Exercise Sheet 9 due: 30.06.2016 at 10:00

Stochastic Optimization

This exercise sheet is about applying simulated annealing and a deterministic approximation thereof to a toy problem. Note that the respective lecture note section has been updated.

9.1 Simulated Annealing (5 points)

Simulated annealing can be used to optimize a cost function $E: s \to \mathbb{R}$ where the state s is a set of discrete state variables $s_i \in \{-1, +1\}, i = 1, ..., N$. For a fully connected "network" with N = 6 binary nodes, this means that $s \in \{-1, +1\}^6$, and we will use the cost ("energy")

$$E(s) = -\frac{1}{2} \sum_{i,j=1}^{N} w_{ij} s_i s_j,$$

where $w_{ij} = w_{ji} \in \mathbb{R}$, and $w_{ii} = 0$.

The probability that the network is in a state s with energy E(s) is given by

$$P(s) = \frac{1}{Z} \exp(-\beta E(s)),$$

where the partition function Z guarantees P(s) to be a valid probability mass function and is given as the sum over all possible configurations, i.e., $Z = \sum_{s} \exp(-\beta E(s))$.

Write a program that finds the optimal configuration s for a given set of weights W as follows (try to find reasonable parameters β_0 and τ to have a rather efficient implementation if possible):

Initialization:

- set $\beta_0, \tau > 1$, and t_{max} (make sure β_0 is small enough), try both M = 1 and M = 500
- \bullet set initial state s randomly; W arbitrary, but symmetrically and with zero diagonal

Optimization: for each iteration $t = 0, ..., t_{max}$

- repeat the following M times (state update loop):
 - select node i randomly
 - determine the energies for the two options of state s_i and compute their difference

$$E_{s_i} = -\frac{1}{2} \sum_{j \in \mathcal{N}_i} w_{ij} s_i s_j \qquad \text{and} \qquad E_{-s_i} = -E_{s_i} \qquad \rightarrow \qquad \Delta E = E_{-s_i} - E_{s_i}$$

where \mathcal{N}_i is the set of neighbors of node i, i.e. here the set of all other nodes

- flip state s_i with probability $P(s_i \rightarrow -s_i) = (1 + e^{\beta_t \Delta E})^{-1}$
- increase β using $\beta_{t+1} = \tau \beta_t$

Plotting:

- Plot the temperature $T_t = \frac{1}{\beta_t}$ and the energy E(s) over the iterations $t = 0, \dots, t_{max}$.
- Show the energy E(s) for all possible 2^6 states using a bar plot. The sequence of the states is not relevant. Additionally, plot the probabilities P(s) for different β as a bar plot. Choose the $\{\beta\}$ in a way, that the probability distributions differ discernibly.

9.2 Mean-Field Annealing (5 points)

Mean-field annealing is a deterministic approximation of simulated annealing. During optimization each node i corresponds to the first moment of s_i and thus takes continuous instead of binary values. The states s_i represent the mean with respect to the factorized distribution $Q(s) \approx P(s)$.

Consider again a fully connected network with ${\cal N}=6$ nodes. The cost (energy) function remains the same:

$$E(s) = -\frac{1}{2} \sum_{i,j=1}^{N} w_{ij} s_i s_j,$$

where the $w_{ij} \in \mathbb{R}$ are symmetric, and $w_{ii} = 0$. The approximated probability of a state s is now given by

$$Q(s) = \frac{1}{Z_Q} \exp\left(-\beta \sum_{j} e_j s_j\right).$$

Write a program that finds the optimal configuration s of the network for given weights W. It should execute the following steps:

Initialization:

- β_0 small enough, $\tau > 1$, set t_{max} , ε small enough
- \bullet initial state s randomly, W from exercise above

Optimization: for each iteration $t = 0, ..., t_{max}$

- ullet repeat the following until convergence, i.e., $|e_{
 m new}-e_{
 m old}|<arepsilon$
 - for i = 1, ..., N:
 - * compute mean-field

$$e_i = -\sum_{j \in \mathcal{N}_i} w_{ij} s_j$$

where \mathcal{N}_i is the set of neighbors of node i, i.e. here the set of all other nodes.

- * update the state using $s_i = \tanh(-\beta e_i)$
- Increase β using $\beta_{t+1} = \tau \beta_t$

Plotting:

• Plot the temperature $T_t = \frac{1}{\beta_t}$ and the energy E_t over the iterations $t = 0, \dots, t_{max}$.

Comparison: for simulated and mean-field annealing compare:

- the required number of iterations until convergence
- the total runtime (in dependence of different choices of M, τ, ε)
- the final result s after iteration $t_{\rm max}$

Total points: 10