Analyzing K-12 Student Data for School Year 2021

```
import numpy as np
import pandas as pd
import seaborn as sns
```

```
df = pd.read_csv("data-science-project-2021-k12.csv")
```

df

	SchoolType	EnrollmentType	SchoolCode	Track	Grade	GradeLevel	StudentID	HasLaptop	HasInternet
0	Traditional	Traditional	80	Т	12	High	5	Yes	Yes
1	Traditional	Traditional	80	STE	11	High	7	Yes	Yes
2	Traditional	Traditional	80	Т	12	High	13	Yes	Yes
3	Traditional	Traditional	80	Т	12	High	2	No	No
4	Traditional	Traditional	80	Т	11	High	15	Yes	Yes
51349	Traditional	Traditional	55	Т	08	Intermediate	51338	No	No
51350	Year Round	Traditional	43	В	KA	Elementary	51343	No	Yes
51351	Traditional	Traditional	21	Т	KN	Elementary	51351	Yes	Yes
51352	Traditional	Traditional	44	Т	KN	Elementary	51346	No	No
51353	Year Round	Traditional	36	В	04	Elementary	51354	No	No

51354 rows × 34 columns

Name columns

df.columns

Basic statistic

df.describe()

	SchoolCode	StudentID	TotalStudentInHousehold	ELPAC	DaysEnrolled	DaysPresent	Presen
count	51354.000000	51354.000000	51354.000000	5672.000000	51354.000000	51354.000000	51354.
mean	46.380788	25677.500000	1.775986	2.569817	32.782256	32.058652	0.9743
std	25.434033	14824.767199	1.413972	0.863895	5.676303	6.205820	0.0985
min	1.000000	1.000000	1.000000	1.000000	0.000000	0.000000	0.0000
25%	23.000000	12839.250000	1.000000	2.000000	32.000000	32.000000	1.0000
50%	48.000000	25677.500000	2.000000	3.000000	32.000000	32.000000	1.0000
75%	68.000000	38515.750000	2.000000	3.000000	32.000000	32.000000	1.0000
max	83.000000	51354.000000	41.000000	4.000000	57.000000	57.000000	1.0000

Make a copy of raw data before change data.

```
k_12 = df.copy()
```

Grade level distribution

```
grade_level = k_12.groupby("Grade")["StudentID"].count().sort_values(ascending=Fa
grade_level
```

```
Grade
10
      4350
09
      4331
      4298
12
      4167
      4084
      4015
05
      3832
06
      3822
      3813
03
      3609
02
      3552
      3474
      3035
      538
PS
       303
TR
       130
         1
Name: StudentID, dtype: int64
```

```
grade_level.plot.bar()
```

<AxesSubplot:xlabel='Grade'>

♣ Download

Ethnicity distribution

```
ethnicity_unique = k_12["Ethnicity"].value_counts()
ethnicity_unique
```

Hispanic 27536
White 11953
Asian 7758
Black or African American 3284
Other 823
Name: Ethnicity, dtype: int64

```
color_ethnicity = ["#0081a7","#00afb9","#fdfcdc","#fed9b7","#f07167"]
ethnicity_unique.plot.pie(colors = color_ethnicity,autopct='%1.1f%%', title = "St
```

<AxesSubplot:title={'center':'Student Ethnicity in School Year 2021'}, ylabel='</pre>

Student Ethnicity in School Year 2021

Virtual vs Traditional Setting

Because of COVID-19, all California schools began school year 2021 in a remote learning (virtual) setting

EnrollmentType_unique = k_12["EnrollmentType"].value_counts()
EnrollmentType_unique

Traditional 38678 Virtual 12676

Name: EnrollmentType, dtype: int64

EnrollmentType_unique.plot.pie(colors = ["#61f4de","#6e78ff"],autopct='%1.1f%%',

<AxesSubplot:title={'center':'Student Enrollment Type in School Year 2021'}, yl</pre>

◆ Download

Student Enrollment Type in School Year 2021

Device Checked Out Status

some families who can't afford these technologies, school district has budget to purchase laptop and internet for students to check out to use at home. Parents can make requests for laptop or/and internet on parent portal. Information Technology department gathers these requests and notifies parents to come to district office to pick up devices when inventory allows.

Has laptop

```
has_laptop_count = k_12["HasLaptop"].value_counts()
has_laptop_count
```

Yes 42649 No 8705

Name: HasLaptop, dtype: int64

<AxesSubplot:title={'center':'Student Has a Laptop to Use?'}, ylabel='HasLaptop</pre>

Student Has a Laptop to Use?

Has internet

```
has_internet = k_12["HasInternet"].value_counts()
has_internet
```

Yes 45106 No 6248

Name: HasInternet, dtype: int64

```
has_internet.plot.pie(colors = ["#fcaa67","#b0413e"],autopct='%1.1f%%', title = "
```

<AxesSubplot:title={'center':'Student Has a Internet to Use?'}, ylabel='HasInte</pre>

Student Has a Internet to Use?

What ethnicity and/or gender group(s) of students prefer to start school year in a Virtual setting?

k_12

	SchoolType	EnrollmentType	SchoolCode	Track	Grade	GradeLevel	StudentID	HasLaptop	HasInternet
0	Traditional	Traditional	80	Т	12	High	5	Yes	Yes
1	Traditional	Traditional	80	STE	11	High	7	Yes	Yes
2	Traditional	Traditional	80	Т	12	High	13	Yes	Yes
3	Traditional	Traditional	80	Т	12	High	2	No	No
4	Traditional	Traditional	80	Т	11	High	15	Yes	Yes
51349	Traditional	Traditional	55	Т	08	Intermediate	51338	No	No
51350	Year Round	Traditional	43	В	KA	Elementary	51343	No	Yes
51351	Traditional	Traditional	21	Т	KN	Elementary	51351	Yes	Yes
51352	Traditional	Traditional	44	Т	KN	Elementary	51346	No	No
51353	Year Round	Traditional	36	В	04	Elementary	51354	No	No

51354 rows × 35 columns

Virtual

```
\label{eq:virtual_k_12} $$ virtual_k_12 = k_12[k_12["EnrollmentType"] == "Virtual"].groupby(["Ethnicity", "Envirtual_k_12]). $$
```

	Ethnicity	EnrollmentType	Gender	Count
0	Asian	Virtual	Female	1338
1	Asian	Virtual	Male	1346
2	Black or African American	Virtual	Female	466
3	Black or African American	Virtual	Male	467
4	Hispanic	Virtual	Female	3516
5	Hispanic	Virtual	Male	3465
6	Hispanic	Virtual	Non-Binary	2
7	Other	Virtual	Female	91
8	Other	Virtual	Male	90
9	White	Virtual	Female	942
10	White	Virtual	Male	952
11	White	Virtual	Non-Binary	1

Traditional

 $\label{traditional} $$\operatorname{traditional}_{k_12} = k_12[k_12["EnrollmentType"] == "Traditional"].$$ groupby(["Ethnic traditional_k_12]) $$$

	Ethnicity	EnrollmentType	Gender	Count
0	Asian	Traditional	Female	2470
1	Asian	Traditional	Male	2604
2	Black or African American	Traditional	Female	1127
3	Black or African American	Traditional	Male	1224
4	Hispanic	Traditional	Female	10012
5	Hispanic	Traditional	Male	10539
6	Hispanic	Traditional	Non-Binary	2
7	Other	Traditional	Female	330
8	Other	Traditional	Male	311
9	Other	Traditional	Non-Binary	1
10	White	Traditional	Female	4849
11	White	Traditional	Male	5208
12	White	Traditional	Non-Binary	1

Merge

 $\label{eq:k_12_merge} $$k_12_merge = virtual_k_12.merge(traditional_k_12, on = ["Ethnicity", "Gender"], suf k_12_merge$

	Ethnicity	EnrollmentType_virtual	Gender	Count_virtual	EnrollmentType_traditional	Count_traditional
0	Asian	Virtual	Female	1338	Traditional	2470
1	Asian	Virtual	Male	1346	Traditional	2604
2	Black or African American	Virtual	Female	466	Traditional	1127
3	Black or African American	Virtual	Male	467	Traditional	1224
4	Hispanic	Virtual	Female	3516	Traditional	10012
5	Hispanic	Virtual	Male	3465	Traditional	10539
6	Hispanic	Virtual	Non- Binary	2	Traditional	2
7	Other	Virtual	Female	91	Traditional	330
8	Other	Virtual	Male	90	Traditional	311
9	White	Virtual	Female	942	Traditional	4849
10	White	Virtual	Male	952	Traditional	5208
11	White	Virtual	Non- Binary	1	Traditional	1

Virtual rate

 $k_12_merge["Virtual_rate"] = k_12_merge["Count_virtual"] / (k_12_merge["Count_virtual"] / (k_12_merge["Count_virtual"$

	Ethnicity	EnrollmentType_virtual	Gender	Count_virtual	EnrollmentType_traditional	Count_traditional	Virtual_
0	Asian	Virtual	Female	1338	Traditional	2470	0.35136
1	Asian	Virtual	Male	1346	Traditional	2604	0.34075
2	Black or African American	Virtual	Female	466	Traditional	1127	0.29253
3	Black or African American	Virtual	Male	467	Traditional	1224	0.27616
4	Hispanic	Virtual	Female	3516	Traditional	10012	0.25990
5	Hispanic	Virtual	Male	3465	Traditional	10539	0.24742
6	Hispanic	Virtual	Non- Binary	2	Traditional	2	0.50000
7	Other	Virtual	Female	91	Traditional	330	0.21615
8	Other	Virtual	Male	90	Traditional	311	0.22443
9	White	Virtual	Female	942	Traditional	4849	0.16266
10	White	Virtual	Male	952	Traditional	5208	0.15454
11	White	Virtual	Non- Binary	1	Traditional	1	0.50000

k_12_merge.columns

```
  k\_12\_merge\_pivot = k\_12\_merge.pivot("Ethnicity", "Gender", "Virtual\_rate").fillna(0 k\_12\_merge\_pivot )
```

Gender	Female	Male	Non-Binary
Ethnicity			
Asian	0.351366	0.340759	0.0
Black or African American	0.292530	0.276168	0.0
Hispanic	0.259905	0.247429	0.5
Other	0.216152	0.224439	0.0
White	0.162666	0.154545	0.5

```
colormap = sns.color_palette("crest", as_cmap=True)
sns.heatmap(k_12_merge_pivot, annot=True, cmap=colormap)
```

<AxesSubplot:xlabel='Gender', ylabel='Ethnicity'>

₹ Download

