Algoritmi e Strutture Dati a.a. 2011/12

Compito del 28/01/2013

Cognom	e: Nome:
Matricol	a: E-mail:
	Parte I (30 minuti; ogni esercizio vale 2 punti)
	Dato l'insieme delle chiavi $\{1,4,5,10,16,17,21\}$, quale è l'altezza minima $hmin$ di un albero binario di ricerca che contenga esattamente queste chiavi? E l'altezza massima $hmax$? Disegnare 3 alberi binari di ricerca con le chiavi dell'insieme specificato rispettivamente di altezza $hmin$, $hmax$ e di un'altezza h tale che $hmin < h < hmax$.
	Si enunci la proprietà fondamentale degli alberi di copertura minimi (<u>definendo accuratamente tutti i termini impiegati</u>) e la si utilizzi per mostrare che se (u,v) è un arco di peso minimo in un grafo non orientato G , allora (u,v) appartiene a un albero di copertura minimo di G .
	Si stabilisca se la seguente affermazione è vera o falsa, fornendo nel primo caso una dimostrazione, nel secondo un controesempio:
	"Se $P \neq NP$ allora $P \cap NPC = \emptyset$ "

'Se P \neq NP, allora P \cap NPC = \emptyset ".

Algoritmi e Strutture Dati

a.a. 2011/12

Compito del 28/01/2013

Cognome:	Nome:	
Matricola:	E-mail:	

Parte II

(2.5 ore; ogni esercizio vale 6 punti)

- 1. Dare la definizione di albero binario **completo**. Progettare un algoritmo **efficiente** per stabilire se un albero binario è **completo** e calcolarne la complessità al caso pessimo indicando, e risolvendo, la corrispondente relazione di ricorrenza.
- 2. Insertion sort può essere espresso come una procedura ricorsiva nel modo seguente: per ordinare A[1..n], si ordina in modo ricorsivo A[1..n-1] e poi si inserisce A[n] nell'array ordinato A[1..n-1]. Scrivere la versione **ricorsiva** dell'insertion sort. Infine scrivere una ricorrenza per il tempo di esecuzione di questa versione ricorsiva e risolverla.
- 3. Determinare il costo computazionale T(n) del seguente algoritmo, in funzione del parametro $n \ge 0$:

```
MvAlgorithm(int n) \rightarrow int
int
 a, i, j;
if (n > 1) then
  a := 0;
  for i := 1 to n-1
    for j := 1 to n-1
      a := a + (i+1)*(j+1);
    endfor
  endfor
  for i := 1 to 16
    a := a + MyAlgorithm(n/4);
  endfor
  return a;
else
  return n-1;
endif
```

4. La rete ferroviaria italiana può essere descritta mediante un grafo orientato pesato *G*=(*V*, *E*, *w*), dove i vertici rappresentano le stazioni, la presenza di un arco tra due vertici indica l'esistenza di una tratta ferroviaria diretta tra le corrispondenti stazioni e, per ogni arco (*u*,*v*)∈*E*, il peso *w*(*u*,*v*) rappresenta la quantità di carburante necessaria per raggiungere la stazione *v* partendo da *u*. Si scriva un algoritmo che, dati in ingresso il grafo *G*, la quantità *C* di carburante inizialmente presente nel serbatoio della locomotiva di un treno, e due nodi *s* e *d*, restituisca TRUE se esiste un cammino che consente al treno di raggiungere la stazione *d* partendo dalla stazione *s*, e FALSE in caso contrario. Si discuta della correttezza e della complessità computazionale dell'algoritmo proposto e si simuli accuratamente la sua esecuzione sul seguente grafo, con *C* = 15.

