STATS8: Introduction to Biostatistics

Random Variables and Probability Distributions

Babak Shahbaba UCI, Spring of 2012

Random variables

- In this lecture, we will discuss random variables and their probability distributions.
- Formally, a random variable X assigns a numerical value to each possible outcome (and event) of a random phenomenon.
- For instance, we can define X based on possible genotypes of a bi-allelic gene A as follows:

$$X = \begin{cases} 0 & \text{for genotype } AA, \\ 1 & \text{for genotype } Aa, \\ 2 & \text{for genotype } aa. \end{cases}$$

Alternatively, we can define a random, Y, variable this way:

$$Y = \begin{cases} 0 & \text{for genotypes } AA \text{ and } aa, \\ 1 & \text{for genotype } Aa. \end{cases}$$

Random variables

- After we define a random variable, we can find the probabilities for its possible values based on the probabilities for its underlying random phenomenon.
- This way, instead of talking about the probabilities for different outcomes and events, we can talk about the probability of different values for a random variable.
- For example, suppose P(AA) = 0.49, P(Aa) = 0.42, and P(aa) = 0.09.
- Then, we can say that P(X = 0) = 0.49, i.e., X is equal to 0 with probability of 0.49.
- Note that the total probability for the random variable is still
 1.

Random variables

- The probability distribution of a random variable specifies its possible values (i.e., its range) and their corresponding probabilities.
- For the random variable X defined based on genotypes, the probability distribution can be simply specified as follows:

$$P(X = x) = \begin{cases} 0.49 & \text{for } x = 0, \\ 0.42 & \text{for } x = 1, \\ 0.09 & \text{for } x = 2. \end{cases}$$

Here, x denotes a specific value (i.e., 0, 1, or 2) of the random variable.

Discrete vs. continuous random variables

- We divide the random variables into two major groups: discrete and continuous.
- Discrete random variables can take a countable set of values.
- These variables can be categorical (nominal or ordinal), such as genotype, or counts, such as the number of patients visiting an emergency room per day,
- Continuous random variables can take an uncountable number of possible values.
- For any two possible values of this random variable, we can always find another value between them.

Probability distribution

- The probability distribution of a random variable provides the required information to find the probability of its possible values.
- The probability distributions discussed here are characterized by one or more parameters.
- The parameters of probability distributions we assume for random variables are usually unknown.
- Typically, we use Greek alphabets such as μ and σ to denote these parameters and distinguish them from known values.
- We usually use μ to denote the mean of a random variable and use σ^2 to denote its variance.

Discrete probability distributions

- For discrete random variables, the probability distribution is fully defined by the probability mass function (pmf).
- This is a function that specifies the probability of each possible value within range of random variable.
- For the genotype example, the pmf of the random variable X is

$$P(X = x) = \begin{cases} 0.49 & \text{for } x = 0, \\ 0.42 & \text{for } x = 1, \\ 0.09 & \text{for } x = 2. \end{cases}$$

Bernoulli distribution

- Binary random variables (e.g., healthy/diseased) are abundant in scientific studies.
- The binary random variable X with possible values 0 and 1 has a **Bernoulli** distribution with parameter θ .
- Here, $P(X = 1) = \theta$ and $P(X = 0) = 1 \theta$.
- · For example,

$$P(X = x) = \begin{cases} 0.2 & \text{for } x = 0, \\ 0.8 & \text{for } x = 1. \end{cases}$$

• We denote this as $X \sim \text{Bernoulli}(\theta)$, where $0 \le \theta \le 1$.

Bernoulli distribution

- The mean of a binary random variable, X, with Bernoulli(θ) distribution is θ . We show this as $\mu = \theta$.
- The variance of a random variable with Bernoulli(θ) distribution is $\sigma^2 = \theta(1 \theta) = \mu(1 \mu)$.
- The standard deviation is obtained by taking the square root of variance: $\sigma = \sqrt{\theta(1-\theta)} = \sqrt{\mu(1-\mu)}$.

Binomial distribution

- A sequence of binary random variables X₁, X₂,..., X_n is called Bernoulli trials if they all have the same Bernoulli distribution and are independent.
- The random variable Y representing the number of times the outcome of interest occurs in n Bernoulli trials (i.e., the sum of Bernoulli trials) has a $\operatorname{Binomial}(n,\theta)$ distribution.
- The pmf of a binomial (n, θ) specifies the probability of each possible value (integers from 0 through n) of the random variable.
- The theoretical (population) mean of a random variable Y with Binomial (n,θ) distribution is $\mu=n\theta$. The theoretical (population) variance of Y is $\sigma^2=n\theta(1-\theta)$.

Continuous probability distributions

- For discrete random variables, the pmf provides the probability of each possible value.
- For continuous random variables, the number of possible values is uncountable, and the probability of any specific value is zero.
- For these variables, we are interested in the probability that the value of the random variable is within a specific interval from x_1 to x_2 ; we show this probability as $P(x_1 < X \le x_2)$.

Probability density function

 For continuous random variables, we use probability density functions (pdf) to specify the distribution. Using the pdf, we can obtain the probability of any interval.

Figure: Probability density function for BMI

Probability density function

- The total area under the probability density curve is 1.
- The curve (and its corresponding function) gives the probability of the random variable falling within an interval.
- This probability is equal to the area under the probability density curve over the interval.

Lower tail probability

• the probability of observing values less than or equal to a specific value x, is called the lower tail probability and is denoted as $P(X \le x)$.

Upper tail probability

• The probability of observing values greater than x, P(X > x), is called the upper tail probability and is found by measuring the area under the curve to the right of x.

Probability of intervals

• The probability of any interval from x_1 to x_2 , where $x_1 < x_2$, can be obtained using the corresponding lower tail probabilities for these two points as follows:

$$P(x_1 < X \le x_2) = P(X \le x_2) - P(X \le x_1).$$

For example, the probability of a BMI between 25 and 30 is

$$P(25 < X \le 30) = P(X \le 30) - P(X \le 25).$$

Normal distribution

- Consider the probability distribution function and its corresponding probability density curve we assumed for BMI in the above example.
- This distribution is known as normal distribution, which is one of the most widely used distributions for continuous random variables.
- Random variables with this distribution (or very close to it) occur often in nature.

Normal distribution

- A **normal distribution** and its corresponding pdf are fully specified by the mean μ and variance σ^2 .
- A random variable X with normal distribution is denoted $X \sim N(\mu, \sigma^2)$.
- N(0,1) is called the *standard normal distribution*.

The 68-95-99.7% rule

- The 68–95–99.7% rule for normal distributions specifies that
 - 68% of values fall within 1 standard deviation of the mean:

$$P(\mu - \sigma < X \le \mu + \sigma) = 0.68.$$

95% of values fall within 2 standard deviations of the mean:

$$P(\mu - 2\sigma < X \le \mu + 2\sigma) = 0.95.$$

• 99.7% of values fall within 3 standard deviations of the mean:

$$P(\mu - 3\sigma < X \le \mu + 3\sigma) = 0.997.$$

Normal distribution

Student's t-distribution

 Another continuous probability distribution that is used very often in statistics is the **Student's** t-distribution or simply the t-distribution.

Student's t-distribution

- A t-distribution is specified by only one parameter called the degrees of freedom df.
- The t-distribution with df degrees of freedom is usually denoted as t(df) or t_{df} , where df is a positive real number (df > 0).
- The mean of this distribution is $\mu=0$, and the variance is determined by the degrees of freedom parameter, $\sigma^2=df/(df-2)$, which is of course defined when df>2.

Cumulative distribution function

- We saw that by using lower tail probabilities, we can find the probability of any given interval.
- Indeed, all we need to find the probabilities of any interval is a function that returns the lower tail probability at any given value of the random variable: $P(X \le x)$.
- This function is called the cumulative distribution function (cdf) or simply the distribution function.

Quantiles

 We can use the cdf plot in the reverse direction to find the value of the random variable for a given lower tail probability.

Figure: Left: Finding lower tail probabilities. Right: Finding quantiles

Scaling and shifting random variables

• If Y = aX + b, then

$$\mu_Y = a\mu_X + b,$$

$$\sigma_Y^2 = a^2\sigma_X^2,$$

$$\sigma_Y = |a|\sigma_X.$$

- The process of shifting and scaling a random variable to create a new random variable with mean zero and variance one is called **standardization**.
- For this, we first subtract the mean μ and then divide the result by the standard deviation σ .

$$Z = \frac{X - \mu}{\sigma}.$$

• If $X \sim N(\mu, \sigma^2)$, then $Z \sim N(0, 1)$.

Adding/subtracting random variables

• If W = X + Y, then

$$\mu_W = \mu_X + \mu_{Y.}$$

If the random variables X and Y are independent (i.e., they
do not affect each other probabilities), then we can find the
variance of W as follows:

$$\sigma_W^2 = \sigma_X^2 + \sigma_Y^2.$$

• If $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$, then assuming that the two random variables are independent, we have

$$W = X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2).$$

Adding/subtracting random variables

If we subtract Y from X, then

$$\mu_W = \mu_X - \mu_Y.$$

If the two variables are independent,

$$\sigma_W^2 = \sigma_X^2 + \sigma_Y^2.$$

- Note that we still add the variances.
- Subtracting Y from X is the same as adding -Y to X.