- 1. (П. Финкель) В файле 17-204.txt содержится последовательность целых чисел, которые принимают значения от -10000 до 10000 включительно. Тройка идущих подряд чисел последовательности называется уникальной, если только второе из них является положительным числом, заканчивающимся на 9. Определите количество уникальных троек чисел, а затем максимальную из всех сумм таких троек.
- **2.** (М. Шагитов) В файле <u>17-304.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000. Найдите все пары элементов последовательности, в которых оба элемента пары в шестнадцатеричной записи имеют сочетание цифр «АА», а сумма чисел пары меньше, чем максимальный элемент последовательности кратный 246. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- **3.** (Л. Шастин) В файле <u>17-10.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать значения от 0 до 10000 включительно. Определите сначала количество троек элементов последовательности, из которых можно составить прямоугольный треугольник, а затем сумму всех гипотенуз треугольников в подходящих тройках. Под тройкой подразумевается три идущих подряд элемента последовательности.
- **4.** Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
 - а) добавить в кучу один камень;
 - б) увеличить количество камней в куче в два раза.

Игра завершается в тот момент, когда количество камней в куче становится не менее 25. Если при этом в куче оказалось не более 45 камней, то победителем считается игрок, сделавший последний ход. В противном случае победителем становится его противник. В начальный момент в куче было S камней, $1 \le S \le 24$.

Ответьте на следующие вопросы:

Bonpoc 1. Известно, что Ваня выиграл своим первым ходом после первого хода Пети. Назовите минимальное значение S, при котором это возможно.

Bonpoc 2. Определите два таких значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

- Петя не может выиграть за один ход;
- Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

Вопрос 3. Найдите значение S, при которых одновременно выполняются два условия:

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
- **5.** (Е. Джобс) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) два камня или увеличить количество камней в куче в два раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 231. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, при которой в кучах будет 231 или больше камней.

В начальный момент в первой куче было 17 камней, во второй куче — S камней; $1 \le S \le 213$. Ответьте на следующие вопросы:

Вопрос 1. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите максимальное значение S, когда такая ситуация возможна.

Bonpoc 2. Найдите наибольшее и наименьшее значения S, при которых у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

- Петя не может выиграть за один ход;
- Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

Вопрос 3. Найдите минимальное значение S, при котором одновременно выполняются два условия:

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети;
- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.

- **6.** (Е. Джобс) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может
- а) добавить в кучу сто камней или
- б) увеличить количество камней в куче в два раза.

Например, имея кучу из 10 камней, за один ход можно получить кучу из 110 или 20 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней. Игра завершается в тот момент, когда количество камней в куче становится не менее 1000. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 1000 или больше камней.

В начальный момент в куче было S камней, $1 \le S \le 999$.

Ответьте на следующие вопросы:

- Вопрос 1. Сколько существует значений S, при которых Ваня выигрывает первым ходом?
- Вопрос 2. Сколько существует значений S, при которых Петя может выиграть своим вторым ходом?
- **Вопрос 3.** Назовите минимальное и максимальное значения S, при которых Ваня выигрывает своим первым или вторым ходом, при этом для любого значения у Вани есть возможность выиграть своим первым ходом (в случае ошибки Пети). Найденные значения запишите в ответе в порядке возрастания.
- 7. (Л. Евич) В файле <u>22-2e.xls</u> содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса A, если для выполнения процесса В необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) А
1	4	0
2	3	0
3	1	1; 2
4	7	3

В данном случае независимые процессы 1 и 2

могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 – через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4+1=5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5+7=12 мс.

8. (А. Кожевникова) В файле 22-5.xls содержится информация о вычислительных процессов проектов P1 и P2, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Типовой пример организации данных в файле:

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) А
1	4	0
2	3	0
3	1	1; 2
4	7	3

В данном случае независимые процессы 1 и 2

момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4+1=5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5+7=12 мс.

Найдите минимальное время завершения процесса 12 из проекта Р1.

9. (Л. Евич) В файле 22-7e.xls содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса A, если для выполнения процесса В необходимы результаты выполнения процесса A. В этом случае процессы могут выполняться только последовательно. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы – время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0.

Определите минимальное время, через которое завершится выполнение всей совокупности процессов, при условии, что все независимые друг от друга процессы могут выполняться параллельно.

Типовой пример организации данных в файле:

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) А
1	4	0
2	3	0
3	1	1; 2
4	7	3

В данном случае независимые процессы 1 и 2 могут выполняться параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 – через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4 + 1 = 5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса 3, то есть, через 5 мс. Он длится 7 мс, так что минимальное время завершения всех процессов равно 5 + 7 = 12 мс.

- **10.** Исполнитель Калькулятор преобразует число на экране. У исполнителя есть две команды, которым присвоены номера:
- 1. Прибавить 1
- 2. Умножить на 3

Программа для исполнителя Калькулятор — это последовательность команд. Сколько существует программ, для которых при исходном числе 4 результатом является число 50 и при этом траектория вычислений содержит число 6 и не содержит числа 12?

- **11.** (А.Е. Гребенкин) Исполнитель U18 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
- 1. Вычесть 1
- 2. Вычесть 3
- 3. Разделить нацело на 3

При выполнении команды 3 выполняется деление нацело (остаток отбрасывается). Программа для исполнителя U18 — это последовательность команд. Сколько существует таких программ, которые исходное число 22 преобразуют в число 2?

- 12. У исполнителя Калькулятор три команды, которым присвоены номера:
- 1. прибавь 1
- 2. прибавь 2
- 3. умножь на 3

Первая команда увеличивает число на экране на 1, вторая увеличивает это число на 2, третья умножает это число на 3. Программа для исполнителя — это последовательность команд. Сколько существует программ, которые преобразуют исходное число 4 в число 23, и при этом траектория вычислений содержит число 8 и не содержит чисел 11 и 18?

- 1.206 23427
- **2.** 172 9815
- **3.** 370 209813

- **4.** 1) 7 2) 6 11 3) 10
- **5.** 1) 211
- 2) 53 105
- 3) 96
- **6.** 1) 100
- 2) 150 3) 250 299
- **7.** 22
- **8.** 15
- 9. 44
- **10.** 6
- **11.** 2196
- **12.** 400