

Background:

- What is Next Generation Sequencing?
 - Sample preparation
 - Sequencing by machines
 - Data output
- What are miRNAs?

Problem definition:

- Medical history of Alzheimer's Disease
- Drawbacks of previously introduced methods
 - sample selection
 - preprocessing methods
 - statistical analysis
 - machine learning approaches

Design justification

- Why miRNA biomarkers?
- Why Next Generation sequencing technology?
- Quantile normalization as normalization technique?
- Selection of methods used for statistical analysis?
- Use of machine learning algorithms?

Methodology:

Initial NGS dataset

Preprocessing data

Statistical analysis

Classification

Implementation choices: Methodologies

Preprocessing

- Trimming sequence data Adapters, indexes, low quality reads
- Filtering short read sequences

Statistical analysis

- Quantile normalization remove unwanted variations
- P value & Fold change identify most significance miRNAs
- AUC identify dysregulated miRNAs

Implementation choices: Tools

NGS data analysis

- Galaxy platform web based, open source platform
- Galaxy tools
 - FastQC Quality check
 - Trim Galore remove adapters and low quality reads
 - Filter FASTQ filter short read sequences
 - Bowtie2 map sequence against reference genome
 - Htseq-count identify read counts

Implementation choices: Tools

Statistical Analysis

- Python clean syntax, straightforward semantics & Third-party toolkits
- Python libraries
 - Numpy
 - Pandas
 - Scipy
 - Scikit learn
 - Matplotlib

Implementation choices: Models

Classification

- Machine Learning models
 - Logistic regression
 - Linear SVM
 - Gaussian SVM
 - Naive Bayes
 - K Nearest Neighbour
 - Random Forests

Results Obtained From Each Stage of Analysis

Box Plot For Five Random Features From Normalized Dataset

Mean Distribution of Normalized Dataset

Filtered miRNAs Using Significance Values and Fold Change

228 miRNAs

Filtered miRNAs using significance value and fold change are: ['hsa-mir-30a:hsa-miR-30a-3p', 'hsa-mir-550a-1:hsa-miR-550a-3p', 'hsa-mir-29a:hsa-miR-29a-3p', 'hsa-mir-628:hsa-miR-628-3p', 'hsa-mir-26a-2:hsa-miR-26a-5p', 'hsa-mir-106b:hsa-miR-106b-5p', 'hs a-mir-4781:hsa-miR-4781-3p', 'hsa-mir-10b:hsa-miR-10b-5p', 'hsa-mir-215:hsa-miR-215', 'hsa-mir-548aj-2:hsa-miR-548g-5p', 'hsa-m ir-181a-1:hsa-miR-181a-3p', 'hsa-mir-548x:hsa-miR-548ar-5p', 'hsa-mir-548k:hsa-miR-548av-5p', 'hsa-mir-199a-1:hsa-miR-199a-3p', 'hsa-mir-30e:hsa-miR-30e-3p', 'hsa-mir-4508:hsa-miR-4508', 'hsa-mir-548aj-2:hsa-miR-548x-5p', 'hsa-mir-371b:hsa-miR-371b-5p', 'hsa-mir-5001:hsa-miR-5001-3p', 'hsa-mir-16-2:hsa-miR-16-2-3p', 'hsa-mir-128-2:hsa-miR-128', 'hsa-mir-486:hsa-miR-486-3p', 'hsa -mir-4482-1:hsa-miR-4482-3p', 'hsa-mir-941-4:hsa-miR-941', 'hsa-mir-550a-1:hsa-miR-550a-5p', 'hsa-mir-199a-2:hsa-miR-199b-3p', 'hsa-mir-144:hsa-miR-144-5p', 'hsa-let-7f-2:hsa-let-7f-5p', 'hsa-mir-126:hsa-miR-126-5p', 'hsa-mir-191:hsa-miR-191-3p', 'hsa-mi r-10a:hsa-miR-10a-5p', 'hsa-mir-98:hsa-miR-98', 'hsa-mir-548x:hsa-miR-548x-5p', 'hsa-mir-363:hsa-miR-363-3p', 'hsa-mir-548h-1:h sa-miR-548h-5p', 'hsa-mir-223:hsa-miR-223-3p', 'hsa-mir-5690:hsa-miR-5690', 'hsa-mir-199b:hsa-miR-199b-3p', 'hsa-mir-3200:hsa-m iR-3200-3p', 'hsa-mir-424:hsa-miR-424-3p', 'hsa-mir-644b:hsa-miR-644b-3p', 'hsa-mir-548h-5:hsa-miR-548h-5p', 'hsa-mir-18a:hsa-m iR-18a-5p', 'hsa-mir-548g:hsa-miR-548x-5p', 'hsa-mir-548g:hsa-miR-548g-5p', 'hsa-mir-21:hsa-miR-21-5p', 'hsa-mir-99b:hsa-miR-99 b-5p', 'hsa-mir-25:hsa-miR-25-3p', 'hsa-mir-937:hsa-miR-937', 'hsa-mir-1180:hsa-miR-1180', 'hsa-mir-30c-1:hsa-miR-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-30c-5p', 'hsa-mir-1180', 'hsa-mir-30c-1:hsa-mir-30c-5p', 'hsa-mir-30c-5p', 'hs -let-7a-1:hsa-let-7a-5p', 'hsa-mir-941-1:hsa-mir-941', 'hsa-mir-660:hsa-miR-660-5p', 'hsa-mir-421:hsa-miR-421', 'hsa-mir-374a:h sa-miR-374a-5p', 'hsa-mir-328:hsa-miR-328', 'hsa-mir-151a:hsa-miR-151a-5p', 'hsa-mir-548x:hsa-miR-548aj-5p', 'hsa-mir-101-2:hsa -miR-101-3p', 'hsa-mir-28:hsa-miR-28-3p', 'hsa-mir-139:hsa-miR-139-5p', 'hsa-mir-2110:hsa-miR-2110', 'hsa-let-7g:hsa-let-7g-5 p', 'hsa-mir-550a-3:hsa-miR-550a-3-5p', 'hsa-mir-548aj-2:hsa-miR-548ar-5p', 'hsa-mir-144:hsa-miR-144-3p', 'hsa-mir-548e:hsa-miR

Plot for ROC AUC values for selected miRNA

miRNAs Selected Using ROC AUC values

- 154 down regulated miRNAs
- 32 up regulated miRNAs

Down regulated miRNAs: ['hsa-mir-30a:hsa-miR-30a-3p', 'hsa-mir-29a:hsa-miR-29a-3p', 'hsa-mir-155:hsa-miR-155-5p', 'hsa-mir-26a-2:hsa-miR-26a-5p', 'hsa-mir-106b:hsa-miR-106b-5p', 'hsa-mir-4781:hsa-miR-4781-3p', 'hsa-mir-204:hsa-miR-204-5p', 'hsa-mir-106b:h sa-miR-10b-5p', 'hsa-mir-1260a:hsa-miR-1260a', 'hsa-mir-215:hsa-miR-215', 'hsa-mir-548aj-2:hsa-miR-548g-5p', 'hsa-mir-3613:hsamiR-3613-3p', 'hsa-mir-1226:hsa-miR-1226-3p', 'hsa-mir-7-3:hsa-miR-7-5p', 'hsa-mir-1303:hsa-miR-1303', 'hsa-mir-196a-1:hsa-miR-196a-5p', 'hsa-mir-181a-1:hsa-miR-181a-3p', 'hsa-mir-548x:hsa-miR-548ar-5p', 'hsa-mir-548k:hsa-miR-548av-5p', 'hsa-mir-199a-1:h sa-miR-199a-3p', 'hsa-mir-4448:hsa-miR-4448', 'hsa-mir-30e:hsa-miR-30e-3p', 'hsa-mir-3177:hsa-miR-3177-3p', 'hsa-mir-4508:hsa-m iR-4508', 'hsa-mir-548h-4:hsa-miR-548z', 'hsa-mir-548ai-2:hsa-miR-548x-5p', 'hsa-mir-378a:hsa-miR-378a-3p', 'hsa-mir-548o-2:hsa -miR-548au-5p', 'hsa-let-7a-1:hsa-let-7a-3p', 'hsa-mir-486:hsa-miR-486-3p', 'hsa-mir-4482-1:hsa-miR-4482-3p', 'hsa-mir-4511:hsa -miR-4511', 'hsa-mir-1270-1:hsa-miR-1270', 'hsa-mir-132:hsa-miR-132-3p', 'hsa-mir-941-4:hsa-miR-941', 'hsa-mir-877:hsa-miR-877-5p', 'hsa-mir-5189:hsa-miR-5189', 'hsa-mir-144:hsa-miR-144-5p', 'hsa-let-7f-2:hsa-let-7f-5p', 'hsa-mir-378b:hsa-miR-378b', 'hsa-mir-378b', 'hsa-mir-5189:hsa-mir-378b:hsa-mir-378b', 'hsa-mir-5189:hsa-mir-378b', 'hsa-mir-378b', 'hsa-mir-378 -mir-126:hsa-miR-126-5p', 'hsa-mir-1538:hsa-miR-1538', 'hsa-mir-191:hsa-miR-191-3p', 'hsa-mir-181b-2:hsa-miR-181b-5p', 'hsa-mir -196a-2:hsa-miR-196a-5p', 'hsa-mir-98:hsa-miR-98', 'hsa-mir-330:hsa-miR-330-3p', 'hsa-mir-548x:hsa-miR-548x-5p', 'hsa-mir-363:h sa-miR-363-3p', 'hsa-mir-424:hsa-miR-424-5p', 'hsa-mir-223:hsa-miR-223-3p', 'hsa-mir-5690:hsa-miR-5690', 'hsa-mir-548am:hsa-miR -548au-5p', 'hsa-mir-1976:hsa-miR-1976', 'hsa-mir-199b:hsa-miR-199b-3p', 'hsa-mir-548ah:hsa-miR-548ah-3p', 'hsa-mir-3200:hsa-mi R-3200-3p', 'hsa-mir-192:hsa-miR-192-5p', 'hsa-mir-424:hsa-miR-424-3p', 'hsa-mir-644b:hsa-miR-644b-3p', 'hsa-mir-548h-5:hsa-miR -548h-5p', 'hsa-mir-548aa-2:hsa-miR-548aa', 'hsa-mir-196b:hsa-miR-196b-5p', 'hsa-mir-93:hsa-miR-93-5p', 'hsa-mir-548g:hsa-miR-5 48x-5p', 'hsa-mir-548g:hsa-miR-548g-5p', 'hsa-mir-21:hsa-miR-21-5p', 'hsa-mir-652:hsa-miR-652-3p', 'hsa-mir-25:hsa-miR-25-3p', 'hsa-mir-937:hsa-miR-937', 'hsa-mir-625:hsa-miR-625-3p', 'hsa-mir-1180:hsa-miR-1180', 'hsa-mir-30c-1:hsa-miR-30c-5p', 'hsa-mir-548o:hsa-miR-548o-3p', 'hsa-let-7a-1:hsa-let-7a-5p', 'hsa-mir-941-1:hsa-miR-941', 'hsa-mir-548o-2:hsa-miR-548c-5p', 'hsa-mir-36

Up regulated miRNAs: ['hsa-mir-550a-1:hsa-miR-550a-3p', 'hsa-mir-378e:hsa-miR-378e', 'hsa-mir-628:hsa-miR-628-3p', 'hsa-mir-194-1:hsa-miR-194-5p', 'hsa-mir-4732:hsa-miR-4732-3p', 'hsa-mir-183:hsa-miR-183-3p', 'hsa-mir-486:hsa-miR-486-5p', 'hsa-mir-5001:hsa-miR-5001-3p', 'hsa-mir-16-2:hsa-miR-16-2-3p', 'hsa-mir-128-2:hsa-miR-128', 'hsa-mir-4753:hsa-miR-4753-5p', 'hsa-mir-326:hsa-miR-326', 'hsa-mir-10a:hsa-miR-10a-5p', 'hsa-mir-4732:hsa-miR-4732-5p', 'hsa-mir-4286:hsa-miR-4286', 'hsa-mir-99a:hsa-miR-99a-5p', 'hsa-mir-151a:hsa-miR-151a-5p', 'hsa-mir-548x:hsa-miR-548aj-5p', 'hsa-mir-4685:hsa-miR-4685-3p', 'hsa-mir-139:hsa-miR-139-5p', 'hsa-mir-3661:hsa-miR-3661', 'hsa-mir-342:hsa-miR-342-5p', 'hsa-mir-30d:hsa-miR-30d-3p', 'hsa-mir-431:hsa-miR-431-5p', 'hsa-mir-140:hsa-miR-140-3p', 'hsa-mir-1299:hsa-miR-1299', 'hsa-mir-1306:hsa-miR-1306-5p', 'hsa-mir-500a:hsa-miR-500a-3p', 'hsa-mir-3615:hsa-miR-3615', 'hsa-mir-4746:hsa-miR-4746-5p', 'hsa-mir-1301:hsa-miR-1301', 'hsa-mir-92a-1:hsa-miR-92a-3p']

Distribution of The Most Up Regulated And The Most Down Regulated

Deliverables Addressed in Phase 1

Milestone 01: Background study

Dataset selection

Milestone 02: Preprocessing dataset (Galaxy tool)

Data visualization and normalization

Milestone 03: Statistical analysis

Phase 1 Timeline

Conclusion

Detected 2652 miRNAs Remove lowly abundant

Detected 503 miRNAs

Summed up read count < 50 (lowly abundant) P value & Fold change

> Detected 228 miRNAs

Most significance miRNA detection

Detected 186 miRNAs

- Dysregulated miRNA detection
- Identified most downregulated miRNA
- Identified most upregulated miRNA

Plan for The Next Phase

Milestone 01: Background search on validation methods

Selection of a validation dataset

Milestone 02: Validation of the biomarkers

Milestone 03: Developing the implemented solution to be used in clinical use

