2.10 VOĽNÝ PÁD

1. Doplňte tabuľku pre voľne padajúce teleso z výšky 300m. g=9,81ms⁻²

t (s)	1			4	5		
v (ms ⁻²)			29,43				76,72
h (m)		280,38				59,66	

Riešenie:

t (s)	1	2	3	4	5	7	7,82
v (ms ⁻²)	9,81	19,62	29,43	39,24	49,05	68,67	76,72
h (m)	295,10	280,38	255,86	221,52	177,38	59,66	0

2. Voľne padajúce teleso má v bode A rýchlosť 3,0 ms⁻¹, v nižšie položenom bode B rýchlosť 7,0 ms⁻¹. Zistite za aký čas prejde vzdialenosť AB. Aká je vzdialenosť bodov A a B? Akou rýchlosťou teleso dopadne, ak jeho pohyb z bodu B na zem trvá ešte 2 s.

Zápis:

$$v_A = 3 \text{ ms}^{-1}$$

$$v_B = 7 \text{ ms}^{-1}$$

$$g = 10 \text{ms}^{-2}$$

Riešenie:

$$v_B = v_A + gt$$

$$t = \frac{v_B - v_A}{v_B}$$

$$t = \frac{v_B - v_A}{g}$$
$$t = \frac{7 - 3}{10}$$

$$t = 0.4s$$

$$v_z = v_B + gt_z$$

$$v_z = 7 + 10 \times 2$$

$$v_z = 27ms^{-1}$$

$$IABI = v_A \times t + \frac{1}{2} \times g \times t^2$$

$$IABI = 3 \times 0.4 + \frac{1}{2} \times 10 \times 0.4^{2}$$

$$IABI = 2m$$

3. Teleso padajúce voľným pádom prešlo za posledných 0,5s dráhu 10m. Určte rýchlosť telesa v okamihu dopadu. [v = 22,5 ms⁻¹]

4. Za ako dlho a akou rýchlosťou dopade teleso na zem pri voľnom páde z výšky 35m? $[t = 2,67 \text{ s}, v = 26,20 \text{ ms}^{-1}]$

5. Z akej výšky padalo teleso voľným pádom (g=9,81 ms⁻²), ak dopadlo na zem rýchlosťou 82 kmh^{-1} ? [h = 26,44 m]

6. Rýchlovarná kanvica prestala variť, bola teda majiteľkou vyhodená oknom z výšky 7 metrov. Akou rýchlosťou dopadla kanvica na zem? Odpor vzduchu zanedbajte. $[v = 11,72 \text{ ms}^{-1}]$

7. Voľne padajúci kameň má v jednom bode svojej dráhy okamžitú rýchlosť 50 ms⁻¹ a v inom, nižšie položenom bode rýchlosť 80 ms⁻¹. Za aký čas dopadne kameň z prvého bodu do druhého a ako ďaleko sú body od seba vzdialené?

Zápis:

$$v_1 = 50 \text{ ms}^{-1}$$

 $v_2 = 80 \text{ ms}^{-1}$
 $g = 10 \text{ms}^{-2}$

Riešenie:

$$\Delta t = \frac{v_2 - v_1}{g}$$

$$\Delta t = \frac{80 - 50}{10}$$

$$\Delta t = 3s$$

$$\Delta s = s_2 - s_1$$

$$\Delta s = \frac{1}{2}g(t_2^2 - t_1^2)$$

$$\Delta s = \frac{1}{2}g(\left(\frac{80}{10}\right)^2 - \left(\frac{50}{10}\right)^2)$$

$$\Delta s = 195m$$

- 8. Vypočítajte okamžité rýchlosti voľného pádu na konci 1., 3., 5. a7. sekundy. Výsledky zostavte do tabuľky. [$v_1 = 10 \text{ ms}^{-1}$, $v_3 = 30 \text{ ms}^{-1}$, $v_5 = 50 \text{ ms}^{-1}$, $v_7 = 70 \text{ ms}^{-1}$]
- 9. Akú dráhu prejde teleso počas 8. sekundy voľného pádu? [s = 73,58 m]
- 10. Za akú dobu nadobudne voľne padajúce teleso rýchlosť 29,4 ms⁻¹? Akú dráhu pri tom prejde? [t = 3 s, s = 44,15 m]