```
In [1]: from matplotlib import pyplot as plt
        from matplotlib.dates import MonthLocator, num2date
        from matplotlib.ticker import FuncFormatter
        from prophet import Prophet
        from prophet.diagnostics import cross validation, performance metrics
        from prophet.plot import add changepoints to plot
        import pandas as pd
        import numpy as np
        import datetime as dt
        from collections import defaultdict
        import time
        import datetime as dt
        from pytz import timezone
        tz = timezone('EST')
        from tqdm import tqdm
        from sklearn.metrics import mean absolute error, mean absolute percentage error,
        import seaborn as sns
        %config InlineBackend.figure format = 'retina'
        %matplotlib inline
        from matplotlib import pyplot as plt
        from matplotlib import style
        sns.set()
```

```
In [2]: wcmass2011 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_
    wcmass2011 = pd.read_excel(wcmass2011, 'WCMASS')
    wcmass2012 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_
    wcmass2012 = pd.read_excel(wcmass2012, 'WCMASS')
    wcmass2013 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_
    wcmass2013 = pd.read_excel(wcmass2013, 'WCMASS')
    wcmass2014 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_
    wcmass2014 = pd.read_excel(wcmass2014, 'WCMASS')
    wcmass2015 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_
    wcmass2016 = pd.read_excel(wcmass2015, 'WCMASS')
    wcmass2016 = pd.ExcelFile(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_
    wcmass2016 = pd.read_excel(wcmass2016, 'WCMA')
```

```
In [3]: wcmass2017 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly
wcmass2018 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly
wcmass2019 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly
wcmass2020 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly
wcmass2021 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly
wcmass2022 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly
```

In [4]: wcmass2022

Out[4]:

	Date	Hr_End	DA_Demand	RT_Demand	DA_LMP	DA_EC	DA_CC	DA_MLC	RT_LMP	RT_
0	2022- 01-01	1	1504.7	1464.508	32.14	32.35	-0.17	-0.04	25.89	25.
1	2022- 01-01	2	1462.8	1403.776	32.02	32.31	- 0.20	-0.09	25.80	25.
2	2022 - 01-01	3	1659.9	1354.681	30.72	30.85	0.00	-0.13	27.42	27.
3	2022 - 01-01	4	1644.5	1333.063	29.57	29.69	0.00	-0.12	25.05	25.
4	2022- 01-01	5	1888.0	1328.553	30.75	30.86	0.00	-0.11	29.18	29.
739	2022- 01-31	20	2518.6	2493.067	227.64	226.40	0.00	1.24	296.58	295.
740	2022- 01-31	21	2417.4	2413.789	203.98	202.82	0.00	1.16	265.20	264.
741	2022- 01-31	22	2281.6	2302.601	184.42	183.42	0.00	1.00	253.11	251.
742	2022- 01-31	23	2178.1	2164.109	180.87	179.93	0.00	0.94	191.96	190.
743	2022- 01-31	24	2019.3	2050.328	191.03	190.54	0.00	0.49	190.63	189.

744 rows × 14 columns

```
In [5]: val2011 = wcmass2011['DEMAND']
val2012 = wcmass2012['DEMAND']
val2013 = wcmass2013['DEMAND']
val2014 = wcmass2014['DEMAND']
val2015 = wcmass2015['DEMAND']
val2016 = wcmass2016['RT_Demand']
val2017 = wcmass2017['RT_Demand']
val2018 = wcmass2018['RT_Demand']
val2019 = wcmass2019['RT_Demand']
val2020 = wcmass2020['RT_Demand']
val2021 = wcmass2021['RT_Demand']
val2022 = wcmass2022['RT_Demand']
```

```
In [6]: values = [val2011, val2012, val2013, val2014, val2015, val2016, val2017, val2018,
    values_df = pd.concat(values, axis=0, ignore_index=False)
    values_df = values_df.reset_index()
    period = len(values_df)
```

```
In [7]: rng = pd.date range('2011-01-01', periods=period, freq='1H')
                                  date_df = pd.DataFrame({ 'ds': rng})
                                  date_df = date_df.reset_index()
   In [8]: frames = [date_df, values_df]
                                  wcmass_load = pd.concat(frames, axis=1, ignore_index=False)
                                  wcmass_load = wcmass_load.rename(columns={wcmass_load.columns[1]: 'ds', wcmass_load.columns[1]: 'ds', wcmass_load.columns
                                  frames2 = [wcmass load['ds'], wcmass load['y']]
                                  wcmass_load = pd.concat(frames2, axis=1, ignore_index=False)
                                  wcmass_load
   Out[8]:
                                                                                                          ds
                                                                                                                                           У
                                                  0 2011-01-01 00:00:00 1649.000
                                                  1 2011-01-01 01:00:00 1565.000
                                                  2 2011-01-01 02:00:00 1506.000
                                                  3 2011-01-01 03:00:00 1476.000
                                                  4 2011-01-01 04:00:00 1466.000
                                     97171 2022-01-31 19:00:00 2493.067
                                     97172 2022-01-31 20:00:00 2413.789
                                     97173 2022-01-31 21:00:00 2302.601
                                     97174 2022-01-31 22:00:00 2164.109
                                     97175 2022-01-31 23:00:00 2050.328
                                  97176 rows × 2 columns
    In [9]: model = Prophet(
                                                                changepoint prior scale=0.5,
                                                                seasonality_mode='multiplicative',
                                                                interval width=0.95,
                                  model.add_country_holidays(country_name='US')
   Out[9]:  content Out[9]:                                                                                                                                                                                                                                                                                                                                             <pr
In [10]: model.fit(wcmass load)
Out[10]:  content content
In [11]: | future_pd = model.make_future_dataframe(
                                                                periods=365,
                                                                freq='1H',
                                                                include history=True
                                                  )
                                  # make predictions
                                  forecast_pd = model.predict(future_pd)
```

In [12]: forecast_pd[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[12]:

	ds	yhat	yhat_lower	yhat_upper
97536	2022-02-16 00:00:00	1761.122629	1390.251276	2129.091105
97537	2022-02-16 01:00:00	1684.721337	1319.098654	2062.511536
97538	2022-02-16 02:00:00	1638.496032	1269.765555	2005.210705
97539	2022-02-16 03:00:00	1631.985403	1287.958402	1994.607378
97540	2022-02-16 04:00:00	1677.465528	1304.647857	2050.448628

In [13]: fig1 = model.plot(forecast_pd)

In [14]: fig2 = model.plot_components(forecast_pd)

In [15]: forecast_pd

Out[15]:

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	Christmas Day	Chr Day
0	2011- 01-01 00:00:00	2012.933189	1236.403366	1972.524810	2012.933189	2012.933189	0.0	
1	2011- 01-01 01:00:00	2012.957770	1164.117737	1913.543263	2012.957770	2012.957770	0.0	
2	2011- 01-01 02:00:00	2012.982351	1067.814610	1835.296039	2012.982351	2012.982351	0.0	
3	2011- 01-01 03:00:00	2013.006932	1053.524393	1836.980635	2013.006932	2013.006932	0.0	
4	2011- 01-01 04:00:00	2013.031513	1122.627421	1843.527527	2013.031513	2013.031513	0.0	
97536	2022- 02-16 00:00:00	1845.756072	1390.251276	2129.091105	1841.738318	1849.147526	0.0	
97537	2022- 02-16 01:00:00	1845.759800	1319.098654	2062.511536	1841.694359	1849.213289	0.0	
97538	2022- 02-16 02:00:00	1845.763528	1269.765555	2005.210705	1841.659059	1849.234697	0.0	
97539	2022- 02-16 03:00:00	1845.767257	1287.958402	1994.607378	1841.648901	1849.253512	0.0	
97540	2022- 02-16 04:00:00	1845.770985	1304.647857	2050.448628	1841.638743	1849.272326	0.0	

97541 rows × 73 columns

In []: