LCD Segment / Common Driver with Controller CMOS

MC141532 / MC141533 is a CMOS LCD Driver which consists of 4 annunciator outputs and 153 high voltage LCD driving signals (33 commons and 120 segments). MC141532 is one sided common output while MC141533 is split common output design. It has parallel interface capability for operating with general MCU. Besides the general LCD driver features, it has an on chip LCD bias Voltage Generator circuit such that fewer external components are required during application.

- Single Supply Operation, 2.4 V 3.5 V
- Operating Temperature Range : -30 to 85°C
- Low Current Stand-by Mode (<500nA)
- · On Chip Bias Voltage Generator
- · 8 Bit Parallel Interface
- Graphic Mode Operation
- On Chip 120 x 33 Graphic Display Data RAM
- 120 Segment Drivers, 33 Common Drivers
- Selectable 1/16, 1/32, 1/33 Multiplex Ratio
- · Selectable on Chip Voltage Doubler and Tripler
- Selectable 1:5 or 1:7 Bias Ratio
- · Re-mapping of Row and Column Drivers
- · Four Stand Alone Annunciator (Static Icon) Driver Circuits
- · Low Power Icon Mode Driven by Com32 in Special Driving Scheme
- Selectable LCD Driving Voltage Temperature Coefficients
- 16 Level Internal Contrast Control
- External Contrast Control Provided
- Master Clear RAM
- Standard TAB, Gold Bump Die

MC141532 MC141533

REV 12 2/98

MC141532 • MC141533 3-46

MC141532T PIN ASSIGNMENT (COPPER VIEW)

Alignment Mark Co-ordination

X (μm)	Y(µm)
-2625.2	-78
-2625.2	22
-2525.2	22
-2525.2	-26
-2575.2	-26
-2575.2	-78
-2436.8	-75.8
4360.2	-186.7
4360.2	-138.7
4410.2	-138.7
4410.2	-86.7
4460.2	-86.7
4460.2	-186.0
4421.6	14.0
116	
-72.6	4802.2
27.4	4802.2
27.4	4702.2
-72.6	4702.2
490.6	4866.2
636.2	4867.2
636.2	4824.8
490.6	4674.6
	-2625.2 -2625.2 -2525.2 -2525.2 -2575.2 -2575.2 -2436.8 4360.2 4410.2 4410.2 4460.2 4460.2 4421.6 116 -72.6 27.4 27.4 -72.6 490.6 636.2 636.2

O₁ and O₂ are the centers of the circular alignment marks which diameter is d.

MC141532 Die Pin Assignment

MC141533 Die Pin Assignment

MC141532 • MC141533 MOTOROLA 3–48

^{*} Areas not shown in the figure also with gold bumps

MAXIMUM RATINGS* (Voltages Referenced to V_{SS}, T_A=25°C)

Symbol	Parameter	Value	Unit
AV _{DD} ,DV _{DD}	Supply Voltage	-0.3 to +4.0	٧
V _{CC}		V _{SS} -0.3 to V _{SS} +10.5	٧
V _{in}	Input Voltage	V _{SS} -0.3 to V _{DD} +0.3	٧
I	Current Drain Per Pin Excluding V_{DD} and V_{SS}	25	mA
T _A	Operating Temperature	-30 to +85	,C
T _{stg}	Storage Temperature Range	-65 to +150	ŷC

^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

$$\begin{split} &V_{SS} = AV_{SS} = DV_{SS} \text{ (DV}_{SS} = V_{SS} \text{ of Digital circuit, } AV_{SS} = V_{SS} \text{ of Analogue Circuit)} \\ &V_{DD} = AV_{DD} = DV_{DD} \text{ (DV}_{DD} = V_{DD} \text{ of Digital circuit, } AV_{DD} = V_{DD} \text{ of Analogue Circuit)} \end{split}$$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} <$ or = $(V_{in}$ or $V_{out}) <$ or = V_{DD} . Reliability of operation is enhanced if unused input are connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

ELECTRICAL CHARACTERISTICS (Voltage Referenced to V_{SS}, T_A=25°C)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
V _{DD}	Supply voltage (Absolute value Referenced to V _{SS})	$AV_{DD} = DV_{DD}$	2.4	3.15	3.5	٧
I _{AC}	Supply Current (Measure with V _{DD} fixed at 3.15V) Access Mode Supply Current Drain from Pin AVDD and DVDD.	Internal DC/DC Converter On, Display On, Tripler Enable, R/W Accessing, T _{cyc} =1MHz, Osc. Freq.=50kHz, 1/33 Duty Cycle,1/7 Bias.	0	200	300	μА
I _{DP1}	Display Mode Supply Current Drain from Pin AVDD and DVDD.	Internal DC/DC Converter On, Display On, Tripler Enable, R/W Halt, Osc. Freq.=50kHz, 1/33 Duty Cycle,1/7 Bias.	0	80	150	μА
I _{DP2}	Display Mode Supply Current Drain from Pin AVDD and DVDD	Internal DC/DC Converter On, Display On, Tripler Enable, R/W Halt, Osc. Freq.=38.4kHz, 1/33 Duty Cycle.1/7 Bias.	0	60	100	μΑ
I _{SB1}	Stand-by Mode Supply Current Drain from Pin AVDD and DVDD	Display Off, Oscillator Disabled, R/W Halt	0	300	500	nA
I _{SB2}	Stand-by Mode Supply Current Drain from Pin AVDD and DVDD.	Display Off, Oscillator Enable, R/W Halt, External Oscillator and Frequency = 50kHz.	0	2.5	5	μΑ
I _{SB3}	Stand-by Mode Supply Current Drain from Pin AVDD and DVDD.	Display Off, Oscillator Enable, R/W Halt, Internal Oscillator and Frequency = 50kHz.	0	5	10	μΑ
I _{ICON}	Stand-by Mode Supply Current Drain from Pin AVDD and DVDD	Low Power Icon Mode, Oscillator Enable, R/W Halt, Internal Oscillator and Frequency = 50kHz	-	15	25	μА
V _{CC1}	VLCD Voltage (Absolute Value Referenced to V _{SS}) LCD Driving Voltage Generator Output Voltage at Pin V _{CC} .	Display On, Internal DC/DC Converter Enabled, Tripler Enable, Osc. Freq. = 50kHz, Regulator Enabled, Divider Enabled lout <= 100µA	-	3*DV _{DD}	10.5	٧
V _{CC2}	LCD Driving Voltage Generator Output Voltage at Pin V _{CC} .	Display On, Internal DC/DC Converter Enabled, Doubler Enable, Osc. Freq. = 50kHz, Regulator Enabled, Divider Enabled lout <= 100µA	-	2*DV _{DD}	7	V
V _{LCD}	LCD Driving Voltage input at pin V _{CC} .	Internal DC/DC Converter Disabled.	5	-	10.5	v
V _{OH1}	Output Voltage Output High Voltage at Pins D0-D7, Annun0-3, BP and OSC2.	I _{out} =100μA	0.8*V _{DD}	-	V _{DD}	٧
V _{OL1}	Output Low Voltage at Pins D0-D7, Annun0-3, BP and OSC2.	l _{out} =100μA	0	-	0.2*V _{DD}	V
V _{R1} V _{R2}	LCD Driving Voltage Source at Pin VR LCD Driving Voltage Source at Pin VR	Regulator Enabled, I _{out} =50μA Regulator Disabled	0 -	- Floating	V _{CC}	V V
V _{IH1}	Input Voltage Input High Voltage at Pins RES, CE, CS, D0-D7, R/W. D/C. OSC1 and OSC2.		0.8*V _{DD}	-	V _{DD}	V
V _{IL1}	Input Low Voltage at Pins RES, CE, CS, D0-D7, R/W, D/C, OSC1 and OSC2.		0	-	0.2*V _{DD}	V

ELECTRICAL CHARACTERISTICS (Voltage Referenced to V_{SS} , DV_{DD} =2.4-3.15V, T_A =25°C)

CD Display Voltage. (LCD Driving Voltage Output from ins VLL6, VLL5, VLL4, VLL3 and VLL2.)	1/5 Bias Ratio, Voltage Divider Enabled, Regulator Enabled. 1/7 Bias Ratio, Internal Voltage Divider Enabled, Regulator Enabled External Voltage Generator, Internal Voltage Divider Disable	- - - - - - - - - - - - - - - - - - -	V _R 0.8*V _R 0.6*V _R 0.4*V _R 0.2*V _R V _R 6/7*V _R 5/7*V _R 4/7*V _R 1/7*V _R -	- - - - - - - - - - - - - - - - - - -	V V V V V V V V V V V V V V V V V V V
ns VLL6, VLL5, VLL4, VLL3 and VLL2.)	tor Enabled. 1/7 Bias Ratio, Internal Voltage Divider Enabled, Regulator Enabled External Voltage Generator, Internal Voltage		0.8*V _R 0.6*V _R 0.4*V _R 0.2*V _R V _R 6/7*V _R 5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - - - - V _{CC}	V V V V V V V V V V V V V V V V V V V
	Regulator Enabled External Voltage Generator, Internal Voltage		0.6*V _R 0.4*V _R 0.2*V _R V _R 6/7*V _R 5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - - - - V _{CC}	V V V V V V V V
	Regulator Enabled External Voltage Generator, Internal Voltage		0.4*V _R 0.2*V _R V _R 6/7*V _R 5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - - - - V _{CC}	V V V V V V V V V V V V V V V V V V V
	Regulator Enabled External Voltage Generator, Internal Voltage		0.2*V _R V _R 6/7*V _R 5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - - - - V _{CC}	V V V V V V
	Regulator Enabled External Voltage Generator, Internal Voltage		V _R 6/7*V _R 5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - - - - V _{CC}	V V V V V V V
	Regulator Enabled External Voltage Generator, Internal Voltage		6/7*V _R 5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - - V _{CC}	V V V V
	Regulator Enabled External Voltage Generator, Internal Voltage	- - - - - 0.5V _{CC} 0.5V _{CC}	6/7*V _R 5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - - V _{CC}	V V V V
	External Voltage Generator, Internal Voltage	0.5V _{CC}	5/7*V _R 4/7*V _R 3/7*V _R 2/7*V _R	- - - - - V _{CC}	V V V V
	1	0.5V _{CC}	4/7*V _R 3/7*V _R 2/7*V _R	- - - - V _{CC}	V V V
	1	0.5V _{CC}	3/7*V _R 2/7*V _R	- - - V _{CC}	V V
	1	0.5V _{CC}	2/7*V _R	- - V _{CC}	V
	1	0.5V _{CC}		- V _{CC}	V
	1	0.5V _{CC}		V _{CC}	l
	1	0.5V _{CC}	-	VCC	l
	Divider disable		-	I 1/	Ιv
		1 0.5 000	_	V _{CC}	ľv
		V _{SS}		0.5V _{CC}	ľv
1.10				0.57	ľv
		V SS		0.5700	_ <u>`</u>
•					١.
Output High Current Source from Pins D0-D7, Annun0-3, BP and OSC2		100	-	-	μΑ
Output Low Current Drain by Pins D0-D7,	V _{out} =0.4V.	-	-	-100	μΑ
Annun0-3, BP and OSC2					1
Output Tri-state Current Drain Source at pins D0-		-1	-	1	μΑ
D7 and OSC2					
put Current at pins RES, CE, CS, D0-D7, R/W, D/C SC1 and OSC2.		-1	-	1	μА
n Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins (V _{LL2} to V _{LL6}).	During Display on, 0.1V Apply between Two Terminals, V_{CC} within Operating Voltage Range.	-	-	10	kΩ
emory Retention Voltage (DV _{DD}) Standby Mode, Retained All Internal Configuration and RAM Data		1.8	-	-	٧
put Capacitance All Control Pins		-	5	7.5	pF
emperature Coefficient Compensation					
Flat Temperature Coefficient	TC1=0, TC2=0, Voltage Regulator Disabled.	-	0.0	-	%
Temperature Coefficient 1*	TC1=0, TC2=1, Voltage Regulator Enabled.	-	-0.18	-	%
Temperature Coefficient 2*	TC1=1, TC2=0, Voltage Regulator Enabled.	-	-0.22	-	%
Temperature Coefficient 3*	TC1=1, TC2=1, Voltage Regulator Enabled.	-	-0.35	-	%
ternal Contrast Control VR Output Voltage with Internal Contrast Control Selected. 16 Voltage Levels Controlled by Software. Each Level is Typical of 2.25% of the Regu-	Internal Regulator Enabled, Internal Contrast Control Enabled.	-	±18	-	%
_ps_n	Output Low Current Drain by Pins D0-D7, Annun0-3, BP and OSC2 Output Tri-state Current Drain Source at pins D0-D7 and OSC2 out Current at pins RES, CE, CS, D0-D7, R/W, D/C CC1 and OSC2. Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins (V _{LL2} to V _{LL6}). Imory Retention Voltage (DV _{DD}) Standby Mode, Retained All Internal Configuration and RAM Data out Capacitance All Control Pins Internative Coefficient Compensation Flat Temperature Coefficient 1* Temperature Coefficient 2* Temperature Coefficient 3* ernal Contrast Control VR Output Voltage with Internal Contrast Control Selected. 16 Voltage Levels Controlled by Software. Each Level is Typical of 2.25% of the Regu-	Output High Current Source from Pins D0-D7, Annun0-3, BP and OSC2 Output Low Current Drain by Pins D0-D7, Annun0-3, BP and OSC2 Output Tri-state Current Drain Source at pins D0-D7 and OSC2 Int Current at pins RES, CE, CS, D0-D7, R/W, D/C ic1 and OSC2. Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins (V _{LL2} to V _{LL6}). Imory Retention Voltage (DV _{DD}) Standby Mode, Retained All Internal Configuration and RAM Data Int Capacitance All Control Pins Internal Coefficient Compensation Flat Temperature Coefficient 1* Temperature Coefficient 2* Temperature Coefficient 3* TC1=0, TC2=0, Voltage Regulator Disabled. TC1=1, TC2=1, Voltage Regulator Enabled. TC1=1, TC2=1, Voltage Regulator Enabled. TC1=1, TC2=1, Voltage Regulator Enabled. Internal Regulator Enabled, Internal Contrast Control Selected. 16 Voltage Levels Controlled by Soft-	tput Current Output High Current Source from Pins D0-D7, Annun0-3, BP and OSC2 Output Low Current Drain by Pins D0-D7, Annun0-3, BP and OSC2 Output Tri-state Current Drain Source at pins D0-D7 and OSC2 Output Tri-state Current Drain Source at pins D0-D7 and OSC2 Tut Current at pins RES, CE, CS, D0-D7, R/W, D/C C1 and OSC2. Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins (V _{LL2} to V _{LL6}). Torny Retention Voltage (DV _{DD}) Standby Mode, Retained All Internal Configuration and RAM Data Tut Capacitance All Control Pins Temperature Coefficient Temperature Coefficient Temperature Coefficient 2* Temperature Coefficient 2* Temperature Coefficient 3* Temperature Coefficient 3* Temperature Coefficient Control Selected. 16 Voltage Levels Controlled by Soft- Internal Regulator Enabled, Internal Contrast Control Enabled. Tornel Contrast Control Selected. 16 Voltage Levels Controlled by Soft-	tiput Current Output High Current Source from Pins D0-D7, Annun0-3, BP and OSC2 Output Low Current Drain by Pins D0-D7, Annun0-3, BP and OSC2 Output Tri-state Current Drain Source at pins D0-D7 and OSC2 ut Current at pins RES, CE, CS, D0-D7, R/W, D/C C1 and OSC2. Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins (V _{LL2} to V _{LL6}). mory Retention Voltage (DV _{DD}) Standby Mode, Retained All Internal Configuration and RAM Data ut Capacitance All Control Pins mperature Coefficient Compensation Flat Temperature Coefficient 1* Temperature Coefficient 2* Temperature Coefficient 3* TC1=0, TC2=0, Voltage Regulator Disabled. TC1=1, TC2=0, Voltage Regulator Enabled. TC1=1, TC2=1, Voltage Regulator Enabled. TC1=1, T	tput Current Output High Current Source from Pins D0-D7, Annun0-3, BP and OSC2 Output Low Current Drain by Pins D0-D7, Annun0-3, BP and OSC2 Output Tri-state Current Drain Source at pins D0-D7 and OSC2 Output Tri-state Current Drain Source at pins D0-D7 and OSC2 Ut Current at pins RES, CE, CS, D0-D7, R/W, D/C iC1 and OSC2. Resistance Channel Resistance between LCD Driving Signal Pins (SEG and COM) and Driving Voltage Input Pins (V _{LL2} to V _{LL6}). mory Retention Voltage (DV _{DD}) Standby Mode, Retained All Internal Configuration and RAM Data ut Capacitance All Control Pins mperature Coefficient Compensation Flat Temperature Coefficient 1* Temperature Coefficient 2* Temperature Coefficient 2* Temperature Coefficient 3* TC1=0, TC2=0, Voltage Regulator Disabled. TC1=1, TC2=0, Voltage Regulator Enabled. TC1=1, TC2=1, Voltage Regulator Enabled. TC1

^{*} The formula for the temperature coefficient is:

$$TC(\%) = \frac{VR \text{ at } 50^{\circ}C - VR \text{ at } 0^{\circ}C}{50^{\circ}C - 0^{\circ}C} X \frac{1}{VR \text{ at } 25^{\circ}C} X100\%$$

MOTOROLA

ELECTRICAL CHARACTERISTICS (Voltage Referenced to V_{SS} , AV_{DD} = DV_{DD} =2.4 to 3.5V, T_A =25°C)

Total variation of VR $\Delta V_{\mbox{\scriptsize RT}}$ is affected by the following factors :

Process variation of Regulator ΔV_R External V_{DD} Variation contributed to Regulator ΔV_{VDD}

External resistor pair Ra/Rf contributed to Regulator ΔV_{res}

where
$$\Delta V_{RT} = \sqrt{\left(\Delta V_{R}\right)^{2} + \left(\Delta V_{V_{DD}}\right)^{2} + \left(\Delta V_{res}\right)^{2}}$$

Assume external V_{DD} variation is $\pm 6\%$ at 3.15V and 1% variation resistor used at application

	TC Level	ΔV _{VDD} (%)	ΔV _R (%)	ΔV _{res} (%)	ΔV _{RT} (%)
	TC0	±6.0			±6.652
Reference	TC1	±4.0	±2.5	±1.414	±4.924
Generator	TC2	±2.5		II.414	±3.805
	TC3	±1.4			±3.195

AC ELECTRICAL CHARACTERISTICS ($T_A=25$ °C, Voltage referenced to V_{SS} , $V_{DD}=2.4$ to 3.15V)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
_	Oscillation Frequency.	Set Clock Frequency to Slow		38.4		1411=
F _{OSC1}	Oscillation Frequency of Display Timing Generator with 60Hz Frame Frequency.		-	38.4	-	kHz
F _{ANN1}	Annunciator Display (50% duty cycle) from Pins Annun0-3 and BP		-	18.75	-	Hz
F _{FRM1}	LCD Driving Signal Frame Frequency.	Either External Clock Input or Internal Oscillator Enable, Either 1/32 or 1/16 Duty Cycle, Graphic Display Mode.	-	66	-	Hz
F _{CON1}	LCD Driving Signal Frame Frequency.	Either External Clock Input or Internal Oscillator Enable, 1/33 Duty Cycle, Graphic Display Mode.	-	64	-	Hz
	Oscillation Freq.	Set Clock Frequency to Normal				
Fosc ₂	Oscillation Frequency of Display Timing Generator with 60Hz Frame Frequency.		-	50	-	kHz
F _{ANN2}	Annunciator Display Frequency (with 50% duty cycle) from Pins Annun0-3 and BP		-	24.4	-	Hz
F _{FRM2}	LCD driving Signal Frame Frequency.	Either External Clock Input or Internal Oscillator Enable, Either 1/32 or 1/16 Duty Cycle.	-	65	-	Hz
F _{CON2}	LCD driving Signal Frame Frequency.	Either External Clock Input or Internal Oscillator Enable, 1/33 Duty Cycle.	-	63	-	Hz
OSC	Internal Oscillation Frequency Internal OSC Oscillation Frequency with Different Value of Feedback Resistor.	Internal Oscillator Enabled. V _{DD} within Operation Range.	See Fig	jure 1 for th	ne relation	ıship

Set Clock Frequency to Slow : $F_{FRM1} = F_{OSC1}/576$ Set Clock Frequency to Normal : F_{FRM2}=F_{OSC2}/768

Figure 1. Internal Oscillator Frequency Relationship with External Resistor Value

AC OPERATION CONDITIONS AND CHARATERISTICS

ELECTRICAL CHARACTERISTICS LCD Panel driving signal timing (T_A =-30 to 85°C, V_{DD} = 2.4 to 3.5V, V_{SS} = 0V)

Figure 2. LCD Driving Signal Timing Diagram

MC141532 • MC141533 MOTOROLA 3–52

TABLE 2a. Parallel Timing Characteristics (Write Cycle) (T_A =-30 to 85°C, DV_{DD} =2.4 to 3.5V, V_{SS} =0V)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Enable Cycle Time	600	-	-	ns
t _{EH}	Enable Pulse Width	290	-	-	ns
t _{AS}	Address Setup Time	5	-	-	ns
t _{DS}	Data Setup Time	290	-	-	ns
t _{DH}	Data Hold Time	20	-	-	ns
t _{AH}	Address Hold Time	20	-	-	ns

Figure 3. Timing Characteristics (Write Cycle)

TABLE 2b. Parallel Timing Characteristics (Read Cycle) (T_A =-30 to 85°C, DV_{DD} =2.4 to 3.5V, V_{SS} =0V)

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Enable Cycle Time	600	-	-	ns
t _{EH}	Enable Pulse Width	290	-	-	ns
t _{AS}	Address Setup Time	5	-	-	ns
t _{DS}	Data Setup Time	-	-	290	ns
t _{DH}	Data Hold Time	10	-	-	ns
t _{AH}	Address Hold Time	20	-	-	ns

Figure 4. Timing Characteristics (Read Cycle)

PIN DESCRIPTIONS

D/C (Data / Command)

This input pin let the driver distinguish the input at D0-D7 is data or command. Input High for data while input Low for command.

CS (CLK) (Chip Select / Input Clock)

This pin is normal Low clock input. Data on D0-D7 is latched at the falling edge of $\overline{\text{CS}}$.

RES (Reset)

An active Low pulse to this pin reset the internal status of the driver (same as power on reset). The minimum pulse width is $10~\mu s$.

CE (Chip Enable)

HIGH input to this pin to enable the control pins on the driver.

D0-D7

This bi-directional bus is used for data / command transferring.

R/W (Read/Write)

This is an input pin. To read the display data RAM or the internal status (Busy / Idle), pull this pin High. The R/W input Low indicates a write operation to the display data RAM or to the internal setup registers.

OSC1 (Oscillator Input)

For internal oscillator mode, this is an input for the internal low power RC oscillator circuit. In this mode, an external resistor of certain value is placed between the OSC1 and OSC2 pins for a range of internal operating frequencies (refer to Figure 1). For external oscillator mode, OSC1 should be left open.

OSC2 (Oscillator Output / External Oscillator Input)

This is an output for the internal low power RC oscillator circuit. For external oscillator mode, OSC2 will be an input pin for external clock and no external resistor is needed.

VLL6 - VLL2

Group of voltage level pins for driving the LCD panel. They can either be connected to external driving circuit for external bias supply or connected internally to built-in divider circuit. For internal Voltage Divider enabled, a capacitor to AV_{SS} is required on each pin.

DUM1 and DUM2

If internal Voltage Divider is enabled with 1/7 bias selected, a capacitor to $\rm AV_{SS}$ is required on each pin. Otherwise, pull these two pin to $\rm AV_{SS}$

C1N and C1P

If Internal DC/DC Converter is enabled, a capacitor is required to connect these two pins.

C2N and C2P

If internal Tripler is enabled, a capacitor is required between these two pins. Otherwise, leave these pin open.

C+ and C-

If internal divider circuit is enabled, a capacitor is required to connect between these two pins.

VR and VF

This is a feedback path for the gain control (external contrast control) of VLL1 to VLL6. For adjusting the LCD driving voltage, it requires a feedback resistor placed between VR and VF, a gain control resistor placed between VF and AVSS, a 10 μF capacitor placed between VR and AVSS. (Refer to the Application Circuit)

COM0-COM32 (Row Drivers)

These pins provide the row driving signal to LCD panel. Com0-Com31 are used in 32 mux configuration. Com0-Com15 are used in 16 mux and no row remap configuration while Com16-Com31 are used in 16 mux with row remap configuration. Com32 is used to drive the non-static icons in 33 Mux. They output 0V during display off. (Note: The IC facilitates two Com32 pins, which output same signal, for the LCD panel layout flexibility.)

SEG0-SEG119 (Column Drivers)

These 120 pins provide LCD column driving signal to LCD panel. They output 0V during display off.

BP (Annunciator Backplane)

This pin combines with Annun0-Annun3 pins to form annunciator driving part. When the annunciator circuit is enabled, it will output square wave of F_{ANNn} Hz. It outputs low when oscillator is disabled.

Annun0 - Annun3 (Annunciator Frontplanes)

These pins are four independent annunciator driving outputs. The enabled annunciator outputs from its corresponding pin a F_{ANNn} Hz square wave which is 180 degrees out of phase with BP. Disabled annunciator output from its corresponding pin an square wave inphase with BP. When oscillator is disabled, all these pins output 0V.

AVDD and AVSS

AVDD is the positive supply to the noise sensitive circuitry in LCD Driver and should be at same level as DVDD. AVSS is ground.

VCC

For using the Internal DC/DC Converter, a 0.1 μ F capacitor from this pin to AVSS is required. It can also be an external bias input pin if Internal DC/DC Converter is not used. Positive power is supplied to the LCD Driving Level Selector and HV Buffer Cell with this pin. Normally, this pin is not intended to be a power supply to other component.

DVDD and **DVSS**

Power is supplied to the digital control circuit and other circuitry in LCD bias Voltage Generator of the driver using these two pins. DVDD is power and DVSS is ground.

OPERATION OF LIQUID CRYSTAL DISPLAY DRIVER

Description of Block Diagram Module

Command Decoder and Command Interface

This module determines whether the input data is interpreted as data or command.

Data is directed to this module based upon the input of the D/C pin. If D/C high, data is written to Graphic Display Data RAM (GDDRAM). D/C low indicates that the input at D0-D7 is interpreted as a Command.

CE is the master chip selection signal. A High input enable the input lines ready to sample signals. Reset is of same function as Power ON Reset (POR). Once RES received the reset pulse, all internal circuitry will back to its initial status. Refer to Command Description section for more information.

MPU Parallel Interface

The parallel interface consists of 8 bi-directional data lines (D0-D7), R/W, and the CS. The R/W input High indicates a read operation from the Graphic Display Data RAM (GDDRAM). R/W input Low indicates a write to Display Data RAM or Internal Command Registers depending on the status of D/C input. The CS input serves as data latch signal (clock). Refer to AC operation conditions and characteristics section for Parallel Interface Timing Description.

Graphic Display Data RAM (GDDRAM)

The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is determined by number of row times the number of column (120x33 = 3960 bits). Figure 5 is a description of the GDDRAM address map. For mechanical flexibility, re-mapping on both Segment and Common outputs are provided.

Figure 5. Graphic Display Data RAM (GDDRAM) Address Map

MOTOROLA

MC141532 • MC141533 3–56

Display Timing Generator

This module is an on chip low power RC oscillator circuitry (Figure 6). The oscillator frequency can be selected in the range of 15 kHz to 50 kHz by external resistor. One can enable the circuitry by software command. For external clock provided, feed the clock to OSC2 and leave OSC1 open.

Annunciator Control Circuit

The LCD waveform of the 4 annunciators and BP are generated by this module. The 4 independent annunciators are enabled by software command. Annunciator is also controlled by oscillator circuit too. Annunciator output waveform shown in Figure 7.

Figure 6. Oscillator Circuitry

LCD Driving Voltage Generator

This module generates the LCD voltage needed for display output. It takes a single supply input and generate necessary bias voltages. It consists of:

- Voltage Doubler and Voltage Tripler
 To generate the Vcc voltage. Either Doubler or Tripler can be enabled.
- 2. Voltage Regulator

Feedback gain control for initial LCD voltage. it can also be used with external contrast control.

- 3. Voltage Divider
 - Divide the LCD display voltage (V_{LL2} - V_{LL6}) from the regulator output. This is a low power consumption circuit which can save the most display current compare with traditional resistor ladder method.
- Bias Ratio Selection circuitry
 Software control of 1/5 and 1/7 bias ratio to match the characteristic of LCD panel.
- Self adjust temperature compensation circuitry
 Provide 4 different compensation grade selections to satisfy the various liquid crystal temperature grades. The grading can be selected by software control.
- Contrast Control Block Software control of 16 voltage levels of LCD voltage.

LCD Panel Driving Waveform

The following is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveforms shown in Figure 7a, 7b and 7c illustrate the desired multiplex scheme.

7. External Contrast Control

By adjusting the gain control resistors connected externally, the contrast can be varied. Refer to the application circuit for details.

All blocks can be individually turned off if external voltage generator is employed.

33 Bit Latch / 120 Bit Latch

A 153 bit long register which carry the display signal information. First 33 bits are Common driving signals and other 120 bits are Segment driving signals. Data will be input to the HV-buffer Cell for bumping up to the required level.

Level Selector

Level Selector is a control of the display synchronization. Display voltage can be separated into two sets and used with different cycles. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell for output signal voltage pump.

HV Buffer Cell (Level Shifter)

HV Buffer Cell works as a level shift-er which translates the low voltage output signal to the required driving voltage. The output is shifted out with an internal FRM clock which comes from the Display Timing Generator. The voltage levels are given by the level selector which is synchronized with the internal M signal.

Figure 7a. LCD Display Example "0"

MOTOROLA

Figure 7b. LCD Driving Signal from MC141532/33

Figure 7c. Effective LCD waveform on LCD pixel

MC141532 • MC141533 3-58 **MOTOROLA**

Command Description

Set Display On/Off (Display Mode / Stand-by Mode)

The Display On command turns the LCD Common and Segment outputs on and has no effect to the annunciator output. This command causes the conversion of data in GDDRAM to necessary waveforms on the Common and Segment driving outputs. The onchip bias generator is also turned on by this command. (Note: "Oscillator On" command should be sent before "Display On" is selected)

The Display Off command turns the display off and the states of the LCD driver are as follow during display off:

- 1. The Common and Segment outputs are fixed at V_{LL1} (V_{SS}).
- 2. The bias Voltage Generator is turned off.
- 3. The RAM and content of all registers are retained.
- 4. IC will accept new commands and data.

The status of the Annunciators and Oscillator are not affected by Display Off command.

Set GDDRAM Column Address

This command positions the address pointer on a column location. The address can be set to location 00H-77H (120 columns). The column address will be increased by one automatically after a read or write operation. Refer to "Address Increment Table" and command "Set GDDRAM Page Address".

Set GDDRAM Page Address

This command positions the row address to 1 of 5 possible positions in GDDRAM. Refer to figure 5.

Master Clear GDDRAM

This command is to clear the 480 byte GDDRAM by setting the RAM data to zero. Issue this command followed by a dummy write command. The RAM for icon line will not be affected by this command.

Master Clear Icons

This command is used to clear the data in page 5 of GDDRAM which stores the icon line data. Before using this command, set the page address to Page 5 by the command "Set GDDRAM Page Address". A dummy write data is also needed after this "Master Clear Icons" command to make the clear icon action effective.

Set Display with Icon Line

If 1/32 Mux selected, use this command change to 1/33 Mux for using the Icon Line. This command can also change Icon Display Mode to Normal Display Mode (1/32 or 1/33 MUX).

Set Icon Display Mode

This command force the output to the icon display mode. Display on Row 0 to Row 31 will be disabled.

Set Icon Line / Annunciator Contrast Level

The contrast of the icon line and annunciators in Icon Mode can be set by this command. There are four levels to select from.

Set Vertical Scroll Value

This command is used to scroll the screen vertically with scroll value 0 to 31. With scroll value equals to 0, Row 0 of GDDRAM is mapped to Com0 and Row 1 through Row 31 are mapped to Com1 through Com31 respectively. With scroll value equal to 1, Row 1 of GDDRAM is mapped to Com0, then Row 2 through Row 31 will be mapped to Com1 through Com30 respectively and Row 0 will be mapped to Com31. Com32 is not affected by this command.

Save / Restore GDDRAM Column Address

With bit option = 1 in this command, the Save / Restore Column Address command saves a copy of the Column Address of GDDRAM. With a bit option = 0, this command restores the copy obtained from the previous execution of saving column address. This instruction is very useful for writing full graphics characters that are larger than 8 pixels vertically.

Set Column Mapping

This instruction selects the mapping of GDDRAM to Segment drivers for mechanical flexibility. There are 2 mappings to select:

- Column 0 Column 119 of GDDRAM mapped to Seg0-Seg119 respectively;
- Column 0 Column 119 of GDDRAM mapped to Seg119-Seg0 respectively.

Com32 will not be affected by this command. Detailed information please refer to section "Display Output Description".

Set Row Mapping

This instruction selects the mapping of GDDRAM to Common Drivers for mechanical flexibility. There are 2 selected mappings:

- 1. Row 0 Row 31 of GDDRAM to Com0 Com31 respectively;
- Row 0 Row 31 of GDDRAM to Com31 Com0 respectively.
 Com32 will not be affected by this command. See section "Display Output Description" for related information.

Set Annunciator Control Signals

This command is used to control the active states of the 4 stand alone annunciator drivers.

Set Oscillator Disable / Enable

This command is used to either disable or enable the Oscillator. For using internal or external oscillator, this command should be executed. The setting for this command is not affected by command "Set Display On/Off" and "Set Annunciator Control Signal". See command "Set Internal / External Oscillator" for more information

Set Internal / External Oscillator

This command is used to select either internal or external oscillator. When Internal Oscillator is selected, feedback resistor between OSC1 and OSC2 is needed. For external oscillation circuit, feed clock input signal to OSC2 and leave OSC1 open.

Set Clock Frequency

Use this command to choose from two different oscillation frequency (50kHz or 38.4kHz) to get the 60 Hz frame frequency. With frequency high, 50 kHz clock frequency is preferred. 38.4kHz clock frequency (low frequency) enable for power saving purpose.

Set DC/DC Converter On/Off

Use this command selects the Internal DC/DC Converter to generate the V_{CC} from $\mathsf{AV}_{DD}.$ Disable the Internal DC/DC Converter if external Vcc is provided.

Set Voltage Doubler / Tripler

Use this command to choose Doubler or Tripler when the Internal DC/DC Converter is enabled.

Set Internal Regulator On/Off

Choose bit option 0 to disable the Internal Regulator. Choose bit option 1 to enable Internal Regulator which consists of the internal contrast control and temperature compensation circuits.

MOTOROLA MC141532 • MC141533

Set Internal Voltage Divider On/Off

If the Internal Voltage Divider is disabled, external bias can be used for V_{LL6} to V_{LL2} . If the Internal Voltage Divider is enabled, the internal circuit will automatically select the correct bias level according to the number of multiplex. Refer to command "Bias Ratio Select".

Set Duty Cycle

This command is to select 16 mux or 32 mux display. When 16 mux is enabled, the unused 16 common outputs will be swinging between VLL2 and VLL5 for dummy scan purpose and doubler will be used

Set Bias Ratio

This command sets the 1/5 bias or 1/7 bias for the divider output. The selection should match the characteristic of LCD Panel.

Set Internal Contrast Control On/Off

This command is used to turn on or off the intrernal control of delta voltage of the bias voltages. With bit option = 1, the software selection for delta bias voltage control is enabled. With bit option = 0, internal contrast control is disabled.

Increase / Decrease Contrast Level

If the internal contrast control is enabled, this command is used to increase or decrease the contrast level within the 16 contrast levels. The contrast level starts from lowest value after POR.

Set Contrast Level

This command is to select one of the 16 contrast levels when internal contrast control circuitry is in use.

Read Contrast Value

This command allows the user to read the current contrast level value. With R/\overline{W} input high (READ), D/\overline{C} input low (COMMAND) and D7 D6 D5 D4 are equal to 0 0 0 1, the value of the internal contrast value can be read on D0-D3 at the falling edge of CS.

Set Temperature Coefficient

This command can select 4 different LCD driving voltage temperature coefficients to match various liquid crystal temperature grades. Those temperature coefficients are specified in Electrical Characteristics Tables.

Set I_{DD} Reduction Mode On/Off

By using this command to reduce the display clock frequency by half. Use in Icon Mode to reduce stand-by current.

MC141532 • MC141533 MOTOROLA 3–60

COMMAND TABLE

Bit Pattern	Command	Comment	
00000X ₂ X ₁ X ₀	Set GDDRAM Page Address	Set GDDRAM Page Address using $X_2X_1X_0$ as address bits. $X_2X_1X_0$ =000: page 1 (POR) $X_2X_1X_0$ =001: page 2 $X_2X_1X_0$ =010: page 3 $X_2X_1X_0$ =011: page 4 $X_2X_1X_0$ =100: page 5	
000011X ₁ X ₀	Set Icon Line / Annunciator Contrast Level	Set one of the 4 available values to the icon and annunciator contrast, using X_1X_0 as data bits. $ X_1X_0 = 00 \; (\text{Von} = 0.87\text{V}_{DD}) \\ X_1X_0 = 01 \; (\text{Von} = 0.71\text{V}_{DD}) \\ X_1X_0 = 10 \; (\text{Von} = 0.61\text{V}_{DD}) \; \text{POR} \\ X_1X_0 = 11 \; (\text{Von} = 0.55\text{V}_{DD}) $	
0001X ₃ X ₂ X ₁ X ₀	Set Contrast Level	Set one of the 16 available values to the internal contrast register, using $\rm X_3X_2X_1X_0$ as data bits. The contrast register is reset to 0000 during POR.	
0001X ₃ X ₂ X ₁ X ₀	Read Contrast Value	With D/ \overline{C} pin input Low, R/ \overline{W} pin input high, and D7 D6 D5 D4 pins equal to 0001 at the rising edge of \overline{CS} , the value of the internal contrast register will be latched out at D3 D2 D1 D0 pins, i.e. $X_3X_2X_1X_0$, at the rising edge of \overline{CS} .	
0010000X ₀	Set Voltage Doubler / Tripler	X ₀ =0: Select Voltage Tripler (POR) X ₀ =1: Select Voltage Doubler	
0010001X ₀	Set Column Mapping	X ₀ =0 : Col0 to Seg0 (POR) X ₀ =1 : Col0 to Seg119	
0010010X ₀	Set Row Mapping	X ₀ =0 : Row0 to Com0 (POR) X ₀ =1: Row0 to Com31	
0010011X ₀	Reserved		
0010100X ₀	Set Display On/Off	X ₀ =0: display off (POR) X ₀ =1: display on	
0010101X ₀	Set DC/DC Converter On/Off	X ₀ =0: DC/DC Converter off (POR) X ₀ =1: DC/DC Converter on	
0010110X ₀	Set Internal Regulator On/Off	X ₀ =0: Internal Regulator off (POR) X ₀ =1: Internal Regulator on When the application employs external contrast control, the internal contrast control, temperature compensation and the Regulator must be enabled.	
0010111X ₀	Set Internal Voltage Divider On/Off	$\rm X_0$ =0: Internal Voltage Divider off (POR) $\rm X_0$ =1: Internal Voltage Divider on When an external bias network is preferred, the voltage divider should be disabled.	
0011000X ₀	Set Internal Contrast Control On/Off	$\rm X_0$ =0: Internal Contrast Control off (POR) $\rm X_0$ =1: Internal Contrast Control on Internal contrast circuits can be disabled if external contrast circuits is preferred.	
0011001X ₀	Set Clock Frequency	X ₀ =0 : low frequency (38.4kHz) (POR) X ₀ =1 : high frequency (50kHz)	
0011010X ₀	Save/Restore GDDRAM Column Address	X ₀ =0 : restore address X ₀ =1 : save address	
00110110	Master Clear GDDRAM	Master clear GDDRAM page 1 to 4	
00110111	Master Clear Icons	Master Clear of GDDRAM page 5. GDDRAM page 5 should be selected and dummy write is required	
0011100X ₀	Set Bias Ratio	X ₀ =0: set 1/7 bias (POR) X ₀ =1: set 1/5 bias	
0011101X ₀	Reserved.	X ₀ =0: normal operation (POR) X ₀ =1: test mode (Note: Make sure to set X ₀ =0 during application)	

Bit Pattern	Command	Comment	
0011110X ₀	Set Display with Icon Line	X_0 =0: set display mode without Icon Line X_0 =1: set display mode with Icon Line	
00111110	Set Icon Display Mode	Power saving icon display mode, Com0 to Com31 will be disabled	
010X ₄ X ₃ X ₂ X ₁ X ₀	Set Vertical Scroll Value	Use $X_4X_3X_2X_1X_0$ as number of lines to scroll. Scroll value = 0 upon POR	
01100A ₁ A ₀ X ₀	Set Annunciator Control Signals	A_1A_0 =00: select annunciator 1 (POR) A_1A_0 =01: select annunciator 2 A_1A_0 =10: select annunciator 3 A_1A_0 =11: select annunciator 4 X_0 =0: turn selected annunciator off (POR) X_0 =1: turn selected annunciator on	
0110100X ₀	Set Duty Cycle	X ₀ =0: 1/32 duty and tripler enabled (POR) X ₀ =1: 1/16 duty and doubler enabled	
0110101X ₀	Set I _{DD} Reduction Mode	X ₀ =0: Normal Mode X ₀ =1: I _{DD} Reduction Mode	
011011X ₁ X ₀	Set Temperature Coefficient	X ₁ X ₀ =00 : 0.00% (POR) X ₁ X ₀ =01 : -0.18% X ₁ X ₀ =10 : -0.22% X ₁ X ₀ =11 : -0.35%	
0111000X ₀	Increase / Decrease Contrast Value	X_0 =0: Decrease by one level X_0 =1: Increase by one level (Note: increment/decrement wraps round among the 16 contrast levels. Start at the lowest level when POR.	
0111001X ₀	Reserved		
0111010X ₀	Reserved		
0111011X ₀	Reserved	X ₀ =0: normal operation (POR) X ₀ =1: test mode select (Note: Make sure to set X ₀ =0 during application)	
0111100X ₀	Reserved		
0111101X ₀	Set Internal / External Oscillator	X ₀ =0: Internal oscillator (POR) X ₀ =1: External oscillator. Internal oscillator circuit is automatically enabled if resistors are placed at OSC1 and OSC2. For external oscillator, simply feed clock in OSC2.	
0111110X ₀	Reserved		
0111111X ₀	Set Oscillator Disable / Enable	X_0 =0: oscillator disable (POR) X_0 =1: oscillator enable. This is the master control fro oscillator circuitry. This command should be issued after the "External / Internal Oscillator" command.	
1X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀	Set GDDRAM Column Address	Set GDDRAM Column Address. Use $X_6X_5X_4X_3X_2X_1X_0$ as address bits.	

Data Read / Write

To read data from the GDDRAM, input High to R/\overline{W} pin and D/\overline{C} pin. Data is valid at the falling edge of \overline{CS} . And the GDDRAM column address pointer will be increased by one automatically.

To write data to the GDDRAM, input Low to R/W pin and High to D/C pin. Data is latched at the falling edge of CS. And the GDDRAM column address pointer will be increased by one automatically.

No auto address pointer increment will be performed for the Dummy Write Data after Master Clear GDDRAM. (Refer to the "Commands Required for R/W Actions on RAM" Table)

MC141532 • MC141533 MOTOROLA 3–62

Address Increment Table (Automatic)

D/C	R/W	Comment	Address Increment	Remarks
0	0	Write Command	No	
0	1	Read Command	No	*1
1	0	Write Data	Yes	*2
1	1	Read Data	Yes	

Address Increment is done automatically data read write. The column address pointer of GDDRAM*3 is affected.

Remarks: *1. Refer to the command "Read Contrast Value".

- *2. If write data is issued after Command Clear RAM, Address increase is not applied.
- *3. Column Address will be wrapped round when overflow.

Power Up Sequence (Commands Required)

Command Required	POR Status	Remarks
Set Clock Frequency	Low	*1
Set Oscillator Enable	Disable	*1
Set Annunciator Control Signals	Annunciator all Off	*1
Set Duty Cycle	1/32 duty	*1
Set Bias Ratio	1/7 bias	*1
Set Interna DC/DC Converter On	Off	*1
Set Internal Regulator On	Off	*1
Set Temperature Coefficient	TC=0%	*1, *3
Set Internal Contrast Control On	Off	*1, *3
Increase Contrast Level	Contrast Level = 0	*1, *2, *3
Set Internal Voltage Divider On	Off	*1
Set Segment Mapping	Seg. 0 = Col. 0	
Set Common Mapping	Com. 0 = Row 0	
Set Vertical Scroll Value	Scroll Value = 0	
Set Display On	Off	

Remarks:

- *1 -- Required only if desired status differ from POR.
- *2 -- Effective only if Internal Contrast Control is enabled.
- *3 -- Effective only if Regulator is enabled.

Commands Required for Display Mode Setup

Display Mode	Commands Required			
Display Mode	Set External / Internal Oscillator, Set Oscillator Enable, Set Display On.	(0111101X ₀)* (01111111)* (00101001)*		
Annunciator Display	Set External / Internal Oscillator, Set Oscillator Enable, Set Annunciator Control Signal.	(0111101X ₀)* (01111111)* (01100A ₁ A ₀ X ₀)*		
Standby Mode 1.	Set Display Off, Set Oscillator Disable.	(00101000)* (01111110)*		
Standby Mode 2.	Set External Oscillator, Set Annunciator Control Signal, Set Display Off, Set Oscillator Enable.	(01111011)* (01100A ₁ A ₀ X ₀)* (00101000)* (01111111)*		
Standby Mode 3.	Set Internal Oscillator, Set Annunciator Control Signal, Set Display Off, Set Oscillator Enable.	(01111010)* (01100A ₁ A ₀ X ₀)* (00101000)* (01111111)*		

Other Related Command with Display Mode: Set Duty Cycle, Set Column Mapping, Set Row Mapping, Set Vertical Scroll Value.

Commands Related to Internal DC/DC Converter:

Set Oscillator Disable / Enable, Set Internal Regulator On/Off, Set Duty Cycle, Set Temperature Coefficient, Set Internal Contrast Control On/Off, Increase / Decrease Contrast Level, Set Internal Voltage Divider On/Off, Set Bias Ratio, Set Display On/Off, Set Internal / External Oscillator, Set Contrast Level, Set Voltage Doubler / Tripler, Set 33 Mux Display Mode, Set Icon Display Mode

^{*} No need to resend the command again if it is set previously.

Commands Required for R/W Actions on RAM

R/W Actions on RAMs	Commands Required					
Read/Write Data from/to GDDRAM.	Set GDDRAM Page Address Set GDDRAM Column Address Read/Write Data	$\begin{array}{l} (000X_4X_3X_2X_1X_0)^* \\ (1X_6X_5X_4X_3X_2X_1X_0)^* \\ (X_7X_6X_5X_4X_3X_2X_1X_0) \end{array}$				
Save/Restore GDDRAM Column Address.	Save/Restore GDDRAM Column Address.	(0011010X ₀)				
Increase GDDRAM Address by One	Dummy Read Data	$(X_7X_6X_5X_4X_3X_2X_1X_0)$				
Master Clear GDDRAM	Master Clear GDDRAM Dummy Write Data	(00110110) (X ₇ X ₆ X ₅ X ₄ X ₃ X ₂ X ₁ X ₀)				

^{*} No need to resend the command again if it is set previously.

Display Output Description

This is an example of output pattern on the LCD panel. Figure 8b and 8c are data map of GDDRAM and the output pattern on the LCD display with different command enabled.

Figure 8c. Examples of LCD display with different command enabled

MOTOROLA

MC141532T TAB PACKAGE DIMENSION (1 OF 2) 98ASL00243A ISSUE A DO NOT SCALE THIS DRAWING

- 2. COPPER TYPE: 3/4 OZ COPPER (THICKNESS TYP. 25 MICROMETER, MIN 18 MICROMETER)
- 3. OPTIONAL FEATURE FOR SPS INTERNAL USE ONLY WHICH MAY BE REPLACED BY Ø 2.0 MM HOLE.
- 4. IF NOT SPECIFIED, SIZE IN MILLIMETER
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 6. 6 SPROCKET HOLES DEVICE
- 7. UNSPECIFIED DIMENSION TOLERANCE IS ± 0.05

MOTOROLA

MC141532 • MC141533

3–65

■ 6367252 0106401 183 **■**

MC141532T TAB PACKAGE DIMENSION (2 OF 2) 98ASL00243A ISSUE A DO NOT SCALE THIS DRAWING

MC141532 • MC141533 MOTOROLA 3–66

■■ 6367252 0106402 01T ■■

32/33 MUX Display with Analog Circuitry enabled, Tripler enabled and 1/7 bias

Remark:

- 1. VR and VF can be left open for Regulator Disable.
- 2. CS pin low at Standby Mode.

MOTOROLA MC141532 • MC141533

16 MUX Display with Analog Circuitry enabled, Tripler Disabled and 1/5 bias

Remark:

- 1. VR and VF can be left open for Regulator Disable.
- 2. CS pin low at Standby Mode.

16/32/33 MUX Display with Analog Circuitry disabled

Remark:

- 1. VR and VF can be left open for Regulator Disable.
- 2. CS pin low at Standby Mode.

Die Pad Co-ordinate for MC141532

Pad	Name	X (µm)	Y (μm)	Pad	Name	X (µm)	Y (μm)	Pad	Name	X (μm)	Y (μm)	Pad	Name	X (μm)	Y (μm)
1	Ann0	-4803.6	-526.6	61	DVss	2472.8	-530.4	122	Seg0	3217.4	492.7	181	Seg59	-1266.6	492.7
<u> 2</u>	Ann1	-4702.0	-526.6	62	C+	2574.4	-530.4	123	Seg1	3141.4	492.7	182	Seg60	-1342.6	492.7
3	Ann2	-4600.4	-526.6	63	DVss	2676.0	-530.4	124	Seg2	3065.4	492.7	183	Seg61	-1418.6	492.7
1 4	Ann3	-4498.8	-526.6	64	C-	2777.6	-530.4	125	Seg3	2989.4	492.7	184	Seg62	-1494.6	492.7
5	BP	-4397.2	-526.6	65	DVss	2879.2	-530.4	126	Segs	2913.4	492.7	185		-1570.6	492.7
									Seg4				Seg63		
6	DVdd	-4295.6	-526.6	66	VCC	2980.8	-530.4	127	Seg5	2837.4	492.7	186	Seg64	-1646.6	492.7
	RES	-4194.0	-526.6	67	DVss	3082.4	-530.4	128	Seg6	2761.4	492.7	187	Seg65	-1722.6	492.7
8	DVss	-4092.4	-526.6	68	VF	3184.0	-530.4	129	Seg7	2685.4	492.7	188	Seg66	-1798.6	492.7
9	D/C	-3990.8	-526.6	69	DVss	3285.6	-530.4	130	Seg8	2609.4	492.7	189	Seg67	-1874.6	492.7
10	R/W	-3889.2	-526.6	70	VR	3387.2	-530.4	131	Seg9	2533.4	492.7	190	Seg68	-1950.6	492.7
11	CS(CLK)	-3787.6	-526.6	71	AVss	3488.8	-530.4	132	Seg10	2457.4	492.7	191	Seg69	-2026.6	492.7
12	DVss 1	-3686.0	-526.6	72	OSC1	3590.4	-530.4	133	Seg11	2381.4	492.7	192	Seg70	-2102.6	492.7
13	DO	-3584.4	-526.6	73	DVss	3692.0	-530.4	134	Seg12	2305.4	492.7	193	Seg71	-2178.6	492.7
14	D1	-3482.8	-526.6	74	DVss	3793.6	-530.4	135	Seğ13	2229.4	492.7	194	Seg72	-2254.6	492.7
15	D2	-3381.2	-526.6	75	DVss	3869.6	-530.4	136	Seg14	2153.4	492.7	195	Seg73	-2330.6	492.7
16	<u> D3</u>	-3279.6	-526.6	76	DVss	3945.6	-530.4	137	Seg15	2077.4	492.7	196	Seg74	-2406.6	492.7
17	D4	-3178.0	-526.6	77	DVss	4021.6	-530.4	138	Seg16	2001.4	492.7	197	Seg75	-2482.6	492.7
18	D5	-3076.4	-526.6	78	DVss	4097.6	-530.4	139	Seg17	1925.4	492.7	198	Seg76	-2558.6	492.7
19	D6	-2974.8						140	Cog17		492.7	199	Seg70		
20	D7		-526.6	79 80	DVss	4173.6	-530.4	140	Seg18	1849.4	492.7	200	Seg77	-2634.6	492.7
		-2873.2	-526.6		DVss	4249.6	-530.4	141	Seg19	1773.4		200	Seg78	-2710.6	492.7
21 22	CE	-2771.6 -2670.0	-526.6	81	DVss	4325.6	-530.4 -530.4		Seg20	1697.4	492.7	201	Seg79	-2786.6 -2862.6	492.7
22	DVss	-2670.0	-526.6	82	DVss	4401.6	-530.4	143	Seg21	1621.4	492.7	202	Seg80	-2862.6	492.7
23	DVss	-2498.3	-526.6	83	DVss	4477.6	-530.4	144	Seg22 Seg23	1545.4	492.7	203	Seg81	-2938.6	492.7
24	DVss	-873.6	-591.8	84	DVss	4553.6	-530.4	145	Seg23	1469.4	492.7	204	Seg82	-3014.6	492.7
25	DVss	-797.6	-591.8	85	DVss	4629.6	-530.4	146	Seg24	1393.4	492.7	205	Seg83	-3090.6	492.7
26	DVss	-721.6	-591.8	86	Lest1	4705.6	-551.0	147	Seg25	1317.4	492.7	206	Seğ84	-3166.6	492.7
27	DVss	-645.6	-591.8	87	Lest2	4835.2	-550.6	148	Seg26	1241.4	492.7	207	Seg85	-3242.6	492.7
28	DVss	-569.6	-591.8	88	Com32	5174.4	-484.8	149	Seg27	1165.4	492.7	208	Seg86	-3318.6	492.7
29	DVss	-493.6	-591.8	89	Com0	5174.4	-408.8	150	Seg28	1089.4	492.7	209	Seg87	-3394.6	492.7
30	DVss	-417.6	-591.8	90	Com1	5174.4	-332.8	151	Seg29	1013.4	492.7	210	Seg88	-3470.6	492.7
31	DVss	-341.6	-591.8	91	Com2	5174.4	-256.8	152	Sed30	937.4	492.7	211	Seg89	-3546.6	492.7
32	DVss	-265.6	-591.8	92	Com3	5174.4	-180.8	153	Seg31	861.4	492.7	212	Seg90	-3622.6	492.7
33	DVss	-189.6	-591.8	93	Com4	5174.4	-104.8	154	Seg32	785.4	492.7	213	Seg91	-3698.6	492.7
34	DVss	-113.6	-591.8	94	Com5	5174.4	-28.8	155	Seg33	709.4	492.7	214	Seg92	-3774.6	492.7
35	DVss	-37.6	-591.8	95	Com6	5174.4	47.2	156	Seg34	633.4	492.7	215	Seg93	-3850.6	492.7
36		38.4		96		5174.4	123.2		Seg35		492.7	216	Seggs		492.7
	DVss		-591.8		Com7			157		557.4			Seg94	-3926.6	
37	DVss	114.4	-591.8	97	Com8	5174.4	199.2	158	Seg36	481.4	492.7	217	Segg5	-4002.6	492.7
38	DVss	190.4	-591.8	98	Com9	5174.4	275.2	159	Seg37 Seg38	405.4	492.7	218 219	Seg96	-4078.6	492.7
39	DVss	266.4	-591.8	99	Com10	5174.4	351.2	160	Seg38	329.4	492.7	219	Seg97	-4154.6	492.7
40	DVss	342.4	-591.8	100	Com11	5174.4	427.2	161	Seg39	253.4	492.7	220	Seg98	-4230.6	492.7
41	DVss	418.4	-591.8	101	Com12	5174.4	503.2	162	Seg40	177.4	492.7	221	Seg99	-4306.6	492.7
42	DVss	494.4	-591.8	102	Com13	4771.2	492.7	163	Seg41	101.4	492.7	221 222	Seg100	-4382.6	492.7
43	AVdd	644.0	-530.4	103	Com14	4695.2	492.7	164	Seg42	25.4	492.7	223	Seg101	-4458.6	492.7
44	AVdd	745.6	-530.4	104	Com15	4619.2	492.7	165	Seg43	-50.6	492.7	224	Seg102	-4534.6	492.7
45	C1P	847.2	-530.4	105	Com16	4518.0	492.7	166	Seg44	-126.6	492.7	225	Seg103	-4619.2	492.7
46	C1N	948.8	-530.4	106	Com17	4442.0	492.7	167	Seg45	-202.6	492.7	226	Seg104	-4695.2	492.7
47	C2P	1050.4	-530.4	107	Com18	4366.0	492.7	168	Seg46	-278.6	492.7	227	Seg105	-4771.2	492.7
48	C2N	1152.0	-530.4	108	Com19	4290.0	492.7	169	Seg47	-354.6	492.7	228	Seg106	-5174.4	503.2
49	VLL2	1253.6	-530.4	109	Com20	4214.0	492.7	170	Seg48	-430.6	492.7	229	Seg107	-5174.4	427.2
50	VLL3	1355.2	-530.4	110	Com21	4138.0	492.7	171	Seg49	-506.6	492.7	230	Seg 108	-5174.4	351.2
51	DVss	1456.8	-530.4	111	Com22	4062.0	492.7	172	Seg50	-582.6	492.7	231	Seg109	-5174.4	275.2
52	DVss	1558.4	-530.4	112	Com23	3986.0	492.7	173	Seg51	-658.6	492.7	232	Seg110	-5174.4	199.2
53	VLL4	1660.0	-530.4	113	Com24	3910.0	492.7	174	Secto	-734.6	492.7	233	Segiio		123.2
									Seg52				Seg111	-5174.4	
54	VLL5	1761.6	-530.4	114	Com25	3834.0	492.7	175	Seg53	-810.6	492.7	234	Seg112	-5174.4	47.2
55	VLL6	1863.2	-530.4	115	Com26	3758.0	492.7	176	Seg54	-886.6	492.7	235	Seg113	-5174.4	-28.8
56	DUM1	1964.8	-530.4	116	Com27	3682.0	492.7	177	Seg55	-962.6	492.7	236	Seg114	-5174.4	-104.8
57	DVss	2066.4	-530.4	117	Com28	3606.0	492.7	178	Seg56	-1038.6	492.7	237	Seg115	-5174.4	-180.8
58	OSC2	2168.0	-530.4	118	Com29	3530.0	492.7	179	Seg57	-1114.6	492.7	238	Seg116	-5174.4	-256.8
59	DVss	2269.6	-530.4	119	Com30	3454.0	492.7	180	Seg58	-1190.6	492.7	239	Seg117	-5174.4	-332.8
60	DUM2	2371.2	-530.4	120	Com31	3378.0	492.7					240	Seg118	-5174.4	-408.8
				121	Com32	3302.0	492.7					241	Sea119	-5174.4	-484.8
	-				JOHNOE	300L.0	102.7	$\overline{}$					209110	J 17 1.T	10 1.0

Gold Bump Size

Pad	Bump Size X	Bump Size Y		
l lau	(μm)	(µm)		
1-23	66.5	66.5		
24-42	49.0	39.8		
43-74	66.5	66.5		
75-85	49.0	66.5		
86	49.0	107.0		
87	No Gold	Bump		
88-101	107.0	49.0		
102-227	49.0	107.0		
228-241	107.0	49.0		

Die Size

X (μm)	Υ (μm)			
10881.0	1522.0			

MC141532 • MC141533 MOTOROLA 3–70

Die Pad Co-ordinate for MC141533

Pad	Nome	V (um)	Y (μm)	Pad	Nome	V (um)	V (um)	Pad	Nomo	V (um)	V (um)	Dod	Nomo	V /um)	V /um
rau	Name	X (μm)			Name	X (μm)	Y (μm)		Name	X (μm)	Y (μm)	Pad	Name	X (μm)	Y (μm)
1	Ann0	-4803.6	-526.6	61	DVss	2472.8	-530.4	122	Seg17	3217.4	492.7	181	Seg76	-1266.6	492.7
2	Ann1	-4702.0	-526.6	62	C+	2574.4	-530.4	123	Seg18	3141.4	492.7	182	Seg77	-1342.6	492.7
3	Ann2	-4600.4	-526.6	63	DVss	2676.0	-530.4	124	Seg19	3065.4	492.7	183	Seg78	-1418.6	492.7
4	Ann3	-4498.8	-526.6	64	C-	2777.6	-530.4	125	Seg20	2989.4	492.7	184	Seg79	-1494.6	492.7
5	BP	-4397.2	-526.6	65	DVss	2879.2	-530.4	126	Seg21	2913.4	492.7	185	Seg80	-1570.6	492.7
6	DVdd	-4295.6	-526.6	66	VCC	2980.8	-530.4	127	Seg22	2837.4	492.7	186	Seg81	-1646.6	492.7
7	RES	-4194.0	-526.6	67	DVss	3082.4	-530.4	128	Seg23	2761.4	492.7	187	Seg82	-1722.6	492.7
8	DVss	-4092.4	-526.6	68	VF	3184.0	-530.4	129	Seg24	2685.4	492.7	188	Seg83	-1798.6	492.7 492.7
9	D/C	-3990.8	-526.6	69	DVss	3285.6	-530.4	130	Seg24 Seg25	2609.4	492.7	189	Seg84	-1874.6	492.7
10	R/W	-3889.2	-526.6	70	VR	3387.2	-530.4	131	Seg26	2533.4	492.7	190	Seg85	-1950.6	492.7
11	cś/čľk	-3787.6	-526.6	71	AV/66	3/88 8	-530.4	132	Seg27	2/57/	492.7	191	Seg86	-2026.6	102.7
12	DVss	-3686.0	-526.6	72	AVss OSC1	3488.8 3590.4	-530.4 -530.4	133	Seg28	2457.4 2381.4	492.7	192	Social	-2102.6	492.7 492.7
13	D0	-3584.4	-526.6	73	DVss	3692.0	-530.4	134	Seg29	2305.4	492.7	193	Seg87 Seg88	-2178.6	492.7
	D1				DV 55	3092.0	-530.4	135	Segza	2303.4		193	Segoo	-2170.0	492.7
14		-3482.8	-526.6	74	DVss	3793.6			Seg30 Seg31	2229.4	492.7		Seg89	-2254.6	492.7
15	D2	-3381.2	-526.6	75	DVss	3869.6	-530.4	136	Segai	2153.4	492.7	195	Segg0	-2330.6	492.7
16	D3	-3279.6	-526.6	76	DVss	3945.6	-530.4	137	Seg32	2077.4	492.7	196	Segg1	-2406.6	492.7
17	D4	-3178.0	-526.6	77	DVss	4021.6	-530.4	138	Seğ33	2001.4	492.7	197	Seg92 Seg93	-2482.6	492.7
18	D5	-3076.4	-526.6	78	DVss	4097.6	-530.4	139	Seg34	1925.4	492.7	198	Seg93	-2558.6	492.7
19	D6	-2974.8	-526.6	79	DVss	4173.6	-530.4	140	Seg35	1849.4	492.7	199	Sea94	-2634.6	492.7
20	D7	-2873.2	-526.6	80	DVss	4249.6	-530.4	141	Seg36	1773.4	492.7	200	Seg95	-2710.6	492.7
21	CE	-2771.6	-526.6	81	DVss	4325.6	-530.4	142	Sea37	1697.4	492.7	201	Seg96	-2786.6	492.7
22	DVss	-2670.0	-526.6	82	DVss	4401.6	-530.4	143	Seg38	1621.4	492.7	202	Seg97	-2862.6	492.7
23	DVss	-2498.3	-526.6	83	DVss	4477.6	-530.4	144	Seg39	1545.4	492.7	203	Seg98	-2938.6	492.7
24	DVss	-873.6	-591.8	84	DVss	4553.6	-530.4	145	Seg40	1469.4	492.7	204	Seg99	-3014.6	492.7
25	DVss	-797.6	-591.8	85	DVss	4629.6	-530.4	146	Seg41	1393.4	492.7	205	Seg100	-3090.6	492.7 492.7
26	DVss	-721.6	-591.8	86	Test2	4705.6	-551.0	147	Seg42	1317.4	492.7	206	Seg101	-3166.6	492.7
27	DVss	-645.6	-591.8	87	Test1	4835.2	-550.6	148	Seg43	1241.4	492.7	207	Seg102	-3242.6	492.7
28		-569.6		88		5174.4		149	Seg44	1165 4	492.7	208		2242.0	492.7
	DVss		-591.8		Com32	5174.4	-484.8		Seg44	1165.4			Seg103	-3318.6	492.7
29	DVss	-493.6	-591.8	89	Com0	5174.4	-408.8	150	Seg45	1089.4	492.7	209	Seg104	-3394.6	492.7
30	DVss	-417.6	-591.8	90	Com1	5174.4	-332.8	151	Seg46 Seg47 Seg48	1013.4	492.7	210	Seg105	-3470.6	492.7 492.7 492.7
31	DVss	-341.6	-591.8	91	Com2	5174.4	-256.8	152	Seg47	937.4	492.7	211	Seg106	-3546.6	492.7
32	DVss	-265.6	-591.8	92	Com3	5174.4	-180.8	153	Seg48	861.4	492.7	212	Seg107	-3622.6	492.7
33	DVss	-189.6	-591.8	93	Com4	5174.4	-104.8	154	Seg49	785.4	492.7	213	Seg108	-3698.6	492.7
34	DVss	-113.6	-591.8	94	Com5	5174.4	-28.8	155	Seg50	709.4	492.7	214	Seg109	-3774.6	492.7 492.7
35	DVss	-37.6	-591.8	95	Com6	5174.4	47.2	156	Seg51	633.4	492.7	215	Seg110	-3850.6	492.7
36	DVss	38.4	-591.8	96	Com7	5174.4	123.2	157	Seg52	557.4	492.7	216	Seg111	-3926.6	492.7
37	DVss	114.4	-591.8	97	Com8	5174.4	199.2	158	Seg53	481.4	492.7	217 218	Seg112	-4002.6	492.7 492.7 492.7
38	DVss	190.4	-591.8	98	Com9	5174.4	275.2	159	Seg54	405.4	492.7	218	Seg113	-4078.6	492.7
39	DVss	266.4	-591.8	99	Com10	5174.4	351.2	160	Seg55	329.4	492.7	219	Seg114	-4154.6	492 7
40	DVss	342.4	-591.8	100	Com11	5174.4	427.2	161	Seg56	253.4	492.7	220	Seg115	-4230.6	492.7
41	DVss	418.4	-591.8	101	Com12	5174.4	427.2 503.2	162	Seg57	177.4	492.7	220 221	Seg116	-4230.6 -4306.6	492.7 492.7 492.7
42	DVss	494.4	-591.8	102	Com13	4771.2	492.7	163	Seg58	101.4	492.7	222	Seg117	-4382.6	702.7
43	AVdd	644.0	-530.4	103	Com14	4695.2	492.7	164	Segso	25.4	492.7	223	Seg118	-4458.6	492.7
43	AVdd	745.6	-530.4	103		4619.2	492.7	165	Seg59 Seg60	-50.6	492.7	223 224		-4534.6	492.7
					Com15	4013.2			Segoo		492.7	224	Seg119		400.7
45	C1P	847.2	-530.4	105	Seg0	4518.0	492.7	166	Segol	-126.6		225 226	Com32	-4619.2	492.7
46	C1N	948.8	-530.4	106	Seg1	4518.0 4442.0 4366.0	492.7	167	Seg61 Seg62 Seg63 Seg64	-202.6	492.7	226	Com31	-4695.2	492.7 492.7 503.2
47	C2P	1050.4	-530.4	107	Seg2	4366.0	492.7	168	Seges	-278.6	492.7	227	Com30	-4771.2	492./
48	C2N	1152.0	-530.4	108	Seg3	4290.0	492.7	169	Seg64	-354.6	492.7	228	Com29	-5174.4	503.2
49	VLL2	1253.6	-530.4	109	Seğ4	4214.0	492.7	170	Seabb	-430.6	492.7	229	Com28	-5174.4	427.2
50	VLL3	1355.2	-530.4	110	Seg5	4138.0	492.7	171	Seg66 Seg67	-506.6	492.7	230	Com27	-5174.4	351.2
51	DVss	1456.8	-530.4	111	Sea6	4062.0 3986.0	492.7	172	Seg67	-582.6	492.7	231 232	Com26	-5174.4	275.2
52	DVss	1558.4	-530.4	112	Seg7	3986.0	492.7	173	Seg68	-658.6	492.7	232	Com25	-5174.4	199.2
53	VLL4	1660.0	-530.4	113	Seğ8	3910.0	492.7	174	Seg69	-734.6	492.7	233	Com24	-5174.4	123.2
54	VLL5	1761.6	-530.4	114	Seg9	3834.0	492.7	175	Seg70	-810.6	492.7	234	Com23	-5174.4	47.2
55	VLL6	1863.2	-530.4	115	Seg10	3758.0	492.7	176	Seg71	-886.6	492.7	235	Com22	-5174.4	-28.8
56	DUM1	1964.8	-530.4	116	Seg11	3682.0	492.7	177	Seg72	-962.6	492.7	236	Com21	-5174.4	-104.8
57	DVss	2066.4	-530.4	117	Seg12	3606.0	492.7	178	Seg73	-1038.6	492.7	237	Com20	-5174.4	-180.8
58	OSC2	2168.0	-530.4		Seg 12	3530.0	492.7	179		-1114.6	492.7	238	Com19	-5174.4	
			-530.4	118	Seg13	3530.0			Seg74			238			-256.8
59	DVss	2269.6	-530.4	119	Seg14	3454.0	492.7	180	Seg75	-1190.6	492.7	239	Com18	-5174.4	-332.8
60	DUM2	2371.2	-530.4	120	Seg15	3378.0	492.7					240	Com17	-5174.4	-408.8
				121	Seg16	3302.0	492.7					241	Com16	-5174.4	-484.8

Gold Bump Size

Bump Size X	Bump Size Y		
(μm)	(μm)		
66.5	66.5		
49.0	39.8		
66.5	66.5		
49.0	66.5		
49.0	107.0		
No Gold	Bump		
107.0	49.0		
49.0	107.0		
107.0	49.0		
	66.5 49.0 66.5 49.0 49.0 No Gold 107.0 49.0		

Die Size

X (μm)	Υ (μm)			
10881.0	1522.0			