A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EO

Bookmark

Show all steps: ON

ON

Problem

The purpose of this exercise is to prove a property of cosets which is needed in Exercise Q. Let G be a finite abelian group, and let a be an element of G such that ord(a) is a multiple of ord(x) for every $x \in G$. Let $H = \langle a \rangle$. We will prove:

For every $x \in G$, there is some $y \in G$ such that Hx = Hy and ord(y) = ord(Hy).

This means that every coset of *H* contains an element *y* whose order is the same as the coset's order.

Let x be any element in G, and let ord (a) = t, ord(x) = s, and ord (Hx) = r.

Explain why $a^{mu} = e$, and why it follows that mu = tz for some integer z. Then explain why m = ruz.

Step-by-step solution

Step 1 of 4

Consider that *G* is a finite abelian group. Let $a, x \in G$ and $H = \langle a \rangle$ is a subgroup of *G*. Suppose that order of the elements are:

$$\operatorname{ord}(a) = t$$
,

$$\operatorname{ord}(x) = s$$
,

$$ord(Hx) = r$$
.

Note that r is the least positive integer such that x^r equals some power of a, say $x^r = a^m$. Also r divides s, and s divides t.

Objective is to prove that $a^{mu} = e$, and it follows that mu = tz for some integer z. Also explain that m = rvz.

Comment

Comment Step 3 of 4 Since $\operatorname{ord}(a) = t$ and order is the least positive integer to $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibilistic such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and g et, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	Step 3 of 4 It positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$ Now, by the cancellation law,
$x^s = x^{ru}$ $= (x^r)^u$ $= (a^m)^u$ $= a^{mu}$. Since $x^s = e$, therefore $a^{mu} = e$. Comment Step 3 of 4 Since $\operatorname{ord}(a) = t$ and order is the least positive integer to e t mu . So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibilisuch that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
$= (x^r)^u$ $= (a^m)^u$ $= a^{mu}$. Since $x^s = e$, therefore $a^{mu} = e$. Comment Step 3 of 4 Since $\operatorname{ord}(a) = t$ and order is the least positive integer to t . I mu. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv, \text{ or } t = ruv.$ Substitute the value of t in $mu = tz$ and get, $mu = ruvz.$ $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
$= (a^m)^u$ $= a^{mu}$ Since $x^s = e$, therefore $a^{mu} = e$ Comment Step 3 of 4 Since $\operatorname{ord}(a) = t$ and order is the least positive integer to t $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $x^s = e$, therefore $a^{mu} = e$. Comment Step 3 of 4 Since $\operatorname{ord}(a) = t$ and order is the least positive integer to t $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $x^s = e$, therefore $a^{mu} = e$. Comment Step 3 of 4 Since $\operatorname{ord}(a) = t$ and order is the least positive integer to t $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Comment Step 3 of 4 Since $\operatorname{ord}(a) = t$ and order is the least positive integer to t $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get , $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $\operatorname{ord}(a) = t$ and order is the least positive integer to $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get , $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $\operatorname{ord}(a) = t$ and order is the least positive integer to $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer.	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $\operatorname{ord}(a) = t$ and order is the least positive integer to $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get , $mu = ruvz$. $m = rvz$. Comment	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $\operatorname{ord}(a) = t$ and order is the least positive integer to $t \mid mu$. So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer t .	t positive integer to give an identity. Therefore, some integer z , definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibilisuch that $s = ru$, $t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer t .	definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
So, mu is a multiple of t . That is, for some integer z , $mu = tz$. Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru$, $t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integer a .	definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some interpolations.	definition of divisibility, there exist some integer u and v and get, $mu = ruvz$. Now, by the cancellation law,
Since $r \mid s$ and $s \mid t$, therefore by the definition of divisibil such that $s = ru, t = sv$, or $t = ruv$. Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integrals.	and get, $mu = ruvz.$. Now, by the cancellation law,
such that $s=ru,t=sv$, or $t=ruv$. Substitute the value of t in $mu=tz$ and get, $mu=ruvz$. $m=rvz$. Comment Step 4 of 4 Hence, $a^{mu}=e$, and it follows that $mu=tz$ for some integrations.	and get, $mu = ruvz.$. Now, by the cancellation law,
Substitute the value of t in $mu = tz$ and get, $mu = ruvz$. $m = rvz$. Comment Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integral e .	Step 4 of 4
Comment	Step 4 of 4
Comment	·
Step 4 of 4 Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integrations.	·
Hence, $a^{mu} = e$, and it follows that $mu = tz$ for some integration	·
	m = tz for some integer z . Also, $m = rvz$.
	m = tz for some integer z . Also, $m = rvz$.
Comment	

From the hypothesis, one have