Proposition EQ CFG is not a Turing-decidable language. This proposition is proven using a technique called reducibility. An even more peneal result is true, the puivelence problem for turing machines is unduidable: EPTM = { (M1, M2) | M1 and M2 are Turing mechines and Proposition Ed Tr is not a Thing-deidable Language
This according 111 1 this proposition to llows from enother result, namely that the emptimess testing problem for truing medians is undicidable:

ETM = { LM > | M is a truing mediane and L/M) = \(\frac{1}{2} \). Proposition ETM is not a Tuning - de adoll language.

Returning to context the premnous we now know that (71)
Returning to context the grammons, we now know that (7) LCFG and ECFG are Thing-decidable, but EQCFG is mot.
Ricall Not a language is called context-the if it can be generated by
a Context-fur grammon.
Moral of Mistry
We now know how the main types of languages related to lock other
We now know how the main types of large vages related to be in other frequency of your large vages ([Tuing-decidable large vages)
this set [Turing-recynitable larguages]
includes non repular longuess
longuests
Visually, we represent the relationship boing a Venn digram:
rogueges languages languages languages
So tuing modines provide a very powerful computational model.
What is surprising is lat once we have suit a lump machine
to recognite a longrap, we do not know whether there is a
simple computational model souch as a DFA that recognition the
same language. Offine
REGULARIM = { (M) M is a Turing machine and L(M) is a hyulan language ?.
Theorem REGULAR TM is mot a Turing-decidable language.
来到一点,我们就是一个人,我们还没有一个人的,我们就是这样的,我们就是一个人的,我们也不是一个人的,我们就是我们的,我们就是这样的,我们的,我们的,我们就是 是 对
This Theorem is proven many reducibility. In fact, even more is true:
lice's Theorem Army property of the languages recognised by Turing

madrines is not Turing-duidoble.

Underidosility Task Understand why certain problems are affor Mically unsolveste. Recall Not a Turing mochine M is defined as a 7 - triple (S, A, A, t, i, soupe, Signt) set of myset state accept alphabet transition mapping t: S' × A ~ S × A × {L, R} By An execoding <M> of a Tuning mediane M refus to the I-tuple (S, A, A, t, i, saupt, siegur) that allfines M and is therefor a Ruall that Earlier in the module we provid the following number:
Theorem 1 d A 11 a finite alphabet, then the not of all words over A A* = UA' is countably infinite. Corollary I if A is a finite alphabet, Then the not of all larguages over A is uncountably impirite. Corollang I The mt of all programs in any programming language is countably infinite. healt not me proved Corollary I by realiting that for any programming language, a program is a finite string over the finite alphabet of all allowable characters in that programming language. Corollang III Given a finite alphabet A, The set of all Turing recognished languages our A is countably infinite. Proof An encoding (M) of a Tweing medine M is the 7-tuple (S, A, A, t, i, Sacupt, Srejut), which is a timit string over a larguege

B that contains A and is fimite, by The Theorem, B*: U B'; s (72) Countedly infinite. Since (M) & B*, There are at most countedly infinitely many Tuing machines M that response languages over A =) there are at most countably infinitely many Turing-regresselle layures our A. We know we can suited Turing mechines with as large a set of states of as we want =) the set of Turing medines that recognite languages som A cannot be finite = 1 it is countably infinite proposition Let A be a finite alphabet. Not all languages over A are Tuing-respondable. Proof by Corollary I, the met of all languages over A is uncountably infinite. By Corollary III, the set of all Turing recognitable laprages over A is countably infinite => there are many more largueps over A then can be recognised by a luing moderne. L. (.d.) Remark This result makes a lot of shorn because while we normally look at simple, well-structured problems where There is a pattern, most languages over A have no pattern to them. To undustend more on The not of all Tuning modines, we define the language LTM = { < M, w> | M is a Tuing medime and Macayets w? Here w is a string over The input deplated A. We will prove that LTM is a Turing-recognitable language, sut LTM is NOT Turing duidable. Proposition Lim is a Turing-recognisable language. Proof We define a Turing madrine U Pat recognitio LTM: U = On input LM, w) when M is a Turing machine and w is a string 1. Simulate M on string W. 2. If M ever enters its accept state, Then accept, if M ever enters

its reject state, Then reject. I loops on injut (M, W) if M loops on w = U is a recognish but not a duide. J. e.d.) Remark The Thing machine V is an example of The universal Turing machine first proposed by twing in 1936. It is called universal become it simulates any other Turing machine. This idea of a universal Thing madrine led to the development of stored-program computers. NB Philosophically, The universal Turing medicine we just constructed runs into the following by istus: (1) It itself is a Turing mediane. What happens when I is given an input (U, W)? 2) The encoding of a Juing mediane is a string, What happens when we input <M, <M>> or win worse <T <T>? We are getting very don to furall's paradox, The set $\Gamma = \{D \mid D \not\in D\}$ which showed the axioms of maine set theory who inconsistent and had to more complicated exions. luom cer, There issues lead to thoming The language LTM cannot possisty & Twing - diddly. Proposition LTM'is not Thing-decidable. Proof Assume LTM 11 Tuning-duidable and obtain a contradiction. If LTM is Thing decidable, then I deciden H for LTM. Given injut <M, u), H = a cupt if M accept w Signite if M day not accept w We now construct another turing modine D with H is a subscription, which beloves like the not I defined by Russell D = on injut (M), when M is a Turing mordine: 1. Run Hon my t (M, (M)). 2. Output The opposite of what It outputs. If It accepts, Then right; if H muits, Then accept. Now, let us run Donits own encoding < D>:

has no decider. Example of a language Mat is not Tuing-recognitable

take her whom about LTM to build an example of a language that is not Turing-recognitable. Det Girman alpholet A that is finite, A *= U A , and Then a language LCA*, ve define Te conferment I of L as I = A* \ L, i.c. all words own A that are not in L.

By A larguage L is called co-Turing. recognisable if its complement I is Tring-recognizable. Theorem A language L is decidable (=) L is turing-recognitable and co-turing-recognitable. Proof "=>" If L is dividable => L is Turing-recognitable. Note That if (is desidable =) I a turing mordine M Not desides L. Build a Thing mechine M that neverus the output of M, i.e. if Macapt a string w then M rejects The same string w. If M myst w, Then M accepts w! M is there a decider for [=> [is Timing - decidable => [is Timing recognitable; so Lis tuing-necognitable and co-Turing-recognitable.