第三次

李钦 2024312371

li-q24@mails.tsinghua.edu.cn

Problem 1. 《数值分析基础 (第二版) (关治, 陆金甫)》 P282 4.

用 Chebyshev 多项式 T_3 的零点在 [-1,1] 上对函数 $f(x) = e^x$ 构造 2 次 Newton 插值多项式.

Solution. 为了使用 Chebyshev 多项式 T_3 的零点在区间 [-1,1] 上对函数 $f(x) = e^x$ 构造 2 次 Newton 插值多项式, 我们首先需要找到 T_3 的零点. Chebyshev 多项式 $T_3(x)$ 的零点为:

$$x_k = \cos\left(\frac{(2k-1)\pi}{6}\right), \quad k = 1, 2, 3$$

计算这些零点:

$$x_1 = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$
 $x_2 = \cos\left(\frac{\pi}{2}\right) = 0$ $x_3 = \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}$

因此, Chebyshev 多项式 T_3 的零点为 $x_1 = \frac{\sqrt{3}}{2}$, $x_2 = 0$, $x_3 = -\frac{\sqrt{3}}{2}$. 接下来, 我们计算这些点处的函数值 $f(x) = e^x$:

$$f\left(\frac{\sqrt{3}}{2}\right) = e^{\frac{\sqrt{3}}{2}}$$
 $f(0) = e^0 = 1$ $f\left(-\frac{\sqrt{3}}{2}\right) = e^{-\frac{\sqrt{3}}{2}}$

现在我们构造均差表:

根据均差表, 我们可以写出 Newton 插值多项式:

$$P_2(x) = f(x_1) + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

代入具体值:

$$P_2(x) = e^{-\frac{\sqrt{3}}{2}} + \frac{2}{\sqrt{3}}(1 - e^{-\frac{\sqrt{3}}{2}})(x + \frac{\sqrt{3}}{2}) + \frac{2}{3}(e^{\frac{\sqrt{3}}{2}} - 2 + e^{-\frac{\sqrt{3}}{2}})(x + \frac{\sqrt{3}}{2})x$$

简化后得到:

$$P_2(x) = e^{-\frac{\sqrt{3}}{2}} + \frac{2}{\sqrt{3}}(1 - e^{-\frac{\sqrt{3}}{2}})(x + \frac{\sqrt{3}}{2}) + \frac{2}{3}(e^{\frac{\sqrt{3}}{2}} - 2 + e^{-\frac{\sqrt{3}}{2}})(x^2 + \frac{\sqrt{3}}{2}x)$$

这就是我们构造的 2 次 Newton 插值多项式.

Problem 2. 《数值分析基础 (第二版) (关治, 陆金甫)》 P282 7.

设 $f(x) = e^x, x \in [-1, 1]$, 试求出 f 在 \mathcal{P}_1 和 \mathcal{P}_2 中的最佳平方逼近多项式 P_1^* 和 P_2^* .

Solution. 为了求解 $f(x) = e^x$ 在 \mathcal{P}_1 和 \mathcal{P}_2 中的最佳平方逼近多项式 P_1^* 和 P_2^* , 我们需要分别在 \mathcal{P}_1 和 \mathcal{P}_2 中找到使得误差平方和最小的多项式.

在 \mathcal{P}_1 中的最佳平方逼近多项式 P_1^* 在 \mathcal{P}_1 中,多项式形式为 $P_1^*(x) = a_0 + a_1 x$. 我们需要最小化误差平方和:

$$E = \int_{-1}^{1} [e^x - (a_0 + a_1 x)]^2 dx$$

通过最小化 E, 我们可以得到 a_0 和 a_1 的值. 首先, 计算内积:

$$(1,1) = \int_{-1}^{1} 1^2 dx = 2 \qquad (x,x) = \int_{-1}^{1} x^2 dx = \frac{2}{3} \qquad (1,x) = \int_{-1}^{1} x dx = 0$$

以及 f(x) 与基函数的内积:

$$(f,1) = \int_{-1}^{1} e^x \, dx = e - \frac{1}{e}$$

$$(f,x) = \int_{-1}^{1} x e^x \, dx = x e^x \Big|_{-1}^{1} - \int_{-1}^{1} e^x \, dx = e + \frac{1}{e} - (e - \frac{1}{e}) = \frac{2}{e}$$

构造法方程组:

$$\begin{pmatrix} (1,1) & (1,x) \\ (x,1) & (x,x) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} (f,1) \\ (f,x) \end{pmatrix}$$

代入已知内积值:

$$\begin{pmatrix} 2 & 0 \\ 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} e - \frac{1}{e} \\ \frac{2}{e} \end{pmatrix}$$

解这个方程组:

$$2a_0 = e - \frac{1}{e} \implies a_0 = \frac{e - e^{-1}}{2}$$
$$\frac{2}{3}a_1 = \frac{2}{e} \implies a_1 = \frac{3}{e}$$

因此, \mathcal{P}_1 中的最佳平方逼近多项式为:

$$P_1^*(x) = \frac{e - e^{-1}}{2} + 3x$$

在 \mathcal{P}_2 中的最佳平方逼近多项式 P_2^* 在 \mathcal{P}_2 中,多项式形式为 $P_2^*(x) = a_0 + a_1 x + a_2 x^2$. 我们需要最小化误差平方和:

$$E = \int_{-1}^{1} [e^x - (a_0 + a_1 x + a_2 x^2)]^2 dx$$

通过最小化 E, 我们可以得到 a_0 、 a_1 和 a_2 的值. 首先, 计算内积:

$$(1,1) = 2 (x,x) = \frac{2}{3} (x^2, x^2) = \int_{-1}^{1} x^4 dx = \frac{2}{5}$$

$$(1,x) = 0 (1,x^2) = \int_{-1}^{1} x^2 dx = \frac{2}{3} (x,x^2) = \int_{-1}^{1} x^3 dx = 0$$

以及 f(x) 与基函数的内积:

$$(f,1) = e - \frac{1}{e},$$
 $(f,x) = \frac{2}{e},$ $(f,x^2) = \int_{-1}^{1} x^2 e^x dx$

使用分部积分法计算 (f, x^2) :

$$(f, x^{2}) = x^{2} e^{x} \Big|_{-1}^{1} - \int_{-1}^{1} 2x e^{x} dx$$
$$= e - \frac{1}{e} - 2 \cdot \frac{2}{e}$$
$$= e - \frac{5}{e}$$

构造法方程组:

$$\begin{pmatrix} 2 & 0 & \frac{2}{3} \\ 0 & \frac{2}{3} & 0 \\ \frac{2}{3} & 0 & \frac{2}{5} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} e - \frac{1}{e} \\ \frac{2}{e} \\ e - \frac{5}{e} \end{pmatrix}$$

通过解这个线性方程组, 我们可以得到 a_0, a_1, a_2 的值:

$$a_0 = -\frac{3}{4}e + \frac{33}{4}e^{-1}, \qquad a_1 = \frac{3}{e}, \qquad a_2 = \frac{15}{4}e - \frac{105}{4}e^{-1}$$

最终, 92 中的最佳平方逼近多项式为:

$$P_2^*(x) = a_0 + a_1 x + a_2 x^2$$

其中 a_0, a_1, a_2 的值如上.

Problem 3.

求 x^2 在区间 [0,1] 上的最佳一次一致逼近多项式

Solution. 假设函数 g 是函数 f 的最佳一次逼近多项式. 则 f-g 的内部极值点是唯一的; 设 $\{0,x^*,1\}$ 是一个交错点组, g(x)=cx+d. 则

$$f(1) - f(0) = c(1 - 0) \implies c = 1$$

由于 x* 是极值点, 于是

$$f'(x^*) - c = 0 \implies x^* = \frac{1}{2}$$

再由

$$f(0) - g(0) = -[f(x^*) - g(x^*)] \implies d = -\frac{1}{8}$$

因此, $g(x) = x - \frac{1}{8}$.

Problem 4. 《数值分析基础 (第二版) (关治, 陆金甫)》 P340 3.

用梯形公式和 Simpson 公式计算下列积分并估计其误差

$$(1) \int_1^2 \ln x \, \mathrm{d}x$$

Solution. 我们将使用梯形公式和 Simpson 公式来计算积分 $\int_1^2 \ln x \, \mathrm{d}x$, 并估计其误差.

梯形公式 梯形公式的形式为:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

对于 $\int_1^2 \ln x \, dx$, 我们有 a = 1, b = 2, $f(x) = \ln x$. 计算 f(a) 和 f(b):

$$f(1) = \ln 1 = 0,$$
 $f(2) = \ln 2$

代入梯形公式:

$$\int_{1}^{2} \ln x \, \mathrm{d}x \approx \frac{2-1}{2} [0 + \ln 2] = \frac{1}{2} \ln 2$$

梯形公式的误差估计 梯形公式的误差估计公式为:

$$E_T = -\frac{(b-a)^3}{12} f''(\xi)$$

其中 $\xi \in [a,b]$. 计算 f''(x):

$$f(x) = \ln x \implies f'(x) = \frac{1}{x} \implies f''(x) = -\frac{1}{x^2}$$

在区间 [1,2] 上, f''(x) 的最大值出现在 x=1:

$$f''(1) = -1$$

代入误差估计公式:

$$E_T = -\frac{(2-1)^3}{12}(-1) = \frac{1}{12}$$

Simpson 公式 Simpson 公式的形式为:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

对于 $\int_1^2 \ln x \, dx$, 我们有 a = 1, b = 2, $f(x) = \ln x$. 计算 $f(\frac{a+b}{2})$:

$$\frac{a+b}{2} = \frac{1+2}{2} = 1.5,$$
 $f(1.5) = \ln 1.5$

代入 Simpson 公式:

$$\int_{1}^{2} \ln x \, dx \approx \frac{2-1}{6} (0 + 4 \ln 1.5 + \ln 2) = \frac{1}{6} (4 \ln 1.5 + \ln 2)$$

Simpson 公式的误差估计 Simpson 公式的误差估计公式为:

$$E_S = -\frac{(b-a)^5}{2880} f^{(4)}(\xi)$$

其中 $\xi \in [a, b]$. 计算 $f^{(4)}(x)$:

$$f(x) = \ln x \implies f'(x) = \frac{1}{x} \implies f''(x) = -\frac{1}{x^2} \implies f'''(x) = \frac{2}{x^3} \implies f^{(4)}(x) = -\frac{6}{x^4}$$

在区间 [1,2] 上, $f^{(4)}(x)$ 的最大值出现在 x=1:

$$f^{(4)}(1) = -6$$

代入误差估计公式:

$$E_S = -\frac{(2-1)^5}{2880}(-6) = \frac{6}{2880} = \frac{1}{480}$$

最终结果 梯形公式计算结果:

$$\int_{1}^{2} \ln x \, \mathrm{d}x \approx \frac{1}{2} \ln 2$$

误差估计:

$$E_T \approx \frac{1}{12}$$

Simpson 公式计算结果:

$$\int_{1}^{2} \ln x \, dx \approx \frac{1}{6} (4 \ln 1.5 + \ln 2)$$

误差估计:

$$E_S \approx \frac{1}{480}$$

因此, 梯形公式和 Simpson 公式的计算结果及其误差估计分别为:

误差估计分别为:

$$\boxed{\frac{1}{12}} \quad \text{fi} \quad \boxed{\frac{1}{480}}$$

Problem 5. 《数值分析基础 (第二版) (关治, 陆金甫)》 P340 8.

确定求积公式

$$\int_0^1 \sqrt{x} f(x) \, \mathrm{d}x \approx A_0 f(x_0) + A_1 f(x_1)$$

的节点 x_0, x_1 和系数 A_0, A_1 使该求积公式具有 3 次代数精度

Solution. 为了确定求积公式

$$\int_0^1 \sqrt{x} f(x) \, dx \approx A_0 f(x_0) + A_1 f(x_1)$$

的节点 x_0, x_1 和系数 A_0, A_1 使其具有 3 次代数精度, 我们可以按照以下步骤进行:

第一步: 求正交多项式 φ_n 我们需要找到在区间 [0,1] 上关于权函数 \sqrt{x} 的正交多项式. 首先, 考虑一般的正交多项式形式:

$$\varphi_n(x) = x^n + 低次项$$

对于 n=2, 我们需要找到 $\varphi_2(x)$ 使得:

$$\int_0^1 \sqrt{x} \varphi_2(x) x^k \, \mathrm{d}x = 0 \quad \forall f f \quad k = 0, 1$$

设 $\varphi_2(x) = x^2 + ax + b$, 则:

$$\int_{0}^{1} \sqrt{x(x^{2} + ax + b)} x^{k} dx = 0 \quad \text{XIF} \quad k = 0, 1$$

计算这些积分:

$$\int_0^1 \sqrt{x}(x^2 + ax + b)x^0 dx = \frac{2}{7} + \frac{2}{5}a + \frac{2}{3}b = 0$$
$$\int_0^1 \sqrt{x}(x^2 + ax + b)x^1 dx = \frac{2}{9} + \frac{2}{7}a + \frac{2}{5}b = 0$$

因此, 我们有:

$$a = -\frac{10}{9}, \qquad b = \frac{5}{21}$$

所以, 正交多项式为:

$$\varphi_2(x) = x^2 - \frac{10}{9}x + \frac{5}{21}$$

第二步: 求正交多项式的根 x_0, x_1 解方程 $\varphi_2(x) = 0$:

$$x_0 = \frac{5}{9} - \frac{2}{9}\sqrt{\frac{10}{7}}, \qquad x_1 = \frac{5}{9} + \frac{2}{9}\sqrt{\frac{10}{7}}$$

第三步: 计算系数 A_0, A_1 使用公式 $A_k = \int_0^1 \sqrt{x} l_k(x) \, \mathrm{d}x$, 其中 $l_k(x)$ 是拉格朗日基函数. 对于 $x_0 = \frac{5}{9} - \frac{2}{9} \sqrt{\frac{10}{7}}$, 拉格朗日基函数为:

$$l_0(x) = \frac{x - x_1}{x_0 - x_1} = -\frac{9}{4} \sqrt{\frac{7}{10}} x + \frac{1}{4} \sqrt{\frac{35}{2}} + \frac{1}{2}$$

对于 $x_1 = \frac{5}{9} + \frac{2}{9}\sqrt{\frac{10}{7}}$, 拉格朗日基函数为:

$$l_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{9}{4} \sqrt{\frac{7}{10}} x - \frac{1}{4} \sqrt{\frac{35}{2}} + \frac{1}{2}$$

计算 A₀ 和 A₁:

$$A_0 = \int_0^1 \sqrt{x} l_0(x) \, dx$$

$$= \frac{x^{\frac{3}{2}}}{300} \left(25 \left(4 + \sqrt{70} \right) - 27 \sqrt{70} x \right) \Big|_{x=0}^1$$

$$= \frac{50 - \sqrt{70}}{150} \approx 0.27756$$

$$A_1 = \int_0^1 \sqrt{x} l_1(x) \, dx$$

$$= \frac{x^{\frac{3}{2}}}{300} \left(27 \sqrt{70} x - 25 \left(\sqrt{70} - 4 \right) \right) \Big|_{x=0}^1$$

$$= \frac{50 + \sqrt{70}}{150} \approx 0.38911$$

最终求积公式

$$\int_0^1 \sqrt{x} f(x) \, \mathrm{d}x \approx \frac{50 - \sqrt{70}}{150} f\left(\frac{5}{9} - \frac{2}{9}\sqrt{\frac{10}{7}}\right) + \frac{50 + \sqrt{70}}{150} f\left(\frac{5}{9} + \frac{2}{9}\sqrt{\frac{10}{7}}\right)$$

$$\left[\frac{50 - \sqrt{70}}{150} f\left(\frac{5}{9} - \frac{2}{9}\sqrt{\frac{10}{7}}\right) + \frac{50 + \sqrt{70}}{150} f\left(\frac{5}{9} + \frac{2}{9}\sqrt{\frac{10}{7}}\right)\right]$$

Problem 6. 《数值分析基础 (第二版) (关治, 陆金甫)》 P340 12.

用 Romberg 求积方法计算下列积分, 列出计算步骤表. 给出 T_3^0 作为近似值

(1)
$$\int_0^1 x^2 e^{-x} dx$$

Solution. 我们使用 Romberg 积分方法来计算积分

$$\int_0^1 x^2 e^{-x} \, \mathrm{d}x$$

Step 1: 梯形公式的应用 首先, 我们使用梯形公式对积分进行初步估计. 对于梯形公式, 积分的近似为

$$T_n^0 = \frac{h}{2} \left(f(a) + 2 \sum_{k=1}^{n-1} f(a+kh) + f(b) \right)$$

这里, 选择 $a=0,\,b=1$ 我们需要对不同的步长 h 进行计算. 选择的步长为 $h=1,\,h=\frac{1}{2}$ 和 $h=\frac{1}{4}$. 设定:

- T_1^0 对应 n=1: 使用 h=1
- T_1^1 对应 n=2: 使用 $h=\frac{1}{2}$
- T_1^2 对应 n=4: 使用 $h=\frac{1}{4}$

函数 $f(x) = x^2 e^{-x}$.

计算 T₁⁰

$$T_1^0 = \frac{1}{2} \left(f(0) + f(1) \right) = \frac{1}{2} \left(0 + e^{-1} \right) = \frac{1}{2} e^{-1}$$

计算 T₁¹

$$T_1^1 = \frac{1}{4} \left(f(0) + 2f\left(\frac{1}{2}\right) + f(1) \right)$$

其中

$$f\left(\frac{1}{2}\right) = \frac{1}{4}e^{-\frac{1}{2}}$$

因此

$$T_1^1 = \frac{1}{4} \left(0 + 2 \cdot \frac{1}{4} e^{-\frac{1}{2}} + e^{-1} \right) = \frac{1}{8} e^{-\frac{1}{2}} + \frac{1}{4} e^{-1}$$

计算 T₃⁰

$$T_1^2 = \frac{1}{8} \left(f(0) + 2f\left(\frac{1}{4}\right) + 2f\left(\frac{1}{2}\right) + 2f\left(\frac{3}{4}\right) + f(1) \right),$$

使用相应的函数值计算每个的贡献并代入公式. 类似的步骤分别计算每个附属值:

$$f\left(\frac{1}{4}\right) = \frac{1}{16}e^{-\frac{1}{4}}, \qquad f\left(\frac{3}{4}\right) = \frac{9}{16}e^{-\frac{3}{4}}$$

计算结果如下:

$$T_1^2 = \frac{1}{8} \left(2 \cdot \frac{1}{16} e^{-\frac{1}{4}} + 2 \cdot \frac{1}{4} e^{-\frac{1}{2}} + 2 \cdot \frac{9}{16} e^{-\frac{3}{4}} + e^{-1} \right) = \frac{1}{64} e^{-\frac{1}{4}} + \frac{1}{16} e^{-\frac{1}{2}} + \frac{9}{64} e^{-\frac{3}{4}} + \frac{1}{8} e^{-1} + \frac{1}{16} e^{-\frac{1}{4}} + \frac{1}{16} e^{-\frac{1}$$

Step 2: Romberg 外推 接下来我们使用 Romberg 方法通过递推关系

$$T_{k+1}^n = \frac{4^k T_k^n - T_k^{n-1}}{4^k - 1}$$

我们需要的值 T_3^0 : 计算过程:

$$\begin{split} T_2^0 &= \frac{4 \cdot T_1^1 - T_1^0}{4 - 1} = \frac{4 \cdot \left(\frac{1}{8}e^{-\frac{1}{2}} + \frac{1}{4}e^{-1}\right) - \frac{1}{2}e^{-1}}{3} = \frac{1}{6}e^{-\frac{1}{2}} + \frac{1}{6}e^{-1} \\ T_2^1 &= \frac{4 \cdot T_1^2 - T_1^1}{4 - 1} \\ &= \frac{4 \cdot \left(\frac{1}{64}e^{-\frac{1}{4}} + \frac{1}{16}e^{-\frac{1}{2}} + \frac{9}{64}e^{-\frac{3}{4}} + \frac{1}{8}e^{-1}\right) - \left(\frac{1}{8}e^{-\frac{1}{2}} + \frac{1}{4}e^{-1}\right)}{3} \\ &= \frac{1}{48}e^{-\frac{1}{4}} + \frac{1}{24}e^{-\frac{1}{2}} + \frac{3}{16}e^{-\frac{3}{4}} + \frac{1}{12}e^{-1} \\ T_3^0 &= \frac{4^2T_2^1 - T_2^0}{4^2 - 1} \\ &= \frac{16 \cdot \left(\frac{1}{48}e^{-\frac{1}{4}} + \frac{1}{24}e^{-\frac{1}{2}} + \frac{3}{16}e^{-\frac{3}{4}} + \frac{1}{12}e^{-1}\right) - \left(\frac{1}{6}e^{-\frac{1}{2}} + \frac{1}{6}e^{-1}\right)}{15} \\ &= \frac{1}{45}e^{-\frac{1}{4}} + \frac{1}{30}e^{-\frac{1}{2}} + \frac{1}{5}e^{-\frac{3}{4}} + \frac{7}{90}e^{-1} \approx 0.1606105287 \end{split}$$

因此, 经过外推, 我们获得 T_3^0 的准确近似.