Análisis Factorial Dr. Misael Erikson Maquiña Palma

Diagrama de la decisión del análisis factorial

Una técnica de resumen

- Se caracteriza porque no se conocen a priori el numero de factores y es la aplicación empírica donde se determina este numero.
- Estima y agrupa un grupo de ítems en variables latentes.

Variables latentes, son las variables que no se observan directamente sino que son inferidas a partir de otras variables que se observan.

Etapa del análisis

1) Planteamiento de problema (incluir un numero de variables relacionas teóricamente con el tema de investigación)

Etapa del análisis (Continuación....)

2) Estudio de condiciones previas

Antes de iniciar con el AF, debe ser realizado un estudio previo de:

2.1 Análisis de la matriz de correlaciones

Uno de los requisitos que debe cumplir el AF, es que las variables estén altamente intercorrelacionadas. Esto implica que las correlaciones tiene que ser mayor de 0.30 en su mayoría para poder aplicar un AF.

Grafico de correlaciones

Etapa del análisis (Continuación....)

2.2 Test de Esfericidad de barlett

Contraste la hipótesis nula y concluir que las variables de la muestra están suficientemente correlacionadas entre si para realizar el análisis factorial.

2.3 La prueba de adecuación de Kaiser-Meyer Olkin (KMO)

Permite comprobar el grado en que cada una de las variables es predecible a partir de las demás. Este estadístico se distribuye en valores entre 0 y 1.

Si el valor de KMO es mayor o igual a 0.75 la idea de realizar un AF es buena, si se encuentra entre 0.5 y 0.75 la idea es aceptable y KMO es inferior a 0.5 es inaceptable realizar el AF exploratorio.

Análisis Factorial Exploratoria

Test de Esfericidad de barlett

```
Bartlett test of homogeneity of variances data: .
Bartlett's K-squared = 49.595, df = 9, p-value = 1.284e-07
```

Se verifica que existe correlación

Kaiser-Meyer-Olkin factor adequacy

$$|R| = 8.021167e - 06$$

El determinante de la matriz de correlaciones es cercano a cero. La variable esta correlacionada. Tiene sentido realizar el análisis factorial exploratorio.

Análisis Factorial Exploratoria

Etapa del análisis (Continuación....)

3) Extracción de factores

Una vez que se ha determinado que el AF es una técnica apropiada para analizar los datos, debe seleccionarse el método adecuado para la extracción de los factores. Existen diversos métodos cada uno de ellos con sus ventajas e inconvenientes. Los más conocidos con el método de los componentes principales y el de Máxima verosimilitud.

Algo que debe resaltar es que el software R la función que realiza el análisis factorial por defecto trabaja con el método MLE (Maximun-Likelihood Estimation) es decir, Estimación de máxima verosimilitud.

El método de estimación

```
Factoring method:
```

```
"uls",
```

"minres",

"wls",

"gls",

"pa",

"ml",

"minchi",

"minrank",

"old.min",

"Alpha"

¿con cuál nos quedamos?

Aquel modelo que tenga la proporción Var más alta y el RMSR mas pequeño

La matriz desde la que estimamos

Correlaciones:

"cor" es Pearson,

"cov" es covarianza,

"tet", es tetrachoric,

"poly", es polychoric,

"mixed", utiliza cor mixto para una mezcla de tetrachórico, policórico, pearson, biserial y polyserials.

	item	ML1	ML2	ML3	h2	u2	com
X7	7	0.98			0.995	0.005	1.1
X3	3	0.95			0.913	0.087	1.0
X10	10	0.95			0.911	0.089	1.0
X6	6				0.027	0.973	2.5
X5	5	0.54	0.81		0.967	0.033	1.8
X2	2	0.54	0.79		0.957	0.043	1.9
X9	9	0.58	0.78		0.976	0.024	1.9
X1	1	-0.37	0.61	0.58	0.849	0.151	2.6
X4	4		0.51	0.76	0.927	0.073	2.1
X8	8	-0.41	0.56	0.68	0.955	0.045	2.6
				ML1	ML2	ML3	
SS loadings			4.08	2.89	1.51		
Proportion Var			0.41	0.29	0.15		
			0.41	0.70	0.85		
Prop	ortio	n Expl	ained	0.48	0.34	0.18	
Cumu	ılativ	e Prop	ortion	0.48	0.82	1.00	

Etapa del análisis (Continuación....)

4) Determinación del número de factores

En esta parte, lo que se busca es determinar el numero optimo de factores a conservar. Generalmente, hay un conjunto reducido de factores, los primeros, que contienen casi toda la información. Los otros factores suelen contribuir relativamente poco, El objetivo principal es cumplir el principio de parsimonia

1	Pontlor	12	R2
1	Bentler	13	VSS complexity 2
2	t	14	Velicer's MAP
3	p		- A Markey Marke
4	Acceleration factor	15	BIC
		16	BIC
5	VSS complexity 1	17	CNG
6	TLI	18	beta
7	RMSEA		
8	Optimal coordinates	19	BIC (adjusted)
-		20	CRMS
9	Parallel analysis	21	Bartlett
10	Kaiser criterion	22	Anderson
11	SE Scree		
		23	Lawley

	n_Factors	Method	Family
1	1	t	Multiple_regression
2	1	р	Multiple_regression
3	1	RMSEA	Fit
4	2	Optimal coordinates	Scree
5	2	Acceleration factor	Scree
6	2	VSS complexity 1	VSS
7	3	Bentler	Bentler
8	3	ENC	CNG
9	3	Parallel analysis	Scree
10	3	Kaiser criterion	Scree
11	3	BIC	BIC
12	3	BIC (adjusted)	BIC
13	3	BIC	Fit
14	4	beta	Multiple_regression
15	4	SE Scree	. Scree_SE
16	4	R2	Scree_SE
17	4	VSS complexity 2	VSS
		,	

```
eigen() decomposition

$values

[1] 4.40007626 3.03714062 1.04959788 0.90892902

[5] 0.17675658 0.12843317 0.10230114 0.08123850

[9] 0.05912470 0.05640212
```

	n_Factors	n_Methods
1	1	3
1 2 3	2	3
3	3	7
4	4	5
5	5	2
6	6	3

Etapa del análisis (Continuación....)

5) Interpretación de los factores

En esta fase se sugieren los dos pasos siguientes:

- Identificar las variables cuya correlaciones con el factor son las más elevadas en valor absoluto
- Intentar dar un nombre a los factores. El nombre debe asignarse de acuerdo con la estructura de sus correlaciones con las variables.
 Analizando con qué variables tiene una relación fuerte es posible, en muchos casos, hacerse una idea más o menos clara de cual es el significado de un factor.

	item	ML1	ML2	ML3	h2	u2	com
X7	7	0.98			0.995	0.005	1.1
X 3	3	0.95			0.913	0.087	1.0
X10	10	0.95			0.911	0.089	1.0
X6	6				0.027	0.973	2.5
X5	5	0.54	0.81		0.967	0.033	1.8
X2	2	0.54	0.79		0.957	0.043	1.9
X9	9/	0.58	0.78		0.976	0.024	1.9
X1	1	-0.37	0.61	0.58	0.849	0.151	2.6
X4	4		0.51	0.76	0.927	0.073	2.1
X8	8	-0.41	0.56	0.68	0.955	0.045	2.6
				ML1	ML2	ML3	
SS loadings			4.08	2.89 1	L.51		
Prop	ortio	n Var		0.41	0.29 ().15	
Cumulative Var			0.41	0.70 ().85		
Prop	ortio	n Expl	ained	0.48	0.34 ().18	
Cumu	ılativ	e Prop	ortion	0.48	0.82	L.00	

Análisis Factorial Exploratoria

Etapa del análisis (Continuación....)

6) Rotación de factores

Cuando no se logra interpretar adecuadamente la matriz de cargas factoriales se realiza el procedimiento de rotación de factores que, busca obtener, a partir de la solución inicial, uno factores cuya matriz de cargas factoriales los haga más fácilmente interpretables, los más populares usando son el varimax para rotación ortogonal u promax para rotación oblicua

Rotación de factores

Ortogonal: Los ejes de rotación forman un ángulo 90 grados

Factor II no rotado +1,0 1 ٧2 +0,50 FactorI no rotado -1,0

+0,50

V5

Factor I

rotado

-0,50

-0.50

-1,0 🗸

Oblicua: Los ejes de rotación forman distintos ángulos

Ortogonal "none", "varimax", "quartimax", "bentlerT", "equamax", "varimin", "geominT", "bifactor"

No Ortogonal "Promax", "promax", "oblimin", "simplimax", "bentlerQ", "geominQ", "biquartimin", "cluster"

Package 'psych'

January 9, 2020

Version 1.9.12.31

Date 2019-12-31

Title Procedures for Psychological, Psychometric, and Personality Research

	item	ML2	ML3	ML1	h2	u2	com
X2	2	0.95			0.957	0.043	1.1
X 9	9	0.95			0.976	0.024	1.2
X5	5	0.95			0.967	0.033	1.2
X6	6				0.027	0.973	1.7
X4	4		0.96		0.927	0.073	1.0
X8	8		0.95		0.955	0.045	1.1
X 1	1		0.88		0.849	0.151	1.2
X7	7			0.94	0.995	0.005	1.2
X 3	3			0.89	0.913	0.087	1.3
X10	10			0.89	0.911	0.089	1.3
				ML2	ML3	ML1	
SS	loadin	gs		2.96	2.78	2.74	
Prop	ortio	n Var		0.30	0.28	0.27	
Cum	ulativ	e Var		0.30	0.57	0.85	—
Prop	ortio	n Expl	ained	0.35	0.33	0.32	
Cumu	ılativ	e Prop	ortion	0.35	0.68	1.00	

X6 muy mal representado tiene una muy baja comunalidad (h2).

Contiene el 85% de todos los datos de las 10 varibles

Análisis Factorial Exploratoria

Análisis Factorial Exploratoria

Etapa del análisis (Continuación....)

7) Calculo de puntuaciones factoriales.

Aquí se calculan los nuevos valores que tomaran los individuos en cada uno de los factores. Estos valores se pueden calcular a través de diferentes métodos como: método de regresión, el método de barlett, Método de Anderson-Rubin.

Puntuaciones factoriales.


```
MI 1
             ML2
                           ML3
[1,] -0.48782198 -1.3339874150 -0.149221425
[2,] -1.12454665 -0.6006835035 -0.516881292
[3,] 0.51268812 -0.6225988984 0.642662522
[4,] 0.43338882 -0.3723605870 0.798196078
[5,] 1.39649405 0.9114274367 0.063624936
[6,] -0.96784665 0.9415180339 0.740834499
[7,] -0.21670854 1.2041357943 0.300865695
[8,] -1.40747002 0.3602716421 0.943165564
[9,] 0.08599275 -1.1081117993 1.796773930
[10,] 0.88998723 -0.5131266743 1.042509620
[11.] 0.77265670 1.1018376670 -0.237858523
[12,] 0.26226568 1.1807634050 0.231798514
[13,] -1.61891197 0.3715450495 -1.057088938
[14,] -1.03780569 -1.0824980970 -0.726873588
```


Etapa del análisis (Continuación....)

8) Validación del modelo.

El ultimo paso en el AF es estudiar la validez del modelo. Dicha validación debe hacerse en dos direcciones: analizando la bondad de ajuste del mismo y la generalidad de sus conclusiones.

The root mean square of the residuals (RMSR) is 0.01
The df corrected root mean square of the residuals is 0.02

Teóricamente un modelo presenta una solución adecuada cuando el RSMR es menor o igual a 0.08.

¿con cuál nos quedamos?

Aquel modelo que tenga la **proporción Var más alta** y el **RMSR mas pequeño**

Análisis Factorial Exploratoria

Graficando los factores

Factor Analysis

Percepciones de los consumidores sobre marcas de refrescos

Una empresa de estudios de mercado ha realizado una encuesta a 95 consumidores para determinar sus percepciones sobre seis marcas de refrescos que compiten entre sí. Las marcas son las siguientes⁴: (1) Pepsi; (2) Coca Cola; (3) Gatorade; (4) Allsport; (5) Lipton; (6) Nestea. Para ello los entrevistados respondieron en una escala donde 1=Totalmente en desacuerdo hasta 7=Totalmente de acuerdo a las preguntas que aparecen en el cuadro 12.16. El objetivo es evaluar los factores que subyacen en la configuración de la imagen de las marcas y, a la vez, obtener el mapa perceptual de las seis marcas.

Después de lo expuesto durante el tema, optaremos por una extracción de factores por ejes principales con una rotación varimax. Pero antes hemos de ser capaces de determinar (a) si los datos son factorizables, es decir, si la matriz de correlaciones es distinta de la identidad y (b) si la muestra se adecua global

Percepciones de los consumidores sobre marcas de refrescos

Etiqueta	Enunciado / Descripción
X1	La marca X tiene un sabor refrescante
X2	Prefiero X porque tiene menos calorías que otras marcas
Х3	La marca X apaga mi sed inmediatamente
X4	Me gusta el sabor dulce de la marca X
X5	Prefiero X después del ejercicio porque me da energía
X6	Prefiero X porque viene en un envase respetuoso con el medioambiente
X7	X tiene minerales y vitaminas y me recupera además de quitar la sed
X8	X tiene un sabor muy distinto a las demás
X9	X tiene la combinación justa de minerales y vitaminas para ser saludable
X10	Prefiero tomar la marca X cuando tengo sed
Marca	1=Pepsi; 2=Coca Cola; 3=Gatorade; 4=Allsport; 5=Lipton; 6=Nestea
ID	Etiqueta para identificar al entrevistado

Análisis Factorial Confirmatorio

Los factores son conocidos a priori, generalmente descritos en la teoría, y el objetivo descrito en la teoría , y el objetivo es comprobar si dicha estructura teórica previa se ajusta a los datos atreves de contrastes de hipótesis .

Confirmatory Factor Analysis

Introducción

 SEM es una combinación de análisis factorial con regresión lineal múltiple.

$$Y = \beta_0 + \beta_1 X + u$$
 $y = v + \Lambda \eta + \varepsilon$

Pasos a desarrollar un SEM

- Especificidad del modelo Conceptual,
- Identificación del modelo matemático.
- Método de estimación
- Evaluación de la "Bondad de Ajuste"
- Re especificación justificada.

Especificidad del modelo conceptual

1	0		λ_{11}	0
1	0		λ_{21}	0
1	0	=	λ_{31}	0
0	1		0	λ_{42}
0	1		0	λ_{52}

Identificación del modelo

- Sub identificado: existe mas parámetros que datos (elementos de información) grados de libertad en Negativo.
- Posiblemente identificado (saturado): existe una correspondencia de 1 a 1 entre datos (elementos de información) y los parámetros. Tiene O grados de libertad.
- Sobre Identificado: el numero de parámetros a estimarse es menor que el numero de datos (elementos de información). Resulta en: O grados de libertad en positivo.

Identificación del modelo

$$Y = [p*(p+1)]/2$$

P=número de variables observadas

Z =variables a estimar. (no cuentan las covarianzas entre errores)

Modelo FAC

Modelo FAC

Latent Variables:				
	Estimate	Std Err	z-value	P(z)
м. э	Locimacc	J.Cu.Lii	2 value	1 (7 121)
ML_3 =~				
X 7	1.000			
X3	0.969	0.025	38.909	0.000
X10	0.969	0.021	46.099	0.000
ML_2 =~				
X4	1.000			
X8	1.050	0.029	36.512	0.000
X1	0.973	0.029	33.765	0.000
ML_1 =~				
X2	1.000			
X9	1.013	0.016	64.811	0.000
X5	1.006	0.014	74.276	0.000

Notamos que las variables se relacionan con las variables latentes

Estamos corroborando si la matriz de varianzas y covarinazas muestrales y la teórica son iguales

	Standard	Robust
Test Statistic	7.612	20.489
Degrees of freedom	24	24
P-value (Chi-square)	0.999	0.669
Scaling correction factor		0.674
Shift parameter		9.197
simple second-order correction		

RMSEA	0.000	0.000	
90 Percent confidence interval - lower	0.000	0.000	
90 Percent confidence interval - upper	0.000	0.069	
P-value RMSEA <= 0.05	1.000	0.870	
n-lu-t puget		***	
Robust RMSEA		NA	
90 Percent confidence interval - lower		0.000	
90 Percent confidence interval - upper		NA	
Standardized Root Mean Square Residual:			
SRMR	0.036	0.036	

Modelo factorial

