CLAIMS

What is claimed is:

1	1. A method of switching on an inductive load, a current of which is intended
2	to repeatedly reach an end current value at desired time, comprising the steps of:
3	a. measuring a time interval between a switching on time of the inductive load
4	and a time that at least one intermediate current value of the current through the inductive load is
5	reached; .
6	b. using the time interval measured in said step a. and the at least one
6 7 7 8 9 9 9	intermediate current value to calculate an end current time interval from the switching-on time
8	until the end current value is reached; and
9	c. performing a switching-on of the inductive load at the end current time
10	interval before the desired time.
10 1 1	2. The method of claim 1, wherein said step b. comprises using a function
[]] 2	representing the rate of current rise in the inductive load when a constant voltage is applied for
3	calculating the end current time interval.
1	3. The method of claim 2, wherein said step b. includes querying a memory
2	for determining the function representing the rate of current rise.
1	4. The method of claim 2 wherein said step b. includes calculating the
2	function representing the rate of current rise from at least one intermediate current value and the

- time interval between a switching-on time and the time at which at least one intermediate current 3
- 4 valve is reached.
- 1 5. The method of claim 1, where said step b. comprises using the time
- interval measured in said step a. to calculate at least one parameter of a function and using the 2
- function, the at least one parameter and the end current valve to calculate the end current time 3
- 4 interval.
- 1 1 2 2 4 3 The method of claim 5, wherein the function used in step b. comprises: 6.
 - $i = \hat{i} (1 e^{-t.R/L})$
 - wherein:
 - *i* is the current at a time t;
 - î is the current reached at infinity:
 - R is the resistance; and
 - L is the inductance.
 - 1 7. The method of claim 2, wherein the function used in said step b. is stored
 - 2 as a table including a plurality of intermediate current values assigned to corresponding values of
 - 3 end current time intervals.
 - 1 8. The method of claim 3, wherein the function used in said step b. is stored
 - as a table including a plurality of intermediate current values assigned to corresponding values of 2
 - 3 end current time intervals.

1

2

3

- 9. The method of claim 4, wherein the function used in said step b. is stored as a table including a plurality of intermediate current values assigned to corresponding values of end current time intervals.
 - 10. The method of claim 2, where step b. further includes determining a correction value representing a curvature of the function and calculating the end current time interval in accordance with the rule of three using the correction value.
 - 11. The method of claim 1, wherein said step b. comprises calculating the end current time interval in accordance with the rule of three.