Yeast-Based Microplastics Sensing and Remediation Modeling

To detect and combat plastic pollution, especially from widespread fragments that are small enough to be ingested, I proposed a yeast-based solution. In the device I designed, there are genetically engineered yeast cells, which are able to sense, classify and quantify microplastics (MPs) in water with G protein-coupled receptors (GPCR), a dCas9-based toggle system and a focus on one MP, polyethylene terephthalate (PET). An enzyme, PETase, has been found to break PET down to mainly mono(2-hydroxyethyl) terephthalic acid (MHET) as well as some amounts of terephthalic acid (TPA) and ethylene glycol (EG).

Assumptions

- 1) The loss of the plasmids or the copy-variation is negligible.
- 2) The mutational rate of the genome integration is negligible.
- 3) The differences of genome integration at different loci are negligible.
- 4) The system is homogeneous without the consideration of diffusion and all yeast cells are identical.
- 5) The cell-growth, division and death are negligible.
- 6) The proteins will function properly in the water samples.
- 7) The yeast cells have tolerance to MPs as well as its degraded products at all stages.
- 8) The exogenous enzymes are optimized to the same level of performances in the yeast cells.
- 9) Each individual yeast cell has abundant RNA polymerases and ribosomes. All mRNAs are full piece, meaning not none-functional mRNAs. All ribosomal translation rates are the same.
- 10) All GPCRs and signals are orthogonal, meaning each signal and receptor pair with decent specificity.
- 11) The initial condition is set to be all GPCRs already expressed with exactly one receptor of each kind for each cell at t = 0 s.
- 12) PET_{aseout} or other kinds of enzymes for the initial MPs breaking down act homogeneously on different length of MPs polymer mixture. For instance, k_PETase is the same for PET_{n = 100} and PET_{n = 99}.

Models

The circuit toggle switch model with the dCas9 mutual inhibition:

$$\frac{dCas9 - | mKate}{dt} = \frac{k_Syn_{Cas9 - | mKate}}{1 + Cas9 - | GFP_{coorp1}} - k_deg_{Cas9 - | mKate} \cdot Cas9 - | mKate$$

$$\frac{dCas9 - | GFP}{dt} = \frac{k_Syn_{Cas9 - | GFP}}{1 + Cas9 - | mKate_{coorp2}} - k_deg_{Cas9 - | GFP} \cdot Cas9 - | GFP$$

The GPCR signaling pathway model:

$$\begin{array}{l} \text{PET}_n + \text{H}_2\text{O} + \text{PETase}_{\text{out}} \xrightarrow{k_\text{PETase}} \text{PET}_{n-1} + \text{MHET} + \text{PETase}_{\text{out}} \\ \text{MHET} + \text{H}_2\text{O} + \text{MHETase}_{\text{out}} \xrightarrow{k_\text{MHETase}} \text{TPA} + \text{EG} + \text{MHETase}_{\text{out}} \\ \text{TPA} \xrightarrow{k_\text{TPA}_\text{meta}} \emptyset \\ \text{MHET} + \text{GPCR}_{\text{MHET}} \xrightarrow{k_\text{On_MHET}} \text{MHET} \cdot \text{GPCR}_{\text{MHET}}; \text{MHET} \cdot \text{GPCR}_{\text{MHET}} \xrightarrow{k_\text{off_MHET}} \text{MHET} + \text{GPCR}_{\text{MHET}} \\ \text{MHET} \cdot \text{GPCR}_{\text{MHET}} \xrightarrow{k_\text{MHET}_\text{tln}} \text{mRNA}_{\text{PETase-MHETase-GFP-Cas9-|mKate}} \xrightarrow{k_\text{txn}} \text{PETase}_{\text{in}} + \text{MHETase}_{\text{in}} + \text{GFP} + \text{Cas9-|mKate} \\ \text{MRNA}_{\text{PETase-MHETase-GFP-Cas9-|mKate}} \xrightarrow{k_\text{deg_PETaseout}} \emptyset \\ \text{MHETase}_{\text{in}} \xrightarrow{k_\text{port_MHETase}} \text{MHETase}_{\text{out}}; \text{PETase}_{\text{out}}; \text{MHETase}_{\text{out}} \xrightarrow{k_\text{deg_MHETaseout}} \emptyset \\ \text{GFP} \xrightarrow{k_\text{deg_GFP}} \emptyset; \text{mKate} \xrightarrow{k_\text{deg_mKate}} \emptyset \end{array}$$

Calculations for Parameter Tweaking (the basis for "Educated Guess")

```
k\_Syn_{Cas9-|mKate} = k\_txn \cdot mRNA_{PETase-MHETase-GFP-Cas9-|mKate}
= k txn \cdot k MHET tln \cdot (MHET \cdot GPCR_{MHET})
```

As k_on_MHET to k_off_MHET ratio is 2×10^8 M⁻¹, it should be valid to be considered as fast dynamic compared to the transcription step. With this assumption moving forward, the amount of MHET · GPCR_{MHET} can be approximated as a constant if it were only in the binding dynamics, where:

 $\frac{d \text{ MHET} \cdot \text{GPCR}_{\text{MHET}} \text{ for binding}}{d \text{ meaning}} = 0, \text{ meaning}$

 $k_{on}MHET \cdot MHET \cdot GPCR_{MHET} - k_{off}MHET \cdot (MHET \cdot GPCR_{MHET} \text{ for binding}) = 0$, thus: MHET · $GPCR_{MHET} \text{ for binding} = \frac{k_on_MHET}{k_off_MHET} \cdot MHET \cdot GPCR_{MHET}$

Similarly, another assumption such that MHET is at steady state could be made. MHET concentration could be approximated by $\frac{d \text{ MHET } for \text{ meta}}{dt} = 0$, meaning:

$$k_Syn_{Cas9+mKate} = k_txn \cdot k_MHET_tln \cdot \frac{k_on_MHET}{k_off_MHET} \cdot \frac{k_PETase}{k_MHETase} \cdot PET_n \cdot GPCR_{MHET} = 50 \text{ nM/s}$$

 $k_Syn_{Cas 9 - | GFP} = k_txn \cdot k_tln = 50 \text{ nM/s}$

Based on literature that k_txn is 10 times slower than k_tln, k_txn = $\sqrt{50/10}$ = 2.24 with arbitrary units and k tln = 22.4 with arbitrary units.

k_MHET_tln
$$\cdot \frac{10^{-2} \, nM^{-1} \cdot min^{-1}}{0.05 \, min^{-1}} \cdot \frac{\text{k_PETase}}{4.25 \cdot 10^{-3} \, nM^{-1}} \cdot \text{PET}_{\text{n}} \cdot \text{GPCR}_{\text{MHET}} = \text{k_tln} = 22.4$$
 Modify GPCR_{MHET} to be the combination of associated rate constants divided by PET_n.

The parameters actually used in the model, N/A = not available:

Parameter	Meaning	Values Used	Values from Literature
k _{PETase}	Rate of PETase digesting PET ₁₀₀	$10^{-4} \text{nM}^{-1} \cdot \text{s}^{-1}$	N/A
k_MHETase	Rate of MHETase digesting MHET	$4.25 \mu \text{M}^{-1} \cdot \text{s}^{-1}$	$kcat/k_M = (31 \pm 0.8 \text{ s}^{-1}) / (7.3)$
_			$\pm 0.6 \ \mu \text{M}) = 4.25 \ \mu \text{M}^{-1} \cdot \text{s}^{-1}$
k_TPA_meta	Rate of TPA metabolism	10-3	N/A
k on MHET	Rate of MHET binds to GPCR _{MHET}	$10^7 \mathrm{M}^{\text{-1}} \cdot \mathrm{min}^{\text{-1}}$	Tunable; Estimated from the
k_off_MHET	Rate of MHET dissociates from	0.05 min ⁻¹	literature
	$MHET \cdot GPCR_{MHET}$		
k _{MHET tln}	Rate of MHET triggered translation,	$2.24 \text{ nM}^{-1} \cdot \text{s}^{-1}$	0.1 nM/h
	including MHET · GPCR _{MHET}		
	signaling cascade		
k _{tln}	Rate of transcription from DNA	$2.24 \text{ nM}^{-1} \cdot \text{s}^{-1}$	0.1 nM/h
k _{txn}	Rate of translation from mRNA	$0.224 \text{ nM}^{-1} \cdot \text{s}^{-1}$	0.01 nM/h
k_port_PETase	Rate of PETase transported from	$3.4/60 \text{ nM}^{-1} \cdot \text{s}^{-1}$	3.4 min ⁻¹
	intracellular to the water sample		
k_port_MHETase	Rate of MHETase transported from	$3.4/60 \text{ nM}^{-1} \cdot \text{s}^{-1}$	3.4 min ⁻¹
	intracellular to the water sample		
k _{GFP deg}	Rate of GFP degradation	$10^{-3} \text{ nM}^{-1} \cdot \text{s}^{-1}$	ln2/~5hrs, estimated from the
k mKate deg	Rate of mKate degradation	$10^{-2} \text{nM}^{-1} \cdot \text{s}^{-1}$	literature but tunable with
k PETase outdeg	Rate of PETase_out degradation	$10^{-3} \text{ nM}^{-1} \cdot \text{s}^{-1}$	degradation tags
k MHETase outdeg	Rate of MHETase_out degradation	$10^{-3} \text{ nM}^{-1} \cdot \text{s}^{-1}$	
k Cas9byBonA deg	Rate of dCas9 - GFP degradation	$10^{-1} \text{nM}^{-1} \cdot \text{s}^{-1}$	
k _{Cas9byAonB} deg	Rate of dCas9 - mKate degradation	$10^{-3} \text{ nM}^{-1} \cdot \text{s}^{-1}$	
corpCas9byBon	Cooperativity of dCas9 - GFP onto	1.6	1.6 from the current literature
Α	GFP DNA		but could be engineered to be
corpCas9byAon	Cooperativity of dCas9 - mKate	1.6	even higher
В	onto mKate DNA		

The variables and their meanings.

Variables	Meaning
PETn	None-degraded PET concentration
PETn-1	PETase degraded PET concentration
MHET	MHET concentration
TPA	TPA concentration
EG	EG, ethylene glycol, C ₂ H ₆ O ₂ , concentration

PETase _{out}	PETase concentration in water sample
PETase _{in}	PETase intracellular concentration
MHETase _{out}	MHETase concentration in water sample
MHETase _{in}	MHETase intracellular concentration
mKate	mKate concentration
GFP	GFP concentration
dCas9 - mKate	mKate repressing dCas9 concentration
dCas9 - GFP	GFP repressing dCas9 concentration
GPCR _{MHET}	Free GPCR specific to MHET
$MHET \cdot GPCR_{MHET}$	MHET bounded GPCR, initiating signals
mRNA _{PETase_MHETase_GFP_dCas9} - mKate	The concentration for the mRNA coded for PETase – MHETase – GFP – dCas9 - mKate

Files

BioSystem.m, Compositor.m, Const.m, MATLAB_sandbox.m, part_composition_setup.m, Part.m, Pulse.m, and Rate.m are part of the biomolecular simulation setup.

NoGPCR.m plots the simulations for the system with three different dCas9 cooperativities without the GPCR setup to determine the best cooperativity for the downstream case with GPCR. The plots are adjusted to the axes best represent the data.

WithGPCR.m plot the individual simulation result for the full system with different starting concentrations of PETn (none-degraded PET).

DiffGFPmKatePETnEG.m plots the overlay of GFP concentration, mKate concentration, PETn consumption and EG production. At the same time, the function obtains the minimum and maximum concentrations of GFP and mKate and the corresponding time achieving those.

ToggleComp.m compares the GFP and mKate concentrations with and without mKate calibration or called toggle system.

References

Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). *Science* **351**:1196–1199

Gardner TS, Cantor CR, Collins JJ. 2000. Construction of a genetic toggle switch in Escherichia coli. *Nature* **403**:339–342.

Zhang S, Voigt CA. 2018. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. *Nucleic Acids Research*.

Strasser A, Wittmann H-J, Seifert R. 2017. Binding Kinetics and Pathways of Ligands to GPCRs. *Trends in Pharmacological Sciences* **38**:717–732.

Hargrove, James L., et al. "The Kinetics of Mammalian Gene Expression." *BioEssays*, vol. 13, no. 12, 1991, pp. 667–674., doi:10.1002/bies.950131209.

Park, Seujeung, and W. Fred Ramirez. "Dynamics of Foreign Protein Secretion FromSaccharomyces Cerevisiae." *Biotechnology and Bioengineering*, vol. 33, no. 3, 1989, pp. 272–281., doi:10.1002/bit.260330305.