COL352 Problem Sheet 2

January 30, 2025

The problems marked as ** are relatively harder than the other problems

Problem 1. Given a language L over alphabet Σ , define the language $cdr(L) = \{y \in \Sigma^* \mid ay \in L \text{ for some } a \in \Sigma\}$. Show that the regular languages are closed under cdr()

Problem 2. Conclude that a star-free regex always generates a finite language.

Problem 3 (Efficiency of NFA). Let $L_k = \{x \in \{0,1\}^* \mid |x| \ge k \text{ and the } k \text{ 'th character of } x \text{ from the end is a 1} \}$. Prove that every DFA that recognizes L_k has at least 2^k states. Also show that, on the other hand, there is an NFA with k+1 states that recognizes L_k .

Problem 4. A coNFA is like an NFA, except it accepts an input w if and only if every possible state it could end up in when reading w is an accept state. (By contrast, an NFA accepts w iff there exists an accept state it could end up in when reading w.) Show that the class of languages recognized by coNFAs is exactly the regular languages.

Problem 5. Construct the minimal DFA D that recognizes the language

```
\{x \in \{0,1\}^* \mid x \text{ is the binary representation of a number coprime with } 6\}.
```

Prove its minimality by giving a string $z_{q,q'}$ for each pair of distinct states q,q' such that exactly one of $\delta(q,z_{q,q'})$ and $\delta(q',z_{q,q'})$ is an accepting state of D.

Problem 6. Prove that for any infinite regular language L, there exist two infinite regular languages L_1, L_2 such that $L = L_1 \cup L_2$ and $L_1 \cap L_2 = \emptyset^{**}$.

Problem 7. Construct a **minimal** DFA which accept the language $L = \{w \mid w \in \{a,b\}^* \text{ and } Na(w) \mod 3 = Nb(w) \mod 3\}$, where Na(w) and Nb(w) return the number of occurrences of a and b in w respectively.

Problem 8. Prove that the following languages are not regular.

- 1. $\{xx \mid x \in \{0,1\}^*\}$
- 2. $\{x \in \{0,1\}^* \mid x = reverse(x)\}$
- 3. $\{0^{n_1}10^{n_2}1\cdots 0^{n_k}1 \mid k, n_1, n_2, \cdots, n_k \in \mathbb{N} \cup \{0\} \text{ and } n_1, \ldots, n_k \text{ are distinct}\}$
- 4. $\{xyx \mid x, y \in \{0, 1\}^* \text{ and } |x| > 0, |y| > 0\}$
- 5. $\{x \in \{0,1\}^* \mid x \text{ is the binary representation of } 3^{n^2}, \text{ without leading } 0\text{'s, for some } n \in \mathbb{N}\}$
- 6. $\{0^m1^n \mid m \neq n\}$ (As a challenge, construct a clean proof using the pumping lemma only.)
- 7. $\{x \in \{a,b,c\}^* \mid x \text{ contains an equal number of occurrences of ab and ba as substrings}\}$
- 8. $\{x \in \{0,1\}^* \mid x \text{ is the binary representation of } n!, \text{ without leading } 0\text{'s, for some } n \in \mathbb{N}\}$

Problem 9. Design a context free grammar for the language $\{x \in \{0,1\}^* \mid \#0\text{'s in } x = \#1\text{'s in } x\}^{**}$.

Problem 10. If A is a set of natural numbers and k is a natural number greater than 1, let

$$B_k(A) = \{w|w \text{ is the representation in base } k \text{ of some number in } A\}$$

Here, we do not allow leading 0s in the representation of a number. For example, $B2(\{3,5\}) = \{11,101\}$ and $B_3(\{3,5\}) = \{10,12\}$. Give an example of a set A for which $B_2(A)$ is regular but $B_3(A)$ is not regular. Prove that your example works.

Problem 11. Consider languages B and C,

- 1. $B = \{1^k y | y \in \{0,1\}^* \text{ and } y \text{ contains at least } k \text{ 1s, for } k \geq 1\}$. Show that B is a regular language.
- 2. $C = \{1^k y | y \in \{0,1\}^* \text{ and } y \text{ contains at most } k \text{ 1s, for } k \geq 1\}$. Show that C is not a regular language.