

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

RF MODULE

MODEL NUMBER: FMAM

FCC ID: UY6-FMAM IC: 6561B-FMAM

REPORT NUMBER: 33IE0013-SH-A

ISSUE DATE: April 26, 2013

Prepared for

TOHNICHI MFG. CO., LTD 2-12, OMORI-KITA 2-CHOME, OTA-KU TOKYO 143-0016, JAPAN

Prepared by

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400
Facsimile number: +81 463 50 6401
JAB Accreditation No.: RTL02610

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	04/26/13	Initial Issue	K. Adachi

TABLE OF CONTENTS

1. A'	TTESTATION OF TEST RESULTS	4
2. TI	EST METHODOLOGY	5
3. FA	ACILITIES AND ACCREDITATION	5
4. C	ALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	5
5. E0	QUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	MAXIMUM OUTPUT E-FIELD STRENGTH	6
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5.4.	SOFTWARE AND FIRMWARE	6
5.5.	WORST-CASE CONFIGURATION AND MODE	6
6. D	ESCRIPTION OF TEST SETUP	7
7. TI	EST AND MEASUREMENT EQUIPMENT	9
8. Tl	EST RESULTS	10
8.1.	20 dB AND 99% BANDWIDTH	
8.2.		
0	2.1. TRANSMITTER BELOW 1 GHz	
8. <i>3</i> .		
0.3.	AC FOWER LINE CONDUCTED EMISSIONS	
9. SI	ETUP PHOTOS	37

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: TOHNICHI MFG. CO., LTD

2-12, OMORI-KITA 2-CHOME, OTA-KU

TOKYO, 143-0016 JAPAN

EUT DESCRIPTION: RF MODULE

MODEL: FMAM

SERIAL NUMBER: 1 (for Chip antenna), 2 (for Dipole antenna)

DATE TESTED: April 11 to 24, 2013

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass

INDUSTRY CANADA RSS-GEN Issue 3 Pass

UL Japan, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by any government agency.

Approved & Released For UL Japan, Inc. By: Tested By:

Toyokazu Imamura Leader of WiSE Japan, UL Verification Service

mura

Kenichi Adachi Engineer of WiSE Japan, UL Verification Service (Representative)

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN.

UL Japan is accredited by JAB, Laboratory Code RTL02610. The full scope of accreditation can be viewed at

http://www.jab.or.jp/cgi-bin/jab_exam_proof_j.cgi?page=2&authorization_number=RTL02610

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:
Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor
(dB/m) + Cable Loss (dB) - Preamp Gain (dB)
36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	
Power Line Conducted Emission	150kHz-30MHz	+/- 3.6 dB
	30MHz-300MHz	+/- 4.9 dB
	300MHz-1000MHz	+/- 4.9 dB
Radiated Emission	1000MHz-13GHz	+/- 4.9 dB
	13GHz-18GHz	+/- 5.6 dB
	18GHz-26.5GHz	+/- 4.4 dB

Uncertainty figures are valid to a confidence level of 95% using a coverage factor k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 900MHz Band RF module.

The radio module is manufactured by SA Systems.

5.2. MAXIMUM OUTPUT E-FIELD STRENGTH

The transmitter has a maximum output peak E-field as follows:

Frequency Range	Antenna	Output E-field	Output E-field
(MHz)		Strength (dBuV/m)	Strength (mV/m)
902 - 928	Chip	92.2	40.7
902 - 928	Dipole	93.4	46.8

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a Chip antenna or a Dipole antenna, with a maximum gain of 0 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was D2XX drivers for FTDI devices, rev. 2.08.28. (USB-serial interface driver)

The test utility software used during testing was A024_remote.exe, rev. 2009/10/30.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

The fundamental and spurious was measured in three different orientations X, Y and Z to find worst-case orientation, and final testing for radiated emissions was performed with EUT in following orientation.

	Chip antenna		Dipole antenna			
			module		Antenna	
	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
Spurious	Z	X	Z	X	X	Y
(below 1GHz)						
Spurious	Y	Z	Y	X	X	Y
(above 1GHz)						

The worst-case channel is determined as the channel with the highest output power, power line conducted emissions were performed with the EUT set to the channel with highest output power.

6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List					
Description	Description Manufacturer Model Serial Number FCC ID				
C: Jig	TOHNICHI MFG. CO., LTD	1	1		

I/O CABLES

	I/O Cable List					
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	DC	1	DC	Un-Shielded	1.5	N/A
2	Antenna	2	U.FL	Un-Shielded	0.1	N/A

TEST SETUP

The EUT is connected with laptop computer only during the test setting. Test software exercised the radio module.

SETUP DIAGRAM FOR TESTS

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Control No.	Instrument	Surement equipme Manufacturer	Model No	Serial No	Test	Calibration Date
				2	Item	* Interval(month)
SBA-03	Biconical Antenna	Schwarzbeck	BBA9106	91032666	RE	2012/10/08 * 12
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108 A	UHALP 9108-A 0901	RE	2012/10/08 * 12
SAT6-03	Attenuator	JFW	50HF-006N	-	RE	2013/02/12 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2013/02/12 * 12
SCC- C1/C2/C3/ C4/C5/C1 0/SRSE- 03	Coaxial Cable&RF Selector	Fujikura/Fujikura/S uhner/Suhner/Suhne r/Suhner/TOYO	8D2W/12DSF A/141PE/141 PE/141PE/141 PE/NS4906	-/0901-271(RF Selector)	RE	2013/04/03 * 12
STR-03	EMI Test Receiver / Spectrum Analyzer	Rohde & Schwarz	ESI40	100054/040	RE,CE	2012/06/14 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2013/02/27 * 12
SJM-11	Measure	PROMART	SEN1935	-	RE,CE	-
SAEC- 03(NSA)	Semi-Anechoic Chamber	TDK	SAEC- 03(NSA)	3	RE	2012/09/21 * 12
COTS- SEMI-1	EMI Software	TSJ	TEPTO- DV(RE,CE,R FI,MF)	-	RE,CE	-
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104	297342/4	RE	2012/05/22 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2012/07/18 * 12
SFL-01	Highpass Filter	MICRO-TRONICS	HPM50115	1	RE	2012/12/18 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2013/04/11 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2012/08/17 * 12
SLP-02	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100218	RE	2012/10/31 * 12
SCC- C9/C10/S RSE-03	Coaxial Cable&RF Selector	Suhner/Suhner/TOY O	RG223U/141P E/NS4906	-/0901-271(RF Selector)	CE	2013/04/03 * 12
SLS-05	LISN	Rohde & Schwarz	ENV216	100516	CE	2013/02/25 * 12
SAT3-06	Attenuator	JFW	50HF-003N	-	CE	2013/02/12 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	CE	2013/03/07 * 12
STM-05	Terminator	TME	CT-01 BP	-	CE	2013/01/16 * 12

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item:

CE: Conducted emission, RE: Radiated emission

8. TEST RESULTS

8.1. 20 dB AND 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 5% of the 20 dB bandwidth, and the RBW is set to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% occupied bandwidth function is utilized.

RESULTS

(Chip antenna)

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	902.5	316.0321	298.5972
Middle	915.5	316.8337	298.5972
High	927.5	316.0321	298.5972

(Dipole antenna)

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	902.5	316.0321	298.5972
Middle	915.5	316.0321	298.5972
High	927.5	316.0321	298.5972

20 dB BANDWIDTH

(Chip antenna)

DATE: April 26, 2013 IC: 6561B-FMAM

99% BANDWIDTH

(Chip antenna)

DATE: April 26, 2013 IC: 6561B-FMAM

20 dB BANDWIDTH

(Dipole antenna)

99% BANDWIDTH

(Dipole antenna)

DATE: April 26, 2013 IC: 6561B-FMAM

8.2. RADIATED EMISSIONS

TEST PROCEDURE

ANSI C63.4

LIMIT

IC RSS-210, A2.9 FCC 15.249

Operation within the bands 902–928 MHz, 2400–2483.5 MHz, 5725–5875 MHZ, and 24.0–24.25 GHz.

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

RESULTS

8.2.1. TRANSMITTER BELOW 1 GHz

^{*} The range of below 30MHz was nothing detect signal.

^{*} The range of below 30MHz was nothing detect signal.

^{*} The range of below 30MHz was nothing detect signal.

^{*} The range of below 30MHz was nothing detect signal.

^{*} The range of below 30MHz was nothing detect signal.

^{*} The range of below 30MHz was nothing detect signal.

8.2.2. TRANSMITTER ABOVE 1 GHz

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date : 2013/04/11 Tohnichi Mfg. Co.,Ltd. RF Module FMAM : Transmitting 902.50MHz : 33IE0013-SH : DC 3.0V : 23deg.C / 32%RH Company Kind of EUT Model No. Serial No. Mode Order No. Power Temp./Humi. : EUT-axis H: Y, V: Z (Chip antenna) Limit1 : FCC15.249 (a) & (d) (902-928MHz) 3m, below 1GHz:QP, above 1GHz:AV Limit2 : FCC15.249 (a) (d) (902-928MHz) 3m,above1GHz:PK Engineer : Kenichi Adachi 80 Limit1 (AV) 75 Limit2 (PK) 70 65 \star \star Hori. (AV/PK) Έ [dBuV/ 60 55 Strength 50 45 4 40 Field 35 30 25 20 2.0 4.0 5.0 6.0 7.0 8.0 9.0 3.0 1.0 10.0 Frequency [GHz] | Margin | <| AV> | <PK> | (dB) | (dB) | (dB) | 22.9 | 35.1 | 28.2 | 36.6 | 19.9 | 31.1 | 22.3 | 29.1 | 14.2 | 21.2 | 23.9 | 37.0 | 28.1 | 36.7 | 20.1 | 31.0 | 22.4 | 29.2 | Gain Loss Pola Height Angle | Loss | Gain | CAN> | CPK> | CAN> | CPK| | CAN> | CPK| | CAN> | CPK| | <AV> <PK> <AV> <PK [MHz [dB] 35.1 36.6 31.1 29.1 21.2 37.0 36.7 31.0 29.2 21.1 [MHz] 1805.000 2707.500 3610.000 5415.000 9025.000 1805.000 2707.500 45.6 49.8 45.9 45.1 3610.000 5415.000 22.4 14.1 noise floor level Calculation: Result[dBuV/m] = Reading[dBuV] + Ant. Fac[dB/m] + Loss(Cable + Filter)[dB] - Gain(AMP)[dB] + Cost(AMP)[dB] + CoAnt.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date: 2013/04/11 Transmitting 915.50MHz 33IE0013-SH DC 3.0V 23deg.C / 32%RH Tohnichi Mfg. Co.,Ltd. RF Module FMAM Company Kind of EUT Model No. Serial No. Mode Order No. Power Temp./Humi. EUT-axis H: Y, V: Z (Chip antenna) Limit1 : FCC15.249 (a) & (d) (902-928MHz) 3m, below 1GHz:QP, above 1GHz:AV Limit2 : FCC15.249 (a) (d) (902-928MHz) 3m,above1GHz:PK Engineer : Kenichi Adachi Limit1 (AV) 75 Limit2 (PK) 70 65 60 Vert. (AV/PK) 55 50 45 40 4 35 30 25 20 3.0 4.0 5.0 6.0 7.0 9.0 2.0 1.0 10.0 Frequency [GHz] Reading <AV> <PK> Ant Fac Loss Gain Pola. Freq Angle <PK> <AV> <AV> <PK> <AV> <PK> | February [dBuV] [dBuV] [dB/m] [dB] [dB] [dBuV/m] [dBuV/m] 40.2 48.8 26.2 4.1 41.1 29.4 38.0 [dB] 24.5 28.0 19.5 22.0 14.0 25.0 27.9 [MHz] [dBuV/m] [dBuV/m] 53.9 73.9 26.2 28.0 29.4 32.0 38.0 26.2 28.0 29.4 32.0 38.0 4.1 5.2 5.5 7.0 9.3 4.1 5.2 5.5 7.0 9.3 41.1 41.8 40.0 39.4 41.1 41.4 41.8 40.0 39.4 SHAO 3 1831.0 00 2746.5 00 3662.0 00 5493.0 00 9155.0 00 1831.0 00 2746.5 00 3662.0 00 46.0 50.1 46.1 44.0 47.5 46.3 53.9 53.9 53.9 53.9 53.9 359 SHA03 0 SHA03 0 SHA03 302 SHA03 4 SHA03 359 SHA03 0 SHA03 32.9 32.0 39.7 34.2 41.1 33.0 31.9 50.0 46.2 43.9 53.9 53.9 19.7 21.9 Calculation: Result[dBuV/m] = Reading[dBuV] + Ant. Fac[dB/m] + Loss(Cable + Filter)[dB] - Gain(AMP)[dB] + Cost(Cable + Filter)[dB] - Cost(Cable + Filter)[dBAnt.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date: 2013/04/11 Tohnichi Mfg. Co.,Ltd. RF Module FMAM Transmitting 927.50MHz 33IE0013-SH DC 3.0V 23deg.C / 32%RH Company Kind of EUT Model No. Serial No. Mode Order No. Power Temp./Humi. EUT-axis H: Y, V: Z (Chip antenna) Remarks Limit1 : FCC15.249 (a) & (d) (902-928MHz) 3m, below 1GHz:QP, above 1GHz:AV Limit2 : FCC15.249 (a) (d) (902-928MHz) 3m,above1GHz:PK Engineer : Kenichi Adachi 80 Limit1 (AV) 75 Limit2 (PK) 70 65 Hori. (AV/PK) A[dBuV/ 60 Vert. (AV/PK) 55 4 Strength 50 45 40 Field 4 35 30 25 20 2.0 4.0 7.0 8.0 9.0 3.0 5.0 6.0 1.0 10.0 Frequency [GHz] Reading <AV> <PK> Ant. Type <**PK**> [MHz] 1855.000 2782.500 3710.000 5565.000 SHAO SHAO 3 SHAO 3 SHAO 3 SHAO 3 SHAO 3 9275.000 1855.000 noise floor level 2782.500 SHA03 3710.000 5565.000 53.9 53.9 SHAO 3 SHAO 3 9275.000 SHAO 3 Calculation: Result[dBuV/m] = Reading[dBuV] + Ant. Fac[dB/m] + Loss(Cable + Filter)[dB] - Gain(AMP)[dB] + Cost(AMP)[dB] + CoAnt.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn

DATA OF RADIATED EMISSION TEST UL Japan.Inc. Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date: 2013/04/24 Tohnichi Mfg. Co.,Ltd. RF Module FMAM 2... Company Kind of EUT Model No. Serial No. Remarks Transmitting 902.50MHz 33IE0013-SH DC 3.0V 24deg.C / 38%RH Mode Order No. FMAM Power : D 2 Temp./Humi. : 2 EUT-axis H: Y, V: X, Ant-worst-axis: H: X, V: Y (Dipole antenna) Limit1: FCC15.249 (a) & (d) (902-928MHz) 3m, below 1GHz:QP, above 1GHz:AV Limit2: FCC15.249 (a) (d) (902-928MHz) 3m,above1GHz:PK Engineer : Shinichi Takano 80 Limit1 (AV) 75 Limit2 (PK) 70 65 Hori. (AV/PK) A60 Vert. (AV/PK) 55 Strength 50 45 40 35 30 25 20 2.0 4.0 5.0 6.0 7.0 9.0 3.0 8.0 1.0 10.0 Frequency [GHz] Reading <AV> <PK> Margin <AV> <PK> Freq Ant Fac Loss Gain Po la. Ant. Type <AV> <PK> <AV> <PK> [dB/m] 26.1 27.9 29.4 32.0 37.9 [MHz] 1805.000 2707.500 3610.000 5415.000 9025.000 [dBuV/m] [dBuV/m] [H/V] SHAO: 100 100 100 100 100 26. 37. 33. 41. SHAO3 SHAO3 SHAO3 44.5 noise floor level noise floor level 1805.000 SHA03

| Preq | CAID | CPKD | ARILF at Loss | Gain | CAID | CPKD | CPKD

 $\label{lem:calculation:Result[dBuV/m]=Reading[dBuV]+Ant.Fac[dB/m]+Loss(Cable+Filter)[dB]-Gain(AMP)[dB]} Ant.Type=BC:Biconical Antenna \ \, LP:Logperiodic Antenna \ \, SHA**: Horn$

DATA OF RADIATED EMISSION TEST UL Japan.Inc. Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date: 2013/04/24 Company Kind of EUT Model No. Serial No. Remarks Tohnichi Mfg. Co.,Ltd. Mode : T RF Module Order No. : 3 FMAM Power : D 2 Temp./Humi. : 2 EUT-axis H: Y, V: X, Ant-worst-axis: H: X, V: Y (Dipole antenna) Transmitting 915.50MHz 33IE0013-SH DC 3.0V 24deg.C / 38%RH Limit1 : FCC15.249 (a) & (d) (902-928MHz) 3m, below 1GHz:QP, above 1GHz:AV Limit2 : FCC15.249 (a) (d) (902-928MHz) 3m,above1GHz:PK Engineer : Shinichi Takano 80 Limit1 (AV) 75 Limit2 (PK) 70 65 Hori. (AV/PK) A AStrength [dBuV/ 60 Vert. (AV/PK) 55 50 45 40 4 35 30 25 20 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1.0 10.0 Frequency [GHz]

		Free	Reading		A-45		0-1-	Result		Limit		Margin		D-1-	Hainh	Angle		
	No.	Freq.	<av></av>	<pk></pk>	Ant.Fac	Loss	Gain	<av></av>	<pk></pk>	<av></av>	<pk></pk>	<av></av>	<pk></pk>	Pola.	Height	Angle	Ant. Type	Comment
		[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	[H/V]	[c m]	[deg]	1300	
	1	1831.000	34.6	46.3	26.2	4.6	41.1	24.3	36.0	53.9	73.9	29.6	37.9	Hori	100	0	SHA03	
	2	2746.500	34.3	46.4	28.0	5.9	41.4	26.8	38.9	53.9	73.9	27.1	35.0	Hori	100	0	SHA03	
	3	3662.000	44.5	50.8	29.4	6.5	41.8	38.6	44.9	53.9	73.9	15.3	29.0	Hori	100	356	SHA03	
	4	5493.000	34.2	44.4	32.0	7.8	40.0	34.0	44.2	53.9	73.9	19.9	29.7	Hori	100	0	SHA03	noise floor level
	5	9155.000	32.1	42.9	38.0	10.0	39.4	40.7	51.5	53.9	73.9	13.2	22.4	Hori	100	0	SHA03	noise floor level
	6	1831.000	34.5	46.2	26.2	4.6	41.1	24.2	35.9	53.9	73.9	29.7	38.0	Vert.	100	342	SHA03	
	7	2746.500	34.4	46.2	28.0	5.9	41.4	26.9	38.7	53.9	73.9	27.0	35.2	Vert.	100	0	SHA03	
	8	3662.000	43.2	49.9	29.4	6.5	41.8	37.3	44.0	53.9	73.9	16.6	29.9	Vert.	100	51	SHA03	
	9	5493.000	34.1	45.3	32.0	7.8	40.0	33.9		53.9	73.9	20.0	28.8	Vert.	100	0	SHA03	noise floor level
	10	9155.000	32.1	43.2	38.0	10.0	39.4	40.7	51.8	53.9	73.9	13.2	22.1	Vert.	100	0	SHA03	noise floor level
																	l	
ı																		

 $\label{lem:calculation:Result[dBuV/m]=Reading[dBuV]+Ant.Fac[dB/m]+Loss(Cable+Filter)[dB]-Gain(AMP)[dB]} Ant.Type=BC:Biconical Antenna \ \, LP:Logperiodic Antenna \ \, SHA^{**}: Horn$

DATA OF RADIATED EMISSION TEST UL Japan,Inc. Shonan EMC Lab. No.3 Semi-Anechoic Chamber Date: 2013/04/24 Tohnichi Mfg. Co.,Ltd. RF Module FMAM 2 Company Kind of EUT Model No. Serial No. Remarks Transmitting 927.50MHz 33IE0013-SH Mode Order No. FMAM Power : D 2 Temp./Humi. : 2 EUT-axis H: Y, V: X, Ant-worst-axis: H: X, V: Y (Dipole antenna) DC 3.0V 24deg.C / 38%RH Limit1 : FCC15.249 (a) & (d) (902-928MHz) 3m, below 1GHz:QP, above 1GHz:AV Limit2 : FCC15.249 (a) (d) (902-928MHz) 3m, above1GHz:PK Engineer : Shinichi Takano 80 Limit1 (AV) 75 Limit2 (PK) 70 65 Hori. (AV/PK) $\Upsilon \Phi$ Field Strength [dBuV/ 60 Vert. (AV/PK) 55 50 45 ¥ 40 35 30 X 25 20 2.0 3.0 4.0 7.0 1.0 10.0 Frequency [GHz] Rea <AV> [dBuV] 34.9 34.2 45.2 34.5 32.4 34.5 34.5 34.5 34.5 32.2 32.5 Ant. Type <PK> (dBuV/m [MHz] 1855.000 2782.500 3710.000 5565.000 [dB] 29.2 27.1 14.4 19.4 12.4 [dB] 4.6 5.9 6.6 7.9 10.1 4.6 5.9 6.6 7.9 [dB] 41.1 41.4 41.8 40.1 39.2 41.1 41.4 41.8 40.1 39.2 [deg] 73.9 73.9 73.9 73.9 [dB] 37.4 35.1 28.1 0 0 129 46.7 46.2 51.5 45.6 44.1 46.3 47.5 50.3 45.5 26.3 28.1 29.5 32.2 38.2 26.3 28.1 29.5 32.2 38.2 SHAO 3 SHAO 3 SHAO 3 SHAO 3 SHAO 3 SHAO 3 Hori Hori Hori Vert Vert Vert 34. 41. 45.6 53.2 73.9 73.9 73.9 73.9 73.9 73.9 73.9 28.3 20.7 37.8 33.8 29.3 28.4 21.0 oise floor level 9275.000 noise floor level 9275.000 1855.000 2782.500 3710.000 5565.000 9275.000 29.6 26.8 16.4 19.7 12.3 Calculation: Result[dBuV/m] = Reading[dBuV] + Ant.Fac[dB/m] + Loss(Cable + Filter)[dB] - Gain(AMP)[dB] + Cost(AMP)[dB] + CosAnt.Type=BC:Biconical Antenna LP:Logperiodic Antenna SHA**: Horn

8.3. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)					
	Quasi-peak	Average				
0.15-0.5	66 to 56 °	56 to 46 *				
0.5-5	56	46				
5-30	60	50				

Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

(Chip antenna, worst power mode)

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.3 Shielded Room Date: 2013/04/24

Tohnichi Mfg. Co.,Ltd. RF Module FMAM : Transmitting 927.50MHz : 33IE0013-SH : DC 3.0V : 24deg.C / 38%RH Mode Order No. Power Temp./Humi. Company Kind of EUT Model No. Serial No. Remarks

(Chip antenna)

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Shinichi Takano

<< QP/AV DATA >>

<u><< (</u>	QP/AV DA											
	F	Reading		0.5	Results		Limit		Margin			
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	< V A>	<qp></qp>	<av></av>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.17045			12.7	38.5		64.9	54.9	26.4		N	
2	0.40360			12.7	35.8		57.7	47.7	21.9		N	
3	0.50958			12.7	33.9		56.0		22.1		N	
4	0.63890	18.9		12.7	31.6		56.0	46.0	24.4		N	
5	1.81215	4.6		12.8	17.4		56.0	46.0	38.6		N	
6	6.63423	0.3		13.0	13.3		60.0	50.0	46.7		N	
7	0.17045			12.7	38.4		64.9	54.9	26.5		L1	
8	0.40360	23.1		12.7	35.8		57.7	47.7	21.9		L1	
9	0.50958	21.4		12.7	34.1		56.0	46.0	21.9		L1	
10	0.63890	18.8		12.7	31.5		56.0	46.0	24.5		L1	
11	1.81215	7.5		12.8	20.3		56.0	46.0	35.7		L1	
12	6.63423	0.1		13.0	13.1		60.0	50.0	46.9		L1	
. [
- 1												
- 1												
- 1												
- 1												
- [
ļ												
ļ												
ļ												
ļ												
[
ı I												
. [
. 1												
			I	I								

Calculation: Result[dBuV] = Reading[dBuV] + C.Fac(LISN + Cable + ATT)[dB]

LISN: SLS-05

LINE 1 RESULTS

(Chip antenna, worst power mode)

LINE 2 RESULTS

(Chip antenna, worst power mode)

RESULTS

(Dipole antenna, worst power mode)

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.3 Shielded Room Date: 2013/04/24

Mode Order No.

Tohnichi Mfg. Co.,Ltd. RF Module FMAM Company Kind of EUT Model No. Serial No. Remarks Transmitting 902.50MHz 33IE0013-SH DC 3.0V Power Temp./Humi. : 24deg.C / 38%RH

2 (Dipole antenna)

Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV **Engineer** : Shinichi Takano

<< QP/AV DATA >>

			1										
	Freq.	Reading		C.Fac	Results		Limit		Margin				
No.		<qp></qp>	<av></av>		<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment	
_	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]	L		
1	0.15156			12.7	38.5		65.9	55.9	27.4		N		
2	0.27994 0.41519	24.7 22.8		12.7 12.7	37.4 35.5		60.8 57.5	50.8 47.5	23.4 22.0		N		
4	0.41519	21.8		12.7	34.5		56.3	46.3	21.8		N N		
5	1.72697	5.6		12.7	18.3		56.0	46.0	37.7		N		
6	7.01709			13.0	13.4		60.0	50.0			N		
7	0.15156			12.7	38.1		65.9	55.9	27.8		L1		
8	0.27994			12.7	37.4		60.8	50.8	23.4		L1		
9	0.41519	22.8		12.7	35.5		57.5	47.5	22.0		L1		
10	0.47897	21.7		12.7	34.4		56.3	46.3			L1		
11	1.72697	9.0		12.7			56.0	46.0			L1		
12	7.01709	0.3		13.0			60.0	50.0			L1		
11 1													
11													
II I													
11 1													
											1		
II I					1 1					I	1	1	

Calculation:Result[dBuV]=Reading[dBuV]+C.Fac(LISN+Cable+ATT)[dB] LISN: SLS-05

LINE 1 RESULTS

(Dipole antenna, worst power mode)

LINE 2 RESULTS

(Dipole antenna, worst power mode)

