A decision tree is a hierarchical ('tree-like) classifier containing two kinds of nodes viz., decision nodes (internal nodes) and leaf nodes.

The internal modes constitute tests on the features of the dataset and the leaf nodes represent the outcomes of the decisions (interms of class labels)

Depn: A decision tree is a graphical representation of all possible solutions to a decision based on certain conditions.

Process

- 1) The root node contains entire population (dataset)
- 2 Based on decisions, the root nodes is split into two or more smaller groups.
- (3) If uniformity (homogeneity) of a group is observed, then the group is made into a leaf node with the common class as its label. Otherwise, the splitting of the dataset continues.
- 4 Repeat step 4 rentil all groups are divided ultimately into leaf nodes.

Outlook	Temperature	Humidity	Windy	Play
W 11 32 1 4	hot	high	false	no
surry	1 1 m m 1 1 1 1 1 1	high	true	no
Sunny	hot	V	false	yes
overcast	not	high	false	yes
rainy	mild	high	false	yes
rainy	rool	normal		no
rainy	rool	normal	true	yes
overcast	cool	normal	true	no
Sunny	mild	high	false	1 3 3 4 5 5 5
Sunny	rool	normal	false	yes yes
rainy	mild	normal	false	yes
Sunny	mild	normal	true	
overcast	mild	high	true	yes
overcast	not	normal	false	yes
rainy	mild	high	true	no

Task: Predict whether you can play or not given the day's attributes

? - Which attribute to pick first? outlook/temperature/humidity/windy?

A-Determine the best altribute that best classifies the training data

- -? how to choose the best attribute
- -? how does the tree decision where to split

Different attribute selection measures

- Information Bain
 - Gain Ratio
 - Gini Indes
 - chi-square test

Information Gain

- decrease in entropy after a dataset is split based on an attribute.

So, constructing a decision tree is all about finding the attribute that returns the highest information gain.

Entropy - metric that measures impurity in a given dataset

$$\frac{\text{case1}}{n} = \frac{\text{yes 5}}{n \cdot 5} = -\frac{P(\text{yes}) \log_2 P(\text{yes})}{-\frac{P(\text{no}) \log_2 P(\text{no})}{n \cdot 5}} = -0.5 \log_2(0.5) - 0.5 \log_2(0.5)$$

$$= 0.5 + 0.5 = 1$$

$$\log_{2}(0.5) = \log_{2}(\frac{1}{2})$$

$$= \log_{2}(z^{-1}) = -1$$

$$\frac{\text{case 2}}{\text{no 0}} = \frac{\text{yes 10}}{\text{no 0}} = \text{ntropy} = -P(\text{yes}) \log_2 P(\text{yes})$$

$$-P(\text{no}) \log_2 P(\text{no})$$

$$= -1 \log_2(1) - 0 \log_2 0$$

$$= -1 \times 0 - 0 \times 1 = 0$$

Information Gain

- measures reduction in entropy
- decides which attribute must be selected as decision node.

For the provided dataset (8)

Entropy (s) =
$$-P(YeS) \log_2 P(YeS) - P(No) \log_2 P(No)$$

= $-(\frac{9}{14}) \log_2 (\frac{9}{14}) - (\frac{5}{14}) \log_2 (\frac{5}{14})$

= $0.41 + 0.53 = 0.94$

which node to select as root node outlook/temperature/humidity/windy?

Outlook?

$$E(\text{outlook} = \text{sunny}) = -\frac{2}{5} \log_2(\frac{2}{5}) - \frac{3}{5} \log_2(\frac{3}{5}) = 0.971$$

 $E(\text{outlook} = \text{overcast}) = -1 \log_2 1 = 0 \log_2 0 = 0$
 $E(\text{outlook} = \text{rainy}) = -\frac{3}{5} \log_2(\frac{3}{5}) - \frac{2}{5} \log_2(\frac{2}{5}) = 0.971$

(5)

Information from outlook

I (outlook) =
$$\frac{5}{14} \times 0.971 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.971 = 0.693$$

$$\Rightarrow$$
 Gain (outlook) = E(s) - I(outlook)
= 0.94-0.693
= 0.247

windy?

Information from Windy

I (Windy) =
$$\frac{8}{14} \times 0.811 + \frac{6}{14} \times 1 = 0.892$$

illy Temperature

Information Gain

data at Left subtree (outlook = sunny)

Temperature	Humidity	windy	Play
het	high	false	no
hot	high	true	no
mild	high	false	20
rool	normal	false	yes
mild	normal	true	· ·
peat the are		La Carlotte La Vi	yes

repeat the process

Data at right subtree (Outlook = rainy)

Temperature	Humidity	Windy	Play
mild	high	false	yes
cool	normal	false	yes
lood	normal	true	20
mild	normal	false	yes
mild	high	true	20
The Volume	和水水面		

repeat the process complete decision tree

Advantages

- simple to build
- easy to understand the solution (interpretable)

Disadvantages

- susceptible to overfilting - soln? pruning Pruning
- reducing the complexity
- improving the generality

Pruning - Pre pruning (decide whether or not to split a particular node during model building)

L post pruning (build the decision true, then prune the branches to avoid overfitting)

who have been free