Formulario di geometria analitica

Lucrezia Bioni

Piani

Piano passante per un punto e ortogonale a un vettore

Un punto x appartiene al piano \mathcal{P} passante per il punto x_0 e ortogonale al vettore \mathbf{n} se e solo se $x-x_0$ è ortogonale a \mathbf{n} . Dunque l'equazione vettoriale di \mathcal{P} è

$$\langle \mathbf{n}, x - x_0 \rangle = 0$$

Equazione cartesiana di un piano nello spazio

Ogni piano nello spazio \mathbb{R}^3 si rappresenta con un'equazione cartesiana

$$ax + by + cz + d = 0$$

dove almeno uno dei coefficienti a, b, c è non nullo. Viceversa, ogni equazione di questo tipo rappresenta un piano. Il vettore $\mathbf{v} = (a, b, c)$ è ortogonale al piano di equazione ax + by + cz + d = 0, e si chiama **vettore di giacitura del piano**.

Piani paralleli

Due piani sono paralleli se hanno la stessa giacitura, cioè se i loro vettori di giacitura (a, b, c) e (a', b', c') sono proporzionali, cioè se

$$\exists h \in \mathbb{R}: \quad a' = ha \quad b' = hb \quad c' = hc$$

Rette

Retta passante per un punto e parallela a un vettore

Retta passante per il punto P_0 e parallela al vettore \mathbf{v}

$$X = P_0 + t\mathbf{v}$$
 $t \in \mathbb{R}$

Rette parallele

Due rette di equazioni parametriche sono parallele se hanno la stessa direzione, cioè i se i loro vettori direzione $\mathbf{v} = (l, m, n)$ e $\mathbf{v}' = (l', m', n')$ sono proporzionali:

$$\exists h \in \mathbb{R}: \quad l' = hl \quad m' = hm \quad n' = hn$$

Angoli

Definzione geometrica

Definiamo angolo tra i vettori \mathbf{v} e \mathbf{w} il numero reale $\theta \in [0, \pi]$ tale

$$cos\theta = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|}$$

Parallelogrammo

Area

L'area di un parallelogrammo di lati ${\bf A}$ e ${\bf B}$

$$Area = |\mathbf{A} \times \mathbf{B}|$$