Tema 1 Estadística descriptiva univariante

Carlos Montes - uc3m

- 1. Introducción
- 2. Análisis básico
 - 2.1. Generalidades
 - 2.2. Gráficos para variables cualitativas
 - 2.3. Variables cuantitativas
 - 2.4. Gráficos para variables cuantitativas
- 3. Medidas características
 - 3.1. Generalidades
 - 3.2. Medidas de tendencia central
 - 3.3. Medidas de dispersión
 - 3.4. Medidas de forma
- 4. Diagrama de Caja

1. Introducción

¿Qué es la Estadística?

Es una herramienta de aprendizaje a partir de la observación.

Nos ayuda a extraer conclusiones generalizables a partir de un conjunto de datos observados ⇒ *inducción* o *inferencia*.

1. Introducción

DATOS (MUESTRA)

realizaciones de una variable

sobre el fenómeno que los ha originado

1. Introducción

* Según su naturaleza, los datos pueden ser:

Datos cuantitativos.

Toman valores numéricos

Discretos: toman valores finitos.

Continuos: toman valores en un intervalo.

Datos cualitativos, categóricos o atributos.

No toman valores numéricos
Su realización concreta es una cualidad o modalidad.

Carlos Montes - uc3m

1. Introducción

La cantidad de información aportada por ambos tipos de variables es muy distinta:

1. Introducción

OBJETIVO:

inferir cómo será la población de la variable de interés a partir de la información limitada que nos aporta la muestra.

2.1. Análisis básico. Generalidades

A la hora de enfrentarse a un conjunto de datos hay que comenzar realizando dos operaciones básicas.

RESUMIR

2.1. Análisis básico. Generalidades

- Frecuencia
 - absoluta (f): el número de veces que aparece cada dato de la variable.
 - total (n): número total de datos de la variable (suma de frecuencias absolutas).
 - *relativa* (*fr*): cociente entre frecuencia absoluta y frecuencia total.

Carlos Montes – uc3m

2.1. Análisis básico. Generalidades

- acumulada: supuesta la ordenación de los datos de menor a mayor, la frecuencia acumulada de x_i es la suma de frecuencias hasta el valor x_i.
 - Absoluta (F)
 - Relativa (Fr)

Tabla de distribución de frecuencias

2.1. Análisis básico, Generalidades

2.2. Gráficos para variables cualitativas

Diagrama de barras

Eje 1:valor o categoría de la variable.
Eje 2:altura proporcional a la frecuencia.

Diagrama de tartacírculo dividido en sectores
proporcionales a la
frecuencia de cada valor.

2.2. Gráficos para variables cualitativas

Encuesta en un periódico local

Carlos Montes – uc3m

2.2. Gráficos para variables cualitativas

Los 100 usuarios de Twitter más activos

Más de 4 o 5 sectores dificultan la lectura del diagrama.

2.3. Variables cuantitativas

En variables cuantitativas el análisis de frecuencias se realiza de la misma manera que en variables cualitativas.

- ✓ Absolutas
- ✓ Relativas
- √ Absolutas acumuladas
- ✓ Relativas acumuladas

Muchos valores diferentes

valores en clases o intervalos (generalmente de la misma longitud)

2.3. Variables cuantitativas

No confundir con el rango intercuartílico.

- Rango o recorrido de una variable: diferencia entre el mayor y el menor valor de ésta.
- Amplitud de un intervalo: diferencia entre el extremo superior e inferior del mismo.
- Marca de clase (m_j) : punto medio de cada intervalo o clase, valor representativo de todos los datos del intervalo.

El número de clases r debe oscilar entre 5 y 20; a menudo se escoge el entero más próximo a \sqrt{n}

2.4. Gráficos para variables cuantitativas

El **histograma**es una
representación
para variables
agrupadas en
intervalos.

- > Abscisas: intervalo de valor de la variable.
- Ordenadas: altura proporcional a la frecuencia, de manera que las áreas de los rectángulos sean proporcionales a las frecuencias.

Carlos Montes - uc3m

2.4. Gráficos para variables cuantitativas

Muestra las tendencias generales de los datos:

- Concentraciones: más de una concentración ⇒ datos heterogéneos.
- Huecos: indicio de que los datos proceden de poblaciones diferentes.
- Valores atípicos: aquellos que se separan mucho del patrón general que siguen los datos.

2.4. Gráficos para variables cuantitativas

- Asimetrías: tendencia de los datos cuando nos alejamos de las zonas de concentración.
 - Cola de la distribución de los datos hacia +∞, ⇒ asimetría positiva.
 - Cola de la distribución de los datos hacia -∞ ⇒ asimetría negativa.

2.4. Gráficos para variables cuantitativas

* El polígono de frecuencias es una línea poligonal que resulta al unir los puntos centrales de la parte superior del histograma.

2.4. Gráficos para variables cuantitativas

* Ambos pueden construirse a partir de las frecuencias acumuladas.

3.1. Medidas características. Generalidades

- * Son aquellas que nos permiten resumir con un solo número los rasgos fundamentales de la distribución.
- * Deben acompañarse de herramientas gráficas para evitar errores.

3.1. Medidas características. Generalidades

Podemos distinguir:

- Tendencia central o centralización: indican el valor medio de los datos.
- Dispersión: indican la variabilidad de los datos.
- Forma:
 - Simetría
 - Apuntamiento

3.2. Medidas de tendencia central

Media aritmética

$$\overline{x} = \frac{\sum_{n} x_{j} f(x_{j})}{n}$$

$$\overline{x} = \frac{\sum_{m} m_{j} f(m_{j})}{m}$$
 \Rightarrow Error de agrupamiento

3.2. Medidas de tendencia central

Propiedades de la media aritmética $\bar{x} = \frac{\sum_{i=1}^{x_i} x_i}{x_i}$

1)
$$\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{x} = n\overline{x} - n\overline{x} = 0$$

2)
$$y = x + k$$

$$\overline{y} = \frac{\sum_{i=1}^{n} (x_i + k)}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + \frac{\sum_{i=1}^{n} k}{n} = \frac{\sum_{i=1}^{n} x_i}{n} + \frac{nk}{n} = \overline{x} + k$$
3)
$$y = kx$$

$$\overline{y} = \frac{\sum_{i=1}^{n} kx_i}{y} = \frac{\sum_{i=1}^{n} kx_i}{y} = k\overline{x}$$

3.2. Medidas de tendencia central

Summary Statistics for altura

Count	95
Average	174,621
M edian	177,0
Mode	180,0
Standard deviation	8,22707
Coeff. of variation	4,71138%
Minimum	158,0
M aximum	193,0
Range	35,0
Stnd. skewness	-1.20518
Stnd. kurtosis	-1.70142

Es muy sensible a los datos atípicos.

$$\bar{x} = 6.5$$

 $\bar{x} = 21,125$

Para muestras muy asimétricas o con muchos datos atípicos, la mediana es mejor medida de tendencia central.

3.2. Medidas de tendencia central

Es el centro de gravedad de los datos.

Si la distribución es asimétrica, se desplaza respecto a la clase más frecuente, y deja de ser una buena medida de centralización.

3.2. Medidas de tendencia central

3.2. Medidas de tendencia central

Mediana

Valor de la muestra que la divide en dos partes iguales.

- * Para calcular la mediana se ordenan los datos de menor a mayor:
 - nº impar de datos: valor central.

2, 3, 4, 5) 7, 7, 9

Carlos Montes - uc3m

3.2. Medidas de tendencia central

• nº par de datos: media aritmética de los valores centrales.

2, 3, 4,
$$(5, 7)$$
 7, 9, 11
$$\frac{5+7}{2} = 6$$

3.2. Medidas de tendencia central

• Si tenemos los datos organizados en forma de tabla.

n	f	F	N
7	0,039	0,039	7
26	0,144	0,183	33
33	0,182	0,365	66
38	0,210	(0,575)	104
29	0,160	0,735	133
20	0,110	0,846	153
15	0,083	0,929	168
9	0,050	0,978	177
2	0,011	0,989	179
2	0,011	1,000	181
0	0,000	1,000	181
0	0,000	1,000	181
181			
	7 26 33 38 29 20 15 9 2 2 0	7 0,039 26 0,144 33 0,182 38 0,210 29 0,160 20 0,110 15 0,083 9 0,050 2 0,011 2 0,011 0 0,000 0 0,000	7 0,039 0,039 26 0,144 0,183 33 0,182 0,365 38 0,210 0,575 29 0,160 0,735 20 0,110 0,846 15 0,083 0,929 9 0,050 0,978 2 0,011 0,989 2 0,011 1,000 0 0,000 1,000 0 0,000 1,000

La mediana es el primer valor donde se alcanza la frecuencia relativa acumulada 0,5.

3.2. Medidas de tendencia central

La mediana NO es sensible a datos atípicos.

174,621 Average M edian 177,0 Mode 180,0 8,22707 Standard deviation Coeff. of variation 4.71138% Minimum 158.0 M aximum 193,0

Summary Statistics for altura

Count 35,0 Range Stnd. skewness -1.20518 Stnd. kurtosis -1.70142

2, 3, 4, 5, 7, 7, 9

2, 3, 4, 5, 7, 7, 87

3.2. Medidas de tendencia central

Moda

Es el valor más frecuente de la distribución.

- Es apropiada para datos cualitativos o cuantitativos discretos.
- Pueden existir una o varias modas.
- En una muestra continua solo podemos hablar de un intervalo modal (el de mayor densidad de frecuencia)

Carlos Montes – uc3m

3.2. Medidas de tendencia central

Summary Statistics for altura

Count	95
Average	174,621
M edian	177,0
Mode	180,0
Standard deviation	8,22707
Coeff. of variation	4,71138%
M inimum	158,0
M aximum	193,0
Range	35,0
Stnd. skewness	-1.20518
Stnd. kurtosis	-1.70142

En variables continuas puede que no se repita ningún valor.

Pueden existir distribuciones con más de una moda.

3.3. Medidas de dispersión

Medidas de la separación de los datos (generalmente, respecto a la media).

medida + representativa

- dispersión

3.3. Medidas de dispersión

Varianza

$$s_x^2 = \frac{\sum_n (x_j - \bar{x})^2 f(x_j)}{n}$$

Propiedades de la varianza

- 1) Es una cantidad acotada y positiva
- 2) La varianza NO se ve afectada por los cambios de origen (transformaciones aditivas)

$$s_{x}^{2} = \frac{\sum_{n} (x_{i} - \overline{x})^{2}}{n}$$

$$y = x + k$$

$$s_{y}^{2} = \frac{\sum_{n} (y_{i} - \overline{y})^{2}}{n} = \frac{\sum_{n} (x_{i} + k - \overline{x} - k)^{2}}{\text{Carlos Montes- uc3m}} = \frac{\sum_{n} (x_{i} - \overline{x})^{2}}{n} = s_{x}^{2}$$

3.3. Medidas de dispersión

3) La varianza SÍ se ve afectada por los cambios de escala (transformaciones multiplicativas)

$$s_{x}^{2} = \frac{\sum_{n} (x_{i} - \overline{x})^{2}}{n}$$

$$y = kx$$

$$s_{y}^{2} = \frac{\sum_{n} (y_{i} - \overline{y})^{2}}{n} = \frac{\sum_{n} (kx_{i} - k\overline{x})^{2}}{n} = \frac{k^{2} \sum_{n} (x_{i} - \overline{x})^{2}}{n} = k^{2} s_{x}^{2}$$

$$S_{y}^{2} = k^{2} \cdot S_{x}^{2}$$

3.3. Medidas de dispersión

Fórmula de cálculo

$$s_x^2 = \frac{\sum x_j^2 f(x_j)}{n} - \overline{x}^2$$

3.3. Medidas de dispersión

Una medida alternativa es la cuasivarianza

$$\hat{s}_{\chi}^{2} = \frac{\sum_{n} (x_{j} - \bar{x})^{2} f(x_{j})}{n - 1}$$

La mayoría de los programas estadísticos calculan la cuasivarianza en lugar de la varianza, y la llaman varianza.

Summary Statistics for altura

Jummary Dundstres for artura		
Count	95	
Average	174,621	
M edian	177,0	
M ode	180,0	
Variance	67,6847	
Standard deviation	8,22707	
Coeff. of variation	4,71138%	
M inimum	158,0	
M aximum	193,0	
Range	35,0	
Stnd. skewness	-1,20548	
Stnd. kurtosis	-1.70142	

- La varianza mide el promedio de las desviaciones (al cuadrado) de las observaciones respecto a la media.
- Al ser un cuadrado, siempre es positiva.
- Es muy sensible a datos atípicos.
- Problema: unidades 67,68 cm²

No aparece por defecto en el programa.

Carlos Montes – uc3m

3.3. Medidas de dispersión

Summary Statistics for altura

summary staustics for altura		
Count	95	
Average	174,621	
M edian	177,0	
Mode	180,0	
Variance	67,6847	
Standard deviation	8,22707	
Coeff. of variation	4,71138%	
M inimum	158,0	
M aximum	193,0	
Range	35,0	
Stnd. skewness	-1,20548	
Stnd. kurtosis	-1.70142	

Desviación típica

- Toma siempre valores no negativos.
- Ventaja: tiene las mismas unidades que la variable.

• Inconveniente: raíz cuadrada. La varianza es más fácil de usar en operaciones matemáticas al evitar la raíz.

3.3. Medidas de dispersión

Desviación típica

Es la raíz cuadrada positiva de la varianza.

$$s_{x} = \sqrt{\frac{\sum_{n}(x_{j} - \bar{x})^{2} \cdot f(x_{j})}{n}}$$

3.3. Medidas de dispersión

Cuasidesviación típica

$$\hat{s}_{x} = \sqrt{\frac{\sum_{n}(x_{j} - \bar{x})^{2} f(x_{j})}{n - 1}}$$

 Para tamaños de muestra grande, casi no hay diferencia.

Coeficiente de variación

Es una medida de dispersión relativa.

$$CV = \frac{s}{\sqrt{x}} \cdot 100 \quad \overline{x} \neq 0$$

Carlos Montes - uc3m

3.3. Medidas de dispersión

Summary Statistics for altura

Count	95
Average	174,621
Median	177,0
Mode	180,0
Variance	67,6847
Standard deviation	8,22707
Coeff. of variation	4,71138%
M inimum	158,0
M inimum M aximum	158,0 193,0
-	
M aximum	193,0
M aximum Range	193,0 35,0
Maximum Range Lower quartile	193,0 35,0 168,0

Nos permite:

- 1) Comparar la dispersión entre distribuciones.
- 2) Evaluar la representatividad de la media.

3.3. Medidas de dispersión

Cuantiles

Son los valores de la variable que dividen la distribución en *c* partes iguales.

- Cuartiles (Q) c=4
- Quintiles (K) c=5
- **Percentiles** (p) c=100

3.3. Medidas de dispersión

Summary Statistics for altura

ummary Staustics for aftura		
Count	95	
Average	174,621	
M edian	177,0	
Mode	180,0	
Variance	67,6847	
Standard deviation	8,22707	
Coeff. of variation	4,71138%	
M inimum	158,0	
M aximum	193,0	
Range	35,0	
Lower quartile	168,0	
Upper quartile	180,0	
Stnd. skewness	-1,20518	
Stnd. kurtosis	-1,70142	

Summary Statistics for altura

Summary Statistics for artura		
Count	95	
Average	174,621	
M edian	177,0	
Mode	180,0	
Variance	67,6847	
Standard deviation	8,22707	
Coeff. of variation	4,71138%	
M inimum	158,0	
M aximum	193,0	
Range	35,0	
Lower quartile	168,0	
Upper quartile	180,0	
Interquartile range	12,0	
Stnd. skewness	-1,20518	
Stnd. kurtosis	-1,70142	

Rango intercuartílico (RI)

Es la diferencia entre los percentiles 75 y 25 (o entre los cuartiles 3 y 1)

Carlos Montes - uc3m

3.3. Medidas de dispersión

Summary Statistics for altura

Summary Statistics 1	for altura
Count	95
Average	174,621
Median	177,0
Mode	180,0
Variance	67,6847
Standard deviation	8,22707
Coeff. of variation	4,71138%
Minimum	158,0
Maximum	193,0
Range	35,0
Lower quartile	168,0
Upper quartile	180,0
Interquartile range	12,0
Stnd. skewness	-1,20518
Stnd. kurtosis	-1,70142

3.4. Medidas de forma

Coeficiente de asimetría de Fisher

Ronald Aylmer Fisher (1890-1962)

$CA = \gamma_1 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^3}{ns^3}$

3.4. Medidas de forma

 γ_1 =0 ⇒ Distribución sim'etrica

γ₁>0

Distribución asimétrica positiva o asimétrica a derechas

 γ_1 <0 \Rightarrow Distribución asimétrica negativa o asimétrica a izquierdas

3.4. Medidas de forma

Summary Statistics for altura		
Count	95	
Average	174,621	
Median	177,0	
Mode	180,0	
Variance	67,6847	
Standard deviation	8,22707	
Coeff. of variation	4,71138%	
Minimum	158,0	
Maximum	193,0	
Range	35,0	
Lower quartile	168,0	
Upper quartile	180,0	
Interquartile range	12,0	
Skewness	-0,302876	
Stnd. skewness	-1,20518	
Kurtosis	-0,855173	
Stnd. kurtosis	-1,70142	

Carlos Montes - uc3m

3.4. Medidas de forma

Coeficiente de apuntamiento o curtosis

Indica el mayor o menor agrupamiento de los datos en torno a la media.

Como referencia se toma el apuntamiento de la distribución normal, que cumple:

$$CA_p = \frac{\sum (x_i - \overline{x})^4}{ns^4} = 3$$

$$CA_{p} = \frac{\sum (x_{i} - \overline{x})^{4}}{ns^{4}} = 3$$

$$CA_{p} = \frac{\sum (x_{i} - \overline{x})^{4}}{ns^{4}} - 3$$

(Exceso de curtosis)

3.4. Medidas de forma

CAp=0: mesocúrtica

CAp>0: leptocúrtica

CAp<0: platicúrtica

3.4. Medidas de forma

Summary Statistics for altura

ummary Statistics for altura		
Count	95	
Average	174,621	
M edian	177,0	
M ode	180,0	
Variance	67,6847	
Standard deviation	8,22707	
Coeff. of variation	4,71138%	
M inimum	158,0	
M aximum	193,0	
Range	35,0	
Lower quartile	168,0	
U pper quartile	180,0	
Interquartile range	12,0	
Skewness	-0,302876	
Stnd. skewness	-1,20518	
Kurtosis	-0,855173	
Stnd. kurtosis	-1,70142	

4. Diagrama de caja

Representación gráfica de una distribución, construida para mostrar sus características principales y señalar los posibles datos atípicos.

$$LI = Q_1 - 1, 5(Q_3 - Q_1)$$

$$LS = Q_3 + 1,5(Q_3 - Q_1)$$

LIE=
$$Q_1$$
-3(Q_3 - Q_1)

LIE=
$$Q_1$$
-3(Q_3 - Q_1) LSE= Q_3 +3(Q_3 - Q_1)

Carlos Montes – uc3m

4. Diagrama de caja

