Espaces complets

Table des matières

1.	Suites de Cauchy	2
2.	Complétude	3
3.	Complétude des espaces de fonctions continues	4
4.	Théorème du point fixe de Banach-Picard	4
	4.1. Applications · · · · · · · · · · · · · · · · · · ·	5

1. Suites de Cauchy

Définition 1.1. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E. On dit que $(x_n)_{n\in\mathbb{N}}$ est de *Cauchy* si elle vérifie :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \in \mathbb{N}, p \ge N \text{ et } q \ge N \Rightarrow \left\| x_p - x_q \right\| \le \varepsilon.$$

Proposition 1.2. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites de Cauchy, et $\lambda \in \mathbb{R}$. Alors :

- (1) $(x_n + y_n)_{n \in \mathbb{N}}$ est une suite de Cauchy.
- (2) $(\lambda x_n)_{n \in \mathbb{N}}$ est une suite de Cauchy.
- (3) $(\|x_n\|)_{n\in\mathbb{N}}$ est une suite de Cauchy.

Démonstration.

(1) Soit $\varepsilon > 0$. Puisque $(x_n)_{n \in \mathbb{N}}$ est de Cauchy, il existe $N_1 \in \mathbb{N}$ tel que

$$\forall p, q \in \mathbb{N}, p \geq N_1 \text{ et } q \geq N_1 \Rightarrow \left\| x_p - x_q \right\| \leq \frac{\varepsilon}{2}$$

et puisque $(y_n)_{n\in\mathbb{N}}$ est de Cauchy, il existe $N_2\in\mathbb{N}$ tel que

$$\forall p, q \in \mathbb{N}, p \ge N_2 \text{ et } q \ge N_2 \Rightarrow \left\| y_p - y_q \right\| \le \frac{\varepsilon}{2}.$$

Posons $N := \max(N_1, N_2)$. Soit $p, q \in \mathbb{N}$ tels que $p \ge N$ et $q \ge N$. Alors

$$\left\|x_p + y_p - (x_q + y_q)\right\| \le \left\|x_p - x_q\right\| + \left\|y_p - y_q\right\| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

donc $(x_n)_{n\in\mathbb{N}}$ est de Cauchy.

(2)

(3)

Proposition 1.3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Alors la suite $(x_n)_{n\in\mathbb{N}}$ est bornée.

 $D\acute{e}monstration.$ Puisque $(x_n)_{n\in\mathbb{N}}$ est de Cauchy, il existe $N\in\mathbb{N}$ tel que

$$\forall p, q \in \mathbb{N}, p \ge N \text{ et } q \ge N \Rightarrow \left\| x_p - x_q \right\| \le 1$$

en particulier en posant q := N, on a

$$\forall p \in \mathbb{N}, p \ge N \Rightarrow \left\| x_p - x_N \right\| \le 1$$

d'après l'inégalité triangulaire inversée, on a

$$\forall p \in \mathbb{N}, p \ge N \Rightarrow \left\| x_p \right\| \le 1 + \|x_N\|.$$

Posons $M := \max(\|x_0\|, ..., \|x_N\|, 1 + \|x_N\|)$. Alors $(x_n)_{n \in \mathbb{N}}$ est bornée par M.

Proposition 1.4. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $(x_n)_{n \in \mathbb{N}}$ une suite convergente. Alors la suite $(x_n)_{n \in \mathbb{N}}$ est de Cauchy.

Démonstration. Soit $\varepsilon > 0$. Puisque $(x_n)_{n \in \mathbb{N}}$ converge, il existe $N \in \mathbb{N}$ et $\ell \in E$ tel que

$$\forall n \in \mathbb{N}, n \ge N \Rightarrow ||x_n - \ell|| \le \frac{\varepsilon}{2}$$

Soit $p, q \in \mathbb{N}$ tels que $p \ge N$ et $q \ge N$. Alors

$$\left\|x_p - x_q\right\| = \left\|x_p - \ell + \ell - x_q\right\| \le \left\|x_p - \ell\right\| + \left\|x_q - \ell\right\| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

donc $(x_n)_{n\in\mathbb{N}}$ est de Cauchy.

Proposition 1.5. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Si la suite $(x_n)_{n\in\mathbb{N}}$ admet une sous-suite convergente, alors $(x_n)_{n\in\mathbb{N}}$ est convergente.

Démonstration. Soit $\varepsilon > 0$. Puisque $(x_n)_{n \in \mathbb{N}}$ admet une sous-suite convergente, il existe $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante, $N_2 \in \mathbb{N}$ et $\ell \in E$ tels que

$$\forall n \in \mathbb{N}, n \ge N_2 \Rightarrow \left\| x_{\varphi(n)} - \ell \right\| \le \frac{\varepsilon}{2}$$

et puisque $\left(x_{n}\right)_{n\in\mathbb{N}}$ est de Cauchy, il existe $N_{1}\in\mathbb{N}$ tel que

$$\forall p, q \in \mathbb{N}, p \geq N_1 \text{ et } q \geq N_1 \Rightarrow \left\| x_p - x_q \right\| \leq \frac{\varepsilon}{2}$$

en particulier en posant $q := \varphi(p) \ge p \ge N$, on a

$$\forall p \in \mathbb{N}, p \ge N \Rightarrow \left\| x_p - x_{\varphi(p)} \right\| \le \frac{\varepsilon}{2}.$$

Posons $N = \max(N_1, N_2)$. Soit $n \in \mathbb{N}$ tel que $n \ge N$. Alors

$$\|x_n - \ell\| = \left\|x_n - x_{\varphi(n)} + x_{\varphi(n)} - \ell\right\| \le \left\|x_n - x_{\varphi(n)}\right\| + \left\|x_{\varphi(n)} - \ell\right\| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

donc $(x_n)_{n\in\mathbb{N}}$ est convergente.

2. Complétude

Définition 2.1. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et A un sous-ensemble de E. On dit que A est *complet* si toute suite de Cauchy de A est convergente dans A. Si E est complet, on dit que E est un *espace de Banach*.

Exemples 2.2. $(\mathbb{R}, |\cdot|), (\mathbb{C}, |\cdot|)$ et $(\mathbb{R}^n, ||\cdot||)$ sont des espaces de Banach.

Proposition 2.3. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et A un sous-ensemble de E. Si A est complet, alors A est fermé.

Démonstration. Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'éléments de A qui converge vers $\ell\in E$. Puisque $(a_n)_{n\in\mathbb{N}}$ converge, $(a_n)_{n\in\mathbb{N}}$ est de Cauchy. Puisque A est complet, $(a_n)_{n\in\mathbb{N}}$ converge dans A, alors $\ell\in A$. Donc A est fermé.

Proposition 2.4. Soit $(E, \|\cdot\|)$ un espace vectoriel normé et $A \subset B$ deux sous-ensembles de E. Si A est fermé et B est complet, alors A est complet.

Démonstration. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de Cauchy d'éléments de A. Alors $(a_n)_{n\in\mathbb{N}}$ est une suite de Cauchy d'éléments de B. Puisque B est complet, $(a_n)_{n\in\mathbb{N}}$ converge dans B. Mais puisque A est fermé, $(a_n)_{n\in\mathbb{N}}$ converge dans A. Donc A est complet.

Proposition 2.5. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Si E est de dimension finie, alors E est un espace de Banach.

Démonstration. Notons d la dimension de E et $(e^1, ..., e^d)$ une base de E. Puisque E est de dimension finie $\|\cdot\|$ est équivalente à $\|\cdot\|_{\infty}$. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Alors

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \in \mathbb{N}, p \geq N \text{ et } q \geq N \Rightarrow \forall i \in \{1,...,d\}, \left|u_p^i - u_q^i\right| \leq \varepsilon$$

on en déduit que pour tout $i \in \{1,...,d\}$, la suite $\left(x_n^i\right)_{n \in \mathbb{N}}$ est de Cauchy dans \mathbb{R} et converge vers une limite $x^i \in \mathbb{R}$. Alors $\left(x_n\right)_{n \in \mathbb{N}}$ converge vers une limite $x \coloneqq \left(x^1,...,x^d\right) \in E$. Donc E est un espace de Banach.

3. Complétude des espaces de fonctions continues

Proposition 3.1. Soit $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux espaces vectoriels normés, A un sous-ensemble de E et $(C_b^0(A, F), \|\cdot\|_{\infty})$ l'espace vectoriel normé des fonctions continues et bornées de A dans F. Si F est un espace de Banach, alors $C_b^0(A, F)$ est aussi un espace de Banach.

Démonstration. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy d'éléments de $C_b^0(A, F)$. Soit $\varepsilon > 0$, alors puisque la suite $(f_n)_{n\in\mathbb{N}}$ est de Cauchy, il existe $N \in \mathbb{N}$ tel que

$$\forall p, q \in \mathbb{N}, p \ge N \text{ et } q \ge N \Rightarrow \forall a \in A, \left\| f_p(a) - f_q(a) \right\|_E \le \varepsilon$$

en particulier, pour tout $a \in A$, la suite $(f_n(a))_{n \in \mathbb{N}}$ est de Cauchy dans F. Puisque F est complet, la suite $(f_n(a))_{n \in \mathbb{N}}$ converge vers $f(a) \in F$. Montrons que la fonction f est continue et bornée.

On remarque en passant à la limite que l'on peut écrire

$$\forall q \in \mathbb{N}, q \ge N \Rightarrow \forall a \in A, ||f(a) - f_n(a)|| \le \varepsilon$$

donc la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f. Puisque les f_n sont continues, la fonction f est continue.

De la même manière en remarque que pour tout $a \in A$, on a $\|f(a) - f_N(a)\|_F \le 1$, par une inégalité triangulaire inversée, on obtient

$$||f(a)||_F \le 1 + ||f_N(a)||_F$$

donc la fonction f est bornée.

4. Théorème du point fixe de Banach-Picard

Lemme 4.1. Soit $(E, \|\cdot\|)$ un espace de Banach et $\sum_{n \in \mathbb{N}} u_n$ une série à termes dans E. Si $\sum_{n \in \mathbb{N}} u_n$ converge absolument, alors $\sum_{n \in \mathbb{N}} u_n$ converge simplement.

Démonstration. Notons $(U_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de $\sum_{n\in\mathbb{N}}u_n$. Soit $M,N\in\mathbb{N}$ tels que $M\geq N$, alors par une inégalité triangulaire, on obtient

$$||U_M - U_N|| = \left\| \sum_{n=N+1}^M u_n \right\| \le \sum_{n=N+1}^M ||u_n|| = \sum_{n=0}^M ||u_n|| - \sum_{n=0}^N ||u_n|| \underset{M,N \to +\infty}{\longrightarrow} 0$$

donc la suite $(U_n)_{n\in\mathbb{N}}$ est de Cauchy, puisque E est un espace complet, la suite $(U_n)_{n\in\mathbb{N}}$ converge. Donc la série $\sum_{n\in\mathbb{N}}u_n$ converge simplement

Définition 4.2. Soit $(E, \|\cdot\|)$ un espace vectoriel normé, F un sous-ensemble de E et $f: F \to F$ une application. On dit que f est *contractante* s'il existe $\alpha \in [0, 1[$ tel que :

$$\forall x, y \in F, ||f(x) - f(y)|| \le \alpha ||x - y||.$$

Théorème 4.3. (Théorème du point fixe) Soit $(E, \|\cdot\|)$ un espace de Banach, F un sous-ensemble fermé de E et $f: F \to F$ une application contractante. Alors f admet une unique point fixe sur F. De plus, la suite récurrente définie par :

$$\begin{cases} x_0 \in F \\ \forall n \in \mathbb{N}, x_{n+1} = f(x_n) \end{cases}$$

converge vers cette unique point fixe.

Démonstration. Puisque f est contractante, il existe $\alpha \in [0, 1]$ tel que :

$$\forall x, y \in F, ||f(x) - f(y)|| \le \alpha ||x - y||.$$

Considérons la suite $(x_n)_{n\in\mathbb{N}}$ et la série $\sum_{n\in\mathbb{N}} (x_{n+1}-x_n)$. Soit $n\in\mathbb{N}\setminus\{0\}$, on remarque que :

$$||x_{n+1} - x_n|| = ||f(x_n) - f(x_{n-1})||$$

puisque f est contractante, on a :

$$||x_{n+1} - x_n|| \le \alpha ||x_n - x_{n-1}||$$

par récurrence directe, on obtient :

$$||x_{n+1} - x_n|| \le \alpha^n ||x_1 - x_0||$$

donc d'après le théorème de comparaison, la série $\sum_{n\in\mathbb{N}}(x_{n+1}-x_n)$ converge absolument. Or comme E est un espace de Banach, d'après le Lemme 4.1, la série $\sum_{n\in\mathbb{N}}(x_{n+1}-x_n)$ converge simplement. En particulier la suite des sommes partielles :

$$S_n = \sum_{k=0}^{n-1} (x_{k+1} - x_k) = x_n - x_0$$

converge vers un élément de E. On en déduit que la suite $(x_n)_{n\in\mathbb{N}}$ converge vers un élément de E. Puisque la suite $(x_n)_{n\in\mathbb{N}}$ est dans F, qui est fermé, elle converge vers un élément $l\in F$. Enfin puisque f est contractante, elle est continue, par passage à la limite de l'égalité $x_{n+1}=f(x_n)$, on obtient f(l)=l.

Soit $l, m \in F$ deux points fixes de f. Puisque f est contractante, on a :

$$||l - m|| = ||f(l) - f(m)|| \le \alpha ||l - m||$$

d'où ||l - m|| = 0 et l = m.

Remarque 4.4. Le Théorème 4.3 possède de nombreuses applications :

- Le théorème de Cauchy-Lipschitz qui donne l'existence de solutions d'équations différentielles.
- Le théorème d'inversion locale.
- La résolution d'équations de dérivées partielles.

4.1. Applications

Théorème 4.5. Soit $\left(E,\left\|\cdot\right\|_{E}\right)$ et $\left(F,\left\|\cdot\right\|_{F}\right)$ deux espaces de Banach, $f:E\to F$ une application linéaire continue. Si f est bijective, alors f^{-1} est une application linéaire continue.

Théorème 4.6. Soit $\left(E,\left\|\cdot\right\|_{E}\right)$ et $\left(F,\left\|\cdot\right\|_{F}\right)$ deux espaces de Banach, U un ouvert non-vide de E,a un point de U et $f:U\to F$ une application de classe C^{1} . Si $\mathrm{d}_{a}f$ est bijective, alors il existe un voisinage ouvert V de a et un voisinage ouvert W de f(a) tels que $f:V\to W$ soit un C^{1} -difféomorphisme.

Démonstration. On pose $M := \| \mathbf{d}_a f^{-1} \| > 0$. Soit $x \in U$ et $y \in F$. On considère l'équation y = f(x) et on pose $\varphi : U \to F$; $x \mapsto f(x) - f(a) - \mathbf{d}_a f(x - a)$, alors on a :

$$y - f(a) - d_a f(x - a) = \varphi(x)$$

puisque $d_a f$ est bijective, on a :

$$x = a + d_a f^{-1}(y - f(a) - \varphi(x)).$$

On observe que $\varphi(a) = d_a \varphi = 0$. Par continuité il existe $r_1 > 0$ tel que :

$$\forall x \in \overline{B}(a, r_1), \|\mathbf{d}_x \varphi\| \le \frac{1}{2M}$$

d'après le théorème des accroissements finis, on a :

$$\forall x_1, x_2 \in \overline{B}(a, r_1), \|\varphi(x_1) - \varphi(x_2)\| \le \frac{1}{2M} \|x_1 - x_2\|$$

en particulier pour $x_2 = a$, on obtient :

$$\forall x \in \overline{B}(a, r_1), \|\varphi(x)\| \le \frac{1}{2M} \|x_1 - a\| \le \frac{r_1}{2M}.$$

On pose $F_y : \overline{B}(a, r_1) \to B(a, r_1); x \mapsto a + \mathrm{d}_a f^{-1}(y - f(a) - \varphi(x))$. Soit $x \in \overline{B}(a, r_1)$, alors on a :

$$||F_y(x) - a|| = ||d_a f^{-1}(y - f(a) - \varphi(x))|| \le M||y - f(a) - \varphi(x)||$$

on pose $r_2 := \frac{r_1}{2M}$ et soit $y \in B(f(a), r_2)$, alors on obtient :

$$\left\| F_{y}(x) - a \right\| < M\left(\frac{r_{1}}{M}\right) = r_{1}$$

ainsi $F_v(x) \in B(a, r_1)$.

Soit $x_1, x_2 \in \overline{B}(a, r_1)$, alors on a :

$$\begin{split} \left\| F_y(x_1) - F_y(x_2) \right\| &= \left\| a + \mathrm{d}_a f^{-1} (y - f(a) - \varphi(x_1)) - \left(a + \mathrm{d}_a f^{-1} (y - f(a) - \varphi(x_2)) \right) \right\| \\ &= \left\| \mathrm{d}_a f^{-1} (\varphi(x_2) - \varphi(x_1)) \right\| \\ &\leq M \| \varphi(x_2) - \varphi(x_1) \| \\ &\leq \frac{M}{2M} \| x_2 - x_1 \| = \frac{1}{2} \| x_1 - x_2 \| \end{split}$$

donc F_v est contractante.

D'après le théorème du point fixe, F_y admet un unique point fixe dans $B(a, r_1)$. En particulier l'équation y = f(x) admet une unique solution dans $B(a, r_1)$.

On pose $W := B(f(a), r_2)$ et $V := B(a, r_1) \cap f^{-1}(W)$ de sorte que $f : V \to W$ est bijective.

Soit $y_1, y_2 \in W$, alors f^{-1} vérifie :

$$\begin{split} f^{-1}(y_1) - f^{-1}(y_2) &= F_{y_1} \big(f^{-1}(y_1) \big) - F_{y_2} \big(f^{-1}(y_2) \big) \\ &= \mathrm{d}_a f^{-1}(y_1 - y_2) - \mathrm{d}_a f^{-1} \big(\varphi \big(f^{-1}(y_1) \big) - \varphi \big(f^{-1}(y_2) \big) \big) \end{split}$$

on en déduit:

$$||f^{-1}(y_1) - f^{-1}(y_2)|| \le M||y_1 - y_2|| + \frac{1}{2}||f^{-1}(y_1) - f^{-1}(y_2)||$$

donc f^{-1} est lipschitzienne, et en particulier continue. On peut alors montrer que f est un C^1 -difféomorphisme. \Box