BME - Grossgruppe 1

01.02.2019

2. Teilklausur

Gruppe: Date

Name:

Bsp1: Frequenzkennlinienverfahren (15 Punkte)

Gesucht ist die Übertragungsfunktion $F(j\omega)$ und das dazugehörige Bode- Diagramm.

Bsp2: Komplexe Rechnung

a) (5 Punkte)

Berechnen Sie den Gesamtstrom \underline{I} und stellen Sie alle Ströme und Spannungen anhand eines Zeigerdiagrammes in der komplexen Zahlenebene dar.

b) (10 Punkte)

Der Gesamtstrom \underline{I}_{neu} soll genau $\underline{I}_{neu}=2e^{j0^{\circ}}A=2A$ betragen Bestimmen und dimensionieren Sie die Netzwerkelemente im Zweig La dahingehend.

Der Schalter wird zum Zeitpunkt t=0 geschlossen. An keinem Bauelement ist vor dem Schaltzeitpunkt ein Strom oder eine Spannug vorhanden.

- Stellen Sie nachvollziehbar die allgememeine die Differentialgleichung (ohne Zahlenwerte)
- \bullet Lösen Sie die Differentialgleichung und geben Sie $u_L(t)$ und $i_L(t)$ an.
- ullet Berechnen Sie nun die Zahlenwerte für gegebene Bauteilwerte und skizzieren Sie $i_L(t)$ und $u_L(t)$ in Abhängigkeit der Zeit.

Bauteilwerte:

$$R_1 = 20\Omega$$
, $R_2 = 25\Omega$, $R_3 = 100\Omega$, $L = 5mH$, $U_0 = 20V$

Viel Erfolg!

Course: GET (UE) (2.TK) Nam

Date: 01 01.2019 Page: 1 Matr.No.:

Bro! R = 9012, R2=101, L= 9mH

$$\frac{1}{2} (j\omega) = \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{2}$$

$$\frac{L}{R_1} = \frac{10^{-3.9}}{90} = \frac{1}{1000}$$

$$\frac{1}{1+3\frac{\omega}{1000}} = \frac{1+3\frac{\omega}{10000}}{1+3\frac{\omega}{10000}} = \frac{1+3\frac{\omega}{10000}}{1+3\frac{\omega}{10000}} = \frac{1}{1+3\frac{\omega}{10000}} = \frac{1}{1+3\frac{\omega}{100000}} = \frac{1}{1+3\frac{\omega}{10000}} = \frac{1}{1+3\frac{\omega}{1000$$

a)
$$x_c = \frac{1}{300} = \frac{1}{310^{4} \cdot 10 \cdot 10^{-6}} = \frac{1}{310^{-1}} = \frac{10}{310^{-1}} = \frac{10}{310^{-1$$

$$I_R = \frac{U}{X_R} = \frac{10 e^{j0^\circ}}{10 e^{j0^\circ}} = 100 = e^{j0^\circ}$$

 $\exists X = (1-3)A$ $\exists X = \frac{U}{I_{x}} = \frac{10e^{30^{\circ}}}{\sqrt{3}e^{345^{\circ}}} = \sqrt{3} \cdot Se^{345^{\circ}} = (5+35) \text{ A}$

Course

R, 11R2 11R3 = 5000 = 10.1 \$ 00002=1] BARA

T = MAND, 5000 S