Package 'RSSL'

December 7, 2023

Version 0.9.7

Title Implementations of Semi-Supervised Learning Approaches for Classification

Depends R(>= 2.10.0)

Imports methods, Rcpp, MASS, kernlab, quadprog, Matrix, dplyr, tidyr, ggplot2, reshape2, scales, cluster

LinkingTo Rcpp, RcppArmadillo

Suggests testthat, rmarkdown, SparseM, numDeriv, LiblineaR, covr

Description A collection of implementations of semi-supervised classifiers and methods to evaluate their performance. The package includes implementations of, among others, Implicitly Constrained Learning, Moment Constrained Learning, the Transductive SVM, Manifold regularization, Maximum Contrastive Pessimistic Likelihood estimation, S4VM and WellSVM.

License GPL (>= 2)

URL https://github.com/jkrijthe/RSSL

BugReports https://github.com/jkrijthe/RSSL

Collate 'Generics.R' 'Classifier.R' 'Cross Validation.R'

'LeastSquaresClassifier.R' 'EMLeastSquaresClassifier.R'

'NormalBasedClassifier.R' 'LinearDiscriminantClassifier.R'

'EMLinearDiscriminantClassifier.R' 'NearestMeanClassifier.R'

'EMNearestMeanClassifier.R' 'LogisticRegression.R'

'EntropyRegularizedLogisticRegression.R' 'Evaluate.R'

'GRFClassifier.R' 'GenerateSSLData.R' 'HelperFunctions.R'

'ICLeastSquaresClassifier.R' 'ICLinearDiscriminantClassifier.R'

'KernelLeastSquaresClassifier.R'

'KernelICLeastSquaresClassifier.R'

'LaplacianKernelLeastSquaresClassifier.R' 'LaplacianSVM.R'

'LearningCurve.R' 'LinearSVM.R' 'LogisticLossClassifier.R'

'MCLinearDiscriminantClassifier.R' 'MCNearestMeanClassifier.R'

'MCPLDA.R' 'MajorityClassClassifier.R' 'Measures.R'

'Plotting.R' 'QuadraticDiscriminantClassifier.R'

'RSSL-package.R' 'RcppExports.R' 'S4VM.R' 'SVM.R'

'SelfLearning.R' 'TSVM.R' 'USMLeastSquaresClassifier.R
'WellSVM.R' 'scaleMatrix.R' 'svmd.R' 'svmlin.R'
'testdata-data.R'

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Jesse Krijthe [aut, cre]

Maintainer Jesse Krijthe <jkrijthe@gmail.com>

Repository CRAN

Date/Publication 2023-12-07 06:20:03 UTC

${\sf R}$ topics documented:

add_missinglabels_mar	4
adjacency_knn	5
BaseClassifier	5
c.CrossValidation	6
clapply	6
cov_ml	7
Cross Validation SSL	7
decisionvalues	9
	10
	10
	11
	13
2111 (011 011 011 011 011 011 011 011 011	14
	15
a_u,101maa_1maa1	16
6········· = · · · · · · · · · · · · · ·	17
generate2ClassGaussian	17
	18
	19
generateFourClusters	19
generateParallelPlanes	20
	21
generates praise the territory and the generates praise the grant and th	21
	22
geom_classifier	22
geom_linearclassifier	23
GRFClassifier	23
harmonic_function	25
ICLeastSquaresClassifier	26
ICLinearDiscriminantClassifier	28
KernelICLeastSquaresClassifier	29
Kernell eastSquaresClassifier	30

$Laplacian Kernel Least Squares Classifier \\ \ldots \\ \ldots \\ 32$
LaplacianSVM
$Learning Curve SSL \\ \ldots \\ 38$
LeastSquaresClassifier
LinearDiscriminantClassifier
LinearSVM
LinearSVM-class
LinearTSVM
line_coefficients
localDescent
LogisticLossClassifier
LogisticLossClassifier-class
LogisticRegression
LogisticRegressionFast
logsumexp
loss
$losslogsum \dots \dots \dots \dots \dots \dots \dots \dots \dots $
$losspart \ldots \ldots$
$Majority Class Classifier \dots \dots$
$MCLinear Discriminant Classifier \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$MCNearest Mean Classifier \\ \ldots \\ \ldots \\ 53$
MCPLDA
measure_accuracy
$minimaxlda \ \dots \ $
missing_labels
NearestMeanClassifier
plot.CrossValidation
plot.LearningCurve
posterior
predict,scaleMatrix-method
PreProcessing
PreProcessingPredict
print.CrossValidation
print.LearningCurve
projection_simplex
QuadraticDiscriminantClassifier
responsibilities
rssl-formatting
rssl-predict
S4VM
S4VM-class
sample_k_per_level
scaleMatrix
SelfLearning
solve_svm
split_dataset_ssl
split_random
SSLDataFrameToMatrices

	stat_classifier	73
	stderror	74
	summary.CrossValidation	75
	svdinv	75
	svdinvsgrtm	76
	svdsqrtm	76
	SVM	77
	svmlin	78
	svmlin_example	79
	symproblem	79
	testdata	
	threshold	
	true labels	
	USMLeastSquaresClassifier	
	USMLeastSquaresClassifier-class	
	wdbc	
	WellSVM	
	wellsvm_direct	
	WellSVM_SSL	
	WellSVM_supervised	88
	wlda	89
	wlda_error	89
	wlda_loglik	90
Index		91

add_missinglabels_mar Throw out labels at random

Description

Original labels are saved in attribute y_true

Usage

```
add_missinglabels_mar(df, formula = NULL, prob = 0.1)
```

Arguments

df data.frame; Data frame of interest formula formula; Formula to indicate the outputs prob numeric; Probability of removing the label

See Also

```
Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()
```

adjacency_knn 5

adjacency_knn	Calculate knn adjacency matrix	

Description

Calculates symmetric adjacency: objects are neighbours is either one of them is in the set of nearest neighbours of the other.

Usage

```
adjacency_knn(X, distance = "euclidean", k = 6)
```

Arguments

X matrix; input matrix

distance character; distance metric used in the dist function

k integer; Number of neighbours

Value

Symmetric binary adjacency matrix

BaseClassifier Classifier used for enabling shared documenting of parameters

Description

Classifier used for enabling shared documenting of parameters

Usage

```
BaseClassifier(X, y, X_u, verbose, scale, eps, x_center, intercept, lambda,
  y_scale, kernel, use_Xu_for_scaling, ...)
```

Arguments

Χ	matrix; Design matrix for labeled data
У	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data
verbose	logical; Controls the verbosity of the output

scale logical; Should the features be normalized? (default: FALSE)

eps numeric; Stopping criterion for the maximinimization

x_center logical; Should the features be centered?

6 clapply

intercept logical; Whether an intercept should be included

lambda numeric; L2 regularization parameter

y_scale logical; whether the target vector should be centered

kernel kernlab::kernel to use

use_Xu_for_scaling

logical; whether the unlabeled objects should be used to determine the mean and

scaling for the normalization

... Not used

c.CrossValidation

 $Merge\ result\ of\ cross-validation\ runs\ on\ single\ datasets\ into\ a\ the\ same$

object

Description

Merge result of cross-validation runs on single datasets into a the same object

Usage

```
## S3 method for class 'CrossValidation' c(...)
```

Arguments

... Named arguments for the different objects, where the name reflects the dataset name

clapply Use mclapply conditional on not being in RStudio

Description

Use mclapply conditional on not being in RStudio

Usage

```
clapply(X, FUN, ..., mc.cores = getOption("mc.cores", 2L))
```

Arguments

X vector

FUN function to be applied to the elements of X

... optional arguments passed to FUN

mc.cores number of cores to use

cov_ml 7

cov_ml

Biased (maximum likelihood) estimate of the covariance matrix

Description

Biased (maximum likelihood) estimate of the covariance matrix

Usage

```
cov_ml(X)
```

Arguments

Χ

matrix with observations

CrossValidationSSL

Cross-validation in semi-supervised setting

Description

Cross-validation for semi-supervised learning, in which the dataset is split in three parts: labeled training object, unlabeled training object and validation objects. This can be used to evaluate different approaches to semi-supervised classification under the assumption the labels are missing at random. Different cross-validation schemes are implemented. See below for details.

Usage

```
CrossValidationSSL(X, y, ...)
## S3 method for class 'list'
CrossValidationSSL(X, y, ..., verbose = FALSE, mc.cores = 1)
## S3 method for class 'matrix'
CrossValidationSSL(X, y, classifiers, measures = list(Error = measure_error), k = 10, repeats = 1, verbose = FALSE,
  leaveout = "test", n_labeled = 10, prop_unlabeled = 0.5, time = TRUE,
  pre_scale = FALSE, pre_pca = FALSE, n_min = 1, low_level_cores = 1,
    ...)
```

```
    X design matrix of the labeled objects
    y vector with labels
    ... arguments passed to underlying functions
    verbose logical; Controls the verbosity of the output
```

8 Cross Validation SSL

mc.cores integer; Number of cores to be used classifiers list; Classifiers to crossvalidate

measures named list of functions giving the measures to be used

k integer; Number of folds in the cross-validation repeats integer; Number of repeated assignments to folds

leaveout either "labeled" or "test", see details

n_labeled Number of labeled examples, used in both leaveout modes

prop_unlabeled numeric; proportion of unlabeled objects

time logical; Whether execution time should be saved.

pre_scale logical; Whether the features should be scaled before the dataset is used pre_pca logical; Whether the features should be preprocessed using a PCA step

n_min integer; Minimum number of labeled objects per class

low_level_cores

integer; Number of cores to use compute repeats of the learning curve

Details

The input to this function can be either: a dataset in the form of a feature matrix and factor containing the labels, a dataset in the form of a formula and data.frame or a named list of these two options. There are two main modes in which the cross-validation can be carried out, controlled by the leaveout parameter. When leaveout is "labeled", the folds are formed by non-overlapping labeled training sets of a user specified size. Each of these folds is used as a labeled set, while the rest of the objects are split into the an unlabeled and the test set, controlled by prop_unlabeled parameter. Note that objects can be used multiple times for testing, when training on a different fold, while other objects may never used for testing.

The "test" option of leaveout, on the other hand, uses the folds as the test sets. This means every object will be used as a test object exactly once. The remaining objects in each training iteration are split randomly into a labeled and an unlabeled part, where the number of the labeled objects is controlled by the user through the n_labeled parameter.

decisionvalues 9

```
# Cross-validation making sure test folds are non-overlapping
cvresults1 <- CrossValidationSSL(X,y,</pre>
                                  classifiers=classifiers,
                                  measures=measures,
                                  leaveout="test", k=10,
                                  repeats = 2,n_labeled = 10)
print(cvresults1)
plot(cvresults1)
# Cross-validation making sure labeled sets are non-overlapping
cvresults2 <- CrossValidationSSL(X,y,</pre>
                                  classifiers=classifiers,
                                  measures=measures,
                                  leaveout="labeled", k=10,
                                  repeats = 2,n_labeled = 10,
                                  prop_unlabeled=0.5)
print(cvresults2)
plot(cvresults2)
```

decisionvalues

Decision values returned by a classifier for a set of objects

Description

Returns decision values of a classifier

Usage

```
decisionvalues(object, newdata)
## S4 method for signature 'LeastSquaresClassifier'
decisionvalues(object, newdata)
## S4 method for signature 'KernelLeastSquaresClassifier'
decisionvalues(object, newdata)
## S4 method for signature 'LinearSVM'
decisionvalues(object, newdata)
## S4 method for signature 'SVM'
decisionvalues(object, newdata)
## S4 method for signature 'TSVM'
decisionvalues(object, newdata)
## S4 method for signature 'TSVM'
decisionvalues(object, newdata)
## S4 method for signature 'svmlinClassifier'
decisionvalues(object, newdata)
```

10 diabetes

Arguments

object Classifier object
newdata new data to classify

df_to_matrices

Convert data.frame with missing labels to matrices

Description

Convert data.frame with missing labels to matrices

Usage

```
df_to_matrices(df, formula = NULL)
```

Arguments

df data.frame; Data

formula; Description of problem

See Also

```
Other \, RSSL \, utilities: \, Learning CurveSSL(), \, SSLDataFrameToMatrices(), \, add\_missinglabels\_mar(), \, measure\_accuracy(), \, missing\_labels(), \, split\_dataset\_ssl(), \, split\_random(), \, true\_labels()
```

diabetes

diabetes data for unit testing

Description

Useful for testing the WellSVM implementation

 ${\tt EMLeastSquaresClassifier}$

An Expectation Maximization like approach to Semi-Supervised Least Squares Classification

Description

As studied in Krijthe & Loog (2016), minimizes the total loss of the labeled and unlabeled objects by finding the weight vector and labels that minimize the total loss. The algorithm proceeds similar to EM, by subsequently applying a weight update and a soft labeling of the unlabeled objects. This is repeated until convergence.

Usage

```
EMLeastSquaresClassifier(X, y, X_u, x_center = FALSE, scale = FALSE,
  verbose = FALSE, intercept = TRUE, lambda = 0, eps = 1e-09,
  y_scale = FALSE, alpha = 1, beta = 1, init = "supervised",
  method = "block", objective = "label", save_all = FALSE,
  max_iter = 1000)
```

Χ	matrix; Design matrix for labeled data
У	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data
x_center	logical; Should the features be centered?
scale	Should the features be normalized? (default: FALSE)
verbose	logical; Controls the verbosity of the output
intercept	logical; Whether an intercept should be included
lambda	numeric; L2 regularization parameter
eps	Stopping criterion for the minimization
y_scale	logical; whether the target vector should be centered
alpha	numeric; the mixture of the new responsibilities and the old in each iteration of the algorithm (default: 1)
beta	numeric; value between 0 and 1 that determines how much to move to the new solution from the old solution at each step of the block gradient descent
init	objective character; "random" for random initialization of labels, "supervised" to use supervised solution as initialization or a numeric vector with a coefficient vector to use to calculate the initialization
method	character; one of "block", for block gradient descent or "simple" for LBFGS optimization (default="block")
objective	character; "responsibility" for hard label self-learning or "label" for soft-label self-learning
save_all	logical; saves all classifiers trained during block gradient descent
max_iter	integer; maximum number of iterations

Details

By default (method="block") the weights of the classifier are updated, after which the unknown labels are updated. method="simple" uses LBFGS to do this update simultaneously. Objective="responsibility" corresponds to the responsibility based, instead of the label based, objective function in Krijthe & Loog (2016), which is equivalent to hard-label self-learning.

References

Krijthe, J.H. & Loog, M., 2016. Optimistic Semi-supervised Least Squares Classification. In International Conference on Pattern Recognition (To Appear).

See Also

Other RSSL classifiers: EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier() LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

```
library(dplyr)
library(ggplot2)
set.seed(1)
df <- generate2ClassGaussian(200,d=2,var=0.2) %>%
add_missinglabels_mar(Class~.,prob = 0.96)
# Soft-label vs. hard-label self-learning
classifiers <- list(</pre>
 "Supervised"=LeastSquaresClassifier(Class~.,df),
 "EM-Soft"=EMLeastSquaresClassifier(Class~.,df,objective="label"),
 "EM-Hard"=EMLeastSquaresClassifier(Class~.,df,objective="responsibility")
)
df %>%
ggplot(aes(x=X1,y=X2,color=Class)) +
geom_point() +
coord_equal() +
 scale_y_continuous(limits=c(-2,2)) +
 stat_classifier(aes(linetype=..classifier..),
                 classifiers=classifiers)
```

EMLinearDiscriminantClassifier

Semi-Supervised Linear Discriminant Analysis using Expectation Maximization

Description

Expectation Maximization applied to the linear discriminant classifier assuming Gaussian classes with a shared covariance matrix.

Usage

```
EMLinearDiscriminantClassifier(X, y, X_u, method = "EM", scale = FALSE,
  eps = 1e-08, verbose = FALSE, max_iter = 100)
```

Arguments

Χ	matrix; Design matrix for labeled data
У	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data

method character; Currently only "EM"

scale logical; Should the features be normalized? (default: FALSE)

eps Stopping criterion for the maximinimization verbose logical; Controls the verbosity of the output max_iter integer; Maximum number of iterations

Details

Starting from the supervised solution, uses the Expectation Maximization algorithm (see Dempster et al. (1977)) to iteratively update the means and shared covariance of the classes (Maximization step) and updates the responsibilities for the unlabeled objects (Expectation step).

References

Dempster, A., Laird, N. & Rubin, D., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39(1), pp.1-38.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier() LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

EMNearestMeanClassifier

EMNearestMeanClassifier

Semi-Supervised Nearest Mean Classifier using Expectation Maximization

Description

Expectation Maximization applied to the nearest mean classifier assuming Gaussian classes with a spherical covariance matrix.

Usage

```
EMNearestMeanClassifier(X, y, X_u, method = "EM", scale = FALSE,
  eps = 1e-04)
```

Arguments

Χ	matrix; Design matrix for labeled data
у	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data
method	character; Currently only "EM"
scale	Should the features be normalized? (default: FALSE)
eps	Stopping criterion for the maximinimization

Details

Starting from the supervised solution, uses the Expectation Maximization algorithm (see Dempster et al. (1977)) to iteratively update the means and shared covariance of the classes (Maximization step) and updates the responsibilities for the unlabeled objects (Expectation step).

References

Dempster, A., Laird, N. & Rubin, D., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39(1), pp.1-38.

EntropyRegularizedLogisticRegression

Entropy Regularized Logistic Regression

Description

R Implementation of entropy regularized logistic regression implementation as proposed by Grandvalet & Bengio (2005). An extra term is added to the objective function of logistic regression that penalizes the entropy of the posterior measured on the unlabeled examples.

Usage

```
EntropyRegularizedLogisticRegression(X, y, X_u = NULL, lambda = 0,
  lambda_entropy = 1, intercept = TRUE, init = NA, scale = FALSE,
  x_center = FALSE)
```

Arguments

x matrix; Design matrix for labeled data
 y factor or integer vector; Label vector
 x_u matrix; Design matrix for unlabeled data

1ambda 12 Regularization

lambda_entropy Weight of the labeled observations compared to the unlabeled observations

intercept logical; Whether an intercept should be included

init Initial parameters for the gradient descent

scale logical; Should the features be normalized? (default: FALSE)

x_center logical; Should the features be centered?

Value

S4 object of class EntropyRegularizedLogisticRegression with the following slots:

w weight vector

classnames the names of the classes

References

Grandvalet, Y. & Bengio, Y., 2005. Semi-supervised learning by entropy minimization. In L. K. Saul, Y. Weiss, & L. Bottou, eds. Advances in Neural Information Processing Systems 17. Cambridge, MA: MIT Press, pp. 529-536.

Examples

```
library(RSSL)
library(ggplot2)
library(dplyr)
# An example where ERLR finds a low-density separator, which is not
# the correct solution.
set.seed(1)
df <- generateSlicedCookie(1000,expected=FALSE) %>%
  add_missinglabels_mar(Class~.,0.98)
class_lr <- LogisticRegression(Class~.,df,lambda = 0.01)</pre>
class\_erlr <- \ EntropyRegularizedLogisticRegression(Class{^\sim}., df,
                                 lambda=0.01,lambda_entropy = 100)
ggplot(df,aes(x=X1,y=X2,color=Class)) +
  geom_point() +
  stat_classifier(aes(linetype=..classifier..),
                  classifiers = list("LR"=class_lr,"ERLR"=class_erlr)) +
  scale_y_continuous(limits=c(-2,2)) +
  scale_x_continuous(limits=c(-2,2))
df_test <- generateSlicedCookie(1000,expected=FALSE)</pre>
mean(predict(class_lr,df_test)==df_test$Class)
mean(predict(class_erlr,df_test)==df_test$Class)
```

find_a_violated_label Find a violated label

Description

Find a violated label

Usage

```
find_a_violated_label(alpha, K, y, ind_y, lr, y_init)
```

alpha	classifier weights
K	kernel matrix
у	label vector

gaussian_kernel 17

ind_y	Labeled/Unlabeled indicator

lr positive ratioy_init label initialization

gaussian_kernel calcu

calculated the gaussian kernel matrix

Description

calculated the gaussian kernel matrix

Usage

```
gaussian_kernel(x, gamma, x_test = NULL)
```

Arguments

x A d x n training data matrix

gamma kernel parameter

x_test A d x m testing data matrix

Value

k - A n x m kernel matrix and dis_mat - A n x m distance matrix

generate2ClassGaussian

Generate data from 2 Gaussian distributed classes

Description

Generate data from 2 Gaussian distributed classes

Usage

```
generate2ClassGaussian(n = 10000, d = 100, var = 1, expected = TRUE)
```

Arguments

n integer; Number of examples to generate
d integer; dimensionality of the problem
var numeric; size of the variance parameter

expected logical; whether the decision boundary should be the expected or perpendicular

18 generateABA

See Also

```
Other RSSL datasets: generateABA(), generateCrescentMoon(), generateFourClusters(), generateParallelPlanes(), generateSlicedCookie(), generateSpirals(), generateTwoCircles()
```

Examples

```
data <- generate2ClassGaussian(n=1000,d=2,expected=FALSE)
plot(data[,1],data[,2],col=data$Class,asp=1)</pre>
```

generateABA

Generate data from 2 alternating classes

Description

Two clusters belonging to three classes: the cluster in the middle belongs to one class and the two on the outside to the others.

Usage

```
generateABA(n = 100, d = 2, var = 1)
```

Arguments

n integer; Number of examples to generate
d integer; dimensionality of the problem
var numeric; size of the variance parameter

See Also

```
Other RSSL datasets: generate2ClassGaussian(), generateCrescentMoon(), generateFourClusters(), generateParallelPlanes(), generateSlicedCookie(), generateSpirals(), generateTwoCircles()
```

```
data <- generateABA(n=1000,d=2,var=1)
plot(data[,1],data[,2],col=data$Class,asp=1)</pre>
```

generateCrescentMoon 19

generateCrescentMoon Generate Crescent Moon dataset

Description

Generate a "crescent moon"/"banana" dataset

Usage

```
generateCrescentMoon(n = 100, d = 2, sigma = 1)
```

Arguments

n integer; Number of objects to generate d integer; Dimensionality of the dataset

sigma numeric; Noise added

See Also

```
Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateFourClusters(), generateParallelPlanes(), generateSlicedCookie(), generateSpirals(), generateTwoCircles()
```

Examples

```
data<-generateCrescentMoon(150,2,1)
plot(data$X1,data$X2,col=data$Class,asp=1)</pre>
```

generateFourClusters Generate Four Clusters dataset

Description

Generate a four clusters dataset

Usage

```
generateFourClusters(n = 100, distance = 6, expected = FALSE)
```

Arguments

n integer; Number of observations to generate distance numeric; Distance between clusters (default: 6)

expected logical; TRUE if the large margin equals the class boundary, FALSE if the class

boundary is perpendicular to the large margin

See Also

```
Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateCrescentMoon(), generateParallelPlanes(), generateSlicedCookie(), generateSpirals(), generateTwoCircles()
```

Examples

```
data <- generateFourClusters(1000,distance=6,expected=TRUE)
plot(data[,1],data[,2],col=data$Class,asp=1)</pre>
```

generateParallelPlanes

Generate Parallel planes

Description

Generate Parallel planes

Usage

```
generateParallelPlanes(n = 100, classes = 3, sigma = 0.1)
```

Arguments

n integer; Number of objects to generate

classes integer; Number of classes sigma double; Noise added

See Also

```
Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateCrescentMoon(), generateFourClusters(), generateSlicedCookie(), generateSpirals(), generateTwoCircles()
```

```
library(ggplot2)
df <- generateParallelPlanes(100,3)
ggplot(df, aes(x=x,y=y,color=Class,shape=Class)) +
geom_point()</pre>
```

generateSlicedCookie 21

generateSlicedCookie Generate Sliced Cookie dataset

Description

Generate a sliced cookie dataset: a circle with a large margin in the middle.

Usage

```
generateSlicedCookie(n = 100, expected = FALSE, gap = 1)
```

Arguments

n integer; number of observations to generate

expected logical; TRUE if the large margin equals the class boundary, FALSE if the class

boundary is perpendicular to the large margin

gap numeric; Size of the gap

Value

A data frame with n objects from the sliced cookie example

See Also

```
Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateCrescentMoon(), generateFourClusters(), generateParallelPlanes(), generateSpirals(), generateTwoCircles()
```

Examples

```
data <- generateSlicedCookie(1000,expected=FALSE)
plot(data[,1],data[,2],col=data$Class,asp=1)</pre>
```

generateSpirals

Generate Intersecting Spirals

Description

Generate Intersecting Spirals

Usage

```
generateSpirals(n = 100, sigma = 0.1)
```

Arguments

n integer; Number of objects to generate per class

sigma numeric; Noise added

22 geom_classifier

See Also

Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateCrescentMoon(), generateFourClusters(), generateParallelPlanes(), generateSlicedCookie(), generateTwoCircles()

Examples

Description

One circle circumscribes the other

Usage

```
generateTwoCircles(n = 100, noise_var = 0.2)
```

Arguments

```
n integer; Number of examples to generate noise_var numeric; size of the variance parameter
```

See Also

Other RSSL datasets: generate2ClassGaussian(), generateABA(), generateCrescentMoon(), generateFourClusters(), generateParallelPlanes(), generateSlicedCookie(), generateSpirals()

Description

Deprecated: Use geom_linearclassifier or stat_classifier to plot classification boundaries

Usage

```
geom_classifier(..., show_guide = TRUE)
```

```
... List of trained classifiers show_guide logical (default: TRUE); Show legend
```

geom_linearclassifier 23

```
geom_linearclassifier Plot linear RSSL classifier boundary
```

Description

Plot linear RSSL classifier boundary

Usage

```
geom_linearclassifier(..., show_guide = TRUE)
```

Arguments

```
... List of trained classifiers show_guide logical (default: TRUE); Show legend
```

Examples

GRFClassifier

Label propagation using Gaussian Random Fields and Harmonic functions

Description

Implements the approach proposed in Zhu et al. (2003) to label propagation over an affinity graph. Note, as in the original paper, we consider the transductive scenario, so the implementation does not generalize to out of sample predictions. The approach minimizes the squared difference in labels assigned to different objects, where the contribution of each difference to the loss is weighted by the affinity between the objects. The default in this implementation is to use a knn adjacency matrix based on euclidean distance to determine this weight. Setting adjacency="heat" will use an RBF kernel over euclidean distances between objects to determine the weights.

24 **GRFClassifier**

Usage

```
GRFClassifier(X, y, X_u, adjacency = "nn",
  adjacency_distance = "euclidean", adjacency_k = 6,
  adjacency_sigma = 0.1, class_mass_normalization = FALSE, scale = FALSE,
 x_center = FALSE)
```

Arguments

Χ matrix; Design matrix for labeled data factor or integer vector; Label vector У X_u matrix; Design matrix for unlabeled data adjacency character; "nn" for nearest neighbour graph or "heat" for radial basis adjacency adjacency_distance character; distance metric for nearest neighbour adjacency matrix integer; number of neighbours for the nearest neighbour adjacency matrix adjacency_k adjacency_sigma double; width of the rbf adjacency matrix class_mass_normalization

logical; Should the Class Mass Normalization heuristic be applied? (default:

FALSE)

logical; Should the features be normalized? (default: FALSE) scale

logical; Should the features be centered? x_center

References

Zhu, X., Ghahramani, Z. & Lafferty, J., 2003. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 20th International Conference on Machine Learning. pp. 912-919.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, ICLeastSquaresClassifier ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier() LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, ${\tt MCPLDA}, {\tt MajorityClassClassifier}, {\tt NearestMeanClassifier}, {\tt QuadraticDiscriminantClassifier}, {\tt MCPLDA}, {\tt MajorityClassClassifier}, {\tt MCPLDA}, {\tt MC$ S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

```
library(RSSL)
library(ggplot2)
library(dplyr)
set.seed(1)
df_circles <- generateTwoCircles(400, noise=0.1) %>%
```

harmonic_function 25

```
add_missinglabels_mar(Class~.,0.99)
# Visualize the problem
df_circles %>%
 ggplot(aes(x=X1,y=X2,color=Class)) +
 geom_point() +
 coord_equal()
# Visualize the solution
class_grf <- GRFClassifier(Class~.,df_circles,</pre>
                            adjacency="heat",
                            adjacency_sigma = 0.1)
df_circles %>%
  filter(is.na(Class)) %>%
 mutate(Responsibility=responsibilities(class_grf)[,1]) %>%
 ggplot(aes(x=X1,y=X2,color=Responsibility)) +
 geom_point() +
 coord_equal()
# Generate problem
df_para <- generateParallelPlanes()</pre>
df_para$Class <- NA
df_para$Class[1] <- "a"</pre>
df_para$Class[101] <- "b"</pre>
df_para$Class[201] <- "c"</pre>
df_para$Class <- factor(df_para$Class)</pre>
# Visualize problem
df_para %>%
 ggplot(aes(x=x,y=y,color=Class)) +
 geom_point() +
 coord_equal()
# Estimate GRF classifier with knn adjacency matrix (default)
class_grf <- GRFClassifier(Class~.,df_para)</pre>
df_para %>%
 filter(is.na(Class)) %>%
 mutate(Assignment=factor(apply(responsibilities(class_grf),1,which.max))) %>%
 ggplot(aes(x=x,y=y,color=Assignment)) +
 geom_point()
```

harmonic_function

Direct R Translation of Xiaojin Zhu's Matlab code to determine harmonic solution

Description

Direct R Translation of Xiaojin Zhu's Matlab code to determine harmonic solution

Usage

```
harmonic_function(W, Y)
```

Arguments

W matrix; weight matrix where the fist L rows/column correspond to the labeled

examples.

Y matrix; 1 by c 0,1 matrix encoding class assignments for the labeled objects

Value

The harmonic solution, i.e. eq (5) in the ICML paper, with or without class mass normalization

ICLeastSquaresClassifier

Implicitly Constrained Least Squares Classifier

Description

Implementation of the Implicitly Constrained Least Squares Classifier (ICLS) of Krijthe & Loog (2015) and the projected estimator of Krijthe & Loog (2016).

Usage

```
ICLeastSquaresClassifier(X, y, X_u = NULL, lambda1 = 0, lambda2 = 0,
  intercept = TRUE, x_center = FALSE, scale = FALSE, method = "LBFGS",
  projection = "supervised", lambda_prior = 0, trueprob = NULL,
  eps = 1e-09, y_scale = FALSE, use_Xu_for_scaling = TRUE)
```

Χ	Design matrix, intercept term is added within the function
У	Vector or factor with class assignments
X_u	Design matrix of the unlabeled data, intercept term is added within the function
lambda1	Regularization parameter in the unlabeled+labeled data regularized least squares
lambda2	Regularization parameter in the labeled data only regularized least squares
intercept	TRUE if an intercept should be added to the model
x_center	logical; Whether the feature vectors should be centered
scale	logical; If TRUE, apply a z-transform to all observations in X and X_u before running the regression
method	Either "LBFGS" for solving using L-BFGS-B gradient descent or "QP" for a quadratic programming based solution
projection	One of "supervised", "semisupervised" or "euclidean"
lambda_prior	numeric; prior on the deviation from the supervised mean y

trueprob numeric; true mean y for all data

eps numeric; Stopping criterion for the maximinimization

y_scale logical; whether the target vector should be centered

use_Xu_for_scaling

logical; whether the unlabeled objects should be used to determine the mean and

scaling for the normalization

Details

In Implicitly Constrained semi-supervised Least Squares (ICLS) of Krijthe & Loog (2015), we minimize the quadratic loss on the labeled objects, while enforcing that the solution has to be a solution that minimizes the quadratic loss for all objects for some (fractional) labeling of the data (the implicit constraints). The goal of this classifier is to use the unlabeled data to update the classifier, while making sure it still works well on the labeled data.

The Projected estimator of Krijthe & Loog (2016) builds on this by finding a classifier within the space of classifiers that minimize the quadratic loss on all objects for some labeling (the implicit constrained), that minimizes the distance to the supervised solution for some appropriately chosen distance measure. Using the projection="semisupervised", we get certain guarantees that this solution is always better than the supervised solution (see Krijthe & Loog (2016)), while setting projection="supervised" is equivalent to ICLS.

Both methods (ICLS and the projection) can be formulated as a quadratic programming problem and solved using either a quadratic programming solver (method="QP") or using a gradient descent approach that takes into account certain bounds on the labelings (method="LBFGS"). The latter is the preferred method.

Value

S4 object of class ICLeastSquaresClassifier with the following slots:

theta weight vector

classnames the names of the classes

modelform formula object of the model used in regression

scaling a scaling object containing the parameters of the z-transforms applied to the data

optimization the object returned by the optim function unlabels the labels assigned to the unlabeled objects

References

Krijthe, J.H. & Loog, M., 2015. Implicitly Constrained Semi-Supervised Least Squares Classification. In E. Fromont, T. De Bie, & M. van Leeuwen, eds. 14th International Symposium on Advances in Intelligent Data Analysis XIV (Lecture Notes in Computer Science Volume 9385). Saint Etienne. France, pp. 158-169.

Krijthe, J.H. & Loog, M., 2016. Projected Estimators for Robust Semi-supervised Classification. arXiv preprint arXiv:1602.07865.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier() LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

ICLinearDiscriminantClassifier

Implicitly Constrained Semi-supervised Linear Discriminant Classifier

Description

Semi-supervised version of Linear Discriminant Analysis using implicit constraints as described in (Krijthe & Loog 2014). This method finds the soft labeling of the unlabeled objects, whose resulting LDA solution gives the highest log-likelihood when evaluated on the labeled objects only. See also ICLeastSquaresClassifier.

Usage

```
ICLinearDiscriminantClassifier(X, y, X_u, prior = NULL, scale = FALSE,
init = NULL, sup_prior = FALSE, x_center = FALSE, ...)
```

Arguments

X design matrix of the labeled objects
 y vector with labels
 X_u design matrix of the labeled objects
 prior set a fixed class prior

scale	logical: Sl	hould the	features be	normalized?	(default:	FALSE)

init not currently used

sup_prior logical; use the prior estimates based only on the labeled data, not the imputed

labels (default: FALSE)

x_center logical; Whether the data should be centered

... Additional Parameters, Not used

References

Krijthe, J.H. & Loog, M., 2014. Implicitly Constrained Semi-Supervised Linear Discriminant Analysis. In International Conference on Pattern Recognition. Stockholm, pp. 3762-3767.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

KernelICLeastSquaresClassifier

Kernelized Implicitly Constrained Least Squares Classification

Description

A kernel version of the implicitly constrained least squares classifier, see ICLeastSquaresClassifier.

Usage

```
KernelICLeastSquaresClassifier(X, y, X_u, lambda = 0,
   kernel = vanilladot(), x_center = TRUE, scale = TRUE, y_scale = TRUE,
   lambda_prior = 0, classprior = 0, method = "LBFGS",
   projection = "semisupervised")
```

Arguments

X matrix; Design matrix for labeled data
y factor or integer vector; Label vector
X_u matrix; Design matrix for unlabeled data
1ambda numeric; L2 regularization parameter

kernel kernlab::kernel to use

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

y_scale logical; whether the target vector should be centered

lambda_prior numeric; regularization parameter for the posterior deviation from the prior

classprior The classprior used to compare the estimated responsibilities to

method character; Estimation method. One of c("LBFGS")

projection character; The projection used. One of c("supervised", "semisupervised")

KernelLeastSquaresClassifier

Kernelized Least Squares Classifier

Description

Use least squares regression as a classification technique using a numeric encoding of classes as targets. Note this method minimizes quadratic loss, not the truncated quadratic loss.

Usage

```
KernelLeastSquaresClassifier(X, y, lambda = 0, kernel = vanilladot(),
    x_center = TRUE, scale = TRUE, y_scale = TRUE)
```

Arguments

X Design matrix, intercept term is added within the function

y Vector or factor with class assignments

lambda Regularization parameter of the 12 penalty in regularized least squares

kernel kernlab kernel function

x_center TRUE, whether the dependent variables (features) should be centered

scale If TRUE, apply a z-transform to the design matrix X before running the regres-

sion

y_scale TRUE center the target vector

Value

S4 object of class LeastSquaresClassifier with the following slots:

theta weight vector

classnames the names of the classes

model form formula object of the model used in regression

scaling a scaling object containing the parameters of the z-transforms applied to the data

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

```
library(RSSL)
library(ggplot2)
library(dplyr)
# Two class problem
df <- generateCrescentMoon(200)</pre>
class_lin <- KernelLeastSquaresClassifier(Class~.,df,</pre>
                                             kernel=kernlab::vanilladot(), lambda=1)
class_rbf1 <- KernelLeastSquaresClassifier(Class~.,df,</pre>
                                             kernel=kernlab::rbfdot(), lambda=1)
class_rbf5 <- KernelLeastSquaresClassifier(Class~.,df,</pre>
                                             kernel=kernlab::rbfdot(5), lambda=1)
class_rbf10 <- KernelLeastSquaresClassifier(Class~.,df,</pre>
                                              kernel=kernlab::rbfdot(10), lambda=1)
df %>%
 ggplot(aes(x=X1,y=X2,color=Class,shape=Class)) +
 geom_point() +
 coord_equal() +
 stat_classifier(aes(linetype=..classifier..),
                   classifiers = list("Linear"=class_lin,
                                        "RBF sigma=1"=class_rbf1,
                                        "RBF sigma=5"=class_rbf5,
                                        "RBF sigma=10"=class_rbf10),
                   color="black")
# Second Example
dmat<-model.matrix(Species~.-1,iris[51:150,])</pre>
tvec<-droplevels(iris$Species[51:150])</pre>
testdata <- data.frame(tvec,dmat[,1:2])</pre>
colnames(testdata)<-c("Class","X1","X2")</pre>
precision<-100
xgrid<-seq(min(dmat[,1]),max(dmat[,1]),length.out=precision)</pre>
ygrid<-seq(min(dmat[,2]),max(dmat[,2]),length.out=precision)</pre>
gridmat <- expand.grid(xgrid,ygrid)</pre>
g_kernel<-KernelLeastSquaresClassifier(dmat[,1:2],tvec,</pre>
                                          kernel=kernlab::rbfdot(0.01),
                                          lambda=0.000001,scale = TRUE)
plotframe <- cbind(gridmat, decisionvalues(g_kernel,gridmat))</pre>
```

```
colnames(plotframe)<- c("x","y","Output")</pre>
ggplot(plotframe, aes(x=x,y=y)) +
 geom_tile(aes(fill = Output)) +
 scale_fill_gradient(low="yellow", high="red",limits=c(0,1)) +
 geom_point(aes(x=X1,y=X2,shape=Class),data=testdata,size=3) +
 stat_classifier(classifiers=list(g_kernel))
# Multiclass problem
dmat<-model.matrix(Species~.-1,iris)</pre>
tvec<-iris$Species
testdata <- data.frame(tvec,dmat[,1:2])</pre>
colnames(testdata)<-c("Class","X1","X2")</pre>
precision<-100
xgrid<-seq(min(dmat[,1]),max(dmat[,1]),length.out=precision)</pre>
ygrid<-seq(min(dmat[,2]),max(dmat[,2]),length.out=precision)</pre>
gridmat <- expand.grid(xgrid,ygrid)</pre>
g_kernel<-KernelLeastSquaresClassifier(dmat[,1:2],tvec,</pre>
                       kernel=kernlab::rbfdot(0.1),lambda=0.00001,
                       scale = TRUE,x_center=TRUE)
plotframe <- cbind(gridmat,</pre>
                    maxind=apply(decisionvalues(g_kernel,gridmat),1,which.max))
ggplot(plotframe, aes(x=Var1,y=Var2)) +
 geom_tile(aes(fill = factor(maxind,labels=levels(tvec)))) +
 geom_point(aes(x=X1,y=X2,shape=Class),data=testdata,size=4,alpha=0.5)
```

LaplacianKernelLeastSquaresClassifier

Laplacian Regularized Least Squares Classifier

Description

Implements manifold regularization through the graph Laplacian as proposed by Belkin et al. 2006. As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).

Usage

```
LaplacianKernelLeastSquaresClassifier(X, y, X_u, lambda = 0, gamma = 0,
  kernel = kernlab::vanilladot(), adjacency_distance = "euclidean",
  adjacency_k = 6, x_center = TRUE, scale = TRUE, y_scale = TRUE,
  normalized_laplacian = FALSE)
```

```
X matrix; Design matrix for labeled data
y factor or integer vector; Label vector
```

X_u matrix; Design matrix for unlabeled data lambda numeric; L2 regularization parameter gamma numeric; Weight of the unlabeled data

kernel kernlab::kernel to use

adjacency_distance

character; distance metric used to construct adjacency graph from the dist func-

tion. Default: "euclidean"

adjacency_k integer; Number of of neighbours used to construct adjacency graph.

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

y_scale logical; whether the target vector should be centered

normalized_laplacian

logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used

References

Belkin, M., Niyogi, P. & Sindhwani, V., 2006. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, pp.2399-2434.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, symlin()

```
library(RSSL)
library(ggplot2)
library(dplyr)

## Example 1: Half moons

# Generate a dataset
set.seed(2)
df_orig <- generateCrescentMoon(100,sigma = 0.3)
df <- df_orig %>%
    add_missinglabels_mar(Class~.,0.98)

lambda <- 0.01
gamma <- 10000
rbf_param <- 0.125

# Train classifiers</pre>
```

```
## Not run:
class_sup <- KernelLeastSquaresClassifier(</pre>
                Class~.,df,
                kernel=kernlab::rbfdot(rbf_param),
                lambda=lambda,scale=FALSE)
class_lap <- LaplacianKernelLeastSquaresClassifier(</pre>
                     Class~.,df,
                     kernel=kernlab::rbfdot(rbf_param),
                     lambda=lambda,gamma=gamma,
                     normalized_laplacian = TRUE,
                     scale=FALSE)
classifiers <- list("Lap"=class_lap,"Sup"=class_sup)</pre>
# Plot classifiers (can take a couple of seconds)
df %>%
  ggplot(aes(x=X1,y=X2,color=Class)) +
  geom_point() +
  coord_equal() +
  stat_classifier(aes(linetype=..classifier..),
                  classifiers = classifiers ,
                  color="black")
# Calculate the loss
lapply(classifiers,function(c) mean(loss(c,df_orig)))
## End(Not run)
## Example 2: Two circles
set.seed(1)
df_orig <- generateTwoCircles(1000,noise=0.05)</pre>
df <- df_orig %>%
  add_missinglabels_mar(Class~.,0.994)
lambda <- 10e-12
gamma <- 100
rbf_param <- 0.1
# Train classifiers
## Not run:
class_sup <- KernelLeastSquaresClassifier(</pre>
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  lambda=lambda,scale=TRUE)
class_lap <- LaplacianKernelLeastSquaresClassifier(</pre>
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  adjacency_k = 30,
  lambda=lambda, gamma=gamma,
```

LaplacianSVM 35

LaplacianSVM

Laplacian SVM classifier

Description

Manifold regularization applied to the support vector machine as proposed in Belkin et al. (2006). As an adjacency matrix, we use the k nearest neighbour graph based on a chosen distance (default: euclidean).

Usage

```
LaplacianSVM(X, y, X_u = NULL, lambda = 1, gamma = 1, scale = TRUE,
   kernel = vanilladot(), adjacency_distance = "euclidean",
   adjacency_k = 6, normalized_laplacian = FALSE, eps = 1e-09)
```

X	matrix; Design matrix for labeled data			
у	factor or integer vector; Label vector			
X_u	matrix; Design matrix for unlabeled data			
lambda	numeric; L2 regularization parameter			
gamma	numeric; Weight of the unlabeled data			
scale	logical; Should the features be normalized? (default: FALSE)			
kernel	kernlab::kernel to use			
adjacency_distance				
	character; distance metric used to construct adjacency graph from the dist function. Default: "euclidean"			
adjacency_k	integer; Number of of neighbours used to construct adjacency graph.			

36 LaplacianSVM

normalized_laplacian logical; If TRUE use the normalized Laplacian, otherwise, the Laplacian is used eps numeric; Small value to ensure positive definiteness of the matrix in the QP

Value

S4 object of type LaplacianSVM

formulation

References

Belkin, M., Niyogi, P. & Sindhwani, V., 2006. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, pp.2399-2434.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

```
library(RSSL)
library(ggplot2)
library(dplyr)
## Example 1: Half moons
# Generate a dataset
set.seed(2)
df_orig <- generateCrescentMoon(100,sigma = 0.3)</pre>
df <- df_orig %>%
  add_missinglabels_mar(Class~.,0.98)
lambda <- 0.001
C <- 1/(lambda*2*sum(!is.na(df$Class)))</pre>
gamma <- 10000
rbf_param <- 0.125
# Train classifiers
class_sup <- SVM(</pre>
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  C=C,scale=FALSE)
class_lap <- LaplacianSVM(</pre>
  Class~.,df,
```

LaplacianSVM 37

```
kernel=kernlab::rbfdot(rbf_param),
  lambda=lambda,gamma=gamma,
  normalized_laplacian = TRUE,
  scale=FALSE)
classifiers <- list("Lap"=class_lap,"Sup"=class_sup)</pre>
# This takes a little longer to run:
# class_tsvm <- TSVM(</pre>
   Class~.,df,
   kernel=kernlab::rbfdot(rbf_param),
  C=C,Cstar=10,s=-0.8,
   scale=FALSE,balancing_constraint=TRUE)
# classifiers <- list("Lap"=class_lap,"Sup"=class_sup,"TSVM"=class_tsvm)</pre>
# Plot classifiers (Can take a couple of seconds)
## Not run:
df %>%
  ggplot(aes(x=X1,y=X2,color=Class)) +
  geom_point() +
  coord_equal() +
  stat_classifier(aes(linetype=..classifier..),
                  classifiers = classifiers ,
                  color="black")
## End(Not run)
# Calculate the loss
lapply(classifiers,function(c) mean(loss(c,df_orig)))
## Example 2: Two circles
set.seed(3)
df_orig <- generateTwoCircles(1000,noise=0.05)</pre>
df <- df_orig %>%
  add_missinglabels_mar(Class~.,0.994)
lambda <- 0.000001
C <- 1/(lambda*2*sum(!is.na(df$Class)))</pre>
gamma <- 100
rbf_param <- 0.1
# Train classifiers (Takes a couple of seconds)
## Not run:
class_sup <- SVM(</pre>
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  C=C,scale=FALSE)
class_lap <- LaplacianSVM(</pre>
  Class~.,df,
  kernel=kernlab::rbfdot(rbf_param),
  adjacency_k=50, lambda=lambda,gamma=gamma,
  normalized_laplacian = TRUE,
```

38 LearningCurveSSL

LearningCurveSSL

Compute Semi-Supervised Learning Curve

Description

Evaluate semi-supervised classifiers for different amounts of unlabeled training examples or different fractions of unlabeled vs. labeled examples.

Usage

Arguments

Χ	design matrix
У	vector of labels
	arguments passed to underlying function
classifiers	list; Classifiers to crossvalidate
measures	named list of functions giving the measures to be used

LearningCurveSSL 39

type Type of learning curve, either "unlabeled" or "fraction"

n_1 Number of labeled objects to be used in the experiments (see details)

with_replacement

Indicated whether the subsampling is done with replacement or not (default:

FALSE)

sizes vector with number of unlabeled objects for which to evaluate performance

n_test Number of test points if with_replacement is TRUE

repeats Number of learning curves to draw

verbose Print progressbar during execution (default: FALSE)
n_min Minimum number of labeled objects per class in

dataset_name character; Name of the dataset

test_fraction numeric; If not NULL a fraction of the object will be left out to serve as the test

set

fracs list; fractions of labeled data to use

time logical; Whether execution time should be saved.

pre_scale logical; Whether the features should be scaled before the dataset is used pre_pca logical; Whether the features should be preprocessed using a PCA step

low_level_cores

integer; Number of cores to use compute repeats of the learning curve

Details

classifiers is a named list of classifiers, where each classifier should be a function that accepts 4 arguments: a numeric design matrix of the labeled objects, a factor of labels, a numeric design matrix of unlabeled objects and a factor of labels for the unlabeled objects.

measures is a named list of performance measures. These are functions that accept seven arguments: a trained classifier, a numeric design matrix of the labeled objects, a factor of labels, a numeric design matrix of unlabeled objects and a factor of labels for the unlabeled objects, a numeric design matrix of the test objects and a factor of labels of the test objects. See measure_accuracy for an example.

This function allows for two different types of learning curves to be generated. If type="unlabeled", the number of labeled objects remains fixed at the value of n_l, where sizes controls the number of unlabeled objects. n_test controls the number of objects used for the test set, while all remaining objects are used if with_replacement=FALSE in which case objects are drawn without replacement from the input dataset. We make sure each class is represented by at least n_min labeled objects of each class. For n_l, additional options include: "enough" which takes the max of the number of features and 20, max(ncol(X)+5,20), "d" which takes the number of features or "2d" which takes 2 times the number of features.

If type="fraction" the total number of objects remains fixed, while the fraction of labeled objects is changed. frac sets the fractions of labeled objects that should be considered, while test_fraction determines the fraction of the total number of objects left out to serve as the test set.

Value

LearningCurve object

See Also

```
Other RSSL utilities: SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()
```

Examples

```
set.seed(1)
df <- generate2ClassGaussian(2000,d=2,var=0.6)</pre>
classifiers <- list("LS"=function(X,y,X_u,y_u) {
LeastSquaresClassifier(X,y,lambda=0)},
  "Self"=function(X,y,X_u,y_u) {
    SelfLearning(X,y,X_u,LeastSquaresClassifier)}
)
measures <- list("Accuracy" = measure_accuracy,</pre>
                  "Loss Test" = measure_losstest,
                 "Loss labeled" = measure_losslab,
                  "Loss Lab+Unlab" = measure_losstrain
)
# These take a couple of seconds to run
## Not run:
# Increase the number of unlabeled objects
lc1 <- LearningCurveSSL(as.matrix(df[,1:2]),df$Class,</pre>
                         classifiers=classifiers,
                         measures=measures, n_test=1800,
                         n_1=10, repeats=3)
plot(lc1)
# Increase the fraction of labeled objects, example with 2 datasets
lc2 <- LearningCurveSSL(X=list("Dataset 1"=as.matrix(df[,1:2]),</pre>
                                "Dataset 2"=as.matrix(df[,1:2])),
                         y=list("Dataset 1"=df$Class,
                                "Dataset 2"=df$Class),
                         classifiers=classifiers,
                         measures=measures,
                         type = "fraction",repeats=3,
                         test_fraction=0.9)
plot(lc2)
## End(Not run)
```

LeastSquaresClassifier

Least Squares Classifier

Description

Classifier that minimizes the quadratic loss or, equivalently, least squares regression applied to a numeric encoding of the class labels as target. Note this method minimizes quadratic loss, not the truncated quadratic loss. Optionally, L2 regularization can be applied by setting the lambda parameter.

Usage

```
LeastSquaresClassifier(X, y, lambda = 0, intercept = TRUE,
    x_center = FALSE, scale = FALSE, method = "inverse", y_scale = FALSE)
```

Arguments

x matrix; Design matrix for labeled data
y factor or integer vector; Label vector
lambda Regularization parameter of the 12 penalty
intercept TRUE if an intercept should be added to the model
x_center TRUE, whether the dependent variables (features) should be centered
scale If TRUE, apply a z-transform to the design matrix X before running the regression
method Method to use for fitting. One of c("inverse", "Normal", "QR", "BFGS")

Value

y_scale

S4 object of class LeastSquaresClassifier with the following slots:

If True scale the target vector

theta weight vector

classnames the names of the classes

modelform formula object of the model used in regression

scaling a scaling object containing the parameters of the z-transforms applied to the data

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

LinearDiscriminantClassifier

Linear Discriminant Classifier

Description

Implementation of the linear discriminant classifier. Classes are modeled as Gaussians with different means but equal covariance matrices. The optimal covariance matrix and means for the classes are found using maximum likelihood, which, in this case, has a closed form solution.

Usage

```
LinearDiscriminantClassifier(X, y, method = "closedform", prior = NULL,
    scale = FALSE, x_center = FALSE)
```

Arguments

Χ	Design matrix, intercept term is added within the function
У	Vector or factor with class assignments
method	the method to use. Either "closedform" for the fast closed form solution or "ml" for explicit maximum likelihood maximization
prior	A matrix with class prior probabilities. If NULL, this will be estimated from the data
scale	logical; If TRUE, apply a z-transform to the design matrix X before running the regression
x_center	logical; Whether the feature vectors should be centered

scaling object used to transform new observations

Value

S4 object of class LeastSquaresClassifier with the following slots:

modelform weight vector
prior the prior probabilities of the classes
mean the estimates means of the classes
sigma The estimated covariance matrix
classnames a vector with the classnames for each of the classes

See Also

scaling

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier, LaplacianSVM, LeastSquaresClassifier, LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassIfier, McPLDA, MajorityClassClassifier, WellSVM, svmlin()

LinearSVM 43

	LinearSVM	Linear SVM Classifier
--	-----------	-----------------------

Description

Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM or the Primal formulation.

Usage

```
LinearSVM(X, y, C = 1, method = "Dual", scale = TRUE, eps = 1e-09,
  reltol = 1e-13, maxit = 100)
```

Arguments

Χ	matrix; Design matrix for labeled data
У	factor or integer vector; Label vector
С	Cost variable
method	Estimation procedure c("Dual", "Primal", "BGD")
scale	Whether a z-transform should be applied (default: TRUE)
eps	Small value to ensure positive definiteness of the matrix in QP formulation
reltol	relative tolerance using during BFGS optimization
maxit	Maximum number of iterations for BFGS optimization

Value

S4 object of type LinearSVM

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassic LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

LinearSVM-class	LinearSVM Class

Description

LinearSVM Class

44 LinearTSVM

LinearTSVM	Linear CCCP Transductive SVM classifier	

Description

Implementation for the Linear TSVM. This method is mostly for debugging purposes and does not allow for the balancing constraint or kernels, like the TSVM function.

Usage

```
LinearTSVM(X, y, X_u, C, Cstar, s = 0, x_center = FALSE, scale = FALSE,
  eps = 1e-06, verbose = FALSE, init = NULL)
```

Arguments

Χ	matrix; Design matrix, intercept term is added within the function
у	vector; Vector or factor with class assignments
X_u	matrix; Design matrix of the unlabeled data, intercept term is added within the function
С	numeric; Cost parameter of the SVM
Cstar	numeric; Cost parameter of the unlabeled objects
S	numeric; parameter controlling the loss function of the unlabeled objects
x_center	logical; Should the features be centered?
scale	logical; If TRUE, apply a z-transform to all observations in X and X_u before running the regression
eps	numeric; Convergence criterion
verbose	logical; print debugging messages (default: FALSE)
init	numeric; Initial classifier parameters to start the convex concave procedure

References

Collobert, R. et al., 2006. Large scale transductive SVMs. Journal of Machine Learning Research, 7, pp.1687-1712.

See Also

```
Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, McPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, symlin()
```

line_coefficients 45

line_coefficients

Loss of a classifier or regression function

Description

Loss of a classifier or regression function

Usage

```
line_coefficients(object, ...)

## S4 method for signature 'LeastSquaresClassifier'
line_coefficients(object)

## S4 method for signature 'NormalBasedClassifier'
line_coefficients(object)

## S4 method for signature 'LogisticRegression'
line_coefficients(object)

## S4 method for signature 'LinearSVM'
line_coefficients(object)

## S4 method for signature 'LogisticLossClassifier'
line_coefficients(object)

## S4 method for signature 'QuadraticDiscriminantClassifier'
line_coefficients(object)

## S4 method for signature 'SelfLearning'
line_coefficients(object)
```

Arguments

object Classifier; Trained Classifier object

... Not used

Value

numeric of the total loss on the test data

localDescent	Local descent

Description

Local descent used in S4VM

Usage

```
localDescent(instance, label, labelNum, unlabelNum, gamma, C, beta, alpha)
```

Arguments

instance	Design matrix
label	label vector
labelNum	Number of labeled objects
unlabelNum	Number of unlabeled objects
gamma	Parameter for RBF kernel
С	cost parameter for SVM
beta	Controls fraction of objects assigned to positive class
alpha	Controls fraction of objects assigned to positive class

Value

list(predictLabel=predictLabel,acc=acc,values=values,model=model)

```
LogisticLossClassifier
```

Logistic Loss Classifier

Description

Find the linear classifier which minimizing the logistic loss on the training set, optionally using L2 regularization.

Usage

```
LogisticLossClassifier(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE, ...)
```

Arguments

X Design matrix, intercept term is added within the function

y Vector with class assignments

lambda Regularization parameter used for 12 regularization intercept TRUE if an intercept should be added to the model

scale If TRUE, apply a z-transform to all observations in X and X_u before running

the regression

init Starting parameter vector for gradient descent

x_center logical; Whether the feature vectors should be centered

... additional arguments

Value

S4 object with the following slots

w the weight vector of the linear classifier

classnames vector with names of the classes

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, McPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

LogisticLossClassifier-class

LogisticLossClassifier

Description

LogisticLossClassifier

LogisticRegression (Regularized) Logistic Regression implementation

Description

Implementation of Logistic Regression that is useful for comparisons with semi-supervised logistic regression implementations, such as EntropyRegularizedLogisticRegression.

Usage

```
LogisticRegression(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE)
```

Arguments

x matrix; Design matrix for labeled data
 y factor or integer vector; Label vector
 lambda numeric; L2 regularization parameter

intercept logical; Whether an intercept should be included

scale logical; Should the features be normalized? (default: FALSE) init numeric; Initialization of parameters for the optimization

x_center logical; Should the features be centered?

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, McPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

LogisticRegressionFast

Logistic Regression implementation that uses R's glm

Description

Logistic Regression implementation that uses R's glm

Usage

```
LogisticRegressionFast(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE)
```

logsumexp 49

Arguments

x matrix; Design matrix for labeled datay factor or integer vector; Label vector

lambda numeric; not used

intercept logical; Whether an intercept should be included

scale logical; Should the features be normalized? (default: FALSE)

init numeric; not used

x_center logical; Should the features be centered?

logsumexp Numerica

Numerically more stable way to calculate log sum exp

Description

Numerically more stable way to calculate log sum exp

Usage

logsumexp(M)

Arguments

M matrix; m by n input matrix, sum with be over the rows

Value

matrix; m by 1 matrix

loss Loss of a classifier or regression function

Description

Hinge loss on new objects of a trained LinearSVM

Hinge loss on new objects of a trained SVM

50 loss

Usage

```
loss(object, ...)
## S4 method for signature 'LeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'NormalBasedClassifier'
loss(object, newdata, y = NULL)
## S4 method for signature 'LogisticRegression'
loss(object, newdata, y = NULL)
## S4 method for signature 'KernelLeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'LinearSVM'
loss(object, newdata, y = NULL)
## S4 method for signature 'LogisticLossClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'MajorityClassClassifier'
loss(object, newdata, y = NULL)
## S4 method for signature 'SVM'
loss(object, newdata, y = NULL)
## S4 method for signature 'SelfLearning'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'USMLeastSquaresClassifier'
loss(object, newdata, y = NULL, ...)
## S4 method for signature 'svmlinClassifier'
loss(object, newdata, y = NULL)
```

Arguments

object Classifier; Trained Classifier additional parameters . . . data.frame; object with test data newdata factor: True classes of the test data У

Value

numeric; the total loss on the test data

losslogsum 51

-	-
Ince	logsum
1033	TOESUIII

LogsumLoss of a classifier or regression function

Description

LogsumLoss of a classifier or regression function

Usage

```
losslogsum(object, ...)
## S4 method for signature 'NormalBasedClassifier'
losslogsum(object, newdata, Y, X_u, Y_u)
```

Classifier or Regression object

Arguments

object

•	2
	Additional parameters
newdata	Design matrix of labeled objects
Υ	label matrix of labeled objects
X_u	Design matrix of unlabeled objects
Y_u	label matrix of unlabeled objects

losspart

Loss of a classifier or regression function evaluated on partial labels

Description

Loss of a classifier or regression function evaluated on partial labels

Usage

```
losspart(object, ...)
## S4 method for signature 'NormalBasedClassifier'
losspart(object, newdata, Y)
```

Arguments

object Classifier; Trained Classifier
... additional parameters
newdata design matrix
Y class responsibility matrix

MajorityClassClassifier

Majority Class Classifier

Description

Classifier that returns the majority class in the training set as the prediction for new objects.

Usage

```
MajorityClassClassifier(X, y, ...)
```

Arguments

X matrix; Design matrix for labeled data y factor or integer vector; Label vector

... Not used

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

 ${\tt MCLinear Discriminant Classifier}$

Moment Constrained Semi-supervised Linear Discriminant Analysis.

Description

A linear discriminant classifier that updates the estimates of the means and covariance matrix based on unlabeled examples.

Usage

```
MCLinearDiscriminantClassifier(X, y, X_u, method = "invariant",
    prior = NULL, x_center = TRUE, scale = FALSE)
```

MCNearestMeanClassifier 53

Arguments

X	matrix; Design matrix for labeled data
у	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data
method	character; One of c("invariant","closedform")

prior Matrix (k by 1); Class prior probabilities. If NULL, estimated from data

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

Details

This method uses the parameter updates of the estimated means and covariance proposed in (Loog 2014). Using the method="invariant" option, uses the scale invariant parameter update proposed in (Loog 2014), while method="closedform" using the non-scale invariant version from (Loog 2012).

References

Loog, M., 2012. Semi-supervised linear discriminant analysis using moment constraints. Partially Supervised Learning, LNCS, 7081, pp.32-41.

Loog, M., 2014. Semi-supervised linear discriminant analysis through moment-constraint parameter estimation. Pattern Recognition Letters, 37, pp.24-31.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClass: LinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

MCNearestMeanClassifier

Moment Constrained Semi-supervised Nearest Mean Classifier

Description

Update the means based on the moment constraints as defined in Loog (2010). The means estimated using the labeled data are updated by making sure their weighted mean corresponds to the overall mean on all (labeled and unlabeled) data. Optionally, the estimated variance of the classes can be re-estimated after this update is applied by setting update_sigma to TRUE. To get the true nearest mean classifier, rather than estimate the class priors, set them to equal priors using, for instance prior=matrix(0.5,2).

54 MCPLDA

Usage

```
MCNearestMeanClassifier(X, y, X_u, update_sigma = FALSE, prior = NULL,
    x_center = FALSE, scale = FALSE)
```

Arguments

x matrix; Design matrix for labeled data
 y factor or integer vector; Label vector
 x_u matrix; Design matrix for unlabeled data

update_sigma logical; Whether the estimate of the variance should be updated after the means

have been updated using the unlabeled data

prior matrix; Class priors for the classes x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

References

Loog, M., 2010. Constrained Parameter Estimation for Semi-Supervised Learning: The Case of the Nearest Mean Classifier. In Proceedings of the 2010 European Conference on Machine learning and Knowledge Discovery in Databases. pp. 291-304.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

MCPLDA	Maximum Contrastive Pessimistic Likelihood Estimation for Linear
	Discriminant Analysis

Description

Maximum Contrastive Pessimistic Likelihood (MCPL) estimation (Loog 2016) attempts to find a semi-supervised solution that has a higher likelihood compared to the supervised solution on the labeled and unlabeled data even for the worst possible labeling of the data. This is done by attempting to find a saddle point of the maximin problem, where the max is over the parameters of the semi-supervised solution and the min is over the labeling, while the objective is the difference in likelihood between the semi-supervised and the supervised solution measured on the labeled and unlabeled data. The implementation is a translation of the Matlab code of Loog (2016).

measure_accuracy 55

Usage

```
MCPLDA(X, y, X_u, x_center = FALSE, scale = FALSE, max_iter = 1000)
```

Arguments

x matrix; Design matrix for labeled data
y factor or integer vector; Label vector

X_u matrix; Design matrix for unlabeled data
x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

max_iter integer; Maximum number of iterations

References

Loog, M., 2016. Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(3), pp.462-475.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, Standard Classifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, symlin()

measure_accuracy

Performance measures used in classifier evaluation

Description

Classification accuracy on test set and other performance measure that can be used in CrossValidationSSL and LearningCurveSSL

Usage

```
measure_accuracy(trained_classifier, X_1 = NULL, y_1 = NULL, X_u = NULL,
    y_u = NULL, X_test = NULL, y_test = NULL)

measure_error(trained_classifier, X_1 = NULL, y_1 = NULL, X_u = NULL,
    y_u = NULL, X_test = NULL, y_test = NULL)

measure_losstest(trained_classifier, X_1 = NULL, y_1 = NULL, X_u = NULL,
    y_u = NULL, X_test = NULL, y_test = NULL)
```

56 minimaxlda

```
measure_losslab(trained_classifier, X_1 = NULL, y_1 = NULL, X_u = NULL,
    y_u = NULL, X_test = NULL, y_test = NULL)

measure_losstrain(trained_classifier, X_1 = NULL, y_1 = NULL, X_u = NULL,
    y_u = NULL, X_test = NULL, y_test = NULL)
```

Arguments

trained_classifier

the trained classifier object

X_1 design matrix with labeled object

y_1 labels of labeled objects

X_u design matrix with unlabeled object

y_u labels of unlabeled objects

X_test design matrix with test object

y_test labels of test objects

Functions

- measure_error(): Classification error on test set
- measure_losstest(): Average Loss on test objects
- measure_losslab(): Average loss on labeled objects
- measure_losstrain(): Average loss on labeled and unlabeled objects

See Also

Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()

minimaxlda

Implements weighted likelihood estimation for LDA

Description

Implements weighted likelihood estimation for LDA

Usage

```
minimaxlda(a, w, u, iter)
```

Arguments

а	is the data set
W	is an indicator matrix for the K classes of a or, potentially, a weight matrix in
	which the fraction with which a sample belongs to a particular class is indicated
u	is a bunch of unlabeled data

iter decides on the amount of time we spend on minimaxing the stuff

missing_labels 57

Value

m contains the means, p contains the class priors, iW contains the INVERTED within covariance matrix, uw returns the weights for the unlabeled data, i returns the number of iterations used

missing_labels

Access the true labels for the objects with missing labels when they are stored as an attribute in a data frame

Description

Access the true labels for the objects with missing labels when they are stored as an attribute in a data frame

Usage

```
missing_labels(df)
```

Arguments

df

data.frame; data.frame with y_true attribute

See Also

```
Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), split_dataset_ssl(), split_random(), true_labels()
```

NearestMeanClassifier Nearest Mean Classifier

Description

Implementation of the nearest mean classifier modeled. Classes are modeled as gaussians with equal, spherical covariance matrices. The optimal covariance matrix and means for the classes are found using maximum likelihood, which, in this case, has a closed form solution. To get true nearest mean classification, set prior as a matrix with equal probability for all classes, i.e. matrix(0.5,2).

Usage

```
NearestMeanClassifier(X, y, prior = NULL, x_center = FALSE,
    scale = FALSE)
```

58 plot.CrossValidation

Arguments

X matrix; Design matrix for labeled data y factor or integer vector; Label vector

prior matrix; Class prior probabilities. If NULL, this will be estimated from the data

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

Value

S4 object of class LeastSquaresClassifier with the following slots:

modelform weight vector

prior the prior probabilities of the classes
mean the estimates means of the classes
sigma The estimated covariance matrix

classnames a vector with the classnames for each of the classes scaling scaling object used to transform new observations

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassitierarSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

plot.CrossValidation Plot CrossValidation object

Description

Plot CrossValidation object

Usage

```
## S3 method for class 'CrossValidation' plot(x, y, ...)
```

Arguments

x CrossValidation object

y Not used Not used

plot.LearningCurve 59

plot.LearningCurve

Plot LearningCurve object

Description

Plot LearningCurve object

Usage

```
## S3 method for class 'LearningCurve'
plot(x, y, ...)
```

Arguments

x LearningCurve object

y Not used

... Not used

posterior

Class Posteriors of a classifier

Description

Class Posteriors of a classifier

Usage

```
posterior(object, ...)
## S4 method for signature 'NormalBasedClassifier'
posterior(object, newdata)
## S4 method for signature 'LogisticRegression'
posterior(object, newdata)
```

Arguments

object Classifier or Regression object

... Additional parameters

newdata matrix of dataframe of objects to be classified

60 PreProcessing

```
predict, scaleMatrix-method
```

Predict for matrix scaling inspired by stdize from the PLS package

Description

Predict for matrix scaling inspired by stdize from the PLS package

Usage

```
## S4 method for signature 'scaleMatrix'
predict(object, newdata, ...)
```

Arguments

object scaleMatrix object newdata data to be scaled

... Not used

PreProcessing

Preprocess the input to a classification function

Description

The following actions are carried out: 1. data.frames are converted to matrix form and labels converted to an indicator matrix 2. An intercept column is added if requested 3. centering and scaling is applied if requested.

Usage

```
PreProcessing(X, y, X_u = NULL, scale = FALSE, intercept = FALSE,
    x_center = FALSE, use_Xu_for_scaling = TRUE)
```

Arguments

Χ .	Desig	n matrix,	intercept	term is	added	within	the 1	function

y Vector or factor with class assignmentsX_u Design matrix of the unlabeled observations

scale If TRUE, apply a z-transform to the design matrix X

intercept Whether to include an intercept in the design matrix X

x_center logical (default: TRUE); Whether the feature vectors should be centered

use_Xu_for_scaling

logical (default: TRUE); Should the unlabeled data be used to determine scal-

ing?

PreProcessingPredict 61

Value

list object with the following objects:

X design matrix of the labeled data

y integer vector indicating the labels of the labeled data

X_u design matrix of the unlabeled data

classnames names of the classes corresponding to the integers in y

scaling a scaling object used to scale the test observations in the same way as the training

set

model form a formula object containing the used model

PreProcessingPredict Preprocess the input for a new set of test objects for classifier

Description

The following actions are carried out: 1. data.frames are converted to matrix form and labels converted to integers 2. An intercept column is added if requested 3. centering and scaling is applied if requested.

Usage

```
PreProcessingPredict(modelform, newdata, y = NULL, classnames = NULL,
    scaling = NULL, intercept = FALSE)
```

Arguments

modelform Formula object with model
newdata data.frame object with objects

y Vector or factor with class assignments (default: NULL)

classnames Vector with class names

scaling Apply a given z-transform to the design matrix X (default: NULL)

intercept Whether to include an intercept in the design matrices

Value

list object with the following objects:

X design matrix of the labeled data

y integer vector indicating the labels of the labeled data

62 print.LearningCurve

```
print.CrossValidation Print CrossValidation object
```

Description

Print CrossValidation object

Usage

```
## S3 method for class 'CrossValidation' print(x, ...)
```

Arguments

x CrossValidation object

... Not used

print.LearningCurve Object

Description

Print LearningCurve object

Usage

```
## S3 method for class 'LearningCurve'
print(x, ...)
```

Arguments

x LearningCurve object

... Not used

projection_simplex 63

projection_simplex

Project an n-dim vector y to the simplex Dn

Description

Where $Dn = \{0 <= x <= 1, sum(x) = 1\}$. R translation of Loog's version of Xiaojing Ye's initial implementation. The algorithm works row-wise.

Usage

```
projection_simplex(y)
```

Arguments

У

matrix with vectors to be projected onto the simplex

Value

projection of y onto the simplex

References

Algorithm is explained in http://arxiv.org/abs/1101.6081

QuadraticDiscriminantClassifier

Quadratic Discriminant Classifier

Description

Implementation of the quadratic discriminant classifier. Classes are modeled as Gaussians with different covariance matrices. The optimal covariance matrix and means for the classes are found using maximum likelihood, which, in this case, has a closed form solution.

Usage

```
QuadraticDiscriminantClassifier(X, y, prior = NULL, scale = FALSE, ...)
```

Arguments

Χ	matrix; Design matrix for labeled data
у	factor or integer vector; Label vector
prior	A matrix with class prior probabilities. If NULL, this will be estimated from the data
scale	logical; Should the features be normalized? (default: FALSE)
	Not used

64 responsibilities

Value

S4 object of class LeastSquaresClassifier with the following slots:

modelform weight vector

prior the prior probabilities of the classes
mean the estimates means of the classes
sigma The estimated covariance matrix

classnames a vector with the classnames for each of the classes scaling scaling object used to transform new observations

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

responsibilities

Responsibilities assigned to the unlabeled objects

Description

Responsibilities assigned to the unlabeled objects

Usage

```
responsibilities(object, ...)
```

Arguments

object Classifier; Trained Classifier
... additional parameters

Value

numeric; responsibilities on the unlabeled objects

rssl-formatting 65

rssl-formatting

Show RSSL classifier

Description

Show RSSL classifier
Show the contents of a classifier

Usage

```
## S4 method for signature 'Classifier'
show(object)

## S4 method for signature 'NormalBasedClassifier'
show(object)

## S4 method for signature 'scaleMatrix'
show(object)
```

Arguments

object

classifier

rssl-predict

Predict using RSSL classifier

Description

Predict using RSSL classifier

For the SelfLearning Classifier the Predict Method delegates prediction to the specific model object

Usage

```
## S4 method for signature 'LeastSquaresClassifier'
predict(object, newdata, ...)

## S4 method for signature 'NormalBasedClassifier'
predict(object, newdata)

## S4 method for signature 'LogisticRegression'
predict(object, newdata)

## S4 method for signature 'GRFClassifier'
responsibilities(object, newdata, ...)
```

66 S4VM

```
## S4 method for signature 'GRFClassifier'
   predict(object, newdata = NULL, ...)
   ## S4 method for signature 'KernelLeastSquaresClassifier'
   predict(object, newdata, ...)
   ## S4 method for signature 'LinearSVM'
   predict(object, newdata)
   ## S4 method for signature 'LogisticLossClassifier'
   predict(object, newdata)
   ## S4 method for signature 'MajorityClassClassifier'
   predict(object, newdata)
   ## S4 method for signature 'SVM'
   predict(object, newdata)
   ## S4 method for signature 'SelfLearning'
   predict(object, newdata, ...)
   ## S4 method for signature 'USMLeastSquaresClassifier'
   predict(object, newdata, ...)
   ## S4 method for signature 'WellSVM'
   predict(object, newdata, ...)
   ## S4 method for signature 'WellSVM'
   decisionvalues(object, newdata)
   ## S4 method for signature 'svmlinClassifier'
   predict(object, newdata, ...)
Arguments
   object
                   classifier
                   objects to generate predictions for
   newdata
                   Other arguments
   . . .
```

Description

S4VM

R port of the MATLAB implementation of Li & Zhou (2011) of the Safe Semi-supervised Support Vector Machine.

Safe Semi-supervised Support Vector Machine (S4VM)

S4VM 67

Usage

```
S4VM(X, y, X_u = NULL, C1 = 100, C2 = 0.1, sample_time = 100, gamma = 0, x_center = FALSE, scale = FALSE, lambda_tradeoff = 3)
```

Arguments

x matrix; Design matrix for labeled data
 y factor or integer vector; Label vector
 x_u matrix; Design matrix for unlabeled data

C1 double; Regularization parameter for labeled data
C2 double; Regularization parameter for unlabeled data

sample_time integer; Number of low-density separators that are generated

gamma double; Width of RBF kernel

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

lambda_tradeoff

numeric; Parameter that determines the amount of "risk" in obtaining a worse

solution than the supervised solution, see Li & Zhou (2011)

Details

The method randomly generates multiple low-density separators (controlled by the sample_time parameter) and merges their predictions by solving a linear programming problem meant to penalize the cost of decreasing the performance of the classifier, compared to the supervised SVM. S4VM is a bit of a misnomer, since it is a transductive method that only returns predicted labels for the unlabeled objects. The main difference in this implementation compared to the original implementation is the clustering of the low-density separators: in our implementation empty clusters are not dropped during the k-means procedure. In the paper by Li (2011) the features are first normalized to [0,1], which is not automatically done by this function. Note that the solution may not correspond to a linear classifier even if the linear kernel is used.

Value

S4VM object with slots:

predictions Predictions on the unlabeled objects
labelings Labelings for the different clusters

References

Yu-Feng Li and Zhi-Hua Zhou. Towards Making Unlabeled Data Never Hurt. In: Proceedings of the 28th International Conference on Machine Learning (ICML'11), Bellevue, Washington, 2011.

68 S4VM-class

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, symlin()

Examples

```
library(RSSL)
library(dplyr)
library(ggplot2)
library(tidyr)
set.seed(1)
df_orig <- generateSlicedCookie(100,expected=TRUE)</pre>
df <- df_orig %>% add_missinglabels_mar(Class~.,0.95)
g_s <- SVM(Class~.,df,C=1,scale=TRUE,x_center=TRUE)</pre>
g_s4 \leftarrow S4VM(Class^-, df, C1=1, C2=0.1, lambda_tradeoff = 3, scale=TRUE, x_center=TRUE)
labs \leftarrow g_s4@labelings[-c(1:5),]
colnames(labs) <- paste("Class", seq_len(ncol(g_s4@labelings)), sep="-")</pre>
# Show the labelings that the algorithm is considering
df %>%
 filter(is.na(Class)) %>%
 bind_cols(data.frame(labs,check.names = FALSE)) %>%
 select(-Class) %>%
 gather(Classifier,Label,-X1,-X2) %>%
 ggplot(aes(x=X1,y=X2,color=Label)) +
 geom_point() +
 facet_wrap(~Classifier,ncol=5)
# Plot the final labeling that was selected
# Note that this may not correspond to a linear classifier
# even if the linear kernel is used.
# The solution does not seem to make a lot of sense,
# but this is what the current implementation returns
df %>%
 filter(is.na(Class)) %>%
 mutate(prediction=g_s4@predictions) %>%
 ggplot(aes(x=X1,y=X2,color=prediction)) +
 geom_point() +
 stat_classifier(color="black", classifiers=list(g_s))
```

sample_k_per_level 69

Description

LinearSVM Class

sample_k_per_level

Sample k indices per levels from a factor

Description

Sample k indices per levels from a factor

Usage

```
sample_k_per_level(y, k)
```

Arguments

y factor; factor with levels

k integer; number of indices to sample per level

Value

vector with indices for sample

scaleMatrix

Matrix centering and scaling

Description

This function returns an object with a predict method to center and scale new data. Inspired by stdize from the PLS package

Usage

```
scaleMatrix(x, center = TRUE, scale = TRUE)
```

Arguments

x matrix to be standardizedcenter TRUE if x should be centered

scale logical; TRUE of x should be scaled by the standard deviation

70 SelfLearning

SelfLearning	Self-Learning approach to Semi-supervised Learning	

Description

Use self-learning (also known as Yarowsky's algorithm or pseudo-labeling) to turn any supervised classifier into a semi-supervised method by iteratively labeling the unlabeled objects and adding these predictions to the set of labeled objects until the classifier converges.

Usage

```
SelfLearning(X, y, X_u = NULL, method, prob = FALSE, cautious = FALSE,
  max_iter = 100, ...)
```

Arguments

Χ	matrix; Design matrix for labeled data
У	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data
method	Supervised classifier to use. Any function that accepts as its first argument a design matrix X and as its second argument a vector of labels y and that has a predict method.
prob	Not used
cautious	Not used
max_iter	integer; Maximum number of iterations

References

McLachlan, G.J., 1975. Iterative Reclassification Procedure for Constructing an Asymptotically Optimal Rule of Allocation in Discriminant Analysis. Journal of the American Statistical Association, 70(350), pp.365-369.

additional arguments to be passed to method

Yarowsky, D., 1995. Unsupervised word sense disambiguation rivaling supervised methods. Proceedings of the 33rd annual meeting on Association for Computational Linguistics, pp.189-196.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, WellSVM, SVM, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()

solve_svm 71

Examples

```
data(testdata)
t_self <- SelfLearning(testdata$X,testdata$y,testdata$X_u,method=NearestMeanClassifier)
t_sup <- NearestMeanClassifier(testdata$X,testdata$y)
# Classification Error
1-mean(predict(t_self, testdata$X_test)==testdata$y_test)
1-mean(predict(t_sup, testdata$X_test)==testdata$y_test)
loss(t_self, testdata$X_test, testdata$y_test)</pre>
```

solve_svm

SVM solve.QP implementation

Description

SVM solve.QP implementation

Usage

```
solve_svm(K, y, C = 1)
```

Arguments

K	Kernel matrix
у	Output vector
С	Cost parameter

split_dataset_ssl

Create Train, Test and Unlabeled Set

Description

Create Train, Test and Unlabeled Set

Usage

```
split_dataset_ssl(X, y, frac_train = 0.8, frac_ssl = 0.8)
```

Arguments

X matrix; Design matrix y factor; Label vector

frac_train numeric; Fraction of all objects to be used as training objects frac_ssl numeric; Fraction of training objects to used as unlabeled objects

See Also

```
Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_random(), true_labels()
```

72 split_random

Description

The data.frame should start with a vector containing labels, or formula should be defined.

Usage

```
split_random(df, formula = NULL, splits = c(0.5, 0.5), min_class = 0)
```

Arguments

df data.frame; Data frame of interest

formula formula; Formula to indicate the outputs

splits numeric; Probability of of assigning to each part, automatically normalized, should be >1

integer; minimum number of objects per class in each part

Value

list of data.frames

min_class

See Also

```
Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), true_labels()
```

Examples

```
library(dplyr)

df <- generate2ClassGaussian(200,d=2)

dfs <- df %>% split_random(Class~.,split=c(0.5,0.3,0.2),min_class=1)
names(dfs) <- c("Train","Validation","Test")
lapply(dfs,summary)</pre>
```

SSLDataFrameToMatrices 73

SSLDataFrameToMatrices

Convert data.frame to matrices for semi-supervised learners

Description

Given a formula object and a data.frame, extract the design matrix X for the labeled observations, X_u for the unlabeled observations and y for the labels of the labeled observations. Note: always removes the intercept

Usage

```
SSLDataFrameToMatrices(model, D)
```

Arguments

model Formula object with model

D data.frame object with objects

Value

list object with the following objects:

X design matrix of the labeled data X_u design matrix of the unlabeled data

y integer vector indicating the labels of the labeled data classnames names of the classes corresponding to the integers in y

See Also

```
Other RSSL utilities: LearningCurveSSL(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), split_random(), true_labels()
```

stat_classifier

Plot RSSL classifier boundaries

Description

Plot RSSL classifier boundaries

Usage

```
stat_classifier(mapping = NULL, data = NULL, show.legend = NA,
  inherit.aes = TRUE, breaks = 0, precision = 50, brute_force = FALSE,
  classifiers = classifiers, ...)
```

74 stderror

Arguments

aes; aesthetic mapping mapping data.frame; data to be displayed data show.legend logical; Whether this layer should be included in the legend logical; If FALSE, overrides the default aesthetics inherit.aes breaks double; decision value for which to plot the boundary precision integer; grid size to sketch classification boundary brute_force logical; If TRUE, uses numerical estimation even for linear classifiers classifiers List of Classifier objects to plot Additional parameters passed to geom

Examples

```
library(RSSL)
library(ggplot2)
library(dplyr)
df <- generateCrescentMoon(200)</pre>
# This takes a couple of seconds to run
## Not run:
g_svm <- SVM(Class~.,df,kernel = kernlab::rbfdot(sigma = 1))</pre>
g_ls <- LeastSquaresClassifier(Class~.,df)</pre>
g_nm <- NearestMeanClassifier(Class~.,df)</pre>
  ggplot(aes(x=X1,y=X2,color=Class,shape=Class)) +
  geom_point(size=3) +
  coord_equal() +
  scale_x_continuous(limits=c(-20,20), expand=c(0,0)) +
  scale_y\_continuous(limits=c(-20,20), expand=c(0,0)) +
  stat_classifier(aes(linetype=..classifier..),
                   color="black", precision=50,
                   classifiers=list("SVM"=g_svm,"NM"=g_nm,"LS"=g_ls)
  )
## End(Not run)
```

stderror

Calculate the standard error of the mean from a vector of numbers

Description

Calculate the standard error of the mean from a vector of numbers

summary.CrossValidation

Usage

```
stderror(x)
```

Arguments

Х

numeric; vector for which to calculate standard error

75

```
summary.CrossValidation
```

Summary of Crossvalidation results

Description

Summary of Crossvalidation results

Usage

```
## S3 method for class 'CrossValidation'
summary(object, measure = NULL, ...)
```

Arguments

object CrossValidation object
measure Measure of interest

... Not used

svdinv

Inverse of a matrix using the singular value decomposition

Description

Inverse of a matrix using the singular value decomposition

Usage

svdinv(X)

Arguments

X matrix; square input matrix

Value

Y matrix; inverse of the input matrix

76 svdsqrtm

svdinvsqrtm	Taking the inverse of the square root of the matrix using the singular value decomposition

Description

Taking the inverse of the square root of the matrix using the singular value decomposition

Usage

```
svdinvsqrtm(X)
```

Arguments

X matrix; square input matrix

Value

Y matrix; inverse of the square root of the input matrix

svdsqrtm	Taking the square root of a matrix using the singular value decompo-
	sition

Description

Taking the square root of a matrix using the singular value decomposition

Usage

```
svdsqrtm(X)
```

Arguments

X matrix; square input matrix

Value

Y matrix; square root of the input matrix

SVM 77

SVM	SVM Classifier	

Description

Support Vector Machine implementation using the quadprog solver.

Usage

```
SVM(X, y, C = 1, kernel = NULL, scale = TRUE, intercept = FALSE,
    x_center = TRUE, eps = 1e-09)
```

Arguments

Χ	matrix; Design matrix for labeled data
у	factor or integer vector; Label vector
С	numeric; Cost variable
kernel	kernlab::kernel to use
scale	logical; Should the features be normalized? (default: FALSE)
intercept	logical; Whether an intercept should be included
x_center	logical; Should the features be centered?
eps	numeric; Small value to ensure positive definiteness of the matrix in the QP formulation

Details

This implementation will typically be slower and use more memory than the symlib implementation in the e1071 package. It is, however, useful for comparisons with the TSVM implementation.

Value

S4 object of type SVM

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, symlin()

78 symlin

symlin implementation by Sindhwani & Keerthi (2006)

Description

R interface to the symlin code by Vikas Sindhwani and S. Sathiya Keerthi for fast linear transductive SVMs

Usage

```
svmlin(X, y, X_u = NULL, algorithm = 1, lambda = 1, lambda_u = 1,
max_switch = 10000, pos_frac = 0.5, Cp = 1, Cn = 1,
verbose = FALSE, intercept = TRUE, scale = FALSE, x_center = FALSE)
```

Arguments

Χ	Matrix or sparseMatrix containing the labeled feature vectors, without intercept
у	factor containing class assignments
X_u	Matrix or sparseMatrix containing the unlabeled feature vectors, without intercept
algorithm	integer; Algorithm choice, see details (default:1)
lambda	double; Regularization parameter lambda (default 1)
lambda_u	double; Regularization parameter lambda_u (default 1)
max_switch	integer; Maximum number of switches in TSVM (default 10000)
pos_frac	double; Positive class fraction of unlabeled data (default 0.5)
Ср	double; Relative cost for positive examples (only available with algorithm 1)
Cn	double; Relative cost for positive examples (only available with algorithm 1)
verbose	logical; Controls the verbosity of the output
intercept	logical; Whether an intercept should be included
scale	logical; Should the features be normalized? (default: FALSE)
x_center	logical; Should the features be centered?

Details

The codes to select the algorithm are the following: 0. Regularized Least Squares Classification 1. SVM (L2-SVM-MFN) 2. Multi-switch Transductive SVM (using L2-SVM-MFN) 3. Deterministic Annealing Semi-supervised SVM (using L2-SVM-MFN).

References

Vikas Sindhwani and S. Sathiya Keerthi. Large Scale Semi-supervised Linear SVMs. Proceedings of ACM SIGIR, 2006 @references V. Sindhwani and S. Sathiya Keerthi. Newton Methods for Fast Solution of Semi-supervised Linear SVMs. Book Chapter in Large Scale Kernel Machines, MIT Press, 2006

svmlin_example 79

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM

Examples

```
data(svmlin_example)
t_svmlin_1 <- svmlin(svmlin_example$X_train[1:50,],</pre>
                 svmlin_example$y_train,X_u=NULL, lambda = 0.001)
t_svmlin_2 <- svmlin(svmlin_example$X_train[1:50,],</pre>
                        svmlin_example$y_train,
                        X_u=svmlin_example$X_train[-c(1:50),],
                        lambda = 10,lambda_u=100,algorithm = 2)
# Calculate Accuracy
mean(predict(t_svmlin_1,svmlin_example$X_test)==svmlin_example$y_test)
mean(predict(t_svmlin_2,svmlin_example$X_test)==svmlin_example$y_test)
data(testdata)
g_svm <- SVM(testdata$X,testdata$y)</pre>
g_sup <- svmlin(testdata$X,testdata$y,testdata$X_u,algorithm = 3)</pre>
g_semi <- svmlin(testdata$X,testdata$y,testdata$X_u,algorithm = 2)</pre>
mean(predict(g_svm,testdata$X_test)==testdata$y_test)
mean(predict(g_sup,testdata$X_test)==testdata$y_test)
mean(predict(g_semi,testdata$X_test)==testdata$y_test)
```

svmlin_example

Test data from the symlin implementation

Description

Useful for testing the symlin interface and to serve as an example

svmproblem

Train SVM

Description

Train SVM

80 threshold

Usage

```
svmproblem(K)
```

Arguments

K kernel

Value

alpha, b, obj

testdata

Example semi-supervised problem

Description

A list containing a sample from the GenerateSlicedCookie dataset for unit testing and examples.

threshold

Refine the prediction to satisfy the balance constraint

Description

Refine the prediction to satisfy the balance constraint

Usage

```
threshold(y1, options)
```

Arguments

y1 predictions options options passed

Value

y2

true_labels 81

true_labels	Access the true labels when they are stored as an attribute in a data frame

Description

Access the true labels when they are stored as an attribute in a data frame

Usage

```
true_labels(df)
```

Arguments

df

data.frame; data.frame with y_true attribute

See Also

```
Other RSSL utilities: LearningCurveSSL(), SSLDataFrameToMatrices(), add_missinglabels_mar(), df_to_matrices(), measure_accuracy(), missing_labels(), split_dataset_ssl(), split_random()
```

TSVM

Transductive SVM classifier using the convex concave procedure

Description

Transductive SVM using the CCCP algorithm as proposed by Collobert et al. (2006) implemented in R using the quadprog package. The implementation does not handle large datasets very well, but can be useful for smaller datasets and visualization purposes.

Usage

```
TSVM(X, y, X_u, C, Cstar, kernel = kernlab::vanilladot(),
  balancing_constraint = TRUE, s = 0, x_center = TRUE, scale = FALSE,
  eps = 1e-09, max_iter = 20, verbose = FALSE)
```

Arguments

Χ	matrix; Design matrix for labeled data
У	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data
С	numeric; Cost parameter of the SVM

Cstar numeric; Cost parameter of the unlabeled objects

kernel kernlab::kernel to use

82 TSVM

balancing_constraint

logical; Whether a balancing constraint should be enforced that causes the fraction of objects assigned to each label in the unlabeled data to be similar to the

label fraction in the labeled data.

s numeric; parameter controlling the loss function of the unlabeled objects (gen-

erally values between -1 and 0)

x_center logical; Should the features be centered?

scale If TRUE, apply a z-transform to all observations in X and X_u before running

the regression

eps numeric; Stopping criterion for the maximinimization

max_iter integer; Maximum number of iterations

verbose logical; print debugging messages, only works for vanilladot() kernel (default:

FALSE)

Details

C is the cost associated with labeled objects, while Cstar is the cost for the unlabeled objects. s control the loss function used for the unlabeled objects: it controls the size of the plateau for the symmetric ramp loss function. The balancing constraint makes sure the label assignments of the unlabeled objects are similar to the prior on the classes that was observed on the labeled data.

References

Collobert, R. et al., 2006. Large scale transductive SVMs. Journal of Machine Learning Research, 7, pp.1687-1712.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, WellSVM, SVM, SelfLearning, USMLeastSquaresClassifier, WellSVM, svmlin()

Examples

83

```
C=1,Cstar=0.1,balancing_constraint = FALSE)
g_lin <- LinearTSVM(X=X,y=y,X_u=X_u,C=1,Cstar=0.1)</pre>
w1 <- g_sup@alpha %*% X
w2 <- g_constraint@alpha %*% rbind(X,X_u,X_u,colMeans(X_u))</pre>
w3 <- g_noconstraint@alpha %*% rbind(X,X_u,X_u)
w4 \leftarrow g_{lin}@w
plot(X[,1],X[,2],col=factor(y),asp=1,ylim=c(-3,3))
points(X_u[,1],X_u[,2],col="darkgrey",pch=16,cex=1)
abline(-g_sup@bias/w1[2],-w1[1]/w1[2],lty=2)
abline(((1-g_sup@bias)/w1[2]),-w1[1]/w1[2],1ty=2) # +1 Margin
abline(((-1-g_sup@bias)/w1[2]),-w1[1]/w1[2],lty=2) # -1 Margin
abline(-g_constraint@bias/w2[2],-w2[1]/w2[2],lty=1,col="green")
abline(-g_noconstraint@bias/w3[2],-w3[1]/w3[2],lty=1,col="red")
abline(-w4[1]/w4[3],-w4[2]/w4[3],lty=1,lwd=3,col="blue")
# An example
set.seed(42)
data <- generateSlicedCookie(200,expected=TRUE,gap=1)</pre>
X <- model.matrix(Class~.-1,data)</pre>
y <- factor(data$Class)</pre>
problem <- split_dataset_ssl(X,y,frac_ssl=0.98)</pre>
X <- problem$X
y <- problem$y
X_u <- problem$X_u</pre>
y_e <- unlist(list(problem$y,problem$y_u))</pre>
Xe<-rbind(X,X_u)</pre>
g_sup <- SVM(X,y,x_center=FALSE,scale=FALSE,C = 10)</pre>
g_constraint <- TSVM(X=X,y=y,X_u=X_u,</pre>
                      C=10,Cstar=10,balancing_constraint = TRUE,
                      x_center = FALSE, verbose=TRUE)
g_noconstraint <- TSVM(X=X,y=y,X_u=X_u,</pre>
                        C=10,Cstar=10,balancing_constraint = FALSE,
                        x_center = FALSE, verbose=TRUE)
g_lin <- LinearTSVM(X=X,y=y,X_u=X_u,C=10,Cstar=10,</pre>
                     verbose=TRUE,x_center = FALSE)
g_oracle <- SVM(Xe,y_e,scale=FALSE)</pre>
w1 <- c(g_sup@bias,g_sup@alpha %*% X)</pre>
w2 <- c(g_constraint@bias,g_constraint@alpha %*% rbind(X,X_u,X_u,colMeans(X_u)))</pre>
w3 <- c(g_noconstraint@bias,g_noconstraint@alpha %*% rbind(X,X_u,X_u))
w4 <- g_lin@w
w5 <- c(g_oracle@bias, g_oracle@alpha %*% Xe)
print(sum(abs(w4-w3)))
```

```
plot(X[,1],X[,2],col=factor(y),asp=1,ylim=c(-3,3))
points(X_u[,1],X_u[,2],col="darkgrey",pch=16,cex=1)
abline(-w1[1]/w1[3],-w1[2]/w1[3],lty=2)
abline(((1-w1[1])/w1[3]),-w1[2]/w1[3],lty=2) # +1 Margin
abline(((-1-w1[1])/w1[3]),-w1[2]/w1[3],lty=2) # -1 Margin

# Oracle:
abline(-w5[1]/w5[3],-w5[2]/w5[3],lty=1,col="purple")

# With balancing constraint:
abline(-w2[1]/w2[3],-w2[2]/w2[3],lty=1,col="green")

# Linear TSVM implementation (no constraint):
abline(-w4[1]/w4[3],-w4[2]/w4[3],lty=1,lwd=3,col="blue")

# Without balancing constraint:
abline(-w3[1]/w3[3],-w3[2]/w3[3],lty=1,col="red")
```

USMLeastSquaresClassifier

Updated Second Moment Least Squares Classifier

Description

This methods uses the closed form solution of the supervised least squares problem, except that the second moment matrix (X'X) is exchanged with a second moment matrix that is estimated based on all data. See for instance *Shaffer1991*, where in this implementation we use all data to estimate E(X'X), instead of just the labeled data. This method seems to work best when the data is first centered x_center=TRUE and the outputs are scaled using y_scale=TRUE.

Usage

```
USMLeastSquaresClassifier(X, y, X_u, lambda = 0, intercept = TRUE,
    x_center = FALSE, scale = FALSE, y_scale = FALSE, ...,
    use_Xu_for_scaling = TRUE)
```

Arguments

x matrix; Design matrix for labeled data
 y factor or integer vector; Label vector
 x_u matrix; Design matrix for unlabeled data
 lambda numeric; L2 regularization parameter

intercept logical; Whether an intercept should be included

x_center logical; Should the features be centered?

scale logical; Should the features be normalized? (default: FALSE)

y_scale logical; whether the target vector should be centered

... Not used use_Xu_for_scaling

logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization

References

Shaffer, J.P., 1991. The Gauss-Markov Theorem and Random Regressors. The American Statistician, 45(4), pp.269-273.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SVM, SelfLearning, TSVM, WellSVM, svmlin()

 ${\it USMLeast Squares Classifier-class} \\ {\it USMLeast Squares Classifier}$

Description

USMLeastSquaresClassifier

wdbc

wdbc data for unit testing

Description

Useful for testing the S4VM and WellSVM implementations

86 WellSVM

WellSVM

WellSVM for Semi-supervised Learning

Description

WellSVM is a minimax relaxation of the mixed integer programming problem of finding the optimal labels for the unlabeled data in the SVM objective function. This implementation is a translation of the Matlab implementation of Li (2013) into R.

Usage

```
WellSVM(X, y, X_u, C1 = 1, C2 = 0.1, gamma = 1, x_center = TRUE,
    scale = FALSE, use_Xu_for_scaling = FALSE, max_iter = 20)
```

Arguments

Χ	matrix; Design matrix for labeled data
у	factor or integer vector; Label vector
X_u	matrix; Design matrix for unlabeled data
C1	double; A regularization parameter for labeled data, default 1;
C2	double; A regularization parameter for unlabeled data, default 0.1;
gamma	double; Gaussian kernel parameter, i.e., $k(x,y) = \exp(-gamma^2 x-y ^2/avg)$ where avg is the average distance among instances; when gamma = 0, linear kernel is used. default gamma = 1;
x_center	logical; Should the features be centered?
scale	logical; Should the features be normalized? (default: FALSE)
use_Xu_for_sca	ling
	logical; whether the unlabeled objects should be used to determine the mean and scaling for the normalization
max_iter	integer; Maximum number of iterations

References

Y.-F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou. Scalable and Convex Weakly Labeled SVMs. Journal of Machine Learning Research, 2013.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005.

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassiLinearSVM, LinearTSVM(), LogisticLossClassifier, LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, SVM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, svmlin()

wellsvm_direct 87

Examples

```
library(RSSL)
library(ggplot2)
library(dplyr)
set.seed(1)
df_orig <- generateSlicedCookie(200,expected=TRUE)</pre>
df <- df_orig %>%
  add_missinglabels_mar(Class~.,0.98)
classifiers <- list("Well"=WellSVM(Class~.,df,C1 = 1, C2=0.1,</pre>
                                    gamma = 0,x_center=TRUE,scale=TRUE),
                     "Sup"=SVM(Class~.,df,C=1,x_center=TRUE,scale=TRUE))
df %>%
  ggplot(aes(x=X1,y=X2,color=Class)) +
  geom_point() +
  coord_equal() +
  stat_classifier(aes(color=..classifier..),
                  classifiers = classifiers)
```

wellsvm_direct

wellsvm implements the wellsvm algorithm as shown in [1].

Description

wellsvm implements the wellsvm algorithm as shown in [1].

Usage

```
wellsvm_direct(x, y, testx, testy, C1 = 1, C2 = 0.1, gamma = 1)
```

Arguments

Х	A Nxd training data matrix, where N is the number of training instances and d is the dimension of instance;
у	A Nx1 training label vector, where $y = 1/-1$ means positive/negative, and $y = 0$ means unlabeled;
testx	A Mxd testing data matrix, where M is the number of testing instances;
testy	A Mx1 testing label vector
C1	A regularization parameter for labeled data, default 1;
C2	A regularization parameter for unlabeled data, default 0.1;
gamma	Gaussian kernel parameter, i.e., $k(x,y) = \exp(-gamma^2 x-y ^2/avg)$ where avg is the average distance among instances; when gamma = 0, linear kernel is used. default gamma = 1;

Value

prediction - A Mx1 predicted testing label vector; accuracy - The accuracy of prediction; cputime - cpu running time;

References

Y.-F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou. Scalable and Convex Weakly Labeled SVMs. Journal of Machine Learning Research, 2013.

R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005.

WellSVM_SSL

Convex relaxation of S3VM by label generation

Description

Convex relaxation of S3VM by label generation

Usage

```
WellSVM_SSL(K0, y, opt, yinit = NULL)
```

Arguments

K0 kernel matrix

y labels opt options

yinit label initialization (not used)

WellSVM_supervised A degenerated version of WellSVM where the labels are complete, that

is, supervised learning

Description

A degenerated version of WellSVM where the labels are complete, that is, supervised learning

Usage

```
WellSVM_supervised(K0, y, opt, ind_y)
```

Arguments

K0 kernel matrix

y labels opt options

ind_y Labeled/Unlabeled indicator

wlda 89

wlda Implements weighted likelihood estimation for LDA	
--	--

Description

Implements weighted likelihood estimation for LDA

Usage

```
wlda(a, w)
```

Arguments

a is the data set

w is an indicator matrix for the K classes or, potentially, a weight matrix in which

the fraction with which a sample belongs to a particular class is indicated

Value

m contains the means, p contains the class priors, iW contains the INVERTED within covariance matrix

wlda_error	Measures the expected error of the LDA model defined by m, p, and iW
	on the data set a, where weights w are potentially taken into account

Description

Measures the expected error of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account

Usage

```
wlda_error(m, p, iW, a, w)
```

Arguments

m	means
p	class prior
iW	is the inverse of the within covariance matrix
a	design matrix

w weights

90 wlda_loglik

wlda_loglik	Measures the expected log-likelihood of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account
-------------	---

Description

Measures the expected log-likelihood of the LDA model defined by m, p, and iW on the data set a, where weights w are potentially taken into account

Usage

```
wlda_loglik(m, p, iW, a, w)
```

Arguments

m	means
р	class prior
iW	is the inverse of the within covariance matrix
а	design matrix
W	weights

Value

Average log likelihood

Index

RSSL classifiers	* RSSL utilities
EMLeastSquaresClassifier, 11	add_missinglabels_mar,4
EMLinearDiscriminantClassifier, 13	df_to_matrices, 10
GRFClassifier, 23	LearningCurveSSL, 38
ICLeastSquaresClassifier, 26	measure_accuracy, 55
ICLinearDiscriminantClassifier, 28	missing_labels, 57
KernelLeastSquaresClassifier, 30	split_dataset_ssl,71
LaplacianKernelLeastSquaresClassifier,	split_random, 72
32	SSLDataFrameToMatrices, 73
LaplacianSVM, 35	true_labels, 81
LeastSquaresClassifier, 40	
LinearDiscriminantClassifier, 42	add_missinglabels_mar, 4, 10, 40, 56, 57,
LinearSVM, 43	71–73, 81
LinearTSVM, 44	adjacency_knn, 5
LogisticLossClassifier, 46	
LogisticRegression, 48	BaseClassifier, 5
MajorityClassClassifier, 52	
MCLinearDiscriminantClassifier, 52	c.CrossValidation, 6
MCNearestMeanClassifier, 53	clapply, 6
MCPLDA, 54	cov_ml, 7
NearestMeanClassifier, 57	CrossValidationSSL, 7, 55
QuadraticDiscriminantClassifier,	
63	decisionvalues, 9
S4VM, 66	decisionvalues, KernelLeastSquaresClassifier-method
SelfLearning, 70	(decisionvalues), 9
SVM, 77	decisionvalues,LeastSquaresClassifier-method
svmlin, 78	(decisionvalues), 9
TSVM, 81	decisionvalues,LinearSVM-method
USMLeastSquaresClassifier, 84	(decisionvalues), 9
WellSVM, 86	decisionvalues,SVM-method
RSSL datasets	(decisionvalues), 9
generate2ClassGaussian, 17	decisionvalues,svmlinClassifier-method
generateABA, 18	(decisionvalues), 9
generateCrescentMoon, 19	decisionvalues,TSVM-method
generateFourClusters, 19	(decision values), 9
generateParallelPlanes, 20	decisionvalues,WellSVM-method
generateSlicedCookie, 21	(rssl-predict), 65
generateSpirals, 21	df_to_matrices, 4, 10, 40, 56, 57, 71-73, 81
generateTwoCircles 22	diahetes 10

92 INDEX

EMLeastSquaresClassifier, 11, 13, 24, 28,	LaplacianSVM, <i>12</i> , <i>13</i> , <i>24</i> , <i>28</i> , <i>29</i> , <i>31</i> , <i>33</i> , 35,
29, 31, 33, 36, 41–44, 47, 48, 52–55,	41–44, 47, 48, 52–55, 58, 64, 68, 70,
58, 64, 68, 70, 77, 79, 82, 85, 86	77, 79, 82, 85, 86
EMLinearDiscriminantClassifier, 12, 13,	LearningCurveSSL, 4, 10, 38, 55–57, 71–73,
24, 28, 29, 31, 33, 36, 41–44, 47, 48,	81
52–55, 58, 64, 68, 70, 77, 79, 82, 85,	LeastSquaresClassifier, 12, 13, 24, 28, 29,
86	31, 33, 36, 40, 42–44, 47, 48, 52–55,
EMNearestMeanClassifier, 14	58, 64, 68, 70, 77, 79, 82, 85, 86
EntropyRegularizedLogisticRegression,	line_coefficients, 45
15, 48	line_coefficients,LeastSquaresClassifier-method
,	(line_coefficients), 45
find_a_violated_label, 16	line_coefficients,LinearSVM-method
,	(line_coefficients), 45
gaussian_kernel, 17	line_coefficients,LogisticLossClassifier-method
generate2ClassGaussian, 17, 18-22	(line_coefficients), 45
generateABA, 18, 18, 19-22	
generateCrescentMoon, 18, 19, 20–22	line_coefficients,LogisticRegression-method
generateFourClusters, 18, 19, 19, 20–22	(line_coefficients), 45
generateParallelPlanes, 18-20, 20, 21, 22	line_coefficients, NormalBasedClassifier-method
generateSlicedCookie, <i>18</i> –20, 21, 22	(line_coefficients), 45
generateSpirals, 18–21, 21, 22	line_coefficients,QuadraticDiscriminantClassifier-method
generateTwoCircles, 18-22, 22	(line_coefficients), 45
geom_classifier, 22	line_coefficients, SelfLearning-method
geom_linearclassifier, 23	(line_coefficients), 45
GRFClassifier, 12, 13, 23, 28, 29, 31, 33, 36,	LinearDiscriminantClassifier, 12, 13, 24,
41–44, 47, 48, 52–55, 58, 64, 68, 70,	28, 29, 31, 33, 36, 41, 42, 43, 44, 47,
77, 79, 82, 85, 86	48, 52–55, 58, 64, 68, 70, 77, 79, 82,
77,77,02,03,00	85, 86
harmonic_function, 25	LinearSVM, 12, 13, 24, 28, 29, 31, 33, 36, 41,
	42, 43, 44, 47, 48, 52–55, 58, 64, 68,
ICLeastSquaresClassifier, 12, 13, 24, 26,	70, 77, 79, 82, 85, 86
28, 29, 31, 33, 36, 41–44, 47, 48,	LinearSVM-class, 43
52–55, 58, 64, 68, 70, 77, 79, 82, 85,	LinearTSVM, <i>12</i> , <i>13</i> , <i>24</i> , <i>28</i> , <i>29</i> , <i>31</i> , <i>33</i> , <i>36</i> ,
86	41–43, 44, 47, 48, 52–55, 58, 64, 68,
ICLinearDiscriminantClassifier, 12, 13,	70, 77, 79, 82, 85, 86
24, 28, 28, 31, 33, 36, 41–44, 47, 48,	localDescent, 46
52–55, 58, 64, 68, 70, 77, 79, 82, 85,	LogisticLossClassifier, <i>12</i> , <i>13</i> , <i>24</i> , <i>28</i> , <i>29</i> ,
86	31, 33, 36, 41–44, 46, 48, 52–55, 58,
	64, 68, 70, 77, 79, 82, 85, 86
KernelICLeastSquaresClassifier, 29	LogisticLossClassifier-class,47
KernelLeastSquaresClassifier, 12, 13, 24,	LogisticRegression, <i>12</i> , <i>13</i> , <i>24</i> , <i>28</i> , <i>29</i> , <i>31</i> ,
28, 29, 30, 33, 36, 41–44, 47, 48,	<i>33</i> , <i>36</i> , <i>41–44</i> , <i>47</i> , 48, <i>52–55</i> , <i>58</i> , <i>64</i> ,
52–55, 58, 64, 68, 70, 77, 79, 82, 85,	68, 70, 77, 79, 82, 85, 86
86	LogisticRegressionFast, 48
	logsumexp, 49
LaplacianKernelLeastSquaresClassifier,	loss, 49
12, 13, 24, 28, 29, 31, 32, 36, 41–44,	loss,KernelLeastSquaresClassifier-method
47, 48, 52–55, 58, 64, 68, 70, 77, 79,	(loss), 49
82, 85, 86	loss,LeastSquaresClassifier-method

INDEX 93

(loss), 49	plot.CrossValidation, 58	
loss, LinearSVM-method (loss), 49	plot.LearningCurve, 59	
loss,LogisticLossClassifier-method	posterior, 59	
(loss), 49	posterior,LogisticRegression-method	
loss,LogisticRegression-method(loss),	(posterior), 59	
49	posterior,NormalBasedClassifier-method	
loss,MajorityClassClassifier-method	(posterior), 59	
(loss), 49	<pre>predict,GRFClassifier-method</pre>	
loss,NormalBasedClassifier-method	(rssl-predict), 65	
(loss), 49	<pre>predict,KernelLeastSquaresClassifier-method</pre>	
loss, SelfLearning-method (loss), 49	(rssl-predict), 65	
loss, SVM-method (loss), 49	<pre>predict,LeastSquaresClassifier-method</pre>	
loss, symlinClassifier-method (loss), 49	(rssl-predict), 65	
loss,USMLeastSquaresClassifier-method	predict,LinearSVM-method	
(loss), 49	(rssl-predict), 65	
losslogsum, 51	predict,LogisticLossClassifier-method	
losslogsum, NormalBasedClassifier-method	(rssl-predict), 65	
(losslogsum), 51	predict,LogisticRegression-method	
losspart, 51	(rssl-predict), 65	
losspart,NormalBasedClassifier-method	<pre>predict,MajorityClassClassifier-method</pre>	
(losspart), 51	(rssl-predict), 65	
	<pre>predict,NormalBasedClassifier-method</pre>	
MajorityClassClassifier, 12, 13, 24, 28,	(rssl-predict), 65	
29, 31, 33, 36, 41–44, 47, 48, 52,	predict, scaleMatrix-method, 60	
53–55, 58, 64, 68, 70, 77, 79, 82, 85,	predict, SelfLearning-method	
86	(rssl-predict), 65	
MCLinearDiscriminantClassifier, 12, 13,	predict, SVM-method (rssl-predict), 65	
24, 28, 29, 31, 33, 36, 41–44, 47, 48,	predict,svmlinClassifier-method	
52, 52, 54, 55, 58, 64, 68, 70, 77, 79,	(rssl-predict), 65	
82, 85, 86	predict, USMLeastSquaresClassifier-method	
MCNearestMeanClassifier, 12, 13, 24, 28,	(rssl-predict), 65	
29, 31, 33, 36, 41–44, 47, 48, 52, 53,	<pre>predict, WellSVM-method (rssl-predict),</pre>	
53, 55, 58, 64, 68, 70, 77, 79, 82, 85,	65	
86	PreProcessing, 60	
MCPLDA, 12, 13, 24, 28, 29, 31, 33, 36, 41–44,	PreProcessingPredict, 61	
47, 48, 52–54, 54, 58, 64, 68, 70, 77,	print.CrossValidation, 62	
79, 82, 85, 86	print.LearningCurve, 62	
measure_accuracy, 4, 10, 39, 40, 55, 57,	projection_simplex, 63	
71–73, 81	0 1 1 1 1 1 1 1 1 1	
measure_error (measure_accuracy), 55	QuadraticDiscriminantClassifier, 12, 13,	
measure_losslab (measure_accuracy), 55	24, 28, 29, 31, 33, 36, 41–44, 47, 48,	
measure_losstest (measure_accuracy), 55	52–55, 58, 63, 68, 70, 77, 79, 82, 85,	
measure_losstrain (measure_accuracy), 55	86	
minimaxlda, 56	ihilition 64	
missing_labels, 4, 10, 40, 56, 57, 71-73, 81	responsibilities, 64	
NecrostMoonClossifier 12 12 24 20 20	responsibilities, GRFClassifier-method	
NearestMeanClassifier, 12, 13, 24, 28, 29,	(rssl-predict), 65	
31, 33, 36, 41–44, 47, 48, 52–55, 57,	rssl-formatting, 65	
64, 68, 70, 77, 79, 82, 85, 86	rssl-predict, 65	

94 INDEX

```
S4VM, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47,
                                                     WellSVM, 12, 13, 24, 28, 29, 31, 33, 36, 41-44,
         48, 52–55, 58, 64, 66, 70, 77, 79, 82,
                                                               47, 48, 52–55, 58, 64, 68, 70, 77, 79,
         85, 86
                                                               82, 85, 86
S4VM-class, 68
                                                     wellsvm_direct, 87
sample_k_per_level, 69
                                                     WellSVM_SSL, 88
scaleMatrix, 69
                                                     WellSVM_supervised, 88
SelfLearning, 12, 13, 24, 28, 29, 31, 33, 36,
                                                     wlda, 89
         41-44, 47, 48, 52-55, 58, 64, 68, 70,
                                                     wlda_error, 89
         77, 79, 82, 85, 86
                                                     wlda_loglik, 90
show, Classifier-method
         (rssl-formatting), 65
show, NormalBasedClassifier-method
         (rssl-formatting), 65
show, scaleMatrix-method
         (rssl-formatting), 65
solve_svm, 71
split_dataset_ssl, 4, 10, 40, 56, 57, 71, 72,
split_random, 4, 10, 40, 56, 57, 71, 72, 73, 81
SSLDataFrameToMatrices, 4, 10, 40, 56, 57,
         71, 72, 73, 81
stat_classifier, 73
stderror, 74
summary. Cross Validation, \\ 75
svdinv, 75
svdinvsqrtm, 76
svdsqrtm, 76
SVM, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47,
         48, 52–55, 58, 64, 68, 70, 77, 79, 82,
         85, 86
symlin, 12, 13, 24, 28, 29, 31, 33, 36, 41–44,
         47, 48, 52–55, 58, 64, 68, 70, 77, 78,
         82, 85, 86
svmlin_example, 79
symproblem, 79
testdata, 80
threshold, 80
true_labels, 4, 10, 40, 56, 57, 71-73, 81
TSVM, 12, 13, 24, 28, 29, 31, 33, 36, 41–44, 47,
         48, 52–55, 58, 64, 68, 70, 77, 79, 81,
         85, 86
USMLeastSquaresClassifier, 12, 13, 24, 28,
         29, 31, 33, 36, 41–44, 47, 48, 52–55,
         58, 64, 68, 70, 77, 79, 82, 84, 86
USMLeastSquaresClassifier-class, 85
wdbc, 85
```