# ECE590-02 Engineering Robust Server Software

### Spring 2017

**Business Continuity: Disaster Recovery** 

Tyler Bletsch Duke University

Includes material adapted from the course "Information Storage and Management v2" (modules 9-12), published by <u>EMC corporation</u>.

#### **Meta-notes**

Notes I've added to the EMC stuff will appear in boxes like this one.

### BC Terminologies – 1

- Disaster recovery
  - Coordinated process of restoring systems, data, and infrastructure required to support business operations after a disaster occurs
  - Restoring previous copy of data and applying logs to that copy to bring it to a known point of consistency
  - Generally implies use of backup technology
- Disaster restart
  - Process of restarting business operations with mirrored consistent copies of data and applications
  - Generally implies use of replication technologies

### BC Terminologies – 2

#### **Recovery-Point Objective (RPO)**

- Point-in-time to which systems and data must be recovered after an outage
- Amount of data loss that a business can endure



#### **Recovery-Time Objective (RTO)**

- Time within which systems and applications must be recovered after an outage
- Amount of downtime that a business can endure and survive



### **RPO vs RTO**

# Recovery Point Objective (RPO)

How much did I lose?

Recovery Time Objective (RTO)

How long until it's back?

### **Business Impact Analysis**

- Identifies which business units and processes are essential to the survival of the business
- Estimates the cost of failure for each business process
- Calculates the maximum tolerable outage and defines RTO for each business process
- Businesses can prioritize and implement countermeasures to mitigate the likelihood of such disruptions

#### Translation

Identify what will hurt the most to lose, spend your money there.

### **BC** Technology Solutions

- Solutions that enable BC are:
  - Resolving single points of failure ,
  - Multipathing software <</p>
  - Backup and replication
    - Backup
    - Local replication
    - Remote replication

We already did these

That's HA, right?

Continuous replication techniues omitted for time; for details, take my Enterprise Storage Architecture ECE590

# **Backup and Archive**



- What could go wrong?
  - Data corruption → Corrupt data overwrites backup → data loss
  - Solution: multiple snapshots



- What could go wrong?
  - System stolen/fails/destroyed → data loss
  - Solution: **separate systems**



- What could go wrong?
  - Admin forgets → data loss
  - Solution: automation



- What could go wrong?
  - Attacker gains one credential → Attacker can kill/corrupt all copies → data loss
  - Solution: separate credentials for backup



- What could go wrong?
  - User modifies primary and backup data → data loss
  - Solution: backups must be unwritable



- What could go wrong?
  - Backup server quietly dies → No backups kept for a while → data loss
  - Solution: backups must report on success and alert on failure



- What could go wrong?
  - Backups were done wrong all along → data not there when needed → data loss
  - Solution: periodic restoration tests

# Tyler's Immutable Rules Of Backup A BACKUP SOLUTION MUST:

- Record changes to data <u>over time</u>
  - If I just have the most recent copy, then I just have the most recently corrupted copy. RESULT: MIRRORING ISN'T BACKUP!!!!
- 2. Have a copy at a **separate physical location** 
  - If all copies are in one place, then a simple fire or lightning event can destroy all copies
- 3. Must be **automatic** 
  - When you get busy, you'll forget, and busy people make the most important data
- 4. Require **separate credentials** to access
  - If one compromised account can wipe primary and secondary, then that account is a single point of failure
- 5. Be **unwritable** by anyone except the backup software (which ideally should live in the restricted backup environment)
  - If I can cd to a directory and change backups, then the same mistake/attack that killed the primary can kill the backup
- 6. Reliably **report** on progress and **alert** on failure
  - I need to know if it stopped working or is about to stop working
- 7. Have periodic **recovery tests** to ensure the right data is being captured
  - Prevent "well it apparently hasn't been backing up properly all along, so we're screwed"

### What is Backup?

#### Backup

It is an additional copy of production data that is created and retained for the sole purpose of recovering lost or corrupted data.

- Organization also takes backup to comply with regulatory requirements
- Backups are performed to serve three purposes:
  - Disaster recovery
  - Operational recovery
  - Archive

# **Backup Granularity**









### Restoring from Incremental Backup



- Less number of files to be backed up, therefore, it takes less time to backup and requires less storage space
- Longer restore because last full and all subsequent incremental backups must be applied

### Restoring from Cumulative Backup



- More files to be backed up, therefore, it takes more time to backup and requires more storage space
- Faster restore because only the last full and the last cumulative backup must be applied

### **Backup Architecture**

- Backup client
  - Gathers the data that is to be backed up and send it to storage node
- Backup server
  - Manages backup operations and maintains backup catalog
- Storage node
  - Responsible for writing data to backup device
  - Manages the backup device



I'm omitting a lot of discussion of how backup fits into enterprise-scale storage environments; for details, take my Enterprise Storage Architecture ECE590

### **Backup consistency**

- Assume live ("hot") backup
- Is data crash-consistent, or can we do better?
- Quiesce: To make consistent at this time (quiescent).
  - Tell the OS that you're about to take a snapshot, request quiescence
  - OS flushes all buffers and commits the journal, pauses all IO, says OK
  - Take snapshot
  - Allow OS to resume
  - Base the backup (which takes longer) off this snapshot
  - Resulting backup is OS consistent
- Can also be application-aware
  - Same as above, but you tell the application to quiesce
  - Requires backup-aware applications (e.g. Microsoft SQL Server, Oracle database, etc.)
  - Resulting backups are application consistent

### **Backup targets**

# What media?

# Where is it?

### Backup to Tape

- Traditionally low cost solution
- Tape drives are used to read/write data from/to a tape
- Sequential/linear access
- Multiple streaming to improve media performance
  - Writes data from multiple streams on a single tape
- Limitation of tape
  - Backup and recovery operations are slow due to sequential access
  - Wear and tear of tape
  - Shipping/handling challenges
  - Controlled environment is required for tape storage
  - Causes "shoe shining effect" or "backhitching"

### Backup to Disk

- Enhanced overall backup and recovery performance
  - Random access
- More reliable
- Can be accessed by multiple hosts simultaneously



I'm omitting exotic backup media, such as virtual tape, as well as the entire field of digital archival; for details, take my Enterprise Storage Architecture ECE590

### Where does the backup go?

### Local backup

- Use virtual "snapshots" or simple local media
- But wait, don't my rules call for a separate physical location?
- Yes, but local backup can be useful:
  - Can have lower RPO/RTO
  - Can be cheaper
  - May be sufficient for non-critical workloads where data loss is survivable



 Local backup is useful but not <u>sufficient</u> for business-critical workloads!

## Where does the backup go?

### Remote backup

- Use internet or dedicated link to go to different site
- This is not HA (which has practical limits on distance, but we can switch to the remote site 'live'), but rather just backup (can restore from backup)
  - Result: no practical distance/latency limit
- May have bandwidth limitations which limit rate-of-change of primary
  - If 5MB/s of new data is created, but backup link can do 4MB/s, then backup will get increasingly out-of-date over time
  - Eventually acts as bottleneck on primary!

### **Summary**

- Disaster Recovery (DR) exists to handle cases where High Availability (HA) redundancy is overwhelmed
- For data, the key is backups;
   for compute, it's secondary compute servers
- Backup isn't just mirroring! Rules:
  - 1. Record changes to data **over time**
  - 2. Have a copy at a **separate physical location**
  - 3. Must be **automatic**
  - 4. Require **separate credentials** to access
  - 5. Be **unwritable** by anyone except the backup software (which ideally should live in the restricted backup environment)
  - 6. Reliably **report** on progress and **alert** on failure
  - 7. Have periodic **recovery tests** to ensure the right data is being captured
- Can do backup locally (for low cost, low RTO/RPO) and/or remotely (true DR, RTO/RPO proportional to cost)