



FIG.2

## FIG. 3A

Radio waves come from the same direction as or opposite direction to the mobile station's movement. This situation maximizes Doppler frequency shift.



## FIG. 3B

Radio waves come from the direction perpendicular to the mobile station's movement. No Doppler frequency shift occurs in this condition.









FIG. 5





FIG.7A



FIG.7B







FIG. 10A



FIG. 10B



Maximum complex impulse response moves as a result of waveform fluctuation

FIG. 11



FIG. 12





FIG. 14





FIG.16

COMPLEX IMPULSE
RESPONSES OF EACH FRAME
IN AN AVERAGING INTERVAL



$$\phi(1) = (\Psi_1(1)^2 + \Psi_2(1)^2 + \Psi_3(1)^2 + \Psi_4(1)^2) \div 4$$

$$\phi(2) = (\Psi_1(2)^2 + \Psi_2(2)^2 + \Psi_3(2)^2 + \Psi_4(2)^2) \div 4$$

$$\phi(k) = (\Psi_1(k)^2 + \Psi_2(k)^2 + \Psi_3(k)^2 + \Psi_4(k)^2) \div 4$$

$$\phi_{\text{max}}(i) = \max \{\phi(1), \phi(2), \dots, \phi(k)\}$$

If  $\phi$  max(i)= $\phi$ (2), then the maximum value finder 12a-2 will selectively output complex impulse responses  $\Psi_1(2)$ ,  $\Psi_2(2)$ ,  $\Psi_3(2)$ , and  $\Psi_4(2)$  located at i=2 of each frame.

FIG. 17



FIG. 18





FIG. 20