Logică EXAMEN – 20.01.2021

Rândul 3

Subiectul 1. a) Definițiile reuniunii, intersecției și compunerii a două relații.

b) Fie A = $\{1, 2, 3, 4, 5\}$ si R, S, S' \subseteq A \times A, unde

 $R = \{(1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,1), (4,3), (5,2), (5,4), (3,2)\},\$

 $S = \{(1,1), (1,5), (4,3), (2,4), (3,4)\}, S' = \{(1,4), (5,4), (1,2), (2,5), (3,3), (4,4)\}.$

Să se determine relația $(R \circ S) \cap (R \circ S')$.

c) Fie relațiile $\tau = (C, D, S)$, $\sigma = (C, D, S)$ și $\rho = (A, B, S)$. Să se arate că: $(\sigma \cup \tau) \circ \rho = (\sigma \circ \rho) \cup (\tau \circ \rho)$. Să se precizeze toate tautologiile care au fost folosite în demonstrație.

Subiectul 2. a) Teorema I de factorizare (enunţ).

b) Să se aplice în cazul funcției $f: A \rightarrow B$, unde $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $B = \{a, b, c, d\}$ și

χ	1	2	3	4	5	6	7	8
f(x)	b	d	b	d	а	b	b	d

c) Fie $f: A \to B$ o funcție. Să se arate că ker f este relație de echivalență pe A.

Subiectul 3. a) Mulțimi ordonate, bine ordonate (2 definiții).

- b) Principiul inducției complete pentru mulțimi bine ordonate (enunțul corolarului).
- c) Să se arate că (\mathbb{N}, \leq) este bine ordonată.

Subiectul 4. Mulțimea numerelor raționale:

- a) Construcție, definițiile operațiilor și a relației de ordine.
- b) Să se verifice proprietatea de distributivitate.

Logic EXAM - 20.01.2021

Row 3

Question 1. a) State the definitions of the union, intersection and composition of two relations.

b) Let $A = \{1, 2, 3, 4, 5\}$, and let $R, S, S' \subseteq A \times A$, where

 $R = \{(1,2), (1,3), (1,5), (2,3), (2,4), (2,5), (4,1), (4,3), (5,2), (5,4), (3,2)\},$

 $S = \{(1,1), (1,5), (4,3), (2,4), (3,4)\}, \ S' = \{(1,4), (5,4), (1,2), (2,5), (3,3), (4,4)\}. \ \text{Find the relation } (R \circ S) \cap (R \circ S').$

c) Consider the relations $\tau = (C, D, S)$, $\sigma = (C, D, S)$ and $\rho = (A, B, S)$. Prove that $(\sigma \cup \tau) \circ \rho = (\sigma \circ \rho) \cup (\tau \circ \rho)$. State separately all the tautologies which have been used in the proof.

Question 2. a) State the 1st Factorization Theorem.

b) Apply the theorem in the case of the function $f: A \to B$, where $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $B = \{a, b, c, d\}$ and

	χ	1	2	3	4	5	6	7	8
ĺ	f(x)	b	d	b	d	а	b	b	d

c) Let $f: A \to B$ o function. Prove that ker f is an equivalence relation on A.

Question 3. a) Ordered sets, totally ordered sets, well-ordered sets (3 definitions).

- b) The principle of complete induction for well-ordered sets (statement of the corollary).
- c) Prove that (\mathbb{N}, \leq) is well-ordered.

Question 4. The set of rational numbers:

- a) Construction, definitions of the operations and of the order relation.
- b) Verify the distributive property.