DIFFERENTIAL EQUATION

1. The solution of the DE
$$\frac{dy}{dx} = e^{x+y}$$
 is

(a)
$$e^{x} + e^{y} = C$$
 (b) $e^{x} + e^{-y} = C$ (c) $e^{x} + e^{-y} = C$ (d) none of these

(b)
$$e^x + e^{-y} = C$$

(c)
$$e^x + e^{-y} = C$$

2. The solution of the DE
$$\frac{dy}{dx} = 2^{x+y}$$
 is

(a)
$$2^x + 2^y = C$$

(b)
$$2^x + 2^{-y} = C$$

(c)
$$2^x + 2^{-y} = C$$

(a) $2^x + 2^y = C$ (b) $2^x + 2^{-y} = C$ (c) $2^x + 2^{-y} = C$ (d) none of these

3. The solution of the DE
$$e^x + 1$$
 $ydy = (y+1)e^x dx$ is

(a)
$$e^y - C(e^x + 1)(y + 1)$$
 (b) $e^y = e^x + y + 1$

(b)
$$e^y = e^x + y + 1$$

(c)
$$y = (e^x + 1)(y + 1)$$

(d) none of these

4. The solution of the DE
$$xdy + ydx = 0$$
 is

(a)
$$x + y = C$$

(b)
$$xy = C$$

(a)
$$x + y = C$$
 (b) $xy = C$ (c) $\log(x + y) = C$ (d) none of these

5. The solution of the DE
$$x \frac{dy}{dx} = \cot y$$
 is

(a)
$$x \cos y = 0$$

(b)
$$x \tan y = C$$

(c)
$$x \sec y = 0$$

(a) $x \cos y = C$ (b) $x \tan y = C$ (c) $x \sec y = C$ (d) none of these

6. The solution of the DE
$$\frac{dy}{dx} = \frac{(1+y^2)}{(1+x^2)}$$
 is

(a)
$$(y+x) = C(1-y^x)$$

(a)
$$(y+x) = C(1-y^x)$$
 (b) $(y-x) = C(1+y^x)$

(c)
$$y = (1+x)C$$

(d) none of these

7. The solution of the DE
$$\frac{dy}{dx} = 1 - x + y - xy$$
 is

(a)
$$\log(1+y) = x - \frac{x^2}{2} + C$$
 (b) $e^{(1+y)} = x - \frac{x^2}{2} + C$

(b)
$$e^{(1+y)} = x - \frac{x^2}{2} + C$$

(c)
$$e^y = x - \frac{x^2}{2} + C$$

(d) none of these

The solution of the DE $\frac{dy}{dx} = e^{x+y} + x^2 e^y$ is 8.

(a)
$$e^{x-y} + \frac{x^3}{3} + C$$

(a)
$$e^{x-y} + \frac{x^3}{3} + C$$
 (b) $e^x + e^{-y} + \frac{x^3}{3} = C'$

(c)
$$e^x - e^{-y} = \frac{x^3}{3} + C$$
 (d) none of these

The solution of the DE $\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0$ is 9.

(a)
$$y + \sin^{-1} y = \sin^{-1} x + C$$
 (b) $\sin^{-1} y - \sin^{-1} x = C$

(b)
$$\sin^{-1} y - \sin^{-1} x = C$$

(c)
$$\sin^{-1} y + \sin^{-1} x + C$$

(d) none of these

The solution of the DE $\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$ is 10.

(a)
$$y = 2 \tan \frac{x}{2} - x + C$$

(b)
$$y = \tan \frac{x}{2} - 2x + C$$

(c)
$$y = \tan x - x + C$$

(d) none of these

The solution of the DE $\frac{dy}{dx} = \frac{-2xy}{(x^2+1)}$ is 11.

(a)
$$y^2(x+1) = C$$
 (b) $y(x^2+1) = C$ (c) $x^2(y+1) = C$ (d) none of these

(b)
$$y(x^2 + 1) = C$$

(c)
$$x^2(y+1) = C$$

The solution of the DE $\cos x(1+\cos y)dx - \sin y(1+\sin x)dy = 0$ is 12.

(a)
$$1 + \sin x \cos y = C$$

(b)
$$(1 + \sin x)(1 + \cos y) = C$$

(c)
$$\sin x \cos y + \cos x = C$$

(d) none of these

The solution of the DE $x \cos y dy = (xe^x \log x + e^x) dx$ is 13.

(a)
$$\sin y = e^x + \log x + C$$

(a)
$$\sin y = e^x + \log x + C$$
 (b) $\sin y - e^x + \log x = C$

(c)
$$\sin y = e^x (\log x) + C$$

(d) none of these

The solution of the DE $\frac{dy}{dx} + y \log y \cot x = 0$ is 14.

(a)
$$\cos x \log y = C$$

(b)
$$\sin x \log y = C$$

(c)
$$\log y = C \sin x$$

(d) none of these

The general solution of the DE $(1+x^2)dy - xydx = 0$ is 15.

(a)
$$y = C(1 + x^2)$$

(a)
$$y = C(1 + x^2)$$
 (b) $y^2 = C(1 + x^2)$ (c) $\log y = C \sin x$ (d) none of these

The general solution of the DE $x\sqrt{1+y^2} dx + y\sqrt{1+x^2} dy = 0$ is 16.

(a)
$$\sin^{-1} x + \sin^{-1} y = C$$

(b)
$$\sqrt{1+x^2} + \sqrt{1+y^2} = C$$

(c)
$$\tan^{-1} x + \tan^{-y} = C$$

(d) none of these

The general solution of the DE $\log \frac{dy}{dx} = (ax + by)$ is 17.

$$\frac{-e^{-by}}{b} = \frac{e^{ax}}{a} + C$$

(b)
$$e^{ax} - e^{-by} = C$$

(c)
$$be^{ax} + ae^{by} = C$$

(d) none of these

 $\frac{dy}{dx} = (\sqrt{1-x^2})(\sqrt{1-y^2})$ The general solution of the DE 18.

(a)
$$\sin^{-1} y \sin^{-1} x = x\sqrt{1 - x^2} = C$$

(b)
$$2\sin^{-1} y - \sin^{-1} x = x\sqrt{1 - x^2} + C$$

(c)
$$2\sin^{-1} y - \sin^{-1} x = C$$

(d) none of these

The general solution of the DE 19.

$$\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$$
 is

(a) $x^2 - y^2 = C_1 x$

(b)
$$x^2 + y^2 = C_1 y$$

(c)
$$x^2 + y^2 = C_1 x$$

(d) none of these

20. The general solution of the DE $x^2 \frac{dy}{dx} = x^2 + xy + y^2$

(a)
$$\tan^{-1} \frac{y}{x} = \log x + C$$
 (b) $\tan^{-1} \frac{x}{y} = \log x + C$

$$\tan^{-1}\frac{x}{y} = \log x + C$$

$$\tan^{-1}\frac{y}{x} = \log y + C$$

(d) none of these

$$x\frac{dy}{dx} = y + x \tan \frac{y}{x}$$
 is

(a)
$$\sin \frac{y}{x} = c$$
 (b) $\sin \left(\frac{y}{x}\right) = Cx$ (c) $\sin \left(\frac{y}{x}\right) = Cy$ (d) none of these

$$2xy \, dy + (x^2 - y^2) dx = 0$$
 is

(a)
$$x^2 + y^2 = Cx$$
 (b) $x^2 + y^2 = Cy$ (c) $x^2 + y^2 = C$ (d) none of these

(b)
$$x^2 + y^2 = Cy$$

(c)
$$x^2 + y^2 = 0$$

$$(x-y)dy + (x+y)dx$$
 is

(a)
$$\tan^{-1} \frac{y}{x} = C\sqrt{x^2 + y^2}$$
 (b) $e^{\tan -1(y/x)} = C\sqrt{x^2 + y^2}$

(b)
$$e^{\tan -1(y/x)} = C\sqrt{x^2 + y^2}$$

(c)
$$\tan^{-1} \left(\frac{y}{x} \right) = x^2 + y^2 + C$$

(d) none of these

$$\frac{dy}{dx} = \frac{y}{x} + \sin\frac{y}{x}$$
 is

(a)
$$\tan \frac{y}{2x} = Cx$$
 (b) $\tan \frac{y}{x} = Cx$ (c) $\tan \frac{y}{2x} = C$ (d) none of these

$$\tan \frac{y}{2x} = C$$

$$\frac{dy}{dx} + y \tan x = \sec x$$
 is

(a)
$$y = \sin x - C \cos x$$

(a)
$$y = \sin x - C \cos x$$
 (b) $y = \sin x + C \cos x$

(c)
$$y = \cos x - C \sin x$$

(d) none of these

26. The general solution of the DE
$$\frac{dy}{dx} + y \cot x = 2 \cos x$$

(a)
$$(y + \sin x) \sin x = C$$

(b)
$$(y + \cos x)\sin x = C$$

	(c) $(y - \sin x)\sin x = C$ (d) none of these
27.	The general solution of the DE $\frac{dy}{dx} + \frac{y}{x} = x^2$ is
	(a) $xy = x^4 + C$ (b) $4xy = x^4 + C$ (c) $3xy = x^3 + C$ (d) none of these
28.	The number of arbitrary constants in the general solutions of a differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$
	(a) 1 (b) 2 (c) 3 (d) 4
29.	The number of arbitrary constants in the general solutions of a differential equation $2\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$
	(a) 1 (b) 2 (c) 3 (d) 4
30.	The number of arbitrary constants in the general solutions of a differential equation $\left(\frac{d^3y}{dx^3}\right) + x^2 \left(\frac{d^2y}{dx^2}\right)^3 = 0$
	(a) 1 (b) 2 (c) 3 (d) 4

31. The number of arbitrary constants in the particular solutions of a differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$

(a) 1 (b) 0 (c) 3 (d) 4

32. The number of arbitrary constants in the particular solutions of a differential equation $2\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$

(a) 1 (b) 2 (c) 3 (d) 0

33. The number of arbitrary constants in the particular solutions of a differential equation $\left(\frac{d^3y}{dx^3}\right) + x^2 \left(\frac{d^2y}{dx^2}\right)^3 = 0$

(a) 1 (b) 2 (c) 0 (d) 4

ANSWERS: DIFFERENTIAL EQUATION

1. (c)	2. (b)	3. (a)	4. (b)	5. (a)	6. (b)	7. (a)	8. (b)	9. (c)
10.(a)	11.(b)	12. (b)	13. (c)	14. (b)	15. (b)	16. (b)	17. (a)	18. (b)
19.(c)	20.(a)	21. (b)	22. (a)	23. (b)	24. (a)	25. (b)	26. (c)	27. (b)
28 (a)	29(b)	30(c)		31(b)	32(d)	33(c)		

Find the order and degree of the following differential equations

1.
$$2\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$$

- (a) 1, 2 (b) 2,1 (c) 1, 3 (d)

- 0, 0

2.
$$\left(\frac{d^3y}{dx^3}\right) + x^2 \left(\frac{d^2y}{dx^2}\right)^3 = 0$$

- (a) 1, 3 (b) 3,1 (c) 2, 3 (d)

3.
$$\left(\frac{d^3y}{dx^3}\right) + 2\left(\frac{d^2y}{dx^2}\right)^2 - \frac{dy}{dx} + y = 0$$

- (a) 1, 3 (b) 3,1 (c) 2, 1 (d)
- 3, 2

4.
$$\left(\frac{dy}{dx}\right)^2 + \left(\frac{dy}{dx}\right) - \sin^2 y = 0$$

- (a) 1, 2 (b) 1,1 (c) 2, 1 (d)

5.
$$\frac{dy}{dx} + \sin\left(\frac{dy}{dx}\right) = 0$$

- (a) 1, 1 (b) 2,1 (c) 1, 2 (d)
 - None of these

ANSWERS

- 1.
- b
- 2.
- b 3.
- В
- а
- D

5.