Universidade Federal do Ceará

ESTRUTURA DE DADOS ANÁLISE DE COMPLEXIDADE

Prof. Enyo José

Contexto

Algoritmo

Problema e instância

- Um problema é definido por:
 - Uma descrição dos parâmetros
 - Uma descrição das propriedades que a resposta deve satisfazer
- Uma instância para um problema fixa valores para todos parâmetros

Problema e instância

- Exemplo de problema:
 - Ordenar um conjunto de números em ordem crescente
 - **Entrada**: a₁, a₂, ..., a_n
 - **Saída**: a'₁, a'₂, ..., a'_n
 - **Propriedade**: A sequencia de saída é uma permutação dos valores de entrada tal que $a'_1 \le a'_2 \le ... \le a'_n$
- Instâncias para este problema: 10 20 5 40 33 1 88
 15 12 3 77

Problema x Algoritmo/programa

Algoritmo e Programa

- Qual melhor solução?
- Vários critérios:
 - Facilidade de uso;
 - Documentação;
 - Velocidade de Execução e Tempo de resposta;

Como comparar dois algoritmos?

- Método empírico (Experimental)
 - Executar os programas e verificar o tempo utilizado para obter resposta para diferentes tamanhos da entrada
 - Pode variar com base em variáveis como computador, linguagem de programação, compilador...
 - Depende de ferramenta específica
 - Exemplo

26/08/2019 Prof. Enyo José

■ Algoritm o 1 ■ Algoritm o 2

Análise de Algoritmos

- Auxilia na escolha do melhor algoritmo para um problema;
- Utiliza como base a complexidade computacional:

 Descritas por funções que tem como parâmetro o tamanho da entrada;

Vetor de 6 posições

Utiliza conceitos e modelos matemáticos;

Análise de Algoritmos

Complexidade do algoritmo = Trabalho = Número de operações efetuadas

Depende da entrada...

Problema: Encontrar um dado elemento em um vetor de n posições.

Algoritmo: Percorrer o vetor por cada posição até encontrar o elemento desejado,

tendo como entrada o vetor e o elemento a ser procurado.

Situação 1: Entrada: vetor de 100 posições e elemento a ser procurado = 77

26/08/2019 Prof. Enyo José 10

Análise de Algoritmos

- Podemos observar que duas situações foram consideradas:
 - Um otimista, no qual o elemento é encontrado na 1ª posição.
 Este cenário é o ideal, pois representa o menor tempo de execução ou limite inferior;
 - Um cenário no qual o elemento encontra-se na ultima posição ou não existe foi demonstrado. Trata-se do limite superior, cenário que representa o maior tempo de execução;
 - Adicionalmente, o elemento poderia estar em qualquer uma das posições. Para esta situação é levada em consideração a média de todas as situações. Chamamos de caso médio;

Complexidade de Algoritmos

- Existem três escalas de complexidade:
 - Melhor Caso
 - Caso Médio
 - Pior Caso

 Nas três escalas, a função f(N) retorna a complexidade de um algoritmo com entrada de N elementos.

Complexidade de Algoritmos - Melhor Caso

- Definido pela letra grega Ω (Ômega)
- É o menor tempo de execução em uma entrada de tamanho
 N;
- É pouco usado, por ter aplicação em poucos casos.
- Ex.:
 - Se tivermos uma lista de N números e quisermos encontrar algum deles assume-se que a complexidade no melhor caso é $f(N) = \Omega$ (1), pois assume-se que o número estaria logo na cabeça da lista.

Complexidade de Algoritmos - Caso Médio

- Definido pela letra grega θ (Theta)
- Dos três, é o mais difícil de se determinar
- Deve-se obter a média dos tempos de execução de todas as entradas de tamanho N, ou baseado em probabilidade de determinada condição ocorrer
- No exemplo anterior:
 - A complexidade média é P(1) + P(2) + ... + P(N)
 - Para calcular a complexidade média, basta conhecer as probabilidades de Pi;
 - Pi = 1/N, 1 <= i <= N
 - Isso resulta em P(1/N) + P(2/N) + ... + P(N/N)
 - Que resulta em 1/N(1+2+...+N)
 - Que resulta em $\frac{1}{N}$ $\left[\frac{N(N+1)}{2}\right]$
 - Que resulta em $f(N) = \theta \left(\frac{N+1}{2} \right)$

Complexidade de Algoritmos - Pior Caso

- Será o caso utilizado durante esse curso
- Representado pela letra grega O (O maiúsculo. Trata-se da letra grega ômicron maiúscula)
- É o método mais fácil de se obter. Baseia-se no maior tempo de execução sobre todas as entradas de tamanho
 N
- Ex.:
 - Se tivermos uma lista de N números e quisermos encontrar algum deles, assume-se que a complexidade no pior caso é O (N), pois assume-se que o número estaria, no pior caso, no final da lista. Outros casos adiante

Cálculo da Complexidade de Algoritmos (Análise dos passos)

- A complexidade de um algoritmo pode ser determinada a partir da complexidade de suas operações.
- De modo que algumas estruturas:
 - Sequência (De um modo geral possui peso 1) Comando que é executado e o controle passa para o próximo comando; Ex: i:= 1;
 - **Seleção** (Possui peso 1) Comando que ao ser executado permite desvios. Ex: if x = 10 then
 - Considerando-se o fragmento de código abaixo:

```
se cond então
expressão1
senão
expressão2
fim se
```

- o tempo de execução de um comando IF/THEN/ELSE nunca é maior do que o tempo de execução do teste condicional em si mais o tempo de execução da maior dentre as expressões expressão1 e expressão2.
- Ou seja: se expressão1 é O(n3) e expressão2 é O(n), então o teste é O(n3) + 1
 = O(n3).

Cálculo da Complexidade de Algoritmos (Análise dos passos)

- Repetição (Depende da quantidade de repetições) O tempo de execução de um laço é no máximo o tempo de execução das instruções dentro do laço (incluindo os testes) vezes o número de iterações;
- Aninhamento de Laços Analisar os mais internos. O tempo total de execução de uma instrução dentro de um grupo de laços aninhados é o tempo de execução da instrução multiplicado pelo produto dos tamanhos de todos os laços.
- Chamada de Funções A análise é feita como no caso de laços aninhados. Para calcular a complexidade de um programa com várias funções, determina-se primeiro a complexidade de cada uma das funções. Desta forma, na análise, cada uma das funções é vista como uma instrução com a complexidade que foi calculada.

Exemplo 1 - Algoritmo de inversão de uma sequência

- Inverter os dados dentro de um vetor
 - **Entrada**: vetor $(a_1, a_2, ..., a_n)$ e tamanho do vetor (n)
 - Saída: vetor (a'₁, a'₂, ..., a'_n)
 - **Propriedade**: A sequencia de saída é uma permutação dos valores de entrada tal que $a'_1 = a_n$, $a'_2 = a_{n-1}$, ..., $a'_n = a_1$

3n/2 + 1

Simplificações

- Considerando que os algoritmos trabalharão com uma grande quantidade de dados (Tamanho grande)
 - Podemos simplificar as expressões, removendo partes da expressão menores que a maior parte como constantes multiplicativas ou aditivas

Ex:
$$3n^2 + 2n + 1 \sim n^2$$

- Partindo deste princípio, expressões como 3n²+5n+7 e
 12n²+11n+32 podem ser consideradas equivalentes
- Assim, podemos simplificar a análise do algoritmo, identificando a operação dominante (mais complexa)
 - Isso pode evitar a análise linha-por-linha do algoritmo

Complexidade de Algoritmos

- A partir da análise destas funções, os algoritmos podem ser classificados quanto a ordem:
 - Complexidade Constante
 - Complexidade Linear
 - 3. Complexidade Logarítmica
 - 4. NlogN
 - Complexidade Quadrática
 - 6. Complexidade Cúbica
 - Complexidade Exponencial

Complexidade Constante

- São os algoritmos de complexidade O(k), onde k é a quantidade de operações;
- Independe do tamanho N de entradas;
- É o único em que as instruções dos algoritmos são executadas num tamanho fixo de vezes;
- Ex.:

```
bool vazia(int a[], int n){
     bool vazia = a[0] == a[n-1];
     return vazia;
}
```

Complexidade Linear

- São os algoritmos de complexidade O(n);
- Uma operação é realizada em cada elemento de entrada,
- Ex.: pesquisa de elementos em uma lista int busca(int all, int n, int x){

```
int busca(int a[], int n, int x){
     int i = 1;
     int pos = -1;
     while(a[i] != x){
            i = i+1:
            if (i \ge n)
                   pos = -1;
            }else{
                   pos = i;
       return pos;
```

Complexidade Logarítmica

- São os algoritmos de complexidade O(logn);
- Ocorre tipicamente em algoritmos que dividem o problema em problemas menores;
- Ex.: O algoritmo de Busca Binária;

```
Algoritmo 1.5 Algoritmo de busca binária.
Chamada: BuscaBin(p, r, S, x)
Entrada: índices p \in r, conjunto S e valor x
Saída: se x \in S, índice de x em S; senão, valor -1
Requisito: o conjunto S deve estar ordenado em ordem crescente, ou seja, S[i] < S[i+1],
    para todo i \in \{p, p+1, \cdots, r-1\}
 1: se p \leq r então
 2: b \leftarrow \lfloor (p+r)/2 \rfloor
 3: se S[b] = x então
          retorna b
 4:
      se S[b] > x então
 5:
          retorna BuscaBin(p, b-1, S, x)
 6:
       retorna BuscaBin(b+1, r, S, x)
 8: retorna -1
```

26/08/2019 Prof. Effyo Jose

Complexidade NlogN

- Como o próprio nome diz, são algoritmos que têm complexidade O(NlogN)
- Ocorre tipicamente em algoritmos que dividem o problema em problemas menores, porém juntando posteriormente a solução dos problemas menores

A maioria dos algoritmos de ordenação externa são de complexidade *logarítmica* ou *N Log N*

Complexidade Quadrática

- São os algoritmos de complexidade O(N²);
- Itens são processados aos pares, geralmente com um loop dentro do outro;
- Ex. neste exemplo Mat1, Mat2 e MatRes são matrizes de tamanho nxn:

```
for(int i=0; i< n; i++){
   for(int j=0; j< n; j++){
      MatRes[i][j] = Mat1[i][j] + Mat2[i][j];
}</pre>
```

Complexidade Cúbica

- São os algoritmos de complexidade O(n³)
- Itens são processados três a três, geralmente com um loop dentro do outros dois
- Ex. neste exemplo Mat é uma matriz de tamanho nxn e vet é um vetor de tamanho n:

Complexidade Exponencial

- São os algoritmos de complexidade O(2^N);
- Utilização de "Força Bruta" para resolvê-los (abordagem simples para resolver um determinado problema, geralmente baseada diretamente no enunciado do problema e nas definições dos conceitos envolvidos);
- Geralmente não são úteis sob o ponto de vista prático;

Comportamento das Ordens

Tempo de execução

Complexidade	n=5	n=10	n=50	n=100	n=1000	n=1000
O (log2n)	0.0000023	0.0000033	0.0000056	0.0000066	0.0000099	0.000013
O (n)	0.000005	0.000010	0.000050	0.000100	0.001000	0.010000
O (n.log2n)	0.000011	0.000033	0.000283	0.000684	0.009966	0.132877
O (n²)	0.000025	0.000100	0.002500	0.010000	1s	1min 40s
O (n³)	0.000125	0.001000	0.125000	1s	16min 40s	11dias 14h
O (n ⁵)	0.003125	0.100000	5min 13s	2h 47min	32 anos	∞
O (2 ⁿ)	0.000032	0.001024	35 anos	4x10 ¹⁶ anos	∞	∞
O (3 ⁿ)	0.000243	0.059049	2x10 ¹⁰ anos	∞	∞	∞

26/08/2019 Prof. Enyo José 29

^{*} Tabela extraída de Viana, Gerardo Valdísio Rodrigues, **Metaheurísticas e programação paralela em otimização combinatória**, Edições UFC, 1998.

Exemplo 2

para I de l até N faça
$$S[I] \leftarrow X[I] + Y[I]$$
 Fim para

Complexidade n.

Exemplo 3

```
int Maximo (int v[], int n){
  int i, n;
  int max;
   if n = 0 error (" Vetor vazio ")
   else {
   max = v[0];
   for (i = 0; i < n; i++)
       if v[i] > max then max = v[i];
   return max;
```

Exemplo 4

- O laço interno é executado 1+2+3+...+n-1+n = n(n+1)/2.
- O(n*(n+1)/2), ou seja, O(0,5(n²+n)), ou seja, O(n²)

Comparação entre Algoritmos

- Para um problema podem existir vários algoritmos;
 - Como decidir qual melhor algoritmo?
 - A complexidade dos algoritmos pode ser utilizada como critério para esta decisão;
- Para determinarmos a complexidade de um algoritmo, as operações fundamentais do mesmo são analisadas e uma função custo é criada com base nestas operações.
- A partir desta função é possível traçar gráficos para representar o seu comportamento.

Comparação entre Algoritmos

- E através destes gráficos é possível fazer uma comparação dos algoritmos através do **comportamento assintótico**.
- Comportamento assintótico = Estudo do crescimento das funções;

Comparação de Algoritmos

- O algoritmo mais eficiente é aquele que é melhor para as entradas;
- Uma função domina assintoticamente outra quando cresce mais rapidamente que a outra;
 - No gráfico uma função domina assintoticamente outra quando sua curva encontra-se acima da curva da outra função.
- Alguns casos podem ser observados:
 - 1. f sempre é inferior a g. Neste caso, o algoritmo f é melhor.

Comparação de Algoritmos

2. Às vezes f é superior e às vezes g é superior e os gráficos se interceptam em um número infinito de pontos. Empate

3. Se os gráficos se interceptam uma quantidade finita de vezes, o melhor é aquele que menor que o outro para valores grandes de n;

