1/30/2025 Thursday

Announcement

Zoom class

- Patch-level processing (filtering)
 - Same filter applied to sub-regions/patches

Fundamentals of Spatial Filtering

- Modifying the pixels in an image based on some function of a local neighborhood of the pixels
 - A neighborhood
 - An operator with the same size: linear/nonlinear
 - Each element in the kernel w will visit every pixel in the image just once
- Example: linear spatial filtering

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

Fundamentals of Spatial Filtering

- *g*(*p*)
 - Linear function
 - Correlation
 - Convolution
 - Non-linear function
 - Order statistics (e.g., median)

Linear filtering

- Linearity
 - $g(\alpha I_1 + \beta I_2) = \alpha g(I_1) + \beta g(I_2)$

Easy to combine things

Analytic form

If the patch size is 1 (pixel-level function)

$$g(x) = ax + b = (x, 1) \cdot (a, b)$$

If (k+1) pixels in the patch (patch-level function)

$$g(x_0, \dots, x_k) = \sum_{i=0}^{k} a_i x_i + b$$

= $(x_0, \dots, x_k, 1) \cdot (a_0, \dots, a_k, b)$

Linear filtering

Implementation with dot product

Pixel-level

Patch-level

Note:

- For 2D matrix, np.dot(mat1, mat2) is doing matrix multiplication
- Thus, we need to reshape input to 1D (ravel)

Spatial correlation: 1D signal (a)

1D correlation

$$\sum_{s=-a}^{a} w(s) f(x + s)$$

Zero-padding: add zeros on the left and right margin, respectively

The impulse response is a rotation of the filter by 180 degree

Cropped result has the size of *M* (i.e., the same as original signal)

Full correlation result has the size of M + 2a

Starting position alignment Zero padding Starting position 001000000 1 2 4 2 8 Position after 1 shift 1000000 Position after 3 shifts Final position — Correlation result Extended (full) correlation result

Correlation

(b)

(c)

(e)

(g)

(h)

Spatial convolution: 1D signal

1D correlation

$$\sum_{s=-a}^{a} w(s) f(x-s)$$

Zero-padding: add zeros on the left and right margin, respectively

The impulse response is the same as the filter

Cropped result has the size of *M* (i.e., the same as original signal)

Full correlation result has the size of M + 2a

Convolution 0 0 0 1 0 0 (i) - Starting position alignment Zero padding 0 1 0 0 0 0 0 0 (k) Starting position 0 0 1 0 0 0 0 0 0 (1) Position after 1 shift 0 0 0 0 0 1 0 0 0 0 0 0 (m) Position after 3 shifts (n) Final position -Copyolution result (o) Extended (full) convolution result (p)

Extend to 2D image: 2D image correlation

$$\sum_{s=-a}^{a} w(s)f(x + s)$$

$$\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)f(x + s, y + t)$$

The 2D impulse response of image correlation is a rotation of the filter by 180 degree.

Extend to 2D image: 2D image convolution

$$\sum_{s=-a}^{a} w(s)f(x-s)$$

$$\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)f(x-s,y-t)$$

The 2D impulse response of image convolution is the same as the filter.

Properties of convolution and correlation

$$\sum_{s=-\infty}^{\infty} g(s)f(x-s)$$

Let m = x - s, then s = x - m

$$\sum_{m=-\infty}^{\infty} g(x-m)f(m)$$

$$\sum_{s=-\infty}^{\infty} g(s)f(x+s)$$

$$\sum_{s=-\infty}^{\infty} f(s)g(x+s)$$

Property	Convolution	Correlation
Commutative	$f \star g = g \star f$	2 <u>-2</u>
Associative	$f \star (g \star h) = (f \star g) \star h$	S
Distributive	$f \star (g + h) = (f \star g) + (f \star h)$	$f \Leftrightarrow (g+h) = (f \Leftrightarrow g) + (f \Leftrightarrow h)$

Properties of convolution and correlation

Property	Convolution	Correlation
Commutative	$f \star g = g \star f$	<u>8_9</u>
Associative	$f \star (g \star h) = (f \star g) \star h$	S
Distributive	$f \star (g + h) = (f \star g) + (f \star h)$	$f \Leftrightarrow (g+h) = (f \Leftrightarrow g) + (f \Leftrightarrow h)$

Implementation with convolution

• Let *I* be the input image and *g* be the filter (convolution kernel)

Convolution by hand

1	2	3
4	5	6
7	8	9

Convolution kernel

= ???

Convolution by hand

Step 1: pad the image

1	1	2	3	3
4	4	5	6	6
7	7	8	9	9

Step 2: flip the kernel

Step	3:	slidina	dot	product
	•	· · · · · · · · · · · · · · · · · · ·		0.00.00

1	2	1
1	2	1
1	2	1

Flipped kernel

Box filter

I[x,y]: Image intensity at pixel (x,y)

I[0, 0]	I[0, 1]	I[0, 2]
I[1, 0]	I[1, 1]	I[1, 2]
I[2, 0]	I[2, 1]	I[2, 2]

Input

Filter
$$g$$

Average function

	J[1,1]	

Output

$$J[1,1] = \frac{1}{N} \sum_{x,y} I[x,y]$$

Box filter

I[x,y]: Image intensity at pixel (x,y)

I[0, 0]	I[0, 1]	I[0, 2]
I[1, 0]	I[1, 1]	I[1, 2]
I[2, 0]	I[2, 1]	I[2, 2]

Input

Filter g				
	1	1	1	
$\frac{1}{0}$	1	1	1	
9	1	1	1	

(Dot product in 1D)

Output

$$J[1,1] = \frac{1}{N} \sum_{x,y} I[x,y] = I \cdot \frac{1}{N} (1,\dots,1)$$

Box filter: denoising

Input Image (Gaussian noise)

Output: Filtered image (noise averaged out)

Box filter variants: Impulse filter

*

Original

Filtered (no change)

Box filter variants: Sharpen filter

Box filter variants: Sharpen filter

Convolution filters are linear!

Gaussian filter

$$h(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

	1	1	1		0.3679	0.6065	0.3679
$\frac{1}{9} \times$	1	1	1	$\frac{1}{4.8976} \times$	0.6065	1.0000	0.6065
	1	1	1		0.3679	0.6065	0.3679

Box filter

Gaussian filter

Gaussian filter

Sampling a Gaussian function to obtain a discrete Gaussian kernel. The values shown are for $k=1, \sigma=1$

G(s,t)

Resulting 3×3 kernel

Result comparison

Ghosting grid artifact

Gaussian filter parameter: standard deviation

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Standard deviation σ : determines extent of smoothing

Gaussian filter parameter: standard deviation

- Bigger σ
 - More blurry
 - Bigger effective kernel size

Gaussian filter property: Recursive

Convolve a Gaussian filter with itself?

Gaussian filter property: separability

- It is a separable kernel
- Blur with 1D Gaussian in one direction, then the other $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix} \cdot \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 \end{bmatrix}$
- Fast! For an $n \times n$ kernel, O(n) instead of $O(n^2)$

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Separable kernel

blur_x(I)

blur_y(blur_x(I))