

KTH Royal Institute of Technology

UCF Beehive

Natalie Longtin, Andy Phan, Jacob Steinebronn

1	Contest		

2 Mathematics

3 Data structures

4 Numerical

5 Number theory

6 Combinatorial

7 Graph

8 Geometry

9 Strings

10 Various **21**

Contest (1)

template.cpp

14 lines

3

9

14

19

```
#include <bits/stdc++.h>
using namespace std;
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define sz(x) (int)(x).size()
typedef long long 11;
typedef pair<int, int> pii;
typedef vector<int> vi;
int main() {
 cin.tie(0)->sync with stdio(0);
 cin.exceptions(cin.failbit);
```

hash.sh

Hashes a file, ignoring all whitespace and comments. Use for # verifying that code was correctly typed. cpp -dD -P -fpreprocessed | tr -d '[:space:]' | md5sum |cut -c-6

Mathematics (2)

2.1 Equations

$$ax + by = e \Rightarrow x = \frac{ed - bf}{ad - bc}$$
$$cx + dy = f \Rightarrow y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the i'th column replaced by b.

2.2 Recurrences

If $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \dots + c_k$, there are d_1, \dots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n.$

2.3 Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$
$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{\pi}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2 f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Pick's Theorem

 $A = I + \frac{B}{2} - 1$

I = # of internal lattice points

B = # of boundary lattice points

2.4.4 Spherical coordinates

$$\begin{aligned} x &= r \sin \theta \cos \phi & r &= \sqrt{x^2 + y^2 + z^2} \\ y &= r \sin \theta \sin \phi & \theta &= \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z &= r \cos \theta & \phi &= \operatorname{atan2}(y, x) \end{aligned}$$

Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

<u>Data structures</u> (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null_type. Time: $\mathcal{O}(\log N)$

```
782797, 16 lines
#include <bits/extc++.h>
using namespace __gnu_pbds;
template<class T>
using Tree = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
void example() {
  Tree<int> t, t2; t.insert(8);
  auto it = t.insert(10).first;
  assert(it == t.lower bound(9));
  assert(t.order_of_key(10) == 1);
  assert (t.order_of_key(11) == 2);
```

```
assert(*t.find_by_order(0) == 8);
t.join(t2); // assuming T < T2 or T > T2, merge t2 into t
```

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
 const uint64 t C = 11(4e18 * acos(0)) | 71;
 11 operator()(11 x) const { return builtin bswap64(x*C); }
__gnu_pbds::gp_hash_table<11, int, chash> h({},{},{},{},{1<<16});
```

UnionFindRollback.h.

Description: Disjoint-set data structure with undo. If undo is not needed, skip st, time() and rollback().

```
Usage: int t = uf.time(); ...; uf.rollback(t);
Time: \mathcal{O}(\log(N))
```

de4ad0, 21 lines

```
struct RollbackUF {
 vi e; vector<pii> st;
 RollbackUF(int n) : e(n, -1) {}
 int size(int x) { return -e[find(x)]; }
 int find(int x) { return e[x] < 0 ? x : find(e[x]); }
 int time() { return sz(st); }
 void rollback(int t) {
   for (int i = time(); i --> t;)
     e[st[i].first] = st[i].second;
    st.resize(t);
 bool join(int a, int b) {
   a = find(a), b = find(b);
   if (a == b) return false;
   if (e[a] > e[b]) swap(a, b);
   st.push_back({a, e[a]});
   st.push_back({b, e[b]});
   e[a] += e[b]; e[b] = a;
   return true;
};
```

Matrix.h

Description: Basic operations on square matrices. Usage: Matrix<int, 3> A; A.d = $\{\{\{1,2,3\}\}, \{\{4,5,6\}\}, \{\{7,8,9\}\}\}\};$ $vector < int > vec = \{1, 2, 3\};$ $vec = (A^N) * vec;$ c43c7d, 26 lines

```
template<class T, int N> struct Matrix {
 typedef Matrix M;
 array<array<T, N>, N> d{};
 M operator*(const M& m) const {
   Ma;
    rep(i,0,N) rep(j,0,N)
     rep(k, 0, N) \ a.d[i][j] += d[i][k]*m.d[k][j];
 vector<T> operator*(const vector<T>& vec) const {
   vector<T> ret(N);
   rep(i, 0, N) rep(j, 0, N) ret[i] += d[i][j] * vec[j];
   return ret;
 M operator^(ll p) const {
   assert (p >= 0);
   M a, b(*this);
```

```
rep(i, 0, N) \ a.d[i][i] = 1;
while (p) {
 if (p&1) a = a*b;
 b = b*b;
 p >>= 1;
return a;
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("convex hull trick").

```
Time: \mathcal{O}(\log N)
                                                        8ec1c7, 30 lines
struct Line {
 mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(ll x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x -> p = div(y -> m - x -> m, x -> k - y -> k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(v, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() \&\& (--x)->p >= y->p)
      isect(x, erase(v));
 ll query(ll x) {
    assert(!emptv());
    auto 1 = *lower bound(x);
    return l.k * x + l.m;
```

};

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data. Time: $\mathcal{O}(\log N)$

```
struct Node {
 Node *1 = 0, *r = 0;
 int val, y, c = 1;
 Node(int val) : val(val), y(rand()) {}
 void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(l) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each (n->1, f); f(n->val); each (n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
 if (!n) return {};
 if (cnt(n->1) >= k) { // "n-> val >= k" for lower_bound(k)}
```

```
auto pa = split(n->1, k);
   n->1 = pa.second;
   n->recalc();
    return {pa.first, n};
    auto pa = split(n->r, k - cnt(n->1) - 1); // and just "k"
   n->r = pa.first;
   n->recalc();
    return {n, pa.second};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
  if (!r) return 1;
  if (1->y > r->y) {
   1->r = merge(1->r, r);
   1->recalc();
   return 1:
  } else {
    r->1 = merge(1, r->1);
    r->recalc();
    return r;
Node* ins(Node* t, Node* n, int pos) {
  auto pa = split(t, pos);
  return merge (merge (pa.first, n), pa.second);
// Example application: move the range (l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
  tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
  if (k \le 1) t = merge(ins(a, b, k), c);
  else t = merge(a, ins(c, b, k - r));
```

FenwickTree.h

Description: Computes partial sums a[0] + a[1] + ... + a[pos - 1], and updates single elements a[i], taking the difference between the old and new value.

```
Time: Both operations are \mathcal{O}(\log N).
                                                         e62fac, 22 lines
struct FT {
  vector<ll> s:
  FT(int n) : s(n) {}
  void update(int pos, 11 dif) { // a[pos] \neq dif
    for (; pos < sz(s); pos |= pos + 1) s[pos] += dif;</pre>
  11 query(int pos) { // sum of values in [0, pos)
    11 \text{ res} = 0;
    for (; pos > 0; pos &= pos - 1) res += s[pos-1];
    return res;
  int lower_bound(ll sum) \{// min \ pos \ st \ sum \ of \ [0, \ pos] >= sum
    // Returns n if no sum is >= sum, or -1 if empty sum is.
    if (sum <= 0) return -1;
    int pos = 0;
    for (int pw = 1 << 25; pw; pw >>= 1) {
      if (pos + pw <= sz(s) && s[pos + pw-1] < sum)</pre>
        pos += pw, sum -= s[pos-1];
    return pos;
};
```

FenwickTree2d.h

```
Description: Computes sums a[i,j] for all i<I, j<J, and increases single ele-
ments a[i,j]. Requires that the elements to be updated are known in advance
(call fakeUpdate() before init()).
```

```
Time: \mathcal{O}(\log^2 N). (Use persistent segment trees for \mathcal{O}(\log N).)
"FenwickTree.h"
                                                        157f07, 22 lines
struct FT2 {
 vector<vi> ys; vector<FT> ft;
 FT2(int limx) : ys(limx) {}
 void fakeUpdate(int x, int y) {
   for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);
 void init() {
    for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));
 int ind(int x, int y) {
   return (int) (lower_bound(all(ys[x]), y) - ys[x].begin()); }
 void update(int x, int y, ll dif) {
    for (; x < sz(ys); x |= x + 1)
      ft[x].update(ind(x, y), dif);
 11 query(int x, int y) {
   11 \text{ sum} = 0;
   for (; x; x &= x - 1)
     sum += ft[x-1].query(ind(x-1, y));
    return sum;
```

RMQ.h

};

Description: Range Minimum Queries on an array. Returns min(V[a], V[a +1], ... V[b - 1]) in constant time.

Usage: RMQ rmq(values);

rmg.query(inclusive, exclusive); Time: $\mathcal{O}(|V|\log|V|+Q)$

510c32, 16 lines

```
template<class T>
struct RMO {
 vector<vector<T>> jmp;
 RMQ(const vector<T>& V) : jmp(1, V) {
    for (int pw = 1, k = 1; pw * 2 <= sz(V); pw *= 2, ++k) {
      jmp.emplace_back(sz(V) - pw * 2 + 1);
      rep(j,0,sz(jmp[k]))
        jmp[k][j] = min(jmp[k - 1][j], jmp[k - 1][j + pw]);
 T query(int a, int b) {
    assert (a < b); // or return inf if a == b
    int dep = 31 - __builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
};
```

MoQueries.h

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in). Time: $\mathcal{O}(N\sqrt{Q})$ a12ef4, 49 lines

```
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
int calc() { ... } // compute current answer
vi mo(vector<pii> Q) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(0)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
 iota(all(s), 0);
```

```
sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
  for (int qi : s) {
    pii q = O[qi];
    while (L > q.first) add(--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < q.first) del(L++, 0);
    while (R > g.second) del(--R, 1);
    res[qi] = calc();
 return res;
vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0) {
 int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [&](int x, int p, int dep, auto& f) -> void {
    par[x] = p;
    L[x] = N;
    if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
    if (!dep) I[x] = N++;
    R[x] = N;
 };
 dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
 iota(all(s), 0);
 sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
 for (int gi : s) rep(end, 0, 2) {
    int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] \le L[a] \&\& R[a] \le R[b]))
     I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
    if (end) res[qi] = calc();
  return res;
```

Numerical (4)

4.1 Polynomials and recurrences

Polynomial.h

c9b7b0, 17 lines

```
struct Poly {
 vector<double> a;
  double operator()(double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
  void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
    a.pop_back();
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
```

PolyRoots.h

Description: Finds the real roots to a polynomial. **Usage:** polyRoots($\{\{2, -3, 1\}\}, -1e9, 1e9\}$) // solve $x^2-3x+2=0$

```
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
                                                         b00bfe, 23 lines
vector<double> polyRoots(Poly p, double xmin, double xmax) {
 if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
  vector<double> ret;
 Polv der = p;
  der.diff();
  auto dr = polyRoots(der, xmin, xmax);
  dr.push_back(xmin-1);
  dr.push_back(xmax+1);
  sort (all (dr));
  rep(i, 0, sz(dr) -1) {
   double l = dr[i], h = dr[i+1];
   bool sign = p(1) > 0;
    if (sign ^ (p(h) > 0)) {
      rep(it,0,60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f \le 0) ^ sign) 1 = m;
        else h = m;
      ret.push_back((1 + h) / 2);
  return ret;
```

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + \ldots + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \ldots n-1$. **Time:** $\mathcal{O}(n^2)$

08bf48, 13 lines

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
   y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

BerlekampMassey.h

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after brute-forcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

Usage: berlekampMassey($\{0, 1, 1, 3, 5, 11\}$) // $\{1, 2\}$ Time: $\mathcal{O}(N^2)$

```
"../number-theory/ModPow.h" 96548b, 20 lines

vector<11> berlekampMassey(vector<11> s) {
   int n = sz(s), L = 0, m = 0;
   vector<11> C(n), B(n), T;
   C[0] = B[0] = 1;

11 b = 1;
   rep(i,0,n) { ++m;
   l1 d = s[i] % mod;
   rep(j,1,L+1) d = (d + C[j] * s[i - j]) % mod;
   if (!d) continue;
   T = C; 11 coef = d * modpow(b, mod-2) % mod;
   rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
   if (2 * L > i) continue;
   L = i + 1 - L; B = T; b = d; m = 0;
```

```
C.resize(L + 1); C.erase(C.begin());
for (l1& x : C) x = (mod - x) % mod;
return C;
}
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_j S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey. Usage: linearRec($\{0, 1\}, \{1, 1\}, k$) // k'th Fibonacci number

Time: $\mathcal{O}\left(n^2 \log k\right)$ f4e444, 26 lines typedef vector<11> Poly; 11 linearRec(Poly S, Poly tr, 11 k) {

```
11 linearRec(Poly S, Poly tr, 11 k) {
 int n = sz(t,r):
 auto combine = [&](Poly a, Poly b) {
   Poly res(n \star 2 + 1);
   rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
   res.resize(n + 1);
   return res;
 };
 Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
 for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
   e = combine(e, e);
 11 res = 0:
 rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
 return res;
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See TernarySearch.h in the Various chapter for a discrete version.

Usage: double func(double x) { return 4+x+.3*x*x; }

```
double xmin = gss(-1000,1000,func); 

Time: \mathcal{O}(\log((b-a)/\epsilon)) 31d45b, 14 lines double gss(double a, double b, double (*f) (double)) { double r = (sqrt(5)-1)/2, eps = 1e-7; double x1 = b - r*(b-a), x2 = a + r*(b-a); double f1 = f(x1), f2 = f(x2); while (b-a > eps) if (f1 < f2) { //change to > to find maximum b = x2; x2 = x1; f2 = f1; x1 = b - r*(b-a); f1 = f(x1); } else { a = x1; x1 = x2; f1 = f2; x2 = a + r*(b-a); f2 = f(x2); } return a; }
```

Simplex

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b, x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable. **Usage:** vvd A = $\{\{1,-1\}, \{-1,1\}, \{-1,-2\}\};$

```
vd b = \{1, 1, -4\}, c = \{-1, -1\}, x;

T val = LPSolver(A, b, c).solve(x);

Time: \mathcal{O}(NM * \#pivots), where a pivot may be e.g. an edge relaxation.

\mathcal{O}(2^n) in the general case.

aa8530, 68 lines
```

```
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 || MP(X[j], N[j]) < MP(X[s], N[s])) s=j
struct LPSolver {
  int m, n;
  vi N, B;
  vvd D;
  LPSolver(const vvd& A, const vd& b, const vd& c) :
    m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i]; }
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
      N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
    T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
      T *b = D[i].data(), inv2 = b[s] * inv;
      rep(i, 0, n+2) b[i] -= a[i] * inv2;
      b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i, 0, m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      int r = -1;
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;</pre>
        if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
  T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
```

```
if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;
rep(i,0,m) if (B[i] == -1) {
    int s = 0;
    rep(j,1,n+1) ltj(D[i]);
    pivot(i, s);
    }
}
bool ok = simplex(1); x = vd(n);
rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
return ok ? D[m][n+1] : inf;
}
};</pre>
```

4.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix.

Time: $\mathcal{O}\left(N^3\right)$

bd5cec, 15 lines

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
   int b = i;
  rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
  if (i != b) swap(a[i], a[b]), res *= -1;
  res *= a[i][i];
  if (res == 0) return 0;
  rep(j,i+1,n) {
    double v = a[j][i] / a[i][i];
   if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
  }
  return res;
}
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

Time: $\mathcal{O}(N^3)$

3313dc, 18 lines

```
const l1 mod = 12345;
l1 det(vector<vector<ll>>>& a) {
  int n = sz(a); l1 ans = 1;
  rep(i,0,n) {
    rep(j,it1,n) {
     while (a[j][i] != 0) { // gcd step
        l1 t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
            a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
    }
    ans = ans * a[i][i] % mod;
    if (!ans) return 0;
}
return (ans + mod) % mod;
}
```

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}(n^2m)$

44c9ab, 38 lines

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
  int n = sz(A), m = sz(x), rank = 0, br, bc;
  if (n) assert(sz(A[0]) == m);
```

```
vi col(m); iota(all(col), 0);
rep(i,0,n) {
  double v, bv = 0;
  rep(r,i,n) rep(c,i,m)
   if ((v = fabs(A[r][c])) > bv)
      br = r, bc = c, bv = v;
  if (bv <= eps) {
   rep(j,i,n) if (fabs(b[j]) > eps) return -1;
   break:
  swap(A[i], A[br]);
  swap(b[i], b[br]);
  swap(col[i], col[bc]);
  rep(j,0,n) swap(A[j][i], A[j][bc]);
  bv = 1/A[i][i];
  rep(j,i+1,n) {
    double fac = A[j][i] * bv;
   b[j] -= fac * b[i];
   rep(k,i+1,m) A[j][k] = fac*A[i][k];
  rank++;
x.assign(m, 0);
for (int i = rank; i--;) {
 b[i] /= A[i][i];
 x[col[i]] = b[i];
  rep(j,0,i) b[j] -= A[j][i] * b[i];
return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

```
"SolveLinear.h"
rep(j,0,n) if (j != i) // instead of rep(j,i+1,n)
// ... then at the end:
x.assign(m, undefined);
rep(i,0,rank) {
  rep(j,rank,m) if (fabs(A[i][j]) > eps) goto fail;
  x[col[i]] = b[i] / A[i][i];
fail:; }
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

```
d_0
                                                              x_0
b_1
                   d_1
                                                  0
              q_0
                        p_1
                                                              x_1
b_2
                         d_2
                                                  0
                                                              x_2
                   q_1
                                p_2
b_3
        =
                                                              x_3
               0
                    0
                        . . .
                               q_{n-3}
                                       d_{n-2}
                                                p_{n-2}
                    0
                                       q_{n-2}
```

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, \ 1 \le i \le n,
```

where a_0 , a_{n+1} , b_i , c_i and d_i are known. a can then be obtained from

$$\begin{aligned} \{a_i\} &= \operatorname{tridiagonal}(\{1,-1,-1,\ldots,-1,1\},\{0,c_1,c_2,\ldots,c_n\},\\ \{b_1,b_2,\ldots,b_n,0\},\{a_0,d_1,d_2,\ldots,d_n,a_{n+1}\}). \end{aligned}$$

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

Time: $\mathcal{O}(N)$

8f9fa8, 26 lines

08e495, 7 lines

```
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
  int n = sz(b); vi tr(n);
 rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
     b[i+1] -= b[i] * diag[i+1] / super[i];
      if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
      diag[i+1] = sub[i]; tr[++i] = 1;
    } else {
      diag[i+1] -= super[i]*sub[i]/diag[i];
      b[i+1] -= b[i]*sub[i]/diag[i];
 for (int i = n; i--;) {
   if (tr[i]) {
      swap(b[i], b[i-1]);
      diag[i-1] = diag[i];
     b[i] /= super[i-1];
    } else {
      b[i] /= diag[i];
      if (i) b[i-1] -= b[i] * super[i-1];
 return b;
```

4.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_x a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum_i a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum_i a_i^2 + \sum_i b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use NTT/FFTMod.

Time: $\mathcal{O}(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$) 00ced6, 35 lines

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
 int n = sz(a), L = 31 - __builtin_clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k \neq 2) {
    R.resize(n); rt.resize(n);
    auto x = polar(1.0L, acos(-1.0L) / k);
    rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
 vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
      a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
  vector<C> in(n), out(n);
  copy(all(a), begin(in));
  rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
  for (C& x : in) x \star = x;
  rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  fft(out);
```

```
rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT) "FastFourierTransform.h"

```
typedef vector<ll> v1;
template<int M> vl convMod(const vl &a, const vl &b) {
  if (a.empty() || b.empty()) return {};
  vl res(sz(a) + sz(b) - 1);
  int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
  rep(i,0,n) {
    int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  rep(i,0,sz(res)) {
    11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
    11 \text{ bv} = 11(\text{imag}(\text{outl}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
  return res;
```

NumberTheoreticTransform.h

Description: $\operatorname{ntt}(\mathbf{a})$ computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where g $root^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$

```
"../number-theory/ModPow.h"
                                                      ced03d, 33 lines
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<11> v1;
void ntt(vl &a) {
 int n = sz(a), L = 31 - \underline{builtin_clz(n)};
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k \neq 2, s++) {
   rt.resize(n);
   11 z[] = \{1, modpow(root, mod >> s)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  rep(i, 0, n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
  if (a.empty() || b.empty()) return {};
```

```
int s = sz(a) + sz(b) - 1, B = 32 - builtin clz(s), n = 1
    << B;
int inv = modpow(n, mod - 2);
vl L(a), R(b), out(n);
L.resize(n), R.resize(n);
ntt(L), ntt(R);
rep(i,0,n) out[-i & (n-1)] = (ll)L[i] * R[i] % mod * inv %
return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] \, = \, \sum_{z=x \oplus y} a[x] \cdot b[y], \text{ where } \oplus \text{ is one of AND, OR, XOR.}$ The size of a must be a power of two. Time: $\mathcal{O}(N \log N)$

```
464cf3, 16 lines
void FST(vi& a, bool inv) {
 for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {</pre>
      int &u = a[j], &v = a[j + step]; tie(u, v) =
        inv ? pii(v - u, u) : pii(v, u + v); // AND
       inv ? pii(v, u - v) : pii(u + v, u); // OR
                                              // XOR
       pii(u + v, u - v);
  if (inv) for (int& x : a) x /= sz(a); // XOR only
vi conv(vi a, vi b) {
 FST(a, 0); FST(b, 0);
 rep(i, 0, sz(a)) a[i] *= b[i];
 FST(a, 1); return a;
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
35bfea, 18 lines
const 11 mod = 17; // change to something else
struct Mod {
 11 x;
 Mod(ll xx) : x(xx) \{ \}
 Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
 Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
 Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
 Mod operator/(Mod b) { return *this * invert(b); }
 Mod invert (Mod a) {
   11 x, y, g = euclid(a.x, mod, x, y);
   assert(q == 1); return Mod((x + mod) % mod);
 Mod operator^(ll e) {
   if (!e) return Mod(1);
   Mod r = *this ^ (e / 2); r = r * r;
   return e&1 ? *this * r : r;
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM ≤ mod and that mod is a prime. 6f684f, 3 lines

```
const 11 mod = 1000000007, LIM = 200000;
```

```
11* inv = new 11[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

ModPow.h

b83e45, 8 lines

```
const 11 mod = 1000000007; // faster if const
11 modpow(ll b, ll e) {
  11 \text{ ans} = 1;
  for (; e; b = b * b % mod, e /= 2)
    if (e & 1) ans = ans * b % mod;
  return ans;
```

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a. Time: $\mathcal{O}(\sqrt{m})$

```
11 modLog(ll a, ll b, ll m) {
 ll n = (ll) sqrt(m) + 1, e = 1, f = 1, j = 1;
 unordered_map<11, 11> A;
  while (j \le n \& \& (e = f = e * a % m) != b % m)
   A[e * b % m] = j++;
  if (e == b % m) return j;
 if (__gcd(m, e) == __gcd(m, b))
    rep(i, 2, n+2) if (A.count(e = e * f % m))
      return n * i - A[e];
  return -1;
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions. modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

5c5bc5, 16 lines

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m; c %= m;
 if (!k) return res;
 ull to2 = (to * k + c) / m;
  return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
ll modsum(ull to, ll c, ll k, ll m) {
 c = ((c % m) + m) % m;
 k = ((k % m) + m) % m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. Time: $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
 return ret + M * (ret < 0) - M * (ret >= (11)M);
ull modpow(ull b, ull e, ull mod) {
 ull ans = 1;
 for (; e; b = modmul(b, b, mod), e /= 2)
   if (e & 1) ans = modmul(ans, b, mod);
 return ans;
```

ModSgrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}\left(\log^2 p\right)$ worst case, $\mathcal{O}\left(\log p\right)$ for most p

"ModPow.h" 19a793, 24 lines ll sgrt(ll a, ll p) { a %= p; **if** (a < 0) a += p; **if** (a == 0) **return** 0; assert (modpow(a, (p-1)/2, p) == 1); // else no solution **if** (p % 4 == 3) **return** modpow(a, (p+1)/4, p); $// a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5$ 11 s = p - 1, n = 2;int r = 0, m; while (s % 2 == 0) ++r, s /= 2; while (modpow(n, (p-1) / 2, p) != p-1) ++n;11 x = modpow(a, (s + 1) / 2, p);ll b = modpow(a, s, p), g = modpow(n, s, p); **for** (;; r = m) { 11 t = b;for (m = 0; m < r && t != 1; ++m) t = t * t % p;if (m == 0) return x; $11 \text{ gs} = \text{modpow}(g, 1LL \ll (r - m - 1), p);$ q = qs * qs % p;x = x * qs % p;b = b * q % p;

5.2 Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM.

```
Time: LIM=1e9 \approx 1.5s
                                                        6b291<u>2, 20 lines</u>
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
  vi pr = {2}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
    cp.push_back(\{i, i * i / 2\});
    for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (int L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
      for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.push_back((L + i) \star 2 + 1);
  for (int i : pr) isPrime[i] = 1;
  return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7\cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
"ModMullL.h" 60dcd1, 12 lines
bool isPrime(ull n) {
   if (n < 2 | | n % 6 % 4 != 1) return (n | 1) == 3;
   ull A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
        s = __builtin_ctzll(n-1), d = n >> s;
   for (ull a : A) { // ^ count trailing zeroes}
   ull p = modpow(a%n, d, n), i = s;
```

```
while (p != 1 && p != n - 1 && a % n && i--)
    p = modmul(p, p, n);
    if (p != n-1 && i != s) return 0;
}
return 1;
}
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
ull pollard(ull n) {
 auto f = [n](ull x) { return modmul(x, x, n) + 1; };
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
 while (t++ % 40 || __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
 auto 1 = factor(x), r = factor(n / x);
 1.insert(l.end(), all(r));
 return 1;
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in $_\gcd$ instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

```
11 euclid(11 a, 11 b, 11 &x, 11 &y) {
   if (!b) return x = 1, y = 0, a;
   11 d = euclid(b, a % b, y, x);
   return y -= a/b * x, d;
}
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x \equiv a \pmod m$, $x \equiv b \pmod n$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m,n)$. Assumes $mn < 2^{62}$. Time: $\log(n)$

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a,b) is the smallest positive integer for which there are integer solutions to

```
ax + by = d
```

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1}p_2^{k_2}...p_r^{k_r}$ then $\phi(n) = (p_1-1)p_1^{k_1-1}...(p_r-1)p_r^{k_r-1}$. $\phi(n) = n \cdot \prod_{p|n} (1-1/p)$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \leq k \leq n, \gcd(k,n)=1} k = n\phi(n)/2, n > 1$ **Euler's thm:** a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$. **Fermat's little thm:** p prime $\Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a$.

```
const int LIM = 50000000;
int phi[LIM];

void calculatePhi() {
  rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
  for (int i = 3; i < LIM; i += 2) if(phi[i] == i)
    for (int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with p, q < N. It will obey |p/q - x| < 1/qN.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$

```
typedef double d; // for N \sim 1e7; long double for N \sim 1e9
pair<11, 11> approximate(d x, 11 N) {
 11 LP = 0, LO = 1, P = 1, O = 0, inf = LLONG MAX; dv = x;
 for (;;) {
    ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
       a = (l1) floor(y), b = min(a, lim),
       NP = b*P + LP, NQ = b*Q + LQ;
    if (a > b) {
      // If b > a/2, we have a semi-convergent that gives us a
      // better approximation; if b = a/2, we *may* have one.
      // Return {P, Q} here for a more canonical approximation.
      return (abs(x - (d)NP / (d)NO) < abs(x - (d)P / (d)O)) ?
        make_pair(NP, NQ) : make_pair(P, Q);
    if (abs(y = 1/(y - (d)a)) > 3*N) {
      return {NP, NQ};
    LP = P; P = NP;
    LQ = Q; Q = NQ;
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p,q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([](Frac f) { return f.p>=3*f.q; }, 10); // $\{1,3\}$ Time: $\mathcal{O}(\log(N))$

```
struct Frac { 11 p, q; };

template<class F>
Frac fracBS(F f, 11 N) {
  bool dir = 1, A = 1, B = 1;
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1000000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group \mathbb{Z}_{2a}^{\times} is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2a-2}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 2000000 for n < 1e19.

5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d \mid n} f(d) \Leftrightarrow f(n) = \sum_{d \mid n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\begin{split} & \sum_{d|n} \mu(d) = [n=1] \text{ (very useful)} \\ & g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n) g(d) \\ & g(n) = \sum_{1 \leq m \leq n} f(\left\lfloor \frac{n}{m} \right\rfloor) \Leftrightarrow f(n) = \sum_{1 \leq m \leq n} \mu(m) g(\left\lfloor \frac{n}{m} \right\rfloor) \end{split}$$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table. **Time:** $\mathcal{O}(n)$

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + ... + n_1 p + n_0$ and $m = m_k p^k + ... + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$.

6.2.3 Binomials

multinomial.h

Description: Computes
$$\binom{k_1+\cdots+k_n}{k_1,k_2,\ldots,k_n} = \frac{(\sum k_i)!}{k_1!k_2!\ldots k_n!}$$
.

11 multinomial(vi& v) {
 11 c = 1, m = v.empty() ? 1 : v[0];
 rep(i,1,sz(v)) rep(j,0,v[i])
 c = c * ++m / (j+1);
 return c;

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

BellmanFord PushRelabel MinCostMaxFlow

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{i=0}^{k} (-1)^{i} \binom{n+1}{i} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

on n vertices: n^{n-2} # on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$ # with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_n C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 Fundamentals

```
BellmanFord.h Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes V^2 \max |w_i| < \sim 2^{63}.
```

through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$ **Time:** $\mathcal{O}(VE)$

```
const ll inf = LLONG MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
 nodes[s].dist = 0;
 sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
 int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
 rep(i,0,lim) for (Ed ed : eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
   if (abs(cur.dist) == inf) continue;
   11 d = cur.dist + ed.w;
    if (d < dest.dist) {</pre>
      dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
 rep(i, 0, lim) for (Ed e : eds) {
   if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

7.2 Network flow

PushRelabel.h

Time: $\mathcal{O}\left(V^2\sqrt{E}\right)$

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
struct PushRelabel {
    struct Edge {
        int dest, back;
        ll f, c;
    };
    vector<vector<Edge>> g;
    vector<1l> ec;
    vector<Edge*> cur;
    vector<vi> hs; vi H;
    PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
```

```
void addEdge(int s, int t, ll cap, ll rcap=0) {
  if (s == t) return;
  g[s].push_back({t, sz(g[t]), 0, cap});
  q[t].push_back({s, sz(q[s])-1, 0, rcap});
void addFlow(Edge& e, ll f) {
  Edge &back = g[e.dest][e.back];
  if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
  e.f += f; e.c -= f; ec[e.dest] += f;
 back.f -= f; back.c += f; ec[back.dest] -= f;
ll calc(int s, int t) {
  int v = sz(q); H[s] = v; ec[t] = 1;
  vi co(2*v); co[0] = v-1;
  rep(i,0,v) cur[i] = g[i].data();
  for (Edge& e : q[s]) addFlow(e, e.c);
  for (int hi = 0;;) {
    while (hs[hi].empty()) if (!hi--) return -ec[s];
```

int u = hs[hi].back(); hs[hi].pop_back();

```
while (ec[u] > 0) // discharge u
   if (cur[u] == g[u].data() + sz(g[u])) {
        H[u] = 1e9;
        for (Edge& e : g[u]) if (e.c && H[u] > H[e.dest]+1)
            H[u] = H[e.dest]+1, cur[u] = &e;
        if (++co[H[u]], !--co[hi] && hi < v)
            rep(i,0,v) if (hi < H[i] && H[i] < v)
            --co[H[i]], H[i] = v + 1;
        hi = H[u];
        } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
        addFlow(*cur[u], min(ec[u], cur[u]->c));
        else ++cur[u];
    }
}
bool leftOfMinCut(int a) { return H[a] >= sz(g); }
};
```

MinCostMaxFlow.h

0ae1d4, 48 lines

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}\left(E^2\right)$

fe85cc, 81 lines

```
#include <bits/extc++.h>
const 11 INF = numeric_limits<11>::max() / 4;
typedef vector<11> VL;
struct MCMF {
  int N;
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen;
  VL dist, pi;
  vector<pii> par;
  MCMF (int N) :
    N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
    seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, ll cap, ll cost) {
    this->cap[from][to] = cap;
    this->cost[from][to] = cost;
    ed[from].push_back(to);
    red[to].push_back(from);
  void path(int s) {
    fill(all(seen), 0);
    fill(all(dist), INF);
    dist[s] = 0; 11 di;
    __gnu_pbds::priority_queue<pair<ll, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({0, s});
    auto relax = [&](int i, ll cap, ll cost, int dir) {
      11 val = di - pi[i] + cost;
      if (cap && val < dist[i]) {
        dist[i] = val;
        par[i] = \{s, dir\};
        if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
        else q.modify(its[i], {-dist[i], i});
    };
    while (!q.empty()) {
```

s = q.top().second; q.pop();

```
seen[s] = 1; di = dist[s] + pi[s];
      for (int i : ed[s]) if (!seen[i])
       relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
      for (int i : red[s]) if (!seen[i])
        relax(i, flow[i][s], -cost[i][s], 0);
    rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
  pair<11, 11> maxflow(int s, int t) {
   11 \text{ totflow} = 0, \text{ totcost} = 0;
    while (path(s), seen[t]) {
     11 fl = INF;
     for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
        fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
      totflow += fl:
      for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
       if (r) flow[p][x] += fl;
        else flow[x][p] -= fl;
    rep(i,0,N) rep(j,0,N) totcost += cost[i][j] * flow[i][j];
   return {totflow, totcost};
  // If some costs can be negative, call this before maxflow:
  void setpi(int s) { // (otherwise, leave this out)
    fill(all(pi), INF); pi[s] = 0;
    int it = N, ch = 1; ll v;
    while (ch-- && it--)
      rep(i,0,N) if (pi[i] != INF)
        for (int to : ed[i]) if (cap[i][to])
          if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
            pi[to] = v, ch = 1;
    assert(it >= 0); // negative cost cycle
};
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
template<class T> T edmondsKarp(vector<unordered_map<int, T>>&
    graph, int source, int sink) {
  assert (source != sink);
 T flow = 0:
  vi par(sz(graph)), q = par;
  for (;;) {
   fill(all(par), -1);
   par[source] = 0;
   int ptr = 1;
   q[0] = source;
    rep(i,0,ptr) {
     int x = q[i];
     for (auto e : graph[x]) {
       if (par[e.first] == -1 && e.second > 0) {
          par[e.first] = x;
          q[ptr++] = e.first;
         if (e.first == sink) goto out;
    return flow;
    T inc = numeric_limits<T>::max();
    for (int y = sink; y != source; y = par[y])
     inc = min(inc, graph[par[y]][y]);
```

```
flow += inc;
  for (int y = sink; y != source; y = par[y]) {
    int p = par[y];
    if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);
    graph[y][p] += inc;
}
}</pre>
```

Dinic.h

struct Dinic {

struct Edge {

Description: Flow algorithm with complexity $O(VE \log U)$ where $U = \max |\text{cap}|$. $O(\min(E^{1/2}, V^{2/3})E)$ if U = 1; $O(\sqrt{V}E)$ for bipartite matching.

```
int to, rev;
   11 c, oc;
   11 flow() { return max(oc - c, OLL); } // if you need flows
 };
 vi lvl, ptr, q;
 vector<vector<Edge>> adi;
 Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
 void addEdge(int a, int b, ll c, ll rcap = 0) {
   adj[a].push_back({b, sz(adj[b]), c, c});
    adj[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});
 11 dfs(int v, int t, ll f) {
   if (v == t || !f) return f;
   for (int& i = ptr[v]; i < sz(adj[v]); i++) {</pre>
     Edge& e = adj[v][i];
     if (lvl[e.to] == lvl[v] + 1)
       if (ll p = dfs(e.to, t, min(f, e.c))) {
         e.c -= p, adj[e.to][e.rev].c += p;
         return p;
   return 0;
 11 calc(int s, int t) {
   11 flow = 0; q[0] = s;
    rep(L,0,31) do { // 'int L=30' maybe faster for random data
     lvl = ptr = vi(sz(q));
     int qi = 0, qe = lvl[s] = 1;
     while (qi < qe && !lvl[t]) {
       int v = q[qi++];
       for (Edge e : adj[v])
         if (!lvl[e.to] && e.c >> (30 - L))
           q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
     while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
    } while (lvl[t]);
   return flow;
 bool leftOfMinCut(int a) { return lvl[a] != 0; }
};
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

```
Time: \mathcal{O}\left(V^3\right)
```

```
pair<int, vi> globalMinCut(vector<vi> mat) {
 pair<int, vi> best = {INT_MAX, {}};
  int n = sz(mat);
 vector<vi> co(n);
 rep(i, 0, n) co[i] = {i};
 rep(ph,1,n) {
    vi w = mat[0];
    size_t s = 0, t = 0;
    rep(it,0,n-ph) { // O(V^2) \rightarrow O(E \ log \ V) \ with \ prio. \ queue
      w[t] = INT_MIN;
      s = t, t = max_element(all(w)) - w.begin();
      rep(i, 0, n) w[i] += mat[t][i];
    best = min(best, \{w[t] - mat[t][t], co[t]\});
    co[s].insert(co[s].end(), all(co[t]));
    rep(i, 0, n) mat[s][i] += mat[t][i];
    rep(i, 0, n) mat[i][s] = mat[s][i];
    mat[0][t] = INT_MIN;
  return best;
```

GomorvHu.h

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path.

```
Time: \mathcal{O}(V) Flow Computations
```

7.3 Matching

fill(all(B), 0);

hopcroftKarp.h

8b0e19, 21 lines

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

```
Usage: vi btoa(m, -1); hopcroftKarp(g, btoa);
```

```
Time: O(√VE)

bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
   if (A[a] != L) return 0;
   A[a] = -1;
   for (int b : g[a]) if (B[b] == L + 1) {
        B[b] = 0;
        if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
        return btoa[b] = a, 1;
   }
   return 0;
}

int hopcroftKarp(vector<vi>& g, vi& btoa) {
   int res = 0;
   vi A(g.size()), B(btoa.size()), cur, next;
   for (;;) {
        fill(all(A), 0);
        }
```

```
cur.clear();
for (int a : btoa) if (a != -1) A[a] = -1;
rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
for (int lay = 1;; lay++) {
 bool islast = 0;
 next.clear():
  for (int a : cur) for (int b : g[a]) {
   if (btoa[b] == -1) {
     B[b] = lay;
     islast = 1:
    else if (btoa[b] != a && !B[b]) {
     B[b] = lay;
     next.push_back(btoa[b]);
 if (islast) break;
 if (next.empty()) return res;
 for (int a : next) A[a] = lay;
 cur.swap(next);
rep(a, 0, sz(g))
  res += dfs(a, 0, g, btoa, A, B);
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

 $\mathbf{Usage:} \ \mathtt{vi} \ \mathtt{btoa}\, (\mathtt{m, -1})\, \mathtt{;} \ \mathtt{dfsMatching}\, (\mathtt{g, btoa})\, \mathtt{;}$

```
Time: \mathcal{O}(VE)
                                                      522b98, 22 lines
bool find(int j, vector<vi>& q, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
  vis[j] = 1; int di = btoa[j];
  for (int e : g[di])
   if (!vis[e] && find(e, q, btoa, vis)) {
     btoa[e] = di;
      return 1;
  return 0;
int dfsMatching(vector<vi>& g, vi& btoa) {
  vi vis;
  rep(i, 0, sz(q)) {
    vis.assign(sz(btoa), 0);
    for (int j : q[i])
      if (find(j, q, btoa, vis)) {
       btoa[j] = i;
        break;
  return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
vi cover(vector<vi>& g, int n, int m) {
  vi match(m, -1);
  int res = dfsMatching(g, match);
  vector<bod>> lfound(n, true), seen(m);
  for (int it : match) if (it != -1) lfound[it] = false;
  vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
```

```
while (!q.empty()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
   for (int e: g[i]) if (!seen[e] && match[e] != -1) {
      seen[e] = true;
      q.push_back(match[e]);
   }
   rep(i,0,n) if (!lfound[i]) cover.push_back(i);
   rep(i,0,m) if (seen[i]) cover.push_back(n+i);
   assert(sz(cover) == res);
   return cover;
}
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = cost for L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires $N \leq M$. **Time:** $\mathcal{O}(N^2M)$

```
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n-1);
 rep(i,1,n) {
   p[0] = i;
   int j0 = 0; // add "dummy" worker 0
   vi dist(m, INT_MAX), pre(m, -1);
   vector<bool> done(m + 1);
   do { // dijkstra
     done[j0] = true;
     int i0 = p[j0], j1, delta = INT_MAX;
     rep(j,1,m) if (!done[j]) {
       auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
       if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
       if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
     rep(j,0,m) {
       if (done[j]) u[p[j]] += delta, v[j] -= delta;
       else dist[j] -= delta;
     i0 = i1;
   } while (p[j0]);
   while (j0) { // update alternating path
     int i1 = pre[i0];
     p[j0] = p[j1], j0 = j1;
 rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
 return {-v[0], ans}; // min cost
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. Time: $\mathcal{O}\left(N^3\right)$

```
mat.resize(M, vector<ll>(M));
  rep(i,0,N) {
    mat[i].resize(M);
    rep(j,N,M) {
      int r = rand() % mod;
      mat[i][j] = r, mat[j][i] = (mod - r) % mod;
} while (matInv(A = mat) != M);
vi has(M, 1); vector<pii> ret;
rep(it,0,M/2) {
  rep(i,0,M) if (has[i])
    rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
      fi = i; fj = j; goto done;
  } assert(0); done:
  if (fj < N) ret.emplace_back(fi, fj);</pre>
  has[fi] = has[fj] = 0;
  rep(sw, 0, 2) {
    11 a = modpow(A[fi][fj], mod-2);
    rep(i,0,M) if (has[i] && A[i][fj]) {
      ll b = A[i][fj] * a % mod;
      rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
    swap(fi,fj);
return ret;
```

7.4 DFS algorithms

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u, v belong to the same component, we can reach u from v and vice versa.

Usage: $sc(graph, [\&](vi\& v) \{ ... \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. **Time:** $\mathcal{O}(E+V)$

```
76b5c9, 24 lines
vi val, comp, z, cont;
int Time, ncomps;
template < class G, class F> int dfs(int j, G& g, F& f) {
 int low = val[j] = ++Time, x; z.push_back(j);
  for (auto e : g[j]) if (comp[e] < 0)</pre>
    low = min(low, val[e] ?: dfs(e,g,f));
  if (low == val[i]) {
    do {
      x = z.back(); z.pop_back();
      comp[x] = ncomps;
      cont.push_back(x);
    } while (x != j);
    f(cont); cont.clear();
    ncomps++;
  return val[j] = low;
template < class G, class F > void scc(G& g, F f) {
 int n = sz(q);
 val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0;
 rep(i,0,n) if (comp[i] < 0) dfs(i, q, f);
```

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle.

```
Usage: int eid = 0; ed.resize(N);
for each edge (a,b) {
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
```

```
Time: \mathcal{O}(E+V)
                                                      2965e5, 33 lines
vi num, st;
vector<vector<pii>> ed;
int Time;
template<class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, e, y, top = me;
  for (auto pa : ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[v]) {
      top = min(top, num[y]);
      if (num[v] < me)</pre>
        st.push back(e);
    } else {
      int si = sz(st);
      int up = dfs(v, e, f);
      top = min(top, up);
      if (up == me) {
        st.push back(e);
        f(vi(st.begin() + si, st.end()));
        st.resize(si);
      else if (up < me) st.push_back(e);</pre>
      else { /* e is a bridge */ }
  return top;
template<class F>
void bicomps(F f) {
  num.assign(sz(ed), 0);
  rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
```

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions ($\sim x$).

```
Usage: TwoSat ts(number of boolean variables);
ts.either(0, \sim3); // Var 0 is true or var 3 is false
ts.setValue(2); // Var 2 is true
ts.atMostOne(\{0, \sim 1, 2\}); // \ll 1 of vars 0, \sim 1 and 2 are true
ts.solve(); // Returns true iff it is solvable
ts.values[0..N-1] holds the assigned values to the vars
```

Time: $\mathcal{O}(N+E)$, where N is the number of boolean variables, and E is the number of clauses. 5f9706, 56 lines

```
struct TwoSat {
 int N:
  vector<vi> gr;
  vi values; // 0 = false, 1 = true
  TwoSat(int n = 0) : N(n), gr(2*n) {}
  int addVar() { // (optional)
   gr.emplace_back();
```

```
gr.emplace back();
    return N++;
 void either(int f, int j) {
   f = \max(2 * f, -1 - 2 * f);
   j = \max(2*j, -1-2*j);
   gr[f].push_back(j^1);
   gr[j].push_back(f^1);
 void setValue(int x) { either(x, x); }
 void atMostOne(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   int cur = ~li[0];
   rep(i,2,sz(li)) {
     int next = addVar();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
     cur = ~next;
    either(cur, ~li[1]);
 vi val, comp, z; int time = 0;
 int dfs(int i) {
   int low = val[i] = ++time, x; z.push_back(i);
   for(int e : gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
   if (low == val[i]) do {
     x = z.back(); z.pop_back();
     comp[x] = low;
     if (values[x>>1] == -1)
       values[x>>1] = x&1;
   } while (x != i);
    return val[i] = low;
 bool solve() {
   values.assign(N, -1);
   val.assign(2*N, 0); comp = val;
   rep(i,0,2*N) if (!comp[i]) dfs(i);
   rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
   return 1:
};
```

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret.

```
Time: \mathcal{O}(V+E)
                                                      780b64, 15 lines
vi eulerWalk (vector<vector<pii>>& gr, int nedges, int src=0) {
 int n = sz(qr);
 vi D(n), its(n), eu(nedges), ret, s = {src};
 D[src]++; // to allow Euler paths, not just cycles
 while (!s.empty()) {
   int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
   if (it == end) { ret.push_back(x); s.pop_back(); continue; }
   tie(y, e) = gr[x][it++];
   if (!eu[e]) {
     D[x] --, D[y] ++;
      eu[e] = 1; s.push_back(y);
  for (int x : D) if (x < 0 \mid \mid sz(ret) != nedges+1) return {};
```

```
return {ret.rbegin(), ret.rend()};
```

DominatorTree.h

Description: Builds a dominator tree on a DAG. Output tree is in adj, directed down from the root.

dd16eb, 53 lines

```
Time: \mathcal{O}(V+E)
struct DominatorTree {
 vector<vi> adj,
    ans; // input edges, edges of dominator tree (directed tree
          downwards from root)
 vector<vi> radj, child, sdomChild;
 vi label, rlabel, sdom, dom;
 vi par, bes;
 int co = 0;
 DominatorTree(int n) {
    adj = ans = radj = child = sdomChild =
     vector<vector<int>>(n);
    label = rlabel = sdom = dom = par = bes = vector<int>(n);
 void add_edge(int a, int b) { adj[a].pb(b); }
  int get(int x) {
   if (par[x] != x) {
      int t = get(par[x]);
      par[x] = par[par[x]];
      if (sdom[t] < sdom[bes[x]]) bes[x] = t;</pre>
    return bes[x];
 void dfs(int x) { // create DFS tree
    label[x] = ++co;
    rlabel[co] = x;
    sdom[co] = par[co] = bes[co] = co;
    for (auto y : adj[x]) {
      if (!label[y]) {
        dfs(y);
        child[label[x]].pb(label[y]);
      radj[label[y]].pb(label[x]);
 void init(int root) {
    dfs(root);
    for (int i = co; i >= 1; --i) {
      for (auto j : radj[i])
        sdom[i] = min(sdom[i], sdom[get(j)]);
      if (i > 1) sdomChild[sdom[i]].pb(i);
      for (auto j : sdomChild[i]) {
        int k = get(j);
        if (sdom[j] == sdom[k]) dom[j] = sdom[j];
        else dom[j] = k;
      for (auto j : child[i]) par[j] = i;
    for (int i = 2; i < co + 1; ++i) {
      if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
      ans[rlabel[dom[i]]].pb(rlabel[i]);
```

CentroidDecomp.h

Description: Computes centroid decomposition on connected tree, and runs callback function

6f34db, 46 lines

```
Usage: centroidDecomp(adj, [&] (int root, vector<bool>& isIn)
all nodes with isIn[i] = true connected to root are part of
root's centroid
Time: \mathcal{O}(n \log n)
```

template<class G, class F> void centroidDecomp(G q, F f) { vector<int> s(sz(g), 1), par(sz(g)); auto go = [&] (int u, int p, auto& go) -> void { if ((par[u] = p) != -1) g[u].erase(find(all(g[u]), p));for (int v : q[u]) qo(v, u, qo), s[u] += s[v]; go(0, -1, go);vector<bool> is(sz(q), true); queue<int> q({0}); while (sz(q)) { int x = q.front(), c, b = x; q.pop(); do for (int v : a[c = b]) if (s[v] > s[x]/2) b = v; while(c != b); f(c, is); is[c] = false; int ss = s[c];for (int v : q[c]) if (s[v] > 0) q.push(v); **if** (c != x) q.push(x);do s[c] -= ss; while ((c = par[c]) != par[x]);

7.5 Coloring

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

```
Time: \mathcal{O}(NM)
```

```
e210e2, 31 lines
vi edgeColoring(int N, vector<pii> eds) {
 vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
  for (pii e : eds) ++cc[e.first], ++cc[e.second];
  int u, v, ncols = *max element(all(cc)) + 1;
  vector<vi> adj(N, vi(ncols, -1));
  for (pii e : eds) {
   tie(u, v) = e;
   fan[0] = v;
   loc.assign(ncols, 0);
   int at = u, end = u, d, c = free[u], ind = 0, i = 0;
   while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
    cc[loc[d]] = c;
    for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
     swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
     int left = fan[i], right = fan[++i], e = cc[i];
     adj[u][e] = left;
     adj[left][e] = u;
     adj[right][e] = -1;
     free[right] = e;
   adj[u][d] = fan[i];
   adj[fan[i]][d] = u;
   for (int y : {fan[0], u, end})
     for (int& z = free[y] = 0; adj[y][z] != -1; z++);
  rep(i, 0, sz(eds))
   for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
  return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique. **Time:** $\mathcal{O}\left(3^{n/3}\right)$, much faster for sparse graphs

```
b0d5b1, 12 lines
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = \simB(), B X={}, B R={}) {
 if (!P.any()) { if (!X.any()) f(R); return; }
  auto g = (P | X)._Find_first();
  auto cands = P & ~eds[q];
  rep(i,0,sz(eds)) if (cands[i]) {
    cliques(eds, f, P & eds[i], X & eds[i], R);
   R[i] = P[i] = 0; X[i] = 1;
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

f7c0bc, 49 lines

```
typedef vector<br/>bitset<200>> vb;
struct Maxclique {
 double limit=0.025, pk=0;
 struct Vertex { int i, d=0; };
 typedef vector<Vertex> vv;
 vb e;
 vv V;
 vector<vi> C:
 vi qmax, q, S, old;
 void init(vv& r) {
    for (auto \& v : r) v.d = 0;
   for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
   sort(all(r), [](auto a, auto b) { return a.d > b.d; });
   int mxD = r[0].d;
   rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
 void expand(vv& R, int lev = 1) {
   S[lev] += S[lev - 1] - old[lev];
   old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
     q.push_back(R.back().i);
     vv T;
     for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
       if (S[lev]++ / ++pk < limit) init(T);</pre>
       int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
       C[1].clear(), C[2].clear();
       for (auto v : T) {
         int k = 1;
         auto f = [&](int i) { return e[v.i][i]; };
         while (any_of(all(C[k]), f)) k++;
         if (k > mxk) mxk = k, C[mxk + 1].clear();
         if (k < mnk) T[j++].i = v.i;
         C[k].push_back(v.i);
       if (j > 0) T[j - 1].d = 0;
       rep(k, mnk, mxk + 1) for (int i : C[k])
         T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
```

```
vi maxClique() { init(V), expand(V); return qmax; }
 Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i,0,sz(e)) V.push_back({i});
};
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertex-

7.7Trees

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

Time: $\mathcal{O}(|S| \log |S|)$ "LCA.h"

9775a0, 21 lines

```
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
  static vi rev; rev.resize(sz(lca.time));
  vi li = subset, &T = lca.time;
  auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
  sort(all(li), cmp);
  int m = sz(1i)-1;
 rep(i,0,m) {
    int a = li[i], b = li[i+1];
   li.push_back(lca.lca(a, b));
 sort(all(li), cmp);
 li.erase(unique(all(li)), li.end());
  rep(i, 0, sz(li)) rev[li[i]] = i;
  vpi ret = {pii(0, li[0])};
  rep(i, 0, sz(li)-1) {
    int a = li[i], b = li[i+1];
    ret.emplace_back(rev[lca.lca(a, b)], b);
 return ret;
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

Time: $\mathcal{O}\left((\log N)^2\right)$ "../data-structures/LazySegmentTree.h"

```
template <bool VALS_EDGES> struct HLD {
 int N, tim = 0;
 vector<vi> adj;
 vi par, siz, depth, rt, pos;
 Node *tree;
 HLD (vector<vi> adj_)
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1), depth(N),
      rt(N), pos(N), tree(new Node(0, N)) { dfsSz(0); dfsHld(0); }
 void dfsSz(int v) {
    if (par[v] != -1) adj[v].erase(find(all(adj[v]), par[v]));
    for (int& u : adj[v]) {
      par[u] = v, depth[u] = depth[v] + 1;
      dfsSz(u);
```

siz[v] += siz[u];

```
if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
  void dfsHld(int v) {
   pos[v] = tim++;
   for (int u : adj[v]) {
     rt[u] = (u == adj[v][0] ? rt[v] : u);
     dfsHld(u);
  template <class B> void process(int u, int v, B op) {
    for (; rt[u] != rt[v]; v = par[rt[v]]) {
     if (depth[rt[u]] > depth[rt[v]]) swap(u, v);
     op(pos[rt[v]], pos[v] + 1);
   if (depth[u] > depth[v]) swap(u, v);
   op(pos[u] + VALS_EDGES, pos[v] + 1);
  void modifyPath(int u, int v, int val) {
   process(u, v, [&](int 1, int r) { tree->add(1, r, val); });
  int queryPath(int u, int v) { // Modify depending on problem
   int res = -1e9;
   process(u, v, [&](int l, int r) {
       res = max(res, tree->query(1, r));
    return res;
  int querySubtree(int v) { // modifySubtree is similar
    return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

```
Time: All operations take amortized \mathcal{O}(\log N).
                                                      5909e2, 90 lines
struct Node { // Splay tree. Root's pp contains tree's parent.
  Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
   if (c[0]) c[0]->p = this;
   if (c[1]) c[1]->p = this;
   // (+ update sum of subtree elements etc. if wanted)
  void pushFlip() {
   if (!flip) return;
   flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
   if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
  void rot(int i, int b) {
   int h = i ^ b;
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
   if ((y->p = p)) p->c[up()] = y;
   c[i] = z -> c[i ^ 1];
   if (b < 2) {
     x->c[h] = y->c[h ^ 1];
     z - > c[h ^ 1] = b ? x : this;
   y - c[i ^1] = b ? this : x;
    fix(); x->fix(); y->fix();
   if (p) p->fix();
    swap(pp, y->pp);
```

```
void splay() {
   for (pushFlip(); p; ) {
     if (p->p) p->p->pushFlip();
     p->pushFlip(); pushFlip();
     int c1 = up(), c2 = p->up();
     if (c2 == -1) p->rot(c1, 2);
     else p->p->rot(c2, c1 != c2);
 Node* first() {
   pushFlip();
   return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
 void link(int u, int v) { // add \ an \ edge \ (u, \ v)
   assert(!connected(u, v));
   makeRoot(&node[u]);
   node[u].pp = &node[v];
 void cut(int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
    makeRoot(top); x->splay();
    assert(top == (x->pp ?: x->c[0]));
    if (x->pp) x->pp = 0;
     x->c[0] = top->p = 0;
     x->fix();
 bool connected (int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
 void makeRoot(Node* u) {
   access(u);
   u->splav();
    if(u->c[0]) {
     u - > c[0] - > p = 0;
     u - c[0] - flip ^= 1;
     u - c[0] - pp = u;
     u - > c[0] = 0;
     u->fix();
 Node* access(Node* u) {
   u->splay();
    while (Node* pp = u->pp) {
     pp->splay(); u->pp = 0;
     if (pp->c[1]) {
       pp->c[1]->p = 0; pp->c[1]->pp = pp; }
     pp->c[1] = u; pp->fix(); u = pp;
   return u:
};
DirectedMST.h
Description: Finds a minimum spanning tree/arborescence of a directed
```

graph, given a root node. If no MST exists, returns -1. Time: $\mathcal{O}\left(E\log V\right)$

```
"../data-structures/UnionFindRollback.h"
```

```
39e620, 60 lines
struct Edge { int a, b; ll w; };
struct Node {
```

```
Edge kev;
  Node *1, *r;
 ll delta;
 void prop() {
   kev.w += delta;
   if (1) 1->delta += delta;
   if (r) r->delta += delta;
   delta = 0;
 Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
 if (!a || !b) return a ?: b;
 a->prop(), b->prop();
 if (a->key.w > b->key.w) swap(a, b);
 swap(a->1, (a->r = merge(b, a->r)));
 return a;
void pop(Node*\& a) { a->prop(); a = merge(a->1, a->r); }
pair<11, vi> dmst(int n, int r, vector<Edge>& g) {
 RollbackUF uf(n);
 vector<Node*> heap(n);
  for (Edge e : g) heap[e.b] = merge(heap[e.b], new Node{e});
 11 \text{ res} = 0;
 vi seen(n, -1), path(n), par(n);
  seen[r] = r;
  vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
  deque<tuple<int, int, vector<Edge>>> cycs;
  rep(s,0,n) {
    int u = s, qi = 0, w;
    while (seen[u] < 0) {
     if (!heap[u]) return {-1,{}};
      Edge e = heap[u] \rightarrow top();
      heap[u]->delta -= e.w, pop(heap[u]);
      Q[qi] = e, path[qi++] = u, seen[u] = s;
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
       Node \star cvc = 0;
        int end = qi, time = uf.time();
        do cyc = merge(cyc, heap[w = path[--qi]]);
        while (uf.join(u, w));
        u = uf.find(u), heap[u] = cyc, seen[u] = -1;
        cycs.push_front({u, time, {&Q[qi], &Q[end]}});
    rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
  for (auto& [u,t,comp] : cycs) { // restore sol (optional)
    uf.rollback(t);
    Edge inEdge = in[u];
    for (auto& e : comp) in[uf.find(e.b)] = e;
    in[uf.find(inEdge.b)] = inEdge;
 rep(i,0,n) par[i] = in[i].a;
 return {res, par};
```

KTH]

Math

7.8.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

7.8.2 Erdős–Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sqn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
  typedef Point P;
  T x, y;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(v, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate (double a) const {
   return P(x*\cos(a)-y*\sin(a),x*\sin(a)+y*\cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {</pre>
    return os << "(" << p.x << "," << p.v << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.

f6bf6b, 4 lines

template<class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
}

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point s to e.

Usage: Point<double> a, b(2,2), p(1,1); bool onSegment = segDist(a,b,p) < 1e-10;

5c88f4, 6 lines

```
typedef Point<double> P;
double segDist(P& s, P& e, P& p) {
   if (s==e) return (p-s).dist();
   auto d = (e-s).dist2(), t = min(d,max(.0,(p-s).dot(e-s)));
   return ((p-s)*d-(e-s)*t).dist()/d;
}
```

SegmentIntersection.h

Description:


```
template<class P> vector<P> segInter(P a, P b, P c, P d) {
   auto oa = c.cross(d, a), ob = c.cross(d, b),
        oc = a.cross(b, c), od = a.cross(b, d);
   // Checks if intersection is single non-endpoint point.
   if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
        return {(a * ob - b * oa) / (ob - oa)};
        set<P> s;
   if (onSegment(c, d, a)) s.insert(a);
   if (onSegment(a, b, c)) s.insert(c);
   if (onSegment(a, b, d)) s.insert(d);
   return {all(s)};
}
```

lineIntersection.h

Description:

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow left/on line/right$. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

OnSegment.h

"Point.h"

Description: Returns true iff p lies on the line segment from s to e. Use $(segDist(s,e,p) \le psilon)$ instead when using Point < double>.

```
template<class P> bool onSegment(P s, P e, P p) {
    return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;
```

$\begin{array}{l} linear Transformation.h \\ \textbf{Description:} \end{array}$

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r.

tation and q0 res int r. q0 q1

```
typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,
    const P& q0, const P& q1, const P& r) {
    P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
    return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
}
```

LineProjectionReflection.h

Description: Projects point p onto line ab. Set refl=true to get reflection of point p across line ab insted. The wrong point will be returned if P is an integer point and the desired point doesn't have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow.

"Point.h"

b5562d, 5 lines

```
template < class P>
P lineProj(P a, P b, P p, bool refl=false) {
   P v = b - a;
   return p - v.perp()*(l+refl)*v.cross(p-a)/v.dist2();
}
```

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

Usage: vector $\langle Angle \rangle$ v = $\{w[0], w[0].t360()...\}$; // sorted int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; } // sweeps j such that (j-i) represents the number of positively oriented triangles with vertices at 0 and i

```
struct Angle {
  int x, y;
  int t;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
   assert(x || y);
    return v < 0 || (v == 0 && x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return {-x, -y, t + half()}; }
  Angle t360() const { return {x, y, t + 1}; }
bool operator < (Angle a, Angle b) {
  // add a.dist2() and b.dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (ll)b.x) <</pre>
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point a + vector b
  Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b- angle a
  int tu = b.t - a.t; a.t = b.t;
 return {a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)};
```

AngleSort.h

Description: Angular Sort with Cross-product Time: $\mathcal{O}(N \log N)$

457c07, 6 lines sort(pts.begin(), pts.end(), [](const P& p1, const P& p2)->bool int s1 = p1.y < 0 || (p1.y == 0 && p1.x < 0);</pre> int s2 = p2.y < 0 || (p2.y == 0 && p2.x < 0); **if**(s1 != s2) **return** s1 < s2; return p1.cross(p2) > 0;

8.2 Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

"Point.h"

```
typedef Point < double > P;
bool circleInter(P a,P b,double r1,double r2,pair<P, P>* out) {
 if (a == b) { assert(r1 != r2); return false; }
 P \text{ vec} = b - a;
  double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
         p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
  if (sum*sum < d2 || dif*dif > d2) return false;
```

```
P mid = a + vec*p, per = vec.perp() * sqrt(fmax(0, h2) / d2);
*out = {mid + per, mid - per};
return true;
```

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
"Point.h"
                                                     b0153d, 13 lines
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
 P d = c2 - c1;
 double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
 if (d2 == 0 || h2 < 0) return {};</pre>
 vector<pair<P, P>> out;
 for (double sign : {-1, 1}) {
   P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
   out.push_back(\{c1 + v * r1, c2 + v * r2\});
 if (h2 == 0) out.pop_back();
 return out;
```

CircleLine.h

Description: Finds the intersection between a circle and a line. Returns a vector of either 0, 1, or 2 intersection points. P is intended to be Point < double >.

```
"Point.h"
                                                      e0cfba, 9 lines
template<class P>
vector<P> circleLine(P c, double r, P a, P b) {
 P ab = b - a, p = a + ab * (c-a).dot(ab) / ab.dist2();
 double s = a.cross(b, c), h2 = r*r - s*s / ab.dist2();
 if (h2 < 0) return {};
 if (h2 == 0) return {p};
 P h = ab.unit() * sqrt(h2);
 return {p - h, p + h};
```

CirclePolygonIntersection.h

"../../content/geometry/Point.h"

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}(n)$

```
typedef Point < double > P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
 auto tri = [&] (P p, P q) {
   auto r2 = r * r / 2;
   P d = q - p;
   auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
   auto det = a * a - b;
   if (det <= 0) return arg(p, q) * r2;</pre>
   auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
   if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
   P u = p + d * s, v = p + d * t;
   return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
 auto sum = 0.0;
 rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum;
```

circumcircle.h

Description:

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.

16

```
typedef Point<double> P;
double ccRadius (const P& A, const P& B, const P& C) {
  return (B-A).dist()*(C-B).dist()*(A-C).dist()/
      abs((B-A).cross(C-A))/2;
P ccCenter (const P& A, const P& B, const P& C) {
  P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. Time: expected $\mathcal{O}(n)$

```
"circumcircle.h"
                                                      09dd0a, 17 lines
pair<P, double> mec(vector<P> ps) {
 shuffle(all(ps), mt19937(time(0)));
 P \circ = ps[0];
 double r = 0, EPS = 1 + 1e-8;
 rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
    o = ps[i], r = 0;
    rep(j, 0, i) if ((o - ps[j]).dist() > r * EPS) {
      o = (ps[i] + ps[j]) / 2;
      r = (o - ps[i]).dist();
      rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) {
        o = ccCenter(ps[i], ps[j], ps[k]);
        r = (o - ps[i]).dist();
 return {o, r};
```

8.3 Polygons

InsidePolygon.h

a1ee63, 19 lines

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector\langle P \rangle v = \{P\{4,4\}, P\{1,2\}, P\{2,1\}\};
bool in = inPolygon(v, P\{3, 3\}, false);
Time: \mathcal{O}(n)
```

"Point.h", "OnSegment.h", "SegmentDistance.h"

```
template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
 int cnt = 0, n = sz(p);
  rep(i,0,n) {
    P q = p[(i + 1) % n];
    if (onSegment(p[i], q, a)) return !strict;
    //or: if (segDist(p[i], q, a) \le eps) return !strict;
    cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;
 return cnt;
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
"Point.h"
                                                                         f12300, 6 lines
```

```
template<class T>
T polygonArea2(vector<Point<T>>& v) {
```

17

ac41a6, 17 lines

```
T = v.back().cross(v[0]);
rep(i, 0, sz(v)-1) a += v[i].cross(v[i+1]);
return a;
```

PolygonCenter.h

Description: Returns the center of mass for a polygon.

```
Time: \mathcal{O}(n)
"Point.h"
```

```
typedef Point<double> P;
P polygonCenter(const vector<P>& v) {
  P res(0, 0); double A = 0;
  for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
   res = res + (v[i] + v[j]) * v[j].cross(v[i]);
   A += v[j].cross(v[i]);
  return res / A / 3;
```

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

Usage: vector<P> p = ...; p = polygonCut(p, P(0,0), P(1,0));"Point.h", "lineIntersection.h"

9706dc, 9 lines

f2b7d4, 13 lines

```
typedef Point < double > P;
vector<P> polygonCut (const vector<P>& poly, P s, P e) {
  vector<P> res;
  rep(i, 0, sz(poly)) {
   P cur = poly[i], prev = i ? poly[i-1] : poly.back();
   bool side = s.cross(e, cur) < 0;</pre>
    if (side != (s.cross(e, prev) < 0))</pre>
     res.push back(lineInter(s, e, cur, prev).second);
     res.push_back(cur);
 return res;
```

HullTangents.h

Description: Finds the left and right, respectively, tangent points on convex hull from a point. If the point is colinear to side(s) of the polygon, the point further away is returned. Requires ccw, $n \geq 3$, and the point be on or outside the polygon.

```
Time: \mathcal{O}(\log n)
```

```
#define cmp(i, j) p.cross(h[i], h[j == n ? 0 : j]) * (R ?: -1)
template<bool R, class P> int getTangent(vector<P>& h, P p) {
  int n = sz(h), lo = 0, hi = n - 1, md;
  if (cmp(0, 1) >= R \&\& cmp(0, n - 1) >= !R) return 0;
  while (md = (lo + hi + 1) / 2, lo < hi) {
   auto a = cmp (md, md + 1), b = cmp (md, lo);
   if (a >= R && cmp(md, md - 1) >= !R) return md;
   if (cmp(lo, lo + 1) < R)
     a < R\&\& b >= 0 ? lo = md : hi = md - 1;
    else a < R || b <= 0 ? lo = md : hi = md - 1;
  return -1; // point strictly inside hull
template < class P > pii hullTangents (vector < P > & h, P p) {
 return {getTangent<0>(h, p), getTangent<1>(h, p)};
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Time: $\mathcal{O}(n \log n)$

```
"Point.h"
                                                      310954, 13 lines
typedef Point<ll> P;
vector<P> convexHull(vector<P> pts) {
 if (sz(pts) <= 1) return pts;</pre>
  sort(all(pts));
  vector<P> h(sz(pts)+1);
 int s = 0, t = 0;
  for (int it = 2; it--; s = --t, reverse(all(pts)))
    for (P p : pts) {
      while (t >= s + 2 \&\& h[t-2].cross(h[t-1], p) <= 0) t--;
 return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

Time: $\mathcal{O}(n)$

"Point.h"

typedef Point<11> P; array<P, 2> hullDiameter(vector<P> S) { int n = sz(S), j = n < 2 ? 0 : 1;pair<11, array<P, 2>> res({0, {S[0], S[0]}}); rep(i,0,i) for $(;; j = (j + 1) % n) {$ res = $max(res, {(S[i] - S[j]).dist2(), {S[i], S[j]}});$

if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)break; return res.second;

PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

"Point.h", "sideOf.h", "OnSegment.h" 71446b, 14 lines

typedef Point<11> P;

```
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);</pre>
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)</pre>
    return false;
  while (abs(a - b) > 1) {
   int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
 return sqn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection.h.

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1, -1) if no collision, \bullet (i, -1)if touching the corner $i, \bullet (i, i)$ if along side $(i, i+1), \bullet (i, j)$ if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

```
Time: \mathcal{O}(\log n)
"Point.h"
                                                      7cf45b 39 lines
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
#define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
template <class P> int extrVertex(vector<P>& poly, P dir) {
  int n = sz(poly), lo = 0, hi = n;
  if (extr(0)) return 0;
  while (10 + 1 < hi) {
    int m = (10 + hi) / 2;
    if (extr(m)) return m;
    int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m);
    (1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;
  return lo;
#define cmpL(i) sgn(a.cross(poly[i], b))
template <class P>
array<int, 2> lineHull(P a, P b, vector<P>& poly) {
  int endA = extrVertex(poly, (a - b).perp());
  int endB = extrVertex(poly, (b - a).perp());
  if (cmpL(endA) < 0 \mid | cmpL(endB) > 0)
    return {-1, -1};
  array<int, 2> res;
  rep(i, 0, 2) {
    int lo = endB, hi = endA, n = sz(poly);
    while ((lo + 1) % n != hi) {
      int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
      (cmpL(m) == cmpL(endB) ? lo : hi) = m;
    res[i] = (lo + !cmpL(hi)) % n;
    swap (endA, endB);
  if (res[0] == res[1]) return {res[0], -1};
  if (!cmpL(res[0]) && !cmpL(res[1]))
    switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
      case 0: return {res[0], res[0]};
      case 2: return {res[1], res[1]};
  return res;
```

8.4 Misc. Point Set Problems

ClosestPair.h

c571b8, 12 lines

Description: Finds the closest pair of points.

```
Time: \mathcal{O}(n \log n)
```

```
"Point.h"
typedef Point<11> P;
pair<P, P> closest (vector<P> v) {
 assert (sz(v) > 1);
 set<P> S;
 sort(all(v), [](P a, P b) { return a.y < b.y; });
 pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
  int j = 0;
 for (P p : v) {
    P d{1 + (ll)sqrt(ret.first), 0};
    while (v[j].y <= p.y - d.x) S.erase(v[j++]);
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
      ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
    S.insert(p);
  return ret.second:
```

kdTree FastDelaunay Halfplane

```
kdTree.h
```

```
Description: KD-tree (2d. can be extended to 3d)
```

bac5b0, 63 lines

```
typedef long long T;
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0;
  T distance (const P& p) { // min squared distance to a point
   T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
   T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
     x0 = min(x0, p.x); x1 = max(x1, p.x);
     y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
struct KDTree {
  Node* root;
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search (Node *node, const P& p) {
   if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return \{INF, P()\};
      return make_pair((p - node->pt).dist2(), node->pt);
   Node *f = node->first, *s = node->second;
   T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
    // search closest side first, other side if needed
    auto best = search(f, p);
   if (bsec < best.first)</pre>
     best = min(best, search(s, p));
    return best:
  // find nearest point to a point, and its squared distance
  // (requires an arbitrary operator< for Point)
  pair<T, P> nearest (const P& p) {
   return search (root, p);
};
```

```
FastDelaunav.h
Description: Fast Delaunay triangulation. Each circumcircle contains none
of the input points. There must be no duplicate points. If all points are on a
line, no triangles will be returned. Should work for doubles as well, though
there may be precision issues in 'circ'. Returns triangles in order {t[0][0],
t[0][1], t[0][2], t[1][0], \dots\}, all counter-clockwise.
Time: \mathcal{O}(n \log n)
"Point.h"
                                                                  eefdf5, 88 lines
```

```
typedef Point<11> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Ouad {
 Q rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  O& r() { return rot->rot; }
  O prev() { return rot->o->rot;
 Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
 111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b)*C + p.cross(b,c)*A + p.cross(c,a)*B > 0;
O makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
  H = r -> 0; r -> r() -> r() = r;
  rep(i, 0, 4) r = r -> rot, r -> p = arb, r -> o = i & 1 ? r : r -> r();
  r->p = orig; r->F() = dest;
  return r;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<0,0> rec(const vector<P>& s) {
  if (sz(s) <= 3) {
    0 = \text{makeEdge}(s[0], s[1]), b = \text{makeEdge}(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
    Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 O A, B, ra, rb;
  int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B->p.cross(H(A)) < 0 && (A = A->next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
  O base = connect(B->r(), A);
```

if (A->p == ra->p) ra = base->r();

#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \

while (circ(e->dir->F(), H(base), e->F())) {

if (B->p == rb->p) rb = base;

 $0 t = e \rightarrow dir; \$ splice(e, e->prev()); \

```
splice(e->r(), e->r()->prev()); \
      e->o = H; H = e; e = t; \
  for (;;) {
    DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
    if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
      base = connect(RC, base->r());
      base = connect(base->r(), LC->r());
  return { ra, rb };
vector<P> triangulate(vector<P> pts) {
  sort(all(pts)); assert(unique(all(pts)) == pts.end());
  if (sz(pts) < 2) return {};
  Q e = rec(pts).first;
  vector<Q> q = \{e\};
  int qi = 0;
  while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
  q.push_back(c->r()); c = c->next(); } while (c != e); }
  ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
  return pts;
Halfplane.h
Description: Halfplane Intersection polygon
Time: \mathcal{O}(N \log N)
"Point.h", "lineIntersection.h"
                                                     17fc46, 71 lines
#define eps 1e-8
typedef Point < double > P;
struct Line {
  P P1, P2;
  // Right hand side of the ray P1 -> P2
  explicit Line(P a = P(), P b = P()) : P1(a), P2(b) {};
  P intpo(Line v) {
    Pr:
    assert(lineIntersection(P1, P2, y.P1, y.P2, r) == 1);
    return r:
  P dir() {
    return P2 - P1;
  bool contains (P x) {
    return (P2 - P1).cross(x - P1) < eps;
  bool out (P x) {
    return !contains(x);
};
template < class T>
bool mycmp(Point<T> a, Point<T> b) {
  // return atan2(a.y, a.x) < atan2(b.y, b.x);
  if (a.x * b.x < 0) return a.x < 0;</pre>
  if (abs(a.x) < eps) {
    if (abs(b.x) < eps) return a.y > 0 && b.y < 0;</pre>
    if (b.x < 0) return a.y > 0;
    if (b.x > 0) return true;
  if (abs(b.x) < eps) {
    if (a.x < 0) return b.y < 0;
    if (a.x > 0) return false;
  return a.cross(b) > 0;
```

5b45fc, 49 lines

PlanarFace PolyhedronVolume Point3D 3dHull

```
bool cmp(Line a, Line b) {
 return mycmp(a.dir(), b.dir());
vector<P> halfplaneIntersection(vector <Line> b) {
  sort(b.begin(), b.end(), cmp);
  int n = b.size();
  int q = 1, h = 0, i;
  vector <Line> c(b.size() + 10);
  for (i = 0; i < n; i++) {
    while (q < h && b[i].out(c[h].intpo(c[h - 1]))) h--;</pre>
   while (q < h && b[i].out(c[q].intpo(c[q + 1]))) q++;</pre>
    c[++h] = b[i];
    if (q < h \&\& abs(c[h].dir().cross(c[h - 1].dir())) < eps) {
     if (c[h].dir().dot(c[h-1].dir()) > 0) {
       if (b[i].out(c[h].P1)) c[h] = b[i];
      }else {
        // The area is either 0 or infinite.
        // If you have a bounding box, then the area is
             definitely 0.
        return {};
  while (q < h - 1 && c[q].out(c[h].intpo(c[h - 1]))) h--;
  while (q < h - 1 \&\& c[h].out(c[q].intpo(c[q + 1]))) q++;
  if (h - q <= 1) return {};</pre>
  c[h + 1] = c[q];
  vector <P> s;
  for (i = q; i <= h; i++) s.push_back(c[i].intpo(c[i + 1]));</pre>
```

PlanarFace.h

Description: Takes a bunch of points and adjacency array. No lines formed by adjacent points can cross! Returns an array list of polygons formed by these points and adjs No two points can be the same. Points will be assigned IDs in order given. Will not form polygons with holes (there may be nested polygons you need to check for)

"Point.h" 72d650, 74 lines

```
template<class P> struct Edge {
 int id:
  Pa, b, ab;
  Edge *rev, *prev;
 bool used, isBorder;
  Edge (P a, P b):
   id(0), a(a), b(b), ab(b - a), rev(NULL), prev(NULL),
   used(0), isBorder(0) {}
  friend ostream &operator<< (ostream &os, Edge e) {
    return os << e.id;</pre>
// Takes a bunch of points and adjacency array. No lines formed
     by adjacent points can cross!
// Returns an array list of polygons formed by these points and
// No two points can be the same. Points will be assigned IDs
    in order given.
// Will not form polygons with holes (there may be nested
    polygons you need to check for)
// O(v + m \log m)
template<class P>
vector<vector<Edge<P> *>> extractPolygons(vector<P> &points,
  vector<vi> &adis) {
  using Edge = Edge < P>;
 int n = sz(points),
```

```
curEId = 0; // # of poly-poly edges; can keep global
vector<vector<Edge *>> edges(n);
vi idxs(n);
rep(i, 0, n) edges[i].resize(sz(adjs[i]));
for (int i = 0; i < n; i++) {</pre>
  P p = points[i];
  for (int next : adjs[i]) {
    if (next < i) continue;</pre>
    P q = points[next];
    Edge \star a = new Edge(p, q), \star b = new Edge(q, p);
    a->id = b->id = curEId++;
    edges[i][idxs[i]++] = b \rightarrow rev = a;
    edges[next][idxs[next]++] = a->rev = b;
rep(i, 0, n) {
  int len = sz(edges[i]);
  sort(all(edges[i]), [&](auto ea, auto eb) {
    // or another more stable radial sort of your choosing
    return atan21(ea->ab.y, ea->ab.x) <</pre>
      atan21(eb->ab.y, eb->ab.x);
  });
  rep(j, 0, len) edges[i][(j + 1) % len] -> prev = edges[i][j];
vector<vector<Edge *>> polys;
for (int i = 0; i < n; i++) {</pre>
  P cur = points[i];
  for (Edge *e : edges[i]) {
    if (e->used) continue;
    e->used = true;
    vector<Edge *> edgeList{e};
    cur = e->b;
    while (true) {
      e = e->rev->prev;
      if (e->used) break;
      e->used = true;
      edgeList.pb(e);
      cur = e->b;
    polys.pb({edgeList});
vector<vector<Edge *>> res;
for (vector<Edge *> &p : polys) {
  1d a = 0:
  for (Edge *e : p) a = a + e -> a.cross(e -> b);
  if (a >= 0) res.pb(p); // Normal polygon (maybe 0 area)
  else // Else, this the border polygon (vs in reverse order)
    for (Edge *e : p) e->isBorder = true;
return res;
```

3D8.5

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards. 3058c3, 6 lines

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
 double v = 0;
 for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
 return v / 6:
```

Description: Class to handle points in 3D space. T can be e.g. double or long long. 8058ae, 32 lines

```
template < class T > struct Point 3D {
  typedef Point3D P;
  typedef const P& R;
  T x, y, z;
  explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
  bool operator<(R p) const {
    return tie(x, y, z) < tie(p.x, p.y, p.z); }
 bool operator==(R p) const {
    return tie(x, y, z) == tie(p.x, p.y, p.z); }
  P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
  P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
  P operator/(T d) const { return P(x/d, y/d, z/d); }
 T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
 P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
 T dist2() const { return x*x + y*y + z*z; }
  double dist() const { return sgrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
  double phi() const { return atan2(y, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
  double theta() const { return atan2(sqrt(x*x+y*y),z); }
  P unit() const { return *this/(T) dist(); } //makes dist()=1
  //returns unit vector normal to *this and p
 P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
 P rotate(double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
3dHull.h
Description: Computes all faces of the 3-dimension hull of a point set. *No
```

four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}\left(n^2\right)
"Point3D.h"
```

```
typedef Point3D<double> P3;
struct PR {
 void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a != -1) + (b != -1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
 vector<vector<PR>>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS:
  auto mf = [\&] (int i, int j, int k, int l) {
    P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
    F f{q, i, j, k};
    E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.push_back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j,0,sz(FS)) {
```

```
F f = FS[i];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.q) <= 0) swap(it.c, it.b);
 return FS;
};
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = 1) north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points.

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
    double dx = sin(t2)*cos(f2) - sin(t1)*cos(f1);
    double dy = sin(t2)*sin(f2) - sin(t1)*sin(f1);
    double dz = cos(t2) - cos(t1);
    double d = sqrt(dx*dx + dy*dy + dz*dz);
    return radius*2*asin(d/2);
}
```

Strings (9)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

Time: $\mathcal{O}\left(n\right)$ d4375c, 16 lines

```
vi pi(const string& s) {
  vi p(sz(s));
  rep(i,1,sz(s)) {
    int g = p[i-1];
    while (g && s[i] != s[g]) g = p[g-1];
    p[i] = g + (s[i] == s[g]);
}
  return p;
}

vi match(const string& s, const string& pat) {
  vi p = pi(pat + '\0' + s), res;
  rep(i,sz(p)-sz(s),sz(p))
    if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
  return res;
}
```

Zfunc.h

Time: $\mathcal{O}(n)$

```
Description: z[x] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301)
```

```
vi 2 (const string& S) {
    vi z(sz(S));
    int 1 = -1, r = -1;
    rep(i,1,sz(S)) {
        z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
        while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
        z[i]++;
    if (i + z[i] > r)
        l = i, r = i + z[i];
    }
    return z;
}
```

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, <math>p[1][i] = longest odd (half rounded down).

 $\frac{\mathbf{Time:}\ \mathcal{O}\left(N\right)}{}$

e7ad79, 13 lines

```
array<vi, 2> manacher(const string& s) {
  int n = sz(s);
  array<vi,2> p = {vi(n+1), vi(n)};
  rep(z,0,2) for (int i=0,l=0,r=0; i < n; i++) {
    int t = r-i+!z;
    if (i<r) p[z][i] = min(t, p[z][l+t]);
    int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L>=1 && R+1<n && s[L-1] == s[R+1])
      p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
  }
  return p;
}
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. **Usage:** rotate(v.begin(), v.begin()+minRotation(v), v.end()); **Time:** $\mathcal{O}(N)$

```
int minRotation(string s) {
  int a=0, N=sz(s); s += s;
  rep(b,0,N) rep(k,0,N) {
    if (a+k == b || s[a+k] < s[b+k]) {b += max(0, k-1); break;}
    if (s[a+k] > s[b+k]) { a = b; break; }
  }
  return a;
```

SuffixArrav.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0]=n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. **Time:** $\mathcal{O}(n \log n)$

```
struct SuffixArray {
  vi sa, lcp;
  SuffixArray(string& s, int lim=256) { // or basic_string<int>
    int n = sz(s) + 1, k = 0, a, b;
    vi x(all(s)+1), y(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
        p = j, iota(all(y), n - j);
        rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
        fill(all(ws), 0);
```

SuffixTree.h

struct SuffixTree {

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l,r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l,r) substrings. The root is 0 (has $l=-1,\,r=0$), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

```
Time: \mathcal{O}\left(26N\right) aae0b8, 50 lines
```

```
enum { N = 200010, ALPHA = 26 }; //N \sim 2*maxlen+10
int toi(char c) { return c - 'a'; }
string a; //v = cur \ node, q = cur \ position
int t[N][ALPHA],1[N],r[N],p[N],s[N],v=0,q=0,m=2;
void ukkadd(int i, int c) { suff:
  if (r[v]<=q) {
    if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
      p[m++]=v; v=s[v]; q=r[v]; goto suff; }
    v=t[v][c]; q=l[v];
  if (q==-1 || c==toi(a[q])) q++; else {
    l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
    p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
    l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
    v=s[p[m]]; q=l[m];
    while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
    if (q==r[m]) s[m]=v; else s[m]=m+2;
    q=r[v]-(q-r[m]); m+=2; goto suff;
SuffixTree(string a) : a(a) {
  fill(r,r+N,sz(a));
  memset(s, 0, sizeof s);
  memset(t, -1, sizeof t);
  fill(t[1],t[1]+ALPHA,0);
  s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
  rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
// example: find longest common substring (uses ALPHA = 28)
pii best;
int lcs(int node, int i1, int i2, int olen) {
  if (1[node] <= i1 && i1 < r[node]) return 1;</pre>
  if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
  int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
  rep(c, 0, ALPHA) if (t[node][c] != -1)
    mask |= lcs(t[node][c], i1, i2, len);
  if (mask == 3)
    best = max(best, {len, r[node] - len});
  return mask;
static pii LCS(string s, string t) {
  SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
```

};

return st.best;

```
Hashing.h
Description: Self-explanatory methods for string hashing.
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
typedef uint64 t ull:
struct H {
  ull x; H(ull x=0) : x(x) \{ \}
  H operator+(H o) { return x + o.x + (x + o.x < x); }
  H operator-(H o) { return *this + ~o.x; }
  H operator*(H o) { auto m = (__uint128_t)x * o.x;
   return H((ull)m) + (ull)(m >> 64); }
  ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
  bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9; random also ok)
struct HashInterval {
  vector<H> ha, pw;
  HashInterval(string& str) : ha(sz(str)+1), pw(ha) {
    pw[0] = 1;
    rep(i, 0, sz(str))
     ha[i+1] = ha[i] * C + str[i],
      pw[i+1] = pw[i] * C;
  H hashInterval (int a, int b) { // hash [a, b]
    return ha[b] - ha[a] * pw[b - a];
vector<H> getHashes(string& str, int length) {
  if (sz(str) < length) return {};</pre>
  H h = 0, pw = 1;
  rep(i,0,length)
   h = h * C + str[i], pw = pw * C;
  vector<H> ret = {h};
  rep(i,length,sz(str)) {
    ret.push_back(h = h * C + str[i] - pw * str[i-length]);
  return ret;
H hashString(string& s){H h{}; for(char c:s) h=h*C+c;return h;}
```

st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);

AhoCorasick.h

Description: Aho-Corasick automaton, used for multiple pattern matching. Initialize with Aho-Corasick ac(patterns); the automaton start node will be at index 0. find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(-, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. For large alphabets, split each symbol into chunks, with sentinel bits for symbol boundaries.

Time: construction takes $\mathcal{O}(26N)$, where N= sum of length of patterns. find(x) is $\mathcal{O}(N)$, where N= length of x. findAll is $\mathcal{O}(NM)$. f35677, 66 lines

```
struct AhoCorasick {
  enum {alpha = 26, first = 'A'}; // change this!
  struct Node {
    // (nmatches is optional)
```

```
int back, next[alpha], start = -1, end = -1, nmatches = 0;
  Node (int v) { memset (next, v, sizeof (next)); }
};
vector<Node> N;
vi backp;
void insert(string& s, int j) {
  assert(!s.emptv());
  int n = 0;
  for (char c : s) {
    int& m = N[n].next[c - first];
    if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
    else n = m:
  if (N[n].end == -1) N[n].start = j;
  backp.push_back(N[n].end);
  N[n].end = j;
  N[n].nmatches++;
AhoCorasick(vector<string>& pat) : N(1, -1) {
  rep(i,0,sz(pat)) insert(pat[i], i);
  N[0].back = sz(N);
  N.emplace_back(0);
  queue<int> q;
  for (q.push(0); !q.empty(); q.pop()) {
    int n = q.front(), prev = N[n].back;
    rep(i,0,alpha) {
      int &ed = N[n].next[i], y = N[prev].next[i];
      if (ed == -1) ed = y;
      else {
        N[ed].back = y;
        (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
          = N[y].end;
        N[ed].nmatches += N[y].nmatches;
        q.push(ed);
  }
vi find(string word) {
  int n = 0;
  vi res; // ll count = 0:
  for (char c : word) {
   n = N[n].next[c - first];
    res.push_back(N[n].end);
    // count \neq = N[n] . nmatches;
  return res;
vector<vi> findAll(vector<string>& pat, string word) {
  vi r = find(word);
  vector<vi> res(sz(word));
  rep(i,0,sz(word)) {
    int ind = r[i];
    while (ind !=-1) {
      res[i - sz(pat[ind]) + 1].push back(ind);
      ind = backp[ind];
  return res;
```

${ m Eertree.h}$

Description: Generates an eertree on str. cur is accurate at the end of the main loop before the final assignment to t.

```
Time: \mathcal{O}(|S|)
```

```
vector<int> slink = \{0, 0\}, len = \{-1, 0\};
```

```
vector<vector<int>> down(2, vector<int>(26, -1));
int cur = 0, t = 0;
for(int i = 0; i < str.size(); i++) {</pre>
 char c = str[i]; int ci = c - 'a';
  while(t <= 0 || str[t-1] != c) t = i - len[cur = slink[cur]];</pre>
 if(down[cur][ci] == -1) {
    down[cur][ci] = slink.size();
    down.emplace_back(26, -1);
    len.push_back(len[cur] + 2);
    if(len.back() > 1){
        do t = i - len[cur = slink[cur]];
        while(t <= 0 || str[t-1] != c);</pre>
        slink.push_back(down[cur][ci]);
    } else slink.push_back(1);
    cur = slink.size() - 1;
 } else cur = down[cur][ci];
 t = i - len[cur] + 1;
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: \mathcal{O}(\log N)
```

```
edce47, 23 lines
```

```
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
  auto it = is.lower bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {</pre>
   R = max(R, it->second);
   before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
    R = max(R, it->second);
   is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
 auto it = addInterval(is, L, R);
  auto r2 = it->second;
 if (it->first == L) is.erase(it);
 else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}\left(N\log N\right)$

e1fb21, 19 lines

9e9d8d, 19 lines

```
template < class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
  vi S(sz(I)), R;
  iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });
  T cur = G.first;
  int at = 0;
  while (cur < G.second) { // (A)</pre>
```

```
pair<T, int> mx = make_pair(cur, -1);
while (at < sz(I) && I[S[at]].first <= cur) {
    mx = max(mx, make_pair(I[S[at]].second, S[at]));
    at++;
}
if (mx.second == -1) return {};
cur = mx.first;
R.push_back(mx.second);
}
return R;</pre>
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];}, [&](int lo, int hi, T val){...});

Time: \mathcal{O}(k \log \frac{n}{k})
```

template < class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
 g(i, to, p);
 i = to; p = q;
 } else {
 int mid = (from + to) >> 1;
 rec(from, mid, f, g, i, p, f(mid));
 rec(mid+1, to, f, g, i, p, q);
 }
}
template < class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, g, i, p, q);
 g(i, to, q);</pre>

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];}); 
 Time: \mathcal{O}(\log(b-a)) 9155b4, 11 lines
```

```
template < class F>
int ternSearch(int a, int b, F f) {
    assert(a <= b);
    while (b - a >= 5) {
        int mid = (a + b) / 2;
        if (f(mid) < f(mid+1)) a = mid; // (A)
        else b = mid+1;
    }
    rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
    return a;</pre>
```

LIS.h

Description: Compute indices for the longest increasing subsequence.

Time: $O(N \log N)$ 2932a0, 17 lines

```
template < class I > vi lis(const vector < I > & S) {
  if (S.empty()) return {};
  vi prev(sz(S));
  typedef pair < I, int > p;
```

```
vector res;
rep(i,0,sz(S)) {
    // change 0 -> i for longest non-decreasing subsequence
    auto it = lower_bound(all(res), p{S[i], 0});
    if (it == res.end()) res.emplace_back(), it = res.end()-1;
    *it = {S[i], i};
    prev[i] = it == res.begin() ? 0 : (it-1)->second;
}
int L = sz(res), cur = res.back().second;
vi ans(L);
while (L--) ans[L] = cur, cur = prev[cur];
return ans;
}
```

FastKnapsack.h

753a4c, 19 lines

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum S <= t such that S is the sum of some subset of the weights. **Time:** $\mathcal{O}(N \max(w_i))$

```
int knapsack(vi w, int t) {
   int a = 0, b = 0, x;
   while (b < sz(w) && a + w[b] <= t) a += w[b++];
   if (b == sz(w)) return a;
   int m = *max_element(all(w));
   vi u, v(2*m, -1);
   v[a+m-t] = b;
   rep(i,b,sz(w)) {
      u = v;
      rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
      for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
       v[x-w[j]] = max(v[x-w[j]], j);
   }
   for (a = t; v[a+m-t] < 0; a--);
   return a;</pre>
```

10.3 Dynamic programming

rec(mid+1, R, best.second, HI);

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[k][j]) + f(i,j)$, where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \le f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. **Time:** $\mathcal{O}(N^2)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \le k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes a[i] for i = L..R - 1.

```
}
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
;
```

10.4 Debugging tricks

- signal (SIGSEGV, [] (int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

10.5 Optimization tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)];
 computes all sums of subsets.</pre>

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to $a\pmod{b}$ in the range [0,2b).

```
typedef unsigned long long ull;
struct FastMod {
  ull b, m;
  FastMod(ull b) : b(b), m(-1ULL / b) {}
  ull reduce(ull a) { // a % b + (0 or b)
    return a - (ull)((_uint128_t(m) * a) >> 64) * b;
  }
};
```

FastInput.h

Description: Read an integer from stdin. Usage requires your program to pipe in input from file.

Usage: ./a.out < input.txt

Time: About 5x as fast as cin/scanf.

7b3c70, 17 lines

BumpAllocator SmallPtr BumpAllocatorSTL SIMD

23

```
SIMD.h
inline char gc() { // like getchar()
  static char buf[1 << 16];
  static size_t bc, be;
  if (bc >= be) {
   buf[0] = 0, bc = 0;
   be = fread(buf, 1, sizeof(buf), stdin);
  return buf[bc++]; // returns 0 on EOF
int readInt() {
  int a, c;
  while ((a = qc()) < 40);
  if (a == '-') return -readInt();
  while ((c = gc()) >= 48) a = a * 10 + c - 480;
  return a - 48:
BumpAllocator.h
Description: When you need to dynamically allocate many objects and
don't care about freeing them. "new X" otherwise has an overhead of some-
thing like 0.05us + 16 bytes per allocation.
                                                       745db2, 8 lines
// Either globally or in a single class:
static char buf[450 << 201;
void* operator new(size_t s) {
  static size t i = sizeof buf;
  assert(s < i);
  return (void*) &buf[i -= s];
void operator delete(void*) {}
SmallPtr.h
Description: A 32-bit pointer that points into BumpAllocator memory.
                                                      2dd6c9, 10 lines
"BumpAllocator.h"
template<class T> struct ptr {
  unsigned ind;
  ptr(T*p = 0) : ind(p ? unsigned((char*)p - buf) : 0) {
    assert(ind < sizeof buf);
  T& operator*() const { return *(T*)(buf + ind); }
  T* operator->() const { return &**this; }
  T& operator[](int a) const { return (&**this)[a]; }
  explicit operator bool() const { return ind; }
BumpAllocatorSTL.h
Description: BumpAllocator for STL containers.
Usage: vector<vector<int, small<int>>> ed(N);
                                                      bb66d4, 14 lines
char buf[450 << 20] alignas(16);</pre>
size_t buf_ind = sizeof buf;
template < class T > struct small {
  typedef T value_type;
  small() {}
  template < class U> small(const U&) {}
  T* allocate(size_t n) {
   buf ind -= n * sizeof(T);
   buf_ind &= 0 - alignof(T);
    return (T*) (buf + buf_ind);
  void deallocate(T*, size_t) {}
```

```
Description: Cheat sheet of SSE/AVX intrinsics, for doing arithmetic
on several numbers at once. Can provide a constant factor improvement
of about 4, orthogonal to loop unrolling. Operations follow the pat-
tern "_mm(256)?_name_(si(128|256)|epi(8|16|32|64)|pd|ps)". Not all
are described here; grep for _mm_ in /usr/lib/gcc/*/4.9/include/ for
more. If AVX is unsupported, try 128-bit operations, "emmintrin.h" and
#define __SSE__ and __MMX__ before including it. For aligned memory use
_mm_malloc(size, 32) or int buf[N] alignas(32), but prefer loadu/s-
```

```
#pragma GCC target ("avx2") // or sse4.1
#include "immintrin.h"
typedef m256i mi;
#define L(x) _mm256_loadu_si256((mi*)&(x))
// High-level/specific methods:
// load(u)?\_si256, store(u)?\_si256, setzero\_si256, \_mm\_malloc
// blendv_(epi8|ps|pd) (z?y:x), movemask_epi8 (hibits of bytes)
// i32qather\_epi32(addr, x, 4): map addr[] over 32-b parts of x
// sad_epu8: sum of absolute differences of u8, outputs 4xi64
// maddubs_epi16: dot product of unsigned i7's, outputs 16xi15
// madd_epi16: dot product of signed i16's, outputs 8xi32
// extractf128\_si256(, i) (256->128), cvtsi128_si32 (128->lo32)
// permute2f128\_si256(x,x,1) swaps 128\_bit lanes
// shuffle_epi32(x, 3*64+2*16+1*4+0) == x for each lane
// shuffle_epi8(x, y) takes a vector instead of an imm
// Methods that work with most data types (append e.g. _epi32):
// set1. blend (i8?x:y), add, adds (sat.), mullo, sub, and/or,
// and not, abs, min, max, sign(1,x), cmp(qt|eq), unpack(lo|hi)
int sumi32(mi m) { union {int v[8]; mi m;} u; u.m = m;
 int ret = 0; rep(i,0,8) ret += u.v[i]; return ret; }
mi zero() { return _mm256_setzero_si256(); }
mi one() { return _mm256_set1_epi32(-1); }
bool all_zero(mi m) { return _mm256_testz_si256(m, m); }
bool all_one(mi m) { return _mm256_testc_si256(m, one()); }
11 example_filteredDotProduct(int n, short* a, short* b) {
  int i = 0; 11 r = 0;
  mi zero = _mm256_setzero_si256(), acc = zero;
  while (i + 16 <= n) {
    mi \ va = L(a[i]), \ vb = L(b[i]); \ i += 16;
    va = _mm256_and_si256(_mm256_cmpgt_epi16(vb, va), va);
    mi vp = _mm256_madd_epi16(va, vb);
    acc = _mm256_add_epi64(_mm256_unpacklo_epi32(vp, zero),
      _mm256_add_epi64(acc, _mm256_unpackhi_epi32(vp, zero)));
  union {11 v[4]; mi m;} u; u.m = acc; rep(i,0,4) r += u.v[i];
  for (;i < n; ++i) if (a[i] < b[i]) r += a[i] *b[i]; // <- equiv
  return r;
```