Lab12-Incompleteness

CS363-Computability Theory, Xiaofeng Gao, Spring 2015

- * Please upload your assignment to FTP or submit a paper version on the next class.

 * Name:_____ StudentId: _____ Email: _____
- 1. Write the formal counterpart of the following informal statements using the language L with alphabet $\{0, 1, +, \times, =\}$, logical notions $\{\neg, \lor, \land, \rightarrow, \lor, \exists\}$, variables, and other symbols.
 - (a) x is a perfect square.
 - (b) $x \mod y = z$.
- 2. Show that \mathscr{F} is productive.
- 3. Effectively Recursively Inseparable

Let $(\mathscr{A}, \mathscr{D})$ be a consistent recursively axiomatized formal system for which the following two properties hold:

- (1) If $M(x_1, \dots, x_n)$ is a decidable predicate, $\sigma(\mathsf{x}_1, \dots, \mathsf{x}_n)$ is the statement of L that is the formal counterpart of $M(x_1, \dots, x_n)$, then for any $a_1, \dots, a_n \in \mathbb{N}$,
 - i. If $M(a_1, \dots, a_n)$ holds, then $\sigma(\mathsf{a}_1, \dots, \mathsf{a}_n)$ is provable.
 - ii. If $M(a_1, \dots, a_n)$ does not hold, then $\neg \sigma(a_1, \dots, a_n)$ is provable.
- (2) For each natural number n,
 - i. If $n \in K_0$ then $\mathbf{n} \in \mathsf{K}_0$ is provable.
 - ii. If $n \in K_1$ then $n \in K_1$ is provable.
 - iii. If $n \in K_1$ is provable, then $n \notin K_0$ is also provable.

If we define $\begin{cases} Pr^{**} = \{n : n \in \mathsf{K}_0 \text{ is provable}\}, \\ Ref^{**} = \{n : n \in \mathsf{K}_0 \text{ is refutable}\} = \{n : n \notin \mathsf{K}_0 \text{ is provable}\}, \end{cases}$ then answer the following two questions.

- (a) Show that Pr^{**} and Ref^{**} are effectively recursively inseparable.
- (b) Let $Pr = \{n : \theta_n \text{ is provable}\}$ and $Ref = \{n : \neg \theta_n \text{ is provable}\}$. Prove that Pr and Ref are effectively recursively inseparable. (*Hint*. Extend the idea of theorem 7-3.2 to pairs of effectively recursively inseparable sets.)