1 Énoncés

Exercice 1 : Calculer la dimension de \mathbb{R}^n où n est un entier.

Exercice 2 : On considère le vecteur $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Trouver un supplémentaire dans \mathbb{R}^3 .

Exercice 3 : Soit E un espace vectoriel de dimension n et H un sous-espace vectoriel de dimension n-1. Quels sont les sous-espaces vectoriels de E tels que $H \subset F \subset E$?

Exercice 4 : ()** Soit E un espace vectoriel de dimension n. Soit u un endomorphisme de E tel qu'il existe p un entier tel que $u^p = 0$. Montrer que $u^n = 0$.

Exercice 5 : (*) Soit E un espace vectoriel de dimension finie. Soit un endomorphisme u qui stabilise toutes les droites $(i.e.\ u(x) \in Vect(x) \forall x \in E)$. Montrer que u est une homothétie.

Exercice 6: (**) Soit E un espace vectoriel de dimension finie. Montrer qu'il est impossible qu'il existe V_1, \ldots, V_k des sous-espaces vectoriels de E stricts (*i.e.* strictement inclus dans E).

2 Solutions:

Exercice 1: Trouvons une base. En fait il existe une base "canonique", c'est-à-dire naturelle. C'est la base formée des $e_i = (0, ..., 0, 1, 0, ..., 0)$ où le 1 est en *i*ème position. En effet la famille est génératrice car si $x \in \mathbb{R}^n$, alors il existe des x_i tels que $x = (x_1, ..., x_n) = \sum_{i=1}^n x_i e_i$. De plus la famille est libre car si $\sum_{i=1}^n x_i e_i = 0$, alors coordonnées par coordonnées $x_i = 0$. Donc \mathbb{R}^n est de dimension n.

Exercice 2: Il faut trouver deux vecteurs x et y tels que F = Vect(x, y) soit un supplémentaire de G = Vect((1, 0, 1)) dans \mathbb{R}^3 . On pose x = (1, 0, 0) et y = (0, 1, 0). Vérifions que $F + G = \mathbb{R}^3$. Soit $(a, b, c) \in \mathbb{R}^3$, alors

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = c \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (a - c) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Donc la somme fait \mathbb{R}^3 . Est-ce qu'elle est directe ? Soit $x \in F \cap G$ avec x non nul. Alors cela veut dire que (1,0,1) est dans F. Mais c'est impossible car x et y ont une 3ème coordonnée nulle. Finalement, F est un supplémentaire de G dans \mathbb{R}^3 .

Exercice 3: Soit F tel que $H \subset F \subset E$. Alors par dimension $dim(H) \leq dim(F) \leq dim(E)$. Donc dim(F) = n - 1 ou dim(F) = n. Dans le premier cas, comme $H \subset F$ alors F = H. Dans le second, comme $F \subset E$ alors F = E.

Il y a donc deux cas de figure :

- Soit F est dimension n et F = E.
- soit F est dimension n-1 et F=H.

Exercice 4 : Soit u un endomorphisme tel qu'il existe $p \in \mathbb{N}$ tel que $u^p = 0$. Déjà si $p \le n$, alors $u^n = u^{n-p} \circ u^p = 0$. Donc c'est réglé dans ce cas. Par contre si p > n on ne peut plus faire le même argument.

Supposons que $u^n \neq 0$. On va alors essayer d'obtenir une contradiction par rapport à la dimension de E en trouvant une famille libre trop grande. Comme $u^n \neq 0$, alors il existe $x \in E$ non nul tel que $u^n(x) \neq 0$. On va alors considérer la suite des itérées de x. On pose $e_i = u^i(x)$ pour $0 \leq i \leq n$. Alors $e_i \neq 0$ pour tout i. En effet si ce n'était pas le cas, il existerait un entier $k \leq n$ tel que $e_k = u^k(x) = 0$. Alors $u^n(x) = u^{n-k}(u^k(x)) = u^{n-k}(0) = 0$. C'est impossible.

On a donc une famille e_i de vecteurs non nuls. On va montrer qu'elle est libre. Supposons donc qu'elle soit liée. Alors il existe des λ_i réels tels que :

$$\sum_{i=0}^{n} \lambda_i e_i = 0$$

Donc $\sum_{i=0}^n \lambda_i u^i(x) = 0$. On va annuler les scalaires λ_i un à un en utilisant que $u^p = 0$. On compose par u^{p-1} . Alors $u^{p-1}(\sum_{i=0}^n \lambda_i u^i(x)) = \sum_{i=0}^n \lambda_i u^{p-1}(u^i(x)) = \sum_{i=0}^n \lambda_i u^{p-1+i}(x) = \lambda_0 u^{p-1}(x)$ car si $i \geq 1$, alors $u^{p-1+i} = 0$ car $u^p = 0$. Par contre il se peut que $u^{p-1} = 0$... Or $u^p \neq 0$, donc on peut supposer que p soit le plus petit entier tel que $u^p = 0$. Dans ce cas, $u^{p-1} \neq 0$.

Du coup $\lambda_0 = 0$ car $u^{p-1}(x) \neq 0$. Par récurrence on montre que les $\lambda_i = 0$ sont tous nuls. La famille des e_i est libre. Or elle est de taille n+1 et E est de dimension n. C'est impossible. Donc $u^n = 0$.

Exercice 5: Soit u qui stabilise toutes les droites. On va introduire des notations. Soit $x \in E$, on pose $u(x) = \lambda_x x$ avec $\lambda_x \in \mathbb{R}$. Pour montrer que u est une homothétie, on va montrer que tous les λ_x sont égaux. Comme on est dimension finie il faut raisonner sur une base. Soit (e_1, \ldots, e_n) une base. Soit $x \in E$, alors il existe des scalaires x_i tels que $x = \sum_{i=1}^n x_i e_i$. Donc $u(x) = \sum_{i=1}^n x_i \lambda_{e_i} e_i$. Il suffit donc de montrer que les λ_{e_i} sont égaux. Pour cela on va montrer qu'ils sont égaux deux à deux. Pour cela on va le montrer de manière générale.

Soit x et y deux vecteurs libres. Il faut un vecteur qui fasse le lien entre les deux : ce sera x + y. On a :

$$u(x+y) = \lambda_{x+y}(x+y) = u(x) + u(y) = \lambda_x x + \lambda_y y$$

Comme la famille (x, y) est libre, alors on a $\lambda_{x+y} = \lambda_x = \lambda_y$. Finalement on a donc $\lambda_{e_i} = \lambda_{e_j}$ pour tout i, j. Donc tous les λ_{e_i} sont tous égaux à un λ . Donc si $x = \sum_{i=1}^n x_i e_i$, alors $u(x) = \sum_{i=1}^n x_i \lambda_{e_i} e_i = \sum_{i=1}^n x_i \lambda e_i = \lambda \sum_{i=1}^n x_i e_i = \lambda x$. Donc $u(x) = \lambda x$ pour tout x. Alors u est une homothétie.

Exercice 6 : Supposons que $E = V_1 \bigcup \cdots V_N$ avec les V_i strictement inclus dans E. On peut supposer quitte à réduire le nombre de sous-espaces vectoriels qu'aucun n'est inclus dans l'union de tous les autres. De plus il y en a au moins deux car sinon on aurait $E = V_1$ avec V_1 un sous-espace strictement inclus dans E.

On pose $F = V_2 \bigcup \cdots \bigcup V_n$. Donc $V_1 \not\subset F$. Ainsi il existe $x \in F$ tel que $x \not\in V_1$. De plus $F \not\subset V_1$. Donc il existe $y \in V_1$ tel que $y \not\in F$. Pour obtenir une contradiction on va regarder un élement entre les deux x et y. On pose $g(\lambda) = x + \lambda y$. Alors pour tout λ non nul, $g(\lambda) \not\in V_1$. Car sinon $x = g(\lambda) - \lambda y \in V_1$. Or $E = V_1 \bigcup F$. Donc $g(\lambda) \in F$ si λ est non nul. Donc il existe $i \in [2, n]$ tel que $g(\lambda) \in V_i$. Ainsi on pose l'application :

$$\varphi: \mathbb{R}^* \longrightarrow [2, n]$$

$$\lambda \longmapsto i$$

où i est tel que $g(\lambda) \in V_i$. Montrons que φ est injective. Soit λ et μ non nuls tels que $\varphi(\lambda) = \varphi(\mu)$. Alors $g(\lambda) \in V_i$ et $g(\mu) \in V_i$ pour le même i. Donc la différence est aussi dedans. Donc $(x + \lambda y) - (x + \mu y) = (\lambda - \mu)y \in V_i$. Donc $y \in V_i$. Donc $y \in F$. C'est impossible. Donc φ est injective. Par cardinalité c'est impossible car alors $|\mathbb{R}^*| \geq n - 1$. Donc on ne peut écrire E ainsi.