

Blue Print (As per PU Board)

Topic	1 mark questions	2 marks questions	3 marks questions	5 marks questions	Total Marks
Biomolecules	1	-	-	1	6

One mark questions

1. Define the term 'nucleotide'

Answer: When a nucleoside is linked to phosphoric acid at 5' position of sugar, we get a nucleotide

2. Name the reagent used to distinguish between aldose and ketose.

Answer: Bromine water

3. What type of linkage is responsible for α – helix formation?

Answer: Intra molecular hydrogen bonds

4. Give an example for α -amino acid which is basic

Answer: Lysine (any other)

Two marks questions

5. Why cannot vitamin C be stored in our body?

Answer: Vitamin C is water soluble, therefore it is readily excreted in urine and hence cannot be stored in the body.

6. What is the effect of denaturation on the structure of proteins?

Answer: During the denaturation, 2° and 3° structure of proteins are destroyed but 1° structure remains intact. For e.g. curdling of milk.

7. Explain the term mutarotation giving an example.

Answer: The spontaneous change in specific rotation when an optically active substance is dissolved in water is called mutarotation. For example, when α – glucose is dissolved in water, its specific rotation changes because it gets converted into β – glucose.

8. Which sugar is called invert sugar? Why is it called so?

Answer: Sucrose

Sucrose is dextrorotatory, but hydrolysis of sucrose gives glucose (dextrorotatory $+52.5^{\circ}$) and fructose (lacvo rotatory -92.4°) with mixture being lacvorotatory. This change is the sign of rotation of sucrose from (+) to (-) is why it is called as Invert sugar.

Five marks questions

9. (a) What happens when D-glucose is treated with the following reagents?

(i)
$$HI$$
 (ii) Bromine water (iii) HNO_3 (3 marks)

Answer:

(i) CHO
(i) $(CHOH)_4 + HI \xrightarrow{Red P} CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3$
(ii) CHO_2OH COOH

D-glucose Br_2 water $(CHOH)_4$
 CH_2OH CH_2OH

D-glucose $COOH$

(iii) CHO
(CHOH) $A + HNO_3 \longrightarrow (CHOH)_4$
 CH_2OH COOH

 $COOH$
 $COOH$
 $CHOH)_4 + HNO_3 \longrightarrow (CHOH)_4$
 CH_2OH COOH

 $COOH$
 $COOH$
 $COOH$
 CH_2OH COOH

 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 CH_2OH COOH

 $COOH$
 $COOH$
 CH_2OH COOH

 $COOH$
 $COOH$
 CH_2OH COOH

 $COOH$
 $CHOH$
 C

(b) What are nucleic acids? Mention their two important functions:

Answer: Nucleic acids are polymers of nucleotides containing pentose sugar, heterocyclic base and a phosphate group. (1 mark)

Biomolecules

Functions:

- (1) They help in synthesis of proteins
- (2) They are responsible for transfer of genetic characters

(1 mark)

10. (a) Mention two differences in the structure of starch and cellulose. Write the Haworth's structure of the monomer is cellulose.

- (b) Give an example each for (i) acidic α amino acid
- (ii) fibrous protein.

(3+2 marks)

Answer: (a)

	Starch	Cellulose		
1	Made up of $\alpha - D(+)$ glucose units	Made up of $\beta - D(+)$ glucose units		
2	Has α – glycosidic linkage	Has β – glycosidic linkage		
3	Has $C_1 - C_4$ and $C_1 - C_6$ linkage	Has only $C_1 - C_4$ linkage		
4	Has linear and branched polymeric	It is a linear polymer (Any Two)		
	chains			

- (b) (i) Aspartic acid or glutamic acid
 - (ii) Keratin or Myosin
- 11. (a) What are reducing sugars? Is sucrose a reducing sugar? Give reason
 - (b) (i) Write the Zwitter ion form of an α amino acid
 - (ii) Name the naturally occurring α amino acid that is not optically active (3+2 marks)

Answer: (a) sugar that reduces Tollen's reagent or Fehling's solution is known as reducing sugar.

(1 mark)

Sucrose is not a reducing sugar.

(1 mark)

Both the redusing groups of glucose and fructose is sucrose are involved in glucoside bond formation (No free -CHO or -CO gp) (1 mark)

R
(b) (i)
$$H_3N$$
— CH — COO^{Θ}
(ii) glycine or H_2N — CH_2 — $COOH$
(1 mark)

- 12. (a) Mention the diseases caused by the following
 - (i) Vitamin C
- (ii) Vitamin D
- (b) How is a dipeptide formed? Give equation
- (c) What are Enzymes

(2+2+1 marks)

Answer: (a) (i) Scurvy

- (ii) Rickets in children or Bones and Teeth deformation
- (b) A dipeptide bond if formed by the condensation of $-NH_2$ gp and -COOH gp of 2 amino acid

$$H_2N$$
 — CH — $COOH$ + H HN — CH — $COOH$ — H_2O \rightarrow R' (1 mark)

$$\begin{array}{c|c} \mathbf{O} & \mathbf{O} \\ | \mathbf{I} \\ \mathbf{C} & \mathbf{C} \mathbf{H} \mathbf{N} & \mathbf{C} \mathbf{H} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{H} \\ \mathbf{R}' & \mathbf{R}' \\ \mathbf{Dipeptide} \end{array}$$

(c) Enzymes are Bio catalysts for biological reactions.

(1 mark)