الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبه: رياضيات و تقني رياضي دورة : جوان 2014

العلامة		
المجموع	مجزأة	عناصر الإجابة (الموضوع الاختياري الأول)
0,75	3X0,25	$(aq) = Ca^{2}$ عادلة الثقاعل : (aq) $(aq) = Ca^{2}$ عادلة الثقاعل : $(aq) + CO_{2(q)} + 3H_{2}O_{(q)}$ عادلة الثقاء : $(aq) + CO_{2$
0,50	2 X (),25	$\begin{bmatrix} H_3O^+ \end{bmatrix} = c - \frac{2V_{CC2}}{V \cdot V_m} : \frac{1}{2} $ $: c - \frac{2V_{CC2}}{V \cdot V_m} : \frac{1}{2} $ $: c - \frac{2V_{CC2}}{V \cdot V_m} : \frac{1}{2} $ $: c - \frac{1}{2} $ $= c - \frac{2V_{CC2}}{V \cdot V_m} : \frac{1}{2} $ $= c - \frac{2V_{CC2}}{V} $ $= c - \frac{2V_{CC2}}{V \cdot V_m} \rightarrow \left[H_3O^+ \right] = c - \frac{2V_{CC2}}{V \cdot V_m} $ $: c - \frac{1}{2} $ $= c - \frac{1}{2} $ $: c - \frac{1}{2} $
	0,25	$\left[H_3O^{\scriptscriptstyle\dag}\right]=a.V_{CO2}+b$: لدينا بيانيا $\left[H_3O^{\scriptscriptstyle\dag}\right]=-rac{2}{V.V_m}V_{CO2}+c$: لدينا نظريا $\left[H_3O^{\scriptscriptstyle\dag}\right]=-rac{2}{V.V_m}V_{CO2}+c$
1	0,25	$c=b=10mmol.L^{-1}$: بالمطابقة نجد V : V
	0,25	$V=1L$: ومنه $V=1L$: ومنه $X_f=5 imes 10^{-3}$ $V=1L$: $X_f=5 imes 10^{-3}$ $V=1L$: $V=$
	0,25	ممثلة بـــ $5cm$ ممثلة بـــ $1cm ightarrow 2mmol.L^{-1}$

		t-80s : السرعة الحجمية لما
		$v_{VCL_{(50,s)}} = \frac{1}{V} \frac{dx}{dt}_{(80,s)} = -\frac{1}{2} \frac{d \left[H_3 O^+ \right]}{dt}_{(80,s)} = 0,015 \text{ mmol. } L^+.s^+$
	2X0,25	$V dt_{(80s)} = V dt_{(80s)} = 2 dt$
	270,23	نَقَبِل في المجال: (0,014-0,016)
		جــ – تحديد زمن نصف التفاعل :
		$x(t_{y_0}) = \frac{X_T}{2} \Rightarrow \left[H_3 O^+ \right]_{t_{1/2}} = \frac{\left[H_3 O^+ \right]_0}{2} = 5 mmol. L^{-1}.s^{-1}$
1,25		
	0,25	بإسقاط هذه القيمة على البيان -2 نجد : $56s=1$ تقبل القيم ($50s60s$)
		أهميته: - المقارنة بين تفاعلين من ناحية السرعة
		$-$ تحديد القيمة التقريبية لمدة التفاعل (من $t_{y_{j}} = 1$ إلى $t_{y_{j}} = 1$
	0,25	
		التمرين الثاني: (2,75 نقاط)
0,5	0,25	$^{210}_{83}Bi ightarrow \ ^2_ZX \ + \ ^0_1c \ + \ \gamma$. معادلة التفكك -1
0,3	0,25	بتطبيق قوانين الإنحفاظ نجد :
	0,23	$ \begin{array}{c} 210 = A + 0 \Rightarrow A = 210 \\ 83 = Z - 1 \Rightarrow Z = 84 \end{array} $ $\Rightarrow \begin{array}{c} \stackrel{210}{\Rightarrow} Po \\ \stackrel{210}{\Rightarrow} Po $
		$83=Z-1 \Rightarrow Z=84$
		$^{210}_{83}Bi ightarrow ^{210}_{84}Po + ^{0}_{-1}c + \gamma$
		$n o rac{1}{0} n o rac{1}{1} p + rac{0}{1} e$. مصدر الإلكترون هو تحول نترون إلى بروبتون وفق المعادلة $p o rac{1}{1} p + rac{0}{1} e$
		-2 عبارة عدد الأنوية المتفككة عند لحظة \pm .
	0,5	$N_d = N_0 - N(t) = N_0 - N_0 e^{-\lambda t}$
0.5		$N_d=N_0\left(1-e^{-\lambda t} ight)$
0,5	0,25	3 / أ- تعريف النشاط الإشعاعي : هو عدد التفككات التي تحدث في الثانية الواحدة
	0,25	Bq . ويقاس بوحدة البكريك Bq .
		. $\ln A(t)$ ب $-$ جبارہ $\Delta(t)=A_0c^{-\lambda t}$ $\Rightarrow \ln A(t)=\ln A_0-\lambda t$
	0,5	$A_0 = \lambda N_0 \Rightarrow \ln A(t) = -\lambda t + \ln (\lambda N_0)$
		جــ – قيمهٔ بمرو
		$\ln A(t) = at + b$. العبارة البيانية : البيان خط مستقيم لا يمر من المبدأ معادلته
1.75	0,25	$a=rac{\Delta \ln A}{\Delta t}$ =-0,1388 و $\ln A(0)=25=b$: عند $t=0$
1,75	' -	Δt = 0,1000 g m/1(0)=25=b . Δt
	0,25	$\ln A(t) = -0.1388t + 25$
	0,25	λ بمطابقة العلاقة النظرية مع العلاقة البيانية نجد : $\int_{0.1388}^{1} (1.388) dt$
	0,23	$\ln A_0 = b \Rightarrow A_0 = c^b = c^{25} \Rightarrow A_0 = 7,20 \times 10^{10} Bq$

		التمرين الثالث: (03 نقطة)
		$u_{_{K}}+u_{_{O}}=0$: المعادلة التقاصلية : بتطبيق قانون جمع التوتر ات فإن $=1/{ m I}$
	2X0,25	$u_{C} = \frac{q}{C} / u_{R} = R i ; i = \frac{dq}{dt} \Rightarrow u_{R} = R \frac{dq}{dt}$ $q \qquad q \qquad dq \qquad q \qquad dq \qquad 1 \qquad \dots$
		$rac{q}{C} + Rrac{dq}{dt} = 0 \Rightarrow rac{dq}{dt} + rac{q}{RC} = 0 \Rightarrow rac{dq}{dt} = -rac{1}{RC}q$ (نان
0,75	0,25	بالمطابقة مع المعادلة المعطاة نجد أن : $lpha=rac{1}{RC}$ و المعادلة محققة
		$Q_0 = C u_{C_{\mathrm{inst}}} = C E$: (كمية الشحنة الأعظمية $Q_0 : \square$ العبارة الحرفية ا $Q_0 : \square$
0,25	0,25	$Q_0 = 470.10^{-9} \times 6 = 2.82.10^{-6} c$
		3 - العبارة الحرفية لشدة النيار الكهربائي :
		$I(t) = \frac{dq}{dt} = \frac{d}{dt} \left(Q_0 e^{-\alpha t} \right) = -\alpha Q_0 e^{-\alpha t}$
0,5	0,5	$I(t) = -\frac{CE}{RC}e^{-\alpha t} = -I_0 e^{-\frac{t}{RC}}$
		نحسب أو لا قيمة u_arphi عند هذه اللحظة t_1 : نحسب أو لا قيمة u_arphi عند هذه اللحظة.
	0,25	$u_c = 6 \times \frac{36.8}{100} = 2.2V$
		t_1 =0,2 $ imes$ 4=0,8 s : من أجل هذه القيمة نجد من البيان
		ب – قیمهٔ ثابت الزمن z : من البیان و من أجل
0,75	0,25	$u_{c} = 0.37 E = 0.37 \times 6 = 2.22V$
		au=0.8s $(0.75s-0.85s)$ تقبل في المجال (0.75 $s-0.85s$
	0,25	$ au = RC \Rightarrow R = \frac{ au}{C} = \frac{0.8}{470.10^{-9}} = 1.7 \times 10^6 \Omega$: R جــ – استناح قیمهٔ
0,25	0,25	$N=rac{t}{t_1}=rac{60}{0.8}=75$: خساب عدد التقلصات القلبية في الدقيقة -2
		$E_{_{1tb}}=E_{_{m 0}}-E_{_{m r}}$: خساب الطاقة المحررة من المكثقة -3
		(الطاقة المحررة) ، $E_{_0}$ ، (الطاقة الابتدائية) ، $E_{_{tb}}$ المتبقية) (الطاقة المتبقية) $E_{_{tb}}$
0,5	2X0,25	$E_{yt} = \frac{1}{2}CE^2 - \frac{1}{2}Cu_C^2 = \frac{1}{2}C(E^2 - u_C^2)$
		$E_{q_L} \frac{1}{2}.470 \times 10^{-9} (6^2 - 2, 2^2) = 7.32.10^{-6} J$

		التمرين الرابع: (3،5 نقطة)
		1- أ- يمثل مركز الأرض إحدى محرفي المدار الاهليليجي ﴿ * أَ *
0,75	0,25	V^{F} بر تمثیل القوة في وضع كيفي: في أي وضع \overline{T} متجه V^{A} منجه
·	0,25	نحو مركز الأرض .
	0.35	
	0,25	2- أ- شدة قوة جذب الأرض:
	0,5	$F=G.rac{M_T.m_s}{(R_T+h)^2}$: من قانون الجذب العام
0,75		$ec{F}$ دُن شدهٔ $ec{F}$ عُابِنَهٔ،
		\dot{r} ب \dot{r} شدهٔ \dot{r} المناف \dot{r}
	0.25	$F = G \frac{m_s M_T}{m_s M_T} = 6.67 \times 10^{-11} \frac{6 \times 10^{24} \times 130}{m_s M_T} = 1003.5 \text{ M}$
	0,25	$F = G \cdot \frac{m_s \cdot M_T}{(R_T + h)^2} = 6,67 \times 10^{-11} \cdot \frac{6 \times 10^{24} \times 130}{\left((6400 + 800) \times 10^3 \right)^2} = 1003,5N$
		3- أ- خصائص القمر الاصطناعي الجيومستقر:
		$T_{S} = T_{T} = 24h$ خوره =
1,5	0,5	- يدور في نفس جهة دوران الأرض.
		 مساره يقع في مستوي خط الاستواء.
		$:T_{\mathcal{S}}$ - \downarrow - \downarrow
		$\sum_{c} \vec{F}_{cxt} = m.\vec{a}$
	0,5	$F = m.a_n = m.\frac{v^2}{r} = m\frac{v^2}{(R_T + h)}$
		$v = \sqrt{\frac{CM_T}{R_T + h}} \cdot T_s = \frac{2\pi(R + h)}{v}$
		$T_s = 2\pi \sqrt{\frac{(R_\tau + h)^3}{G.M_T}} = 6064.8s = 1.68h$
	0,25	بما أن: $T_{c} eq T_{c}$ فهو غير مستقر
	0,25	$v_{_S}=7455,42m/s$: (S) ج- سرعة
		$T^2=4\pi^2.rac{(R_T+z)^3}{GM_T}$: $z=4$ ایجاد الارتفاع $z=4$
0,5	0,5	$z = 35911,8Km$ ومنه $z = \left(\frac{C.M_T.T^2}{4\pi^2}\right)^{\frac{1}{3}} - R_T = 35911825,2m$

_			
	1,75	2 X (),25	$a_1 = \frac{g}{2} (1 - \sin \alpha) - \frac{f}{2m_1} \Rightarrow \frac{dv}{dt} = \frac{g}{2} (1 - \sin \alpha) - \frac{f}{2m_1}$ (قبل كل الطرق الصحيحة) : \vec{T} ; \vec{f} منده كل من \vec{T} ; \vec{f} منده كل من \vec{T} ; \vec{f} منده كل من \vec{T} ; \vec{T} ; \vec{T} بالمرق الصحيحة $a_1 = a - \frac{f}{2m_1} \Rightarrow f = 2m_1 (a - a_1)$ $f = 2 \times 0, 4 (2, 5 - 1, 6) = 0, 72 N$ $m_1 g - T_2 = m_1 a_1 \Rightarrow T_2 = m_1 (g - a_1) = 0, 4 (10 - 1, 6) = 3, 36 N$ و لدينا : $a_1 = a - \frac{f}{2m_1} \Rightarrow a_2 = a - \frac{f}{2m_1} \Rightarrow a_3 = a - \frac{f}{2m_1} \Rightarrow a_4 = a - \frac{f}{2m_1} \Rightarrow a_5 = a_5 = a_5 = a - \frac{f}{2m_1} \Rightarrow a_5 = a_5 $
	1,25	3X0,25	التمرين التجريبي: (3.75 نقطة) الأ- البروتوكول التجريبي : - نملاً سحاحة بمحلول لحمض كلور الماء ونضبط مستوى المحلول عند التنريجة صغر (0). - نسحب باستعمال ماصة عبارية حجما V من محلول النشادر ونضعه في بيشر الذي يوضع بدوره فوق مخلاط معناطيسي. - نعابر الـ ph متر باستعمال محلولين موقيين مختلفين على الأقل لهما ph معلوم. - نغسل جيدا مسرى جهاز ph متر بالماء المقطر ونجففه. ثم نغمره بحذر في البيشر الذي يحتوى على محلول النشادر (يغمر شاقوليا دون لمس القضيب المغناطيسي) - نشغل المخلاط المختاطيسي ونبدأ في إضافة المحلول الحمضي من السحاحة في البيشر انقين قيمة الـ ph بالنسبة لكل حجم مضاف و النتائج المحصل عليها تدون في حدول وتسمح برسم المنحني (مورد) الهيدروجين محلول النشادر حين محلول النشادر وجين محلول التقادر الهيدروجين محلول النشادر حين المحلول التقدم:
		2X0,25	$NH_{3(ng)} + H_3O^+_{(ng)} = NH^+_{4(ng)} + H_2O_{(i)}$ معادلة التفاعل (mol) التقدم الحالة $t - O$ $\mathbf{x} = 0$ $n_k = c_k V_b$ $n_a = c_a V_a$ 0 بزیاده $t > O$ $\mathbf{x} > 0$ $c_b V_b - \mathbf{x}$ $c_n V_n - \mathbf{x}$ \mathbf{x} $t \propto \mathbf{x}_i$ $c_b V_b - \mathbf{x}_f$ $c_a V_a - \mathbf{x}_f$ \mathbf{x}_f

0.25	2/ أ- إحداثيا نقطة التكافئ : من البيان و باستعمال طريقة المماسين نجد :
0.35	
0,25	$E(V_E = 14, 4mL, pH_E = 5, 8)$
	ب-حساب التركيز الإبندائي للأساس:
0,25	$c_{t} imes V_{b} = c_{z} imes V_{sE} \Rightarrow c_{t} = rac{c_{s} imes V_{sE}}{V_{s}} \Rightarrow c_{t} = 0.0108 mot. L^{-1}$ عند النكافق
0,25	$pH=pKa$ يبانيا : عند نقطة نصف التكافق $pKa=pKa$ يبانيا : عند نقطة نصف $V_{\frac{1}{2}N_g}=rac{V_{\delta q}}{2}=7,2mL$ حيث: $V_{\frac{1}{2}N_g}=rac{V_{\delta q}}{2}=7,2mL$.
0,25	$K = Q_{rr} = \frac{\left[NH_4^+\right]_r}{\left[H_3O^+\right]_r \cdot \left[NH_3\right]_r} = \frac{1}{Ka} = 10^{Fin} = 1,58 \times 10^9$: حساب ثابت النوازن $K = 1,58 \times 10^9$
0,25	$pH=9$ من البيان نجد $V=9\mathrm{mI}$: عند إضافة : $V=9\mathrm{mI}$ من البيان نجد : $\frac{\left[N\!H_3\right]_f}{\left[N\!H_4^+\right]_f}$
2X0,25	$pH = pKa + log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}^{+}\right]_{f}} \Rightarrow log \frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}^{-}\right]_{f}} = pH - pKa \Rightarrow \frac{\left[NH_{3}\right]_{f}}{\left[NH_{4}^{+}\right]_{f}} = 10^{pH - pKa}$ $\frac{\left[NII_{3}\right]_{f}}{\left[NII_{4}^{+}\right]_{f}} = 0,63$
0,25	Y_{b} وريا الكيمياني) Y_{b} وريا الكيمياني) Y_{b} وريا الكيمياني) بالاعتماد على جدول النقدم لدينا: $ \frac{[NH_{3}]_{f}}{[NH_{4}^{+}]_{f}} = \frac{c_{b} \times V_{b} - X_{f}}{X_{f}} $ عنه نجد $V_{b} = \frac{NH_{4}^{+}}{V_{f}} = \frac{X_{f}}{V_{f}}$ ومنه نجد $ \frac{[NH_{4}^{+}]_{f}}{[NH_{4}^{+}]_{f}} = \frac{c_{b} \times V_{b} - X_{f}}{X_{f}} $ $\tau_{f} = \frac{X_{f}}{X_{max}}$: τ_{f} النقدم النهائي وحسب حساب نسبة النقدم النهائي أن المتفاعل المحد هو الحمض المضاف وحسب حساب المضاف وحسب المضاف وحسب على أن المتفاعل المحد هو الحمض المضاف وحسب
2X0,25	$c_a V_a - x_{\max} = 0 \Rightarrow x_{\max} = c_a V_a = 0.135 \times 10^{-3} mol$: يعريف النقدم الأعظمي : $\frac{c_b \times V_b - x_f}{x_f} = 0.63 \Rightarrow x_f = \frac{c_b \times V_b}{1.63} \Rightarrow x_f = 0.1325 \times 10^{-3} mol$: x_f حساب x_f حساب x_f : x_f نستنج أن النقاعل شبه نام.
	0,25 0,25 2X0,25

		عناصر الإجابة (الموضوع الاختياري الثاني)			
		التمرين الأول: (3,5 نقطة)			
	2X0,25	$H_2O_{2(g)}+2H_2O_{(\ell)}=O_{2(g)}+2H_3O_{(g)}^++2e^-$ المعادلتان النصفيتان. النصفيتان .			
		$Cr_2O_{\ell(aq)}^{2-} + 14 H_3O_{(aq)}^+ + 6c^- = 2Cr_{(aq)}^{3+} + 21H_2O_{(\ell)}$			
	0,25	$H_{3}O_{(m)}$ ب $-$ لا يمكن اعتبار حمض الكبريث كوسيط لأنه يشارك في التفاعل بالشاردة			
1	0,25	V_z لأن كمية الماء و قطع الجليد لا تؤثر في قيمة V_z لأن كمية الماء الأكسجيني			
		لا تتغير (التكافؤ يتعلق بكمية المادة وليس التركيز). $H_{\nu}O_{2(m)}$			
		. عبارة النركيز المولي $[H_2O_2]$ عند نقطة النكافؤ -2			
		جدول النقدم: (پمكن عدم استعماله)			
		المعادلة $3 II_2 O_{2(aq)} + C r_2 O_{7(aq)}^{2-} + 8 II_3 O_{(aq)}^{-} = 3 O_{2(g)} + 2 C r_{(aq)}^3 + 15 II_2 O_{(t)}$			
		$t=0$ ابوفرة n_1 ابوفرة n_2 الوفرة 0 الوفرة n_2			
		t n_1-3x n_2-x بوفرهٔ $3x$ $2x$ $2x$			
		$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
0,5		عند نقطة التكافق المزيج ستكيومتري .			
	2X0,25	$\frac{n_1}{3} = \frac{n_2}{1} \implies \frac{[H_2 O_2] \cdot V_0}{3} = c \cdot V_{\mathbb{Z}} \implies [H_2 O_2] = \frac{3c V_{\mathbb{Z}}}{V_0}$			
		3 – صحة المعلومات المكتوبة على القارورة .			
		$V_{E0}=6,2 imes4ml=24,8ml$. الدينا $t=0$ من البيان : عند H_2O_2 من البيان : عند			
		$\left[H_2O_2\right]_0 = rac{3 imes 0.1 imes 24.8 imes 10^{-3}}{10 imes 10^{-3}} = 0.744\ mol/L$: بالنَعويض في العبارة السابقة نجد			
		- حساب التركيز من المعلومات المكتوبة:			
		$\left[H_2O_2 ight]_0=rac{n}{V}$ / $V{=}1L$. جدول النقدم للتفكك الذاتي للماء الأكسجيني			
		المعادلة $2 H_{2} O_{2(ag)} = O_{2(g)} + 2 H_{2} O_{(t)}$			
0,5	2X0,25	بوفرة 0 م - إ سوفرة n			
		$n-2x_{\max}$ x_{\max} $y=0$ وقرة $y=0$ متفاعل محد فإن : $y=0$ متفاعل محد فإن :			
		$u - 2x_{\text{max}} = 0 \Rightarrow u = 2x_{\text{max}} = 2u(O_2)_{\text{max}} = 2 \cdot \frac{V(O_2)}{V}$			
		$n = 2.\frac{10}{22.4} = 0.892 \text{ mol} \Rightarrow [H_2 O_2]_0 = 0.892 \text{ mol/} L \rangle 0.744 \text{ mol/} L$			
		إذن المحلول غير حديث التحضير.			

		$t_{V_2} \rightarrow x = \frac{x_{\text{max}}}{2} \rightarrow \frac{\left[H_2 O_2\right]_0}{2} \rightarrow \frac{V_{E0}}{2}$: لقاعل خرمن نصف النقاعل : أ
	0,25	$[255s265s]$ من البيان نجد : $\iota_{\frac{1}{2}}=2,6 imes100=260s$ من البيان نجد
		$V_{_{H}}$ بدلالة $V_{_{H}}$ بدلالة بالمرعة الحجمية لاختفاء ي $O_{_{2}}$ بدلالة بالمرعة الحجمية الحجمية المحتفاء بالمرعة الحجمية المحتفاء بالمرعة المحتفدة
	2X0,25	$v = -\frac{1}{V} \frac{dn(H_2O_2)}{dt} = -\frac{d}{dt} \left(\frac{n}{V} \right) = -\frac{d[H_2O_2]}{dt} = -30 \frac{dV_{\pi}}{dt}$
1,5		II_2O_2 : المرعة الحجمية لاختفاء الحجمية :
1,5	2X0,25	$[1,1 ightarrow1,3]$ عند اللحظة v_1 =1,17 $ imes$ 10 $^{-3}$ $mol/L.s$. t_1 =200 s عند اللحظة
		$\left[0.35\! ightarrow\!0.45 ight]$ عند اللحظة $ u_2 = 0.42 imes 10^{-3} mot / L.s$ يَقْبِلُ بِين $ u_2 = 600s$
		. $ v_1 angle v_2 $ نلاحظ أن $ v_2 angle$
		 التعليل : تتناقص السرعة بسبب تناقص التركيز المولي للماء الأكسجيني.
	0,25	
		التمرين الثاني : (3 نقاط)
		1 / أ – تعريف الإنشطار النووي : هو تفاعل نووي مفتعل بحدث بقذف نواة ثقيلة غير
	0,5	مستقرة بنترون فتتشطر إلى نواتين أكثر استقرارا و تحرير طاقة .
		ب - كيمة Z و X .
1,25	2X0,25	$94+0=Z+42 \implies Z=52$ بتطبيق قوانين الإنحفاظ نجد : $Z=52$
		$239 + 1 = 135 + 102 + Y \implies Y = 3$
		جـ - عبارة الطاقة المحررة :
	0,25	$E_{\ell,b} = \Delta m C^2 / \Delta m = m_I - m_f$
		$E_{\ell,5} = \left[m({}_{94}^{239}Pu) - \left(m({}_{52}^{135}Te) + m({}_{42}^{102}Mo) + 2m({}_{0}^{1}n) \right) \right]. C^{2}$
		. 239 طاقة الزبط $E_{ m p}$ للبلوتونيوم $= 1/2$
	2 X 0,25	$E_z = \left[Z m \binom{1}{1} p \right) + (A - Z) m \binom{1}{0} n \right) - m \binom{239}{94} P u \right] C^2$
		$E_{\ell} = \left[94 m \left({}_{1}^{1} \rho \right) + 145 m \left({}_{0}^{1} n \right) - m \left({}_{94}^{239} Pu \right) \right] \cdot C^{2} = E_{2} - E_{1}$
		$E_z = (22,537 - 22,362).10^4 = 1750 MeV$
		$E_{\varepsilon}=E_2-E_1$ ملاحظة: نقبل مباشرة من العلاقة
		$= - rac{102}{92} Mo : rac{239}{94} Pu$ ب $= - مقارنة استقرار النواتين Pu : rac{102}{94} Pu$
	2 X 0,25	$\frac{E_{\ell}}{A} \binom{289}{94} Pu = \frac{1750}{239} = 7.32 MeV / nuc$
1,75		بما أن $(\frac{E_\ell}{A})^{102} (\frac{E_\ell}{A}) (\frac{239}{94} Pu)$ فإن النواة $\frac{102}{92} Mo$ هي الأكثر استقرارا.
		 نعم هذه النتيجة متوافقة مع التعريف حيث تتنج نواة أكثر استقرارا.

		E_{T}	$=N.E_{\ell ib}$.	من البلوبَونيوم	ن انشطار 1g	الطاقة المحررة ه	ı –
					عينة .	عدد الأنوية في ال	آ∕ هو د
	3X(),25	$N = \frac{m}{A} N_A = \frac{1}{239} .6,02 \times 10^{23} = 2,518 \times 10^{21} $ noyaux					
		E_{ℓ}	$E_{13} = E_3 - E_1 =$	= (22, 321 – 2	$2,362)\times10^4 =$	-410MeV	
			$E_T = 2,518$	×10 ²¹ (-410)	=-1,02338×10	$0^{24}MeV$	
					. (ا) ک	، إلى وحدة الجوا	التحويل
			1 MeV = 1,6		10	11	
			$E_{\tau} = -1,023$		$\times 10^{-13} = -1,65$		
				ة الإِشارة	مكن عدم مراعاً	ř	
						(tieta) - an	
0,25	0,25	CH C	MOH . C L		ድልልድ ሀ 🕠 ነ	<u>الث:</u> (3 نقاط) تراتيات ما	
0,20	(7,25	LF3€	.OUR + C ₂ F	ı ₅ -U⊓ ≅ U⊓3	COOC2D5 * I	لة التقاعل: 1 ₂ 0 التقاعل: 1	
		معادلة				النقدم :	2-جدول ا
		معادله التقاط	CH ₃ C	OOH + C ₂ F	I_{5} - $OH = CH$	₃COO- C2H5	+ H ₂ O
		العالة	(x) التقدم				
0, 5	2 X (),25		(۱۸) التعدم		$(max) \rightarrow s$	Srate After	
0, 3	27(7,23	الإبتدائية t=0	$\mathbf{x} = 0$	0,2	0, 2	0	0
		الوبسطية	x > 0	0, 2 - x	0, 2 - x	X	X
		t>0		0.0	0.0		
		الثوازن t _f		$0,2-x_r$	·	X_f	1i_2
		[<i>CI</i>		-		<i>ب n_i ا</i> ستر: عند _	
	2X0,25	$Q_{\vec{x}} = K = \frac{[CH]}{ CH _2}$	$COOH \mid_{\epsilon} \mid C_2$	$\frac{\mathbf{J}_{f}\left[1^{T}\right] \circ \mathbf{J}_{f}}{2H_{5} - OH\Big _{f}} =$	$\Rightarrow K = \frac{X_r}{(0, 2 - x)}$	$\frac{1}{(0,1)^2}$ $\Rightarrow \sqrt{4} = \frac{1}{(0,1)^2}$	$\frac{X_f}{2-X_f}$
				$2 = \frac{1}{(0, 1)^2}$	$\frac{x_f}{2-x_f}) \Rightarrow x_f :$	$=n_{_{\mathrm{f}}}=0.133mc$	ومنه 10
		حيث:	$r = \frac{X_f}{X} \times$	$100 \Rightarrow r = \frac{0}{0}$	$\frac{133}{2} \times 100 = 66$	ب المردود: %6	ب-حسان
	2 X (),25				, = الثس r = 66,6%		0,2 <i>mol</i>
1,25						***** صيغة نصف الما	
	0.35			O CH ₃ - C - O	=	•	
	0,25	ر	إيثانوات الإيثيا	CH ₃ - C - O	- CH ₂ - CH ₃		
1							

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبه: رياضيات و تقني رياضي دورة : جوان 2014

				لتحسين (r):	4-أ- ذكر طريقتين
	0,25			ي غير متكافئ.	- تحقيق مزيج ابتدائم
	·				- نزع أحد النوائج.
	0,25	$Qr_i = \frac{\left[\begin{array}{c} v_i \\ v_i \end{array}\right]}{\left[\begin{array}{c} v_i \\ v_i \end{array}\right]}$	$\left[\frac{1}{i}, \left[\frac{1}{i}, \frac{1}{i}\right]_{i}\right] = 0,9$	ور: 9<4	ب- تحديد جهة التطو
.	0,23	[0]	_i ·[0)] _i		$Qr_t < K$
1			تقاعل الأسترة).	لتجاه المباشر (يتطور التفاعل في الا
			زن:	الجديد عند التواز	• التركيب المولى
	0,25		I	$X = \frac{X}{(0, 4 - X_f)}$	$\frac{2}{f}$ = 4
	0,23			-	$(0, Z - X_f)$ $= 0,17 mol$
				 	
	0,25	حمض	كحول	أستر	ماء
		0,23 <i>mol</i>	0,03 <i>mol</i>	0,17 <i>mol</i>	0,17 mol
				/älis: 2 7	7E \- a.d. 11511
		k	7	•	<u>التمرين الرابع :(5/</u> 1- عبارة التوثر مع
0,25	0,25	1			$L \cdot \frac{di(t)}{dt} + r \cdot i(t)$
		الشكل – 4 🕒 📗			u4
		A MM B R			2- عبارة U _{CB} بدلالة
0,25	0,25	A B	Ċ	υ _{CB} ($f(t) = \mathbf{u}_{\mathbf{R}}(t) = R \cdot f(t)$
		أو $n_{ m CB}$ مع النّعليل.	$u_{_{\it H\!A}}$ ائي الموافق	ي بالتوتر الكهرا	3 - إرفاق كل منحن
0,75	3 X 0,25	i (0) و بالتالي فإن:	ي معدومة (0=	ة التيار الكهربائـ	عند 0=t تكون شدة
0,13	37(7,23	رهَم -2-	يتوافق مع البيان	U _{CB} (0) و هذا	$= \mathbf{u}_{R} (0) = R.0 = 0$
			$U_{\mathcal{B}_{\mathcal{I}}}$	$_4(t)$ يمثل -1	ويالتالي البيان رقم -
			: <u>ଫ</u>	مع الوَرَ اتَ نِكَ	 4 – بنطبيق قانون ج
0,75	3X0,25	U,		_	$= L \cdot \frac{di}{dt} + r \cdot i + R \cdot i$
-,, -	JMJ,43				$u\iota$
			ur _		في النظام الدائم يكون
			$I_0 = \frac{I!}{R + r} :$	E = L	$0 + r \cdot I_0 + R \cdot I_0$

		$I_0 = \frac{6.0}{180 + 20} = 0.03 A$: ت ع : $-$
		من المنحنى البياني $\mathrm{U}_{\mathrm{CB}}\left(t ight)$ نقراً التوتر بين طرفي الناقل الأومي في النظام الدائم :
		$. U_0 = 5,4V$
		$I_0 = \frac{U_0}{R} = \frac{5.4}{180} = 0.03 A$: فیکوین
		نالحظ أن القيمتين متساويتين.
		5 – تحديد ثابت الزمن:(تقبل طرق أخرى)
		$u_{CS}(au) = 0.63.U_{CBmax} = 0.63 imes 5.4 = 3.4 V$ لكي نجد قيمة ثابت الزمن
	2X0,25	au = 2 msبإسقاط هذه القيمة في البيان -2 على محور الأزمنة نجد
	2 / (),23	- استنتاج ذائية الوشيعة:
0,75		$ au-rac{\Gamma_{cond}}{R}=rac{\Gamma_{cond}}{R+r}\Rightarrow L= au\left(R+r ight):$ يعطى ثابت الزمن بالعلاقة
		$L = 2 \times 10^{-3}$. $(180 + 20, 0) = 400 \times 10^{-3} = 0, 4 H$
	0,25	
		<u>التمرين الخامس</u> : (3,75 نقطة)
		\overline{x} متباطئة بانتظام: \overline{x} متباطئة بانتظام: \overline{x}
		بتطبیق القانون الثانی لنیوبتن فی مرجع سطحی أرضی نعتبره غالیلیا : \hat{R}
		7.1
		$\sum \overrightarrow{F_{i,xi}} = \overrightarrow{ma} \Longrightarrow \overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = \overrightarrow{ma}$
	2 X 0,25	$-f=ma\Rightarrow a=rac{-f}{m}=ctc$: $x'x$ بالإسقاط على محور
1		بما أن تسارع الحركة ثابت وجهته عكس جهة السرعة فإن الحركة م. متباطئة بانتظام.
		$v_A^2=v_Z^2+rac{2.d.f}{m}$: ب $-$ اِثِبَات أَن
	2X0,25	$v_A^2=v_B^2+rac{2.d.f}{m}$ ومنه $a=rac{-f}{m}$ ومنه $v_A^2-v_B^2=2.a.d$: من العلاقة
		$E_{c_{y}}=E_{c_{y}}+W(\overrightarrow{p}):S$ عبارة $v_{y}^{2}:v_{y}^{2}:v_{y}^{2}$ عبارة الطاقة على -2
	240.25	$h=r(1-cos\theta)$ و لدينا من الشكل $\frac{1}{2}mv_N^2=\frac{1}{2}mv_N^2+mgh$ و لدينا من الشكل $mv_N^2=v_N^2+mgh$
	2X0,25	$Z = Z = V_{\kappa}^2 + 2gr(1-cos\theta)$
		$v_N = v_g + Zg I (1 - toso)$
	1	

الإجابة النموذجية وسلم التنقيط مادة: العلوم الفيزيائية الشعبه: رياضيات و تقني رياضي دورة : جوان 2014

		 ب- عبارة فعل السطح: بتطبيق القانون الثاني لنيوين على S:
		A $\sum \vec{P}_{ext} = m\vec{a} \Rightarrow \vec{P} + \vec{R} = m\vec{a}$
		بالإسقاط على الناظم نجد :
	3 X 0,25	$P_N - R = m a_N \Rightarrow R = m(g.\cos\theta - a_N)$
		$R = m(gcos\theta - \frac{v_N^2}{r})$ ولدينا $a_N = \frac{v^2}{r}$
		جــ - ايجاد عبارة cosθ :
2,25		لكي يغادر S المستوى الدائري يجب: $R=0$ (لا يوجد تلامس بين S و المستوى الدائري)
		$0=m.(g.cos\theta-rac{v_N^2}{r})\Rightarrow v_N^2=r.g.cos\theta2$: R ومنه تصبح عبار ه
	2X0,25	بالمطابقة بين العبارتين -1 و -2 نجد:
		$v_{\mathbb{B}}^{2} + 2 \operatorname{gr}(1 - \cos\theta) = r.g.\cos\theta \Rightarrow \boxed{\cos\theta = \frac{1}{3.r.g} v_{\mathbb{B}}^{2} + \frac{2}{3}}$
		$cos\theta=a.v_E^2+b$: لدينا بيانيا a د $-$ قيمة a يمثل قيمة ميل المستقيم $cos\theta=a.v_E^2+b$
	2X0,25	$cos\theta = \frac{1}{3.r.g}v_{\underline{u}}^2 + \frac{2}{3}$: الدينا نظريا
		$a = \frac{1}{3.r.g} \Rightarrow g = \frac{1}{3.r.a}$ بالمطابقة نجد:
		$g=9,80m.s^{-2}$ و منه نجد $a=0,034$: من البيان
0,5	0,25	ا کبر قیمة لزاویة $ heta$ نوافق أقل قیمة لـــ $\cos heta$ و هذا یوافق $v_{\kappa}^2=0$ من البیان نجد
		$cos\theta = 0.67 \Rightarrow \theta = 48^{\circ}$
	0,25	$v_A^2 = 0 + \frac{2.d.f}{m} \Rightarrow v_A^2 = \frac{2.d.f}{m} = 16 \Rightarrow v_A = 4m.s^{-1}$: v_A = v_A = v_A

0,5		التمرين التجريبي: (4 نقاط)
		ا – <u>در اسة نتائج المحاكاة</u> .
		ا منبعة حركة مسقط مركز عطالة الجلة على المحور Ox : منتظمة .
		- التبرير: يظهر البيان Vx ثبات طويلة المركبة الأفقية لشعاع السرعة خلال الحركة،
	2 X 0,25	حيث : ° حيث : v _X (t)=C ^{te} =10 m/s
		v_{ov} عبين قبمة المركبة الشاقولية لشعاع السرعة الابتدائية v_{ov} :
		انطلاقا من البيان $v_{y}(t)$ و من أجل $v_{z}(t)$ نستخرج من المنحنى $v_{y}(t)$ القيمة :
0,75		$v_y(0) = v_{0y} = 9.2 \text{ m/s}$
		تعيين السرعة الابتدائية للقذيفة $ u_0$:
	3X0,25	$v_{o} = \sqrt{v_{ox}^{2} + v_{oy}^{2}}$: $v_{o} = \vec{v}_{o}(t) = \vec{v}_{o}(t) + \vec{v}_{o}(t)$: $\vec{v}_{o}(t) = \vec{v}_{o}(t) + \vec{v}_{o}(t)$
		$v_o = \sqrt{(10)^2 + (9,2)^2} = 13,6 \text{ m.s}^{-1} : \varepsilon$
		التوافق: نعم تتوافق مع المعطيات السابقة مع الأخذ بعين الاعتبار الأخطاء المرتكبة
		في تحديد قيمة ٧٠ .
	2X0,25	α $\cos \alpha = \frac{v_{0x}}{v_0} = \frac{10}{13.6} = 0.74$: من جههٔ اَخری لابینا $-$
		0 v_{0x} x $a = 42,7^{\circ}$ التي تقارب جدا $\alpha = 42,7^{\circ}$
		عند الذروة S : يكون شعاع السرعة دوما مماسيا 1 عند الذروة S المرعة دوما مماسيا
0,5		المسار حركة القذيفة، ويكون عند الذروة أفقيا لأن المركبة الشاقولية لشعاع السرعة تنعدم
		$v_{S} = \sqrt{v_{Sx}^{2} + v_{Sy}^{2}} = \sqrt{(10)^{2} + (0)^{2}} = 10 \text{ m.s}^{-1}$: عندها و طویلته
		ا ا - الدراسة التحليلية لحركة مركز عطالة الجلة.
		1- المقارنة بين دافعة أرخميدس و ثقل الجلة :
		 تتساوى شدة دافعة أرخميدس مع ثقل المائع المزاح (في مثالنا) ، وتعطى بالعلاقة :
		. حيث: V حجم الجلة $\pi= ho_{air}$. V . g
		. $oldsymbol{eta}= ho$. $oldsymbol{V}$. $oldsymbol{g}$:
0,75		$P \rho V \cdot g \rho$
	3 X 0,25	$rac{ ho}{\pi}=rac{ ho_{}V_{}g}{ ho_{_{air}}.V_{}g}=rac{ ho_{}}{ ho_{_{air}}}$: بالقسمة نجد
		$p = 5504.\pi$: أي $\frac{P}{\pi} = \frac{7,10 \times 10^{-3}}{1,29} = 5504$: ϵ . ϵ
		نستنتج أن دافعة أرخميدس مهملة أمام ثقل الجلة.
		وبالتالي التاميذ الذي اعتبر بأن الجلة لا تتأثر إلا بثقلها على صواب.

		2 - ايجاد عبارة النسارع: 2 - ايجاد عبارة النسارع:
0,5		 الجملة المدروسة : الجلـــة المرجع : سطح الأرض (نعتبره غاليايا) .
		المؤثرات الخارجية: الثقل فقط، المؤثرات الأخرى (مقاومة الهواء ودافعة أرخميدس)
		مهملة أمام الثقل.
		نطبق القانون الثاني لنيوتن:
	2 X 0,25	$\sum F_{ext} = m. \vec{a} \implies \vec{P} = m. \vec{a} \implies m. \vec{g} = m. \vec{a}$
		$\vec{a} = \vec{g}$: إذن
		. $a=g$: شعاع تسارع حركة الجلة شاقولي ، جهته إلى الأسفل ، قيمته هي
		3 - ايجاد معادلة المسار:
		نحدد في البداية المعادلات الزمنية للحركة وفق المحورين Ox و Oy .
		: الدينا عبد مركبات شعاع السرعة $a \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$ الدينا الدينا بالتكامل نجد مركبات شعاع السرعة
		$ = v_{ax}(\cos a) $
		$ \frac{1}{V} \begin{cases} v_x = v_{ox} & = v_{ox}(\cos \alpha) \\ v_y = -g.t + v_{oy} = -g.t + v_{ox}(\sin \alpha) \end{cases} $ $ \begin{bmatrix} a_y = -g \\ v_{ox} = -$
		ليكن $\frac{\overline{OG}}{OG}$ شعاع موضع مركز عطالة الجلة ، إحدائيات $\frac{\overline{OG}}{OG}$ نستنج بمكاملة عبارة
		, , , , , , , , , , , , , , , , , , ,
1		\overrightarrow{OG} $\begin{cases} x = V_o.(\cos \alpha).t & : \Delta \Rightarrow A \text{ if } x = V_o.(\cos \alpha).t \\ y = -1/2 g.t^2 + V_o.(\sin \alpha).t + h \end{cases}$
	4 X (),25	نتحصل على معادلة المسار بحذف الزمن من المعادلتين الزمنيتين :
		، $t = \frac{x}{v_o.(cos a)}$ نجد : λ نجد λ
		و بالتعويض في عبارة ٧ نج:
		$y = -\frac{1}{2}g.\left(\frac{x}{v_o.(\cos\alpha)}\right)^2 + v_o.(\sin\alpha).\left(\frac{x}{v_o.(\cos\alpha)}\right) + h$
		$\Rightarrow y = -\frac{g}{2.v_0^2.(\cos \alpha)^2} x^2 + (\tan \alpha).x + h$
		$\Rightarrow y = -0.049 x^2 + 0.933 x + 2.620$