Extremwertaufgabe_MetallPappDose

Eine aus Metall und Pappe gebaute Dose soll gebaut werden. Diese soll ein Fassungsvolumen von $V=1000\ cm^3$ besitzen und durch einen Zylinder modelliert werden. Der Mantel ist aus Pappe, die Ober- und Unterseiten sind aus Metall.

Der Preis der verwendeten Pappe kostet P_P , wobei der Preis des Metalls pro Quadratzentimeter (P_M) viermal so viel wie P_P ist. Welche Oberfläche kostet am wenigsten?

Aus der Beschreibung erkennen wir:

$$P_M=4P_P$$

Ein Zylinder besitzt folgende Eigenschaften:

$$\begin{array}{l} \bullet \ \ O(r;h) = \underbrace{2\pi r^2}_{\text{Grundseiten}} + \underbrace{2\pi r h}_{\text{Mantel}} \\ \bullet \ \ V(r;h) = \pi r^2 h \end{array}$$

•
$$V(r;h) = \pi r^2 h$$

1. Hauptbedingung

Der Preis der Materialien soll minimiert werden. Dieser Wird durch $P(r;h)=P_M\cdot 2\pi r^2+P_P\cdot 2\pi rh$ gegeben. Durch einsetzen von $P_M=4P_P$ in P(r;h), erhalten wir das folgende:

$$egin{aligned} P(r;h) &= rac{P_M}{2} \cdot 2\pi r^2 + P_P \cdot 2\pi r h \ &= 4 rac{P_P}{2} \cdot 2\pi r^2 + P_P \cdot 2\pi r h \ P(r;h) &= 8 P_P \cdot \pi r^2 + 2 P_P \cdot \pi r h \end{aligned}$$

2. Nebenbedingung

Die Dose muss ein Fassungsvolumen von exakt $1000\ cm^3$ besitzen. Daher gilt für die Nebenbedingung das folgende, wobei nach h umgestellt wird.

$$V(r;h) = \pi r^2 h$$

 $1000 = \pi r^2 h$ | $\div (\pi r^2)$
 $h = \frac{1000}{\pi r^2}$

3. Zielfunktion

Die Nebenbedingung nach h wird in die Hauptbedingung eingesetzt:

$$egin{aligned} P(r;h) &= 8P_P \cdot \pi r^2 + 2P_P \cdot \pi r h \ P(r) &= 8P_P \cdot \pi r^2 + 2P_P \cdot \pi r \cdot rac{1000}{\pi r^2} \ &= 8P_P \cdot \pi r^2 + P_P \cdot rac{2000}{r} \ P(r) &= 8P_P \cdot \pi r^2 + P_P \cdot rac{2000}{r} \end{aligned}$$

4. Extrema von P(r)

Notwendiges Kriterium für lokale Extrema: P'(r) = 0

$$0 = V'(d)$$
 $0 = 16P_P \cdot \pi r - P_P \cdot \frac{2000}{r^2}$ | $\div P_P$
 $0 = 16\pi r - \frac{2000}{r^2}$ | $\div r^2$
 $0 = 16\pi r^3 - 2000$ | $+2000$
 $2000 = 16\pi r^3$ | $\div 16\pi$
 $r^3 = \frac{2000}{16\pi}$
 $r^3 = \frac{125}{\pi}$ | $\sqrt[3]{r}$

Erstes hinreichendes Kriterium für lokale Extrema: $P''(r) \neq 0$

$$P''(r) = 16P_P \cdot \pi + P_P \cdot rac{4000}{r^3} \ P''\left(\sqrt[3]{rac{125}{\pi}}
ight) = 16P_P \cdot \pi + P_P \cdot rac{4000}{\left[\sqrt[3]{rac{125}{\pi}}
ight]^3} \ = 16P_P \cdot \pi + P_P \cdot rac{4000}{rac{125}{\pi}} > 0$$

Da der Preis P_P positiv ist, so ist hier der Minimalkostenpreis mit dem Radius $r=\sqrt[3]{rac{125}{\pi}}pprox 3,414~cm$ erreicht. Die Höhe hier ist:

$$h = rac{1000}{\pi r^2} \ h = rac{1000}{\pi \left(\sqrt[3]{rac{125}{\pi}}
ight)^2} pprox 27,311~cm$$

Die Minimaloberfläche ist:

$$O\left(\sqrt[3]{rac{125}{\pi}};rac{1000}{\piigg(\sqrt[3]{rac{125}{\pi}}igg)^2}
ight) = 2\piigg(\sqrt[3]{rac{125}{\pi}}igg)^2 + 2\pi\sqrt[3]{rac{125}{\pi}}\cdotrac{1000}{\piigg(\sqrt[3]{rac{125}{\pi}}igg)^2}pprox 659,066\ cm^2$$

Mit diesen Werten ist der Kostenaufwand für die Materialien am geringsten.