Event Detection from Text Data

Tomáš Kala

June 20, 2017

Event detection

- What is it about?
- Original method by He et al. (2007)
- Our contribution (through Word2Vec)

Figure: 6/1 - 17/1, 2015: V redakci satirického listu Charlie Hebdo v Paříži se střílelo. Francouzský satirický časopis Charlie Hebdo, na který minulý týden zaútočili islamisté, znovu vydá karikatury proroka Mohameda.

Word2Vec

- Neural network language model by Mikolov et al. (2013)
- Learns vector representation that preserves word properties

Figure: Word2Vec schema

terorista	olympiáda	
islamista	olympijský	
džihádista	paralympiáda	
extremista	univerziáda	
teroristický	Soča	
Coulibaly	medailista	
allah	Soči	
ozbrojenec	ec víceboj	
džihád	mistrovství	
islámský	šampionát	

Table: Most similar words

Word representation

Each word abstracted into 2 vectors

Semantical representation – vector space embedding

$$\mathbf{v}_w \in \mathbb{R}^{100}$$
 (learned through Word2Vec). (1)

Trajectory – Document Frequency-Inverse Document Frequency

$$\mathbf{y}_{w} \in \mathbb{R}^{T}, \ \mathbf{y}_{w}(t) = \underbrace{\frac{\mathsf{DF}_{w}(t)}{\mathsf{N}(t)}}_{\mathsf{DF}} \cdot \underbrace{\log \frac{N}{\mathsf{DF}_{w}}}_{\mathsf{IDF}}, \ t = 1, \dots, T$$
 (2)

Word trajectories

Signal power decides between the two categories.

Event detection

Original method and its modification

- Original greedy optimization:
 - KL-divergence of the trajectories
 - Simple document overlap
 - 217 events, 2.08 keywords/event
 - ► Too strict
- Word2Vec-based modification:
 - Cosine similarity of word vectors
 - ▶ 46 events, 10.28 keywords/event
 - ► Too noisy

Event detection

Cluster-based algorithm

- Application of DBSCAN (Ester et al., 1996)
- Custom distance function
- Trajectory filtering
- 77 events, 9.88 keywords/event

Document retrieval

- Event trajectories
- Active periods
- Keywords as a query

Figure: Gaussian fit, active period = $[\mu - \sigma, \mu + \sigma]$

Event annotation

Document headlines not informative enough

Charlie Hebdo opět otiskne karikatury proroka Mohameda

Multi-document summarization (Lin and Bilmes, 2010, 2011)

$$\max_{S \subseteq U} \mathcal{F}(S) = \mathcal{L}(S) + \lambda \mathcal{R}(S)$$
s. t.
$$\sum_{i \in S} c_i \leq \mathcal{B}$$
(3)

We ran into some issues...

...Pak ale začalo zabíjení v centru Paříže. ... Sloni v zoo Dvůr Králové si pochutnali na vanočních stromcích. ...

Results

Method	Р	R	F ₁	Redundancy	Noisiness	Purity
Original	16.35%	28.57%	20.80%	77.99%	50.94%	30.53%
Modified	8.70%	10.20%	9.39%	65.22%	19.57%	44.42%
Clusters	25.97%	28.57%	27.21%	42.86%	19.48%	61.08%

Table: Precision, Recall, Redundancy, Noisiness and Purity comparison

Unit	Original	Modified	Clusters
Word2Vec	N/A	3h 50min	
Word analysis	\leftarrow	37min	\longrightarrow
Event detection	2min 12s	38s	4min 50s
Document retrieval	7min 30s	6h	7h 40min
Event annotation	3h 22min	3min 38s	7min 30s
Total	4h 9min	10h 31min	12h 20min

Table: Computation time comparison

Conclusion, use case

- Event detection with low redundancy
- Subsequent document retrieval
- Human-readable annotations

11 / 11

Bibliography

- M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Kdd*, volume 96, pages 226–231, 1996.
- Q. He, K. Chang, and E.-P. Lim. Analyzing feature trajectories for event detection. In *Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR '07, pages 207–214, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-597-7. doi: 10.1145/1277741.1277779. URL http://doi.acm.org/10.1145/1277741.1277779.
- M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger, et al. From word embeddings to document distances. In *ICML*, volume 15, pages 957–966, 2015.
- H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submodular functions. In *Human Language Technologies: The 2010 Annual Conference of* the North American Chapter of the Association for Computational Linguistics, pages 912–920. Association for Computational Linguistics, 2010.
- H. Lin and J. Bilmes. A class of submodular functions for document summarization. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*, pages 510–520. Association for Computational Linguistics, 2011.
- T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. *CoRR*, abs/1301.3781, 2013. URL http://arxiv.org/abs/1301.3781.

Word representation

Each word abstracted into 2 vectors

Semantical representation – vector space embedding

$$\mathbf{v}_w \in \mathbb{R}^{100}$$
 (learned through Word2Vec). (4)

Trajectory – Document Frequency-Inverse Document Frequency

$$\mathbf{y}_{w} \in \mathbb{R}^{T}, \ \mathbf{y}_{w}(t) = \underbrace{\frac{\mathsf{DF}_{w}(t)}{\mathsf{N}(t)}}_{\mathsf{DF}} \cdot \underbrace{\log \frac{N}{\mathsf{DF}_{w}}}_{\mathsf{IDF}}, \ t = 1, \dots, T$$
 (5)

with

- ► T ... document stream length (in days),
- ▶ N . . . number of documents,
- \triangleright N(t) ... # of documents published on day t,
- \triangleright DF_w ... # of documents containing the word w,
- ▶ $DF_w(t)$... # of documents containing the word w published on day t.

Multi-document summarization

$$\max_{S \subseteq U} \mathcal{F}(S) = \mathcal{L}(S) + \lambda \mathcal{R}(S)$$
s. t.
$$\sum_{i \in S} c_i \leq \mathcal{B}, \text{ with}$$
(6)

- U . . . set of all sentences,
- \bullet $\ensuremath{\mathcal{L}}$ \dots relevance measure composed of sentence pairwise similarities,
- ullet \mathcal{R} ... diversity measure controlled by λ ,
- B ... maximum summary length,
- c_i ... length of sentence i.

Word Mover's Distance

- Document similarity measure by Kusner et al. (2015)
- Transportation problem between word vectors of 2 documents

$$\min_{\mathbf{T} \ge 0} \quad \sum_{i,j=1}^{n} \mathbf{T}_{ij} \| \mathbf{x}_{i} - \mathbf{x}_{j} \|_{2}$$
s. t.
$$\sum_{j=1}^{n} \mathbf{T}_{ij} = d_{i} \quad \forall i \in \{1, \dots, n\} \quad (7)$$

$$\sum_{i=1}^n \mathbf{T}_{ij} = d'_j \quad \forall j \in \{1, \dots, n\}$$

- n . . . vocabulary size
- **x**_i ... vector embedding of the word *i*
- d_i (d'_i) ... normalized frequency of i in document 1 (2)

President greets the press in Chicago.

Figure: WMD illustration

11 / 11