HW2 Numerical methods

May 2023

1 Exercice 1: Modèle de Heston

Dans cet exercice, nous allons étudier un modèle à volatilité stochastique, le modèle de Heston, en utilisant les schémas d'Euler-Maruyama et de Milstein. Les paramètres sont $T=1.0,\,N=252,\,M=100$ (nombre de réalisations à faire varier), $S_0=100,\,V_0=0.04,\,\kappa=1.5,\,\theta=0.06,\,\sigma_v=0.3,\,\rho=-0.6,\,r=0.04$ (taux d'intérêt sans risque), K=105 (strike).

Le modèle de Heston est défini comme suit :

$$dS_t = rS_t dt + \sqrt{V_t} S_t dW_t^S$$

$$dV_t = \kappa(\theta - V_t) dt + \sigma_v \sqrt{V_t} dt W_t^V$$

où W_t^S et W_t^V sont deux mouvements browniens corrélés avec une corrélation de $\rho.$

Suivez ces étapes pour estimer le prix de l'option d'achat européenne pour le shéma d'Euler-Maruyama:

Étape 1: Simulez M trajectoires du prix de l'actif S_t et de la volatilité V_t en utilisant le schéma d'Euler-Maruyama avec N pas de temps.

Étape 2: À la fin de chaque trajectoire (t=T), calculez le gain de l'option d'achat européenne en utilisant la formule suivante:

$$G_i = \max(S_T^i - K, 0)$$

où S_T^i est le prix de l'actif à la fin de la *i*-ème trajectoire et K est le prix d'exercice (strike) de l'option.

Étape 3: Calculez la moyenne des gains G_i sur toutes les trajectoires:

$$G_{moy} = \frac{1}{M} \sum G_i$$

Étape 4: Calculez le prix de l'option en actualisant le gain moyen à l'aide du taux d'intérêt sans risque r:

$$Prix_{option} = e^{-rT} * G_{moy}$$

Schéma d'Euler-Maruyama

Écrire un programme qui simule le modèle de Heston en utilisant le schéma d'Euler-Maruyama pour le calcul de S_t et V_t . Suivez les étapes 1 à 4 décrites précédemment pour estimer le prix d'une option d'achat européenne. Représenter graphiquement les trajectoires simulées des prix de l'actif et des volatilités stochastiques.

2 Exercice 2: Résolution d'EDS

Dans cet exercice, nous considérerons l'EDS

$$dX_t = aX_t dt + \sigma X_t dW_t$$

avec $X_0 = 1$, a = 2, $\sigma = 0.5$ et W_t un mouvement Brownien standard.

- 1. Écrire un programme qui simule la solution X_t avec le schéma d'Euler-Maruyama pour M=100 trajectoires et pour un pas de temps h=0.01. Dessinez la solution obtenue.
- 2. Modifier le programme précédent pour implémenter le schéma de Milstein. Dessinez la solution obtenue.