Géométrie et Polynômes

Guillemette Chapuisat

guillemette.chapuisat@univ-amu.fr

voir aussi le site http://www.aiezzi.it/enseignement/geometrie.html

Licences de Mathématiques et d'Informatique, 1er semestre 2016-2017

Alphabet grec

Minuscule	Majuscule	Nom
α	A	alpha
β	В	béta
γ	Γ	gamma
δ	Δ	delta
ε ou ε	E	epsilon
ζ	Z	dzêta
η	Н	êta
θ ou ϑ	Θ	thêta
ι	I	iota
κ	K	kappa
λ	Λ	lambda
μ	M	mu

Minuscule	Majuscule	Nom
ν	N	nu
ξ	Ξ	xi
О	О	omicron
π	П	pi
ρ	Р	rhô
σ	Σ	sigma
au	Т	tau
v	Y	upsilon
ϕ ou φ	Φ	phi
χ	X	khi
ψ	Ψ	psi
ω	Ω	omega

Chapitre 1

Géométrie dans le plan et dans l'espace

I. Vecteurs du plan et de l'espace

1. Opérations sur les vecteurs

Définition 1.1

- Un scalaire est un nombre réel $\lambda \in \mathbb{R}$
- Un vecteur du plan est un couple de réels $\overrightarrow{u} = \begin{pmatrix} x \\ y \end{pmatrix}$.
- Un vecteur de l'espace est un triplet de réels $\overrightarrow{u} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
- Les scalaires x, y (et z) sont appelés composantes ou coordonnées du vecteur \overrightarrow{u} .
- L'ensemble des vecteurs du plan est noté \mathbb{R}^2 et l'ensemble des vecteurs de l'espace est noté \mathbb{R}^3 . On utilisera la notation \mathbb{R}^n si on veut parler de \mathbb{R}^2 ou \mathbb{R}^3 .

Notation 1.2

Dans
$$\mathbb{R}^2$$
, $\overrightarrow{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\overrightarrow{\imath} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\overrightarrow{\jmath} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
Dans \mathbb{R}^3 , $\overrightarrow{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, $\overrightarrow{\imath} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\overrightarrow{\jmath} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, et $\overrightarrow{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Remarques:

- L'égalité $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ signifie x = x' <u>et</u> y = y'. Donc $\overrightarrow{u} \neq \overrightarrow{0}$ signifie que l'une des composantes est non nulle, pas nécessairement toutes! Par exemple, $\begin{pmatrix} 3 \\ 0 \end{pmatrix} \neq \overrightarrow{0}$.
- On peut aussi écrire les vecteurs en ligne $\overrightarrow{u}=(x,y)$, cela prend moins de place, mais dans cette UE, l'écriture en colonne sera préférée pour favoriser le lien avec l'UE d'algèbre linéaire au semestre suivant.
- Sauf cas particulier, on notera désormais u au lieu de \overrightarrow{u} et c'est au lecteur de savoir s'il s'agit d'un scalaire ou d'un vecteur et si on travaille dans \mathbb{R}^2 ou \mathbb{R}^3 !

Définition 1.3

Dans \mathbb{R}^2 , on définit la somme de deux vecteurs par

$$\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \\ y \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

et le produit par un scalaire $\lambda \in \mathbb{R}$ par

$$\lambda \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}.$$

Dans \mathbb{R}^3 , on définit la somme de deux vecteurs par

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$$

et le produit par un scalaire $\lambda \in \mathbb{R}$ par

$$\lambda \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}.$$

Proposition 1.4

Soient $u, v, w \in \mathbb{R}^n$. Soient λ et $\mu \in \mathbb{R}$. Les opérations de somme (de deux vecteurs) et de produit (d'un vecteur par un scalaire) satisfont les propriétés suivantes :

- La somme est commutative : u + v = v + u;
- La somme est associative : (u + v) + w = u + (v + w);
- la somme admet un élément neutre : $u + \overrightarrow{0} = u$;
- Le produit (d'un vecteur par un scalaire) est distributif par rapport à la somme : $\lambda(u+v) = \lambda u + \lambda v$ et $(\lambda + \mu)u = \lambda u + \mu u$;
- Le produit (d'un vecteur par un scalaire) est associatif : $\lambda(\mu u) = (\lambda \mu)u$;
- Le produit (d'un vecteur par un scalaire) admet un élément neutre : 1u = u.
- Le produit (d'un vecteur par un scalaire) admet un élément absorbant à gauche et un élément absorbant à droite : $0u = \overrightarrow{0} = \lambda \overrightarrow{0}$.

Démonstration : Ces propriétés découlent directement des propriétés de la somme et du produit sur \mathbb{R} .

Remarques:

- On ne peut pas multiplier ou diviser 2 vecteurs!!!
- On peut soustraire un vecteur à un autre puisque u-v=u+(-1)v!
- Dans le produit (d'un vecteur par un scalaire), on écrit toujours le scalaire avant le vecteur : λu et non $u\lambda$.

2. Représentation graphique

On se place dans le plan, mais les choses sont similaires dans l'espace (mais plus difficiles à dessiner!).

On munit le plan du repère $(O, \overrightarrow{i}, \overrightarrow{j})$. À un couple de réels (x, y), on associe un point M d'abscisse x et d'ordonnée y. On le note M(x, y). On représente souvent le vecteur $u = \begin{pmatrix} x \\ y \end{pmatrix}$ par une flèche qui part de O et arrive au point M(x, y). D'autre part, pour 2 points $A(x_A, y_A)$ et

 $B(x_B, y_B)$, on définit le vecteur $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$ et on le représente comme une flèche partant de A et allant en B.

Exemple: Pour A(1,2) et B(3,5), on a $\overrightarrow{AB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.

Remarque: $\overrightarrow{AB} = \overrightarrow{-BA}$ et $\overrightarrow{AA} = \overrightarrow{0}$.

Proposition 1.5 (Relation de Chasles)

Soient A, B et C 3 points du plan ou de l'espace. On a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Démonstration: Il suffit de l'écrire!

Définition 1.6

Quatre points (ordonnés) A, B, C, D de \mathbb{R}^n forment un parallélogramme si $\overrightarrow{AB} = \overrightarrow{DC}$. Alors par Chasles, $\overrightarrow{AD} = \overrightarrow{BC}$, car $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AD} + \overrightarrow{DC}$.

Remarque: Cette définition du parallélogramme donne une méthode graphique pour dessiner la somme de 2 vecteurs.

3. Combinaisons linéaires

Définition 1.7

Soient (u_1, u_2, \ldots, u_k) une famille finie de vecteurs de \mathbb{R}^n . Une combinaison linéaire de u_1, u_2, \ldots, u_k est un vecteur qui peut s'écrire sous la forme $\lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_k u_k$ avec $\lambda_1, \lambda_2, \ldots, \lambda_k$ des scalaires.

Exemple: En prenant $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$, on voit que $\overrightarrow{0}$ est combinaison linéaire de toute famille de vecteurs.

En prenant $\lambda_i = 1$ et $\lambda_j = 0$ pour $j \neq i$, on voit que tout vecteur u_i est combinaison linéaire d'une famille qui le contient u_1, \ldots, u_k .

Définition 1.8

Pour n=2 ou 3, une famille de n vecteurs de \mathbb{R}^n est une base de \mathbb{R}^n si tout vecteur de \mathbb{R}^n peut s'écrire de façon unique comme combinaison linéaire des vecteurs de la famille.

Remarque: Au second semestre, on verra qu'il suffit de vérifier l'existence de combinaison linéaire pour tout vecteur et alors l'unicité est assurée.

Exemple: La famille $(\overrightarrow{\imath} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \overrightarrow{\jmath} = \begin{pmatrix} 0 \\ 1 \end{pmatrix})$ est une base de \mathbb{R}^2 . En effet, prenons $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ quelconque. On cherche toutes les possibilités d'écrire ce vecteur comme combinaison linéaire de \overrightarrow{i} et \overrightarrow{j} , c'est à dire qu'on cherche λ et $\mu \in \mathbb{R}$ tels que $\begin{pmatrix} x \\ y \end{pmatrix} = \lambda \overrightarrow{\imath} + \mu \overrightarrow{\jmath}$.

D'après les règles sur les opérations, cela se réécrit

$$\lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \lambda = x \text{ et } \mu = y.$$

Il y a donc bien une unique possibilité.

De même, on peut montrer que $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ est une base de \mathbb{R}^3 . Ces bases sont appelées bases canoniques.

Exemple: La famille $\left(e_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, e_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$ forme une base de \mathbb{R}^2 .

En effet, soit $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ quelconque. On cherche toutes les possibilités d'écrire ce vecteur comme combinaison linéaire de e_1 et e_2 , c'est à dire qu'on cherche λ et $\mu \in \mathbb{R}$ tels que

$$\lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} \lambda + \mu \\ \lambda - \mu \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \lambda + \mu = x \text{ et } \lambda - \mu = y \Leftrightarrow \lambda = \frac{x+y}{2} \text{ et } \mu = \frac{x-y}{2}.$$

Il v a donc bien une unique possibilité.

Proposition et définition 1.9

Soient u et $v \in \mathbb{R}^n$. Les conditions suivantes sont équivalentes :

- i) $u = \overrightarrow{0}$ ou il existe $\lambda \in \mathbb{R}$ tel que $v = \lambda u$;
- ii) il existe $w \in \mathbb{R}^n$ et $\alpha, \beta \in \mathbb{R}$ tels que $u = \alpha w$ et $v = \beta w$;
- iii) il existe μ et $\nu \in \mathbb{R}$ non tous nuls tels que $\mu u + \nu v = 0$.

Si ces conditions sont vérifiées, on dit que u et v sont colinéaires. Si ces conditions ne sont pas vérifiées, on dit que u et v sont linéairement indépendants ou non colinéaires.

Démonstration: $i) \Rightarrow ii)$ On suppose i) et on souhaite démontrer ii). Si $u = \overrightarrow{0}$, on a bien $u = \alpha v$ et $v = \beta v$ avec $\alpha = 0$ et $\beta = 1$. Et sinon, il existe $\lambda \in \mathbb{R}$ tel que $v = \lambda u$ donc $u = \alpha u$ et $v = \beta u$ avec $\alpha = 1$ et $\beta = \lambda$.

- $ii) \Rightarrow iii)$ On suppose qu'on a ii) et on souhaite montrer iii). Si $\alpha = \beta = 0$, alors $u = v = \overrightarrow{0}$. Et dans ce cas, on a $\mu u + \nu v = \overrightarrow{0}$ en posant par exemple $\mu = \nu = 1$. Sinon comme $u = \alpha w$ et $v = \beta w$, on choisit $\mu = \beta$ et $\nu = -\alpha$ qui ne sont pas tous les deux nuls, alors $\mu u + \nu v = \beta \alpha w \alpha \beta w = \overrightarrow{0}$.
- $iii) \Rightarrow i)$ On suppose qu'on a iii) et on veut montrer i). Si $u = \overrightarrow{0}$, i) est vrai. On suppose maintenant $u \neq \overrightarrow{0}$. Si $\nu = 0$, on a alors $\mu u = 0$ donc $\mu = 0$ mais cela contredit le fait que μ et ν doivent être non tous nuls, donc $\nu \neq 0$, alors $v = -\frac{\mu}{\nu}u$ donc on a bien i) avec $\lambda = -\frac{\mu}{\nu}$.

Exemple:

- Les vecteurs $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $\begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}$ sont colinéaires car $\begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.
- Les vecteurs $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $\overrightarrow{0}$ sont colinéaires.
- Les vecteurs $u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ ne sont pas colinéaires car $u \neq \overrightarrow{0}$ et s'il existe $\lambda \in \mathbb{R}$ tel que

 $u = \lambda v \Leftrightarrow \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \lambda \\ \lambda \\ \lambda \end{pmatrix}$, alors $\lambda = 1$ d'après la première coordonnée mais $\lambda = 2$ d'après la seconde coordonnée : impossible!

4. Bases de \mathbb{R}^2

Définition 1.10

Soient $u = \begin{pmatrix} a \\ b \end{pmatrix}$ et $v = \begin{pmatrix} c \\ d \end{pmatrix} \in \mathbb{R}^2$. On appelle déterminant de u et v le scalaire $\det(u, v) = ad - bc$.

Proposition 1.11

Soient u et $v \in \mathbb{R}^2$. Les assertions suivantes sont équivalentes :

- i) La famille (u, v) est une base de \mathbb{R}^2 ;
- ii) u et v sont non colinéaires.
- iii) $\det(u, v) \neq 0$;

Démonstration: non $ii) \Rightarrow$ non i) On montre plus précisément que u et v colinéaires équivaut à u et v ne forment pas une base. En effet, u et v colinéaires équivaut à l'existence de $(\mu, \nu) \neq (0, 0)$ tels que $\mu u + \nu v = \overrightarrow{0}$, mais on a aussi $0u + 0v = \overrightarrow{0}$ donc le vecteur $\overrightarrow{0}$ peut s'écrire de 2 façons différentes comme combinaison linéaire de u et v. Par définition, (u, v) ne forme pas une base de \mathbb{R}^2 .

 $\mathbf{non}\ ii)\Rightarrow\mathbf{non}\ iii)\ \ \mathrm{On}\ \mathrm{pose}\ u=\begin{pmatrix}a\\b\end{pmatrix}\ \mathrm{et}\ v=\begin{pmatrix}c\\d\end{pmatrix}\in\mathbb{R}^2.\ \mathrm{Si}\ u\ \mathrm{et}\ v\ \mathrm{sont}\ \mathrm{colin\acute{e}aires},\ \mathrm{soit}\ u=\overrightarrow{0}\ \mathrm{mais}$ alors a=b=0 et $\det(u,v)=ad-bc=0$, soit il existe $\lambda\in\mathbb{R}$ tel que $v=\lambda u$ et alors $c=\lambda a$ et $d=\lambda b$, mais alors $\det(u,v)=ad-bc=\lambda ab-\lambda ab=0$!

non $iii) \Rightarrow$ **non** ii) On pose à nouveau $u = \begin{pmatrix} a \\ b \end{pmatrix}$ et $v = \begin{pmatrix} c \\ d \end{pmatrix} \in \mathbb{R}^2$. Si $\det(u, v) = ad - bc = 0$, alors :

- soit a = 0 et b = 0 mais alors $u = \overrightarrow{0}$ et u et v sont bien colinéaires,
- soit a=0 et $b\neq 0$ mais alors $\det(u,v)=0$ implique c=0 donc $v=\frac{d}{b}u$,
- soit enfin $a \neq 0$, donc $d = \frac{bc}{a}$ donc $v = \frac{c}{a}u$.

Le reste de la démonstration est repoussé au semestre suivant.

Exemple: Les vecteurs $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ ne sont pas colinéaires car $\det(u, v) = 1 \times 1 - 2 \times 2 = -3 \neq 0$! Ils forment donc une base de \mathbb{R}^2 .

II. Produit scalaire, orthogonalité et norme

Dans cette partie, n = 2 ou 3.

1. Produit scalaire

Définition 1.12

Pour deux vecteurs $u = \begin{pmatrix} x \\ y \end{pmatrix}$ et $v = \begin{pmatrix} x' \\ y' \end{pmatrix} \in \mathbb{R}^2$ (resp. $u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $v = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \in \mathbb{R}^3$), on définit le produit scalaire de u et v par

$$u \cdot v = xx' + yy'$$
 (resp. $u \cdot v = xx' + yy' + zz'$).

Exemple: Pour $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ et $v = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, on a $u \cdot v = 1 \times 3 + 2 \times 4 = 11$.

Exemple: Dans \mathbb{R}^2 , $\overrightarrow{i} \cdot \overrightarrow{j} = 0$. Dans \mathbb{R}^3 , $\overrightarrow{i} \cdot \overrightarrow{j} = \overrightarrow{i} \cdot \overrightarrow{k} = \overrightarrow{j} \cdot \overrightarrow{k} = 0$.

Remarque: Dans la littérature, on utilise aussi les notations $\langle u, v \rangle$ ou $\langle u | v \rangle$ pour le produit scalaire de deux vecteurs u et v.

Proposition 1.13

Soient u, v et $w \in \mathbb{R}^n$. Soient λ et $\mu \in \mathbb{R}$. Le produit scalaire a les propriétés suivantes :

- (symétrie) $u \cdot v = v \cdot u$;
- (linéarité à gauche) $(u+v) \cdot w = (u \cdot w) + (v \cdot w)$ et $(\lambda u) \cdot w = \lambda(u \cdot w)$, ce qui entraîne également la linéarité à droite par symétrie : $u \cdot (v+w) = (u \cdot v) + (u \cdot w)$ et $u \cdot (\lambda v) = \lambda(u \cdot v)$. On dit que le produit scalaire est bilinéaire;
- (positivité) $u \cdot u \ge 0$ pour tout $u \in \mathbb{R}^n$, et de plus $u \cdot u = 0 \Leftrightarrow u = \overrightarrow{0}$.

Démonstration: Il suffit de l'écrire avec les coordonnées!

Remarque: On a $\overrightarrow{0} \cdot u = 0 = u \cdot \overrightarrow{0}$.

Définition 1.14

On dit que deux vecteurs u et $v \in \mathbb{R}^n$ sont orthogonaux si $u \cdot v = 0$. On note $u \perp v$.

Exemple: Les vecteurs $u = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ et $v = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$ sont orthogonaux car $u \cdot v = 1 \times (-2) + 2 \times 1 + 3 \times 0 = 0$.

Exemple: Les vecteurs de la base canonique sont 2 à 2 orthogonaux.

Proposition 1.15

Deux vecteurs de \mathbb{R}^2 non nuls et orthogonaux forment une base de \mathbb{R}^2 .

Démonstration: On montre la contraposée, c'est à dire qu'on suppose que deux vecteurs u et v non nuls ne forment pas une base de \mathbb{R}^2 (c'est à dire qu'ils sont colinéaires) et on montre qu'ils ne sont pas orthogonaux.

Si $u \neq \overrightarrow{0}$ et $v \neq \overrightarrow{0}$ sont colinéaires, alors il existe $\lambda \neq 0$ tel que $v = \lambda u$. Alors $u \cdot v = \lambda u \cdot u \neq 0$ d'après les propriétés précédentes.

9

Proposition 1.16

Trois vecteurs de \mathbb{R}^3 non nuls et deux à deux orthogonaux forment une base de \mathbb{R}^3 .

Démonstration: Cf semestre suivant

2. Norme

Définition 1.17

La norme d'un vecteur $u \in \mathbb{R}^n$ est définie par $||u|| = \sqrt{u \cdot u}$.

Dans \mathbb{R}^2 , si $u = \begin{pmatrix} x \\ y \end{pmatrix}$ alors $||u|| = \sqrt{x^2 + y^2}$.

Dans
$$\mathbb{R}^3$$
, si $u = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ alors $||u|| = \sqrt{x^2 + y^2 + z^2}$.

Exemple: $\|\overrightarrow{\imath}\| = 1$ dans \mathbb{R}^2 comme dans \mathbb{R}^3 . Idem pour $\overrightarrow{\jmath}$ et \overrightarrow{k} .

Si
$$u = \begin{pmatrix} 0 \\ 4 \\ 3 \end{pmatrix}$$
, $||u|| = \sqrt{0^2 + 4^2 + 3^2} = \sqrt{25} = 5$.

Remarque: Graphiquement, d'après Pythagore, la norme représente la longueur du vecteur. On note aussi $AB = \|\overrightarrow{AB}\|$ la longueur du segment entre A et B.

Proposition 1.18

Soient $u \in \mathbb{R}^n$ et $\lambda \in \mathbb{R}$. On a les propriétés suivantes :

- $||u|| \ge 0$ pour tout $u \in \mathbb{R}^n$;
- $\bullet \|u\| = 0 \Leftrightarrow u = \overrightarrow{0};$
- $\bullet \|\lambda u\| = |\lambda| \|u\|.$

Démonstration: Il suffit de l'écrire avec les coordonnées.

Proposition 1.19 (Inégalité de Cauchy-Schwarz)

Pour tout u et $v \in \mathbb{R}^n$,

$$|u \cdot v| \le ||u|| ||v||.$$

De plus l'inégalité est une égalité si et seulement si les vecteurs u et v sont colinéaires.

Démonstration: Soient u et $v \in \mathbb{R}^n$. Pour tout $t \in \mathbb{R}$, on définit $P(t) = ||u + tv||^2 \ge 0$. Mais on peut aussi réécrire

$$P(t) = (u + tv) \cdot (u + tv) = u \cdot u + 2tu \cdot v + (tv) \cdot (tv) = ||u||^2 + 2tu \cdot v + t^2 ||v||^2.$$

C'est un polynôme du second degré avec $\Delta = 4((u \cdot v)^2 - \|u\|^2 \|v\|^2)$. Comme $P \ge 0$ pour tout $t \in \mathbb{R}$, on a forcément $\Delta \le 0$ d'où $(u \cdot v)^2 \le \|u\|^2 \|v\|^2$ et on obtient l'inégalité en prenant la racine carrée.

Le cas d'égalité (hormis u=0 ou v=0) correspond au cas où $\Delta=0$, ce qui signifie qu'il existe $t_0 \in \mathbb{R}$ tel que P(t)=0 ou encore $||u+t_0v||^2=0 \Leftrightarrow u+t_0v=\overrightarrow{0} \Leftrightarrow u=-t_0v$ donc u et v sont colinéaires.

Proposition 1.20 (Inégalité triangulaire)

Soient u et $v \in \mathbb{R}^n$. Alors

$$||u + v|| \le ||u|| + ||v||.$$

Démonstration : On a $||u+v||^2 = (u+v) \cdot (u.v) = ||u||^2 + 2u \cdot v + ||v||^2 \le ||u||^2 + ||u|| ||v|| + ||v||^2 = (||u|| + ||v||)^2$ d'après Cauchy-Schwarz. D'où le résultat en prenant la racine carrée.

Définition 1.21

On dit qu'une base de \mathbb{R}^n est orthonormée si ses vecteurs sont deux à deux orthogonaux et de norme 1.

Exemple: La base canonique de \mathbb{R}^2 $(\overrightarrow{\imath}, \overrightarrow{\jmath})$ est orthonormée.

La base canonique de \mathbb{R}^3 $(\overrightarrow{\imath}, \overrightarrow{\jmath}, \overrightarrow{k})$ est orthonormée.

Proposition et définition 1.22

Soient $u \neq \overrightarrow{0}$ et v des vecteurs. Le projeté orthogonal de v sur u est le vecteur v' colinéaire à u tel que v - v' soit orthogonal à u. On a $v' = \frac{(u \cdot v)}{\|u\|^2} u$.

Démonstration: (Existence) Avec cette formule, v' est bien colinéaire à u car $\frac{(u \cdot v)}{\|u\|^2} \in \mathbb{R}$. Et de plus $(v - v') \cdot u = v \cdot u - \frac{(u \cdot v)}{\|u\|^2} u \cdot u = v \cdot u - \frac{(u \cdot v)}{\|u\|^2} \|u\|^2 = 0$. Donc v' convient.

(Unicité) Supposons qu'il existe un autre vecteur v'' tel quev'' soit colinéaire à u et v-v'' soit orthogonal à u. Alors v'-v'' est colinéaire à $u \neq \overline{0}$ donc il existe $\lambda \in \mathbb{R}$ tel que $v'-v''=\lambda u$. Alors $(v'-v'')\cdot u=\lambda \|u\|^2=(v'-v+v-v'')\cdot u=-(v-v')\cdot u+(v-v'')\cdot u=0+0=0$ d'où $\lambda=0$ et $v'-v''=\overline{0}$!

3. Angle entre 2 vecteurs

Définition 1.23

Grâce au théorème de Thalès, on peut définir pour $\hat{A} \in]0, \frac{\pi}{2}[,$

$$\sin(\hat{A}) = \frac{\text{oppos\'e}}{\text{hypot\'enuse}},$$
$$\cos(\hat{A}) = \frac{\text{adjacent}}{\text{hypot\'enuse}},$$
$$\tan \hat{A} = \frac{\text{oppos\'e}}{\text{adjacent}}.$$

On généralise la définition du cosinus et du sinus pour $\theta \in \mathbb{R}$ à l'aide du cercle trigonométrique.

Proposition 1.24

Les fonctions cos, sin et tan sont 2π périodiques : pour tout $x \in \mathbb{R}$ et pour tout $k \in \mathbb{Z}$ on a $\sin(x + 2k\pi) = \sin(x)$, $\cos(x + 2k\pi) = \cos(x)$ et $\tan(x + 2k\pi) = \tan(x)$.

La fonction cosinus est paire, les fonctions sinus et tangente sont impaires : pour tout $x \in \mathbb{R}$, on a $\cos(-x) = \cos x$, $\sin(-x) = -\sin x$ et $\tan(-x) = -\tan x$.

Par Pythagore, pour tout $x \in \mathbb{R}$, on a $\cos^2 x + \sin^2 x = 1$.

Les formules d'addition sont

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

(démo par Thalès sur l'image ci-contre)

D'où $\cos(x+\pi) = -\cos x$, $\cos(\pi/2 - x) = \sin x$, $\cos(x+\pi/2) = -\sin x$, ... A retrouver avec le cercle trigonométrique!

Remarque: Un tableau de valeurs particulières à connaître

x	$\cos x$	$\sin x$
0	1	0
$\pi/2$	0	1
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	1/2	$\sqrt{3}/2$
$\pi/6$	$\sqrt{3}/2$	1/2
π	-1	0

Il suffit de retenir l'une des valeurs pour cos ou sin (s'aider du cercle trigonométrique) et on retrouve l'autre avec la formule $\sin^2 x + \cos^2 x = 1$!

Définition 1.25

Soient u et $v \in \mathbb{R}^n$ deux vecteurs non nuls. On définit l'angle (non orienté) entre u et v comme le nombre $\alpha \in [0, \pi]$ tel que

$$\cos \alpha = \frac{u \cdot v}{\|u\| \|v\|}.$$

Exemple: On pose $u = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ et $v = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$. Alors $||u|| = \sqrt{2^2 + 2^2} = \sqrt{8} = 2\sqrt{2}$ et $||v|| = \sqrt{0^2 + 3^2} = 3$. D'autre part, $u \cdot v = 2 \times 0 + 2 \times 3 = 6$. Donc l'angle α entre u et v vérifie $\cos \alpha = \frac{6}{3 \times 2\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ donc

 $\alpha = \frac{\pi}{4}!$

Définition 1.26

Soient u et $v \in \mathbb{R}^2$ et α l'angle non orienté entre u et v.

Dans \mathbb{R}^2 , on peut définir l'angle orienté entre u et v, et on le notera (u,v), comme α si on passe de u à v en décrivant un angle α et en tournant dans le sens trigonométrique (sens inverse des aiguilles d'une montre) ou $-\alpha$, si on passe de u à v en décrivant un angle α dans le sens anti-trigonométrique (sens des aiguilles d'une montre).

Remarque: Pour u et $v \in \mathbb{R}^2$, on a (u, v) = -(v, u).

Et on admettra que pour $w \in \mathbb{R}^2$, (u, v) = (u, w) + (w, u).

III. Droites dans le plan et dans l'espace

1. Propriétés des droites de \mathbb{R}^n

Définition 1.27

Soit A un point de \mathbb{R}^n et $u \in \mathbb{R}^n$ un vecteur non nul. On définit la droite \mathcal{D} passant par A de vecteur directeur u comme l'ensemble des points M de \mathbb{R}^n tels que

$$\overrightarrow{AM} = \lambda u \text{ pour un } \lambda \in \mathbb{R}.$$

Remarque: Par abus, on note souvent $M = A + \lambda u$ même si on ne peut pas sommer un point et un vecteur! Du coup, on note souvent $\mathcal{D} = A + \mathbb{R}u$.

Définition 1.28

On dit qu'une droite est vectorielle si elle contient l'origine O(0,0).

Proposition 1.29

- Si M et $P \in \mathcal{D}$, alors \overrightarrow{MP} et u sont colinéaires.
- Deux droites sont égales si elles ont un point commun et des vecteurs directeurs colinéaires.
- Si $A \neq B$, il y a une unique droite qui les contient, c'est la droite passant par A et de vecteur directeur \overrightarrow{AB} .

Démonstration: Pour le premier point, on utilise la relation de Chasle, $\overrightarrow{MP} = \overrightarrow{MA} + \overrightarrow{AP} = -\overrightarrow{AM} + \overrightarrow{AP} = -\overrightarrow{AM} + \overrightarrow{AP} = -\lambda_M u + \lambda_P u$ par définition de M et $P \in \mathcal{D}$ donc $\overrightarrow{MP} = (-\lambda_M + \lambda_P)u$ et les vecteurs sont bien colinéaires.

Les démonstrations des autres points sont laissées au lecteur.

Remarque: Attention, il n'y a pas d'unicité du vecteur directeur ni du point "définissant" la droite!

Définition 1.30

Trois points A, B et $C \in \mathbb{R}^n$ sont alignés s'il existe une droite de \mathbb{R}^n qui les contient, c'est à dire si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Définition 1.31

On dit que deux droites sont parallèles si leur vecteurs directeurs sont colinéaires.

On dit que deux droites sont perpendiculaires si leur vecteurs directeurs sont orthogonaux.

Proposition 1.32

Deux droites parallèles distinctes n'ont aucun point commun.

Démonstration: Si les droites sont parallèles alors leur vecteurs directeurs sont colinéaires et si elles ont un point commun, alors les droites sont confondues d'après la proposition précédente.

Corollaire 1.33

Il existe une unique droite parallèle à une autre et passant par un point donné.

Démonstration: Laissée au lecteur!

Proposition et définition 1.34

Soit \mathcal{D} une droite de \mathbb{R}^n de vecteur directeur $u \in \mathbb{R}^n$. Soit A un point de \mathbb{R}^n . Le projeté orthogonal de A sur \mathcal{D} est l'unique point $H \in \mathcal{D}$ tel que $\overrightarrow{AH} \perp u$.

Démonstration: (existence) Soit O un point quelconque de \mathcal{D} . On définit H tel que $\overrightarrow{OH} = \left(\overrightarrow{OA} \cdot \frac{u}{\|u\|}\right) \frac{u}{\|u\|}$. C'est bien un point de \mathcal{D} et on a

$$\overrightarrow{AH} \cdot u = (\overrightarrow{AO} + \overrightarrow{OH}).u = -\overrightarrow{OA} \cdot u + (\overrightarrow{OA} \cdot u) \frac{u \cdot u}{\|u\|^2} = 0.$$

(unicité) Supposons qu'il existe deux points H_1 et H_2 de \mathcal{D} tels que $\overrightarrow{AH_1} \perp u$ et $\overrightarrow{AH_2} \perp u$. Alors $\overrightarrow{H_1H_2}$ est colinéaire à u c'est à dire qu'il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{H_1H_2} = \lambda u$. Mais $\overrightarrow{H_1H_2} \cdot u = (\overrightarrow{H_1A} + \overrightarrow{AH_2}) \cdot u = 0$ donc $\lambda u \cdot u = \lambda \|u\|^2 = 0$. Comme $u \neq \overrightarrow{0}$, on a $\|u\|^2 > 0$ donc $\lambda = 0$ et $\overrightarrow{H_1H_2} = \overrightarrow{0}$ d'où l'unicité!

Proposition et définition 1.35

Soit \mathcal{D} une droite de \mathbb{R}^n et A un point de \mathbb{R}^n . La distance de A à \mathcal{D} est définie par

$$d(A, \mathcal{D}) = \min_{M \in \mathcal{D}} \|\overrightarrow{AM}\|.$$

Si H est le projeté orthogonal de A sur \mathcal{D} , on a $d(A,\mathcal{D}) = \|\overrightarrow{AH}\|$.

Démonstration : On cherche à minimiser $\|\overrightarrow{AM}\|$ ce qui revient à minimiser $\|\overrightarrow{AM}\|^2 = \overrightarrow{AM} \cdot \overrightarrow{AM} = (\overrightarrow{AH} + \overrightarrow{HM}) \cdot (\overrightarrow{AH} + \overrightarrow{HM}) = \overrightarrow{AH} \cdot \overrightarrow{AH} + 2\overrightarrow{HM} \cdot \overrightarrow{AH} + \overrightarrow{HM} \cdot \overrightarrow{HM} = \|AH\|^2 + \|HM\|^2$ car H et $M \in \mathcal{D}$ donc par définition du projeté orthogonal $\overrightarrow{HM} \cdot \overrightarrow{AH}$. Maintenant d'après les propriétés de la norme $\|\overrightarrow{HM}\|^2 \ge 0$ et $\|\overrightarrow{HM}\|^2 = 0$ si et seulement si M = H. D'où le résultat.

2. Équations d'une droite de \mathbb{R}^2

Méthode 1

Soit $A(a_1, a_2)$ un point de \mathbb{R}^2 et $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ un vecteur de \mathbb{R}^2 . On considère \mathcal{D} la droite passant par A de vecteur directeur u. Soit M(x, y) un point quelconque de \mathcal{D} . La définition de la droite \mathcal{D} se réécrit en termes de coordonnées :

$$\begin{cases} x - a_1 = \lambda u_1 \\ y - a_2 = \lambda u_2 \end{cases} \text{ pour un } \lambda \in \mathbb{R} \Leftrightarrow \begin{cases} x = a_1 + tu_1 \\ y = a_2 + tu_2 \end{cases} \text{ pour un } t \in \mathbb{R}$$

C'est l'équation paramétrique de la droite \mathcal{D} .

Exemple: Soit A(1,2) et $u=\begin{pmatrix} 3 \\ -1 \end{pmatrix}$. Une équation paramétrique de la droite passant par A et de vecteur directeur u est $\begin{cases} x=1+3t \\ y=2-t \end{cases}$ avec $t\in\mathbb{R}$.

Réciproquement, on lit sur l'équation paramétrique $\begin{cases} x=2-t \\ y=-1+7t \end{cases}$ avec $t \in \mathbb{R}$ que la droite correspondante passe par le point (2,-1) et admet pour vecteur directeur $\begin{pmatrix} -1 \\ 7 \end{pmatrix}$

Remarque: Attention, il n'y a pas d'écriture unique de ces équations! Les droites $\begin{cases} x = t \\ u = 0 \end{cases}, t \in \mathbb{R}$

et $\begin{cases} x=1-t' \\ y=0 \end{cases}$, $t' \in \mathbb{R}$ sont bien les mêmes, c'est l'axe des abscisses! On a juste "changer le paramètre pour la décrire".

Méthode 2

Comme $u \neq \overrightarrow{0}$, on peut isoler t dans l'une des équations et l'injecter dans l'autre pour obtenir l'équation cartésienne de la droite $\mathcal{D}: ax + by = c$ avec $(a, b) \neq (0, 0)$.

Exemple: Pour la droite \mathcal{D} d'équation paramétrique $\begin{cases} x=1+3t \\ y=2-t \end{cases}$ avec $t \in \mathbb{R}$, avec la deuxième équation, on a t=2-y donc en injectant cette valeur dans la première équation, on obtient x=1+3(2-y)

ou encore x + 3y = 7. C'est l'équation cartésienne de \mathcal{D} .

Remarque: A nouveau, il n'y a pas d'équation cartésienne unique pour une droite donnée. Si la droite vérifie x + y = 2, elle vérifie aussi 2x + 2y = 4!

Méthode 3

Réciproquement, si on dispose d'une équation cartésienne d'une droite : ax + by = c avec $(a,b) \neq (0,0)$ et que l'on souhaite retrouver une équation paramétrique, on pose x=t si $b\neq 0$ (sinon on pose y = t!) et on calcule y en fonction de t en remplaçant x par t dans l'équation cartésienne.

Exemple: Soit \mathcal{D} l'équation définie par 2x + y = 5. On pose x = t et on a alors 2t + y = 5, c'est à dire $\int x = t$ $t \in \mathbb{R}$. y = 5 - 2t

Soit \mathcal{D}' l'équation définie par 2x = 5. On pose alors y = t et on a alors 2x = 5, c'est à dire $\begin{cases} x = 5/2 \\ y = t \end{cases}$ \mathbb{R} .

Proposition et définition 1.36

Soit \mathcal{D} une droite de \mathbb{R}^2 . Un vecteur normal à \mathcal{D} est un vecteur $n \in \mathbb{R}^2$ tel que pour tous points $M \text{ et } P \in \mathcal{D}, \text{ on a } \overrightarrow{MP} \perp n.$

Si l'équation cartésienne de \mathcal{D} est ax + by = c, $n = \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal à la droite \mathcal{D} .

Démonstration: Soit $M(x_M, y_M)$ et $P(x_P, y_P) \in \mathcal{D}$. On a alors $ax_M + by_M = ax_P + by_P = c$ donc en faisant la différence $a(x_P-x_M)+b(y_P-y_M)=0$ ce qui correspond exactement à $\overrightarrow{MP}\cdot n=0$.

IV. Produit vectoriel

Définition 1.37

Soit
$$u=\begin{pmatrix}x\\y\\z\end{pmatrix}$$
 et $v=\begin{pmatrix}x'\\y'\\z'\end{pmatrix}\in\mathbb{R}^3$. Le produit vectoriel de u par v est le vecteur
$$u\wedge v=\begin{pmatrix}yz'-y'z\\zx'-z'x\\xy'-x'y\end{pmatrix}.$$

Exemple: On a
$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \land \begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}$$
.

Exemple: $\overrightarrow{\imath} \wedge \overrightarrow{\jmath} = \overrightarrow{k}, \overrightarrow{\jmath} \wedge \overrightarrow{k} = \overrightarrow{\imath}, \overrightarrow{k} \wedge \overrightarrow{\imath} = \overrightarrow{\jmath} \text{ mais } \overrightarrow{\jmath} \wedge \overrightarrow{\imath} = -\overrightarrow{k}$

Proposition 1.38

Soient u, v et $w \in \mathbb{R}^3$. Soit λ et $\mu \in \mathbb{R}$. On a les propriétés suivantes :

- Anti-symétrie : $u \wedge v = -v \wedge u$;
- Bilinéarité : $(u+v) \wedge w = u \wedge w + v \wedge w$ et $(\lambda u) \wedge w = \lambda(u \wedge w)$ ainsi que $u \wedge (v+w) = u \wedge v + u \wedge w$ et $u \wedge (\lambda v) = \lambda(u \wedge v)$;
- Orthogonalité : $u \cdot (u \wedge v) = 0$ et $v \cdot (u \wedge v) = 0$;
- $u \wedge v = \overrightarrow{0}$ si et seulement si u et v sont colinéaires;
- Si $\alpha \in [0, \pi]$ est l'angle entre u et v, alors $||u \wedge v|| = ||u|| ||v|| \sin \alpha$.
- $\|\overrightarrow{AB} \wedge \overrightarrow{AD}\|$ représente l'aire du parallélogramme ABCD.

Démonstration: Il suffit de l'écrire...

Définition 1.39

Une base est directe si on peut la représenter avec les 3 premiers doigts de la main droite. Sinon, on dit qu'elle est indirecte.

Proposition 1.40

Si u et $v \in \mathbb{R}^3$ sont non colinéaires, $(u, v, u \wedge v)$ forment une base directe de \mathbb{R}^3 .

Définition 1.41

Soient u, v et $w \in \mathbb{R}^3$. Le produit mixte de u, v et w est le scalaire $(u \wedge v) \cdot w$.

Proposition 1.42

Soient u, v et $w \in \mathbb{R}^3$. Le volume du parallélépipède déterminé par les 3 vecteurs veut $|(u \wedge v) \cdot w|$. Les 3 vecteurs sont coplanaires si et seulement si leur produit mixte est nul.

Démonstration: Laissée en exercice...

V. Droites et plans de l'espace

1. Équation d'une droite de \mathbb{R}^3

Soit $A(a_1,a_2,a_3)$ un point de \mathbb{R}^3 et $u=\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix}\in\mathbb{R}^3$ un vecteur. On considère $\mathcal D$ la droit passant

par A et de vecteur directeur u, c'est à dire l'ensemble des point M(x, y, z) de \mathbb{R}^3 tel qu'il existe $\lambda \in \mathbb{R}$ tel que $\overrightarrow{AM} = \lambda u$. En écrivant cette équation en terme de coordonnées, on obtient

$$\begin{cases} x - a_1 = \lambda u_1 \\ y - a_2 = \lambda u_2 \\ z - a_3 = \lambda u_3 \end{cases} \text{ pour un } \lambda \in \mathbb{R} \Leftrightarrow \begin{cases} x = a_1 + tu_1 \\ y = a_2 + tu_2 \\ z = a_3 + tu_3 \end{cases} \text{ pour un } t \in \mathbb{R}$$

C'est l'équation paramétrique de la droite \mathcal{D} .

Exemple: Soit A(1,2,3) et $u=\begin{pmatrix} 3\\-1\\5 \end{pmatrix}$. Une équation paramétrique de la droite passant par A et de

vecteur directeur u est $\begin{cases} x = 1 + 3t \\ y = 2 - t \\ z = 3 + 5t \end{cases}$ avec $t \in \mathbb{R}$.

Réciproquement, on lit sur l'équation paramétrique $\begin{cases} x=2-t\\y=-1+7t\\z=1+2t \end{cases}$ avec $t\in\mathbb{R}$ que la droite corres-

pondante passe par le point (2,-1,1) et admet pour vecteur directeur $\begin{pmatrix} -1\\7\\9 \end{pmatrix}$

Comme $u \neq \overrightarrow{0}$, on peut isoler t dans l'une des équations et l'injecter dans les autres pour

$$\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases} \text{ avec } \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ et } \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} \text{ non colinéaires}$$

comme $u \neq 0$, on peut isoier t dans l'une des equations et l'injecter dans les autres pour obtenir les équations cartésiennes de la droite \mathcal{D} (ou un système d'équations cartésiennes) : $\begin{cases} ax + by + cz = d \\ a'x + b'y + c'z = d' \end{cases} \text{ avec } \begin{pmatrix} a \\ b \\ c \end{pmatrix} \text{ et } \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} \text{ non colinéaires.}$ Exemple: Pour la droite \mathcal{D} d'équation paramétrique $\begin{cases} x = 1 + 3t \\ y = 2 - t \\ z = -2 + 2t \end{cases} \text{ avec } t \in \mathbb{R}, \text{ avec la deuxième}$

équation, on a t = 2-y donc en injectant cette valeur dans la première équation, on obtient x = 1+3(2-y)ou encore x + 3y = 7. Et en injectant la valeur de t dans la 3ème équation, on a z = -2 + 2(2 - y) soit

z+2y=2. Les équations cartésiennes de \mathcal{D} s'écrivent donc $\begin{cases} x+3y=7\\ z+2y=2 \end{cases}$ Réciproquement, si on dispose d'une équation cartésienne d'une droite : $\begin{cases} ax+by+cz=d\\ a'x+b'y+c'z=d' \end{cases}$ avec $\begin{pmatrix} a\\b \end{pmatrix}$ et $\begin{pmatrix} a'\\b' \end{pmatrix}$ non colinéaires et que l'on souhaite retrouver une équation paramétrique, on pose x=t si b=0 (a')

pose x = t si $b \neq 0$ (sinon on pose y = t ou z = t!) et on résout le système d'inconnu y et z en fonction du paramètre t obtenu en remplaçant x par t dans les 2 équations cartésiennes.

Exemple: Soit \mathcal{D} l'équation définie par $\begin{cases} 2x+y+z=5 \\ x+y-z=2 \end{cases}$. On pose x=t et on a alors $\begin{cases} 2t+y+z=5 \\ t+y-z=2 \end{cases}$ $\Leftrightarrow \begin{cases} y+z=5-2t \\ y-z=2-t \end{cases} \Leftrightarrow \begin{cases} y=\frac{7}{2}-\frac{3}{2}t \\ z=\frac{3}{2}-\frac{t}{2} \end{cases}$, c'est à dire $\begin{cases} x=t \\ y=\frac{7}{2}-\frac{3}{2}t \\ z=\frac{3}{2}-\frac{t}{2} \end{cases}$

Plan dans l'espace

Définition 1.43

Soit A un point de \mathbb{R}^3 . Soient u et $v \in \mathbb{R}^3$ deux vecteurs non colinéaires. On appelle plan engendré par u et v et passant par A, l'ensemble \mathcal{P} des points de \mathbb{R}^3 tels que $\overrightarrow{AM} = \lambda u + \mu v$ pour des λ et $\mu \in \mathbb{R}$.

Remarque: Comme pour les droites, on note souvent par abus $\mathcal{P} = A + \mathbb{R}u + \mathbb{R}v$.

Définition 1.44

On dit qu'un plan est vectoriel s'il contient l'origine.

Proposition 1.45

- Si M et $P \in \mathcal{P}$, alors \overrightarrow{MP} est combinaison linéaire de u et v.
- Deux plans sont égaux s'ils ont un point commun et que les vecteurs qui engendrent l'un sont combinaison linéaire des vecteurs qui engendrent l'autre.
- Si A, B et C sont 3 points non alignés de \mathbb{R}^3 , il existe un unique plan qui les contient, c'est la plan passant par A et engendré par \overrightarrow{AB} et \overrightarrow{AC} .

Démonstration: Exercice.

Définition 1.46

Quatre points de \mathbb{R}^3 sont coplanaires s'ils appartiennent à un même plan.

Définition 1.47

Deux plans sont parallèles si les vecteurs qui engendrent l'un sont combinaison linéaire des vecteurs qui engendrent l'autre.

Proposition 1.48

- Tout plan est parallèle à lui-même.
- Pour A un point de \mathbb{R}^3 et \mathcal{P} un plan fixé, il existe un unique plan parallèle à \mathcal{P} et passant par A.
- Deux plans parallèles et non confondus n'ont aucun point commun.

Démonstration : Similaire au cas de la droite de \mathbb{R}^2 .

Proposition et définition 1.49

Soit \mathcal{P} un plan de \mathbb{R}^3 engendré par u et v. Soit A un point de \mathbb{R}^3 .

Il existe un unique point $H \in \mathcal{P}$ tel que $\overrightarrow{AH} \perp u$ et $\overrightarrow{AH} \perp v$. Ce point H est appelé projeté orthogonal de A sur \mathcal{P} .

Démonstration: Exercice

Proposition et définition 1.50

Soit \mathcal{P} une droite de \mathbb{R}^3 et A un point de \mathbb{R}^3 . La distance de A à \mathcal{P} est définie par

$$d(A, \mathcal{P}) = \min_{M \in \mathcal{P}} \|\overrightarrow{AM}\|.$$

Si H est le projeté orthogonal de A sur \mathcal{P} , on a $d(A,\mathcal{P}) = \|\overrightarrow{AH}\|$.

Démonstration: Exercice

3. Équations d'un plan de \mathbb{R}^3

Soit $A(a_1, a_2, a_3)$ un point de \mathbb{R}^3 . Soient $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ et $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ deux vecteurs non colinéaires de

 \mathbb{R}^3 . Comme pour les droites de \mathbb{R}^2 , on obtient **l'équation paramétrique** du plan $\mathcal{P} = A + \mathbb{R}u + \mathbb{R}v$, en écrivant en coordonnées la relation de définition du plan. On obtient $M(x, y, z) \in \mathcal{P}$ si et seulement si

$$\begin{cases} x = a_1 + tu_1 + sv_1 \\ y = a_2 + tu_2 + sv_2 \quad \text{pour } t \text{ et } s \in \mathbb{R} \\ z = a_3 + tu_3 + sv_3 \end{cases}$$

Remarque: Pour l'équation paramétrique d'un plan, il y a donc 2 paramètres!

Pour obtenir l'équation cartésienne du plan \mathcal{P} , on calcule les paramètres s et t à l'aide de deux des équations puis on injecte leur valeur dans la 3ème équation. On obtient une équation de la forme ax + by + cz = d avec a, b, c non tous nuls.

Pour passer de l'équation cartésienne à l'équation paramétrique, on choisi deux coordonnées comme paramètres et on injecte dans l'équation cartésienne pour obtenir la 3ème coordonnée en fonction de ces paramètre. Par exemple si a est non nul, on pose $y=t,\,z=s$ et avec l'équation cartésienne, on a $x=\frac{d-bt-cs}{a}$.

Proposition et définition 1.51

Soit \mathcal{P} un plan de \mathbb{R}^3 . Un vecteur normal à \mathcal{P} est un vecteur $n \in \mathbb{R}^3$ tel que pour tous points M et $P \in \mathcal{P}$, on a $\overrightarrow{MP} \perp n$.

Si l'équation cartésienne de \mathcal{P} est ax + by + cz = d, $n = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur normal au plan

Démonstration : Identique à celle d'une droite de \mathbb{R}^2 .

Définition 1.52

On dit que deux plans sont perpendiculaires si leur vecteurs normaux sont orthogonaux.