Write your name:	
Write your student number:	

Exam

Write your answers (A, B, C, D, E, or F) to problems 1 to 3 in this box	
Your answer to problem 1:	
Your answer to problem 2:	
Your answer to problem 3:	
	Ξ

- **1.** Simple convex function. (3 points) One of the following six functions $\mathbf{R} \to \mathbf{R}$ is convex:
 - (A) $(1-(x-1)_+)_+$
 - (B) $|(x-1)_+ 1|$
 - (C) $-(1-(x-1)_+)_+$
 - (D) $((x-1)_+ 1)_+$
 - (E) $-((x-1)_+ 1)_+$
 - (F) $-|(x-1)_+ 1|$

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

2. Least-squares. (2 points) Consider the following six optimization problems:

(A)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad ||Ax - b||_1^2 + \rho ||x||_2^2$$

(B)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad \|Ax - b\|_2^2 + \rho \|x\|_2^2$$

(C)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad \|Ax - b\|_2^2 + \rho \|x\|_1^2$$

(D)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad \|Ax - b\|_2 + \rho \|x\|_2^2$$

(E)
$$\min_{x \in \mathbf{R}^n} ||Ax - b||_1^2 + \rho ||x||_1^2$$

(F)
$$\underset{x \in \mathbf{R}^n}{\text{minimize}} \quad \|Ax - b\|_1 + \rho \, \|x\|_2$$

In each of the six problems above, the variable to optimize is $x \in \mathbf{R}^n$. The matrix A and the vector b are given. The scalar $\rho > 0$ is also given.

One of the optimization problems above is a least-squares problem.

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

- **3.** Convex function. (3 points) Let $f: \mathbf{R}^n \to \mathbf{R}$ be a convex function. One of the following functions is guaranteed to be convex:
 - (A) |f(x)|
 - (B) $f(x) + (f(x))^2$
 - (C) $(f(x))^2$
 - (D) $f(x)(f(x))^2$
 - (E) $|f(x)| + (f(x))^2$
 - (F) f(x) + |f(x)|

Which one?

Write your answer (A, B, C, D, E, or F) in the box at the top of page 1

4. Robust portfolio selection. (4 points) A problem that often occurs in finance has the following form

where the variable to optimize is $x \in \mathbf{R}^n$.

The matrices $V_1 \in \mathbf{R}^{p \times n}$, $V_2 \in \mathbf{R}^{p \times n}$, and $D \in \mathbf{R}^{p \times p}$ are given, the matrix D being diagonal with positive entries in the diagonal:

$$D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_p \end{bmatrix},$$

with $d_i > 0$ for $i = 1, \ldots, p$.

The vectors $\mu_1 \in \mathbf{R}^n$, $\mu_2 \in \mathbf{R}^n$ and the scalar $\alpha \in \mathbf{R}$ are given. Finally, recall that the symbol 1 stands for the vector of dimension n with all components equal to one:

$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}.$$

Show that the optimization problem (1) is convex.

5. Mahalanobis projection. (4 points) Consider the optimization problem

minimize
$$(x - \mu)^T \Sigma^{-1} (x - \mu)$$

subject to $a^T x = b$, (2)

where the variable to optimize is $x \in \mathbf{R}^n$. The vector $\mu \in \mathbf{R}^n$ and the matrix $\Sigma \in \mathbf{R}^{n \times n}$ are given, with Σ being symmetric and positive definite.

Show that the optimal value of problem (2) is

$$\frac{(a^T\mu - b)^2}{a^T\Sigma a}.$$

6. Strictly convex functions. (4 points) Suppose that the functions $f_1 \colon \mathbf{R}^n \to \mathbf{R}$ and $f_2 \colon \mathbf{R}^n \to \mathbf{R}$ are both convex, and let $f \colon \mathbf{R}^n \to \mathbf{R}$ be defined as $f(x) = \max\{f_1(x), f_2(x)\}$ for each $x \in \mathbf{R}^n$. Is the function f strictly convex? If you think the answer is 'yes', then prove it; if you think the answer is 'no', then give a counterexample.