Una tubería metálica cuyo diámetro es 0.393m transporta vapor a una temperatura T=176°C, y está recubierta con un espesor de 0,05m de aislante térmico, cuya conductividad térmica es $\lambda_{Ais} = 0,048 \frac{w}{mK}$. La longitud de la tubería es L=18m y la temperatura del ambiente es $T_A=34^{\circ}C$. Calcule el espesor del aislante adicional que habrá que añadir al existente si se pretende reducir en un 42% la pérdida de energía calórica por unidad de tiempo. Considere la temperatura del fluido igual a la de la superficie interna y externa de la tubería. Desprecie los efectos convectivos en la superficie aislante-

El gráfico muestra 2 caminos que pueden ser tomados por un gas, modelado como ideal, desde el estado inicial i al estado final f. El camino 1 consiste en una expansión isotérmica $|W_{ia}| = 50J$, una expansión adiabática $|W_{ab}| = 40J$, una compresión isotérmica $|W_{bc}| = 30J$, y una compresión adiabática $|W_{cf}| = 25J$. Todas las evoluciones son reversibles. Calcule la variación en la energía interna del gas si evoluciona desde el estado i al f pero por el camino 2.

ambiente, y resolver en la hipótesis de simetría cilíndrica infinita.

ISOTERMICA

3) Por el nodo A del tramo de circuito de la figura ingresa una corriente I = 1 A. Calcule la carga en el capacitor C en estado estecionario indicando la polaridad.

4) Los capacitores C₁, C₂ y C₃ están inicialmente descargados. C₁ y C2 se cargan mediante la fuente Vin al colocar la llave S1en la posición 1. Una vez cargados se coloca la llave S₁ en la posición 2. $C_1 = 11\mu F$; $C_2 = 19\mu F$; $C_3 = 9\mu F$; Vin = 47V a) Calcule la carga final almacenada en el capacitor C3. b) Si ahora se vuelve a colocar la llave S1 en la posición 1, y suponiendo que la energía almacenada en C3 es 648µJ y la placa cargada positivamente es la de la derecha, calcule la diferencia de potencial entre los bornes 1 y 2, o sea: V_1 - V_2 .

5) Un conductor hueco rectilíneo modelado como infinito tiene la dirección del eje Z una intensidad de corriente constante y uniforme $I_2 = I A$ en sentido -k. Su centro está en el origen de coordenadas (0;0;0) y tiene un radio interno $R_2 = 5$ cm y radio externo $R_3 = 5.5$ cm. Otro conductor rectilíneo paralelo al anterior de sección circular de radio $R_1 = 1$ cm se encuentra en su interior y el centrado en C1=(2cm;0;0) y tiene una corriente $I_1 = 1$ A en sentido +k, constante y uniforme. Calcule el vector **B** en el punto A = (8cm; 0; 0). Dato: $\mu o = 4.\pi. 10^{-7} H/m$

6) La barra conductora DC se desliza hacia la derecha y sin fricción, sobre dos rieles conductores rectos y paralelos, ubicados sobre un plano horizontal. La distancia entre los rieles es L = 0.5 m y la fuerza exterior que mantiene a la barra avanzando con velocidad constante tiene un módulo de 6 N. Todo el conjunto está inmerso en un campo de inducción magnética exterior al circuito, uniforme y estacionario, de módulo 1,5 T. Considerando despreciable el campo producido por el circuito, calcule: a) La corriente y la fem inducidas en el circuito, indicando a cuál punto de la barra (D o C) le corresponde el mayor potencial. b) El módulo de la velocidad con la que se mueve la barra y la potencia desarrollada por la fuerza exterior.

Un circuito RLC serie está conectado a un generador de 15 V eficaces y pulsación $\omega = 250 \, s^{-1}$. La bobina es ideal y su inductancia es $L = 20 \, mH$. La capacidad eléctrica del capacitor es $C_1 = 2000 \ \mu F$. a) Calcule los valores posibles de la resistencia R para lograr que la potencia activa o media sea de 36 W. b) Determine qué capacidad C2 debería tener y de qué forma debería conectar un segundo capacitor para que el circuito resuene con el mismo generador, la misma bobina y ambos capacitores juntos conectados de la manera que usted considere adecuada (en serie o en paralelo).

