

MA-INF 4222 - Lab Natural Language Processing SS 2018

Key-Value Retrieval Networks for Task-Oriented Dialogue

Debayan Banerjee - 3034800

Pooja Bhatia- 3143760

Jing-Long Wu- 3045999

University of Bonn

Computer Science Master Program

Topic: Dialogue and Interactive Systems

• 2000's: Websites

• 2010's: Apps

• 2020's: Dialogue Systems / Bots

Key-Value Retrieval Networks for Task-Oriented Dialogue

Details:

Paper published by: Stanford NLP Group and Ford Research and Innovation Center Latest version published on: 14 July 2017

Objective:

To address the problem: Neural task-oriented dialogue systems often struggle to smoothly interface with a knowledge base.

Proposed Solution:

Paper proposes a new neural dialogue agent that is able to effectively sustain grounded, multi-domain discourse through a novel **Key-Value Retrieval Mechanism**.

Key-Value Retrieval Networks for Task-Oriented Dialogue

Experiment:

The study architecture is trained on data from following domains: Calendar Scheduling, Weather Information , point-of-interest (POI) navigation.

Outperforms competitive rule based system and other existing neural dialogue architectures on the provided domains according to both automatic and human evaluation metrics.

Link: https://arxiv.org/pdf/1705.05414.pdf

Sample Dialogue of POI

POI	Category	Address	Traffic Info	Distance
Dish Parking Cafe Venetia Mandarin Roots Dominos Travelers Lodge	parking garage coffee or tea place chinese restaurant pizza restaurant rest stop	550 Alester Ave 329 El Camino Real 271 Springer St 776 Arastradero Rd 333 Arbol Dr	no traffic road block nearby car collision nearby moderate traffic moderate traffic	3 miles 4 miles 3 miles 6 miles 4 miles

DRIVER: What is the nearest parking garage within 4 miles that has no traffic.

CAR: the nearest is dish parking at 550 alester ave, 3 miles away

DRIVER: Does it have any traffic?

CAR: there is no traffic on the route to dish parking

DRIVER: Thanks

CAR: you're welcome!

Sample Dialogue of Calendar Scheduling

Event	Time	Date	Party	Agenda	Location
dinner	5pm	the 4th	brother	-	-
meeting	1pm	the 18th	vice president	discuss company picnic	room 100
conference	11am	the 1st	HR	go over budget	room 50
meeting	4pm	the 9th	HR	onboard new members	room 100
lab apps.	6pm	the 14th the	Jon	-	-
dinner	6pm	1st	Jon		-

DRIVER: When is my dinner going to be and who will be attending

CAR: your next dinner is on the 1st at 6 pm with your jon

DRIVER: Great, thanks.

CAR: you're welcome!

Sample Dialogue of Weather Information

	monday	tuesday	wednesday	thursday	friday	
los angeles	hail, 60-70f	foggy. 30-40f	cloudy. 20-30f	stormy 30-40f	drizzle. 30-50f	
durham	rain. 80-90f	cloudy, 50-70f	misty, 40-60f	dry. 80-100f	rain. 50-70f	
seattle	warm, 60-70f	misty, 40-60f	foggy, 40-50f	foggy. 40-50f	clear skies 20-30f	

DRIVER: how is the weather

CAR: what city would you like the weather for?

DRIVER: is it foggy in seattle?

CAR: it will not be foggy in seattle today

DRIVER: thanks

CAR: you're welcome!

Steps: Convert Row-Based KB Entry into Key-Value Representation

Event	Time	Date	Party	Agenda
dinner	8:00 PM	the 13th	Ana	-

Subject	Relation	Object
dinner	time	8pm
dinner	date	the 13th
dinner	party	Ana
dinner	agenda	-

Key	Value
dinner_time	8pm
dinner_date	the 13th
dinner_party	Ana
dinner_agenta	-

Sequence to Sequence Encoder-Decoder

Incorporating the KB

Scope of Work

- 1. Read and understand paper
- 2. Read and understand Keras code (a github implementation exists)
- 3. Translate it to a pyTorch implementation with better documentation
- 4. Replicate evaluation results from paper

```
u_i^t = w^T \tanh(W_2 \tanh(W_1[h_i, \tilde{h}_t])))
self.densel dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense2 dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense3 dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
dense1 = self.dense1 dialogue (encoder[0])
dense2 = self.dense2 dialogue (decoder[0])
dense3 = self.dense3 dialogue(torch.add(dense1, dense2))
```

```
self.dense1_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense2_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense3_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
dense1 = self.dense1_dialogue(encoder[0])
```

dense3 = self.dense3 dialogue(torch.add(dense1, dense2))

 $u_i^t = w^T \tanh(W_2 \tanh(W_1[h_i, \tilde{h}_t]))$

dense2 = self.dense2 dialogue(decoder[0])

```
u_i^t = w^T \tanh(W_2 \tanh(W_1[h_i, \tilde{h}_t]))
```

```
self.dense1_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense2_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense3_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
dense1 = self.dense1_dialogue(encoder[0])
dense2 = self.dense2_dialogue(decoder[0])
dense3 = self.dense3_dialogue(torch.add(dense1, dense2))
```

$$u_i^t = w^T \tanh(W_2 \tanh(W_1[h_i, \tilde{h}_t]))$$

```
self.dense1_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense2_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
self.dense3_dialogue = nn.Sequential(nn.Linear(200,200),nn.Tanh())
dense1 = self.dense1_dialogue(encoder[0])
dense2 = self.dense2_dialogue(decoder[0])
dense3 = self.dense3_dialogue(torch.add(dense1, dense2))
```

$$a_i^t = \operatorname{Softmax}(u_i^t) \qquad \text{attention = F.softmax(dense3, dim=2)} \\ \tilde{h}_t' = \sum_{i=1}^m a_i^t h_i \qquad \text{n_hidden = torch.mul(attention, encoder[0])} \\ o_t = U[\tilde{h}_t, \tilde{h}_t'] \qquad \text{self.dialogue_output = nn.Linear(400,1954)} \\ output = \operatorname{self.dialogue_output(torch.cat((encoder[0], n_hidden), dim=2))} \\ \end{cases}$$

$$u_j^t = r^T \tanh(W_2' \tanh(W_1'[k_j, \tilde{h}_t]))) \qquad \text{K: is the word embeddings of the keys from table} \\ \text{self.keyvalue_dense1} = \text{nn.Sequential(nn.Linear(431,20),nn.Tanh())} \\ \text{self.keyvalue_dense2} = \text{nn.Sequential(nn.Linear(200,200),nn.Tanh())} \\ \text{self.keyvalue_dense3} = \text{nn.Sequential(nn.Linear(200,431),nn.Tanh())} \\ \text{n_dense1} = \text{self.keyvalue_dense1(input_embed2)} \\ \text{n_dense2} = \text{self.keyvalue_dense2(decoder)} \\ \text{n_dense3} = \text{self.keyvalue_dense3(torch.cat((n_dense1, n_dense2), dim=1))} \\ \text{n_dense3} = \text{self.keyvalue_dense3(torch.cat((n_dense1, n_dense3), dim=1))} \\ \text{n_dense3} = \text{self.keyvalue_dense3(torch.cat((n_dense3), n_dense3), dim=1)} \\ \text{n_dense3} = \text{self.keyvalue_dense3(torch.cat((n_dense3), n_dense3), dim=1)} \\ \text{n_dense3} = \text{self.keyvalue_dense3(torch.cat((n_dense3), n_dense3), dim=1)} \\ \text{n_dense3} = \text{sel$$

$$o_t = U[ilde{h}_t, ilde{h}_t'] + ar{v}^t$$
 n out = torch.add(output, n dense3)

Automatic Evaluation

BLEU:

n-gram based evaluation metrics employed in evaluating machine translation systems Also been used for evaluating dialogue systems both of the chatbot and task-oriented variety

Entity F1:

To compute, micro-average over the entire set of system dialogue responses Measures ability to generate relevant entities from underlying KB and to also capture semantics of dialog

Model	BLEU	Ent F1	Scheduling Ent. F1	Weather Ent. F1	Navigation Ent. F1
Rule-Based	6.6	43.8	61.3	39.5	40.4
Copy Net	11.0	37.0	28.1	50.1	28.4
Attn. Seq2Seq	10.2	30.0	30.0	42.4	17.9
KV Retrieval Net (no enc. attn.)	10.8	40.9	59.5	35.6	36.6
KV Retrieval Net	13.2	48.0	62.9	47.0	41.3
Human Performance	13.5	60.7	64.3	61.6	55.2

Code Snippet and GitHub Screenshots

Code Snippet and GitHub Screenshots

Pytorch: Key value memory networks for task oriented dialogue

The code here implements the one described in the paper Key-Value Retrieval Networks for Task-Oriented Dialogue https://arxiv.org/pdf/1705.05414.pdf

Dataset Thanks to the authors for making the dataset public. https://nlp.stanford.edu/blog/a-new-multi-turn-multi-domain-task-oriented-dialogue-dataset/

Installation

Install the dependencies

```
numpy==1.14.5
pandas==0.23.3
pkg-resources==0.0.0
python-dateutil==2.7.3
pytz==2018.5
six==1.11.0
torch==0.4.0
```

To Run the training use

```
python run.py
```

To run the examples once training is done

Code Snippet and GitHub Screenshots

```
#All equations are refered to https://arxiv.org/pdf/1705.05414.pdf
#Implementation of equation 2
dense1 = self.dense1_dialogue(encoder[0])#apply tanh on after applying linear transformation on encoder output
dense2 = self.dense2_dialogue(decoder[0])#apply tanh on after applying linear transformation on decoder output
dense3 = self.dense3_dialogue(torch.add(dense1, dense2))#combine the output from dens1 and dense2, then applying li
attention = F.softmax(dense3, dim=2) #Apply attention function of the dense3. #Implementation of equation3
n_hidden = torch.mul(attention, encoder[0]) #Weighted summerize the result with attention output and sencode output
output = self.dialogue_output(torch.cat((encoder[0], n hidden), dim=2)) #Linear transformation on the output of casc
# input2: Key value table
if device == torch.device("cuda"):
    input_embed2 = self.input_embed keyvalue(input_keyvalues.cuda())
else:
   input embed2 = self.input embed keyvalue(input keyvalues)
#Implementation of equation 7
input embed2 = reshape(input embed2, self.batch size, 431, self.embedding size, self.pad length)
```

Conclusion

Introduced the Key-Value Retrieval Network

Novel end-to-end system that can be used to incorporate KB information

Outperforms several baseline models (Rule Based, Copy-Augmented Sequence-to-Sequence Network) in both automatic and human evaluation metrics.

Introduced New Dataset of 3,031 dialogues in an in-car virtual assistant domain to help the data scarcity issue present in task-oriented dialogue research.

Tasks/Contributions

Task	Status	Contribution
Read paper and understand	Done	Debayan, Pooja, Jing-Long
Run sample keras code and understand	Done	Debayan, Pooja, Jing-Long
Write pytorch code and comment appropriately	Done	Debayan, Pooja, Jing-Long
Debug	In progress	Debayan, Pooja, Jing-Long
Evaluate code	In progress	Debayan, Pooja, Jing-Long
Presentation	Done	Pooja, Jing-Long

Thank You