Minimizing
$$\|A\vec{x} - \vec{b}\|_{2}^{2}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$\begin{bmatrix} A & |\vec{x}| = |\vec{b}| \\ |\vec{b}| \end{bmatrix}$$

$$A^{-1}A = I$$

$$\vdots & A \in \mathbb{R}^{m \times n} \quad A^{+} \in \mathbb{R}^{n \times m}$$

$$\vdots & A \in \mathbb{R}^{m \times n} \quad A^{+} \in \mathbb{R}^{n \times m}$$

$$A^{-1}A = I$$

p>n

•
$$A^{+}A\vec{x} = \vec{x}$$
 when \vec{x} is in row space of A

• $AA^{+}b\vec{b} = \vec{b}$ when \vec{b} is in volumn space of A

$$A \in \mathbb{R}^{m \times n}$$
 column space $C(A) \subset \mathbb{R}^m$ row space $C(A^T) \subset \mathbb{R}^n$

mil space N(A) C R row null space N(AT) CRM

$$\vec{x} \in N(A)$$
 $A^{\dagger}A\vec{x} \neq \vec{x}$ if $\vec{x} \neq \vec{o}$

$$A \in \mathbb{R}^{m \times n}$$
 where $n > m$

There must be $\vec{x} \neq \vec{0}$ s.t.

 $A = \vec{0}$

If
$$\vec{x} \in C(A^+)$$
, $A^{\dagger}A\vec{x} = \vec{x}$

def The Moore-Penrose pseudo-inverse of AER MXN satisfies

$$\cdot (AA^{\dagger})^{\top} = AA^{\dagger}$$

$$\cdot \left(A^{+}A\right) ^{T}=A^{+}A$$

theorem At always exists and is vnique.

How do we compute At?

If the SVD of A is
$$A = U \ge V^T$$
 if A is muchble $A^{-1} = V \ge^{-1} U^T$

$$\Xi = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \Xi = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \Xi = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Xi + \begin{bmatrix} 1/6 & 0 & 0 \\ 0 & 1/6 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \Xi^{+} = \begin{bmatrix} 1/6 & 0 & 0 \\ 0 & 1/6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Exercise: Check properties.

$$(U \Sigma V^{\mathsf{T}}) (V \Sigma^{\mathsf{T}} U^{\mathsf{T}}) (U \Sigma V^{\mathsf{T}})$$

Remark The pseudo inverse allows us to compute the win; mum norm least squares solution to $A_{\times} = E$

If another
$$\vec{X}$$
 also minimizes $\|\vec{b} - A\vec{x}\|_2^2$
then $\|\vec{X}^+\| \le \|\vec{X}\|_2$ (minimum norm)

So even if ATA is not invertible, A+ run be used to yet a least squares solution.