A Review on Automatic Image Annotation Techniques

Samuel Jackson (slj11)

What is AIA?

- In a nut shell: labelling images correctly!
- More formally: Trying to find images that are semantically similar to our input query.
- The key challenges: automation, higher level meaning.

What Do I Need to Do AIA?

- Feature extraction
 - Segmentation
 - Global vs. Local
 - Colour, Texture, Shape based...
- Semantic learning technique
 - Single label
 - Multi-Labelling
 - Metadata

Feature Extraction

- Low level representation of what characterises the image
- Just a few different approaches:
 - Colour: Moments, Histogram, Correlogram
 - Texture: Texton, GLCM, Gabor
 - Shape: Area, Moments, Circularity
- Global vs. Local?

Colour Histogram of van Gogh's Starry Night

Gabor filtered Chinese text

Shape features from mammogram

Semantic Learning

- Once we've acquired low level features we can use these to represent the image (assumption!)
- Features used as input to a machine learning algorithm.

Single Label Annotation

- Attempt to assign an image to a single concept/ class
- Often uses pretty simple/well known machine learning methods.

Support Vector Machines

- Finds optimal class boundary
- Train separate SVM for each class.
- Can use multiple groups of classifiers + confidence factor
- Cons: Class imbalance issues, prone to overfitting

Fig. 2. Multiclass classifier using multiple binary SVM classifiers.

Fig. 3. Image annotation with multiple sets of SVMs.

Neural Networks

- Features form input layer
- Output gives probabilistic estimate of class.
- Cons: Black box, Number of layers?

Fig. 5. Classifying a region using ANN.

Decision Trees

- Grow tree which splits training data by features
- Easy to interpret the decision
- Cons: Discretisation is an issue, Need to prune

Fig. 6. Decision tree learning.

Interlude: What Should We Label This?

Car, Lake, Road, Grass, Hills, Sky, Wales, Landscape? Google Photos says: Mountains and Car

Multi-Labelling

Label images with multiple semantic concepts.

Typically formulated as a probabilistic Bayesian

learning problem

- Two major types:
 - Non-Parametric
 - Parametric

Fig. 7. The general Bayesian annotation model.

Parametric vs. Non-Parametric

- Conditional probabilities are calculated without prior assumption
- Pros:
 - Model free
 - Quick to train
- Cons:
 - Lots of Parameters
 - Sensitive to noise

- Features space assumed to follow a known distribution (often Gaussian)
- Pros:
 - Good approximation of unknown distribution
 - Small samples
- Cons:
 - Predefined distribution
 - Expensive training

Metadata

- But isn't all this image processing is computationally expensive?
- Use content from HTML, URLs, text etc.
- Can use hybrid approach
- Issues:
 - Often noisy/unreliable content
 - The "semantic gap"
 - Lexicon size
 - Mapping to visual features

Kangaroo or Australia?

Image source: Sinead Friel http://www.flickr.com/people/53005672@N04

Final Thoughts

- Generally a well written & interesting paper
- Covers an awful lot of content (perhaps too much?)
- Gives the reader a good flavour of the methods
- Perhaps out of date? Are Deep NNs used more now?

Thank You

Any Questions?