



# NHD-0220FZ-FSW-GBW-P-33V3

# **Character Liquid Crystal Display Module**

NHD- Newhaven Display
0220- 2 Lines x 20 Characters

FZ- Model

F- Transflective

SW- Side White LED Backlight

G- STN Positive, Gray
B- 6:00 Optimal View
W- Wide Temperature
P- Pins Header Soldered
33V3- 3.3VDD, 3.0V Backlight

**RoHS Compliant** 

#### Newhaven Display International, Inc.

2661 Galvin Ct. Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

## **Document Revision History**

| Revision | Date     | Description                                                 | Changed by |
|----------|----------|-------------------------------------------------------------|------------|
| 0        | 10/31/11 | 33V – Improved Liquid; VDD=3.3 V                            | SB         |
| 1        | 3/14/13  | Mechanical drawing updated                                  | AK         |
| 2        | 7/30/13  | Mechanical drawing updated, added timing diagram            | ML         |
| 3        | 5/26/16  | Mechanical drawing updated, Backlight supply, Optical char. | TM         |
| 4        | 7/19/16  | Mechanical Drawing updated                                  | TM         |
| 5        | 8/10/16  | Mechanical Drawing updated                                  | TM         |
| 6        | 4/17/17  | Backlight Characteristics Updated                           | NP         |
| 7        | 4/27/18  | Mechanical Drawing & Electrical Characteristics Updated     | SB         |
| 8        | 2/13/19  | Mechanical Drawing Updated                                  | TM         |

#### **Functions and Features**

- 2 lines x 20 characters
- Built-in controller (ST7066U)
- +3.3V Power Supply
- 1/16 duty, 1/5 bias
- RoHS compliant



Pin Description and Wiring Diagram

| Pin No. | Symbol         | External Connection | Function Description                                            |
|---------|----------------|---------------------|-----------------------------------------------------------------|
| 1       | Vss            | Power Supply        | Ground                                                          |
| 2       | $V_{DD}$       | Power Supply        | Supply Voltage for logic (+3.3V)                                |
| 3       | V <sub>0</sub> | Adj. Power Supply   | Supply Voltage for contrast (approx. 0 V)                       |
| 4       | RS             | MPU                 | Register Select signal. RS=0: Command, RS=1: Data               |
| 5       | R/W            | MPU                 | Read/Write select signal, R/W=1: Read R/W: =0: Write            |
| 6       | E              | MPU                 | Operation Enable signal. Falling edge triggered.                |
| 7-10    | DB0 – DB3      | MPU                 | Four low order bi-directional three-state data bus lines. These |
|         |                |                     | four are not used during 4-bit operation.                       |
| 11-14   | DB4 – DB7      | MPU                 | Four high order bi-directional three-state data bus lines.      |
| 15      | LED+           | Power Supply        | Backlight Anode (15mA @3V)                                      |
| 16      | LED-           | Power Supply        | Backlight Cathode (Ground)                                      |

**Recommended LCD connector:** 1.27mm pitch pins **Backlight connector:** --- **Mates with:** ---



#### **Electrical Characteristics**

| Item                        | Symbol           | Condition              | Min.                   | Тур. | Max.                  | Unit |
|-----------------------------|------------------|------------------------|------------------------|------|-----------------------|------|
| Operating Temperature Range | T <sub>OP</sub>  | Absolute Max           | -20                    | -    | +70                   | °C   |
| Storage Temperature Range   | T <sub>ST</sub>  | Absolute Max           | -30                    | -    | +80                   | °C   |
| Supply Voltage              | $V_{DD}$         | •                      | 3.0                    | 3.3  | 3.6                   | V    |
| Supply Current              | I <sub>DD</sub>  | V <sub>DD</sub> =3.3V  | 0.5                    | 1.0  | 2.0                   | mA   |
| Supply for LCD (contrast)   | $V_{LCD}$        | $T_{OP} = 25^{\circ}C$ | 3.1                    | 3.3  | 3.5                   | V    |
| "H" Level input             | V <sub>IH</sub>  | -                      | 0.7 * V <sub>DD</sub>  | -    | $V_{DD}$              | V    |
| "L" Level input             | VIL              | -                      | Vss                    | -    | 0.6                   | V    |
| "H" Level output            | Vон              | -                      | 0.75 * V <sub>DD</sub> | -    | $V_{DD}$              | V    |
| "L" Level output            | Vol              | -                      | Vss                    | -    | 0.2 * V <sub>DD</sub> | V    |
|                             |                  |                        |                        |      |                       |      |
| Backlight Supply Voltage    | V <sub>LED</sub> | -                      | 2.8                    | 3.0  | 3.2                   | V    |
| Backlight Supply Current    | I <sub>LED</sub> | $V_{LED} = 3.0V$       | 7                      | 15   | 20                    | mA   |

## **Optical Characteristics**

|                              | Ite            | em   | Symbol         | Condition              | Min. | Тур. | Max. | Unit |
|------------------------------|----------------|------|----------------|------------------------|------|------|------|------|
| Optimal<br>Viewing<br>Angles | Тор            |      | φΥ+            |                        | -    | 40   | -    | •    |
|                              | Bot            | tom  | φΥ-            | CD > 2                 | -    | 60   | -    | 0    |
|                              | Left           |      | θХ-            | CR ≥ 2                 | -    | 60   | -    | 0    |
| Angles                       | Righ           | nt   | θХ+            |                        | -    | 60   | -    | 0    |
| Contrast Rat                 | Contrast Ratio |      | CR             | -                      | 2    | 5    | -    | -    |
| D                            | ··             | Rise | T <sub>R</sub> | T 25°C                 | -    | 150  | 250  | ms   |
| Response T                   | ime            | Fall | T <sub>F</sub> | $T_{OP} = 25^{\circ}C$ | -    | 200  | 300  | ms   |

#### **Controller Information**

Built-in ST7066U controller.

Please download specification at <a href="http://www.newhavendisplay.com/app">http://www.newhavendisplay.com/app</a> notes/ST7066U.pdf

# **Display Character Address Code**

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0A | OB | 0C | 0D | 0E | OF | 10 | 11 | 12 | 13 |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F | 50 | 51 | 52 | 53 |

# **Table of Commands**

|                                  |    |     |     | Ins | tructi | ion co | ode |     |     |     |                                                                                                                                  | Execution              |
|----------------------------------|----|-----|-----|-----|--------|--------|-----|-----|-----|-----|----------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Instruction                      | RS | R/W | DB7 | DB6 | DB5    | DB4    | DB3 | DB2 | DB1 | DB0 | Description                                                                                                                      | time (fosc=<br>270 KHZ |
| Clear<br>Display                 | 0  | 0   | 0   | 0   | 0      | 0      | 0   | 0   | 0   | 1   | Write "20H" to DDRAM and set DDRAM address to "00H" from AC                                                                      | 1.52ms                 |
| Return<br>Home                   | 0  | 0   | 0   | 0   | 0      | 0      | 0   | 0   | 1   | -   | Set DDRAM Address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed. | 1.52ms                 |
| Entry mode<br>Set                | 0  | 0   | 0   | 0   | 0      | 0      | 0   | 1   | I/D | SH  | Sets cursor move direction and specifies display shift. These parameters are performed during data write and read.               | 37µs                   |
| Display ON/<br>OFF control       | 0  | 0   | 0   | 0   | 0      | 0      | 1   | D   | С   | В   | D=1: Entire display on<br>C=1: Cursor on<br>B=1: Blinking cursor on                                                              | 37µs                   |
| Cursor or<br>Display<br>shift    | 0  | 0   | 0   | 0   | 0      | 1      | S/C | R/L | -   | 1   | Sets cursor moving and display shift control bit, and the direction without changing DDRAM data.                                 | 37µs                   |
| Function set                     | 0  | 0   | 0   | 0   | 1      | DL     | N   | F   | -   | ı   | DL: Interface data is 8/4 bits N: Number of lines is 2/1 F: Font size is 5x11/5x8                                                | 37µs                   |
| Set<br>CGRAM<br>Address          | 0  | 0   | 0   | 1   | AC5    | AC4    | AC3 | AC2 | AC1 | AC0 | Set CGRAM address in address counter                                                                                             | 37µs                   |
| Set<br>DDRAM<br>Address          | 0  | 0   | 1   | AC6 | AC5    | AC4    | AC3 | AC2 | AC1 | AC0 | Set DDRAM address in address counter.                                                                                            | 37µs                   |
| Read busy<br>Flag and<br>Address | 0  | 1   | BF  | AC6 | AC5    | AC4    | AC3 | AC2 | AC1 | AC0 | Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.           | 0s                     |
| Write data<br>To Address         | 1  | 0   | D7  | D6  | D5     | D4     | D3  | D2  | D1  | D0  | Write data into internal RAM (DDRAM/CGRAM).                                                                                      | 37µs                   |
| Read data<br>From RAM            | 1  | 1   | D7  | D6  | D5     | D4     | D3  | D2  | D1  | D0  | Read data from internal RAM (DDRAM/CGRAM).                                                                                       | 37µs                   |

# **Timing Characteristics**

## Writing data from MPU to ST7066U



## Reading data from ST7066U to MPU



# **Built-in Font Table**

| <u>67-64</u><br>63-60 | 0000             | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|-----------------------|------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0000                  | CG<br>RAM<br>(1) |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0001                  | (2)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0010                  | (3)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0011                  | (4)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      | **   |
| 0100                  | (5)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0101                  | (6)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0110                  | (7)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 0111                  | (8)              |      |      |      |      |      |      |      |      |      |      |      | ×    |      |      |      |
| 1000                  | (1)              |      |      |      |      | ×    |      | ×    |      |      |      |      |      |      |      | *    |
| 1001                  | (2)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1010                  | (3)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1011                  | (4)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1100                  | (5)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1101                  | (6)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1110                  | (7)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 1111                  | (8)              |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |

#### **Example Initialization Program**

```
8-bit Initialization:
void command(char i)
     P1 = i;
                                   //put data on output Port
     D I = 0;
                                   //D/I=LOW : send instruction
     RW=0;
                                   //R/W=LOW : Write
     E = 1;
                                   //enable pulse width >= 300ns
     Delay(1);
                                    //Clock enable: falling edge
void write(char i)
{
     P1 = i;
                                   //put data on output Port
     D I =1;
                                    //D/I=HIGH : send data
     RW=0;
                                    //R/W=LOW : Write
     E = 1;
     Delay(1);
                                   //enable pulse width >= 300ns
     E = 0;
                                   //Clock enable: falling edge
void init()
     E = 0;
     Delay(100);
                                   //Wait >40 msec after power is applied
     command(0x30);
                                   //command 0x30 = Wake up
                            //command 0x30 = Wake up
//must wait 5ms, busy flag not available
//command 0x30 = Wake up #2
//must wait 160us, busy flag not available
//command 0x30 = Wake up #3
//must wait 160us, busy flag not available
//Function set: 8-bit/2-line
//Set cursor
//Display ON; Cursor ON
//Entry mode set
     Delay(30);
     command(0x30);
Delay(10);
     command(0x30);
     Delay(10);
     command(0x38);
     command(0x10);
     command (0x0c); command (0x06);
                                   //Entry mode set
              *************
```

```
4-bit Initialization:
void command(char i)
     P1 = i;
                                     //put data on output Port
     D I = 0;
                                    //D/I=LOW : send instruction
                                  //D/I=LOW : send instru
//R/W=LOW : Write
//Send upper 4 bits
//Shift over by 4 bits
//put data on output Po
     R^{-}W = 0;
     Nybble();
     i = i << 4;
     P1 = i;
                                    //put data on output Port
                                     //Send lower 4 bits
     Nybble();
/***********************
void write(char i)
     P1 = i;
                                     //put data on output Port
     D I = 1;
                                    //D/I=HIGH : send data
                                  //D/1=HIGH: send data
//R/W=LOW: Write
//Clock upper 4 bits
//Shift over by 4 bits
     RW=0;
     Nybble();
     i = i << 4;
     P1 = i;
                                    //put data on output Port
     Nybble();
                                     //Clock lower 4 bits
void Nybble()
     E = 1;
     Delay(1);
                                     //enable pulse width >= 300ns
     E = 0;
                                     //Clock enable: falling edge
/***********************
{
     P1 = 0;
      P3 = 0;
      Delay(100);
                                     //Wait >40 msec after power is applied
      P1 = 0x30;
                                     //put 0x30 on the output port
      Delay(30);
                                     //must wait 5ms, busy flag not available
      Nybble();
                                     //command 0x30 = Wake up
      Delay(10);
                                     //must wait 160us, busy flag not available
      Nybble();
                                     //command 0x30 = Wake up #2
                              //command
//must wait 160us, busy flag not a...
//command 0x30 = Wake up #3
//can check busy flag now instead of delay
//put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
//Set cursor
//Display ON; Blinking cursor
      Delay(10);
      Nybble();
      Delay(10);
      P1 = 0x20;
      Nybble();
      command(0x28);
      command(0x10);
     command(0x0F);
      command (0x06);
```

## **Quality Information**

| Test Item                 | Content of Test                             | Test Condition                 | Note |
|---------------------------|---------------------------------------------|--------------------------------|------|
| High Temperature storage  | Endurance test applying the high storage    | +80°C , 48hrs                  | 2    |
|                           | temperature for a long time.                |                                |      |
| Low Temperature storage   | Endurance test applying the low storage     | -30°C , 48hrs                  | 1,2  |
|                           | temperature for a long time.                |                                |      |
| High Temperature          | Endurance test applying the electric stress | +70°C , 48hrs                  | 2    |
| Operation                 | (voltage & current) and the high thermal    |                                |      |
|                           | stress for a long time.                     |                                |      |
| Low Temperature           | Endurance test applying the electric stress | -20°C , 48hrs                  | 1,2  |
| Operation                 | (voltage & current) and the low thermal     |                                |      |
|                           | stress for a long time.                     |                                |      |
| High Temperature /        | Endurance test applying the electric stress | +40°C, 90% RH, 48hrs           | 1,2  |
| <b>Humidity Operation</b> | (voltage & current) and the high thermal    |                                |      |
|                           | with high humidity stress for a long time.  |                                |      |
| Thermal Shock resistance  | Endurance test applying the electric stress | 0°C, 30min -> 25°C, 5min ->    |      |
|                           | (voltage & current) during a cycle of low   | 50°C, 30min = 1 cycle          |      |
|                           | and high thermal stress.                    | For 10 cycles                  |      |
| Vibration test            | Endurance test applying vibration to        | 10-55Hz, 15mm amplitude.       | 3    |
|                           | simulate transportation and use.            | 60 sec in each of 3 directions |      |
|                           |                                             | X,Y,Z                          |      |
|                           |                                             | For 15 minutes                 |      |
| Static electricity test   | Endurance test applying electric static     | VS=800V, RS=1.5kΩ, CS=100pF    |      |
|                           | discharge.                                  | One time                       |      |

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

**Note 3:** Test performed on product itself, not inside a container.

# **Precautions for using LCDs/LCMs**

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

## **Warranty Information and Terms & Conditions**

http://www.newhavendisplay.com/index.php?main\_page=terms