1

Assignment 15

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment15

1 Problem

Let n be a positive integer, and let V be the space of polynomials over \mathbb{R} which have degree at most n (throw in the 0-polynomial). Let \mathbf{D} be the differentiation operator on V. What is the minimal polynomial for \mathbf{D} ?

2 **DEFINITIONS**

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by,	
	$p\left(x\right) = \left x\mathbf{I} - \mathbf{A}\right $	
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that,	
	$m(\mathbf{A}) = 0$	
	Every root of characteristic polynomial should be the root of minimal polynomial	

TABLE 1: Definitions and theorem used

3 Solution

Given	V is the space of polynomials over $\mathbb R$ which have degree at most n.		
Matrix Representation	The basis for the space V is		
	$\mathcal{B} = \left\{1, x, x^2, \dots, x^n\right\}$	(3.0.1)	
	Given that D is the differentiation operator.So,		
	$\mathbf{D}(1) = 0$	(3.0.2)	
	$\mathbf{D}(x) = 1$	(3.0.3)	
	$\mathbf{D}(x^n) = nx^{n-1}$	(3.0.4)	
	The vectors of differentiation operator with respect to basis ${\mathcal B}$		
	$[\mathbf{D}(1)]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}_{(n+1)\times 1}, [\mathbf{D}(x)]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}_{(n+1)\times 1} \dots [\mathbf{D}(x^n)]_{\mathcal{B}} = \begin{pmatrix} 0 \\ \vdots \\ n \\ 0 \end{pmatrix}_{(n+1)\times 1}$ (3.0.5)		
	The matrix representation can be written as:		
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$	(3.0.6)	
Characteristic polynomial	$\begin{vmatrix} 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & x \end{vmatrix}$	(3.0.7)	
	It is equal to the product of diagonal entries.		
	$p\left(x\right) = x^{n+1}$	(3.0.8)	
Minimal Polynomial	The minimal polynomial of A can be any of x, x^2, \dots, x^{n+1} such that,		
	$m\left(\mathbf{A}\right)=0$	(3.0.9)	

For n=3	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(3.0.10)	
	$\mathbf{A}^2 = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(3.0.11)	
	$\mathbf{A}^3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$	(3.0.12)	
	$\mathbf{A}^4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	(3.0.13)	
	For n=3, We can see that $A^4=0$		
Conclusion	From above we can say that the minimal polynomial of A is		
	x^{n+1}	(3.0.14)	

TABLE 2: Finding minimal polynomial