

Prob #2	
Prob #d	· Random variable
	+ Expectation
	+ Variance
Random Variables	+ Other operations
	· Distributions
· Variables that take on some specific values according to some distribution	+ Binomial + Geometric
· Usually described by a piece wise or a set	+ Hyperseometric
	+ Poisson
· The important appect is the distribution they have which describes various aspects about them	
· Some important properties	
+ Expectation: EY= &y P(Y=y)	
-Describes the mean	
-Is linear in nature	
$+ \text{Variance} : V(y) = E(y - Ey)^2 = Ey^2 - (Ey)^2$	
- Describes how spread out the distribution is	
- Additive if the r.v. s are independent and add	ing
+ Standard deviation: $\sigma(y) = \sqrt{V(y)}$	
· Any Sunction of Y just transforms the values of Y	
General distributions	
· Binomial: > ~ Bin (n, p)	· Hyper Geometric: Y~ Hyper Geo (N, r, n)
+ Only two possible states	+ Similar to binomial only is the probability is
+ One state in n slots with probability p	+ Similar to binomial only if the probability is affected by drawing marked objects
	+ Works if the number of markel values is of similar size to total number
+ Events are independent	of similar size to total number
$+ P(y=y) = \binom{n}{y} p^y (1-p)^{n-y}$	+ P(Y=y)= Cr (Nor +N: lotal num
+ E(y)= nρ	$+ \mathbb{P}(Y=y) = \frac{C_{y}^{r} C_{n-y}^{r}}{C_{n}^{r}} + N: \text{ Total num}$ $+ r: \text{ mark num}$ $+ n: \text{ draw num}$
+V(y)=np(1-p)	$+ \mathbb{E}(y=y) = \frac{nr}{N} + V(y) = \frac{nr}{N} \cdot \frac{N-r}{N} \cdot \frac{N-r}{N-1}$
· Geometric: Y~ Geo(p)	· Poisson: Y ~ Pois (X)
+ Probability of lasting until	t A sumbor of events can be soon during the time
+ Series of failures until success	+ Any number of events can happen during the time period + F(V) = 2
0(V) (1-1)-1	+ 2: rate over time period
$+p(y=y)=(1-p)^{y-1}p$	$+ \mathbb{P}(y=y) = e^{\lambda} \cdot \frac{x^{y}}{y!} + V(y) = \lambda$
$+\mathbb{E}(y) = \frac{1}{\rho} + V(y) = \frac{1-\rho}{\rho^2}$	y:
Г Г Г	

Represent some of exponentials Represent some of exponentials Represents R	
• Continuous R.V. + Properties • Coff + PDF • Expectation • A control left will B combiner shift + Variance • Types of Continuous R.V. + Indicator + Uniform • A formula • Expectation • Visit the legrees of Genera • A control left will be combined the shift • Visit the legrees of Genera • Visit the legrees of Freedom • Visit the legrees of Freedom • Visit the legrees of Freedom • Page of Control • Exponential • Exponential • Gamma • Beta • P(a) P(b) • Page of Cy (1-y) ** • Pa	
t froperties + CDF + PDF + PDF + PDF + Expectation + Variance Types of Catinacus RV. + Indicator + Uniform + Reposential + Exponential + Exponential + Gamma + Beta • P(S) = $\frac{1}{8}$ (C) $\frac{1}{8}$ (B) • Poff: $\frac{1}{9}$ (C) • Time for the arrival of a poisson object • Time for the arrival of a poisson object • Time for the arrival of a poisson object • Time for the arrival of a $\frac{1}{9}$ (G) • Poff: $\frac{1}{9}$ (P) • Poff: $\frac{1}{9}$ (P	
+ PDF + Expectation + Variance • Types of Galianas R.V. + Indicator + Uniform + Exponential + Exponential + Gamma + Beta • Iline for the arrival of a poisson object • Plf: $\frac{1}{2} - 9$ • Clf: $\frac{1}{2} - 9$ • $\frac{1}{$	
Types of Cativacus R.V. + Indicator + Uniform + Wormal + Exponential + Gamma + Beta	
Types of Continuous R.V. + Indicator + Uniform + Wormal + Exponential + Gamma + Beta	
That caller + Uniform + V is the degree's of freedom + V of the degree's of the degree's of the degree o	
$\begin{array}{c} + \ \text{Exponential} \\ + \ \text{Gamma} \\ + \ \text{Beta} \\ \\ + \ \text{Pelf: } f(\beta) = \frac{\Gamma(\alpha) \Gamma(\beta)}{R(\alpha,\beta)} \\ + \ \text{Log}(\gamma) \\ \\ + \ \text{Log}(\gamma) \\$	
+ Beta • B(a, B) = $\frac{1}{\Gamma(a+\beta)}$ • plf: $f(y) = \frac{y^{a-1}(1-y)^{B-1}}{\beta(g,B)} \mathbb{1}_{[0,1]}$ • Time for the arrival of a poisson object • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ¹ (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₁ y ² (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₂ y ² C ₁ y ² (1-y) ⁿ⁻¹ • P(y) = $\frac{2}{5}$ C ₂ y ² C ₁ y ² (1-y) ² (1-y) ² (1-y) ² (1-y) ² (1-y) ² (1-y) ²	
Uniform Time for the arrival of a poisson object $F(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n-i} \\ \vdots = n \end{cases}$ $f(y) = \begin{cases} C_i y^i (1-y)^{n$	
Time for the arrival of a poisson object $F(y) = \sum_{i=\alpha}^{\infty} C_{i}^{\alpha} y^{i} (1-y)^{n-i}$ $P(y) = \sum_{i=\alpha}^{\infty} C_{i}^{\alpha} y^{i} (1-y)^{n-i}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \cdot \mathbb{F} \left(1 \left(1_{1}, 1_{2} \right) = \frac{1_{1} + 1_{2}}{2} \right) $	
1, 2, 1	
Normal	
$pdf: f(y) = \sqrt{\frac{1}{2\sigma^2}} exp\left(\frac{-(y-u)^2}{2\sigma^2}\right)$	
. E(y)= м	
$V(y) = \sigma^2$	
· Affline transformations: Z:= a+by~N(a+bm,b202)	
Exponential	
·Time until First poisson event	
.pds.f(y)= 2e ^{2t} .cds.f(y)= 1-e ^{2t} t ∈ [0,∞)	
$ \cdot \mathbb{E}(y) = \frac{1}{2} V(y) = \frac{1}{2^2} $	
· Scalar in variance: Y~ Exp(a) then Ym V Exp(\(\lambda\mu\)	
· Memoryless: $P(t>s+7 t>r) = P(t>s)$	
$\min\left\{\chi_{1},\chi_{2}\dots\right\} \sim E_{Xp}(\lambda)$	

Con	litional Dist	ributions						
P(x e	dx Y=y):= P()	X edx, Y edy)		Ge	eneral Defini	tions		
				·F(x,	$(y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f$	(x,y) dx dy = P()	x <x, td="" y<y)<=""><td></td></x,>	
上(X))=y)=∫x P(x R	(edx Y=y)	4		$(y) = \frac{p(x,y)}{p(y)}$			
Proper	ies + + => F	:(VIV\= c						
	X is constant ⇒ E Y is a constant with	probability 1⇒ E(X	(IY)≈ E X	• P(y)=	$= \int_{-\infty}^{\infty} P(x, y)$	dx		
		$u \neq y = \lambda E(x y)$		1				
	otonicity=> if X =	EZ with probability		Indep		C. N 1/(V)	ν)- υ(υ) , μ(y)	
	E(XI	y)≤ # (₹ y)	1)	X and Y an) IP(X, Y)= IP(re indep iff (X)P(Y)	if indep V(X+	- <i>YJ</i> =VWJ+VWJ	
5) Tow	er property=> E	(E(XIY)) = E>	X) F(x,y)=F(x)				
		tic function of y the) f (x, y) = f(x				
	(XZ Y) = Z·E)P(x y)=P(x				
	any convex function $(\phi(x) y) \ge \phi(1)$		5))[[[f(X)g(Y)]=	Ef(X) E ₉ (y)			
Also	vorks for result	ar expectations	Inc	lep measure	• {			
	E φ(x) ≥ φ(Eφ)				y-EY)=Cov(x,y)			
			+ Co.	v(ax,by)=ab	Cov (X, Y)			
			· correlation	on: $\rho(x,y) = \frac{cov}{\sqrt{V(x)}}$	(<i>x</i> , <i>y</i>) x) v(<i>y</i>)			
Reference	TII							
		pdf/pmf (cdf/cmf	mg f		Variance		
) vame					Mean			
Bernouli	B(e)	(%)pkg^-k	1 (1-p)(k)+1(k) (p,1) 5 4		ρ	ρ(1-ρ)		
Binomial	Bin(n, p)		Sum pmf	(q+pet)"	ηρ ηρ	np(1-p)		
Geometric	Geom (p)	(1-p) p	1-(1-p)k	ρε t denn>0 1-(1-p)et 1 (t 1)		1-1/2		
Poisson	Pois (2)	$\frac{\lambda^k e^{-\lambda}}{k!}$	e Ly L!	λ(e ^t -1)	λ	λ		
Exponential	$E_{xp}(\lambda)$	$\lambda e^{-\lambda t}$	1-ē ^{2t}	1/(1- 1/x) t< \lambda		1/22		
Unisorm	() (O1/O2)	1/02-01	y- 01 02- 01	$\frac{e^{t\theta_2}-e^{t\theta_1}}{t(\theta_2-\theta_1)}$	$\frac{\theta_2 + \theta_4}{2}$	$\frac{\left(\theta_2 - \theta_1\right)^2}{12}$		
Normal		1 = (x-u) =	$\frac{1}{2}\left[1+erf\left(\frac{x-\mu}{0\sqrt{2}}\right)\right]$	$\int_{e}^{ut+\sigma^2t^2/2}$	Д	σ2		
Gamma	['(a, B)	e β t a-1		(1-tβ) a	aB	aβa		
Beta	Beta (a, B)	y ^{q-1} (1-y) ^{β-1} β (α, β) 1(y)			<u>α</u> +β	$\frac{\alpha \beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$		
χ^2	$\chi^2(v) \sim \Gamma(\gamma_{2,2})$				1	20		
						7		

Stats #1	Important Laws	
→ ~ 5 # →	· Lav of large numbers: The expected value from	Making Estimators
	an experiment gets closer to the real expected value	Relative efficiency: $\frac{V(\hat{\Theta}_2)}{V(\hat{\Theta}_1)}$
Estimators	· Central limit theorem: As n → 00 any distribution approaches a normal distribution	(5) = 43 / 10 / 10 / 10 / 10 / 10 / 10 / 10 / 1
· Estimators are ways of approximating	"	· Sufficiency: P(ξ½=yi3 ê) does not depend on θ
the parameters a distribution + Thuy are a r.v. in and of themselves		• Rao-blackwell: Ĝ*:= Œ(Ĝ W)
· Each estimator has various properlies		· Likelihood Junc: L= TT1 f(z; 9)
+ Bins == B(ê)= ê - 0	Confidence Internals	
+ $Error := \hat{\theta} - \Theta $ + $Mean square error := MSE(\hat{\theta}) = E(\hat{\theta} - \Theta)^2 = V(\hat{\theta}) + B(\hat{\theta})^2$	· Pivot method	· Fisher-Neymn: Decomposes the likelihog
+ Mean square error = Mobile und of	+ Create a function of Y that has	· If g is monotone and U suff. then g (u) is also sufficient
· Some properties depend on having a large sample size due to the law of large numbers	a known distribution then use that	g (u) is also sutticient
and the central limit theorem. These are asymptotic properties	· Common pirots	If the likelihood ratio loss not depend
asymptotic properties	+ $\frac{\sqrt{N(\lambda-\lambda)}}{2}$ ~ $N(0,1)$: Known Δ	· If the likelihood ratio loss not depend on 0 then ô is sufficient and complete
+ Asymtotic normality: √n (Ôn- 0) →N(0, o 2)	T 70/00,1). Nown 0	· Finding MLE
- This implies consistency	- M E (\(\overline{7} - Z_{\alpha/2} \overline{7}, \overline{7} + Z_{\alpha/2} \overline{7}, \(\overline{7} + Z_{\alpha/2} \overline{7}, \(\overline{7} \)	+ Take log of L
		t differentiate and solve for zero
Popular estimators	+ \(\frac{1}{5}\) ~ T(n-1): Both unknown	
	- M & (\overline{V} - S t = 5 t = 1/2 / \overline{V} + S t = 1/2 / \overline{V} = S t = 1/2 / \overli	*Can use this to Stall a general considence interval Stader
• Sample mean := $\overline{y} = \frac{1}{\Lambda} = \sum_{i=0}^{R} y_i$	$+\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$ 2:	$= \frac{\sqrt{-\mathbb{E}^{\Theta} \int_{\bullet \bullet}^{\mathbb{Z}} \log f(V_{c}; \Theta)} \sqrt{n} \left(G(\hat{\theta}) - G(\theta) \right) n}{\log V(\theta, 1)}$
t Unbiased for the mean + Asymtotically normal	10-1 2 0-1 3	(4) N(0,1)
$+ Vaniance: \frac{\sigma^2}{n}$		Moment matching estimator $M_k(\hat{\theta}) = [E^{\theta}y^k] = \frac{1}{n} \sum_{i=1}^{k} y^k$
Sample variance: $S^{\frac{1}{2}} \frac{1}{n-1} \stackrel{\stackrel{<}{\sim}}{\stackrel{<}{\sim}} (y_i - A)^{\frac{1}{2}}$ + Unbiasel estimator for $\sigma^{\frac{1}{2}}$, - () 1 /12) , () /h ₄ -/h ₂)	K
+ Follows a X2 distribution	-M1-M2 6)- Z = 2 / \(\sqrt{\frac{\sqrt{\sqrt{2}}{n_1} + \sqrt{\sqrt{2}}/n_2}{n_2}} \)	
	- Assumes of and of are known	
	Usyames of and of ale Month	
Parameter Point Estimator $\mathbb{E}(\hat{\Theta})$ Standarderror		
M 7 M 5/5n	AM 1. 4. 6.	
ρ $\hat{\rho} = \frac{y}{\Lambda}$ ρ $\sqrt{\frac{\rho_2}{\Lambda}}$	• Making estimators + Comparisons	
	- Efficiency	
$M_1 - M_2$ $\overline{y}_1 - \overline{y}_2$ $M_1 - M_2$ $\sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{n_2}}$	- Snfficiency	
	- Completeness + Best estimators	
	-MVUE	
	-MLEs -Moment matching estimators	
	Lect-w	e # 4
		live efficiency
		Siciency 1+
	· Comp	oleteness num variance unbiased estimator (MVUE)
	Le ctur	nt natching estimators
	• Maxia	num likelihood estimator (MLE)