Platine 2.0

Abboud Feriel, Bonnefoy Elisabeth, Chaves Lílian, Delallee Diane

Université de Marne-la-Vallée - Synthèse d'Image

Professeur: Mr Nozick

15 janvier 2013

Présentation de l'idée

Objectifs

- Réaliser une platine numérique
- Détecter des tâches et jouer un son en fonction de leur position
- Réaliser une (des) visualisation(s) en relation avec le(s) son(s)
- Pallier une mauvaise orientation de la webcam (homographie)

Pure data

- Logiciel libre de création multimédia en temps réel (programmation graphique)
- Utilisé dans les domaines artistiques, scientifiques et pédagogiques
- Gestion de signaux entrants : capteurs, évènements réseaux
- Gestion de signaux sortants : protocoles réseaux, éléctroniques

Pure data

De nombreuses librairies existantes :

- iemmatrix : permet d'utiliser facilement des matrices
- OSC : pour utiliser les fréquences s'un signal
- TUIO : pour utiliser des marqueurs type fiducial
- GEM: Utilisation d'objets de synthèse: OpenGL, shader GLSL
- libpd : réutiliser des composants pré-éxistants (Java, C++, Python)
- pdp : manipulation video et flux de webcam en temps réel
- etc ...

Projet 1

Idée

- Concevoir une platine tournante.
- Placer des marqueurs sur la platine.
- Jouer un son faire une animation selon le marqueur.
- Afficher les marqueurs sur la platine virtuelle.

Outils

- Reactivision + TUIO.
- Marqueurs fiducial.

Homographie

• Les nouvelles coordonnées des points s'obtiennent avec :

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \frac{1}{gx + hy + 1} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Animations réalisées

Animations géométriques

Kaléidoscope

Platine virtuelle

Démonstration

Projet 2

Idée

- Concevoir une platine tournante
- Détecter le passage d'un objet sur une ligne
- Jouer un son selon la position de l'objet
- Signaler la détection de l'objet
- Résoudre un mauvais placement de caméra

Outils

- librairie GEM
- librairie iemmatrix

Homographie

Détection de mouvements

Principe

Comparer les deux dernières images du flux vidéo. On "garde" les zones prédéfinies dans lesquelles les deux frames successives ont grandement changées.

Outils

- pix_crop : définir zone précise
- pix_movement : comparer deux frames
- pix_video : recevoir le flux vidéo de la caméra

Platine 2.0 Projet 1 Projet 2 Planning

Homographie
Détection de mouve
Démonstration

Démonstration

Planning

	Novembre				Décembre				Janvier	
Tache/Semaine	s1	s2	s3	s4	s5	s6	s7	s8	s9	s10
Recherche										
Projet 1 : implémentation										
Projet 1 : tests et modif										
Projet 1 : rendu final										
Projet 2 : implémentation										
Projet 2 : tests et modif										
Projet 2 : rendu final										
Physique										
Présentation										

Difficultés

Projet 1

- Marqueurs trop ressemblants
- Limitation OpenGL

Projet 2

- Changement de repère de Matlab vers PureData
- Impossibilité de travailler en bas niveau avec PureData
- Latence à régler
- Application de la texture sous forme de triangles

Ouvertures

- Réaliser d'autres animations
- Relier les animations aux amplitudes du son
- Utiliser des marqueurs fiducial mieux différentiables
- Relier les animations au projet 2
- Rajouter plus de cellules au projet 2
- ...

Conclusion

Immersion

Impression d'utiliser une vraie platine avec différents vinyles

Emotion

C'est une animation riche et amusante

Interaction

Entre le "musicien", les capteurs, la webcam et l'ordinateur

Temps réel

Réaction instantanée des sons et animations dès la détection

