Введение в римановы поверхности

С. К. Ландо

Национальный исследовательский университет Высшая школа экономики

2021

Для данного набора главных частей локальных мероморфных функций в полюсах на данной кривой определить, является ли он набором главных частей глобальной мероморфной функции на этой кривой, не имеющей других полюсов.

Для данного набора главных частей локальных мероморфных функций в полюсах на данной кривой определить, является ли он набором главных частей глобальной мероморфной функции на этой кривой, не имеющей других полюсов.

Definition

Две мероморфные функции f,g, определенные в окрестности данной точки $x \in C$, имеют в этой точке *одинаковые главные части*, если их разность f-g не имеет полюса в точке x. *Главной частью порядка* k функций в данной точке $x \in C$ называется класс эквивалентности мероморфных функций с полюсом порядка k в x относительно этого отношения эквивалентности.

Для данного набора главных частей локальных мероморфных функций в полюсах на данной кривой определить, является ли он набором главных частей глобальной мероморфной функции на этой кривой, не имеющей других полюсов.

Definition

Две мероморфные функции f,g, определенные в окрестности данной точки $x \in C$, имеют в этой точке *одинаковые главные части*, если их разность f-g не имеет полюса в точке x. Главной частью порядка k функций в данной точке $x \in C$ называется класс эквивалентности мероморфных функций с полюсом порядка k в x относительно этого отношения эквивалентности.

Две функции с полюсом порядка k в точке $x \in C$ имеют в нем одинаковые главные части в том и только в том случае, если в какой-нибудь (и, тем самым, в любой) координате z в окрестности точки x разложения этих функций в ряд Лорана имеют один и тот же набор коэффициентов при отрицательных степенях переменной z:

$$\frac{a_{-k}}{z^k} + \frac{a_{-k+1}}{z^{k-1}} + \cdots + \frac{a_{-1}}{z} + \ldots$$

Начиная с нулевой степени z^0 , коэффициенты разложения могут быть различными.

На набор главных частей в полюсах есть естественное ограничение.

На набор главных частей в полюсах есть естественное ограничение.

Для данной голоморфной 1-формы ω и данной главной части f в точке $x\in C$ определен вычет главной части мероморфной 1-формы $f\omega$ в точке x:

$$\operatorname{Res}_{\mathsf{x}} f \omega$$

как коэффициент при z^{-1} разложения 1-формы $f\omega$ в ряд Лорана.

На набор главных частей в полюсах есть естественное ограничение.

Для данной голоморфной 1-формы ω и данной главной части f в точке $x \in \mathcal{C}$ определен вычет главной части мероморфной 1-формы $f\omega$ в точке x:

$$\operatorname{Res}_{\mathsf{x}} f \omega$$

как коэффициент при z^{-1} разложения 1-формы $f\omega$ в ряд Лорана.

Lemma

Если данный набор главных частей f_1,\ldots,f_n в точках $x_1,\ldots,x_n\in C$ является набором главных частей мероморфной функции $f:C\to\mathbb{C}P^1$, не имеющей других полюсов, то

$$\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = 0$$

для любой голоморфной 1-формы ω на C.

Действительно, в этом случае $\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = \sum_{i=1}^n \mathrm{Res}_{x_i} f \omega = 0$.

Theorem (Риман)

Набор главных частей f_1,\ldots,f_n в точках $x_1,\ldots,x_n\in C$ является набором главных частей мероморфной функции $f:C\to\mathbb{C}P^1$, не имеющей других полюсов, если и только если $\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = 0$ для любой голоморфной 1-формы ω на C.

Theorem (Риман)

Набор главных частей f_1,\ldots,f_n в точках $x_1,\ldots,x_n\in C$ является набором главных частей мероморфной функции $f:C\to\mathbb{C}P^1$, не имеющей других полюсов, если и только если $\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = 0$ для любой голоморфной 1-формы ω на C.

Тем самым, для проверки реализуемости мероморфной функцией данного набора главных частей достаточно проверить g равенств нулю сумм вычетов для выбранного базиса $\omega_1, \ldots, \omega_g$ пространства голоморфных 1-форм на C.

Theorem (Риман)

Набор главных частей f_1,\ldots,f_n в точках $x_1,\ldots,x_n\in C$ является набором главных частей мероморфной функции $f:C\to\mathbb{C}P^1$, не имеющей других полюсов, если и только если $\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = 0$ для любой голоморфной 1-формы ω на C.

Тем самым, для проверки реализуемости мероморфной функцией данного набора главных частей достаточно проверить g равенств нулю сумм вычетов для выбранного базиса $\omega_1, \ldots, \omega_g$ пространства голоморфных 1-форм на C.

Доказательство. Ограничимся случаем, когда все полюса имеют первый порядок. Для дивизора $D=1\cdot x_1+\dots+1\cdot x_n$ теорема Римана-Роха дает I(D)=n-g+1+i(D). 1-формы, обращающиеся в нуль в точках x_i , не накладывают ограничений на главные части; размерность их пространства равна i(D), а значит размерность пространства ограничений на вычеты равна g-i(D). Размерность пространства главных частей равна n, поэтому никаких других ограничений нет.

Theorem (Риман)

Набор главных частей f_1,\ldots,f_n в точках $x_1,\ldots,x_n\in C$ является набором главных частей мероморфной функции $f:C\to\mathbb{C}P^1$, не имеющей других полюсов, если и только если $\sum_{i=1}^n \mathrm{Res}_{x_i} f_i \omega = 0$ для любой голоморфной 1-формы ω на C.

Тем самым, для проверки реализуемости мероморфной функцией данного набора главных частей достаточно проверить g равенств нулю сумм вычетов для выбранного базиса $\omega_1, \ldots, \omega_g$ пространства голоморфных 1-форм на C.

Доказательство. Ограничимся случаем, когда все полюса имеют первый порядок. Для дивизора $D=1\cdot x_1+\cdots+1\cdot x_n$ теорема Римана-Роха дает I(D)=n-g+1+i(D). 1-формы, обращающиеся в нуль в точках x_i , не накладывают ограничений на главные части; размерность их пространства равна i(D), а значит размерность пространства ограничений на вычеты равна g-i(D). Размерность пространства главных частей равна n, поэтому никаких других ограничений нет.

Набор главных частей в полюсах определяет функцию однозначно с точностью до аддитивной константы.

Теорема Римана—Роха позволяет подсчитать размерность пространства комплексных кривых данного рода g. Как мы знаем, при g=0 такая кривая одна (размерность пространства кривых равна 0). Размерность пространства эллиптических кривых (g=1) равна 1 (каждая такая кривая однозначно, с точностью до действия группы $\mathrm{SL}(2,\mathbb{Z})$, определяется вектором τ в верхней полуплоскости).

Теорема Римана—Роха позволяет подсчитать размерность пространства комплексных кривых данного рода g. Как мы знаем, при g=0 такая кривая одна (размерность пространства кривых равна 0). Размерность пространства эллиптических кривых (g=1) равна 1 (каждая такая кривая однозначно, с точностью до действия группы $\mathrm{SL}(2,\mathbb{Z})$, определяется вектором τ в верхней полуплоскости).

Размерность пространства функций степени d на кривых рода g определить просто. По формуле Римана—Гурвица общая такая функция имеет 2d+2g-2 точек простого ветвления, и, как мы знаем, значения функции в точках ветвления можно менять произвольно, т.е. они образуют систему локальных координат на пространстве функций.

Теорема Римана—Роха позволяет подсчитать размерность пространства комплексных кривых данного рода g. Как мы знаем, при g=0 такая кривая одна (размерность пространства кривых равна 0). Размерность пространства эллиптических кривых (g=1) равна 1 (каждая такая кривая однозначно, с точностью до действия группы $\mathrm{SL}(2,\mathbb{Z})$, определяется вектором τ в верхней полуплоскости).

Размерность пространства функций степени d на кривых рода g определить просто. По формуле Римана—Гурвица общая такая функция имеет 2d+2g-2 точек простого ветвления, и, как мы знаем, значения функции в точках ветвления можно менять произвольно, т.е. они образуют систему локальных координат на пространстве функций. При $d \geq 2g$ размерность пространства мероморфных функций степени d с полюсами первого порядка на данной кривой рода g равна 2d-g+1: пространство дивизоров D полюсов таких функций имеет размерность d, и для конкретного дивизора $D=1\cdot x_1+\cdots+1\cdot x_d$ теорема Римана—Роха дает

$$=1\cdot x_1+\cdots+1\cdot x_d$$
 Георема г имана—г оха дает

$$I(D) = d - g + 1 + i(D) = d - g + 1$$

(i(D)=0, поскольку суммарная кратность нулей голоморфной 1-формы равна 2g-2).

Теорема Римана–Роха позволяет подсчитать размерность пространства комплексных кривых данного рода g. Как мы знаем, при g=0 такая кривая одна (размерность пространства кривых равна 0). Размерность пространства эллиптических кривых (g=1) равна 1 (каждая такая кривая однозначно, с точностью до действия группы $\mathrm{SL}(2,\mathbb{Z}),$ определяется вектором τ в верхней полуплоскости).

Размерность пространства функций степени d на кривых рода g определить просто. По формуле Римана–Гурвица общая такая функция имеет 2d + 2g - 2 точек простого ветвления, и, как мы знаем, значения функции в точках ветвления можно менять произвольно, т.е. они образуют систему локальных координат на пространстве функций. При d > 2g размерность пространства мероморфных функций степени d с полюсами первого порядка на данной кривой рода g равна 2d-g+1: пространство дивизоров Dполюсов таких функций имеет размерность d, и для конкретного дивизора $D=1\cdot x_1+\cdots+1\cdot x_d$ теорема Римана–Роха дает

$$D=1\cdot x_1+\cdots+1\cdot x_d$$
 теорема Римана–Роха дает

$$I(D) = d - g + 1 + i(D) = d - g + 1$$

(i(D) = 0, поскольку суммарная кратность нулей голоморфной 1-формы равна 2g - 2). $\mathsf{T}\mathsf{a}\mathsf{k}\mathsf{u}\mathsf{m}$ образом, размерность пространства кривых рода g равна

$$(2d+2g-2)-(2d-g+1)=3g-3.$$

Лекция 14. Вычисление Римана: отмеченные точки

Значение 3g-3 для размерности пространства кривых рода g не согласуется с вычисленными нами ранее размерностями 0 и 1 для кривых рода g=0 и g=1 соответственно.

Лекция 14. Вычисление Римана: отмеченные точки

Значение 3g-3 для размерности пространства кривых рода g не согласуется с вычисленными нами ранее размерностями 0 и 1 для кривых рода g=0 и g=1 соответственно.

Причина этого несоответствия — наличие у кривых рода 0 и у кривых рода 1 непрерывных автоморфизмов (группа автоморфизмов кривой рода 0 имеет размерность 3, кривых рода 1 — размерность 1). Кривые рода g=2 и выше не имеют непрерывных автоморфизмов, и формула 3g-3 для размерности пространства таких кривых работает.

Лекция 14. Вычисление Римана: отмеченные точки

Значение 3g-3 для размерности пространства кривых рода g не согласуется с вычисленными нами ранее размерностями 0 и 1 для кривых рода g=0 и g=1 соответственно.

Причина этого несоответствия — наличие у кривых рода 0 и у кривых рода 1 непрерывных автоморфизмов (группа автоморфизмов кривой рода 0 имеет размерность 3, кривых рода 1 — размерность 1). Кривые рода g=2 и выше не имеют непрерывных автоморфизмов, и формула 3g-3 для размерности пространства таких кривых работает.

Чтобы сделать формулу для размерности универсальной, можно добавить на кривую отмеченные точки; если отмеченных точек достаточно много, то группа автоморфизмов кривой, сохраняющих отмеченные точки, становится конечной независимо от ее рода.

Theorem

Размерность пространства кривых рода g с n отмеченными точками равна 3g-3+n для всех g и n, таких, что 2-2g-n<0.

Lemma

Всякая гладкая кривая рода g степени 2g-2 в $\mathbb{C}P^{g-1}$, не содержащаяся ни в какой гиперплоскости, является канонической.

Lemma

Всякая гладкая кривая рода g степени 2g-2 в $\mathbb{C}P^{g-1}$, не содержащаяся ни в какой гиперплоскости, является канонической.

Доказательство. Пусть $C\subset \mathbb{C}P^{g-1}$ — кривая рода g степени 2g-2 в $\mathbb{C}P^{g-1}$. Обозначим через D дивизор гиперплоского сечения на C, через K — канонический дивизор. Тогда $\deg(K-D)=0$, и I(K-D)=1, если дивизор D линейно эквивалентен дивизору K и I(K-D)=0 в противном случае. В первом случае кривая C — каноническая. Во втором — по теореме Римана—Роха — I(D)=g-1, а значит, C содержится в некоторой гиперплоскости.

Theorem

Всякая гладкая плоская квартика (кривая степени 4) является канонической негиперэллиптической кривой рода 3.

Theorem

Всякая гладкая плоская квартика (кривая степени 4) является канонической негиперэллиптической кривой рода 3.

Доказательство. Каноническое отображение негиперэллиптической кривой рода g=3 переводит ее в кривую в $\mathbb{C}P^{g-1}\equiv\mathbb{C}P^2$, т.е. в гладкую плоскую кривую. Степень этой кривой равна 4 — иначе род кривой не может равняться 3 (а также потому, что степень кокасательного расслоения равна 2g-2=4). С другой стороны, предыдущая лемма означает, что всякая гладкая кривая степени 4 — каноническая.

Семинар 14.

- Решите задачу Миттаг-Лефлера (докажите теорему Римана) в общем случае для набора главных частей произвольных порядков.
- Проверьте, что размерность пространства гиперэллиптических (d=2) функций на кривых рода g равна 2d+2g-2=2g+2. Выведите отсюда, что пространство гиперэллиптических кривых рода g имеет размерность 2g-1. Воспользовавшись этими сведениями, заключите, что не всякая кривая рода g=3 гиперэллиптическая.
- Найдите размерность пространства плоских квартик с точностью до проективной эквивалентности. Сравните эту размерность с размерностью пространства кривых рода g=3.

Семинар 14.

- С помощью подсчета размерностей докажите, что не всякая кривая рода 10 реализуется как гладкая плоская кривая.
- Пусть $C \subset \mathbb{C}P^2$ гладкая кривая степени 8, и пусть $D=1\cdot p_1+\cdots+1\cdot p_7$, где точки $p_1,\ldots,p_7\in C$ попарно различны и лежат на одной прямой. Найдите I(D). Выясните, имеет ли линейная система |D| базисные точки.

•

Семинар 14.

- Докажите, что трансверсальное пересечение гладкой квадрики (гиперповерхности степени 2) и гладкой кубики (гиперповерхности степени 3) в $\mathbb{C}P^3$ является кривой рода 4.
- Воспользовавшись каноническим вложением, докажите, что всякая негиперэллиптическая кривая рода 4 представляется в виде трансверсального пересечения гладких квадрики и кубики в $\mathbb{C}P^3$.