

# C1100 系列无线模块硬件接口手册\_V2.1

#### 此文档适用于如下产品

|        | 后缀   | 蜂窝模式         | GNSS | 频段   | TAF 封装 |
|--------|------|--------------|------|------|--------|
| C1100  | MGGT | CatM/NB/GPRS | 支持   | 全球频段 | 支持     |
|        | NGGT | NB 单模        | 支持   | 全球频段 | 支持     |
| C1100C | -    | -            | -    | -    | -      |



## 目录

| 1. | 引言                                         | 7  |
|----|--------------------------------------------|----|
|    | 1.1. 文档目的                                  |    |
|    | 1.2. 内容一览                                  |    |
|    | 1.3. 相关文档                                  |    |
|    | 1.4. 修订记录                                  | 8  |
|    | 1.5. 缩略语                                   | 9  |
| 2. | 产品简介                                       | 11 |
|    | 2.1. 特性列表                                  | 13 |
|    | 2.2. C1100 系列无线模块工作模式                      | 15 |
|    | 2.3. 系统功能框图                                | 17 |
| 3. | 应用接口及功能描述                                  | 19 |
|    | 3.1. 86-pin LCC PAD 接口定义                   | 19 |
|    | 3.2.电源接口及外围电路设计                            | 27 |
|    | 3.2.1. C1100 MGGT VBAT 输入                  | 27 |
|    | 3.2.2. C1100 NGGT VBAT 输入                  | 29 |
|    | 3.2.3. C1100C VBAT 输入                      | 29 |
|    | 3.3. 开关机与复位接口                              | 30 |
|    | 3.3.1. POWER_ON#开机                         | 30 |
|    | 3.3.2. RESET 复位控制                          | 31 |
|    | 3.3.2.1. 复位管脚                              | 31 |
|    | 3.3.2.2. AT 命令复位                           | 32 |
|    | 3.4. USB 接口                                | 33 |
|    | 3.4.1. USB 接口描述                            | 33 |
|    | 3.4.2. USB 参考电路                            | 33 |
|    | 3.4.3. USB 驱动                              |    |
|    | 3.4.3.1. Linux 系统加载 C1100 系列无线模块的 USB 驱动过程 | 35 |
|    | 3.4.3.1.1 USB 串口驱动添加                       | 35 |
|    | 3.4.3.1.2 增加具体设备驱动                         |    |
|    | 3.4.3.1.3 USB 串口驱动过滤 NDIS 接口               | 35 |
|    | 3.4.3.1.4 USB 串口驱动加载方法                     |    |
|    | 3.4.3.2. Linux 系统下 C1100 系列无线模块交互 AT 过程    | 35 |
|    | 3.4.3.3. Linux 系统下 C1100 系列无线模块拨号上网过程      |    |
|    | 3.5. UART 接口                               |    |
|    | 3.5.1. UART 接口描述                           |    |
|    | 3.5.2. UART1 接口参考电路                        |    |
|    | 3.5.3. UART1 接口描述                          |    |
|    | 3.6. C1100 MGGT/C1100 NGGT 的 PSM 和唤醒控制     |    |
|    | 3.7. C1100 系列无线模块休眠和唤醒控制                   |    |
|    | 3.7.1. C1100 MGGT/C1100 NGGT 的休眠和唤醒控制      |    |
|    | 3.7.2. C1100C 的休眠和唤醒控制                     | 42 |



|    | 3.8. USIM 接口                    | 43 |
|----|---------------------------------|----|
|    | 3.8.1. USIM 卡接口描述               | 43 |
|    | 3.8.2. USIM 卡接口参考设计             | 43 |
|    | 3.9. 状态指示接口                     | 44 |
|    | 3.9.1. 状态指示接口信号描述               | 44 |
|    | 3.9.2. 状态指示参考电路                 | 45 |
|    | 3.10. GPIO 接口                   | 45 |
|    | 3.11. 天线接口                      | 46 |
|    | 3.11.1. 天线连接方式                  | 46 |
|    | 3.11.1.1. 焊接式天线                 | 46 |
|    | 3.11.1.2. 使用 RF 连接器连接天线         | 47 |
|    | 3.11.1.3. 天线 RF 连接器             | 48 |
|    | 3.11.1.4. RF 转接线                | 48 |
|    | 3.11.2. C1100 系列无线模块的 GNSS 天线接法 | 48 |
|    | 3.11.2.1.无源 GNSS 天线接法           |    |
|    | 3.11.2.2.有源 GNSS 天线接法           | 49 |
|    | 3.11.3. C1100 系列无线模块的 RF 输出功率   | 49 |
|    | 3.11.4. C1100 系列无线模块的 RF 接收灵敏度  | 51 |
|    | 3.11.5. C1100 系列无线模块工作频率        | 52 |
|    | 3.11.6. C1100 系列无线模块天线要求        | 53 |
| 4. | 机械特性                            | 55 |
|    | 4.1. 模块 3D 图                    | 55 |
|    | 4.2. 模块 2D 结构图                  | 55 |
|    | 4.3. C1100 系列无线模块应用端封装推荐        | 56 |
| 5. | 各种业务下的功耗                        | 56 |
| 6. | 电气特性                            | 62 |
|    | 6.1. 推荐工作电压范围                   | 62 |
|    | 6.2. 环境温度范围                     | 62 |
|    | 6.3. 接口工作状态电气特性                 | 62 |
|    | 6.4. 环境可靠性要求                    | 63 |
|    | 6.5. ESD 特性                     | 63 |

## 表格目录

| 表 1: 版本修订记录                        | 8  |
|------------------------------------|----|
| 表 2: 缩略语描述对照表                      | 9  |
| 表 3: C1100 MGGT 频段配置               | 11 |
| 表 4: C1100 NGGT 频段配置               | 11 |
| 表 5: C1100C 频段配置                   |    |
| 表 6: C1100 系列无线模块管脚功能概述            | 12 |
| 表 7: C1100 系列无线模块主要特性列表            | 13 |
| 表 8: C1100 系列无线模块接口                |    |
| 表 9: C1100 MGGT 无线模块工作模式           |    |
| 表 10: C1100 NGGT 无线模块工作模式          |    |
| 表 11: C1100C 无线模块工作模式              |    |
| 表 12: C1100 系列无线模块管脚定义表            |    |
| 表 13: C1100 系列无线模块电源相关接口           |    |
| 表 14: C1100 系列无线模块开关机与复位相关接口       |    |
| 表 15: C1100/C1100C VID、PID 号与映射串口名 |    |
| 表 16: C1100 系列无线模块 USB 接口          |    |
| 表 17: C1100 系列无线模块默认 VID 和 PID     |    |
| 表 18: C1100 系列无线模块 UART 接口         |    |
| 表 19: C1100 系列无线模块 USIM 接口         |    |
| 表 20: C1100 系列无线模块状态指示接口信号接口       |    |
| 表 21: C1100 系列无线模块 GPIO 接口表        |    |
| 表 22: C1100 系列无线模块天线接口             |    |
| 表 23: C1100 MGGT 的 RF 输出功率表        |    |
| 表 24: C1100 NGGT 的 RF 输出功率表        |    |
| 表 25: C1100C 的 RF 输出功率表            |    |
| 表 26: C1100 MGGT 的 RF 接收灵敏度        |    |
| 表 27: C1100 NGGT 的 RF 接收灵敏度        |    |
| 表 28: C1100C的 RF 接收灵敏度             |    |
| 表 29: C1100 MGGT 工作频率              |    |
| 表 30: C1100 NGGT 工作频率              |    |
| 表 31: C1100C 工作频率                  |    |
| 表 32: C1100 MGGT 天线指标要求            |    |
| 表 33: C1100 NGGT 天线指标要求            |    |
| 表 34: C1100C 天线指标要求                |    |
| 表 35: C1100 MGGT 模块各频段功耗           |    |
| 表 36: C1100 NGGT 模块各频段功耗           | 59 |





| 表 37: C1100C 模块各频段功耗                   | 60 |
|----------------------------------------|----|
| 表 38: C1100 系列无线模块推荐工作电压范围             |    |
| 表 39: C1100 系列无线模块温度范围                 | 62 |
| 表 40: C1100 系列无线模块普通数字 IO 信号的逻辑电平      | 62 |
| 表 41: C1100 系列无线模块接口电源工作状态电特性          | 63 |
| 表 42: C1100 系列无线模块环境可靠性要求              | 63 |
| 表 43: C1100 MGGT/C1100 NGGT 接口抗 ESD 特性 | 63 |
| 表 44: C1100C 接口抗 ESD 特性                | 63 |



## 插图目录

| 图 1:C1100 系列无线模块系统框图                 | 17 |
|--------------------------------------|----|
| 图 2: C1100 系列无线模块 pin 序图             | 20 |
| 图 3: C1100 MGGT 模块 VBAT 电路参考(并联电解电容) | 28 |
| 图 4: C1100 MGGT 模块 VBAT 电路参考(并联钽电容)  | 28 |
| 图 5: C1100 系列无线模块开机控制                | 31 |
| 图 6: C1100 系列无线模块 RESET 控制模块复位参考电路   | 32 |
| 图 7: C1100 系列无线模块 RESET 时序图          | 32 |
| 图 8: C1100 系列无线模块 USB 接口参考设计图        | 34 |
| 图 9: C1100 系列无线模块流控设计参考              | 40 |
| 图 10: 休眠和唤醒控制过程示意图                   | 42 |
| 图 11: C1100 系列无线模块 USIM 接口参考设计图      | 43 |
| 图 12: C1100 系列无线模块网络指示灯参考设计图         |    |
| 图 13: C1100 系列无线模块外接焊接式天线参考设计图       | 47 |
| 图 14: C1100 系列无线模块使用 RF 连接器连接天线参考设计图 | 47 |
| 图 15: GNSS 无源天线接法                    |    |
| 图 16: GNSS 有源天线接法                    | 49 |
| 图 17: C1100 系列无线模块推荐封装尺寸             | 56 |



# 1. 引言

C1100 系列无线模块是联想懂的通信研发的无线通信模块,它同时支持 GNSS 定位导航服务,包括 C1100 MGGT、C1100 NGGT、C1100C,其中:

C1100 MGGT 支持 eMTC/NB-IoT/EGPRS;

C1100 NGGT 支持单 NB-IoT:

C1100C 支持 LTE CAT1。

C1100 系列无线模块的低功耗、高性能特点,使其特别适合物联网终端的无线连接。可广泛应用于智能家居、智能医疗、智能城市、智能环保、车联网等领域。

## 1.1. 文档目的

本文详细阐述了 C1100 系列无线模块的基本功能及主要特点、硬件接口及使用方法、结构特性、功耗指标和电气特性,指导用户将 C1100 系列无线模块嵌入各种应用终端的设计。

### 1.2. 内容一览

本文共分为以下几部分:

- ◆ 第1章, 主要介绍文档目的、相关资料、修订记录、缩略语解释等:
- ◆ 第2章,描述 C1100 系列无线模块的基本功能和主要特点;
- ◆ 第3章,详细描述 C1100 系列无线模块各个硬件接口的功能、特性和使用方法;
- ◆ 第4章,详细描述 C1100 系列无线模块结构方面的特性和注意事项;
- ◆ 第5章,详细描述 C1100 系列无线模块各种业务下的功耗;
- ◆ 第6章,详细描述 C1100 系列无线模块电气特性。

## 1.3. 相关文档

- ◆ C1100 系列无线模块规格说明;
- ◆ C1100 系列无线模块 AT 指令集;
- ◆ C1100 系列无线模块 EVB 用户手册;
- ◆ C1100 系列无线模块参考设计电路;
- ◆ C1100 系列无线模块应用业务流程手册。



## 1.4. 修订记录

表 1: 版本修订记录

| 版本   | 姓名 | 发布时间 | 修订描述                              |
|------|----|------|-----------------------------------|
|      |    |      | 1.增加 SIM 检测逻辑更改的 AT 命令            |
| V0.6 |    |      | 2.合并 C1100 和 C1100C 相关的参数         |
|      |    |      | 3.增加关机 AT 命令的描述                   |
| V0.6 |    |      | 1.增加 PSM 描述                       |
| VU.6 |    |      | 2.修改 ESD 和关机漏电流                   |
| V0.7 |    |      | 更新了 NB 的灵敏度                       |
| V0.8 |    |      | 2.2. C1100 系列无线模块的工作模式中控制休眠       |
|      |    |      | 的 UART1_DTR 电平由"低"修改为"高";         |
|      |    |      | 3.1. 表 9 C1100 系列无线模块管脚定义表 修改     |
|      |    |      | Pin36、45、67/68/69 的功能描述;          |
|      |    |      | 3.2.1.1. 增加使用电池供电的说明;             |
|      |    |      | 3.2.3.增加在模块正常开机 15 秒的时间范围内不       |
|      |    |      | 能控制 RESET 的说明;                    |
|      |    |      | 3.4.2 增加流控参考设计图的图序编号;             |
|      |    |      | 3.4.3 的 2)修改低功耗控制 DTR 和 DSR 的描述;  |
|      |    |      | 3.5. 更改为 C1100 的 PSM 和唤醒控制,原 3.5. |
|      |    |      | 及以后的依次后推;                         |
|      |    |      | 3.6.修改 C1100 系列无线模块的休眠唤醒控制;       |
|      |    |      | 3.10. 修改对开启有源天线供电的说明。             |
|      |    |      | 4.2. 修改模块 2D 结构图                  |
|      |    |      | 4.3. 修改标题名称                       |
| V0.9 |    |      | 1. 修改模块封装                         |
|      |    |      | 2. 修改模块频段信息                       |
| V2.0 |    |      | 1.增加 C1100 NGGT 的信息               |
|      |    |      | 2.增加新名词解释信息                       |
|      |    |      | 3.增加休眠唤醒图示                        |
|      |    |      | 4.更换 C1100 系列封装                   |
|      |    |      | 5.修改 POWER_ON#、RESET#、DTR 的电平范    |
|      |    |      | 围,支持 1.8~3.3V                     |
| V2.1 |    |      | 修改 C1100 MGGT、C1100 NGGT 天线指标中    |
|      |    |      | 的 TRP、TIS 数值。                     |



## 1.5. 缩略语

表 2: 缩略语描述对照表

| 缩写    | 描述                                         | 中文描述           |
|-------|--------------------------------------------|----------------|
| AMR   | Adaptive Multi-rate                        | 自适应多速率         |
| BER   | Bit Error Rate                             | 误码率            |
| bps   | bits per second                            | 比特每秒           |
| BTS   | Base Transceiver Station                   | 基站收发信台         |
| PCI   | Peripheral Component Interconnect          | 外设部件互连         |
| CS    | Circuit Switched (CS) domain               | 电路域            |
| CSD   | Circuit Switched Data                      | 电路交换数据         |
| DCE   | Data communication equipment               | 数据电路终端设备       |
| DTE   | Data terminal equipment                    | 数据终端设备         |
| DTR   | Data Terminal Ready                        | 数据终端就绪         |
| EGPRS | Enhanced General Packet Radio Service      | 增强型数据速率GSM     |
| EDGE  | Enhanced Data rates for GSM Evolution      | 增强型数据速率GSM演进技术 |
| eDRX  | Enhanced Discontinuous Reception           | 增强型非连续接收       |
| EFR   | Enhanced Full Rate                         | 增强型全速率         |
| EGSM  | Enhanced GSM                               | 增强型GSM         |
| EMC   | Electromagnetic Compatibility              | 电磁兼容性          |
| eMTC  | enhanced Machine Type Communications       | 基于LTE的演进物联网通信  |
| ESD   | Electrostatic Discharge                    | 静电释放           |
| FR    | Frame Relay                                | 帧中继            |
| GMSK  | Gaussian Minimum Shift Keying              | 高斯最小移频键控       |
| GPIO  | General Purpose Input Output               | 通用输入/输出        |
| GPRS  | General Packet Radio Service               | 通用分组无线系统       |
| GSM   | Global Standard for Mobile Communications  | 全球标准移动通信系统     |
| HR    | Half Rate                                  | 半速             |
| HSDPA | High Speed Downlink Packet Access          | 高速下行分组接入       |
| HSUPA | High Speed Uplink Packet Access            | 高速上行分组接入       |
| HSPA  | HSPA High-Speed Packet Access              | 高速分组接入         |
| IEC   | International Electro-technical Commission | 国际电工技术委员会      |
| IMEI  | International Mobile Equipment Identity    | 国际移动设备标识       |
| I/O   | Input/Output                               | 输入/输出          |
| IOT   | Internet Of Thing                          | 物联网            |
| ISO   | International Standards Organization       | 国际标准化组织        |
| ITU   | International Telecommunications Union     | 国际电信联盟         |



| 缩写     | 描述                                               | 中文描述         |
|--------|--------------------------------------------------|--------------|
| LED    | Light Emitting Diode                             | 发光二极管        |
| LTE    | Long Term Evolution                              | 长期演进技术       |
| M2M    | Machine to machine                               | 机器到机器        |
| MCU    | Micro Control Unit                               | 微处理单元        |
| МО     | Mobile Originated                                | 移动台发起的       |
| MT     | Mobile Terminated                                | 移动台终止的       |
| NB-IoT | Narrow Band-Internet Of Thing                    | 窄带物联网        |
| NTC    | Negative Temperature Coefficient                 | 负温度系数        |
| PC     | Personal Computer                                | 个人计算机        |
| PCB    | Printed Circuit Board                            | 印制电路板        |
| PCS    | Personal Cellular System                         | 个人蜂窝系统       |
| PCI    | Peripheral Component Interconnect                | 外设部件互连       |
| PCM    | Pulse Code Modulation                            | 脉冲编码调制       |
| PCS    | Personal Communication System                    | GSM1900      |
| PDU    | Packet Data Unit                                 | 分组数据单元       |
| PPP    | Point-to-point protocol                          | 点到点协议        |
| PS     | Packet Switched                                  | 分组交换         |
| PSM    | Power Saving Mode                                | 功耗节省模式       |
| QPSK   | Quadrate Phase Shift Keying                      | 正交相位移频键控     |
| RTC    | Real-Time Clock                                  | 实时时钟         |
| SIM    | Subscriber Identity Module                       | 用户识别模块       |
| TCP/IP | Transmission Control Protocol/ Internet Protocol | 传输控制协议/互联网协议 |
| UART   | Universal asynchronous receiver-transmitter      | 通用异步收/发器(机)  |
| USIM   | Universal Subscriber Identity Module             | 通用用户识别模块     |
| UMTS   | Universal Mobile Telecommunications System       | 通用移动通信系统     |
| USB    | Universal Serial Bus                             | 通用串行总线       |
| WCDMA  | Wideband Code Division Multiple Access           | 宽带码分多址       |



# 2. 产品简介

下表为 C1100 系列无线模块的频段配置:

表 3: C1100 MGGT 频段配置

|              | C1100 MGGT                                        |
|--------------|---------------------------------------------------|
| FDD-LTE eMTC | B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28 |
| TDD-LTE eMTC | B39                                               |
| 分集接收         | 不支持                                               |
| NB-IoT       | B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28 |
| EGPRS        | B2/B3/B5/B8                                       |
| GNSS         | GPS+BeiDou+GLONASS                                |

#### 表 4: C1100 NGGT 频段配置

|        | C1100 NGGT                                        |
|--------|---------------------------------------------------|
| 分集接收   | 不支持                                               |
| NB-IoT | B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28 |
| GNSS   | GPS+BeiDou+GLONASS                                |

#### 表 5: C1100C 频段配置

|              | C1100C             |
|--------------|--------------------|
| FDD-LTE CAT1 | B1/B3/B5           |
| TDD-LTE CAT1 | B41                |
| 分集接收         | 支持                 |
| GNSS         | GPS+BeiDou+GLONASS |

C1100 系列无线模块采用先进的高度集成设计方案,将射频、基带集成在一块 PCB 上,完成无线接收、发射、基带信号处理和音频信号处理功能(C1100 MGGT、C1100 NGGT 语音功能保留),采用单面布局,对外应用接口为 LCC PAD 方式。C1100 系列无线模块支持AT 命令扩展,可以实现用户个性化定制方案。





C1100 系列无线模块接口功能概况见下表 6。

注:保留,指硬件管脚仅做预留,但是需要不同的软件版本支持。

表 6: C1100 系列无线模块管脚功能概述

| 功能               | C1100 MGGT | C1100 NGGT | C1100C        |
|------------------|------------|------------|---------------|
| 供电管脚             | 支持         | 支持         | 支持            |
| 电源输出(1.8V/2.85V) | 支持         | 支持         | 支持            |
| 天线接口             | 主天线、GNSS   | 主天线、GNSS   | 主天线、分集天线、GNSS |
| 开机键              | 支持         | 支持         | 支持            |
| 复位键              | 支持         | 支持         | 支持            |
| SIM 卡接口          | USIM/SIM   | USIM       | USIM          |
| 网络状态指示灯          | 支持         | 支持         | 支持            |
| ADC              | 支持         | 支持         | 支持            |
| UART             | 支持         | 支持         | 支持            |
| USB 接口           | 支持         | 支持         | 支持            |
| GPIO             | 支持         | 支持         | 支持            |
| PCM              | 保留         | 保留         | 支持            |
| I2C接口            | 保留         | 保留         | 保留            |
| SPI 接口           | 保留         | 保留         | 保留            |
| OPEN DRAIN 输出    | 保留         | 保留         | 保留            |
| PHY SGMII 接口     | 不支持        | 不支持        | 保留            |



## 2.1. 特性列表

表 7: C1100 系列无线模块主要特性列表

|          | 100 系列无线传<br><b>品特性</b> | 描述                         |                                   |  |  |  |  |
|----------|-------------------------|----------------------------|-----------------------------------|--|--|--|--|
| 结构尺寸     |                         | 26.0×24.0×2.5mm            |                                   |  |  |  |  |
| 重量       |                         | <5 克                       |                                   |  |  |  |  |
| 固定方式     |                         | LCC PAD 焊接                 |                                   |  |  |  |  |
|          | C1100 MGGT              | 3.1V~4.2V(推荐值 3.8V)        |                                   |  |  |  |  |
| 电源电压     | C1100 NGGT              | 3.1V~4.2V(推荐值 3.8V)        |                                   |  |  |  |  |
|          | C1100C                  | 3.3V~4.2V(推荐值 3.8V)        |                                   |  |  |  |  |
|          |                         | TDD-LTE eMTC: B39;         |                                   |  |  |  |  |
|          |                         | FDD-LTE eMTC:              |                                   |  |  |  |  |
|          | C1100 MGGT              | B1/B2/B3/B4/B5/B8/B12/B13  | B/B17/B18/B19/B20/B26/B28;        |  |  |  |  |
| 工作频段     |                         | NB-IoT: B1/B2/B3/B4/B5/B8/ | /B12/B13/B17/B18/B19/B20/B26/B28; |  |  |  |  |
| 工作が代     |                         | EGPRS: B2/B3/B5/B8         |                                   |  |  |  |  |
|          | C1100 NGGT              | NB-IoT: B1/B2/B3/B4/B5/B8/ | /B12/B13/B17/B18/B19/B20/B26/B28; |  |  |  |  |
|          | 044000                  | FDD-LTE CAT1: B1,B3,B5     |                                   |  |  |  |  |
|          | C1100C                  | TDD-LTE CAT1: B41          |                                   |  |  |  |  |
|          |                         |                            | FDD: 375Kbps(DL),375Kbps(UL)      |  |  |  |  |
|          | C1100 MGGT              | LTE eMTC                   | TDD: 375Kbps(DL),375Kbps(UL)      |  |  |  |  |
|          |                         |                            | 支持 Release 13 category M          |  |  |  |  |
| 数据业务     |                         | NB-IoT                     | 32Kbps(DL),72Kbps(UL)             |  |  |  |  |
|          |                         | EGPRS                      | 384Kbps(DL),160Kbps(UL)           |  |  |  |  |
|          | C1100 NGGT              | NB-IoT                     | 32Kbps(DL),72Kbps(UL)             |  |  |  |  |
|          | C1100C                  | LTE CAT1                   | 10.3/5.2Mbps                      |  |  |  |  |
| GNSS     |                         |                            |                                   |  |  |  |  |
| 频率       |                         | 1561MHz~1602MHz            |                                   |  |  |  |  |
| 天线类型     |                         | 默认支持有源天线,若使用无源天线加隔直电容。     |                                   |  |  |  |  |
| 通道数      |                         | ≥44 通道                     |                                   |  |  |  |  |
| 定位精度     |                         | < 10M                      |                                   |  |  |  |  |
| A-GPS    |                         | 保留                         | I                                 |  |  |  |  |
| 接收灵敏度    |                         | Acquisition                | -140dBm                           |  |  |  |  |
|          |                         | Tracking                   | -153dBm                           |  |  |  |  |
| VINE N D | _                       | Cold Start                 | 60S                               |  |  |  |  |
| 首次定位时间   | 1                       | Warm Start                 | 45\$                              |  |  |  |  |
|          |                         | Hot Start <1S              |                                   |  |  |  |  |
| 工作温度     |                         | -40℃~+85℃                  |                                   |  |  |  |  |
| ESD      | C1100 MGGT              | VBAT,GND:空气放电±2K           | V,接触放电±500V                       |  |  |  |  |

| 产         | 品特性        | 描述                                         |  |  |  |  |  |
|-----------|------------|--------------------------------------------|--|--|--|--|--|
|           | C1100 NGGT | 射频天线接口:空气放电+2KV,接触放电+500V                  |  |  |  |  |  |
|           |            | 其它接口:空气放电±2KV,接触放电±500V                    |  |  |  |  |  |
|           |            | VBAT,GND:空气放电±8KV,接触放电±4KV                 |  |  |  |  |  |
|           | C1100C     | 射频天线接口:空气放电±2KV,接触放电±500V                  |  |  |  |  |  |
|           |            | 其它接口:空气放电±2KV,接触放电±500V                    |  |  |  |  |  |
|           | C1100 MGGT | Class 3 (0.25 W) for eMTC/NB-loT           |  |  |  |  |  |
| 最大发射      | C1100 MGG1 | Class 12 (0.5W) for EGPRS                  |  |  |  |  |  |
| 功率        | C1100 NGGT | Class 3 (0.25 W) for NB-IoT                |  |  |  |  |  |
|           | C1100C     | Class 3 (0.25 W) for TDD-LTE/FDD-LTE       |  |  |  |  |  |
|           |            | 关机漏电流: 5μA                                 |  |  |  |  |  |
|           | C1100 MGGT | Idle 模式: TBD                               |  |  |  |  |  |
|           | CT100 MGGT | PSM 模式: 7μA                                |  |  |  |  |  |
|           |            | 数据模式: TBD                                  |  |  |  |  |  |
|           |            | 关机漏电流: 5μA                                 |  |  |  |  |  |
| 功耗        | C1100 NGGT | Idle 模式: TBD                               |  |  |  |  |  |
| 50 AC     |            | PSM 模式: 7μA                                |  |  |  |  |  |
|           |            | 数据模式: TBD                                  |  |  |  |  |  |
|           | C1100C     | 关机漏电流: 11μA                                |  |  |  |  |  |
|           |            | Idle 模式: TBD                               |  |  |  |  |  |
|           |            | 通话模式: TBD                                  |  |  |  |  |  |
|           |            | 数据模式: TBD                                  |  |  |  |  |  |
| AT 命令     |            | 支持标准 AT 指令集(Hayes 3GPP TS 27.007 和 27.005) |  |  |  |  |  |
| 711 нр 4  | T          | 支持 Lenovo Connect 扩展 AT 指令集                |  |  |  |  |  |
|           |            | RoHS                                       |  |  |  |  |  |
|           |            | ccc                                        |  |  |  |  |  |
|           |            | CTA                                        |  |  |  |  |  |
|           | C1100 MGGT | GCF                                        |  |  |  |  |  |
| <b>认证</b> |            | PTCRB                                      |  |  |  |  |  |
| y Can     |            | FCC                                        |  |  |  |  |  |
|           |            | CE                                         |  |  |  |  |  |
|           | C1100 NGGT | RoHS                                       |  |  |  |  |  |
|           | C1100 NGG1 | ccc                                        |  |  |  |  |  |
|           |            | СТА                                        |  |  |  |  |  |

### 表 8: C1100 系列无线模块接口

| 模块型号 | 管脚                       | C1100 MGGT | C1100 NGGT | C1100C |
|------|--------------------------|------------|------------|--------|
| 电源接口 | 3 个 VBAT 管脚, 22 个 GND 管脚 |            |            |        |
|      | 1 个主天线接口                 | 支持         | 支持         | 支持     |
| 天线接口 | 1 个分集天线接口                | 不支持        | 不支持        | 支持     |
|      | 1个 GNSS 天线接口             | 支持         | 支持         | 支持     |
| 电压输出 | 1 个 1.8V 电源输出 (50mA)     | 支持         | 支持         | 支持     |





| 模块型号     | 管脚                                                           | C1100 MGGT | C1100 NGGT | C1100C   |
|----------|--------------------------------------------------------------|------------|------------|----------|
|          | 1 个 2.85V 电源输出(50mA)                                         |            |            |          |
| 开机键      | 1 个 POWER_ON#接口<br>(支持 1.8~3.3V I/O)                         | 支持         | 支持         | 支持       |
| 复位管      | 1 个 RESET#接口<br>(支持 1.8~3.3V I/O)                            | 支持         | 支持         | 支持       |
| 网络指示灯    | 1 个 NET_STATUS 输出接口                                          | 支持         | 支持         | 支持       |
| SIM 卡接口  | 支持 3V、1.8V 电平                                                | USIM/SIM   | 只支持 USIM   | 只支持 USIM |
| USB 接口   | 1组 USB2.0 High-Speed 接口                                      | 支持         | 支持         | 支持       |
|          | 1 组全功能 8 线制 UART1 接口                                         | 支持         | 支持         | 支持       |
| UART     | 1 组无流控 2 线制 Debug UART 接口,主要用于输出调试信息                         | 支持         | 支持         | 支持       |
| GPIO □   | 1.8V                                                         | 10 路,保留    | 10 路,保留    | 6路,保留    |
| 休眠与唤醒    | 1 组睡眠和唤醒管脚:<br>复用 UART1 的 DTR/DSR<br>(DTR 支持 1.8 ~ 3.3V I/O) | 支持         | 支持         | 支持       |
| PCM 接口   | 1组PCM接口                                                      | 保留         | 保留         | 支持       |
| SPI 接口   | 1 组 SPI 接口                                                   | 保留         | 保留         | 保留       |
| I2C 接口   | 1组 I2C 接口<br>(内部上拉 2.2K Ω到 1.8V 电源)                          | 保留         | 保留         | 保留       |
| 开漏输出     | 1 个开漏输出管脚                                                    | 保留         | 保留         | 保留       |
| 时钟输出     | 2 个时钟输出管脚<br>(19.2MHz 和 32KHz)                               | 保留         | 保留         | 保留       |
| 强制下载测 试点 | USB_BOOT                                                     | 支持         | 支持         | 支持       |

## 2.2. C1100 系列无线模块工作模式

C1100 系列无线模块工作模式一览

表 9: C1100 MGGT 无线模块工作模式

| 模式      | 描述                                            |
|---------|-----------------------------------------------|
| IDLE    | 模块已经开机并成功注册到网络,系统处于空闲状态,已经做好了收发的准备。           |
| CONNECT | 模块处于工作状态,正在和网络进行数据交互,模块此时的功耗取决于网络环境、网络        |
| CONNECT | 设置、参数配置及数据速率。                                 |
| OFFLINE | 模块的射频电路不工作,无法与网络进行发送和接收。OFFLINE通过AT+CFUN=4进入。 |
| 最小功能    | 在不断电的情况下关闭包括射频、USIM 等绝大部分功能,仅维持最小系统工作。最小      |
| 取小功能    | 功能通过 AT+CFUN=0 进入。                            |
| PSM     | 模块在 PSM 模式下,关闭大部分功能(除 RTC),以到达最大程度降低功耗作用。对    |
| FOIVI   | 于基站而言,在 PSM 模式下,模块为不可达状态。只有当相关业务定时器超时或被 MCU   |



|    | 唤醒时,模块才退出 PSM 进入 IDLE 模式,进而与基站进行数据交互。 |
|----|---------------------------------------|
| 关机 | 关机模式下,模块不工作。                          |

### 表 10: C1100 NGGT 无线模块工作模式

| 模式      | 描述                                               |
|---------|--------------------------------------------------|
| IDLE    | 模块已经开机并成功注册到网络,系统处于空闲状态,已经做好了收发的准备。              |
| CONNECT | 模块处于工作状态,正在和网络进行数据交互,模块此时的功耗取决于网络环境、网络           |
| CONNECT | 设置、参数配置及数据速率。                                    |
| OFFLINE | 模块的射频电路不工作,无法与网络进行发送和接收。OFFLINE 通过 AT+CFUN=4 进入。 |
| 最小功能    | 在不断电的情况下关闭包括射频、USIM 等绝大部分功能块,仅维持最小系统工作。最         |
| 取小切肥    | 小功能通过 AT+CFUN=0 进入。                              |
|         | 模块在 PSM 模式下,关闭大部分功能(除 RTC),以到达最大程度降低功耗作用。对       |
| PSM     | 于基站而言,在 PSM 模式下,模块为不可达状态。只有当相关业务定时器超时或被 MCU      |
|         | 唤醒时,模块才退出 PSM 进入 IDLE 模式,进而与基站进行数据交互。            |
| 关机      | 关机模式下,模块不工作。                                     |

#### 表 11: C1100C 无线模块工作模式

| 模式      | 描述                                              |
|---------|-------------------------------------------------|
| IDLE    | 模块已经开机并成功注册到网络,系统处于空闲状态,已经做好了收发的准备。             |
| CONNECT | 模块处于工作状态,正在和网络进行数据交互,模块此时的功耗取决于网络环境、网络          |
| CONNECT | 设置、参数配置及数据速率。                                   |
| OFFLINE | 模块的射频电路不工作,无法与网络进行发送和接收。OFFLINE通过AT+CFUN=4进入。   |
| 最小功能    | 在不断电的情况下关闭包括射频、USIM 等绝大部分功能块,仅维持最小系统工作。最        |
| 取小切形    | 小功能通过 AT+CFUN=0 进入。                             |
| 休眠      | 模块关掉大部分功能块,但会间隙地与网络进行同步,可以接收数据,此时模块的功耗          |
| 小时      | 降到很低。UART1_DTR 被拉高或 USB 被挂起都会触发模块进入休眠模式,详见 3.7。 |
| 关机      | 关机模式下,模块不工作。                                    |





## 2.3. 系统功能框图

图 1 是 C1100 系列无线模块系统框图:



图 1: C1100 系列无线模块系统框图

- ☆ 射频部分包括:
  - 1) 射频收发信机
  - 2) 射频主集与分集天线开关(C1100 MGGT/C1100 NGGT 不支持分集, C1100C



#### 支持分集)

- 3) 射频功放
- 4) GNSS 声表滤波器
- ☆ PMU 部分包括:
  - 1) 电源管理单元 PMU
  - 2) 时钟
  - 3) 控制逻辑
- ☆ 模拟/数字基带部分包括:
  - 1) 模拟/数字基带芯片
  - 2) 存储器,包含 NAND FLASH 和 LPDDR2
  - 3) 数字接口





- 3. 应用接口及功能描述
- 3.1. 86-pin LCC PAD 接口定义



图 2: C1100 系列无线模块 pin 序图



#### 表 12: C1100 系列无线模块管脚定义表

备注:

I/O 状态: I=输入; O=输出; P/I=电源输入; P/O=电源输出;

上电复位时数字 IO 管脚状态: PD=下拉; PU=上拉; NP=悬空。此状态为模块从上电到程序接管之前的 IO 管脚状态,此状态为硬件初始状态,程序不可控。

NC:硬件未定义,外部悬空处理; RESERVED: 表示硬件管脚预留,软件未定义。

| 管脚 序号 | 功能        | 电平(V)   | 1/0 | 上电复位时数<br>字 IO 管脚状态 | 功能                                                                                       |
|-------|-----------|---------|-----|---------------------|------------------------------------------------------------------------------------------|
| 1     | VBAT      | -       | P/I |                     | 模块主电源输入,详见 3.2                                                                           |
| 2     | VBAT      | -       | P/I |                     | 模块主电源输入,详见 3.2                                                                           |
| 3     | VBAT      | -       | P/I |                     | 模块主电源输入,详见 3.2                                                                           |
| 4     | GND       | -       | -   |                     | 地                                                                                        |
| 5     | POWER_ON# | 1.8~3.3 | ļ   |                     | 模块开机信号,低有效,高电平支持 1.8~3.3V IO, VLmax=0.2V                                                 |
| 6     | GND       | -       | -   |                     | 地                                                                                        |
| 7     | IIC_SDA   | 1.8     | I/O | PU                  | IIC 接口数据信号,内部上拉 2.2KR 电阻到 1.8V                                                           |
| 8     | IIC_SCL   | 1.8     | I/O | PU                  | IIC 接口时钟信号,内部上拉 2.2KR 电阻到 1.8V                                                           |
| 9     | UART1_DTR | 1.8~3.3 | ı   | PD                  | UART1 的 DTR(Data-Terminal-Ready)信号,数据终端准备就绪,低有效。<br>高电平支持 1.8~3.3V IO。可用于模块休眠唤醒功能,详见 3.7 |
| 10    | UART1_DCD | 1.8     | 0   | NP                  | UART1 的 DCD(Data-Carrier-Detect)信号,用于数据载波检测,低有效。 如果 DCE 已经接通通信链路,DCE 将 DCD 拉低通知 DTE      |
| 11    | UART1_RI  | 1.8     | 0   | PD                  | UART1 的 RI(Ring),振铃。                                                                     |
| 12    | UART1_DSR | 1.8     | 0   | PD                  | UART1 的 DSR(Data-Set-Ready),数据设备准备就绪,低有效。可用于模块休眠唤醒功能,详见 3.7                              |
| 13    | VOUT_1V8  | -       | P/O |                     | 1.8V 电源输出,最大 50mA                                                                        |

| 管脚 序号 | Į                        | <b>力能</b>  | 电平(V) | I/O | 上电复位时数<br>字 IO 管脚状态 | 功能                                  |
|-------|--------------------------|------------|-------|-----|---------------------|-------------------------------------|
| 14    | USB_BOOT                 |            | 1.8   | I   |                     | 拉高至 1.8V 开机进入 USB 强制下载模式,需要外部增加测试点  |
| 15    | GND                      |            | -     | -   |                     | 地                                   |
| 16    | C1100 MGGT<br>C1100 NGGT | RESERVED   | -     | -   |                     | 保留                                  |
|       | C1100C                   | SGMII_TX_P | -     | -   |                     | SGMII 网口 TX+                        |
| 17    | C1100 MGGT<br>C1100 NGGT | RESERVED   | -     | -   |                     | 保留                                  |
|       | C1100C                   | SGMII_TX_N | -     | -   |                     | SGMII 网口 TX-                        |
| 18    | C1100 MGGT<br>C1100 NGGT | RESERVED   | -     | -   |                     | 保留                                  |
|       | C1100C                   | SGMII_RX_P | -     | -   |                     | SGMII 网口 RX+                        |
| 19    | C1100 MGGT<br>C1100 NGGT | RESERVED   | -     | -   |                     | 保留                                  |
|       | C1100C                   | SGMII_RX_N | -     | -   |                     | SGMII 网口 RX-                        |
| 20    | GND                      |            | -     | -   |                     | 地                                   |
| 21    | GND                      |            | -     | -   |                     | 地                                   |
| 22    | RESERVED                 |            | -     | -   |                     | 保留                                  |
| 23    | UART1_RX                 |            | 1.8   | I   | PD                  | 串口 1 的信号输入                          |
| 24    | UART1_TX                 |            | 1.8   | 0   | PD                  | 串口 1 的信号输出                          |
| 25    | UART1_CTS                |            | 1.8   | ı   | PD                  | 串口 1 的硬件流控 CTS(Clear-To-Send)信号,低有效 |
| 26    | UART1_RTS                |            | 1.8   | 0   | PD                  | 串口 1 的硬件流控 RTS(Ready-To-Send)信号,低有效 |
| 27    | PCM_SYNC                 |            | 1.8   | I/O | PD                  | PCM 帧同步                             |
| 28    | PCM_CLK                  |            | 1.8   | I/O | PD                  | PCM 时钟                              |

| 管脚<br>序号 | 功                        | 能       | 电平(V) | I/O | 上电复位时数<br>字 IO 管脚状态 | 功能                                                     |
|----------|--------------------------|---------|-------|-----|---------------------|--------------------------------------------------------|
| 29       | PCM_DO                   |         | 1.8   | 0   | PD                  | PCM 数据输出                                               |
| 30       | PCM_DI                   |         | 1.8   | I   | PD                  | PCM 数据输入                                               |
| 31       | GND                      |         | -     | -   |                     | 地                                                      |
| 32       | SPI_CLK                  |         | 1.8   | 0   | PD                  | SPI 接口时钟信号,只支持主模式                                      |
| 33       | SPI_DO                   |         | 1.8   | 0   | PD                  | SPI 接口数据输出信号,只支持主模式                                    |
| 34       | SPI_DI                   |         | 1.8   | I   | PD                  | SPI 接口数据输入信号,只支持主模式                                    |
| 35       | SPI_CS                   |         | 1.8   | 0   | PD                  | SPI 接口片选信号,只支持主模式                                      |
| 36       | 6 19.2M_CLK_OUT          |         |       | 0   |                     | 19.2MHz 数字时钟输出,给外部 PCM 音频 CODEC 提供时钟,仅在 PCM 功能开启时输出,保留 |
| 37       | GPIO1                    |         | 1.8   | I/O | PD                  | GPIO,保留                                                |
| 38       | GPIO2                    |         | 1.8   | I/O | PU                  | GPIO,保留                                                |
| 39       | GPIO3                    |         | 1.8   | I/O | PD                  | GPIO,保留                                                |
| 40       | GPIO4                    |         | 1.8   | I/O | PD                  | GPIO, 保留                                               |
| 41       | WTD/GPIO5                |         | 1.8   | I/O | PD                  | 外部 Watchdog 的喂狗信号(保留)                                  |
| 42       | NET_STATUS               |         | 1.8   | 0   | PD                  | 网络状态指示灯,驱动能力 2mA,需要外接 NPN 三极管驱动 LED                    |
| 43       | GND                      |         | -     | -   |                     | 地                                                      |
| 44       | GND                      |         | -     | -   |                     | 地                                                      |
| 45       | GND                      |         | -     | -   |                     | 地                                                      |
| 46       | C1100 MGGT<br>C1100 NGGT | NC      | -     | -   |                     | C1100 MGGT/C1100 NGGT 无分集,该管脚悬空                        |
|          | C1100C                   | ANT_DIV |       | 1   |                     | 分集天线接口                                                 |
| 47       | GND                      |         | -     | -   |                     | 地                                                      |
| 48       | GND                      |         | -     | -   |                     | 地                                                      |

| 管脚 序号 | 功能                       |                     | 电平(V) | 1/0 | 上电复位时数<br>字 IO 管脚状态 | 功能                                                     |  |
|-------|--------------------------|---------------------|-------|-----|---------------------|--------------------------------------------------------|--|
| 49    | UART_DB_TX               |                     | 1.8   | 0   | PD                  | 调试串口的数据输出,仅供调试使用                                       |  |
| 50    | UART_DB_RX               |                     | 1.8   | l   | PD                  | 调试串口的数据输入,仅供调试使用                                       |  |
| 51    | GPIO6                    |                     | 1.8   | I/O | PU                  | GPIO,保留                                                |  |
| 52    | GNSS_1PPS                |                     | 1.8   | 0   | PD                  | GNSS 1PPS 同步信号,保留                                      |  |
| 53    | GNSS_EXT_PV              | /R_EN               | 1.8   | 0   | PD                  | 保留                                                     |  |
| 54    | GND                      |                     | -     | -   |                     | 地                                                      |  |
| 55    | GND                      |                     | -     | -   |                     | 地                                                      |  |
| 56    | ANT_GNSS                 |                     | -     |     |                     | GNSS 天线接口                                              |  |
| 57    | GND                      |                     | -     | ı   |                     | 地                                                      |  |
| 58    | GND                      |                     | -     | ī   |                     | 地                                                      |  |
| 59    | C1100 MGGT<br>C1100 NGGT | GPIO7               | 1.8   | I/O | PD                  | GPIO,保留                                                |  |
|       | C1100C                   | SGMII_RST_N         | 1.8   | 0   |                     | SGMII reset 管脚,不用请悬空                                   |  |
| 60    | C1100 MGGT<br>C1100 NGGT | GPIO8               | 1.8   | I/O | PD                  | GPIO,保留                                                |  |
| 60    | C1100C                   | SGMII_MDIO_C<br>LK  | 1.8   | I/O |                     | SGMII MDIO(Management Data Input/Output) CLK 管脚,不用请悬空  |  |
| 64    | C1100 MGGT<br>C1100 NGGT | GPIO9               | 1.8   | I/O | PD                  | GPIO,保留                                                |  |
| 61    | C1100C                   | SGMII_MDIO_D<br>ATA | 1.8   | I/O |                     | SGMII MDIO(Management Data Input/Output) DATA 管脚,不用请悬空 |  |
| 62    | C1100 MGGT<br>C1100 NGGT | GPIO10              | 1.8   | I/O | PD                  | GPIO,保留                                                |  |

| 管脚 序号 | ŗ                        | <b>力能</b>    | 电平(V)   | I/O | 上电复位时数<br>字 IO 管脚状态 | 功能                                 |  |
|-------|--------------------------|--------------|---------|-----|---------------------|------------------------------------|--|
|       | C1100C                   | SGMII_INT_N  | 1.8     | ı   |                     | SGMII INT 管脚,不用请悬空                 |  |
| 63    | C1100 MGGT<br>C1100 NGGT | NC           | -       | ı   |                     | 未定义                                |  |
|       | C1100C                   | SGMII_PU_VDD |         | P/O |                     | SGMII MDIO 上拉电源                    |  |
| 64    | GND                      |              | -       | -   |                     | 地                                  |  |
| 65    | GND                      |              | -       | -   |                     | 地                                  |  |
| 66    | GND                      |              | -       | -   |                     | 地                                  |  |
| 67    | ANT_MAIN                 |              | -       | -   |                     | 主天线                                |  |
| 68    | GND                      |              | -       | -   |                     | 地                                  |  |
| 69    | GND                      |              | -       | -   |                     | 地                                  |  |
| 70    | GND                      |              | -       | -   |                     | 地                                  |  |
| 71    | RESERVED                 |              | -       | ı   |                     | 保留                                 |  |
| 72    | 32K_CLK_OUT              |              |         | 0   |                     | 32KHz 时钟输出,保留。                     |  |
| 73    | ADC3                     |              | -       | l   |                     | 模数转换输入,测量范围 0.1~1.7V               |  |
| 74    | ADC2                     |              | -       | -   |                     | 保留                                 |  |
| 75    | ADC1                     |              | -       | -   |                     | 模数转换输入,测量范围 0.1~1.7V               |  |
| 76    | LED_OD#                  |              | -       | 0   |                     | 开漏输出(current sink),可用于直接控制 LED     |  |
| 77    | USB_DM                   |              | 3.3     | I/O |                     | USB2.0 接口 DM 信号                    |  |
| 78    | USB_DP                   |              | 3.3     | I/O |                     | USB2.0 接口 DP 信号                    |  |
| 79    | GND                      |              | -       | ı   |                     | 地                                  |  |
| 80    | RESET#                   |              | 1.8~3.3 | I   |                     | 系统复位信号输入,低有效,高电平支持 1.8V~3.3V IO 电平 |  |
| 81    | VOUT_2V85                |              | -       | P/O |                     | 2.85V 电源输出,50mA                    |  |

| 管脚 序号 | 功能          | 电平(V)   | I/O | 上电复位时数<br>字 IO 管脚状态 | 功能                                          |
|-------|-------------|---------|-----|---------------------|---------------------------------------------|
| 82    | 82 USIM DET |         |     | Н                   | SIM 卡检测,                                    |
| 02    | OCIWI_BET   | 1.8     | '   | 11                  | 支持通过 AT+LSUIMHSPOL 配置 SIM 卡检测电平逻辑,详见 3.8 章。 |
| 83    | USIM_CLK    | 1.8/3.0 | 0   |                     | USIM 卡时钟信号                                  |
| 84    | USIM_DATA   | 1.8/3.0 | I/O |                     | USIM 卡数据信号,模块已经内部上拉 10KΩ 电阻到 USIM_VCC       |
| 85    | USIM_RESET  | 1.8/3.0 | 0   |                     | USIM 卡复位信号                                  |
| 86    | USIM_VCC    | -       | P/O |                     | USIM 卡电源输出,50mA                             |





## 3.2.电源接口及外围电路设计

本节描述和电源相关的接口, 涉及的接口如下:

表 13: C1100 系列无线模块电源相关接口

| 管脚名         | 输入 | 管脚序号                                                                        | 描述              |                                |
|-------------|----|-----------------------------------------------------------------------------|-----------------|--------------------------------|
|             |    |                                                                             |                 | 模块供电,DC3.1~4.2V,<br>3.8V(Type) |
| VBAT        | 1  | 1,2,3                                                                       | C1100 NGGT      | 模块供电,DC3.1~4.2V,<br>3.8V(Type) |
|             |    |                                                                             | C1100C          | 模块供电,DC3.3~4.2V,<br>3.8V(Type) |
| VOUT_1V8    | 0  | 13                                                                          | 电源输出,1.8V       | , 50mA                         |
| VOUT_2V85 O |    | 81                                                                          | 电源输出,2.85V,50mA |                                |
| GND         | -  | 4,6,15,20,21,31,43,<br>44,45,47,48,54,55,5<br>7,58,64,65,66,68,69<br>,70,79 | 地               |                                |

### 3.2.1. C1100 MGGT VBAT 输入

C1100 MGGT模块供电采用单电源供电方式,推荐VBAT范围在3.1~4.2V之间。在GPRS 网络模式下数据传输时,瞬间大功率发射会形成高达2A的电流峰值(外部电路未接稳压电容时),从而导致VBAT大的纹波出现,造成模块端VBAT压降瞬间过低。

为保证模块能正常工作,要求电源供电必须具备足够的供电能力。如果 VBAT 模块端压降低于 3.1V,会影响射频性能。任何时候都必须保证模块端 VBAT 的电压不低于 2.5V,否则会造成模块断电异常关机。

在确保 VBAT 电源供电能力足够(3.8V,1A 连续负载、2A 瞬时负载能力)的前提下,电路接法依照下图所示,在 VBAT 输入靠近模块侧接一个(2200uF/10V)电解电容( $C_1$ ),若结构受限,可用两个并联(470uF/6.3V)钽电容或三个(220uF/6.3V)替代,再并上几个小容值 33pF,0.1uF,10uF 的陶瓷电容。

#### 注意:

如果模块是使用电池直接供电,且电池到模块的 VBAT 管脚距离小于 5cm,可以省掉电解电容或钽电容。







图 3: C1100 MGGT 模块 VBAT 电路参考(并联电解电容)



图 4: C1100 MGGT 模块 VBAT 电路参考(并联钽电容)

#### 注意:

- 1) VBAT 的走线宽度须大于 2mm;
- 2) 100nF, 33pF 等小电容能有效减少高频信号对电源的干扰;
- 3) 对于使用电池供电,如果 VBAT 走线不长的话,可以省掉 2200uF 电容;
- 4) 5.1V, 500mW 的稳压管能有效抑制电源线上的浪涌冲击;
- 5) 为了防止 ESD 对模块的损坏, VBAT 上需要增加 TVS。



### 3.2.2. C1100 NGGT VBAT 输入

C1100 NGGT 模块供电采用单电源供电方式,推荐 VBAT 范围在 3.1V~4.2V 之间。C1100 NGGT 工作在 NB-IoT 模式下最大功率时,最大电流不超过 400mA。为预留一定的余量,建议客户对电源选型供电能力保证 500mA 以上。

在确保 VBAT 电源供电能力足够(3.8V,500mA 连续负载)的前提下,在 VBAT 输入靠近模块侧接一个(1000uF/10V)电解电容,若结构受限,可用一个(470uF/6.3V)钽电容或两个(220uF/6.3V)替代,再并上几个小容值 33pF,0.1uF,10uF 的陶瓷电容。

如果模块是使用电池直接供电,且电池到模块的 VBAT pin 距离小于 5cm,可以省掉电解电容或钽电容。

#### 注意:

- 1) VBAT 的走线宽度须大于 1mm;
- 2) 100nF, 33pF 等小电容能有效减少高频信号对电源的干扰;
- 3) 对于使用电池供电,如果 VBAT 走线不长的话,供电端可以只保留 220uF 电容:
- 4) 5.1V, 500mW 的稳压管能有效抑制电源线上的浪涌冲击;
- 5) 为了防止 ESD 对模块的损坏, VBAT 上需要增加 TVS。

## 3.2.3. C1100C VBAT 输入

C1100C 模块供电采用单电源供电方式,推荐 VBAT 范围在 3.3~4.2V 之间。在 TDD 网络模式下数据传输时,瞬间大功率发射会形成高达 1.8A 的电流峰值(外部电路未接稳压电容时),从而导致 VBAT 大的纹波出现,造成模块端 VBAT 压降瞬间过低。

在确保 VBAT 电源供电能力足够(3.8V,1A 连续负载、2A 瞬时负载能力)的前提下,在 VBAT 输入靠近模块侧接一个(2200uF/10V)电解电容,若结构受限,可用两个并联(470uF/6.3V)钽电容或三个(220uF/6.3V)替代,再并上几个小容值 33pF,0.1uF,10uF 的陶瓷电容。

#### 注意:

- 1) VBAT 的走线宽度须大于 1mm;
- 2) 100nF, 33pF 等小电容能有效减少高频信号对电源的干扰;
- 3) 对于使用电池供电,如果 VBAT 走线不长的话,可以省掉 2200uF 电容;
- 4) 5.1V, 500mW 的稳压管能有效抑制电源线上的浪涌冲击;
- 5) 为了防止 ESD 对模块的损坏, VBAT 上需要增加 TVS。





### 3.3. 开关机与复位接口

本节描述和开关机与复位相关的接口, 涉及的接口如下:

表 14: C1100 系列无线模块开关机与复位相关接口

| 管脚名       | 输入 | 管脚序号 | 描述                                              |
|-----------|----|------|-------------------------------------------------|
| POWER_ON# | I  | 5    | 开机键,内部上拉至 0.8V,低电平有效,支持 1.8~3.3V I/O,VLmax=0.2V |
| RESET#    | I  | 80   | 复位,内部上拉至 1.8V,低电平<br>有效,支持 1.8~3.3V I/O         |

## 3.3.1. POWER\_ON#开机

在 VBAT 供电条件下,POWER\_ON#用于控制模块的开机。POWER\_ON#管脚内部上拉到 0.8V。通过外部 MCU 的控制可实现 C1100 系列无线模块的开机。外围电路需要对 POWER\_ON#进行控制,模块在关机状态,VBAT 持续供电,拉低 POWER\_ON# 超过 1s 后再拉高,可以让模块开机。

POWER\_ON#支持 1.8~3.3V 电平标准,如果客户 MCU 为 3.3V 或 1.8V 的 IO 可以直接控制,不需要电平转换。该管脚低电平有效的最高电平为 0.2V,也就是至少低于 0.2V,才认为是一个有效的低电平。

如下图,MCU\_POWER\_ON 是 MCU 给 C1100 系列无线模块的控制信号,可以实现模块的开机。建议客户 MCU 通过一个 GPIO (如图中标示的 MODULE\_STATE 这个网络) 检测模块的 VOUT\_1.8V 来确定是模块是否开机成功。

给模块供电后,拉低 POWER\_ON# 1s 后再拉高,检查 VOUT\_1.8V 是否为高电平,表示模块已经开机成功,否则未开机成功。

- ❖ 模块在关机状态, 拉低 POWER ON 1s 后拉高, 可以让模块开机:
- ❖ 模块在开机状态,通过 AT 指令: AT\$QCPWRDN 可以让模块关机;
- ❖ 对于 C1100 MGGT/C1100 NGGT, POWER\_ON#管脚不能一直拉低, 否则无法进入 PSM 模式。







图 5: C1100 系列无线模块开机控制

### 3.3.2. RESET 复位控制

C1100 系列无线模块复位方式有两种: RESET 管脚复位、AT 命令复位。

AT 命令是软复位; RESET 管脚复位是硬件复位,使用 RESET 不会走正常的关机流程,可能会导致系统的数据丢失,所以这种复位的方式只可在模块出现异常时使用。

#### 注意:

- 1) 模块在开机后 15S 之内,不需要额外对模块进行复位;
- 2) 对比有一些单片机系统,在单片机开机以后,需要外部拉 RESET 管脚进行单片机内部 电路和寄存器进行复位。C1100 系列无线模块在开机后,会自动对内部相关电路和寄存器进行复位,不需要客户额外进行复位操作。为了保证模块能够正常启动,在 POWER\_ON#动作后的 15 秒內请勿将 RESET 拉低。

### 3.3.2.1. 复位管脚

C1100 系列无线模块的 PIN80 为 RESET 输入。当需要复位 C1100 系列无线模块时,将此管脚拉低,模块即可复位。

复位管脚支持 1.8~3.3V 电平标准, 如果客户 MCU 为 3.3V 或 1.8V 的 IO 可以直接控制。

● 需要 MCU 控制 C1100 系列无线模块的复位,需要给模块一个低电平 T 时长(100mS < T<sub>rst</sub> < 2S) 脉冲;

关于 RESET 的参考电路如下图,MCU\_RESET 是应用端给的 RESET 控制信号,可以控制 C1100 系列无线模块的复位。模块内部已经将 RESET 上拉到 1.8V,客户电路 RESET





请勿接上下拉电阻。若 RESET 接对地电容,不应该超过 100pF,负载电容过大,会导致电容充放电影响 RESET 管脚的时序控制。

#### 注意:

模块的 VBAT 供电后,在准备开机时,当 POWER\_ON#开始下拉时间起,15S 之内不允许对 RESET 进行下拉操作。



图 6: C1100 系列无线模块 RESET 控制模块复位参考电路



### 3.3.2.2. AT 命令复位

AT 命令复位有两种方式:

一种是: AT^RESET;

另一种是:设置 AT+CFUN=7 后再设置 AT+CFUN=6 进行重启。



## 3.4. USB 接口

## 3.4.1. USB 接口描述

C1100 系列无线模块提供一组 USB2.0 High-Speed 接口。C1100 系列无线模块加载驱动之后,会在操作系统上映射出 5 个串口。下表为 C1100 系列无线模块的 VID、PID 与操作系统上映射的串口名称。

表 15: C1100/C1100C VID、PID 号与映射串口名

| 模块                       | VID PID |        | 映射串口                                    |  |
|--------------------------|---------|--------|-----------------------------------------|--|
| C1100 MGGT<br>C1100 NGGT | 0x2DF3  | 0x6B3D | DIAG □、NMEA □、Modem □、modem_AT □、NDIS □ |  |
| C1100C                   | 0x1C9E  | 0x9B3C | ADB □、modem □、AT □、Pipe □、NDIS □。       |  |

表 16: C1100 系列无线模块 USB 接口

| PIN Name I/O PIN No. |     | PIN No. | 描述               |  |
|----------------------|-----|---------|------------------|--|
| USB_DM               | I/O | 77      | USB2.0 接口 DM 信号。 |  |
| USB_DP               | I/O | 78      | USB2.0 接口 DP 信号。 |  |

## 3.4.2. USB 参考电路

C1100 系列无线模块 USB 接口应用参考电路如下图所示。



图 8: C1100 系列无线模块 USB 接口参考设计图

- 1) 为降低 USB 高速数据传输时的信号干扰,在 USB\_DM 和 USB\_DP 接口电路上串接共模滤波器可提高数据传输正确率;
- 2) 为提高 USB 接口的抗静电性能,推荐在 USB\_DP、USB\_DM 接口电路上加 ESD 保护器件,建议使用结电容小于 0.5pF 的 ESD 器件;
- 3) 为确保 USB 工作可靠,设计时还需更多考虑对 USB 的保护,比如 Layout 时对 USB 的保护,需要对 USB DP、USB DM 做差分 90Ω的阻抗控制,尽可能远离干扰信号。
- ❖ PCB 走线避免有分支或端头线。

## 3.4.3. USB 驱动

C1100 系列无线模块支持:

- Windows 操作系统
- Linux 操作系统

下表为 C1100 系列无线模块默认 VID 与 PID:

表 17: C1100 系列无线模块默认 VID 和 PID

| 模块                       | VID      | PID      |
|--------------------------|----------|----------|
| C1100 MGGT<br>C1100 NGGT | VID_2DF3 | PID_6B3D |
| C1100C                   | VID_1C9E | PID_9B3C |



#### 3.4.3.1. Linux 系统加载 C1100 系列无线模块的 USB 驱动过程

#### 3.4.3.1.1 USB 串口驱动添加

在 Linux 系统中通常使用 USB 转串口的驱动。驱动添加需要配置 Linux 内核,方法如下: cd kernel

make menuconfig

device drivers->usb support->usb serial converter support

选中如下组件:

USB driver for GSM modems

选中后保存配置。

#### 3.4.3.1.2 增加具体设备驱动

打开内核源码文件 option.c(路径一般为 drivers/usb/serial/option.c); 在源码中找到 option\_ids 数组,在数组中添加 Lenovo Connect 产品的 VID 和 PID; C1100 和 C1100C 的 VID 与 PID 不同,具体见表 17。

#### 3.4.3.1.3 USB 串口驱动过滤 NDIS 接口

由于 USB 串口跟 NDIS 都属于非标准 CDC 设备,需要防止 NDIS 口被 USB 串口驱动加载而导致无法正常加载 NDIS 口驱动。有三种方式可以解决:

- 1) 比较新的 kernel 版本(3.8 以上),在 option.c 中的 opiton\_ids 中添加 blacklist,驱 动在加载时会自动跳过 blacklist 指定的 interface;设置 interface 4 不加载 option 驱动;添加 blacklist 到 option\_ids 数组中。
- 2) 对于之前的内核,不支持在 option\_ids 数组中设置过 blacklist,要先增加 C1100 系列无线模块的 PID 和 VID: 在 probe 函数内判断当前 interface 号进行过滤。
- 3) 对于使用 usb-serial.ko 驱动的用户,需要在 usb-serial.c 文件中的 usb\_serial\_probe()函数开始增加如下判断来过滤 NDIS 接口。

### 3.4.3.1.4 USB 串口驱动加载方法

加载 USB 串口驱动: sudo modprobe option 使用 dmesg 命令查看系统 log, 确认端口都加载上了 USB 驱动。

### 3.4.3.2. Linux 系统下 C1100 系列无线模块交互 AT 过程

1) 请将 USIM/SIM 正确插入应用终端,将天线连接到 C1100 系列无线模块的射频连接



器。C1100 系列无线模块开机,加载 USB 驱动,获取 USB 端口: ttyUSB0~ ttyUSB4。

2) 启动 Linux 系统串口应用程序 minicom,使用如下指令:

#minicom -s

在 minicom 菜单中选择 "Serial port setup":

-----如果是C1100 MGGT/C1100 NGGT,配置"Serial device "为/dev/ttyUSB3; 注意: C1100 MGGT/C1100 NGGT 的 Modem(ttyUSB3)可以发 AT 命令,其他不能发 AT 指令;

-----如果是 C1100C, 配置 "Serial device "为/dev/ttyUSB2;**注意: C1100C** 的串口中 AT(ttyUSB2), Modem(ttyUSB1)可以发 AT 命令, 其他不能发 AT 指令;

修改完毕后退出到 minicom 菜单,选择"Save setup as df1 "保存配置后选择"exit" 退出 minicom 配置:

3) 通过 minicom 发送 AT 指令进行系统测试

#minicom

将会得到如下的返回结果:

------ 以 下 是 C1100 MGGT/C1100 NGGT 返 回 结 果

-----

Welcome to minicom 2.3 OPTIONS: I18n

Compiled on Feb 24 2008, 16:35:15. Port /dev/ttyUSB3

Press CTRL-A Z for help on special keys

-----以下是 C1100C 返回结果------

Welcome to minicom 2.3 OPTIONS: I18n

Compiled on Feb 24 2008, 16:35:15. Port /dev/ttyUSB2

Press CTRL-A Z for help on special keys

输入 AT 指令(打开回显):

ATE

如果系统工作正常,将会得到如下的返回结果:

OK

输入如下指令(查询版本信息):

AT+LCTSW

将会得到类似如下 C1100 系列无线模块的 Firmware 版本信息:

SoftwareVersion: QB10003.1.0 MX11

InnerVersion: QB10003\_0016\_0.0.1\_L0308\_EFS1.0

AP: QB10001 0016 0.0.1 L0308 MX11OK

输入如下指令(查询信号):

AT+CSQ

将会得到如下信号强度和误码率信息:

+CSQ: 20,74



#### OK

输入如下指令(注册状态):

#### AT+CREG?

将会得到如下注册信息:

+CREG: 0,1

#### OK

输入如下指令(网络运营商信息):

#### AT+COPS?

将会得到如下运营商信息(不同运营商返回字段不同。以中国移动 USIM 卡为例):

+COPS: 0,0,"CMCC",2

OK

#### 3.4.3.3. Linux 系统下 C1100 系列无线模块拨号上网过程

- 1) 重复 C1100 系列无线模块的 USB 加载过程和 AT 交互流程。确保 C1100 系列无线模块正确注册到网络,信号强度 CSQ 返回的第一个参数在 13 以上;
- 2) 确认 Linux 系统带有 pppd 应用程序,如果系统没有 pppd,请安装 kppp,里面 带有 pppd 应用程序;
- 3) 建立拨号配置文件/etc/ppp/chat/gprs-connect-chat 在其中加入如下配置:

TIMEOUT 15

ABORT "DELAYED" ABORT "BUSY" ABORT "ERROR"

ABORT "NO DIALTONE" ABORT "NO CARRIER"

TIMEOUT 40
" \rAT
OK ATS0=0

OK ATEOV1

OK AT+CGDCONT=1,"IP","CMNET"

OK ATDT\*99\*\*\*1#

CONNECT "

注:插入不同运营商的卡,AT+CGDCONT=1,"IP","CMNET"最后一个参数不同,请咨询当地的运营商获取 APN。

- 4) 修改 pppd 的配置文件/etc/ppp/options 找到 auth 字样的行然后将其改为#auth, 这样在拨号过程中就不会提示需要身份验证:
- 5) 建立拨号配置文件/etc/ppp/peer/gprs 在其中加入配置如下

(C1100 MGGT/C1100 NGGT 必须指定 Modem 口是 ttyUSB3; C1100C 必须指





#### 定 Modem 口是 ttyUSB1):

# Usage: root>pppd call gprs

#### /dev/ttyUSB1

# 该行内容, 如果是 C1100 MGGT/C1100 NGGT 替换为 /dev/ttyUSB3; 如 C1100C 替换为 /dev/ttyUSB1

115200

crtscts

modem

#noauth

debug

nodetach

#hide-password

usepeerdns

noipdefault

defaultroute

0.0.0.0:0.0.0.0

ipcp-accept-local

ipcp-accept-remote

#lcp-echo-failure 12

#lcp-echo-interval 3

#noccp

#novj

#novjccomp

#persist

connect '/usr/sbin/chat -s -v -f /etc/ppp/chat/gprs-connect-chat'

6) 拨号上网,使用如下指令:

#### #pppd call gprs

# ifconfig 如果出现如下回显,多出了一个 ppp0 网口,说明拨号已经成功: ppp0 Link encap:Point-to-Point Protocol inet addr:10.182.207.113 P-t-P:10.64.64.64 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:5 errors:0 dropped:0 overruns:0 frame:0 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:3 RX bytes:62 (62.0 b) TX bytes:101 (101.0 b)

7) 测试连接 Internet

测试是否连接 Internet, 用如下指令:

# ping 119.75.217.56

测试是否 ping 通 baidu 的 IP 地址。如果 ping 不通,需要给本机加条路由,使用如下指令:

# route add default gw 10.64.64.64

注: 10.64.64.64: 运营商的 ip 地址,即上述红色字体部分。

如果 IP 地址能 ping 通, 而 ping 域名不通, 如下指令:

# ping www.baidu.com

则需要添加 DNS 到/etc/resolv.conf。

8) Linux 断开网络(必须 kill 当前的 pppd,才能进行下一次 pppd),需要 kill pppd 进程(这个过程需要一段时间,中间可能无响应),使用如下指令:



# killall pppd

## 3.5. UART 接口

C1100 系列无线模块提供两个 UART 接口。UART1 是全功能串口, 默认用于 AT 命令通道和数据接入, UART\_DB 默认用于调试通道。

## 3.5.1. UART 接口描述

C1100 系列无线模块的 UART 接口见下表。

表 18: C1100 系列无线模块 UART 接口

| 管脚名        | 1/0 | 管脚序号 | 上电复位时数<br>字 IO 管脚状态 | 描述                                                                             |
|------------|-----|------|---------------------|--------------------------------------------------------------------------------|
| UART1_DTR  | ı   | 9    | PD                  | 串口 1 的 DTR(Data-Terminal-Ready)信号,数据终端准备就绪,低有效。支持 1.8~3.3V IO 电平               |
| UART1_DCD  | 0   | 10   | NP                  | 串口1的DCD(Data-Carrier-Detect)信号,用于数据载波检测,低有效。如果 DCE已经接通通信链路,DCE 将 DCD 拉低通知 DTE。 |
| UART1_RI   | 0   | 11   | PD                  | 串口 1 的 RI(Ring),振铃。                                                            |
| UART1_DSR  | 0   | 12   | PD                  | 串口 1 的 DSR(Data-Set-Ready),数据设备准备就绪,低有效。                                       |
| UART1_RX   | I   | 23   | PD                  | 串口1的信号输入。                                                                      |
| UART1_TX   | 0   | 24   | PD                  | 串口1的信号输出。                                                                      |
| UART1_CTS  | I   | 25   | PD                  | 串口 1 的硬件流控 CTS(Clear-To-Send)<br>信号,低有效。                                       |
| UART1_RTS  | 0   | 26   | PD                  | 串口 1 的硬件流控 RTS(Ready-To-Send) 信号,低有效。                                          |
| UART_DB_TX | 0   | 49   | PD                  | 调试串口的数据输出,仅供调试使用。                                                              |
| UART_DB_RX | l   | 50   | PD                  | 调试串口的数据输入,仅供调试使用。                                                              |

#### 备注:

上电复位时数字 IO 管脚状态: PD=下拉; PU=上拉; NP=悬空。此状态为模块从上电到程序接管之前的 IO 管脚状态,此状态为硬件默认状态,程序不可控。

## 3.5.2. UART1 接口参考电路

C1100 系列无线模块 UART1 提供的是全 UART 接口。C1100 系列无线模块作为 DCE (Data Communication Equipment), 客户应用端作为 DTE (Data terminal equipment)。





- 若将 C1100 系列无线模块的 UART1 口作为数据接入口,考虑数据传输的稳定,建议 必须连接硬件流控 CTS 和 RTS;
- 若将 C1100 系列无线模块设计成使用 AT 指令交互的方式,此时可以不考虑硬件流控的连接。



图 9: C1100 系列无线模块流控设计参考

## 3.5.3. UART1 接口描述

1) UART1\_RTS/UART1\_CTS: 串口硬件流控信号, DCE 和 DTE 的 RTS/CTS 需要交 叉连接:

UART 的波特率可设置为:

2400,4800,9600,19200,38400,57600, 115200,230400,460800,921600;

波特率设置可用 AT 指令设置,设置之后模块保存设置。AT 指令是:

AT+IPR=<value>

<value>:

2400,4800,9600,19200,38400,57600,115200,230400,460800,921600

注意: 默认的波特率是 115200, 且 Data Bits=8, Parity=None, Stop Bits=1, Flow Control=None。

- 2) UART1\_DTR 和 UART1\_DSR 可以用于模块的休眠、唤醒控制,见 3.7;
- 3) C1100 系列无线模块的 UART 接口是 1.8V 电平(UART1\_DTR 支持 1.8~3.3V IO 电平),如果要转换成 RS232 电平(比如 PC 的 RS232 接口)就需要电平转换芯片进行电平再转换;
- 4) 建议对 UART 接口进行 ESD 保护设计。



# 3.6. C1100 MGGT/C1100 NGGT 的 PSM 和唤醒控制

C1100 MGGT/C1100 NGGT 支持 PSM 模式,在 PSM 模式下的耗流很小,只有约 7uA。当 C1100 MGGT/C1100 NGGT 进入 PSM 模式以后,模块内部除 RTC 部分外,其它的功能包括 VOUT、USB、串口、ADC 等子接口都停止工作,模块不再对外输出信号或响应外部信号。只有通过将 POWER\_ON#拉低才能将模块从 PSM 模式下唤醒。可以通过 AT+CPSMS (USIM 在位有效)来打开、关闭 PSM 模式并设置 PSM 周期等参数。

#### 注意:

由于 POWER\_ON#用于将 C1100 MGGT/C1100 NGGT 从 PSM 模式唤醒,所以如果需要 C1100 MGGT/C1100 NGGT 支持 PSM 模式,POWER\_ON#在开机后不能一直被拉低。

## 3.7. C1100 系列无线模块休眠和唤醒控制

C1100 MGGT/C1100 NGGT 和 C1100C 的休眠唤醒机制的控制不同, C1100 MGGT/C1100 NGGT 只能通过 UART1\_DTR 进行控制,见 3.7.1;而 C1100C 根据和 MCU 的通信接口的不同有 2 种控制方式,见 3.7.2。

# 3.7.1. C1100 MGGT/C1100 NGGT 的休眠和唤醒控

制

不论使用 USB 还是串口,C1100 MGGT/C1100 NGGT 都使用 UART1\_DTR 来控制模块休眠或唤醒。

C1100 MGGT/C1100 NGGT 开机后 DTR 默认内部是拉高的,如果用户使用 MCU 控制 C1100 MGGT/C1100 NGGT,建议用户的 MCU 在控制模块开机后先将 C1100 MGGT/C1100 NGGT 的 UART1 管脚拉低,使得 C1100 MGGT/C1100 NGGT 处于唤醒状态,需要触发 C1100 MGGT/C1100 NGGT 休眠时再将 UART1 DTR 拉高。

UART1\_DTR 为边沿触发的中断信号,当其从低跳变为高,且保持高,则会触发 C1100 MGGT/C1100 NGGT 进入休眠模式;当其发生从高到低的跳变,且保持低,则将触发 C1100 MGGT/C1100 NGGT 从休眠模式唤醒。







图 10: 休眠和唤醒控制过程示意图

C1100 MGGT/C1100 NGGT 进入休眠状态后,UART1\_DSR 会对外输出高电平,而在其他正常的工作模式下则输出低电平。

### 3.7.2. C1100C 的休眠和唤醒控制

C1100C 模块根据客户使用的通信接口的不同有 2 种休眠和唤醒的控制机制,具体描述如下:

- 1) 一线休眠机制:用于使用 USB 通信的方式,如果 MCU 端的 USB 拔出或 MCU 将 USB 总线挂起,会触发 C1100C 进入休眠状态,而 MCU 端的 USB 插入或 MCU 将 USB 总线加载,会将 C1100C 从休眠状态唤醒;
- 2)两线休眠机制:用于使用 UART 通信的方式,此时使用 UART1 的 DTR 和 DSR 两个管脚做休眠、唤醒控制和状态表征。UART1\_DTR 是边沿触发的中断信号,如果C1100C 的 UART1\_DTR 被 MCU 从低拉高,则触发 C1100C 进入休眠,C1100C 休眠后会将 UART1\_DSR 置为高,MCU 可通过此状态获知模块已经休眠;如果C1100C 的 UART1\_DTR 被 MCU 从高拉低,则触发 C1100C 从休眠状态唤醒,C1100C 唤醒后会将 UART1\_DSR 置为低,MCU 可通过此状态获知模块已经进入工作状态:
- 3) C1100C 开机后默认内部是拉高,如果用户使用 MCU 控制 C1100C,建议用户在做 MCU 的开机初始化时先将 C1100C 的 UART1\_DTR 管脚拉低,使得 C1100C 处于唤 醒状态,需要触发 C1100C 休眠时再将 UART1\_DTR 拉高。详细时序参考图 10。
- ❖ 需要注意的是这 2 种控制方式不能混用,否则会造成系统错误判断。





## 3.8. USIM 接口

C1100 MGGT 支持 USIM 卡和 SIM 卡, C1100 NGGT 只支持 USIM 卡, C1100C 支持 USIM 卡。

## 3.8.1. USIM 卡接口描述

C1100 系列无线模块的 USIM/SIM 卡接口支持 1.8/3.0V 的卡, USIM 接口信号见下表。

|  | 表 | 19: | C1100 | 系列无线模块 | USIM 接口 | 1 |
|--|---|-----|-------|--------|---------|---|
|--|---|-----|-------|--------|---------|---|

| PIN Name   | 1/0 | PIN No. | 描述                                                                                                                                                          |
|------------|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USIM_DET   | I   | 82      | SIM 卡插入检测,配合带卡在位检测功能的 SIM 卡座使用。模块内部上拉到 1.8V。高电平有效,表示检测到 SIM 卡插入; 低电平表示检测到 SIM 卡拔出。如不需使用 SIM 卡热插拔功能,该管脚必须悬空。支持通过 AT 命令(AT+LSUIMHSPOL)控制 SIM 卡检测逻辑,详情见 3.8.2。 |
| USIM_CLK   | 0   | 83      | USIM 卡时钟信号                                                                                                                                                  |
| USIM_DATA  | I/O | 84      | USIM 卡数据信号                                                                                                                                                  |
| USIM_RESET | 0   | 85      | USIM 卡复位信号                                                                                                                                                  |
| USIM_VCC   | P/O | 86      | USIM 卡电源输出,50mA                                                                                                                                             |

## 3.8.2. USIM 卡接口参考设计

C1100 系列无线模块的 USIM 接口参考设计见下图:



图 11: C1100 系列无线模块 USIM 接口参考设计图

- 1) USIM\_DATA 需要一个上拉电阻到 USIM\_VCC, 此上拉电阻预留不贴;
- 2) 为避免瞬间电压过载,在 USIM\_DATA, USIM\_CLK 和 USIM\_RESET 线路上各串一个 22Ω 的电阻;





- 3) 为提高抗静电能力,在 USIM\_VCC, USIM\_DATA, USIM\_CLK 和 USIM\_RESET 线路上加 ESD 保护器件:
- 4) 为使 USIM\_VCC 更稳定,在 USIM\_VCC 线路上加滤波电容,推荐使用 2.2uF 和 100nF 并联对地:
- 5) 为消除高频干扰信号的影响,在 USIM\_DATA 和 USIM\_CLK 线路上加滤波,推荐使用 33pF 电容对地;
- 6) USIM\_DET 是 USIM 卡在位侦测输入接口,与带卡在位检测的 SIM 卡座上对应的管 脚相连,该信号电平状态决定了 USIM 卡是否插入。该信号模块内部上拉到 1.8V,程 序默认 SIM 卡检测管脚高电平有效,表示检测到 SIM 卡插入;低电平表示检测到 SIM 卡拔出。

#### 注意:

- 1) 请按照 USIM DET 的有效电平选择匹配的 USIM 卡:
- 2) 如果实际使用不需 USIM 热插拔功能, USIM\_DET 务必悬空。
- 3) 支持通过 AT 命令控制 USIM\_DET 的检测电平逻辑的变换,这样可以增加客户 SIM 卡 检测电路的灵活性。该 AT 命令如下:

AT+LSUIMHSPOL=1 高电平有效,高电平表示 SIM 卡在位。

AT+LSUIMHSPOL=0 低电平有效,低电平表示 SIM 卡在位。

## 3.9. 状态指示接口

模块提供 1 个状态指示接口信号 NET\_STATUS,用于指示网络状态。同时可以通过 VOUT\_1V8 指示模块开机与否。

## 3.9.1. 状态指示接口信号描述

C1100 系列无线模块的状态指示接口信号描述见下表。

表 20: C1100 系列无线模块状态指示接口信号接口

| PIN Name     | 1/0 | PIN<br>No.                                               | 描述                      |                        |           |
|--------------|-----|----------------------------------------------------------|-------------------------|------------------------|-----------|
|              |     |                                                          | 快闪(100ms On/800ms Off)  | 搜网                     |           |
| NET_STATUS O |     |                                                          | 慢闪(100ms On/3000ms Off) | 注册成功                   |           |
|              | 0   | O     42     网络状态指示灯     速闪(100ms On/300ms Off)       关闭 | 网络状态指示灯                 | 速闪(100ms On/300ms Off) | 数据传输      |
|              |     |                                                          |                         |                        | 飞行模式、关机状态 |
|              |     |                                                          | 或出错状态(无 SIM             |                        |           |
|              |     |                                                          |                         |                        | 卡或者注册失败)  |

#### 注意:

可以将 Pin13(VOUT\_1V8)用于指示模块是处于开机状态还是关机状态。当模块开机成功以后,VOUT\_1V8 输出高电平。可以用于接客户 MCU 的 GPIO 口或 LED 指示灯,用于指示模块开机成功。





## 3.9.2. 状态指示参考电路

C1100 系列无线模块的状态指示控制参考电路见下图。



图 12: C1100 系列无线模块网络指示灯参考设计图

## 3.10. GPIO 接口

C1100 系列无线模块提供了多个 GPIO, 有的 GPIO 默认定义了别的功能。

表 21: C1100 系列无线模块 GPIO 接口表

| PIN Name           | 1/0 | PIN NO. | 上电复位时数字 10 管脚状态 | 描述         |
|--------------------|-----|---------|-----------------|------------|
| GPIO1              | I/O | 37      | PD              | 1.8V 电平    |
| GPIO2              | I/O | 38      | PU              | 1.8V 电平    |
| GPIO3              | I/O | 39      | PD              | 1.8V 电平    |
| GPIO4              | I/O | 40      | PD              | 1.8V 电平    |
| GPIO5/WTD          | I/O | 41      | PD              | 1.8V 电平,保留 |
| GPIO6              | I/O | 51      | PU              | 1.8V 电平    |
| GPIO7(C1100C 不支持)  | I/O | 59      | PD              | 1.8V 电平;   |
| GPIO8(C1100C 不支持)  | I/O | 60      | PD              | 1.8V 电平;   |
| GPIO9(C1100C 不支持)  | I/O | 61      | PD              | 1.8V 电平;   |
| GPIO10(C1100C 不支持) | I/O | 62      | PD              | 1.8V 电平;   |





#### 备注:

上电复位时数字 IO 管脚状态: PD=下拉; PU=上拉; NP=悬空。此状态为模块从上电到程序接管之前的 IO 管脚状态,此状态为硬件默认状态,程序不可控。

## 3.11. 天线接口

C1100 系列无线模块提供了下列天线接口

表 22: C1100 系列无线模块天线接口

| PIN Name                   | PIN Num. | 描述                            |
|----------------------------|----------|-------------------------------|
| ANT_DIV                    | 46       | 分集天线接口                        |
| (C1100 MGGT/C1100 NGGT为NC) | 40       | (C1100 MGGT/C1100 NGGT 不支持分集) |
| ANT_GNSS                   | 56       | GNSS 天线接口                     |
| ANT_MAIN                   | 67       | 主天线接口                         |

C1100 系列无线模块天线部分的参考设计分为两种,一种是使用焊接式天线,一种是使用射频 50 欧姆天线连接器的方式。射频线走线尽可能的短,射频线要求必须作 50 欧姆阻抗控制,匹配器件建议靠近天线侧摆放。

C1100 系列无线模块的 GNSS 默认支持有源天线的直流供电(3.0V), 所以客户在设计 GNSS 的外部电路时需要注意, 如果使用无源天线, 则 ANT\_GNSS 上需要串联 1 颗 27pF 电容对直流供电进行隔离。

#### 注意:

当开启有源天线供电时,不能将 GNSS 短路到地,否则烧坏 GNSS 内部供电 IC 的风险。

## 3.11.1. 天线连接方式

## 3.11.1.1. 焊接式天线

C1100 系列无线模块使用焊接式天线时天线部分参考原理图如下:







图 13: C1100 系列无线模块外接焊接式天线参考设计图

C1100 系列无线模块使用焊接式天线的设计注意事项:

- 1) PI 型匹配网络(L1, C2, C3)靠近天线焊盘(TP1)放置, GND 焊盘(TP2)与天线焊盘 (TP1)的最近边距离 0.70 mm;
- 2) 如果是 4 层或以上 PCB 叠层,建议对天线焊盘下的相邻层挖空,减少相邻层地对天线焊盘的寄生电容效应;
- 3) 射频线走线需要控制 50 欧姆阻抗;
- **4)** 对于 GNSS 有源天线,图 13 中的 C1 更换为 0Ω 电阻。

#### 3.11.1.2. 使用 RF 连接器连接天线

C1100 系列无线模块天线使用连接器时天线部分原理图如下:



图 14: C1100 系列无线模块使用 RF 连接器连接天线参考设计图



天线连接器(J1)推荐型号为 HIROSE 的 UF.L-R-SMT Connector。

C1100 系列无线模块使用天线连接器的设计注意事项:

- 1) 天线匹配网络(L1, C2, C3)靠近天线连接器(J1)放置;
- 2) 射频线走线需要控制 50 欧姆阻抗;
- 3) 对于 GNSS 有源天线,图 14 中的 C1 更换为 0Ω 电阻。

#### 3.11.1.3. 天线 RF 连接器

当 C1100 系列无线模块应用端使用 RF 连接器,推荐使用 HIROSE 的 UF.L-R-SMT 型号的 RF Connector。如 U.FL-LP-040,U.FL-LP-066,U.FL-LP(V)-040,U.FL-LP-062,U.FL-LP-088。

#### 3.11.1.4. RF 转接线

当应用端使用 RF Connector 时,需要仔细选择 RF 转接线。需要选择尽可能小损耗的 RF 转接线。推荐使用如下射频损耗需求的 RF 转接线。

C1100 MGGT 推荐 RF 转接线损耗要求:

- Band5/8/12/13/17/18/19/20/26/28<1dB</li>
- Band1/2/3/4/39<1.5dB

C1100 NGGT 推荐 RF 转接线损耗要求:

- Band5/8/12/13/17/18/19/20/26/28<1dB</li>
- Band1/2/3/4<1.5dB</li>

C1100C 推荐 RF 转接线损耗要求:

- Band1<1.5dB
- Band3<1.5dB</li>
- Band5<1dB</li>
- Band41<2dB</li>

更多详细信息,请见 http://www.hirose.com

## 3.11.2. C1100 系列无线模块的 GNSS 天线接法

#### 3.11.2.1.无源 GNSS 天线接法

GNSS 无源天线接法如下图







图 15: GNSS 无源天线接法

#### 3.11.2.2.有源 GNSS 天线接法

GNSS 有源天线的接法如下图:



图 16: GNSS 有源天线接法

## 3.11.3. C1100 系列无线模块的 RF 输出功率

C1100 MGGT 的 RF 输出功率见下表:

表 23: C1100 MGGT 的 RF 输出功率表

| 及 10 01100 i i 00 i 前 i i i i ii ii ii ii ii ii ii ii ii |           |           |  |
|----------------------------------------------------------|-----------|-----------|--|
| Band                                                     | Max       | Min       |  |
| eMTC                                                     |           |           |  |
| Band1                                                    | 23dBm±2dB | ≤ -40 dBm |  |
| Band2                                                    | 23dBm±2dB | ≤ -40 dBm |  |
| Band3                                                    | 23dBm±2dB | ≤ -40 dBm |  |
| Band4                                                    | 23dBm±2dB | ≤ -40 dBm |  |





| Band   | Max       | Min       |
|--------|-----------|-----------|
| Band5  | 23dBm±2dB | ≤ -40 dBm |
| Band8  | 23dBm±2dB | ≤ -40 dBm |
| Band12 | 23dBm±2dB | ≤ -40 dBm |
| Band13 | 23dBm±2dB | ≤ -40 dBm |
| Band17 | 23dBm±2dB | ≤ -40 dBm |
| Band18 | 23dBm±2dB | ≤ -40 dBm |
| Band19 | 23dBm±2dB | ≤ -40 dBm |
| Band20 | 23dBm±2dB | ≤ -40 dBm |
| Band26 | 23dBm±2dB | ≤ -40 dBm |
| Band28 | 23dBm±2dB | ≤ -40 dBm |
| Band39 | 23dBm±2dB | ≤ -40 dBm |
| NB-IoT |           |           |
| Band1  | 23dBm±2dB | ≤ -40 dBm |
| Band2  | 23dBm±2dB | ≤ -40 dBm |
| Band3  | 23dBm±2dB | ≤ -40 dBm |
| Band4  | 23dBm±2dB | ≤ -40 dBm |
| Band5  | 23dBm±2dB | ≤ -40 dBm |
| Band8  | 23dBm±2dB | ≤ -40 dBm |
| Band12 | 23dBm±2dB | ≤ -40 dBm |
| Band13 | 23dBm±2dB | ≤ -40 dBm |
| Band17 | 23dBm±2dB | ≤ -40 dBm |
| Band18 | 23dBm±2dB | ≤ -40 dBm |
| Band19 | 23dBm±2dB | ≤ -40 dBm |
| Band20 | 23dBm±2dB | ≤ -40 dBm |
| Band26 | 23dBm±2dB | ≤ -40 dBm |
| Band28 | 23dBm±2dB | ≤ -40 dBm |
| EGPRS  |           |           |
| Band2  | 24dBm±3dB | 5dBm±5dB  |
| Band3  | 24dBm±3dB | 5dBm±5dB  |
| Band5  | 27dBm±2dB | 5dBm±5dB  |
| Band8  | 27dBm±2dB | 5dBm±5dB  |

#### C1100 NGGT 的 RF 输出功率见下表:

表 24: C1100 NGGT 的 RF 输出功率表

| Band   | Max | Min |
|--------|-----|-----|
| NB-loT |     |     |
| Band1  | TBD | TBD |
| Band2  | TBD | TBD |
| Band3  | TBD | TBD |
| Band4  | TBD | TBD |
| Band5  | TBD | TBD |
| Band8  | TBD | TBD |
| Band12 | TBD | TBD |
| Band13 | TBD | TBD |
| Band17 | TBD | TBD |
| Band18 | TBD | TBD |





| Band19 | TBD | TBD |
|--------|-----|-----|
| Band20 | TBD | TBD |
| Band26 | TBD | TBD |
| Band28 | TBD | TBD |

#### C1100C的 RF输出功率见下表:

表 25: C1100C的 RF输出功率表

| Band    | Max       | Min       |
|---------|-----------|-----------|
| LTE FDD |           |           |
| Band1   | 23dBm±2dB | ≤ -40 dBm |
| Band3   | 23dBm±2dB | ≤ -40 dBm |
| Band5   | 23dBm±2dB | ≤ -40 dBm |
| LTE TDD |           |           |
| Band41  | 23dBm±2dB | ≤ -40 dBm |

# 3.11.4. C1100 系列无线模块的 RF 接收灵敏度

表 26: C1100 MGGT 的 RF 接收灵敏度

| Band   | Receive sensitivity |
|--------|---------------------|
| eMTC   |                     |
| Band1  | TBD                 |
| Band2  | TBD                 |
| Band3  | <-99.3 dBm          |
| Band4  | TBD                 |
| Band5  | <-100.8dBm          |
| Band8  | <-98.8dBm           |
| Band12 | TBD                 |
| Band13 | TBD                 |
| Band17 | TBD                 |
| Band18 | TBD                 |
| Band19 | TBD                 |
| Band20 | TBD                 |
| Band26 | TBD                 |
| Band28 | TBD                 |
| Band39 | TBD                 |
| NB-loT |                     |
| Band1  | TBD                 |
| Band2  | TBD                 |
| Band3  | <-107.5dBm          |
| Band4  | TBD                 |
| Band5  | <-107.5dBm          |
| Band8  | <-107.5dBm          |
| Band12 | TBD                 |
| Band13 | TBD                 |





| Band   | Receive sensitivity   |
|--------|-----------------------|
| Band17 | TBD                   |
| Band18 | TBD                   |
| Band19 | TBD                   |
| Band20 | TBD                   |
| Band26 | TBD                   |
| Band28 | TBD                   |
| EGPRS  |                       |
| Band2  | MS5<-92dBm MS9<-80dBm |
| Band3  | MS5<-92dBm MS9<-80dBm |
| Band5  | MS5<-92dBm MS9<-80dBm |
| Band8  | MS5<-92dBm MS9<-80dBm |

#### 表 27: C1100 NGGT 的 RF 接收灵敏度

| Band   | Receive sensitivity |
|--------|---------------------|
| NB-IoT |                     |
| Band1  | TBD                 |
| Band2  | TBD                 |
| Band3  | TBD                 |
| Band4  | TBD                 |
| Band5  | TBD                 |
| Band8  | TBD                 |
| Band12 | TBD                 |
| Band13 | TBD                 |
| Band17 | TBD                 |
| Band18 | TBD                 |
| Band19 | TBD                 |
| Band20 | TBD                 |
| Band26 | TBD                 |
| Band28 | TBD                 |

#### 表 28: C1100C的 RF接收灵敏度

| Band    | Receive sensitivity (PRX+DRX BW 10M) |
|---------|--------------------------------------|
| LTE FDD |                                      |
| Band1   | <-98dBm                              |
| Band3   | <-95dBm                              |
| Band5   | <-96dBm                              |
| LTE FDD |                                      |
| Band41  | <-97 dBm                             |

# 3.11.5. C1100 系列无线模块工作频率

表 29: C1100 MGGT 工作频率

| Band | Transmit     | Receive      |  |
|------|--------------|--------------|--|
| B1   | 1920~1980MHz | 2110~2170MHz |  |



| B2  | 1850~1910 MHz | 1930~1990 MHz |  |
|-----|---------------|---------------|--|
| B3  | 1710~1785MHz  | 1805~1880MHz  |  |
| B4  | 1710~1755 MHz | 2110~2155 MHz |  |
| B5  | 824~849MHz    | 869~894MHz    |  |
| B8  | 880~915MHz    | 925~960MHz    |  |
| B12 | 699~716 MHz   | 729~746 MHz   |  |
| B13 | 777~787 MHz   | 746~756 MHz   |  |
| B17 | 704~716 MHz   | 734~746 MHz   |  |
| B18 | 815~830 MHz   | 860~875 MHz   |  |
| B19 | 830~845 MHz   | 875~890 MHz   |  |
| B20 | 832~862 MHz   | 791~821 MHz   |  |
| B26 | 814~849 MHz   | 859~894 MHz   |  |
| B28 | 703~748 MHz   | 758~803 MHz   |  |
| B39 | 1880~1920MHz  | ·             |  |

## 表 30: C1100 NGGT 工作频率

| Band | Transmit                    | Receive       |  |
|------|-----------------------------|---------------|--|
| B1   | 1920~1980MHz                | 2110~2170MHz  |  |
| B2   | 1850~1910 MHz               | 1930~1990 MHz |  |
| B3   | 1710~1785MHz                | 1805~1880MHz  |  |
| B4   | 1710~1755 MHz 2110~2155 MHz |               |  |
| B5   | 824~849MHz 869~894MHz       |               |  |
| B8   | 880~915MHz                  | 925~960MHz    |  |
| B12  | 699~716 MHz                 | 729~746 MHz   |  |
| B13  | 777~787 MHz                 | 746~756 MHz   |  |
| B17  | 704~716 MHz                 | 734~746 MHz   |  |
| B18  | 815~830 MHz                 | 860~875 MHz   |  |
| B19  | 830~845 MHz                 | 875~890 MHz   |  |
| B20  | 832~862 MHz                 | 791~821 MHz   |  |
| B26  | 814~849 MHz                 | 859~894 MHz   |  |
| B28  | 703~748 MHz                 | 758~803 MHz   |  |

#### 表 31: C1100C 工作频率

| Band | Transmit     | Receive      |  |  |
|------|--------------|--------------|--|--|
| B1   | 1920~1980MHz | 2110~2170MHz |  |  |
| B3   | 1710~1785MHz | 1805~1880MHz |  |  |
| B5   | 824~829MHz   | 869~894MHz   |  |  |
| B41  | 2555~2655MHz |              |  |  |

# 3.11.6. C1100 系列无线模块天线要求

表 32: C1100 MGGT 天线指标要求

| Bond | VSWR Gain |      | CAD  | TRP        | TIS |       |       |
|------|-----------|------|------|------------|-----|-------|-------|
| Band | 1.5       | Peak | Avg. | Efficiency | SAR | (dBm) | (dBm) |
| B1   |           |      |      |            |     | >17   | <106  |
| B2   |           |      |      |            |     | >17   | <106  |
| B3   |           |      |      |            |     | >17   | <106  |





| B4  |        |       |        |      |              | >17 | <106 |
|-----|--------|-------|--------|------|--------------|-----|------|
| B5  |        |       |        |      |              | >17 | <106 |
| B8  |        |       |        |      |              | >17 | <106 |
| B12 |        |       |        |      | -1.6         | >17 | <106 |
| B13 | <2.5:1 | >0dBi | >-4dBi | >40% | <1.6<br>W/Kg | >17 | <106 |
| B17 |        |       |        |      | Wing         | >17 | <106 |
| B18 |        |       |        |      |              | >17 | <106 |
| B19 |        |       |        |      |              | >17 | <106 |
| B20 |        |       |        |      |              | >17 | <106 |
| B26 |        |       |        |      |              | >17 | <106 |
| B28 |        |       |        |      |              | >17 | <106 |
| B39 |        |       |        |      |              | >17 | <106 |

#### 表 33: C1100 NGGT 天线指标要求

|      | VSWR   | G     | ain    | <b>-</b> (:) | 045          | TRP   | TIS   |
|------|--------|-------|--------|--------------|--------------|-------|-------|
| Band | 1.5    | Peak  | Avg.   | Efficiency   | SAR          | (dBm) | (dBm) |
| B1   |        |       |        |              |              | >17   | <106  |
| B2   |        |       |        |              |              | >17   | <106  |
| B3   |        |       |        |              |              | >17   | <106  |
| B4   |        |       |        |              |              | >17   | <106  |
| B5   |        |       |        |              |              | >17   | <106  |
| B8   |        |       |        |              | <1.6<br>W/Kg | >17   | <106  |
| B12  |        |       |        | >-4dBi >40%  |              | >17   | <106  |
| B13  | <2.5:1 | >0dBi | >-4dBi |              |              | >17   | <106  |
| B17  |        |       |        |              |              | >17   | <106  |
| B18  |        |       |        |              |              | >17   | <106  |
| B19  |        |       |        |              |              | >17   | <106  |
| B20  |        |       |        |              |              | >17   | <106  |
| B26  |        |       |        |              |              | >17   | <106  |
| B28  |        |       |        |              |              | >17   | <106  |
| B39  |        |       |        |              |              | >17   | <106  |

#### 表 34: C1100C 天线指标要求

|      |              | Gain           |              |            |             |              | TIS                          |      |
|------|--------------|----------------|--------------|------------|-------------|--------------|------------------------------|------|
| Band | VSWR         | Peak           | Avg.         | Efficiency | SAR         | TRP<br>(dBm) | (PRX+DRX<br>BM 10M)<br>(dBm) |      |
| B1   |              |                |              |            |             | 19           | <-94                         |      |
| B3   | <2.5:1       | -0 F.4 - 0 dDi | >0dBi >-4dBi | >-4dBi     | >-4dBi >40% | <1.6         | 19                           | <-91 |
| B5   | <2.5.1 >00DI | >-4ubi         | >40%         | >40% W/Kg  | W/Kg        | 19           | <-92                         |      |
| B41  |              |                |              |            |             | 19           | <-93                         |      |





# 4. 机械特性

## 4.1. 模块 3D 图

我们提供完整的结构图。如果需要 3D 图档建模,请联系索取 C1100 系列无线模块的 3D 文档。

# 4.2. 模块 2D 结构图

我们提供完整的结构图。如有需要请联系索取。







图 17: C1100 系列无线模块推荐封装尺寸

## 4.3. C1100 系列无线模块应用端封装推荐

客户设计时需要的封装文件,包括原理图封装图和 PCB 封装图。我们有专门的推荐资料,需要时请联系索取。

# 5. 各种业务下的功耗

C1100 系列无线模块各种频段的功耗(VBAT供电: 3.8V)见下表。

表 35: C1100 MGGT 模块各频段功耗

| Test Type | Channel/      | Power<br>Control |       | Call Curi       | rent (mA)       |                 |
|-----------|---------------|------------------|-------|-----------------|-----------------|-----------------|
| rest type | Configuration | Level            | Power | Avg.<br>Current | Min.<br>Current | Max.<br>Current |
| eMTC      | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band3 1   | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |



| Test Type      | Channel/                     | Power<br>Control |       | Call Cur        | rent (mA)       |                 |
|----------------|------------------------------|------------------|-------|-----------------|-----------------|-----------------|
| 10011360       | Configuration                | Level            | Power | Avg.<br>Current | Min.<br>Current | Max.<br>Current |
|                | TBD                          |                  | TBD   | TBD             | TBD             | TBD             |
|                | TBD                          |                  | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band2  | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Dariuz         | TBD                          | Fower            | TBD   | TBD             | TBD             | TBD             |
|                | TBD                          |                  | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band3  | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danus          | TBD                          | Fower            | TBD   | TBD             | TBD             | TBD             |
| LATO           | TBD                          |                  | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band4  | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Daliu4         | TBD                          | Fower            | TBD   | TBD             | TBD             | TBD             |
|                | TBD                          |                  | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band5  | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Banus          | TBD                          | Fower            | TBD   | TBD             | TBD             | TBD             |
|                | TBD                          |                  | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band8  | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Dariuo         | TBD                          | rowei            | TBD   | TBD             | TBD             | TBD             |
| LATO           | TBD                          | 14 T)            | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band12 | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danu12         | TBD                          | Power            | TBD   | TBD             | TBD             | TBD             |
| . NATO         | TBD                          | M. TV            | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band13 | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danais         | TBD                          | 1 Owel           | TBD   | TBD             | TBD             | TBD             |
| - NATO         | TBD                          | Marrity          | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band17 | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Dana 17        | TBD                          | 1 Owel           | TBD   | TBD             | TBD             | TBD             |
| . NATO         | TBD                          | M. TV            | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band18 | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danaro         | TBD                          | 1 OWEI           | TBD   | TBD             | TBD             | TBD             |
| - NATO         | TBD                          | Marrity          | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band19 | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danars         | TBD                          | 1 OWEI           | TBD   | TBD             | TBD             | TBD             |
| OMTC           | TBD                          | May TV           | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band20 | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danazo         | TBD                          | I OWEI           | TBD   | TBD             | TBD             | TBD             |
| OMTC           | TBD                          | May TV           | TBD   | TBD             | TBD             | TBD             |
|                | eMTC Max TX Band26 TBD Power | Power            | TBD   | TBD             | TBD             | TBD             |
| Band26         | TBD                          | 1 OVVG1          | TBD   | TBD             | TBD             | TBD             |
| OMTC           | TBD                          | May TV           | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band28 | TBD                          | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Band28         | TBD                          | 1 01101          | TBD   | TBD             | TBD             | TBD             |



| Test Type       | Channel/      | Power<br>Control |       | Call Cur        | rent (mA)       |                 |
|-----------------|---------------|------------------|-------|-----------------|-----------------|-----------------|
| rest type       | Configuration | Level            | Power | Avg.<br>Current | Min.<br>Current | Max.<br>Current |
| MTO             | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| eMTC<br>Band39  | TBD           | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danusy          | TBD           | Fower            | TBD   | TBD             | TBD             | TBD             |
| ND I-T          | TBD           | Man TV           | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band1 | TBD           | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danui           | TBD           | rowei            | TBD   | TBD             | TBD             | TBD             |
| ND I-T          | TBD           | Man TV           | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band2 | TBD           | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danaz           | TBD           | 1 Owel           | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band3 | TBD           | Max TX Power     | TBD   | TBD             | TBD             | TBD             |
| Danus           | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band4           | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX<br>Power  | TBD   | TBD             | TBD             | TBD             |
| Band5           | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band8           | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band12          | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band3           | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band17          | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band18          | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | I IBD I       | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band19          | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                 | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT          | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band20          | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |



| Test Type        | Channel/      | nel/ Power Control |       | Call Cur        | rent (mA)       |                 |
|------------------|---------------|--------------------|-------|-----------------|-----------------|-----------------|
| rest Type        | Configuration | Level              | Power | Avg.<br>Current | Min.<br>Current | Max.<br>Current |
| ND L T           | TBD           | N4 T)/             | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band26 | TBD           | Max TX<br>Power    | TBD   | TBD             | TBD             | TBD             |
| Danuzo           | TBD           | Power              | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           |                    | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band28 | TBD           | Max TX             | TBD   | TBD             | TBD             | TBD             |
| Bandzo           | TBD           | Power              | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           |                    | TBD   | TBD             | TBD             | TBD             |
| EGPRS<br>Band2   | TBD           | Max TX<br>Power    | TBD   | TBD             | TBD             | TBD             |
| Danuz            | TBD           | rowei              | TBD   | TBD             | TBD             | TBD             |
| 50000            | TBD           |                    | TBD   | TBD             | TBD             | TBD             |
| EGPRS<br>Band3   | TBD           | Max TX<br>Power    | TBD   | TBD             | TBD             | TBD             |
| Banus            | TBD           | rowei              | TBD   | TBD             | TBD             | TBD             |
| 50000            | TBD           | N4 T)/             | TBD   | TBD             | TBD             | TBD             |
| EGPRS<br>Band5   | TBD           | Max TX             | TBD   | TBD             | TBD             | TBD             |
| Danus            | TBD           | Power              | TBD   | TBD             | TBD             | TBD             |
| ECDDC.           | TBD           | May TY             | TBD   | TBD             | TBD             | TBD             |
| EGPRS<br>Band8   | TBD           | Max TX<br>Power    | TBD   | TBD             | TBD             | TBD             |
| Danido           | TBD           | i owei             | TBD   | TBD             | TBD             | TBD             |

表 36: C1100 NGGT 模块各频段功耗

| Test Type       | Channel/ Power Control |                 | Call Current (mA) |                 |                 |                 |
|-----------------|------------------------|-----------------|-------------------|-----------------|-----------------|-----------------|
| тезі туре       | Configuration          | Level           | Power             | Avg.<br>Current | Min.<br>Current | Max.<br>Current |
| A10 1 . T       | TBD                    | M. TV           | TBD               | TBD             | TBD             | TBD             |
| NB-IoT<br>Band1 | TBD                    | Max TX<br>Power | TBD               | TBD             | TBD             | TBD             |
| Danui           | TBD                    | rowei           | TBD               | TBD             | TBD             | TBD             |
| ND L.T          | TBD                    | M. TV           | TBD               | TBD             | TBD             | TBD             |
| NB-IoT<br>Band2 | TBD                    | Max TX          | TBD               | TBD             | TBD             | TBD             |
| Danuz           | TBD                    | Power           | TBD               | TBD             | TBD             | TBD             |
|                 | TBD                    |                 | TBD               | TBD             | TBD             | TBD             |
| NB-IoT<br>Band3 | TBD                    | Max TX<br>Power | TBD               | TBD             | TBD             | TBD             |
| Banus           | TBD                    | Fower           | TBD               | TBD             | TBD             | TBD             |
| ND 1 T          | TBD                    |                 | TBD               | TBD             | TBD             | TBD             |
| NB-IoT<br>Band4 | TBD                    | Max TX<br>Power | TBD               | TBD             | TBD             | TBD             |
| Danu4           | TBD                    | Fower           | TBD               | TBD             | TBD             | TBD             |
|                 | TBD                    |                 | TBD               | TBD             | TBD             | TBD             |
| NB-IoT          | TBD                    | Max TX          | TBD               | TBD             | TBD             | TBD             |
| Band5           | TBD                    | Power           | TBD               | TBD             | TBD             | TBD             |
| NB-IoT          | TBD                    | Max TX          | TBD               | TBD             | TBD             | TBD             |



| Test Type        | Channel/      | Power<br>Control |       | Call Cur        | rent (mA)       |                 |
|------------------|---------------|------------------|-------|-----------------|-----------------|-----------------|
| тезі туре        | Configuration | Level            | Power | Avg.<br>Current | Min.<br>Current | Max.<br>Current |
| Band8            | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NDLT             | TBD           | Ma TV            | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band12 | TBD           | Max TX<br>Power  | TBD   | TBD             | TBD             | TBD             |
| Danutz           | TBD           | rowei            | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band3  | TBD           | Max TX<br>Power  | TBD   | TBD             | TBD             | TBD             |
| Danus            | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT           | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band17           | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           | >/               | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band18 | TBD           | Max TX<br>Power  | TBD   | TBD             | TBD             | TBD             |
| Danuro           | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
| ND L T           | TBD           | 14 TV            | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band19 | TBD           | Max TX<br>Power  | TBD   | TBD             | TBD             | TBD             |
| Danuis           | TBD           | Fower            | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           | >/               | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band20 | TBD           | Max TX<br>Power  | TBD   | TBD             | TBD             | TBD             |
| Danu20           | TBD           | rowei            | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT           | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Band26           | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |
|                  | TBD           |                  | TBD   | TBD             | TBD             | TBD             |
| NB-IoT<br>Band28 | TBD           | Max TX           | TBD   | TBD             | TBD             | TBD             |
| Dalluzo          | TBD           | Power            | TBD   | TBD             | TBD             | TBD             |

#### 表 37: C1100C 模块各频段功耗

| Toot Type        | Channel/      | Channel/ Power Control |       | Call Current (mA) |                 |                 |  |
|------------------|---------------|------------------------|-------|-------------------|-----------------|-----------------|--|
| Test Type        | Configuration | Level                  | Power | Avg.<br>Current   | Min.<br>Current | Max.<br>Current |  |
| EDD LTE          | CH18100       | Marraty                | 22.4  | 660.70            | 643.60          | 675.35          |  |
| FDD-LTE<br>Band1 | CH18300       | Max TX<br>Power        | 21.9  | 562.20            | 553.53          | 593.14          |  |
| Danui            | CH18500       | rowei                  | 22.0  | 653.10            | 645.17          | 665.17          |  |
| 500 LT5          | CH19300       |                        | 21.5  | 650.80            | 646.16          | 655.20          |  |
| FDD-LTE<br>Band3 | CH19575       | Max TX<br>Power        | 21.4  | 574.60            | 570.20          | 580.12          |  |
| Barius           | CH19850       | rowei                  | 21.4  | 605.00            | 599.14          | 612.57          |  |
| FDD-LTE          | CH20450       | Max TX                 | 22.4  | 507.90            | 503.82          | 511.46          |  |
| Band5            | CH20525       | Power                  | 22.5  | 563.00            | 559.25          | 567.00          |  |





| Channel/          |               | Control         |       | Call Current (mA) |                 |                 |  |
|-------------------|---------------|-----------------|-------|-------------------|-----------------|-----------------|--|
| rest type         | Configuration | Level           | Power | Avg.<br>Current   | Min.<br>Current | Max.<br>Current |  |
|                   | CH20600       |                 | 22.5  | 583.70            | 579.75          | 587.20          |  |
| TDD 175           | CH40340       | 14 T)/          | 21.8  | 439.50            | 436.29          | 442.24          |  |
| TDD-LTE<br>Band41 | CH40740       | Max TX<br>Power | 21.9  | 397.30            | 392.11          | 407.16          |  |
| Danu41            | CH41140       | I OWEI          | 21.9  | 428.30            | 424.26          | 432.14          |  |



# 6. 电气特性

## 6.1. 推荐工作电压范围

表 38: C1100 系列无线模块推荐工作电压范围

| Parameter | Description                  | Min   | Туре | Max  | Unit |
|-----------|------------------------------|-------|------|------|------|
|           | C1100 MGGT                   | 3.1   | 3.8  | 4.2  |      |
|           | C1100 NGGT                   | 3.1   | 3.8  | 4.2  | V    |
|           | C1100C                       | 3.3   | 3.8  | 4.2  |      |
| VBAT      | RMS 平均供电电流                   | 0     |      | 0.9  | Α    |
|           | 在每个时隙的瞬时压降,                  |       |      |      |      |
|           | I <sub>VBAT</sub> 峰值电流可能达到2A |       |      | 300  | mV   |
|           | (每4.6ms的时隙功率发射)              |       |      |      |      |
| GPIO      | 数字 IO 的电平供电电压                | -0.3  | 1.8  | 2.16 | V    |
| GFIO      | 关机模式供电电压                     | -0.25 |      | 0.25 | V    |

如果 C1100 MGGT/C1100 NGGT 的 VBAT 模块端压降低于 3.1V(C1100C 为 3.3V), 会影响射频性能。任何时候都必须保证模块端 VBAT 的电压不低于 2.5V, 否则会造成模块断电异常关机。

## 6.2. 环境温度范围

C1100系列无线模块推荐在-30~+75℃环境下工作。建议应用端在环境恶劣条件下考虑温控措施。同时提供模块的受限操作温度范围,此温度条件下,可能某些RF指标超标。同时建议模块应用终端在一定温度条件下储存。超出此范围模块可能不能正常工作或者损坏。

表 39: C1100 系列无线模块温度范围

| Temperature | Min       | Туре | Max     | Unit          |
|-------------|-----------|------|---------|---------------|
| 环境温度        | -30       | 25   | 75      | ${\mathbb C}$ |
| 受限操作温度      | -40 ~ -30 |      | 75 ~ 85 | $^{\circ}$    |
| 储存温度        | -45       |      | 90      | $^{\circ}$    |

## 6.3. 接口工作状态电气特性

V<sub>L</sub>: 逻辑低电平; V<sub>H</sub>: 逻辑高电平;

表 40: C1100 系列无线模块普通数字 IO 信号的逻辑电平

| Signal |      | V <sub>L</sub>          | V <sub>H</sub>           | Unit                    |       |
|--------|------|-------------------------|--------------------------|-------------------------|-------|
| Signal | Min  | Max                     | Min                      | Max                     | Offit |
| 数字输入   | -0.3 | 0.3* V <sub>DD-PX</sub> | 0.7* V <sub>DD-PX</sub>  | V <sub>DD-PX</sub> +0.5 | V     |
| 数字输出   | GND  | 0.45                    | V <sub>DD-PX</sub> -0.45 | $V_{DD-PX}$             | V     |

#### 注意:

 $V_{DD-PX}=1.8V$ 

UART1 DTR高电平支持1.8~3.3V IO

表 41: C1100 系列无线模块接口电源工作状态电特性

| Parameter | 1/0 | Min        |     | Туре     | Max      | Unit |
|-----------|-----|------------|-----|----------|----------|------|
|           |     | C1100 MGGT | 3.1 |          |          |      |
| VBAT      | 1   | C1100 NGGT | 3.1 | 3.8      | 4.2      | V    |
|           |     | C1100C     | 3.3 |          |          |      |
| USIM_VCC  | 0   | 1.7/2.75   |     | 1.8/2.85 | 1.9/2.95 | V    |

## 6.4. 环境可靠性要求

表 42: C1100 系列无线模块环境可靠性要求

| 测试项目   | 测试条件                                                                                       |
|--------|--------------------------------------------------------------------------------------------|
| 低温存储测试 | 温度-45℃±3℃,关机状态下持续24小时                                                                      |
| 高温存储测试 | 温度+90℃±3℃,关机状态下持续24小时                                                                      |
| 温度冲击试验 | 关机状态下,分别在温度-45℃和+90℃环境下持续0.5h,温度转换时间<3min,共进行24个循环                                         |
| 高温高湿试验 | 温度+90℃±3℃,湿度90~95%RH,关机状态下持续24小时                                                           |
| 低温运行测试 | 温度-30℃±3℃,工作状态下持续24小时                                                                      |
| 高温运行测试 | 温度+75℃±3℃,工作状态下持续24小时                                                                      |
| 震动测试   | 按照下表所示的要求进行震动测试:  频率 随机振动ASD(加速度谱密度) 5~20Hz 0.96m²/s³ 20~500Hz 0.96m²/s³(20Hz处),其它-3dB/倍频程 |

## 6.5. ESD 特性

C1100系列无线模块是一款消费终端产品。虽然模块设计时已经考虑了ESD的问题,并做了ESD防护,但是考虑C1100系列模块在运输和二次开发也可能有ESD问题发生,所以开发者要考虑最终产品ESD问题的防护,请参考文档中的接口设计的推荐电路。

对于C1100系列无线模块的ESD允许的放电范围参考下表。

表 43: C1100 MGGT/C1100 NGGT 接口抗 ESD 特性

| Part         | Air discharge | Contact discharge |
|--------------|---------------|-------------------|
| VBAT,GND     | ±2KV          | ±500V             |
| Antenna port | ±2KV          | ±500V             |
| Other port   | ±2KV          | ±500V             |

#### 注意:

为降低C1100 MGGT/C1100 NGGT的关机漏电流,在模块的电源和USB接口并未加ESD保护(减少ESD器件对地的漏电流)。所以C1100 MGGT/C1100 NGGT对比C1100C在电源和USB接口抗ESD特性更弱。

表 44: C1100C 接口抗 FSD 特性

| N 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |               |                   |  |
|-----------------------------------------|---------------|-------------------|--|
| Part                                    | Air discharge | Contact discharge |  |





| VBAT,GND     | ±8KV | ±4KV  |
|--------------|------|-------|
| Antenna port | ±2KV | ±500V |
| Other port   | ±2KV | ±500V |