1 Datenstrukturen

1.1 Union-Find

```
init
                           legt n einzelne Unions an O(n)
   findSet
                           findet den Repräsentanten O(\log(n))
                           vereint 2 Mengen
                                                   O(\log(n))
   unionSets
   m*findSet + n*unionSets Folge von Befehlen
                                                   O(n+m\cdot\alpha(n))
   // unions[i] >= 0 => unions[i] = parent
   // unions[i] < 0 => unions[i] = -height
   vector<int> unions:
   void init(int n) { //Initialisieren
     unions.assign(n, -1);
   int findSet(int n) { // Pfadkompression
     if (unions[n] < 0) return n:</pre>
     return unions[n] = findSet(unions[n]);
10 }
11
   void linkSets(int a, int b) { // Union by rank.
     if (unions[a] > unions[b]) unions[a] = b;
     else if (unions[b] > unions[a]) unions[b] = a:
14
15
       unions[a] = b;
16
       unions[b]--;
17 }}
   void unionSets(int a, int b) { // Diese Funktion aufrufen.
    if (findSet(a) != findSet(b)) linkSets(findSet(a), findSet(b));
20 | }
```

1.2 Segmentbaum

init baut den Baum auf

```
query findet das min(max) in [l, r) O(\log(n))
   update ändert einen Wert
                                   O(\log(n))
   vector<ll> tree:
   constexpr ll neutral = 0; // Neutral element for combine
3 | ll combine(ll a, ll b) {
     return a + b;
   void init(vector<ll>& a) {
    tree.assign(2 * sz(a), 0);
     copy(all(a), tree.begin() + sz(a));
     for (int i = sz(tree)/2 - 1; i > 0; i--) {
10
       tree[i] = combine(tree[2 * i], tree[2 * i + 1]);
11 }}
   void update(int i, ll val) {
13
     for (tree[i += sz(tree)/2] = val; i /= 2; ) {
14
       tree[i] = combine(tree[2 * i], tree[2 * i + 1]);
15 | }}
   ll query(int l, int r) {
17
     ll resL = neutral, resR = neutral;
     for (1 += sz(tree)/2, r += sz(tree)/2; l < r; l /= 2, r /= 2) {
19
      if (l&1) resL = combine(resL, tree[l++]);
20
      if (r&1) resR = combine(tree[--r], resR);
21
     return combine(resL, resR);
```

O(n)

```
23 }
   // Oder: Intervall-Modifikation, Punkt-Query:
25
   void modify(int l, int r, ll val) {
26
     for (l += sz(tree)/2, r += sz(tree)/2; l < r; l /= 2, r /= 2) {</pre>
27
      if (l&1) {tree[l] = combine(tree[l], val); l++;};
28
       if (r&1) {--r; tree[r] = combine(tree[r], val);};
29
30
   ll query(int i) {
31
     ll res = neutral;
32
     for (i += sz(tree)/2; i > 0; i /= 2) {
33
     res = combine(res, tree[i]);
34
    }
35
     return res;
36 }
```

1.2.1 Lazy Propagation

Assignment modifications, sum queries

lower_bound erster Index in $[l, r) \ge x$ (erfordert max-combine) $O(\log(n))$

```
struct SegTree {
     int size, height;
     static constexpr ll neutral = 0; // Neutral element for combine
     static constexpr ll updateFlag = 0; // Unused value by updates
     vector<ll> tree. lazv:
     SegTree(const vector<ll>& a) : SegTree(sz(a)) {
       copy(all(a), tree.begin() + size);
       for (int i = size - 1: i > 0: i--)
         tree[i] = combine(tree[2 * i], tree[2 * i + 1]);
10
11
     SegTree(int n) : size(n), height(_{-}lg(2 * n)),
12
       tree(2 * n, neutral), lazy(n, updateFlag) {}
13
     ll combine(ll a, ll b) {return a + b;} // Modify this + neutral
14
     void apply(int i, ll val, int k) { // And this + updateFlag
15
       tree[i] = val * k;
16
       if (i < size) lazy[i] = val; // Don't forget this</pre>
17
18
     void push_down(int i, int k) {
19
       if (lazy[i] != updateFlag) {
20
         apply(2 * i, lazy[i], k);
21
         apply(2 * i + 1, lazy[i], k);
22
         lazy[i] = updateFlag;
23
     }}
24
     void push(int i) {
25
       for (int s = height, k = 1 \ll (height-1); s > 0; s--, k \neq 2)
26
         push_down(i >> s, k);
27
     }
28
     void build(int i) {
29
       for (int k = 2; i /= 2; k *= 2) {
30
         push_down(i, k / 2);
31
         tree[i] = combine(tree[2 * i], tree[2 * i + 1]);
32
     }}
     void update(int l, int r, ll val) { // data[l..r) = val
34
       l += size, r += size;
35
       int l0 = l, r0 = r;
       push(l0), push(r0 - 1);
```

```
for (int k = 1; l < r; l /= 2, r /= 2, k *= 2) {
         if (l&1) apply(l++, val, k);
38
39
         if (r&1) apply(--r, val, k);
40
41
       build(l0). build(r0 - 1):
42
43
     ll query(int l, int r) { // sum[l..r)
       l += size, r += size;
45
       push(l), push(r - 1);
       ll resL = neutral, resR = neutral;
       for (; l < r; l /= 2, r /= 2) {
         if (l&1) resL = combine(resL. tree[l++]);
49
         if (r&1) resR = combine(tree[--r], resR);
50
51
       return combine(resL, resR);
52
     // Optional:
     ll lower_bound(int l, int r, int x) {
       l += size, r += size;
       push(l), push(r - 1):
57
       vector<pair<int, int>> a, st;
58
       for (int k = 1: l < r: l /= 2. r /= 2. k *= 2) {
59
         if (l&1) a.emplace_back(l++, k);
60
         if (r&1) st.emplace_back(--r, k);
61
       a.insert(a.end(), st.rbegin(), st.rend());
62
63
       for (auto [i, k] : a) {
64
         if (tree[i] >= x) return find(i, x, k); // Modify this
65
       }
66
       return -1;
67
     ll find(int i, int x, int k) {
       if (i >= size) return i - size;
70
       push_down(i, k / 2);
71
       if (tree[2*i] >= x) return find(2 * i, x, k / 2); // And this
72
       else return find(2 * i + 1, x, k / 2);
73
74 | }:
```

1.3 STL-Bitset

```
bitset<10> bits(0b000010100);
cout << bits._Find_first() << endl; //2
cout << bits._Find_next(2) << endl; //4
cout << bits._Find_next(4) << endl; //10 bzw. N
bits[x] = 1; //not bits.set(x)!
bits[x] = 0; //not bits.reset(x)!
bits[x].flip(); //not bits.flip(x)!</pre>
```

 $O(n \cdot \log(n))$

```
1.4 Fenwick Tree
```

prefix_sum summe von [0, i]

baut den Baum auf

init

```
O(\log(n))
              addiert ein Delta zu einem Element O(\log(n))
   vector<ll> tree:
   void update(int i, ll val) {
     for (i++; i < sz(tree); i += (i & (-i))) tree[i] += val;</pre>
   void init(int n) {
     tree.assign(n + 1,0);
7 }
   ll prefix_sum(int i) {
    ll sum = 0:
    for (i++; i > 0; i -= (i & (-i))) sum += tree[i];
11
12 | }
```

init baut den Baum auf $O(n \cdot \log(n))$ $O(\log(n))$ prefix_sum summe von [0, i] addiert ein Delta zu allen Elementen [l, r) $O(\log(n))$

```
vector<ll> add. mul:
   void update(int l, int r, ll val) {
     for (int tl = l + 1; tl < sz(add); tl += tl&(-tl))
       add[tl] += val, mul[tl] -= val * l;
     for (int tr = r + 1; tr < sz(add); tr += tr&(-tr))
       add[tr] -= val, mul[tr] += val * r;
7 }
   void init(vector<ll>& v) {
     mul.assign(sz(v) + 1,0);
     add.assign(sz(v) + 1,0);
11
     for(int i = 0; i < sz(v); i++) update(i, i + 1, v[i]);</pre>
12 }
13
   ll prefix_sum (int i) {
14
     ll res = 0; i++;
15
     for (int ti = i; ti > 0; ti -= ti&(-ti))
       res += add[ti] * i + mul[ti]:
16
17
     return res:
18 | }
```

1.5 Wavelet Tree

```
Constructor baut den Baum auf
                                                      O(n \cdot \log(n))
                                                      O(\log(n))
               sort [l,r)[k]
countSmaller Anzahl elemente in [l,r) kleiner als k O(\log(n))
```

```
struct WaveletTree {
    using it = vector<ll>::iterator;
    WaveletTree *ln, *rn;
    ll lo, hi;
5
    vector<int> b;
7
    WaveletTree(it from. it to. ll x. ll v)
    : ln(nullptr), rn(nullptr), lo(x), hi(y), b(1) {
       ll \ mid = (lo + hi) / 2;
10
       auto f = [&](ll x){return x < mid;};</pre>
       for (it c = from; c != to; c++) {
```

```
12
         b.push_back(b.back() + f(*c)):
13
14
       if (lo + 1 >= hi || from == to) return;
15
       it pivot = stable_partition(from, to, f);
       ln = new WaveletTree(from, pivot, lo, mid):
17
       rn = new WaveletTree(pivot, to, mid, hi);
18
     }
19
   public:
20
     WaveletTree(vector<ll> in) : WaveletTree(all(in),
21
       *min_element(all(in)), *max_element(all(in)) + 1){}
22
     // kth element in sort[l, r) all 0-indexed
23
     ll kth(int l, int r, int k) {
24
       if (l >= r || k >= r - l) return -1;
25
       if (lo + 1 >= hi) return lo;
26
       int inLeft = b[r] - b[l];
27
       if (k < inLeft) {</pre>
28
         return ln->kth(b[l], b[r], k);
29
30
         return rn->kth(l-b[l], r-b[r], k-inLeft);
31
32
     // count elements in[l, r) smaller than k
33
     int countSmaller(int l, int r, ll k) {
34
       if (l >= r || k <= lo) return 0;</pre>
35
       if (hi <= k) return r - l;</pre>
36
       return ln->countSmaller(b[l], b[r], k) +
37
               rn->countSmaller(l-b[l], r-b[r], k);
38
39
     ~WaveletTree(){
40
       delete ln;
41
       delete rn;
42
    }
43 };
```

1.6 (Implicit) Treap (Cartesian Tree)

insert fügt wert val an stelle i ein (verschiebt alle Positionen >= i) $O(\log(n))$ remove löscht werte [i,i+count)

```
1 mt19937 rng(0xc4bd5dad):
   struct Treap {
     struct Node {
       ll val:
       int prio, size = 1, l = -1, r = -1;
       Node (ll x) : val(x), prio(rng()) {}
     vector<Node> treap;
     int root = -1;
10
     int getSize(int v) {
11
       return v < 0 ? 0 : treap[v].size;</pre>
12
13
     void upd(int v) {
14
       if (v < 0) return:
15
       auto *V = &treap[v]:
16
       V->size = 1 + getSize(V->l) + getSize(V->r);
17
       // Update Node Code
18
```

```
void push(int v) {
       if (v < 0) return;</pre>
21
       //auto *V = &treap[v];
       //if (V->lazy) {
       // Lazy Propagation Code
       // if (V->l >= 0) treap[V->l].lazy = true;
       // if (V->r>=0) treap[V->r].lazy = true:
       // V->lazy = false;
27
       //}
28
     pair<int, int> split(int v, int k) {
       if (v < 0) return {-1, -1}:
31
       auto *V = &treap[v];
32
       push(v);
       if (getSize(V->l) >= k) { // "V->val >= k" for lower_bound(k)
         auto [left, right] = split(V->l, k);
         V->l = right;
35
36
         upd(v);
37
         return {left, v};
       } else {
39
         // and only "k"
         auto [left, right] = split(V->r, k - getSize(V->l) - 1);
42
         upd(v);
43
         return {v, right};
44
     int merge(int left, int right) {
       if (left < 0) return right;</pre>
       if (right < 0) return left;</pre>
48
       if (treap[left].prio < treap[right].prio) {</pre>
         push(left):
50
         treap[left].r = merge(treap[left].r, right);
51
         upd(left):
52
         return left;
       } else {
54
         push(right);
55
         treap[right].l = merge(left, treap[right].l);
56
         upd(right);
57
         return right:
58
     void insert(int i, ll val) { // and i = val
       auto [left, right] = split(root, i);
61
       treap.emplace_back(val);
62
       left = merge(left, sz(treap) - 1);
63
       root = merge(left, right);
64
     void remove(int i, int count = 1) {
       auto [left, t_right] = split(root, i):
67
       auto [middle, right] = split(t_right, count);
68
       root = merge(left, right);
69
70
     // for query use remove and read middle BEFORE remerging
71 | };
```

1.7 Range Minimum Query

```
\label{eq:continuity} \begin{array}{ll} \text{init} & \text{baut Struktur auf} & O\big(n\cdot\log(n)\big) \\ \text{queryIdempotent Index des Minimums in } [l,r) & O(1) \\ \bullet & \text{better-Funktion muss idempotent sein!} \\ \\ \text{struct SparseTable } \{ \end{array}
```

```
struct SparseTable {
     vector<vector<int>> st;
3
     vector<ll> *a:
     int better(int lidx, int ridx) {
       return a->at(lidx) <= a->at(ridx) ? lidx : ridx:
     void init(vector<ll> *vec) {
       a = vec:
       st.assign(\__lg(sz(*a)) + 1, vector<int>(sz(*a)));
10
       iota(all(st[0]), 0);
11
       for (int j = 0; (2 << j) <= sz(*a); j++) {
12
         for (int i = 0; i + (2 << j) <= sz(*a); i++) {
13
           st[i + 1][i] = better(st[i][i], st[i][i + (1 << i)]);
14
     }}}
__
15
     int quervIdempotent(int l, int r) {
       int j = _{-}lq(r - l); //31 - builtin_clz(r - l);
17
       return better(st[j][l] , st[j][r - (1 << j)]);</pre>
18
19 | };
```

1.8 STL-Tree

```
1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/tree_policy.hpp>
   using namespace std; using namespace __gnu_pbds;
   template<typename T>
   using Tree = tree<T, null_type, less<T>, rb_tree_tag,
                     tree_order_statistics_node_update>:
   int main() {
    Tree<int> X:
    // insert {1, 2, 4, 8, 16}
    for (int i = 1; i <= 16; i *= 2) X.insert(i);</pre>
    cout << *X.find_by_order(3) << endl; // => 8
12
    cout << X.order_of_key(10) << endl;</pre>
13
    // => 4 = min i, mit X[i] >= 10
14
    return 0;
15 }
```

1.9 STL-Rope (Implicit Cartesian Tree)

```
#include <ext/rope>
using namespace __gnu_cxx;
rope<int> v; // Wie normaler Container.

4 v.push_back(num); // O(log(n))
rope<int> sub = v.substr(start, length); // O(log(n))
6 v.erase(start, length); // O(log(n))
7 v.insert(v.mutable_begin() + offset, sub); // O(log(n))
8 for(auto it = v.mutable_begin(); it != v.mutable_end(); it++)
```

1.10 STL HashMap

3 bis 4 mal langsamer als std::vector aber 8 bis 9 mal schneller als std::map

```
#include <ext/pb_ds/assoc_container.hpp>
   using namespace __gnu_pbds:
   template<typename T>
   struct betterHash {
     size_t operator()(T o) const {
       size_t h = hash<T>()(o) ^ 42394245; //random value
       h = ((h >> 16) ^ h) * 0x45d9f3b:
       h = ((h >> 16) ^ h) * 0x45d9f3b;
       h = ((h >> 16) ^ h);
10
       return h;
11 }};
12 template<typename K, typename V, typename H = betterHash<K>>
   using hashMap = qp_hash_table<K, V, H>;
   template<typename K, typename H = betterHash<K>>
   using hashSet = gp_hash_table<K, null_type, H>;
```

1.11 STL Priority Queue

Nicht notwendig, wenn Smaller-Larger-Optimization greift.

```
#include <ext/pb_ds/priority_queue.hpp>
   template<tvpename T>
 3 // greater<T> für Min-Oueue
   using priorityQueue = __gnu_pbds::priority_queue<T, less<T>>;
   int main() {
     prioritvOueue<int> pa:
     auto it = pq.push(5); // 0(1)
     pq.push(7);
     pq.pop(); // O(log n) amortisiert
     pq.modify(it, 6); // O(log n) amortisiert
11
     pq.erase(it); // O(log n) amortisiert
12
     priorityQueue<int> pq2;
13
     pq.join(pq2); // 0(1)
14 }
```

1.12 Lower/Upper Envelope (Convex Hull Optimization)

Um aus einem lower envelope einen upper envelope zu machen (oder umgekehrt), einfach beim Einfügen der Geraden m und b negieren.

```
// Lower Envelope mit MONOTONEN Inserts und Queries. Jede neue
 2 // Gerade hat kleinere Steigung als alle vorherigen.
 3 vector<ll> ms. bs: int ptr = 0:
   bool bad(int l1, int l2, int l3) {
     return (bs[l3]-bs[l1])*(ms[l1]-ms[l2]) <</pre>
            (bs[l2]-bs[l1])*(ms[l1]-ms[l3]);
7
   void add(ll m, ll b) { // Laufzeit O(1) amortisiert
     ms.push_back(m); bs.push_back(b);
     while (sz(ms) >= 3 \&\& bad(sz(ms)-3, sz(ms)-2, sz(ms)-1))  {
11
       ms.erase(ms.end() - 2); bs.erase(bs.end() - 2);
12
13
     ptr = min(ptr, sz(ms) - 1);
14
   ll get(int idx, ll x) {return ms[idx] * x + bs[idx];}
```

```
1 struct Line {
     mutable ll m, b, p;
     bool operator<(const Line& o) const {return m < o.m;}</pre>
     bool operator<(ll x) const {return p < x;}</pre>
5 };
 6 struct HullDvnamic : multiset<Line. less<>> {
     // (for doubles, use \inf = 1/.0, \operatorname{div}(a,b) = a/b)
     static constexpr ll INF = LLONG_MAX;
     ll div(ll a, ll b) {return a / b - ((a ^ b) < 0 && a % b);}
     bool isect(iterator x, iterator v) {
11
       if (v == end()) {x->p = INF: return false:}
12
       if (x->m == y->m) x->p = x->b > y->b ? INF : -INF;
       else x -> p = div(y -> b - x -> b, x -> m - y -> m);
14
       return x->p >= y->p;
15
     void add(ll m. ll b) {
17
       auto x = insert({m, b, 0});
       while (isect(x, next(x))) erase(next(x));
19
       if (x != begin()) {
20
         x--:
21
         if (isect(x, next(x))) {
22
           erase(next(x));
23
           isect(x, next(x));
24
       while (x != begin() \&\& prev(x)->p >= x->p) {
25
26
         isect(x, erase(next(x)));
28
     }}
     ll auerv(ll x) {
30
       auto l = *lower_bound(x):
31
       return l.m * x + l.b:
32
    }
33 };
```

47

48

49

51

52

__ 53

54

55

<u>--</u>

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

1.13 Link-Cut-Tree

```
Constructor baut Wald auf
                                                           O(n)
            prüft ob zwei Knoten im selben Baum liegen
                                                           O(\log(n))
connected
                                                           O(\log(n))
link
             fügt \{x,y\} Kante ein
             entfernt \{x,y\} Kante
                                                           O(\log(n))
cut
             berechnet LCA von x und y
                                                           O(\log(n))
lca
             berechnet que ry auf den Knoten des xy-Pfades O(\log(n))
query
             erhöht jeden wert auf dem xy-Pfad
                                                           O(\log(n))
modify
```

```
constexpr ll queryDefault = 0;
   constexpr ll updateDefault = 0;
   ll _modify(ll x, ll y) {
     return x + y;
5 l
   ll _query(ll x, ll y) {
     return x + y;
   ll _update(ll delta, int length) {
     if (delta == updateDefault) return updateDefault;
11
     //ll result = delta
12
     //for (int i=1; i<length; i++) result = _query(result, delta);</pre>
13
     return delta * length;
14 }
15
   //generic:
16
   ll joinValueDelta(ll value, ll delta) {
     if (delta == updateDefault) return value;
17
18
     return _modifv(value. delta):
19
20
   ll joinDeltas(ll delta1, ll delta2) {
21
     if (delta1 == updateDefault) return delta2;
22
     if (delta2 == updateDefault) return delta1;
23
     return _modifv(delta1. delta2):
24
__
25
   struct LCT {
26
     struct Node {
27
       ll nodeValue. subTreeValue. delta:
28
       bool revert:
29
       int id, size;
30
       Node *left, *right, *parent;
31
       Node(int id = 0, int val = queryDefault) :
32
         nodeValue(val), subTreeValue(val), delta(updateDefault),
33
         revert(false), id(id), size(1),
34
35
         left(nullptr), right(nullptr), parent(nullptr) {}
        bool isRoot() {
36
          return !parent || (parent->left != this &&
37
                 parent->right != this);
38
39
        void push() {
40
         if (revert) {
41
           revert = false:
42
           swap(left, right);
43
           if (left) left->revert ^= 1;
44
           if (right) right->revert ^= 1;
45
         nodeValue = joinValueDelta(nodeValue, delta);
```

```
subTreeValue = joinValueDelta(subTreeValue,
                                       _update(delta, size));
         if (left) left->delta = joinDeltas(left->delta, delta);
50
         if (right) right->delta = joinDeltas(right->delta, delta);
         delta = updateDefault:
       ll getSubtreeValue() {
         return joinValueDelta(subTreeValue, _update(delta, size));
       void update() {
         subTreeValue = joinValueDelta(nodeValue, delta);
         size = 1;
         if (left) {
           subTreeValue = _query(subTreeValue,
                                 left->getSubtreeValue());
           size += left->size:
         if (right) {
65
           subTreeValue = _query(subTreeValue,
                                  right->getSubtreeValue()):
           size += right->size;
      }}
     };
     vector<Node> nodes;
     LCT(int n) : nodes(n) {
       for (int i = 0; i < n; i++) nodes[i].id = i;</pre>
    }
     void connect(Node* ch, Node* p, int isLeftChild) {
       if (ch) ch->parent = p;
       if (isLeftChild >= 0) {
         if (isLeftChild) p->left = ch;
         else p->right = ch;
     }}
     void rotate(Node* x) {
       Node* p = x-parent;
       Node* g = p->parent;
       bool isRootP = p->isRoot();
       bool leftChildX = (x == p->left);
       connect(leftChildX ? x->right : x->left, p, leftChildX);
       connect(p, x, !leftChildX):
       connect(x, q, isRootP ? -1 : p == q->left);
       p->update();
     void splav(Node* x) {
       while (!x->isRoot()) {
         Node* p = x-parent;
         Node* q = p->parent;
         if (!p->isRoot()) q->push();
         p->push():
         x->push();
         if (!p->isRoot()) rotate((x == p->left) ==
                                   (p == g -> left) ? p : x);
         rotate(x);
       x->push();
```

```
102
        x->update():
103
104
      Node* expose(Node* x) {
105
        Node* last = nullptr;
106
        for (Node* y = x; y; y = y->parent) {
107
          splay(y);
108
          y->left = last;
109
          last = y;
110
111
        splay(x);
112
        return last;
113
114
      void makeRoot(Node* x) {
115
        expose(x);
116
        x->revert ^= 1;
117
118
      bool connected(Node* x, Node* y) {
119
        if (x == y) return true;
120
        expose(x):
121
        expose(y);
122
        return x->parent:
123
124
      void link(Node* x, Node* y) {
125
        assert(!connected(x, y)); // not yet connected!
126
        makeRoot(x):
127
        x->parent = y;
128
      void cut(Node* x, Node* y) {
130
        makeRoot(x);
131
        expose(y);
132
        //must be a tree edge!
        assert(!(y->right != x || x->left != nullptr));
        y->right->parent = nullptr;
134
135
        y->right = nullptr;
136
137
      Node* lca(Node* x, Node* y) {
138
        assert(connected(x, y));
139
        expose(x);
140
        return expose(y);
141
142
      ll querv(Node* from. Node* to) {
143
        makeRoot(from);
144
        expose(to);
145
        if (to) return to->getSubtreeValue();
146
        return quervDefault:
147
148
      void modify(Node* from, Node* to, ll delta) {
149
        makeRoot(from);
150
        expose(to):
151
        to->delta = joinDeltas(to->delta, delta);
152
153 | };
```

 $O(\log(t))$

1.14 Persistent

berechnet Wert zu Zeitpunkt t

```
O(\log(t))
         ändert Wert zu Zeitpunkt t
   reset setzt die Datenstruktur auf Zeitpunkt t O(1)
   template<typename T>
   struct persistent {
3
     int& time:
     vector<pair<int, T>> data;
     persistent(int& time, T value = {})
       : time(time), data(1, {time, value}) {}
     T get(int t) {
       return prev(upper_bound(all(data),
                                 pair<int, T>(t+1, {})))->second;
10
11
     int set(T value) {
12
       time+=2;
13
       data.push_back({time, value});
14
       return time;
15
```

```
template<tvpename T>
   struct persistentArray{
     int time = 0;
     vector<persistent<T>> data;
     vector<pair<int, int>> mods;
     persistentArrav(int n. T value = {})
7
8
       : time(0), data(n, {time, value}) {}
     T get(int p, int t) {
       return data[p].get(t);
10
11
     int set(int p, T value) {
12
       mods.push_back({p, time});
13
       return data[p].set(value);
14
15
     void reset(int t) {
16
       while (!mods.empty() && mods.back().second > t) {
17
         data[mods.back().first].data.pop_back();
18
         mods.pop_back();
19
       }
20
       time = t;
21
22 | };
```

2 Graphen

2.1 DFS

16 | };

2.1 510			
Kantentyp (v,w)	dfs[v] < dfs[w]	fin[v] > fin[w]	seen[w]
in-tree	true	true	false
forward	true	true	true
backward	false	false	true
cross	false	true	true

2.2 Minimale Spannbäume

Schnitteigenschaft Für jeden Schnitt C im Graphen gilt: Gibt es eine Kante e, die echt leichter ist als alle anderen Schnittkanten, so gehört diese zu allen minimalen Spannbäumen. (\Rightarrow Die leichteste Kante in einem Schnitt kann in einem minimalen Spannbaum verwendet werden.)

Kreiseigenschaft Für jeden Kreis K im Graphen gilt: Die schwerste Kante auf dem Kreis ist nicht Teil des minimalen Spannbaums.

2.3 Kruskal

berechnet den Minimalen Spannbaum $O(|E| \cdot \log(|E|))$

```
sort(all(edges));
vector<edge> mst;
int cost = 0;
for (edge& e : edges) {
   if (findSet(e.from) != findSet(e.to)) {
      unionSets(e.from, e.to);
      mst.push_back(e);
   cost += e.cost;
}
```

2.4 Erdős-Gallai

Sei $d_1 \geq \cdots \geq d_n$. Es existiert genau dann ein Graph G mit Degreesequence d falls $\sum_{i=1}^n d_i$ gerade ist und für $1 \leq k \leq n$: $\sum_{i=1}^k d_i \leq k \cdot (k-1) + \sum_{i=k+1}^n \min(d_i,k)$ havelHakimi findet Graph $O((|V|+|E|)\cdot\log(|V|))$

```
1 vector<vector<int>> havelHakimi(const vector<int>& deg) {
     priority_queue<pair<int, int>> pq;
     for (int i = 0; i < sz(deg); i++) pq.push({deg[i], i});</pre>
     vector<vector<int>> adj;
     while (!pq.empty()) {
       auto [degV, v] = pq.top(); pq.pop();
       if (sz(pq) < degV) return {}; //impossible</pre>
       vector<pair<int, int>> todo;
       for (int i = 0; i < deqV; i++) {</pre>
10
         auto [degU, v] = pq.top(); pq.pop();
11
         adj[v].push_back(u);
12
         adj[u].push_back(v);
13
         if (degU > 1) todo.push_back({degU - 1, u});
14
15
       for (auto e : todo) pg.push(e);
16
     }
17
     return adj;
```

2.5 Centroids

find_centroid findet alle Centroids des Baums (maximal 2) O(|V|)

```
vector<int> s;
void dfs1(int u, int v = -1) {
    s[u] = 1;
    for (int w : adj[u]) {
        if (w == v) continue;
        dfs1(w, u);
        s[u] += s[w];
}
pair<int, int> dfs2(int u, int v, int n) {
```

```
for (int w : adj[u]) {
      if (2 * s[w] == n) return \{u, w\};
11
12
       if (w != v && 2 * s[w] > n) return dfs2(w, u, n);
13
14
     return {u, -1};
15 }
   pair<int, int> find_centroid(int root) {
    // s muss nicht initialisiert werden, nur groß genug sein
18
    dfs1(root);
19
     return dfs2(root, -1, s[root]);
20 }
```

2.6 Baum-Isomorphie

treeLabel berechnet kanonischen Namen für einen Baum $O(|V| \cdot \log(|V|))$

```
vector<vector<int>> adj;
2 map<vector<int>. int> known:
   int treeLabel(int root, int p = -1) {
    vector<int> children;
     for (int x : adj[root]) {
      if (x == p) continue:
       children.push_back(treeLabel(x, root));
8
    }
9
     sort(all(children));
10
     if (known.find(children) == known.end()) {
11
      known[children] = sz(known);
12
13
     return known[children];
14 | }
```

2.7 Kürzeste Wege

2.7.1 Algorithmus von DIJKSTRA

dijkstra kürzeste Pfade in Graphen ohne negative Kanten $O(|E| \cdot \log(|V|))$

```
using path = pair<ll, int>; //dist, destination
   void dijkstra(const vector<vector<path>> &adjlist, int start) {
     priority_queue<path, vector<path>, greater<path>> pq;
     vector<ll> dist(sz(adjlist), INF);
     vector<int> prev(sz(adjlist), -1);
     dist[start] = 0; pq.emplace(0, start);
     while (!pq.empty()) {
       auto [dc, c] = pq.top(); pq.pop();
       if (dc > dist[c]) continue; // WICHTIG!
10
       for (auto [dx, x] : adjlist[c]) {
11
         ll\ newDist = dc + dx;
12
         if (newDist < dist[x]) {</pre>
13
           dist[x] = newDist:
14
           prev[x] = c;
15
           pq.emplace(newDist, x);
     }}}
17
     //return dist, prev;
```

2.7.2 Bellmann-Ford-Algorithmus

bellmanFord kürzeste Pfade oder negative Kreise finden $O(|V| \cdot |E|)$

```
void bellmannFord(int n, vector<edge> edges, int start) {
     vector<ll> dist(n, INF), parent(n, -1);
     dist[start] = 0:
     for (int i = 1; i < n; i++) {</pre>
       for (edge& e : edges) {
         if (dist[e.from] != INF &&
7
              dist[e.from] + e.cost < dist[e.to]) {</pre>
           dist[e.to] = dist[e.from] + e.cost;
           parent[e.to] = e.from:
     for (edge& e : edges) {
       if (dist[e.from] != INF &&
13
           dist[e.from] + e.cost < dist[e.to]) {</pre>
14
         // Negativer Kreis gefunden.
15
     }}
16
     //return dist, parent;
17 | }
```

2.7.3 FLOYD-WARSHALL-Algorithmus

floydWarshall kürzeste Pfade oder negative Kreise finden $O(|V|^3)$

- dist[i][i] = 0, dist[i][j] = edge{j, j}.weight oder INF
- i liegt auf einem negativen Kreis ⇔ dist[i][i] < 0.

```
vector<vector<ll>> dist; // Entfernung zwischen je zwei Punkten.

vector<vector<int>> pre;

void floydWarshall() {
   pre.assign(sz(dist), vector<int>(sz(dist), -1));
   for (int i = 0; i < sz(dist); i++) {
      for (int j = 0; j < sz(dist); j++) {
        if (dist[i][j] < INF) {
            pre[i][j] = j;
      }
}</pre>
```

```
for (int k = 0; k < sz(dist); k++) {
       for (int i = 0; i < sz(dist); i++) {</pre>
11
12
         for (int j = 0; j < sz(dist); j++) {</pre>
13
            if (dist[i][j] > dist[i][k] + dist[k][j]) {
14
              dist[i][j] = dist[i][k] + dist[k][j];
15
              pre[i][j] = pre[i][k];
16
   }}}}
   vector<int> getPath(int u, int v) {
     //return dist[u][v]; // Pfadlänge u -> v
     if (pre[u][v] < 0) return {};</pre>
20
     vector<int> path = {v};
21
     while (u != v) path.push_back(u = pre[u][v]);
22
     return path; //Pfad u -> v
23 }
```

2.7.4 Matrix-Algorithmus

Sei d_{ij} die Distanzmatrix von G, dann gibt d^k_{ij} die kürzeste Distanz von i nach j mit maximal k kanten an mit der Verknüpfung: $c_{ij} = a_{ij} * b_{ij} = \min\{a_{ik} + b_{kj}\}$ Sei a_{ij} die Adjazenzmatrix von G (mit $a_{ii} = 1$), dann gibt a^k_{ij} die Anzahl der Wege von i nach j mit Länge genau (maximal) k an mit der Verknüpfung: $c_{ij} = a_{ij} \cdot b_{ij} = \sum a_{ik} + b_{kj}$

2.8 Lowest Common Ancestor

```
init baut DFS-Baum über g auf O(|V| \cdot \log(|V|)) getLCA findet LCA O(1) getDepth berechnet Distanz zur Wurzel im DFS-Baum O(1)
```

```
struct LCA {
     vector<ll> depth;
     vector<int> visited. first:
     int idx:
     SparseTable st; //sparse table von oben
     void init(vector<vector<int>>& q, int root) {
       depth.assign(2 * sz(q), 0);
       visited.assign(2 * sz(g), -1);
       first.assign(sz(g), 2 * sz(g));
10
       idx = 0:
11
       visit(g, root);
12
       st.init(&depth);
13
14
     void visit(vector<vector<int>>& g, int v, ll d=0, int p=-1) {
15
       visited[idx] = v, depth[idx] = d;
16
       first[v] = min(idx, first[v]), idx++;
17
       for (int w : g[v]) {
18
         if (first[w] == 2 * sz(g)) {
19
           visit(q, w, d + 1, v);
20
           visited[idx] = v, depth[idx] = d, idx++;
21
     }}}
     int getLCA(int a, int b) {
23
       if (first[a] > first[b]) swap(a, b);
24
       return visited[st.queryIdempotent(first[a], first[b] + 1)];
25
__
26
     ll getDepth(int a) {return depth[first[a]];}
27
   };
```

2.9 Heavy-Light Decomposition

<code>get_intervals</code> gibt Zerlegung des Pfades von u nach $v \ O\bigl(\log(|V|)\bigr)$ Wichtig: Intervalle sind halboffen

Subbaum unter dem Knoten v ist das Intervall [in[v], out[v]).

```
1 vector<vector<int>> adj;
   vector<int> sz, in, out, nxt, par;
 3 int t;
 4 | void dfs_sz(int v = 0, int from = -1) {
     for (auto& u : adj[v]) {
       if (u != from) {
 8
         dfs_sz(u, v);
9
         sz[v] += sz[u]:
10
11
       if (adj[v][0] == from \mid \mid sz[u] > sz[adj[v][0]]) {
12
         swap(u, adj[v][0]);
13 | }}}
14 void dfs_hld(int v = 0, int from = -1) {
16
     in[v] = t++;
17
     for (int u : adj[v]) {
       if (u == from) continue;
       nxt[u] = (u == adj[v][0] ? nxt[v] : u);
20
       dfs_hld(u, v):
21
22
     out[v] = t;
23 }
24 | void init() {
    int n = sz(adi):
     sz.assign(n, 0); in.assign(n, 0); out.assign(n, 0);
     nxt.assign(n, 0); par.assign(n, -1);
28
     t = 0;
29
     dfs_sz(); dfs_hld();
30 | }
31 vector<pair<int, int>> get_intervals(int u, int v) {
     vector<pair<int, int>> res;
33
     while (true) {
       if (in[v] < in[u]) swap(u, v);
35
       if (in[nxt[v]] <= in[u]) {</pre>
36
         res.emplace_back(in[u], in[v] + 1);
37
         return res:
38
39
       res.emplace_back(in[nxt[v]], in[v] + 1);
40
       v = par[nxt[v]];
41 | }}
42 int get_lca(int u, int v) {
     while (true) {
       if (in[v] < in[u]) swap(u, v);
       if (in[nxt[v]] <= in[u]) return in[u];</pre>
46
       v = par[nxt[v]];
47 }}
```

2.10 Maximal Cliques

bronKerbosch berechnet alle maximalen Cliquen $O(3^{\frac{n}{3}})$ addEdge fügt **ungerichtete** Kante ein O(1)

```
using bits = bitset<64>:
   vector<br/>dits> adi. cliques:
   void addEdge(int a, int b) {
     if (a != b) adj[a][b] = adj[b][a] = 1;
   void bronKerboschRec(bits R. bits P. bits X) {
     if (!P.anv() && !X.anv()) {
       cliques.push_back(R);
     } else {
10
       int q = (P | X)._Find_first();
11
       bits cands = P & ~adi[a]:
12
        for (int i = 0; i < sz(adj); i++) if (cands[i]){</pre>
13
         R[i] = 1:
14
         bronKerboschRec(P & adj[i], X & adj[i], R);
15
         R[i] = P[i] = 0;
16
         X[i] = 1:
17
   }}}
   void bronKerbosch() {
     cliques.clear();
20
     bronKerboschRec({}, {(1ull << sz(adj)) - 1}, {});
21 }
```

2.11 Artikulationspunkte, Brücken und BCC

find berechnet Artikulationspunkte, Brücken und BCC O(|V|+|E|) Wichtig: isolierte Knoten und Brücken sind keine BCC.

```
1 vector<vector<edge>> adilist:
2 vector<int> num:
3 int counter, rootCount, root;
   vector<bool> isArt;
   vector<edge> bridges, st;
 6 vector<vector<edge>> bcc:
   int dfs(int v. int parent = -1) {
     int me = num[v] = ++counter, top = me;
     for (edge& e : adjlist[v]) {
10
       if (e.id == parent){}
11
       else if (num[e.tol) {
12
         top = min(top, num[e.to]);
13
         if (num[e.to] < me) st.push_back(e):</pre>
14
       } else {
15
         if (v == root) rootCount++;
16
         int si = sz(st):
17
         int up = dfs(e.to, e.id);
18
         top = min(top, up);
19
         if (up >= me) isArt[v] = true;
20
         if (up > me) bridges.push_back(e);
21
         if (up <= me) st.push_back(e);</pre>
22
         if (up == me) {
23
           bcc.emplace_back():
24
           while (sz(st) > si) {
25
             bcc.back().push_back(st.back());
26
             st.pop_back();
     }}}}
```

```
return top:
29
30
   void find() {
31
     counter = 0:
32
     num.assign(sz(adjlist), 0);
     isArt.assign(sz(adjlist), false);
     bridges.clear();
35
     st.clear();
36
     bcc.clear();
37
     for (int v = 0; v < sz(adjlist); v++) {
       if (!num[v]) {
39
         root = v:
40
         rootCount = 0;
41
         dfs(v);
42
         isArt[v] = rootCount > 1;
43
   }}}
```

2.12 Strongly Connected Components (TARJAN)

scc berechnet starke Zusammenhangskomponenten O(|V|+|E|)

```
vector<vector<int>> adjlist;
   int counter, sccCounter;
 3 vector<bool> inStack:
 4 vector<vector<int>> sccs:
   // idx enthält den Index der SCC pro Knoten.
   vector<int> d, low, idx, s;
    void visit(int v) {
     d[v] = low[v] = counter++:
     s.push_back(v): inStack[v] = true:
     for (auto u : adjlist[v]) {
11
       if (d[u] < 0) {</pre>
12
         visit(u):
13
         low[v] = min(low[v], low[u]);
       } else if (inStack[u]) {
15
         low[v] = min(low[v], low[u]);
16
17
     if (d[v] == low[v]) {
18
       sccs.push_back({});
19
       int u:
20
       do {
21
         u = s.back(); s.pop_back(); inStack[u] = false;
22
         idx[u] = sccCounter;
23
         sccs[sccCounter].push_back(u);
24
       } while (u != v):
25
       sccCounter++;
26
   }}
27
   void scc() {
28
     inStack.assign(sz(adjlist), false);
29
     d.assign(sz(adilist), -1);
     low.assign(sz(adjlist), -1);
31
     idx.assign(sz(adjlist), -1);
32
     counter = sccCounter = 0:
33
     for (int i = 0: i < sz(adilist): i++) {</pre>
34
       if (d[i] < 0) visit(i);</pre>
35
```

2.13 2-SAT

```
1 struct sat2 {
    int n; // + scc variablen
     vector<int> sol:
     sat2(int vars) : n(vars*2), adjlist(vars*2) {};
     static int var(int i) {return i << 1;} // use this!</pre>
     void addImpl(int a, int b) {
       adilist[a].push_back(b):
       adjlist[1^b].push_back(1^a);
8
     void addEquiv(int a, int b) {addImpl(a, b); addImpl(b, a);}
     void addOr(int a, int b) {addImpl(1^a, b):}
     void addXor(int a. int b) {addOr(a, b): addOr(1^a, 1^b):}
     void addTrue(int a) {addImpl(1^a, a):}
     void addFalse(int a) {addTrue(1^a);}
     void addAnd(int a, int b) {addTrue(a); addTrue(b);}
     void addNand(int a, int b) {addOr(1^a, 1^b);}
     bool solvable() {
18
       scc(): //scc code von oben
19
       for (int i = 0; i < n; i += 2) {
20
        if (idx[i] == idx[i + 1]) return false;
      }
22
       return true;
23
     void assign() {
25
       sol.assign(n, -1);
       for (int i = 0; i < sccCounter; i++) {</pre>
         if (sol[sccs[i][0]] == -1) {
           for (int v : sccs[i]) {
29
             sol[v] = 1;
30
             sol[1^v] = 0;
31
    }}}}
32 }:
```

2.14 Global Mincut

 $\begin{tabular}{ll} {\bf stoer_wagner} & {\bf berechnet\ globalen\ Mincut} & O(|V|^2\cdot\log(|E|)) \\ {\bf merge(a,b)} & {\bf merged\ Knoten\ }b \ {\bf in\ Knoten\ }a \ O(|E|) \\ {\bf Tipp:\ Cut\ Rekonstruktion\ mit\ unionFind\ f\"ur\ Partitionierung\ oder\ vector
bool>f\"ur\ edge\ id's\ im\ cut.} \\ \end{tabular}$

```
1 struct edge {
    int from, to:
3
    ll cap:
 5 vector<vector<edge>> adjlist, tmp;
 6 vector<bool> erased:
 7 void merge(int a, int b) {
    tmp[a].insert(tmp[a].end(), all(tmp[b]));
     tmp[b].clear();
     erased[b] = true;
     for (auto& v : tmp) {
       for (auto&e : v) {
13
         if (e.from == b) e.from = a;
14
         if (e.to == b) e.to = a;
15 | }}}
```

```
16 | ll stoer_wagner() {
17
     ll res = INF;
18
     tmp = adjlist;
19
     erased.assign(sz(tmp), false);
20
      for (int i = 1; i < sz(tmp); i++) {</pre>
21
        int s = 0:
22
        while (erased[s]) s++;
23
        priority_queue<pair<ll, int>> pq;
24
        pg.push({0, s});
25
        vector<ll> con(sz(tmp));
26
        ll cur = 0;
27
        vector<pair<ll, int>> state;
28
        while (!pq.empty()) {
29
         int c = pq.top().second;
30
          pq.pop();
31
          if (con[c] < 0) continue; //already seen</pre>
32
          con[c] = -1;
33
          for (auto e : tmp[c]) {
34
           if (con[e.to] >= 0) {//add edge to cut
              con[e.to] += e.cap;
35
36
              pq.push({con[e.to], e.to});
37
              cur += e.cap:
38
           } else if (e.to != c) {//remove edge from cut
39
              cur -= e.cap;
40
         }}
41
         state.push_back({cur, c});
42
43
        int t = state.back().second;
44
        state.pop_back();
45
        if (state.empty()) return 0; //graph is not connected?!
46
        merge(state.back().second, t);
47
        res = min(res, state.back().first);
48
49
     return res;
```

2.15 Max-Flow

2.15.1 Push Relabel

maxFlow gut bei sehr dicht besetzten Graphen. $O(|V|^2 \cdot \sqrt{|E|})$ addEdge fügt eine **gerichtete** Kante ein O(1)

```
struct edge {
     int from, to;
3
     ll f, c;
   vector<edge> edges;
   vector<vector<int>> adjlist, hs;
   vector<ll> ec;
   vector<int> cur, H;
   void addEdge(int from, int to, ll c) {
    adjlist[from].push_back(sz(edges));
     edges.push_back({from, to, 0, c});
12
     adjlist[to].push_back(sz(edges));
13
     edges.push_back({to, from, 0, 0});
14 }
15 void addFlow(int id, ll f) {
```

```
if (ec[edges[id].to] == 0 \&\& f > 0)
17
       hs[H[edges[id].to]].push_back(edges[id].to);
18
     edges[id].f += f;
19
     edges[id^1].f -= f;
     ec[edges[id].to] += f;
21
     ec[edges[id].from] -= f;
22
23
   ll maxFlow(int s, int t) {
24
     int n = sz(adjlist);
25
     hs.assign(2*n, {});
26
     ec.assign(n, 0);
27
     cur.assign(n. 0):
28
     H.assign(n, 0);
29
     H[s] = n;
30
     ec[t] = 1;//never set t to active...
31
     vector<int> co(2*n):
32
     co[0] = n - 1:
33
     for (int id : adjlist[s]) addFlow(id, edges[id].c);
34
      for (int hi = 0;;) {
35
       while (hs[hi].empty()) if (!hi--) return -ec[s];
36
       int u = hs[hi].back();
37
       hs[hi].pop_back();
38
       while (ec[u] > 0) {
39
         if (cur[u] == sz(adjlist[u])) {
40
            H[u] = 2*n;
41
            for (int i = 0; i < sz(adjlist[u]); i++) {</pre>
42
             int id = adjlist[u][i];
43
             if (edges[id].c - edges[id].f > 0 &&
44
                  H[u] > H[edges[id].to] + 1) {
45
               H[u] = H[edges[id].to] + 1;
46
               cur[u] = i;
47
            }}
48
            co[H[u]]++;
49
            if (!--co[hi] && hi < n) {</pre>
50
             for (int i = 0; i < n; i++) {
51
               if (hi < H[i] \&\& H[i] < n) {
52
                  co[H[i]]--;
53
                  H[i] = n + 1;
54
            }}}
55
            hi = H[u];
56
         } else {
57
            auto e = edges[adjlist[u][cur[u]]];
58
            if (e.c - e.f > 0 \& H[u] == H[e.to] + 1) {
59
              addFlow(adjlist[u][cur[u]], min(ec[u], e.c - e.f));
60
           } else {
61
              cur[u]++;
   }}}}
```

2.15.2 Dinic's Algorithm mit Capacity Scaling

maxFlow doppelt so schnell wie Ford Fulkerson $O(|V|^2 \cdot |E|)$ addEdge fügt eine **gerichtete** Kante ein O(1)

```
addEdge fügt eine gerichtete Kante ein O(1)

struct edge {
  int from, to;
  3 ll f, c;
  4 };
  vector<edge> edges;
```

```
6 | vector<vector<int>> adjlist;
7 int s, t;
8 | vector<int> pt, dist;
9 ll flow, lim;
10 | queue<int> q;
11 void addEdge(int from, int to, ll c) {
     adjlist[from].push_back(sz(edges));
     edges.push_back({from, to, 0, c});
     adjlist[to].push_back(sz(edges));
     edges.push_back({to, from, 0, 0});
16 }
17 bool bfs() {
18
     dist.assign(sz(dist), -1);
     dist[t] = sz(adjlist) + 1;
20
     q.push(t);
     while (!q.empty() && dist[s] < 0) {</pre>
22
       int cur = q.front(); q.pop();
       for (int id : adjlist[cur]) {
24
         int to = edges[id].to;
25
         if (dist[to] < 0 &&
             edges[id ^1].c - edges[id ^1].f >= lim) {
26
27
           dist[to] = dist[cur] - 1;
28
           q.push(to);
29
30
     while (!q.empty()) q.pop();
31
     return dist[s] >= 0;
32 }
33 bool dfs(int v, ll flow) {
    if (flow == 0) return false;
     if (v == t) return true;
     for (; pt[v] < sz(adjlist[v]); pt[v]++) {</pre>
       int id = adjlist[v][pt[v]], to = edges[id].to;
       if (dist[to] == dist[v] + 1 &&
39
           edges[id].c - edges[id].f >= flow) {
40
         if (dfs(to, flow)) {
41
           edges[id].f += flow;
42
           edges[id ^ 1].f -= flow;
43
           return true:
44
    }}}
45
     return false;
46 }
47
   ll maxFlow(int source, int target) {
    s = source:
     t = target;
50
     flow = 0;
     dist.resize(sz(adjlist));
52
     for (lim = (1LL << 62); lim >= 1;) {
       if (!bfs()) {lim /= 2; continue;}
       pt.assign(sz(adjlist), 0);
55
       while (dfs(s, lim)) flow += lim;
56
57
     return flow;
58 }
```

2.16 Min-Cost-Max-Flow

struct MinCostFlow {

struct edge {

mincostflow berechnet Fluss $O(|V|^2 \cdot |E|^2)$

constexpr ll INF = 1LL << 60; // Größer als der maximale Fluss.

```
int to;
       ll f. cost:
     vector<edge> edges;
     vector<vector<int>> adjlist;
     vector<int> pref, con;
     vector<ll> dist;
11
     const int s, t;
12
     ll maxflow, mincost;
13
     MinCostFlow(int n, int source, int target) :
14
       adjlist(n), s(source), t(target) {};
__
15
     void addedge(int u, int v, ll c, ll cost) {
16
       adjlist[u].push_back(sz(edges));
17
       edges.push_back({v, c, cost});
18
       adjlist[v].push_back(sz(edges));
19
       edges.push_back({u, 0, -cost});
\frac{20}{21}
     bool SPFA() {
22
       pref.assign(sz(adjlist), - 1);
23
       dist.assign(sz(adjlist), INF);
24
       vector<bool> inqueue(sz(adjlist));
\frac{25}{26}
       queue<int> queue;
       dist[s] = 0; queue.push(s);
27
28
       pref[s] = s; inqueue[s] = true;
       while (!queue.empty()) {
29
         int cur = queue.front(); queue.pop();
30
         inqueue[cur] = false;
31
          for (int id : adjlist[cur]) {
32
           int to = edges[id].to;
33
           if (edges[id].f > 0 &&
34
               dist[to] > dist[cur] + edges[id].cost) {
35
              dist[to] = dist[cur] + edges[id].cost;
36
              pref[to] = cur; con[to] = id;
37
              if (!inqueue[to]) {
38
               inqueue[to] = true; queue.push(to);
39
40
       return pref[t] != -1;
41
42
     void extend() {
43
44
       for (int u = t; pref[u] != u; u = pref[u])
45
         w = min(w, edges[con[u]].f);
46
       maxflow += w;
47
       mincost += dist[t] * w;
       for (int u = t; pref[u] != u; u = pref[u]) {
49
         edges[con[u]].f -= w;
50
         edges[con[u] ^1].f += w;
51
     void mincostflow() {
```

```
con.assign(sz(adjlist), 0);
maxflow = mincost = 0;
while (SPFA()) extend();
};
```

2.17 Maximal Cardinatlity Bipartite Matching

kuhn berechnet Matching $O(|V| \cdot \min(ans^2, |E|))$

• die ersten [0..n) Knoten in adjlist sind die linke Seite des Graphen

```
vector<vector<int>> adjlist;
   vector<int> pairs; // Der gematchte Knoten oder -1.
 3 vector<bool> visited:
 4 bool dfs(int v) {
     if (visited[v]) return false;
     visited[v] = true;
     for (auto w : adjlist[v]) if (pairs[w] < 0 || dfs(pairs[w])) {</pre>
      pairs[w] = v; pairs[v] = w; return true;
10
     return false;
11
   int kuhn(int n) { // n = \#Knoten\ links.
13
     pairs.assign(sz(adjlist), -1);
14
     int ans = 0;
15
     // Greedy Matching. Optionale Beschleunigung.
16
     for (int i = 0; i < n; i++) for (auto w : adjlist[i])</pre>
17
       if (pairs[w] < 0) {pairs[i] = w; pairs[w] = i; ans++; break;}</pre>
18
     for (int i = 0; i < n; i++) if (pairs[i] < 0) {</pre>
19
       visited.assign(n, false);
20
       ans += dfs(i);
21
22
     return ans; // Größe des Matchings.
23 }
```

hopcroft_karp berechnet Matching $O(\sqrt{|V|}\cdot |E|)$

```
1 vector<vector<int>> adjlist;
 2 // pairs ist der gematchte Knoten oder -1
 3 vector<int> pairs, dist;
 4 bool bfs(int n) {
     queue<int> q;
     for(int i = 0; i < n; i++) {</pre>
       if (pairs[i] < 0) {dist[i] = 0; q.push(i);}</pre>
       else dist[i] = -1;
9
10
     while(!q.empty()) {
11
       int u = q.front(); q.pop();
12
        for (int v : adjlist[u]) {
13
         if (pairs[v] < 0) return true;</pre>
14
         if (dist[pairs[v]] < 0) {</pre>
15
            dist[pairs[v]] = dist[u] + 1;
16
            q.push(pairs[v]);
17
18
     return false;
19
20 bool dfs(int u) {
     for (int v : adjlist[u]) {
```

```
if (pairs[v] < 0 ||
23
          (dist[pairs[v]] > dist[u] && dfs(pairs[v]))) {
24
         pairs[v] = u; pairs[u] = v;
25
26
    }}
27
     dist[u] = -1;
     return false;
29 }
   int hopcroft_karp(int n) { // n = #Knoten links
32
     pairs.assign(sz(adjlist), -1);
     dist.resize(n):
     // Greedy Matching, optionale Beschleunigung.
     for (int i = 0; i < n; i++) for (int w : adjlist[i])</pre>
      if (pairs[w] < 0) {pairs[i] = w; pairs[w] = i; ans++; break;}</pre>
     while(bfs(n)) for(int i = 0; i < n; i++)
      if (pairs[i] < 0) ans += dfs(i);</pre>
39
     return ans;
40 | }
```

2.18 Maximum Weight Bipartite Matching

match berechnet Matching $O(|V|^3)$

```
double costs[N_LEFT][N_RIGHT];
   // Es muss l<=r sein! (sonst Endlosschleife)</pre>
   double match(int l, int r) {
     vector<double> lx(l), ly(r);
     //xy is matching from l->r, yx from r->l, or -1
     vector<int> xy(l, -1), yx(r, -1), augmenting(r);
     vector<bool> s(l);
     vector<pair<double, int>> slack(r);
     for (int x = 0; x < 1; x++)
       lx[x] = *max_element(costs[x], costs[x] + r);
      for (int root = 0; root < 1; root++) {</pre>
       augmenting.assign(r, -1);
       s.assign(l, false);
14
       s[root] = true;
15
       for (int y = 0; y < r; y++) {
16
         slack[y] = {lx[root] + ly[y] - costs[root][y], root};
17
18
       int y = -1;
       while (true) {
20
         double delta = INF;
21
         int x = -1;
         for (int yy = 0; yy < r; yy++) {
23
           if (augmenting[yy] < 0) {</pre>
24
             if (slack[yy].first < delta) {</pre>
25
                delta = slack[yy].first;
               x = slack[yy].second;
27
               y = yy;
28
29
         if (delta > 0) {
            for (int x = 0; x < 1; x++) if (s[x]) lx[x] -= delta;
31
            for (int y = 0; y < r; y++) {
32
             if (augmenting[y] >= 0) ly[y] += delta;
             else slack[y].first -= delta;
33
34
```

```
augmenting[y] = x;
36
         x = yx[y];
37
         if (x == -1) break;
         s[x] = true;
39
         for (int y = 0; y < r; y++) {
40
           if (augmenting[y] < 0) {
41
             double alt = lx[x] + ly[y] - costs[x][y];
42
             if (slack[y].first > alt) {
43
               slack[y] = {alt, x};
44
45
       while (y >= 0) {
46
         // Jede Iteration vergrößert Matching um 1
47
         // (können 0-Kanten sein!)
48
         int x = augmenting[y];
49
         int prec = xy[x];
50
         yx[y] = x;
51
         xy[x] = y;
52
         y = prec;
53
54
     // Wert des Matchings
55
     return accumulate(all(lx), 0.0) +
            accumulate(all(ly), 0.0);
57
```

2.19 Wert des maximalen Matchings

Fehlerwahrscheinlichkeit: $\left(\frac{m}{MOD}\right)$

```
constexpr int MOD=1'000'000'007, I=10;
   vector<vector<ll>> adjlist, mat;
   int gauss(int n, ll p) {
     int rank = n;
     for (int line = 0; line < n; line++) {</pre>
       int swappee = line;
       while (swappee < n && mat[swappee][line] == 0) swappee++;</pre>
       if (swappee == n) {rank--; continue;}
       swap(mat[line], mat[swappee]);
       ll factor = powMod(mat[line][line], p - 2, p);
11
       for (int i = 0; i < n; i++) {
12
         mat[line][i] *= factor;
13
         mat[line][i] %= p;
14
15
       for (int i = 0; i < n; i++) {</pre>
         if (i == line) continue;
17
         ll diff = mat[i][line];
18
         for (int j = 0; j < n; j++) {
19
           mat[i][j] -= (diff * mat[line][j]) % p;
20
           mat[i][j] %= p;
           if (mat[i][j] < 0) mat[i][j] += p;</pre>
22
     }}}
23
     return rank;
24
25
   int max_matching() {
26
     int ans = 0;
27
     mat.assign(sz(adjlist), vector<ll>(sz(adjlist)));
28
     for (int _ = 0; _ < I; _++) {
29
       for (int i = 0; i < sz(adjlist); i++) {</pre>
         mat[i].assign(sz(adjlist), 0);
```

```
31
         for (int j : adjlist[i]) {
32
           if (j < i) {
33
             mat[i][j] = rand() % (MOD - 1) + 1;
             mat[j][i] = MOD - mat[i][j];
35
       }}}
36
       ans = max(ans, gauss(sz(adjlist), MOD)/2);
37
38
     return ans;
```

2.20 Allgemeines maximales Matching

match berechnet algemeines Matching $O(|E| \cdot |V| \cdot \log(|V|))$

```
1 struct GM {
     vector<vector<int>> adjlist;
     // pairs ist der gematchte knoten oder n
     vector<int> pairs, first, que;
     vector<pair<int, int>> label;
     int head, tail;
     GM(int n) : adjlist(n), pairs(n + 1, n), first(n + 1, n),
                 que(n), label(n + 1, \{-1, -1\}) {}
     void rematch(int v, int w) {
10
       int t = pairs[v]; pairs[v] = w;
11
       if (pairs[t] != v) return;
12
       if (label[v].second == -1) {
13
         pairs[t] = label[v].first;
14
         rematch(pairs[t], t);
15
       } else {
16
         auto [x, y] = label[v];
17
         rematch(x, y);
18
         rematch(y, x);
19
20
     int findFirst(int u) {
        return label[first[u]].first < 0 ? first[u]</pre>
22
            : first[u] = findFirst(first[u]);
23
24
     void relabel(int x, int y) {
25
       int r = findFirst(x);
26
       int s = findFirst(y);
27
       if (r == s) return;
28
        auto h = label[r] = label[s] = {~x, y};
29
       int join;
30
       while (true) {
31
         if (s != sz(adjlist)) swap(r, s);
32
         r = findFirst(label[pairs[r]].first);
33
         if (label[r] == h) {
34
           join = r;
35
           break;
36
         } else {
37
           label[r] = h;
38
39
       for (int v : {first[x], first[y]}) {
40
         for (; v != join; v = first[label[pairs[v]].first]) {
41
           label[v] = \{x, y\};
42
           first[v] = join;
43
           que[tail++] = v;
```

```
45
     bool augment(int u) {
       label[u] = {sz(adjlist), -1};
47
       first[u] = sz(adjlist);
       head = tail = 0;
49
       for (que[tail++] = u; head < tail;) {</pre>
50
         int x = que[head++];
51
         for (int y : adjlist[x]) {
52
           if (pairs[y] == sz(adjlist) && y != u) {
53
             pairs[y] = x;
54
              rematch(x, y);
55
              return true;
56
           } else if (label[y].first >= 0) {
57
              relabel(x, y);
58
           } else if (label[pairs[y]].first == -1) {
59
              label[pairs[y]].first = x;
60
              first[pairs[y]] = y;
              que[tail++] = pairs[y];
62
       }}}
63
       return false;
64
65
     int match() {
       int matching = head = tail = 0;
       for (int u = 0; u < sz(adjlist); u++) {</pre>
68
         if (pairs[u] < sz(adjlist) || !augment(u)) continue;</pre>
         matching++;
70
         for (int i = 0; i < tail; i++)</pre>
71
           label[que[i]] = label[pairs[que[i]]] = {-1, -1};
72
         label[sz(adjlist)] = \{-1, -1\};
73
74
       return matching;
75
76 };
```

2.21 Cycle Counting

findBase berechnet Basis $O(|V| \cdot |E|)$ count zählt Zykel $O(2^{|base|})$ • jeder Zyklus ist das xor von einträgen in base.

```
constexpr int maxEdges = 128;
 2 using cycle = bitset<maxEdges>;
3 struct cylces {
    vector<vector<pair<int, int>>> adj;
     vector<bool> seen;
     vector<cycle> paths, base;
     vector<pair<int, int>> edges;
     cylces(int n) : adj(n), seen(n), paths(n) {}
     void addEdge(int a, int b) {
       adj[a].push_back({b, sz(edges)});
11
       adj[b].push_back({a, sz(edges)});
12
       edges.push_back({a, b});
13
     void addBase(cycle cur) {
15
       for (cycle o : base) {
16
         o ^= cur;
         if (o._Find_first() > cur._Find_first()) cur = o;
```

```
19
       if (cur.any()) base.push_back(cur);
\frac{20}{21}
      void findBase(int c = 0, int p = -1, cycle cur = {}) {
22
        if (adj.empty()) return;
        if (seen[c]) {
24
          addBase(cur ^ paths[c]);
25
        } else {
26
          seen[c] = true;
27
          paths[c] = cur;
28
          for (auto [to, id] : adj[c]) {
29
            if (to == p) continue:
30
            cur[id].flip();
31
            findBase(to, c, cur);
32
            cur[id].flip();
\frac{33}{34}
     }}}
      //cycle must be constrcuted from base
35
     bool isCycle(cycle cur) {
36
        if (cur.none()) return false;
37
        init(sz(adi)): // union find
38
        for (int i = 0; i < sz(edges); i++) {</pre>
39
          if (cur[i]) {
40
            cur[i] = false;
41
            if (findSet(edges[i].first) ==
42
                 findSet(edges[i].second)) break;
43
            unionSets(edges[i].first, edges[i].second);
44
45
        return cur.none();
\frac{46}{47}
      int count() {
48
        findBase():
49
50
        for (int i = 1; i < (1 << sz(base)); i++) {</pre>
51
52
          for (int j = 0; j < sz(base); j++) {
53
            if (((i >> j) & 1) != 0) cur ^= base[j];
54
          if (isCycle(cur)) res++;
55
56
        return res;
57
58 | };
```

2.22 Eulertouren

euler berechnet den Kreis O(|V|+|E|)

```
vector<vector<int>> idx;
vector<int>> idx;
vector<int>> idx;
vector<int>> to, validIdx, cycle;

void addEdge(int a, int b) {
   idx[a].push_back(sz(to));
   to.push_back(b);
   used.push_back(false);
   idx[b].push_back(sz(to)); // für ungerichtet
   to.push_back(a);
   used.push_back(false);
}
```

```
12 | void euler(int n) { // init idx und validIdx
13
     for (;validIdx[n] < sz(idx[n]); validIdx[n]++) {</pre>
14
       if (!used[idx[n][validIdx[n]]]) {
15
         int nn = to[idx[n][validIdx[n]]];
         used[idx[n][validIdx[n]]] = true;
17
         used[idx[n][validIdx[n]] ^ 1] = true; // für ungerichtet
18
         euler(nn):
19
     }}
20
     cycle.push_back(n); // Zyklus in umgekehrter Reihenfolge.
21 }
```

- Zyklus existiert, wenn jeder Knoten geraden Grad hat (ungerichtet), bei jedem Knoten Ein- und Ausgangsgrad übereinstimmen (gerichtet).
- Pfad existiert, wenn genau {0,2} Knoten ungeraden Grad haben (ungerichtet), bei allen Knoten Ein- und Ausgangsgrad übereinstimmen oder einer eine Ausgangskante mehr hat (Startknoten) und einer eine Eingangskante mehr hat (Endknoten).
- Je nach Aufgabenstellung überprüfen, wie ein unzusammenhängender Graph interpretiert werden sollen.
- Wenn eine bestimmte Sortierung verlangt wird oder Laufzeit vernachlässigbar ist, ist eine Implementierung mit einem vector<set<int>>> adjlist leichter
- Wichtig: Algorithmus schlägt nicht fehl, falls kein Eulerzyklus existiert. Die Existenz muss separat geprüft werden.

2.23 Dynamic Connectivity

Constructor erzeugt Baum (n Knoten, m updates) O(n+m) addEdge fügt Kannte ein,id=delete Zeitpunkt $O(\log(n))$ eraseEdge entfernt Kante id $O(\log(n))$

```
struct connect {
     int n:
     vector<pair<int. int>> edges:
     LCT lct; // min LCT no updates required
     connect(int n, int m) : n(n), edges(m), lct(n+m) {}
     bool connected(int a. int b) {
       return lct.connected(&lct.nodes[a], &lct.nodes[b]);
8
     void addEdge(int a, int b, int id) {
10
       lct.nodes[id + n] = LCT::Node(id + n, id + n);
11
       edges[id] = {a, b}:
       if (connected(a, b)) {
12
13
         int old = lct.query(&lct.nodes[a], &lct.nodes[b]);
14
         if (old < id) eraseEdge(old);</pre>
15
16
       if (!connected(a, b)) {
17
         lct.link(&lct.nodes[a], &lct.nodes[id + n]);
18
         lct.link(&lct.nodes[b], &lct.nodes[id + n]);
19
     }}
20
     void eraseEdge(ll id) {
       if (connected(edges[id].first, edges[id].second) &&
21
22
         lct.query(&lct.nodes[edges[id].first],
23
                   &lct.nodes[edges[id].second]) == id) {
24
         lct.cut(&lct.nodes[edges[id].first], &lct.nodes[id + n]);
25
         lct.cut(&lct.nodes[edges[id].second], &lct.nodes[id + n]);
26
     }}
27
   };
```

3 Geometrie

3.1 Closest Pair

shortestDist kürzester Abstand zwischen Punkten $O(n \cdot \log(n))$

11

```
1 bool compY(pt a, pt b) {
     return (imag(a) == imag(b)) ? real(a) < real(b)</pre>
3
                                  : imag(a) < imag(b);
4 }
5 bool compX(pt a, pt b) {
     return (real(a) == real(b)) ? imag(a) < imag(b)</pre>
                                  : real(a) < real(b);</pre>
9 double shortestDist(vector<pt>& pts) { // sz(pts) > 1
     set<pt, bool(*)(pt, pt)> status(compY);
11
     sort(all(pts), compX);
12
     double opt = 1.0/0.0, sqrt0pt = 1.0/0.0;
     auto left = pts.begin(), right = pts.begin();
     status.insert(*right); right++;
     while (right != pts.end()) {
       if (left != right &&
16
17
           abs(real(*left - *right)) >= sgrt0pt) {
18
         status.erase(*left);
19
         left++:
20
       } else {
21
         auto lower = status.lower_bound({-1.0/0.0, //-INF
                                           imag(*right) - sqrt0pt});
23
         auto upper = status.upper_bound({-1.0/0.0, //-INF
24
                                           imag(*right) + sqrt0pt});
25
         for (;lower != upper; lower++) {
           double cand = norm(*right - *lower);
26
27
           if (cand < opt) {</pre>
             opt = cand:
29
             sqrtOpt = sqrt(opt);
31
         status.insert(*right);
32
         riaht++:
33
34
     return sqrt0pt;
35 | }
```

3.2 Rotating calipers

antipodal Points berechnet antipodale Punkte O(n)

WICHTIG: Punkte müssen gegen den Uhrzeigersinn Sortiert sein und konvexes Polygon bilden!

```
vector<pair<int, int>> antipodalPoints(vector<pt>& h) {
    if (sz(h) < 2) return {};
    vector<pair<int, int>> result;
     for (int i = 0, j = 1; i < j; i++) {
      while (true) {
6
         result.push_back({i, j});
         if (cross(h[(i + 1) % sz(h)] - h[i],
8
                  h[(j + 1) % sz(h)] - h[j]) <= 0) break;
9
        j = (j + 1) \% sz(h);
10
    }}
11
    return result;
```

3.3 Konvexe Hülle

convexHull berechnet Konvexehülle $O(n \cdot \log(n))$

- Konvexehülle gegen den Uhrzeigersinn Sortiert
- nur Eckpunkte enthalten(für alle Punkte = im CCW Test entfernen)
- Erster und Letzter Punkt sind identisch

```
vector<pt> convexHull(vector<pt> pts){
     sort(all(pts), [](const pt& a, const pt& b){
       return real(a) == real(b) ? imag(a) < imag(b)</pre>
                                  : real(a) < real(b);</pre>
     });
     pts.erase(unique(all(pts)), pts.end());
     int k = 0:
     vector<pt> h(2 * sz(pts));
     for (int i = 0; i < sz(pts); i++) {// Untere Hülle.
10
       while (k > 1 \&\& cross(h[k-2], h[k-1], pts[i]) \le 0) k--;
11
       h[k++] = pts[i]:
12
13
     for (int i = sz(pts)-2, t = k; i \ge 0; i--) {// Obere Hülle.
14
       while (k > t \&\& cross(h[k-2], h[k-1], pts[i]) \le 0) k--;
15
       h[k++] = pts[i]:
16
17
     h.resize(k):
18
     return h:
19 }
```

3.4 Formeln - std::complex

```
1 // Komplexe Zahlen als Punkte. Wenn immer möglich complex<ll>
 2 // verwenden. Funktionen wie abs() geben dann aber ll zurück.
   using pt = complex<double>;
   constexpr double PIU = acos(-1.01): // PIL < PI < PIU</pre>
   constexpr double PIL = PIU-2e-19l:
 6 // Winkel zwischen Punkt und x-Achse in [-PI, PI].
  double angle(pt a) {return arg(a);}
 8 // rotiert Punkt im Uhrzeigersinn um den Ursprung.
 9 pt rotate(pt a. double theta) {return a * polar(1.0, theta);}
10 // Skalarprodukt.
11 double dot(pt a, pt b) {return real(conj(a) * b);}
12 // abs()^2.(pre c++20)
13 double norm(pt a) {return dot(a, a);}
14 // Kreuzprodukt, 0, falls kollinear.
15 double cross(pt a, pt b) {return imag(conj(a) * b);}
16 double cross(pt p, pt a, pt b) {return cross(a - p, b - p);}
17 // 1 => c links von a->b
18 // 0 => a. b und c kolliniear
   // -1 => c rechts von a->b
20 int orientation(pt a, pt b, pt c) {
21
    double orien = cross(b - a, c - a);
    return (orien > EPS) - (orien < -EPS);</pre>
23 }
   // Liegt d in der gleichen Ebene wie a, b, und c?
25 bool isCoplanar(pt a, pt b, pt c, pt d) {
   return abs((b - a) * (c - a) * (d - a)) < EPS;
26
```

```
28 // identifiziert winkel zwischen Vektoren u und v
   pt uniqueAnale(pt u. pt v) {
     pt tmp = v * coni(u):
     ll g = abs(gcd(real(tmp), imag(tmp)));
     return tmp / a:
33 }
 1 // Test auf Streckenschnitt zwischen a-b und c-d.
   bool lineSegmentIntersection(pt a, pt b, pt c, pt d) {
     if (orientation(a, b, c) == 0 && orientation(a, b, d) == 0)
         return pointOnLineSegment(a,b,c) ||
                pointOnLineSegment(a,b,d) ||
                pointOnLineSegment(c.d.a) ||
                pointOnLineSegment(c,d,b);
     return orientation(a, b, c) * orientation(a, b, d) <= 0 &&</pre>
            orientation(c, d, a) * orientation(c, d, b) <= 0:
10
11
   // Berechnet die Schnittpunkte der Strecken p0-p1 und p2-p3.
   // Enthält entweder keinen Punkt, den einzigen Schnittpunkt
   // oder die Endpunkte der Schnittstrecke.
   vector<pt> lineSeamentIntersection(pt p0. pt p1. pt p2. pt p3) {
     double a = cross(p1 - p0, p3 - p2):
16
     double b = cross(p2 - p0, p3 - p2):
17
     double c = cross(p1 - p0, p0 - p2);
18
     if (a < 0) \{a = -a; b = -b; c = -c;\}
     if (b < -EPS || a-b < -EPS ||
20
         c < -EPS || a-c < -EPS) return {};
21
     if (a > EPS) return {p0 + b/a*(p1 - p0)};
22
     vector<pt> result;
23
     auto insertUnique = [&](pt p) {
       for (auto q: result) if (abs(p - q) < EPS) return;</pre>
24
25
       result.push_back(p);
26
27
     if (dot(p2-p0, p3-p0) < EPS) insertUnique(p0);</pre>
     if (dot(p2-p1, p3-p1) < EPS) insertUnique(p1);</pre>
     if (dot(p0-p2, p1-p2) < EPS) insertUnique(p2);</pre>
     if (dot(p0-p3, p1-p3) < EPS) insertUnique(p3);</pre>
31
     return result:
32
   // Entfernung von Punkt p zur Gearden durch a-b. 2d und 3d
   double distToLine(pt a, pt b, pt p) {
35
     return abs(cross(p - a, b - a)) / abs(b - a):
36 }
37
   // Projektiert p auf die Gerade a-b
   pt projectToLine(pt a, pt b, pt p) {
     return a + (b - a) * dot(p - a, b - a) / norm(b - a);
40
   // Liegt p auf der Geraden a-b? 2d und 3d
42 bool pointOnLine(pt a, pt b, pt p) {
43
    return cross(a, b, p) == 0;
44 }
45 // Test auf Linienschnitt zwischen a-b und c-d.
46 bool lineIntersection(pt a, pt b, pt c, pt d) {
47
     return abs(cross(a - b, c - d)) < EPS;</pre>
48 }
```

```
49 // Berechnet den Schnittpunkt der Graden p0-p1 und p2-p3.
50 // die Graden dürfen nicht parallel sein!
51 pt lineIntersection(pt p0, pt p1, pt p2, pt p3) {
     double a = cross(p1 - p0, p3 - p2);
     double b = cross(p2 - p0, p3 - p2):
    return {p0 + b/a*(p1 - p0)};
55 }
56 // Liegt p auf der Strecke a-b?
   bool pointOnLineSegment(pt a, pt b, pt p) {
    if (cross(a, b, p) != 0) return false;
     double dist = norm(a - b):
     return norm(a - p) <= dist && norm(b - p) <= dist:
61 | }
   // Entfernung von Punkt p zur Strecke a-b.
63 double distToSegment(pt a, pt b, pt p) {
    if (a == b) return abs(p - a):
    if (dot(p - a, b - a) \le 0) return abs(p - a):
     if (dot(p - b, b - a) >= 0) return abs(p - b);
     return distToLine(a, b, p);
68 }
69 // Kürzeste Entfernung zwischen den Strecken a-b und c-d.
70 double distBetweenSegments(pt a. pt b. pt c. pt d) {
    if (lineSegmentIntersection(a, b, c, d)) return 0.0;
     return min({distToSegment(a, b, c), distToSegment(a, b, d),
73
                 distToSegment(c, d, a), distToSegment(c, d, b)});
74 }
75 // sortiert alle Punkte pts auf einer Linie entsprechend dir
   void sortLine(pt dir, vector<pt>& pts) { // (2d und 3d)
     sort(all(pts), [&](pt a, pt b){
78
      return dot(dir, a) < dot(dir, b);</pre>
79
80 }
```

12

```
Generell:  \bullet \cos(\gamma) = \frac{a^2 + b^2 - c^2}{2ab} 
 \bullet b = \frac{a}{\sin(\alpha)} \sin(\beta) 
 \bullet \Delta = \frac{bc}{2} \sin(\alpha) 
 A \alpha c \beta 
 A \alpha c \beta c 
 \bullet \sin(\alpha) = \frac{a}{b} 
 \bullet \cos(\alpha) = \frac{c}{b} 
 \bullet \tan(\alpha) = \frac{a}{c}
```

```
1 // Mittelpunkt des Dreiecks abc.
 2 pt centroid(pt a, pt b, pt c) {return (a + b + c) / 3.0;}
3 // Flächeninhalt eines Dreicks bei bekannten Eckpunkten.
4 double area(pt a, pt b, pt c) {
    return abs(cross(b - a, c - a)) / 2.0:
6 }
7 // Flächeninhalt eines Dreiecks bei bekannten Seitenlängen.
8 double area(double a, double b, double c) {
    double s = (a + b + c) / 2.0:
    return sgrt(s * (s-a) * (s-b) * (s-c));
11 }
12 // Zentrum des größten Kreises im Dreiecke
13 pt inCenter(pt a, pt b, pt c) {
    double x = abs(a-b), y = abs(b-c), z = abs(a-c);
15
    return (v*a + z*b + x*c) / (x+v+z):
16 }
```

```
17 // Zentrum des Kreises durch alle Eckpunkte
   pt outCenter(pt a, pt b, pt c) {
     double d = 2.0 * (real(a) * imag(b-c) +
20
                       real(b) * imag(c-a) +
21
                       real(c) * imag(a-b));
22
     return (a*conj(a)*conj(b-c) +
23
             b*coni(b)*coni(c-a) +
24
             c*conj(c)*conj(a-b)) / d;
25 }
   // Sind die Dreiecke al, bl, cl, and a2, b2, c2 ähnlich?
   // Erste Zeile testet Ähnlichkeit mit gleicher Orientierung.
   // zweite Zeile testet Ähnlichkeit mit verschiedener Orientierung
   bool similar (pt al, pt bl, pt cl, pt a2, pt b2, pt c2) {
30
     return ((b2-a2) * (c1-a1) == (b1-a1) * (c2-a2) ||
31
             (b2-a2) * (conj(c1)-conj(a1)) == (conj(b1)-conj(a1))
32
         * (c2-a2)
33
    ):
34 }
```

```
// Flächeninhalt eines Polygons (nicht selbstschneidend).
    // Punkte gegen den Uhrzeigersinn: positiv. sonst negativ.
 3 double area(const vector<pt>& poly) { //poly[0] == poly.back()
     double res = 0:
     for (int i = 0; i + 1 < sz(poly); i++)
       res += cross(poly[i], poly[i + 1]);
     return 0.5 * res:
    // Anzahl drehungen einer Polyline um einen Punkt
 10 // p nicht auf rand und poly[0] == poly.back()
11 // res != 0 or (res & 1) != 0 um inside zu prüfen bei
12 // selbstschneidenden polygonen (definitions sache)
13 | ll windingNumber(pt p, const vector<pt>& poly) {
14
     ll res = 0:
15
     for (int i = 0; i + 1 < sz(poly); i++) {
16
       pt a = poly[i], b = poly[i + 1];
17
       if (real(a) > real(b)) swap(a,b);
18
       if (real(a) <= real(p) &&real(p) < real(b) &&</pre>
19
           cross(p, a, b) < 0) {
20
          res += orientation(p, poly[i], poly[i + 1]);
21
     }}
22
     return res;
23
    // Testet. ob ein Punkt im Polygon liegt (beliebige Polygone).
    // Ändere Zeile 32 falls rand zählt, poly[0] == poly.back()
    bool inside(pt p, const vector<pt>& poly) {
27
     bool in = false:
28
     for (int i = 0; i + 1 < sz(poly); i++) {</pre>
29
        pt a = poly[i], b = poly[i + 1];
30
       if (pointOnLineSegment(a, b, p)) return false;
31
        if (real(a) > real(b)) swap(a.b):
32
        if (real(a) <= real(p) && real(p) < real(b) &&</pre>
33
           cross(p, a, b) < 0) {
34
          in ^= 1:
35
     }}
36
     return in;
37 |
```

```
38 // convex hull without duplicates, h[0] == h.back()
   // Change line 45 and 51 >= if border counts as inside
40 bool inside(pt p, const vector<pt>& hull) {
41
     int l = 0, r = sz(hull) - 1;
     if (cross(hull[0], hull[r], p) > 0) return false;
43
     while (l + 1 < r) {
44
       int m = (l + r) / 2:
45
       if (cross(hull[0], hull[m], p) >= 0) l = m;
46
47
48
     return cross(hull[l], hull[r], p) > 0;
49
   void rotateMin(vector<pt>& hull) {
51
     auto mi = min_element(all(hull), [](const pt& a, const pt& b){
52
       return real(a) == real(b) ? imag(a) < imag(b)</pre>
53
                                 : real(a) < real(b):
54
55
     rotate(hull.begin(), mi, hull.end());
56 }
   // convex hulls without duplicates, h[0] != h.back()
   vector<pt> minkowski(vector<pt> ps, vector<pt> qs) {
     rotateMin(ps):
60
     rotateMin(qs);
61
     ps.push_back(ps[0]);
     gs.push_back(qs[0]);
63
     ps.push_back(ps[1]);
64
     qs.push_back(qs[1]);
65
     vector<pt> res;
66
     for (ll i = 0, j = 0; i + 2 < sz(ps) || j + 2 < sz(qs);) {
67
       res.push_back(ps[i] + qs[j]);
68
       auto c = cross(ps[i + 1] - ps[i], qs[j + 1] - qs[j]);
69
       if(c <= 0) i++:
70
       if(c >= 0) i++:
71
     }
72
     return res;
73
74
   // convex hulls without duplicates, h[0] != h.back()
75
   double dist(const vector<pt>& ps. const vector<pt>& qs) {
76
     for (pt& q : qs) q *= -1;
77
     auto p = minkowski(ps, qs);
78
     p.push_back(p[0]);
79
     double res = 0.0:
80
     //bool intersect = true:
81
     for (ll i = 0; i + 1 < sz(p); i++) {
      //intersect &= cross(p[i], p[i+1] - p[i]) <= 0;
83
       res = max(res, cross(p[i], p[i+1]-p[i]) / abs(p[i+1]-p[i]));
84
85
     return res:
86
87
   bool left(pt of, pt p) {return cross(p, of) < 0 ||
                          (cross(p, of) == 0 \&\& dot(p, of) > 0);
   // convex hulls without duplicates, hull[0] == hull.back() and
90 // hull[0] must be a convex point (with angle < pi)
91 // returns index of corner where dot(dir, corner) is maximized
92 int extremal(const vector<pt>& hull, pt dir) {
     dir *= pt(0, 1);
```

```
int l = 0. r = sz(hull) - 1:
      while (l + 1 < r) {
        int m = (l + r) / 2:
 97
        pt dm = hull[m+1]-hull[m];
        pt dl = hull[l+1]-hull[l]:
        if (left(dl, dir) != left(dl, dm)) {
100
          if (left(dl. dm)) l = m:
101
          else r = m;
102
       } else {
103
          if (cross(dir, dm) < 0) l = m;
104
          else r = m:
105
     }}
106
     return r:
107 }
108 // convex hulls without duplicates, hull[0] == hull.back() and
109 // hull[0] must be a convex point (with angle < pi)
110 // {} if no intersection
111 // {x} if corner is only intersection
112 // {a, b} segments (a,a+1) and (b,b+1) intersected (if only the
113 // border is intersected corners a and b are the start and end)
    vector<int> intersect(const vector<pt>& hull. pt a. pt b) {
     int endA = extremal(hull, (a-b) * pt(0, 1));
     int endB = extremal(hull, (b-a) * pt(0, 1));
     // cross == 0 => line only intersects border
118
     if (cross(hull[endA], a, b) > 0 ||
119
          cross(hull[endB], a, b) < 0) return {};</pre>
      int n = sz(hull) - 1:
121
      vector<int> res:
      for (auto _ : {0, 1}) {
123
        int l = endA, r = endB;
124
        if (r < l) r += n:
125
        while (l + 1 < r) {
          int m = (l + r) / 2:
127
          if (cross(hull[m % n], a, b) <= 0 &&</pre>
128
              cross(hull[m % n], a, b) != hull(poly[endB], a, b))
129
            l = m;
130
          else r = m;
131
132
        if (cross(hull[r % n], a, b) == 0) l++:
133
        res.push_back(l % n);
134
        swap(endA, endB);
135
        swap(a, b):
136
      if (res[0] == res[1]) res.pop_back();
138
     return res;
139 }
```

```
// berechnet die Schnittpunkte von zwei kreisen
   // (Kreise dürfen nicht gleich sein!)
   vector<pt> circleIntersection(pt c1, double r1,
                                  pt c2, double r2) {
     double d = abs(c1 - c2);
     if (d < abs(r1 - r2) || d > abs(r1 + r2)) return {};
     double a = (r1 * r1 - r2 * r2 + d * d) / (2 * d);
     pt p = (c2 - c1) * a / d + c1:
     if (d == abs(r1 - r2) || d == abs(r1 + r2)) return {p};
     double h = sqrt(r1 * r1 - a * a);
11
     return \{p + pt\{0, 1\} * (c2 - c1) * h / d,
12
             p - pt\{0, 1\} * (c2 - c1) * h / d\};
13
   // berechnet die Schnittpunkte zwischen
   // einem Kreis(Kugel) und einer Grade 2d und 3d
   vector<pt> circleRayIntersection(pt center, double r,
17
                                     pt orig, pt dir) {
     vector<pt> result;
19
     double a = dot(dir, dir);
     double b = 2 * dot(dir, orig - center);
21
     double c = dot(orig - center, orig - center) - r * r;
22
     double discr = b * b - 4 * a * c;
23
     if (discr >= 0) {
24
       //t in [0, 1] => schnitt mit segment [orig, orig + dir]
25
       double t1 = -(b + sqrt(discr)) / (2 * a);
26
       double t2 = -(b - sqrt(discr)) / (2 * a);
27
       if (t1 >= 0) result.push_back(t1 * dir + orig);
28
       if (t2 \ge 0 \&\& abs(t1 - t2) \ge EPS) {
29
         result.push_back(t2 * dir + orig);
30
31
     return result;
```

3.5 Formeln - 3D

```
// Skalarprodukt
   double operator|(pt3 a, pt3 b) {
    return a.x * b.x + a.y*b.y + a.z*b.z;
 5 double dot(pt3 a, pt3 b) {return a|b;}
   // Kreuzprodukt
   pt3 operator*(pt3 a, pt3 b) {return {a.y*b.z - a.z*b.y,
                                        a.z*b.x - a.x*b.z,
                                        a.x*b.y - a.y*b.x};}
10 pt3 cross(pt3 a, pt3 b) {return a*b;}
   // Länge von a
12 double abs(pt3 a) {return sqrt(dot(a, a));}
13 double abs(pt3 a, pt3 b) {return abs(b - a);}
14
   // Mixedprodukt
15 double mixed(pt3 a, pt3 b, pt3 c) {return a*b|c;};
16 // orientierung von p zu der Ebene durch a, b, c
17 // -1 => gegen den Uhrzeigersinn,
18 // 0 \Rightarrow kolliniear,
19 // 1 => im Uhrzeigersinn.
20 int orientation(pt3 a, pt3 b, pt3 c, pt3 p) {
```

```
double orien = mixed(b - a, c - a, p - a);
22
     return (orien > EPS) - (orien < -EPS);</pre>
23 }
24
   // Entfernung von Punkt p zur Ebene a,b,c.
   double distToPlane(pt3 a, pt3 b, pt3 c, pt3 p) {
     pt3 n = cross(b-a, c-a);
27
     return (abs(dot(n, p)) - dot(n, a)) / abs(n);
28
   // Liegt p in der Ebene a,b,c?
   bool pointOnPlane(pt3 a, pt3 b, pt3 c, pt3 p) {
     return orientation(a, b, c, p) == 0;
32
   // Schnittpunkt von der Grade a-b und der Ebene c,d,e
   // die Grade darf nicht parallel zu der Ebene sein!
   pt3 linePlaneIntersection(pt3 a, pt3 b, pt3 c, pt3 d, pt3 e) {
     pt3 n = cross(d-c, e-c):
     pt3 d = b - a;
38
     return a - d * (dot(n, a) - dot(n, c)) / dot(n, d);
39
   // Abstand zwischen der Grade a-b und c-d
   double lineLineDist(pt3 a, pt3 b, pt3 c, pt3 d) {
     pt3 n = cross(b - a, d - c);
     if (abs(n) < EPS) return distToLine(a, b, c);</pre>
44
     return abs(dot(a - c, n)) / abs(n);
45 }
```

4 Mathe

4.1 Longest Increasing Subsequence

- lower_bound ⇒ streng monoton
- upper_bound ⇒ monoton

```
vector<int> lis(vector<int> &seq) {
     int n = sz(seq), lisLength = 0, lisEnd = 0;
     vector<int> L(n), L_id(n), parents(n);
     for (int i = 0; i < n; i++) {
       int pos = upper_bound(L.begin(), L.begin() + lisLength,
                             seq[i]) - L.begin();
7
       L[pos] = seq[i];
       L_id[pos] = i:
       parents[i] = pos ? L_id[pos - 1] : -1;
       if (pos + 1 > lisLength) {
11
         lisLength = pos + 1;
12
         lisEnd = i;
13
14
     // Ab hier Rekonstruktion der Sequenz.
15
     vector<int> result(lisLength);
16
     int pos = lisLength - 1, x = lisEnd;
     while (parents[x] >= 0) {
18
       result[pos--] = x;
19
       x = parents[x];
20
21
     result[0] = x;
22
     return result; // Liste mit Indizes einer LIS.
23
```

4.2 Zykel Erkennung

cycleDetection findet Zyklus von x_0 und Länge in f O(b+l)

```
1 void cycleDetection(ll x0, function<ll(ll)> f) {
    ll a = x0, b = f(x0), length = 1;
     for (ll power = 1; a != b; b = f(b), length++) {
      if (power == length) {
5
         power *= 2;
         length = 0;
         a = b;
8
    }}
    ll start = 0;
    a = x0; b = x0;
    for (ll i = 0; i < length; i++) b = f(b);</pre>
12
     while (a != b) {
13
      a = f(a):
14
      b = f(b);
15
       start++;
16 }}
```

14

4.3 Permutationen

kthperm findet k-te Permutation $(k \in [0,n!))$ $O(n \cdot \log(n))$

```
vector<ll> kthperm(ll k, ll n) {
    Tree<ll> t:
3
    vector<ll> res(n);
     for (ll i = 1; i <= n; k /= i, i++) {</pre>
      t.insert(i - 1);
       res[n - i] = k % i;
     for (ll& x : res) {
       auto it = t.find_by_order(x);
      x = *it;
11
      t.erase(it);
12
13
    return res;
14 }
```

permIndex bestimmt Index der Permutation $(res \in [0,n!))$ $O(n \cdot \log(n))$

```
1 | ll permIndex(vector<ll> v) {
    Tree<ll> t;
     reverse(all(v));
     for (ll& x : v) {
      t.insert(x);
       x = t.order_of_key(x);
7
8
    ll res = 0:
     for (ll i = sz(v); i > 0; i--) {
       res *= i;
11
       res += v[i - 1];
12
13
    return res;
14 | }
```

4.4 Mod-Exponent und Multiplikation über \mathbb{F}_p

mulMod berechnet $a \cdot b \mod n \ O(\log(b))$

powMod berechnet $a^b \mod n \ O(\log(b))$

```
1  ll powMod(ll a, ll b, ll n) {
2     ll res = 1;
3     while (b > 0) {
4         if (b & 1) res = (a * res) % n;
5         a = (a * a) % n;
6         b /= 2;
7     }
8     return res;
9 }
```

• für $a > 10^9$ __int128 oder modMul benutzten!

4.5 ggT, kgV, erweiterter euklidischer Algorithmus

 $O(\log(a) + \log(b))$

4.6 Multiplikatives Inverses von n in $\mathbb{Z}/p\mathbb{Z}$

Falls *p* **prim:** $x^{-1} \equiv x^{p-2} \mod p$

Falls ggT(n,v)=1:

- Erweiterter euklidischer Algorithmus liefert α und β mit $\alpha n + \beta p = 1$.
- Nach Kongruenz gilt $\alpha n + \beta p \equiv \alpha n \equiv 1 \mod p$.
- $n^{-1} :\equiv \alpha \mod v$

Sonst ggT(n,p)>1: Es existiert kein x^{-1} .

```
1  ll multInv(ll n, ll p) {
2     ll x, y;
3     extendedEuclid(n, p, x, y); // Implementierung von oben.
4     return ((x % p) + p) % p;
5 }
```

Lemma von Bézout Sei (x, y) eine Lösung der diophantischen Gleichung ax+by=d. Dann lassen sich wie folgt alle Lösungen berechnen:

$$\left(x+k\frac{b}{ggT(a,b)}, y-k\frac{a}{ggT(a,b)}\right)$$

Pell-Gleichungen Sei $(\overline{x}, \overline{y})$ die Lösung von $x^2 - ny^2 = 1$, die x > 1 minimiert. Sei $(\widetilde{x}, \widetilde{y})$ die Lösung von $x^2 - ny^2 = c$, die x > 1 minimiert. Dann lassen sich alle Lösungen von $x^2 - ny^2 = c$ berechnen durch:

```
x_1 := \widetilde{x}, y_1 := \widetilde{y}

x_{k+1} := \overline{x}x_k + n\overline{y}y_k, y_{k+1} := \overline{x}y_k + \overline{y}x_k
```

4.7 Lineare Kongruenz

• Löst $ax \equiv b \pmod{m}$.

• Weitere Lösungen unterscheiden sich um $\frac{m}{g}$, es gibt also g Lösungen modulo m.

4.8 Chinesischer Restsatz

- Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden.
- Direkte Formel für zwei Kongruenzen $x \equiv a \mod n$, $x \equiv b \mod m$:

 $x \equiv a - y \cdot n \cdot \frac{a - b}{d} \mod \frac{mn}{d}$ mit d := ggT(n, m) = yn + zm

Formel kann auch für nicht teilerfremde Moduli verwendet werden. Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung, wenn $a \equiv b \mod ggT(m,n)$. In diesem Fall sind keine Faktoren auf der linken Seite erlaubt.

```
1 // Laufzeit: O(n * log(n)), n := Anzahl der Kongruenzen. Nur für
 2 // teilerfremde Moduli. Berechnet das kleinste, nicht negative x,
   // das alle Kongruenzen simultan löst. Alle Lösungen sind
   // kongruent zum kgV der Moduli (Produkt, da teilerfremd).
   struct ChineseRemainder {
     using lll = __int128;
     vector<lll> lhs, rhs, mods, inv;
     lll M: // Produkt über die Moduli. Kann leicht überlaufen.
     ll g(const vector<lll> &vec) {
10
      lll res = 0;
       for (int i = 0: i < sz(vec): i++) {
12
         res += (vec[i] * inv[i]) % M:
13
         res %= M:
14
15
       return res:
16
17
     // Fügt Kongruenz l * x = r \pmod{m} hinzu.
18
     void addEquation(ll l. ll r. ll m) {
19
       lhs.push_back(l);
20
       rhs.push_back(r);
21
       mods.push_back(m);
22
__
23
     ll solve() { // Löst das System.
24
       M = accumulate(all(mods), lll(1), multiplies<lll>());
25
       inv.resize(sz(lhs));
       for (int i = 0; i < sz(lhs); i++) {</pre>
27
         lll x = (M / mods[i]) % mods[i];
28
         inv[i] = (multInv(x, mods[i]) * (M / mods[i]));
29
30
       return (multInv(q(lhs), M) * q(rhs)) % M;
31
32 };
```

4.9 Primzahltest & Faktorisierung

isPrime prüft ob Zahl prim ist $O(\log(n)^2)$

```
constexpr ll bases32[] = {2, 7, 61};
   constexpr ll bases64[] = {2, 325, 9375, 28178, 450775,
                              9780504. 1795265022}:
   bool isPrime(ll n) {
    if (n < 2 || n % 2 == 0) return n == 2;</pre>
     ll d = n - 1, j = 0;
     while (d \% 2 == 0) d /= 2, j++;
     for (ll a : bases64) {
       if (a % n == 0) continue:
       ll v = powMod(a, d, n): //with mulmod or int128
11
       if (v == 1 || v == n - 1) continue;
       for (ll i = 1; i <= j; i++) {</pre>
12
        v = (v * v) % n; //mulmod or int128
         if (v == n - 1 \mid | v <= 1) break:
15
16
       if (v != n - 1) return false;
17
18
     return true:
19 }
```

15

rho findet zufälligen Teiler $O(\sqrt[4]{n})$

```
1 using lll = __int128;
 2 | ll rho(ll n) { // Findet Faktor < n, nicht unbedingt prim.
    if (n % 2 == 0) return 2;
    ll x = 0, v = 0, prd = 2:
     auto f = [n](lll x){return (x * x) % n + 1:}:
     for (ll t = 30, i = n/2 + 7; t % 40 || gcd(prd, n) == 1; t++) {
      if (x == y) x = ++i, y = f(x);
      if (ll \alpha = (lll)prd * abs(x-v) % n; \alpha) prd = \alpha;
9
      x = f(x); y = f(f(y));
10
11
    return gcd(prd, n);
12 }
13 void factor(ll n, map<ll, int>& facts) {
    if (n == 1) return:
   if (isPrime(n)) {facts[n]++; return;}
    ll f = rho(n):
    factor(n / f, facts); factor(f, facts);
18 }
```

4.10 Teiler

countDivisors Zählt Teiler von n $O(\sqrt[3]{n})$

```
1 ll countDivisors(ll n) {
2    ll res = 1;
3    for (ll i = 2; i * i * i <= n; i++) {
4         ll c = 0;
         while (n % i == 0) {n /= i; c++;}
6         res *= c + 1;
7     }
8    if (isPrime(n)) res *= 2;
9    else if (n > 1) res *= isSquare(n) ? 3 : 4;
10    return res;
11 }
```

4.11 Primitivwurzeln

- Primitivwurzel modulo n existiert $\Leftrightarrow n \in \{2, 4, p^{\alpha}, 2 \cdot p^{\alpha} \mid 2$
- es existiert entweder keine oder $\varphi(\varphi(n))$ inkongruente Primitivwurzeln
- Sei *g* Primitivwurzel modulo *n*. Dann gilt: Das kleinste *k*, sodass $g^k \equiv 1 \mod n$, ist $k = \varphi(n)$.

isPrimitive prüft ob g eine Primitivwurzel ist $O(\log(\varphi(n)) \cdot \log(n))$ findPrimitive findet Primitivwurzel (oder -1) $O(|ans| \cdot \log(\varphi(n)) \cdot \log(n))$

```
bool isPrimitive(ll q, ll n, ll phi, map<ll, int> phiFacs) {
     if (q == 1) return n == 2;
     for (auto [f, _] : phiFacs)
       if (powMod(g, phi / f, n) == 1) return false;
   bool isPrimitive(ll g, ll n) {
     ll phin = phi(n); //isPrime(n) \Rightarrow phi(n) = n - 1
     map<ll, int> phiFacs;
     factor(phin, phiFacs);
11
     return isPrimitive(g, n, phin, phiFacs);
12
   ll findPrimitive(ll n) {
14
     ll phin = phi(n); //isPrime(n) \Rightarrow phi(n) = n - 1
15
     map<ll, int> phiFacs;
     factor(phin, phiFacs):
17
     //auch zufällige Reihenfolge möglich!
     for (ll res = 1; res < n; res++)</pre>
19
       if (isPrimitive(res, n, phin, phiFacs)) return res;
20
     return -1:
21 | }
```

4.12 Diskreter Logarithmus

solve bestimmt Lösung x für $a^x = b \mod m$ $O(\sqrt{m} \cdot \log(m))$

```
1  ll dlog(ll a, ll b, ll m) {
2     ll bound = sqrtl(m) + 1; //memory usage bound
3     map<ll, ll> vals;
4     for (ll i = 0, e = 1; i < bound; i++, e = (e * a) % m) {
5         vals[e] = i;
6     }
7     ll fact = powMod(a, m - bound - 1, m);
8     for (ll i = 0; i < m; i += bound, b = (b * fact) % m) {
9         if (vals.count(b)) {
10             return i + vals[b];
11     }}
12     return -1;
13 }</pre>
```

4.13 Diskrete n-te Wurzel

root bestimmt Lösung x für $x^a = b \mod m$ $O(\sqrt{m} \cdot \log(m))$

Alle Lösungen haben die Form $g^{c+\frac{i\cdot\phi(n)}{\gcd(a,\phi(n))}}$

```
1  ll root(ll a, ll b, ll m) {
2     ll g = findPrimitive(m);
3     ll c = dlog(powMod(g, a, m), b, m); //diskreter logarithmus
4     return c < 0 ? -1 : powMod(g, c, m);
5 }</pre>
```

4.14 Linearessieb und Multiplikative Funktionen

Eine (zahlentheoretische) Funktion f heißt multiplikativ wenn f(1) = 1 und $f(a \cdot b) = f(a) \cdot f(b)$, falls ggT(a,b) = 1. \Rightarrow Es ist ausreichend $f(p^k)$ für alle primen p und alle k zu kennen. sieve berechnet Primzahlen und co. O(N)

sieved Wert der endsprechenden Multiplikativen Funktion O(1) naive Wert der endsprechenden Multiplikativen Funktion $O(\sqrt{n})$

Wichtig: Sieb rechts ist schneller für isPrime oder primes!

```
constexpr ll N = 10'000'000;
   ll smallest[N], power[N], sieved[N];
 3 vector<ll> primes:
 4 //wird aufgerufen mit (p^k, p, k) für prime p
 5 | ll mu(ll pk, ll p, ll k) {return -(k == 1);}
 6 | ll phi(ll pk, ll p, ll k) {return pk - pk / p;}
 7 | ll div(ll pk, ll p, ll k) {return k+1;}
 8 | ll divSum(ll pk, ll p, ll k) {return (pk*p+1) / (p - 1);}
9 | ll square(ll pk, ll p, ll k) {return k % 2 ? pk / p : pk;}
10 | Il squareFree(Il pk, Il p, Il k) {return k % 2 ? pk : 1;}
   void sieve() { // O(N)
     smallest[1] = power[1] = sieved[1] = 1;
13
     for (ll i = 2; i < N; i++) {</pre>
14
      if (smallest[i] == 0) {
15
         primes.push_back(i);
16
         for (ll pk = i, k = 1; pk < N; pk *= i, k++) {
17
           smallest[pk] = i;
18
           power[pk] = pk:
19
           sieved[pk] = mu(pk, i, k): // Aufruf ändern!
20
       }}
21
       for (ll j = 0;
               i * primes[j] < N && primes[j] < smallest[i]; j++) {</pre>
22
         ll k = i * primes[j];
23
         smallest[k] = power[k] = primes[i]:
24
         sieved[k] = sieved[i] * sieved[primes[j]];
25
26
       if (i * smallest[i] < N && power[i] != i) {</pre>
27
         ll k = i * smallest[i];
         smallest[k] = smallest[i];
28
29
         power[k] = power[i] * smallest[i];
30
         sieved[k] = sieved[power[k]] * sieved[k / power[k]];
31 }}}
32
   ll naive(ll n) { // O(sqrt(n))
     ll res = 1:
34
     for (ll p = 2; p * p <= n; p++) {
35
       if (n \% p == 0) {
36
         ll pk = 1;
37
         ll k = 0;
38
         do {
39
           n /= p:
40
           pk *= p;
41
         } while (n % p == 0);
43
       res *= mu(pk, p, k); // Aufruf ändern!
44
     }}
45
     return res;
```

MÖBIUS Funtkion:

- $\mu(n) = +1$, falls n quadratfrei ist und gerade viele Primteiler hat
- $\mu(n) = -1$, falls n quadratfrei ist und ungerade viele Primteiler hat
- $\mu(n) = 0$, falls n nicht quadratfrei ist

EULERsche φ -Funktion:

- Zählt die relativ primen Zahlen $\leq n$.
- p prim, $k \in \mathbb{N}$: $\varphi(p^k) = p^k p^{k-1}$
- Euler's Theorem: Für $b \ge \varphi(c)$ gilt: $a^b \equiv a^b \mod \varphi(c) + \varphi(c) \pmod c$. Darüber hinaus gilt: $\gcd(a,c) = 1 \Leftrightarrow a^b \equiv a^b \mod \varphi(c) \pmod c$. Falls m prim ist, liefert das den kleinen Satz von Fermat: $a^m \equiv a \pmod m$

16

4.15 Primzahlsieb von Eratosthenes

• Bis 10⁸ in unter 64MB Speicher (lange Berechnung)

primeSieve berechnet Primzahlen und Anzahl $O(N \cdot \log(\log(N)))$

isPrime prüft ob Zahl prim ist O(1)

```
constexpr ll N = 100'000'000;
 2 bitset<N / 2> isNotPrime:
 3 vector<ll> primes = {2};
 4 bool isPrime(ll x) {
     if (x < 2 \mid | x \% 2 == 0) return x == 2;
     else return !isNotPrime[x / 2];
 8 void primeSieve() {
     for (ll i = 3; i < N; i += 2) {// i * i < N reicht für isPrime
       if (!isNotPrime[i / 2]) {
11
         primes.push_back(i); // optional
12
         for (ll i = i * i: i < N: i+= 2 * i) {
13
           isNotPrime[i / 2] = 1:
14 | }}}
```

4.16 Mößlus-Inversion

- Seien $f,g: \mathbb{N} \to \mathbb{N}$ und $g(n):=\sum_{d|n} f(d)$. Dann ist $f(n)=\sum_{d|n} g(d)\mu(\frac{n}{d})$.
- $\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{falls } n = \\ 0 & \text{sonst} \end{cases}$

Beispiel Inklusion/Exklusion: Gegeben sein eine Sequenz $A = a_1,...,a_n$ von Zahlen, $1 \le a_i \le N$. Zähle die Anzahl der *coprime subsequences*.

Lösung: Für jedes x, sei cnt[x] die Anzahl der Vielfachen von x in A. Es gibt $2^{[x]}-1$ nicht leere Subsequences in A, die nur Vielfache von x enthalten. Die Anzahl der Subsequences mit ggT=1 ist gegeben durch $\sum_{i=1}^{N} \mu(i) \cdot (2^{cnt[i]}-1)$.

4.17 Numerisch Extremstelle bestimmen

```
1 | ld gss(ld l, ld r, function<ld(ld)> f) {
    ld inv = (sqrt(5.0l) - 1) / 2;
    ld x1 = r - inv*(r-l), x2 = l + inv*(r-l);
    ld f1 = f(x1), f2 = f(x2);
    for (int i = 0; i < 200; i++) {
      if (f1 < f2) { //change to > to find maximum
         u = x2; x2 = x1; f2 = f1;
         x1 = r - inv*(r-1): f1 = f(x1):
       } else {
        l = x1; x1 = x2; f1 = f2;
11
         x2 = l + inv*(r-l); f2 = f(x2);
12
13
    }
14
    return l;
```

4.18 Numerisch Integrieren, Simpsonregel

```
double f(double x) {return x;}
   double simps(double a, double b) {
    return (f(a) + 4.0 * f((a + b) / 2.0) + f(b)) * (b - a) / 6.0;
5 | double integrate(double a, double b) {
    double m = (a + b) / 2.0:
    double l = simps(a, m), r = simps(m, b), tot = simps(a, b);
    if (abs(l + r - tot) < EPS) return tot;</pre>
    return integrate(a, m) + integrate(m, b);
10 | }
```

4.19 Polynome, FFT, NTT & andere Transformationen

Multipliziert Polynome A und B.

- $deg(A \cdot B) = deg(A) + deg(B)$
- Vektoren a und b müssen mindestens Größe $\deg(A \cdot B) + 1$ haben. Größe muss eine Zweierpotenz sein.
- Für ganzzahlige Koeffizienten: (ll)round(real(a[i]))
- xor, or und and Transform funktioniert auch mit double oder modulo einer Primzahl p falls $p \ge 2^{bits}$

```
/*constexpr ll mod = 998244353; NTT only
   constexpr ll root = 3;*/
   using cplx = complex<double>:
   //void fft(vector<ll> &a, bool inverse = 0) { NTT, xor, or, and
   void fft(vector<cplx>& a, bool inverse = 0) {
     int n = a.size();
     for (int i = 0, j = 1; j < n - 1; ++j) {
       for (int k = n >> 1; k > (i ^= k); k >>= 1);
       if (j < i) swap(a[i], a[j]);</pre>
11
     for (int s = 1; s < n; s *= 2) {
12
       /*Il ws = powMod(root, (mod - 1) / s >> 1, mod); NTT only
13
       if (inverse) ws = powMod(ws, mod - 2, mod);*/
14
       double angle = PI / s * (inverse ? -1 : 1):
       cplx ws(cos(angle), sin(angle));
15
16
       for (int j = 0; j < n; j+= 2 * s) {
17
         //ll w = 1; (NTT only)
18
         cplx w = 1;
19
         for (int k = 0; k < s; k++) {
20
           /*ll\ u = a[j + k],\ t = a[j + s + k] * w; (NTT only)
21
22
           a[j + k] = (u + t) \% mod;
23
           a[i + s + k] = (u - t + mod) \% mod;
24
           w = (w * ws) % mod; */
25
           /*ll\ u = a[j + k],\ t = a[j + s + k]; (xor only)
26
           a[j+k] = u+t;
27
           a[i + s + k] = u - t;*/
28
           /*if (!inverse) { or only
29
             a[i + k] = u + t;
30
             a[j + s + k] = u;
31
           } else {
32
             a[j+k]=t;
33
             a[i + s + k] = u - t;
34
           /*if (!inverse) { and only
```

```
36
             a[j+k]=t;
37
             a[i + s + k] = u + t;
38
           } else {
39
             a[i + k] = t - u;
             a[i + s + k] = u:
41
42
           cplx u = a[j + k], t = a[j + s + k] * w;
43
           a[j + k] = u + t;
           a[i + s + k] = u - t;
           if (inverse) a[j + k] /= 2, a[j + s + k] /= 2;
46
47
     }}}
48
     /*if (inverse) { NTT only
       Il div = powMod(n, mod - 2, mod);
50
       for (ll i = 0; i < n; i++) {
51
         a[i] = (a[i] * div) % mod;
52
     /*if (inverse) { (xor only)
       for (ll i = 0; i < n; i++) {
55
         a[i] /= n;
56
    }}*/
```

Multiplikation mit 2 transforms statt 3: (nur benutzten wenn nötig!)

```
1 vector<cplx> mul(vector<cplx>& a, vector<cplx>& b) {
     vector<cplx> c(sz(a)), d(sz(a));
     for (int i = 0; i < sz(b); i++) {</pre>
      c[i] = {real(a[i]), real(b[i])};
    }
     c = fft(c);
     for (int i = 0; i < sz(b); i++) {
       int j = (sz(a) - i) % sz(a);
       cplx x = (c[i] + conj(c[j])) / cplx{2, 0}; //fft(a)[i];
10
       cplx y = (c[i] - conj(c[j])) / cplx{0, 2}; //fft(b)[i];
11
       d[i] = x * y;
12
13
     return fft(d, true);
```

4.20 LGS über R

```
gauss löst LGS O(n^3)
 1 void normalLine(int line) {
     double factor = mat[line][line];
     for (double& x : mat[line]) x /= factor;
5 void takeAll(int n, int line) {
     for (int i = 0; i < n; i++) {
      if (i == line) continue;
       double diff = mat[i][line];
       for (int j = 0; j <= n; j++) {
10
         mat[i][j] -= diff * mat[line][j];
11 }}}
12 int gauss(int n) {
13
     vector<bool> done(n, false);
14
     for (int i = 0; i < n; i++) {
       int swappee = i; // Sucht Pivotzeile für bessere Stabilität.
```

```
for (int j = 0; j < n; j++) {
17
         if (done[j]) continue;
18
         if (abs(mat[j][i]) > abs(mat[i][i])) swappee = j;
19
       swap(mat[i], mat[swappee]);
21
       if (abs(mat[i][i]) > EPS) {
22
         normalLine(i):
23
         takeAll(n, i);
         done[i] = true;
25
     // Ab jetzt nur checks bzgl. Eindeutigkeit/Existenz der Lösung.
     for (int i = 0; i < n; i++) {</pre>
       bool allZero = true:
       for (int j = i; j < n; j++) allZero &= abs(mat[i][j]) <= EPS;</pre>
       if (allZero && abs(mat[i][n]) > EPS) return INCONSISTENT;
       if (allZero && abs(mat[i][n]) <= EPS) return MULTIPLE;</pre>
32
33
    return UNIOUE:
34 }
```

17

4.21 LGS über F,

gauss löst LGS $O(n^3)$

```
1 void normalLine(int line, ll p) {
    ll factor = multInv(mat[line][line], p);
    for (ll& x : mat[line]) x = (x * factor) % p;
 4 }
 5 | void takeAll(int n, int line, ll p) {
    for (int i = 0; i < n; i++) {</pre>
      if (i == line) continue;
       ll diff = mat[i][line]:
       for (int j = 0; j <= n; j++) {
         mat[i][j] -= (diff * mat[line][j]) % p;
11
         mat[i][j] = (mat[i][j] + p) % p;
12 | }}}
13 void gauss(int n, ll mod) { // Nx(N+1)-Matrix, Körper F_p.
     vector<bool> done(n, false);
     for (int i = 0; i < n; i++) {
       int i = 0;
       while (j < n && (done[j] || mat[j][i] == 0)) j++;</pre>
       if (j == n) continue;
19
       swap(mat[i], mat[i]);
20
       normalLine(i, mod);
       takeAll(n, i, mod);
22
       done[i] = true:
23 | }}
24 // für Eindeutigkeit, Existenz etc. siehe LGS
```