$commentry b0.5, 0.0, 0.0 \ keywordry b0.0, 0.5, 0.0 \ keywordtyperg b0.38, 0.25, 0.125$ $keywordflowrg b0.88, 0.5, 0.0 \ preprocessorrg b0.5, 0.38, 0.125 \ string literal rg b0.0, 0.125, 0.25$ $charliteral rg b0.0, 0.5, 0.5 \ vhdl digitrg b1.0, 0.0, 1.0 \ vhdl keywordrg b0.43, 0.0, 0.43 \ vhdllogic rg b1.0, 0.0, 0.0 \ vhdl charrg b0.0, 0.0, 0.0$ darkgray

analizer

0.1

Generated by Doxygen 1.8.7

Sat Mar 11 2017 12:18:15

Contents

Module Index

1.1 Modules

Horo	10 0	a liet	ot a	$II m_{\ell}$	odules

lain menu	. ??
Calibration mode	. ??
italon's data write	. ??

2 **Module Index**

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:																										
C	urrent_t													 												?'
e	talon t													 												?'

Class Index

File Index

3.1 File List

Here is a list of all files with brief descriptions:

/home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/analizer.cpp	??
/home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/analizer.h	??
/home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/Release/analizer.d	??
/home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/Release/SPI.d	??

6 File Index

Module Documentation

4.1 Main menu

Functions

• void loop ()

4.1.1 Detailed Description

4.1.2 Function Documentation

4.1.2.1 void loop ()

Infinite cycle Will perform after startup device Available in main menu commands:

- q Go to factory calibration function.
- e
 Express calibration method. Not implemented yet
- s

One mode of measurements with option of coeffs calibration Manually choosing preamps parameters Sample&Holde mode

• m

One mode of measurements with option of coeffs calibration Manually choosing preamps parameters Inpulse measurements mode

· a

One mode of measurements with option of coeffs calibration Series of measurements with predefined preamp parameters Sample&Holde mode

Definition at line 81 of file analizer.cpp.

8 Module Documentation

4.2 Calibration mode

Functions

· void factoryCalibr ()

4.2.1 Detailed Description

4.2.2 Function Documentation

4.2.2.1 void factoryCalibr ()

Main calibration function Available in calibration menu commands:

• w

Set width of impulse in microseconds step is 1us, max 200us

. t

Save to eeprom value of input resistanse of second OpAmp

• a

Set currents for LED in channel 1 Max value is 1000mA, with step 1mA

• b

Set currents for LED in channel 2 Max value is 1000mA, with step 1mA

• g

reset LEDs if something wrong

٠f

Light-up first led

• n

Next led choose

٠ ٥

Start infinite series of pulse to LED

• p

Make one pulse to LED

٠i

Disable LED

• z

Return current led number

• с

Set coeffs of OpAmp Control digital potentiometers ad5141 Max value is 100kOhm, with step 0.39kOhm 4.2 Calibration mode 9

- **r**Go to preAmp calibration
- s
 Save parameters for all LED to EEPROM
- e
 Exit from calibration mode

Definition at line 149 of file analizer.cpp.

10 Module Documentation

4.3 Etalon's data write

Functions

void preAmpCalibr ()

4.3.1 Detailed Description

4.3.2 Function Documentation

4.3.2.1 void preAmpCalibr ()

Amplifier calibration function Available in PreAmp calibration menu commands:

c
 Set coeffs of OpAmp
 Control digital potentiometers ad5141
 Max value is 100kOhm, with step 0.39kOhm

 x Choose etalon cell in memory

e
 Exit from calibration mode

s
 Save parameters to EEPROM

• **z**Return current etalon cell number

• **k**Save k for etalon

 m set min and max value of g2

 n Compute Ai

a
 Compute Ai with doMeasurementsSH_Avg method

• I
Write Ai in manual mode

Definition at line 374 of file analizer.cpp.

Class Documentation

5.1 current_t Struct Reference

#include <analizer.h>

Public Attributes

- uint16_t curr1
- uint16_t curr2

5.1.1 Detailed Description

Definition at line 65 of file analizer.h.

5.1.2 Member Data Documentation

5.1.2.1 uint16_t current_t::curr1

Definition at line 67 of file analizer.h.

5.1.2.2 uint16_t current_t::curr2

Definition at line 68 of file analizer.h.

The documentation for this struct was generated from the following file:

 $\bullet \ \ / home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/analizer.h$

5.2 etalon_t Struct Reference

#include <analizer.h>

Public Attributes

- float k [NUM_OF_LED]
- float g1

12 Class Documentation

- float g2mid
- float g2min
- float g2max

5.2.1 Detailed Description

Definition at line 53 of file analizer.h.

5.2.2 Member Data Documentation

5.2.2.1 float etalon_t::g1

Definition at line 56 of file analizer.h.

5.2.2.2 float etalon_t::g2max

Definition at line 59 of file analizer.h.

5.2.2.3 float etalon_t::g2mid

Definition at line 57 of file analizer.h.

5.2.2.4 float etalon_t::g2min

Definition at line 58 of file analizer.h.

5.2.2.5 float etalon_t::k[NUM_OF_LED]

Definition at line 55 of file analizer.h.

The documentation for this struct was generated from the following file:

• /home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/analizer.h

File Documentation

6.1 /home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/analizer

```
#include "analizer.h"
```

Functions

- ISR (TIMER1 COMPA vect)
- int main (void)
- void setup ()
- void loop ()
- void factoryCalibr ()
- void preAmpCalibr ()
- void doMeasurements (uint8_t numOfEtalon, bool calcNorm)
- void doMeasurementsSH (uint8_t numOfEtalon, bool calcNorm)
- void doMeasurementsSH_Avg (bool calcNorm)
- void readADCOneTime (uint16_t &value)
- void readADC (float &value)
- void writeConfigToUart ()
- void setC_R (float val)
- void doOnePulse (uint16_t pulseWidth)
- void dischargeSampleHold ()
- void shiftRegisterReset ()
- void shiftRegisterNext ()
- void shiftRegisterFirst ()
- void disableLED ()
- void SerialClean ()
- void setPreAmp (float RWB1, float RWB2)
- void setCurrent (uint8_t channelN, uint16_t curValue)
- void setPulseWidth (uint16_t width)

6.1.1 Function Documentation

6.1.1.1 void disableLED ()

Utility function for calibration mode

Definition at line 983 of file analizer.cpp.

6.1.1.2 void dischargeSampleHold ()

Discharge capasitor, while measurements going in Sample&Hold mode

Definition at line 923 of file analizer.cpp.

6.1.1.3 void doMeasurements (uint8_t numOfEtalon = 0, bool calcNorm = false)

One mode of measurements with option of coeffs calibration Manually choosing preamps parameters Inpulse measurements

Parameters

|>p0.10|>p0.15|p0.678|

in numOfEtalon - which etalon we use for fast calibration

in calcNorm - true - calibration, false - measurements

Definition at line 568 of file analizer.cpp.

6.1.1.4 void doMeasurementsSH (uint8 t numOfEtalon = 0, bool calcNorm = false)

One mode of measurements with option of coeffs calibration Manually choosing preamps parameters Sample&Holde mode

Parameters

|>p0.15|p0.805|

numOfEtalon - which etalon we use for fast calibration

calcNorm - true - calibration, false - measurements

Definition at line 648 of file analizer.cpp.

6.1.1.5 void doMeasurementsSH_Avg (bool calcNorm = false)

One mode of measurements with option of coeffs calibration Series of measurements with predefined preamp parameters Sample&Holde mode

Parameters

|>p0.15|p0.805|

calcNorm - true - calibration, false - measurements

Definition at line 728 of file analizer.cpp.

6.1.1.6 void doOnePulse (uint16_t pulseWidth)

Make one pulse to the LED with previously setted current and time of pulse

Definition at line 915 of file analizer.cpp.

6.1.1.7 ISR (TIMER1_COMPA_vect)

Analizer.cpp

Author

LED Microsensor

Definition at line 8 of file analizer.cpp.

6.1.1.8 int main (void)

Definition at line 15 of file analizer.cpp.

6.1.1.9 void readADC (float & value)

Utility function for Sample&Holde mode of measurements make 16 samples and calc average,

Parameters

|>p0.10|>p0.15|p0.678|

out value buffer for reading voltage (mV)

Definition at line 823 of file analizer.cpp.

6.1.1.10 void readADCOneTime (uint16_t & value) [inline]

Utility function for inpulse mode of measurements

Parameters

|>p0.10|>p0.15|p0.678|

out value buffer for reading adc value (w/o convert to mV)

Definition at line 814 of file analizer.cpp.

6.1.1.11 void SerialClean ()

Utility function for cleanserial port buffer

Definition at line 991 of file analizer.cpp.

6.1.1.12 void setC_R (float val)

Save to eeprom value of input resistanse of second OpAmp

Parameters

|>p0.15|p0.805|

val

Definition at line 910 of file analizer.cpp.

6.1.1.13 void setCurrent (uint8_t channelN, uint16_t currValue)

This function set currents for LED in channel channelN Control DAC Max value is 1000mA, with step 1mA After current will set, it send a message with currently setted values to serial port

Parameters

|>p0.15|p0.805|

channel Number of channel 1 or 2

currValue - DAC output voltage, max 1000mV it is equal 1000mA on LED

Definition at line 1044 of file analizer.cpp.

6.1.1.14 void setPreAmp (float RWB1, float RWB2)

This function set coeffs of OpAmp Control digital potentiometers ad5141 Max value is 100kOhm, with step 0.39k← Ohm After resistance will set, it send a message with currently setted values to serial port

Parameters

|>p0.15|p0.805|

RWB1 1st cascade (current to voltage)

RWB2 2nd cascade (signal amplification)

Definition at line 1004 of file analizer.cpp.

6.1.1.15 void setPulseWidth (uint16_t width)

Set width of impulse in microseconds step is 1us, max 200us

Parameters

|>p0.15|p0.805|

width - time of pulse, max 200us

Definition at line 1089 of file analizer.cpp.

6.1.1.16 void setup ()

Main initialization of MCU

Definition at line 27 of file analizer.cpp.

6.1.1.17 void shiftRegisterFirst ()

Utility function for work with shift register Select first pair of led

Definition at line 970 of file analizer.cpp.

6.1.1.18 void shiftRegisterNext ()

Utility function for work with shift register Select next led to ON Definition at line 959 of file analizer.cpp.

6.1.1.19 void shiftRegisterReset ()

Utility function for work with shift register Set all outputs to High level

Definition at line 934 of file analizer.cpp.

6.1.1.20 void writeConfigToUart ()

Print all saved to eeprom data to serial port

Definition at line 843 of file analizer.cpp.

6.2 /home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/analizer File Reference

```
#include "Arduino.h"
#include <stdio.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include <SPI.h>
```

Classes

- · struct etalon_t
- · struct current t

Macros

- #define GeneratorPin 9
- #define ShiftRegisterDelay 1
- #define DACDelay 1
- #define WBDelay 1000
- #define DISCHARGE DELAY 50
- #define PULSE DELAY 25
- #define REFERENCE_V 3000.0
- #define NUM OF LED 45
- #define NUM_OF_ETALON 3
- #define MAX_PULSE_WIDTH 150
- #define MAX_CURRENT 1000
- #define ADC_PORT PORTE
- #define DAC_PORT PORTF
- #define PREAMP_PORT PORTB
- #define SS_ADC PE6
- #define SS_PREAMP PB4
- #define SS_DAC PF1
- #define SR_ENABLE PB7
- #define SR CLR PD4
- #define SR_DATA PD7
- #define SR_CLK PD6
- #define SH_PORT PORTD
- #define SH_SET PD0
- #define SH RESET PD1
- #define GEN1 OCR1A
- #define GEN2 OCR1B

Functions

- void setPreAmp (float RWB1, float RWB2)
- void setCurrent (uint8_t channelN, uint16_t currValue)
- void setPulseWidth (uint16 t width)
- void setC_R (float val)
- void doOnePulse (uint16_t pulseWidth)
- void dischargeSampleHold ()
- void disableLED ()
- · void factoryCalibr ()
- void preAmpCalibr ()
- void doMeasurementsSH (uint8_t numOfEtalon=0, bool calcNorm=false)
- void doMeasurementsSH Avg (bool calcNorm=false)
- void doMeasurements (uint8 t numOfEtalon=0, bool calcNorm=false)
- void readADCOneTime (uint16 t &value)
- void readADC (float &value)
- void writeConfigToUart ()
- void shiftRegisterReset ()
- void shiftRegisterNext ()
- void shiftRegisterFirst ()
- void SerialClean ()
- void setup ()
- void loop ()
- void __cxa_pure_virtual ()

Variables

- uint8_t EEMEM _empty [20] = {0xF}
- uint16 t EEMEM pulseWidth = 80
- float EEMEM _c_R = 3.9
- current_t EEMEM _pairsOfCurrent [NUM_OF_LED]
- etalon t EEMEM _etalons [NUM_OF_ETALON]
- float EEMEM coefficients [NUM OF LED]
- volatile current_t cur4AllLed [NUM_OF_LED]
- volatile float coeffs [NUM_OF_LED]
- volatile bool oneTimes = false
- volatile bool pulseEnd =false

6.2.1 Macro Definition Documentation

6.2.1.1 #define ADC_PORT PORTE

Definition at line 28 of file analizer.h.

6.2.1.2 #define DAC_PORT PORTF

Definition at line 29 of file analizer.h.

6.2.1.3 #define DACDelay 1

Definition at line 17 of file analizer.h.

6.2.1.4 #define DISCHARGE_DELAY 50

Definition at line 19 of file analizer.h.

6.2.1.5 #define GEN1 OCR1A

Definition at line 47 of file analizer.h.

6.2.1.6 #define GEN2 OCR1B

Definition at line 48 of file analizer.h.

6.2.1.7 #define GeneratorPin 9

Analizer.cpp

Author

LED Microsensor

Definition at line 15 of file analizer.h.

6.2.1.8 #define MAX_CURRENT 1000

Definition at line 25 of file analizer.h.

6.2.1.9 #define MAX_PULSE_WIDTH 150

Definition at line 24 of file analizer.h.

6.2.1.10 #define NUM_OF_ETALON 3

Definition at line 23 of file analizer.h.

6.2.1.11 #define NUM_OF_LED 45

Definition at line 22 of file analizer.h.

6.2.1.12 #define PREAMP_PORT PORTB

Definition at line 30 of file analizer.h.

6.2.1.13 #define PULSE_DELAY 25

Definition at line 20 of file analizer.h.

6.2.1.14 #define REFERENCE_V 3000.0

Definition at line 21 of file analizer.h.

6.2.1.15 #define SH_PORT PORTD

Definition at line 42 of file analizer.h.

6.2.1.16 #define SH_RESET PD1

Definition at line 44 of file analizer.h.

6.2.1.17 #define SH_SET PD0

Definition at line 43 of file analizer.h.

6.2.1.18 #define ShiftRegisterDelay 1

Definition at line 16 of file analizer.h.

6.2.1.19 #define SR_CLK PD6

Definition at line 39 of file analizer.h.

6.2.1.20 #define SR_CLR PD4

Definition at line 37 of file analizer.h.

6.2.1.21 #define SR_DATA PD7

Definition at line 38 of file analizer.h.

6.2.1.22 #define SR_ENABLE PB7

Definition at line 36 of file analizer.h.

6.2.1.23 #define SS_ADC PE6

Definition at line 31 of file analizer.h.

6.2.1.24 #define SS_DAC PF1

Definition at line 33 of file analizer.h.

6.2.1.25 #define SS_PREAMP PB4

Definition at line 32 of file analizer.h.

6.2.1.26 #define WBDelay 1000

Definition at line 18 of file analizer.h.

6.2.2 Function Documentation

6.2.2.1 void __cxa_pure_virtual()

Definition at line 224 of file analizer.h.

6.2.2.2 void disableLED ()

Utility function for calibration mode

Definition at line 983 of file analizer.cpp.

6.2.2.3 void dischargeSampleHold ()

Discharge capasitor, while measurements going in Sample&Hold mode

Definition at line 923 of file analizer.cpp.

6.2.2.4 void doMeasurements (uint8_t numOfEtalon = 0, bool calcNorm = false)

One mode of measurements with option of coeffs calibration Manually choosing preamps parameters Inpulse measurements

Parameters

|>p0.10|>p0.15|p0.678|

in numOfEtalon - which etalon we use for fast calibration

in calcNorm - true - calibration, false - measurements

Definition at line 568 of file analizer.cpp.

6.2.2.5 void doMeasurementsSH (uint8_t numOfEtalon = 0, bool calcNorm = false)

One mode of measurements with option of coeffs calibration Manually choosing preamps parameters Sample&Holde mode

Parameters

|>p0.15|p0.805|

numOfEtalon - which etalon we use for fast calibration

calcNorm - true - calibration, false - measurements

Definition at line 648 of file analizer.cpp.

6.2.2.6 void doMeasurementsSH_Avg (bool calcNorm = false)

One mode of measurements with option of coeffs calibration Series of measurements with predefined preamp parameters Sample&Holde mode

Parameters

|>p0.15|p0.805|

calcNorm - true - calibration, false - measurements

Definition at line 728 of file analizer.cpp.

6.2.2.7 void doOnePulse (uint16_t pulseWidth)

Make one pulse to the LED with previously setted current and time of pulse

Definition at line 915 of file analizer.cpp.

6.2.2.8 void readADC (float & value)

Utility function for Sample&Holde mode of measurements make 16 samples and calc average,

Parameters

|>p0.10|>p0.15|p0.678|

out value buffer for reading voltage (mV)

Definition at line 823 of file analizer.cpp.

6.2.2.9 void readADCOneTime (uint16_t & value) [inline]

Utility function for inpulse mode of measurements

Parameters

|>p0.10|>p0.15|p0.678|

out value buffer for reading adc value (w/o convert to mV)

Definition at line 814 of file analizer.cpp.

6.2.2.10 void SerialClean ()

Utility function for cleanserial port buffer

Definition at line 991 of file analizer.cpp.

6.2.2.11 void setC_R (float val)

Save to eeprom value of input resistanse of second OpAmp

Parameters

|>p0.15|p0.805|

val

Definition at line 910 of file analizer.cpp.

6.2.2.12 void setCurrent (uint8_t channelN, uint16_t currValue)

This function set currents for LED in channel Control DAC Max value is 1000mA, with step 1mA After current will set, it send a message with currently setted values to serial port

Parameters

|>p0.15|p0.805|

channelN - Number of channel 1 or 2

currValue - DAC output voltage, max 1000mV it is equal 1000mA on LED

Definition at line 1044 of file analizer.cpp.

6.2.2.13 void setPreAmp (float RWB1, float RWB2)

This function set coeffs of OpAmp Control digital potentiometers ad5141 Max value is 100kOhm, with step 0.39k← Ohm After resistance will set, it send a message with currently setted values to serial port

Parameters

|>p0.15|p0.805|

RWB1 1st cascade (current to voltage)

RWB2 2nd cascade (signal amplification)

Definition at line 1004 of file analizer.cpp.

6.2.2.14 void setPulseWidth (uint16_t width)

Set width of impulse in microseconds step is 1us, max 200us

Parameters

|>p0.15|p0.805|

width - time of pulse, max 200us

Definition at line 1089 of file analizer.cpp.

6.2.2.15 void setup ()

Main initialization of MCU

Definition at line 27 of file analizer.cpp.

6.2.2.16 void shiftRegisterFirst ()

Utility function for work with shift register Select first pair of led Definition at line 970 of file analizer.cpp.

6.2.2.17 void shiftRegisterNext ()

Utility function for work with shift register Select next led to ON Definition at line 959 of file analizer.cpp.

6.2.2.18 void shiftRegisterReset ()

Utility function for work with shift register Set all outputs to High level Definition at line 934 of file analizer.cpp.

6.2.2.19 void writeConfigToUart ()

Print all saved to eeprom data to serial port

Definition at line 843 of file analizer.cpp.

6.2.3 Variable Documentation

6.2.3.1 float EEMEM _c_R = 3.9

Definition at line 76 of file analizer.h.

6.2.3.2 float EEMEM _coefficients[NUM_OF_LED]

Definition at line 79 of file analizer.h.

6.2.3.3 uint8_t EEMEM _empty[20] = {0xF}

allocate eeprom variable

Definition at line 74 of file analizer.h.

6.2.3.4 etalon_t EEMEM _etalons[NUM_OF_ETALON]

Definition at line 78 of file analizer.h.

6.2.3.5 current_t EEMEM _pairsOfCurrent[NUM_OF_LED]

Definition at line 77 of file analizer.h.

6.2.3.6 uint16_t EEMEM _pulseWidth = 80

Definition at line 75 of file analizer.h.

6.2.3.7 volatile float coeffs[NUM_OF_LED]

Definition at line 84 of file analizer.h.

6.2.3.8 volatile current_t cur4AllLed[NUM_OF_LED]

Definition at line 83 of file analizer.h.

6.2.3.9 volatile bool oneTimes = false

Definition at line 85 of file analizer.h.

6.2.3.10 volatile bool pulseEnd =false

Definition at line 86 of file analizer.h.

- 6.3 /home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/

 Release/analizer.d File Reference
- 6.4 /home/zvebabi/Documents/workspace/LEDMicrosensor_project0/analizer/← Release/SPI.d File Reference