CMPS 101

Homework Assignment 2

1. p.50: 3.1-1

Let f(n) and g(n) be asymptotically non-negative functions. Using the basic definition of Θ -notation, prove that $f(n) + g(n) = \Theta(\max(f(n), g(n)))$.

2. p.50: 3.1-3

Explain why the statement "The running time of algorithm A is at least $O(n^2)$ " is meaningless.

3. p. 50: 3.1-4

Determine whether the following statements are true or false.

a.
$$2^{n+1} = O(2^n)$$

b.
$$2^{2n} = O(2^n)$$

4. p.58: 3-2abcdef

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\varepsilon > 0$, and c > 1 are constants. Place 'yes' or 'no' in each of the empty cells below, and justify your answers.

	A	В	0	0	Ω	ω	Θ
a.	$\lg^k n$	n^{ε}					
b.	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2 ⁿ	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					

5. p.58: 3-4cdeh

Let f(n) and g(n) be asymptotically positive functions (i.e. f(n) > 0 and g(n) > 0 for sufficiently large n.) Prove or disprove the following statements.

- c. Assume $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n. Then f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$.
- d. f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.
- e. $f(n) = O((f(n))^2)$.
- h. $f(n) + o(f(n)) = \Theta(f(n))$.
- 6. Let $f(n) = \Theta(n)$. Prove that $\sum_{i=1}^{n} f(i) = \Theta(n^2)$. (See the hint at bottom of p.4 of the handout on asymptotic growth rates.)
- 7. The last exercise in the handout entitled *Some Common Functions*.

Use Stirling's formula to prove that $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$.