

WHAT IS CLAIMED IS:

1 1. A system for detecting and correcting non-stationary noise present on an input
2 data signal comprising:

3 a detector module based on Gram Schmidt orthogonalization, receiving the input
4 data signal and producing as output a correction enable signal indicating when a correction is
5 required;

6 a corrector module receiving the input data signal and correction enable signal
7 and producing a corrected data signal as output; and

8 a reliability estimator and selector module receiving the corrected data signal and
9 the input data signal and producing an output signal which is the more reliable of the input data
10 signal and the corrected data signal.

1 2. The system of claim 1, wherein the reliability estimator and selector module
2 comprises:

3 a first reliability estimator receiving the corrected data signal and producing as
4 output a first reliability estimate indicating the reliability of the corrected data signal;

5 a second reliability estimator receiving the input data signal and producing as
6 output a second reliability estimate indicating the reliability of the input data signal; and

7 a comparison module receiving the first and second reliability estimates and
8 selecting one of the corrected data signal and the input data signal as output depending on
9 relative values of the first and second reliability estimates.

1 3. The system of claim 2, wherein the comparison module is configured to select a
2 default output signal when the input data signal and the corrected data signal have reliabilities
3 which are less than a predetermined reliability threshold.

1 4. The system of claim 3, wherein the default output signal comprises an erasure.

1 5. The system of claim 2, wherein:
2 the first and second reliability estimators each comprise a slicer; and
3 the first and second reliability estimates each comprise a reliability metric
4 indicating a difference
5 between the input to the respective slicer and the output from the respective slicer,
6 wherein the lower the reliability metric, the more reliable the signal.

1 6. The system of claim 5, wherein the comparison module is configured to select a
2 default output signal when the first and second reliability estimates each exceed a predetermined
3 threshold.

1 7. The system of claim 1, wherein the non-stationary noise is an impulse noise and
2 wherein the detector module includes an impulse detector module which comprises:
3 a first impulse detector receiving the input data signal and producing a first
4 impulse detection signal as output;
5 a second impulse detector receiving the input data signal and producing a second
6 impulse detection signal as output; and
7 an impulse correction enable module receiving the first and second impulse
8 detection signals and producing the correction enable signal in accordance with the first and
9 second impulse detection signals.

1 8. The system of claim 1, wherein the non-stationary noise is an impulse noise and
2 wherein the corrector module includes an impulse corrector module which comprises an impulse
3 blanker module and an impulse canceler module, the blanker or canceler modules being selected
4 in accordance with the correction enable signal produced by the impulse corrector module.

1 9. The system of claim 7, wherein the first and second impulse detectors are
2 complementary.

1 10. The system of claim 9, wherein:
2 the first impulse detector comprises a Gram Schmidt impulse detector; and
3 the second impulse detector comprises a moving window threshold detector.

1 11. The system of claim 10, wherein the impulse corrector module comprises an
2 impulse blanker module and an impulse canceler module, the blanker or canceler modules being
3 selected in accordance with the correction enable signal produced by the impulse corrector
4 module.

1 12. The system of claim 11, wherein the impulse correction enable module is
2 configured to generate the correction enable signal to:

3 blank an impulse if an impulse is detected by the moving window threshold
4 detector but not the Gram Schmidt impulse detector;

5 cancel an impulse if an impulse is detected using the Gram Schmidt impulse
6 detector but not the moving window threshold detector;

7 cancel an impulse if an impulse is detected by the Gram Schmidt impulse detector
8 at a first time of arrival, and an impulse is detected by the moving window threshold detector at a
9 second time of arrival within a predetermined interval from the first time of arrival; and

10 blank an impulse if an impulse is detected by the Gram Schmidt impulse detector
11 at a first time of arrival, and an impulse is detected by the moving window threshold detector at a
12 second time of arrival which is not within a predetermined interval from the first time of arrival.

1 13. The system of claim 8, wherein the detector module generates an impulse location
2 signal which is provided to the impulse canceler module which in turn generates as output a
3 waveform estimate of a detected impulse which is used to cancel the detected impulse.

1 14. The system of claim 13, wherein the impulse canceler module comprises an
2 iterative decision feedback impulse canceler.

1 15. The system of claim 13, wherein the impulse canceler module comprises a least
2 square impulse canceler.

1 16. A system for detecting impulse noise in a multi-channel data signal having at least
2 one quiet channel, the quiet channel having substantially less modulated power than remaining
3 channels, the system comprising:

4 a whitener having a transfer function which equalizes average noise in the input
5 signal and which receives the data signal and produces a whitened signal;

6 a whitener match filter having a frequency response which is a complex conjugate
7 of the whitener transfer function, the match filter receiving the whitened signal and producing a
8 match filter signal; and

9 an impulse detector which receives the match filter signal and produces a detected
10 impulse location signal indicating the time of arrival of detected impulses.

1 17. The system of claim 16, wherein the whitener and whitener match filter are
2 combined in a single filter element.

1 18. The system of claim 16, wherein the impulse detector comprises a Gram Schmidt
2 impulse detector.

1 19. The system of claim 18, wherein the Gram Schmidt impulse detector comprises:

2 a FIFO module of a predetermined length L receiving the match filter signal and
3 producing a first column vector of height L as output;

4 a Gram Schmidt multiplication module receiving the first column vector as input
5 and producing a second column vector of height L as output, the second column vector
6 comprising a matrix product of the first column vector and an L^*L Gram Schmidt matrix,

7 wherein each component of the second column vector represents a projection of a detected
8 impulse on one of a Gram Schmidt orthogonal basis vectors; and

9 an energy summation module receiving the second column vector and producing
10 an energy output which is a combination of the elements in the second column vector, the value
11 of the energy output indicating an overall energy of elements in the first column vector;

12 wherein an impulse detection occurs when the energy output exceeds a
13 predetermined energy threshold.

1 20. The system of claim 19, further comprising a multiple detection suppression
2 module receiving the energy output and configured to select a most likely impulse detection from
3 a plurality of detections occurring within a predetermined time interval.

1 21. The system of claim 20, wherein the multiple detection suppression module is
2 configured to select the most likely impulse detection according to a regional maximization
3 function.

1 22. The system of claim 20, wherein the multiple detection suppression module
2 comprises:

3 a group divider module receiving the energy output from the energy summation
4 module and configured to divide the received energy output into a plurality of groups, identify a
5 maximum energy point in each group, and indicate the identified maximum energy points as
6 output;

7 a local maxima detector which receives the identified maximum energy point
8 indications from the group divider module and which provides an indication of a local maxima
9 amongst the plurality of groups as output; and

10 a threshold local maxima module which receives the indication of a local maxima
11 from the local maxima detector and which indicates that an impulse is present when the local
12 maxima is higher than the predetermined energy threshold, a time of arrival for the detected

13 impulse being a time corresponding to the time of the maximum sample in the group containing
14 the local maxima.

1 23. The system of claim 13, further comprising a merge module which receives the
2 impulse location signal from the detector module and also receives at least one additional
3 impulse location signal from an impulse detector associated with a neighboring band and which
4 produces as output a combined estimated impulse timing.

1 24. The system of claim 1, wherein the non-stationary noise comprises low
2 dimensionality noise contained in at most a few dimensions.

1 25. The system of claim 24, wherein the low dimensionality noise comprises fast
2 popping ingresses.

1 26. The system of claim 1, wherein the data signal is carried on one of a single carrier
2 modem, a multitone modem, and a CDMA modem.

1 27. A system for detecting low dimensionality noise in a data signal, comprising:
2 a detector module based on Gram Schmidt orthogonalization, receiving the input
3 data signal and producing as output a noise detection signal.

1 28. The system of claim 27, further comprising:
2 a filter module receiving the data signal and producing a match filter signal;
3 a FIFO module of a predetermined length L receiving the match filter signal and
4 producing a first column vector of height L as output;
5 a Gram Schmidt multiplication module receiving the first column vector as input
6 and producing a second column vector of height L as output, the second column vector
7 comprising a matrix product of the first column vector and an $L \times L$ Gram Schmidt matrix,
8 wherein each component of the second column vector represents a projection of detected low
9 dimensionality noise on one of a Gram Schmidt orthogonal basis vectors; and

10 an energy summation module receiving the second column vector and producing
11 a energy output which is a combination of the elements in the second column vector, the value of
12 the energy output indicating an overall energy of elements in the first column vector;
13 wherein a low dimensionality noise detection occurs when the energy output
14 exceeds a predetermined energy threshold.

1 29. A method for detecting and correcting non-stationary noise present on an input
2 data signal comprising:

3 receiving the input data signal at a detector module based on Gram Schmidt
4 orthogonalization which produces as output a correction enable signal indicating when a
5 correction is required;

6 receiving the input data signal and correction enable signal at a corrector module
7 which produces a corrected data signal as output; and

8 receiving the corrected data signal and the input data signal at a reliability
9 estimator and selector module which produces an output signal which is the more reliable of the
10 input data signal and the corrected data signal.

1 30. The method of claim 29, further comprising the following steps:

2 receiving the corrected data signal at a first reliability estimator which produces as
3 output a first reliability estimate indicating the reliability of the corrected data signal;

4 receiving the input data signal at a second reliability estimator which produces as
5 output a second reliability estimate indicating the reliability of the input data signal; and

6 comparing the first and second reliability estimates using a comparison module
7 which selects one of the corrected data signal and the input data signal as output depending on
8 relative values of the first and second reliability estimates.

1 31. The method of claim 30, wherein the comparison module performs the step of
2 selecting a default output signal when the input data signal and the corrected data signal have
3 reliabilities which are less than a predetermined reliability threshold.

1 32. The method of claim 31, wherein the default output signal comprises an erasure.

1 33. The method of claim 30, further comprising the following steps:
2 utilizing a slicer in each of the first and second reliability estimators; and
3 the first and second reliability estimates each comprising a reliability metric
4 indicating a difference between the input to the respective slicer and the output from the
5 respective slicer, wherein the lower the reliability metric, the more reliable the signal.

1 34. The method of claim 33, wherein the comparison module performs the step of
2 selecting a default output signal when the first and second reliability estimates each exceed a
3 predetermined threshold.

1 35. The method of claim 29, wherein the non-stationary noise is an impulse noise and
2 wherein the detector module includes an impulse detector module, the method further
3 comprising the following steps:

4 receiving the input data signal at a first impulse detector which produces a first
5 impulse detection signal as output;

6 receiving the input data signal at a second impulse detector which produces a
7 second impulse detection signal as output; and

8 receiving the first and second impulse detection signals at an impulse correction
9 enable module which produces the correction enable signal in accordance with the first and
10 second impulse detection signals.

1 36. The method of claim 29, wherein the non-stationary noise is an impulse noise and
2 wherein the corrector module includes an impulse corrector module which comprises an impulse
3 blanker module and an impulse canceler module, the method further comprising the step of
4 selecting the blanker or canceler modules in accordance with the correction enable signal
5 produced by the impulse corrector module.

1 37. The method of claim 35, wherein the first and second impulse detectors are
2 complementary.

1 38. The method of claim 37, wherein:
2 the first impulse detector comprises a Gram Schmidt impulse detector; and
3 the second impulse detector comprises a moving window threshold detector.

1 39. The method of claim 38, wherein the impulse corrector module comprises an
2 impulse blanker module and an impulse canceler module, the method further comprising the step
3 of selecting one of the blanker or canceler modules in accordance with the correction enable
4 signal produced by the impulse corrector module.

1 40. The method of claim 39, further comprising the step of utilizing the impulse
2 correction enable module to generate the correction enable signal to:

3 blank an impulse if an impulse is detected by the moving window threshold
4 detector but not the Gram Schmidt impulse detector;

5 cancel an impulse if an impulse is detected using the Gram Schmidt impulse
6 detector but not the moving window threshold detector;

7 cancel an impulse if an impulse is detected by the Gram Schmidt impulse detector
8 at a first time of arrival, and an impulse is detected by the moving window threshold detector at a
9 second time of arrival within a predetermined interval from the first time of arrival; and

10 blank an impulse if an impulse is detected by the Gram Schmidt impulse detector
11 at a first time of arrival, and an impulse is detected by the moving window threshold detector at a
12 second time of arrival which is not within a predetermined interval from the first time of arrival.

1 41. The method of claim 36, wherein the detector module performs the step of
2 generating an impulse location signal which is provided to the impulse canceler module which in
3 turn generates as output a waveform estimate of a detected impulse which is used to cancel the
4 detected impulse.

1 42. The method of claim 41, wherein the impulse canceler module comprises an
2 iterative decision feedback impulse canceler.

1 43. The method of claim 41, wherein the impulse canceler module comprises a least
2 square impulse canceler.

1 44. A method for detecting impulse noise in a multi-channel data signal having at
2 least one quiet channel, the quiet channel having substantially less modulated power than
3 remaining channels, the method comprising the following steps:

4 equalizing the average noise in the input signal using a whitener having a transfer
5 function which equalizes the average noise in the input signal and which receives the data signal
6 and produces a whitened signal;

7 utilizing a whitener match filter having a frequency response which is a complex
8 conjugate of the whitener transfer function, the match filter receiving the whitened signal and
9 producing a match filter signal; and

10 receiving the match filter signal at an impulse detector which produces a detected
11 impulse location signal indicating the time of arrival of detected impulses.

1 45. The method of claim 44, wherein the whitener and whitener match filter are
2 combined in a single filter element.

1 46. The method of claim 44, wherein the impulse detector comprises a Gram Schmidt
2 impulse detector.

1 47. The method of claim 44, further comprising the following steps performed by the
2 Gram Schmidt impulse detector:

3 receiving the matched filter signal at a FIFO module of a predetermined length L
4 which produces a first column vector of height L as output;

utilizing a Gram Schmidt multiplication module to receive the first column vector as input and produce a second column vector of height L as output, the second column vector comprising a matrix product of the first column vector and an $L \times L$ Gram Schmidt matrix, wherein each component of the second column vector represents a projection of a detected impulse on one of a Gram Schmidt orthogonal basis vectors; and

receiving the second column vector at an energy summation module which produces an energy output which is a combination of the elements in the second column vector, the value of the energy output indicating an overall energy of elements in the first column vector;

wherein an impulse detection occurs when the energy output exceeds a predetermined energy threshold.

48. The method of claim 47, further comprising the step of receiving the energy output at a multiple detection suppression module which selects a most likely impulse detection from a plurality of detections occurring within a predetermined time interval.

49. The method of claim 48, further comprising the step of selecting the most likely impulse detection according to a regional maximization function.

50. The method of claim 48, further comprising the following steps performed by the multiple detection suppression module:

Receiving the energy output from the energy summation module at a group divider module and dividing the received energy output into a plurality of groups identifying a maximum energy point in each group, and indicating the identified maximum energy points as output;

Receiving the identified maximum energy point indications at a local maxima detector and providing an indication of a local maxima amongst the plurality of groups as output; and

Receiving the indication of a local maxima at a threshold local maxima module which indicates that an impulse is present when the local maxima is higher than the

12 predetermined energy threshold, a time of arrival for the detected impulse being a time
13 corresponding to the time of the maximum sample in the group containing the local maxima.

1 51. The method of claim 41, further comprising the step of receiving at a merge
2 module the impulse location signal from the detector module and also receiving at least one
3 additional impulse location signal from an impulse detector associated with a neighboring band
4 and producing as output a combined estimated impulse timing

1 52. The method of claim 29, wherein the non-stationary noise comprises low
2 dimensionality noise contained in at most a few dimensions.

1 53. The method of claim 52, wherein the low dimensionality noise comprises fast
2 popping ingresses.

1 54. The method of claim 29, wherein the data signal is carried on one of a single
2 carrier modem, a multitone modem, and a CDMA modem.

1 55. A method for detecting low dimensionality noise in a data signal, comprising:
2 receiving the input data signal at a detector module based on Gram Schmidt
3 orthogonalization which produces as output a noise detection signal.

1 56. The method of claim 55, further comprising the following steps:
2 receiving the data signal at a filter module which produces a match filter signal;
3 receiving the match filter signal at a FIFO module of a predetermined length L
4 which produces a first column vector of height L as output;
5 utilizing a Gram Schmidt multiplication module to receive the first column vector
6 as input and produce a second column vector of height L as output, the second column vector
7 comprising a matrix product of the first column vector and an L^*L Gram Schmidt matrix,
8 wherein each component of the second column vector represents a projection of detected low
9 dimensionality noise on one of a Gram Schmidt orthogonal basis vectors; and

utilizing an energy summation module to receive the second column vector and produce an energy output which is a combination of the elements in the second column vector, the value of the energy output indicating an overall energy of elements in the first column vector; wherein a low dimensionality noise detection occurs when the energy output exceeds a predetermined energy threshold.