Chapitre 9

Séries entières

I Séries entières de la variable complexe

I. A Séries entières, rayon de convergence

Notation: Soit $z_0 \in \mathbb{C}$ et $r \in [0; +\infty]$, on note

$$D_o(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| < r\} \text{ et } D_f(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| \leqslant r\}$$

- si $r \in]0;1[$, alors $D_o(z_0,r)$ et $D_f(z_0,r)$ sont les disques ouverts et fermés de centre z_0 et de rayon r;
- si $r = +\infty$, alors $D_o(z_0, r) = D_f(z_0, r) = \mathbb{C}$.

Définition 1.1

Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$.

La série entière de la variable complexe associée à la suite a est la série de fonctions $\sum f_n$ avec pour tout $n \in \mathbb{N}$, $f_n : \mathbb{C} \longrightarrow \mathbb{C}$, $z \mapsto a_n z^n$, on la note $\sum a_n z^n$. La somme de la série entière est la somme de la série de fonctions $\sum f_n$, c'est à dire la fonction $z \mapsto \sum_{n=0}^{+\infty} a_n z^n$.

Remarque 1.2 : Toute série entière $\sum a_n z^n$ converge au moins pour z=0, sa somme est alors a_0 .

$egin{aligned} ext{Th\'eor\`eme 1.3 (lemme d'Abel)} \end{aligned}$

Soit $\sum a_n z^n$ une série entière et $z_0 \in \mathbb{C}$.

Si la suite $(a_n z_0^n)_{n \in \mathbb{N}}$ est bornée, alors pour tout nombre complexe z tel que $|z| < |z_0|$, la série $\sum a_n z^n$ est absolument convergente.

Définition 1.4

Soit $\sum a_n z^n$ une série entière. On appelle **rayon de convergence** de la série entière :

$$R_a = \sup \{ r \in \mathbb{R}^+ \mid (a_n r^n)_{n \in \mathbb{N}} \text{ est born\'ee} \}$$

où la borne supérieure est prise dans $[0; +\infty]$.

Remarque 1.5 : L'ensemble $A = \{r \in \mathbb{R}^+ \mid (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée}\}$ est une partie de \mathbb{R} non vide puisque $0 \in A$,

- si A est majorée, alors R_a est bien défini dans $[0; +\infty[$ d'après l'axiome de la borne supérieure;
- si A n'est pas majorée, $R_a = +\infty$.

Remarque 1.6: D'après le lemme d'Abel,

si $r \in A = \{r \in \mathbb{R}^+ \mid (a_n r^n)_{n \in \mathbb{N}} \text{ est born\'ee}\}$ et $0 \le \rho \le r$, alors $\rho \in A$. Donc A est un intervalle de \mathbb{R}^+ qui contient 0, donc A = [0; R] ou A = [0; R].

Exemples 1.7 : Rayon de convergence des séries :

$$\sum n^n z^n$$
; $\sum z^n$ et $\sum \frac{z^n}{n!}$

Théorème 1.8

Soit $\sum a_n z^n$ une série entière de rayon de convergence $R \in]0; +\infty[$.

- La série $\sum a_n z^n$ converge absolument si |z| < R;
- La série $\sum a_n z^n$ diverge grossièrement si |z| > R.

On appelle disque ouvert de convergence le disque $D_o(0,R)$.

Attention : Le théorème ne dit rien si |z| = R, c'est à dire sur le cercle.

Remarque 1.9 : • Si R = 0, alors $\sum a_n z^n$ converge pour z = 0 et diverge grossièrement sinon.

• Si $R = +\infty$, alors $\sum a_n z^n$ converge absolument pour tout $z \in \mathbb{C}$.

I. B Comparaison et exemples fondamentaux

Proposition 1.10

Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence R_a et R_b respectivement.

- Si $a_n = \underset{n \to +\infty}{O} (b_n)$, alors : $R_a \geqslant R_b$.
- Si $a_n = \underset{n \to +\infty}{o}(b_n)$, alors : $R_a \geqslant R_b$.
- Si à partir d'un certain rang, $|a_n| \leq |b_n|$, alors : $R_a \geqslant R_b$.
- Si $a_n \underset{n \to +\infty}{\sim} b_n$, alors : $R_a = R_b$.

Proposition 1.11

Soit $\alpha \in \mathbb{R}$, le rayon de convergence de la série entière $\sum n^{\alpha}x^n$ est 1.

Exemples 1.12: Rayon de convergence des séries entières:

$$\sum \frac{z^n}{\sqrt{n^2+1}}; \quad \sum \frac{z^n}{n^2+1} \quad \text{et} \quad \sum \frac{z^n}{(3+(-1)^n)^n}$$

I. C Règle de d'Alembert

Exemple 1.13 : Déterminer le rayon de convergence de la série entière : $\sum \frac{n!(2n)!}{(3n)!} z^n$.

Remarque 1.14:

Soit $\sum a_n z^n$ une série entière telle que $\frac{|a_{n+1}|}{|a_n|} \xrightarrow[n \to +\infty]{} \ell \in [0; +\infty],$

alors: $R_a = \frac{1}{\ell} (R_a = 0 \text{ si } \ell = +\infty \text{ et } R_a = +\infty \text{ si } \ell = 0).$

Ce résultat est utilisable directement, mais dangereux.

II Opérations sur les séries entières

II. A Somme de deux séries entières

Théorème 2.1

Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence R_a et R_b respectivement.

Alors le rayon de convergence R_s de la série $\sum (a_n+b_n)z^n$ vérifie : $R_s \geqslant \min(R_a,R_b)$. Et pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a,R_b)$:

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) + \left(\sum_{n=0}^{+\infty} b_n z^n\right).$$

De plus, si $R_a \neq R_b$, alors $R_s = \min(R_a, R_b)$.

Exemple 2.2 : Pour $\sum z^n$ et $\sum \left(\frac{1}{n!}-1\right)z^n$, le rayon de convergence de la somme est strictement supérieur aux rayons de convergence des deux séries entières.

II. B Produit de Cauchy de deux séries entières

(Théorème 2.3)

Soit $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence R_a et R_b respectivement.

Leur produit de Cauchy:

$$\sum_{n} \left(\sum_{j=0}^{n} a_{j} b_{n-j} \right) z^{n}$$

est une série entière dont le rayon de convergence R_c vérifie : $R_c \ge \min(R_a, R_b)$ De plus, pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$:

$$\sum_{n=0}^{+\infty} \left(\sum_{j=0}^{n} a_j b_{n-j} \right) z^n = \left(\sum_{n=0}^{+\infty} a_n z^n \right) \times \left(\sum_{n=0}^{+\infty} b_n z^n \right).$$

Attention: Pour le produit de Cauchy, $R_a \neq R_b \Rightarrow R_c = \min(R_a, R_b)$.

Contre exemple 2.4 : $\sum z^n$ et (1-z)

III Étude sur le disque ouvert de convergence

Théorème 3.1

Soit $\sum a_n z^n$ une série entière de rayon de convergence R.

Alors pour tout $r \in [0; R[$, la série entière converge normalement sur $D_f(0, r)$ le disque fermé de centre 0 et de rayon r.

Corollaire 3.2

Soit $\sum a_n z^n$ une série entière de rayon de convergence R.

Alors la somme de cette série entière est continue sur le disque ouvert de convergence.

Attention : On ne peut rien dire sur la continuité en un point du cercle limite où la série converge.

IV Série entière de la variable réelle

IV. A Définition

Définition 4.1

La série entière de la variable réelle associée à la suite (réelle ou complexe) a est la série de fonctions $\sum g_n$ avec pour tout $n \in \mathbb{N}, g_n : \mathbb{R} \longrightarrow \mathbb{K}, x \mapsto a_n x^n$, on la note $\sum a_n x^n$.

Remarque 4.2 : Il s'agit simplement de la restriction à \mathbb{R} de la série entière de la variable complexe. Les résultats des parties précédentes s'appliquent donc aux séries entières de la variable réelle.

L'intervalle]-R; R[est appelé intervalle de convergence.

En particulier, si la série entière $\sum a_n z^n$ a pour rayon de convergence R, alors la série entière de la variable réelle $\sum a_n x^n$ converge normalement sur tout segment de]-R; R[et diverge grossièrement en tout $x \in \mathbb{R}$ tel que |x| > R.

Lycée Victor Hugo, Besançon 2022/2023 Chapitre 9. Séries entières 2 / 4

IV. B Théorème d'Abel radial

Théorème 4.3

Soit $\sum a_n x^n$ une série entière de la variable réelle de rayon de convergence $R \in \mathbb{R}_+^*$. Si $\sum a_n R^n$ converge, alors :

$$\sum_{n=0}^{+\infty} a_n x^n \xrightarrow[x \to R^-]{} \sum_{n=0}^{+\infty} a_n R^n.$$

Remarque 4.4: Dans ce cas, la fonction somme de la série entière de la variable réelle est continue en R.

Appliqué à la série entière de la variable complexe $\sum a_n z^n$, on en déduit que si $|z_0|=R$ et $\sum a_n z_0^n$ converge, alors la restriction de la somme S au rayon $[0\,;z_0]$ est continue en z_0 . Par contre la fonction somme S n'est pas nécessairement continue en z_0 : un voisinage relatif au disque fermé n'est pas inclus dans le rayon.

IV. C Dérivation d'une série entière

Théorème 4.5

Soit $\sum a_n x^n$ une série entière de la variable réelle de rayon de convergence R et de somme S.

Alors, la série entière $\sum na_nx^n$ a le même rayon de convergence R, S est de classe \mathcal{C}^{∞} sur]-R; R[et les dérivées successives de S s'obtiennent par dérivation termes à termes :

$$\forall x \in]-R; R[, S'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}.$$

Exemples 4.6 : 1. Calcul de $\sum_{n=1}^{+\infty} \frac{n}{2^n}$.

2. Déterminer le rayon de convergence et la somme de la série entière $\sum\limits_{n\geqslant 1}\frac{(-1)^{n+1}}{n}x^n.$

En déduire $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$.

3. Montrer que : $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$.

IV. D Expression des coefficients

Théorème 4.7

Soit $\sum a_n x^n$ une série entière de la variable réelle, de rayon de convergence R>0. Alors pour tout $n\in\mathbb{N}$:

$$a_n = \frac{S^{(n)}(0)}{n!}.$$

Corollaire 4.8

Soit $\sum a_n x^n$ et $\sum b_n x^n$ deux séries entières de la variable réelle de rayons de convergence strictement positif.

Si les fonctions sommes $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ et $x \mapsto \sum_{n=0}^{+\infty} b_n x^n$ coïncident sur un intervalle $]0; \alpha[$ avec $\alpha > 0$, alors $: \forall n \in \mathbb{N}, a_n = b_n$.

V Développement en série entière

V. A Fonctions développables en série entière

(Définition 5.1)

Une fonction f de la variable complexe définie sur le disque $D_o(0,r)$ avec r>0 est dite **développable en série entière** sur $D_o(0,r)$ lorsqu'elle est la somme d'une série entière de rayon de convergence supérieur à r:

$$\forall z \in D_o(0, r), f(z) = \sum_{n=0}^{+\infty} a_n z^n.$$

Une fonction f de la variable réelle définie sur l'intervalle]-r;r[est dite **dévelop-pable en série entière** sur]-r;r[lorsqu'elle est la somme d'une série entière de rayon de convergence supérieur à r:

$$\forall x \in]-r; r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Remarque 5.2 : Dans le cas réel, si f est développable en série entière sur]-r;r[alors elle est de classe \mathcal{C}^{∞} sur]-r;r[et la série entière est sa série de Taylor :

$$\forall x \in]-r; r[, f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

Attention : Si f est de classe C^{∞} sur]-r; r[, elle n'est pas nécessairement développable en série entière :

- sa série de Taylor peut avoir un rayon de convergence nul;
- sa série de Taylor peut converger vers une autre fonction.

Exemple 5.3: La fonction $f: x \mapsto \begin{cases} 0 & \text{si } x \leq 0; \\ e^{-\frac{1}{x}} & \text{si } x > 0 \end{cases}$ est de classe C^{∞} sur \mathbb{R} et pour tout $n \in \mathbb{N}$, $f^{(n)}(0) = 0$.

V. B Développements usuels pour la variable complexe

$$\forall z \in \mathbb{C}, \exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!} \quad (R = +\infty)$$

$$\forall z \in D_o(0,1), \frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n \text{ et } \frac{1}{1+z} = \sum_{n=0}^{+\infty} (-1)^n z^n \quad (R=1)$$

Remarque 5.4 : On en déduit que la fonction exponentielle complexe $\exp : \mathbb{C} \longrightarrow \mathbb{C}$ est continue sur \mathbb{C} .

V. C Développements usuels pour la variable réelle

1) de rayon de convergence $R = +\infty$

 $\forall x \in \mathbb{R}$:

$$\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

$$\operatorname{ch}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}; \quad \operatorname{sh}(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!};$$

$$\cos(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}; \quad \sin(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!};$$

2) de rayon de convergence R=1

$$\forall x \in]-1;1[:$$

$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n; \quad \ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}$$
$$\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n; \quad \ln(1+x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n}; \quad \operatorname{Arctan}(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}.$$
$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n$$

3) Méthodes

Pour montrer qu'une fonction de classe \mathcal{C}^{∞} sur $]-R\,;R[$ est développable en série entière, on peut :

• Utiliser l'inégalité de Taylor-Lagrange, si :

$$\forall x \in]-R; R[, \frac{|x|^n}{(n)!} \left\| f^{(n)} \right\|_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

En particulier s'il existe $M \in \mathbb{R}^+$ tel que :

$$\forall x \in]-R; R[, \forall n \in \mathbb{N}, \left|f^{(n)}(x)\right| \leqslant M.$$

Exemple 5.5 : Traiter le cas de la fonction exponentielle réelle (exercice).

• Appliquer la méthode de l'équation différentielle : montrer que f est solution d'un problème de Cauchy linéaire de la forme :

$$\begin{cases} y'(x) + a(x)y(x) = b(x), & \forall x \in]-R; R[; \\ y(0) = y_0 \end{cases}$$

dont est également solution sa série de Taylor.

Exemple 5.6: Fonction $f_{\alpha}: x \mapsto (1+x)^{\alpha}$.