MSL / FISH 604 Module 2 (part 3): Basic statistical concepts

Instructor: Franz Mueter Lena Point, Rm 315 796-5448 fmueter@alaska.edu

Review / Preview

- Probability and probability distributions
- Discrete distributions
 - Bernoulli
 - Binomial
 - Multinomial
 - Poisson
 - Negative binomial
- Next: continuous distributions
 - Uniform
 - Exponential
 - Normal or Gaussian
 - Log-normal
 - Gamma

Today

Objective and outcomes

Objectives

 Review / introduce <u>continuous</u> probability distributions (probability density functions or pdf)

Learning outcomes

- Know the major continuous probability distributions and their basic characteristics & uses:
 - Shape
 - Support (what values can the random variable take)
 - Parameters and their interpretation
 - Uses in science/ecology
- Understand how these distributions are used in statistics and be able to apply them

Continuous distributions

Probability density function: pdf or f(x):

$$P(a < X < b) = \int_a^b f(x) dx$$

<u>Cumulative distribution function:</u> cdf of F(x)

$$F(a) = P(X < a)$$
$$= \int_{-\infty}^{a} f(x) dx$$

Uniform

Uniform density on Interval [a,b]:

U(a,b)

Mean:

Variance:

Uniform

Uniform density on Interval [a,b]:

U(a,b)

$$f(x) = \begin{cases} 1/(b-a), & a \le x \le b \\ 0, & x < a \text{ or } x > b \end{cases} \stackrel{\text{All geographs}}{\underset{\text{of }}{\text{lightensys}}} f(x)$$

Mean:

$$E(x) = (a+b)/2$$

Variance:

$$|Var(x) = (b-a)^2/12$$

Example: Uniform

Spatial randomness:

• $x \sim U(0,1), y \sim U(0,1)$

Exponential

- Often modeled to use life times or waiting times between events
- Completely specified by a single parameter λ (or t)
- Probability density function:

$$f(x) = \lambda e^{-\lambda x}, \qquad x \ge 0$$

Mean and variance:

Examples: Exponential

- Lifetime of electronic components
- Waiting times in a queue
- Time between successive random events (e.g. earthquakes, eddies testing for randomness)
- Also used to model distances:
 - distance between mutations on a DNA strand
 - Distance between scallops in a scallop bed

Exponential distributions

Exponential distribution

= mean 'open time'

- Sum of open times for all ion channels in a nerve cell
- Random process with an average rate of $\lambda=1$ per unit time (ms)
- What are the chances that channels are open more than 3 ms?
- How do drugs affect open times?

Exponential distribution

Histograms of open times at varying concentrations of a channel blocking agent (suxamethonium) with fitted exponential densities (where the rate parameter $\lambda = 1/\tau$)

MSL

FISH

From Rice (1995)

Normal (Gaussian)

- Familiar "bell-shaped" curve
- Specified by two parameters, the mean (μ) and the variance (σ^2)
- Probability density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Mean: $E(x) = \mu$ Variance: $Var(x) = \sigma^2$

Normal distributions

Normal distribution

Why is it so ubiquitous?

- Measurement errors tend to follow a normal distribution (Gauss, Laplace)
- Data on heights and weights of human and animal populations tend to be normally distributed (Quetelet & Galton)
- Central Limit Theorem: Sum (or average) of a large number of independent random variables is approximately normally distributed
 - E.g. as n increases in the binomial distribution, the sum of outcomes approaches a normal distribution

Normal distribution

Exact 95% confidence interval: $\mu \pm 1.96 * \sigma$

Normal distribution in models

Most commonly used distribution for residuals in linear and non-linear models:

$$y = f(X, \theta) + \varepsilon$$

where: $\varepsilon \sim N(0, \sigma^2)$

Remember: It's not the data (y), but the error (ε) that is assumed to be normally distributed!!

Pollock example

From: Mueter et al. (2006)

Pollock example

Log-normal distribution

- Probability of a random variable whose logarithm is normally distributed
- Probability density function:

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

Mean:

$$E(x) = e^{\mu + \sigma^2/2}$$

Variance:

$$Var(x) = (e^{\sigma^2} - 1) \cdot e^{2\mu + \sigma^2}$$

Examples: Log-normal

Abundances (where present) of jellyfish in Kodiak trawl samples (n = 36):

Mean and variance on log-scale:

$$\hat{\mu} = 3.10$$

$$\hat{\sigma}^2 = 1.79$$

Exercise: Compute mean and variance on original scale!

Gamma distribution

• Flexible class for modeling <u>non-negative</u> random numbers, characterized by a shape (α) and a rate parameter (β) :

$$f(x) = x^{\alpha - 1} \frac{\beta^{\alpha} e^{-\beta x}}{\Gamma(\alpha)} \quad \text{for } x > 0$$

Mean:

$$\mathsf{E}(\mathsf{x}) = \alpha/\beta$$

Variance:

$$Var(x) = \alpha / \beta^2$$

Gamma distributions

Examples: Gamma

- Gamma is a generalization of the exponential; it describes the waiting time until the r^{th} event for a process that occurs randomly over time at a rate of β
- Used to model patterns of occurrence of earthquakes (in time, in space, magnitude) (more flexible than exponential)
- Distribution of lifetimes
- Abundance of animals in random samples (similar to log-normal)

Further reading

Assigned reading:

 Gotelli, N.J., and Ellison, A.M. 2004. A Primer of Ecological Statistics. (Chapter 2)

Additional reading:

- Balakrishnan, N., 2003. A primer on statistical distributions. Wiley-Interscience, NY.
- Evans, M., Hastings, N., and Peacock, B. 2000.
 Statistical Distributions. Wiley Series in Probability and Statistics. John Wiley & Sons.