Les solutions!

Pierre Coupechoux

6 février 2019

Tablette de chocolat

• Au début : un seul morceau.

• À la fin : n * m morceaux.

• Une action : un nouveau morceau.

Résultat

Fin après n * m - 1 actions.

Tablette de chocolat – la même chose

Théorème

Une partie du jeu TABLETTEDECHOCOLAT sur une tablette de largeur n et de hauteur m se termine en n*m-1 tours.

Démonstration.

TABLETTEDECHOCOLAT peut se généraliser comme un jeu combinatoire impartial sur un le graphe $G_{n,m}$. Un joueur peut à son tour choisir un ensemble de sommets connexe non maximal et enlever toutes les arêtes de la coupe associée. Le nombre de composantes connexes augmente de 1 à chaque tour. Initialement, il y a 1 composante connexe. La partie se termine quand il n'y a plus d'arête, c'est-à-dire quand il y a n*m composantes connexes.

Énigme des cavaliers

Énigme des cavaliers

Résultat

On a réussi en 16 déplacements.

Énigme des cavaliers

Homéomorphisme

Le plateau de jeu est homéomorphe à $C_8 \cup C_1$.

Théorème

Le problème se résout en 16 mouvements.

Démonstration.

Les cavaliers sont contraints de se déplacer dans le même sens. Le jeu se passe donc sur le cycle \mathcal{C}_8 orienté. Le nombre de mouvements à effectuer est alors simplement la somme des distances entre les positions de départ et d'arrivée, soit d(1,9)+d(3,7)+d(7,3)+d(9,1). Par symétrie, toutes ces distances sont égales, donc l'énigme se résout en 4*d(1,9)=16 mouvements.

Résultat

On constate que le nombre de coups joués ne dépend pas des choix.

Hackenbush

Cops and Robber

Firefighter