- (19)【発行国】日本国特許庁(JP)
- (12)【公報種別】公開特許公報(A)
- (11) 【公開番号】特開平7-144108
- (43) 【公開日】平成7年(1995)6月6日
- (54) 【祭明の名称】ハニカム状エレクトレットフィルターおよびその製造方法
- (51) 【国際特許分類第6版】

B01D 39/14 39/00

39/16 A

【審査請求】未請求

【請求項の数】 5

【出願形態】OL

【全頁数】10

- (21) 【出願番号】特願平5-296782
- (22) 【出願日】平成5年(1993) 11月26日
- (71) 【出願人】

【識別番号】000005887

【氏名又は名称】三井石油化学工業株式会社

【住所又は居所】東京都千代田区霞が関三丁目2番5号

(72)【発明者】

【氏名】松 浦 智

【住所又は居所】山口県玖珂郡和木町和木六丁目1番2号 三井石油化学工業株式会社内

(72)【発明者】

【氏名】湯 浅 治 夫

【住所又は居所】山口県玖珂郡和木町和木六丁目1番2号

- (19) [Publication Office] Japanese Patent Office (JP)
- (12) [Kind of Document] Published Unexamined Patent Application (A)
- (11) [Publication Number of Unexamined Application (A)] Lai d-Open Patent HEI {SEI} 7 144108
- (43) [Publication Date of Unexamined Application] Heisei 7 ye ar (1995) June 6 day
- (54) [Title of Invention] HONEYCOMB ELECTRET FILTER AND ITS MANUFACTURING METHOD
- (51) [International Patent Classification 6th Edition]

B01D 39/14 E

39/00 B

39/16 A

[Request for Examination] Examination not requested

[Number of Claims] 5

[Form of Application] OL

[Number of Pages in Document] 10

- (21) [Application Number] Patent application Hei 5 296782
- (22) [Application Date] Heisei 5 year (1993) November 26 day
- (71) [Applicant]

[Applicant Code] 000005887

[Name] MITSUI PETROCHEMICAL INDUSTRIES, LTD.

[Address] Tokyo Chiyoda-ku Kasumigaseki 3-Chome 2-5

(72) [Inventor]

[Name] Matsuura Satoshi

[Address] Inside of Yamaguchi Prefecture Kuga-gun Waki-cho Waki 6-Chome 1-2 Mitsui Petrochemical Industries, Ltd.

(72) [Inventor]

[Name] Yuasa Haruo

[Address] Inside of Yamaguchi Prefecture Kuga-gun Waki-cho

Services.

三井石油化学工業株式会社内

(72) 【発明者】

【氏名】水 戸 正 之

【住所又は居所】山口県玖珂郡和木町和木六丁目 1 番 2 号 三井石油化学工業株式会社内

(72) 【発明者】

【氏名】白 井 博 典

【住所又は居所】山口県玖珂郡和木町和木六丁目 1 番 2 号 三井石油化学工業株式会社内

(74)【代理人】

【弁理士】

(57) 【要約】

【目的】集麼性に優れ、かつ、圧力損失が低く、捕集性能の 持続性に優れたハニカム状エレクトレットフィルターおよび その製造方法の提供。

【構成】エレクトレット化された不織布積層シートをハニカム状に成形してなるハニカム状エレクトレットフィルターであって、前記不織布積層シートが、フィルム解繊糸からなるエレクトレット化不織布層(A)と、メルトプローン法不織布からなるエレクトレット化不織布層(B)とを有する積層シートであるハニカム状エレクトレットフィルターおよびその製造方法。

【特許請求の範囲】

【請求項1】エレクトレット化された不織布積層シートをハニカム状に成形してなるハニカム状エレクトレットフィルターであって、前記不織布積層シートが、フィルム解繊糸からなるエレクトレット化不織布(A)と、メルトブローン法不織布からなるエレクトレット化不織布(B)とを有する積層シートであるハニカム状エレクトレットフィルター。

【請求項2】熱可塑性樹脂フィルムをエレクトレット化してエレクトレット化フィルムを形成した後、該エレクトレット化フィルムを解穢してエレクトレット化不織布(A)を形成する工程と、熱可塑性樹脂からなるメルトプローン法不織布をエレクトレット化してエレクトレット化不織布(B)を形

Waki 6-Chome 1-2 Mitsui Petrochemical Industries, Ltd.

(72) [Inventor]

[Name] Mito Masayuki

[Address] Inside of Yamaguchi Prefecture Kuga-gun Waki-cho Waki 6-Chome 1-2 Mitsui Petrochemical Industries, Ltd.

(72) [Inventor]

[Name] Shirai Hironori

[Address] Inside of Yamaguchi Prefecture Kuga-gun Waki-cho Waki 6-Chome 1-2 Mitsui Petrochemical Industries, Ltd.

(74) [Attorney(s) Representing All Applicants]

[Patent Attorney]

(57) [Abstract]

[Objective] It was superior in dust collecting property, at same time, pressure loss was low, wassuperior in retention of trapping performance, offer of honeycomb electret filter and its manufacturing method.

[Constitution] Being a honeycomb electret filterwhich nonwoven fabric laminated sheet which electret formation is done forming in honeycomb, It is a laminated sheet which it possesses aforementioned nonwoven fabric laminated sheet, electret-converted nonwoven fabric layer which consists of film split fiber yarn (A), and electret-converted nonwoven fabric layer which consists of melt blowing method nonwoven fabric (B), honeycomb electret filter and its manufacturing method.

[Claim(s)]

[Claim 1] Being a honeycomb electret filterwhich nonwoven fa bric laminated sheet which electret formation is done forming in honeycomb, honeycomb electret filter which is a laminated sheet which it possesses aforementioned nonwoven fabric laminated sheet, electret-converted nonwoven fabric which consists of film split fiber yarn (A), and electret-converted nonwoven fabric which consists of melt blowing method nonwoven fabric (B).

[Claim 2] Manufacturing method of honeycomb electret filter which is included step which electret formation doing thermoplastic resin film, after forming electret formation film, fiber splitting doing said electret formation film, forms electret-converted nonwoven fabric (A), step which electret formation

成する工程と、前記エレクトレット化不織布(A)とエレクトレット化不織布(B)とを積層して不織布積層シートを形成する工程と、該不織布積層シートをハニカム状に成形する工程とを含むハニカム状エレクトレットフィルターの製造方法。

【請求項3】前記積層を熱エンボス融着法で行う請求項2に 記載のハニカム状エレクトレットフィルターの製造方法。

【請求項4】前記積層を超音波融着法で行う請求項2に記載のハニカム状エレクトレットフィルターの製造方法。

【請求項5】前記積層をニードルパンチ法で行う請求項2に 記載のハニカム状エレクトレットフィルターの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はハニカム状エレクトレットフィルターおよびその製造方法に関し、特に、集麼性に優れ、かつ、圧力損失が低く、捕集性能の持続性に優れたハニカム 状エレクトレットフィルターおよびその製造方法に関する。

[0002]

【従来の技術】ポリオレフィン、例えば、ポリプロピレンを、メルトブロー法によって不織布に成形し、得られた不織布に直流高電圧を印加してエレクトレット化することによりエレクトレット化不織布を製造する方法が、特開昭60-168511号公報、特開平2-197110号公報等に開示されている。

【0003】このエレクトレット化不織布は、例えば、プリーツ状に形成してその内部に気流を通過させて、該気流中のゴミ、塵等の微粒子を静電力により吸着して除去するフィルターとして使用できることが知られている。

【0004】しかし、エレクトレット化不織布を用いるフィルターは、(1)圧力損失が高く、また、(2)粒子が詰まり易いことから寿命が短いという問題があった。

doing melt blowing method nonwoven fabric which consists of thermoplastic resin, forms electret-converted nonwoven fabric (B), step which laminate doing aforementioned electret-converted nonwoven fabric (A) and electret-converted nonwoven fabric (B), forms nonwoven fabric laminated sheet, step which said nonwoven fabric laminated sheet forms in honeycomb.

[Claim 3] Manufacturing method of honeycomb electret filter which is stated in Claim 2 which does the aforementioned laminate with thermal embossing melt bonding method.

[Claim 4] Manufacturing method of honeycomb electret filter which is stated in Claim 2 which does the aforementioned laminate with ultrasonic melt bonding method.

[Claim 5] Manufacturing method of honeycomb electret filter which is stated in Claim 2 which does theaforementioned lamination with needle punch method.

[Description of the Invention]

[0001]

[Field of Industrial Application] This invention regards honeyc omb electret filter and its manufacturing method. Especially, it was superior in dust collecting property, at same time, pressure losswas low, was superior in retention of trapping performance, it regards honeycomb electret filterand its manufacturing method.

[0002]

[Prior Art] The method which forms in nonwoven fabric poly olefin, for example, polypropylene, with melt blowing method, imprinting doing direct current high voltage in nonwoven fabric which is acquired, produces electret-converted nonwoven fabric by electret formation doing, is disclosed in Japan Unexamined Patent Publication Showa 60-168511 number disclosure, Japan Unexamined Patent Publication Hei 2-197110 number disclosure etc.

[0003] This electret-converted nonwoven fabric, forming in for example, pleat, passing stream in inside, Adsorbing by electrostatic force, as filter which it removes it has been informed rubbish, dust or other fine particle in said stream that you can use.

[0004] But, as for filter which uses electret-converted nonwove n fabric, (1) pressure loss is high, inaddition, there was a problem that (2) particle lifetime is short from the plugging easy thing.

【0005】このような問題を解決するために、前記エレクトレット化不織布をハニカム状に成形してなるフィルターが提案されている(特公昭59-51323号等)。

[0006]

【発明が解決しようとする課題】しかし、本発明者らが検討した結果、このようなハニカム状エレクトレット化フィルターにおいても、必ずしも(1)低い圧力損失、(2)高捕集性能、(3)長期寿命の3点のいずれもを満足することはできないことが判明した。例えば、エアコン用フィルターの場合、圧力損失がmmAq以下、捕集性能が12%以上、タバコ粒子に対する捕集性能の寿命が100本以上であることが要求されている。

【0007】そこで、本発明の目的は、このような低い圧力 損失を有し、捕集性能および長期にわたる捕集性能の寿命に 優れたエアコン用ハニカム状エレクトレットフィルター、お よびそのハニカム状エレクトレットフィルターを製造するこ とができる方法を提供することにある。

[0008]

【課題を解決するための手段】前記課題を解決するため、本発明は、エレクトレット化された不織布積層シートをハニカム状に成形してなるハニカム状エレクトレットフィルターであって、前記不織布積層シートが、フィルム解繊糸からなるエレクトレット化不織布(A)と、メルトプローン法不織布からなるエレクトレット化不織布(B)とを有する積層シートであるハニカム状エレクトレットフィルターを提供するものである。

【0009】また、本発明は、前記ハニカム状エレクトレットフィルターを製造するための方法として、熱可塑性樹脂フィルムをエレクトレット化してエレクトレット化フィルムを解機してエレクトレット化不織布(A)を形成する工程と、熱可塑性樹脂からなるメルトブローン法不織布をエレクトレット化してエレクトレット化不織布(B)を形成する工程と、前記エレクトレット化不織布(A)とエレクトレット化不織布(B)とを積層して積層シートを形成する工程と、該積層シートをハニカム状に成形する工程とを含むハニカム状エレクトレットフィルターの製造方法をも提供するものである。

【0010】以下、本発明のハニカム状エレクトレットフィルター(以下、「本発明のフィルター」という) およびその 製造方法について詳細に説明する。

[0005] In order to solve this kind of problem, filterwhich becomes by forming in honeycomb, aforementioned electret-converted nonwoven fabric, (Such as Japan Examined Patent Publication Sho 59-51323 number) has been proposed.

[0006]

[Problems to be Solved by the Invention] But, result these inventors examining. Regarding this kind of honeycomb electret filter, as for being satisfied which of 3 points of (1) low pressure loss, (2) high trapping performance, (3) long period lifetime without being possible was ascertained. In case of filter for for example, air conditioner, it is required that pressure loss below mmAq, trapping performance 12 % or higher, lifetime of trapping performance for cigarette particle is above the 100.

[0007] Then, objective of this invention, the honeycomb elect ret filter for air conditioner where to have this kind of low loss of pressure, it was superior in the trapping performance, and lifetime of trapping performance which covers long period, and it is to offer method which can produce its honeycomb electret filter.

[8000]

[Means to Solve the Problems] In order to solve aforementione d problem, as for this invention, being a honeycomb electret filterwhich thenonwoven fabric laminated sheet which electret formation is done forming in honeycomb, It is something which offers honeycomb electret filter which aforementioned nonwoven fabric laminated sheet, is a laminated sheet which itpossesses, electret-converted nonwoven fabric which consists of film split fiber yarn (A), electret-converted nonwoven fabric which consists of melt blowing method nonwoven fabric (B),

[0009] In addition, as for this invention, as method in order to produce theaforementioned honeycomb electret filter, It is something which offers manufacturing method of honeycomb electret filter which is included step which electret formation doing thermoplastic resin film, after forming electret formation film, fiber splitting doing said electret formation film, forms electret-converted nonwoven fabric (A), step which electret formation doing melt blowing method nonwoven fabric which consists of thermoplastic resin, forms electret-converted nonwoven fabric (B), step which laminate doing aforementioned electret-converted nonwoven fabric (A) and electret-converted nonwoven fabric (B), forms laminated sheet, step which said laminated sheet forms in honeycomb.

[0010] You explain in detail below, concerning honeycomb electret filter of this invention (Below, "filter of this invention") and its manufacturing method.

10 P 100

【〇〇11】本発明のフィルターは、フィルム解繊糸からなるエレクトレット化不繊布(A)と、メルトブローン法不繊布からなるエレクトレット化(B)とを有する積層シートをハニカム状に成形してなるものである。この不織布(A)および(B)は、熱可塑性樹脂からなるものである。用いられる熱可塑性樹脂は、特に制限されず、各種の熱可塑性樹脂を用いることができる。特に、エレクトレット化が容易で、その電荷および捕集性能の持続性が優れている点で、極性基を有するポリオレフィン系重合体または散ポリオレフィン経動を含むポリオレフィン系重合体またはポリオレフィン組成物を引きるポリオレフィン系重合体またはポリオレフィン組成物を引きるポリオレフィン系重合体またはポリオレフィン組成物として、

- (A) 極性基を有する単量体と、 α ーオレフィンとの共重合体、
- (B)酸化またはハロゲン化により、ポリオレフィンの側鎖または主鎖に極性基を導入してなる変性ポリオレフィン
- (C) ポリオレフィンまたは前記(B) の重合体に、極性基を有する単量体をグラフト共重合してなる変性ポリオレフィン
- (D) 未変性ポリオレフィンと、前記(A)、(B) および
- (C) から選ばれる少なくとも1種との混合物

等の重合体単独、またはその混合物などを主要成分として含む組成物が挙げられる。ここで、ポリオレフィン組成物が、変性ポリオレフィンと未変性ポリオレフィンとを含む場合、変性ポリオレフィンと未変性ポリオレフィンとは、相互に同一のポリオレフィンからなるものであってもよいし、異なるポリオレフィンからなるものであってもよい。

【0012】このポリオレフィン系重合体または該ポリオレフィン系重合体を含むポリオレフィン組成物が有する極性基としては、例えば、塩素原子、フッ素原子、臭素原子、ョウ素等のハロゲン原子;カルボニル基、ニトロ基等の原子団:あるいは、下記式:

 $-COOCH_3$, $-COOC_2H_5$, $-OCOCH_3$, $-OCOCH_3$, $-OCOCH_3$, $-OCOCH_4$, $-OCOCH_4$, $-COONH_4$, $-COONH_4$,

[0013]

[0011] As for filter of this invention, it is something which becomes by forming in honeycomb, laminated sheet which it possesses electret-converted nonwoven fabric which consists of film split fiber yarn(A), electret formation which consists of melt blowing method nonwoven fabric (B). This nonwoven fabric (A) and (B) is something which consists of thermoplastic resin. thermoplastic resin which is used is not restricted, especially it is possibleto use various thermoplastic resin. Especially, electret formation being easy, in point where retention of theelectric charge and trapping performance is superior, polyolefin type polymer which possesses polar group, or polyolefin composition which includes said polyolefin type polymer is desirable. As polyolefin type polymer or polyolefin composition which possesses this polar group,

- (A) Copolymer of monomer which possess polar group and α -olefin.
- (B) the modified polyolefin which becomes due to oxidation or halogenation, introducing polar group into side chain or main chain of polyolefin,
- (C) modified polyolefin which becomes by graft copolymerization doing themonomer which possesses polar group, in polymer of polyolefin or aforementioned (B),
- (D) Blend of unmodified polyolefin and at least 1 kind which is chosen from the aforementioned (A), (B) and (C).

You can list composition which includes mixture etc of polyme r alone or aboveas main component. When here, polyolefin composition, it includes with modified polyolefin and unmodified polyolefin, modified polyolefin and unmodified polyolefin, it is possible to be something which consists of same polyolefin mutually. It is possible to be something which consists of polyolefin whichdiffers.

[0012] As polar group which this polyolefin type polymer, or polyolefin composition which includes said polyolefin type polymer has, for example, chlorine atom, fluorine atom, bromine atom, iodine or other halogen atom; carbonyl group, nitro group or other atom group; or, below Formula:

-COOCH3, -COOC2 H5, -OCOCH3, -OC2 H5, -OCH2 C6 H 5, -COOH, -OH, -NH2, -CONH2, -COONH4,

[0013]

【化1】

[Chemical Formula 1]

 $(v) - O - CH_1 - CF_2$

【0014】で表される基などが挙げられる。これらの極性 基の1種または2種以上が、前記ポリオレフィン系重合体ま たはポリオレフィン組成物に含まれていてもよい。以下、こ のポリオレフィン系重合体または該ポリオレフィン系重合体 を含むポリオレフィン組成物を総称して「ポリオレフィン系 組成物」という。

【0015】また、前記(A)極性基を有する単量体と、αーオレフィンとの共重合体の具体例として、式(iii)で表される基を有するペンタブロモフェニルメタクリレート、または式(iv)で表される基を有する2、4、6ートリブロモフェニルメタクリレート、あるいは式(v)で表される基を有するトリフロロエチルメタクリレート等と、エチレン、プロピレン等のαーオレフィンとの共重合体などが挙げられる。

【0016】また、(B)酸化またはハロゲン化によりポリオレフィンの側鎖または主鎖に極性基を導入してなる変性ポリオレフィンの具体例として、ポリエチレン、ポリプロピレン等を、オゾン、一酸化窒素等と反応させて酸化する、あるいはコロナ放電処理により表面を酸化する等の処理により、分子内にカルボニル基やニトロ基を形成してなるもの、またはポリオレフィンを塩素化して分子内に塩素原子を導入してなるものなどが挙げられる。

【0017】さらに、(C) 極性基を有する単量体をグラフト共重合させてなる変性ポリオレフィンの具体例として、不飽和カルポン酸またはその誘導体から選ばれる少なくとも1種の変性単量体で変性された変性ポリオレフィンが挙げられる。

【0018】前記変性ポリオレフィン、または未変性ポリオレフィンの主成分であるポリオレフィンは、 α ーオレフィンの単独重合体、2種以上の α ーオレフィンからなる共重合体、またはこれらから選ばれる2種以上の混合物である。 α ー

[0014] So you can list group etc which is displayed. 1 kind or 2 kinds or more of these polar group, may be included by the aforementioned polyolefin type polymer or polyolefin composition. Below, this polyolefin type polymer, or polyolefin composition which includes said polyolefin type polymer, naming, "polyolefin type composition" with you say.

[0015] In addition, as concrete example of copolymer of mono mer which possess aforementioned (A) polar group and ocolefin, You can list penta bromophenyl methacrylate which possesses group which is displayed with Formula (iii), Or 2,4,6-tribromophenyl methacrylate which possesses group which is displayed with thetype (iv), Or trifluoro ethyl methacrylate etc which possesses group which is displayed with thetype (v), copolymer etc of ethylene, propylene or other ocolefin.

[0016] In addition, as concrete example of modified polyolefin which becomes by introducing polar group into side chain or main chain of polyolefin due to the (B) oxidation or halogenation, polyethylene, polypropylene etc, reacting with ozone, nitrogen monoxide, etc oxidation it does, or surface oxidation is done with corona discharge treatment by or other treatment, those which become by forming carbonyl group and nitro group in intramolecular, or those which become by chlorination doing polyolefin, introducing chlorine atom into intramolecular, can list etc.

[0017] Furthermore, as concrete example of modified polyolef in which becomes by graft copolymerization doing monomer which possesses (C) polar group, You can list modified polyolefin which modification is done with modification monomer of theat least 1 kind which is chosen from unsaturated carboxylic acid or derivative.

[0018] Aforementioned modified polyolefin, or polyolefin which is a main component of unmodified polyolefin, it is a homopolymer of ceolefin, copolymer which consists of ceolefin of 2 kinds or more, or blend of 2 kinds or more which is

. 12 5 40.

オレフィンとしては、例えば、エチレン、プロピレン、1ープテン、1ーペンテン、1ーヘキセン、イソペンテン、4ーメチルー1ーペンテン、1ーオクテン、1ーボウテン、1ーボウタデセン、1ーエイコセン等が挙げられる。

【0019】このポリオレフィンの具体例として、ポリエチレン、ポリプロピレン、ボリー1ーブテン、ポリー4ーメチルー1ーペンテン、エチレン・プロピレン共重合体、エチレン・1ーブテン共重合体、エチレン・1ーブテン共重合体、4ーメチルー1ーペンテン・1ーデセン共重合体等が挙げられる。これらの中でも、強度が高く、適度な溶融粘度に調整するのが容易であり、メルトブロー法による成形が容易である点で、ポリプロピレン、ポリー1ーブテン、ポリー4ーメチルー1ーベンテンが好ましく、特にポリプロピレンが安価で成形し易く、エレクトレット化が容易であるため、特に好ましい。

【0021】(C)変性ポリオレフィンは、前記ポリオレフィンに、不飽和カルボン酸およびその誘導体から選ばれる少なくとも1種の変性単量体をグラフト共重合して変性してなるものである。この変性ポリオレフィンは、未変性ポリオレフィンと同一ないしは相溶性の優れたポリオレフィンを用いることが好ましい。例えば、ポリオレフィン系組成物の成分として、変性ポリオレフィンと未変性ポリオレフィンを含む組成物を使用する場合、未変性ポリオレフィンとしてポリプロピレンを用いるときには、グラフト変性ポリオレフィンの原料ポリオレフィンとして、ポリプロピレンを用いることが好ましい。

【0022】(C)変性ポリオレフィンをグラフト変性するための変性単量体として用いられる不飽和カルボン酸またはその誘導体として、例えば、不飽和カルボン酸、その無水物、エステル、アミド、イミド、クロリドなどを挙げることができる。

【0023】前記不飽和カルボン酸またはその誘導体の具体例としては、アクリル酸、メタクリル酸、ビニル酢酸、エチルアクリル酢酸、2.4ーペンタジエン酸、カルボキシスチレン、マレイン酸、フマル酸、イタコン酸、シトラコン酸、アリルコハク酸、メサコン酸、グルタコン酸、ナジック酸、メチルナジック酸、テトラヒドロフタル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メ

chosen from these. As ox-olefin, you can list for example, ethylene, propylene, 1- butene, 1- pentene, 1- hexene, iso pentene, 4- methyl- 1- pentene, 3- methyl- 1- pentene, 1- octadecene, 1- eicosene etc.

[0019] As concrete example of this polyolefin, you can list pol yethylene, polypropylene, poly-1- butene, poly-4- methyl-1- pentene, ethylenepropylene copolymer, ethylene1- butene copolymer, ethylene4- methyl-1- pentene copolymer, propylene1- butene copolymer, 4- methyl-1- pentene1- decene copolymer etc. It is easy, strength to be high even among these, to adjust themoderate melt viscosity. In point where formation with melt blowing method is easy, polypropylene, poly-1- butene, poly-4- methyl-1- pentenedesirable. Especially polypropylene being inexpensive, it is easy to form, because the electret formation is easy, especially it is desirable.

[0020] In addition, as for this polyolefin, in order to show mode rate flow property, production of nonwoven fabric with melt blowing method is easy. In point where nonwoven fabric which is superior in strength isacquired, $[\eta]$, usually, those of range of 0.5 to 3 dl/g, preferably 0.7 to 1.5 dl/g, particularly preferably 0.8 to 1.3 dl/g is desirable. In this invention, $[\eta]$ is value which is measured in 135 °C decalin.

[0021] (C) Modified polyolefin, in aforementioned polyolefin, i ssomething which becomes by graft copolymerization doing modification monomer of the at least 1 kind which is chosen from unsaturated carboxylic acid and derivative, modification doing. As for this modified polyolefin, same as unmodified polyolefin, or it is desirable to use polyolefin where compatibility is superior. As component of for example, polyolefin type composition, when composition which includes modified polyolefin and unmodified polyolefin is used, When using polypropylene as unmodified polyolefin, it is desirable to use polypropylene, as starting material polyolefin of grafted polyolefin.

[0022] As unsaturated carboxylic acid or derivative which is use d as degeneration monomer in order grafted to do (C) themodified polyolefin, anhydride, ester, amide, imide, chloride etc of for example, unsaturated carboxylic acid, can be listed.

[0023] As aforementioned unsaturated carboxylic acid or concrete example of derivative, listing the acrylic acid, methacrylic acid, vinyl acetic acid, ethyl acrylic acetic acid, 2,4-pentadienoic acid, carboxy styrene, maleic acid, fumaric acid, itaconic acid, citraconic acid, allyl succinic acid, mesaconic acid, glutaconic acid, Nadic acid, methyl Nadic acid, tetrahydrophthalic acid, methyl acrylate, ethyl acrylate,

7 . Y . . .

チル、メタクリル酸エチル、メタクリル酸プチル、マレイン 酸モノメチル、マレイン酸ジメチル、マレイン酸モノエチル 、マレイン酸ジエチル、フマル酸モノメチル、フマル酸ジメ チル、フマル酸モノエチル、フマル酸ジエチル、シトラコン 酸モノメチル、シトラコン酸ジメチル、シトラコン酸モノエ チル、シトラコン酸ジエチル、ナジック酸モノメチル、ナジ ック酸ジメチル、ナジック酸モノエチル、ナジック酸ジエチ ル、アクリル酸グリシジル、メタクリル酸グリシジル、無水 マレイン酸、無水イタコン酸、無水シトラコン酸、メチルへ キサヒドロフタル酸、3.6-エンドメチレン無水フタル酸 、無水メチルテトラヒドロフタル酸、アクリルアミド、メタ ・クリルアミド、マレイン酸モノアミド、マレイン酸ジアミド 、マレイン酸-N-モノエチルアミド、マレイン酸-N、N ージエチルアミド、マレイン酸ーN-モノブチルアミド、マ レイン酸ーN、Nージエチルアミド、フマル酸モノアミド、 フマル酸ジアミド、フマル酸-N-モノエチルアミド、フマ ル酸ーN、Nージエチルアミド、フマル酸ーNーモノブチル アミド、フマル酸-N.N-ジブチルアミド、マレイミド、 N-ブチルマレイミド、N-フェニルマレイミド、アクリル 酸ナトリウム、メタクリル酸ナトリウム、アクリル酸カリウ ム、メタクリル酸カリウム等が挙げられ、これらは1種ある いは2種以上組み合わせて併用することもできる。これらの 中では無水マレイン酸が好ましい。

【0024】上記変性単量体をポリオレフィンにグラフト共 重合させて(C)変性ポリオレフィンを調製する方法として は、公知の種々の方法を採用することができる。例えば、ポ リオレフィンと変性単量体とを、溶媒の存在下または不存在 下に、ラジカル重合開始剤を添加して、または添加せずに高 温に加熱して反応させる方法によって行うことができる。ま た、この反応に際して、スチレン等の他のビニルモノマーを 共存させてもよい。

【0025】(C)変性ポリオレフィンにおける変性単量体の含有量、すなわち(C)変性ポリオレフィンのグラフト率は、通常、3モル%以下であり、特に1.5モル%以下の範囲になるように調製することが好ましい。特にポリオレフィン系組成物として変性ポリオレフィン単独を使用して不織布(A)および/または不織布(B)を形成する場合は、グラフト率が1モル%以下であるのが好ましい。

【0026】また、(C) 変性ポリオレフィンの固有粘度(135 $^{\circ}$ C、デカリン)は、未変性ポリオレフィンとの均一な混合が容易となり、適度な流動特性を有し、メルトブローン法不織布の製造が容易となる点で、通常、0.1 $^{\circ}$ 3.0 d $^{\circ}$ 1 $^{\circ}$ 8、好ましくは0.3 $^{\circ}$ 2.0 d $^{\circ}$ 1 $^{\circ}$ 9、特に好ましくは0.5 $^{\circ}$ 1.5 d $^{\circ}$ 1 $^{\circ}$ 9である。

【0027】本発明において、未変性ポリオレフィンと変性 ポリオレフィンとを含むポリオレフィン系組成物を前記不様

butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, monomethyl maleate, dimethyl maleate, monoethyl maleate, diethyl maleate, monomethyl furnarate, dimethyl furnarate, monoethyl furnarate, diethyl furnarate, monomethyl citraconate, dimethyl citraconate, monoethyl citraconate, diethyl citraconate, monomethyl Nadate, dimethyl Nadate, monoethyl Nadate, diethyl Nadate, glycidyl acrylate, glycidyl methacrylate, maleic anhydride, itaconic acid anhydride, citraconic acid anhydride, methyl hexahydrophthalic acid, 3,6-endo methylene phthalic anhydride, methyl tetrahydrophthalic acid anhydride, acrylamide, methacrylamide, maleic acid mono amide. maleic acid di amide, maleic acid -N- mono ethyl amide, maleic acid -N,N -di ethyl amide, maleic acid -N- mono butyl amide, maleic acid -N,N-di ethyl amide, furnaric acid mono amide, furnaric acid di amide, furnaric acid -N- mono ethyl amide, furnaric acid -N,N -di ethyl amide, furnaric acid -Nmono butyl amide, furnaric acid -N,N-di butyl amide, maleimide, N- butyl maleimide, N- phenyl maleimide, sodium acrylate, sodium methacrylate, potassium acrylate, potassium methacrylate etc. These can also jointly use 1 kind or 2 kinds or more combining. Among these maleic anhydride is desirable.

[0024] Graft copolymerization doing above-mentioned modific ation monomer in polyolefin, as methodwhich manufactures (C) modified polyolefin, various methods of public knowledge can be adopted. for example, it is possible to do with themethod which polyolefin and modification monomer, adding radical polymerization initiator under existing of solventor under absence, or not adding, heating to high temperature, reacts. In addition, styrene or other other vinyl monomer it is possible to coexist at the time of this reaction.

[0025] Content of modification monomer in (C) modified polyolefin, Namely as for grafting ratio of (C) modified polyolefin, Usually, it is a 3 mole % or less. Especially in order to become range of 1.5 mole % or less, it is desirable tomanufacture. Especially, using modified polyolefin alone as polyolefin type composition, when nonwoven fabric (A) and/or nonwoven fabric (B) is formed, it is desirable for grafting ratio tobe 1 mole % or less.

[0026] In addition, as for intrinsic viscosity (135 °C, decalin) of (C) modified polyolefin, uniform mixing of the unmodified polyolefin becomes easy. It possesses moderate flow property, in point where production of the melt blowing method nonwoven fabric becomes easy, usually, it is a 0.1 to 3.0 dl/g, preferably 0.3 to 2.0 dl/g, particularly preferably 0.5 to 1.5 dl/g.

[0027] In this invention, when polyolefin type composition which includes unmodified polyolefin and modified polyolefin it

10 P 20

布(A) および不総布(B) の主材として用いる場合、そのポリオレフィン系組成物における変性ポリオレフィン/未変性ポリオレフィンの含有割合は、通常、重量比で0.1/99.9~20/80程度であり、好ましくは1/99~5/95程度である。

【0028】また、ポリオレフィン系組成物には、前記変性ポリオレフィンおよび未変性ポリオレフィン以外に、本発明の目的を損なわない範囲で、各種の添加剤を配合してもよい。この添加剤としては、例えば、酸化防止剤、紫外線吸収剤、顔料、染料、核剤、充填剤、スリップ剤、アンチブロッキング剤、滑剤、難燃剤、可塑剤等が挙げられる。

【0029】さらに、ポリオレフィン系組成物の調製は、各種の常用の方法にしたがって行なうことができる。例えば、前記変性ポリオレフィンおよび/または未変性ポリオレフィン、ならびに必要に応じて各種の添加剤を混合した後、溶融混練する方法にしたがって行うことができる。用いられる混合機としては、例えば、リボンブレンダー、V型ブレンダー、タンブラー、ヘンシェルミキサー等があげられる。また、溶融混練は、例えば、一軸または二軸押出機、バンバリーミキサー、ニーダー、二本ロール等を用いて行うことができる。

【0030】本発明のフィルターを構成する積層シートは、前記ポリオレフィン系組成物を代表例とする熱可塑性樹脂からなる不織布(A) および不織布(B) を有し、不織布(A) はフィルム解繊糸からなるものであり、不織布(B) はメルトブローン法不織布からなるものであり、両層を構成する不織布は、エレクトレット化されてなるものである。不織布(A) と不織布(B) とは、同一の成分からなる熱可塑性樹脂で形成されていてもよいし、異なる成分からなる熱可塑性樹脂で形成されていてもよい。

【0031】前記不織布(A)は、フィルム解繊糸からなるものであり、熱可塑性樹脂フィルムを解繊して製造されるものであれば、その製造方法は特に制限されない。例えば、前記ポリオレフィン系組成物を代表例とする熱可塑性樹脂を押出機で溶融し、環状ダイから押出してフィルムを成形する。このフィルムをスリッターで一定幅に切断し、もしくは切断せずにフィルムをその伸び率以上に延伸することにより解繊して解繊糸を製造する。次に、この解繊糸を、例えば、カーディング等の装置でシートの幅方向に均一に分散させ、次いで好ましくはエンボスロール等で圧着することにより製造することができる。

uses as the primary material of aforementioned nonwoven fabric (A) and nonwoven fabric (B), content of modified polyolefin / unmodified polyolefin in polyolefin type composition, usually, is 0.1/99.9 to 20/80 extent with the weight ratio. It is a preferably 1/99 to 5/95 extent.

[0028] In addition, other than aforementioned modified polyol efin and unmodified polyolefin, in range whichdoes not impair objective of this invention, it is possible to polyolefin type composition, to combine various additive. As this additive, you can list for example, antioxidant, ultraviolet absorber, pigment, dye, nucleating agent, filler, slip agent, antiblocking agent, lubricant, fire retardant, plasticizer etc.

[0029] Furthermore, can manufacture polyolefin type composition, following to various usualmethod, to do. for example, aforementioned modified polyolefin and/or unmodified polyolefin, after mixing various additive, according to need, Following to method which melt mixing is done, it is possible to do. You can list for example, ribbon blender, V type blender, tumbler, Henschel mixer etc as mixer which is used. In addition, to do making use of for example, single screw or twin screw extruder, Banbury mixer, kneader, dual roll etc it ispossible melt mixing.

[0030] As for laminated sheet which forms filter of this invention, nonwoven fabric (A) and nonwoven fabric (B) which consists of thermoplastic resin which designates theaforementioned polyolefin type composition as representative example possessing, nonwoven fabric (A) is something which consists of film split fiber yarn. nonwoven fabric (B) is something which consists of melt blowing method nonwoven fabric. nonwoven fabric which forms both layers, is somethingwhich becomes by electret formation being done. nonwoven fabric (A) and nonwoven fabric (B) may be formed with thermoplastic resin which consists of the same component. It is possible to be formed with thermoplastic resin which consists of componentwhich differs.

[0031] Aforementioned nonwoven fabric (A) is something whi ch consists of film split fiber yarn. fiber splitting doing thermoplastic resin film, if it is something which is produced, thermanufacturing method especially is not restricted. thermoplastic resin which designates for example, aforementioned polyolefin type composition asthe representative example is melted with extruder. extrusion doing from circular die, film it forms. This film with slitter is cut off in constant width, or without cutting off, fiber splitting doing film by drawing doing above elongation, it produces split fiber yarn. Next, with for example, carding or other equipment in transverse direction of sheet dispersion doing thissplit fiber yarn, in uniform. Next, it can produce by with such as preferably embossing roll pressure bonding doing.

Sec. 25.

【0032】この不総布(A)は、単繊維の平均繊維径が20~60μmであって、かつ目付量10~30g/m²、常密度0.05~0.2g/cm³、および平均表面電荷密度0.1×10-9クーロン/cm²以上であるエレクトレット化不総布である。ここで、本発明において、単繊維の平均繊維径は、繊維試料表面の電子顕微鏡写真(500倍)を撮影し、得られた写真上で30本の繊維を任意に選び、その各繊維の繊維径をノギス等を用いて測定し、各繊維径の測定値の平均値を計算して求められる値である。

【0033】また、不総布(A)のエレクトレット化処理は、フィルム成形時に行ってもよいし、不織布を成形後に該不織布をエレクトレット化する方法によって行ってもよい。ここで、フィルム成形時に行なう場合は、エレクトレット化の効率に優れるため、捕集性能が、成形後の不織布をエレクトレット化する場合と比べて良好となり好ましい。

【0034】エレクトレット化は、不総布またはフィルムに 直流電圧を印加して行なうことができる。印加される直流電 圧値は、使用する電極の形状、電極間距離等、また、エレクトレット化不総布に要求される帯電電荷量、処理速度等に従って適宜選択される。例えば、電極間距離が8mmの場合、少なくとも-5kV、好ましくは-6~-20kVの直流電圧を不総布に印加して行うことができる。

【0035】直流電圧の印加は、いずれの方法に従って行ってもよく、特に制限されない。例えば、不織布またはフィルムを直流電圧を印加した一対の電極間に通して行う方法;不総布の表面にコロナ放電やパルス状高電圧を加える方法:不織布の表裏両面を他の誘電体で保持し、両面に直流高電圧を加える方法などいずれの方法によって行ってもよい。

【0036】さらに、不織布(B)を構成するメルトブローン法不織布は、まず、熱可塑性樹脂、好ましくは前記したポリオレフィン系組成物を押出機等に供給して加熱溶融、混練し、多数の細孔を有するメルトブロー用ダイから微細な樹脂流として押出す。押し出された樹脂流を高速の加熱気体流と接触させて冷却、固化させて、微細な繊維径の不連続繊維に形成し、この繊維を多孔性支持体上に集積させることにより製造することができる。

[0032] As for this nonwoven fabric (A), it is a electret-convert ed nonwoven fabric which average fiber diameter of single fiber being 20 to 60 μm , at same time , is above apparent weight 10 to 30 g/m², bulk density 0.05 to 0.2 g/cm³, and average surface charge density 0.1x10-9 C/cm². Here, electron microscope photograph (500 time) of fiber sample surface photography it does average fiber diameter of the single fiber, in this invention, it chooses fiber of 3 0optionally on photograph which is acquired. fiber diameter of each fiber is measured making use of calipers etc. Calculating mean value of measured value of each fiber diameter, it is a value which is sought.

[0033] In addition, it is possible to do electret-forming process of nonwoven fabric (A), at thetime of film molding. After forming it is possible to do nonwoven fabric with method which thesaid nonwoven fabric electret formation is done. When here, it does at time of film molding because it is superior inefficiency of electret formation. trapping performance, becomes satisfactory in comparison with case where theelectret formation it does nonwoven fabric after forming, is desirable.

[0034] Imprinting doing direct current voltage in nonwoven fa bric or film, to do it is possible theelectret formation. as for direct current voltage which imprinting is done, electrode shape , electrode spacing etc which is used. In addition, following to charging amount of electric charge , process rate etc which is required to the electret-converted nonwoven fabric, it is selected appropriately. When for example , electrode spacing is 8 mm, imprinting doing direct current voltage of -5 kV , preferably -6 to -20 kV atleast in nonwoven fabric, it is possible to do.

[0035] Following to any method, it is possible to do imprinting of direct current voltage, especially is not restricted. for example, method which nonwoven fabric or film passing between pair of electrodes which through direct current voltage imprinting done it does.; method which adds corona discharge, pulse high voltage to surface of nonwoven fabric.; method etc which keeps both front and back sides of nonwoven fabric with otherdielectric, adds direct current high voltage to both surfaces, It is possible to do with any method.

[0036] Furthermore, melt blowing method nonwoven fabric whi ch forms nonwoven fabric (B) first, thermoplastic resin, preferably polyolefin type composition which before was inscribed, supplying to extruder etc, heating and melting, kneading, extrusion it does as microscopic resin stream from die for melt blowing whichpossesses multiple pore. Contacting with heated gas stream of high speed to cool resin stream which waspushed out, solidification doing, forms in discontinuous fiber of microscopic fiber diameter, can produce by

5 y 40.

【0037】ポリオレフィン系組成物の溶融、混練における加熱温度は、ポリオレフィン系組成物の主成分であるポリオレフィンの融点によって適宜調整される。ポリオレフィンが滅成して低分子量化せず、良好な機械的強度を有する不織布が得られ、また、溶融されたポリオレフィン系組成物の溶融粘度が適度で溶融成形が容易となる点で、通常、200~350℃程度、特に、220~300℃の範囲で行うことが好ましい。

【0038】ポリオレフィン系組成物の溶融混練および押出の吐出量は、通常、10~130kg/hr程度である。

【0039】また、用いられるメルトプロー用ダイは、溶融されたポリオレフィン系組成物を吐出する細孔を先端リップ部に、多数有するものであり、通常、幅1000~2000mmのものである。この細孔は、先端リップ部に、通常、800~3000個形設されており、その孔径は、通常、0.5mm程度である。

【0040】また、メルトブロー用ダイにおいて、溶融ポリオレフィン系組成物は、高速度の加熱気体と接触し、分割されると共に、溶融状態でドラフトされて繊維長方向へ引き延ばされると共に、さらに繊維径の微細化が進行する。そのため、メルトブロー用ダイは、高速の加熱気体流を導入し、ダイの内部またはダイの外部で、溶融されたポリオレフィン系組成物と加熱気体流とを接触させて微細な不連続単繊維に成形する装置を有する。この装置は、メルトブロー用ダイの内部に加熱気体流の吹出口を配設してなるものでもよいし、メルトブロー用ダイの先端リップ外側に溶融されたポリオレフィン組成物に加熱気体流を吹き付けるように加熱気体流の吹出口を配設してなるものでもよい。

【0041】加熱気体は、特に制限されず、コストの点で加熱空気が一般に使用されるが、ポリオレフィン系組成物の劣化を防止するために加熱された不活性気体を使用してもよい。加熱気体流の温度は、通常、200~360℃、特に好ましくは230~310℃で、溶融されたポリオレフィン組成物の温度より少なくとも10℃程度は高いことが好ましい。また、加熱気体流の流速は、通常、100~600m/sec、特に200~400m/sec程度であることが望ましい。

【0042】メルトプロー用ダイから吐出される微細な不連 続単繊維を、多孔性支持体上に集積させてウエッブ状のメル トプローン法不織布を得ることができる。この多孔性支持体 accumulating this fiber on porous support.

[0037] As for heating temperature in melting and kneading of polyolefin type composition, It is adjusted appropriately by melting point of polyolefin which is amain component of polyolefin type composition. polyolefin forming, decrease molecular weight reduction it does not do, nonwoven fabricwhich possesses satisfactory mechanical strength is acquired. In addition, melt viscosity of polyolefin type composition which is melted beingmoderate, point where melt molding becomes easy. Usually, 200 to 350 °C extent, especially, it is desirable to do in range of the 220 to 300 °C.

[0038] Melt mixing of polyolefin type composition and extrusi on amount of extrusion, usually, are the 10 to 130 kg/h extent.

[0039] In addition, die for melt blowing which is used, is something which the polyolefin type composition which is melted pore which discharges in end lip, the large number it possesses. Usually, it is something of width 1000 to 2000 mm. This pore is installed, in end lip, usually, 800 to 3000. hole diameter, usually, is 0.5 mm extent.

[0040] In addition, in die for melt blowing, as for molten poly olefin composition, it contacts with heated gas of high speed, is divided, draft being done with molten state, as it is prolonged to fiber length direction, furthermore fining of fiber diameter advances. Because of that, die for melt blowing, possesses equipment which introduces heated gas stream of the high speed, polyolefin type composition and heated gas stream which with inside of die or outside of die, is melted contacting, forms in microscopic discontinuous single fiber. This equipment, may be something which becomes by arranging spray outlet of heated gas stream in inside of diefor melt blowing, it ispossible to be something which becomes by arranging spray outlet of heated gas stream, in order to blow heated gas stream to polyolefin composition which is melted in end lip outsideof die for melt blowing.

[0041] Heated gas is not restricted especially, hot air is used gen erally inthe point of cost. It is possible to use inert gas which is heated in order to preventthe deterioration of polyolefin type composition. temperature of heated gas stream usually, with 200 to 360 °C, particularly preferably 230 to 310 °C, it is desirable for 10 °C extent to be at least higher than thetemperature of polyolefin composition which is melted. In addition, as for flow rate of heated gas stream, usually, it is desirable to be a 100 to 600 m/sec and especially 200 to 400 m/sec extent.

[0042] Accumulating microscopic discontinuous single fiber whi ch discharges from die for melt blowing on porous support. melt blowing method nonwoven fabric of web can be acquired.

100

To Andrews Control (1984) and the Control (1984) and the

として、例えば、ステンレス、ポリエステル等からなる網目 構造体等を用いることができる。

【0043】この不織布(B)は、単繊維の平均繊維は、適度な通気性を有し、微細な粉塵に対する集塵性が良好である点で、通常、 $0.5\sim10\,\mu$ m程度であり、特に好ましくは $1\sim6\,\mu$ mの範囲であり、繊維長は、通常、 $50\sim400\,m$ m程度である。また、嵩密度は $0.05\sim0.40\,g$ /c m ³程度であり、目付量は、適度な通気性を有し、強度の高い不織布が得られ、また、局部的な目付量のばらつきが少ない点で、通常、 $5\sim100\,g$ /m²程度であり、特に $10\sim8$ 0 g/m²の範囲が好ましい。

【0044】さらに、不織布(B)の厚さは、目付量と嵩密度にしたがって決定されるが、通常、0.1/0.7mm程度である。

【0045】この不織布(B)のエレクトレット化は、前記不織布(A)のエレクトレット化と同様の方法で行なうことができる。

【0047】また、エレクトレット化不織布(B)の構成材である単繊維を形成する熱可塑性樹脂の極限粘度[7](135℃、デカリン)は、0.3~1.5 d l / g であり、好ましくは0.5~1.0 d l / g である。

【0048】本発明のフィルターを構成する積層シートは、前記不織布(A)と不織布(B)を有するものである。積層シートの層構成は、不織布(A)/不織布(B)の構成以外にも、不織布(B)/不織布(A)/不織布(B)および不織布(A)/不織布(B)となる積層構造が、本発明の目的を達成できる点で最も好ましい。

【0049】また、積層シートにおける不織布(A)の好ま しい厚さは0.1~0.5mmであり、不織布(B)の好ま しい厚さは0.1~0.7mmであり、積層不織布シート全 体の好ましい厚さは0.2~1mmである。

【0050】積層シートの製造は、前記不織布 (A) および不織布 (B) を、それぞれロール状に巻いておき、そのロー

As this porous support, it is possible to use mesh structure etc which consists of the for example, stainless steel, polyester etc.

[0043] As for this nonwoven fabric (B), as for average fiber of single fiber, moderate air permeability possessing. In point where dust collecting property for microscopic powder dust is satisfactory, usually, it is a 0.5 to 10 µm extent, is a range of particularly preferably 1 to 6 µm. fiber length, usually, is 50 to 400 mm extent. In addition, bulk density is 0.05 to 0.40 g/cm3 extent, apparent weight has moderate air permeability, the nonwoven fabric where strength is high is acquired. In addition, in point where scatter of local apparent weight is little, usually, it is a 5 to 100 g/m2 extent. Range of especially 10 to 80 g/m2 is desirable.

[0044] Furthermore, thickness of nonwoven fabric (B) is decided, following to the apparent weight and bulk density,, but usually, it is a 0.1/0.7 mm extent.

[0045] As for electret formation of this nonwoven fabric (B), it is possible to do with method which is similar to electret formation of the aforementioned nonwoven fabric (A).

[0046] Furthermore average surface charge density of nonwove n fabric (B), in point which can show the sufficient dust collecting performance as electret, usually, is above 0.1x10-9 C/cm2. It is a preferably 0.3 to 5x10-9 C/cm2.

[0047] In addition, as for limiting viscosity $[\eta]$ (135 °C, decalin) of thermoplastic resin which forms single fiberwhich is a constituent material of electret-converted nonwoven fabric (B), It is a 0.3 to 1.5 dl/g, is a preferably 0.5 to 1.0 dl/g.

[0048] Laminated sheet which forms filter of this invention afo rementioned nonwoven fabric (A) with is something which possesses nonwoven fabric (B). layer configuration of laminated sheet, can take constitution of nonwoven fabric (B)/ nonwoven fabric (A)/ nonwoven fabric (B) and nonwoven fabric (A)/ nonwoven fabric (B)/ nonwoven fabric (B). laminated structure which becomes nonwoven fabric (A)/ nonwoven fabric (B), is most desirable in point which can achieve objective of this invention.

[0049] In addition, thickness where nonwoven fabric (A) in 1a minated sheet is desirable is the 0.1 to 0.5 mm. thickness where nonwoven fabric (B) is desirable is 0.1 to 0.7 mm. thickness where laminated nonwoven fabric sheet entirety is desirable is 0. 2 to 1 mm.

[0050] Production of laminated sheet, winds aforementioned no nwoven fabric (A) and nonwoven fabric (B), respectively in roll.

North Marie

ルからそれぞれ不織布を同一速度で繰り出して、積層一体化する装置に供給して積層し、得られる積層シートを巻き取る方法を採用することができる。また、不繊布(A)を成形するときに、不織布(B)を同時に成形装置に導入して両者を積層する方法も採用することができる。

【0051】2つの不織布を積層一体化するための装置としては、例えば、熱ロール、超音波融着等を挙げることができる。熱ロール法では両不織布シートを110℃~140℃に加熱したエンボスロールにより積層化処理を行うことが好ましい。また、超音波融着においては、周波数10~50kHz、ホーン圧力2~4kg/cm²の条件で積層することが好ましい。これらの積層方法のうちでは成形体の剛性が高いためハニカム成形性が良好な積層シートが得られる点で、電荷の消失が少ない熱エンボス融着法がより好ましい。

【0052】本発明のフィルターは、前記積層シートをハニカム状に成形してなるものである。この積層シートをハニカム状に成形する方法としては、特に制限されず、例えば、前記積層シートを一定幅にスリット後、連続的に折り畳み、または折り曲げ、不織布シートの全面にひだを形成して厚さを持たせるとともに多数の連続空隙、すなわちハニカム状セルを有する構造を形成する方法が挙げられる。積層シート同士の接触の接着は、接着剤や積層シート同士を融着させることにより相互に固着させることが好ましい。

【0053】このハニカム状セルの製造方法として、例えば 、図1(a)に示すように、不織布(A)と不織布(B)と を有する積層シート1を連続的に折り曲げ、多数の山部2と 谷部3を連続して有する第1シート4を作製する。この第1 シート4を、不緻布(A)と不織布(B)とを有する積層シ ートからなる平坦な第2シート5に重ね合わせ、谷部3の底 部6を第2シート5の表面に接着して、図1(b)に示すよ うに、構成単位7を作製する。次に、このような構成単位7 を所要枚数作製した後、図1(c)に示すように、第1の構 成単位7,と第2の構成単位7,を積層し、第1の構成単位 7,の山部2の頂部8を第2の構成単位7。の下表面に接着 し、さらに、同様に第2の構成単位7,の上に第3の構成単 位73を積層して、第2の構成単位72の山部の頂部を第3 の構成単位7gの下表面に接着する。この積層および接着工 程を繰り返して、あるいは第1シート4と第2シートを積層 した一対の組合せを多数形成し、その一対の組合せを所要枚 数重ねて、多数のハニカム状セル9を有する構造体を形成す る方法を挙げることができる。

From roll drawing out respective nonwoven fabric with same velocity. Supplying to equipment which laminated layer integration is done, laminated layer it does, method which retracts laminated sheet which is acquired can beadopted. In addition, when nonwoven fabric (A) forming, introducing nonwoven fabric (B) into the molding equipment in simultaneous, laminated layer is done also method which can adopt both.

[0051] for example, hot roll, ultrasonic melt bonding etc can be listed as equipment in order laminate integration to do the 2 nonwoven fabric. It is desirable to do lamination, with hot roll method with embossing roll whichheats both nonwoven sheets to 110 °C to 140 °C. In addition, laminate it is desirable with condition of frequency 10 to 50 KHz, horn pressure 2 to 4 kg/cm2regarding ultrasonic melt bonding, to do. Among these laminate method, because stiffness of molded article is high, honeycomb moldability in point where satisfactory laminated sheet is acquired, thermal embossing melt bonding method whose disappearance of electric charge is little is moredesirable.

[0052] Filter of this invertion, is something which becomes by aforementioned laminated sheet forming in honeycomb. Especially it is not restricted this laminated sheet as method which forms in the honeycomb. for example, aforementioned laminated sheet in constant width after slit, folding, or are bent in continuous. Forming pleat in entire surface of nonwoven sheet, it can give thickness. You can list method which forms structure which possesses multiple continuous space, namely honeycomb cell. As for glueing of contact of laminated sheet, it is desirable to adheremutually by melt adhesion doing adhesive and laminated sheet.

[0053] As manufacturing method of this honeycomb cell, as sh own in for example, Figure 1 (a), laminated sheet 1 whichpossesses nonwoven fabric (A) and nonwoven fabric (B) is bent to continuous, it produces 1st sheet 4 which it possesses continuing multiple ridge 2and valley 3. This 1st sheet 4, is superposed to flat 2nd sheet 5 which consists of laminated sheetwhich possesses nonwoven fabric (A) and nonwoven fabric (B). Glueing bottom part 6 of valley 3 to surface of 2nd sheet 5, as shown in the Figure 1 (b), it produces constituting unit 7. As next, necessary number of layers after producing this kind of constituting unit 7, shownin Figure 1 (c), first constitution unit 71 and second constitution unit 72 laminated layer are done. It glues head 8 of ridge 2 of first constitution unit 71, to bottom surface of the second constitution unit 72. Furthermore, on constituting unit 72 of 2nd, laminated layer doing constituting unit 73 of the 3rd in same way. It glues head of ridge of constituting unit 72 of 2nd, to thebottom surface of constituting unit 73 of 3rd. This laminated layer and bonding step over again. Or combination of pair which 1st sheet 4 and

【0054】本発明のフィルターは、ハニカムの厚さが5~20mm、ハニカムの単位セルの形状は図1に示すようなものであり、通常、セルの高さが1~5mm、セルの底辺が2~10mmのものである。

[0055]

【実施例】次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を越えない限りこれらの実施例になんら制約されるものではない。

【0056】(実施例1)密度0.91g/cm³、かつMFRが800g/10分(ASTMD1238)であるポリプロピレン(A)97重量部と、無水マレイン酸変性ポリプロピレン(B)(無水マレイン酸のグラフト量:2.7重量%、固有粘度:0.3dl/g)3重量部とを、タンプラーブレンダーで混合してポリオレフィン組成物(組成物)を調製した。この組成物 | 中の無水マレイン酸の含有量は、3.9×10-2モル%であった。

【0057】次に、この組成物 I をスクリュー径65mm の の 単軸押出機に投入し、310℃で溶融させ、押出機の先端に接続されたメルトブロー用ダイから20kg / h r の吐出量で押出すとともに引き取り速度13m/m i n で引き取り、メルトブローン法不繊布を成形した。使用したメルトブロー用ダイは、ダイ幅:1.3mでダイ全幅にわたって2列の成形孔(孔径:0.5mm φ、孔間隔:0.8mm)が開口されているものである。また、この成形において、メルトブロー用ダイには、320℃の加熱空気を500m³/h r の流量で注入した。

【0058】得られたメルトブローン法不織布の厚さは0.49mm、目付量は30g/m 2 、嵩密度は0.067g/cm 3 であった。また、メルトブローン法不織布を構成する繊維を顕微鏡で観察して平均繊維径を測定したところ、4 μ mであった。さらに、この繊維を形成する樹脂の $[\eta]$ は0.58dI/gであった。

【0059】次に、このメルトブローン法不総布を、針状電極を長さ方向に5mm間隔で2列に配列して構成してなる電荷印加装置に、-18kVの直流電圧を印加しながら、20m/minの速度で連続的に通過させて、エレクトレット化メルトブローン法不総布を製造した。

2nd sheet laminated layer isdone large number is formed. Necessary number of layers repeating combination of pair, you can list method which forms structure which possesses multiple honeycomb cell 9.

[0054] As for filter of this invention, thickness of honeycomb 5 to 20 mm. shape of unit cell of honeycomb, is kind of something which isshown in Figure 1. Usually, height of cell base of 1 to 5 mm, cell is something of the 2 to 10 mm.

[0055]

[Working Example(s)] Next, listing Working Example, further more you explain this invention concretely, but if this invention does not exceed gist, it is not something which is restricted in these Working Example.

[0056] (Working Example 1) Polypropylene (A) 97 parts by weight which is a density 0.91 g/cm3, and MFR 800 g/10 min (ASTM D 1238), maleic anhydride-modified polypropylene (B) (graft amount :2.7 weight %, intrinsic viscosity :0.3 dl/g of maleic anhydride) 3 parts by weight, mixing with tumbler blender, polyolefin composition (composition I) was manufactured. content of maleic anhydride in this composition I was 3.9x10-2 mole%.

[0057] Next, to throw this composition I to single screw extruder of screw diameter 65 mm diameter, melting with the 310 °C. From die for melt blowing which is connected to end of the extruder, extrusion it does with extrusion amount of 20 kg/h. takeup, with take-up speed 13 m/min, melt blowing method nonwoven fabric it formed. As for die for melt blowing which you use, molding hole (hole diameter:0.5 mm diameter, hole spacing:0.8 mm) in the 2 line is opened with die width:1.3m over die entire width. In addition, hot air of 320 °C injection was done to diefor melt blowing, with flow of 500 m3/hr at time of this forming.

[0058] As for thickness of melt blowing method nonwoven fabric which it acquires 0.49 mm. As for apparent weight as for 30 g/m², bulk density it was a 0.067 g/cm³. In addition, observing fiber which forms melt blowing method nonwoven fabric with microscope, when it measured average fiber diameter, it was a 4 μ m. Furthermore, [η] of resin which forms this fiber was 0. 58 dl/g.

[0059] Next, this melt blowing method nonwoven fabric, in lon gitudinal direction arranging needle electrode into 2 linewith 5 mm interval, in charging equipment which becomes by constituting, while imprinting doing direct current voltage of -18 kV, with velocity of the 20 m/min passing in continuous, electret formation melt blowing method nonwoven fabric was

7. V. W.

【0060】得られたエレクトレット化メルトブローン法不 織布の平均表面電荷密度を測定したところ、1.2×10⁻⁹ ケーロン/cm²であった。なお、この平均表面電荷密度の 測定は、理化学研究所製の表面電荷密度測定装置を用い、面 積1cm²の電極プローブを不織布表面に接触させて行なった

【0061】ポリプロピレン(三井石油化学工業株式会社製、ハイボールB200、MFR:0.5g/10分)9000g、ポリカーボネート(ゼネラルエレクトリック社製、レキサン101)500gおよび無水マレイン酸変性ポリプロピレン(無水マレイン酸グラフト変性量:3重量%)500gを混合して樹脂組成物を調製した。

【0062】得られた樹脂組成物を、インフレーションフィルム成形機(東芝機械(株)製)に供給して、240℃で、厚さ30μmのフィルムに成形した。次に、このフィルムを、135℃に加熱された熱板にて長手方向に6.6倍の延伸倍率で延伸して延伸フィルムを得た。次に、延伸フィルムを、印加電圧-9kV(直流)、電極間隔:8mmのコロナ放電極に滞留時間0.5秒で供給して荷電処理を施した後、針山状ロールに掛けて、網目状に解繊し、得られたエレクトレット化解織糸を紙管に巻き取った。このエレクトレット化解繊糸をカッターで90mmに切断し、開綿機により開綿してエレクトレット化原綿を得た。

【0063】次に、このエレクトレット化原綿をウェッブ・フォーミング・マシンに供給して、ウェッブに成形した。

【0064】このウェッブと前記エレクトレット化メルトプローン法不織布とを、130℃に設定した熱エンポスロールに供給してボンディングにより貼り合わせて、目付量:25g/m²、厚さ0.32mmのエレクトレット化不織布の積層シートを得た。

【0065】次に、この積層シートを図1(a)~(c)に示す工程にしたがって、30段のハニカム状シートからなり、底辺4.2mm、高さ2.7mmのハニカムセルを70個有するハニカム状エレクトレットフィルターを製造した。このハニカム状エレクトレットフィルターを切断し、縦70mm、横297mm、厚さ5mmの試験用フィルターを作成した。

【0066】この試験用フィルターの捕集効率を、下記の方

produced.

[0060] When average surface charge density of electret formati on melt blowing method nonwoven fabric which it acquires was measured, it was al .2x10-9 C/cm2. Furthermore, measurement of this average surface charge density Institute for Physical and Chemical Research (RIKEN) make used the surface charge density measuring apparatus. Contacting nonwoven fabric surface, it did electrode probe of surface area 1 cm2.

[0061] Mixing polypropylene (Mitsui Petrochemical Industrie s, Ltd. make, Hipol B200 and MFR:0.5 g/10 min) 9000g, polycarbonate (General Electric Co. make and Lexan 101) 500g and maleic anhydride-modified polypropylene (amount of grafted maleic anhydride: 3 wt%) 500g, itmanufactured resin composition.

[0062] Supplying resin composition which it acquires, to inflati on film molding machine (Toshiba Machine Ltd. make). With 240 °C, it formed in film of thickness 30 µm. Next, with hot plate which is heated to 135 °C, in machine direction thedrawing doing this film, with draw ratio of 6. 6-fold. drawn film was acquired. Next, applied voltage -9 kV (direct current), corona discharge of electrode interval:8 mm extremely supplying the drawn film, with residence time 0.5 second. After administering charging, applying on sharp peak shape roll, fiber splitting itdoes in mesh. electret formation split fiber yarn which is acquired was retracted in paper tube. This electret formation split fiber yarn with cutter is cut off in 90 mm. Opening cotton doing with cotton opener, it acquired the electret formation raw cotton.

[0063] Next, supplying this electret formation starting fiber to web-forming machine, it formed in web.

[0064] Supplying to thermal embossing roll which sets this web and aforementioned electret formation melt blowing method nonwoven fabric, to the 130 °C. With bonding pasting together. laminated sheet of electret-converted nonwoven fabric of apparent weight :25 g/m², thickness 0.32 mm was acquired.

[0065] Next, following to step which shows this laminated sheet in Figure 1 (a) to (c), it consists of honeycomb sheet of 30-stage. honeycomb electret filter which 70 it possesses honeycomb cell of base 4.2 mm, height 2.7 mm wasproduced. This honeycomb electret filter is cut off. Vertical 70 mm, filter for test of side 297 mm, thickness 5 mm was drawn up.

[0066] Following trapping efficiency of filter for this test, to be

7 X 84

【0060】得られたエレクトレット化メルトブローン法不 総布の平均表面電荷密度を測定したところ、1.2×10⁻⁹ クーロン/cm²であった。なお、この平均表面電荷密度の 測定は、理化学研究所製の表面電荷密度測定装置を用い、面 積1cm²の電極プロープを不総布表面に接触させて行なった

【0061】ポリプロピレン(三井石油化学工業株式会社製、ハイボールB200、MFR:0.5g/10分)9000g、ポリカーボネート(ゼネラルエレクトリック社製、レキサン101)500gおよび無水マレイン酸変性ポリプロピレン(無水マレイン酸グラフト変性量:3重量%)500gを混合して樹脂組成物を調製した。

【0062】得られた樹脂組成物を、インフレーションフィルム成形機(東芝機械(株)製)に供給して、240℃で、厚さ30μmのフィルムに成形した。次に、このフィルムを、135℃に加熱された熱板にて長手方向に6.6倍の延伸倍率で延伸して延伸フィルムを得た。次に、延伸フィルムを、印加電圧-9kV(直流)、電極間隔:8mmのコロナ放電極に滞留時間0.5秒で供給して荷電処理を施した後、針山状ロールに掛けて、網目状に解繊し、得られたエレクトレット化解繊糸をカッターで90mmに切断し、開綿機により開綿してエレクトレット化原綿を得た。

【0063】次に、このエレクトレット化原綿をウェッブ・ フォーミング・マシンに供給して、ウェッブに成形した。

【0064】このウェッブと前記エレクトレット化メルトブローン法不織布とを、130℃に設定した熱エンボスロールに供給してボンディングにより貼り合わせて、目付量:25g/m²、厚さ0.32mmのエレクトレット化不織布の積層シートを得た。

【0065】次に、この積層シートを図1 (a) ~ (c) に示す工程にしたがって、30段のハニカム状シートからなり、底辺4、2mm、高さ2、7mmのハニカムセルを70個有するハニカム状エレクトレットフィルターを製造した。このハニカム状エレクトレットフィルターを切断し、縦70mm、横297mm、厚さ5mmの試験用フィルターを作成した。

【0066】この試験用フィルターの捕集効率を、下記の方

produced.

[0060] When average surface charge density of electret formati on melt blowing method nonwoven fabric which it acquires was measured, it was a 1.2x10-9 C/cm2. Furthermore, measurement of this average surface charge density Institute for Physical and Chemical Research (RIKEN) make used the surface charge density measuring apparatus. Contacting nonwoven fabric surface, it did electrode probe of surface area 1 cm2.

[0061] Mixing polypropylene (Mitsui Petrochemical Industrie s, Ltd. make, Hipol B200 and MFR: 0.5 g/10 min) 9000g, polycarbonate (General Electric Co. make and Lexan 101) 500g and maleic anhydride-modified polypropylene (amount of grafted maleic anhydride: 3 wt%) 500g, itmanufactured resin composition.

[0062] Supplying resin composition which it acquires, to inflati on film molding machine (Toshiba Machine Ltd. make). With 240 °C, it formed in film of thickness 30 µm. Next, with hot plate which is heated to 135 °C, in machine direction thedrawing doing this film, with draw ratio of 6. 6-fold. drawn film was acquired. Next, applied voltage -9 kV (direct current), corona discharge of electrode interval:8 mm extremely supplying the drawn film, with residence time 0.5 second. After administering charging, applying on sharp peak shape roll, fiber splitting itdoes in mesh. electret formation split fiber yarn which is acquired was retracted in paper tube. This electret formation split fiber yarn with cutter is cut off in 90 mm. Opening cotton doing with cotton opener, it acquired the electret formation raw cotton.

[0063] Next, supplying this electret formation starting fiber to web-forming machine, it formed in web.

[0064] Supplying to thermal embossing roll which sets this web and aforementioned electret formation melt blowing method nonwoven fabric, tothe 130 °C. With bonding pasting together. laminated sheet of electret-converted nonwoven fabric of apparent weight :25 g/m², thickness 0.32 mm was acquired.

[0065] Next, following to step which shows this laminated sheet in Figure 1 (a) to (c), it consists of honeycomb sheet of 30-stage. honeycomb electret filter which 70 it possesses honeycomb cell of base 4.2 mm, height 2.7 mm wasproduced. This honeycomb electret filter is cut off. Vertical 70 mm, filter for test of side 297 mm, thickness 5 mm was drawn up.

[0066] Following trapping efficiency of filter for this test, to be

法にしたがって測定した。測定結果は、各時間とも5個の測 定値の平均値で表示した。結果を表1に示す。

【0067】捕集効率の測定

図2に概略を示す装置を用いて捕集効率を測定した。まず、エアロゾル発生機(日本科学工業社製)11からNaCI粒子(粒径:0.3 μ m)をエアーフィルター12を通じて清浄な空気を導入したチャンパー13内に供給した。該チャンパー13内のNaCIの濃度が一定(2~6×106個/cm³)になった後、吸引装置14により、チャンパー13の底部に配置したフィルター試料15を介して矢印Aの方向に吸引し、フィルター通過風速が一定速度(v=10cm/sec)となった時のフィルター試料25の上流16および下流17側におけるNaCI粒子濃度CinおよびCoutをそれぞれパーティクルカウンター(リオン社製、KC-01B)18a、18bによって測定し、下記式によって捕集効率を求めた。19は流速計、20は流量調節バルブである。

捕集効率E=(1-Cout /Cin)×100 [%]

【0068】圧力損失の測定

差圧計(山武ハネウエル社製、KD146)を用い、捕集効率の測定と同時に行った。

【0069】フィルター寿命の測定

図3に示すとおり、内容積1m³のアクリル樹脂製の箱21の内部に市販のエアコン(松下電気産業(株)製、エオリア)22および撹拌ファン23を設置した装置を用意した。次に、試験フィルターをエアコン内にセットし、箱21内に煙草を燃焼させて発生する煙を注入した後、箱21内の煙濃度の減衰を、粉塵計(柴田科学(株)製、P-5)を用いて機定した。最初に、フィルターをエアコンにセットしない状態で、箱21内にタバコ1本を燃焼させたときに発生する煙を注入した後、エアコン22を作動させ初期濃度の1/2となる半減期を求め、ブランク値とする。煙草を所定本数燃焼させ、発生した煙をフィルターに捕集させて、その箱内の粉塵量の半減時間がブランク値と初期値の差の1/2まで到達したときの煙草の積算燃焼本数をフィルターの寿命とする。

【0070】(実施例2) 実施例1の組成物1において、ポリプロピレン(A) / (無水マレイン酸グラフト変性ポリプロピレン(B))の配合比を95/5に変更する以外は、実

low-mentionedmethod, it measured. Also each time 5 it indicated measurement result, with mean value of themeasured value. Result is shown in Table 1.

[0067] Measurement of trapping efficiency

Trapping efficiency was measured making use of equipment whi ch shows outlinein Figure 2. First, it supplied inside chamber 13 which introduces clean air the NaCl particle (particle diameter :0.3 µm), via air filter 12 from aerosol generator (Nihon Kagaku Kogyo Co., Ltd. supplied) 11. After concentration of NaCl inside said chamber 13 becomes fixed (2 to 6x106 /cm³), with suction equipment 14, through filter sample 15 which is arranged in bottom of the chamber 13, it absorbs in direction of arrow A. When filter-penetrating air speed becoming constant rate (v=10 cm/sec), NaCl particle concentration Cin and Cour in upstream 16and downstream 17 side of filter sample 25 is measured due to the respective particle counter (Rion supplied, KC-01B) 18a,18b. trapping efficiency was sought with below Formula. As for 19 as for flowmeter, 20 it is a flow-regulating valve.

Trapping efficiency $E=(1-Cout / Cin) \times 100$ [%]

[0068] Measurement of loss of pressure

Making use of differential pressure gauge (Yamatake Honeywel I supplied, KD146), it did in measurement simultaneous of the trapping efficiency.

[0069] Measurement of filter lifetime

As shown in Figure 3, in inside of box 21 of acrylic resin of the i nternal volume 1 m3, equipment which installs commercial air conditioner (Matsushita Electrical Industrial Co., Ltd. make, Eolia) 22and agitating fan 23 was prepared. Next, test filter is set inside air conditioner, injection after doing, smoke which burning, generates cigaretteinside box 21, It measured attenuation of smoke concentration inside box 21, making use of the powder dust meter (Shibata science Ltd. make and P-5). First, with state which does not set filter to air conditioner, injection after doing, smoke which when burning, generates thetobacco 1 inside box 21. air conditioner 22 operating, it seeks half-life which becomes 1/2 of theinitial stage concentration, makes blank value, cigarette specified number burning, collecting smoke which occurs in the filter. When, halflife of amount of powder and dust inside box arriving to 1/2 ofdifference of blank value and initial value, integrated number burned of cigarette is designated as thelifetime of filter.

[0070] (Working Example 2) In composition I of Working Example 1, other than modifying themix ratio of polypropylene (A)/(maleic anhydride grafted polypropylene (B).) in 95/5,

施例 1 と同様にしてエレクトレット化不繊布を製造し、さらに、フィルターを作成した。フィルターの作成に用いた組成物中の無水マレイン酸の含有量は、 6.5×10^{-2} モル%であった。得られたフィルターの嵩密度は0.065 g/c m 3、平均表面電荷密度は 1.4×10^{-9} クーロン/c m²、繊維を形成する樹脂の $[\eta]$ は0.57 d 1/g、平均繊維径は 4μ mであった。また、フィルターの初期性能、ならびにタバコ寿命を測定した。結果を表 1に示す。

【0071】(実施例3) 実施例1の方法により得られたフィルターの代わりに、超音波処理(処理条件;ホーン圧力: 2.6 kg/cm²、周波数:20 kHz、処理速度:25 m/min)によりエレクトレット化不織布(A)とエレクトレット化不織布(B)とを積層することによって得られた積層不織布シートを用いる以外は実施例1と同様に行って、フィルターを作製し、そのフィルターの初期性能、および煙草寿命を測定した。結果を表1に示す。

【0072】(比較例1) 実施例1のフィルターの代わりに、解繊糸より得られたエレクトレット化不繊布のみを用いる以外は、実施例1と同様にしてハニカム状エレクトレットフィルターを製造した。得られたフィルターの嵩密度は0.092g/cm³、目付けは25g/cm²であった。また、フィルターの初期性能、ならびにタバコ寿命を測定した。結果を表1に示す。

【0073】(比較例2) 実施例1のエレクトレットフィルターの代わりに、メルトブローン法により得られたエレクトレット化不織布(B)のみを用いる以外は、実施例1と同様にしてハニカム状エレクトレットフィルターを製造した。得られたフィルターの嵩密度は0.067g/cm³、目付量は25g/cm²、平均表面電荷密度は1.3×10⁻⁹クーロン/cm²であった。また、フィルターの初期性能、ならびにタバコ寿命を測定した。結果を表1に示す。

electret-converted nonwoven fabric is produced to similar to Working Example 1. Furthermore, filter was drawn up. content of maleic anhydride in composition which is used for compilation of filter was 6.5×10^{-2} mole%. as for bulk density of filter which is acquired 0.065 g/cm³. As for average surface charge density 1.4×10^{-9} C/cm². As for [η] of resin which forms fiber 0.57 dl/g, average fiber diameter was 4 μ m. In addition, initial stage performance of filter, and tobacco lifetime were measured. Result is shown in Table 1.

[0071] (Working Example 3) In place of filter which is acquired with method of Working Example 1, Other than using laminated nonwoven fabric sheet which is acquired with ultrasonic treatment (processing condition; horn pressure :2.6 kg/cm², frequency :20 KHz, process rate :25 m/min) by laminate doing electret-converted nonwoven fabric (A) and electret-converted nonwoven fabric (B), doing in same way as Working Example 1, it produces filter, initial stage performance of filter, and cigarette lifetime were measured. Result is shown in Table 1.

[0072] (Comparative Example 1) In place of filter of Working Example 1, other than usingonly electret-converted nonwoven fabric which is acquired from split fiber yarn, honeycomb electret filter was produced to similar to Working Example 1. as for bulk density of filter which is acquired 0.092 g/cm3. basis weight was 25 g/cm2. In addition, initial stage performance of filter, and tobacco lifetime were measured. Result is shown in Table 1.

[0073] (Comparative Example 2) In place of electret filter of Working Example 1, other than using only electret-converted nonwoven fabric (B)which is acquired with melt blowing method, honeycomb electret filter was produced to similar to Working Example 1. as for bulk density of filter which is acquired 0.067 g/cm3. As for apparent weight as for 25 g/cm2, average surface charge density it was a 1.3x10-9 C/cm2. In addition, initial stage performance of filter, and tobacco lifetime was measured. Result is shown in Table 1.

5 S 5 5 5 5

表1フィルター性能

	ΔP (mmAq)	E (%)	寿 命 (本)
実施例1	0. 5	13.2	5 0
2	0.5	14. 1.	50
3	0. 7	12.2	6.0
比較例1	0. 5	14.3	6
2	1. 1	8. 8	80

[0075]

【発明の効果】本発明のハニカム状エレクトレットフィルターは、前記不織布(A)と不織布(B)の2層以上からなり、従来のメルトプローン法不織布のみからなるハニカム状エレクトレットフィルターに比べて圧力損失が低く、かつ捕集性能が優れている。また、従来の解繊糸からなる不織布で構成されるフィルターに比べると捕集性能の長期寿命が優れている。

【0076】そのため、本発明のハニカム状エレクトレットフィルターは、上記の特長を生かしてエアコン、空気清浄機、掃除機、ファンヒーター、一般空調機器用、自動車室内用等のエアフィルターとして好適に使用することができる。

【0077】また、本発明のハニカム状エレクトレットフィルターは、エアーフィルターとして用いた場合、初期の捕集性能が高いだけでなく、その捕集性能が持続し、フィルターの寿命が長いため、有用である。

【図面の簡単な説明】

【図1】 本発明のハニカム状エレクトレットフィルターの 製造方法の主要工程を説明する図。

【図2】 本発明の実施例および比較例において行なった捕 集効率の測定方法を説明する概略図。

[0075]

[Effects of the Invention] Honeycomb electret filter of this invention consists of 2 layers or more of aforementioned nonwoven fabric (A) and nonwoven fabric (B). In comparison with honeycomb electret filter which consists of only conventional melt blowing method nonwoven fabric, pressure loss is low, at same time trapping performance is superior. In addition, when you compare to filter which is formed with the nonwoven fabric which consists of conventional split fiber yarn, long period lifetime of trapping performance is superior.

[0076] Because of that, as for honeycomb electret filter of this invention, utilizing theabove-mentioned feature, can use for ideal as air conditioner, air cleaning machine, vacuum cleaner, fan heater and or other air filter for generalair conditioner, automobile interior.

[0077] In addition, as for honeycomb electret filter of this invention, when it uses as air filter, trapping performance of initial stage not only high, trapping performance continues. Because lifetime of filter is long, it is useful.

[Brief Explanation of the Drawing(s)]

[Figure 1] Figure which explains principal step of manufacturin g method of thehoneycomb electret filter of this invention.

[Figure 2] Conceptual diagram which explains measurement m ethod of trapping efficiency which was done in the Working Example and Comparative Example of this invention.

【図3】 本発明の実施例および比較例において行なったフィルター寿命の測定方法を説明する概略図。

【符号の説明】

- 1 積層シート
- 2 山部
- 3 谷部
- 4 第1シート
- 5 第2シート
- 6 谷部3の底部
- 7 構成単位
- 8 山部2の頂部
- 9 ハニカム状セル
- 11 エアロゾル発生機
- 12 エアーフィルター
- 13 チャンパー
- 14 吸引装置
- 15 フィルター試料
- 16 フィルター試料15の上流
- 17 フィルター試料15の下流
- 18a、18b パーティクルカウンター
- 19 流速計
- 20 流量調節パルブ
- 21 箱
- 22 エアコン
- 23 撹拌ファン

[Figure 3] Conceptual diagram which explains measurement m ethod of filter lifetime which was done in the Working Example and Comparative Example of this invention.

[Explanation of Reference Signs in Drawings]

- 1 laminated sheet
- 2 ridge
- 3 valley
- 4 1st sheet
- 5 2nd sheet
- 6. bottom of valley 3
- 7 constituting unit
- 8. top of ridge 2
- 9 honeycomb cell
- 11 aerosol generator
- 12 air filter
- 13 chamber
- 14 suction equipment
- 15 filter sample
- 16 . upstream of filter sample 15
- 17 . downstream of filter sample 15
- 18a,18b particle counter
- 19 flowmeter
- 20 flow-regulating valve
- 21 box
- 22 air conditioner
- 23 agitating fan

[図2]

[Figure 2]

7 . E. W. . .

[Figure 3]

