8th Meet

□ 오늘 공부할 것은

	AV TVI MIN DOL. SITI TILL OUTLESS	
05	06. 규제 선형 모델 - 릿지, 라쏘, 엘라스틱넷	337
03	규제 선형 모델의 개요	337
Almi	릿지 회귀	339
회귀	라쏘 회귀	342
	엘라스틱넷 회귀	345
	선형 회귀 모델을 위한 데이터 변환	347
	07. 로지스틱 회귀	350
	08. 회귀 트리	35
	09. 회귀 실습 - 자전거 대여 수요 예측	36
	데이터 클렌징 및 가공과 데이터 시각화	36
	로그 변환, 피처 인코딩과 모델 학습/예측/평가	36
	10. 회귀 실습 - 캐글 주택 가격: 고급 회귀 기법	37
	데이터 사전 처리(Preprocessing)	37
	선형 회귀 모델 학습/예측/평가	38
	회귀 트리 모델 학습/예측/평가	39
	회귀 모델의 예측 결과 혼합을 통한 최중 예측	39
	스태킹 앙상불 모델을 통한 회귀 예측	39
	11. 정리	39

Now, It's your turn P.P.P.

40min ~ 50min

Chapter 05

धेन। (Regression)

[05-06] 규제 선형 모델 - 있지, 라쏘, 엘라스틱넷

□ 규제 선형 모델의 개요

비용 함수의 목표 $\rightarrow Min(RSS(W) + \alpha * ||W||_2^2)$ 회귀계수 크기를 조절하기 위한 부분 \rightarrow Regularization (규제)

□ 릿지 (Ridge, L2-Regularization)

$$y = \omega_1 * x_1 + \omega_2 * x_2 + \omega_3 * x_3 + \dots$$
$$\omega_1^2 + \omega_2^2 + \omega_3^2 + \dots \le R$$

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week 07-Regularization.ipynb

```
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score
import numpy as np

ridge = Ridge(alpha = 10)
neg_mse_scores = cross_val_score(ridge, data_X, target_y, scoring="neg_mean_squared_error", cv=5)

rmse_scores = np.sqrt(-1 * neg_mse_scores)
avg_rmse = np.mean(rmse_scores)

print(' 5 folds 의 개별 Negative MSE scores: ', np.round(neg_mse_scores, 3))
print(' 5 folds 의 개별 RMSE scores : ', np.round(rmse_scores, 3))
print(' 5 folds 의 평균 RMSE : {0:.3f} '.format(avg_rmse))

5 folds 의 개별 Negative MSE scores: [-16.419 -26.269 -34.91 -92.726 -58.468]
5 folds 의 개별 RMSE scores : [4.052 5.125 5.909 9.629 7.646]
5 folds 의 평균 RMSE : 6.472
```

□ 라쏘 (Lasso, L1-Regularization)

$$y = \omega_1 * x_1 + \omega_2 * x_2 + \omega_3 * x_3 + \dots$$
$$|\omega_1| + |\omega_2| + |\omega_3| + \dots \le R$$

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week 07-Regularization.ipynb

```
lasso_alphas = [ 0.07, 0.1, 0.5, 1, 3]

coeff_lasso_df = get_linear_reg_eval('Lasso', params=lasso_alphas, data_X_n=data_X, target_y_n=target_y)

####### Lasso ######
alpha 0.07일 때 5 폴드 세트의 평균 RMSE: 6.676
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 6.694
alpha 0.5일 때 5 폴드 세트의 평균 RMSE: 6.792
alpha 1일 때 5 폴드 세트의 평균 RMSE: 6.874
alpha 3일 때 5 폴드 세트의 평균 RMSE: 7.289
```

☐ Ridge & Lasso

https://www.youtube.com/watch?v=Xm2C_gTAl8c

□ 엘라스틱넷 (Elastic Net, L1+L2-Regularization)

$$Min(RSS(W) + \lambda_1 * ||W||_2^2 + \lambda_2 * ||W||_1)$$

$$y = \omega_1 * x_1 + \omega_2 * x_2 + \omega_3 * x_3 + \dots$$
$$(\omega_1^2 + \omega_2^2 + \omega_3^2 + \dots) + (|\omega_1| + |\omega_2| + |\omega_3| + \dots) \le R$$

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week 07-Regularization.ipynb

```
elastic_alphas = [ 0.07, 0.1, 0.5, 1, 3]

coeff_elastic_df = get_linear_reg_eval('ElasticNet', params=elastic_alphas, data_X_n=data_X, target_y_n=target_y)

####### ElasticNet ######
alpha 0.07일 때 5 폴드 세트의 평균 RMSE: 6.567
alpha 0.1일 때 5 폴드 세트의 평균 RMSE: 6.550
alpha 0.5일 때 5 폴드 세트의 평균 RMSE: 6.451
alpha 1일 때 5 폴드 세트의 평균 RMSE: 6.552
alpha 3일 때 5 폴드 세트의 평균 RMSE: 7.122
```

□ 선형 회귀 모델을 위한 데이터 변환

- 선형 회귀 모델은 features, label 모두 정규 분포 선호

```
Case 1

- StandardScaler: 평균 = 0, 분산 = 1

- MinMaxScaler: 최솟값 = 0, 최댓값 = 1

Case 2

- Scaling/Normalization 한 데이터에

다시 다항 특성은 적용하여 변환

Case 3

- Log Transformation (로그 변환)
```


※ 출처: https://ko.wikipedia.org/wiki/정규 분포

https://github.com/whatwant-school/python-ml/blob/main/07-week/07-week 08-Transform.ipynb

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures
import numpy as np

def get_scaled_data(method='None', p_degree=None, input_data=None):
    if method == 'Standard':
        scaled_data = StandardScaler().fit_transform(input_data)

elif method == 'MinMax':
        scaled_data = MinMaxScaler().fit_transform(input_data)

elif method == 'Log':
        scaled_data = np.log1p(input_data)
```

[05-07] 로지스틱 회귀 (Logistic Regression)

☐ Linear Regression vs. Logistic Regression

Linear Regression

$$\hat{y} = \omega_0 + \omega_1 * x_1 + \omega_2 * x_2 + \dots$$

Logistic Regression

$$\hat{y} = sigmoid(w^T x + b)$$

☐ solver

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

solver: {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'}, default='lbfgs'

Algorithm to use in the optimization problem. Default is 'lbfgs'. To choose a solver, you might want to consider the following aspects:

- For small datasets, 'liblinear' is a good choice, whereas 'sag' and 'saga' are faster for large ones;
- · For multiclass problems, only 'newton-cg', 'saga' and 'lbfgs' handle multinomial loss;
- · 'liblinear' is limited to one-versus-rest schemes.
- 'newton-cholesky' is a good choice for n_samples >> n_features, especially with one-hot encoded categorical features with rare categories. Note that it is limited to binary classification and the one-versus-rest reduction for multiclass classification. Be aware that the memory usage of this solver has a quadratic dependency on n_features because it explicitly computes the Hessian matrix.

Warning: The choice of the algorithm depends on the penalty chosen. Supported penalties by solver:

- 'lbfgs' ['l2', None]
- 'liblinear' ['11', '12']
- 'newton-cg' ['l2', None]
- 'newton-cholesky' ['l2', None]
- 'sag' ['l2', None]
- 'saga' ['elasticnet', '11', '12', None]

Note: 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

	Solvers							
Penalties	'lbfgs'	'liblinear'	'newton-cg'	'newton-cholesky'	'sag'	'saga'		
Multinomial + L2 penalty	yes	no	yes	no	yes	yes		
OVR + L2 penalty	yes	yes	yes	yes	yes	yes		
Multinomial + L1 penalty	no	no	no	no	no	yes		
OVR + L1 penalty	no	yes	no	no	no	yes		
Elastic-Net	no	no	no	no	no	yes		
No penalty ('none')	yes	no	yes	yes	yes	yes		
Behaviors								
Penalize the intercept (bad)	no	yes	no	no	no	no		
Faster for large datasets	no	no	no	no	yes	yes		
Robust to unscaled datasets	ves	ves	ves	ves	no	no		

□ Logistic Regression

https://github.com/whatwant-school/python-ml/blob/main/08-week/08-week 01-LogisticRegression.ipynb

```
from sklearn.linear model import LogisticRegression
lr clf = LogisticRegression()
lr clf
                              LogisticRegression
LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                   intercept scaling=1, l1 ratio=None, max iter=100,
                   multi class='auto', n jobs=None, penalty='l2',
                    random state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm start=False)
from sklearn.metrics import accuracy score, roc auc score
lr clf.fit(train X, train y)
predicts = lr clf.predict(test X)
probas = lr clf.predict proba(test X)[:, 1]
print('accuracy: {0:.3f}, roc auc:{1:.3f}'.format(accuracy score(test y, predicts),
                                                 roc auc score(test y, probas)))
accuracy: 0.982, roc auc:0.998
```

[05-08] (Regression Tree)

□ Tree

☐ Table

Algorithm	Regression	Classification
Decision Tree	DecisionTreeRegressor	DecisionTreeClassifier
Gradient Boosting	GradientBoostingRegressor	Gradient Boosting Classifier
XGBoost	XGBRegressor	XGBClassifier
LightGBM	LGBMRegressor	LGBMClassfier

□ Code

https://github.com/whatwant-school/python-ml/blob/main/08-week/08-week 02-Tree.ipynb

[05-09] 회귀 실습 - 자전거 대여 수요 여측

☐ Bike Sharing Demand

- 위싱턴 DC의 Capital Bikeshare 프로그램에서 라거 사용 대턴라 날씨 데이터른 결합하여 자전거 대여 수요른 예측하기
- Capital Bikeshare 프로그램은 회원 가입, 대여, 자전거 반납 과정이 자동화되는 자전거 대여 수단
- 데이터는 여행 기간, 출발 위치, 도착 위치 및 경라 시간이 명시적으로 기록 → 도시의 이동성은 연구하는 데 사용 가능

1 = kaggle Q Search Create KAGGLE - PLAYGROUND PREDICTION COMPETITION - 9 YEARS AGO Home Competitions **Bike Sharing Demand** m Datasets Forecast use of a city bikeshare system & Models <> Code Overview Data Code Models Discussion Leaderboard Rules Discussions ← Learn Overview **Competition Host** ✓ More Kaggle Start Close Prizes & Awards Your Work May 29, 2014 May 30, 2015 Knowledge Does not award Points or Medals ▼ VIEWED Participation Bike Sharing Demand 3,559 Competitors 3,242 Teams Boston Housing 32,809 Entries Description

https://www.kaggle.com/c/bike-sharing-demand

☐ Bike Sharing Demand

https://github.com/whatwant-school/python-ml/blob/main/08-week/08-week 03-bike.ipynb

```
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from xgboost import XGBRegressor
from lightqbm import LGBMRegressor
rf reg = RandomForestRegressor(n estimators=500)
gbm reg = GradientBoostingRegressor(n estimators=500)
xqb reg = XGBRegressor(n estimators=500)
lgbm reg = LGBMRegressor(n estimators=500)
for model in [rf reg, gbm reg, xgb reg, lgbm reg]:
    get model predict(model, train X.values, test X.values, train y.values, test y.values, is expml=True)
### RandomForestRegressor ###
RMSLE: 0.349, RMSE: 48.095, MAE: 30.091
### GradientBoostingRegressor ###
RMSLE: 0.331, RMSE: 51.697, MAE: 32.198
### XGBRegressor ###
RMSLE: 0.344, RMSE: 52.341, MAE: 32.070
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000252 seconds.
You can set 'force row wise=true' to remove the overhead.
And if memory is not enough, you can set 'force col wise=true'.
[LightGBM] [Info] Total Bins 347
[LightGBM] [Info] Number of data points in the train set: 7620, number of used features: 72
[LightGBM] [Info] Start training from score 4.585795
### LGBMRegressor ###
RMSLE: 0.314, RMSE: 44.509, MAE: 27.586
```

[05-10] 회귀실습 - 캐글 주택 가격: 교급 회귀 기법

☐ House Prices - Advanced Regression Techniques

- 아이오아(Iowa) 주 에임스(Ames)에 있는 주거용 주택은 설명하는 79개의 변수를 사용하여 주택의 가격은 예측

https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques

☐ House Prices - Advanced Regression Techniques

https://github.com/whatwant-school/python-ml/blob/main/08-week/08-week_04-house.ipynb

You've really worked hard today

Next Week ~?

		St XII
	09. 회귀 트리	355
	09. 회귀 실습 - 자전거 대여 수요 예측	362
	데이터 클렌짐 및 가공과 데이터 시각화	363
	로그 변환, 피처 인코딩과 모델 학습/예측/평가	368
	10. 회귀 실습 - 캐글 주택 가격: 고급 회귀 기법	375
	데이터 사전 처리(Preprocessing)	375
	선형 회귀 모델 학습/예측/평가	380
	회귀 트리 모델 학습/예측/평가	391
	회귀 모델의 예측 결과 혼합을 통한 최종 예측	392
	스태킹 양상불 모델을 통한 화귀 예측	394
	11. 정리	397
7	01. 차원 축소(Dimension Reduction) 개요	399
06		
	 PCA(Principal Component Analysis) 	401
차원 축소	PCA 개요	401
	03. LDA(Linear Discriminant Analysis)	415
	LDA 개요	415
	04. SVD(Singular Value Decomposition)	418
	04. SVD(Singular Value Decomposition) SVD 개요	
		418
	SVD 湘요	418 418
	SVD 개요 사이킷런 TruncatedSVD 클래스를 이용한 변환	418 418 424

Who ~?

See you Next Weekend ~?