Quantum Optics June 5, 2024

Homework 4

Professor: Dr. Alfonso Isaac Jaimes Nájera

Francisco Javier Vázquez Tavares A00827546

Contents

1	Problem 4.16	1
2	Problem 5.6	2
3	Problem 5.9	2
4	Problem 5.10	3
5	Problem 5.12	3
6	Problem 5.14	3

1 Problem 4.16

A hydrogenic atom consists of a single electron orbiting a nucleus with Z protons (Z = 1 would be itself, Z = 2 is ionized helium, Z = 3 is doubly ionized lithium, and so on). Determine

- 1. Bohr energies $E_n(Z)$
- 2. Binding energy $E_1(z)$
- 3. Bohr radius a(Z)
- 4. Rydberg constant R(Z)

for a hydrogenic atom. (Express your answers as appropriate multiples of the hydrogen values.) Where in the electromagnetic spectrum would the Lyman series fall, for Z=2 and Z=3? Hint: There's nothing much to calculate here-in the potential

$$V(r) = -\frac{e^2}{4\pi\epsilon_0} \frac{1}{r}$$

 $e^2 \to Ze^2$, so all you have to do is make the same substitution in all the final results.

Solution 1: Possible spins for baryons

$$s = \left\{\frac{3}{2}, \frac{1}{2}\right\}.$$

Solution 2: Possible spins for mesons

$$s = \{1, 0\}$$
.

2 Problem 5.6

Imagine teo noninteracting particles, each of mass m, in the infinite square well. If one is in the state ψ_n (eqn 2.28), and the other in state ψ_l ($l \neq n$), calculate $\langle (x_1 - x_2)^2 | (x_1 - x_2)^2 \rangle$, assuming

2.28

- 1. they are distinguishable particles
- 2. they are identical bosons
- 3. they are identical fermions

Solution 3: Constant of normalization A

$$A = \frac{1}{\sqrt{2}}.$$

Solution 4: Constant of normalization A with $\psi_a=\psi_b$

$$A = \frac{1}{2}.$$

3 Problem 5.9

- 1. Suppose you put both electrons in a helium atom into the n=2 state; what would the energy of the emitted electron be?
- 2. Describe (quantitatively) the spectrum of the helium ion, He⁺.

Quantum Optics June 5, 2024

Solution 5: Hamiltonian of non-interacting identical particles

$$\hat{H}\psi(x_1, x_2) = 5K\psi(x_1, x_2), \quad K = \frac{\pi^2 \hbar^2}{2a^2 m}.$$

Solution 6: Energies and states of the next two excited states

$$\psi_{1,3} = \frac{\sqrt{2}}{a} \left[\sin\left(\pi \frac{x_1}{a}\right) \sin\left(3\pi \frac{x_2}{a}\right) - \sin\left(3\pi \frac{x_2}{a}\right) \sin\left(\pi \frac{x_1}{a}\right) \right], \quad E = 10K$$

$$\psi_{2,3} = \frac{\sqrt{2}}{a} \left[\sin\left(2\pi \frac{x_1}{a}\right) \sin\left(3\pi \frac{x_2}{a}\right) - \sin\left(3\pi \frac{x_2}{a}\right) \sin\left(2\pi \frac{x_1}{a}\right) \right], \quad E = 13K$$

4 Problem 5.10

Discuss (qualitatively) the energy level scheme for thelium if

- 1. electrons were identical bosons
- 2. if electrons were distinguishable particles (but with the same mass and charge). Pretend these "electrons" still have spin 1/2, so the spin configuration are the singlet and the triplet.

5 Problem 5.12

- 1. Figure out the electron configurations (in the notation of eqn 5.33) for the first two rows of the periodic table (up to neon), and check your results against table 5.1
- 2. Figure out the corresponding total angular momenta, in the notation of eqn 5.34, for the first four elements. List all possibilities for boron, carbon and nitrogen.

6 Problem 5.14

The ground state of dysprosium (element 66, in the 6th row of the Periodic Table) is listed as ${}^{5}I_{8}$. What are the total spin, total arbital and grand total angular momentum quantum numbers? Suggest a likely electron configuration for dysprosium.