Лабораторна робота №4 Проектування комбінаційних автоматів

Теоретичні відомості

Методика проектування комбінаційного автомата з одним виходом складається з наступних етапів:

- 1) Згідно таблиці істинності записуємо функцію алгебри логіки в ПДНФ або ПКНФ.
- 2) Мінімізація ПДНФ (ПКНФ) будь-яким доступним методом.
- 3) Побудова логічної схеми комбінаційного автомата в базисі заданої серії елементів.
- 4) Оцінка двоїстого (дуального) варіанту логічної схеми з урахуванням кількості вхідних і вихідних інверторів.

У чому полягає двоїстість логічних схем? Якщо логічні схеми розробляються в базисі І-НЕ і АБО-НЕ, то кожна схема може бути представлена в двох варіантах: основному і двоїстому. Останній по конфігурації схеми нічим не відрізняється від основного, тільки в ньому елементи І замінені на АБО і навпаки, а всі входи і виходи проінвертовані. Однак співвідношення числа елементів в прямому і двоїстому варіантах різне. А ще потрібно враховувати, що в більшості серій елементів входи І та АБО не еквівалентні по витратах устаткування, а кількість необхідних інверторів на входах і виходах прямого і двоїстого варіантів також різна, а отже, майже завжди варіанти відрізняються як по кількості витраченого устаткування, так і по кількості послідовно включених елементів. Тому при розробці комбінаційного автомата необхідно оцінювати обидва варіанти і вибирати кращий.

- 5) Спробувати знайти таку декомпозицію вихідної функції, щоб кожен фрагмент отриманого розкладу залежав від меншого, ніж початкова вихідна функція, числа аргументів.
- 6) Вибрати з отриманих на етапах 4,5 варіант, найбільш відповідний з погляду поставленої мети.

Розглянемо приклад.

Побудувати схему цифрового автомата S, функціонування якого описується функцією алгебри логіки $Y(x_1, x_2, x_3, x_4) = \sum (1, 2, 3, 9, 11, 14, 15)$

Розв'язання.

Запишемо ФАЛ, що описує функціонування цифрового автомата в ПДНФ:

$$Y(x_1, x_2, x_3, x_4) = \Sigma(1, 2, 3, 9, 11, 14, 15) =$$

$$=\,\overline{x}_{\,1}\,\overline{x}_{\,2}\,\overline{x}_{\,3}\,x_{\,4}+\,\overline{x}_{\,1}\,\overline{x}_{\,2}\,x_{\,3}\,\overline{x}_{\,4}+\,\overline{x}_{\,1}\,\overline{x}_{\,2}\,x_{\,3}\,x_{\,4}+\,x_{\,1}\,\overline{x}_{\,2}\,\overline{x}_{\,3}\,x_{\,4}+\,x_{\,1}\,\overline{x}_{\,2}\,x_{\,3}\,x_{\,4}+\,x_{\,1}\,x_{\,2}\,x_{\,3}\,\overline{x}_{\,4}+\,x_{\,1}\,x_{\,2}\,x_{\,3}\,x_{\,4}$$

Проведемо мінімізацію $Y(x_1, x_2, x_3, x_4)$ використовуючи карту Вейча для чотирьох змінних, рис.4.1.

Прямокутник, який покрив набори 1, 3, 9 і 11 описується термом \bar{x}_2 x_4 .

Прямокутник, який покрив набори 2 і 3 - $\bar{x}_1 \bar{x}_2 x_3$.

Прямокутник, що покрив набори $14 i 15 - x_1 x_2 x_3$.

Після оптимізації розглянута $\Phi A \Pi$ приймає наступний вигляд:

$$Y(x_1, x_2, x_3, x_4) = \sum (1, 2, 3, 9, 11, 14, 15) = \overline{x}_2 x_4 + \overline{x}_1 \overline{x}_2 x_3 + x_1 x_2 x_3.$$

По отриманій ФАЛ складемо логічну схему комбінаційного автомата, рис.4.2. (Варіант А)

Таким чином, комбінаційний автомат в базисі серії К555 можна скласти з: DA1 - К555ЛН1, DA2 - К555ЛИ3, DA3 - К555ЛЛ1, рис.4.3.

Оцінимо інші варіанти логічної схеми кінцевого автомата.

Рис.4.1. Вид карти Вейча для чотирьох змінних.

Представимо ФАЛ в базисі І-НЕ

$$Y(x_1, x_2, x_3, x_4) = \overline{\overline{\overline{x}_2 x_4}} \overline{\overline{x}_1 \overline{x}_2 x_3} \overline{x_1 x_2 x_3}$$

Відповідно до ФАЛ будуємо логічну схему варіанту В комбінаційного автомата, рис.4.4. Використовуючи DA4, DA5 - К555ЛА4 будуємо логічну схему варіанту В комбінаційного автомата в базисі серії К555, рис.4.5.

Представимо ФАЛ в базисі АБО-НЕ

$$Y(x_1, x_2, x_3, x_4) = \overline{x_2 + \overline{x}_4} + \overline{x_1 + x_2 + \overline{x}_3} + \overline{\overline{x}_1 + \overline{x}_2 + \overline{x}_3}$$

Відповідно ФАЛ будуємо логічну схему варіанту С комбінаційного автомата, рис.4.6. Використовуючи DA6 - К555ЛН1, DA7 - К555ЛЕ1, DA8 - К555ЛЛ1, будуємо логічну схему варіанту С комбінаційного автомата в базисі серії К555, рис.4.7

Рис.4.2. Логічна схема комбінаційного автомата (варіант А)

Рис.4.3. Логічна схема комбінаційного автомата в базисі серії К555 (варіант А)

DA5.1 DA5.3 Y

DA5.2 & X₁X₂X₃

DA5.2 & X₁X₂X₃

Рис.4.5. Логічна схема комбінаційного автомата в базисі серії К555 (варіант В)

Оцінюючи отримані варіанти комбінаційного автомата по витратах устаткування (мікросхем), найбільш відповідним варіантом ϵ варіант B, який і приймається як рішення. Слід відмітити, що варіант B найкращий з погляду того, що схема зібрана на двох однакових мікросхемах — $K555 \Pi A4$.

Завдання

Побудувати схему цифрового автомата.

тооудува	a i ri	CACI	vi y i	циψр	ОВО	1 O U	ыото	ma i	u										
$N_{\underline{0}}$	W .	x ₂	X 3	X4	F(x ₁ , x ₂ , x ₃ , x ₄) для варіанту:														
набору	\mathbf{x}_1				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	1	1	0	1	1	1	1	0	0	0	1	0	1	1	0
1	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	1	1
2	0	0	1	0	1	0	1	1	0	1	0	1	1	0	0	1	0	1	1
3	0	0	1	1	0	0	0	0	1	0	1	0	1	1	1	1	1	0	0
4	0	1	0	0	1	0	1	0	1	0	1	0	1	1	1	0	1	0	1
5	0	1	0	1	1	0	0	0	0	1	1	0	1	1	0	0	0	1	1
6	0	1	1	0	0	1	1	1	0	0	1	1	1	1	0	0	1	1	0
7	0	1	1	1	0	1	1	1	0	1	0	1	0	0	1	1	0	1	0
8	1	0	0	0	0	1	1	0	1	0	0	1	0	1	0	0	1	0	1
9	1	0	0	1	0	1	1	0	1	0	0	1	0	1	0	1	1	0	0
10	1	0	1	0	1	0	0	0	1	1	1	1	1	1	0	0	1	0	0
11	1	0	1	1	1	0	0	1	0	1	0	0	0	0	1	1	0	1	1
12	1	1	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	1	1
13	1	1	0	1	1	0	1	1	0	1	0	1	1	1	0	1	0	1	0
14	1	1	1	0	0	1	0	0	1	0	1	0	1	1	0	0	0	0	1
15	1	1	1	1	1	1	0	1	1	0	1	0	1	0	1	0	1	0	0

Примітка. Для складання логічної схеми комбінаційного автомата може використовуватися серія К555.

Склад серії К555 (тип логіки ТТЛ).

	Change of the co (this from the true).
К555ЛА1	два елементи 4 I - HE
К555ЛА2	елемент 8 I – HE
К555ЛАЗ	чотири елементи 2 I - HE
К555ЛА4	три елементи 3 I - HE
К555ЛА9	чотири елементи 2 I - НЕ з відкритим колектором
К555ЛЕ1	чотири елементи 2 АБО - НЕ
К555ЛИ1	чотири елементи 2 I
К555ЛИ6	два елементи 4 I
К555ЛЛ1	чотири елементи 2 АБО
К555ЛН1	шість елементів НЕ
К555ЛН2	шість елементів НЕ
К555ЛР11	два елементи 2 - 2 I - 2 АБО - НЕ і 3 - 3 I - 2 АБО – НЕ
K555TB6	два ЈК - тригери зі скиданням
К555КП12	2 - розрядний 4 - канальний комутатор із трьома станами
К555ИД4	здвоєний дешифратор 2 входи - 4 виходи.
К555ИД7	двійковий дешифратор на 8 напрямів.
К555СП1	схема порівняння двох 4 - розрядних чисел.
К555ИЕ7	реверсивний 4 - розрядний двійковий лічильник.
К555ИР16	універсальний 4 - розрядний регістр з сувом

Мікросхеми, які найімовірніше зможуть увійти до складу комбінаційного автомата.

Контрольні питання:

- 1. Який автомат називається комбінаційним?
- 2. Яка функція називається комбінаційною?
- 3. Чому потрібно розглядати дуальні варіанти логічних схем?
- 4. Які критерії варто враховувати, вибираючи варіант логічної схеми для втілення в практику?