עץ חיפוש בינארי Binary-Search Tree (BST)

מה נלמד?

- הגדרת עץ חיפוש בינארי
- ייצוג של עץ חיפוש בינארי -
- פעולות על עץ חיפוש בינארי -

Ordered Dictionary

Search(k)

Min()

Insert(x)

Max()

Delete(x)

Successor(x)

Predecessor(x)

עץ חיפוש בינארי - הגדרה

עץ חיפוש בינארי הוא עץ בינארי המקיים תכונה שנקראת תכונת-עץ-החיפוש-הבינארי z ו- z צומת או בעץ חיפוש בינארי, אם z הוא צומת בתת-עץ השמאלי של z ו- z צומת בתת-עץ הימני של z אזי z אזי z אזי z אזי z אזי z אזי z

אילו מהעצים הבאים הם עצי חיפש בינאריים?

ייצוג של עץ חיפוש בינארי

T.root העץ נתון על ידי מצביע לשורש

סריקה תוכית של עץ חיפוש בינארי

Inorder(x)

- 1 if $(x \neq NULL)$
- Inorder (x. left)
- $\mathbf{grint}(x.key)$
- Inorder(x.right)

גובה של עץ חיפוש בינארי

עבור קבוצה נתונה של מפתחות ניתן לבנות הרבה עצי חיפוש בינאריים

8,10,25,37,32 דוגמה: עבור קבוצת מפתחות

n-1 -ל $\lfloor \log n \rfloor$ הערה: גובה של עץ חיפוש בינארי יכול לקבל כל ערך בין

Ordered Dictionary

Search(k)

Min()

Insert(x)

Max()

Delete(x)

Successor(x)

Predecessor(x)

חיפוש פסאודו קוד

Search(x, k)

- 1 if x = NULL or k = x.key
- \mathbf{z} return x
- 3 if k < x. key
- return Search(x. left, k)
- **5** else return Search(x.right, k)

Search(T.root,k) קריאה חיצונית

זמן ריצה במקרה הגרוע של פעולת Search בעץ חיפוש בינארי בעל h בעל n צמתים וגובה h הוא:

- $\Theta(n)$
- Θ(1) .2
- $\Theta(h)$.3
- $\Theta(\log n)$.4

פעולת חיפוש זמן ריצה

חיפוש פסאודו קוד

Search(x, k)

- 1 if x = NULL or k = x.key
- $\mathbf{return} x$
- 3 if k < x. key
- return Search(x.left, k)
- **5** else return Search(x.right, k)

זמן ריצה הוא $\Theta(h)$, כאשר h הוא גובה העץ

מחפשים את 52 בעץ חיפוש בינארי. איזה מבין הסדרות הבאות <u>אינה</u> יכולה להיות סדרת מספרים בה נתקל במהלך החיפוש?

- 9,10,20,34,52
- 9,100,30,42,52 .2
- 9,42,32,40,52
- 9,80,15,70,52 .4
- כל הסדרות אפשריות.5

Ordered Dictionary

Search(k)

Min()

Insert(x)

Max()

Delete(x)

Successor(x)

Predecessor(x)

Insert(T,z) $y \leftarrow NULL$ $x \leftarrow T.root$ 3 while $(x \neq NULL)$ $y \leftarrow x$ **if** (z.key < x.key) $x \leftarrow x.left$ else $x \leftarrow x.right$ $z.p \leftarrow y$ **if** (y = NULL) // T was empty $T.root \leftarrow z$ elseif (z.key < y.key) $y.left \leftarrow z$ **else** $y.right \leftarrow z$

זמן ריצה במקרה הגרוע של פעולת Insert בעץ חיפוש בינארי בעל h בעל n צמתים וגובה h הוא:

- $\Theta(n)$.1
- Θ(1) .2
- $\Theta(h)$.3
- $\Theta(\log n)$.4

Insert(T, z) $y \leftarrow NULL$ $x \leftarrow T.root$ 3 while $(x \neq NULL)$ $y \leftarrow x$ **if** (z.key < x.key) $x \leftarrow x.left$ else $x \leftarrow x.right$ $z.p \leftarrow y$ if (y = NULL) // T was empty $T.root \leftarrow z$ elseif (z.key < y.key) $y.left \leftarrow z$ **else** $y.right \leftarrow z$

הכנסה פסאודו קוד

h זמן ריצה הוא $\Theta(h)$, כאשר h הוא גובה העץ

מפתחות הבאים הוכנסו לעץ חיפוש בינארי ריק מהתחלה: 11, 2, 4 , 6, 14, 13, 20 (משמאל לימין). מה הוא גובה העץ שהתקבל?

- 2 .1
- 3 .2
- 4 .3
- 6 .4

מפתחות הבאים הוכנסו לעץ חיפוש בינארי ריק מהתחלה: 11, 2, 4 , 6,14, 13, 20 (משמאל לימין). מה הוא גובה העץ שהתקבל?

Ordered Dictionary

Search(k)

Min()

Insert(x)

Max()

Delete(x)

Successor(x)

Predecessor(x)

מינימום פסאודו קוד

השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת Min בעץ חיפוש בינארי בעל h צמתים וגובה h הוא:

- $\Theta(n)$.1
- $\Theta(1)$.2
- $\Theta(h)$.3
- $\Theta(\log n)$.4

מינימום פסאודו קוד

מקסימום פסאודו קוד

זמן ריצה הוא(h), כאשר h הוא גובה העץ

מציאות עוקב לצומת הגדרה

אם כל המפתחות שונים זה מזה, העוקב (Successor) לצומת x הוא הצומת בעל מפתח הקטן ביותר הגדול מx.

$oldsymbol{?}$ מיהו צומת עוקב לצומת x בעל מפתח

מציאות עוקב לצומת הגדרה

אם כל המפתחות שונים זה מזה, העוקב (Successor) לצומת x הוא הצומת בעל מפתח הקטן ביותר הגדול מx.key

במידה והמפתחות יכולים לחזור על עצמם, העוקב לצומת x הוא צומת הבא בסדר הממוין הנקבע על ידי סריקת inorder של העץ

מציאות עוקב לצומת

- מקרה פשוט
- לצומת x יש תת עץ ימני •
- החזר מינימאלי בתת העץ הימני

מציאות עוקב לצומת

- מקרה פשוט
- לצומת x יש תת עץ ימני \cdot
- החזר מינימאלי בתת העץ הימני

:אחרת

יש לעלות במסלול לשורש עד • "לפנייה ראשונה ימינה"

- 1 if $x.right \neq NULL$
- return Min(x.right)
- 3 $y \leftarrow x.parent$
- 4 while $y \neq NULL$ and x = y.right
- $x \leftarrow y$
- $y \leftarrow y.parent$
- 7 return y

- 1 if x. $right \neq NULL$
- return Min(x.right)
- 3 $y \leftarrow x.parent$
- 4 while $y \neq NULL$ and x = y.right
- $x \leftarrow y$
- $y \leftarrow y.parent$
- 7 return y

- 1 if $x.right \neq NULL$
- return Min(x.right)
- 3 $y \leftarrow x.parent$
- 4 while $y \neq NULL$ and x = y.right
- $x \leftarrow y$
- $y \leftarrow y.parent$
- 7 return y

- 1 if $x.right \neq NULL$
- return Min(x.right)
- 3 $y \leftarrow x.parent$
- 4 while $y \neq NULL$ and x = y.right
- $x \leftarrow y$
- $y \leftarrow y.parent$
- 7 return y

- 1 if x. $right \neq NULL$
- return Min(x.right)
- 3 $y \leftarrow x.parent$
- 4 while $y \neq NULL$ and x = y.right
- $x \leftarrow y$
- $y \leftarrow y.parent$
- 7 return y

השלימו את המשפט: n זמן ריצה במקרה הגרוע של פעולת Successor בעץ חיפוש בינארי בעל צמתים וגובה h הוא:

Successor(x)

- 1 if $x.right \neq NULL$
- return Min(x.right)
- 3 $y \leftarrow x.parent$
- 4 while $y \neq NULL$ and x = y.right
- $x \leftarrow y$
- $y \leftarrow y.parent$
- **7** return *y*

זמן ריצה הוא $\Theta(h)$, כאשר h הוא גובה העץ

קודם לצומת הגדרה

אם כל המפתחות שונים זה מזה, הקודם (Predecessor) לצומת x הוא הצומת בעל מפתח הגדול ביותר הקטן מx.key

במידה והמפתחות יכולים לחזור על עצמם, הקודם לצומת x הוא צומת הקודם בסדר במידה והמפתחות יכולים לחזור על inorder של העץ

סיכום

Predecessor, Successor, Min, Max פעולות המילון O(h) בזמן h בינארי בגובה h בזמן בינארי למימוש על עץ חיפוש בינארי

Ordered Dictionary

Search(k)

Min()

Insert(x)

Max()

Delete(x)

Successor(x)

Predecessor(x)

מחיקה בעץ חיפוש בינארי

T נתון: עץ חיפוש בינארי מצביע לצומת z בעץ שיש למחוק

מחיקה בעץ חיפוש בינארי

ישנם שלושה מקרים:

1

ל-z אין בנים: z.parent ולא z.parent ולא אביו

ל-z אין בנים: z.parent ולא z.parent ולא אביו

מחיקה בעץ חיפוש בינארי

ישנם שלושה מקרים:

2

ל-z יש רק בן אחד: z.parent הבן של z הופך להיות בן של

ל-z יש רק בן אחד: z.parent הבן של z הופך להיות בן של

ל-z יש שני בנים:

לעוקב של z , נסמן ב-y, אין בן שמאלי נסיר את y (מקרה 1 או 2) מחלפים באלו של y המפתח והנתונים נלווים של z מוחלפים באלו של

ל-zיש שני בנים: לעוקב של z, נסמנו ב-y, אין בן שמאלי נסיר את y (מקרה 1 או 2) המפתח והנתונים נלווים של z מוחלפים באלו של y

ל-z אין בנים: z.parent ולא z משנים את אביו

ל-z יש רק בן אחד: הבן של z הופך להיות בן של z

ל-zיש שני בנים: לעוקב של z, נסמן ב-y, אין בן שמאלי נסיר את y (מקרה 1 או 2) המפתח והנתונים נלווים של z מוחלפים באלו של y

השלימו את המשפט: n זמן ריצה במקרה הגרוע של פעולת של Delete בעץ חיפוש בינארי בעל h צמתים וגובה h הוא .___.

- $\Theta(n)$.1
- $\Theta(1)$.2
- $\Theta(h)$.3
- $\Theta(\log n)$.4

?

נתון עץ חיפש בינארי מייד אחרי שבוצעה עליו פעולה אחת – הכנסה או הוצאה. מה יכולה להיות הפעולה שבוצעה על העץ?

סמנו את <u>כל</u> התשובות האפשריות

מה למדנו?

Search(k)

Min()

1

Insert(x)

Max()

Delete(x)

Successor(x)

Predecessor(x)

O(h) זמן ריצה של הפעולות על עץ חיפוש בינארי הוא

מה למדנו?

מה למדנו?

