Tutorial 5.1

The following linearly non-separable patterns below have to be classified into two classes using a layered neural network and an appropriate pattern-image space transformation. Design a two-layer neural classifier with the bipolar discrete time TLU neuron based on the appropriate space mapping.

NB: Using the minimum number of TLU units.

Class 2
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 $\mathbf{x}_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\mathbf{x}_5 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $\mathbf{x}_{10} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$

Class 1
$$\mathbf{x}_4 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 $\mathbf{x}_6 = \begin{bmatrix} 2 \\ 1.5 \end{bmatrix}$ $\mathbf{x}_7 = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$ $\mathbf{x}_8 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\mathbf{x}_9 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$

Tutorial 5.2

Linearly non-separable patterns as shown in the figure below have to be classified into two classes using a layered neural network. Construct the separating planes in the pattern space and draw patterns in the image space. Calculate all weight and threshold values of related TLU neuron units.

NB: Using the minimum number of TUL units.

$$o_1 = \operatorname{sgn}(-x_1 + x_2 - x_3 + 2)$$

 $o_2 = \operatorname{sgn}(x_1 - x_2 + 1)$

$$o_3 = \text{sgn}(o_1 + o_2 - 1.5)$$

0) through points (1-10), (0-11) and (10) The decision pleats are:

b) through points (-101), (011) and (01-1

G 0 1+7x-1x=

6	0	-	8	D	PATTERN
1	1	-	-	1	×
-	-	-	1	-	×
1	-	-	-	-	CA
-	-		L		0
1	-1		-		02
2	2		2		CLASS

02-39n(x,-x2+1)

01-5gn(-x1+x2-x3+2)

O Chasil

laterne class | don 0,00 and 0,00 Therefore 03=5gn (0,+02-1.5).

TLU TLV