#### Piotr Chrząstowski-Wachtel Uniwersytet Warszawski

O czym jest algorytmika?



## Algorytmika

- Najważniejsza część informatyki
- Opisuje jak rozwiązywać problemy algorytmiczne, jakie struktury danych dobierać, jak analizować zachowanie się programów.
- Pozwala na osiągnięcie znacznie bardziej spektakularnych wyników, niż samo przyspieszanie działania sprzętu



## Czego dotyczy algorytmika?

- Wszelkiego planowania działań w szczególności przy pisaniu programów komputerowych
- Musimy pamiętać, że komputerom trzeba niezwykle wyraźnie wyspecyfikować polecenia – będąc dość głupimi urządzeniami nie domyślą się, o co nam mogło chodzić, jeśli nieprecyzyjnie przedstawimy o co nam chodzi.



## Kiedy zaczęła się algorytmika?

- Pierwszymi wielkimi algorytmikami byli Starożytni Grecy
- Pierwszymi wielkimi naukowymi problemami algorytmicznymi były konstrukcje goemetryczne, zwane platońskimi



**Platon** 



## Konstrukcje platońskie

- Nieformalnie chodzi o to, żeby wyznaczać pewne obiekty na płaszczyźnie (punkty, okręgi, proste) spełniające dane założenia.
- Przykładowe zadanie:
  - Mając dany okrąg o(O,r) oraz punkt A leżący poza okręgiem, poprowadzić prostą styczną do danego okręgu, przechodzącą przez punkt A

# Czy poprawne jest takie rozwiązanie:

- Wbijamy nóżkę cyrkla w punkt A i opierając na ostrzu linijkę obracamy ją, aż się ukaże punkt okręgu.
- Rysujemy linię łączącą te dwa punkty.



## Platon zabraniał takich operacji

- i... jak i wielu innych rzeczy takich jak kreślenie paraboli, spirali, wychodzenie w trzeci wymiar itd.
- Co zatem wolno było robić i na jakich obiektach?



## Dziedzina operacji platońskich

- Koncentrujemy się na 3 rodzajach obiektów: punktach, prostych i okręgach
- Wolno na tych obiektach przeprowadzać jedną z pięciu operacji.



## Operacje platońskie

- Dla danych dwóch punktów narysować prostą przez nie przechodzącą,
- Dla danych dwóch punktów wykreślić okrąg o środku w jednym z nich i promieniu równym odległości między nimi,
- Dla dwóch prostych wyznaczyć punkt ich przecięcia (o ile istnieje),
- Dla prostej i okręgu wyznaczyć ich punkty przecięcia,
- Dla dwóch okręgów wyznaczyć punkty ich przecięcia.
- ... i nic ponadto!

#### v

## Dozwolone operacje

- Nazwijmy nasze operacje odpowiednio
  - □I := line(X,Y) prosta przechodząca przez X i Y
  - □o:= circle(O,Y) okrąg o środku O i promieniu OY
  - □X := I × k punkt przecięcia prostych I i k
  - □(X,Y) := I Ø o punkty przecięcia prostej I i okręgu o
  - □(X,Y) := o1 ∞ o2 punkty przecięcia okręgów o1 i o2
- Wszystkie te operacje są częściowe: są określone nie dla wszystkich argumentów

#### м

## Rozwiązanie zadania

- Możemy przedstawić rozwiązanie w postaci sekwencji czynności dla okręgu o(O,Y) oraz punktu A leżącego poza nim:
  - □ I := line(O,A) kreślimy prostą I łączącą środek okręgu z punktem A
  - □ o1:= circle(O,A) kreślimy okrąg o środku O i promieniu OA
  - □ o2:= circle(A,O) kreślimy okrąg o środku A i promieniu O
  - □ (P,Q) := o1 ∞ o2 wyznaczamy punkty przecięcia okręgów o1 i o2
  - □ k := line(P,Q) prowadzimy symetralną odcinka OA
  - $\square$  X := I × k znajdujemy środek odcinka OA
  - □ o3 := circle (X,O) kreślimy okrąg o środku X i promieniu XO
  - □ (R,S) := o ∞ o3 wyznaczamy punkty przecięcia okręgów o i o3
  - □ s := line(R,A) prosta s jest jedną z dwóch poszukiwanych stycznych

## Rozwiązanie zadania – wersja kompaktowa

Można krócej:

- □s := line((o ∞<sub>1</sub> (circle((line(O,A) × line(circle(A,O)) ∞ circle(O,A)),O))),A)
  - tutaj przez ∞₁ rozumiemy pierwszy z dwóch punktów przecięcia
- ... i tak mniej więcej wygląda programowanie funkcyjne



## Problemy nierozwiązywalne

- Starożytni Grecy nie umieli sobie poradzić z trzema konstrukcjami:
  - wyznaczeniem boku kwadratu o polu równym polu koła o promieniu 1 (kwadratura koła)
  - podziałem dowolnego kąta na 3 równe części (trysekcja kąta)
  - wyznaczeniem boku sześcianu o dwukrotnie większej objętości niż sześcian jednostkowy (podwojenie sześcianu)



- Dopiero w XIX wieku pokazano, że żadnej z tych trzech konstrukcji nie da się wykonać.
- Być może powodem jest zbyt wąski repertuar środków?
- Ale czy gdy dorzucimy parę innych operacji, to czy nie znajdą się nowe niewykonywalne konstrukcje?



## Problemy nierozwiązywalne

Dużo później, w XX wieku, Alan Turing pokazał, że istnieją problemy algorytmiczne, których nie da się rozwiązać w żadnej dziedzinie algorytmicznej. To był jeden z najciekawszych wyników w historii informatyki i to uzyskany jeszcze przed powstaniem komputerów (lata 30-te XX wieku).



## Problem odpowiedniości Posta

Przykład:

 $\Box x_1 = abb$   $y_1 = a$ 

 $\Box x_2 = b$   $y_2 = abb$ 

 $\square x_3=a$   $y_3=bb$ 



- Czy istnieje taki ciąg indeksów i1,i2,...,in, że x<sub>i1</sub>...x<sub>in</sub>=y<sub>i1</sub>...y<sub>in</sub>?
- Problem odpowiedniości Posta jest w ogólnym przypadku nierozstrzygalny! Choć dla niektórych przypadków (np. dla powyższego) można podać odpowiedź, nie ma jednak ogólnego algorytmu, który dla dowolnych danych x<sub>1</sub>,...,x<sub>n</sub> i y<sub>1</sub>,...,y<sub>n</sub> stwierdziłby, czy można wyrównać odpowiednie słowa x-owe i y-owe za pomocą tego samego ciągu indeksów.