#### Differentially private modification of SignSGD

#### Alexey Kravatskiy

Moscow Institute of Physics and Technology

Course: My first scientific paper

(Strijov's practice) & Innovative Practicum / Group 205

Expert: A. N. Beznosikov

Consultant: S. A. Chezhegov

2025

#### Distributed, Private, and Noise-resistant

#### Goal

A communication-efficient and private algorithm for distributed optimization converging under heavy-tailed noise (noise with unbounded variance).

#### **Problem**

The only proposed private sign-based algorithm DP-SignSGD either is not private or does not converge.

#### Solution

Rényi differential privacy and Bernoulli subsampling afford lower noise to ensure convergence.

## Differential privacy of DP-SignSGD



DP-SignSGD with our DP-SIGN compressor is  $(\varepsilon, \delta)$ -private and converges under heavy-tailed noise. Its observed convergence is similar to that of DP-SGD with the same privacy mechanism.

#### Literature

- Jin, Richeng et al. (Feb. 25, 2020). "Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees". In: Part of this work is published in IEEE Transactions on Neural Networks and Learning Systems, 2024 36.2, pp. 3834—3846. ISSN: 2162-2388. DOI: 10.1109/tnnls.2023.3345367. arXiv: 2002.10940 [cs.LG].
- Mironov, Ilya (Aug. 2017). "Rényi Differential Privacy". In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF). IEEE, pp. 263–275. DOI: 10.1109/csf.2017.11. URL: http://dx.doi.org/10.1109/CSF.2017.11.
- Mironov, Ilya, Kunal Talwar, and Li Zhang (2019). Rényi Differential Privacy of the Sampled Gaussian Mechanism. arXiv: 1908.10530 [cs.LG]. URL: https://arxiv.org/abs/1908.10530.

## Differential Privacy

#### Definition

Given a set of local datasets  $\mathcal{D}$  provided with a notion of neighboring local datasets  $\mathcal{N}_{\mathcal{D}} \subset \mathcal{D} \times \mathcal{D}$  that differ in only one data point. For a query function  $f: \mathcal{D} \to \mathcal{X}$ , a mechanism  $\mathcal{M}: \mathcal{X} \to \mathcal{O}$  to release the answer of the query is defined to be  $(\epsilon, \delta)$ -locally differentially private if for any measurable subset  $\mathcal{S} \subseteq \mathcal{O}$  and two neighboring local datasets  $(\mathcal{D}_1, \mathcal{D}_2) \in \mathcal{N}_{\mathcal{D}}$ ,

$$P(\mathcal{M}(f(D_1)) \in \mathcal{S}) \leq e^{\epsilon} P(\mathcal{M}(f(D_2)) \in \mathcal{S}) + \delta.$$

A key quantity in characterizing local differential privacy for many mechanisms is the sensitivity of the query f in a given norm  $I_r$ , which is defined as

$$\Delta_r = \max_{(D_1, D_2) \in \mathcal{N}_{\mathcal{D}}} ||f(D_1) - f(D_2)||_r.$$

# Incorrect version of DP-SIGN (Jin et al. 2020)

#### Definition

For any given gradient  $\boldsymbol{g}_{m}^{(t)}$ , the compressor dp-sign outputs dp-sign( $\boldsymbol{g}_{m}^{(t)}, \epsilon, \delta$ ). The *i*-th entry of dp-sign( $\boldsymbol{g}_{m}^{(t)}, \epsilon, \delta$ ) is given by

$$\operatorname{dp-sign}(\boldsymbol{g}_{m}^{(t)}, \epsilon, \delta)_{i} = \begin{cases} 1, & \text{with probability } \Phi\left(\frac{(\boldsymbol{g}_{m}^{(t)})_{i}}{\sigma}\right) \\ -1, & \text{with probability } 1 - \Phi\left(\frac{(\boldsymbol{g}_{m}^{(t)})_{i}}{\sigma}\right) \end{cases}$$

where  $\Phi(\cdot)$  is the cumulative distribution function of the standard normal distribution;  $\sigma = \frac{\Delta_2}{\epsilon} \sqrt{2 \ln \left(\frac{1.25}{\delta}\right)}$ , where  $\epsilon$  and  $\delta$  are the differential privacy parameters and  $\Delta_2$  is the sensitivity measure.

# Theorem 6 from (Jin et al. 2020)

#### **Theorem**

Let  $u_1, u_2, \cdots, u_M$  be M known and fixed real numbers. Further define random variables  $\hat{u}_i = dp\text{-sign}(u_i, \epsilon, \delta), \forall 1 \leq i \leq M$ . Then there always exist a constant  $\sigma_0$  such that when  $\sigma \geq \sigma_0$ ,

$$P(sign(\frac{1}{M}\sum_{m=1}^{M}\hat{u}_i) \neq sign(\frac{1}{M}\sum_{m=1}^{M}u_i)) < (1-x^2)^{\frac{M}{2}}, \text{ where } x = \frac{|\sum_{m=1}^{M}u_m|}{2\sigma M}.$$

**Fault** From the proof, it follows that the constant  $\sigma_0$  depends on the values of  $\{u_i\}$ , which precludes from constructing DP-SIGN compressor.

Fault The authors have not guaranteed the overall  $(\varepsilon, \delta)$ -privacy. Fault The authors have not proved the convergence of their DP-SignSGD.

## Rényi divergence (Mironov 2017)

#### Definition (Rényi divergence)

Let P and Q be two distributions on  $\mathcal X$  defined over the same probability space, and let p and q be their respective densities. The Rényi divergence of a finite order  $\alpha \neq 1$  between P and Q is defined as

$$D_{\alpha}(P \parallel Q) \stackrel{\Delta}{=} \frac{1}{\alpha - 1} \ln \int_{\mathcal{X}} q(x) \left( \frac{p(x)}{q(x)} \right)^{\alpha} dx.$$

Rényi divergence at orders  $\alpha=1,\infty$  are defined by continuity.

## Rényi differential privacy (Mironov 2017)

#### Definition (Rényi differential privacy (RDP))

We say that a randomized mechanism  $\mathcal{M}\colon\mathcal{S}\to\mathcal{R}$  satisfies  $(\alpha,\varepsilon)$ -Rényi differential privacy (RDP) if for any two adjacent inputs  $S,S'\in\mathcal{S}$  it holds that

$$D_{\alpha}(\mathcal{M}(S) \parallel \mathcal{M}(S')) \leq \varepsilon.$$

# Bernoulli sampling + Gaussian Mechanism (Mironov, Talwar, and Zhang 2019)

## Definition (Sampled Gaussian Mechanism (SGM))

Let f be a function mapping subsets of  $\mathcal S$  to  $\mathbb R^d$ . We define the Sampled Gaussian mechanism (SGM) parameterized with the sampling rate  $0 < q \le 1$  and the noise  $\sigma > 0$  as

$$SG_{q,\sigma}(S) \stackrel{\Delta}{=} f(\{x : x \in S \text{ is sampled with probability } q\}) + \mathcal{N}(0, \sigma^2 \mathbb{I}^d),$$

where each element of S is sampled independently at random with probability q without replacement, and  $\mathcal{N}(0, \sigma^2 \mathbb{I}^d)$  is spherical d-dimensional Gaussian noise with per-coordinate variance  $\sigma^2$ .

## Criterion of a private algorithm

Following the procedure from Mironov, Talwar, and Zhang 2019, we get:

$$\varepsilon_R = \frac{1}{\alpha - 1} \log \left( \sum_{k=0}^{\alpha} {\alpha \choose k} (1 - q)^{\alpha - k} q^k \exp \left( \frac{k^2 - k}{2\sigma^2} \right) \right)$$

While according to the advanced composition theorem and conversion from Rényi privacy to  $(\varepsilon, \delta)$ -privacy,  $\varepsilon_R$  must satisfy:

$$\varepsilon_R \le \varepsilon/T - \frac{\log 1/\delta}{T(\alpha - 1)}$$

.

#### Grid Search to find minimal $\sigma$



 $(\alpha, \sigma)$  that guarantee  $(\epsilon, \delta)$ -dp of T subsamplings for  $\epsilon = 1$ ,  $\delta = 1/n^{1.1}$ , T = 1000, q = 1/n, where n = 649 (10% of the Mushroom dataset).

## Our version of DP-SIGN compressor

**Input**: coordinate w, loss function I, user database D,  $(\varepsilon, \delta)$ -privacy requirement, number of iterations T, sampling rate q.

Prepare subsample S: add each element  $(x, y) \in D$  with probability q.

Compute the gradient  $\mathbf{g}$  of the subsample for  $\frac{1}{|S|} \sum_{(x,y) \in S} I(w;(x,y))$ . If S is empty, let  $\mathbf{g} = 0$ .

Grid search  $\sigma(q, T, \varepsilon, \delta)$  to satisfy 2 expressions for  $\varepsilon_R$  stated earlier.

 $sign_{noised} = sign(\mathbf{g}) + \mathcal{N}(0, (2\sqrt{d}\sigma)^2 \mathbb{I}^d)$  **Output**:  $sign(sign_{noised})$ 

#### **UCI Mushroom Dataset**

There are 6,449 training samples equally distributed over 10 workers. Test consists of 1,625 samples. Each sample has d=112 features. q=1/n.

We solve the binary classification problem with  $\lambda=10^{-3}$  regularization.

Optimization problem:

$$\min_{x \in \mathbb{R}^n} \left( \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-b_i \langle a_i, x \rangle)) + \frac{\lambda}{2} ||x||^2 \right)$$

Classification rule:  $b(a) := sign(\langle a, x \rangle)$ 

For each algorithm (SignSGD, DP-SGD, and DP-SignSGD), we set the learning rate  $\eta = \frac{1}{\sqrt{100d}}$ . The goal is  $(10, 1/n^{1.1})$  privacy.

## Heavy-tailed noise in gradient estimates

The unbiased estimate  $\nabla f(x,\xi)$  has bounded  $\kappa$ -th moment  $\kappa \in (1,2]$  for each coordinate, i.e.,  $\forall x \in \mathbb{R}^d$ :

- $\blacktriangleright \mathbb{E}_{\xi}[\nabla f(x,\xi)] = \nabla f(x),$
- $\blacktriangleright \mathbb{E}_{\xi}[|\nabla f(x,\xi)_i \nabla f(x)_i|^{\kappa}] \leq \sigma_i^{\kappa}, i \in \overline{1,d},$

where  $\vec{\sigma} = [\sigma_1, \dots, \sigma_d]$  are non-negative constants. If  $\kappa = 2$ , then the noise is called a bounded variance.

# Synthetic heavy-tailed noise



We add to the gradients coordinatewise noise with Lévy stable distribution with  $\sigma_I=1/4$ ,  $\alpha_I=1.6$ , which corresponds to  $\kappa=1.5$ , and  $\beta_I=0$  (this distribution is defined by its characteristic function  $\varphi(t)=\exp\left(-0.25^{1.6}|t|^{1.6}\right)$ ). We compare settings with no noise,  $\mathcal{N}(0,0.25^2\mathbb{I}^d)$  noise and this noise.

## Computational experiment



DP-SignSGD converges very slowly, but it depends on a dataset. Lower q leads to much lower  $\sigma$  and better convergence.

## Constant vs Dynamic learning rate



DP-SignSGD converges better, when the learning rate is dynamic.  $T^{-1/5}$  instead of  $T^{-1/2}$  factor is required, because  $\sigma$  depends on T.

## Torch experiments: MLP on MNIST



Tradeoff: number of iterations vs precision of a single iteration.

# DP-SignSGD with Bernoulli sampling q = 1/n

- $\blacktriangleright$   $(\varepsilon, 1/n^{1.1})$  differentially-private
- communication-effective
- empirically converges on logistic regression problem even with heavy-tailed noise
- ▶ trains MLP and CNN on MNIST to 70% accuracy
- empirically converges with the same type of convergence like DP-SGD with Bernoulli subsampling
- does not require clipping