Appliances Energy Prediction using SVR

```
In [1]: #importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.svm import SVR
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import warnings
warnings.filterwarnings('ignore')
```

Reading dataset

```
In [2]: df = pd.read_csv('data/energydata_complete.csv')
    df.head()
```

Out[2]:		date	Appliances	lights	T1	RH_1	T2	RH_2	Т3	RH_3	T4	•••	Т9	RH_
	0	2016- 01-11 17:00:00	60	30	19.89	47.596667	19.2	44.790000	19.79	44.730000	19.000000		17.033333	45.5
	1	2016- 01-11 17:10:00	60	30	19.89	46.693333	19.2	44.722500	19.79	44.790000	19.000000		17.066667	45.5
	2	2016- 01-11 17:20:00	50	30	19.89	46.300000	19.2	44.626667	19.79	44.933333	18.926667		17.000000	45.5
	3	2016- 01-11 17:30:00	50	40	19.89	46.066667	19.2	44.590000	19.79	45.000000	18.890000		17.000000	45.4
	4	2016- 01-11 17:40:00	60	40	19.89	46.333333	19.2	44.530000	19.79	45.000000	18.890000		17.000000	45.4

5 rows × 29 columns

```
In [3]: df.shape
Out[3]: (19735, 29)
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>

```
19735 non-null
 6
    RH 2
                                 float64
 7
    Т3
                 19735 non-null
                                 float64
    RH 3
                 19735 non-null
                                 float64
 9
    Т4
                 19735 non-null
                                float64
 10 RH 4
                 19735 non-null
                                 float64
 11
    T5
                 19735 non-null
                                 float64
 12
    RH 5
                 19735 non-null
                                 float64
 13
    Т6
                 19735 non-null
                                 float64
 14
    RH 6
                 19735 non-null
                                 float64
 15
    Т7
                 19735 non-null
                                 float64
 16 RH 7
                 19735 non-null
                                 float64
 17
    Т8
                 19735 non-null
                                 float64
 18 RH 8
                 19735 non-null
                                 float64
 19
    Т9
                 19735 non-null
                                 float64
 20 RH 9
                 19735 non-null
                                float64
 21 T out
                 19735 non-null float64
 22 Press mm hg 19735 non-null
                                 float64
 23 RH out
                 19735 non-null
                                 float64
 24 Windspeed
                 19735 non-null
                                 float64
                                 float64
 25 Visibility 19735 non-null
    Tdewpoint
                 19735 non-null
                                 float64
 27 rv1
                 19735 non-null
                                 float64
 28 rv2
                 19735 non-null
                                 float64
dtypes: float64(26), int64(2), object(1)
memory usage: 4.4+ MB
```

Appliances lights

T1

df = df.set index('date') In [5]:

Out[5]:

df.head()

T2

RH₁

date											
2016- 01-11 17:00:00	60	30	19.89	47.596667	19.2	44.790000	19.79	44.730000	19.000000	45.566667	 17.033
2016- 01-11 17:10:00	60	30	19.89	46.693333	19.2	44.722500	19.79	44.790000	19.000000	45.992500	 17.066
2016- 01-11 17:20:00	50	30	19.89	46.300000	19.2	44.626667	19.79	44.933333	18.926667	45.890000	 17.000
2016- 01-11 17:30:00	50	40	19.89	46.066667	19.2	44.590000	19.79	45.000000	18.890000	45.723333	 17.000
2016- 01-11 17:40:00	60	40	19.89	46.333333	19.2	44.530000	19.79	45.000000	18.890000	45.530000	 17.000

RH₂

T3

RH₃

T4

RH_4 ...

5 rows × 28 columns

EDA

df.describe().T In [6]:

Out[6]:	count		mean st		min	25%	50%	75%	max
	Appliances	19735.0	97.694958	102.524891	10.000000	50.000000	60.000000	100.000000	1080.000000
	lights	19735.0	3.801875	7.935988	0.000000	0.000000	0.000000	0.000000	70.000000

1	1 19735.0	21.686571	1.606066	16.790000	20.760000	21.600000	22.600000	26.260000
RH_	1 19735.0	40.259739	3.979299	27.023333	37.333333	39.656667	43.066667	63.360000
1	2 19735.0	20.341219	2.192974	16.100000	18.790000	20.000000	21.500000	29.856667
RH_	2 19735.0	40.420420	4.069813	20.463333	37.900000	40.500000	43.260000	56.026667
1	3 19735.0	22.267611	2.006111	17.200000	20.790000	22.100000	23.290000	29.236000
RH_	3 19735.0	39.242500	3.254576	28.766667	36.900000	38.530000	41.760000	50.163333
1	4 19735.0	20.855335	2.042884	15.100000	19.530000	20.666667	22.100000	26.200000
RH_	4 19735.0	39.026904	4.341321	27.660000	35.530000	38.400000	42.156667	51.090000
1	5 19735.0	19.592106	1.844623	15.330000	18.277500	19.390000	20.619643	25.795000
RH_	5 19735.0	50.949283	9.022034	29.815000	45.400000	49.090000	53.663333	96.321667
1	6 19735.0	7.910939	6.090347	-6.065000	3.626667	7.300000	11.256000	28.290000
RH_	6 19735.0	54.609083	31.149806	1.000000	30.025000	55.290000	83.226667	99.900000
1	7 19735.0	20.267106	2.109993	15.390000	18.700000	20.033333	21.600000	26.000000
RH_	7 19735.0	35.388200	5.114208	23.200000	31.500000	34.863333	39.000000	51.400000
1	8 19735.0	22.029107	1.956162	16.306667	20.790000	22.100000	23.390000	27.230000
RH_	8 19735.0	42.936165	5.224361	29.600000	39.066667	42.375000	46.536000	58.780000
1	9 19735.0	19.485828	2.014712	14.890000	18.000000	19.390000	20.600000	24.500000
RH_	9 19735.0	41.552401	4.151497	29.166667	38.500000	40.900000	44.338095	53.326667
T_oı	ıt 19735.0	7.411665	5.317409	-5.000000	3.666667	6.916667	10.408333	26.100000
Press_mm_h	g 19735.0	755.522602	7.399441	729.300000	750.933333	756.100000	760.933333	772.300000
RH_o	ıt 19735.0	79.750418	14.901088	24.000000	70.333333	83.666667	91.666667	100.000000
Windspee	d 19735.0	4.039752	2.451221	0.000000	2.000000	3.666667	5.500000	14.000000
Visibili	y 19735.0	38.330834	11.794719	1.000000	29.000000	40.000000	40.000000	66.000000
Tdewpoii	nt 19735.0	3.760707	4.194648	-6.600000	0.900000	3.433333	6.566667	15.500000
rv	1 19735.0	24.988033	14.496634	0.005322	12.497889	24.897653	37.583769	49.996530
rv	2 19735.0	24.988033	14.496634	0.005322	12.497889	24.897653	37.583769	49.996530

In [7]: #plotting distributions of features
 df.hist(bins=50, figsize=(20,15))
 plt.show()

- · Distribution of appliances is right skewed
- Most of the records in light column have value 0
- RH_out is left skewed
- Visibily has a irregular distribution, most number of datapoints have value close to 40
- All the temperature and most of the humidity columns follow normal distribution

```
In [8]: #correlation heatmap
corr = df.corr()
plt.figure(figsize=(20,20))
sns.heatmap(corr, annot=True)
```

Out[8]: <AxesSubplot: >

- Other vairalbes doesn't show any strong positive correlation with targe Appliances
- Temperature columns have multicollinearity
- Humidity columns shows multicolllinearity
- columns rv1 and rv2 seems irrelevent

Data preprocessing

```
Т3
                        0
        RH 3
        Τ4
                        0
        RH 4
                       0
        T5
                       0
        RH 5
                       0
        T6
                        0
                       0
        RH 6
        Т7
                       0
        RH 7
                       0
        Т8
                        0
        RH 8
                       0
        Т9
        RH 9
                        0
        T out
                        0
        Press mm hg
        RH out
                        0
        Windspeed
                        0
                       0
        Visibility
        Tdewpoint
                        0
        rv1
        rv2
        dtype: int64
In [10]: #checking for duplicate values
         df.duplicated().sum()
Out[10]:
In [11]: #creating fetature matrix and target vector
        X = df.drop(['Appliances', 'T2', 'T3', 'T4', 'T5', 'T7', 'T8', 'T9', 'rv1', 'rv2'], axis
         y = df['Appliances']
In [12]: #splitting dataset into train and test splits
         from sklearn.model_selection import train test split
        X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=1)
In [13]: | #feature scaling
         from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         scaler = scaler.fit(X train)
        X trainScl = scaler.transform(X train)
         X testScl = scaler.transform(X test)
        Model Building
In [22]: regressor = SVR(kernel='rbf', C=10000)
         regressor.fit(X trainScl, y train)
Out[22]:
              SVR
        SVR(C=10000)
In [23]: y_pred = regressor.predict(X testScl)
```

RH 2

r2 score(y test, y pred)

0.39455366162908423

Out[23]: