Introduction mathématique aux sciences de la vie

Séance d'exercices du 29/09/25

Remédiations

Cette semaine:

- 1. Mardi 30: séance Q/R pour les PHARMA et BIOMED, sur les matières scientifiques.
- 2. Mercredi 1: séance thématique sur les prérequis pour les BIOMED.

Correction de la préparation

1.3) A

Enoncé: Un arc de cercle possède un angle au centre de 80° et un rayon de 4,0m. Que vaut la longueur de cet arc?

Réponse: Soit vous appliquez la formule vue à la séance précédente, soit vous appliquez une règle de trois.

 360° correspond à une longuer de 8π m. Donc puisque $80=rac{2}{9}360$, la longueur recherchée est

$$\frac{2}{9}8\pi = \frac{16}{9}\pi m$$

1.3) B

Enoncé: Un secteur circulaire ayant un angle au centre de 140° a été découpé dans une tôle d'acier. Le rayon de ce secteur est de 75,0cm. Quelle est la surface de ce secteur?

Réponse: Le même raisonnement est d'application ici. La réponse finale est:

$$\frac{7}{18}75^2\pi = \frac{4378}{2}\pi\text{cm}^2$$

1.4) A

Enoncé: Déterminez la hauteur d'un arbre vertical dont l'ombre sur un sol horizontal s'allonge de 12,00m lorsque le soleil passe de 52° à 30° audessus de l'horizon.

Réponse: On visualise d'abord:

On complète la figure, on nomme

Résolution 1: via la loi des sinus

1. On trouve $\left[BC
ight]$ avec la loi des sinus:

$$\frac{[BC]}{\sin(30)} = \frac{[CD]}{\sin 22}$$

Résolution 1: via la loi des sinus

1. On trouve $m{h}$ avec SOHCAHTOA:

Dans le triangle rectangle
$$ABC$$
 , $\cos(38)=rac{h}{[BC]}$.

Résolution 2: via SOHCAHTOA

1. Dans
$$ABC$$
, $an(38)=rac{[AC]}{h}$. Donc $[AC]=h an(38)$

2. Dans
$$ABD$$
, $an(60)=rac{[AC]+12}{h}$. Donc $[AC]+12=h an(60)$

1.5) C 1)

Enoncé: Résous: $2\sin(3x)-\sqrt{2}=0$.

Réponse: $(k \in \mathbb{Z})$

$$2\sin(3x) - \sqrt{2} = 0 \Leftrightarrow$$
 $2\sin(3x) = \sqrt{2}$ \Leftrightarrow $\sin(3x) = \frac{\sqrt{2}}{2}$ \Leftrightarrow $3x = \frac{\pi}{4} + 2k\pi \text{ ou } 3x = \frac{3\pi}{4} + 2k\pi$ \Leftrightarrow $x = \frac{\pi}{12} + \frac{2k\pi}{3} \text{ ou } 3x = \frac{\pi}{4} + \frac{2k\pi}{3}$

Donc
$$S=\left\{rac{\pi}{12}+rac{2k\pi}{3},rac{\pi}{4}+rac{2k\pi}{3}
ight|k\in\mathbb{Z}
ight\}$$

2.1 A) 3 Résous:
$$\frac{3x-5}{2x+1} = 0$$
.

Réponse:

- 1. On commence par les conditions d'existence (C.E.): $2x+1 \neq 0$, ce qui revient à dire $x \neq -1/2$
- 2. On résout l'équation: une fraction est nulle lorsque son numérateur est nul et son dénominateur non nul. Donc, sous la C.E.:

$$rac{3x-5}{2x+1}=0\Leftrightarrow \qquad 3x-5=0 \ \Leftrightarrow \qquad x=rac{5}{3}$$

2.1 B) 4

Enoncé: Résous: (4x-16)(5x+1)<0.

Réponse:

1. On dresse le tableau de signes du membre de gauche:

x	$-\infty$		$-\frac{1}{5}$		4		$+\infty$
4x - 16		_		_	0	+	
5x + 1		_	0	+		+	
Produit		+	0	_	0	+	

2. Sur base du TDS, on résout l'équation: (on y cherche les —)

2.1 C) 4

Enoncé: Résous: $2x^2-7=4x$

Réponse:

$$2x^2-7=4x\Leftrightarrow \qquad 2x^2-7-4x=0 \ \Leftrightarrow \qquad 2x^2-4x-7=0$$

On a
$$\Delta = (-4)^2 - 4 \cdot 2 \cdot (-7) = 16 + 56 = 72 = 2 \cdot 36$$
.

Donc l'équation a deux solutions:

$$x_{1,2} = rac{-(-4) \pm \sqrt{72}}{2 \cdot 2} = rac{4 \pm 6\sqrt{2}}{4} = 1 \pm rac{3\sqrt{2}}{2}.$$

2.2 A) 2

Enoncé: Résous:
$$egin{cases} 3x+4y=19 \ -6x+y=-2 \end{cases}$$

Réponse: lci je propose la résolution par élimination de Gauss (au lieu de la méthode de substitution)

$$\begin{cases} 3x + 4y = 19 \\ -6x + y = -2 \end{cases} \Leftrightarrow \begin{cases} -6x - 8y = -38 \\ -6x + y = -2 \end{cases}$$
$$\Leftrightarrow \begin{cases} -6x - 32 = -38 \\ y = 4 \end{cases}$$

$$\begin{cases} x = 1 \\ y = 4 \end{cases}$$

Donc
$$S=\{(1,4)\}$$

Les vecteurs

Rappels

Définition Un vecteur est un segment orienté (= une flèche qui relie deux points).

Etant donnés deux points A et B, on note $A\dot{B}$ le vecteur allant de A vers B. Le point A est *l'origine* et le point B est *l'extrémité*

Un vecteur est **nul** s'il est de la forme \overrightarrow{AA} .

Caractéristiques d'un vecteur

Un vecteur non nul \overrightarrow{AB} est caractérisé par:

- 1. sa direction: celle de la droite AB
- 2. son sens: de $oldsymbol{A}$ vers $oldsymbol{B}$
- 3. sa norme: la longueur du segment [AB].

On dira que deux vecteurs non nuls sont **égaux** s'ils ont

- 1. la même direction: visuellement, ils sont parallèles
- 2. le même sens: les flèches ont le même sens
- 3. la même normes: les segments sont de même longueur

Composantes

Etant donnés $A=(x_A,y_A)$ et $B=(x_B,y_B)$ les composantes de $A\dot{B}$ sont:

$$\overrightarrow{AB} = (x_B - x_A, y_B - y_A).$$

1.1 Opérations sur les vecteurs

Rappels

La somme de deux vecteurs $\overrightarrow{u}=(u_1,u_2)$ et $\overrightarrow{v}=(v_1,v_2)$ se fait

1. analytiquement (avec les composantes): on additionne les composantes entre elles: $\overrightarrow{u}+\overrightarrow{v}=(u_1+v_1,u_2+v_2)$

2. géométriquement (visuellement):

Loi de Chasle

Loi du parallélogramme

Multiple

Multiplier un vecteur non nul $\overrightarrow{u}=(u_1,u_2)$ par un réel non nul a revient à construire un vecteur $a\overrightarrow{u}$ dont les caractéristiques sont les suivantes:

- 1. direction: la même que \overrightarrow{u}
- 2. sens: le même que \overrightarrow{u} si a>0 et l'opposé si a<0
- 3. norme: $|a| |\overrightarrow{u}|$.

De plus,
$$0\overrightarrow{u}=\overrightarrow{0}$$
 et $a\overrightarrow{0}=\overrightarrow{0}$.

Analytiquement
$$a\overrightarrow{u}=(au_1,au_2)$$

Exercice A)

Construisez un représentant de la somme des vecteurs $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$ et $\overrightarrow{t})$ dessinés sur les quadrillages donnés.

FIGURE 1 FIGURE 2

Exercice A)

Construisez un représentant de la somme des vecteurs $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$ et $\overrightarrow{t})$ dessinés sur les quadrillages donnés.

FIGURE 3

Figure 4

Exercice A)

Construisez un représentant de la somme des vecteurs $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ et \overrightarrow{t} dessinés sur les quadrillages donnés.

FIGURE 5

FIGURE 6

Exercice B)

Soient A, B et C trois points du plan muni d'un repère orthonormé.

Déterminez les composantes des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} ainsi que leurs normes si

$$ullet A=(2;1)$$
 , $B=(5;3)$ et $C=(1;4)$

Exercice B)

Soient A, B et C trois points du plan muni d'un repère orthonormé.

Déterminez les composantes des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} ainsi que leurs normes si

$$ullet$$
 $A=(2;0;1)$, $B=(-1;5;3)$ et $C=(7;1;4)$

Exercice C)

Simplifiez les expressions suivantes au maximum (les lettres représentent des points du plan ou de l'espace) :

•
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

Exercice D)

Considérons A=(-2;1), B=(5;2), C=(4;2), D=(-3;-1) et E=(0;2). Déterminez les composantes des vecteurs suivants :

- $2\overrightarrow{AB}$
- $2\overrightarrow{CB} + 3\overrightarrow{AB}$
- $3\overrightarrow{BD}-2\overrightarrow{AE}+rac{1}{2}\overrightarrow{CA}$

Exercice E)

Considérons le plan muni d'un repère. Calculez les composantes de $\overrightarrow{u}+\overrightarrow{v}$ et $\overrightarrow{a}\overrightarrow{u}$ lorsque

$$\overrightarrow{u}=(3;0;2)$$
 , $\overrightarrow{v}=(-2;1;4)$ et $a=-3$

Exercice F)

Considérons le plan ou l'espace muni d'un repère. Déterminez le milieu des segments [AB] si

•
$$A = (-1;1)$$
 et $B = (2;3)$

1.2 Produits scalaire et vectoriel

Rappels

Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs:

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan ou de l'espace muni d'un repère orthonormé où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} . Calculez $\overrightarrow{u} \cdot \overrightarrow{v}$ si

$$\|\overrightarrow{u}\|=3$$
 , $\|\overrightarrow{v}\|=5$ et $heta=60^\circ$

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs du plan ou de l'espace muni d'un repère orthonormé où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} . Calculez $\overrightarrow{u} \cdot \overrightarrow{v}$ si

•
$$\|\overrightarrow{u}\| = rac{1}{\sqrt{3}}$$
 , $\|\overrightarrow{v}\| = 3$ et $heta = rac{5\pi}{6}$

Travail à domicile: calculez les composantes puis appliquez les formules.

Rappel: produit vectoriel

Soit $\overrightarrow{u}=(u_1,u_2,u_3)$ et $\overrightarrow{v}=(v_1,v_2,v_3)$. Le produit vectoriel de ces deux vecteurs $\overrightarrow{u}\wedge\overrightarrow{v}$ a les composantes suivantes:

$$\overrightarrow{u}\wedge\overrightarrow{v}=egin{bmatrix}\overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\u_1&u_2&u_3\v_1&v_2&v_3\end{bmatrix}$$

Ce vecteur est perpendiculaire à \overrightarrow{u} et \overrightarrow{v} et est de norme $\|\overrightarrow{u}\wedge\overrightarrow{v}\|=\|\overrightarrow{u}\|\|\overrightarrow{v}\|\sin(\theta)$. Son sens est donné par la règle de la main droite.

Rappel: produit vectoriel

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace muni d'un repère orthonormé où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} . Déterminez la norme de \overrightarrow{u} et de \overrightarrow{v} , leur produit scalaire, leur produit vectoriel et l'amplitude de θ si

$$\overrightarrow{u}=(2;1;1)$$
 et $\overrightarrow{v}=(1;2;1)$

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace muni d'un repère orthonormé où θ est l'angle entre \overrightarrow{u} et \overrightarrow{v} . Déterminez la norme de \overrightarrow{u} et de \overrightarrow{v} , leur produit scalaire, leur produit vectoriel et l'amplitude de θ si

$$\overrightarrow{u}=(2;-1;2)$$
 et $\overrightarrow{v}=(-3;7;1)$

Considérons les vecteurs \overrightarrow{u} et \overrightarrow{v} tels que $\|\overrightarrow{u}\|=5$, $\|\overrightarrow{v}\|=2$ et $\overrightarrow{u}\cdot\overrightarrow{v}=10$. Montrez que la norme du vecteur $\overrightarrow{w_1}=2\overrightarrow{u}+3\overrightarrow{v}$ est égale à 16 et que celle du $\overrightarrow{w_2}=2\overrightarrow{u}-3\overrightarrow{v}$ est égale à 4

Considérons les vecteurs \overrightarrow{u} et \overrightarrow{v} tels que $\|\overrightarrow{u}\|=1$, $\|\overrightarrow{v}\|=3$ et $\overrightarrow{u}\cdot\overrightarrow{v}=-2$. Montrez que la norme du vecteur $\overrightarrow{w_1}=2\overrightarrow{u}+3\overrightarrow{v}$ est égale à $\sqrt{61}$ et que celle du $\overrightarrow{w_2}=2\overrightarrow{u}-3\overrightarrow{v}$ est égale à $\sqrt{109}$.

Exercice supplémentaire

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace muni d'un repère orthonormé. Calculez, via les composantes, $(\overrightarrow{u} \land \overrightarrow{v}) \cdot \overrightarrow{u}$ et $(\overrightarrow{u} \land \overrightarrow{v}) \cdot \overrightarrow{v}$. Qu'en conclure sur le vecteur $\overrightarrow{u} \land \overrightarrow{v}$ par rapport aux vecteurs \overrightarrow{u} et \overrightarrow{v} ?

1.3 Décomposition

FIGURE 7

FIGURE 8

Figure 9

Figure 10

FIGURE 11

FIGURE 12

Figure 14

On donne les vecteurs suivants $\overrightarrow{u}=(73\ 123\ 416;146\ 246\ 832)$ et $\overrightarrow{v}=(-79\ 035\ 264;39\ 517\ 632)$, deux vecteurs du plan muni d'un repère orthonormé. utiliser de calculatrice, démontrez que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont orthogonaux.