

Live 16: Tinkercad - Fotodiodo

Prof. Wesley Castanha de Lima wesley.lima23@etec.sp.gov.br

Fotodiodo

A finalidade de um sensor fotoelétrico é converter um sinal luminoso (luz ou sombra) num sinal elétrico que possa ser processado por um circuito eletrônico.

Tipos

Existem basicamente dois tipos de sensores fotoelétricos: os fotocondutivos e os fotovoltaicos. Nos fotocondutivos temos uma variação de uma corrente que circula através do dispositivo em função da intensidade da luz incidente. É o caso dos LDRs.

Nos fotovoltaicos temos a produção de uma corrente cuja intensidade depende da intensidade da luz incidente.

Onde encontramos?

Encontramos sensores fotoelétricos numa infinidade de aplicações, indo desde sistemas de segurança, controle, máquinas industriais, equipamento médico e eletrônica embarcada.

Existem hoje, diversos tipos de sensores fotoelétricos que, pelas suas características se destinam a aplicações diferentes.

Um tipo importante de sensor, encontrado em aplicações em que se exige alta velocidade e sensibilidade, é o fotodiodo.

Formatos de Fotodiodo 455

Podemos encontrar fotodiodos em diversos formatos e até mesmo embutidos em acopladores e chaves ópticas.

Esta Foto https://www.newtoncbraga.com.br/images/stories/artigos9/art1181 10.jpg

Projeto

Esta Foto https://www.tinkercad.com/

Código-fonte


```
★ | a | *
                                                                  1 (Arduino Uno R3)
Texto
 1 // Project Fotodiodo - Light the lamp
                             //define LED digital pin 13
 2 int LED = 13;
 3 int val = 0;
                           //define the voltage value of photo diode in digital pin 0
 5 void setup() {
 6 pinMode(LED,OUTPUT); //Configure LED as output mode
   Serial.begin(9600);
                             //Configure baud rate 9600
9 void loop() {
10 val = analogRead(0);
                             //Read voltage value ranging from 0 -1023
                             //read voltage value from serial monitor
11 Serial.println(val);
12 if (val<82) {
                             //If lower than 1000, turn off LED
13 digitalWrite(LED, LOW);
                              //Otherwise turn on LED
14 }else{
15 digitalWrite(LED, HIGH);
16 }
                             //delay for 10ms
17 delay(10);
18
```

```
Esta Foto https://www.tinkercad.com/
```


Componentes

Nome	Quantidade	Componente
R1	1	220 Ω Resistor
D1	1	Azul LED
U1	1	Arduino Uno R3
U2	1	Fotodiodo
R2	1	100 MΩ Resistor
R2		100 MΩ Resistor

Formulário Teste

Acesse este link para realizar o teste relativo ao conteúdo abordado nesta Live:

https://cutt.ly/Bfz3VJO

Próxima Live...

Tinkercad – Buzzer 17/09/2020 às 16 horas

Acompanhe nossas Lives em:

www.robotica.cpscetec.com.br/lives

A Equipe da Robótica Paula Souza agradece a participação!