School of Chemistry and Biochemistry, TIET, Patiala Applied Chemistry (UCB008) Tutorial Sheet (Lambert-Beer's Law)

- **1.** State Lambert-Beer's law. What do you mean by absorbance and transmittance?
- **2.** What are the units used for Molar Extinction Coefficient?
- 3. The molar extinction coefficient of $Coen_2Br_2^+$ is $40 \, M^{-1}$ cm⁻¹ at $650 \, m\mu$ (milli micron). Calculate the percent transmission for a 5 cm cell filled with 0.01 M solution. What will be the corresponding absorbance? (Ans: A = 2, %T = 1)
- **4.** A substance in aqueous solution at a concentration 10⁻³ M absorbs 10% of an incident light in a path length 1 cm. What concentration will be required to absorb 90% of the light?

(Ans: 0.0217

M)

- **5.** At 460 nm a blue filter transmits 72.7% of the light and a yellow filter 40.7% of the light. What is the transmittance at the same wavelength of two filters in combination? (Ans: T = 0.296)
- 6. A 0.003 M solution of $[Co (NH_3)_6]^{3+}$ transmits 75% of incident light of 500 m μ if the path length is 1cm. Calculate the molar extinction coefficient and the percent absorption for a 0.01 M solution. (Ans: $\epsilon = 41.65 \, \text{M}^{-1}\text{cm}^{-1}$, % absorption = 61.67)
- 7. An aqueous solution of a compound A of concentration 10⁻³ moles/litre absorbs 50% of incident light in a cell of length 1 cm and another compound B of concentration 2 x 10⁻³ moles/litre absorbs 60% of the incident radiation at a particular wavelength. Calculate the percentage absorbed by a solution containing 10⁻³ moles/litre of A and B each in the same cell at the same wavelength.

 (Ans: % absorption = 68.36)
- 8. A spectrometer cell when filled with liquid A transmits 50% and when filled with another liquid B transmits only 25% of the incident light of a certain wavelength. What would be the optical density/absorbance at this wavelength when the same cell is filled with a mixture of equal volumes of two liquids?

 (Ans: A = 0.45)
- 9. A 0.001 M solution of a dye (X) shows an absorbance of 0.20 at 450 m μ and absorbance of 0.05 at 650 m μ . A 10⁻⁴ M solution of another dye (Y) shows 0.00 absorbance at 450 m μ and an absorbance of 0.42 at 650 m μ . Calculate the concentration of each dye present together in a solution, which exhibits an absorbance of 0.38 and 0.71 at 450 m μ and 650 m μ respectively. The same cell is used in all measurements and its thickness is 1.00 cm.

(Ans:
$$C_x = 1.9 \times 10^{-3} \,\mathrm{M}$$
, $C_v = 1.5 \times 10^{-4} \,\mathrm{M}$)

- 10. In an absorption cell, the transmittance of a 0.1 M solution of a substance X is 80% and that of 0.1M solution of another substance Y is 60% at a given wavelength. What is the transmittance of a solution that is simultaneously 0.1 M in X and 0.1 M in Y? (Ans: %T = 48)
- **11.** A series of five standard copper solutions is prepared and the absorbances measured as indicated below. Plot the data and determine the concentration of the unknown (Z).

Α	C (ppm)
0.104	1
0.198	2
0.310	3
0.402	4
0.500	5
0.334	Z