201709 evaluate C...

```
%pyspark
                                                                                FINISHED
# Simple script to demonstrate evaluation of CommonCrawl-derived domain vectors by using
 # classify domains according to high-level topic in the DMOZ dataset. Currently configu
# Bill's domain hex feature vectors from the 'Bill 6' notebook.
 # TODO: Should we really be trying to predict domain links instead?
 # PJ - 14 Sept 2017
 import csv
 import boto
 from pyspark.sql.types import *
 # Import the DMOZ domain category dataset
 # (downloaded from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910.
 dmoz_labels=sc.textFile('s3://billsdata.net/CommonCrawl/DMOZ/dmoz_domain_category.csv')
 header = dmoz_labels.first() # extract header
 dmoz_labels = dmoz_labels.filter(lambda row: row != header) # remove header row
dmoz_labels.take(1)
[u'"sdcastroverde.com", "Top/World/Galego/regional/Galicia/Lugo/municipalities/Castroverd
e"']
```

```
%pyspark

# For now, collect all labels into a list on one node
# TODO: Could probably do this much faster using map-reduce!
dmoz_labels_list = dmoz_labels.collect()

# Take a look at one record
dmoz_labels_list[1]

u'"www.232analyzer.com","Top/Computers/Hardware/Test_Equipment/Analyzers"'
```

```
%pyspark

# Make a dictionary of short domains (without www.) to top-level category label, as per
# http://dmoztools.net
labels={}
prefix="www."

# TODO: Could probably do this much faster using map-reduce!
for row in dmoz_labels_list[1:700000]: # Sample initially for speed (increasing to 1M corow = row.replace('"','').split(',')
```

```
fulldomain = row[0]
    shortdomain = fulldomain[len(prefix):] if fulldomain.startswith(prefix) else fulldomated label = row[1].split("/")[1].split("!")[0]
    labels[shortdomain]=label
    #print(shortdomain + " " + label)

# Take a look at the category for one domain from our dictionary
u'Computers'
```

```
%pyspark

# Summarize categories in the DMOZ data
from collections import Counter
Counter(labels.values())

Counter({u'World': 359715, u'Regional': 180492, u'Business': 42311, u'Society': 21918, u
'Arts': 18934, u'Shopping': 14576, u'Recreation': 13095, u'Computers': 12915, u'Sports':
9356, u'Science': 7543, u'Health': 6927, u'Reference': 6224, u'Games': 2892, u'Home': 20
07, u'News': 1089})
```

```
%pyspark

# Load Bill's domain feature vectors from s3, in the following format:
# (u'www.angelinajolin.com', [4.30406509320417, 0.02702702702702703, 0.0, 0.13513513513]

nfiles=128

# Load feature vectors from WAT files (from 'Bill 6' notebook):
inputURI = "s3://billsdata.net/CommonCrawl/domain_hex_feature_vectors_from_%d_WAT_files features_rdd = sc.textFile(inputURI).map(eval)
features_rdd.cache()
print("Nr domains:", features_rdd.count())
print(features_rdd.take(1))
```

('Nr domains:', 2626203)

[(u'www.iggl.de', [3.6375861597263857, 0.5, 0.0, 0.0, 0.02564102564102564, 0.0, 0.0, 0.0 0, 0.05128205128205128, 0.0, 0.02564102564102564, 0.02564102564, 0.153846153846153 85, 0.20512820512820512, 0.0, 0.02564102564102564, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.

%pyspark FINISHED

Convert to a python dictionary for ease-of-use initially

TODO: Find a better Spark way to do this!

 $features_sample = features_rdd.sample(0, 0.07, seed=42) \# TODO: Investigate memory error features_sample = features_rdd.sample(0, 0.07, seed=42) # TODO: Investigate memory error features_sample = features_rdd.sample(0, 0.07, seed=42) # TODO: Investigate memory error features_sample(0, 0.07, seed=42) # TODO: Investigate memory error features_sample(0.07, seed=42) # TO$

features_dict = features_sample.collectAsMap()

#features_dict['232analyzer.com']

print(len(features_dict.keys()))

features_dict.itervalues().next() # Output one vector for testing

183530

[4.770684624465665, 0.5338983050847458, 0.0, 0.0, 0.008403361344537815, 0.0, 0.0, 0.0, 0 4537815126, 0.025210084033613446, 0.058823529411764705, 0.01680672268907563, 0.008403361 344537815, 0.03361344537815126, 0.21008403361344538, 0.11764705882352941, 0.0, 0.0252100

%pyspark FINISHED

Filter embeddings for only those vectors that have entries in the DMOZ dictionary (i...

```
new_vec_ids=[]
 new_vec_embs=[]
 ground_truth=[]
 def intersect(a, b):
      return list(set(a) & set(b))
 common_domains=intersect(features_dict.keys(), labels.keys())
 print(len(common_domains))
 print(common_domains[1])
 # Iterate over all the domain IDs for which we also have a vector embedding
 for domain in common_domains:
     new_vec_ids.append(domain)
     new_vec_embs.append(features_dict[domain])
     ground_truth.append(labels[domain])
 # Verify lengths of each list
1092
dailynews.com
1092 1092 1092
```

```
# Split into training and test sets
```

Split into training and test sets
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(new_vec_embs, ground_truth, test_si;

```
%pyspark FINISHED
```

```
# Summarize labels in our test data
Counter(y_test)
```

```
Counter({u'World': 197, u'Regional': 99, u'Computers': 42, u'Arts': 33, u'Society': 32, u'Reference': 25, u'Business': 24, u'Science': 24, u'Recreation': 15, u'Health': 13, u'G ames': 12, u'Shopping': 11, u'Home': 9, u'Sports': 7, u'News': 3})
```

```
%pyspark FINISHED
```

```
# Fit classifiers to the training data
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier

neigh = KNeighborsClassifier(n_neighbors=3, metric='cosine', algorithm='brute')
neigh.fit(X_train, y_train)

rf = RandomForestClassifier(max_depth=2, random_state=0)
rf.fit(X_train, y_train)
```

%pyspark FINISHED

Attempt to classify all test points using nearest neighbours
from sklearn.metrics import classification_report
print(classification_report(y_test, neigh.predict(X_test)))
print(classification_report(y_test, rf.predict(X_test)))

	precision	recall	f1-score	support
Arts	0.03	0.06	0.04	33
Business	0.03	0.08	0.05	24
Computers	0.06	0.07	0.07	42
Games	0.00	0.00	0.00	12
Health	0.00	0.00	0.00	13
Home	0.04	0.11	0.06	9
News	0.00	0.00	0.00	3
Recreation	0.00	0.00	0.00	15
Reference	0.08	0.12	0.09	25
Regional	0.24	0.21	0.23	99
Science	0.00	0.00	0.00	24
Shopping	0.00	0.00	0.00	11
Society	0.30	0.09	0.14	32
Sports	0.00	0.00	0.00	7
World	0.48	0.37	0.41	197
avg / total	0.25	0.20	0.21	546
	nnacicion	recall	f1_ccono	cunnont

%pyspark READY