1. Find the volume of the tetrahedron bounded by co-ordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ ans: $\frac{abc}{c}$

A.
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 $\frac{z}{c} = 1 - \frac{y}{a} - \frac{y}{b} \Rightarrow z = \left(1 - \frac{y}{a} - \frac{y}{b}\right) \cdot c$

On $x - y$ plane, $z = 0$
 $\frac{x}{a} + \frac{y}{b} = 1$
 $y = \left(1 - \frac{y}{a}\right) \cdot b$
 $z \Rightarrow 0 \Rightarrow 0$
 $\left(1 - \frac{y}{a}\right) \cdot b$
 $\left(1 - \frac{y}{a}\right) \cdot c$
 $\left(1$

2. Find the volume of the region bounded by $z=x^2+y^2, z=0, x=-a, x=a, y=-a, y=a$ $8a^4$

$$z \to 0 + 0 + 2^{2} + y^{2}$$

$$y \to -a + 0 + a$$

$$x \to -a + 0 + a$$

$$\int_{-a}^{a} \int_{0}^{a} \frac{1}{azdy} dx = \int_{-a-a}^{a} \left(x^{2} + y^{2} \right) dy dx$$

$$= \int_{-a}^{a} \left(x^{2} + y^{3} \right) dx = \int_{-a}^{a} \left(ax^{2} + \frac{a^{3}}{3} - \left(ax^{2} - \frac{a^{3}}{3} \right) \right) dx$$

$$= \int_{-a}^{a} \left(ax^{2} + \frac{a^{3}}{3} \right) dx = \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{ax}{3} \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{2}}{3} + \frac{a^{3}}{3} - \left(-\frac{a^{3}}{3} - \frac{a^{3}}{3} \right) \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{a^{3}}{3} - \left(-\frac{a^{3}}{3} - \frac{a^{3}}{3} \right) \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{a^{3}}{3} - \left(-\frac{a^{3}}{3} - \frac{a^{3}}{3} \right) \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{a^{3}}{3} - \left(-\frac{a^{3}}{3} - \frac{a^{3}}{3} \right) \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{a^{3}}{3} - \left(-\frac{a^{3}}{3} - \frac{a^{3}}{3} \right) \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{a^{3}}{3} - \frac{a^{3}}{3} \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{a^{3}}{3} - \frac{a^{3}}{3} - \frac{a^{3}}{3} \right) dx$$

$$= \int_{-a}^{a} \left(\frac{ax^{3}}{3} + \frac{a^{3}}{3} - \frac{a^{3$$

3. Find the volume cut off from the cylinder $x^2 + y^2 = ax$ by the planes z=0 and z=x ans: $\frac{\pi a^3}{8}$

$$\frac{x^{2}+y^{2}=ax}{2} \Rightarrow y = \sqrt{ax-x^{2}}$$

$$\frac{y}{3} \Rightarrow \sqrt{-(ax-x^{2})} = \sqrt{ax} = \sqrt{ax} = \sqrt{ax^{3}-x^{4}} dx$$

$$\Rightarrow \sqrt{-(ax-x^{2})} = \sqrt{ax} = \sqrt{ax} = \sqrt{ax^{3}-x^{4}} dx$$

$$\Rightarrow \sqrt{-(ax-x^{2})} = \sqrt{ax} = \sqrt{ax} = \sqrt{ax^{3}-x^{4}} dx$$

$$= \sqrt{-(ax-x^{2})} = \sqrt{ax} = \sqrt{ax} = \sqrt{ax^{3}-x^{4}} dx$$

$$= \sqrt{-(ax-x^{2})} = \sqrt{ax} = \sqrt{ax} = \sqrt{ax^{3}-x^{4}} dx$$

$$= \sqrt{-(ax-x^{2})} = \sqrt{ax} = \sqrt{ax} = \sqrt{ax^{3}-x^{4}} dx$$

$$= \sqrt{-(ax-x^{2})} = \sqrt{ax} = \sqrt$$