Prob 1. (a) : Camera Matrix has rank of 3. So , 3 H , s.t. MH = [I 0] -. M = [A, 6] Without loss of generality, let  $H_1 = \begin{bmatrix} A^{-1} & -A^{-1}b \end{bmatrix}$ we have MH = [ ] 0] 3x4 In this case,  $M'H_1 = [A', b'] [A'] - A'b$  $= [A' \cdot A^{-1} + 0, A' (A^{-1} b) + b']$  $\implies M'H_1 = [A'A^{-1}, -A'A^{-1}b + b']$ Since we know that  $e_3^{7}(-A'A'b+b')\neq 0$ .. [M'H,], ≠0 then we have X13 X14 MH, 1. Hz = x11

$$=\begin{bmatrix} -a_{21} & -a_{32} & -a_{33} \\ a_{11} & a_{12} & a_{13} \\ -a_{11}b_2 + a_{21}b_1 & -a_{12}b_2 + a_{32}b_1 & -a_{13}b_2 + a_{23}b_1 \end{bmatrix}$$
Thus, we can multiply any scale factor to make one element as 1.

For example, we may multiply  $a_{11}$ 

$$\begin{bmatrix} -a_{21} & -a_{22} \\ a_{11} & -a_{23} \\ a_{11} & -a_{11} \end{bmatrix}$$
Then,  $F = \begin{bmatrix} a_{12} & -a_{12} \\ -a_{11} & -a_{12}b_2 + a_{23}b_1 \\ -b_2 + a_{11}b_1 & -a_{12}b_2 + a_{23}b_1 \end{bmatrix}$ 
which is expressed by seven parameters.

Prob 2. Let k pass through x but not opipole e.

Then x can be expressed as the cross-multiply of k and l, i.e.  $x = [k]_x l \quad -\cdots \quad D$ Since we know that fundamental matrix F has the property  $f \cdot x = l' \quad -\cdots \quad D$ put D into D, we have.  $l' = f \cdot x = f \cdot [k]_x l$ i.e.  $l' = F \cdot [k]_x \cdot l$ 

| 3.1 Fundamental Matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O Linear Loast Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| for each pair of point, $p' \cdot p^T$ will generate a 3x3 matrix $\begin{bmatrix} x_1'x_1 & y_1'x_1 & x_1 \\ x_1'y_1 & y_1'y_1 & y_1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| matrix $[x'_1x_1, y'_1x_1, x_1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| xi y, yiy, y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L x/ Y/ 1 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Same reasoning, for all the N pairs of points, we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| can write a matrix A, such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [ x/x, x/y, x/ y/x, y/x, y/ x, y, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $A = \begin{bmatrix} x_1'x_1 & x_1'y_1 & x_1' & y_1'x_1 & y$ |
| Theoretially. rank (A) = 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| So we do SVD for motrix A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [u s v] = svd(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Then pick the column of V that corresponds to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| minimum singular value V(:,9). =[V, V2 V9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V, V <sub>2</sub> V <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Let $F = V_4 V_5 V_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| I V7 V8 V9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Since we know that $rank(F)=2$ , so this $F$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| not the final Fundamental Martin. Instead, we shall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| set its rank into 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Thus. [usv] = sud(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Then F = F - u(:,3) * S(3,3) * [V(:,3)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(2) Normalized Version. Refore actually compute the Fundamental Matrix. in order to reduce the error by the uncentered origin, we shall center our data into a circle by multiplying a matrix 1, where  $T = \begin{bmatrix} 1/d & 0 & -\bar{x}/d \\ 0 & 1/d & -\bar{y}/d \\ 0 & 0 & 1 \end{bmatrix}$   $\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$  $y = \sum_{i=1}^{n} \frac{y_i}{n}$  $d = \sum_{i=1}^{n} \frac{\sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}}{\sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}}$ 

$$d = \sum_{i=1}^{n} \frac{\sqrt{(x_i - \bar{x})^2 + (y_i - \bar{y})^2}}{n\sqrt{2}}$$

By this way, for data XI and X2, we can produce two matrix T1 and T2. Then we put  $XXI = TI \cdot XI$ ;  $XX2 = T2 \cdot X2$  into the Linear Least square step, it will result in a Scaled Fundamental Moetrix Fs. To get the final Fundamental Matrix  $F = T_1^T \cdot F_s \cdot T_2$ 

\* Matlab Code is attached here and uploaded in CANVAS. # Image result is also attached here or can be generated by my code. Errors are shown in images.

### Fundamental Matrix Result for Set1

Image1 linear least square version Average distance=28.0257



Image2 linear least square version Average distance=25.1629



### Fundamental Matrix Result for Set1

Image1 normalized version Average distance=0.89057



Image2 normalized version Average distance=0.82867



### Fundamental Matrix Result for Set2

Image1 linear least square version Average distance=9.7014



Image2 linear least square version Average distance=14.5682



### Fundamental Matrix Result for Set2

Image1 normalized version Average distance=0.8895



Image2 normalized version Average distance=0.89172



```
function main
clear all;
close all;
clc;
% load data
set number=1;
[x1, x2] = readTextFiles(strcat('set',num2str(set number)));  % default setting is to open set1
data
image1 = imread(strcat('set', num2str(set_number), '/image1.jpg'));
image2 = imread(strcat('set', num2str(set_number), '/image2.jpg'));
% Linear least squares version
F_{lin} = cal_F(x1, x2);
% Normalized version
T1=cal T(x1);
T2=cal_T(x2);
xt1=T1*x1;
xt2=T2*x2;
F_temp=cal_F(xt1,xt2);
F_normal=transpose(T1)*F_temp*(T2);
% Epipolar line and error
[L_linear_1,L_linear_2,error_lin_1,error_lin_2] = epi_line_error(x1,x2,F_lin);
[L_norm_1,L_norm_2,error_norm_1,error_norm_2] = epi_line_error(x1,x2,F_normal);
%visualization
figure;
hold on;
draw_pic_linear(x1,x2,L_linear_1,L_linear_2,error_lin_1,error_lin_2,image1,image2,set_number
figure;
hold on;
draw_pic_normal(x1,x2,L_norm_1,L_norm_2,error_norm_1,error_norm_2,image1,image2,set_number)
function draw_pic_normal(x1,x2,L1,L2,error1,error2,image1,image2,set_number)
[\sim, n] = size(x1);
line len=15;
h title=suptitle({['Fundamental Matrix'],
    ['Result for Set',num2str(set_number)]});
subplot(1,2,1)
hold on;
h_title=title({['Image1 normalized version'];
    ['Average distance=',num2str(error1)]});
imshow(image1);
plot(x1(1,:),x1(2,:),'ro');
for i = 1:n
    if L1(2,i) == 0
        p1 = [-L1(3,i)/L1(1,i),x1(2,i)-line len];
        p2 = [-L1(3,i)/L1(1,i),x1(2,i)+line_len];
        p1 = [x1(1,i)-line len,x1(1,i)+line len];
        \texttt{p2} \; = \; [\; -\,(\texttt{L1}\,(1\,,\,\texttt{i})\,\,^*\texttt{p1}\,(1\,,\,\texttt{1})\,\,^+\texttt{L1}\,(3\,,\,\texttt{i})\,\,)\,\,/\,\texttt{L1}\,(2\,,\,\texttt{i})\,\,, \;\; -\,(\texttt{L1}\,(1\,,\,\texttt{i})\,\,^*\texttt{p1}\,(1\,,\,\texttt{2})\,\,^+\texttt{L1}\,(3\,,\,\texttt{i})\,\,)\,\,/\,\texttt{L1}\,(2\,,\,\texttt{i})\,\,]\,\,;
        plot(p1,p2,'b');
% Plot image2
subplot(1,2,2)
hold on;
h title=title({['Image2 normalized version'];
```

```
['Average distance=',num2str(error2)]});
imshow(image2);
plot(x2(1,:),x2(2,:),'ro');
for i = 1:n
    if L2(2,i) == 0
        p1 = [-L2(3,i)/L2(1,i),x2(2,i)-line_len];
        p2 = [-L2(3,i)/L2(1,i),x2(2,i)+line len];
    else
        p1 = [x2(1,i)-line_len,x2(1,i)+line_len];
        \texttt{p2} = [-(\texttt{L2}(1,\texttt{i}) * \texttt{p1}(1,1) + \texttt{L2}(3,\texttt{i})) / \texttt{L2}(2,\texttt{i}), -(\texttt{L2}(1,\texttt{i}) * \texttt{p1}(1,2) + \texttt{L2}(3,\texttt{i})) / \texttt{L2}(2,\texttt{i})];
        plot(p1,p2,'b');
print(gcf,'-djpeg' ,strcat('HW3_2_1_normalized_set',num2str(set_number),'.jpeg'),'-r400')
end
function draw pic linear(x1,x2,L1,L2,error1,error2,image1,image2,set number)
[\sim, n] = size(x1);
line_len=15;
% Plot image1
h_title=suptitle({['Fundamental Matrix'],
    ['Result for Set', num2str(set_number)]});
subplot(1,2,1)
hold on;
h title=title({['Image1 linear least square version'];
    ['Average distance=',num2str(error1)]});
imshow(image1);
plot(x1(1,:),x1(2,:),'ro');
for i = 1:n
    if L1(2,i) == 0
        p1 = [-L1(3,i)/L1(1,i),x1(2,i)-line_len];
        p2 = [-L1(3,i)/L1(1,i),x1(2,i)+line_len];
    else
        p1 = [x1(1,i)-line_len,x1(1,i)+line_len];
        p2 = [-(L1(1,i)*p1(1,1)+L1(3,i))/L1(2,i), -(L1(1,i)*p1(1,2)+L1(3,i))/L1(2,i)];
        plot(p1,p2,'b');
% Plot image2
subplot(1,2,2)
hold on;
h_title=title({['Image2 linear least square version'];
    ['Average distance=',num2str(error2)]});
imshow(image2);
plot(x2(1,:),x2(2,:),'ro');
for i = 1:n
    if L2(2,i) == 0
        p1 = [-L2(3,i)/L2(1,i),x2(2,i)-line_len];
        p2 = [-L2(3,i)/L2(1,i),x2(2,i)+line len];
        p1 = [x2(1,i)-line_len,x2(1,i)+line_len];
        \texttt{p2} \; = \; [\; -\, (\texttt{L2}\,(1\,,\,\texttt{i})\,\,^*\texttt{p1}\,(1\,,\,\texttt{1})\,\,^+\texttt{L2}\,(3\,,\,\texttt{i})\,\,)\,\,^/\texttt{L2}\,(2\,,\,\texttt{i})\,\,, \;\; -\, (\texttt{L2}\,(1\,,\,\texttt{i})\,\,^*\texttt{p1}\,(1\,,\,\texttt{2})\,\,^+\texttt{L2}\,(3\,,\,\texttt{i})\,\,)\,\,^/\texttt{L2}\,(2\,,\,\texttt{i})\,\,]\,\,;
        plot(p1,p2,'b');
print(gcf,'-djpeg',strcat('HW3 2 1 LinearLS set',num2str(set number),'.jpeg'),'-r400')
end
```

```
function [L1,L2,error_1,error_2]=epi_line_error(x1,x2,F)
[\sim, n] = size(x1);
L1 = F*x2;
L2 = transpose(F) *x1;
% distance=|ax+by+c|/sqrt(a^2+b^2)
err1=sum(L1.*x1); % calculate ax+by+c
den1=sqrt((L1(1,:).^2)+L1(2,:).^2); % calculate denominator
dist1=err1./den1; % calculate each distance
err2=sum(L2.*x2);
den2=sqrt((L2(1,:).^2)+L2(2,:).^2);
dist2=err2./den2;
error_1=sum(abs(dist1))/n;
error_2=sum(abs(dist2))/n;
%% Calculate Transformation Matrix
function T=cal_T(x)
[\sim, n] = size(x);
x_bar=sum(x(1,:))/n;
y_bar=sum(x(2,:))/n;
i=1;
num=sqrt((x(1,i)-x_bar)^2+(x(2,i)-y_bar)^2);
den=n*sqrt(2);
d=num/den;
if n>=2
   for i=2:n
      num=sqrt((x(1,i)-x_bar)^2+(x(2,i)-y_bar)^2);
      den=n*sqrt(2);
      d=d+num/den;
   end
else
end
T=[1/d,0,-x_bar/d;
  0,1/d,-y bar/d;
   0,0,1];
end
%% Calculate Fundamental Matrix
function F=cal_F(x1,x2)
[\sim, n1] = size(x1);
[-, n2] = size(x2);
if n1~=n2
   error=char('x1 and x2 does not match!')
  return
else
   n=n1;
%Build the matrix A
for i = 1:n
   xx1 = x1(:,i);
   xx2 = x2(:,i);
   xx=xx2*transpose(xx1);
   for j=1:9
      A(i,j) = xx(j);
```

```
end
end
%SVD
[u,s,v] = svd(A,0);
vv=v(:,9);
for i=1:3
F(1,i)=vv(i);
end
for i=1:3
F(2,i) = vv(i+3);
end
for i=1:3
F(3,i) = vv(i+6);
end
% let rank(F)=2
[u,s,v] = svd(F);
F = F - u(:,3)*s(3,3)*transpose(v(:,3));
end
```

# 3.2 Stereo Rectification After we calculate the Fundamental Matrix F, we know that : rank(F) = 2. $p_2^T \cdot F \cdot p_i = 0$ For epipole e, and ez in Image J, and Jz, we have: $F \cdot e_1 = 0$ $F^T \cdot e_2 = 0$ $\Rightarrow$ e, $\in \mathcal{N}(F^{T})$ first, we shall find a matrix H, for J, Hz for Jz. In order to translate the epipole to infinty, and make Sure we have less distortion. We shall first translate the The set the epipoler line horizontal, let $\phi = \angle \bar{e}$ $R = \begin{cases} \cos \phi & -\sin \phi & \delta \\ \sin \phi & \cos \phi & 0 \end{cases}, \quad \hat{e} = R = \begin{bmatrix} \hat{e}_1 \\ \delta \end{bmatrix}$ Then $G = 0 \cdot 1 \cdot 0$ By this way, $H = G \cdot R \cdot T$ , we can get $H_1$ and $H_2$ Now we transformed picture $J_1$ and $J_2$ into $\widetilde{J_1}$ and $\widetilde{J_2}$ $J_1 \longrightarrow \widetilde{J_1}$ $\vec{J}_2 \xrightarrow{H_2} \vec{J}_2$ However, this is NOT the final result. We should set Jz as a standard and correct Ji to the right position



### Stereo Rectification for Set1 error along x axis = 38.977 pixels error along y axis = 1.9676 pixels





### For dataset 1,

## Stereo Rectification for Set2 error along x axis = 30.1635 pixels error along y axis = 1.2176 pixels





#### For dataset 2,

```
function main
clear all;
close all;
clc;
% load data
set number=1;
[x1, x2] = readTextFiles(strcat('set',num2str(set number)));  % default setting is to open set1
data
image1 = imread(strcat('set', num2str(set_number),'/image1.jpg'));
image2 = imread(strcat('set', num2str(set_number), '/image2.jpg'));
\ensuremath{\mbox{\$}} Calculate fundamental matrix by Normalized version
T1=cal_T(x1);
T2=cal_T(x2);
xt1=T1*x1;
xt2=T2*x2;
F_temp=cal_F(xt2,xt1);
F=transpose(T1)*F temp*(T2);
% Find epipole for each picture
e1=null(F);
e2=null(transpose(F));
H1=cal_H2(e1,image1);
H2=cal_H1(e2,image2);
[\sim, n] = size(x1);
A=zeros(2*n,5);
xx1=H1*x1;
xx2=H2*x2;
% tarnsform to homogeneuos coordinates
   xx1(:,i)=xx1(:,i)/xx1(3,i);
   xx2(:,i)=xx2(:,i)/xx2(3,i);
A(1:n,1) = transpose(xx1(1,:));
A(1:n,2) = transpose(xx1(2,:));
A(1:n,3) = ones(n,1);
A(1+n:2*n,4) = transpose(xx1(2,:));
A(1+n:2*n,5) = ones(n,1);
b=zeros(2*n,1);
b(1:n) = transpose(xx2(1,:));
b(1+n:2*n) = transpose(xx2(2,:));
sd=A\b;
s1=sd(1);
s3=sd(2);
d1=sd(3);
s2=sd(4);
d2=sd(5);
H0=eye(3);
HO(1,1)=s1;
H0(2,2)=s2;
H0(1,2)=s3;
H0(1,3)=d1;
H0(2,3)=d2;
H1=H0*H1;
% calculate transformed errors.
new x1=H1*x1;
new x2=H2*x2;
% tarnsform new x to homogeneuos coordinates
```

```
for i=1:n
   new_x1(:,i)=new_x1(:,i)/new_x1(3,i);
   new_x2(:,i) = new_x2(:,i) / new_x2(3,i);
% then calculate errors
error=new_x1-new_x2;
error x=sqrt(sum(error(1,:).*error(1,:))/n);
error_y=sqrt(sum(error(2,:).*error(2,:))/n);
% calculate epiline
new_F_temp=cal_F(new_x1,new_x2);
new_F=transpose(T1)*new_F_temp*(T2);
L1=new_F*new_x2;
L2=new_F*new_x1;
% draw original images
figure;
h_title=suptitle({['Original Images for Set',num2str(set_number)]});
subplot(1,2,1); hold on;
h_title=title({['Image1 original']});
imshow(image1);
subplot(1,2,2);hold on;
h_title=title({['Image2 original']});
imshow(image2);
% draw transform images
RA = imref2d([512, 512], [0, 512], [0, 512]);
[IMG1, RB1] = imwarp(image1, RA, projective2d(H1'), 'fillvalues', 255);
[IMG2, RB2] = imwarp(image2, RA, projective2d(H2'), 'fillvalues', 255);
figure
clf()
ax1 = subplot(1,2,1);
imshow(IMG1, RB1); hold on
plot(new_x1(1,:), new_x1(2,:), 'r+')
ax2 = subplot(1,2,2);
imshow(IMG2, RB2); hold on
plot(new_x2(1,:), new_x2(2,:), 'r+')
linkaxes([ax1, ax2], 'xy')
axis equal
axis([-300, 320, -100, 550])%ues for dataset1
% axis([-300, 300, -300, 300])%ues for dataset2
draw_rect_point(new_x1,new_x2,error_x,error_y,set_number)
function H=cal_H1(epipole,image)
epipole=epipole/epipole(3);
T=eye(3);
[width, length] = size(image);
T(1,3) = -width/2;
T(2,3) = -length/6;
e bar=T*epipole;
phi=atan2(e_bar(2),e_bar(1));
R=[\cos(phi), \sin(phi), 0;
  -sin(phi),cos(phi),0;
   0,0,1];
e hat=R*e bar;
G=eye(3);
G(3,1) = -1/e hat(1);
```

```
H=G*R*T;
end
function H=cal_H2(epipole,image)
epipole=epipole/epipole(3);
T=eye(3);
[width, length] = size(image);
T(1,3) = -width/2;
T(2,3) = -length/6;
e_bar=T*epipole;
phi=atan2(e_bar(2),e_bar(1));
phi=phi+pi();
R=[\cos(phi), \sin(phi), 0;
  -sin(phi),cos(phi),0;
   0,0,1];
e_hat=R*e_bar;
G=eye(3);
G(3,1) = -1/e_hat(1);
H=G*R*T;
end
function draw_rect_point(x1,x2,error1,error2,set_number)
[\sim, n] = size(x1);
line_len=15;
subplot(1,2,1)
hold on;
h_title=title({['Image1 rectified']});
plot(x1(1,:),x1(2,:),'ro');
for i = 1:n
   p1=[x1(1,i)-line_len,x1(1,i)+line_len];
   p2=[x1(2,i),x1(2,i)];
   plot(p1,p2,'b');
end
% Plot image2
subplot(1,2,2)
hold on;
h_title=title({['Image2 rectified']});
plot(x2(1,:),x2(2,:),'ro');
for i = 1:n
   p1=[x2(1,i)-line_len,x2(1,i)+line_len];
   p2=[x2(2,i),x2(2,i)];
   plot(p1,p2,'b');
h_title=suptitle({['Stereo Rectification for Set',num2str(set_number)];
   ['error along x axis = ',num2str(error1),' pixels'];
   ['error along y axis = ',num2str(error2),' pixels']});
print(gcf,'-djpeg' ,strcat('HW3_2_2_rectification_set',num2str(set_number),'.jpeg'),'-r400')
end
%% Calculate Transformation Matrix
function T=cal_T(x)
[\sim, n] = size(x);
x bar=sum(x(1,:))/n;
y_bar=sum(x(2,:))/n;
i=1;
num=sqrt((x(1,i)-x bar)^2+(x(2,i)-y bar)^2);
den=n*sqrt(2);
```

```
d=num/den;
if n>=2
   for i=2:n
      num=sqrt((x(1,i)-x_bar)^2+(x(2,i)-y_bar)^2);
      den=n*sqrt(2);
      d=d+num/den;
else
end
T=[1/d,0,-x_bar/d;
  0,1/d,-y_bar/d;
   0,0,1];
end
%% Calculate Fundamental Matrix
function F=cal_F(x1,x2)
[\sim, n1] = size(x1);
[\sim, n2]=size(x2);
if n1~=n2
   error=char('x1 and x2 does not match!')
  return
else
   n=n1;
end
%Build the matrix A
for i = 1:n
   xx1 = x1(:,i);
   xx2 = x2(:,i);
   xx=xx2*transpose(xx1);
   for j=1:9
     A(i,j) = xx(j);
   end
end
% [u s v] = svd(A,0);
[u s v] = svd(A);
vv=v(:,9);
for i=1:3
F(1,i) = vv(i);
for i=1:3
F(2,i) = vv(i+3);
for i=1:3
F(3,i) = vv(i+6);
end
% let rank(F)=2
[u s v] = svd(F);
F = F - u(:,3) *s(3,3) *transpose(v(:,3));
end
```