Examen Session 2

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. On rappelle le théorème de Cayley-Hamilton : Pour le polynôme caractéristique d'une matrice A, si on substitue λ par la matrice A, on obtient une expression matricielle ("un polynôme en A") qui est la matrice des zéros.

Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

1. Calculer le polynôme caractéristique $\lambda \mapsto P(\lambda)$ de A.

$$P(\lambda) = \lambda^2 - 5\lambda - 2.$$

2. En déduire une expression de A^{-1} en fonction de A et I (matrice identité).

On a
$$A^2 - 5A = 2I$$
 qui donne $A \frac{A - 5I}{2} = \frac{A - 5I}{2}A = I$ et $A^{-1} = \frac{A - 5I}{2}$.

Exercice 2. Diagonaliser la matrice $B = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$.

Exercice 3. Soit $n = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$ un vecteur de \mathbb{R}^3 qui satisfait la condition

$$n^t n = 1, (1)$$

où $n^t = \begin{pmatrix} n_1 & n_2 & n_3 \end{pmatrix}$ est le vecteur ligne, transposé de n. On pose alors

$$R_n = \begin{pmatrix} 2n_1^2 - 1 & 2n_1n_2 & 2n_1n_3 \\ 2n_1n_2 & 2n_2^2 - 1 & 2n_2n_3 \\ 2n_1n_3 & 2n_2n_3 & 2n_3^2 - 1 \end{pmatrix}.$$

1. Que signifie la condition (??)?

On a $n^t n = \langle n, n \rangle = 1$ et le vecteur n est de norme 1 (unitaire).

2. Exprimer R_n en fonction de n, n^t et I (matrice identité)

On a
$$R_n = 2nn^t - I$$
.

3. Calculer alors $R_n R_n^t$ et en déduire R_n^{-1} . Indication : On peut utiliser la question 2 pour éviter les calculs.

On a
$$R_n R_n^t = (2nn^t - I)(2nn^t - I) = 4nn^t - 2nn^t - 2nn^t + I = I$$
. Autrement dit, on a $R_n^{-1} = R_n^t = R_n$.

4. Montrer que n est un vecteur propre de R_n dont on donnera la valeur propre associée. Indication : On peut utiliser la question 2 pour éviter les calculs.

On a $R_n n = 2nn^t n - n = n(2-1) = n$. Autrement dit, n est vecteur propre de valeur propre 1.

- 5. Soit $q = \binom{n_2}{-n_1} \frac{1}{\sqrt{n_1^2 + n_2^2}}$. Montrer que q est un vecteur propre de R_n dont on donnera la valeur propre associée. Indication : On peut utiliser la question 2 pour éviter les calculs On a $R_n q = 2nn^t q q = -q$. Autrement dit, n est vecteur propre de valeur propre -1.
- 6. Trouver un vecteur $p \in \mathbb{R}^3$ tel que la famille (n, q, p) forme une base orthonormal de \mathbb{R}^3 . On peut utiliser le produit vectoriel qui donne

$$p = n \wedge q = \begin{pmatrix} n_1 n_3 \\ n_2 n_3 \\ -n_1^2 - n_2^2 \end{pmatrix} \frac{1}{\sqrt{n_1^2 + n_2^2}}$$

qui est bien de norme 1.

7. Montrer que p est un vecteur propre de R_n dont on donnera la valeur propre associée. Indication : On peut utiliser la question 2 pour éviter les calculs

On a $R_n p = nn^t p - p = -p$ et p est un vecteur propre de valeur propre -1.

8. De quelle transformation linéaire de \mathbb{R}^3 bien connue, R_n est-elle la matrice? Justifier. C'est une rotation d'axe Vect(n) et d'angle π . Ou de manière équivalente une symétrie axiale d'axe Vect(n).

Exercice 4. Soit A une matrice carrée à coefficients réels. Si A est inversible, est-ce que A^t est inversible? Si oui, quel est son inverse? Justifier.