שאלה 1: חלוקת חפצים עם מס

x נתונה בעיית חלוקה עם כסף, של m חפצים בין m אנשים. כל אדם המקבל סכום כסף חיובי כלשהו t=0.3 מס). צריך לשלם $t \neq 0.3$ מס הכנסה, כאשר $t \neq 0.3$ הוא מספר קבוע כלשהו בין 0 ל-1 (נניח $t \neq 0.3$ מס).

- א. הראו שאלגוריתם "המכרז השווה" לא תמיד מחזיר חלוקה ללא קנאה.
- * ב. תארו אלגוריתם המוצא חלוקה יעילה-פארטו וללא קנאה, או הוכיחו שלא קיים כזה.

פתרון- סעיף א':

<u>:נגדיר</u>

- x_1, x_2, x_3 :שחקנים n •
- y_1, y_2, y_3 :חפצים m •
- את טבלת הערכים הבאה:

	y_1	y_2	y_3	
x ₁	$v_1(y_1) = 60$	$v_1(y_2) = 50$	$v_1(y_3) = 10$	$total_1 = 120$
x_2	$v_2(y_1) = 50$	$v_2(y_2) = 40$	$v_2(y_3) = 100$	$total_2 = 190$
x_3	$v_3(y_1) = 50$	$v_3(y_2) = 20$	$v_3(y_3) = 90$	$total_1 = 160$
	$sum_1 = 160$	$sum_4 = 110$	$sum_1 = 200$	$Total \ nrofit = 210$

 $\frac{210}{3} = 70$, ז"א: $\frac{Total\ profit}{n}$, לפי אלגוריתם "המרכז השווה" כל שחקן מקבל תשלום בסך:

כעת הערך של כל שחקן לאחר חלוקת החפצים הוא:

$$p_1 = \frac{Total\ profit}{n} - \{v_1(y_1) + v_1(y_2)\} = 70 - \{60 + 50\} = -40$$
$$p_2 = \frac{Total\ profit}{n} - \{v_2(y_3)\} = 70 - \{100\} = -30$$

כיוון ש: $p_3>0$ הם לא מחויבים בתשלום מיסים, לעומת זאת $p_1,p_2<0$ כיוון ש

$$p_3 = \frac{Total\ profit}{n} * (1 - tax) = 70 * (1 - 0.3) = 49$$

נקבל ששחקן 3 מקנא בשחקנים 1,2 ושחקן 2 מקנא בשחקן 1, בהתאם לשווי הסלים של כל אחד מהם:

$$profit_1 > profit_2 > profit_3$$

קיבלנו חלוקה עם קנאה.

<u>פתרון- סעיף ב':</u>

<u>:נגדיר</u>

- $x_1, x_2, ..., x_n$ שחקנים n
- $y_1, y_2, ..., y_m$ חפצים: m •
- $v_i(y_j)$:הערך של חפץ j עבור שחקן i הוא

נאמר ששחקן i הציע את הסכום הגדול ביותר עבור חפץ j ולכן הוא מקבל אותו, ז"א:

$$v_{i(y_j)} > v_{1(y_j)}, v_{2(y_j)}, \dots, v_{i-1}(y_j), v_{i+1}(y_j), \dots v_n(y_j)$$

 $.v_i(y_j)*tax$ (עבור חפץ j המנהל מקבל:

:j את סכום הערכים של כל n השחקנים עבור חפץ sum_i -נסמן ב

$$sum_j = v_1(y_j) + \dots + v_n(y_j)$$

נחשב את החלק היחסי שכל אחד מהשחקנים צריך לשלם עבור ה-tax של חפץ j בהתאם לערכו:

$$tax_{v_i}(y_j) = tax * \frac{v_i(y_j)}{sum_i}$$

נוודא שסכום המיסים היחסי שכל שחקן משלם שווה לערך המיסים של המנהל (כלומר הרווח של המנהל עבור חפץ *j*):

$$\sum_{i \in n} tax_{v_i}(y_j) = \sum_{i \in n} tax * \frac{v_i(y_j)}{sum_j} = tax * \left\{ \frac{v_1(y_j)}{sum_j} + \dots + \frac{v_n(y_j)}{sum_j} \right\}$$

$$= tax * \frac{v_1(y_j) + \dots + v_n(y_j)}{sum_j} = tax * \frac{sum_j}{sum_j} = tax$$

שחקן $z \in \{1,2, \dots i-1, i+1, \dots, n\}$ וכל אחד מ-j וכל אחד מ- $z \in \{1,2, \dots i-1, i+1, \dots, n\}$ השחקנים האחרים יקבל את החפץ

$$p_z(y_j) = \frac{v_i(y_j)}{n} * \left\{ tax * \frac{v_z(y_j)}{sum_j} \right\}$$

<u>האלגוריתם מבטיח:</u>

- אין לשחקנים אינטרס לעשות מניפולציה- נאמר ששחקן כלשהו יעריך חפץ נמוך יותר מערכו $p_z(y_i)$ יקטן.
 - פוטנציאל רווח והפסד שווים- אם חפץ מסוים חסר ערך עבור שחקן, משמע השחקן העריך
 אותו ב-0, אז השחקן לא יחויב במיסים ומנגד לא יזוכה בתשלום עבור אותו החפץ.
 - כל שחקן ישלם את החלק היחסי למיסים בהתאם לערך החפץ עבורו.