Privacy Proofs for OpenDP: Bounded Sum with Known n

Sílvia Casacuberta

Summer 2021

Contents

1	Algorithm Implementation	
	1.1	Code in Rust
	1.2	Pseudocode in Python
2	Proof	
	2.1	Symmetric Distance
	2.2	First proof: using the path property (adjacent pairs approach)
	2.3	Second proof: direct method (all pairs approach)
		2.3.1 General inequality

1 Algorithm Implementation

1.1 Code in Rust

The current OpenDP library contains the transformation make_bounded_sum_n implementing the bounded sum function with known n. This is defined in lines 36-55 of the file sum.rs in the Git repository¹ (https://github.com/opendp/opendp/blob/main/rust/opendp/src/trans/sum.rs#L36-L55).

1.2 Pseudocode in Python

We present a simplified Python-like pseudocode of the Rust implementation below. The necessary definitions for the pseudocode can be found at "List of definitions used in the pseudocode".

Preconditions

To ensure the correctness of the output, we require the following preconditions:

• User-specified types:

- Variable n must be of type usize.
- Type T must have traits DistanceConstant(IntDistance), TotalOrd,² CheckedMul,
 Sum(Output=T), Sub(Output=T), and ExactIntCast(usize).

¹Updated on August 5, 2021.

²For now, the OpenDP library only implements PartialOrd, but TotalOrd will soon be implemented. Then, TotalOrd will be redundant, since the trait TotalOrd is part of the trait DistanceConstant.

```
pub fn make_bounded_sum_n<T>(
    lower: T, upper: T, length: usize
) -> Fallible<Transformation<SizedDomain<VectorDomain<IntervalDomain<T>>>>, AllDomain<T>>, SymmetricDistance, AbsoluteDistance<T>>>>
    where T: DistanceConstant<IntDistance> + Sub<Output=T>, for <'a> T: Sum<&'a T> + ExactIntCast<usize> + CheckedMul,
          IntDistance: InfCast<T> {
    let length_ = T::exact_int_cast(length)?;
    if lower.checked_mul(&length_).is_none()
        upper.checked_mul(&length_).is_none() {
        return fallible!(MakeTransformation, "Detected potential for overflow when computing function.")
        SizedDomain::new(VectorDomain::new(IntervalDomain::new(
            Bound::Included(lower.clone()), Bound::Included(upper.clone()))?), length),
        AllDomain::new(),
        Function::new(|arg: &Vec<T>| arg.iter().sum()),
        SymmetricDistance::default(),
        AbsoluteDistance::default(),
        // d out >= d_in * (M - m) / 2
        StabilityRelation::new_from_constant((upper - lower) / T::exact_int_cast(2)?)))
```

IntDistance must have trait InfCast(T). Question: Same question that Connor asked in make_count - this is not needed for the proof.

Postconditions

• Either a valid Transformation is returned or an error is returned.

```
def MakeBoundedSumN(L: T, U: T, n: usize):
      input_domain = SizedDomain(VectorDomain(IntervalDomain(L, U)), n)
      output_domain = AllDomain(T)
3
      input_metric = SymmetricDistance()
4
      output_metric = AbsoluteDistance(T)
5
6
      n_ = exact_int_cast(n, T)
      if checked_mul(L, n_).is_none or checked_mul(U, n_).is_none:
          raise Exception('Potential overflow')
      def relation(d_in: u32, d_out: T) -> bool:
          return d_out >= inf_cast(d_in, T) * (U - L) / exact_int_cast(2, T)
      def function(data: Vec[T]) -> T:
14
          return sum(data)
15
16
      return Transformation(input_domain, output_domain, function,
17
      input_metric, output_metric, stability_relation = relation)
```

2 Proof

2.1 Symmetric Distance

Theorem 1. For every setting of the input parameters (L, U, n) to MakeBoundedSumN, the transformation returned by MakeBoundedSumN has the following properties:

- 1. (Appropriate output domain). For every element v in $input_domain$, function(v) is in $output_domain$.
- 2. (Domain-metric compatibility). The domain input_domain matches one of the possible domains listed in the definition of input_metric, and likewise output_domain matches one of the possible domains listed in the definition of output_metric.
- 3. (Stability guarantee). For every pair of elements v, w in $input_domain$ and for every pair (d_in, d_out) , where d_in is of the associated type for $input_metric$ and d_out is the associated type for $output_metric$, if v, w are d_in -close under $input_metric$ and $relation(d_in, d_out) = True$, then function(v), function(v) are d_out -close under $output_metric$.

Proof. (Appropriate output domain). In the case of MakeBoundedSumN, this corresponds to showing that for every vector v in SizedDomain(VectorDomain(IntervalDomain (L, U)), n), where L and U have type T, function(v) belongs to AllDomain(T). The output correctness follows from the type signature of function as defined in line 14 and from the overflow check done through the checked_mul function in line 9. The latter ensures that function(v) is contained within the interval [get_min_value(T), get_max_value(T)], and hence prevents any overflow from occurring in line 15. Otherwise, an exception for potential overflow will be raised, as described in line 9. The former automatically enforces that function(v) has type T. Since the Rust code successfully compiles, by the type signature the appropriate output domain property must hold. Otherwise, the code will raise an exception for incorrect input type.

Question: Should I say something about the exact_int_cast check?

(Domain-metric compatibility). For MakeBoundedSumN, this corresponds to showing that SizedDomain(VectorDomain(IntervalDomain (L, U)), n) is compatible with symmetric distance, and that AllDomain(T) is compatible with absolute distance. The latter follows directly from the list of compatible domains in the definition of absolute distance, as described in "List of definitions used in the pseudocode". The former follows from the compatibility of symmetric distance and VectorDomain(D) as stated in the definition of symmetric distance along with the fact that SizedDomain(VectorDomain(D)) is a subdomain of VectorDomain(D). By Theorem 2.1 in "List of definitions used in the pseudocode", this implies that SizedDomain(VectorDomain(D)) is compatible with symmetric distance as well.

(silvia) Flag: this is an example of the subdomain issues that we have been discussing during the week of July 19. Hence this paragraph might need some phrasing updates when the compatibility pairing constructor and the subdomain trait are implemented.

(Stability guarantee). Throughout the stability guarantee proof, we can assume that function(v) and function(w) are in the correct output domain, by the appropriate output domain property shown above.

Since by assumption relation(d_in, d_out) = True, by the MakeBoundedSumN stability relation (as defined in line 11 in the pseudocode), we have that d_out \geq d_in \cdot (U - L)/2.

Moreover, v, w are assumed to be d_in-close. By the definition of the symmetric difference metric, this is equivalent to stating that $d_{Sym}(v, w) = |\text{MultiSet}(v)\Delta \text{MultiSet}(w)| \leq d_{\text{in}}$. Further, applying the histogram notation,³ it follows that

$$d_{Sym}(v,w) = \|h_v - h_w\|_1 = \sum_z |h_v(z) - h_w(z)| \le \mathtt{d_iin}.$$

We want to show that

$$d_{Abs}(\mathtt{function}(v),\mathtt{function}(w)) \leq d_{Sym}(v,w) \cdot \frac{\mathtt{U-L}}{2}.$$

This would imply that

$$d_{Abs}(\texttt{function}(v),\texttt{function}(w)) \leq d_{Sym}(v,w) \cdot \frac{\texttt{U-L}}{2} \leq \texttt{d_in} \cdot \frac{\texttt{U-L}}{2}, \tag{1}$$

and by the stability relation this will imply that

$$d_{Abs}(\text{function}(v), \text{function}(w)) \le d_{-}\text{out},$$
 (2)

as we want to see. \Box

2.2 First proof: using the path property (adjacent pairs approach)

To show that $d_{Abs}(\texttt{function}(v), \texttt{function}(w)) \leq d_{Sym}(v, w) \cdot \frac{\texttt{U-L}}{2}$, we will use the three lemmas described in the section "The path property of symmetric distance on sized domains" from Section 4.2 in the document "List of definitions used in the proofs". With these three lemmas, which are applicable to MakeBoundedSumN because input_domain is a sized domain and input_metric is symmetric distance, it suffices to show the following: For all vectors $x, y \in \texttt{input_domain}$ such that $d_{Sym}(x, y) = 2$, it follows that

$$d_{Abs}(function(x), function(y)) \leq U - L.$$

By Lemma 4.3 from "List of definitions used in the proofs", we know that vectors x, y only differ on one element, given that, by assumption, $d_{Sym}(x, y) = 2$. Wlog, let this different element be the k-th element of x and y, where $x_k = \alpha$, $y_k = \beta$ with $\alpha \neq \beta$.⁴ Then,

$$d_{Abs}(function(x), function(y)) = |function(x) - function(y)| =$$

$$= \Big| \sum_{i=0}^{\mathsf{n}-1} x_i - \sum_{i=0}^{\mathsf{n}-1} y_i \Big| = \Big| \sum_{i=0}^{\mathsf{n}-1} (x_i - y_i) \Big| = |0 + (x_k - y_k)| = |\alpha - \beta| \le |\mathtt{U-L}| = \mathtt{U-L},$$

since $U \ge L$. Therefore, applying Lemma 4.4 from "List of definitions used in the proofs", it follows that function is (U-L)/2-stable. By definition, this implies that for any $v, w \in input_domain$,

$$d_{Abs}(\texttt{function}(v), \texttt{function}(w)) \le d_{Sym}(v, w) \cdot (\texttt{U-L})/2.$$

³Note that there is a bijection between multisets and histograms, which is why the proof can be carried out with either notion. For further details, please consult https://www.overleaf.com/project/60d214e 390b337703d200982.

⁴The first element of a vector is indexed by 0.

Lastly, by Equations 1 and 2 this implies that

$$d_{Abs}(function(v), function(w)) \leq d_{-}out,$$

as we want to prove.

(silvia) Flag: this will be updated to the more general notion of path property (through shortest path metric on a graph), but this matches the current version of the proofs document.

(silvia) Flag: need to account for rounding errors in the stability relation given the non-closure of float addition, as discussed on the week of August 2nd. We are figuring this out

2.3 Second proof: direct method (all pairs approach)

2.3.1 General inequality

The general statement that we will need to prove is the following. For any elements $a_1, \ldots, a_n \in [L, U]$ and $b_1, \ldots, b_n \in \mathbb{Z}$ such that $\sum_i b_i = 0$,

$$\left| \sum_{i} a_i b_i \right| \le \frac{a_{\max} - a_{\min}}{2} \cdot \left(\sum_{i} |b_i| \right).$$

Note that this corresponds to the tightest possible [L, U] interval.

Let u denote the vector formed by all the elements of v and w without multiplicities (i.e., u contains exactly once each of the elements in $\text{MultiSet}(v) \cup \text{MultiSet}(w)$, in any order). Let u_i denote the i-th element of u, and similarly for v and w, and let m denote len(u). Then, by definition,

$$d_{Sym}(v, w) = \sum_{z} |h_v(z) - h_w(z)| = \sum_{i} |h_v(u_i) - h_w(u_i)|;$$

 $d_{Abs}(\texttt{function}(v),\texttt{function}(w)) = \left|\texttt{function}(v) - \texttt{function}(w)\right| = \left|\sum_i v_i - \sum_i w_i\right| = \left|\sum_i v_i\right| = \left|\sum_i v_i - \sum_i w_i\right| = \left|\sum_i v_i\right| = \left$

$$= \Big| \sum_{i} u_i \cdot h_v(u_i) - \sum_{i} u_i \cdot h_w(u_i) \Big| = \Big| \sum_{i} u_i \cdot (h_v(u_i) - h_w(u_i)) \Big|.$$

Because by assumption $v, w \in \text{input_domain} = \text{SizedDomain}(\text{VectorDomain}(\text{IntervalDomain}(L, U)), n), we know that <math>\text{len}(v) = \text{len}(w) = n$. Therefore,

$$\sum_{i} (h_v(u_i) - h_w(u_i)) = \mathbf{n} - \mathbf{n} = 0.$$
(3)

We now separate the positive values from the negative ones by defining vectors x, y, λ and μ as follows. Let

$$h_v(u_{k_1}) - h_w(u_{k_1}) \le \ldots \le 0 \le h_v(u_{k_m}) - h_w(u_{k_m})$$

be the sequence of the $\{h_v(u_i) - h_w(u_i)\}$ in increasing order. Let s be the smallest value such that $h_v(u_{k_s}) - h_w(u_{k_s})$ is greater or equal to 0 (we set t = m if all the values are negative). Then, we define the vector entries of x, y, λ, μ as

$$x_j = h_v(u_{k_j}) - h_w(u_{k_j}),$$
$$\lambda_j = u_j,$$

for $s \leq j \leq m$, and

$$y_j = h_v(u_{k_j}) - h_w(u_{k_j}),$$
$$\mu_j = u_j$$

for $0 \le j < s$. That is, x contains all of the positive values and y all of the negative ones.

⁵It is not necessary that the entries of x_j and y_j are ordered; only that they only contain positive and negative values, respectively, and that the λ and μ values match their corresponding indices.

Let r denote the length of vectors x and λ as constructed above, and by construction s denotes the length of vectors y and μ above (where r+s=m). Hence we obtain the values $x_1, \ldots, x_r \geq 0$ and $y_1, \ldots, y_s \leq$ for some $r, s \in \mathbb{Z}$, such that

$$\sum_{i} x_i + \sum_{j} y_j = 0 \quad \text{and so} \quad \sum_{i} x_i = \sum_{j} |y_j|,$$

by Equation 3. Then,

$$\begin{split} d_{Abs}(\text{function}(v), \text{function}(w)) &= \Big| \sum_i u_i \cdot (h_v(u_i) - h_w(u_i)) \Big| = \\ &= |\lambda_1 x_1 + \dots + \lambda_r x_r + \mu_1 y_1 + \dots + \mu_s y_s| = \Big| \overline{\lambda} \sum_i x_i + \overline{\mu} \sum_j y_j \Big| = \\ &= \frac{|\overline{\lambda} - \overline{\mu}|}{2} \Big(\sum_i x_i + \sum_j |y_j| \Big) = |\overline{\lambda} - \overline{\mu}| \sum_i x_i, \end{split}$$

where

$$\overline{\lambda} = \frac{\sum \lambda_i x_i}{\sum x_i}, \quad \overline{\mu} = \frac{\sum \mu_j y_j}{\sum y_j} = \frac{\sum \mu_j |y_j|}{\sum |y_j|};$$

i.e., they correspond to the weighted arithmetic mean.

By definition of the input_domain, the entries of v and w are contained within the interval [L, U], and hence $U \ge \max\{\lambda_i, \mu_j\}$ and $L \le \min\{\lambda_i, \mu_j\}$. Then,

$$\frac{\mathbf{U} - \mathbf{L}}{2} \Big(\sum_i x_i + \sum_j |y_j| \Big) = \frac{\mathbf{U} - \mathbf{L}}{2} \cdot 2 \sum_i x_i = (\mathbf{U} - \mathbf{L}) \sum_i x_i.$$

Since $|\overline{\lambda} - \overline{\mu}| \leq U-L$, it follows that

$$\begin{split} d_{Abs}(\texttt{function}(v), \texttt{function}(w)) &= \frac{\overline{\lambda} - \overline{\mu}}{2} \Big(\sum_i x_i + \sum_j |y_j| \Big) = \frac{\overline{\lambda} - \overline{\mu}}{2} \Big(\sum_i x_i - \sum_j y_j \Big) = \\ &\frac{\overline{\lambda} - \overline{\mu}}{2} \Big(\sum_i |h_v(u_i) - h_w(u_i)| \Big) = \frac{\overline{\lambda} - \overline{\mu}}{2} \cdot d_{Sym}(v, w) \leq \frac{\texttt{U-L}}{2} \cdot d_{Sym}(v, w). \end{split}$$

Hence,

$$d_{Abs}(\texttt{function}(v),\texttt{function}(w)) \leq \frac{\texttt{U-L}}{2} \cdot d_{Sym}(v,w),$$

as we wanted to show.