Práctico 11

Ejercicio 1.

- (a) Consideramos la versión de decisión del problema de planificación de intervalos ($Interval\ Scheduling$, Capítulo 4 de K&T): dado un conjunto de intervalos en una línea de tiempo, representados mediante una lista de pares de enteros, y un entero k, ¿existe un subconjunto de al menos k intervalos que no se solapan entre sí?
 - Determine si Interval Scheduling $\leq_P Vertex Cover$.
- (b) Consideramos el problema Clique: dado un grafo G = (V, E) representado mediante una matriz de adyacencias y un entero k, ¿existe $S \subset V$, con al menos k vértices, tal que para todo par de vértices $u, v \in S$ existe una arista entre ellos en G? Muestre que $Independent\ Set \leq_P Clique$.

Ejercicio 2. Sea $C = \{C_1, ..., C_k\}$ un conjunto de cláusulas sobre un conjunto de variables booleanas $X = \{x_1, ..., x_n\}$, representados mediante listas, donde cada cláusula C_i cumple las siguientes propiedades:

- Es la disyunción de **a lo sumo** 3 términos (cada término es una variable x_i o su complemento $\overline{x_i}$).
- Una misma variable puede aparecer más de una vez en una misma cláusula.

Definimos el problema Al Menos 2-SAT de la siguiente manera: ¿existen al menos 2 asignaciones de verdad distintas para X que satisfacen C? Muestre que 3-SAT $\leq_P Al$ Menos 2-SAT.

Ejercicio 3 (Kleinberg & Tardos, Ex. 8.2). Una tienda que trata de analizar el comportamiento de sus clientes a menudo mantiene una tabla bidimensional A, donde las filas corresponden a sus clientes y las columnas a los productos que vende. La entrada A[i,j] especifica la cantidad del producto j que ha sido comprada por el cliente i. Un ejemplo de tabla se muestra a continuación.

Cliente	Detergente	Cerveza	Pañales	Arena para gatos
Raj	0	6	0	3
Alanis	2	3	0	0
Chelsea	0	0	0	7

Práctico 11 Programación 3

Decimos que un subconjunto S de clientes es *diverso* si ningún par de clientes en S ha comprado nunca el mismo producto, es decir que para cada producto, a lo sumo un cliente de S lo ha comprado alguna vez. Un conjunto diverso de clientes resulta útil por ejemplo como grupo objetivo para los estudios de mercado.

Definimos el problema de Conjunto Diverso como sigue: dada una tabla A del tipo definido anteriormente, de dimensiones $m \times n$, y un número $k \leq m$, ¿existe un subconjunto de al menos k clientes que es diverso?

Muestre que Independent Set \leq_P Conjunto Diverso.

Ejercicio 4. Sea G = (V, E) un grafo (no dirigido). Decimos que un conjunto de vértices, S, es un *conjunto dominante*, si todo vértice de $V \setminus S$ es adyacente a algún vértice de S. Definimos el problema de decisión *Dominating Set* como: dado un grafo G y un entero k, ¿tiene G un conjunto dominante con a lo sumo k nodos?

Observación: Para G conexo, el hecho de que un conjunto de vértices sea recubridor implica que es también un conjunto dominante, pero el recíproco no es cierto.

Sugerencia: Dada una instancia (G, k) de *Vertex Cover*, considere la siguiente reducción a una instancia (G', k') de *Dominating Set*:

- G' mantiene todos los nodos y aristas de G. Adicionalmente, por cada arista (u, v) de G se agrega en G' un nuevo nodo X_{uv} y las dos aristas (u, X_{uv}) y (v, X_{uv}) .
- k' = k + m, donde m la cantidad de nodos aislados de G (nodos de grado 0).
- (a) Muestre que existe una transformación de tiempo polinómico de G en G'.
- (b) Muestre que si G tiene un VC de a lo sumo k nodos, entonces G' tiene un DS D con $|D| \le k + m$ (de a lo sumo k + m nodos).
- (c) Muestre que si G' tiene un DS D con $|D| \le k + m$, entonces G tiene un VC de a lo sumo k nodos.
 - **Sugerencia:** Muestre que si $\exists x \in D | x \notin G \implies D$ puede transformarse en otro DS $D' | x' \in G, \forall x' \in D' \land |D'| \leq |D|$.
- (d) Muestre que Vertex Cover \leq_P Dominating Set.