

DMA: Logic

Laura Mančinska Institut for Matematiske Fag

Plan for today

- Logical propositions (statements)
- Logical operations: AND, OR, NOT, IMPLIES
- Logically equivalent propositions
- Truth tables

Reading for today: KBR 2.1–2.2

Logical propositions

A proposition or statement is a declarative sentence that is either true or false.

Examples:

- 25 is divisible by 5 (true)
- gcd(24,18) = 4 (false)
- Someone in this class has a birthday today (?)

Nonexamples:

- Math is beautiful (subjective)
- Is it your birthday today? (question)
- Have some cake! (not a declaration)

We use propositional variables, for example, p, q, r, to represent propositions.

Forming new (compound) statements

 We combine algebraic expressions using arithmetic operations like +, ×, – to form new expressions:

$$(5x+5)\times(3-5y)$$

 Similarly, we can combine propositions using logical operations (∧, ∨, ~, ⇒, ⇔ etc.) to get new ones:

$$(q \lor p) \land (\sim q) \land (r \lor r)$$

Logical operations: AND, OR, NOT

- Conjunction: p ∧ q
 Pronounced: p and q
 True if p and q are both true. Otherwise false.
- Disjunction: p v q
 Pronounced: p or q
 True if at least one of p, q is true. Otherwise false
- Negation: ~p
 Pronounced: not p
 True if p is false. False if p is true.

Note: In contrast to logic, in every day speech "or" is sometimes used in an exclusive manner:

"You may have chicken or you may have fish."

Exclusive OR: p xor q
 True if exactly one of p, q is true. Otherwise false.

Example

- p: Bob is younger than Alice
- q: Bob is Alice's brother

Which of the following English sentences correctly describe

$$(\sim p) \land q$$

- Bob is not younger than Alice; also Bob is Alice's brother.
- 2 Bob is older than his sister Alice.
- Bob is at least as old as his sister Alice.

Can you spot a mistake?

Truth tables

A truth table gives the truth value (T/F) of a (compound) statement for all possible values of propositional variables.

p	q	$p \wedge q$	$p \vee q$	~p
F	F	F	F	Т
F	T	F	Т	Т
Т	F	F	Т	F
Т	Т	Т	Т	F

Lets find the truth table for the proposition $\sim p \land (p \lor q)$

р	q	~p	$p \vee q$	$\sim p \wedge (p \vee q)$
F	F	T	F	F
F	Т	Т	Т	Т
Т	F	F	Т	F
Т	Т	F	Т	F

Logical operations. Implication: $p \Rightarrow q$

Pronounced: "p implies q" / "if p then q"

p	q	$p \Rightarrow q$
F	F	Т
F	Т	T
Т	F	F
Т	Т	T

Notes:

- p is called hypothesis and q is called conclusion.
- Examples: If pigs can fly, then 2+2=5.

If pigs can fly, then 2+2=4.

If it rains tomorrow, then 2 is the smallest prime.

What are the truth values of the above propositions?

Contrapositive and converse

Def. Consider implication $p \Rightarrow q$. Its converse is $q \Rightarrow p$ and its contrapositive is $(\sim q) \Rightarrow (\sim p)$.

Example.

Implication: "If I'm hungry, then I'm grumpy."

Converse: "If I'm grumpy, then I'm hungry."

Contrapositive: "If I'm not grumpy, then I'm not hungry."

Question. Consider implication $p \Rightarrow q$.

- Does its converse, q ⇒ p, express the same thing?
- How about its converse, $(\sim q) \Rightarrow (\sim p)$?

Logical operations: $p \Leftrightarrow q$

Pronounced: "p is equivalent to q" / "p if and only if q" True if p and q have the same truth value. Otherwise false.

р	q	$p \Leftrightarrow q$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

Notes:

- If p ⇔ q is a true statement, then we say that p and q are (logically) equivalent and write p ≡ q.
- What is the difference between

$$p \Leftrightarrow q$$
 and $p \equiv q$?

Example: Logical equivalence

- Lets find the truth table for the contrapositive of $p \Rightarrow q$
- The contrapositive statement is $(\sim q) \Rightarrow (\sim p)$

p	q	~q	~p	$(\sim q) \Rightarrow (\sim p)$	$p \Rightarrow q$
F	F	Т	Т	Т	Т
F	Т	F	Т	T	T
Т	F	Т	F	F	F
Т	Т	F	F	Т	Т

Conclusion:
$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

In words: Truth values of an implication and its contrapositive are always the same.

Q: Are the truth values of an implication and its **converse** also always the same?

Tautology

Def. A tautology is a (compound) statement that is always true.

Example.

Let's find the truth table for $(p \Rightarrow q) \Leftrightarrow ((\sim p) \lor q)$

p	q	~p	$(\sim p) \vee q$	$p \Rightarrow q$	$(p \Rightarrow q) \Leftrightarrow ((\sim p) \vee q)$
F	F	Т	Т	Т	T
F	Т	Т	Т	Т	Т
Т	F	F	F	F	Т
Т	Т	F	Т	Т	Т

Note:
$$(p \Rightarrow q) \equiv ((\sim p) \lor q)$$

In general: $r \equiv s$ precisely when $r \Leftrightarrow s$ is a tautology.

Absurdity

Def. An absurdity is a (compound) statement that is always false.

Example: $p \land (\sim p)$ is an absurdity (check!)

Exercise (electronic circuits)

p	q	p⊙q
F	F	Т
F	T	Т
Т	F	Т
Т	Т	F

Alternatively, we can define \odot as

$$\mathfrak{p} \odot \mathfrak{q} \equiv \sim (\mathfrak{p} \wedge \mathfrak{q})$$

Task: Find an equivalent expression for \Rightarrow (implies) using only \bigcirc , \sim (not).

You should be able to:

- Rewrite simple declarative sentences using logical expressions.
- Translate logical expressions into everyday language.
- Calculate the truth table of a compound proposition (logical formula).
- Recognize logically equivalent propositions.

Exercises

Are Alice and Bob saying the same thing?

Alice: If it is raining, then I'll go home.

Bob: If I don't go home, then it is not raining.

Yes, since one statement is the contrapositive of the other and $(p \Rightarrow q) \equiv ((\sim p) \Rightarrow (\sim q))$.

Are Alice and Bob saying the same thing?

Alice: If you pass all of the weekly

assignments, then you pass DMA.

Bob: If you don't pass all of the weekly

assignments, then you don't pass DMA.

No! In general, $(p \Rightarrow q) \not\equiv ((\sim p) \Rightarrow (\sim q))$. Check!

Properties of AND, OR, NOT [Thm 2.2.1]

- (1) $p \vee q \equiv q \vee p$
- (2) $p \wedge q \equiv q \wedge p$
- (3) $p \lor (q \lor r) \equiv (p \lor q) \lor r$
- (4) $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$
- (5) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- (6) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- $(7) \sim (\sim p) \equiv p$
- (8) $\sim (p \vee q) \equiv (\sim p) \wedge (\sim q)$
- (9) $\sim (p \wedge q) \equiv (\sim p) \vee (\sim q)$

We can prove the above by comparing the truth tables of LHS and RHS.

Properties invloving \Rightarrow and \Leftrightarrow [Thm. 2.2.2]

(a)
$$(p \Rightarrow q) \equiv ((\sim p) \lor q)$$

(b)
$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

(c)
$$(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

(d)
$$\sim (p \Rightarrow q) \equiv (p \land (\sim q))$$

(e)
$$\sim (p \Leftrightarrow q) \equiv (p \land (\sim q)) \lor (q \land (\sim p))$$

We have already proven (a) and (b). Items (d) and (e) can be proven using statements from 2.2.1.

Thm 2.2.4 gives more properties

