Copy] RM SE54H18

RESEARCH MEMORANDUM

for the

Air Research and Development Command, U.S. Air Force

PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE

J65-B3 TURBOJET ENGINE AT REYNOLDS NUMBER

INDICES FROM 0.2 TO 0.8

By W. M. Braithwaite and W. K. Greathouse

Lewis Flight Propulsion Laboratory Cleveland, Ohio

Restriction/Classification

This material contains into Cancelled of the espionage laws, Title manner to unauthorized perso

the United States within the meaning nission or revelation of which in any

NATIONAL ADVISORY COMMITTEE **AERONAUTICS**

SHINGTON

To be for the first OR U.S. C. Access to the second

CATION CANCELLED ANNOUNCEMENTS NO.

By_

Date_ NATIONAL ADVISORY COMMITTEE FOR AEROANUTICS

RESEARCH MEMORANDUM

for the

Air Research and Development Command, U.S. Air Force

PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE J65-B3 TURBOJET

ENGINE AT REYNOLDS NUMBER INDICES FROM 0.2 TO 0.8

By W. M. Braithwaite and W. K. Greathouse

SUMMARY

Altitude performance characteristics of the J65-B3 turbojet engine and its components were obtained at engine-inlet conditions corresponding to Reynolds number indices from 0.2 to 0.8 over a range of corrected engine speeds from 70 to 110 percent of rated speed. Engine operational limits up to an altitude of 75,000 feet together with ignition and windmilling characteristics were also obtained. The engine and component data are presented both in graphical and in tabulated form. The operational characteristics are presented in graphical form.

INTRODUCTION

At the request of the Air Research and Development Command, U.S. Air Force, an experimental investigation of performance of the J65-B3 turbojet engine was made in an NACA Lewis altitude chamber. Preliminary results of this investigation are presented herein for a range of engineinlet conditions corresponding to Reynolds number indices from 0.2 to 0.8 and corrected engine speeds from 5800 (70 percent rated) to 9200 (110 percent rated) rpm. Engine operational limits and ignition and windmilling characteristics are also presented. Over-all engine and component performance are shown, in terms of conventional parameters for the various Reynolds number indices, as plotted curves and also in tabulated form. Engine operational limits between 60,000 and 75,000 feet altitude were obtained by utilizing a no-flow ejector at the exhaust-nozzle exit. A fixed engine exhaust-nozzle area of 1.969 square feet was used throughout the investigation.

A 7C

APPARATUS

Engine

The J65-B3 axial-flow turbojet engine (fig. 1) has a rated thrust of 7220 pounds at standard sea-level static operation at an engine speed of 8300 rpm and a limiting turbine-discharge temperature of 1166° F (1626° R). For this investigation, the fixed exhaust nozzle was sized to an area of 1.969 square feet which gave limiting turbine-discharge temperature (1166° F) at 8300 rpm for 100° F inlet-air temperature at sea-level static operation.

Instrumentation

Location of instrumentation stations throughout the engine and the amount of instrumentation at each station are shown in the diagram and table in figure 2. Engine fuel was measured by rotometers and engine thrust was measured with a null-type thrust cell.

PROCEDURE

Performance data were obtained at Reynolds number indices from 0.2 to 0.8 and corrected engine speeds from 5800 to 9200 rpm. At each Reynolds index, the maximum engine-inlet ram-pressure ratio available from the test facility was maintained while engine speed was varied from rated engine speed down to the engine speed at which the exhaust nozzle "unchoked." Engine operational limits were determined over a range of altitudes at a Mach number of 0.8. Determination of operational characteristics between altitudes of 60,000 and 75,000 feet was made possible by utilizing a no-flow ejector to reduce the static pressure surrounding the exhaust nozzle. Fuel flows less than that corresponding to the J65-B3 throttle setting of "idle" were obtained by use of a separate "modified" fuel control. MIL-5-5624A, grade JP-4 fuel was used throughout the investigation.

PRESENTATION OF RESULTS

The experimental data are grouped according to the index presented in table I. Over-all engine performance is shown in figure 3 and component performance is shown in figures 4 to 7.

The performance of the engine was measured and presented in a manner similar to that reported in reference 1. Therefore, within the range of Reynolds number indices covered, engine performance may be determined from the curves presented for any flight condition at which the

engine exhaust nozzle is choked. In order to calculate the jet thrust for the engine at a particular flight condition from figure 3(e), the exhaust-nozzle pressure-drop parameter must be determined by using figures 3(c) and (d). Subtracting the inlet momentum term from this jet thrust will give the net thrust. The corrected net thrust and specific fuel consumption at a flight Mach number of 0.8 are presented in figures 3(f) and 3(g) for a range of altitude corresponding to the range of Reynolds number indices investigated.

The data of figure 8 are presented to show the difference between the exhaust-gas temperature as measured by the 4 thermocouples on the manufacturer's thermocouple harness at the turbine outlet and the average temperature as measured by 30 thermocouples installed at the exhaust-nozzle inlet. The oil-mist-overboard air flow and turbine-flange cooling air flow are shown in figure 9.

The operational range of the engine is presented in figure 10 for a flight Mach number of 0.80 and superimposed on the range is the wind-milling speed and the manufacturer's throttle idle position setting. Windmilling and ignition characteristics are presented in figures 11 and 12. The procedure followed in determining the ignition characteristics was prescribed by the manufacturer. All ignitions presented on the figure were therefore obtained in the 20-second time interval which is incorporated into the ignition system.

The corrected engine speed at which the exhaust-nozzle chokes is presented in figure 13 and the data reported herein represent the performance of the engine only in the region where the exhaust nozzle is choked. The relation between Reynolds number index and flight conditions is shown in figure 14. A complete tabulation of the performance data is presented in table II and the symbols used in the various parameters are defined in the appendix.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 23, 1954

APPENDIX A

${\tt SYMBOL}{\tt S}$

The following symbols are used in this report:

Fj	jet thrust, lb
F _n	net thrust, lb
M	Mach number
N	engine speed, rpm
P	total pressure, lb/sq ft
p	static pressure, lb/sq ft
T	total temperature, ^O R
t	static temperature, OR
V	velocity, ft/sec
Wa	air flow, lb/sec
Wf	fuel flow, lb/sec
Wg	gas flow, lb/sec
W_{om}	oil mist overboard air flow, lb/sec
Wtf	turbine flange cooling air flow, lb/sec
Υ	ratio of specific heats of gas
δ	ratio of absolute total pressure to absolute static pressure of NACA standard atmosphere at sea level
η	efficiency
θ	ratio of absolute total temperature to absolute static temperature of NACA standard atmosphere at sea level
φ	ratio of absolute viscosity of air to absolute viscosity of air of standard NACA atmosphere at sea level

Reynolds number index

Subscripts:

9

b combustor compressor С engine е t turbine 0 altitude test condition 1 compressor inlet 3 compressor discharge 4 turbine inlet 5 turbine discharge 6 manufacturer's temperature measuring station

exhaust-nozzle inlet

REFERENCE

1. Walker, Curtis L., Braithwaite, Willis M., and Fenn, Daniel B.: Component and Over-All Performance Evaluation of a J47-GE-25 Turbojet Engine over a Range of Engine-Inlet Reynolds Number Indicies. NACA RM E52L16, 1953.

TABLE I. - FIGURE INDEX

Figure	Dependent variable	Independent variable										
1 2												
Over-all Engine Performance												
3(a) 3(b) 3(c)	Corrected engine air flow Corrected fuel flow Corrected exhaust-gas total temperature	Corrected engine speed Corrected engine speed Corrected engine speed										
3(d)	Engine total-pressure	Engine total-temperature ratio										
3(e)	Jet thrust	Exhaust-nozzle pressure- drop parameter										
3(f) 3(g)	Corrected net thrust Corrected specific fuel consumption	Corrected engine speed										
	Component Performance											
4 5	Compressor performance Combustor performance	Corrected engine speed Combustion parameter and corrected engine speed										
6 7	Turbine performance Tail-pipe total- pressure loss	Corrected engine speed Corrected engine speed										
	Operational Charac	cteristics										
8	Manufacturer's 4 thermo- couple temperature average	Nozzle-inlet total temperature										
9	Oil mist and turbine cooling air flow	Engine-inlet air flow										
10	Altitude (operational) Ratio of windmilling engine speed to rated speed	Acutal engine speed Corrected flight velocity										
12	Altitude (ignition)	Mach number										
13	Exhaust-nozzle choked-flow:	range										
14	Relation between Reynolds number index and flight condition.											

Table II. - Calibration of J65-B3 Turbojet Engine.

Run	Combustor total-	Tail-pipe	Exhaust- nozzle	Scale jet	Engine	Corrected engine	Corrected engine	Corrected fuel	Ram pres s ure	Engine total-	Engine	Compressor Combustor			Tu		Corrected			
	Pressure loss P3-P4. P3	pressure loss P5-P9 P5	pressure- drop parameter, 1.26 P ₉ -P ₀	thrust- Fj, 1b	N, rpm	speed, $\frac{N}{\sqrt{\theta_1}}$, rpm	air flow, $\frac{W_{8,1}\sqrt{\theta}}{\delta}$, lb/sec	flow, $\frac{\text{Wf,e}}{\text{6}\sqrt{\theta}}$, $\frac{1\text{b/hr}}{\text{1}$	ratio, P1 P0	pressure ratio, Pg P	total- temperature ratio, Tg	pressure ratio, P3 F1	Efficiency, N _C	parameter, p _b 2 W _{a,1} -W _{om}	Efficiency, N _b	gas flow $\frac{w_{g,4}\sqrt{\theta_4}}{5_4}$, $\frac{\gamma_4}{1.4}$ lb/sec	Efficiency, ⁿ t	Corrected inlet total temperature, T4 OR	Total- pressure ratio, P ₄ P ₅	exhaust-gas total temperature, Tg #1, oR
1 2 3 4 5	0.050 .042 .044 .043 .043	0.037 .038 .040 .037 .036	1038 1397 1751 1980 2274	1888 2597 3393 3788 4379	5846 6205 6507 6696 6886	5765 6119 6417 6604 6784	65.6 74.1 80.9 85.4 91.0	696 1183 1689 2058 2508	2.18 2.18 2.21 2.17 2.18	0.8344 .9977 1.152 1.264 1.396	1.423 1.627 1.800 1.946 2.082	2.528 3.033 3.532 3.867 4.259	0.769 .814 .847 .860 .875	3528×10 ² 4545 5651 6379 7286	0.973 .947 .932 .962 .971	36.31 36.65 36.46 36.58 36.67	0.882 .895 .909 .896 .900	943 1080 1194 1284 1372	2.771 2.801 2.815 2.822 2.814	739 844 934 1010 1081
6 7 8 9	0.041 .040 .039 .037 .038	0.027 .025 .025 .029 .027	2729 3040 3479 4030 4061	5282 5911 6829 7989 8003	7239 7440 7807 8199 8239	7132 7337 7699 8094 8149	98.5 103.6 111.2 118.8 118.7	3283 3872 4956 6225 6333	2.18 2.21 2.17 2.22 2.20	1.595 1.735 1.947 2.185 2.215	2.320 2.478 2.728 3.011 3.021	4.815 5.222 5.861 6.565 6.602	0.873 .867 .859 .854 .850	8698 9732 11530 13500 13520	0.994 .994 .985 .997 .984	37.29 37.55 37.47 38.00 37.87	0.897 .901 .899 .896 .902	1520 1618 1775 1948 1955	2.816 2.819 2.822 2.809 2.796	1204 1286 1416 1563 1568
11 12 13 14 15	0.047 .042 .043 .043	0.038 .038 .037 .032 .027	815 1099 1400 1689 1997	1564 2074 2697 3275 3878	5919 6268 6598 6880 7174	5855 6194 6526 6798 7089	66.1 77.2 83.2 91.4 97.7	809 1327 1940 2559 3404	2.19 2.15 2.19 2.20 2.18	0.859 1.041 1.215 1.392 1.585	1.480 1.688 1.906 2.096 2.329	2.605 3.167 3.705 4.226 4.789	0.761 .824 .843 .865 .861	2780 3526 4490 5307 6387	0.944 .974 .958 .965 .956	36.30 37.31 36.81 37.31 37.29	0.895 .892 .901 .897 .898	982 1117 1260 1379 1527	2.781 2.804 2.812 2.815 2.817	768 876 989 1088 1209
16 17 18 19 20	0.039 .039 .039 .037 .037	0.025 .024 .025 .029	2264 2494 2762 2965 2995	4371 4876 5390 5840 5916	7454 7653 7931 8126 8187	7366 7555 7829 8046 8082	104.2 109.2 113.8 117.4 118.1	4010 4680 5533 6328 6385	2.18 2.15 2.16 2.16 2.18	1.751 1.896 2.063 2.180 2.190	2.508 2.655 2.856 3.032 3.047	5.287 5.709 6.167 6.516 6.560	0.868 .869 .860 .817 .851	7357 8166 9135 9932 10072	0.993 .983 .977 .973 .983	37.56 37.56 37.74 37.90 37.97	0.902 .895 .901 .887 .854	1639 1727 1853 1956 1966	2.830 2.824 2.804 2.796 2.804	1302 1378 1482 1574 1581
21 22 23 24 25	0.046 .045 .043 .039 .040	0.037 .029 .025 .028 .026	1209 1552 1894 2152 2163	2292 2997 3593 4125 4177	6181 6578 6937 7251 7254	6544 6942 7360 7693 7697	85.6 94.4 104.9 112.2 112.2	1978 2888 3968 4886 4848	2.17	1.242 1.485 1.751 1.966 1.946	1.933 2.221 2.523 2.731 2.742	3.782 4.508 5.278 5.917 5.879	0.851 .863 .875 .853 .847	3528 4639 5107 6590 6576	0.985 .983 .990 1.988 1.003	37.22 37.12 37.47 37.60 37.65	0.899 .895 .890 .912 .906	1281 1465 1654 1791 1797	2.797 2.815 2.814 2.811 2.823	1003 1153 1309 1423 1439
26 27 28 29 30	0.041 .040 .037 .035	0.024 .024 .026 .026 .026	2207 2386 2567 2710 2880	4299 4628 5021 5295 5599	7286 7483 7771 7965 8156	7706 7949 8245 8433 8635	111.9 117.1 120.5 125.1 127.0	4946 5596 6421 7093 7749	2.21 2.21 2.17 2.15 2.18	1.966 2.115 2.245 2.366 2.476	2.772 2.926 3.102 3.235 3.378	5.913 6.314 6.778 7.113 7.386	0.849 .840 .829 .826 .814	6727 7222 8154 8634 9236	1.002 1.011 1.004 1.010 1.003	37.87 38.19 37.77 38.17 38.14	0.915 .906 .901 .898 .899	1811 1909 2021 2102 2189	2.818 2.798 2.830 2.825 2.805	1417 1519 1610 1679 1753
31 32 33 34 35	0.034 .041 .041 .040	0.027 .026 .025 .022 .027	2928 774 870 990 1093	5700 1383 1640 1887 2094	8229 6440 6684 6900 7108	8751 6846 7061 7289 7493	128.2 92.3 97.6 103.0 108.1	2998 3480 4016 4535		2.540 1.514 1.609 1.738 1.852	3.471 2.273 2.409 2.560 2.668	7.557 4.448 4.820 5.214 5.607	0.806 .864 .861 .856 .855	9412 3077 3396 3785 4206	0.964 .973 .986 .992	36.87 37.30 37.57 37.75	0.888 .881 .870	1487 1576 1582 1744	2.797 2.744 2.799 2.814 2.827	1801 1180 1250 1329 1385
36 37 38 39 40	0.038 .039 .038 .035 .034	0.024 .024 .024 .025 .025	1275 1291 1371 1552 1643	2472 2516 2694 2975 3243	7393 7381 7566 7890 8067	7802 7849 8011 8345 8532	113.5 114.3 117.6 123.1 125.1	5482 5544 6021 7148 7698	1.21 1.22 1.20 1.17 1.18	2.035 2.066 2.152 2.361 2.456	2.897 2.915 3.032 3.263 3.401	6.178 6.192 6.497 7.071 7.299	0.847 .840 .836 .827 .813	4889 4770 5168 5893 6179	0.993 0.994 1.000 0.998 1.000	37.52 37.87 37.94 37.86 38.10	0.883 .894 .889 .885 .890	1886 1898 1972 2111 2197	2.853 2.813 2.836 2.817 2.799	1504 1513 1574 1693 1765
41 42 43 44 45	0.034 .040 .038 .040 .039	0.025 .035 .029 .028 .027	1723 611 748 763 865	3424 1177 1474 1510 1740	8193 6024 6300 6349 6573	8665 6811 7140 7214 •7459	126.5 92.3 99.3 100.8 107.8	8186 2834 3552 3721 4381	1.21	2.523 1.461 1.631 1.650 1.806	3.504 2.229 2.423 2.463 2.628	7.482 4.325 4.918 5.059 5.546	0.804 .844 .846 .850	6424 2280 2746 2817 3142	1.010 .970 .966 .970 .981	38.18 37.39 36.97 36.96 37.36	0.887 .900 .882 .886 .883	2258 1470 1596 1622 1732	2.793 2.743 2.815 2.853 2.870	1819 1157 1258 1278 1364
46 47 48 49 50	0.040 .038 .038 .035 .035	0.025 .024 .025 .029 .027	973 1120 1302 1276 1427	1943 2135 2541 2528 2800	6795 7010 7470 7387 7753	7701 7925 8216 8288 8538	111.3 116.0 121.6 123.3 124.4	5103 5761 6805 6700 7504	1.21 1.22 1.18 1.18 1.18	1.935 2.123 2.297 2.289 2.438	2.802 2.956 3.179 3.201 3.374	5.904 6.363 7.003 6.955 7.345	0.832 .834 .843 .819 .808	3470 3908 4878 4599 5297	0.957 .976 .976 1.015 1.000	37.47 37.49 37.19 38.02 37.48	0.861 .993 .678 .893 .896	1829 1938 2066 2091 2194	2.854 2.814 2.860 2.848 2.828	1454 1534 1650 1661 1751
51 52 53 54 55	0.032 .040 .038 .038 .042	0.027 .042 .028 .025 .026	1677 524 724 828 855	3335 967 1451 1582 1708	8278 6185 6704 6882 7087	9209 6884 7524 7687 7878	130.3 92.0 106.4 110.1 115.7	10174 2913 4668 5216 5847	1.19 1.28 1.26 1.25 1.24	2.798 1.497 1.840 2.015 2.054	3.892 2.277 2.723 2.839 2.979	8.285 4.465 5.672 6.050 6.344	0.756 .834 .838 .844 .833	6202 1922 2673 2980 3105	0.956 .982 .967 .957	37.56 36.85 36.70 36.63 37.82	0.906 .920 .872 .905 .875	2515 1504 1788 1860 1945	2.788 2.745 2.883 2.817 2.884	2020 1182 1413 1473 1546
56 57 58 59 6	C.035 .035 .035 .038 .039	C.C24 .C28 .C27 .C29 .C31	970 1188 1191 533 567	1839 2302 2312 1030 1113	7278 7874 7913 6653 6675	8062 8742 8838 7431 7429	117.4 127.8 126.2 102.13 104.20	6479 8533 8960 4644 4664	1.26 1.28 1.27 1.76 2.10	2.255 2.573 2.627 1.822 1.835	3.111 3.591 3.700 2.750 2.757	6.787 7.702 7.877 5.566 5.595	0.840 .790 .784 .826 .840	3539 4238 4372 1756 1789	Q.962 .996 .976 .956 .975	36.49 37.94 37.10 36.08 36.84	0.889 .894 .886 .876	2027 2326 2392 1802 1798	2.835 2.808 2.819 2.853 2.841	1615 1864 1920 1427 1431
61 62 63 64 65	0.038 .039 .036 .035 .033	C.C27 .024 .024 .024 .028	626 711 825 868 916	1206 1396 1610 1654 1820	6854 7118 7495 7815 7988	7683 7979 8402 8760 8944	106.26 114.73 123.66 126.5 128.11	5527 6474 8122 9499 9953	2.14 2.01	2.003 2.168 2.476 2.661 2.696	2.949 3.169 3.501 3.780 3.918	6.117 6.565 7.408 7.997 8.141	0.826 .813 .806 .788 .768	2027 2203 2580 2285 3040	0.933 .977 .969 .952 .972	35.63 37.50 37.50 37.03 37.63	0.886 .871 .873 .870 .871	1928 2055 2259 2434 2516	2.858 2.839 2.816 2.831 2.840	1531 1645 1817 1962 2033

CONFIDENTIAL

Table II. - Concluded. Calibration of J65-B3 Turbojet Engine.

Run	Inlet Reynolds number index, 5 • √6	Inlet total pressure, p, lb/sq ft abs	Altitude static pressure, po, lb/sq ft abs	Inlet total temperature, Tl, R	Total pressure, P3, lb/sq ft abs	Total temperature, T3, R	Turbine : Total pressure, P4, lb/sq ft abs	Total temperature, O4,	Turbine Total pressure, lb/sq ft abs	Static pressure, p ₅ , lb/sq ft abs	Nozzle Total temperature, Tg, oR	Total pressure Pg, lb/sq ft abs	Manufact- urer's thermo- couple average, Tof,	Engine inlet air flow, Wa,1, lb/sec	Oil mist overboard air flow, Wom lb/sec	Turbine flange cooling air, Wtf lb/sec	flow.
1 2 3 4 5	0.798 .797 .800 .797 .795	1751 1748 1755 1749 1747	803 800 795 805 800	534 534 534 534 535	4426 5301 6198 6763 7441	745 779 808 827 849	4204 5078 5928 6473 7119	970 1111 1229 1321 1414	1517 1813 2106 2294 2530	1364 1621 1885 2091 2291	760 8 69 961 1039 1114	1461 1744 2021 2210 2440	762 865 967 1034 1066	53.54 60.35 66.18 69.64 73.99	0.84 0.92 1.00 1.04 1.09	0.76 .89 1.01 1.09 1.19	584 991 1421 1725 2102
6 7 8 9	0.800 .799 .796 .802 .798	1759 1753 1746 1755 1738	805 793 804 790 789	535 534 534 533 531	8469 9155 10234 11521 11507	883 906 943 978 978	8119 8793 9839 11093 11055	1567 1665 1826 2001 2000	2883 3119 3486 3949 3954	2623 2830 3174 3606 3616	1241 1323 1457 1605 1604	2805 3042 3399 3835 3849		80.71 84.69 89.62 97.28 96.45	1.16 1.18 1.26 1.33 1.32	1.56	2770 3253 4138 5230 5259
11 12 13 14 15	C.599 .594 .598 .595	1304 1298 1303 1300 1299	596 603 595 590 597	531 532 531 532 532	3397 4111 4828 5494 6221	751 784 817 846 881	3237 3940 4620 5259 5960	1005 1145 1289 1414 1565	1164 1405 1643 1868 2116	1045 1258 1470 1688 1918	786 898 1012 1115 1239	1120 1351 1583 1809 2059	1007 1103	40.28 46.82 50.71 55.49 59.25	0.63 .69 .75 .79 .84	0.59 .69 .78 .89 .97	504 824 1208 1591 2115
16 17 18 19 20	0.596 .592 .591 .597 .595	1301 1296 1293 1298 1302	606 602 598 600 597	532 533 533 530 533	6879 7399 7974 8458 8541	906 929 956 972 979	6610 7110 7666 8144 8227	1680 1774 1903 1997 2019	2336 2518 2734 2913 2934	2120 2290 2496 2664 2680	1334 1415 1522 1607 1624	2278 2457 2667 2829 2851	1490 1590	63.32 66.04 68.67 71.31 71.72	0.86 0.91 0.94 1.04 1.01	1.20	2495 2904 3425 3920 3980
21 22 23 24 25	C.596 .597 .598 .592 .598	1086 1098 1084 1073 1084	491 502 497 507 496	463 466 461 461 461	4107 4950 5721 6349 6373	715 757 787 819 820	3919 4727 5477 6102 6118	1143 1315 1469 1591 1596	1401 1679 1946 2196 2171	1263 1522 1767 1966 1966	895 1035 1163 1259 1264	1349 1630 1898 2110 2110	889 1011 1140 1233 1241	46.53 51.71 57.04 60.34 60.95	0.68 .75 .80 .80	1.03	959 1420 1916 2335 2341
26 27 28 29 30	C.597 .597 .598 .591 .594	1091 1079 1084 1077 1083	494 489 500 500 498	464 460 461 463 463	6451 6813 7347 7661 7999	826 840 866 885 902	6189 6544 7072 7390 7724	1619 1692 1795 1875 1953	2167 2339 2499 2616 2754	2005 2135 2283 2393 2523	1286 1346 1430 1498 1564	2144 2282 2434 2548 2681	1479	61.02 63.41 65.51 67.44 68.83	0.83 .84 .86 .86	1.10	2411 2686 3100 3410 3746
31 32 33 34 35	0.593 .400 .397 .399 .397	1068 734 727 730 732	490 626 604 609 615	459 461 465 464 467	8071 3265 3504 3806 4104	905 745 772 791 815	7800 3131 3359 3653 3941	1321 1412 1491 1569	2789 1141 1200 1298 1394	2553 1041 1093 1183 1265	1593 1048 1120 1188 1246	2713 1111 1170 1269 1356	1094 1159	68.82 33.95 35.44 37.60 39.41	0.84 .50 .49 .51	.63	3872 980 1132 1310 1488
36 37 38 39 40	0.399 .402 .400 .400 .407	734 724 729 731 730	607 594 606 623 616	466 459 463 464 464	4535 4483 4736 5169 5328	842 833 855 885 901	4365 4309 4557 4986 5147	1693 1679 1759 1887 1964	1530 1532 1607 1770 1839	1396 1401 1471 1623 1686	1350 1338 1404 1514 1578	1494 1496 1569 1726 1793	1379 1490	41.55 41.59 42.90 44.97 45.66	0.55 .54 .54 .57 .56	.72 .75 .81	1802 1784 1959 2335 2511
41 42 43 44 45	0.412 .400 .402 .401 .395	730 612 612 606 599	598 515 509 501 498	464 406 404 402 403	5462 2647 3010 3066 3322	913 656 680 682 703	5278 2540 2894 2944 3191	2019 1150 1242 1260 1345	1890 926 1028 1032 1112	1733 838 933 937 1013	1626 905 979 990 1059	1842 894 996 1003 1082	963 975	46.15 30.16 32.54 32.80 34.61	0.54 .40 .44 .43 .45	.49 .54 .55	2670 725 907 938 1093
46 47 48 49 50	C.397 .395 .396 .401 .390	604 604 637 626 641	500 495 541 630 542	404 406 429 412 428	3566 3843 4461 4354 4708	725 746 808 785 835	3422 3695 4290 4201 4542	1424 1516 1708 1660 1809	1199 1313 1500 1475 1606	1093 1205 1369 1343 1466	1132 1200 1364 1319 1444	1169 1282 1463 1433 1563	1335 1288	36.01 37.42 40.27 40.95 41.49	0.46 .47 .55 .48	.66 .73 .72	1285 1454 1862 1766 2064
51 52 53 54 55	0.395 .300 .304 .301 .299	624 475 475 476 479	523 372 377 380 385	416 419 412 416 420	5170 2121 2694 2880 3039	873 687 728 748 771	5004 2037 2592 2772 2913	2016 1214 1419 1491 1574	1795 748 899 984 1010	1645 664 813 896 920	1619 954 1122 1181 1251	1746 711 874 959 984	1095 1152	42.91 22.97 26.80 27.65 29.11	0.53 .29 .35 .36		2686 588 934 1050 1191
56 57 58 59 60	C.293 .301 .298 .1954 .1935	474 483 472 309 309	377 378 371 176 147	423 421 416 416 419	3217 3720 3718 1720 1729	790 844 843 735 736	3104 3591 3592 1655 1662	1652 1889 1917 1444 1452	1095 1279 1274 580 585	1001 1166 1165 527 529	1316 1512 1539 1144 1155	1069 1243 1240 563 567	1470 1511 1111	29.12 32.40 31.44 16.65 16.93	0.37 .36 .40 .21	.60	1310 1755 1790 607 612
61 62 63 64 65	0.1974 .2013 .1987 .1943 .1985	309 315 311 304 312	154 150 145 151 144	413 413 413 413 414	1890 2068 2304 2431 2540	752 775 809 839 857	1818 1987 2222 2347 2457	1534 1635 1798 1937 2007	636 700 789 829 865	579 642 722 759 791	1218 1309 1446 1561 1622	619 683 770 809 841	1423 1534	17.39 19.15 20.38 20.37 21.14	0.23 .24 .25 .27 .25	.38	720 860 1065 1218 1310

Figure 1. - J65-B3 turbojet engine in altitude test chamber.

Station	·	Number of probes	-
	Total pressure	Static pressure	Thermocouple
1 3 4 5 6	20 12 4 15 - 35	8 - - - - 5	12 12 - - 4 30

Figure 2. - Schematic diagram of engine showing instrumentation stations.

Figure 3. - Over-all engine performance for several values of Reynolds number indices.

Figure 3. - Over-all engine performance for several values of Reynolds number indices.

Figure 3. - Over-all engine performance for several values of Reynolds number indices.

Figure 3. - Over-all engine performance for several values of Reynolds number indices.

Figure 3. - Over-all engine performance for several values of Reynolds number indices.

Figure 3. - Over-all engine performance for several values of Reynolds number indices.

CONFIDENTIAL

(g) Specific fuel consumption for flight Mach number of 0.8.

Figure 3. - Over-all engine performance for several values of Reynolds number indices.

Figure 5. - Variation of combustor performance for several values of Reynolds number indices.

Figure 6. - Variation of turbine performance with corrected engine speed for several values of Reynolds number indices.

Figure 7. - Variation of tail-pipe total-pressure loss with corrected engine speed for several values of Reynolds number indices.

Figure 8. - Variation of manufacturer's four thermocouple temperature average at station 6 with NACA 30 thermocouple temperature average at station 9.

Figure 9. - Variation of turbine cooling and oil mist air flow with engine-inlet air flow for several values of Reynolds number indices.

Figure 10. - Effect of altitude on engine operational characteristics at flight Mach number of 0.80.

Figure 11. - Effect of flight velocity on windmilling speed for several values of Reynolds number indices.

Figure 12. - Effect of altitude and Mach number on engine ignition characteristics.

Figure 13. - Minimum corrected engine speeds at which critical flow existed in exhaust nozzle.

Figure 14. - Reynolds number index as a function of altitude and Mach number assuming 100 percent ram-pressure recovery.

PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE J65-B3 TURBOJET

ENGINE AT REYNOLDS NUMBER INDICES FROM 0.2 TO 0.8

W. M. Barton to

W. M. Braithwaite Aeronautical Research Scientist Propulsion Systems

William K. Guarthan

W. K. Greathouse Aeronautical Research Scientist Propulsion Systems

Approved:

M Dem Wilsted

H. Dean Wilsted Aeronautical Research Scientist Propulsion Systems

Bruce T. Lundin

Chief Engine Research Division

sjt - 8/23/54

Restriction/Classification Cancelled

NACA RM SE54H18

CONFIDENTIAL

Engines, Turbojet

3.1.3

Braithwaite, W. M. and Greathouse, W. K.

PRELIMINARY ALTITUDE PERFORMANCE DATA FOR THE J65-B3 TURBOJET

ENGINE AT REYNOLDS NUMBER INDICES FROM 0.2 TO 0.8

Abstract

Altitude performance characteristics of the J65-B3 turbojet engine and its components were obtained at engine-inlet conditions corresponding to Reynolds number indices from 0.2 to 0.8 over a range of corrected engine speeds from 70 to 110 percent of rated speed. Engine operational limits up to an altitude of 75,000 feet along with ignition and wind-milling characteristics were also obtained. The engine and component data are presented both in graphical and in tabulated form. The operational characteristics are presented in graphical form.

FORWARD

To permit expeditious transmittal of performance data to those concerned, figures and a tabulation of "preliminary data" are presented herein. Preliminary Data are test data that have not received the complete analysis and extensive cross-checking normally given a set of NACA data before release.