SISTEMAS OPERATIVOS: SISTEMAS DE FICHEROS

Ficheros

Objetivos

- Conocer los conceptos de fichero y directorio así como sus características.
- Utilizar los servicios de gestión de Ficheros y directorios ofrecidos por el sistema operativo.
- Comprender la estructura de un sistema de ficheros.
- Comprender los mecanismos en los que se apoya un servidor de ficheros y aplicarlos a ejercicios sencillos.

- □ Fichero.
- □ Atributos y operaciones.
- □ Vista lógica.
- □ Semántica de compartición.
- □ Representación.

Almacenamiento

- □ Memoria principal.
 - Memoria volátil → datos no persistentes.
 - □ Datos accedidos por el procesador. el sistema
- □ Memoria secundaria.
 - Memoria no volátil → datos persistentes.
 - Organizada en bloques de datos.
 - Se necesita una abstracción para simplificar las aplicaciones: Fichero.

El sistema de ficheros

- Ofrece al usuario una visión lógica simplificada del manejo de los dispositivos periféricos en forma de ficheros.
- Proporciona un mecanismo de abstracción que oculta los detalles relacionados con el almacenamiento y distribución de la información en los periféricos.
- Constituye la parte del S.O. que gestiona los ficheros.
- □ Funciones:
 - Organización
 - Almacenamiento
 - Recuperación
 - Gestión de nombres
 - Implementación de la semántica de Coutilización
 - Protección

Función principal

□ El SF establece una correspondencia entre los ficheros y los dispositivos lógicos.

nterfaz de acceso

SISTEMA DE FICHEROS

Protección

Sistemas Operativos - Ficheros

Características para el usuario

- Almacenamiento permanentes de información.
 - No desaparece aunque se apague el computador.
- Conjunto de información estructurada de forma lógica según criterios de aplicación.
- Nombres lógicos y estructurados.
- No están ligados al ciclo de vida de una aplicación particular.
- Abstraen los dispositivos de almacenamiento físico.
- Se acceden a través de llamadas al sistema operativo o de bibliotecas de utilidades.

Contenido

- □ Fichero.
- □ Atributos y operaciones.
- □ Vista lógica.
- □ Semántica de compartición.
- □ Representación.

Atributos de un fichero

- Nombre: Identificador en formato legible por una persona.
- Identificador: Etiquetan unívoca del archivo
 - Suele ser numérico.
- □ **Tipo de fichero**: necesario en sistemas que proporcionan distintos formatos de Ficheros. Como mínimo se suele diferenciar el atributo de ejecutable.
- Ubicación: Identificación del dispositivo de almacenamiento y la posición dentro del dispositivo.
- Tamaño del fichero: número de bytes en el fichero, máximo tamaño posible, etc.
- Protección: control de accesos y de las operaciones sobre el fichero.
- Información temporal: de creación, de acceso, de modificación, etc.

Nombres de fichero y extensión

- Muy importante para los usuarios. Es característico de cada sistema de Ficheros.
- Problema: usar nombre lógicos basados en tiras de caracteres.
- ☐ Motivo: los usuarios no recuerdan el nombre 001223407654
- □ Tipo y longitud cambian de un sistema a otro:
 - Longitud: fija en MS-DOS o variable en UNIX, Windows.
 - Extensión: obligatoria o no, más de una o no, fija para cada tipo de Ficheros, etc.
- Sensibles a tipografía. Ejemplo: CATALINA y catalina son el mismo fichero en Windows pero distintos en LINUX.
- El sistema de ficheros trabaja con descriptores internos, sólo distingue algunos formatos (ejecutables, texto, ...). Ejemplo: número mágico UNIX.

Nombres de fichero y extensión

 Los directorios relacionan nombres lógicos y descriptores internos de ficheros

Las extensiones son significativas para las aplicaciones (html,

c, cpp, etc.)

		-	
Name A	Size	· (F-	Modified
My Pictures		File Folder	07/09/2000 11:36
My Webs		File Folder	06/09/2000 11:57
pstr-inf_files		File Folder	14/09/2000 16:21
ifvwmrc	13 KB	FVWMRC File	06/05/1999 18:00
X cartacas.tex	1 KB	COREL Texture	06/05/1999 17:55
🛂 cata99.ps	193 KB	PS File	06/05/1999 17:55
🗃 control.bib	16 KB	BIB File	06/05/1999 17:55
faxing.log	4 KB	Text Document	06/05/1999 17:55
fig3-1.tif	734 KB	Corel PHOTO-PAIN	22/08/2000 11:59
fig3-7.cdr	27 KB	CDR File	03/05/2000 18:27
pstr-inf.doc	53 KB	Microsoft Word Doc	14/09/2000 16:21
pstr-inf.htm	1 KB	Microsoft HTML Doc	14/09/2000 9:51
nemain.zip	0 KB	WinZip File	30/05/2000 12:34
Sample.jpg	10 KB	Corel PHOTO-PAIN	05/09/2000 17:08
winamp265.exe	2.112 KB	Application	07/09/2000 13:10
mutex.cpp	3 KB	CPP File	11/07/2000 15:30
secobject.c	2 KB	C File	14/07/2000 12:52
🏙 adasmspkg.adb	13 KB	ADB File	24/02/2000 9:49
Demo.ppt	345 KB	Microsoft PowerPoi	24/07/1998 8:15
€ vol3tc04.html	10 KB	Microsoft HTML Doc	22/12/1999 11:28
remain.pdf	4.110 KB	Adobe Acrobat Doc	07/04/1999 11:11
Sistemas O	perativos - Fic	heros	

Operaciones sobre ficheros

- □ Creación: Asignación de espacio inicial y metadatos.
- □ Borrado: Liberación de recursos asociados.
- Escritura: Almacena información en el fichero.
- □ Lectura: Recupera información del fichero.

Operaciones adicionales dependiendo de la semántica concreta de acceso a ficheros

Sistema de Ficheros

- □ El acceso a los dispositivos es:
 - Incómodo
 - Detalles físicos de los dispositivos
 - Dependiente de las direcciones físicas
 - No seguro
 - Si el usuario accede a nivel físico no tiene restricciones
- El sistema de Ficheros es la capa de software entre dispositivos y usuarios.
- □ Objetivos:
 - Suministrar una visión lógica de los dispositivos.
 - Ofrecer primitivas de acceso cómodas e independientes de los detalles físicos.
 - Mecanismos de protección.

Contenido

- □ Fichero.
- Atributos y operaciones.
- □ Vista lógica.
- □ Semántica de compartición.
- □ Representación.

Estructura del fichero

- Ninguna secuencia de palabras o bytes (UNIX)Estructura sencilla de registros
 - Líneas
 - Longitud fija
 - Longitud variable
- Estructuras complejas
 - Documentos con formato (HTML, postscript)
 - Fichero de carga reubicable (módulo de carga)
- Se puede simular estructuras de registro y complejas con una estructura plana y secuencias de control
- żQuién decide la estructura?
 - Interna: El sistema operativo
 - Externa: Las aplicaciones

Ficheros: visión lógica

- Conjunto de información relacionada que ha sido definida por su creador
- □ Estructura de un fichero:
 - Secuencia o tira de bytes (UNIX, POSIX)

Posición

Métodos de acceso

- □ Acceso secuencial
 - Basado en el modelo de acceso a datos en una cinta magnética.
 - Utilizable en dispositivos de acceso secuencial o directo.
 - Operaciones orientadas a bytes o a registros.

Rebobinar (ir al principio) Leer/escribir

Sistemas Operativos - Ficheros

Posición actual

Métodos de acceso

- □ Acceso directo
 - Basado en el modelo de acceso a dispositivo de disco.
 - Fichero dividido en registros de longitud fija.
 - Se puede especificar el número de registro para las operaciones de lectura y escritura.
 - Se puede utilizar un puntero de posición para evitar tener que especificar la posición en todas las operaciones.
 - Permite construir sobre él otros métodos de acceso más complejos (ejemplo: secuencial indexado).

Contenido

- □ Fichero.
- Atributos y operaciones.
- □ Vista lógica.
- Semántica de compartición.
- □ Representación.

Compartición de ficheros

- Varios procesos pueden acceder simultáneamente aun fichero
 - Ambos pre den boeralalet, poro no escribir simultaneamente.
- □ Es necesario definir una semántica de coherencia.
 - ¿Cuándo son observables por otros procesos las modificaciones a un fichero?
- □ Opciones:
 - Semántica UNIX.
 - Semántica de sesión.
 - □ Semántica de archivos inmutables, unaver que se crea y se cierra no se prede modificar

Semántica UNIX

- Las escrituras en un archivo son inmediatamente visibles a todos los procesos.
- Un archivo abierto tiene asociado un puntero de posición.
- Alternativas en cuanto al puntero.
 - Cada proceso mantiene su propio puntero de posición.
 - Posibilidad de que dos procesos puedan compartir el puntero de posición.
- □ Implicación:
 - El sistema operativo debe mantener una imagen única del fichero.
 - Problemas de contención por acceso exclusivo a la imagen.

Semántica de sesión

- Las escrituras sobre un archivo abierto no son visibles por otros procesos con el archivo abierto.
- Cuando se cierra un fichero los cambios son visibles por otros procesos que abran el fichero posteriormente.
- Un fichero puede estar asociado con varias imágenes distintas.
- □ No hay contención.
- □ Caso de utilización: AFS (Andrew File System).

Semántica inmutable

- □ Un archivo puede ser declarado como compartido.
 - A partir de ese momento no se puede modificar.

- Un archivo inmutable no admite modificación de
 - Nombre.
 - Contenido.

Semántica de versiones

- Las actualizaciones se hacen sobre copias con n° versión.
- Sólo son visibles cuando se consolidan versiones.
- Sincronización explícita si se requiere actualización inmediata.

Control de acceso

- □ Listas de control de acceso.
 - □ Definen la lista de usuarios que pueden acceder a un fichero.
 - Si hay diferentes tipos de acceso una lista por tipo de control de acceso.
- □ Permisos.
 - Versión condensada.
 - Tres tipos de acceso (rwx).
 - Permisos para tres categorías (usuario, grupo, otros).

Contenido

□ Fichero.

- Chmod 766 fichero Cambion primisor.
- Atributos y operaciones.
- Vista lógica.
- □ Semántica de compartición.
- Representación.

hardlink - Se crea un enlace al nodo i de link simpolico fichero indicado, si se hacre Lo Tienes o propio La Succentenido es el nombre el que eponto no avmenta

portute endre dotintas portueisena Unlink el contador de enlaces y se pedria borrar

borra el fichoro, si solo hoy un hardlink (no + de 1) (de cremento el cont) Lo (cont. enlaces = 0) Pero sine & La cerrad no se Sistemas Operativos - Ficheros

borra en el mouento, d'estr abierto se predeaccedor.

Creat (___) cream archive para write The pudo leer

Mirar video

000 apontori lo del nodo i. que almacena toda la información del fichero Cnoubre, tien pos, ounar

tiene suprepio nodo i.

Representación del fichero

- El sistema operativo debe mantener información sobre el fichero: metadatos.
- Los metadatos son dependientes del sistema de ficheros.
- Importante: Un sistema operativo puede admitir varios sistemas de ficheros.
 - □ Ejemplo: en Linux se pueden montar particiones Ext2, NTFS, ...

Asignación de espacio en disco

- □ Gestión de espacio libre y ocupado del disco.
- □ Asignación de espacio a cada fichero.

□ Aspectos:

- □ Ficheros nuevos: ¿Se asigna el espacio máximo en creación?
- □ ¿Qué unidad de asignación se utiliza?
- □ ¿Qué estructura de datos representa la asignación del fichero?

Preasignación versus asignación dinámica

- Preasignación: Asignación en creación del tamaño máximo posible del fichero.
 - Se reserva todo el espacio que podría necesitar el fichero.
- Asignación dinámica: Asignación de espacio según se va necesitando.
 - División del fichero en unidades de asignación que se van tomando según haga falta.

Tamaño de asignación

- □ Cuestiones a considerar:
 - Tamaño de asignación grande → información contigua en disco.
 - Mayor rendimiento.
 - □ Tamaño de asignación pequeño → aumenta el tamaño de los metadatos.
 - □ Tamaño de asignación fijo → reasignación de espacio simple.
 - □ Tamaño de asignación fijo y grande → incrementa el malgasto de espacio (fragmentación interna).
 - □ Tamaño de asignación variable y grande → incrementa el rendimiento, pero aumenta la fragmentación externa.

Asignación contigua

		A	A	A
0	1	2	3	4
				В
5	6	7	8	9
В	В	В	В	
10	11	12	13	14
			С	C
15	16	17	18	19
С	С	С	С	C
20	21	22	23	24
С	E	E	E	
25	26	27	28	29
D	D			
30	31	32	33	34

Fichero	Inicio	Long
Α	2	3
В	9	5
С	18	8
D	30	2
E	26	3

Fragmentalion interna: Grando qued espacio libre en el ultimo bloque dell scuencia

Fragmentación externa: Cuando hay blas que no pade mo virrel no has Necesidad de

Compactación

Asignación contigua (compactación)

A	A	A	В	В
0	1	2	3	4
В	В	В	С	С
5	6	7	8	9
С	C	C	С	С
10	11	12	13	14
С	E	E	E	D
15	16	17	18	19
D				
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34

Fichero	Inicio	Long
Α	0	3
В	3	5
С	8	8
D	19	2
Е	16	3

Asignación encadenada

- Cada bloque contiene un puntero al bloque siguiente.
- □ Asignación de bloques de uno en uno.
- □ No hay fragmentación externa.
- Bloques distribuidos por todo el disco.
- Consolidación del sistema para mejorar las prestaciones de procesamiento de archivos secuenciales.

Asignación encadenada

	В			
0	1	2	3	4
5	6	7	8	9
		В		
10	11	12	13	14
	В			12
15	16	17	18	19
				В
20	21	22	23	24
25	26	27	28	29
В	0.4			24
30	31	32	33	34

Fichero	Inicio	Long
В	1	5

Sistemas Operativos - Ficheros

Asignación encadenada (consolidación)

В	В	В	В	В
0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24
25	26	27	28	29
30	31	32	33	34

Fichero	Inicio	Long
В	0	5

Asignación indexada

- Se mantiene una tabla con los identificadores de las unidades de asignación que forman el fichero.
- □ Alternativas:
 - Asignación por bloques.
 - Asignación por porciones (extents).

Asignación indexada por bloques

Asignación por porciones

Sistemas Operativos - Ficheros

Gestión del espacio de disco

- El sistema operativo debe saber que bloques están libres.
- □ Alternativas:
 - Mapas de bits: Vector con un bit por bloque.
 - Tabla resumen por rangos de direcciones: número de bloques libres en el rango.
 - Lista encadenada de porciones libres.
 - Indexación: Tabla índice de porciones libres.

Representación: FAT

Nombre **Atributos** Fecha de creación Nombre del dueño Puntero FAT

Bloques de disco

2 5 1 6

Tabla de asignación de ficheros

Sistemas Operativos - Ficheros

Representación: UNIX	Rei	pre	sento	ación:	UNIX
----------------------	-----	-----	-------	--------	------

- NO chacena el nombre, ni el puntero de la pos. de Tipo de fichero y protección.
 - Usuario propietario del fichero.
 - Grupo propietario del fichero.
 - Tamaño del fichero.
 - Hora y fecha de creación.
 - Hora y fecha del último acceso.

 - Hora y fecha de la última modificación.
 - Número de enlaces.
- Punteros directos a bloques (10).

- Puntero indirecto triple.

Guarde los 10 brimos bri

- 4 kB y 45yts depuntro 10.4 kB = 40 kB los 10 pontero
- Puntero indirecto simple. 448 => 1024 ponteros a bloque. 4kB d blague = 4MB
- Puntero indirecto doble. 443 -1024 pontera simple! . 1024 pontero yleg

Sistemas Operativos - Ficheros

UNIX: Punteros a bloques

Sistemas Operativos - Ficheros

Representación: NTFS

Lecturas recomendadas

Básica

- □ Carretero 2007:
 - 9.1. Visión de usuario del sistema de ficheros.
 - □ 9.2. Ficheros.
 - □ 9.5. Ficheros compartidos.
 - 9.8. Estructura y almacenamiento del fichero.

Complementaria

- □ Stallings 2005:
 - 12.1. Descripción básica.
 - 12.2. Organización y acceso a los ficheros.
 - □ 12.4. Compartición de ficheros.
 - 12.6. Gestión de almacenamiento secundario.
- □ Silberschatz 2006:
 - 13. Sistemas de entrada/salida.