

Entrelazamiento y fase geometrica en un modelo de Jaynes-Cummings disipativo de dos atomos

Ali Martin Zynda Aiub

Tesis de Licenciatura en Ciencias Físicas Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Marzo de 2024

TEMA:	Entrelazamiento y fase geometrica en un modelo		
ALTO DIO	de Jaynes-Cummings disipativo de dos atomos		
ALUMNO:	Ali Martin Zynda Aiub		
L.U. N°:	342/20		
LUGAR DE TRABAJO:	Departamento de Física, FCEN, UBA		
DIRECTOR DEL TRABAJO:	Dr. Fernando Lombardo		
CODIRECTORA:	Dra. Paula Villar		
FECHA DE INICIO:	Marzo de 2024		
FECHA DE FINALIZACIÓN:	Marzo de 2024		
FECHA DE EXAMEN:	18 de diciembre de 2024		
INFORME FINAL APROBADO POR:			
Autor	Jurado		
Director	Jurado		
Profesora de Tesis de Licenciatura	 Jurado		

Índice general

1.	Intr	roducción
2.	Fase	e Geometrica
	2.1.	Régimen adiabático y fase de Berry
	2.2.	Fase de Aharonov-Anandan
		2.2.1. Interpretación Geométrica y caso no-cíclico
	2.3.	Enfoque Cinemático
	2.4.	Ejemplo de aplicacion: Sistema de dos niveles en un campo magnético
	2.5.	Fases geométricas en sistemas abiertos
		2.5.1. Enfoque cinemático en sistemas abiertos
3.	Mod	delo de Jaynes-Cummings
	3.1.	Modelo y aproximaciónes
		3.1.1. Fase geométrica en el JCM
	3.2.	Medio Kerr
	3.3.	JCM disipativo
		3.3.1. Solucion y regimen de acoplamiento
		3.3.2. Fase geométrica en presencia de disipación
4.	Jayı	nes-Cummings de dos átomos, no lineal, medio Kerr
	4.1.	Modelo de dos átomos y solucion unitaria
	4.2.	Dinámica con apantallamiento
		4.2.1. Interacción átomo-átomo
		4.2.2. Medio Kerr
		4.2.3. Batidos
	4.3.	Dinamica sin apantallamiento
		4.3.1. Dinamica con disipacion
	4.4.	Dinamica de entrelazamiento
		4.4.1. Cavidad lineal
5.	Fase	e geometrica en JCM generalizado
	5.1.	FG unitaria
	5.2.	FG disipativa
		5.2.1. Dependencia con el regimen de acoplamiento
		5.2.2. Dependencia con el detunning

ii ÍNDICE GENER.
ii ÍNDICE GENER.

5.2.3.	Dependencia con el medio Kerr	51
5.2.4.	Dependencia con la interaccion entre atomos	51
5.2.5.	Robustez	51
6. Conclusion	nes	53
A. Derivacion	n de las ecuaciones maestras	55

Índice de figuras

0.1.	rencia de energía entre los estados de un mismo nivel para $\Delta = 0$ es $2g\sqrt{n}$.
3.2.	
3.3.	Grafico de la frecuencia de Rabi $\Omega_{N,\chi}$ en funcion del detunning Δ para N=1 y N=2
3.4.	Solución numérica al sistema de ecuaciones dada por la ecuación de Lindblad para el estado inicial $ e0\rangle$ $\langle e0 $. Estos gráficos se realizaron con $\Delta=2g$; a la izquierda se observa el regimiento de Weak Coupling con $\gamma=0.1g$, donde el sistema átomo-cavidad esta débilmente acoplado con el entorno, y a la derecha el de Strong Coupling con $\gamma=2g$, donde las poblaciones y coherencias decaen sin oscilar. Las lineas solidas son las poblaciones de los estados, en azul para el estado $ g0\rangle$, en morado para $ e0\rangle$ y en amarillo $ g1\rangle$, y la linea rayada representa la coherencia entre los estados con N=1 ($ e0\rangle$
2 5	y $ g1 angle$)
3.5.	Análisis poblacional para una cavidad con medio Kerr con $\chi=0.5g.$
3.6.	Fase geométrica acumulada por un sistema con un detunning $\Delta=0.1g$, para diferentes valores característicos del entorno. En todos los casos la tasa de bombeo es $p=0.005g$, y se muestran diferentes valores para γ , partiendo de $\gamma=0$ perteneciente a la linea azul oscuro que es el caso unitario, y para $\gamma=0.01g, \gamma=0.1g, \gamma=0.5g$ y $\gamma=g$, correspondientes a las lineas violeta, rosa, naranja y amarilla
3.7.	
3.8.	Diferencia de fase geométrica acumulada en función del detunning átomocavidad Δ , para $\chi=0$ y para 3 medios distintos, cuyas tasas de perdida de fotones son $\gamma/g=0.01g, 0.1g, 0.25g$, asignadas a los colores violeta oscuro, morado y amarillo respectivamente.
3.9.	
3.10.	Diferencia de fase geométrica acumulada en función del parámetro del medio χ , para $\Delta=0$ y para 3 medios distintos, cuyas tasas de perdida de fotones son $\gamma/g=0.01g,0.1g,0.25g$, asignadas a los colores violeta oscuro, morado y amarillo respectivamente

3.11. Diferencia de fase geométrica acumulada en función del detunning atomo- cavidad Δ , para $\chi=g$ y para 3 medios distintos, cuyas tasas de perdida de fotones son $\gamma/g=0.01g,0.1g,0.25g$, asignadas a los colores violeta os- curo, morado y amarillo respectivamente. Se observa como la condición de robustez se alcanza para $\Delta/g=\chi/g=1.$	28
4.1. Relación entre energía y detunning para los diferentes niveles de energía del problema. Las lineas solidas muestran la energía de los estados del JC doble con N=0 (negro, solido), N=1 (verde oscuro y lima, solido) y N=2 (rojo, naranja, amarillo y gris; solido). Tambien se muestran los niveles de energía del JC de un átomo para N=1 (negro; rayado) y N=2 (rojo; rayado). Observese que las energias del JC de un átomo estan multiplicadas por 2.	35
4.2. Esquema del problema de estudio. Se nombran a las partes para referenciarlas fácilmente. Los átomos los llamamos A y B, donde el átomo B es el que sufre el apantallamiento que utilizaremos para recuperar los resultados anteriores. La cavidad la llamaremos C, esta puede contener una cantidad arbitraria de excitaciones, pero nos concentraremos principalmente en 0,1 y 2 excitaciones. Ambos átomos son de dos niveles, y en principio son idénticos	
e indistinguibles, pero se le agrega un apantallamiento artificial 4.3	37 38
4.4	39
4.5. labels, ticks y legens chiquitos. unificar colores Panel (a):Dinámica poblacional para el caso resonante $\Delta=0$ con el estado inicial entrelazado $ \psi_0\rangle=(eg0\rangle+ ge0\rangle)/\sqrt{2}$. Panel (b):Entropía de von Neuman del sistema total (negro con puntos), y de diferentes subsistemas. En rojo se muestra la entropía del sistema habiendo trazado parcialmente sobre la cavidad, y en	
azul habiendo trazado parcialmente sobre el átomo B	40 42
4.7. Dinámica poblacional para la condición inicial $ \psi_0\rangle = eg0\rangle$, para los parámetros $\Delta = 0$, $J = 0$ y $k = 0.1g$. Las lineas solidas se corresponden con las poblaciones de la matriz densidad total del sistema; en azul la probabilidad de encontrar al estado en el estado $ gg1\rangle$, en verde en $ eg0\rangle$, en rojo $ ge0\rangle$, y en negro $ gg0\rangle$. Las lineas rayadas son las coherencias entre estas poblaciones, la violeta entre $ gg1\rangle$ y $ ge0\rangle$, la celeste entre $ eg0\rangle$ y $ gg1\rangle$ y la amarilla entre $ eg0\rangle$ y $ gg1\rangle$.	43
4.8. Dinámica poblacional para la condición inicial $ \psi_0\rangle= eg0+ge0\rangle$, para los parámetros $\Delta=0,J=0$ y $k=0.1g$. Las coherencias y poblaciones tienen	
los mismos colores que la figura anterior 4.7	43
y $k=0.1g$	44
$4.10. \Delta = 0, J = 0.5g \text{ y } k = 0 \dots \dots$	44
4.11. Dinamica de poblaciones para $x = g$	45
4.12. Dinamica de entrelazamiento para $x = g$	46

4.13. Dinamica de entrelazamiento para $x=g$	46
4.14. Dependencia de las poblaciones con el regimen de acoplamiento, para $\Delta =$	
$J=\chi=0$ y $k=0.5g,$ y para dos condiciones iniciales diferentes	48
4.15. Frecuencias de Rabi. $\Omega_{ii}^{(2)} = E_i^{(2)} - E_i^{(2)}$	48

Resumen

El modelo de Janyes-Cummings de un átomo es un ejemplo paradigmático en la teoría de los fundamentos e información cuántica, ya que describe de manera sencilla la interacción entre fotones y materia de manera puramente cuántica. Para extender este modelo, en el presente trabajo se consideran dos átomos interactuantes, inmersos en una cavidad que presenta no-linearidades y un medio tipo Kerr. En particular, se analizó la dinamica, la entropia y otros observables considerando el sistema aislado, y tambien en presencia de decoherencia. Además, se estudió la fase geometrica en ambos casos.

Agradecimientos

Primero quiero agradecer a Fer, porque siempre estuvo dispuesto a ayudarme y siempre se adapto a mis tiempos y mi ritmo. Gracias a el la tesis se me hizo muy llevadera y sinceramente disfrute el proceso. Tambien quiero agradecer a Pau por sus aportes, y en general a ambos por recibirme en su grupo y darme un proyecto interesante en el cual trabajar. Sin ellos no hubiese sido posible.

A mi familia, Marcelo, Gisela, Mel y Lena. A Guada. A mis amigos de la vida Nico, Gunthi, Tincho y Emi. Y a mis compañeros de la carrera, que hicieron de estos años de estudio una experiencia unica. Gracias a todos, que contribuyeron en su manera a que esta tesis se haya escrito.

INTRODUCCIÓN

FASE GEOMETRICA

Este capítulo presenta el objeto de estudio del trabajo. La fase geometrica es un observable que promete en el ambito de la información cuántica, ya que como se verá más adelante, recupera información sobre la trayectoria del sistema en el espacio de Hilbert, y en algunos casos se observa que está relacionado con el entrelazamiento. El capítulo esta estructurado de manera que en primer lugar se tratará una descripción general de las fases geométricas (FG) en el contexto de sistemas aislados, descritos consecuentemente mediante estados puros. Analizar este caso antes de centrar la atención en sistemas cuánticos abiertos permitirá asimilar nociones y ganar intuición sobre las fases geométricas en el marco de una teoría formalmente más simple. A lo largo del capítulo se trabajaran expresiones validas bajo ciertas hipótesis, partiendo del caso menos general, y llegando al caso más general conocido hasta el momento, aunque la aplicación de las fases geométricas a sistemas abiertos no llego a un consenso unánime. Por lo tanto, al final del capitulo se presentará una propuesta particular, la cual se usará en los próximos capítulos.

2.1. Régimen adiabático y fase de Berry

La fase de berry ?? ludmi 1 es un fenómeno fundamental relacionado con el teorema adiabático. Esta representa la fase acumulada pot el autoestado de un Hamiltoniano H(t) que varía lentamente en un ciclo, que esta relacionada con el circuito descrito por H(t) en un dado espacio de parámetros.

Para ver esto, se considera un Hamiltoniano H(R(t)) que depende explícitamente del tiempo a través de un parámetro $R = (R_1, R_2, ...)$. Dado esta Hamiltoniano, formalmente se pueden encontrar los autoestados instantáneos del sistema $|\psi_n(R(t))\rangle$ que satisfacen

$$H(R(t)) |\psi_n(R(t))\rangle = E_n(R(t)) |\psi_n(R(t))\rangle$$
(2.1)

, suponiendo ademas que los autovalores satisfacen $E_1 < E_2 < \dots$ de forma que no hay degeneración. Se considera que la evolución temporal de un estado cualquiera $|\psi(t)\rangle$ esta dada por la ecuación de Schrödinger

$$i\hbar \left| \dot{\psi}(t) \right\rangle = H(R(t)) \left| \psi(t) \right\rangle$$
 (2.2)

Desarrollando el estado en función de los autoestados instantáneos del Hamiltoniano, se puede resolver formalmente el problema

$$|\psi(t)\rangle = \sum_{n} c_n(t) |\psi_n(R(t))\rangle$$
 (2.3)

los coeficientes $c_n(t)$ satisfacen:

$$i\hbar\dot{c}_n(t) = \left(E_n - i\hbar\langle\psi_n|\dot{\psi}_n\rangle\right)c_n(t) - i\hbar\sum_{m\neq n}\langle\psi_n|\dot{\psi}_m\rangle c_m(t).$$

En el régimen adiabático, donde el Hamiltoniano cambia lentamente en comparación con las escalas internas del sistema, se desprecia el término de acoplamiento cruzado:

$$\dot{c}_n(t) \approx -\frac{i}{\hbar} \left(E_n - i\hbar \langle \psi_n | \dot{\psi}_n \rangle \right) c_n(t).$$

El estado resultante es:

$$|\psi(t)\rangle = e^{-\frac{i}{\hbar} \int_0^t E_n(R(t')) dt'} e^{i\phi_n(t)} |\psi_n(R(t))\rangle,$$

donde $\phi_n(t) = i \int_0^t \langle \psi_n(R(t')) | \nabla_R | \psi_n(R(t')) \rangle \cdot \dot{R}(t') dt'$ es la fase geométrica acumulada.

Para circuitos cerrados en el espacio de parámetros, la fase geométrica se expresa como:

$$\phi_n(C) = i \oint_C \langle \psi_n(R) | \nabla_R | \psi_n(R) \rangle \cdot dR, \tag{2.4}$$

independiente de la velocidad con que se recorre el circuito. Sin embargo, la hipótesis de este resultado es que la velocidad de la evolución sea suficientemente lenta para que se puedan despreciar las transiciones no adiabáticas a otros niveles de energía, por lo tanto este resultado no es totalmente independiente de la velocidad con la que se recorre el circuito en el espacio de parámetros.

2.2. Fase de Aharonov-Anandan

La formulación de Aharonov y Anandan permite definir una fase geométrica que es independiente de la evolución adiabática. Su propuesta se basa únicamente en la trayectoria del estado en el espacio proyectivo de rayos, sin referencia explícita al Hamiltoniano.

Considérese el espacio de Hilbert H, y dentro de este, el subespacio N_0 que contiene vectores normalizados $|\psi\rangle$. El espacio proyectivo P se define como el conjunto de clases de equivalencia bajo la relación $|\psi\rangle\sim e^{i\alpha}|\psi\rangle$, estas colecciones $\xi=\{e^{i\alpha}|\psi\rangle\ ;\ 0\leq\alpha 2\pi\}$ denominadas rayos, agrupan en un único elemento (la clase) todos los objetos equivalentes. Cada clase de equivalencia se denomina un rayo, y el mapeo $\Pi:N_0\to P$ proyecta un vector al rayo correspondiente.

Durante una evolución cíclica, el estado al tiempo inicial $|\psi(0)\rangle$ y al tiempo final $|\psi(T)\rangle$

pertenecen al mismo rayo, por lo que:

$$|\psi(T)\rangle = e^{i\phi}|\psi(0)\rangle.$$

los estados solo pueden diferir en una fase total ϕ . Para determinar la fase geométrica, se descompone ϕ en dos contribuciones: una parte dinámica y una parte geométrica.

La relación entre el estado físico $|\psi(t)\rangle$ y su clase de equivalencia $\xi\in P$ se escribe como:

$$|\psi(t)\rangle = e^{if(t)}|\xi(t)\rangle,$$

donde f(t) es una función que recoge la fase acumulada. Sustituyendo esta relación en la ecuación de Schrödinger:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = H |\psi(t)\rangle,$$

se obtiene una ecuación para f(t):

$$\hbar \dot{f}(t) = -\langle \xi(t) | H | \xi(t) \rangle + i \hbar \langle \xi(t) | \dot{\xi}(t) \rangle.$$

La fase total acumulada entre los tiempos 0 y T es:

$$\phi = f(T) - f(0) = -\frac{1}{\hbar} \int_0^T \langle \xi(t) | H | \xi(t) \rangle dt + \int_0^T i \langle \xi(t) | \dot{\xi}(t) \rangle dt.$$

Aquí, el primer término es la fase dinámica:

$$\phi_{\mathrm{din}} = -\frac{1}{\hbar} \int_{0}^{T} \langle \xi(t) | H | \xi(t) \rangle dt = -\frac{1}{\hbar} \int_{0}^{T} dt \, \left\langle \psi(t) | H | \psi(t) \right\rangle,$$

y el segundo término corresponde a la fase geométrica:

$$\phi_{AA} = \int_0^T i\langle \xi(t) | \dot{\xi}(t) \rangle dt.$$
 (2.5)

Esta última expresión muestra que la fase geométrica depende únicamente de la trayectoria en el espacio proyectivo P y no del Hamiltoniano o la velocidad de evolución. Al ser independiente de estos factores, refleja una propiedad puramente geométrica de la curva trazada por el estado en P.

2.2.1. Interpretación Geométrica y caso no-cíclico

En esta sección se mostrará la interpretación geométrica y la generalización al caso no cíclico, demostrada por Samuel y Bhandari [?]ludim 4. Esta definición no requiere de la condición de ciclo cerrado, y tampoco requiere que el estado conserve su norma, como por ejemplo en una medición y colapso de la función de onda. Para esto es necesario dotar al espacio de Hilbert de geometría donde entonces la fase surge de la estructura del espacio. Para darle estructura al espacio, lo que ya hicimos antes es considerar un fibrado, donde definimos una clase de equivalencia para estados que difieren en una fase global. Para darle mayor estructura tenemos que introducir el concepto de conexión, que nos permitirá

comparar elementos pertenecientes a fibras distintas mediante una regla de transporte paralelo. Esta regla nos dice que

$$\operatorname{Im}\left\langle \psi(t)\middle|\dot{\psi}(t)\right\rangle = 0\tag{2.6}$$

Considérese una curva $C: t \in [0,T] \to |\psi(t)\rangle$ sobre N_0 , horizontal, y su vector tangente $|\dot{\psi}(t)\rangle/\langle\psi(t)|\psi(t)\rangle$. La conexión natural

$$A = \frac{\operatorname{Im} \langle \psi(t) | \dot{\psi}(t) \rangle}{\langle \psi(t) | \psi(t) \rangle}, \tag{2.7}$$

transforma, frente a transformaciones U(1) de gauge $|\psi(t)\rangle \to e^{i\alpha(t)} |\psi(t)\rangle$, según

$$A \to A + \dot{\alpha}(t)$$
. (2.8)

Dado que C es horizontal por definición, la ley de transporte paralelo de la ecuación 2.6 impone que la conexión se anule a lo largo de la trayectoria del estado que le da origen. Si el vector de estado $|\psi(t)\rangle$ está, además, asociado a una evolución cíclica en el sentido de Aharonov-Anandan, entonces retorna al rayo inicial en algún instante T.

Considérese, en este escenario, la integral de la conexión A sobre el camino construido a partir de la curva $|\psi(t)\rangle$; $t \in [0,T]$, cerrada uniendo $|\psi(T)\rangle$ con $|\psi(0)\rangle$ sobre el rayo. Como se ha discutido, la curva $|\psi(t)\rangle$ es horizontal por definición y, por lo tanto, la conexión se anula A=0 sobre ella. Por otra parte, la integral sobre el tramo vertical que cierra el camino da como resultado la diferencia de fase entre $|\psi(T)\rangle$ y $|\psi(0)\rangle$:

$$\oint Adl_{N_0} = \int_C A + \int_{\text{rayo}} A = \arg \langle \psi(0) | \psi(T) \rangle.$$
(2.9)

Es decir, la integral sobre el camino total (cerrado), es la diferencia de fase total entre el estado inicial y final. Por otra parte, la integral de la conexión A sobre una curva cerrada en N_0 es invariante por efecto de la ley de transformación 2.8. La holonomía de la curva $C \subset P$ asociada a la conexión A es entonces:

$$g(C) = e^{i\oint_C A} = e^{i\phi_{AA}}. (2.10)$$

En el caso de una evolución no cíclica, el vector que describe el sistema no vuelve a su rayo de partida. Para este caso se establece una manera de comparar estados de diferentes fibras. Dicha comparación se hace a través de la fase de *Pancharatnam* ??66 ludmi, definida para dos estados no-ortogonales cualesquiera como

$$\phi_P = \arg \langle \psi_1 | \psi_2 \rangle \tag{2.11}$$

Para hacer la generalización al caso no-cíclico, tenemos que dar un concepto de distancia, y para esto tenemos que hablar de lineas geodésicas. No vamos a meternos en detalle en esto, pero lo importante es que la fase en el caso no cíclico consiste de la diferencia entre

la fase dinámica y la fase de Pancharatnam

$$\psi_{SB} = -\psi_P - \frac{1}{\hbar} \int_0^T dt \left\langle \psi(t) | H | \psi(t) \right\rangle \tag{2.12}$$

Este método se puede utilizar para generalizar al caso no unitario, en el sentido de un estado puro que no conserva su norma. Este tipo de evolución puede suceder cuanto estamos teniendo en cuenta mediciones en el sistema, colapsos de la función de onda no conservan la norma según la regla de colapso de la mecánica cuántica. En este caso, si consideramos el estado inicial $|\psi_0\rangle$ sobre el cual se realizan mediciones sucesivas, de forma tal que la N-esima proyección es otra vez al estado inicial, el estado final del sistema esta dado por

$$|\psi_0\rangle \langle \psi_0|\psi_{N-1}\rangle \dots \langle \psi_2|\psi_1\rangle \langle \psi_1|\psi_0\rangle.$$
 (2.13)

Según el criterio de Pancharatnam los estados inicial y final tienen una diferencia de fase bien definida, dado por el argumento del número complejo que acompaña al estado $|\psi_0\rangle$.

2.3. Enfoque Cinemático

En la mayoría de las discusiones sobre la fase geométrica, el punto de partida es la ecuación de Schrödinger para algún sistema cuántico particular caracterizado por un dado Hamiltoniano. Sin embargo, la fase geométrica es consecuencia de la cinemática cuántica, esto es, independiente del detalle respecto del origen dinámico de la trayectoria descrita en el espacio de estados físicos. Mukunda y Simon ?? 5 y 67 ludmi resaltaron la independencia de la fase geométrica respecto del origen dinámico de la evolución proponiendo un enfoque cinemático en el cual la trayectoria descrita en el espacio de estados físicos es el concepto fundamental para la fase geométrica. En su desarrollo, se parte de la consideración de una curva uniparamétrica y suave $C \subset N_0$, conformada por una dada secuencia de estados $|\psi(t)\rangle$:

$$C = \{ |\psi(t)\rangle \in N_0 \mid t \in [0, T] \subset \mathbb{R} \}, \tag{2.14}$$

donde no se hace ninguna suposición respecto de si C es una curva abierta o cerrada, ni del origen dinámico de la secuencia de estados. Se observa luego detenidamente la cantidad $\langle \psi(t)|\dot{\psi}(t)\rangle$ construida a partir de esta curva. La condición de unitariedad implica que esta cantidad sea imaginaria pura, lo que puede escribirse como

$$\langle \psi(t)|\dot{\psi}(t)\rangle = i\operatorname{Im}\langle \psi(t)|\dot{\psi}(t)\rangle.$$
 (2.15)

Por otra parte, aplicando una transformación U(1) de gauge

$$C \to C' : \left| \psi'(t) \right\rangle = e^{i\alpha(t)} \left| \psi(t) \right\rangle, \quad t \in [0, T],$$
 (2.16)

la cantidad analizada transforma según

$$\operatorname{Im} \langle \psi(t) | \dot{\psi}(t) \rangle \to \operatorname{Im} \langle \psi(t) | \dot{\psi}(t) \rangle + \dot{\alpha}(t). \tag{2.17}$$

Lo que queremos conseguir es una funcional que sea invariante ante transformaciónes U(1)??, es decir, toma mismos valores para curvas C y C'

$$\psi_u[C]\psi(T) - \operatorname{Im} \int_0^T dt \left\langle \psi(t) \middle| \dot{\psi}(t) \right\rangle$$
 (2.18)

Tenemos permitido definir este funcional de la curva C en el espacio de rayos, ya que es invariante ante reparametrizaciones. Algo importante de remarcar es que, si aplicamos una transformación unitaria arbitraria a nuestro estado, entonces al cambiar el Hamiltoniano también cambiará la curva que describe el estado inicial en el espacio de Hilbert, y por lo tanto se puede mostrar que la fase geométrica cambia. Por suerte, en el caso que la transformación no depende del tiempo, entonces se demuestra que la fase no cambia.

Hasta ahora solo tratamos con sistemas aislados. Antes de pasar a sistemas abiertos, vamos a analizar un ejemplo sencillo utilizando las diferentes definiciones, para ganar intuición y encontrar algunas explicaciones interesantes a comportamientos característicos de este observable.

2.4. Ejemplo de aplicacion: Sistema de dos niveles en un campo magnético

LO PONGO O NO LO PONGO?

2.5. Fases geométricas en sistemas abiertos

Las secciones anteriores tratan la fase geométrica en diferentes casos, ascendientes en generalidad ya que se logra relajar condiciones e hipótesis, y se llego a una expresión general que satisface propiedades importantes, como invarianza ante transformaciones de fase global U(1) y a reparametrizaciones monótonas, también dependen unicamente de la trayectoria descrita por el estado físico en el espacio de rayos y no del Hamiltoniano que genera dicha trayectoria, y finalmente son interpretables en términos puramente geométricos.

Sin embargo, estamos asumiendo que el estado es puro durante toda su evolución, restricción que es una idealización y experimentalmente es necesario tener en cuenta que todo sistema físico esta en contacto con un entorno, y se requiere entonces una descripción en términos de estados mixtos y evoluciones no unitarias. La definición de una fase geométrica que aplique en tal escenario es todavía un problema cuya solución todavía no llego a un consenso unánime. Muchos esfuerzos notables [[?],[?]-[?]] se concentraron en definir la fase geométrica acumulada por un estado mixto, incluso existen reportes experimentales de detecciones [?]. Otra ruta explorada considera el efecto del entorno como correcciones que permitan mantener las nociones de fase geométrica del caso unitario. Trabajos de este tipo introducen el efecto del entorno mediante un hamiltoniano no hermitico [?, ?], y otros estudian modificaciones a la fase de Berry por ruido clásico en el campo magnético [?], o por un entorno cuántico [?, ?], tanto desde lo teórico como lo experimental [?, ?].

El marco en el cual una fase geométrica para sistemas cuánticos abiertos debe definirse es le siguiente: se supone que el efecto del entorno en el sistema de interés es tal que, bajo aproximaciones adecuadas, el sistema puede tratarse *efectivamente* como un sistema aislado que experimenta un tipo de evolución lineal no unitaria:

$$\Sigma: \rho(0) \to \Sigma_t[\rho(0)] \equiv \rho(t) \tag{2.19}$$

que da cuenta tanto de la dinámica interna del sistema como de su interacción con el entorno, y satisface una ecuación maestra. Una consecuencia de este enfoque es que, en el caso general, un estado inicial puro evoluciona en un estado mixto $\rho(t)$. El operador densidad que representa el estado del sistema admite una descomposición $\{|\psi_k(t)\rangle, \omega_k(t)\}$ en estados puros $|\psi_k(t)\rangle$ pesados con probabilidades $\omega_k(t)$, que permite expresarla como

$$\rho(t) = \sum_{k} \omega_k(t) |\psi_k(t)\rangle \langle \psi_k(t)| \qquad (2.20)$$

. La asociación $\rho(t) \to \{|\psi_k(t)\rangle, \omega_k(t)\}$ entre el operador densidad y el ensamble de estados $\{|\psi_k(t)\rangle\}$ no es uno-a-uno, sino uno-a-muchos, lo que significa que en general existen diferentes ensambles, con diferentes estados y diferentes pesos, que sin embargo tienen la misma matriz densidad. Esto imposibilita la distinción entre estas situaciones solamente con la información que proporciona la matriz densidad.

Una estrategia recurrente entre la literatura que aborda el problema de asociar una fase geométrica a un estado mixto $\rho(t)$ es descomponer formalete la matriz densidad en una mezcla estadística como la de la ecuación anterior, y aplicar la fase unitaria ?? sobre cada elemento de la mezcla para asociar una fase a $\rho(t)$. Esto fue propuesto, desde una descripción en términos de operadores de saltos en [?, ?] y posteriormente en [?]. En una aproximación diferente al problema, en Tong et al. [?] se propone una definición de fase geométrica que se vale de una purificación del estado, pero resulta independiente de la elección que se utilice para purificar. La siguiente sección desarrolla esta propuesta en particular.

2.5.1. Enfoque cinemático en sistemas abiertos

La introducción teórica concluye con esta sección, siguiendo la propuesta de Tong et al. [?] para la fase geométrica en sistemas cuánticos abiertos. Para esto, se considera un sistema y el espacio de Hilbert $\mathcal H$ de dimensión N asociado al mismo. La evolución del estado puede describirse como una curva $C\subset\mathcal P$

$$C: t \in [0, T] \to \rho(t) = \sum_{k=1}^{N} \omega_k(t) |\psi_k(t)\rangle\langle\psi_k(t)|$$
 (2.21)

donde $\omega_k(t) \geq 0$ y $|\psi_k(t)\rangle$ son los autovalores y autoestados, respectivamente, de la matriz densidad $\rho(t)$ del sistema. Por simplicidad se asume que las funciones $\omega_k(t)$ que no son nulas, son no degeneradas en el intervalo de estudio [0,T], y se refiere al trabajo original [?] para su generalización al caso degenerado.

Para introducir una noción de fase geométrica bajo estas condiciones, se comienza por realizar una purificación del estado mixto, haciendo uso de un sistema auxiliar con un espacio de Hilbert de igual dimensión que el espacio original. El estado mixto se eleva entonces a un estado purificado de mayor dimensión

$$|\Psi(t)\rangle = \sum_{k=1}^{N} \sqrt{\omega_k(t)} |\psi(t)\rangle \otimes |a_k\rangle$$
 (2.22)

donde $|\Psi(t)\rangle \in \mathcal{H} \otimes \mathcal{H}_{aux}$ es la purificación de $\rho(t)$, en el sentido de que la matriz densidad se recupera tomando traza parcial sobre el espacio auxiliar.

La fase de Pancharatnam entre las purificaciones inicial y final puede escribirse como

$$\phi_P = \arg\left(\sum_{k=1}^N \sqrt{\omega_k(0\omega_k(T))} \langle \psi_k(0) | \psi_k(T) \rangle\right)$$
 (2.23)

Para extraer la fase asociada al sistema de interés, es necesario eliminar la dependencia en la purificación especifica utilizada. Para esto, sabiendo que para cada instante $t \in [0, T]$ las bases $\{|\psi_k(t)\rangle\}$ y $\{|\psi_k(0)\rangle\}$ son bases ortonormales del mismo espacio, existe entonces una transformación que lleva de un conjunto a otro $|\psi_k(t)\rangle = U(t) |\psi_k(0)\rangle \forall k$. El paso esencial para arribar a una fase puramente geométrica es el de notar que en realidad, existe una clase de equivalencia de mapas unitarios $\tilde{U}(t)$ que realizan todas la misma curva C. Específicamente, la expresión ?? que defina le curva es manifiestamente invariante ante transformaciones de gauge U(1), de forma que dos transformaciones unitarias U(t) y U'(t) que mapeen $\{|\psi_k(0)\rangle\}$ en $\{|\psi_k(t)\rangle\}$ o en $\{e^{i\alpha_k(t)} |\psi_k(t)\rangle\}$ resultan equivalentes. Los mapas U(t) que en la clase de equivalencia tienen la forma

$$\tilde{U}(t) = U(t) \sum_{k=1}^{N} e^{i\alpha_k(t)} |\psi_k(0)\rangle\langle\psi_k(0)| \qquad (2.24)$$

. En particular, puede identificarse el mapa $U^{\parallel}(t)$ que satisface la condición de transporte paralelo para cada $|\psi_k(t)\rangle$, es decir

$$U^{\parallel}(t) = U(t) |\langle \psi_k(0) | U^{\dagger}(t) \dot{U}(t) | \psi_k(0) \rangle = 0 \,\forall k$$
 (2.25)

y definir la fase geométrica como la diferencia de fase ?? para este mapa particular. Sustituyendo en la ecuación ?? que describe la relación de equivalencia entre operadores, se obtiene que

$$\alpha_k(t) = i \int_0^t dt' \langle \psi_k(0) | U^{\dagger}(t') \dot{U}(t) | \psi_k(0) \rangle$$
 (2.26)

y en consecuencia, la fase geométrica resulta

$$\phi_g[C] = \arg\left(\sum_{k=1}^N \sqrt{\omega_k(0)\omega_k(t)} \langle \psi_k(0)|\psi_k(T)\rangle e^{-\int_0^T dt \langle \psi_k(t)|\dot{\psi}_k(t)\rangle}\right)$$
(2.27)

La definición propuesta satisface las condiciones que rigen sobre una noción geométrica

razonable para un estado mixto, que son: (i) Efectivamente es una fase, dado que si definición a través de la funcion argumento impone una periodicidad bien definida, (ii) es manifiestamente invariante de gauge ya que toma el mismo valor para cualquier operador unitario U(t) en la clase de equivalencia descrita por ??, y por lo tanto depende unicamente por el camino C trazado por la matriz $\rho(t)$ del sistema y (iii) cuando la evolución es unitaria, se recuperan los resultados anteriores para estados iniciales puros, y [?] para estados iniciales mixtos. Finalmente (iv) es accesible experimentalmente, por ejemplo usando interferometria.

Sera de utilidad para su aplicación, el caso particular en que el sistema se encuentre inicialmente en un estado puro $|\psi(0)\rangle$. En tal situación, la descomposición de la matriz densidad del sistema en el instante inicial solo tendrá un autovalor distinto de cero: $\omega_{+}(0) = 1$. En consecuencia, la sumatoria en la ecuación 2.5.1 posee un unico termino no nulo, y la formula se reduce a

$$\phi_g[C] = \arg \langle \psi(0) | \psi_+(T) \rangle - \operatorname{Im} \int_0^T dt \left\langle \psi_+(t) | \dot{\psi}_+(t) \right\rangle$$
 (2.28)

Esta expresión admite la interpretación de fase geométrica acumulada por el autoestado $|\psi_{+}(t)\rangle$.

Modelo de Jaynes-Cummings

En este capitulo analizaremos en profundidad la dinámica y los aspectos teoricos mas importantes del modelo de Jaynes-Cummings, abordando el problema tanto desde un lado teórico, como desde el lado computacional, necesario para resolver la dinámica en sistemas abiertos. Primero se trabajará en el modelo de un átomo en una cavidad, se analizarán los casos importantes, y se explicaría dinámica del problema. Esto es importante para comprender conceptualmente como interactúan fundamentalmente la materia y la luz, y nos sirve para conseguir buena intuición del problema de dos átomos. Tambien se verá la influencia del entorno sobre la cavidad, permitiendo perdida (o absorción) de fotones, y tambien el bombeo coherente que puede excitar espontaneamente al átomo.

3.1. Modelo y aproximaciónes

Comencemos entonces por el paradigmatico modelo de 1 átomo. El modelo de Jaynes-Cummings consiste en describir la interacción entre la materia y la luz de manera cuantica, y el experimento mas sencillo consta de un átomo de dos niveles atrapada en una cavidad. La simpleza del modelo surge de las aproximaciónes e hipotesis que se hacen, en primer lugar, el campo electromagnetico dentro de la cavidad puede en principio tener infinitos modos, pero para simplificar se considera solo un modo. Entonces tenemos un Hamiltoniano ($\hbar = 1$)

$$\hat{H} = \hat{H}_A + \hat{H}_C + \hat{H}_{int}$$

$$\hat{H}_A = \omega \frac{\sigma_z}{2}$$

$$\hat{H}_C = \epsilon \hat{a}^{\dagger} \hat{a} = \epsilon \hat{n}$$

$$\hat{H}_{int} = -ig(\hat{\sigma}_- + \hat{\sigma}_+)(\hat{a} - \hat{a}^{\dagger})$$
(3.1)

donde ϵ y ω son las frecuencias naturales de la cavidad y del átomo respectivamente. Los operadores \hat{a} y \hat{a}^{\dagger} son los operadores de aniquilación y creación fotónicos de la cavidad y $\hat{n} = a^{\dagger}a$ es el operador de número de la cavidad, y $\hat{\sigma}_z$ es el operador de pauli. Los estados del átomo de dos niveles los llamamos $|g\rangle$ y $|e\rangle$ al estado ground y excitado respectivamente, y con esta notación los operadores $\sigma_{\pm} = (\sigma_x \pm i\sigma_y)/2$ son los operadores de subida y bajada atómicos. La interacción es complicada, y para simplificar lo que se hace es usar la representación de interacción, y uno encuentra que hay dos frecuencias, una que llamamos rotante y es la diferencia entre las frecuencias características $\epsilon - \omega$, y la otra frecuencia es la suma $\epsilon + \omega$. La aproximación de onda rotante vale cuando las frecuencias son similares $\epsilon \sim$

 ω , y consta de despreciar la dinámica de los términos contrarrotantes, ya que oscilan muy rápidamente en comparación con los términos rotantes, y entonces podemos promediar los efectos de los términos rápidos. Entonces al aplicar esta aproximación, justificada cuando $\epsilon \sim \omega$ y $g \ll \epsilon, \omega$ se obtiene el hamiltoniano de JC ??ludmi 49

$$H_{JC} = \epsilon a^{\dagger} a + \omega \sigma_z / 2 + g(a^{\dagger} \sigma_- + a \sigma_+) \tag{3.2}$$

La interpretación de la interacción en este caso es clara, las dos opciones son que el átomo suba un nivel de energía y en consecuencia la cavidad pierda un fotón, o que el átomo baje un nivel, y la cavidad gane una excitación. Este Hamiltoniano conserva el número total de excitaciones $\hat{N} = \hat{n} + \hat{\sigma}$. En este momento es usual aplicar una transformación unitaria $K = \exp\{-i\omega t(a^{\dagger}a + \sigma_z/2)\}$ sobre el Hamiltoniano que queda

$$H = \frac{\Delta}{2}\sigma_z + g(a^{\dagger}\sigma_- + a\sigma_+) \tag{3.3}$$

donde $\Delta = \epsilon - \omega$ es el detunning entre las frecuencias de la cavidad y el átomo. Un ejemplo de esto es un átomo de Rydberg metido en una cavidad ??, o ... BUSCAR EJEM-PLOS. Como el Hamiltoniano conserva la cantidad de excitaciones es oportuno agrupar los estados en función de la cantidad de excitaciones: $\{|g,n\rangle,|e,n-1\rangle\}$. En esta base el Hamiltoniano se diagonaliza por bloques, ya que las interacciones conservan la cantidad total de excitaciones, entonces los elementos de matriz entre estados con diferente cantidad de excitaciones se corresponde

$$[H, \hat{N}] = 0 \implies \langle N' | H\hat{N} | N \rangle = \langle N' | \hat{N}H | N \rangle$$

$$N \langle N' | H | N \rangle = N' \langle N' | H | N \rangle$$

$$\implies \langle N' | H | N \rangle = \begin{cases} 0 , \text{ si } N' \neq N \\ \langle N | H | N \rangle , \text{ si } N' = N \end{cases}$$

donde $|N\rangle$ es un estado con N excitaciones totales. Entonces para resolver el problema solo tenemos que mirar el subespacio de 2x2 de n excitaciones, cuyo Hamiltoniano es

$$H_n = \begin{pmatrix} -\frac{\Delta}{2} & g\sqrt{n} \\ g\sqrt{n} & \frac{\Delta}{2} \end{pmatrix} \tag{3.4}$$

Resolvemos el problema de autovalores y autovectores y obtenemos

$$|\psi_{-}^{n}\rangle = \cos\frac{\theta_{n}}{2}|g,n\rangle - \sin\frac{\theta_{n}}{2}|e,n-1\rangle$$

$$|\psi_{+}^{n}\rangle = \sin\frac{\theta_{n}}{2}|g,n\rangle + \cos\frac{\theta_{n}}{2}|e,n-1\rangle$$
(3.5)

con $E^n_{\pm}=\pm\frac{\Omega_n}{2}$ las autoenergias y $\Omega_n=\sqrt{\Delta^2+4g^2n}$ la frecuencia de Rabi del sistema, $\cos\theta_n=\frac{\Delta}{\Omega_n}$ modulando la superposición de estados. En la figura 3.1 se observan las curvas de energía en función del detunning para diferentes niveles. Lo primero que tenemos que observar es que en el caso resonante, es decir $\Delta=0$, los autoestados del sistema son los

Figura 3.1. Relación energía detunning para el modelo de Jaynes-Cummings. La diferencia de energía entre los estados de un mismo nivel para $\Delta = 0$ es $2g\sqrt{n}$.

estados máximamente entrelazados de Bell

$$\left|\psi_{\pm}^{n}\right\rangle = \frac{1}{\sqrt{2}}(\left|gn\right\rangle \pm \left|e, n - 1\right\rangle)$$
 (3.6)

y la diferencia de energía entre los autoestados es $\Delta E^n = E^n_+ - E^n_- = 2g\sqrt{n}$. En el caso muy lejos de resonancia podemos asumir que $\Delta \gg g$, y entonces los autoestados coinciden en este límite con los estados de la base,

$$\begin{aligned} \left| \psi_{+}^{n} \right\rangle &= \left| e, n - 1 \right\rangle \\ \left| \psi_{-}^{n} \right\rangle &= \left| g, n \right\rangle \end{aligned} \tag{3.7}$$

Acá hay una sutileza, y es que si $\Delta>0$, entonces $|e,n-1\rangle$ es el estado de mayor energía y la notación coincide con la energía, pero si $\Delta<0$ entonces el estado $|\psi^n_+\rangle$ es el estado de menor energía. Un efecto interesante es que en el caso de alta desintonía, podemos calcular la diferencia entre la energía del autoestado exacto del Hamiltoniano $|\psi^n_\pm\rangle$ y la energía asintótica a la que tiende, que es la energía de los estados de la base $|g,n\rangle$, $|e,n-1\rangle$. Esta diferencia ... VOLVER A ESTO Y VER SI DEJARLO O SACARLO. EVENTUALMENTE COMPLETAR.

$$\Delta E_{e,n-1} = E_+^n - E_{e,n-1}^{(0)} = \frac{g^2}{\Delta} n \Delta E_{g,n} = E_-^n - E_{g,n}^{(0)} = -\frac{g^2}{\Delta} n$$
 (3.8)

El resultado importante de esta diferencia de energías es que aun en ausencia de fotones en la cavidad n=0, hay una diferencia entre las energías entre el Hamiltoniano del átomo, y del H_{JC} . Este efecto es el Lamb Shift y nos dice que el vacío electromagnetico induce un corrimiento en la energía de los estados. Esto es importante notarlo, porque para el caso de dos átomos también está manifiesto.

3.1.1. Fase geométrica en el JCM

Vamos a analizar la fase de Berry y la fase geométrica en la aproximación cinemática.

Fase de Berry

Para ver la fase de berry tenemos que tener un parámetro de control en el Hamiltoniano, el cual varía lentamente. Para esto necesitamos aplicar una transformación unitaria de corrimiento de fase al Hamiltoniano original 3.3 $R = \exp\{-i\Omega a^{\dagger}a\}$, que queda

$$H = \frac{\Delta}{2}\sigma_z + g(a^{\dagger}\sigma_e^{-i\Omega} - +a\sigma_+ e^{i\Omega})$$
(3.9)

que ahora depende explicitamente del parámetro externo de control Ω . Los autoestados de este nuevo Hamiltoniano se obtienen aplicando esta misma transformación sobre los autoestados del Hamiltoniano original. Si el parámetro de control varia lentamente entre 0 y 2π , entonces estamos dentro de las hipótesis propuestas por Berry, y podemos calcular la fase de Berry mediante la ecuación 2.4:

$$\psi_a^n = i \oint_C d\Omega \left\langle \psi_{\pm}^n \middle| R(\Omega)^{\dagger} \frac{d}{d\Omega} \middle| \psi_{\pm}^n \right\rangle = \pi (1 \pm \cos(\theta_n))$$
 (3.10)

que es no trivial incluso para n=0, lo que nos dice que incluso el vacío electromagnetico introduce una corrección en la fase de Berry.

Aproximación Cinemática

Para comparar ambos métodos, ahora vamos a calcular la fase geométrica utilizando la aproximación cinemática aunque este abordaje es más general de lo necesario en este caso. Si se considera que el estado inicial es un atuoestado del Hamiltoniano, como los estados $|\psi^n_{\pm}\rangle$, entonces la fase geométrica en este caso se anula. Pero si se considera un estado inicial, por ejemplo $|\psi(0)\rangle = |e,n\rangle$, entonces el estado a tiempo t resulta

$$|\psi(t)\rangle = (\cos^2\theta_n e^{-iE_+^n t} + \sin^2\theta_n e^{iE_+^n t}) |e, n\rangle - i\sin\theta_n \sin(E_+^n t) |g, n+1\rangle$$
 (3.11)

La fase geométrica acumulada 2.18 es

$$\phi_u[C] = -\pi (1 - \cos \theta_n) \frac{t}{T} + \arg \left\{ 1 + e^{2\pi i \frac{t}{T}} \frac{\Omega_n - \Delta}{\Omega_n + \Delta} \right\}$$
 (3.12)

con $T = \frac{2\pi}{\Omega_n}$ es un período correspondiente a la frecuencia de Rabi Ω_n . Esta expresión y la anterior 3.11, deberían coincidir cuando t = T, que se corresponde con un ciclo cerrado. En este caso (t = T) se obtiene

$$\phi_u = -\pi (1 - \cos \theta_n) \tag{3.13}$$

La diferencia de signos se puede explicar comparando las curvas descritas por la esfera de Bloch para cada evolución.

Figura 3.2

En el caso 3.11, correspondiente a la figura 3.2a, los autoestados son los autoestados $R(\Omega) |\psi_{\pm}^n\rangle = e^{-i\Omega\hat{n}} |\psi_{\pm}^n\rangle$, entonces al variar $\Omega \in [0,2\pi]$ la trayectoria es simplemente un circulo en la esfera de Bloch. En cambio, en el segundo caso, si preparamos el sistema inicialmente en el estado $|e,n\rangle$ y lo dejamos evolucionar por la acción de H durante un tiempo, la trayectoria ahora no son círculos horizontales en la esfera, sino que parten del polo norte, que es el estado $|e,n\rangle$, y luego hace una trayectoria ovalada, para finalmente volver al punto inicial de partida a un tiempo t=T. La diferencia en el signo se explica a través de la transformación que nos lleva de una curva a la otra. Para esto, necesitamos de una rotación rígida, y una inversión de la parametrización, por su parte, esta ultima, introduce un signo negativo, cosa que se ve claramente en la ecuación 3.12 al cambiar $t \to -t$.

3.2. Medio Kerr

Ahora que ya se trabajó el caso mas sencillo, se comienza a estudiar casos mas generales. La primera generalización que se hará es agregar un medio no lineal. Este medio se lo conoce como medio Kerr, y lo que hace es agregar un término en el Hamiltoniano de la cavidad, que pasa de ser 3.1

$$H_C = \epsilon \hat{n} \to H_C^{\text{Kerr}} = \epsilon \hat{n} (1 - \frac{\chi}{\epsilon})$$
 (3.14)

donde χ es el parámetro que caracteriza al medio de la cavidad Kerr. Si se realizan nuevamente los mismos pasos, se arriba a las mismas conclusiones sobre la forma del Hamiltoniano, y se tiene que

$$H = \frac{\Delta}{2}\hat{\sigma}_z + \chi \hat{n}^2 + g(\hat{a}^{\dagger}\hat{\sigma}_-\hat{a}\hat{\sigma}_+)$$
 (3.15)

y en forma matricial, en el subespacio de n excitaciones $\{|gn\rangle, |e, n-1\rangle\}$

$$H^{(n)} = \begin{pmatrix} -\frac{\Delta}{2} + \chi n^2 & g\sqrt{n} \\ g\sqrt{n} & \frac{\Delta}{2} + \chi(n-1)^2 \end{pmatrix}$$
(3.16)

Resolviendo, se obtiene que ahora los autovectores son

$$\left|\psi_{\pm}^{n}\right\rangle = \frac{1}{N_{\pm}} \left(\left(-\frac{\Delta}{2} + \chi(n-1/2) \mp \frac{\Omega_{n,\chi}}{2}\right) \left|gn\right\rangle + g\sqrt{n} \left|e, n-1\right\rangle \right) \tag{3.17}$$

donde
$$\Omega_{n,\chi} = \sqrt{(\chi(n-1/2) - \Delta)^2 + 4g^2n}$$
, $N_{\pm} = \sqrt{(-\frac{\Delta}{2} + \chi(n-1/2) \mp \Omega_{n,\chi}/2)^2 + g^2n}$, y las autoenergias son

$$E_{\pm}^{n} = \chi (n - \frac{1}{2})^{2} + \frac{\chi}{4} \pm \frac{\Omega_{n,\chi}}{2}$$
 (3.18)

Se puede ver que el resultado con $\chi = 0$ se reduce al caso visto anteriormente, que representa una cavidad con un medio lineal.

Si uno quiere resolver la dinámica de este problema para un estado inicial cualquiera, lo que tenemos que hacer es desarrollar este estado inicial en función de los autoestados del problema, entonces tendríamos para un estado arbitrario con un numero total de excitaciones definido, que suponemos igual a 1 por simplificación (la generalización es inmediata):

$$|\psi\rangle(t) = U(t)(\langle\psi_{+}^{1}|\psi(0)\rangle|\psi_{+}^{1}\rangle + \langle\psi_{-}^{1}|\psi(0)\rangle|\psi_{-}^{1}\rangle) = c_{+}e^{-iE_{+}t}|\psi_{+}\rangle + c_{-}e^{-iE_{-}t}|\psi_{-}\rangle$$
(3.19)

Lo interesante de esto es que podemos sacar de factor común alguna de las dos energías, y entonces lo importante para la evolución temporal del sistema es la diferencia entre las energías, por lo tanto, la cantidad relevante sigue siendo $\Omega_{n,\chi}$, que es la frecuencia de Rabi para medios tipo Kerr. Por otro lado, el producto interno que da lugar a los coeficientes c_{\pm} depende de χ , por lo tanto las amplitudes de probabilidad de encontrar al estado temporalmente evolucionado en algún otro estado haciendo una medición proyectiva, depende de χ . Por lo tanto, se puede decir que el medio Kerr modifica las amplitudes de oscilación de las poblaciones del estado.

Entonces se analiza la relación entre $\pm\Omega_{n,\chi}/2$ y el detunning, teniendo en cuenta que ahora el medio puede tener $\chi\neq0$.

Figura 3.3. Grafico de la frecuencia de Rabi $\Omega_{N,\chi}$ en funcion del detunning Δ para N=1 y N=2.

Se observa en la figura 3.3 las diferencias entre autoenergias van cambiando para diferentes valores de χ , donde en el panel 3.3a se observa las energías para N=1 y en 3.3b para N=3, en función del detunning, y en colores se ve de mas oscuro a mas claro, como el aumento de $\chi \in [0,2g]$ afecta a las curvas. Lo que se observa es que, al aumentar χ , las curvas se desplazan hacia la derecha en una cantidad $\chi(n-1/2)$.

Este comportamiento se puede predecir mirando la forma de la autoenergia 3.18, ya que lo que estamos haciendo es desplazando la raiz haciendo un cambio de variables $\Delta \to \Delta - \chi(n-1/2)$. Este desplazamiento depende del número de excitaciones N. Dados dos valores diferentes de χ nos interesa saber si al aumentar Δ , aumenta o disminuye las energías de los estados, por ejemplo, si queremos comparar dos casos, uno con $\chi_1 = 0$ y $\chi_2 = 0.5g$, y dado un valor de detunning $\Delta = 2g$, cual de los dos casos tiene una mayor frecuencia. Para esto buscamos la intersección entre dos curvas con diferentes χ , que llamamos χ_1 y χ_2 , con $\chi_1 < \chi_2$. Haciendo el calculo obtenemos que la intersección es para $\Delta = (2n-1)\frac{\chi_1+\chi_2}{2}$, es decir, si $\Delta < (2n-1)\frac{\chi_1+\chi_2}{2}$ entonces la frecuencia de χ_2 es mayor que la de χ_1 y por lo tanto oscila mas rápidamente, y viceversa si $\Delta > (2n-1)\frac{\chi_1+\chi_2}{2}$.

Ahora, habiendo entendido esto, podemos ver que el efecto del medio es modificar la frecuencia y también la amplitud de la oscilación, haciendo que la primera sea menor, y para ver que pasa con las amplitudes tengo que hacer algunas cuentas

3.3. JCM disipativo

Habiendo desarrollado el análisis de la fase geométrica acumulada por el sistema átomocavidad en la situación ideal de completo aislamiento, se aborda ahora el estudio para el escenario más realista en el que el mismo sistema se encuentra en interacción con un entorno. El problema se trata para la implementación específica en estructuras semiconductoras, en las que un punto cuántico (al cual se sigue, sin embargo, refiriendo como átomo o sistema de dos niveles) se ubica en una nano o micro-cavidad.

Siguiendo [?], en este capítulo se estudia en detalle la fase geométrica acumulada en un modelo de Jaynes-Cummings disipativo, como caso paradigmático dentro del campo de la

electrodinámica en cavidades. Se considera que los principales mecanismos por los cuales el sistema "átomo + modo" interactúa con el entorno son el flujo de fotones a través de las paredes de la cavidad y el continuo e incoherente bombeo del sistema de dos niveles, lo que conforma un escenario frecuente en electrodinámica de cavidades semiconductoras [?, ?, ?].

Para poder modelar estos mecanismos, se emplea la ecuación maestra fenomenológica de Lindblad

$$\dot{\rho}(t) = -i[H, \rho(t)] + \frac{1}{2} \sum_{\alpha} \left(2L_{\alpha}\rho(t)L_{\alpha}^{\dagger} - \{L_{\alpha}^{\dagger}L_{\alpha}, \rho(t)\} \right), \tag{3.20}$$

, despreciando otros procesos con menor influencia en la dinámica como el desfasaje puro o el bombeo de fotones del entorno en la cavidad, considerando además que el entorno se halla a temperatura cero. Los operadores de Lindblad

$$L_{\gamma} = \sqrt{\gamma} \ a \tag{3.21}$$

$$L_p = \sqrt{p} \ \sigma_+ \tag{3.22}$$

, representan la pérdida de fotones y el bombeo continuo e incoherente del átomo, respectivamente, con los parámetros γ y p denominados tasa de pérdida de fotones y amplitud del bombeo.

El bombeo sobre el átomo es siempre secundario frente a la pérdida de fotones, lo cual nos da las relaciones $\frac{p}{g}, \frac{p}{\gamma} \ll 1$, y la relación entre γ y g da lugar a dos regímenes que se diferencian con claridad [?]-[?]. El régimen de acoplamiento fuerte (SC o Strong Coupling) es cuando la interacción átomo-cavidad es mas fuerte que la disipación del entorno, es decir $\gamma/g < 1$. En el caso contrario $\gamma/g > 1$ estamos en el régimen de acoplamiento débil (WC o Weak Coupling). Para no generar confusiones, hay que destacar que en general, cuando en la literatura se habla de acoplamientos fuertes y débiles, se refiere a la interacción entre las partes del mismo sistema, pero en este caso, se esta haciendo referencia a la interacción del sistema con el entorno EN COMPARACIÓN con la interacción interna del sistema.

3.3.1. Solucion y regimen de acoplamiento

En esta ocasión nos interesa resolver el problema restringiendonos al subespacio donde el átomo puede estar en cualquiera de sus dos estados, y nos restringimos al caso en donde la cavidad tiene 1 o 2 fotones, en consecuencia, se restringe el estudio a un subespacio truncado cuya base son los estados $\{|0\rangle = |g,0\rangle; |1\rangle = |e,0\rangle; |2\rangle = |-,1\rangle\}$. Desarrollando explícitamente el sistema de ecuaciones dadas por la ecuación de Lindblad 3.20, obtenemos que los elementos ρ_{0i} quedan desacoplados de los demás:

$$\dot{\rho}_{01} = -\frac{p}{2}\rho_{01} + i\Delta\rho_{01} + ig\rho_{02}$$

$$\dot{\rho}_{02} = -\frac{p}{2}\rho_{02} - \gamma\rho_{02} + ig\rho_{01}$$
(3.23)

, con lo cual, si inicialmente los elementos de matriz $\rho_{0i}(0)=0$, permanecerán así durante toda la evolución del sistema. Para hacer una analogía y realizar una comparación con el caso unitario, se estudia la condición inicial $\rho(0) = |e,0\rangle\langle e,0|$, que satisface esta condición, de manera que se espera que el estado $\rho(t)$ exciba una estructura diagonal por bloques. El primer bloque de 1x1 representando al estado $|0\rangle$, y luego un bloque de 2x2 que describe la dinámica entre los estados $|1\rangle$ y $|2\rangle$. Las ecuaciones son

$$\dot{\rho}_{00} = -p\rho_{00} + \gamma\rho_{22},
\dot{\rho}_{11} = -ig(\rho_{21} - \rho_{12}) + p\rho_{00},
\dot{\rho}_{22} = -ig(\rho_{12} - \rho_{21}) - \gamma\rho_{22},
\dot{\rho}_{12} = -ig(\rho_{22} - \rho_{11}) - i\Delta\rho_{12} - \frac{\gamma}{2}\rho_{12}.$$
(3.24)

que se resuelven numéricamente para acceder al estado $\rho(t)$ a tiempo t > 0.

Figura 3.4. Solución numérica al sistema de ecuaciones dada por la ecuación de Lindblad para el estado inicial $|e0\rangle\langle e0|$. Estos gráficos se realizaron con $\Delta=2g$; a la izquierda se observa el regimiento de Weak Coupling con $\gamma=0.1g$, donde el sistema átomo-cavidad esta débilmente acoplado con el entorno, y a la derecha el de Strong Coupling con $\gamma=2g$, donde las poblaciones y coherencias decaen sin oscilar. Las lineas solidas son las poblaciones de los estados, en azul para el estado $|g0\rangle$, en morado para $|e0\rangle$ y en amarillo $|g1\rangle$, y la linea rayada representa la coherencia entre los estados con N=1 ($|e0\rangle$ y $|g1\rangle$).

En el panel 3.4a, se muestra el régimen de SC, donde el acoplamiento entre el átomo y la cavidad es mayor al acoplamiento con el entorno, según la relación entre los parámetros $\gamma/g=0.1$, y en el panel 3.4b, se muestra el caso del WK. La diferencia que es interesante para el problema, es que en el primer caso, tanto las poblaciones como las coherencias presentan oscilaciones coherentes antes de decaer por la influencia del entorno. En cambio, para el caso de WK, estas oscilaciones coherentes no están presentes y el sistema llega a su estado asintótico en tiempos muy cortos. Las características de la dinámica de cada régimen, influyen profundamente en el estudio de la fase geométrica, haciendo posible unicamente su utilización en el caso de Strong Coupling, donde la dinámica presenta oscilaciones coherentes durante varios ciclos, antes de decaer, haciendo del régimen de SC el único escenario conveniente para su estudio. Antes de fundamentar esta afirmación, se realiza un estudio poblacional en el caso de una cavidad con medio Kerr.

Como se vio anteriormente, el efecto del medio Kerr sobre los autoestados y las au-

Figura 3.5. Análisis poblacional para una cavidad con medio Kerr con $\chi=0.5g$.

toenergias es, por un lado, desplazar los niveles de energía. Si se comparan las figuras 3.4 con 3.5, entonces se pueden observar dos diferencias. La primera es lo mencionado anteriormente; en el mismo tiempo, es decir entre $0 \le t/T \le 25$, en el caso de $\chi = 0$ se observan 25 oscilaciones, pero en el caso de $\chi = 0.5g$ solo se observan 23 oscilaciones. Esto se debe a la condición que se encontró al final de la sección 3.2, en este caso se cumple que $\Delta = 2g > (2n-1)\frac{\chi_1 + \chi_2}{2} = 1 \cdot \frac{0.5g}{2}, \text{ entonces la diferencia de energías entre los autoestados disminuye al aumentar <math>\chi$, y por lo tanto las oscilaciones son mas lentas para el caso de $\chi = 0.5g$ en comparación con $\chi = 0$. falta analizar las amplitudes

3.3.2. Fase geométrica en presencia de disipación

Ahora se estudia la fase geométrica adquirida por el sistema, calculada siguiendo la definición ??, y como esta se ve modificada con respecto del valor unitario por efecto del contacto con el entorno. Como el estado inicial es puro, la definición se reduce al caso particular descrito por la ecuación ??.

Los autovalores y autovectores del operador densidad pueden escribirse formalmente diagonalizando el subespacio de 2x2 de la matriz densidad:

$$\rho(t) = \begin{pmatrix}
\rho_{00} & 0 & 0 & 0 & \dots \\
0 & \rho_{11} & \rho_{12} & 0 & \dots \\
0 & \rho_{21} & \rho_{22} & 0 & \dots \\
\vdots & 0 & 0 & \ddots & \dots
\end{pmatrix}$$
(3.25)

donde estamos nuevamente asumiendo una estructura diagonal por bloques, que se da cuando el estado inicial tiene un numero definido de excitaciones, dando lugar a dos autovectores. El de interés para utilizar la definición de la fase geométrica ??, es el autoestado

$$|\psi_{+}\rangle(t) = \frac{-(\rho_{22} - \epsilon_{+})|e,0\rangle + \rho_{21}|g,1\rangle}{((\rho_{22} - \epsilon_{+})^{2} + \rho_{21}\rho_{12})^{1/2}}$$
 (3.26)

con $\epsilon_+ = \frac{1}{2}(\rho_{11} + \rho_{22} + ((\rho_{11} - \rho_{22})^2 + 4\rho_{12}\rho_{21})^{1/2})$ el autovalor asociado. Recurriendo a este

resultado, podemos escribir formalmente la fase geométrica en función de los elementos de matriz $\rho_{ij}(t)$:

$$\phi_g(t) = \int_0^t dt' \frac{\text{Im } \dot{\rho}_{21} \rho_{12}}{(\rho_{22} - \epsilon_+)^2 + \rho_{12} \rho_{21}}$$
(3.27)

En general, esta fase diferirá de aquella acumulada en una evolución unitaria de forma que puede escribirse, sin pérdida de generalidad, $\phi_g = \phi_u + \delta \phi$, con $\delta \phi$ la diferencia entre la fase unitaria y aquella modificada por la presencia del entorno. Caracterizar la corrección $\delta \phi$ permite relacionar este objeto, perteneciente a la geometría misma del espacio de Hilbert, con los efectos de disipación y decoherencia experimentados por el sistema, así como determinar bajo qué circunstancias $\delta \phi$ resulta despreciable y se puede considerar que la fase geométrica es robusta al efecto del entorno.

Dependencia con el régimen de acoplamiento

En la figura 3.6 se muestra la fase geométrica acumulada en función del tiempo, para el estado inicial puro $|e,0\rangle$, comparando 4 casos para la relación $\gamma|g$ pertenecientes al régimen de SC, ademas como referencia se muestra la fase geométrica unitaria.

Figura 3.6. Fase geométrica acumulada por un sistema con un detunning $\Delta =$ 0.1g, para diferentes valores característicos del entorno. En todos los casos la tasa de bombeo es p =0.005q, y se muestran diferentes valores para γ , partiendo de $\gamma = 0$ perteneciente a la linea azul oscuro que es el caso unitario, y para $\gamma = 0.01g, \gamma =$ $0.1g, \gamma = 0.5g \text{ y } \gamma = g,$ correspondientes a las lineas violeta, rosa, naranja y amarilla.

Al aumentar la interacción con el entrono, aumenta la diferencia $\delta\phi$ entre la fase acumulada con aquella correspondiente al caso unitario. Sin embargo, si el valor aumenta demasiado, la perdida de coherencia detiene el movimiento del estado y consecuentemente la acumulación de fase. Por esto es que el estudio sobre la fase geométrica debe ser en el régimen de SC, ya que si la relación $\gamma|g\gg 1$, la fase dejara de acumularse luego de un periodo muy corto de tiempo.

Dependencia con el detunning

Ya que las amplitudes de los estados y las frecuencias de oscilación dependen de los parámetros del problema, entonces la curva que describe el estado en el espacio de rayos

dependerá también de estos, heredando así la fase geométrica una dependencia con los parámetros. Manteniendo las características del entorno iguales, se estudia la dependencia de la fase geométrica con el detunning Δ . En la figura 3.7 se observa que conforme se aumenta el detunning átomo-cavidad, la fase acumulada es menor (en valor absoluto) y se suaviza.

Figura 3.7

Como se discutió anteriormente, la fase geométrica en presencia del entorno se puede descomponer en la parte unitaria ϕ_u dada por la ecuación ??, más una corrección $\delta\phi$ que refleja la desviación introducida por el entorno. La dependencia de la componente unitaria en Δ/g esta explicita en la ecuación ?? ludmi eq 3.8, surge entonces la pregunta de la dependencia del termino $\delta\phi$ con respecto a los parámetros del problema, o si toda la dependencia se encuentra contenida en la parte unitaria ϕ_u . Para tratar con esta pregunta se analiza la corrección $\delta\phi$ en un instante dado (que se elije y se mantiene fijo), observándola como función del valor de Δ/g . El resultado se presenta en la figura ??, en el cual se contrasta ademas esta dependencia para tres entornos caracterizados por distintos valores de tasa de perdida de fotones γ .

Figura 3.8. Diferencia de fase geométrica acumulada en función del detunning átomo-cavidad Δ , para $\chi=0$ y para 3 medios distintos, cuyas tasas de perdida de fotones son $\gamma/g=0.01g,0.1g,0.25g,$ asignadas a los colores violeta oscuro, morado y amarillo respectivamente.

Puede verse que la corrección en efecto depende del valor del detunning Δ/g , y dos aspectos resaltan. En primer lugar es que la corrección se anula, en todos los casos considerados, cuando se satisface la condición de resonancia $\Delta=0$. Este hecho resulta prometedor, insinuando que en este caso la fase geométrica ϕ_g resultaría robusta a los efectos de un entorno en el régimen de SC. La otra característica de la corrección $\delta\phi$ que se revela en la figura 3.8 es la no-monotonicidad de la corrección como función de Δ/g , que exhibe un extremo para un valor Δ/g que depende débilmente tanto en las constantes γ/g y p/g que caracterizan el entorno como en el instante t en el que se realiza la observación. De esta forma la figura 3.8 despierta un interés es doble, ya que permite identificar: (i) las condiciones en las cuales el efecto del entorno sobre la fase geométrica es mayor, acercando la posibilidad de una detección experimental y, (ii) las condiciones que mitigan, permitiendo ignorarlo, este efecto o incluso que lo eliminan por completo.

Dependencia con el medio Kerr

Ahora se considera la dependencia con el medio Kerr. Al estudiar los efectos del detunning, se considero que la cavidad era lineal, es decir $\chi=0$. Es el objeto de estudio de esta sección ver como se modifican la fase geométrica y los resultados obtenidos para el detunning al considerar un medio Kerr. En primer lugar, se muestra la dependencia de la fase geométrica acumulada para diferentes valores de χ/g , considerando un entorno idéntico en todos los casos, y también considerando un valor fijo del detunning.

Figura 3.9

En el panel 3.9a se observa el efecto del medio sobre la fase geométrica acumulada, donde se observa que la linea azul oscuro, correspondiente al caso $\chi = 0$ se corresponde con el caso robusto en donde tenemos una acumulación por escalones. El hecho de que en este caso la fase acumulada sea positiva, se debe a que numéricamente al realizar el calculo, hay problemas con el cero; para salvar este problema se le otorga un valor numérico muy pequeño y se ve como al tener un signo negativo en el parámetro, entonces la fase acumulada es positiva, y viceversa. Entonces se observa como al aumentar el parámetro χ , similarmente al caso del detunning, la fase acumulada es menor y se suaviza. Este comportamiento es algo esperable, ya que en la ecuación para la energía el detunning Δ y el medio χ están casi en igualdad de condiciones, en el sentido que la dependencia funcional de la energía en estos parámetros es igual. Si se observa el panel 3.9b, donde se considero un valor de $\Delta = 0.1g$, entonces se ve como ahora el caso de $\chi = 0$ (linea azul oscuro), ya no pertenece al caso robusto, sino que esta situación se recupera cuando $\chi = 0.1g = \Delta$ (linea morada). Al seguir aumentando χ el comportamiento es igual que en el detunning. Este resultado insinúa que para la fase geométrica, el medio y el detunning también están en igualdad de condiciones. Dos preguntas son pertinentes para confirmar esta intuición. En primer lugar, hay que corroborar la dependencia de la fase geométrica en el parámetro χ , hay que realizar el estudio de la dependencia de la diferencia de fases geométricas $\delta \phi$ al igual que en el caso del detunning. En segundo lugar, queremos ver como cambia la robustez en función del detunning, si cambiamos el medio, por lo tanto se repetirá el estudio en función del detunning, pero para diferentes valores de χ .

Figura 3.10. Diferencia de fase geométrica acumulada en función del parámetro del medio χ , para $\Delta=0$ y para 3 medios distintos, cuyas tasas de perdida de fotones son $\gamma/g=0.01g, 0.1g, 0.25g,$ asignadas a los colores violeta oscuro, morado y amarillo respectivamente.

En la figura 3.10 se observa la dependencia de la diferencia en la fase geométrica acumulada en función del parámetro del medio χ . El comportamiento es el mismo que en el caso anterior, se observa que la diferencia se anula para $\chi=0$, que coincide con el caso de robustez $\Delta=0$. La diferencia es que ahora la fase acumulada es negativa, pero vemos que solo es una reflexión con respecto al caso anterior, esto se debe a que el detunning Δ y el parámetro del medio χ , tienen signos diferentes en todas las expresiones vistas anteriormente. Esto produce que la fase herede este signo, pero vemos que el comportamiento es el mismo; se observa también que en este caso hay un máximo no trivial que depende suavemente de los parámetros γ/g y p/g, lo cual nos dice que la dependencia en la fase geométrica en este parámetro no es trivial, y al igual que en el caso del detunning, es no-monótona, por lo tanto tiene las mismas implicancias que en el caso anterior. Lo interesante ahora es intentar de ver como se comportan ambos parámetros en conjunto. Se espera que, por los comportamiento observados hasta ahora, en realidad la dependencia general sea en $\Delta - \chi(2n-1)$, por lo tanto, se realiza nuevamente el estudio de robustez en función del detunning, para un valor $\chi/g=1$, que se observa en la figura 3.11.

Figura 3.11. Diferencia de fase geométrica acumulada en función del detunning átomo-cavidad Δ , para $\chi=g$ y para 3 medios distintos, cuyas tasas de perdida de fotones son $\gamma/g=0.01g,0.1g,0.25g,$ asignadas a los colores violeta oscuro, morado y amarillo respectivamente. Se observa como la condición de robustez se alcanza para $\Delta/g=\chi/g=1.$

Se observa como ahora tenemos una simetría al rededor de $\Delta=g=\chi$, donde se encuentra el cero de esta relación. Esto es lo que esperábamos, ya que en este caso de n=1, esperamos que la dependencia sea en $\Delta-\chi(2n-1)\implies \Delta-\chi$, es decir, si en el caso de $\chi=0$ vimos robustez en el caso resonante $\Delta=0$, lo que esperamos es que los demás casos robustos también se den cuando, en general $\Delta-\chi(2n-1)=0$, comportamiento que se observa en la figura 3.11.

Robustez de la fase geométrica en el caso resonante

En esta sección se discute la razón detrás de la robustez en los casos estudiados anteriormente.

Como se ha mencionado, las figuras 3.8, 3.10 y 3.11, muestran el resultado notable de que la diferencia $\delta \phi$ entre la fase geométrica acumulada en una hipotética evolución unitaria y la fase geométrica acumulada por el sistema abierto se anula cuando se satisface la condición de resonancia $\Delta=0$. El resultado sugiere que la fase geométrica es robusta a los efectos del entorno en este caso. Esta robustez puede estudiarse y explicarse en términos geométricos analizando la evolución del estado $\rho(t)$ del sistema átomo-modo y se vincula con el salto en π que exhibe la fase geométrica unitaria ϕ_u del sistema resonante, cuyo estado describe un círculo máximo de la esfera de Bloch.

Para explicar el salto en π de la fase unitaria es necesario recordar, como fue desarrollado en las secciones ?? y ??, que la fase geométrica asociada a una trayectoria unitaria no-cíclica puede entenderse como la fase geométrica asociada a una curva cerrada específica: aquella construida a partir de la trayectoria abierta original, luego cerrada mediante una curva geodésica que conecte sus extremos. Esta interpretación permite explicar un salto abrupto en π que muestra la fase geométrica acumulada en la evolución del sistema cuando el estado recorre un meridiano de la esfera de Bloch. Debido a que las geodésicas de la esfera de Bloch son, precisamente, sus círculos máximos, cuando la evolución recorre

uno de éstos sin alcanzar a transitar la mitad de su longitud, la curva geodésica que debe considerarse coincide con la trayectoria de forma que la curva cerrada retorna sobre si misma acumulando fase geométrica nula. Por el contrario, si la trayectoria descrita por el estado supera la mitad del círculo máximo, la geodésica que une sus extremos lo completa encerrando un área de 2π que corresponde a una fase geométrica $\phi_u = \pi$.

Para el caso de un sistema en interacción con el entorno, la identidad formal entre la ecuación ??(2.71) y la fase geométrica unitaria para el autoestado $|\psi_+(t)\rangle$ de la matriz densidad demanda el estudio de la curva descrita en la esfera de Bloch por (la proyección de) $|\psi_+(t)\rangle$. Lo que se observa es que para el caso resonante $|\psi_+(t)\rangle$ recorre una trayectoria que se superpone con aquella descrita por su análogo unitario pero que por efecto del entorno resulta de menor longitud (para un intervalo temporal idéntico). En un período $t \in [0,T]$ de evolución, entonces, el ravo asociado al estado $|\psi(t)\rangle$ retorna al punto inicial describiendo una trayectoria cíclica, mientras que aquél asociado a $|\psi_+(t)\rangle$ describe una curva abierta. Sin embargo, esto no afecta el valor obtenido para la fase geométrica que resulta $\phi_q = \pi$ siempre que el rayo recorra más de la mitad del círculo máximo. En consecuencia, siempre y cuando los efectos disipativos no sean lo suficientemente destructivos como para impedir que el autoestado supere el polo opuesto en un intervalo $t' \in [0,T]$, la fase geométrica acumulada en un período no se verá afectada. En este sentido, el caso resonante resulta entonces la situación ideal para realizar detecciones experimentales o implementar aplicaciones tecnológicas que requieran un escenario en que se puedan despreciar los efectos del entorno.

Jaynes-Cummings de dos átomos, no lineal, medio Kerr

En este capitulo se extiende el modelo de Jaynes-Cummings presentado en el capitulo 3, agregandole nuevas cosas. Lo mas importante es que ahora vamos a tener dos átomos dentro de una misma cavidad. En la literatura en general, el JCM fue extendido para considerar dos cavidades donde cada una tiene su propio átomo, y usando una condición inicial entrelazada se puede hacer interactuar ambas cavidades REFS. El camino que se tomó en este trabajo, es un tanto fuera de lo convensional ya que no hay muchos estudios sobre este sistema. El principal obstaculo que presenta este problema, es que el espacio de Hilbert crece mucho y se torna inmanejable analiticamente; como bien ya sabemos, el JCM tiene subespacios de 2 dimensiones que no se mezclan, y utilizando esta estrategia vamos a ver que en este caso tenemos subespacios de 4x4 que tampoco se mezclan en el caso unitario. Esto nos permite encontrar algunas expresiones analiticas, pero en general se utilizaran métodos númericos para analizar la dinamica.

Este capitulo entonces seguira un hilo conductor, partiendo desde el caso mas sencillo hasta llegar a analizar cuales son los efectos de los diferentes parámetros en el problema. Primero vamos a considerar una cavidad perfecta, es decir sin disipación, agregandole el segundo átomo, vamos a intentar de entender cual es el efecto de este sobre el modelo de un solo átomo. Para esto haremos un analisis poblacional, y de observables como la entropia reducida, la concurrencia, las matrices de pauli. Una vez agregado el segundo átomo, vamos a prender las interacciones de a una y vamos a analizar cuales son sus efectos. Luego, vamos a comparar esto con el caso en donde la cavidad presenta perdidas. Principalmente, nos centraremos en un analisis del entrelazamiento, ya que esta es la cualidad mas interesante que tenemos en el ambito de la información cuántica.

Luego, se analizará el problema para dos átomos, primero en el caso que estos no interactúan directamente entre si, sino que lo hace indirectamente a travez de la cavidad. La comparativa entre esta situación y la mas comun, donde los átomos interactuan mediante sus espines o sus momentos dipolares, es muy rica porque nos permite discernir con claridad cual es el efecto de la cavidad y cual de la interacción entre los átomos a la hora de entrelazarse e intercambiar energía. El problema de dos átomos tiene una peculiaridad al elegir las condiciones iniciales, ya que la dinamica depende de esta eleccion, y hay muchas diferentes configuraciones interesantes, por un lado por la gran dimension del espacio, y por otro lado, esta la posibilidad de jugar con las simetrias. Surge asi la pregunta de si es importante, o si tiene sentido, teniendo dos átomos indistinguibles en una cavidad, que la

condición inicial sea asimetrica ante intercambio.

4.1. Modelo de dos átomos y solucion unitaria

En este trabajo, nos vamos a concentrar en una extension del modelo, donde vamos a ubicar dos átomos dentro de la cavidad. Estos átomos pueden interactuar entre si, y con la cavidad, y ademas agregaremos no-linealidades en el acoplamiento y en el medio. Vamos a usar un modelo de Jaynes-Cummings para describir la interacción entre el campo electromagnético y los átomos. Además supondremos que el acoplamiento depende de la cantidad de fotones y los átomos podrán interactuar entre si mediante un termino tipo Ising y otro tipo dipolo-dipolo. Recordemos que para estamos asumiendo que vale la aproximación de onda rotante ($\omega_0 \sim \omega$) y $g << \omega, \omega_0$. Entonces, el Hamiltoniano que describe este problema es el siguiente:

$$\hat{H} = \underbrace{\hbar \omega_{0} h(\hat{n}) \hat{n}}_{\hat{H}_{F}} + \underbrace{\frac{\hbar \omega}{2} (\hat{\sigma}_{Z}^{(1)} + \hat{\sigma}_{Z}^{(2)})}_{\hat{H}_{A}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} f(\hat{n}) \hat{a}^{\dagger} + \hat{\sigma}_{+}^{(2)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} f(\hat{n}) \hat{a}^{\dagger})}_{H_{FA}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} f(\hat{n}) \hat{a}^{\dagger} + \hat{\sigma}_{+}^{(2)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} f(\hat{n}) \hat{a}^{\dagger})}_{H_{FA}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} f(\hat{n}) \hat{a}^{\dagger} + \hat{\sigma}_{+}^{(2)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} f(\hat{n}) \hat{a}^{\dagger})}_{H_{FA}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} f(\hat{n}) \hat{a}^{\dagger} + \hat{\sigma}_{+}^{(2)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} f(\hat{n}) \hat{a}^{\dagger})}_{H_{FA}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} f(\hat{n}) \hat{a}^{\dagger})}_{H_{FA}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} f(\hat{n}) \hat{a}^{\dagger} + \hat{\sigma}_{+}^{(2)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} f(\hat{n}) \hat{a}^{\dagger})}_{H_{FA}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} f(\hat{n}) \hat{a}^{\dagger})}_{H_{FA}} + \underbrace{\hbar g(\hat{\sigma}_{+}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(1)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)} \hat{a}f(\hat{n}) + \hat{\sigma}_{-}^{(2)}$$

donde \hat{a} es el operador de aniquilación del fotón, ω_0 y ω son las frecuencias del fotón y del átomo respectivamente, g es la constante de acoplamiento, las constantes J y κ son los parámetros de Ising y de dipolo-dipolo para las interacciones átomo-átomo, y los operadores $\sigma^{(i)}$ son las matrices de Pauli que actúan sobre el átomo i-esimo. Finalmente, las funciones $h(\hat{n})$ y $f(\hat{n})$ son las que van a dar cuenta de la no linealidad dependiente del numero de fotones de la cavidad $\hat{n} = \hat{a}^{\dagger}\hat{a}$.

Tomando un medio tipo Kerr la función $h(\hat{n}) = 1 + \frac{\chi}{\omega_0} \hat{n}$ [?](CITA), y la función $f(\hat{n}) = 1$ si tomamos un acoplamiento lineal, y $f(\hat{n}) = \sqrt{\hat{n}}$ si consideramos un acoplamiento tipo Buck-Sukumar [?](CITA)

En este punto es normal hacer una transformación unitaria $K = \exp\left\{-i\omega t(\hat{a}^{\dagger}a + \sigma_z/2)\right\}$ para dejar el Hamiltoniano en función del Detuning $\Delta(\sim 0)$.

$$\hat{H}_{I} = \hbar \chi \hat{n}^{2} + \frac{\hbar \Delta}{2} (\hat{\sigma}_{Z}^{(1)} + \hat{\sigma}_{Z}^{(2)}) + \hbar g (\hat{\sigma}_{+}^{(1)} \hat{a} f(\hat{n}) + \hat{\sigma}_{-}^{(1)} f(\hat{n}) \hat{a}^{\dagger} + \hat{\sigma}_{+}^{(2)} \hat{a} f(\hat{n}) + \hat{\sigma}_{-}^{(2)} f(\hat{n}) \hat{a}^{\dagger}) + 2\hbar \kappa (\hat{\sigma}_{-}^{(1)} \hat{\sigma}_{+}^{(2)} + \hat{\sigma}_{+}^{(1)} \hat{\sigma}_{-}^{(2)}) + \hbar J \hat{\sigma}_{Z}^{(1)} \hat{\sigma}_{Z}^{(2)}$$

$$(4.2)$$

Este es el Hamiltoniano con el que vamos a trabajar, así que a partir de ahora vamos a olvidarnos del subindice I. Obsérvese que el caso de $\chi=0$ es el caso de un medio lineal. ACA PUEDO AGREGAR UN ESQUEMA DE COMO SERIA. En este esquema se ve

como seria el experimento planteado.

$$\left\{ \left| \Phi_{1}^{(n)} \right\rangle = \left| ggn \right\rangle, \left| \Phi_{2}^{(n)} \right\rangle = \frac{1}{\sqrt{2}} (\left| egn - 1 \right\rangle + \left| gen - 1 \right\rangle), \left| \Phi_{3}^{(n)} \right\rangle = \left| een - 2 \right\rangle, \\
\left| \Phi_{4}^{(n)} \right\rangle = \frac{1}{\sqrt{2}} (\left| egn - 1 \right\rangle - \left| gen - 1 \right\rangle) \right\}$$
(4.3)

,donde se eligió esta combinación particular porque el ultimo estado de la base, que es impar ante intercambio, queda desacoplado de los otros, simplificando el problema. Esto se ve al evaluar los elementos de matriz del Hamiltoniano $H_{i,j} = \langle \Phi_i | \hat{H} | \Phi_j \rangle$, este queda en bloques, y el subespacio correspondiente a n excitaciones $\hat{H}^{(n)}$ es una matriz de 4x4

$$\frac{\hat{H}^{(n)}}{\hbar} = \begin{pmatrix}
\chi n^2 - \Delta + J & \sqrt{2}gf(n)\sqrt{n} & 0 & 0 \\
\sqrt{2}gf(n)\sqrt{n} & \chi(n-1)^2 - J + 2k & \sqrt{2}gf(n-1)\sqrt{n-1} & 0 \\
0 & \sqrt{2}gf(n-1)\sqrt{n-1} & \chi(n-2)^2 + \Delta + J & 0 \\
0 & 0 & 0 & \chi(n-1)^2 \\
-J - 2k
\end{pmatrix} (4.4)$$

Vemos claramente que el estados impar ante intercambio esta aislado, y entonces es autoestado del problema, y por lo tanto evoluciona solo y no se mezcla con los otros estados. Esto nos sirve porque ahora, para terminar de resolver el problema, tenemos que diagonalizar la matriz de 3x3. Cabe aclarar que esta matriz solo es valida para $n \geq 2$, ya que los subespacios con N=0,1 no tienen 4 estados. En estos casos la solución del problema de autovalores es mas sencilla aun, así que solo dejaremos los resultados. A partir de ahora se usará como convención $\hbar=1$.

Para resolver el problema de autovalores de la matriz de 3x3 utilizamos la fórmula de Cardano para conseguir las raíces triples que nos aparecen en el polinomio característico,

y entonces encontramos que los autovalores son

$$E_j^{(n)} = -\frac{1}{3}\beta_n + 2\sqrt{-Q_n}\cos\left(\frac{\theta_n + 2(j-1)\pi}{3}\right)$$
 (4.5)

para j = 1, 2, 3, y donde

$$\theta_n = \cos^{-1}\left(\frac{R_n}{\sqrt{-Q_n^3}}\right) \tag{4.6}$$

$$Q_{n} = \frac{3\gamma_{n} - \beta_{n}^{2}}{9}$$

$$R_{n} = \frac{9\beta_{n}\gamma_{n} - 27\eta_{n} - 2\beta_{n}^{3}}{54}$$

$$\beta_{n} = -\left(\chi(n^{2} + (n-1)^{2} + (n-2)^{2}) + J + 2k\right)$$

$$\gamma_{n} = (\chi(n-1)^{2} - J + 2k)(\chi(n-2)^{2} + \chi n^{2} + 2J)$$

$$+ (\chi(n-2)^{2} + \Delta + J)(\chi n^{2} - \Delta + J) - 2g^{2}(n^{2a} + (n-1)^{2a})$$

$$\eta_{n} = -(\chi n^{2} - \Delta + J)(\chi(n-2)^{2} + \Delta + J)(\chi(n-1)^{2} - J + 2k)$$

$$+ 2g^{2} \left[\chi(n-2)^{2}n^{2a} + \chi n^{2}(n-1)^{2a} + \Delta\left(n^{2a} - (n-1)^{2a}\right) + J(n^{2a} - (n-1)^{2a})\right]$$

$$(4.7)$$

donde $a=\frac{1}{2}$ se corresponde con acoplamiento lineal, es decir, f(n)=1, y a=1 a Buck-Sukumar $f(n)=\sqrt{n}$. Los autovalores serán reales si $Q_n^3+R_n^2<0$. Con esto podemos escribir los autovectores:

$$\left| u_j^{(n)} \right\rangle = \frac{1}{N_j^{(n)}} \left[\left((E_j^{(n)} - H_{22}^{(n)}) (E_j^{(n)} - H_{33}^{(n)}) - H_{23}^{(n)} \right) \left| \Phi_1^{(n)} \right\rangle + H_{21}^{(n)} (E_j^{(n)} - H_{33}^{(n)}) \left| \Phi_2^{(n)} \right\rangle + H_{23}^{(n)} H_{12}^{(n)} \left| \Phi_3^{(n)} \right\rangle \right]$$
(4.8)

Obviamente no nos olvidemos del estado $|\Phi_4^{(n)}\rangle$, que también es autoestado, con autovalor $E_4^{(n)}=\chi(n-1)^2-J-2k$. Para el subespacio de N=0 solo tenemos un vector $|\Phi_1^{(0)}\rangle=|gg0\rangle$ y su autovalor es $E_1^{(0)}=-\Delta+J$. Para N=1 tenemos 3 vectores en el subespacio, y las autoenergias son

$$E_{1,2}^{(1)} = \frac{\chi - \Delta}{2} + k \pm \sqrt{2g^2 + (k - J + \frac{\Delta - \chi}{2})^2}$$
 (4.9)

$$E_3^{(1)} = -2k - J (4.10)$$

y sus autovectores

$$\left|u_{1,2}^{(1)}\right\rangle = \frac{1}{N_{1,2}^{(1)}} \left(-\sqrt{2}g \left|gg1\right\rangle + \left(\frac{\chi - \Delta}{2} + J - k \mp \sqrt{2g^2 + (k - J + \frac{\Delta - \chi}{2})^2}\right) \frac{\left|eg0\right\rangle + \left|ge0\right\rangle}{\sqrt{2}}$$

$$(4.11)$$

$$\left|u_3^{(1)}\right\rangle = \frac{1}{\sqrt{2}}(\left|eg0\right\rangle - \left|ge0\right\rangle)\tag{4.12}$$

Con esto, podemos resolver analíticamente la evolución temporal de cualquier estado ini-

Figura 4.1. Relación entre energía y detunning para los diferentes niveles de energía del problema. Las lineas solidas muestran la energía de los estados del JC doble con N=0 (negro, solido), N=1 (verde oscuro y lima, solido) y N=2 (rojo, naranja, amarillo y gris; solido). Tambien se muestran los niveles de energía del JC de un átomo para N=1 (negro; rayado) y N=2 (rojo; rayado). Observese que las energias del JC de un átomo estan multiplicadas por 2.

cial. Para esto solo tenemos que desarrollar el estado inicial en terminos de los autovectores, y la evolución temporal esta dada por

$$|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle = \sum_{j,n} c_j^{(n)} e^{-iE_j^{(n)}t} |u_j^{(n)}\rangle$$
 (4.13)

donde $c_i^{(n)} = \langle u_i^{(n)} | \psi(0) \rangle$. La complejidad de estas expresiones hace complicado conseguir conclusiones interesantes, aun asi, algo que se puede notar, es la diferencia fundamental que se encuentra para las energias con un numero total de excitaciones N=1 y N>1. Si se observa el factor que esta antes de la raiz cuadrada, se ve que para el caso en que $N \geq 2$ tenemos un $\frac{1}{3}\beta_n$ que solo depende de χ , J, k y n. Mientras tanto, en el caso de N=1, este factor depende del detunning Δ . Esto es interesante, ya que uno podria pensar que la formula para N excitaciones se puede generalizar para incluir N=0,1,pero la fundamental diferencia de tener mas o menos estados que interactuan entre si, da lugar a efectos fundamentalmente diferentes. Si uno mira en detalle las cuentas, se percata de que en el caso de N=1 este factor Δ aparece, ya que en la matriz Hamiltoniana el unico estado con N=1 que tiene un termino que incluye al detunning, es el estado $\lfloor gg1 \rangle$, y los otros dos estados al ser un átomo excitado y otro no, el termino de detunning se cancela. Por lo tanto, este termino con Δ sobrevive, al contrario que en todos los demas subespacios, ya que tenemos por un lado el termino del $|ggn\rangle$ que nos aporta un Δ , y el termino de $|ee, n-2\rangle$ que nos aporta otro Δ pero con el signo cambiado, y elimina la contribución del primer estado a la energía. Esto es super interesante, ya que para N=1, si aumentamos el detunning, no solo se separan los niveles de energía, sino que tambien hay una asimetria por el termino independiente. Para analizar esto en detalle, en la figura 4.1 se observan las energias de los diferentes niveles en función del detunning.

En esta figura 4.1a se observan las energias de los primeros niveles para el modelo de

un átomo, mostrados con lineas rayadas, y de dos átomos, con lineas solidas; para esta figura se tomaron átomos que no interactuan (k = J = 0) y una cavidad lineal $(\chi = 0)$. Se puede ver que, si bien el modelo de dos átomos tiene estructuras mas complicadas, son similares a las de 1 átomo. En primer lugar, los estados con N=2 (rojo y naranja; solido) tienen una forma igual a la de JC de 1 átomo, si bien esta un poco desfasada, es interesante ver como las lineas tienen una coincidencia muy grande, recordando que en el grafico las lineas rayadas estan multiplicadas por 2, esto nos da una interpretación bastante buena, y es que la energía de dos átomos no interactuantes en una cavidad es igual (o muy parecida) a dos veces la energía de 1 átomo en una cavidad. Esto tengo que chequear con cuentas Creo que esto se debe al corrimiento Lamb, ya que ahora tenemos dos átomos que interactuan con el vacio, entonces el corrimiento es 1 unidad mas grande en los extremos, que es justamente lo que vemos en el grafico, cuando el detunning es muy negativo, la energía tiende a ser igual a la de un JC simple con 2 excitaciones, y cuando el detunning es muy positivo, entonces tiende a la de 1 excitación; esta asimetría para $\Delta > 0$ y $\Delta < 0$ se observará en resultados posteriores. Por otro lado, se puede observar lo que se habia comentado anteriormente, que la energía de los estados con N=1 tienen un término fuera de la raiz, que hace que sea mas asimétrico aún. Normalmente, en el JC de 1 átomo, ya que todos los niveles de energía tienen una forma funcional igual, este termino de afuera de la raiz se le puede agregar o quitar como un offset en la energía del estado fundamental, la diferencia con este caso es que, no todos los niveles de energía presentan esto, entonces si agregamos un offset, igualmente habria una diferencia.

Otra cosa interesante de notar es que si la cavidad es lineal, entonces los estados antisimetricos de diferentes excitaciones $\frac{1}{\sqrt{2}}(|eg,n\rangle-|ge,n\rangle)$ y $\frac{1}{\sqrt{2}}(|eg,n'\rangle-|ge,n'\rangle)$, estan degenerados en energía.

Una vez estudiados los niveles de energía y comparados con el caso de 1 átomo, vamos a proseguir con la dinámica del problema, que en el caso unitario puede resolverse analíticamente, pero aún asi, nos concentraremos en simulaciones numéricas. Para comenzar, vamos a intentar de recuperar el caso de un átomo, asimetrizando el acoplamiento uno de los dos átomos que tenemos en la cavidad, y haciendo tender este a cero, es decir, vamos a trabajar con k=J=0 y vamos a agregar un parámetro adimensional α que solamente actúa sobre el átomo 2, y sirve de apantallamiento. Este parámetro α acompañara a las constantes de acoplamiento, por ejemplo el acoplamiento entre el átomo y la cavidad $g \to g\alpha$, tal que si $\alpha \to 0$ entonces el átomo quedara desacoplado de la cavidad.

4.2. Dinámica con apantallamiento

Lo primero que se tiene que hacer es recuperar los resultados anteriores. Para aclarar, en la figura 4.2 se muestra un esquema de como es el problema que se esta trabajando, con los nombres que se le darán a las partes del sistema. Llamaremos atomo B al que esta apantallado mediante el parámetro adimensional α , el indice A se referirá al otro átomo, y C a la cavidad. Entonces, para recuperar los resultados anteriores, se propone que $\alpha=0$ y la interacción entre los átomos k=J=0. De esta manera, se elige en analogía con

el caso de 1 átomo, como estado inicial cualquier estado donde el átomo A sea excitado, y la cavidad C no tenga ningún fotón; por lo tanto se elige el estado inicial mas sencillo posible que cumple estas condiciones $|\psi_0\rangle = |eg0\rangle$. Si bien este apantallamiento no tiene un significado físico, y experimentalmente es imposible lograr estas condiciones, realizar este estudio sirve para entender cualitativamente los efectos de cada parametro del problema, y tambien entender que el entrelazamiento entre los dos atomos, lleva a efectos impredecibles. La complejizacion del problema de 1 atomo al de 2 atomos es muy grande, y por eso es necesario ir de a poco.

Figura 4.2. Esquema del problema de estudio. Se nombran a las partes para referenciarlas fácilmente. Los átomos los llamamos A y B, donde el átomo B es el que sufre el apantallamiento que utilizaremos para recuperar los resultados anteriores. La cavidad la llamaremos C, esta puede contener una cantidad arbitraria de excitaciones, pero nos concentraremos principalmente en 0,1 y 2 excitaciones. Ambos átomos son de dos niveles, y en principio son idénticos e indistinguibles, pero se le agrega un apantallamiento artificial.

Utilizando esta condición inicial se realiza una simulación numérica y se observan las poblaciones, y se espera recuperar la misma dinámica que en el caso de 1 átomo, ya que el átomo B no interactúa con ninguna de las otras partes del sistema A y C. Para poder representar el estado del sistema sobre una esfera de Bloch, se realiza una traza parcial sobre el átomo B, y así se obtiene la figura 4.4, donde se muestran 3 trayectorias correspondientes a diferentes valores del detunning, la linea azul es el caso resonante $\Delta=0$, y las trayectorias morada y naranja se corresponde con $\Delta=0.5g$ y $\Delta=2g$ respectivamente.

Figura 4.3

Se observa como la dinámica entre estos dos estados es exactamente igual que la observada en la figura 3.2b, ademas, como todos los puntos están sobre la superficie de la esfera, los estados son puros, diciéndonos que el estado global es separable, y entonces haber trazado sobre el átomo B no tuvo efecto sobre la dinámica entre el átomo A y la cavidad. Para corroborar esto se realiza un análisis poblacional mas general, hacer gráfico con las probabilidades y ver que la probabilidad de eg0 + gg1 = 1 Lo siguiente que podemos analizar, que no se tenia la posibilidad cuando se tiene 1 átomo, es que se puede considerar una condición inicial entrelazada. Si bien los átomos no interactúan, y el átomo B esta aislado del universo, se puede entrelazar los átomos y luego se apagan las interacciones del átomo B. Por ejemplo, si se considera el estado inicial entrelazado $|\psi_0\rangle = (|eg0\rangle + |ge0\rangle)/\sqrt{2}$, se obtiene

Figura 4.4

Ahora, los estados no están sobre la superficie, lo que se interpreta como que estamos en presencia de un estado mixto. Al trazar sobre el átomo B, efectivamente se considera como si este fuese parte de un entorno. Al olvidarse de la dinámica del segundo átomo, se puede interpretar como que este se lleva un 50 % de probabilidad de llevarse la excitación, ya que no sabemos si inicialmente el átomo A o el átomo B es el que tiene la excitación. Entonces efectivamente tenemos un 50 % de probabilidad de que el estado de la cavidad sea $|q0\rangle$, y no evoluciona, y un 50 % de probabilidad de que la excitación este dentro de la cavidad, y por lo tanto vemos que la dinámica es la misma que en el caso anterior, pero con amplitudes menores. ACA IBA A DECIR ALGO, PERO ME PARECE QUE NO PUEDO PORQUE EL ESTADO ENTRELAZADO QUIZAS TIENE ALGUNAS COSAS RARAS. Uno puede adelantarse un poco, y deducir como se comporta la fase geometrica en estos dos casos. Por un lado, en el caso que el estado inicial no este entrelazado, la dinámica es exactamente igual que en el caso de 1 atomo, entonces la fase geométrica es la misma que 3.12, en cambio, cuando el estado inicial es el entrelazado, como la dinámica es igual que antes pero con un medio de la probabilidad, y luego el átomo B no evoluciona, entonces es autoestado y no acumula fase geométrica. Por lo tanto se puede concluir que en el caso entrelazado la FG va a ser la mitad que en el caso no entrelazado.

Para analizar mas en detalle la dinámica, y para poder realizar comparaciones cuando se complejice el problema, se puede realizar un estudio poblacional, y también podemos mirar las entropias relativas y otros observables importantes. En primer lugar, el caso separable $\psi_0 = |eg0\rangle$, es idéntico al caso de 1 átomo, ya que el átomo B no evoluciona por estar totalmente aislado del sistema. Lo único que se puede resaltar es que, si se traza sobre la cavidad, que es algo que es útil para observar el entrelazamiento entre los átomos, lo único destacable es que el estado es mixto, ya que la evolución temporal del sistema átomo

A-átomo B consta del atomo B en el estado fundamental $|g\rangle$, y el átomo A oscila entre el estado excitado y fundamental. La amplitud de oscilación y el grado de mixing entre los estados depende del detunning, siendo el caso $\Delta=0$ el de oscilaciones coherentes entre estados, y al aumentar Δ se este comportamiento. En segundo lugar, cuando el estado inicial de los átomos no es separable por estar entrelazados $|\psi_0\rangle = (|eg0\rangle + |ge0\rangle)/\sqrt{2}$, entonces la dinámica es un poco diferente. La figura ?? muestra el caso de $\Delta=0$, donde se observan las evoluciones de las diferentes partes del sistema.

Figura 4.5. labels, ticks y legens chiquitos, unificar colores Panel (a):Dinámica poblacional para el caso resonante $\Delta=0$ con el estado inicial entrelazado $|\psi_0\rangle=(|eg0\rangle+|ge0\rangle)/\sqrt{2}$. Panel (b):Entropía de von Neuman del sistema total (negro con puntos), y de diferentes subsistemas. En rojo se muestra la entropía del sistema habiendo trazado parcialmente sobre la cavidad, y en azul habiendo trazado parcialmente sobre el átomo B.

En la figura 4.5a se muestran las poblaciones y las coherencias correspondientes a la condición inicial $|\psi_0\rangle=(|eg0\rangle+|ge0\rangle)/\sqrt{2}$ en el caso resonante, y en la figura 4.5b se muestra la entropía de Von Neuman, en función del tiempo t/T con $T=2\pi\Omega(n,j)$. La entropía de von Neuman es una cantidad que esta definida según:

$$S = -\operatorname{Tr}(\rho \ln \rho) = -\sum_{j} \lambda_{j} \ln \lambda_{j}$$
(4.14)

donde ρ es la matriz densidad del sistema, y λ_j son los autovalores de la matriz densidad. La entropía de Von Neuman sirve para determinar si un estado es puro o mixto, ya que $S(\rho)=0$ representa un estado puro, y $S(\rho)=\ln(N)$ representa un estado máximamente mixto, donde N es la dimensión del espacio de Hilbert. Vemos como el estado $|ge0\rangle$ no evoluciona, ya que en este caso, el átomo B contiene la única excitación y esta aislado. Pero la otra parte, si que evoluciona. Vemos la presencia de las mismas oscilaciones coherentes entre los estados $|eg0\rangle$ y $|gg1\rangle$. La diferencia principal es que en esta caso, el estado de los subsistemas es mixto. Esto se observa claramente en el gráfico de la entropía, pero también se puede deducir este comportamiento desde la figura 4.5a, ya que a t/T=0.5, tenemos el estado $|\psi(T/2)\rangle = |g\rangle_A \otimes (|e_B0_C\rangle + |g_B1_C\rangle)/\sqrt{2}$, que es separable solo en el átomo A, y los otros dos están totalmente entrelazados, y por lo tanto al tomar traza parcial tal que el átomo B y la cavidad estén separadas, este estado es máximamente mixto. Vemos como el

entrelazamiento entre la cavidad y el átomo B, que están totalmente aislados, evoluciona indirectamente por medio del átomo A, y paradójicamente este queda desentrelazado del sistema para tiempos t=(k-1/2)T; $k\in\mathbb{N}$. En este punto notamos algo muy importante, y es que la entropía de von Neuman solo sirve para estados puros. Cuando t=0, la entropía del subsistema AB es 0, porque es un estado puro, y esta máximamente entrelazado. Pero al evolucionar, el subsistema AB se hace mixto, y como se observa en la linea azul, la entropía del átomo B es siempre log 2, que según la interpretación de la entropía de von Neuman es que esta siempre máximamente entrelazado. Este no es al caso, y la descripción falla porque el estado AB no es puro.

Entonces, ya que el entrelazamiento es un recurso muy importante y estudiado para las información cuántica, es necesario introducir una medida de entrelazamiento, para poder estudiarlo en este tipo de situaciones. Si bien la entropía de Von Neuman es útil en el caso de estados puros, cuando tenemos estados mixtos como se vio recién, o en el caso de tener un sistema abierto, esta medida ya no sirve. Una de las medidas mas utilizadas y con mayor aplicación es el *Entanglement of Formation* (E_F) [?], que coincide con la entropía de von Neuman para estados puros, y sirve para estados mixtos. El E_F esta definido como

$$E_F(\rho) = \inf\left(\sum_i p_i E(|\psi_i\rangle\langle\psi_i|) : \rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|\right)$$
(4.15)

Esta medida representa el entrelazamiento promedio mínimo entre todas las posibles descomposiciones puras de ρ , donde $E(|\psi_i\rangle\langle\psi_i|)=S(\operatorname{tr}_B|\psi_i\rangle\langle\psi_i|)$ es la entropía de von Neuman, que es la medida que se utiliza para estados puros. Esta definición es general, pero en el caso presente, nos sirve una simplificación de esta medida que se obtiene si se estudia el entrelazamiento entre dos qu-bits, como lo son los átomos A y B. Esta medida es la concurrencia, y esta definida como

$$C(\rho) = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\} \tag{4.16}$$

donde los λ_i son las raíces de los autovalores, en orden decreciente, de la matriz $\rho \sigma_y \otimes \sigma_y \rho^* \sigma_y \otimes \sigma_y$, donde ρ^* es el conjugado (sin transponer) de ρ . La concurrencia y la entropía de formación E_F están relacionadas, y la concurrencia obtiene su interpretación a través de esta. Un estado máximamente entrelazado tiene $C(\rho) = 1$ y un estado separable $C(\rho) = 0$.

Figura 4.6. Concurrencia en el caso resonante para estado inicial $|eg0\rangle + |ge0\rangle$

En la figura 4.6 se observa la concurrencia entre los átomos AB, para el caso estudiado anteriormente. Como era de esperar, a t=0 el estado es máximamente entrelazado, y luego el entrelazamiento se pierde a t=T/2, donde el átomo B esta entrelazada con la cavidad.

4.2.1. Interacción átomo-átomo

El siguiente paso es analizar el rol de las interacciones entre los átomos, aun manteniendo el apantallamiento $\alpha=0$. Para esto, se sigue utilizando las mismas condiciones iniciales y el átomo B seguirá sin interactuar con la cavidad, pero se considera ahora que la interacción entre átomos dadas por los parámetros k y J ahora serán distintos de cero. Para comenzar, en la figura 4.7 se observa la evolución temporal para el estado inicial $|\psi_0\rangle = |eg0\rangle$, con $\Delta=0$, J=0 pero k=0.1g. Recordemos que k es la intensidad de la interacción $\sigma_+^{(1)}\sigma_-^{(2)} + \text{c.c.}$ (ver 4.1).

Lo que sucede es que la excitación esta inicialmente en el átomo A, y como siempre, se observan oscilaciones entre los estados $|eg0\rangle$ y $|gg1\rangle$, la diferencia es que al haber interacciones entre los átomos, ahora la excitación inicial que esta en el átomo A, sufre dos procesos diferentes, primero la oscilación, y ademas, la interacción con el átomo B. Al tener la excitación el átomo A, una parte de esta se va hacia la cavidad, y la otra hacia el átomo B, excitándolo parcialmente. La amplitud de la oscilación depende de la intensidad de la interacción k. Si nos concentramos en la curva roja, vemos que su pendiente crece mientras que la probabilidad de $|eg0\rangle$ es mayor a la de $|gg1\rangle$, luego la amplitud crece, pero de manera desacelerada, hasta que la probabilidad del estado $|eg0\rangle$ es nula. En ese momento, ya no hay excitación que pasar del átomo A al B, y el proceso se revierte. Antes de analizar el entrelazamiento entre los átomos, se observa en la figura 4.8 la dinámica para los mismos parámetros, pero para la condición inicial entrelazada $|\psi_0\rangle = (|eg0\rangle + |ge0\rangle)/\sqrt{2}$: La dinámica en este caso presenta oscilaciones en la población de $|ge0\rangle$ con un periodo dos veces mas grande. Esto se debe a una \ddot{p} elea \ddot{p} el

Figura 4.7. Dinámica poblacional para la condición inicial $|\psi_0\rangle = |eg0\rangle$, para los parámetros $\Delta = 0$, J = 0 y k = 0.1g. Las lineas solidas se corresponden con las poblaciones de la matriz densidad total del sistema; en azul la probabilidad de encontrar al estado en el estado $|gq1\rangle$, en verde en $|eg0\rangle$, en rojo $|ge0\rangle$, y en negro $|gg0\rangle$. Las lineas rayadas son las coherencias entre estas poblaciones, la violeta entre $|gg1\rangle$ y $|ge0\rangle$, la celeste entre $|eg0\rangle$ y $|gg1\rangle$ y la amarilla entre $|eg0\rangle$ y $|gg1\rangle$.

Figura 4.8. Dinámica poblacional para la condición inicial $|\psi_0\rangle = |eg0+ge0\rangle$, para los parámetros $\Delta=0$, J=0 y k=0.1g. Las coherencias y poblaciones tienen los mismos colores que la figura anterior 4.7

no esta bien definido en cual de los dos átomos esta la excitación, entonces la interacción k se anula y vemos que tiene pendiente 0. Entonces la dinámica inicial es igual que para k=0 y comienza a oscilar. Apenas baja la curva verde, la probabilidad de encontrar la excitación en el átomo B es mayor que la del átomo A, entonces lo que sucede es que el átomo B comienza a perder esta excitación y se la da lentamente al átomo A, y por lo tanto la oscilación del estado $|eg0\rangle$ no llega a tener amplitud nula en t/T=0.5. Luego, la evolución sigue su curso oscilante, y al llegar a t=T, vemos que la probabilidad de encontrar la excitación en el átomo A es mayor, y por lo tanto comienza a revertirse la situación, hasta completar el ciclo para t=2T. no es exacto pq puse algo mal en el codigo, pero ahora esta corregido y da bien. tengo que cambiar estas imagenes.

El entrelazamiento entre los atomos se analiza utilizando la concurrencia, como se muestra en la figura 4.9, donde 4.9a muestra la condicion inicial separable $|eg0\rangle$, y 4.9b el

entrelazamiento para la condicion inicial entrelazada $|eg0 + ge0\rangle$.

Figura 4.9. rehacer por labels chiquitos Dinamica de entrelazamiento para $\Delta=0,\,J=0$
yk=0.1g

Ahora vamos a ver k=0 y $J\neq 0$. En la figura 4.10, vemos que, si bien la dinamica es similar, los atomos no se entrelazan.

Figura 4.10. $\Delta=0,\,J=0.5g$ y k=0

Vemos que la diferencia prinipal entre la interaccion tipo Isign $(J\sigma_z^{(1)}\sigma_z^{(2)})$ y la dipolar

 $(k\sigma_+^{(1)}\sigma_-^{(2)} + \text{c.c.})$, es que el segundo parece entrelazar los atomos, ya que en el primer caso, el efecto es separar los niveles de energia, pero en el segundo no solo eso, sino que tambien pasa excitaciones de un atomo al otro. Si bien esto nos sirve para entender intuitivamente el efecto, el problema de este analisis es que estamos asumiendo cosas no fisicas mediante el apantallamiento y la asimetria que imponemos entre los dos atomos. Esto, lleva a estos analisis que en realidad no son correctos, ya que si miramos el Hamiltoniano del sistema sin apantallamiento 4.1, donde usamos la base con estados simetricos y antisimetricos 4.3, el efecto de ambos parametros deberia ser el mismo, ya que solo aparecen en la diagonal principal. Si bien la interaccion J actua sobre todos los estados, y el k solamente solo sobre los $|egn \pm gen\rangle$, su principal funcion es separar las energias de los estados de la base. Entonces sera necesario retomar este analisis sin apantallamiento y con la base 4.3.

4.2.2. Medio Kerr

Ahora nos concentramos en el efecto del medio Kerr. Para esto, apagamos las interacciones interatomicas k = J = 0, y ahora se modifica el medio a traves del parametro χ .

Figura 4.11. Dinamica de poblaciones para x=g

Al igual que en el caso de 1 atomo, se puede observar en las ecuaciones 4.5 y 4.7, la frecuencia depende del medio. En la figura 4.11 el tiempo esta normalizado con la frecuencia, entonces no se nota el cambio. Pero lo que es necesario analizar, es como las oscilaciones no son totalmente coherentes, en el sentido de que la probabilidad del estado $|gg1\rangle$ nunca alcanza la amplitud inicial de la oscilacion, como en el caso de $\chi=0$. Esto se debe a que el aumento de χ hace que las energias de ambos estados se separen, y por lo tanto hace que las transiciones entre los estados sea menos probable. Este comportamiento tambien se observa si el estado inicial se toma como $|gg1\rangle$. Es logico estudiar el entrelazamiento en este caso. En la figura 4.12 se muestran las concurrencias para ambas condiciones iniciales. Es interesante comparar la figura 4.12b con la figura en el caso de $\chi=0$ para esta misma condicion inicial, la figura 4.6. En principio se puede pensar que el medio no lineal rompe con el entrelazamiento del sistema, pero como se ve al comparar estas figuras, la interpretacion correcta es que el medio no hace mas que alentizar el comportamiento preexistente

de la cavidad, ya que en este caso, no destruye el entrelazamiento, sino que lo conserva por virtud de haber realentizado las amplitudes de oscilacion entre los dos estados dinamicos. Tambien se puede intentar de recuperar el comportamiento visto en el modelo de 1 atomo,

Figura 4.12. Dinamica de entrelazamiento para x = g

que el medio Kerr no es mas que un desplazamiento lateral en las frecuencias, ademas de modificar las amplitudes. Para esto se realiza otra evolucion para $\chi = \Delta = \frac{g}{2}$, y se compara con el caso en que $\chi = \Delta = 0$ Vemos como se anula el efecto del medio, y la

Figura 4.13. Dinamica de entrelazamiento para x = g

dinamica es la misma pero con un cambio en la frecuencia. Al igual que antes, aumenta la frecuencia

4.2.3. Batidos

Al complejizar el problema, comienzan a aparecer batidos, comportamiento que se atribuye a la modulación de dos procesos simultaneos. Por ejemplo, si observamos la evolución temporal con $\chi \neq 0$ y $k \neq 0$, entonces el primero disminuye la amplitud de oscilación de, los estados con mayor cantidad de fotones en la cavidad, que dentro del subespació N la jerarquia del medio sera favorecer a los estados $|eg, N-1\rangle$ y $|ge, N-1\rangle$

por sobre el $|ggN\rangle$. Por el contrario, se observo que en esta situacion, el termino de interaccion entre los atomos disminuye la amplitud del estado $|ggN\rangle$ como se vio en la seccion anterior. Por lo tanto, si tenemos dos procesos que estan en juego y sus efectos son similares, entonces es esperable que se observen oscilaciones moduladas. No vale la pena mostrar la dinamica de las poblaciones, porque no se pueden sacar conclusiones muy importantes, pero si podemos observar la trayectoria en la esfera de bloch, para dar una idea de la complejidad de la evolucion.

4.3. Dinamica sin apantallamiento

Al sacar el apantallamiento, es necesario utilizar la base mencionada anteriormente 4.3, ya que los atomos son indistinguibles y esta base es mas apropiada. Ademas, el Hamiltoniano desacopla los estados antisimetricos, facilitando la solucion. Por lo tanto, se procede a estudiar la dinamica sacando el apantallamiento. Lo que nos interesa estudiar es el entrelazamiento entre las diferentes partes del sistema, y su dependencia con los parametros.

4.3.1. Dinamica con disipacion

Lo primero que hay que mirar es la dependencia de la dinamica con el regimen de acoplamiento, esperamos un comportamiento igual al del caso de un atomo 3.3.1. Recordemos que el regimen de acoplamiento fuerte (SC) es el caso en donde la interaccion entre cavidad y atomos es mayor a la interaccion entre sistema y entorno. En la figura 4.14 se muestran las coherencias y las poblaciones, como se esperaba, estas tienen el mismo comportamiento que en el caso de 1 atomo. Notablemente, se puede ver el efecto de la interaccion entre los atomos, como se separan las energias inicialmente las oscilaciones no logran la inversion total de poblacion, solo una inversion parcial, y a tiempo largos la disipacion hace que se tenga una mayor probabilidad de encontrar al sistema en el estado $|eg0+ge0\rangle$ ya que tiene menor energia. Eventualmente alcanza su estado estacionario. Lo que se recupera, ahora que ya no hay apantallamiento, es que ambos tipos de interaccion (J y k) generan entrelazamiento. Como es de esperarse, en ambos casos la concurrencia es oscilatoria por la naturaleza oscilante del problema, pero ahora, como el estado al que oscila

Nuevamente, nos concentraremos en el regimen SC. Si bien hasta ahora nos concentramos en estados con 1 excitacion, y es interesante por sus implicancias y similitudes al oedelo de 1 atomo, considerar estados con mayor cantidad de excitaciones hace a la riqueza del problema. Si solo consideranos N=1, tenemos 3 estados en el subespacio, de los cuales uno es el estado antisimetrico $|eg0-ge0\rangle$, que esta desconectado de los otros estados, y por lo tanto efectivamente se tiene un modelo de Jaynes-Cummings normal. Si vamos a N=2, ahora tenemos 4 estados en el subespacio, y 3 son relevantes. Por lo tanto, ahora veremos cuales son los efectos de las interacciones y la dinamica para estados iniciales en el subespacio de N=2. Para mantener el paralelismo, comenzaremos con el estado $|eg1+ge1\rangle$, pero como se vera, las condiciones iniciales cambian totalmente la dinamica de entrelazamiento del sistema. La enorme cantidad de posibilidades para elegir

Figura 4.14. Dependencia de las poblaciones con el regimen de acoplamiento, para $\Delta = J = \chi = 0$ y k = 0.5g, y para dos condiciones iniciales diferentes.

condiciones iniciales, hace que estudiar todos sea imposible, asi que nos concentraremos en algunos. Al tener 3 estados dinamicamente relevantes, tenemos 3 autoestados con sus respectivas autoenergias, y por lo tanto tenemos 3 frecuencias que compiten entre si, y son las 3 frecuencias de Rabi del sistema:

$$\Omega_{12}^{(n)} = E_2^{(n)} - E_1^{(n)}
\Omega_{23}^{(n)} = E_3^{(n)} - E_2^{(n)}
\Omega_{31}^{(n)} = E_1^{(n)} - E_3^{(n)}$$
(4.17)

Estas frecuencias se muestran en funcion del detunning Δ y para diferentes valores de χ en la figura 4.15.

4.4. Dinamica de entrelazamiento

Para estudiar la dinamica de entrelazamiento entre los dos atomos, nos centraremos en la concurrencia ($0 \le C_{AB} \le 1$). En primer lugar consideraremos una cavidad lineal, y finalmente veremos cual es el efecto del medio Kerr sobre el entrelazamiento.

4.4.1. Cavidad lineal

Lo primero que tenemos que analizar es los efectos de las interacciones entre los atomos, como ya vimos,

Figura 4.15. Frecuencias de Rabi en funcion del detunning Δ para diferentes valores de χ , y |k-J|=0.5g. $\Omega_{ji}^{(2)}=E_i^{(2)}-E_j^{(2)}$

Nuevamente, vamos a definir dos regimenes, que llamaremos Strong Interacting (SI) y Weak Interacting (WI), refiriendonos a la interaccion entre los atomos con respecto a la cavidad. El SI sera cuando la interaccion entre los atomos es fuerte en comparacion con la cavidad, es decir k, J > g, y WI con k, J < g.

 $1.~\mathrm{k=J=0}$; x=0 2. k=J=0 ; x=/= 0 3. GRAFICOS DE ENTRELAZAMIENTO PARA DIFERENTES PARAMETROS. PLOTS CON COLORES DEL PAPER ESE. SDE.

FASE GEOMETRICA EN JCM GENERALIZADO

5.1. FG unitaria

MOSTRAR EXPRESION ANALITICA PERO QUE NO SIRVE DE NADA PORQUE DEPENDE DEL ARGUMENTO

5.2. FG disipativa

VER SI PUEDO PONER LAS ECUACIONES DIFERENCIALES DE LOS ELE-MENTOS DE MATRIZ, Y PONER LA SOLUCION FORMAL DE AUTOVECTORES Y AUTOVALORES DE 3X3, PARA SACAR UNA EXPRESION FORMAL DE LA FG EN TERMINOS DE LOS ELEMENTOS DE matriz

- 5.2.1. Dependencia con el regimen de acoplamiento
- 5.2.2. Dependencia con el detunning
- 5.2.3. Dependencia con el medio Kerr
- 5.2.4. Dependencia con la interaccion entre atomos
- 5.2.5. Robustez

CONCLUSIONES

DERIVACION DE LAS ECUACIONES MAESTRAS

En este apendice se desarrolla la derivacion de la ecuacion de Lindblad, que es la ecuacion maestra que determina la evolucion temporal de una matriz densidad ρ , que esta en contacto con un entorno del cual no se conoce la dinamica. La dinamica en conjunto esta regida por un Hamiltoniano que formalmente puede escribirse como

$$H = H_S + H_B + H_{int} \tag{A.1}$$

donde los subindices se refieren a diferentes partes del problema. En primer lugar S se refiere al sitema de estudio, del cual se quiere encontrar la evolucion temporal, y esta en contacto con un entorno B, entonces H_B es el Hamiltoniano que rige la dinamica del entorno que en principio no conocemos. Finalmente, tenemos la interaccion entre las dos partes, dada por el hamiltoniano de interaccion H_{int} . El conjunto completo se puede pensar como un sistema cerrado, y por lo tanto su evolucion temporal esta formalmente dada por la ecuacion de Schrödinger, y su correspondiente operador de evolucion U(t) es

$$U(t) = \mathcal{T} \exp\left(-i \int_0^t dt' H(t')\right) \tag{A.2}$$

donde \mathcal{T} indica la prescripcion de ordenamiento temporal, y $U(0) = \mathbb{K}$. Si se representa el estado del sistema total con un operador densidad $\rho_{tot} = |\psi(t)\rangle\langle\psi(t)|$, entonces al aplicar la ecuacion de Schrödinger de ambos lados se obtiene que

$$\dot{\rho}_{tot}(t) = -\frac{i}{\hbar} [H(t), \rho_{tot}(t)] \tag{A.3}$$

que es la ecuacion de Louiville-Von Neumann, que describe la trayectoria en el espacio de Hilbert del operador densidad del sistema total cerrado.

Al no conocer, o no poder resolver esta ecuación por la complejidad del entorno, por ejemplo por su gran cantidad de grados de libertad,

Referencias

Tesis disponible bajo Licencia Creative Commons, Atribución – No Comercial – Compartir Igual (by-nc-sa) 2.5 Argentina Buenos Aires, 2023