GEO1003 - Shared Notes

Master Geomatics Students

2024-12-07

Contents

Introduction	3
Example	3
	3
Markdown Basics	3
	3
Comments	4
Headers	4
Bold and Italic	4
Lists	5
Links	5
Images	5
Blockquotes	6
Code	6
Tables	6
Math	6
Empty Section	7
How does GNSS work?	7
Introduction	7
GPS segments	7
Radio Signal	7
Initialisation	7
	8
Carrier Phase Measurement	8
	9
	9
	9
GNSS performance	9
\cdot	9
Error Sources	9
	9
<u> </u>	9
	9
	0

Availability, Continuity and Integrity																10
Availability																10
Continuity																10
Integrity																10
PPP-RTK																10
Abbreviations																10
PPP																10
RTK																10
PPP-RTK																11
Comparing RTK, PPP, and PPP-RTK																11
DGNSS																13
Darios		•	•		•	•		•	•	•	•	•	• •	•	•	10
GNSS in the built environment (outdoor, inc	loc	r	an	d	in	be	etw	/ee	n)							13
Introduction									-		_	_				13
Multipath																13
Urban Canyon																13
Shadow Matching																13
Shadow Matching		•	•		•	•		•	•	•	•	•	• •	•	•	10
CRS																13
Introduction																13
Coordinate Systems																13
Ellipsoids																13
Geocentric Coordinate Systems																13
Topocentric Coordinate Systems																13
																13
Coordinate Reference Systems (CRS)																13
Terrestrial Reference Systems and Frames																13
Terrestrial Reference Systems																
Terrestrial Reference Frames																13
Datum and Transformations																15
Datums																15
Transformations		•	•		٠	•		٠			•	•		•	•	15
Conversions		•	•		•	•		•	•	•	•	•	٠.	•	•	15
Map Projection																15
RDNAP																15
Rijksdriehoeksmeting (RD)																15
Normaal Amsterdams Peil (NAP)																15
																4 =
Wi-Fi-monitoring / Fingerprinting																15
Introduction																15
Wi-Fi-Based Approaches																15
Wi-Fi Monitoring																15
Wi-Fi Fingerprinting																15
Radio Signal Based Techniques																15
Received Signal Strength (RSS) \dots																15
Time of Arrival (ToA)																15
Time Difference of Arrival (TDoA) .																15
Angle of Arrival (AOA)																15
Path-Loss																15
Fine Timing Measurement (FTM)																15
Radio Frequency Identification (RFID)																15

Hybrid and Other Techniques	 	 15
Trilateration		15
Inertial Navigation Systems (INS)	 	 15
Visual Based Indoor Localisation	 	 15
Isovists		15
Performance Metrics	 	 15
Position	 	 15
Location		15
Yield	 	 15
Consistency		15
Overhead		15
Latency	 	 15
Power Consumption		15
Roll-Out and Operating Costs	 	 15
Location awareness and privacy		15
Introduction	 	 15
Spaces	 	 15
Indoor Space		15
Semi-Indoor Space		15
Semi-Outdoor Space	 	 15
Outdoor Space		15
IndoorCMI		15

Introduction

This is the introduction to the notes.

Example

Introduction

The goal of this chapter is just to demonstrate how things should be organized. It will be removed from the notes in the end.

Markdown Basics

Resources and Helpers

A nice cheat sheet about Markdown can be found at this link: https://www.markdownguide.org/cheat-sheet/.

On VS Code, there are some nice extensions that can help you write Markdown files:

- Markdown All in One to provide useful shortcuts and commands
- markdownlint to properly format your Markdown files

Feel free to ask me if you have questions about Markdown.

Comments

```
This <!--This is a comment.--> is <!--
Comments are not rendered.
They can take multiple lines
-->
a
sentence.
```

This is a sentence.

Headers

```
<!-- Comment the fist headers to avoid messing up the outline of this file -->
<!--
# Level 1

## Level 2

### Level 3
-->

#### Level 4

##### Level 5

###### Level 6
```

Level 4

Level 5 Level 6

Bold and Italic

```
- Normal text
- **Bold text**
- _Italic text_
- **_Bold and italic text_**
```

- Normal text
- Bold text
- Italic text
- Bold and italic text

Lists

Unordered list:

- Unordered list item 1
- Unordered list item 2
 - Nested unordered list item

Ordered list:

- 1. Ordered list item 1
- 2. Ordered list item 2
 - 1. Nested ordered list item

Unordered list:

- Unordered list item 1
- Unordered list item 2
 - Nested unordered list item

Ordered list:

- 1. Ordered list item 1
- 2. Ordered list item 2
 - 1. Nested ordered list item

Links

```
[Example link] (https://www.example.com)
```

Example link

Images

```
![Example image](../../images/example.jpg){ width="250" }
```


Figure 1: Example image

Blockquotes

```
> This is a blockquote.
```

This is a blockquote.

Code

```
Inline code: `print("Hello, World!")`
Code block:
    ``python
def hello_world():
    print("Hello, World!")

Inline code: print("Hello, World!")
Code block:
def hello_world():
    print("Hello, World!")
```

Tables

Table: A simple table

Table 1: A simple table

Header 1	Header 2
Cell 1	Cell 2
Cell 3	Cell 4

Math

```
Inline math: $x^2$ is the square of $x$.

Block math: $$$ \left( \frac{0^{-x^2}}{dx} = \frac{\sqrt{\pi^2}}{2} \right) $$
```

Inline math: x^2 is the square of x.

Block math:

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Empty Section

An other section that is empty.

How does GNSS work?

Introduction

GPS (Global Positioning System), also known as NAVSTAR (NAVigation Satellite Time And Ranging) had its first satellite launched in 1978.

GPS segments

The GPS system consists of three segments:

- 1. Space segment (satellites with atomic clocks)
- 2. Control segment (ground stations for clock offsets)
- 3. User segment (receivers)

Radio Signal

The GPS radio signal contains:

- the **L-band carrier frequency** between 1 and 2 GHz
- the Pseudo Random Noise (PRN, also called the spreading code), unique to each satellite, publicly available
- the **navigation message** containing the satellite orbit and clock information

Initialisation

When starting, GPS receivers try to find a particular GPS satellite on *each of their channels* (tens to hundreds). This is done by **overlaying the received signal** with a replica of the **spreading code** and then shifting it until correlation shows a maximum (best fit, or match).

Figure 2: GPS L1 CA-signal (scale is not accurate)

Pseudorange Measurement

The **pseudorange** $p_{r,s}$ is calculated by multiplying the travel time $\tau_{r,s}$ by the speed of light c:

$$p_{r,s} = c \cdot \tau_{r,s}$$
 where $\tau_{r,s} = t_r - t_s$

Carrier Phase Measurement

Carrier Phase Measurement:

- Measures **fractional phase difference** between the received *carrier wave* from the satellite and a locally generated *replica*.
- Provides a very precise distance measure (satellite to receiver)
- Needs to be **initialized** by finding the initial number of carrier wave cycles.
- Is much more precise than pseudorange code measurement. thanks to the **carrier period** being **much smaller** than code chip duration (in L1 CA-code signal, 1540 carrier periods fit in one PRN spreading code chip).

Jamming and Spoofing

GPS Jamming

GPS Spoofing

GNSS performance

Introduction

Error Sources

Pseudorange Calculation

Multiple issues affect the calculation of the pseudorange:

- satellite clock offset (known).
- receiver clock offset (unknown).
- ionosphere delay (unknown).
- other errors, such as *multipath* (unknown).

The calculation is very sensible since $c \approx 3 \times 10^8 \,\mathrm{m/s}$, and a **1** μs error will cause a **300** m error in the calculated distance.

Ionosphere Delay

Ionospheric delay:

- Is due to **free electrons** in the ionosphere.
- Is highly variable (depends on **time** and **space**).
- Ranges from a few meters to hundreds of meters.
- Is maximum near geomagnetic equator, around local noon and during solar maxima.
- Is proportional to 1/frequency².
- Can be estimated using two frequencies. This is why satellites emit at **L1** (1575.42 MHz) and **L2** (1227.60 MHz).

Accuracy and Precision

The quality of the measurement can be assessed through the carrier-to-noise-density ratio C/N_0 (signal strength).

The precision of the measurement depends on the method used:

Table 2: Precision of GNSS measurements

	Pseudorange	Carrier Phase
Precision	Few meters to few decimeters	Few centimeters to millimeter

Dilution of Precision

Availability, Continuity and Integrity

Availability

Continuity

Integrity

PPP-RTK

Abbreviations

- SV: space vehicles or orbiting space vehicles
- RTK: Real-Time Kinematic
- **PPP**: Precise Point Positioning
- PPP-RTK: Hybrid of PPP and RTK
- CORS: Continuously Operating Reference Station
- NRTK: Network RTK
- OSR: Observation State Representation
- SSR: State Space Representation

PPP

- **PPP** achieves decimetre-level or better accuracy by leveraging corrections transmitted via satellite or the internet.
- It utilises the SSR message format for efficient data transmission.
- **PPP** is suitable for global applications due to its independence from regional base stations.
- The primary limitation of **PPP** is its long convergence time, typically ranging from 5 to 30 minutes.
- **PPP** primarily corrects for orbit errors, clock errors, and biases to achieve its positioning solution.
- **PPP** offers a trade-off between accuracy and coverage, providing moderate accuracy over a wide area.
- Variations like PPP-AR and A-PPP exist, offering enhanced accuracy or specialized capabilities.

RTK

- RTK provides centimetre-level accuracy, achieving the highest precision among the discussed technologies.
- RTK relies on the OSR message format, which requires a two-way communication channel between the base station and the rover.
- The coverage area of **RTK** is limited to a short range (30-50 km) due to signal degradation with distance.
- RTK boasts a near-instantaneous convergence time, typically under 5 seconds.

- RTK corrects for various errors, including orbit errors, clock errors, bias, ionospheric delay, and tropospheric delay.
- RTK is widely adopted in applications demanding high accuracy within a limited area, such as surveying and agriculture.
- Developments like Network RTK (NRTK) address range limitations by incorporating networks of base stations.

PPP-RTK

- **PPP-RTK** combines the strengths of PPP and RTK, offering high accuracy, global coverage, and fast convergence.
- **PPP-RTK** achieves centimetre-level accuracy comparable to RTK while offering global coverage.
- **PPP-RTK** employs the efficient **SSR** message format, enabling broadcast corrections and lower bandwidth requirements.
- PPP-RTK utilises a network of CORS stations for precise atmospheric and clock corrections.
- **PPP-RTK** converges significantly faster than PPP, typically within 1-10 minutes, and potentially seconds under ideal conditions.
- It effectively corrects for orbit errors, clock errors, bias, ionospheric delay, and tropospheric delay, allowing for integer ambiguity resolution.
- **PPP-RTK** gracefully degrades to standard PPP performance when outside the range of the CORS network.

Comparing RTK, PPP, and PPP-RTK

Featur	reRTK	PPP	PPP-RTK					
Accuracyn-level (up to 1		dm-level or better	cm-level, similar to RTK					
_	cm + 1 ppm)	(less than 10 cm)						
Cove	ra gi mited range	Global	Global with graceful degradation					
Area	(typically 30-50		to standard PPP outside the					
	km from the base		range of the CORS network					
	station)							
Mess	ag@SR	SSR (State Space	SSR (State Space					
	(Observation	Representation)	Representation)					
mat	Space)	,					
	Representation)							
Transmissioway		Corrections delivered	Corrections broadcast to users,					
	- communication	via satellite or the	enabling a large number of users					
nel	between base	internet	to connect simultaneously					
	station and rover		00 00 00 00 00 00 00 00 00 00 00 00 00					
Conv	er genc e	Relatively long	Fast (typically 1-10 minutes,					
	instantaneous	v	,					
rime		(typically 5-30	potentially within seconds under					
	(typically less than	minutes)	ideal conditions)					
	5 seconds)							

Featur	eRTK	PPP	PPP-RTK
	s Orbit errors, clock derrors, bias, ionospheric delay, tropospheric delay	Orbit errors, clock errors, bias	Orbit errors, clock errors, bias, ionospheric delay, tropospheric delay, enabling integer ambiguity resolution
Key Stren	High accuracy, gths y fast convergence time	Global coverage, no reliance on local base stations	High accuracy, fast convergence time, global coverage, lower bandwidth requirements compared to RTK, graceful degradation outside CORS range
Key Lim- ita- tions	Limited range, high bandwidth requirements, reliance on local base stations	Long convergence time, lower accuracy compared to RTK	Still requires a CORS network (though less dense than RTK) and may degrade to standard PPP with increasing distance from CORS station

Figure 3: difference in message format and resolved errors

DGNSS

GNSS in the built environment (outdoor, indoor and in between)

between)
Introduction
Multipath
Urban Canyon
Shadow Matching
CRS
Introduction
Coordinate Systems
Ellipsoids
Geocentric Coordinate Systems
Topocentric Coordinate Systems
Coordinate Reference Systems (CRS)
Terrestrial Reference Systems and Frames
Terrestrial Reference Systems
ITRS
ETRS
Terrestrial Reference Frames
ITRF
ETRF

Datum and Transformations

Datums

Transformations

Conversions

Map Projection

RDNAP

Rijksdriehoeksmeting (RD)

Normaal Amsterdams Peil (NAP)

Wi-Fi-monitoring / Fingerprinting

Introduction

Wi-Fi-Based Approaches

Wi-Fi Monitoring

Wi-Fi Fingerprinting

Radio Signal Based Techniques

Received Signal Strength (RSS)

Time of Arrival (ToA)

Time Difference of Arrival (TDoA)

Angle of Arrival (AOA)

Path-Loss

Fine Timing Measurement (FTM)

Radio Frequency Identification (RFID)

Hybrid and Other Techniques

Trilateration

Inertial Navigation Systems (INS)

Visual Based Indoor Localisation

Isovists