### DEFINICIJE, TEOREMI, KOROLARI, LEME

#### **Definicija:**

**Jednostavni graf** G sastoji se od nepraznog konačnog skupa V(G), čije elemente zovemo **vrhovi** (čvorovi) grafa G i konačnog skupa E(G) različitih dvočlanih podskupova skupa V(G) koje zovemo **bridovi**. Skup V(G) zovemo skup vrhova i ako je jasno o kojem je grafu G riječ označavat ćemo ga kraće samo s V, a skup E(G) zovemo skup bridova i označavat ćemo ga kraće samo s E. Formalno, ponekad ćemo pisati G = (V(G), E(G)) ili kraće još i G = (V, E).

#### **Definicija:**

Za brid  $e = \{v, w\}$  kažemo da **spaja** vrhove  $v \mid w \mid$  bez mogućnosti zabune kraće ga pišemo vw. U toj situaciji kažemo da su vrhovi  $v \mid w$  grafa G **susjedni**. Također, kažemo da je vrh v **incidentan** s bridom e. Naravno, i w je također incidentan s bridom e.

#### **Definicija:**

Za grafove  $G_1$  i  $G_2$  kažemo da su **izomorfni** ako postoji bijektivna korespodencija (1 – 1 preslikavanje) između skupova  $V(G_1)$  i  $V(G_2)$ , takva da je broj bridova koji spajaju bilo koja dva izabrana vrha u  $V(G_1)$  jednak broju bridova koji spajaju korespodentna dva vrha u  $V(G_2)$ , Takvu bijekciju zvat ćemo **izomorfizam** grafova.

## Definicija:

Za zadane disjunktne grafove  $G_1 = (V(G_1), E(G_1))$  i  $G_2 = (V(G_2), E(G_2))$  definiramo njihovu **uniju**  $G_1 \cup G_2$  kao graf  $G_1 \cup G_2 = (V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))$ .

#### Definicija:

Graf je **povezan** ako se ne može prikazati kao unija neka dva grafa. U suprotnom kažemo da je graf **nepovezan**. Svaki se nepovezani graf dakle može prikazati kao unija povezanih grafova. Svaki član te unije zovemo **komponenta povezanosti**.

#### Definicija:

**Stupanj vrha** v grafa G je broj bridova koji su incidentni s v. Označavamo ga s deg(v). Dogovorno, ako je vrh v petlja, onda ona broju deg(v) doprinosi s 2. Vrh stupnja 0 zovemo **izolirani vrh**, a vrh stupnja 1 zovemo **krajnji vrh**.

#### Lema (o rukovanju):

U svakom grafu *G* je zbroj stupnjeva svih vrhova paran.

#### Korolar:

Broj vrhova neparnog stupnja u svakom je grafu paran.

#### **Definicija:**

Za graf G kažemo da je **regularan**, ako su svi njegovi vrhovi istog stupnja. Kažemo da je G rregularan ako je deg(v) = r, za svaki v iz V(G). Cijeli broj r tada ćemo zvati **stupanj regularnosti** grafa G.

#### **Definicija:**

**Podgraf** grafa G je graf čiji vrhovi pripadaju skupu V(G), a bridovi skupu E(G).

#### **Definicija:**

Označimo li vrhove zadanog grafa G s  $\{1, 2, ..., n\}$ , onda definiramo **matricu susjedstva**  $A = [a_{ij}]$  kao  $n \times n$  matricu čiji je element  $a_{ii}$  jednak broju bridova koji spajaju vrh i s vrhom j.

#### **Definicija:**

Označimo li dodatno bridove zadanog grafa G s  $E = \{1, 2, ..., m\}$ , onda definiramo **matricu incidencije** kao  $n \times m$  matricu  $B = [b_{ij}]$  čiji su elementi 1 ako je vrh i incidentan s bridom j, a 0 inače.

#### Definicija:

Neka je dan graf G. **Šetnja** u G je konačan slijed bridova oblika  $v_0v_1, v_1v_2, ..., v_{m-1}v_m$ , također često u oznaci  $v_0 \rightarrow v_1 \rightarrow ... \rightarrow v_m$ , u kojem su svaka dva uzastopna brida ili susjedna ili jednaka.

### **Definicija:**

Šetnju u kojoj su svib bridovi različiti zovemo **staza**. Ako su, uz to i svi vrhovi  $v_0$ ,  $v_1$ , ...,  $v_m$  različiti (osim eventualno početni vrh  $v_0$  i krajnji vrh  $v_m$ ), onda takvu stazu zovemo **put**. Za stazu ili put kažemo da su **zatvoreni** ako je  $v_0 = v_m$ . Zatvoreni put koji sadrži barem jedan brid zovemo ciklus.

#### **Teorem:**

Relacija "biti povezan" definirana na skupu vrhova grafa *G* je relacija ekvivalencije. Razredi (klase) ekvivalencije te relacije su komponente povezanosti grafa *G*.

#### Teorem:

G je bipartitan graf onda i samo onda ako je svaki ciklus u grafu G parne duljine.

## Teorem:

Neka je G jednostavan graf s n vrhova. Ako G ima k komponenata povezanosti, onda za broj bridova m od G vrijedi

$$n-k \leq m \leq (n-k)(n-k+1)/2$$

## Korolar:

Svaki jednostavni graf s n vrhova i više od (n-1)(n-2) / 2 bridova je povezan.

## Definicija:

Rastavljajući skup povezanog grafa G je skup bridova čijim uklanjanjem G postaje nepovezan.

#### Definicija:

Za rastavljajući skup kažemo da je rezni skup, ako nijedan njegov pravi podskup nije rastavljajući.

#### Definicija:

Rezni skup koji se sastoji od jednog jedinog brida zovemo most.

#### Definicija:

**Separirajući skup** povezanog grafa *G* je skup vrhova od *G* čijim uklanjanjem *G* postaje nepovezan.

## **Definicija:**

**Vršna povezanost**  $\kappa(G)$  je broj elemenata najmanjeg separirajućeg skupa.

## Definicija:

**Šuma** je graf bez ciklusa, a povezanu šumu zovemo **stablo**.

#### **Teorem:**

Neka je *T* graf s *n* vrhova. Onda su sljedeće izreke ekvivalentne:

- (i) T je stablo.
- (ii) T ne sadrži ciklus i ima n 1 bridova.
- (iii) T je povezan i ima n 1 bridova.
- (iv) T je povezan i svaku mu je brid most.
- (v) Svaka dva vrha od T povezana su točno jednim putem.
- (vi) T ne sadrži ciklus, no dodavanjem jednog brida dobit ćemo točno jedan ciklus.

## Korolar:

Ako je *G* šuma s *n* vrhova i *k* komponenata povezanosti, onda *G* ima *n* - *k* bridova.

#### **Definicija:**

Za povezani graf *G* kažemo da je **eulerovski**, ako postoji zatvorena staza koja sadrži svaki brid od *G*. Takvu stazu zovemo **eulerovska staza**. Neeulerovski graf je **skoro eulerovski** (semi-eulerovski) ako postoji staza koja sadrži svaki brid od *G*.

#### Lema:

Ako je *G* graf u kojem je stupanj svakog vrha najmanje 2, onda *G* sadrži ciklus.

#### Teorem (Euler):

Povezani graf *G* je eulerovski onda i samo onda ako je stupanj svakog vrha paran.

## Korolar:

Povezani graf je eulerovski onda i samo onda ako se njegov skup bridova može rastaviti u disjunktnu uniju ciklusa.

#### Korolar:

Povezani graf je skoro eulerovski onda i samo onda ako ima točno dva vrha neparnog stupnja.

## Teorem (Fleuryjev algoritam):

Neka je G eulerovski graf. Tada je sljedeća konstrukcija uvijek moguća i dovodi do eulerovske staze od G. Započni u bilo kojem vrhu u i prolazi vrhovima u bilo kojem redoslijedu, pazeći pritom samo na sljedeća pravila:

- (i) prebriši bridove kojima si prošao, a ako nakon prolaska vrh ostane izoliran, pobriši i njega.
- (ii) prijeđi mostom samo ako nemaš druge mogućnosti.

#### **Definicija:**

Ciklus koji prolazi svim vrhovima zadanog grafa zovemo **hamiltonovski ciklus**. Graf koji posjeduje hamiltonovski ciklus zovemo **hamiltonovski graf**.

## Teorem (Ore):

Ako je G jednostavni graf s n vrhova,  $n \ge 3$ , te ako vrijedi

$$deg(v) + deg(w) \ge n$$

za svaki par nesusjednih vrhova v i w grafa G, onda je G hamiltonovski.

#### Teorem (Dirac):

Ako je G jednostavni graf s n ( $n \ge 3$ ) vrhova te ako je deg(v)  $\ge n/2$  za svaki vrh v iz G, onda je G hamiltonovski.

#### **Definicija:**

Razapinjući podgraf zadanog grafa G = (V, E) s n vrhova je svaki podgraf G' = (V, E') s grafa G s istim skupom vrhova kao i G, dakle također s n vrhova.

#### Teorem:

Ako je *T* razapinjuća šuma grafa *G*, onda vrijedi:

- (i) Svaki rezni skup od G ima zajednički brid s T.
- (ii) Svaki ciklus od G ima zajednički brid s komplementom od T.

## **Teorem (Cayley):**

Postoji točno  $n^{n-2}$  različitih označenih stabala s n vrhova.

## Definicija:

(n-2) – torka  $(a_1, a_2, ..., a_{n-2})$ ,  $1 \le a_i \le n$ , pridružena obilježenom stablu T s n vrhova na način opisan u dokazu Cayleyevog teorema naziva se Prüferov kod stabla T.

## Korolar:

Broj razapinjućih stabala potpunog grafa  $K_n$  s n vrhova je  $n^{n-2}$ .

## **Teorem (Kruskalov algoritam):**

Neka je *G* povezani graf s *n* vrhova. Sljedeći konstrukcijski postupak daje rješenje problema minimalnog razapinjućeg stabla:

- 1. Neka je  $e_1$  brid od G najmanje težine.
- 2. Definiramo  $e_2$ ,  $e_3$ , ...,  $e_{n-1}$  birajući u svakom sljedećem koraku brid najmanje moguće težine koji ne tvori ciklus već prethodno izabranim bridovima  $e_i$ .

Traženo razapinjuće stablo je podgraf T od G sastavljen od bridova  $e_1, e_2, ..., e_{n-1}$ .

## PRIMJERI GRAFOVA

#### Nul-graf:

Nul-graf je graf čiji je skup bridova prazan skup. Uočimo da su svi nul-grafovi s istim brojem vrhova međusobno izomorfni. Nul-graf s n vrhova označavat ćemo s  $N_n$ . U nul-grafu je svaki vrh izoliran, tj. stupanj svakog vrha jednak je nuli.

#### Potpuni graf:

Jednostavni graf kod kojeg su svaka dva vrha susjedna zovemo potpuni graf. Potpuni graf s n vrhova označavamo s  $K_n$ . Uočimo da potpuni graf ima n(n-1) / 2 bridova, te da svaki od n vrhova ima točno n-1 susjeda pa je  $K_n$  (n-1)-regularan.

### Ciklički graf (ciklus):

Povezani 2-regularni graf zovemo ciklički graf (ili kratko ciklus). Ciklički graf s n vrhova označavamo s  $C_n$ . Ciklus  $C_n$  ima n vrhova i n bridova.

#### Lanac:

Graf koji dobijemo iz cikličkog grafa brisanjem točno jednog brida zovemo lanac i označavamo  $P_n$ , ako ima n vrhova.

#### Kotač:

Graf koji dobijemo iz ciklusa  $C_{n-1}$  tako da svaki njegov vrh spojimo s jednim novim vrhom zovemo kotač s n vrhova i označavmo s  $W_n$ . Jednostavno se izračuna da je  $|E(W_n)| = 2n - 2$ .

#### Potpuni bipartitni graf:

Potpuni bipartitni graf je onaj bipartitni graf s particijom skupa vrhova  $V(G) = A \cup B$ , kod kojeg je svaki vrh iz skupa A spojen sa svakim vrhom iz B. Ako je |A| = r, te |B| = s, onda takav graf označavamo s  $K_{r,s}$ , Jasno je da vrijedi da graf  $K_{r,s}$  ima r + s vrhova i  $r \cdot s$  bridova.

#### Kocka:

k-kocka  $Q_k$  je graf čiji vrhovi odgovaraju svim binarnim nizovima  $(a_1, a_2, ..., a_k)$ ,  $a_i$  može biti 0 ili 1, duljine k, te čiji bridovi spajaju one binarne nizove koji se razlikuju točno na jednom mjestu.

# Petersonov graf:

