El objetivo de la práctica es discutir que modelo puede ser el más adecuado para predecir la evolución del PIB español.

La serie del PIB utilizada sigue la siguiente evolución:

El primer paso para estimar un modelo adecuado es extraer la tendencia de la serie, para eso aplicamos una primera diferencia.

Puede parecer que la serie obtenida sufre de heterocedasticidad. También propondremos modelos sobre el logaritmo del PIB, para eliminar la heterocedasticidad si existiera.

A simple vista, aplicando el logaritmo la serie obtenida se parece mas a una serie estacionaria. Sin embargo, utilizaremos los dos ejemplos para buscar modelos adecuados y luego los compararemos.

Otra alternativa a la primera diferencia sobre el logaritmo es utilizar dos diferencias.

DD_PIB 600 400 200 0 -200 -400 -600 -800 1825 1850 1875 1900 1925 1950 1975 2000

También utilizaremos este ejemplo para estimar modelos.

Una vez obtenido una serie estacionaria adecuada, sin tendencia y heterocedasticidad, buscamos el modelo más adecuado. Utilizamos tres sistemas diferentes:

- Una diferencia
- Diferencia del logaritmo
- Dos diferencias

Empezando por el primer ejemplo, observamos su correlograma para ayudarnos a proponer un modelo adecuado para predecir el PIB.

PRIMERA DIFERENCIA DEL PIB:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6	0.757 0.633 0.551 0.488 0.479 0.438	0.757 0.142 0.078 0.047	92.205 157.22 206.79	0.000 0.000 0.000 0.000 0.000 0.000
:=	' D '	7 8	0.417 0.413	0.051 0.072	344.73 373.42	0.000
		9	0.413	0.072	401.84	0.000

Este correlograma sigue la estructura normal de un AR(1), en la columna FAS todos los valores son significativos y decrecen poco a poco, mientras que en la columna de la FAC solo el primer valor es significativo.

Estimamos un AR(1):

Dependent Variable: D_PIB

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 03/20/20 Time: 19:19

Sample: 1851 2008 Included observations: 158

Convergence achieved after 11 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	116.5902	44.63348	2.612170	0.0099
AR(1)	0.753519	0.042423	17.76195	0.0000
SIGMASQ	17566.43	1314.948	13.35903	0.0000
R-squared	0.573753	Mean depend	nt var	117.8960
Adjusted R-squared	0.568253	S.D. depende		203.6525
S.E. of regression	133.8149	Akaike info cri		12.65491

Los componentes son significativos, luego el siguiente paso es comprobar que los residuos son ruido blanco. Para obtener los residuos utilizo "correlogram squared residual".

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		l 1	0.075	0.075	0.9146	0.339
	1	2	-0.009	-0.014	0.9267	0.629
ı İ ı	j (j)	3	0.028	0.030	1.0543	0.788
1 🜓		4	-0.023	-0.028	1.1439	0.887
1 1		5	0.021	0.026	1.2172	0.943
· 🗀		6	0.131	0.127	4.0891	0.665
1 1	1 1	7	0.010	-0.008	4.1054	0.768
ı İ D ı	 	8	0.054	0.057	4.6002	0.799
ı þ i		9	0.110	0.098	6.6428	0.674
ı İ I ı	ļ ļ	10	0.047	0.042	7.0273	0.723
1 1		11	-0.003	-0.014	7.0291	0.797
1 (1	ļ (1	12	-0.028	-0.045	7.1672	0.846
1 ()	ļ (1	13	-0.035	-0.029	7.3802	0.882
1 1	1 1	14	0.006	-0.005	7.3874	0.919

De esta forma compruebo que el modelo es adecuado para continuar con la predicción. La predicción la realizare junto con los otros modelos propuestos con la intención de compararlos y saber que modelo se ajusta mejor a la realidad.

Continuando con la serie PRIMERA DIFERENCIA DEL LOGARITMO DEL PIB:

El correlograma es el siguiente:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· • ·		1 2 3	0.039	-0.011	7.9953 8.2392 8.4993	
, j i ,	. i	i	0.033	0.018	8.6781	0.070
, m ,	1 1	6	0.079 0.039	0.019	12.953 13.212	0.044

Su estructura no es tan clara como en el caso anterior por lo que probaremos varias estimaciones. Probamos varios modelos AR(p), MA(q) y ARMA(p,q) de los cuales sólo obtengo parámetros significativos en AR(1) Y MA(1).

Dependent Variable: D_LOGPIB

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 03/20/20 Time: 19:55 Sample: 1851 2008 Included observations: 158

Convergence achieved after 5 iterations

Coefficient covariance computed using outer product of gradients

Dependent Variable: D_LOGPIB

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 03/20/20 Time: 19:56 Sample: 1851 2008 Included observations: 158

Convergence achieved after 6 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) SIGMASQ	0.018353 0.221558 0.001966	0.005372 0.073704 0.000113	3.416274 3.006045 17.46847	0.0008 0.0031 0.0000	MA(1)	0.018350 0.221411 0.001967	0.005083 0.075691 0.000115	3.609870 2.925220 17.05816	0.0004 0.0040 0.0000
R-squared Adjusted R-squared	0.049681 0.037419	Mean depend S.D. depende			R-squared Adjusted R-squared	0.049154 0.036885	Mean depende		0.018387 0.045626

Autocorrelation	Partial Correlation	Autocorrelation	Partial Correlation
	1 1 1	1 1 1 1 1 0 1 1 1 1	1

DOS DIFERENCIAS:

Al igual que en el caso anterior la estructura del correlograma no es clara y propongo varios modelos.

Para AR(1):

Dependent Variable: D(D(PIB))

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/13/20 Time: 18:27

Sample: 1852 2008 Included observations: 157

Convergence achieved after 9 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.563253	9.243833	0.169113	0.8659
AR(1)	-0.272707	0.067532	0.0001	
SIGMASQ	18702.85	1395.276	0.0000	
R-squared	0.069332	Mean depend	0.920371	
Adjusted R-squared	0.057246	S.D. depende	ent var	142.2146
S.E. of regression	138.0840	Akaike info cr	iterion	12.71302
Sum squared resid	2936348.	Schwarz crite	rion	12.77142
Log likelihood	-994.9719	Hannan-Quin	n criter.	12.73674
F-statistic	5.736312	Durbin-Watso	n stat	2.005616
Prob(F-statistic)	0.003955			
	07			

Inverted AR Roots -.27

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 4 0 0 4	10 0040	0.0744	
' " '	'4'	1 -0.04	8 -0.048	0.3711	
_ '	- '	2 -0.18	37 -0.190	6.0028	0.014
₁ Щ ₁	 	3 -0.09	6 -0.120	7.4915	0.024
□ '		4 -0.11	4 -0.173	9.6111	0.022
: þ :		5 0.03	30 -0.040	9.7610	0.045
ı (-	 	6 -0.03	86 -0.118	9.9713	0.076
- (–	7 -0.06	2 -0.124	10.618	0.101
i (i	 	8 -0.01	8 -0.105	10.671	0.154
	' u '	9 0.02	21 -0.064	10.746	0.217

CORRELOGRAMA RESIDUOS

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.077	0.077	0.9522	0.329
, [j <u>j</u>	2	0.0			0.319
1 1		3	0.012	-0.001	2.3068	0.511
1 1		4	-0.006	-0.015	2.3127	0.678
1 1		5	-0.006	-0.006	2.3188	0.804
, þ .		6	0.074	0.078	3.2358	0.779
1 1		7	0.014	0.005	3.2701	0.859
ı þ i		8	0.040	0.025	3.5378	0.896

Para AR(2):

Dependent Variable: D(D(PIB))

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/13/20 Time: 18:31

Sample: 1852 2008 Included observations: 157

Convergence achieved after 11 iterations

Variable	Coefficient	5	Std.	Error	t-Stati	stic	F	Prob.
C	2.006651	7	.842	342539 0.255		368	0	.7984
AR(1)	-0.325422		0.072566 -4.484				.0000	
AR(2)	-0.185238	0	.073	3577	-2.5176			.0128
SIGMASQ	18103.99	1	512	2.409	11.970	030	0	.0000
R-squared	0.099132	Me	an c	depende	ent var		n 92	20371
Adjusted R-squared	0.081468			epender				.2146
S.E. of regression	136,2986			info crit				9366
Sum squared resid	2842327.			rz criteri				77153
Log likelihood	-992.4526	На	nna	n-Quinr	criter.			72529
F-statistic	5.612084	Du	rbin	-Watsoı	n stat			80906
Prob(F-statistic)	0.001121				. •			
	10 10:	4.		٥:				
Inverted AR Roots	16+.40i	16	340	JI				
Autocorrelation	Partial Correlation	n		AC	PAC	Q-S	tat	Prob
. () .	(1)	1	1	-0.025	-0.025	0.09	980	
₁₫ ₁	' II '	j	2	-0.068	-0.069	0.84	184	
= -	□ -	j	3	-0.164	-0.168	5.19	946	0.023
-	 	ĺ	4	-0.143	-0.163	8.5	135	0.014
1 1			5	0.005	-0.037	8.5	174	0.036
1 0 1	 	ļ	6	-0.060	-0.122	9.12	219	0.058
(Q)	 	ļ	7	-0.058	-0.136	9.69	915	0.084
· 🗓 ·	. □ .	ļ	8	-0.038	-0.111	9.93	379	0.127
1 1	<u> </u>		9	0.017	-0.063	9.98	372	0.189
CORRELOGRAMA R	RESIDUOS							
Autocorrelation	Partial Correlation	n		AC	PAC	Q-S	tat	Prob
ı (1) ı	ļ <u>"</u> "	ļ	1	0.069	0.069	0.76		0.380
· 🏚 ·	'•	ļ	2	0.069	0.065	1.54		0.463
· 🏚 ·	ļ ' Ņ '	ļ	3	0.064	0.056	2.2		0.529
1 🕴 1	ļ : <u> </u>	ļ	4	-0.009	-0.022	2.22		0.694
1 1	ļ <u>"</u> L	ļ	5		-0.012	2.23		0.816
' P '	ļ ' 🖆	ļ	6	0.131	0.132	5.06		0.535
1 1	1 1 1	ļ	7	0.014	0.001	5.10		0.647
1 [] 1	' <u> </u> '	ļ	8	0.032	0.015	5.27		0.728
1 [] 1	'		9	0.078	0.060	6.30)38	0.709

Para MA(1):

Dependent Variable: D(D(PIB))

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/13/20 Time: 18:36

Sample: 1852 2008 Included observations: 157

Convergence achieved after 51 iterations

				3				
Variable	Coefficient	Std.	Error	t-Stati:	stic F	Prob.		
С	2.487815	5.760438 0.43188		380 0	.6664			
MA(1)	-0.511181	0.058	3820	-8.6906	655 0	.0000		
SIGMASQ	17779.21	1351	.681	13.153	341 0	.0000		
R-squared	0.115293 N	Mean c	lepende	ant var	0.93	20371		
Adjusted R-squared			pender			.2146		
S.E. of regression			info crit			12.66381		
Sum squared resid			rz criteri			72221		
Log likelihood			n-Quinr			8753		
F-statistic			-Watsor			01350		
Prob(F-statistic)	0.000080							
Inverted MA Roots	.51							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
- <u> </u>	ı b ı	1	0.106	0.106	1.7944			
, a	· _	- 1	-0.092		3.1457	0.076		
	ı = -		-0.130		5.8894	0.053		
i	_	i	-0.162		10.152	0.017		
, (1	1 ()	5	-0.043		10.457	0.033		
, ⊑ ,	-	6	-0.086	-0.130	11.692	0.039		
. □ .	□ -	7	-0.097	-0.133	13.266	0.039		
. Щ .	. □ .	8	-0.051	-0.102	13.703	0.057		
	 	9	0.016	-0.048	13.745	0.089		
, þ ,	 []	10	0.034	-0.058	13.938	0.125		
CORRELOGRAMA R								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
· b ·	(b)	1	0.046	0.046	0.3392	0.560		
· 🛍 · 🔰	 -	2	0.084	0.082	1.4768	0.478		
· • • • • • • • • • • • • • • • • • • •	 	3	0.041	0.034	1.7451	0.627		
	1 1	4	0.021	0.012	1.8202	0.769		
	1 1	5	0.024	0.017	1.9136	0.861		
' 		6	0.145	0.141	5.3784	0.496		
1 [1		7	-0.015	-0.032	5.4181	0.609		
1 1	1 1	8	0.024	0.002	5.5172	0.701		
' þ i '	 	9	0.071	0.066	6.3713	0.702		
	1 1 1	10	0.024	0.015	6.4691	0.774		

Para MA(2):

Dependent Variable: D(D(PIB))

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/13/20 Time: 18:39

Sample: 1852 2008 Included observations: 157

Convergence achieved after 20 iterations

Variable	Coefficient	Std. Error	t-Stati:	stic F	Prob.
C MA(1) MA(2) SIGMASQ	3.044567 -0.494817 -0.308347 16404.88	2.279059 0.087473 0.091033 1365.007	1.3358 -5.6568 -3.3872 12.018	315 0 210 0	.1836 .0000 .0009 .0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.167675 129.7450 2575567. -985.1005	Mean depende S.D. depender Akaike info crit Schwarz criter Hannan-Quint Durbin-Watso	nt var terion ion n criter.	142 12.6 12.6 12.6	20371 .2146 60001 67787 63163 57033
Inverted MA Roots Autocorrelation	.86 Partial Correlatio	36 n AC	PAC	Q-Stat	Prob
		1 0.037 2 0.112 3 -0.019 4 -0.091 5 -0.006 6 -0.084 7 -0.075 8 -0.055 9 -0.003	-0.103 0.006 -0.064	0.2161 2.2386 2.2975 3.6520 3.6574 4.8342 5.7683 6.2829 6.2845 6.3263	0.130 0.161 0.301 0.305 0.329 0.392 0.507 0.611
Autocorrelation	Partial Correlatio	n AC	PAC	Q-Stat	Prob
		1 0.014 2 0.001 3 0.031 4 -0.016 5 -0.002 6 0.187 7 0.009 8 0.061 9 0.107 10 0.040 11 -0.013 12 0.004	0.187 0.005 0.062 0.098 0.046	0.0294 0.0296 0.1856 0.2295 0.2302 6.0372 6.0497 6.6811 8.5991 8.8715 8.8994 8.9022	0.864 0.985 0.980 0.994 0.999 0.419 0.534 0.571 0.475 0.544 0.631 0.711

Para un ARMA(1,1):

Dependent Variable: D(D(PIB))

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 02/13/20 Time: 18:41

Sample: 1852 2008 Included observations: 157

Convergence achieved after 11 iterations

Coefficient covariance computed using outer product of gradients

Variable	Variable Coefficient		t-Stati:	stic F	Prob.
C AR(1) MA(1) SIGMASQ	2.896706 0.467664 -0.924097 15959.81	0.467664 0.085336 5. -0.924097 0.036399 -29		264 0 789 0	.0802 .0000 .0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.190256	Mean depende S.D. depender Akaike info crit Schwarz criteri Hannan-Quinr Durbin-Watson	142 12.5 12.6 12.6	0.920371 142.2146 12.57328 12.65114 12.60490 1.947001	
Inverted AR Roots Inverted MA Roots	.47 .92				
Autocorrelation	Partial Correlation	n AC	PAC	Q-Stat	Prob
I I I I I I I I I I I I I I I I I I I I		2 0.016 3 0.005 4 -0.070 5 0.045 6 -0.036 7 -0.044 8 -0.019 9 0.017 10 0.012	-0.008 0.015 0.005 -0.070 0.043 -0.033 -0.046 -0.023 0.025 0.006	0.0109 0.0496 0.0540 0.8558 1.1816 1.3925 1.7184 1.7759 1.8269 1.8500 Q-Stat	0.816 0.652 0.757 0.845 0.887 0.939 0.969 0.985
		1 0.006 2 -0.003 3 0.017 4 -0.032 5 0.011 6 0.140 7 -0.011 8 0.046 9 0.095	0.006 -0.003 0.017 -0.032 0.011 0.139 -0.012 0.046 0.093	0.0054 0.0072 0.0528 0.2177 0.2364 3.4576 3.4779 3.8339 5.3596	0.942 0.996 0.997 0.994 0.999 0.750 0.838 0.872 0.802

Una vez obtenidos los modelos se realizan las predicciones de cada uno de ellos.

En total comparo 8 modelos diferentes.

PREDICCIÓN PRIMER MODELO:

Realizando el forecast dinámico y estático para el periodo 2000-2008 obtenemos las predicciones realizadas para esos años.

Forecast: D1					
Actual: D_PIB					
Forecast sample: 2000 2008					
Included observations: 9					
Root Mean Squared Error	308.7557				
Mean Absolute Error	258.5701				
Mean Abs. Percent Error	42.56200				
Theil Inequality Coefficient	0.357386				
Bias Proportion	0.698764				
Variance Proportion	0.032975				
Covariance Proportion	0.268262				
Theil U2 Coefficient	1.714960				
Symmetric MAPE	60.25399				

Forecast: S1 Actual: D_PIB Forecast sample: 2000 2008 Included observations: 9 Root Mean Squared Error 190.2827 Mean Absolute Error 162.8545 Mean Abs. Percent Error 46.33690 Theil Inequality Coefficient 0.182446 Bias Proportion 0.111143 Variance Proportion 0.231867 Covariance Proportion 0.656990 Theil U2 Coefficient 0.986538 Symmetric MAPE 35.00739

Representar estas predicciones ofrece poca información sobre qué modelo es mejor que otro, por eso calculare los errores mediante una tabla de Excel. El sumatorio de errores al cuadrado se obtiene de la diferencia de los datos del PIB conocidos respecto a las predicciones de cada uno de los modelos propuestos. Una vez calculados los sumatorios de los errores al cuadrado de cada una de las 8 predicciones propuestas, las comparo.

SUMATORIO CUADRADOS	Error d1	error d2	Error d3	Error d4	Error d5	Error d6	Error d7	Error d8
	857971.057	0.00212332	0.00221826	354700.902	362483.052	374713.582	394389.868	375586.622
	error s1	error s2	error s3	error s4	error s5	error s6	error s7	error s8
	190568.519	0.00165232	0.00176868	354700.902	360109.327	356336.834	304383.463	304814.385

El segundo modelo propuesto es el mejor se ajusta a la realidad