Pari-GP reference card

(PARI-GP version 2.9.0)

Note: optional arguments are surrounded by braces $\{\}$. To start the calculator, type its name in the terminal: gp To exit gp, type quit, q, or C-D at prompt.

Help

describe function	?function
extended description	??keyword
list of relevant help topics	$\ref{eq:pattern}$
name of GP-1.39 function f in GP-2.*	$\mathtt{whatnow}(f)$

Input/Output

inpat/ Sutpat	
previous result, the result before	%, %', %'', etc.
<i>n</i> -th result since startup	n
separate multiple statements on line	;
extend statement on additional lines	\
extend statements on several lines	$\{seq_1; seq_2;\}$
comment	/* */
one-line comment, rest of line ignored	\\

Metacommands & Defaults

Metacolillianus & Delaults	
set default d to val	$\mathtt{default}(\{d\}, \{val\})$
toggle timer on/off	#
print time for last result	##
print defaults	\d
set debug level to n	\g n
set memory debug level to n	$\gm\ n$
set n significant digits / bits	$\p n$, $\p n$
set n terms in series	\ps n
quit GP	\q
print the list of PARI types	\t
print the list of user-defined functions	\u
read file into GP	\r filename

Debugger / break loop

7	
get out of break loop	break or <c-d></c-d>
go up/down n frames	$\mathtt{dbg_up}(\{n\}),\mathtt{dbg_down}$
set break point	$\mathtt{breakpoint}()$
examine object o	$dbg_x(o)$
current error data	dbg_err()
number of objects on heap and their size	$\mathtt{getheap}()$
total size of objects on PARI stack	$\mathtt{getstack}()$

PARI Types & Input Formats

1 Alti Types & Input Formats	
t_INT. Integers; hex, binary	± 31 ; ± 0 x1F, ± 0 b101
t_REAL. Reals	± 3.14 , 6.022 E23
t_INTMOD. Integers modulo m	$\mathtt{Mod}(n,m)$
t_FRAC. Rational Numbers	n/m
t_FFELT. Elt in finite field F_q	ffgen(q)
t_COMPLEX. Complex Numbers	x + y * I
t_PADIC. p-adic Numbers	$x + O(p^k)$
t_QUAD. Quadratic Numbers	$x+y*\mathtt{quadgen}(D)$
t_POLMOD. Polynomials modulo g	$\mathtt{Mod}(f,g)$
t_POL. Polynomials	$a*x^n+\cdots+b$
t_SER. Power Series	$f + O(x^k)$
t_RFRAC. Rational Functions	f/g
t_QFI/t_QFR . Imag/Real binary quad. form	$\mathtt{Qfb}(a,b,c,\{d\})$
t_VEC/t_COL. Row/Column Vectors	[x, y, z], [x, y, z] ~
t_VEC integer range	[110]

t_VECSMALL. Vector of small ints	Vecsmall([x, y, z])
t_MAT. Matrices	[a,b;c,d]
t_LIST. Lists	$\mathtt{List}(\llbracket x,y,z rbracket)$
t_STR. Strings	"abc"
t_INFINITY. $\pm\infty$	+00, -00

Reserved Variable Names

$\pi = 3.14, \gamma = 0.57, C = 0.91$	Pi, Euler, Catalan
square root of -1	I
Landau's big-oh notation	0

Information about an Object

PARI type of object x	$ exttt{type}(x)$
length of x / size of x in memory	$\#x, \mathtt{sizebyte}(x)$
real precision / bit precision of x	$\mathtt{precision}(x),\mathtt{bitprecision}$
p-adic, series prec. of x	$\mathtt{padicprec}(x),\mathtt{serprec}$

Operators

Operators	
basic operations	+, - , *, /, ^, sqr
i=i+1, i=i-1, i=i*j,	i++, i, i*=j,
euclidean quotient, remainder	$x \ y, x \ x, x, x, y$ divrem (x, y)
shift x left or right n bits	$x << n$, $x >> n$ or $shift(x, \pm n)$
multiply by 2^n	$\mathtt{shiftmul}(x,n)$
comparison operators	$<=,<,>=,>,==,!=,===,{\rm lex},{\rm cmp}$
boolean operators (or, and, not)	, &&, !
bit operations bitand, bit	tneg, bitor, bitxor, bitnegimply
sign of $x = -1, 0, 1$	$\mathtt{sign}(x)$
maximum/minimum of x and y	$\mathtt{max},\ \mathtt{min}(x,y)$
derivative of f	f,
differential operator	$\mathtt{diffop}(f,v,d,\{n=1\})$
quote operator (formal variable)	, x
assignment	x = value
simultaneous assignment $x \leftarrow v_1$	$y \leftarrow v_2$ [x,y] = v
α 1 α	

Select Components

n-th component of x	$\mathtt{component}(x,n)$
n-th component of vector/list x	x[n]
components $a, a + 1, \dots, b$ of vector x	x[ab]
(m, n)-th component of matrix x	x[m,n]
row m or column n of matrix x	x[m,], x[,n]
numerator/denominator of x	$\mathtt{numerator}(x), \mathtt{denominator}$

Random Numbers

random integer/prime in $[0, N[$	$\mathtt{random}(N),\mathtt{randomprime}$
get/set random seed	$\mathtt{getrand},\mathtt{setrand}(s)$

Conversions

Conversions	
to vector, matrix, vec. of small ints	Col/Vec,Mat,Vecsmall
to list, set, map, string	List, Set, Map, Str
create PARI object $(x \mod y)$	$\mathtt{Mod}(x,y)$
make x a polynomial of v	$\mathtt{Pol}(x,\{v\})$
as Pol, etc., starting with constant term	Polrev, Vecrev, Colrev
make x a power series of v	$\mathtt{Ser}(x,\{v\})$
string from bytes / from format+args	Strchr, Strprintf
TeX string	$\mathtt{Strtex}(x)$
convert x to simplest possible type	$\mathtt{simplify}(x)$
object x with real precision n	$\mathtt{precision}(x,n)$
object x with bit precision n	$\mathtt{bitprecision}(x,n)$
set precision to p digits in dynamic scope	$\mathtt{localprec}(p)$
set precision to p bits in dynamic scope	$\mathtt{localbitprec}(p)$

Conjugates and Lifts

conjugate of a number x	$\mathtt{conj}(x)$
norm of x , product with conjugate	$\mathtt{norm}(x)$
L^p norm of x (L^{∞} if no p)	$\mathtt{normlp}(x,\{p\})$
square of L^2 norm of x	$\mathtt{norm12}(x)$
lift of x from Mods and p -adics	lift, centerlift (x)
recursive lift	liftall
lift all t_INT and t_PADIC $(\rightarrow t_INT)$	liftint
lift all t_POLMOD (→t_POL)	liftpol

Lists, Sets & Maps

Sets (= row vector with strictly increasing	g entries w.r.t. cmp)
intersection of sets x and y	$\mathtt{setintersect}(x,y)$
set of elements in x not belonging to y	$\operatorname{\mathtt{setminus}}(x,y)$
union of sets x and y	$\mathtt{setunion}(x,y)$
does y belong to the set x	$\mathtt{setsearch}(x, y, \{flag\})$
set of all $f(x, y), x \in X, y \in Y$	$\mathtt{setbinop}(f, X, Y)$
is x a set?	$\mathtt{setisset}(x)$
Lists. create empty list: $L = List()$	
append x to list L	$\mathtt{listput}(L, x, \{i\})$
remove i -th component from list L	$\mathtt{listpop}(L,\{i\})$
insert x in list L at position i	$\mathtt{listinsert}(L,x,i)$
sort the list L in place	$\mathtt{listsort}(L, \{\mathit{flag}\})$
Maps. create empty dictionnary: $M = Ma$	ap()
attach value v to key k	$\mathtt{mapput}(M,k,v)$
recover value attach to key k or error	$\mathtt{mapget}(M,k)$
is key k in the dict ? (set v to $M(k)$) map	${ t pisdefined}(M,k,\{\&v\})$
remove k from map domain	$\mathtt{mapdelete}(M,k)$

GP Programming

type of error message E

try seq_1 , evaluate seq_2 on error

User functions and closures

```
x, y are formal parameters; y defaults to Pi if parameter opitted;
z, t are local variables (lexical scope), z initialized to 1.
fun(x, y=Pi) = my(z=1, t); seq
fun = (x, y=Pi) \rightarrow my(z=1, t); seq
attach a help message to f
                                              addhelp(f)
undefine symbol s (also kills help)
                                              kill(s)
Control Statements (X: formal parameter in expression seq)
if a \neq 0, evaluate seq_1, else seq_2
                                              if(a, \{seq_1\}, \{seq_2\})
eval. seq for a \leq X \leq b
                                              for(X = a, b, seq)
... for primes a \leq X \leq b
                                            forprime(X = a, b, seq)
... for composites a < X < b
                                       forcomposite(X = a, b, seq)
... for a < X < b stepping s
                                           forstep(X = a, b, s, seq)
\dots for X dividing n
                                              fordiv(n, X, seq)
multivariable for, lex ordering
                                              forvec(X = v, seq)
loop over partitions of n
                                              forpart(p = n, seq)
loop over vectors v, q(v) \le B; q > 0
                                              forqfvec(v, q, b, seq)
loop over H < G finite abelian group
                                              forsubgroup(H = G)
evaluate seg until a \neq 0
                                              until(a, seq)
while a \neq 0, evaluate seq
                                              while(a, seq)
exit n innermost enclosing loops
                                              break(\{n\})
                                              next(\{n\})
start new iteration of n-th enclosing loop
return x from current subroutine
                                              return(\{x\})
Exceptions, warnings
raise an exception / warn
                                              error(), warning()
```

errname(E)

 $iferr(seq_1, E, seq_2)$

	nts / results
select from v according to f	$\mathtt{select}(f,v)$
apply f to all entries in v	$\mathtt{apply}(f,v)$
evaluate $f(a_1, \ldots, a_n)$	$\mathtt{call}(f,a)$
evaluate $f(\ldots f(f(a_1, a_2), a_3) \ldots, a_r)$	fold(f,a)
calling function as closure	self()
Sums & Products	
sum $X = a$ to $X = b$, initialized at a	$\operatorname{sum}(X = a, b, expr, \{x\})$
sum entries of vector v	$\mathtt{vecsum}(v)$
sum $expr$ over divisors of n	$\mathtt{sumdiv}(n, X, expr)$
\dots assuming $expr$ multiplicative	$\mathtt{sumdivmult}(n, X, expr)$
product $a \leq X \leq b$, initialized at x	$prod(X = a, b, expr, \{x\})$
product over primes $a \leq X \leq b$	prodeuler(X = a, b, expr)
Sorting	
sort x by k -th component	$\mathtt{vecsort}(x,\{k\},\{fl=0\})$
min. m of x $(m = x[i])$, max.	$\mathtt{vecmin}(x, \{\&i\}), \mathtt{vecmax}$
does y belong to x , sorted wrt. f	$\mathtt{vecsearch}(x,y,\{f\})$
Input/Output	
print with/without \n, TEX format	<pre>print, print1, printtex</pre>
print fields with separator	printsep(sep,), printsep1
formatted printing	<pre>printf()</pre>
write args to file write	e, write1, writetex(file, args)
write x in binary format	$\mathtt{writebin}(file,x)$
read file into GP	$\mathtt{read}(\{file\})$
return as vector of lines	d((£1 ₀))
	$\verb"readvec"(\{file\}")$
return as vector of strings	$readvec(\{file\})$ $readstr(\{file\})$
read a string from keyboard	
9	$\mathtt{readstr}(\{\mathit{file}\})$
read a string from keyboard	$\mathtt{readstr}(\{\mathit{file}\})$
read a string from keyboard Timers	<pre>readstr({file}) input()</pre>
read a string from keyboard \mathbf{Timers} CPU time in ms and reset timer	$ \begin{split} \texttt{readstr}(\{ file \}) \\ \texttt{input}() \\ \\ \texttt{gettime}() \end{split} $
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup	<pre>readstr({file}) input() gettime() getabstime()</pre>
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch	<pre>readstr({file}) input() gettime() getabstime() getwalltime()</pre>
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds	<pre>readstr({file}) input() gettime() getabstime() getwalltime()</pre>
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds Interface with system	<pre>readstr({file}) input() gettime() getabstime() getwalltime() alarm(s, expr)</pre>
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds Interface with system allocates a new stack of s bytes	$\begin{tabular}{ll} readstr(\{file\}) \\ input() \\ gettime() \\ getabstime() \\ getwalltime() \\ alarm(s, expr) \\ \\ allocatemem(\{s\}) \\ alias(new, old) \\ \end{tabular}$
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds Interface with system allocates a new stack of s bytes alias old to new	$ \begin{split} & \texttt{readstr}(\left\{ \mathit{file} \right\}) \\ & \texttt{input}() \\ & \texttt{gettime}() \\ & \texttt{getabstime}() \\ & \texttt{getwalltime}() \\ & \texttt{alarm}(s, expr) \\ \\ & \texttt{allocatemem}(\left\{ s \right\}) \end{split} $
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds Interface with system allocates a new stack of s bytes alias old to new install function from library execute system command a as above, feed result to GP	$\begin{tabular}{ll} readstr(\{file\}) \\ input() \\ gettime() \\ getabstime() \\ getwalltime() \\ alarm(s, expr) \\ \\ allocatemem(\{s\}) \\ alias(new, old) \\ install(f, code, \{gpf\}, \{lib\}) \\ \end{tabular}$
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds Interface with system allocates a new stack of s bytes alias old to new install function from library execute system command a	$\label{eq:continuity} \begin{split} &\operatorname{readstr}(\left\{file\right\}) \\ &\operatorname{input}() \\ &\operatorname{gettime}() \\ &\operatorname{getabstime}() \\ &\operatorname{getwalltime}() \\ &\operatorname{alarm}(s, expr) \\ \\ &\operatorname{allocatemem}(\left\{s\right\}) \\ &\operatorname{alias}(new, old) \\ &\operatorname{install}(f, code, \left\{gpf\right\}, \left\{lib\right\}) \\ &\operatorname{system}(a) \end{split}$
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds Interface with system allocates a new stack of s bytes alias old to new install function from library execute system command a as above, feed result to GP	$\begin{tabular}{ll} readstr(\{file\}) \\ input() \\ gettime() \\ getabstime() \\ getwalltime() \\ alarm(s, expr) \\ \\ allocatemem(\{s\}) \\ alias(new, old) \\ install(f, code, \{gpf\}, \{lib\}) \\ system(a) \\ extern(a) \\ \end{tabular}$
read a string from keyboard Timers CPU time in ms and reset timer CPU time in ms since gp startup time in ms since UNIX Epoch timeout command after s seconds Interface with system allocates a new stack of s bytes alias old to new install function from library execute system command a as above, feed result to GP as above, return GP string	$\begin{tabular}{ll} readstr(\{file\}) \\ input() \\ gettime() \\ gettabstime() \\ getwalltime() \\ alarm(s, expr) \\ \\ allocatemem(\{s\}) \\ alias(new, old) \\ install(f, code, \{gpf\}, \{lib\}) \\ system(a) \\ extern(a) \\ externstr(a) \\ \end{tabular}$

Parallel evaluation

These functions evaluate their arguments in parallel (pthreads or MPI); args. must not access global variables and must be free of side effects. Enabled if threading engine is not *single* in gp header. evaluate f on $x[1], \ldots, x[n]$ parapply(f, x)evaluate closures $f[1], \ldots, f[n]$ pareval(f) as select $parselect(f, A, \{flag\})$ $parsum(i = a, b, expr, \{x\})$ as sum $parvector(n, i, \{expr\})$ as vector eval f for $i = a, \ldots, b$ $parfor(i = a, \{b\}, f, \{r\}, \{f_2\})$ $parforprime(p = a, \{b\}, f, \{r\}, \{f_2\})$... for p prime in [a, b] \dots multivariate $parforvec(X = v, f, \{r\}, \{f_2\}, \{flag\})$ declare x as inline (allows to use as global) inline(x) stop inlining uninline()

Pari-GP reference card

(PARI-GP version 2.9.0)

Linear Algebra

Linear Algebra	
dimensions of matrix x	$\mathtt{matsize}(x)$
concatenation of x and y	$\mathtt{concat}(x,\{y\})$
extract components of x	$\mathtt{vecextract}(x,y,\{z\})$
transpose of vector or matrix x	$\mathtt{mattranspose}(x) \text{ or } x \sim$
adjoint of the matrix x	$\mathtt{matadjoint}(x)$
eigenvectors/values of matrix x	$\mathtt{mateigen}(x)$
characteristic/minimal polynomial of	
trace/determinant of matrix x	$\mathtt{trace}(x),\mathtt{matdet}$
Frobenius form of x	$\mathtt{matfrobenius}(x)$
QR decomposition	$\mathtt{matqr}(x)$
apply $matqr$'s transform to v	$\mathtt{mathouseholder}(Q,v)$
Constructors & Special Matrices	
$\{g(x): x \in v \text{ s.t. } f(x)\}$	$[g(x) x \leftarrow v, f(x)]$
$\{x: x \in v \text{ s.t. } f(x)\}$	[x x < v, f(x)]
$\{g(x): x \in v\}$	$[g(x) \mid x \leftarrow v]$
row vec. of $expr$ eval'ed at $1 \le i \le n$	$\mathtt{vector}(n,\{i\},\{\mathit{expr}\})$
col. vec. of $expr$ eval'ed at $1 \le i \le n$	$\mathtt{vectorv}(n,\{i\},\{\mathit{expr}\})$
vector of small ints	$\mathtt{vectorsmall}(n,\{i\},\{\mathit{expr}\})$
$[c, c \cdot x, \dots, c \cdot x^n]$	$\mathtt{powers}(x, n, \{c=1\})$
$matrix \ 1 \le i \le m, \ 1 \le j \le n$	$\mathtt{matrix}(m,n,\{i\},\{j\},\{\mathit{expr}\})$
define matrix by blocks	$\mathtt{matconcat}(B)$
diagonal matrix with diagonal x	$\mathtt{matdiagonal}(x)$
is x diagonal?	$\mathtt{matisdiagonal}(x)$
$x \cdot \mathtt{matdiagonal}(d)$	$\mathtt{matmuldiagonal}(x,d)$
$n \times n$ identity matrix	$\mathtt{matid}(n)$
Hessenberg form of square matrix x	$\mathtt{mathess}(x)$
$n \times n$ Hilbert matrix $H_{ij} = (i + j - 1)$	$(n)^{-1}$ mathilbert (n)
$n \times n$ Pascal triangle	$\mathtt{matpascal}(n-1)$
companion matrix to polynomial x	$\mathtt{matcompanion}(x)$
Sylvester matrix of x	${\tt polsylvestermatrix}(x)$
Gaussian elimination	
kernel of matrix x	$\mathtt{matker}(x,\{\mathit{flag}\})$
intersection of column spaces of x and	$1 y \qquad \mathtt{matintersect}(x,y)$
solve $M * X = B$ (M invertible)	$\mathtt{matsolve}(M,B)$
as solve, modulo D (col. vector)	$\mathtt{matsolvemod}(M,D,B)$
one sol of $M * X = B$	$\mathtt{matinverseimage}(M,B)$
basis for image of matrix x	$\mathtt{matimage}(x)$
columns of x not in matimage	$\mathtt{matimagecompl}(x)$
supplement columns of x to get basis	$\mathtt{matsupplement}(x)$
rows, cols to extract invertible matrix	() ()
rank of the matrix x	$\mathtt{matrank}(x)$
Lattices & Quadratic Forms	S
Quadratic forms	
evaluate txQy	$\mathtt{qfeval}(\{Q=id\},x,y)$
evaluate txQx	$\mathtt{qfeval}(\{Q=id\},x)$
signature of quad form $t y * x * y$	qfsign(x)

qfgaussred(x)

qfjacobi(x)

decomp into squares of ty * x * y

eigenvalues/vectors for real symmetric x

```
HNF and SNF
upper triangular Hermite Normal Form
                                              mathnf(x)
HNF of x where d is a multiple of det(x)
                                              mathnfmod(x, d)
multiple of det(x)
                                              matdetint(x)
HNF of (x | diagonal(D))
                                              mathnfmodid(x, D)
elementary divisors of x
                                              matsnf(x)
elementary divisors of \mathbf{Z}[a]/(f'(a))
                                              poldiscreduced(f)
integer kernel of x
                                              matkerint(x)
\mathbf{Z}\text{-module} \leftrightarrow \mathbf{Q}\text{-vector space}
                                              matrixqz(x, p)
Lattices
LLL-algorithm applied to columns of x
                                              qflll(x, \{flaq\})
... for Gram matrix of lattice
                                              qflllgram(x, \{flaq\})
find up to m sols of qfnorm(x, y) \leq b
                                              qfminim(x, b, m)
v, v[i] := \text{number of } y \text{ s.t. } qfnorm(x, y) = i
                                              gfrep(x, B, \{flaq\})
perfection rank of x
                                              qfperfection(x)
find isomorphism between q and Q
                                              qfisom(q,Q)
precompute for isomorphism test with q
                                              qfisominit(q)
automorphism group of q
                                              qfauto(q)
                                          qfautoexport(G, \{flag\})
convert qfauto for GAP/Magma
orbits of V under G \subset GL(V)
                                              qforbits(G, V)
Polynomials & Rational Functions
all defined polynomial variables
                                              variables()
get var. of highest priority (higher than v)
                                             varhigher(name, \{v\})
\dots of lowest priority (lower than v)
                                              varlower(name, \{v\})
Coefficients, variables and basic operators
degree of f
                                              poldegree(f)
coeff. of degree n of f, leading coeff.
                                           polcoeff(f, n), pollead
main variable / all variables in f
                                        variable(f), variables(f)
replace x by y in f
                                              subst(f, x, y)
evaluate f replacing vars by their value
                                              eval(f)
replace polynomial expr. T(x) by y in f
                                              substpol(f, T, y)
replace x_1, \ldots, x_n by y_1, \ldots, y_n in f
                                              substvec(f, x, y)
reciprocal polynomial x^{\deg f} f(1/x)
                                              polrecip(f)
gcd of coefficients of f
                                              content(f)
derivative of f w.r.t. x
                                              deriv(f, \{x\})
formal integral of f w.r.t. x
                                              intformal(f, \{x\})
formal sum of f w.r.t. x
                                              sumformal(f, \{x\})
Constructors & Special Polynomials
interpolating pol. eval. at a
                                     polinterpolate(X, \{Y\}, \{a\})
P_n, T_n/U_n, H_n
                          pollegendre, polchebyshev, polhermite
n-th cyclotomic polynomial \Phi_n
                                              polcyclo(n, \{v\})
```

interpolating pol. eval. at a polinterpolate $(X, \{Y\}, \{a\}, P_n, T_n/U_n, H_n)$ pollegendre, polchebyshev, polhermit n-th cyclotomic polynomial Φ_n polcyclo $(n, \{v\})$ return n if $f = \Phi_n$, else 0 poliscyclo(f) is f a product of cyclotomic polynomials? polynomials? Zagier's polynomial of index (n, m) polzagier(n, m)

Resultant, elimination

 $\begin{array}{ll} \text{discriminant of polynomial } f & \text{poldisc}(f) \\ \text{resultant } R = \text{Res}_v(f,g) & \text{polresultant}(f,g,\{v\}) \\ [u,v,R], \ xu+yv = \text{Res}_v(f,g) & \text{polresultantext}(x,y,\{v\}) \\ \text{solve Thue equation } f(x,y) = a & \text{thue}(t,a,\{sol\}) \\ \text{initialize } t \text{ for Thue equation solver} & \text{thueinit}(f) \end{array}$

Based on an earlier version by Joseph H. Silverman August 2016 v2.30. Copyright © 2016 K. Belabas

Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies.

Send comments and corrections to $\langle {\rm Karim.Belabas@math.u\text{-}bordeaux.fr} \rangle$

Pari-GP reference card

(PARI-GP version 2.9.0)

Roots and Factorization

complex roots of f	$\mathtt{polroots}(f)$
number of real roots of f (in $[a, b]$)	$\mathtt{polsturm}(f,\{[a,b]\})$
real roots of f (in $[a, b]$)	$\mathtt{polrootsreal}(f,\{[a,b]\})$
symmetric powers of roots of f up to	
Graeffe transform of f , $g(x^2) = f(x)$	f(-x) polgraeffe (f)
factor f	$\mathtt{factor}(f)$
factor $f \mod p / \text{roots}$	${\tt factormod}(f,p), {\tt polrootsmod}$
using Cantor-Zassenhaus	$\mathtt{factorcantor}(f,p)$
factor f over \mathbf{F}_{p^a} / roots	$\mathtt{factorff}(f,p,a),\mathtt{polrootsff}$
factor f over $\hat{\mathbf{Q}_p}$ / roots factor	rpadic(f,p,r),polrootspadic
cyclotomic factors of $f \in \mathbf{Q}[X]$	${\tt polcyclofactors}(f)$
find irreducible $T \in \mathbf{F}_p[x]$, $\deg T = i$	n ffinit $(p, n, \{x\})$
#{monic irred. $T \in \mathbf{F}_q[x], \deg T = n$	$\{a\}$ ffnbirred (q,n)
p-adic root of f congruent to a mod	p padicappr (f, a)
Newton polygon of f for prime p	$\mathtt{newtonpoly}(f,p)$
Hensel lift $A/lc(A) = \prod_i B[i] \mod p$	e polhensellift (A,B,p,e)
extensions of \mathbf{Q}_p of degree N	${\tt padicfields}(p,N)$

Formal & p-adic Series

truncate power series or p -adic number	$\mathtt{truncate}(x)$
valuation of x at p	$\mathtt{valuation}(x,p)$
Dirichlet and Power Series	
Taylor expansion around 0 of f w.r.t. x	$\mathtt{taylor}(f,x)$
$\sum a_k b_k t^k$ from $\sum a_k t^k$ and $\sum b_k t^k$	$\mathtt{serconvol}(a,b)$
$\overline{f} = \sum a_k t^k \text{ from } \sum (a_k/k!) t^{\overline{k}}$	serlaplace(f)

reverse power series F so F(f(x)) = x serreverse(f) Dirichlet series multiplication / division Dirichlet Euler product (b terms) directler(p = a, b, expr)

Transcendental and p-adic Functions

real, imaginary part of x	real(x), $imag(x)$
absolute value, argument of x	abs(x), $arg(x)$
square/nth root of x	$\operatorname{sqrt}(x)$, $\operatorname{sqrtn}(x, n, \{\&z\})$
trig functions	sin, cos, tan, cotan, sinc
inverse trig functions	asin, acos, atan
hyperbolic functions	sinh, cosh, tanh, cotanh
inverse hyperbolic functions	asinh, acosh, atanh
$\log(x), e^x, e^x - 1$	log, exp, expm1
Euler Γ function, $\log \Gamma$, Γ'/Γ	gamma, lngamma, psi
half-integer gamma function $\Gamma(n + 1)$	1/2) gammah (n)
Riemann's zeta $\zeta(s) = \sum n^{-s}$	$\mathtt{zeta}(s)$
multiple zeta value (MZV), $\zeta(s_1, \ldots, s_n)$	(s,s_k) zetamult (s)
incomplete Γ function $(y = \Gamma(s))$	$\mathtt{incgam}(s,x,\{y\})$
complementary incomplete Γ	$\mathtt{incgamc}(s,x)$
exponential integral $\int_{x}^{\infty} e^{-t}/t dt$	$\mathtt{eint1}(x)$
error function $2/\sqrt{\pi} \int_{r}^{\infty} e^{-t^2} dt$	$\mathtt{erfc}(x)$
dilogarithm of x	$\mathtt{dilog}(x)$
m-th polylogarithm of x	$\mathtt{polylog}(m, x, \{\mathit{flag}\})$
U-confluent hypergeometric function	$\operatorname{hyperu}(a,b,u)$
Bessel $J_n(x)$, $J_{n+1/2}(x)$	$\mathtt{besselj}(n,x)$, $\mathtt{besseljh}(n,x)$
Bessel $I_{\nu}, K_{\nu}, H_{\nu}^{1}, H_{\nu}^{2}, N_{\nu}$	(bessel)i, k, h1, h2, n
Lambert W: x s.t. $xe^x = y$	$\mathtt{lambertw}(y)$
Teichmuller character of p -adic x	$\mathtt{teichmuller}(x)$

Iterations, Sums & Products

Numerical integration for meromorphic functions

```
Behaviour at endpoint for Double Exponential methods: either a
scalar (a \in \mathbb{C}, regular) or \pm \infty (decreasing at least as x^{-2}) or
  (x-a)^{-\alpha} singularity
                                                   [a, \alpha]
  exponential decrease e^{-\alpha|x|}
                                                   [\pm \infty, \alpha], \ \alpha > 0
  slow decrease |x|^{\alpha}
                                                  \ldots \alpha < -1
  oscillating as cos(kx))
                                                  \alpha = kI, k > 0
  oscillating as \sin(kx))
                                                  \alpha = -k\mathbf{I}, k > 0
numerical integration
                                                intnum(x = a, b, f, \{T\})
weights T for intnum
                                                  intnuminit(a, b, \{m\})
weights T incl. kernel K
                                             intfuncinit(a, b, K, \{m\})
integrate (2i\pi)^{-1}f on circle |z-a|=R intcirc(x=a,R,f,\{T\})
Other integration methods
n-point Gauss-Legendre
                                          intnumgauss(x = a, b, f, \{n\})
```

n-point Gauss-Legendre intnumgauss $(x = a, b, f, \{n\})$ weights for n-point Gauss-Legendre intnumgaussinit $(\{n\})$ Romberg integration (low accuracy)intnumromb $(x = a, b, f, \{flaq\})$

Numerical summation

weights for sumnummonien

Products

product $a \le X \le b$, initialized at x prod $(X = a, b, expr, \{x\})$ product over primes $a \le X \le b$ prodeuler(X = a, b, expr) infinite product $a < X < \infty$ prodinf(X = a, expr)

 $sumnummonieninit(\{\infty, a\})$

Other numerical methods

real root of f in [a, b]; bracketed root solve(X = a, b, f)... by interval splitting $solvestep(X = a, b, f, \{flaq = 0\})$ limit of $f(t), t \to \infty$ limitnum(f, {k}, {alpha}) asymptotic expansion of f at ∞ asympnum(f, {k}, {alpha}) derivnum(x = a, f)numerical derivation w.r.t x: f'(a)evaluate continued fraction F at t $contfraceval(F, t, \{L\})$ power series to cont. fraction (L terms) $contfracinit(S, \{L\})$ Padé approximant (deg. denom. $\leq B$) $bestapprPade(S, \{B\})$

Elementary Arithmetic Functions

· ·	
vector of binary digits of $ x $	$\mathtt{binary}(x)$
bit number n of integer x	$\mathtt{bittest}(x,n)$
Hamming weight of integer x	$\mathtt{hammingweight}(x)$
digits of integer x in base B	$\mathtt{digits}(x,\{B=10\})$
sum of digits of integer x in base B	$\mathtt{sumdigits}(x, \{B = 10\})$
integer from digits	$fromdigits(v,\{B=10\})$
ceiling/floor/fractional part	ceil, floor, frac
round x to nearest integer	$\mathtt{round}(x, \{ \mathtt{\&} e \})$
truncate x	$\mathtt{truncate}(x, \{ \texttt{\&} e \})$
gcd/LCM of x and y	$\gcd(x,y)$, $\operatorname{lcm}(x,y)$
gcd of entries of a vector/matrix	$\mathtt{content}(x)$

Primes and Factorization

I THINES AND I DECENTIZATION	
extra prime table	$\mathtt{addprimes}()$
add primes in v to prime table	$\mathtt{addprimes}(v)$
remove primes from prime table	${\tt removeprimes}(v)$
Chebyshev $\pi(x)$, n-th prime p_n	$\mathtt{primepi}(x)$, $\mathtt{prime}(n)$
vector of first n primes	$\mathtt{primes}(n)$
smallest prime $\geq x$	$\mathtt{nextprime}(x)$
largest prime $\leq x$	$\mathtt{precprime}(x)$
factorization of x	$\mathtt{factor}(x,\{lim\})$
selecting specific algorithms	$\mathtt{factorint}(x, \{\mathit{flag} = 0\})$
$n = df^2$, d squarefree/fundamental	$\mathtt{core}(n,\{fl\}),\mathtt{coredisc}$
recover x from its factorization	$\mathtt{factorback}(f,\{e\})$
$x \in \mathbf{Z}, x \le X, \gcd(N, P(x)) \ge N$	$\mathtt{zncoppersmith}(P, N, X, \{B\})$
Divisors and multiplicative fun	ctions

number of prime divisors $\omega(n) / \Omega(n)$ omega(n), bigomega divisors of n / number of divisors $\tau(n)$ divisors (n), numdiv sum of (k-th powers of) divisors of n sigma $(n, \{k\})$ Möbius μ -function moebius(x) ramanujan's τ -function ramanujantau(x)

Combinatorics

factorial of xx! or factorial(x) binomial coefficient $\binom{x}{y}$ binomial(x, y)Bernoulli number B_n as real/rational bernreal(n), bernfracBernoulli polynomial $B_n(x)$ $bernpol(n, \{x\})$ n-th Fibonacci number fibonacci(n)Stirling numbers s(n, k) and S(n, k) $stirling(n, k, \{flaq\})$ number of partitions of nnumbpart(n)k-th permutation on n letters numtoperm(n, k)convert permutation to (n, k) form permtonum(v)Multiplicative groups $(\mathbf{Z}/N\mathbf{Z})^*$, \mathbf{F}_a^*

Euler ϕ -function eulerphi(x) multiplicative order of x (divides o) znorder $(x, \{o\})$, fforder primitive root mod $q \mid x .$ mod znprimroot(q), ffprimroot(x) structure of $(\mathbf{Z}/n\mathbf{Z})^*$ znstar(n) discrete logarithm of x in base g znlog $(x, g, \{o\})$, fflog Kronecker-Legendre symbol $(\frac{x}{x})$

Kronecker-Legendre symbol $(\frac{x}{y})$ kronecker(x, y) quadratic Hilbert symbol (at p) hilbert $(x, y, \{p\})$

Miscellaneous

 $\begin{array}{lll} \text{integer square} & / & n\text{-th root of } x & \text{sqrtint}(x), & \text{sqrtnint}(x,n) \\ \text{largest integer } e & \text{s.t. } b^e \leq b, & e = \lfloor \log_b(x) \rfloor & \text{logint}(x,b,\{\&z\}) \\ \text{CRT: solve } z \equiv x & \text{and } z \equiv y & \text{chinese}(x,y) \\ \text{minimal } u,v & \text{so } xu + yv = \gcd(x,y) & \gcd(x,y) \\ \text{continued fraction of } x & \operatorname{contfrac}(x,\{b\},\{lmax\}) \\ \text{last convergent of continued fraction } x & \operatorname{contfracpnqn}(x) \\ \text{rational approximation to } x & \text{den.} \leq B) & \text{bestappr}(x,\{B\}k) \\ \end{array}$

Characters

Let $cyc = [d_1, \dots, d_k]$ represent an abelian group $G = \bigoplus(\mathbf{Z}/d_j\mathbf{Z}) \cdot g_j$ or any structure G affording a .cyc method; e.g. idealstar(q) for Dirichlet characters. A character χ is coded by $[c_1, \dots, c_k]$ such that $\chi(g_j) = e(n_j/d_j)$. $\chi \cdot \psi; \chi^{-1}; \chi \cdot \psi^{-1}$ charmul, charconj, chardiv

 $\begin{array}{ll} \text{order of } \chi & \text{charorder}(cyc,\chi) \\ \text{kernel of } \chi & \text{charker}(cyc,\chi) \\ \chi(x), \ G \ \text{a GP group structure} & \text{chareval}(G,\chi,x,\{z\}) \end{array}$

```
Dirichlet Characters
initialize G = (\mathbf{Z}/q\mathbf{Z})^*
                                              G = idealstar(.q)
is \gamma odd?
                                               zncharisodd(G, \chi)
real \chi \to \text{Kronecker symbol } (D/.)
                                          znchartokronecker(G, \chi)
induce \chi \in \hat{G} to \mathbf{Z}/N\mathbf{Z}
                                           zncharinduce(G, chi, N)
Conrey labelling
Conrey label m \in (\mathbf{Z}/q\mathbf{Z})^* \to \text{character}
                                               znconreychar(G, m)
character \rightarrow Conrey label
                                               znconrevexp(G, \chi)
log on Conrey generators
                                               znconrevlog(G, m)
conductor of \chi (\chi_0 primitive)
                                    znconreyconductor(G, \chi, \{\chi_0\})
True-False Tests
is x the disc. of a quadratic field?
                                               isfundamental(x)
is x a prime?
                                               isprime(x)
is x a strong pseudo-prime?
                                               ispseudoprime(x)
is x square-free?
                                               issquarefree(x)
is x a square?
                                              issquare(x, \{\&n\})
is x a perfect power?
                                             ispower(x, \{k\}, \{\&n\})
is x a perfect power of a prime? (x = p^n)
                                             isprimepower(x, \&n)
... of a pseudoprime?
                                      ispseudoprimepower(x, \&n)
is x powerful?
                                               ispowerful(x)
is x a totient? (x = \varphi(n))
                                               istotient(x, \{\&n\})
is x a polygonal number? (x = P(s, n))
                                           ispolygonal(x, s, \{\&n\})
is pol irreducible?
                                            polisirreducible(pol)
Graphic Functions
crude graph of expr between a and b
                                               plot(X = a, b, expr)
High-resolution plot (immediate plot)
plot expr between a and b
                                  ploth(X = a, b, expr, \{flag\}, \{n\})
plot points given by lists lx, ly
                                            plothraw(lx, ly, \{flaq\})
terminal dimensions
                                              plothsizes()
Rectwindow functions
init window w, with size x,y
                                               plotinit(w, x, y)
erase window w
                                              plotkill(w)
copy w to w_2 with offset (dx, dy)
                                            plotcopy(w, w_2, dx, dy)
clips contents of w
                                              plotclip(w)
scale coordinates in w
                                        plotscale(w, x_1, x_2, y_1, y_2)
                          plotrecth(w, X = a, b, expr, \{flag\}, \{n\})
ploth in w
                                     plotrecthraw(w, data, \{flaq\})
plothraw in w
draw window w_1 at (x_1, y_1), \ldots
                                      plotdraw([[w_1, x_1, y_1],...])
Low-level Rectwindow Functions
set current drawing color in w to c
                                               plotcolor(w, c)
current position of cursor in w
                                               plotcursor(w)
write s at cursor's position
                                              plotstring(w, s)
move cursor to (x, y)
                                              plotmove(w, x, y)
move cursor to (x + dx, y + dy)
                                              plotrmove(w, dx, dy)
draw a box to (x_2, y_2)
                                              plotbox(w, x_2, y_2)
draw a box to (x + dx, y + dy)
                                              plotrbox(w, dx, dy)
draw polygon
                                         plotlines(w, lx, ly, \{flag\})
draw points
                                              plotpoints(w, lx, ly)
draw line to (x + dx, y + dy)
                                              plotrline(w, dx, dy)
draw point (x + dx, y + dy)
                                              plotrpoint(w, dx, dy)
```

plotrpoint(w, dx, dy)

draw point (x + dx, y + dy)

Postscript Functions as ploth $psploth(X = a, b, expr, \{flaq\}, \{n\})$ as plothraw

as plotdraw

 $psplothraw(lx, ly, \{flag\})$ $psdraw([[w_1, x_1, y_1], ...])$

Based on an earlier version by Joseph H. Silverman August 2016 v2.30. Copyright © 2016 K. Belabas Permission is granted to make and distribute copies of this card provided the copyright and this permission notice are preserved on all copies. Send comments and corrections to (Karim.Belabas@math.u-bordeaux.fr)