Lab1 ~ Lab5 共用規定

- ●上課時間: 14:10~17:00; 地點 @新館一樓 65105
- •每一個 lab 最晚都會在上課當天中午12:00前上傳投影片到 moodle, 為避免教室網路訊號不好,請同學在14:00上課前先下載投影片至電腦中。
- ●每一個 lab 佔總分 8%, 獨立計分. (Final Project 佔總分 60%)
- •Lab 完成後, 要在 7 天內寫好 lab report 上傳 moodle。
- •要來上 lab 課簽到,我們才會為你的 lab 成果評分。
- •若 lab 下課前有做完,我們會現場幫你評分。
- ●若 lab 下課前沒做完,會有補交機制 (各 lab 規定方式可能不同),期限內有完成就不會扣分 (期限為 7 天內,超過不計分)。

Lab2 規定

- Lab2 補交機制 (各 lab 規定方式可能不同) 本次lab不開放補交
- 寫 lab report (上傳moodle)

Lab 2: TaskMonitor

OS lab email : <u>oslab@mail.csie.ncku.edu.tw</u> TA: 鄭宇辰 01 Lab requirement

02 UART

03 Lab2

04 Marco about Lab2

OUTLINE

Lab requirement

- Create four task // 不用自己寫
 - Red_LED_App \ Green_LED_App \ Delay_App \ TaskMonitor_App
- TaskMonitor_App will call Taskmonitor() periodicity
- TaskMonitor()
 - Traverse ReadyTaskList, DelayedTaskList, OverflowDelayedTaskList
 - Print TCB information by UART
 - Task Name \ Priority(Base/actual) \ Stack Pointer \ Topofstack Pointer \
 Task State

Demo

Lab2 grading

- (2%) 有印出**五個TASK**
- (2%) TCB 資料正確
- (1%)不會多印出其他資料
- (3%) Lab report (一定要交)

- Create four task
 - Red_LED_App priority = 1
 - Green_LED_App priority = 1
 - Delay_App priority = 14
 - TaskMonitor_App priority = 3 (把Stack調大一點,至少256)

task.h

- #include "stm32f4xx_hal.h"
- UART_HandleTypeDef huart2; // for USART2
- void Taskmonitor(void);

Task.c

void Taskmonitor(void){...}

List.h

#define listGET_ITEM_OF_HEAD_ENTRY(pxList) ((&((pxList)->xListEnd))->pxNext)

FreeRTOSConfig.h

configMAX_PRIORITIES 15

```
void Taskmonitor(void)
{
         /* Initialize string */
         char Monitor_data[130];
         memset(Monitor_data,'\0',sizeof(Monitor_data));
         /* Stop scheduler */
         /*Taskmonitor() will block when UART is transmitting data */
         /* Scheduler will change list data when Taskmonitor() is blocked */
         vTaskSuspendAll();
         /*Print title */
         sprintf(Monitor_data,"|Name
                                         |Priority(Base/actual) |pxStack |pxTopOfStack
                                                                                                     |\n\r");
                                                                                             State
         HAL_UART_Transmit(&huart2,(uint8_t *)Monitor_data,strlen(Monitor_data),0xffff);
         /* pxReadyTasksLists */
         /*pxDelayedTaskList*/
         /* pxOverflowDelayedTaskList */
         /* Resume scheduler */
         xTaskResumeAll();
}
```

Main.c

Main.c

```
void Green_LED_App(void *pvParameters){
         uint32_t G reentimer = 1000;
        for(;;){
                    HAL_GPIO_TogglePin(GPIOD,Green_LED_Pin);
                    vTaskDelay(Greentimer);
                    Greentimer+=2;
}
void Delay_App(void *pvParameters){
        int delayflag=0;
         uint32_t delaytime;
         while(1){
                    if(delayflag==0){
                               delaytime = 1000;
                               delayflag=1;
                    }else{
                               delaytime=0xFFFFFFF;
                    vTaskDelay(delaytime);
}
```

01 Lab requirement

OUTLINE

02 UART

03 Lab2

04 Marco about Lab2

USB to TTL

USART pin

Using an USART to USB dongle from the market connected for instance to STM32F407 USART2 available on connector P1 pin 14 (PA2: **USART2**_TX) and P1 pin 13 (PA3: **USART2**_RX).

USB to TTL

F407G-DISC transmit data(TXD) to PC. therefore, we need use PA2.

PC will receive external data(RXD), so we need use **white line** connect to PA2.

USART

USART set up

Command shell set up

Serial port指的是電腦的USB port編號

How to find serial port

先開啟裝置管理員

USB to TTL插上電腦時,裝置管理員的連接埠會跳出一個Prolific USB-to-Serial Comm port Serial port就會是括弧裡的編號

HAL_UART_Transmit

huart: Pointer to a UART_HandleTypeDef structure that contains the configuration information for the specified UART module

PTxData: Pointer to data buffer

Size: Amount of data elements to be sent

Timeout: Timeout duration

USART Tx Test

```
創建一個 Task 以測試USART。
UART_HandleTypeDef huart2;
void USART_Test(void *pvParameters){
          uint32_t Monitortimer = 400;
          char MonitorTset[30];
          char num[15];
          int i = 0;
          while(1){
                    memset(MonitorTset,'\0',sizeof(MonitorTset));
                    memset(num,'\0',sizeof(num));
                    itoa(i,num,10);
                   strcat(num," ");
                   sprintf(MonitorTset,"The point is %s\n\r",num);
                    HAL UART Transmit(&huart2,(uint8 t *)MonitorTset, strlen(MonitorTset),0xffff);
                   vTaskDelay(Monitortimer);
                    Monitortimer += 1;
                   i += 1;
```

USART Tx Test

- 理論上如果設定沒有問題,運行後會看到console 顯示你transmit 的 string
- 如下圖所示
- 連接你TTL的port的Console 只要創建一個就好,或是只connect 一個。

OUTLINE

Lab requirement

UART

Lab2

Marco about Lab2

List

tasks.c

PRIVILEGED_DATA **static** List_t pxReadyTasksLists[configMAX_PRIORITIES];/*< <u>Prioritised</u> ready tasks. */

PRIVILEGED_DATA **static** List_t xDelayedTaskList1; /*< Delayed tasks. */
PRIVILEGED_DATA **static** List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */

PRIVILEGED_DATA static List_t *volatile pxDelayedTaskList; /*<Points to the delayed task list currently being used. */

PRIVILEGED_DATA **static** List_t ***volatile** pxOverflowDelayedTaskList; /*<Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */

Only need access

- a. pxReadyTasksLists
- b. pxDelayedTaskList
- c. pxOverflowDelayedTaskList

List

xLIST_ITEM

Task Control Block

```
typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */
           volatile StackType t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE
FIRST MEMBER OF THE TCB STRUCT. */
            ListItem t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready,
Blocked, Suspended ). */
            ListItem t xEventListItem; /*< Used to reference a task from an event list. */
            UBaseType t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
            StackType t *pxStack; /*< Points to the start of the stack. */
            Char pcTaskName[ configMAX TASK NAME LEN ]; /*< Descriptive name given to the task when created. Facilitates
debugging only. *//*lint !e971 Unqualified char types are allowed for strings and single characters only. */
            #if ((portSTACK GROWTH > 0) | | (configRECORD STACK HIGH ADDRESS == 1))
                         StackType t
                                                  *pxEndOfStack; /*< Points to the highest valid address for the stack. */
            #endif
            #if (configUSE MUTEXES == 1)
                         UBaseType t
                                                  uxBasePriority; /*< The priority last assigned to the task - used by the priority
inheritance mechanism. */
                         UBaseType t uxMutexesHeld;
            #endif
} tskTCB;
```

tasks.c

```
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ){
                                  /* Calculate the time at which the task should be woken if the event
                                  does not occur. This may overflow but this doesn't matter, the
                                  kernel will manage it correctly. */
                                  xTimeToWake =xConstTickCount + xTicksToWait;
                                  /*The list item will be inserted in wake time order. */
                                  listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );
                          pxCurrentTCB->xStateListItem ) )->xItemValue = ( xTimeToWake
                                  if( xTimeToWake < xConstTickCount )</pre>
                                             /*Wake time has overflowed. Place this item in the overflow
                                             list. */
                                             vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
                                  else
                                             /*The wake time has not overflowed, so the current block list
                                             is used. */
                                             vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) )
```

OUTLINE

Lab requirement

UART

03 Lab2

Marco about Lab2

Macro

- list.h
 - #define listLIST_IS_EMPTY(pxList) (((pxList)->uxNumberOfItems == (UBaseType_t) 0) ? pdTRUE : pdFALSE)
 - listLIST_IS_EMPTY(&(pxReadyTasksLists[xPriority]);
 - #define listCURRENT_LIST_LENGTH(pxList) ((pxList)->uxNumberOfItems)
 - listCURRENT_LIST_LENGTH(&(pxReadyTasksLists[xPriority]));