

STPS1H100

HIGH VOLTAGE POWER SCHOTTKY RECTIFIER

Table 1: Main Product Characteristics

I _{F(AV)}	1 A
V _{RRM}	100 V
T _j (max)	175°C
V _F (max)	0.62 V

FEATURES AND BENEFITS

- Negligible switching losses
- High junction temperature capability
- Low leakage cuurent
- Good trade-off between leakage current and forward voltage drop
- Avalanche capability specified

SMA SMB (JEDEC DO-214AC) STPS1H100U STPS1H100A STPS1H100U

DESCRIPTION

Schottky rectifiers designed for high frequency miniature Switched Mode Power Supplies such as adaptators and on board DC/DC converters. Packaged in SMA or SMB.

Table 2: Order Codes

Part Number	Marking
STPS1H100A	S11
STPS1H100U	G11

Table 3: Absolute Ratings (limiting values)

Symbol	Paramete	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage		100	V
I _{F(RMS)}	RMS forward voltage		10	Α
I _{F(AV)}	Average forward current	$T_L = 160^{\circ}C$ $\delta = 0.5$	1	Α
I _{FSM}	Surge non repetitive forward current tp = 10ms sinusoidal		50	Α
I _{RRM}	Repetitive peak reverse current tp = 2µs F = 1kHz square		1	Α
I _{RSM}	Non repetitive peak reverse current	n repetitive peak reverse current tp = 100µs square		Α
P _{ARM}	Repetitive peak avalanche power $tp = 1\mu s$ $Tj = 25$ °C		1500	W
T _{stg}	Storage temperature range	-65 to + 175	°C	
T _j	Maximum operating junction temperatu	175	°C	
dV/dt	Critical rate of rise of reverse voltage	10000	V/µs	

^{*:} $\frac{dPtot}{dTj} > \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

Table 4: Thermal Resistance

Symbol	Parameter	Value	Unit	
B., 4.5	Junction to lead	SMA	30	°C/W
R _{th(j-l)} Junction to lead	Surremon to lead	SMB	25	C/VV

Table 5: Static Electrical Characteristics

Symbol	Parameter	Tests conditions		Min.	Тур	Max.	Unit
I_ *	I _R * Reverse leakage current	T _j = 25°C	$V_R = V_{RRM}$			4	μΑ
'H		T _j = 125°C			0.2	0.5	mA
V _F ** Forward voltage drop	T _j = 25°C	I _F = 1A			0.77		
	T _j = 125°C			0.58	0.62	V	
	$T_j = 25^{\circ}C$	I _E = 2A			0.86	V	
	$T_j = 125^{\circ}C$	- LA		0.65	0.7		

Pulse test:

To evaluate the conduction losses use the following equation: $P = 0.54 \times I_{F(AV)} + 0.08 I_{F}^{2}(RMS)$

Figure 1: Average forward power dissipation versus average forward current

Figure 2: Average forward current versus ambient temperature (δ = 0.5)

Figure 3: Normalized avalanche power derating versus pulse duration

Figure 4: Normalized avalanche power derating versus junction temperature

577

^{*} tp = 5 ms, δ < 2%

^{**} tp = 380 µs, δ < 2%

Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA)

Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA)

Figure 9: Reverse leakage current versus reverse voltage applied (typical values)

Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (SMB)

Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMB)

Figure 10: Junction capacitance versus reverse voltage applied (typical values)

577

Figure 11: Forward voltage drop versus forward current (maximum values)

Figure 13: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMB)

Figure 12: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMA)

4/7

Figure 14: SMA Package Mechanical Data

	DIMENSIONS				
REF.	Millin	neters	Inc	hes	
	Min.	Max.	Min.	Max.	
A1	1.90	2.03	0.075	0.080	
A2	0.05	0.20	0.002	0.008	
b	1.25	1.65	0.049	0.065	
С	0.15	0.41	0.006	0.016	
Е	4.80	5.60	0.189	0.220	
E1	3.95	4.60	0.156	0.181	
D	2.25	2.95	0.089	0.116	
L	0.75	1.60	0.030	0.063	

Figure 15: SMA Foot Print Dimensions (in millimeters)

Figure 16: SMB Package Mechanical Data

Inches

Max.

0.096

800.0

0.087

0.016

0.220

0.181

0.156

0.063

Figure 17: SMB Foot Print Dimensions (in millimeters)

6/7

Table 6: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STPS1H100A	S11	SMA	0.068 g	5000	Tape & reel
STPS1H100U	G11	SMB	0.107 g	2500	Tape & reel

- Band indicates cathode
- Epoxy meets UL94, V0

Table 7: Revision History

Date	Revision	Description of Changes
Jul-2003	4A	Last update.
Aug-2004	5	SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

