Fall 2020

- General model
- 2 Sum Game

• Creation and maintenance of a network is modeled as a game

- Creation and maintenance of a network is modeled as a game
- n players, think of them as vertices $V = \{1, ..., n\}$ in an undirected graph

- Creation and maintenance of a network is modeled as a game
- n players, think of them as vertices $V = \{1, ..., n\}$ in an undirected graph
- Each player can buy/create edges to other players paying a price $\alpha > 0$ per edge

- Creation and maintenance of a network is modeled as a game
- n players, think of them as vertices $V = \{1, ..., n\}$ in an undirected graph
- Each player can buy/create edges to other players paying a price $\alpha > 0$ per edge
- A strategy s_u of player u is a subset $s_u \in V \{u\}$ that represents the set of nodes for which u pays for a link.

- Creation and maintenance of a network is modeled as a game
- n players, think of them as vertices $V = \{1, ..., n\}$ in an undirected graph
- Each player can buy/create edges to other players paying a price $\alpha > 0$ per edge
- A strategy s_u of player u is a subset $s_u \in V \{u\}$ that represents the set of nodes for which u pays for a link.
- As a result of a strategy profile $s = (s_1, ..., s_n)$ a graph G(s) = (V, E) is created so that $E = \{(u, v) | u \in s_v \lor v \in s_u\}$

- Creation and maintenance of a network is modeled as a game
- n players, think of them as vertices $V = \{1, ..., n\}$ in an undirected graph
- Each player can buy/create edges to other players paying a price $\alpha > 0$ per edge
- A strategy s_u of player u is a subset $s_u \in V \{u\}$ that represents the set of nodes for which u pays for a link.
- As a result of a strategy profile $s = (s_1, ..., s_n)$ a graph G(s) = (V, E) is created so that $E = \{(u, v) | u \in s_v \lor v \in s_u\}$
- The goal of the player u is to minimize a cost function:

$$c_u(s) = \text{creation cost } + \text{usage cost}$$

Individual cost

Let
$$s = (s_1, \ldots, s_n)$$
 and $G = G(s)$. The cost for player u :

$$c_u(s) = \text{creation cost } + \text{usage cost}$$

- Creation cost: $\alpha |s_u|$
- Usage cost:
 - SumGame (Fabrikant et al. PODC 2003) Sum over all distances: $\sum_{v \in V} d_G(u, v)$ This is an average-case approach to the usage cost
 - MaxGame (Demaine et al. PODC 2007)
 Maximum over all distances: max_{v∈V} d_G(u, v)
 A worst-case approach to the usage cost

SumGame :
$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

Social cost

- Creation cost: $\alpha |E(G)|$
- Usage cost:
 - SumGame: $\sum_{u,v \in V} d_G(u,v)$
 - MaxGame: $\max_{u,v \in V} d_G(u,v)$

SumGame:
$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

MaxGame:
$$C(s) = \alpha |E| + \max_{u,v \in V} d_G(u,v)$$

(2)

(3

(6)

(5

$$s = ({3,4},{1,3},{5},{3},{3},{3})$$

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\})$$

An arrow indicates who bought the edge

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

An example: SumGame

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

An example: SumGame

$$s = (\{3,4\}, \{1,3\}, \{5\}, \{3\}, \{3\}, \{3\}) \text{ and } G(s)$$

$$c_1(s) = 2\alpha + 1 + 1 + 1 + 2 + 2 = 2\alpha + 7 \dots$$

An example: SumGame

$$s = (\{3,4\}, \{1,3\}, \{5\}, \{3\}, \{3\}, \{3\}) \text{ and } G(s)$$

$$c_1(s) = 2\alpha + 1 + 1 + 1 + 2 + 2 = 2\alpha + 7 \dots$$

 $c(s) = 7\alpha + (7 + 8 + 5 + 8 + 9 + 9) = 7\alpha + 56$

An example: MaxGame

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

An example: MaxGame

$$s = (\{3,4\},\{1,3\},\{5\},\{3\},\{3\},\{3\}) \text{ and } G(s)$$

$$c_1(s) = 2\alpha + 2 = 2\alpha + 2 \dots$$

An example: MaxGame

$$s = (\{3,4\}, \{1,3\}, \{5\}, \{3\}, \{3\}, \{3\}) \text{ and } G(s)$$

$$c_1(s) = 2\alpha + 2 = 2\alpha + 2 \dots$$

 $c(s) = 7\alpha + 2$

• Are there PNE?

- Are there PNE?
- What are the social optima?

- Are there PNE?
- What are the social optima?
- What network topologies are formed? What families of equilibrium graphs can one construct for a given α ?

- Are there PNE?
- What are the social optima?
- What network topologies are formed? What families of equilibrium graphs can one construct for a given α ?
- How efficient are they? Price of Anarchy/Stability?

We will cover some results on SumGames

- General model
- 2 Sum Game

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

• Can an edge be created by more than two players?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

• Can an edge be created by more than two players? No

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- Can an edge be created by more than two players? No
- ullet We study them as a function of lpha

$$c_{u}(s) = \alpha |s_{u}| + \sum_{v \in V} d_{G}(u, v)$$

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- Can an edge be created by more than two players? No
- ullet We study them as a function of lpha
- When is it better to add/remove an edge?

$$c_{u}(s) = \alpha |s_{u}| + \sum_{v \in V} d_{G}(u, v)$$

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- Can an edge be created by more than two players? No
- \bullet We study them as a function of α
- When is it better to add/remove an edge?
- Can the graph be disconnected?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- Can an edge be created by more than two players? No
- ullet We study them as a function of lpha
- When is it better to add/remove an edge?
- Can the graph be disconnected? No, $c_u(s) = \infty$ if G(s) is not connected

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• When is it better to add an edge?

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When is it better to add an edge?
- Set $d = d_G(u, v) > 1$ and let $s'_u = s_u \cup \{v\}$

$$c_u(s_{-u}, s'_u) - c_u(s) = \alpha + 1 - d + \sum_{w \in V, w \neq u} (d_{G'}(u, w)) - d_G(u, w))$$

 $\leq \alpha + 1 - d \leq 0$

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When is it better to add an edge?
- Set $d = d_G(u, v) > 1$ and let $s'_u = s_u \cup \{v\}$

$$c_u(s_{-u}, s'_u) - c_u(s) = \alpha + 1 - d + \sum_{w \in V, w \neq u} (d_{G'}(u, w)) - d_G(u, w))$$

 $\leq \alpha + 1 - d \leq 0$

• $d > \alpha$

Add an edge?

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When is it better to add an edge?
- Set $d = d_G(u, v) > 1$ and let $s'_u = s_u \cup \{v\}$

$$c_u(s_{-u}, s'_u) - c_u(s) = \alpha + 1 - d + \sum_{w \in V, w \neq u} (d_{G'}(u, w)) - d_G(u, w))$$

 $\leq \alpha + 1 - d \leq 0$

• $d > \alpha$ which implies Nash topologies have diameter $\leq \alpha$.

• Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$

- Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.

- Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.
- Given a graph G = (V, E), with $V = \{1, ..., n\}$, consider the following instance for the BR problem:

- Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.
- Given a graph G = (V, E), with $V = \{1, ..., n\}$, consider the following instance for the BR problem:
 - The game has n+1 players $\{0,1,\ldots,n\}$, choose α so that $1<\alpha<2$, the player will be player 0. The strategy is defined as follows:
 - Compute an orientation of E and define s_{-0} accordingly.

- Given a game $(1^n, \alpha)$, a strategy profile s and a player i, compute $s_i \in BR_i(s_{-i})$
- We relate the BR with a graph parameter.
- Given a graph G = (V, E), with $V = \{1, ..., n\}$, consider the following instance for the BR problem:
 - The game has n+1 players $\{0,1,\ldots,n\}$, choose α so that $1<\alpha<2$, the player will be player 0. The strategy is defined as follows:
 - Compute an orientation of E and define s_{-0} accordingly.
- As $1 < \alpha < 2$, player 0 will like to buy edges to any player at distance > 2.
- So, in the BR graphs the radius of vertex 0 must be ≤ 2 .
- Hence, $c_0(s_{-0}, s'_0) = (\alpha + 1)|s'_0| + 2(n |s'_0|)$

- So, in the BR graphs the radius of vertex 0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0')=(\alpha+1)|s_0'|+2(n-|s_0'|)=(\alpha-1)|s_0'|+2n$

- So, in the BR graphs the radius of vertex 0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0')=(\alpha+1)|s_0'|+2(n-|s_0'|)=(\alpha-1)|s_0'|+2n$
- Then, c_0 is minimized when s'_0 has minimum cardinality.

- So, in the BR graphs the radius of vertex 0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0}, s_0') = (\alpha + 1)|s_0'| + 2(n |s_0'|) = (\alpha 1)|s_0'| + 2n$
- Then, c_0 is minimized when s'_0 has minimum cardinality.
- To get radius ≤ 2 , $s'_0 \subseteq V$ must be a dominating set of G = (V, E).

- So, in the BR graphs the radius of vertex 0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0},s_0')=(\alpha+1)|s_0'|+2(n-|s_0'|)=(\alpha-1)|s_0'|+2n$
- Then, c_0 is minimized when s'_0 has minimum cardinality.
- To get radius ≤ 2 , $s'_0 \subseteq V$ must be a dominating set of G = (V, E).
- The BR strategies for vertex 0 are the dominating sets of G having minimum size.

- So, in the BR graphs the radius of vertex 0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0}, s_0') = (\alpha + 1)|s_0'| + 2(n |s_0'|) = (\alpha 1)|s_0'| + 2n$
- Then, c_0 is minimized when s'_0 has minimum cardinality.
- To get radius ≤ 2 , $s'_0 \subseteq V$ must be a dominating set of G = (V, E).
- The BR strategies for vertex 0 are the dominating sets of G having minimum size.
- Computing a minimum size dominating set is NP-hard, so

- So, in the BR graphs the radius of vertex 0 must be ≤ 2 .
- On such graphs, $c_0(s_{-0}, s_0') = (\alpha + 1)|s_0'| + 2(n |s_0'|) = (\alpha 1)|s_0'| + 2n$
- Then, c_0 is minimized when s'_0 has minimum cardinality.
- To get radius ≤ 2 , $s'_0 \subseteq V$ must be a dominating set of G = (V, E).
- The BR strategies for vertex 0 are the dominating sets of G having minimum size.
- Computing a minimum size dominating set is NP-hard, so
- Computing a BR in the sum game is NP-hard

$$c(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- When two vertices u, v are not adjacent $d_G(u, v) \ge 2$.
- When two vertices u, v are adjacent $d_G(u, v) = 1$.
- Therefore for any strategy profile s,

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v) \ge \alpha |E| + 2(\sum_{u,v \in V} 1 - |E|)$$
$$C(s) \ge \alpha |E| - 2|E| + 2n(n-1) = 2n(n-1) + (\alpha - 2)|E|$$

$$c(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$$

- When two vertices u, v are not adjacent $d_G(u, v) \ge 2$.
- When two vertices u, v are adjacent $d_G(u, v) = 1$.
- Therefore for any strategy profile s,

$$C(s) = \alpha |E| + \sum_{u,v \in V} d_G(u,v) \ge \alpha |E| + 2(\sum_{u,v \in V} 1 - |E|)$$

$$C(s) \ge \alpha |E| - 2|E| + 2n(n-1) = 2n(n-1) + (\alpha - 2)|E|$$

• Holds with equality on graphs with diameter ≤ 2 .

• For all s,
$$C(s) \ge 2n(n-1) + (\alpha-2)|E|$$

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E|$
- This function has different minima depending on whether $(\alpha 2)$ is positive or negative.

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E|$
- This function has different minima depending on whether $(\alpha 2)$ is positive or negative.
- When $\alpha = 2$, the optimal cost is independent of the number of edges in the graph. So,

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E|$
- This function has different minima depending on whether $(\alpha 2)$ is positive or negative.
- When $\alpha = 2$, the optimal cost is independent of the number of edges in the graph. So,
- For $\alpha = 2$, any graph with diameter ≤ 2 has optimal cost.

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E| \ge 2n(n-1) + (\alpha-2)(n-1)$
- When $\alpha > 2$, to make the cost minimum we have to take the minimum number of edges in G. Of course the graph must be connected. So,

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E| \ge 2n(n-1) + (\alpha-2)(n-1)$
- When $\alpha > 2$, to make the cost minimum we have to take the minimum number of edges in G. Of course the graph must be connected. So,
- Only trees with diameter 2 have optimal cost. Then,

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E| \ge 2n(n-1) + (\alpha-2)(n-1)$
- When $\alpha > 2$, to make the cost minimum we have to take the minimum number of edges in G. Of course the graph must be connected. So,
- Only trees with diameter 2 have optimal cost. Then,
- For $\alpha > 2$, the star S_n is the unique optimal topology.

• For all s,
$$C(s) \ge 2n(n-1) + (\alpha-2)|E|$$

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E|$
- When α < 2, to make the cost minimum we have to take the maximum number of edges in G. Then,

- For all s, $C(s) \ge 2n(n-1) + (\alpha-2)|E|$
- When α < 2, to make the cost minimum we have to take the maximum number of edges in G. Then,
- For $\alpha < 2$ the complete graph K_n is the unique optimal topology.

Nash topologies

Nash topologies

• K_n (Clique) is the unique Nash topology for $\alpha < 1$

Nash topologies

- K_n (Clique) is the unique Nash topology for $\alpha < 1$
- S_n (Star) is a Nash topology for $\alpha \ge 1$ although they might be other PNE

PoA: $\alpha < 1$

- K_n is the unique Nash topology
- K_n is also an optimal topology

PoA: α < 1

- K_n is the unique Nash topology
- \bullet K_n is also an optimal topology
- PoA = PoS = 1

PoA: $1 < \alpha < 2$

- K_n is an optimal topology
- Any Nash equilibrium must have diameter ≤ 2 , so S_n is a Nash topology with the worst social cost.

PoA: $1 \le \alpha < 2$

- \bullet K_n is an optimal topology
- Any Nash equilibrium must have diameter ≤ 2 , so S_n is a Nash topology with the worst social cost.

$$PoA = \frac{c(S_n)}{c(K_n)} = \frac{(n-1)(\alpha - 2 + 2n)}{n(n-1)\frac{\alpha - 2}{2} + 2}$$
$$= \frac{4}{2+\alpha} - \frac{4-2\alpha}{n(2+\alpha)} < \frac{4}{2+\alpha} \le \frac{4}{3}$$

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

• When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.
- The NE topologies are spanning trees

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.
- The NE topologies are spanning trees
- The optimal topology is S_n

$$c_u(s) = \alpha |s_u| + \sum_{v \in V} d_G(u, v)$$

- When $\alpha > n^2$, unless the distance is infinity, no player has incentive to buy an edge.
- The NE topologies are spanning trees
- The optimal topology is S_n

$$PoA = \frac{c(T_n)}{c(S_n)} \le \frac{\alpha(n-1) + (n-1)(n-1)}{\alpha(n-1) + 1 + 2n(n-1)} = O(1)$$

• For a worst NE topology G, $C(G) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$

- For a worst NE topology G, $C(G) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$
- $d_G(u, v) < 2\sqrt{\alpha}$, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by $-\sqrt{\alpha}$ to $\sqrt{\alpha}$ nodes.

- For a worst NE topology G, $C(G) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$
- $d_G(u, v) < 2\sqrt{\alpha}$, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by $-\sqrt{\alpha}$ to $\sqrt{\alpha}$ nodes.
- Furthermore, $|E| = O(\frac{n^2}{\sqrt{\alpha}})$ (see [Fabrikant et al. 2003])

- For a worst NE topology G, $C(G) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$
- $d_G(u, v) < 2\sqrt{\alpha}$, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by $-\sqrt{\alpha}$ to $\sqrt{\alpha}$ nodes.
- Furthermore, $|E| = O(\frac{n^2}{\sqrt{\alpha}})$ (see [Fabrikant et al. 2003])
- $C(G) \le \alpha O(\frac{n^2}{\sqrt{\alpha}}) + n(n-1)2\sqrt{\alpha} = O(\sqrt{\alpha}n^2)$

- For a worst NE topology G, $C(G) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$
- $d_G(u, v) < 2\sqrt{\alpha}$, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by $-\sqrt{\alpha}$ to $\sqrt{\alpha}$ nodes.
- Furthermore, $|E| = O(\frac{n^2}{\sqrt{\alpha}})$ (see [Fabrikant et al. 2003])
- $C(G) \le \alpha O(\frac{n^2}{\sqrt{\alpha}}) + n(n-1)2\sqrt{\alpha} = O(\sqrt{\alpha}n^2)$
- $C(S_n) = \Omega(n^2)$

- For a worst NE topology G, $C(G) = \alpha |E| + \sum_{u,v \in V} d_G(u,v)$
- $d_G(u, v) < 2\sqrt{\alpha}$, otherwise u will be willing to connect to the node in the center of the shortest path from u to v to be closer by $-\sqrt{\alpha}$ to $\sqrt{\alpha}$ nodes.
- Furthermore, $|E| = O(\frac{n^2}{\sqrt{\alpha}})$ (see [Fabrikant et al. 2003])
- $C(G) \le \alpha O(\frac{n^2}{\sqrt{\alpha}}) + n(n-1)2\sqrt{\alpha} = O(\sqrt{\alpha}n^2)$
- $C(S_n) = \Omega(n^2)$
- Thus $PoA = O(\sqrt{\alpha})$

PoA: Conjectures

PoA on trees \leq 5 [Fabrikant et al. 2003]

Constant PoA conjecture: For all α , PoA = O(1).

Tree conjecture: for all $\alpha > n$, all NE are trees.

O(1) PoA conjecture: large lpha

PoA = O(1)	
$\alpha > n^{\frac{3}{2}}$	[Lin 2003]
$\alpha > 12n\log n$	[Albers et al. 2014]
$\alpha > 273n$	[Mihalak, Schlegel, 2013]
$\alpha > 65n$	[Mamageishivii et al. 2015]
$\alpha > 17$ n	[Àlvarez, Messegue 2017]
$\alpha > 4n - 13$	[Bilo, Lezner 2018]
$\alpha > (1 + \epsilon)n$	[Àlvarez, Messegue 2019]

O(1) PoA conjecture: large α

PoA = O(1)	
$\alpha > n^{\frac{3}{2}}$	[Lin 2003]
$\alpha > 12n\log n$	[Albers et al. 2014]
lpha > 273 n	[Mihalak, Schlegel, 2013]
$\alpha > 65n$	[Mamageishivii et al. 2015]
lpha > 17n	[Àlvarez, Messegue 2017]
$\alpha > 4n - 13$	[Bilo, Lezner 2018]
$\alpha > (1 + \epsilon)n$	[Àlvarez, Messegue 2019]

[Àlvarez, Messegue 2019] On the price of Anarchy for High-Price links, 15th Conference on Web and Internet Economics, WINE 2019, 316–329

Extended version:arxiv.org/abs/1909.09799

O(1) PoA conjecture: small lpha

PoA = O(1)	
$\alpha = O(1)$	[Fabrikant et al. 2003]
$\alpha = O(\sqrt{n})$	[Lin 2003]
$lpha = \mathit{O}(\mathit{n}^{1-\delta})$, $\delta \geq 1/\log\mathit{n}$	[Demaine et al. 2007]