Yuelin Li - Analytic/Quantitative Résumé

A. Selected Quantitative Courses at Washington University

Subject	Course	Details	
Applied	Probability and	Textbook: Probability and Random Processes for Electrical and	
Math	Stochastic Processes	<u>Computer Engineers</u> , J. Gubner	
	ESE520	Content: Wiener process and white noise representation, Markov process,	
	(Fall 2022)	Gaussian process, Poisson process, Convergence of distribution,	
		Conditional expectation, Covariance and correlation, σ -algebras.	
	Mathematics of	Textbook: Foundations of Image Science, Barrett and Myers	
	Imaging Science	Content: Imaging in a mathematical framework, Banach and Hilbert	
	ESE5931	Space, Eigenanalysis, Singular value decomposition, Fourier analysis and	
	(Fall 2022)	transform, Linear shift-invariant systems, Object image representations.	
	Optimization	Textbook: Handouts from Prof. Ulugbek Kamilov	
	ESE415	Content: Optimality conditions for unconstrained and constrained	
	(Spring 2022)	optimization, Convex sets and functions, Unconstrained and constrained	
		minimization algorithms, Lagrangian duality and methods of multipliers.	
	Large-Scale	Content: Gradient method, Subgradient and subdifferential, Projected	
	Optimization for Data	subgradient method, Mirror descent, Optimality of algorithms, Accelerated	
	Science	gradient methods, Conjugate functions, Smoothing for non-smooth	
	ESE513	optimization, Proximal operator, Proximal gradient methods, ADMM.	
	(Fall 2021)		
Computer	Data Mining	Textbook: <u>Data Mining: Practical Machine Learning Tools and</u>	
Science	CSE514A	<u>Techniques</u> , Witten and Frank, <u>Data Mining and Analysis</u> , Zaki and Meira,	
	(Spring 2022)	<u>Deep Learning,</u> Goodfellow, Bengio, Courville	
		Content: Supervised learning, Performance measures, Unsupervised	
		learning, Data preprocessing.	
	Algorithms for	Textbook: <i>Nonlinear Programming</i> , Dimitri Bertsekas	
	Nonlinear	Content: Unconstrained optimization, Lagrange multiplier theory,	
	Optimization	Constrained optimization, Duality and discrete optimization.	
	CSE543T		
	(Fall 2021)		
Other	Practicum in Data	Content: Predictive and prescriptive analytics, Machine learning models,	
	Analytics & Statistics	Model selection and hyper-parameter tuning, Results validation and	
	ESE527	interpretation, Case studies in biostatistics.	
	(Fall 2022)		

B. Selected Quantitative Courses at Columbia University

Subject	Course	Details
Math	Introduction to	Textbook: <u>Principles of Mathematical Analysis</u> , W. Rudin, Chapter 1-11
	Modern Analysis I&II	Content: Real and complex analysis, Point set topology, Continuous and
	MATHGU4061-4062	differential functions, Integration, Implicit function theorem, Stokes'
	(2019-2020)	theorem, Lebesgue measure and integral.
	Introduction to	Textbook: <u>Algebra</u> , M. Artin, Chapter 2, 6, 7, <u>Abstract Algebra</u> , Dummit
	Modern Algebra I	and Foote, Chapter 0-6
	MATHGU4041	Content: Groups, Homomorphisms, Rings, Fields, Polynomials, Field
	(Fall 2020)	extensions, Galois theory.
	Partial Differential	Textbook: <u>Partial Differential Equations: An Introduction</u> , Walter A.
	Equations	Strauss, Chapter 1-8
	MATHV3028	Content: First-order equations, Linear second-order equations,
	(Spring 2020)	Separation of variables, Solution by series expansions, Boundary value
		problems.
	Ordinary Differential	Textbook: Handouts from Prof. Florian Johne, <u>Elementary Differential</u>
	Equations	Equations and Boundary Value Problems, Boyce and DiPrima, Chapter 1-
	MATHV2030	7, 9, 11
	(Fall 2019)	Content: Linear theory, Nonlinear equations, Integral transform and
		series solution techniques, The Banach fixed point theorem, Convergence
		of the matrix exponential, Applications.
	Linear Algebra	Textbook: <i>Linear Algebra with Applications</i> , Otto Bretsch, Chapter 1-8
	MATHV2010	Content: Matrices, Vector spaces, Linear transformations, Eigenvalues
	(Fall 2018)	and eigenvectors, Canonical forms, Applications.
	Supervised Reading	Textbook: <u>Applied Partial Differential Equations</u> , A. Jeffrey, <u>Applied</u>
	MATHV3902	Partial Differential Equations, R. Haberman, Chapter 1-8, 12, 14.
	(Spring 2020)	Content: Weekly meeting and discussion on selected topics.
Applied	Computational Inverse	Textbook: Handouts from Prof. Kui Ren
Math	Problems	Content: Regression and regularization theory, Iterative schemes for
	APMAE6901	nonlinear inverse problems, Deterministic and randomized minimization
	(Spring 2020)	schemes, Deep learning with neural networks.
	Computational Math:	Textbook: Handouts from Prof. Marc Spiegelman, <u>Numerical Methods in</u>
	Numerical Methods	Engineering with Python 3, J. Kiusalaas, Chapter 1-10
	APMAE4300	
	(Fall 2020)	

	Content: Errors, Root finding, Optimization, Interpolation, Numerical	
	differentiation, Numerical quadrature, Numerical ODE and PDE,	
	Convergence and stability, Numerical linear algebra.	
Artificial Intelligence	Textbook: Artificial Intelligence: A Modern Approach, Russell and Norvig	
COMSW4701	Content: State-space problem representations, Problem reduction, And-or	
(Summer 2020)	graphs, Heuristic search, Predicate calculus, Resolution theorem proving,	
	AI systems and languages for knowledge representation, Machine learning	
	and concept formation.	
Machine Learning	Textbook: Pattern Recognition and Machine Learning, C. M. Bishop,	
COMSW4721	Chapter 1-7, 9, 12-14.3, <i>The Elements of Statistical Learning</i> , Hastie,	
(Spring 2020)	Tibshirani, and Friedman, Chapter 2, 3, 6, 7, 13, 14, <u>A Course in Machine</u>	
	<u>Learning</u> , Daume	
	Content: Equivalence of maximum likelihood and least squares	
	estimator, Bias-variance decomposition of mean squared error, Bayes	
	classifier, Nonparametric methods, Gradient descent, Neural networks,	
	Kernel methods, Dimension reduction and manifold learning, Resampling	
	methods, Clustering, Sequential data modeling.	
Introduction to	Textbook: <u>Database System Concepts</u> , Silberschatz, Korth and Sudarshan	
Databases	Content: Entity-relationship modeling, Logical design of relational	
COMSW4111	databases, Relational data definition and manipulation languages, SQL,	
(Fall 2019)	XML, Query processing, Physical database tuning, Transaction processing,	
	Security.	
Computer Science	Textbook: <i>Introduction to the Theory of Computation</i> , M. Sisper, Chapter	
Theory	1-10	
COMSW3261	Content: Deterministic and non-deterministic finite automata, Regular	
(Summer 2020)	expressions, Context-free grammars, Push-down automata, Turing	
	machines, Chomsky hierarchy, Church-Turing thesis, Complexity Theory	
	and NP-Completeness.	
Discrete Mathematics:	Textbook: <u>Mathematics:</u> A <u>Discrete Introduction</u> , Edward R.	
Combinatorics and	Scheinerman, Chapter 1-10, Handouts from Prof. Tony Dear	
Graph Theory	Content: Logic and formal proofs, Finite probability, Recurrence	
COMSW3203	relations, Sequences and summation, Partial orderings, Graph theory.	
(Spring 2019)		
Data Structures with	Textbook: <u>The C Programming Language</u> , Keinighan and Ritchie,	
C/C++	Data Structures and Algorithm Analysis in C++, Mark A. Weiss	
	COMSW4701 (Summer 2020) Machine Learning COMSW4721 (Spring 2020) Introduction to Databases COMSW4111 (Fall 2019) Computer Science Theory COMSW3261 (Summer 2020) Discrete Mathematics: Combinatorics and Graph Theory COMSW3203 (Spring 2019) Data Structures with	

	COMSW3136	Content: Programming in C/C++, Array based data structures, Heaps,
	(Spring 2019)	Linked lists, UNIX environment, Trees, Graphs.
	Computing in Context	Textbook: Handouts from Prof. Adam Cannon and Prof. Scarlett
	INAFU6006/	Swerdlow
	COMSW1002	Content: Introductory programming, Digital social sciences, finance,
	(Fall 2018)	public policy, Object-oriented programming, Algorithms, Data cleaning.
	Development	Content: Introductory Java, a mixture of lecture/demo and project based
	Technology	Java practice.
	COMSW3102	
	(Fall 2020)	
Statistics	Probability Theory	Textbook: <u>Probability and Statistics</u> , DeGroot and Schervish, Chapter 1-
	STATGU4203/	6
	STATGU5203	Content: Calculus-based probability theory, Random variables,
	(Summer 2020)	Conditional probability, Bayes rule, Important distributions, Joint
		distributions, Moment generating functions, Central limit theorem, laws
		of large numbers, Markovs inequality.
	Probability and	Textbook: <u>Introduction to Probability and Statistics for Engineers and</u>
	Statistics for Data	Scientists, Sheldon M. Ross, Chapter 1-12, 15, Probability and Statistics,
	Science	DeGroot and Schervish, selected reading in Chapter 7-12
	STATGU5701	Content: Probability theory and statistical inference used in data science;
	(Fall 2019)	Probabilistic models, Statistical inference: Point and confidence interval
		estimation, Hypothesis tests, Linear regression, Maximum likelihood,
		Likelihood ratio tests, Nonparametric procedures, Theory of least squares,
		ANOVA, Statistical analysis trained with R.
	Data Visualization	Textbook: <u>Graphical Data Analysis with R</u> , Scott Murray, <u>R Graphics</u>
	QMSSGR5063/	<u>Cookbook: Practical Recipes for Visualizing Data</u> , Winston Chang,
	STATGU5702	ggplot2: Elegant Graphics for Data Analysis, Hadley Wickham
	(Spring 2020)	Content: Mapping geographic data, text, social networks, other forms of
		data in dynamic and interactive displays with R .
	Time Series Analysis	Textbook: <i>Introduction to Time Series Analysis</i> , Mark Pickup, Chapter 1-
	QMSSGR5016	6, R for Data Science. Garrett Grolemund & Hadley Wickham
	(Fall 2020)	Content: Time series data and longitudinal (panel) data, Regression
		analysis of temporal processes, Difference-in-difference models, Time
		series regression, Dynamic causal effects, Vector autoregressions,
		Cointegration, GARCH models with R.

	Natural Language	Textbook: Speech and Language Processing, Jurafsky and Martin,
	Processing	Chapter 1-11, 19, Natural Language Processing with Python by NLTK
	QMSSGR5067	Content: NLTK, Text tokenization, Stemming, Web Scraping,
	(Fall 2020)	Clustering, TF-IDF, Speech tagging, Sentimental analysis, Lexicons,
		Scikit-learn, Predictive streaming analytics.
	Data Analysis with	Textbook: Introductory Econometrics: A Modern Approach, J.
	Python	Wooldridge, Chapter 1-17, Python for data analysis: Data wrangling with
	QMSSGR5019	Pandas, NumPy, and IPython, McKinney, Chapter 1-13
	(Summer 2020)	Content: Data structures, Multiple regression analysis, Interactions,
		Gauss-Markov assumptions and asymptotics, Heteroskedasticity and
		diagnostics, Bayes classifiers, Models for binary outcomes, Ordered data,
		Nominal data, First difference analysis, Factor analysis.
	Machine Learning for	Textbook: Introduction to Machine Learning with Python, G. Muller,
Social Sciences QMSSGR5073		Chapter 1-6, <u>Applied Predictive Modeling</u> , Kuhn, Johnson, Chapter 1-4, 6,
		12-16, 19, <u>Deep Learning</u> , Goodfellow, Bengio, Courville, Chapter 6, 7, 9
	(Summer 2020)	Content: Supervised learning, Models for classification, Imputation and
		feature selection, SVM, Decision trees, Random forest, Gradient boosting
		and calibration, Dimensionality reduction, Clustering, Manifold learning,
		Neural network, Image classification.
Econ	Microeconomic	Textbook: Microeconomics, Besanko and Braeutigam
	Analysis	Content: Demand-supply model, Welfare analysis, Consumer and
	SIPAU6400	producer theory, Equilibrium, Welfare theorems, Externalities, Public
	(Fall 2018)	goods, Uncertainty and asymmetric information.
	Macroeconomic	Textbook: Macroeconomics, Abel, Bernanke and Croushore
	Analysis	Content: Labor market, Income and wealth, Balance of payments, Asset
	SIPAU6401	market, Business cycle theory, The open economy.
		(Waiver by Passing Proficiency Test)
Other	Quantitative Analysis	Textbook: Statistics with STATA, Lawrence C. Hamilton,
	SIPAU6500	Introduction to the Practice of Statistics, D. Moore, G. McCabe,
	(Spring 2019)	Applied Regression, M. Lewis-Beck
		Content: Introduction to probability and statistics, Hypothesis tests,
		Linear regression, Statistical analysis trained with STATA .
	Tools for Analytics	Textbook: Handouts from Prof. Paul Logston
	IEORE4501	Content: Python programming, Recursion, Time complexity, Algorithms
	(Fall 2018-Audited)	and efficiency, Linux usage, SQL, Serialization, HTML, APIs.
<u> </u>	1	1

C. Quantitative Courses at Peking University-Economics Department

Subject	Course	Details
Economics	The Principles of Economics	Textbook: The Principles of Economics, N. Gregory Mankiw
	(Fall 2014)	Content: Factors of production, Factors of demand and
		supply, Effective allocation of resource in a production
		process, Interdependence and gains from trade.
	Intermediate Econometrics	Textbook: Introductory Econometrics: A Modern Approach,
	(Spring 2017)	Jeffery M. Wooldridge
		Content: Malfunctioning of Market, Monopoly, Externality
		and Asymmetric Information, Economic Behavior of
		Government, Public Finances.
	Intermediate Microeconomics	Textbook: Intermediate Microeconomics: A Modern
	(Spring 2015)	Approach, Hal R. Varian
		Content: Consumer theory, Theory of the firm, Game theory,
		Externalities of economics theory, Problems and allocation of
		public goods.
	Education Economics	Textbook: Economics of Education. Amsterdam: Elsevier,
	(Spring 2015)	Brewer, D, & Patrick McEwan.
		Content: Measurement of educational benefits, Education
		production function, Estimation of the relationship between
ı		education and economic growth, Expenditure on education,
		Allocation of funds and transfer payment.
	Intermediate Macroeconomics	Textbook: Macroeconomics. Paul Krugman
	(Fall 2016)	Content: Composition and accounting of national economy,
		Growth and capital accumulation, Growth and policy, Inflation
		and unemployment, Interest and monetary policy, Exchange
		rate and policy, The balance of trade, Capital mobility, The
		Mundell-Pleming Model.
	Growth Economics	Textbook: Economic Growth. Pearson: David N Weil.
	(Spring 2017)	Content: Economic perspective in public policies, Growth
		models.
	Economics of Innovation and	Textbook: Innovation and Incentives, Suzanne Scotchmer
	Intellectual Property Rights	Content: Economics of innovation processes, Intellectual
	(Spring 2017)	property rights, Model of the economics of optimal patent life,
		Model of patent licensing, The evaluation of innovations.

Finance	Internet Finance and Big Data	Textbook: Handouts from Prof. Fangfang Tang of
	(Spring 2015)	Department of Economics, Peking University
		Content: Web-centric business models,
		Financial innovation under Internet environment.
	Low-Carbon Economy and	Textbook: Climate Change and Carbon Trading, Fangfang
	Carbon Finance	Tang
	(Spring 2016)	Content: Carbon trading theory, Climate change and carbon
		trading, Coase Theorem, Global public goods.
	Financial Accounting	Textbook: Intermediate Financial Accounting, Yunping Wang
	(Spring 2017)	Content: Financial statement, Accounting dealing and
		financial report mode.
	Introduction to Internet	Textbook: Handouts from Prof. Feng Guo of Department of
	Finance (Spring 2017)	Finance, Peking University
		Content: Cases about third-party payment, P2P platform,
		Crowd-funding, Investigation, Financial regulations