Doble Grado de Ingeniería Informática y Matemáticas

Estudio Previo Práctica IV

Fundamentos Físicos de la Informática

Grupo 2102

ESTUDIO PREVIO PRÁCTICA IV

1. Polarización del transistor

Como base del estudio previo, se nos pide representar el *Circuito 1* con LTSpice. Para ello, utilizaremos un transistor NPN que nos permite simular un transistor bipolar de unión (BJT).

Circuito 1

Para comenzar con las simulaciones, fijamos la tensión de la fuente VCC en +15 V y permitimos la variación de la fuente VBB entre 0 V y +5 V. Así, representamos la variación de la corriente en la base del transistor, I(B), frente a la tensión entre su base y su emisor, VBE. Obtenemos el resultado de la *Gráfica 1*, conocido como la curva I-V característica de entrada del transistor.

Gráfica 1

A continuación, sustituimos la resistencia RC de 100Ω por una resistencia de 0.01Ω ; y volvemos a representar la curva anterior, como se muestra en la *Gráfica 2*.

Gráfica 2

Podemos apreciar que las Gráficas 1 y 2 son iguales a pesar de la variación del valor de RC. Esto se debe a que la resistencia en cuestión se encuentra tras el transistor (siguiendo

el flujo de corriente del circuito), de modo que no afecta a la corriente medida en la base de este.

Proseguimos fijando la fuente de tensión VBB en +5 V y permitimos la variación de la fuente VCC entre 0 V y +15 V. De esta forma, representamos la variación de la corriente en el colector del transistor, I(C), frente a la tensión entre su colector y su emisor, VCE. Obtenemos el resultado de la *Gráfica 3*, conocido como la curva I-V característica de salida del transistor.

Gráfica 3

A partir de la curva de la *Gráfia 3*, podemos estimar el punto de conmutación del diodo en +0.3 V.

Para finalizar las simulaciones, fijamos ambas fuentes de tensión, VBB y VCC, en +5 V y +15 V respectivamente, permitiendo que el transistor quede en la región de operación activa. Mediante la simulación del punto de operación DC, *Imagen 1*, calculamos el parámetro β del transistor como el cociente I(C)/I(B).

Operating Point		
V(n001):	13.1137	voltage
V(n004):	0.850202	voltage
V(n003):	5	voltage
V(n002):	15	voltage
Ic(Q1):	0.0188627	device current
Ib(Q1):	0.000188627	device current
Ie(Q1):	-0.0190514	device current
I(Rb):	0.000188627	device current
I(Rc):	-0.0188627	device_current
I(Vbb):	-0.000188627	device_current
I(Vcc):	-0.0188627	device current

A partir de la simulación, apreciamos que:

$$\beta = \frac{I_c}{I_b} = \frac{0.0188627}{0.000188627} = 100$$

Imagen 1