K.K.Wagh Institute of Engineering Education & Research, Nashik Subject: Engineering Mathematics-III

UNIT-1: Linear Differential Equations

Type I(a): Complementary function (2 marks)

Type I(b): Particular Integral by General Methods, MVP Methods

Q.N0	(2Marks) Questions
1	
	The solution of differential equation $4\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$ is
	a) $e^{-x}(c_1\cos 2x + c_2\sin 2x)$ b) $e^{-x/2}(c_1\cos x + c_2\sin x)$
	c) e^{-2x} (c ₁ cosx+c ₂ sinx) d) $c_1e^{-4x} + c_2e^{-5x}$
2	
	The solution of differential equation $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = 0$ is
	a) $c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$ b) $c_1 e^{-x} + c_2 e^{2x} + c_3 e^{-3x}$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
3	
	The solution of differential equation $\frac{d^3y}{dx^3} - 7\frac{dy}{dx} - 6y = 0$ is
	a) $c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$ b) $c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{6x}$
	c) $c_1e^{-x} + c_2e^{2x} + c_3e^x$ d) $c_1e^{-x} + c_2e^{-2x} + c_3e^{3x}$
4	
	The solution of differential equation $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$ is
	a) $c_1 + e^{-x}(c_2x + c_3)$ b) $c_1 + e^x(c_2x + c_3)$ c) $e^{-x}(c_2x + c_3)$ d) $c_1 + c_2 e^x + c_3 e^{-x}$
5	$\frac{d^3v}{d^3v} = \frac{d^2v}{dv} = \frac{dv}{dv}$
	The solution of differential equation $\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 4y = 0$ is $a) C_1 e^x + e^{2x}(C_1 x + C_2)$ $b) C_2 e^x + C_3 e^{2x} + C_4 e^{3x}$
	a) $c_1 e^x + e^{2x} (c_2 x + c_3)$ b) $c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$ c)
	$\begin{vmatrix} a & c_1 e + e + c_2 x + c_3 \end{vmatrix} = \begin{vmatrix} b & c_1 e + c_2 e + c_3 e \\ e^{2x} (c_2 x + c_3) \end{vmatrix}$ $\begin{vmatrix} c_1 e + c_2 e + c_3 e \\ c_2 x + c_3 \end{vmatrix} = \begin{vmatrix} c_1 e + c_2 e + c_3 e \\ c_2 x + c_3 \end{vmatrix} = \begin{vmatrix} c_1 e + c_2 e + c_3 e \\ c_3 e + c_4 \end{vmatrix}$
6	
	The solution of differential equation $\frac{d^3y}{dx^3} - 4\frac{dy}{dx} = 0$ is
	a) $c_1 e^{2x} + c_2 e^{-2x}$ b) $c_1 + c_2 \cos 2x + c_3 \sin 2x$
	c) $c_1 e^x + c_2 e^{-2x} + c_3 e^{-3x}$ d) $c_1 + c_2 e^{2x} + c_3 e^{-2x}$
7	$\frac{d^3v}{dt^3}$
	The solution of differential equation $\frac{d^3y}{dx^3} + y = 0$ is $e^x e^x \frac{\sqrt{3}}{2}x \frac{\sqrt{3}}{2}x \frac{1}{2}x \frac{1}{2}x$
	The solution of differential equation dx^3 is $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
	(a) $c_1 + (C_2 \cos \frac{\sqrt{3}}{2}x + C_2 \sin \frac{\sqrt{3}}{2}x)$ b) $c_1 + e^{\frac{1}{2}x}(C_2 \cos \frac{1}{2}x + C_2 \sin \frac{1}{2}x)$
	e^{-x} $\frac{1}{2}$ $\frac{1}{$
	c) $c_1 + \frac{e^{2^x}}{2} (C_2 \cos \frac{\sqrt{3}x}{2} + C_2 \sin \frac{\sqrt{3}x}{2})$ d) $(c_1 + c_2 x + c_3 x^2)$
8	$\frac{d^3v}{d^3v} = \frac{dv}{dv}$
	The solution of differential equation $\frac{d^3y}{dx^3} + 3\frac{dy}{dx} = 0$ is
	22 02 division 04 d
	a) $c_1 + c_2 \cos x + c_3 \sin x$ b) $c_1 + c_2 \cos \sqrt{3} x + c_3 \sin \sqrt{3} x$
	c) $c_1 + c_2 e^{\sqrt{3}x} + c_3 e^{-\sqrt{3}x}$ d) $c_1 \cos x + c_2 \sin x$
9	$\frac{d^3v}{d^2v} = \frac{d^2v}{dv} = \frac{dv}{dv}$
	The solution of differential equation $\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 12y = 0$ is
	The solution of differential equation $ax = ax = ax$ is $ax = ax =$

Type I(C): Cauchy's & Legendre's D.E., Simultaneous & Symmetrical simultaneous DE(2 Marks)

1	$\int_{0}^{2} d^{2}y + y dy + y - y^{2} + y^{-2}$
	For the D.E. $\frac{x}{dx^2} + x \frac{1}{dx} + y - x + x$, complimentary function given by
	For the D.E. $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = x^{2} + x^{-2}$, complimentary function given by a) $c_{1}x+c_{2}$ b) $c_{1}\log x + c_{2}$ c) $c_{1}\cos x+c_{2}\sin x$ d) $c_{1}\cos(\log x)+c_{2}\sin(\log x)$
2	$d^2 = 1 dv$
-	For the D.E. $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = A + B\log x$, complimentary function given by
	For the D.E. $dx^2 - x dx$, complimentary function given by
	$\frac{c_1}{c_1}$
	a) c_1x+c_2 b) $c_1x^2+c_2$ c) $c_1\log x+c_2$ d) $x+c_2$
3	a) c_1x+c_2 b) $c_1x^2+c_2$ c) $c_1\log x + c_2$ d) $\frac{c_1}{x}+c_2$ For the D.E. $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^5$, complimentary function given by a) $c_1x^2+c_2x^3$ b) $c_1x^2+c_2x$ c) $c_1x^2+c_2x^3$ d) $c_1x^5+c_2x$
	For the D.E. dx^2 dx^2 , complimentary function given by
	a) $c_1x^2+c_2x^3$ b) $c_1x^2+c_2x$ c) $c_1x^{-2}+c_2x^{-3}$ d) $c_1x^5+c_2x$
4	$d^2v dv$
	For the D.E. $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + 4y = \cos(\log x) + x \sin(\log x), \text{ complimentary function}$
	given by
	a)[$c_1 \cos \sqrt{3} (\log x) + c_2 \sin \sqrt{3} (\log x)$] b) $x[c_1 \cos \sqrt{2} (\log x) + c_2 \sin \sqrt{2} (\log x)]$
	$c)x[c_1\cos(\log x) + c_2\sin(\log x)] \qquad d) x[c_1\cos\sqrt{3}(\log x) + c_2\sin\sqrt{3}(\log x)]$
5	For the D.E. $r^2 \frac{d^2u}{dr^2} + r \frac{du}{dr} - u = -kr^3$, complimentary function given by
	For the D.E. $dr^2 + dr$, complimentary function given by
	a)($c_1 \log r + c_2$)r b) $c_1 r + \frac{c_2}{r}$ c) $[c_1 \cos(\log r) + c_2 \sin(\log r)$ d) $c_1 r^2 + \frac{c_2}{r^2}$
6	$d^2v dv$
	For the D.E. $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = x$ Particular integral is given by
	a) x b) $\frac{x}{2}$ c) $\frac{x}{3}$ d) 2x
7	$\frac{d^2v}{dt^2}$
	For the D.E. $x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^5$ Particular integral is given by
	Farticular integral is given by
	a) $\frac{x^5}{6}$ b) $\frac{x^5}{56}$ c) $\frac{x^4}{6}$ d) $-\frac{x^5}{44}$
0	Solution of D.E. $\frac{dx}{dx} = \frac{dx}{dx}$ Further than integral is given by $\frac{x^5}{6} = \frac{x^5}{6} = \frac{x^4}{6} = \frac{x^5}{44}$ Solution of D.E. $\frac{x^2}{dx^2} + \frac{dy}{dx} = x$ is
8	$x\frac{d^2y}{dx} + \frac{dy}{dx} = x$
	Solution of D.E. $dx^2 + dx$ is
	x^2 x^2 x^2
	a) $(c_1x+c_2)^{-\frac{x^2}{4}}$ b) $(c_1x^2+c_2)^{+\frac{x^2}{4}}$ c) $(c_1\log x+c_2)^{-\frac{x^2}{4}}$ d) $(c_1\log x+c_2)^{+\frac{x^2}{4}}$
9	$\int d^2 y dy 1$
	Solution of D.E. $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} = \frac{1}{x^2}$ is
	r^2 r^2 1 1 r^2
	a) $(c_1x+c_2)^{-\frac{x^2}{4}}$ b) $(c_1x^2+c_2)^{+\frac{x^2}{4}}$ c) $c_1+c_2\frac{1}{x}+\frac{1}{2x^2}$ d) $(c_1\log x+c_2)^{+\frac{x^2}{4}}$
10	$a_1 (c_1 x + c_2) + c_1 (c_1 x + c_2) + c_1 c_1 + c_2 x + 2x + c_1 (c_1 \log x + c_2) + c_2 x + c_3 c_1 + c_4 c_1 + c_4 c_2 + c_4 c_1 + c_4 c_1 + c_4 c_2 + c_4 c_1 + c_4 c_1 + c_4 c_2 + c_4 c_1 + c$
10	$\int_{-\infty}^{\infty} (x+1)^2 \frac{d^2y}{x^2} + (x+1)\frac{dy}{x} + y = 2\sin[\log(x+1)]$

Type I(d): Complementary Functions (1 mark)

1	If the roots $m_1, m_2, m_3,, m_n$ of auxiliary equation $\phi(D) = 0$ are real and distinct, then solution of $\phi(D)y = 0$ is
	a) $c_1 e^{m_1 x} + c_2 e^{m_2 x} + \dots + c_n e^{m_n x}$
	b) $c_1 \cos m_1 x + c_2 \cos m_2 x + \dots + c_n \cos m_n x$
	c) $m_1 e^{c_1 x} + m_2 e^{c_2 x} + \dots + m_n e^{c_n x}$
	d) $c_1 \sin m_1 x + c_2 \sin m_2 x + \dots + c_n \sin m_n x$
2	The roots $m_1, m_2, m_3,, m_n$ of auxiliary equation $\phi(D) = 0$ are real .If two of these roots are repeated say $m_1 = m_2$ and remaining roots m_3 , $m_4,$ m_n are distinct, then solution of $\phi(D)y = 0$ is
	a) $c_1 e^{m_1 x} + c_2 e^{m_2 x} + \dots + c_n e^{m_n x}$
	b) $(c_1 x + c_2) \cos m_1 x + c_3 \cos m_3 x + \dots + c_n \cos m_n x$
	c) $(c_1 x + c_2) e^{m_1 x} + c_3 e^{m_3 x} + \dots + c_n e^{m_n x}$
	$d) (c_1 x + c_2) \sin m_1 x + c_3 \sin m_3 x + \dots + c_n \sin m_n x$
3	The roots $m_1, m_2, m_3,, m_n$ of auxiliary equation $\phi(D) = 0$ are real .If three of these roots are repeated say $m_1 = m_2 = m_3$ and remaining roots m_4 , $m_5,, m_n$ are distinct, then solution of $\phi(D)y = 0$ is a) $c_1 e^{m_1 x} + c_2 e^{m_2 x} + + c_n e^{m_n x}$
	b) $(c_1 x^2 + c_2 x + c_3) e^{m_1 x} + c_4 e^{m_4 x} + \dots + c_n e^{m_n x}$
	c) $(c_1 x^2 + c_2 x + c_3) \cos m_1 x_+ c_4 \cos m_4 x_+ + c_n \cos m_n x$
	d) $(c_1 x^2 + c_2 x + c_3) \sin m_1 x + c_4 \sin m_4 x + \dots + c_n \sin m_n x$
4	If $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$ are two complex roots of auxiliary equation of second order D.E. $\phi(D)y = 0$ then its solution is
	a) $e^{\beta x}[c_1 \cos \alpha x + c_2 \sin \alpha x]$ b) $e^{\alpha x}[(c_1 x + c_2) \cos \beta x + (c_3 x + c_4) \sin \beta x]$
	c) $c_1 e^{\alpha x} + c_2 e^{\beta x}$ d) $e^{\alpha x} [c_1 \cos \beta x + c_2 \sin \beta x]$
5	If the complex roots $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$ of auxiliary equation of fourth order
	D.E. $\phi(D)y = 0$ repeated twice then its solution is
	a) $e^{\beta x}[c_1 \cos \alpha x + c_2 \sin \alpha x]$ b) $e^{\alpha x}[(c_1 x + c_2) \cos \beta x + (c_3 x + c_4) \sin \beta x]$
	c) $(c_1 x + c_2) e^{\alpha x} + (c_3 x + c_4) e^{\beta x}$ d) $e^{\alpha x} [c_1 \cos \beta x + c_2 \sin \beta x]$
6	The solution of differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ is
	The solution of differential equation $\frac{dx^2}{dx^2} - 3\frac{dx}{dx} + 6y = 0$ is
	a) $c_1 e^{2x} + c_2 e^{-3x}$ b) $c_1 e^{-2x} + c_2 e^{3x}$ c) $c_1 e^{-2x} + c_2 e^{-3x}$ d) $c_1 e^{2x} + c_2 e^{3x}$
7	a) $c_1 e^{2x} + c_2 e^{-3x}$ b) $c_1 e^{-2x} + c_2 e^{3x}$ c) $c_1 e^{-2x} + c_2 e^{-3x}$ d) $c_1 e^{2x} + c_2 e^{3x}$ The solution of differential equation $\frac{d^2 y}{dx^2} - 5\frac{dy}{dx} - 6y = 0$ is
	The solution of differential equation $dx^2 + dx$ is
0	a) $c_1 e^{-x} + c_2 e^{6x}$ b) $c_1 e^{-2x} + c_2 e^{-3x}$ c) $c_1 e^{3x} + c_2 e^{2x}$ d) $c_1 e^{-3x} + c_2 e^{-2x}$
8	The solution of differential equation $2\frac{d^2y}{dx^2} - \frac{dy}{dx} - 10y = 0$ is
	I ne solution of differential equation $dx^2 - dx$ is $\begin{array}{cccccccccccccccccccccccccccccccccccc$
	The solution of differential equation $\frac{dx}{dx} = \frac{1}{4} \left(\frac{e^{2x}}{1 + c_2} e^{\frac{5}{2}x} \right) \left(\frac{e^{-2x}}{1 + c_2} e^{\frac{5}{2}x} \right) \left(\frac{e^{-2x}}{1 + c_2} e^{\frac{5}{2}x} \right) \left(\frac{e^{-2x}}{1 + c_2} e^{\frac{3}{2}x} \right)$ The solution of differential equation $\frac{d^2y}{dx^2} - 4y = 0$ is
9	$\frac{d^2y}{d^2y} - 4y = 0$
	The solution of differential equation dx^2 is

Type I(e): PI by General & Short Methods, MVP, Cauchy's & Legendre's D.E., Simultaneous & Symmetrical simultaneous DE (1 Mark)

1	Particular Integral of linear differential equation with constant coefficient
	$\phi(D)y = f(x)$ is given by
	$\begin{vmatrix} \frac{1}{a} & \frac{1}{\phi(D)} & \frac{1}{f(x)} & \frac{1}{\phi(D)f(x)} & \frac{1}{f(x)} & \frac{1}{\phi(D^2)} & \frac{1}{f(x)} \end{vmatrix}$
2	$\frac{1}{D-m}f(x)$, where D= $\frac{d}{dx}$ and m is constant, is equal to
	a) $e^{mx} \int e^{-mx} dx$ b) $\int e^{-mx} f(x) dx$ c) $e^{mx} \int e^{-mx} f(x) dx$ d) $e^{-mx} \int e^{mx} f(x) dx$
	1
3	$\frac{1}{D+m}f(x)$, where D= $\frac{d}{dx}$ and m is constant, is equal to
	a) $e^{-mx} \int e^{mx} dx$ b) $\int e^{mx} f(x)dx$ c) $e^{mx} \int e^{-mx} f(x)dx$ d) $e^{-mx} \int e^{mx} f(x)dx$
4	$ \underline{1} e^{ax} \underline{d} \qquad \phi(a) \neq 0 $
•	Particular Integral of $\phi(D)$ where $D = \frac{d}{dx}$ and is
	Particular Integral of $\overline{\phi(D)}$, where $D = \overline{dx}$ and is $\frac{1}{a} e^{ax} \qquad \frac{1}{\phi(-a)} e^{ax} \qquad \frac{1}{\phi(a)} e^{ax} \qquad \frac{1}{\phi(a)} e^{ax} \qquad \frac{1}{\phi(a)} e^{ax}$
	$(a) \overline{\phi(-a)}$ $(b) x \overline{\phi(a)}$ $(c) \overline{\phi(a^2)}$ $(d) \overline{\phi(a)}$
5	$\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$
	Particular Integral of $\overline{(D-a)^r}$, where $D = \overline{dx}$ is $\frac{1}{a} e^{ax}$ $\frac{x^r}{r} e^{ax}$ $\frac{x^r}{r} e^{ax}$ $\frac{x^r}{r} e^{ax}$ $\frac{x^r}{r} e^{ax}$ $\frac{x^r}{r} e^{ax}$ $\frac{x^r}{r} e^{ax}$
	$\frac{1}{2}e^{ax}$ $x^r e^{ax}$ $x^r e^{ax}$ $x^r e^{ax}$
	a) $r!$ b) \overline{r} c) $\overline{r!}$ d)
6	Particular Integral of $\frac{1}{\phi(D^2)}\sin(ax+b)$, where $D = \frac{d}{dx}$ and is
	Particular Integral of $\phi(D^2)$, where $D = dx$ and is
	$\begin{vmatrix} \frac{1}{a} \frac{1}{\phi(-a^2)} \cos(ax+b) & \frac{1}{\phi(-a^2)} \sin(ax+b) & \frac{1}{\phi(-a^2)} \sin(ax+b) & \frac{1}{\phi(-a^2)} \sin(ax+b) \end{vmatrix}$
	a) $\varphi(-a)$ b) $\varphi(-a)$ c) $\varphi(-a)$ d) $\varphi(a)$
7	$d \qquad \phi(-a^2) = 0 \ \phi'(-a^2) \neq 0$
	Particular Integral of $\phi(D^2)$ sin($ax + b$), where $D = \frac{d}{dx}$ and $\phi(-a^2) = 0, \phi'(-a^2) \neq 0$ is
	1
	$ \begin{vmatrix} x \frac{1}{\phi'(-a^2)} \cos(ax+b) \\ a \end{vmatrix} x \frac{1}{\phi'(-a^2)} \sin(ax+b) $ b)
	$\begin{vmatrix} \frac{1}{c} & \frac{1}{\phi(-a^2)} \sin(ax+b) \\ \frac{1}{\phi'(-a^2)} \sin(ax+b) \end{vmatrix}$
8	Particular Integral of $\frac{1}{\phi(D^2)}\cos(ax+b)$, where D= $\frac{d}{dx}$ and is
	Particular Integral of $\phi(D^2)$ cos $(ax+b)$, where $D = \frac{d}{dx}$ and is
	$\frac{1}{a} \frac{1}{\phi (-a^2)} \cos(ax+b)$ b) $\frac{1}{\phi (-a^2)} \sin(ax+b)$
	(a) ϕ (-a ²)

ANSWERS

Group Ia)

1.(b)	2.(c)	3.(d)	4.(b)	5.(a)	6.(d)	7.(c)	8.(b)
9.(a)	10.(a)	11.(c)	12.(d)	13.(b)	14.(b)	15.(d)	16.(a)

Group Ib)

1.(a)	2.(b)	3.(c)	4.(d)	5.(b)	6.(d)	7.(b)	8.(a)
9.(c)	10.(d)	11.(a)	12.(d)	13.(c)	14.(b)	15.(d)	16.(a)
17.(b)	18.(c)	19.(d)	20.(d)	21.(c)	22.(a)	23.(d)	24.(b)
25.(c)	26.(d)	27.(a)	28.(d)	29.(c)	30.(c)	31.(a)	32.(c)
33.(b)	34.(a)	35.(d)	36.(b)	37.(c)	38.(b)	39.(d)	40.(b)
41.(c)	42.(a)	43.(c)	44.(b)	45.(d)	46.(a)		

Group Ic)

1.(d)	2.(c)	3.(a)	4.(d)	5.(b)	6.(b)	7.(a)	8.(d)
9.(d)	10.(b)	11.(a)	12.(c)	13.(d)	14.(a)	15.(d)	16.(b)
17.(c)	18.(a)	19.(c)	20.(b)	21.(d)	22.(b)	23.(a)	24.(d)
25.(a)	26.(c)	27.(a)	28.(c)	29.(c)	30.(b)	31.(b)	32.(d)
33.(a)							

Group Id)

1.(a)	2.(c)	3.(b)	4.(d)	5.(b)	6.(d)	7.(a)	8.(c)
9.(d)	10.(b)	11.(a)	12.(c)	13.(d)	14.(a)	15.(b)	16.(c)

4 = 7.45	40 ()	40 ()			
17.(d)	18.(a)	19.(c)			

Group Ie)

1.(a)	2.(c)	3.(d)	4.(d)	5.(c)	6.(b)	7.(b)	8.(a)
9.(d)	10.(c)	11.(a)	12.(c)	13.(d)	14.(c)	15.(a)	16.(d)
17.(b)	18.(b)	19.(c)	20.(a)	21.(b)	22.(d)	23.(a)	24.(c)
25.(d)	26.(a)	27.(c)	28.(b)	29.(c)	30.(d)	31.(b)	32.(d)
33.(a)	34.(d)						