Sorting Networks Vincent Derkinderen & Mathias Dekempeneer

3e bachelor Informatica KULeuven Begeleider: Tom Schrijvers

Overzicht

- + Inleiding: sorting network
- + Toepassingen
- + Probleemstelling
- + Aanpak hoofdpaper
- + Conclusie

Wat is een comparator?

- + Comparators (a b) met a < b
 - \rightarrow A = w(a) < w(b) = B
 - \rightarrow w(a) \rightarrow w(b): w(a) \leftrightarrow w(b)

Wat is een comparator network?

- + Kanalen
 - > Input
 - Output
- + Comparators
- + Layer
 - > Parallelle comparators

(12)(34)(23)(12)

Werking comparator network

Wat is een sorting network?

Gesorteerd

+ Output is gesorteerd

Ongesorteerd

+ Niet alle output gesorteerd $(110 \rightarrow 101)$

Nul – één principe

- + Testen van comparator network
 - Nul één principe ⇒ testen alle combinaties {0,1}

Nul – één principe

Sorteert alle combinaties {0,1}

sorteert alle combinaties van totaal geordende set

Toepassingen

- Switching network with buffering
 - Input = bestemmingsgetal
- + Multiaccess memory
- + Multiprocessor
- + Om te sorteren

Toepassingen

- Switching network with buffering
- + Multiaccess memory
- + Multiprocessor
- + Om te sorteren
 - Sorteren van data

- + Optimal size
 - Minimaal # comparators
 - Size 11 kanalen =?
- + Optimal depth
 - Minimaal # layers

Fig. 4. A sorting network for 20 channels of depth 11.

- + Optimal size
 - Minimaal # comparators
- + Doel: optimal size 11 kanalen?
 - Best case:
 55³³ mogelijke netwerken
 - Worst case:
 55³⁵ mogelijke netwerken

verschillende comparators:
11*10/2 = 55

33,34,35 comparators

- + Optimal size
- + Lower bound: $S(n+1) \ge S(n) + \lceil \log_2 n \rceil$

n	1	2	3	4	5	6	7	8	9	10	11	12	13
Depth	0	1	3	3	5	5	6	6	7	7	8	8	9
Upper bound	0	1	3	5	9	12	16	19	25	29	35	39	45
Lower bound	0	1	3	5	9	12	16	19	25	29	33	37	41

- + Optimalisatie test
- Optimalisatie domein (generate + prune)
 - Bijvoorbeeld:Overbodige comparatorsverwijderen

Generate & prune

1. Generate

Voeg een comparator toe achter elk bestaand netwerk van $R^{n}_{k} \Rightarrow N^{n}_{k+1}$

2. Prune

$$(C_a \le_p C_b) \Rightarrow C_b$$
 niet uitbreiden (als $|a| = |b|$)
 $\neg (C_a \le_p C_b) \Rightarrow C_b \in R^n_{k+1}$

3. Herhaal het proces tot $|N_c^n| = 1$

Generate & prune: implementatie

- + Bewaren van de output
 - ⇒ toevoegen comparator = permutatie op outputs
 - → grootte van de outputset krimpt

no. of 1s:	0	1	2	3	4	5
C_1	00000	00001 00010	00011 00110 01010	00111 01011 01110	01111 11110	11111
C_2	00000	00001 00010	00011 00101 00110 01001	00111 01011 01101	01111 10111	11111
C_3	00000	00001 00010 00100	00011 00101 00110	00111 01110 10110	01111 10111 11110	11111

Concept subsumes

$$C_{a} \leq_{p} C_{b}$$

$$\Leftrightarrow$$

$$P(\text{outputs}(C_{a})) \subseteq \text{outputs}(C_{b})$$

- + C_a : (1 2) en C_b : (2 3) outputs(C_a) = {(0 0 0),(0 0 1),(0 1 0),(10 0),(0 1 1),(10 1),(11 0),(11 1)} outputs(C_b) = {(0 0 0),(0 0 1),(0 1 0),(10 0),(0 1 1),(10 1),(11 0),(11 1)}
- + p = (23)(12)p(outputs(C_a)) = {(0,0,0), (1,0,0), (0,0,1), (1,0,1), (0,1,1), (1,1,1)}

Generate & prune

Subsumes = dure operatie \Rightarrow extra prune methodes

- + Contradicties bij subsumes
- **+** Verwijderen overbodige comparators (i j) : \forall outputs(C) : $x_i \le x_j$
- + Parallel uitvoeren

Optimal size, 9 channels

Optimal size, 9 channels: resultaten

1. Size(9) = 25

- 2. Size(10) = 29
 - + Lower bound $S(10) \ge S(9) + \lceil \log_2 9 \rceil \ge 25 + 4 \ge 29$
 - + Upper bound: 29
 - Size(10) = 29

Ons onderzoek

Reproduceren resultaten hoofdpaper

Optimal sorting network 11 kanalen

Papers

- Twenty-Five Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten)
 M. Codish, L. Cruz-Filipe, M. Frank, P. Schneider-Kamp
 24 juni 2014.
- + Sorting Networks and Their Applications
 K.E. Batcher
 2 mei 1968
- + Bounds on the size of test sets for sorting and related networks M. J. Chung, B. Ravikumar 1990.
- + Sorting Networks: the End Game
 M. Codish, L. Cruz-Filipe, P. Schneider-Kamp
 24 november 2014.

VRAGEN?

