

JOINT PROBABILITY MATRICES

Why

We can characterize the dependence of two events in terms of the rank of a particular matrix.

Definition

Given a probability measure $P : \mathcal{P}(\Omega) \to R$ on the finite set Ω and two events $A, B \subset \Omega$, the *joint probability matrix* of A and B is the matrix

$$M = \begin{bmatrix} \mathbf{P}(A \cap B) & \mathbf{P}(A \cap C_{\Omega}(B)) \\ \mathbf{P}(C_{\Omega}(A) \cap B) & \mathbf{P}(C_{\Omega}(A) \cap C_{\Omega}(B)) \end{bmatrix}.$$

Since B and $C_{\Omega}(B)$ partition Ω , use the total law of probability to express is $\mathbf{P}(A) = \mathbf{P}(A \cap B) + \mathbf{P}(A \cap C_{\Omega}(B))$. Likewise, $\mathbf{P}(C_{\Omega}(A)) = \mathbf{P}(C_{\Omega}(A) \cap B) + \mathbf{P}(C_{\Omega}(A) \cap C_{\Omega}(B))$. For these reasons, the sum of the entries of the first row of M is $\mathbf{P}(A)$ and the sum of the entries of the second row of M is $\mathbf{P}(C_{\Omega}(A))$. The events A and B are independent if and only if rank(M) = 1

