ALGEBRA LINEARE E GEOMETRIA

1º appello — 18 giugno 2024

Esercizio 1. Sia $f: \mathbb{R}^3 \to \mathbb{R}^4$ la seguente funzione lineare:

$$f(x,y,z) = (2x + 2z, y - z, -x + 2y - 3z, x + y)$$

- (a) Trovare una base di Ker f e una base di Im f.
- (b) Sia $W \subset \mathbb{R}^4$ il sottospazio di equazione $x_1 2x_3 = 0$. Determinare la dimensione e una base di W.
- (c) Poniamo U = Im f. Trovare una base di $U \cap W$ e una base di U + W.
- (d) Determinare per quali valori di a e b esiste un vettore $v \in \mathbb{R}^3$ tale che f(v) = (a, -1, -4, b).

Soluzione. (a) La matrice di f rispetto alle basi canoniche di \mathbb{R}^3 e di \mathbb{R}^4 è

$$\begin{pmatrix}
2 & 0 & 2 \\
0 & 1 & -1 \\
-1 & 2 & -3 \\
1 & 1 & 0
\end{pmatrix}$$

Il Ker f si trova risolvendo il sistema f(x, y, z) = 0, che equivale al sistema

$$\begin{cases} x = -z \\ y = z \end{cases}$$

da cui segue che $\dim(\operatorname{Ker} f) = 1$ e una base di $\operatorname{Ker} f$ è formata dal vettore (1, -1, -1). Dato che $\dim(\operatorname{Ker} f) = 1$ si ha che $\dim(\operatorname{Im} f) = 2$, quindi una base di $\operatorname{Im} f$ è formata da due colonne linearmente indipendenti della matrice di f (ad esempio, le prime due colonne).

- (b) Dall'equazione di W si ricava $x_1 = 2x_3$, quindi le incognite x_2, x_3, x_4 sono indeterminate e pertanto dim W = 3. Una base di W è formata dai vettori $w_1 = (0, 1, 0, 0), w_2 = (2, 0, 1, 0)$ e $w_3 = (0, 0, 0, 1)$.
- (c) Prendiamo come base di U = Im f le prime due colonne della matrice di f. Un generico vettore di U si scrive come segue:

$$\alpha(2,0,-1,1) + \beta(0,1,2,1) = (2\alpha,\beta,-\alpha+2\beta,\alpha+\beta).$$

Richiedere che questo vettore appartenga anche a W equivale a richiedere che le sue coordinate soddisfino l'equazione $x_1 = 2x_3$ di W. Sostituendo e risolvendo si ottiene $\alpha = \beta$ e possiamo quindi porre $\alpha = \beta = 1$. In questo modo si ottiene il vettore (2, 1, 1, 2) che è una base di $U \cap W$.

Dalla formula di Grassmann si ricava $\dim(U+W)=4$, quindi deve necessariamente essere $U+W=\mathbb{R}^4$ e pertanto come base di U+W possiamo prendere la base canonica di \mathbb{R}^4 .

(d) Richiedere che f(v) = (a, -1, -4, b) equivale a richiedere che $(a, -1, -4, b) \in U = \text{Im } f$, quindi bisogna che il vettore (a, -1, -4, b) si possa scrivere come combinazione lineare dei vettori della base di U. Si deve quindi avere

$$(a, -1, -4, b) = \alpha(2, 0, -1, 1) + \beta(0, 1, 2, 1) = (2\alpha, \beta, -\alpha + 2\beta, \alpha + \beta).$$

Risolvendo queste equazioni si trova $\alpha = 2$, $\beta = -1$, a = 4 e b = 1.

Esercizio 2. Consideriamo la matrice

$$A = \begin{pmatrix} 1 & 0 & -3 \\ 2 & 1 & 2 \\ 1 & 1 & t \end{pmatrix}$$

- (a) Determinare il valore di t per cui il nucleo di A è diverso da $\{0\}$.
- (b) Per tutto il resto dell'esercizio poniamo t uguale al valore trovato al punto (a). Determinare il polinomio caratteristico e gli autovalori di A.
- (c) Trovare una matrice invertibile P tale che $P^{-1}AP$ sia una matrice diagonale.

(d) Sia B una matrice con lo stesso polinomio caratteristico di A. Si dica se è possibile trovare una matrice invertibile R tale che $B = R^{-1}AR$ (la risposta deve essere giustificata).

Soluzione. (a) Si ha det A = t - 5. Il nucleo di A è diverso da $\{0\}$ se e solo se det A = 0, quindi per t = 5.

(b) Ponendo t = 5 si ottiene la matrice

$$A = \begin{pmatrix} 1 & 0 & -3 \\ 2 & 1 & 2 \\ 1 & 1 & 5 \end{pmatrix}$$

Calcoliamo il polinomio caratteristico di A:

$$\det \begin{pmatrix} 1 - \lambda & 0 & -3 \\ 2 & 1 - \lambda & 2 \\ 1 & 1 & 5 - \lambda \end{pmatrix} = -\lambda(\lambda^2 - 7\lambda + 12) = -\lambda(\lambda - 3)(\lambda - 4)$$

Da ciò si ricava che gli autovalori sono $\lambda=0,\ \lambda=3$ e $\lambda=4$. La matrice A è quindi diagonalizzabile dato che ha 3 autovalori distinti.

(c) Determiniamo l'autospazio relativo all'autovalore 0 (cioè il nucleo di A):

$$\begin{pmatrix} 1 & 0 & -3 \\ 2 & 1 & 2 \\ 1 & 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Risolvendo questo sistema si trova

$$\begin{cases} x = 3z \\ y = -8z \end{cases}$$

pertanto questo autospazio ha dimensione 1 ed è generato dal vettore (3, -8, 1). Determiniamo l'autospazio relativo all'autovalore 3:

$$\begin{pmatrix} -2 & 0 & -3 \\ 2 & -2 & 2 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Risolvendo questo sistema si trova

$$\begin{cases} x = -3z/2 \\ y = -z/2 \end{cases}$$

pertanto questo autospazio ha dimensione 1 ed è generato dal vettore (3, 1, -2). Infine determiniamo l'autospazio relativo all'autovalore 4:

$$\begin{pmatrix} -3 & 0 & -3 \\ 2 & -3 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Risolvendo questo sistema si trova

$$\begin{cases} x = -z \\ y = 0 \end{cases}$$

pertanto questo autospazio ha dimensione 1 ed è generato dal vettore (1,0,-1). La matrice P è quindi

$$P = \begin{pmatrix} 3 & 3 & 1 \\ -8 & 1 & 0 \\ 1 & -2 & -1 \end{pmatrix}$$

(d) La matrice B ha lo stesso polinomio caratteristico di A, quindi ha gli stessi autovalori 0, 3, 4. Da ciò segue che anche la matrice B (esattamente come A) è simile alla matrice diagonale

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Dato che B è simile a D che, a sua volta, è simile ad A, si conclude che B è simile ad A, quindi esiste una matrice invertibile R tale che $B = R^{-1}AR$.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio di equazioni

$$\begin{cases} x_1 - x_3 + 2x_4 = 0 \\ x_2 + x_4 = 0 \end{cases}$$

- (a) Trovare una base ortogonale di U.
- (b) Dato il vettore $w_1 = (1, -1, -1, 1)$ trovare un vettore w_2 che sia ortogonale a w_1 e tale che, detto W il sottospazio generato da w_1 e w_2 , si abbia $W = U^{\perp}$
- (c) Scrivere un sistema di equazioni nelle incognite x_1,x_2,x_3,x_4 il cui insieme di soluzioni sia il sottospazio $W=U^{\perp}$
- (d) Dato il vettore v = (1, -1, 1, 3) si trovi un vettore $u \in U$ tale che il vettore v u abbia norma minima.

Soluzione. (a) Dalle equazioni di U si ottiene

$$\begin{cases} x_1 = x_3 - 2x_4 \\ x_2 = -x_4 \end{cases}$$

da cui si ricavano i seguenti due vettori che formano una base di ${\cal U}$

$$u_1 = (1, 0, 1, 0), u_2 = (-2, -1, 0, 1).$$

Ora applichiamo il procedimento di Gram–Schmidt a u_1 e u_2 per ottenere una base ortogonale di U. Poniamo $u_1' = u_1$, $u_2' = u_2 + \alpha u_1'$ e imponiamo la condizione $u_1' \cdot u_2' = 0$. Si trova $\alpha = 1$ e quindi $u_2' = u_2 + u_1 = (-1, -1, 1, 1)$.

(b) Possiamo notare che $w_1 \cdot u_1 = 0$ e $w_1 \cdot u_2 = 0$, quindi $w_1 \in U^{\perp}$. Poniamo ora $w_2 = (x_1, x_2, x_3, x_4)$. Imponendo le condizioni $w_2 \cdot w_1 = 0$, $w_2 \cdot u_1 = 0$, $w_2 \cdot u_2 = 0$ si ottiene il sistema

$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 + x_3 = 0 \\ -2x_1 - x_2 + x_4 = 0 \end{cases}$$

da cui si ricava

$$\begin{cases} x_1 = 0 \\ x_2 = x_4 \\ x_3 = 0 \end{cases}$$

Possiamo quindi prendere $w_2 = (0, 1, 0, 1)$.

(c) Dato che $W=U^{\perp}$ i coefficienti che compaiono nelle equazioni di W sono le componenti dei vettori u_1 e u_2 che formano una base di U:

$$W: \begin{cases} x_1 + x_3 = 0 \\ -2x_1 - x_2 + x_4 = 0 \end{cases}$$

(d) Il vettore $u \in U$ tale che v - u abbia norma minima è la proiezione ortogonale di v sul sottospazio U. Poniamo quindi $u = au_1 + bu_2 = (a - 2b, -b, a, b)$. Si ha v - u = (1 - a + 2b, -1 + b, 1 - a, 3 - b).

Questo vettore deve appartenere a $W = U^{\perp}$, quindi le sue componenti devono soddisfare le equazioni di W. Sostituendo e risolvendo le equazioni si trova a = 2 e b = 1, quindi $u = 2u_1 + u_2 = (0, -1, 2, 1)$.

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ sono date le due rette

$$r: \begin{cases} x - 2y + 4 = 0 \\ y + z - 3 = 0 \end{cases} \qquad s: \begin{cases} x + 2z - 5 = 0 \\ x - 2y + 1 = 0 \end{cases}$$

- (a) Verificare che r e s sono parallele e scrivere l'equazione cartesiana del piano che le contiene entrambe.
- (b) Dato il punto $R=(0,2,1)\in r$ trovare il punto $S\in s$ tale che la retta passante per $R\in S$ sia ortogonale a r e a s.
- (c) Scrivere l'equazione cartesiana del piano σ contenente la retta r e passante per il punto A = (-1, 1, 0).
- (d) Scrivere le equazioni parametriche della retta ℓ contenuta nel piano σ , passante per A=(-1,1,0) e ortogonale alla retta r.

Soluzione. (a) Due punti di r sono $R_1 = (-4,0,3)$ e $R_2 = (-2,1,2)$, quindi un vettore direttore di r è $v_r = R_2 - R_1 = (2,1,-1)$. Due punti di s sono $S_1 = (5,3,0)$ e $S_2 = (3,2,1)$, quindi un vettore direttore di s è $v_s = S_2 - S_1 = (-2,-1,1)$. I vettori v_s e v_r sono proporzionali quindi le rette r e s sono parallele. Consideriamo l'equazione del fascio di piani di asse r:

$$\lambda(x - 2y + 4) + \mu(y + z - 3) = 0$$

Imponendo la condizione di passaggio per il punto S_1 si trova $\lambda=0$ e possiamo quindi prendere $\mu=1$. Pertanto il piano che contiene le rette r e s ha equazione

$$y + z - 3 = 0.$$

(b) Le equazioni parametriche di s sono

$$\begin{cases} x = 5 + 2t \\ y = 3 + t \\ z = -t \end{cases}$$

quindi il generico punto di $s \in S = (5 + 2t, 3 + t, -t)$.

Il vettore \vec{RS} è $\vec{RS} = S - R = (5 + 2t, 1 + t, -t - 1)$. Questo vettore deve essere ortogonale a v_r , quindi si deve avere $\vec{RS} \cdot v_r = 0$. Risolvendo questa equazione si trova t = -2, quindi il punto S ha coordinate S = (1, 1, 2).

(c) Consideriamo l'equazione del fascio di piani di asse r:

$$\lambda(x - 2y + 4) + \mu(y + z - 3) = 0$$

Imponendo la condizione di passaggio per il punto A si trova $\lambda=2\mu$. Possiamo quindi prendere $\mu=1$ e $\lambda=2$. Pertanto il piano σ ha equazione

$$\sigma : 2x - 3y + z + 5 = 0.$$

(d) Il vettore n_{σ} ortogonale al piano σ è $n_{\sigma}=(2,-3,1)$. Il vettore della retta r è $v_r=(2,1,-1)$. Il vettore v_{ℓ} della retta ℓ deve essere ortogonale a n_{σ} e a v_r , quindi possiamo prendere $v_{\ell}=n_{\sigma}\times v_r=(2,4,8)$. Pertanto le equazioni parametriche della retta ℓ sono

$$\begin{cases} x = -1 + 2t \\ y = 1 + 4t \\ z = 0 + 8t \end{cases}$$