Tree - Based Method

Enrique J. De La Hoz D.

Data Science - UTB

Example: Predict animal intelligence from Gestation Time and Litter Size

Decision Trees

Rules as a result of a Decision Tree

- Rules of the form:
 - if a AND b AND c THEN y
- Non-linear concepts
 - intervals
 - non-monotonic relationships
- non-additive interactions
 - AND: similar to multiplication

IF Gestation < 148 AND Litter >= 2.1 \rightarrow Brain = 4

Linear Reg vs Decision Tree

Model RMSE 1 Linear 1.232 2 Tree 0.818

Visual Analysis

It's difficult for trees to express Linear Relationships

It's Hard to Express Lines with Steps

Figure 1:

Each Color is a different predicted value

Issues with Trees

- Tree with too many splits (deep tree):
 - ▶ Too complex danger of overfit
- Tree with too few splits (shallow tree):
 - Predictions too coarse-grained

Other Issues with Trees

- Tree with too many splits (deep tree):
 - ▶ Too complex danger of overfit
- Tree with too few splits (shallow tree):
 - Predictions too coarse-grained

Ensembles of Trees

• Ensemble Model Fits Animal Intelligence Data Better than Single Tree

```
Model RMSE
Linear 1.232
Tree 0.818
Random Forest 1.171
```

Random Forests

- Multiple diverse decision trees averaged together
 - Reduces overfit
 - Increases model expressiveness
 - Finer grain predictions

Building a Random Forest Model

- Draw bootstrapped sample from training data
- 2 For each sample grow a tree
 - At each node, pick best variable to split on (from a random subset of all variables)
 - Continue until tree is grown
- To score a datum, evaluate it with all the trees and average the results.

Example: Bike Rental Data

```
cnt ~ hr + holiday + workingday +
+ weathersit + temp + atemp + hum + windspeed
```

cnt ~ hr + holiday + workingday + +weathersit + temp + atemp hum + windspeed

Random Forests with ranger()

```
fmla<- cnt ~ hr + holiday + workingday +
+ weathersit + temp + atemp + hum + windspeed

model_rf2 <- ranger(fmla, bikesJan, num.trees = 500,
respect.unordered.factors = "order")</pre>
```

- formula, data
- num.trees (default 500) use at least 200
- mtry number of variables to try at each node
 - default: square root of the total number of variables
- respect.unordered.factors recommend set to "order"
 - "safe" hashing of categorical variables

Random Forest results

```
Ranger result
Call:
 ranger(fmla, bikesJan, num.trees = 500, respect.unordered.fac
Type:
                                    Regression
Number of trees:
                                    500
                                    741
Sample size:
Number of independent variables:
                                    8
Mtry:
Target node size:
                                    5
Variable importance mode:
                                    none
Splitrule:
                                    variance
OOB prediction error (MSE):
                                    3717.769
R squared (00B):
                                    0.7409446
```

Predicting with a ranger() model

- predict() inputs:
 - model
 - data
- Predictions can be accessed in the element predictions.

Evaluating the model

Model RMSE

- 1 Quasipoisson 118.964
- 2 Random Forest 74.292

Evaluating the model Visually Pred vs Actual

Predicted and Actual Hourly Bike Rentals

Categorical Variables in Random Forest

- ** One hot enconding variables **
- Most R functions manage the conversion for you (e.g glm())
 - model.matrix()
- xgboost() does not
 - Must convert categorical variables to numeric representation
- Conversion to indicators: one-hot encoding

One-hot-encoding and data cleaning with vtreat

Basic idea: - designTreatmentsZ() to design a treatment plan from the training data, then - prepare() to created "clean" data + All numerical + No missing values + Use prepare() with treatment plan for all future data

vtreat Example

** Training Data**

x u y -----one 5 2.669

2 three 12 1.501

3 one 56 0.199

4 two 28 1.278

Test Data

==========

x u y -----

1 one 44 0.486

2 two 24 1.368

3 three 66 2.036

4 two 22 1.640

Create the Treatment Plan

- Inputs to designTreatmentsZ()
 - dframe: training data
 - varlist: list of input variable names
 - set verbose = FALSE to suppress progress messages

Get the new variables

• The scoreFrame describes the varia ble mapping and types

```
        varName
        origName
        code

        1
        x_catP
        x catP

        2
        u_clean
        u clean

        3
        x_lev_x.one
        x lev

        4
        x_lev_x.three
        x lev

        5
        x_lev_x.two
        x lev
```

• Get the names of the new lev and clean variables

```
[1] "u_clean" "x_lev_x.one" "x_lev_x.three" "x
```

Prepare the Training Data for Modeling

- Inputs to prepare():
 - treatmentplan: treatment plan
 - ▶ dframe: data frame
 - varRestriction: list of variables to prepare (optional)
 - default: prepare all variables

Before and After Data Treatment

** Training Data**

Y 11 V

	Λ	u	y
 1	one	5	2.669
2	three	12	1.501
3	one	56	0.199
4	two	28	1.278

Treated training data

	u_{clean}	x_lev_x.one	x_lev_x
1	5	1	
2	12	0	
3	56	1	
4	28	0	

Prepare the Test Data Before Model Application

	u_clean	x_lev_x.one	x_lev_x.three	$x_{\text{lev}_x.two}$
1	44	1	0	0
2	24	0	0	1
3	66	0	1	0
4	22	0	0	1

Robustness of vtreat treatment

• Previously unseen x level: four; Treated training data

	х	u	У	
1	one	4	0.233	
2	two	14	1.933	
3	three	66	3.125	
4	four	25	4.023	

	u_clean	$x_{lev_x.one}$	$x_{lev_x.three}$	x_lev_x.two
1	4	1	0	0
2	14	0	0	1
3	66	0	1	0
4	25	0	0	0

Gradient Boosting Machines

- boosting can be interpreted as an optimization algorithm on a suitable cost function
- optimize a cost function over function space by iteratively choosing a function (weak hypothesis) that points in the negative gradient direction
- This functional gradient view of boosting has led to the development of boosting algorithms in many areas of machine learning and statistics beyond regression and classification.

Figure 2:

• Fit a shallow tree T_1 to the data: $M_1 = T_1$

Figure 3:

- Fit a shallow tree T_1 to the data: $M_1 = T_1$
- ② Fit a tree T_2 to the residuals.
 - Find γ such that $M_2 = M_1 + \gamma T_2$ is the best fit to data

Figure 4:

• Regularization: learning rate $\eta \in (0,1)$

$$M_2 = M_1 + \eta \gamma T_2$$

- Larger η : faster learning
 - ullet Smaller η : less risk of overfit

• 100 iterations:

$$M_{100} = M_0 + \eta * \sum_{i=1}^{i=100} \gamma_i * T_i$$

Figure 5:

- Fit a shallow tree T_1 to the data: $M_1 = T_1$
- ② Fit a tree T_2 to the residuals.

•
$$M_2 = M_1 + \gamma T_2$$

Repeat (2) until stopping condition met

Final Model

$$M = M_1 + \eta \sum \gamma_i T_i$$

Cross-validation to Guard Against Overfit

Figure 6:

• Training error keeps decreasing, but test error doesn't

Best Practice (with xgboost())

• Run xgb.cv() with a large number of rounds (trees).

- xgb.cv()\$evaluation_log: records estimated RMSE for each round.
 - ► Find the number of trees that minimizes estimated RMSE: n_best

3 Run xgboost(), setting nrounds = n_b est

Let's Continue with Bike Rental Model

• First, prepare the data

```
vars<- c('hr' , 'holiday' , 'workingday' ,</pre>
'weathersit', 'temp', 'atemp', 'hum', 'windspeed')
treatplan <- designTreatmentsZ(bikesJan, vars,
                                verbose = FALSE)
newvars <- treatplan$scoreFrame %>%
filter(code %in% c("clean", "lev")) %>%
use series(varName)
 bikesJan.treat <- prepare(treatplan,
              bikesJan. varRestriction = newvars)
```

- For xgboost():
 - Input data: as.matrix(bikesJan.treat)
 - Outcome: bikesJan\$cnt

Training a model with xgboost() / xgb.cv()

```
library(xgboost)

cv <- xgb.cv(data = as.matrix(bikesJan.treat),
  label = bikesJan$cnt,
  objective = "reg:linear",
  nrounds = 100, nfold = 5, eta = 0.3,
  depth = 6, verbose = FALSE)</pre>
```

- Key inputs to xgb.cv() and xgboost()
 - data: input data as matrix ; label: outcome
 - objective: for regression "reg:linear"
 - nrounds: maximum number of trees to fit
 - eta: learning rate
 - depth: maximum depth of individual trees
 - ▶ nfold (xgb.cv() only): number of folds for cross validation

Find the Right Number of Trees

[1] 91

Find the Right Number of Trees

```
elog <- as.data.frame(cv$evaluation_log)

ggplot(elog, aes(x= iter, y = test_rmse_mean))+ geom_line()

(nrounds <- which.min(elog$test_rmse_mean))</pre>
```

Run xgboost() for final model

Predict with an xgboost() model

• Prepare February data, and predict

Model performances on Febrary Data

```
Model RMSE
1 Quasipoisson 118.964
2 Random Forest 74.292
3 XGB 47.611
```

XGBOOST outperforms the other models

Evaluating the model Visually Pred vs Actual XGB

Visual Results

