

Quantitative Global Memory

Sa

Sandra Alves ¹

Delia Kesner ²

Miguel Ramos

SMS

22/06/2023

¹CRACS/INESC-TEC, DCC, Faculdade de Ciências, Universidade do Porto ²IRIF, CNRS, Université Paris Cité & Institut Universitaire de France ³LIACC, DCC, Faculdade de Ciências, Universidade do Porto

Programming Languages

λ-calculus (Pure)

- Simple structure
- No side-effects
- Easy to reason about
- Useless for programmers(?)

Real (Impure)

- Complicated structure
- Side-effects
- Hard to reason about
- Interact with the real world

Programming Languages

Is the λ -calculus *useless* for programmers?

It seems possible that the correspondence might form the basis of a formal description of the semantics of ALGOL 60. As presented here it reduces the problem of specifying ALGOL 60 semantics to that of specifying the semantics of a structurally simpler language.

Peter Landin

in "Correspondence between ALGOL 60 and Church's Lambda-notation: part I"

Programming Languages

How can we add *effects* to pure languages? (Without making them harder to reason about...)

[I]n order to interpret a programming language [...], we distinguish the object

A of values (of type A) from the object TA of computations (of type A) [...]. We call T a notion of computation, since it abstracts away from the types of values computations may produce.

Eugenio Moggi

3 of 33

Monadic Effects (Moggi's CBV Encoding)

Global State

 $TA = S \gg (A \times S)$:

Let *S* be the type of states. Then

$$v \rightsquigarrow \lambda s.(v,s)$$

 $t u \rightsquigarrow \lambda s.let(u',s') = u s$
 $in(t u') s'$

Exceptions

Let E be the type of exceptions.

Then
$$TA = (E + A)$$
:

 $v \mapsto \operatorname{in}_r(v)$ $t \ u \mapsto \operatorname{case} \ u \ \operatorname{of} \ \operatorname{in}_l(e) \mapsto e$ $\operatorname{in}_r(v) \mapsto t \ v$

Effect Operations

What about the operations that create effects?

The computational λ -calculus is essentially the same as the simply typed λ calculus except for making a careful systematic distinction between computations and values. [...] However, the calculus does not contain operations, the constructs that actually create the effects. [...]

Gordon Plotkin and John Power

in "Algebraic Operations and Generic Effects"

Effect Operations

Global State

Let ℓ be a state location:

• Retrieving a value:

$$\mathtt{get}_{\ell}(\lambda x.t)$$

• Setting a value:

 $\mathsf{set}_\ell(\mathsf{v},t)$

Exceptions

Let e be an exception name:

• Raising an exception:

 $raise_e()$

• Handling an exception:

 $handle_e(t, u)$

Intersection Types

 \bullet Extension of simple types with type constructor \cap

if τ , σ are types, then $\boxed{\tau \cap \sigma}$ is a type

Originally enjoy associativity, commutativity and idempotency

$$(\tau \cap \sigma) \cap \theta = \tau \cap (\sigma \cap \theta)$$
 $(\tau \cap \sigma) = (\sigma \cap \tau)$

• Express models capturing qualitative computational properties

"t is terminating iff t is typable"

Non-Idempotent Intersection Types

- Intersection types that do not enjoy idempotency $(\tau \cap \tau) \neq \tau$
- Express models capturing upper bound quantitative computational properties

"t is terminating in at most X steps iff t is typable"

Size of type derivations is an upper bound for

evaluation length + size of result

Size explosion

$$t_0 := y t_n := (\lambda x.xx)t_{n-1}$$

Split and Exact Measures

• To obtain split measures

counters in judgments + tight constants + persistent typing rules

(evaluation length, size of result)

To obtain exact measures.

tight derivations = minimal derivations

• Obtain models capturing exact quantitative computational properties

"t is terminating in exactly X steps with normal form of size Y iff t is typable with counter (X, Y)"

Quantitative Global Memory

Goal

To build a quantitative model (expressed as a tight type system) that captures exact quantitative properties of a λ -calculus with operations that interact with a global state.

Syntax

- We distinguish between values *v* and computations *t* (terms)
- Effect operations are used to interact with the global state
- The global state is defined through update operations
- Configurations are term-state pairs

```
Values v, w ::= x \mid \lambda x.t

Terms t, u ::= v \mid xt \mid \gcd_{\ell}(\lambda x.t) \mid \sec_{\ell}(v, t)

States s, q ::= \epsilon \mid \operatorname{upd}_{\ell}(v, s)

Configurations c ::= (t, s)

|v| := 0 \quad |vt| := 1 + |t| \quad |\gcd_{\ell}(\lambda x.t)| := |t| \quad |\sec_{\ell}(v, t)| := |t|

|s| := 0 \quad |(t, s)| := |t|
```


Operational Semantics (Configurations)

Let \equiv be the equivalence relation generated by the following axiom $\operatorname{upd}_{\ell}(v,\operatorname{upd}_{\ell'}(w,s)) \equiv_{c} \operatorname{upd}_{\ell'}(w,\operatorname{upd}_{\ell}(v,s))$ if $\ell \neq \ell'$

 $(t,s) \rightarrow_{\mathtt{r}} (u,q) \quad \mathtt{r} \in \{\beta_{\mathtt{v}},\mathtt{g},\mathtt{s}\}$ $(vt,s) \rightarrow_r (vu,g)$ $((\lambda x.t)v,s) \rightarrow_{\beta_{s}} (t\{x \setminus v\},s)$

 $s \equiv \operatorname{upd}_{\ell}(v, a)$

Quantitative Global Memory

 $(\text{get}_{\ell}(\lambda x.t), s) \rightarrow_{\sigma} (t\{x \setminus v\}, s)$ $(\operatorname{\mathsf{set}}_\ell(\mathsf{v},t),s) \to_{\mathsf{s}} (t,\operatorname{\mathsf{upd}}_\ell(\mathsf{v},s))$

 $((\lambda x. get_{\ell}(\lambda y. yx))(set_{\ell}(\lambda x. x, z)), \epsilon)$

 \rightarrow_{β} $(z, \operatorname{upd}_{\ell}(\lambda x. x, \epsilon))$

Operational Semantics & Example

 $\rightarrow_{\beta_{\ell}}$ (get_{\ell}(\lambda y.yz), upd_{\ell}(\lambda x.x,\ell) \rightarrow_{σ} $((\lambda x.x)z, \operatorname{upd}_{\ell}(\lambda x.x, \epsilon))$

Normal Forms & Blocked Configurations


```
(NF) Normal Forms
```

```
no ::= x \mid \lambda x.t \mid \text{ne}

ne ::= x \mid \lambda x.t \mid \text{ne}
```

open terms

(BC) Blocked Configurations

$$(\gcd_{\ell}(\lambda x.t), s)$$
 where $\ell \not\in dom(s)$

(FC) Final Configurations

FC = BC + (NF, s)

Encoding Arrow Types

$$\underbrace{A \Rightarrow B}_{\text{IL}} \overset{\text{Girard's CBV}}{\leadsto} \underbrace{!A \multimap !B}_{\text{ILL}} \overset{\text{Moggi's CBV}}{\leadsto} !A \multimap T(!B)$$

- !A is an intersection of value types
 - $!A = [A_1, \dots, A_n]$
- T is the global state monad

$$TA = S \gg (A \times S)$$

• T(!A) is a computation wrapping an intersection of value types

$$T[A_1,\ldots,A_n]=S\gg ([A_1,\ldots,A_n]\times S)$$

Types

Values and Neutral Forms

Tight Constants tt ::=
$$\mathbf{v} \mid \mathbf{a} \mid \mathbf{n}$$

Value Types σ ::= $\mathbf{v} \mid \mathbf{a} \mid \mathcal{M} \mid \mathcal{M} \Rightarrow \delta$

Multi-types \mathcal{M} ::= $[\sigma_i]_{i \in I}$ where I is a finite set

Liftable Types μ ::= $\mathbf{v} \mid \mathbf{a} \mid \mathcal{M}$

Types τ ::= $\mathbf{n} \mid \sigma$

States, Configurations, and Computations

State Types
$$\mathcal{S}$$
 ::= $\{\ell_i : \mathcal{M}_i\}_{i \in I}$ where all ℓ_i are distinct Configuration Types κ ::= $\tau \times \mathcal{S}$

Monadic Types δ ::= $\mathcal{S} \gg \kappa$

Typing

• Judgments are decorated with counters

$$\beta$$
-steps | normal form | β | memory accesses

• We have three different kinds of typing judgments

$$\begin{array}{c|c} \hline \textit{computations} & \textit{states} & \textit{configurations} \\ \hline \Gamma \vdash^{(b,m,d)} t : \delta & \overline{\Delta} \vdash^{(b,m,d)} s : \mathcal{S} & \overline{\Gamma} \vdash^{(b,m,d)} (t,s) : \kappa \\ \hline \end{array}$$

- Some typing rules have two (or more) different versions
 - Consuming: increase only b and m counters
 - Persistent: increase the d counter

Typing Rules Values

$$\frac{}{x:[\sigma]\vdash^{(0,0,0)}x:\sigma} \text{ (ax)}$$

$$\frac{\Gamma \vdash^{(b,m,d)} v : \mu}{\Gamma \vdash^{(b,m,d)} v : \mathcal{S} \gg (\mu \times \mathcal{S})} \ (\uparrow)$$

$$\frac{\Gamma; x : \mathcal{M} \vdash^{(b,m,d)} t : \mathcal{S} \gg \kappa}{\Gamma \vdash^{(b,m,d)} \lambda x.t : \mathcal{M} \Rightarrow (\mathcal{S} \gg \kappa)} (\lambda)$$

$$\frac{(\Gamma_i \vdash^{(b_i,m_i,d_i)} \mathbf{v} : \sigma_i)_{i \in I}}{+_{i \in I} \Gamma_i \vdash^{(+_{i \in I} b_i, +_{i \in I} m_i, +_{i \in I} d_i)} \mathbf{v} : [\sigma_i]_{i \in I}}$$
(m)

Typing Rules Computations


```
\Gamma \vdash^{(b,m,d)} v : \mathcal{M} \Rightarrow (\widetilde{\mathcal{S}}_m \gg (\tau \times \widetilde{\mathcal{S}}_f)) \qquad \Delta \vdash^{(b',m',d')} t : \widetilde{\mathcal{S}}_i \gg (\mathcal{M} \times \widetilde{\mathcal{S}}_m) 
(a)
                                     \overline{\Gamma + \Delta \vdash^{(1+b+b',m+m',d+d')}}  vt : S_i \gg (\tau \times S_f)
```

$$\frac{\Gamma; x : \mathcal{M} \vdash^{(b,m,d)} t : \mathcal{S} \gg \kappa}{\Gamma \vdash^{(b,1+m,d)} \operatorname{get}_{\ell}(\lambda x.t) : \{(\ell : \mathcal{M})\} \uplus \mathcal{S} \gg \kappa}$$
 (get)

$$\frac{\Gamma \vdash^{(b,m,d)} v : \mathcal{M} \quad \Delta \vdash^{(b',m',d')} t : \{(\ell : \mathcal{M})\}; \mathcal{S} \gg \kappa}{\Gamma + \Delta \vdash^{(b+b',1+m+m',d+d')} \mathtt{set}_{\ell}(v,t) : \mathcal{S} \gg \kappa} \ (\mathtt{set})$$

Typing Rules & States


```
\frac{-\frac{\Gamma \vdash (b,m,d)}{\vdash (0,0,0)} \cdot \mathcal{S}}{\Gamma + \Delta \vdash (b+b',m+m',d+d')} \frac{\Delta \vdash (b',m',d')}{\operatorname{upd}_{\ell}(v,s) : \{(\ell : \mathcal{M})\}; \mathcal{S}} \text{ (upd)}
```


Typing Rules & Configurations

$$\frac{\Gamma \vdash^{(b,m,d)} t : \mathcal{S} \gg \kappa \quad \Delta \vdash^{(b',m',d')} s : \mathcal{S}}{\Gamma + \Delta \vdash^{(b+b',m+m',d+d')} (t,s) : \kappa}$$
(conf)

Exact Measures (Wrong)

Why do we need tightness and persistent typing rules?

Let
$$\sigma = [v] \Rightarrow (S \gg (\tau \times S'))$$
.

$rac{}{x:[\sigma]dash^{(0,0,0)}x:[\mathtt{v}]\Rightarrow(\mathcal{S}\gg(au imes\mathcal{S}'))}$ (ax)	$\frac{y : [v] \vdash^{(0,0,0)} y : v}{y : [v] \vdash^{(0,0,0)} y : [v]} \text{ (m)}$ $y : [v] \vdash^{(0,0,0)} y : S \gg ([v] \times S) \text{ (ax)}$
$X : [\sigma] \vdash (\neg \neg \neg \neg) \times [\forall] \Rightarrow (\sigma \gg (\tau \times \sigma))$	$\frac{y : [v] \vdash (v) \times y : \mathcal{S} \gg ([v] \times \mathcal{S})}{(0)}$

$$|xy| = 1$$

 $(xy, s) \rightarrow \text{ for any } s$

11g

Tightness Criteria

• $\mathsf{tight}(\mathcal{M})$ holds if all $\sigma \in \mathcal{M}$ are tight

[a, a, v, n]

 $n \times \{(\ell_1 : [a, v]), (\ell_2 : [])\}$

• $\tau \times S$ is tight if τ and S are tight

• au is tight if it is a tight constant

• S is tight if $\forall \ell \in dom(S)$.tight $(S(\ell))$

• $S \gg (\tau \times S')$ is tight if $\tau \times S'$ is tight

Quantitative Global Memory

 $\{(\ell_1 : [v]), (\ell_2 : [a, a])\}$

 $\{(\ell_1: [\mathcal{M} \Rightarrow \delta])\} \gg (\mathbf{a} \times \{(\ell_2: [])\})$

• Φ is tight if has a tight conclusion $\Phi \triangleright x : [a], y : [v] \vdash^{(0,0,0)} xy : n$

Typing Rules & Persistent

$$\frac{}{\vdash^{(0,0,0)}\lambda x.t:a}(\lambda_{p})$$

$$\frac{\Gamma \vdash^{(b,m,d)} t : \mathcal{S} \gg (\mathsf{tt} \times \mathcal{S}')}{(x : [v]) + \Gamma \vdash^{(b,m,1+d)} xt : \mathcal{S} \gg (\mathsf{n} \times \mathcal{S}')} \ (\mathbb{Q}_{\mathsf{p}1})$$

$$\frac{\Gamma \vdash^{(b,m,d)} u : \mathcal{S} \gg (\mathbf{n} \times \mathcal{S}')}{\Gamma \vdash^{(b,m,1+d)} (\lambda x.t) u : \mathcal{S} \gg (\mathbf{n} \times \mathcal{S}')} \ (\mathfrak{Q}_{p2})$$

Exact Measures (Correct)


```
\frac{\frac{y : [a] \vdash^{(0,0,0)} y : a}{y : [a] \vdash^{(0,0,0)} y : \emptyset \gg (a \times \emptyset)} (\uparrow)}{x : [v], y : [a] \vdash^{(\mathbf{0},0,\mathbf{1})} xy : \emptyset \gg (n \times \emptyset)} (@_{p1})
```


Validity of the Model

Soundness

If $\Phi \triangleright \Gamma \vdash (b.m.d) (t,s) : \kappa \text{ tight,}$ then $\exists (u,q) \text{ s.t. } u \in \text{no and } (t,s) \rightarrow (b.m) (u,q),$ with $b \beta$ -steps, m g/s-steps, and |(u,q)| = d.

Completeness

If $(t,s) \rightarrow (b,m)$ (u,q) s.t. $u \in no$, then $\exists \Phi \triangleright \Gamma \vdash (b,m,|(u,q)|) (t,s) : \kappa$ tight.

Let us consider the term exemplifying the operational semantics:

$$((\lambda x. \mathtt{get}_{\ell}(\lambda y. yx))(\mathtt{set}_{\ell}(\lambda x. x, z)), \epsilon) \to^{(2.2)} (\underbrace{|z| = 0}_{z}, \mathtt{upd}_{\ell}(\lambda x. x, \epsilon))$$

Let Φ be the following derivation for $\lambda x.get_I(\lambda y.yx)$:

	$\frac{x : [v] \vdash^{(0,0,0)} x : v}{x : [v] \vdash^{(0,0,0)} x : [v]} $ (m)
(ax)	
$y: \mathcal{M} \vdash^{(0,0,0)} y: [v] \Rightarrow \emptyset \gg (v \times \emptyset)$	$x: [v] \vdash^{(0,0,0)} x: \emptyset \gg ([v] \times \emptyset) \tag{0}$
$y: \mathcal{M}, x: [v] \vdash^{(1,0,0)} yx$	$: \emptyset \gg (\mathtt{v} \times \emptyset) $
$x : [v] \vdash^{(1,1,0)} get_{I}(\lambda y.yx) : \{(x,y) \in \{(1,1,0)\}\}$	$\overline{(I:\mathcal{M})} \gg (\mathtt{v} imes \emptyset)$
$\vdash^{(1,1,0)} \lambda x. \mathtt{get}_l(\lambda y. yx) : [\mathtt{v}] \Rightarrow (\mathtt{v})$	$\overline{\{(I:\mathcal{M})\}\gg (\mathtt{n} imes\emptyset))}^{(\lambda)}$

(ax)

Let Ψ be the following derivation for $set_i(\lambda x.x, z)$:

$\frac{x : [v] \vdash^{(0,0,0)} x : v}{x : [v] \vdash^{(0,0,0)} x : \emptyset \gg (v \times \emptyset)} \stackrel{(\uparrow)}{\underset{\vdash^{(0,0,0)}}{}{}} \lambda x.x : [v] \Rightarrow \emptyset \gg (v \times \emptyset)} \stackrel{(\lambda)}{\underset{(m)}{}}$	$\frac{z : [v] \vdash^{(0,0,0)} z : v}{z : [v] \vdash^{(0,0,0)} z : [v]} $ (ax)	
$\vdash^{(0,0,0)} \lambda x.x : \mathcal{M}$	$\frac{z \cdot [v] + z \cdot [v]}{z : [v] \vdash^{(0,0,0)} z : \{(I : \mathcal{M})\} \gg ([v] \times \{(I : \mathcal{M})\})}$ $d_{I}(\lambda x.x, z) : \emptyset \gg ([v] \times \{(I : \mathcal{M})\})$	(↑) (set)

Using Φ and Ψ , we can build the following tight derivation:

$$\frac{z : [v] \vdash^{(2,2,0)} (\lambda x. get_{I}(\lambda y. yx))(set_{I}(I, z)) : \emptyset \gg (v \times \emptyset)}{z : [v] \vdash^{(2,2,0)} ((\lambda x. get_{I}(\lambda y. yx))(set_{I}(I, z)), \epsilon) : v \times \emptyset}$$
(emp)

$$((\lambda x. \operatorname{get}_{\ell}(\lambda y. yx))(\operatorname{set}_{\ell}(\lambda x. x, z)), \epsilon) \to (2.2)$$

Conclusion

We have provided a foundational step into the development of quantitative models for programming languages with effects:

- Presented a simple language with global memory access capabilities
- Fixed a particular evaluation strategy following a weak CBV approach
- Provided a quantitative model cable of extracting and discriminate between exact measures for:
 - Length of evaluation
 - Number of memory accesses
 - · Size of normal forms

Future Work

Different Effects

- Exceptions
- Non-determinism
- I/O
- ..

Different Strategies

- CBV (full)
- CBN
- CBNeed
- ...

Unifying Frameworks

- CBPV
- E.Eff.-Calculus
- Bang-Calculus

The End

