

Masayu Leylia Khodra (masayu@informatika.org)

KK IF – Teknik Informatika – STEI ITB

Modul 5: Classification

02 Design of Experiments

Pengenalan Pola (*Pattern Recognition*)

Design of Experiment: What

An experiment is a test or a series of tests where we play with the factors that affect the output.

- Factors may be the algorithm, training set, input features, etc.
- Observe the changes in the response (performance measure) to be able to extract information.

Design of Experiment: Why

No free lunch theorem (Wolpert, 1995)

Need systematic experiment manage the experiments you have done, that are running, and that you want to run

Average applied machine learning project may require tens to thousands of discrete experiments

Machine learning experiments can take a long time.

Design of Experiment: Aim

https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c

identify the most important factors, and remove the unimportant ones

find configuration of the factors that optimizes the response

ML: highest generalization accuracy, minimal complexity, and robust

Experimental Factors

Controllable factors: learning algorithm, algorithm parameters, dataset, input representation, feature set.

Uncontrollable factors: noise in the data, resampling data, randomness in initial state

Guidelines for ML Experiments

Aim of study

Selection of response variable

Choice of factors and levels

Choice of experi-mental design

Perfor ming experiment

Statistical analysis of data

Conclusion and recommen dation

Design and analysis of machine learning experiments:

https://www.cs.purdue.edu/homes/neville/courses/573/readings/08_design-and-analysis-expts.pdf

Strategies of Experiments

Two factors and five levels each

One Factor at A Time

Factorial Design / Grid Search

EDUNEX ITE

Design and analysis of machine learning experiments:

Best Guess

https://www.cs.purdue.edu/homes/neville/courses/573/readings/08_design-and-analysis-expts.pdf

Validation Schematic

Hold-out validation

K-fold cross validation

Validation Schematic: Bootstrap validation

resampling with replacement

Keterangan:

Validation Training data

Bootstrapped Sample (n=5)

Bootstrapping Validation

- Bootstrap samples may overlap more than cross-validation samples
- Their estimates are more dependent
- The best way to do resampling for very small datasets

Experiment Strategies: One Factor at A Time

Id	Parameter	Variasi	Jumlah	Total
P1	Pembaruan bobot	Stochastic gradient descent, mini-batch gradient descent	2	2
P2	Jenis RNN	GRU, LSTM, BiGRU, BiLSTM	4	4
P3	Jenis word embedding	Double embeddings, domain-specific embeddings, general- purpose embeddings, merge embeddings	4	4
P4	Pengaruh penggunaan coupled attentions	Model dengan coupled attentions, model tanpa coupled attentions	2	2
P5	Hidden units	25, 50, 75	3	81
	Coupled attention layers	1, 2, 3	3	
	Jumlah tensor	10, 15, 20	3	
	Dropout rate	0, 0.2, 0.5	3	
Total				93

Summary

DoE: What & Why

Guidelines

Strategies: best guess, one factor at a time, grid search

Validation: holdout, k-fold cross validation, bootstrap validation

