TD6 : test du
$$\chi^2$$
 (conformité en loi)

Rappel:

On teste

— H_0 : la loi des données suit la loi \mathcal{L}_0 connue *versus*

— H_1 : la loi des données n'est pas la loi \mathcal{L}_0 .

Le nombre de classes k, c'est le nombre de possibilités différentes.

Statistique : $\hat{z} = \frac{(n_{\text{obs},1} - n_{\text{th\'eo},1})^2}{n_{\text{th\'eo},1}} + \dots + \frac{(n_{\text{obs},k} - n_{\text{th\'eo},k})^2}{n_{\text{th\'eo},k}}$. Si $n \geq 30$ et tous les $n_{\text{th\'eo},i} \geq 5$, alors \hat{z} suit une loi du χ^2 à (k-1) degrés de libertés.

Exercice 1 (Voir TD 1). Trouver la valeur de z telle que

1. $P(\chi^2(5) \le z) = 0.9$

2. $P(\chi^2(13) \le z) = 0.95$

3. $P(\chi^2(20)) = 0.99$

4. $P(\chi^2(11) \le z) = 0.9$ 6. $P(\chi^2(2) \le z) = 0.99$

5. $P(\chi^2(3) \le z) = 0.95$

Exercices 1

Exercice 2 (Cf slides du 2nd CM). Les ventes automobiles de l'année 2000 étaient

Type de moteur	Essence	Diesel	Électrique ou Hybride
Pourcentage des ventes	60%	30%	10%

Un concessionnaire regarde ces ventes sur le dernier semestre de l'année 2022 et constate la répartition suivante sur les 150 véhicules vendus :

Type de moteur	Essence	Diesel	Électrique ou Hybride
Volume des ventes	72	37	41

Au risque 10%, la répartition des ventes a-t-elle significativement changé?

Exercice 3 (Rattrapage 2021-2022). En vu de la période de solde, un magasin de vêtements étudie son stock pour savoir s'il va mettre la même démarque sur toutes les tailles. Il sait qu'en moyenne il vend 22% de vêtements en taille S, 46% en taille M, 26% en taille L et 6% en taille XL. Il mettra la même démarque sur toutes les tailles si son stock correspond à la moyenne de ses ventes habituelles. L'inventaire du stock donne

Taille	S	M	L	XL
Stock	141	187	141	61

Au risque 5%, le magasin va-t-il faire des démarques différenciées en fonction de la taille?

2 Exercices d'entrainement

Exercice 4. Une parfumerie qui produit trois parfums – Eaux du Nil (50% des ventes), Fleur de Lune (30% des ventes), et Mina (20% des ventes) – décide de refaire le design des flacons. Un an plus tard, afin d'en évaluer les effets, elle prélève les données suivantes sur la vente de 300 flacons de parfums :

Parfum	Eaux du Nil	Fleur de Lune	Mina
Ventes	129	90	81

Au risque 1%, les nouveaux designs ont-ils changés la répartition des ventes?

Exercice 5. Pepsi se lance dans une grande campagne publicitaire. Avant cette campagne, la répartition des ventes de soda était de 60% pour Coca-Cola, 20% pour Pepsi et 20% pour les autres marques de cola. Pendant la campagne, dans un supermarché, sur 234 bouteilles vendus : 130 sont de Coca-Cola, 59 sont de Pepsi et 45 d'autres marques.

Au risque 10%, la campagne publicitaire a-t-elle un impact?

Exercice 6. Une entreprise mène une enquête sur ses 5 sites français : Lyon, Marseille, Lille, Bordeaux et Rennes. Sur les 3000 salariés auxquels le questionnaire a été envoyé, 800 ont répondu. Les effectifs et le nombre de gens qui ont répondus en fonction du site sont représentés dans le tableau suivant :

Site	Lyon	Marseille	Lille	Bordeaux	Rennes
Effectifs	1500	500	400	400	200
Réponses	400	110	105	125	60

Au risque 1%, l'échantillon des réponses reçues est-il représentatif de la répartition des effectifs? [Indication : calculer le pourcentage des effectifs en premier.]