G ÁLGEBRA A (62) 1er PARCIAL 2do CUATRIMESTRE de 2017 Tema 1

APELLIDO

NOMBRES

DNI

1	2	3	4	NOTA

INSCRIPTO EN.				
SEDE:	DIAS:			
HORARIO:	AULA:			

INCORDATION DAY.

CORRECTOR:.....

Los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

1.- Hallar el polinomio $P \in \mathbb{R}[x]$ mónico de grado mínimo tal que las soluciones de

$$z^3 + 4i|z| = 0$$

sean raíces de P.

2.- Dadas las rectas $\mathbb{L}_1 : X = \lambda(2,0,4) + (2,0,k)$ y $\mathbb{L}_2 : X = \mu(0,2,2) + (0,2,1)$, hallar $k \in \mathbb{R}$ para que exista un plano Π que contenga a \mathbb{L}_1 y \mathbb{L}_2 y determinar una recta \mathbb{L}_3 perpendicular a Π que corte a \mathbb{L}_1 y a \mathbb{L}_2 .

3.- Hallar todos los $Q \in \mathbb{R}^3$ tal que la proyección de Q sobre el plano $\Pi: x-y+2z=2$ sea P=(3,1,0) y $d(Q,P)=\sqrt{6}$.

4.- Dada $B = \begin{pmatrix} 2 & -2 & 0 \\ 1 & -1 & k-2 \\ 1 & k-1 & 1 \end{pmatrix}$, clasificar el sistema $B\mathbf{x} = B \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ en compatible determinado, compatible indeterminado o incompatible para todos los valores de $k \in \mathbb{R}$.

A ÁLGEBRA A (62)	1^{er} PARCIAL	2 ^{do} CUATRIMEST	RE de 2016	Tema 4
APELLIDO	NOMBR	ES	DNI	

1	2	3	4	NOTA

INSCRIPTO EN:					
SEDE:	DIAS:				
HOD ADIO.	ATTLA.				

CORRECT	OR:
---------	-----

Los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

- 1.- Dado el polinomio $P(x) = x^5 10x^4 + 46x^3 99x^2 + 90x 54$, hallar todas sus raíces en \mathbb{C} si se sabe que una de sus raíces tiene módulo $3\sqrt{2}$ y argumento $\frac{\pi}{4}$.
- 2.- Un móvil M_1 se desplaza por el espacio de forma tal que, en tiempo $t \geq 0$, se encuentra en el punto t(1,1,2)+(2,1,-1). Otro móvil M_2 también se desplaza en línea recta a velocidad constante por el espacio de forma tal que en tiempo t=0 está en el punto (-2,1,-2). Si M_1 se encuentra con M_2 en un punto del plano $\Pi: -2x+y+z=1$, calcular en qué punto y para qué valor de t se encuentran. Calcular en qué punto encuentra se el móvil M_2 cuando t=10.
- 3.- El simétrico respecto de una recta \mathbb{L} del punto (2,5,0) es (0,1,-4) y el del punto (2,4,-3) es (0,2,-1). Hallar la recta \mathbb{L} .
- 4.- Determinar todos los valores de $k \in \mathbb{R}$ para los que el sistema

$$\begin{cases} x - y - 2z = 4 \\ -3x + (k^2 - 2k)y + 6z = -12 \\ 2x + (k-1)y - 4z = 8 \end{cases}$$

tiene por conjunto de soluciones a una recta. Para cada valor de k, hallar la recta correspondiente.

APELLIDO

NOMBRES

DNI

NSCR	IPTO EN)E:	DIAS:	HORARIO:	AULA:
1	2	3	4	NOTA		
ORR	ECTOR:					

Los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

- 1.- Se sabe que el polinomio $P(x) = x^4 2x^3 + 24x^2 + 4x 52$ tiene dos raíces en común con el polinomio $Q(x) = x^4 - 3x^2 + 2$. Hallar todas las raíces de P.
- 2.- Hallar todos los valores de k para los que la recta $\mathbb{L}: X = \alpha.(k^2, 5k+2, 1) + (2k+5, 3, -1)$ es paralela al plano $\Pi: X = \lambda.(1,-1,-1) + \mu.(1,2,-4) + (0,0,6)$. Para cada valor de khallado, decidir si L está incluida en Π.
- 3.- Hallar, si es posible, una recta L ⊂ R³ que cumpla simultáneamente que el simétrico de (3,2,0) con respecto a \mathbb{L} sea (-1,-2,4) y que el simétrico de (0,-2,2) con respecto a \mathbb{L} sea (2, 2, 2).
- 4.- Dado el sistema de ecuaciones

$$\begin{cases} x - 4y - z = -1\\ (k-2)x + 8y + 2z = 2\\ (k-3)x + 12y + (k^2 - 3k + 3)z = 3 \end{cases}$$

hallar todos los valores de k tales que el conjunto de soluciones del sistema es una recta en \mathbb{R}^3 .

ÁLGEBRA A (62)

1er PARCIAL CURSO DE VERANO 2016

Tema 1

APELLIDO

NOMBRES

DNI

1	2	3	4	NOTA

En cada ejercicio escriba los razonamientos que justifican la respuesta.

- 1. Hallar un polinomio $P(x) \in \mathbb{R}[x]$ de grado mínimo que tenga alguna raíz múltiple, $x_0 = 1$ sea raíz de P y las soluciones de la ecuación $\frac{\overline{z} (1 6i)}{z 2} = 1 i$ sean raíces de P.
- 2. Sean $\mathbb{L}_1 : X = \lambda(0, 4, 2) + (0, 3, 0)$, $\mathbb{L}_2 : X = \lambda(1, 0, 1)$ y $\mathbb{L}_3 : X = \lambda(0, 1, -1) + (1, 0, 4)$ tres rectas en \mathbb{R}^3 . Sea Π un plano tal que $\mathbb{L}_1 \subseteq \Pi$ y \mathbb{L}_2 es paralela a Π . Hallar $\Pi \cap \mathbb{L}_3$.
- 3: Sean $P_1 = (2,3,3)$ y P_2 el simétrico de P_1 respecto de la recta $L : \lambda(1,1,0) + (3,4,0)$. Hallar todos los puntos $Q \in L$ tales que el triángulo isósceles de vértices P_1 , P_2 y Q tiene perímetro igual a 24.
- 4. Sea $S \subseteq \mathbb{R}^3$ el conjunto de soluciones del sistema

$$\begin{cases} \alpha x & -z = 5\\ \alpha x + \beta y - z = \alpha + 1\\ & \gamma z = -6 \end{cases}$$

Hallar α , β y γ tales que $S \cap \{x \in \mathbb{R}^3 : z = 3\} \neq \emptyset$ y S tenga infinitas soluciones Para los valores hallados resolver el sistema.

C A	LGEBRA	A A	(62)	I.	PARCIAL	Je C	UATRIMESTRE I	DE 2018	Теппа 2
APE	llid o	••••		······	NOM	BRES .	1	IND	
INSC	RIPTO E	N: [SED E :		DIAS	:	HORARIO:	AU1.A	
1	2	3		4	NOTA				
	ş					1			

CORRECTOR:....

Los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

1.- Hallar la forma binómica de todos los complejos $z \in \mathbb{C}$ que satisfacen simultáneamente $(\text{Re}(z))^2 + 2\text{Re}(z) - 15 = 0$ y $\arg(z) = \arg(i.\overline{z})$.

2.- Hallar una ecuación paramétrica de la recta L incluida en el plano $\Pi: x+y-z=-1$ y que es al mismo tiempo perpendicular y transversal a la recta $L_1: X=\alpha.(-2,1,1)+(-2,-1,2)$.

3.- Sea Π el plano tal que $proy_{\Pi}(0,0,7)=(0,3,3)$. Calcular la distancia del punto P=(0,-6,-2) a Π .

4.- Dado el sistema de ecuaciones

$$\begin{cases} x + y - z = -1 \\ x + 3y + (-3k - 1)z = 0 \\ 2x + 4y + k^2z = -1 \end{cases}$$

hallar todos los valores de $k \in \mathbb{R}$ para los que el conjunto de soluciones del sistema es una recta paralela al plano $\Pi : x + 3y + 2z = 7$.

C ÁLGEBRA A (62) 1" PARCIAL 2do CUATRIMESTRE DE 2018

Tema 4

APELLIDO

NOMBRES

DNI

INSCRI	PTO EN	: SED	E:	DIAS:	HORARIO:	AULA:
1	2	3	, 4 '	NOTA		
	İ					

CORRECTOR:

Los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

1.- Sea $Q(x) = x^3 - x^2 - 3x - 9$. Hallar un polinomio $P \in \mathbb{R}[x]$ de grado mínimo que verifique que todas las raíces de Q son raíces de P y P tiene alguna raíz múltiple.

2.- Sean la recta $\mathbb{L}_1: X = \lambda(-1,2,1) + (4,-7,-3)$ y el plano $\Pi: x_1 + 2x_2 + x_3 = -1$. Hallar una recta $\mathbb{L} \subset \Pi$ tal que $\mathbb{L} \cap \mathbb{L}_1 \neq \emptyset$ y $\mathbb{L} \perp \mathbb{L}_1$.

3.- Sean P_2 el simétrico de $P_1=(-2,3,1)$ respecto de la recta $\mathbb{L}: X=\lambda(1,0,1)+(0,2,1)$ y Q_2 la proyección de $Q_1=(2,0,-2)$ sobre el plano $\Pi: -x_1+x_2+x_3=2$. Hallar una ecuación paramétrica de la recta que pasa por P_2 y Q_2 .

4.- Determinar todos los valores de $k \in \mathbb{R}$ tales que (0, -2, k, 1) es una de las infinitas

soluciones del sistema
$$AX = b$$
 con $A = \begin{pmatrix} 1 & 3 & 0 & 1 \\ 2 & 4 & k & 1 \\ k & 6 & 0 & 1 \\ 0 & 3 & 0 & 2 \end{pmatrix}$ y $b = \begin{pmatrix} -5 \\ 2 \\ -11 \\ -4 \end{pmatrix}$.

B ÁLGEBRA A (62) 1er PARCIAL 2do CUATRIMESTRE de 2019 Tema 2

APELLIDO NOMBRES DNI

1	2	3	4	NOTA

INSC	RIPTO EN:
SEDE:	DIAS:
HORARIO:	AULA:

CORRECTOR:....

Los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

- 1.- Hallar todas las soluciones en $\mathbb C$ de la ecuación $z = \overline{\left(\frac{\sqrt{2}}{2} i\frac{\sqrt{2}}{2}\right)z^2}$.
- 2.- Sean $\Pi: X = \lambda(-1,3,1) + \mu(1,1,2) + (-1,1,0)$ y $\mathbb{L}: X = \alpha(1,2,1) + (1,0,0)$. Hallar una recta $\mathbb{L}_1 \subset \Pi$ que sea perpendicular y transversal al L.
- 3.- Sea Π el plano tal que el simétrico de (2,5,-3) respecto de Π es (3,7,-4). Hallar Π y encontrar el simétrico de (0,0,0) respecto de Π .

4.- Sea

$$S: \begin{cases} x_1 - x_2 + 5x_3 & = -1\\ 2x_1 + ax_2 + 8x_3 + x_4 & = 0\\ -x_1 + (a+3)x_2 + (a-7)x_3 + 2x_4 & = 5\\ 3x_1 + (a-1)x_2 + 13x_3 + (a^2-3)x_4 & = -4a-9 \end{cases}$$

Hallar todos los valores de a para los cuales la matriz ampliada del sistema tiene rango 2 y resolver el sistema en dichos casos.

CÁ	LGEBI	RA A (62)	l" PAR	CIAL 2^{do} cuatrimes	stre de 2022	Tema 1		
APELLIDO NOMBRES DNI									
1	2	3	4	NOTA	SEDE:	SCRIP1 EN:			

CORRECTOR:....

Todos los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

HORARIO:

AULA:

1.- Sea $P(x) = x^4 + ax^3 - 4x^2 - 24x + b$. Hallar $a, b \in \mathbb{R}$ y todas las raíces del polinomio P sabiendo que -3 es raíz doble de P.

2.- Hallar todas las soluciones de la ecuación

$$z^3 + 6z = -6i(-2+i)z.$$

3.- Sean $\mathbb{L}_1: X = \lambda(0,1,2) + (3,3,k)$ y $\mathbb{L}_2: X = \mu(1,0,1) + (1,2,1)$. Encontrar, si existe, el valor de k para que exista un plano Π que contenga simultáneamente a \mathbb{L}_1 y a \mathbb{L}_2 .

4.- Sean
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1-k & k \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 1 \\ 7k \end{pmatrix}$. Hallar los valores de $k \in \mathbb{R}$ tales que $(-k, -k, 1+k)$ es la única solución del sistema $Ax = b$.

1	2	3	.4	NOTA		

INSC	RIPTO EN:		
E:	DIAS:		
RARIO:	AULA:		

CORRECTOR:....

Todos los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

1.- Hallar todos los $z \in \mathbb{C}$ que satisfacen simultáneamente

$$\begin{cases} 81z = z^9 \\ \operatorname{Re}(z) < 0 \end{cases}.$$

2.- Hallar el plano Π respecto del cual el punto P=(7,9,1) es simétrico del punto Q=(1,3,5).

3.- Hallar $a \in \mathbb{R}$ tal que la recta $\mathbb{L}: X = \alpha(2,1,4) + (2,2,3)$ es perpendicular al plano $\Pi: 5x - ay + 10z = -60$. Para el a hallado, calcular la intersección $\mathbb{L} \cap \Pi$.

4.- Dados los sistemas:

hallar todos los valores de $k \in \mathbb{R}$ para que S_1 y S_2 tengan alguna solución en común.

$\acute{\mathrm{ALGEBRA}}$ A (62)			1 ^{er} PARCIAL 2 ^{do} cuatrimestre de 2022 Tema				Tema 2	
APELI	LIDO .			. NOMI	BRES .	Di	NI	
1	2	3	4	NOTA]	INSCRII	PTO EN:	
						SEDE:	DIAS:	
		l				HOD ADIO.	ATIT A.	

CORRECTOR:.....

Todos los razonamientos usados para la resolución de los problemas deben figurar en la hoja.

- 1.- Dado el polinomio $P(x) = x^4 2x^3 + x^2 8x 12$, hallar todas sus raíces en $\mathbb C$ si se sabe que tiene una raíz en común con el polinomio $Q(x) = x^2 ix + 6$.
- 2.- Hallar todas las soluciones en $\mathbb C$ de la ecuación $i\overline{z}^5-625z=0$ tales que $Re(z)\geq 0$.
- 3.- Sean $\Pi_1: x+y-z=1$ y $\Pi_2: 2x-y+z=8$. Si $\mathbb{L}=\Pi_1\cap\Pi_2$, encontrar el punto de intersección de \mathbb{L} con el plano $\Pi: z=0$.
- **4.-** Sea $\mathbb{S} = \{x \in \mathbb{R}^3 : x_1 + 2x_2 x_3 = 0, 3x_1 + kx_2 3x_3 = 0\}$. Determinar para cada $k \in \mathbb{R}$ la dimensión del subespacio \mathbb{S} .