Information Theory Practice Set 11

Lakshmi Prasad Natarajan

Solutions are not to be returned

Notation: Bold letters \boldsymbol{x} , \boldsymbol{y} denote sequences or vectors, whereas x, y are scalars. Random vectors are denoted as \boldsymbol{X} , \boldsymbol{Y} . Components of \boldsymbol{x} are x_1, \ldots, x_n .

Review

- Recall the proof that the MAP rule minimizes the probability of error in hypothesis testing.
- In the MAP rule for decoding, suppose there are two codewords both of which yield the maximum value of a posteriori probability $p(\boldsymbol{x}(w)|\boldsymbol{y})$, what should the decoder do?

Practice Set

- 1. AWGN Channel. Consider the AWGN channel with $\mathcal{X} = \mathcal{Y} = \mathbb{R}$. The input X and output Y are related as Y = X + Z, where Z is independent of X and follows a Gaussian distribution with mean 0 and variance σ^2 .
 - (a) For a single use of this channel, what is the conditional distribution of output y given input x, i.e., what is the conditional probability density function f(y|x)?
 - (b) If the channel is used n times, what is $f(y_1, \ldots, y_n | x_1, \ldots, x_n)$?
 - (c) Suppose $C = \{x(1), \dots, x(M)\}$ is an (M, n) code for this channel. Which of the following is the optimal decoder $g^*(y)$ for this channel:

$$\hat{w} = \arg\min_{w} \sum_{i=1}^{n} (y_i - x_i(w))^2$$
, or $\hat{w} = \arg\min_{w} \sum_{i=1}^{n} |y_i - x_i(w)|$.

- (d) Define the optimal decision regions $\mathcal{D}(w) = \{ \boldsymbol{y} \mid g^*(\boldsymbol{y}) = w \}$ for $w = 1, \dots, M$, that is, $\mathcal{D}(w)$ is the set of all possible channel outputs that are decoded to $\hat{w} = w$ by the optimal decoder. Draw the decision regions $\mathcal{D}(1), \dots, \mathcal{D}(M)$ for the following codes in the AWGN channel:
 - i. Binary Phase Shift Keying (BPSK) Modulation. Here, n = 1, M = 2, $C = \{+a, -a\}$, where a > 0.
 - ii. Binary Frequency Shift Keying (BFSK) Modulation. Here, $n=2, M=2, \mathcal{C}=\{(+a,0),(0,+a)\}$, where a>0.
 - iii. Bi-Orthogonal Modulation. $n = 2, M = 4, C = \{(+a, 0), (0, +a), (-a, 0), (0, -a)\}.$
 - iv. M-ary Phase Shift Keying (PSK) Modulation. $n=2, M \geq 3, C = \{(\cos(\frac{2\pi w}{M}), \sin(\frac{2\pi w}{M})) : w=1,\ldots,M\}.$
- 2. What is the optimal decoding rule for the binary erasure channel? Explain why.
- 3. Hamming Distance. Let $\boldsymbol{x}, \boldsymbol{y}$ be two vectors in $\{0,1\}^n$. The Hamming distance between them is defined as $d(\boldsymbol{x}, \boldsymbol{y}) = |\{i : x_i \neq y_i\}|$.
 - (a) For a given x, how many vectors y are there such that $d(x,y) \le t$, where t is a positive integer.
 - (b) Assume that a vector \boldsymbol{x} is sent via BSC(δ). Let \boldsymbol{Y} denote the random vector observed as the channel output when the input is \boldsymbol{x} . What is the probability that \boldsymbol{Y} and \boldsymbol{x} differ in at the most t positions, i.e., find $P[d(\boldsymbol{x},\boldsymbol{Y}) \leq t]$.

Remark: The Hamming distance satisfies triangle inequality, that is for any three vectors x, y, z, we have

$$d(\boldsymbol{x}, \boldsymbol{y}) \leq d(\boldsymbol{x}, \boldsymbol{z}) + d(\boldsymbol{z}, \boldsymbol{y}).$$

The Hamming distance is also symmetric, d(x, y) = d(y, x). Further, d(x, y) = 0 if and only if x = y.

4. Minimum distance of a code. Assume $\mathcal{X} = \{0, 1\}$. An (M, n) code is a collection of M binary vectors of length $n, \mathcal{C} = \{\boldsymbol{x}(1), \dots, \boldsymbol{x}(M)\}$.

The minimum distance d_{\min} of the code C is the smallest Hamming distance between any two codewords. That is

$$d_{\min} = \min_{w \neq w'} d(\boldsymbol{x}(w), \boldsymbol{x}(w')).$$

Find the minimum distance of the following codes:

- (a) $C = \{(0,0,0,0), (1,1,1,1), (1,1,0,0), (0,0,1,1)\}.$
- (b) Repetition Code. $n \ge 2$, M = 2, $C = \{(0, 0, ..., 0), (1, 1, ..., 1)\}$.
- (c) Single Parity Check Code. Let $n \geq 2$. C is the collection of all binary sequences of length n such that the number of 1's in it is even.

Hint: Solve this first for n = 3, 4. Explicitly list all the codewords of single parity-check code for n = 3, 4. Later extend your argument to any value of n.

5. Consider the BSC(δ) channel with $\delta < 0.5$. Suppose we use a code $\mathcal C$ of length n and minimum distance d_{\min} in this channel. We will derive an upper bound on P_e when the optimal decoder is used. For this, assume that t is an integer such that $d_{\min} \geq 2t + 1$. Usually, we choose t to be the largest integer such that $d_{\min} \geq 2t + 1$. For instance, if $d_{\min} = 5$ we have t = 2, or if $d_{\min} = 4$ we have t = 1.

Note that $\mathcal{X} = \mathcal{Y} = \{0, 1\}$, and $\mathcal{C} = \{\boldsymbol{x}(1), \dots, \boldsymbol{x}(M)\}$. If $\boldsymbol{x}(w)$ is transmitted and \boldsymbol{y} is received, then the number of bit-flips introduced by the channel is exactly $d(\boldsymbol{x}(w), \boldsymbol{y})$. Also, recall that the optimal decoder for BSC is $g^*(\boldsymbol{y}) = \arg\min_{\boldsymbol{w}} d(\boldsymbol{x}(w), \boldsymbol{y})$.

- (a) Argue that for any $w \neq w'$, we have $d(\boldsymbol{x}(w), \boldsymbol{x}(w')) \geq d_{\min}$.
- (b) Assume that $\boldsymbol{x}(w)$ is transmitted and the channel introduces t or fewer bit-flips, i.e., the channel output \boldsymbol{y} satisfies $d(\boldsymbol{x}(w),\boldsymbol{y}) \leq t$. Use triangle inequality of Hamming distance to show that

$$d(\boldsymbol{x}(w'), \boldsymbol{y}) \ge t + 1 > d(\boldsymbol{x}(w), \boldsymbol{y}).$$

Remark: If the channel introduces t or fewer bit-flips, then the received vector \boldsymbol{y} is closer to the transmitted codeword $\boldsymbol{x}(w)$ than any other codeword $\boldsymbol{x}(w')$, $w' \neq w$.

(c) Argue that if the number of bit-flips in the channel is less than or equal to t, then the optimal decoder outputs the correct value, i.e., $d(\mathbf{X}(W), \mathbf{Y}) \leq t \Rightarrow \hat{W} = W$. Note that this is a sufficient condition for correct decoding.

Remark: This implies that if the optimal decoder makes a mistake, then necessarily the number of bit-flips is t+1 or more.

(d) Prove that for the optimal decoder we have $P_e \leq \sum_{i=t+1}^n \binom{n}{i} \delta^i (1-\delta)^{n-i}$.

Remark: For sufficiently small values of δ , this upper bound on P_e is approximately equal to $\binom{n}{t+1}\delta^{t+1}$, which can be much smaller than δ . Thus, by using a code with large t (i.e., large d_{\min}), we can guarantee a small upper bound on P_e .

Such codes are called t-error correcting codes – since the decoder makes no mistake even if the channel introduces up to t 'errors' or bit-flips (hence, the code is able to 'correct' t errors). Achieving large values of d_{\min} comes at the cost of reductions in code rate.

One of the main problems in *coding theory* is to design codes with large rate and simultaneously small P_e (either by having a large d_{\min} or otherwise). This involves abstract algebra, combinatorics and graph theory.

Following are some examples of well-known families of codes:

- Hamming Codes. Length $n=2^m-1$ for some $m\geq 3,$ $d_{\min}=3,$ Rate $R=\frac{2^m-m-1}{2^m-1}.$
- Primitive BCH Codes. Length $n=2^m-1$ for some $m\geq 3$, $d_{\min}\geq 2t+1$, $R\geq \frac{2^m-1-mt}{2^m-1}$.
- Reed-Muller Codes. $n=2^m$ for $m \ge 1$, $d_{\min}=2^{m-r}$, where $0 \le r \le m$, and $R=\frac{1}{2^m}\sum_{i=0}^r \binom{m}{i}$.