1 Graph Algorithms

1.1 Graphen

Definition — (Endlicher) gerichteter Graph

- (endlicher) gerichteter Graph G = (V, E)
- besteht aus (endlicher) Knotenmenge V
- besteht aus (endlicher) Kantenmenge $E \subseteq VxV$
- $(u, v) \in E$: Kanten von Knoten u zu v
- Kanten haben eine Richtung

Definition — Ungerichteter Graph

- (endlicher) ungerichteter Graph G = (V, E)
- besteht aus (endlicher) Knotenmenge V
- besteht aus (endlicher) Kantenmenge $E \subseteq VxV$, sodass $(u,v) \in E \Leftrightarrow (v,u) \in E$
- Kanten haben keine Richtung

Darstellung von Graphen

- Als Adjazentmatrix (1, wenn Kante von i zu j bzw. 0, wenn keine Kante)
- Bei ungerichteten Graphen ist Matrix spiegelsymmetrisch zur Hauptdiagonalen
- \implies Speicherbedarf: $\Theta(|V^2|)$

(a) Darstellung als Adjazentmatrix

(b) Grafische Darstellung

Abbildung 1: Beispielhafte Darstellung eines Graphen

- Auch darstellbar als Array mit verketteten Listen
- \implies Speicherbedarf: $\Theta(|V| + |E|)$

Pfadfinder

- Knoten v ist von Knoten u erreichbar, wenn es wenn es von u aus einen Pfad über n Knoten nach v
- u ist immer von u per leerem Pfad (k=1) erreichbar
- Länge des Pfades = k 1 = Anzahl Kanten

Definition — Zusammenhängende Graphen

- Ungerichtet: Zusammenhängend wenn jeder Knoten von jedem anderen Knoten aus erreichbar ist
- Gerichtet: Stark zusammenhängend, wenn obiges auch gemäß Kantenrichtung gilt

Bäume und Subgraphen

- Graph G ist ein Baum, wenn V leer ist oder wenn es einen Knoten in V gibt, von dem aus jeder andere Knoten eindeutig erreichbar ist (Wurzel).
- Graph G' = (V', E') ist Subgraph von G = (V, E), wenn $V' \subseteq V$ und $E' \subseteq E$.

Definition — Gewichtete Graphen

- gewichteter gerichteter oder ungerichteter Graph G=(V,E)
- besitzt zusätzlich Funktion $w: E \rightarrow R$
- Angabe des Gewichts einer Kante u nach v durch w((u, v))

1.2 Breadth-First Search (BFS)

Idee - Breadth-First Search

- Besuche zuerst alle unmittelbaren Nachbarn, dann deren Nachbarn, usw.
- Anwendung: Webcrawling, Garbage Collection,...

Algorithmus

```
BFS(G,s) //G=(V,E) s = source node in V
BFS(G,s) //G=(V,E) s = source node in V
FOREACH u in V-{s} DO
    u.color = WHITE;
    u.pred = nil;
s.color = GRAY;
s.dist = 0;
s.pred = nil;
newQueue(Q);
enqueue(Q,s);
WHILE !isEmpty(Q) DO
    u = dequeue(Q);
    FOREACH v in adj(G,u) DO
        IF v.color == WHITE THEN
            v.color == GRAY;
            v.dist = u.dist+1;
            v.pred = u;
            enqueue(Q, v);
    u.color = BLACK;
```

Farben:

- WHITE: Knoten noch nicht besucht
- GRAY: Knoten in Queue für nächsten Schritt
- BLACK: Knoten ist fertig
- Laufzeit: O(|V| + |E|)
- Nach Algorithmus steht in v die kürzeste Distanz von s nach v

Kürzeste Pfade ausgeben

print-path(G,s,v) // Assumes that BFS(G,s) has already been executed IF v == s THEN print s; ELSE IF v.pred == nil THEN print "no path from s to v" ELSE print-path(G,s,v.pred); print v;

Abgeleiteter BFS-Baum

ABBILDUNG 2: Beispiel BFS-Baum

- Subgraph $G^s_{pred}=(V^s_{pred},E^s_{pred})$ von G: $-V^s_{pred}=\{v\in V|v.pred\neq nil\}\cup \{s\}$ $-E^s_{pred}=\{(v.pred,v)|v\in V^s_{pred}-\{s\}\}$
- $\,G^s_{pred}\,$ enthält alle von s aus erreichbaren Knoten in G
- Außerdem handelt es sich hier nur um kürzeste Pfade

1.3 Depth-First Search(DFS)

- Idee Depth-First Search Besuche zuerst alle noch nicht besuchten Nachfolgeknoten
 - "Laufe so weit wie möglich weg vom aktuellen Knoten"

Algorithmus

DFS-Wald = Menge von DFS-Bäumen

- Subgraph $G_{pred} = (V, E_{pred})$ von G
- besteht aus $E_{pred} = (v.pred, v) | v \in V, v.pred \neq nil$
- DFS-Baum gibt nicht unbedingt den k\u00fcrzesten Weg wieder

Kantenarten

ABBILDUNG 3: Beispiel DFS-Wald

Baumkanten alle Kanten in G_{pred}

Vorwärtskanten alle Kanten in G zu Nachkommen in G_{pred} , die keine Baumkante sind

Rückwärtskanten alle Kanten in G zu Vorfahren in G_{pred} , die keine Baumkante sind (inkl. Schleifen)

Kreuzkanten alle anderen Kanten in G

Anwendungen DFS

- Job Scheduling (Job X muss vor Job Y beendet sein)
- Topologisches Sortieren
 - nur für dag (directed acyclic graph)
 - Kanten immer nur nach rechts
 - Sortierung aber nicht eindeutig

ABBILDUNG 4: Beispiel Topoligisches Sortieren

TOPOLOGICAL-SORT(G)

```
new LinkedList(L);
run DFS(G) but, each time a node is finished, insert in front of L
return L.head;
```

Starke Zusammenhangskomponenten

Knotenmenge $C\subseteq V$, so dass es zwischen zwei Knoten $u,v\in C$ einen Pfad von u nach v gibt und es keine Menge $D\subseteq V$ mit $C\subsetneq D$ gibt, für die obiges auch gilt.

Eigenschaften:

- · Verschiedene SCC's sind disjunkt
- Zwei SCC's sind nur in eine Richtung verbunden

Algorithmus:

DFS zweimal laufen lassen

- Einmal auf Graph G
- Einmal auf Graph $G^T = (V, E^T)$ (transponiert)

Dadurch bleiben die SCC's gleich, die Kanten drehen sich aber jeweils um

Abbildung 5: Beispiel Starke Zusammenhangskomponenten

Code:

SCC(G)

```
run DFS(G)
compute G^T
run DFS(G^T) but visit vertices in main loop
in descending finish time from 1
output each DFS tree from above as one SCC
```

1.4 Minimale Spannbäume

Definition — Minimaler Spannbaum

- Verbindung aller Knoten miteinander
- Minimaler Spannbaum ⇒ Minimales Gewicht

Allgemeiner Algorithmus

```
genericMST(G,w)

1  A = ∅
2  WHILE A does not form a spanning tree for G DO
3  find safe edge {u,v} for A
4  A = A ∪{{u,v}}
5  return A
```


Abbildung 6: Beispiel Ausführung genericMST()

Terminologie:

- Schnitt (S, V-S) partioniert Knoten in zwei Mengen
- $\{u,v\}$ überbrückt Schnitt, wenn $u \in S$ und $v \in V S$
- Schnitt respektiert $A\subseteq E$, wenn keine Kante {u,v} aus A den Schnitt überbrückt
- {u,v} leichte Kante für (S, V-S), wenn w({u,v}) minimal für alle den Schnitt überbrückenden Kanten
- $\{u,v\}$ sicher für A, wenn $A \cup \{\{u,v\}\}$ Teilmenge eines MST

Algorithmus von Kruskal

Idee – Algorithmus von Kruskal Suchen der "kleinsten" Kante und Zusammenfügen von Mengen, falls Mengen ungleich sind

- Lässt parallel mehrere Unterbäume eines MST wachsen
- Laufzeit: $O(|E| \cdot log|E|)$

MST-Kruskal(G,w)

```
1  A = ∅
2  FOREACH v in V D0
3  set(v) = {v};  // Menge mit sich selbst
4  Sort edges according to weight in nondecreasing order
5  FOREACH {u,v} in E according to order D0
6  IF set(u) != set(v) THEN  // Mengen noch nicht verbunden
7  A = A ∪ {{u,v}};
8  UNION(G,u,v);  // Zusammenführen der Mengen aller Knoten aus den Sets
9  return A;
```

Algorithmus von Prim

- Konstruiert einen MST Knoten für Knoten
- Fügt immer leichte Kante zu zusammenhängender Menge hinzu
- Laufzeit: $O(|E| + |V| \cdot log|V|)$

MST-Prim(G,w,r) // r is given root

1.5 Kürzeste Wege in (gerichteten) Graphen

Definition — SSSP

- SSSP Single-Source Shortest Path
- ullet Von Quelle s ausgehend die kürzesten Pfad zu allen anderen Knoten
- · Kürzester Pfad: Pfad mit minimalem Gesamtgewicht von einem zum anderen Knoten
- BFS findet nur minimale Kantenwege (nicht Gewichtswege)
- MST minimiert das Gesamtgewicht des Baumes (nicht zu einzelnen Kanten)
- Negative Kantengewichte sind erlaubt, aber keine Zyklen mit negativem Gesamtgewicht

Gemeinsame Idee für Algorithmen - Relax

Verringere aktuelle Distanz von Knoten v, wenn durch Kante (u, v) kürzer erreichbar

Bellman-Ford-Algorithmus

Laufzeit: $\Theta(|E| \cdot |V|)$

```
Bellman-Ford-SSSP(G,s,w)

initSSSP(G,s,w);

FOR i = 1 TO |V|-1 DO

FOREACH (u,v) in E DO

relax(G,u,v,w);

FOREACH (u,v) in E DO // Prüfung ob negativer Zyklus

IF v.dist > u.dist+w((u,v)) THEN

return false;

return true;
```

```
initSSSP(G,s,w)

1  FOREACH v in V D0
2          v.dist = ∞;
3          v.pred = nil;
4  s.dist = 0;
```

TopoSort für dag

ldee – TopoSort für dag Erhalten des kürzesten Pfades durch das topologische Sortieren

Laufzeit: $\Theta(|E| + |V|)$

```
TopoSort-SSSP(G,s,w) // G muss dag sein

initSSSP(G,s,w);
execute topological sorting
FOREACH u in V in topological order D0

FOREACH v in adj(u) D0

relax(G,u,v,w);
```

Dijkstra-Algorithmus

Voraussetzung: Keine negativen Kantengewichte Laufzeit: $\Theta(|V| \cdot log|V| + |E|)$

```
Dijkstra-SSSP(G,s,w)
```

```
initSSSP(G,s,w);
Q = V;
WHILE !isEmpty(Q) D0
u = EXTRACT-MIN(Q); // smallest distance
FOREACH v in adj(u) D0
relax(G,u,v,w);
```


 Beispiel für Problem mit negativen Kantengewisten bei Dijkstra: Dijkstra würde Pfad 1-2-3 liefern, da das Kantengewicht 4 größer als der andere Pfad ist.

1.6 Maximaler Fluss in Graphen

Idee - Maximaler Fluss im Graphen

- Kanten haben Flusswert und maximale Kapazität
- Jeder Knoten (außer s und t) haben den gleichen eingehenden und ausgehenden Fluss
- Ziel: Finde maximalen Fluss von s nach t
- s: Source/Quelle
- t: Target/Senke

ABBILDUNG 7: Beispiel Flussnetzwerk

Definition – Flussnetzwerk Ein Flussnetzwerk ist ein gewichteter, gerichteter Graph G=(V,E) mit Kapazität c, so dass $c(u,v)\geq 0$ für $(u,v)\in E$ und c(u,v)=0 für $(u,v)\notin E$, mit zwei Knoten $s,t\in V$, so dass jeder Knoten von s aus erreichbar ist und t von jedem Knoten aus erreichbar ist. Damit gilt $|E|\geq |V|-1$.

Definition — Fluss

Ein Fluss $f: VxV \to \mathbb{R}$ für ein Flussnetzwerk G=(V,E) mit Kapazität c und Quelle s und Senke t erfüllt $0 \le f(u,v) \le c(u,v)$ für alle $u,v \in V$, sowie für alle $u \in V - \{s,t\}$: $\sum_{v \in V} f(u,v) = \sum_{v \in V} f(v,u)$ (ausgehend = eingehend)

Definition – Wert eines Flusses Der Wert |f| eines Flusses $f: VxV \to \mathbb{R}$ für ein Flussnetzwerk G ist: $|f| = \sum_{v \in V} f(s,v) = \sum_{v \in V} f(v,s)$

Transformationen

Restkapazitätsgraph

• Wird für Ford-Fulkerson benötigt

Restkapazität $c_f(u, v)$:

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{falls } (u,v) \in E \\ f(v,u) & \text{falls } (v,u) \in E \\ 0 & \text{sonst} \end{cases}$$

 $G_f = (V, E_f)$ mit $E_f = \{(u, v) \in VxV | c_f(u, v) > 0\}$ Suche eines Pfades von s nach t und Erhöhung aller Flüsse um

ABBILDUNG 8: Beispiel Restkapazitätsgraph

niedrigsten möglichen Wert auf Pfad

Ford-Fulkerson-Algorithmus

Idee - Ford-Fulkerson-Algorithmus

- Suche Pfad von s nach t, der noch **erweiterbar** ist
- Suche dieses Pfades im Restkapazitätsgraphen G_f (mögliche Zu- und Abflüsse)

Code:

Ford-Fulkerson(G,s,t,c)

```
FOREACH e in E do e.flow = 0;

WHILE there is path p from s to t in G_{flow} D0

c_{flow}(p) = \min \{c_{flow}(u,v) : (u,v) \text{ in p}\}
FOREACH e in p D0

IF e in E THEN
e.flow = e.flow + c_{flow}(p);
ELSE
e.flow = e.flow - c_{flow}(p);
```

- Die Pfadsuche erfolgt z.B. per BFS oder DFS
- Laufzeit: $O(|E| \cdot u \cdot |f^*|)$ ($O(|V| \cdot |E|^2)$ Mit Verbesserung nach Edmonds-Karp) (wobei f^* maximaler Fluss und Fluss um bis zu $\frac{1}{u}$ pro Iteration wächst)

Beispiel:

