Fahrzeugregelung Lenkverhalten und Lenkungsregelung

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Prof. Dr.-Ing S. Müller Seite 2

Einleitung Anforderungen an das Lenkverhalten

Die ursprüngliche Aufgabe einer Lenkung ist die Übertragung einer vom Fahrer gewünschten Richtungsänderung oder Stabilisierung an die Vorderräder (Führungsverhalten). Die Bedienung der Lenkung sollte dabei möglichst komfortabel und zielgenau erfolgen.

Darüber hinaus sollen dem Fahrer unterschiedliches Fahrverhalten und unterschiedliche Fahrbahneigenschaften im Lenkverhalten widergespiegelt werden (Störverhalten).

Einleitung

Fahrer-Fahrzeug-Regelkreis für das Lenkverhalten

Einleitung Das Lenkgefühl

"...sportwagenartig präzise Lenkung." (Auto-Motor-Sport, Oktober 2007)

"Um die Mittellage entspricht die Lenkung der des Vorgängers, um den Geradeauslauf nicht durch erhöhte Nervosität zu beeinträchtigen." (Auto-Motor-Sport, Juni 2004)

"Er lässt sich millimetergenau fahren und reagiert auf die Lenkung so feinfühlig wie ein Rennpferd." (Auto-Motor-Sport, Juni 2004)

"Seine Lenkung ist ebenfalls zielgenau und agiert harmonisch über den gesamten Lenkeinschlag." (SWR, Oktober 2005)

"Präzise, direkt und verbindlich wie ein fester Händedruck lässt die Lenkung nie Zweifel über das Geschehen zwischen Reifen und Piste aufkommen." (Auto Bild Februar 2002)

"Das Lenkgefühl ist satt und sämig" (Auto-Motor-Sport, März 2008)

Einleitung Beurteilung des Lenkverhaltens

Analyse des Lenkverhaltens Schematischer Aufbau einer Vorderradlenkung

Analyse des Lenkverhaltens Ermittlung des Lenkmomentes

Mit des Leur zelnibe übersetzung dri = 1 Rizi 4zc gier fin das Moment am deutz (irias = coust.) Sount

Analyse des Lenkverhaltens Zur Ermittlung der Lenkübersetzung i∟

Findre densentensenteng ic gier
il=i_{Rits} (a+b) =
$$\frac{d_{Ri}}{d_{V}}$$

a und le sind textsachlich von Svabhanjig. Anch i_{Rits} muss nicht notwendigeswerze Granstomt sein (7.6 Dinertleutung Daimler). Dann gier für die Würzeltundtz

und für die Winselgeschwindez beiten nach der Blettenteget

$$\frac{dS_{R_1}}{dt} = \frac{\partial i L(S_U)}{\partial S_U} \frac{\partial S_U}{\partial t} S_U + i L(S_U) \frac{\partial S_U}{\partial t} = \frac{S_{R_1}}{S_U} \frac{\partial i L(S_U)}{\partial S_U} \frac{\partial S_U}{\partial S_U} \frac{\partial$$

Analyse des Lenkverhaltens Lenkkraftniveau und Lenkkraftverlauf

Prof. Dr.-Ing. S. Müller Seite 10

Analyse des Lenkverhaltens Lenkkraftniveau und Lenkkraftverlauf

Beispiel stationäre Kreisfahrt

0.05

Analyse des Lenkverhaltens

Lenkwinkelbedarf

Weikelin gier

$$M_L = C_{DS} (J_L - J_{Ri})$$
 $= D J_L = J_{Ri} + M_L$
 $= J_L J_L + M_L$
 $= J_L J_L J_L + M_L$

Beinflussungs möglichteit ware

wunschenswert

Analyse des Lenkverhaltens Lenkwinkelbedarf

Beispiel stationäre Kreisfahrt

$$\delta_L = i_L \frac{l}{\rho} + i_L \frac{l}{v_{ch}^2} \frac{v^2}{\rho}$$

mit

$$v_{ch}^{2} = \frac{c_{\alpha v}' c_{\alpha h} l^{2}}{m(c_{\alpha h} l_{h} - c_{\alpha v}' l_{v})}$$

$$\frac{1}{c'_{\alpha v}} = \frac{1}{c_{\alpha v}} + \frac{n_V}{c_{DS} i_L^2}$$

Analyse des Lenkverhaltens

Lenkungsrückstellung

Analyse des Lenkverhaltens Lenkungsrückmeldung (Stör- und Nutzinfo)

Analyse des Lenkverhaltens Lenkungsrückmeldung (Stör- und Nutzinfo)

Analyse des Lenkverhaltens

Maximale Lenkwinkelgeschwindigkeit

Analyse des Lenkverhaltens

Maximale Lenkwinkelgeschwindigkeit

Analyse des Lenkverhaltens Maximale Lenkwinkelgeschwindigkeit

Zahnstangenkräfte vs. Zahnstangengeschwindigkeit

Analyse des Lenkverhaltens Wendekreis

Abschätzung über das Einspurmodell

Analyse des Lenkverhaltens Lenkungsakustik

Luftschall

Quelle: Lenkung

Hörbar abstrahlendes Medium: Lenkung

Körperschall

Quelle: Lenkung

Hörbar abstrahlendes Medium: Lenkrad,

Karosserie, Instrumententafel

Prof. Dr.-Ing. S. Müller

Seite 21

Vielen Dank für Ihre Aufmerksamkeit!

Analyse des Lenkverhaltens Lenkwinkelbedarf

Beispiel stationäre Kreisfahrt - Interpretation

$$\delta_L = i_L \frac{l}{\rho} + i_L \frac{l}{v_{ch}^2} \frac{v^2}{\rho}$$

mit

$$v_{ch}^{2} = \frac{c_{\alpha v}' c_{\alpha h} l^{2}}{m(c_{\alpha h} l_{h} - c_{\alpha v}' l_{v})}$$

$$\frac{1}{c'_{\alpha v}} = \frac{1}{c_{\alpha v}} + \frac{n_V}{c_{DS} i_L^2}$$

