Sequential ATPG

- Introduction
- Time-frame expansion methods
- Simulation-based methods*
- Issues of Sequential ATPG* (not in exam)
- Conclusions

Issues of Sequential ATPG

- ① Ckts. without initialization input
- 2 Potentially detected faults can escape test
- 3 Asynchronous ckt. requires special attention

① Circuit w/o Initialization Input

- Example
 - Mod 3 counter (BA Fig. 8.12)
 - 10→ 00→ 01→ 10 →

Cannot Find Initialization Sequence

② Potentially Detected Faults

- DEF: faults that may or may not be detected
 - Also see Video 5.7
- Example: detection of fault depends on the power-up states
 - **♦** $Y_1 = xy_1y_2 + y_1y_2' + y_1'y_2 (+ xy_1'y_2')$ faulty STG missing term
 - $Y_2 = y_1 y_2 + y_1 y_2'$
 - \bullet Z = y_1y_2

Fault-free STG

- {0 1 1} initializes the circuit to state 11
- Good response to input {0110} is
 - \star z = 1001

X/Z

Fault Detection is Uncertain

Faulty STG

- {0 1 1} cannot initialize circuit
- Response at z to {0110}:
 - Power-up state 00,
 - -z = 0000
 - fault detected
 - Power-up state 01,10, or 11
 - -z = 1001
 - fault NOT detected

3 Asynchronous Circuits

- No explicit clock. Signals can change asynchronously
- Timing can be difficult to model
 - ◆ Test patterns generated may cause races and hazards
 - Need to verify test sequence with a fault simulator
- Example: Circuits with combinational loop

local feedback

global feedback

QUIZ

Q: Suppose you are a designer. Which of the following circuits you should avoid in order to avoid sequential ATPG?

- A) Combinational circuits with feedback loops
- B) Non-scan flip-flops without reset pins (video 11.8)
- C) Circuits with many different types of flip-flops
- D) Circuits with SRAM memories

Sequential ATPG

- Introduction
- Time-frame expansion methods
- Simulation-based methods*
- Issues of Sequential ATPG*
- Conclusions

Concluding Remarks

- Sequential ATPG
 - Generate PI patterns, observe PO. No scan allowed
- Benefits
 - Enable at-speed testing
 - Handles partial scan or non-scan circuits
- Problems
 - Low fault coverage, long run time, large memory
- Techniques
 - Time frame expansion (EBT, BACK, Extended-D ...)
 - Simulation (CONTEST)
- Current DFT & ATPG Practice
 - Use as much combinational ATPG as possible
 - Use sequential ATPG only when necessary

Sequential ATPG is Difficult. Need DfT! (Ch11)

References

- [Agrawal 88] Agrawal, Vishwani D., K-T. Cheng, and Prathima Agrawal.
 "CONTEST: A concurrent test generator for sequential circuits," Design Automation Conference, 1988. Proceedings., 25th ACM/IEEE. IEEE, 1988.
- [Cheng 88] Cheng, W-T. "The BACK algorithm for sequential test generation," Computer Design: VLSI in Computers and Processors, 1988.
 ICCD'88., Proceedings of the 1988 IEEE International Conference on. IEEE, 1988.
- [Holland 1975] Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA.
- [Kubo 68] H. KUBO "A procedure for generating test sequences to detect sequential circuit failures," NEC Res. & Dev., (Oct. 1968), 69 –78.
- [Marlett 78] Marlett, Ralph A. "EBT: A comprehensive test generation technique for highly sequential circuits," Proceedings of the 15th Design Automation Conference. IEEE Press, 1978.
- [Muth 76] P. Muth"A nine-valued circuit model for test generation," IEEE Trans. Comput., 25 (6), pp. 630–636, 1976.
- [Huffman 53] D. A. Huffman, "The Synthesis of Sequential Switching Circuits," MIT Thesis, 1953.

Commercial Tools

- Mentor Graphics
 - Flextest
- Synoposys
 - Tetramax
- Syntest
 - turboscan

Academic Tools

- Time-Frame Expansion
 - **♦** ESSENTIAL [89]
 - **♦** FASTEST[89]
 - HITEC [Niermanh & Patel 91]
 - Lee-Reddy [91]
- Genetic Algorithm
 - CRIS [Saab & Abraham 96]
 - GATEST [Rudnick 97]
 - ◆ GATTO [96]
 - STRATEGATE [97]