EDIM I: Informe calefacció

Raquel García Bellés, Miquel Saucedo Cuesta

Introducció

$$T' = q(t) - k(T - T_e(t)), \quad T(0) = T_0$$
 (1)

Supòsits

$$T_e(t) = \frac{T_{max} + T_{min}}{2} + \frac{T_{max} - T_{min}}{2} \sin(\omega t + \pi)$$
 (2)

Models

Model 1

Model 2

En aquest model considerem una q(t) que depén de com estigui variant la temperatura de la casa, segons:

$$q(t) = \alpha T'(t) \tag{3}$$

on α és una constant. Observem que introduïnt (3) en (1) obtenim:

$$T' = -\frac{k}{1-\alpha}(T - T_e(t)) \tag{4}$$

aleshores si anomenem $k' = k/(1 - \alpha)$, aquest model és equivalent a poder canviar la constant k. El gasto energètic d'aquest model en un periòde de 24h vindrà donat per:

$$\int_0^{24} \alpha T' dt = \alpha \Delta T \tag{5}$$

Conclusions

Annex