Name: Vikram Surya R

Reg No: 19BCE1490

Essentials of Data Analytics

Tasks for Week-3: Regression and Forecasting on Weather Data

Perform multi-regression and forecasting on weather related dataset "weatherHistory2016.csv"

Aim:

- (i) To perform multi-regression model on the given data using R programming.
- (ii) To understand time-series operations/functions and forecast the next two months of data.

Algorithm:

(a)

- 1. Load the dataset and dplyr library.
- 2. Take a sample of the dataset
- 3. Create independent and dependent variables
- 4. Check the correlation between x and y
- 5. Plot a scatter plot of the dataset and develop linear model
- 6. Plot a regression line
- 7. See the summary of the model

(b)

- 1. Load the dataset, forecast library and tseries library.
- 2. Convert this data into time series and plot time series data.
- 3. Perform adf test
- 4. Develop an auto arima model.

- 5. Perform forecast using the model.
- 6. Plot the forecast and check accuracy of model.

CODE:

```
setwd("C:/Users/VIKRAM SURYA/Desktop/EDA LAB")
a=read.csv("weatherHistory2016.csv")
library (dplyr)
a=sample n(a, 200)
cor. test (a$Temperature...C., a$Apparent. Temperature...C.)
cor. test (a$Temperature..C., a$Humidity)
cor. test (a$Temperature..C., a$Wind. Speed..km.h.)
cor. test(a$Temperature..C., a$Wind.Bearing..degrees.)
cor. test (a$Temperature..C., a$Pressure..millibars.)
x=a$Temperature..C.
y1=a$Humidity
y2=a$Apparent. Temperature...C.
model = 1m(x^y1+y2, data=a)
summary(model)
plot (model)
library (forecast)
library(tseries)
data <- ts(a$Temperature..C., start=as.Date("2016-10-01"), end=as.Date("2016-
12-31''), frequency = 24)
```

```
plot(data)
adf. test(data)
model1=auto. arima(data, ic="aic", trace=TRUE)
modelf=forecast(model1, level=c(95), h=60)
modelf
plot(modelf)
```

INFERENCE:

The correlation values for humidity and apparent temperature is greater than 0.5. So these columns are selected.

```
> cor.test(a$Temperature..C.,a$Apparent.Temperature..C.)
         Pearson's product-moment correlation
data: a$Temperature..C. and a$Apparent.Temperature..C.
t = 146.04, df = 198, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9939095 0.9965115
sample estimates:
      cor
0.9953902
> cor.test(a$Temperature..C.,a$Humidity)
         Pearson's product-moment correlation
data: a$Temperature..C. and a$Humidity
t = -13.526, df = 198, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.7587973 -0.6132356
sample estimates:
-0.6930143
> cor.test(a$Temperature..C.,a$Wind.Speed..km.h.)
        Pearson's product-moment correlation
data: a$Temperature..C. and a$Wind.Speed..km.h.
t = 0.15829, df = 198, p-value = 0.8744
alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval:
-0.1276921 0.1497555
sample estimates:
0.01124817
```

```
> cor.test(a$Temperature..C.,a$Wind.Bearing..degrees.)
        Pearson's product-moment correlation
data: a$Temperature..C. and a$Wind.Bearing..degrees.
t = -0.46827, df = 198, p-value = 0.6401
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.171211 0.105970
sample estimates:
        cor
-0.03326005
> cor.test(a$Temperature..C.,a$Pressure..millibars.)
        Pearson's product-moment correlation
data: a$Temperature..C. and a$Pressure..millibars.
t = -2.5775, df = 198, p-value = 0.01068
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.31113970 -0.04249786
sample estimates:
      cor
-0.1801765
> summary(model)
call:
lm(formula = x \sim y1 + y2, data = a)
Residuals:
Min 1Q Median 3Q Max
-2.9933 -0.4820 0.1325 0.5035 1.9373
                                    Max
Coefficients:
0.855475 0.007659 111.700 < 2e-16
y2
(Intercept) ***
у1
y2
            ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8037 on 197 degrees of freedom
Multiple R-squared: 0.9919, Adjusted R-squared: 0.9918
F-statistic: 1.209e+04 on 2 and 197 DF, p-value: < 2.2e-16
```



```
> adf.test(data)
        Augmented Dickey-Fuller Test
data: data
Dickey-Fuller = -13.189, Lag order = 12,
p-value = 0.01
alternative hypothesis: stationary
Warning message:
In adf.test(data) : p-value smaller than printed p-valu
e
 Fitting models using approximations to speed things u
р...
 ARIMA(2,0,2)(1,0,1)[24] with non-zero mean : Inf
 ARIMA(0,0,0)
                          with non-zero mean: 15740.94
 ARIMA(1,0,0)(1,0,0)[24] with non-zero mean: 15731.93
 ARIMA(0,0,1)(0,0,1)[24] with non-zero mean : 15721.3
 ARIMA(0,0,0)
                          with zero mean
                                            : 18255.93
 ARIMA(0,0,1)
                          with non-zero mean : 15720.14
 ARIMA(0,0,1)(1,0,0)[24] with non-zero mean: 15730.98
 ARIMA(0,0,1)(1,0,1)[24] with non-zero mean: 15731.75
 ARIMA(1,0,1)
                           with non-zero mean: 15698.57
 ARIMA(1,0,1)(1,0,0)[24] with non-zero mean: 15715.31
 ARIMA(1,0,1)(0,0,1)[24] with non-zero mean: 15698.05
 ARIMA(1,0,1)(1,0,1)[24] with non-zero mean: 15717.12
 ARIMA(1,0,1)(0,0,2)[24] with non-zero mean : 15698.55 ARIMA(1,0,1)(1,0,2)[24] with non-zero mean : 15717.39
 ARIMA(1,0,0)(0,0,1)[24] with non-zero mean : 15723.06
 ARIMA(2,0,1)(0,0,1)[24] with non-zero mean : 15706.89
 ARIMA(1,0,2)(0,0,1)[24] with non-zero mean: 15705.84
 ARIMA(0,0,0)(0,0,1)[24] with non-zero mean : 15740.99
 ARIMA(0,0,2)(0,0,1)[24] with non-zero mean: 15717.25
 ARIMA(2,0,0)(0,0,1)[24] with non-zero mean : 15723.75
ARIMA(2,0,2)(0,0,1)[24] with non-zero mean : Inf
 ARIMA(1,0,1)(0,0,1)[24] with zero mean
 Now re-fitting the best model(s) without approximation
s...
 ARIMA(1,0,1)(0,0,1)[24] with non-zero mean : Inf
```

		-		2.2
> modelf				
	Point	Forecast		Hi 95
17166.04		11.34524	-5.881534	28.57202
17166.08		12.61993	-4.707899	29.94775
17166.12		12.75615	-4.615678	30.12797
17166.17		12.91982	-4.464463	30.30411
17166.21		12.81445	-4.573373	30.20226
17166.25		13.00968	-4.379138	30.39850
17166.29		13.21407	-4.175032	30.60318
17166.33		13.05886	-4.330324	30.44805
17166.38		13.16733	-4.221878	30.55654
17166.42		12.99318	-4.396038	30.38239
17166.46		12.89428	-4.494935	30.28350
17166.50		13.53408	-3.855140	30.92330
17166.54		13.30201	-4.087205	30.69123
17166.58		12.67236	-4.716856	30.06158
17166.62		12.79252	-4.596699	30.18174
17166.67		12.73860	-4.650622	30.12781
17166.71		13.37311	-4.016111	30.76233
17166.75		13.29657	-4.092653	30.68578
17166.79		12.42317	-4.966044	29.81239
17166.83		13.52506	-3.864158	30.91428
17166.88		12.43057	-4.958651	29.81979
17166.92		13.07584	-4.313381	30.46506
17166.96		12.61913	-4.770090	30.00835
17167.00		12.89093	-4.498291	30.28015
17167.04		13.11085	-4.293060	30.51476
17167.08		13.08224	-4.321841	30.48633
17167.12		13.06391	-4.340253	30.46807
17167.17		13.05414	-4.350041	30.45832
17167.21		13.04894	-4.355249	30.45313
17167.25		13.04617	-4.358021	30.45036
17167.29		13.04469	-4.359498	30.44888
17167.33		13.04391	-4.360284	30.44810
17167.38		13.04349	-4.360702	30.44768
17167.42		13.04326	-4.360925	30.44745

Forecasts from ARIMA(1,0,2)(0,0,1)[24] with non-zero mean

