Решения избранных задач

Е.И. Тодоров, «Математика НОН-СТОП»

Фонд «Время Науки»

1 марта 2021 г.

Эта презентация онлайн

Зачем фотографировать презентацию, когда её можно скачать?

Кубики

2020-4-6B

Сколько видимых точек может быть на башне из 6 кубиков?

Кубики

2020-4-6B

Сколько видимых точек может быть на башне из 6 кубиков?

Сумма чисел на противоположных гранях равна 7.

Кубики

2020-4-6B

Сколько видимых точек может быть на башне из 6 кубиков?

Сумма чисел на противоположных гранях равна 7.

Ответ — 84 + k.

2020-4-4B

У Вани есть доски для паркета размером 20×10 сантиметров, их можно распиливать пополам. Как Ване покрыть этими досками пол квадратной комнаты 1 метр \times 1 метр так, чтобы не было швов длиной более 30 сантиметров ни в одном из направлений?

2020-4-4B

У Вани есть доски для паркета размером 20×10 сантиметров, их можно распиливать пополам. Как Ване покрыть этими досками пол квадратной комнаты 1 метр $\times 1$ метр так, чтобы не было швов длиной более 30 сантиметров ни в одном из направлений?

2020-4-4C

Нарисуйте на клетчатой бумаге такую фигуру, которую можно разделить по клеткам на 2, на 3, на 4, на 5, на 6 одинаковых по форме и размеру связных фигур — причём они не будут прямоугольниками.

2020-4-4C

Нарисуйте на клетчатой бумаге такую фигуру, которую можно разделить по клеткам на 2, на 3, на 4, на 5, на 6 одинаковых по форме и размеру связных фигур — причём они не будут прямоугольниками.

Разрезания

2020-5-1C

Можно ли нарисовать на клетчатом листе бумаги такую фигуру, которую можно разрезать по линиям сетки на две *одинаковые* фигуры двумя способами — причём фигуры в первом и во втором способе были бы одни и те же, но линии разреза выглядели бы по-разному?

Разрезания

2020-5-1C

Можно ли нарисовать на клетчатом листе бумаги такую фигуру, которую можно разрезать по линиям сетки на две *одинаковые* фигуры двумя способами — причём фигуры в первом и во втором способе были бы одни и те же, но линии разреза выглядели бы по-разному?

Семнадцатый независимый

2020-5-3A

Песню каждого участника оценивает 15 судей. Судья ставит каждому участнику в паре от 0 до 22 баллов и отдаёт свой голос участнику, которому поставил больше баллов. В паре объявляется победителем тот участник, которому отдано больше голосов. Может ли быть так, что победитель в паре набрал меньше баллов, чем проигравший, несмотря на перевес в голосах?

Семнадцатый независимый

2020-5-3A

Песню каждого участника оценивает 15 судей. Судья ставит каждому участнику в паре от 0 до 22 баллов и отдаёт свой голос участнику, которому поставил больше баллов. В паре объявляется победителем тот участник, которому отдано больше голосов. Может ли быть так, что победитель в паре набрал меньше баллов, чем проигравший, несмотря на перевес в голосах?

Семнадцатый независимый

Участник	Победы	Проигрыши	Баллы	Голоса
Победитель 1	1:0	0:22	11	11
Победитель 2	2:0	0:16	20	10
Победитель 3	3:0	0:12	27	9
Победитель 4	4:0	0:9	32	8
Проигравший 4	9:0	0:4	63	7
Проигравший 3	12 : 0	0:3	72	6
Проигравший 2	16 : 0	0:2	80	5
Проигравший 1	22 : 0	0:1	88	4

2019-7-3A

На предприятии работают 50 человек, и они выбирают себе начальника. Есть две кандидатуры, Ваня и Даня. Про каждого работника известно заранее, кому он отдаёт предпочтение: 20 человек за Даню, 30 человек за Ваню.

Голосование проходит по двухтуровой системе: люди делятся на 5 групп по 10 человек, в каждой группе выбирается кандидат, наиболее популярный среди членов этой группы, и затем из 5 ответов выбирается имя, названное большее число раз.

Разделите работников на группы так, чтобы в большинстве групп выбрали Даню и он победил на выборах, несмотря на изначально меньшее число голосующих за него.

2019-7-3A

На предприятии работают 50 человек, и они выбирают себе начальника. Есть две кандидатуры, Ваня и Даня. Про каждого работника известно заранее, кому он отдаёт предпочтение: 20 человек за Даню, 30 человек за Ваню.

Голосование проходит по двухтуровой системе: люди делятся на 5 групп по 10 человек, в каждой группе выбирается кандидат, наиболее популярный среди членов этой группы, и затем из 5 ответов выбирается имя, названное большее число раз.

Разделите работников на группы так, чтобы в большинстве групп выбрали Даню и он победил на выборах, несмотря на изначально меньшее число голосующих за него.

За Ваню

За Даню

Опубликовать за 60 секунд

2020-6-2B

Научные руководители придумывают темы работ.

- Один из них придумывает 1 новую тему;
- После этого кто-то из них придумывает 2 новых темы;
- После этого кто-то из них придумывает 3 новых темы.

Пусть изначально первый придумал на n тем больше, чем второй. Докажите, что руководители всегда смогут сравнять количество придуманных ими тем.

Опубликовать за 60 секунд

2020-6-2B

Научные руководители придумывают темы работ.

- Один из них придумывает 1 новую тему;
- После этого кто-то из них придумывает 2 новых темы;
- После этого кто-то из них придумывает 3 новых темы.

Пусть изначально первый придумал на n тем больше, чем второй. Докажите, что руководители всегда смогут сравнять количество придуманных ими тем.

Каждые два хода разность количеств тем будем сокращать на 1.

Сумма цифр

2017-8-2C

Придумайте (или расскажите, как построить) 95-значное число, в котором нет нулей и которое делится на свою сумму цифр.

Сумма цифр

2017-8-2C

Придумайте (или расскажите, как построить) 95-значное число, в котором нет нулей и которое делится на свою сумму цифр.

Придумаем число, делящееся на $144 = 9 \cdot 16$:

$$\sum_{\text{разрядов}} -91, \ \sum_{\text{цифр}} -134$$

2020-7-5B

Найдите наибольшее натуральное число n такое, что существует набор из n различных простых чисел, сумма любых трёх чисел из которого является простым числом.

2020-7-5B

Найдите наибольшее натуральное число n такое, что существует набор из n различных простых чисел, сумма любых трёх чисел из которого является простым числом.

- из всех простых только 3 делится на 3;
- $lackвar{1}$ если у простых p_1, p_2 и p_3 одинаковые остатки от деления на 3, то $p_1+p_2+p_3$ делится на 3;
- поэтому нельзя брать более двух чисел с одинаковыми остатками;
- лучший вариант для нас p_1, p_2 с остатком 1 и p_3, p_4 с остатком 2.

2020-7-5C

Обозначим через M_k ($k \geqslant 3$) множество, состоящее из k различных простых чисел, сумма любых трёх из которых — простое число. Через S_k обозначим сумму элементов множества M_k . Найдите наименьшее возможное значение S_k (для всех возможных k).

2020-7-5C

Обозначим через M_k ($k \ge 3$) множество, состоящее из k различных простых чисел, сумма любых трёх из которых — простое число. Через S_k обозначим сумму элементов множества M_k . Найдите наименьшее возможное значение S_k (для всех возможных k).

- из всех простых только 3 делится на 3;
- если у простых p_1, p_2 и p_3 одинаковые остатки от деления на 3, то $p_1 + p_2 + p_3$ делится на 3;
- поэтому нельзя брать более двух чисел с одинаковыми остатками;
- лучший вариант для нас p_1, p_2 с остатком 1 и p_3, p_4 с остатком 2.

1234567890

2020-6-5A

На пульте есть две кнопки: «предыдущий режим» и «следующий режим». Работают только сегменты, образующие цифру 7. Сколько переключений тогда нужно, чтобы гарантированно определить режим, в котором находится пульт?

1234567890

2020-6-5A

На пульте есть две кнопки: «предыдущий режим» и «следующий режим». Работают только сегменты, образующие цифру 7. Сколько переключений тогда нужно, чтобы гарантированно определить режим, в котором находится пульт?

Профильные задания

Система високосных лет для числа t — это последовательность натуральных чисел $(a_0, a_2, a_3, \ldots, a_n)$ такая, что a_{i+1} делится на a_i , а также

$$\frac{1}{a_0} - \frac{1}{a_1} + \frac{1}{a_2} - \frac{1}{a_3} + \ldots + (-1)^n \cdot \frac{1}{a_n} = t.$$

Какой могла бы быть система високосных лет, если бы длина года составляла 365.21875, 365.17, 365.33 дней? Для любого ли рационального числа существует система високосных лет?

Профильные задания

$$365.21875 = 365 + \frac{1}{4} - \frac{1}{32}$$

$$365.17 = 365 + \frac{1}{5} - \frac{1}{25} + \frac{1}{100}$$

$$365.33 = 365 + \frac{1}{3} - \frac{1}{300}$$

Спасибо за внимание!

mathnonstop.ru
mathnonstop@timeforscience.ru
vk.com/timeforscience