STOPIEŃ WOJEWÓDZKI

WOJEWÓDZKI KONKURS MATEMATYCZNY MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA

Przyznając punkty, stosuje się wyłącznie liczby całkowite.

Schemat punktowania – zadania zamknięte

Za każdą poprawną odpowiedź uczestnik otrzymuje 1 punkt.

Numer zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Poprawna odpowiedź	С	В	В	С	С	Α	D	Α	В	С	D	Α	С	В	С	С	D	Α	D

Przykładowe rozwiązanie i schemat punktowania – zadania otwarte

Punkty przyznaje się za każdą poprawną merytorycznie odpowiedź, nawet jeśli nie została uwzględniona w schemacie oceny.

Za poprawne obliczenia będące konsekwencją zastosowania błędnej metody nie przyznaje się punktów.

punktów	/ ₁						
Numer	Rozwiązania	Liczba					
zadania		punktów					
	Zapisanie równania prowadzącego do obliczenia promienia okręgu r - promień okręgu $\pi(8^2-r^2)=\pi(r^2-4^2)$ lub $\frac{1}{2}(8^2\pi-4^2\pi)=\pi r^2-4^2\pi$	1					
20	Obliczenie promienia okręgu $r^2=40$ $r=\sqrt{40}$ $r=2\sqrt{10}$ cm	1					
	Uwaga: Jeżeli uczeń zastosuje poprawne metody rozwiązania, ale popełni błąc rachunkowy, to otrzymuje 1 p. Razem 2 p.						
	Skorzystanie z warunku, że $nr \neq s$ oraz przekształcenie wyrażenia, np. Skoro $nr \neq s$, to można obie strony pomnożyć przez $(nr-s)$ $2 = \frac{np}{nr-s} / \cdot (nr-s)$ $2nr - 2s = np$ $2nr - np = 2s$ Skorzystanie z warunku, że $2r \neq p$ oraz wyznaczenie n , np. Skoro $2r \neq p$, to można obie strony podzielić przez $(2r-p)$ $n(2r-p) = 2s / : (2r-p)$	1					
	$n=rac{2s}{2r-p}$ Uwaga: Jeżeli uczeń zastosuje poprawne metody rozwiązania, ale poprachunkowy, to otrzymuje 1 p. Razem						
22	Obliczenie objętości ołowianej półkuli R – promień kuli V = $\frac{1}{2} \cdot \frac{4}{3} \pi R^3$ V = 144π cm ³	2 p. 1					

STOPIEŃ WOJEWÓDZKI

	STOPIEN WOJEWODZKI								
	Obliczenie wysokości stożka								
	H – wysokość stożka								
	$144\pi = \frac{1}{7}\pi r^2 H$								
	3	1							
	$144\pi = \frac{1}{3}\pi \cdot 16 \cdot H$								
	H = 27 cm								
	Uwagi:	-1							
	1. Jeżeli uczeń zastosuje poprawne metody rozwiązania, ale pop	etni btqa							
	rachunkowy, to otrzymuje 1 p.								
	2. Jeżeli uczeń poprawnie obliczy objętość kuli (zamiast półkuli) i doprowad	zi zadanie							
	do końca bez błędów, otrzymuje 1 pkt.								
	Razem	2 p.							
	I sposób (równanie)	•							
	Zapisanie wyrażeń przedstawiających kwoty wpłacone przez Jurka i								
	Wojtka	_							
	x zł- cena piłki	1							
	(0,4x + 20) zł – kwota wpłacona przez Jurka								
	(0,2x + 40) zł – kwota wpłacona przez Wojtka								
	Zapisanie równania	_							
	0.4x + 20 + 0.2 x + 40 + 60 = x	1							
	Obliczenie ceny piłki								
	· ·								
	0.6 x + 120 = x	1							
	0.4 x = 120								
	x = 300 z								
23	II sposób (arytmetyczny)								
	Wyznaczenie procent ceny piłki i kwot zgromadzonych łącznie na piłkę								
	40%+20% = 60%	1							
	20 zł + 40 zł + 60 zł = 120 zł								
	Ustalenie, jaki procent ceny piłki stanowi 120 zł								
	100% - 60% = 40%	1							
		1							
	40% to 120 zł								
	Obliczenie ceny piłki								
	10% to 30 zł	1							
	100% to 300 zł								
	Uwaga: Jeżeli uczeń zastosuje poprawne metody rozwiązania, ale poj	pełni błąd							
	rachunkowy, to otrzymuje 2 p.	_							
	Razem	3 p.							
	Zapisanie równania prowadzącego do obliczenia długości najkrótszego	- P.							
	boku trójkata								
	x – długość najkrótszego boku trójkąta w cm	1							
	x + 4,5 – długość najdłuższego boku trójkąta w cm								
	7,5 cm – długość średniego boku trójkąta								
24	$(x + 4,5)^2 = x^2 + 7,5^2$								
24	Wyznaczenie długości boków trójkąta								
	$(x + 4,5) \cdot (x + 4,5) = x^2 + 56,25$								
	$x^2 + 4.5x + 4.5x + 20.25 = x^2 + 56.25$								
	9x = 36	1							
	x = 4 cm								
	x + 4,5 = 4 + 4,5 = 8,5 cm								

Wojewodz	zkie konkursy przedmiotowe organizowane dla uczniów szkół podstawowych woj. podlaskiego w r. szł STOPIEŃ WOJEWÓDZKI	x. 2021/2022					
	Zapisanie równania prowadzącego do obliczenia najkrótszej wysokości trójkąta 8,5 · h = 4 · 7,5	1					
	Obliczenie długości najkrótszej wysokości trójkąta 8,5 · h = 30 h = $3\frac{9}{17}$ cm	1					
	Uwaga: Jeżeli zostaną zastosowane poprawne metody rozwiązania, popełni błędy rachunkowe, to otrzymuje 3 p.	ale uczeń					
	Razem	4 p.					
	Wyznaczenie długości AE i A'E' $a = 8 \text{ cm}$ $H = 8 \text{ cm}$ $ AE = A'E' = a \sqrt{3} = 8 \sqrt{3} \text{ cm}$	1					
25	Obliczenie pola podstawy graniastosłupa pięciokątnego $Pp = 5 \cdot \frac{a^2 \sqrt{3}}{4}$ $Pp = 5 \cdot \frac{8^2 \sqrt{3}}{4}$ $Pp = 80 \sqrt{3} \text{ cm}^2$	1					
	Obliczenie pola bocznego graniastosłupa pięciokątnego Pb = $(4a + a\sqrt{3}) \cdot H$ Pb = $(4 \cdot 8 + 8\sqrt{3}) \cdot 8$ Pb = $256 + 64\sqrt{3}$ cm ²	1					
	Obliczenie pola całkowitego graniastosłupa pięciokątnego Pc = 2Pp + Pb Pc = $2 \cdot 80 \sqrt{3} + 256 + 64 \sqrt{3}$ Pc = $256 + 224 \sqrt{3}$ cm ²	1					
	Uwaga: Jeżeli zostaną zastosowane poprawne metody rozwiązania, ale ucze popełni błędy rachunkowe, to otrzymuje 3 p.						
	Razem	4 p.					
	I sposób Zapisanie liczby i wymiarów prostopadłościanów, na które dzielony jest model, np. 4 prostopadłościany o wymiarach 20 cm x 2 cm x 2 cm 8 prostopadłościanów o wymiarach 16 cm x 2 cm x 2 cm	1					
26	Zapisanie wyrażenia prowadzącego do obliczenia objętości modelu, np. $V = 4 \cdot 20 \cdot 2 \cdot 2 + 8 \cdot 16 \cdot 2 \cdot 2$	1					
	Obliczenie objętości modelu V = 832 cm ³	1					
	Obliczenie masy modelu 832 · 0,8 = 665,6 g	1					
	II sposób						

STOPIEŃ WOJEWÓDZKI

Zapisanie, że od objętości sześcianu o krawędzi 20 cm można odjąć objętość sześcianu o krawędzi 16 cm oraz objętość 6 prostopadłościanów	
o wymiarach 16 cm x 16 cm x 2 cm. Zapisanie wyrażenia prowadzącego do obliczenia objętości modelu, np.	_
$V = 20^3 - 16^3 - 6 \cdot 16 \cdot 16 \cdot 2$	1
Obliczenie objętości modelu V = 832 cm³	1
Obliczenie masy modelu 832 · 0,8 = 665,6 g	1
III sposób	
Zapisanie, że model można podzielić na 104 sześciany o krawędzi 2 cm.	1
Zapisanie wyrażenia prowadzącego do obliczenia objętości modelu, np. $V = 104 \cdot 2^3$	1
Obliczenie objętości modelu V = 832 cm³	1
Obliczenie masy modelu	1
832 · 0,8 = 665,6 g	alo via
Uwaga: Jeżeli zostaną zastosowane poprawne metody rozwiązania, popełni błędy rachunkowe, to otrzymuje 3 p.	aie uc
Razem	4 p.

Razem: 40 punktów