

BUX87

HIGH VOLTAGE NPN SILICON POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY (450V V_{CEO})
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- HIGH DC CURRENT GAIN

APPLICATIONS

 FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

DESCRIPTION

The BUX87 is manufactured using High Voltage Multi-Epitaxial Planar technology for high switching speeds and high voltage withstand capability.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = -1.5V)	1000	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	450	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	5	V
Ic	Collector Current	0.5	А
I _{CM}	Collector Peak Current (t _p < 5 ms)	1	А
I _B	Base Current	0.3	А
I _{BM}	Base Peak Current (t _p < 5 ms)	0.6	Α
P _{tot}	Total Dissipation at T _c = 25 °C	40	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

September 2003 1/5

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	3.12	°C/W	
$R_{thj-amb}$	Thermal Resistance Junction-ambient	Max	100	°C/W	

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CEV}	Collector Cut-off Current (V _{BE} = -1.5V)	V _{CE} = 1000 V V _{CE} = 1000 V T _j = 125 °C			100 1	μA mA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5 V			1	mA
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	450			V
V _{BEO}	Collector-Base Sustaining Voltage	I _C = 10 mA	5			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 0.1 A I _B = 0.01 A I _C = 0.2 A I _B = 0.02 A			0.8 1	V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 0.2 A I _B = 0.02 A			1	V
h _{FE} *	DC Current Gain	$I_{C} = 50 \text{ mA}$ $V_{CE} = 5 \text{ V}$ $I_{C} = 40 \text{ mA}$ $V_{CE} = 5 \text{ V}$	12	50		
f⊤	Transition Frequency	I _C = 50 mA V _{CE} = 10 V f=1MHz		20		MHz
	RESISTIVE LOAD	V _{CC} = 250 V I _C = 200 mA				
t _s	Storage Time	$I_{B1} = 40 \text{ mA}$ $I_{B2} = -80 \text{ mA}$		4.5		μs
t _f	Fall Time	$t_p = 20 \mu s$		0.5		μs

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Safe Operating Area

Derating Curve

2/5

DC Current Gain

Collector Emitter Saturation Voltage

Reverse Biased SOA

DC Current Gain

Base Emitter Saturation Voltage

47/

SOT-32 (TO-126) MECHANICAL DATA

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	7.4		7.8	0.291		0.307	
В	10.5		10.8	0.413		0.425	
b	0.7		0.9	0.028		0.035	
b1	0.40		0.65	0.015		0.025	
С	2.4		2.7	0.094		0.106	
c1	1.0		1.3	0.039		0.051	
D	15.4		16.0	0.606		0.630	
е		2.2			0.087		
e3		4.4			0.173		
F		3.8			0.150		
G	3		3.2	0.118		0.126	
Н			2.54			0.100	
H2		2.15			0.084		
I		1.27			0.05		
0		0.3			0.011		
V		10°			10°		

4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics – All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

