XV MIĘDZYSZKOLNY KONKURS MATEMATYCZNY DLA UCZNIÓW KLAS VI SZKÓŁ PODSTAWOWYCH MIASTA POZNANIA I OKOLIC OBJĘTY HONOROWYM PATRONATEM WIELKOPOLSKIEGO KURATORA OŚWIATY

ETAP I

CZAS: 60 minut

1. Oblicz: $\frac{1}{1} + \frac{1}{1} = \frac{1}{1}$

Do każdego zadania podane są cztery odpowiedzi, z których tylko jedna jest prawidłowa. Twoim zadaniem jest wybrać **jedną właściwą odpowiedź**.

Za każdą poprawną odpowiedź otrzymasz 1 punkt, a więc możesz uzyskać ich maksymalnie 20. Aby zakwalifikować się do II etapu musisz uzyskać **minimum 18 punktów**. Odpowiedzi zaznaczasz na karcie, **zaczerniając kwadrat z literą** oznaczającą prawidłową odpowiedź. Błędną odpowiedź zaznacz kółeczkiem.

NIE WOLNO UŻYWAĆ KALKULATORÓW!!!

Życzymy powodzenia!

101 1,01			
A. 1	B. $\frac{1}{50.5}$	C. $\frac{1}{2}$	D. $\frac{1}{101}$

2. Ile wynosi odwrotność sumy odwrotności liczb 2, 4, 6?

A.
$$\frac{1}{11}$$
 B. $\frac{1}{12}$ **C.** $\frac{11}{12}$ **D.** $1\frac{1}{11}$

3. Temperaturę można podawać w stopniach Celsjusza lub w stopniach Fahrenheita. Wiadomo, że 0°C to 32°F, a 10°C to 50°F. Ile stopni Fahrenheita odpowiada temperaturze 30°C?

A. 14^{0} F **B.** 86^{0} F **C.** 18^{0} F **D.** 68^{0} F

4. O liczbach a, b, c, d, e, f wiadomo, że: **a<b, b>c, d>e, e<f** oraz **a>c, b<e, d>f**. Ustaw te liczby malejąco.

A. c, a, b, e, f, d **B.** c, b, a, f, e, d **C.** d, f, e, b, a, c **D.** d, f, e, b, c, a

5. Marcel, Paweł, Ksawery i Bonifacy poszli na ryby. Marcel i Paweł złowili łącznie 10 ryb, Ksawery i Bonifacy 11 ryb, a Marcel i Bonifacy 7 ryb. Ile ryb złowili łącznie Paweł i Ksawery?

A. 21

B. 14

C. 13

D. 7

6. Tomek i Radek chodzą do szkoły. Tomek chodzi szybko, Radek chodzi wolno. Tomek idzie do szkoły 20 minut, a Radek 30 minut. Ile minut po Radku powinien wyjść z domu Tomek, żeby dogonić Radka w połowie drogi do szkoły?

A. 25 min

B. 15 min

C. 10 min

D. 5 min

7. Osiem liczb umieszczono na rysunku według pewnej zasady. Znajdź tę liczbę.

8. Średnia temperatur przez 6 dni od poniedziałku do soboty była równa -3°C, a od tego samego poniedziałku przez 7 dni do niedzieli była równa -2°C. Jaka była temperatura w niedziele?

 $A = 8^{\circ}C$

B. -4° C **C.** -8° C

D. 4^{0} C

9. Na obozie jest 500 uczestników, z czego 60% stanowią chłopcy. Kartę pływacką ma 80% chłopców i 70% dziewcząt. Ile procent wszystkich uczestników ma karte pływacką?

A. 10%

B. 76%

C. 64%

D. 50%

10. Ile wszystkich możliwych trójkątów widzisz na tym rysunku?

A. 16

B. 10

D. 18

11. Liczba sposobów, na jakie Ala i Bartek mogą usiąść na dwóch spośród pięciu miejsc w kinie jest równa:

A. 5

B. 15

C. 20

D. 25

12. Pewien robot rozpoczął pracę 1 kwietnia o godzinie 9⁰⁰ rano i ma pracować 1000 godzin. Kiedy należy wyłączyć tego robota?

A. 11 maja **B.** 12 maja **C.** 13 maja **D.** 14 maja

13. Dokładnie jeden z poniższych zegarów wskazuje właściwy czas. Jeden z tych zegarów spieszy się o 20 minut, jeden z nich spóźnia się o 20 minut, zaś jeden w ogóle nie chodzi. Która jest godzina?

A. 16⁴⁵

B. 17^{25}

C. 17⁴⁰

D. 17^{05}

14. Na rysunku przedstawiono kwadrat i trójkąt równoboczny. Zaznaczony na rysunku kąt ma miarę 70°. Oblicz miarę kąta x.

A. 80°

B. 75⁰

C. 60°

D. 45°

15. Prostokąt ABCD podzielono na trójkąty tak, jak pokazano Podane pola wyrażone są w centymetrach na rysunku. kwadratowych. Oblicz pole trójkąta EGC.

A. 27 cm^2 **B.** 28 cm^2 **C.** 32 cm^2 **D.** 23 cm^2

16. W prostokatnym sadzie o wymiarach 30 m x 15 m posadzono w równych rzedach. Odległość owocowe sąsiednimi drzewami w rzędzie i odległość między sąsiednimi rzędami wynosi 2,5 m, a drzewa rosnące przy płocie są od niego odległe również o 2,5 m. Ile drzew rośnie w tym sadzie?

A. 40

B. 55

C. 65

D. 100

17. Oblicz pole narysowanej figury, jeżeli pole jednej kratki jest równe 1.

A. 42

B. 44

C. 48

D. 50

18. Prostokąt o polu 100 cm² podzielono na trzy prostokąty, z których jeden ma obwód 21 cm i długość 8 cm, a drugi ma obwód 23 cm i szerokość 1,5 cm. Oblicz pole trzeciego prostokata.

A. 15 cm^2 **B.** 65 cm^2 **C.** 32 cm^2 **D.** 40 cm^2

19. Architekt ma dwa plany tego samego budynku: jeden w skali 1:20, drugi w skali 1:50. Jaka jest na planie w skali 1:50 długość fasady tego budynku, jeśli jest ona równa 20 cm na planie w skali 1:20?

A. 10 cm **B.** 2,5 cm

C. 5 cm

D. 8 cm

20. Akwarium kształcie prostopadłościanu W ma wymiary 2,5 dm x 4 dm x 3 dm. Chcąc napełnić to akwarium wodą do $\frac{3}{4}$ wysokości, użyto prostopadłościennego pojemnika o wymiarach 12,5 cm x 8 cm x 14 cm. Ile **co najmniej razy** trzeba napełnić pojemnik, aby osiągnąć zamierzony cel?

A. 18

B. 15

C. 17

D. 16