Prüfungsdauer: 150 Minuten

Abschlussprüfung 2014 an den Realschulen in Bayern

Mathematik I

Name:	Vorname:												
Klasse	Platzziffer:							_ Punkt	te:				
Au	ufgabe A 1									Nachtermin			
A 1.0	Die neber Pyramide winklige [BC] ist. Punkt B. Es gilt: A	S											
	Runden S dem Kom		lgenden a	auf zw	ei Ste	llen na	ch		/c/-	P ₁ B			
A 1.1	Berechne	1 1 1				1 1					1 P		
A 1.2	Punkte P_n liegen auf der Strecke [AB]. Die Winkel P_n CB haben das Maß ϕ mit $\phi \in]0^\circ; 90^\circ]$. Zeigen Sie durch Rechnung, dass für das Volumen V der Pyramiden P_n BCS mit den Grundflächen P_n BC in Abhängigkeit von ϕ gilt: $V(\phi) = \frac{15,53 \cdot \sin \phi}{\sin(56,31^\circ + \phi)}$ cm³.												
A 1.3	Berechner			_		Ü		ren Gru	ndfläche	e das gleich-	3 P		
											1 P		

A 2.0 Gegeben ist die Funktion f mit der Gleichung $y = (x-4)^{-2} - 2$ mit $\mathbb{G} = \mathbb{R} \times \mathbb{R}$.

A 2.1 Zeichnen Sie den Graphen zu f in das Koordinatensystem ein.

1 P

 $\begin{array}{ll} A\ 2.2 & Punkte\ A_n\Big(x\ \Big|\ \big(x-4\big)^{\!-2}-2\Big)\ auf\ dem\ Graphen\ zu\ f\ sind\ f\"ur\ x\in {\rm I\!R}\ \backslash\big\{4\big\}\ zusammen\\ & mit\ den\ Punkten\ B\big(-1|-4\big), C\big(3|-4\big)\ und\ Punkten\ D_n\ die\ Eckpunkte\ von\ Parallelogrammen\ A_nBCD_n\ . \end{array}$

Zeichnen Sie das Parallelogramm A_1BCD_1 für x = 0,5 und das Parallelogramm A_2BCD_2 für x = 4,5 in das Koordinatensystem zu A 2.1 ein.

2 P

A 2.3 Begründen Sie, dass es unter den Parallelogrammen A_nBCD_n kein Parallelogramm mit dem Flächeninhalt A = 8 FE gibt.

Aufgabe A 2

A 2.4 Beim Parallelogramm A_3BCD_3 liegt auch der Punkt D_3 auf dem Graphen zu f. Ermitteln Sie rechnerisch die x-Koordinate des Punktes A_3 .

2 P

A 2.5 Bei den Parallelogrammen A_4BCD_4 und A_5BCD_5 liegen die Schnittpunkte der Diagonalen auf der x-Achse.

Berechnen Sie die x-Koordinaten der Punkte A_4 und A_5 .

 $\begin{array}{ll} A\ 3.0 & \text{Punkte}\ D_n\Big(x\ \Big|\ 2^{x+4}-1\Big)\ \text{auf dem Graphen zu }f\ \text{ mit der Gleichung }y=2^{x+4}-1\\ & (G={\rm I\!R}\times{\rm I\!R}\)\ \text{bilden zusammen mit den Punkten }A\big(2\,|\,1\big),\ B_n\ \text{und }C_n\ \text{Quadrate}\\ & AB_nC_nD_n\ . \end{array}$

Die Zeichnung zeigt das Quadrat $AB_1C_1D_1$ für x=-2 und das Quadrat $AB_2C_2D_2$ für x=-1,5 .

A 3.1 Zeigen Sie rechnerisch, dass für die Koordinaten der Punkte B_n in Abhängigkeit von der Abszisse x der Punkte D_n gilt: $B_n \left(2^{x+4} \middle| -x+3 \right)$.

2 P

A 3.2 Überprüfen Sie, ob es unter den Punkten B_n Punkte gibt, die auf der x-Achse bzw. auf der y-Achse liegen.

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2014 an den Realschulen in Bayern

3 P

Mathematik I

Αι	ıfgabe B 1	Nachtermin	
B 1.0	Die Punkte $A(0 0)$, $B(4 -2)$ und $C(5 1)$ legen zusammen mit a	len Pfeilen	
	$\overrightarrow{AD}_{n}(\varphi) = \begin{pmatrix} 6 \cdot \sin \varphi - 1 \\ 9 \cdot \cos^{2} \varphi + 3 \end{pmatrix} \text{ für } \varphi \in [90^{\circ}; 257, 41^{\circ}] \text{ Vierecke ABCD}_{n} \text{ for } \varphi \in [90^{\circ}; 257, 41^{\circ}]$	est.	
	Runden Sie im Folgenden auf zwei Stellen nach dem Komma.		
B 1.1	Berechnen Sie die Koordinaten der Pfeile \overrightarrow{AD}_1 für ϕ = 130° ϕ = 200°.	$ \text{und} \overrightarrow{AD}_2 \text{für} $	
	Zeichnen Sie die Vierecke ABCD ₁ und ABCD ₂ in ein Koordin	atensystem ein.	
	Für die Zeichnung: Längeneinheit 1 cm; $-8 \le x \le 6$; $-3 \le y \le 13$		2 P
B 1.2	Berechnen Sie das Maß des Winkels AD_2C .		2 P
B 1.3	Ermitteln Sie rechnerisch die Gleichung des Trägergraphen p de Zeichnen Sie sodann den Trägergraphen p in das Koordinatensysten		3 P
B 1.4	Zeigen Sie rechnerisch, dass für den Flächeninhalt A der Vierecke hängigkeit von ϕ gilt: $A(\phi) = (-22, 5 \cdot \sin^2 \phi - 3 \cdot \sin \phi + 37, 5)$ FE.	ABCD _n in Ab-	4 P
B 1.5	Unter den Vierecken $ABCD_n$ hat das Viereck $ABCD_3$ den maxim halt. Berechnen Sie die Koordinaten des Punktes D_3 .	alen Flächenin-	3 P
B 1.6	Unter den Vierecken ABCD _n gibt es das Trapez ABCD ₄ mit Grundseiten [BC] und [AD ₄]. Zeichnen Sie das Trapez ABCD ₄ in das Koordinatensystem zu B 1.		

Berechnen Sie das zugehörige Winkelmaß $\,\phi$.

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2014

an den Realschulen in Bayern

Mathematik I

Aufgabe B 2 Nachtermin

B 2.0 Das Quadrat ABCD ist die Grundfläche der Pyramide ABCDS, deren Spitze S senkrecht über dem Diagonalenschnittpunkt M des Quadrats ABCD liegt.

Es gilt: AC = 8 cm; MS = 10 cm.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild der Pyramide ABCDS, wobei die Diagonale [AC] auf der Schrägbildachse und A links von C liegen soll.

Für die Zeichnung gilt: q = 0.5; $\omega = 45^{\circ}$.

Berechnen Sie die Länge der Strecke [SC] und das Maß des Winkels ASC.

[Ergebnisse:
$$\overline{SC} = 10,77 \text{ cm}; \ \angle ASC = 43,60^{\circ}$$
]

4 P

B 2.2 Parallele Ebenen zur Grundfläche der Pyramide ABCDS schneiden die Kanten der Pyramide ABCDS in den Punkten $A_n \in [AS]$, $B_n \in [BS]$, $C_n \in [CS]$ und $D_n \in [DS]$. Der Punkt $Z \in [MS]$ mit $\overline{SZ} = 3$ cm ist die Spitze von Pyramiden $A_nB_nC_nD_nZ$, deren Grundflächen die Quadrate $A_nB_nC_nD_n$ sind. Die Winkel A_nZC_n haben das Maß ϕ mit $\phi \in [59,49^\circ; 180^\circ[$. Punkte $M_n \in [MZ]$ sind die Mittelpunkte der Strecken $[A_nC_n]$.

Zeichnen Sie die Pyramide $A_1B_1C_1D_1Z$ und den Punkt M_1 für $\phi = 70^{\circ}$ in die Zeichnung zu B 2.1 ein.

1 P

B 2.3 Bestätigen Sie durch Rechnung die untere Intervallgrenze für φ .

1 P

B 2.4 Bestimmen Sie die Länge der Strecken $[SC_n]$ in Abhängigkeit von φ .

Ergebnis:
$$\overline{SC_n}(\varphi) = \frac{3 \cdot \sin \frac{\varphi}{2}}{\sin(\frac{\varphi}{2} - 21,80^{\circ})} \text{ cm}$$

3 P

B 2.5 Zeichnen Sie zusätzlich die Pyramide $A_1B_1C_1D_1M$ mit der Grundfläche $A_1B_1C_1D_1$ und der Spitze M in die Zeichnung zu B 2.1 ein.

Berechnen Sie sodann, um wie viel Prozent das Volumen der Pyramide $A_1B_1C_1D_1Z$ mit der Grundfläche $A_1B_1C_1D_1$ und der Spitze Z größer ist als das Volumen der Pyramide $A_1B_1C_1D_1M$ mit der Grundfläche $A_1B_1C_1D_1$ und der Spitze M.

[Teilergebnis:
$$\overline{M_1Z} = 4,00 \text{ cm}$$
]

4 P

B 2.6 Die Pyramiden $A_2B_2C_2D_2M$ und $A_2B_2C_2D_2Z$ mit den Spitzen M und Z und der gemeinsamen Grundfläche $A_2B_2C_2D_2$ sind volumengleich.

Berechnen Sie das zugehörige Winkelmaß φ.