Procedural Volumetric Cloud Modeling, Animation, and Realtime Techniques

David S. Ebert
School of Electrical and Computer Engineering
Purdue University
ebertd@purdue.edu

Overview

Proceduralism

Background

Modeling Gases

Overview

Cloud Modeling

Examples Using Commercial Systems

Hardware Issues and Real-Time Gases

Conclusion

Future Directions for Research

Proceduralism: Advantages of Procedural Techniques

Flexibility
Parametric Control
Data Amplification
Procedural Abstraction - High Level Control
Complexity on Demand

- Inherently multi-resolution model
- Computational savings
- Ease of anti-aliasing

Background

Why Model Gases?
Important Visual Characteristics
Rendering System Considerations

Why Model Gases?

Visual Realism

Artistic Effects

Important Visual Characteristics

Amorphous
Swirling
Attenuation of Light
Shadowing
Illumination

Example: Fog

Rendering System **Considerations:**

VolumesReadering Support Scanline A-buffer w/

Ulumination Issues

- Participating media scatters, reflects, absorbs light
- Low-albedo models (single scattering)
- High-albedo models (multiple) scattering)

Volume Shadowing

Modeling Capability

Volume Tracing

Low-albedo Illumination Model

3D Table-based Shadowing

- Fast, efficient
- 10 to 15 times faster than ray-traced shadows

Procedural Volume Density Functions

Modeling Gases: Previous Approaches

Surface Approaches

- Hollow/flat objects
- Interaction problems
- Fast

Volume Approaches

- Greater realism, flexibility
- Slower

Volumetric Modeling Advantages

Accurate Shadowing

Realistic Illumination

Realistic Simulation of Natural Volumetric Phenomena (Clouds, Gases, Water, Fire)

Volumetric Procedural Modeling (VPM)

Basic VPM Primitives

- Any function of three-dimensions
- Stochastic:
 - Noise, turbulence, fBm
- Regular: implicit functions
 - Smooth blending
 - Useful primitives (spheres, cylinders, ellipsoids, skeletons)

Volumetric Procedural Gas Modeling

Turbulence-based Procedures

Perlin's noise and turbulence functions

Shape Resulting Gas

Simple mathematical functions

Defines Volume Density

Basic Gas Procedure

Density =
(turbulence(pnt)*density_scaling)exponent

Exponent typically 1.0 to 10.0

Gas Shaping Primitives

Power Function

Sine Function

Exponential Function

Steam Rising From a Teacup

Volume of Gas Over the Teacup

Basic Gas Procedure Use for Density

Steam Rising ...

Shape Gas Spherically

Shape Gas Vertically

Volumetric Cloud Modeling: Volumetric Procedural

PrepioGsWolumetric Procedural Implicit Modeling

- Perlin: hypertextures
- Stam: fire modeling, clouds
- Kisacikoglu: gas plasma <u>Sphere</u>

Previous Cloud Modeling

- Surface-based (Gardner)
- Fractal-based (Voss)
- Volume-based (Kajiya, Stam)

Volumetric Procedural Implicit Modeling

Two Tiered Approach

- Cloud macrostructure
 - Volumetrically rendered implicit primitives
- Cloud microstructure
 - Procedurally defined natural detail
 - Procedural volumetric density functions

Cloud Macrostructure

Primitive-Based Implicit Models

- Currently: spheres, cylinders, ellipsoids
- Wyvill's blending function

Ease of Specification, Animation, Global Deformation

Easily controlled by particle system dynamics

Example Implicit Cloud

Cloud Microstructure

Volumetric Procedural Model
Built-in Multiresolution Model
Features:

- Main primitives: noise and turbulence
- Mathematical functions for shaping
- Natural controls

Simple Volumetric Procedural Model (VPM)

vpm(pnt)

- pnt = map pnt to procedural turbulence space
- turb = turbulence (pnt)
- density = pow(denseness*turb, wispiness)
- return(density)

Combined Model

Use Procedural Techniques to Perturb
Sample Point

Calculate Implicit Density for Point

Calculate Procedural Density for Point

Blend These Densities

 blend = blend% * imp_density + (1-blend%)*proc_density*imp_density

Shape With Math Functions

Stratus And Cirrus Cloud Effects

Stratus Clouds

- Use a few implicits to specify extent of layer
- Use procedural techniques for details
- Denser and less wispy

Cirrus Clouds

- Use implicits for each cloud or for global shape
- Thinner, less dense, wispier

Another Example (Henrik Wann Jensen)

Procedural Cloud Model Based on the Techniques Presented

 Generates a large number of points describing cloud density

Realistic Cloud and Environmental Illumination Using Photon Maps Animation: Little Fluffy Clouds

- Cloud density is increased procedurally
- Sun rises, cloud layer forms, sun sets

Examples Using Commercial Systems: A/W Maya

Rendering:

Volumetric cloud plug-in

Animation

Cloud formation dynamics in MEL

Volumetric Cloud Plug-in (Marlin Rowley, Vlad Korolev, David

Ebert) Prototype Volume Rendering Plugin

Attached to Volume Light Shape
Cloud Shape: 3 Spherical Primitives

4 Cloud Types:

- Misty
- Cumulus
- Cirrus
- Implicit

Volumetric Cloud Plug-in: Examples

Plug-in Available

- High End 3D web site rendering (rendering section)
- www.highend3d
- v3 for NT released5/31/2001

Cloud Dynamics in ME (Ruchigartha)

Specialized Particle System

Dynamics Simulates

- Buoyant bubbles
- Temperature gradients controls velocity
- Vortices
- Gravity
- Wind fields

Cloud Dynamics in MEL: Simulation

Particle Emitter

 Numerous settable attributes

Evaluate Forces on Particles

Create Children - Split Particles

Particle Death - Stabilize

Real-time Dense Gases: Issues

Volume Rendering vs. Approximations
Static vs. Dynamic Models
Semi-transparent Volume Accumulation
Illumination
Shadowing

Issues for Real-time Gases: Volume Approximations

Particle Systems - Only Practical for Thin Gases

- No inter-particle illumination, shadowing
- Often simple transparency model (or none) depth sorted?
- Probabilistic shading and shadowing can be used

Imposters / Billboards - Good for Distant Clouds

- For close-ups and fly-throughs must integrate cloud slabs onto imposter
 - Very time consuming slows performance
 - Use pre-computed tables to improve performance

Issues for Real-Time Gases: Volume Approximations (cont.)

Textured Ellipsoids - Good for Distant Clouds

- Problem 1: need to handle view dependent illumination and shadowing
- Problem 2: fly-throughs
 - must integrate cloud onto plane that slices through ellipsoid
 - Need to update each frame
 - Very time consuming slows performance
 - Use pre-computed tables to improve performance

Issues for Real-time Gases: Volume Rendering (Overview)

Hardware Approaches to Real-Time Volume Rendering

- Mitsubishi VolumePro board (>\$5000)
- 3D texture mapping hardware
 - Nvidia GeForce3, ATI Radeon (< \$400)
 - SGI Octane, Onyx, ... (>\$10,000)
- Limited resolution based on board memory
 - 256³ (64Mb)?

Interactive Software Solutions

Splatting – Comes closest but is still seconds / frame

Issues for Volumetric Gases: Static Modeling

3D Textures for Gas Density

- Limited by resolution of 3D texture: 256³ (64Mb)
 - Not a very detailed cloud, want 1000³ at least
 - What about shadow volume, illumination volumes, etc. => even more memory
- Precision of densities / opacities: Is 8 bits enough?

Global Density Model + Volume Detail Texture (Noise Texture)

Need dependent texture reads

Issues for Real-time Volumetric Gases: Dynamic Models

Dynamically Change 3D Texture Densities

Need ability to update portions of 3D textures at 30 fps

Change 3D Texture Indices Algorithmically

How quick can you change the texture coordinates on the slices?

Use a Changing Smaller Texture to Dynamically Offset the 3D Texture Lookup

Could Generate Geometry on the Fly (Micropolygons)

- Need capability to generate new triangles at the vertex or fragment processing level
 - E.g. from a vertex program on a Nvidia chip
 Can use dummy geometry but no textures in v.p.

Issues for Real-time Volumetric Gases: Opacity Accumulation

Need Exponential Accumulation of Gas Densities:

 $dp(d0) isnab \int_{13}^{23} 2$

Most systems use simple linear blend

Can Pre-integrate Accumulated Opacity Within a Slab and Store That in the Texture (e.g., Engel 2001)

- Opacities at front and back plus step size become texture coordinates
- Requires dependent texture read

Courtesy of Klaus Engel, Pre-Integrated Volume Renderer V1.7, 15 fps, 2001

Issues for Real-time Volumetric Gases: Illumination

How to Simulate Bi-directional Reflection Function for Low-albedo Illumination

- 2D texture maps indexed by eye angle and light angle?
 - Needs dependent texture read

How to Simulate Multiple (High-albedo) Scattering?

- Could use pre-integrated tables
 - Need to change for each move in observer position or light position

Approximation of Isotropic Particle Scattering

Only dependent on light direction

Issues for Real-time Volumetric Gases: Shadowing

How to Compute Real-time Shadows?

- 2D real-time shadow mapping
 - Only would works for shadowing onto objects, not selfshadowing
 - Problem with transparent objects
- Could create 3D shadow table using texture sliced renderer from direction of eye point
 - Cuts frame rate approximately 25-50% depending on accuracy desired
- Projected imposters to form shadow texture (Dobashi 2000)

What's Now Available for PC Graphics?

3D Textures - (e.g., ATI, 3dfx, Nvidia, X-box)

Programmable Vertex Shading (e.g., GeForce2, GeForce3)

Dependent Texture Reads (e.g., ATI Radeon, GeForce3)

Programmable Pixel Shading (e.g., GeForce3)

What's Now Available for PC Graphics?

Stanford Real-Time
Programmable Shading
Language (Mark,
Proudfoot, Hanrahan)

- Great for real-time programmable shader development and volume shading design
- Re-targetable compiler to optimize passes through graphics pipeline
- Between OpenGL and Renderman

Hardware Issues With New Advances

How Much Flexibility in the New Programmability?

- Can you add, subtract, multiply, divide?
- Are conditionals allowed?
- How big is the temporary storage?
 - Can you do noise tables?
- Can you use 3D textures just like 2D textures in dependent reads?
- Any order of operations imposed by the hardware (implementation gotcha)?
- What operations are allowed in each part of the pipeline?

Hardware Issues With New Advances (cont.)

What Is the Range of the Values for Each Operation?

0 to 255, -255 to 255, fixed point, float

What Is the Precision?

- 8-bit, 9-bit, 12 bit, 16 bit?
 - Affects complexity of operations that can be performed before quantization errors are visible
- How does the precision vary at different stages of pipeline?
 - E.g., Geforce 3 pixel shaders are floating point, but textures are 8-bit and combiners are 9-bit

Procedural Modeling and Animation is:

Powerful Flexible Extensible

Important Aspects

- Flexible volume modeling system
- Accurate illumination and shadowing

Procedural Modeling

- Particle systems, L-systems, blobs can be included
- Flexible, turbulent volume modeling

Volumetric Procedural Implicit Cloud Modeling

- Ease of control and specification of implicits
- Smooth blending
- Natural appearance from turbulence simulation
- Procedural abstraction
- Parametric control

Real-time Gases Are On the Horizon

- Latest programmability and capabilities of PC hardware enables a vast array of techniques
- Procedural techniques are well suited for new hardware
 - Eliminate the data transfer bottleneck

Future Goal

Download procedural cloud to GPU and generate geometry and render on the fly

Acknowledgements

Collaborators:

- RTSL: Bill Mark, Kekoa Proudfoot, Pat Hanrahan
- Klaus Engel, Rick Parent, Steve May
- Students: Marlin Rowley, Vlad Korolev, Ruchigartha

Funding: NSF, NASA, DoD, Electronic Arts

