

VII. Országos Magyar Matematikaolimpia XXXIV. EMMV

országos szakasz, Csíkszereda, 2025. február 24–28.

IX. osztály – I. forduló

1. feladat. Határozd meg azokat az (x, y) természetes számpárokat, amelyek teljesítik az

$$5x^2 + y^2 - 2xy + 6x - 2y = 8$$

összefüggést!

2. feladat. Az a, b, c szigorúan pozitív valós számokra a + b + c = 2025. Igazold, hogy

$$\frac{a+b}{\sqrt{2025c+ab}} + \frac{b+c}{\sqrt{2025a+bc}} + \frac{a+c}{\sqrt{2025b+ac}} \ge 3.$$

- **3. feladat.** Ha $A = [\sqrt{1}] + [\sqrt{3}] + [\sqrt{5}] + \ldots + [\sqrt{2025}]$, igazold, hogy $A^2 1$ osztható 506-tal, ahol [a] az a szám egészrészét jelöli!
- **4. feladat.** Az ABC háromszög AA_1 , BB_1 és CC_1 magasságai a háromszög köré írt O középpontú kört rendre az A_2 , B_2 és C_2 pontokban metszik.
- a) Igazold hogy az ABA_2C négyszög G_a súlypontja az OA_1 szakasz felezőpontja!
- b) Ha H az ABC háromszög ortocentruma, G_1 és G_2 az $A_1B_1C_1$, illetve az $A_2B_2C_2$ háromszög súlypontja, igazold, hogy G_1 a HG_2 szakasz felezőpontja!