

AMENDMENTS TO THE CLAIMS

Claims 1-12 (Canceled)

Claim 13 (Currently Amended): An apparatus turbo decoder having a state metric, comprising:

a turbo decoder having a state metric, the turbo decoder including:

branch metric calculation means for calculating a branch metric by receiving symbols through an input buffer;

state metric calculation means for calculating a reverse state metric by using the calculated branch metric at said branch metric calculating means, storing the reverse state metric in a memory, calculating a forward state metric; and

log likelihood ratio calculation means or for calculating a log likelihood ratio result by receiving the forward state metric from said state metric calculation means and reading the reverse state metric saved at a memory in said state metric calculation means,

wherein the log likelihood ratio result L_k is calculated by using an equation

produced by computing a function $\sum_{m=0}^{2^v-1} (A_k^{1,m} + B_k^{s(m)}) - \sum_{m=0}^{2^v-1} (A_k^{0,m} + B_k^m)$ by the log likelihood ratio calculator, wherein m is a state of a trellis diagram; k is a stage; $s(m)$ is a function a number complemented a Most Significant Bit(MSB)of binary number of m ;

$\sum_{j=0}^1 A_k^j = A_k^0 E A_k^1 = \log_e(e^{A_k^0} + e^{A_k^1})$; j is a $(k-1)^{th}$ input for a

reverse state metric; $A_k^{1,m}$ is a k^{th} forward state metric with state m and input 1; $B_k^{s(m)}$ is a k^{th} reverse state metric with state $s(m)$; $A_k^{0,m}$ is a k^{th} forward state metric with state m and input 0 and B_k^m is a k^{th} reverse state metric with state m , and the log likelihood ratio is stored in a memory of the turbo decoder.

Claim 14 (Currently Amended): The ~~turbo-decoder apparatus~~ in recited as of claim 13, wherein said state metric calculation means includes:

reverse state metric calculation means for calculating a reverse state metric in case an input i is 0 according to states of the branch metric; and

forward state metric calculation means for calculating a forward state metric in case an input i is 0 or in case the input i is 1 according to states of the branch metric.

Claim 15 (Currently Amended): A ~~calculation method implemented to a turbo decoder, comprising steps of:~~

a) calculating a branch metric by receiving symbols;

b) calculating a reverse state metric in case an input i is 0 by using the calculated branch metric and saving the calculated reverse state metric in a memory;

c) calculating a forward state metric in case an input i is 0 or in case the input i is 1 by using the calculated branch metric;

d) calculating a log likelihood ratio by using the forward state metric and the reverse state metric; and

e) storing the log likelihood ratio,

wherein the log likelihood ratio L_k is produced by computing a function

~~calculated by using an equation~~ $E_{m=0}^{2^y-1} (A_k^{1,m} + B_k^{s(m)}) - E_{m=0}^{2^y-1} (A_k^{0,m} + B_k^m)$ ~~- by a first calculator,~~

wherein m is a state of a trellis diagram; $s(m)$ is a function provides a number

complemented a Most Significant Bit (MSB) of binary number of m ; $E_{j=0}^1$ is a function

defined as $E_{j=0}^1 A_k^j = A_k^0 E A_k^1 = \log_e(e^{A_k^0} + e^{A_k^1})$; j is a $(k-1)^{th}$ input for a reverse state metric; k

is a stage; $A_k^{1,m}$ is a k^{th} forward state metric with state m and input 1; $B_k^{s(m)}$ is a k^{th}

reverse state metric with state $s(m)$; $A_k^{0,m}$ is a k^{th} forward state metric with state m and input 0 and B_k^m is a k^{th} reverse state metric with state m .

Claim 16 (Currently Amended): The ~~calculation method as recited in~~ of claim 15, wherein the reverse state metric result B_k^m , which is k^{th} reverse state metric with state m , is produced by computing a function calculated by using an equation

$\sum_{j=0}^1 E(B_{k+1}^{F(j,m)} + D_{k+1}^{j,f(m)})$ by a second calculator, wherein m is a state of a trellis diagram; k is a stage; j is a $(k-1)^{th}$ input for a reverse state metric; $f(m)$ is the state of $(k+1)^{th}$ stage related to the state m of k^{th} stage; $F(j,m)$ is a function defined as $F(j,m)=f(m)$ for $j=0$ and $F(j,m) = s(f(m))$ for $j=1$; $s(m)$ is a function provides a number complemented for a Most Significant Bit (MSB) of binary number of m ; E is a function defined as

$\sum_{j=0}^1 E A_k^j = A_k^0 E A_k^1 = \log_e(e^{A_k^0} + e^{A_k^1})$; $B_{k+1}^{F(j,m)}$ is a $(k+1)^{th}$ reverse state metric with state $F(j,m)$

and $D_{k+1}^{j,f(m)}$ is $(k+1)^{th}$ branch metric with state m and $(k+1)^{th}$ input.

Claim 17 (Currently Amended): The ~~calculation method as recited in~~ of claim 15, wherein the forward state metric result A_k^m , which is k^{th} forward state metric with state m , is calculated by using an equation produced by computing a function

$\sum_{j=0}^1 E(D_k^{j,b(j,m)} + A_{k-1}^{b(j,m)})$ by a second calculator, wherein m is a state of a trellis diagram; k

is a stage; $b(j,m)$ is the reverse state of the $(k-1)^{th}$ stage; j is a $(k+1)^{th}$ input for a reverse

state metric; E is a function defined as $\sum_{j=0}^1 E A_k^j = A_k^0 E A_k^1 = \log_e(e^{A_k^0} + e^{A_k^1})$; $A_{k-1}^{b(j,m)}$ is a $(k-1)^{th}$ forward state metric with state $b(j,m)$ and $D_k^{j,b(j,m)}$ is k^{th} branch metric with state $b(j,m)$.

Claim 18 (Currently Amended): The ~~calculation method as recited in~~ of claim 15, wherein the reverse state metric result B_k^m , which is k^{th} reverse state metric with state m , is calculated by using an equation produced by computing a function

$\sum_{j=0}^1 (B_{k+1}^{F(j,m)} + D_{k+1}^{j,f(m)})$ by a second calculator, wherein m is a state of a trellis diagram; k is

a stage; j is a $(k-1)^{th}$ input for a reverse state metric; $f(m)$ is a state of $(k+1)^{th}$ stage related to k^{th} state with state m ; $F(j,m)$ is a function defined as $F(j,m)=f(m)$ for $j=0$ and $F(j,m) = s(f(m))$ for $j=1$; $s(m)$ is a function provides a number complemented for a Most

Significant Bit (MSB) of binary number of m ; $\sum_{j=0}^1 A_k^j$ is a function defined as

$\sum_{j=0}^1 A_k^j = A_k^0 + A_k^1 = \log_2(2^{A_k^0} + e^{A_k^1})$; $B_{k+1}^{F(j,m)}$ is a $(k+1)^{th}$ reverse state metric with state $F(j,m)$

and $D_{k+1}^{j,f(m)}$ is $(k+1)^{th}$ branch metric with state m and $(k+1)^{th}$ input.

Claim 19 (Currently Amended): The ~~calculation~~ method as recited in claim 15, wherein the forward state metric result A_k^m , which is k^{th} forward state metric with state m , is ~~calculated by using an equation produced by computing a function~~

$\sum_{j=0}^1 (D_k^{j,b(j,m)} + A_{k-1}^{b(j,m)})$ by a second calculator, wherein m is a state of a trellis diagram; k

is a stage; $b(j,m)$ is a $(k-1)^{th}$ reverse state; j is a $(k+1)^{th}$ input for a reverse state metric; $\sum_{j=0}^1$ is

a function defined as $\sum_{j=0}^1 A_k^j = A_k^0 + A_k^1 = \log_2(2^{A_k^0} + 2^{A_k^1})$; $A_{k-1}^{b(j,m)}$ is a $(k-1)^{th}$ forward state

metric with state $b(j,m)$ and $D_k^{j,b(j,m)}$ is k^{th} branch metric with state $b(j,m)$.

Claim 20 (Currently Amended): ~~The A calculation method as recited in claim 15 comprising:~~

calculating a branch metric by receiving symbols;

calculating a reverse state metric in case an input i is 0 by using the calculated branch metric and saving the calculated reverse state metric in a memory;

calculating a forward state metric in case an input i is 0 or in case the input i is 1 by using the calculated branch metric;

calculating a log likelihood ratio by using the forward state metric and the reverse state metric; and

storing the log likelihood ratio,

-wherein the log likelihood ratio L_k is produced by computing calculated by using an equation a function $\sum_{m=0}^{2^v-1} (A_k^{l,m} + B_k^{s(m)}) - \sum_{m=0}^{2^v-1} (A_k^{0,m} + B_k^m)$ by a calculator, wherein m is a state of a trellis diagram; k is a stage; $s(m)$ is a function provides a number complemented for a Most Significant Bit (MSB) of binary number of m ; $\sum_{j=0}^1$ is a function defined as $\sum_{j=0}^1 A_k^j = A_k^0 \cdot 2^{-1} A_k^1 = \log_2(2^{A_k^0} + 2^{A_k^1})$; $A_k^{l,m}$ is a k^{th} forward state metric with state m and input 1; j is a $(k-1)^{th}$ input for a reverse state metric; $B_k^{s(m)}$ is a k^{th} reverse state metric with state $s(m)$; $A_k^{0,m}$ is a k^{th} forward state metric with state m and input 0 and B_k^m is a k^{th} reverse state metric with state m .

Claim 21 (Previously Presented): A computer-readable recording medium storing instructions for executing a calculation method implemented to a turbo decoder, comprising functions of:

- calculating a branch metric by receiving symbols;
- calculating a reverse state metric in case an input i is 0 by using the calculated branch metric and saving the calculated reverse state metric in a memory;
- calculating a forward state metric in case an input i is 0 or in case the input i is 1 by using the calculated branch metric;

- calculating a log likelihood ratio by using the forward state metric and the reverse state metric; and

- storing the log likelihood ratio,

wherein the log likelihood ratio L_k is calculated by using an equation

$$E \left(\sum_{m=0}^{2^v-1} (A_k^{l,m} + B_k^{s(m)}) - \sum_{m=0}^{2^v-1} (A_k^{0,m} + B_k^m) \right) \text{ wherein } m \text{ is a state of a trellis diagram; } k \text{ is a stage; } j \text{ is a } (k-1)^{th} \text{ input for a reverse state metric; } s(m) \text{ is a function provides binary number of } m \text{ with a most significant bit complemented; } E \sum_{j=0}^1 \text{ is a function defined as}$$

$\sum_{j=0}^1 A_k^j = A_k^0 + A_k^1 = \log_e(e^{A_k^0} + e^{A_k^1})$; $A_k^{l,m}$ is a k^{th} forward state metric with state m and input

1; $B_k^{s(m)}$ is a k^{th} reverse state metric with state $s(m)$; $A_k^{0,m}$ is a k^{th} forward state metric with state m and input 0 and B_k^m is a k^{th} reverse state metric with state m .

Claim 22 (Previously Presented): The computer-readable recording medium as recited in claim 21, wherein the log likelihood ratio L_k is calculated by using an

equation $\sum_{m=0}^{2^y-1} (A_k^{l,m} + B_k^{s(m)}) - \sum_{m=0}^{2^y-1} (A_k^{0,m} + B_k^m)$ wherein m is a state of a trellis diagram; k is a stage; j is a $(k-1)^{th}$ input for a reverse state metric; $s(m)$ is a function provides binary number of m with a most significant bit complemented; $\sum_{j=0}^1$ is a function defined as

$\sum_{j=0}^1 A_k^j = A_k^0 + A_k^1 = \log_2(2^{A_k^0} + 2^{A_k^1})$; $A_k^{l,m}$ is a k^{th} forward state metric with state m and input 1; $B_k^{s(m)}$ is a k^{th} reverse state metric with state $s(m)$; $A_k^{0,m}$ is a k^{th} forward state metric with state m and input 0 and B_k^m is a k^{th} reverse state metric with state m .

Claim 23 (Previously Presented): The turbo decoder having a state metric as recited in claim 13, wherein the log likelihood ratio L_k is calculated by using an

equation $\sum_{m=0}^{2^y-1} (A_k^{l,m} + B_k^{s(m)}) - \sum_{m=0}^{2^y-1} (A_k^{0,m} + B_k^m)$ wherein m is a state of a trellis diagram; k is a stage; j is a $(k-1)^{th}$ input for a reverse state metric; $s(m)$ is a function provides binary number of m with a most significant bit complemented; $\sum_{j=0}^1$ is a function defined as

$\sum_{j=0}^1 A_k^j = A_k^0 + A_k^1 = \log_2(2^{A_k^0} + 2^{A_k^1})$; $A_k^{l,m}$ is a k^{th} forward state metric with state m and input 1; $B_k^{s(m)}$ is a k^{th} reverse state metric with state $s(m)$; $A_k^{0,m}$ is a k^{th} forward state metric with state m and input 0 and B_k^m is a k^{th} reverse state metric with state m .