Capítulo 6- Equilíbro Químico

Poucas reacções se dão num único sentido. A maioria das reacções é reversível em maior ou menor extensão => no início dá-se a formação de produto e logo que algumas moléculas de produto se formam começa a ter lugar o processo inverso, ou seja os produtos dão origem novamente aos reagentes.

$$N_2O_4(g) \longrightarrow 2NO_2(g)$$

Início com NO₂

Início com N₂O₄

Início com NO₂ e N₂O₄

14.1	Sistema NO	₂ -N ₂ O ₄ a 25ºC				
TABELA	Concentrações Iniciais (<i>M</i>)		Concentrações no Equilíbrio (<i>M</i>)		Razão das Concentrações no Equilíbrio	
₽					[NO ₂]	[NO ₂] ²
	[NO ₂]	$[N_2O_4]$	[NO ₂]	$[N_2O_4]$	[N ₂ O ₄]	[N ₂ O ₄]
	0,000	0,670	0,0547	0,6430	0,0851	$4,65\times10^{-3}$
	0,0500	0,446	0,0457	0,448	0,102	$4,66\times10^{-3}$
	0,0300	0,500	0,0475	0,491	0,0967	$4,60\times10^{-3}$
	0,0400	0,600	0,0523	0,594	0,0880	$4,60\times10^{-3}$
	0,200	0,000	0,0204	0,0898	0,227	$4,63\times10^{-3}$

Quando as velocidades da reacção directa e da inversa forem iguais, as concentrações dos reagentes e produtos não variam com o tempo e atinge-se o equilíbrio químico.

Constante de equilíbrio: \mathbf{K} (não tem unidades)

$$a A + b B \Longrightarrow c C + d D$$

$$K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Ordem de grandeza de K

Dá-nos informação acerca das quantidades relativas de reagentes e produtos presentes no equilíbrio. A constante depende da natureza da reacção e da temperatura.

$$2 O_3 (g) \implies 3 O_2(g)$$
 $K = \frac{[O_2]^3}{[O_3]^2} = 2.54 \times 10^{12}$

Como K é muito grande, o equilíbrio está muito deslocado no sentido directo, de modo que existe muito pouco reagente presente.

Se $[O_2]$ = 0.5 M no equilíbrio, temos

$$K = \frac{[O_2]^3}{[O_3]^2} \implies 2.54 \times 10^{12} = \frac{(0.5)^3}{[O_3]^2} \implies [O_3] = 2.22 \times 10^{-7} M$$

$$Cl_2(g) \longrightarrow 2 Cl(g) \quad K = \frac{[Cl]^2}{[Cl_2]} = 1.4 \times 10^{-38}$$

Como K é muito <u>pequeno</u>, o equilíbrio está muito deslocado no <u>sentido</u> <u>inverso</u>, de modo que existe muito pouco produto presente.

Se $[Cl_2]$ = 0.76 M no equilíbrio, temos

$$K = \frac{[Cl]^2}{[Cl_2]} \Rightarrow 1.4 \times 10^{-38} = \frac{[Cl]^2}{0.76} \Rightarrow [Cl] = 1.0 \times 10^{-19} M$$

Exemplo 3- se K for próximo de 1

As quantidades de reagentes e produtos presentes no equilíbrio são da mesma ordem de grandeza.

$$CO(g) + H_2O(g) \longrightarrow H_2(g) + CO_2(g)$$
 $K = \frac{[H_2][CO_2]}{[CO][H_2O]} = 5.1$

Equilíbrio Homogéneo

Todos os componentes de uma reacção encontram-se na mesma fase.

$$N_2O_4(g) \Longrightarrow 2 NO_2(g)$$
 $K_c = \frac{[NO_2]^2}{[N_2O_4]}$

O índice c no K indica que as concentrações estão expressas em mole L^{-1} (M), mas como ambas as espécies são gasosas pode-se usar as pressões (atm) e nesse caso obtemos o K_p :

$$K_p = \frac{(P_{NO2})^2}{P_{N2O4}}$$

De um modo geral $K_c \neq K_p$

Porque as pressões parciais (em atm) dos reagentes e dos produtos não são iguais às suas concentrações expressas em mole/l.

Consideremos a reacção:

$$a A (g) \longrightarrow b B (g)$$

$$K = \frac{[B]^b}{[A]^a}$$

$$K_{c} = \frac{[B]^{b}}{[A]^{a}} \qquad K_{p} = \frac{P_{B}^{b}}{P_{A}^{a}} \qquad Pela lei dos gases perfeitos PV= nRT P_{A} = n_{A} RT/V e P_{B} = n_{B} RT/V$$

Substituindo na expressão de K_p

$$K_{p} = \frac{\left(\frac{n_{B} RT}{V}\right)^{b}}{\left(\frac{n_{A} RT}{V}\right)^{a}} = \frac{\left(\frac{n_{B}}{V}\right)^{b}}{\left(\frac{n_{A}}{V}\right)^{a}} (RT)^{b-a} = \frac{[B]^{b}}{[A]^{a}} (RT)^{b-a} = K_{c} (RT)^{b-a}$$

Como R= constante dos gases perfeitos= 0.08212 L atm K⁻¹ mol⁻¹

$$K_p = K_c (0.0821 \cdot T)^{b-a}$$

Se b-a =
$$\Delta n$$
; quando $\Delta n = 0$ então: $\mathbf{K_p} = \mathbf{K_c}$

Exercício:

A seguinte reacção, a 230°C, apresenta as seguintes concentrações de equilíbrio: [NO]= 0.0542 M, [O₂]= 0.127 M e [NO₂]= 15.5 M. Calcule K_c nestas condições.

$$2 \text{ NO } (g) + O_2 (g) \Longrightarrow 2 \text{ NO}_2 (g)$$

Resolução:

$$K_c = \frac{[NO_2]^2}{[NO]^2 [O_2]} = \frac{(15.5)^2}{(0.0542)^2 (0.127)} = 6.44 \times 10^5$$

Exercício:

A constante de equilíbrio K_c desta reacção é 4.63 x 10⁻³ a 25°C.

$$N_2O_4(g) \Longrightarrow 2 NO_2(g)$$

- a) Qual o valor de K_p a esta temperatura?
- **b)** Se a pressão parcial do NO_2 no equilíbrio for 0.4 atm, qual a pressão parcial do N_2O_4 ?

Resolução:

a)
$$K_p = K_c (0.0821 \cdot T)^{b-a}$$
 como $T = 25 + 273 = 298 \text{ K e } b-a = 2-1 = 1$
 $K_p = 4.63 \times 10^{-3} (0.0821 \cdot 298)^1 = 0.113$

$$K_p = \frac{(P_{NO2})^2}{P_{N2O4}} \implies 0.113 = \frac{(0.4)^2}{P_{N2O4}} \implies P_{N2O4} = 1.42 \text{ atm}$$

Equilíbrio heterogéneo

Aplica-se a reacções nas quais os reagentes e os produtos <u>estão em fases</u> <u>diferentes.</u>

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

$$K_c' = \frac{[CaO][CO_2]}{[CaCO_3]}$$

 $[CaCO_3]$ = constante

[CaO] = constante

$$K_c = [CO_2]$$

 \mathbf{K}_c a nova constante de equilíbrio é expressa apenas em termos de concentração de CO_2 .

Alternativamente pode exprimir-se a constante de equilíbrio como $K_p = P_{CO2}$

As concentrações de **sólidos** e **líquidos puros** não estão incluídos na expressão da constante de equilíbrio.

Equilíbrio Múltiplo

Quando os produtos num sistema em equilíbrio estão envolvidos num segundo processo de equilíbrio.

$$A + B \longrightarrow C + D$$
 $K'_c = \frac{[C][D]}{[A][B]}$

$$C + D \longrightarrow E + F$$

$$K''_c = \frac{[E][F]}{[C][D]}$$

A reacção global é

$$A + B \Longrightarrow E + F$$

$$K'_{c} \cdot K''_{c} = \frac{[C][D]}{[A][B]} \cdot \frac{[E][F]}{[C][D]} = \frac{[E][F]}{[A][B]} = K_{c}$$

Se uma reacção puder ser expressa como a soma de duas ou mais reacções, a constante de equilíbrio da reacção global é dada pelo produto das constantes de equilíbrio individuais.

Exercício

Calcule K_c da reacção global.

$$H_2CO_3$$
 (aq) \longrightarrow H^+ (aq) $+ HCO_3^-$ (aq) $K'_c = 4.2 \times 10^{-7}$
 HCO_3^- (aq) \longrightarrow H^+ (aq) $+ CO_3^{2-}$ (aq) $K''_c = 4.8 \times 10^{-11}$

$$H_2CO_3$$
 (aq) \longrightarrow 2 H⁺ (aq) + CO_3^{2-} (aq) $K_c = K'_c$. $K''_c = 2.0 \times 10^{-17}$

Escrita de constantes de equilíbrio

- Na fase condensada, as concentrações das espécies reagentes são expressas em M (mol/L); em fase gasosa, as concentrações podem ser expressas em M ou em atm.
- As concentrações de sólidos puros, líquidos puros e solventes não aparecem nas expressões da constante de equilíbrio.
- A constante de equilíbrio é tratada como uma quantidade adimensional.
- Ao atribuirmos um valor à constante de equilíbrio, devemos especificar as equações acertadas e a temperatura.
- Se uma reacção puder ser expressa como a soma de duas ou mais reacções, a constante de equilíbrio da reacção global é dada pelo produto das constantes de equilíbrio das reacções individuais.

Quando nos referimos ao valor da constante de equilíbrio é necessário escrever a equação química.

Consideremos a seguinte reacção:

$$N_2O_4(g)$$
 \longrightarrow 2 $NO_2(g)$ $K_c = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$

Para a reacção inversa:

$$2 \text{ NO}_2(g) \Longrightarrow N_2O_4(g)$$

$$K'_{c} = \frac{[N_{2}O_{4}]}{[NO_{2}]^{2}} = \frac{1}{K_{c}} = \frac{1}{4.63 \times 10^{-3}} = 216$$

O valor de K depende da forma como se acerta a equação da reacção.

1/2
$$N_2O_4(g)$$
 NO₂ (g) $K_c = \frac{[NO_2]}{[N_2O_4]^{1/2}} = 0.068$

$$N_2O_4(g)$$
 \longrightarrow 2 $NO_2(g)$ $K_c = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$

Informação que nos fornece a constante de equilíbrio

- Previsão do sentido duma reacção

O *quociente relaccional* (Q_c) calcula-se substituindo as concentrações iniciais de reagentes e de produtos na expressão da constante de equilíbrio (K_c).

SE

- $Q_c < K_c \implies O$ sistema evolui da esquerda para a direita (consumindo reagentes, formando produtos) até se atingir o equilíbrio.
- $Q_c = K_c \implies O$ sistema está em equilíbrio.
- $Q_c > K_c \implies O$ sistema evolui da direita para a esquerda (consumindo produtos, formando reagentes) até se atingir o equilíbrio.

Exercício

Considere a seguinte reacção. Se as concentrações iniciais de H_2 , I_2 e HI forem 0.243, 0.146 e 1.98 M, respectivamente, qual o sentido em que ocorrerá a reacção?

$$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$$
 $K_c = 54.3$ a 430°C

$$Q_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{1.98^2}{0.243 \times 0.146} = 111$$

Como $Q_c > K_c$ - os produtos vão ser convertidos nos reagentes até se atingir o equilíbrio (**sentido inverso**).

Exercício

Considere a seguinte reacção que apresenta $K_p = 1.5 \times 10^5$ a 430°C.

$$2 \text{ NO (g)} + O_2 (g) \implies 2 \text{ NO}_2 (g)$$

Sabendo que as pressões iniciais de NO, O_2 e N O_2 são 2.1×10^{-3} , 1.1×10^{-2} e 0.14 atm, respectivamente, preveja em que sentido evolui a reacção até atingir o equilíbrio.

Resolução

$$Q_{p} = \frac{(P_{NO2})^{2}}{(P_{NO})^{2} P_{O2}} \quad \frac{0.14^{2}}{(2.1 \times 10^{-3})^{2} \cdot 1.1 \times 10^{-2}} = 4.04 \times 10^{5}$$

Como Q_p é maior que K_p, a reacção vai evoluir no sentido inverso.

- Cálculo de concentrações de equilíbrio

Para uma dada reacção, sabendo o valor da constante de equilíbrio e das concentrações iniciais, pode-se determinar as concentrações no equilíbrio.

1- Exprimir as concentrações de todas as espécies no equilíbrio em função das concentrações iniciais e de uma única incógnita x, que representa a variação na concentração.

- **2-** Escrever a expressão da constante de equilíbrio em função das concentrações no equilíbrio. Conhecendo o valor da constante de equilíbrio, resolver em ordem a *x*.
- **3-** Depois de resolver em ordem a x, calcular as concentrações de todas as espécies no equilíbrio.

Para a reacção:

A
$$\longrightarrow$$
 B $K_c=24$

Se a concentração inicial de A for 0.85 M quais serão as concentrações de equilíbrio de A e B?

$$K_c = \frac{[B]}{[A]} = \frac{x}{0.85-x} = 24$$

Resolvendo esta equação de 1º grau obtém-se x = 0.816 logo

$$[A]_{eq}$$
= 0.85 - 0.816 = 0.034 M
 $[B]_{eq}$ = 0.816 M

Nota: fórmula para resolução de equações quadráticas.

$$ax^{2} + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^{2} - 4 ac}}{2a}$

Se a constante de equílibrio K_c for pequena, o valor de x vai ser desprezável e pode fazer-se uma aproximação que facilita os cálculos.

Como x é pequeno
$$\rightarrow$$
 0.85-x \approx 0.85 \rightarrow $K_c = x / 0.85$

Factores que afectam o equilíbrio químico

A variação das condições experimentais pode perturbar o equilíbrio e deslocar a sua posição dando origem a uma maior ou menor quantidade de produto. Os factores que afectam o equilíbrio químico são:

- concentração
- pressão
- volume
- temperatura

Princípio de Le Châtelier: se um sistema em equilíbrio for perturbado, o sistema desloca-se de forma a minimizar essa perturbação.

-Variação da concentração

Reagente — Produto

Alteração	Deslocação no equilíbrio	
Aumenta a concentração de produto(s)	esquerda (sentido inverso)	
Diminui a concentração de produto(s)	Direita (sentido directo)	
Aumenta a concentração de reagente(s)	Direita (sentido directo)	
Diminui a concentração de reagente(s)	Esquerda (sentido inverso)	

Exercício

Para a reacção $N_2(g) + 3 H_2(g)$ \longrightarrow 2 NH₃(g) preveja o sentido de deslocamento do equilíbrio se:

- a) for adicionado N_2
- b) for adicionado NH₃
- c) for retirado H₂
- d) for retirado NH₃

- Variação de volume e pressão

Alteração	Deslocação no equilíbrio
Aumento da pressão	Lado com menos moles de gás
Diminuição da pressão	Lado com mais moles de gás
Aumento do volume	Lado com mais moles de gás
Diminuição do volume	Lado com menos moles de gás

- Quando o volume aumenta, a pressão diminui e vice-versa.
- Quando o nº total de moles de gases não varia, a variação da pressão ou do volume não afecta o equilíbrio

Exercício

Para a reacção seguinte, o que acontecerá se houver redução de volume e, consequentemente, aumento de pressão?

$$N_2O_4(g) \longrightarrow 2 NO_2(g) K_c = \frac{[NO_2]^2}{[N_2O_4]} = 4.63 \times 10^{-3}$$

Resolução

Como PV = nRT e P= n/V (RT), aumentando a pressão, aumenta a concentração.

Na expressão de K, a concentração de NO₂ está elevada ao quadrado => vai aumentar mais o numerador que o denominador.

O Qc > Kc, o sistema deixa de estar em equilíbrio e a reacção vai deslocarse de modo a reestabelecer o equilíbrio => sentido inverso.

- Variação de temperatura

A variação de temperatura pode alterar a constante de equilíbrio, além da posição de equilíbrio.

Alteração	Reacção Exotérmica	Reacção Endotérmica	
Aumento da temperatura	K diminui	K aumenta	
Diminuição da temperatura	K aumenta	K diminui	

O que acontecerá ao sistema em equilíbrio, representado pela equação seguinte, se aumentarmos a temperatura?

$$N_2O_4(g) \longrightarrow 2 NO_2(g)$$
 $N_2O_4(g) \longrightarrow 2 NO_2(g) \qquad \Delta H = 58 \text{ kJ} \quad \text{(endotérmica)}$
 $2 NO_2(g) \longrightarrow N_2O_4(g) \qquad \Delta H = -58 \text{ kJ} \quad \text{(exotérmica)}$

Se uma reacção é endotérmica, vai absorver calor do meio circundante.

Neste caso vai ser favorecida a reacção no sentido directo

A constante de equilíbrio vai aumentar pois aumenta a concentração de NO_2 $K_c = [NO_2]^2 / [N_2O_4]$

Exercício

Considere os seguintes sistemas em equilíbrio. Preveja o sentido da reacção, em cada um dos casos, se houver um aumento de pressão.

a)
$$2 \text{ PbS (s)} + 3 O_2(g) \implies 2 \text{ PbO (s)} + 2 \text{ SO}_2(g)$$

b)
$$PCl_5$$
 (g) \longrightarrow PCl_3 (g) $+ Cl_2$ (g)

c)
$$H_2(g) + CO_2(g) \longrightarrow H_2O(g) + CO(g)$$

- Efeito de um catalisador

Não altera a constante de equilílibrio *K*Não desvia a posição de um sistema em equilíbrio

O sistema atinge o equilíbrio mais cedo

O catalisador diminui a E_a para as reacções directa e inversa.

O catalisador não altera a constante de equilíbrio nem desloca o equilíbrio.

Princípio de Le Châtelier

Alteração	Deslocação no equilíbrio	Alteração da constante de equilíbrio
Concentração	sim	não
Pressão	sim	não
Volume	sim	não
Temperatura	sim	sim
Catalisador	não	não