

Logic and Computer Design Fundamentals

Chapter 2 – Combinational Logic Circuits

Part 1 – Gate Circuits and Boolean Equations

Overview

- Part 1 Gate Circuits and Boolean Equations
 - Binary Logic
 - Logic Gates
 - Boolean Algebra

I. Binary Logic

Binary Logic and Gates

- Binary variables take on one of two values.
- Logical operators operate on binary values and binary variables.
- Basic logical operators are the <u>logic functions</u> AND, OR and NOT.
- Logic gates implement logic functions.
- Boolean Algebra: a useful mathematical system for specifying and transforming logic functions.
- We study Boolean algebra as a foundation for designing and analyzing digital systems!

Binary Variables

- Recall that the two binary values have different names:
 - True/False
 - On/Off
 - Yes/No
 - 1/0
- We use 1 and 0 to denote the two values.
- Variable identifier examples:
 - A, B, x, y, or X_1 for now
 - RESET, START IT, or ADD1 later

Logic Function Implementation

- Using Switches
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.

Switches in parallel => OR

Switches in series => AND

Logical Operations

- The three basic logical operations are:
 - AND
 - OR
 - NOT
- \blacksquare AND is denoted by a dot (\cdot) .
- OR is denoted by a plus (+).
- NOT is denoted by an overbar (¯), a single quote mark (') after, or dash (~) before the variable.

Notation Examples

- Examples:
 - $\mathbf{Y} = \mathbf{A} \cdot \mathbf{B}$ is read "Y is equal to A AND B"
 - $\mathbf{a} = \mathbf{x} + \mathbf{y}$ is read "a is equal to x OR y"
 - $X = \overline{A}$ is read "X is equal to NOT A"

the reduced form of AND is Y = AB

Note: The statement:

1 + 1 = 2 (read "one <u>plus</u> one equals two")

is not the same as

1 + 1 = 1 (read "1 or 1 equals 1")

Operator Definitions

Operations are defined on the values "0" and "1" for each operator:

AND OR NOT

$$0 \cdot 0 = 0$$
 $0 + 0 = 0$ $\overline{0} = 1$
 $0 \cdot 1 = 0$ $0 + 1 = 1$ $\overline{1} = 0$
 $1 \cdot 0 = 0$ $1 + 0 = 1$
 $1 \cdot 1 = 1$ $1 + 1 = 1$

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- Example: $F = A(B + C)(C + \overline{D})$

Truth Tables

- *Truth table* a tabular listing of the values of a function for all possible combinations of values on its arguments
- Example: Truth tables for the basic logic operations:

AND				
X	Y	$Z = X \cdot Y$		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

	OR		
X	Y	Z = X+Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

NOT		
X	$Z = \overline{X}$	
0	1	
1	0	

Practice: Q1

Complete the following truth table:

A	В	С	A·B·C	$\overline{\mathbf{A}}$ +(B·C)	(A+B) ·C
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

II. Logic Gates

Logic Gates

Logic Gates

• A logic gate is an idealized model of computation or physical electronic device implementing the Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.

Logic Gate Symbols and Behavior

Three basic symbols for Logic gates:

inverter

Timing Diagram

Timing Diagram represents the waveform behavior in time as follows

Logic Diagram

Logic diagram is a diagram that displays graphically, by interconnection of <u>logic symbols</u>, the digital design of a <u>logic circuit</u> or system.

Logic Diagrams and Expressions

Truth Table			Equation
	XYZ	$\mathbf{F} = \mathbf{X} + \overline{\mathbf{Y}} \cdot \mathbf{Z}$	
	000	0	$\mathbf{F} = \mathbf{X} + \mathbf{Y} \mathbf{Z}$
	001	1	
	010	0	Logic Diagram
	011	0	X
	100	1	
	101	1	
	110	1	z
	111	1	

 Boolean equations, truth tables and logic diagrams describe the same function