Programación básica

FORTRAN. ARREGLOS MULTIDIMENSIONALES

¿Dónde estamos en el ciclo de vida del software?

Sets de datos (multidimensionales)

Hemos utilizado un tipo de "recipiente" más sofisticados para la contener información durante la vida de un programa. Ahora extenderemos ese concepto a tener varias dimensiones en estos "recipientes"

Arreglos multidimensionales

Los arreglos pueden ser unidimensionales (como se vió en el tema anterior) o multidimensionales. Nos da una capacidad de organización y acceso a un set de datos con un solo identificador Vegetales Marduk

Arreglos multidimensionales

One-dimensional array with six

Two-Dimensional Spreadsheet

Multidimensional Array

Declaración en Fortrán y uso

program arregloBidimensional

```
c Este programa genera un arreglo bidimensional de
c 3 renglones y 3 columnas y accede a cada elemento
c del arreglo a través de un ciclo do
     integer i,j, matriz(3,3)
      matriz(1,1) = 1
      matriz(1,2) = 2
      matriz(1,3) = 3
                                       i (renglones)
      matriz(2,1) = 4
      matriz(2,2) = 5
      matriz(2,3) = 6
      matriz(3,1) = 7
      matriz(3,2) = 8
      matriz(3.3) = 9
      write (*,*) 'Imprimir matriz'
      do i = 1, 3, 1
        do j = 1, 3, 1
            write (*,*) matriz(i,j)
         enddo
      enddo
      stop
      end
```

j (columnas)

(1,1)	(1,2)	(1,3)
1	2	3
(2,1)	(2,2)	(2,3)
4	5	6
•		

Equivalencia entre dimensiones

j (columnas)

i (renglones)

(1,1)	(1,2)	(1,3)
1	2	3
(2,1)	(2,2)	(2,3)
4	5	6
4 (3,1)	5 (3,2)	6 (3,3)

Multidimensional

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	2	3	4	5	6	7	8	9

Unidimensional

Manejo de los índices

Si no lo especificamos los índices (dimensión) de un arreglo se manejaran automáticamente del 1 al valor que le demos en la dimensión. Estos índices se pueden modificar.

integer matriz(3,3)

j (columnas)

(1,1)	(1,2)	(1,3)
1	2	3
(2,1)	(2,2)	(2,3)
4	5	6
(3,1)	5 (3,2)	(3,3)

Integer, dimension(-3:-1,3):: matriz j (columnas)

i (renglones)

(-3,1)	(-3,2)	(-3,3)
1	2	3
(-2,1)	(-2,2)	(-2,3)
4	5	6
(-1,1)	(-1,2)	(-1,3)
7	8	9

Operaciones suma o resta matrices

$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 2+1 & 0+0 & 1+1 \\ 3+1 & 0+2 & 0+1 \\ 5+1 & 1+1 & 1+0 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 2 \\ 4 & 2 & 1 \\ 6 & 2 & 1 \end{pmatrix}$$

```
program restaDeMatrices

c Este programa genera las matrices (A y B) y después
c las resta generando una tercera matriz C

  integer i,j,cont
  integer, dimension (-4:-1,3) :: matrizA, matrizB
  integer matrizC(-4:-1,3)

c se genera la matriz A
  cont = 1
  do i = -4, -1, 1
   do j = 1, 3, 1
   matrizA(i,j) = cont
   cont = cont + 1
  enddo
  write (*,*) ''
  enddo
```

```
c se genera la matriz B
      do i = -4, -1, 1
         do j = 1, 3, 1
            cont = cont - 1
            matrizB(i,j) = cont
         enddo
         write (*,*) ''
      enddo
c se imprimen las matrices generadas
      write (*,*) 'Matriz A
                                      Matriz B'
      do i = -4, -1, 1
         do j = 1, 3, 1
            write(*,*) matrizA(i,j), '', matrizB(i,j)
         enddo
        write (*,*) ''
      enddo
c se genera e imprime la matriz C
      write (*,*) 'Matriz C = Matriz A - Matriz B'
      do i = -4, -1, 1
         do j = 1, 3, 1
            matriz(i,j) = matrizA(i,j) - matrizB(i,j)
            write (*,*) matrizC(i,j)
         enddo
        write (*,*) ''
      enddo
      stop
      end
```