Presentation

on

Thermal and Acoustic Analysis of a Muffler

Group – VII

Subject : IC ENGINE

School of Mechanical Science

Indian Institute of Technology Bhubaneswar

April 26, 2025

Group Members

- 1. RITURAJ PATEL (GROUP LEADER)
- 2. GAUTAM KUMAR (GROUP LEADER)
- 3. RUPSHA MUKHERJEE
- 4. C.ADITHYAA
- 5. PALLI RITHIK
- 6. MANOJ KUMAR
- 7. PRIYANSH LUHAR
- 8. SAMEER KUMAWAT
- 9. JAYSHREE UIKEY
- 10. PRAGATI
- 11. DARAVATH SHIVA
- 12. NEHA KOLUKONDA

WORKFLOW...

Thermal Aspect:

- •Exhaust gases make the silencer extremely **hot**.
- •High surface temperatures can cause burns and injuries if touched.
- •Proper thermal analysis helps in:
 - Understanding temperature distribution along the silencer.
 - Selecting heat-resistant materials.
 - Improving heat dissipation for better safety.

Acoustic Aspect:

- •Engine combustion and gas flow create noise.
- •Without a silencer, noise levels can exceed legal limits.
- Acoustic analysis helps in:
 - Measuring and reducing noise levels.
 - Designing silencers using sound absorption and reflection techniques.
 - Improving rider comfort and reducing noise pollution.

SILENCER & IT'S IMPORATANTS

A **silencer** (**Muffler**) is a device attached to the exhaust system of a motorcycle to **reduce noise** and control the **flow of exhaust gases**.

Importance Of Silencer:-

- ➤ It helps in minimizing sound pollution while also ensuring efficient exhaust gas expulsion
- Without a silencer, the engine's exhaust produces extremely loud noises..
- Helps in enhancing engine efficiency by controlling backpressure.
- Improves rider comfort and reduces noise-related fatigue.

https://www.youtube.com/watch?v=KFI9HTytUyk

Types of Silencers and Their Working

1. Reactive Silencers:

- Use chambers and perforated tubes to reflect and cancel sound waves, reducing overall noise.
- The reactive mufflers normally work on the principle of destructive interference.

2. Dissipative Silencers:

- Use sound-absorbing materials (eg. Glass wool) to reduce noise levels.
- The dissipative or Absorptive mufflers uses the principle of absorption as a way to reduce the sound energy

3. Hybrid Silencers:

Combine reactive and absorptive techniques for better noise control.

Design Features: Typically include baffles, perforated tubes, expansion chambers, and packing materials to reduce noise efficiently.

Sound Generation in Exhaust Systems

[Combustion inside the Cylinder] [High-Pressure Gas Release] [Exhaust Valve Opens Suddenly] [The **high-speed flow of exhaust gases** creates Shock Waves & High-pressure waves ,Turbulence] [Pressure Waves Travel in Exhaust] [Pressure Waves Exit Muffler/Exhaust] [Sound is Heard as Exhaust Noise]

Sound Levels with and without Silencer:

- Without Silencer: Can reach 100-120 dB,
- With Silencer: Typically reduced to 70-90 dB, depending on design and material.

https://www.youtube.com/watch?v=rYYppUNSSE8&t=12s

Baffles and Perforations in a Muffler

Baffles

- ❖ Baffles are internal components placed inside the muffler to control and direct the flow of exhaust gases.
- Their primary function is to reduce noise by reflecting and dissipating sound waves.

Perforations on Baffles

- Baffles with holes that allow partial gas flow, improving noise attenuation and reducing pressure variations.
- Perforations improve acoustic performance by increasing sound absorption inside the chamber.

https://youtu.be/RcuwmalIdQ8?si=X9bAf8qRXI4zbais

Model with Dimensions

Mess Sizing

etails of "Mesh"		→ ‡ □ >
Element Size	8.0 mm	
Sizing		
Quality		
Inflation		
Advanced		
Automatic Methods		
Sheet Body Method	Quad Dominant	
Sweepable Body Method	Sweep	
Statistics		
Nodes	54566	
Elements	31108	
Show Detailed Statistics	No	

Acoustic Analysis

Boundry Conditions:

1. Analysis Settings: Max Frequency: 1500 Hz

2. Port In Duct-inlet Port:

•Wave Type: Circular Duct

•Pressure: 0.2 MPa

•Radius: 25 Mm

3. Port In Duct-outlet Port:

•Wave Type: Circular Duct

•Radius: 25mm

4. Surface Velocity: I. Inlet Velocity: 40 m/s

Solve For Transmission Loss And Sound Pressure Level

D	etails of "Analysis Settings"	305000000000000000000000000000000000000	
	tep Controls		
	Multiple Steps	No	
	Options		
	Frequency Spacing	Linear	
	Range Minimum	0. Hz	
	Range Maximum	2000. Hz	
	Solution Intervals	100	
	User Defined Frequencies	Off	
	Solution Method	Program Controlled	
	Solver Controls		
	Solver Type	Program Controlled	
	Scattering Controls		

Results

- ❖ Transmission Loss (TL) varies significantly across the frequency range 20 Hz to 2000 Hz
- ❖ The silencer performs well (TL > 30 dB) across most of the
 750–1250 Hz and 1750–2000 Hz bands.
- ❖ Maximum TL (~60.4 dB) Achieved near 2000 Hz, showing excellent noise attenuation at high frequencies

Thermal Analysis

Boundry Conditions:

Thermal Inlet:

velocity: 40 m/s

Pressure: 0.2 MPa

• Temperature : 473 K

Outlet Condition:

• Ambient condition : T = 300 k

Wall Condition:

Stationary wall condition: No slip

Convection:

Heat transfer coefficient(h): 80 W/m2.k

Free stream temperature : 300 k

Wall thickness: 0.75 m

Wall material: Stainless Steel 304

Material density: 7930 kg/m3

Material Thermal Conductivity: 16.2 W/m.K

Material Specific Heat: 500 J/kg.K

Meshing

Initialization and Calculation Setting

Initialize using the hybrid initialization method.

Checking case topology...

- This case has both inlets & outlets
- Pressure information is not available at the Boundaries.

Case will be initialized with constant pressure

Hybrid initialization is done.

iter	scalar-0
1	1.000000e+00
2	5.901652e-04
3	1.059959e-04
4	3.295305e-05
5	9.452262e-06
6	3.268837e-06
7	1.056386e-06
8	3.580275e-07
9	1.314097e-07
10	4.830457e-08

Thermal Analysis Result

- > Temperature inside the muffler ranges from 326 K to 473 K.
- ➤ Highest temperature observed at the **inlet** due to entry of hot exhaust gases.
- Gradual temperature drop across the chambers indicates effective heat dissipation.
- Overall, uniform temperature distribution observed across the muffler body.
- Minor hot spots near the inlet suggest a need for additional thermal insulation for better safety and performance.

Additional Thermal Insulation

Design Variation and Simulation

TL depends on various factors

- 1. Design of Muffler
- 2. Materials

Design Variations for Optimization

Parameters varied:

- Inlet/outlet diameter
- Chamber dimensions
- Baffle number, position, shape
- Perforation size
- Material selection

Design Variation – 1

Changes made in the model:

- Baffle near to the inlet port has 9
 holes (8 holes has dia. 20mm and 1
 in the middle has dia. 30mm)
- Baffle near the exit port has total 7
 holes (six holes has dia. 15mm and
 1 hole has dia. 30mm)
- Inlet and outlet diameter of port is same as 50mm.

Results

- ❖ Transmission Loss (TL) varies significantly across the frequency range 150 Hz to 1500 Hz
- ❖ The silencer performs well (TL > 20 dB) across most of the 800–1100 Hz
- ❖ Maximum TL (~24.4 dB) Achieved near 1050
 Hz, showing excellent noise attenuation at high frequencies

THERMAL ANALYSIS

Design Variation – 2

Changes made in the model:

- The baffle hole radius near to the inlet port has been changed to 30 mm
- The baffle hole radius near to the outlet port has been changed to 25 mm
- Baffle thickness is changed to 5 mm
- Length of the muffler 410 mm
- Radius of the baffle 55 mm

ACOUSTICS ANALYSIS

- ❖ Transmission Loss (TL) varies across the frequency range between 150 1500 HZ
- ❖ The silencer performs well across 600 1200 HZ of band frequency
- ❖ The maximum TL 69.53 achieved near 1250 HZ shows commendable noise
- attenuation at higher frequencies.

• THERMAL ANALYSIS

Design Variation –3

Changes made in the model:

- Diameters of the holes in the two baffles has been swapped
- The baffle hole diameter near to the inlet port has been changed from 60mm to 40mm
- The baffle hole diameter near to the outlet port has been changed from 40 mm to 60 mm

THERMAL ANALYSIS

ACOUSTICS ANALYSIS

- ❖ Transmission Loss (TL) varies across the frequency range between 150 Hz to 1500 Hz.
- ❖ The silencer performs well (TL>30dB) across 500-1250 Hz band frequency.
- ❖ The maximum TL achieved is 48.412 Hz achieved near 900 Hz which shows appropriate noise attenuation at high frequencies.

Design Variation –4

Changes made in the model:

- Diameters of the holes in the two baffles has kept constant.
- The baffle hole diameter near to the inlet port has been changed from 60mm to 40mm.
- The baffle hole diameter near to the outlet port has kept constant as 40mm.

THERMAL ANALYSIS

Results:

- Transmission Loss (TL) varies across the frequency range between 150Hz to 1500Hz.
- ❖ The silencer performs well (TL>30dB) across the bands 900Hz to 1050Hz.
- ❖ The maximum TL (~47.729dB) achieved near 900Hz, demonstrating excellent noise attenuation at higher frequencies.

Design Variation –5

Changes made in the model:

- Multiple Baffles are kept along the silencer length.
- The baffles of different hole diameters are kept alternatively to analyze the change in the pressure and temperature levels.
- First Baffle hole diameter near the inlet port is kept 40mm, second of 60mm then again 40mm and the last one is of 60mm.
- Radius of inlet port is also kept bigger from the outlet port i.e. 28mm.
- The distance between the consecutive baffles is kept constant while analyzing.

Results:

- Transmission Loss (TL) varies across the frequency range between 200Hz to 2000Hz.
- ❖ The maximum TL (~95.407dB) achieved near 1500 Hz, demonstrating excellent noise attenuation at higher frequencies.
- Maximum Temperature coming out to be

Transmission Local

95.40

ACOUSTICS ANALYSIS

* 0 D >

References...

- https://www.researchgate.net/publication/275408198_Design_and_acoustic_analysis_of_exhaust_mufflers_f
 or_automotive_applications
- https://www.researchgate.net/publication/350981205_Method_for_design_and_evaluation_of_ICE_exhaust_ silencers
- https://www.sciencedirect.com/science/article/pii/S2214785323008167
- https://scholar.google.com/scholar_lookup?title=Acoustic%20attenuation%20of%20hybrid%20silencers&publication_year=2003&author=A.%20Selamet&author=I.J.%20Lee&author=N.T.%20Huff
- https://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1380&context=etds
- M.L. Munjal, "Acoustics of Ducts and Mufflers", John Wiley & Sons, (1987)
- https://link.springer.com/article/10.1007/s40430-023-04023-1
- ANSYS Inc. ANSYS Fluent User's Guide, Version 2023 R1
- ChatGPT (OpenAI). Assistance with literature, formatting.

"Thank You"