

Leveraging ML Solutions to Identify Genomic Signatures in AMD

Sponsor

Dr. Rinki Ratnapriya

Mentor

Maryam Khalid

Team

Duy Ha, Patrick Yee, Sujitha Ravichandran, Qingxin Yuan, Wanying Xu, Tian Xia

Age- Related Macular Degeneration (AMD) is an eye disease that can blur central vision.

200 million people worldwide suffer from AMD

About 1 in 10 Americans aged 50 and older have the early form of AMD.

Lifestyle & Environmental Risk Factors

Genetics

- Large # of genes (\sim 18K) \rightarrow difficult to identify contributing genes
- Gene Expression Regulation → Uncertainty in how diseaseassociated DNA variants regulate gene expression affecting AMD risk.

- (1) Feature extraction, dimensionality reduction, and engineering.
 Identify critical genomic signatures related to AMD.
- (2) Interpretable modeling of AMD labels from reduced data.
 Use statistical and ML methods to predict AMD.
 Explain those models

To achieve these objectives, we design a 5-step Pipeline

Data Description

Postmortem
Retinas from 453
Patients

18056 genes

1. Initial filtering

18,056 Genes

Statistical Filtering

Variance threshold

- + Kolmogorov Smirnov test
- + Wald test
- + Rank-sum test

652 Genes

2. Ranking genes

18,056 Genes

Statistical Filtering

Variance threshold

- + Kolmogorov Smirnov test
- + Wald test
- + Rank-sum test

652 Genes

Gene ranking

PCA, MRMR, Random Forest

3. Top *k* genes

18,056 Genes **Statistical Filtering** Variance threshold + Kolmogorov Smirnov test 25 Genes + Wald test + Rank-sum test 652 Genes Top k Elbow plots Ranked list of 652 Genes Gene ranking PCA, MRMR, Random Forest

3. Top *k* genes

18,056 Genes **Statistical Filtering** Variance threshold + Kolmogorov Smirnov test 25 Genes + Wald test + Rank-sum test 652 Genes Top k Elbow plots Ranked list of 652 Deliverable #1: Genes Final list of selected genes Gene ranking PCA, MRMR, Random Forest

4. Modeling

XGB, RF, Neural Networks 18,056 Genes →> 95% AUC on test set **Statistical Filtering** Variance threshold + Kolmogorov Smirnov test 25 Genes + Wald test + Rank-sum test 652 Genes Top k Elbow plots Ranked list of 652 Deliverable #1: Genes Final list of selected genes Gene ranking PCA, MRMR, Random Forest

Modeling

5. Interpretation

18,056 Genes Statistical Filtering Variance threshold + Kolmogorov Smirnov test + Wald test + Rank-sum test 652 Genes Ranked list of 652 Genes Gene ranking PCA, MRMR, Random Forest

5. Interpretation

18,056 Genes Statistical Filtering Variance threshold + Kolmogorov Smirnov test + Wald test + Rank-sum test 652 Genes Ranked list of 652 Genes

Gene ranking PCA, MRMR, Random Forest

Deliverable #2: Final modeling results with interpretation

Introducing DREAM-R

Dimensionality Reduction, feature Extraction, and Modeling for RNA transcriptome data

Deliverable #3: Deployable and generalizable Python package

A deployable and generalizable genomic analytics package for medical professionals!

Model Evaluation

Bootstrapped over 100 iterations on selected top k = 25 genes Random Split train:test = 80:20

Method + XGBoost	Precision	Sensitivity	Specificity	F1 Score	AUC
MRMR	0.900 ± 0.052	0.894 ± 0.054	0.922 ± 0.065	0.893 ± 0.054	0.946 ± 0.056

MRMR + XgBoost gives the highest performance ~ 95% AUC

SHapley Additive exPlanations (SHAP): Interpreting the model

- Game theoretic approach to explain the output of any ML model.
- SHAP breaks down a prediction to show the impact of each feature

Conclusion: take the top 10 candidates for an example

Highly expressed genes in AMD subjects	Highly expressed genes in Control subjects
CCDC18-AS1, COL28A1, CXCL12, HCP5, PTX3, S100B, HLA-DQA1, FAM66C	FAM104A, SLC7A1

SHAP scores on test set for XGBOOST model with MRMR feature selection

Balancing Act: ML systems and Gene Discovery Challenges

- Ensemble models: high prediction performance, but sensitive to number of input genes
- MRMR mitigates this issue but is not suitable for Complete Gene Discovery:
 - Tendency to mask important genes which are redundant with others
 - E.g. Biologically significant MOXD1 removed due to previously selected CCDC18-AS1.
- Models sensitive to data normalization are not recommended:
 - o Different genes are expressed on a different scale, thus data can not be normalized.
- Statistical filtering is critical for stability of all ML methods.
- High prediction performance is a double-edged sword:
 - The ability to accurately predict AMD from small set of genes detracts from the discovery of all crucial genes.
- Future Directions:
 - o Incorporating domain knowledge in ML models
 - Extending the problem to multiple stages of AMD
 - o Integrating other risk factors

Questions?

Appendix

A1: Comparative Analysis

A comparative analysis between models to identify optimal number of genes. Our best model was XGBoost when trained on genes selected by MRMR. This model achieves >95% AUC after 10 bootstrap resamples.

Conclusion: choosing 25 features is enough to reach 95% AUC for MRMR

^{*} Zoomed in version from upto 100 features along x-axis. Early stopping at 25 genes.

A1.2

Final list of 25 genes after ranking + early stopping.

'S100B',
'STK24',
'GLB1L3',
'BRD3',
'CXCL12',
'FAM104A',
'PSMB8-AS1',
'IGSF1',
'COL28A1',
'PTX3',
'CYP21A2',

'FAM66C', 'HCP5', 'GYG2', 'CCDC18-AS1',
'CCDC3',
'HLA-DMB',
'ANO3',
'CYP4F12',
'CLRN1-AS1',
'HLA-DQA1',
'ANKRD35',
'SLC7A1',
'S100A1',
'RBP7'

A2: Local Interpretable Model-Agnostic Explanations (LIME) on MRMR & XGBoost

A3: Filtering through variance

A4: Filtering Through Methods

