NAME	YEAR DB										
AME Game Plan to Build Optimized Regression Testing in Agile	YEAR DB										
Methodologies Using TestPrioritization	2021 IEEE										
est Case Prioritization for Continuous Regression Testing: An	2013 IEEE										
A regression test selection technique by optimizing user stories in an											_
Agile environment	2014 IEEE										
A methodology for regression testing reduction and prioritization of agile releases	2015 IEEE		Duplicat	es							
Effect of Time Window on the Performance of Continuous Regression											
Testing	2016 IEEE										
Neural Network Classification for Improving Continuous Regression Testing	2020 IEEE										
Regression Test Selection Tool for Python in Continuous Integration											
Process Understanding and Improving Regression Test Selection in Continuous	2021 IEEE										
Integration	2019 IEEE										
A Framework for Continuous Regression and Integration Testing in IoT Systems Based on Deep Learning and Search-Based Techniques	2020 IEEE										
A Study of Regression Test Selection in Continuous Integration											
Environments	2018 IEEE										
Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in ContinuousIntegration	2020 IEEE										
Cost-Effective Regression Testing Using Bloom Filters in Continuous											Т
Integration Development Environments Machine Learning Regression Techniques for Test Case Prioritization in	2017 IEEE										
ContinuousIntegration Environment	2022 IEEE										
Build System Aware Multi-language Regression Test Selection in	2022 IEEE										
An Empirical Study of Regression Testing for Android Apps in											_
Continuous Integration Environment	2023 IEEE										
Test case reduction and SWOA optimization for distributed agile software development using regression testing	2024 SCOPUS	<u> </u>									
Towards a Shift in Regression Test Suite Development Approach in											
Agile Machine Learning Regression Techniques for Test Case Prioritization in	2022 SCOPUS										
Continuous Integration Environment	2022 SCOPUS										
Build System Aware Multi-language Regression Test Selection in Continuous Integration	2022 SCOPUS										
Regression Test Selection Tool for Python in Continuous Integration											
Process	2021 SCOPUS										
A Game Plan to Build Optimized Regression Testing in Agile Methodologies Using Test Prioritization	2021 SCOPUS										
Understanding and Improving Regression Test Selection in Continuous											
Integration A Study of Regression Test Selection in Continuous Integration	2019 SCOPUS										
Environments	2018 SCOPUS										
Regression tests provenance data in the continuous so ware engineering	2017 SCOPUS										
Cluster-based test cases prioritization and selection technique for agile											_
regression testing Estimation of regression test effort in agile projects	2017 SCOPUS 2016 SCOPUS										
A regression test selection technique by optimizing user stories in an											
Agile environment	2014 SCOPUS										
Test case prioritization for continuous regression testing: An industrial case study	2013 SCOPUS	3									
Test Case Prioritization for Continuous Regression Testing: An Industrial Case Study	2013 ACM										
Build system aware multi-language regression test selection in											
continuous integration Empirically evaluating readily available information for regression test	2022 ACM										
optimization in continuous integration	2021 ACM										
Improving regression testing in continuous integration development environments (keynote)	2018 ACM										
Techniques for improving regression testing in continuous integration	2010 MOM										
development environments	2014 ACM										
Regression Tests Provenance Data in the Continuous Software Engineering Context	2017 ACM										
Regression tests provenance data in the continuous so ware engineering											
context	2020 ACM										
Automated regression testing of BPMN 2.0 processes: a capture and replay framework for continuous delivery	2016 ACM										
Measuring the cost of regression testing in practice: a study of Java projects using continuousintegration	2017 ACM										
Learning-to-rank vs ranking-to-learn: strategies for regression testing											
in continuousintegration Agile regression testing using record & playback	2020 ACM 2003 ACM										
Influences on regression testing strategies in agile software											
development environments	2014 ACM										
Enhanced regression testing technique for agile software development and continuous integration strategies	2020 ACM										
Learning-based prioritization of test cases in continuous integration of highly-	2020 GS										
Xes as a reinforcement learning approach to automatic test case prioritization.	2020 GS 2020 GS										
Hybrid Framework To Exclude Similar and Faulty Test Cases In Regression Testing	2024 GS										
Regression test selection in test-driven development	2024 GS 2024 GS										
Embracing Unification: A Comprehensive Approach to Modern Test Case	2024 GS										
Prioritization. Improved novel bat algorithm for test case prioritization and minimization	2024 GS 2022 GS										
A regression test case generation method for avionics software	2022 GS										
Regression Testing Prioritization Technique Based on Historical Execution Information	2022 GS										
Reinforcement Learning Reward Function for Test Case Prioritization in											
Continuous Integration	2022 GS										

NAME	YEAR	DB
A Game Plan to Build Optimized Regression Testing in Agile Methodologies Using TestPrioritization	2021	IEEE
Test Case Prioritization for Continuous Regression Testing: An Industrial Case Study	2013	IEEE
A regression test selection technique by optimizing user stories in an Agile environment	2014	IEEE
A methodology for regression testing reduction and prioritization of agile releases	2015	IEEE
Effect of Time Window on the Performance of Continuous Regression Testing	2016	IEEE
Neural Network Classification for Improving Continuous Regression Testing	2020	IEEE
Regression Test Selection Tool for Python in Continuous Integration Process	2021	IEEE
Understanding and Improving Regression Test Selection in Continuous Integration	2019	IEEE
A Framework for Continuous Regression and Integration Testing in IoT Systems Based on Deep Learning and Search-Based Techniques	2020	IEEE
A Study of Regression Test Selection in Continuous Integration Environments	2018	IEEE
Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in ContinuousIntegration	2020	IEEE
Cost-Effective Regression Testing Using Bloom Filters in Continuous Integration Development Environments	2017	IEEE
Machine Learning Regression Techniques for Test Case Prioritization in ContinuousIntegration Environment	2022	IEEE
Build System Aware Multi-language Regression Test Selection in Continuous Integration	2022	IEEE
An Empirical Study of Regression Testing for Android Apps in Continuous Integration Environment	2023	IEEE

Test case reduction and SWOA optimization for distributed agile software development using regression testing	2024	SCOPUS
Towards a Shift in Regression Test Suite Development Approach in Agile	2022	SCOPUS
Regression tests provenance data in the continuous so ware engineering context	2017	SCOPUS
Cluster-based test cases prioritization and selection technique for agile regression testing	2017	SCOPUS
Estimation of regression test effort in agile projects	2016	SCOPUS
Empirically evaluating readily available information for regression test optimization in continuous integration	2021	ACM
Improving regression testing in continuous integration development environments (keynote)	2018	ACM
Techniques for improving regression testing in continuous integration development environments	2014	ACM
Automated regression testing of BPMN 2.0 processes: a capture and replay framework for continuous delivery	2016	ACM
Measuring the cost of regression testing in practice: a study of Java projects using continuousintegration	2017	ACM
Agile regression testing using record & playback	2003	ACM
Influences on regression testing strategies in agile software development environments	2014	ACM
Enhanced regression testing technique for agile software development and continuous integration strategies	2020	ACM
Learning-based prioritization of test cases in continuous integration of highly-configurable software.	2020	GS
Xcs as a reinforcement learning approach to automatic test case prioritization.	2020	GS
Hybrid Framework To Exclude Similar and Faulty Test Cases In Regress	2024	GS
Regression test selection in test-driven development	2024	GS

Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization.	2024	GS
Improved novel bat algorithm for test case prioritization and minimization	2022	GS
A regression test case generation method for avionics software	2022	GS
Regression Testing Prioritization Technique Based on Historical Execution Information	2022	GS
Reinforcement Learning Reward Function for Test Case Prioritization in Continuous Integration	2022	GS

NAME	YEAR	DB	Focus	Type of Algo
Test Case Prioritization for Continuous Regression Testing: An Industrial Case Study	2013	IEEE	RTP	Huristics
A regression test selection technique by optimizing user stories in an Agile environment	2014	IEEE	RTS	Adhoc
A methodology for regression testing reduction and prioritization of agile releases	2015	IEEE	RTM,RTP	Adhoc
Effect of Time Window on the Performance of Continuous Regression Testing	2016	IEEE	RTP	Huristics
Neural Network Classification for Improving Continuous Regression Testing	2020	IEEE	RTP	NN-ML
Regression Test Selection Tool for Python in Continuous Integration Process	2021	IEEE	RTS	NLP-ML
Understanding and Improving Regression Test Selection in Continuous Integration	2019	IEEE	RTS	Huristics
A Framework for Continuous Regression and Integration Testing in IoT Systems Based on Deep Learning and Search-Based Techniques	2020	IEEE	RTP	DL-ML
Learning-to-Rank vs Ranking-to-Learn: Strategies for Regression Testing in ContinuousIntegration	2020	IEEE	RTP	RL-ML
Cost-Effective Regression Testing Using Bloom Filters in Continuous Integration Development Environments	2017	IEEE	Cost	NA
Machine Learning Regression Techniques for Test Case Prioritization in ContinuousIntegration Environment	2022	IEEE	RTP	RL-ML
Build System Aware Multi-language Regression Test Selection in Continuous Integration	2022	IEEE	RTS	Adhoc
An Empirical Study of Regression Testing for Android Apps in Continuous Integration Environment	2023	IEEE	Cost	NA
Test case reduction and SWOA optimization for distributed agile software development using regression testing	2024	SCOPUS	RTP	Huristics
Regression tests provenance data in the continuous so ware engineering context	2017	SCOPUS	RTG	Adhoc
Cluster-based test cases prioritization and selection technique for agile regression testing	2017	SCOPUS	RTS,RTP	Adhoc
Estimation of regression test effort in agile projects	2016	SCOPUS	Cost	NA
Empirically evaluating readily available information for regression test optimization in continuous integration	2021	ACM	RTS,RTP	Adhoc
Techniques for improving regression testing in continuous integration development environments	2014	ACM	RTS,RTP	Adhoc
Measuring the cost of regression testing in practice: a study of Java projects using continuousintegration	2017	ACM	Cost	NA
Enhanced regression testing technique for agile software development and continuous integration strategies		ACM	RTS,RTP	Huristics
Learning-based prioritization of test cases in continuous integration of highly-configurable software.	2020	GS	RTP	RL-ML

Xcs as a reinforcement learning approach to automatic test case prioritization.	2020	GS	RTP	RL-ML
Hybrid Framework To Exclude Similar and Faulty Test Cases In Regression Testing	2024	GS	RTP	Adhoc
Regression test selection in test-driven development	2024	GS	RTS	Adhoc
Embracing Unification: A Comprehensive Approach to Modern Test Case Prioritization.	2024	GS	RTP	Adhoc
A requirement-based regression test selection technique in behavior-driven development	2021	Snowball	RTS	Adhoc
Improved novel bat algorithm for test case prioritization and minimization	2022	GS	RTP,RTM	Huristics
A regression test case generation method for avionics software	2022	GS	RTG	Adhoc
Regression Testing Prioritization Technique Based on Historical Execution Information	2022	GS	RTP	NA
TCP-Net: Test Case Prioritization using End-to-End Deep Neural Networks	2022	Snowball	RTP	NN-ML
Reinforcement Learning Reward Function for Test Case Prioritization in Continuous Integration	2022	GS	RTP	RL-ML
Reinforcement Learning for Test Case Prioritization	2022	Snowball	RTP	RL-ML
A tag-based recommender system for regression test case prioritization	2021	Snowball	RTP	Adhoc
LSTM-based deep learning for spatial-temporal software testing	2020	Snowball	RTP	DL-ML
Reinforcement learning based test case prioritization for enhancing the security of software	2020	Snowball	RTP	RL-ML
A learning algorithm for optimizing continuous integration development and testing practice	2019	Snowball	RTM	Trees-ML
A study of regression test selection in continuous integration environments	2018	Snowball	RTS	Adhoc
Failure history data-based test case prioritization for effective regression test	2017	Snowball	RTP	Huristics
Reinforcement learning for automatic test case prioritization and selection in continuous integration	2017	Snowball	RTS,RTP	RL-ML

PAPER#	YEAR	Focus	Metric	Agile Type	Refs															
S01		2024 RTP	Precission, Recall, F-score	Not specified	Singh, M., Chau	nan, N., & Popli	i, R. (2024). Test	case reduction and S	SWOA optimization for	r distributed agile so	ftware development	using regression test	ing. Multimedia To	ols and Applications, 1-2	6.					
S02		2024 RTS	Num of test case	Not specified	Mafi, Z., & Miri	an-Hosseinabad	i, S. H. (2024). R	egression test select	tion in test-driven devel	lopment. Automated	Software Engineeri	ng, 31(1), 9.								
S03		2024 RTP	NAPFD	Not specified	Vescan, A., Gaco	anu, R. D., & S.	zederjesi-Dragon	ir, A. (2024). Embra	acing Unification: A Co	omprehensive Appro	ach to Modern Test	Case Prioritization. I	n ENASE (pp. 396-	405).						
S04		2023 Cost	Cost of RTS	Continuous Intergation	Wang, D., Zhao,	Y., Xiao, L., &	Yu, T. (2023, Oct	ober). An Empirical	Study of Regression T	esting for Android A	pps in Continuous I	ntegration Environm	ent. In 2023 ACM/I	EEE International Symp	osium on Empirical So	oftware Engine	ering and Measuremen	nt (ESEM) (pp.	1-11). IEEE.	
S05		2022 RTP	NAPFD	Continuous Intergation	Da Roza, E. A.,	.ima, J. A. P., Si	ilva, R. C., & Ver	gilio, S. R. (2022, N	March). Machine learning	ng regression technic	ues for test case pri	oritization in continu	ous integration envi	ronment. In 2022 IEEE I	International Conferen	ce on Software	Analysis, Evolution a	and Reengineer	ing (SANER) (pp.	196-206). IEEE.
S06		2022 RTS	Test Time Saving	Continuous Intergation	Elsner, D., Wuer	sching, R., Schn	appinger, M., Pre	etschner, A., Graber,	M., Dammer, R., & R.	eimer, S. (2022, May). Build system awa	re multi-language re	gression test selection	n in continuous integrat	ion. In Proceedings of	the 44th Intern	ational Conference on	Software Engi	ineering: Software	Engineering in Practice (pp
S07		2022 RTP	FDR	Continuous Intergation	Chen, R., Xiao,	Z., Xiao, L., & I	.i, Z. (2022, Augu	ist). Regression Test	ting Prioritization Tech	nique Based on Hist	orical Execution Inf	ormation. In 2022 In	ternational Conferen	ce on Machine Learning	, Cloud Computing ar	d Intelligent N	lining (MLCCIM) (pp.	. 276-281). IEI	EE.	
S08		2022 RTP	FDR	Continuous Intergation	Abdelkarim, M.,	& ElAdawi, R.	(2022, April). To	p-net: Test case prio	oritization using end-to-	end deep neural net	works. In 2022 IEEI	International Confe	rence on Software T	esting, Verification and	Validation Workshops	(ICSTW) (pp.	122-129). IEEE.			
S09		2022 RTP	NAPFD	Continuous Intergation	Mirzaei, H., & K	eyvanpour, M. l	R. (2022, March)	Reinforcement Lea	arning Reward Function	n for Test Case Prior	itization in Continue	us Integration. In 20	22 9th Iranian Joint	Congress on Fuzzy and	Intelligent Systems (C	FIS) (pp. 1-6).	IEEE.			
S10		2022 RTP	NRPA,APFD	Continuous Intergation	Bagherzadeh, M	, Kahani, N., &	Briand, L. (2021). Reinforcement lea	arning for test case pric	ritization. IEEE Tra	nsactions on Softwa	e Engineering, 48(8)	, 2836-2856.							
S11		2021 RTS	MSR	Continuous Intergation	Kauhanen, E., N	urminen, J. K., !	Mikkonen, T., & l	Pashkovskiy, M. (20	21, March). Regressio	n test selection tool	or python in continu	ous integration proc	ess. In 2021 IEEE I	ternational Conference	on Software Analysis,	Evolution and	Reengineering (SANE	ER) (pp. 618-62	1). IEEE.	
S12		2021 RTS,RTP	APFDc	Continuous Intergation	Elsner, D., Haue	, F., Pretschner,	A., & Reimer, S.	(2021, July). Empir	rically evaluating readi	ly available informa	tion for regression to	st optimization in co	ntinuous integration	. In Proceedings of the 3	0th acm sigsoft intern	ational sympos	ium on software testin	ng and analysis	(pp. 491-504).	
S13		2021 RTS	Precission, Efficiency	BDD	Xu, J., Du, Q., &	Li, X. (2021, J	uly). A requireme	nt-based regression	test selection techniqu	e in behavior-driven	development. In 20	1 IEEE 45th Annual	Computers, Softwa	re, and Applications Cor	nference (COMPSAC)	(pp. 1303-130	8). IEEE.			
S14		2020 RTP	Time to Priortize Tests	Continuous Intergation	Marijan, D., Got	lieb, A., & Sapk	ota, A. (2020, Au	gust). Neural netwo	ork classification for im	proving continuous	regression testing. In	2020 IEEE Internat	ional Conference O	Artificial Intelligence	esting (AITest) (pp. 1	23-124). IEEE.				
S15		2020 RTP	Precission	Continuous Intergation	Medhat, N., Mor	issa, S. M., Badi	r, N. L., & Tolba,	M. F. (2020). A fran	mework for continuous	regression and integ	ration testing in iot	systems based on de	p learning and sear	ch-based techniques. IEI	E Access, 8, 215716-	215726.				
S16		2020 RTP	RPA	Continuous Intergation	Bertolino, A., Gi	erriero, A., Mir.	anda, B., Pietrant	uono, R., & Russo,	S. (2020, June). Learni	ng-to-rank vs rankir	g-to-learn: Strategie	s for regression testi	ng in continuous int	gration. In Proceedings	of the ACM/IEEE 42r	d International	Conference on Softwa	are Engineerin	g (pp. 1-12).	
S17		2020 RTS,RTP	APFD	Continuous Intergation	Ali, S., Hafeez,	., Hussain, S., &	& Yang, S. (2020)	. Enhanced regressi	ion testing technique fo	r agile software dev	lopment and contin	ous integration strat	egies. Software Qua	lity Journal, 28, 397-42	3.					
S18		2020 RTP	NAPFD,RFTC,NTR	Continuous Intergation	Lima, J. A. P., M	endonça, W. D.,	, Vergilio, S. R., &	k Assunção, W. K. (2020, October). Learni	ng-based prioritizati	on of test cases in c	entinuous integration	of highly-configura	ble software. In Proceed	ings of the 24th ACM	conference on	systems and software	product line: V	olume A-Volume A	(pp. 1-11).
S19		2020 RTP	APFD	Continuous Intergation	Xiao, L., Miao,	I., Shi, T., & Ho	ong, Y. (2020). LS	TM-based deep lear	rning for spatial-tempo	oral software testing.	Distributed and Par	allel Databases, 38, 6	87-712.							
S20		2020 RTP	APFD,NAPFD	Continuous Intergation	Shi, T., Xiao, L.,	& Wu, K. (2020	0, October). Rein	forcement learning b	based test case prioritiz	ation for enhancing	the security of softw	are. In 2020 IEEE 7t	h International Con	erence on Data Science	and Advanced Analyti	cs (DSAA) (pp	. 663-672). IEEE.			
S21		2019 RTS	Time Saved with RTS	Continuous Intergation	Shi, A., Zhao, P.	& Marinov, D.	(2019, October).	Understanding and	improving regression t	est selection in conti	nuous integration. I	2019 IEEE 30th Int	emational Symposi	ım on Software Reliabil	ity Engineering (ISSR	E) (pp. 228-23	B). IEEE.			
S22		2019 RTM	Fault Detection vs Time Budgets	Continuous Intergation	Marijan, D., Got	lieb, A., & Liaac	en, M. (2019). A l	earning algorithm for	or optimizing continuo	us integration develo	pment and testing p	ractice. Software: Pr	actice and Experien	ce, 49(2), 192-213.						
S23		2018 RTS	Cost of RTS	Continuous Intergation	Yu, T., & Wang,	T. (2018, Octob	er). A study of re	gression test selection	on in continuous integra	ation environments.	In 2018 IEEE 29th I	nternational Sympos	ium on Software Re	liability Engineering (IS	SRE) (pp. 135-143). II	EEE.				
S24		2017 Cost	Precission	Continuous Intergation	Kwon, J. H., & I	Co, I. Y. (2017, I	December). Cost-	effective regression	testing using bloom fil	ters in continuous in	tegration developm	ent environments. In	2017 24th Asia-Pac	fic Software Engineerin	g Conference (APSEC) (pp. 160-168). IEEE.			
S25		2017 RTG	Covergae	Continuous Intergation	de S. Campos Ju	nior, H., de Paiv	a, C. A., Braga, I	R., Araújo, M. A. P.,	David, J. M. N., & Ca	mpos, F. (2017, Sept	ember). Regression	tests provenance data	in the continuous	oftware engineering con	text. In Proceedings of	f the 2nd Brazi	ian Symposium on Sy	stematic and A	utomated Software	Testing (pp. 1-6).
S26		2017 RTS,RTP	F-Score, APFD	Scrum	Kandil, P., Mous	sa, S., & Badr, 1	N. (2017). Cluster	-based test cases pr	rioritization and selection	on technique for agil	e regression testing.	Journal of Software:	Evolution and Proc	ess, 29(6), e1794.						
S27		2017 Cost	Cost	Continuous Intergation	Labuschagne, A	Inozemtseva, I	, & Holmes, R.	(2017, August). Mea	asuring the cost of regr	ession testing in pra	tice: A study of Jav	a projects using cont	nuous integration. I	n Proceedings of the 201	7 11th joint meeting of	n foundations	of software engineerin	ng (pp. 821-830).	
S28		2017 RTP	APFD	Continuous Intergation	Kim, J., Jeong, I	I., & Lee, E. (20	17, April). Failur	e history data-based	test case prioritization	for effective regres	sion test. In Proceed	ings of the Symposiu	m on Applied Com	uting (pp. 1409-1415).						
S29		2017 RTS,RTP	NAPFD	Continuous Intergation	Spieker, H., Got	ieb, A., Marijan	, D., & Mossige,	M. (2017, July). Re	inforcement learning for	or automatic test cas	prioritization and s	election in continuou	s integration. In Pre	ceedings of the 26th AC	M SIGSOFT internati	onal symposiu	n on software testing a	and analysis (p	p. 12-22).	
S30		2016 RTP	APFD	Continuous Intergation	Marijan, D., & I	iaaen, M. (2016	, October). Effect	t of time window on	the performance of co	ntinuous regression	testing. In 2016 IEE	E International Conf	erence on Software	Maintenance and Evolut	ion (ICSME) (pp. 568-	-571). IEEE.				
S31		2016 Cost	Cost of RT	Not specified	Arora, M., Chop	ra, S., & Gupta,	P. (2016). Estima	tion of regression to	est effort in agile projec	ets. Far East J. Electr	on. Commun, 3, 74	-753.								
S32		2015 RTM,RTP	Covergae, Test Set Size	Not specified	Kandil, P., Mous	sa, S., & Badr, 1	N. (2015, Decemb	er). A methodology	for regression testing	reduction and priorit	ization of agile relea	ses. In 2015 5th inte	rnational conference	on Information & Com	munication Technolog	y and accessibi	lity (ICTA) (pp. 1-6).	IEEE.		
S33		2014 RTS	Coverage	Not specified	Anita, N. C. (20	4). A regression	test selection tec	hnique by optimizir	ng user stories in an ag	ile environment. In 2	014 IEEE Internation	nal Advance Compu	ting Conference (LA	CC) (pp. 1454-1458).						
S34		2014 RTS,RTP	APFD	Continuous Intergation	Elbaum, S., Rotl	ermel, G., & Pe	nix, J. (2014, No	vember). Technique	s for improving regress	sion testing in contin	uous integration de	elopment environme	nts. In Proceedings	of the 22nd ACM SIGSO	OFT International Sym	posium on Fou	indations of Software l	Engineering (p	p. 235-245).	
S35		2013 RTP	APFDc vs Time	Continuous Intergation	Marijan, D., Got	lieb, A., & Sen,	S. (2013, Septem	ber). Test case prior	ritization for continuou	s regression testing:	An industrial case st	udy. In 2013 IEEE In	ternational Confere	nce on Software Mainter	nance (pp. 540-543). II	EEE.				

PAPER#	Metric	Metric	Count								
S01	Precission,Recall,F-score	APFD and variants	15								
S02	Num of test case	Precision	4								
S03	NAPFD	Cost	4								
S04	Cost of RTS	Coverage	3								
S05	NAPFD	F-score	2								
S06	Test Time Saving	FDR	2	Fre	quency of Me	etrics acros	s the studies	3			
S07	FDR	Recall	1		APFD and var	iante					
S08	FDR	NRPA	1		Prec	ision					
S09	NAPFD	MSR	1			Cost					
S10	NRPA,APFD	Efficiency	1		Cov e F-:	score					
S11	MSR	RPA	1			FDR					
S12	APFDc	RFTC	1		R	ecall IRPA					
S13	Precission, Efficiency	NTR	1			MSR					
S14	Time to Priortize Tests	Test Time Saving	1	- 2	Effici	RPA					
S15	Precission	Time to Prioritize Tests	1	Metric	I	RFTC					
S16	RPA	Time Saved with RTS	1			NTR					
S17	APFD	Fault Detection vs Time Budgets	1	Test Time Saving Time to Prioritize Tests							
S18	NAPFD,RFTC,NTR	Time (from "APFDc vs Time")	1		Time Saved with						
S19	APFD	Test Set Size	1		Fault Detection vs Time (from "APFI	Dc vs					
S20	APFD,NAPFD	Num of Test Case	1		Test Set	t Size					
S21	Time Saved with RTS				Num of Test	Case					
S22	Fault Detection vs Time Budgets					О		5		10	15
S23	Cost of RTS							(Count		
S24	Precission										
S25	Covergae										
S26	F-Score, APFD										
S27	Cost										
S28	APFD										
S29	NAPFD										
S30	APFD										
S31	Cost of RT										
S32	Covergae, Test Set Size										
S33	Coverage										
S34	APFD										
S35	APFDc vs Time										