Module 03 - Production Modeling

Exploratory Data Analysis

In this section, you should perform some data analysis on the data provided to you. Please format your findings in a visually pleasing way and please be sure to include these cuts:

- Make a table of average demand, production capacity, and costs for each quarter, are there differences between quarters?
- Since we have temporal data (i.e. year and quarter), see if you can make a yearly and/or quarterly chart showing these metrics over time.

Row Labels	~	Min of capacity	Max of capacity	Min of production	Max of production	Min of demand	Max of demand
1		367.7	785.94	37.58	71.83	219.22	611.16
2		353.8	680.51	29.22	69.86	272.93	670.16
3		415.28	717.8	33.91	63.83	256.94	681.74
4		327.72	632.04	39.33	68.8	264.24	809.63
Grand Total		327.72	785.94	29.22	71.83	219.22	809.63

Model Formulation

Write the formulation of the model into here prior to implementing it in your Excel model. Be explicit with the definition of the decision variables, objective function, and constraints

MIN: 51X1 + 51X2 + 47X3 + 49X4 + 1.87(Y1+Y2) + 1.87(Y2+Y3) 1.87(Y3+Y4) 1.87(Y4+Y5)

X1 <= 545

 $X2 \le 502$

X3<= 541

 $X4 \le 497$

37<=Y1

42<=Y2

43<=Y3

49<=Y4

Model Optimized for Cost Reduction

Implement your formulation into Excel and be sure to make it neat. This section should include:

- A screenshot of your optimized final model (formatted nicely, of course)
- A text explanation of what your model is recommending

The optimized production model aims to minimize total costs by aligning quarterly production with demand while maintaining required safety stock levels. It strategically adjusts production volumes each quarter to balance production costs and inventory holding costs, producing more in lower-cost quarters and reducing production in higher-

cost quarters.

Quarter	Capacity	Demand	Safety Stock	Production Cost		
1	545	367	37	51		
2	502	419	42	51		
3	541	433	43	47		
4	497	486	49	49		

		1		2		3		4
Beginning Inventory		200		37		42		150
Units Produced		204		424		541		385
Units Demanded		367		419		433		486
Ending Inventory		37		42	0	150		49
Maximum Production		545		502		541		497
Minimum Inventory		37		42		43		49
Average Inventory		120	Y	233		345		217
Unit Production Cost	\$	51.25	\$	51.12	\$	47.27	\$	48.91
Unit Carrying Cost	\$	1.87	\$	1.87	\$	1.87	\$	1.87
Monthly Production Cost		0,439.56	\$2	1,684.88	\$	25,573.28	\$1	.8,815.58
Monthly Carrying Cost	\$	224.77	\$	435.80	\$	645.99	\$	405.14
					Tota	al cost	\$7	8,225.01

Model with Stipulation

Please copy the tab of your original model before continuing with the next part to avoid messing up your original solution. If we remove the production capacity constraint from the model & we removed the carrying cost, what do you think will happen? Try it out and see if it matches your expectation. Try to explain what is happening and talk a bit about fallbacks of models.

Without production capacity constraints and carrying costs, the model tends to concentrate production in the earliest periods, particularly when unit costs are lower. This approach minimizes total production costs by producing as much as possible upfront, without worrying about the financial impact of holding excess inventory.

8		1	2		3	Ĭ	
Beginning Inventory		200	37	0	-382	3	-815
Units Produced		204					385
Units Demanded		367	419		433	8	486
Ending Inventory		37	-382		-815		-917
Maximum Production		545	502	3	541	30 20	497
Minimum Inventory		37	42	0	43	50 50	49
Average Inventory		120	-191		-408	32	-266
Unit Production Cost	\$	51.25	\$ 51.12	\$	47.27	\$	48.91
Unit Carrying Cost				30		00	
Monthly Production Cost	\$	10,439.56	\$ =	\$	<u>.</u>	\$	18,815.58
Monthly Carrying Cost	\$	-	\$ -	\$	÷	\$	-
				Total cos	t	\$	29,255.15