

# 算法设计与分析

作业(二)

| 姓    | 名 | 熊恪峥            |
|------|---|----------------|
| 学    | 号 | 22920202204622 |
| 日    | 期 | 2022年2月28日     |
| 学    | 院 | 信息学院           |
| 课程名称 |   | 算法设计与分析        |

## 作业(二)

|   | =    |
|---|------|
| п |      |
| п | >K   |
| _ | ~」 🔨 |

| 1 | 题3.1 | 3 |
|---|------|---|
| 2 | 题3.2 | 4 |
| 3 | 题3.4 | 4 |

### 1 题3.1

正好雇佣一次,则第一位面试的必须是最好的面试者。则

 $P(排在第1位的面试者是最好的面试者) = \frac{1}{n}$ 

**正好雇佣两次**,则已知排在第一位的人一定会被雇佣,最好的面试者一定会被雇佣。因此,第一位不能 是最好的的面试者,否则只能被雇佣一次。则设事件

 $E_i$ :第一个来面试的人的排名是i

其中i满足

$$i \le n-1$$

则

$$P(E_i) = \frac{1}{n}$$

若第一个人的排名是i,只雇佣两个人要求第2,3...,j-1个面试者排名都不如第一个面试者,即最好的人必须在排名是i+1,i+2...n-1,n的人中第一个面试。设最好的人面试的次序是j,则事件

F: 第2,3...,j-1个面试者排名都不如第一个面试者

则

$$\underbrace{i+1,i+2,\ldots,n-1,n}_{\Rightarrow P(F|E_i) = \frac{1}{n-i}}$$

注意到 $E_1, \ldots, E_{n-1}$ 是独立事件,则由全概率公式

$$P(恰好有两个人被雇佣) = \sum_{i=1}^{n-1} P(F|E_i) \times P(E_i)$$
$$= \sum_{i=1}^{n-1} \frac{1}{n} \cdot \frac{1}{n-i}$$
$$= \frac{1}{n} \sum_{i=1}^{n-1} \frac{1}{i}$$
$$= O(\frac{\log n}{n})$$

正好雇佣n次,则所有候选人按排名单调递增进行面试。总共有n!种排列,则概率为

$$P(恰好有 $n$ 个人被雇佣) =  $\frac{1}{n!}$$$

#### 2 题3.2

FindMax算法如算法1

#### 算法 1 查找最大值,返回下标

1: **procedure** FINDMax(A)

2:  $max \leftarrow 1$ 

3: **for**  $j \leftarrow 2$  to n **do** 

4: **if** A[j] > A[max] **then** 

5:  $max \leftarrow j$  return max

则max在位置k被赋予最大值时的概率为

$$P = \frac{1}{n}$$

如果max = A[k]则第3行的比较次数为n-1次,则平均的比较次数为

$$T(n) = \sum_{k=2}^{n} \frac{1}{n} \cdot k$$
$$= \frac{1}{n} \cdot \frac{(2+n)(n-1)}{2}$$
$$= \Theta(n)$$

#### 3 题3.4

设运算i的开销为 $c_i$ 

$$c_i = \begin{cases} i \ i \to 2 \text{的整数幂} \\ 0 \ \text{其它} \end{cases}$$

则总开销为

$$C = \sum_{i=1}^{n} c_i$$

$$= \sum_{i=1}^{\lfloor \log_2 n \rfloor} 2^i + (n - \lfloor \log_2 n \rfloor)$$

$$= (n - \lfloor \log_2 n \rfloor) + 2(n - 1)$$

则平均一次运算的开销为

$$\frac{C}{n} = 3 + \frac{1}{n} + \frac{\lfloor \log_2 n \rfloor}{n} = 3$$