Introduction to Algorithms

Subhabrata Samajder

IIIT, Delhi Summer Semester, 25th April, 2022

About Myself

Name: Subhabrata Samajder

Research Interests:

- Lattice based cryptography
- Statistical aspects of symmetric key cryptanalysis
- Broadcast Encryption
- Blockchain
- e-Voting
- Random graphs

About Myself

Name: Subhabrata Samajder

E-mail: subhabrata@iiitd.ac.in

Office: B-505 (R & D Block)

Office Hours: By appointment

Course Webpage: On Google classroom

• Class Code: s34dfee

Academic Integrity Policy

• Anyone caught cheating or copying will be penalised.

• Plagiarism cases will be *dealt strictly*.

Take this opportunity to stay away from plagiarism forever.

Grading plan: Tentative Grading Components

Components	Number	Weightage
MidSem Theory	1	25%
MidSem Lab	1	10%
EndSem Theory	1	25%
EndSem Lab	1	10%
Lab	11 to 13	20%
Quiz and/or Homework	≥ 4	10%

Introduction to Algorithms

Algorithms: In Our Daily Lives

Cooking

Traffic Lights

Google Search

Sorting Vinyl Records

Work Commute

Online Shopping

Algorithms: Rubik's Cube

Solve:

Algorithms: Rubik's Cube

Solve:

Algorithms: Rubik's Cube

Solve:

Introduction of Algorithms

"What is an algorithm?"

Introduction of Algorithms

"What is an algorithm?"

Intuitive answer: It is a finite sequence of elementary operations with the objective of performing some (computational) task.

Introduction of Algorithms

"What is an algorithm?"

Intuitive answer: It is a finite sequence of elementary operations with the objective of performing some (computational) task.

Elementary Operations

"How elementary is 'elementary?"

Elementary Operations

"How elementary is 'elementary?"

The elementary operations that we will consider will be at a higher level and include arithmetic and logical operations.

Finiteness

Algorithms: Finiteness \Rightarrow an algorithm must stop.

• **Example:** Compute (a + b) * (c + d)

$$t_1 = a + b$$
; $t_2 = c + d$; $t_3 = t_1 * t_2$.

Finiteness

Algorithms: Finiteness \Rightarrow an algorithm must stop.

• **Example:** Compute (a + b) * (c + d)

$$t_1 = a + b$$
; $t_2 = c + d$; $t_3 = t_1 * t_2$.

Computational Method: A procedure that has all of the characteristics of an algorithm except that it possibly *lacks finiteness*.

• Example: $while(1)\{\}$

Sequence

$$t_1 = a + b$$
; $t_2 = c + d$; $t_3 = t_1 * t_2$.

• We emphasise on the sequential nature of the procedure.

- Any permutation of this sequence does not give the same desired output.
 - Example: $t_3 = t_1 * t_2$; $t_2 = c + d$; $t_1 = a + b$, is not the same as the algorithm above.

$$t_1 = a + b;$$
 $t_2 = c + d;$ $t_3 = t_1 * t_2.$

Note: Sometimes different orderings of the operations may give rise to the *same* result.

• Example:

$$t_1 = a + b;$$
 $t_2 = c + d;$ $t_3 = t_1 * t_2;$ and $t_1 = c + d;$ $t_2 = a + b;$ $t_3 = t_1 * t_2.$

$$t_1 = a + b;$$
 $t_2 = c + d;$ $t_3 = t_1 * t_2.$

Note: Sometimes different orderings of the operations may give rise to the *same* result.

• Example:

$$t_1 = a + b;$$
 $t_2 = c + d;$ $t_3 = t_1 * t_2;$ and $t_1 = c + d;$ $t_2 = a + b;$ $t_3 = t_1 * t_2.$

- Note: $t_1 = a + b$ and $t_2 = c + d$ can be executed independently of each other.
- Single computing unit (a processor): Sequential execution.
- Two computing unit: Can be executed simultaneously!

$$t_1 = a + b;$$
 $t_2 = c + d;$ $t_3 = t_1 * t_2.$

Note: Sometimes different orderings of the operations may give rise to the *same* result.

• Example:

$$t_1 = a + b;$$
 $t_2 = c + d;$ $t_3 = t_1 * t_2;$ and $t_1 = c + d;$ $t_2 = a + b;$ $t_3 = t_1 * t_2.$

- Note: $t_1 = a + b$ and $t_2 = c + d$ can be executed independently of each other.
- Single computing unit (a processor): Sequential execution.
- Two computing unit: Can be executed simultaneously! Give rise to the area of *parallel algorithms*.

$$t_1 = a + b$$
; $t_2 = c + d$; $t_3 = t_1 * t_2$.

Note: Sometimes different orderings of the operations may give rise to the *same* result.

• Example:

$$t_1 = a + b;$$
 $t_2 = c + d;$ $t_3 = t_1 * t_2;$ and $t_1 = c + d;$ $t_2 = a + b;$ $t_3 = t_1 * t_2.$

- Note: $t_1 = a + b$ and $t_2 = c + d$ can be executed independently of each other.
- Single computing unit (a processor): Sequential execution.
- Two computing unit: Can be executed simultaneously! Give rise to the area of *parallel algorithms*.

We would only be concentrating on sequential algorithms!!

Recall: The purpose of an algorithm is to perform some task.

Recall: The purpose of an algorithm is to perform some task.

Inputs: Can take several inputs.

• Example: a, b, c, d.

Output: Algorithms produce an output.

• Example: (a + b) * (c + d).

Recall: The purpose of an algorithm is to perform some task.

Inputs: Can take several inputs.

• Example: a, b, c, d.

Output: Algorithms produce an output.

- Example: (a + b) * (c + d).
- The relation of the output to the input defines the *computational task* of the algorithm.

Recall: The purpose of an algorithm is to perform some task.

Inputs: Can take several inputs.

• Example: a, b, c, d.

Output: Algorithms produce an output.

- Example: (a + b) * (c + d).
- The relation of the output to the input defines the computational task of the algorithm.
- Simplest case: Binary valued output (Decision problem).

• Simplest case: Binary valued output (Decision problem).

Example: Searching Problem

• I/P: A list L of integer values and another value v.

• **Question:** Does $v \in L$?

• O/P: 'yes' if $v \in L$; else it returns 'no'.

Note: Decision problems appear rather simple but much of the sophistication of the area of algorithms can be discovered by studying such algorithms!!

'Efficient algorithms?

• **High level view:** Efficiency \equiv requiring little 'resources'.

'Efficient algorithms?

• **High level view:** Efficiency \equiv requiring little 'resources'.

Here, resources

 the time of execution and the space required by the algorithm.

- **Time:** # steps required by the algorithm to produce its output.
 - Assumption: Each elementary operation requires unit time.
 - : # steps = time required by the algorithm.

- **Time:** # steps required by the algorithm to produce its output.
 - **Assumption:** Each elementary operation requires *unit time*.
 - \therefore # steps = time required by the algorithm.

• **Space:** # temporary variables.

- **Time:** # steps required by the algorithm to produce its output.
 - Assumption: Each elementary operation requires unit time.
 - \therefore # steps = time required by the algorithm.

• **Space:** # temporary variables.

Example: Our algorithm for finding (a + b) * (c + d).

- Temporary variables = t_1 , t_2 and t_3 .
- ... space required is 3.

- **Time:** # steps required by the algorithm to produce its output.
 - **Assumption:** Each elementary operation requires *unit time*.
 - \therefore # steps = time required by the algorithm.
- **Space:** # temporary variables.

Example: Our algorithm for finding (a + b) * (c + d).

- Temporary variables = t_1 , t_2 and t_3 .
- : space required is 3.
- Other resources: For example, power consumption is important for battery operated devices.

Size of input(s)

• **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).

Size of input(s)

• **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider our searching problem.

• \uparrow in size of the list \Rightarrow algorithm takes more time.

Size of input(s)

• **Intuitively:** Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider our searching problem.

• \uparrow in size of the list \Rightarrow algorithm takes more time.

 Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.

• Intuitively: Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider our searching problem.

• \uparrow in size of the list \Rightarrow algorithm takes more time.

- Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.
- Note: Set of all possible inputs is *typically infinite*.

 Intuitively: Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider our searching problem.

- ullet in size of the list \Rightarrow algorithm takes more time.
- Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.
- Note: Set of all possible inputs is typically infinite.
- Size of inputs: A function from the set of all possible inputs to \mathbb{Z}^+ .

 Intuitively: Time taken by an algorithm will depend on the size(s) of its input(s).

Example: Consider our searching problem.

- ullet in size of the list \Rightarrow algorithm takes more time.
- Thus, one has to factor in the size(s) of the input(s) while talking about algorithmic efficiency.
- **Note:** Set of all possible inputs is *typically infinite*.
- Size of inputs: A function from the set of all possible inputs to \mathbb{Z}^+ .
- Fixing a positive integer *n* fixes the set of all inputs of size *n* and this is a typically a *finite set*.

• **Note:** The set of all possible inputs depend on the algorithm and so does the size function.

• **Note:** The set of all possible inputs depend on the algorithm and so does the size function.

Example:

• Search Problem: |L|.

• **Note:** The set of all possible inputs depend on the algorithm and so does the size function.

Example:

- Search Problem: |L|.
- Arithmetic Problem:
 - Additions: 2
 - Multiplications: 1
 - Time: $2 \times \text{Cost}$ of Additions $+ 1 \times \text{Cost}$ of Multiplication

• **Note:** The set of all possible inputs depend on the algorithm and so does the size function.

Example:

- Search Problem: |L|.
- Arithmetic Problem: $\max\{\log_2 a, \log_2 b, \log_2 c, \log_2 d\}$.
 - Additions: 2
 - Multiplications: 1
 - \bullet $\operatorname{Time}:\ 2{\times}\mathsf{Cost}$ of Additions $+\ 1{\times}\mathsf{Cost}$ of Multiplication

Runtime Function of an Algorithm

t(n): # steps required by the algorithm on an input of size n.

Runtime Function of an Algorithm

t(n): # steps required by the algorithm on an input of size n.

Note:

• # steps can vary across two different inputs of size n.

Runtime Function of an Algorithm

t(n): # steps required by the algorithm on an input of size n.

Note:

- # steps can vary across two different inputs of size n.
- : given n, one cannot define a unique t(n) such that the algorithm requires exactly t(n) steps on any input of size n.

• Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.

- **1** Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.

- **1** Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

- **1** Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

Example: Quick Sort.

- **1** Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

Example: Quick Sort.

• Labelling such an algorithm as inefficient is inappropriate.

- **1** Worst-case time complexity: t(n) is the maximum of the different numbers of steps that the algorithm requires for different inputs of size n.
 - May not present a proper picture of the performance.
 - May take a rather long time only for a few inputs of size n.

Example: Quick Sort.

- Labelling such an algorithm as inefficient is inappropriate.
- Average-case time complexity: Considers the average case behaviour of the algorithm.
 - For each n, the set of all inputs of size n is assumed to be finite.
 - Define a *uniform distribution* on this set.
 - Then the time function T(n) becomes a random variable.
 - Average-case time complexity = E[T(n)] (function of n).

Runtime Function of an Algorithm (Cont.)

• We Will mostly focus on the worst-case time complexity.

Runtime Function of an Algorithm (Cont.)

We Will mostly focus on the worst-case time complexity.

 Analogously, one can also formulate the worst-case and averagecase space required by an algorithm.

```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

$$f(a, b, c, d)$$
:
 $t_1 = a + b$
 $t_2 = c + d$
 $t_3 = t_1 * t_2$
return t_3

• Basic operation: 2 Addition and 1 multiplication


```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

- Basic operation: 2 Addition and 1 multiplication
 - Depends on the size of integers a, b, c and d.
 - The sizes of a, b, c and d can vary.
 - Assume that $n = \max\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil, \lceil \log_2 c \rceil, \lceil \log_2 d \rceil\}$.
 - Adding two *n*-bit integers take time proportional to *n*.
 - Multiplying two *n*-bit integers take time proportional to $n^{\log_2 3}$.

```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

- Basic operation: 2 Addition and 1 multiplication
 - Depends on the size of integers a, b, c and d.
 - The sizes of a, b, c and d can vary.
 - Assume that $n = \max\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil, \lceil \log_2 c \rceil, \lceil \log_2 d \rceil\}$.
 - Adding two *n*-bit integers take time proportional to *n*.
 - Multiplying two *n*-bit integers take time proportional to $n^{\log_2 3}$.
- Size of input: n.


```
f(a, b, c, d):

t_1 = a + b

t_2 = c + d

t_3 = t_1 * t_2

return t_3
```

- Basic operation: 2 Addition and 1 multiplication
 - Depends on the size of integers a, b, c and d.
 - The sizes of a, b, c and d can vary.
 - Assume that $n = \max\{\lceil \log_2 a \rceil, \lceil \log_2 b \rceil, \lceil \log_2 c \rceil, \lceil \log_2 d \rceil\}$.
 - Adding two *n*-bit integers take time proportional to *n*.
 - Multiplying two *n*-bit integers take time proportional to $n^{\log_2 3}$.
- Size of input: n.
- Time complexity: proportional to $n^{\log_2 3}$.

Books Consulted

• Chapter 2 of *A Course on Cooperative Game Theory* by Satya R. Chakravarty, Palash Sarkar and Manipushpak Mitra.

Introduction to Algorithms: A Creative Approach by Udi Manber. Thank You for your kind attention!