Banking Transaction Analyzer — Detailed Project Report

1. Introduction

Financial institutions need to monitor transaction patterns for fraud detection and customer segmentation. This project analyzes banking transactions using SQL to identify trends, detect anomalies, and evaluate account activity.

2. Problem Statement

What are the patterns in banking transactions across different account types and customer segments? How can SQL queries help detect unusual or suspicious transaction behavior?

3. Dataset Description

- **Customers:** Personal info including age, city, and account opening date.
- Accounts: Account IDs, types (Savings, Checking), and balances.
- **Transactions:** Credit and debit transactions with timestamps and amounts.

4. Methodology / SQL Techniques

- Join customers to accounts and transactions for holistic analysis.
- Use aggregate functions (SUM, COUNT) grouped by month, account, and customer.
- Use conditional aggregations (CASE) to separate credit and debit volumes.
- Filter suspicious transactions using threshold criteria in WHERE OF HAVING.

5. Key Findings

- **Transaction Volumes:** Cities like New York and Chicago have higher transaction counts, aligning with population density.
- **Suspicious Activity:** Some accounts have debit transactions disproportionately higher than credits, possibly indicating risk.
- **Account Usage:** Savings accounts have fewer transactions but higher average balances than checking accounts.

6. Conclusion

The project shows how SQL can effectively monitor transaction behavior and identify unusual patterns that warrant further investigation, contributing to fraud prevention and better customer profiling.

7. Recommendations / Future Work

- Integrate real-time data streams for live fraud detection.
- Include customer demographics and credit history for deeper risk scoring.
- Build dashboards for bank staff to visualize key metrics dynamically.