OSNOVE UMETNE INTELIGENCE 2018/19

nenadzorovano učenje preiskovanje

© Zoran Bosnić

Pregled

- strojno učenje
 - primer aplikacije nadzorovanega učenja
 - nenadzorovano učenje
 - hierarhično gručenje
 - metoda k voditeljev

Primer aplikacije nadzorovanega učenja

- razpoznavanje zapisanih števk (angl. handwritten digit recognition)
 - aktualen problem (sortiranje pošte, branje finančnih/davčnih dokumentov, branje obrazcev)
 - NIST (US National Institute of Science and Technology) je oblikoval klasificirano učno množico 60,000 števk – podatki so predstavljeni kot 8-bitne slike (sivinske) dimenzij 20×20=400 pikslov

Primer aplikacije nadzorovanega učenja

razpoznavanje zapisanih števk

• človeška napaka: 0,2 – 2,5%

	3-NN	NN	LeNet	Lenet + boosting	SVM1	SVM2	prilaganje oblike
napaka [%]	2,4	1,6	0,9	0,7	1,1	0,56	0,63
čas [ms/števko]	1000	10	30	50	2000	200	?
spomin [MB]	12	0,49	0,012	0,21	11	?	?
čas učenja [dnevi]	0	7	14	30	10	?	?

Pregled

- strojno učenje
 - primer aplikacije nadzorovanega učenja
 - nenadzorovano učenje
 - hierarhično gručenje
 - metoda k voditeljev

Nenadzorovano učenje

- drugačni scenarij in cilji učenja kot pri nadzorovanem učenju:
 - nimamo ciljne (odvisne) spremenljivke, zato nas ne zanima napoved primera
 - podani so samo atributi primerov
- cilj: odkrivanje zakonitosti glede učnih primerov. Vprašanja:
 - ali lahko primere razdelimo v smiselne skupine?
 - ali obstaja priročen način za vizualizacijo podatkov?

Nenadzorovano učenje

lastnosti:

- nenadzorovano učenje je **bolj subjektivno** kot nadzorovano učenje, ker nima enoznačnega formalnega cilja kot je "napovedovanje vrednosti odvisne spremenljivke" pri nadzorovanem učenju
- velikokrat lažje (cenejše) pridobimo neoznačene podatke (podatke brez odvisne spremenljivke): drage meritve, ekspertno mnenje, globalna ocena (npr. filma)?

primeri uporabe:

- odkrivanje skupin rakavih bolnikov, grupiranih po različnih rezultatov meritev izraženosti genov,
- odkrivanje skupin kupcev, grupiranih po njihovi zgodovini brskanja in nakupovanja
- odkrivanje skupin filmov, grupiranih glede na ocene, podane s strani gledalcev

Gručenje

- gručenje (angl. clustering) je najbolj uporabljana metoda nenadzorovanega učenja
- cilj: iskanje homogenih podskupin v učnih podatkih
- metode:
 - hierarhično gručenje: iščemo vnaprej neznano število gruč. Rezultat gručenja je vizualna reprezentacija skupin, imenovana dendrogram, ki nam nudi vpogled v oblikovanje različnega števila gruč
 - metoda k-means: gručimo v vnaprej podano število k gruč

Hierarhično gručenje

- dva pristopa:
 - združevalni (angl. agglomerative): gradnja dendrograma začenši od listov proti korenu s postopkom združevanja glede na razdaljo
 - delilni (angl. divisive): gradnja dendrograma od korena proti listom, na vsakem koraku delimo gručo na podgruče
- primer združevalnega pristopa:
 - začni z vsako točko v svoji gruči
 - najdi dve najbližji gruči in ju združi
 - ponavljaj, dokler ne združiš vseh gruč

Interpretacija dendrograma

- rezanje dendrograma določi mejo, pri kateri prenehamo z združevanjem gruč
- z rezanjem dendrograma na različnih višinah torej določamo število ciljnih gruč

Merjenje razdalj

- med učnimi primeri uporabljamo že znane mere za merjenje razdalj (evklidska razdalja, manhattanska razdalja, korelacija med vrednostmi atributov ...)
- posebno obravnavo moramo posvetiti merjenju razdalj:
 - med učnim primerom in gručo
 - med dvema gručama
- kot razdaljo v teh primerih lahko upoštevamo:

- razdaljo med **najbližjima** primeroma (enojna povezanost, angl. *single linkage*) $d(\mathcal{C}_1,\mathcal{C}_2) = \min_{i,j} \{d_{ij} \big| i \in \mathcal{C}_1, j \in \mathcal{C}_2\}$
- razdaljo med **najbolj oddaljenima** primeroma (popolna povezanost, angl. complete linkage) $d(C_1, C_2) = \max_{i,j} \{d_{ij} | i \in C_1, j \in C_2\}$
- povprečno razdaljo med vsemi primeri (povprečna povezanost, angl. average linkage)

$$d(C_1, C_2) = \sum_{i \in C_1, j \in C_2} \frac{d_{ij}}{|C_1||C_2|}$$

Primer

 45 primerov v dvorazsežnem prostoru, ki v realnosti pripadajo trem različnim razredom (razredi so prikazani z barvo). Dejanske razrede lahko skrijemo pred algoritmom za gručenje in poskusimo z gručenjem odkriti gruče, ki ustrezajo razredom.

Primer

- dendrogram, pridobljen z evklidsko razdaljo in pristopom merjenja razdalje med gručami s popolno poveznostjo (complete linkage),
- prikaz rezanja dedrograma na različnih višinah

Opombe

- časovna zahtevnost:
 - združevalni pristop: $O(n^2 log n)$: n^2 časa za izračun matrike razdalj, log nza urejanje razdalj
 - delilni pristop: $O(2^n)$: za iskanje optimalne delitve na dve podgruči
- dileme
 - katero mero razdalje izbrati?
 - kateri pristop merjenja razdalj med gručami izbrati?
 - kolikšno naj bo ciljno število gruč?
- normalizacija atributov?

Primer uporabe

- analiza različnih vrst tumorja na prsih glede na izraženost genov
 - Sørlie, Therese, et al. "Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications." Proceedings of the National Academy of Sciences 98.19 (2001): 10869-10874.
- mera razdalje: korelacija
- razdalja med gručami: povprečna razdalja med primeri
- atributi: izraženost 500 genov
- rezultati:
 - identifikacija sorodnih skupin pacientov
 - identifikacija
 izraženih genov v
 skupinah pacientov

Pregled

- strojno učenje
 - primer aplikacije nadzorovanega učenja
 - nenadzorovano učenje
 - hierarhično gručenje
 - metoda k voditeljev

Metoda voditeljev

- angl. k-means clustering
- postopek:
 - izberi začetno število gruč k in naključno priredi vsak učni primer eni od gruč
 - ponavljaj dokler ni sprememb:
 - za vsako izmed k gruč izračunaj centroid (točka, določena s srednjo vrednostjo atributov vseh primerov, ki pripadajo gruči)
 - spremeni pripadnost vsakega primera tisti gruči, katere centroid je najbližji (glede na izbrano mero razdalje)
- primer: različne rešitve za k = 2, k = 3 in k = 4

Primer izvajanja

učna množica

določitev pripadnosti primerov najbližjemu centroidu

naključna določitev gručam

ponovni izračun centroidov gruč

izračun začetnih centroidov gruč

rezultat po 10 iteracijah

Lastnosti algoritma

- metoda na vsakem koraku znižuje varianco znotraj gruč (s prerazporejanjem pripadnosti primerov najbližji gruči)
- algoritem ne najde globalnega optimuma (glede na cilj minimizacije variance znotraj gruč), rešitev je odvisna od začetne inicializacije
- izračun centroidov je potrebno prilagoditi, če so atributi diskretni
- algoritem je občutljiv na šum (angl. outliers)
- težka objektivna evalvacija, vendar uporabno v praksi

OSNOVE UMETNE INTELIGENCE

preiskovanje prostora stanj

Uvod

- refleksni agenti : ciljno-usmerjeni agenti
 - ciljno-usmerjeni: upoštevajo zaželenost bodočih akcij za doseganje cilja

- problem:
 - abstrakcija problema
 - simbolična predstavitev (graf, drevo)
 - uporaba algoritma na simbolični predstavitvi za iskanje poti do cilja

Primeri problemov

- avtomatski sesalec
- iskanje najkrajše poti
- igra 8 ploščic
- 8 kraljic na šahovnici
- planiranje v svetu kock
- manevriranje robotov
- trgovski potnik

Definicija problema

Za formalni opis problema potrebujemo:

- začetno stanje
- opis vseh možnih akcij, ki so na razpolago v posameznih stanjih
- prehodno funkcijo, ki definira naslednika stanja
 rezultat(trenutno_stanje, akcija) = novo_stanje
- ciljni predikat:cilj(stanje) = {true, false}
- **cenilna funkcija**, ki vsaki poti določi ceno (numerično vrednost) $c(stanje, akcija, stanje') \ge 0$

Definicija problema

- opisani način podajanja problema omogoča, da problem predstavimo z usmerjenim grafom, ki ponazarja prostor stanj:
 - vozlišča: stanja (problemske situacije)
 - povezave: akcije (dovoljene poteze)
 - pot v grafu: zaporedje stanj, ki ga povezuje zaporedje akcij
 - eno začetno vozlišče
 - eno ali več ciljnih vozlišč
- reševanje problema iskanje poti v grafu s preiskovanjem
- rešitev problema zaporedje akcij (pot), ki vodi od začetnega do ciljnega vozlišča
 - optimalna rešitev problema izmed vseh možnih ima najnižjo ceno poti

Primer: sesalec

- stanja kombinacija lokacije robota in umazanije v prostorih A in B $(2 \times 2^2 = 8 \text{ stanj})$
- akcije levo, desno, sesaj (in počakaj)
- cilj oba prostora čista
- cena akcije npr. 1 za vsako potezo

Primer: igra 8 ploščic

7	2	4	
5		6	
8	3	1	

začetno stanje

končno stanje

- stanja lokacije ploščic
- akcije premiki "prazne" ploščice levo, desno, gor, dol
- cilj podano ciljno stanje
- cena akcije 1 za vsako potezo
- problem je NP-poln
- igra 3x3 ima 9!/2 =181.440 dosegljivih stanj
- igra 4x4 ima okoli 1,3x10¹² dosegljivih stanj
- igra 5x5 ima okoli 10²⁵ dosegljivih stanj

Primer: problem 8 kraljic

- stanja postavitve 0-8 kraljic na plošči $(64 \times 63 \times \cdots \times 57 = 1.8 \times 10^{14})$ stanj
- začetno stanje prazna igralna plošča
- akcije postavitve nove kraljice na prazno polje
- cilj 8 kraljic na plošči, nobeni dve se ne napadata

bolj optimalna formulacija problema:

- stanja postavitve 0-8 kraljic od leve proti desni, v vsak stolpec ena (2057 stanj)
- akcije postavitve nove kraljice na prazno polje v prvi skrajno levi prosti stolpec

Primer: Knuthov neskončni prostor

 Knuthova predpostavka: začenši s številom 4 in zaporedjem treh operacij (faktoriela, kvadratni koren, zaokroževanje navzdol), lahko dosežemo poljubno pozitivno celo število. Npr. število 5 lahko zapišemo kot:

$$5 = \left[\sqrt{\sqrt{\sqrt{(4!)!}}} \right]$$

- začetno stanje število 4
- akcije uporaba ene izmed operacij {faktoriela, kvadratni koren, zaokroževanje navzdol}
- stanja pozitivna števila
- ciljno stanje želeno pozitivno število

Primeri drugih <u>umetnih</u> problemov

- misionarji in ljudožerci
- preurejanje postavitve kock

Primeri realnih problemov

- iskanje najkrajše poti
- primer obhoda ("obišči vsa mesta vsaj enkrat, začenši v mestu X")
- problem potujočega trgovca TSP ("najdi najkrajšo pot za obhod vseh mest natanko enkrat, začenši v mestu X")
- postavitev komponent na vezju (minimizacija površine, dolžine povezav itd.)
- navigacija robotov v prostoru
- sestavljanje izdelkov na proizvodni liniji

Preiskovanje

- problem: velika kombinatorična eksplozija možnih stanj
- preiskovalni algoritmi:
 - **neinformirani**: razpolagajo samo z definicijo problema
 - iskanje v širino (breadth-first search)
 - iskanje v globino (depth-first search)
 - iterativno poglabljanje (iterative deepening)
 - informirani: razpolagajo tudi z dodatno informacijo (domensko znanje, hevristične ocene), kako bolj učinkovito najti rešitev
 - algoritem A*
 - algoritem IDA*
 - prioritetno preiskovanje (best-first search)
 - algoritem RBFS (recursive best-first search)
 - plezanje na hrib (hill climbing)
 - iskanje v snopu (beam search)
 - ...

