Hypothesis Testing Regression

Slope of a Line

Recall that the slope of a line tells us how much the y-coordinates change by increasing each x-coordinate by 1.

Slope of a Line

Recall that the slope of a line tells us how much the y-coordinates change by increasing each x-coordinate by 1.

Previously, we looked at calculating regression equations in the form

$$\hat{y} = mx + b$$

which we can use to predict data values both inside and outside our dataset.

Slope of a Line

Recall that the slope of a line tells us how much the y-coordinates change by increasing each x-coordinate by 1.

Previously, we looked at calculating regression equations in the form

$$\hat{y} = mx + b$$

which we can use to predict data values both inside and outside our dataset.

Also, recall that the coefficient of determination, r^2 , tells us the prediction error decrease we get by using the linear regression equation, as opposed to the mean of the *y*-coordinates.

Using the y-Intercept

However, we might also be able to use the y-intercept of our linear regression equation as a predictor:

$$y = b$$

Using the *y*-Intercept

However, we might also be able to use the y-intercept of our linear regression equation as a predictor:

$$y = b$$

In this case, the slope of the equation, m, is 0.

Using the *y*-Intercept

However, we might also be able to use the y-intercept of our linear regression equation as a predictor:

$$y = b$$

In this case, the slope of the equation, m, is 0.

We can then test whether or not the linear regression model we obtained contributes to predicting values of y.

Hypotheses Regarding Slope

For this hypothesis, testing, we are operating under the assumption that the following null hypothesis is true:

The slope of the regression equation does not help in predicting values of y.

Hypotheses Regarding Slope

For this hypothesis, testing, we are operating under the assumption that the following null hypothesis is true:

The slope of the regression equation does not help in predicting values of y.

To put it mathematically:

$$H_0: m = 0$$

Hypotheses Regarding Slope

For this hypothesis, testing, we are operating under the assumption that the following null hypothesis is true:

The slope of the regression equation does not help in predicting values of y.

To put it mathematically:

$$H_0: m = 0$$

Our alternative hypothesis will be one of the forms

Left-Tailed	Right-Tailed	Two-Tailed
m < 0	m > 0	$m \neq 0$

Test Statistic

Since the population standard deviation of our regression slope is likely not to be known, we can estimate it by using the **estimated standard error of the least squares slope**.

Test Statistic

Since the population standard deviation of our regression slope is likely not to be known, we can estimate it by using the **estimated standard error of the least squares slope**.

$$\frac{s}{\sqrt{SS_{xx}}}$$

where

$$SS_{xx} = \sum x^2 - \frac{1}{n} \left(\sum x \right)^2$$

Test Statistic

Since the population standard deviation of our regression slope is likely not to be known, we can estimate it by using the **estimated standard error of the least squares slope**.

$$\frac{s}{\sqrt{SS_{xx}}}$$

where

$$SS_{xx} = \sum x^2 - \frac{1}{n} \left(\sum x \right)^2$$

Our test statistic, t, is thus

$$t = \frac{\hat{m}}{s/\sqrt{SS_{xx}}}$$

where \hat{m} is the slope of our regression equation.

p-Value

The area under the curve either to the left, right, or outside of our test statistic(s), i.e. the p-value, can be found by taking n-2 degrees of freedom with that test statistic.

Confidence Intervals

We can construct confidence intervals as

$$\hat{m} \pm t_{lpha/2} \left(s / \sqrt{SS_{xx}}
ight)$$

Confidence Intervals

We can construct confidence intervals as

$$\hat{m} \pm t_{lpha/2} \left(s / \sqrt{SS_{xx}} \right)$$

Remember, for one-sided confidence intervals, use t_{α} instead of $t_{\alpha/2}$.

Residuals Review

Recall that the **residual** of a data point is the distance the *y*-coordinate of that data point is from the corresponding *y*-coordinate on the regression equation.

Residuals Review

Recall that the **residual** of a data point is the distance the *y*-coordinate of that data point is from the corresponding *y*-coordinate on the regression equation.

We usually denote the residual of data point (x_i, y_i) as ϵ_i , and it can be found by

$$\epsilon_i = y_{\text{observed}} - y_{\text{predicted}}$$

Residuals Review

Recall that the **residual** of a data point is the distance the *y*-coordinate of that data point is from the corresponding *y*-coordinate on the regression equation.

We usually denote the residual of data point (x_i, y_i) as ϵ_i , and it can be found by

$$\epsilon_i = y_{\text{observed}} - y_{\text{predicted}}$$

When performing hypothesis testing regarding the slope of the regression equation, we operate under the following assumptions:

Assumptions:

• The mean of all values of ϵ is 0.

- The mean of all values of ϵ is 0.
- The variance of all values of ϵ is constant for all values of x.

- The mean of all values of ϵ is 0.
- The variance of all values of ϵ is constant for all values of x.
- The distribution of ϵ is normal.

- The mean of all values of ϵ is 0.
- The variance of all values of ϵ is constant for all values of x.
- The distribution of ϵ is normal.
- ullet Values of ϵ associated with any two values of y are independent.