TEORÍA ANÁLISIS II

CONTINUIDAD:

Dada $f: H \subset \mathbb{R}^n \to \mathbb{R}^m$ con el punto $\bar{A} \in H$, se dice que f es continua si:

1.
$$\exists f(\bar{A}); \ f(\bar{A}) \in R^m$$

2. $\exists \lim_{\bar{X} \to \bar{A}} f(\bar{X}) = L; \ L \in R$
3. $f(\bar{A}) = L$

DERIVADA DIRECCIONAL:

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}^m$ con el punto \bar{A} interior de H y $\bar{u} \in \mathbb{R}^n$; se define la derivada direccional de f en \bar{A} según \bar{u} como:

$$f'(\bar{A}, \breve{u}) = \lim_{h \to 0} \frac{f(\bar{A} + h\breve{u}) - f(\bar{A})}{h}$$

LEY DE HOMOGENEIDAD:

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}^m$, H abierto con el punto $\bar{A} \in H$, $y \ \breve{u} \in \mathbb{R}^n$; tal que $\exists f(\bar{A}, \breve{u}). Entonces f'(\bar{A}, \lambda \breve{u}) => f'(\bar{A}, \lambda \breve{u}) = \lambda f'(\bar{A}, \breve{u}), \forall \lambda \in \mathbb{R}, \lambda \neq 0$

<u>DEMOSTRACIÓN</u>

$$f'(\bar{A}, \lambda \breve{u}) = \lim_{h \to 0} \frac{f(\bar{A} + h(\lambda \breve{u})) - f(\bar{A})}{h}$$

$$f'(\bar{A}, \lambda \breve{u}) = \lambda \lim_{h \to 0} \frac{f(\bar{A} + h\lambda \breve{u}) - f(\bar{A})}{\lambda h}$$

$$\lambda h = t \implies cuando\ h \to 0 \implies t \to 0$$

$$f'(\bar{A}, \lambda \breve{u}) = \lambda \lim_{t \to 0} \frac{f(\bar{A} + t\breve{u}) - f(\bar{A})}{t}$$

TEOREMA DE SCHNARTZ:

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}^m$, H abierto, $\bar{f} \in \mathbb{C}^2$ en H. Entonces:

$$\overline{f''}_{xixj} = \overline{f''}_{xjxi}$$
; $1 \le i$; $j \le n$

DEMOSTRACIÓN:

$$\bar{f} \in C^3 \implies \overline{f'''}_{xxy} = \overline{f'''}_{xyx} = \overline{f'''}_{yxx}$$

$$\bar{f} \in C^3 \implies \bar{f} \in C^2 \implies \overline{f''}_{xy} = \overline{f''}_{yx}$$

GRADIENTE:

Dada $f: H \subset \mathbb{R}^n \to \mathbb{R}$, con derivadas parciales en el punto $\bar{A} \in H$

se define gradiente de
$$f$$
 en \bar{A} , como: $\nabla f(\bar{A}) = \left(\frac{\partial f}{\partial X_1}(\bar{A}), \dots, \frac{\partial f}{\partial X_n}(\bar{A})\right)$

TAYLOR 1er ORDEN:

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}$, H abierto, con el punto $\bar{A} \in H$, $\bar{f} \in \mathbb{C}^1$ en H. Entonces:

$$f(\bar{X}) = f(\bar{A}) + \nabla f(\bar{A}) (\bar{X} - \bar{A}) + \varepsilon(\bar{X}); \lim_{\bar{X} \to \bar{A}} \frac{\varepsilon(\bar{X})}{||\bar{X} - \bar{A}||} = 0$$

TAYLOR 2do ORDEN:

Dada $\bar{f}: H \subset \mathbb{R}^2 \to \mathbb{R}$, H abierto, con el punto $\bar{A} \in H$, $\bar{f} \in \mathbb{C}^2$ en H. Entonces:

$$f(x,y) = f(X_0, Y_0) + f'x(X_0, Y_0) (X - X_0) + f'y(X_0, Y_0) (Y - Y_0)$$

$$+ \frac{1}{2} [f''_{xx}(X_0, Y_0)(X - X_0)^2 + f''yy(X_0, Y_0) (Y - Y_0)^2$$

$$+ 2f''xy(X_0, Y_0) (X - X_0) (Y - Y_0)] + \varepsilon(X, Y)$$

$$; \lim_{\bar{X} \to \bar{A}} \frac{\varepsilon(\bar{X})}{||\bar{X} - \bar{A}||^2} = 0$$

DIFERENCIABILIDAD:

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}^m$, H abierto, con el punto $\bar{A} \in H$, se dice que \bar{f} es diferenciable en \bar{A} si:

$$\bar{f}(\bar{X}) = \bar{f}(\bar{A}) + \mathrm{D}f(\bar{A}) (\bar{X} - \bar{A}) + \varepsilon(\bar{X}); \quad \lim_{\bar{X} \to \bar{A}} \frac{||\varepsilon(\bar{X})||}{||\bar{X} - \bar{A}||} = 0$$

Donde Df es la matriz jacobiana de $ar{f}$ en $ar{A}$

TEOREMA (DIFERENCIABLE => CONTINUA):

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}^m$, H abierto, $\bar{A} \in H$, tal que \bar{f} es diferenciable en \bar{A} . Entonces \bar{f} es continua en \bar{A}

DEMOSTRACION:

Por hipótesis
$$\bar{f}(\bar{X}) = \bar{f}(\bar{A}) + \mathrm{D}f(\bar{A}) (\bar{X} - \bar{A}) + \varepsilon(\bar{X}); \lim_{\bar{X} \to \bar{A}} \frac{||\varepsilon(\bar{X})||}{||\bar{X} - \bar{A}||} = 0$$

$$\bar{f}(\bar{X}) = \bar{f}(\bar{A}) + \mathrm{D}f(\bar{A}) (\bar{X} - \bar{A}) + \frac{\varepsilon(\bar{X}) ||\bar{X} - \bar{A}||}{||\bar{X} - \bar{A}||}$$

$$\lim_{\bar{X} \to \bar{A}} \bar{f}(\bar{X}) = \lim_{\bar{X} \to \bar{A}} \bar{f}(\bar{A}) + \lim_{\bar{X} \to \bar{A}} \mathrm{D}f(\bar{A}) (\bar{X} - \bar{A}) + \lim_{\bar{X} \to \bar{A}} \frac{\varepsilon(\bar{X}) ||\bar{X} - \bar{A}||}{||\bar{X} - \bar{A}||}$$

$$\lim_{\bar{X} \to \bar{A}} \bar{f}(\bar{X}) = \bar{f}(\bar{A}) + 0 + 0$$

$$\lim_{\bar{X} \to \bar{A}} \bar{f}(\bar{X}) = \bar{f}(\bar{A}) => f \text{ es continua en } \bar{A}$$

TEOREMA (DIFERENCIABLE => DERIVABLE):

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}^m$, H abierto, $\bar{A} \in H$, tal que \bar{f} es diferenciable en \bar{A} .

Entonces \bar{f} es derivable en $\bar{A} \ \forall \breve{u} \in \mathbb{R}^n$

DEMOSTRACION:

$$\bar{f}(\bar{X}) = \bar{f}(\bar{A}) + \mathrm{D}f(\bar{A}) \ (\bar{X} - \bar{A}) + \varepsilon(\bar{X}); \ \lim_{\bar{X} \to \bar{A}} \frac{||\varepsilon(\bar{X})||}{||\bar{X} - \bar{A}||} = 0$$

$$\bar{X} = \bar{A} + h\breve{u}; h \in E(0); \breve{u} \ como \ versor \ fijo$$

$$\bar{f}(\bar{A} + h\breve{u}) = \bar{f}(\bar{A}) + \mathrm{D}f(\bar{A}) \ (h\breve{u}) + \varepsilon(h); \ \lim_{\bar{X} \to \bar{A}} \frac{||\varepsilon(h)||}{||h||} = 0$$

$$\frac{f(\bar{A} + h\breve{u}) - f(\bar{A})}{h} = \mathrm{D}f(\bar{A}) \ (\breve{u}) + \frac{\varepsilon(h)}{h}$$

$$\lim_{\bar{h} \to 0} \frac{f(\bar{A} + h\breve{u}) - f(\bar{A})}{h} = \lim_{\bar{h} \to 0} \mathrm{D}f(\bar{A}) \ (\breve{u}) + \lim_{\bar{h} \to 0} \frac{\varepsilon(h)}{h}$$

$$f'(\bar{A}, \breve{u}) = \mathrm{D}f(\bar{A}) \ (\breve{u})$$

TEOREMA (CASO FUNCION ESCALAR):

$$f \ differentiable \ en \ \bar{A} \ => f'(\bar{A}, \breve{u}) = \mathrm{D} f(\bar{A}) \ (\breve{u})$$

$$f'(\bar{A}, \breve{u}) = \left(\frac{\partial \mathrm{f}}{\partial \mathrm{X}_1}(\bar{A}), \dots, \frac{\partial \mathrm{f}}{\partial \mathrm{X}_n}(\bar{A})\right) \begin{pmatrix} \breve{u}_1 \\ \vdots \\ \breve{u}_n \end{pmatrix}$$

$$f'(\bar{A}, \breve{u}) = \left(\frac{\partial \mathrm{f}}{\partial \mathrm{X}_1}(\bar{A}) \ \breve{u}_1, \dots, \frac{\partial \mathrm{f}}{\partial \mathrm{X}_n}(\bar{A}) \ \breve{u}_n\right)$$

$$f'(\bar{A}, \breve{u}) = \nabla f(\bar{A}) \ \breve{u}$$

CURVA:

Dada \bar{g} : $H \subset \mathbb{R}^n \to \mathbb{R}^m$, continua, se llama curva al conjunto de las imágenes de \bar{g} La funcion \bar{g} se llama parametrización de la curva.

CURVA REGULAR:

Dada $c \in \mathbb{R}^n$ y $\bar{A} \in c$, se dice que \bar{A} es punto regular de c, si existe al menos una parametrización:

$$\bar{X} = \bar{g}(t)$$
, tal que $\bar{A} = \bar{g}(t_0)$ y $\exists \bar{g}'(t_0) \neq 0$

Si todos los puntos de c son regulares, entonces se dice que la curva es regular

PUNTO SINGULAR:

Punto donde falla la regularidad de una curva regular a trozos

CURVA LISA O SUAVE:

Dada c(R^n y $\bar{A} \in c$, se dice que c es lisa o suave en \bar{A} si existe una parametrización: $\bar{X} = \bar{g}(t)$, tal que $\bar{A} = \bar{g}(t_0)$; $\bar{g} \in C^1$ y $\exists \bar{g}'(t_0) \neq 0$

SUPERFICIE:

Dada \bar{g} : $H \subset \mathbb{R}^2 \to \mathbb{R}^3$, continua, se llama superficie al conjunto de las imágenes de \bar{g} La funcion \bar{g} se llama parametrización de la superficie.

PUNTO REGULAR DE LA SUPERFICIE:

Dada $S \subset R^3$ y $\overline{A} \in S$, se dice que $\overline{A} \in c$ es punto regular de S, si existe al menos una parametrización: $\overline{X} = \overline{g}(u,v)$, con $\overline{A} = \overline{g}(u_0,v_0)$, tal que \overline{g} es diferenciable en (u_0,v_0) y además existe $\overline{n_0} = \overline{g}'u(u_0,v_0)x$ $\overline{g}'v(u_0,v_0) \neq 0$

Si todos los puntos de S son regulares, se dice que S es regular

Si S es regular y $\bar{g} \in C^1$ se dice que S es lisa o suave

TEOREMA (REGLA DE LA CADENA):

Dada $\bar{g}: H \subset \mathbb{R}^n \to \mathbb{R}^n, y \ \bar{f}: D \subset \mathbb{R}^m \to \mathbb{R}^s \ con \ \bar{g}(H) \subset \bar{f}(D), tal \ que \ \bar{g} \ es \ diferenciable \ en \ \bar{A} \subseteq H \ y \ \bar{f} \ es \ diferenciable \ en \ \bar{g}(\bar{A}) \subseteq D \ Entonces \ \bar{h} = \bar{f} \ o \bar{g} \ es \ diferenciable \ en \ \bar{A} \ y:$

$$D\bar{h}(\bar{A}) = D\bar{f}(\bar{g}(\bar{A})) * D\bar{g}(\bar{A})$$

No se puede aplicar regla de la cadena cuando la función no tiene derivada

TEOREMA (FUNCIÓN IMPLÍCITA):

 $Dadaar{g} : H \subset R^3 \to R$, H abierto, $G \in C^1$, $\overline{A} = (X_0, Y_0, Z_0) \in H$ tal que $G(\overline{A}) = 0$ y $G'z(\overline{A}) \neq 0$ Entonces, la ecuación G(X,Y,Z) = 0 define localmente y en forma implícita, una única función Z = f(X,Y), $f \in C^1$, en $E(X_0,Y_0)$ tal que:

$$f'x(X_0, Y_0) = -\frac{G'x(\overline{A})}{G'z(\overline{A})}$$

$$f'y(X_0, Y_0) = -\frac{G'y(\overline{A})}{G'z(\overline{A})}$$

$$h(X,Y) = G(X,Y,Z(X,Y)); \forall (X,Y) \in E(X_0,Y_0)$$

CONJUNTOS DE NIVEL:

Dada $G: H \subset \mathbb{R}^n \to \mathbb{R}, k \in \mathbb{R}$, se define al conjunto de nivel k de G como:

$$C_k = \{ \overline{X} \in H/G(\overline{X}) = k \}$$

TEOREMA (GRADIENTE ORTOGONAL A LA CURVA):

Dada la curva c $\subset R^2$, de ecuación G(X,Y)=k, con $G\in C^1$. Dada $\overline{A}\in C$ punto regular, tal que $\nabla G(\overline{A})\neq (\overline{0})$. Entonces $\nabla G(\overline{A})$ es ortogonal a C en \overline{A}

DEMOSTRACIÓN:

Por hipotesis de regularidad del punto \bar{A} , existe una parametrización

$$\bar{X} = \bar{g}(t)$$
, tal que $\bar{A} = \bar{g}(t_0)$ y $\exists \bar{g}'(t_0) \neq 0$

Definimos
$$\bar{h}(t) = G(\bar{g}(t))$$
; $G \in C^1 => es$ diferenciable en t_0

Luego, por ser C la curva de nivel k de G:

$$\begin{split} \bar{h}(t) &= G\big(\bar{g}(t)\big) = k, \forall t \in E(t_0) \ \, = > \bar{h}'(t_0) = 0 \; por \; ser \; h \; constante \\ \\ \bar{h}'(t_0) &= \nabla G\big(\bar{g}(t_0)\big) \; . \; \bar{g}'(t_0) = 0 \\ \\ \bar{h}'(t_0) &= \nabla G(\bar{A}) \; . \; \bar{g}'(t_0) = 0 \end{split}$$

TEOREMA (GRADIENTE ORTOGONAL A LA SUPERFICIE):

Dada la superficie SCR^3 , de ecuación G(X,Y,Z)=k, con $G\in C^1$. Dada $\overline{A}\in S$ punto regular, tal que $\nabla G(\overline{A})\neq (\overline{0})$. Entonces $\nabla G(\overline{A})$ es ortogonal a S en \overline{A}

DEMOSTRACIÓN:

Por hipotesis de regularidad del punto \bar{A} , existe una parametrización $\bar{X} = \bar{g}(u,v)$, tal que $\bar{A} = \bar{g}(u_0,v_0)$ y \bar{g} es diferenciable en (u_0,v_0) tal que $\bar{g}'u(u_0,v_0)x$ $\bar{g}'v(u_0,v_0)\neq 0$

Definimos
$$\bar{h}(u,v) = G(\bar{g}(u,v))$$

Luego, por ser S la superficie de nivel k de G:

$$\bar{h}(u,v)=G\big(\bar{g}(u,v)\big)=k, \forall (u,v)\in E(u_0,v_0)=>\ Por\ ser\ h\ constante$$

$$\bar{h}'u(u_0,v_0)=0\ y\ \bar{h}'v(u_0,v_0)=0$$

$$\begin{cases} \bar{h}' u(u_0, v_0) = \nabla G(\bar{g}(u_0, v_0)) \, . \, \, \bar{g}' u(u_0, v_0) = 0 \\ \bar{h}' u(u_0, v_0) = \nabla G(\bar{g}(\bar{A})) \, . \, \, \bar{g}' u(u_0, v_0) = 0 \end{cases}$$

$$\begin{cases} \bar{h}' v(u_0, v_0) = \nabla G(\bar{g}(u_0, v_0)) \, . \, \, \bar{g}' v(u_0, v_0) = 0 \\ \bar{h}' v(u_0, v_0) = \nabla G(\bar{g}(\bar{A})) \, . \, \, \bar{g}' v(u_0, v_0) = 0 \end{cases}$$

Entonces $\nabla G(\bar{g}(\bar{A}))$ es ortogonal a $\bar{g}'u(u_0, v_0)$ y $\bar{g}'v(u_0, v_0)$

Entonces $\nabla G(\bar{g}(\bar{A}))$ es paralelo a $\bar{g}'u(u_0, v_0) \times \bar{g}'v(u_0, v_0)$

Luego $\nabla G(\bar{g}(\bar{A}))$ es ortogonal a S en \bar{A}

SOLUCIONES:

<u>Solución general:</u> Es una función que satisface la ecuación diferencial y contiene "n" constantes indeterminadas, siendo "n" el orden de la ecuación diferencial.

<u>Solución particular:</u> Es una función que satisface la ecuación diferencial y se obtiene a partir de la solución general, dándole valores numéricos a las constantes.

<u>Solución singular:</u> Es una función que satisface la ecuación diferencial pero su forma es diferente a la solución general

TEOREMA (DERIVADA IGUAL A 0, EXTREMOS):

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}$, H abierto, $\bar{A} \in H$, $\bar{u} \in \mathbb{R}^n$ tal que $f(\bar{A})$ es extremo local y además existe $f'(\bar{A}, \bar{u})$. Entonces $f'(\bar{A}, \bar{u}) = 0$

DEMOSTRACIÓN:

Definimos una función compuesta; $h(t) = f(\bar{A} + t\bar{u}); t \in E(0)$

Supongamos que $f(\bar{A})$ es máximo local

$$h(0) = f(\bar{A}) \ge f(\bar{A} + t\breve{u}) = h(t); \forall t \in E(0)$$

 $h(0) \ge h(t); \forall t \in E(0) => h(0)es \ m\'{a}ximo \ local \ de \ h$

$$h'(0) = \lim_{t \to 0} \frac{h(t) - h(0)}{t} = f'(\bar{A}, \breve{u})$$

Entonces h(0)es máximo local y además existe h'(0). Entonces por teorema de fermat debe ser h'(0) = 0. Resulta $f'(\bar{A}, \breve{u}) = 0$

TEOREMA (DERIVADA IGUAL A 0, EXTREMOS):

Dada $\bar{f}: H \subset \mathbb{R}^n \to \mathbb{R}$, H abierto, $\bar{A} \in H$, f differenciable en \bar{A} tal que $f(\bar{A})$ es extremo local. Entonces $\nabla f(\bar{A}) = \bar{0}$

DEMOSTRACIÓN:

Por hipótesis de diferenciabilidad de f en \bar{A} existe $f'(\bar{A}, \breve{u}), \forall \, \breve{u} \in R^n$. Entonces $f'(\bar{A}, \breve{u}) = 0 \, \forall \, \breve{u} \in R^n$. En particular $\nabla f(\bar{A}) = \bar{0}$