1. DTC transformacija Zadani su prototipovi dviju funkcija. Potrebno je implementirati obje funkcije u programskom jeziku C (kompletni program). Prva funkcija kao argumente prima pokazivač na niz podataka *data, veličinu polja podataka N i M te pokazivač na kvantizacijsku tablicu *qtable veličine 8*8. Potrebno je nad danim podacima napraviti DCT transformaciju i kvantizaciju. Druga funkcija prima samo pointer na 8 x 8 blok podataka i ona radi DCT transformaciju nad predanim joj blokom, transformirane vrijednosti vraća preko istog polja podataka.

-u principu zadatak s prve domaće zadaće, sa zadanim izgledom funkcija (argumenti, povratne vrijednosti)

2. Zadan je blok podataka:

0	0	0	1	1	1	1	1
0	0	0	0	0	0	1	0
4	4	4	4	4	4	4	0
4	1	1	0	0	1	1	1

Potrebno je podatke kodrati RLE kodom u obliku <S,N> pri čemu je S simbol a n broj uzastopnog ponavljanja simbola S. Odrediti stupanj kompresije ovakvog koda.

3. Video rezolucija- vidi prezentaciju MAS3,4 slajd

Jedan okvir je veličine 1920 * 1080, RGB format, 8 bita po komponenti. U sekundi se šalje 24 okvira.

Odrediti brzinu nekompresiranih podataka. Kakav mora biti stupanj kompresije ako želimo da brzina komprimiranih podataka bude 5MB/s ?

4. Navesti i **pojasniti** metode dodjele sabirnica u višeprocesorskim sustavima.

5. Određivanje vektora pomaka ME postupkom. Zadan je ORT algoritam s početnim korakom s = 4. Tekući i referentni blok ispod. (isti podaci kao 2MI 2009/2010, ove oznake na slici su za drugi algoritam - tada je bio zadan 3SS, zanemariti)

Tok	ući l	hlal	··											
	uci		ι.					-						
5		2		21		4	de	3		15		4	4	
1		3		2		10	0	1		17		6	6	
1		4		19		8		8		1		19	9	
2	6	4	6.	1		20	-1	20	Y	17	da	3	9	
4	V	4		4	0	1	8	20	T	20	0	1	24	
5		0		2		19		19		0		1	15	
4		1		1		3	B	8		0		1	10	
4		1		1		3		8		0		1	1	
							Ø							
							-							
Re	fere	ntni	blok:											
5		2		21		4		3		15		4	4	
1		3		2		10	1	1		17		6	6	
1		4		19		8	19	8		1		19	9	
2		4	~	1		19	867	18		17	-	3	9	
4		4	0	4	8	2	4	17	30	20	A	1	24	
5		0		2		19	8	19		0		1	15	
4		1		1		3		8		0		1	10	
4		1		1		3		8		0		1	10	