EP1 MAP3121

Alessandro Brugnera Silva

Abril 2022

1 Introdução

Matrizes frequentemente são comuns em muitas áreas das ciências e das engenharias. Representando modelagens matemáticas de fenômenos reais, podendo ser modelos de espaço de estados, matrizes de rigidez ou até simulações matemáticas [2].

Em muitas dessas áreas, são necessárias operações matriciais de matrizes de grande ordem, as quais muitas vezes são tridiagonais. A matriz tridiagonal genérica que tem uma dimensão n×n pode ser armazenada em localizações de memória 3n-2 usando três vetores. O que gera uma economia de poder computacional e de memória, tornando o processo mais barato e rápido.

Para realizar estas operações matemáticas (inversões, decomposições, cálculos de determinante, cálculo de autovalores) de forma mais eficiente, diversos métodos estão disponíveis e estão sendo estudados, como método de Thomas, método de Cholesky e além de métodos baseados em decomposições LU. [1] [3] [4] [5]. O presente artigo discute a utilização de método de decomposição LU, a partir de uma simplificação do método de eliminação Gaussiana sem pivotamento, expandindo-o para matrizes tridiagonais cíclicas.

2 Método

2.1 Operações Matriciais

No livro [6] a importância das simplificações matemáticas para as diversas operações possíveis são discutidas e apresentadas, além dos resultados obtidos que geraram os avanços em softwares de modelagem e simulação como Autocad ®, Revit ®, Ansis ® etc. Além de possibilitar cálculos matemáticos mais complexos em sistemas embarcados como algortimos de aprendizado de máquina e simulações.

2.2 Matrizes Tridiagonais

Matrizes diagonais, razoavelmente comuns em representanções matemáticas de sistemas modelados por elementos finitos [2], necessitam de algoritmos eficientes para reduzir gasto computacional e tempo em cálculos de simulação numérica. O cálculo de autovalores, autovetores e inversão pode ser caro computacionalmente com matrizes de grande dimensão, para isso métodos confiáveis de cálculo numérico são necessários. Preferencialmente métodos que possam ser resolvidos paralelamente, no qual o uso de GPUs pode acelerar o cálculo e ainda mantendo resultados com precisões aceitáveis [7].

2.2.1 Matrizes Tridiagonais cíclicas

No tratamento numérico de certos problemas envolvendo periodicidade, surgem sistemas tridiagonais cíclicos onde a matriz tridiagonal apresenta 2 termos extras como na figura abaixo:

$$A = \begin{bmatrix} b_1 & c_1 & & & a_1 \\ a_2 & b_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ c_n & & & a_n & b_n \end{bmatrix}$$

Figure 1: Exemplo de decomposição LU para matriz 3x3

2.3 Decomposição LU

O método de decomposição LU foi introduzido por Alan Turing em 1948, que também criou a máquina Turing. Este método de decomposição de uma matriz como produto de duas matrizes triangulares com diversas aplicações, como a solução de um sistema de equações, que por si só é parte integrante de muitas aplicações, encontrar o inverso de uma matriz e encontrar o determinante da matriz. Basicamente o método de decomposição LU é útil sempre que é possível modelar o problema a ser resolvido em forma de matriz. A conversão para a forma matricial e a solução com matrizes triangulares facilita a realização de cálculos no processo de encontrar a solução. [8]. A partir de agora representado por:

$$A = LU \tag{1}$$

No presente artigo, as decomposições foram executados utilizando o seguinte algoritmo implementado em linguagem Python $^{\circledR}$ com auxilio da biblioteca NumPy $^{\circledR}$ para manejamento de vetores.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} 1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

Figure 2: Exemplo de decomposição LU para matriz 3x3

para
$$i=1,\cdots,n$$
 faça $U_{ij}=A_{ij}-\sum_{k=1}^{i-1}L_{ik}U_{kj},\quad j=i,\cdots,n$ $L_{ji}=\left(A_{ji}-\sum_{k=1}^{i-1}L_{jk}U_{ki}\right)/U_{ii},\quad j=i+1,\cdots,n$

Figure 3: Pseudocódigo de decomposição LU baseado em decomposição Gaussiana sem pivotamento

2.4 Sistemas lineares

fim

No presente artigo, os métodos de decomposição LU serão utilizados para resolução de sistemas no formato A*x=b. Nos quais as matrizes A são tridiagonais cíclicas e não cíclicas.

A resolução de sistemas lineares decompostos em LU, pode ser simplificado nas seguinte equações.

$$Ly = b (2)$$

$$Ux = y \tag{3}$$

Que vem de 1 e do sistema linear A * x = b:

$$LUx = b$$

$$Ux := y$$

$$Ly = b$$

2.4.1 Não cíclicos

Para resolução de sistemas não cíclicos o cálculo é mais simples, pois o cálculo do sistema é simplificado com o cálculo de dois sistemas lineares de matrizes triangulares. Na implementação, esta matriz é armazenada como vetores, utilizando menos memória; também utilizando somente um laço (algoritmo $\mathcal{O}(n)$), que é essencial para matrizes de grande dimensões.

2.4.2 Cíclicos

O sistema A*x=b para matrizes tridiagonais cíclicas pode ser simplificado para, baseado na representação da figura 1:

$$T\tilde{x} + x_n v = \tilde{d} \tag{4}$$

$$w^t \tilde{x} + x_n b_n = d \tag{5}$$

$$x_n = \frac{d_n - c_n \tilde{y}_1 - a_n \tilde{y}_{n-1}}{b_n - c_n \tilde{z}_1 - a_n \tilde{z}_{n-1}}$$
(6)

$$\tilde{x} = \tilde{y} - x_n \tilde{z} \tag{7}$$

Esta simplificação separa o sistema na parte sem a influência dos termos adicionais representada por 4, e na parte dos termos adicionais representada por 5. Para isso são necessários variáveis extras (8, 9) para separar o sistema em sistemas tridiagonais (10, 11), que serão resolvidos utilizando o algoritmo da Decomposição LU.

$$v = (a_1, 0, ..., 0, c_{n-1})^t$$
(8)

$$w = (c_n, 0, ..., 0, a_n)^t (9)$$

$$T\tilde{y} = \tilde{d} \tag{10}$$

$$T\tilde{z} = \tilde{v} \tag{11}$$

3 Resultados

3.1 Sistema testado

3.1.1 n=10

Para testar o desempenho do algoritmo foi proposto realizar o cálculo do sistema linear de ordem n representado por:

$$a_i = \frac{2i-1}{4i}, \ 1 \le i \le n-1, \ a_n = \frac{2n-1}{2n},$$
 $c_i = 1 - a_i, \ 1 \le i \le n,$
 $b_i = 2, \ 1 \le i \le n,$
 $d_i = \cos\left(\frac{2\pi i^2}{n^2}\right), \ 1 \le i \le n.$

Figure 4: Representação de sistema linear genérico de ordem n

Para n=10, as seguintes matrizes são representadas:

2	2.50e-1	0	0	0	0	0	0	0	0
6.25 e-1	2	3.75e-1	0	0	0	0	0	0	0
0	5.83e-1	2	4.17e-1	0	0	0	0	0	0
0	0	5.62e-1	2	4.38e-1	0	0	0	0	0
0	0	0	5.50e-1	2	4.50e-1	0	0	0	0
0	0	0	0	5.42e-1	2	4.58e-1	0	0	0
0	0	0	0	0	5.36e-1	2	4.64e-1	0	0
0	0	0	0	0	0	5.31e-1	2	4.69e-1	0
0	0	0	0	0	0	0	5.28e-1	2	4.72e-1
0	0	0	0	0	0	0	0	5.25e-1	2

Table 1: Matriz A para n=10

$$b = [1.09.7e - 18.4e - 15.4e - 16.1e - 17 - 6.4e - 1 - 1.0 - 6.4e - 13.7e - 11.0]^t$$

3.1.2 n=20

Para o sistema com n=20, os seguintes vetores foram utilizados para cálculo:

a[1:10]	7.5-1	6.2 - 1	5.8 - 1	5.6 - 1	5.5 - 1	5.4 - 1	5.4 - 1	5.3 - 1	5.3 - 1	5.3 - 1
a[11:20]	5.2 - 1	5.2 - 1	5.2 - 1	5.2 - 1	5.2 - 1	5.2 - 1	5.1 - 1	5.1 - 1	5.1 - 1	5.1 - 1
b[1:10]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
b[11:20]	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
c[1:10]	2.5e-1	3.8e-1	4.2e-1	4.4e-1	4.5e-1	4.6e-1	4.6e-1	4.7e-1	4.7e-1	4.7e-1
c[11:20]	4.8e-1	4.8e-1	4.8e-1	4.8e-1	4.8e-1	4.8e-1	4.9e-1	4.9e-1	4.9e-1	4.9e-1
d[1:10]	1.0	1.0	9.9e-1	9.7e-1	9.2e-1	8.4e-1	7.2e-1	5.4e-1	2.9e-1	6.1e-17
d[11:20]	-3.2e-1	-6.4e-1	-8.8e-1	-1.0	-9.2e-1	-6.4e-1	-1.7e-1	3.7e-1	8.2e-1	1.0

Table 2: Vetores do sistema linear para n=20

3.2 Solução do Sistema

Soluções dos sistemas tridiagonais cíclicos propostos na seção 3.1.

3.2.1 n=10

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}
3.1e-1	3.3e-1	2.9e-1	1.9e-1	8.1e-04	-2.3e-1	-3.8e-1	-2.6e-1	1.6e-1	3.8e-1

Table 3: Solução para n=10

3.2.2 n=20

X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}
3.3e-1	3.3e-1	3.3e-1	3.2e-1	3.1e-1	2.8e-1	2.4e-1	1.8e-1	9.9e-02	5.8e-05
X_{10}	X_{12}	X_{13}	X_{14}	X_{15}	X ₁₆	X ₁₇ -6.0e-02	X ₁₈	X_{19}	X_{20}
-1.1e-1	-2.2e-1	-3.0e-1	-3.4e-1	-3.2e-1	-2.2e-1	-6.0e-02	1.3e-1	2.9e-1	3.5e-1

Table 4: Solução para n=20

4 Conclusão

A resolução de sistemas de equações é essencial para qualquer software que utiliza modelagens matemáticas, assim utilizar métodos eficientes e confiáveis é essencial. A decomposição LU aliada a eliminação Gaussiana se mostrou eficiente para resolução de sistemas tridiagonais cíclicos nestas condições.

As simplificações apresentam resultados coerentes com erros quadráticos médios inferiores a 10^{-15} independentemente do tamanho do sistema e com uma resolução quase instântanea para sistemas tridiagonais cíclicos até n=50.000. Com n=10.000 a resolução leva em média 0,1047 segundos e para n=50.000 a resolução leva em média 0.5007 segundos.

Para sistemas aleatórios gerados usando distribuições gaussianas, os resultados também são satisfatórios com erro quadrático médio similar aos "solvers" da biblioteca linalg do NumPy $^{\circledR}$ na casa de 10^{-16} .

References

- [1] Ufrgs.br. 2022. Método da matriz tridiagonal. Disponível em: https: //www.ufrgs.br/reamat/CalculoNumerico/livro py/sdsl metodo_da_matriz_tridiagonal.html.Acesso em 18 Abril 2022.
- [2] Moawwad E.A. El-Mikkawy, On the inverse of a general tridiagonal matrix, Applied Mathematics and Computation, Volume 150, Issue 3,2004, Pages 669-679, ISSN 0096-3003, https://doi.org/10.1016/S0096-3003(03)00298-4.
- [3] Lee, W. T. (2011). Tridiagonal matrices: Thomas algorithm. MS6021, Scientific Computation, University of Limerick.
- [4] El-Mikkawy, M. E. (2004). On the inverse of a general tridiagonal matrix. Applied Mathematics and Computation, 150(3), 669-679.
- [5] Meurant, G. (1992). A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM Journal on Matrix Analysis and Applications, 13(3), 707-728.
- [6] Golub, G. H., and Van Loan, C. F. (2013). Matrix computations. JHU press.
- [7] Bisseling, R. H., and van de Vorst, J. G. (1988, June). Parallel LU decomposition on a transputer network. In Conference Organized by Koninklijke/Shell-Laboratory, Amsterdam (pp. 61-77). Springer, Berlin, Heidelberg.
- [8] Mathematics L U Decomposition of a System of Linear Equations GeeksforGeeks. (n.d.). GeeksforGeeks. https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
- [9] Batista, M., Karawia, A. R. A. I. (2008). A Note on the Use of the Woodbury Formula To Solve Cyclic Block Tri-Diagonal and Cyclic Block Pentadiagonal Linear Systems of Equations. arXiv preprint arXiv:0806.3639.