CS2105 Introduction to Computer Networks

Lecture 6 Network Layer: Data Plane

17 September 2018

Assignments

Assignment 1 due this weekend

- Submit on IVLE
- Zip your file correctly
- Test on sunfire using our autotester

Assignment 2 released

- RDT using UDP
- Timings subject to changes

PREVIOUS LECTURE

UDP Overview

Connection-less

- No setup needed → Reduce delay

No connection state at sender or receiver

- Need less resources

Small header size

- Less overhead

No congestion control

- Can blast as fast as desired

TCP Overview

Connection-oriented

 handshaking (exchange of control messages) before sending app data

Reliable, in-order stream abstraction

- Application passes data to TCP and TCP forms packets in view of MSS (maximum segment size)
- Protocol is rather complicated

Flow control and congestion control

TCP's Reliable Transfer Algorithm

Sequence number

- in terms of bytes, not packets/segments

Acknowledgements are

- Cumulative
- Piggybacked on data segments

Retransmit segments on

- Timeout (RTO estimated from taking EWMA of RTT)
- 3 Duplicate ACKs received

PREVIOUS LECTURE

TCP Connection Establishment

3-way handshake to establish connection

- \rightarrow SYN
- ← SYN/ACK
- → ACK

Teardown procedure

- Each side closes their own connection by sending FIN

Learning Outcomes

After this class, you are expected to:

- describe the basic services the network layer provides.
- know the purpose of DHCP and how it works.
- know IP address, subnet, subnet mask and address allocation
- know how ping and traceroute are implemented with ICMP
- know how longest prefix forwarding in a router works.

Chapter 4: Roadmap

4.1 Introduction

4.3 The Internet Protocol (IP)

- 4.3.1 Datagram Format
- 4.3.2 Datagram Fragmentation
- 4.3.3 IPv4 Addressing
- 4.3.4 NAT

Next Lecture

IPv4 addresses has 32 bits 4,294,967,296 possible addresses

The Internet has ran out of IPv4 addresses in 2012

The hacks used to keep the Internet growing, are brilliant

Application

Transport

Network

Link

Physical

Layering

The network layer resides on end hosts and routers

Responsibility of Network layer

Host-to-host communication

- Forwarding: determining which output link to forward a packet
- Routing: determining the route or path that packets should follow

Which of these is a router?

What is a router

A device that

- forward packets between networks
- perform routing protocols

A Cisco router. Note the number of "LAN" ports

"Narrow waist" of the Internet

Application Transport Network Link Physical

Focus of CS2105 is on datagram networks.

You can read about virtual circuit in your own time.

Network Layer Services

Chapter 4: Roadmap

- 4.1 Introduction
- 4.4 The Internet Protocol (IP)
 - 4.4.1 Datagram Format
 - 4.4.2 IPv4 Addressing
 - 4.4.3 ICMP
- 4.5 Routing Algorithms

Internet Protocol

version 4

IPv4

IPv4 is still the dominant version today.

IPv6 will eventually replace IPv4, just not so soon.

Interested? Read Chapter 4.4.4

IP Address

An IP address is associated with an interface

Network Interface

A router has multiple interfaces \rightarrow multiple IP addresses

Not to be confused with ports

IP Address

Used to identify a host (or router)

Since an interface needs to be on a host or router

IPv4

- 32-bit integer, typically expressed in dot-decimal notation
- Binary:

Did you configure an IP address on your hosts (phone, laptop, desktop)?

Probably not. It was configured automatically

Dynamic Host Configuration Protocol

Allows a host to dynamically obtain an IP address from a DHCP server when it joins a network

- IP address is renewable
- IP address is reusable (other hosts can use if you leave)
- Supports mobile users who want to join different networks

Four step process

- 1. Host broadcast a Discover message
- 2. DHCP server(s) responds with an Offer
- 3. Host Request for the IP address
- 4. DHCP server ACK-nowledges assignment

Step 1: DHCP Discover

New host broadcasts DHCP discover msg

src: 0.0.0.0:68

dst: 255.255.255.255:67

yiaddr: 0.0.0.0

transaction Id: 654

Step 2: DHCP Offer

DHCP server(s) responds with DHCP offer

src: 0.0.0.0:68

dst: 255.255.255.255:67

yiaddr: 0.0.0.0

transaction Id: 654

src: 223.1.2.5:67

dst: 255.255.255.255:68

yiaddr: 223.1.2.4

transaction Id: 654

DHCP server: 223.1.2.5

Lifetime: 3600 secs

Step 3: DHCP Request

Host selects from offers and send request

src: 0.0.0.0:68

dst: 255.255.255.255:67

yiaddr: 0.0.0.0

transaction Id: 654

src: 0.0.0.0:68

dst: 255.255.255.255:67

yiaddr: 223.1.2.24

transaction Id: 655

DCHP server: 223.1.2.5

Lifetime: 3600 secs

src: 223.1.2.5:67

dst: 255.255.255.255:68

yiaddr: 223.1.2.4

transaction Id: 654

DHCP server: 223.1.2.5

Lifetime: 3600 secs

Step 4: DHCP ACK

Server confirms requested parameters

src: 0.0.0.0:68

dst: 255.255.255.255:67

yiaddr: 0.0.0.0

transaction Id: 654

src: 0.0.0.0:68

dst: 255.255.255.255:67

yiaddr: 223.1.2.4

transaction Id: 655

DCHP server: 223.1.2.5

Lifetime: 3600 secs

src: 223.1.2.5:67

dst: 255.255.255.255:68

yiaddr: 223.1.2.4

transaction Id: 654

DHCP server: 223.1.2.5

Lifetime: 3600 secs

src: 223.1.2.5:67

dst: 255.255.255.255:68

yiaddr: 223.1.2.4

transaction Id: 655

DHCP server: 223.1.2.5

Lifetime: 3600 secs

More on DHCP

In addition to host IP address assignment, DHCP may also provide a host additional network information:

- IP address of first-hop router
- IP address of local DNS server
- Network mask (indicating network prefix versus host ID of an IP address)

DHCP runs over UDP

- DHCP server port number: 67
- DHCP client port number: 68

Special IP Addresses

127.0.0.1/8	Loopback address. Typically using 127.0.0.1/32
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16	Private addresses. Local communication in a private network.
255.255.255/32	Broadcast address. All hosts on the same subnet will receive the datagram
	datagram

Full list of special addresses in RFC 5735

4,294,967,296 possible addresses ran out in 2012

But only 2.497 billion hosts (Why?)

Hierarchical Addressing

It is impossible to forward/route with random IP addresses

Hierarchical addressing to aggregate IP addresses

Group IP addresses into subnets

Hierarchical Addressing

Allows efficient routing advertisement

Longest Prefix Match

Suppose Organisation 2 switches ISP

But wants to retain its IP address block

Longest Prefix Match

Question: Which router to forward

- packet with destination IP 200.23.20.2?
- packet with destination IP 200.23.19.3?

Net Mask	Next hop
200.23.16.0/20	R1
200.23.18.0/23	R2
199.31.0.0/16	R2

Longest Prefix Match

packet with destination IP 200.23.20.2? → R1

11001000 00010111 00010100 00000010

– packet with destination IP 200.23.19.3? → R2

11001000 00010111 00010011 00000011

Net Mask	Net mask in binary	Next hop
200.23.16.0/20	11001000 00010111 00010000 00000000	R1
200.23.18.0/23	11001000 00010111 0001 <mark>001</mark> 0 00000000	R2
199.31.0.0/16	11000111 00011111 00000000 00000000	R2
		•••

IP Address and Subnet

An IP address has two parts

Subnet

Subnet is a network formed by "directly" interconnected hosts

- Hosts in the same subnet have the same network prefix
- Hosts can reach other hosts on the same subnet without needing the router
- Router is needed to reach other networks, or the outside world

Subnet Mask

Used to determine which subnet an IP address belongs to.

made by setting all subnet prefix bits to "1"s and host ID bits to "0"s.

Example: for IP address 200.23.16.42/23:

IP address: 11001000 00010111 00010000 00101010

Subnet mask: 11111111 11111111 11111110 00000000

– Subnet mask in dot-decimal:

255.255.254.0

Classful Addressing

In 1981, RFC 791

Class A: 8-bit prefix

```
0 | 127 networks | 2<sup>24</sup> ≈ 16 million addresses
```

Class B: 16-bit prefix

```
1 0 2^{14} = 16,384 \text{ networks} 2^{16} = 65,536 \text{ addresses}
```

Class C: 24-bit prefix

```
1 1 0 2^{21} \approx 2 million networks 2^8 = 256 addresses
```

Organizations can buy Class A, B or C address blocks

- Class C too small, and Class B too big
- Lots of unused addresses

Classless Inter-Domain Routing

Replaced classful networking in 1993

The Internet today uses CIDR

- Subnet of arbitrary length
- Address format: x.x.x.x/y where y is the subnet mask

200.23.16.1/23
This subnet has 2⁹ IP addresses

IP Address Allocation

Organizations obtains a block of IP address from ISP's address space

	Binar y address			Decimal address		
ISP's Block	11001000	00010111	0001	0000	00000000	200.23.16.0/20
Organization 1	11001000	00010111	0001	0000	00000000	200.23.16.0/23
Organization 2	11001000	00010111	0001	0010	00000000	200.23.18.0/23
		•	••			***
Organization 8	11001000	00010111	0001	1110	00000000	200.23.30.0/23

IPv4 address space registry

http://www.iana.org/assignments/ipv4-address-space/

Use whois command to query owner

whois 137.132.0.0/16

IP Address Allocation

How does an ISP get a block of addresses?

ICANN: Internet Corporation for Assigned Names and Numbers

- Allocates addresses
- Manages DNS
- Assigns domain names, resolves disputes

How to solve the lack of IPv4 addresses?

Private networks

Your ISP only gives you one IP address. But you have several hosts.

HOW?

Create a private network

Perform NAT

Advantages of NAT

Only need one public IP address

- Can change ISP without changing internal host addresses

All hosts use private address

- Can change internal IP without affecting outside world

Hosts within local network not explicitly addressable and visible to outside world

- Effectively firewalled

Chapter 4: Roadmap

- 4.1 Introduction
- 4.4 The Internet Protocol (IP)
 - 4.4.1 Datagram Format
 - 4.4.2 IPv4 Addressing
 - 4.4.3 ICMP
- 4.5 Routing Algorithms

ver			totall	ength
Transport segment (Typically TCP or UDP)				

ver			total length	
i	identification		flags	offset
T ⁻	ΓL	protocol	header c	hecksum
Transport segment (Typically TCP or UDP)				

Datagram Fragmentation

Different links may have different MTU

Large datagrams have to be fragmented by router

Destination host will reassemble the datagram

Illustration

Header fields to identify fragments

Example

ver total length identification flags offset TTL protocol header checksum

Frag Flag set to:

- 1 if there is next fragment
- 0 if this is last fragment

Offset is in multiple of 8-bytes

e.g. MTU = 500 bytes

ver	IHL	TOS	total length		
identification		flags	offset		
T	TTL protocol		header c	hecksum	
options					
Transport segment					
(Typically TCP or UDP)					

ver	IHL	TOS	total length		
identification		flags	offset		
T	ΓL	protocol	header c	hecksum	
	source IP address				
destination IP address					
Transport segment (Typically TCP or UDP)					

Chapter 4: Roadmap

- 4.1 Introduction
- 4.4 The Internet Protocol (IP)
 - 4.4.1 Datagram Format
 - 4.4.2 IPv4 Addressing
 - 4.4.3 ICMP
- 4.5 Routing Algorithms

Network Layer Services

ICMP

Internet Control Message Protocol

ICMP Header

ver	IHL	TOS	total length		
identification		flags offset			
T	TTL 0001		header checksum		
	source IP address				
	destination IP address				
ty	type code checksum			ksum	
	rest of ICMP data				

ICMP Type and Code

Туре	Code	Description
8	0	echo request
0	0	echo respond
3	1	destination host unreachable
3	3	destination port unreachable
11	0	TTL expired
12	0	bad IP header

ping

traceroute

For your own interest

Virtual Circuit

What's Inside a Router

IPv6

IPSec