LES BDD VECTORIELES

DÉFINITION

- Les bases de données (BDD) vectorielles stockent les éléments d'information sous forme de vecteurs.
- Elles sont souvent utilisées pour optimiser les modèles d'apprentissage automatique.
- Elles regroupent les éléments apparentés, permettant des requêtes plus rapides et rentables et évitent de soumettre constamment des données au modèle.
- Elles sont idéales pour des applications comme la recherche sémantique et la détection d'anomalies.

VECTORISATION (EMBEDDING)

Un embedding vectoriel désigne un vecteur créé comme représentation numérique d'objets de données généralement non numériques.

En général, les embeddings visent à capturer des informations sémantiques, contextuelles ou structurelles pertinentes pour la tâche spécifique à accomplir.

COMPARAISON VECTORIELLE

Distance Euclidienne

Plus la distance est oroche de O, plus les vecteurs sont similaires sémantiquement

Ex: Analyse de clusters

Similarité cosinus

Les vecteurs sont moins similaires plus l'angle se rapproche de 180 et plus similaires si l'angle se rapproche de 0

Ex: Comparaison de documents

Produit scalaire

angle 0 : similaires angle 180 : opposés

angle 90 : sans rapport

Ex: Récupération et correspondance d'images

Page 04

(9) Milvus

- BDD vectorielle créée en 2019 par Zilliz
- Projet opensource sous la license Apache
 2.0
- 3 modes de déploiement:
 - Lite : Librairie Python (utilisée dans notre tuto)
 - Standalone : Déploiement sur une seule machine, avec image Docker regroupant tous les composants
 - Distributed : Adapté au déploiement sur clusters Kubernetes, adopte une architecture cloud-native. Garantit une redondance des composants critiques.

AVANTAGES DE MILVUS

- 2 à 5 fois plus rapide que d'autres BDD Vectorielles
- Scalable horizontalement grâce à son architecture cloud-native et découplée les trois tâches les plus critiques la recherche, l'insertion de données et l'indexation/compactage sont conçues comme des processus facilement parallélisables.
 - Gère des types de données avancés (en plus des types primitifs) : JSON, Distance Matrix...
 - Supporte de **nombreux types de recherche**; et des hybrid search. Permet aussi la configuration de l'indexation
 - Possède de nombreux SDKs: Python, Java, Go, C++, Node.js, et Ruby

TUTORIELS

