

EQUILIBRI QUÍMIC | QUÍMICA 2N BATX

EXERCICIS

ALBA LÓPEZ VALENZUELA

TRADUCCIÓ: EDUARD CREMADES I ÒSCAR COLO-

MAR

Escriu les expressions de la constant d'equilibri en funció de les concentracions i de les pressions parcials per a les següents reaccions reversibles:

(a)
$$NO(g) + O_3(g) \rightleftharpoons NO_2(g) + O_2(g)$$

(d)
$$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$$

(b)
$$2 CO(g) + O_2(g) \rightleftharpoons 2 CO_2(g)$$

(e)
$$4 \text{ NH}_3(g) + 5 \text{ O}_2 g) \iff 4 \text{ NO}(g) + 6 \text{ H}_2 \text{O}(g)$$

(c)
$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$

(f)
$$PCl_5(g) \rightleftharpoons Cl_2(g) + PCl_3(g)$$

En un recipient tancat de 10 L a 1200 K i en el qual s'ha fet el buit, s'introdueixen 1.00 mol de CO 3.00 mol de H₂, un cop s'ha arribat a l'equilibri s'han format 0.387 mol d'H₂O. Calcula el valor de la constant d'equilibri a aquesta temperatura si la reacció és:

$$CO(g) + 3 H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$

Solución: $K_C = 3.93$

La constant del procés $N_2O_4(g) \Longrightarrow 2 NO_2(g)$, a certa temperatura és 4.48×10^{-3} . En un recipient d'un litre s'introdueixen 0.50 mols de N_2O_4 . Calcula la composició final de la mescla expressada en mol.

Solución: 0.046 mol NO₂; 0.477 mol N₂O₄

En un recipient de 5 L s'introdueixen 1 mol de diòxid de sofre i 1 mol d'oxigen i s'escalfa a 1000 °C, donant-se la reacció: $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{SO}_3(g)$. Quant triòxid de sofre es forma si en l'equilibri hi ha 0.15 mols de diòxid de sofre? Calcula $K_{\mathbb{C}}$.

Solución: 0.85 mol SO_3 ; $K_C = 279$

En un recipient de 10 L de volum s'introdueixen 2 mols del compost A i 1 mol del compost B. S'escalfa a 300 °C i s'estableix l'equilibri: A(g) + 3 B(g) \Longrightarrow 2 C(g). Quan s'arriba a l'equilibri, el nombre de mols de B és igual al de C. Calcula els mols de cada component a l'equilibri, K_C , K_P i la pressió parcial de B a l'equilibri.

Solución: 1.8 mol de A y 0.4 mol de B y C; $K_{\rm C}$ = 138.9; $K_{\rm p}$ = 0.063; $p_{\rm B}$ =1.88 atm

Per a quina de les següents reaccions $K_p = K_C$?

(a)
$$2 SO_2(g) + O_2(g) \Longrightarrow 2 SO_3(g)$$

(b)
$$H_2(g) + I_2(s) \rightleftharpoons 2 HI(g)$$

(c)
$$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$$

(d)
$$3 \text{ Fe(s)} + 4 \text{ H}_2 \text{O(g)} \iff \text{Fe}_3 \text{O}_4(\text{s}) + 4 \text{ H}_2(\text{g})$$

 \ref{T} Escriu les expressions de les constants d'equilibri K_C i K_D pels següents equilibris:

(a)
$$P_4(s) + 6 Cl_2(g) \rightleftharpoons 4 PCl_3(l)$$

(b)
$$3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(g)} \iff \text{Fe}_3\text{O}_4(\text{s}) + 4 \text{ H}_2(\text{g})$$

$$(c) C(s) + O_2(g) \Longrightarrow CO_2(g)$$

(d)
$$Na_2CO_3(s) + CO_2(g) + H_2O(g) \rightleftharpoons 2 NaHCO_3(g)$$

 $\begin{tabular}{ll} \hline \textbf{8} & L'equilibri SbCl_5(g) & \Longleftrightarrow SbCl_3(g) + Cl_2(g)$ s'estableix escalfant 29.9 g de SbCl_5 a 182 °C en un recipient de 3 L. Calculeu: \\ \hline \begin{tabular}{ll} \hline \textbf{8} & \textbf{2} & \textbf{3} & \textbf{$

- (a) Les concentracions de cada espècie a l'equilibri, sabent que la pressió total és de 1.54 atm.
- (b) $K_{\rm C}$, $K_{\rm p}$ y $\clubsuit K_{\gamma}$.

Solució: a) [SbCl₃]=[Cl₂]=7.93 × 10^{-3} M, [SbCl₅]=0.0254 M; b) $K_{\rm C}$ =2.47 × 10^{-3} ; $K_{\rm p}$ = 0.09; $K_{\rm y}$ = 0.06

[9] [EBAU, Extremadura 2018] La constant d'equilibri K_C per a la reacció $CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$ val 5.1 a 800 K. Si 1 mol de CO i 1 mol d'H₂O s'escalfen a 800 K en un recipient buit de 50 L, quan s'arriba a l'equilibri, calcula: a) quants mols de CO queden sense reaccionar b) la pressió parcial de cada gas, la pressió total al recipient i la constant K_p . $R = 0.082 \text{ atm L mol}^{-1} \text{ K}^{-1}$

Solució: a) 0.31 mol; b) $p_{CO} = p_{H_2O} = 0.41$ atm, $p_{CO_2} = p_{H_2} = 0.91$ atm, $p_{TOT} = 2.64$ atm, $K_p = 4.93$

[Grau en Biotecnologia, UNEX] Pel procés Haber (la producció d'amoníac a partir de nitrogen i d'hidrogen), la constant d'equilibri a temperatura ambient és de 4×10^8 . Si les concentracions a l'equilibri de les tres espècies són iguals, quin és el valor de la concentració?

Solució: Depèn de la igualació: si $3~H_2+N_2 \Longrightarrow 2~NH_3~[~]=5\times 10^{-5}~M$; si $\frac{3}{2}~H_2+\frac{1}{2}~N_2 \Longrightarrow NH_3~[~]=2.8\times 10^{-9}~M$ [Grau en Química, UNEX] En la reacció XY₂ \Longrightarrow X + 2 Y les tres substàncies són gasos ideals. Un recipient de 10.0 L conté, inicialment, 0.40 mol de XY₂. S'introdueix llavors un catalitzador de la reacció de dissociació. Quan s'arriba a l'equilibri, la pressió de la mescla és 1.20 atm. La temperatura és 300 K. Calcula la constant d'equilibri K_p de la reacció donada.

Solució: 5.79×10^{-3} atm²

[Grau en Química, UNEX] En un recipient de 1055 cm³ es fa el buit i, a continuació, s'introdueixen 0.31 g de NO i 0.7 g de Br₂. En aquestes condicions s'estableix l'equilibri: $2 \text{ NO(g)} + \text{Br}_2(g) \iff 2 \text{ NOBr}(g)$ a la temperatura de 323.7 K i es mesura una pressió final de 0.304 atm. Suposant comportament ideal pels gasos, calcula la composició de la mescla en equilibri i el valor de K_p .

Solució: 0.421; 0.147 y 0.432; 23.56 atm⁻¹

- [13] [Escola d'Enginyeries Agràries, UNEX] A certa temperatura, i en un recipient d'1 litre, es troben en equilibri 8 g d'oxigen, 8 g de diòxid de sofre i 40 g de triòxid de sofre.
 - a) Calcula el valor de la constant d'equilibri K_C corresponent a la reacció:

$$2 SO_2(g) + O_2(g) \Longrightarrow 2 SO_3(g)$$

Solució: $K_C = 64 \text{ m}^{-1}$

[4] [Grau en Química, UNEX] El monòxid de carboni és extremadament verinós, ja que forma un fortíssim complex amb l'hemoglobina. Les pressions parcials de diòxid de carboni i oxigen en l'atmosfera són, respectivament, 3.4×10^{-3} i 0.2 atm. Troba la pressió del monòxid de carboni en equilibri amb diòxid de carboni i oxigen a l'atmosfera, a 25 °C, segons la reacció:

$$CO(g) + \frac{1}{2} O_2(g) \rightleftharpoons CO_2(g)$$

Hauríem de preocupar-nos amb aquest resultat? És espontani el procés?

Solució: 2.06×10^{-45} Pa

[Is a constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri, K_p , és igual a 3.40 per a la reacció d'isomerització la constant d'equilibri la const cis-but-2-è trans-but-2-è. Si un matràs conté inicialment 0.250 atm de cis-but-2-è i 0.125 atm de trans-but-2-è, quina és la pressió d'equilibri de cada gas?

Solució:
$$P_{cis} = 0.0852$$
 atm; $P_{trans} = 0.2898$ atm

[Grau en Nutrició i Dietètica] Calcula la concentració d'H₂ en un matràs de 2.00 L en el qual hi ha inicialment HI a una pressió de 1.00 bar i a una temperatura de 107.8 K.

$$I_2(g) + H_2(g) \Longrightarrow 2 HI(g)$$

La constant d'equilibri K_C a aquesta temperatura és 10^{-4} .

Dada: $R = 0.0831 \text{ bar L mol}^{-1} \text{ K}^{-1}$

Solució: $[H_2]$ = 0.056 M

......Grau de dissociació

- [EBAU, Extremadura 2017] En un recipient de 750 mL s'introdueixen 0.1 mol de N₂O₄(g) i, quan la temperatura és de 50 °C, s'estableix l'equilibri: N₂O₄(g) === 2 NO₂(g) sent la pressió total de 4.2 atm. Calcula: a) K_C y K_p ; b) El grau de dissociació, en %, del $N_2O_4(g)$.
- [EBAU, Extremadura 2020] En un recipient de 2 litres s'introdueixen 2 mols d'AB₂ i quan la temperatura arriba als 346 K s'estableix l'equilibri: $AB_2(g) \rightleftharpoons A(g) + B_2(g)$, sent $K_p = 2.56$. Calcula: a) K_C i el nombre de mols de cada espècie en l'equilibri; b) grau de dissociació (α) d'AB₂, expressat en %.
- [19] [EBAU, Extremadura 2018] En un matràs buit d'1 L de capacitat es col·loquen 6 g de PCl₅ gasós. S'escalfen a 250 °C, amb la qual cosa el PCl₂ es dissocia parcialment en Cl₂ i PCl₃, ambdós gasosos: PCl₂(g) ← Cl₂(g) + PCl₃(g). La pressió a l'equilibri és 2.078 atm. Calcula:
 - a) El grau de dissociació de PCl_5 ; b) la constant d'equilibri K_p a 250 °C. Masses atòmiques (u): P=31; Cl=35.5; R=0.082 atm $L \text{ mol}^{-1} \text{ K}^{-1}$
- 20 S'ha estudiat la reacció de l'equilibri: 2 NOCl(g) === 2 NO(g) + Cl₂(g) a 735 K i en un volum d'1 litre. Inicialment, es van introduir 2 mols de NOCl. Un cop arribat a l'equilibri es va comprovar que s'havia dissociat en un 33 %. Calcula K_C . Solución: $K_C = 0.08$
- [Escola d'Enginyeries Agràries, UNEX] S'introdueixen 0.2 mols de Br₂(g) en un recipient de 0.5 L a 600 °C, sent el grau de dissociació per a la reacció $Br_2(g) \Longrightarrow 2 Br(g)$, en aquestes condicions, del 0.8 %. Calcula K_C y K_p .

Solució:
$$K_C = 1.03 \times 10^{-4} \text{ m}$$
; $K_p = 73.88 \times 10^{-4} \text{ atm}$

[Escola d'Enginyeries Agràries, UNEX] La densitat del N₂O₄ és de 2.08 g/L a 60 °C i 1 atm. Calcula el grau de dissociació i el valor de la constant d'equilibri corresponent a la dissociació $N_2O_4(g) \Longleftrightarrow 2\ NO_2(g)$ en aquestes condicions de pressió i temperatura.

Solució:
$$\alpha = 0.62$$
; $K_p = 2.5$ atm

- 23 El pentaclorur de fòsfor està dissociat segons l'equació $PCl_5(g) \iff PCl_3(g) + Cl_2(g)$ a 250 °C i 1 atm de pressió. La densitat del PCl $_5$ sense dissociar és de 2.695 g/L. Calcula el grau de dissociació del PCl $_5$ i la K_p a aquesta temperatura Solució: α =0.807; K_p =1.77 atm
- 24 Calcula el grau de dissociació, a 30 °C i 5 atm, per a la dissociació del tetraòxid de dinitrogen, si se sap que en aquestes condicions K_p és 0.15 atm.

Solució: $\alpha = 0.083$

[EBAU, Extremadura 2019] A 200 °C i a una pressió d'1 atm, el PCl₅ es dissocia en un 48.5 % segons la reacció:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$

- a) Determina el valor de K_p a aquesta temperatura.
- b) Calcula el grau de dissociació a la mateixa temperatura, però a una pressió de 10 atm. És coherent aquest resultat amb el principi de Le Châtelier?

Solució: a)
$$K_p = 0.457$$
; b) $\alpha = 0.192 = 19.2$ %. Sí.

A 200 °C i a una pressió d'1 atm, el PCl₅ es troba dissociat en un 48.5 %. Calcula el grau de dissociació a la mateixa temperatura, però a una pressió de 10 atm.

Solució: a)
$$K_p = 0.31$$
; b) $\alpha = 0.174 = 17.4 \%$.

27 A 27 °C i a 1 atm de pressió el N_2O_4 està dissociat en un 20 % en NO_2 . Calcula: a) K_p ; b) El % de dissociació a 27 °C i a una pressió de 0.1 atm.

Solució: a)
$$K_p = 0.17$$
; b) $\alpha = 0.538 = 53.8$ %.

28 A 27 °C i 1 atm de pressió el N_2O_4 es dissocia en un 20 % en NO_2 . Calcula: a) K_p ; b) El % de dissociació a 27 °C i a una pressió de 0.1 atm.

Solució: a)
$$K_p = 0.2$$
; b) $\alpha = 0.5 = 50 \%$.

La constante de equilibrio para la reacción de disociación del tetraóxido de dinitrógeno vale 5.8 × 10⁻³ a 25 °C. Calcula el grado de disociación cuando la concentración inicial es: a) 0.01 m; b) añadimos 0.01 m de N2O4 al equilibrio formado en el apartado anterior.

Solución: a) 0.315; b) 0.091

💁 A 1573 K, el 63 % d'una mescla equimolecular de diòxid de carboni i d'hidrogen es converteix en CO i aigua segons: $CO_2(g) + H_2(g) \Longrightarrow CO(g) + H_2O(g)$. Calcula K_p i indica si és espontània o no.

Solució: $K_p = 2.89$; $\Delta G = -13.8kJ/mol$

...... Factors que afecten l'equilibri

- Respecte al problema 26, cap a on s'ha desplaçat l'equilibri? Per què?
- 32 A 200 °C la constant d'equilibri de la reacció $MX_5(g) \implies MX_3(g) + X_2(g)$ val 0.022. En un moment determinat s'introdueixen simultàniament les següents concentracions: $[MX_5] = 0.04 \text{ M}$, $[MX_3] = 0.40 \text{ M}$ y $[X_2] = 0.20 \text{ M}$.
 - (a) Raona si el sistema es troba en equilibri i, si no ho està, com evolucionaria per arribar a l'equilibri?
 - (b) Indica si un canvi de pressió del sistema en equilibri afectarà al mateix.
 - (c) Indica com afectarà al sistema en equilibri l'addició d'un catalitzador.
- En un matràs de reacció de 2 L s'introdueixen 2.5 mols d'NaHCO₃, 0.15 mols de Na₂CO₃, 2.5 × 10⁻² mols de CO₂ i 4.0×10^{-4} mols d'aigua. Tots ells en l'estat d'agregació que s'indica en la següent reacció ajustada:

$$Na_2CO_3(s) + CO_2(g) + H_2O(g) \rightleftharpoons 2 NaHCO_3(g)$$

Es troba el sistema en equilibri? En cas negatiu, raona cap a on es desplaçarà l'equilibri. Dada: $K_c = 4000$.

- Un volum d'1 L d'una mescla en equilibri d'amoníac, nitrogen i hidrogen a 750 K es compon d'1 mol de N2, 1.2 mols d'H2 i 0.329 mols d'NH₃. Considerant l'equilibri: $N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$, calcula:
 - (a) K_c .
 - (b) Les pressions parcials dels gasos en l'equilibri.
 - (c) Si la variació d'entalpia és –92.4 kJ/mol, en quin sentit es desplaçarà l'equilibri si s'augmenta la temperatura fins 1300 K?

Solució: a)
$$K_C = 0.063$$
; b) $p_{H_2} = 61.5$ atm, $p_{N_2} = 73.8$ atm, $p_{NH_2} = 20.2$ atm; c) esquerra

- Considereu el següent sistema en equilibri $SO_3(g) \iff SO_2(g) + \frac{1}{2}O_2(g) \Delta H > 0$. Justifiqueu la veracitat o falsedat de les següents afirmacions:
 - (a) En augmentar la concentració d'oxigen, l'equilibri no es desplaça perquè no pot variar la constant d'equilibri.
 - (b) En augmentar la pressió total l'equilibri es desplaça cap a l'esquerra.
 - (c) En augmentar la temperatura l'equilibri no es modifica.
- Donada la següent reacció $C(s) + 2H_2(g) \iff CH_4(g) \Delta H < 0$, indica raonadament la veracitat o falsedat de les següents afirmacions:
 - (a) La reacció és exotèrmica.
 - (b) En augmentar la temperatura l'equilibri es desplaçarà a la dreta.
 - (c) En disminuir la temperatura l'equilibri no es desplaça.
 - (d) Si disminuïm la pressió, l'equilibri es desplaça cap a la dreta.
 - (e) Si un cop s'ha arribat a l'equilibri, afegim més quantitat de carboni, l'equilibri no es modifica.
 - (f) Si un cop s'ha arribat a l'equilibri, afegim hidrogen, l'equilibri es desplaça a l'esquerra.

$$Ag_2CO_3(s) + calor \iff Ag_2O(s) + CO_2(g)$$

La constant d'equilibri K_p val 0.0095 a 110 °C. a) Suposant que s'introdueix en un recipient de 100 mL una mostra de 0.5 g de Ag_2CO_3 i s'escalfa a 110 °C, quin valor tindrà la pressió del CO_2 quan s'arribi a l'equilibri? b) Què passarà si un cop s'ha arribat a l'equilibri, s'eleva la temperatura a 115 °C?

Solució: a)
$$p(CO_2) = 0.0095$$
 atm

- ♣ A certa temperatura el PCl₅ es dissocia en PCl₃ i Cl₂. Quan s'arriba a l'equilibri d'aquesta reacció, portada a terme en un recipient de 10 L, es comprova que les concentracions són 0.8 m de PCl₅, 0.2 m de PCl₃ i 0.2 m de Cl₂. Calcula K_c en aquestes condicions i interpreta com es desplaçarà l'equilibri i quines seran les noves concentracions si, un cop s'ha arribat a l'equilibri:
 - (a) S'afegeixen 2 mols de PCl₅.
 - (b) Es redueix el volum a 5 L.
 - (c) S'afegeixen 2 mols de Cl₂.
- [EBAU, Extremadura 2020] En un recipient de 500 mL es posen 0.6 mols del compost A(g) i quan la temperatura és de 600 K, s'arriba a l'equilibri: A(g) = 2 B(g) + C(g), sent el grau de dissociació d'A(g) del 65 %.
 - a) Troba els valors de K_C i K_p .
 - b) Calcula la pressió total a la qual s'arriba a l'equilibri.
 - c) Si augmenta el volum, justificar cap a on es desplaça l'equilibri.

 $R = 0.082 \text{ atm L mol}^{-1} \text{ K}^{-1}$

- [EBAU, Extremadura 2018] a) Donada la reacció A(g) ==== 2 B(g), la K_C de la qual val 0.3, a 300 K. Indica, raonant la resposta, en quin sentit es desplaçarà la reacció si en un reactor de 2 L hi ha 2.5 mol d'A i 3 mol de B en un moment donat, a 300 K.
 - b) Per a la reacció anterior, un cop s'ha arribat a l'equilibri, en augmentar la temperatura s'observa que augmenta la concentració de B. Raona si la reacció és exotèrmica o endotèrmica.
- [EBAU, Extremadura 2019] En un recipient de 200 mL es col·loquen 0.40 g de tetraòxid de dinitrogen (N_2O_4). Es tanca el recipient i s'escalfa a 45 °C, produint-se la dissociació del N_2O_4 en un 41.6 %.
 - a) Calcular les constants K_C i K_p per l'equilibri: $N_2O_4(g) \rightleftharpoons 2NO_2(g)$.
 - b) Justifica com canviaran les concentracions relatives d'ambdós compostos si, a 45 °C, s'augmenta la pressió a l'interior del recipient.
 - c) Justifica com ha de variar la temperatura perquè augmenti la concentració N_2O_4 , tenint en compte que la reacció és endotèrmica.

 $R = 0.082 \text{ atm L mol}^{-1} \text{ K}^{-1}$; Masses atòmiques (u): N = 14; O = 16.

[EBAU, Extremadura 2017] Una mescla gasosa composta per 7 mol de A₂ i 5 mol de B₂ s'introdueix en un reactor de 40 L de volum. El reactor s'escalfa a 350 °C. Un cop s'ha arribat a l'equilibri, s'han format 9 mol de producte gasós AB:

$$A_2(g) + B_2(g) \Longrightarrow 2AB(g)$$

- a) Calcula el valor de les constants d'equilibri K_C i K_p .
- b) Si per a la reacció anterior $\Delta H = -15.7 \text{ kJ mol}^{-1}$, raona com es desplaçarà l'equilibri si s'augmenta la pressió i la temperatura (considera cada efecte per separat).

 $R = 0.082 \text{ atm L mol}^{-1} \text{ K}^{-1}$; Masses atòmiques (u): N = 14; O = 16.

- [PAU, Extremadura 2011] Per al següent equilibri: $PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$ $\Delta H > 0$. Indica, raonadament, el sentit en el qual es desplaçarà l'equilibri si:
 - a) S'agrega clor gasós a la mescla en equilibri.
- c) S'augmenta la pressió del sistema.

b) S'augmenta la temperatura.

- d) Es disminueix el volum.
- [PAU, Extremadura 2012] a) Indica, justificant la resposta, quines condicions ha de complir un sistema en equilibri perquè els seus valors de K_c i K_p siguin iguals.
 - b) Indica en quin sentit (formació de productes o de reactius) evolucionarà una reacció química quan el seu quocient de reacció val 3, sabent que la seva constant d'equilibri, K, és igual a 4. Justifica la resposta.
- [PAU, Extremadura 2014] Per a un determinat equilibri químic, en fase gasosa, se sap que un augment de la temperatura produeix el desplaçament de la reacció cap a l'esquerra, mentre que un augment de la pressió provoca el desplaçament de la reacció cap a la dreta. Indicar, raonadament, de quin d'aquests tres equilibris es tracta:
 - a) $A + B \rightleftharpoons C + D$, exotèrmica; b) $A + B \rightleftharpoons C$, endotèrmica; c) $2A \rightleftharpoons B$, exotèrmica.

- [EBAU, Extremadura 2021] L'equilibri $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ s'aconsegueix quan la temperatura és de 200 °C, sent la pressió total 2 atm i el grau de dissociació del 30 %.
 - (a) Determinar les pressions parcials de cada substància en l'equilibri.
 - (b) Calcular Kc i Kp.
 - (c) Si la temperatura roman constant, com evoluciona l'equilibri si disminueix el volum?

Datos: R = 0.082 atm L mol⁻¹ K⁻¹

- [EBAU, Extremadura 2021] En un recipient de 6 litres es produeix la reacció A(g) + B(g) = 2 C(g). Quan a 400 °C s'aconsegueix l'equilibri hi ha 0.02 mols de A, 0.02 mols de B i 0.15 mols de C.
 - (a) Trobar les constants d'equilibri Kc i Kp.
 - (b) Calcular la pressió parcial de cada component en l'equilibri.
 - (c) Com evoluciona l'equilibri en disminuir la pressió total, si es manté constant la temperatura? Raonar la resposta.
 - (d) Com evoluciona el sistema en afegir B, suposant constant la temperatura? Raonar la resposta.

Dades: R = 0.082 atm L mol⁻¹ K⁻¹

PROBLEMES DE SOLUBILITAT I PRECIPITACIÓSolubilitat i constant del producte de solubilitat [EBAU, Extremadura 2012] a) Què s'entén per solubilitat d'un compost? b) Dedueix una expressió que relacioni la solubilitat i la constant del producte de solubilitat per a una sal de tipus A_mB_n. [EBAU, Extremadura 2019] Tenim tres sals de AgCl, AgBr i AgI. a) Calculau la solubilitat de les tres sals, expressant-les en g L⁻¹. b) Ordenau les tres sals de major a menor solubilitat. K_{ps} : AgCl = 1.7×10^{-10} ; AgBr = 5.6×10^{-13} ; AgI = 1.1×10^{-16} Masses atòmiques (u): Ag=107.9; Br=79.9; I=126.9; Cl=35.5 [50] [EBAU, Comunitat Valenciana 2008] Ordenau raonadament les següents sals de major a menor solubilitat en aigua: BaSO₄, ZnS, CaCO₃, AgCl. Dades. Productes de solubilitat, K_c : BaSO₄ = 1.10×10^{-10} ; ZnS = 2.50×10^{-22} ; CaCO₃ = 9.00×10^{-9} ; AgCl = 1.10×10^{-10} [51] [EBAU, Extremadura 2012] Per a preparar 500 mL de dissolució saturada de AgBrO3 es van usar 900 mg d'aquesta sal. Calculeu la K_{ps} del bromat de plata. Masses atòmiques (u): Ag=107.9; Br=79.9; O=16 Solució: $K_{ps} = 5.83 \times 10^{-5}$ [EBAU, Comunitat Valenciana 2005] El producte de solubilitat a 25 °C de l'hidròxid d'alumini, Al(OH)₃, és $K_s = 2.0 \times$ 10⁻³² Calculeu: a) La solubilitat molar del compost. b) La quantitat en grams de Al³⁺, que hi ha en un mil·lilitre de dissolució saturada del compost. Massa atòmica (o): A el=27 *Solució:* $s = 5.22 \times 10^{-9} \text{ m}; m = 1.41 \times 10^{-10} \text{ g}$ Efecte de l'ió comú [EBAU, Extremadura 2018] Calculeu la solubilitat del AgBr a 25 °C, expressada en g/L: (a) en aigua pura. (b) en una dissolució aquosa 0.1 m de NaBr, sabent que K, AgBr(25 °C) = 7.7×10^{-13} . Masses atòmiques (u): Ag=107.9; Br=79.9 *Solució:* $s = 1.65 \times 10^{-4} \text{ g/L}; s' = 1.45 \times 10^{-9} \text{ g/L}$ [EBAU, Extremadura 2018] Se sap que, a una certa temperatura, la solubilitat del Pb I_2 en aigua pura és 0.65 g L^{-1} . Determineu: a) La constant del producte de solubilitat. b) La solubilitat (en g L⁻¹) de PbI₂ en presència d'una dissolució 0.15 м de KI, a la mateixa temperatura. Masses atòmiques (u): Pb=207.2; I=126.9 Solució: $K_{ps} = 1.12 \times 10^{-8}$; $s' = 2.29 \times 10^{-4}$ g/L [55] [EBAU, Extremadura 2020] La constant de solubilitat, K_{ps} , del difluorur de calci (CaF₂) val 3.5×10^{-11} . a) Calculeu la solubilitat del CaF₂ en aigua pura, expressada en mol L⁻¹. b) Determineu la solubilitat del CaF₂ en presència d'una dissolució de CaCl₂ 0.5 m. c) Justifique la diferència de solubilitat entre les condicions que s'indiquen en els apartats a) i b).

[EBAU, Extremadura 2019] Sabent que la constant del producte de solubilitat (K_{ps}) del Ag_2CO_3 val 8.5×10^{-12} , calculeur

d) Raoneu quina de les dues substàncies (AgNO₃ o Na₂CO₃) és més efectiva per a reduir la solubilitat del Ag₂CO₃.

la solubilitat del Ag₂CO₃ (expressada en mol L⁻¹) a 25 °C en cadascuna de les següents situacions:

a) en aigua pura;

b) en presència d'una dissolució de AgNO₃ 0.22 mol L⁻¹; c) en presència d'una dissolució de Na₂CO₃ 0.22 mol L⁻¹.

[64] Indiqueu, raonadament, si per a augmentar la solubilitat del PbCl₂ en aigua caldria:

- a) Afegir més aigua.
- b) Afegir HCl.
- c) Augmentar la temperatura.

- [EBAU, Andalusia reserva 2021] Es prepara una dissolució de Fe(OH)₂ en aigua, quedant en el fons del recipient una part del sòlid sense dissoldre. Justifiqueu com afecta a la solubilitat del compost:
 - a) L'addició de FeCl₂.
 - b) Un augment del pH.
 - c) L'addició d'aigua.

SELECTIVITAT

- [66] [EBAU, Andalusia reserva 2021] La descomposició del cianur d'amoni a 11 °C en un recipient de 2 L aconsegueix una pressió total de 0.3 atm quan s'estableix el següent equilibri: NH₄CN(s) ← NH₃(g) + HCN(g)
 - a) Determineu K_C i K_p .
 - b) Si es parteix de 1.0 g de cianur d'amoni, calculi la massa que queda sense descompondre en les mateixes condicions de pressió i temperatura.

Masses atòmiques (u): N=14; C=12; H=1

Solució: a)
$$K_P = 0.0225$$
; $K_C = 4.46 \times 10^{-5}$; b) 0.44 g NH₄CN

- [EBAU, Andalusia reserva 2021] S'introdueix una certa quantitat d'A(s) en un matràs de 2 L. A 100 °C, l'equilibri $A(s) \rightleftharpoons B(s) + C(g) + D(g)$ s'aconsegueix quan la pressió és de 0.962 atm. Calculeu:
 - a) La constant K_p d'aquest equilibri.
 - **b)** La massa d'A(s) que es descompon.

Dades: R = 0.082 atm L mol⁻¹ K⁻¹; massa molar d'A= 84 g mol⁻¹

- [EBAU, Andalusia reserva 2021] S'escalfa NOCl pur a 240 °C en un recipient d'1 L, establint-se el següent equilibri: 2 NOCl(g) == 2 NO(g) + Cl₂(g). Sabent que la pressió total en l'equilibri és d'1 atm i la pressió parcial de NOCl és de 0.64 atm:
 - a) Calculeu les pressions parcials de NO i Cl₂ en l'equilibri.
 - **b)** Determineu K_C i K_P .

Dada: $R = 0.082 \text{ atm L mol}^{-1} \text{ K}^{-1}$

- [EBAU, Andalusia 2021] Donada la reacció a 25 °C i 1 atm de pressió $N_2(g) + O_2(g) \iff 2 \text{ NO}(g)$; $\Delta H = 180.2 \text{ kJ}$, raoneu si són vertaderes o falses les següents afirmacions:
 - a) La constant d'equilibri $K_{\rm p}$ es duplica si es duplica la pressió.
 - b) El sentit de la reacció s'afavoreix cap a l'esquerra si s'augmenta la temperatura.
 - c) El valor de la constant d'equilibri per a aquest procés depèn del catalitzador utilitzat.
- [EBAU, Andalusia 2020] Justifiqueu la veracitat o falsedat de les següents afirmacions:
 - a) Per a un equilibri, $K_{\rm p}$ mai pot ser més petita que $K_{\rm C}$.
 - b) Per a augmentar la concentració de NO2 en l'equilibri:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g), \Delta H = +58.2 \text{ kJ/mol}$$

haurem d'escalfar el sistema.

c) Un increment de la pressió en el següent equilibri:

$$2 C(s) + 2 H_2 O(g) \rightleftharpoons CO_2(g) + CH_4(g)$$

augmenta la producció de metà gasós.

[**FINAL**] [**EBAU**, Comunitat Valenciana 2019] L'hidrogenocarbonat de sodi, NaHCO₃(s), s'utilitza en alguns extintors químics secs ja que els gasos produïts en la seva descomposició extingeixen el foc. L'equilibri de descomposició del NaHCO₃(s) pot expressar-se com: $2 \text{ NaHCO}_3(s) \rightleftharpoons \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$

Per a estudiar aquest equilibri en el laboratori, 200 g de NaHCO₃(s) es van dipositar en un recipient tancat de 25.0 L de volum, en el qual prèviament s'ha fet el buit, que es va escalfar fins a aconseguir la temperatura 110 °C. La pressió a l'interior del recipient, una vegada aconseguit l'equilibri, era de 1.646 atm. Calculeu:

- a) La quantitat (en g) d'NaHCO₃(s) que queda en l'extintor després d'aconseguir-se l'equilibri a 110 °C.
- b) El valor de les constants d'equilibri $K_{\rm P}$ i $K_{\rm C}$ a aquesta temperatura.

Dada. Constant dels gasos, R = 0.082 atm L mol⁻¹ K⁻¹

$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$

$$K_{\rm p} = 59,42$$

$$2 \operatorname{HI}(g) \Longrightarrow \operatorname{H}_2(g) + \operatorname{I}_2(g)$$

$$K_{\mathrm{P1}}$$

$$\frac{1}{2}$$
 H₂(g) + $\frac{1}{2}$ I₂(g) \Longrightarrow HI(g)

$$K_{
m P2}$$

$$HI(g) \Longrightarrow \frac{1}{2} H_2(g) + \frac{1}{2} I_2(g)$$

Calculeu el valor de les constants K_{P1} , K_{P1} i K_{P3} .

[PAU, Comunidad Valenciana 1998] Per a una hipotètica reacció, l'equació química de la qual és:

$$A(g) \Longrightarrow B(g)$$

es plantegen com a possibles gràfiques Concentració = f(t)

MODIFICAR

Justifiqueu quina gràfica correspondrà a cadascun dels següents casos:

a)
$$K_{\rm C} >>>> 1$$

c)
$$K_{\rm C} \simeq 1$$

- [EBAU, Andalusia reserva 2021] Es dissol hidròxid de cadmi, Cd(OH)₂, en aigua fins a obtenir una dissolució saturada a una temperatura donada. Sabent que la concentració d'ions OH es 3.68 × 10⁻⁵ m, calculeu:
 - a) La solubilitat de l'hidròxid de cadmi i el valor de la constant del producte de solubilitat del compost a aquesta temperatura.
 - b) Si a 100 mL de la dissolució anterior se li afegeixen 0.5 g de NaOH, quina serà la concentració molar d'ions Cd²⁺ en la dissolució?

Dades: Masses atòmiques relatives: Na= 23; O= 16; H= 1

- [EBAU, Andalusia reserva 2021] La solubilitat del cromat de plata (Ag₂CrO₄) en aigua a 25 °C és 0.0435 g/L.
 - a) Doneu l'equilibri de solubilitat en aigua del cromat de plata i calculeu el producte de solubilitat de la sal a 25 °C.
 - b) Calculeu si es formarà precipitat quan es barregen 20 mL de cromat de sodi (Na_2CrO_4) 0.08 m amb 30 mL de nitrat de plata ($AgNO_3$) 5 × 10^{-3} m. Considereu els volums additius.

Dades: Masses atòmiques relatives: O= 16; Cr= 52; Ag= 107,8

- [EBAU, Andalusia reserva 2021] Justifiqueu si les següents afirmacions són vertaderes o falses:
 - a) Per a una dissolució saturada d'hidròxid d'alumini, $Al(OH)_3$, es compleix que: $K_s = [Al^{3+}][OH^-]$
 - b) En una dissolució saturada de fluorur de bari, BaF₂, es compleix que [Ba²⁺] = 2[F⁻]
 - c) El producte de solubilitat (K₃) del MgF₂ disminueix en afegir Mg(NO₃)₂ a una dissolució aquosa de MgF₂.
- [EBAU, Cantabria 2021] En la taula adjunta es recullen els valors, a diferents temperatures, de la constant d'equilibri químic: $2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$

T(K)	298	400	600	800	1000
Кр	2.82×10^{-25}	1.78×10^{-16}	1.98×10^{-8}	1.29×10^{-3}	2.64×10^{-1}

(a) Justifiqueu si la reacció anterior és endotèrmica o exotèrmica.

- (b) Expliqueu com afecta a l'equilibri un augment de la pressió, mantenint constant la temperatura.
- [EBAU, País Basc 2022] S'introdueixen 131 g de clorur de nitrosil (NOCl) en un matràs de 1 L i el recipient s'escalfa a 450 °C. El clorur de nitrosil es dissocia un 33 % segons l'equació:

$$2 \text{ NOCl}(g) \Longrightarrow 2 \text{ NO}(g) + \text{Cl}_2(g)$$

- (a) Calculaeu la constant K_c.
- (b) Calculaeu la constant K_p.
- (c) Com canvia (augmenta, disminueix o no s'altera) la concentració de Cl₂ si s'afegeix un gas inert (Ar) a la mescla en equilibri del matràs a volum i temperatura constant?