Network Graph Analysis

Yacine MOKHTARI

January 2023

1 Introduction

The goal of this study is to analyze a real-world graph and to compare it to a random graph having the same number of nodes and average degree.

The graph I chose to work with is the *Twitch Social Networks*[1]. Although the streamers and viewers data have been anonymized, I wanted to see roughly the characteristics of one of the new social graphs of the internet.

Important note

I used the python library Plotly for interractive visualisation.

Data set, code and all the HTML pages leading to the interactive plots are available on my GitHub repository at this link: https://github.com/YacineMOK/FR-Twitch_Network-Graph-Analysis.

2 The minimal requirement

01 - Number of nodes and edges

Number of nodes, edges and connected components:

• Number of nodes: 6549.

• Number of edges: 112666.

• Number of connected components (sub-graphs): 1

Some additional numbers :

• Average degree: 34.4.

• Highest degree: 2040.

- Nodes with deg $\geq \frac{2040}{2} = 1020 = 11$.

• Lowest degree: 1.

- Nodes: 247

02 - Graph display

Figure 1: Network Graph

Figure 2: Small fraction of the network graph

03 - Histogram of degrees

(a) Both the random and the FR-Twitch graphs

(b) Both: Zoomed

Figure 3: Histogram: Degree Distrubitions

04 - Degree Correlation

a. Degree Correlation Matrix

Figure 4: Degree correlation matrix (degree re-scaled from 1 to 6 to make it more visible and expressive

Using the simple code that I have implemented. This is the degree correlation matrix of this network graph.

The only remark one can make is to say that low-degree nodes tend to connect with only low-degree nodes.

b. Pearson Degree Correlation

Using the netwokx's degree_pearson_correlation_coefficient function, we found that the (Pearson) degree correlation is -0.17.

In this case, we have r = -0.170 which means that this graph is an Assortative Network¹. This matches our previous analysis and remarks using the generated degree correlation matrix.

05 - Histogram of clustering coefficient

Figure 5: Histogram: Clustering Coefficient

With no surprise, these two distributions have nothing in common. While the random graph's distribution has a similar shape to a Poisson distribution with $\lambda = 1$, the FR-Twitch dataset seems to have a higher value for λ with a bump around 0.

06 - Histogram of distances

Figure 6: Histogram: Distances

Unlike all of the previous plots, this histogram shows a high similarity for the two distributions (with lower deviation for the network graph)

¹Assortative networks: is a type of network graph in which nodes tend to connect to other nodes of a similar degree.

2.1 Extra requirements

09 - Community detection

Using the greedy_modularity_communities() function, and here are the results:

• Number of communities detection: 23.

• The average size of each community: 284.74.

• Size deviation: 715.65 (very high).

• Maximum size: 2821

• Minimum size: 2

I failed to display the different communities with Plotly...

08 - Triangles

Expected number of triangles for random graphs:

For three distinct nodes $i, j, k \in V$, the probability that the three edges (i, j), (j, k) and (i, k) exist is p^3 . Let $T_{i,j,k}$ a random variable equal to 1 if the triangle on those three nodes exists in the graph G, or 0 otherwise. (Hence, $\mathbb{P}(T_{i,j,k}=1)=p^3$).

Then, the expected number of triangles in graph G can be computed like this:

$$\mathbb{E}\left[\sum_{i,j,k} T_{i,j,k}\right] = \sum_{i,j,k} \mathbb{E}\left[T_{i,j,k}\right]$$
$$= \sum_{i,j,k \in V} \mathbb{P}\left(T_{i,j,k} = 1\right)$$
$$= \binom{n}{3} p^3$$

In this case, with n =and p =, we have:

- The number of triangles of our dataset is 422694².
- The number of triangles of our dataset is around 6788.79³.

Some remarks:

- The original value (from the karate graph) has a way higher value of 422K.
- The expected value is not even half of it, but this was expected!

References

[1] B. Rozemberczki, C. Allen, and R. Sarkar. Multi-scale attributed node embedding, 2019.

²Using the networkx's triangles() function

³Using the estimation method