Introduction Chapter 1

- Uses of Computer Networks
- Network Hardware
- Network Software
- Reference Models
- Example Networks
- Network Standardization
- Metric Units

Revised: August 2011

Uses of Computer Networks

Computer networks are collections of autonomous computers, e.g., the Internet

They have many uses:

- Business Applications »
- Home Applications »
- Mobile Users »

These uses raise:

Social Issues »

This text covers networks for all of these uses

Business Applications

Companies use networks and computers for <u>resource</u> <u>sharing</u> with the <u>client-server</u> model:

Other popular uses are communication, e.g., email, VoIP, and e-commerce

Home Applications

Homes contain many networked devices, e.g., computers, TVs, connected to the Internet by cable, DSL, wireless, etc.

Home users communicate, e.g., social networks, consume content, e.g., video, and transact, e.g., auctions

Some application use the <u>peer-to-peer</u> model in which there are no fixed clients and servers:

Mobile Users

Tablets, laptops, and smart phones are popular devices; WiFi hotspots and 3G cellular provide wireless connectivity.

Mobile users communicate, e.g., voice and texts, consume content, e.g., video and Web, and use sensors, e.g., GPS.

Wireless and mobile are related but different:

Wireless	Mobile	Typical applications	
No	No	Desktop computers in offices	
No	Yes	A notebook computer used in a hotel room	
Yes	No	Networks in unwired buildings	
Yes	Yes	Store inventory with a handheld computer	

Social Issues

- Network neutrality no network restrictions
- Content ownership, e.g., DMCA takedowns
- Anonymity and censorship
- Privacy, e.g., Web tracking and profiling
- Theft, e.g., botnets and phishing

Network Hardware

Networks can be classified by their scale:

Scale	Туре	
Vicinity	PAN (Personal Area Network) »	
Building	LAN (Local Area Network) »	
City	MAN (Metropolitan Area Network) »	
Country	WAN (Wide Area Network) »	
Planet	The Internet (network of all networks)	

Personal Area Network

Connect devices over the range of a person Example of a Bluetooth (wireless) PAN:

Local Area Networks

Connect devices in a home or office building

Called enterprise network in a company

Wireless LAN with 802.11

Wired LAN with switched Ethernet

Metropolitan Area Networks

Connect devices over a metropolitan area Example MAN based on cable TV:

Wide Area Networks (1)

Connect devices over a country

Example WAN connecting three branch offices:

Wide Area Networks (2)

An ISP (Internet Service Provider) network is also a WAN. Customers buy connectivity from the ISP to use it.

Wide Area Networks (3)

A VPN (Virtual Private Network) is a WAN built from virtual links that run on top of the Internet.

Network Software

- Protocol layers »
- Design issues for the layers »
- Connection-oriented vs. connectionless service »
- Service primitives »
- Relationship of services to protocols »

Protocol Layers (1)

Protocol layering is the main structuring method used to divide up network functionality.

- Each protocol instance talks virtually to its <u>peer</u>
- Each layer communicates only by using the one below
- Lower layer <u>services</u> are accessed by an <u>interface</u>
- At bottom, messages are carried by the medium

Protocol Layers (2)

Example: the philosopher-translator-secretary architecture

Each protocol at different layers serves a different purpose

Protocol Layers (3)

Each lower layer adds its own <u>header</u> (with control information) to the message to transmit and removes it on receive

Layers may also split and join messages, etc.

Design Issues for the Layers

Each layer solves a particular problem but must include mechanisms to address a set of recurring design issues

Issue	Example mechanisms at different layers
Reliability despite failures	Codes for error detection/correction (§3.2, 3.3) Routing around failures (§5.2)
Network growth and evolution	Addressing (§5.6) and naming (§7.1) Protocol layering (§1.3)
Allocation of resources like bandwidth	Multiple access (§4.2) Congestion control (§5.3, 6.3)
Security against various threats	Confidentiality of messages (§8.2, 8.6) Authentication of communicating parties (§8.7)

Connection-Oriented vs. Connectionless

Service provided by a layer may be kinds of either:

- Connection-oriented, must be set up for ongoing use (and torn down after use), e.g., phone call
- Connectionless, messages are handled separately, e.g., postal delivery

	Service	Example	
Connection- oriented	Reliable message stream	Sequence of pages	
	Reliable byte stream	Movie download	
	Unreliable connection	Voice over IP	
	Unreliable datagram	Electronic junk mail□	
Connection- less	Acknowledged datagram	Text messaging	
	Request-reply	Database query	

Service Primitives (1)

A service is provided to the layer above as primitives

Hypothetical example of service primitives that may provide a reliable byte stream (connection-oriented) service:

Primitive	Meaning
LISTEN	Block waiting for an incoming connection
CONNECT	Establish a connection with a waiting peer
ACCEPT	Accept an incoming connection from a peer
RECEIVE	Block waiting for an incoming message
SEND	Send a message to the peer
DISCONNECT	Terminate a connection

Service Primitives (2)

Hypothetical example of how these primitives may be used for a client-server interaction

Relationship of Services to Protocols

Recap:

- A layer provides a <u>service</u> to the one above [vertical]
- A layer talks to its peer using a <u>protocol</u> [horizontal]

Reference Models

Reference models describe the layers in a network architecture

- OSI reference model »
- TCP/IP reference model »
- Model used for this text »
- Critique of OSI and TCP/IP »

OSI Reference Model

A principled, international standard, seven layer model to connect different systems

Application Layer

- The application layer is the OSI layer closest to the end user, which means both the OSI application layer and the user interact directly with the software application.
- This layer interacts with software applications that implement a communicating component.
- Application-layer functions typically include identifying communication partners, determining resource availability, and synchronizing communication.
- When identifying communication partners, the application layer determines the identity and availability of communication partners for an application with data to transmit.
- The most important distinction in the application layer is the distinction between the application-entity and the application.
- For example, a reservation website might have two application-entities: one using HTTP to communicate with its users, and one for a remote database protocol to record reservations.
- Neither of these protocols have anything to do with reservations. That logic is in the application itself.
- The application layer has no means to determine the availability of resources in the network.

Presentation Layer

- The presentation layer establishes context between application-layer entities, in which the application-layer entities may use different syntax and semantics if the presentation service provides a mapping between them.
- If a mapping is available, presentation protocol data units are encapsulated into session protocol data units and passed down the protocol stack.
- This layer provides independence from data representation by translating between application and network formats.
- The presentation layer transforms data into the form that the application accepts. This layer formats data to be sent across a network.
- It is sometimes called the syntax layer. The presentation layer can include compression functions. The Presentation Layer negotiates the Transfer Syntax.
- The original presentation structure used the Basic Encoding Rules of Abstract Syntax Notation One (ASN.1), with capabilities such as converting an EBCDIC-coded text file to an ASCII-coded file, or serialization of objects and other data structures from and to XML. ASN.1 effectively makes an application protocol invariant with respect to syntax.

Session Layer

- The session layer controls the dialogues (connections) between computers.
- It establishes, manages and terminates the connections between the local and remote application.
- It provides for full-duplex, half-duplex, or simplex operation, and establishes procedures for check-pointing, suspending, restarting, and terminating a session.
- In the OSI model, this layer is responsible for gracefully closing a session.
- This layer is also responsible for session check-pointing and recovery, which is not usually used in the Internet Protocol Suite.
- The session layer is commonly implemented explicitly in application environments that use remote procedure calls.
- In the modern TCP/IP system, the session layer is non-existent and simply part of the TCP protocol.

TCP/IP Reference Model

A four layer model derived from experimentation; omits some OSI layers and uses the IP as the network layer.

Protocols are shown in their respective layers

Model Used in this Book

It is based on the TCP/IP model but we call out the physical layer and look beyond Internet protocols.

5	Application
4	Transport
3	Network
2	Link
1	Physical

Critique of OSI & TCP/IP

OSI:

- Very influential model with clear concepts
- Models, protocols and adoption all bogged down by politics and complexity

TCP/IP:

- + Very successful protocols that worked well and thrived
- Weak model derived after the fact from protocols

Example Networks

- The Internet »
- 3G mobile phone networks »
- Wireless LANs »
- RFID and sensor networks »

Internet (1)

Before the Internet was the ARPANET, a decentralized, packet-switched network based on Baran's ideas.

ARPANET topology in Sept 1972.

Internet (2)

The early Internet used NSFNET (1985-1995) as its backbone; universities connected to get on the Internet

NSFNET topology in 1988

Internet (3)

The modern Internet is more complex:

- ISP networks serve as the Internet backbone
- ISPs connect or peer to exchange traffic at IXPs
- Within each network routers switch packets
- Between networks, traffic exchange is set by business agreements
- Customers connect at the edge by many means
 - Cable, DSL, Fiber-to-the-Home, 3G/4G wireless, dialup
- Data centers concentrate many servers ("the cloud")
- Most traffic is content from data centers (esp. video)
- The architecture continues to evolve

Internet (4)

Architecture of the Internet

3G Mobile Phone Networks (1)

3G network is based on spatial cells; each cell provides wireless service to mobiles within it via a base station

3G Mobile Phone Networks (2)

Base stations connect to the core network to find other mobiles and send data to the phone network and Internet

3G Mobile Phone Networks (3)

As mobiles move, base stations hand them off from one cell to the next, and the network tracks their location

Wireless LANs (1)

In 802.11, clients communicate via an AP (Access Point) that is wired to the rest of the network.

Wireless LANs (2)

Signals in the 2.4GHz ISM band vary in strength due to many effects, such as multipath fading due to reflections

requires complex transmission schemes, e.g., OFDM

Wireless LANs (3)

Radio broadcasts interfere with each other, and radio ranges may incompletely overlap

CSMA (Carrier Sense Multiple Access) designs are used

RFID and Sensor Networks (1)

Passive UHF RFID networks everyday objects:

- Tags (stickers with not even a battery) are placed on objects
- Readers send signals that the tags reflect to communicate

RFID and Sensor Networks (2)

Sensor networks spread small devices over an area:

Devices send sensed data to collector via wireless hops

Network Standardization

Standards define what is needed for interoperability

Some of the many standards bodies:

Body	Area	Examples
ITU	Telecommunications	G.992, ADSL H.264, MPEG4
IEEE	Communications	802.3, Ethernet 802.11, WiFi
IETF	Internet	RFC 2616, HTTP/1.1 RFC 1034/1035, DNS
W3C	Web	HTML5 standard CSS standard

Metric Units

The main prefixes we use:

Prefix	Exp.	prefix	ехр.
K(ilo)	10 ³	m(illi)	10-3
M(ega)	10 ⁶	μ(micro)	10-6
G(iga)	10 ⁹	n(ano)	10-9

- Use powers of 10 for rates, powers of 2 for storage
 - E.g., 1 Mbps = 1,000,000 bps, 1 KB = 1024 bytes
- "B" is for bytes, "b" is for bits

End

Chapter 1