Thermo, Optics, Experimental - Problem Set # 1

TABLE OF INFORMATION

Rest mass of the electron $m_e = 9.11 \times 10^{-31} \text{ kilogram} = 9.11 \times 10^{-28} \text{ gram}$

Magnitude of the electron charge $e = 1.60 \times 10^{-19} \text{ coulomb} = 4.80 \times 10^{-10} \text{ statcoulomb (esu)}$

Avogadro's number $N_0 = 6.02 \times 10^{23}$ per mole

Universal gas constant $R = 8.31 \text{ joules/(mole \cdot K)}$

Boltzmann's constant $k = 1.38 \times 10^{-23}$ joule/K = 1.38×10^{-16} erg/K

Speed of light $c = 3.00 \times 10^8 \text{ m/s} = 3.00 \times 10^{10} \text{ cm/s}$

Planck's constant $h = 6.63 \times 10^{-34}$ joule · second = 4.14×10^{-15} eV · second

 $\hbar = h/2\pi$

Vacuum permittivity $\epsilon_0 = 8.85 \times 10^{-12} \text{ coulomb}^2/(\text{newton} \cdot \text{meter}^2)$

Vacuum permeability $\mu_0 = 4\pi \times 10^{-7} \text{ weber/(ampere \cdot meter)}$

Universal gravitational constant $G = 6.67 \times 10^{-11} \text{ meter}^3/(\text{kilogram} \cdot \text{second}^2)$

Acceleration due to gravity $g = 9.80 \text{ m/s}^2 = 980 \text{ cm/s}^2$

1 atmosphere pressure 1 atm = 1.0×10^5 newton/meter² = 1.0×10^5 pascals (Pa)

1 angstrom 1 $\mathring{A} = 1 \times 10^{-10}$ meter

 $1 \text{ weber/m}^2 = 1 \text{ tesla} = 10^4 \text{ gauss}$

Moments of inertia about center of mass

Rod $\frac{1}{12}MQ^2$

Disc $\frac{1}{2}MR^2$

Sphere $\frac{2}{5}MR^2$

- 13. A 100-watt electric heating element is placed in a pan containing one liter of water. Although the heating element is on for a long time, the water, though close to boiling, does not boil. When the heating element is removed, approximately how long will it take the water to cool by 1° C? (Assume that the specific heat for water is 4.2 kilojoules/kilogram °C.)
 - (A) 20 s
 - (B) 40 s
 - (C) 60 s
 - (D) 130 s
 - (E) 200 s
- 14. Two identical 1.0-kilogram blocks of copper metal, one initially at a temperature $T_1 = 0^{\circ}$ C and the other initially at a temperature $T_2 = 100^{\circ}$ C, are enclosed in a perfectly insulating container. The two blocks are initially separated. When the blocks are placed in contact, they come to equilibrium at a final temperature T_f . The amount of heat exchanged between the two blocks in this process is equal to which of the following? (The specific heat of copper metal is equal to 0.1 kilocalorie/kilogram ${}^{\circ}$ K.)
 - (A) 50 kcal
 - (B) 25 kcal
 - (C) 10 kcal
 - (D) 5 kcal
 - (E) 1 kcal

- 15. Suppose one mole of an ideal gas undergoes the reversible cycle ABCA shown in the P-V diagram above, where AB is an isotherm. The molar heat capacities are C_p at constant pressure and C_v at constant volume. The net heat added to the gas during the cycle is equal to
 - (A) RT_hV_2/V_1
 - (B) $-C_p(T_h-T_c)$
 - (C) $C_v(T_h T_c)$
 - (D) $RT_h \ln V_2/V_1 C_p(T_h T_c)$
 - (E) $RT_h \ln V_2/V_1 R(T_h T_c)$
- 16. The mean free path for the molecules of a gas is approximately given by $\frac{1}{\eta\sigma}$, where η is the number density and σ is the collision cross section. The mean free path for air molecules at room conditions is approximately
 - (A) 10^{-4} m
 - (B) 10^{-7} m
 - (C) 10⁻¹⁰ m
 - (D) 10⁻¹³ m
 - (E) 10^{-16} m

- 73. The adiabatic expansion of an ideal gas is described by the equation $PV^{\gamma} = C$, where γ and C are constants. The work done by the gas in expanding adiabatically from the state (V_i, P_i) to (V_f, P_f) is equal to
 - (A) P_fV_f
 - (B) $\frac{(P_i+P_f)}{2}(V_f-V_i)$
 - (C) $\frac{P_f V_f P_i V_i}{1 \gamma}$
 - $\text{(D)}\ \frac{P_i\left(V_f^{1+\gamma}-V_i^{1+\gamma}\right)}{1+\gamma}$
 - $(\mathsf{E})\ \frac{P_f(V_f{}^{1-\gamma}-V_i{}^{1-\gamma})}{1+\gamma}$

Questions 54-55 concern a plane electromagnetic wave that is a superposition of two independent orthogonal plane waves and can be written as the real part of $\mathbf{E} = \hat{\mathbf{x}} E_1 \exp(i[kz - \omega t]) + \hat{\mathbf{y}} E_2 \exp(i[kz - \omega t + \pi])$, where k, ω , E_1 , and E_2 are real.

- 54. If $E_2 = E_1$, the tip of the electric field vector will describe a trajectory that, as viewed along the z-axis from positive z and looking toward the origin, is a
 - (A) line at 45° to the + x-axis
 - (B) line at 135° to the + x-axis
 - (C) clockwise circle
 - (D) counterclockwise circle
 - (E) random path
- 55. If the plane wave is split and recombined on a screen after the two portions, which are polarized in the x- and y-directions, have traveled an optical path difference of $2\pi/k$, the observed average intensity will be proportional to
 - (A) $E_1^2 + E_2^2$
 - (B) $E_1^2 E_2^2$
 - (C) $(E_1 + E_2)^2$
 - (D) $(E_1 E_2)^2$
 - (E) 0
- 56. A light source is at the bottom of a pool of water (the index of refraction of water is 1.33). At what minimum angle of incidence will a ray be totally reflected at the surface?
 - (A) 0°
 - (B) 25°
 - (C) 50°
 - (D) 75°
 - (E) 90°
- 57. Consider a single-slit diffraction pattern for a slit of width d. It is observed that for light of wavelength 400 nanometers, the angle between the first minimum and the central maximum is 4×10^{-3} radians. The value of d is
 - (A) 1×10^{-5} m
 - (B) 5×10^{-5} m
 - (C) 1×10^{-4} m
 - (D) 2×10^{-4} m
 - (E) 1×10^{-3} m

27. In laboratory experiments, graphs are employed to determine how one measured variable depends on another. These graphs generally fall into three categories: linear, semilog (logarithmic versus linear), and log-log. Which type of graph listed in the third column below would NOT be the best for plotting data to test the relationship given in the first and second columns?

$\frac{\text{Relation}}{dN/dt} \propto e^{-2t}$	Variables Plotted Activity vs. time for a radioactive isotope	Type of Graph Semilog
(B) $eV_s = hf - W$	Stopping potential vs. frequency for the photoelectric effect	Linear
(C) $s \propto t^2$	Distance vs. time for an object undergoing constant acceleration	Log-log
(D) $V_{\text{out}}/V_{\text{in}} \propto 1/\omega$	Gain vs. frequency for a low-pass filter	Linear
(E) $P \propto T^4$	Power radiated vs. temperature for blackbody radiation	Log-log

28. The figure above represents the trace on the screen of a cathode ray oscilloscope. The screen is graduated in centimeters. The spot on the screen moves horizontally with a constant speed of 0.5 centimeter/millisecond, and the vertical scale is 2 volts/centimeter. The signal is a superposition of two oscillations. Which of the following are most nearly the observed amplitude and frequency of these two oscillations?

Oscillation 1	Oscillation 2
(A) 5V, 250Hz	2.5V, 1000Hz
(B) 1.5V, 250Hz	3V, 1500Hz
(C) 5V, 6Hz	2V, 2Hz
(D) 2.5V, 83Hz	1.25V, 500Hz
(E) 6.14V, 98Hz	1.35V, 257Hz

- 29. The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the physical constants G, π , and c. Which of the following correctly gives the Planck length?
 - (A) Għc
 - (B) $G\hbar^2c^3$
 - (C) $G^2 \hbar c$
 - (D) $G^{\frac{1}{2}}\hbar^2c$
 - (E) $(G\hbar/c^3)^{\frac{1}{2}}$

- 85. A free electron (rest mass $m_e = 0.5 \text{ MeV/c}^2$) has a total energy of 1.5 MeV. Its momentum p in units of MeV/c is about
- (A) 0.86 (B) 1.0

 - (C) 1.4
 - (D) 1.5 (E) 2.0