Lab-4 Analog Circuits

Bipolar Junction Transistor (BJT): Experiment List

In this session you will perform BJT based practical's using LTSpice. Based on the class lecture perform the following exercises. In your lab-book, remember to write your steps/methods, and the observations/results. The TA's shall sign and grade at the end of each lab. Discuss with your group mates. If you have any difficulty, you may consult TAs.

Note: LTSpice graphs data can be exported to excel sheet using the **export command.** You can then draw the graph as per requirement. Use 2N3904 npn for all the exercises.

1. Simulate a BJT circuit to get the input and output characteristics curves.

(A) Circuit setup for input characteristics:

- i. Hook up the circuit as shown in the figure above.
- ii. Keep Vcc fix at 0V (Or do not connect Vcc)
- iii. Increase V_{BB} from 0V to 20V, note down readings of base current I_B and base to emitter voltage V_{BE} in the observation table.
- iv. Repeat above procedure for Vcc = +5V and Vcc = +10V
- v. Draw input characteristics curve. Plot V_{BE} on X axis and I_B on Y axis.

Note: In the analysis type select DC Sweep.

(B) Circuit setup for output characteristics:

- i. Connect circuit as shown in the circuit diagram.
- ii. Keep base current fix (Initially 0)
- iii. Increase V_{CC} from 0V to 20V, note down readings of collector current Ic and collector to emitter voltage V_{CE} in the observation table.
- iv. Repeat above procedure for base currents $I_B=5\mu A,\,50~\mu A,\,100~\mu A.$ Increase base current by increasing V_{BB} .
- v. Draw output characteristics curve. Plot V_{CE} on X axis and I_C on Y axis.

2. Determining the Operating Region of a BJT.

Specify the operating region of the transistor in the following cases. Use LTSpice measurements or manual calculation where required.

- (A) $V_{BB} = 4 \text{ V}$, $V_{CC} = 12 \text{ V}$, $R_B = 40 \text{ k}\Omega$, $R_C = 1 \text{k}\Omega$, $R_E = 321 \Omega$, Measure V_1 , V_2 and V_3 .
- (B) $V_{BB} = 0$, $V_{CC} = 12$ V, $R_B = 40$ k Ω , $R_C = 1$ k Ω , $R_E = 500$ Ω .
- (C) Data: $V_1 = V_B = 2.7 \text{ V}$, $V_2 = V_E = 2 \text{ V}$, $V_3 = V_C = 2.3 \text{ V}$.

3. (A) Determine the DC operating point of the BJT amplifier in the circuit below.

Data: $R_B = 62.7 \text{ k}\ \Omega$, $R_C = 375\ \Omega$, $V_{BB} = 10 \text{ V}$, $V_{CC} = 15 \text{ V}$.

Hint: First write the load line equation for the collector circuit. To determine the Q point, find the collector curve (from V_{CE} vs I_{C} graph) that intersects the load line. To do so, you must know the base current.

(B) How would the Q point change if the base current is changed to 100 μ A?

4. Built a BJT amplifier.

(A) Connect the circuit as shown below. $R_B = 5 k \, \Omega$, $V_{CC} = 8 \, V$, and a 0.65V DC input voltage with a 10 mV 10kHz sine wave on top. Perform a transient analysis lasting about 1ms with 1 μ s time steps.

Plot V_{out} and V_{in} waveforms. The output waveform should be an amplified version of the input wave.

- (B) Explain why and what happens if you change (increase and decrease) the DC voltage for either V_{in} or V_{CC} ?
- (C) Explain why and what happens if you change the resistor value?
- (D) Explain why and what happens if you change the transistor model or change to a pnp transistor?