TEOREMA DEL PUNTO FIJO DE BOREL

ENZO GIANNOTTA

RESUMEN. En este artículo probaremos el Teorema del punto fijo de Borel, el cual dice que todo grupo algebraico afín y soluble actuando en una variedad algebraica proyectiva admite un punto fijo.

ÍNDICE

1.	Introducción	1
2.	Notación, convenciones y hechos preliminares	2
3.	Terminología de Teoría de Grupos	2
4.	Variedades Bandera	2
5.	Introducción a Grupos Algebraicos	4
6.	Resumen de variedades completas	4
7.	Teorema del punto fijo de Borel	4
8.	Consecuencias	5
9.	Cosas para agregar	8
Ref	eferencias	9

I feel that what mathematics needs least are pundits who issue prescriptions or guidelines for presumably less enlightened mortals.

Armand Borel

1. Introducción

La verdadera geometría algebraica comienza al considerar ecuaciones polinomiales cúbicas. Todo aquello de grado menor, tales como aplicaciones lineales o formas cuadráticas, puede ser pensado utilizando métodos de álgebra lineal. Una gran cantidad de trabajo, desde los comienzos de la geometría algebraica hasta nuestros días, ha sido dedicado al estudio de ecuaciones cúbicas. Por ejemplo, las hipersuperficies cúbicas de dimensión 1 son llamadas curvas elípticas y ocupan un lugar central en geometría algebraica y aritmética.

El propósito de este artículo es estudiar superficies cúbicas, es decir, superficies $S \subseteq \mathbb{P}^3(k)$ dadas por un polinomio homogéneo $f(x_0, x_1, x_2, x_3)$ de grado 3. Más precisamente, probaremos el siguiente resultado descubierto originalmente por Cayley y Salmon en 1849.

Teorema A. Sea k un cuerpo algebraicamente cerrado. Entonces, toda superficie cúbica suave $S \subseteq \mathbb{P}^3(k)$ posee exactamente 27 rectas.

Recordemos que una variedad algebraica X es racional si posee un abierto de Zariski no-vacío $U \subseteq X$ isomorfo a un abierto no-vacío V del espacio afín $\mathbb{A}^n(k)$. Como aplicación del teorema anterior, probaremos que toda superficie cúbica suave es racional. Más precisamente, probaremos el siguiente resultado.

Teorema B. Sea k un cuerpo algebraicamente cerrado. Entonces, toda superficie cúbica suave $S \subseteq \mathbb{P}^3(k)$ es isomorfa al blow-up del plano proyectivo $\mathbb{P}^2(k)$ en 6 puntos.

Estructura del artículo. La Sección 2 recopila notaciones, convenciones y hechos conocidos que serán usados a lo largo del artículo. También estableceremos algunos hechos preliminares. En particular, discutimos el hecho que el espacio de parámetros de superficies cúbicas en \mathbb{P}^3 es isomorfo a \mathbb{P}^{19} , y que las superficies singulares forman un divisor irreducible (i.e., una hipersuperficie de dimensión 18 dentro de dicho \mathbb{P}^{19}). La Sección 3 está dedicada a probar el Teorema A. Finalmente, en la Sección 4 recordamos el concepto de racionalidad y probamos el Teorema B.

Agradecimientos. Agradezco al profesor Pedro por sugerir este tema para el artículo, y por hacer disponible el material bibliográfico necesario para prepararlo.

2. Notación, convenciones y hechos preliminares

- 2.1. Convención. Durante todo el artículo, todas las variedades y morfismos estarán definidos sobre un cuerpo k algebraicamente cerrado, de característica arbitraria.
- 2.2. Notación. Denotamos por \mathbb{P}^n (resp. \mathbb{A}^n)S al espacio proyectivo $\mathbb{P}^n(k)$ (resp. espacio afín $\mathbb{A}^n(k)$) de dimensión n sobre el cuerpo k. Más generalmente, dado un espacio vectorial de dimensión finita V, denotamos por $\mathbb{P}(V)$ a la proyectivización de V, i.e., el conjunto de todos los subespacios vectoriales de dimensión 1 de V. El grupo multiplicativo $\mathbb{G}_m := (k^{\times}, \cdot)$.

Dada una variedad X, denotamos por X_{sing} al sub-conjunto de puntos singulares de X. En particular, X es una variedad suave si y sólo si $X_{\text{sing}} = \emptyset$.

3. TERMINOLOGÍA DE TEORÍA DE GRUPOS

En esta sección introducimos notación clásica de Teoría de Grupos. Sea G un grupo, escribamos

- Z(G) es el **centro** de G, es decir, todos los $x \in G$ tales que xg = gx para todo $g \in G$.
- R(G) es el **radical** de G, es decir, el subgrupo conexo normal soluble de G. Donde estamos suponiendo que G es un grupo algebraico.
- Dado $S \subset G$, $C_G(S)$ es el **centralizador** de S, es decir, los $x \in G$ tales que xg = gx para todo $g \in S$. Cuando $S = \{x\}$ es un singleton, escribimos $C_G(x)$ en lugar de $C_G(S)$.
- Dado $S \subset G$, $N_G(S)$ es el **normalizador** de S, es decir, los $x \in G$ tales que $xgx^{-1} \in S$ para todo $g \in S$. Cuando $S = \{x\}$ es un singleton, escribimos $N_G(x)$ en lugar de $N_G(S)$.
- [G,G] es el **subgrupo derivado** de G, es decir, el subgrupo generado por los conmutadores $[x,y] := xyx^{-1}y^{-1}$ con $x,y \in G$. Más generalmente, si $S_1,S_2 \subset G$, escribimos $[S_1,S_2]$ para el subgrupo generado por los $[s_1,s_2]$ con $s_1 \in S_1$ y $s_2 \in S_2$.
- lacktriangle Dado un conjunto arbitrario X, una **acción** de G es un mapa

$$G \times X \longrightarrow X$$

 $(g, x) \longmapsto g \cdot x$

tal que $1 \cdot x = x$ y $(gh) \cdot x = g \cdot (h \cdot x)$ para todo $x \in X$ y $g, h \in G$. Dado un conjunto $S \subset X$, escribimos G_S para el **estabilizador** de S, es decir, los $g \in G$ tales que $g \cdot x = x$ para todo $x \in S$. Cuando $S = \{x\}$ es un singleton, simplemente escribimos G_x en lugar de G_S . Por otro lado, $G \cdot S$ es la **órbita** de S, es decir, el conjunto de elementos $x \in X$ tales que $x = g \cdot s$ para algún $g \in G$ y $s \in S$. Cuando $S = \{x\}$ es un singleton, simplemente escribimos $G \cdot x$ en lugar de G_S .

Introduzcamos también definiciones básicas de Teoría de Grupos. Decimos que un subgrupo

4. Variedades Bandera

En esta sección construiremos un ejemplo de variedades proyectivas: las variedades bandera.

Sea V un espacio vectorial de dimensión n sobre un cuerpo k. $\bigwedge V$ denota el **álgebra exterior** (el cociente del álgebra de tensores de V por el ideal bilátero generado por $v \otimes v$, $v \in V$). Recordemos que $\bigwedge V$ es una k-álgebra de dimensión finita, más aún, es una k-álgebra graduada por $\{\bigwedge^i V\}_{i=0}^n$. En particular $\bigwedge^0 V = k$ y $\bigwedge^1 V = V$. Dada una base ordenada (v_1, \ldots, v_n) de V, entonces los productos cuña $v_{i_1} \wedge \cdots \wedge v_{i_d}$ $(i_1 < i_2 < \cdots < i_d)$ forman una k-base de $\bigwedge^d V$ de cardinal $\binom{n}{d}$. En particular $\bigwedge^n V$ es 1-dimensional, i.e., el producto cuña de una base arbitraria de V está determinada salvo un múltiplo escalar. Si W es un subespacio vectorial de V, entonces podemos identificar canónicamente a $\bigwedge^d W$ con un subespacio de $\bigwedge^d V$.

Así, tenemos un mapa ψ saliendo del conjunto $\mathfrak{G}_d(V)$ de todos los subespacios d-dimensionales de V en $\mathbb{P}(\bigwedge^d V)$, que manda un subespacio D al punto en la proyectivización $\mathbb{P}(\bigwedge^d V)$ correspondiente a $\bigwedge^d D$ $(d \ge 1)$.

Afirmamos que ψ es inyectiva. En efecto, supongamos que D, D' son dos subespacios d-dimensionales. Fijemos una base de V de tal suerte que v_1, \ldots, v_d genera D, mientras que $v_{r,\ldots,v_{r+d-1}}$ genera D'. De esta manera $v_1 \wedge \cdots \wedge v_d$ no puede ser un múltiplo de $v_r \wedge \cdots \wedge v_{r+d-1}$ a menos que r=1, i.e. D=D'.

Para poder brindarle a $\mathfrak{G}_d(V)$ una estructura de variedad proyectiva, basta ver que la imagen de ψ es cerrada. Para esto, basta probarlo en cada cubrimiento afín de $\mathbb{P}(\bigwedge^d(V))$. Los casos d=1, d=n son triviales.

Fijemos una base ordenada (v_1, \ldots, v_n) de V, y asosciemos la base $\{v_{i_1} \wedge \cdots \wedge v_{i_d}\}_{i_1 < \cdots < i_d}$ de $\bigwedge^d V$. Consideremos los abiertos afines U que cubren $\mathbb{P}(\bigwedge^d(V))$ que consisten de puntos cuya coordenada homogénea relativa a $v_{i_1} \wedge \cdots \wedge v_{i_d}$ ($i_1 < \cdots < i_d$) es no nula. Por ejemplo, veamos por simplicidad el caso dado por $v_1 \wedge \cdots \wedge v_d$. Veamos ahora que la intersección $\operatorname{Im} \psi \cap U$ es cerrada en U. Pongamos D_0 como el subespacio generado por v_1, \ldots, v_d . Claramente $\psi(D)$ pertenece a U si y solo si la proyección natural de V sobre D_0 manda D de manera isomorfa a D_0 . En este caso, las imágenes inversas de v_1, \ldots, v_d forman una base de D de la forma $v_i + x_i(D)$ donde $x_i(D) := \sum_{j>d} a_{ij} v_j$ (y esta es la única base de D que tiene esta forma). El producto cuña luce de la siguiente forma

$$v_1 \wedge \cdots \wedge v_d + \sum_{i=1}^d (v_1 \wedge \cdots \wedge x_i(D) \wedge \cdots \wedge v_d) + (\star),$$

donde (\star) involucre una base de vecctores con dos o más v_1, \ldots, v_d omitidos. Aquí se tiene que $v_1 \wedge \cdots \wedge v_i(D) \wedge \cdots \wedge v_d = \sum_{j>d} a_{ij} (v_1 \wedge \cdots \wedge v_j \wedge \cdots \wedge v_d)$ con v_j reemplazado por v_i . Por lo tanto $\pm a_{ij}$ $(1 \leq i \leq d, d+1 \leq j \leq n)$ puede recuperarse como el coeficiente de la base de elementos $v_1 \wedge \cdots \wedge \widehat{v_i} \wedge \cdots \wedge v_d \wedge v_j$ (v_i) omitido), en el producto cuña de la base de D dada arriba. Más aún, los coeficientes en (\star) son obviamente funciones polinomiales de los a_{ij} , independientes de D.

Recíprocamente, dados d(n-d) escalares a_{ij} arbitrarios, claramente los vectores resultantes $v_i + x_i(D)$ generan un subespacio d-dimensional de V, cuya imagen bajo ψ yace en U. Consecuentemente, Im $\psi \cap U$ consiste de todos los puntos cuyas coordenadas afines son $(\dots a_{ij} \dots, f_k(a_{ij}) \dots)$, donde los a_{ij} son arbitrarios y los f_k son funciones polinomiales en $\mathbb{A}^{d(n-d)}$. Este conjunto se puede ver como el grafo de un morfismo de $\mathbb{A}^{d(n-d)}$ en otro espacio afín. Como los grafos son cerrados en la topología Zariski producto ([Mon23, Teorema 2.6.12.]), concluimos que Im $\psi \cap U$ es cerrado en U.

Definición 4.1. Las variedades Grassmannianas son los $\mathfrak{G}_d(V)$. Una bandera en V, es por definición una cadena

$$0 \subset V_1 \subset \cdots \subset V_k = V$$

de subespacios k-vectoriales de V, tales que las inclusiones son propias. Una **bandera completa** es una en la que $k = \dim V$, i.e., $\dim V_{i+1}/V_i = 1$. $\mathfrak{F}(V)$ denota al conjunto de todas las banderas completas de V. Una vez que brindemos a $\mathfrak{F}(V)$ una estructura de variedad proyectiva, llamaremos a estas variedades: **variedad bandera** de V.

Como vimos en [Mon23, Corolario 2.7.17.], el producto de grassmanianas $\mathfrak{G}_1(V) \times \cdots \times \mathfrak{G}_n(V)$ tiene la estructura de variedad proyectiva. Por otro lado, $\mathfrak{F}(V)$ se identifica con un subconjunto en este producto de grassmanianas de manera obvia, luego para darle una estuctura de variedad proyectiva basta ver que este conjunto es cerrado. Para simplificar la notación, consideremos solamente el producto $\mathfrak{G}_d(V) \times \mathfrak{G}_{d+1}(V)$, y probemos que el conjunto S de pares (D, D') con $D \subset D'$ es cerrado.

Nuevamente como antes, fijemos una base ordenada (v_1,\ldots,v_n) de V, y consideremos dos abiertos afines de $\mathbb{P}(\bigwedge^d(V))$ y $\mathbb{P}(\bigwedge^{d+1}(V))$, de tal suerte que los productos cubren la vareidad $\mathfrak{G}_d(V) \times \mathfrak{G}_{d+1}(V)$. Otra vez para simplificar la notación, tomemos estos abiertos afines U,U' definidos relativos a $v_1 \wedge \cdots \wedge v_d, v_1 \wedge \cdots \wedge v_{d+1}$ respectivamente. Si D (respectivamente D') es la imagen en U (respectivamente U'), obtenemos como ante bases canónicas: $v_i + x_i(D)$ ($1 \leq i \leq d$); $v_i + y_i(D')$ ($1 \leq i \leq d+1$). Con lo cual $x_i(D) = \sum_{j>d} a_{ij}v_j$, $y_i(D') = \sum_{j>d+1} b_{ij}v_j$. Notemos que $D \subset D'$ si y solo si $x_i(D) = y_i(D') + a_{i,d+1}(v_{d+1} + y_{d+1}(D'))$ para $1 \leq i \leq d$. Esto a su vez se convierte en condiciones polinomiales en los coeficientes a_{ij}, b_{ij} , con lo cual S interseca $U \times U'$ en un cerrado de $U \times U'$.

4

5. Introducción a Grupos Algebraicos

6. RESUMEN DE VARIEDADES COMPLETAS

Definición 6.1. Decimos que una variedad algebraica (o simplemente variedad) X es **completa**, si para toda variedad algebraica Y, la proyección a la segunda coordenada

$$\operatorname{pr}_Y: X \times Y \longrightarrow Y$$

 $(x,y) \longmapsto y$

es una función cerrada.

Proposición 6.2. (a) Una subvariedad cerrada de una variedad completa (respectivamente proyectiva) es completa (respectivamente proyectiva).

- (b) $Si \varphi : X \to Y$ es un morfismo (regular) de variedades algebraicas, y X es completo, entonces la imagen es cerrada en Y, y es completa.
- (c) Las variedades afines completas tienen dimensión 0.
- (d) Las variedades proyectivas son completas; las variedades quasiproyectivas completas son proyectivas.
- (e) La variedad bandera de un espacio vectorial V de dimensión finita es proyectiva, y en particular el ítem (d) dice que es completa.

Demostración. (a) Se deduce inmediatamente de la definición de subvariedad cerrada.

- (b) Es exactamente la misma demostración que el Corolario 2.7.10. de [Mon23]; notar que usamos que la variedad algebraica Y es separada.
- (c) En efecto, como X es afín, podemos suponer sin pérdida de generalidad que es un cerrado de \mathbb{A}^m para algún $m \geq 1$, luego basta ver que la imagen de cada proyección a la i-ésima coordenada es finita, digamos $f_i: X \to \mathbb{A}^1$, ahora, considerando la incrustación $\mathbb{A}^1 \hookrightarrow \mathbb{P}^1$, $x \mapsto [x, 1]$, tenemos que por el ítem anterior que la composición $X \to \mathbb{A}^1 \hookrightarrow \mathbb{P}^1$ tiene imagen cerrada, y como no es sobreyectiva, debe ser finita, i.e., la imagen de f_i es finita como queríamos probar.
- (d) Que las variedades proyectivas son completas ya lo vimos en [Mon23, Teorema 2.7.9]. Más generalmente, si X es quasi-proyectiva, es decir, isomorfa a un abierto Zariski U de una variedad algebraica proyectiva Y, entonces el morfismo inclusión $U \hookrightarrow Y$ tiene imagen cerrada por el ítem (b), y por lo tanto es una subvariedad cerrada de una variedad proyectiva, y concluimos utilizando el ítem (a).
- (e) Una demostración de que las variedades banderas son proyectivas se puede encontrar en [Gec13, Teorema 3.3.11.].

Además de estos hechos, necesitamos un lema:

Lema 6.3. Supongamos que G actua transitivamente sobre dos variedades algebraicas irreducibles X,Y,y sea $\varphi:X\to Y$ un morfismo regular biyectivo, G-equivariante. Si Y es completo, entonces X también.

Demostración. Ver [Hum12, Lema §21.1.].

7. Teorema del punto fijo de Borel

En esta sección probaremos el teorema principal de este artículo:

Teorema 7.1 (Teorema del punto fijo de Borel). Sea G un grupo algebraico conexo soluble, y sea X una variedad completa (no vacía) donde actúa G. Entonces G tiene un punto fijo en X.

Demostración. Si dim G=0, entonces $G=\{1\}$ y no hay nada que probar. Luego procedemos por inducción en la dimensión de G. Sea H:=[G,G], es conexo (ver $[\operatorname{Hum12}, (17.2)]$), soluble, y de menor dimensión que G (pues G es soluble), con lo cual, por hipótesis inductiva, el conjunto Y de puntos fijos de H en X es no vacío. Y es cerrado (ver $[\operatorname{Hum12}, \operatorname{Proposición 8.2.}]$), con lo cual es completo por el ítem (a) de la Proposición 6.2. Como G deja estable a Y, ya que H es normal en G, basta ver que G tiene un punto fijo en Y, así, reemplacemos X por Y.

Estamos entonces en el siguiente caso: $H \subset G_x$ para todo $x \in X$. En particular, todos los grupos de isotropía son normales en G, por lo tanto G/G_x es una variedad afin. Que los grupos de isotropía son normales se deducen de lo siguiente, esto equivale a probar que para todo $g \in G$, $G_x \subset gG_xg^{-1}$, luego sea $z \in G_x$, i.e., $z \cdot x = x$, tenemos que $g^{-1}zgz^{-1} \in H \subset G_{z \cdot x}$, consecuentemente $x = z \cdot x = g^{-1}zgz^{-1}(z \cdot x) = g^{-1}zg \cdot x$, i.e. $g^{-1}zg \in G_x$, o sea, $z \in gG_xg^{-1}$, como z era arbitrario se prueba la inclusión deseada.

Tomemos $x \in X$ cuya órbtia $G \cdot x$ sea cerrada, y por lo tanto nuevamente completo: esto se puede hacer, por [Hum12, Proposición 8.3.]. Ahora el morfismo canónico $G/G_x \to G \cdot X$ es biyectivo, con el lado izquierdo afín y el derecho completo. El Lema 6.3 implica que G/G_x es completo. Pero el ítem (c) de 6.2 implica que G/G_x es un grupo algebraico 0-dimensional, i.e. trivial, es decir, $G_x = G$, y por lo tanto x es un punto fijo.

8. Consecuencias

En esta sección probaremos varias consecuencias el Teorema del punto fijo de Borel. Sea G un grupo conexo arbitrario.

El siguiente teorema es un análogo del Teorema de Lie¹; esto vale en característica arbitraria, sin embargo el teorema para álgebras de Lie \underline{no}^2 .

Teorema 8.1 (Teorema de Lie-Kolchin). Sea G un subgrupo algebraico conexo soluble de GL(V) para un espacio vectorial de dimensión finita no trivial. Entonces existe una bandera $V = V_0 \supset V_1 \supset \cdots \supset V_n = 0$ de subespacios G-invariantes con codim $V_i = i$. En particular, V_{n-1} es 1-dimensional, y por lo tanto contiene un vector v que es autovector simultáneo de cada g para todo $g \in G$.

Demostración. Sea G un subgrupo cerrado conexo soluble de GL(V). Entonces G actúa en la variedad bandera de V, la cual es completa por el ítem (e) de la Proposición 6.2, con lo cual el Teorema 7.1 implica que la acción de G deja fija una bandera

$$V = V_n \supset \cdots V_1 \supset V_0 = 0.$$

Es decir, vale el enunciado del teorema.

8.0.1. Subgrupos de Borel y Toros maximales.

Definición 8.2. Un subgrupo de Borel de G es un subgrupo cerrado conexo soluble que no está incluido propiamente en ningún otro subgrupo cerrado conexo soluble.

Como los subgrupos de Borel de G y G° coinciden, supondremos a partir de lo que sigue que G es conexo. Un subgrupo conexo soluble de dimensión máxima en G es claramente un subgrupo de Borel; pero no es obvio que todo subgrupo de borel tenga la misma dimensión, sin embargo, esto es cierto:

Teorema 8.3. Sea B un subgrupo de borel de G. Entonces G/B es una variedad proyectiva, y todos los otros subgrupos de borel son conjugados a B. En particular, son todos isomorfos entre sí y tienen la misma dimensión.

Demostración. Sea S un subgrupo de Borel de dimensión máxima. Representemos a G en GL(V) con un subespacio 1-dimensional V_1 cuyo estabilizador en G es precisamente S (ver [Hum12, Teorema 11.2]). La acción inducida de S en V/V_1 es trigonalizable por el Teorema 8.1, co lo cual existe una bandera completa $0 \subset V_1 \subset \cdots \subset V$ estabilizada por S, llamemoslá f. De hehco, S es el grupo de isotropía de f en G, por cómo elegimos V_1 . Con lo cual el morfismo inducido de G/S sobre la órbita de f en la variedad bandera de V es biyectiva. Por otro lado, el estabilizador de toda variedad bandera es soluble y por lo tanto tiene dimensión no mayor a dim S. Consecuentemente, la órbita de f tiene la dimensión más chica posible, por lo tanto es cerrado (ver [Hum12, (8.3)]). Así, la órbita es completa por los ítems (a) y (e) de la Proposición 6.2. Esto fuerza a que G/S sea completo por el Lema 6.3, o sea, es proyectivo por el ítem (d) de 6.2.

Ahora tomemos un subgrupo de Borel B, este actúa por multiplicación a izquierda en la variedad completa G/S. Luego el Teorema 7.1 implica que deja fijo un punto xS, es decir, BxS = xS, equivalentemente, $x^{-1}Bx \subset S$. Como ambos son subgrupos de Borel, concluimos que $x^{-1}Bx = S$ por maximalidad. Esto concluye ambas afirmaciones del teorema.

Corolario 8.4. Los toros maximales (respectivamente los subgrupos conexos unipotentes maximales) de G son los de los subgrupos de Borel de G, y son todos conjugados. En particular tienen la misma dimensión.

¹Este teorema dice que sobre un cuerpo algebraicamente cerrado de <u>característica cero</u>, si $\mathfrak{g} \to \mathfrak{gl}(V)$ es una representación de dimensión finita de una álgebra de Lie soluble \mathfrak{g} , entonces existe una bandera $V = V_0 \supset V_1 \supset \cdots \supset V_n = 0$ de subespacios \mathfrak{g} -invariantes con codim $V_i = i$. En particular, V_{n-1} es 1-dimensional, y por lo tanto contiene un vector v que es autovector simultáneo de cada $\pi(q)$ para todo $q \in \mathfrak{g}$.

²En caaracterística p > 0, el Teorema de Lie vale para representaciones de dimensión menor que p, sin embargo, puede fallar en dimensión p: ver [Wik].

Demostración. Sea T un toro maximal de G, U un subgrupo conexo unipotente maximal. Evidentemente T está inclluido en algún subgrupo de borel B, entonces es un toro maximal de B, y por lo tanto todos los demás toros maximales de B son conjugados a T en B (ver [Hum12, Teorema 19.3]). Similarmente, U yace contenido en algún subgrupo de borel B', con $U = B'_u$ por maximalidad. Como todos los subgrupos de Borel de G son conjugados, el corolario se sigue.

Definición 8.5. A la dimensión de cualquier toro maximal de G se le dice el rango de G.

Ejemplo 8.6. El rango de $SL_n(k)$ es n-1.

Definición 8.7. Decimos que un subgrupo cerrado P de G es **parabólico**, si el espacio homogéneo G/P es proyectivo (equivalentemente completo por el ítem (d) de 6.2).

Corolario 8.8. Un subgrupo cerrado P de G es parabólico si y solo si contiene un subgrupo de Borel. En particular, todo subgrupo conexo H de G es un subgrupo de Borel si y solo si H es soluble y G/H es proyectivo.

Demostración. Si H es un subgrupo cerrado de G tal que G/H es proyectivo, entonces B deja fijo un punto por el Teorema 7.1, y por lo tanto tiene un conjugado en H, esto fuerza a que dim $G/H \le \dim G/B$. Recíprocamente, si H es un subgrupo cerrado incluyendo un subgrupo de Borel B de G, entonces $G/B \to G/H$ es un morfismo sobreyectivo con dominio una variedad comleta, forzando a G/H a ser completo (ítem (b) de la Proposición 6.2). Pero G/H es proyectivo (ítem (d) de la Proposición 6.2), ya que todos los espacios homogéneos son quasi-proyectivos por construcción (ver [Hum12, (11.3)]). Esto prueba el Corolario.

Ejemplo 8.9. Sea $G = \operatorname{GL}_n(k)$ y $B = \operatorname{T}_n(k)$ las matrices triangulares superioes de G. El Teorema de Lie-Kolchin 8.1 dice que B es un subgrupo de Borel de G. En efecto, G/B es justamente la órbita en la variedad bandera de $V = k^n$ de la bandera standard. Calculemos los subgrupos parabólicos de G que contienen a B. Si (e_1, \ldots, e_n) es la base canónica de k^n , entonces para cada bandera parcial $(e_1, \ldots, e_{i(1)}) \subset (e_1, \ldots, e_{i(2)}) \subset \cdots$, el estabilizador de G es evidentemente un subgrupo cerrado incluyendo a B.

Más concretamente, si $G = GL_3(k)$, entonces existen solamente dos subgrupos parabólicos propios distintos de B: los dos grupos de matrices de la siguiente forma

$$\begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & * \end{pmatrix}, \quad \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}.$$

Corolario 8.10. Sea $\varphi: G \to G'$ un epimorfismo de grupos algebraicos conexos. Sea H un subgrupo de Borel (respectivamente un subgrupo parabolico, un toro maximal, o un subgrupo conexo unipotente maximal) de G. Entonces $\varphi(H)$ es un subgrupo de Borel (respectivamente un subgrupo parabolico, un toro maximal, o un subgrupo conexo unipotente maximal) de G' y todos los subgrupos de este tipo en G' se obtienen de esta manera.

Demostración. Debido a los Corolarios 8.4, 8.8, basta ver que esto vale en el caso H=B subgrupo de borel de G. Claramente $B':=\varphi(B)$ es conexo y soluble. Pero el mapa natural $G\to G'\to G'/B'$ induce un morfismo sobreyectivo $G/B\to G'/B'$, y por lo tanto G'/B' es completo por el ítem (b) de la Proposición 6.2, es decir, B' es un subgrupo parabólico de G'. El Corolario 8.8 implica luego que es un subgrupo de Borel de G'. Como algún subgrupo de Borel de G' tiene que ser de la forma $\varphi(B)$, se sigue del Teorema 8.3 aplicado a G' que son todos conjugados a $\varphi(B)$, consecuentemente, por sobreyectividad de φ , deben ser de esta forma.

8.0.2. Más consecuencias. En esta subsubsección supongamos que G es un grupo algebraico conexo.

Proposición 8.11. Si σ es un automorfismo de G que deja fijo todos los elementos de un subgrupo de Borel B, entonces debe ser la identidad.

Demostración. El morfismo

$$\varphi: G \longrightarrow G$$

 $x \longmapsto \sigma(x)x^{-1},$

envía B en 1, y por lo tanto se factoriza por la proyección a través del cociente $G \to G/B$. Por el Teorema 8.3 y el ítem (b) de la Proposición 6.2, $\varphi(G)$ es cerrado (y por lo tanto afín) y completo. Así, es un grupo algebraico 0-dimensiónal, i.e. $\varphi(G) = \{1\}$.

Corolario 8.12.

$$Z(G)^{\circ} \subset Z(B) \subset C_G(B) = Z(G).$$

Demostración. $Z(G)^{\circ}$ es conexo y soluble, por lo tanto está contenido en algún subgrupo de Borel de G, el cual podemos conjugar (sin afectar a $Z(G)^{\circ}$) para convertirlo en B gracias al Teorema 8.3, con lo cual la primera inclusión vale. La segunda inclusión es obvia; también lo es $Z(G) \subset C_G(B)$. Finalmente, si $x \in C_G(B)$, entonces el autormofismo $\sigma: g \mapsto xgx^{-1}$ cumple las hipótesis de la proposición anterior, con lo cual es trivial, i.e., $x \in Z(G)$.

Observación 8.13. De hecho, se puede probar que Z(G) = Z(B) (ver [Hum12, Corolario B §22.2.]).

Proposición 8.14. (1) Si un subgrupo de borel B es nilpotente (en particular, si $B = B_s$ o $B = B_u$), entonces G = B.

- (2) G es nilpotente si y solo si G tiene un único toro maximal.
- Demostración. (1) Observemos primero que si $B = B_s$ o $B = B_u$, entonces B es un toro o un grupo unipotente (ver [Hum12, Teorema 19.3]), y por lo tanto nilpotente en cualquier ccacso. Siempre que B sea nilpotente, de dimensión positiva, su centro también tiene dimensión positiva ([Hum12, Proposición 17.4 (a)]). Sin embargo, el corolario anterior dice que $Z(G)^{\circ} \subset Z(B) \subset Z(G)$. Con lo cual, podemos pasar a un grupo de menor dimensión $G/Z(G)^{\circ}$, en donde $B/Z(G)^{\circ}$ es un subgrupo nilpotente de Borel. Por hipótesis inductiva, estos grupos son iguales, con lo cual G = B (el caso base dim G = 0 es trivial).
 - (2) Sabemos por [Hum12, (19.2)] que un grupo nilpotente tiene un único toro maximal. Recíprocamente, si T es el único toro maximal de G y B es algún subgrupo de borel conteniéndolo, debe ser que B es nilpotente [Hum12, (19.2)(19.3)], con lo cual B = G por el ítem (1).

Corolario 8.15. Sea T un toro maximal de G, $C := C_G(T)^{\circ}$. Entonces C es nilpotente y $C = N_G(C)^{\circ}$.

Demostración. T es el único toro maximal de C, gracias al Corolario 8.4, entonces C es nilpotente por la proposición que acabamos de probar. Claramente T es normal en $N_G(C)^{\circ}$, y por lo tanto también central (ver [Hum12, Corolario 16.3]).

Definición 8.16. Sea T un toro maximal de G, y $C := C_G(T)^{\circ}$. El grupo C se lo suele llamar subgrupo de Cartan³.

Observación 8.17. De hecho, los subgrupos de Cartan son conexos (ver el Teorema [Hum12, §22.3.]). En particular, como todos los toros maximales son conjugados entre sí, los subgrupos de Cartán también lo son.

8.0.3. El Teorema del Normalizador. Nuevamente G es un grupo algebraico conexo. Primero probamos un lema:

Lema 8.18. Sea B un subgrupo de Borel de G, sea $N := N_G(B)$. Entonces $B = N^{\circ}$.

Demostración. Claramente B es un subgrupo de Borel de N° . Gracias al Teorema 8.3 y al hecho que B es normal en N° , B es el único subgrupo de Borel de N° . Finalmente, [Hum12, Teorema de Densidad §22.2.] fuerza a que B sea igual a N° .

Teorema 8.19 (Teorema del Normalizador). Sea B un subgrupo de Borel de G. Entonces $B = N_G(B)$.

Demostración. Escribamos $N := N_G(B)$. Por el lema anteior tenemos que $B = N^{\circ}$. Para probar que N = B, procederemos por inducción en dim G. Claramente R(G) yace dentro de todos los subgrupos de Borel de G (cf. [Hum12, Ejercicio 21.6]), así que supongamos que sin pérdida de generalidad que G es de dimensión positiva y semisimple: si no, aplicamos hipótesis inductiva a G/R(G).

Sea $x \in N$, y sea T un toro maximal de G contenido en B. Entonces xTx^{-1} es otro toro maximal de G contenido en B, así que existe $y \in B$ tal que $y(xTx^{-1})y^{-1} = T$ (Corolario 8.4). Claramente x pertenece a B si y solo si yx lo es, por lo que podemos asumir también que $x \in N_G(T)$. Tomemos $S := C_T(x)^\circ$, un subtoro T. Hay dos posibilidades:

Caso 1: $S \neq \{1\}$. Luego $C := C_G(S)$ tiene radical no trivial, con lo cual C es un subgrupo propio de G. Se tiene que $B' := B \cap C$ es un subgrupo de Borel de C (ver [Hum12, §22.4.]). Más aún, C es conexo (ver [Hum12, Teorema 22.3.]). Por hipótesis inducitva, se sigue que $N_C(B') = B'$. Pero x pertenece a C y normaliza B, así que $x \in N_C(B') = B' \subset B$.

³En analogía con las subálgebras de Cartan en Teoría de Álgebras de Lie.

Caso 2: $S = \{1\}$. Como x normaliza T, y T es conmutativo, es fácil de ver que el morfismo conmutador

$$\gamma_x: T \longrightarrow T$$
$$t \longmapsto txt^{-1}x^{-1}$$

es de hecho un morfismo de grupos con núcleo $C_T(x)$. Este es finito, ya que $S = \{1\}$, así que γ_x debe ser sobreyectivo por un argumento de dimensión (ver [Hum12, Proposición 7.4B]). Consecuentemente, T yace dentro de [M, M], donde M es el subgrupo de N generado por x y B. Así, $B = TB_u$ yace contenido en el subgrupo de M generado por B_u y [M, M].

Ahora, tomemos una representación racional $\rho:G\to \operatorname{GL}(V)$, donde V contiene una recta D cuyo grupo de isotropía en G es precisamente M (ver [Hum12, Teorema 11.2]). Sea $\chi:M\to \mathbb{G}_m$ su caracter asosciado. Entonces χ es trivial en [M,M] y en grupo unipotente B_u ; ergo, χ es trivial en B. Si $0\neq v\in V$ genera D, se tiene que ρ induce un morfismo $G/B\to Y=$ la órbita de v bajo la acción de $\rho(G)$. Como G/B es completo, su imagen Y es cerrada en V (y por lo tanto afín) y también completa gracias al ítem (b) de la Proposición 6.2. Pero esto implica que Y es un punto por el ítem (c) de la Proposición 6.2. Entonces G=M. Como G es conexo y $[M:B]<\infty$ (lema anterior), no queda otra alternativa que G sea igual a G, lo cual es imposible.

Corolario 8.20. B es maximal en la colección de subgrupos solubles (no necesariamente conexos o cerrados) de G.

Demostración. Si S es un subgrupo soluble maximal de G, entonces evidentemente S es cerrado. Si $S \supset B$, entonces $S^{\circ} = B$ por definición de subgrupo de Borel, consecuentemente $S \subset N_G(B) = B$.

Corolario 8.21. Sea P un subgrupo parabólico de G. Entonces $P = N_G(P)$. En particular, P es conexo.

Demostración. Por definición, P contiene algún subgrupo de Borel B de G. Sea $x \in N_G(P)$. Entonces tanto B como xBx^{-1} son subgrupos de Borel de P° , y por lo tanto son conjugados por algún elemento $y \in P^{\circ}$ (Teorema 8.3). Por lo tanto $xy \in N_G(B) = B$ (gracias al Teorema del Normalizador 8.19). Sin embargo, $xy, y \in P^{\circ}$ fuerza a que $x \in P^{\circ}$, es decir, $P^{\circ} = P = N_G(P)$.

Corolario 8.22. Sean P, Q subgrupos parabólicos de G, ambos conteniendo un subgrupo de Borel B. Si P y Q son conjugados en G, entonces P = Q.

Demostración. Supongamos que $Q=x^{-1}Px$. Entonces B y $x^{-1}Bx$ son ambos subgrupos de borel del grupo conexo Q (corolario anterior), así existe $y\in Q$ tal que $B=y^{-1}(x^{-1}Bx)y$ (Teorema 8.3). Con lo cual, $xy\in N_G(B)=B$ fuerza que $x\in Q$, y luego P=Q.

En otras palabras, el corolario anterior dice que la cantidad de clases de conjugación de subgrupos parabólicos de G es precisamente la cantidad de subgrupos parabólicos conteniendo un subgrupo de Borel B de G dado.

Corolario 8.23. Sea B un subgrupo de Borel de G, y $U = B_u$. Entonces $B = N_G(U)$.

Demostración. Sea $N:=N_G(U)$. Como U es un subgrupo conexo unipotente maximal de N° , contiene un conjugado de cada elemento unipotente de N° (ver [Hum12, Teorema 22.2]). Pero U es normal en N° , o sea que N°/U consiste de elementos semisimples y por ende es un toro (cf. [Hum12, Ejercicio 21.2]). En particular, N° es soluble. Como $B \subset N^{\circ}$, tenemos que $B = N^{\circ}$. Sin embargo, $B = N_G(B)$ por el Teorema 8.19, así que $N^{\circ} = N$.

9. Cosas para agregar

Suponer que k es un cuerpo algebraicamente cerrado (no necesariamente de característica 0).

Notacion: Z(G), R(G), $C_G(x)$, $C_G(S)$, [G,G], $N_G(x)$, $N_G(S)$, G_x , $G \cdot x$, B_u , B_s

definiciones basicas de grupos: solubilidad, subgrupo normal, nilpotencia, toro maximal, unipotente conexo maximal que es una bandera, que es una bandera completa, una bandera standard (creo que es la bandera de $V=k^n$). Que es un grupo de isotropia. Que es una orbita. Que es el estabilizador. Que es una clase de Conjugación.

definiciones algebraicas: que es un grupo algebraico, que es un grupo algebraico conexo. que es la componente conexa G° . Como es la estructura algebraica de un espacio homogeneo. Que es una accion de un grupo algebraico

G en una variedad algebraica X. que es la variedad bandera de un espacio vectorial finito V, dar como ejemplo la accion natural de GL(V) allí. Que es un morfismo de grupos algebraicos.

Teoremas de Humphreys: Teorema 11.2, 11.3, (8.3), Teorema 19.3, 19.2, Proposición 17.4, Corolario 16.3. Proposición 7.4B. No copiar solo citar el Teorema 22.4, el 22.3 y el 22.2.

Hacer una observación para no volver a repetirlo que todo grupo algebraico de dimensión 0 tiene que ser el grupo trivial {1}.

Ejercicios: 21.5, 21.2

Referencias

- $[Gec13] \quad \text{Meinolf Geck, } \textit{An introduction to algebraic geometry and algebraic groups}, \textit{Oxford University Press, 2013}.$
- [Hum12] James E Humphreys, Linear algebraic groups, vol. 21, Springer Science & Business Media, 2012.
- [Mon23] Pedro Montero, Notas de curvas algebraicas (mat426), http://pmontero.mat.utfsm.cl/mat426_2023_2.html, 2023, Accedido el 6 de noviembre de 2023.
- [Wik] Wikipedia contributors, *Lie's Theorem*, https://en.wikipedia.org/wiki/Lie%27s_theorem, Accedido el 6 de noviembre de 2023.