# Algorytmy dostępu do pamięci podręcznej dużych modeli językowych

#### Aliaksandr Marchuk

Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, Nowowiejska 15/19, 00-665, Warszawa 01155186@pw.edu.pl

Streszczenie Duże modele językowe odgrywają kluczową rolę w nowoczesnej sztucznej inteligencji, umożliwiając naturalne i intuicyjne dialogi. Pomimo zaawansowanego zastosowania, napotykają one na różnorodne wyzwania, które mogą wpływać na ich efektywność. W odpowiedzi na te wyzwania rozwijane są różne metody mające na celu poprawę wydajności i dokładności modeli językowych. W niniejszej pracy chciałbym skupić się głównie na metodach powiązanych z różnymi algorytmami pamięci podręcznej dużego modelu językowego, szczególnie takich jak RAG [1] (Retrieval Augmented Generation) oraz grafach wiedzy. W celach praktycznego zrozumienia oraz aby ocenić proces działania, zalety i wady różnych algorytmów przeprowadzono eksperymenty stanowiące podzbiór tych które zostały zaproponowane w artykułach opisujących wybrane metody.

Słowa kluczowe: Duże modele językowe, RAG, Grafy wiedzy

# 1 Wprowadzenie

#### 1.1 Wstęp

Duże modele językowe rewolucjonizują interakcje człowieka z systemami sztucznej inteligencji, umożliwiając bardziej naturalne i intuicyjne dialogi. Dzięki swojej zdolności do przetwarzania i generowania tekstu na podstawie ogromnych zbiorów danych, znajdują zastosowanie w wielu dziedzinach, takich jak wirtualni asystenci, edukacja oraz obsługa klienta. Pomimo ich dużego zastosowania, wciąż istnieje szereg wyzwań, który wpływa na ich efektywność i skalę zastosowania. Dlatego w swojej pracy chciałbym skupić się na przeanalizowaniu wybranych istniejących rozwiązań mających na celu częściowe zredukowanie niektórych z kluczowych problemów.

#### 1.2 Opis rozdziałów

- Rozdział 1 ("Wprowadzenie"): wprowadza w temat artykułu oraz krótko przedstawia zawartość poszczególnych rozdziałów.
- Rozdział 2 ("Wprowadzenie do dużych modeli językowych a typów pamięci podręcznej"): omawia główne problemy związane z dużymi modelami językowymi oraz możliwe podejścia do ich rozwiązania.

- Rozdział 3 ("Metodologia"): prezentuje proces ewaluacyjny wraz z kryteriami sukcesu oraz analizą wybranych metod badawczych.
- Rozdział 4 ("Opis platformy DeepView"): przedstawia platformę DeepView, jej architekturę, opis funkcjonalności oraz sposobu wykorzystania.
- Rozdział 5 ("Definicja i realizacja eksperymentów"): szczegółowo opisuje realizację eksperymentów, przedstawiając wyniki i analizę.
- Rozdział 6 ("Podsumowanie"): podsumowuje najważniejsze wnioski z przeprowadzonych badań, omawiając osiągnięcia, wyzwania oraz możliwe kierunki dalszych badań.

# 2 Wprowadzenie do dużych modeli językowych a typów pamięci podręcznej

Na początku tej sekcji omówimy główne problemy związane z dużymi modelami językowymi, a następnie przedstawimy podejścia do ich rozwiązania.

- 1. **Halucynacje:** Modele mogą generować gramatycznie poprawne, ale merytorycznie błędne lub nieprawdziwe odpowiedzi.
- 2. **Generalizacja do nowych domen:** Modele mają trudności z adaptacją do nowych dziedzin wiedzy, które nie były objęte w danych treningowych.
- 3. **Wybór modelu:** Trening i uruchamianie niektórych dużych modeli językowych wymaga ogromnych zasobów obliczeniowych i pamięciowych, co powoduje wysokie koszty i ograniczenia w dostępności.
- 4. **Brak transparentności:** Modele działają jako "czarne skrzynki", co utrudnia interpretację wyników i diagnostykę błędów, co jest problematyczne w przypadkach kiedy chcemy zrozumieć dlaczego wyniki są dokładnie takie jak są a nie inne.

Ze względu na to że problem dotyczący **Braku transparentności** cześciowo należy do większej części zaawansowanych systemów szcztucznej inteligencji a problem dotyczący **Wyboru modelu** z czasem staje się mniej aktualny z powodu wzrostu dostępnych zasobów obliczeniowych czy też zwiększenia liczby dostawców takich rozwiązań, w swojej pracy chciałbym skupić się na praktycznych próbach rozwiązania pierwszych dwóch problemów.

Istnieją różne skuteczne metody probujące poprawić dokładność generowanych odpowiedzi, niektóre z nich są opisane poniżej:

- Algorytmy dostępu do pamięci podręcznej dużego modelu językowego: Integracja mechanizmów weryfikujących generowane informacje w czasie rzeczywistym korzystając przy tym z zewnętrznych źródeł informacji, takich jak wektorowa baza danych czy grafy wiedzy.
- Inżynieria promptów (Prompt Engineering): Tworzenie i dostosowywanie poleceń, aby zapewnić kontekst i prowadzić model do generowania lepszych odpowiedzi.
- Fine-tuning nadzorowany (Supervised Fine-Tuning): Wykorzystanie ręcznie oznaczonych danych do poprawy dokładności dużego modelu językowego.

 Systemy sprzężenia zwrotnego i wnioskowania (Feedback and Reasoning Systems): Wykorzystanie iteracyjnego sprzężenia zwrotnego lub samooceny do poprawy początkowych odpowiedzi dużego modelu językowego.

Ze względu na to że różne rozwiązania wymagają implementacji różnego stopnia skomplikowaności architektur, w swojej pracy chciałbym skupić się na zadaniu inferecji, przy którym nie wymagany jest dodatkowy trening a zatem powinno to być prostsze w zaimplementowaniu, oraz szczególnie na dwóch algorytmach dostępu do pamięci podręcznej dużego modelu językowego.

# 2.1 Pamięć podręczna typu RAG



Rysunek 1. Diagram łańcucha RAG

Pamięć podręczna typu RAG integruje przeszukiwanie zewnętrznych źródeł informacji z generowaniem tekstu przez duże modele językowe. Proces ten obejmuje kilka kluczowych etapów:

1. **Tokenizacja:** Zapytanie użytkownika jest dzielone na mniejsze jednostki, nazywane tokenami, które następnie są konwertowane na reprezentacje numeryczne.

#### 4 Aliaksandr Marchuk

- 2. Wyszukiwanie: Tokenizowane zapytanie trafia do wyszukiwarki (Retriever), która przeszukuje zewnętrzne źródła informacji, identyfikując najbardziej odpowiednie dokumenty lub fragmenty tekstu na podstawie porównywania reprezentacji numerycznych zapytania a dokumentu.
- 3. **Łączenie:** Zwrócone dokumenty są łączone z oryginalnym zapytaniem w formie polecenia, które trafia do dużego modelu językowego.
- 4. **Generowanie odpowiedzi:** Duży model językowy wykorzystuje dostarczony kontekst do wygenerowania odpowiedzi, która jest bardziej merytorycznie trafna i spójna.

# 2.2 Pamięć podręczna grafowa



Rysunek 2. Diagram łańcucha z grafem wiedzy

Pamięć podręczna grafowa wykorzystuje grafy wiedzy jako zewnętrzne źródła informacji. Proces obejmuje następujące etapy:

- 1. **Tokenizacja:** Zapytanie użytkownika przekształcane są na reprezentację wektorową, co umożliwia dalsze przetwarzanie.
- 2. **Wyszukiwanie:** Zapytanie trafia do grafu wiedzy, aby znaleźć trójki (podmiot, predykat, obiekt) najbardziej związane z zapytaniem. Proces ten polega na porównaniu reprezentacji numerycznych zapytania i potencjalnych

- trójek przy użyciu metryk podobieństwa, takich jak kosinusowa miara podobieństwa, aby zidentyfikować najbardziej odpowiednie informacje.
- 3. **Łączenie:** Zebrane trójki są dołączane do oryginalnego zapytania, tworząc bardziej rozbudowany kontekst.
- 4. **Generowanie odpowiedzi:** Duży model językowy wykorzystuje wzbogacony kontekst do wygenerowania odpowiedzi, która jest bardziej poprawna.

# 3 Metodologia

W sekcji tej najpierw przedstawiony jest ogólny zakres procesu ewaluacyjnego dla wybranej metody badawczej a później podane są odpowiednie szczegóły opisujące procesy ewaluacyjne wybranych metod.

### 3.1 Proces ewaluacyjny:

- 1. **Model:** Wybór konkretnego modelu w zależności od potrzeb zadania oraz dostępnych zasobów obliczeniowych.
- 2. **Zbiory danych:** Wybór jednego, poszczególnych czy też dodatkowych zbiorów danych.
- 3. **Metryki:** Określenie metod oceny wyników, mogą to być takie same metryki jak w wybranej metodzie badawczej lub połączenie oryginalnych i dodatkowych ale oryginalne muszą pozostać.
- 4. **Model bazowy:** Wybór standardowego modelu jako punktu odniesienia dla późniejszej oceny kryteriów sukcesu.
- 5. **Kryteria sukcesu:** Definicja kryteriów sukcesu, które są miarą oceny poprawności wyników eksperymentów. Najcześciej można wystartować od tego że wyniki z zaimplementowaną metodą badawczą muszą być lepsze niż wyniki modelu bazowego, później zwiększać liczbę porównanych modeli.
- Eksperymenty oraz analiza wyników: Przeprowadzenie eksperymentów
  w celu porównania wyników z uzyskanymi w artykułach przedstawiających
  wybrane metody badawcze.

# 3.2 Analiza wybranych metod badawczych

# Opis metody FLARE:

**Definicja:** FLARE [2] (Forward-Looking Active Retrieval Augmented Generation) to metoda, która iteracyjnie wzbogaca generację tekstu poprzez aktywne wyszukiwanie i integrowanie zewnętrznych informacji, aby poprawić dokładność i spójność odpowiedzi. Metoda została stworzona przez Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan i Graham Neubig w 2023 roku.



Rysunek 3. Diagram działania metody FLARE

# Sposób działania:

- 1. **Generowanie pierwszej propozycji:** Duży model językowy generuje wstępne zdanie na podstawie wejściowego zapytania, które jest sprawdzane pod kątem małoprawdopodobnych tokenów.
- 2. **Wyszukiwanie informacji:** Na podstawie zapytania i wstępnego zdania, wyszukiwarka przeszukuje zewnętrzne źródła informacji, zwracając najlepiej pasujące dokumenty.
- Regeneracja zdania: Na podstawie wyszukanych dokumentów, duży model językowy generuje ostateczną wersję zdania.
- 4. **Iteracyjne generowanie:** Proces jest powtarzany dla kolejnych zdań, aż do wygenerowania kompletnej odpowiedzi. Każde zdanie jest generowane, sprawdzane i wzbogacane przy użyciu wyszukiwarki, aby zapewnić wyższą jakość i zgodność z zewnętrznymi źródłami informacji.

#### 1. Modele:

- (a) text-davinci-003
- 2. Typ pamięci podręcznej:
  - (a) RAG
- 3. Komponenty:
  - (a) Wyszukiwarka: BM25 dla Wikipedii, Bing dla zadania sumaryzacji z dostępem do internetu.
  - (b) Duży model językowy: text-davinci-003.

# 4. Zbiory danych:

- (a) 2WikiMultihopQA: Zestaw danych wielozadaniowych pytań wymagających wielokrotnego przeszukiwania Wikipedii.
- (b) StrategyQA: Zestaw danych pytań wymagających strategii wnioskowania.
- (c) ASQA: Zestaw danych pytań związanych z aspektami wiedzy.
- (d) WikiAsp: Zestaw danych dotyczących aspektów artykułów Wikipedii.

#### 5. Metryki:

- (a) EM (Exact Match): Dokładne dopasowanie odpowiedzi.
- (b) F1: Harmoniczna średnia precyzji i recall.
- (c) ROUGE: Ocena jakości streszczeń tekstowych.
- (d) Disambig-F1: F1 z uwzględnieniem rozróżnienia między różnymi znaczeniami.
- (e) Named Entity-based F1: F1 oparty na poprawnym rozpoznaniu nazwanych jednostek.
- (f) UniEval: Uniwersalna ocena różnych aspektów odpowiedzi.

# Opis metody KAPING:



Rysunek 4. Diagram działania metody KAPING

#### Aliaksandr Marchuk

8

**Definicja:** KAPING [3] (Knowledge-Augmented Language Model PromptING) to metoda, która wzbogaca pytania wejściowe odpowiednimi faktami z grafu wiedzy, aby poprawić dokładność generowanych odpowiedzi przez modele językowe. Metoda została stworzona przez Jinheon Baek, Alham Fikri Aji i Amir Saffari w 2023 roku.

#### Sposób działania:

- 1. **Wyszukiwanie odpowiednich faktów:** System wyszukuje odpowiednie fakty z grafu wiedzy, porównując reprezentacje numeryczne zapytania a trójek wybranego grafu wiedzy.
- 2. **Integracja faktów z zapytaniem:** Znalezione fakty są łączone z pierwotnym zapytaniem.
- 3. **Generowanie odpowiedzi:** Wzbogacone zapytanie jest przetwarzane przez duży model językowy w celu wygenerowania bardziej precyzyjnej odpowiedzi.

#### 1. Modele:

- (a) GPT-3
- (b) T5 (0.8B, 3B, 11B)
- (c) T0 (3B, 11B)
- (d) OPT (2.7B, 6.7B)
- (e) AlexaTM (20B)

#### 2. Typ pamięci podręcznej:

(a) Grafowa

#### 3. Komponenty:

- (a) Wyszukiwarka: wyszukiwanie odpowiednich faktów z grafu wiedzy na podstawie podobieństw semantycznych.
- (b) Duży model językowy: modele językowe takie jak GPT-3, które wykorzystują wzbogacone zapytania do generowania odpowiedzi.

#### 4. Zbiory danych:

- (a) WebQuestionsSP (WebQSP): Zestaw danych zaprojektowany z Freebase KG na podstawie Wikidata.
- (b) Mintaka: Zestaw danych zaprojektowany z Wikidata KG do złożonych zadań KGQA, zawierający 4,000 próbek w języku angielskim.

#### 5. Metryki:

- (a) **Dokładność:** Procent poprawnie sklasyfikowanych przypadków w stosunku do wszystkich przypadków.
- (b) **Precyzja:** Stosunek liczby prawdziwie pozytywnych wyników do sumy prawdziwie pozytywnych i fałszywie pozytywnych wyników.
- (c) **Czułość:** Stosunek liczby prawdziwie pozytywnych wyników do sumy prawdziwie pozytywnych i fałszywie negatywnych wyników.
- (d) **Miara F1:** Harmoniczna średnia precyzji i czułości, zapewniająca zrównoważoną ocenę modelu.

# 4 Opis platformy DeepView

# 1. Struktura projektu:

```
DEEPVIEW/
|-- data/
| |-- *.json
|-- results/
| |-- *.json
|-- wikiasp/
|-- wikidata_retriever.py
|-- bing_retriever.py
|-- my_flare_chain.py
|-- my_kaping_chain.py
|-- README.md
|-- requirements.txt
|-- .gitignore
|-- LICENSE
```

- wikidata\_retriever.py: Skrypt odpowiedzialny za wyszukiwanie informacji z Wikidata. Implementuje metody do pobierania i przetwarzania danych z grafu wiedzy.
- bing\_retriever.py: Skrypt do wyszukiwania informacji z Bing. Zawiera funkcje do integracji wyników wyszukiwania z Bing z modelami językowymi.
- my\_flare\_chain.py: Implementacja łańcucha FLARE. Zawiera kod do przeprowadzenia eksperymentów oraz obsługę zbiorów danych.
- my\_kaping\_chain.py: Implementacja łańcucha KAPING. Zawiera kod do przeprowadzenia eksperymentów oraz obsługę zbiorów danych.
- README.md: Plik readme zawierający podstawowe informacje o projekcie, instrukcje dotyczące instalacji oraz uruchamiania skryptów.
- requirements.txt: Plik zawierający listę zależności projektu. Określa wymagane biblioteki Python, które muszą zostać zainstalowane.
- .gitignore: Plik konfiguracyjny dla Git, określający które pliki i foldery powinny być ignorowane przez system kontroli wersji.
- **LICENSE:** Plik zawierający licencję projektu.
- 2. Cel projektu: Stworzenie uniwiersalnej platformy eksperymentalnej oferującej łatwe modyfikacji aby uzyskać pythonową implementację odpowiadającej w procesie działania dowolnej metodzie badawczej, kluczowe elementy której to: duży model językowy (MyFLAREChain i MyKAPINGChain, i też inne, będą dziedziczyły z klasy szablonowej w przyszłości), wyszukiwarka (BingRetriever czy WikidataRetriever) oraz zbiory danych do których będą dorobione oddzielne klasy (na razie kod jest wewnątrz odpowiednich plików z kodem źródłowym łańcuchów).

# 5 Definicja i realizacja eksperymentów

Pliki źródłowe dostępne są na GitHub https://github.com/Mamba369/DeepView. Eksperymenty przeprowadzono za pomocą modelu **gpt-3.5-turbo-instruct** od firmy **OpenAI** [4].

# 5.1 Proces ewaluacyjny oraz wyniki eksperymentów metody FLARE

Model: gpt-3.5-turbo-instruct
 Zbiory danych: WikiASP
 Metryki: E-F1 i Rouge-L

```
Loaded cache from evaluation_wikidata_flare_True_max_iter_3_exp_50.json
Loaded cache from evaluation_wikidata_flare_False_max_iter_3_exp_50.json
Comparison of Results:
Metric With FLARE Without FLARE
Rouge-L Score 0.1509 0.1559
E-F1 Score 0.1935 0.1873
```

Rysunek 5. Wyniki eksperymentów metody FLARE dla 50 próbek WikiASP

# 5.2 Proces ewaluacyjny oraz wyniki eksperymentów metody KAPING

Model: gpt-3.5-turbo-instruct
 Zbiory danych: Mintaka

3. Metryki: Dokładność, precyzja, czułość, miara F1

```
Loaded cache from evaluation_mintaka_kaping_True_k_3_exp_50.json
Loaded cache from evaluation_mintaka_kaping_False_k_3_exp_50.json
Comparison of Results:
Metric
               With KAPING
                               Without KAPING
Accuracy
               0.6000
                               0.6600
Precision
               0.4908
                               0.5406
Recall
               0.4950
                               0.5410
               0.4852
                               0.5392
F1 Score
```

Rysunek 6. Wyniki eksperymentów metody KAPING dla 50 próbek Mintaka

Natomiast w przypadku procesu ewaluacyjnego dla metody KAPING dla małej liczby przypadków (15 próbek) duży model językowy odpowiadał lepiej

z zaimplementowaną metodą niż bez, co oznacza że generowane przez wyszukiwarkę trójki rzeczywiście poprawiły jakość działania modelu.

```
Loaded cache from evaluation_mintaka_kaping_True_k_3_exp_15.json
Loaded cache from evaluation_mintaka_kaping_False_k_3_exp_15.json
Comparison of Results:
Metric
               With KAPING
                               Without KAPING
Accuracy
                0.7333
                               0.6667
                0.7885
Precision
                               0.6607
Recall
                0.7885
                               0.6607
F1 Score
                0.7538
                               0.6286
```

Rysunek 7. Wyniki eksperymentów metody KAPING dla 15 próbek Mintaka

#### 6 Podsumowanie

Pierwsze rezultaty wymagają wykonania dodatkowych badań i testów oraz służą jako dobry punkt startowy dla przyszłych modyfikacji poprawiających cały proces działania oraz wyniki.

### Literatura

- Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 2020. https://arxiv.org/abs/2005.11401
- 2. Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, Graham Neubig, FLARE: Forward-Looking Active Retrieval Augmented Generation. 2023. https://arxiv.org/abs/2305.06983
- 3. Jinheon Baek, Alham Fikri Aji, Amir Saffari, KAPING: Knowledge-Augmented Language Model PromptING. 2023. https://arxiv.org/abs/2306.04136
- OpenAI, Models Documentation. Available at: https://platform.openai.com/docs/models