

El Bosque de Vétyem es un bosque famoso con una variedad de árboles coloridos. Uno de los más antiguos y grandes árboles de Haya se llama Ős Vezér.

El árbol Ős Vezér puede ser representado como un conjunto de N **nodos** y N-1 **aristas**. Los nodos están numerados del 0 al N-1 y las aristas están numeradas del 1 al N-1. Cada arista conecta dos nodos distintos del árbol. Específicamente, la arista i ($1 \le i < N$) conecta el nodo i con el nodo P[i], donde $0 \le P[i] < i$. El nodo P[i] se lo denomina como **padre** del nodo i, y el nodo i se lo denomina como **hijo** del nodo i.

Cada arista tiene un color. Hay M posibles colores de aristas numerados del 1 al M. El color de la arista i es C[i]. Distintas aristas pueden tener el mismo color.

Nótese que en las definiciones que anteceden, el caso i=0 no corresponde a una arista del árbol. Por conveniencia, decimos que P[0]=-1 y C[0]=0.

Por ejemplo, supongamos que Ős Vezér tiene N=18 nodos y M=3 posibles colores de aristas, con 17 aristas descritas por las conexiones P=[-1,0,0,0,1,1,1,2,2,3,3,3,4,4,5,10,11,11] y colores C=[0,1,2,3,1,2,3,1,3,3,2,1,1,2,2,1,2,3]. El árbol se muestra en la siguiente figura:

Árpád es un talentoso guardabosques al que le gusta estudiar partes específicas del árbol llamadas **subárboles**. Para cada r tal que $0 \le r < N$, el subárbol del nodo r es el conjunto T(r) de nodos con las siguientes propiedades:

- El nodo r pertenece a T(r).
- Si un nodo x pertenece a T(r), todos los hijos de x también pertenecen a T(r).
- Ningún otro nodo pertenece a T(r).

El tamaño del conjunto T(r) se denota por |T(r)|.

Árpád recientemente descubrió una propiedad complicada pero interesante para los subárboles. Su descubrimiento le requirió varios ensayos con lápiz y papel, y sospecha que tú también deberías hacer lo mismo para entenderlo. Además te enseñará múltiples ejemplos que puedes analizar a detalle.

Supón que tenemos un r fijo y una permutación $v_0, v_1, \ldots, v_{|T(r)|-1}$ de los nodos en el subárbol T(r).

Para cada i tal que $1 \le i < |T(r)|$, sea f(i) el número de veces que el color $C[v_i]$ aparece en la siguiente secuencia de i-1 colores: $C[v_1], C[v_2], \ldots, C[v_{i-1}]$.

(Nótese que f(1) siempre es 0 porque la secuencia de colores en su definición es vacía.)

La permutación $v_0, v_1, \dots, v_{|T(r)|-1}$ es una **permutación bonita** si y solo si todas las siguientes propiedades se cumplen:

- $v_0 = r$.
- Para cada i tal que $1 \le i < |T(r)|$, el padre del nodo v_i es el nodo $v_{f(i)}$.

Para cada r tal que $0 \le r < N$, el subárbol T(r) es un **subárbol bonito** si y solo si existe una permutación bonita de los nodos que pertenecen a T(r). Nótese que acorde a la definición cada subárbol que consiste de un único nodo es bonito.

Considera el ejemplo del árbol de arriba. Puede ser demostrado que los subárboles T(0) y T(3) de este árbol no son bonitos. El subárbol T(14) es bonito, ya que consiste de un único nodo. A continuación demostraremos que el subárbol T(1) también es bonito.

Considera la secuencia de enteros distintos $[v_0, v_1, v_2, v_3, v_4, v_5, v_6] = [1, 4, 5, 12, 13, 6, 14]$. Esta secuencia es una permutación de nodos que pertenecen a T(1). La siguiente figura muestra esta permutación. Las etiquetas en los nodos son los índices en los cuales esos nodos aparecen en la permutación.

Ahora verificaremos que la esta es una permutación bonita.

- $v_0 = 1$.
- f(1) = 0 ya que $C[v_1] = C[4] = 1$ aparece 0 veces en la secuencia [].
- Correspondientemente el padre de $[v_1]$ es v_0 . Es decir, el padre de 4 es 1. (Formalmente, P[4]=1.)
- f(2) = 0 ya que $C[v_2] = C[5] = 2$ aparece 0 veces en la secuencia [1].
- Correspondientemente el padre de v_2 es v_0 . Es decir, el padre de 5 es 1.
- f(3) = 1 ya que $C[v_3] = C[12] = 1$ aparece 1 vez en la secuencia [1,2].
- Correspondientemente el padre de v_3 es v_1 . Es decir, el padre de 12 es 4.
- f(4)=1 ya que $C[v_4]=C[13]=2$ aparece 1 vez en la secuencia [1,2,1].
- Correspondientemente el padre de v_4 es v_1 . Es decir, el padre de 13 es 4.
- f(5) = 0 ya que $C[v_5] = C[6] = 3$ aparece 0 veces en la secuencia [1,2,1,2].
- Correspondientemente el padre de v_5 es v_0 . Es decir, el padre de 6 es 1.
- f(6) = 2 ya que $C[v_6] = C[14] = 2$ aparece 2 veces en la secuencia [1, 2, 1, 2, 3].
- Correspondientemente el padre de v_6 es v_2 . Es decir, el padre de 14 es 5.

Ya que pudimos encontrar una *permutación bonita* de los nodos en T(1), el subárbol T(1) es un subárbol bonito.

Tu tarea es ayudar a Árpád a decidir si cada subárbol de Ős Vezér es bonito o no.

Detalles de Implementación

Debes implementar el siguiente método.

```
int[] beechtree(int N, int M, int[] P, int[] C)
```

• N: la cantidad de nodos del árbol.

- *M*: la cantidad de posibles colores de aristas.
- P, C: arreglos de tamaño N que describen las aristas del árbol.
- El método debe regresar un arreglo b de tamaño N. Para cada r tal que $0 \le r < N$, b[r] debe ser 1 si T(r) es bonito, y 0 en caso contrario.
- Este método se llama exactamente una vez para cada caso de prueba.

Ejemplos

Ejemplo 1

Considera la siguiente llamada:

```
beechtree(4, 2, [-1, 0, 0, 0], [0, 1, 1, 2])
```

El árbol se muestra en la siguiente figura:

T(1), T(2), y T(3) cada uno consiste de un único nodo y por lo tanto son bonitos. T(0) no es bonito. Por lo tanto, el método debe regresar [0,1,1,1].

Ejemplo 2

Considera la siguiente llamada:

```
beechtree(18, 3,
[-1, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 10, 11, 11],
[0, 1, 2, 3, 1, 2, 3, 1, 3, 3, 2, 1, 1, 2, 2, 1, 2, 3])
```

Este ejemplo se muestra en la descripción del problema más arriba.

Ejemplo 3

Considera la siguiente llamada:

beechtree(7, 2, [-1, 0, 1, 1, 0, 4, 5], [0, 1, 1, 2, 2, 1, 1])

Este ejemplo se muestra en la siguiente figura.

T(0) es el único subárbol que no es bonito. El método debe regresar [0,1,1,1,1,1].

Restricciones

- 3 < N < 200000
- $2 \le M \le 200\,000$
- $0 \le P[i] < v$ (para cada i tal que $1 \le i < N$)
- $1 \le C[i] \le M$ (para cada i tal que $1 \le i < N$)
- P[0] = -1 y C[0] = 0

Subtareas

- 1. (9 puntos) $N \leq 8$ y $M \leq 500$
- 2. (5 puntos) La arista i conecta al nodo i al nodo i-1. Esto es, para cada i tal que $1 \leq i < N$, P[i] = i-1.
- 3. (9 puntos) Cada nodo distinto al nodo 0 está conectado al nodo 0, o está conectado a un nodo que está conectado al nodo 0. Esto es, para cada i tal que $1 \le i < N$, se cumple que P[i] = 0 o P[P[i]] = 0, pero no ambas.
- 4. (8 puntos) Para cada c tal que $1 \leq c \leq M$, hay a lo mucho dos aristas de color c.
- 5. (14 puntos) $N \leq 200$ y $M \leq 500$
- 6. (14 puntos) $N \leq 2\,000$ y M=2
- 7. (12 puntos) $N \le 2\,000$
- 8. (17 puntos) M=2
- 9. (12 puntos) Sin restricciones adicionales.

Grader de Ejemplo

El grader de ejemplo lee la entrada en el siguiente formato:

- línea 1: *N M*
- línea 2: P[0] P[1] \dots P[N-1]
- Iínea $3 \colon C[0] \ C[1] \ \dots \ C[N-1]$

Sean $b[0],\ b[1],\ \dots$ los elementos regresados por beechtree. El grader de ejemplo imprime tu respuesta en una única línea, en el siguiente formato:

• línea 1:b[0] b[1] . . .