Algorytm Smitha-Watermana - poszukiwanie optymalnych lokalnych dopasowań sekwencji

Abstrakt

Algorytmy dopasowania sekwencji znajduje swoje zastosowanie m. in. w bioinformatyce do poszukiwań dopasowań sekwencji nukleotydów i aminokwasów. Algorytm Smitha-Watermana należy do podgrupy rozwiązań zajmujących jest tzw. dopasowaniem lokalnym. W poniższym dokumencie przedstawiono opis prób zrównoleglenia tego algorytmu z wykorzystaniem technologii CUDA.

Przedostawienie problemu

Problem dopasowania sekwencji przyjmuje na wejściu dwa ciągi znaków. W ogólnym przypadku, ciągi te mogą składać się z liter dowolnego alfabetu. W przypadku zastosowań bioinformatyczych zazwyczaj ten alfabet jest relatywnie niewielki (np. czteroznakowy "TGAC").

Problem tej klasy można interpretować na dwa sposoby. Istnieja rozwiązania analizujące:

- dopasowanie globalne
- dopasowanie lokalne

W przypadku dopasowania globalnego dwa ciągi porównywane są wzdłuż całej sekwencji. Takie rozwiązanie jest wykorzystywane przy analizie jednodomenowych białek. Algorytmem tego typu jest na przykład algorytm Needlemana-Wunscha. Schemat takiego dopasowania przedstawiono poniżej:

Rysunek 1: Schemat dopasowania globalnego

Lokalny typ dopasowania polega na rozszerzeniu możliwości algorytmów pierwszego typu o zdolność do zauważenia podobieństw w małych obaszarach. Dla przykładu pewne sekwencje mogę być zamienione kolejnością. Ten typ rozwiązania znajduje zastosowanie w analizowaniu białek wielodomenowych. Poniżej przedstawiono schemat dopasowania tego typu.

Dla uwidocznienia różnicy w działaniu tych dwóch typów algorytmów posłużmy się przykładem następujących ciągów:

TGGAACCA

Rysunek 2: Schemat dopasowania lokalnego

• ACCATGGA

Powyższa sekwencja składa się z dwóch czteroliterowych sekwencji umieszczony w różnej kolejności. Poniżej przedstawiono macierze podobieństawa uzyskane przez oba algorytmy wraz ze znalozionymi rozwiązaniami. Proces powstawania macierzy tego typu zostanie opisany w dalszej częście tego dokumentu.

Rysunek 3: Przykład różnicy w działaniu dopasowania globalnego (po lewo) i dopasowania lokalnego (po prawo)

W przypadku globalnego dopasowania najlepszy uzyskany wynik jest jeden. Algorytm uzaje, że za najpesze dopasowanie należy uznać następującą interpretacje: Dla uwidocznienia różnicy w działaniu tych dwóch typów algorytmów posłużmy się przykładem następujących ciągów:

- Pierwszy znak został podmieniony
- Natepnie brakuje 4 znaków w drugim ciagu

- Kolejne dwa znaki pasują do siebie
- Natępnie brakuje 4 znaków w pierwszym ciągu
- Ostatnie znaki pasują do siebie

Jak widać, takie rozwiązanie nie jest w stanie wykryć istoty zadanego przykładu. Dla odmiany dopasowanie lokalne nie narzuca jednego najlepszego rozwiązania. Po zbudowaniu macierzy podobieństwa możemy zauważyć że istnieją dwie ścieżki punktowane w ten sam sposób. Jedna z nich repreztuje informacje o znalezieniu dopasowania podciągów ACCA", druga o znalezieniu dopasowania podciągów "TGGA". W przypadku dużych ciągów wejściowych powyższe macierze reprezentuje się w odmienny sposób. Przyjmując pewną wartość progową można utworzyć wykres tego typu:

Rysunek 4: Przykład wizualnej reprezentacji macierzy podobieństwa dla algorytmu dopasowania lokalnego

Dzięki takiemu przedstawieniu wyników możliwe jest zwrócenie uwagi na fragmenty zawierające istotne podobieństwo.

Algorytm Smitha-Watermana w ujęciu sekwencyjnym

Algorym Smitha-Watermana należy do klasy algorytmów dynamicznych. Składa się z się z dwóch etapów:

- Tworzenie macierzy podobieństwa
- Otwarzanie optymalnej ścieżki (ang. backtracking)

W pierwszym etapie zostaje utworzona pusta macierz. Jej wiersze odpowiadają kolejnym znakom pierwszego ciągu, kolumny kolejnym znakom drugiego ciągu. Komórki

znajdujące się na przecięcie opisują punktacje określającą w jakim stopniu dopasowanie danych dwóch znaków jest poprawne.

W celu wypełnienia powyższej macierzy należy zauwazyć, że przy porównywaniu dwóch ciągów można mieć miesce trzy sytuacje przedstawione na poższym schemacie.

Rysunek 5: Możliwe sytacje w trakcie porównywania ciągów: (1 - dopasowanie, 2 - przerwa, 3 - zamiana)

Dwa ciągi są do siebie podobne gdy mamy więcej sytuacji typu 1 ("dopasowanie") niż sytuacji typów 2 ("przerwa"),3 (źamiana"). W związku z tym spostrzeżeniem w trakcie wypełniania macierzy wartościami będziemy dodatnio punktować "dopasowania", podczas gdy "przerwy"i źamiany"będę punktowane ujemnie. Dokładne wartości punktacji nie są elementem specyfikacji algorytmu i są dobierane w zależności od rozpatrywanego problemu. Daje to możliwość porównywania ciągów w sposób traktujący "przerwy"mniej restrykcyjnie niż źamiany" (lub odrotnie).

Rysunek 6: Pierwsze cztery kroki wykonaniu algorutymy Smitha-Watermana dla danych wejściowych: TGGA, TGA

Algorytm bazujący na programowaniu dynamicznym umożliwiający poszukiwanie optymalnych lokalnych dopasowań sekwencji. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras sed velit nec nibh varius suscipit. Curabitur nisi purus, porttitor in urna ut, tincidunt aliquam leo. Integer sit amet nisi egestas, congue tellus nec, gravida tellus. Nulla facilisi. Quisque ultrices sem sed arcu mattis, in eleifend lectus imperdiet. Donec ullamcorper cursus tortor, in interdum sem imperdiet non. Aliquam sit amet viverra nisl, vitae ullamcorper dolor. Pellentesque varius ex a urna blandit, ac volutpat sapien feugiat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nulla posuere ligula ligula, ut ullamcorper nulla tempor vitae.

Vestibulum faucibus ex dolor, non suscipit enim sagittis eget. Cras et condimentum elit. Integer porta, quam ac posuere efficitur, magna mauris finibus nisi, at egestas augue diam sed risus. Ut nec nisi quis nunc sagittis volutpat at viverra eros. Donec ut porttitor orci. Mauris eget eleifend neque, id condimentum tortor. Nunc lobortis quam mi, aliquet varius dolor tempus non. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam sed auctor ex. Praesent tempus ipsum sit amet eros tempus, id ornare nulla vulputate. Nullam lobortis mi leo, ac tincidunt est volutpat dapibus. Pellentesque faucibus maximus suscipit. Duis vitae turpis in nisi condimentum finibus quis a arcu. Donec magna massa, elementum rutrum ligula at, dignissim blandit sem. Vivamus est nisl, aliquam ac tellus ac, egestas consectetur erat. Morbi commodo dui non ipsum vehicula dapibus.

Zarys technologii CUDA

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras sed velit nec nibh varius suscipit. Curabitur nisi purus, porttitor in urna ut, tincidunt aliquam leo. Integer sit amet nisi egestas, congue tellus nec, gravida tellus. Nulla facilisi. Quisque ultrices sem sed arcu mattis, in eleifend lectus imperdiet. Donec ullamcorper cursus tortor, in interdum sem imperdiet non. Aliquam sit amet viverra nisl, vitae ullamcorper dolor. Pellentesque varius ex a urna blandit, ac volutpat sapien feugiat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nulla posuere ligula ligula, ut ullamcorper nulla tempor vitae.

Vestibulum faucibus ex dolor, non suscipit enim sagittis eget. Cras et condimentum elit. Integer porta, quam ac posuere efficitur, magna mauris finibus nisi, at egestas augue diam sed risus. Ut nec nisi quis nunc sagittis volutpat at viverra eros. Donec ut porttitor orci. Mauris eget eleifend neque, id condimentum tortor. Nunc lobortis quam mi, aliquet varius dolor tempus non. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam sed auctor ex. Praesent tempus ipsum sit amet eros tempus, id ornare nulla vulputate. Nullam lobortis mi leo, ac tincidunt est volutpat dapibus. Pellentesque faucibus maximus suscipit. Duis vitae turpis in nisi condimentum finibus quis a arcu. Donec magna massa, elementum rutrum ligula at, dignissim blandit sem. Vivamus est nisl, aliquam ac tellus ac, egestas consectetur erat. Morbi commodo dui non ipsum vehicula dapibus.

Model zwrónoleglenia Algorytmu Smitha-Watermana

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras sed velit nec nibh varius suscipit. Curabitur nisi purus, porttitor in urna ut, tincidunt aliquam leo. Integer sit amet nisi egestas, congue tellus nec, gravida tellus. Nulla facilisi. Quisque ultrices sem sed arcu mattis, in eleifend lectus imperdiet. Donec ullamcorper cursus tortor, in interdum sem imperdiet non. Aliquam sit amet viverra nisl, vitae ullamcorper dolor. Pellentesque varius ex a urna blandit, ac volutpat sapien feugiat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nulla posuere ligula ligula, ut ullamcorper nulla tempor vitae.

Vestibulum faucibus ex dolor, non suscipit enim sagittis eget. Cras et condimentum elit. Integer porta, quam ac posuere efficitur, magna mauris finibus nisi, at egestas augue diam sed risus. Ut nec nisi quis nunc sagittis volutpat at viverra eros. Donec ut porttitor orci. Mauris eget eleifend neque, id condimentum tortor. Nunc lobortis quam mi, aliquet varius dolor tempus non. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam sed auctor ex. Praesent tempus ipsum sit amet eros tempus, id ornare nulla vulputate. Nullam lobortis mi leo, ac tincidunt est volutpat dapibus. Pellentesque faucibus maximus suscipit. Duis vitae turpis in nisi condimentum finibus quis a arcu. Donec magna massa, elementum rutrum ligula at, dignissim blandit sem. Vivamus est nisl, aliquam ac tellus ac, egestas consectetur erat. Morbi commodo dui non ipsum vehicula dapibus.

Wnioski

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras sed velit nec nibh varius suscipit. Curabitur nisi purus, porttitor in urna ut, tincidunt aliquam leo. Integer sit amet nisi egestas, congue tellus nec, gravida tellus. Nulla facilisi. Quisque ultrices sem sed arcu mattis, in eleifend lectus imperdiet. Donec ullamcorper cursus tortor, in interdum sem imperdiet non. Aliquam sit amet viverra nisl, vitae ullamcorper dolor. Pellentesque varius ex a urna blandit, ac volutpat sapien feugiat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nulla posuere ligula ligula, ut ullamcorper nulla tempor vitae.

Vestibulum faucibus ex dolor, non suscipit enim sagittis eget. Cras et condimentum elit. Integer porta, quam ac posuere efficitur, magna mauris finibus nisi, at egestas augue diam sed risus. Ut nec nisi quis nunc sagittis volutpat at viverra eros. Donec ut portitor orci. Mauris eget eleifend neque, id condimentum tortor. Nunc lobortis quam mi, aliquet varius dolor tempus non. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam sed auctor ex. Praesent tempus ipsum sit amet eros tempus, id ornare nulla vulputate. Nullam lobortis mi leo, ac tincidunt est volutpat dapibus. Pellentesque faucibus maximus suscipit. Duis vitae turpis in nisi condimentum finibus quis a arcu. Donec magna massa, elementum rutrum ligula at, dignissim blandit sem. Vivamus est nisl, aliquam ac tellus ac, egestas consectetur erat. Morbi commodo dui non ipsum vehicula dapibus.

Źródła

Łukasz Ligowski, Witold Rudnicki - AN EFFICIENT IMPLEMENTATION OF SMITH WATERMAN ALGORITHM ON GPU USING CUDA, FOR MASSIVELY PARALLEL SCANNING OF SEQUENCE DATABASES

E. Banachowicz Bioinformatyka - wykład monograficzny http://opal.przyjaznycms.pl/