Chapitre 4 : applications linéaires

Dans tout le chapitre le symbole $\mathbb K$ désigne indifféremment l'ensemble $\mathbb R$ des nombres réels ou l'ensemble $\mathbb C$ des nombres complexes.

1 Définitions, exemples

Définition 1. Soit $f : \mathbb{K}^n \to \mathbb{K}^m$ une application (ou fonction). On dit que f est linéaire si les deux conditions suivantes sont satisfaites :

$$\forall x, y \in \mathbb{K}^n, \qquad f(x+y) = f(x) + f(y),$$

$$\forall x \in \mathbb{K}^n, \ \forall \lambda \in \mathbb{K}, \qquad f(\lambda x) = \lambda f(x).$$

Remarque 1. 1. Les deux conditions ci-dessus sont équivalentes à :

$$\forall x, y \in \mathbb{K}^n, \ \forall \lambda \in \mathbb{K}, \qquad f(x + \lambda y) = f(x) + \lambda f(y).$$

- 2. Si f est linéaire, on a toujours f(0) = 0.
- 3. Si $f: \mathbb{K}^n \to \mathbb{K}^m$ est linéaire alors

$$\forall x_1, ..., x_p \in \mathbb{K}^n, \ \forall \lambda_1, ..., \lambda_p \in \mathbb{K}, \qquad f(\lambda_1 x_1 + ... + \lambda_p x_p) = \lambda_1 f(x_1) + ... + \lambda_p f(x_p).$$

Définition 2. On note $\mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ l'ensemble des applications linéaires de \mathbb{K}^n dans \mathbb{K}^m . Une application linéaire $f \in \mathcal{L}(\mathbb{K}^n) := \mathcal{L}(\mathbb{K}^n, \mathbb{K}^n)$ est appelée endomorphisme de \mathbb{K}^n .

Pour définir une application linéaire, il suffit de la définir sur une base.

Proposition 1. Soit $(e_1,...,e_n)$ une base de \mathbb{K}^n et $(v_1,...,v_n)$ une famille de \mathbb{K}^m . Il existe une unique application linéaire $f: \mathbb{K}^n \to \mathbb{K}^m$ telle que

$$f(e_i) = v_i \qquad \forall i = 1, ..., n.$$

Elle est définie par

$$f(\lambda_1 e_1 + \dots + \lambda_n e_n) = \lambda_1 v_1 + \dots + \lambda_n v_n \qquad \forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n.$$

Preuve. Tout vecteur x se décompose de manière unique sur cette base. Soit $x \in \mathbb{K}^n$. Il existe un unique n-uplet $x_1,...,x_n$ de réels tel que $x=\sum_{k=1}^n x_k e_k$. Par linéarité, $f(x)=\sum_{k=1}^n x_k v_k$.

2 Noyau, image d'une application linéaire

Définition 3. Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$.

(i) Le noyau de f, noté ker f, est défini par

$$\ker f = \{x \in \mathbb{K}^n : f(x) = 0\}.$$

(ii) L'image de f, notée Imf, est définie par

$$\operatorname{Im} f = \{ f(x) : x \in \mathbb{K}^n \}.$$

Remarque 2. Pour tout $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ on a $0 \in \ker f$ et $0 \in \operatorname{Im} f$.

Proposition 2. (i) Si $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, alors ker f est un sous-espace vectoriel de \mathbb{K}^n et Imf est un sous-espace vectoriel de \mathbb{K}^m .

(ii) Si de plus $(e_1,...,e_n)$ est une base de \mathbb{K}^n on a

$$\text{Im } f = Vect(f(e_1), ..., f(e_n)).$$

Preuve. On vérifie aisément ces propriétés à la main.

Définition 4. Soit $f: \mathbb{K}^n \to \mathbb{K}^m$ une application (pas nécessairement linéaire).

(i) On rappelle que f est injective si

$$\forall x, y \in \mathbb{K}^n, \quad f(x) = f(y) \Rightarrow x = y.$$

- (ii) On dit que f est surjective si pour tout $y \in \mathbb{K}^m$ il existe $x \in \mathbb{K}^n$ tel que y = f(x).
- (iii) On dit que f est **bijective** si f est à la fois injective et surjective, c'est-à-dire si, pour tout $y \in \mathbb{K}^m$ il existe un unique $x \in \mathbb{K}^n$ tel que y = f(x).

Définition 5. Une application linéaire $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ et bijective est appelée un isomorphisme.

On va voir plus loin que si $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ est un isomorphisme, alors nécessairement m = n. Dans le cas d'une application linéaire, le caractère injectif, surjectif et bijectif se traduit par des propriétés du noyau et de l'image (du fait de la linéarité).

Proposition 3. Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$.

- f est injective si et seulement si ker $f = \{0\}$.
- f est surjective si et seulement si $Im <math>f = \mathbb{K}^m$.

Proposition 4. Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ injective. Si $\{v_1, ..., v_p\}$ est une famille libre de \mathbb{K}^n , alors la famille $(f(v_1), ..., f(v_p))$ est libre.

Preuve. Comme f est injective

$$0 = \sum_{j=1}^{p} \lambda_j f(v_j) = f(\lambda_1 v_1 + \dots + \lambda_p v_p) \implies \lambda_1 v_1 + \dots + \lambda_p v_p = 0 \implies \lambda_j = 0, \ \forall j = 1, \dots, p,$$

la deuxième implication provenant de la liberté de $\{v_1,...,v_p\}$. D'où le résultat.

Théorème 5. Soit $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. Les assertions suivantes sont équivalentes :

- 1. f est un isomorphisme de \mathbb{K}^n sur \mathbb{K}^m ,
- 2. n = m et f est injective,
- 3. n = m et f est surjective.

Preuve. 1. \Rightarrow 2. : f est un isomorphisme. Soit $\{e_1, ..., e_n\}$ une base de \mathbb{K}^n . Alors $\{f(e_1), ..., f(e_n)\}$ est libre. Donc $n \leq m$. De plus, $Im(f) = Vect(f(e_1), ..., f(e_n)) = \mathbb{K}^m$ donc $\{f(e_1), ..., f(e_n)\}$ est génératrice, donc $n \geq m$. D'où le résultat.

- $2. \Rightarrow 1.$ Soit $\{e_1, ..., e_n\}$ une base de \mathbb{K}^n . Alors $\{f(e_1), ..., f(e_n)\}$ est libre dans \mathbb{K}^n , donc c'est une base de \mathbb{K}^n . Donc f est surjective. Donc f est un isomorphisme.
- $1. \Rightarrow 3.$ idem que ci-dessus.
- 3. \Rightarrow 1. Soit $\{e_1, ..., e_n\}$ une base de \mathbb{K}^n . Alors $\{f(e_1), ..., f(e_n)\}$ est génératrice dans \mathbb{K}^n car f est surjective. Ainsi, $\{f(e_1), ..., f(e_n)\}$ est une base de \mathbb{K}^n . Donc f est injective et f est un isomorphisme.

Proposition 6. Si f est un isomorphisme de \mathbb{K}^n , sa bijection réciproque, notée f^{-1} , est également un isomorphisme de \mathbb{K}^n .

Preuve. Vérifier la linéarité de f^{-1} en exercice!

Définition 6. Soit u une application linéaire de \mathbb{R}^n dans \mathbb{R}^m . On appelle rang de u le nombre

$$rgu := \dim \operatorname{Im} u$$
.

Théorème 7 (Théorème du rang). Soit $u \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. On a

$$\dim \ker u + rgu = n.$$

Preuve. Soit $\{e_1,...,e_p\}$ une base de Ker(u). Ainsi dim $\ker u = p$. On complète cette famille en une base de \mathbb{K}^n notée $\{e_1,...,e_p,e_{p+1},...,e_n\}$. Il vient $Im(u) = Vect(u(e_{p+1}),...,u(e_n))$ car $u(e_i) \in Ker(u)$ pour $1 \leq i \leq p$. Montrons que $\{u(e_{p+1}),...,u(e_n)\}$ est libre. Pour cela, on écrit $\sum_{j=p+1}^n \lambda_j u(e_j) = 0$ ou encore par linéarité $u(\sum_{j=1}^{p+1} \lambda_j e_j) = 0$. Ainsi, $\sum_{j=1}^{p+1} \lambda_j e_j \in Ker(u)$. Mais, par définition $\sum_{j=1}^{p+1} \lambda_j e_j$ est dans un supplémentaire dans \mathbb{K}^n de Ker(u). Donc, on doit avoir $\lambda_j = 0$ pour tout j = 1,...,p+1. On déduit que le rang de u vaut exactement n-p.

3 Opérations sur les applications linéaires

Définition 7. Soient $f, g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\lambda \in \mathbb{K}$. On définit les applications f + g et λf par

$$(f+g)(x) = f(x) + g(x) \qquad \forall x \in \mathbb{K}^n,$$

 $(\lambda f)(x) = \lambda f(x) \qquad \forall x \in \mathbb{K}^n.$

On vérifie facilement que :

Proposition 8. Si $f, g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, alors $f + g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$. Si $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\lambda \in \mathbb{K}$, alors $\lambda f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$.

Définition 8. Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ et $g \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^p)$. On définit l'application $g \circ f : \mathbb{K}^n \to \mathbb{K}^p$, composée de f et g, par

$$(g \circ f)(x) = g(f(x)) \quad \forall x \in \mathbb{K}^n.$$

Proposition 9. Si $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$ et $g \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^p)$, alors $g \circ f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^p)$.

Notations: lorsque $f \in \mathcal{L}(\mathbb{K}^n)$, on note $f^2 = f \circ f$, $f^n = f \circ \cdots \circ f$.

4 Matrice d'une application linéaire

Définition 9. Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de \mathbb{K}^n et $\mathcal{B}' = (e'_1, ..., e'_m)$ une base de \mathbb{K}^m . Pour tout j = 1, ..., n, le vecteur $f(e_j)$ se décompose de manière unique sous la forme :

$$f(e_j) = a_{1j}e'_1 + \dots + a_{mj}e'_m.$$

On appelle matrice de f dans les bases \mathcal{B} et \mathcal{B}' la matrice

$$\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f) := \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in \mathcal{M}_{mn}(\mathbb{K}).$$

Proposition 10. Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de \mathbb{K}^n , $\mathcal{B}' = (e'_1, ..., e'_m)$ une base de \mathbb{K}^m et $A = \text{mat}_{\mathcal{B}, \mathcal{B}'}(f)$. Soient $x \in \mathbb{K}^n$, X le vecteur colonne des coordonnées de x dans la base x et x le vecteur colonne des coordonnées de x dans la base x et x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la base x le vecteur colonne des coordonnées de x dans la vecteur colonne de x

$$Y = AX. (1)$$

Preuve. On a

$$x = \sum_{j=1}^{n} x_j e_j \quad \text{et} \quad f(x) = \sum_{j=1}^{n} x_j f(e_j)$$

d'où

$$f(x) = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} e'_i = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{i,j} x_j) e'_i = \sum_{i=1}^{m} (AX)_i e'_i = \sum_{i=1}^{m} Y_i e'_i$$

d'où (1).

Remarque 3. En particulier, si \mathcal{B} et \mathcal{B}' sont respectivement les bases canoniques de \mathbb{K}^n et \mathbb{K}^m , en notant les vecteurs x et f(x) en colonnes, on a f(x) = Ax.

Remarque 4. 1. Si $f \in \mathcal{L}(\mathbb{K}^n)$ et \mathcal{B} est une base de \mathbb{K}^n , on note $\operatorname{mat}_{\mathcal{B}}(f) := \operatorname{mat}_{\mathcal{B},\mathcal{B}}(f)$.

2. Pour toute base \mathcal{B} de \mathbb{K}^n on a $\operatorname{mat}_{\mathcal{B}}(\operatorname{Id}_{\mathbb{K}^n}) = I_n$.

Proposition 11. Soient $f, g \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $\lambda \in \mathbb{K}$, $\mathcal{B} = (e_1, ..., e_n)$ une base de \mathbb{K}^n , $\mathcal{B}' = (e'_1, ..., e'_m)$ une base de \mathbb{K}^m . On a

$$\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f+g) = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f) + \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(g),$$
$$\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(\lambda f) = \lambda \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f).$$

Preuve. On procède par identification. Faisons le pour la somme par exemple. Soit $A = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f)$, $B = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(g)$, et $C = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f+g)$. En suivant le calcul ci-dessus on a pour $x \in \mathbb{K}^n$:

$$(f+g)(x) = \sum_{i=1}^{m} (CX)_i e'_i = f(x) + g(x) = \sum_{i=1}^{m} (AX)_i e'_i + \sum_{i=1}^{m} (BX)_i e'_i.$$

D'où CX = AX + BX pour tout vecteur $x \in \mathbb{K}^n$, ce qui implique C = A + B.

Proposition 12. Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, $g \in \mathcal{L}(\mathbb{K}^m, \mathbb{K}^p)$, $\mathcal{B} = (e_1, ..., e_n)$ une base de \mathbb{K}^n , $\mathcal{B}' = (e'_1, ..., e'_m)$ une base de \mathbb{K}^n , $\mathcal{B}'' = (e''_1, ..., e''_m)$ une base de \mathbb{K}^p . On a

$$\operatorname{mat}_{\mathcal{B},\mathcal{B}''}(g \circ f) = \operatorname{mat}_{\mathcal{B}',\mathcal{B}''}(g)\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f).$$

On pose $C = \operatorname{mat}_{\mathcal{B},\mathcal{B}''}(g \circ f)$, $B = \operatorname{mat}_{\mathcal{B}',\mathcal{B}''}(g)$, et $A = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f)$. Grâce à la remarque 3, on a d'une part en utilisant que $x = \sum_{j=1}^{n} x_j e_j$,

$$(g \circ f)(x) = \sum_{j=1}^{n} x_j g(f(e_j)) = \sum_{j=1}^{n} \sum_{k=1}^{p} c_{kj} e_k'' = \sum_{k=1}^{p} \left(\sum_{j=1}^{n} c_{kj} x_j\right) e_k'' = \sum_{k=1}^{p} (CX)_k e_k''$$

et d'autre part comme $f(x) = \sum_{j=1}^{n} x_j f(e_j)$ et $f(e_j) = \sum_{i=1}^{m} a_{ij} e'_i$, on a aussi

$$g(f(x)) = g\left(\sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} e_i'\right) = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} x_j g(e_i') = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} x_j \sum_{k=1}^{p} b_{ki} e_k'' = \sum_{k=1}^{p} \left[\sum_{j=1}^{n} \left(\sum_{i=1}^{m} b_{ki} a_{ij}\right) x_j\right] e_k'',$$

ce qui donne $g(f(x)) = \sum_{k=1}^{p} (BAX)_k e_k''$. Par identification, on trouve que CX = BAX pour tout $x \in \mathbb{R}^n$ et donc C = BA.

Proposition 13. Soient $f \in \mathcal{L}(\mathbb{K}^n)$ et $\mathcal{B}, \mathcal{B}'$ deux bases de \mathbb{K}^n (pouvant être identiques). L'application linéaire f est un isomorphisme si et seulement si $\operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f)$ est inversible. Dans ce cas on a

$$\operatorname{mat}_{\mathcal{B}',\mathcal{B}}(f^{-1}) = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f)^{-1}.$$
 (2)

Preuve. Soit $A = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f)$. Supposons que f soit un isomorphisme. Posons alors $\tilde{A} = \operatorname{mat}_{\mathcal{B},\mathcal{B}'}(f)^{-1}$. Soit X un vecteur colonne de \mathbb{K}^n tel que AX = 0. Alors, f(x) = 0, donc x = 0. Donc A est inversible. Ainsi, AX = Y équivaut à $X = A^{-1}Y$. Mais on a aussi $X = \tilde{A}Y$ puisque $x = f^{-1}(y)$. Par identification, on a donc $\tilde{A} = A^{-1}$ ce que l'on voulait. Réciproquement, supposons A est inversible. Alors, par un raisonnement similaire, f est injective donc f est un isomorphisme. On obtient donc la même relation $\tilde{A} = A^{-1}$ qui traduit (2).

5 Changement de bases

Définition 10. Soient $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (e'_1, ..., e'_n)$ deux bases de \mathbb{K}^n . On appelle matrice de passage de \mathcal{B} à \mathcal{B}' la matrice

$$P_{\mathcal{B}\mathcal{B}'} = \operatorname{mat}_{\mathcal{B}',\mathcal{B}}(\operatorname{Id}_{\mathbb{K}^n}).$$

Autrement dit, la j – ème colonne de $P_{\mathcal{BB}'}$ est le vecteur colonne des coordonnées de e'_{j} dans la base \mathcal{B} .

On parle parfois pour \mathcal{B} de l'ancienne base, pour \mathcal{B}' de la nouvelle base. Ainsi $P_{\mathcal{B}\mathcal{B}'}$ exprime la nouvelle base en fonction de l'ancienne base.

Proposition 14. Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{K}^n . La matrice $P_{\mathcal{B}\mathcal{B}'}$ est inversible et on a

$$P_{\mathcal{B}\mathcal{B}'}^{-1} = P_{\mathcal{B}'\mathcal{B}}.$$

Preuve. L'application identité étant inversible, on applique la proposition 13

Proposition 15. Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{K}^n . Soient $x \in \mathbb{K}^n$, X le vecteur colonne des coordonnées de x dans la base \mathcal{B} et X' le vecteur colonne des coordonnées de x dans la base \mathcal{B}' . On

$$X = P_{\mathcal{B}\mathcal{B}'}X'$$
.

Preuve. Soit $(p_{i,j})_{1 \le i,j \le n}$ les coefficients de $P_{\mathcal{BB}'}$. Dans l'ancienne et la nouvelle base on a :

$$x = \sum_{j=1}^{n} x_j e_j = \sum_{j=1}^{n} x_j' e_j' = \sum_{j=1}^{n} x_j' \sum_{i=1}^{n} p_{i,j} e_i = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} p_{i,j} x_j' \right) e_i$$

d'où le résultat par identification.

Théorème 16. Soient $f \in \mathcal{L}(\mathbb{K}^n, \mathbb{K}^m)$, \mathcal{B} et \mathcal{B}' deux bases de \mathbb{K}^n , \mathcal{C} et \mathcal{C}' deux bases de \mathbb{K}^m . On a

$$\operatorname{mat}_{\mathcal{B}',\mathcal{C}'}(f) = P_{\mathcal{C}\mathcal{C}'}^{-1}\operatorname{mat}_{\mathcal{B},\mathcal{C}}(f)P_{\mathcal{B}\mathcal{B}'}.$$

On fait la preuve du théorème dans le cadre de la remarque ci-dessous uniquement.

Remarque 5. Si $f \in \mathcal{L}(\mathbb{K}^n)$, \mathcal{B} et \mathcal{B}' sont deux bases de \mathbb{K}^n , on a en notant $A = \operatorname{mat}_{\mathcal{B}}(f)$ et $A' = \operatorname{mat}_{\mathcal{B}'}(f)$:

$$A' = P_{\mathcal{B}\mathcal{B}'}^{-1} A P_{\mathcal{B}\mathcal{B}'}.$$

Soit $P := P_{\mathcal{BB}'}$. D'une part on a en partant de l'ancienne base $x = \sum_j x_j e_j$ et $f(x) = \sum_j x_j f(e_j)$ ce qui donne

$$f(x) = \sum_{j} x_j \sum_{i} a_{i,j} e_i.$$

Comme X = PX', on obtient $x_j = \sum_k p_{jk} x_k'$, ce qui donne

$$f(x) = \sum_{j} \sum_{k} p_{jk} x_k' \sum_{i} a_{i,j} e_i = \sum_{i} \left[\sum_{k} \left(\sum_{j} a_{i,j} p_{j,k} x_k' \right) \right] e_i.$$

Partons maintenant de la nouvelle base $x=\sum_k x_k' e_k'$ et $f(x)=\sum_k x_k' f(e_k')$ ce qui donne

$$f(x) = \sum_{k} x'_{k} \sum_{l} a'_{l,k} e'_{l} = \sum_{k} x'_{k} \sum_{l} a'_{l,k} \sum_{i} p_{i,l} e_{i} = \sum_{i} \left[\sum_{k} \left(\sum_{l} p_{i,l} a'_{l,k} \right) x'_{k} \right] e_{i}$$

en utilisant $e'_l = \sum_i p_{i,l} e_i$. Par identification, il vient donc que :

$$\forall x \in \mathbb{K}^n, \ \forall 1 \le i \le n, \ (APX')_i = (PA'X)_i,$$

ce qui implique APX' = PA'X' pour tout vecteur x. On conclue que AP = PA' i.e. $A' = P^{-1}AP$.