FEUILLE 3 : INDICE. THÉORÈME DE CAUCHY. FORMULE DE CAUCHY SUR UN OUVERT CONVEXE

Exercice 1. On considère les lacets suivants :

(i)
$$\forall n \in \mathbb{Z}, \forall t \in [0, 2\pi], \gamma_n(t) = e^{int},$$

(ii) $\forall t \in [0, 2\pi], \gamma_+(t) = \begin{cases} e^{2it}, & \text{si } 0 \le t \le \pi, \\ 2 - e^{-2it}, & \text{si } \pi \le t \le 2\pi. \end{cases}$
(iii) $\forall t \in [0, 2\pi], \gamma_-(t) = \begin{cases} -e^{-2it}, & \text{si } 0 \le t \le \pi, \\ -2 + e^{2it}, & \text{si } \pi \le t \le 2\pi. \end{cases}$
Déterminer l'indice du point 0 par rapport à chacun de ces lacets.

(iii)
$$\forall t \in [0, 2\pi], \gamma_{-}(t) = \begin{cases} -e^{-2it}, & \text{si } 0 \le t \le \pi, \\ -2 + e^{2it}, & \text{si } \pi \le t \le 2\pi. \end{cases}$$

Exercice 2. Indiquer sur le schéma l'indice des points des diverses composantes connexes du lacet ci-dessous par rapport à celui-ci.

Exercice 3. 1. Soit C le cercle unité orienté positivement. Calculer $\frac{1}{2\pi} \int_C \frac{x^n e^{xz}}{n! z^{n+1}} dz$. (On pourra développer e^{xz} en série).

2. Montrer l'égalité $\sum_{n=0}^{+\infty} \frac{x^{2n}}{(n!)^2} = \frac{1}{2\pi} \int_0^{2\pi} e^{2x \cos \theta} d\theta$.

Exercice 4. 1. Soit Ω un ouvert de \mathbb{C} , F et G deux fonctions holomorphes dans Ω et $\gamma: [a,b] \to \mathbb{C}$ un chemin tel que $\gamma^* \subset \Omega$. Montrer que

$$\int_{\gamma} F(z)G'(z) \ dz = F(\gamma(b))G(\gamma(b)) - F(\gamma(a))G(\gamma(a)) - \int_{\gamma} F'(z)G(z) \ dz$$

2. Calculer $\int_{\gamma} (z+2)e^{iz} dz$, où γ est l'arc de parabole $\gamma(t) = t + i\frac{t^2}{\pi^2}$ paramétré par t décrivant $[0,\pi]$ (On réfléchira afin de simplifier le calcul à faire).

Exercice 5. En évaluant $\int_C e^z dz$ sur le cercle unité, montrer que

$$\int_0^{2\pi} e^{\cos\theta} \cos(\theta + \sin\theta) \ d\theta = \int_0^{2\pi} e^{\cos\theta} \sin(\theta + \sin\theta) \ d\theta = 0$$

Exercice 6. Calculer

$$\int_{\gamma} \left(z + \frac{1}{z} \right)^n \frac{dz}{z},$$

1

où $\gamma(t)=e^{it}$ $(t\in[0,2\pi])$ et $n\in\mathbb{N}.$ En déduire la valeur de $\int_0^{2\pi}\cos^nt\ dt.$

Exercice 7. Soit

$$\forall z \in D(1,1) \setminus \{1\}, f(z) = \frac{1}{z^2 - z}.$$

- 1. Montrer que f est holomorphe sur $D(1,1) \setminus \{1\}$.
- 2.a. Soit $\forall t \in [0,2\pi], \gamma(t) = 1 + \frac{e^{it}}{2}.$ Montrer que :

$$\operatorname{Im}\left(\int_{\gamma} f(z)dz\right) = 2\int_{0}^{2\pi} \frac{2 + \cos(t)}{(2 + \cos(t))^{2} + \sin^{2}(t)}dt.$$

b. En déduire que

$$\int_{\gamma} f(z)dz \neq 0.$$

3. Conclure que f n'a pas de primitive sur $D(1,1) \setminus \{1\}$.

Exercice 8. 1. (a) Soit $f(z) = \sum_{n \geq 0} a_n z^n$ la somme d'une série entière de rayon de convergence infini. Montrer que pour r > 0 et $n \geq 0$

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(re^{it}) e^{-int} dt.$$

- (b) Montrer que si $|f(z)| \le A + B|z|^k$ pour tout z de module $\ge R$, f est un polynôme.
- 2. On suppose que le rayon de convergence de la série donnant f est égal à 1 et que $|f(z)|(1-|z|) \le 1$ pour tout z de module strictement inférieur à 1. Montrer que pour tout n, $|a_n| \le \left(1 + \frac{1}{n}\right)^n (n+1)$.