CS 316: Introduction to Deep Learning

Probability Overview Week 3

Dr Abdul Samad

Lecture Outline

- Motivation
- Examples
- What is probability?
- Basic probability theory
- Probability Mass Function (PMF)
- Probability Density Function (PDF)
- Common Probability Distributions
- Sampling Probability Distributions

Motivation

- Machine Learning is a lot about probabilities.
- Many times in machine learning what you want to do is, calculate a probability of something given some other factors.
- Examples:
 - Image Recognition
 - Classification
 - Sentimental Analysis
 - Generative Models

Image Recognition

- What is the probability that there is a cat in the image?
- $\mathbf{P}(\text{cat}|\text{image}) = \mathbf{P}(\text{cat}|\text{pixel}_1, \text{pixel}_2, \dots, \text{pixel}_n)$

Classification

- What is the probability that the patient is healthy?
- **P**(healthy|symptoms and history)

A	Patient 2 Patient 1			
	Age	29		
	Gender	Female		
	Height	169 cm		
S	Weight	62 kg		
H٢	Smoker	No		
RI.	Heart rate	63		
	Blood pressure	120 90		

Sentimental Analysis

- Is this a happy sentence?
- **P**(happy|words in the sentence)

the first cold shower even the monkey seems to want a little coat of straw

Matsuo Bashō

Generative Models

- Face generation
- Generate a group of pixels such that the resulting image looks like a human face.
- Generate images such that P(face|pixels) is high.

Image generated by a StyleGAN

Machine Learning Model

What is Probability?

 As image resolution decreases, it becomes challenging to tell cat and dog apart.

Probability gives a formal way of reasoning about our level of uncertainty.

Fig. 2.6.1 Images of varying resolutions (10×10 , 20×20 , 40×40 , 80×80 , and 160×160 pixels).

Key Terms

- Outcome When something happens at random there are several potential outcomes. Exactly one of the outcomes occur.
- Sample space S contains all the outcomes.
- Event An event is defined to be some collection of outcomes.
- Empty set ϕ contains no outcomes. Sample Space contains all the outcomes.

Example

- E.g. roll a six sided die.
- The sample space S contains all the outcomes.

$$S = \{1,2,3,4,5,6\}$$

• Let A denote the event that the die roll is odd.

$$A = \{1,3,5\}$$

Let B denote the event that the die roll is equal 2 or higher.

$$B = \{2,3,4,5,6\}$$

Axioms of Probability

• For any event A, its probability is never negative, i.e.,

$$P(A) \geq 0$$

• Probability of the entire sample space is 1, i.e.,

$$P(S) = 1$$

• For any countable sequence of events A_1, A_2, \cdots that are mutually exclusive the probability that any happens is equal to the sum of their individual probabilities,

$$P(\cup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}A_i$$

Independence of Events

Events A and B are called independent if

$$P(A \cap B) = P(A) \cdot P(B)$$

 A collection of 3 events A, B, C is called mutually independent if all four of the following conditions are satisfied.

$$P(A \cap B) = P(A) \cdot P(B)$$

 $P(A \cap C) = P(A) \cdot P(C)$
 $P(B \cap C) = P(B) \cdot P(C)$
 $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$

Conditional Probability

- Conditional probability is the probability of an event occurring, given that another event has already occurred.
- E.g. Given that the test is positive, what is the probability the person has Covid.
- Let A denote the event of interest and B the event that we know has occurred. Then the probability of event A given B is computed as follows:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, where $P(B) > 0$

Bayes Theorem

The Bayes' theorem is expressed in the following formula:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

where P(A|B) is the probability of event A occurring, given event B has occurred P(B|A) is the probability of event B occurring, given event A has occurred, P(A) is the probability of event A occurring, P(B) is the probability of event A occurring

Example

Ali has two bags. Bag 1 has 7 red and 2 blue balls and Bag II has 5 red and 9 blue balls. Ali draws a ball at random and it turns out to be red. Determine the probability that the ball was from Bag I

Example

Ali has two bags. Bag 1 has 7 red and 4 blue balls and Bag II has 5 red and 9 blue balls. Ali draws a ball at random and it turns out to be red. Determine the probability that the ball was from Bag I

 Let A denote the event that the ball is picked from Bag I and B denote the event that the ball picked has the color red.

$$P(A) = rac{1}{2}$$
 $P(B|A) = rac{7}{11}$ $P(B) = rac{1}{2} \cdot rac{7}{11} + rac{1}{2} \cdot rac{5}{14}$

$$P(A|B) = rac{P(B|A)P(A)}{P(B)}$$
 $P(A|B) = rac{rac{7}{11}rac{1}{2}}{rac{7}{11}rac{1}{2} + rac{5}{14}rac{1}{2}} = 0.64$

Example - Spam Classification

What is the probability that an email containing lottery is a spam?

Spam Classification - Intuitive Solution

P(spam | lottery)

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}$$

Spam Classification – Bayes Theorem

$$\mathbf{P}(A \mid B) = \frac{\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)}{\mathbf{P}(A) \cdot \mathbf{P}(B \mid A) + \mathbf{P}(A') \cdot \mathbf{P}(B \mid A')}$$

A: Email is spam B: Email contains lottery

$$P(\text{spam} \mid \text{lottery}) = \frac{P(\text{spam}) \cdot P(\text{lottery} \mid \text{spam})}{P(\text{spam}) \cdot P(\text{lottery} \mid \text{spam}) + P(\text{not spam}) \cdot P(\text{lottery} \mid \text{not spam})}$$

Spam Classification – Bayes Theorem

$$P(\text{spam}) = \frac{20}{100} = 0.2$$

$$P(\text{not spam}) = \frac{80}{100} = 0.8$$

$$\mathbf{P}(\text{lottery} \mid \text{spam}) = \frac{14}{20} = 0.7$$

$$\mathbf{P}(\text{lottery} \mid \text{not spam}) = \frac{10}{80} = 0.125$$

Spam Classification – Bayes Theorem

$$P(spam) = 0.2$$
 $P(lottery | spam) = 0.7$

$$P(\text{not spam}) = 0.8$$
 $P(\text{lottery} \mid \text{not spam}) = 0.125$

$$P(\text{spam} \mid \text{lottery}) = \frac{P(\text{spam}) \cdot P(\text{lottery} \mid \text{spam})}{P(\text{spam}) \cdot P(\text{lottery} \mid \text{spam}) + P(\text{not spam}) \cdot P(\text{lottery} \mid \text{not spam})}$$

$$P(\text{spam} \mid \text{lottery}) = \frac{0.2 \times 0.7}{(0.2 \times 0.7) + (0.8 \times 0.125)} = 0.583$$

Spam Classification – Naïve Bayes Theorem

What is the probability that an email containing lottery and winning is a spam?

Spam Classification – Naïve Bayes Theorem

What is the probability that an email containing lottery and winning is a spam?

Naive assumption

The appearances of 'lottery' and 'winning' are independent

$$\mathbf{P}(A \cap B) = \mathbf{P}(A) \cdot \mathbf{P}(B)$$

$$P(\text{spam} \mid \text{lottery \& winning}) = \frac{P(\text{spam}) \cdot P(\text{lottery} \mid \text{spam}) \cdot P(\text{winning} \mid \text{spam})}{P(\text{spam}) \cdot P(\text{lottery} \mid \text{spam}) \cdot P(\text{winning} \mid \text{spam}) + P(\text{ham}) \cdot P(\text{lottery} \mid \text{ham}) \cdot P(\text{winning} \mid \text{ham})}$$

Spam Classification - Naïve Bayes Theorem

What is the probability that an email containing the words w_1, w_2, \ldots, w_n a spam?

Naive assumption

The appearances of the words $w_1, w_2, ..., w_n$ are independent

$$\mathbf{P}(\mathsf{spam} \mid w_1, ..., w_n) = \frac{\mathbf{P}(\mathsf{spam}) \cdot \mathbf{P}(w_1 \mid \mathsf{spam}) \cdots \mathbf{P}(w_n \mid \mathsf{spam})}{\mathbf{P}(\mathsf{spam}) \cdot \mathbf{P}(w_1 \mid \mathsf{spam}) \cdots \mathbf{P}(w_n \mid \mathsf{spam}) + \mathbf{P}(\mathsf{ham}) \cdot \mathbf{P}(w_1 \mid \mathsf{ham}) \cdots \mathbf{P}(w_n \mid \mathsf{ham})}$$

Probability mass function (PMF) of a discrete r.v

- It is the "probability law" or "probability distribution" of X.
- If we fix some x, then "X = x" is an event

$$p_X(x) = P(X = x) = P(\omega \in \Omega \text{ s.t. } X(\omega) = x)$$

Properties:

$$p_X(x) \geq 0$$

$$\sum_x p_X(x) = 1$$

Expectation, Variance, Standard Deviation

$$E[X] = \sum_x x \cdot p_X(X=x)$$

$$Var[X] = E[(X - \mu)^2] = \sum_{x} p_X(X = x)(X - \mu)^2$$

$$Var[X] = E[X^2] - (E[X])^2$$

$$S.D(X) = \sqrt{Var(X)}$$

Example

Let X be a random variable which denotes the toss of a single unfair die. The following table is a PMF of X.

X	1	2	3	4	5	6
P(X = x)	0.1	0.1	0.1	0.1	0.1	0.5

Compute E[X] and Var[X]

Example

Let X be a random variable which denotes the toss of a single unfair die. The following table is a PMF of X.

X	1	2	3	4	5	6
P(X = x)	0.1	0.1	0.1	0.1	0.1	0.5

Compute E[X] and Var[X]

$$E[X] = \sum_{x} x \cdot p_X(x)$$
 $E[X] = 0.1 + 0.2 + 0.3 + 0.4 + 0.5 + 3 = 4.5$
 $Var[X] = E[X^2] - (E[X])^2$
 $E[X^2] = 0.1 + 0.4 + 0.9 + 1.6 + 2.5 + 18 = 23.5$
 $Var[X] = E[X^2] - (E[X])^2 = 23.5 - 4.5^2 = 3.25$

Joint PMF and Marginal PMF

$$p_{(X,Y)}(x,y) = P(X = x \text{ and } Y = y)$$

$$\sum_x \sum_y p_{(X,Y)}(x,y) = 1$$

$$p_X(x) = \sum_x p_{(X,Y)}(x,y)$$

$$p_Y(y) = \sum_y p_{(X,Y)}(x,y)$$

Independence and Conditional PMF

$$p_{X|Y}(x|y) = rac{p_{X,Y}(x,y)}{p_Y(y)}$$

$$p_Y(y)p_{X|Y}(x|y) = p_{X,Y}(x,y)$$

$$p_X(x)p_{Y|X}(y|x) = p_{X,Y}(x,y)$$

$$p_X(x)p_Y(y)=p_{X,Y}(x,y)$$

$$p_{Y|X}(y|x) = p_X(x)$$

Example

Consider two random variables X and Y with the joint PMF given in the table below.

	Y = 2	Y = 4	Y = 5
X = 1	1/12	1/24	1/24
X = 2	1/6	1/12	1/8
X = 3	1/4	1/8	1/12

- a) Find $P(X \le 2, Y \le 4)$
- b) Find the marginal PMFs of X and Y
- c) Find P (Y = 2 | X = 1)
- d) Are X and Y independent?

Example

Consider two random variables X and Y with the joint PMF given in the table below.

 $(d)p_{X,Y}(2,2)
eq p_X(2) \cdot p_Y(2); rac{1}{6}
eq rac{3}{16}$

Probability Density Function (PDF) of a continuous r.v. f(x)

$$P(a \leq X \leq b) = \int_a^b f_X(x) dx \ \int_{-\infty}^{+\infty} f_X(x) dx = 1$$

$$E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx$$

$$Var[X] = \int_{-\infty}^{+\infty} (x - \mu)^2 f_X(x) dx$$

Joint and Marginal PDF

$$egin{aligned} P(a \leq X \leq b, c \leq X \leq d) &= \int_c^d \int_a^b f_{X,Y}(x,y) dx dy \ &= \int \int_{X,Y} f_{X,Y}(x,y) dx dy = 1 \ &= \int_{Y} f_{X,Y}(x,y) dy \ &= \int f_{X,Y}(x,y) dx \end{aligned}$$

Conditional PDF

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Common Probability Distributions

- Discrete
 - Discrete Uniform
 - Bernoulli
 - Binomial
 - Poisson
- Continuous
 - Continuous Uniform
 - Normal
 - Exponential

Discrete Uniform Distribution

$$P(X=x)=rac{1}{n}$$
 $E[X]=rac{a+b}{2}$ $Var[X]=rac{(b-a+1)^2-1}{12}$

Bernoulli Distribution

Binomial Distribution

$$P(X=x)=inom{n}{x}p^xq^{n-x}$$
 $E[X]=np$ $Var[X]=npq$

Poisson Distribution

$$P(X=x) = rac{\lambda^x}{x!} e^{-\lambda}$$
 $E[X] = \lambda$ $Var[X] = \lambda$

Continous Uniform Distribution

$$f(x) = egin{cases} rac{1}{b-a} ext{ for } x \in [a,b] \ 0 ext{ otherwise} \end{cases}$$
 $E[X] = rac{a+b}{2}$ $Var[X] = rac{1}{12}(b-a)^2$

Gaussian Distribution

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}igg(rac{-(x-\mu)^2}{2\sigma^2}igg) \ E[X] = \mu \ Var[X] = \sigma^2$$

Exponential Distribution

$$f(x) = egin{cases} \lambda \exp(-\lambda x), x \geq 0 \ 0, x < 0 \end{cases}$$
 $E[X] = rac{1}{\lambda}$ $Var[X] = rac{1}{\lambda^2}$

Sampling from a Distribution

- Step 1: generate a random number between 0 and 1
- Step 2: find out which interval the number belongs to
 - \bigcirc [0, 0.3)
 - \bigcirc [0.3, 0.8)
 - 0.8, 1]
- Step 3: Assign an outcome based on the interval

Sampling from a Distribution

Sampling from a Distribution

