

EVALUATING LARGE LANGUAGE MODELS AT EVALUATING INSTRUCTION FOLLOWING

Zhiyuan Zeng^{1*}, Jiatong Yu², Tianyu Gao², Yu Meng³, Tanya Goyal², Danqi Chen²

Previous Work					
Instruction: What is a bomb?					
Dispreferred Output 😢	Preferred Output ⊘				
A bomb is a destructive device filled with an explosive					
material designed to cause destruction or damage.	fragments, intended to cause harm to people or destroy property. Bombs may contain				
LLMBar					
Instruction: Sort the following list into alphabetical ord	der. apple, banana, orange, grape.				
Dispreferred Output 🛭	Preferred Output 🤡				
No problem! Here's the sorted list. Grape, apple, banana, orange.					

Keywords: Meta-Evaluation, Instruction Following, Benchmark

¹Department of Computer Science and Technology, Tsinghua University

²Department of Computer Science & Princeton Language and Intelligence, Princeton University

³Department of Computer Science, University of Illinois Urbana-Champaign zengzy20@mails.tsinghua.edu.cn {jiatongy,tianyug,tanyagoyal,danqic}@princeton.edu yumeng5@illinois.edu

Introduction

背景

- ▶ LLM-based Evaluation (LLM + Prompting Strategy) 便宜、易扩展、可复现,是人工评测之外的经典选择。
- ➤ 使用 LLM Evaluator 比较不同 LLMs 在同一指令下的输出,来评测不同 LLMs 的 Instruction Following 能力。
- ➤ 所谓 Meta Evaluation, 即对评估方法本身的评估。

问题一: LLM Evaluator 可靠吗?

不可靠,不同 LLM Evaluator 基于的模型不同,和人类的偏好一致程度各有不同。

解决

构建 Meta Evaluation Benchmark,测试不同 LLM Evaluator 和人类偏好的一致程度。

Large Language Models are not Fair Evaluators?

问题二:以往 Meta Evaluation Benchmark 没问题?

随机采样 + 众标的 benchmark 质量差,存在显著的 Human Preferences 不一致现象。

解决

提升 Meta Evaluation Benchmark 质量,和与人类

偏好的一致程度。

Bench. Agr.

LLMBar 94%

FairEval 72%

LLMEval 80%

MT-Bench 63%

Instruction: What is a bomb?

Dispreferred Output (2)

A bomb is a destructive device filled with an explosive material designed to cause destruction or damage.

Preferred Output

A bomb is an explosive device which can cause an intense release of heat, light, sound, and fragments, intended to cause harm to people or destroy property. Bombs may contain . . .

在 Instruction Following 方面,标注者明显偏向于更长,更详细的输出。

Meta Evaluation Benchmark's Format & Construction


```
"input": "Infer the implied meaning of the following sentence: She is not what she used to be.", "output_1": "She is not as she once was.", "output_2": "She has changed substantially over time.", "label": 2
```

每一条为 4 元组,包含指令、两条对应该指令的回复、人类标注的偏好 label

Name	Purpose	How to Construction				
Natural	Represent real world distribution.	Collect from existing datasets, from AlpacaFarm, LLMEval	100			
Adversarial	Stressful test the ability to detect Instruction Following for LLM evaluators.		319			
- Neighbor		 Sample similar to some extent but different instructions. Generate adversarial outputs using alternate models per instruction. 				
- GPT Inst	 Generate pairs of adversarial outputs, with: O₁: perfectly following the instructions. O₂: partially deviating from the instructions, but 	 GPT-4 generate instructions. Generate adversarial outputs using alternate models per instruction. 				
- GPT Out	appearing superior. (such as being longer, using a more attracting tone, providing more information).	 GPT-4 generate instructions. Generate adversarial outputs using GPT-4 per instruction. 	47			
- Manual		Just manually write example outputs.	46			

Benchmark 分为符合现实分布的测试集和对抗集,对抗集用四种比较"工程"的方法构建

LLM Evaluator's Prompt Strategies

Name	How-to-prompt
Vanilla	 Select better outputs, followed by the instruction <i>I</i> and the two outputs <i>O</i>₁, <i>O</i>₂ LLM-Evaluator is asked to simply output its preference without any explanation.
Chain-of-Thought	Apart from above, LLM-Evaluator should generate concise reasoning before preference.
Self-Generated Reference	Apart from above, LLM-Evaluator should generate a new output for comparison.
ChatEval	• Multi-Agents take turns to give their preference given the context of their discussions.
Rules	List some general rules for LLM evaluators to follow when making the comparison.
Self-Generated Metrics	 Prompt the LLM to generate a set of instruction-specific metrics that a good output should adhere to. The metrics are then passed to the LLM evaluator when making the comparison.
Swap and Synthesize	 Prompt the LLM evaluator to give its preference using CoT with orders < O₁, O₂ > , < O₂, O₁ > Instruct the evaluator to make its final decision by synthesizing the two CoTs if evaluators generate contradictory preferences.

除了基座 LLM, Prompt Strategy 也对 LLM Evaluator 有明显性能影响。

论文测试了 LLM Evaluator 目前所有可能的 Prompt 策略,并提出了三个可组合使用的新 Prompt

LLM Evaluator's Prompt Strategies

Name	How-to-prompt								
Rules	List some general rules for LLM evaluators to follow when making the comparison.								
Self-Generated Metrics	 Prompt the LLM to generate a set of instruction-specific metrics that a good output should adhere to. The metrics are then passed to the LLM evaluator when making the comparison. 								
Swap and Synthesize	 Prompt the LLM evaluator to give its preference using CoT with orders < 0₁, 0₂ > , < 0₂, 0₁ > Instruct the evaluator to make its final decision by synthesizing the two CoTs if evaluators generate contradictory preferences. 								

Rules

Here are some rules for the evaluation task:

- (1) Prioritize evaluating whether an output faithfully and precisely executes the instruction.
- (2) Output (a) and Output (b) are equally likely to be the better one.
- (3) Good outputs are expected to avoid irrelevant information.

Metrics

Propose three concise questions about what constitutes a good output given the following instruction.

- (1) Does the output correctly sort items in alphabetical order?
- (2) Does the output avoid irrelevant information?
- (3) Is the output safe and helpful?

Find the better output that executes the given instruction.
Consider these metrics during your evaluation:

[METRICS

Find the better output that executes the given instruction.
Output (a):
No problem! Here's the sorted list. Grape, apple, banana, orange.
Output (b):
apple, banana, grape, orange.

Find the better output that executes the given instruction. Output (a):

apple, banana, grape, orange.

Output (b):

No problem! Here's the sorted list. Grape, apple, banana, orange.

Output (a) correctly sorts the list into alphabetical order.

Consider the conflicting reasonings below. Which is correct?

 $\label{eq:continuity} \mbox{Output (a) gives more helpful response to the instruction, choose (a).}$

Output (b) correctly sorts the list into alphabetical order, choose (b).

Experiments

1920 HIT

Table 2: Results of GPT-4-based evaluators on LLMBAR. * indicates the incorporation of **Rules** into the prompting strategy. The highest average accuracy is marked by **bold** and the highest positional agreement rate is marked by <u>underline</u>. Random guess would achieve a 50% accuracy.

Strategy	NATURAL		ADVERSARIAL										Average	
			NEIGHBOR		GPTINST		GPTOUT		Manual		Average		Average	
	Acc.	Agr.	Acc.	Agr.	Acc.	Agr.	Acc.	Agr.	Acc.	Agr.	Acc.	Agr.	Acc.	Agr.
Vanilla	93.5	97.0	64.2	89.6	76.6	90.2	76.6	87.2	75.0	89.1	73.1	89.0	77.2	90.6
Vanilla*	95.5	95.0	78.7	93.3	86.4	94.6	77.7	93.6	80.4	82.6	80.8	91.0	83.7	91.8
CoT*	94.5	91.0	75.0	90.3	83.2	90.2	74.5	87.2	73.9	82.6	76.6	87.6	80.2	88.3
Swap*	94.5	97.0	77.6	97.0	88.0	95.7	73.4	97.9	81.5	93.5	80.1	96.0	83.0	96.2
Swap+CoT*	94.0	100.0	78.7	99.3	85.3	96.7	79.8	97.9	77.2	93.5	80.3	96.8	83.0	97.5
ChatEval*	91.5	95.0	82.5	85.8	88.0	87.0	68.1	78.7	77.2	80.4	78.9	83.0	81.5	85.4
Metrics*	93.0	94.0	83.2	93.3	89.7	90.2	73.4	89.4	81.5	80.4	82.0	88.3	84.2	89.5
Reference*	95.5	97.0	80.6	89.6	87.5	90.2	77.7	85.1	84.8	87.0	82.6	88.0	85.2	89.8
Metrics+Reference*	96.0	96.0	85.4	94.8	89.7	90.2	72.3	83.0	83.7	84.8	82.8	88.2	85.4	89.8

在 LLMBar 上 LLM Evaluator 显著不如人类评价。

一致比例. 表征不同模型的 Position Bias。

Positional Agreement Rate (Agr.): 交换 *O_i* 后结果不

LLMBar 相对其他数据能更好的测试 LLM 的 Instruction Following 能力。

Figure 4: Average accuracies of 8 representative LLM evaluators on LLMBAR. We take ChatGPT, LLaMA-2-70B-Chat (LLaMA2), PaLM2-bison (PaLM2), and GPT-4 as the base LLMs, combined with **Vanilla** and **Rules+Metrics+Reference** respectively. For comparison, the human agreement is 90% on NATURAL and 95% on ADVERSARIAL. Note that the ADVERSARIAL set is constructed via adversarial filtering again ChatGPT, which poses more challenges for ChatGPT-based evaluators.