ACH2011 - Cálculo I

Sistema de Informação - EACH

Lista 3: Funções e Modelos¹

1. Se $f(x) = 3x^2 - x + 2$ e a um número real qualquer, encontre f(2), f(-2), $f(\sqrt{2})$, f(a), f(-a), f(a+1), 2f(a), f(2a), $f(a^2)$, $[f(a)]^2$ e f(a+h).

2. Encontre
$$f(2+h)$$
, $f(x+h)$ e $\frac{f(x+h)-f(x)}{h}$ onde $h \neq 0$ e

(a)
$$f(x) = x - x^2$$

(b)
$$f(x) = \frac{x}{x+1}$$

3. Encontre o domínio da função.

(a)
$$f(x) = \frac{5x+4}{x^2+3x+2}$$
.

(b)
$$f(x) = \sqrt{x} + \sqrt[3]{x}$$
.

(c)
$$f(x) = \frac{1}{\sqrt[4]{x^2 - 5x}}$$
.

4. Encontre o domínio e esboce o gráfico da função.

(a)
$$f(x) = 5$$
.

(b)
$$f(x) = \frac{1}{2}(x+3)$$
.

(c)
$$f(x) = \sqrt{x-5}$$
.

5. Encontre uma fórmula para a função descrita e obtenha seu domínio.

(a) Um retângulo tem um perímetro de 20 metros. Expresse a área do retângulo como uma função do comprimento de um de seus lados.

(b) Um retângulo tem uma área de 16 m^2 . Expresse o perímetro do retângulo como uma função do comprimento de um de seus lados.

6. Determine se f é par , ímpar ou nenhum dos dois.

(a)
$$f(x) = \frac{x}{x^2 + 1}$$

(b)
$$f(x) = \frac{x^2}{x^4 + 1}$$

¹Exercícios do livro Cálculo de James Stewart

- (c) $f(x) = \frac{x}{x+1}$
- (d) f(x) = x|x|
- (e) $f(x) = 1 + 3x^2 x^4$
- (f) $f(x) = 1 + 3x^3 x^5$
- 7. Classifique cada função como uma função potência, função raiz, função polinomial (estabeleça o grau), função racional, função algébrica ou função trigonométrica.
 - (a) $f(x) = \sqrt[5]{x}$.
 - (b) $f(x) = \sqrt{1 x^2}$
 - (c) $f(x) = x^9 + x^6$
 - (d) $f(x) = \frac{x^2 + 1}{x^3 + x}$
 - (e) f(x) = tg(2x)
 - (f) $f(x) = 10^x$.
 - (g) $f(x) = \cos \theta + \sin \theta$
 - (h) $f(x) = x^{10}$
- 8. O que todos os membros da família de funções lineares f(x) = 1 + m(x+3) têm em comum? Esboce o gráfico de vários membros da família.
- 9. O que todos os membros da família de funções lineares f(x) = c x têm em comum? Esboce o gráfico de vários membros da família.
- 10. Encontre uma expressão para uma função cúbica f se f(1)=6 e f(-1)=f(0)=f(2)=0.
- 11. Um administrador de bazar de fim de semana sabe por experiência que se cobrar x dólares pelo aluguel de um espaço no bazar, então o número y de espaços que ele conseguirá alugar é dado pela equação y = 200 4x.
 - (a) Esboce o gráfico dessa função linear. (Lembre-se de que o aluguel cobrado pelo espaço e o número número de espaços alugados não podem ser quantidades negativas.)
 - (b) O que representam a inclinação, a intersecção com o eixo x e a intersecção com o eixo y.
- 12. Explique como obter, a partir do gráfico de y = f(x), os gráficos a seguir:
 - (a) y = 5f(x),
 - (b) y = f(x 5),
 - (c) y = -f(x),
 - (d) y = -5f(x),

(e)
$$y = f(5x)$$
.

- 13. Como o gráfico de y = f(|x|) esta relacionado com o gráfico de f?
- 14. Esboce o gráfico de $y = \sqrt{|x|}$.
- 15. Encontre $f+g,\,f-g,\,f\cdot g$ e f/g e defina seus domínios para:

(a)
$$f(x) = x^3 + 2x^2$$
, $g(x) = 3x^2 - 1$;

(b)
$$f(x) = \sqrt{3-x}$$
, $g(x) = \sqrt{x^2-1}$.

- 16. Encontre as funções $f \circ g$, $g \circ f$, $f \circ f$ e $g \circ g$ e defina seus domínios.
 - (a) $f(x) = x^2 1$, g(x) = 2x + 1;
 - (b) f(x) = 1 3x, $q(x) = \cos x$.
- 17. Encontre $f \circ g \circ h$ com:

(a)
$$f(x) = x + 1$$
, $g(x) = 2x$, $h(x) = x - 1$;

(b)
$$f(x) = \sqrt{x-3}$$
, $g(x) = x^2$, $h(x) = x^3 + 2$.

- 18. Expresse a função F da forma $f \circ g$
 - (a) $F(x) = (x^2 + 1)^{10}$,
 - (b) $F(x) = \operatorname{sen}(\sqrt{x})$.
- 19. Se f(x) = x + 4 e h(x) = 4x 1, encontre uma função g tal que $g \circ f = h$.
- 20. (a) Suponha que f e g são funções pares. O que você pode dizer sobre f+g e $f\cdot g$?
 - (b) E se f e g forem ambas impares?
- 21. (a) Suponha que f seja uma função par e que g seja ímpar. O que você pode dizer sobre $f \cdot g$?
 - (b) Suponha que g seja uma função par e seja $h=f\circ g$. A função h é sempre uma função par?
 - (c) Suponha que g seja uma função ímpar e seja $h = f \circ g$. A função h é sempre uma função ímpar? E se f for par?
- 22. Encontre o domínio de cada função

(a)
$$f(x) = \frac{1}{e^x}$$
,

(b)
$$f(x) = \text{sen}(e^{-x}),$$

(c)
$$f(x) = \sqrt{1 - 2^x}$$
.

23. Se $f(x) = 5^x$, mostre que

$$\frac{f(x+h) - f(x)}{h} = 5^x \frac{5^h - 1}{h}.$$

- 24. (a) O que é uma função injetora?
 - (b) A partir do gráfico, como dizer se uma função é injetora?
- 25. Use um gráfico para decidir se $f(x) = x^3 x$ é uma função injetora.
- 26. (a) Seja f uma função injetora com domínio A e imagem B. Como é definida a função inversa f^{-1} ? Qual o domínio de f^{-1} ? Qual a imagem de f^{-1} ?
 - (b) Se for dada uma fórmula para f, como você encontrará uma fórmula para f^{-1} ?
 - (c) Se for dado o gráfico de f, como você encontrará o gráfico de f^{-1} ?
- 27. Determine se f é injetora

(a)
$$f(x) = \frac{1}{2}(x+5)$$
,

- (b) f(x) = |x|,
- (c) $f(x) = \sqrt{x}$.
- (d) f(t) é a altura da bola em t segundos após ser chutada.
- 28. Se f for uma função injetora tal que f(2) = 9, quanto é $f^{-1}(9)$?
- 29. Se $g(x) = 3 + x + e^x$, ache $g^{-1}(4)$.
- 30. Encontre uma fórmula para a função inversa.

(a)
$$f(x) = \sqrt{10 - 3x}$$
,

(b)
$$f(x) = e^{x^3}$$
,

(c)
$$f(x) = \ln(x+3)$$
.

- 31. Expresse a quantidade dada como um único logaritmo.
 - (a) $\ln 5 + \ln 3$,
 - (b) $\ln(a+b) + \ln(a-b) 2\ln c$,
 - (c) $\ln(1+x^2) + \frac{1}{2}\ln x \ln(\sin(x))$.
- 32. Resolva cada equação em x.
 - (a) $2 \ln x = 1$,
 - (b) $\ln(5-2x) = -3$,
 - (c) $e^{2x+3} 7 = 0$,
 - (d) $\ln(x) + \ln(x 1) = 1$.
- 33. (a) Faça o gráfico da função $f(x) = \text{sen}(\text{sen}^{-1}(x))$ e explique sua aparência.
 - (b) Faça o gráfico da função $g(x) = \text{sen}^{-1}(\text{sen}(x))$. Como você pode explicar a aparência desse gráfico?