The single most comprehensive and unified source of information about mathematical functions.

Re

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Real part

Traditional notation

Re(z)

Mathematica StandardForm notation

Re[z]

Primary definition

Re(z) gives the real part of the number z.

Specific values

Specialized values

12.03.03.0001.01
$$Re(x) = x /; x \in \mathbb{R}$$

$$12.03.03.0002.01$$

$$Re(i x) = 0 /; x \in \mathbb{R}$$

$$12.03.03.0003.01$$

$$Re(x + i y) = x /; x \in \mathbb{R} \land y \in \mathbb{R}$$

Values at fixed points

$$12.03.03.0004.01$$

$$Re(0) = 0$$

$$12.03.03.0005.01$$

$$Re(1) = 1$$

$$12.03.03.0006.01$$

$$Re(-1) = -1$$

$$12.03.03.0007.01$$

$$Re(i) = 0$$

12.03.03.0008.01

$$Re(-i) = 0$$

12.03.03.0020.01

$$Re(1+i)=1$$

12.03.03.0021.01

$$Re(-1+i) == -1$$

12.03.03.0022.01

$$Re(-1-i) = -1$$

12.03.03.0023.01

$$Re(1-i) = 1$$

12.03.03.0024.01

$$\operatorname{Re}(\sqrt{3} + i) = \sqrt{3}$$

12.03.03.0025.01

$$\operatorname{Re}(1+i\sqrt{3})=1$$

12.03.03.0026.01

$$\operatorname{Re}\left(-1+i\sqrt{3}\right)==-1$$

12.03.03.0027.01

$$\operatorname{Re}\left(-\sqrt{3} + i\right) = -\sqrt{3}$$

12.03.03.0028.01

$$\operatorname{Re}\left(-\sqrt{3} - i\right) = -\sqrt{3}$$

12.03.03.0029.01

$$\operatorname{Re}(-1-i\sqrt{3})==-1$$

12.03.03.0030.01

$$\operatorname{Re}(1-i\sqrt{3})=1$$

12.03.03.0031.01

$$\operatorname{Re}(\sqrt{3} - i) = \sqrt{3}$$

12.03.03.0009.01

Re(2) == 2

12.03.03.0010.01

$$Re(-2) = -2$$

12.03.03.0011.01

$$Re(\pi) = \pi$$

12.03.03.0012.01

$$Re(3 i) == 0$$

12.03.03.0013.01

$$Re(-2i) == 0$$

12.03.03.0014.01

$$Re(2+i) = 2$$

Values at infinities

```
12.03.03.0015.01
Re(\infty) == \infty
12.03.03.0016.01
Re(-\infty) == -\infty
12.03.03.0017.01
Re(i \infty) == 0
12.03.03.0018.01
Re(-i \infty) == 0
12.03.03.0019.01
Re(\tilde{\infty}) == i
```

General characteristics

Domain and analyticity

Re(z) is a nonanalytical function; it is a real-analytic function of the variable z.

```
12.03.04.0001.01z \longrightarrow \operatorname{Re}(z) :: \mathbb{C} \longrightarrow \mathbb{R}
```

Symmetries and periodicities

Parity

Re(z) is an odd function.

$$12.03.04.0002.01$$

$$Re(-z) = -Re(z)$$

Mirror symmetry

12.03.04.0003.01

 $Re(\bar{z}) = \overline{Re(z)}$

Periodicity

No periodicity

Homogeneity

12.03.04.0004.01 $Re(az) = a Re(z) /; a \in \mathbb{R}$

Transformations

Transformations and argument simplifications

Argument involving basic arithmetic operations

$$Re(-z) = -Re(z)$$

12.03.16.0002.01

$$\operatorname{Re}(a z) = a \operatorname{Re}(z) /; a \in \mathbb{R}$$

12.03.16.0003.01

$$\operatorname{Re}(i x) = 0 /; x \in \mathbb{R}$$

12.03.16.0004.01

$$Re(i z) = -Im(z)$$

12.03.16.0005.01

$$Re(-iz) = Im(z)$$

12.03.16.0006.01

$$\operatorname{Re}\left(\frac{1}{z}\right) = \frac{\operatorname{Re}(z)}{|z|^2}$$

Addition formulas

$$\operatorname{Re}(x+iy) = x/; x \in \mathbb{R} \wedge y \in \mathbb{R}$$

12.03.16.0008.01

$$\operatorname{Re}\left(\sum_{k=1}^{n} z_{k}\right) = \sum_{k=1}^{n} \operatorname{Re}(z_{k})$$

$$Re(z_1 + z_2) = Re(z_1) + Re(z_2)$$

Multiple arguments

$$\operatorname{Re}(a z) = a \operatorname{Re}(z) /; a \in \mathbb{R}$$

$$\operatorname{Re}(i x) = 0 /; x \in \mathbb{R}$$

$$Re(i z) = -Im(z)$$

$$Re(-iz) = Im(z)$$

$$Re(z_1 z_2) = Re(z_1) Re(z_2) - Im(z_2) Im(z_1)$$

Ratio of arguments

$$Re\left(\frac{z_1}{z_2}\right) = \frac{Re(z_1) Re(z_2) + Im(z_1) Im(z_2)}{|z_2|^2}$$

Power of arguments

$$\operatorname{Re}(x^a) = x^{\operatorname{Re}(a)} \cos(\operatorname{Im}(a) \log(x)) /; x \in \mathbb{R} \land x > 0$$

12.03.16.0016.01

$$\operatorname{Re}(z^a) = |z|^a \cos(a \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z))) /; a \in \mathbb{R}$$

12.03.16.0017.01

$$\operatorname{Re}(z^a) = |z|^a \cos(a \operatorname{arg}(z)) /; a \in \mathbb{R}$$

12.03.16.0018.01

$$\operatorname{Re}(z^{a}) = \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-a)_{j+l}}{(l-j)! \ j! \left(\frac{1}{2}\right)_{j}} (1 - \operatorname{Re}(z))^{l} \left(\frac{\operatorname{Im}(z)^{2}}{4 \left(\operatorname{Re}(z) - 1\right)}\right)^{j} /; a \in \mathbb{R}$$

12.03.16.0019.01

$$\operatorname{Re}(z^a) = F_{0 \times 1 \times 1}^{1 \times 0 \times 0} \left(\begin{array}{l} -a;;; \\ \vdots \\ \frac{1}{2}; \frac{1}{2}; \end{array} \frac{1}{2} \left(1 - \operatorname{Re}(z) + \sqrt{\operatorname{Im}(z)^2 + (1 - \operatorname{Re}(z))^2} \right), \\ \frac{1}{2} \left(1 - \operatorname{Re}(z) - \sqrt{\operatorname{Im}(z)^2 + (1 - \operatorname{Re}(z))^2} \right) \right) / ; \\ a \in \mathbb{R}$$

12.03.16.0020.01

$$\operatorname{Re}(z^{n}) = \sum_{j=0}^{\left\lfloor \frac{n}{2} \right\rfloor} (-1)^{j} {n \choose 2 j} \operatorname{Im}(z)^{2 j} \operatorname{Re}(z)^{n-2 j} /; n \in \mathbb{N}^{+}$$

12.03.16.0021.01

$$\operatorname{Re}(z^{a}) = |z|^{\operatorname{Re}(a)} \, e^{-\operatorname{Im}(a) \arg(z)} \cos(\operatorname{Im}(a) \log(|z|) + \arg(z) \operatorname{Re}(a))$$

12.03.16.0022.01

$$Re(z^{a}) = \exp(-\tan^{-1}(Re(z), Im(z)) Im(a)) |z|^{Re(a)} \cos(Im(a) \log(|z|) + \tan^{-1}(Re(z), Im(z)) Re(a))$$

Exponent of arguments

12.03.16.0025.01

$$\operatorname{Re}(e^{x+iy}) = e^x \cos(y)$$

12.03.16.0026.01

$$Re(e^z) = e^{Re(z)} \cos(Im(z))$$

12.03.16.0027.01

$$\operatorname{Re}(e^{iz}) = e^{-\operatorname{Im}(z)} \cos(\operatorname{Re}(z))$$

Products, sums, and powers of the direct function

Sums of the direct function

$$Re(z_1) + Re(z_2) = Re(z_1 + z_2)$$

Complex characteristics

Real part

12.03.19.0001.01

$$Re(Re(x + i y)) == x$$

$$12.03.19.0002.01$$

$$Re(Re(z)) == Re(z)$$

Imaginary part

12.03.19.0003.01

$$Im(Re(x + i y)) == 0$$
12.03.19.0004.01

$$Im(Re(z)) == 0$$

Absolute value

$$|Re(x + i y)| = \sqrt{x^2}$$

$$|Re(z)| = \sqrt{Re(z)^2}$$

$$|Re(z)| = \sqrt{Re(z)^2}$$

Argument

$$12.03.19.0006.01$$

$$\arg(\operatorname{Re}(x+iy)) = \tan^{-1}(x,0)$$

$$12.03.19.0010.01$$

$$\arg(\operatorname{Re}(x+iy)) = (1-\theta(x))\pi$$

$$12.03.19.0011.01$$

$$\arg(\operatorname{Re}(z)) = \tan^{-1}(\operatorname{Re}(z),0)$$

$$12.03.19.0012.01$$

$$\arg(\operatorname{Re}(z)) = (1-\theta(\operatorname{Re}(z)))\pi$$

Conjugate value

$$\frac{12.03.19.0007.01}{\overline{\text{Re}(x+i\ y)} = x}$$

$$\frac{12.03.19.0008.01}{\overline{\text{Re}(z)} = \overline{\text{Re}(z)}}$$

Signum value

$$sgn(Re(x + i y)) = sgn(x)$$

$$12.03.19.0014.01$$

$$sgn(Re(z)) = \frac{Re(z)}{\sqrt{Re(z)^2}}$$

Differentiation

Low-order differentiation

In a distributional sense for $x \in \mathbb{R}$.

$$\frac{\partial \operatorname{Re}(x)}{\partial x} = 1$$

Fractional integro-differentiation

$$\frac{\partial^{\alpha} \operatorname{Re}(x)}{\partial x^{\alpha}} = \frac{x^{1-\alpha}}{\Gamma(2-\alpha)} /; x \in \mathbb{R}$$

Representations through equivalent functions

With related functions

With Im

$$12.03.27.0002.01$$

$$Re(z) = Im(i z)$$

$$12.03.27.0007.01$$

$$Re(z) = z - i Im(z)$$

$$12.03.27.0003.01$$

$$Re(i z) = -Im(z)$$

With Abs

$$Re(z) = \frac{12.03.27.0008.01}{2^2 + |z|^2}$$

With Arg

Re(z) =
$$\frac{1}{2}e^{-2i\arg(z)}(1 + e^{2i\arg(z)})z$$

12.03.27.0001.01

$$\operatorname{Re}(z) = |z| \cos(\arg(z))$$

With Conjugate

$$Re(z) = \frac{z + \bar{z}}{2}$$

$$12.03.27.0004.01$$

$$12.03.27.0006.01$$

$$Re(z) = \bar{z} + i \operatorname{Im}(z)$$

With Sign

$$Re(z) = z \frac{sgn(z)^2 + 1}{2 sgn(z)^2}$$

$$Re(z) = \frac{z \cos(\arg(z))}{sgn(z)} \ /; \ z \neq 0$$

Inequalities

$$|12.03.29.0001.01$$

$$|Re(z)| \le |z|$$

Zeros

$$12.03.30.0001.01$$
 Re(z) == 0 /; $i z \in \mathbb{R}$

History

The function Re is encountered often in mathematics and the natural sciences.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.