A2_Clustering_Alberto_Gonzalez_Isorna

June 16, 2019

1 Práctica individual: Clustering, técnicas de agrupamiento

Alberto Gonzalez Isorna

El objetivo de esta actividad agrupar un conjunto de clientes según el gasto y los productos que compran.

Los pasos que seguiremos serán los siguientes:

- Análisis descriptivo de los datos
- 2. Tratamiento de missing (si los hay)
- 3. Tratamiento de variables categóricas
- 4. Análisis gráfico de los datos
- 5. Normalización y Separación de datos
- 6. Agrupamiento mediante el algoritmo K-means
- 7. Métricas de ajuste
- 8. Análisis de resultados obtenidos
- 9. Conclusiones

2 Análisis descriptivo de los datos

El conjunto de datos se refiere a los clientes de un distribuidor mayorista. Incluye el gasto anual en unidades monetarias (m.u.) en diversas categorías de productos

Primeramente haremos una importación de liberías y luego analizaremos los datos mas importantes.

2.1 Importación de librerías

```
In [1]: import io #modulo para realizar distintas operaciones en Python.
import pandas as pd #Librería de análisis de datos.
import matplotlib.pyplot as plt #Libraría de representación de gráficas.
import seaborn as sns #Herramienta de visualización de datos.
import numpy as np #Numpy facilita un largo set de tipos de datos numéricos para const from scipy.stats import norm #Librería con herramientas y algoritmos matemáticos.
```

2.2 Descripcion de los datos

Atributos:

- 1. FRESH: gasto anual (m.u.) en productos frescos (Continuo);
- 2. MILK: gasto anual (m.u.) en productos lácteos (Continuo);
- 3. GROCERY: gasto anual (m.u.) en productos comestibles (Continuo);
- 4. FROZEN: gasto anual (m.u.) en productos congelados (Continuo)
- 5. DETERGENTS_PAPER: gasto anual (m.u.) en detergentes y productos de papel (Continuo)
- 6. DELICATESSEN: gasto anual (m.u.) en productos delicatessen (Continuo);
- 7. CHANEL: canal de clientes Horeca (hotel / restaurante / cafetería) o canal minorista (Nominal)
- 8. REGIÓN: Región de los clientes Lisnon, Oporto u Otro (Nominal)

2.3 Lectura de ficheros de datos

```
In [2]: #Read CSV
        csvname = 'Wholesale customers data.csv'
        spend_data = pd.read_csv(
             csvname,
             #header=None,
             encoding='utf-8',
             #delim_whitespace=True,
             \#names=[],
        )
         #Previsualización los datos
        spend_data.head(10)
Out[2]:
            Channel
                    Region Fresh
                                       Milk
                                             Grocery Frozen Detergents_Paper \
        0
                  2
                           3
                              12669
                                       9656
                                                 7561
                                                           214
                                                                             2674
        1
                  2
                           3
                               7057
                                       9810
                                                 9568
                                                          1762
                                                                             3293
        2
                  2
                               6353
                                                          2405
                           3
                                       8088
                                                 7684
                                                                             3516
        3
                  1
                           3
                             13265
                                       1196
                                                 4221
                                                          6404
                                                                              507
        4
                  2
                           3
                              22615
                                       5410
                                                 7198
                                                          3915
                                                                             1777
        5
                  2
                           3
                               9413
                                       8259
                                                 5126
                                                           666
                                                                             1795
        6
                  2
                           3
                             12126
                                       3199
                                                 6975
                                                           480
                                                                             3140
        7
                  2
                           3
                               7579
                                       4956
                                                 9426
                                                          1669
                                                                             3321
        8
                  1
                           3
                               5963
                                       3648
                                                 6192
                                                           425
                                                                             1716
        9
                  2
                               6006
                                                18881
                                                                             7425
                                      11093
                                                          1159
            Delicassen
        0
                  1338
        1
                  1776
        2
                  7844
        3
                  1788
        4
                  5185
        5
                  1451
        6
                   545
        7
                  2566
        8
                   750
        9
                  2098
```

2.4 Características de los datos

Out[3]:		Channel	Region		Fresh	Milk	Grocery	\
	count	440.000000	440.000000	440.	000000	440.000000	440.000000	
	mean	1.322727	2.543182	12000.	297727	5796.265909	7951.277273	
	std	0.468052	0.774272	12647.	328865	7380.377175	9503.162829	
	min	1.000000	1.000000	3.	000000	55.000000	3.000000	
	25%	1.000000	2.000000	3127.	750000	1533.000000	2153.000000	
	50%	1.000000	3.000000	8504.	000000	3627.000000	4755.500000	
	75%	2.000000	3.000000	16933.	750000	7190.250000	10655.750000	
	max	2.000000	3.000000	112151.	000000	73498.000000	92780.000000	
		Frozer	n Detergent	Detergents_Paper		cassen		
	count	440.000000) 440	.000000	440.	000000		
	mean	3071.931818	3 2881	.493182	1524.	870455		
	std	4854.673333	3 4767	.854448	2820.	105937		
	min	25.000000) 3	.000000	3.	000000		
	25%	742.250000	256	.750000	408.	250000		
	50%	1526.000000	816	.500000	965.	500000		
	75%	3554.250000	3922	.000000	1820.	250000		
	max	60869.000000	40827	.000000	47943.	000000		

Vemos por ejemplo como las compras en productos comestibles son las que mas beneficios dan a la empresa, y además las que mas desviación tienen, es decir que hay clientes muy diversos.

3 Tratamiento de los missing

Para tratar los missing vamos a ver el tipo de datos (para ver si hay caracteres extraños) y veremos tambien si hay algun tipo de caracter nulo

```
Frozen int64
Detergents_Paper int64
Delicassen int64
dtype: object
```

Vemos como todas las variables son enteras

3.1 Caracteres Nulos

```
In [7]: #Comprobación de datos nulos
        spend_data.isnull().any()
Out[7]: Channel
                            False
        Region
                            False
        Fresh
                            False
        Milk
                            False
        Grocery
                            False
                            False
        Frozen
        Detergents_Paper
                            False
        Delicassen
                            False
        dtype: bool
```

Vemos que ninguna columan tiene caracteres nulo como habiamos podido leer en el documento de referencia del dataset.

3.2 Caracteres desconocidos

No hay caracteres desconocidos

4 Tratamiento de variables categóricas

En este caso son todas las variables enteras, y dado que estamos haciendo clustering, no nos importa tener variables discretas y continuas si son numéricas.

5 Análisis gráfico de los datos

5.1 Variables destacadas

5.1.1 Grocery

Asimetría: 3.587429 Curtosis: 20.914670

Vemos como los valores se tienden a reunir en la parte izquierda, quiere decir que hay una amplia mayoría que gasta una cantidad entorno a los mil y luego tambien hay algunos que gastan valores por encima. Por debajo, es decir de 0 a 1000, hay muy pocos gastos.

5.1.2 Grocery vs Paper

Se observa cierta relación directa entre las compras alimentarias y detergentes.

5.1.3 Canal y Region

```
In [44]: plt.figure(figsize=(15,10))
         ## Porcentajes Canal
         plt.subplot(121)
         labels = ['Horeca', 'Minorista']
         a = (spend_data['Channel'] == 1).sum()
         b = (spend_data['Channel'] == 2).sum()
         plt.pie([a,b], labels=labels,autopct='%1.1f%%')
         ## Porcentajes Region
         plt.subplot(122)
         xvar = 'Region'
         labels = ['Lisnon', 'Oporto', 'Otro']
         a = (spend_data[xvar] == 1).sum()
         b = (spend_data[xvar] == 2).sum()
         c = (spend_data[xvar] == 2).sum()
         plt.pie([a,b,c], labels=labels,autopct='%1.1f%%')
         plt.show()
```


En el gráfico de la izquierda, podemos observar como la mayoría de compras son a mayoristas. En el de la derecha, vemos como la mayoróia de compras provienen de Lisnon. Le siguen Oporto y el resto de ciudades con el mismo porcentaje (27.5).

6 Normalización y Separación de datos

Primero normalizamos los datos de 0 a 1

6.1 Normalización

```
In [48]: from sklearn import preprocessing

# escalamos data
dfcopy = spend_data.copy()
x = spend_data.values #returns a numpy array
x_scaled = preprocessing.MinMaxScaler().fit_transform(x)

# spendf es nuestro dataframe final
spendf = pd.DataFrame(x_scaled)
spendf.columns = spend_data.columns
spendf.head(8)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\utils\validation.py:595: DataConversionWarn
warnings.warn(msg, DataConversionWarning)

```
Channel Region
Out [48]:
                                                            Frozen Detergents_Paper
                               Fresh
                                          Milk
                                                 Grocery
        0
               1.0
                       1.0 0.112940
                                      0.130727 0.081464
                                                          0.003106
                                                                            0.065427
        1
               1.0
                       1.0 0.062899
                                      0.132824 0.103097
                                                          0.028548
                                                                            0.080590
                       1.0 0.056622 0.119181 0.082790
                                                          0.039116
        2
               1.0
                                                                            0.086052
```

```
3
      0.0
              1.0 0.118254 0.015536 0.045464 0.104842
                                                                 0.012346
4
      1.0
              1.0 0.201626 0.072914 0.077552 0.063934
                                                                 0.043455
5
      1.0
              1.0 0.083907
                            0.111706 0.055218 0.010535
                                                                 0.043896
6
      1.0
              1.0 0.108098 0.042809 0.075148 0.007478
                                                                 0.076842
7
      1.0
              1.0 0.067554 0.066732 0.101566 0.027020
                                                                 0.081276
```

Delicassen

- 0 0.027847
- 1 0.036984
- 2 0.163559
- 3 0.037234
- 4 0.108093
- 5 0.030204
- 6 0.011306
- 7 0.053463

6.2 Separacion de datos

Quitamos los datos que no nos van a ayudar para el clustering

```
Variables que hemos quitado := ['Channel', 'Region']
```

```
Out [56]:
                        Milk
                               Grocery
                                         Frozen Detergents Paper Delicassen
              Fresh
        0 0.112940 0.130727 0.081464 0.003106
                                                         0.065427
                                                                    0.027847
        1 0.062899 0.132824 0.103097
                                        0.028548
                                                         0.080590
                                                                    0.036984
        2 0.056622 0.119181 0.082790 0.039116
                                                         0.086052
                                                                    0.163559
        3 0.118254 0.015536 0.045464 0.104842
                                                         0.012346
                                                                    0.037234
        4 0.201626 0.072914 0.077552 0.063934
                                                         0.043455
                                                                    0.108093
        5 0.083907 0.111706 0.055218 0.010535
                                                         0.043896
                                                                    0.030204
        6 0.108098 0.042809 0.075148 0.007478
                                                         0.076842
                                                                    0.011306
        7 0.067554 0.066732 0.101566 0.027020
                                                         0.081276
                                                                    0.053463
```

7 Agrupamiento mediante el algoritmo K-means

7.1 Encontramos el valor de K

```
In [131]: X = xdf.copy()
    Nc = range(1, 30)
```

```
kmeans = [KMeans(n_clusters=i) for i in Nc]
score = [kmeans[i].fit(X).score(X) for i in range(len(kmeans))]
# representamos
plt.figure(figsize=(10,4))
plt.plot(Nc,score)
plt.xlabel('Number of Clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
plt.show()
```


7.2 Ejecutamos K-Means

```
In [147]: # elegimos el numero de cluster
         Ncluster = 6
         # hacemos el clustering
         kmeans = KMeans(n_clusters=Ncluster).fit(X)
          # Calculamos los centroides
         centroids = kmeans.cluster_centers_
         cdf = pd.DataFrame(centroids,columns=xdf.columns)
         cdf.head(Ncluster)
Out[147]:
               Fresh
                          Milk
                                 Grocery
                                            Frozen
                                                   Detergents_Paper
                                                                     Delicassen
         0 0.308148 0.062496 0.059363 0.095748
                                                           0.020392
                                                                       0.043001
         1 0.056418 0.231605 0.283480 0.029827
                                                           0.316686
                                                                       0.052914
         2 0.053867 0.113858 0.134704 0.024872
                                                           0.122630
                                                                       0.034514
         3 0.540078 0.409370 0.186594 0.624948
                                                           0.052665
                                                                       0.431741
         4 0.081539 0.033561 0.034026 0.045807
                                                           0.016939
                                                                       0.019994
         5 0.228270 0.591011 0.662548 0.042913
                                                           0.734156
                                                                       0.056441
```

7.2.1 Representamos resultados

```
In [156]: # Predicting the clusters
          labels = kmeans.predict(X)
          # Getting the cluster centers
          C = centroids
          colores=['red','green','blue','cyan','yellow','black','orange']
          colores = colores[0:Ncluster]
          asignar=[]
          for row in labels:
              asignar.append(colores[row])
In [188]: def plotmi_scatter(xdf,x1,x2,color_df,color_centroids):
              xdf = dataframe
              x1 = Variable 1 (string)
              x2 = Variable 2 (string)
              v = list(xdf.columns) # para buscar por columnas
              px1 = v.index(x1) #posicion argumento 1
              px2 = v.index(x2) # powicion argumento 2
              # dibujamos la figura
              plt.figure(figsize=(12,5))
              plt.scatter(xdf[x1], xdf[x2], c=color_df, s=70,edgecolors='black', alpha=0.6)
              plt.scatter(C[:, px1], C[:, px2], marker='*', c=color_centroids, s=1000, edgecolor
              plt.xlabel(x1)
              plt.ylabel(x2)
              plt.show()
In [242]: def plotmi_scatter2(xdf,x1,color_df,color_centroids,N):
              xdf = dataframe
              11 11 11
              v = list(xdf.columns) # para buscar por columnas
              plt.figure(figsize=(10,5))
              M = int(np.ceil(N/3))
              # dibujamos las figuras
              for i in range(0,N):
                  x2 = v[i]
                  px1 = v.index(x1) #posicion argumento 1
                  px2 = v.index(x2) # powicion argumento 2
                  plt.subplot(M,3,i+1)
                  plt.scatter(xdf[x1], xdf[x2], c=color_df, s=70,edgecolors='black', alpha=0.6
                  plt.scatter(C[:, px1], C[:, px2], marker='*', c=color_centroids, s=1000, edge
                  plt.xlabel(x1)
```

```
plt.ylabel(x2)
plt.show()
```

7.2.2 Fresh - Milk

7.2.3 Grocery - Frozen

7.3 Detergents Papers - Delicatessen

7.3.1 Comparación de 3 variables

7.3.2 Uno vs Todos

In [243]: x1 = 'Grocery'

plotmi_scatter2(xdf,x1,asignar,colores,6)

8 Métricas de ajuste

9 Análisis de resultados obtenidos

```
In [258]: dfa = pd.DataFrame(asignar,columns=['h'])
In [284]: df_colors = dfa.groupby('h')['h'].count()
          print(df_colors)
h
black
            5
blue
          104
cyan
            3
           29
green
           56
red
yellow
          243
Name: h, dtype: int64
In [290]: plt.figure(figsize=(15,10))
          plt.pie(df_colors,autopct='%1.1f%%',pctdistance=1.2,colors = df_colors.index,labels =
          plt.show()
```

