ECUACIONES DIFERENCIALES

Segundo del Grado en Matemáticas

Hugo Marquerie

Profesor: Salvador López Martínez
Facultad de Ciencias - Universidad Autónoma de Madrid
Segundo cuatrimestre 2023 - 2024

1 de Febrero, 2024

1 EDOs autónomas

Definición 1.1. Una ecuación diferencial ordinaria (EDO) de primer orden se dice autónoma si no depende explícitamente de la variable independiente. Es decir,

$$\iff$$
 es de la forma $y' = f(y)$

Proposición 1.1 (Propiedades de EDOs autónomas).

1. (Isoclinas) Todos los puntos de cada recta horizontal y = c pertenecen a la misma isoclina. ¡Cuidado! A veces una isoclina puede contener más de una recta horizontal.

Ejemplo 1.1 $(y' = y^2)$.

$$\{(x,y) \in \mathbb{R} : y^2 = c\} = \{(x,\sqrt{c}) : x \in \mathbb{R}\} \cup \{(x,-\sqrt{c}) : x \in \mathbb{R}\}$$

- 2. (Traslaciones) Si y es solución $\implies \forall c \in \mathbb{R} : w(x) := y(x+c)$ es solución.
- 3. (Soluciones triviales) Si $\exists a \in Dom(f) : f(a) = 0 \implies y(x) = a$ es solución.

Demostración.
$$y'(x) = 0 = f(a) = f(y(x))$$

22/02/2024

Teorema 1.1 (Existencia de soluciones). Sean $a \in [-\infty, \infty) \land b \in (-\infty, \infty] \land f : (a, b) \longrightarrow$

 \mathbb{R} continua

Supongamos que
$$\forall x \in (a,b) : f(x) \neq 0$$
 y que
$$\begin{cases} a > -\infty \implies f(a) = 0 \\ b < \infty \implies f(b) = 0 \end{cases}$$
Sea $x_0 \in (a,b)$ definimos $\forall x \in (a,b) : F(x) := \int_{x_0}^{x} \frac{1}{f(s)} ds$

 $Si \ f(x) > 0 \ en \ (a,b), \ definimos$

$$T_{-} := \lim_{x \to a^{+}} F(x) \in [-\infty, 0) \land T_{+} := \lim_{x \to b^{-}} F(x) \in (0, \infty]$$

 $Si\ f(x) < 0\ en\ (a,b),\ intercambiamos\ T_-\ por\ T_+.$

$$\implies \exists x \colon (T_-, T_+) \longrightarrow (a, b) \ derivable : \begin{cases} x'(t) = f(x(t)) \\ x(0) = x_0 \end{cases}$$

Demostración. Supongamos sin pérdida de generalidad que $\forall x \in (a,b) : f(x) > 0$

$$\implies \forall x \in (a,b) : F'(x) = \frac{1}{f(x)} > 0 \implies F \text{ es creciente en } (a,b)$$

$$\implies F$$
tiene inversa en $(a,b) \implies \exists x := F^{-1} \colon (T_-,T_+) \longrightarrow (a,b)$

Por un lado,
$$x'(t) = (F^{-1})'(t) = \frac{1}{F'(F^{-1}(t))} = \frac{1}{F'(x(t))}$$

Por otro lado, $F(x_0) = 0 \implies x_0 = F^{-1}(F(x_0)) = F^{-1}(0) = x(0)$

Teorema 1.2 (Unicidad local). Sean $a \in [-\infty, \infty)$ $\land b \in (-\infty, \infty]$ $\land f: (a, b) \longrightarrow \mathbb{R}$ continua. Supongamos que $f(x) \neq 0$ en (a, b). Sea $x_0 \in (a, b)$, sea $I \subset \mathbb{R}$ un intervalo abierto tal que $0 \in I$ y sean $x: I \longrightarrow (a, b)$ $\land y: I \longrightarrow (a, b)$ cumpliendo

$$\begin{cases} x'(t) = f(x(t)) \\ y'(t) = f(y(t)) \\ x(0) = x_0 = y(0) \end{cases} \implies \forall t \in I : x(t) = y(t)$$

Demostración.

$$\forall s \in (a,b) : F(s) = \int_{x_0}^s \frac{1}{f(r)} dr \implies \forall t \in I : F(x(t)) = t = F(y(t))$$

$$\implies \forall t \in I : F^{-1}(F(x(t))) = F^{-1}(F(y(t))) \implies \forall t \in I : x(t) = y(t)$$

Corolario 1.1. En las condiciones del teorema de unicidad local, sea $a \in \mathbb{R}$: $f(a) := \lim_{x \to a^{-}} f(x) = 0$. Supongamos que

$$\forall k \in (a,b) : \lim_{x \to a^+} \int_k^x \frac{1}{f(s)} \, \mathrm{d}s = \begin{cases} -\infty \iff f > 0 \text{ en } (a,b) \\ \infty \iff f < 0 \text{ en } (a,b) \end{cases}$$

$$\implies$$
 Para cada intervalo
$$\begin{cases} I = [0, t_0) \iff f > 0 \text{ en } (a, b) \\ I = (-t_0, 0] \iff f < 0 \text{ en } (a, b) \end{cases} \quad x = a \text{ es la única solución.}$$

26/02/2024

27/02/2024

Ejemplo 1.2
$$(y' = \sqrt{1 - y^2})$$
.

$$f \colon [-1,1] \longrightarrow \mathbb{R} \land f(y) \coloneqq \sqrt{1-y^2} \land \begin{cases} f(y) > 0 \iff y \in (-1,1) \\ f(-1) = f(1) = 0 \end{cases}$$

Si $y(0) =: y_0 \in (-1,1)$, entonces existe una única solución del PVI. Esa solución está definida en (T_-, T_+) , donde

$$T_{-} = \lim_{y \to -1^{+}} \int_{y_{0}}^{y} \frac{1}{\sqrt{1 - s^{2}}} ds = \lim_{y \to -1^{+}} \arcsin(y) - \arcsin(y_{0}) = -\frac{\pi}{2} - \arcsin(y_{0})$$
$$T_{+} = \lim_{y \to 1^{-}} \int_{y_{0}}^{y} \frac{1}{\sqrt{1 - s^{2}}} ds = \frac{\pi}{2} - \arcsin(y_{0})$$

Si $y_0 = 1$, $\lim_{y \to 1^-} \int_k^y \frac{1}{\sqrt{1 - s^2}} ds = \frac{\pi}{2} - \arcsin(k) \in \mathbb{R} \implies \exists \text{ un solución } \underline{\text{no trivial}} \text{ del PVI}$

Si
$$y_0 = -1$$
, $\lim_{y \to -1^+} \int_k^y \frac{1}{\sqrt{1-s^2}} \, \mathrm{d}s \in \mathbb{R} \implies \exists \text{ un solución } \underline{\text{no trivial}} \text{ del PVI}$

Por tanto, la solución general del PVI es

$$y_k(x) = \begin{cases} -1 & \iff x \le -\frac{\pi}{2} - k \\ \sin(x+k) & \iff x \in \left(-\frac{\pi}{2} - k, \frac{\pi}{2} - k\right) \\ 1 & \iff x \ge \frac{\pi}{2} - k \end{cases}$$

- 1. La única y_k que satisface $y_k(0)=0\in (-1,1)$ es $y_k(x)=y_0$
- 2. Las funciones y_k con $k > \frac{\pi}{2}$ cumplen $y_k(0) = 1$
- 3. Las funciones y_k con $k < -\frac{\pi}{2}$ cumplen $y_k(0) = -1$

Observación 1.1. Sea $a \in \mathbb{R}$, $b \in (-\infty, \infty]$: b > a y $f: [a, b) \longrightarrow \mathbb{R}$ continua tal que $\forall x \in (a, b) : f(x) \neq 0$ y f(a) = 0.

Supongamos que $\exists c > 0, \delta \in (0, b - a) : \forall s \in [a, a + \delta) : |f(s)| \le C(s - a)$

Vamos a comprobar que se cumplen las condiciones de unicidad para el PVI con $x(0) = x_0 = a$ tanto en el caso f > 0 como en el caso f < 0.

•
$$f > 0$$
 Queremos ver que $\lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = -\infty$

$$\int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s = \int_{a+\delta}^z \frac{1}{|f(s)|} \, \mathrm{d}s = -\int_z^{a+\delta} \frac{1}{|f(s)|} \, \mathrm{d}s \le -\frac{1}{C} \int_z^{a+\delta} \frac{1}{s-a} \, \mathrm{d}s$$

$$\implies \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s \le -\frac{1}{C} \left(\log(\delta) - \log(z-a) \right)$$

$$\implies \lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} \, \mathrm{d}s \le -\infty \implies \text{Hay unicidad de PVI con } x(0) = a \text{ en } [0, \tilde{t})$$

•
$$f < 0$$
 De forma análoga $\lim_{z \to a^+} \int_{a+\delta}^z \frac{1}{f(s)} ds = \cdots = \infty$

Si f derivable con f' acotada

$$\implies \forall s \in [a, a + \delta) : |f(s)| = |f(s) - f(a)| = |f'(r)| |s - a| \le C(s - a)$$

04/03/2024

05/03/2024

Definición 1.2 (Estabilidad). Sea y una solución de un PVI, y es estable

$$\iff \forall \varepsilon > 0 : \exists \delta > 0 : y : [x_0, \infty) \longrightarrow \mathbb{R} : y_0^* \in (\alpha, \beta) : |y_0^* - y_0| < \delta \implies \forall x \ge x_0 : |y(x) - y^*(x)| < \varepsilon$$
donde $y^* : [x_0, \infty) \longrightarrow \mathbb{R}$ es cualquier solución del PVI con $y^*(x_0) = y_0^*$.

Ejemplo 1.3.

$$\begin{cases} y' = 0 \\ y(x_0) = y_0 \end{cases}$$

Definición 1.3 (Estabilidad asintótica). Sea y una solución de un PVI, y es asintóticamente estable

$$\iff y \text{ es estable } \lim_{x \to \infty} |y(x) - y^*(x)| = 0$$

donde $y^* \colon [x_0, \infty) \longrightarrow \mathbb{R}$ es cualquier solución del PVI con $y^*(x_0) = y_0^*$

Ejemplo 1.4.

$$\begin{cases} y' = y(1-y) \\ y(x_0) = y_0 \end{cases} \implies \begin{cases} f(y) := y(1-y) \\ f(y) = 0 \iff y \in \{0, 1\} \end{cases}$$
soluciones de equilibrio
$$\Rightarrow \forall y < 0 : f(y) < 0 \land \forall y \in (0, 1) : f(y) > 0 \land \forall y > 1 : f(y) < 0$$

$$\boxed{y_0 < 0}$$

$$\implies \forall y < 0 : F(y) = \int_{y_0}^{y} \frac{1}{s(1-s)} \, ds \implies \forall y < 0 : F'(y) < 0$$

Tomamos
$$y \in (y_0, 0) \implies F(y) < F(y_0) = 0$$

 $\implies s \ge y_0 \implies 0 < 1 - s \le 1 - y_0 \implies \frac{1}{1 - s} \ge \frac{1}{1 - y_0} \implies \frac{1}{(1 - s)s} \le \frac{1}{(1 - y_0)s}$
 $\implies F(y) \le \frac{1}{1 - y_0} \int_{s_0}^{y} \frac{1}{s} ds = \frac{\log(-y) - \log(-y_0)}{1 - y_0} \implies \lim_{y \to 0^-} F(y) = -\infty$

1. La única solución tal que $y(x_0)=y_0<0$ está definida globalmente hacia el pasado.

2. El equilibrio y = 0 es único "por abajo".

$$(y \to -\infty)$$

$$y < y_0 < 0 \implies 0 \le F(y) = -\int_y^{y_0} \frac{1}{s(1-s)} \, \mathrm{d}s = \int_y^{y_0} \frac{1}{s^2-s} \, \mathrm{d}s \le \int_y^{y_0} \frac{1}{s^2} \, \mathrm{d}s = \frac{1}{y} - \frac{1}{y_0}$$

$$\implies 0 \le F(y) < -\frac{1}{y} \implies \boxed{\lim_{y \to -\infty} F(y) \in \mathbb{R}} \implies \text{Hay una asíntota}$$

 $y_0 > 1$ Si y es solución con $y(x_0) = y_0 > 1$, entonces z(x) = -y(-x) + 1 también es solución con $z(x_0) = 1 - y_0 < 0$.

06/05/2024