

DSC 10, Spring 2018 Lecture 18

Normal Distributions

sites.google.com/eng.ucsd.edu/dsc-10-spring-2018

Credit: Anindita Adhikari and John DeNero

Measuring Variability

Center and Spread

- The mean is a measure of center.
 - An alternative measure of center is the median.
- Different data sets can have the same mean, but different spread or variability around that mean.

Defining Variability

Plan A: "largest value - smallest value"

Defining Variability

Plan A: "largest value - smallest value"

Doesn't provide information about the shape of the distribution

Defining Variability

Plan A: "largest value - smallest value"

Doesn't provide information about the shape of the distribution

Plan B:

- Measure how far the data is from the mean
- Need a precise way to quantify this

How Far from the Average?

- Standard deviation (SD) measures roughly how far the data are from their average
- SD = root mean square of deviations from average
 4
 2
 1
- SD has the same units as the data; hence OK to say "average plus or minus a few SDs"

Discussion Question

Three gorilla siblings are 2, 3, and 4 years old.

```
What is the standard deviation of gorilla ages?
```

- A. 1
- B. 2
- C. sqrt(2)
- D. $\operatorname{sqrt}(\frac{2}{3})$
- E. None of the above.

SD = root mean square of deviations from average

Which Has Larger SD?

- A. Birth Weight (Left)
- B. Maternal Age (Right)
- C. Cannot tell from the histograms

Standard Units

Standard Units

- How many SDs above average?
- z = (value mean)/SD
 - Negative z: value below average
 - Positive z: value above average
 - \circ z = 0: value equal to average
- When values are in standard units: average = 0, SD = 1
- Most values of z are between -5 and 5 (later)

Chebyshev's Inequality

How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data falls in the range "average ± a few SDs"

Chebyshev's Inequality

No matter what the shape of the distribution, the proportion of values in the range "average $\pm z$ SDs" is

at least 1 - $1/z^2$

Chebyshev's Bounds

Range	Proportion
average ± 2 SDs	at least 1 - 1/4 (75%)
average ± 3 SDs	at least 1 - 1/9 (88.888%)
average ± 4 SDs	at least 1 - 1/16 (93.75%)
average ± 5 SDs	at least 1 - 1/25 (96%)

No matter what the distribution looks like

The Normal Distribution

The SD and the Histogram

 Usually, it's not easy to estimate the SD by looking at a histogram

But if the histogram has a bell shape, then you can

The SD and Bell-Shaped Curves

If a histogram is bell-shaped, then

the average is at the center

 the SD is the distance between the average and the points of inflection on either side

The Standard Normal Curve

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, -\infty < z < \infty$$

Question

Normal Proportions

How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data falls in the range "average ± a few SDs"

If a histogram is bell-shaped,

almost all of the data falls in the range "average ± 3 SDs"

Bounds and Normal Approximations

Percent in Range	All Distributions	Normal Distribution
average ± 1 SD	at least 0%	about 68%
average ± 2 SDs	at least 75%	about 95%
average ± 3 SDs	at least 88.888%	about 99.73%

Central Limit Theorem

If the sample is

- large, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,

the probability distribution of the sample sum (or of the sample average) is roughly bell-shaped