

[영역] 5.기하

중 2 과정

5-1-3.직각삼각형의 합동조건, 각의 이등분선의 성질

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2016-08-25

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

계산시 참고사항

1. 직각삼각형의 합동조건

두 직각삼각형 ABC와 DEF는 다음 각 경우에 합동이다.

주의

직각삼각형의 합동조건을 이용할 때 는 반드시 길이가 같은 변이 빗변인 지 확인해야한다.

2. 각의 이등분선의 성질

- 1) 각의 이등분선 위의 임의의 점은 그 각의 두 변에서 같은 거리에 있다.
 - \Rightarrow $\angle AOP = \angle BOP$ 이면 $\overline{PA} = \overline{PB}$
- 2) 각의 두 변에서 같은 거리에 있는 점은 그 각의 이등분선 위에 있다.
 - \Rightarrow $\overline{PA} = \overline{PB}$ 이면 $\angle AOP = \angle BOP$

직각삼각형의 합동조건

□ 다음 두 직각삼각형이 합동이 되는 조건인 것은 ○표, 아닌 것은 X 표를 하여라.

1. $\overline{AB} = \overline{DE}$, $\overline{AC} = \overline{DF}$

()

2. $\angle A = \angle D$, $\angle B = \angle E$

(

3. $\overline{AB} = \overline{DE}$, $\angle A = \angle D$

(

4. $\overline{BC} = \overline{EF}$, $\angle B = \angle E$

()

☑ 다음 그림과 같은 두 직각삼각형 ABC, DEF에서 다음에 답하여라.

- \triangle ABC와 \triangle DEF가 합동임을 보여라.
- 6. EF 의 길이를 구하여라.
- 7. ∠E의 크기를 구하여라.

☑ 다음 두 직각삼각형 중에서 서로 합동인 것을 찾아 기호≡ 를 써서 나타내고, 합동조건을 써라.

8.

9.

10.

11.

☑ 다음 〈보기〉에서 서로 합동인 직각삼각형을 모두 찾고, 합동 조건을 말하여라.

12.

13.

\square 다음과 같은 두 직각삼각형 ABC, DEF에 대하여 x의 값을 구하여라.

15.

16.

17.

18.

19.

ightharpoonup 다음 그림에서 x의 값을 구하여라.

20.

21.

22.

23.

직각삼각형의 합동조건의 응용

ightharpoonup 다음 그림과 같이 $\triangle ABC$ 에서 \overline{BC} 의 중점을 D라 하고 점 D에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 E , F라 할 때, ∠ x의 크기를 구하여라.

25.

26.

27.

28.

29.

ightharpoonup 다음 그림에서 $\triangle ABC$ 가 직각이등변삼각형일 때, x의 값을 구하여라.

30.

31.

32.

33.

34.

☑ 다음 그림에서 색칠한 부분의 넓이를 구하여라.

36.

37.

38.

39.

40.

41.

42.

43.

44. □ACDE**의 넓이**

☑ 다음 그림을 보고 알맞은 넓이를 구하여라.

45. 삼각형 ABC에서 점 M은 변 BC의 중점이고, 두 점 D, E 각각 두 꼭짓점 B, C에서 직선 AM에 내린 수선이 발이다. $\overline{AM} = 4 \text{cm}$, $\overline{EM} = 1 \text{cm}$, $\overline{CE} = 2 \text{cm}$ 일 때, 삼각형 ABD 의 넓이

46. 삼각형 ABC에서 점 M은 변 BC의 중점이고 두 점 D, E 는 각각 두 꼭짓점 B, C에서 직선 AM에 내린 수선의 발이 다. AM=8cm, EM=2cm, CE=4cm일 때, 삼각형 ABD의 넓이

B

각의 이등분선의 성질

 \square 다음 그림과 같이 ABC에서 $\angle x$ 의 크기를 구하여라.

48.

49.

50.

51.

53.

58.

54.

59.

55.

60.

56.

61.

 \square 다음 그림과 같은 직각삼각형 \triangle ABC에서 \triangle D가 \triangle A의 이등 분선일 때, x의 값을 구하여라.

62.

63.

64.

65.

66.

67.

68.

☐ 다음 그림과 같은 직각삼각형 ABC에서 △BDE의 둘레의 길이를 구하여라.

69.

 \square 다음 그림과 같이 직각삼각형 ABC에서 x+y의 값을 구하여라.

71.

72.

73.

74.

75.

76.

 \square 다음 그림과 같은 직각삼각형 ABC에서 $\angle A$ 의 이등분선이 \overline{BC} 와 만나는 점을 D라 하자. $\overline{AB} \perp \overline{DE}$ 일 때, $\triangle ABD$ 의 넓이를 구하여라.

77.

79.

80.

정답 및 해설

- 1) \bigcirc
- △ABC = △DEF (RHS 합동)
- 2) X
- 3) 🔾
- \Rightarrow \triangle ABC \equiv \triangle DEF (RHA 합동)
- 4) 🔾
- \Rightarrow \triangle ABC \equiv \triangle DEF (ASA 합동)
- 5) $\overline{AC} = \overline{DF}$, ∠ACB = ∠DFE = 90°, $\overline{AB} = \overline{DE}$ 이므로 △ABC ≡ △DEF(RHS 합동)
- 6) 5cm
- 7) 58°
- 8) $\triangle DEF = \triangle LKJ$ (RHA 합동)
- 9) $\triangle DEF = \triangle LJK$ (RHA 합동)
- 10) \triangle ABC \equiv \triangle IGH (RHS 합동)
- 11) $\triangle DEF = \triangle HGI (RHA 합동)$
- 12) ¬과 ㄹ (RHA 합동), ㄷ과 ㅁ (RHS 합동)
- 13) \triangle ABC \equiv \triangle QRP(RHS 합동) \triangle DEF \equiv \triangle JKL(RHA 합동) \triangle GHI \equiv \triangle MON(RHA 합동)
- 14) \triangle ABC \equiv \triangle HIG(RHS 합동) \triangle JKL \equiv \triangle ONM(RHA 합동) \triangle DEF \equiv \triangle RQP(SAS 합동)
- 15) 5
- Arr Arr
- 16) 5
- 17) 8
- 18) 60
- 19) 47
- 20) 6
- 21) 60
- 22) 6

- \triangle \triangle ABC \equiv \triangle EDC (RHA 합동)이므로 $x = \overline{AB} = 6$
- 23) 8
- \triangle \triangle ABC \equiv \triangle DBC(RHS 합동)이다. 따라서 x+4=2x-4이므로 x=8이다.
- 24) 3
- 25) 55°
- Arr Arr
- 26) 48°
- \triangle \triangle EBD \equiv \triangle FCD (RHS 합동)이므로 $\triangle x = \frac{1}{2} \times (180^{\circ} 84^{\circ}) = 48^{\circ}$
- 27) 24°
- \triangle \triangle EBD \equiv \triangle FCD (RHS 합동)이므로 \angle B = $\frac{1}{2} \times (180\degree 48\degree) = 66\degree$ $\therefore \angle x = 90\degree 66\degree = 24\degree$
- 28) 80°
- \triangle \triangle EBD \equiv \triangle FCD (RHS합동)이므로 \angle C = \angle B = 50 $^{\circ}$ \therefore \angle $x = 180 \,^{\circ} 2 \times 50 \,^{\circ} = 80 \,^{\circ}$
- 29) 50°
- \triangle \triangle EBD \equiv \triangle FCD (RHS 합동)이므로 \angle C = \angle B = 65 $^{\circ}$ \therefore \angle x = 180 $^{\circ}$ 2 \times 65 $^{\circ}$ = 50 $^{\circ}$
- 30) 8
- □ △DBA와 △EAC에서

 ∠D = ∠E = 90°, ĀB = CĀ이고

 ∠DAB + ∠DBA = 90°, ∠DAB + ∠EAC = 90°이므로

 ∠DBA = ∠EAC

 ∴ △DBA = △EAC (RHA합동)
 합동인 두 삼각형에서 대응변의 길이가 각각 같으므로

 DA = EC = 3, ĀE = BD = 5

 ∴x = 3+5=8
- 31) 14
- \triangle \triangle DBA \equiv \triangle EAC (RHA합동)이므로 $x = \overline{DA} + \overline{AE} = \overline{EC} + \overline{BD} = 6 + 8 = 14$
- 32) 15
- ⇒ △ADB = △BEC (RHA합동)이므로

$$x = \overline{DB} + \overline{BE} = \overline{EC} + \overline{AD} = 8 + 7 = 15$$

- 33) 4
- \triangle \triangle DBA = \triangle EAC (RHA합동)이므로 $x = \overline{DA} = \overline{DE} \overline{AE} = \overline{DE} \overline{BD} = 10 6 = 4$
- 34) 12
- 다 $\triangle ADB$ 와 $\triangle CEA에서$ $\overline{AB} = \overline{CA}$, $\angle ADB = \angle CEA = 90$ °, $\angle DBA = 90$ ° $\angle DAB = \angle EAC$ 이므로 $\triangle ADB = \triangle CEA(RHA 합동)$ 따라서 $\overline{DA} = \overline{EC} = 4(cm)$, $\overline{AE} = \overline{BD} = 8(cm)$ 이므로 $\overline{DE} = \overline{DA} + \overline{AE} = 4 + 8 = 12(cm)$ $\therefore x = 12$
- 35) 9
- $ightarrow \Delta ADB \equiv \Delta CEA(RHA 합동)이므로$ $<math>
 ightarrow \overline{DA} = \overline{EC} = 5(cm), \ \overline{AE} = \overline{BD} = x(cm)$ 따라서 $\overline{DE} = \overline{DA} + \overline{AE}$ 이므로 5+x=14 $\therefore x=9$
- 36) 12cm²
- $ightharpoonup \Delta ADB = \Delta BEC (RHA 합동)이므로$ $<math>\overline{BE} = \overline{AD} = 6 (cm)$ $\therefore \Delta BEC = \frac{1}{2} \times 6 \times 4 = 12 (cm^2)$
- 37) 98cm²
- △ADB = △BEC (RHA 합동)이므로
 DB = EC = 6(cm), BE = AD = 8(cm)
 따라서 DE = DB + BE = 6 + 8 = 14(cm)이므로
 (사각형 ADEC의 넓이) = 1/2 × (6+8) × 14 = 98(cm²)
- 38) 20cm²
- \triangle \triangle ABD = \triangle ACE (RHA합동)이므로 \overline{AD} =5cm, \overline{AE} =8cm이다.
 - $\therefore (\triangle ABD$ 의 넓이)= $5 \times 8 \times \frac{1}{2} = 20 \text{ (cm}^2)$
- 39) 15cm²
- $ightarrow \Delta ADB = \Delta BEC (RHA 합동) 이므로$ $<math>
 ightarrow DB = \overline{EC} = 5 (cm), \ \overline{BE} = \overline{AD} = 3 (cm)$ 따라서 색칠한 부분의 넓이는 $\Delta ADB + \Delta BEC = 2 \times \Delta ADB$ $= 2 \times \left(\frac{1}{2} \times 3 \times 5\right) = 15 (cm^2)$
- 40) 68cm²
- Arr Arr Arr Arr ADB = Arr Arr CEA(RHA 합동)이므로 Arr Arr

따라서
$$\overline{\mathrm{DE}} = \overline{\mathrm{DA}} + \overline{\mathrm{AE}} = 6 + 10 = 16 \, \mathrm{(cm)}$$
이므로 $\Delta \mathrm{ABC} = ($ 사각형 DBCE 의 넓이 $) - 2\Delta \mathrm{ADB}$ $= \frac{1}{2} \times (10 + 6) \times 16 - 2 \times \left(\frac{1}{2} \times 10 \times 6\right)$ $= 128 - 60 = 68 \, \mathrm{(cm^2)}$

- 41) 17cm²
- Arr Arr
- 42) 37cm²
- \triangle \triangle ABD = \triangle BCE (RHA 합동)이므로 $\overline{BD} = 7 \text{cm}, \overline{BE} = 5 \text{cm}$ 이다.
 - \therefore (\triangle ABC의 넓이)= $(5+7)\times12\times\frac{1}{2}-5\times7=37\,(\mathrm{cm}^2)$
- 43) $\frac{45}{2}$ cm²
- $ightarrow \Delta ABD \equiv \Delta CAE(RHA 합동)이므로 \overline{AE} = 3cm, \overline{AD} = \overline{CE} = 6cm$ 이다.
 - \therefore (\triangle ABC의 넓이)= $\frac{1}{2}$ \times (3+6) \times 9-3 \times 6= $\frac{45}{2}$ (cm²)
- 44) 18.5cm²
- 45) 5cm²
- $ightharpoonup \Delta BDM과 \Delta CEM에서 <math>\overline{BM} = \overline{CM}$, $\angle BDM = \angle CEM = 90^\circ$, $\angle BMD = \angle CME$ (맞꼭지각)이 므로 $\Delta BDM = \Delta CEM(RHA 합동)$ 이다. 이 때, $\overline{BD} = 2cm$, $\overline{DM} = 1cm$ 이므로 $(\Delta ABD의 넓이) = 2 \times 5 \times \frac{1}{2} = 5 (cm^2)$
- 46) 20cm²
- ⇒ $\triangle BDM$ 과 $\triangle CEM$ 에서 $\angle BDM = \angle CEM = 90$ °, $\overline{BM} = \overline{CM}$, $\angle BMD = \angle CME$ (맞꼭지각)이므로 $\triangle BDM \equiv \triangle CEM$ (RHA 합동)이다. 따라서 $\overline{DM} = \overline{EM} = 2 \text{cm}$, $\overline{BD} = \overline{CE} = 4 \text{cm}$ 이다. \therefore ($\triangle ABD$ 의 넓이)= $4 \times 10 \times \frac{1}{2} = 20 \text{ (cm}^2$)
- 47) 8cm²

 $\angle CBG = \angle BAF \cdots 2$

①, ②에서 $\triangle ABF \equiv \triangle BCG$ (RHA 합동)이다. 따라서 $\overline{BF} = 6 \text{cm}$, $\overline{BG} = 8 \text{cm}$ 이고, $\overline{FG} = 2 \text{cm}$ 이다.

$$\therefore$$
 (\triangle AFG의 넓이)= $2\times 8\times \frac{1}{2}=8$ (cm²)

- 48) 27°
- Arr Arr
- 49) 15°
- \triangle \triangle DBE \equiv \triangle CBE (RHS 합동)이므로 $\angle x = \frac{1}{2} \angle DBC = \frac{1}{2} \times (90 \degree 60 \degree) = 15 \degree$
- 50) 42°
- □ △ABD ≡ △AED (RHS 합동)이므로 ∠DAE = ∠DAB = 24°
- \therefore $\angle x = 90^{\circ} 2 \times 24^{\circ} = 42^{\circ}$
- 51) 46°
- ☆ △AED와 △ACD에서
 ∠E = ∠C = 90°, ĀD는 공통, ĒD = CD
 ∴ △AED = △ACD(RHS 합동)
 따라서 ∠DAC = ∠DAE = 22°이므로
 ∠BAC = 22° + 22° = 44°
 ∴ ∠x = 180° (90° + 44°) = 46°
- 52) 30°
- ightarrow ightarrow ightarrow ADE = ightarrowACE (RHA 합동)이므로 ightarrowDAE = ightarrowx ightarrowEA = ightarrowB 이므로 ightarrowB = ightarrowx ightarrowABC에서 2
 ightarrowx + ightarrowx = 90 $^\circ$ ightarrow ightarrowx = 30 $^\circ$
- 53) 50°
- $ightharpoonup \Delta DEC \equiv \Delta DBC (RHS 합동)이므로$ $<math>\angle ECD = \angle BCD = 180\degree - (90\degree + 70\degree) = 20\degree$ $\therefore \angle ACB = 20\degree + 20\degree = 40\degree$ ΔABC 에서 $\angle x = 180\degree - (90\degree + 40\degree) = 50\degree$
- 54) $65\degree$
- $ightharpoonup \Delta DEC$ 에서 $\angle DEC = 180\degree (90\degree + 40\degree) = 50\degree$ 이므로 $\angle BED = 180\degree 50\degree = 130\degree$ $\Delta ABE = \Delta ADE (RHS 합동) 이므로 <math>\angle x = \angle AED = \frac{1}{2} \angle BED = 65\degree$
- 55) 64°

- Arr Arr
- 56) 25°
- 57) 65°
- 58) 25°
- \triangle DBE = \triangle CBE (RHS합동)이므로 $\angle x = \angle \ \text{EBC} = \frac{1}{2} \angle \ \text{ABC} = \frac{1}{2} \times (90 \ ^{\circ} 40 \ ^{\circ}) = 25 \ ^{\circ}$
- 59) 34°
- $ightharpoonup \Delta DBE \equiv \Delta CBE \ (RHS합동)이므로$ $<math>\angle EBC = \angle EBD = 28^{\circ}$ $\therefore \angle x = 90^{\circ} - 2 \times 28^{\circ} = 34^{\circ}$
- 60) 72
- \triangle \triangle ABD \equiv \triangle AED (RHS합동)이므로 \angle BAD = \angle EAD = $\frac{1}{2}$ \angle BAC = $\frac{1}{2}$ \times (90 $^{\circ}$ -54 $^{\circ}$) = 18 $^{\circ}$ \therefore \angle x = 90 $^{\circ}$ -18 $^{\circ}$ =72 $^{\circ}$
- 61) 66°
- \triangle \triangle DBE \equiv \triangle CBE (RHS 합동)이므로 \angle EBC = \angle EBD = $\frac{1}{2} \times 48^{\circ} = 24^{\circ}$ \therefore $\angle x = 90^{\circ} 24^{\circ} = 66^{\circ}$
- 62) :
- △ACD와 △AED에서
 ∠C = ∠E = 90°, ĀD는 공통, ∠CAD = ∠EAD
 따라서 △ACD = △AED(RHA 합동)이므로
 ŪC = DE = 3(cm) ∴x = 3
- 63) 3
- Arr Arr
- 64) 3
- \triangle \triangle ABC = \triangle AEC (RHS 합동)이므로 $x = \overline{BC} = 3$
- 65) 2

- $ightharpoonup \Delta ABD \equiv \Delta AED(RHA 합동)이므로$ $<math>
 ightharpoonup \overline{BD} = \overline{ED} = 2(cm)$ 이때 ΔEDC 는 직각이등변삼각형이므로 $\overline{EC} = \overline{ED} = 2(cm)$ $\therefore x = 2$
- 66) 4
- \Rightarrow \triangle ADE = \triangle ADC (RHA 합동)이므로 $\overline{AE} = \overline{AC} = 6 \text{ (cm)}$ $\therefore \overline{BE} = 10 - 6 = 4 \text{ (cm)}$ $\therefore x = 4$
- 67) 14
- \triangle \triangle DBE = \triangle CBE (RHA합동)이므로 $\overline{BD} = \overline{BC} = 10$ $\therefore x = \overline{BD} + \overline{DA} = 10 + 4 = 14$
- 68) 3
- $ightharpoonup \Delta ADE = \Delta ACE (RHA합동)이므로$ $<math>\overline{AD} = \overline{AC} = 5$ $\therefore x = \overline{AB} - \overline{AD} = 8 - 5 = 3$
- 69) 12cm
- \triangle \triangle ADE \equiv \triangle ADC (RHS 합동)이므로 $\overline{\text{ED}} = \overline{\text{CD}}$ 이다. $\overline{\text{AE}} = \overline{\text{AC}} = 6 \text{cm}$, $\overline{\text{BE}} = 4 \text{cm}$ 일 때, \triangle BDE의 둘레의 길이는 $\overline{\text{BE}} + \overline{\text{BD}} + \overline{\text{CD}}$ 의 길이와 같다. 따라서 그 둘레의 길이는 4 + 8 = 12 (cm)이다.
- 70) 18cm
- \triangle \triangle ADE \equiv \triangle ACE(RHS 합동)이므로 $\overline{AD} = \overline{AC} = 9 cm$, $\overline{BD} = 6 cm$, $\overline{DE} = \overline{CE}$ 이다. 따라서 \triangle BED의 둘레의 길이는 $\overline{BD} + \overline{BE} + \overline{CE} = \overline{BD} + \overline{BC} = 6 + 12 = 18 cm$ 이다.
- 71) 17
- \triangle \triangle AOP \equiv \triangle BOP(RHA 합동)이므로 x=12, y=5이다. 따라서 x+y=17이다.
- 72) 7
- \triangle \triangle AOP \equiv \triangle BOP(RHA 합동)이므로 x=2, y=5이다. 따라서 x+y=7이다.
- 73) 68
- \triangle \triangle ADE \equiv \triangle ACE(RHS 합동)이므로 $y=\overline{\rm DE}=3$ 이다. 또, \angle A=50°이고, \angle DAE = \angle CAE=25°이므로 x=65이다. 따라서 x+y=68이다.
- 74) 27
- \triangle \triangle ABD \equiv \triangle AED (RHS 합동)이므로 $x=\overline{\rm DE}=3$, \angle BAD = \angle EAD = 33 $^{\circ}$ 이므로 y= \angle C = 24이다. \therefore x+y=3+24=27
- 75) 36
- \Rightarrow \triangle ABD \equiv \triangle AED(RHS 합동)이므로 x = 2이다.

- 또, $\angle A = 56$ ° 이므로 y = 90 56 = 34이다. 따라서 x + y = 2 + 34 = 36이다.
- 76) 35
- 77) 13 cm²
- - $\therefore \triangle ABD = \frac{1}{2} \times 13 \times 2 = 13 \text{ (cm}^2)$
- 78) 30 cm²
- $ightarrow \Delta AED \equiv \Delta ACD(RHA 합동)이므로$ $<math>\overline{DE} = \overline{DC} = 5(cm)$
 - $\therefore \triangle ABD = \frac{1}{2} \times 12 \times 5 = 30 \text{ cm}^2$
- 79) 15cm²
- 다 점 D에서 \overline{AB} 에 수선을 그어 수선의 발을 E라 하면 $\triangle ADE = \triangle ADC$ (RHA 합동)이다. 따라서 $\overline{DE} = 3cm$ 이므로
 - (\triangle ABD의 넓이)= $10 \times 3 \times \frac{1}{2} = 15 \text{ (cm}^2)$
- 80) 195 cm²
- 81) 30cm²
- □ 점 D에서 AB에 수선을 그어 수선의 발을 E라 하면 ΔAED = ΔACD (RHA 합동)
 (∵∠DAE = ∠DAC, AD는 공통, ∠AED = ∠ACD = 90°)
 따라서 DE = DC = 4cm 이다.
 - $O| \text{ III}, \ \Delta ABD = \frac{1}{2} \times 15 \times 4 = 30 \text{ (cm}^2) \text{ O} \text{ IF}.$