

GOAL

- Understand Autocorrelation and Autoregressive Error Model
- Apply the autocorrelation concepts and methods to solve real life problems
- How would autocorrelation improve model and time series analysis

AUTOCORRELATION

I. What is autocorrelation?

Error terms correlated over time are called *autocorrelated* or *serially correlated*. The causes for positively correlated error terms happen when your models are missing key variables which includes time-ordered effects.

Eg: the regression of annual sales of a product against average yearly price over a period. If population is an important factor of the model, its omission from the model may lead to the error terms being autocorrelated.

AUTOCORRELATION

II. Problems with autocorrelation

- Mean Squared Error may underestimate the variance of the error terms
- The standard deviation of the regression coefficient may not accurately calculate
- Confidence intervals and tests using t and F distribution are not applicable (this affects time series analysis)

FIRST ORDER AUTOREGRESSIVE ERROR MODEL

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t \tag{1}$$

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t \tag{2}$$

Where ρ is a autocorrelation parameter, $|\rho| < 1$ $u_t {\sim} N(0, \sigma^2)$

AUTOCORRELATION

II. Remedial for autocorrelation

- Add one or more variable to the regression model
- Use transformed model

$$Y'_{t} = Y_{t} - \rho Y_{t-1}$$

$$Y'_{t} = (\beta_{0} + \beta_{1} X_{t} + \varepsilon_{t}) - \rho(\beta_{0} + \beta_{1} X_{t-1} + \varepsilon_{t-1})$$

$$\Rightarrow Y'_{t} = \beta_{0} (1 - \rho) + \beta_{1} (X_{t} - \rho X_{t-1}) + \varepsilon_{t} - \rho \varepsilon_{t-1}$$

$$\Rightarrow Y'_{t} = \beta'_{0} + \beta'_{1} X'_{t} + u_{t}$$

where

$$Y'_{t} = Y_{t} - \rho Y_{t-1\rho\rho}$$

$$X'_{t} = X_{t} - \rho X_{t-1}$$

$$\beta'_{0} = \beta_{0}(1-\rho) \text{ and } \beta'_{1} = \beta_{1}$$

$$\varepsilon_{t} - \rho \varepsilon_{t-1} = u_{t}$$

- Hildreth Lu Procedure
 - Estimates the autocorrelation parameter by finding ρ that minimizes SSE ($SSE = \sum (Y_t' \hat{Y}_t')^2$)

COVID 19 DATA

Total Confirmed Cases in US

Total Confirmed Deaths in US

CONFIRMED CASES VS TIME ANALYSIS

Guess that Confirmed Cases vs Time Graph is a Nonlinear Regression model. Exponential Model: $Y_i = f(X, \gamma) = \gamma_0 + \gamma_1 \exp(\gamma_2 X_i) + e_i$

DURBIN WATSON TEST FOR AUTOCORRELATION

- The test determines whether ρ is zero.
- Test alternatives

$$H_0: \rho = 0$$

$$H_a: \rho > 0$$

$$D = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2}$$

- Calculating test statistic:

- Decision Rule: if $D>d_U$, conclude H_0 if $D< d_L$, conclude H_a if $\mathbf{d_L}\leq D \leq d_U$, the test is inconclusive

COVID 19 DATA

Data, Regression Result
(before remedial
measures) Error and
Durbin Watson Test
Calculations

Time (month)	Cases	e_t	e(t-1)
3.516	4,661	132763.763	
3.548	6,427	109479.314	132763.763
3.581	9,415	86634.038	109479.314
4.9	988,451	33121.839	36675.057
4.9333	1,012,583	31159.621	33121.839
4.9667	1,039,909	32391.404	31159.621

Fitted Lines: $\hat{Y}_t = -2880520.9 + 782826.5X_t$

$$D = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{4517921549}{88080319905} = 0.051293$$

 d_U and d_L for 45 data points: $d_L = 1.48$ and $d_U = 1.57$

 \rightarrow Conclude H_0

Fitted Plot of Cases vs Time

Before Remedial Measures:

$$\widehat{Y}_t = -2880520.9 + 782826.5X_t$$

After Remedial Measures

$$\widehat{Y}_t = -3472567 + 910165X_t$$

COVID 19 DATA

FORECASTING + TIME SERIES ANALYSIS

Forecast for period n+1 is:

$$F_{n+1} = \widehat{Y_{n+1}} + re_n$$

• The confidence intervals for F_{n+1} (or the prediction limits) are $F_{n+1} \pm t \left(1 - \frac{\alpha}{2}; n - 3\right) s\{pred\}$

Where
$$s\{pred\} = \sqrt{\frac{SSE}{n-3} \left(1 + \frac{1}{n} + \frac{(X_{n+1} - \bar{X})^2}{\sum (X_i - \bar{X})^2}\right)}$$

- For the Confirmed Cases vs Time analysis, I use data from March 16th to April 30th to build the model.
- Forecasting from May 1st to May 15th then comparing the forecasted data with the real time data

Zoom-In Time Series and Fitted Plot

Date	Period	Predicted Intervals	Actual Value
May 1 st , 2020	1	$1,060,145 \le Y_1 \le 1,082,273$	1,069,826
May 2 nd ,. 2020	2	$1,091,298 \le Y \le 1,113,489$	1,103,781
May 3 rd , 2020	3	$1,122,349 \le Y \le 1,144,605$	1,133,069
May 4 th , 2020	4	$1,153,308 \le Y \le 1,175,633$	1,158,041
May 5 th , 2020	5	$1,184,188 \le Y \le 1,206,584$	1,180,634
May 6 th , 2020	6	$1,214,997 \le Y \le 1,237,467$	1,204,475
May 7 th , 2020	7	$1,245,745 \le Y \le 1,268,290$	1,228,603

Table: Predicted Confirmed Cases from Time Series Analysis and Actual Real Time Confirmed Cases

REFERENCE

- ☐ Kutner, M. H., Nachtsheim, C., Neter, J., & Li, W. (2005). *Applied linear statistical models*.
- European Centre for Disease Prevention and Control. "today's data on the geographic distribution of COVID-19 cases worldwide"

confirmed cases deaths increases t	n is to use autocorrelation and time series hrough out depends on various variable