Customer Transaction Prediction

By: Rohitkumar Keswani MSc Big Data Science with Industrial Experience 200361138

Problem Statement

© Predicting which customers will make a future transactions with banks (financial institutions) irrespective of transaction in the past.

Dataset

© The dataset is of real customers of Santander bank, due to this the dataset is anonymized for the privacy reasons.

The dataset contains 200 anonymized features and a binary target column with 200,000 rows of training data, the value of these features are also manipulated by some data pre-processing techniques which makes it harder to interpret.

Machine Learning Explainability

Permutation Importance

Weight	Feature	0.0003 ± 0.0006	var 130	0.0000 ± 0.0002	var_60
0.0016 ± 0.0003	var 6	0.0003 ± 0.0008 0.0003 ± 0.0002	var 166	0.0000 ± 0.0001	var_97
0.0014 ± 0.0003	var 22	0.0003 ± 0.0002 0.0003 ± 0.0004	var 128	0.0000 ± 0.0001	var_30
0.0014 ± 0.0004	var 139	0.0003 ± 0.0004 0.0003 ± 0.0005		0.0000 ± 0.0000	var_43
0.0017 ± 0.0007	var_110		var_147	0.0000 ± 0.0002	var_91
0.0012 ± 0.0000	var 81	0.0003 ± 0.0006	var_67	0.0000 ± 0.0001	var_16
0.0012 ± 0.0007 0.0011 ± 0.0004	var_01	0.0003 ± 0.0001	var_187	0.0000 ± 0.0001	var_18
0.0011 ± 0.0004 0.0011 ± 0.0003	var 190	0.0003 ± 0.0002	var_62	0.0000 ± 0.0002	var_18
		0.0003 ± 0.0003	var_15	0.0000 ± 0.0001	var_84
0.0010 ± 0.0003	var_13	0.0003 ± 0.0004	var_191	0.0000 ± 0.0002	var_16
0.0010 ± 0.0005	var_149	0.0003 ± 0.0004	var_87	0 ± 0.0000	var_68
0.0010 ± 0.0003	var_1	0.0003 ± 0.0004	var_111	-0.0000 ± 0.0002	var_39
0.0010 ± 0.0006	var_53	0.0003 ± 0.0002	var_182	-0.0000 ± 0.0001	var_16
0.0009 ± 0.0010	var_76	0.0003 ± 0.0001	var_35	-0.0000 ± 0.0001	var_27
0.0009 ± 0.0008	var_99	0.0003 ± 0.0003	var_155	-0.0000 ± 0.0001	var_10
0.0009 ± 0.0005	var_170	0.0002 ± 0.0004	var_49	-0.0000 ± 0.0003	var_19
0.0009 ± 0.0007	var_165	0.0002 ± 0.0005	var_196	-0.0000 ± 0.0000	var_10
0.0009 ± 0.0006	var_174	0.0002 ± 0.0004	var_172	-0.0000 ± 0.0000	var_96
0.0009 ± 0.0001	var_21	0.0002 ± 0.0001	var_153	-0.0000 ± 0.0003	var_32
0.0008 ± 0.0003	var 89	0.0002 ± 0.0004	var_141	-0.0000 ± 0.0002	var_15
0.0008 ± 0.0003	var 198	0.0002 ± 0.0003	var_132	-0.0000 ± 0.0001	var_13
0.0008 ± 0.0005	var 80	0.0002 ± 0.0005	var 75	-0.0000 ± 0.0000	var_10
0.0008 ± 0.0005	var 179	0.0002 ± 0.0004	var 140	-0.0000 ± 0.0001	var_37
0.0008 ± 0.0004	var 26	0.0002 ± 0.0002	var_176	-0.0000 ± 0.0001	var_69
0.0008 ± 0.0004	var 40	0.0002 ± 0.0003	var 4	-0.0000 ± 0.0000	var_10
0.0008 ± 0.0005	var 154	0.0002 ± 0.0001	var 61	-0.0000 ± 0.0002	var_10
0.0007 ± 0.0005	var 115	0.0002 ± 0.0002	var 92	-0.0001 ± 0.0003	var_12
0.0007 ± 0.0003	var 123	0.0002 ± 0.0003	var 113	-0.0001 ± 0.0003	var_65
0.0007 ± 0.0005	var_184	0.0002 ± 0.0002	var 77	-0.0001 ± 0.0002 -0.0001 ± 0.0007	var_98
0.0007 ± 0.0003	var 177	0.0002 ± 0.0001	var 3	-0.0001 ± 0.0007	var_86
0.0007 ± 0.0004 0.0007 ± 0.0002	var 94	0.0002 ± 0.0005	var 33	-0.0001 ± 0.0003 -0.0001 ± 0.0000	var_51
		0.0002 ± 0.0002	var 112	-0.0001 ± 0.0000	var_41 var_11
0.0007 ± 0.0004	var_18	0.0002 ± 0.0003	var 55	-0.0001 ± 0.0001	var 17
0.0006 ± 0.0003	var 95	0.0002 1 0.0000	741_00	-0.0001 ± 0.0001	vai_17

• •

PDP Plots

PDP for feature "var_81" Number of unique grid points: 10

Data Pre-Processing

There were no missing values in the dataset.

© The dataset is imbalanced. 90% of the data has 0 target value.

There was no linear correlations either in training data or in the test data.

Distribution Plots

Mean Distribution Plots

Standard Deviation Distribution Plots

Machine Learning models

- © Logistic Regression
- © Random Forest
- © Support Vector Machine
- © Gaussian Naïve Bayes
- Artificial Neural Networks

Under Sampling

Limitations of Under Sampling

◎ In Under sampling the data samples of the majority class are deleted randomly, the data can be useful to create a robust decision boundary.

There is no way that one can preserve information rich examples from the majority class

Over Sampling

Limitations of Over Sampling

© The main drawback of over sampling is that it makes exact copies of the existing examples which makes overfitting more likely.

Data Augmentation

SMOTE

Synthetic Minority Oversampling Technique is a Data augmentation technique, which synthesizes new examples for the minority class in the imbalanced dataset.

Ensemble methods

Boosting

- © CatBoost
- ◎ XGBoost
- © LightGBM

Deployment

https://transaction-prediction.herokuapp.com/

Business Use-Case

© Customer Transaction Prediction model will help the Banks and financial institutions to build their business and marketing strategies.

◎ It will help them to give them personalized service which will enhance in user experience, which will contribute in the growth of the business.

Thank You

