Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Quick-Sort

Aim and Learning Objectives

- To be able to understand and describe the quick sort algorithm
- To be able to *analyze* the complexity of the quick sort algorithm
- To be able to *implement* the quick sort algorithm and *apply* it to solve problems

Reading

M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java, 6th Edition, 2014.

■ Chapter 13. Sorting and Selection

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join *L*, *E* and *G*

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G,
 depending on the result of
 the comparison with the
 pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-sort takes O(n) time

Algorithm partition(S, p)

Input sequence *S*, position *p* of pivot **Output** subsequences *L*, *E*, *G* of the elements of *S* less than, equal to, or greater than the pivot, resp.

 $L, E, G \leftarrow \text{empty sequences}$ $x \leftarrow S.remove(p)$

while $\neg S.isEmpty()$

 $y \leftarrow S.remove(S.first())$

if y < x

L.addLast(y)

else if y = x

E.addLast(y)

else $\{y > x\}$

G.addLast(y)

return L, E, G

Quick Sort

Algorithm quickSort(S)

Input sequence *S* with *n* elements

Output sequence *S* sorted according to *C*

if S.size() > 1

 $p \leftarrow getPivot(S)$

 $(L, E, G) \leftarrow partition(S, p)$

quickSort(L)

quickSort(G)

 $S \leftarrow merge(L, E, G)$

How to define the algorithm merge(L, E, G)?

Write down the pseudocode by yourself.

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

7 2 9 4 3 7 <u>6</u> 1

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

n

$$n + (n - 1) + ... + 2 + 1$$

 \bullet Thus, the worst-case running time of quick-sort is $O(n^2)$

depth time

0

$$n - 1$$
 1

Best-case Running Time

- The best case for quick-sort occurs when the pivot is the median element
- ◆ The L and G parts are equal the sequence is split in halves, like in merge sort
- Thus, the best-case running time of quick-sort is $O(n \log n)$

Goldwasser Merge Sort 16

Average-case Running Time

- The average case for quick-sort: half of the times, the pivot is roughly in the middle
- Thus, the average-case running time of quick-sort is $O(n \log n)$ again
- The detailed proof is in the textbook.

Goldwasser Merge Sort 17

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 - Good call: the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4

Good call

Bad call

- ◆ A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bad pivots Good pivots Bad pivots

Expected Running Time, Part 2

- lacktriangle Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- \bullet For a node of depth i, we expect
 - i/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one (use $\log_a b = \log_c b / \log_c a$)
 - The expected height of the quick-sort tree is O(log n)
 (prove 2log_{4/3}n is in O(log n))
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$

© 2014 Goodrich, Tamassia, Goldwasser

Quick-Sort

19

total expected time: $O(n \log n)$

In-place

- An algorithm is in-place if it uses only a small amount of memory in addition to that needed for the original input.
- Among all the sorting algorithms we covered so far, which of them are in-place?

In-Place Quick-Sort

- rt
- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence *S*, ranks *l* and *r*Output sequence *S* with the elements of rank between *l* and *r* rearranged in increasing order

if $l \ge r$

return

 $i \leftarrow$ a random integer between l and r $x \leftarrow S.elemAtRank(i)$ $(h, k) \leftarrow inPlacePartition(x)$ inPlaceQuickSort(S, l, h - 1)inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9

(pivot = 6)

- Repeat until j and k cross:
 - Scan j to the right until finding an element $\geq x$.
 - Scan k to the left until finding an element < x.</p>
 - Swap elements at indices j and k

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	$O(n \log n)$ expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)

Reading

M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java, 6th Edition, 2014.

■ Chapter 13. Sorting and Selection