Nov 8,2023. Reference: Vanderact Maximization Extremum estimators are called M-citimators • $\hat{r}(\theta) = \frac{1}{N} \sum_{i=1}^{N} |x_i - \theta|$: exprensur estimator is at differentiable; poph near would to (feast Absolute Deviation Estimator) $X \sim \text{Bernoulli}(p)$ $I(X = x) = p^{2}(1-p)$ $\log \text{ likelihood } f^{*} = \log P(X = x) = x \log p + (1-x) \log (p)$ $\widehat{L}(p) = \underbrace{\int}_{i=1}^{\infty} \underbrace{\underbrace{\sum}_{i=1}^{\infty} (x_i \log (p) + (1-x_i) \log (1-p))}_{i=1}$ $p = \int_{0}^{\infty} \frac{1}{2} x_{i}$ $\hat{\mathcal{L}}(p) = \exp(n\hat{l}(p)) = \prod_{i=1}^{n} p^{ni} (i-p)^{1-ni}$ = The l(x=xi)] - Joint Distri

maximises wat to what?

		We are maximizing this joint probability > maximizes the probability of our data.
		maximizes the probability of our data.
		, _ ,
\sim $!$	Utl	IN VALUE EXPANSION ~
(1,	*)	FN VALUE EXPANSION ~ Empirical Risk
		$ abla \hat{\varrho}(\hat{\theta}) = \vec{0} $
		Assumed convergence conditions apply.
	\Rightarrow	ê Po
		, Assumed twice continuity b differentiality
		<u> </u>
		$H(\theta) = (\partial^2 R(\theta))$
		$\hat{H}(\theta) = \begin{pmatrix} \partial^2 \hat{R}(\theta) \\ \partial \theta_i \partial \theta_j \end{pmatrix}$
		$\nabla \hat{\mathbf{r}}(\hat{\boldsymbol{\theta}}) = \nabla \hat{\mathbf{r}}(\theta_0) + \mathbf{H}(\theta^*)$
		I in a get with m
		$\ \theta^* - \theta_0\ < \ \theta - \theta_0\ $
		· · · · · · · · · · · · · · · · · · ·
		$\nabla^{\hat{R}}(\hat{\theta}) = \nabla^{\hat{R}}(\theta_0) + H(\theta^*)(\hat{\theta} - \theta_0) = 0$
		$\hat{\theta} - \theta_0 = -H(\theta^*)^{-1} \nabla \hat{R}(\theta_0)$
		,

exerction of Newton - Raphion algorithm OKT = OK - H (OK) VR(OK) Mean Value Theorem: [a,b], c & [a,b] f(b)-f(a)=f'(c)(b-a) $\hat{\theta} - \theta_0 = -H(\theta^*)^{-1} \nabla \hat{R}(\theta_0)$ we are trying to prod & $\mathbb{Z}^{(0)} = \mathbb{Z} \left(\underbrace{Y_{i,0}}_{\mathbb{Z}^{(0)}} \right)$ = 1 & Vol(Yi, 00) visk is minimited at to by consmicting We know $\nabla R(\theta_0) = 0 = \nabla E[L(Y, \theta_0)]$ $= E[\nabla_{\theta} L(Y, \theta_{\bullet})]$ (we can't always By UN Fubbinl's Theorem: Hlbus 1 ≥ Vol (Yi, θo) P of integrals be differentials

