Deep Learning

Convolutional Neural network (CNN)

Lionel Fillatre 2025-2026

Outline of Lecture 3

- Convolutional layers
- Convolution
- Convolution in practice
- Strides and padding
- Pooling
- A few famous CNN
- Conclusion

Convolutional layers

Why would we need them?

- If they were handled as normal "unstructured" vectors, large-dimension signals such as sound samples or images would require models of intractable size.
- For instance a linear layer taking a 256×256 RGB image as input, and producing an image of same size would require:

$$(256 \times 256 \times 3) \times (256 \times 256 \times 3) \simeq 3.87e^{+10}$$

parameters, with the corresponding memory footprint (\simeq 150Gb with float32!), and excess of capacity.

Why would we need them?

• Moreover, this requirement is inconsistent with the intuition that such large signals have some "invariance in translation". A representation meaningful at a certain location can / should be used everywhere.

 A convolutional layer embodies this idea. It applies the same linear transformation locally, everywhere, and preserves the signal structure.

Fully connected layer

- In a fully connected layer, each hidden unit $h = \sigma(W^T x + \boldsymbol{b})$ is connected to the entire image.
- Looking for activations that depend on pixels that are spatially far away is supposedly a waste of time and ressources.
- Long range correlations can be dealt with in the higher layers.

Locally connected layer

- In a locally connected layer, each hidden unit h is connected to only a patch of the input layer.
- Weights are specialized locally and functionally.
- Reduce the number of parameters.
- What if the object in the image shifts a little?

Convolutional layer

- In a convolutional layer, each hidden unit h_j is connected to only a patch of the input layer, and share its weights with the other units h_i .
- Weights are specialized functionally, regardless of spatial location.
- Reduce the number of parameters.

Convolution

Convolution 1D

• For one-dimensional tensors, given an input vector $x \in \mathbb{R}^W$ and a convolutional kernel $u \in \mathbb{R}^w$, the discrete convolution x * u is a vector of size W - w + 1 such that

$$(x * u)_i = \sum_{m=0}^{w-1} x_{i+m \mod W} u_m$$

• Technically, * denotes the cross-correlation operator. However, most machine learning libraries call it convolution.

Convolution 1D

A convolution on an image

• Image: x of dimensions $H \times W$

• Kernel: u of dimensions $h \times w$

$$(x * u)_{i,j} = \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} x_{i+n \bmod H, j+m \bmod W} u_{n,m}$$

30	3,	22	1	0
02	0_2	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

Convolution as image filtering

• Filter

$$\begin{pmatrix}
 0 & 1 & 0 \\
 1 & -4 & 1 \\
 0 & 1 & 0
 \end{pmatrix}$$

Input Image

Convoluted Image

• Inspired by the neurophysiological experiments conducted by Hubel and Wiesel 1962.

Convolution 3D: Channels

- For first layer, RGB channels of input image can be easily visualized
- Number of channels is typically increased at deeper levels of the network

Convolution of 3D tensors

- Convolutions generalize to multi-dimensional tensors
- In its most usual form, a convolution takes as input a 3D tensor $x \in \mathbb{R}^{C \times H \times W}$, called the input feature map.
- A kernel $u \in \mathbb{R}^{C \times h \times w}$ slides across the input feature map, along its height and width.
- The size $h \times w$ is called the receptive field.
- At each location, the element-wise product between the kernel and the input elements it overlaps is computed and the results are summed up.

Convolution of 3D tensors

Convolution 3D output

• The final output $o = (o_{i,j})$ is a 2D tensor of size $(H - h + 1) \times (W - w + 1)$ called the output feature map and such that:

$$o_{i,j} = b_{i,j} + \sum_{c=0}^{C-1} (x_c * u_c)_{i,j} = b_{i,j} + \sum_{c=0}^{C-1} \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} x_{c,i+n \bmod H,j+m \bmod W} u_{c,n,m}$$

where u and b are shared parameters to learn.

• D convolutions can be applied in the same way to produce a $D \times (H - h + 1) \times (W - w + 1)$ feature map, where D is the depth.

How to visualize the kernels?

- A bank of 3D filters (learned from RGB inputs)
- Each of the 96 filters shown here is of size [11x11x3], and each one is shared by the 55x55 neurons in one depth slice.
- Notice that the parameter sharing assumption is relatively reasonable:
 - If detecting a horizontal edge is important at some location in the image, it should intuitively be useful at some other location as well due to the translationally-invariant structure of images.
 - There is therefore no need to relearn to detect a horizontal edge at every one of the 55x55 distinct locations in the convolutional layer output volume.

Convolutions 1 × 1

• 1×1 convolution layers: aggregating pixel information from all feature maps

Convolutions as neurons

- Since convolutions output one scalar at a time, they can be seen as an individual neuron from a MLP with a receptive field limited to the dimensions of the kernel
- The same neuron is "fired" over multiple areas from the input.

Activation Map

- We usually refer to one of the channels generated by a convolution layer as an activation map.
- The sub-area of an input map that influences a component of the output as the receptive field of the latter.
- In the context of convolutional networks, a standard linear layer is called a fully connected layer since every input influences every output.

Receptive field

- The receptive field is defined as the region in the input space that a particular CNN's feature is looking at (i.e. be affected by).
- A receptive field of a feature can be fully described by its center location and its size
- Example: kernel size 3×3

Convolution without zero-padding and with stride of 1

Receptive field 5×5 in Layer 1 for a feature in Layer 3

https://theaisummer.com/receptive-field/

Receptive field

Convolution in Pytorch

1D Convolution in Pytorch

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

- Implements a 1D convolution, where
 - weight (contains the kernels) is of dimension $D \times C \times w$, where D is the number of output channels
 - bias is of dimension *D*,
 - input is of dimension $N \times C \times W$ where N is the batch size and C the number of input channels,
 - and the result is of dimension: $N \times D \times (W w + 1)$

Code in Pytorch

```
>>> import torch
>>> out channel number = 4 # number of out channels
>>> in channel number = 2 # number of in channels
>>> w = 3 # 1D filter length
>>> W = 5 # 1D input signal length
>>> batch size = 3
>>> filters = torch.randn(out channel number, in channel number, w)
>>> inputs = torch.randn(batch size, in channel number, W)
>>> bias = torch.empty(out channel number).normal ()
>>> outputs = torch.nn.functional.conv1d(inputs, filters, bias)
>>> print(inputs)
>>> print(outputs)
```

```
tensor([[[-0.2564, -1.4026, -2.6301, 0.4547, -0.5276],
     [-0.3589, 0.8100, 0.3939, -0.3209, -0.1702]],
    [[-0.5567, -0.7665, 0.3204, 1.1852, 1.3797],
                                                                   Input: 3 \times 2 \times 5
     [-1.0769, 0.4855, 1.5382, 0.1565, -0.4238]],
    [[ 0.0183, 1.0366, 1.2764, 0.3992, 0.6236],
     [-1.4047, -0.3058, 0.1974, -1.0961, -0.1314]]])
tensor([[[ 3.5633, -1.5768, 0.2834]
    [4.4160, 2.7037, 4.8476],
     [0.7849, -1.0373, 1.7854],
     [-2.8596, -6.1889, -5.9252]],
    [[-3.4493, -1.6813, -2.4046],
     [2.8996, 0.1544, -4.4264],
                                              Output: 3 \times 4 \times (5 - 3 + 1)
    [1.9660, -3.2219, -6.8773],
     [-0.7422, -4.1237, -3.3361]],
    [[-3.8895, -0.0725, -3.1728],
    [-0.8058, -3.6168, -4.2987],
     [-0.6345, -5.3933, -4.5297],
```

26

[2.1737, 1.1122, 1.0123]]])

2D Convolutional Layer in Pytorch

2D Convolution with Pytorch

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

• Implements a 2D convolution, where weight contains the kernels, and is of dimension $D \times C \times h \times w$, bias is of dimension D, input is of dimension

$$N \times C \times H \times W$$

 $N \times D \times (H - h + 1) \times (W - w + 1)$

and the result is of dimension:

torch.Size([117, 5, 9, 1])

A similar function implements 3d convolution.

Convolution inside a module

class torch.nn.Conv2d(in channels, out channels, kernel size, stride=1, padding=0, dilation=1, groups=1, bias=True)

- Wraps the convolution into a Module, with the kernel and biases as parameter properly randomized at creation.
- The kernel size is either a pair (h, w) or a single value k interpreted as (k, k).

```
>>> f = nn.Conv2d(in_channels = 4, out_channels = 5, kernel_size = (2, 3))
>>> for n, p in f.named_parameters(): print(n, p.size())
weight torch.Size([5, 4, 2, 3])
bias torch.Size([5])
>>> x = torch.empty(117, 4, 10, 3).normal_()
>>> y = f(x)
>>> y.size()
torch.Size([117, 5, 9, 1])
```

Strides and padding

Strides

- Strides: increment step size for the convolution operator
- Reduces the size of the ouput map

Example with kernel size 3×3 and a stride of 2 (image in blue)

Padding

- Padding: artifically fill borders of image
- Useful to keep spatial dimension constant across filters
- Useful with strides and large receptive fields
- Usually: fill with 0s

Padding

• Example: input $C \times 3 \times 5$, padding of (2,1), a stride of (2,2), kernel of size $C \times 3 \times 3$

- Pooling operations (see later) have a default stride equal to their kernel size, and convolutions have a default stride of 1.
- Padding can be useful to generate an output of same size as the input.

Number of output features

$$n_{out} = \left\lfloor \frac{n_{in} + 2p - k}{s} \right\rfloor + 1$$

- n_{in} : number of input features
- n_{out} : number of output features
- k: convolution kernel size
- p: convolution padding size
- s: convolution stride size

Receptive field with stride and padding

• Example: kernel size $k=3\times 3$; padding size $p=1\times 1$; stride $s=2\times 2$; input= 5×5

Left: Non fixed-sized CNN feature map visualization

Right: Fixed-sized CNN feature map visualization, where the size of each feature map is fixed, and the **feature is located at the center** of its receptive field.

Note: a white pixel is a non-computed pixel.

A common way to visualize a CNN feature map.

Pooling

Downsampling

- ullet Downsampling by a factor S amount to keeping only one every S pixels, discarding others
- Filter banks often incorporate or are followed by 2x output downsampling
- Downsampling is often matched with an increase in the number of feature channels
- Overall the volume of the tensors decreases slowly

Spatial pooling

By far, the most common variant is **max pooling**.

Pooling

- Spatial dimension reduction
- Local invariance
- No parameters: max or average of 2×2 units

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

Max-Pooling 1D

Max-Pooling 2D

Translation invariance from pooling

Pooling in Pytorch

torch.nn.functional.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)

- takes as input a $N \times C \times H \times W$ tensor, and a kernel size (h,w) or k interpreted as (k,k).
- applies the max-pooling on each channel of each sample separately, and produce if the padding is 0 a $N \times C \times [H/h] \times [W/w]$ output.

• Similar function implements 1d and 3d max-pooling, and average pooling

Stride and Padding

- As for convolution, pooling operations can be modulated through their stride and padding.
- While for convolution the default stride is 1, for pooling it is equal to the kernel size, but this not obligatory.
- Default padding is zero.

Pooling in a Module

- class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
- Wraps the max-pooling operation into a Module.
- As for convolutions, the kernel size is either a pair (h, w) or a single value k interpreted as (k, k).

A few famous CNN

A common CNN

cat dog **Fully Connected** Feedforward network Flattened

Layer Visualization

A large family of CNN From 2012 – 2020: ConvNets dominate all vision tasks

- 1989–1998: [<u>LeNet</u>]
- 2012–2014: [AlexNet & CaffeNet] [Maxout] [NIN] [ZFNet] [SPPNet]
- 2015: [VGGNet] [Highway] [PReLU-Net] [STN] [DeepImage] [GoogLeNet / Inception-v1] [BN-Inception / Inception-v2]
- 2016: [SqueezeNet] [Inception-v3] [ResNet] [Pre-Activation ResNet] [RiR] [Stochastic Depth] [WRN] [Trimps-Soushen]
- 2017: [Inception-v4] [Xception] [MobileNetV1] [Shake-Shake] [Cutout] [FractalNet] [PolyNet] [ResNeXt] [DenseNet] [PyramidNet] [DRN] [DPN] [Residual Attention Network] [IGCNet / IGCV1] [Deep Roots]
- 2018: [RoR] [DMRNet / DFN-MR] [MSDNet] [ShuffleNet V1] [SENet] [NASNet] [MobileNetV2] [CondenseNet] [IGCV2] [IGCV3] [FishNet] [SqueezeNext] [ENAS] [PNASNet] [ShuffleNet V2] [BAM] [CBAM] [MorphNet] [NetAdapt] [mixup] [DropBlock]
- 2019: [ResNet-38] [AmoebaNet] [ESPNetv2] [MnasNet] [Single-Path NAS] [DARTS] [ProxylessNAS] [MobileNetV3] [FBNet] [ShakeDrop] [CutMix] [MixConv] [EfficientNet]
- 2020: [Random Erasing (RE)]
- 2021 Present: Transformers have taken over

LeNet-5

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

2013: All the 20 first ranking methods were using deep learning!!

AlexNet

AlexNet

- Trained on GTX 580 GPU with only 3 GB of memory.
- Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.
- CONV1, CONV2, CONV4, CONV5:
 - Connections only with feature maps on same GPU.
- CONV3, FC6, FC7, FC8:
 - Connections with all feature maps in preceding layer, communication across GPUs.
- Few details: first use of ReLU, not commun normalization layers, dropout, batch, SGD momentum, etc.

VGG Net (Oxford Net)

[Simonyan and Zisserman 2014]

- Runner-up of Imagenet 2014
- 7.3% top-5 error rate!
- Main idea:
 - Fix the filter size: 3x3
 - Fix the pooling 2x2 stride 2
 - Go deeper!
- Several model are proposed
- Trained on 4 Nyidia Titan Black GPUs for two to three weeks.

ConvNet Configuration A-LRN Α 11 weight 13 weight 11 weight 16 weight 16 weight 19 weight layers layers layers layers layers layers input $(224 \times 224 \text{ RGB image})$ conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 LRN conv3-64 conv3-64 conv3-64 conv3-64 maxpool conv3-128 maxpool conv3-256 conv1-256 conv3-256 conv3-256 conv3-256 maxpool conv3-512 conv1-512 conv3-512 conv3-512 conv3-512 maxpool conv3-512 conv1-512 conv3-512 conv3-512 conv3-512 maxpool FC-4096 FC-4096 FC-1000 soft-max

Best model

Table 2: **Number of parameters** (in millions).

Network	A,A-LRN	В	C	D	Е
Number of parameters	133	133	134	138	144

VGG Net (Oxford Net)

- Why 3x3 convolutions??
 - 1. Getting rid of a filter-size as a hyper-parameters Keep adding layers until they help!
 - 2. Similar receptive field, less parameters, more nonlinearities!

Comparison of a layer of 7x7 vs. 3 layers of 3x3

$$((7 \times 7 \times c) \times c) = 49c^2 \text{ vs } ((3 \times 3 \times c) \times c) \times 3 = 27c^2$$

1 nonlinearity applied vs. 3 nonlinearities

GoogLeNet

"Going deeper with convolutions"

Inception network

22 layers network 6.7% Top-5 error rate! Winners of Imagenet 2014

[Szegedy et al. 2014]

GoogleNet

- 22 layers
- Efficient "Inception" module strayed from the general approach of simply stacking conv and pooling layers on top of each other in a sequential structure
- No FC layers
- Only 5 million parameters!
- ILSVRC'14 classification winner (6.7% top 5 error)

GoogLeNet: Inception module

Inception module (naïve version)

Inception module with dimensionality reduction

GoogLeNet

- Does it make any sense to do 1x1 convolutions?
- Can we do dimensionality reduction on the depth?

GoogLeNet

- Global average pooling is used at the end of the network instead of using fully connected layers.
- The key contribution is made by average pooling instead of fully connected layers
- Fully connected (FC) layers
 - Number of weights (connections) below = 7×7×1024×1024 = 51.3M
- In GoogLeNet, global average pooling is used nearly at the end of network by averaging each feature map from 7×7 to 1×1, as in the figure below.
 - Number of weights = 0

Conclusion

Conclusion

- Convolutional layer is one of the key of deep neural network efficiency
 - Sharing the parameters reduce the number of parameters
 - Convolution is good to extract patterns
- Other tools like padding and stride are useful to control the size of the layers
- Pooling is great to manage invariance
- It is challenging to manage a large number of layers
 - Many tuned neural network architectures have been proposed
 - Training of very deep neural networks is quite tricky