Dimensional Reduction

Principal Component Analysis

Goals

- Understand the need and purpose of dimensionality reduction algorithms.
- Understand and learn the details of Principal Component Analysis (PCA). Including its strengths and weaknesses.
- See concrete applications of using PCA in context.
- Show other dimensionality reduction algorithms.

Point Cloud Data

A point cloud is a collection of data points in \mathbb{R}^n

- ullet Each point is represented according to its coordin (X_1,X_2,X_3,\ldots,X_m)
- Each coordinate may represent a different feature or characteristic:
 - \circ Hotels in a city can be represented in $\bigcirc 6$ according to user rating of characteristics: cleanliness, accuracy, communication, check-in, location, value
 - \circ A 28x28 pixel grayscale image can be represented in \mathbb{R}^{784} : each pixel is represented with a unique number according to a scale from black to white
 - \circ Samples of expressions of N genes can be represented in \mathbb{R}^{N}

Example 1: Hotel Listings

- Each data point in \mathbb{R}^6 corresponds to a hotel Hotels are ranked according to 6 categories:
- Each individual hotel can be represented by a point in

	5 5 .8 .7
--	--------------------

4.6 4.7 4.7 4.7 4.9
4.5

4.7 4.9

$$= \begin{bmatrix} 4.6 \\ 4.7 \\ 4.7 \\ 4.5 \\ 4.1 \end{bmatrix}$$

Example 2: Grayscale Images

- Each data point corresponds to an image of resolution 4x4
- Each of the 16 pixels is represented with a number from 0 (black) to 1 (white)
- ullet Each image can be represented by a point in ${\mathbb R}^{16}$

Example 3: Gene Expression

- Each sample measures expressions of N genes in distincts cells
- ullet Each individual cell can be represented by a point in \mathbb{R}^N

Sample ID	Gene1	Gene2	Gene3	 GeneN
Sample1	5.2	0.1	3.4	7.6
Sample2	4.9	0.0	3.8	6.8

Point Cloud Data: Goal

- Is there a way to visualize higher dimensional data?
- If so, how much is it representative of the original data?
- Are there any features that are more important than others?
- Are there any combinations of features that are more important than others?

Why Dimensional Reduction?

Reasons are practical from both a computational and statistical point of view:

- Reduce computational complexity
- Reduce redundancy and noise
- Reduce overfitting (improve performance)
- Enable visualization
- Find correlations between input features

What do we need?

- Statistics
- Linear Algebra

Statistics Basics

Statistics Measurements

Suppose we have N measurements of a certain feature: X_1, X_2, \ldots, X_N

The **mean** is the central tendency or "average" of a set of numbers:

The **variance** measures how spread out the values are around the mean:

Statistics Measurements

Suppose we have N measurements of two features:

$$X_1, X_2, \dots, X_N$$

 Y_1, Y_2, \dots, Y_N

The **covariance** is a measure of how two variables change together—whether they tend to increase or decrease at the same time.

$$\mathrm{Cov}(X,Y) = rac{1}{N} \sum_{i=1}^N (X_i - \overline{X}) (Y_i - \overline{Y})$$
 Point Cloud 1.5

Correlation is the standardized version of covariance

Linear Algebra Basics

Linear Transformations

Suppose we have N measurements of a certain feature: X_1, X_2, \dots, X_N

Orthogonal Projections

- Orthogonal Projections are a type of Linear Transformation
- Let V be a n-dimensional subspace of Rn (line in R2, line or plane in R3, etc.)
- ORthogonal projections minimize distance between points and projections.

Orthogonal Projections

- Orthogonal Projections have special points:
 - o Points who's value doesn't chage
 - Points who's value becomes 0

Eigenvalues & Eigenvectors

Eigenvectors and eigenvalues are specific properties of square (nxn) matrices. Definition is not super important.

Suppose A is an $x \times x$ matrix. A nonzero vector \vec{v} in \mathbb{R}^n is an **eigenvector** of A of **eigenvalue** λ if

$$A\vec{v} = \lambda \vec{v}$$
.

Principal Component Analysis

Principal Component Analysis

- PCA finds the direction(s) in which the data varies the most (i.e., is most spread out), and
- projects the data onto those directions to reduce dimensionality while preserving as much variance as possible.

Step 0: Gathering The Data

ullet Consider a multidimensional dataset consisting of **N** observations of **m** different characteristics X_i :

$$(X_1^{(1)}, X_2^{(1)}, X_3^{(1)}, \dots, X_m^{(1)})$$
 $(X_1^{(2)}, X_2^{(2)}, X_3^{(2)}, \dots, X_m^{(2)})$
 \vdots
 $(X_1^{(N)}, X_2^{(N)}, X_3^{(N)}, \dots, X_m^{(N)})$

ullet This data lives in a high-dimensional space \mathbb{R}^m that is "impossible" for us to visualize

Step 1: Standardizing The Data

- ullet Center the data: $X_i-\overline{X}$
- Standardize (typically): $X_i \overline{X}$
- Point cloud before/after centering

Step 1: Standardizing The Data

- Visual: why is it important to standardize?
 - Remove dependency on units
 - Get rid of scaling differences

Step 2: Finding Covariance Matrix

Find the covariance matrix:

$$\operatorname{Cov}(\vec{X}) = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_m) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_m) \\ \vdots & & \ddots & \vdots \\ \operatorname{Cov}(X_m, X_1) & \operatorname{Cov}(X_m, X_2) & \cdots & \operatorname{Var}(X_m) \end{bmatrix}$$

Computational shortcut: if M is the matrix of your standardized data. Then

$$\operatorname{Cov}(\vec{X}) = \frac{1}{N} M^T M$$

Step 3: Finding Eigenvectors and Eigenvalues

If the data is standardized, the eigenvalues of the covariance matrix $\operatorname{Cov}(\vec{X})$ measure the proportion of the variance in the direction of the corresponding eigenvectors.

$$\sum_{i=1}^{N} \lambda_i = \sum_{i=1}^{N} \operatorname{Var}(X_i) = N$$

The eigenvector of largest eigenvalue will determine the first principal component, The eigenvector of second largest eigenvalue will be the second principal component, Etc.

Step 4: Choose Number of Principal Components

- Choose a number N of principal components
- Pick the eigenvectors with the largest N eigenvalues

Step 4: Choosing Number of Principal Components

Deciding the number of components onto which the

- For visualization purposes 2 or 3 (obvious reasons)
- Elbow Rule
- Scree Plot

Feature Extraction

Example: From \mathbb{R}^3 to \mathbb{R}^2

Projection onto the **first two** principal components.

Example: MNIST Classification

Example: Medical Imaging

 \mathbb{R}^{784} \longrightarrow \mathbb{R}^2

Principal Component Analysis: Summary

- Standardize (or center) each feature
- Compute covariance matrix
- Find eigenvectors and eigenvalues of the covariance matrix
 - The eigenvalues represent the proportion of overall variance in the direction of the eigenvector
 - Select a number of eigenvectors according to their eigenvalues
 - Project the data onto those eigenvectors
 - Find combinations of feature that are more relevant to the overall variance

Subtleties, Remarks, and Coding

- Built-in algorithms will center your data, but (typically) won't standardize it.
- There is a sign ambiguity when choosing the eigenvectors.
- There are some rules about how many principal components eigenvectors to choose.

PCA + Other Algorithms

Running Example: Classifying Os and 7s

PCA + Logistic Regression

- First run Logistic Regression
- Then apply PCA
- Timing: 27s

- First apply PCA
- Then run Logistic Regression
- Timing: 1.9s

PCA + Clustering

- First find 2 clusters
- Apply PCA
- Timing: 2.6s
- Finds 1 cluster (and 1 singleton)

- First apply PCA
- Find 2 clusters
- Timing: 0.5s

Other Dimensional Reduction Algorithms