Группы и алгебры Ли II

Лекция 11. Представления полупростых алгебр Ли

Весовое разложение

На прошлых лекциях мы выяснили, что произвольная алгебра Ли имеет следующую структуру:

$$\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}, \tag{1}$$

где $\mathfrak{n}_{\pm}=\bigoplus_{\alpha\in R_{\pm}}\mathfrak{g}_{\alpha}$. В случае \mathfrak{sl}_{2} $\mathfrak{n}_{-}=\mathbb{C}f,$ $\mathfrak{h}=\mathbb{C}h,$ $\mathfrak{n}_{+}=\mathbb{C}e.$ Изучение представлений произвольной полупростой \mathfrak{g} мы как обычно начинаем с введения весовых подпространств, веса которых, как мы уже поняли в случае \mathfrak{sl}_3 , оказываются не числами, а элементами \mathfrak{h}^* , поскольку одномерная подалгебра $\mathbb{C}h$ заменяется на подалгебру \mathfrak{h} размерности $rk(\mathfrak{g}).$

Определение. Весовым подпространством $V[\lambda]$, $\lambda \in \mathfrak{h}^*$ представления V называется ненулевое подпространство, на котором подалгебра Картана действует диагонально:

$$V[\lambda] = \{ v \in V | h.v = \lambda(h)v \quad \forall h \in \mathfrak{h} \}$$
 (2)

Обозначим множество весов представления V

$$P(V) = \{ \lambda \in \mathfrak{h}^* | V[\lambda] \neq 0 \} \tag{3}$$

Теорема 1. Всякое конечномерное представление полупростой д допускает весовое разложение:

$$V = \bigoplus_{\lambda \in P(V)} V[\lambda],\tag{4}$$

причем все веса лежат на решетке весов: $P(V) \subset P$.

Доказательство. На самом деле, доказывая это в случае \mathfrak{sl}_3 , мы доказали и в общем случае. Первое следует из определения подалгебры Картана, а второе из рассмотрения V как представления \mathfrak{sl}_2 -троек $\{f_\alpha, h_\alpha, e_\alpha\}$.

В общем случае мы уже доказали и такое:

Лемма 1. Пусть $x \in \mathfrak{g}_{\alpha}$. Тогда $x.V[\lambda] \subset V[\lambda + \alpha]$.

Для изучение весов представления удобно ввести понятие характера.

Определение. Назовем $\mathbb{C}[P]$ коммутативную алгебру над \mathbb{C} , порожденную формальными выражениями e^{λ} , $\lambda \in P$, с соотношениями $e^{\lambda}e^{\mu} = e^{\lambda+\mu}$, $e^0 = 1$.

Элементы алгебры $\mathbb{C}[P]$ можно мыслить как полиномиальные функции на торе $T=\mathfrak{h}/2\pi i Q^{\vee},$ где

Определение. Решетка Q^{\vee} - это абелева группа в E^* , порожденная кокорнями, то есть такими элементами $\alpha^{\vee} \in E^*$, что $\langle \alpha^{\vee}, \lambda \rangle = \frac{2(\alpha, \lambda)}{(\alpha, \alpha)}$ для всякого $\lambda \in E$.

Замечание. В случае, когда $E = \mathfrak{h}^*$, $\alpha^{\vee} = h_{\alpha}$.

В самом деле, определим $e^{\lambda}:\mathfrak{h}/2\pi iQ^{\vee}\to\mathbb{C}^*$ по формуле $e^{\lambda}(h)=e^{\langle\lambda,h\rangle}$. Это определение корректно, поскольку $e^{\lambda}(h+\alpha^{\vee})=e^{\langle\lambda,h+\alpha^{\vee}\rangle}=e^{\langle\lambda,h\rangle}e^{\langle\lambda,\alpha^{\vee}\rangle}=e^{\langle\lambda,h\rangle}e^{\frac{2\langle\alpha,\lambda\rangle}{\langle\alpha,\alpha\rangle}}=e^{\langle\lambda,h\rangle}$ по определению решетки весов.

Лемма 2.

$$\mathbb{C}[P] \cong \mathbb{C}[x_1, x_1^{-1}, \dots, x_r, x_r^{-1}], \quad r = rk(\mathfrak{g})$$
(5)

Доказательство. Рассмотрим отображение $\mathbb{C}[P] \to \mathbb{C}[x_1, x_1^{-1}, \dots, x_r, x_r^{-1}], e^{\omega_i} \mapsto x_i$, где ω_i , $i = 1, \dots, r$ - фундаментальные веса. Это сюръективный гомоморфизм с единичным ядром, поскольку ω_i - базис решетки весов.

Определение. Характером представления V называется элемент $\mathbb{C}[P]$

$$ch(V) = \sum_{\lambda \in P(V)} (\dim V[\lambda]) e^{\lambda}$$
(6)

Замечание. Заметим, что для $h \in \mathfrak{h}$ $ch(V)(h) = \sum_{\lambda \in P(V)} (\dim V[\lambda]) e^{\lambda(h)} = tr_V \exp(h)$, что согласуется с определением характера представления группы.

Теорема 2. Пусть V - конечномерное представление полупростой алгебры $\mathcal{A}u\ \mathfrak{g}$ с системой корней R. Набор весов P(V) и размерность весовых подпространств инвариантны относительно действия группы Вейля.

Доказательство. Достаточно проверить инвариантность относительно простых отражений s_i . Пусть $\lambda(h_i) = \langle \lambda, \alpha^\vee \rangle = n \in \mathbb{Z}_+$. Тогда пользуясь знанием о представлениях \mathfrak{sl}_2 -тройки $\{e_i, h_i, f_i\}$ (как и в случае \mathfrak{sl}_3) получаем, что $\lambda - n\alpha_i \in P(V)$ и $e_i^n : V[\lambda] \to V[\lambda - n\alpha_i], f_i^n : V[\lambda - n\alpha_i] \to V[\lambda]$ - изоморфизмы. Но $\lambda - n\alpha_i = \lambda - \frac{2(\lambda, \alpha_i)}{(\alpha_i, \alpha_i)} = s_i(\lambda)$ - вес, отраженный относительно стенки камеры Вейля $(\lambda, \alpha_i) = 0$. Таким образом, простые отражения переводят веса в веса, и соответствующие размерности весовых подпространств не меняются.

Следствие. Характер ch(V) инвариантен относительно действия группы Вейля W(R) на $\mathbb{C}[P]$, заданного по формуле

$$w(e^{\lambda}) = e^{w(\lambda)}. (7)$$

Представления старшего веса

В этом разделе мы повторим результаты, которые получили для \mathfrak{sl}_3 , в случае произвольной полупростой алгебры Ли.

Определение. Представление V называется представлением старшего веса μ , если оно порождено ненулевым $v \in V[\mu]$, таким что $\forall x \in \mathfrak{n}_+ \ x.v = 0$.

Теорема 3. Всякое неприводимое конечномерное представление V полупростой \mathfrak{g} - представление старшего веса.

Доказательство. Наличие старшего веса снова следует из установления на весах порядка с помощью скалярного произведения с регулярным вектором $t \in \mathfrak{h}^*$. То, что $V = \mathfrak{g}.v$ сразу следует из неприводимости V.

Напрашивается введение универсального представления старшего веса - модуля Верма. Рассмотрим борелевскую подалгебру $\mathfrak{b} = \mathfrak{h} \otimes \mathfrak{n}_+$. Пусть \mathbb{C}_μ - это одномерное представление $\mathfrak{b} \colon \forall v_\mu \in \mathbb{C}_\mu$

$$\forall h \in \mathfrak{h} \quad h.v_{\mu} = \mu(h)v_{\mu},
\forall x \in \mathfrak{n}_{+} \quad x.v_{\mu} = 0$$
(8)

Определение. Модуль Верма $M_{\mu} = U\mathfrak{g} \otimes_{U_{\mathfrak{b}}} \mathbb{C}_{\mu}$

Теорема 4. 1. Любой вектор $v \in M_{\mu}$ можно единственным образом записать в виде $v = uv_{\mu}$, где $u \in U\mathfrak{n}_{-}$, $v_{\mu} \in \mathbb{C}_{\mu}$. Иначе говоря, $U\mathfrak{n}_{-} \to M_{\mu}$, $u \mapsto uv_{\mu}$ - изоморфизм векторных пространств.

- 2. M_{μ} допускает весовое разложение: $M_{\mu} = \bigoplus M_{\mu}[\lambda]$, где веса $\lambda = \mu \sum n_i \alpha_i$, $n_i \in \mathbb{Z}_+$.
- 3. dim $M_{\mu}[\mu] = 1$.

Доказательство. По теореме Пуанкаре-Биркгофа-Витта $M_{\mu} = U\mathfrak{g} \otimes_{U_{\mathfrak{b}}} \mathbb{C}_{\mu} = U\mathfrak{n}_{-} \otimes U\mathfrak{b} \otimes_{U\mathfrak{b}} \mathbb{C}_{\mu} = U\mathfrak{n}_{-} \otimes U\mathfrak{b} \otimes_{U\mathfrak{b}} \mathbb{C}_{\mu} = U\mathfrak{n}_{-} \otimes U\mathfrak{b} \otimes_{U\mathfrak{b}} \mathbb{C}_{\mu}$ Потсюда следует первое утверждение. Второе и третье сразу следуют из первого.

Модуль Верма универсален в следующем смысле:

Лемма 3. Пусть V - представление старшего веса μ . Тогда $V \cong M_{\mu}/W$ для некоторого подпредставления $W \subset M_{\mu}$.

Доказательство. Рассмотрим отображение $M_{\mu} \to V, \, x \otimes v_{\lambda} \mapsto x.v_{\lambda}$. Это сюръективный морфизм представлений. Тогда его ядро W - тоже представление, и $V = M_{\mu}/W$, что и требовалось. \square

Следствие. Пусть V - представление старшего веса μ .

- 1. Любой вектор $v \in V$ можно записать в виде $v = uv_{\mu}$, где $u \in U\mathfrak{n}_{-}$. Иначе говоря, $U\mathfrak{n}_{-} \to V$, $u \mapsto uv_{\mu}$ сюръективное отображение между векторными пространствами.
- 2. V допускает весовое разложение: $V = \bigoplus V[\lambda]$, где веса $\lambda = \mu \sum n_i \alpha_i$, $n_i \in \mathbb{Z}_+$.
- 3. dim $V[\mu] = 1$.

Доказательство. Первое сразу следует из предыдущей теоремы. Второе последует следующим образом. Пусть $W \subset M_{\mu}$ - снова ядро морфизма $M_{\lambda} \to V$. Тогда W тоже допускает весовое разложение: $W = \bigoplus W[\lambda], \ W[\lambda] = W \cap M_{\mu}[\lambda]$. Это означает, что $V = M_{\mu}/W$ тоже допускает весовое разложение, причем $P(V) \subset P(M_{\mu})$. Третье следует из того, что $\dim V[\mu] \leq \dim M_{\mu}[\mu]$.

Следствие. Старший вес единственный.

Классификация неприводимых представлений

Теорема 5. Для каждого $\mu \in \mathfrak{h}^*$ существует единственное неприводимое представление старшего веса μ - L_{μ} .

Доказательство. Все подпредставления $W \subset M_{\mu}$ допускают весовое разложение: $W = \bigoplus W[\lambda]$, $W[\lambda] = W \cap M_{\mu}[\lambda]$. Выберем из них только те, у которых $W[\mu] = 0$. Сложив их, мы получим максимальное подпредставление, которое не содержится ни в каком другом. Отфакторизовав по нему M_{μ} , получим требуемое неприводимое представление L_{μ} .

Следствие. Всякое неприводимое представление изоморфно некоторому L_{μ} .

Доказательство. Следует из того, что всякое неприводимое представление - это представление старшего веса. \Box

Следующий естественный вопрос - при каких μ представление L_{μ} конечномерно. В случае \mathfrak{sl}_3 мы выяснили, что при фиксированной поляризации μ должен лежать:

- 1. на решетке весов P;
- 2. в замыкании камеры Вейля \overline{C}_+ ,

или, эквивалентно, $\langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z}_+$ для всех $\alpha \in R_+$.

Определение. Вес μ называется доминантным интегральным, если $\langle \mu, \alpha^{\vee} \rangle \in \mathbb{Z}_+$ для всех $\alpha \in R_+$.

Теорема 6. Неприводимое представление L_{μ} конечномерно если и только если μ - доминантный интегральный вес.