

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

éseaux maillés

Aise à jour logicielle OTA

ptimisation et Green-IT

Réseaux maillés de capteurs autonomes

Développement mobile avancé, IoT et embarqué [HAI9121]

Master 2 Informatique

Alban MANCHERON alban.mancheron@lirmm.fr

Faculté des Sciences & Techniques de l'Université de Montpellier

Année universitaire 2021–2022, 1er semestre

Sommaire

Réseaux maillés de capteurs autonomes

Topologies de réseaux

Réseaux maillés

ise à jour logicielle OTA

- Rappels
- **2** Topologies de réseaux
- Réseaux maillés
- Mise à jour logicielle OTA
- **5** Optimisation et *Green-IT*

Sommaire

- Rappels
 - Microcontrôleurs
 - Arduino
 - ESP32

Microcontrôleurs

Réseaux maillés de capteurs autonomes

Ilbon MANGHED

Rappel:

Microcontrôleur

Arduino

onologies de résea

éseaux maillés

se à jour logicielle OTA

ptimisation et Green-IT

Microcontrôleur

 \Rightarrow circuit intégré

Microcontrôleurs

Réseaux maillés de capteurs autonomes

annels

Microcontrôleu

rduino

Topologies de réseau

Réseaux maillés

se à jour logicielle OT

timisation et Green-IT

Microcontrôleur

⇒ circuit intégré

- processeur
 unités périphériques
- mémoire morte
- interfaces d'entrées-sorties
- mémoire vive

Microcontrôleurs

Microcontrôleur

⇒ circuit intégré

- processeur
- unités périphériques

interfaces d'entrées-sorties

- mémoire morte
- mémoire vive

Intérêt

- faible consommation électrique
- coût réduit
- petite taille
- Programmable (micrologiciel)
 - assembleur
 Lua/μPython/...
 - C/C++

Microcontrôleurs

Réseaux maillés de capteurs autonomes

Rappel

icrocontrôleurs

Arduino ESP32

Topologies de réseaux

Réseaux maillés

lise à jour logicielle OT

Reseaux maili

Utilisation

- systèmes embarqués
 - téléphonie mobile
 - télécommandes
 - électroménager
 - ectromenager .

Microcontrôleur

⇒ circuit intégré

processeur

mémoire vive

- mémoire morte
 - interfaces d'entrées-sorties

unités périphériques

- Intérêt
- faible consommation électrique
- o coût réduit
- petite taille
- Programmable (micrologiciel)
 - \bullet assembleur \bullet Lua/ μ Python/...
 - C/C++

Microcontrôleurs

Réseaux maillés de capteurs autonomes

Rappel:

Aicrocontrôleurs

Arduino ESP32

Topologies de réseau

éseaux maillés

Aise à jour logicielle OT

Utilisation

interfaces d'entrées-sorties

- systèmes embarqués
 - téléphonie mobile
 - télécommandes
 - électroménager

:

Microcontrôleur

\Rightarrow circuit intégré

- processeur
 unités périphériques
- mémoire morte
 - ---
- mémoire vive

Intérêt

- faible consommation électrique
- coût réduit
- petite taille
- Programmable (micrologiciel)
 - ullet assembleur ullet Lua/ μ Python/...
 - C/C++

Quelques fabriquants

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Réseaux maillés de capteur autonomes

Rapp

Microcontrôleurs

Arduino

Canalogies de réseau

seaux maillés

esetties mairies

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Plusieurs tailles, plusieurs formats, plusieurs caractéristiques.

Réseaux maillés de capter autonomes Alban Mancheron

Rappe

Microcontrôleurs

Ardum

Conologies de réseau

éseaux maillés

lise à jour logicielle

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Schéma général d'une carte

Réseaux maillés de capteu autonomes

Rapp

Microcontrôleurs

Arduino

ESP32

Topologies de réseaux

Réseaux maillés

Aise à jour logicie

Intimication at Green I

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Schéma général d'une carte

Réseaux maillés de capte autonomes

Rappe

Microcontrôleurs

Arduino

Topologies de réseau

Réseaux maillés

Mise à jour la

Ontimisation et Green-l

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Schéma général d'une carte

Réseaux maillés de capter autonomes

Rapp

Microcontrôleurs

Arduino

Tonologies de réseau

Réseaux maillés

Mise à jour logicie

Intimisation at Green-I

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Schéma général d'une carte

Réseaux maillés de capter autonomes

Rapp

Microcontrôleurs

Arduino

Tonologies de réseau

Réseaux maillés

Mise à jour logicie

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Schéma général d'une carte

Réseaux maillés de capter autonomes

Rapp

Microcontrôleurs

Arduino

Topologies de réseau

Réseaux maillés

Aise à jour logic

Arduino

plateforme de prototypage *open-source* et *open-hardware* permettant de programmer un microcontrôleur (architectures AVR et ARM).

Schéma général d'une carte

Une carte peut également servir d'interface de programmation d'un autre microcontrôleur.

Réseaux maillés de capte autonomes Alban Mancheron

Rappe

Aicrocontrôleurs

Arduino

Topologies de réseau

Réseaux maillés

Mise à jour logicie

Arduino

plateforme de prototypage open-source et openhardware permettant de programmer un microcontrôleur (architectures AVR et ARM).

SDK basé sur du C/C++

IDE disponible pour Linux, MacOS et Windows.

https://www.arduino.cc/

Rappels ESP32

♠ ESPRESSIF https://www.espressif.com/

Réseaux maillés de capteurs autonomes

Alban MANCHER

Rappels

Microcontrôleurs Arduino

Topologias da vásaa

Réseaux maillés

Rappels ESP32

♠ ESPRESSIF https://www.espressif.com/

Caractéristiques principales

- architecture 32 bits (1 ou 2 cœurs)
- Wifi & Bluetooth (BT basse conso)
- 448Ko/520Ko ROM
- 520Ko RAM
- Moins de $5\mu A$ en sommeil

Réseaux maillés de capteurs autonomes

Aicrocontrôleurs

Arduino

Tonologies de réseaux

Réseaux maillés

Rappels ESP32

♠ ESPRESSIF https://www.espressif.com/

Caractéristiques principales

- architecture 32 bits(1 ou 2 cœurs)
- Wifi & Bluetooth (BT basse conso)
- 448Ko/520Ko ROM
- 520Ko RAM
- Moins de $5\mu A$ en sommeil

Programmation

- C/C++ [Arduino IDE + bibliothèque ESP32]
- Lua / NodeMCU
- mruby
- μ Python
- MicroEJ (Java)

Réseaux maillés de capteurs autonomes

Rannel

Microcontrôleurs

ESP32

opologies de réseaux

éseaux maillés

Rappels ESP32

♠ ESPRESSIF https://www.espressif.com/

Caractéristiques principales

- architecture 32 bits(1 ou 2 cœurs)
- Wifi & Bluetooth (BT basse conso)
- 448Ko/520Ko ROM
- 520Ko RAM
- Moins de $5\mu A$ en sommeil

Programmation

- C/C++ [Arduino IDE + bibliothèque ESP32]
- Lua / NodeMCU
- mruby
- μ Python
- MicroEJ (Java)

Réseaux maillés de capteurs autonomes

Rannel

Microcontrôleurs

ESP32

opologies de réseaux

Réseaux maillés

.....

Sommaire

Bus
Étoile
Arbre
Anneau
Complet
Maillé
Synthèse

éseaux maillés de capteurs autonomes

IDAII WANCE

Rappels

Topologies de réseaux

Étoil

Librie

Anne

 Com_i

Maillé

Synthèse

éseaux maillés

inc a jour togiciene our

ptimisation et Green-IT

- Réseaux maillés
- Mise à jour logicielle OTA

Topologies de réseaux

Bus

Réseaux maillés de capteurs autonomes

Alban MANGHER

Rappels

onologies de réseaux

bus Étoile

Etoile

Anne

Compl

Maillé

Synthèse

seaux maillés

lise à jour logicielle OTA

Étoile

Bus

Réseaux maillés de capteurs autonomes

Alban MANCHE

Rappels

Topologies de rése

Étoile

Arhre

Annea

Compl

Synthèse

éseaux maillés

lise à jour logicielle OTA

Réseaux maillés de capteurs autonomes

Rappe

onologies de réseau

Étoile

Aubro

Annea

Comple

Synthèse

éseaux maillés

ise à jour logicielle OTA

Bus

Étoile

Réseaux maillés de capteurs autonomes

Rappel

opologies de résea

eus e

Etoile

Annea

Compl

Maille

éseaux maillés

ise à iour logicielle OTA

Optimisation et Green-IT

Arbre

Anneau

Rappel

opologies de réseau

Bus Étoile

Aubus

Annea

Compl

Maillé Synthèse

éseaux maillés

ise à jour logicielle OTA

Avantages

Bus

Alban MANCHE

Rappel

Topologies de réseaux

Étoil

Arbre

Annec

Compl

Synthèse

éseaux maillés

ise à jour logicielle OTA

ptimisation et Green-11

Inconvénients

Bus

Avantages

- Facile à configurer
- Facile à mettre à jour
- Peu de connexions

Inconvénients

Bus

Avantages

- Facile à configurer
- Facile à mettre à jour
- Peu de connexions

Inconvénients

- Nécessite une connexion physique (câbles) et un gestionnaire tiers
- Détection d'erreurs difficile
- Passage à l'échelle limité par la puissance de transmission du bus

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Étoile

Arbre Annec

Compl

Maillé

Réseaux maillés

lise à jour logicielle OTA

Étoile

Alban MANCHE

Rappe

Topologies de réseaux

final.

Arbre

Annea

Comple

Synthèse

éseaux maillés

ise à jour logicielle OTA

ptimisation et Green-IT

Avantages

Inconvénients

Étoile

Réseaux maillés de capteurs autonomes

Rann

Topologies de réseaux

the sta

Arbre

Annec

Maillé

Synthèse

Réseaux maillés

fise à jour logicielle O

ptimisation et Green-IT

Inconvénients

Avantages

- Facile à configurer
- Facile à mettre à jour
- Peu de connexions
- Robuste aux pannes d'un nœud
- Détection d'erreur facile

Étoile

Avantages

- Facile à configurer
- Facile à mettre à jour
- Peu de connexions
- Robuste aux pannes d'un nœud
- Détection d'erreur facile

Inconvénients

- Si le nœud central tombe, tout le réseau tombe
- Passage à l'échelle limité par la puissance du nœud central

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

feet.

Arbre

Comp

Maillé

éseaux maillés

lise à jour logicielle OTA

Topologies de réseaux Arbre

Avantages

Inconvénients

Réseaux maillés de capteurs autonomes

Alban MANCHE

Rappe

opologies de réseau

Étoile

Arbre

Anneau

Comple

Constitue

Réseaux maillés

Aise à jour logicielle OTA

Topologies de réseauxArbre

Avantages

- Facile à configurer
- Facile à mettre à jour
- Détection d'erreur facile
- Passage à l'échelle par augmentation de la profondeur

Inconvénients

Réseaux maillés de capteurs autonomes

Rann

opologies de réseaux

Étoila

Arbre

Anneau

Comple

Pásaguy maillás

lise à jour logicielle OTA

Topologies de réseaux Arbre

Avantages

- Facile à configurer
- Facile à mettre à jour
- Détection d'erreur facile
- Passage à l'échelle par augmentation de la profondeur

- Coûteux en connexions lorsque les nœuds sont éloignés
- Si le nœud central (ou un nœud intermédiaire) tombe, tout le réseau (une partie) tombe

Anneau

Avantages

Inconvénients

Réseaux maillés de capteurs autonomes

Alban MANCHE

Topologies de réseai

3us

Aubro

Anneau

Complet

Maillé

seaux maillés

se à jour logicielle OTA

Anneau

Ranne

l'opologies de réseau

n

Etoile

Annea

Comple

Maillé

lise à jour logicielle OTA

otimisation et Green-IT

Inconvénients

Avantages

- Facile à configurer
- Facile à mettre à jour

Anneau

Avantages

- Facile à configurer
- Facile à mettre à jour

Inconvénients

- Fragilité du réseau (un nœud tombe et une partie des communications sont perdues)
- Trafic de message importants (latences)
- Passage à l'échelle augmente le trafic de messages (latences++)

Réseaux maillés de capteurs autonomes

Rappels

opologies de réseaux

Étoile

Arbre

nneau

Maillé

Réseaux maillés

Mise à jour logicielle OTA Ontimisation et Green-IT

Complet

Avantages

Inconvénients

Réseaux maillés de capteurs autonomes

Alban MANCH

Rappels

Topologies de réseau:

Étoile

Arbre

Anneau

omplet

маше

eagus mailláe

se à jour logicielle OTA

Complet

Réseaux maillés de capteurs autonomes

Rappels

opologies de réseaux

Étoila

Arbre

Anneau

Maillé

manne

ácagus maillác

Aise à jour logicielle OTA

ptimisation et Green-IT

- Pas de pb de trafic (tous les nœuds sont en pair-à-pair)
- Robuste aux pannes
- Sécurité renforcée (tous les nœuds sont interconnectés, il est difficile de s'infiltrer)
- Détection d'erreurs facile

Complet

Avantages

- Pas de pb de trafic (tous les nœuds sont en pair-à-pair)
- Robuste aux pannes
- Sécurité renforcée (tous les nœuds sont interconnectés, il est difficile de s'infiltrer)
- Détection d'erreurs facile

Inconvénients

- Configuration longue (interconnexions)
- Mise à jour fastidieuse longue (interconnexions)
- Trafic important (latences)
- Passage à l'échelle augmente fortement le trafic de messages (latences++)

autonomes

Alban MANCHERON

Rappel:

Topologies de réseaux

Étoile

Arbre

. .

Maillé

éseaux maillés

lise à jour logicielle OTA

Maillé

Réseaux maillés de capteurs autonomes

Alban MANCHE

Rappe

Topologies de réseaux

bus Éasta

Etoile

Anneau

omplet

Maillé

Synthèse

Réseaux maillés

ise à iour logicielle OI

ptimisation et Green-IT

14/28

Avantages

Topologies de réseaux Maillé

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

us

Etoile

Anneau

Complet

0.45

Réseaux maillés

esettist marries

Aise à jour logicielle OTA

ptimisation et Green-IT

Avantages

- Pas de pb de majeurs trafic
- Robuste aux pannes
- Sécurité renforcée
- Détection d'erreurs facile

Rann

Topologies de réseaux

Étoile

Arbre

Anneau

omplet

Constitue

Réseaux maillés

Mise à iour logicielle Oi

ptimisation et Green-IT

Avantages

- Pas de pb de majeurs trafic
- Robuste aux pannes
- Sécurité renforcée
- Détection d'erreurs facile

- Difficile à configurer
- Difficile à mettre à jour

Synthèse

Topologie	Config	MàJ	Robustesse	Vitesse	Échelle	Détection d'erreurs
	✓	✓	×	✓	X	X
	✓	✓	✓	X	X	✓
	✓	✓	×	×	✓	✓
	✓	✓	×	×	×	✓
	X	X	✓	X	X	✓
	×	×	✓	✓	✓	✓

Réseaux maillés de capteurs autonomes

Rappel

ologies de réseaux

Étoile

Arbre

...

aillé

Synthèse

Réseaux maillés

se à jour logicielle OTA

Sommaire

Communications et calcul distribué

Réseaux maillés Construction Mise à jour RSSI

Construction

Pléthore d'algorithmes

● SPRESSIF ESP-WIFI-MESH

https://github.com/espressif/esp-mdf

• **p**1) painlessMesh

https://gitlab.com/painlessMesh

Réseaux maillés de capteurs autonomes

lban Mancher

Rappei

Topologies de réseaux

Réseaux maillés

lise à jou

RSSI

Communications et calcul distribué

Aise à jour logicielle OTA

Construction

Pléthore d'algorithmes ⇒ topologies arborescentes

● SPRESSIF ESP-WIFI-MESH

https://github.com/espressif/esp-mdf

• **p**1) painlessMesh

https://gitlab.com/painlessMesh

Réseaux maillés de capteurs autonomes

Iban MANCHE

Rappei

Topologies de réseaux

Réseaux maillés

ise à jour

RSSI

fice à jour logisielle OTA

and the second

Construction

Réseaux maillés de capteurs autonomes

ban MANCHER

Rappel

Topologies de réseaux

Réseaux maillés

Mise à j

Communications at calcul distribut

lise à iour logicielle OTA

Optimisation et Green-IT

[17/28]

Nœud périphérique faisant ou pouvant faire partie du réseau

état

⇒ actif

⇒ en sommeil

rôle

contrôleur nœuds assurant la gestion du réseau relais nœud pouvant relayer une communication terminal nœud ne pouvant relayer une communication

localisation

- ⇒ périphérique mobile
- ⇒ station de base

Construction

Nœud périphérique faisant ou pouvant faire partie du réseau

⇒ actif

en sommeil

rôle

état

contrôleur nœuds assurant la gestion du réseau relais nœud pouvant relayer une communication terminal nœud ne pouvant relayer une communication

localisation

⇒ périphérique mobile

⇒ station de base

infrastructure, stations de base actives assurant le rôle de contrôleurs

couverture surface couverte par les ondes du réseau sans-fil réseau complétement fonctionnel 100% de couverture

Construction

Réseaux maillés de capteurs autonomes

Ranne

opologies de réseaux

Réseaux maillés

lise à jou

ommunications et calcul distribué

lise à jour logicielle OTA

Optimisation et Green-IT

Nœud périphérique faisant ou pouvant faire partie du réseau

état

⇒ actif

⇒ en sommeil

rôle

contrôleur nœuds assurant la gestion du réseau relais nœud pouvant relayer une communication terminal nœud ne pouvant relayer une communication

localisation

⇒ périphérique mobile

⇒ station de base

infrastructure stations de base actives assurant le rôle de contrôleurs

couverture surface couverte par les ondes du réseau sans-fil réseau complétement fonctionnel 100% de couverture

routage Gestion des transmissions entre les nœuds

saut (hop) communication d'un nœud à un nœud voisin (directement connecté)
 multi-sauts (multi-hop) communication d'un nœud à un nœud distant en passant par des relais

Construction

Réseaux maillés de capteurs autonomes

Ranne

Topologies de réseaux

Réseaux maillés

Mise à

RSSI

Communications et calcul distribut

lise à jour logicielle OTA

Optimisation et Green-IT

choix d'un nœud de référence ⇒ racine de l'arbre

Construction

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à

lise à iour logicielle OTA

Optimisation et Green-IT

- choix d'un nœud de référence
 ⇒ racine de l'arbre
- es plus proches voisins (dans une limite donnée) deviennent ses fils

Construction

- choix d'un nœud de référence ⇒ racine de l'arbre
- ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau

Construction

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à

lise à iour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à

lise à iour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- Ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à

fise à iour logicielle OTA

Optimisation et Green-IT

- choix d'un nœud de référence
 ⇒ racine de l'arbre
- Ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à

RSSI

Communications et calcul distribué

lise à jour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Stratégie des plus proches voisins

- ② choix d'un nœud de référence⇒ racine de l'arbre
 - ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Réseaux maillés de capteurs autonomes

Rappe

Sopologies de réseaux

Réseaux maillés

Mise à j

lise à jour logicielle OTA

Construction

Stratégie des plus proches voisins

- ② choix d'un nœud de référence⇒ racine de l'arbre
- Ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à j

lise à jour logicielle OTA

Construction

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise è

331

fise à jour logicielle OTA

Optimisation et Green-IT

- ② choix d'un nœud de référence⇒ racine de l'arbre
- ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à

RSSI

Communications et calcut aistri

fise à jour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
 - ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Stratégie des plus proches voisins

- choix d'un nœud de référence
 ⇒ racine de l'arbre
- Ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à j

ise à jour logicielle OTA

Construction

opologies de réseaux

Réseaux maillés

Mise à

lise à iour logicielle OTA

Optimisation et Green-IT

- choix d'un nœud de référence
 ⇒ racine de l'arbre
- Ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

opologies de réseaux

Réseaux maillés

Mise à

lise à iour logicielle OTA

Optimisation et Green-IT

- choix d'un nœud de référence
 ⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à

RSSI

Communications et calcul distribut

lise à jour logicielle OTA

Optimisation et Green-IT

- ② choix d'un nœud de référence⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à

fise à iour logicielle OTA

Optimisation et Green-IT

~*[*

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
 - ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à j

RSSI

Communications et calcul distribu

lise à jour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Stratégie des plus proches voisins

- ② choix d'un nœud de référence⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils
 ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à j

Communications at calcul distribué

ise à jour logicielle OTA

Construction

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à j

fise à jour logicielle OTA

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à j

lise à iour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à j

....

lise à iour logicielle OTA

Optimisation et Green-IT

- choix d'un nœud de référence
 ⇒ racine de l'arbre
 - ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à

lise à iour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

- choix d'un nœud de référence ⇒ racine de l'arbre
- ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

- choix d'un nœud de référence ⇒ racine de l'arbre
- ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Rappe

opologies de réseaux

Réseaux maillés

Mise à .

fise à iour logicielle OTA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.

Construction

Réseaux maillés de capteurs autonomes

Ranne

opologies de réseaux

Réseaux maillés

Mise à j

RSSI

fise à jour logicielle OTA

lise a jour logicielle OIA

Optimisation et Green-IT

- Choix d'un nœud de référence
 ⇒ racine de l'arbre
 - ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.
- Lorsqu'un nœud atteint une profondeur fixée, il devient feuille de l'arbre et n'accepte plus de connexion.

Construction

Ranne

opologies de réseaux

Réseaux maillés

Mise à j

a com

fise à iour logicielle OTA

Optimisation et Green-II

Stratégie des plus proches voisins

- choix d'un nœud de référence⇒ racine de l'arbre
- ② ses plus proches voisins (dans une limite donnée) deviennent ses fils ⇒ second niveau
- Les nœuds qui sont à proximité d'un nœud du second niveau ou plus essaient de s'y connecter.
- Lorsqu'un nœud atteint une profondeur fixée, il devient feuille de l'arbre et n'accepte plus de connexion.

\Rightarrow Certains nœuds peuvent être exclus du réseau.

Autre problématique : éveil des nœuds asynchrone

Mise à jour

- Ajout d'un nœud
 - augmentation de la charge

Réseaux maillés de capteurs autonomes

Alban MANCHER

Rappe

opologies de réseaux

éseaux maillés

Mise à jo

Deel

ommunications et calcul distribué

lise à jour logicielle OTA

Optimisation et Green-IT

Mise à jour

- Ajout d'un nœud
 - augmentation de la charge
 - ⇒ peut nécessiter un rééquilibrage
 - ⇒ potentiel changement de racine

Réseaux maillés de capteurs autonomes

Iban MANCHER

Rappe

Topologies de réseaux

Réseaux maillés

Mise à

1229

ommunications et calcul distribué

lise à jour logicielle OTA

Optimisation et Green-IT

Mise à jour

- Ajout d'un nœud
 - augmentation de la charge
 - ⇒ peut nécessiter un rééquilibrage
 - ⇒ potentiel changement de racine
- Retrait d'un nœud

niveau avec préavis

sans préavis

appale

opologies de réseaux

éseaux maillés

Mise à

neer

Communications et calcul distribué

lise à jour logicielle OTA

Ontimisation et Green-IT

Mise à jour

Réseaux maillés de capteurs autonomes

.

Topologies de réseaux

Réseaux maillés

Mise à

Root

Aise à iour logicielle OTA

Optimisation et Green-IT

18/28

- Ajout d'un nœud
 - augmentation de la charge
 - ⇒ peut nécessiter un rééquilibrage
 - ⇒ potentiel changement de racine
- Retrait d'un nœud

niveau	avec préavis	sans préavis
racine		
niveau 2		
niveau 3+		

Mise à jour

Réseaux maillés de capteurs autonomes

Ranne

Topologies de réseaux

Réseaux maillés

Mise à

Communications at calcul distribut

Aise à jour logicielle OTA

Optimisation et Green-IT

- Ajout d'un nœud
 - augmentation de la charge
 - ⇒ peut nécessiter un rééquilibrage
 - ⇒ potentiel changement de racine
- Retrait d'un nœud

niveau	avec préavis	sans préavis
racine	⇒ rééquilibrage	\Rightarrow reconstruction
niveau 2		
niveau 3+		

Mise à jour

Réseaux maillés de capteurs autonomes

Rappel

Topologies de réseaux

éseaux maillés

Mise à

Communications et calcul distribué

Mise à jour logicielle OTA

Optimisation et Green-IT

18/28

• Ajout d'un nœud

- augmentation de la charge
 - ⇒ peut nécessiter un rééquilibrage
 - ⇒ potentiel changement de racine

Retrait d'un nœud

niveau	avec préavis	sans préavis	
racine	⇒ rééquilibrage	\Rightarrow reconstruction	
niveau 2	 ⇒ promotion possible d'un nœud au niveau : ⇒ stratégie de perte d'un nœud de niveau 3+ ou rééquilibrage 		
niveau 3+			

Mise à jour

Réseaux maillés de capteurs autonomes

Rappel

Topologies de réseaux

Construction

....

Communications et calcul distribue

Mise à jour logicielle OTA

Optimisation et Green-IT

18/28

• Ajout d'un nœud

- augmentation de la charge
 - ⇒ peut nécessiter un rééquilibrage
 - ⇒ potentiel changement de racine

Retrait d'un nœud

niveau	avec préavis	sans préavis		
racine	⇒ rééquilibrage	\Rightarrow reconstruction		
	⇒ promotion possib	ole d'un nœud au niveau 2		
niveau 2	⇒ stratégie de perte	d'un nœud de niveau 3+		
	ou rééquilibrage			
	perte d'	un sous-arbre		
niveau 3+	⇒ rééquilibrage	\Rightarrow reconstruction		
	(seulement pour les nœuds isolés)			

Mise à jour

Ajout d'un nœud

- augmentation de la charge
 - peut nécessiter un rééquilibrage
 - potentiel changement de racine

Retrait d'un nœud

niveau	avec préavis	sans préavis
racine*	⇒ rééquilibrage	\Rightarrow reconstruction
	⇒ promotion possib	ole d'un nœud au niveau 2
niveau 2	⇒ stratégie de perte	d'un nœud de niveau 3+
	ou rééquilibrage	
	perte d'	un sous-arbre
niveau 3+	⇒ rééquilibrage	\Rightarrow reconstruction
	(seulement po	ur les nœuds isolés)
*	. 1	

⇒ perte temporaire de communication externe

Définition

RSSI

RSSI Received Signal Strength Indication

Exprimé en dBm (échelle logarithmique) : $P_{dBm}=10\,\log_{10}\frac{P_W}{1mW}$

Réseaux maillés de capteurs autonomes

Alban MANCHER

Rappel

Topologies de réseaux

Réseaux maillés

Aise à jou

RSSI

ommunications et calcul distribué

ise à jour logicielle OTA

Optimisation et Green-IT

Réseaux maillés de capteurs autonomes

Rappel

Topologies de réseaux

Construction

SI

ommunications et calcul distribu

lise à jour logicielle OTA

Optimisation et Green-IT

19/28

Définition

RSSI

RSSI Received Signal Strength Indication

Exprimé en dBm (échelle logarithmique) : $P_{dBm}=10\,\log_{10}\frac{P_W}{1mW}$

 $0dBm \Leftrightarrow ...$

 $-30dBm \Leftrightarrow \dots$

RSSI Received Signal Strength Indication

RSSI

Définition

Réseaux maillés de capteurs autonomes

Rannel

Topologies de réseaux

Construction

SSI

Communications et calcul distribue

lise à jour logicielle OTA

Optimisation et Green-IT

 $0dBm \Leftrightarrow 1mW$ $-30dBm \Leftrightarrow 1\mu W$

Exprimé en dBm (échelle logarithmique): $P_{dBm} = 10 \log_{10} \frac{P_W}{1mW}$

RSSI

Définition

RSSI Received Signal Strength Indication Exprimé en dBm (échelle logarithmique) : $P_{dBm} = 10 \log_{10} \frac{P_W}{1mW}$

Rappei

Topologies de réseaux

éseaux maillés

Mise à joi

Communications et calcul distribue

Mise à iour logicielle OTA

Optimisation et Green-IT

rce: [Sharp & Yu 2019]

RSSI

Modèle de path loss

$$PL = P_{Tx} - P_{Rx}$$
$$= K + 10 \gamma \log_{10} \left(\frac{d}{d_0}\right) + \psi$$

Réseaux maillés de capteurs autonomes

opologies de réseaux

éseaux maille construction

mise a j

Communications et calcul distribu

lise à jour logicielle OTA

Optimisation et Green-IT

RSSI

Réseaux maillés de capteurs autonomes

Rappels

Topologies de réseaux

Réseaux maill Construction Mise à jour

Communications at calcul distribu

lise à jour logicielle OTA

Optimisation et Green-IT

Modèle de path loss

- P_{Tx} puissance transmise par l'émetteur (en dBm)
- P_{Rx} puissance reçue par le récepteur (en dBm)
 - K atténuation due à l'affaiblissement à la distance de référence d_0 .
- **d**₀ distance de référence (arbitraire)
- d distance entre l'émetteur (Tx) et le récepteur (Rx) du signal
- γ exposant d'affaiblissement de propagation
- ψ variable aléatoire modélisant la zone d'ombre $\psi \sim \mathcal{N}(0, \sigma^2)$

RSSI

Modèle de path loss

$$P_{Rx} = P_0 - 10 \gamma \log_{10} \left(\frac{d}{d_0}\right) + \psi$$
 avec $P_0 = P_{Tx} - K$

 P_{Tx} puissance transmise par l'émetteur (en dBm)

 P_{Rx} puissance reçue par le récepteur (en dBm)

- K atténuation due à l'affaiblissement à la distance de référence d_0 .
- d_0 distance de référence (arbitraire)
- d distance entre l'émetteur (Tx) et le récepteur (Rx) du signal
- γ exposant d'affaiblissement de propagation
- ψ variable aléatoire modélisant la zone d'ombre $\psi \sim \mathcal{N}(0, \sigma^2)$

Réseaux maillés de capteurs autonomes

Rappels

Topologies de réseaux

léseaux maill Construction Mise à jour

Control of the second

lise à iour logicielle OTA

Optimisation et Green-IT

Communications et calcul distribué

Architecture

- modèle « classique »
 - ⇒ classe WiFiServer [#include <ESP8266WiFi.h>]
- réseau maillé
 - ⇒ classes EspnowMeshBackend ou TcpIpMeshBackend [#include <ESP8266WifiMesh.h>]

Réseaux maillés de capteurs autonomes

ban MANCHERO

Rappei

Topologies de réseaux

Réseaux maillés

Mise

RSSI

se à jour logicielle OTA

ptimisation et Green-IT

Architecture

Communications et calcul distribué

TcpIpMeshBackend

[#include <ESP8266WifiMesh.h>]

[#include <ESP8266WiFi.h>]

⇒ classes EspnowMeshBackend ou

API Rest

gestion client-serveur

 modèle « classique » ⇒ classe WiFiServer

réseau maillé

- ⇒ classe HTTPClient [#include <ESP8266HTTPClient.h>]
- messages
 - ⇒ librairie ArduinoIson [#include <ArduinoJson.h>] ou librairie Arduino_JSON
 - [#include <Arduino_JSON.h>]

Communications et calcul distribué

PEL STATE

Réseaux maillés de capteurs autonomes

oan Manchero

Rappels

Topologies de réseaux

Réseaux maillés

Mise à

ommunications et calcul d

lise à jour logicielle OTA

Optimisation et Green-Fi

Architecture

- modèle « classique »
 - ⇒ classe WiFiServer [#include <ESP8266WiFi.h>]
- réseau maillé
 - ⇒ classes EspnowMeshBackend ou TcpIpMeshBackend [#include <ESP8266WifiMesh.h>]

API Rest

- gestion client-serveur
 - ⇒ classe HTTPClient
 [#include <ESP8266HTTPClient.h>]
- messages
 - ⇒ librairie ArduinoJson
 [#include <ArduinoJson.h>]
 - ou librairie Arduino_JSON
 [#include <Arduino_JSON.h>]

Calcul

Stratégie Map-Reduce

Sommaire

Réseaux maillés de capteurs autonomes

Topologies de réseaux

Réseaux maillés

ise à jour logicielle OTA

Optimisation et Green-IT

- Rappels
- Topologies de réseaux
- Réseaux maillés
- Mise à jour logicielle OTA
- **5** Optimisation et *Green-IT*

Mise à jour logicielle OTA

Réseaux maillés de capteurs autonomes

Rappels

Topologies de réseaux

Réseaux maillés

Mise à jour logicielle OTA

ptimisation et Green-IT

Mise à jour OTA (Over-the-Air)

Possibilité de mettre à jour le micrologiciel en utilisant une connexion Wifi.

Mise à jour logicielle OTA

Réseaux maillés de capteurs autonomes

Rappels

Topologies de réseaux

Réseaux maillés

ise à jour logicielle OTA

ptimisation et Green-IT

Mise à jour OTA (Over-the-Air)

Possibilité de mettre à jour le micrologiciel en utilisant une connexion Wifi.

principe Ajout d'une route dédiée sur un serveur

Mise à jour logicielle OTA

Réseaux maillés de capteurs autonomes

Rappels

Topologies de réseaux

Réseaux maillés

lise à jour logicielle OTA

Pptimisation et Green-IT

Mise à jour OTA (Over-the-Air)

Possibilité de mettre à jour le micrologiciel en utilisant une connexion Wifi.

principe Ajout d'une route dédiée sur un serveur

librairies

- sécurité ⇒ BearSSL
- OTA ⇒ ArduinoOTA, ESP8266httpUpdate, AsyncWebServer, AsyncElegantOTA, . . .
- système de fichier \Rightarrow *LittleFS*

Sommaire

Réseaux maillés de capteurs autonomes

Ranne

Topologies de réseaux

Réseaux maillés

Mise à jour log

Ontimisation et Green-II

Consommation « matérielle Consommation « logicielle »

- Rappels
- Topologies de réseaux
- Réseaux maillés
- Mise à jour logicielle OTA
- **5** Optimisation et *Green-IT*
 - Consommation « matérielle »
 - Consommation « logicielle »
 - Capteur autonome

Consommation « matérielle »

Mode	Actif avec Wifi/BT sans Wifi/BT	Sommeil léger profond	Hivernage

éseaux maillés de capteurs autonomes

треня

opologies de réseaux

éseaux maillés

use a jour togiciene OIA

·
Consommation « matérielle »

Consommation « logicielle »

Consommation « matérielle »

Mode	Ac avec Wifi/BT	etif sans Wifi/BT	Som léger	meil profond	Hivernage
Wifi/BT	✓	×	×	Х	×
Horloge système	✓	✓	×	×	×
Horloge temps réel	✓	✓	✓	✓	✓
processeur	✓	✓	-	×	×

Réseaux maillés de capteurs autonomes

Rapp

Topologies de réseaux

éseaux maillés

Mise à jour logicielle OTA

Optimisation et Green-IT

Consommation « logicielle »

Consommation « matérielle »

Mode		etif	Sommeil		Hivernage
Mode	avec Wifi/BT	sans Wifi/BT	léger	profond	Hivernage
Wifi/BT	✓	×	×	×	×
Horloge système	✓	✓	×	×	×
Horloge temps réel	✓	✓	✓	✓	✓
processeur	✓	✓	-	×	×
Conso. moyenne	100-250mA	20-70mA	$0.8\mu\mathrm{A}$	10-100μA	$5\mu A$

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

éseaux maillés

Mise à iour logicielle OTA

Optimisation et Green-IT

Consommation « logicielle »

Consommation « matérielle »

Mode	Ac avec Wifi/BT	sans Wifi/BT	Som léger	meil profond	Hivernage
Wifi/BT	✓	×	×	×	×
Horloge système	✓	√	×	×	×
Horloge temps réel	✓	✓	✓	✓	✓
processeur	✓	✓	-	×	×
Conso. moyenne	100-250mA	20-70mA	$0.8\mu\mathrm{A}$	10-100μA	5μΑ

- delay(milli_sec)
- yield ()
- delayMicroseconds(micro_sec)

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

éseaux maillés

Mise à jour logicielle OTA

Optimisation et Green-IT

Consommation « logicielle

Consommation « matérielle »

Mode	Ac avec Wifi/BT	etif sans Wifi/BT	Som léger	meil profond	Hivernage
Wifi/BT	✓	×	×	×	×
Horloge système	✓	✓	×	×	×
Horloge temps réel	✓	✓	✓	✓	✓
processeur	✓	✓	_	×	×
Conso. moyenne	100-250mA	20-70mA	$0.8\mu A$	10-100μA	$5\mu A$

- delay(milli_sec)
- yield ()
- delayMicroseconds(micro_sec)

- WiFi.setSleepMode(mode) avec mode :
 - WIFI NONE SLEEP
 - WIFI_MODEM_SLEEP
 - WIFI_LIGHT_SLEEP

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

éseaux maillés

Mise à jour logicielle OT

Optimisation et Green-IT

onsommation « logicielle »

Consommation « matérielle »

Mode	Ac avec Wifi/BT	etif sans Wifi/BT	Som léger	meil profond	Hivernage
Wifi/BT	✓	×	×	×	×
Horloge système	✓	✓	×	×	×
Horloge temps réel	✓	✓	✓	✓	✓
processeur	✓	✓	_	×	×
Conso. moyenne	100-250mA	20-70mA	$0.8\mu\mathrm{A}$	10-100μA	$5\mu A$

- delay(milli sec)
- yield ()
- delayMicroseconds(micro_sec)

- WiFi.setSleepMode(mode) avec mode:
 - WIFI NONE SLEEP
 - WIFI_MODEM_SLEEP
 - WIFI_LIGHT_SLEEP
- ESP.deepSleep(micro_sec, wake_mode) avec wake_mode:
 - WAKE_RF_DEFAULT
 - WAKE_RFCAL
 - WAKE_NO_RFCAL
 - WAKE_RF_DISABLED

Réseaux maillés de capteurs autonomes

Rapp

Topologies de réseaux

Réseaux maillés

mise a jour togiciene O1.

Optimisation et Green-IT

onsommation « logicielle .

Consommation « logicielle »

nombre d'opérations ⇔ consommation

Réseaux maillés de capteurs autonomes

Alban MANCHE

Rappe

Topologies de réseaux

Réseaux maillés

Mise à jour logie

Optimisation et Green-IT

Consommation « matérielle »

Consommation « logiciell

Capteur autonome

Consommation « logicielle »

léseaux maillés de capteurs autonomes

Rannel

Topologies de réseaux

Réseaux maillés

Aise à jour logicielle (

pнmisanon et Greeп-11 Consommation « matérielle »

Consommation « te

$nombre \ d'op\'erations \Leftrightarrow consommation$

Exemple 1 : mesure de température

- Réveil (2s)
- Mesure (1s)
- connexion+envoi des données (2s)
- mise en sommeil profond (30s)

Consommation « logicielle »

Réseaux maillés de capteurs autonomes

Rappels

Topologies de réseaux

Réseaux maillés

ise a jour togiciene Offi

Pptimisation et Green-II Consommation « matérielle »

Canteur autonome

Exemple 1 : mesure de température

- Réveil (2s)
- Mesure (1s)
- onnexion+envoi des données (2s)
- mise en sommeil profond (30s)

Exemple 2 : distance entre deux points

- 2 math. sqrt((x1 x2) * (x1 x2) + (y1 y2) * (y1 y2));

nombre d'opérations ⇔ consommation

Capteur autonome

Réseaux maillés de capteurs autonomes

Pappa

Topologies de réseaux

Réseaux maillés

Mise à jour lo

timisation et Green-II onsommation « matérielle »

pteur autonom

cahier des charges

- surveillance
- garde-fousalimentation
- annicitation
- collecte et traitement des données
- mise à jour

Capteur autonome

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à jour log

ptimisation et Green-IT
Consommation « matérielle »

Capteur autono

cahier des charges

- surveillance
- garde-fous
- alimentation
- collecte et traitement des données
- mise à jour

problématiques

- évolutions technologiques
- paradigmes et effets de mode
- gestion de la consommation
- recyclage
- sécurité

Capteur autonome

Réseaux maillés de capteurs autonomes

Rappe

Topologies de réseaux

Réseaux maillés

Mise à jour log

Optimisation et Green-IT

Consommation «

cahier des charges

- surveillance
- garde-fous
- alimentation
- collecte et traitement des données
- mise à jour

problématiques

- évolutions technologiques
- paradigmes et effets de mode
- gestion de la consommation
- recyclage
- sécurité

Enjeux économiques & sociétaux importants.

Capteur autonome

Réseaux maillés de capteurs autonomes

Ranne

Topologies de réseaux

Réseaux maillés

Mise à jour log

Optimisation et Green-IT Consommation « matérielle »

Capteur autono

cahier des charges

- surveillance
- garde-fous
- alimentation
- collecte et traitement des données
- mise à jour

problématiques

- évolutions technologiques
- paradigmes et effets de mode
- gestion de la consommation
- recyclage
- sécurité

Enjeux économiques & sociétaux importants.Compétences transversales à fort potentiel

Crédits photos

Source

Image

éseaux maillés de capteurs autonomes Alban MANCHERON

Rappe

Topologies de réseaux

éseaux maillés

ise a jour logicielle

Atmet STY	Wikimedia Commons https://commons.wikimedia.org/	©
⊕©⊗© ©	Creative Commons https://creativecommons.org/	Attribution 4.0 International ©(1) (CC BY 4.0)
→ C → C	Site personnel de Wilfried KLAAS https://wkla.no-ip.biz/ArduinoWiki Wikimedia Commons https://commons.wikimedia.org/	Attribution ShareAlike 4.0 International (CO BY SA 4.0)
OT COMM	Genotronex http://www.genotronex.com/2013/03/i2c.html	Attribution NonCommercial ShareAlike 4.0 International ①①③③ (CC BY NC SA 4.0)
\mathbf{P}_{\emptyset}	https://gitlab.com/painlessMesh	GNU GPL V3
TEXAS INSTRUMENTS	Wikimedia Commons https://commons.wikimedia.org/	© TM
The state of the s	[Sharp & Ye 2019] DOI:10.1007/978-981-10-8791-2_15	©

Licence

Réseaux maillés de capteurs autonomes Alban MANCHERON

Rapp

Topologies de réseaux Réseaux maillés Mise à jour logicielle OTA

That's All, Folks!

Merci de votre attention.

Vous pouvez rentrer chez vous.

C'est fini.

Au revoir.

Bon courage.

Ceci n'est pas un test ophtalmologique,

mais si vous arrivez à lire jusqu'au bout...

...c'est que vous avez du temps.

Profitez-en pour programmer alors!!!

