luFactor.m

This function uses <u>LU decomposition</u> to manipulate the ${\tt A}$ input matrix into an output ${\tt L}$ ${\tt U}$ and ${\tt P}$ matrices.

Within MATLAB (or Octave) this function can be called upon using [L,U,P] = luFactor(A).

Inputs

• A - The input matrix

Outputs

- \bullet $\, {\rm L}$ The lower triangular matrix. Stores values used to modify the ${\rm A}$ matrix
- U The upper triangular matrix. Is the final product of LU factorization
- P The permutation matrix. Stores information on row pivoting

Useful Knowledge

- The outputs should be useful in calculating the x matrix if you are solving the matrix equation $[A] * \{x\} = \{b\}.$
- Using the outputs of this function can be checked using [P] * [A] = [L] * [U] (this should be true).

Limitations

The built-in MATLAB 1u function will likely be more accurate and work in more cases. 1uFactor occasionally fails when it runs into very small numbers in the A or L matrices.