	Teste de Matemática A
	2023 / 2024
Teste N.º 5	
Matemática A	
12.º Ano de Escolaridade	
Nigron de alumai	NI O. Turres a.
Nome do aluno:	N.º: Turma: _
Utilize apenas caneta ou esferográfica de tinta a:	zul ou preta.
Não é permitido o uso de corretor. Risque aquilo	
É permitido o uso de calculadora.	
Apresente apenas uma resposta para cada item.	
As cotações dos itens encontram-se no final do e	Hunciado.
Na resposta aos itens de escolha múltipla, selec	cione a opção correta. Escreva na folha de
respostas o número do item e a letra que identifi	
Na resposta aos restantes itens, apresente todo	
	·
as justificações necessárias. Quando para um	resultado hao e pedida a aproximação,

apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone:
$$\pi rg$$
 $(r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica:
$$4\pi r^2$$
 $(r - raio)$

Volume de uma pirâmide:
$$\frac{1}{3} \times \text{Área da base } \times \text{Altura}$$

Volume de um cone:
$$\frac{1}{3}$$
 × Área da base × Altura

Volume de uma esfera:
$$\frac{4}{3}\pi r^3$$
 $(r - raio)$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Progressão geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$(\rho e^{i\theta})^n = \rho^n \, e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \, \text{e} \, n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u' (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

- 1. No passado dia 2 de abril, o Presidente da República, Marcelo Rebelo de Sousa, conferiu posse ao XXIV Governo Constitucional, liderado pelo Primeiro-Ministro Luís Montenegro, numa cerimónia que decorreu no Palácio Nacional da Ajuda, em Lisboa.
 - No final da cerimónia foi tirada a tradicional foto, com o Primeiro-Ministro e os 17 ministros.
 - Desta forma, os 18 elementos do governo dispuseram-se nas escadas da frente do palácio, distribuídos em linha e em três filas distintas: a primeira constituída por 7 elementos, a segunda por 6 e, por fim, a terceira fila formada por 5 elementos.

Apresente uma expressão que permita determinar o número de formas distintas que, nestas condições, os 18 elementos do governo se poderiam ter disposto para a fotografia, sendo que o Primeiro-Ministro ocuparia sempre o lugar central da primeira fila.

- **2.** Qual é o valor do limite da sucessão de termo geral $\left(1 + \frac{1}{2n}\right)^{3n}$?
 - **(A)** 2*e*

(B) 3*e*

- (C) $e\sqrt{e}$
- (D) $e^3\sqrt{e}$
- **3.** Seja f uma função par, diferenciável, de domínio \mathbb{R} , tal que:
 - $\bullet \quad \lim_{x \to -\infty} (f(x) 6x) = 0;$
 - $\lim_{x \to 3} \frac{f(x) f(3)}{x 3} = 2;$
 - a função f é contínua em \mathbb{R} .

Considere as proposições seguintes.

- **I.** A reta de equação y = 6x é assíntota ao gráfico de f quando x tende para $+\infty$.
- II. A reta de equação y = 2 é tangente ao gráfico de f no ponto de abcissa 3.
- **III.** A reta de equação x = -1 é assíntota ao gráfico de f.

Justifique que as proposições são falsas.

Na sua resposta, apresente, para cada uma das proposições, uma razão que justifique a sua falsidade.

4. Para certos valores de a e de b (a > 1 e b > 1), $\log_a(a \times b) = 8$.

Qual é o valor de $\log_a \left(\frac{1}{\sqrt[5]{a^3b}}\right)$?

- **(A)** -2
- **(B)** 3

- (C) $-\frac{4}{5}$
- **(D)** $\frac{9}{5}$

5. Seja f a função, de domínio \mathbb{R}^+ , definida por:

$$f(x) = \begin{cases} \frac{4 - 4x}{xe^x - e} & \text{se } 0 < x < 1\\ 2x^2e^{-x} & \text{se } x \ge 1 \end{cases}$$

Resolva os itens seguintes sem recorrer à calculadora.

- **5.1** Averigue se f é contínua em x = 1.
- **5.2** Estude, no intervalo $]1,+\infty[$, a função f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

Na sua resposta, apresente:

- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para baixo;
- o(s) intervalo(s) em que o gráfico de f tem concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f, caso este(s) exista(m).
- **6.** Seja f a função, de domínio $[0,\pi]$, definida por $f(x) = \cos^2(2x) 2x$.
 - 6.1 Qual das seguintes expressões pode definir a equação reduzida da reta tangente ao gráfico de f em $x = \frac{\pi}{2}$?
- **(A)** y = 2x 1 **(B)** $y = 2x \pi$ **(C)** $y = -2x + \pi$ **(D)** y = -2x + 1
- 6.2 Resolva este item sem recorrer à calculadora, a não ser para efetuar eventuais cálculos numéricos.

Mostre, recorrendo ao teorema de Bolzano-Cauchy, que existe pelo menos um ponto pertencente ao gráfico de f, de abcissa pertencente ao intervalo $]0, \pi[$, que se situa na circunferência de centro na origem e raio 5.

Se utilizar a calculadora em eventuais cálculos numéricos, sempre que proceder a arredondamentos, use duas casas decimais.

7. Resolva, em $\mathbb{R}\setminus\{0\}$, a equação:

$$\frac{2^x + 2^{-x}}{2^x - 2^{-x}} = 2$$

8. Seja z um número complexo de argumento $\frac{\pi}{5}$.

Qual dos seguintes valores é um argumento de $-i^9z$?

- **(A)** $\frac{7\pi}{10}$
- (B) $\frac{17\pi}{10}$ (C) $\frac{4\pi}{5}$
- (D) $\frac{6\pi}{5}$

9. Em C, conjunto dos números complexos, considere:

$$z_1 = -2 - 3i z_2 = \frac{3-i}{1+i} z_3 = \cos\left(\frac{\pi}{5}\right) - i\operatorname{sen}\left(\frac{\pi}{5}\right)$$

- **9.1** Seja w o número complexo tal que $w=\overline{z_1}+z_1z_2-6(1+i)^2$. Escreva w na forma trigonométrica.
- **9.2** Determine o menor número natural n de modo que $\frac{i^{11}}{z_3^n}$ é um imaginário puro.
- **10.** Na figura estão representados, no plano complexo, os afixos de cinco números complexos.

Sabe-se que:

- o ponto A pertence ao semieixo real positivo e o ponto B pertence ao semieixo real negativo;
- o ponto C pertence ao semieixo imaginário positivo e o ponto D pertence ao semieixo imaginário negativo.
- o ponto W pertence ao segundo quadrante, é o afixo de um número complexo w tal que Im(w) = -Re(w).

Qual dos pontos seguintes pode ser o afixo do número complexo $\frac{w^2}{i^5}$?

(A) Ponto *A*

(B) Ponto B

(C) Ponto C

(D) Ponto *D*

Re(z)

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.	5.1	5.2	6.1	6.2	7.	8.	9.1	9.2	10.	Pontos
18	10	18	10	20	18	10	20	20	10	18	18	10	200