldots,n, \ \sum_{j=1}^n t_j = 1 \right\}.$$

Solución:

La segunda igualdad es un caso particular en la que cada B_j se reduce a un punto, por lo que basta con demostrar la primera. Además, la inclusión hacia la derecha (\supset) es trivial por la Proposición 3.1.1, ya que cada B_j está contenido en B.

Dado $x \in co(B)$, podemos escribir $x = \sum_{i=1}^{m} \lambda_i y_i$ con $m \in \mathbb{N}$, $\lambda_i \in [0,1]$, $y_i \in B$ para cada $i = 1, \ldots, m$ (Proposición 3.1.1) y $\sum_{i=1}^{m} \lambda_i = 1$. Nuestro objetivo es escribir x con n sumandos cada uno en un conjunto B_i y manteniendo la misma condición sobre los pesos (deben ser no negativos y sumar 1).

Supongamos que hubiese dos elementos $y_i, y_{i'} \in B$ con $i, i' \in \{1, ..., m\}$, $i \neq i'$, y $y_i, y_{i'} \in B_j$ para algún j = 1, ..., n. Reordenando y renombrando si es preciso, podemos suponer que son $y_{m-1}, y_m \in B_j$. Por la convexidad de B_j tenemos

$$y := \frac{\lambda_{m-1}}{\lambda_{m-1} + \lambda_m} y_{m-1} + \frac{\lambda_m}{\lambda_{m-1} + \lambda_m} y_m \in B_j \subset B,$$

y podemos escribir

$$x = \sum_{i=1}^{m-2} \lambda_i y_i + (\lambda_{m-1} + \lambda_m) y.$$

Hemos expresado x utilizando un sumando menos y es obvio que se sigue cumpliendo la condición sobre los nuevos puntos y pesos.

Podemos repetir este proceso siempre que existan dos índices distintos tales que los puntos correspondientes están en un mismo B_j , de modo que en un número finito de pasos llegaríamos a expresar x como una combinación convexa en la que cada y_i pertenece a un único B_i , lo que forzaría a que esa combinación tuviese como máximo n sumandos. En caso de haber menos, podríamos añadir nuevos elementos a la combinación otorgándoles peso 0, de forma que todos los B_j tengan (como mínimo) un representante.

Ejercicio 4:

Sea X un espacio vectorial y $\mathcal B$ una familia no vacía de subconjuntos absorbentes y equilibrados de X de modo que

- i) $\forall U, V \in \mathcal{B}, \exists W \in \mathcal{B} : W \subset U \cap V.$
- ii) $\forall U \in \mathcal{B}, \exists V \in \mathcal{B} : V + V \subset U.$

Prueba que existe una única topología vectorial en X con respecto a la cual \mathcal{B} es una base de entornos de cero.

Solución:

Definimos la topología \mathcal{T} como sigue. Un conjunto $A \subset X$ será abierto cuando para cada $a \in A$ exista $U \in \mathcal{B}$ tal que $a + U \subset A$. Es claro que la topología \mathcal{T} contiene al vacío, al total y que es estable por uniones arbitrarias. Si $A, B \in \mathcal{T}$ y $x \in A \cap B$, sabemos que existen $U, V \in \mathcal{B}$ cumpliendo $x + U \subset A$ y $x + V \subset B$. La propiedad (i) nos da un $W \in \mathcal{B}$ tal que $W \subset U \cap V$, luego $x + W \subset A \cap B$ y $A \cap B \in \mathcal{T}$. Probamos así que \mathcal{T} es estable para intersecciones finitas y concluimos que es una topología.

Primero comprobaremos que efectivamente los elementos de \mathcal{B} son entornos de cero en dicha topología. Fijamos $U \in \mathcal{B}$ y bastará comprobar que el conjunto $A = \{x \in X : \exists V \in \mathcal{B}, \ x+V \subset U\}$ es abierto, puesto que $0 \in A \subset U$. Sea $x \in A$, existe $V \in \mathcal{B}$ tal que $x+V \subset U$. Por (ii) podemos tomar $W \in \mathcal{B}$ tal que $W+W \subset V$, y la inclusión $(x+W)+W \subset U$ asegura que $x+W \subset A$, luego $A \in \mathcal{T}$. Es claro que cualquier entorno de cero contiene un elemento de \mathcal{B} , luego \mathcal{B} es base de entornos de cero para \mathcal{T} . Además, es obvio que la definición de \mathcal{T} es la mínima para que \mathcal{B} sea base de entornos de cero, lo que garantiza la unicidad.

Veamos ahora que \mathcal{T} es una topología vectorial. Fijamos un punto $(x,y) \in X \times X$. Cualquier entorno de x+y contiene un conjunto de la forma x+y+U con $U \in \mathcal{B}$, tomamos $V \in \mathcal{B}$ tal que $V+V \subset U$, que existe por (ii). Los conjuntos x+V e y+V son entornos de x e y respectivamente, y además $(x+V)+(y+V)\subset x+y+U$. Esto prueba la continuidad de la suma.

Para el producto por escalares fijamos un punto $(\lambda, x) \in \mathbb{K} \times X$. Cualquier entorno del punto λx contendrá un conjunto de la forma $\lambda x + U$ con $U \in \mathcal{B}$. Asumiré que he encontrado $V \in \mathcal{B}$ y $\varepsilon > 0$ tales que $(\lambda + \varepsilon \mathbb{D})(x + V) \subset \lambda x + U$ y veré qué tienen que cumplir. En caso de existir dichos V y ε quedará probada la continuidad del producto por escalares y concluiremos la demostración.

$$(\lambda + \varepsilon \mathbb{D})(x + V) \subset \lambda x + \lambda V + \varepsilon \mathbb{D} x + \varepsilon \mathbb{D} V$$

luego necesito $\lambda V + \varepsilon \mathbb{D} x + \varepsilon \mathbb{D} V \subset U$. Utilizando (ii) inductivamente puedo conseguir $V \in \mathcal{B}$ cumpliendo $nV + V + V \subset \sum_{i=1}^{n+2} V \subset U$ para $n \geq |\lambda|$. Por ser V equilibrado tengo

$$\lambda V = \lambda \mathbb{D}V = |\lambda| \mathbb{D}V \subset n \mathbb{D}V = nV.$$

Por otra parte, si tomo $\varepsilon \leq 1$ y uso que V es equilibrado obtengo $\varepsilon \mathbb{D} V \subset \mathbb{D} V = V$. Sólo falta ver si $\varepsilon \mathbb{D} x \subset V$. Como V es absorbente tengo $r \in \mathbb{R}^+$ tal que $rx \in V$, y siempre que $\varepsilon \leq r$ tendremos

$$\varepsilon \mathbb{D} x \subset r \mathbb{D} x = \mathbb{D} r x \subset \mathbb{D} V = V.$$

Ejercicio 5:

Sea $\varphi: X \to \mathbb{R}$ una pseudonorma. Probar

- a) $\varphi(0) = 0$.
- b) $\varphi(x) \ge 0$ para todo $x \in X$.
- c) Toda seminorma es pseudonorma.
- d) Existe un única topología vectorial τ en X con respecto a la cual la familia $\mathcal{B} = \{U_{\varepsilon} : \varepsilon \in \mathbb{R}^+\}$ es base de entornos de cero, donde $U_{\varepsilon} = \{x \in X : \varphi(x) < \varepsilon\}$ para cada $\varepsilon \in \mathbb{R}^+$.

Solución:

- a) Para cada $n \in \mathbb{N}$, se tiene $\varphi(0) = \varphi(\frac{1}{n}0)$. Por tanto, $\varphi(0) = \lim_{n \to \infty} \varphi(\frac{1}{n}0) = 0$, donde hemos usado (i) con x = 0.
- b) Tomando $\alpha = -1$ en (iii) obtenemos $\varphi(-x) \leq \varphi(x)$, pero haciendo lo mismo para -x llegamos a $\varphi(x) = \varphi((-1)(-x)) \leq \varphi(-x)$, luego $\varphi(x) = \varphi(-x)$ para cada $x \in X$. De (a) y (ii) deducimos entonces que $0 = \varphi(0) = \varphi(x x) \leq \varphi(x) + \varphi(-x) = 2\varphi(x)$ para cada $x \in X$.
- c) Supongamos ahora que ψ es una seminorma. La propiedad (ii) ya la cumple una seminorma. La propiedad $\psi(\frac{1}{n} \cdot x) = \frac{1}{n}\psi(x)$ deja claro que $\psi(\frac{1}{n} \cdot x)$ converge a 0 cuando n tiende a infinito, obteniéndo así (i). Para (iii) usamos simplemente $\psi(\alpha x) = |\alpha|\psi(x) \leq \psi(x)$, ya que $|\alpha| \leq 1$. Por tanto, ψ es una pseudonorma.
- d) En vista de lo probado en el Ejercicio 4, basta comprobar que la familia $\mathcal{B} = \{U_{\varepsilon} : \varepsilon \in \mathbb{R}^+\}$ está formada por subconjuntos absorbentes y equilibrados de X que cumplen
 - 1) $\forall U, V \in \mathcal{B}, \exists W \in \mathcal{B} : W \subset U \cap V.$
 - 2) $\forall U \in \mathcal{B}, \exists V \in \mathcal{B} : V + V \subset U.$

Empezamos probando que son equilibrados. Dado $x \in U_{\varepsilon} \in \mathcal{B}$ y $\lambda \in \mathbb{D}$, tenemos $\varphi(\lambda x) \leq \varphi(x) < \varepsilon$, luego $\lambda x \in U_{\varepsilon}$. Por tanto, $\mathbb{D}U_{\varepsilon} \subset U_{\varepsilon}$.

Para ver que son absorbentes, sea $U_{\varepsilon} \in \mathcal{B}$. Dado cualquier $x \in X$, la condición (i) garantiza la existencia de $n \in \mathbb{N}$ tal que $\varphi(\frac{1}{n}x) < \varepsilon$, luego $\frac{1}{n}x \in U_{\varepsilon}$ y $x \in nU_{\varepsilon}$.

Dados ahora $U_{\varepsilon}, U_{\delta} \in \mathcal{B}$, tomando $\gamma = \min\{\varepsilon, \delta\} > 0$ es claro que $U_{\gamma} \subset U_{\varepsilon} \cap U_{\delta}$, lo que prueba (1).

Sólo falta probar (2). Dado $U_{\varepsilon} \in \mathcal{B}$, tomamos $\delta = \varepsilon/2$. Para cada $x, y \in U_{\delta}$ tenemos $\varphi(x), \varphi(y) < \delta$, y la propiedad (ii) nos dice que $\varphi(x+y) \leq \varphi(x) + \varphi(y) < \delta + \delta = \varepsilon$. Por tanto, $x+y \in U_{\varepsilon}$, y la arbitrariedad de x e y nos permite deducir que $U_{\delta} \subset U_{\varepsilon}$.

Ejercicio 6:

Sea $\{\varphi_{\lambda} : \lambda \in \Lambda\}$ una familia no vacía de pseudonormas en un espacio vectorial X. Para cada $\varepsilon \in \mathbb{R}^+$ y $F \in \mathcal{P}_f(\Lambda)$, sea $U_{\varepsilon,F} = \{x \in X : \varphi_{\lambda}(x) < \varepsilon \ \forall \lambda \in F\}$. Prueba que existe una única topología vectorial τ en X tal que la familia $\mathcal{B} = \{U_{\varepsilon,F} : \varepsilon \in \mathbb{R}^+, F \in \mathcal{P}_f(\Lambda)\}$.

Solución:

De nuevo en vista de lo probado en el Ejercicio 4, basta comprobar que la familia \mathcal{B} está formada por subconjuntos absorbentes y equilibrados de X que cumplen

- 1) $\forall U, V \in \mathcal{B}, \exists W \in \mathcal{B} : W \subset U \cap V.$
- 2) $\forall U \in \mathcal{B}, \exists V \in \mathcal{B} : V + V \subset U.$

Para cada $\varepsilon \in \mathbb{R}^+$ y $F \in \mathcal{P}_f(\Lambda)$, es claro que se tiene

$$U_{\varepsilon,F} = \bigcap_{\lambda \in F} U_{\varepsilon,\lambda} = \bigcap_{\lambda \in F} \{x \in X : \varphi_{\lambda}(x) < \varepsilon\}.$$

El Ejercicio 5d asegura que para cada $\lambda \in \Lambda$, los conjuntos $U_{\varepsilon,\lambda}$ con $\varepsilon > 0$ cumplen las condiciones requeridas. Nuestra familia \mathcal{B} está formada por intersecciones finitas de subconjuntos de esta forma. Por tanto, basta comprobar que las propiedades absorbente y equilibrado se preservan por intersecciones finitas. Podemos suponer intersecciones de dos elementos, ya que un razonamiento inductivo muy sencillo extiende el razonamiento a intersecciones de cualquier número de subconjuntos.

Si A y B son dos conjuntos equilibrados, tenemos $\mathbb{D}(A \cap B) \subset \mathbb{D}A \cap \mathbb{D}B = A \cap B$. En efecto, si $\alpha \in \mathbb{D}$ y $a \in A \cap B$, se tiene $\alpha a \in \mathbb{D}A$ y $\alpha a \in \mathbb{D}B$. Esto prueba que la intersección de equilibrados lo sigue siendo.

Si A y B son dos conjuntos absorbentes y equilibrados, para cada $x \in X$ tenemos $rx \in A$ y $sx \in B$ para algunos $r, s \in \mathbb{R}^+$. Sea $\rho = \min\{r, s\}$, tenemos

$$\rho x = \frac{\rho}{r} rx \in \mathbb{D}A = A,$$

$$\rho x = \frac{\rho}{s} sx \in \mathbb{D}B = B,$$

luego $\rho x \in A \cap B$. Por tanto, $A \cap B$ es absorbente.

Dados $\varepsilon, \delta \in \mathbb{R}^+$ y $F, G \in \mathcal{P}_f(\Lambda)$, tomando $\gamma = \min\{\varepsilon, \delta\}$ y $H = G \cup F$, se comprueba rutinariamente que $U_{\gamma, H} \subset U_{\varepsilon, F} \cap U_{\delta, G}$. Por tanto, se satisface (1).

Finalmente, para cada $\varepsilon \in \mathbb{R}^+$ y $F \in \mathcal{P}_f(\Lambda)$, se tiene que $U_{\varepsilon/2,F} + U_{\varepsilon/2,F} \subset U_{\varepsilon,F}$. En efecto, para cada $\lambda \in F$, $x, y \in U_{\varepsilon/2,F}$, tenemos $\varphi_{\lambda}(x+y) \leq \varphi_{\lambda}(x) + \varphi_{\lambda}(y) < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Obtenemos así (2).

Ejercicio 7:

Sea n un natural, $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ espacios topológicos y, para todo $j \in \{1, \ldots, n\}, f_j : X_j \to Y_j$ una aplicación. Consideremos además la aplicación $f : X_1 \times \cdots \times X_n \to Y_1 \times \cdots \times Y_n$ dada por

$$f(x_1, ..., x_n) = (f_1(x_1), ..., f_n(x_n)), \forall (x_1, ..., x_n) \in X_1, ..., X_n.$$

Prueba que f es continua (con respecto a las topologías producto de los espacios $X_1 \times \cdots \times X_n$ e $Y_1 \times \cdots \times Y_n$) si, y solo si, f_j es continua para todo $j \in \{1, \ldots, n\}$.

Solución:

Una implicación es clara. Como la topología producto hace continuas a las proyecciones, si f es continua está claro que cada $f_j = \pi_j \circ f$ es continua para cada $j = 1, \ldots, n$. Donde $\pi_j : Y_1 \times \cdots \times Y_n \to Y_j$ denota la proyección natural sobre Y_j para cada j.

Para la otra implicación, supongamos que cada f_j (j = 1, ..., n) es continua. Tomemos un abierto A de $Y_1 \times \cdots \times Y_n$, que podemos suponer básico: $A = A_1 \times \cdots \times A_n$ con A_j abierto de Y_j para cada j = 1, ..., n. Nuestro objetivo es demostrar que $f^{-1}(A)$ es abierto en $X_1 \times \cdots \times X_n$.

Es claro que $f^{-1}(A) = f^{-1}(A_1 \times \cdots \times A_n) = f_1^{-1}(A_1) \times \cdots \times f_n^{-1}(A_n)$. Pero como cada f_j es continua por hipótesis, obtenemos que $f_j^{-1}(A_j)$ es abierto en X_j para cada $j \in \{1, \ldots, n\}$. Por tanto, $f^{-1}(A)$ es abierto en $X_1 \times \cdots \times X_n$ como producto de abiertos.