

planetmath.org

Math for the people, by the people.

projections of analytic sets are analytic

 ${\bf Canonical\ name} \quad {\bf ProjectionsOfAnalyticSetsAreAnalytic}$

Date of creation 2013-03-22 18:46:21 Last modified on 2013-03-22 18:46:21

Owner gel (22282) Last modified by gel (22282)

Numerical id 8

Author gel (22282) Entry type Theorem Classification msc 28A05

Related topic MeasurableProjectionTheorem

Projections along compact paved spaces

Given sets X and K, the projection map $\pi_X \colon X \times K \to X$ is defined by $\pi_X(x,y) = x$. An important property of http://planetmath.org/AnalyticSet2analytic sets is that they are stable under projections.

Theorem 1. Let (X, \mathcal{F}) be a http://planetmath.org/PavedSpacepaved space, (K, \mathcal{K}) be a http://planetmath.org/PavedSpacecompact paved space and $\pi_X \colon X \times K \to X$ be the projection map.

If $S \subseteq X \times K$ is $\mathcal{F} \times \mathcal{K}$ -analytic then $\pi_X(S)$ is \mathcal{F} -analytic.

The proof of this follows easily from the definition of analytic sets. First, there is a compact paved space (K', \mathcal{K}') and a set $T \in (\mathcal{F} \times \mathcal{K} \times \mathcal{K}')_{\sigma\delta}$ such that $S = \pi_{X \times K}(T)$. Then,

$$\pi_X(S) = \pi_X(\pi_{X \times K}(T)) = \pi_X(T).$$

However, $(K \times K', \mathcal{K} \times \mathcal{K}')$ is a compact paved space (see http://planetmath.org/ProductsOfComp of compact pavings are compact), which shows that $\pi_X(S)$ satisfies the definition of \mathcal{F} -analytic sets.

Projections along Polish spaces

Theorem ?? above can be used to prove the following result for projections from the product of a measurable space and a Polish space. For http://planetmath.org/SigmaAlgebra σ -algebra \mathcal{F} and \mathcal{B} , we use the notation $\mathcal{F} \otimes \mathcal{B}$ for the http://planetmath.org/ProductSigmaAlgebraproduct σ -algebra, in order to distinguish it from the product paving $\mathcal{F} \times \mathcal{B}$.

Theorem 2. Let (X, \mathcal{F}) be a measurable space and Y be a Polish space with $http://planetmath.org/BorelSigmaAlgebraBorel <math>\sigma$ -algebra \mathcal{B} .

If $S \subseteq X \times Y$ is $\mathcal{F} \otimes \mathcal{B}$ -analytic, then its projection onto X is \mathcal{F} -analytic.

An immediate consequence of this is the measurable projection theorem. Although Theorem ?? applies to arbitrary Polish spaces, it is enough to just consider the case where Y is the space of real numbers \mathbb{R} with the standard topology. Indeed, all Polish spaces are Borel isomorphic to either the real numbers or a discrete subset of the reals (see Polish spaces up to Borel isomorphism), so the general case follows from this.

If $Y = \mathbb{R}$, then the Borel σ -algebra is generated by the compact paving \mathcal{K} of closed and bounded intervals. The collection $a(\mathcal{F} \times \mathcal{K})$ of analytic

sets is closed under countable unions and countable intersections so, by the monotone class theorem, includes the product σ -algebra $\mathcal{F} \otimes \mathcal{B}$. Then, as the analytic sets define a closure operator,

$$a(\mathcal{F} \otimes \mathcal{B}) \subseteq a(a(\mathcal{F} \times \mathcal{K})) = a(\mathcal{F} \times \mathcal{K}).$$

Thus every $\mathcal{F}\otimes\mathcal{B}$ -analytic set is $\mathcal{F}\times\mathcal{K}$ -analytic, and the result follows from Theorem $\ref{eq:condition}$.