

EPREUVE SPECIFIQUE - FILIERE MP

MATHEMATIQUES 2

Durée: 4 heures

Les calculatrices sont autorisées.

* * *

NB: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Groupes d'isométries sur \mathbb{R}^n

Notations

Dans ce sujet, n est un entier naturel supérieur ou égal à 2 et on note :

- E l'espace vectoriel \mathbb{R}^n et $\mathcal{B} = (e_1, ..., e_n)$ sa base canonique
- $\langle \cdot, \cdot \rangle$ le produit scalaire **canonique** sur E: si $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ sont deux vecteurs de E, on a $\langle x, y \rangle = {}^t XY = \sum_{i=1}^n x_i y_i$ où X et Y sont les matrices colonnes des vecteurs x et y dans la base \mathcal{B} (\mathcal{B} est donc une base orthonormale pour $\langle \cdot, \cdot \rangle$)
- $\mathcal{L}(E)$ la \mathbb{R} -algèbre des endomorphismes de E
- $(GL(E), \circ)$ le groupe des automorphismes de E
- $M_{n,1}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices à n lignes et une colonne
- $M_n(\mathbb{R})$ la \mathbb{R} -algèbre des matrices carrées réelles de taille n
- $GL_n(\mathbb{R})$ le groupe des matrices inversibles de $M_n(\mathbb{R})$
- pour une matrice A de $M_n(\mathbb{R})$, 'A est sa matrice transposée
- $O_n(\mathbb{R})$ le groupe des matrices orthogonales, c'est-à-dire des matrices A de $M_n(\mathbb{R})$ vérifiant ${}^tAA = I_n$ où I_n est la matrice unité de $M_n(\mathbb{R})$

• $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies positives de $M_n(\mathbb{R})$, c'est-à-dire des matrices A de $S_n(\mathbb{R})$ vérifiant : pour toute matrice $X \in M_{n,1}(\mathbb{R})$ non nulle, 'XAX > 0.

Si $x_1, x_2, ..., x_n$ sont des réels, on note diag $(x_1, x_2, ..., x_n)$ la matrice diagonale de $M_n(\mathbb{R})$ qui admet pour coefficients diagonaux les réels $x_1, x_2, ..., x_n$ dans cet ordre.

Si p est un réel supérieur ou égal à 1, on note $\|\cdot\|_p$ la **norme** p sur E:

si
$$x = (x_1, ..., x_n) \in E$$
, $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$.

On note $\|\cdot\|_{\infty}$ la **norme infinie** sur E: si $x = (x_1, ..., x_n) \in E$, $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$.

Une norme N sur E est dite **euclidienne** s'il existe un produit scalaire φ sur E tel que pour tout $x \in E$, $N(x) = \sqrt{\varphi(x,x)}$.

Objectifs

Si N est une norme sur E, on dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est une N-isométrie si pour tout $x \in E$, N(u(x)) = N(x).

On note Isom(N) l'ensemble des N-isométries.

L'objectif du problème est de déterminer le nombre d'éléments de Isom(N) dans le cas des normes euclidiennes puis des normes p.

I. Description des normes euclidiennes

1. Identité du parallélogramme

a. Montrer que si N est une norme euclidienne alors elle vérifie l'identité du parallélogramme, c'est-à-dire pour tous vecteurs x et y de E, on a

$$(N(x+y))^2 + (N(x-y))^2 = 2[(N(x))^2 + (N(y))^2].$$

En déduire que la norme $\|\cdot\|_{\infty}$ n'est pas euclidienne.

- **b.** Justifier que la norme $\|\cdot\|_2$ est euclidienne puis montrer que pour $p \neq 2$, la norme $\|\cdot\|_p$ n'est pas euclidienne.
- 2. Soit $S \in S_n^{++}(\mathbb{R})$.

Si
$$x = (x_1, ..., x_n)$$
 et $y = (y_1, ..., y_n)$ sont deux vecteurs de E , on note $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$ les

matrices colonnes associées. Montrer que si l'on pose $\langle x, y \rangle_S = {}^t XSY$, alors $\langle \cdot, \cdot \rangle_S$ définit un produit scalaire sur E.

3. Soit φ un produit scalaire sur E et S la matrice de coefficients $(\varphi(e_i, e_j))$. Justifier que pour tous vecteurs x et y de $E \varphi(x, y) = {}^{t}XSY$ et que $S \in S_{n}^{++}(\mathbb{R})$.

On a donc montré que $\varphi = \langle \cdot, \cdot \rangle_S$.

Toute norme euclidienne peut donc s'écrire sous la forme $N_S: x \mapsto \sqrt{XSX}$ avec $S \in S_n^{++}(\mathbb{R})$ où X désigne la matrice colonne associée à x.

II. Quelques généralités et exemples

Soit *N* une norme sur *E*.

- Montrer que $(Isom(N), \circ)$ est un sous-groupe de GL(E).
- Une caractérisation géométrique des N-isométries

On note $\sum (N) = \{x \in E, N(x) = 1\}$, la sphère unité pour N.

Soit $u \in \mathcal{L}(E)$. Montrer que u est une N-isométrie si et seulement si $u(\Sigma(N)) = \Sigma(N)$.

Le groupe des N-isométries est donc l'ensemble des endomorphismes laissant stable la Nsphère unité.

Dans cette question uniquement n = 2 et donc $E = \mathbb{R}^2$.

On note s la symétrie orthogonale par rapport à la droite $D = \text{Vect}\{e_1 - e_2\}$ où (e_1, e_2) est la

base canonique de \mathbb{R}^2 et r la rotation vectorielle d'angle $\frac{\pi}{3}$.

Les endomorphismes s et r sont-ils des $\|\cdot\|_1$ -isométries ?

Dans cette question uniquement n = 3 et donc $E = \mathbb{R}^3$.

Si $(x, y, z) \in \mathbb{R}^3$, on pose $q(x, y, z) = 3x^2 + 2y^2 + 3z^2 - 2xz$, ce qui définit une forme

quadratique q.

a. On note $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, déterminer une matrice symétrique $S \in M_3(\mathbb{R})$, telle que $q(x, y, z) = {}^{t}XSX$.

b. Déterminer une matrice $P \in O_3(\mathbb{R})$ et une matrice diagonale $D \in M_3(\mathbb{R})$ telles que $S = PD^{\prime}P$.

- c. Justifier alors que l'application $N_q:(x,y,z)\mapsto \sqrt{q(x,y,z)}$ est une norme euclidienne sur
- d. Déterminer la nature géométrique de la quadrique $\sum (N_q)$, la sphère unité pour la norme N_q et en donner une équation simple dans une nouvelle base.
- e. Justifier que $\sum (N_q)$ est une surface de révolution, préciser un vecteur qui dirige son axe.
- f. Déduire de la question 5, par une considération géométrique, que Isom (N_q) a une infinité d'éléments.

III. Étude de Isom(N) lorsque N est une norme euclidienne

Si $u \in \mathcal{L}(E)$, on note $[u]_{\mathcal{B}}$ la matrice de u dans la base \mathcal{B} .

Si N est une norme, on note $ISOM(N) = \{[u]_{\mathcal{B}}, u \in Isom(N)\}$. L'ensemble ISOM(N) est par construction un groupe isomorphe à Isom(N), c'est « sa version matricielle ».

8. Caractérisation matricielle des isométries euclidiennes

a. Soit $S \in S_n^{++}(\mathbb{R})$, N_S la norme euclidienne associée et $\langle \cdot, \cdot \rangle_S$ le produit scalaire associé. Soit $u \in \mathcal{L}(E)$.

Montrer que u est une N_S -isométrie si et seulement si pour tous vecteurs x et y de E, on a $\langle u(x), u(y) \rangle_S = \langle x, y \rangle_S$.

- **b.** En déduire que u est une N_s -isométrie si et seulement si sa matrice A dans \mathcal{B} vérifie ${}^tASA = S$.
- 9. Reconnaître alors $ISOM(\|\cdot\|_2)$. Que peut-on dire du nombre d'éléments de $ISOM(\|\cdot\|_2)$? Justifier votre réponse.

10. Une application des polynômes interpolateurs

 $\mathbb{R}_r[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à r.

On se donne r+1 réels $x_0 < x_1 < ... < x_r$.

On considère l'application linéaire u de $\mathbb{R}_r[X]$ vers \mathbb{R}^{r+1} définie par

$$P \mapsto (P(x_0), P(x_1), ..., P(x_r)).$$

- a. Déterminer le noyau de u. En déduire que pour tous réels $y_0, y_1, ..., y_r$, il existe un unique polynôme L de $\mathbb{R}_r[X]$ tel que pour tout $i \in \{0, ..., r\}$, $L(x_i) = y_i$ (un tel polynôme est appelé polynôme interpolateur).
- **b.** Application: soit n un entier naturel non nul et $u_1,...,u_n$ des réels strictement positifs, on pose $U = \operatorname{diag}(u_1,...,u_n)$ et $V = \operatorname{diag}(\sqrt{u_1},...,\sqrt{u_n})$. Montrer qu'il existe un polynôme L, à coefficients réels, tel que V = L(U).

11. Racine carrée dans $S_n^{++}(\mathbb{R})$

- a. Soit $S \in S_n^{++}(\mathbb{R})$. Déterminer une matrice $A \in S_n^{++}(\mathbb{R})$ telle que $A^2 = S$. On dit que A est une racine carrée de S.
- **b.** Soit $B \in S_n^{++}(\mathbb{R})$ une autre racine carrée de S. Montrer qu'il existe un polynôme Q, à coefficients réels, tel que A = Q(B). En déduire que A et B commutent.
- c. Montrer que la somme de deux matrices symétriques définies positives est une matrice inversible.
- **d.** Déduire des questions précédentes que A = B (on pourra calculer (A + B)(A B)).

Désormais, on note \sqrt{S} l'unique racine carrée dans $S_n^{++}(\mathbb{R})$ de S.

12. Étude du groupe d'isométrie pour une norme euclidienne

Soit N une norme euclidienne. Il existe donc une matrice $S \in S_n^{++}(\mathbb{R})$ telle que pour tout $x \in E$, $N(x) = N_S(x) = \sqrt{XSX}$ où X est le vecteur colonne associée à x.

- a. Montrer que si $M \in O_n(\mathbb{R})$, la matrice $(\sqrt{S})^{-1}M\sqrt{S}$ appartient à ISOM (N_S) .
- **b.** Montrer que l'application ψ de $O_n(\mathbb{R})$ dans $\mathrm{ISOM}(N_S)$ définie par $M \mapsto \left(\sqrt{S}\right)^{-1} M \sqrt{S}$ est une bijection.

Le groupe d'isométrie d'une norme euclidienne est-il fini?

IV. Étude du cardinal de Isom(p)

Dans cette partie p est un réel strictement supérieur à 1, on appelle exposant conjugué de p l'unique réel q tel que $\frac{1}{p} + \frac{1}{q} = 1$.

Pour alléger l'écriture, une **p-isométrie** désigne une isométrie pour la norme $\|\cdot\|_p$ et on note $\|\cdot\|_p$ le groupe des **p-isométries**.

Si $u \in \mathcal{L}(E)$, u^* désigne l'**adjoint** de u pour $\langle \cdot, \cdot \rangle$. On rappelle que $u^* \in \mathcal{L}(E)$, est caractérisé par l'égalité suivante : pour tout $(x, y) \in E^2$, $\langle u(x), y \rangle = \langle x, u^*(y) \rangle$.

13. Endomorphismes de permutation signée

 \mathcal{P}_n désigne le groupe des permutations de l'ensemble $\{1, 2, ..., n\}$.

Soit $\sigma \in \mathcal{P}_n$ et $\varepsilon = (\varepsilon_1, ..., \varepsilon_n) \in \{-1, +1\}^n$. On note $u_{\sigma, \varepsilon}$ l'endomorphisme de E qui vérifie pour tout $i \in \{1, 2, ..., n\}$, $u_{\sigma, \varepsilon}(e_i) = \varepsilon_i e_{\sigma(i)}$.

- a. Montrer que $u_{\sigma,\varepsilon}$ est une p-isométrie.
- **b.** Écrire la matrice de $u_{\sigma,\varepsilon}$ dans la base canonique dans le cas où n=4, $\sigma=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ et $\varepsilon=(1,1,-1,1)$.

14. Inégalité de Holdër

- a. Montrer que pour tous réels a et b positifs ou nuls, on a $ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$. On pourra utiliser la fonction logarithme népérien.
- **b.** En déduire que pour tous vecteurs x et y de E, on a $|\langle x, y \rangle| \le ||x||_p ||y||_q$. Ce résultat s'appelle **l'inégalité de Holdër (**on pourra d'abord démontrer l'inégalité lorsque $||x||_p = ||y||_q = 1$).
- c. Que devient l'inégalité si p = 2?

Dans toute la suite, u désigne une p-isométrie. On note $\left(a_{ij}\right)$ les coefficients de la matrice $A = \left[u\right]_{B}$.

15. Montrer que pour tout
$$j \in \{1, 2, ..., n\}$$
, $\sum_{i=1}^{n} \left| a_{ij} \right|^{p} = 1$. En déduire la valeur de $\sum_{j=1}^{n} \sum_{i=1}^{n} \left| a_{ij} \right|^{p}$.

16. Une formule clé de dualité

Soit
$$x \in E$$
. On note $\Sigma_q = \{z \in E, ||z||_q = 1\}$.

- **a.** Justifier l'existence du réel $\max_{y \in \Sigma_q} |\langle x, y \rangle|$.
- **b.** Justifier que $\max_{y \in \Sigma_n} |\langle x, y \rangle| \le ||x||_p$.

Soit
$$i \in \{1, 2, ..., n\}$$
; si $x_i \neq 0$, on pose $y_i = \varepsilon_i |x_i|^{p-1} ||x||_p^{1-p}$ où ε_i désigne le signe de x_i et si $x_i = 0$, on pose $y_i = 0$. On définit ainsi un vecteur $y = (y_1, ..., y_n)$.

Montrer que
$$|\langle x, y \rangle| = ||x||_p$$
 puis montrer l'égalité suivante : $||x||_p = \max_{y \in \Sigma_a} |\langle x, y \rangle|$.

- 17. En déduire que si u est une p-isométrie, u^* est une q-isométrie. Donner alors, en justifiant, la valeur de $\sum_{i=1}^{n} \sum_{j=1}^{n} \left| a_{ji} \right|^{q}$.
- 18. On suppose de plus que $p \neq 2$.
 - **a.** Soient $\alpha_1, \alpha_2, ..., \alpha_r$ des réels dans [0,1] vérifiant $\sum_{k=1}^r \alpha_k^p = \sum_{k=1}^r \alpha_k^q$. Montrer avec soin que pour tout $k \in \{1, 2, ..., r\}$, α_k ne prend qu'un nombre fini de valeurs à déterminer.
 - **b.** En déduire que pour tout i et j dans $\{1,2,...,n\}$, $\left|a_{ij}\right|$ ne peut prendre que 2 valeurs différentes que l'on précisera (on rappelle que les a_{ij} sont les coefficients de la matrice d'une p-isométrie).

19. Conclusion

Montrer alors que lorsque $p \neq 2$, Isom(p) est un groupe fini dont on déterminera le cardinal. On remarquera en particulier que ce cardinal est indépendant de p.

Commentaire: Les *p*-isométries pour $p \neq 2$ sont seulement en nombre fini, contrairement aux isométries euclidiennes qui forment un groupe infini mais compact (pas très difficile à montrer). Sur \mathbb{R}^n , la géométrie euclidienne est donc plus riche que celle des normes p pour $p \neq 2$.

Fin de l'énoncé