Peal III

$$S = \int_{0}^{\infty} f(x) dx = F(b) - F(a)$$

$$\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots = -\frac{3}{7} \ln 2$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

$$\sum_{x} 2^{x}(x) = 1 - x$$

Зміст

1	Her	Невизначений інтеграл				
	1.1	Первісна, основні означення невизначеного інтегралу				
	1.2	Заміна змінної				
	1.3	Інтегрування частинами				
	1.4	Інтегрування дробово-раціональних функцій				
	1.5	Інтегрування тригонометричних функцій				
	1.6	Інтегрування ірраціональних виразів				
	1.7	Диференціальний біном				
2	D	вначений інтеграл				
4	Би з	Підхід Рімана				
	$\frac{2.1}{2.2}$	Суми Дарбу				
	$\frac{2.2}{2.3}$	Існування інтеграла				
	$\frac{2.5}{2.4}$	Класи інтегрованих функцій				
	2.5	Властивості інтегралів				
	2.6	Інтеграл як функція верхньої межі				
	2.7	Обчислення визначених інтегралів				
		2.7.1 Заміна змінної				
		2.7.2 Інтегрування частинами				
	2.8	Застосування визначеного інтеграла				
		2.8.1 Площа криволінійної трапеції				
		2.8.2 Площа криволінійного сектора				
		2.8.3 Крива, яка спрямовується				
		2.8.4 Об'єм тіла обертання				
		•				
3	Нев	власні інтеграли 30				
	3.1	Основні означення				
	3.2	Властивості				
	3.3	Дослідження на збіжність/розбіжність				
		3.3.1 Дослідження для додатних функції				
		3.3.2 Дослідження для знакодовільних функцій				
	3.4	Особливі випадки				
	3.5	Невласний інтеграл в сенсі головного значення по Коші				
4	Par	Ряди				
-	4.1	Первинний аналіз збіжності та арифметика рядів				
	4.2	Знакододатні ряди				
	4.3	Знакозмінні ряди				
	4.4	Трошки детально про абсолютно збіжні ряди				
	4.5	Трошки про умовно збіжні ряди				
5	Φ yı	нкціональні ряди 53				
	5.1	Функціональні послідовності				
	5.2	Функціональні ряди				
	5.3	Властивості рівномірно збіжних функціональних рядів				
	5.4	Степеневі ряди				
	5.5	Ряди Тейлора				
c	D _a -	NULL TO \mathbb{D}^m				
6	6.1	уп до \mathbb{R}^m				
	6.2					
	6.2					
	6.4	Функція від декількох змінних. Границя функції				
	6.5	Символіка Ландау				
	6.6	Границя та неперервність векторнозначної функції кількох змінних, символіка Ландау 74				
	6.7	Крива в \mathbb{R}^m				
	٠.١	p				

7	Диф	еренційованість 76			
	7.1	Для функції із багатьма змінними	76		
	7.2	Для векторнозначних функцій	79		
	7.3	Похідна за напрямком. Градієнт			
	7.4	Неявно задані функції			
	7.5	Обернені функції			
	7.6	Геометричне та алгебраїчне застосування			
		7.6.1 Дотична площина, нормальна пряма поверхні			
		7.6.2 Дотична пряма, нормальна площина кривої			
		7.6.3 Приблизне обчислення			
	7.7	Диференціювання та похідні старших порядків			
	7.8	Формула Тейлора			
	7.9	Локальні екстремуми			
	7.10	Умовні локальні екстремуми			
8	Інтеграли з параметром		98		
	8.1	Основні означення та властивості	98		
	8.2	Невласні інтеграли з параметром. Ознаки збіжності			
	8.3	Властивості невласного інтегралу			
	8.4	Інтеграл Діріхле			
	8.5	Інтеграл Ейлера-Пуассона			
	8.6	Гамма-функція			
	8.7	Бета-функція			
	8.8	Зв'язок між Γ та B функціями			

1 Невизначений інтеграл

У рамках даного розділу розглядатимуться множини I, J, що будуть проміжками одного з типів: [a, b], (a, b), (a, b], причому можливий нескінчений проміжок.

1.1 Первісна, основні означення невизначеного інтегралу

Definition 1.1.1 Первісною для функції $f:I\to\mathbb{R}$ називають функцію $F:I\to\mathbb{R}$, для якої

$$\forall x \in I : F'(x) = f(x)$$

Example 1.1.2 Зокрема $F(x) = x^2$ - первісна функції f(x) = 2x на $I = \mathbb{R}$.

Example 1.1.3 Зокрема
$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{2}, & x \ge 0 \end{cases}$$
 - первісна функції $f(x) = \begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$ на $I = \mathbb{R}$.

Proposition 1.1.4 Якщо F(x), $\Phi(x)$ - первісні для f(x), то $\Phi(x) = F(x) + C$. Випливає з наслідків теореми Лагранжа.

Remark 1.1.5 Не кожна функція може мати первісну. Зокрема $f(x) = \operatorname{sgn} x$ не має первісної на I = [-1, 1].

!Припустимо, що f має первісну F, тоді обов'язково $F \in C((-1,1))$. Оберемо 0 < x < 1 та застосуємо теорему Лагранжа:

$$F(x)-F(0)=\operatorname{sgn}\xi\cdot(x-0)=x$$
, де $\xi\in(0,x)$. Таким чином, $\dfrac{F(x)-F(0)}{x}=1$. При $x\to 0+0$ отримаємо $F'(0+0)=1$, але водночас $F'(0)=F'(0+0)=0$. Суперечність!

Definition 1.1.6 Множину всіх первісних для функції f(x) називають **невизначеним інтегралом** функції f(x).

Позначення:
$$\int f(x) dx = \{F(x) : F'(x) = f(x)\}.$$

Remark 1.1.7 Але враховуючи твердження вище, ми можемо записувати одну з первісних, тобто $\int f(x) dx = F(x) + C$, де F - первісна функції f.

Example 1.1.8
$$\int 2x \, dx = \{x^2 + C | C \in \mathbb{R}\}.$$

Оскільки є якась первісна, то можна записати як $\int 2x \, dx = x^2 + C$.

Proposition 1.1.9 Властивості

$$1) \int f'(x) dx = f(x) + C;$$

$$2) \left(\int f(x) \, dx \right)' = f(x);$$

2) $\left(\int f(x)\,dx\right)'=f(x);$ Далі задамо функції f,g, які мають відповідно первісні F,G. Тоді:

3)
$$\alpha F$$
 - первісна для функції αf , причому $\int \alpha f(x) \, dx = \alpha \int f(x) \, dx;$

4)
$$F+G$$
 - первісна для функції $f+g$, причому $\int f(x)+g(x)\,dx=\int f(x)\,dx+\int g(x)\,dx.$

1), 2) випливають з означення.

3) Якщо F - первісна функції f, то тоді αF - первісна функції αf , тому що $(\alpha F(x))' = \alpha F'(x) = \alpha f(x).$

Отже,
$$\int \alpha f(x) dx = \alpha F(x) + C = \alpha (F(x) + C^*) = \alpha \int f(x) dx$$
.

4) Якщо F,G - первісні відповідно функції f,g, то F+G - первісна функції f+g, тому що (F(x) + G(x))' = F'(x) + G'(x) = f(x) + g(x).

Отже,
$$\int f(x) + g(x) dx = F(x) + G(x) + C = F(x) + C^* + G(x) + C^{**} = \int f(x) dx + \int g(x) dx$$
.

Remark 1.1.10 Підінтегральний вираз f(x) dx варто розглядати як диференціал функції F(x),

$$\int f(x) dx = F(x) + C \iff d(F(x) + C) = f(x) dx$$

Remark 1.1.11 Взагалі-то кажучи, символ $\int f(x) dx$ можна також використовувати, щоб позначити як первісну функції f, якщо не можна записати F як функцію.

Зокрема $\int e^{-x^2} dx$ - первісна функції e^{-x^2} , проте записати як функцію від змінної не можна.

Таблиця первісних

$\frac{f(x)}{1}$	F(x)
1	x
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}, \alpha \neq -1$
$\frac{1}{x}$	$\ln x $
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\frac{1}{\cos^2 x}$	$\operatorname{tg} x$
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{1+x^2}$	$\operatorname{arctg} x$
$\frac{1}{\sqrt{1+x^2}}$	$\ln(x + \sqrt{x^2 + 1})$
e^x	e^x
a^x	$\frac{a^x}{\ln a}$
$-\sinh x$	$\operatorname{ch} x$
$-\cosh x$	$\operatorname{sh} x$
$\frac{1}{\cosh^2 x}$	h x
$\frac{1}{\sinh^2 x}$	$-\coth x$

Example 1.1.12 Обчислимо
$$\int (x+2)^2 + \operatorname{tg}^2 x \, dx$$
. Робити будемо це, використовуючи таблицю первісних та властивості інтегралів.
$$\int (x+2)^2 + \operatorname{tg}^2 x \, dx = \int x^2 + 4x + 4 + \frac{1}{\cos^2 x} - 1 \, dx = \int x^2 \, dx + 4 \int x \, dx + 3 \int 1 \, dx + \frac{1}{\cos^2 x} \, dx = \frac{x^3}{3} + 2x^2 + 3x + \operatorname{tg} x + C.$$

Заміна змінної

Theorem 1.2.1 Задано функцію $f: I \to \mathbb{R}$, має первісну F; функцію $g: J \to I$ - диференційована. Тоді $(f \circ g)g'$ має первісу $F \circ g$ на J, причому

$$\int (f \circ g)(x)g'(x) dx = \int f(t) dt.$$

Proof.

Дійсно,
$$F \circ g$$
 - первісна для $(f \circ g)g'$, оскільки $(F \circ g)'(x) = F'(g(x))g'(x) = f(g(x))g'(x)$. Отже, $\int f(g(x))g'(x) \, dx = \int f(g(x)) \, dg(x) = \int f(t) \, dt = F(t) + C = F(g(x)) + C$.

Example 1.2.2 Обчислити
$$\int \frac{1}{x \ln x} dx$$

$$\int \frac{1}{x \ln x} dx$$
 Проведемо заміну: $\ln x = t$. Тоді $\frac{1}{x} dx = dt$ $\equiv \int \frac{1}{t} dt = \ln|t| + C = \ln|\ln x| + C$

Інтегрування частинами

Theorem 1.3.1 Задані функції $u, v : I \to \mathbb{R}$ - обидва диференційовані. Відомо, що u'v має первісну. Тоді uv' також має первісну, причому

$$\int u(x)v'(x) dx = u(x)v(x) - \int v(x)u'(x) dx.$$

Ми знаємо, що $(u(x)v(x))' = u'(x)v(x) + u(x)v'(x) \implies u(x)v'(x) = (u(x)v(x))' - u(x)v'(x)$. Функції (uv)', uv' мають первісну, одна дорівнює uv, а інша просто за умовою. Тоді (uv)' - uv' = uv'теж має первісну та дорівнює:

$$\int u(x)v'(x) \, dx = \int (u(x)v(x))' - u(x)v'(x) \, dx = u(x)v(x) - \int u(x)v'(x) \, dx.$$

Remark 1.3.2 Більш зручно записати таку формулу: $\int u \, dv = uv - \int v \, du$.

Example 1.3.3 Обчислити $\int x^2 e^x dx$.

$$\int x^2 e^x \, dx =$$

$$e^x dx = dv \Rightarrow v = e^x$$

$$e^x dx = dv \Rightarrow v = e^x$$

$$\int x^2 e^x dx$$
Робимо заміну $u = x^2 \Rightarrow du = 2x dx$
$$e^x dx = dv \Rightarrow v = e^x$$

$$\equiv x^2 e^x - \int 2x e^x dx$$

$$\equiv 3$$
Знову заміну $u = 2x \Rightarrow du = 2 dx$
$$e^x dx = dv \Rightarrow v = e^x$$

$$\equiv x^2 e^x - (2x e^x - \int 2e^x dx) = x^2 e^x - 2x e^x + 2e^x + C$$

1.4 Інтегрування дробово-раціональних функцій

Розглянемо $\int \frac{P(x)}{Q(x)} dx$, де P(x), Q(x) - многочлени з дійснийми коефіцієнтами. Є два випадки: I. $deg(P(x)) \ge deg(Q(x))$

Тоді можемо поділити їх з остачею:
$$P(x) = S(x)Q(x) + R(x)$$
. А тому $\int \frac{P(x)}{Q(x)} dx = \int S(x) + \frac{R(x)}{Q(x)} dx$

, де S(x) - деякий многочлен, який можна проінтегрувати таблицею, а також $\deg(R(x)) < \deg(Q(x))$. Зараз буде пункт, як такий випадок інтегрувати.

II. deg(R(x)) < deg(Q(x))

За наслідком основної теореми алгебри, розкладемо Q(x) таким чином:

$$Q(x) = (x - a_1)^{k_1} \dots (x - a_m)^{k_m} (x^2 + p_1 x + q_1)^{l_1} (x^2 + p_s x + q_s)^{l_s}.$$

Причому дискримінант квадратних трьохчленів - від'ємний.

Тоді за теоремою десь із курсу ліналу, ми можемо $\frac{R(x)}{Q(x)}$ записати як суму простих дробів:

$$\frac{R(x)}{Q(x)} = \frac{A_{11}}{x - a_1} + \dots + \frac{A_{1k_1}}{(x - a_1)^{k_1}} + \dots + \frac{A_{m1}}{x - a_m} + \dots + \frac{A_{mk_m}}{(x - a_m)^{k_m}} + \dots + \frac{B_{11}x + C_{11}}{x^2 + p_1x + q_1} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{s1}x + C_{s1}}{x^2 + p_sx + q_s} + \dots + \frac{B_{sl_s}x + C_{sl_s}}{(x^2 + p_sx + q_s)^{l_s}}.$$

Коротше, залишається розглянути 4 вигляди інтеграл

1)
$$\int \frac{A}{x-a} dx = A \ln|x-a| + C$$

2)
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} dx = A \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{A}{(1-k)(x-a)^{k-1}} + C$$

3)
$$\int \frac{Bx+C}{x^2+px+q} dx =$$

Знаменник розпишу як $x^2 + px + q = \left(x + \frac{p}{2}\right)^2 + \frac{4q - p^2}{4}$.

Зробимо заміну: $x + \frac{p}{2} = t \Rightarrow dx = dt$

Також $Bx + C = Bt - B\frac{p}{2} + C.$

Перепозначення: $\frac{4q - p^2}{4} = a^2 > 0$ $C - B\frac{p}{2} = M$.

$$\boxed{\equiv} \frac{B}{2} \ln |t^2 + a^2| + \frac{M}{a} \arctan \frac{t}{a} + C$$

 Ну а далі робимо зворотню заміну - інтеграл розв'язаний.

$$4) \int \frac{Bx + C}{(x^2 + px + q)^l} dx =$$

4)
$$\int \frac{Bx+C}{(x^2+px+q)^l} dx$$
 \equiv Тут робимо ті самі заміни, що в 3) $\equiv \int \frac{Bt+M}{(t^2+a^2)^l} dt = B \int \frac{t}{(t^2+a^2)^l} dt + M \int \frac{1}{(t^2+a^2)^l} dt$ Ну і тут я ланцюг рівностей зупиню, якщо перший інтегр

Ну і тут я ланцюг рівностей зупиню, якщо перший інтеграл - ще ок, то другий - це дупа $\int \frac{t}{(t^2+a^2)^l}\,dt = \int \frac{dt^2}{2(t^2+a^2)^l}\,dt = \frac{1}{2}\frac{1}{(1-l)s^{l-1}}$

$$\int \frac{t}{(t^2 + a^2)^l} dt = \int \frac{dt^2}{2(t^2 + a^2)^l} dt = \frac{1}{2} \frac{1}{(1 - l)s^{l-1}}$$

$$\int \frac{1}{(t^2+a^2)^l} \, dt \boxed{\equiv} \qquad u = \frac{1}{(t^2+a^2)^l} \qquad dv = dt$$

$$\boxed{\equiv} \frac{t}{(t^2+a^2)^l} + 2l \int \frac{t^2}{(t^2+a^2)^{l+1}} \, dt + \frac{t}{(t^2+a^2)^l} + 2l \left(\int \frac{dt}{(t^2+a^2)^l} - a^2 \frac{dt}{(t^2+a^2)^{l+1}} \right)$$
 Позначимо за $I_l = \int \frac{t}{(t^2+a^2)^l} \, dt$

Тоді маємо таке рівняння:
$$I_l = \frac{t}{(t^2 + a^2)^l} + 2l \cdot I_l - 2la^2 \cdot I_{l+1}$$

Залишилось виразити I_{l+1} та розв'язати рівняння рекурсивно, причому I_1 ми вже рахували.

$$(1)+2)+3)+4) \implies$$
 інтеграл $\int \frac{P(x)}{Q(x)} \, dx$ - розв'язаний.

Example 1.4.1 Обчислити
$$\int \frac{x^4}{1+x^3} dx$$
 Оскільки $\deg(x^4) > \deg(1+x^3)$, то ми поділимо многочлени. Отримаємо: $\int \frac{x^4}{1+x^3} dx = \int x - \frac{x}{x^3+1} dx = x^2 - \int \frac{x}{x^3+1} dx$.

Обчислимо другий інтеграл. Перед цим розкладемо дріб на суму простих дробів методом невизначених коефіцієнтів:

$$\frac{x}{x^3+1} = \frac{x}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1} = A$$

$$A(x^2-x+1) + (Bx+C)(x+1) = x$$

$$\Rightarrow \begin{cases} A+B=0 \\ -A+B+C=1 \end{cases} \Rightarrow A=-\frac{1}{3}, B=\frac{1}{3}, C=\frac{1}{3} \end{cases}$$

$$\boxed{\equiv} -\frac{1}{3(x+1)} + \frac{1}{3}\frac{x+1}{x^2-x+1}$$
 Таким чином, треба порахувати такий інтеграл:
$$\int \frac{x}{x^3+1} \, dx = -\frac{1}{3} \int \frac{1}{x+1} \, dx + \frac{1}{3} \int \frac{x+1}{x^2-x+1} \, dx \boxed{\equiv}$$
 І розглянемо другий інтеграл:
$$\int \frac{x+1}{x^2-x+1} \, dx = \int \frac{4x+4}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3} \, dx + \int \frac{6}{(2x-1)^2+3} \, dx = \int \frac{4x+4}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3} \, dx + \int \frac{6}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3} \, dx + \int \frac{6}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3} \, dx + \int \frac{6}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3} \, dx + \int \frac{6}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3} \, dx = \int \frac{4x-2}{(2x-1)^2+3}$$

$$\int \frac{x}{x^3 + 1} \, dx = -\frac{1}{3} \int \frac{1}{x + 1} \, dx + \frac{1}{3} \int \frac{x + 1}{x^2 - x + 1} \, dx = 1$$

$$\int \frac{x+1}{x^2-x+1} dx = \int \frac{4x+4}{(2x-1)^2+3} dx = \int \frac{4x-2}{(2x-1)^2+3} dx + \int \frac{6}{(2x-1)^2+3} dx = \ln((2x-1)^2+3) + 6\frac{1}{2\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} = \ln(4x^2-4x+4) + \sqrt{3} \arctan \frac{2x-1}{\sqrt{3}}$$

$$= -\frac{1}{3} \ln|x+1| + \frac{1}{3} \ln(4x^2-4x+4) + \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}}$$

$$\int \frac{x^4}{1+x^3} dx = x^2 + \frac{1}{3} \ln|x+1| - \frac{1}{3} \ln(4x^2 - 4x + 4) - \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} + C$$

Example 1.4.2 Обчислити $\int \frac{1}{(x^2+1)^2} dx$

Можна скористатися отриманою рекурентною формулою, а можна зробити ті самі кроки.

$$\int \frac{1}{(x^2+1)^1} dx = \operatorname{arctg} x$$

$$\int \frac{1}{(x^2+1)^1} dx \stackrel{u=\text{дрi6}, dv=dx}{=} \frac{x}{x^2+1} + \int \frac{2x^2}{(x^2+1)^2} dx = \frac{x}{x^2+1} + 2 \int \frac{1}{x^2+1} - \frac{1}{(x^2+1)^2} dx$$

$$\implies \operatorname{arctg} x = \frac{x}{x^2+1} + 2 \operatorname{arctg} x - 2 \int \frac{1}{(x^2+1)^2} dx$$

$$\int \frac{1}{(x^2+1)^2} dx = \frac{1}{2} \operatorname{arctg} x + \frac{x}{2(x^2+1)} + C$$

Інтегрування тригонометричних функцій

I. Розглянемо $\int \sin^k x \cos^m x \, dx$, де $k, m \in \mathbb{Z}$. Маємо такі заміни:

- 1) k непарне, тобто k = 2l + 1, тоді заміна: $\cos x = t$.
- 2) m непарне, тобто m = 2l + 1, тоді заміна: $\sin x = t$.
- 3) k,m парні, тобто k=2l,m=2n, тоді знижуємо степені формулами: $\sin^2 x=\frac{1-\cos 2x}{2}$ $\cos^2 x=\frac{1+\cos 2x}{2}$.

Всі ці заміни приведуть до інтегрування дробово-раціональних виразів.

Example 1.5.1 Обчислити
$$\int \cos^3 x \, dx$$
 Заміна: $t = \sin x$, випадок 2), тоді $dt = \cos x \, dx$
$$\int \cos^3 x \, dx = \int (1 - t^2) \, dx = t - \frac{t^3}{3} + C = \sin x - \frac{\sin^3 x}{3} + C$$

II. Розглянемо $\int R(\sin x,\cos x)\,dx$, де R - дробово-раціональний вираз від $\sin x,\cos x$. Маємо таку заміну - її ще називають **універсальною тригонометричною підстановкою**: $t=\operatorname{tg}\frac{x}{2}\implies x=2\operatorname{arctg}t\implies dx=\frac{2}{1+t^2}\,dt$

$$t = \operatorname{tg} \frac{x}{2} \implies x = 2 \operatorname{arctg} t \implies dx = \frac{2}{1+t^2} dx$$

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1+\operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1+t^2}$$

$$\cos x = \frac{1-\operatorname{tg}^2 \frac{x}{2}}{1+\operatorname{tg}^2 \frac{x}{2}} = \frac{1-t^2}{1+t^2}.$$

Підставивши, ми отримуємо випадок інтегрування дробово-раціональних виразів.

Example 1.5.2 Обчислити
$$\int \frac{dx}{5-3\cos x}$$

Заміна: $t= \operatorname{tg} \frac{x}{2}$, випадок ІІ. Тоді беремо решта замін звідси, з нашого пункту.

$$\int \frac{dx}{5 - 3\cos x} = \int \frac{1}{5 - 3\frac{1 - t^2}{1 + t^2}} \frac{2}{1 + t^2} dt = \int \frac{2 dt}{5 + 5t^2 - 3 + 3t^2} = \int \frac{dt}{4t^2 + 1} = \frac{1}{2} \operatorname{arctg} 2t + C = \frac{1}{2} \operatorname{arctg} \left(2 \operatorname{tg} \frac{x}{2}\right) + C$$

Але універсальна підстановка не завжди може буде ефективною.

III. Проводжимо розглядати $\int R(\sin x, \cos x) dx$. Нехай є кілька випадків:

- 1) R(-u, v) = -R(u, v), тоді заміна: $\cos x = t$;
- 2) R(u, -v) = -R(u, v), тоді заміна: $\sin x = t$;
- 3) R(-u, -v) = R(u, v), тоді заміна: $\operatorname{tg} x = t$ або $\operatorname{ctg} x = t$.

Без доведення. Важкі алгебраїчні перетворення.

Example 1.5.3 Обчислити
$$\int \frac{1}{(2+\cos x)\sin x} dx$$
.

Маємо $R(\sin x,\cos x)=\frac{1}{(2+\cos x)\sin x},$ зауважимо, що $R(-\sin x,\cos x)=-R(\sin x,\cos x),$ тож бе-

ремо заміну
$$t = \cos x$$
. Отже,
$$\int \frac{1}{(2+\cos x)\sin x} dx = \int \frac{1}{(2+t)(1-t^2)} dt = \dots = \frac{1}{3} \ln|t+2| - \frac{1}{2} \ln|t+1| + \frac{1}{6} \ln|t-1| + C = \frac{1}{3} \ln|\cos x + 2| - \frac{1}{2} \ln|\cos x + 1| + \frac{1}{6} \ln|\cos x - 1| + C.$$

Інтегрування ірраціональних виразів

I. Розглянемо $\int R\left(\sqrt[k_1]{\frac{ax+b}{cx+d}},\ldots,\sqrt[k_p]{\frac{ax+b}{cx+d}}\right)dx$, де R - дробово-раціональний вираз, причому

$$ax + b = t^m cx + t^m d \implies x = \frac{t^m d - b}{a - ct^m}$$

 $aa - cv \neq 0$.
Заміна: $\frac{ax + b}{cx + d} = t^m$, де число $m = \text{lcm}(k_1, \dots, k_n)$.
Виразимо x з цього рівняння: $ax + b = t^m cx + t^m d \implies x = \frac{t^m d - b}{a - ct^m}$ А потім шукаємо $dx = \frac{mt^{m-1}(ad - bc)}{(a - ct)^2} dt$.

Підставивши, ми отримуємо інтеграл дробово-раціонального виразу.

Example 1.6.1 Обчислити
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}} dx$$

Example 1.6.1 Обчислити
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}}\,dx$$
 Заміна: $t^2=x+1$. Тоді $x=t^2-1\Rightarrow dx=2t\,dt$
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}}\,dx=\int \frac{t+2}{t^4-t}\cdot 2t\,dt=2\int \frac{t+2}{t^3-1}\,dt$$
 обчислення цього інтегралу проводиться як в п. 4, тому я пропускаю цей момент
$$= -\ln(t^2+t+1)-\frac{2}{\sqrt{3}}\arctan\frac{2t+1}{\sqrt{3}}+2\ln|t-1|+C=$$

$$=$$
 $-\ln(t^2+t+1)-\frac{2}{\sqrt{3}}\arctan\frac{2t+1}{\sqrt{3}}+2\ln|t-1|+C=$

$$= -\ln(x+2+\sqrt{x+1}) - \frac{2}{\sqrt{3}}\arctan\frac{2\sqrt{x+1}+1}{\sqrt{3}} + 2\ln|\sqrt{x+1}-1| + C$$

II. Розглянемо такі інтеграли:
$$1) \ \int R(x, \sqrt{a^2 - x^2}) \, dx$$

Заміна: $x = a \sin t \Rightarrow dx = a \cos t dt$

$$2) \int R(x, \sqrt{a^2 + x^2}) \, dx$$

Заміна: $x = a \operatorname{tg} t \Rightarrow dx = \frac{a}{\cos^2 t} dt$

3)
$$\int R(x, \sqrt{x^2 - a^2}) dx$$

Заміна: $x = \frac{a}{\cos t} \Rightarrow dx = \frac{a}{\cos^2 t} \sin t dt$

Усі заміни приведуть до інтегралу тригонометричних функцій.

Example 1.6.2 Обчислити
$$\int \sqrt{4-x^2} \, dx$$
 Заміна: $x=2\sin t$, випадок 1). Тоді $dx=2\cos t \, dt$
$$\int \sqrt{4-x^2} \, dx = \int 2\cos t \cdot 2\cos t \, dt = \int 2(1+\cos 2t) \, dt = 2t+\sin 2t + C = 2t+2\sin t \cos t + C = 2\arcsin\frac{x}{2} + 2\frac{x}{2}\sqrt{1-\frac{x^2}{4}} + C = 2\arcsin\frac{x}{2} + \frac{x\sqrt{4-x^2}}{2} + C$$

1.7 Диференціальний біном

Розглянемо $\int x^m (ax^n + b)^p dx$, де $m, n, p \in \mathbb{Q}$. Існують лише три випадки, як його розв'язати, для цього я наведу діаграму нижче, які застосовувати заміни.

Але для початку оскільки $m,n,p\in\mathbb{Q},$ то я запишу як дріб $m=\frac{s_1}{q_1}, \qquad n=\frac{s_2}{q_2}, \qquad p=\frac{s_3}{q_3}.$

$$p\in\mathbb{Z}\xrightarrow{_{\mathrm{Hi}}}\xrightarrow{_{\mathrm{Hi}}}\frac{m+1}{n}\in\mathbb{Z}\xrightarrow{_{\mathrm{Hi}}}p+\frac{m+1}{n}\in\mathbb{Z}\xrightarrow{_{\mathrm{Hi}}}\mathbf{he}\text{ обчислюється}$$

$$\downarrow^{_{\mathrm{Так}}}\downarrow^{_{\mathrm{Так}}}\downarrow^{_{\mathrm{Так}}}$$

$$x=t^{\mathrm{lcm}(q_{1},q_{2})}\qquad ax^{n}+b=t^{q_{3}}\qquad a+bx^{-n}=t^{q_{3}}$$

Заміни називають **підстановками Чебишова**, що приводять до інтегралу дробово-раціональних виразів. Якщо жодна з пунктів не спрацьовує, то інтеграл не може бути обчисленим через елементарні функції (без доведення).

Ехамрle 1.7.1 Обчислити
$$\int \sqrt[3]{x-x^3} \, dx = \int x^{\frac{1}{3}} (1-x^2)^{\frac{1}{3}} \, dx$$
 Тут у нас $m=\frac{1}{3}, \, n=2, \, p=\frac{1}{3}$ Спрацьовуе 3), тому що $p+\frac{m+1}{n}=\frac{1}{3}+\frac{1+\frac{1}{3}}{2}=1\in\mathbb{Z}$ Заміна: $-1+x^{-2}=t^3$
$$-2x^{-3} \, dx=3t^2 \, dt$$

$$\int \sqrt[3]{x-x^3} \, dx=\int x^{\frac{1}{3}} (1-x^2)^{\frac{1}{3}} \, dx=\int (x^{-2}-1)^{\frac{1}{3}} x^{\frac{2}{3}} x^{\frac{1}{3}} \, dx=\int t\cdot x\cdot \frac{3t^2x^3 \, dt}{-2}=\int \frac{3t^3 \, dt}{-2(t^3+1)^2}=$$

$$=\frac{3}{-2}\left(\int \frac{dt}{t^3+1}-\int \frac{dt}{(t^3+1)^2}\right)$$
 \equiv обчислення цього інтегралу проводиться як в п. 4, тому я пропускаю цей момент $\equiv -\frac{\ln|t+1|}{2}+\frac{\ln(t^2-t+1)}{4}-\frac{\sqrt{3}}{2} \arctan \frac{2x-1}{\sqrt{3}}+\frac{\ln|t+1|}{3}-\frac{\ln(t^2-t+1)}{6}+\frac{\sqrt{3}}{3} \arctan \frac{2x-1}{\sqrt{3}}+\frac{t}{2t^3+2}+C=$
$$=-\frac{1}{6}\ln|t+1|+\frac{1}{12}\ln(t^2-t+1)-\frac{\sqrt{3}}{6}\arctan \frac{2x-1}{\sqrt{3}}+\frac{t}{2t^3+2}+C$$

2 Визначений інтеграл

2.1 Підхід Рімана

Definition 2.1.1 Розбиттям множини [a,b] називають множину точок $\tau = \{x_0, x_1, \dots, x_{n-1}, x_n\}$, для яких

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

Definition 2.1.2 Позначимо за $\Delta x_1 = x_1 - x_0, \dots, \Delta x_n = x_n - x_{n-1}$. Тоді числом

$$|\tau| = \max\{\Delta x_1, \dots, \Delta x_n\}$$

називають **діаметром** (або **дрібністю**) розбиття τ .

Definition 2.1.3 Задані розбиття τ, τ' відрізка [a, b]. Якщо $\tau \subset \tau'$, то τ' називають **підрозбиттям** розбиття τ .

Proposition 2.1.4 Задано τ' - підрозбиття для τ . Тоді $|\tau'| \leq |\tau|$.

Proof

Дійсно, із розбиття ми можемо отримати підрозбиття шляхом додавання точок. Тоді деякі інтервали будуть ділитись на підінтервали через додавання точки. Відповідно діаметр зменшується.

Definition 2.1.5 Задано $\tau = \{x_0, x_1, \dots, x_n\}$ - розбиття відрізка [a, b] Елементи множини $\xi = \{\xi_1, \dots, \xi_n\}$ називають **відміченими точками**. Тут $\xi_1 \in [x_0, x_1), \xi_2 \in [x_1, x_2), \dots, \xi_n \in [x_{n-1}, x_n]$.

Definition 2.1.6 Задано функцію $f:[a,b]\to\mathbb{R}$, розбиття $\tau=\{x_0,x_1,\ldots,x_n\}$ та відмічені точки $\xi=\{\xi_1,\ldots,\xi_n\}.$

Інтегральною сумою Рімана функції f для нашого розбиття τ та відмічених точок називають число:

$$\sigma(f,\tau,\xi) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Definition 2.1.7 Задано функцію $f:[a,b] \to \mathbb{R}$.

Функція f називається **інтегрованою за Ріманом** на [a,b], якщо існує таке число $I \in \mathbb{R}$, для якого виконана умова:

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (\tau, \xi) : |\tau| < \delta \implies |\sigma(\tau, \xi, f) - I| < \varepsilon$$

Число I називають **інтегралом Рімана**.

$$I = \int_{a}^{b} f(x) \, dx$$

Позначення: $I = \lim_{|\tau| \to 0} \sigma(f, \tau, \xi)$ (трошки нелегально, тому що не знаю, що таке границя за базою). Множина інтегрованих функцій за Ріманом позначається так: $\mathcal{R}([a,b])$.

Remark 2.1.8 Детально переформулюю частину означення: для кожного розбиття τ , якщо вона є скільки завгодно малою, то тоді виконується нерівність для кожної множини обраних точок ξ . Також нотація $\lim_{|\tau|\to 0} \sigma(f,\tau,\xi)$ - це не границя функції σ в звичному вигляді, а трохи іншої специфікації границя.

Example 2.1.9 Доведемо, що функція $f(x) = 1 \in \mathcal{R}([a,b])$, а також $\int_a^b 1 \, dx = b - a$.

Для початку зафіксуємо розбиття $\tau = \{x_0, x_1, \dots, x_n\}$ та відмітимо точки $\xi = \{\xi_1, \dots, \xi_n\}$. Це аби знайти інтегральну суму:

$$\sigma(f,\tau,\xi) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

$$\sigma(1,\tau,\xi) = \sum_{k=1}^{n} \Delta x_k = x_1 - x_0 + x_2 - x_1 + \dots + x_n - x_{n-1} = x_n - x_0 = b - a.$$
In a final parameter of the state of th

I ця інтегральна сума має це значенням при довільному розбитті. Якщо встановити I=b-a, то тоді:

$$\begin{split} \forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (\tau, \xi) : |\tau| < \delta \implies |\sigma(\tau, \xi, f) - I| = |b - a - (b - a)| = 0 < \varepsilon. \\ \text{Отже, } f(x) = 1 \in \mathcal{R}([a, b]), \text{ а інтеграл } \int_a^b 1 \, dx = b - a. \end{split}$$

Theorem 2.1.10 Задано функцію $f:[a,b] \to \mathbb{R}$.

Число I - інтеграл Рімана $\iff \forall (\tau_n, \xi_n) : |\tau_n| \stackrel{n \to \infty}{\longrightarrow} 0 \implies \sigma(f, \tau_n, \xi_n) \stackrel{n \to \infty}{\longrightarrow} I$.

Зрозуміло. Фактично, це можна вважати як означення 'за Гейне', але не зовсім. Проте схожі.

2.2 Суми Дарбу

Definition 2.2.1 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена. Визначмо такі значення для розбиття $\tau = \{x_0, x_1, \dots, x_n\}$:

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x)$$
 $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$ $k = 1, \dots, n$

Верхньою та нижньою сумою Дарбу називають такі суми:

$$U(f,\tau) = \sum_{k=1}^{n} M_k \Delta x_k \qquad L(f,\tau) = \sum_{k=1}^{n} m_k \Delta x_k$$

Remark 2.2.2 Із означення випливає, що $L(f,\tau) \le \sigma(f,\tau,\xi) \le U(f,\tau)$, оскільки $m_k \le f(\xi_k) \le M_k$.

Lemma 2.2.3 Задано функцію $f:[a,b]\to\mathbb{R}$ - обмежена та будь-яке розбиття τ . Тоді маємо: $L(f,\tau)=\inf_{\xi}\sigma(f,\tau,\xi)$ $U(f,\tau)=\sup_{\xi}\sigma(f,\tau,\xi)$

Proof.

Зафіксуємо розбиття $\tau = \{x_0, x_1, \dots, x_n\}$, тоді f - обмежена на $[x_{k-1}, x_k], \forall k$.

А тепер візьмемо деякий набір точок ξ , тоді зрозуміло, що $f(\xi_k) \leq M_k, \forall k \implies f(\xi_k) \Delta x_k \leq M_k \Delta x_k$ Просумуємо всі рівняння, які тут в нас ϵ - тоді отримаємо:

$$\sum_{k=1}^{n} f(\xi_k) \Delta x_k \le \sum_{k=1}^{n} M_k \Delta x_k \implies \sigma(f, \tau, \xi) \le U(f, \tau)$$

$$f(\xi_k') > M_k - \frac{\varepsilon}{b-a} \Longrightarrow f(\xi_k') \Delta x_k > M_k \Delta x_k - \frac{\varepsilon}{b-a} \Delta x_k$$

А далі зафіксуємо
$$\varepsilon>0$$
. Оскільки $M_k=\sup_{x\in[x_{k-1},x_k]}f(x)$, то тоді $\exists x_\varepsilon:f(x_\varepsilon)>M_k-\frac{\varepsilon}{b-a}$. І ось ці точки $x_\varepsilon=\xi_k'$ - це буде мій набір точок, який існує. Тоді маємо $f(\xi_k')>M_k-\frac{\varepsilon}{b-a}\Longrightarrow f(\xi_k')\Delta x_k>M_k\Delta x_k-\frac{\varepsilon}{b-a}\Delta x_k$ Аналогічно просумуємо всі рівняння - отримаємо:
$$\sum_{k=1}^n f(\xi_k')\Delta x_k>\sum_{k=1}^n M_k\Delta x_k-\sum_{k=1}^n \frac{\varepsilon}{b-a}\Delta x_k\Longrightarrow S_{\tau,\xi'}(f)>U(f,\tau)-\varepsilon$$
 Остаточно, ми отримали $U(f,\tau)=\sup_{\xi}\sigma(f,\tau,\xi)$. Випадок $L(f,\tau)=\inf_{\xi}\sigma(f,\tau,\xi)$ аналогічний.

Lemma 2.2.4 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена та розбиття τ . Також задамо підрозбитя τ' . Тоді $U(f,\tau) \geq U(f,\tau')$, а також $L(f,\tau) \leq L(f,\tau')$.

Proof.

Достатньо розглянути підрозбиття $\tau' = \tau \cup \{x^*\}$, припустимо $x^* \in [x_{i-1}, x_i], i = \overline{1, n}$. Тому що якщо в мене буде більше точок, то будемо поступово їх додавати.

$$U(f,\tau) = \sum_{k=1}^{n} M_k \Delta x_k = M_i \Delta x_i + \sum_{k=1, k \neq i}^{n} M_k \Delta x_k \boxed{\geq}$$

 $U(f,\tau) = \sum_{k=1}^n M_k \Delta x_k = M_i \Delta x_i + \sum_{k=1, k \neq i}^n M_k \Delta x_k \boxed{\geq}$ Зауважимо, що $M_i \Delta x_i = M_i (x_i - x_{i-1}) = M_i (x_i - x^* + x^* - x_{i-1}) = M_i (x_i - x^*) + M_i (x^* - x_{i-1}) \geq$

$$M(x_i - x) + M(x - x_{i-1})$$

ле $\tilde{M} = \sup_{x \in \mathcal{M}} f(x)$ $\tilde{\tilde{M}} = \sup_{x \in \mathcal{M}} f(x)$

$$\tilde{M}(x_i - x^*) + \tilde{\tilde{M}}(x^* - x_{i-1})$$
, де $\tilde{M} = \sup_{x \in [x^*, x_i]} f(x)$ $\tilde{\tilde{M}} = \sup_{x \in [x_{i-1}, x^*]} f(x)$

Lemma 2.2.5 Задано функцію $f:[a,b]\to\mathbb{R}$ - обмежена. Візьмемо будь-які два розбиття τ',τ'' . Тоді $L(f,\tau') \leq U(f,\tau'')$.

Proof.

Зафіксую $\tau = \tau' \cup \tau''$ - це є підрозбиттям одночасно розбиття τ' та розбиття τ'' . Тоді за попередньою лемою,

$$L(f,\tau') \le L(f,\tau) \le U(f,\tau'').$$

Definition 2.2.6 Верхнім/нижнім інтегралом Дарбу будемо називати такі вирази:

$$I^*(f) = \inf_{\tau} U(f, \tau) \qquad I_*(f) = \sup_{\tau} L(f, \tau)$$

Remark 2.2.7 Справедлива така нерівність: $I_*(f) \leq I^*(f)$.

Випливає з щойно доведеної леми.

Proposition 2.2.8 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена. Тоді

$$\lim_{|\tau|\to 0} L(f,\tau) = I_*(f) \qquad \qquad \lim_{|\tau|\to 0} U(f,\tau) = I^*(f).$$

Proof.

Маємо $I_*(f) = \sup L(f,\tau)$, тоді звідси

$$\forall \tau : L(f,\tau) < I_*(f)$$

$$\begin{aligned} &\forall \tau: L(f,\tau) \leq I_*(f) \\ &\forall \varepsilon > 0: \exists \tau_\varepsilon: L(f,\tau_\varepsilon) > I_*(f) - \varepsilon. \end{aligned}$$

Встановимо $\delta = \frac{|\tau_{\varepsilon}|}{2}$. Тоді $\forall \tau: |\tau| \leq |\tau_{\varepsilon}| < \delta \implies I_*(f) - \varepsilon < L(f, \tau_{\varepsilon}) \leq L(f, \tau) \leq I_*(f) < I_*(f) + \varepsilon$. Тобто звідси отримали, що $|L(f, \tau) - I_*(f)| < \varepsilon$, що й доводить рівність $\lim_{|\tau| \to 0} L(f, \tau) = I_*(f)$.

Аналогічні міркування для другої рівності:

Існування інтеграла 2.3

Theorem 2.3.1 Необхідна умова інтегрованості

Задано функцію $f \in \mathcal{R}([a,b])$. Тоді f - обмежена на [a,b].

Оскільки $f \in \mathcal{R}([a,b])$, то звідси $\exists I \in \mathbb{R}$, для якого виконано:

для $\varepsilon=1:\exists \delta: \forall \tau: |\tau|<\delta \implies \forall \xi: |\sigma(f,\tau,\xi)-I|<1 \implies |\sigma(f,\tau,\xi)|<|I|+1.$

!Припустимо, що f - не обмежена зверху, тоді $\exists k_0 = \overline{1,n}: f$ - необмежена на $[x_{k_0-1},x_{k_0}]$. Тобто $\forall M>0:\exists x\in[x_{k_0-1},x_{k_0}]:f(x)>M$. Якщо встановити M=j, то знайдеться послідовність $\{x_j, j \geq 1\} = \{\xi_{k_0}^{(j)}, j \geq 1\}$, для якої $f\left(\xi_{k_0}^{(j)}\right) o +\infty.$

Розглянемо послідовність відмічених точок $\{\xi_j, j \geq 1\}$, де $\xi_j = \{\xi_1, \dots, \xi_{k_0-1}, \xi_{k_0}^{(j)}, \xi_{k_0+1}, \dots, \xi_n\}$. А далі розглянемо послідовність інтегральних сум $\{\sigma_j, j \geq 1\} = \{\sigma(f, \tau, \xi_j), j \geq 1\}$. Тоді

$$\sigma_j = f(\xi_1) \Delta x_1 + \dots + f(\xi_{k_0-1}) \Delta x_{k_0-1} + f(\xi_{k_0}^{(j)}) \Delta x_{k_0} + f(\xi_{k_0+1}) \Delta x_{k_0+1} + \dots + f(\xi_n) \Delta x_n \to +\infty.$$
 Проте ми ж мали, що $\forall \xi_j : |\sigma(f, \tau, \xi_j)| \le 1 + |I|$. Суперечність!

Remark 2.3.2 Взагалі-то кажучи, в іноземних підручниках під час введення означення інтегралу Рімана одразу вважають f - обмеженою на [a, b].

Theorem 2.3.3 Перший критерій інтегрованості

Задано функцію $f:[a,b]\to \mathbb{R}$.

$$f \in \mathcal{R}([a,b]) \iff f$$
 - обмежена на $[a,b]$ та $I_*(f) = I^*(f)$.

Proof.

 \Rightarrow Дано: $f \in \mathcal{R}([a,b])$. Тоді автоматично f - обмежена та

 $\forall \varepsilon > 0 : \exists \delta : \forall \tau : |\tau| < \delta \implies |\sigma(f, \tau, \xi) - I| < \varepsilon.$

 $\forall \varepsilon > 0: \exists \sigma: \forall \tau: |\tau| < \sigma \longrightarrow |\sigma(f, \tau, \xi)| = 1$ Оскільки $\forall \xi: \sigma(f, \tau, \xi) < I + \varepsilon$, то зокрема $\sup_{\varepsilon} \sigma(f, \tau, \xi) = U(f, \tau) \leq I + \varepsilon$.

Оскільки $\forall \xi: \sigma(f,\tau,\xi)>I-\varepsilon$, то зокрема $\inf_{\xi}\sigma(f,\tau,\xi)=L(f,\tau)\geq I-\varepsilon$.

Додатково

$$I^*(f) = \inf_{\tau} U(f,\tau) \le U(f,\tau) \le I + \varepsilon$$

$$I_*(f) = \sup_{t \to 0} L(f, \tau) \ge L(f, \tau) \ge I - \varepsilon$$

 $I_*(f) = \sup_{\tau} L(f,\tau) \ge L(f,\tau) \ge I - \varepsilon.$ Остаточно $0 \le I^*(f) - I_*(f) \le I + \varepsilon - I + \varepsilon = 2\varepsilon$, виконано $\forall \varepsilon > 0 \implies I^*(f) = I_*(f)$.

Нехай $\varepsilon > 0$. Тоді за критерієм супремуму та інфімуму, $\exists \tau_{\varepsilon}^1, \tau_{\varepsilon}^2 : \frac{L(f, \tau_{\varepsilon}^1) > I - \varepsilon}{U(f, \tau_{\varepsilon}^2) < I + \varepsilon}$.

Встановимо $\delta = |\tau_{\varepsilon}^1 \cup \tau_{\varepsilon}^2|$. Тоді $\forall (\tau, \xi) : |\tau| < \delta \implies I - \varepsilon < L(f, \tau_{\varepsilon}^1) \le L(f, \tau) \le \sigma(f, \tau, \xi) \le U(f, \tau) \le U(f, \tau_{\varepsilon}^2) < I + \varepsilon \implies |\sigma(f, \tau, \xi) - I| < \varepsilon$. Таким чином, $f \in \mathcal{R}([a, b])$.

Example 2.3.4 Задано $\mathfrak{D}(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ - функція Діріхле. З'ясуємо, чи $\mathfrak{D} \in \mathcal{R}([a,b])$.

Задамо довільне розбиття $\tau = \{\hat{a} = x_0, x_1, \dots, x_{n-1}, x_n = b\}$. Розглянемо якийсь відрізок $[x_{k-1}, x_k]$. Якщо обидва числа раціональні, то знайдеться ірраціональне. Якщо обидва числа ірраціональні, то знайдеться раціональне. А тому в будь-якому випадку $M_k = 1$ та $m_k = 0$.

Отже $U(\mathfrak{D}, \tau) = b - a,$ $L(\mathfrak{D}, \tau) = 0.$

Нарешті, $I_*(\mathfrak{D}) = b - a$ та $I^*(\mathfrak{D}) = 0$, оскільки ми отримаємо величину, що відносно не залежить від розбиття. За критерієм, $I_*(\mathfrak{D}) \neq I^*(\mathfrak{D}) \implies \mathfrak{D} \notin \mathcal{R}([a,b])$.

Remark 2.3.5 Один з прикладів, коли із обмеженості функції не випливає її інтегрованість.

Corollary 2.3.6 Якщо функція $f \in \mathcal{R}([a,b])$ та $I = \int_a^b f(x) \, dx$ - його відповідний інтеграл, то справедлива нерівність:

$$L(f,\tau) \le \int_a^b f(x) \, dx \le U(f,\tau).$$

Theorem 2.3.7 Другий критерій інтегрованості

Задано функцію $f:[a,b] \to \mathbb{R}$.

 $f \in \mathcal{R}([a,b]) \iff f$ - обмежена на [a,b] та $\forall \varepsilon > 0: \exists \tau: U(f,\tau) - L(f,\tau) < \varepsilon.$

Proof.

 \Longrightarrow Дано: $f \in \mathcal{R}([a,b])$. Тоді f - обмежена та $I_*(f) = I^*(f)$. За критеріями sup, inf, маємо: $\forall \varepsilon > 0: \exists \tau_1, \tau_2: L(f,\tau_1) > I - \varepsilon$ $U(f,\tau_2) < I + \varepsilon$. Отже, $U(f,\tau) - L(f,\tau) < 2\varepsilon$ для $\tau = \tau_1 \cup \tau_2$.

$$\sqsubseteq$$
 Дано: $\forall \varepsilon > 0$: $\exists \tau : U(f,\tau) - L(f,\tau) < \varepsilon$. Тоді $0 \leq I^*(f) - I_*(f) \leq U(f,\tau) - L(f,\tau) < \varepsilon$. Отже, $I^*(f) = I_*(f) \implies f \in \mathcal{R}([a,b])$.

Remark 2.3.8 Можна інакше переписати: $f \in \mathcal{R}([a,b]) \iff \lim_{|\tau| \to 0} (U(f,\tau) - L(f,\tau)) = 0.$

2.4 Класи інтегрованих функцій

Theorem 2.4.1 Задано функцію $f,g \in \mathcal{R}([a,b])$. Тоді $f+g \in \mathcal{R}([a,b])$

Proof.

Нехай $\varepsilon > 0$ задано.

$$f \in \mathcal{R}([a,b]) \implies \exists \tau_1 : U(f,\tau_1) - L(f,\tau_1) < \frac{\varepsilon}{2}.$$

$$g \in \mathcal{R}([a,b]) \implies \exists \tau_2 : U(g,\tau_2) - L(g,\tau_2) < \frac{\varepsilon}{2}.$$

$$U(f,\tau) - L(f,\tau) \leq U(f,\tau_1) - L(f,\tau_1) < \frac{\varepsilon}{2}$$
 Тоді
$$\exists \tau = \tau_1 \cup \tau_2 : U(g,\tau) - L(g,\tau) \leq U(g,\tau_2) - L(g,\tau_2) < \frac{\varepsilon}{2}$$

$$\implies U(f+g,\tau) - L(f+g,\tau) \leq U(f,\tau) + U(g,\tau) - L(f,\tau) - L(g,\tau) < \varepsilon.$$
 Таким чином, ми отримали, що
$$f \in \mathcal{R}([a,b]).$$

Theorem 2.4.2 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді $\alpha f \in \mathcal{R}([a,b]), \forall \alpha \in \mathbb{R}$.

Доведення є аналогічним.

Вказівка: $\sup \alpha f(x) = \alpha \sup f(x), \alpha > 0$ $\sup \alpha f(x) = \alpha \inf f(x), \alpha \le 0.$

Theorem 2.4.3 Функція $f \in \mathcal{R}([a,b]) \iff \forall c \in (a,b) : f \in \mathcal{R}([a,c])$ та $f \in \mathcal{R}([c,b])$.

Proof.

ightharpoonupДано: $f \in \mathcal{R}([a,b])$, тобто $\forall \varepsilon : \exists \tau = \{x_0,x_1,\ldots,x_n\} : U(f,\tau) - L(f,\tau) < \varepsilon$.

Зафіксуємо точку $c \in (a, b)$, у нас виникне два випадки:

I.
$$c \in \tau \implies c = x_k, k = \frac{1}{1, n-1}$$
.

Тоді маємо розбиття $\tau=\tau_1\cup\tau_2$, де $\tau_1=\{x_0,\dots,c\}, \tau_2=\{c,\dots,x_n\}$. Таким чином,

 $U(f,\tau_1) - L(f,\tau_1) = U(f,\tau_1) + U(f,\tau_2) - L(f,\tau_1) - L(f,\tau_2) - U(f,\tau_2) + L(f,\tau_2) = U(f,\tau) - L(f,\tau) - L(f$ $(U(f,\tau_2) - L(f,\tau_2)) \le U(f,\tau) - L(f,\tau) < \varepsilon.$

 $U(f, \tau_2) - L(f, \tau_2) < \varepsilon$ аналогічними міркуваннями.

Отже, $f \in \mathcal{R}([a,c])$ та $f \in \mathcal{R}([c,b])$.

II.
$$c \notin \tau \implies c \neq x_k, k = \overline{1, n-1}$$
.

Отримаємо підрозбиття $\tau' = \tau \cup \{c\}$. А для підрозбиття $U(f,\tau') - L(f,\tau') \le U(f,\tau) - L(f,\tau) < \varepsilon$. А ось тут ми повертаємось до пункту I, розглядаючи випадок, що $c \in \tau'$.

 | Зрозуміло.

Theorem 2.4.4 Задано функцію $f:[a,b]\to\mathbb{R}$ - монотонна. Тоді $f\in\mathcal{R}([a,b])$.

Розглянемо випадок, коли f - нестрого зростає на [a,b].

Нехай $\varepsilon > 0$. Тоді розглянемо таке розбиття τ , щоб $|\tau| < \frac{\varepsilon}{f(b) - f(a)}$. Тоді маємо:

$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k - m_k) \, \Delta x_k = \sum_{k=1}^{n} (f(x_{k+1}) - f(x_k)) \Delta x_k \le |\tau| \sum_{k=1}^{n} (f(x_{k+1}) - f(x_k)) = |\tau| (f(x_n) - f(x_0)) = |\tau| (f(b) - f(a)) < \varepsilon.$$
 Отже, $f \in \mathcal{R}([a,b])$.

Theorem 2.4.5 Задано функцію $f \in C([a,b])$. Тоді $f \in \mathcal{R}([a,b])$.

Proof.

Proof.
$$f \in C([a,b]) \implies f \in C_{unif}([a,b]) \implies \forall \varepsilon > 0 : \exists \delta : \forall x_1,x_2 \in [a,b] : |x_1-x_2| < \delta \implies |f(x_1)-f(x_2)| < \frac{\varepsilon}{b-a}.$$
 Оберемо таке розбиття τ , щоб $|\tau| < \delta$. Також $f \in C([a,b]) \implies f \in C([x_{k-1},x_k]) \implies \exists f(x_k') = \inf_{x \in [x_{k-1},x_k]} f(x), \exists f(x_k'') = \sup_{x \in [x_{k-1},x_k]} f(x).$ Позначмо $m_k = f(x_k'), M_k = f(x_k'')$. Оскільки $|\tau| < \delta$, то звідси $|x_k' - x_k''| \le |x_{k-1} - x_k| \le |\tau| < \delta \implies M_k - m_k < \frac{\varepsilon}{a}$

 $M_k - m_k < \frac{\varepsilon}{b-a}$

Отже,
$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = \varepsilon$$
. А тому й $f \in \mathcal{R}([a,b])$.

Theorem 2.4.6 Задано функцію $f:[a,b] \to \mathbb{R}$ - обмежена та неперервна всюду, окрім в точках c_1, c_2, \ldots, c_m . Тоді $f \in \mathcal{R}([a, b])$.

Proof.

Обмежимось випадком, що $f \in C([a,b] \setminus \{c_1\})$. А далі просто за МІ.

Функція f - обмежена, тоді $\exists C > 0 : \forall x \in [a, b] : |f(x)| \leq C$.

Заздалегідь нехай $\varepsilon > 0$. Розглянемо множину $D = [a,b] \setminus (c_1 - \delta_1, c_1 + \delta_1)$, де $\delta_1 > 0$. Потім вкажу, чому воно дорівнює. Також позначу $(c_1 - \delta, c_1 + \delta_1) = V$.

Оскільки $f \in C([a,b] \setminus \{c_1\})$, то $f \in C(D)$, тоді за Кантором,

$$\exists \delta_2 : \forall x', x'' : |x' - x''| < \delta_2 \implies |f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}.$$

Встановимо $\delta = \min\{\delta_1, \delta_2\}$, а далі візьмемо таке розбиття τ , щоб $|\tau| < \delta$.

$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k = \sum_{k: [x_{k-1}, x_k] \cap V = \emptyset} (M_k - m_k) \Delta x_k + \sum_{k: [x_{k-1}, x_k] \cap V \neq \emptyset} (M_k - m_k) \Delta x_k$$
 Перша сума - там, де відрізки не потрапили цілком в окіл т. c_1 . В силу другої теореми Вейєрштрасса та теореми Кантора (аналогічні міркування з поцерелньої теореми) $M_k - m_k < \frac{\varepsilon}{m_k}$

та теореми Кантора (аналогічні міркування з попередньої теореми), $M_k - m_k < \frac{1}{2(b)}$

Друга сума - там, де відрізки потрапили в окіл т. c_1 . В силу обмеженності функції f маємо, що $M_k - m_k \leq 2C$. Також зауважимо, що $\sum \qquad \Delta x_k \leq 2\delta_1 + 2|\tau| < \delta_1 + 2\delta \leq 4\delta_1.$ $k:[x_{k-1},x_k]\cap V=\emptyset$

Тому що червоний інтервал має довжину $2\delta_1$ та є два відрізка, частина якої всередині та інша поза неї. Кожний з двох цих відрізків не перевищує $|\tau|$, а тому й δ .

$$\leq \frac{\varepsilon}{2(b-a)}(b-a) + 2C \cdot 4\delta_1 = \frac{\varepsilon}{2} + 8C\delta_1 = \varepsilon.$$

От тепер я надам $\delta_1=\frac{arepsilon}{16C},$ але це можна було зробити з самого початку. Таким чином, $f \in \mathcal{R}([a,b])$.

Example 2.4.7 Розглянемо декілька прикладів:

 $1. \ f(x) = \mathrm{sgn} \ x \in \mathcal{R}([a,b])$, бо $|f(x)| \leq 1$ та всюди неперервна, окрім т. x = 0, коли $0 \in [a,b]$.

$$2. \ g(x) = \begin{cases} \sin\frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} \in \mathcal{R}([-1,1]), \ \text{бо} \ |g(x)| \leq 1 \ \text{та всюди неперервна, окрім т. } x = 0.$$

Theorem 2.4.8 Задано функцію $f,g\in\mathcal{R}([a,b])$. Тоді $f\cdot g\in\mathcal{R}([a,b])$.

Proof.

Оскільки $f,g \in \mathcal{R}([a,b])$, то по-перше, вони обмежені, тобто

 $\exists C_1, C_2 : \forall x : |f(x)| \le C_1, |g(x)| \le C_2.$

$$\begin{array}{l} \exists \mathcal{C}_1, \mathcal{C}_2 : \forall x : |f(x)| \leq \mathcal{C}_1, |g(x)| \leq \mathcal{C}_2. \\ \text{По друге, } \forall \varepsilon > 0 : \exists \tau_1, \tau_2 : \\ U(f, \tau_1) - L(f, \tau_1) < \frac{\varepsilon}{2C_1} \qquad U(g, \tau_2) - L(g, \tau_2) < \frac{\varepsilon}{2C_2}. \end{array}$$

Нам буде необіхдна ось така оцінка:

$$|f(x)g(x) - f(y)g(y)| = |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| \le$$

$$\leq |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)| \leq C_1 \sup |g(x) - g(y)| + C_2 \sup |f(x) - f(y)|.$$

Це виконано $\forall x, y \in [a, b]$. Тоді підберемо такі точки x, y, щоб ліворуч був отриманий sup:

 $\sup |f(x)g(x) - f(y)g(y)| \le C_1 \sup |g(x) - g(y)| + C_2 \sup |f(x) - f(y)|.$

Перепишемо цю рівність інакше:

 $\sup f(x)g(x) - \inf f(x)g(x) \le C_1(\sup g(x) - \inf g(x)) + C_2(\sup f(x) - \inf f(x))$. А далі встановимо $au = au_1 \cup au_2$, тоді маємо:

$$U(f \cdot g, \tau) - L(f \cdot g, \tau) = \sum_{k=1}^{n} \sup_{x \in [x_{k-1}, x_k]} f(x)g(x) \cdot \Delta x - \sum_{k=1}^{n} \inf_{x \in [x_{k-1}, x_k]} f(x)g(x) \cdot \Delta x = \sum_{k=1}^{n} \left(\sup_{x \in [x_{k-1}, x_k]} f(x)g(x) - \inf_{x \in [x_{k-1}, x_k]} f(x)g(x) \right) \Delta x_k \le C_1(U(f, \tau) - L(f, \tau)) + C_2(U(g, \tau) - L(g, \tau)) < \varepsilon.$$

Таким чином, $f \cdot g \in \mathcal{R}([a,b])$.

Corollary 2.4.9 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді $|f| \in \mathcal{R}([a,b])$. Вказівка: $|f(x)| = f(x) \cdot \operatorname{sgn} f(x)$.

2.5 Властивості інтегралів

Theorem 2.5.1 Лінійність І

$$\int_{a}^{b} f(x) + g(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx.$$

Proof.

Це ϵ продовженням доведення **Th. 1.4.1.**

Оскільки
$$f+g\in\mathcal{R}$$
, то звідси маємо $I^*(f+g)=I_*(f+g)=\int_a^b f(x)+g(x)\,dx.$

$$L(f,\tau) + L(g,\tau) \le L(f+g,\tau) \le \int_a^b f(x) + g(x) \, dx \le U(f+g,\tau) \le U(f,\tau) + U(g,\tau) < L(f,\tau) + L(g,\tau) + \varepsilon.$$

$$L(f,\tau) \le \int_a^b f(x) dx \le U(f,\tau)$$

Але ми також знаємо такі нерівності:

$$L(g,\tau) \le \int_{-b}^{b} g(x) dx \le U(g,\tau)$$

$$L(f,\tau) + L9g,\tau) \le \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \le U(f,\tau) + U(g,\tau) < L(f,\tau) + L(g,\tau) + \varepsilon.$$

$$-\varepsilon < \int_a^b f(x) + g(x) \, dx - \left(\int_a^b f(x) \, dx + \int_a^b g(x) \, dx \right) < \varepsilon, \text{ виконано } \forall \varepsilon > 0.$$

Отже,
$$\int_a^b f(x) + g(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$
.

Пеогем 2.5.2 Ліниніств
$$\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx.$$
 Зрозуміло.

Theorem 2.5.3 Адитивність

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Proof.

Це ϵ продовженням доведення **Th. 1.4.3.**

$$L(f,\tau) \leq \int_a^b f(x) \, dx \leq U(f,\tau) < L(f,\tau) + \varepsilon$$

$$L(f,\tau_1) \leq \int_a^c f(x) \, dx \leq U(f,\tau_1) < L(f,\tau_1) + \varepsilon$$

$$L(f,\tau_2) \leq \int_c^b f(x) \, dx \leq U(f,\tau_2) < L(f,\tau_2) + \varepsilon$$

$$\Longrightarrow \left| \int_a^b f(x) \, dx - \left(\int_a^c f(x) \, dx + \int_c^b f(x) \, dx \right) \right| < 2\varepsilon, \text{ виконано } \forall \varepsilon > 0.$$
 Отже,
$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_a^b f(x) \, dx.$$

Theorem 2.5.4 Задано $f \in \mathcal{R}([a,b])$. Відомо, що $\forall x \in [a,b] : f(x) \geq 0$. Тоді $\int_{a}^{b} f(x) \, dx \geq 0$.

Proof.

Оскільки
$$f \in \mathcal{R}([a,b])$$
, то тоді $I_*(f) = I^*(f) = \int_a^b f(x) \, dx.$

Тоді
$$\int_a^b f(x) \, dx = I^*(f) \ge U(f, \tau) = \sum_{k=1}^n M_k \Delta x_k \ge 0.$$

Corollary 2.5.5 Задані $f,g\in\mathcal{R}([a,b])$. Якщо $\forall x\in[a,b]:f(x)\leq g(x)$, то тоді

$$\int_a^b f(x)\,dx \leq \int_a^b g(x)\,dx.$$
 Вказівка: розглянути функцію $h(x)=g(x)-f(x).$

Corollary 2.5.6
$$\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$$
.
 B казівка: $-|f(x)| \le f(x) \le |f(x)|$.

Theorem 2.5.7 I теорема про середнє

Задані функції $f,g\in\mathcal{R}([a,b]),$ причому g має однаковий знак на [a,b]. Позначу $m=\inf_{x\in[a,b]}f(x),$

$$M = \sup_{x \in [a,b]} f(x).$$

Тоді
$$\exists c \in [m, M] : \int_a^b f(x)g(x) dx = c \int_a^b g(x) dx.$$

Proof.

Розглянемо випадок $g(x) \geq 0, \forall x \in [a,b].$ Справедлива нерівність:

$$mg(x) \le f(x)g(x) \le Mg(x) \implies m \int_a^b g(x) \, dx \le \int_a^b f(x)g(x) \, dx \le M \int_a^b g(x) \, dx.$$

Якщо $\int_a^b g(x)\,dx=0$, то звідси $\int_a^b f(x)g(x)\,dx=0$, а число $c\in [m,M]$ обираємо довільне.

Якщо
$$\int_a^b g(x)\,dx>0,$$
 то поділимо нерівність на цю штуку:

$$m \leq \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx} \leq M.$$
 Тоді позначимо $c = \frac{\int_a^b f(x)g(x)\,dx}{\int_a^b g(x)\,dx}.$

Звідси
$$\int_a^b f(x)g(x) dx = c \int_a^b g(x) dx.$$

Corollary 2.5.8 Якщо додатково вимагати функцію $f \in C([a,b])$, то тоді

$$\exists \xi \in (a,b) : \int_{a}^{b} f(x)g(x) \, dx = f(\xi) \int_{a}^{b} g(x) \, dx.$$

Proof.

$$f \in C([a,b])$$
, то за Больцано-Коші, $\exists \xi \in [a,b] : c = f(\xi)$. Ну а далі попередня теорема.

Інтеграл як функція верхньої межі

Задано функцію $f \in \mathcal{R}([a,b])$. Будемо розглядати ось таку функцію $g:[a,b] \to \mathbb{R}$:

$$g(x) = \int_{a}^{x} f(t) dt$$

Remark 2.6.1 Додатково існує певна домовленість з інтегралами, щоб було жити простіше:

$$\int_{a}^{a} f(t) dt = 0$$

$$\int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt$$

Theorem 2.6.2 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді $g \in C([a,b])$.

Proof.
$$|g(x_1) - g(x_2)| = \left| \int_a^{x_1} f(t) \, dt - \int_a^{x_2} f(t) \, dt \right| = \left| \int_{x_1}^{x_2} f(t) \, dt \right| \le \left| \int_{x_1}^{x_2} |f(t)| \, dt \right| \le$$
 Оскільки $f \in \mathcal{R}([a,b])$, то звідси f - обмежена на $[a,b]$, тобто $\exists M \ge 0 : \forall x \in [a,b] : |f(x)| \le M$.
$$\le \left| \int_{x_1}^{x_2} M \, dt \right| = M|x_2 - x_1| < M\delta = M \frac{\varepsilon}{M} = \varepsilon.$$

Отже, нехай
$$\varepsilon > 0$$
. Тоді існує $\delta = \frac{\varepsilon}{M}$, для якого $\forall x_1, x_2 \in [a,b]: |x_1 - x_2| < \delta \implies |g(x_1) - g(x_2)| < \varepsilon$. Отже, $g \in C_{unif}([a,b]) \implies g \in C([a,b])$.

Theorem 2.6.3 Задано функцію $f \in C([a,b])$. Тоді $g \in C'([a,b])$, причому g'(x) = f(x).

Proof.

Будемо доводити, що
$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = f(x)$$

Будемо доводити, що
$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = f(x).$$

$$\frac{g(x + \Delta x) - g(x)}{\Delta x} = \frac{1}{\Delta x} \left(\int_a^{x + \Delta x} f(t) \, dt - \int_a^x f(t) \, dt \right) = \frac{1}{\Delta x} \int_x^{x + \Delta x} f(t) \, dt.$$

$$f(x) = \frac{f(x)}{\Delta x} \Delta x = \frac{f(x)}{\Delta x} \int_{x}^{x+\Delta x} dt = \frac{1}{\Delta x} \int_{x}^{x+\Delta x} f(x) dt.$$

$$\left| \frac{g(x + \Delta x) - g(x)}{\Delta x} - f(x) \right| = \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(x) dt \right| = \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) - f(x) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(t) dt \right| \le \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} f(t) dt - \int_{$$

$$\leq \frac{1}{|\Delta x|} \left| \int_{x}^{x+\Delta x} |f(t) - f(x)| dt \right| \leq 1$$

Оскільки $f \in C([a,b])$, то звідси $f \in C_{unif}([a,b])$, а тому

 $\forall \varepsilon > 0: \exists \delta: \forall x_1, x_2: |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < \varepsilon.$ Фіксуємо таке δ , щоб $|\Delta x| < \delta$.

Тоді $\forall t \in [x, x + \Delta x]$ або $[x + \Delta x, x] : |t - x| < |\Delta x| < \delta \implies |f(t) - f(x)| < \varepsilon$.

$$\left| \leq \frac{1}{|\Delta x|} \left| \int_{x}^{x + \Delta x} \varepsilon \, dt \right| = \frac{|x + \Delta x - x|}{|\Delta x|} \varepsilon = \varepsilon.$$

Остаточно
$$\forall \varepsilon > 0 : \exists \delta : \forall \Delta x : |\Delta x| < \delta \implies \left| \frac{g(x + \Delta x) - g(x)}{\Delta x} - f(x) \right| < \varepsilon. \text{ Отже, } g'(x) = f(x).$$

Corollary 2.6.4 Функція g(x) = F(x). Тобто функція $g(x) = \int_{-\infty}^{x} f(t) dt$ є первісною функції f(x), якщо $f \in C([a,b])$.

Отже, будь-яка неперервна функція f має первісну $F(x) = \int_{-\infty}^{x} f(t) dt$ на [a, b].

Theorem 2.6.5 Формула Ньютона-Лейбніца

Задано функцію $f \in \mathcal{R}([a,b])$, яка має первісну Φ .

Тоді
$$\int_a^b f(x) dx = \Phi(b) - \Phi(a) = \Phi(x) \Big|_a^b$$
.

Proof.

Якщо $f \in C([a,b])$, то це є прямим наслідком. Дійсно, за умовою, f має первісну Φ . Але водночас за наслідком, f має первісну F, причому $F(x)=\int^x f(t)\,dt$. Тоді $\Phi(x)=F(x)+C$

$$\begin{cases} \Phi(a) = C \\ \Phi(b) = \int_a^b f(t) dt + C \end{cases} \implies \int_a^b f(x) dx = \Phi(b) - \Phi(a).$$

У загальному вигляді доведення відрізняється.

 $f \in \mathcal{R}([a,b]) \implies \forall \varepsilon > 0 : \exists \delta : \forall \tau : |\tau| < \delta \implies |\sigma(f,\tau,\xi) - I| < \varepsilon.$

Встановимо будь-яке розбиття $\tau = \{x_0, x_1, \dots, x_n\}$, щоб $|\tau| < \delta$. Зауважимо, що

$$\Phi(b) - \Phi(a) = (\Phi(x_1) - \Phi(x_0)) + (\Phi(x_2) - \Phi(x_1)) + \dots + (\Phi(x_n) - \Phi(x_{n-1})).$$

Оскільки Φ - первісна, тобто вона диференційована, тоді неперервна як наслідок. Можемо застосувати до кожної дужки теорему Лагранжа:

$$\Phi(b) - \Phi(a) = \Phi'(\xi_1)\Delta x_1 + \Phi'(\xi_2)\Delta x_2 + \dots + \Phi'(\xi_n)\Delta x_n = f(\xi_1)\Delta x_1 + f(\xi_2)\Delta x_2 + \dots + f(\xi_n)\Delta x_n.$$
 Причому $\xi_k \in (x_k, x_{k-1}).$

Отже, $\Phi(b) - \Phi(a) = \sigma(f, \tau, \xi')$, де $\xi' = \{\xi_1, \dots, \xi_n\}$. Таким чином, для нашого розбиття ξ' виконано $|\sigma(f, \tau, \xi') - I| = |\Phi(b) - \Phi(a) - I| < \varepsilon$. А це виконано $\forall \varepsilon > 0$.

Отже,
$$I = \int_a^b f(x) dx = \Phi(b) - \Phi(a)$$
.

Example 2.6.6 Функція $x^2 \in \mathcal{R}([0,1])$ в силу монотонності та має первсіну $\frac{x^3}{2}$.

Тоді
$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}.$$

Example 2.6.7 Приклад, де формула Ньютона-Лейбніца не працює

Запишу для початку первісну $F(x) = \begin{cases} \sqrt[3]{x^4} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Неважко показати, що

$$f(x) = F'(x) = \begin{cases} \frac{4}{3} \sqrt[3]{x} \sin \frac{1}{x} - \frac{1}{\sqrt[3]{x^2}} \cos \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}.$$

На жаль, функція f - необмежена в т. $x_0 = 0$, а тому $f \notin \mathcal{R}([a,b])$, якщо $0 \in [a,b]$. Тим не менш, f має первісну F. Проте формула Ньютона-Лейбніца не працює.

Remark 2.6.8 Отже, f має первісну F на $[a,b] \not\Longrightarrow f \in \mathcal{R}([a,b])$.

Example 2.6.9 Існує навіть функція $f(x) = \operatorname{sgn} x$, де $f \in \mathcal{R}([-1,1])$, проте не має первісної саме на [-1,1]. Спробуємо обчислити інтеграл іншим чином.

$$\int_{-1}^{1} \operatorname{sgn} x \, dx = \int_{-1}^{0} \operatorname{sgn} x \, dx + \int_{0}^{1} \operatorname{sgn} x \, dx.$$

Розглянемо $g_1(t) = \int_{-1}^t \operatorname{sgn} x \, dx$, де $t \in [-1,0]$. Оскільки $\operatorname{sgn} \in \mathcal{R}([-1,0])$, то звідси $g_1 \in C([-1,0])$, зокрема:

$$g_1(0) = \int_{-1}^0 \operatorname{sgn} x \, dx = \lim_{\varepsilon \to 0} \int_{-1}^{\varepsilon} \operatorname{sgn} x \, dx = \lim_{\varepsilon \to 0} \int_{-1}^{\varepsilon} (-1) \, dx = \lim_{\varepsilon \to 0} (-x) \Big|_{-1}^{\varepsilon} = \lim_{\varepsilon \to 0} (-\varepsilon - 1) = -1.$$

Аналогічно якщо розглянути функцію $g_2(t)=\int_t^1 \operatorname{sgn} x\,dx$, де $t\in[0,1]$, то можна отримати, що (пишу уже неформально):

$$g_2(0) = \int_0^1 \operatorname{sgn} x \, dx = \int_0^1 1 \, dx = x \Big|_0^1 = 1.$$

Остаточно отримали $\int_{-1}^{1} \operatorname{sgn} x \, dx = -1 + 1 = 0.$

Remark 2.6.10 Отже, $f \in \mathcal{R}([a,b]) \not\Longrightarrow f$ має первісну F на [a,b].

А тепер запишемо теорему, якої не вистачає попередньому підрозділу.

Theorem 2.6.11 II теорема про середнє

Задані функції $f \in \mathcal{R}([a,b])$ та g - монотонна.

Тоді
$$\exists c \in (a,b): \int_a^b f(x)g(x)\,dx = g(a)\int_a^c f(x)\,dx + g(b)\int_c^b f(x)\,dx.$$

Додатково ми доводимо нією формулою, що $f \cdot a \in \mathcal{R}([a,b])$.

Перед цим ми розглянемо наступні три леми.

Lemma 2.6.12 Тотожність Абеля

Встановимо $A_k = \sum_{p=1}^k a_p$ та $A_0 = 0$. Тоді виконується рівність:

$$\sum_{k=m}^{n} a_k b_k = (A_n b_n - A_{m-1} b_m) - \sum_{k=m}^{n-1} A_k (b_{k+1} - b_k)$$

Proof.

$$\sum_{k=m}^{n} a_k b_k = \sum_{k=m}^{n} (A_k - A_{k-1}) b_k = \sum_{k=m}^{n} A_k b_k - \sum_{k=m}^{n} A_{k-1} b_k = (A_n b_n - A_{m-1} b_m) + \sum_{k=m}^{n-1} A_k b_k - \sum_{k=m+1}^{n} A_{k-1} b_k = 1$$
У другій сумі лічильник замінюємо $k \to k-1$.

Remark 2.6.13 Тотожність Абеля дуже схожа на формулу інтегрування частинами, де в якості $u \to b_k \implies du \to (b_{k+1} - b_k)$, а також $dv \to a_k \implies v \to A_k$.

Lemma 2.6.14 Задані функції $f \in \mathcal{R}([a,b])$ та g - не зростає на [a,b] та $g \geq 0$.

Тоді
$$\exists \xi \in [a,b]: \int_a^b f(x)g(x)\,dx = g(a)\int_a^\xi f(x)\,dx.$$

$$\int_{a}^{b} f(x)g(x) dx = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x)g(x) dx = \sum_{k=1}^{n} g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x) dx + \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x)(g(x) - g(x_{k-1})) dx.$$

$$\left| \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x)(g(x) - g(x_{k-1})) \, dx \right| \leq \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(x)| |g(x) - g(x_{k-1})| \, dx \overset{f \in \mathcal{R} \Rightarrow f - \text{obm.}}{\leq}$$

$$\leq C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |g(x) - g(x_{k-1})| \, dx \leq C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k-1}} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \int_{x_$$

$$\leq C \sum_{k=1} \int_{x_{k-1}} |g(x) - g(x_{k-1})| \, dx \leq C \sum_{k=1} \int_{x_{k-1}} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]} |g(x) - g(y)| \, dx = C \sum_{k=1}^{n} \sup_{x,y \in [x_{k-1},x_k]}$$

Отже,
$$\sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x)(g(x) - g(x_{k-1})) dx \stackrel{|\tau| \to 0}{\longrightarrow} 0 \implies \sum_{k=1}^{n} g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x) dx \stackrel{|\tau| \to 0}{\longrightarrow} \int_a^b f(x)g(x) dx.$$

Лишилось з'ясувати, що приховує перша сума. Позначимо $F(t)=\int_a^t f(x)\,dx$. Оскільки $f\in\mathcal{R}([a,b]),$ то $F\in C([a,b])\implies$ вона приймає найбільше,

$$\sum_{k=1}^n g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x) \, dx = \sum_{k=1}^n g(x_{k-1}) (F(x_k) - F(x_{k-1})) [=]$$
 А далі застосуємо тотожість Абеля при $a_k = F(x_k) - F(x_{k-1}), b_k = g(x_{k-1}).$

$$= F(x_n)g(x_{n-1}) - \sum_{k=1}^{n-1} F(x_k)(g(x_k) - g(x_{k-1})) = F(x_n)g(x_{n-1}) + \sum_{k=1}^{n-1} F(x_k)(g(x_{k-1}) - g(x_k)).$$

$$mg(a) = mg(x_{n-1}) + m \sum_{k=1}^{n-1} (g(x_{k-1}) - g(x_k)) \le \sum_{k=1}^{n} g(x_{k-1}) \int_{x_{k-1}}^{x_k} f(x) dx \le C$$

$$\leq Mg(x_{n-1}) + M \sum_{k=1}^{n-1} (g(x_{k-1}) - g(x_k)) = Mg(a),$$
 де $m = \min_{t \in [a,b]} F(t), M = \max_{t \in [a,b]} F(t).$

Якщо $|\tau| \to 0$, то звідси випливає, що $mg(a) \le \int_a^b f(x)g(x)\,dx \le Mg(a)$.

Випадок
$$g(a)=0$$
 ясно. А далі поділимо тепер на $g(a)$ - отримаємо:
$$m\leq \frac{1}{g(a)}\int_a^b f(x)g(x)\,dx\leq M\implies \frac{1}{g(a)}\int_a^b f(x)g(x)\,dx=F(\xi), \text{ де }\xi\in[a,b] \text{ із теореми Больцано-Коші}$$

Остаточно,
$$\int_a^b f(x)g(x) dx = g(a) \int_a^\xi f(x) dx$$
.

Lemma 2.6.15 Задані функції $f \in \mathcal{R}([a,b])$ та g - не спадає на [a,b] та $g \geq 0$.

Тоді
$$\exists \xi \in [a,b]: \int_a^b f(x)g(x)\,dx = g(b)\int_{\xi}^b f(x)\,dx.$$

Використовуючи першу лему, ми доводимо нашу теорему для неспадної функції. А другою лемою доводимо теорему для незростаючої.

Вказівка: розглянути функцію G(x) = g(b) - g(x), якщо g - не спадна. Для незростаючої аналогічно.

2.7 Обчислення визначених інтегралів

Заміна змінної

Theorem 2.7.1 Задано функцію $f \in C([a,b])$. Також задано функцію $\varphi \in C'([\alpha,\beta])$, причому $a = \varphi(\alpha), b = \varphi(\beta)$. Тоді

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

Оскільки $f \in C([a,b])$, то вона має первісну F, за формулою Ньютона-Лейбніца,

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

f Але оскільки φ - диференційована функція, то звідси функція $f \circ \varphi \cdot \varphi'$ має первісну $F \circ \varphi$. Нарешті, оскільки $f \circ \varphi \cdot \varphi' \in C([\alpha, \beta])$, то ми можемо застосувати формулу Ньютона-Лейбніца.

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a).$$

Example 2.7.2 Обчислити $\int_{0}^{1} \sqrt{1-x^2} \, dx$.

Якщо обчислювати невизначений інтеграл, то напрошується заміна:

жения об именовати истания интегран, то напромуствой замина:
$$x = \sin t$$
, тоді звідси $dx = \cos t \, dt$. Виникне $\int \sqrt{1-x^2} \, dx = \int \sqrt{1-\sin^2 t} \cos t \, dt = \int \cos^2 t \, dt$. Тепер виникає питання, чи буде це працювати в визначеному інтегралі.

Маємо $f(x)=\sqrt{1-x^2}$, для якої $f\in C([-1,1])$. Також маємо $\varphi(t)=\sin t$, додатково $\varphi(\alpha)=0\implies \sin\alpha=0\implies \alpha=0$

$$\varphi(\alpha) = 0 \implies \sin \alpha = 0 \implies \alpha = 0$$

$$\varphi(\beta) = 1 \implies \sin \beta = 1 \implies \beta = \frac{\pi}{2}.$$

Відомо, що $\varphi \in C'\left(\left[0,\frac{\pi}{2}\right]\right)$. Тоді заміна змінної працює та

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t \, dt = \int_0^{\frac{\pi}{2}} \cos^2 t \, dt = \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos 2t) \, dt = \frac{t}{2} + \frac{1}{4} \sin 2t \Big|_0^{\frac{\pi}{2}} = \frac{\pi}{4}$$

2.7.2 Інтегрування частинами

Theorem 2.7.3 Задані функції u, v - диференційовані на [a, b], причому $u', v' \in \mathcal{R}([a, b]$. Тоді $\int_{a}^{b} u(x)v'(x) \, dx = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x) \, dx.$

Оскільки існують u', v', то звідси $u, v \in C([a, b]) \implies u, v \in \mathcal{R}([a, b])$.

Розглянемо функцію $h(x)=u(x)v'(x)+v(x)u'(x)\in\mathcal{R}([a,b])$. Вона має первісну H(x)=u(x)v(x).

Тоді за формулою Ньютона-Лейбніца, маємо:
$$\int_a^b h(x)\,dx = H(b) - H(a) = u(b)v(b) - u(a)v(a) = u(x)v(x)\Big|_a^b$$

3 іншого боку,
$$\int_a^b h(x) \, dx = \int_a^b u(x) v'(x) \, dx + v(x) u'(x) \, dx = \int_a^b u(x) v'(x) \, dx + \int_a^b v(x) u'(x) \, dx$$
.

Отже,
$$\int_a^b u(x)v'(x) \, dx = u(x)v(x)\Big|_a^b - \int_a^b v(x)u'(x) \, dx$$
.

Example 2.7.4 Обчислити $\int_{1}^{2} \ln x \, dx$.

Маємо
$$u=\ln x$$
, тоді $du=\frac{1}{r}\overset{1}{dx}$ Далі $dv=dv$, тоді $v=x$.

Важливо, що $u'=\frac{1}{x}$ та v'=1 - всі інтегровані, тобто $u',v'\in\mathcal{R}([1,2]).$ Тому інтегруємо частинами.

$$\int_{1}^{2} \ln x \, dx = x \ln x \Big|_{1}^{2} - \int_{1}^{2} x \frac{1}{x} \, dx = 2 \ln 2 - x \Big|_{1}^{2} = 2 \ln 2 - 1.$$

Обчислити
$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx \stackrel{\text{позн.}}{=} I_n.$$

Розглянемо окремо випадок n = 0 та n = 1.

$$I_0 = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2}.$$

$$I_1 = \int_0^{\frac{\pi}{2}} \sin x \, dx = -\cos x \Big|_0^{\frac{\pi}{2}} = 1.$$

Якщо $n \ge 2$, то ми будемо інтегрувати частинами, якщо переписати $\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \int_0^{\frac{\pi}{2}} \sin^{n-1} x \sin x \, dx$. $u = \sin^{n-1} x \implies du = (n-1)\sin^{n-2} x \cos x \, dx$

$$dv = \sin x \, dx \implies v = -\cos x.$$

$$I_n = -\sin^{n-1} x \cos x \Big|_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \cos^2 x \sin^{n-2} x \, dx = (n-1) \int_0^{\frac{\pi}{2}} (1-\sin^2 x) \sin^{n-2} x \, dx =$$

$$= (n-1)I_{n-2} - (n-1)I_n.$$
 Таким чином, отримали:
$$I_n = \frac{n-1}{n} I_{n-2}.$$
 Якщо $n = 2k$, то
$$I_{2k} = \frac{2k-1}{2k} \frac{2k-3}{2k-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}$$
 Якщо $n = 2k+1$, то
$$I_{2k+1} = \frac{2k}{2k+1} \frac{2k-2}{2k-1} \cdot \frac{2}{3} \cdot 1$$
 Остаточно,
$$I_{2k} = \frac{(2k-1)!!}{(2k)!!} \cdot \frac{\pi}{2}, \qquad I_{2k+1} = \frac{(2k)!!}{(2k+1)!!}$$

 На цьому ще не все. Зауважимо, що оскільки $-1 \leq \sin x \leq 1$, то тоді $\sin^{2n+1} x \leq \sin^{2n} x \leq \sin^{2n-1} x$, а звідси випливає, що $I_{2n+1} \leq I_{2n} \leq I_{2n-1}$. Тоді отримаємо оцінку $\frac{I_{2n+1}}{I_{2n-1}} = \frac{2n}{2n+1} \leq \frac{I_{2n+1}}{I_{2n}} \leq 1$. За теоремою про двох поліцаїв, маємо $\lim_{n o \infty} rac{I_{2n+1}}{I_{2n}} = 1.$ Якщо цю границю розписати отримаємо результат:

Theorem 2.7.6 Формула Валліса
$$\frac{\pi}{2} = \lim_{n \to \infty} \frac{1}{2n+1} \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot \cdots (2n) \cdot (2n)}{1 \cdot 1 \cdot 3 \cdot 3 \cdot \cdots (2n-1) \cdot (2n-1)}.$$

Застосування визначеного інтеграла

2.8.1 Площа криволінійної трапеції

Що таке взагалі площа, я буду вважати відомою штукою. Також відомо для мене буде площа прямокутника, що суттєво важливо.

Definition 2.8.1 Задано функцію $f : [a, b] \to \mathbb{R}$ так, щоб $f(x) \ge 0$ та обмежена. Криволінійною трапецією називають таку множину:

$$Tr(f, [a, b]) = \{(x, y) \in \mathbb{R}^2 | x \in [a, b], y \in [0, f(x)] \}$$

Задамо тепер деяке розбиття $\tau = \{x_0, x_1, \dots, x_n\}$. Через ці точки проведемо вертикальну пряму.

Тоді наша площа криволінійної трапеції $S(Tr(f,[a,b]))) = \sum_{k=1}^{n} S(Tr(f,[x_{k-1},x_k])).$

На кожному відрізку $[x_{k-1}, x_k]$ ми:

- впишемо прямокутник P_k' , висота якої дорівнює $\inf_{x \in [x_{k-1}, x_k]} f(x)$;

- опишемо прямокутник P_k'' , висота якої дорівнює $\sup_{x \in [x_{k-1}, x_k]} f(x)$.

Сума площ вписаних прямокутників дорівнює $\sum_{k=1}^n \Delta x_k \inf_{x \in [x_{k-1},x_k]} f(x) = S(P').$

Сума площ описаних прямокутників дорівнює $\sum_{k=1}^{\infty} \Delta x_k \sup_{x \in [x_{k-1}, x_k]} f(x) = S(P'').$

Definition 2.8.2 Задано криволінійну трапецію Tr(f, [a, b]).

Внутрішньою площею криволінійної трапеції Tr(f, [a, b])) називають число:

$$S_*(Tr) = \sup_{\tau} S(P')$$

Зовнішньою площею криволінійної трапеції Tr(f,[a,b])) називають число:

$$S^*(Tr) = \inf_{\tau} S(P'')$$

Definition 2.8.3 Криволінійна трапеція називається квадрованою, якщо

$$S_*(Tr) = S^*(Tr) = S$$

Число S називається **площею** криволінійної трапеції. (Означення працює не тільки для криволінійної трапеції).

Theorem 2.8.4 Задано функцію $f \in C([a,b])$ та $f(x) \ge 0$. Задамо криволінійну трапецію Tr(f,[a,b]). Тоді вона є квадрованю та $S(Tr) = \int_{-\infty}^{b} f(x) dx$.

Proof.

Оскільки $f \in C([a,b])$, то $f \in \mathcal{R}([a,b])$. Звідси $S_*(Tr) = I_*(f) = I^*(f) = S^*(Tr)$. Тобто Tr -

Автоматично звідси
$$S(Tr) = \int_a^b f(x) dx$$
.

Theorem 2.8.5 Задані функції $f,g\in C([a,b]),$ причому $f(x)\geq g(x).$ Задамо фігуру

$$G = \{(x,y) \in \mathbb{R}^2 : x \in [a,b], y \in [f(x),g(x)]\}$$
. Тоді вона є квадрованою та $S(G) = \int_a^b f(x) - g(x) \, dx$.

Proof.

Оскільки $g \in C([a,b])$, то вона приймає найменше значення.

Якщо від'ємне, то перемістимо фігуру G на число $c=|\inf_{x\in[a,b]}g(x)|$ догори. Отримаємо фігуру

$$G' = \{(x,y) \in \mathbb{R}^2 : x \in [a,b], y \in [f(x)+c,g(x)+c]\}.$$

Якщо додатнє, то тоді G' = G (тут все зрозуміло).

Зауважимо, що
$$S(G')=S(Tr(f+c,[a,b]))-S(Tr(g+c,[a,b]))$$
 Отже, $S(G)=S(G')=\int_a^b f(x)+c\,dx-\int_a^b g(x)+c\,dx=\int_a^b f(x)-g(x)\,dx.$

2.8.2 Площа криволінійного сектора

Definition 2.8.6 Задано функцію $\rho: [\alpha, \beta] \to \mathbb{R}$.

Криволінійним сектором називають таку множину:

$$Sec(\rho, [\alpha, \beta]) = \{(\theta, \rho) : \theta \in [\alpha, \beta] : \rho \in [0, \rho(\theta)]\}$$

Задамо тепер деяке розбиття $\tau = \{\alpha, \theta_1, \theta_2, \dots, \beta\}$. Через ці кути проведемо $\rho(\theta_k)$. Тоді площа нашого криволінійного сектора $S(Sec(\rho, [\alpha, \beta])) = \sum_{k=1}^n S(Sec(\rho, [\theta_{k-1}, \theta_k]))$.

На кожному відрізку $[\theta_{k-1}, \theta_k]$ ми:

- впишемо сектор Q_k' , радіус якої дорівнює $\inf_{\theta \in [\theta_{k-1}, \theta_k]} \rho(\theta)$;
- опишемо сектор Q_k'' , радіус якої дорівнює $\sup_{\theta \in [\theta_{k-1}, \theta_k]} \rho(\theta)$.

Тут має бути рисунок, але не шарю, як це зробити.

Сума площ вписаних секторів дорівнює $\sum_{k=1}^n \frac{1}{2} \Delta \theta_k \left(\inf_{\theta \in [\theta_{k-1}, \theta_k]} \rho(\theta) \right)^2 = \sum_{k=1}^n \frac{1}{2} \Delta \theta_k \inf_{\theta \in [\theta_{k-1}, \theta_k]} \frac{1}{2} \rho^2(\theta) = L\left(\frac{1}{2} \rho^2, \tau\right).$

Сума площ описаних секторів дорівнює $\sum_{k=1}^n \frac{1}{2} \Delta \theta_k \left(\sup_{\theta \in [\theta_{k-1}, \theta_k]} \rho(\theta) \right)^2 = \sum_{k=1}^n \Delta \theta_k \sup_{\theta \in [\theta_{k-1}, \theta_k]} \frac{1}{2} \rho^2(\theta) = U\left(\frac{1}{2} \rho^2, \tau \right).$

Theorem 2.8.7 Задано функцію $\rho \in C([\alpha, \beta])$. Задамо криволінійний сектор $Sec(\rho, [\alpha, \beta])$. Тоді він є квадрованим та $S(Sec) = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\theta) \, d\theta$.

Proof

Оскільки $\rho \in C([\alpha, \beta])$, то $\rho \in \mathcal{R}([\alpha, \beta])$, а тому $\frac{1}{2}\rho^2 \in \mathcal{R}([\alpha, \beta])$. Звідси $S_*(Sec) = I_*\left(\frac{1}{2}\rho^2\right) = I^*\left(\frac{1}{2}\rho^2\right) = S^*(Sec)$. Тобто Sec - квадрована.

Автоматично звідси $S(Sec) = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\theta) \, d\theta.$

2.8.3 Крива, яка спрямовується

Definition 2.8.8 Задано функції $x, y \in C([a, b])$.

Неперервною кривою на площині називають таку множину:

$$\Gamma = \{(x, y) \in \mathbb{R}^2 : x = x(t), y = y(t), t \in [a, b]\}$$

Нехай $\tau = \{t_0, t_1, \dots, t_n\}$ - деяке розбиття відрізка [a, b]. Встановимо Γ_{τ} - ломана, що отримана в результаті сполучення кожної пари сусідніх точок $(x(t_{k-1}), y(t_{k-1}))$ та $(x(t_k), y(t_k))$.

Довжина ломаної
$$L(\Gamma_{\tau}) \sum_{k=1}^{n} \sqrt{(x(t_k) - x(t_{k-1}))^2 + (y(t_k) - y(t_{k-1}))^2}$$
.

Definition 2.8.9 Криву називають **такою, що спрямовується**, якщо існує таке число $L \in \mathbb{R}$, для якого виконана умова:

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \tau : |\tau| < \delta \implies |L(\Gamma_{\tau}) - L| < \varepsilon$$

Число L називають довжиною кривої Γ .

Позначення: $\lim_{|\tau|\to 0}L(\Gamma_{\tau})=L$ (знову нелегальне позначення).

Theorem 2.8.10 Задано функції $x, y \in C'([a, b])$. Тоді крива Γ буде такою, що спрямовується, а $L(\Gamma) = \int_{0}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$

Proof.

Задамо розбиття τ , маємо довжину ломаної $L(\Gamma_{\tau}) = \sum_{k=1}^n \sqrt{(x(t_k)-x(t_{k-1}))^2+(y(t_k)-y(t_{k-1}))^2}$.

За умовою теореми, можемо застосувати теорему Лагранжа, тоді

$$\exists \xi_k \in (t_{k-1}, t_k) : x(t_k) - x(t_{k-1}) = x'(\xi_k)(t_k - t_{k-1}) = x'(\xi_k)\Delta t_k.$$

$$\exists \eta_k \in (t_{k-1}, t_k) : y(t_k) - y(t_{k-1}) = y'(\eta_k)(t_k - t_{k-1}) = y'(\eta_k) \Delta t_k$$

За умовою геореми, можемо застосувати теорему утаграния, гарания, гарания в
$$\exists \xi_k \in (t_{k-1}, t_k) : x(t_k) - x(t_{k-1}) = x'(\xi_k)(t_k - t_{k-1}) = x'(\xi_k)\Delta t_k.$$
 $\exists \eta_k \in (t_{k-1}, t_k) : y(t_k) - y(t_{k-1}) = y'(\eta_k)(t_k - t_{k-1}) = y'(\eta_k)\Delta t_k.$ Тоді $L(\Gamma_\tau) = \sum_{k=1}^n \sqrt{(x'(\xi_k))^2 + (y'(\eta_k))^2} \Delta t_k.$ Розпишемо щю формулу інакшим чином:

$$L(\Gamma_{\tau}) = \sum_{k=1}^{n} \sqrt{(x'(\xi_k))^2 + (y'(\xi_k))^2} \Delta t_k + \sum_{k=1}^{n} (\sqrt{(x'(\xi_k))^2 + (y'(\eta_k))^2} - \sqrt{(x'(\xi_k))^2 + (y'(\xi_k))^2}) \Delta t_k = \sigma \left(\sqrt{(x')^2 + (y')^2}, \tau, \xi \right) + r_{\tau}.$$
 Тоді:

$$|L(\Gamma_{\tau}) - \sigma\left(\sqrt{(x')^2 + (y')^2}, \tau, \xi\right)| = |r_{\tau}| \le \sum_{k=1}^n |y'(\eta_k) - y'(\xi_k)| \Delta t_k < \varepsilon \sum_{k=1}^n \Delta t_k = \varepsilon(b-a).$$

Значить, крива Γ є такою, що спрямовується, а також довжина $L(\Gamma) = \int_0^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$.

Theorem 2.8.11 Задано функцію $f \in C'([a,b])$. Задамо криву $\Gamma = \{(x,y) : x \in [a,b], y = f(x)\}$. Тоді вона буде спрямованою, а $L(\Gamma) = \int_{-\infty}^{b} \sqrt{1 + (f'(x))^2} \, dx$.

Proof.

Функцію f можна параметризувати: x = x(t), y = y(t)

Нехай в $x(t_1) = a, x(t_2) = b.$

$$L(\Gamma) = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt = \int_{t_1}^{t_2} \sqrt{1 + \left(\frac{y'(t)}{x'(t)}\right)^2} x'(t) \, dt = \int_a^b \sqrt{1 + (f'(x))^2} \, dx.$$

Theorem 2.8.12 Задано функцію $\rho \in C'([\alpha, \beta])$. Задамо криву $\Gamma = \{(\theta, r) : \theta \in [\alpha, \beta], r = \rho(\theta)\}$. Тоді вона буде спрямованою, а $L(\Gamma) = \int_{\alpha}^{\beta} \sqrt{(\rho(\theta))^2 + (\rho'(\theta))^2} \, d\theta$.

Remark 2.8.13 € такий об'єкт, як крива Коха - приклад кривої, що не можна спрямувати. Тим не менш, вона має площу.

Об'єм тіла обертання

Задано функцію $f:[a,b] \to \mathbb{R}$ так, щоб $f(x) \ge 0$ та обмежена. Розглянемо криволінійну трапецію

Ми отримаємо тіло G, що було отримано в результаті обертання трапеції Tr відносно осі OX.

Ми також вписували/описували прямокутники. Якщо їх обернути навколо OX, то кожна з них

ми також вписували/описували прямокутники. Акщо їх обернути навколо OX, стане циліднром радіуса відповідно $\inf_{x \in [x_{k-1}, x_k]} f(x), \sup_{x \in [x_{k-1}, x_k]} f(x).$ Сума об'ємів вписаних циліндрів дорівнює $\sum_{k=1}^n \pi \left(\inf_{x \in [x_{k-1}, x_k]} f(x)\right)^2 \Delta x_k = V(G').$ Сума об'ємів описаних циліндрів дорівнює $\sum_{k=1}^n \pi \left(\sup_{x \in [x_{k-1}, x_k]} f(x)\right)^2 \Delta x_k = V(G'').$

Definition 2.8.14 Внутрішнім об'ємом тіла G називають число:

$$V_*(G) = \sup_{\tau} V(G')$$

Зовнішнім об'ємом тіла G називають число:

$$V^*(G) = \inf_{\tau} V(G'')$$

Definition 2.8.15 Тіло G називають **кубованою**, якщо

$$V_*(G) = V^*(G) = V$$

Число V називають **об'ємом** тіла G.

Theorem 2.8.16 Задано функцію $f \in C([a,b])$ така, що $f(x) \geq 0$. Тоді G є кубованою та $V = \pi \int_a^b f^2(x) \, dx.$

Bказівка: $(\sup f(x))^2 = \sup f^2(x)$.

На даному етапі нам буде достатньо інструментарію, щоб довести даний результат:

Theorem. $\pi \notin \mathbb{Q}$.

Нижичеописане доведення було придумано математиком Айвеном Нівеном.

!Припустимо, що $\pi \in \mathbb{Q}$, тобто розпишемо $\pi = \frac{a}{b}$. Не втрачаючи загальності, ввжаємо $a, b \in \mathbb{N}$.

Зафіксуємо $n \in \mathbb{N}$ та розглянемо функцію $f(x) = \frac{x^n(a-bx)^n}{n!}$. Також для зручності позначимо $F(x) = \frac{f(x) - f(x)}{n!}$ $F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) + \dots + (-1)^n f^{(2n)}(x)$ – вона визначена коректно, бо функція f, зрозуміло, диференційована. Доведення буде в кілька етапів.

I.
$$F(0) + F(\pi) \in \mathbb{Z}$$
.

1.
$$F(0) + F(\pi) \in \mathbb{Z}$$
. Розпишемо функцію f в більш розгорнутому вигляді через біном-Ньютона — маємо наступне: $f(x) = \frac{x^n}{n!} \sum_{k=0}^n (-1)^k C_n^k x^k b^k a^{n-k} = \sum_{k=0}^n \frac{(-1)^k C_n^k b^k a^{n-k}}{n!} x^{n+k} = \sum_{k=0}^n \frac{c_{n+k}}{n!} x^{n+k} = \frac{c_0}{n!} + \frac{c_1}{n!} x + \dots + \frac{c_n}{n!} x^n + \frac{c_{n+1}}{n!} x^{n+1} + \dots + \frac{c_{n+k}}{n!} x^{n+k}.$ У цьому випадку $c_m = 0$ при $m < n$, а в іншому випадку $c_m \in \mathbb{Z}$. Значить, звідси $f^{(m)}(0) = 0$ при $m < n$ $f^{(m)}(0) = \frac{m!}{n!} c_m$ при $n \le m \le 2n$. Причому $f^{(m)}(\pi) \in \mathbb{Z}$. Таким чином, ми отримаємо $F(0) \in \mathbb{Z}$.

$$f^{(m)}(0) = 0$$
 при $m < n$ $f^{(m)}(0) = \frac{m!}{n!} c_m$ при $n \le m \le 2n$. Причому $f^{(m)} \in \mathbb{Z}$.

Зауважимо, що $f(\pi - x) = f(x)$, тому звідси $f^{(m)}(\pi - x) = (-1)^m f^{(m)}(x)$. Зокрема при $x = \pi$ маємо $(-1)^m f^{(m)}(\pi) = f^{(m)}(0)$. Таким чином, отримаємо $F(\pi) \in \mathbb{Z}$ (насправді, $F(\pi) = F(0)$).

II.
$$\int_0^{\pi} f(x) \sin x \, dx = F(0) + F(\pi).$$

Продиференціюємо функцію F двічі та зауважимо, що $f^{(2n+2)} \equiv 0$. Після цього можна зауважити таке співвідношення:

$$F''(x) + F(x) = f(x).$$

Дана рівність дозволяє сказати нам, що $f(x)\sin x = (F'(x)\sin x - F(x)\cos x)'$. Тоді

$$\int_{0}^{\pi} f(x) \sin x \, dx = F'(x) \sin x - F(x) \cos x \Big|_{0}^{\pi} = F(0) + F(\pi)$$

 $\int_0^\pi f(x) \sin x \, dx = F'(x) \sin x - F(x) \cos x \Big|_0^\pi = F(0) + F(\pi).$ Можна було просто підставити f = F'' + F та ручками пошукати невизначений інтеграл, якщо важко побачити.

III.
$$0 < F(0) + F(\pi) < 1$$
.

Зауважимо, що при $x \in (0,\pi)$ матиемо f(x) > 0. Також нам відомо, що $0 < \sin x < 1$. Таким чином, звідси $\int_0^{\infty} f(x) \sin x \, dx > 0$, а це означає, що $F(0) + F(\pi) \in \mathbb{N}$.

Із іншого боку, при $x \in [0,\pi]$ ми матимемо $0 \le x(a-bx) \le \pi a$. Також нам відомо, що $0 \le \sin x \le 1$. Таким чином, звідси $\int_0^\pi f(x) \sin x \, dx \le \pi \frac{(\pi a)^n}{n!}$. Нам відомо, що $\pi \cdot \frac{(\pi a)^n}{n!} \to 0$ при $n \to \infty$, тому знайдеться таке натуральне число $n \in \mathbb{N}$, щоб $F(0) + F(\pi) < 1$.

Нарешті, прийшли до суперечності!

3 Невласні інтеграли

3.1 Основні означення

Розглянемо два основні випадки:

I. Задано таку функцію $f:[a,+\infty)\to\mathbb{R}$, що $\forall A\in[a,+\infty):f\in\mathcal{R}([a,A]).$

Definition 3.1.1 Невласним інтегралом І роду називають такий вираз:

$$\int_{a}^{+\infty} f(x) \, dx = \lim_{A \to +\infty} \int_{a}^{A} f(x) \, dx$$

Remark 3.1.2 Аналогічно визначається для $f:(-\infty,b]\to\mathbb{R}$.

II. Задано таку функцію $f:[a,b)\to\mathbb{R}$, що $\forall A\in[a,b):f\in\mathcal{R}([a,A])$, причому функція необмежена навколо точки b.

Definition 3.1.3 Невласним інтегралом II роду називають такий вираз:

$$\int_a^b f(x) dx = \lim_{A \to b-0} \int_a^A f(x) dx$$

Дане означення можна переписати інакше, якщо $A=b-\varepsilon$, причому тепер $\varepsilon\to 0+0$.

Remark 3.1.4 Аналогічно визначається для $f:(a,b] \to \mathbb{R}$.

Definition 3.1.5 Якщо границя існує, то невласний інтеграл (І або ІІ роду) називається **збіжним**. Інакше - **розбіжним**.

Надалі я буду позначати $\omega = \begin{bmatrix} b \\ +\infty \end{bmatrix}$. Також $A \to \omega$ позначає $A \to +\infty$ або $A \to b-0$.

$$\begin{aligned} & \textbf{Example 3.1.6} \, \int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{A \to +\infty} \int_{1}^{A} \frac{dx}{x^{\alpha}} [=] \\ & = \lim_{A \to +\infty} \ln x \Big|_{1}^{A} = \lim_{A \to +\infty} \ln A = +\infty \text{ при } \alpha = 1 \\ & = \lim_{A \to +\infty} \frac{x^{-\alpha+1}}{-\alpha+1} \Big|_{1}^{A} = \\ & = \lim_{A \to +\infty} \frac{1}{1-\alpha} (A^{1-\alpha}-1) = +\infty \text{ при } \alpha < 1 \\ & = \lim_{A \to +\infty} \frac{1}{1-\alpha} (\frac{1}{A^{\alpha-1}}-1) = \frac{1}{\alpha-1} \text{ при } \alpha > 1 \end{aligned}$$

Таким чином, $\int_1^{+\infty} \frac{dx}{x^{\alpha}}$ - збіжний при $\alpha>1$ та розбіжний при $\alpha\leq 1$.

Example 3.1.7
$$\int_0^1 \frac{dx}{x^\alpha} = \lim_{\varepsilon \to 0+0} \int_\varepsilon^1 \frac{dx}{x^\alpha} =$$

$$= \lim_{\varepsilon \to 0+0} \ln x \Big|_\varepsilon^1 = -\infty \text{ при } \alpha = 1$$

$$= \lim_{\varepsilon \to 0+0} \frac{x^{-\alpha+1}}{-\alpha+1} \Big|_\varepsilon^1 =$$

$$= \lim_{\varepsilon \to 0+0} \frac{1}{1-\alpha} \left(1-\varepsilon^{1-\alpha}\right) = \frac{1}{1-\alpha} \text{ при } \alpha < 1$$

$$= \lim_{\varepsilon \to 0+0} \frac{1}{1-\alpha} \left(1-\frac{1}{\varepsilon^{\alpha-1}}\right) = +\infty \text{ при } \alpha > 1.$$
Таким чином,
$$\int_0^1 \frac{dx}{x^\alpha} - 36іжний при \alpha < 1 \text{ та розбіжний при } \alpha \ge 1.$$

3.2 Властивості

Lemma 3.2.1 Задано функцію $f \in \mathcal{R}([a,b])$. Тоді невласний інтеграл повністю збігається з визначеним інтегралом.

Ггон.
$$\int_{a}^{b} f(x) \, dx = \lim_{A \to b-0} \int_{a}^{A} f(x) \, dx = \lim_{A \to b-0} (F(A) - f(a)) \stackrel{(*)}{=} F(b) - F(a) = \int_{a}^{b} f(x) \, dx.$$
 невласний (*) Оскільки $f \in \mathcal{R}([a,b])$, то тоді первісна $F \in C([a,b])$, а тому рівність справедлива.

Theorem 3.2.2 Лінійність

Задані функції
$$f,g\in\mathcal{R}([a,A]), \forall A\in[a,\omega),$$
 причому $\int_a^\omega f(x)\,dx, \int_a^\omega g(x)\,dx$ - збіжні. Тоді $\forall \alpha_1,\alpha_2\in\mathbb{R}:\int_a^\omega \alpha_1 f(x)+\alpha_2 g(x)\,dx$ - збіжний та
$$\int_a^\omega \alpha_1 f(x)+\alpha_2 g(x)\,dx=\alpha_1\int_a^\omega f(x)\,dx+\alpha_2\int_a^\omega g(x)\,dx.$$

Proof.

$$\int_{a}^{\omega} \alpha_{1} f(x) + \alpha_{2} g(x) dx = \lim_{A \to \omega} \int_{a}^{A} \alpha_{1} f(x) + \alpha_{2} g(x) dx = \lim_{A \to \omega} \left(\alpha_{1} \int_{a}^{A} f(x) dx + \alpha_{2} \int_{a}^{A} g(x) dx \right) =$$

$$= \alpha_{1} \int_{a}^{\omega} f(x) dx + \alpha_{2} \int_{a}^{\omega} g(x) dx.$$

Example 3.2.3 Обчислити
$$\int_0^{+\infty} 2e^{-x} + \frac{1}{1+x^2} dx$$
.

Маємо
$$\int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1$$
, тобто цей інтеграл - збіжний.

Маємо
$$\int_0^{+\infty} \frac{1}{1+x^2} dx = \arctan x \Big|_0^{+\infty} = \frac{\pi}{2}$$
, тобто цей інтеграл - збіжний.

Маємо
$$\int_0^{+\infty} \frac{1}{1+x^2} dx = \operatorname{arctg} x \Big|_0^{+\infty} = \frac{\pi}{2}$$
, тобто цей інтеграл - збіжний. Тоді $\int_0^{+\infty} 2e^{-x} + \frac{1}{1+x^2} dx = 2 \int_0^{+\infty} e^{-x} dx + \int_0^{+\infty} \frac{1}{1+x^2} dx = 2 + \frac{\pi}{2}$ - також збіжний.

Example 3.2.4 Обчислити $\int_{1}^{+\infty} \frac{1}{x^2} + \frac{1}{x} dx$.

Маємо
$$\int_1^{+\infty} \frac{1}{x^2} \, dx$$
 - збіжний, але $\int_1^{+\infty} \frac{1}{x} \, dx$ - розбіжний.

Отже,
$$\int_1^{+\infty} \frac{1}{x^2} + \frac{1}{x} dx$$
 - розбіжний.

Theorem 3.2.5 Адитивність

Задано функцію
$$f \in \mathcal{R}([a,A]), \forall A \in [a,\omega).$$

$$\int_a^\omega f(x) \, dx - \text{збіжний} \iff \forall c \in (a,\omega) : \int_c^\omega f(x) \, dx - \text{збіжний}.$$

$$\int_a^\omega f(x) \, dx = \int_a^c f(x) \, dx + \int_a^\omega f(x) \, dx, \text{ незалежно від збіжності.}$$

$$\Longrightarrow$$
 Дано: $\int_a^\omega f(x) dx$ - збіжний.

Розглянемо
$$\int_a^A f(x) \, dx = \int_a^c f(x) \, dx + \int_c^A f(x) \, dx \implies \int_c^A f(x) \, dx = \int_a^A f(x) \, dx - \int_a^c f(x) \, dx$$
. Тоді
$$\lim_{A \to \omega} \int_c^A f(x) \, dx = \lim_{A \to \omega} \left(\int_a^A f(x) \, dx - \int_a^c f(x) \, dx \right)$$

$$\int_{c}^{\omega} f(x) \, dx = \int_{a}^{\omega} f(x) \, dx - \int_{a}^{c} f(x) \, dx,$$
 тобто наш інтеграл - збіжний, причому
$$\int_{a}^{\omega} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{\omega} f(x) \, dx.$$

Аналогічні міркування.

Theorem 3.2.6 Формула заміни змінної

Задано функцію $f \in C([a,\omega))$. Також задано функцію $\varphi \in C'([\alpha,\gamma))$, причому $a=\varphi(\alpha)$, $\lim_{\beta \to \infty} \varphi(\beta) \stackrel{\text{a6o}}{=}$

$$\varphi(\gamma)=\omega,$$
 де $\gamma=egin{bmatrix} b \\ +\infty \end{bmatrix}$. Додатково вимагаємо $\varphi'>0$ всюди. Тоді

$$\int_{\alpha}^{\gamma} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\gamma)} f(x) dx.$$

Для рівності треба існування хоча б однієї границі.

Зафіксуємо $\beta \in [\alpha, \gamma)$. Можна застосувати формулу заміни змінної для функції $\varphi \in C'([\alpha, \beta])$ та

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) dx.$$

Тепер маємо $\beta \to \gamma$. Оскільки φ - неперервна та строго зростає, то тоді існує φ^{-1} . Таким чином, $\lim_{\beta \to \gamma} \varphi(\beta) = \omega \iff \lim_{u \to \omega} \varphi^{-1}(u) = \gamma$. Завдяки цьому, ми можемо довести існування одного інтеграла

Theorem 3.2.7 Формула інтегрування частинами

Задані функції u, v - диференційовані на $[a, \omega)$, причому $\forall A \in [a, \omega) : u', v' \in \mathcal{R}([a, A])$. Тоді

$$\int_a^\omega u(x)v'(x)\,dx = u(x)v(x)\Big|_a^\omega - \int_a^\omega v(x)u'(x)\,dx.$$

Тут в позначенні $u(x)v(x)\Big|_a^\omega \stackrel{\text{def.}}{=} \lim_{A \to \omega} u(x)v(x)\Big|_a^A$. Для рівності треба існування хоча б двох скінченних границь.

Дійсно,
$$\int_a^A u(x)v'(x)\,dx=u(x)v(x)\Big|_a^A-\int_a^A v(x)u'(x)\,dx.$$
 А далі вже $A o\omega.$

Example 3.2.8 Обчислити
$$\int_0^{\pi} \frac{dx}{2 + \cos x}$$
.

$$\operatorname{tg} \frac{x}{2} = t$$
, тоді звідси $dt = \frac{1}{2}(1+t^2) dx$.

Example 3.2.8 Обчислити
$$\int_0^\pi \frac{dx}{2+\cos x}$$
. Якщо обчислювати невизначений інтеграл, то напрошується заміна: $\operatorname{tg} \frac{x}{2} = t$, тоді звідси $dt = \frac{1}{2}(1+t^2)\,dx$. Виникне $\int \frac{dx}{2+\cos x}\,dx = \int \frac{1}{2+\cos(2\arctan t)}\frac{2}{1+t^2}\,dt$. Тепер виникає питання, чи буде ця заміна працювати.

Маємо
$$f(x) = \frac{1}{2 + \cos x}$$
, для якої $f \in C([0, \pi])$. Також маємо $\varphi(t) = \arctan t$, додатково $\varphi(\alpha) = 0 \implies \arctan \alpha = 0 \implies \alpha = 0$

$$\varphi(\alpha) = 0 \implies \arctan \alpha = 0 \implies \alpha = 0$$

$$\varphi(\beta) = \pi \implies \operatorname{arctg} \beta = \pi \implies \beta = +\infty$$

$$\varphi(\beta) = \pi \implies \operatorname{arctg} \beta = \pi \implies \beta = +\infty.$$
 Відомо, що $\varphi \in C'([0, +\infty))$ та φ - строго зростає. Тоді заміна змінної працює та
$$\int_0^\pi \frac{dx}{2 + \cos x} = \int_0^{+\infty} \frac{2}{1 + t^2} \frac{1}{2 + \frac{1 - t^2}{1 + t^2}} dt = 2 \int_0^{+\infty} \frac{dt}{3 + t^2} = \lim_{A \to +\infty} \int_0^A \frac{2 \, dt}{3 + t^2} = \lim_{A \to +\infty} \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{t}{\sqrt{3}} \Big|_0^A = \frac{1}{2 + \frac{1 - t^2}{1 + t^2}} dt = 2 \int_0^{+\infty} \frac{dt}{3 + t^2} = \lim_{A \to +\infty} \left| \int_0^A \frac{2 \, dt}{3 + t^2} \right|_0^A dt = 2 \int_0^A \frac{2 \, dt}{3 + t^2} = \lim_{A \to +\infty} \left| \int_0^A \frac{2 \, dt}{3 + t^2} \right|_0^A dt = 2 \int_0^A \frac{2 \, dt}{3 + t^2} dt = 2 \int_0^A \frac{2 \, dt}{3 + t^2$$

$$\lim_{A \to +\infty} \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{A}{\sqrt{3}} = \frac{\pi}{\sqrt{3}}.$$

До речі, початковий інтеграл був визначеним, а за допомогою замін, ми перейшли на невласні інтеграли.

Example 3.2.9 Обчислити $\int_0^1 \ln x \, dx$.

$$= \lim_{\varepsilon \to 0} \left(x \ln x \Big|_{0+\varepsilon}^{1} - x \Big|_{0+\varepsilon}^{1} \right) = \lim_{\varepsilon \to 0} \left(-\varepsilon \ln \varepsilon - 1 + \varepsilon \right) = \lim_{\varepsilon \to 0} \frac{\ln \varepsilon}{-\frac{1}{\varepsilon}} + \lim_{\varepsilon \to 0} (\varepsilon - 1)^{-\frac{1}{\varepsilon}} = \lim_{\varepsilon \to 0} \frac{\frac{1}{\varepsilon}}{\frac{1}{\varepsilon^{2}}} - 1 = -1.$$

Інтеграл - збіжний.

Remark 3.2.10 Завдяки теоремі про заміні змінної, ми можемо перейти із невласного інтеграла ІІ роду в невласний інтеграл І роду.

Заміна: $x=b-\frac{1}{t}$. Бачимо, що зростає, неперервно-диференційована, а також

$$x = a \implies t = \frac{1}{b - a}$$

$$x = b \implies t \implies t \implies +\infty$$

$$x = b \implies t \to +\infty$$
.

$$x=a \implies t=\frac{t}{b-a}$$
 $x=b \implies t \to +\infty.$ Отже, $\int_a^b f(x)\,dx=\int_{\frac{1}{b-a}}^{+\infty} f\left(b-\frac{1}{t}\right)\frac{1}{t^2}\,dt=\int_c^{+\infty} g(t)\,dt$ - отримали інтеграл I роду. А тому, не втрачаючи загальності, всі теореми можна було б розглядати лише для

А тому, не втрачаючи загальності, всі теореми можна було б розглядати лише для I роду.

3.3 Дослідження на збіжність/розбіжність

Theorem 3.3.1 Критерій Коші

Задано функцію $f \in \mathcal{R}([a,A]), \forall A \in [a,\omega)$

$$\int_{a}^{\omega}f(x)\,dx$$
 - збіжний \iff $\forall \varepsilon>0$: $\exists \begin{bmatrix} \delta$,якщо $\omega=b \\ \Delta$,якщо $\omega=+\infty \end{bmatrix}$: $\forall \begin{bmatrix} A_{1},A_{2}\in(b-\delta,b)$,якщо $\omega=b \\ A_{1},A_{2}\in(\Delta,+\infty)$,якщо $\omega=+\infty \end{bmatrix}$ \Longrightarrow $\left|\int_{A_{1}}^{A_{2}}f(x)\,dx\right|<\varepsilon$.

Позначимо $\int_{-t}^{t} f(x) dx = F(t)$.

$$\int_{a}^{\omega}f(x)\,dx=\lim_{A\to\omega}F(A)\text{ - збіжний }\overset{\text{критерій Коші для ліміта}}{\Longleftrightarrow}\,\forall\varepsilon>0:\exists\begin{bmatrix}\delta,\text{якщо }\omega=b\\\Delta,\text{якщо }\omega=+\infty\end{bmatrix}:$$

$$\forall\begin{bmatrix}A_{1},A_{2}\in(b-\delta,b),\text{якщо }\omega=b\\A_{1},A_{2}\in(\Delta,+\infty),\text{якщо }\omega=+\infty\end{bmatrix}\Rightarrow|F(A_{1})-F(A_{2})|=\left|\int_{A_{1}}^{A_{2}}f(x)\,dx\right|<\varepsilon.$$

Example 3.3.2 Довести, що $\int_0^{+\infty} x \sin x \, dx$ - розбіжний.

Розглянемо точки $A_1^k=2k\pi$ та $A_2^k=(2k+1)\pi$. Ми обрали такі точки, щоб $\forall x\in (A_1^k,A_2^k):\sin x\geq 0$.

$$\begin{vmatrix} \int_{A_1^k}^{A_2^k} x \sin x \, dx \end{vmatrix} = \int_{A_1^k}^{A_2^k} x \sin x \, dx \stackrel{\text{I теор. про середне}}{=} \xi \int_{A_1^k}^{A_2^k} \sin x \, dx = \xi (\cos A_1^k - \cos A_2^k) = 2\xi \stackrel{\xi \in (A_1^k, A_2^k)}{\geq} 2A_1^k > 1.$$

Отже, існує $\varepsilon=1$, для якого, який б $\Delta>0$ не взяв, знайдуться $A_1^k,A_2^k>\Delta$ при $k=[\Delta]+1$, щоб $\left|\int_{A_1^k}^{A_2^k}x\sin x\,dx\right|\geq \varepsilon$. За критерієм Коші, $\int_0^{+\infty}x\sin x\,dx$ - розбіжний.

Площа, коли $\sin x \ge 0$, стає набагато більшою, тому інтуїтивно має розбігатись.

Дослідження для додатних функції

Тобто в цьому підпідрозділі розглядаються функції $f(x), g(x) \ge 0$ на всьому області визначення.

Theorem 3.3.3 Ознака порівняння в нерівностях

Задані функції $f,g\in\mathcal{R}([a,A]):\forall A\in[a,\omega)$ - додатні. Відомо, що $\forall x\in[a,\omega):f(x)\leq g(x)$. Тоді

- 1) Якщо $\int_{-\infty}^{\infty} g(x) dx$ збіжний, то $\int_{-\infty}^{\infty} f(x) dx$ збіжний;
- 2) Якщо $\int_{a}^{\omega} f(x) dx$ розбіжний, то $\int_{a}^{\omega} g(x) dx$ розбіжний.

Якщо площа більшої функції скінченна, то площа меншої функції тим паче.

Маємо функції $F(t) = \int_a^t f(x) dx$ $G(t) = \int_a^t g(x) dx$.

Зафіксуємо такі
$$t_1,t_2$$
, що $a < t_1 < t_2 < \omega$. Тоді
$$F(t_2) = \int_a^{t_2} f(x) \, dx = \int_a^{t_1} f(x) \, dx + \int_{t_1}^{t_2} f(x) \, dx \geq \int_a^{t_1} f(x) \, dx = F(t_1).$$
 Таким чином, F - неспадна функція. Аналогічно G - неспадна функція. 1) Нехай відомо, що $\int_a^\omega g(x) \, dx$ - збіжний, отже,

$$\int_{a}^{\omega} g(x) dx = \lim_{A \to \omega} G(A) \stackrel{G - \text{ неспадна}}{=} \sup_{t \in [a,\omega)} G(t)$$

 $\int_a^\omega g(x)\,dx = \lim_{A\to\omega} G(A) \stackrel{G\text{ - неспадна}}{=} \sup_{t\in[a,\omega)} G(t).$ Оскільки $\forall x\in[a,\omega): f(x)\leq g(x),$ то тоді $F(t)\leq G(t).$ А отже, $F(t)\leq \sup_{t\in[a,\omega)} G(t).$

Через те, що F(t) - обмежена та неспадна, то $\exists \lim_{A \to \omega} F(A) = \int_{a}^{\omega} f(x) \, dx$ - збіжний.

2) А тепер нехай відомо, що $\int_{-\infty}^{\infty} f(x) dx$ - розбіжний.

!Якщо припустити, що інтеграл $\int_{a}^{\omega}g(x)\,dx$ - збіжний, то за п. 1), інтеграл з $\int_{a}^{\omega}f(x)\,dx$ - збіжний, що суперечність

Таким чином, $\int_{a}^{\omega} g(x) dx$ - розбіжний.

Example 3.3.4 Дослідити на збіжність $\int_0^1 \frac{\cos^2 x}{\sqrt{x}} dx$

Маємо
$$f(x)=\frac{\cos^2 x}{\sqrt{x}}$$
. Відомо, що $\cos^2 x \leq 1$. Встановимо функцію $g(x)=\frac{1}{\sqrt{x}}$. Тоді $\forall x \in (0,1]: f(x) \leq g(x)$.
$$\int_0^1 \frac{1}{\sqrt{x}} \, dx - \text{збіжний (еталон)}. \text{ Отже, за ознакою порівняння, п. 1), } \int_0^1 \frac{\cos^2 x}{\sqrt{x}} \, dx - \text{збіжний.}$$

Theorem 3.3.5 Ознака порівняння в границях

Задані функції $f,g\in\mathcal{R}([a,A]):\forall A\in[a,\omega)$ - строго додатні. Відомо, що $\exists\lim_{x\to\omega-0}\frac{f(x)}{g(x)}=L$. Тоді

1) Якщо $L \neq 0, \neq \infty$, то обидва $\int_a^{\omega} f(x) dx$, $\int_a^{\omega} g(x) dx$ - збіжні або розбіжні;

2) Ящо L=0, то зі збіжності $\int_a^\omega g(x)\,dx$ випливає збіжність $\int_a^\omega f(x)\,dx$.

1) Розглянемо $L \neq 0$, але оскільки f,g>0, то L>

$$\exists \lim_{x \to \omega} \frac{f(x)}{g(x)} = L \iff \forall \varepsilon > 0 : \exists c \in [a, \omega) : \forall x \ge c : \left| \frac{f(x)}{g(x)} - L \right| < \varepsilon.$$

Розглянемо
$$\varepsilon = \frac{L}{2}$$
, тоді $\frac{L}{2} < \frac{f(x)}{g(x)} < \frac{3L}{2} \Rightarrow \frac{L}{2}g(x) < f(x) < \frac{3L}{2}g(x)$.

Якщо
$$\int_{c}^{\omega}g(x)\,dx$$
 - збіжний, то $\int_{c}^{\omega}\frac{3L}{2}g(x)\,dx$ - збіжний, то $\int_{c}^{\omega}f(x)\,dx$ - збіжний. Отже, $\int_{a}^{\omega}f(x)\,dx$ - збіжний. Потже, $\int_{c}^{\omega}f(x)\,dx$ - збіжний, то $\int_{c}^{\omega}f(x)\,dx$ - збіжний отже, $\int_{a}^{\omega}f(x)\,dx$ - збіжний отже, $\int_{a}^{\omega}f(x)\,dx$

Це все за арифметичними властивостями збіжності, попередньою ознакою порівняння, п.1). та теоремою про збіжність в адитивності.

Тож
$$\int_a^\omega f(x)\,dx$$
, $\int_a^\omega g(x)\,dx$ - одночасно збіжні. Аналогічно можна довести однакову розбіжність, якщо починати нерівність зліва.

2) Розглянемо
$$L=0$$
, то $\exists \lim_{x \to \omega} \frac{f(x)}{g(x)} = 0 \iff \forall \varepsilon > 0: \exists c \in [a,\omega): \forall x \geq c: \left|\frac{f(x)}{g(x)}\right| < \varepsilon.$ Розглянемо $\varepsilon=1$, то тоді $f(x) < g(x), \forall x \geq c$, а це вже посилання на попередню теорему.

Example 3.3.6 Дослідити на збіжність
$$\int_0^1 \frac{\arctan x}{x^{\frac{1}{5}}}$$

Маємо функцію $f(x)=rac{rctg\,x}{x^{rac{1}{5}}}.$ Візьмемо функцію $g(x)=rac{1}{x^{-rac{4}{5}}}.$ Тоді

$$\lim_{x \to 0} \frac{\frac{\arctan x}{x^{\frac{1}{5}}}}{\frac{1}{x^{-\frac{4}{5}}}} = \lim_{x \to 0} \frac{\arctan x}{x} = 1.$$

А тепер оскільки $\int_0^1 \frac{1}{x^{-\frac{4}{5}}}$ - розбіжний (еталон), то за ознакою порівняння в лімітах, п. 1), $\int_0^1 \frac{\arctan x}{r^{\frac{1}{5}}}$ - розбіжний.

3.3.2 Дослідження для знакодовільних функцій

Definition 3.3.7 Задано функцію $f \in \mathcal{R}([a;A]), \forall A \in [a,\omega)$.

$$\int_{a}^{\omega} f(x) \, dx$$
 називається **абсолютно збіжним**, якщо $\int_{a}^{\omega} |f(x)| \, dx$ - збіжний.
$$\int_{a}^{\omega} f(x) \, dx$$
 називається **умовно збіжним**, якщо $\int_{a}^{\omega} |f(x)| \, dx$ - розбіжний, але при цьому $\int_{a}^{\omega} f(x) \, dx$ - збіжний.

Proposition 3.3.8 Задано функцію $f \in \mathcal{R}([a;A]), \forall A \in [a,\omega).$

Відомо, що
$$\int_a^\omega f(x)\,dx$$
 - абсолютно збіжний. Тоді $\int_a^\omega f(x)\,dx$ - збіжний.

Ргоот.
$$\int_{a}^{\omega} |f(x)| \, dx \text{ - збіжний. За критерієм Коші, } \forall \varepsilon > 0 : \exists \begin{bmatrix} \delta, \text{якщо } \omega = b \\ \Delta, \text{якщо } \omega = +\infty \end{bmatrix} : \forall \begin{bmatrix} A_1, A_2 \in (b - \delta, b), \text{якщо } \omega = b \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f$$

Theorem 3.3.9 Ознака Діріхле

Задані функції $f,g\in\mathcal{R}([a,A]), \forall A\in[a,\omega)$. Відомо, що:

1)
$$F(x) = \int_a^x f(t) \, dt$$
 - обмежена на $[a, \omega)$;
2) $g(x)$ - монотонна та н.м. при $x \to \omega$.
Тоді $\int_a^\omega f(x)g(x) \, dx$ - збіжний.

Тоді
$$\int_{a}^{\omega} f(x)g(x) dx$$
 - збіжний

Remark 3.3.10 Взагалі-то кажучи, можна не вимагати, щоб $g \in \mathcal{R}([a,A])$, тому що вона монотонна.

Proof.

Будемо доводити за критерієм Коші про збіжність. Нехай $\varepsilon > 0$.

Оскільки F(x) - обмежена, то звідси $\exists C > 0 : \forall x \in [a, \omega) : |F(x)| \leq C$.

Також
$$g$$
 - н.м. при $x \to \omega$, то звідси $\exists \begin{bmatrix} \delta \\ \Delta \end{bmatrix} : \forall x \in [a, \omega) : \begin{bmatrix} x \in (b - \delta, b) \\ x \in (\Delta, +\infty) \end{bmatrix} \Longrightarrow |g(x)| < \frac{\varepsilon}{4C}$.

Тоді в критерії Коші
$$\exists \begin{bmatrix} \delta \\ \Delta \end{bmatrix} : \forall A_1, A_2 \in [a,\omega) : \begin{bmatrix} A_1, A_2 \in (b-\delta,b) \\ A_1, A_2 \in (\Delta,+\infty) \end{bmatrix}$$

$$\implies \left| \int_{A_1}^{A_2} f(x)g(x) \, dx \right| = 1$$

Оскільки
$$g$$
 - монотонна на $[A_1,A_2]$ та $f\in\mathcal{R}([A_1,A_2])$, то тоді застосуємо другу теорему про середнє $\exists \xi\in(A_1.A_2):\int_{A_1}^{A_2}f(x)g(x)\,dx=g(A_1)\int_{A_1}^{\xi}f(x)\,dx+g(A_2)\int_{\xi}^{A_2}f(x)\,dx.$

$$| = | g(A_1) \int_{A_1}^{\xi} f(x) \, dx + g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{A_1}^{\xi} f(x) \, dx | + | g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{A_1}^{\xi} f(x) \, dx | = | g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{A_1}^{\xi} f(x) \, dx | + | g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{A_1}^{\xi} f(x) \, dx | + | g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{A_1}^{\xi} f(x) \, dx | + | g(A_2) \int_{\xi}^{A_2} f(x) \, dx | \leq | g(A_1) \int_{A_1}^{\xi} f(x) \, dx | + | g(A_2) \int_{\xi}^{A_2} f(x) \, dx | + | g(A_2) \int_{\xi}^{\xi} f(x) \, dx | + |$$

Оскільки
$$\left| \int_a^{A_1} f(x) \, dx \right| \leq C$$
 та $\left| \int_a^{\xi} f(x) \, dx \right| \leq C$, то звідси

$$\left| \int_{A_1}^{\xi} f(x) \, dx \right| = \left| \int_{a}^{\xi} f(x) \, dx - \int_{a}^{A_1} f(x) \, dx \right| \le \left| \int_{a}^{\xi} f(x) \, dx \right| + \left| \int_{a}^{A_1} f(x) \, dx \right| \le 2C.$$

Аналогічними міркуваннями $\left| \int_{\xi}^{A_2} f(x) \, dx \right| \leq 2C.$

$$\leq 2Cg(A_1) + 2Cg(A_2) < 2C\frac{\varepsilon^2}{4C} + 2C\frac{\varepsilon}{4C} = \varepsilon.$$

Отже, за критерієм Коші,
$$\int_a^\omega f(x)g(x)\,dx$$
 - збіжний.

Theorem 3.3.11 Ознака Абеля

Задані функції $f,g\in\mathcal{R}([a,A]), \forall A\in[a,\omega)$. Відомо, що:

1)
$$\int_{a}^{\omega} f(x) dx$$
 - збіжний;

2) g(x) - монотонна та обмежена на $[a,\omega)$.

Тоді
$$\int_{a}^{\omega} f(x)g(x) dx$$
 - збіжний.

Remark 3.3.12 Різниця між Діріхле полягає в тому, що вимоги до 1) ми посилюємо, а вимоги до 2) ми послаблюємо. Ця теорема, насправді, є прямим наслідком, проте відокремити її можна як теорему.

$$\int_{a}^{\omega}f(x)\,dx=\lim_{x\to\omega}\int_{a}^{x}f(t)\,dt$$
, тоді вона обмежена. П. 1) уже маємо.

Гоот. $\int_{a}^{\omega} f(x) \, dx = \lim_{x \to \omega} \int_{a}^{x} f(t) \, dt$, тоді вона обмежена. П. 1) уже маємо. g - монотонна та обмежена, тому $\exists \lim_{x \to \omega} g(x) = L$. Далі розглянемо функцію h(x) = g(x) - L, яка також монотонна, але вже н.м. при $x \to \omega$. П. 2) уже маємо для h(x).

Тоді
$$\int_{a}^{\omega} f(x)h(x) dx$$
 - збіжний. Отже,

$$\int_{a}^{\omega} f(x)g(x)\,dx = \lim_{x \to \omega} \int_{a}^{x} f(t)g(t)\,dt = \lim_{x \to \omega} \int_{a}^{x} f(t)h(t) + Lf(t)\,dt = \int_{a}^{\omega} f(x)h(x)\,dx + L\int_{a}^{\omega} f(x)\,dx - \int_{a}^{\omega} f(x)g(x)\,dx = \lim_{x \to \omega} \int_{a}^{x} f(t)g(t)\,dt = \lim_{x \to \omega} \int_{a}^{x} f(t)h(t) + Lf(t)\,dt = \int_{a}^{\omega} f(x)h(x)\,dx + L\int_{a}^{\omega} f(x)\,dx - \int_{a}^{\omega} f(x)g(x)\,dx = \lim_{x \to \omega} \int_{a}^{x} f(t)g(t)\,dt = \lim_{x \to \omega} \int_{a}^{x} f(t)h(t) + Lf(t)\,dt = \int_{a}^{\omega} f(x)h(x)\,dx + L\int_{a}^{\omega} f(x)\,dx - \int_{a}^{\omega} f(x)h(x)\,dx + L\int_{a}^{\omega} f(x)\,dx = \lim_{x \to \omega} \int_{a}^{x} f(x)h(x)\,dx + L\int_{a}^{\omega} f(x)\,dx + L\int_{a}^{\omega} f(x)\,d$$

Example 3.3.13 Інтеграл Діріхле Дослідимо на збіжність $\int_0^{+\infty} \frac{\sin x}{x} \, dx$.

Маємо
$$f(x) = \sin x$$
, $g(x) = \frac{1}{x}$.

До речі, $\lim_{x\to 0}\frac{\sin x}{x}=1$, тож x=0 - усувна точка, тобто вона не є особливою точкою. Тому $\forall A\in [0,+\infty): \frac{\sin x}{x}\in \mathcal{R}([0,A]).$

Перевіримо умови Діріхле

Перевіримо умови Діріхле.
$$\left| \int_0^A f(x) \, dx \right| = \left| \int_0^A \sin x \, dx \right| = |-\cos A + \cos 0| \le 2, \text{ виконано } \forall A \ge 0 \text{ - встановимо } M = 2. \text{ Тоді }$$
обмежена.
$$g(x) = \frac{1}{x} \text{ - монотонна, } \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Таким чином, за ознакою Діріхле, $\int_0^{+\infty} \frac{\sin x}{x} \, dx$ - збіжний.

Дослідимо тепер на абсолютну збіжність.

!Припустимо, що це, дійсно, абсолютно збіжний інтеграл, тобто $\int_0^{+\infty} \left| \frac{\sin x}{x} \right| dx = \int_0^{+\infty} \frac{|\sin x|}{x} dx$

Зауважимо, що $|\sin x| \ge \sin^2 x$. Тоді за ознакою порівняння в нерівностях, $\int_{1}^{+\infty} \frac{\sin^2 x}{x} \, dx$ - збіжний.

Тому збіжними будуть два інтеграли:
$$\int_0^{+\infty} \frac{\sin^2 x}{x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{\sin^2 x}{x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{1 - \cos^2 x}{x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{1}{2x} - \frac{\cos 2x}{2x} \, dx = \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{1}{2x} - \frac{\cos 2x}{2x} \, dx$$

Звідси $\int_{1}^{+\infty} \frac{1}{2x} dx$ та $\int_{1}^{+\infty} \frac{1}{2x} - \frac{\cos 2x}{2x} dx$ - збіжні. Проте за еталоном, $\int_{1}^{+\infty} \frac{1}{2x} dx$ НЕ є збіжним.

Висновок: $\int_{0}^{+\infty} \frac{\sin x}{x} dx$ - умовно збіжний.

3.4 Особливі випадки

І. Задано функцію $f \in \mathcal{R}([a,b]), \forall a,b \in \mathbb{R}$. Розглянемо такий інтеграл:

$$\int_{-\infty}^{+\infty} \stackrel{\text{def.}}{=} \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{+\infty} f(x) \, dx,$$

причому $c \in \mathbb{R}$ - деяке число.

Збіжним буде даний інтеграл, якщо інтеграли в правій частині всі збіжні. У протилежному випадку - розбіжний.

Example 3.4.1 Обчислити
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$
.

Спочатку
$$\int \frac{dx}{x^2+2x+2}=\arctan(x+1)+C.$$
 Оберемо точку 0 із проміжка $(-\infty,+\infty)$. Отримаємо два інтеграли:

$$\int_{-\infty}^{0} \frac{1}{x^2 + 2x + 2} = \arctan(x+1) \Big|_{-\infty}^{0} = \arctan 1 - \left(-\frac{\pi}{2}\right)$$
$$\int_{0}^{+\infty} \frac{1}{x^2 + 2x + 2} = \arctan(x+1) \Big|_{0}^{+\infty} = \frac{\pi}{2} - \arctan 1.$$

$$\int_{0}^{+\infty} \frac{1}{x^2 + 2x + 2} = \arctan(x+1)\Big|_{0}^{+\infty} = \frac{\pi}{2} - \arctan 1.$$
 Таким чином, два інтеграли збіжні, а тому збіжним буде перший інтеграл, причому
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2} = \int_{-\infty}^{0} \frac{dx}{x^2 + 2x + 2} + \int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2} = \pi.$$

II. Задано функцію $f \in \mathcal{R}([\alpha, \beta]), \forall \alpha, \beta \in (a, b)$, причому функція необмежена навколо точки a, b. Розглянемо такий інтеграл:

$$\int_{a}^{b} f(x) dx \stackrel{\text{def.}}{=} \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx,$$

причому $c \in (a, b)$ - деяке число.

Збіжним буде даний інтеграл, якщо інтеграли в правій частині всі збіжні. У протилежному випадку - розбіжний.

Example 3.4.2 Обчислити $\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}}$.

Оберемо точку 0 із проміжка (-1,1). Отримаємо два інтеграли:

$$\int_{-1}^{0} \frac{dx}{\sqrt{1 - x^2}} = \arcsin x \Big|_{-1}^{0} = \frac{\pi}{2}$$
$$\int_{0}^{1} \frac{dx}{\sqrt{1 - x^2}} = \arcsin x \Big|_{0}^{1} = \frac{\pi}{2}.$$

 $\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}} = \arcsin x \Big|_{0}^{1} = \frac{\pi}{2}.$ Таким чином, два інтеграли збіжні, а тому збіжним буде перший інтеграл, причому $f^{1} = \frac{1}{2}$

$$\int_{-1}^{1} \frac{dx}{\sqrt{1-x^2}} = \int_{-1}^{0} \frac{dx}{\sqrt{1-x^2}} + \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} = \pi.$$

III. Задано функцію $f \in \mathcal{R}([\alpha,\beta]), \forall [\alpha,\beta] \subset [a,b] \setminus \{c\}$, причому функція необмежена навколо точки с. Розглянемо такий інтеграл:

$$\int_{a}^{b} f(x) dx \stackrel{\text{def.}}{=} \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Збіжним буде даний інтеграл, якщо інтеграли в правій частині всі збіжні. У протилежному випадку - розбіжний.

IV. Задано функцію $f \in \mathcal{R}([\alpha, \beta]), \forall [\alpha, \beta] \subset (a, +\infty)$, причому функція необмежена навколо точки

$$\int_{a}^{+\infty} f(x) dx \stackrel{\text{def.}}{=} \int_{a}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx,$$

причому $c \in \mathbb{R}$ - деяке число.

Збіжним буде даний інтеграл, якщо інтеграли в правій частині всі збіжні. У протилежному випадку - розбіжний.

Тут аналогычно можна розглянути випадок із нескінченності до точки необмеженості.

Example 3.4.3 Дослідити на збіжність
$$\int_{-\infty}^{+\infty} \frac{dx}{x(x-9)}$$
. Маємо комбінований інтеграл, що розіб'ється ось так:
$$\int_{-\infty}^{+\infty} \frac{dx}{x(x-9)} = \int_{-\infty}^{-1} \frac{dx}{x(x-9)} + \int_{-1}^{0} \frac{dx}{x(x-9)} + \int_{0}^{1} \frac{dx}{x(x-9)} + \int_{1}^{9} \frac{dx}{x(x-9)} + \int_{9}^{10} \frac{dx}{x(x-9)} + \int_{10}^{+\infty} \frac{dx}{x(x-9)}.$$

Для збіжності треба, щоб абсолютно всі інтеграли з цього доданку збігались. Але $\int_{1}^{1} \frac{dx}{x(x=9)}$ роз-

біжний - це легко показати.
 Отже,
$$\int_{-\infty}^{+\infty} \frac{dx}{x(x-9)}$$
 - розбіжний.

Невласний інтеграл в сенсі головного значення по Коші

Definition 3.5.1 Головним значенням невласного інтеграл $\int_{-\infty}^{+\infty} f(x) \, dx$ називається ось це:

v.p.
$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{A \to \infty} \int_{-A}^{A} f(x) dx$$

Definition 3.5.2 Головним значенням невласного інтеграл $\int_{a}^{b} f(x) dx$, де функція f необмежена в т. $c \in (a, b)$, називається ось це:

v.p.
$$\int_a^b f(x) \, dx = \lim_{\varepsilon \to 0+0} \left(\int_a^{c-\varepsilon} f(x) \, dx + \int_{c+\varphi}^b f(x) \, dx \right)$$

Remark 3.5.3 Якщо один із двох інтегралів збігається, то тоді й v.p. інтеграл теж буде збігатись. В зворотному - невірно.

Example 3.5.4 Контрприклади

Маємо
$$\int_{-1}^{1} \frac{dx}{x}$$
 - розбіжний (там виникне еталон)

Маємо
$$\int_{-1}^{1} \frac{dx}{x}$$
 - розбіжний (там виникне еталон)
Але v.p. $\int_{-1}^{1} \frac{dx}{x} = \lim_{\varepsilon \to 0} \left(\int_{-1}^{\varepsilon} \frac{dx}{x} + \int_{\varepsilon}^{1} \frac{dx}{x} \right) = \lim_{\varepsilon \to 0} (\ln \varepsilon - \ln 1 + \ln 1 - \ln \varepsilon) = 0$ - збіжний.

Маємо
$$\int_{-\infty}^{+\infty} x \, dx$$
 - розбіжний.

Але v.p.
$$\int_{-\infty}^{+\infty} x\,dx = \lim_{A\to\infty} \int_{-A}^A x\,dx = \lim_{A\to\infty} \left(\frac{A^2}{2} - \frac{A^2}{2}\right) = 0$$
 - збіжний.

Example 3.5.5 Обчислити v.p.
$$\int_{-\infty}^{+\infty} \frac{dx}{x(x-9)}$$
. v.p. $\int_{-\infty}^{+\infty} \frac{dx}{x(x-9)} = \lim_{A \to \infty} \int_{-A}^{A} f(x) \, dx$

v.p.
$$\int_{-\infty}^{+\infty} \frac{dx}{x(x-9)} = \lim_{A \to \infty} \int_{-A}^{A} f(x) dx$$

Ряди 4

Definition 4.0.1 Рядом називають формальну нескінченну суму нескінченної послідовності чисел ${a_n, n \ge 1}$:

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

Частковою сумою даного ряда називають суму перших k членів:

$$S_k = \sum_{n=1}^k a_n = a_1 + a_2 + \dots + a_k$$

В такому випадку в нас виникає послідовність часткових сум $\{S_k, k \geq 1\}$.

Якщо така послідовність часткових сум є збіжною, то ряд $\sum a_n$ називають **збіжним** та **сумма** цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n = \lim_{k \to \infty} S_k = S$$

Інакше - розбіжним.

Example 4.0.2 Знайдемо суму: $1 + q + q^2 + \dots$

Розглянемо часткову суму $S_k = 1 + q + \dots + q^k = \frac{1 - q^k}{1 - q}$ - сума геом. прогресії.

$$\lim_{k\to\infty}S_k=\lim_{k\to\infty}\frac{1-q^k}{1-q}=\begin{bmatrix}\frac{1}{1-q},|q|<1\\\infty,|q|>1\\\mathrm{При}\ q=1\ \mathrm{маємо:}\ 1+1+1+\dots \qquad,\mathrm{тобтo}\ S_k=k\Rightarrow\lim_{k\to\infty}S_k=\infty.$$

- сума є збіжною при |q| < 1 та $1 + q + q^2 + \dots = \frac{1}{1 q}$;
- сума є розбіжнрю при $|q| \ge 1$.

4.1 Первинний аналіз збіжності та арифметика рядів

Proposition 4.1.1 Необхідна ознака збіжності ряду

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний. Тоді $\lim_{n \to \infty} a_n = 0$.

Proof.

Зафіксуємо часткові суми:
$$S_{k+1} = \sum_{n=1}^{k+1} a_n$$
 $S_k = \sum_{n=1}^k a_n$.

Оскільки ряд є збіжним, то звідси
$$\lim_{k\to\infty} S_{k+1} = \lim_{k\to\infty} S_k = S. \text{ Тоді } \lim_{k\to\infty} a_{k+1} = \lim_{k\to\infty} (S_{k+1} - S_k) = S - S = 0.$$

Example 4.1.2 Розглянемо ряд $\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots$

Оскільки $\exists \lim_{n\to\infty} (-1)^n$, то за необхідною ознакою збіжності, маємо, що ряд - розбіжний.

Remark 4.1.3 Це лише - необхідна ознака, в жодному випадку не достатня. Якщо границя буде нулевою, то це не означає, що ряд збігається, потрібну інші дослідження.

Theorem 4.1.4 Критерій Коші

$$\operatorname{Pяд} \left. \sum_{n=1}^{\infty} a_n - \operatorname{збіжний} \right. \iff \forall \varepsilon > 0 : \exists K \in \mathbb{N} : \forall k \geq K : \forall p \geq 1 : \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon.$$

Proof.

$$\sum_{n=1}^{\infty}a_n$$
 - збіжний $\iff \exists \lim_{k\to\infty}S_k$ - збіжна границя $\stackrel{\text{критерій Коші}}{\iff}$

$$\iff \forall \varepsilon > 0: \exists K: \forall k \geq K: \forall p \geq 1: |S_{k+p} - S_k| = \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon$$

Example 4.1.5 Важливий

Розглянемо $\sum_{n=1}^{\infty} \frac{1}{n}$ - гармонічний ряд. Доведемо, що даний ряд - розбіжний, використовуючи критерій Коші, тобто

$$\exists \varepsilon > 0 : \forall K : \exists k_1, k_2 \ge K : \left| \sum_{n=k_1}^{k_2} \frac{1}{n} \right| \ge \varepsilon$$

Дійсно, якщо $\varepsilon=0.5,\ k_1=\overset{\mid n=k_1 \quad \mid}{K},k_2=\overset{\mid}{2}K,$ то отримаємо:

$$\left| \sum_{n=K}^{2K} \frac{1}{n} \right| = \frac{1}{K} + \frac{1}{K+1} + \dots + \frac{1}{2K} > K \frac{1}{2K} = 0.5.$$

Отже, цей ряд - розбіжний.

Один з прикладів, що підтверджує, що необіхдна умова збіжності не є достатньою.

Proposition 4.1.6 Задані $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} b_n$ - збіжні. Тоді збіжними будуть й наступні ряди:

1)
$$\forall \alpha \in \mathbb{R} : \sum_{n=1}^{\infty} \alpha a_n = \alpha \sum_{n=1}^{\infty} a_n;$$

2)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Proof.

Доведу друге. Перший пункт аналогічно. Зафіксуємо часткові суми:

2)
$$S_k(a) = \sum_{n=1}^k a_n$$
 , $S_k(b) = \sum_{n=1}^k b_n$.

Тоді
$$S_k(a) + S_k(b) = \sum_{n=1}^k (a_n + b_n) = \sum_{n=1}^k a_n + \sum_{n=1}^k b_n.$$

Оскільки
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$ - збіжні, то $\lim_{k\to\infty} S_k(a) = S(a)$, $\lim_{k\to\infty} S_k(b) = S(b)$.

$$\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{k \to \infty} (S_k(a) + S_k(b)) = S(a) + S(b) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

Definition 4.1.7 Хвостом (або **остачею**) ряду $\sum_{n=1}^{\infty} a_n$ називають ряд $\sum_{n=m}^{\infty} a_n$, де $m \in \mathbb{N}$.

Тобто ми відкидуємо перші m-1 доданків та сумуємо, починаючи з m.

Proposition 4.1.8
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\iff \sum_{n=m}^{\infty} a_n$ - збіжний, причому $\forall m \in \mathbb{N}.$

Proof.

$$\sum_{n=1}^{\infty}a_n \text{ - збіжний } \overset{\text{критерій Коші}}{\Longleftrightarrow} \forall \varepsilon > 0: \exists K: \forall k \geq K: \forall p \geq 1: \left|\sum_{n=k+1}^{k+p}a_n\right| < \varepsilon \iff \exists K' = \max\{K,m\}: \forall k \geq K': \forall p \geq 1: \left|\sum_{n=k+1}^{k+p}a_n\right| < \varepsilon \iff \sum_{n=k+1}^{\infty}a_n \text{ - збіжний.}$$

4.2 Знакододатні ряди

Тобто розглядаємо зараз лише ряди $\sum_{n=1}^{\infty} a_n$, такі, що $\forall n \geq 1: a_n \geq 0$.

Proposition 4.2.1 $\{S_k, k \ge 1\}$ - мононтонно неспадна послідовність.

$$\forall k \ge 1 : S_{k-1} - S_k = a_{k+1} \ge 0 \Rightarrow S_k \le S_{k+1}.$$

Proposition 4.2.2 Якщо $\{S_k, k \geq 1\}$ - обмежена, то тоді $\sum_{i=1}^{\infty} a_i$ - збіжний.

Proof.

Щойно дізнались що послідовність часткових сум монотонна. До того ж, вона є обмеженою за умовою. Отже, $\exists \lim_{k \to \infty} S_k = S$, тобто $\sum_{n=1}^{\infty} a_n$ - збіжний.

Theorem 4.2.3 Ознака порівняння в нерівностях

Задані $\sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$ таким чином, що $\forall n \geq 1: a_n \leq b_n$. Тоді:

$$1)$$
якщо $\sum_{n=1}^{\infty}b_n$ - збіжний, то $\sum_{n=1}^{\infty}a_n$ - збіжний теж.

2) якщо
$$\sum_{n=1}^{\infty} a_n$$
 - розбіжний, то $\sum_{n=1}^{\infty} b_n$ - розбіжний теж.

Оскільки $\forall n \geq 1 : a_n \leq b_n$, то тоді $\sum_{k=1}^{k} a_k \leq \sum_{k=1}^{k} b_k$, де $k \in \mathbb{N}$.

1) Нехай
$$\sum_{n=1}^{\infty} b_n$$
 - збіжний ряд, тоді $\lim_{k \to \infty} \sum_{n=1}^k b_n = \tilde{S}.$

Отже, в нашій нерівності, якщо $k \to \infty$, то маємо $0 \le \sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n = \tilde{S}$.

Отже, існує границя, а тому $\sum_{n=1}^{\infty} a_n$ - збіжний.

2) Це є оберненим твердженням до 1).

Example 4.2.4 Важливий

Розглянемо далі $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - ряд Діріхле. Дослідимо на збіжність.

Нехай $\alpha < 1$, тоді $\forall n \geq 1 : \frac{1}{n} < \frac{1}{n^{\alpha}}$.

За ознакою порівняння та минулим прикладом, отримаємо, що $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - розбіжний.

Нехай
$$\alpha>1$$
, тоді отримаємо таку оцінку:
$$\sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}=1+\left(\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}\right)+\left(\frac{1}{4^{\alpha}}+\frac{1}{5^{\alpha}}+\frac{1}{6^{\alpha}}+\frac{1}{7^{\alpha}}\right)+\cdots\leq \leq 1+\left(\frac{1}{2^{\alpha}}+\frac{1}{2^{\alpha}}\right)+\left(\frac{1}{4^{\alpha}}+\frac{1}{4^{\alpha}}+\frac{1}{4^{\alpha}}+\frac{1}{4^{\alpha}}\right)+\cdots=1+\frac{1}{2^{\alpha-1}}+\frac{1}{4^{\alpha-1}}+\frac{1}{8^{\alpha-1}}+\cdots=\frac{1}{1-\frac{1}{2^{\alpha-1}}}.$$

Наш ряд - обмежений, а послідовність часткових сум - монотонна. Отже, $\sum_{i=1}^{\infty} \frac{1}{n^{\alpha}}$ - збіжний.

42

Підсумуємо: $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - $\begin{bmatrix} \text{розбіжний, } \alpha \leq 1 \\ \text{збіжний, } \alpha > 1 \end{bmatrix}$.

Theorem 4.2.5 Ознака порівняння в границях

Задані $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} b_n$, тут члени строго додатні. Відомо, що $\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l$. Тоді:

1) Якщо $l \neq 0$ та $l \neq \infty$, то $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ збіжні або розбіжні одночасно;

2) Якщо
$$l=0,$$
 то зі збіжності $\sum_{n=1}^{\infty}b_n$ випливає збіжність $\sum_{n=1}^{\infty}a_n.$

Remark 4.2.6 До речі, $l \ge 0$, оскільки всі члени - додатні.

1)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l \neq 0$$
, тобто $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \left| \frac{a_n}{b_n} - l \right| < \varepsilon$.

Оберемо
$$\varepsilon=\frac{l}{2},$$
 тоді $\frac{l}{2}<\frac{a_n}{b_n}<\frac{3l}{2}\Rightarrow\frac{l}{2}b_n< a_n<\frac{3l}{2}b_n,\ \forall n\geq N.$

Припустимо, що $\sum_{n=N}^{\infty}b_n$ - збіжний, тоді збіжним буде $\sum_{n=N}^{\infty}\frac{3l}{2}b_n$, а отже, за попередньою теоремою,

$$\sum_{n=N}^{\infty}a_n$$
 - збіжний. Отже, $\sum_{n=1}^{\infty}a_n$ - збіжний.

Якщо
$$\sum_{n=N}^{\infty}a_n$$
 - збіжний, тоді збіжним буде $\sum_{n=N}^{\infty}rac{l}{2}b_n$, а отже $\sum_{n=N}^{\infty}b_n$ - збіжний. Тому $\sum_{n=1}^{\infty}b_n$ - збіжний.

Аналогічними міркуваннями доводиться розбіжність. $\overset{n=N}{\sim}$

Тобто
$$\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$$
 - збіжні або розбіжні одночасно.

2)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l = 0$$
, тобто $\forall \varepsilon > 0: \exists N: \forall n \geq N: \left| \frac{a_n}{b_n} \right| < \varepsilon$ Оберемо $\varepsilon = 1$, тоді $\forall n \geq N: a_n < b_n$. Тоді виконується попередня теорема, один з двох пунктів. \blacksquare

Example 4.2.7 Дослідити на збіжність $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$.

Маємо $a_n = \frac{\arctan n}{1+n^2}$. Встановимо $b_n = \frac{1}{n^2}$. Обчислимо границю їхніх відношень: $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 \arctan n}{1+n^2} = \lim_{n \to \infty} \frac{\arctan n}{1+\frac{1}{n^2}} = \frac{\pi}{2}.$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2 \arctan n}{1 + n^2} = \lim_{n \to \infty} \frac{\arctan n}{1 + \frac{1}{n^2}} = \frac{\pi}{2}$$

A оскільки
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 - збіжний, то $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$ - збіжний.

Theorem 4.2.8 Ознака Даламбера

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - строго додатний. Тоді:

$$\overline{n=1}$$
 1) Якщо $\overline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n} < 1$, то ряд - збіжний; 2) Якщо $\underline{\lim_{n \to \infty}} \frac{a_{n+1}}{a_n} > 1$, то ряд - розбіжний.

Proof.

1) Маємо $\overline{\lim}_{n\to\infty} \frac{a_{n+1}}{a_n} = q < 1$, тоді $\forall \varepsilon > 0$, зокрема для $\varepsilon = \frac{1-q}{2}$, проміжок $(q+\varepsilon, +\infty)$ має скінченну

кількість членів послідовності $\left\{\frac{a_{n+1}}{a_n}\right\}$, тобто $\exists N: \forall n \geq N: \frac{a_{n+1}}{a_n} < q+\varepsilon = \frac{1+q}{2}.$

Звідси випливає, що $a_{n+1} < \frac{1+q}{2}a_n$

$$\implies a_{N+1} < \frac{1+q}{2}a_N$$

$$\implies a_{N+2} < \frac{1+q}{2} a_{N+1} < \left(\frac{1+q}{2}\right)^2 a_N$$

$$\implies \forall k \ge 1: a_{N+k} < \left(\frac{1+q}{2}\right)^k a_N$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k$$

Вираз під сумою буде менше за 1, цей ряд - геометрична прогресія, збіжний. Тоді
$$\sum_{k=1}^{\infty} a_{N+k} = \sum_{n=N+1}^{\infty} a_n$$
 - збіжний, отже, $\sum_{n=1}^{\infty} a_n$ - збіжний.

2) Маємо
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=q>1$$
, тоді $\forall \varepsilon>0$, зокрема для $\varepsilon=\frac{q-1}{2}$, проміжок $(-\infty,q-\varepsilon)$ має скінченну кількість членів послідовності $\left\{\frac{a_{n+1}}{a_n}\right\}$, тобто $\exists N: \forall n\geq N: \frac{a_{n+1}}{a_n}>q-\varepsilon=\frac{1+q}{2}$.

Аналогічними міркуваннями отримаємо $\forall k \geq 1 : a_{N+k} > \left(\frac{q+1}{2}\right)^{\kappa} a_{N}.$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(rac{q+1}{2}
ight)^k a_N = a_N \sum_{k=1}^{\infty} \left(rac{q+1}{2}
ight)^k$$

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 - розбіжний, отже, $\sum_{n=1}^{\infty}a_n$ - розбіжний.

Corollary 4.2.9 Ознака Даламбера (стандартний вигляд)

Задано $\sum_{n=1}^{\infty} a_n$ - строго додатний. Нехай $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$. Тоді:

- 1) Якщо q < 1, то ряд збіжний;
- 2) Якщо q>1, то ряд розбіжний;
- 3) Якщо q = 1, то відповіді нема.

Proof. Якщо $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$, то автоматично $\exists \overline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} = q$, $\exists \underline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} = q$. Ну а далі чисто за попередньою теоремою.

3) А тепер в чому проблема при q=1. Розглянемо обидва ряди: $\sum_{i=1}^{\infty} \frac{1}{n}$, $\sum_{i=1}^{\infty} \frac{1}{n^2}$. Використаємо

$$\lim_{n \to \infty} \frac{1}{n+1} \cdot n = 1 \qquad \lim_{n \to \infty} \frac{1}{(n+1)^2} \cdot n^2 = 1.$$

для обох ознаку Даламбера: $\lim_{n\to\infty}\frac{1}{n+1}\cdot n=1 \quad \lim_{n\to\infty}\frac{1}{(n+1)^2}\cdot n^2=1.$ Результат - однаковий, проте один ряд - розбіжний, а інший - збіжний. Тож q=1 не дає відповіді, шукаємо інші методи.

Example 4.2.10 Дослідити на збіжність $\sum_{n=1}^{\infty} \frac{3^n (n!)^2}{(2n)!}$.

$$a_n = \frac{3^n (n!)^2}{(2n)!}$$
 $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3(n+1)^2}{(2n+1)(2n+2)} = \frac{3}{4} < 1.$

Theorem 4.2.11 Радикальна ознака Коші

Задано
$$\sum_{n=1}^{\infty}a_n$$
 - додатний. Нехай
 $\exists \ \overline{\lim}_{n\to\infty} \sqrt[n]{a_n}=q.$ Тоді:

- 1) Якщо q < 1, то ряд збіжний;
- 2) Якщо q > 1, то ряд розбіжний;
- 3) Якщо q=1, то відповіді нема.

Proof.

1) $\exists \lim_{n \to \infty} \sqrt[n]{a_n} = q < 1$, тобто $\forall \varepsilon > 0$: проміжок $(q + \varepsilon, +\infty)$ має скінченну кількість елементів, тобто $\forall \varepsilon > 0$: $\exists N : \forall n \geq N : \sqrt[n]{a_n} < q + \varepsilon \implies a_n < (q + \varepsilon)^n$. Оберемо $\varepsilon = \frac{1-q}{2}$. Тоді маємо: $a_n < \left(\frac{1+q}{2}\right)^n$.

Оберемо
$$\varepsilon = \frac{1-q}{2}$$
. Тоді маємо: $a_n < \left(\frac{1+q}{2}\right)^n$.

Розглянемо ряд $\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$ - геометрична прогресія, вираз в сумі менше за одиниці - збіжний.

Отже,
$$\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$$
 - збіжний, а тому $\sum_{n=1}^{\infty} a_n$ - збіжний.

2) $\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q > 1$, тобто $\exists \{\sqrt[n]{a_{n(p)}}, p \ge 1\} : \lim_{p \to \infty} \sqrt[n]{a_{n(p)}} = q$ - така підпослідовність, що

містить цю границю
$$\Longrightarrow \forall \varepsilon > 0: \exists P: \forall p \geq P: \left| \sqrt[n(p)]{a_{n(p)}} - q \right| < \varepsilon.$$
 Оберемо $\varepsilon = \frac{q-1}{2}$, тоді $a_{n(p)} > \left(\frac{q+1}{2}\right)^{n(p)}$. Тоді $\lim_{p \to \infty} a_{n(p)} \geq \lim_{p \to \infty} \left(\frac{q+1}{2}\right)^{n(p)} = \infty.$ Отже, $\lim_{n \to \infty} a_n \neq 0$. Це означає, що необхідна умова збіжності не виконується - розбіжний.

3) Для q=1 треба розглянути такі самі ряди як при доведенні ознаки Даламбера.

Example 4.2.12 Дослідити на збіжність $\sum_{n=1}^{\infty} \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n}$.

$$a_n = \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n}$$
 $\sqrt[n]{a_n} = \frac{\left(\frac{n+1}{n}\right)^n}{3} = \frac{1}{3}\left(1 + \frac{1}{n}\right)^n$

$$\overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{1}{3} \left(1 + \frac{1}{n} \right)^n = \frac{e}{3} < 1.$$

Theorem 4.2.13 Інтегральна ознака Коші

Задано $\sum_{n=1}^{\infty} a_n$ - додатний. Встановимо функцію $f:[1,+\infty) \to \mathbb{R},$ яка під такими умовами:

Тоді $\sum_{n=1}^{\infty} a_n$ та $\int_{1}^{+\infty} f(x) dx$ збіжні або розбіжні одночасно.

Оскільки f(x) спадає, то $\forall k \geq 1 : \forall x \in [k, k+1] :$

$$a_k \geq f(x) \geq a_{k+1}.$$
 $a_k = \int_k^{k+1} a_k \, dx \geq \int_k^{k+1} f(x) \, dx \geq \int_k^{k+1} a_{k+1} \, dx = a_{k+1}.$ Просумуємо ці нерівності від $k = 1$ до $k = M$, отримаємо:

$$\sum_{k=1}^{M} a_k \ge \int_{1}^{M+1} f(x) \, dx \ge \sum_{k=1}^{M} a_{k+1}.$$

Нехай $\sum_{k=1}^{M}$ - збіжний. Тоді якщо $M \to \infty$, то отримаємо, що $\int_{1}^{+\infty} f(x) \, dx$ приймає скінченне значе-

Нехай $\int_{1}^{+\infty} f(x) \, dx$ - збіжний. Тому $\sum_{i=1}^{N} a_{k+1}$ - обмежений. А оскільки він додатній, то звідси, збі-

Випадок розбіжності доводиться від супротивного.

Example 4.2.14 Дослідити на збіжність $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$.

Маємо функцію $f(x)=\frac{1}{x\ln^2 x}$. Зрозуміло, що f спадає на $[2,+\infty)$, бо $x,\ln^2 x$ там зростають. $\int_2^{+\infty}\frac{1}{x\ln^2 x}\,dx=-\frac{1}{\ln x}\Big|_2^{+\infty}=\frac{1}{\ln 2}\text{ - збіжний.}$ Отже, наш ряд - збіжний за Коші інтегральним.

$$\int_{2}^{+\infty} \frac{1}{x \ln^{2} x} \, dx = -\frac{1}{\ln x} \Big|_{2}^{+\infty} = \frac{1}{\ln 2} - збіжний.$$

Theorem 4.2.15 Ознака Раабе

Задано
$$\sum_{n=1}^{\infty}a_n$$
 - строго додатний. Нехай $\exists\lim_{n\to\infty}n\left(\frac{a_n}{a_{n+1}}-1\right)=q$. Тоді

- 1) Якщо q < 1, то ряд розбіжний;
- 2) Якщо q > 1, то ряд збіжний;
- 3) Якщо q = 1, то відповіді нема.

Маємо
$$\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right)=q$$
, тобто можна сказати $n\left(\frac{a_n}{a_{n+1}}-1\right)-q=o(1)$ при $n\to\infty$. Або $\frac{a_n}{a_{n+1}}=1+\frac{q}{n}+o\left(\frac{1}{n}\right)$ при $n\to\infty$.

1) q > 1, тоді ми зможемо знайти $\alpha \in (1,q)$. Звідси

$$\frac{a_n}{a_{n+1}} - \frac{b_n}{b_{n+1}} = \frac{q-\alpha}{n} + o\left(\frac{1}{n}\right) > 0$$
, починаючи з деякого номеру.

Тоді
$$\frac{a_n}{a_{n+1}} > \frac{b_n}{b_{n+1}} \implies \frac{a_{n+1}}{a_n} < \frac{b_{n+1}}{b_n}$$
. Оскільки $\alpha > 1$, то тоді $\sum_{n=1}^\infty b_n$ - збіжний. А із цієї нерівності випливає, що $\sum_{n=1}^\infty a_n$ - збіжний.

2) q < 1, то тоді ми зможемо знайти $\alpha \in (q,1)$. А далі всі процедури аналогічні.

3) Розглянути ряди
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 - розбіжний та $\sum_{n=2}^{\infty} \frac{1}{n \ln^2 n}$ - збіжний за інтегральною ознакою Коші. Обидві дають одиничну границю.

Example 4.2.16 Дослідити на збіжність
$$\sum_{n=1}^{\infty} \left(\frac{(2n-1)!!}{(2n)!!} \right)^{2022}$$
.

$$a_n = \left(\frac{(2n-1)!!}{(2n)!!} \right)^{2022}$$
. Тоді маємо:

$$\lim_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\left(\frac{2n+2}{2n+1} \right)^{2022} - 1 \right) = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{2n+1} \right)^{2022} - 1}{\frac{1}{n}} = \lim_{n \to \infty} \frac{1 + \frac{2022}{2n+1} + o\left(\frac{1}{2n+1} \right) - 1}{\frac{1}{n}}$$

$$2022n$$

$$=\lim_{n o\infty}rac{2022n}{2n+1}=1011>1.$$
 Таким чином, заданий ряд - збіжний за Раабе.

Знакозмінні ряди

Definition 4.3.1 Ряд $\sum_{n=1}^{\infty} a_n$ називається **абсолютно збіжним**, якщо збігається ряд $\sum_{n=1}^{\infty} |a_n|$.

Definition 4.3.2 Ряд $\sum_{n=1}^{\infty} a_n$ називається **умовно збіжним**, якщо $\sum_{n=1}^{\infty} a_n$ - збіжний, але $\sum_{n=1}^{\infty} |a_n|$ -

Proposition 4.3.3 $\sum^{\infty} a_n$ - абсолютно збіжний. Тоді $\sum^{\infty} a_n$ - збіжний.

$$\sum_{n=1}^\infty a_n$$
 - абсолютно збіжний $\implies \sum_{n=1}^\infty |a_n|$ - збіжний $\implies orall arepsilon > 0: \exists K: orall k \geq K: orall p \geq 1:$

$$\left|\sum_{n=k}^{k+p}|a_n|\right|<\varepsilon\implies \left|\sum_{n=k}^{k+p}a_n\right|\leq \left|\sum_{n=k}^{k+p}|a_n|\right|<\varepsilon\implies \sum_{n=1}^\infty a_n$$
 - збіжний.

Theorem 4.3.4 Ознака Лейбніца

Задано ряд вигляду $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$, де $a_n \ge 0$ - **знакозмінний ряд**. Відомо, що:

- 1) $\{a_n, n \ge 1\}$ монотонно спадає;

 $2)\lim_{n o\infty}a_n=0.$ Тоді заданий ряд - збіжний.

Proof.

$$S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k}) \ge 0.$$

$$S_{2k} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2k-2} - a_{2k-1}) - a_{2k} \le a_1$$

Ргоот. Розглянемо послідовність часткових сум $\{S_{2k}, k \geq 1\}$. Отримаємо наступне: $S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k}) \geq 0$. ≥ 0 ≥ 0

Остаточно, маємо, що послідовність
$$\{S_m, m \geq 1\}$$
 - збіжна, тоді $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ - збіжний.

Corollary 4.3.5 $\forall k \geq 1 : |S - S_k| \leq a_{k+1}$

Розглянемо хвіст ряду
$$S-S_k=\sum_{n=k+1}^{\infty}(-1)^{n+1}a_n$$
. А також розглянемо $\tilde{S_m}=\sum_{n=k+1}^{m}(-1)^{n+1}a_n$. Тоді $\tilde{S_m}=S_m-S_k=(-1)^{k+1}\left(a_{k+1}-(a_{k+2}-a_{k+3})-(a_{k+1}-a_{k+5})-\cdots--\int\limits_{a_m,k:2}^{(a_{m-1}-a_m),k\not=2}(a_{m-1}-a_m),k\not=2$ $\Rightarrow |\tilde{S_m}|=\begin{vmatrix} a_{k+1}-(a_{k+2}-a_{k+3})-(a_{k+1}-a_{k+5})-\cdots-\int\limits_{a_m,k:2}^{(a_{m-1}-a_m),k\not=2}(a_{m-1}-a_m),k\not=2\\ a_{m-1}k\cdot 2\end{vmatrix}=$

$$= a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k \not 2 \end{bmatrix} \le a_{k+1}$$

$$\implies |S - S_k| = \lim_{m \to \infty} |\tilde{S}_m| \le a_{k+1}.$$

Example 4.3.6 Обчислити суму $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ з точністю до $\varepsilon = 10^{-5}$.

Зрозуміло, що $a_n=\frac{1}{n!}\geq 0$, монотонно спадає та н.м. Отже, виконуються ознаки Лейбніца, а тому й отриманий наслідок.

$$|S - S_k| \le a_{k+1} < \varepsilon \implies \frac{1}{(k+1)!} < \frac{1}{10^5} \implies (k+1)! > 100000.$$

Достатньо взяти нам
$$k = 8$$
. Тому ми отримаємо: $S \approx S_8 = -1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} - \frac{1}{120} + \frac{1}{720} - \frac{1}{5040} + \frac{1}{40320} = \frac{-3641}{5760}$

Theorem 4.3.7 Ознаки Діріхле та Абеля

Задано ряд вигляду $\sum_{n=1}^{\infty} a_n b_n$. Нехай виконано один з двох блок умов:

$$\sum_{n=1}^k a_n$$
- обмежена.
$$\{b_n,n\geq 1\}$$
- монотонна та н.м.
$$\{b_n,n\geq 1\}$$
- монотонна та обмежена.
$$\{b_n,n\geq 1\}$$
- монотонна та обмежена.
$$oзнака\ \mathcal{A}беля$$

Тоді
$$\sum_{n=1}^{\infty} a_n b_n$$
 - збіжний.

Proof.

Спочатку почнемо з ознаки Діріхле. Припустимо b_n спадає. Застосуємо критерій Коші для дове-

$$\left| \sum_{n=k+1}^{k+p} a_n b_n \right| = \left| A_{k+p} b_{k+p} - A_k b_{k+1} - \sum_{n=k+1}^{k+p-1} A_n (b_{n+1} - b_n) \right| = \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_{n+1}) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right| \le \left| A_{k+p} b_{k+p} - A_k b_{k+1} + \sum_{n=k+1}^{k+p-1} A_n (b_n - b_n) \right|$$

$$|A_{k+p}b_{k+p} - A_kb_{k+1}| + \sum_{n=k+1}^{k+p-1} |A_n||b_{n+1} - b_n| \le$$

За умовою, $A_k = \sum_{n=1}^k a_n$ - обмежена, тобто $\exists C>0: \forall k\geq 1: |A_k|\leq C.$

Також
$$b_n$$
 - н.м., тоді $\forall \varepsilon > 0$: $\exists K : \forall k \geq K : |b_k| < \varepsilon$. Тоді $|A_{k+p}b_{k+p} - A_kb_{k+1}| \leq |A_{k+p}||b_{k+p}| + |A_k||b_{k+1}| < 2C\varepsilon$. Також $\sum_{n=k+1}^{k+p-1} |A_n||b_{n+1} - b_n| \leq C\sum_{n=k+1}^{k+p-1} (b_n - b_{n+1}) = C(b_{k+1} - b_{k+p}) \leq Cb_{k+1} < C\varepsilon$

$$\leq 3C\varepsilon$$
. Виконано $\forall \varepsilon>0$ та $\forall k\geq K: \forall p\geq 1$. Отже, $\sum_{n=1}^\infty a_nb_n$ - збіжний.

Далі доводимо ознаку Абеля. Оскільки $\sum_{n=1}^{\infty} a_n$ - збіжний, то тоді обмежений. Оскільки $\{b_n\}$ монотонна та обмежена, то $b_n \to B$. Якщо розглянути $c_n = b_n - B$, то маємо $\{c_n, n \ge 1\}$ - монотонна та

Отже, ряд
$$\sum_{n=1}^{\infty}a_nc_n$$
 - збіжний за Діріхле. А далі ясно, що $\sum_{n=1}^{\infty}a_nb_n$ - збіжний.

Example 4.3.8 Дослідити на збіжність ряд $\sum_{n=1}^{\infty} \frac{\sin n}{n}$.

Будемо для цього використовувати ознаку Діріхле, встановимо $a_n = \sin n, b_n = \frac{1}{n}$

$$\sum_{n=1}^{k} \sin n = \sum_{n=1}^{k} \frac{\sin(1 \cdot n) \sin \frac{1}{2}}{\sin \frac{1}{2}} = \frac{1}{2 \sin \frac{1}{2}} \sum_{n=1}^{k} \left(\cos \left(n - \frac{1}{2} \right) - \cos \left(n + \frac{1}{2} \right) \right) =$$

$$= \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \frac{3}{2} + \cos \frac{3}{2} - \cos \frac{5}{2} + \dots + \cos \left(k - \frac{1}{2} \right) - \cos \left(k + \frac{1}{2} \right) \right) = \frac{1}{2 \sin \frac{1}{2}} \left(\cos \frac{1}{2} - \cos \left(k + \frac{1}{2} \right) \right) =$$

$$\frac{\sin \frac{k+1}{2} \sin \frac{k}{2}}{\sin \frac{1}{2}}.$$

Таким чином,
$$\left|\sum_{n=1}^k \sin n\right| = \left|\frac{\sin\frac{k+1}{2}\sin\frac{k}{2}}{\sin\frac{1}{2}}\right| \le \frac{1}{\sin\frac{1}{2}} \implies \sum_{n=1}^k \sin n$$
 - обмежена.

Зрозуміло, що $\frac{1}{n}$ монотонна та н.м.

Отже,
$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$
 - збіжний.

Example 4.3.9 Дослідити на збіжність ряд $\sum_{n=0}^{\infty} \frac{\sin n}{n} e^{-n}$.

Будемо для цього використовувати ознаку Абеля, встановимо $a_n = \frac{\sin n}{n}, b_n = e^{-n}$.

$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$
 - збіжний за попереднім прикладом. e^{-n} - монотонна, оскільки $e^{-n-1}-e^{-n}=e^{-n}(e^{-1}-1)<0.$

$$e^{-n}$$
 - монотонна, оскільки $e^{-n-1}-e^{-n}=e^{-n}(e^{-1}-1)<0$.

 e^{-n} - обмежена, оскільки $0 < e^{-n} < e$.

Отже,
$$\sum_{n=1}^{\infty} \frac{\sin n}{n} e^{-n}$$
 - збіжний.

4.4 Трошки детально про абсолютно збіжні ряди

Для кожного числа $a \in \mathbb{R}$ визначимо додатну та від'ємну частину числа:

Для кожного числа
$$a \in \mathbb{R}$$
 визначимо дод
$$a^+ = \begin{cases} a, & a > 0 \\ 0, & a \le 0 \end{cases} \qquad a^- = \begin{cases} 0, & a \ge 0 \\ -a, & a < 0 \end{cases}.$$

Тепер ми можемо розділити ряд $\sum_{n=1}^{\infty} a_n$ на додатну частину $\sum_{n=1}^{\infty} a_n^+$ та на від'ємну частину $\sum_{n=1}^{\infty} a_n^-$.

Proposition 4.4.1 $\sum_{n=1}^{\infty} a_n$ – збіжний абсолютно $\iff \sum_{n=1}^{\infty} a_n^+, \sum_{n=1}^{\infty} a_n^-$ – обидва збіжні (як невід'ємні

ряди). Більш того, в такому випадку матимемо
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-, \qquad \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$$

Для доведення в обидві сторони треба зауважити, що справедлива рівність:

$$0 \le \sum_{n=k+1}^{k+p} |a_n| = \sum_{n=k+1}^{k+p} a_n^+ + \sum_{n=k+1}^{k+p} a_n^-$$
 А з даної рівності безпосередньо випливають дві нерівності:

$$0 \le \sum_{n=k+1}^{k+p} a_n^+ \le \sum_{n=k+1}^{k+p} |a_n|$$
$$0 \le \sum_{n=k+1}^{k+p} a_n^- \le \sum_{n=k+1}^{k+p} |a_n|.$$

им чином доведемо твердження в обидві сторони.

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n = \lim_{k \to \infty} \sum_{n=1}^{k} a_n^+ - \lim_{k \to \infty} \sum_{n=1}^{k} a_n^- = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-.$$

$$\sum_{n=1}^{\infty} |a_n| = \lim_{k \to \infty} \sum_{n=1}^{k} |a_n| = \lim_{k \to \infty} \sum_{n=1}^{k} a_n^+ + \lim_{k \to \infty} \sum_{n=1}^{k} a_n^- = \sum_{n=1}^{\infty} a_n^+ + \sum_{n=1}^{\infty} a_n^-.$$

Definition 4.4.2 Заданий ряд $\sum_{n=0}^{\infty} a_n$.

Перестановкою даного ряду назвемо ряд $\sum_{m=1}^{\infty}b_{m},$ для якого виконана така умова:

$$\exists f \colon \mathbb{N} \to \mathbb{N}$$
 – бієкція : $b_m = a_{f(m)}$

Example 4.4.3 Наприклад маємо гармонічний ряд $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ Ми переставимо члени так, що спочатку йдуть парні члени, а згодом непарні — отримаємо новий ряд $\sum_{m=1}^{\infty} b_m = \frac{1}{2} + \frac{1}{4} + \dots + 1 + \frac{1}{3} + \dots$

 $^{m=1}$ Формально кажучи, ми встановили бієкцію $f\colon \mathbb{N} o \mathbb{N}$ таким чином: $b_1=a_2, b_2=a_4, \dots$ та для деяких індексів $b_{m_1} = a_1, b_{m_2} = a_3, \dots$

Theorem 4.4.4 Задано $\sum_{n=1}^{\infty} a_n$ – абсолютно збіжний. Тоді кожна перестановка даного ряду збігається туди ж

Задано $\sum_{n=0}^{\infty} a_n$ – абсолютно збіжний. Доведення розіб'ємо на два випадки:

$$1. \sum_{n=1}^{\infty} a_n$$
 – невід'ємний ряд.

Зафіксуємо перестановочний ряд $\sum_{m=0}^{\infty} b_m$, у цьому випадку $b_m = a_{f(m)}$ та $f \colon \mathbb{N} \to \mathbb{N}$ – бієкція.

Нехай
$$\varepsilon>0.$$
 За умовою збіжності, існує $N\in\mathbb{N}$, для якого $0\leq\sum_{k=1}^\infty a_k-\sum_{k=1}^N a_k<\varepsilon.$

Зауважимо, що оскільки f — бієкція, то тоді можемо підібрати $M = \max\{m \in \mathbb{N} : 1 \le f(m) \le N\}$, для якого $\{1, \dots, N\} \subset f^{-1}(\{1, \dots, M\})$. Таке вкладення означає наступне: члени a_1, \dots, a_N включені серед членів b_1, \dots, b_M . Із урахуванням цього та того факту, що всі члени ряда невід'ємні,

маємо
$$\sum_{k=1}^{N} a_k \le \sum_{j=1}^{M} b_j$$
.

Нехай маємо m>M, тоді звідси $\sum_{k=1}^N a_k \leq \sum_{k=1}^m b_j \leq \sum_{k=1}^\infty a_k$. Маючи додатково нерівність вище,

отримаємо оцінку $0 \leq \sum_{k=1}^{\infty} a_k - \sum_{j=1}^{m} b_j < \varepsilon$. Залишилося спрямувати $m \to \infty$ – отримаємо оцінку

$$0 \leq \sum_{k=1}^{\infty} a_k - \sum_{j=1}^{\infty} b_j \leq \varepsilon < 2\varepsilon$$
. Оскільки це виконано при всіх $\varepsilon > 0$, то тоді $\sum_{j=1}^{\infty} b_j = \sum_{k=1}^{\infty} a_k$.

II.
$$\sum_{n=1}^{\infty} a_n$$
 – довільний ряд.

Зафіксуємо перестановочний ряд $\sum_{m=1}^{\infty} b_m$. Тоді $\sum_{m=1}^{\infty} b_m^+$, $\sum_{m=1}^{\infty} b_m^-$ перестановочні ряди для $\sum_{n=1}^{\infty} a_n^+$, $\sum_{n=1}^{\infty} a_n^-$.

Оскільки ці ряди невід'ємні, то для них маємо $\sum_{m=1}^{\infty} b_m^+ = \sum_{n=1}^{\infty} a_n^+, \ \sum_{m=1}^{\infty} b_m^- = \sum_{n=1}^{\infty} a_n^-.$ Отже, $\sum_{m=1}^{\infty} b_m$

також буде абсолютно збіжним рядом, при цьому
$$\sum_{m=1}^{\infty} b_m = \sum_{m=1}^{\infty} b_m^+ - \sum_{m=1}^{\infty} b_m^- = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} a_n.$$

Example 4.4.5 Обчислити ряд $\sum_{n=0}^{\infty} \frac{n}{2^n}$.

Цілком зрозуміло, що це збіжний ряд, (за д'Аламбером), причому абсолютно. Отже, ми можемо переставляти члени ряду, оскільки від цього сума не зміниться за теоремою вище

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots = \frac{1}{2} + \left(\frac{1}{2^2} + \frac{1}{2^2}\right) + \left(\frac{1}{2^3} + \frac{1}{2^3} + \frac{1}{2^3}\right) + \dots = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^3} + \dots + \frac{1}{2^3} + \dots = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} + \frac{1}{2^2} \cdot \frac{1}{1 - \frac{1}{2}} + \frac{1}{2^3} \cdot \frac{1}{1 - \frac{1}{2}} + \dots = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots = \frac{1}{1 - \frac{1}{2}} = 2.$$

Трошки про умовно збіжні ряди

Theorem 4.5.1 Теорема Рімана

Задано $\sum a_n$ – умовно збіжний. Тоді для довільного $M\in\mathbb{R}\cup\{-\infty,+\infty\}$ буде існувати перестановка

даного ряду, яка буде збіжною до числа M.

Proof.

Нехай $\sum_{n=1}^{\infty}a_n$ – умовно збіжний. Тоді $\sum_{n=1}^{\infty}a_n^+=+\infty$ та $\sum_{n=1}^{\infty}a_n^-=+\infty$ (тобто обидва ряди розбіжні).

Дійсно, якби обидва ряди були збіжними, то $\sum_{n=1}^{\infty} a_n$ став би абсолютно збіжним (неможливо). Якби

лише один з рядів був розбіжним, то $\sum_{n=1}^{\infty} a_n = \infty$, тобто був би розбіжним (неможливо).

Нехай заданий ряд $\sum_{n=1}^{\infty} a_n$ так, щоб $a_n \neq 0$ (якщо знайдеться елемент $a_{n_0} = 0$, то члени ряду перенумеруємо).

Тепер фіксуємо довільне число $M \geq 0$.

Оскільки $\sum_{n=1}^{\infty} a_n^+ = +\infty$, то тоді послідовність часткових сум додатних членів – необмежена, тобто $\exists k_1 \geq 1 \ (\text{оберу найменше можливе}) : a_1^+ + a_2^+ + \dots + a_{k_1}^+ > M.$

Оскільки $\sum_{n=1}^{\infty}a_n^-=+\infty$, то тоді послідовність часткових сум від'ємних членів – необмежена, тобто $\exists m_1\geq 1$ (оберемо найменше можливе) : $a_1^-+a_2^-+\cdots+a_{m_1}^->a_1^++\cdots+a_{k_1}^+-M$. Тобто звідси отримаємо $a_1^++\cdots+a_{k_1}^+-a_1^--\cdots-a_{m_1}^-< M$.

Опишу словесно, що ми зробили. Ми взяли перші k_1 додатних членів нашого ряду $\sum_{n=1}^{\infty} a_n$, допоки

сума не перевисить M; а потім взяли перші m_1 від'ємних членів нашого ряду $\sum_{n=1}^{\infty} a_n$, допоки сума не стане меншою за M.

Далі робимо ту саму процедуру. Ми оберемо перші k_2 додатних членів ряду $\sum_{n=k_1+1}^{\infty} a_n$, допоки сума

не перевисить M; а потім оберемо перші m_2 від'ємних членів ряду $\sum_{n=m_1+1}^{\infty} a_n$, допоки сума не стане меншою за M.

:

У нас виникне ряд $\sum_{j=1}^{\infty}b_j=(a_1^++\cdots+a_{k_1}^+)-(a_1^-+\cdots+a_{m_1}^-)+(a_{k_1+1}^++\cdots+a_{k_2}^+)-(a_{m_1+1}^-+\cdots+a_{m_2}^-)+\dots$

– це перестановочний ряд $\sum_{n=1}^{\infty} a_n$. Позначимо $\sum_{j=1}^q b_j = S_q$ – часткова сума.

Оберемо S_q такий, що останній член ряду — це $a_{k_i}^+$. По-перше, $S_q > M$ за конструкцією; по-друге, оскільки $a_{k_i}^+$ має індекс k_i — найменший можливий індекс, де $S_q > M$ — то звідси $S_{q-1} \leq M \implies S_q \leq M + a_{k_i}^+$. Ці дві отримані нерівності гарантують нам оцінку $M < S_q \leq M + a_{k_i}^+ \implies 0 < S_q - M \leq a_{k_i}^+$. Оберемо S_q такий, що останній член ряду — це $a_{m_j}^-$. Аналогічними міркуваннями доведемо, що $-a_{m_j}^- < S_q - M \leq 0$.

Оберемо довільне S_q . Зауважимо, що $S_q^{\text{до останнього від'ємного}} \leq S_q \leq S_q^{\text{до останнього додатного}}$. Значить, звідси

$$-a_{m_{i-1}}^+ < S_q - M < a_{k_i}^+.$$

Оскільки $\sum_{n=1}^{\infty}a_n$, то за необіхдною умовою, $a_n\to 0$ при $n\to \infty$. Значить, $a_n^+\to 0,\ a_n^-\to 0$ як

підпослідовності $\{a_n\}$. Внаслідок у нерівності $-a_{m_{i-1}}^- < S_q - M < a_{k_i}^+$ спрямуємо $q \to \infty$, тоді звідси $i \to \infty$, внаслідок чого $a_{m_{i-1}}^-, a_{k_i}^+ \to 0$ як відповідні підпослідовності $\{a_n^+\}, \{a_n^-\}$. Значить,

залишилося
$$\lim_{q \to \infty} S_q = \sum_{j=1}^{\infty} b_j = M.$$

Тепер фіксуємо довільне число M < 0. Насправді, вся ця процедура абсолютно аналогічна. Тільки ми там спочатку брали додатні числа, потім від'ємні – а в цьому випадку робиться навпаки.

Випадок $M = +\infty$.

Для числа $1+a_1^->0$ буде існувати $k_1\in\mathbb{N}$, для якого $a_1^++\cdots+a_{k_1}^+>1+a_1^-$. Для числа $2+a_2^-+a_1^->0$ буде існувати $k_2\in\mathbb{N}$, для якого $a_1^++\cdots+a_{k_2}^+>2+a_1^-+a_2^-$. Іншими словами, $(a_1^++\cdots+a_{k_1}^+)-a_1^-+(a_{k+1}^++\cdots+a_{k_2}^+)>2+a_2^-$.

У нас виникне ряд $\sum_{i=1}^{\infty} b_j = (a_1^+ + \dots + a_{k_1}^+) - a_1^- + (a_{k_1+1}^+ + \dots + a_{k_2}^+) - a_2^- + \dots$ – це перестановочний

ряд $\sum_{i=0}^{\infty} a_n$. Зауважимо, що всі часткові суми перестановочного ряду $S_q \geq i + a_i^-$, тому при $i \to \infty$

ми отримаємо $\lim_{q \to \infty} S_q = \sum_{r=1}^{\infty} = +\infty = M.$

Випадок $M=-\infty$ аналогічний.

Доведення не найкомпактніше, але намагався розписати більше для кращого прояснення.

Example 4.5.2 Розглянемо ряд $\sum_{i=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Неважко показати, що цей ряд збіжний умовно.

$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=?$$

$$S_{2n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2n-1}-\frac{1}{2n}=1+\frac{1}{2}+\cdots+\frac{1}{2n-1}+\frac{1}{2n}-2\left(\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2n}\right)=$$

$$=\left(1+\frac{1}{2}+\cdots+\frac{1}{2n}-\ln(2n)\right)-\left(1+\cdots+\frac{1}{n}-\ln n\right)+\ln 2\overset{n\to\infty}{\to}\gamma-\gamma+\ln 2=\ln 2.$$
 У цьому випадку γ – константа Ойлера-Маскероні (див. попередній пдф).
$$S_{2n+1}=S_{2n}+\frac{1}{2n+1}\to\ln 2.$$

$$S_{2n+1} = S_{2n} + \frac{1}{2n+1} \to \ln 2.$$

Таким чином, звідси $\lim_{n\to\infty}S_n=\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}=\ln 2.$ Тобто ми довели, що

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2.$$

$$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2.$$
Тепер переставимо доданки ряду та обчислимо ось таку суму:
$$1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\cdots=?$$

$$S_{3n}=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}+\frac{1}{4}+\cdots+\frac{1}{4n-3}+\frac{1}{4n-1}-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=$$

$$=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots+\frac{1}{4n-3}+\frac{1}{4n-1}-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=$$

$$\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{4n-1}+\frac{1}{4n-2}\right)-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2n-1}\right)-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)=$$

$$=\left(1+\frac{1}{2}+\cdots+\frac{1}{4n-1}+\frac{1}{4n-2}-\ln(4n-2)\right)+\ln(4n-2)-$$

$$-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{2n-1}-\ln(2n-1)\right)-\frac{1}{2}\ln(2n-1)-\frac{1}{2}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\ln n\right)-\frac{1}{2}\ln n\xrightarrow{n\to\infty}$$

$$\to \gamma-\frac{1}{2}\gamma-\frac{1}{2}\gamma+\frac{3}{2}\ln 2=\frac{3}{2}\ln 2.$$

$$S_{3n+1}=S_{3n}+\frac{1}{4n+1}\to\frac{3}{2}\ln 2\qquad S_{3n+2}=S_{3n+1}+\frac{1}{4n+3}\to\frac{3}{2}\ln 2.$$
Таким чином, після перестановки отримаємо нове значення:

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \dots = \frac{3}{2} \ln 2.$$

Функціональні ряди 5

5.1Функціональні послідовності

Definition 5.1.1 Функціональною послідовністю назвемо послідовність $\{f_n(x), n \geq 1\}$, всі функції задані на одній множині A.

Definition 5.1.2 Функція f(x), що задана теж на множині A, називається **поточковою границею** функціональної послідовності $\{f_n(x), n \geq 1\}$, якщо

$$\forall x \in A : \lim_{n \to \infty} f_n(x) = f(x)$$

Example 5.1.3 Розглянемо послідовність
$$\left\{ f_n(x) = \frac{nx}{1+n+x}, n \geq 1 \right\}$$
 на $[0,5]$. Тоді $f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{n}+1+\frac{x}{n}} \xrightarrow{n \to \infty} x = f(x)$.

Remark 5.1.4 Поточкова збіжність дала змогу створити нову функцію f(x), збираючи всі точки $x \in A$. Додатково зазначу, що в кожній точці $x \in A$ виникає числова послідовність, яка має єдину границю при збіжності - тому наша функція f(x) є єдиною такою.

Definition 5.1.5 Функція f(x) називається рівномірною границею функціональної послідовності $\{f_n(x), n \geq 1\}$ на множині A, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) \in \mathbb{N} : \forall n \ge N : \forall x \in A : |f_n(x) - f(x)| < \varepsilon$$

Позначення: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$.

Corollary 5.1.6 f(x) - рівномірна границя послідовності $\{f_n(x), n \geq 1\}$ на $A \iff \sup_{x \in A} |f_n(x) - f(x)| \to 0, n \to \infty.$

Proposition 5.1.7 Задано $\{f_n(x), n \geq 1\}$ - послідовність на A. Відомо, що $f_n(x) \xrightarrow{} f(x), n \rightarrow \infty$ на множині A. Тоді $\forall x \in A : f_n(x) \to f(x), n \to \infty$.

Proof.

За умовою,
$$\forall \varepsilon > 0 : \exists N : \forall n \geq N : \forall x \in A : |f_n(x) - f(x)| < \varepsilon \implies f_n(x) \to f(x), n \to \infty.$$

Corollary 5.1.8 Рівномірно збіжна послідовність має єдину рівномірну границю.

Remark 5.1.9 Таким чином, єдиний кандидат на рівномірну збіжність послідовність $\{f_n, n \geq 1\}$ це сама функція f, що була отримана в результаті поточкової збіжності.

Example 5.1.10 Розглянемо послідовність
$$\left\{ f_n(x) = \frac{nx}{1+n+x}, n \ge 1 \right\}$$
 на $[0,5]$.

Маємо
$$f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{x}+1+\frac{x}{x}} \xrightarrow{n\to\infty} x = f(x).$$

Також
$$\sup_{x \in [0,5]} |f_n(x) - f(x)| = \sup_{x \in [0,5]} \frac{n}{1 + n + x}$$

Розглянемо функцію
$$h(x)=\frac{x+x^2}{1+n+x}$$
 на $[0,5]$. Знайдемо похідну:
$$h'(x)=\frac{(1+2x)(1+n+x)-x-x^2}{(1+n+x)^2}=\frac{1+n+2x+2nx+x^2}{(1+n+x)^2}>0.$$
 Отже, h - строго монотонно зростає. Тому найбільше значення досягається при $x=5$.

$$\boxed{\equiv} \frac{5+25}{1+n+5} = \frac{30}{6+n} \stackrel{n \to \infty}{\longrightarrow} 0.$$
 Таким чином, $f_n(x) \stackrel{\rightarrow}{\to} f(x), n \to \infty$.

Ліворуч - рівномірна збіжність. Праворуч - поточкова збіжність.

Тепер найголовніше питання, а для чого власне нам потрібна рівномірна збіжність, чому не достатньо поточкової збіжності. Одну з відповідей на це питання дає такий приклад.

Example 5.1.11 Розглянемо послідовність $\{f_n(x) = x^n, n \ge 1\}$ на множині [0,1]. Тоді маємо:

$$f_n(x) = x^n \xrightarrow{n \to \infty} \begin{cases} 0, & x \in [0, 1) \\ 1, & x = 1 \end{cases} = f(x).$$

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} \begin{cases} 0, & x = 1 \\ x^n, & x \in [0,1) \end{cases} = 1$$

 $f_n(x) = x^n \xrightarrow{n \to \infty} \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1 \end{cases} = f(x).$ $\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} \begin{cases} 0, & x = 1 \\ x^n, & x \in [0,1) \end{cases} = 1.$ В загальному випадку, $\sup_{x \in [0,1]} |f_n(x) - f(x)| \not\to 0$, а тому можемо сказати, що $f_n(x) \not \subset f(x)$, $n \to \infty$.

Найголовніше з цього прикладу, що $f_n \in C([0,1])$, проте $f \notin C([0,1])$, а хотілось би. Саме тому нам потрібні рівномірні збіжності.

Але перед цим надамо деякі нові поняття та певні критерії для зручності.

Definition 5.1.12 Нормою функції f(x) на множині A назвемо таке число:

$$||f|| = \sup_{x \in A} |f(x)|$$

Proposition 5.1.13 Властивості

Задані функції f, g на множині A. Тоді справедливо наступне:

- 1) $||f|| \ge 0$;
- $2) ||f|| = 0 \iff f(x) = 0, \forall x \in A;$
- 3) $||\lambda f|| = |\lambda| \cdot ||f||, \forall \lambda \in \mathbb{R};$
- 4) $||f + g|| \le ||f|| + ||g||$;
- 5) $|||f|| ||g||| \le ||f g||$.

Proof.

1), 3) зрозуміло.

2)
$$||f|| = 0 \Rightarrow \sup_{x \in A} |f(x)| = 0 \Rightarrow 0 \le |f(x)| \le 0 \Rightarrow f(x) \equiv 0.$$

В зворотньому напрямку все зрозуміло. 4)
$$||f+g|| = \sup_{x \in A} |f(x)+g(x)| \le \sup_{x \in A} |f(x)| + |g(x)| \le \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)| = ||f|| + ||g||$$
. 5) Вказівка: $||f|| \le ||f-g||$ та $||g|| \le ||g-f||$.

5) Brasiera:
$$||f|| \le ||f - g||$$
 ta $||g|| \le ||g - f||$

Remark 5.1.14
$$f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty \iff ||f_n - f|| \to 0, n \to \infty$$

Тепер буде нам набагато простіше розписувати, що таке рівномірна збіжність.

Theorem 5.1.15 Критерій Коші

$$f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$$
 на $A \iff \forall \varepsilon > 0 : \exists N : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon.$

$$\Rightarrow$$
 Дано: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на A

Тоді
$$||f_n-f||\to 0, n\to\infty \implies \forall \varepsilon>0: \exists N: \forall n,m\ge N: \ ||f_n-f||<rac{\varepsilon}{2} \ ||f_m-f||<rac{\varepsilon}{2}$$

$$\implies ||f_n - f_m|| = ||f_n - f + f - f_m|| \le ||f_n - f|| + ||f_m - f|| < \varepsilon.$$

 $\overline{\mathsf{Як}}$ що зафіксувати точку $x_0 \in A$, то отримаємо фундаментальну послідовність $\{f_n(x_0), n \geq 1\} \implies$ $\exists \lim f_n(x_0) = f(x_0).$

Якщо $m\to\infty$, то маємо, що $|f_n(x_0)-f(x_0)|<\varepsilon$. Оскільки це може бути $\forall x_0\in A$, то тоді $||f_n-f||<\varepsilon\implies f_n(x) \xrightarrow{\to} f(x), \ n\to\infty$ на A.

Theorem 5.1.16 Задано $\{f_n(x), n \geq 1\}$ - послідовність на множині A та $f_n(x) \stackrel{\rightarrow}{\to} f(x), n \to \infty$. Відомо, що $\forall n \geq 1: \exists \lim_{x \to x_0} f_n(x) = c_n$, де $x_0 \in \mathbb{R}$ - гранична точка A. Тоді послідовність $\{c_n, n \geq 1\}$ - збіжна, а також $\lim_{x\to x_0} f(x) = \lim_{n\to\infty} c_n$.

Proof.

Оскільки $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$, то за критерієм Коші,

 $\forall \varepsilon > 0 : \exists N : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon \implies \forall x \in A : |f_n(x) - f_m(x)| < \varepsilon.$

Якщо $x \to x_0$, то отримаємо, що $|c_n - c_m| \le \varepsilon < 2\varepsilon$. Тоді за критерієм Коші, $\{c_n, n \ge 1\}$ - збіжна, тобто $\exists \lim_{n \to \infty} c_n = c.$

Лишилось довести, що $\lim_{x \to x_0} f(x) = c$.

Оскільки $f_n(x) \xrightarrow{\rightarrow} f(x), \ n \to \infty, \ \text{тоді} \ \forall \varepsilon > 0: \exists N_1: \forall n,m \geq N_1: \forall x \in A: |f_n(x) - f(x)| < \varepsilon.$

Оскільки $c_n \to c, \ n \to \infty$, то тоді для такого самого $\varepsilon > 0: \exists N_2: \forall n \geq N_2: |c_n - c| < \varepsilon.$

Зафіксуємо $N=\max\{N_1,N_2\}$. Тоді $\lim_{x\to x_0}f_N(x)=c_N\implies\exists \delta: \forall x\in A: |x-x_0|<\delta\implies\exists \delta: \forall x\in A: |x-x_0|<\delta$ $|f_N(x)-c_N|<\varepsilon.$

 $\Longrightarrow |f(x) - c| = |f(x) - f_N(x) + f_N(x) - c_N + c_N - c| \le |f(x) - f_n(x)| + |f_N(x) - c_N| + |c_N - c| < 3\varepsilon.$ Остаточно, $\lim_{x \to x_0} f(x) = c = \lim_{n \to \infty} c_n.$

Corollary 5.1.17 Задано $\{f_n(x), n \geq 1\}$ - послідовність на множині A та $f_n(x) \xrightarrow{\sim} f(x), n \to \infty$. Відомо, що $\forall n \geq 1 : f_n(x) \in C(A)$. Тоді $f(x) \in C(A)$, а також $\lim_{n \to \infty} f_n(x_0) = \lim_{n \to \infty} f(x)$.

Theorem 5.1.18 Задано $\{f_n(x), n \ge 1\}$ - послідовність на множині [a, b] та $f_n(x) \xrightarrow{\sim} f(x), n \to \infty$. Відомо, що $\forall n \geq 1: f_n(x) \in \mathcal{R}([a,b])$. Тоді $f(x) \in \mathcal{R}([a,b])$, а також $\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx$.

Proof.

Маємо $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty \implies \forall \varepsilon > 0 : \exists N : \forall n \ge N : \forall x \in [a,b] : |f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)}.$

Зокрема $\forall x \in [a,b]: |f_N(x)-f(x)| < \frac{\varepsilon}{4(b-a)} \implies f_N(x) - \frac{\varepsilon}{4(b-a)} < f(x) < f_N(x) + \frac{\varepsilon}{4(b-a)}.$

Тоді
$$\forall k=1,\ldots,n$$
 виконуються нерівності: $m_k(f) \geq f_N(x) - \frac{\varepsilon}{4(b-a)} \geq m_k(f_N) - \frac{\varepsilon}{4(b-a)}.$

$$M_k(f) \le f_N(x) + \frac{\varepsilon}{4(b-a)} \le M_k(f_N) + \frac{\varepsilon}{4(b-a)}$$
.

Звідси випливає, що $M_k(f) - m_k(f) \le M_k(f_N) - m_k(f_N) + \frac{\varepsilon}{2(b-a)}$.

Оскільки $f_N \in \mathcal{R}([a,b])$, то $\exists \tau: U(f_N,\tau) - L(f_N,\tau) < \frac{\varepsilon}{2}$. Тоді

$$U(f,\tau) - L(f,\tau) = \sum_{k=1}^{n} (M_k(f) - m_k(f)) \Delta x_k \le \sum_{k=1}^{n} \left(M_k(f_N) - m_k(f_N) + \frac{\varepsilon}{2(b-a)} \right) \Delta x_k = 0$$

$$= (U(f_N, \tau) - L(f_N, \tau)) + \sum_{k=1}^n \frac{\varepsilon}{2(b-a)} \Delta x_k < \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)} (b-a) = \varepsilon \implies f \in \mathcal{R}([a, b]).$$

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{n}(x) - f(x) dx \right| \le \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| \left| f_{n}(x) - f(x) \right| dx \le \int_{a}^{b} \left| f_{n}(x)$$

$$=||f-f_n||(b-a)\stackrel{n\to\infty}{\longrightarrow} 0.$$
 Отже,
$$\lim_{n\to\infty}\int_a^b f_n(x)\,dx=\int_a^b f(x)\,dx.$$

Theorem 5.1.19 Задано $\{f_n(x), n \ge 1\}$ - послідовність на множині [a, b]. Відомо, що:

- 1) $\exists x_0 \in [a, b] : \{f_n(x_0), n \ge 1\}$ збіжна послідовність;
- 2) $\forall n \geq 1 : f_n$ диференційована на [a, b];
- 3) $\{f'_n, n \ge 1\}$ рівновірно збіжна послідовність на [a, b].

Тоді $\{f_n, n \geq 1\}$ - рівномірно збіжна послідовність на [a, b]. Звідси можна визначити функцію $f(x) \stackrel{\text{def.}}{=} \lim_{n \to \infty} f_n(x)$, тоді f - диференційована на [a, b], а також $f'(x) = \lim_{n \to \infty} f'_n(x)$.

Proof.

 $\{f_n'\}$ рівномірно збіжна на $[a,b] \implies \forall \varepsilon > 0: \exists N_1: \forall n,m \geq N_1: \forall x \in [a,b]: |f_n'(x) - f_m'(x)| < \varepsilon.$ $\{f_n(x_0)\}$ збіжна $\implies \forall \varepsilon > 0: \exists N_2: \forall n,m \geq N: |f_n(x_0) - f_m(x_0)| < \varepsilon.$

Позначимо $\varphi_{n,m}(x) = f_n(x) - f_m(x)$. Тоді ми маємо такі нерівності:

 $|\varphi'_{n,m}(x)| < \varepsilon$ $|\varphi_{n,m}(x_0)| < \varepsilon$.

Фіксуємо деяку т. $x \in [a,b]$, а також $N = \max\{N_1,N_2\}$. Тоді $\forall n,m \geq N$ і за теоремою Лагранжа: $\varphi_{n,m}(x) - \varphi_{n,m}(x_0) = \varphi'_{n,m}(\xi)(x-x_0)$, причому $\xi \in (x,x_0)$ або (x_0,x) .

 $\Rightarrow |f_n(x) - f_m(x)| = |\varphi_{n,m}(x)| = |\varphi_{n,m}(x) - \varphi_{n,m}(x_0)| + |\varphi_{n,m}(x_0)| \le |\varphi_{n,m}(x_0)| + |\varphi'_{n,m}(\xi)| |x - x_0| < \varepsilon + (b - a)\varepsilon = (b - a + 1)\varepsilon.$

Таким чином, ми довели критерієм Коші, що $\{f_n\}$ рівномірно збіжна на [a,b]. Зокрема звідси визначаємо функцію (як в теоремі) $f(x) \stackrel{\text{def.}}{=} \lim_{n \to \infty} f_n(x)$.

Далі беремо будь-яку точку $x_{00} \in [a,b]$. Покажемо, що f в цій точці диференційована.

Маємо
$$f_n'(x_{00}) = \lim_{x \to x_{00}} \frac{f_n(x) - f_n(x_{00})}{x - x_{00}}$$
. Позначимо $\psi_n(x) = \frac{f_n(x) - f_n(x_{00})}{x - x_{00}}$, $\psi(x) = \frac{f(x) - f(x_{00})}{x - x_{00}}$. $|\psi_n(x) - \psi(x)| = \frac{1}{|x - x_{00}|} |f_n(x) - f_n(x_{00}) - f(x) + f(x_{00})| = \frac{1}{|x - x_{00}|} |\varphi_{n,\infty}(x) - \varphi_{n,\infty}(x_{00})| = \frac{1}{|x - x_{00}|} |\varphi'_{n,\infty}(\xi)| |x - x_{00}| = |\varphi'_{n,\infty}(\xi)| | \le \varepsilon$.

Рівність \equiv за Лагранжем, причому $\xi \in (x, x_{00})$ або (x_{00}, x) ; \leq за пунктом 3) теореми. Тоді $\psi_n(x) \xrightarrow{\rightarrow} \psi(x), n \to \infty$ на $[a, b] \setminus \{x_{00}\}$. А оскільки $\psi_n \in C([a, b] \setminus \{x_{00}\})$, то звідси $\lim_{x \to x_0} \lim_{n \to \infty} \psi_n(x) = \lim_{n \to \infty} f'_n(x) = f'(x)$.

Theorem 5.1.20 Теорема Діні

Задано $\{f_n(x), n \geq 1\}$ - монотонна послідовність на множині [a,b], причому $\exists \lim_{n \to \infty} f_n(x) = f(x)$. Відомо, що $\forall n \geq 1 : f_n \in C([a,b])$ та $f \in C([a,b])$. Тоді $f_n \rightrightarrows f, n \to \infty$ на [a,b].

Proof.

Ми припустимо, що $\{f_n(x), n \ge 1\}$ - монотонно зростає, бо для спадної майже аналогічно. Оскільки також $f_n(x) \to f(x)$, то звідси в силу монотонності $f_n(x) \le f(x)$.

Тепер розглянемо функцію $r_n(x) = f(x) - f_n(x)$. За умовою, $r_n \in C([a,b])$, далі $\{r_n(x), n \geq 1\}$ - монотонно спадає, а також $r_n(x) \to 0$. Зараз необхідно довести, що $r_n(x) \rightrightarrows 0$.

Нехай $x_0 \in [a,b]$, тоді $r_n(x_0) \to 0 \implies \forall x \in [a,b] : \forall \varepsilon > 0 : \exists N : r_N(x_0) < \varepsilon.$ $r_N \in C([a,b])$, зокрема неперервна в т. x_0 , тому $\exists \delta : \forall x \in [a,b] : |x-x_0| < \delta \implies |r_N(x)-r_N(x_0)| < \varepsilon.$ Звідси та з попередньої нерівності випливає, що $r_N(x) < 2\varepsilon$, і це виконано в $U_\delta(x_0) \cap [a,b]$.

Відрізок [a,b] можна покрити скінченною кількістю інтервалів за лемою Гейне-Бореля, тобто в нашому випадку знайдуться точки $x_1,\ldots,x_k\in[a,b]$, для яких знайдуться номера N_1,\ldots,N_k , а також околи, які покриють відрізок.

Встановимо $N = \max\{N_1, \dots, N_k\}$. Якщо взяти довільне $y \in [a, b]$, то знайдеться окіл т. $x_i, i = \overline{1, k}$, де справедлива нерівність $r_N(y) < \varepsilon$. Не забуваємо, що в нас спадна послідовність.

Отже, $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \forall y \in [a, b] : r_n(y) < r_N(y) < \varepsilon$.

Таким чином, $r_n(x) \stackrel{\rightarrow}{\to} 0$, що призводить до результату теореми Діні.

5.2 Функціональні ряди

Definition 5.2.1 Функціональним рядом називають суму членів функціональної послідовності $\{a_n(x), n \geq 1\}$:

$$a_1(x) + a_2(x) + \dots + a_n(x) + \dots = \sum_{n=1}^{\infty} a_n(x)$$

Частковою сумою даного ряда називають суму перших k функцій:

$$S_k(x) = \sum_{n=1}^k a_n(x) = a_1(x) + a_2(x) + \dots + a_k(x)$$

В такому випадку в нас виникає функціональна послідовність часткових сум $\{S_k(x), k \ge 1\}$. Якщо така послідовність збігається в т. x_0 , то ряд є **збіжним** в т. x_0 та **сума** цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n(x_0) = \lim_{k \to \infty} S_k(x_0) = S(x_0)$$

Інакше - розбіжним.

Якщо ряд збігається $\forall x \in B$, то B називають **областю збіжності**

Якщо ряд абсолютно збігається $\forall x \in B$, то B називають областю абсолютної збіжності

Якщо ряд умовно збігається $\forall x \in B$, то B називають областю умовної збіжності

Example 5.2.2 Дослідити на збіжність ряд $\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$.

Для початку перевіримо на абсолютну збіжність, для цього ми досліджуємо $\sum_{n=1}^{\infty} \left| \frac{x^n}{1+x^{2n}} \right|$. Засто-

суємо ознаку Даламбера:
$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{|x^{n+1}(1+x^{2n})|}{|(1+x^{2n+2})x^n|}=\lim_{n\to\infty}\left|\frac{x+x^{2n+1}}{1+x^{2n+2}}\right|=\\=\lim_{n\to\infty}\left|\frac{\frac{1}{x^{2n+1}}+\frac{1}{x}}{\frac{1}{x^{2n+2}}+1}\right|=\frac{1}{|x|}$$
при $|x|>1$.

= |x| при |x| < 1

= 1 при |x| = 1.

Отже, при $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}<1$ в перших двох випадках, тобто при $|x|\neq 1$. Це означає збіжність. При $|x|=1\implies x=\pm 1$ треба додатково дослідити.

$$x=1 \implies \sum_{n=1}^{\infty} \frac{1}{1+1} = +\infty \implies$$
 розбіжний. $x=-1 \implies \sum_{n=1}^{\infty} \frac{(-1)^n}{1+1}$ - розбіжний, оскільки $ot = \lim_{n \to \infty} \frac{(-1)^n}{2}$.

Таким чином, область абсолютної збіжності $B_{abs} = \mathbb{R} \setminus \{-1,1\}$; область умовної збіжності $B_{cond} = \emptyset$.

Definition 5.2.3 Якщо послідовність часткових сум $\{S_k(x), k \geq 1\}$ збігається рівномірно на множині A, то ряд $\sum_{n=0}^{\infty} a_n(x)$ називають **рівномірно збіжним** на A.

Theorem 5.2.4 Критерій Коші

$$\sum_{n=1}^{\infty}a_n(x)$$
 - рівномірно збіжний на множині $A\iff \forall \varepsilon>0: \exists K: \forall k\geq K: \forall p\geq 1: \left\|\sum_{n=k+1}^{k+p}a_n(x)\right\|<\varepsilon.$ Випливає з критерію Коші рівновірної збіжності функціональних послідовностей.

Corollary 5.2.5 Необхідна умова рівномірної збіжності

Задано
$$\sum_{n=1}^{\infty}a_n(x)$$
 - рівномірно збіжний на $A.$ Тоді $a_k(x) \stackrel{\rightarrow}{\to} 0, k \to \infty$ на $A.$

Bказівка: критерій Kowi npu p=1.

Theorem 5.2.6 Мажорантна ознака Вейєрштрасса

Задано
$$\sum_{n=1}^{\infty} a_n(x)$$
 - ряд на множині A . Відомо, що:

1)
$$\exists \{c_n, n \ge 1\} : \forall n \ge 1 : \forall x \in A : |a_n(x)| \le c_n;$$

1)
$$\sum_{n=1}^{\infty} c_n$$
 - збіжний. Його ще називають мажорантним рядом. Тоді $\sum_{n=1}^{\infty} a_n(x)$ збігається рівномірно на множині A .

За критерієм Коші,
$$\sum_{n=1}^{\infty} c_n$$
 - збіжний $\iff \forall \varepsilon > 0: \exists N: \forall k \geq K: \forall p \geq 1: \left|\sum_{n=k+1}^{k+p} c_n\right| < \varepsilon.$

Тоді
$$\forall x \in A: \left|\sum_{n=k+1}^{k+p} a_n(x)\right| \leq \sum_{n=k+1}^{k+p} |a_n(x)| \leq \sum_{n=k+1}^{k+p} c_n < \varepsilon.$$

Тому за критерієм Коші, $\sum_{n=1}^{\infty} a_n(x)$ - рівномірно збіжний на множині A.

Example 5.2.7 Розглянемо ряд $\sum_{1}^{\infty} \frac{\cos nx}{n^2}$.

Оскільки $\left|\frac{\cos nx}{n^2}\right| \leq \frac{1}{n^2}$, причому це виконано завжди, а мажорантний ряд $\sum_{i=1}^{\infty} \frac{1}{n^2}$ - збіжний, то за

ознакою Вейєрштрасса, $\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$ - збіжний рівномірно на \mathbb{R} .

Theorem 5.2.8 Ознаки Діріхле та Абеля

Задано
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 - ряд на множині A . Нехай виконано один з двох блок умов:

Нехай виконано один з двох блок умов:
$$\sum_{n=1}^k a_n(x) \text{ - рівномірно обмежена на } A \\ \{b_n(x), n \geq 1\} \text{ - монотонна та } b_n(x) \xrightarrow{\to} 0 \text{ на } A \\ \text{ ознаки Діріхле} \begin{cases} b_n(x), n \geq 1 \\ b_n(x), n \geq 1 \end{cases} \text{ - монотонна та рівномірно обмежена на } A \\ \text{ ознаки Абеля} \end{cases}$$

Тоді $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ - збіжний рівномірно на множині A.

 $\sqrt{\frac{n-1}{2}}$ Доводиться так само, як було в числових рядах.

Example 5.2.9 Дослідити на збіжність ряд $\sum_{n=1}^{\infty} \frac{\sin nx}{n^{\alpha}}$, якщо $0 < \alpha \le 1$.

Аналогічними міркуваннями як в **Ex.** ??? ми можемо отримати таку формулу:

$$\sum_{n=1}^k \sin nx = \frac{\sin\left(\frac{k+1}{2}x\right)}{\sin\frac{x}{2}} \sin\frac{kx}{2}$$
 за умовою, що $\sin\frac{x}{2} \neq 0 \implies x \neq 2\pi m, m \in \mathbb{Z}.$

Тоді
$$\left|\sum_{n=1}^k \sin nx\right| \leq \frac{1}{\left|\sin\frac{x}{2}\right|} \leq \frac{1}{C}$$
, за умовою, що розглядається область $[a,b] \subset (2\pi m, 2\pi (m+1))$.

Ну й також $\frac{1}{n^{\alpha}}$ - монотонна та рівномірно н.м. (тому що від x не залежить) на [a,b].

Таким чином, $\sum_{n=0}^{\infty} \frac{\sin nx}{n^{\alpha}}$ збігається рівномірно в будь-якому відрізку $[a,b] \subset (2\pi m, 2\pi (m+1)).$

Розглянемо тепер відрізок $[0, \delta]$, де $\delta > 0$, та покажемо криетрієм Коші, що ряд розбіжний.

Дійсно,
$$\exists \varepsilon>0: \forall K: \exists k>K: \exists p=2k\geq 1: \exists x=\frac{1}{k}\in [0,\delta]:$$

$$\left| \sum_{n=k+1}^{2k} \frac{\sin nx}{n^{\alpha}} \right| = \left| \sum_{n=k+1}^{2k} \frac{\sin \frac{n}{k}}{n^{\alpha}} \right| \ge \left| \sum_{n=k+1}^{2k} \frac{\sin 1}{n^{\alpha}} \right| = \sin 1 \sum_{n=k+1}^{2k} \frac{1}{n^{\alpha}} \ge \sin 1 \sum_{n=k+1}^{2k} \frac{1}{(2k)^{\alpha}} \ge \sin 1 \sum_{n=k+1}^{2k} \frac{1}{2k} = \frac{1}{n^{\alpha}} \sum_{n=k+1}^{2k} \frac{1}{(2k)^{\alpha}} \ge \sin 1 \sum_{n=k+1}^{2k}$$

$$\frac{\sin 1}{2} = \varepsilon.$$

Властивості рівномірно збіжних функціональних рядів

Theorem 5.3.1 Задано $S(x) = \sum_{i=1}^{\infty} a_n(x)$ - рівномірно збіжний на A.

Відомо, що $\forall n \geq 1: \exists \lim_{x \to x_0} a_n(x) = c_n$, де $x_0 \in \mathbb{R}$ - гранична точка A. Тоді $\sum_{i=1}^{\infty} c_n$ - збіжний, а також

$$\lim_{x \to x_0} \sum_{n=1}^{\infty} a_n(x) = \sum_{n=1}^{\infty} c_n.$$

Proof.

Із умови теореми випливає, що $\forall k \geq 1: \lim_{x \to x_0} S_k(x) = \lim_{x \to x_0} \sum_{n=1}^k a_n(x) = \sum_{n=1}^k c_n$. Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Th.???**,

$$\lim_{x \to x_0} S(x) = \sum_{n=1}^{\infty} c_n.$$

Corollary 5.3.2 Задано $S(x)=\sum_{n=1}^\infty a_n(x)$ - рівномірно збіжний на A. Відомо, що $\forall n\geq 1: a_n(x)\in C(A).$ Тоді $S(x)\in C(A).$

Example 5.3.3 Довести, що $\lim_{x\to 1}\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}x^n=\frac{(-1)^{n+1}}{n}$.

Спочатку треба довести рівномірну збіжність ряду $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ в деякому лівому околі т. x=1.

Застосуємо ознаку Абеля при $a_n(x) = \frac{(-1)^{n+1}}{n}, b_n(x) = x^n.$

 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ - збіжна за ознакою Лейбніца, а оскільки вона не залежить від x, то тому ще й рівно-

 x^n - зрозуміло, монотонна та монотонно обмежена, оскільки $|x^n| \leq 1$.

Таким чином, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ - рівномірно обмежена в лівому околі т. x=1.

А далі $\frac{(-1)^{n+1}}{n}x^n \in C$, а отже, $\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}x^n \in C$, в тому числі в т. x=1.

Таким чином, $\lim_{x \to 1} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \sum_{n=1}^{\infty} \lim_{x \to 1} \frac{(-1)^{n+1}}{n} x^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}.$

Theorem 5.3.4 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ - рівномірно збіжний на [a,b]. Відомо, що $\forall n \geq 1: a_n(x) \in \mathcal{R}([a,b])$. Тоді $S(x) \in \mathcal{R}([a,b])$, а також

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) dx \right).$$

Proof.

3 умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{n=1}^{\kappa} a_n(x) \in \mathcal{R}([a,b])$ як сума інтегрованих функцій.

Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Th. 10.1.?.**, $S(x) \in \mathcal{R}([a,b]).$

Доведемо тепер тотожність:

$$\int_a^b \left(\sum_{n=1}^\infty a_n(x)\right) dx = \int_a^b \left(\lim_{k\to\infty} \sum_{n=1}^k a_n(x)\right) dx = \lim_{k\to\infty} \int_a^b \left(\sum_{n=1}^k a_n(x)\right) dx = \lim_{k\to\infty} \sum_{n=1}^k \left(\int_a^b a_n(x) dx\right) = \sum_{n=1}^\infty \left(\int_a^b a_n(x) dx\right).$$

Example 5.3.5 Довести, що $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(1+x)$ для всіх $x \in (-1,1]$.

Розглянемо ряд $\sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x}$. Аналогічними міркуваннями (як в попередньому прикладі) ми можемо довести, що ряд збіжний рівномірно на (-1,1]. Покладемо деяке число x>0. Оскільки $(-1)^n t^n \in \mathcal{R}([0,x])$, то звідси $\sum_{n=0}^{\infty} (-1)^n t^n \in \mathcal{R}([0,x])$. Таким чином,

з одного боку,
$$\int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \sum_{n=0}^\infty \int_0^x (-1)^n t^n = \sum_{n=1}^\infty \frac{(-1)^n}{n} x^n;$$

із іншого боку, $\int_0^x \sum_{n=0}^\infty (-1)^n t^n dt = \int_0^x \frac{1}{1+t} dt = \ln(1+x).$

Остаточно отримали, що $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n = \ln(1+x)$ для всіх $x \in (-1,1]$.

Theorem 5.3.6 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$. Відомо, що:

- $1)\ \exists x_0\in [a,b]: \sum_{n=1}^\infty a_n(x_0)$ збіжний; $2)\ \forall n\geq 1: a_n(x)$ диференційовані на [a,b];
- 3) $\sum_{n=1}^{\infty} a'_n(x)$ рівномірно збіжний на [a,b].

Тоді S(x) - збіжний рівномірно, S(x) - диференційована на [a,b], а також $\left(\sum_{i=1}^{\infty}a_n(x)\right)^i=\sum_{i=1}^{\infty}a_n'(x)$.

Маємо, $\{S_k(x), k \ge 1\}$, де $S_k(x) = \sum_{n=1}^{K} a_n(x)$.

- 1) $\forall n \geq 1: a_n$ диференційовані на [a,b], а тому $\forall k \geq 1: S_k$ також диференційована на [a,b].
- 2) Відомо, що $\exists x_0 \in [a,b]$: $\sum_{i=1}^{\infty} a_n(x_0)$ збіжний, тобто послідовність $\{S_k(x_0), k \geq 1\}$ збіжна.
- 3) Маємо $S_k'(x) = \sum_{n=1}^{\kappa} a_n'(x)$, про яку відомо, що $S_k'(x) \xrightarrow{\sim} S'(x)$, $k \to \infty$.

$$S'(x) = \left(\sum_{n=1}^{\infty} a_n(x)\right)' = \left(\lim_{k \to \infty} \sum_{n=1}^{k} a_n(x)\right)' = \lim_{k \to \infty} \sum_{n=1}^{k} a'_n(x) = \sum_{n=1}^{\infty} a'_n(x).$$

Example 5.3.7 Знайдемо похідну ряда $S(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n^2}$ на відрізку (-1,1].

- Треба пересвідчитись, що можна це робити диференціювання: 1) $(-1)^{n-1}\frac{x^n}{2^n}$ всі диференційовані;
- 2) Якщо x=1, то ряд $S(1)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^2}$ збіжний за ознакою Лейбніца.
- $3) \, \sum^{\infty} \left((-1)^{n-1} \frac{x^n}{n^2} \right)' = \sum^{\infty} \frac{(-1)^{n-1} x^{n-1}}{n} \text{ рівномірно збіжний за Абеля.}$

Отже,
$$S'(x)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^{n-1}}{n}\implies xS'(x)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}x^n}{n}=\ln(1+x).$$
 Остаточно $S'(x)=\frac{\ln(1+x)}{x}$, додатково $S'(0)=0.$

5.4 Степеневі ряди

Definition 5.4.1 Степеневим рядом називаємо ми такий функціональний ряд:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

де $\{a_n, n \ge 0\}$ - числова послідовність.

Theorem 5.4.2 Теорема Коші-Адамара

Задано
$$\sum_{n=0}^{\infty}a_n(x-x_0)^n$$
 - степеневий ряд. Нехай $\frac{1}{\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}}=R$ - радіус збіжності. Тоді ряд:

при $|x - x_0| < R$ - збіжний абсолютно;

при $|x - x_0| > R$ - розбіжний;

при $|x - x_0| = R$ - відповіді нема.

Proof.

Скористаємось радикальною ознакою Коші для нашого ряду:

$$\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n(x - x_0)|^n} = |x - x_0| \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = q.$$

Поді:

При
$$q<1$$
, тобто $|x-x_0|<\frac{1}{\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}}=R$ - збіжний абсолютно; При $q>1$, тобто $|x-x_0|>\frac{1}{\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}}=R$ - розбіжний;

При
$$q>1,$$
 тобто $|x-x_0|>\frac{1}{\varlimsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}=R$ - розбіжний:

Corollary 5.4.3 Наслідок із ознаки Даламбера

Согопату 5.4.3 Наслідок із ознаки Даламоера
Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд. Нехай $\lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right| = R$ - радіус збіжності. Тоді ряд:

при $|x - x_0| < R$ - збіжний абсолютно;

при $|x - x_0| > R$ - розбіжний;

при $|x - x_0| = R$ - відповіді нема.

Скористаємось ознакою Даламбера для нашого р
$$\lim_{n\to\infty} \left| \frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n} \right| = |x-x_0| \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = q.$$
 Тоді:

При
$$q<1$$
, тобто $|x-x_0|<\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ - збіжний абсолютно; При $q>1$, тобто $|x-x_0|>\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ - розбіжний; При $q=1$ - нема відповіді.

При
$$q>1$$
, тобто $|x-x_0|>\lim \left|\frac{a_n}{a_n}\right|=R$ - розбіжний

Example 5.4.4 Знайдемо область збіжності ряду $\sum_{n=0}^{\infty} \frac{(x-7)^n}{2^n(n+1)}$.

Маємо
$$a_n = \frac{1}{2^n(n+1)}$$
, тоді $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{2(n+2)}{n+1} = 2$. Отже, при $|x-7| < 2 \implies x \in (5,9)$ ряд збіжний абсолютно. Також при $|x-7| > 2 \implies x \in (5,9)$

 $(-\infty,5) \cup (9,+\infty)$ ряд розбіжний. А ось в x=5, x=9треба додатково обстежити.

При
$$x=9$$
 маємо $\sum_{n=0}^{\infty} \frac{1}{n+1}$ - розбіжний.

При x=5 маємо $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$ - збіжний за Лейбніцем, але умовно.

Отже, область збіжності B = [5, 9).

Theorem 5.4.5 Теорема Абеля

 $\sum a_n (x-x_0)^n$ - рівномірно збіжний на будь-якому відрізку із області збіжності.

Proof.

Зафіксуємо довільний відрізок [a, b]. Будемо розглядати декілька випадків.

1. $[a,b] \subset (x_0 - R, x_0 + R)$.

Зафіксуємо число $M=\max\{|x_0-a|,|x_0-b|\}$. Звідси $\forall x\in[a,b]:|x-x_0|< M< R$, а тому $|a_n(x-x_0)^n| < |a_n|M^n.$

Розглянемо мажорантний ряд $\sum_{n=0}^{\infty} a_n M^n$. Застосуємо ознаку Коші: $\lim_{n\to\infty} \sqrt[n]{|a_n|M^n} = M\lim_{n\to\infty} \sqrt[n]{|a_n|} < R\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1.$ Отже, цей ряд - збіжний. Тоді за ознакою Вейерштраса, степеневий ряд - збіжний рівномірно на [a,b].

2. $[a,b] \subset [x_0,x_0+R]$.

Розпишемо ряд
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x-x_0}{R}\right)^n.$$

Розглянемо випадок, коли ряд $\sum_{n=0}^{\infty} a_n R^n$ - збіжний. Збіжність степеневого ряду проведемо за озна-

кою Абеля:
$$g_n(x) = \left(\frac{x - x_0}{R}\right)^n$$

Домовились, що $\sum_{x} f_n(x)$ - збіжний, причому рівномірно, оскільки не залежить від x.

Послідовність $\left\{g_n(x)=\left(\frac{x-x_0}{R}\right)^n, n\geq 1\right\}$ - рівномірно обмежена, оскільки

$$\forall x \in [a,b] \subset [x_0,x_0+R]: |x-x_0| \leq R \Rightarrow \forall n \geq 1: \left|\frac{x-x_0}{R}\right|^n \leq 1.$$
 А також послідовність є монотонною, тому що $\frac{x-x_0}{R} < 1.$

Отже, за Абелем, ряд - рівномірно збіжний на [a

Аналогічно, коли $[a,b]\subset [x_0-R,x_0]$ за умовою, що $\sum_{n=0}^\infty a_n(-R)^n$ - збіжний.

3. $[a,b] \subset [x_0 - R, x_0 + R]$.

Тоді відрізок [a, b] розбивається на $[a, x_*] \cup [x_*, b]$.

На цих відрізках ряд збіжний рівномірно за п. 2.

Example 5.4.6 Зокрема ряд $\sum_{n=0}^{\infty} \frac{(x-7)^n}{2^n(n+1)}$ збіжний рівномірно в будь-якому відрізку із області збіжності [5,9), у тому числі в тому, що містить початок т. x=5.

А тепер ми позначимо степеневий ряд $S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Theorem 5.4.7 $S \in C$ в області збіжності.

Proof.

Візьмемо якусь точку $x_* \in (x_0 - R, x_0 + R)$. Зафіксуємо деякий відрізок $[a, b] \ni x_*$. На відрізку [a,b] ряд - збіжний рівномірно за теоремою Абеля, члени ряду - неперервні функції. Отже, $S(x) \in$ $C([a,b]) \implies S(x) \in C(\{x_*\}).$

Оскільки т. x_* була довільною, то одразу $S(x) \in C((x_0 - R, x_0 + R))$.

Theorem 5.4.8 $S \in \mathcal{R}$ в області збіжності, а також $\int_{x_0}^{x} \sum_{n=0}^{\infty} a_n (t-x_0)^n dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1}$.

Причому радіус збіжності нового степеневого ряду зберігається.

Proof.

На відрізку $[x_0, x_*]$ або $[x_*, x_0]$, де $x_* \in (x_0 - R, x_0 + R)$, степеневий ряд збігається рівномірно за Абелем. Тому $S \in \mathcal{R}([x_0, x_*])$ або $[x_*, x_0]$). Тотожність випливає з цього ж Th. Тепер перевіримо, що радіус збіжності дійсно такий самий. За Коші-Адамара

$$R_{new} = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{\left| \frac{a_n}{n+1} \right|}} = \overline{\lim_{n \to \infty}} \sqrt[n]{\frac{n+1}{|a_n|}} = \overline{\lim_{n \to \infty}} \sqrt[n]{n+1} \cdot \frac{1}{\overline{\lim_{n \to \infty}} |a_n|} = 1 \cdot R = R.$$

Theorem 5.4.9 S - диференційований в області збіжності, а також $\left(\sum_{n=0}^{\infty} a_n (x-x_0)^n\right) =$

$$=\sum_{n=1}^{\infty}a_{n}\cdot n(x-x_{0})^{n-1}.$$
 Причому радіус збіжності нового степеневого ряду зберігається.

Proof.

Розглянемо ряд $\sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1}$. Радіус збіжності збігається, оскільки $R_{new} = \frac{1}{\varlimsup\limits_{n \to \infty} \sqrt[n]{n|a_n|}} = \frac{1}{\varlimsup\limits_{n \to \infty} \sqrt[n]{|a_n|}} = R.$

$$R_{new} = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{n|a_n|}}} = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}} = R$$

Візьмемо якусь точку $x_* \in (x_0 - R, x_0 + R)$. Нехай відрізок $[a, b] \ni x_*$. На відрізку [a, b] ряд - збіжний рівномірно за теоремою Абеля. Використаємо далі умови для диференціювання:

- 1) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ збіжний принаймні в одній точці;

2) Всі члени ряду - диференційовані функції; $3) \sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1} = \sum_{n=0}^{\infty} a_n^* (x-x_0)^n \text{ - рівномірно збіжний на } [a,b] за Абелем. Отже, <math>S(x)$ - диференційований на [a,b], зокрема і в т. x_* . Оскільки т. x_* була довільною, то одразу S(x) - диференційований в (x_0-R,x_0+R) .

Тому дійсно,
$$S'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$
.

Corollary 5.4.10 $S \in C^{\infty}$ в області збіжності.

5.5 Ряди Тейлора

Definition 5.5.1 Функцію f називають **аналітичною** в т. $x_0 \in \mathbb{R}$, якщо в околі т. x_0 :

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Example 5.5.2 Функція $f(x) = \ln(1+x)$ - аналітична на (-1,1], оскільки $f(x) = \sum_{i=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$.

Оскільки степеневий ряд - нескінченно-диференційована, то $f \in C^{\infty}$. У такому випадку можемо знайти коефіцієнти:

$$f(x_0) = a_0$$

$$f'(x_0) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} |_{x = x_0} = a_1$$

$$f''(x_0) = \sum_{n=2}^{\infty} n(n-1) a_n (x - x_0)^{n-2} |_{x = x_0} = 2a_2$$

Таким чином, аналітична функція задається рядом Тейлора:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Remark 5.5.3 Із цього випливає, що аналітична функція задає степеневий ряд рядом Тейлора однозначно.

Remark 5.5.4 Якщо $x_0 = 0$, то ряд Тейлора зазвичай це називають **рядом Маклорена**.

Remark 5.5.5 f - аналітична $\implies f \in C^{\infty}$. У зворотному випадку не завжди працює.

Example 5.5.6 Зокрема
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Якщо допустити розклад функції в ряд Тейлора, то отримаємо $f(x) \equiv 0$, що суперечить початковим умовам.

Theorem 5.5.7 Теорема Тейлора

1)
$$f \in C^{(\infty)}((x_0 - R, x_0 + R))$$
:

2)
$$\exists M \in \mathbb{R} : \forall n \geq 1 : \forall x \in (x_0 - R, x_0 + R) : |f^{(n)}(x)| \leq M^n$$

Задано функцію f та точку $x_0 \in \mathbb{R}$. Відомо, що 1) $f \in C^{(\infty)}((x_0 - R, x_0 + R));$ 2) $\exists M \in \mathbb{R} : \forall n \geq 1 : \forall x \in (x_0 - R, x_0 + R) : |f^{(n)}(x)| \leq M^n.$ Тоді f - аналітична в т. x_0 , тобто $\forall x \in (x_0 - R, x_0 + R)$ функція розкладеться в ряд Тейлора $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$, причому рівномірно збіжний на (x_0-R,x_0+R) (при $R=+\infty$ - на

Proof.

Розкладемо функцію в ряд Тейлора за остачею Лагранжа:

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}.$$

$$\left| f(x) - \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| = \left| \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1} \right| \le \frac{M^{k+1}}{(k+1)!} R^{k+1}.$$

Розглянемо тепер ряд $\sum_{k=0}^{\infty} \frac{M^{k+1}}{(k+1)!} R^{k+1}$. За ознакою Даламбера, $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{MR}{k+2} = 0 < 1$.

Цей ряд є збіжним. Отже, за необхідною ознакою збіжності, $\lim_{k\to\infty}a_k=\lim_{k\to\infty}\frac{M^{k+1}}{(k+1)!}R^{k+1}=0.$

$$\sup_{x \in (x_0 - R, x_0 + R)} \left| f(x) - \sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| \le \frac{M^{k+1}}{(k+1)!} R^{k+1} \to 0, \ k \to \infty.$$

Отримали
$$\sum_{n=0}^k \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n \stackrel{\rightarrow}{\to} f, k \to \infty$$

Таким чином,
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 - збіжний рівномірно на $(x_0 - R, x_0 + R)$.

Example 5.5.8 Маємо функцію $\cos x$. Розглянемо деяку точку $x_0 = 0$, встановимо $R = +\infty$.

$$\exists M = 1 : \forall n \ge 1 : \forall x \in \mathbb{R} : |f^{(n)}(x)| = \left|\cos\left(x + \frac{\pi n}{2}\right)\right| \le 1.$$

Ехапире 3.3.8 Маемо функцію
$$\cos x$$
. Гозглянемо деяку точку $x_0=0$, встановимо T $\exists M=1: \forall n\geq 1: \forall x\in\mathbb{R}: |f^{(n)}(x)|=\left|\cos\left(x+\frac{\pi n}{2}\right)\right|\leq 1.$ Таким чином, ми можемо розкласти $\cos x$ в ряд Тейлора - отримаємо такий вигляд: $\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+(-1)^k\frac{x^{2k}}{(2k)!}+\cdots=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k)!}x^{2k}, x\in\mathbb{R}.$

Основні розклади

1.
$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!};$$
 $x \in \mathbb{R}$ 4. $\frac{1}{1-x} = \sum_{k=0}^{\infty} x^{k};$ $|x| < 1$
2. $\sin x = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!};$ $x \in \mathbb{R}$ 5. $\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^{k};$ $x \in (-1,1]$
3. $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2k)!} x^{2k};$ $x \in \mathbb{R}$ 6. $(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1) \dots (\alpha-(k-1))}{k!} x^{k};$ $|x| < 1$

Всі решта функцій зазвичай розкладаються вже за основними розкладами функцій.

Example 5.5.9 Розкласти функцію
$$f(x) = \ln(1+2x-8x^2)$$
 в ряд Тейлора. Зауважимо, що $\ln(1+2x-8x^2) = \ln(1-2x)(1+4x) = \ln(1-2x) + \ln(1+4x)$.
$$\ln(1-2x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (-2x)^k = -\sum_{k=1}^{\infty} \frac{2^k}{k} x^k$$
 за умовою $|2x| < 1$.
$$\ln(1+4x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (4x)^k = -\sum_{k=1}^{\infty} \frac{(-4)^k}{k} x^k$$
 за умовою $|4x| < 1$.

Остаточно
$$f(x) = -\sum_{k=1}^{\infty} \left(\frac{2^k + (-4)^k}{k}\right) x^k$$
 за умовою $|x| < \frac{1}{4}$.

6 Вступ до \mathbb{R}^m

Простір \mathbb{R}^m зберігає в собі **арифметичні вектори** $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$, причому $\forall j = \overline{1,m} : x_j \in \mathbb{R}$.

Візьмемо довільні вектори $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}, \ \vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$. Ми можемо створити операції **додавання** та

множення на скаляр таким чином:

$$\vec{x} + \vec{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_m + y_n \end{pmatrix} \qquad \alpha \vec{x} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_m \end{pmatrix}, \alpha \in \mathbb{R}$$

Із таким означенням операцій легко доводиться, що \mathbb{R}^m утворює лінійний простір. Надалі ми ще будемо використовувати **скалярний добуток**, що визначається таким чином:

$$(\vec{x}, \vec{y}) = x_1 y_1 + x_2 y_2 + \dots + x_m y_m$$

Таким чином, \mathbb{R}^m буде утворювати евклідів простір.

6.1 Топологія та принцип аналіза в \mathbb{R}^m

Definition 6.1.1 Нормою на множині \mathbb{R}^m будемо називати тут таку величину:

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_m^2}$$

Фактично кажучи, норма - це узагальнення довжини від початку. В нашому випадку початок грає роль $\vec{0}$.

А ось відстань між двома векторами описується таким чином:

$$\|\vec{x} - \vec{y}\| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Решта означень будуть абсолютно аналогічними, просто тепер буде випадок з векторами.

Definition 6.1.2 ε **-околом** точки \vec{x} будемо називати таку множину:

$$U_{\varepsilon}(\vec{x}) = \{ \vec{a} \in \mathbb{R}^m : ||\vec{x} - \vec{a}|| < \varepsilon \}$$

 $\ddot{\text{I}}$ ї ще також називають **відкритим шаром** з радіусом ε в центрі т. \vec{x} та позначається як $B(\vec{x}, \varepsilon)$.

Definition 6.1.3 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in A$. Точку \vec{a} називають **внутрішньою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{a}) \subset A$$

A множина A називається **відкритою**, якщо кожна її точка - внутрішня.

Definition 6.1.4 Задамо множину $A \subset \mathbb{R}^m$ та елемент $\vec{a} \in \mathbb{R}^m$. Точку \vec{a} називають **граничною** множини A, якщо

$$\forall \varepsilon > 0 : \exists \vec{x} \in A : \vec{x} \neq \vec{a} : \vec{x} \in U_{\varepsilon}(\vec{a})$$

A множина A називається **замкненою**, якщо вона містить всі граничні точки.

Definition 6.1.5 Задано множину $A \subset \mathbb{R}^m$ та т. $\vec{x} \in A$.

Точка \vec{x} називається **ізольованою**, якщо

$$\exists \varepsilon > 0 : U_{\varepsilon}(\vec{x}) \cap A = \{\vec{x}\}\$$

Також решта тверджень будуть схожі на ті твердження, що були при топології ℝ. Тому доводити я повторно не буду, просто залишу як нагадування.

Proposition 6.1.6 Якщо $\{A_{\lambda}\}$ - сім'я зліченних відкритих підмножин, то $\bigcup A_{\lambda}$ - відкрита.

Proposition 6.1.7 \vec{a} - гранична точка $A \subset \mathbb{R}^m \iff \forall \varepsilon > 0 : A \cap U_{\varepsilon}(\vec{a})$ - нескінченна множина.

Proposition 6.1.8 A - відкрита множина $\iff A^c$ - замкнена множина.

Proposition 6.1.9 Якщо $\{A_{\lambda}\}$ - сім'я зліченних замкнених підмножин, то $\bigcap A_{\lambda}$ - замкнена.

Proposition 6.1.10 Точка $\vec{x} \in A$ - ізольована $\iff \vec{x}$ - не гранична для A.

Proposition 6.1.11 \mathbb{R}^m , \emptyset - одночасно відкриті та замкнені множини.

Proposition 6.1.12 Відкритий шар $B(\vec{a}, r) = \{ \vec{x} \in \mathbb{R}^m : \|\vec{x} - \vec{a}\| < r \}$ є дійсно відкритим. Замкнений шар $B[\vec{a},r]=\{\vec{x}\in\mathbb{R}^m: \|\vec{x}-\vec{a}\|\leq r\}$ є дійсно замкненим.

Нехай $\vec{x} \in B(\vec{a},r) \implies \|\vec{x}-\vec{a}\| < r$. Встановимо $\varepsilon = r - \|\vec{x}-\vec{a}\|$. Тоді $\vec{y} \in U_{\varepsilon}(\vec{x}) \implies \|\vec{y}-\vec{x}\| < \varepsilon \implies \|\vec{y}-\vec{a}\| = \|\vec{y}-\vec{x}+\vec{x}-\vec{a}\| \le \|\vec{y}-\vec{x}\| + \|\vec{x}-\vec{a}\| < \varepsilon + \|\vec{x}-\vec{a}\| = 0$ $\varepsilon \implies \vec{y} \in B(\vec{a}, r).$

Отже, $U_{\varepsilon}(\vec{x}) \subset B(\vec{a},r)$, так для кожної т. $\vec{x} \in B(\vec{a},r)$. А тому множина $B(\vec{a},r)$ - відкрита.

 $B[\vec{a},r]=\mathbb{R}^m\setminus B(\vec{a},r)=\mathbb{R}^m\cap B^c(\vec{a},r)$ - обидві множини є замкненими. Тому перетин замкнена.

Definition 6.1.13 Задано множину $A \subset \mathbb{R}^m$.

Вона називається обмеженою, якщо

$$\exists R > 0 : \forall \vec{x} \in A : \|\vec{x}\| < R$$

Або інакше це можна записати таким чином:

$$\exists R > 0 : A \subset U_R(\vec{0})$$

Example 6.1.14 Зокрема одинична сфера $S^m = \{\vec{x} \in \mathbb{R}^m : ||\vec{x}|| = 1\}$ буде обмеженою.

6.2Границя послідовності

Definition 6.2.1 Вектор $\vec{a} \in \mathbb{R}^m$ називається **границею послідовності** векторів $\{\vec{a}^{(n)}, n \geq 1\}$, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : \|\vec{a}^{(n)} - \vec{a}\| < \varepsilon$$

Позначення: $\lim_{n\to\infty} \vec{a}^{(n)} = \vec{a}$.

Theorem 6.2.2 Для послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ існує $\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a} \iff$

 \iff для всіх координат послідовності $\{a_j^{(n)}, n \geq 1\}$ існують $\lim_{n \to \infty} a_j^{(n)} = a_j, j = \overline{1, m}.$

$$\Longrightarrow$$
 Дано: $\exists \lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}$, тобто $\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : ||\vec{a}^{(n)} - \vec{a}|| < \varepsilon$.

Отже,
$$\exists \lim_{n \to \infty} a_j^{(n)} = a_j$$
.

Definition 6.2.3 Послідовність $\{\vec{a}^{(n)}, n \geq 1\}$ називається фундаментальною, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n, k \ge N : ||\vec{a}^{(n)} - \vec{a}^{(k)}|| < \varepsilon$$

Theorem 6.2.4 Критерій Коші

 $\{\vec{a}^{(n)}, n \geq 1\}$ - збіжна $\iff \{\vec{a}^{(n)}, n \geq 1\}$ - фундаментальна.

Proof.

 \Rightarrow Дано: $\{\vec{a}^{(n)}, n \geq 1\}$ - збіжна, тобто $\forall j = \overline{1,m}: \{a^{(n)}_j, n \geq 1\}$ - збіжні. Тоді всі вони - фундаментальні за критерієм Коші матана \mathbb{R} , тобто $\forall \varepsilon > 0: \exists N_j: \forall n, k \geq N_j: |a^{(n)}_j - a^{(k)}_j| < \frac{\varepsilon}{\sqrt{m}}.$

$$\forall \varepsilon > 0 : \exists N_j : \forall n, k \ge N_j : |a_j^{(n)} - a_j^{(k)}| < \frac{\varepsilon}{\sqrt{m}}$$

$$\implies \exists N = \max\{N_1, \dots, N_m\} : \forall n, k > N :$$

$$\Rightarrow \exists N = \max\{N_1, \dots, N_m\} : \forall n, k \ge N :$$

$$\|\vec{a}^{(n)} - \vec{a}^{(k)}\| = \sqrt{(a_1^{(n)} - a_1^{(k)})^2 + \dots + (a_m^{(n)} - a_m^{(k)})^2} < \sqrt{\frac{\varepsilon^2}{m} + \dots + \frac{\varepsilon^2}{m}} = \varepsilon.$$

Отже, наша послідовність - фундаментальна.

 \sqsubseteq Дано: $\{\vec{a}^{(n)}, n \geq 1\}$ - фундаментальна, тобто $\forall \varepsilon > 0: \exists N(\varepsilon): \forall n, k \geq N: \|\vec{a}^{(n)} - \vec{a}^{(k)}\| < \varepsilon$. Тоді $\forall j = \overline{1, m}: |a_j^{(n)} - a_j^{(k)}| < \varepsilon$ (зрозуміло), тобто $\forall j = \overline{1, m}: \{a_j^{(n)}, n \geq 1\}$ - фундаментальні. Отже, вони всі - збіжні, а тому $\{\vec{a}^{(n)}, n \geq 1\}$ - збіжна.

Definition 6.2.5 Послідовність $\{\vec{a}^{(n)}, n \geq 1\}$ називається **обмеженою**, якщо

$$\exists C > 0 : \forall n \ge 1 : \|\vec{a}^{(n)}\| \le C$$

Definition 6.2.6 Підпослідовність послідовності $\{\vec{a}^{(n)}, n \geq 1\}$ називається послідовність $\{\vec{a}^{(n_l)}, l \geq 1\}$, де $\{n_l, l \geq 1\}$ - строго зростаюча послідовність в \mathbb{N} .

Theorem 6.2.7 Теорема Больцано-Вейєрштрасса

Будь-яка обмежена послідовність векторів має збіжну підпослідовність векторів.

Маємо обмежену послідовність $\{\vec{a}^{(n)}, n \geq 1\}$, тобто $\exists C > 0 : \forall n \geq 1 : \|\vec{a}^{(n)}\| \leq C$ Тоді кожна координата є обмеженою, оскільки $\forall j = \overline{1,m} : |a_j^{(n)}| \leq \sqrt{\left|a_1^{(n)}\right|^2 + \cdots + \left|a_m^{(n)}\right|^2} \leq C$.

Тобто всі послідовності $\{a_i^{(n)}, n \ge 1\}$ - обмежені.

Розглянемо $\{a_1^{(n)}, n \geq 1\}$ - обмежена. Тоді існує збіжна підпослідовність $\{a_1^{(n_l)}, l \geq 1\}$. Розглянемо підпослідовність $\{\vec{a}^{(n_l)}, l \geq 1\}$. Вона також є обмеженою, тому всі координатні послі-

довності - обмежені.

Розглянемо $\{a_2^{(n_l)}, l \ge 1\}$ - обмежена. Тоді існує збіжна підпідпослідовність $\{a_2^{(n_{l_k})}, k \ge 1\}$.

Оскільки підпослідовність $\{a_1^{(n_l)}, l \geq 1\}$ - збіжна, то збіжною буде й підпідпослідовність

Розглянемо підпідпослідовність $\{\vec{a}^{(n_{l_k})}, k \geq 1\}$ - за аналогічними міркуваннями, теж обмежена.

Розглянемо підпідпослідовність $\{a_3^{(n_{l_k})}, k \geq 1\}$ - обмежена. Тоді існує збіжна підпідпідпослідовність $\{a_3^{(n_{l_{k_p}})}, p \ge 1\}.$

Оскільки підпідпослідовності $\{a_1^{(n_{l_k})}, k \geq 1\}, \{a_2^{(n_{l_k})}, k \geq 1\}$ - збіжні, то збіжними будуть підпідпідпослідовності $\{a_1^{(n_{l_k})}, p \geq 1\}, \{a_2^{(n_{l_k})}, p \geq 1\}.$

Після m кроків отримаємо підпослідовність $\{\vec{a}^{(n_q)}, l \geq 1\}$, у якій всі координатні послідовності є збіжними. Тоді $\{\vec{a}^{(n_q)}, l \geq 1\}$ - збіжна.

Proposition 6.2.8 Задані дві послідовності $\{\vec{a}^{(n)}, n \geq 1\}, \{\vec{b}^{(n)}, n \geq 1\}$, такі, що

$$\lim_{n\to\infty} \vec{a}^{(n)} = \vec{a}, \lim_{n\to\infty} \vec{b}^{(n)} = \vec{b}.$$
 Тоді:

1)
$$\forall c \in \mathbb{R} : \lim_{n \to \infty} c\vec{a}^{(n)} = c \lim_{n \to \infty} \vec{a}^{(n)};$$

2)
$$\lim_{n \to \infty} (\vec{a}^{(n)} + \vec{b}^{(n)}) = \lim_{n \to \infty} \vec{a}^{(n)} + \lim_{n \to \infty} \vec{b}^{(n)}$$

$$\lim_{n \to \infty} \vec{a}^{(n)} = \vec{a}, \lim_{n \to \infty} \vec{b}^{(n)} = \vec{b}. \text{ Тоді:}$$
1) $\forall c \in \mathbb{R} : \lim_{n \to \infty} c\vec{a}^{(n)} = c \lim_{n \to \infty} \vec{a}^{(n)};$
2) $\lim_{n \to \infty} (\vec{a}^{(n)} + \vec{b}^{(n)}) = \lim_{n \to \infty} \vec{a}^{(n)} + \lim_{n \to \infty} \vec{b}^{(n)};$
3) $\lim_{n \to \infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \left(\lim_{n \to \infty} \vec{a}^{(n)}, \lim_{n \to \infty} \vec{b}^{(n)}\right).$

Proof.

1),2) випливае з властивостей границь в \mathbb{R} , якщо розглянути покоординатну збіжність.

3)
$$\lim_{n\to\infty} (\vec{a}^{(n)}, \vec{b}^{(n)}) = \lim_{n\to\infty} (a_1^{(n)}b_1^{(n)} + \dots + a_m^{(n)}b_m^{(n)}) = a_1b_1 + \dots + a_mb_m = (\vec{a}, \vec{b}) = \left(\lim_{n\to\infty} \vec{a}^{(n)}, \lim_{n\to\infty} \vec{b}^{(n)}\right).$$

Example 6.2.9 Розглянемо
$$\vec{x}^{(n)} = \left(\sqrt{n+1} - \sqrt{n} \quad \frac{n-1}{n} \quad \frac{2n^2-1}{n^2} \quad \left(1 + \frac{1}{n} \right)^n \right)^T$$
 - послідовність

векторів в \mathbb{R}^4 . Обчислимо її границю

Ми можемо обчислити покоординатно, згідно з теоріями:

$$\lim_{n \to \infty} x_1^{(n)} = \lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0.$$

$$\lim_{n \to \infty} x_2^{(n)} = \lim_{n \to \infty} \frac{n-1}{n} = 1.$$

$$\lim_{n \to \infty} x_3^{(n)} = \lim_{n \to \infty} \frac{2n^2 - 1}{n^2} = 2.$$

$$\lim_{n \to \infty} x_4^{(n)} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Таким чином,
$$\lim_{n \to \infty} \vec{x}^{(n)} = \lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} - \frac{n-1}{n} - \frac{2n^2 - 1}{n^2} - \left(1 + \frac{1}{n} \right)^n \right)^T = \begin{pmatrix} 0 & 1 & 2 & e \end{pmatrix}^T$$
.

Theorem 6.2.10 Задано множину
$$A \subset \mathbb{R}^m$$
. $\vec{x}^0 \in \mathbb{R}^m$ гранична точка для $A \iff \exists \{\vec{x}^{(n)}, n \geq 1\} \subset A : \vec{x}^{(n)} \neq \vec{x}^0 : \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0$

Proof.

 \Rightarrow Дано: \vec{x}^0 - гранична точка для A, тобто $\forall \varepsilon > 0 : U_{\varepsilon}(\vec{x}^0) \cap A$ - нескінченна.

Зафіксуємо
$$\varepsilon = \frac{1}{n} \implies \forall \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A : \|\vec{x}^{(n)} - \vec{x}^0\| < \frac{1}{n}.$$
 Тоді $\forall j = \overline{1,m} : |x_j^{(n)} - x_j^0| < \frac{1}{n}.$

За теоремою про 2 поліцаїв, отримаємо: $\forall j = \overline{1,m}: x_j^{(n)} \stackrel{n \to \infty}{\longrightarrow} x_j^0$.

Із покоординатної збіжності випливає, що $\vec{x}^{(n)} \stackrel{n \to \infty}{\longrightarrow} \vec{x}^0$ для послідовності $\{\vec{x}^{(n)}, n \ge 1\}$.

$$\sqsubseteq$$
 Дано: $\exists \{\vec{x}^{(n)}, n \geq 1\} \subset A : \lim_{n \to \infty} \vec{x}^{(n)} = \vec{x}^0$. Тобто $\forall \varepsilon > 0 : \exists N : \forall n \geq N : \|\vec{x}^{(n)} - \vec{x}^0\| < \varepsilon$ $\implies \forall n \geq N : \vec{x}^{(n)} \in U_{\varepsilon}(\vec{x}^0) \cap A$ - тобто нескінченна $\implies \vec{x}^0$ - гранична точка.

Example 6.2.11 Зокрема одинична сфера $S^m = \{ \vec{x} \in \mathbb{R}^m : ||\vec{x}|| = 1 \}$ буде замкненою.

Нехай $\vec{\xi} \in S^m$, хочемо показати, що буде вона граничною.

Розглянемо послідовність $\{\vec{x}^{(n)}, n \geq 1\} \subset S^m$ таким чином:

$$x_1^{(n)}=\xi_1+rac{1}{n},$$
 починаючи з деякого номера при $\xi_1 \neq 1$
$$x_1^{(n)}=\xi_1-rac{1}{n}$$
 при $\xi_1=1$
$$x_2^{(n)}=\xi_2$$

$$\begin{aligned}
x_{m-1}^{(n)} &= \xi_{m-1} \\
x_m^{(n)} &= \sqrt{1 - \left(x_1^{(n)}\right)^2 - \dots - \left(x_{m-1}^{(n)}\right)^2}.
\end{aligned}$$

Зауважимо, що $\forall n \geq 1: \vec{x}^{(n)} \neq \vec{\xi}$, а також $\vec{x}^{(n)} \to \vec{\xi}$ при $n \to \infty$. Тепер розглянемо $\vec{\xi} \not\in S^m$, тобто звідси $\begin{bmatrix} \|\xi\| < 1 \\ \|\xi\| > 1 \end{bmatrix}$

!Припустимо, що $\vec{\xi}$ - гранична точка для S^m . Тоді $\forall \varepsilon > 0: \exists \vec{x} \in S^m: \vec{x} \neq \vec{\xi}: ||\vec{x} - \vec{\xi}|| < \varepsilon$

У випадку $\|\vec{\xi}\| > 1$ ми маємо $1 < \|\vec{\xi}\| = \|\vec{\xi} - \vec{x} + \vec{x}\| \le \|\vec{\xi} - \vec{x}\| + \|\vec{x}\| < 1 + \varepsilon$.

Оскільки виконано $\forall \varepsilon > 0$, то звідси $\|\vec{\xi}\| = 1$, що неможливо.

У випадку $\|\vec{\xi}\| < 1$ ми маємо $\varepsilon > \|\vec{x} - \vec{\xi}\| \ge |\|\vec{x}\| - \|\vec{\xi}\|| = |1 - \|\vec{\xi}\|| = 1 - \|\vec{\xi}\| > 0 \implies \varepsilon > 1 - \|\vec{\xi}\| > 0.$

Оскільки виконано $\forall \varepsilon > 0$, то звідси $\|\vec{\xi}\| = 1$, що неможливо.

У двох випадках отримали суперечність!

Таким чином, ми довели, що S^m - закмнена множина.

Функція від декількох змінних. Границя функції 6.3

Ми будемо розглядати функції вигляду $f:A\to\mathbb{R}$, де $A\subset\mathbb{R}^m$. Тобто ця функція має m аргументів, а повертає деяке дійсне число.

Example 6.3.1 Розглянемо такі приклади:

1.Маємо функцію $f:\mathbb{R}^2\setminus\{(0,0\}\to\mathbb{R},$ що задана як $f(x,y)=\frac{xy}{x^2+y^2};$

2. Маємо функцію $f:\mathbb{R}^m\to\mathbb{R}$, що задана як $f(\vec{x})=f(x_1,\ldots,x_m)=x_1x_2^2\ldots x_m^m$

Definition 6.3.2 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для A.Число a називається границею функції $f(\vec{x}) = f(x_1, \dots, x_m)$ в т. \vec{x}^0 , якщо

$$\forall \varepsilon>0: \exists \delta(\varepsilon)>0: \forall \vec{x}\in A: \vec{x}\neq \vec{x}^0: \|\vec{x}-\vec{x}^0\|<\delta\Rightarrow |f(\vec{x})-a|<\varepsilon \text{ - def. Komi}$$

$$\forall \{\vec{x}^{(n)}, n\geq 1\}\subset A: \forall n\geq 1: \vec{x}^{(n)}\neq \vec{x}^0: \lim_{n\to\infty}\vec{x}^{(n)}=\vec{x}^0\Rightarrow \lim_{n\to\infty}f(\vec{x}^{(n)})=a \text{ - def. Гейне}$$

Позначення: $\lim_{\vec{x} \to \vec{x}^0} f(\vec{x}) = a$.

Theorem 6.3.3 Означення Коші \iff Означення Гейне.

Доведення аналогічне як в матані \mathbb{R} .

Proposition 6.3.4 Арифметичні властивості

Задані функції $f,g:A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для A. Відомо, що

Задані функції
$$f, g: A \to \mathbb{R}$$
 та $x \in \mathbb{R}$ $\exists \lim_{\vec{x} \to \vec{x}^0} f(\vec{x}) = a, \exists \lim_{\vec{x} \to \vec{x}^0} g(\vec{x}) = b.$ Тоді: 1) $\lim_{\vec{x} \to \vec{x}^0} cf(\vec{x}) = ca, \forall c \in \mathbb{R};$ 2) $\lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) + g(\vec{x})) = a + b;$ 3) $\lim_{\vec{x} \to \vec{x}^0} f(\vec{x})g(\vec{x}) = ab;$

1)
$$\lim_{\vec{x} \to \vec{x}^0} cf(\vec{x}) = ca, \forall c \in \mathbb{R};$$

2)
$$\lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) + g(\vec{x})) = a + b;$$

3)
$$\lim_{\vec{x} \to \vec{x}^0} f(\vec{x})g(\vec{x}) = ab;$$

$$4) \lim_{ec x oec x^0}rac{f(ec x)}{g(ec x)}=rac{a}{b}$$
 при $b
eq 0$

 $4)\lim_{ec x o ec x^0}rac{f(ec x)}{g(ec x)}=rac{a}{b}$ при b
eq 0. Всі вони випливають із арифметичних послідовностей та означення Гейне.

Theorem 6.3.5 Критерій Коші

Задано функцію
$$f:A\to\mathbb{R}$$
 та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для $A.$ $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})\iff \forall \varepsilon>0:\exists \delta: \forall \vec{x_1},\vec{x_2}\in A: ||\vec{x_1}-\vec{x_2}||<\delta\Rightarrow |f(\vec{x_1})-f(\vec{x_2})|<\varepsilon.$

Доведення аналогічне як в матані \mathbb{R} .

Example 6.3.6 Обчислити $\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right)$. Можна позначати це інакше: $\lim_{\substack{x\to 1\\y\to\pi}} \left(\frac{y}{x} + \cos(xy)\right)$. $\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right) = \lim_{(x,y)\to(1,\pi)} \frac{y}{x} + \lim_{(x,y)\to(1,\pi)} \cos(xy) = \frac{\pi}{1} + \cos\pi = \pi - 1$.

$$\lim_{(x,y)\to(1,\pi)} \left(\frac{y}{x} + \cos(xy)\right) = \lim_{(x,y)\to(1,\pi)} \frac{y}{x} + \lim_{(x,y)\to(1,\pi)} \cos(xy) = \frac{\pi}{1} + \cos\pi = \pi - 1.$$

Example 6.3.7 Покажемо, що не існує границі $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$. Для доведення скористаємось означенням Гейне. Візьмемо дві послідовності:

$$\{(x_n,y_n),n\geq 1\}$$
 так, щоб $y_n=x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\dfrac{2x_ny_n}{x_n^2+y_n^2}=\dfrac{2x_n^2}{2x_n^2}\to 1.$ $\{(x_n,y_n),n\geq 1\}$ так, щоб $y_n=-x_n$, а також $(x_n,y_n)\to (0,0)$. Тоді $\dfrac{2x_ny_n}{x_n^2+y_n^2}=\dfrac{-2x_n^2}{2x_n^2}\to -1.$

Можна конкретизувати, сказати $x_n = \frac{1}{n}$, а можна цього не робити, напевно. У будь-якому випадку, ми показали, що не існує границі.

Тобто ми прямували до точки (0,0) з двох сторін: вздовж прямої y=x та y=-x.

Theorem 6.3.8 Границя в полярних координатах

Задано функцію $f:\mathbb{R}^2 \to \mathbb{R}$. Припустимо, що $f(\rho\cos\varphi,\rho\sin\varphi)=F_1(\rho)F_2(\varphi)$, причому $\lim_{\rho\to 0}F_1(\rho)=0$ та $F_2(\varphi)$ - обмежена. Тоді $\lim_{(x,y)\to(0,0)}f(x,y)=0.$

Маємо $\lim_{\rho \to 0} F_1(\rho) = 0 \implies \forall \varepsilon > 0 : \exists \delta : \forall \rho : |\rho| < \delta \implies |F_1(\rho)| < \varepsilon.$

Також F_2 - обмежена, тобто $\exists M>0: \forall \varphi: |F_2(\varphi)|< M$.

Накож F_2 - обмежена, тоото $\exists M > 0: \forall \varphi: |F_2(\varphi)| < M$. Нехай $\varepsilon > 0$. Тоді існує таке $\delta > 0$, що $\forall (x,y)$, якщо $\|(x,y)\| = \sqrt{x^2 + y^2} = \sqrt{\rho^2} = |\rho| < \delta$, то звідси

 $|f(x,y)|=|f(\rho\cos\varphi,\rho\sin\varphi)|=|F_1(\rho)||F_2(\varphi)|< M \varepsilon.$ Таким чином, дійсно, $\lim_{(x,y)\to(0,0)}f(x,y)=0.$

Example 6.3.9 Обчислити $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2}$.

Маємо $x=\rho\cos\varphi$ та $y=\rho\sin\varphi$. Тоді функція $\frac{x^2y^2}{x^2+y^2}=\frac{\rho^4\cos^2\varphi\sin^2\varphi}{\rho^2}=\rho^2\cos^2\varphi\sin^2\varphi$.

Ми змогли розбити на функції $F_1(\rho)=\rho^2\stackrel{\rho\to 0}{\longrightarrow}0$ та $F_2(\varphi)=\cos^2\varphi\sin^2\varphi$ - обмежена, бо $|F_2(\varphi)|\leq 1$. Таким чином, $\lim_{(x,y)\to(0,0)}\frac{x^2y^2}{x^2+y^2}=\lim_{\rho\to 0}\rho^2\cos^2\varphi\sin^2\varphi=0$.

Remark 6.3.10 Якщо так станеться, що для двох різних кутів θ при ho o 0 ми отримаємо два різних ліміта, то тоді $otag \lim_{(x,y) \to (0,0)} f(x,y).$

Definition 6.3.11 Число $L = \lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ називається ітераційною границею, якщо

 $\exists \lim_{y \to y_0} f(x, y) = g(y).$

Аналогічно визначається $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$.

Останне дається для загального знання, таке ми точно використовувати не будемо. Тут надто багато плутанини з ними.

Example 6.3.12 Маємо функцію $f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$. Якщо шукати $\lim_{x \to 0} \lim_{y \to 0} f(x,y)$, то вона не існує, тому що при фіксованому x ми маємо порахувати

границю від $\sin\frac{1}{y}$, якого не існує. Також не існує $\lim_{y\to 0}\lim_{x\to 0}f(x,y)$ за аналогічними міркуваннями. Проте! Подвійна границя $\lim_{(x,y)\to(0,0)}\left(x\sin\frac{1}{y}+y\sin\frac{1}{x}\right)=0$. Дійсно,

$$\left|x\sin\frac{1}{y} + y\sin\frac{1}{x}\right| \le \left|x\sin\frac{1}{y}\right| + \left|y\sin\frac{1}{x}\right| \le |x| + |y| < 2\delta = \varepsilon.$$

Остання оцінка отримана в силу $\|(x,y)\|<\delta$, кладемо $\delta=\frac{\varepsilon}{2}$ - границя доведена.

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} 0 = 0 \qquad \qquad \lim_{y \to 0} \lim_{x \to 0} \frac{xy}{x^2 + y^2} = \lim_{y \to 0} 0 = 0.$$

Example 6.3.13 Маємо функцію $f(x,y)=\frac{xy}{x^2+y^2}$. $\lim_{x\to 0}\lim_{y\to 0}\frac{xy}{x^2+y^2}=\lim_{x\to 0}0=0\qquad \lim_{y\to 0}\lim_{x\to 0}\frac{xy}{x^2+y^2}=\lim_{y\to 0}0=0.$ Проте! Подвійної границі $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$ не існує. Дійсно, якщо $x=\rho\cos\varphi,y=\rho\sin\varphi$, то тоді $f(x,y)=\frac{\rho^2\cos\varphi\sin\varphi}{\rho^2}=\frac{1}{2}\sin2\varphi.$

$$f(x,y) = \frac{\rho^2 \cos \varphi \sin \varphi}{\rho^2} = \frac{1}{2} \sin 2\varphi.$$

Для різного напрямку кривої отримаємо різні границі, а тому не існує. Цим активно зловживати не будемо.

Remark 6.3.14 Окремо можуть виникнути границі вигляду $\lim_{(x,y)\to(\infty,\infty)} f(x,y)$. У такому разі необхідні уточнення, що мається увазі під цим лімітом. Або дивитись на контекст задачі.

Example 6.3.15 Маємо $\lim_{(x,y)\to(+\infty,+\infty)} (x^2+y^2)e^{-(x+y)}$. У даному контексті маєтсья на увазі, що x,yробимо скільки завгодно великими одночасно.

Маємо ось таку оцінку: $0 \le (x^2+y^2)e^{-(x+y)} = \frac{x^2+y^2}{e^{x+y}} \le \frac{(x+y)^2}{e^{x+y}}$. Оскільки x>0,y>0 в силу характеру прямування, то ця нерівність справедлива. Цілком зрозуміло, що при $x \to +\infty, y \to +\infty$ одночасно маємо $x+y \to +\infty,$ а тому $\frac{(x+y)^2}{e^{x+y}} \to 0, x+y \to +\infty.$ Таким чином, $\lim_{(x,y)\to(+\infty,+\infty)}(x^2+y^2)e^{-(x+y)}=0.$

6.4 Неперервність функції

Definition 6.4.1 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Функція f називається **неперервною в т.** \vec{x}^0 , якщо $\exists\lim_{\vec{x}\to\vec{x}^0}f(\vec{x})=f(\vec{x}^0)$. В будь-якій ізольованій точці \vec{x}^0 функція f також неперервна.

Функція f називається **неперервною на множині** A, якщо в $\forall \vec{x} \in A : f$ - неперервна.

Remark 6.4.2 Можна було спочатку дати означення через ε - δ мову, а згодом прийти до еквівалентного означення, як в мат. аналізі \mathbb{R} , однак тут все цілком аналогічно.

Proposition 6.4.3 Задані функції $f,g:A\to \mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Відомо, що f,g неперервні в т. \vec{x}^0 . Тоді:

- 1) cf неперервна в т. $\vec{x}^0, \forall c \in \mathbb{R}$;
- 2) f + g неперервна в т. \vec{x}^{0} ;
- 3) fg неперервна в т. \vec{x}^{0} ;
- (4) $\frac{f}{g}$ неперервна в т. \vec{x}^0 , якщо $g(\vec{x}^0) \neq 0$.

Випливають з властивостей границь функцій та неперервності.

Theorem 6.4.4 Наступні функції є неперервними на своїй множині *A*:

- 1) $f(\vec{x}) = const$ константа, $A = \mathbb{R}^m$;
- 2) $f(\vec{x}) = x_j, j = \overline{1,m}$ координата, $A = \mathbb{R}^m$; 3) $P(x_1, x_2, \dots, x_m) = \sum_{\substack{0 \leq k_1 \leq n_1 \\ 0 \leq k_1 \leq n_1}} a_{k_1 k_2 \dots k_m} \cdot x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}$ многочлен від m змінних, $A = \mathbb{R}^m$;
- 4) $R(x_1, \dots, x_m) = \frac{P(x_1, \dots, x_m)}{Q(x_1, \dots, x_m)}$ раціональна функція від m змінних, $A = \mathbb{R}^m \setminus \{\vec{x} : Q(\vec{x}) = 0\}.$

Proof.

- 1) Все зрозуміло.
- 2) $|f(\vec{x}) f(\vec{x}^0)| = |x_j x_j^0| < \varepsilon$, тому встановлюється $\delta = \varepsilon$.
- 3) Безпосередньо випливає з **Prp. ?.4.2.** як сума та добуток функцій 1),2).
- 4) Безпосередньо випливає з **Prp** ?.4.2. як частка двох функцій 3).

Example 6.4.5 Доведемо, що функція $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ неперервна на $\mathbb{R}^2 \setminus \{0\}$.

Для цього покажемо, що $\sqrt{x^2+y^2}$ - неперервна в деякій точці $(x_0,y_0)\in\mathbb{R}\setminus\{0\}$. Дійсно, $|\sqrt{x^2+y^2}-\sqrt{x_0^2+y_0^2}|=\frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x^2+y^2}+\sqrt{x_0^2+y_0^2}}\leq \frac{|x^2+y^2-x_0^2-y_0^2|}{\sqrt{x_0^2+y_0^2}}\to 0$ при $(x,y)\to(x_0,y_0)$. Ми вже знаємо, що $f(x,y)=x^2+y^2$ - неперервна в т. (x_0,y_0) , а тому $\lim_{(x,y)\to(x_0,y_0)}(x^2+y^2)=x_0^2+y_0^2$,

тож вище все правильно. Отже,
$$\lim_{(x,y)\to(x_0,y_0)}\frac{1}{\sqrt{x^2+y^2}}=\frac{1}{\lim_{(x,y)\to(x_0,y_0)}\sqrt{x^2+y^2}}=\frac{1}{\sqrt{x_0^2+y_0^2}}.$$
 А не й доводить неперервність функції f в будь-якій точні (x_0,y_0)

А це й доводить неперервність функції f в будь-якій точці $(x_0, y_0) \in \mathbb{R}^2 \setminus \{0\}$.

Example 6.4.6 Дослідити на розривність функцію $f(x,y) = \frac{x+y}{x^3+y^3}$.

Точки, де відбувається розрив - це точки x=-y. Тобто маємо $(x,y)=(a,-a), a\in\mathbb{R}$ - точка

розриву.

$$\lim_{(x,y)\to(a,-a)} \frac{x+y}{x^3+y^3} = \lim_{(x,y)\to(a,-a)} \frac{1}{x^2-xy+y^2} = \begin{cases} \frac{1}{3a^2}, & a\neq 0\\ \infty, & a=0 \end{cases}.$$

Отже, маємо (0,0) - точка нескінченного розриву та $(a,-a), a \neq 0$ - точка усуненого розриву.

Theorem 6.4.7 Теорема Вейєрштраса 1, 2

Задано множину A - замкнена, обмежена та функція $f:A\to\mathbb{R}$ - неперервна на A. Тоді:

1. f - обмежена на A;

1.
$$f$$
 - обмежена на A ;
2. $\exists \begin{bmatrix} \vec{x}^* \in A \\ \vec{x}_* \in A \end{bmatrix} : \begin{bmatrix} f(\vec{x}^*) = \max_{\vec{x} \in A} f(\vec{x}) \\ f(\vec{x}_*) = \min_{\vec{x} \in A} f(\vec{x}) \end{bmatrix}$.

Доведення аналогічне як в матані \mathbb{R} .

Definition 6.4.8 Задано функцію $f: A \to \mathbb{R}$.

Функція f називається **рівномірно неперервною** на множині A, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall \vec{x_1}, \vec{x_2} \in A : ||\vec{x_1} - \vec{x_2}|| < \delta \Rightarrow |f(\vec{x_1}) - f(\vec{x_2})| < \varepsilon$$

Theorem 6.4.9 Задано функцію $f:A\to\mathbb{R}$ - рівномірно неперервна на A. Тоді вона є неперервною

Доведення аналогічне як в матані \mathbb{R} .

Theorem 6.4.10 Теорема Кантора

Задано функцію $f:A\to\mathbb{R}$ та A - замкнена, обмежена.

Відомо, що f - неперевна на A. Тоді вона є рівномірно неперервною на A.

Доведення аналогічне як в матані \mathbb{R} .

Символіка Ландау 6.5

Definition 6.5.1 Задані функції $f,g:A\to\mathbb{R}$ та $\vec{x}^0\in\mathbb{R}$ - гранична точка A.Функція f називається **О-великою** від функції g в т. \vec{x}^0 , якщо

$$\exists L > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : ||\vec{x} - \vec{x}^0|| < \delta \implies |f(\vec{x})| < L|g(\vec{x})|$$

Позначення: $f(\vec{x}) = O(g(\vec{x})), \vec{x} \to \vec{x}^0$.

Функція f називається **о-малою** від функції g в т. \vec{x}^0 , якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : ||\vec{x} - \vec{x}^0|| < \delta \implies |f(\vec{x})| < \varepsilon |g(\vec{x})|$$

Позначення: $f(\vec{x}) = o(g(\vec{x})), \vec{x} \to \vec{x}^0$.

Всі властивості символік Ландау для функції від однієї змінної переходять на функцію від декількох змінних в силу аналогічності доведення.

Example 6.5.2 Зокрема $xy = o(\sqrt{x^2 + y^2 + z^2})$ при $(x, y, z) \to (0, 0, 0)$. Дійсно,

$$\left|\frac{xy}{\sqrt{x^2+y^2+z^2}}\right| \leq \frac{|x||y|}{\sqrt{x^2}} = |y| \to 0 \text{ при } (x,y,z) \to (0,0,0). \text{ Отже, } \lim_{(x,y,z)\to(0,0,0)} \frac{xy}{\sqrt{x^2+y^2+z^2}} = 0.$$

Границя та неперервність векторнозначної функції кількох змінних, символіка Ландау

Ми будемо розглядати вектор-функції кількох (або однієї) змінної вигляду $\vec{f}:A\to\mathbb{R}^k$, де $A\subset\mathbb{R}^m$.

Тобто тепер
$$\vec{f}(\vec{x}) = \begin{pmatrix} f_1(\vec{x}) \\ f_2(\vec{x}) \\ \vdots \\ f_k(\vec{x}) \end{pmatrix}$$
.

Example 6.6.1 Маємо деяку функцію $\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2$, що задана таким чином: $\begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$. Або зазвичай це пишуть так: $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$.

$$\begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$$
. Або зазвичай це пишуть так: $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 + y^2 \\ 2xy \end{pmatrix}$.

Definition 6.6.2 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ - гранична точка для A. Вектор \vec{b} називається границею вектор-функції $\vec{f}(\vec{x})$ в т. \vec{x}^0 , якщо

$$\forall \varepsilon>0: \exists \delta(\varepsilon)>0: \forall \vec{x}\in A: \vec{x}\neq \vec{x}^0: ||\vec{x}-\vec{x}^0||<\delta\Rightarrow ||\vec{f}(\vec{x})-\vec{b}||<\varepsilon \text{ - def. Komi}$$

$$\forall \{\vec{x}^{(n)}, n\geq 1\}\subset A: \forall n\geq 1: \vec{x}^{(n)}\neq \vec{x}^0: \lim_{n\to\infty}\vec{x}^{(n)}=\vec{x}^0\Rightarrow \lim_{n\to\infty}\vec{f}(\vec{x}^{(n)})=\vec{b}\text{ - def. Гейне}$$

Позначення: $\lim_{\vec{x} \to \vec{x}^0} \vec{f}(\vec{x}) = \vec{b}$.

Theorem 6.6.3 Означення Коші 👄 Означення Гейне

Все аболютно аналогічно.

Proposition 6.6.4 Задано функцію $\vec{f}:A\to\mathbb{R}^k$ та $\vec{x}^0\in\mathbb{R}^m$ - гранична точка для A. $\exists\lim_{\vec{x}\to\vec{x}^0}\vec{f}(\vec{x})=\vec{u}\iff \forall j=\overline{1,k}:\exists\lim_{\vec{x}\to\vec{x}^0}f_j(\vec{x})=u_j.$

 $\vec{x} \to \vec{x}_0$ $J(x) = a \longleftrightarrow J = 1, \dots = \vec{x} \to \vec{x}_0$ $J_J(x) \longleftrightarrow J_J(x)$ Випливае із означення Гейне та покоординатної збіжності.

Proposition 6.6.5 Арифметичні властивості

Задані функції $\vec{f}, \vec{g}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ - гранична точка для A. Відомо, що $\exists \lim_{ec{x} o ec{x^0}} ec{f}(ec{x}) = ec{u}, \exists \lim_{ec{x} o ec{x^0}} ec{g}(ec{x}) = ec{v}.$ Тоді:

- 1) $\lim_{\vec{x} \to \vec{x}^0} c\vec{f}(\vec{x}) = c\vec{u}, \forall c \in \mathbb{R};$
- 2) $\lim_{\vec{x} \to \vec{x}^0} (\vec{f}(\vec{x}) + \vec{g}(t)) = \vec{u} + \vec{v};$
- 3) $\lim_{\vec{x} \to \vec{y}} (\vec{f}(\vec{x}), \vec{g}(\vec{x})) = (\vec{u}, \vec{v}).$

Всі вони випливають із векторних послідовностей та означення Гейне.

Remark 6.6.6 У випадку векторної функції $\vec{a}:A\to\mathbb{R}^k$, де $A\subset\mathbb{R}$, оскільки прямування йде за дійсною множиною, то ми можемо визначти границю зліва та справа даної функції. Тут все зрозуміло, як виглядатиме означення.

Example 6.6.7 Знайти границю $\lim_{t\to 0+0} \left(\frac{\sin 2t}{t} \quad t^t\right)^T$.

За одним твердженням, ми можемо покоординатно шукати границі:

$$\lim_{t \to 0+0} \frac{\sin 2t}{t} = 2 \qquad \lim_{t \to 0+0} t^t = 1.$$
 Отже,
$$\lim_{t \to 0+0} \left(\frac{\sin 2t}{t} - t^t\right)^T = \begin{pmatrix} 2 & 1 \end{pmatrix}^T.$$

Definition 6.6.8 Задана функція $f:A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - гранична точка. Функція \vec{f} називається **неперервною в т.** \vec{x}^0 , якщо $\exists \lim_{n \to \infty} \vec{f}(\vec{x}) = \vec{f}(\vec{x}^0)$.

Remark 6.6.9 Аналогічно сума неперервних функцій - неперервна; множення на скаляр - все одно неперервна. До речі, також скалярний добуток неперервний функцій - теж неперервна.

Remark 6.6.10 Ще тут виконується теорема Вейєрштраса 1, 2 для таких функцій.

Theorem 6.6.11 Задані множини $A \subset \mathbb{R}^m$, $B \subset \mathbb{R}^k$

Задані функції $\vec{f}: A \to B$ - неперервна в т. $\vec{x}^0, \vec{g}: B \to \mathbb{R}^n$ - неперервна в т. $\vec{f}(\vec{x}^0)$.

Тоді функція $h: A \to \mathbb{R}^n: h(\vec{x}) = \vec{q}(\vec{f}(\vec{x}))$ - неперервна в т. $\vec{x_0}$.

Доведення аналогічне як в матані \mathbb{R} .

Definition 6.6.12 Задані функції $\vec{f}, \vec{g}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in \mathbb{R}^m$ - гранична точка A. Функція \vec{f} називається **О-великою** від функції \vec{g} в т. \vec{x}^0 , якщо

$$\exists L > 0 : \exists \delta > 0 : \forall \vec{x} : \vec{x} \neq \vec{x}^0 : \|\vec{x} - \vec{x}^0\| < \delta \implies \|\vec{f}(\vec{x})\| \le L \|\vec{g}(\vec{x})\|$$

Позначення: $\vec{f}(\vec{x}) = \vec{O}(\vec{g}(\vec{x})), \vec{x} \rightarrow \vec{x}^0$.

Функція \vec{f} називається **о-малою** від функції \vec{g} в т. \vec{x}^0 , якщо

$$\forall \varepsilon > 0: \exists \delta > 0: \forall \vec{x}: \vec{x} \neq \vec{x}^0: \|\vec{x} - \vec{x}^0\| < \delta \implies \|\vec{f}(\vec{x})\| < \varepsilon \|\vec{g}(\vec{x})\|$$

Позначення: $\vec{f}(\vec{x}) = \vec{o}(\vec{g}(\vec{x})), \vec{x} \to \vec{x}^0$.

 $\textbf{Corollary 6.6.13} \ \vec{f}(\vec{x}) = o(\vec{g}(\vec{x})), \vec{x} \rightarrow \vec{x}^0 \iff \lim_{\vec{x} \rightarrow \vec{x}^0} \frac{\|\vec{f}(\vec{x})\|}{\|\vec{g}(\vec{x})\|} = 0.$

6.7 Крива в \mathbb{R}^m

Definition 6.7.1 Кривою в \mathbb{R}^m називають множину значень вектор-функції: $\vec{r}:[a,b]\to\mathbb{R}^m,$ причому \vec{r} - неперервна на [a,b]:

$$\Gamma = {\vec{r}(t) : t \in [a, b]}$$

Definition 6.7.2 Крива Г називається **простою**, якщо

$$\vec{r}(t_1) = \vec{r}(t_2) \implies t_1 = t_2$$
 and $\{t_1, t_2\} = \{a, b\}$

Крива Γ називається **замкненою**, якщо $\vec{r}(a) = \vec{r}(b)$.

Просту та замкнену криву називають жордановою.

Диференційованість 7

Для функції із багатьма змінними 7.1

Definition 7.1.1 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Функція f називається **диференційованою в т.** \vec{x}^0 , якщо

$$\exists L_1, \dots, L_m \in \mathbb{R} : f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||)$$

Тобто диференційованість означає, що поверхня навколо т. \vec{x} дуже схожа на площину, що проходить через т. \vec{x} .

Example 7.1.2 Розглянемо функцію $f(x,y) = x^2 - xy - y^2$ на \mathbb{R} . Вона є диференційованою в будьякій точці (x_0, y_0) .

якій точці
$$(x_0,y_0)$$
.
$$f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=(x_0+\Delta x)^2-(x_0+\Delta x)(y_0+\Delta y)-(y_0+\Delta y)^2-(x_0^2-x_0y_0-y_0^2)=\\ =x_0^2+2x_0\Delta x+\Delta x^2-x_0y_0-x_0\Delta y-y_0\Delta x-\Delta x\Delta y-y_0^2-2y_0\Delta y-\Delta y^2-x_0^2+x_0y_0+y_0^2=\\ =(2x_0-y_0)\Delta x+(-x_0-2y_0)\Delta y+(\Delta x^2-\Delta x\Delta y-\Delta y^2).\\ 3 алишилось довести, що $\Delta x^2-\Delta x\Delta y-\Delta y^2=o(\|(\Delta x,\Delta y)\|)$ при $(\Delta x,\Delta y)\to(0,0)$. Дійсно,
$$\lim_{\substack{\Delta x\to 0\\ \Delta y\to 0}}\frac{\Delta x^2-\Delta x\Delta y-\Delta y^2}{\sqrt{\Delta x^2+\Delta y^2}}=\lim_{\rho\to 0}\frac{\rho^2\cos^2\varphi-\rho^2\sin\varphi\cos\varphi-\rho^2\sin^2\varphi}{\rho}=$$$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta x^2 - \Delta x \Delta y - \Delta y^2}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\rho \to 0} \frac{\rho^2 \cos^2 \varphi - \rho^2 \sin \varphi \cos \varphi - \rho^2 \sin^2 \varphi}{\rho} =$$

 $= \lim_{n \to \infty} \rho(\cos^2 \varphi - \sin \varphi \cos \varphi - \sin^2 \varphi) = 0.$

$$- \lim_{\rho \to 0} \rho(\cos \varphi - \sin \varphi \cos \varphi - \sin \varphi) = 0.$$
 Отже, $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = (2x_0 - y_0)\Delta x + (-x_0 - 2y_0)\Delta y + o(\|(\Delta x, \Delta y)\|) \cdot (\Delta x, \Delta y) \to (0,0)$

Proposition 7.1.3 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Функція f - диференційована в т. \vec{x}^0 . Тоді вона неперервна в т. \vec{x}^0 .

Proof.

Proof. f - диференційована в т. \vec{x}^0 , тобто $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\Delta \vec{x}||)$.

Або можна це записати інакше:

Аоо можна це записати інакіне:
$$f(\vec{x}) - f(\vec{x}^0) = L_1(x_1 - x_1^0) + \dots + L_m(x_m - x_m^0) + o(||\vec{x} - \vec{x}^0||) \implies \lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) - f(\vec{x}^0)) =$$
 Всі дужки прямують покоординатно до нуля, *о*-маленьке також, в силу н.м.

$$= 0 \implies f$$
 - неперервна в т. \vec{x}^0 .

Definition 7.1.4 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка.

Частинною похідною функції f за змінною x_i в т. \vec{x}^0 називають величину:

$$\frac{\partial f}{\partial x_j}(x_1^0,\ldots,x_j^0,\ldots,x_m^0) = \lim_{\Delta x_j \to 0} \frac{f(x_1^0,\ldots,x_j^0+\Delta x_j,\ldots,x_m^0) - f(x_1^0,\ldots,x_j^0,\ldots,x_m^0)}{\Delta x_j}$$

Якщо уважно придивитись на означення, то, насправді, ми просто підставили $x_1^0,\dots,x_{j-1}^0,x_{j+1}^0,\dots,x_m^0$ та отримали функцію $g(x_j)=f(x_1^0,\dots,x_{j-1}^0,x_j,x_{j+1}^0,\dots,x_m^0)$ - функція від одного агрументу x_j та обчислили похідну цієї функції в т. x_i^0 . Отже,

$$\frac{\partial f}{\partial x_i}(x_1^0, \dots, x_j^0, \dots, x_m^0) = g'(x_j^0)$$

Example 7.1.5 Маємо функцію $f(x,y)=1-x^2-y$. Знайдемо всі її частинні похідні. $\frac{\partial f}{\partial x}=-2x \qquad \qquad \frac{\partial f}{\partial u}=-1$

$$\frac{\partial f}{\partial x} = -2x \qquad \qquad \frac{\partial f}{\partial y} = -1$$

Сенс $\frac{\partial f}{\partial x}$ - знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь

Аналогічно $\frac{\partial f}{\partial u}$ - знайти дотичну прямої в певній точці, але ця дотична напрямлена туди саме, де й вісь OY.

Таких дотичних прямих існують безліч, але про це згодом.

Proposition 7.1.6 Необхнідна умова диференційованості

Задано функцію $f:A \to \mathbb{R}$ - диференційована в т. $\vec{x}^0 \in A$ - внутрішня точка. Тоді вона має частинні похідні в т. \vec{x}^0 , причому $\frac{\partial f}{\partial x_j}(x_1^0,\ldots,x_j^0,\ldots,x_m^0)=L_j.$

Proof.

$$f$$
 - диференційована в т. \vec{x}^0 , тоді $\exists L_1,\dots,L_m\in\mathbb{R}$: $f(\vec{x}^0+\Delta\vec{x})-f(\vec{x}^0)=L_1\Delta x_1+\dots+L_m\Delta x_m+o(\|\Delta\vec{x}\|),\Delta\vec{x}\to\vec{0}$. У окремому випадку, встановити можна $\Delta\vec{x}=\begin{pmatrix}0&\dots&\Delta x_j&\dots&0\end{pmatrix}^T$. Тоді $\frac{\partial f}{\partial x_j}(x_1^0,\dots,x_j^0,\dots,x_m^0)=\lim_{\Delta x_j\to 0}\frac{f(x_1^0,\dots,x_j^0+\Delta x_j,\dots,x_m^0)-f(x_1^0,\dots,x_j^0,\dots,x_m^0)}{\Delta x_j}$ f - \equiv $\lim_{\Delta x_j\to 0}\frac{L_1\cdot 0+\dots+L_j\Delta x_j+\dots+L_m\cdot 0+o(|\Delta x_j|)}{\Delta x_j}=\lim_{\Delta x_j\to 0}\frac{L_j\Delta x_j+o(\Delta x_j)}{\Delta x_j}=L_j$.

Remark 7.1.7 У зворотному напрямку це не завжди вірно.

Example 7.1.8 Маємо функцію $f(x,y) = \sqrt{|xy|}$. Розглянемо цю функції в околі т. $(x_0,y_0) = (0,0)$. $\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sqrt{|\Delta x \cdot 0| - 0}}{\Delta x} = 0.$ $\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,\Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\sqrt{|0 \cdot \Delta y| - 0}}{\Delta y} = 0.$ Тобто в т. (x_0,y_0) функція має частинні похідні. Проте виявляється, що в (x_0,y_0) вона - не дифе

ренційована. Дійсно,

ренциована. Дисно,
$$f(\Delta x, \Delta y) = 0\Delta x + 0\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}) = o(\sqrt{\Delta x^2 + \Delta y^2}), \text{ тобто}$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(\Delta x, \Delta y)}{\sqrt{\Delta x^2 + \Delta y^2}} = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{\Delta x^2 + \Delta y^2}} \stackrel{\text{полярна заміна}}{=} \lim_{\rho \to 0} \sqrt{|\cos \varphi \sin \varphi|} \text{ - не існує, тому рівність вище не вірна.}$$

Можливо виникне питання, а чи існують інші числа $(L_1, L_2) \neq (0, 0)$. Ні. Це випливає з необхідної умови диференційованості.

Виникає тоді інше питання, а коли ми можемо гарантувати диференційованість через існування частинних похідних.

Theorem 7.1.9 Достатня умова диференційованості

Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка.

Відомо, що в деякому околі т. \vec{x}^0 існують всі частинні похідні в околі т. \vec{x}^0 , які неперервні в т. \vec{x}^0 . Тоді f - диференційована в т. \vec{x}^0 .

 $Mu \, будемо \, doвoдити \, npu \, m=2$. Для більших аргументів - аналогічно, але більш технічна справа

Отже, дано f(x,y) та в околі т. (x_0,y_0) існують частинні похідні $\frac{\partial f}{\partial x}$ та $\frac{\partial f}{\partial y}$, які неперервні в (x_0,y_0) .

Розглянемо приріст аргументу $\Delta x, \Delta y$ так, щоб ми були всередині околу т. (x_0, y_0) . Нехай $\Delta x >$ $0, \Delta y > 0$, для інших все аналогічно.

 $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) + f(x_0 + \Delta x, y_0) - f(x_0, y_0) =$ Позначу $h(t) = f(x_0 + \Delta x, y_0 + t), t \in [0, \Delta y].$ Тоді $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) = h(\Delta y) - h(0).$

h - диференційована на $[0,\Delta y]$, оскільки існує $\frac{\partial f}{\partial y}$, яка неперервна. А тому $h\in C([0,\Delta y])$. Тоді за Лагранжом:

$$h(\Delta y) - h(0) = h'(c_1)\Delta y, c_1 \in (0, y)$$

$$h'(t) = f'_t(x_0 + \Delta x, y_0 + t) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + t)$$

$$\implies h(\Delta y) - h(0) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y.$$

Аналогічно $g(s) = f(x_0 + s, y_0), s \in [0, \Delta x]$. Тоді $f(x_0 + \Delta x, y_0) - f(x_0, y_0) = g(\Delta x) - g(0)$ $\stackrel{\text{Th. Лагранжа}}{=} g'(c_2)\Delta x = \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x, c_2 \in (0, \Delta x)$. Повертаємось до нашої рівності.

$$\boxed{\equiv} \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y + \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x$$

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||)$$

$$\begin{split} &(f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0))-\left(\frac{\partial f}{\partial x}(x_0,y_0)\Delta x+\frac{\partial f}{\partial y}(x_0,y_0)\Delta y\right)=\\ &=\left(\frac{\partial f}{\partial y}(x_0+\Delta x,y_0+c_1)\Delta y+\frac{\partial f}{\partial x}(x_0+c_2,y_0)\Delta x\right)-\left(\frac{\partial f}{\partial x}(x_0,y_0)\Delta x+\frac{\partial f}{\partial y}(x_0,y_0)\Delta y\right)=\\ &=\left(\frac{\partial f}{\partial x}(x_0+c_2,y_0)-\frac{\partial f}{\partial x}(x_0,y_0)\right)\Delta x+\left(\frac{\partial f}{\partial y}(x_0+\Delta x,y_0+c_1)-\frac{\partial f}{\partial y}(x_0,y_0)\right)\Delta y\\ \text{Якщо }\Delta x\to 0,\Delta y\to 0,\text{ то звідси }c_1\to 0,c_2\to 0\text{ та за умовою того, що частинні похідні є неперерв-$$

$$\left(\frac{\partial f}{\partial x}(x_0+c_2,y_0) - \frac{\partial f}{\partial x}(x_0,y_0)\right) \stackrel{\text{\tiny IO3H}}{=} \alpha \to 0$$

$$\left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \stackrel{\text{позн}}{=} \beta \to 0$$

дал:
$$\left| \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \stackrel{\text{K-B}}{\leq} \left| \frac{\sqrt{\alpha^2 + \beta^2} \sqrt{\Delta x^2 + \Delta y^2}}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \to 0 \implies \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \to 0, \Delta x \to 0, \Delta y \to 0.$$
 Остаточно отримуємо:

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o(||(\Delta x, \Delta y)||)$$

Тобто звідси f - диференційована в т. (x_0, y_0) .

Definition 7.1.10 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. Похідною функції f в т. \vec{x}^0 називається ковектор

$$f'(\vec{x}^0) = \left(\frac{\partial f}{\partial x_1} \quad \dots \quad \frac{\partial f}{\partial x_m}\right)(\vec{x}^0)$$

Таким чином, ми можемо визначити лінійний функціонал по $\Delta \vec{x}$ таким чином:

$$f'(\vec{x}^0)\Delta\vec{x}=rac{\partial f}{\partial x_1}(\vec{x}^0)\Delta x_1+\cdots+rac{\partial f}{\partial x_m}(\vec{x}^0)\Delta x_m.$$
 Тоді означення диференційованої функції f перепишеться ось так:

$$f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = f'(\vec{x}^0) \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$$

Proposition 7.1.11 Задані функції $f,g:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що f,g диференційовані в т. \vec{x}^0 . Тоді:

- 1) αf диференційована в т. $\vec{x}^0, \forall \alpha \in \mathbb{R},$ похідна $(\alpha f)'(\vec{x}^0) = \alpha f'(\vec{x}^0);$
- 2) f+g диференційована в т. \vec{x}^0 , похідна $(f+g)'(\vec{x}^0)=f'(\vec{x}^0)+g'(\vec{x}^0);$ 3) fg диференційована в т. \vec{x}^0 , похідна $(fg)'(\vec{x}^0)=f'(\vec{x}^0)g(\vec{x}^0)+f(\vec{x}^0)g'(\vec{x}^0).$

Proof.

1) Зрозуміло.

2)
$$(f(\vec{x}^0 + \Delta \vec{x}) + g(\vec{x}^0 + \Delta \vec{x})) - (f(\vec{x}^0) + g(\vec{x}^0)) = (f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0)) + (g(\vec{x}^0 + \Delta \vec{x}) - g(\vec{x}^0)) = f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|) = (f'(\vec{x}^0) + g'(\vec{x}^0)) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$$

3)
$$f(\vec{x}^0 + \Delta \vec{x})g(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0)g(\vec{x}^0) =$$
 = $(f(\vec{x}^0) + f'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) \cdot (g(\vec{x}^0) + g'(\vec{x}^0) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|)) - f(\vec{x}^0)g(\vec{x}^0)$ = Після розкриття дужок ми залишимо лише доданки $(f(\vec{x}^0)g'(\vec{x}^0)) \cdot \Delta \vec{x}$ та $(g(\vec{x}^0)f'(\vec{x}^0)) \cdot \Delta \vec{x}$. Ось чому:

$$\begin{split} f(\vec{x}^0)o(\|\Delta\vec{x}\|) &= o(\|\Delta\vec{x}\|) \qquad g(\vec{x}^0)o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) \\ (f'(\vec{x}^0) \cdot \Delta\vec{x}) \cdot (g'(\vec{x}^0) \cdot \Delta\vec{x}) &= o(\|\Delta\vec{x}\|), \text{ тому що, розписавши, побачимо } \Delta x_i \Delta x_j = o(\|\Delta\vec{x}\|). \\ (f'(\vec{x}^0) \cdot \Delta\vec{x})o(\|\Delta\vec{x}\|) &= o(\|\Delta\vec{x}\|) \qquad (g'(\vec{x}^0) \cdot \Delta\vec{x})o(\|\Delta\vec{x}\|) = o(\|\Delta\vec{x}\|) \\ \text{тому що, розписавши, побачимо } \Delta x_j o(\|\Delta\vec{x}\|) &= o(\|\Delta\vec{x}\|). \\ (o(\|\Delta\vec{x}\|))^2 &= o(\|\Delta\vec{x}\|) \end{split}$$

Повертаємось до рівності:

$$= (f(\vec{x}^0)g'(\vec{x}^0)) \cdot \Delta \vec{x} + (g(\vec{x}^0)f'(\vec{x}^0)) \cdot \Delta \vec{x} + o(\|\Delta \vec{x}\|).$$

Definition 7.1.12 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Диференціалом функції f(x) в т. \vec{x}^0 називається такий вираз:

$$df(\vec{x}^0, \Delta \vec{x}) = f'(\vec{x}^0) \cdot \Delta \vec{x}$$

Частіше позначають ще диференціал в точці ось так: $df_{\vec{x}^0}$.

Remark 7.1.13 Якщо згадати лінійну алгебру, то $df_{\vec{x}^0} \colon \mathbb{R}^m \to \mathbb{R}$ – це, насправді, лінійний функціонал, де в нас записується ковектор $f'(\vec{x}^0) = \begin{pmatrix} \frac{\partial f}{\partial x_1} (\vec{x}^0) & \dots & \frac{\partial f}{\partial x_n} (\vec{x}^0) \end{pmatrix}$. І ми маємо: $df_{\vec{x}^0}(\Delta \vec{x}) = f'(\vec{x}^0) \cdot \Delta \vec{x}.$

Як й раніше, аргумент $\Delta \vec{x}$ опускають, а також позначають $\Delta \vec{x} = d\vec{x}$, тобто $\Delta x_1 = dx_1, \ldots, \Delta x_m = dx_m$. Тоді маємо інший вигляд:

$$df(\vec{x}^0) = f'(\vec{x}^0) \cdot d\vec{x} = \frac{\partial f}{\partial x_1}(\vec{x}^0) dx_1 + \dots + \frac{\partial f}{\partial x_m}(\vec{x}^0) dx_m$$

Example 7.1.14 Маємо функцію $f(x,y)=1-x^2-y$. Ми вже знайшли $\frac{\partial f}{\partial x}=-2x, \frac{\partial f}{\partial y}=-1$, вони є неперервними в будь-якій точці.

Отже, f - диференційована будь-де. Знадемо тепер диференціал функції. Це дуже просто: $df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = (-2x) dx - dy \stackrel{\text{a6o}}{=} (-2x - 1) d\vec{r}.$

7.2Для векторнозначних функцій

Definition 7.2.1 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - внутрішня точка. Вектор-функція \vec{f} називається диференційованою в т. \vec{x}^0 , якщо

$$\exists M \in Mat(m \times k) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{f}(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\Delta \vec{x}||)$$

Зараз дізнаємось, що це за матриця $M=\begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{k1} & \dots & M_{km} \end{pmatrix}$ під час доведення твердження.

Proposition 7.2.2 Задано функцію $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - внутрішня точка. \vec{f} - диференційована в т. $\vec{x}^0 \iff f_1, \ldots, f_k$ - диференційовані в т. \vec{x}^0 .

Proof.

 \Rightarrow Дано: \vec{f} - диференційована в т. \vec{x}^0 , тобто $\exists M \in Mat(m \times k) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{f}(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\Delta \vec{x}||)$.

$$\begin{pmatrix} f_1(\vec{x}^0 + \Delta \vec{x}) \\ \vdots \\ f_k(\vec{x}^0 + \Delta \vec{x}) \end{pmatrix} - \begin{pmatrix} f_1(\vec{x}^0) \\ \vdots \\ f_k(\vec{x}^0) \end{pmatrix} = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{k1} & \dots & M_{km} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_m \end{pmatrix} + \begin{pmatrix} o(||\Delta \vec{x}||) \\ \vdots \\ o(||\Delta \vec{x}||) \end{pmatrix}$$

Із цієї рівності випливає, що
$$\forall j = 1, k$$
: $f_j(\vec{x}^0 + \Delta \vec{x}) - f_j(\vec{x}^0) = M_{j1} \Delta x_1 + \dots + M_{jm} \Delta x_m + o(||\Delta \vec{x}||).$

Це означає, що f_j - диференційована в т. \vec{x}^0 . Тоді звідси випливає, що:

$$M_{j1}=rac{\partial f_j}{\partial x_1}(\vec{x}^0),\dots,M_{jm}=rac{\partial f_j}{\partial x_m}(\vec{x}^0).$$
В результаті отримаємо ось такий вигляд матриці:

$$M = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial x_1} & \cdots & \frac{\partial f_k}{\partial x_m} \end{pmatrix} (\vec{x}^0) = \begin{pmatrix} f_1' \\ \vdots \\ f_k' \end{pmatrix} (\vec{x}^0) = J(x) = \vec{f'}(\vec{x}^0)$$
 - матриця Якобі

Матриця Якобі описує **похідну** вектор-функції \vec{f} в т. \vec{x}^0 , тобто $\vec{f'}$ - це лінійний оператор. А якщо матриця буде квадратною, то ми можемо обчислити $\det \vec{f'}(\vec{x}^0)$ - **якобіан**.

 \sqsubseteq Дано: f_1, \ldots, f_k - диференційовані в т. \vec{x}^0 . Хочемо довести, що $\overline{\vec{f}(\vec{x}^0} + \Delta \vec{x}^0) - \vec{f}(\vec{x}^0) - M\Delta \vec{x} = \vec{o}(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}$, але це є правда, тому що: $\forall j = \overline{1,k}: f_j$ - диференційована $\implies f_j(\vec{x}^0 + \Delta \vec{x}^0) - f_j(\vec{x}^0) - f_j'(\vec{x}^0) \cdot \Delta \vec{x} = o(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}$ виконана покоординатна рівність.

Proposition 7.2.3 Задано функцію $\vec{f}:A\to\mathbb{R}^k$ та $\vec{x}^0\in A$ - внутрішня точка. Відомо, що вектор-функція \tilde{f} - диференційована в т. \vec{x}^0 . Тоді вона неперервна в т. \vec{x}^0 .

Proof.

Дійсно, $\lim_{\vec{x}\to\vec{x}^0} \left(M(\vec{x}-\vec{x}^0)+\vec{o}(||\vec{x}-\vec{x}^0||)\right)=0$, оскільки виконується покоординатна границя.

Proposition 7.2.4 Задані функції $\vec{f}, \vec{g}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що \vec{f}, \vec{g} диференційовані в т. \vec{x}^0 .

Тоді $\alpha \vec{f} + \beta \vec{g}$ - диференційована в т. \vec{x}^0 , похідна $(\alpha \vec{f} + \beta \vec{g})'(\vec{x}^0) = \alpha \vec{f}'(\vec{x}^0) + \beta \vec{g}'(\vec{x}^0)$. Випливає з арифметики матриці. Ну тут зрозуміло.

Example 7.2.5 Важливий

Маємо вектор-функцію $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \rho\cos\varphi \\ \rho\sin\varphi \end{pmatrix}$. Знайдемо її похідну та якобіан.

$$\vec{f'}(\vec{x}^0) = \begin{pmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{pmatrix} \qquad \det \vec{f'}(\vec{x}^0) = \cos \varphi \rho \cos \varphi + \sin \varphi \rho \sin \varphi = \rho.$$

Proposition 7.2.6 Задані функції $\vec{f}: A \to B$ та $\vec{g}: B \to \mathbb{R}^k$, де $A \subset \mathbb{R}^m, B \subset \mathbb{R}^n$. Відомо, що \vec{f} - диференційована в т. \vec{x}^0 та \vec{g} - диференційована в т. \vec{y}^0 . Тоді $\vec{g} \circ \vec{f}$ - диференційована в т. \vec{x}^0 , похідна $(\vec{g} \circ \vec{f})'(\vec{x}^0) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)$.

Lemma 7.2.7 Задано матрицю $A \in Mat(m \times k)$. Тоді $\exists C \geq 0 : \forall \vec{h} \in \mathbb{R}^m : ||A\vec{h}|| \leq C||\vec{h}||$.

Дійсно,
$$A = \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{km} \end{pmatrix} \implies A\vec{h} = \begin{pmatrix} a_{11}h_1 + \dots + a_{1m}h_m \\ \vdots \\ a_{k1}h_1 + \dots + a_{km}h_m \end{pmatrix}$$

$$\implies \|A\vec{h}\| = \sqrt{(a_{11}h_1 + \dots + a_{1m}h_m)^2 + \dots + (a_{k1}h_1 + \dots + a_{km}h_m)^2} \stackrel{\text{K-B}}{\leq}$$

$$\leq \sqrt{(a_{11}^2 + \dots + a_{1m}^2)(h_1^2 + \dots + h_m^2) + \dots + (a_{k1}^2 + \dots + a_{km}^2)(h_1^2 + \dots + h_m^2)} =$$

$$= \|\vec{h}\| \sqrt{(a_{11}^2 + \dots + a_{1m}^2) + \dots + (a_{k1}^2 + \dots + a_{km}^2)} = C\|\vec{h}\|.$$

Тепер безпосередньо доведення твердження.

Proof.

$$\begin{split} \vec{g} \circ \vec{f}(\vec{x}^0 + \Delta \vec{x}) - \vec{g} \circ \vec{f}(\vec{x}^0) &= \vec{g}(\vec{f}(\vec{x}^0 + \Delta \vec{x})) - \vec{g}(\vec{f}(\vec{x}^0)) = \vec{g}(\vec{f}(\vec{x}^0) + \vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|)) - \vec{g}(\vec{f}(\vec{x}^0)) = \\ &= \vec{g}(\vec{y}^0 + \Delta \vec{y}) - \vec{g}(\vec{y}^0) = \vec{g}'(\vec{y}^0)\Delta \vec{y} + o(\|\Delta \vec{y}\|) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|) = \\ &\exists \text{алипилось довести, що } \vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|) = \vec{o}(\|\Delta \vec{y}\|) = \vec{o}(\|\Delta \vec{x}\|), \text{ якщо } \Delta \vec{x} \to \vec{0}, \text{ тобто} \\ &\lim_{\Delta \vec{x} \to \vec{0}} \frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} = 0. \\ &\frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} \leq \frac{\|\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta \vec{x}\|) + \|\vec{o}(\|\Delta \vec{y}\|)\|}{\|\Delta x\|} \overset{\text{Lm.}}{\leq} C\frac{\vec{o}(\|\Delta \vec{x}\|)}{\|\Delta \vec{x}\|} + \frac{\vec{o}(\|\Delta \vec{y}\|)}{\|\Delta \vec{x}\|} = \\ &= C\frac{\vec{o}(\|\Delta \vec{x}\|)}{\|\Delta \vec{x}\|} + \frac{\vec{o}(\|\Delta \vec{y}\|)}{\|\Delta \vec{y}\|} \frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|}. \end{split}$$

Якщо $\Delta \vec{x} \to \vec{0}$, то перший доданок прямує до нуля, а другий буде прямувати до нуля, якщо $\frac{\|\Delta \vec{y}\|}{\|\|\mathbf{x}\|\|\|}$

Укщо
$$\Delta \vec{x} \to 0$$
, то першии доданок прямує до нуля, а другии буде прямувати доданок прямує до нуля, а другии буде прямувати до буде обмеженою. Зараз це й покажемо:
$$\frac{\|\Delta \vec{y}\|}{\|\Delta \vec{x}\|} = \frac{\|\vec{f}'(\vec{x}^0)\Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|} \le \frac{\|\vec{f}'(\vec{x}^0)\Delta \vec{x}\| + \|\vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|} \stackrel{\text{Lm.}}{\le} C^* + \frac{\|\vec{o}(\|\Delta \vec{x}\|)\|}{\|\Delta \vec{x}\|}$$
 Якщо $\Delta \vec{x} \to \vec{0}$, то отрумаємо обмеженість

Якщо $\Delta \vec{x} \rightarrow \vec{0}$, то отримаємо обмеженість.

Отже, остаточно,
$$\vec{g}'(\vec{y}^0)\vec{o}(\|\Delta\vec{x}\|) + \vec{o}(\|\Delta\vec{y}\|) = \vec{o}(\|\Delta\vec{x}\|)$$
, якщо $\Delta\vec{x} \to \vec{0}$, а значить $\vec{g} \circ \vec{f}(\vec{x}^0 + \Delta\vec{x}) - \vec{g} \circ \vec{f}(\vec{x}^0) = \vec{g}'(\vec{y}^0)\vec{f}'(\vec{x}^0)\Delta\vec{x} + \vec{o}(\|\Delta\vec{x}\|)$ при $\Delta\vec{x} \to \vec{0}$.

Corollary 7.2.8 Задано функцію $\vec{f}:A\to B$ та $g:B\to\mathbb{R}$, де $A\subset\mathbb{R}^m,B\subset\mathbb{R}^n$. Відомо, що \vec{f} - диференційована в т. \vec{x}^0 та g - диференційована в т. \vec{y}^0 . Тоді $\frac{\partial h}{\partial x_j}(\vec{x}^0)=\frac{\partial g}{\partial y_1}(\vec{y}^0)\frac{\partial f_1}{\partial x_j}(\vec{x}^0)+\frac{\partial g}{\partial y_2}(\vec{y}^0)\frac{\partial f_2}{\partial x_j}(\vec{x}^0)+\cdots+\frac{\partial g}{\partial y_n}(\vec{y}^0)\frac{\partial f_n}{\partial x_j}(\vec{x}^0)$, виконано $\forall j=\overline{1,m}$. Typ $h(\vec{x}) = g(\vec{f}(\vec{x})).$

Example 7.2.9 Маємо функцію $f\left(xy, \frac{x}{y}\right)$. Знайдемо частинні похідні за x, y.

Позначимо $u(x,y)=xy, v(x,y)=\frac{x}{y}$. Тоді маємо:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x} = \frac{\partial f}{\partial u}\cdot y + \frac{\partial f}{\partial v}\cdot \frac{1}{y}$$
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial y} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial y} = \frac{\partial f}{\partial u}\cdot x + \frac{\partial f}{\partial v}\cdot \frac{-x}{y^2}$$

Схематично, як шукати $\frac{\partial f}{\partial u}$

Похідна за напрямком. Градієнт

Definition 7.3.1 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка. А також задано вектор \vec{l} , такий, що $||\vec{l}|| = 1$. Її ще називають **напрямком**.

Похідною функції f за напрямком \vec{l} в т. \vec{x}^0 називають величину

$$\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t}$$

Як вже було зазначено, дотичних прямих буває дуже багато, тому ми й задаємо напрямок.

Remark 7.3.2 Якщо всі координати вектора \vec{l} будуть нулевими, окрім $l_j = 1$, то $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \frac{\partial f}{\partial x_i}(\vec{x}^0)$.

Theorem 7.3.3 Задано функцію f - диференційована в т. $\vec{x}^0 \in A$ - внутрішня точка. Тоді $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = f'(\vec{x}^0) \cdot \vec{l} = \frac{\partial f}{\partial x_1} l_1 + \dots + \frac{\partial f}{\partial x_m} l_m$.

$$f$$
 - диференційована в т. \vec{x}^0 , тобто $f(\vec{x}^0+t\vec{l})-f(\vec{x}^0)=rac{\partial f}{\partial x_1}tl_1+\cdots+rac{\partial f}{\partial x_m}tl_m+o(\|t\vec{l}\|)$. Тому
$$rac{\partial f}{\partial \vec{l}}(\vec{x}^0)=\lim_{t\to 0}rac{f(\vec{x}^0+t\vec{l})-f(\vec{x}^0)}{t}=\lim_{t\to 0}rac{\partial f}{\partial x_1}tl_1+\cdots+rac{\partial f}{\partial x_m}tl_m+o(\|t\vec{l}\|)}{t}=rac{\partial f}{\partial x_1}l_1+\cdots+rac{\partial f}{\partial x_m}l_m.$$

Example 7.3.4 Маємо функцію $f(x,y) = 1 - x^2 - y$. Знайти похідну за напрямком $\vec{l} = (0.6, 0.8)$. $\frac{\partial f}{\partial x} = -2x \qquad \frac{\partial f}{\partial y} = -1.$ $\implies \frac{\partial f}{\partial \vec{i}} = -0.6 \cdot 2x - 0.8 \cdot 1 = -1.2x - 0.8.$

Definition 7.3.5 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. **Градієнтом функції** f в т. \vec{x}^0 називають такий вектор

$$\operatorname{grad} f(\vec{x}^0) \stackrel{\text{a6o}}{=} \nabla f(\vec{x}^0) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_{--}} \end{pmatrix} (\vec{x}^0)$$

Похідну функції \vec{f} за напрямком \vec{l} в т. \vec{x}^0 можна записати інакше: $\frac{\partial f}{\partial \vec{l}} = \left(\operatorname{grad} f(\vec{x}^0), \vec{l} \right).$

Example 7.3.6 Зокрема для функції $f(x,y) = 1 - x^2 - y$ маємо, що grad $f(\vec{x}) = \begin{pmatrix} -2x \\ -1 \end{pmatrix}$

 $\operatorname{grad} f(\vec{x}^0)$ описує, який треба взяти напрямок руху в т. \vec{x}^0 , щоб ріст функції був найбільшим. Цей факт підтвердить наступне твердження:

Proposition 7.3.7 $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)$ приймає:

- тах значення $\iff \vec{l} \uparrow \uparrow \operatorname{grad} \vec{f}(\vec{x}^0);$ тіп значення, $\iff \vec{l} \uparrow \downarrow \operatorname{grad} \vec{f}(\vec{x}^0).$

Дійсно, $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right) = \left\|\operatorname{grad} f(\vec{x}^0)\right\| \|\vec{l}\| \cos \alpha = \left\|\operatorname{grad} f(\vec{x}^0)\right\| \cos \alpha$:
- $\max \iff \alpha = 0$;
- $\min \iff \alpha = \pi$.

Неявно задані функції

Remark 7.4.1 Приклад для розуміння

Задано рівняння кола на площині \mathbb{R}^2 - один з прикладів неявної функції: $x^2 + y^2 - 1 = 0.$

3розуміло, що це - не графік функції однієї змінної. Просто тому що кожному значенню x тут ставиться у відповідність два значення y.

Проте якщо розглядати деякий малий окіл т. (x_0, y_0) , то ми отримаємо деякий шматок малюнку, що й буде графіком функції. Зокрема в нашому випадку або $y = \sqrt{1-x^2}$, або $y = -\sqrt{1-x^2}$.

Проте існують певні точки, де цього зробити не можна - точки (1,0),(-1,0). Як би ми не зменшували окіл цієї точки, там завжди кожного іксу два ігрика були б. Я цю точку позначил червоним кольором.

Саме тому з'явилась мотивацію створити теорему, де через рівняння F(x,y) = 0 ми можемо отримати y = f(x) в деякому околі т. (x_0, y_0) під деякими важливими умовами.

Важливо розуміти, що функція існує, проте явну формулу отримати не завжди вийде. Зокрема маємо неявну функцію $y^5 + y^3 + y + x = 0$. Щоб знати y = f(x), треба розв'язати рівняння п'ятої степені, проте корені цього многочлена не можна виразити через формулу. І тим не менш, під деякими умовами, ми можемо знати функцію y = f(x), просто без формули.

Theorem 7.4.2 Задано неявну функцію F - неперервно-диференційована в околі т. (x_0, y_0) . Відомо, що виконуються такі умови:

1)
$$F(x_0, y_0) = 0;$$

1)
$$F(x_0, y_0) = 0;$$

2) $\frac{\partial F}{\partial y}(x_0, y_0) \neq 0.$

$$\partial y$$
 Сологу Тоді існує єдина функція f - неперервно-диференційована в меншому околі т. x_0 , причому $F(x,y)=0\iff y=f(x),$ а також $f'(x)=-rac{\partial F}{\partial x}(x,y)\Big|_{(x,f(x))}.$

Додатково, якщо $F \in C^{(m)}$, то $f \in C^{(m)}$. Без доведення.

Причому $\frac{\partial F}{\partial y} \neq 0 \iff y \neq 0.$

Тому за попередньою теоремою, дійсно, існує функція y = f(x), але найголовніше: $f'(x) = -\frac{x}{x}$

Theorem 7.4.4 Задано неявну вектор-функцію \vec{F} - неперервно-диференційована в околі т. (\vec{x}^0, \vec{y}^0) \in \mathbb{R}^{m+k} . Відомо, що виконуються такі умови:

1)
$$\vec{F}(\vec{x}^0, \vec{y}^0) = \vec{0};$$

2) $\exists \left(\vec{F}_y'(\vec{x}^0, \vec{y}^0)\right)^{-1}$ - оборотна матриця похідних за \vec{y} .

Тоді існує єдина вектор-функція \vec{f} - неперервно-диференційована в меншому околі т. \vec{x}^0 , причому $\vec{F}(\vec{x}, \vec{y}) = \vec{0} \iff \vec{y} = \vec{f}(\vec{x})$, а також $\vec{f}'(\vec{x}) = -(\vec{F}_y'(\vec{x}, \vec{y}))^{-1} \cdot \vec{F}_x'(\vec{x}, \vec{y})\Big|_{(\vec{x}, \vec{f}(\vec{x}))}$

Без доведення.

Example 7.4.5 Задано вектор-функцію \vec{F} таким чином: $\begin{cases} x^2+y_1^2-\frac{1}{2}y_2^2=F_1(x,y_1,y_2)=0\\ x+y_1+y_2-2=F_2(x,y_1,y_2)=0 \end{cases}.$

Маємо
$$\det \vec{F}_y'(x, y_1, y_2) = \det \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} \\ \frac{\partial F_2}{\partial y_1} & \frac{\partial F_2}{\partial y_2} \end{pmatrix} = \det \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} = 2y_1 + y_2 \neq 0 \iff y_2 \neq -2y_1$$
, а

тому й $x \neq 2 + y_2$.

Тоді враховуючи обмеження, існує вектор-функція
$$\vec{f}(\vec{x}) = \vec{y}$$
, але тепер знайдемо похідну. Маємо:
$$\vec{F}_y' = \begin{pmatrix} 2y_1 & -y_2 \\ 1 & 1 \end{pmatrix} \implies (\vec{F}_y')^{-1} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix}$$

$$\vec{F}_x' = \begin{pmatrix} 2x \\ 1 \end{pmatrix}$$

$$\vec{f'} = -(\vec{F'_y})^{-1} \vec{F'_x} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 1 & y_2 \\ -1 & 2y_1 \end{pmatrix} \begin{pmatrix} 2x \\ 1 \end{pmatrix} = \frac{1}{2y_1 + y_2} \begin{pmatrix} 2x + y_2 \\ -2x + 2y_1 \end{pmatrix} = \begin{pmatrix} \frac{2x + y_2}{2y_1 + y_2} \\ \frac{-2x + 2y_1}{2y_1 + y_2} \end{pmatrix}.$$

$$\begin{pmatrix}
\frac{\partial F_1}{\partial x} \\
\frac{\partial F_2}{\partial x} \\
\frac{\partial F_2}{\partial y_1}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial F_1}{\partial y_2} \\
\frac{\partial F_2}{\partial y_1}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial F_1}{\partial y_2}
\end{pmatrix}$$

Тут записано матрицю Якобі для функції \vec{F} . Червоним виділено \vec{F}'_y , а синім виділено \vec{F}'_x

Обернені функції 7.5

Theorem 7.5.1 Задано вектор-функцію $\vec{g}:U(\vec{y}^0)\to U(\vec{x}^0)$, де $\vec{x}^0=\vec{g}(\vec{y}^0)$, де $U(\vec{x}^0),U(\vec{y}^0)\subset\mathbb{R}^n$. Відомо, що виконуються такі умови:

- 1) \vec{q} неперервно-диференційована;
- 2) $\exists (\vec{g}'(\vec{y}^0))^{-1}$.

Тоді існує вектор-функція $\vec{f}: U(\vec{x}^0) \to U(\vec{y}^0)$, причому:

- 1) \vec{f} неперервно-диференційована;
- 2) $\vec{f}'(\vec{x}) = (\vec{g}'(\vec{f}(\vec{x})))^{-1}$.

Proof.

Розглянемо функцію $\vec{F}(\vec{x}, \vec{y}) = \vec{x} - \vec{g}(\vec{y})$. Про неї відомо, що:

- 1) $\vec{F}(\vec{x}^0, \vec{y}^0) = \vec{0}$, просто тому що $\vec{x}^0 = \vec{g}(\vec{y}^0)$.
- 2) $\exists (\vec{F}_y'(\vec{x}^0, \vec{y}^0))^{-1}$, тому що зауважимо, що $\vec{F}_y'(\vec{x}^0, \vec{y}^0) = -\vec{g}'(\vec{y}^0)$, а для такої матриці оборотна матриця існує за умовою.

Отже, $\exists !f$, для якого $F(\vec{x},\vec{y})=\vec{0} \iff \vec{x}=\vec{g}(\vec{y}) \iff \vec{y}=\vec{f}(\vec{x}).$ Нарешті, $\vec{f}'(\vec{x})=-(\vec{F}'_y(\vec{x},\vec{y}))^{-1}\vec{F}'_x(\vec{x},\vec{y})=(\vec{g}'(\vec{y}))^{-1}.$

У цьому випадку $\vec{F}_x'(\vec{x}, \vec{y}) = \mathbb{I}$, де \mathbb{I} - одинична матриця.

Example 7.5.2 Задано функцію $\vec{g}: A \to \mathbb{R}^2$, де множина $A = \{(x,y): 0 < y < x\}$.

$$\vec{g}(x,y)\begin{pmatrix} g_1(x,y) \\ g_2(x,y) \end{pmatrix} = \begin{pmatrix} x+y \\ xy \end{pmatrix}.$$

Спробуємо знайти обернену функцію.

Зрозуміло, що \vec{g} - неперервно-диференційована. Доведемо, що $\exists (\vec{g}'(x,y))^{-1}$.

$$\vec{g}'(x,y) = \begin{pmatrix} \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial y} \\ \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ y & x \end{pmatrix} \implies \det \vec{g}'(x,y) = x - y \neq 0, \text{ оскільки } 0 < x < y.$$

Тоді існує обернена вектор-функція $\vec{f} = \vec{g}^{-1}$. Спробуємо її знайти:

$$\begin{cases} x + y = u \\ xy = v \end{cases}$$

$$\frac{v}{y} + y = u \implies y^2 - uy + v = 0 \implies y = \frac{u - \sqrt{u^2 - 4v}}{2} \implies x = \frac{u + \sqrt{u^2 - 4v}}{2}.$$

I все це за умовою, що $u^2-4v>0$ та u,v>0. Отже, $\vec{g}^{-1}(u,v)=\begin{pmatrix}g_1^{-1}(u,v)\\g_2^{-1}(u,v)\end{pmatrix}=\frac{1}{2}\begin{pmatrix}u+\sqrt{u^2-4v}\\u-\sqrt{u^2-4v}\end{pmatrix}$

7.6 Геометричне та алгебраїчне застосування

Дотична площина, нормальна пряма поверхні

Задамо функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A\subset\mathbb{R}^2$ - внутрішня точка. Встановимо таку поверхню:

$$\Pi = \{(x, y, z) : z = f(x, y)\}\$$

Відомо, що площина в \mathbb{R}^3 , що проходить через т. $(x_0, y_0, z_0), z_0 = f(x_0, y_0)$, задається рівнянням:

$$z = z_0 + K_1(x - x_0) + K_2(y - y_0),$$
 $K_1, K_2 \in \mathbb{R}$

Definition 7.6.1 Дотичною площиною до поверхні Π в т. (x_0, y_0) називається площина в \mathbb{R}^3 , що проходить через т. (x_0, y_0, z_0) , для якої виконана рівність

$$z - f(x, y) = o(\|(x - x_0, y - y_0)\|), (x, y) \to (x_0, y_0)$$

Theorem 7.6.2 Поверхня П має дотичну площину в т. $(x_0, y_0) \iff f$ - диференційована в т. (x_0, y_0) . Причому $K_1 = \frac{\partial f}{\partial x}(x_0, y_0), K_2 = \frac{\partial f}{\partial y}(x_0, y_0).$ Доведення аналогічне, як в матані \mathbb{R}

Отже, дотична площина для диференційованої функції f задається таким рівнянням:

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Definition 7.6.3 Нормальною прямою до поверхні Π в т. (x_0, y_0) називається пряма в просторі, що проходить через т. (x_0, y_0, z_0) та перпендикулярна дотичній площині.

Вектор нормалі дотичної площини $\vec{N}=\left(\frac{\partial f}{\partial x}(x_0,y_0),\frac{\partial f}{\partial u}(x_0,y_0),-1\right)$. Це буде напрямленим вектором для нормалі. Тоді нормальна пряма задається таким рівнян

$$\frac{x - x_0}{\frac{\partial f}{\partial x}(x_0, y_0)} = \frac{y - y_0}{\frac{\partial f}{\partial y}(x_0, y_0)} = \frac{z - z_0}{-1}$$

Example 7.6.4 Задамо функцію $f(x) = x^2 + y^2$. Знайдемо дотичну площину та нормальну пряму

$$f(1,-1)=2.$$

$$\frac{\partial f}{\partial x}(1,-1) = 2x\Big|_{(1,-1)} = 2 \qquad \frac{\partial f}{\partial x}(1,-1) = 2y\Big|_{(1,-1)} = -2.$$

в т. (1,-1). f(1,-1)=2. $\frac{\partial f}{\partial x}(1,-1)=2x\Big|_{(1,-1)}=2\qquad \qquad \frac{\partial f}{\partial x}(1,-1)=2y\Big|_{(1,-1)}=-2.$ Всі частинні похідні в околі т. (1,-1) неперервні, а тому диференційовані. Отже, можемо отримати дотичну:

$$z-2=2(x-1)-2(y+1) \implies 2x-2y-z=2;$$
 та нормаль: $\frac{x-1}{2}=\frac{y+1}{-2}=\frac{z-2}{-1}.$

7.6.2 Дотична пряма, нормальна площина кривої

Definition 7.6.5 Крива в просторі \mathbb{R}^3 задається таким рівнянням

$$\begin{cases} x = x(t) \\ y = y(t) & t \in (a, b) \\ z = z(t) \end{cases}$$

Відомо, що пряма в просторі \mathbb{R}^3 , що проходить через т. $(x_0, y_0, z_0), x_0 = x(t_0), y_0 = y(t_0), z = z(t_0),$ задається таким рівнянням:

$$\begin{cases} x = (t - t_0)l_1 + x_0 \\ y = (t - t_0)l_2 + y_0 \\ z = (t - t_0)l_3 + z_0 \end{cases}, t \in \mathbb{R}$$

Definition 7.6.6 Дотичною прямою до кривої $\vec{x} = \vec{x}(t)$ називається пряма в просторі, що проходить через т. (x_0, y_0, z_0) , для якої виконана рівність

$$\begin{cases} x(t) - (x_0 + l_1(t - t_0)) = o(|t - t_0|) \\ y(t) - (y_0 + l_2(t - t_0)) = o(|t - t_0|) \\ z(t) - (z_0 + l_3(t - t_0)) = o(|t - t_0|) \end{cases} , t \to t_0$$

Theorem 7.6.7 Пряма
$$\begin{cases} x = (t - t_0)l_1 + x_0 \\ y = (t - t_0)l_2 + y_0 \\ z = (t - t_0)l_3 + z_0 \end{cases}$$
 - дотична до кривої
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$
 крива - диферацију правију пра

ренційована в т. t_0 , а також $l_1=x'(t_0), l_2=y'(t_0), l_3=z'(t_0)$ Відносно зрозуміло.

Отже, дотична пряма задається рівнянням:

$$\begin{cases} x = (t - t_0)x'(t_0) + x_0 \\ y = (t - t_0)y'(t_0) + y_0 \\ z = (t - t_0)z'(t_0) + z_0 \end{cases}, t \in \mathbb{R}$$

Напрямлений вектор прямої $\vec{l} = (x'(t_0), y'(t_0), z'(t_0))$. Тоді це буде нормальним вектором для нормальної плоищини. Нормальна площина задається таким рівнянням:

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0$$

Example 7.6.8 Маємо криву $\begin{cases} x=2\sin t\\ y=2\cos t\\ z=-\sin 2t \end{cases}$, де параметр $t\in[0,2\pi]$. Знайдемо дотичну пряму та

нормальну площину в $t_0 = \frac{5\pi}{6}$. Тобто в т. $\left(-1, \sqrt{3}, \frac{\sqrt{3}}{2}\right)$.

$$\begin{cases} x'(t_0) = 2\cos t \Big|_{t=t_0} = \sqrt{3} \\ y'(t_0) = -2\sin t \Big|_{t=t_0} = 1 \\ z'(t_0) = -2\cos 2t \Big|_{t=t_0} = -1 \end{cases}.$$

$$\frac{x+1}{\sqrt{3}} = \frac{y-\sqrt{3}}{1} = \frac{z-\frac{\sqrt{3}}{2}}{-1};$$
та нормальну площину:

 $\sqrt{3}(x+1) + (y-\sqrt{3}) - \left(z - \frac{\sqrt{3}}{2}\right) = 0.$

7.6.3 Приблизне обчислення

Маємо
$$f$$
 - диференційована в т. \vec{x}^0 , тобто
$$f(\vec{x}) - f(\vec{x}^0) = \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0) + o(\|\vec{x} - \vec{x}^0\|)$$
 при $\vec{x} \to \vec{x}^0$. Якщо \vec{x}_0 близлький до \vec{x} , тобто $\|\vec{x} - \vec{x}^0\| \ll 1$, то тоді
$$f(\vec{x}) \approx f(\vec{x}^0) + \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0).$$

$$f(\vec{x}) \approx f(\vec{x}^0) + \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0).$$

Example 7.6.9 Приблизно обчислити $\sqrt{(2.03)^2 + 5e^{0.02}}$.

$$z \approx z_0 + \frac{\partial z}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial z}{\partial y}(x_0, y_0)(y - y_0)$$
. Macmo:

Ехаприе 7.6.9 Приолизно общеслити
$$\sqrt{(2.03)^2+3e^{6.02}}$$
. Розглянемо функцію $z=\sqrt{x^2+5e^y}$. У нашому випадку $(x_0,y_0)=(2,0)$ та $(x,y)=(2.03,0.02)$. Оскільки $\|(x-x_0,y-y_0)\|=\|(0.03,0.02)\|\ll 1$, то можемо застосувати формулу: $z\approx z_0+\frac{\partial z}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial z}{\partial y}(x_0,y_0)(y-y_0)$. Маємо: $z_0=\sqrt{2^2+5e^0}=3$ $\frac{\partial z}{\partial x}(2,0)=\frac{x}{\sqrt{x^2+5e^y}}\Big|_{(0,2)}=\frac{2}{3}$ $\frac{\partial z}{\partial y}(2,0)=\frac{5e^y}{2\sqrt{x^2+5e^y}}\Big|_{(0,2)}=\frac{5}{6}$. Отже, $z=\sqrt{(2.03)^2+5e^{0.02}}\approx 3+\frac{2}{3}\cdot 0.03+\frac{5}{6}\cdot 0.02=\frac{101}{30}$.

7.7 Диференціювання та похідні старших порядків

Definition 7.7.1 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Також f - диференційована в т. \vec{x}^0 .

Частинними похідними другого роду від функції f в т. \vec{x}^0 називається вираз:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} (\vec{x}^0) \right) = \frac{\partial^2 f}{\partial x_j \partial x_k} (\vec{x}^0)$$

Example 7.7.2 Знайдемо всі частинні похідні другого порядку функції $f(x,y) = x^4 + y^4 - 4x^2y^2$.

$$\frac{\partial f}{\partial x} = 4x^3 - 8xy^2 \implies \begin{cases} \frac{\partial^2 f}{\partial x^2} = 12x^2 - 8y^2 \\ \frac{\partial^2 f}{\partial y \partial x} = -16xy \end{cases} \qquad \frac{\partial f}{\partial y} = 4y^3 - 8x^2y \implies \begin{cases} \frac{\partial^2 f}{\partial x \partial y} = -16xy \\ \frac{\partial^2 f}{\partial y \partial x} = 12y^2 - 8x^2 \end{cases}.$$

Можемо зауважити, що $\frac{\partial^2 f}{\partial u \partial x} = \frac{\partial^2 f}{\partial x \partial u}$. Проте в загальному випадку це не так.

Example 7.7.3 Розглянемо функцію $f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$. Зосередимось лише на

знаходженні
$$\frac{\partial^2 f}{\partial y \partial x}(0,0), \frac{\partial^2 f}{\partial x \partial y}(0,0).$$

$$\frac{\partial f}{\partial x} = \begin{cases} y \frac{x^4 - y^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases} \qquad \frac{\partial f}{\partial y} = \begin{cases} -x \frac{y^4 - x^4 + 4x^2y^2}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{\Delta x \to 0} \frac{\frac{\partial f}{\partial y}(\Delta x,0) - \frac{\partial f}{\partial y}(0,0)}{\Delta x} = 1 \qquad \frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{\Delta y \to 0} \frac{\frac{\partial f}{\partial x}(0,\Delta y) - \frac{\partial f}{\partial x}(0,0)}{\Delta y} = -1$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{\Delta x \to 0} \frac{\frac{\partial f}{\partial y}(\Delta x,0) - \frac{\partial f}{\partial y}(0,0)}{\Delta x} = 1 \qquad \qquad \frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{\Delta y \to 0} \frac{\frac{\partial f}{\partial x}(0,\Delta y) - \frac{\partial f}{\partial x}(0,0)}{\Delta y} = -1$$

Таким чином, $\frac{\partial^2 f}{\partial u \partial x} \neq \frac{\partial^2 f}{\partial x \partial u}$

Theorem 7.7.4 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Відомо, що $\exists \frac{\partial^2 f}{\partial x_i \partial x_k}(\vec{x}), \frac{\partial^2 f}{\partial x_i \partial x_k}(\vec{x})$ в околі т. \vec{x}^0 та є неперервними в т. \vec{x}^0 . Тоді $\frac{\partial^2 f}{\partial x_j \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_j}$. Деколи ще називають це теоремою Шварца.

Тоді
$$\frac{\partial^2 f}{\partial x_i \partial x_k} = \frac{\partial^2 f}{\partial x_k \partial x_i}$$
.

 $Mu \, будемо \, doвoдити \, npu \, m=2$. Для більших аргументів - аналогічно, але більш технічна справа

Proof.

Отже, дано f(x,y) та в околі т. (x_0,y_0) існують частинні похідні другого порядку $\exists \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial y \partial x}$ які неперервні в (x_0, y_0) .

Розглянемо вираз $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0).$ Покладемо функцію $k(s) = f(s, y_0 + \Delta y) - f(s, y_0), s \in [x_0, x_0 + \Delta x].$ Тоді $\Delta = k(x_0 + \Delta x) - k(x_0).$ $k'(s) = (f(s, y_0 + \Delta y) - f(s, y_0))'_s = \frac{\partial f}{\partial s}(s, y_0 + \Delta y) - \frac{\partial f}{\partial s}(s, y_0).$

Оскільки нам відомі другі частинні похідні, то зрозуміло, що в нас існує $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$, причому в тому самому околі т. (x_0, y_0) . Тобто звідси k - диференційована на $[x_0, x_0 + \Delta x]$, тоді за теоремою Лагранжа, $\exists \xi_1 \in (x_0, x_0 + \Delta x) : \Delta = k(x_0 + \Delta x) - k(x_0) = k'(\xi_1) \Delta x = \left(\frac{\partial f}{\partial s}(\xi_1, y_0 + \Delta y) - \frac{\partial f}{\partial s}(\xi_1, y_0)\right) \Delta x$.

Покладемо функцію $m(t) = \frac{\partial f}{\partial s}(\xi_1, t), t \in [y_0, y_0 + \Delta y].$ Тоді $\Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x.$

$$m'(t) = \left(\frac{\partial f}{\partial s}(\xi_1, t)\right)' = \frac{\partial}{\partial t}\left(\frac{\partial f}{\partial s}(\xi_1, t)\right) = \frac{\partial^2 f}{\partial t \partial s}(\xi_1, t).$$

 $m'(t) = \left(\frac{\partial f}{\partial s}(\xi_1,t)\right)_t' = \frac{\partial}{\partial t}\left(\frac{\partial f}{\partial s}(\xi_1,t)\right) = \frac{\partial^2 f}{\partial t \partial s}(\xi_1,t).$ Похідна дійсно існує за умовою теореми, тобто m - диференційована на $[y_0,y_0+\Delta y]$, тоді за теоремою Лагранжа, $\exists \eta_1 \in (y_0, y_0 + \Delta y) : \Delta = (m(y_0 + \Delta y) - m(y_0))\Delta x = m'(\eta_1)\Delta y \Delta x = \frac{\partial^2 f}{\partial t \partial s}(\xi_1, \eta_1)\Delta y \Delta x.$

Повернімось до виразу $\Delta = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0)$, ми розглянемо її з іншої сторони.

Покладемо функцію $p(t) = f(x_0 + \Delta x, t) - f(x_0, t), t \in [y_0, y_0 + \Delta y]$. Тоді $\Delta = p(y_0 + \Delta y) - p(y_0)$.

А далі я буду просто продовжувати рівність, міркування аналогічні, що пов'язані зі застосуванням теореми Лагранжа двічі:

$$\Delta = p(y_0 + \Delta y) - p(y_0) = p'(\eta_2) \Delta y = \left(f(x_0 + \Delta x, t) - f(x_0, t)\right)_t'(\eta_2) \Delta y = \left(\frac{\partial f}{\partial t}(x_0 + \Delta x, \eta_2) - \frac{\partial f}{\partial t}(x_0, \eta_2)\right) \Delta y = 0$$

Покладемо функцію $q(s) = \frac{\partial f}{\partial t}(s, \eta_2)$. А далі аналогічно.

Отримали таку рівність: $\frac{\partial^2 f}{\partial t \partial s}(\xi_1,\eta_1) \Delta y \Delta x = \frac{\partial^2 f}{\partial s \partial t}(\xi_2,\eta_2) \Delta x \Delta y \implies \frac{\partial^2 f}{\partial t \partial s}(\xi_1,\eta_1) = \frac{\partial^2 f}{\partial s \partial t}(\xi_2,\eta_2).$ Нарешті, за умовою задачі, другі частинні похідні є неперервними в т. (x_0,y_0) , тому далі одночасно прямуємо $x \to x_0, y \to y_0 \implies \Delta x \to 0, \Delta y \to 0$. Оскільки $\xi_1, \xi_2 \in (x_0, x_0 + \Delta x)$ $\eta_1, \eta_2 \in (y_0, y_0 + \Delta y)$,

то звідси $\xi_1, \xi_2 \to x_0$ та $\eta_1, \eta_2 \to y_0$. Остаточно отримаємо $\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$ (літери s, t я замінив на x, y, результат не зміниться).

Definition 7.7.5 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка.

Функція f називається двічі диференційованою в т. \vec{x}^0 , якщо всі частинні похідні існують в околі т. $\vec{x^0}$ та диференційовані в т. $\vec{x^0}$.

Example 7.7.6 Маємо функцію $z = x^2 + 2y^2 - 5xy$. З'ясуємо, чи буде ця функція двічі диференці-

$$\frac{\partial z}{\partial x} = 2x - 5y$$
 $\frac{\partial z}{\partial y} = 4y - 5x$

иованою. $\frac{\partial z}{\partial x} = 2x - 5y \qquad \frac{\partial z}{\partial y} = 4y - 5x$ Усі отримані частинні похідні існують в будь-якому околі деякої точки. $\frac{\partial^2 z}{\partial x^2} = 2 \qquad \frac{\partial^2 z}{\partial y \partial x} = -5$

$$\frac{\partial^2 z}{\partial x^2} = 2 \qquad \qquad \frac{\partial^2 z}{\partial u \partial x} = -5$$

Отримані частинні похідні визначені та неперервні в будь-якій точці. Таким чином, за **Th.4.1.8.**, функція $\frac{\partial z}{\partial x}$ - диференційована. $\frac{\partial^2 z}{\partial x \partial y} = -5$ $\frac{\partial^2 z}{\partial y^2} = 4$ Отримані частинні похідні визначені та неперервні в будь-якій точці. Таким чином, за **Th.4.1.8.**, $\frac{\partial z}{\partial y}$

функція
$$\frac{\partial z}{\partial x}$$
 - диференційована. $\frac{\partial^2 z}{\partial x \partial y} = -5$ $\qquad \qquad \frac{\partial^2 z}{\partial y^2} = 4$

функція $\frac{\partial z}{\partial y}$ - диференційована.

Отже, за означенням, z - двічі диференційована функція.

Proposition 7.7.7 Функція f двічі диференційована в т. $\vec{x}^0 \iff \operatorname{grad} f$ - диференційована в т. \vec{x}^0 .

Proof.

Дійсно, f - двічі диференційована в т. $\vec{x}^0 \iff \forall j = \overline{1,m} : \exists \frac{\partial f}{\partial x_i}$ - диференційована в т. $\vec{x}^0 \iff$

$$\operatorname{grad} f = \begin{pmatrix} \dfrac{\partial f}{\partial x_1} \\ \vdots \\ \dfrac{\partial f}{\partial x_m} \end{pmatrix}$$
 - як вектор-функція - диференційована в т. \vec{x}^0 .

Розпишемо диференційованість вектор-функції grad f в т. \vec{x}^0 за означенням: $\operatorname{grad} f(\vec{x}^0 + \Delta \vec{x}) - \operatorname{grad} f(\vec{x}^0) = M \Delta \vec{x} + \vec{o}(\|\Delta \vec{x}\|), \Delta \vec{x} \to \vec{0}.$

Звідси ми маємо, що
$$M=\begin{pmatrix} \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_1}\right) & \cdots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_1}\right) \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} \left(\frac{\partial f}{\partial x_m}\right) & \cdots & \frac{\partial}{\partial x_m} \left(\frac{\partial f}{\partial x_m}\right) \end{pmatrix}=\\ =\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_m \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_m \partial x_m} & \cdots & \frac{\partial^2 f}{\partial x_m^2} \end{pmatrix} (\vec{x}^0) = H(\vec{x}^0) = f''(\vec{x}^0)$$
 - матриця Гесе

$$=egin{pmatrix} rac{\partial^2 f}{\partial x_1^2} & \cdots & rac{\partial^2 f}{\partial x_m \partial x_1} \ dots & \ddots & dots \ rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_2^2} \end{pmatrix} (ec{x}^0) = H(ec{x}^0) = f''(ec{x}^0)$$
 - матриця Гесе

 Матриця Гесе описує **другу похідну** функції f в т. \vec{x}^0 та одночасно **похідну** вектор-функції grad fв т. \vec{x}^0 . Дана матриця - квадратна, тож ми можемо обчислити $\det f''(\vec{x}^0)$ - **reciah**.

Definition 7.7.8 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Також f - диференційована в т. \vec{x}^0 .

Другим диференціалом функції f називають вираз:

$$d^2 f(\vec{x}^0) = d(df(\vec{x}^0))$$

З'ясуємо, як цей вираз можна по-інакшому записати. Маємо:

$$d^{2}f = d\left(df\right) = d\left(\frac{\partial f}{\partial x_{1}} dx_{1} + \dots + \frac{\partial f}{\partial x_{m}} dx_{m}\right) = d\left(\frac{\partial f}{\partial x_{1}} dx_{1}\right) + \dots + d\left(\frac{\partial f}{\partial x_{m}} dx_{m}\right) =$$

$$= d\left(\frac{\partial f}{\partial x_{1}}\right) dx_{1} + \dots + d\left(\frac{\partial f}{\partial x_{m}}\right) dx_{m} = \left(\frac{\partial}{\partial x_{1}} \left(\frac{\partial f}{\partial x_{1}}\right) dx_{1} + \dots + \frac{\partial}{\partial x_{m}} \left(\frac{\partial f}{\partial x_{1}}\right) dx_{m}\right) dx_{1} + \dots +$$

$$\left(\frac{\partial}{\partial x_{1}} \left(\frac{\partial f}{\partial x_{m}}\right) dx_{1} + \dots + \frac{\partial}{\partial x_{m}} \left(\frac{\partial f}{\partial x_{m}}\right) dx_{m}\right) dx_{m} =$$

$$= \left(\frac{\partial^{2} f}{\partial x_{1}^{2}} dx_{1}^{2} + \dots + \frac{\partial^{2} f}{\partial x_{m} \partial x_{1}} dx_{m} dx_{1}\right) + \dots + \left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{m}} dx_{1} dx_{m} + \dots + \frac{\partial^{2} f}{\partial x_{m}^{2}} dx_{m}^{2}\right) = \sum_{i,j=1}^{m} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j}.$$

Отже, маємо іншу формулу для другого диференціалу в т. \vec{x}^0 :

$$d^2 f(\vec{x}^0) = \sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j} (\vec{x}^0) \, dx_i \, dx_j$$

Якщо придивитись, то $d^2 f(\vec{x}^0)$ виглядає як квадратична форма.

Example 7.7.9 Знайдемо другий диференціал функції $z = x^3 + 2y^2 - 5xy$. Ми вже шукали другі частинні похідні $\frac{\partial^2 f}{\partial x^2} = 6x \quad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = -5 \quad \frac{\partial^2 f}{\partial y^2} = 4$. Таким чином,

$$d^2z = \frac{\partial^2 f}{\partial x^2} dx^2 + 2 \frac{\partial^2 f}{\partial x \partial y} dx dy + \frac{\partial^2 f}{\partial y^2} dy^2 = 6x dx^2 - 10 dx dy + 4 dy^2.$$

Definition 7.7.10 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Також f - k разів диференційована в т. \vec{x}^0 .

Частинними похідним k+1-го порядку в т. \vec{x}^0 називають похідну:

$$\frac{\partial}{\partial x_{j_{k+1}}} \left(\frac{\partial^k f}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}} \right) (\vec{x}^0) = \frac{\partial^{k+1} f}{\partial x_{j_{k+1}} \partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_k}} (\vec{x}^0)$$
$$j_1 + j_2 + \dots + j_k + j_{k+1} = k + 1$$

Remark 7.7.11 Що таке **похідна** k-го порядку, визначати не буду, бо ще рано. Необхідно щось про тензори знати.

Definition 7.7.12 Задано функцію $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка. Також f - k разів лиференційована в т. \vec{x}^0

k+1-им диференціалом функції f називають вираз:

$$d^{k+1} f(\vec{x}^0) = d(d^k f(\vec{x}^0))$$

Якщо дуже сильно постаратись, то за індукцією можна довести таку формулу диференціала k-го порядку:

$$d^k f(\vec{x}^0) = \sum_{j_1, \dots, j_k=1}^m \frac{\partial^k f}{\partial x_{j_1} \dots \partial x_{j_k}} (\vec{x}^0) \cdot dx_{j_1} \dots dx_{j_k}$$

Definition 7.7.13 Задано функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - внутрішня точка.

Функція f називається k-разів диференційованою в т. \vec{x}^0 , якщо всі частинні похідні (k-1)-го порядку існують в околі т. \vec{x}^0 та всі вони диференційовані в т. \vec{x}^0 .

Позначення: $C^k(A)$ - множина k разів неперервно-диференційованих функцій.

Формула Тейлора

Зробимо певні позначення:

$$[\vec{x}^0, \vec{x}] = \{(1-t)\vec{x}^0 + t\vec{x} : t \in [0, 1]\}$$
$$(\vec{x}^0, \vec{x}) = \{(1-t)\vec{x}^0 + t\vec{x} : t \in (0, 1)\}$$

Theorem 7.8.1 Теорема Тейлора (у формі Лагранжа)

Задано функцію f - диференційована n разів на $[\vec{x}^0, \vec{x}]$ та (n+1)-ий раз диференційована на (\vec{x}^0, \vec{x}) . Тоді $\exists \vec{\xi} \in (\vec{x}^0, \vec{x})$ або (\vec{x}, \vec{x}^0) , для якого

$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + \frac{d^{n+1}f(\vec{\xi})}{(n+1)!}$$

Proof.

Розглянемо функцію $p(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$, тут $t \in [0, 1]$ - функція від однієї змінної.

Знайдемо похідні від цієї функції:

$$p'(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))'_t = (f(x_1 + t(x_1 - x_1^0), \dots, x_m + t(x_m - x_m^0)))'_t = (f(u_1, \dots, u_m))'_t =$$

$$= \frac{\partial f}{\partial u_1} \frac{\partial u_1}{\partial t} + \dots + \frac{\partial f}{\partial u_m} \frac{\partial u_m}{\partial t} = \frac{\partial f}{\partial u_1} (x_1 - x_1^0) + \dots + \frac{\partial f}{\partial u_m} (x_m - x_m^0) = \left(\frac{\partial f}{\partial u_1} \dots \frac{\partial f}{\partial u_m}\right) \begin{pmatrix} x_1 - x_1^0 \\ \vdots \\ x_m - x_m^0 \end{pmatrix} =$$

$$= df(\vec{x}^0 + t(\vec{x} - \vec{x}^0)).$$

$$p''(t) = [f'(\vec{x}^0 + t(\vec{x} - \vec{x}^0)) \cdot (\vec{x} - \vec{x}^0)]_t' \stackrel{\text{ahanoriyho}}{=} d^2 f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$$

$$p^{(k)}(t) = d^k f(\vec{x}^0 + t(\vec{x} - \vec{x}^0)).$$

Коротше, наша функція n разів диференційована на [0,1] та має (n+1) похідну на (0,1). Тому ми можемо розкласти формулу Тейлора як функцію з однією змінною. $\exists \xi \in (0,1)$:

$$p(1) = p(0) + \frac{p'(0)}{1!}(1-0) + \frac{p''(0)}{2!}(1-0)^2 + \dots + \frac{p^{(n)}(0)}{n!}(1-0)^n + \frac{p^{(n+1)}(\xi)}{(n+1)!}(1-0)^{n+1}.$$

А далі підставляємо все, що маємо:

$$p(0) = f(\vec{x}^0)$$

$$p'(0) = df(\vec{x}^0)$$

$$p''(0) = d^2 f(\vec{x}^0)$$

$$p^{(n+1)}(\xi) = d^{n+1}f(\vec{x}^0 + \xi(\vec{x} - \vec{x}^0))$$

Отже,
$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + \frac{d^{n+1}f(\vec{\xi})}{(n+1)!}$$
, де $\vec{\xi} = \vec{x}^0 + \xi(\vec{x} - \vec{x}^0) \in (\vec{x}^0, \vec{x})$.

Theorem 7.8.2 Теорема Тейлора (у формі Пеано)

Задано функцію
$$f$$
 - диференційована n разів в т. \vec{x}^0 . Тоді
$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!} + o(\|\vec{x} - \vec{x}^0\|^n), \vec{x} \to \vec{x}^0.$$

Без доведення. Але певні плани доведення наве

Позначимо функцію
$$g(\vec{x}) = f(\vec{x}) - \left(f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + \dots + \frac{d^nf(\vec{x}^0)}{n!}\right)$$
. Наша мета показати, що $g(\vec{x}) = o(\|\vec{x} - \vec{x}^0\|^n)$.

Як і раніше, тут треба показати, що g та всі його частинні похідні до порядка включно n в т. \vec{x}^0 будуть нулями.

А далі вже показуємо, що $g(\vec{x}) = o(\|\vec{x} - \vec{x}^0\|^n)$.

Example 7.8.3 Розкласти функцію $f(x,y) = e^{x+y}$ відносно т. $(x_0,y_0) = (1,-1)$.

Заздалегідь зауважимо, що
$$\frac{\partial^s f}{\partial x^{s_1} \partial y^{s_2}}(1,-1) = e^{x+y}|_{(1,-1)} = 1$$
, де $s_1 + s_2 = s$.

$$f(1,-1) = 1$$

$$f'(1,-1)(\vec{x} - \vec{x}^0) = (x-1) + (y+1)$$

$$f''(1,-1)(\vec{x} - \vec{x}^0)^2 = (x-1)^2 + 2(x-1)(y+1) + (y+1)^2$$

$$f'''(1,-1)(\vec{x} - \vec{x}^0)^3 = (x-1)^3 + 3(x-1)^2(y+1) + 3(x-1)(y+1)^2 + (y+1)^3$$
.

Таким чином, ми можемо це записати осн

Таким чином, ми можемо це записати ось так:
$$f(x,y) = 1 + \left[\frac{(x-1)}{1!} + \frac{(y+1)}{1!} \right] + \left[\frac{(x-1)^2}{2!} + \frac{2(x-1)(y+1)}{2!} + \frac{(y+1)^2}{2!} \right] + \dots + \left[\frac{(x-1)^n}{n!} + \frac{C_n^2(x-1)^{n-1}(y+1)}{n!} + \dots + \frac{(y+1)^n}{n!} \right] + o\left(\sqrt{(x-1)^2 + (y+1)^2}\right) = \sum_{k=1}^n \sum_{n=0}^k \frac{C_p^k}{k!} (x-1)^{k-p} (y+1)^p + o\left(\sqrt{(x-1)^2 + (y+1)^2}^n\right), (x,y) \to (1,-1).$$

Remark 7.8.4 Можна формулу Тейлора записати в якості ряда Тейлора за певними умовами, але я цього робити не буду.

7.9 Локальні екстремуми

Definition 7.9.1 Задано функцію $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - внутрішня точка.

Точка \vec{x}^0 називається точкою:

- локального максимуму, якщо $\exists U_{\varepsilon}(\vec{x}^0) : \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0) : f(\vec{x}^0) \geq f(\vec{x});$
- локального мінімуму, якщо $\exists U_{\varepsilon}(\vec{x^0}): \forall \vec{x} \in U_{\varepsilon}(\vec{x^0}): f(\vec{x^0}) \leq f(\vec{x}).$ для строгих екстремумів нерівність строга та існують околи $U_{\varepsilon}(\vec{x}^0)\setminus\{\vec{x}^0\}$.

Theorem 7.9.2 Необхідна умова локального екстремуму

Задано функцію $f:A\to\mathbb{R}$ - диференційована в т. $\vec{x}^0\in A$ - внутрішня.

Відомо, що
$$\vec{x}^0$$
 - локальний екстремум. Тоді $\frac{\partial f}{\partial x_j}(\vec{x}^0)=0, \forall j=\overline{1,m}.$

Proof.

Розглянемо функцію $h(x_1) = f(x_1, x_2^0, \dots, x_m^0)$ - функція від однієї змінної, така, що x_1^0 - локальний екстремум. Для інших змінних аналогічно. Більш того, $h'(x_1) = \frac{\partial f}{\partial x_1}(x_1, x_2^0, \dots, x_m^0)$.

Таким чином, за необхідною умовою локального екстремуму матана 1 семестру,

$$h'(x_1) = 0 \implies \frac{\partial f}{\partial x_1}(x_1^0, x_2^0, \dots, x_m^0) = 0.$$

$$\mbox{\bf Remark 7.9.3} \ \frac{\partial f}{\partial x_j}(\vec{x}^0) = 0, \forall j = \overline{1,m} \iff df(\vec{x}^0) \equiv 0. \label{eq:first}$$

⇒ Зрозуміло.

 \leftarrow Підставити в диференціал $(dx_1, dx_2, \dots, dx_n) = (1, 0, \dots, 0)$, щоб отримати $\frac{\partial f}{\partial x_i}(\vec{x}^0) = 0$.

Definition 7.9.4 Точка \vec{x}^0 називається **стаціонарною** для функції f, якщо всі частинні похідні в заданній точці нулеві.

Proposition 7.9.5 Інше означення критичної точки

Точка \vec{x}^0 – стаціонарна $\iff df_{\vec{x}^0}$ – не сюр'єктивне.

Proof.

 \Rightarrow Зрозуміло.

 \sqsubseteq Дано: $df_{\vec{x}^0}$ – не сюр'єктивне. Взагалі, будь-який функціонал уже автоматично сюр'єктивний. $\overline{\text{Тодi}}$ звідси $df_{\vec{x}^0}\equiv 0$ – єдиний варіант. Отже, звідси всі частинні похідні нулеві, а тому \vec{x}^0 – стаціо-

Theorem 7.9.6 Достатня умова локального екстремуму

Задано функцію $f:A\to\mathbb{R}$, таку, що f - двічі неперервно-диференційована в околі т. $\vec{x}^0\in A$ стаціонарна та внутрішня точка.

- 1) Нехай $d^2f(\vec{x}^0)$ строго додатноозначена. Тоді \vec{x}^0 строгий локальний мінімум;
- 2) Нехай $d^2f(\vec{x}^0)$ строго від'ємноозначена. Тоді \vec{x}^0 строгий локальний максимум; 3) Нехай $d^2f(\vec{x}^0)$ знакозмінна. Тоді \vec{x}^0 не локальний екстремум.

1) Нехай $d^2 f(\vec{x}^0)$ - додатно визначена.

Оскільки функція f - двічі диференційована в т. \vec{x}^0 , то тоді за теоремою Тейлора в формі Пеано,

$$f(\vec{x}) = f(\vec{x}^0) + \frac{df(\vec{x}^0)}{1!} + \frac{d^2f(\vec{x}^0)}{2!} + o(\|\vec{x} - \vec{x}^0\|^2), \vec{x} \to \vec{x}^0.$$

Позначу $\rho = \|\vec{x} - \vec{x}^0\|$, а також $\xi_k = \frac{x_k - x_k^0}{\rho}$, $k = \overline{1,m}$. Можна зауважити, що $\xi_1^2 + \dots + \xi_m^2 = 1$.

Оскільки \vec{x}^0 - стаціонарна, то звідси $df(\vec{x}^0) \equiv 0$, бо всі частинні похідні нулі. Таким чином,

$$f(\vec{x}) - f(\vec{x}^0) = \frac{1}{2}d^2f(\vec{x}^0) + o(\rho^2) = \frac{1}{2}\sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0)(x_i - x_i^0)(x_j - x_j^0) + o(\rho^2) = \frac{1}{2}\rho^2 \left(\sum_{i,j=1}^m \frac{\partial^2 f}{\partial x_i \partial x_j}(\vec{x}^0)\xi_i \xi_j + o(1)\right).$$

Розглянемо функцію $F(\xi_1,\dots,\xi_m)=\sum_{i:i=1}^m \frac{\partial^2 f}{\partial x_i\partial x_j}(\vec{x}^0)\xi_i\xi_j$, що визначена на одиничній сфері

 $S^m = \{ \vec{\xi} \in \mathbb{R}^m : \|\vec{\xi}\| = 1 \}$, а ця множина - замкнена та обмежена. Також відомо, що $F \in C(S^m)$ як многочлен, а тому вона досягає мінімуму. Проте F - додатно визначена, а отже $\min F > 0$.

Рівність $f(\vec{x}) - f(\vec{x}^0) = \frac{1}{2} \rho^2 (F(\xi_1, \dots, \xi_m) + o(1)), \rho \to 0$ перепишеться таким чином:

$$\exists \delta: \forall \rho < \delta \implies f(\vec{x}) - f(\vec{x}^0) > \frac{1}{4}\rho^2 \min F > 0$$
, остаточно

$$\exists \delta > 0 : \forall \vec{x} : ||\vec{x} - \vec{x}^0|| < \delta \implies f(\vec{x}) - f(\vec{x}^0) > 0.$$

 $\exists \delta > 0: \forall \vec{x}: \|\vec{x} - \vec{x}^0\| < \delta \implies f(\vec{x}) - f(\vec{x}^0) > 0.$ Тобто, знайшли окіл, де $\forall \vec{x}: f(\vec{x}^0) < f(\vec{x})$, а тому \vec{x}^0 - строгий локальний мінімум.

- 2) Все аналогічно.
- 3) А тепер припустимо, що $d^2f(\vec{x}^0)$ знако-невизначена. Ми розглядаємо функцію лише в деякому околі $U_{\delta_0}(\vec{x}^0)$ через диференційованість. Тоді $\exists \Delta \vec{x}: d^2 f(\vec{x}^0, \Delta \vec{x}) > 0$. Ми окіл ще звужимо до $U_{\delta = \|\vec{\Delta x}\|}(\vec{x}^0)$. Там будемо шукати точку в вигляді $\vec{x}^t = \vec{x}^0 + t\Delta \vec{x}$, де t > 0 - довільне. Тоді за Тейло-

$$f(\vec{x}^t) - f(\vec{x}^0) = \frac{1}{2} d^2 f(\vec{x}^0, t \vec{\Delta x}) + o(\|\vec{x}^t - \vec{x}^0\|), \text{ ge } \vec{x}^t \to \vec{x}^0.$$

$$f(\vec{x}^t) - f(\vec{x}^0) = \frac{1}{2} t^2 d^2 f(\vec{x}^0, \vec{\Delta x}) + o(t^2 \|\vec{\Delta x}\|^2) = \frac{t^2}{2} \left(d^2 f(\vec{x}^0, \vec{\Delta x}) + o(1) \right), \text{ ge } t \to 0.$$

Якщо більш детально це розписати o(1), а згодом обрати $\varepsilon = \frac{1}{2}d^2f(\vec{x}^0, \Delta \vec{x})$, то отримаємо, що $\exists \delta^* : \forall t : t < \delta^* \implies f(\vec{x}^t) - f(\vec{x}^0) > 0.$

Якщо так станеться, що $U_{\delta^*}(\vec{x^0})$ буде більшим за $U_{\delta=\|\vec{\Delta x}\|}(\vec{x^0})$, то тоді буде ми можемо взяти точку $\vec{x}^0 + \vec{\Delta x}$, для якої $f(\vec{x}^0 + \vec{\Delta x}) - f(\vec{x}^0) > 0$.

Також буде $\exists \vec{\Delta x'}: d^2 f(\vec{x}^0, \vec{\Delta x'}) < 0$ в силу невизначеності знака. І там абсолютно аналогічно. Остаточно, $\forall U_{\delta}$,

- якщо U_{δ} більший за U_{δ_0} , то вже автоматично виконано;
- інакше знайдуться точки по цим крокам

Отже, \vec{x}^0 - не екстремум.

Example 7.9.7 Дослідити на локальні екстремуми функцію $f(x) = x^3 + 3xy^2 - 39x - 36y + 26$. Спочатку шукаємо критичні точки:

$$\begin{cases} \frac{\partial f}{\partial x} = 3x^2 + 3y^2 - 39 = 0\\ \frac{\partial f}{\partial y} = 6xy - 36 = 0 \end{cases} \implies (x, y) \in \{(3, 2), (-3, -2), (2, 3), (-2, -3)\}.$$

Далі знайдемо другий диференціал:
$$d^2f = \frac{\partial^2 f}{\partial x^2} \, dx^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \, dx \, dy + \frac{\partial^2 f}{\partial y^2} \, dy^2.$$

Для кожної критичної точки подивимось на цей диференціал.

I. $d^2 f(3,2) = 6(3 dx^2 + 4 dx dy + 3 dy^2)$.

Диференціал $d^2f(3,2)$ можна розглядати як квадратичну форму $(d^2f(3,2))(dx,dy)$. Даній квадратичній формі відповідає матриця $H=6\begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}=\begin{pmatrix} 18 & 12 \\ 12 & 18 \end{pmatrix}$ (див. лінійну алгебру). До речі, дана матриця - це в точності матриця Гесе.

Застосуємо критерій Сільвестра. Маємо $\Delta_1^H = 18 > 0$ та $\Delta_2^H = \det \begin{pmatrix} 18 & 12 \\ 12 & 18 \end{pmatrix} = 6(3 \cdot 3 - 2 \cdot 2) = 30 > 0$.

Отже, за цим критерієм, маємо $d^2f(3,2)$ - додатноозначена. Отже, (3,2) - локальний мінімум.

II. $d^2f(-3,-2)$ - аналогічними міркуваннями доводимо, що (-3,-2) - локальний максимум.

III.
$$d^2 f(2,3) = 12(dx^2 + 3 dx dy + dy^2)$$
.

Знову запишемо матрицею $H=6\begin{pmatrix}2&3\\3&2\end{pmatrix}$. Зауважимо, що матриця має власні числа -1,5. Вони різного знаку, що приводить до висновку: $d^2f(2,3)$ - знакозмінна. Отже, (2,3) - не екстремум.

IV. $d^2f(-2,-3)$ - аналогічними міркуваннями доводимо, що (-2,-3) - не екстремум.

Example 7.9.8 Дослідити на локальні екстремуми функцію $f(x,y) = x^2 + y^4$.

$$\begin{cases} \frac{\partial f}{\partial x} = 2x = 0\\ \frac{\partial f}{\partial y} = 4y^3 = 0 \end{cases} \implies (0,0)$$
 - єдина критична точка.

 $d^2f(0,0)=2\,dx^2\geq 0$ - дана квадратична форма невід'ємноозначена, тому що при (dx,dy)=(0,0.1) маємо $d^2f(0,0)=0$. Тож скористатися достатньою умовою ми не можемо.

Однак можна зауважити, що $f(0,0) \leq f(x,y)$, причому $\forall (x,y) \in \mathbb{R}^2$, зокрема в будь-якій точці окола (0,0). Таким чином, (0,0) - локальний мінімум.

Example 7.9.9 Дослідити на локальні екстремуми функцію $f(x,y) = x^2 - y^4$.

Тут також (0,0) - єдина критична точка, тут також $d^2f(0,0)=2\,dx^2\geq 0$ - невід'ємноозначена квадратична форма.

Проте цього разу (0,0) не буде локальним екстремумом. Дійсно, для кожного околу $U_{\delta}(0,0)$ зна-йдуться точки $(x_1,y_1)=\left(\frac{\delta}{2},0\right)$ та $(x_2,y_2)=\left(0,\frac{\delta}{2}\right)$, причому ці дві точки в середині околу, для яких:

$$f(x_1, y_1) = \frac{\delta^2}{4} > 0 = f(0, 0)$$
 $f(x_2, y_2) = -\frac{\delta^4}{16} < 0 = f(0, 0).$

7.10 Умовні локальні екстремуми

Definition 7.10.1 Задано функцію $f: A \to \mathbb{R}$ та $A \subset \mathbb{R}^{n+m}$ - відкрита множина. Задано також функції $g_1, \ldots, g_m: A \to \mathbb{R}$. Розглянемо множину $\Gamma_{g_1, \ldots, g_m} = \{\vec{x} \in G: g_1(\vec{x}) = \cdots = g_m(\vec{x}) = 0\}$. Точка $\vec{x}^0 \in \Gamma_{g_1, \ldots, g_m}$ називається **умовним локальним максимумом (мінімумом)**, якщо вона є локальним максимумом (мінімумом) функцій $\tilde{f}: \Gamma_{g_1, \ldots, g_m} \to \mathbb{R}$, де $\tilde{f} \equiv f$.

Definition 7.10.2 Рівняння вигляду

$$g_1(\vec{x}) = 0,$$

$$\vdots$$

$$g_m(\vec{x}) = 0$$

називається рівняннями зв'язку.

Example 7.10.3 Зокрема маємо функцію $f(x,y)=x^2-y^2$ та функцію g(x,y)=y=0. Маємо тоді $\tilde{f}(x,y)=f(x,0)=x^2$, звідси x=0 - точка локального мінімуму функції \tilde{f} . Отже, x=0 - точка умовного локального мінімуму функції f.

Definition 7.10.4 Задані функції $g_1, \dots, g_m : A \to \mathbb{R}$, де $A \subset \mathbb{R}^p$ - відкрита множина. Всі функції неперервно диференційовані на A.

Вони називаються функціонально незалежними в точці $\vec{x}^0 \in A$, якщо

$$\{g_1'(\vec{x}^0), \dots, g_m'(\vec{x}^0)\}$$
 - лінійно незалежна

Example 7.10.5 Зокрема $\{g_1,g_2\}$, де $g_1(x,y)=x,g_2(x,y)=y$ - функціонально незалежні. Дійсно, $g_1'(x,y)=(1,0)$ та $g_2'(x,y)=(0,1)$ в кожній точці. Ці похідна - лінійно незалежні.

Definition 7.10.6 Задані функції $f, g_1, \dots, g_m : A \to \mathbb{R}$ та $A \subset \mathbb{R}^{n+m}$ - відкрита множина. **Функцією Лагранжа** назвемо таку функцію:

$$F_{\vec{\lambda}}(\vec{x}) = f(\vec{x}) - \lambda_1 g_1(\vec{x}) - \dots - \lambda_m g_m(\vec{x}),$$

де
$$\vec{\lambda} = (\lambda_1, \dots, \lambda_m)^T \in \mathbb{R}^m$$
.

Theorem 7.10.7 Необхідна умова умовного локального екстремуму

Задані функції $f,g_1,\ldots,g_m:A o\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ - відкрита множина. Всі функції - неперервно диференційовані на A.

Відомо, що $\vec{x}^0 \in \Gamma_{g_1,\dots,g_m}$ - умовний локальний екстремум функції f, а також $\{g_1,\dots,g_m\}$ - функціонально незалежні в \vec{x}^0 .

Тоді існують $\lambda_1, \ldots, \lambda_m \in \mathbb{R} : \vec{x}^0$ - стаціонарна точка функції Лагранжа.

 $Mu \, будемо \, doвoдити \, npu \, n=2, m=1. \, Для \, більших \, аргументів - аналогічно, але більш технічна$ справа

Proof.

Нехай f(x,y,z) має локальний екстремум $(x_0,y_0,z_0)\in\Gamma_g$ з рівнянням g(x,y,z)=0.

У силу функціональної незалежності за умовою в точці, маємо $g'(x_0, y_0, z_0) \neq \vec{0}$, тобто всі частинні похідні ненулеві. Тоді за теоремою про неявну функцію, існує $\varphi: U(x_0, y_0) \to U(z_0)$, де $\varphi(x_0,y_0)=z_0$

 $\forall (x, y) \in U(x_0, y_0) : g(x, y, \varphi(x, y)) = \tilde{g}(x, y) = 0.$

Тоді маємо функцію $\tilde{f}(x,y)=f(x,y,\varphi(x,y))$ - функція 2-х змінних, де (x_0,y_0) - точка локального екстремуму. Звідси випливає, що $d\tilde{f}(x_0, y_0) = 0$

$$d\tilde{f}(x_0, y_0) = df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

$$d\tilde{g}(x_0, y_0) = dg(x_0, y_0) = \frac{\partial g}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial g}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial g}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

Також оскільки
$$\tilde{g}(x,y)\equiv 0$$
, то звідси маємо:
$$d\tilde{g}(x_0,y_0)=dg(x_0,y_0)=\frac{\partial g}{\partial x}(x_0,y_0,z_0)\,dx+\frac{\partial g}{\partial y}(x_0,y_0,z_0)\,dy+\frac{\partial g}{\partial z}(x_0,y_0,z_0)\,d\varphi(x_0,y_0)=0.$$
 Останню рівність домножимо на λ , яка відніметься з першим рівнянням.
$$\left(\frac{\partial f}{\partial x}-\lambda\frac{\partial g}{\partial x}\right)(x_0,y_0,z_0)\,dx+\left(\frac{\partial f}{\partial y}-\lambda\frac{\partial g}{\partial y}\right)(x_0,y_0,z_0)\,dy+\left(\frac{\partial f}{\partial z}-\lambda\frac{\partial g}{\partial z}\right)(x_0,y_0,z_0)\,d\varphi(x_0,y_0)=0.$$

Оскільки $\frac{\partial g}{\partial z}(x_0,y_0,z_0)\neq 0$ в силу функціональної незалежності, то ми оберемо такий λ , щоб

$$\frac{\partial f}{\partial x}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial z}(x_0,y_0,z_0) = 0.$$
 Отримаємо:

$$\frac{\partial f}{\partial x}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial z}(x_0,y_0,z_0) = 0. \text{ Отримаємо:}$$

$$\left(\frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x}\right)(x_0,y_0,z_0) dx + \left(\frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y}\right)(x_0,y_0,z_0) dy = 0.$$
I ця рівність виконується для всіх $\Delta x, \Delta y$. Отже,
$$\frac{\partial f}{\partial x}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial x}(x_0,y_0,z_0) = 0$$

$$\frac{\partial f}{\partial y}(x_0,y_0,z_0) - \lambda \frac{\partial g}{\partial y}(x_0,y_0,z_0) = 0.$$
Маючи ці рівності отримаємо:

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) - \lambda \frac{\partial g}{\partial x}(x_0, y_0, z_0) = 0$$

$$\frac{\partial f}{\partial y}(x_0, y_0, z_0) - \lambda \frac{\partial g}{\partial y}(x_0, y_0, z_0) = 0.$$

Маючи ці рівності отримаємо:

$$dF_{\lambda}(x_0, y_0, z_0) = d(f - \lambda g)(x_0, y_0, z_0) = \partial(f - \lambda g),$$

$$\partial(f - \lambda g),$$

$$dF_{\lambda}(x_0,y_0,z_0) = d(f-\lambda g)(x_0,y_0,z_0) = \\ = \frac{\partial (f-\lambda g)}{\partial x}(x_0,y_0,z_0)\,dx + \frac{\partial (f-\lambda g)}{\partial y}(x_0,y_0,z_0)\,dy + \frac{\partial (f-\lambda g)}{\partial z}(x_0,y_0,z_0)\,dz = 0.$$
 Це виконано для всіх $\Delta x, \Delta y, \Delta z$. Отже, (x_0,y_0,z_0) - стаціонарна точка F_{λ} .

Theorem 7.10.8 Достатня умова умовного локального екстремуму

Задані функції $f,g_1,\ldots,g_m:A\to\mathbb{R}$ та $A\subset\mathbb{R}^{n+m}$ - відкрита множина. Всі функції - двічі неперервно диференційовані на A.

Відомо, що $\vec{x^0} \in \Gamma_{g_1,...,g_m}$ - стаціонарна точка функції Лагранжа для деякого $\vec{\lambda}$. Нехай $\{g_1,\dots,g_m\}$ - функціонально незалежні в т. \vec{x}^0 . Розглянемо множину $\Gamma_{g_1,...,g_m}^*(\vec{x}^0) = \{ \vec{\Delta x} \in \mathbb{R}^{n+m} : dg_1(\vec{x}^0) = \{ \vec{x}^0 \in \mathbb{R}^{n+m} : dg_1(\vec{x}^0) = \{ \vec{x$

- $\cdots = dg_m(\vec{x}^0) = 0$ }. 1) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ строго додатноозначена на $\Gamma^*_{g_1,...,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 умовний локальний мінімум; 2) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ строго від'ємноозначена на $\Gamma^*_{g_1,...,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 умовний локальний макси-
- 3) Нехай $d^2F_{\vec{\lambda}}(\vec{x}^0)$ знаконеозначена на $\Gamma^*_{g_1,\dots,g_m}(\vec{x}^0)$. Тоді \vec{x}^0 не умовний локальний екстремум.

Mu будемо доводити при n=2, m=1. Для більших аргументів - аналогічно, але більш технічна cnpaea

Proof.

Нехай рівняння зв'язку лише g(x,y,z)=0. Функція Лагранжа $F_{\lambda}(x,y,z)=f(x,y,z)-\lambda g(x,y,z)$. За умовою, (x_0, y_0, z_0) - стаціонарна точка F_{λ} для деякого λ .

g - функціонально незалежна в (x_0, y_0, z_0) , тож $g'(x_0, y_0, z_0) \neq \vec{0}$. Ми тут припустимо, що $\frac{\partial g}{\partial z}(x_0, y_0, z_0) \neq \vec{0}$

0. Тоді за теоремою про неявну функцію, існує $\varphi: U(x_0, y_0) \to U(z_0)$, для якого $\varphi(x_0, y_0) = z_0$

 $\forall (x,y) \in U(x_0,y_0) : g(x,y,\varphi(x,y)) = \tilde{g}(x,y) = 0.$

Причому сама функція φ також двічі неперервно-диференційована.

Розглянемо функцію $\tilde{f}: U(x_0, y_0) \to \mathbb{R}$, що визначена як $\tilde{f}(x, y) = f(x, y, \varphi(x, y))$.

Покажемо, що (x_0,y_0) - стаціонарна точка функції \tilde{f} .

$$d\tilde{f}(x_0, y_0) = df(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0).$$

$$\begin{split} &d\tilde{f}(x_{0},y_{0}) = df(x_{0},y_{0}) = \frac{\partial f}{\partial x}(x_{0},y_{0},z_{0}) \, dx + \frac{\partial f}{\partial y}(x_{0},y_{0},z_{0}) \, dy + \frac{\partial f}{\partial z}(x_{0},y_{0},z_{0}) \, d\varphi(x_{0},y_{0}). \\ &dF_{\lambda}(x_{0},y_{0},z_{0}) = d(f-\lambda g)(x_{0},y_{0},z_{0}) = \frac{\partial (f-\lambda g)}{\partial x}(x_{0},y_{0},z_{0}) \, dx + \frac{\partial (f-\lambda g)}{\partial y}(x_{0},y_{0},z_{0}) \, dy + \frac{\partial (f-\lambda g)}{\partial z}(x_{0},y_{0},z_{0}) \, dz = \frac{\partial (f-\lambda g)}{\partial z}(x_{0},y_{0},z_{0}) + \frac{\partial (f-\lambda g)}{\partial z}(x_{0},y_{0},z_{0}) + \frac{\partial (f-\lambda g)}{\partial z}(x_{0},y_{0},z_{0}) \, dz = \frac{\partial (f-\lambda g)}{\partial z}(x_{0},y_{0},z_{0}) + \frac$$

$$=\left(\frac{\partial f}{\partial x}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial x}(x_0,y_0,z_0)\right)\,dx+\left(\frac{\partial f}{\partial y}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial y}(x_0,y_0,z_0)\right)\,dy+\left(\frac{\partial f}{\partial z}(x_0,y_0,z_0)-\lambda\frac{\partial g}{\partial z}(x_0,y_0,z_0)\right)\,dz.$$
 Але в силу стаціонарної точки маємо $dF_\lambda(x_0,y_0,z_0)=0$. Зокрема для $dz=d\varphi(x_0,y_0)$ маємо рівність

Оскільки $g(x,y,\varphi(x,y))=0,$ то звідси $dg(x,y,\varphi(x,y))=0, \forall (x,y)\in U, \forall (\Delta x,\Delta y)\in \mathbb{R}^2.$

$$dg(x,y,\varphi(x,y)) = \frac{\partial g}{\partial x}(x,y,\varphi(x,y)) \, dx + \frac{\partial g}{\partial y}(x,y,\varphi(x,y)) \, dy + \frac{\partial g}{\partial z}(x,y,\varphi(x,y)) \, d\varphi(x,y).$$

Ох Оу Оу Ог Ог Зокрема, підставляючи
$$(x,y)=(x_0,y_0)$$
, отримаємо:
$$\frac{\partial g}{\partial x}(x_0,y_0,z_0)\,dx+\frac{\partial g}{\partial y}(x_0,y_0,z_0)\,dy+\frac{\partial g}{\partial z}(x_0,y_0,z_0)\,d\varphi(x_0,y_0)=0.$$

 ∂x ∂y ∂z Домножимо це рівняння на λ та додамо його до рівняння $dF_{\lambda}(x_0,y_0,z_0)=0.$ Отримаємо:

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) dx + \frac{\partial f}{\partial y}(x_0, y_0, z_0) dy + \frac{\partial f}{\partial z}(x_0, y_0, z_0) d\varphi(x_0, y_0) = 0.$$

Але це теж саме, що $d\tilde{f}(x_0,y_0)=0$, що доводить: (x_0,y_0) - стаціонарна точка \tilde{f} .

Тепер для визначення характеру точки (x_0, y_0) функції \tilde{f} ми обчислимо другий диференціал. Якщо все обережно зробити, отримаємо:

мее боережие эроонти, отримаеме:
$$d^2 \tilde{f}(x_0,y_0) = d^2 f(x_0,y_0,z_0)|_{\Delta z = d\varphi(x_0,y_0)} + \frac{\partial f}{\partial z}(x_0,y_0,z_0) \, d^2 \varphi(x_0,y_0).$$
 Аналогічним чином для $\tilde{g}(x,y)$ маємо:

$$d^2 ilde{g}(x_0,y_0) = d^2 g(x_0,y_0,z_0)|_{\Delta z = d \varphi(x_0,y_0)} + rac{\partial g}{\partial z}(x_0,y_0,z_0) \, d^2 \varphi(x_0,y_0) = 0.$$
 Попереднє рівняння віднімемо на останнє, помножене на λ - отримаємо:

Попереднє рівняння віднімемо на останнє, помножене на
$$\lambda$$
 - отримаємо:
$$d^2 \tilde{f}(x_0, y_0) = d^2 (f - \lambda g)(x_0, y_0, z_0)|_{\Delta z = d\varphi(x_0, y_0)} + \left(\frac{\partial f}{\partial z} - \lambda \frac{\partial g}{\partial z}\right)(x_0, y_0, z_0)d^2 \varphi(x_0, y_0).$$

$$d^{2}\tilde{f}(x_{0}, y_{0}) = d^{2}F_{\lambda}(x_{0}, y_{0}, z_{0})|_{\Delta z = d\varphi(x_{0}, y_{0})} + \frac{\partial F_{\lambda}}{\partial z}(x_{0}, y_{0}, z_{0})d^{2}\varphi(x_{0}, y_{0}).$$

Але (x_0, y_0, z_0) - кртична функція F_{λ} , а тому

 $d^2 \tilde{f}(x_0,y_0) = d^2 F_{\lambda}(x_0,y_0,z_0)|_{\Delta z = d\varphi(x_0,y_0)}.$ Вільш детально треба пояснити, що дає умова $\Delta z = d\varphi(x_0,y_0).$ Ми вже знаємо, що $g(x,y,\varphi(x,y)) =$ $0, \forall (x,y), \text{ a Tomy}$

 $dg(x,y,\varphi(x,y))(x_0,y_0)=0$, але звідси ж, враховуючи умову, отримаємо

 $dg(x, y, \varphi(x, y))(x_0, y_0) = dg(x_0, y_0, z_0) = 0.$

A це означає, що $(\Delta x, \Delta y, \Delta z) \in \Gamma_q^*(x_0, y_0, z_0)$.

Остаточно $d^2 \tilde{f}(x_0, y_0) = d^2 F_{\lambda}(x_0, y_0, z_0)|_{(\Delta x, \Delta y, \Delta z) \in \Gamma_a^*(x_0, y_0, z_0)}$.

А далі все цілком зрозуміло.

- $d^2F_{\lambda}(x_0,y_0,z_0)>0\implies d^2 ilde{f}(x_0,y_0)>0\implies (x_0,y_0)$ локальний мінімум $ilde{f}\implies (x_0,y_0,z_0)$ умовний локальний мінімум f;
- 2) аналогічно;
- 3) аналогічно.

Example 7.10.9 Дослідити функцію f(x, y, z) = xyz на умовний локальний екстремум за умовою (x, y, z) = 3.

У цьому випадку g(x,y,z) = x + y + z - 3 = 0. Запишемо функцію Лагранжа:

$$L_{\lambda}(x, y, z) = xyz - \lambda(x + y + z - 3).$$

Знайдемо всі критичні точки L_{λ} , що лежать на множині Γ_{q} :

$$\begin{cases} \frac{\partial L_{\lambda}}{\partial x} = yz - \lambda = 0\\ \frac{\partial L_{\lambda}}{\partial y} = xz - \lambda = 0\\ \frac{\partial L_{\lambda}}{\partial z} = xy - \lambda = 0\\ g(x, y, z) = x + y + z - 3 = 0 \end{cases}$$

 $\dot{\mathbf{R}}$ кщо розв'язати систему рівнянь, отримаємо наступні розв'язки (x,y,z):

 $M_0(1,1,1), M_1(3,0,0), M_2(0,3,0), M_3(0,0,3).$

А також відповідні λ будуть наступні:

 $\lambda_0=1, \lambda_1=0, \lambda_2=0, \lambda_3=0.$

Дослідимо тепер
$$d^2L_{\lambda}$$
 для кожної точки з відповідним λ .
$$d^2L_{\lambda} = \frac{\partial^2L_{\lambda}}{\partial x^2}\,dx^2 + \frac{\partial^2L_{\lambda}}{\partial y^2}\,dy^2 + \frac{\partial^2L_{\lambda}}{\partial z^2}\,dz^2 + 2\left(\frac{\partial^2L_{\lambda}}{\partial x\partial y}\,dx\,dy + \frac{\partial^2L_{\lambda}}{\partial y\partial z}\,dy\,dz + \frac{\partial^2L_{\lambda}}{\partial z\partial x}\,dz\,dx\right) = 0$$

= 2(z dx dy + x dy dz + y dx dz).

Із рівняння зв'язку маємо, що $d(x+y+z)=d(3)=0=dx+dy+dz\implies dz=-dx-dy$.

Підставимо це в d^2L_{λ} :

$$d^{2}L_{\lambda} = 2(-ydx^{2} + (z - x - y) dx dy - x dy^{2}).$$

I. $M_0(1,1,1)$ та $\lambda_0=1$.

$$d^2L_{\lambda_0}(M_0) = 2(-dx^2 - dx\,dy - dy^2) = -2\left(\left(dx + \frac{1}{2}\,dy\right)^2 + \frac{3}{4}\,dy^2\right) < 0.$$
 Тобто маємо від'ємноозначену

квадратичну форму. Отже, $M_0(1,1,1)$ - умовний локальний максимум.

II. $M_1(3,0,0)$ та $\lambda_1=0$.

 $d^2L_{\lambda_1}(M_1) = 2(-3 dx dy - 3 dy^2) = -6(dx + dy) dy$. Тобто маємо знаконеозначену квадратичну форму. Отже, $M_1(3,0,0)$ - не умовний локальний екстремум.

III. $M_2(0,3,0)$ та $\lambda_2=0$ - аналогічно не умовний локальний екстремум.

IV. $M_3(0,0,3)$ та $\lambda_3=0$ - аналогічно не умовний локальний екстремум.

8 Інтеграли з параметром

8.1 Основні означення та властивості

Definition 8.1.1 Задано функцію $f:[a,b]\times[c,d]\to\mathbb{R}$, таку, що $\forall y\in[c,d]:f\in\mathcal{R}([a,b]).$ Інтегралом з параметром називають таку функцію $J:[c,d] \to \mathbb{R}$:

$$J(y) = \int_{a}^{b} f(x, y) dx$$

Proposition 8.1.2 Неперервність

Задано функцію $f:[a,b]\times[c,d]\to\mathbb{R}$, таку що $f\in C([a,b]\times[c,d])$. Тоді $J\in C([c,d])$.

Зауважимо, що $f \in C([a,b] \times [c,d]).$ то звідси $\forall y \in [c,d]: f \in C([a,b]) \implies f \in \mathcal{R}([a,b]).$ Тобто функція $J(y) = \int_{-\infty}^{\infty} f(x,y) dx$ коректно визначена.

$$f(x,y) \in C([a,b] \times [c,d]) \implies f(x,y) \in C_{unif}([a,b] \times [c,d]) \implies \forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (x_1,y_1), (x_2,y_2) \in [a,b] \times [c,d] : \|(x_1,y_1) - (x_2,y_2)\| = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} < \delta \Rightarrow |f(x_1,y_1) - f(x_2,y_2)| < \frac{\varepsilon}{b-a}.$$

Тоді
$$|J(y_1) - J(y_2)| = \left| \int_a^b f(x, y_1) \, dx - \int_a^b f(x, y_2) \, dx \right| \le \int_a^b |f(x, y_1) - f(x, y_2)| \le 1$$

Якщо я оберу (x,y_1) , (x,y_2) так, що $\|(x,y_1)-(x,y_2)\|=\sqrt{(y_1-y_2)^2}=|y_1-y_2|<\delta$, то тоді $|f(x,y_1)-f(x,y_2)|<\frac{\varepsilon}{b-a}$

 J_a о и Збираючи пазл, отримаємо $J \in C_{unif}([c,d]) \implies J \in C([c,d]).$

Proposition 8.1.3 Диференційованість

Задано функцію $f:[a,b]\times[c,d]\to\mathbb{R}$, таку, що $f\in C([a,b]\times[c,d])$. Відомо, що $\exists \frac{\partial f}{\partial n}\in C([a,b]\times[c,d])$.

Тоді J - диференційована на [c,d], при цьому $J'(y) = \int_{-\partial u}^{b} \frac{\partial f}{\partial u}(x,y) dx$.

Proof.

Диференційованість означає існування похідної, тобто необхідно довести її існування.

$$\frac{J(y + \Delta y) - J(y)}{\Delta y} = \frac{1}{\Delta y} \int_{a}^{b} f(x, y + \Delta y) - f(x, y) dx$$

 Δy Δy J_a Згадаємо Ньютона-Лейбніца та властивості інтеграла та розпишемо підінтегральний вираз таким

Гонер свертноў світ і уб та ресілітеля праву пастту рівнесті, що міт доводимої
$$\int_a^b \frac{\partial f}{\partial y}(x,y_0) \, dx = \int_a^b \frac{1}{\Delta y} \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x,y_0) \, dt \right) dx = \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x,y_0) \, dt \right) dx$$
 Ну а тепер час доводити існування похідної:

$$\left| \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} - \int_a^b \frac{\partial f}{\partial y}(x, y_0) \, dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, t) \, dt \right) dx - \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| = \left| \frac{1}{\Delta y} \int_a^b \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, t) - \frac{\partial f}{\partial y}(x, y_0) \, dt \right) dx \right| \le 1$$

$$\frac{\partial f}{\partial y}(x,y) \in C([a,b] \times [c,d]) \implies \frac{\partial f}{\partial y}(x,y) \in C_{unif}([a,b] \times [c,d]) \implies$$

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (x,t), (x,y_0) \in [a,b] \times [c,d] : \|(x,t) - (x,y_0)\| < \delta \Rightarrow \left| \frac{\partial f}{\partial y}(x,t) - \frac{\partial f}{\partial y}(x,y_0) \right| < \frac{\varepsilon}{b-a}$$

$$\leq \int_a^b \int_{y_0}^{y_0 + \Delta y} \frac{1}{\Delta y} \frac{\varepsilon}{b-a} dt dx = \varepsilon$$

Знову збираємо пазл - отримуємо, що:
$$\forall y_0 \in [c,d]$$
:
$$\exists \lim_{\Delta y \to 0} \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} = \int_a^b \frac{\partial f}{\partial y}(x,y_0) \, dx = J'(y_0). \text{ Отже, } J \text{ - диференційована на } [c,d].$$

Proposition 8.1.4 Інтегрованість

Задано функцію
$$f:[a,b]\times[c,d]\to\mathbb{R},$$
 таку, що $f\in C([a,b]\times[c,d]).$ Тоді $J\in\mathcal{R}([c,d]),$ а також $\int_{c}^{d}\underbrace{\int_{a}^{b}f(x,y)\,dx}_{=J(y)}\,dy=\int_{a}^{b}\int_{c}^{d}f(x,y)\,dy\,dx.$

Proof.

Розглянемо дві функції: $h(t) = \int_c^t \int_a^b f(x,y) \, dx \, dy \qquad g(t) = \int_a^b \int_c^t f(x,y) \, dy \, dx$. В нашому випадку $t \in [c,d]$. Якщо t=c, то маємо, що h(c)=g(c)=0.

Необхідно знайти, чому дорівнює h'(t), g'(t). Зробимо позначення: $h(t) = \int_c^t J(y) \, dy$ $g(t) = \int_a^b F(x,t) \, dx$. Маємо два інтеграли з параметром t. Другий інтеграл задовольняє умові з **Prp 3.1.3**, тоді можемо

$$F(x,t) \in C([a,b] \times [c,d])$$
, тому що $|F(x,t) - F(x_0,t_0)| = \left| \int_c^t f(x,y) \, dy - \int_c^{t_0} f(x_0,y) \, dy \right| =$

$$= \left| \int_c^t f(x,y) - f(x_0,y) \, dy - \int_{t_0}^t f(x_0,y) \, dy \right|$$
, далі неважко оцінити.

А також
$$\frac{\partial F}{\partial t}(x,t)=f(x,t)\in C([a,b]\times[c,d]).$$
 Перший - це інтеграл від верхньої межі, тому автоматично $h'(t)=J(t).$ Другий рахується за попереднім твердженням, всі умови виконані для цього.

$$g'(t) = \int_a^b \frac{\partial F}{\partial t}(x,t) dt = \int_a^b f(x,t) dx = J(t).$$

Таким чином, $\forall t \in [c,d]: h'(t)=g'(t) \Longrightarrow h(t)=g(t)+C.$ Але оскільки h(c)=g(c)=0, то одразу $C=0 \Rightarrow h(t)=g(t)$

Hy а тоді
$$h(d) = g(d) \implies \int_c^b \int_a^b f(x,y) \, dx \, dy = \int_a^b \int_c^d f(x,y) \, dy \, dx.$$

Example 8.1.5 Обчислити $\lim_{\alpha \to 0} \int_{\alpha}^{2} x^{2} \cos \alpha x \, dx$.

Маємо $I(\alpha) = \int_0^2 x^2 \cos \alpha x \, dx$. Розглянемо функцію $f(x,\alpha) = x^2 \cos \alpha x$ на $[0,2] \times [-1,1]$ (можна й менше взяти другу сторону, головне щоб навколо т. 0). Ця функція є неперервною, тоді $I(\alpha)$ неперервна, зокрема в т. $\alpha=0$.

$$\lim_{\alpha \to 0} \int_0^2 x^2 \cos \alpha x \, dx = \lim_{\alpha \to 0} I(\alpha) = I(0) = \int_0^2 x^2 \, dx = \frac{x^3}{3} = \frac{8}{3}.$$

Example 8.1.6 Знайти похідну функції $I(\alpha) = \int_{1}^{2} e^{\alpha x^{2}} \frac{dx}{x}$.

Позначу $f(x,\alpha)=\frac{e^{\alpha x^2}}{x}$. Знайдемо частинну похідну за другим аргументом: $\frac{\partial f}{\partial \alpha}=\frac{x^2e^{\alpha x^2}}{x}=xe^{\alpha x^2}$. Зауважимо, що f та $\frac{\partial f}{\partial \alpha}$ неперервні на прямокутнику $[1,2]\times[-1,1]$, тому ми можемо диференціювати

функцію
$$I$$
, а також $I'(\alpha) = \int_1^2 x e^{\alpha x^2} dx$.

$$I'(\alpha) = \frac{1}{2} \int_{1}^{2} e^{\alpha x^{2}} dx^{2} = \frac{1}{2\alpha} e^{\alpha x^{2}} \Big|_{1}^{2} = \frac{e^{4\alpha} - e^{\alpha}}{2\alpha}.$$

Example 8.1.7 Обчислити $\int_{a}^{1} \frac{x^{b} - x^{\alpha}}{\ln x} dx$, якщо a, b > 0.

Зауважимо, що $\frac{x^b - x^a}{\ln x} = \int_a^b x^y \, dy$. Тоді взагалі маємо обчислити $\int_0^1 \int_a^b x^y \, dy \, dx$.

Оскільки функція $f(x,y) = x^y$ є неперервною на прямокутнику $[0,1] \times [a,b]$, то звідси ми можемо поміняти місцями порядок інтегрування, тобто

$$\int_0^1 \int_a^b x^y \, dy \, dx = \int_a^b \int_0^1 x^y \, dx \, dy = \int_a^b \frac{x^{y+1}}{y+1} \Big|_0^1 \, dy = \int_a^b \frac{1}{y+1} \, dy = \ln(y+1) \Big|_a^b = \ln \frac{b+1}{a+1}.$$

Зараз будуть більш специфічні приклади. Але на них простіше зрозуміти узагальнення теореми про неперервність та диференційованість.

Example 8.1.8 Знайти $\lim_{\alpha \to 0} \int_{-\pi}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2}$

Інтуїтивно хочеться, щоб це дорівнювало $\int_{0}^{1} \frac{dx}{1+x^{2}}$. Наш ліміт тому запишемо так:

$$\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \lim_{\alpha \to 0} \left(\int_{0}^{1} \frac{dx}{1+x^2+\alpha^2} + \int_{1}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} - \int_{0}^{\alpha} \frac{dx}{1+x^2+\alpha^2} \right).$$

Перший інтеграл, тобто $\lim_{\alpha \to 0} \int_0^1 \frac{dx}{1+x^2+\alpha^2} = \int_0^1 \frac{dx}{1+x^2}$. Тому задля нашої інтуіції, треба довести, що останні два інтеграла дорівнюють нулю.

$$\left|\int_0^\alpha \frac{dx}{1+x^2+\alpha^2}\right| \leq \int_0^\alpha \left|\frac{dx}{1+x^2+\alpha^2}\right| \leq \int_0^\alpha M\,dx = M\alpha \to 0.$$

$$\left|\int_1^{1+\alpha} \frac{dx}{1+x^2+\alpha^2}\right| \leq M(1+\alpha-1) \to 0 \text{ аналогічними міркуваннями}.$$

Тут $M=\max_{x\in[0,2]\times[0,1]}\frac{1}{1+x^2+\alpha^2},$ і це можна знайти через неперервність самої функції. Отже, $\lim_{\alpha\to 0}\int_{\alpha}^{1+\alpha}\frac{dx}{1+x^2+\alpha^2}=\int_{0}^{1}\frac{dx}{1+x^2}=\frac{\pi}{4}.$

Отже,
$$\lim_{\alpha \to 0} \int_{\alpha}^{1+\alpha} \frac{dx}{1+x^2+\alpha^2} = \int_{0}^{1} \frac{dx}{1+x^2} = \frac{\pi}{4}$$
.

Remark 8.1.9 Теорему про неперервність інтеграла з параметром можна узагальнити.

Маємо
$$f \in C([a,b] \times [c,d])$$
 та $a(y),b(y) \in C([c,d]),$ причому $a(y) \geq a$ та $b(y) \leq b.$ Тоді $J(y) = \int_{a(y)}^{b(y)} f(x,y) \, dx \in C([c,d]).$

Доведення аналогічне тому, як попередній приклад розв'язувався.

Example 8.1.10 Знайти похідну функції $F(\alpha) = \int_{\alpha}^{\alpha^2} \frac{\ln(1+\alpha x)}{x} \, dx$, нехай $\alpha \geq 0$. Інтуїтивно хочеться продиференціювати як інтеграл від межі та інтеграл від параметру. Оскільки $\frac{\ln(1+\alpha x)}{x} = f(x,\alpha)$ неперервна функція, то вона має первісну H. Тоді за формулою

$$\begin{split} F(\alpha) &= H(x,\alpha) \Big|_{\alpha}^{\alpha^2} = H(\alpha^2,\alpha) - H(\alpha,\alpha). \\ F'(\alpha) &= \frac{\partial H}{\partial \alpha^2}(\alpha^2,\alpha) \frac{d\alpha^2}{d\alpha} + \frac{\partial H}{\partial \alpha}(\alpha^2,\alpha) - \frac{\partial H}{\partial \alpha}(\alpha,\alpha) \frac{d\alpha}{d\alpha} - \frac{\partial H}{\partial \alpha}(\alpha,\alpha) = \\ &= \left(\frac{\partial H}{\partial \alpha^2}(\alpha^2,\alpha) \cdot 2\alpha - \frac{\partial H}{\partial \alpha}(\alpha,\alpha) \cdot 1\right) + \left(\frac{\partial H}{\partial \alpha}(\alpha^2,\alpha) - \frac{\partial H}{\partial \alpha}(\alpha,\alpha)\right) = \\ &= \left(f(\alpha^2,\alpha) \cdot 2\alpha - f(\alpha,\alpha) \cdot 1\right) + \left(f(\alpha^2,\alpha) - f(\alpha,\alpha)\right). \end{split}$$
 Підставимо все, що маємо - отримаємо:

$$F'(\alpha) = \frac{\ln(1+\alpha^3)}{\alpha^2} \cdot 2\alpha - \frac{\ln(1+\alpha^2)}{\alpha} + \frac{\ln(1+\alpha^3)}{\alpha^2} - \frac{\ln(1+\alpha^2)}{\alpha} = \frac{\ln(1+\alpha^3)}{\alpha} \left(2 + \frac{1}{\alpha}\right) - 2\frac{\ln(1+\alpha^2)}{\alpha}$$

Remark 8.1.11 Для диференціювання існує більш загальна формула, якщо досліджувати функцію $J(y) = \int_{a(y)}^{b(y)} f(x,y) \, dx$. Вимагаємо $f, \frac{\partial f}{\partial y} \in C([a,b] \times [c,d]), \ a,b \in C([c,d]),$ причому $a(y) \geq a$ та

$$J'(y) = f(\psi(y), y)\psi'(y) - f(\varphi(y), y)\varphi'(y) + \int_{\varphi(y)}^{\psi(y)} \frac{\partial f}{\partial y}(x, y) dx.$$

Для її доведення можна скористатися формулою Ньютона-Лейбніца.

Невласні інтеграли з параметром. Ознаки збіжності

Definition 8.2.1 Задано функцію $f: A \times B \to \mathbb{R}$, де $A, B \subset \mathbb{R}$, та $y_0 \in \mathbb{R}$ - гранична точка для B. Функція f поточково збігається до функції φ при $y \to y_0$, якщо

$$\forall x \in A : \lim_{y \to y_0} f(x, y) = \varphi(x)$$

Функція f збігається рівномірно до функції φ при $y \to y_0$ на множині A, якщо

$$\sup_{x \in A} |f(x,y) - \varphi(x)| \to 0, y \to y_0$$

Позначення: $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \rightarrow y_0$

Новий вигляд збіжності можна призвести до збіжності функціональних послідовностей таким твердженням.

Proposition 8.2.2 $f(x,y) \xrightarrow{\rightarrow} \varphi(x), y \to y_0$ на множині $A \iff \forall \{y_n, n \geq 1\} \subset B : \forall n \geq 1 : y_n \neq y_0 : x \neq y_0 = y$ $f(x,y_n) \xrightarrow{\rightarrow} \varphi(x), n \to \infty$ на множині A.

Випливає з означення рівномірної збіжності.

Theorem 8.2.3 Критерій Коші

$$f(x,y) \xrightarrow{\gamma} \varphi(x), y \to y_0 \text{ на } A \iff \forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall y_1, y_2 \in B, y_1, y_2 \neq y_0 : \begin{cases} |y_1 - y_0| < \delta \\ |y_2 - y_0| < \delta \end{cases} \implies \sup_{x \in A} |f(x,y_1) - f(x,y_2)| < \varepsilon.$$

Proof.

⇒ Вказівка: означення рівномірної границі та нерівність трикутника.

$$\sqsubseteq$$
 Дано: $\forall \varepsilon > 0: \exists \delta: \forall y_1, y_2 \in B, y_1, y_2 \neq y_0: \begin{cases} |y_1 - y_0| < \delta \\ |y_2 - y_0| < \delta \end{cases} \implies \sup_{x \in A} |f(x, y_1) - f(x, y_2)| < \varepsilon.$ Візьмемо деяку послідовність $\{y_n, n \geq 1\}$, де $y_n \neq y_0, y_n \rightarrow y_0$. Тоді $\exists N: \forall n, m \geq N: |y_n - y_0| < \delta, |y_m - y_0| < \delta$. За умовою, звідси $\sup_{x \in A} |f(x, y_n) - f(x, y_m)| < \varepsilon$. За умоторієм Коції рівномірної збіжності функціона деної послідовності. $f(x, y_n)$ є рівномірно збіжного

критерієм Коші рівномірної збіжності функціональної послідовності, $f(x,y_n)$ є рівномірно збіжною на A. Отже, f(x,y) - рівномірно збіжний на A за **Prp. 5.2.2.**

Тепер уже до суті цього підрозділу.

Definition 8.2.4 Задано функцію $f:[a,\omega)\times A$, таку, що $\forall y\in A: \forall c\in [a,\omega): f\in \mathcal{R}([a,c]).$ Також маємо збіжний невласний інтеграл із параметром $J(y)=\int_a^\omega f(x,y)\,dx,\,\forall y\in A.$

Невласний інтеграл збігається рівномірно на множині \check{A} , якщо

$$\sup_{y \in A} \left| \int_{a}^{\omega} f(x, y) \, dx - \int_{a}^{c} f(x, y) \, dx \right| \stackrel{c \to \omega}{\to} 0$$

Remark 8.2.5 Воно якось схоже за рівномірну збіжність функції, але трошки не так. Тут розглядається взагалі-то рівномірна збіжність функції g(x,y) до функції g(y) TA при цьому аргумент $x \to x_0$.

Theorem 8.2.6 Критерій Коші

Пестені 6.2.0 Критерій Коші
$$\int_{a}^{\omega} f(x,y) \, dx$$
 - збіжний рівномірно на $A \iff \forall \varepsilon > 0 : \exists C : \forall c_1, c_2 \in (C,\omega) : \sup_{y \in A} \left| \int_{c_1}^{c_2} f(x,y) \, dx \right| < \varepsilon.$ Випливає з критерію Коші рівномірної збіжності функцій.

Theorem 8.2.7 Ознака Вейєрштраса

Задані функції $f:[a,\omega)\times A\to\mathbb{R},\,g:[a,\omega)\to\mathbb{R}$ такі, що

1)
$$\forall x \in [a, \omega) : \forall y \in A : |f(x, y)| \le g(x);$$

$$(2)$$
 $\int_{-\infty}^{\omega} g(x) dx$ - збіжний.

Тоді
$$\int_a^\omega f(x,y)\,dx$$
 - збіжний рівномірно на $A.$

Proof.
$$\sup_{y \in A} \left| \int_{c}^{\omega} f(x, y) \, dx \right| \le \left| \int_{c}^{\omega} g(x) \, dx \right| \stackrel{c \to \omega}{\to} 0.$$

Example 8.2.8 Довести, що $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1+\gamma,+\infty)$, якщо $\gamma>0$.

Маємо функцію $f(x,\alpha)=\frac{1}{x^{\alpha}}$. Також відома оцінка $x^{\alpha}>x^{1+\gamma} \implies \frac{1}{x^{\alpha}}<\frac{1}{x^{1+\gamma}},$ виконано $\forall x\geq 1.$

Також $\int_{1}^{+\infty} \frac{dx}{x^{1+\gamma}}$ - збіжний невласний інтеграл (еталон). Тому за ознакою Вейєрштрасса, $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ рівномірно збіжний на множині $[1 + \gamma, +\infty)$.

Example 8.2.9 Довести, що $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ не є рівномірно збіжним на множині $(1, +\infty)$.

Дійсно,
$$\sup_{\alpha>1}\left|\int_{c}^{+\infty}\frac{dx}{x^{\alpha}}\right|=\sup_{\alpha>1}\left(\frac{1}{c^{\alpha-1}}\frac{1}{1-\alpha}\right)=+\infty\not\to 0$$
 при $c\to+\infty.$

Theorem 8.2.10 Ознака Діріхле та Абеля

Задані функції $f:[a,\omega) \times A \to \mathbb{R}, \ g:[a,\omega) \times A \to \mathbb{R}$ такі, що виконана одна з двох пар умов:

$$\int_a^A f(x,y)\,dx$$
 - рівномірно обмежена на $[a,\omega)$.
$$g$$
 - монотонна на $[a,\omega)$ та $g(x,y) \xrightarrow{\rightarrow} 0, \, x \to \omega$.
$$g$$
 - монотонна на $[a,\omega)$ та рівномірно обмежена на $[a,\omega) \times A$.
$$g$$
 - монотонна на $[a,\omega)$ та рівномірно обмежена на $[a,\omega) \times A$.
$$g$$
 - монотонна на $[a,\omega)$ та рівномірно обмежена на $[a,\omega) \times A$.
$$g$$
 - монотонна на $[a,\omega)$ та рівномірно обмежена на $[a,\omega) \times A$.

Тоді $\int_{-\infty}^{\infty} f(x,y)g(x,y)\,dx$ - рівномірно збіжний на A.

Поки без доведення.

Example 8.2.11 Довести, що $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} dx$ збіжний рівномірно на $[\alpha, +\infty)$, $\alpha > 0$.

Розглянемо функції $f(x,y) = \sin xy$ та $g(x,y) = \frac{1}{\sqrt{x}+1}$.

 $\int_0^A \sin xy \, dx = -\frac{1}{y} \cos xy \Big|_0^A = -\frac{1}{y} \cos Ay + \frac{1}{y}.$ Ця штука - рівномірно обмежена на $[0, +\infty)$, тому що $\frac{1}{n}|1-\cos Ay|\leq \frac{1}{n}\leq \frac{1}{\alpha}$, виконано $\forall A\in [0,+\infty)$.

 $\frac{1}{\sqrt{x}+1}$ ясно, що монотонна на $[0,+\infty)$ та рівномірно прямує до нуля при $x\to+\infty$.

Отже, за ознакою Діріхле, $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} \, dx$ - збіжний рівномірно на $[\alpha,+\infty)$.

Example 8.2.12 Довести, що $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} \operatorname{arctg} xy \, dx$ збіжний рівномірно на $[\alpha, +\infty)$, $\alpha > 0$. Розглянемо функції $f(x,y) = \frac{\sin xy}{\sqrt{x}+1}$ та $g(x,y) = \operatorname{arctg} xy$.

 $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1}$ - збіжний рівномірно, попередній приклад.

 $\operatorname{arctg} xy$ - монотонна по x, а також $\forall x: \forall y: |\operatorname{arctg} xy| \leq \frac{\pi}{2}$, тобто рівномірно обмежена.

Отже, за ознакою Абеля, $\int_0^{+\infty} \frac{\sin xy}{\sqrt{x}+1} \operatorname{arctg} xy \, dx$ - збіжний рівномірно на $[\alpha, +\infty)$.

Theorem 8.2.13 Ознака Діні

Задано функцію $f \in C([a,\omega) \times [c,d])$. Також відомо, що $f \geq 0$ та $J(y) = \int_{-\infty}^{\omega} f(x,y) \, dx \in C([c,d])$.

Тоді J - збіжний рівномірно на [c,d].

Випливає з ознаки Діні рівномірної збіжності функціонального ряда

TODO: додати ознаку Діні для цього випадку

8.3 Властивості невласного інтегралу

Proposition 8.3.1 Неперервність

Задано функцію $f:[a,\omega)\times[c,d] o\mathbb{R}$, таку, що $f\in C([a,\omega)\times[c,d])$. Також J - рівномірно збіжний

на [c,d]. Тоді $J \in C([c,d])$.

Proof.

За означенням рівномірної збіжності, маємо, що $\sup_{y\in[c,d]}\left|\int_{\xi}^{\omega}f(x,y)\,dx\right|\to 0, \xi\to\omega$

Тобто
$$\forall \varepsilon > 0: \exists \xi > a: \sup_{y \in [c,d]} \left| \int_{\xi}^{\omega} f(x,y) \, dx \right| < \frac{\varepsilon}{3}.$$

$$|J(y_1) - J(y_2)| = \left| \int_a^\omega f(x, y_1) \, dx - \int_a^\omega f(x, y_2) \, dx \right| =$$

$$= \left| \int_a^\xi f(x, y_1) \, dx - \int_a^\xi f(x, y_2) \, dx + \int_\xi^\omega f(x, y_1) \, dx - \int_\xi^\omega f(x, y_2) \, dx \right| \le$$

$$\le \left| \int_a^\xi f(x, y_1) - f(x, y_2) \, dx \right| + \left| \int_\xi^\omega f(x, y_1) \, dx \right| + \left| \int_\xi^\omega f(x, y_2) \, dx \right| \le$$

Перший модуль:
$$f \in C_{unif}([a,\xi] \times [c,d])$$
 $\Longrightarrow \exists \delta: \forall y_1,y_2: |y_1-y_2| < \delta \Rightarrow |f(x,y_1)-f(x,y_2)| < \frac{\varepsilon}{\xi-a}$

Другий модуль:
$$\sup_{y \in [c,d]} \left| \int_{\xi}^{\omega} f(x,y) \, dx \right| < \frac{\varepsilon}{3} \implies \forall y \in [c,d] : \left| \int_{\xi}^{\omega} f(x,y) \, dx \right| < \frac{\varepsilon}{3}$$

Збираємо пазл та маємо, що $J \in C_{unif}([c,d]) \implies J \in C([c,d]).$

Proposition 8.3.2 Інтегрованість

Задана функція $f:[a,\omega) imes[c,d] o\mathbb{R}$, така, що $f\in C([a,\omega) imes[c,d])$

Також J - рівномірно збіжний на [c,d]. Тоді $J\in D([c,d])$ та

$$\int_{c}^{d} \int_{a}^{\omega} f(x, y) dx dy = \int_{a}^{\omega} \int_{c}^{d} f(x, y) dy dx.$$

Proof.

Розглянемо
$$\int_{c}^{d} J(y) \, dy = \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy + \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy$$
 Перший доданок - це визначений інтеграл, тому там виконується **Prp 3.1.4.**, тобто

$$\int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$
 Другий доданок - цікавіше

$$\left|\int_{c}^{d}\int_{b}^{\omega}f(x,y)\,dx\,dy\right|\leq\int_{c}^{d}\left|\int_{b}^{\omega}f(x,y)\,dx\right|dy\leq\int_{c}^{d}\sup_{y\in[c,d]}\left|\int_{b}^{\omega}f(x,y)\,dx\right|dy=$$

$$=\sup_{y\in[c,d]}\left|\int_{b}^{\omega}f(x,y)\,dx\right|(d-c)\to0,b\to\omega$$
Якщо $b\to\omega$, то тоді отримаємо
$$\int_{c}^{d}J(y)\,dy=\int_{a}^{\omega}\int_{c}^{d}f(x,y)\,dx\,dy+0=\int_{a}^{\omega}\int_{c}^{d}f(x,y)\,dx\,dy.$$

$$\int_{c}^{d} J(y) \, dy = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy + 0 = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy$$

Proposition 8.3.3 Диференційованість

Задана функція $f:[a,\omega)\times[c,d]\to\mathbb{R}$, така, що:

- 1) $\exists y_0 \in [c,d]: J(y_0)$ збіжний; 2) $\frac{\partial f}{\partial u} \in C([a,\omega) \times [c,d]);$
- 3) $\int_a^{\infty} \frac{\partial f}{\partial y}(x,y) \, dx$ рівномірно збіжний.

Тоді J - збіжний, диференційована в [c,d], при цьому $J'(y) = \int_{-\frac{\partial f}{\partial u}}^{\omega} (x,y) \, dx$.

Розглянемо функцію $I(y) = \int_{a}^{\omega} \frac{\partial f}{\partial y}(x,y) dx$ - неперервна за умовною рівномірна. Часткові похідні є неперервними також за умовою. Тоді за **Prp. 3.2.6.**, $I \in \mathcal{R}([y,y_0])$

$$\int_{y_0}^y I(t) \, dt = \int_a^\omega \int_{y_0}^y \frac{\partial f}{\partial y}(x,t) \, dt \, dx = \int_a^\omega f(x,y) - f(x,y_0) \, dx = J(y) - J(y_0)$$

$$\Rightarrow J(y) = \int_{y_0}^y I(t) \, dt - J(y_0) \text{ - обидва збіжні. Тому сума - збіжна}$$
Отже J - збіжний $\forall y \in [c,d]$

Отже,
$$J$$
 - збіжний $\forall y \in [c,d]$ $\Rightarrow J'(y) = I(y) - 0 = \int_a^\omega \frac{\partial f}{\partial y}(x,y) \, dx$

Example 8.3.4 Обчислити $\int_0^{\frac{\pi}{2}} \frac{\arctan(\operatorname{tg}(\operatorname{tg} x))}{\operatorname{tg} x} dx.$

Ми розглянемо функцію $J(y)=\int_0^{\frac{\pi}{2}}\frac{\arctan(y \operatorname{tg} x))}{\operatorname{tg} x}\,dx.$ Про неї відомо, що: 1) $\exists y_0=0: J(0)=0,$ тобто звіжний; 2) $\frac{\partial f}{\partial y_\pi}=\frac{1}{1+y^2\operatorname{tg}^2 x}\in C\left(\left[0,\frac{\pi}{2}\right)\times [-1,1]\right);$

2)
$$\frac{\partial f}{\partial y} = \frac{1}{1 + y^2 \operatorname{tg}^2 x} \in C\left(\left[0, \frac{\pi}{2}\right) \times [-1, 1]\right)$$

3)
$$\int_0^{\frac{\pi}{2}} \frac{1}{1+y^2 \lg^2 x} \, dx$$
 - збіжний рівномірно принаймні на $[-1,1]$ за мажорантною Вейєрштраса.

Дійсно,
$$\frac{1}{1+y^2 \operatorname{tg}^2 x} \le 1, \forall y \in [-1,1].$$

южемо продиференціювати функцію J(y) та отримати:

Отже, ми можемо продиференциовати функцио
$$J(y)$$
 та отримати:
$$J'(y) = \int_0^{\frac{\pi}{2}} \frac{1}{1+y^2 \operatorname{tg}^2 x} \, dx \stackrel{t=\operatorname{tg} x}{=} \cdots = \frac{\pi}{2} \frac{1}{1+y}.$$

$$J(y) = \int \frac{\pi}{2} \frac{1}{1+y} \, dy = \frac{\pi}{2} \ln|1+y| + C.$$
 Оскільки $J(0) = 0$, то звідси $C = 0$. Наша мета була - знайти $J(1)$. Таким чином, $J(1) = \int_0^{\frac{\pi}{2}} \frac{\operatorname{arctg}(\operatorname{tg} x)}{\operatorname{tg} x} \, dx = \frac{\pi}{2} \ln 2.$

$$J(y) = \int \frac{\pi}{2} \frac{1}{1+y} \, dy = \frac{\pi}{2} \ln|1+y| + C.$$

Таким чином,
$$J(1) = \int_0^{\frac{\pi}{2}} \frac{\arctan(\operatorname{tg}(x))}{\operatorname{tg} x} dx = \frac{\pi}{2} \ln 2$$

Proposition 8.3.5 Невласне інтегрування невласного інтеграла

Задано функцію $f \in C([a,+\infty) \times [c,+\infty))$, причому $f \geq 0$. Також відомо, що $\int_{a}^{+\infty} f(x,y) \, dx \in \mathbb{R}$

$$C([c,+\infty))$$
, а також $\int^{+\infty} f(x,y) \, dy \in C([a,+\infty))$.

Тоді якщо $\int_{0}^{+\infty} \int_{0}^{+\infty} f(x,y) dx dy$ - збіжний, то $\int_{0}^{+\infty} \int_{0}^{+\infty} f(x,y) dy dx$ - збіжний. Навпаки теж.

Hapemiri,
$$\int_{c}^{+\infty} \int_{a}^{+\infty} f(x,y) \, dx \, dy = \int_{a}^{+\infty} \int_{c}^{+\infty} f(x,y) \, dy \, dx.$$

Позначимо $I(y)=\int_{a}^{+\infty}f(x,y)\,dx$, про неї відомо, що $I\in C([c,+\infty))$, а також $\int_{c}^{+\infty}I(y)\,dy$ - збі-

Хочемо довести, що
$$\lim_{R\to +\infty} \int_a^R \int_c^{+\infty} f(x,y) \, dy \, dx = \int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy.$$

Відомо, що
$$\int_{0}^{+\infty} \int_{a}^{+\infty} f(x,y) \, dx \, dy$$
 - збіжний, тобто

$$\forall \varepsilon > 0 : \exists \Delta_1 : \forall d > c : d > \Delta_1 \implies \left| \int_d^{+\infty} \int_c^{+\infty} f(x, y) \, dx \, dy \right| < \frac{\varepsilon}{2}.$$

Також відомо, що $\int_{-\infty}^{+\infty} f(x,y) \, dx$ - збіжний рівномірно за ознакою Діні, тоді

$$\forall \varepsilon > 0 : \exists \Delta_2 : \forall R > a : R > \Delta_2 \implies \forall y \in [c, +\infty) : \left| \int_R^{+\infty} f(x, y) \, dx \right| < \frac{\varepsilon}{2(d-c)}.$$

Оберемо $\Delta=\max\{\Delta_1,\Delta_2\}$, фіксуємо довільне $d>\Delta$ та $R>\Delta$ таким чином, щоб d>c,R>a.

А далі для доведення ліміту зробимо оцінку:

$$\left| \int_c^{+\infty} \int_a^{+\infty} f(x,y) \, dx \, dy - \int_c^{+\infty} \int_a^R f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c^{+\infty} \int_R^{+\infty} f(x,y) \, dx \, dy \right| = \left| \int_c$$

$$=\left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy+\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|\leq\left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|+\left|\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|\leq \left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|+\left|\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|\leq \left|\int_{c}^{d}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|+\left|\int_{d}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy\right|$$

Таким чином, дійсно, $\int_{R}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dy\,dx=\int_{c}^{+\infty}\int_{R}^{+\infty}f(x,y)\,dx\,dy.$

Інтеграл Діріхле

Інтегралом Діріхле називають таку рівність, яку зараз доведу (про збіжність вже говорили)

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

Розглянемо функцію $J(a) = \int_0^{+\infty} e^{-ax} \frac{\sin x}{x} \, dx$, причому підінтегральну функцію ви довизначимо в т. 0. Тоді підінтегральна функція неперервна.

Перш за все J(a) - рівномірно збіжний на $[0,+\infty)$, бо за ознакою Абеля,

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx$$
 - збіжний рівномірно (доводили);

 e^{-ax} - монотонна відносно x та рівномірно обмежена, бо $|e^{-ax}| \leq 1$. Із цього ми отримуємо, що $J \in C([0,+\infty))$, а тому $J(0) = \lim_{a \to 0} J(a)$.

1) $\exists a_0 = 0 : J(0)$ - збіжний;

2)
$$\frac{\partial f}{\partial a} = -e^{-ax} \sin x \in C([0, +\infty) \times [0, +\infty)).$$

 $3) - \int_{\gamma}^{+\infty} e^{-ax} \sin x \, dx$ збіжний рівномірно на $[\gamma, +\infty)$, де $\gamma > 0$, за мажорантною Вейєрштраса.

Дійсно,
$$|e^{-ax}\sin x| \le e^{-\gamma x}$$
, а $\int_0^{+\infty} e^{-\gamma x} dx$ - збіжний.

Таким чином,
$$J'(a) = -\int_0^{+\infty} e^{-ax} \sin x \, dx = \dots = -\frac{1}{1+a^2}.$$

Таким чином, $J'(a) = -\int_0^{+\infty} e^{-ax} \sin x \, dx = \dots = -\frac{1}{1+a^2}.$ $\Longrightarrow J(a) = -\arctan a + C$, причому ця рівність виконана $\forall a \in [\gamma, +\infty)$. Але водночас $J(0) = -\frac{1}{1+a^2}$

$$a o 0$$
 Але ми ще маємо, що $|J(a)| = \left| \int_0^{+\infty} e^{-ax} \frac{\sin x}{x} \, dx \right| \le \int_0^{+\infty} \left| e^{-ax} \frac{\sin x}{x} \, dx \right| \le \int_0^{+\infty} \left| e^{-ax} \frac{\sin x}{x} \, dx \right| \le \int_0^{+\infty} e^{-ax} \, dx = \frac{1}{a}.$ А тому $J(a) \to 0$ при $a \to +\infty$. Звідси випливає, що $0 = -\frac{\pi}{2} + C \implies J(0) = \frac{\pi}{2}.$

Додатково дослідимо ось такий інтеграл та доведемо рівність:

$$\int_0^{+\infty} \frac{\sin ax}{x} \, dx = \frac{\pi}{2} \operatorname{sgn} a$$

Поки обмежимось
$$a>0$$
, тоді
$$F(a)=\int_0^{+\infty}\frac{\sin ax}{x}\,dx\stackrel{ax=t}{=}\int_0^{+\infty}\frac{\sin t}{t}\,dt=\frac{\pi}{2}.$$

$$F(-a)=-F(a)=-\frac{\pi}{2}\text{ та }F(0)=0\text{ - тут відносно ясно.}$$

Інтеграл Ейлера-Пуассона

Інтегралом Ейлера-Пуассона називають таку рівність, яку зараз доведу

$$\int_0^{+\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$$

Позначимо $J=\int_0^{+\infty}e^{-x^2}\,dx.$ Зробимо заміну x=at. А потім помножимо обидві частини рівності

на
$$e^{-a^2}$$
 Тоді;

на
$$e^{-a^2}$$
 Тоді;
$$Je^{-a^2} = \int_0^{+\infty} e^{-a^2} e^{-a^2 t^2} a \, dt.$$

А потім проінтегруємо обидві частини рівності по a на $[0,+\infty)$ - отримаємо:

$$\int_0^{+\infty} J e^{-a^2} \, da = J \int_0^{+\infty} e^{-a^2} \, da = J^2.$$

$$\int_{0}^{+\infty} J e^{-a^{2}} \, da = J \int_{0}^{+\infty} e^{-a^{2}} \, da = J^{2}.$$
 А з іншого боку, ми отримали:
$$J^{2} = \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-a^{2}} e^{-a^{2}t^{2}} a \, dt \, da \stackrel{?}{=} \int_{0}^{+\infty} \int_{0}^{+\infty} e^{-a^{2}t^{2} - a^{2}} a \, da \, dt \stackrel{s=-a^{2}t^{2} - a^{2}}{=} = \int_{0}^{+\infty} \frac{1}{2(t^{2}+1)} \int_{-\infty}^{0} e^{s} \, ds \, dt = \int_{0}^{+\infty} \frac{1}{2(t^{2}+1)} \, dt = \frac{\pi}{4}.$$

$$\Longrightarrow J = \frac{\sqrt{\pi}}{2}.$$

$$J_0 = \frac{\sqrt{\pi}}{2}.$$
 Варто обґрунтувати рівняння зі знаком питання. Функція $f(t,a) = ae^{-a^2(t^2+1)} \in C([0,+\infty) \times [0,+\infty))$, причому $f \geq 0$. Також $\int_0^{+\infty} ae^{-a^2(t^2+1)} \, da = \frac{1}{2} \frac{1}{t^2+1} \in C([0,+\infty))$ та $\int_0^{+\infty} ae^{-a^2(t^2+1)} \, dt = Je^{-a^2} \in C([0,+\infty))$ (неважко довести, шо J рівномірно збігається).

 J_0 (неважко довести, шо J рівномірно збігається). Нарешті, $\int_0^{+\infty} \int_0^{+\infty} ae^{-a^2(t^2+1)}\,da\,dt$ ми знайшли та виявився збіжним. Отже, рівність ? є справедливим.

8.6 Гамма-функція

Definition 8.6.1 Гамма-функцією називають таку функцію:

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx, \alpha > 0$$

Lemma 8.6.2 $\alpha > 0$ - область збіжності гамми-функції.

$$\begin{array}{l} \textbf{Proof.} \\ \int_0^{+\infty} x^{\alpha-1}e^{-x}\,dx = \int_0^1 x^{\alpha-1}e^{-x}\,dx + \int_1^{+\infty} x^{\alpha-1}e^{-x}\,dx. \\ \text{Розглянемо перший інтеграл. Особлива точка - це } x=0. \\ \text{Порівняємо з інтегралом } \int_0^1 x^{\alpha-1}\,dx \text{ - збіжний для } \alpha>0. \\ x^{\alpha-1}e^{-x} \end{array}$$

 $\lim_{x\to 0}\frac{x^{\alpha-1}e^{-x}}{x^{\alpha-1}}=1. \ \text{Отже, обидва збіжні, тому перший доданок - збіжний.}$ Розглянемо другий інтеграл. Особлива точка - це $x=\infty.$ Порівняємо з інтегралом $\int_{1}^{+\infty}e^{-\frac{x}{2}}\,dx \text{ - збіжний для }\alpha>0.$

Порівняємо з інтегралом
$$\int_1^{} e^{-2} \, dx$$
 - збіжний для $\alpha > 0$.
$$\lim_{x \to \infty} \frac{x^{\alpha - 1} e^{-x}}{e^{-\frac{x}{2}}} = \begin{bmatrix} 0 \text{ за Лопіталя, } \alpha \geq 1 \\ \lim_{x \to \infty} \frac{1}{x^{1 - \alpha} e^{\frac{x}{2}}} = 0, \alpha < 1 \end{bmatrix}.$$
 Отже, обидва збіжні, тому другий доданок - збіжний.

Lemma 8.6.3 $\Gamma \in C^{\infty}((0,+\infty))$

Коли будемо диференціювати n разів Γ -функцію, ми очікуватимемо таке:

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln^n x \, dx.$$

Спробуемо зараз довести, що
$$\Gamma^{(n)}$$
 - рівномірно збіжний на проміжку $[a,b] \subset (0,+\infty)$. Маємо $\int_0^{+\infty} x^{\alpha-1} e^{-x} \ln^n x \, dx = \int_0^1 x^{\alpha-1} e^{-x} \ln^n x \, dx + \int_1^{+\infty} x^{\alpha-1} e^{-x} \ln^n x \, dx$.

Розглянемо перший інтеграл. Використаємо мажорантну Вейєрштрасса:

$$|x^{\alpha-1}e^{-x}\ln^n x| = x^{\alpha-1}e^{-x}(-1)^n \ln^n x \le \begin{bmatrix} (-1)^n x^{b-1}e^{-x} \ln^n x \\ (-1)^n x^{a-1}e^{-x} \ln^n x \end{bmatrix}.$$

Ситуації тут можуть бути різними, але поведінка інтеграла не зміниться. Я буду на розгляд брати перший випадок.

Тобто дослідимо $\int_0^1 x^{b-1} e^{-x} \ln^n x \, dx$ на збіжність. Відомо, що $\ln x = o(x^{-\varepsilon}), x \to 0$, де $\varepsilon > 0$. Тоді правилом Лопіталя можна довести, що $\ln^n x = o(x^{-\varepsilon}), x \to 0$.

Завдяки цьому ми візьмемо $\int_0^1 x^{b-1} x^{-\varepsilon} e^{-x} dx$ - збіжний, допоки $b > \varepsilon$. Це доводили під час попередньої леми

А далі $\lim_{x\to 0} \frac{x^{b-1}e^{-x}\ln^n x}{x^{b-1}x^{-\varepsilon}e^{-x}} = \lim_{x\to 0} \frac{\ln^n x}{x^{-\varepsilon}} = 0.$ Отже, $\int_0^1 x^{b-1}e^{-x}\ln^n x\,dx$ - збіжний. І тому за мажорантною Вейєрштрасса, $\int_0^1 x^{\alpha-1}e^{-x}\ln^n x\,dx$ збіжний рівномірно на [a, b].

Аналогічно доводиться, що $\int_{1}^{+\infty} x^{\alpha-1}e^{-x} \ln^n x \, dx$ - збіжний рівномірно на [a,b]. Там та сама оцінка на мажоранту, а також треба використати $\ln x = o(x^{\varepsilon}), x \to +\infty$, де $\varepsilon > 0$.

Остаточно, $\int_0^{+\infty} x^{\alpha-1}e^{-x}\ln^n x\,dx$ - збіжний рівномірно на $[a,b]\subset (0,+\infty)$, що й доводить $\Gamma\in$

Theorem 8.6.4 $\forall \alpha > 0 : \Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.

Вказівка: ліву частину інтегруємо частинами, $u = x^{\alpha}, dv = e^{-x} dx$.

Особливий випадок при $\alpha \in \mathbb{N}$.

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n(n-1)(n-2)\dots 2 \cdot 1\Gamma(1)$$

$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

Таки чином, маємо результат

Corollary 8.6.5 $\Gamma(n+1) = n!$

А далі перевіримо, чому дорівнює гамма-функція в т. $\alpha = \frac{1}{2}$.

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} x^{-\frac{1}{2}} e^{-x} dx \stackrel{\text{3amina: } t = \sqrt{x}}{=} 2 \int_0^{+\infty} e^{-t^2} dt = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}$$

Далі скористаємось тотожністю $\Gamma(\alpha+1) = \Gamma(\alpha)$, щоб знайти $\Gamma\left(\frac{1}{2}+n\right)$. Отримаємо:

Corollary 8.6.6
$$\Gamma\left(\frac{1}{2} + n\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$$

8.7 Бета-функція

Definition 8.7.1 Бета-функцією називають таку функцію:

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx, \alpha, \beta > 0$$

Lemma 8.7.2 $\alpha, \beta > 0$ - область збіжності бети-функції.

$$\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \int_0^{\frac{1}{2}} x^{\alpha - 1} (1 - x)^{\beta - 1} dx + \int_{\frac{1}{2}}^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx.$$

Розглянемо перший інтеграл. Особлива точка - це x=0.

Порівняємо з інтегралом $\int_{0}^{\frac{1}{2}} x^{\alpha-1} dx$ - збіжний для $\alpha > 0$.

 $\lim_{x \to 0} \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{x^{\alpha - 1}} = 1$. Отже, обидва збіжні, тому перший доданок - збіжний.

Розглянемо другий інтеграл. Проводимо заміну 1-x=t, тоді маємо:

 $-\int^{\frac{1}{2}}(1-t)^{\alpha-1}t^{\beta-1}\,dt$ - це той самий перший доданок. І він вже буде збіжним, якщо $\beta>0$.

Остаточно, $B(\alpha, \beta)$ - збіжний при $\alpha > 0, \beta > 0$.

Proposition 8.7.3 $B(\alpha, \beta) = \int_0^{+\infty} \frac{y^{\alpha - 1}}{(1 + y)^{\alpha + \beta}} dy$

Вказівка: зробити заміну $x = \frac{g}{1+u}$

Proposition 8.7.4 $B(\alpha, \beta) = B(\beta, \alpha)$.

Bказівка: x = 1 - t.

Proposition 8.7.5 $B(\alpha, \beta) = \frac{\alpha - 1}{\beta + \alpha - 1} B(\alpha - 1, \beta)$ при $\alpha > 1$.

Вказівка: $u = x^{\alpha-1}$.

Зауважимо, що $B(\alpha,\beta)=B(\beta,\alpha)=\dfrac{\beta-1}{\alpha+\beta-1}B(\beta-1,\alpha)=\dfrac{\beta-1}{\alpha+\beta-1}B(\alpha,\beta-1)$ при $\beta>1.$

Ще зауважимо, що $B(\alpha,1)=\frac{1}{\alpha}$, якщо порахувати B-функцію.

Використовуючи два зауваження, можемо отримати ось це:
$$B(\alpha,n) = \frac{n-1}{\alpha+n-1}B(\alpha,n-1) = \frac{n-1}{\alpha+n-1}\frac{n-2}{\alpha+n-2}\dots\frac{2}{\alpha+2}\frac{1}{\alpha+1}\frac{1}{\alpha} = \frac{(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)}$$

Зокрема при
$$\alpha = m$$
 ми от $B(m,n) = \frac{(n-1)!(m-1)!}{(m+n-1)!}$

8.8 Зв'язок між Γ та B функціями

Proposition 8.8.1 $\Gamma(\alpha) = \lim_{n \to \infty} n^{\alpha} B(\alpha, n)$.

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx \stackrel{x = \ln \frac{1}{u}}{=} \int_0^1 \ln^{\alpha - 1} \frac{1}{u} du = \int_0^1 (-\ln u)^{\alpha - 1} du = \int_0^1 \lim_{t \to 0} \left(\frac{1 - u^t}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to 0} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty} \left(\frac{1 - u^{\frac{1}{n}}}{t}\right)^{\alpha - 1} du = \int_0^1 \lim_{t \to \infty}$$

$$\Gamma(\alpha) \cdot \Gamma(1-\alpha) = \frac{\pi}{\sin \pi \alpha}$$
 при $0 < \alpha < 1$.

$$\begin{array}{l} \textbf{Theorem 8.8.2 Функціональне рівняння Ейлера} \\ \Gamma(\alpha) \cdot \Gamma(1-\alpha) = \frac{\pi}{\sin \pi \alpha} \text{ при } 0 < \alpha < 1. \\ \Gamma\left(\frac{1}{2}+\alpha\right) \cdot \Gamma\left(\frac{1}{2}-\alpha\right) = \frac{\pi}{\cos \pi \alpha} \text{ при } -\frac{1}{2} < \alpha < \frac{1}{2}. \end{array}$$

Proof.

$$\Gamma(\alpha)\Gamma(1-\alpha) = \lim_{n \to \infty} n^{\alpha} \frac{(n-1)!}{\alpha(\alpha+1)\dots(\alpha+n-1)} \lim_{n \to \infty} n^{1-\alpha} \frac{(n-1)!}{(1-\alpha)(2-\alpha)\dots(n-\alpha)} =$$

$$= \lim_{n \to \infty} \frac{n}{n-\alpha} \frac{1}{\alpha\left(1+\frac{\alpha}{1}\right)\left(1+\frac{\alpha}{2}\right)\dots\left(1+\frac{\alpha}{n-1}\right)} \frac{(1-\frac{\alpha}{1})\left(1-\frac{\alpha}{2}\right)\dots\left(1-\frac{\alpha}{n-1}\right)}{\left(1-\frac{\alpha^{2}}{1^{2}}\right)\left(1-\frac{\alpha^{2}}{2^{2}}\right)\dots\left(1-\frac{\alpha^{2}}{(n-1)^{2}}\right)} =$$

$$= \frac{1}{\alpha} \lim_{n \to \infty} \frac{1}{\left(1-\frac{\alpha^{2}}{1^{2}}\right)\left(1-\frac{\alpha^{2}}{2^{2}}\right)\dots\left(1-\frac{\alpha^{2}}{(n-1)^{2}}\right)}$$

$$\sin(\pi\alpha) = \pi\alpha \lim_{n \to \infty} \left(1 - \frac{\alpha^2}{1^2}\right) \left(1 - \frac{\alpha^2}{2^2}\right) \dots \left(1 - \frac{\alpha^2}{(n-1)^2}\right) \stackrel{\text{a6o}}{=} \pi\alpha \prod_{n=1}^{\infty} \left(1 - \frac{\alpha^2}{n^2}\right).$$

Власне звідси отримуємо $\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin \pi \alpha}$

Друга формула вказівка: заміна $\beta = \alpha + \frac{1}{2}$.

Theorem 8.8.3 Зв'язок між Γ та B $B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

Proof.

Розглянемо
$$\Gamma(\alpha+\beta)$$
 та проведемо заміну $x=y(t+1), dx=(t+1)\,dy.$
$$\Gamma(\alpha+\beta)=\int_0^{+\infty}x^{\alpha+\beta-1}e^{-x}\,dx=(t+1)^{\alpha+\beta}\int_0^{+\infty}y^{\alpha+\beta-1}e^{-y(t+1)}\,dy.$$

$$\frac{\Gamma(\alpha+\beta)}{(1+t)^{\alpha+\beta}} = \int_0^{+\infty} y^{\alpha+\beta-1} e^{-y(t+1)} dy$$

Помножимо обидві частини на
$$t^{\alpha-1}$$
 та проінтегруємо від 0 до $+\infty$ по t :
$$\int_0^{+\infty} \frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}} \Gamma(\alpha+\beta) = \int_0^{+\infty} \int_0^{+\infty} y^{\alpha+\beta-1} t^{\alpha-1} e^{-y} e^{-yt} \, dy \, dt$$

$$\Gamma(\alpha+\beta) \cdot B(\alpha,\beta) = \int_0^{+\infty} y^{\beta-1} e^{-y} \int_0^{+\infty} y^{\alpha} t^{\alpha-1} e^{-yt} \, dt \, dy.$$

Внутрішній інтеграл при заміні yt=x стане рівним $\Gamma(\alpha)$. Його виносимо з-під зовнішнього інтегралу, а сам інтеграв вже $\epsilon \Gamma(\beta)$. Тоді

$$\Gamma(\alpha + \beta)B(\alpha, \beta) = \Gamma(\alpha)\Gamma(\beta).$$

А тепер час обґрунтувати обережно зміну порядку інтегрування: із dy dt dy.

Розглянемо функцію $f(t,y) = y^{\alpha+\beta-1}t^{\alpha-1}e^{-y(t+1)}$. Ми обмежимось лише випадком $\alpha > 1, \beta > 1$. Зрозуміло, що $f \geq 0$, а також $f \in C([0,+\infty) \times [0,+\infty))$. В т. (t,0),(0,y) все ок, тому що при наших α,β ми маємо $y^{\alpha+\beta-1} \to 0, t^{\alpha-1} \to 0$ при $y \to 0, t \to 0$.

$$I(y)\int_0^{+\infty}f(t,y)\,dt=\Gamma(\alpha)y^{\beta-1}e^{-y}$$
 - це ми рахували вище. $F\in C([0,+\infty)).$

$$J(t)=\int_0^{+\infty}f(t,y)\,dy=\Gamma(\alpha+\beta)rac{t^{\alpha-1}}{(t+1)^{\alpha+\beta}}$$
 - теж вище було. $J\in C([0,+\infty)).$

Також
$$\int_0^{+\infty} \int_0^{+\infty} f(t,y) \, dt \, ds = \Gamma(\alpha) \Gamma(\beta)$$
, тобто це - збіжний інтеграл.

рядку інтегралів є справедливою лише для $\alpha>1, \beta>1,$ тобто

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$
 справедлива для $\alpha,\beta>1.$

$$B(\alpha-1,\beta-1) = \frac{\alpha+\beta-2}{\alpha-1}B(\alpha,\beta-1) = \frac{\alpha+\beta-2}{\alpha-1} \cdot \frac{\alpha+\beta-1}{\beta-1}B(\alpha,\beta), \text{ а тут уже } \alpha,\beta > 1. \text{ Тоді}$$

$$B(\alpha-1,\beta-1) = \frac{\alpha+\beta-2}{\alpha-1}\frac{\alpha+\beta-1}{\beta-1}B(\beta,\alpha) = \frac{\alpha+\beta-2}{\alpha-1}\frac{\alpha+\beta-1}{\beta-1}\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} =$$

$$= \frac{\alpha+\beta-2}{\alpha-1}\frac{\alpha+\beta-1}{\beta-1}\frac{(\alpha-1)\Gamma(\alpha-1)(\beta-1)\Gamma(\beta-1)}{(\alpha+\beta-1)(\alpha+\beta-2)\Gamma(\alpha+\beta-2)} = \frac{\Gamma(\alpha-1)\Gamma(\beta-1)}{\Gamma(\alpha-1+\beta-1)}.$$
 Отже, ми довели нашу формулу зв'язка для всіх $\alpha>0,\beta>0$.