Machine Learning W5 Tutorial

COMP30027 | Sandy Luo

Overview

Model Evaluation

Metrics, baselines

Decision Tree

Theory, code

Splitting data

code!

Baseline

Model evaluation:

- 1. Analyse the good & bad of this model's performance
 - Accuracy, precision, recall...
- 2. Compare this model's performance with other models' performances
 - Baseline comparison!

Baseline

- 1. Random: Guess labels randomly based on class distribution in training
- 2. O-R: Always guess the most common label in the training set
- 3.1-R: Choose a single attribute to represent the entire decision-making process
 - a. For each feature, assign the most frequent class to each of its unique values
 - b. Select the feature with the lowest classification error as the final rule
- 4. (some) others:
 - a. Regression: Always guess the mean value
 - b. Object detection: Always guess the middle of the image

Q1:

Classify the test instances using the method of <u>O-R</u>

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	Ν
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

Q1:

Classify the test instances using the method of <u>O-R</u>

0-R: Always guess the most common label in the training set

3 vs 3 → tiebreaker?

Just choose one that is representative, which in this case can be either Y or N

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

Classify the test instances using the method of <u>1-R</u>

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	Ν	Т	?
Н	S	Н	Н	F	?

1-R:

- 1. For each feature, assign the most frequent class to each of its unique values
- 2. Select the feature with the lowest classification error as the final rule

outlook = S:

- majority class: Play = N
- error = 0

outlook = 0:

- majority class: Play = Y
- error = 0

outlook = R:

- majority class: Play = Y
- error = 1

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

Test set:

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

→ outlook total error = 1

1-R:

- 1. For each feature, assign the most frequent class to each of its unique values
- 2. Select the feature with the lowest classification error as the final rule

temp = H:

- majority class: Play = N
- error = 1

temp = M:

- majority class: Play = Y
- error = 0

temp = C:

- majority class: Play = Y / N → temp total error = 2
- error = 1

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D (R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

1-R:

- 1. For each feature, assign the most frequent class to each of its unique values
- 2. Select the feature with the lowest classification error as the final rule

Humid = N:

- majority class: Play = N
- error = 1

Humid = H:

- majority class: Play = Y
- error = 1
- → Humid total error = 2

ID	Outlook	Temp	Humid	Wind	Play
А	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

1-R:

- 1. For each feature, assign the most frequent class to each of its unique values
- 2. Select the feature with the lowest classification error as the final rule

Wind = F:

- majority class: Play = Y
- error = 1

Wind = T:

- majority class: Play = N
- error = 0

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

1-R:

- 1. For each feature, assign the most frequent class to each of its unique values
- 2. Select the feature with the lowest classification error as the final rule
- Both Outlook and Wind have the lowest classification error
- Pick one as final rule
- e.g. outlook:
 - ID=G: outlook=O, play = Y
 - ID=H: outlook=S, play = N

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

Q3:

Classify the test instances using the <u>ID3 Decision Tree</u> method:

- 1. Using <u>information gain</u> as the splitting criterion
- 2. Using the *gain ratio* as the splitting criterion

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

- 1. Measure initial uncertainty (entropy)
- 2. Calculate *entropy* for each feature
- 3. Calculate *mean information* (MI)
- 4. Calculate *Information Gain*
 - \circ IG(A) = H(R) MI(O)
- 5. Select **Best Splitting Feature**:
 - Choose the attribute with the highest Information Gain

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

1. Measure initial uncertainty (entropy)

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

- Initial = no attributes considered
- Class label distribution: 3*N, 3*Y

$$\circ$$
 \rightarrow P(Play=N) = P(Play=Y) = 3/6

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

- $H(P) = -[(3/6)\log(3/6) + (3/6)\log(3/6)] = 1$
- Even distribution → high entropy → high uncertainty, want to reduce

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

2. Calculate entropy for each feature

•
$$H(O=s) = -[O*log(O) + (2/2)log(2/2)] = O$$

• H(O=O) = -[(1/1)*log(1/1) + O*log(O)] = O

• H(O=R) = -[(2/3)*log(2/3) + (1/3)*log(1/3)]

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

$H(X) = -\sum p(x)\log_2 p(x)$

3. Calculate mean information (MI)

MI = weighted average entropy

$$H(O=S) = 0, H(O=O) = 0$$

 $H(O=R) = -[(2/3)*log(2/3) + (1/3)*log(1/3)]$

- MI = (2/6) H(O=s) + (1/6) H(O=O) +(3/6) H(O=R)
- ~= 0.4592

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

4. Calculate Information Gain

- IG(A) = H(R) MI(O)
- H(R) = 1
- MI(outlook) = 0.4592
- IG(outlook) = IG(R) MI(outlook)

= 0.5408

...then repeat for all attributes

ID	Outlook	Temp Humid		Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

5. Choose the attribute with the highest Information Gain

	R		0	utl	Те	mp			Н	ı	Vind			ID			
	^	S	0	r	h	m	С	h	n	Т	F	A	В	C	D	Е	F
Y	3	0	1	2	1	1	1	2	1	0	3	0	0	1	1	1	0
N	3	2	0	1	2	0	1	2	1	2	1	1	1	0	0	0	1
Total	6	2	1	3	3	1	2	4	2	2	4	1	1	1	1	1	1
P(Y)	1/2	0	1	2/3	1/3	1	1/2	1/2	1/2	0	3/4	0	0	1	1	1	0
P(N)	1/2	1	0	1/3	2/3	0	1/2	1/2	1/2	1	1/4	1	1	0	0	0	1
Н	1	0	0	0.9183	0.9183	0	1	1	1	0	0.8112	0	0	0	0	0	0
MI			0.4	592	0.79	924			1	0	.5408			0			
IG			0.54	408	0.2	076			0	0.4	4592			1			
SI			1.4	59	1.	459		0.9	9183	0.9	9183			2.58	35		
GR			0.37	707	0.1	423			0	0.	5001			0.38	68		

5. Choose the attribute with the highest Information Gain

	R		0	utl	Те	mp			Н	ı	Vind			ID			
	^	S	0	r	h	m	С	h	n	Т	F	A	В	C	D	Е	F
Y	3	0	1	2	1	1	1	2	1	0	3	0	0	1	1	1	0
N	3	2	0	1	2	0	1	2	1	2	1	1	1	0	0	0	1
Total	6	2	1	3	3	1	2	4	2	2	4	1	1	1	1	1	1
P(Y)	1/2	0	1	2/3	1/3	1	1/2	1/2	1/2	0	3/4	0	0	1	1	1	0
P(N)	1/2	1	0	1/3	2/3	0	1/2	1/2	1/2	1	1/4	1	1	0	0	0	1
Н	1	0	0	0.9183	0.9183	0	1	1	1	0	0.8112	0	0	0	0	0	0
MI			0.4	592	0.79	924			1	0	.5408			0			
IG			0.54	408	0.2	076			0	0.4	4592			1			
SI			1.4	59	1.	459		0.9	9183	0.9	9183			2.58	35		
GR			0.37	707	0.1	423			0	0.	5001			0.38	68		

5. Choose the attribute with the highest Information Gain

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

Gain ratio:

- GR = IG / **SI**
- Split information (SI):
 - Measure of how evenly the data is split by a feature

$$SplitInfo = -\sum \frac{N_i}{N} log_2 \frac{N_i}{N}$$

where Ni is the number of data points containing each value of the variable

ID	Outlook	Temp	Humid	Wind	Play
Α	S	Н	N	F	N
В	S	Н	Н	Т	N
С	0	Н	Н	F	Υ
D	R	М	Н	F	Υ
Е	R	С	N	F	Υ
F	R	С	N	Т	N

Test set:

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

and N is the total number of data points

equation looks familiar?

entropy → distribution of class labels, SI → distribution of feature values

- IG(Outlook) = 0.5408
- SI(Outlook) =

○ ~= 1.459

GR(Outlook) = IG(Outlook) / SI(Outlook)

$$SplitInfo = -\sum \frac{N_i}{N} log_2 \frac{N_i}{N}$$

			_			1
ID	Outlook	Temp	Humid	Wind	Play	
Α	S	Н	N	F	N	2/6
В	S	Н	Н	Т	N	2/0
С	0	Н	Н	F	Υ	1/6
D	R	М	Н	F	Υ	
Е	R	С	N	F	Υ	3/6
F	R	С	N	Т	N	

ID	Outlook	Temp	Humid	Wind	Play
G	0	М	N	Т	?
Н	S	Н	Н	F	?

	R	Outl			Temp			Н		Wind		ID					
		S	0	r	h	m	С	h	n	Т	F	A	В	С	D	Е	F
Υ	3	0	1	2	1	1	1	2	1	0	3	0	0	1	1	1	0
N	3	2	0	1	2	0	1	2	1	2	1	1	1	0	0	0	1
Total	6	2	1	3	3	1	2	4	2	2	4	1	1	1	1	1	1
P(Y)	1/2	0	1	2/3	1/3	1	1/2	1/2	1/2	0	3/4	0	0	1	1	1	0
P(N)	1/2	1	0	1/3	2/3	0	1/2	1/2	1/2	1	1/4	1	1	0	0	0	1
Н	1	0	0	0.9183	0.9183	0	1	1	1	0	0.8112	0	0	0	0	0	0
MI		0.4592		0.7924		1		0.5408		0							
IG		0.5408		0.2076		0		0.4592		1							
SI		1.459		1.459		0.9183		0.9183		2.585							
GR		0.3707		0.1423		0		0.5001		0.3868							

Repeat for all features → go to next node → repeat until certain class predictions

Q4:

A confusion matrix is a summary of the performance of a (supervised) classifier over a set of development ("test") data, by counting the various instances:

	Predicted +	Predicted -
Actual +	10	2
Actual -	5	7

Calculate the precision, recall, and F-score (where beta = 1).

Q4:

	Predicted +	Predicted -			
Actual +	10	2			
Actual -	5	7			

F1 score = 2 * Precision * Recall / (Precision + Recall)
 = (2 * 2/3 * 5/6) / (2/3 + 5/6) ~= 0.7407

Q5:

How is holdout evaluation different to cross-validation evaluation?

What are some reasons we would prefer one strategy over the other?

1. Hold out:

Faster! Good for when efficiency important

Split data → training / test (e.g. large dataset, limited time)

• Only train on training set, evaluate on unseen "held out" test set

2. Cross-validation:

More robust! Reduces variance by averaging performance. Preferred if the dataset is

Splits data into k subsets / folds

smaller / have enough computation

• Trains k models, each using k-1 folds for training & 1 fold for testing