

LM118/LM218/LM318 Operational Amplifiers

General Description

The LM118 series are precision high speed operational amplifiers designed for applications requiring wide bandwidth and high slew rate. They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

The LM118 series has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over $150V/\mu s$ and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under 1 μs .

The high speed and fast settling time of these op amps make them useful in A/D converters, oscillators, active fil-

ters, sample and hold circuits, or general purpose amplifiers. These devices are easy to apply and offer an order of magnitude better AC performance than industry standards such as the LM709.

The LM218 is identical to the LM118 except that the LM218 has its performance specified over a -25°C to $+85^{\circ}\text{C}$ temperature range. The LM318 is specified from 0°C to $+70^{\circ}\text{C}$.

Features

- 15 MHz small signal bandwidth
- Guaranteed 50V/µs slew rate
- Maximum bias current of 250 nA
- Operates from supplies of $\pm 5V$ to $\pm 20V$
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

Connection Diagrams

Dual-In-Line Package

Top View

Order Number LM118J/883* See NS Package Number J14A

Dual-In-Line Package

Top View

Order Number LM118J-8/883*, LM318M or LM318N See NS Package Number J08A, M08A or N08B

Metal Can Package**

COMPENSATION-2

TL/H/7766-2

Top View

**Pin connections shown on schematic diagram and typical applications are for TO-5 package.

Order Number LM118H, LM118H/883*, LM218H or LM318H See NS Package Number H08C

*Available per JM38510/10107.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)

 $\pm 20 V$ Supply Voltage Power Dissipation (Note 1) 500 mW Differential Input Current (Note 2) $\pm 10 \text{ mA}$ Input Voltage (Note 3) ±15V Output Short-Circuit Duration Continuous

Operating Temperature Range

LM118 -55°C to +125°C LM218 -25°C to +85°C LM318 0° C to $+70^{\circ}$ C

-65°C to +150°C Storage Temperature Range

Lead Temperature (Soldering, 10 sec.)

Hermetic Package 300°C Plastic Package 260°C

Soldering Information

Dual-In-Line Package Soldering (10 sec.)

260°C Small Outline Package

Vapor Phase (60 sec.) 215°C Infrared (15 sec.) 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD Tolerance (Note 7) 2000V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM118/LM218			LM318			Units
		Min	Тур	Max	Min	Тур	Max	Onits
Input Offset Voltage	$T_A = 25^{\circ}C$		2	4		4	10	mV
Input Offset Current	$T_A = 25^{\circ}C$		6	50		30	200	nA
Input Bias Current	$T_A = 25^{\circ}C$		120	250		150	500	nA
Input Resistance	$T_A = 25^{\circ}C$	1	3		0.5	3		МΩ
Supply Current	$T_A = 25^{\circ}C$		5	8		5	10	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}\text{C}, V_S = \pm 15\text{V}$ $V_{OUT} = \pm 10\text{V}, R_L \ge 2 \text{ k}\Omega$	50	200		25	200		V/mV
Slew Rate	$T_A = 25^{\circ}C, V_S = \pm 15V, A_V = 1$ (Note 5)	50	70		50	70		V/µs
Small Signal Bandwidth	$T_A = 25^{\circ}C, V_S = \pm 15V$		15			15		MHz
Input Offset Voltage				6			15	mV
Input Offset Current				100			300	nA
Input Bias Current				500			750	nA
Supply Current	T _A = 125°C		4.5	7				mA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$ $R_L \ge 2 k\Omega$	25			20			V/mV
Output Voltage Swing	$V_S = \pm 15V, R_L = 2 k\Omega$	±12	±13		±12	±13		V
Input Voltage Range	$V_S = \pm 15V$	±11.5			±11.5			V
Common-Mode Rejection Ratio		80	100		70	100		dB
Supply Voltage Rejection Ratio		70	80		65	80		dB

Note 1: The maximum junction temperature of the LM118 is 150°C, the LM218 is 110°C, and the LM318 is 110°C. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of 160°C/W, junction to ambient, or 20°C/W, junction to case. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: These specifications apply for $\pm 5\text{V} \leq \text{V}_{\text{S}} \leq \pm 20\text{V}$ and $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$ (LM118), $-25^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +85^{\circ}\text{C}$ (LM218), and $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C}$ (LM318). Also, power supplies must be bypassed with 0.1 μF disc capacitors.

Note 5: Slew rate is tested with $V_S = \pm 15V$. The LM118 is in a unity-gain non-inverting configuration. V_{IN} is stepped from -7.5V to +7.5V and vice versa. The slew rates between -5.0 V and +5.0 V and vice versa are tested and guaranteed to exceed $50 \text{V}/\mu\text{s}$.

Note 6: Refer to RETS118X for LM118H and LM118J military specifications.

Note 7: Human body model, 1.5 k Ω in series with 100 pF.

