MTH 416: Lecture 15

Cliff Sun

October 17, 2024

Lecture Span

- 2×2 determinants
- $n \times n$ determinants

Recall

- 1. $det(A) \neq 0 \iff A$ is invertible
- 2. det(AB) = det(A) det(B)
- 3. L_A scales volumes by factor of $|\det(A)|$
- 4. det is not linear, but "multilinear"

Let $R = [0, t] \times [0, t]$, such that t > 0. Then performing T(R) yields

$$T(R) = \text{parallelogram scaled by t}$$
 (1)

Thus

$$\operatorname{area}(T(R)) = t^2 |\det(A)| \tag{2}$$

So in general, let S = some general area in \mathbb{R}^2 . Then we claim that

$$\operatorname{area}(T(S)) = \operatorname{area}(S) \cdot |\det(A)|$$

We can divide up the region S into a bunch of little parallelograms, then applying T to the parallelograms scales each parallelogram by a factor $\det(A)$. Thus,

$$area(T(S)) = area(S) \cdot |det(A)|$$

Theorem 0.1. (multilinearity for 2×2 det) Let

$$\det: M_{2\times 2}(\mathbb{R}) \to \mathbb{R} \tag{3}$$

Becomes a linear transformation if we view it as a function of only one row, and treat the other rows as constants. That is, if u, v, w are row vectors in \mathbb{R}^2 and $k \in \mathbb{R}$. Then

$$\det \begin{pmatrix} ku+v\\w \end{pmatrix} = k \det \begin{pmatrix} u\\w \end{pmatrix} + \det \begin{pmatrix} v\\w \end{pmatrix} \tag{4}$$

Similarly

$$\det \begin{pmatrix} w \\ ku + v \end{pmatrix} = k \det \begin{pmatrix} w \\ u \end{pmatrix} + \det \begin{pmatrix} w \\ v \end{pmatrix} \tag{5}$$

Proof. Let $u=(a_1,a_2)$, $v=(b_1,b_2)$, and $w=(c_1,c_2)$. For the first equation, we expand it out to be

$$\begin{pmatrix} ka_1 + b_1 & ka_2 + b_2 \\ c_1 & c_2 \end{pmatrix} \tag{6}$$

Calculating the determinant yields

$$(ka_1 + b_1)c_2 - (ka_2 + b_2)c_1 \tag{7}$$

$$k(a_1c_2 - a_2c_1) + (b_1c_2 - b_2c_1) (8)$$

$$= k \det \begin{pmatrix} u \\ w \end{pmatrix} + \begin{pmatrix} v \\ w \end{pmatrix} \tag{9}$$

The second calculation is similar.

n x n determinants

Definition 0.2. The determinant of an $n \times n$ matrix (n > 1) is

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+1} A_{1j} \det(\tilde{A}_{1j})$$
(10)

Where \tilde{A} is the matrix given by deleting row 1 and column j from A. This is called <u>cofactor expansion</u> on the first row.

Example, n=2

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \tag{11}$$

Then

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+1} A_{1j} \det(\tilde{A}_{1j})$$
(12)

$$= (-1)^{1+1} A_{11} \det(A_{22}) + (-1)^{1+2} A_{12} \det(A_{21})$$
(13)

$$A_{11}A_{22} - A_{12}A_{21} \tag{14}$$

$$ad - bc$$
 (15)

Example, n=3

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 5 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix} \tag{16}$$

$$\det(A) = 2 \det\begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix} - 1 \det\begin{pmatrix} 5 & 2 \\ 1 & 1 \end{pmatrix} + 3 \det\begin{pmatrix} 5 & 0 \\ 1 & 2 \end{pmatrix}$$
 (17)

Theorem 0.3. The $n \times n$ determinant is multilinear in the nrows. That is suppose we have matrices $A, B, C \in M_{2\times 2}(\mathbb{R})$ which are identical except in row r, where

$$a_r = kb_r + c_r \text{ for some } k \in \mathbb{R}$$
 (18)

Then

$$\det(A) = k \det(B) + \det(C) \tag{19}$$

Proof. Induct on n.

Base Case: n = 1

This just says that the 1×1 determinant is linear, which we already know to be true.

Inductive Step

Assume that this theorem is true for all $n \times n$ matrices, then we must prove it for $(n+1) \times (n+1)$ matrices A, B, C as well. Let A, B, C be as above, then there are 2 cases. When r = 1 and $r \neq 1$.

r=1

$$\det(A) = \sum_{j=1}^{n} (-1)^{j+1} A_{1j} \det(\tilde{A}_{1j})$$
(20)

$$= \sum_{j=1}^{n+1} (-1)^{j+1} (kB_{1j} + C_{1j}) \det(\tilde{A}_{1j})$$
(21)

But note that

$$\det(\tilde{A}_{1j}) = \det(\tilde{B}_{1j}) = \det(\tilde{C}_{1j}) \tag{22}$$

$$=k\sum_{j=1}^{n+1}-1^{j+1}B_{1j}\det(\tilde{B}_{1j})+\sum_{j=1}^{n+1}-1^{j+1}C_{1j}\det(\tilde{C}_{1j})$$
(23)

$$= k \det(B) + \det(C) \tag{24}$$

r;1

$$\det(A) = \sum_{j=1}^{n+1} (-1)^{j+1} A_{1j} \det(\tilde{A}_{1j})$$
(25)

The matrices $\tilde{A}_{1j},\,\tilde{B}_{1j},\,\tilde{C}_{1j}$ are identical except for the r-1 row. So

$$\det(A) = \sum_{j=1}^{n+1} (-1)^{j+1} A_{1j} \det(\tilde{A}_{1j})$$
(26)

$$= \sum (-1)^{j+1} A_{1j}(k \det(\tilde{B}_{1j}) + \det(\tilde{C}_{ij}))$$
(27)

$$= \sum (-1)^{j+1} B_{1j} \det(\tilde{B}_{1j}) + \sum (-1)^{j+1} C_{1j} \det(\tilde{C}_{1j})$$
(28)

This proves the theorem.

Theorem 0.4. Let $A \in M_{2\times 2}(\mathbb{R})$ and let $1 \leq r \leq n$. Then

$$\det(A) = \sum_{j=1}^{n} (-1)^{r+j} A_{rj} \det(\tilde{A}_{rj})$$
(29)

Lemma 0.5. If A is a $n \times n$ matrix, with row $r = e_i$. Then

$$\det(A) = (-1)^{r+j} \det(\tilde{A}_{rj}) \tag{30}$$