Algorithmic problems over ideal lattices

Alice Pellet-Mary

CNRS, université de Bordeaux

Discrete Mathematics, Codes and Cryptography eSeminar, Paris 8

(Partly based on a joint work with Guillaume Hanrot and Damien Stehlé)

Outline of the talk

Lattice problems and LWE

2 Adding algebraic structure

Algorithms for ideal-SVP

Outline of the talk

Lattice problems and LWE

2 Adding algebraic structure

Algorithms for ideal-SVP

Lattices

Lattice

A lattice L is a subset of \mathbb{R}^n of the form $L = \{Bx \mid x \in \mathbb{Z}^n\}$, with $B \in \mathbb{R}^{n \times n}$ invertible. B is a basis of L, and n is its rank.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 11 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Lattices

Lattice

A lattice L is a subset of \mathbb{R}^n of the form $L = \{Bx \mid x \in \mathbb{Z}^n\}$, with $B \in \mathbb{R}^{n \times n}$ invertible. B is a basis of L, and n is its rank.

We represent a lattice by any of its basis

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector. Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

SVP and CVP are hard to solve when n increases

- even with a quantum computer
- ullet even if we allow small approximation factor $(\gamma = poly(n))$

Hardness of SVP and CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly): BKZ algorithm [Sch87,SE94]

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

Hardness of SVP and CVP

Best Time/Approximation trade-off for SVP, CVP (even quantumly): BKZ algorithm [Sch87,SE94]

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

LWE (Learning With Errors)

Sample $A \leftarrow \text{Uniform}(\mathbb{Z}_q^{n \times n}) \text{ and } S, e \leftarrow \text{Uniform}(\{-B, \dots, B\}^n)$

Given \boxed{A} and \boxed{b} , where $\boxed{b} := \boxed{A} \boxed{s} + \boxed{e} \mod q$

Recover s or e

LWE (Learning With Errors)

Sample $A \leftarrow \text{Uniform}(\mathbb{Z}_q^{n \times n}) \text{ and } s, e \leftarrow \text{Uniform}(\{-B, \cdots, B\}^n)$

Given A and b, where $b := A + e \mod q$

Recover s or e

$$L = \{ x \in \mathbb{Z}^n \mid \exists s \in \mathbb{Z}^n, As = x \bmod q \}$$

LWE (Learning With Errors)

Sample $A \leftarrow \text{Uniform}(\mathbb{Z}_q^{n \times n}) \text{ and } s, e \leftarrow \text{Uniform}(\{-B, \cdots, B\}^n)$

Given A and b, where $b := A s + e \mod q$

Recover s or e

$$v = As$$
 b

$$L = \{x \in \mathbb{Z}^n \mid \exists s \in \mathbb{Z}^n, As = x \bmod q\}$$

$$b = v + e,$$
where $v \in L$ and e small

LWE (Learning With Errors)

Sample $A \leftarrow \text{Uniform}(\mathbb{Z}_q^{n \times n}) \text{ and } S, e \leftarrow \text{Uniform}(\{-B, \cdots, B\}^n)$

Given A and b, where $b := A s + e \mod q$

Recover s or e

$$v = As$$
• b

$$L=\{x\in\mathbb{Z}^n\,|\,\exists s\in\mathbb{Z}^n, As=x mod q\}$$

$$b=v+e,$$
 where $v\in L$ and e small

LWE \approx CVP in L

Not completely exact: it should be LWE ↔ SIVP (= short independent vectors problem)

Advantages of LWE over SVP/CVP:

problem hard on average

Not completely exact: it should be LWE ↔ SIVP (= short independent vectors problem)

Advantages of LWE over SVP/CVP:

- problem hard on average
- decision variant as hard as the search variant

Not completely exact: it should be LWE \leftrightarrow SIVP (= short independent vectors problem)

Outline of the talk

Lattice problems and LWE

2 Adding algebraic structure

Algorithms for ideal-SVP

Why: to improve efficiency of cryptographic schemes

Why: to improve efficiency of cryptographic schemes

How: use structured matrices

Why: to improve efficiency of cryptographic schemes

How: use structured matrices

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}$$

non structured matrix

- storage: n^2
- matrix \times vector : $O(n^2)$

Why: to improve efficiency of cryptographic schemes

How: use structured matrices

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}$$

non structured matrix

• storage:
$$n^2$$

• matrix
$$\times$$
 vector : $O(n^2)$

$$\begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \vdots & \ddots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

structured matrix

- storage: n
- ullet matrix imes vector : $\widetilde{O}(n)$

SVP + structure = ideal-SVP

Definition

An ideal lattice is a lattice which has a basis (in columns) of the form

$$B = \begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \ddots & \ddots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

Remark. Not all bases of an ideal lattice have this shape.

SVP + structure = ideal-SVP

Definition

An ideal lattice is a lattice which has a basis (in columns) of the form

$$B = \begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \ddots & \ddots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

Remark. Not all bases of an ideal lattice have this shape.

Ideal-SVP = SVP restricted to ideal lattices

SVP + structure = ideal-SVP

Definition

An ideal lattice is a lattice which has a basis (in columns) of the form

$$B = \begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \ddots & \ddots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

Remark. Not all bases of an ideal lattice have this shape.

Ideal-SVP = SVP restricted to ideal lattices

Why is it called an ideal lattice?

Some definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

Some definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

• Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$ • e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$

Some definitions

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
 for $n = 2^k$

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$ • e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$
- Principal ideals: $\langle g \rangle = \{ gr \mid r \in R \}$ (i.e. all multiples of g)
 - e.g. $\langle 2 \rangle = \{ \text{even numbers} \} \text{ in } \mathbb{Z}$
 - g is called a generator of $\langle g \rangle$
 - ▶ The generators of $\langle g \rangle$ are exactly the ug for $u \in R^{\times}$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^n + 1) \to \mathbb{Z}^n$$

 $r = r_0 + r_1 X + \dots + r_{n-1} X^{n-1} \mapsto (r_0, r_1, \dots, r_{n-1})$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

Basis: $g, gX, gX^2, \dots, gX^{n-1}$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

Basis: $g, gX, gX^2, \dots, gX^{n-1}$

i.e.,
$$\begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_{n-1} \end{pmatrix}$$

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

Basis: $g, gX, gX^2, \dots, gX^{n-1}$

i.e.,
$$\begin{pmatrix} g_0 & -g_{n-1} \\ g_1 & g_0 \\ \vdots & \vdots \\ g_{n-1} & g_{n-2} \end{pmatrix}$$

$\langle g \rangle$ is an ideal lattice

$$R \simeq \mathbb{Z}^n$$

$$R = \mathbb{Z}[X]/(X^{n} + 1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{lattice}$$

Basis: $g, gX, gX^2, \dots, gX^{n-1}$

i.e.,
$$\begin{pmatrix} g_0 & -g_{n-1} & \cdots & -g_1 \\ g_1 & g_0 & \cdots & -g_2 \\ \vdots & \vdots & \ddots & \vdots \\ g_{n-1} & g_{n-2} & \cdots & g_0 \end{pmatrix} \Rightarrow |\text{deal lattice}$$

LWE + structure = Ring-LWE

LWE

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$

LWE + structure = Ring-LWE

LWE

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} \qquad \begin{pmatrix} a_1 & \cdots & -a_2 \\ \vdots & \ddots & \vdots \\ a_n & \cdots & a_1 \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$

Ring-LWE

(more exactly Poly-LWE)

$$\begin{pmatrix} a_1 & \cdots & -a_2 \\ \vdots & \ddots & \vdots \\ a_n & \cdots & a_1 \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$

LWE + structure = Ring-LWE

LWE

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix} \qquad \begin{pmatrix} a_1 & \cdots & -a_2 \\ \vdots & \ddots & \vdots \\ a_n & \cdots & a_1 \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$

Ring-LWE

(more exactly Poly-LWE)

$$\begin{pmatrix} a_1 & \cdots & -a_2 \\ \vdots & \ddots & \vdots \\ a_n & \cdots & a_1 \end{pmatrix} \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} + \begin{pmatrix} e_1 \\ \vdots \\ e_n \end{pmatrix}$$

$$= a(X) \cdot s(X) + e(X) \in R$$

$$R = \mathbb{Z}[X]/(X^n + 1)$$

 $a(X) := \sum_i a_i X^i, \quad s(X) := \sum_i s_i X^i, \quad e(X) := \sum_i e_i X^i \in R$

Ring-LWE vs ideal-SVP

$$\frac{\geq}{\text{Ring-LWE}} \stackrel{\text{ideal-SVP}}{\stackrel{??}{\longrightarrow}}$$

Ring-LWE vs ideal-SVP

Outline of the talk

Lattice problems and LWE

2 Adding algebraic structure

Algorithms for ideal-SVP

The problem to solve

ideal-SVP

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$, Find $r \in \langle g \rangle$ such that $||r|| \leq 2^{n^{\alpha}} \cdot \lambda_1$.

The problem to solve

ideal-SVP

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$, Find $r \in \langle g \rangle$ such that $||r|| \leq 2^{n^{\alpha}} \cdot \lambda_1$.

BKZ algorithm can do it in time $2^{O(n^{1-\alpha})}$, can we do better (using the structure)?

Known algorithms for ideal-SVP

[[]CDPR16] Cramer, Ducas, Peikert and Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.

[[]CDW17] Cramer, Ducas and Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP, Eurocrypt.

[[]PHS19] Pellet-Mary, Hanrot and Stehlé. Approx-SVP in ideal lattices with pre-processing, Eurocrypt.

Known algorithms for ideal-SVP

Ring-LWE is not broken:

Standard parameters of Ring-LWE are too small for the algorithms

[PHS19] Pellet-Mary, Hanrot and Stehlé. Approx-SVP in ideal lattices with pre-processing, Eurocrypt.

[[]CDPR16] Cramer, Ducas, Peikert and Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.

[[]CDW17] Cramer, Ducas and Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP, Eurocrypt.

Known algorithms for ideal-SVP

Ring-LWE is not broken:

- Standard parameters of Ring-LWE are too small for the algorithms
- We don't know how to use an ideal-SVP solver to break Ring-LWE

[PHS19] Pellet-Mary, Hanrot and Stehlé. Approx-SVP in ideal lattices with pre-processing, Eurocrypt.

[[]CDPR16] Cramer, Ducas, Peikert and Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.

[[]CDW17] Cramer, Ducas and Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP, Eurocrypt.

Main ideas of the ideal-SVP algorithms

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let
$$1=(1,\cdots,1)$$
 and $H=1^{\perp}$.

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $1=(1,\cdots,1)$ and $H=1^{\perp}$.

Properties

Log r = h + a1, with $h \in H$

a ≥ 0

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let $1=(1,\cdots,1)$ and $H=1^{\perp}$.

Properties

Log r = h + a1, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := \text{Log}(R^{\times})$ is a lattice

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $1=(1,\cdots,1)$ and $H=1^{\perp}$.

Properties

Log r = h + a1, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice

 $\mathsf{Log}: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $1=(1,\cdots,1)$ and $H=1^{\perp}$.

Properties

Log r = h + a1, with $h \in H$

- a > 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice
- $||r|| \simeq 2^{||\operatorname{Log} r||_{\infty}}$

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

Objective: Find a point • as close as possible from \star

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloguy: A cautionary tale.

Idea: Only keep the points of $Log(g) + \Lambda$

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloguy: A cautionary tale.

Idea: Only keep the points of $Log(g) + \Lambda$

- Λ is a nice lattice
 - Poly time to recover the closest point Log(s)

Idea: Only keep the points of $Log(g) + \Lambda$

- \bullet Λ is a nice lattice
 - Poly time to recover the closest point Log(s)
- Distance \sqrt{n} between points of Λ
 - approx factor \sqrt{n} in Log space
 - approx factor $2\sqrt{n}$ in real space

Idea: Only keep the points of $Log(g) + \Lambda$

- \bullet Λ is a nice lattice
 - Poly time to recover the closest point Log(s)
- Distance \sqrt{n} between points of Λ
 - ightharpoonup approx factor \sqrt{n} in Log space
 - approx factor $2^{\sqrt{n}}$ in real space

Idea: Keep more points

Idea: Keep more points

Idea: Keep more points

- Project the points on Log(g) + H
 - ▶ shifted lattice Log(g) + L

Idea: Keep more points

- Project the points on Log(g) + H
 - ▶ shifted lattice Log(g) + L
- + Distance O(1) between points of L
 - ► approx factor O(1)

Idea: Keep more points

- Project the points on Log(g) + H
 - ▶ shifted lattice Log(g) + L
- + Distance O(1) between points of L
 - ► approx factor O(1)
- L is not a nice lattice
 - cannot find close point Log(s) efficiently
 - can pre-process L to improve efficiency

Idea: Keep more points

- Project the points on Log(g) + H
 - ▶ shifted lattice Log(g) + L
- + Distance O(1) between points of L
 - ▶ approx factor *O*(1)
- L is not a nice lattice
 - cannot find close point Log(s) efficiently
 - can pre-process L to improve efficiency

Conclusion

Some open problems

• Are there number fields in which ideal-SVP is significantly easier?

Some open problems

- Are there number fields in which ideal-SVP is significantly easier?
- Is there a gap between ideal-SVP and Ring-LWE?

Some open problems

- Are there number fields in which ideal-SVP is significantly easier?
- Is there a gap between ideal-SVP and Ring-LWE?

Questions?