Vision Aided Navigation 2022 – Exercise 3

Yuval Weiss: 311457501, Chaya Lasry: 209911379

https://github.com/chayamushka/slam_project.git

2.1

Two 3D point clouds, one for pair 0 (from exercise 2) and one for pair 1.

2.2

Match features between the two left images (left0 and left1)

2.3

- We define a transformation T that transforms from left₀ coordinates to left₁ coordinates like this: $T(x_0, y_0, z_0) = R \cdot \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t$
- For three cameras A, B, C: If camera A has extrinsic matrix $[I \mid 0]$, transformation $T_{A \rightarrow B}(x) = R_1 x + t_1$ transforms from the coordinates of A to the coordinates of camera B and transformation $T_{B \rightarrow C}(x) = R_2 x + t_2$ transforms from the coordinates of B to the coordinates of camera C. So we get that:

$$T_{A\to C}(x) = R_2(R_1(x) + t_1) + t_2$$

- For a camera with extrinsic matrix $[R \mid t]$, the location of the camera in the global coordinate system is $R \begin{bmatrix} x \\ y \\ z \end{bmatrix} + t$
- The relative position of the four cameras (from above)

2.4

Good matches:

Bad Matches:

key points, supporters in orange, others in blue: left0 and left1

2.5

• In orange: the first cloud before T, in blue: the cloud after transition

• After RANSAC:

Inlier Matches:

Outlier Matches:

Accepted and rejected key points: (Supporters in orange), left0, left1

2.6 – next page

- The tracking took **30 minutes**
- A trajectory of all the left camera locations in the coordinates of camera left0, as viewed from above.

• ground-truth added to the plot the ground truth locations

