Chapter 2.11: Central Limit Theorem for Processes

Lasse Vuursteen

May 25, 2020

So far, the Donsker Theorem's were based on identical distributions.

$$\mathbb{G}_n := n^{-1/2}(\mathbb{P}_n - P) \rightsquigarrow \mathbb{G}\ell^{\infty}(\mathscr{F}).$$

Under the hood here are iid observations:

$$n^{-1/2}\sum_{i=1}^{n}(f(Z_i)-\mathbb{E}f(Z_i))$$

 Z_1, \ldots, Z_n are iid, $f \in \mathscr{F}$.

What if $Z_1, ..., Z_n$ are not iid?

In the case $\mathscr{F} = \{x \mapsto x\}$, we have the Lindeberg CLT

Theorem

Let Z_{n1}, \dots, Z_{nm_n} independent, $\mathbb{E} Z_{ij} = 0$,

$$\sum_{i=1}^{m_n} Var(X_{ni}) = 1$$

and

$$L_n(\varepsilon) := \sum_{i=1}^{m_n} \mathbb{E} X_{ni}^2 \{ |X_{ni}| > \varepsilon \} \to 0$$

for all $\varepsilon > 0$. Then,

$$\sum_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni} \rightsquigarrow N(0,1).$$

Chapter 2.11 "generalizes" the previous theorem to empirical processes indexed by more demanding \mathscr{F} 's.

That is, it generalizes Donsker type theorem to accommodate for sequence of SP's Z_{n1}, \ldots, Z_{nm_n} .

The results in Chapter 2.11 allow for different probability spaces for each of the Z_{ni} 's.

 Z_{n1}, \dots, Z_{nm_n} takes values in

$$\mathop{\Pi}_{i=1}^{m_n}(\mathcal{X}_{ni},\mathcal{A}_{ni},P_{ni})$$

$$\left\{\sum_{i=1}^{m_n} Z_{ni}(f) - P_{ni}Z_{ni}(f) : f \in \mathscr{F}\right\}$$

The results in Chapter 2.11 allow for different probability spaces for each of the Z_{ni} 's.

 Z_{n1}, \dots, Z_{nm_n} takes values in

$$\mathop{\sqcap}_{i=1}^{m_n}(\mathcal{X}_{ni},\mathcal{A}_{ni},P_{ni})$$

The stochastic processes for which we want weak convergence in $\ell^{\infty}(\mathscr{F})$ are

$$\left\{\sum_{i=1}^{m_n} Z_{ni}(f) - \mathbb{E} Z_{ni}(f) : f \in \mathscr{F}\right\} \text{ for } n \in \mathbb{N}.$$

So for example $Z_{ni}(f)$ could be

$$Z_{ni}(f) := \frac{1}{\sqrt{n}} f(X_i)$$

for some independent random variables X_i which are not identically distributed, and then we recover something looking a lot like the empirical process.

A function class \mathscr{F} is called *P-Donsker* if

$$\mathbb{G}_n := n^{-1/2}(\mathbb{P}_n - P) \leadsto \mathbb{G} \text{ in } \ell^{\infty}(\mathscr{F}).$$

In Chapter 2.5 we have seen Donsker theorems in different flavours (different types of conditions on \mathscr{F}):

Based on the uniform entropy type conditions

$$\int_0^\infty \sup_Q \sqrt{\log N(\varepsilon||F||_{Q,2},\mathscr{F},L_2(Q))} d\varepsilon < \infty.$$

Based on bracketing entropy

$$\int_0^\infty \sqrt{\log N_{[]}(\varepsilon,\mathscr{F},L_2(P))}d\varepsilon < \infty.$$

These conditions are generally *not* comparable.

Donsker Theorem's based on uniform entropy

Theorem

Let class F of measurable functions satisfying

$$\int_0^\infty \sup_{Q} \sqrt{\log N(\varepsilon||F||_{Q,2}, \mathscr{F}, L_2(Q))} d\varepsilon < \infty$$

If furthermore \mathscr{F}_{δ} and \mathscr{F}_{∞}^2 are P-measurable for every $\delta > 0$ and F is a square integrable envelope, then \mathscr{F} is P-Donsker.

Donsker Theorem's based on bracketing

Theorem

Any class F of measurable functions satisfying

$$\int_0^\infty \sqrt{\log N_{[]}(\varepsilon,\mathscr{F},L_2(P))}d\varepsilon < \infty$$

is P-Donsker.

Chapter 2.11 gives versions of these two theorems for the non-iid setting; sufficient conditions for weak convergence based on

- a uniform entropy condition,
- a bracketing entropy condition,
- a "Random entropy" condition.

2.11.1: Random entropy

We start by defining the "process" equivalent of the empirical L_2 metric.

$$d_n(f,g) := \sum_{i=1}^{m_n} (Z_{ni}(f) - Z_{ni}(g))^2.$$

Compare to:

$$||f-g||_{L_2(\mathbb{P}_n)}^2:=\int (f-g)^2d\mathbb{P}_n.$$

2.11.1: Random entropy

The random entropy condition is formulated in terms of the random semimetric d_n

$$\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathscr{F}, d_n)} d\varepsilon \overset{P^*}{\to} 0 \quad \text{for every } \delta_n \searrow 0.$$

2.11.1: Random entropy

We need to following measurability assumption:

$$(x_1,\ldots,x_{m_n}) \mapsto \sup_{\rho(f,g)<\delta} |\sum_{i=1}^{m_n} e_i(Z_{ni}(f) - \mathbb{E}Z_{ni}(f))|$$
$$(x_1,\ldots,x_{m_n}) \mapsto \sup_{\rho(f,g)<\delta} |\sum_{i=1}^{m_n} e_i(Z_{ni}(f) - \mathbb{E}Z_{ni}(f))^2|$$

need to be measurable for the completion of $\prod_{i=1}^{m_n} (\mathcal{X}_{ni}, \mathcal{A}_{ni}, P_{ni})$.

Theorem (2.11.1)

Let (\mathscr{F},ρ) totally bounded semimetric space. Assume the Lindeberg condition

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}}^2 \{||Z_{ni}||_{\mathscr{F}} > \varepsilon\} \to 0 \text{ for all } \varepsilon > 0.$$

Assume furthermore that

$$\sup_{\rho(f,g)<\delta_n} \sum_{i=1}^{m_n} \mathbb{E} \left(Z_{ni}(f) - Z_{ni}(g) \right)^2 \to 0$$

for all $\delta_n \rightarrow 0$ and entropy condition

$$\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathscr{F}, d_n)} d\varepsilon \overset{P^*}{\to} 0.$$

Then, $\sum\limits_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ is asymptotically ρ -equicontinuous. If the covariance of the marginals converges pointwise in $\mathscr{F} \times \mathscr{F}$, we have $\sum\limits_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ converges weakly in $\ell^{\infty}(\mathscr{F})$.

Before going to the proof, let's briefly compare with the regular Lindeberg CLT.

Theorem (Lindeberg CLT)

Let Z_{n1}, \dots, Z_{nm_n} independent, $\mathbb{E} Z_{ij} = 0$,

$$\sum_{i=1}^{m_n} Var(Z_{ni}) = 1$$

and

$$L_n(\varepsilon) := \sum_{i=1}^{m_n} \mathbb{E} Z_{ni}^2 \{ |Z_{ni}| > \varepsilon \} \to 0$$

for all $\varepsilon > 0$. Then,

$$\sum_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni} \rightsquigarrow N(0,1).$$

Theorem (2.11.1)

Let (\mathscr{F},ρ) totally bounded semimetric space. Assume the Lindeberg condition

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}}^2 \{||Z_{ni}||_{\mathscr{F}} > \varepsilon\} \to 0 \text{ for all } \varepsilon > 0.$$

Assume furthermore that

$$\sup_{\rho(f,g)<\delta_n} \sum_{i=1}^{m_n} \mathbb{E} \left(Z_{ni}(f) - Z_{ni}(g) \right)^2 \to 0$$

for all $\delta_n \rightarrow 0$ and entropy condition

$$\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathscr{F}, d_n)} d\varepsilon \overset{P^*}{\to} 0.$$

Then, $\sum\limits_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ is asymptotically ρ -equicontinuous. If the covariance of the marginals converges pointwise in $\mathscr{F} \times \mathscr{F}$, we have $\sum\limits_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ converges weakly to a Gaussian process in $\ell^{\infty}(\mathscr{F})$.

Proof of 2.11.1:

By Theorem 1.5.4, for convergence in distribution in $\ell^{\infty}(\mathscr{F})$ it is enough to show

- convergence of maringals
- asymptotic tightness.

Theorem 1.5.7: X_{α} is asymptotically tight if and only if $X_{\alpha}(t)$ is asymptotically tight in $\mathbb R$ for every t and there exists a semimetric ρ on T such that (T,ρ) is totally bounded and X_{α} is asymptotically uniformly ρ -equicontinuous in probability.

So asymptotic ρ -equicontinuity is (as usual) enough here.

Proof of 2.11.1: Convergence of marginals

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}}^2 \{||Z_{ni}||_{\mathscr{F}} > \varepsilon\} \to 0 \text{ for all } \varepsilon > 0.$$

is much stronger than the regular Lindeberg condition needed for marginal in $f \in \mathscr{F}$:

$$\sum_{i=1}^{m_n} E^* Z_{ni}(f)^2 \{ |Z_{ni}(f)| > \varepsilon \} \to 0 \text{ for all } \varepsilon > 0.$$

Proof of 2.11.1: Convergence of marginals

Theorem (Lindeberg CLT)

Let Z_{n1},\ldots,Z_{nm_n} independent, $\mathbb{E}Z_{ij}=0$,

$$\sum_{i=1}^{m_n} Var(Z_{ni}) = 1$$

and

$$L_n(\varepsilon) := \sum_{i=1}^{m_n} \mathbb{E} Z_{ni}^2 \{ |Z_{ni}| > \varepsilon \} \to 0$$

for all $\varepsilon > 0$. Then,

$$\sum_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni} \rightsquigarrow N(0,1).$$

Apply (multivariate version) to $Z_{n1}(f_i), \dots, Z_{nm_n}(f_i)$.

Proof of 2.11.1: Convergence of marginals

To get the convergence of marginals that we are after, we need

$$\operatorname{\mathsf{Cov}}_n(f,g) := \sum_{i=1}^{m_n} \left[\mathbb{E} Z_{ni}(f) Z_{ni}(g) - \mathbb{E} Z_{ni}(f) \mathbb{E} Z_{ni}(g) \right]$$

to convergence pointwise for $(f,g) \in \mathscr{F} \times \mathscr{F}$.

A net $X_{\alpha}:\Omega\to\ell^{\infty}(T)$ is asymptotically uniformly ρ -equicontinuous in probability if for every $\varepsilon,\eta>0$ there exists a $\delta>0$ such that

$$\limsup_{\alpha} P^* \left(\sup_{\rho(s,t) < \delta} |X_{\alpha}(s) - X_{\alpha}(t)| > \varepsilon \right) < \eta.$$

So it is enough to show that for arbitrary t > 0, there is some $\delta_n \searrow 0$ such that

$$P^*\left(\sup_{
ho(f,g)<\delta_n}|\sum_{i=1}^{m_n}(Z_{ni}^\circ(f)-Z_{ni}^\circ(g))|>t
ight) o 0$$

where $Z_{ni}^{\circ} = Z_{ni} - \mathbb{E} Z_{ni}$.

Lemma (2.3.7)

For arbitrary stochastic processes Z_1, \ldots, Z_n

$$P^*\left(||\sum_{i=1}^n Z_i||_{\mathscr{F}} > x\right) \leq \frac{2}{\beta_n(x)} P^*\left(||\sum_{i=1}^n \varepsilon_i Z_i||_{\mathscr{F}} > x\right)$$

for every x > 0 and $\beta_n(x) \le \inf_f P(|\sum_{i=1}^n Z_i(f)| < x/2)$.

We have

$$\sup_{\rho(f,g)<\delta_n}\!P(|\sum_{i=1}^{m_n}\!Z_{ni}^\circ(f)-Z_{ni}^\circ(g)|>t/2)\leq\frac{1}{2}$$

by the assumption

$$\sup_{\rho(f,g)<\delta_{n}} \sum_{i=1}^{m_n} \mathbb{E} \left(Z_{ni}(f) - Z_{ni}(g) \right)^2 \to 0.$$

So by Lemma 2.3.7:

$$P^* \left(\sup_{\rho(f,g) < \delta_n} |\sum_{i=1}^{m_n} (Z_{ni}^{\circ}(f) - Z_{ni}^{\circ}(g))| > t \right) \le 4P \left(\sup_{\rho(f,g) < \delta_n} |\sum_{i=1}^{m_n} \varepsilon_i(Z_{ni}(f) - Z_{ni}(g))| > t/4 \right)$$

By the measurability assumptions, we can condition

$$4P\left(\sup_{\rho(f,g)<\delta_{n}}\left|\sum_{i=1}^{m_{n}}\varepsilon_{i}(Z_{ni}(f)-Z_{ni}(g))\right|>t/4\right)=$$

$$4P_{Z}P_{\varepsilon}\left(\sup_{\rho(f,g)<\delta_{n}}\left|\sum_{i=1}^{m_{n}}\varepsilon_{i}(Z_{ni}(f)-Z_{ni}(g))\right|>t/4\left|Z_{n1},\ldots,Z_{nn}\right)$$

We focus first on bounding the inner probability statement.

For fixed Z_{n1}, \dots, Z_{nn} , first define the random subset $A_n \subset \mathbb{R}^{m_n}$ consisting of

$$(Z_{n1}(f) - Z_{n1}(g), \dots, Z_{nm_n}(f) - Z_{nm_n}(g))$$

where (f,g) range over $\{(f,g)\in\mathscr{F}\times\mathscr{F}: \rho(f,g)<\delta_n\}$.

We can write

$$P_{\varepsilon}\left(\sup_{\rho(f,g)<\delta_{n}}|\sum_{i=1}^{m_{n}}\varepsilon_{i}(Z_{ni}(f)-Z_{ni}(g))|>t/4\right)=P_{\varepsilon}\left(\sup_{a\in A_{n}}|\sum_{i=1}^{m_{n}}\varepsilon_{i}a_{i}|>t/4\right)$$

and bound by

$$\frac{4\mathbb{E}_{\varepsilon}\sup_{a\in A_n}|\sum_{i=1}^{m_n}\varepsilon_ia_i|}{t}$$

Corollary (2.2.8)

Let $\{X_t: t \in T\}$ separable sub-Gaussian process for metric d. Then we have for all $t_0 \in T$

$$\mathbb{E}\sup_{t}|X_{t}|\lesssim \mathbb{E}|X_{t_{0}}|+\int_{0}^{\infty}\sqrt{\log N(\varepsilon,T,d)}d\varepsilon$$

We aim to apply this to $\{\sum_{i=1}^n \varepsilon_i a_i : a \in A_n\}$, with $d = ||\cdot||_2$ and taking $t_0 = a_0$ corresponding to (f, f), so the first term on the right hand side vanishes.

Letting $a_i = Z_{ni}(f) - Z_{ni}(g)$, the sub-Gaussianity required by Corollary 2.2.8 is

$$P_{\varepsilon}(|\sum_{i=1}^{m_n} \varepsilon_i a_i| > x) \lesssim e^{-\frac{x^2}{||a||_2}}$$

This is given by Hoeffding's lemma.

Using 2.2.8, we obtain

$$\mathbb{E}_{\varepsilon} \sup_{a \in A_n} |\sum_{i=1}^{m_n} \varepsilon_i a_i| \lesssim \int_0^{\infty} \sqrt{\log N(\varepsilon, A_n, ||\cdot||_2)} d\varepsilon$$

Define

$$\theta_n = \sup_{a \in A_n} \sqrt{\sum_{i=1}^{m_n} a_i^2}$$

and note that if $\varepsilon > \theta_n$,

$$\sqrt{\log N(\varepsilon, A_n, ||\cdot||_2)} = 0$$

So,

$$\mathbb{E}_{\varepsilon} \sup_{a \in A_n} |\sum_{i=1}^{m_n} \varepsilon_i a_i| \lesssim \int_0^{\theta_n} \sqrt{\log N(\varepsilon, A_n, ||\cdot||_2)} d\varepsilon$$

For the entropy numbers we have

$$N(\varepsilon, A_n, ||\cdot||) \leq N^2(\varepsilon/2, \mathscr{F}, d_n)$$

by construction; recalling that $A_n \subset \mathbb{R}^{m_n}$ consists of

$$(Z_{n1}(f) - Z_{n1}(g), \dots, Z_{nm_n}(f) - Z_{nm_n}(g))$$

where (f,g) range over $\{(f,g) \in \mathscr{F} \times \mathscr{F} : \rho(f,g) < \delta_n\}$.

Consequently, we have

$$\mathbb{E}_{\epsilon} \sup_{a \in A_n} |\sum_{i=1}^{m_n} \epsilon_i a_i| \lesssim \int_0^{\theta_n} \sqrt{2 \log N(\epsilon/2, \mathscr{F}, d_n)} d\epsilon$$

Suppose now that there exists a sequence $s_n \searrow 0$ such that $P(\theta_n > s_n) \to 0$. For such a sequence,

$$\int_0^{s_n} \sqrt{2\log N(\epsilon/2,\mathscr{F},d_n)} d\epsilon \to 0$$

in outer probability by assumption.

Letting $E_{\eta} = \{\theta_n < s_n, \int_0^{s_n} \sqrt{2 \log N(\epsilon/2, \mathscr{F}, d_n)} d\epsilon < \eta t \}$ and putting together the previous steps

$$\begin{split} P_Z P_{\varepsilon} (\sup_{a \in A_n} |\sum_{i=1}^{m_n} \varepsilon_i a_i| > t/4) (1_E + 1_{E^c}) &\lesssim P_Z \frac{4 \int_0^{s_n} \sqrt{2 \log N(\varepsilon/2, \mathscr{F}, d_n)} d\varepsilon}{t} 1_E + 1_{E^c} \\ &\leq \eta P_Z(E) + P(E^c) \end{split}$$

where $P(E^c) \to 0$ provided $\theta_n \overset{P}{\to} 0$ and η can be picked arbitrarily small.

It is left to prove that indeed $\theta_n \stackrel{P}{\rightarrow} 0$. Proof of this fact is similar as in 2.5.2. It uses:

- (again) Lindeberg condition to control $||Z_{ni}||_{\mathscr{F}}$
- Symmetrization lemma + ε -net B_n approximation of A_n .
- Hoffmann-Jorgensen A.1.5
- The cardinality of B_n (ie $(N^2(\varepsilon, \mathscr{F}, d_n))$) being bounded in probability (Exercise 2.11.1)

1. The random entropy condition (2.11.2) implies that the sequence $N(\varepsilon, \mathcal{F}, d_n)$ is bounded in probability for every $\varepsilon > 0$.

[Hint: For every $\delta_n \leq \varepsilon$,

$$P\Big(N(\varepsilon, \mathcal{F}, d_n) \ge M_n\Big) \le P\Big(\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathcal{F}, d_n)} \, d\varepsilon \ge \delta_n \sqrt{\log M_n}\Big).$$

Given $M_n \to \infty$, choose $\delta_n \downarrow 0$ such that $\delta_n \sqrt{\log M_n}$ is bounded away from zero.]

Theorem (2.11.1)

Let (\mathscr{F}, ρ) totally bounded semimetric space. Assume the condition

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}}^2 \{||Z_{ni}||_{\mathscr{F}} > \varepsilon\} \to 0 \text{ for all } \varepsilon > 0.$$

Assume furthermore that

$$\sup_{\rho(f,g)<\delta_{n}} \sum_{i=1}^{m_n} \mathbb{E} \left(Z_{ni}(f) - Z_{ni}(g) \right)^2 \to 0$$

for all $\delta_n \rightarrow 0$ and entropy condition

$$\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathscr{F}, d_n)} d\varepsilon \overset{P^*}{\to} 0.$$

Then, $\sum\limits_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ is asymptotically ρ -equicontinuous. If the covariance of the marginals converges pointwise in $\mathscr{F} \times \mathscr{F}$, we have $\sum\limits_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ converges weakly in $\ell^{\infty}(\mathscr{F})$.

Measurelike processes and uniform entropy

We now will turn to the case that \mathscr{F} consists of measurable functions $f: \mathscr{X} \to \mathbb{R}$ satisfying

$$\int_0^\infty \sup_Q \sqrt{\log N(\epsilon||F||_{Q,2}, \mathscr{F}, L_2(Q))} d\epsilon < \infty.$$

This is the uniform entropy condition we have used in Chapter 2.5 to verify the Donsker property for \mathscr{F} in for example Theorem 2.5.2.

We wish to relate the above to the random entropy condition of the previous theorem.

We call Z_{ni} measure like with respect to random measures μ_{ni} if

$$(Z_{ni}(f)-Z_{ni}(f))^2 \leq \int (f-g)^2 d\mu_{ni}$$

for every $f, g \in \mathscr{F}$

Lemma 2.11.6

Lemma

Let \mathscr{F} be a class of measurable functions with envelope function F. Let Z_{n1},\ldots,Z_{nm_n} be measurelike with respect to μ_{ni} 's. Suppose \mathscr{F} satisfies

$$\int_0^\infty \sup_{Q} \sqrt{\log N(\varepsilon||F||_{Q,2}, \mathscr{F}, L_2(Q))} d\varepsilon < \infty.$$

and the Q contains $\sum\limits_{i=1}^{m_n}\mu_{ni}$ and $\sum\limits_{i=1}^{m_n}\mu_{ni}F^2=O_P^*(1)$, then

$$\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathscr{F}, d_n)} d\varepsilon \overset{P^*}{\to} 0.$$

Lemma 2.11.6: Proof

Since Z_{ni} is measure like, we have random measures μ_{ni} satisfying

$$(Z_{ni}(f)-Z_{ni}(f))^2 \leq \int (f-g)^2 d\mu_{ni}$$

for every $f, g \in \mathscr{F}$.

Write $\mu_n = \sum_{i=1}^{m_n} \mu_{ni}$. Note that

$$d_n^2(f,g) \leq \int (f-g)^2 d\mu_n.$$

So,

$$N(\varepsilon, \mathscr{F}, d_n) \leq N(\varepsilon, \mathscr{F}, L_2(\mu_n))$$

We have

$$\begin{split} \int_{0}^{\delta_{n}} \sqrt{\log N(\varepsilon, \mathscr{F}, d_{n})} d\varepsilon &= \int_{0}^{\frac{\delta_{n}}{||F||}} \sqrt{\log N(\varepsilon||F||, \mathscr{F}, d_{n})} d\varepsilon||F|| \\ &\leq \int_{0}^{\frac{\delta_{n}}{||F||}} \sqrt{\log N(\varepsilon||F||, \mathscr{F}, L_{2}(\mu_{n}))} d\varepsilon||F|| := J' \end{split}$$

where $||F|| \equiv ||F||_{\mu_n} = \mu_n F^2$.

Write

$$J(\delta) = \int_0^\delta \sup_{Q} \sqrt{\log N(\varepsilon||F||_{Q,2}, \mathscr{F}, L_2(Q))} d\varepsilon$$

The proof is finished by noting that

- $J' \leq J(\infty)\eta$ on the set $\{||F||_{\mu_{\eta}} \leq \eta\}$, can make arb. small by choice η .
- On $\{||F||_{\mu_n} \leq \eta\}$, $J' \leq J(\delta_n/\eta)$ which is will converge to 0 in probability for every $\delta_n \to 0$ by assumption.

Example: weighted empirical processes

Let

- $X_{n1},...,X_{nm_n}$ be independent random elements in measurable space $(\mathcal{X},\mathcal{X})$ and corresponding laws P_{ni}
- $P_{ni}f$ exist for all $n, i = 1, ..., m_n$ and f in measurable class of real valued functions \mathscr{F}
- Let c_{ni} constants where $i = 1, ..., m_n$ and define

$$\mathbb{G}_n:=\sum_{i=1}^{m_n}c_{ni}(f(X_{ni})-P_{ni}f).$$

Example: weighted empirical processes

This process $\mathbb{G}_n := \sum_{i=1}^{m_n} c_{ni}(f(X_{ni}) - P_{ni}f)$ can be related to a measurelike process Z_{ni} by setting

$$Z_{ni}=c_{ni}\delta_{X_{ni}}$$

which are measurelike for the measures

$$\mu_{ni}=c_{ni}^2\delta_{X_{ni}}$$
:

Recall: Z_{ni} is measurelike if

$$(Z_{ni}(f)-Z_{ni}(f))^2 \leq \int (f-g)^2 d\mu_{ni}$$

for possibly random measures μ_{ni} .

Example: weighted empirical processes

Suppose that $\mathscr F$ satisfies the uniform entropy condition and that

$$\max_{1 \leq i \leq m_n} |c_{ni}| \to 0$$

and

$$\sum_{i=1}^{m_n} c_{n,i}^2 P_{ni} \leq P$$

for *P* a probability measure with $P^*F^2 < \infty$.

Then (under measurability conditions) Lemma 2.11.6 + Theorem 2.11.1 now yield that \mathbb{G}_n converges weakly in $\ell^{\infty}(\mathscr{F})$ to a Gaussian process provided we have the required marginal convergence.

Now we turn to CLT's for processes based on the bracketing entropy condition on \mathscr{F} .

In particular we will be proving two generalization of Theorem 2.5.6.

Theorem

Any class F of measurable functions satisfying

$$\int_0^\infty \sqrt{\log N_{[]}(\varepsilon,\mathscr{F},L_2(P))}d\varepsilon < \infty$$

is P-Donsker.

Generalizations will be in two directions:

- generalization in terms non-iid setting (Theorem 2.11.9)
- weakening the entropy conditions in terms of existence of certain Gaussian processes

Generalizations will be in two directions:

- generalization in terms non-iid setting (Theorem 2.11.9)
- weakening the entropy conditions in terms of existence of certain Gaussian processes (Theorem 2.11.11)

We will be looking at the bracketing numbers $N_{\varepsilon} \equiv N_{[]}(\varepsilon, \mathscr{F}, L_2^n)$, ie the minimum number of sets $\mathscr{F}_{\varepsilon j}^n$ such that

$$\mathscr{F} = \cup_{j=1}^{N_{\varepsilon}} \mathscr{F}_{\varepsilon j}^n$$

and

$$\sum_{i=1}^{m_n} E^* \sup_{f,g \in \mathscr{F}^n_{\varepsilon_j}} |Z_{ni}(f) - Z_{ni}(g)|^2 \leq \varepsilon^2.$$

Theorem (2.11.9 - Bracketing entropy)

Let Z_{n1}, \ldots, Z_{nm_n} independent stochastic processes with finite second moments indexed by (\mathscr{F}, ρ) , a totally bounded semimetric space. Suppose

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}} \{||Z_{ni}||_{\mathscr{F}} > \eta\} \to 0 \text{ for all } \eta > 0,$$

$$\sup_{\rho(f,g)<\delta_{n}} \sum_{i=1}^{m_n} \mathbb{E}\left(Z_{ni}(f) - Z_{ni}(g)\right)^2 \to 0$$

for all $\delta_n \rightarrow 0$ and entropy condition

$$\int_0^{\delta_n} \sqrt{\log \textit{N}_{[]}(\epsilon,\mathscr{F},\textit{L}_2)} d\epsilon \to 0.$$

Then, $\sum_{i=1}^{m_n} (Z_{ni} - \mathbb{E} Z_{ni})$ is asymptotically tight in $\ell^{\infty}(\mathscr{F})$ provided we have marginal convergence.

Proof of both Theorem 2.11.9 (and 2.11.11) are based on a chaining argument similar to that of 2.5.6.

The argument is quite long / intensive from a bookkeeping perspective so I will leave them to be DBY.

The entropy condition of the previous theorem can be refined further.

Two definitions: a semimetric ρ is called Gaussian if it is of the form

$$\rho(f,g) = \left(\mathbb{E}(G(f) - G(g))^2\right)^{1/2}$$

where *G* is some tight, centered Gaussian in $\ell^{\infty}(T)$.

Call a semimetric ρ *Gaussian-dominated* if it is bounded above on $\mathscr{F} \times \mathscr{F}$ by a Gaussian semimetric.

It can be shown that any semimetric on $\mathscr{F}\times\mathscr{F}$ is Gaussian dominated if

$$\int_0^\infty \sqrt{\log N(\varepsilon, \mathscr{F}, \rho)} d\varepsilon < \infty.$$

(this is problem 2.11.4)

Theorem (2.11.11)

Let Z_{n1},\dots,Z_{nm_n} independent stochastic processes with finite second moments indexed by \mathscr{F} . Let

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}} \{||Z_{ni}||_{\mathscr{F}} > \eta\} \rightarrow 0 \text{ for all } \eta > 0.$$

Suppose further that there exists a Gaussian dominated semimetric ρ such that

$$\sum_{i=1}^{m_n} \mathbb{E} \left(Z_{ni}(f) - Z_{ni}(g) \right)^2 \leq \rho^2(f,g) \ \text{ for all } (f,g) \in \mathscr{F} \times \mathscr{F}$$

and

$$\sup_{t>0} \sum_{i=1}^{m_n} t^2 P^* \left(\sup_{f,g \in B_{\varepsilon}} |Z_{ni}(f) - Z_{ni}(g)| > t \right) \leq \varepsilon^2$$

for every ρ -ball of radius less than ε $B_{\varepsilon} \subset \mathscr{F}$ and for every n.

Then, $\sum_{i=1}^{m_n} (Z_{ni} - \mathbb{E} Z_{ni})$ is asymptotically tight in $\ell^{\infty}(\mathscr{F})$, and hence converges weakly provided we have marginal convergence.

Example (Corollary?): Jain-Marcus Theorem

Let Z_{n1},\dots,Z_{nm_n} independent stochastic processes with finite second moments indexed by $\mathscr F$ such that

$$|Z_{ni}(f) - Z_{ni}(g)| \leq M_{ni}\rho(f,g)$$

for independent random variables M_{n1},\ldots,M_{n,m_n} and a semimetric ρ such that

$$\int_0^\infty \sqrt{\log N(\epsilon, \mathscr{F}, \rho)} d\epsilon < \infty,$$

and

$$\sum_{i=1}^{m_n} \mathbb{E} M_{ni}^2 = \mathscr{O}(1).$$

If the Lindeberg condition is satisfied, $\sum\limits_{i=1}^{m_n}(Z_{ni}-\mathbb{E}Z_{ni})$ is asymptotically tight in $\ell^\infty(\mathscr{F})$, and hence converges weakly provided we have marginal convergence.

Example: Stochastic processes indexed by the unit interval

Let $Z_1, ..., Z_n$ independent stochastic processes indexed by $\mathscr{F} = [0, 1], ||Z_i||_{\mathscr{F}} \le 1$ and

$$\mathbb{E}|Z_i(f)-Z_i(g)|\leq K|f-g|$$

for independent random variables for some constant K. Then, $n^{-1/2}\sum\limits_{i=1}^{m_n}(Z_i-\mathbb{E}Z_i)$ converges weakly in $\ell^\infty(\mathscr{F})$.

We can derive this using Theorem 2.11.11 for $Z_{ni} = n^{-1/2}Z_i$.

Example: Stochastic processes indexed by the unit interval

- Lindeberg condition is trivially satisfied.
- For every ε -sized interval

$$\sum_{i=1}^{m_n} \mathbb{E}\left(Z_{ni}(f) - Z_{ni}(g)\right)^2 \leq \rho^2(f,g)$$

for $\rho^2(f,g) = 2K|f-g| \le 2K\varepsilon$. This means it satisfies the conditions of 2.11.11.

• This $\rho^2(f,g) = 2K|f-g|$ has a finite entropy integral

$$\int_0^\infty \sqrt{\log N(\varepsilon, \mathscr{F}, \rho)} d\varepsilon < \infty$$

so it is Gaussian dominated.

Consider now

- X_1, \ldots, X_n on common probability space $(\mathcal{X}, \mathcal{A})$
- $x \mapsto f_{n,t}(x)$ functions from \mathscr{X} to \mathbb{R} for $n \in \mathbb{N}$ and $t \in T$
- T a totally bounded semimetric space with semimetric ρ .

We wish to derive conditions for the stochastic processes

$$\left\{ n^{-1/2} \sum_{i=1}^{n} (f_{n,t}(X_i) - Pf_{n,t}) : t \in T \right\}$$

to converge weakly in $\ell^{\infty}(T)$.

We can view these as empirical processes

$$\mathbb{G}_n f_{t,n} := n^{-1/2} \sum_{i=1}^n (f_{n,t}(X_i) - P f_{n,t})$$

indexed by $\mathscr{F}_n = \{f_{n,t} : t \in T\}$, so the function class changes with n.

This fits into our earlier framework upon setting

$$Z_{ni}(t) = f_{n,t}(X_i)/\sqrt{n}$$

which gives

$$\mathbb{G}_n = \sum_{i=1}^n (Z_{ni}(t) - \mathbb{E}Z_{ni}(t)).$$

Again, the weak convergence theorems come in two flavours: uniform entropy and bracketing entropy.

For both types of entropy conditions, we assume

- There exists envelope function F_n for \mathscr{F}_n , with $P^*F_n^2 = \mathscr{O}(1)$.
- $P^*F_n^2\{F_n > \eta \sqrt{n}\} \to 0$ for all $\eta > 0$.
- $\sup_{\rho(s,t)<\delta_n} P(f_{n,s}-f_{n,t})^2 \to 0$ for every $\delta_n \searrow 0$.

2.11.3: Uniform entropy

Theorem (2.11.22)

For each n, let $\mathscr{F}_n = \{f_{n,t} : t \in T\}$ be a class of measurable functions such that $\mathscr{F}_{n,\delta} := \{f_{n,s} - f_{n,t} : \rho(s,t) < \delta\}$ and $\mathscr{F}^2_{n,\delta}$ are P-measurable for every $\delta > 0$. If the assumptions on the previous slide hold, as well as

$$\sup_{Q} \int_{0}^{\delta_{n}} \sqrt{\log N(\varepsilon ||F_{n}||_{Q,2}, \mathscr{F}_{n}, L_{2}(Q))} d\varepsilon \to 0 \ \ \textit{for every } \delta_{n} \searrow 0,$$

Then, $\{\mathbb{G}_n f_{n,t}: t\in T\}$ is asymptotically tight in ℓ^∞ and converges in distribution to a Gaussian process provided the sequence of covariance functions $Pf_{n,s}f_{n,t}-Pf_{n,s}Pf_{n,t}$ converges pointwise on $T\times T$.

We aim at applying the earlier proved Theorem 2.11.1:

Theorem (2.11.1)

Assume

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}}^2 \{||Z_{ni}||_{\mathscr{F}} > \varepsilon\} \to 0 \text{ for all } \varepsilon > 0,$$

$$\sup_{\rho(f,g)<\delta_{n}}\sum_{i=1}^{m_{n}}\mathbb{E}\left(Z_{ni}(f)-Z_{ni}(g)\right)^{2}\rightarrow0,$$

for all $\delta_n \to 0$ and entropy condition

$$\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathscr{F}, d_n)} d\varepsilon \stackrel{P^*}{\to} 0.$$

Then, $\sum_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ is asymptotically ρ -equicontinuous. If the covariance of

the marginals converges pointwise in $\mathscr{F} \times \mathscr{F}$, we have $\sum_{i=1}^{m_n} Z_{ni} - \mathbb{E} Z_{ni}$ converges weakly in $\ell^{\infty}(\mathscr{F})$.

We start by noting that the Lindeberg assumption is satisfied by the envelope condition $P^*F_n^2\{F_n>\eta\sqrt{n}\}\to 0$ for all $\eta>0$.

Next, observe that
$$\sup_{\rho(s,t)<\delta_n} P(f_{n,s}-f_{n,t})^2 \to 0$$
 for every $\delta_n \searrow 0$ implies
$$\sup_{\rho(f,g)<\delta_n} \sum_{i=1}^{m_n} \mathbb{E}\left(Z_{ni}(f)-Z_{ni}(g)\right)^2 \to 0.$$

Next, observe that the random semimetric of 2.11.1 satisfies

$$d_n^2(s,t) = \frac{1}{n} \sum_{i=1}^{n} (f_{n,s} - f_{n,t})^2(X_i) = \mathbb{P}_n(f_{n,s} - f_{n,t})^2,$$

SO

$$N(\varepsilon, T, d_n) = N(\varepsilon, T, L_2(\mathbb{P}_n)).$$

Now, $N(\varepsilon, T, d_n) = N(\varepsilon, T, d_n)$ means that the entropy condition assumed in 2.11.22;

$$\sup_{Q} \int_{0}^{\delta_{n}} \sqrt{\log \textit{N}(\varepsilon||\textit{F}_{n}||_{Q,2},\mathscr{F}_{n},\textit{L}_{2}(Q))} d\varepsilon \rightarrow 0 \ \ \text{for every} \ \delta_{n} \searrow 0,$$

implies the entropy condition of 2.11.1

$$\int_0^{\delta_n} \sqrt{\log N(\varepsilon, \mathscr{F}, d_n)} d\varepsilon \overset{P^*}{\to} 0.$$

We may assume wlog $F \ge 1$. Now,

$$\int_{0}^{\frac{\delta_{n}}{||F_{n}||_{\mathbb{P}_{n},2}}} \sqrt{\log N(\varepsilon,\mathscr{F},d_{n})} d\varepsilon = \int_{0}^{\delta_{n}} \sqrt{\log N(\varepsilon||F_{n}||_{\mathbb{P}_{n},2},T,d_{n})} d\varepsilon||F_{n}||_{\mathbb{P}_{n},2}$$

$$= \int_{0}^{\delta_{n}} \sqrt{\log N(\varepsilon||F_{n}||_{\mathbb{P}_{n},2},\mathscr{F}_{n},L_{2}(\mathbb{P}_{n}))} d\varepsilon||F_{n}||_{\mathbb{P}_{n},2} \to 0$$

as

$$\sup_{Q} \int_{0}^{\delta_{n}} \sqrt{\log N(\varepsilon ||F_{n}||_{Q,2}, \mathscr{F}_{n}, L_{2}(Q))} d\varepsilon \to 0 \ \text{ for every } \delta_{n} \searrow 0.$$

Next, we turn to a convergence theorem based on bracketing entropy.

We still assume:

- X_1, \ldots, X_n on common probability space $(\mathcal{X}, \mathcal{A})$
- $x \mapsto f_{n,t}(x)$ functions from \mathscr{X} to \mathbb{R} for $n \in \mathbb{N}$ and $t \in T$
- T a totally bounded semimetric space with semimetric ρ .

We wish to derive conditions for the stochastic processes

$$\left\{ n^{-1/2} \sum_{i=1}^{n} (f_{n,t}(X_i) - Pf_{n,t}) : t \in T \right\}$$

to converge weakly in $\ell^{\infty}(T)$.

2.11.3: Bracketing entropy

Theorem (2.11.23)

For each n, let $\mathscr{F}_n = \{f_{n,t} : t \in T\}$ be a class of measurable functions and suppose the assumptions on the previous slide hold, as well as

$$\int_0^{\delta_n} \sqrt{\log N_{[]}(\epsilon||F_n||_{P,2},\mathscr{F}_n,L_2(P))} d\epsilon \to 0 \ \text{ for every } \delta_n \searrow 0,$$

Then, $\{\mathbb{G}_n f_{n,t} : t \in T\}$ is asymptotically tight in ℓ^{∞} and converges in distribution to a Gaussian process prodided the sequence of covariance functions $Pf_{n,s}f_{n,t} - Pf_{n,s}Pf_{n,t}$ converges pointwise on $T \times T$.

Theorem (2.11.9 - Bracketing CLT)

Let Z_{n1}, \ldots, Z_{nm_n} independent stochastic processes with finite second moments indexed by (\mathscr{F}, ρ) , a totally bounded semimetric space. Suppose

$$\sum_{i=1}^{m_n} E^* ||Z_{ni}||_{\mathscr{F}} \{||Z_{ni}||_{\mathscr{F}} > \eta\} \to 0 \text{ for all } \eta > 0,$$

$$\sup_{\rho(f,g)<\delta_{n}} \sum_{i=1}^{m_n} \mathbb{E}\left(Z_{ni}(f) - Z_{ni}(g)\right)^2 \to 0$$

for all $\delta_n \rightarrow 0$ and entropy condition

$$\int_0^{\delta_n} \sqrt{\log N_{[]}(\varepsilon,\mathscr{F},L_2^n)} d\varepsilon \to 0 \ \ \text{for all } \delta_n \searrow 0$$

Then, $\sum_{i=1}^{m_n} (Z_{ni} - \mathbb{E} Z_{ni})$ is asymptotically tight in $\ell^{\infty}(\mathscr{F})$ provided we have marginal convergence.

Thank you for listening!