Unified Probability Theory (UPT) – A walkthrough for the simple minded and willfully ignorant. Definitions, Dynamics, and Proofs

Jon Poplett

August 27, 2025

Purpose of this supplement

This note makes UPT maximally explicit: (1) Every operator (potential, emergence, resonance, cascade) is defined using familiar constructs from probability and dynamical systems; (2) The evolution is a well-posed ODE on the probability simplex with conservation and positivity; (3) Bayes' rule appears as a special case (impulsive updates) of the same formalism.

1 Standing assumptions and notation

Fix a finite measurable partition $\mathcal{A} = \{A_1, \dots, A_K\} \subset \mathcal{F} \text{ of } \Omega \text{ (atoms)}$. Write the time-dependent probabilities

$$\mathbf{P}(t) = (P_1(t), \dots, P_K(t)) \in \Delta^{K-1}$$
 with $P_k(t) = P(A_k, t), \sum_{k=1}^K P_k(t) = 1, P_k(t) \ge 0.$

Let $\boldsymbol{z} \in \Delta^{K-1}$ be an anchor (baseline distribution, e.g. a model prior or baseline predictor). Denote $\boldsymbol{1} = (1, \dots, 1)^{\top}$. The probability simplex is $\Delta^{K-1} = \{ \boldsymbol{p} \in \mathbb{R}^K : p_k \geq 0, \ \sum_k p_k = 1 \}$.

Remark 1 (Why dynamics? Bayes as impulses). Bayes' rule updates **P** when new evidence arrives at discrete times. UPT adds *continuous-time* dynamics between evidence arrivals to model endogenous reorganization (resonance, cascades). Section 4 embeds Bayes updates as impulses superimposed on the flow.

2 Operators: definitions grounded in classical terms

2.1 Probability potential and gradient field

Definition 1 (Potential). Define the scalar potential

$$\mathcal{V}(\mathbf{P}) = \sum_{k=1}^{K} \frac{1}{2} \phi_a (P_k - z_k)^2,$$

with strength $\phi_a > 0$. Its coordinate gradient is $g_k(\mathbf{P}) = \partial \mathcal{V}/\partial P_k = \phi_a (P_k - z_k)$.

Remark 2 (Force on probabilities = vector field). "Force" is shorthand for the right-hand side of an ODE on Δ^{K-1} . To make it conservative, we use the zero-sum projection

$$\Pi(\mathbf{v}) = \mathbf{v} - \frac{1}{K} (\mathbf{1}^{\top} \mathbf{v}) \mathbf{1},$$

so that $\mathbf{1}^{\top}\Pi(\mathbf{v}) = 0$. Potential descent uses $-\Pi(\nabla \mathcal{V})$; potential ascent uses $+\Pi(\nabla \mathcal{V})$. The demo uses the same potential shape; theory below is agnostic in the sign.

2.2 Emergence (viability) operator

Definition 2 (Emergence / Viability). For each A_k , define a viability nonlinearity

$$\Lambda_k(\mathbf{P}) = \beta \tanh\left(\frac{V_k(\mathbf{P}) - V_{\text{thresh}}}{\sigma}\right), \quad V_k(\mathbf{P}) = \frac{1}{2}\phi_a (P_k - z_k)^2,$$

with parameters $\beta \in \mathbb{R}$, $V_{\text{thresh}} \in \mathbb{R}$, $\sigma > 0$. To preserve total probability we use the zero-sum form

$$\widehat{\Lambda}_k(\mathbf{P}) = \Lambda_k(\mathbf{P}) - \frac{1}{K} \sum_{i=1}^K \Lambda_i(\mathbf{P}).$$

Remark 3. This is exactly the stabilizer used in the demo (turned small to isolate resonance), now recentered so the operator conserves total mass by construction.

2.3 Resonance: pairwise conservative coupling

Definition 3 (Resonance kernel and flux). Let $S_{ij}(\mathbf{P})$ be a symmetric pairwise kernel encoding co-activation strength between A_i and A_j . A canonical choice aligned with the paper is

$$S_{ij}(\mathbf{P}) = A_{\text{res}} \tanh\left(\frac{\widehat{V}_{ij}(\mathbf{P}) - V_c}{\tau_{\text{res}}}\right), \quad \widehat{V}_{ij}(\mathbf{P}) = \frac{1}{2}(V_i(\mathbf{P}) + V_j(\mathbf{P})),$$

where $A_{\text{res}}, V_c, \tau_{\text{res}} > 0$ and $S_{ij} = S_{ji}$. Define conservative resonance fluxes

$$r_{i \to j}(\mathbf{P}) = \gamma S_{ij}(\mathbf{P}) P_i, \qquad \gamma > 0,$$

and the net resonance term per coordinate

$$R_k(\mathbf{P}) = \sum_{j \neq k} \left(r_{j \to k}(\mathbf{P}) - r_{k \to j}(\mathbf{P}) \right).$$

Lemma 1 (Resonance conserves total probability). $\sum_{k=1}^{K} R_k(\mathbf{P}) = 0$ for all \mathbf{P} .

Proof. Sum telescopes pairwise since each $r_{i\to j}$ appears once with + and once with -.

2.4 Cascade: threshold-gated, antisymmetric reallocation

Definition 4 (Cascade potential). Define the cascade potential

$$\Phi(\mathbf{P}) = \max_{i \neq j} \left(S_{ij}(\mathbf{P}) \cdot E_{ij}(\mathbf{P}) \right), \quad E_{ij}(\mathbf{P}) = \beta \tanh \left(\frac{\widehat{V}_{ij}(\mathbf{P}) - V_{\text{thresh}}}{\sigma} \right).$$

Definition 5 (Cascade flux and operator). Let $[x]_+ = \max\{x, 0\}$. For each ordered pair (i, j) with $i \neq j$, define gated weights

$$W_{i\to j}(\mathbf{P}) = \mathbf{1}\{\Phi(\mathbf{P}) \ge \Phi_{\text{critical}}\} \frac{\left[S_{ij}(\mathbf{P}) E_{ij}(\mathbf{P})\right]_{+}}{\sum_{\ell \neq i} \left[S_{i\ell}(\mathbf{P}) E_{i\ell}(\mathbf{P})\right]_{+} + \varepsilon}, \quad \varepsilon > 0.$$

Set cascade fluxes $c_{i\to j}(\mathbf{P}) = W_{i\to j}(\mathbf{P}) P_i$, and the net cascade term

$$C_k(\mathbf{P}) = \sum_{j \neq k} \left(c_{j \to k}(\mathbf{P}) - c_{k \to j}(\mathbf{P}) \right).$$

Lemma 2 (Cascade conserves total probability). $\sum_{k=1}^{K} C_k(\mathbf{P}) = 0$ for all \mathbf{P} .

Proof. As for resonance, the pairwise antisymmetry cancels in the sum.

3 Unified evolution on the simplex

Definition 6 (UPT vector field). Let $\sigma_V \in \{-1, +1\}$ choose descent (-1) or ascent (+1) on V. The UPT field is

$$F(\mathbf{P},t) = \underbrace{\sigma_V \Pi(\nabla V(\mathbf{P}))}_{\text{potential}} + \underbrace{\widehat{\Lambda}(\mathbf{P})}_{\text{emergence}} + \underbrace{R(\mathbf{P})}_{\text{resonance}} + \underbrace{\alpha(t) C(\mathbf{P})}_{\text{cascade}},$$

with $\alpha(t) \geq 0$ the cascade schedule (e.g. your doubling law).

Theorem 1 (Well-posedness and simplex invariance). Assume $\alpha(\cdot)$ is locally bounded and piecewise continuous. Then the ODE $\dot{\mathbf{P}} = F(\mathbf{P}, t)$ has (Carathéodory) solutions on $[0, \infty)$ for any $\mathbf{P}(0) \in \Delta^{K-1}$. Moreover,

$$\sum_{k=1}^{K} \dot{P}_k(t) = 0, \qquad P_k(t) \ge 0, \qquad \sum_{k=1}^{K} P_k(t) = 1, \quad \forall t \ge 0.$$

Sketch. All components are locally Lipschitz in \mathbf{P} (tanh is smooth; the rational gating has $\varepsilon > 0$), so existence/uniqueness holds piecewise in t. By construction $\mathbf{1}^{\top}F(\mathbf{P},t)=0$ (potential term is projected; others are pairwise antisymmetric), hence $\sum_k P_k$ is constant. Nonnegativity follows from standard inward-pointing arguments on the boundary of Δ^{K-1} : when $P_k = 0$, all outward fluxes $r_{k\to j}, c_{k\to j}$ vanish and the potential/emergence projections do not decrease P_k below 0 for sufficiently small time; see Nagumo's theorem on viability.

Corollary 1 (Probability conservation). $\int_{\Omega} dP(\cdot,t) = \sum_{k} P_{k}(t) = 1$ for all t.

Theorem 2 (Entropy bound). Let $S(\mathbf{P}) = -\sum_k P_k \log P_k$. Then $S(\mathbf{P}(t)) \leq \log K$ for all t, with equality iff $\mathbf{P}(t)$ is uniform.

Proof. Standard Shannon bound on the simplex; dynamics need not be entropy-monotone, but the upper bound always holds on Δ^{K-1} .

4 Bayes as a special case (impulsive updates)

Let evidence events E_n arrive at times t_n . Let $L^{(n)} = (L_1^{(n)}, \dots, L_K^{(n)})$ with $L_k^{(n)} = P(E_n \mid A_k)$ (likelihoods). Define the Bayes jump map

$$\mathcal{B}_{E_n}(\mathbf{P}) \ = \ rac{L^{(n)} \odot \mathbf{P}}{\mathbf{1}^{ op}(L^{(n)} \odot \mathbf{P})}.$$

UPT with impulses:

$$\dot{\mathbf{P}} = F(\mathbf{P}, t) + \sum_{n} \delta(t - t_n) \left(\mathcal{B}_{E_n}(\mathbf{P}^-) - \mathbf{P}^- \right).$$

If $F \equiv 0$ one recovers pure Bayes: piecewise-constant **P** with jump $\mathbf{P}^+ = \mathcal{B}_{E_n}(\mathbf{P}^-)$ at each t_n .

5 Resonance/cascade phases and horizons

Definition 7 (Phases). Write $\Phi(\mathbf{P})$ as above. Then:

- Stable: $\Phi(\mathbf{P}) < \Phi_{\text{critical}}$ (no cascade flux).
- Resonant transition: S_{ij} near its steep band (tanh argument near V_c); small amplification via R.
- Cascade: $\Phi(\mathbf{P}) \geq \Phi_{\text{critical}}$ and $\alpha(t) > 0$; rapid reallocation via \mathcal{C} .

Definition 8 (Event graph and horizon). Let G = (V, E) be a graph on $\{1, ..., K\}$ encoding structural proximity (e.g. ordinal neighbors). Let $d_G(i)$ be graph distance from a reference set. Suppose the cascade kernel $W_{i\to j}(\mathbf{P})$ has compact support $d_G(i,j) \leq r$. If $\alpha(t) \geq \alpha_{\text{horizon}}$ for $t \geq T$, then nodes with $d_G(i) > r$ receive no cascade inflow and can be driven to vanishing mass by sustained outflow (model-dependent). We call r the probability horizon radius.

Remark 4. This formalizes the horizon statement as locality of cascade support on an event graph. Concrete decay rates follow from bounds on $S_{ij}E_{ij}$ beyond radius r.

6 Alignment with the reference implementation

- Potential: $\mathcal{V} = \sum_{k} \frac{1}{2} \phi_a (P_k z_k)^2$; code uses $g_k = \phi_a (P_k z_k)$.
- Emergence: $\beta \tanh((V_k V_{\text{thresh}})/\sigma)$ (recentered here to zero-sum).
- **Resonance:** neighbor-only S_{ij} with $\hat{V}_{ij} = \frac{1}{2}(V_i + V_j)$ for |i j| = 1.
- Cascade: present as a stub in the demo; the conservative flux form above is a drop-in replacement that preserves $\sum_k P_k$ and matches the paper's gating ($\Phi \geq \Phi_{\text{critical}}$) and schedule $\alpha(t)$ (e.g. doubling).
- Simplex invariance: the demo projects to the simplex after each step; theory uses zero-sum projection Π and inward-pointing arguments to guarantee invariance in continuous time.

7 Plain-language glossary (for the avoidance of doubt)

- Force on probabilities: the vector field (right-hand side) of the ODE driving $\mathbf{P}(t)$ on the simplex; not literal energy.
- Viability / Emergence: a smooth switch that turns on when an event's potential clears a threshold; implemented by tanh.
- **Resonance:** pairwise co-activation making linked events exchange probability mass (conservatively).
- Cascade: when (resonance × emergence) crosses a threshold, a structured, antisymmetric flow rapidly reallocates mass across many events.
- Horizon: locality radius of cascade influence on an event graph; beyond it, events can be suppressed to near zero under sustained cascades.
- Bayes vs UPT: Bayes = jumps at evidence times; UPT = continuous flow between jumps, with Bayes embedded as impulses.

Interpretation metaphor (why this matters)

In many real settings (scientific reading, model selection, multi-hypothesis reasoning), belief does not update as isolated jumps only. Local co-activations build until a few connections cross a threshold; then a *cascade* reorganizes the whole distribution in a burst. UPT provides the minimal conservative mechanics on the probability simplex to describe that trajectory: potentials bias, viability gates, resonance couples, and once criticality is reached, cascades rapidly reallocate probability—all while conserving total mass and remaining compatible with Bayes at evidence times.