Math 325K - Lecture 12 Section 5.2 Mathematical Induction II

Bo Lin

October 11th, 2018

Outline

- Principle of mathematical induction.
- Sum of terms in special sequences.

Motivation

Suppose we need to check conjectures about repeated procedures involving infinitely many cases, of course we can not work out the cases one at a time. If they have a similar pattern, we may utilize it and follow a shortcut - mathematical induction.

The principle

Definition

Let P(n) be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

- \bullet P(a) is true.
- ② For all integers $k \ge a$, if P(k) is true, then P(k+1) is true.

Then the statement "for all integers $n \ge a$, P(n)" is true.

The principle

Definition

Let P(n) be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

- \bullet P(a) is true.
- ② For all integers $k \ge a$, if P(k) is true, then P(k+1) is true.

Then the statement "for all integers $n \ge a$, P(n)" is true.

Remark

We usually choose a = 1, while a could be any integer.

Why this principle is true

The principle of mathematical induction is essentially an axiom. Alternatively, it is deduced from the well-ordering property of positive integers, which is also an axiom.

Why this principle is true

The principle of mathematical induction is essentially an axiom. Alternatively, it is deduced from the well-ordering property of positive integers, which is also an axiom.

Remark

An illustration of this principle is an infinite sequence of dominos positioned one behind the other in such a way that if any given domino falls backward, it makes the one behind it fall backward also. If the very first one falls backward, what would happen? They all fall.

Method of proof

Consider a statement of the form "for all integers $n \ge a$, a property P(n) is true." To prove such a statement, perform the following two steps:

Method of proof

Consider a statement of the form "for all integers $n \geq a$, a property P(n) is true." To prove such a statement, perform the following two steps:

- **(basis step)**: show that P(a) is true.
- (inductive step): show that for all integers $k \ge a$, if P(k) is true, then P(k+1) is true.

Method of proof

Consider a statement of the form "for all integers $n \ge a$, a property P(n) is true." To prove such a statement, perform the following two steps:

- **(basis step)**: show that P(a) is true.
- (inductive step): show that for all integers $k \ge a$, if P(k) is true, then P(k+1) is true.

Remark

Note that the inductive step is a universal statement. So we usually take a particular but arbitrarily chosen integer $k \geq a$ and suppose that P(k) is true (this is called the **inductive hypothesis**). Finally we try to draw the conclusion that P(k+1) is true.

Example: proof by induction

Example

Show that for every positive integer n, we have that $2^n > n$.

Example: proof by induction

Example

Show that for every positive integer n, we have that $2^n > n$.

Proof.

Let P(n) be the property $2^n>n$. We use induction and let a=1. The basis step is P(1). When n=1, $2^n=2>1=n$, so P(1) is true. As for the inductive step, suppose $k\geq 1$ is an arbitrary integer and P(k) is true. Then we have $2^k>k$. Now we need to check P(k+1). Note that

$$2^{k+1} = 2 \cdot 2^k = 2^k + 2^k \ge k + 2^1 > k + 1.$$

So P(k+1) is also true and we are done.

Example: challenges in the inductive step

Example

The currency of some country only has two types of coins - 3 cents and 5 cents. Prove that for integer $n \ge 8$, we can obtain exactly n cents using those coins.

Example: challenges in the inductive step

Example

The currency of some country only has two types of coins - 3 cents and 5 cents. Prove that for integer $n \geq 8$, we can obtain exactly n cents using those coins.

Hint

$$8 = 5 + 3, 9 = 3 + 3 + 3, 10 = 5 + 5, 11 = 5 + 3 + 3, \cdots$$

Proof.

We use induction on n. The basis step is when n=8. Since 8=3+5, it is true. For the inductive step, suppose $k\geq 8$ is an arbitrary integer such that we can obtain k cents using those coins. How to obtain k+1 cents? There are two cases.

Proof.

We use induction on n. The basis step is when n=8. Since 8=3+5, it is true. For the inductive step, suppose $k\geq 8$ is an arbitrary integer such that we can obtain k cents using those coins. How to obtain k+1 cents? There are two cases.

Case 1: at least one 5-cent coin is used. Then we may replace one such coin by two 3-cent coins, so k+1 cents is obtained.

Proof.

We use induction on n. The basis step is when n=8. Since 8=3+5, it is true. For the inductive step, suppose $k\geq 8$ is an arbitrary integer such that we can obtain k cents using those coins. How to obtain k+1 cents? There are two cases.

Case 1: at least one 5-cent coin is used. Then we may replace one such coin by two 3-cent coins, so k+1 cents is obtained.

Case 2: no 5-cent coin is used. Since $k \geq 8$, at least three 3-cent coins are used. We can take three of them, and replace them by two 5-cent coins, so k+1 cents is also obtained.

In summary, k+1 cents is also able to obtain and we are done.

Proof.

We use induction on n. The basis step is when n=8. Since 8=3+5, it is true. For the inductive step, suppose $k\geq 8$ is an arbitrary integer such that we can obtain k cents using those coins. How to obtain k+1 cents? There are two cases.

Case 1: at least one 5-cent coin is used. Then we may replace one such coin by two 3-cent coins, so k+1 cents is obtained.

Case 2: no 5-cent coin is used. Since $k \geq 8$, at least three 3-cent coins are used. We can take three of them, and replace them by two 5-cent coins, so k+1 cents is also obtained.

In summary, k+1 cents is also able to obtain and we are done.

Remark

This is a typical example for an alternative form of induction - we will discuss it next week.

Closed form

Definition

If a sum with a variable number of terms is shown to be equal to a formula that does not contain either an ellipsis or a summation symbol, we say that it is written in **closed form**.

Closed form

Definition

If a sum with a variable number of terms is shown to be equal to a formula that does not contain either an ellipsis or a summation symbol, we say that it is written in **closed form**.

Remark

A closed form may be a sum too, but it must contain a constant number of summands.

Arithmetic progressions

Definition

An arithmetic progression is a sequence in which the difference of any two consecutive terms is a constant. In other words, it is a sequence of the form $a, a+d, a+2d, \ldots$, where $a \in \mathbb{R}$ is called the initial term and $d \in \mathbb{R}$ is called the common difference.

Arithmetic progressions

Definition

An arithmetic progression is a sequence in which the difference of any two consecutive terms is a constant. In other words, it is a sequence of the form $a, a+d, a+2d, \ldots$, where $a \in \mathbb{R}$ is called the initial term and $d \in \mathbb{R}$ is called the common difference.

Remark

The common difference may be zero. Arithmetic progressions may be finite or infinite.

Example

- (1) Evaluate $\sum_{k=1}^{100} k$.
- (2) Show that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for all positive integers n.

Example

- (1) Evaluate $\sum_{k=1}^{100} k$.
- (2) Show that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for all positive integers n.

Solution

(1) We can pair up integers from 1 to 100:

 $1+100=101, 2+99=101, \cdots$. There are 100/2=50 pairs in total, and the sum of each pair is 101, so the total sum is $101 \cdot 50=5050$.

Example

- (1) Evaluate $\sum_{k=1}^{100} k$.
- (2) Show that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for all positive integers n.

Solution

(1) We can pair up integers from 1 to 100:

 $1+100=101, 2+99=101, \cdots$. There are 100/2=50 pairs in total, and the sum of each pair is 101, so the total sum is $101\cdot 50=5050$.

Remark

There is a story that the preeminent German mathematician Carl Friedrich Gauss managed to quickly get the answer using this method when he was a young child.

Solution

(2) We use induction on n. When n=1, the claim becomes $1=\frac{1\cdot 2}{2}$, which is trivially true. For the inductive step, suppose m is an arbitrary positive integer such that the claim is true when n=m, then $\sum_{k=1}^{m+1} k=\frac{m(m+1)}{2}$. Now we consider the case when n=m+1. We have

$$\sum_{k=1}^{m+1} k = \sum_{k=1}^{m} k + (m+1)$$

$$=\frac{m(m+1)}{2}+(m+1)=(m+1)(\frac{m}{2}+1)=\frac{(m+1)(m+2)}{2}.$$

So the claim is still true when n = m + 1. We are done.

Sum of terms in general arithmetic progressions

Theorem

For positive integer n and real number d, we have:

$$\sum_{k=0}^{n-1} (a+kd) = na + \frac{n(n-1)}{2}d.$$

Sum of terms in general arithmetic progressions

Theorem

For positive integer n and real number d, we have:

$$\sum_{k=0}^{n-1} (a+kd) = na + \frac{n(n-1)}{2}d.$$

We can prove this theorem in both ways: pairs or induction.

Geometric progressions

Definition

An **geometric progression** is a sequence in which the ratio of any two consecutive terms is a constant. In other words, it is a sequence of the form a, ar, ar^2, \ldots , where $a \in \mathbb{R} - \{0\}$ is called the **initial term** and $r \in \mathbb{R} - \{0\}$ is called the **common ratio**.

Geometric progressions

Definition

An **geometric progression** is a sequence in which the ratio of any two consecutive terms is a constant. In other words, it is a sequence of the form a, ar, ar^2, \ldots , where $a \in \mathbb{R} - \{0\}$ is called the **initial term** and $r \in \mathbb{R} - \{0\}$ is called the **common ratio**.

Remark

Be careful that the common ratio cannot be zero! As a corollary, all terms in a geometric progression may not be zero.

Sum of terms in general geometric progressions

Theorem

For positive integer n and real number $r \neq 0$, we have:

$$\sum_{k=0}^{n-1} ar^k = \begin{cases} na, & \text{if } r = 1; \\ a\frac{r^n - 1}{r - 1}, & \text{if } r \neq 1. \end{cases}$$

Sum of terms in general geometric progressions

Theorem

For positive integer n and real number $r \neq 0$, we have:

$$\sum_{k=0}^{n-1}ar^k=\begin{cases}na,&\text{if }r=1;\\a\frac{r^n-1}{r-1},&\text{if }r\neq1.\end{cases}$$

Proof.

The case when r=1 is simple: $ar^k=a$ for all k, so the sum equals to na. Now we assume that $r\neq 1$. Let S be the sum. Then $rS=\sum_{k=0}^{n-1}ar^{k+1}=\sum_{k=1}^nar^k$. So

$$rS - S = ar^n - a,$$

$$S = a \frac{r^n - 1}{r - 1}.$$

Example: sum of terms in a geometric progression

Example

Evaluate the following sum of terms in a geometric sequence:

$$\sum_{k=0}^{8} 2^k$$
.

Example: sum of terms in a geometric progression

Example

Evaluate the following sum of terms in a geometric sequence:

$$\sum_{k=0}^{8} 2^k.$$

Solution

Here we have a geometric sequence with 9 terms. The initial term is $2^0=1$ and the common ratio is 2. By the theorem, the answer is

$$1 \cdot \frac{2^9 - 1}{2 - 1} = 512 - 1 = 511.$$

In many situations, we don't know the answer of a sum. However, if we manage to figure it out, it is trivial to justify it by induction.

In many situations, we don't know the answer of a sum. However, if we manage to figure it out, it is trivial to justify it by induction.

Example

Let n be a positive integer. Evaluate the following sum:

$$\sum_{k=1}^{n} (k \cdot k!).$$

In many situations, we don't know the answer of a sum. However, if we manage to figure it out, it is trivial to justify it by induction.

Example

Let n be a positive integer. Evaluate the following sum:

$$\sum_{k=1}^{n} (k \cdot k!).$$

Hint

The first few terms in the sequence: 1, 4, 18, 96.

In many situations, we don't know the answer of a sum. However, if we manage to figure it out, it is trivial to justify it by induction.

Example

Let n be a positive integer. Evaluate the following sum:

$$\sum_{k=1}^{n} (k \cdot k!).$$

Hint

The first few terms in the sequence: 1,4,18,96. And the corresponding sums for small $n\colon 1,5,23,119$. Any pattern?

Solution

We claim that the sum is (n+1)!-1, and we use induction to prove it. When n=1, the sum is 1 and (1+1)!-1=2-1=1. As for the inductive step, suppose m is an arbitrary positive integer such that $\sum_{k=1}^m k \cdot k! = (m+1)!-1$. Then

$$\sum_{k=1}^{m+1} k \cdot k! = \sum_{k=1}^{m} k \cdot k! + (m+1) \cdot (m+1)!$$

$$= [(m+1)! - 1] + (m+1) \cdot (m+1)!$$

$$= (m+2) \cdot (m+1)! - 1 = (m+2)! - 1.$$

So the claim is still true when n = m + 1. We are done.

HW#6 of this section

Section 5.2 Exercise 4, 11, 21, 33.