浙江大学 2018 - 2019 学年 春夏 学期 《 微积分(甲)II 》课程期中考试试卷

课程号:_	821T0020, 开课学院:数学科学学院	. Š	
考试试卷:	√A卷、B卷(请任选定项上打√)任课老师:	;考试地点:	_
考试形式:	√闭、开卷 (请在选定项上打 √),允许带_笔_入场,	作业本序号	
考试日期:			

成信者试、沉着应考、杜绝违纪。

考生姓名:							
题序	(1-3)	∴ (4-5)	三 (6-7)	四 (8-9)	五 (10-11)	六 (12-13)	总分
得分							
评卷人							-1.00

: 计红十二十分 < 流 .而草麻收敛 由处残法等了 计红十二十二 收效

2. (6分) 求级数 2. (6分) 求级数 2. (6分) 求级数 2. (6分) 求级数 2. (6分)

3. (6 分) 将 f(x) = arcsin x 展开成 x 的幂级数, 并求 f⁽⁹⁹⁾(0). $\frac{1}{|x|} = 1 + \frac{20}{|x|} \frac{1}{|x|} \frac{1}{|x|} = 1 + \frac{20}{|x|} \frac{1}{|x|} \frac{1}{|x|} \frac{1}{|x|} = 1 + \frac{20}{|x|} \frac{1}{|x|} \frac{1}{|x|} \frac{1}{|x|} = 1 + \frac{20}{|x|} \frac{1}{|x|} \frac{1}{|x|} \frac{1}{|x|} \frac{2n}{|x|} \frac{1}{|x|} \frac{1}{|x|} \frac{1}{|x|} \frac{1}{|x|} = 1 + \frac{20}{|x|} \frac{1}{|x|} \frac{1}{|x|} \frac{2n}{|x|} \frac{1}{|x|} \frac{1}{|$

 $\frac{f^{(97)}(0)}{(99)!} = \frac{1}{99} \cdot \frac{(97)!!}{(98)!!}$ $\Rightarrow f^{(99)}(0) = (97!!)^2$

得分 二、(本大题:第 4-5 小题, 共 16 分.)

4. (8 分) 已知级数 $\sum_{n=0}^{\infty}a_{n}x^{n}$ 在x=-1处条件收敛,试求级数 $\sum_{n=0}^{\infty}a_{n}(n+1)x^{n}$ 的收敛半径.

版版框X=-1 处收收、放事经R=1 又卫(an) 发颜 iRE 校 Zanx 48校 籽 R=1 , 上anx 44 45级 籽 R=1

=) (卫伽x+)=卫伽州x 的收换程 R=1

5. (8分) 设 $f(x)=e^x(0 \le x \le 2\pi)$, 将 f(x)展开成周期 2π 的傅里叶级数. an = \$\frac{1}{3} \end{area} \area conx \overline{a}_{\infty} = \frac{1}{3} \int_{\infty} \are - enba $b_{n} = \frac{1}{4} \int_{0}^{2n} e^{x} \sin x \, dx = \frac{1}{12} a_{n}$ $\int a_{n} = \frac{e^{2n}}{\pi} \cdot \frac{1}{n^{2}+1}$ $b_{n} = -\frac{e^{2n}}{\pi} \cdot \frac{1}{n^{2}+1}$ $e^{x} = \frac{2}{11} \left(\frac{1}{2} + \frac{2}{n+1} \frac{1}{n+1} \left(aonx - nsinnx \right) \right)$

得分 三、(本大題:第 6-7 小题, 共 16 分.)

6. (8分) 求原点关于平面 $\pi: 2x-3y+4z+29=0$ 的对称点的坐标. 後0分23新叁只(Xo,Yo,Zo),则成上TI 較(空,些)eT得 $\int \frac{x_0}{2} = \frac{y_0}{3} = \frac{z_0}{4}$ $\int \frac{x_0}{2} = \frac{y_0}{3} = \frac{z_0}{4}$ $\int \frac{x_0 - 4}{2x_0 - 3y_0 + 4z_0 + 58} = 0$ $\int \frac{x_0}{2} = \frac{y_0}{3} = \frac{z_0}{4}$

故学20的至 (-4,6,-8)

7. (8 分) 通过点 M_1 (1,1,1)和 M_2 (2,3,4),作与平面x+y-z=1 垂直的平面,求此平面方程

八年面多程: -5 (x-1)+4(y-1)-(8-1)=0 即 5x-44+32-2 =0

得分 四、(本大题:第 8-9 小题, 共 16 分.)

8. (8 分) 求过点A(-1,0,4), 且平行于平面3x-4y+z=0, 又与直线 $\frac{x+1}{1}=\frac{y-3}{1}=\frac{z}{2}$

记的克埃至正多(-1+4, 3+4,24) 七谷色 庙=(七,3+4,44) 图 展上(3,-4,1) => 3+-4(3+x)+2+-4=0存±=16 :. 前= (16,19,28)

放战: 21 = 2 = 28

9. (8 分) 求直线L: $\begin{cases} x+y+z=0 \\ y-z-1=0 \end{cases}$ 绕Oz轴旋转所得的旋转曲面方程

没施務 あみ の、 報告 - J (-zx+) サナル (-zx+) ナナル (-zx+) ナナル (-zx+) ナナ (-zx+) (-zx+

ikt,0得

x2+y2= (8+1)2+ (28+1)2

第3页,共6页

第4页, 共6页

得分 五、(本大騒:第 10-11 小騒, 共16分.) 10.(8分) 已知 z = (e^t + y²)^t, 求<u>み</u>み, み, 122 = y (x+y) 1. e2 INT= yIn(ex+yt). (四色知y花偏宇: $\frac{1}{z} \cdot \frac{3z}{3y} = 2n(e^{x}+y^{2}) + y \frac{1}{e^{x}+y^{2}} \cdot 2y$: 2 = (ex+y) / Dn (ex+y2) + 2y2. (ex+y2) y-1

11. (8 分) 设 $u = f(x, \frac{x}{y})$,其中f有二阶连续偏导数,求 $\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x \partial y}$. = f' + f' y 3th = 2(t' + yt') $=f_{12}''\cdot(-\frac{x}{y^2})-\frac{1}{y^2}f_2'+\frac{1}{y}f_{22}''\cdot(-\frac{x}{y^2})$ $=-\frac{x}{y_3}f_{22}^{"}-\frac{x}{y_1}f_{12}^{"}-\frac{1}{y_2}f_{2}^{'}.$

12. (8分) 设u=u(x,y)对新变量 ξ , η 具有二阶连续偏导数, 求a 的值, 使得在变换

 $\xi = x + ay$, $\eta = x - y$ 下, 将方程 $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 3 \frac{\partial^2 u}{\partial y^2} = 0$ 简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta} = 0$. $\frac{\partial u}{\partial x} = \frac{\partial^{n}}{\partial y} + \frac{\partial u}{\partial \eta} \qquad \frac{\partial^{2n}}{\partial x^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} + \frac{\partial u}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \left(\frac{\partial u}{\partial y} + \frac{\partial^{2n}}{\partial \eta} \right)$ $= \frac{\partial^{2n}}{\partial y^{2}} + 2 \frac{\partial^{2n}}{\partial y^{2}} + \frac{\partial^{2n}}{\partial \eta^{2}}$ $\frac{\partial u}{\partial y^{2}} - \frac{\partial^{n}}{\partial y^{2}} - \frac{\partial^{n}}{\partial \eta^{2}} - \frac{\partial^{n}}{\partial \eta^{2}}$ $\frac{\partial u}{\partial y} = \alpha \frac{\partial^{+}}{\partial x} - \frac{\partial^{+}}{\partial \eta}$ $\therefore \frac{\partial^{2}u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial^{+}}{\partial y} \right) = \frac{\partial}{\partial y} \left(\alpha \frac{\partial^{+}}{\partial x} - \frac{\partial^{+}}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \left(\alpha \frac{\partial^{+}}{\partial y} + \frac{\partial^{+}}{\partial \eta} \right) = 0$ $\frac{\partial^{+}u}{\partial x \partial y} + \frac{\partial^{+}u}{\partial y}$ $\frac{\partial^{2} u}{\partial y^{2}} = \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = a \frac{\partial}{\partial y} \left(a \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} \right) - \frac{\partial}{\partial y} \left(a \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} \right) = a \frac{\partial^{2} u}{\partial y^{2}} - 2 a \frac{\partial^{2} u}{\partial y} + \frac{\partial^{2} u}{\partial y^{2}}$ $\frac{3^{1}}{3^{1}} + 4 \frac{3^{1}}{300} + 3 \frac{3^{1}}{5^{1}} = (1 + 4 a + 3 a^{2}) \frac{3^{1}}{3^{2}} + (2 + 4 (a - 1) - 6 a) \frac{3^{1}}{3^{2}} = 0$ 1 + 4 a + 3 a = 0 = 0 1 + 4 a + 3 a = 0

13. (10 分) 设 $0 < a_0 < 1$, $a_{n+1} = a_n (1 - a_n)$ $(n = 0, 1, 2, \cdots)$

证明: (I) 级数 (-1)" a, 收敛; (2) 级数 2. 2. 发散. (2) $\frac{1}{a_{m1}} = \frac{1}{a_{m1}(1-a_{m1})} = \frac{1}{a_{m1}} + \frac{1}{1-a_{m1}}$ $\frac{1}{a_{m1}} - \frac{1}{a_{m1}} = \frac{1}{1-a_{m1}} \times \frac{1}{1-a_{m1}} \times$

構成积分甲 其中考试を置 1. $2a_n = \frac{1}{H_1E+1\sqrt{n}}$ $b_n = \frac{1}{n(n)}$... 3% $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\left(\frac{1}{2\pi h}\right)} = \frac{1}{\sqrt{h}} \lim_{n \to \infty} \frac{2}{2}$... 3% $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{\sqrt{h}} \lim_{n \to \infty} \frac{1}{\sqrt{h}}$

8. 过点A(1,0,4),且平行于双一的+3=0,又与首传之十= 5-3=主相如后首传为作 级(+) 过A 且平行已知事面的平面 38+1)-4(5-0)+(6-4)=0 过色红色线的事面来入(24-9+3)+从(4-3-3)=0 伏入A(-1,0,4),得3~-44=0,:10x-4y-32+22=0 Min of to the (3x-4)+3-1=0 (0x-4)-33+22= --- 45 郡(东): 过至A(H,O,4)的南谷与2约0 南谷的是点 B(a, a+4, 2G+2) 丽= { 6+1, 0+4, 20-2} 1 元- 3,-4, 1} $\overrightarrow{AB} \cdot \overrightarrow{n} = 0$ if a = 15 , $\overrightarrow{AB} = \{16, 19, 26\}$ $\overrightarrow{AB} \cdot \overrightarrow{n} = 0$ if a = 19 if a = 3 - 4 if a = 19 if a = 3 - 4 if a = 19 if a =9. 花山: 52+3+6=0 後3師的教報面部 粉. (斑M(x.y.z)在iè转面上, 达M作更包于3轴加平面 透平面与L相至于Mi(x1,为1,31) 又Miをし上: 「xi+3i+2i=0」 1 1/31-1=0 引用表分,1岁去以,3,3,得: 水子。 10. 始 3=(ex+y2) 花头,舞 1 = y (ex+y4) Hex -- 45 = (ex+y4) (la (ex+y4) + = 242) -- 45

11. u=f(x,等), 支部, 3% 海: 34 = f(x, 音)+f(x,音)す $\frac{2^{2}1}{2009} = \int_{12}^{12} \cdot \left(-\frac{x}{y_{2}}\right) + \int_{22}^{12} \cdot \left(-\frac{x}{y_{2}}\right) - \frac{1}{y_{2}} \int_{12}^{12} - - \cdot 4\frac{x}{y_{2}}$ 12.4 $u < \frac{s}{\eta} = \frac{x}{2}$ y = x+ay $\eta = x+y$ $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} + \frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} \cdot a + \frac{\partial u}{\partial \eta} (4)$ $\frac{\partial^{2} y}{\partial x^{2}} = \frac{\partial^{2} y}{\partial x^{2}} + 2 \frac{\partial^{2$ 代入了多路得 $(1+4a+3a^2)\frac{3^24}{25^2}+(2+4(-1+a)-6a)\frac{3^24}{2509}=0$ 全 1+4a+3g2=0,(2+4(-1+a)-64)+0 得 a=-3--2分 13.(1) "ioca~1 , 双往看出ocan~1 (n=1,2...) も amm = an(1-an) > am : {an 3 年11日成り ie liman = A, & ann = an(1-an), {} A = A(1-A) : A = 0 ... 24 (2) : 0<0,<1. B 0<0,<1 (Yn) and = an (1-an), and = an + tan, and - an = 1-an + tan $\therefore \overline{a_1} - \overline{a_0} = \overline{a_1} = b, \quad \overline{a_1} - \overline{a_1} < b, \cdots, \overline{a_n} - \overline{a_{n-1}} < b$: an - ao ≤ nb , an ≤ ai + nb : an ≥ nb+ao

: Zan 4 / ---- 45