Task 1:

1b)

The runtimes for all the BFS algorithms including the one using cilk's internal work stealing mechanism.

Data sets	Sequential (seconds)	Parallel (seconds)	Parallel_deltafree (seconds)	Cilk's work stealing scheduler(seconds)
cage15	2166	1073	1139	718
cage14	574	305	324	192
freescale	878	597	513	186
wikipedia	1573	636	590	316
kkt-power	16	14	16	13
rmat100M	6754	2032	2074	1395
rmat1B	33644	6805	6790	6666

Task 2:

2a)

Let the graph be divided into n connected components

- 1

- 3

For each connected component consisting of v_i vertices - Thus $\sum v_i = V$ - 2

Now for each connected component with - v_i vertices $v_i - 1$ edges can be be made part of Q without causing a cycle.

Thus number of edges in
$$Q = \sum v_i - 1 = |V| - n$$

Minimum size of a connected component = 2

As there are no isolated vertices, Each vertex is part of a connected component .Thus maximum number of connected components possible - if all connected components have minimum size.

Thus n = |V|/2, hence Minimum number of edges in Q = |V| - |V|/2 = |V|/2

Hence Proved.

2b)

Consider $Q' \in Q$ as a set of edges comprising a connected component.

|Q'| - denotes the number of edges in this set.

Thus number of vertices in Q' = |Q'| + 1

Name those edges as E_i – for i going from 0 to |Q'|

Assume $Q'' \subseteq Q'$ such that it consists of all edges of Q' except the last edge Q'th

Thus |Q''| = |Q'| - 1, similarly no. of vertices in Q'' = |Q'|

If $H[E_i] = 1$, then $C[E_i, u] \neq C[E_i, v]$ else if $H[E_i] = 0$, then $C[E_i, u] = C[E_i, v]$

Thus for any connected component, if H[E_i] is known for all E_i , then knowing C[E_0 .u]

, we can tell $C[E_{last}, v]$

Now consider for Q' and Q'' thus knowing $C[E_0.u]$ and $H[E_i]$ for Q'', if we were able to determine $C[E_{last}.v]$ of Q'- that would mean that there is a cycle connecting some intermediate node of Q'' to last node of Q'- As cycles are not allowed Q'- Q' of Q' is a completely independent of event and knowing all information about Q'- Q' is connected that Q' is a completely independent of Q'- Q'.

2c)

Both Random Hook and In class algorithm randomly assign Heads and Tails to all vertices and hooks an edge (u,v) if u = Tails and v = Heads

Random Hook uses reversing the head and tails maneuver in lines 9 to 15 in order to try and hook more vertices in a single iteration. This help in converging hooking faster.

Consider the worst case of n vertices 0 to n-1

With 0 to n-2 being heads and n-1th being tails – here not even a single hooking would occur in original algorithm but in random hook after flipping the heads and tails – hooking can be achieved in a single iteration of random hook.

Hence, Random Hooking is better than the original in class algorithm.

2d)

Let X_i be a random variable, which has value =1 if L value changes, else 0

$$E[X_i] = 1 * 1/4 = 1/4$$

Thus for | V | such vertices

$$E[X] = \mu = |V|/4$$

Thus expected in |V|/4 but we want a bound on |V|/16

Thus $(1 - \delta) \mu = |V|/16$, thus $\delta = 3/4$

Applying Chernov bound

$$\Pr[\mathsf{X} < (1 - \delta)] \le e^{-\frac{\delta^2 \mu}{2}}$$

$$Pr[X < |V|/16] \le e^{-\frac{3/4^2 * |V|/4}{2}}$$

$$Pr[X < |V|/16] \le e^{-\frac{3/4^2 * |V|/4}{2}}$$

$$Pr[X < |V|/16] \le e^{-\frac{|V|}{32}*(\frac{3}{2})^2}$$

1 -
$$Pr[X < |V|/16] > 1 - e^{-\frac{|V|}{32} * (\frac{3}{2})^2}$$

$$Pr[X > |V|/16] > 1 - e^{-\frac{|V|}{32} * (\frac{3}{2})^2}$$

Thus
$$Pr[X > |V|/16] > 1 - e^{-\frac{|V|}{32}*(\frac{3}{2})^2} > 1 - e^{-\frac{|V|}{32}}$$

2e)

Work for ParallelCC2-

Parallel CC2

- 1. line 1 O(1)
- 2. associate the edge (u,v) with u and v (line2)- O(m)
- 3. Random hook(line 3)- O(n)
- 4. Construct V' (line 5)- O(n)
- 5. Construct E' (line 6) O(m)
- 6. map the solution back to the current instance(line7)- O(n)

Recursion will execute steps 1-6 logn times

(From question 2d, we see that each call to random_hook() reduces the number of vertices by a fraction of 1/16. Therefore, the recursion depth will be logn and n=0 implies m=0 which is the base condition)

So complexity becomes- O((m+n)*logn)

Span for ParallelCC2-

Parallel CC2

- 1. line 1 O(1)
- 2. associate the edge (u,v) with u and v (line2)- O(logm)
- 3. Random hook(line 3)- O(logn)
- 4. Construct V' (line 5) O(n)
- 5. Construct E' (line 6) O(m)
- 6. map the solution back to the current instance(line7)- O(logn)

Recursion will execute steps 1-6 logn times

So complexity becomes- O((m+n)*logn)

So Span
$$T_{infinity} = O(d_{max}*((\alpha^d m) + (m+n)logn))$$

2f)

In each of the d_{max} contraction iteration – Random hook is called once, with high probability one call to Random hook processes atleast |V|/16 vertices (i.e. |V|/16 vertices are hooked), thus at most 15|V|/16 vertices are forwarded to next iteration of contraction and retain their PhD Status.

We have
$$=\sqrt{\frac{15}{16}}$$
, thus $\alpha^2=15/16$

Hence n_d (Number of vertices mainting PhD status at level d) < n . $(\frac{15}{16}^d)$

Thus
$$n_d < n \cdot (\alpha^{2*d})$$

2g)

Pr [edge i is selected] = 1 / m

Pr [edge i is not selected] = 1 -1/m

Pr [edge i is not selected in m_d]= $(1-1/\mathrm{m})^{m_d}=(1-1/\mathrm{m})^{m.\alpha^d}=e^{-\alpha^d}$

Consider a vertex v_i with degree k such that PhD[v_i] = true

For v_i to lose its Phd status , all it's k edges incident on it shouldn't be selected in m_d then all these edges would become light

Pr [k edges to be not selected] = $e^{-\alpha^d k}$

Now let x be a random variable whose value is 1 if edge becomes light and 0 other wise

This $E[x] = ke^{-\alpha^d k}$

To maximize expectation we will derive w.r.t to k and equate to zero

Thus d k $e^{-\alpha^d k}$ / dk = $e^{-\alpha^d k}$ (1- $\alpha^d k$) =0

Thus $k = 1/\alpha^d$

Multiplying this value with N_d – the number of PhDs at any iteration level

We get the require bound on Expected number of edges becoming light $r_d <$ n. α^{2*d}/α^d = n. α^d

Thus $r_d < n. \alpha^d$

2h)

We have proved that $n_d < n$. α^{2d} -From Q 2 f

Hence $n_{dmax} < n$. α^{2dmax}

Substituting values for dmax = [$\frac{1}{2} log_{1/\alpha} n$]

Thus
$$n_{dmax} < n$$
. $\alpha^{\frac{1}{2}log_{\frac{1}{\alpha}}n}$ $< n$. $\alpha^{log_{\frac{1}{\alpha}}n^{1/2}}$ $< n$. $n^{-\frac{1}{2}}$ $< n^{\frac{1}{2}}$

Thus number of super vertices after dmax iteration of reduction = O $(n^{1/2})$

E' – Edges between super vertices – thus Given O ($n^{1/2}$) vertices , E' = O (n)

As for complete graph of n vertices can have at max $\,n^2\,$

2i)

Expected Work and Span of CC3

Work = T_1

Below steps(1-7) will be executed d_max times

- 1. Time needed for E cap (line 3) = $O(\alpha^d m)$
- 2. Form U[v] (line 4)- O(n)
- 3. Check each edge the sample (lines 5-9)= $O(\alpha^d m)$
- 4. check each vertex v in V(line 10-11) = O(n)
- 5. V cap construction(line 12) O(n)
- 6. Random hook(line 13)-O(n)
- 7. V' construction (line 14) O(n)
- 8. Map the solution back to the current instance(line 16)- O(n)

So complexity for these steps – $O(d_max^*((\alpha^d m) + O(n)))$

Steps 9-12 will be executed once

- 9. V'- collecting only the root vertices(line 18) O(n)
- 10. E'- construction(line 19) O(m)
- 11. Execute ParallelCC2- O((m+n) logm) (see below)
- 12. map the solution back to the current instance(line 22)- O(n) So complexity for these steps- O((m+n)logm)

Overall complexity = O(d_max*(
$$(\alpha^d m) + O(n))$$
) + O((m+n)logm)
= O(d_max*($(\alpha^d m) + O(n)$) + (m+n)logm)

But, d max = $\frac{1}{4}$ * logn/log($\frac{1}{\alpha}$) = O(log n)

Therefore, overall complexity = $O(logn*((\alpha^d m) + O(n)) + (m+n)logm)$

Work for ParallelCC2-

Parallel CC2

- 7. line 1 O(1)
- 8. associate the edge (u,v) with u and v (line2)- O(m)
- 9. Random hook(line 3)- O(n)
- 10. Construct V' (line 5)- O(n)
- 11. Construct E' (line 6) O(m)
- 12. map the solution back to the current instance(line7)- O(n)

Recursion will execute steps 1-6 logn times

So complexity becomes- O((m+n)*logn)

Span Calculation

Below steps(1-7) will be executed d_max times

- 13. Time needed for E cap (line 3) = $O((\alpha^d m))$
- 14. Form U[v] (line 4)- O(logn)
- 15. Check each edge the sample (lines 5-9)= $O(log(m^*\alpha^d))$
- 16. check each vertex v in V(line 10-11) = O(logn)
- 17. V_cap construction(line 12) O(n)
- 18. Random hook(line 13)-O(logn)
- 19. V' construction (line 14) O(n)
- 20. Map the solution back to the current instance(line 16)- O(logn)

So complexity for these steps – $O(d_max^*(\alpha^{d*}m) + O(n))$

Steps 9-12 will be executed once

- 21. V'- collecting only the root vertices(line 18) O(n)
- 22. E'- construction(line 19) O(m)
- 23. Execute ParallelCC2- O((m+n) * logm)
- 24. map the solution back to the current instance(line 22)- O(n) So complexity for these steps- O((m+n)logm)

Overall complexity =
$$O(d_max^*((\alpha^d*m)) + O(n) + O((m+n)logm)$$

= $O(d_max^*((\alpha^d*m) + (m+n)logm)$

Span for ParallelCC2-

Parallel CC2

- 13. line 1 O(1)
- 14. associate the edge (u,v) with u and v (line2)- O(logm)
- 15. Random hook(line 3)- O(logn)
- 16. Construct V' (line 5) O(n)
- 17. Construct E' (line 6) O(m)
- 18. map the solution back to the current instance(line7)- O(logn)

Recursion will execute steps 1-6 logn times

So complexity becomes- O((m+n)*logn)

So Span $T_{infinity} = O(d_{max}*((\alpha^d m) + (m+n)logn))$

2j)
The running time for all the algorithms for all the given inputs:

Graph	CC	CC2	CC3
as-skitter	26152	13801	19536
com-amazon	1986	1015	1205
com-friendster			
com-orkut	422024	236723	272140
com-dblp	2381	1132	1466
com-lj	120193	62475	81067
ca-AstroPh	680	368	360
roadNet-CA	4906	2360	4621
roadNet-PA	2700	1256	2753
roadNet-TX	3346	1538	3275

The timings reported are in milliseconds

2k)

Cilkview plot for the live journal graph using parallel_randomized_CC

Cilkview plot for the live journal graph using parallel_randomized_CC2

Cilkview plot for the live journal graph using parallel_randomized_CC3

