Spektralsequenzen und der Satz von Serre

Tim Baumann

Geboren am 15. Juni 1994 in Friedberg 22. Juni 2015

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Bernhard Hanke

Zweitgutachter: Prof. Dr. X Y

Institut für Mathematik

MATHEMATISCH-NATURWISSENSCHAFTLICH-TECHNISCHE FAKULTÄT
UNIVERSITÄT AUGSBURG

1 Spektralsequenzen

1.1 Faserungen

Definition. Eine Serre-Faserung ist eine stetige Abbildung $p: E \to B$, welche die Homotopieliftungseigenschaft (HLE) für die Scheiben D^n besitzt, d. h. für alle $n \ge 0$ und für alle stetigen Abbildungen H, H_0 wie unten, sodass das äußere Quadrat kommutiert, gibt es eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

$$D^{n} \xrightarrow{H_{0}} E$$

$$\downarrow^{i_{0}} \qquad \exists \tilde{H} \qquad \downarrow^{p}$$

$$D^{n} \times I \xrightarrow{H} B$$

Dabei ist i_0 die Inklusion von D^n in $D^n \times I$ als $D^n \times \{0\}$. Eindeutigkeit von \tilde{H} wird nicht gefordert.

Lemma. Es sei $p: E \to B$ eine stetige Abbildung. Dann sind äquivalent:

- a) p ist eine Serre-Faserung
- b) p besitzt die relative Homotopieliftungseigenschaft für CW-Paare, d. h. für alle CW-Paare (X, A) und für alle H_0 und H wie unten, sodass das äußere Quadrat kommutiert, gibt eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

Beweis. "b) \implies a)" Folgt sofort mit $(X, A) := (D^n, \emptyset)$.

"a) \Longrightarrow b)" Wir behandeln zunächst den Fall $(X,A)=(D^n,S^{n-1}),\ n\in\mathbb{N}$. Dann ist $(D^n\times I,D^n\times\{0\}\cup S^{n-1}\cup I)\approx(D^n)$ homöomorph als Raumpaar. Somit ist die relative Homotopieliftungseigenschaft in diesem Fall gleichbedeutend zur Homotopieliftungseigenschaft für die Scheibe D^n .

Es sei nun (X,A) ein beliebiges Raumpaar. Dann kann man induktiv die Homotopie H auf die i-Zellen e^i_α von $X\setminus A$ fortsetzen. Dabei ist die Homotopie auf $S^{n-1}=\partial D^n$ durch die Komposition der bisher konstruierten Homotopie mit der anheftenden Abbildung $\phi_\alpha:S^{n-1}\to X^{n-1}$ vorgegeben. Man erhält die Fortsetzung durch Anwenden des zuerst bewiesenen Falls. \square

Lemma. Es seien $p: E \to B$ eine Serre-Faserung, $b_0 \in B$, $F := p^{-1}(b_0)$ die Faser über b_0 und $f_0 \in F$. Dann gibt es eine lange exakte Sequenz

$$\ldots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \ldots \to \pi_1(B, b_0)$$

von Homotopiegruppen. Dabei ist $i: F \hookrightarrow E$ die Inklusion.

Beweis. Die gesuchte exakte Sequenz ist die lange exakte Homotopiesequenz

$$\dots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \dots \to \pi_1(E, F, f_0)$$

des Raumpaares (E, F). Es bleibt zu zeigen: $\pi_n(E, F, f_0) \cong \pi_n(B, b_0)$ als Gruppe für n > 1 und als punktierte Menge für n = 1. Der Isomorphismus muss außerdem so gewählt werden, dass

$$p_* = \left(\pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\cong} \pi_n(B, b_0)\right).$$

Wir zeigen: $p_*: \pi_n(E, F, f_0) \to \pi_n(B, b_0)$ ist der gesuchte Isomorphismus (damit ist obige Gleichung erfüllt).

Surjektivität: Sei $[g:(I^{n+1},\partial I^{n+1},b_0)\to (B,\{b_0\},b_0)]\in \pi_{n+1}(B,b_0),\ n\geq 0.$ Sei \tilde{g} der Lift im folgenden relativen HLE-Diagramm:

$$U \xrightarrow{\text{konst } f_0} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$I^n \times I \xrightarrow{g} B$$

wobei $U := I^n \times \{0\} \cup (\partial I^n) \times I \subset I^{n+1}$. Dann kann man \tilde{g} als eine Abbildung $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{f_0\})$ von Raumtripeln auffassen, welche ein Element von $\pi_{n+1}(E, F, f_0)$ repräsentiert. Es gilt $p_*[\tilde{g}] = [p \circ \tilde{g}] = [g]$.

Injektivität: Seien $[h_0], [h_1] \in \pi_{n+1}(E, F, f_0)$ mit $p_*[h_0] = p_*[h_1]$. Sei

$$H: I \times I^{n+1}, \quad (t, x) \mapsto H_t(x)$$

eine Homotopie mit $H_0 = p \circ h_0$, $H_1 = p \circ h_1$, welche zu jedem Zeitpunkt $t \in I$ eine Abbildung $H_t : (I^{n+1}, \partial I^{n+1}) \to (B, \{b_0\})$ von Raumpaaren ist. Betrachte folgendes HLE-Diagramm:

mit $V := I^{n+1} \times \{0\} \cup (\partial I^{n+1}) \times I \subset I^{n+2}$ und

$$h|_{\{0\}\times I^{n+1}} \coloneqq h_0, \quad h|_{\{1\}\times I^{n+1}} \coloneqq h_1, \quad h|_{I\times U} \coloneqq \text{konst } f_0.$$

Nun ist \tilde{H} eine Homotopie von h_0 nach h_1 , welche zu jedem Zeitpunkt t eine Abbildung \tilde{H}_t : $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{b_0\})$ von Raumtripeln ist.

Definition. Es seien $p: E \to B$ und $g: X \to B$ stetig. Der Pullback von p entlang g ist die Abbildung $g^*(p): g^*(E) \to X$, wobei $g^*(E) \coloneqq X \times_B E$ das Faserprodukt von X und E über B vermöge g und p ist.

Bemerkung. Pullback ist funktoriell: $(g \circ f)^* = f^* \circ g^*$ und $id^* = id$.

Lemma. Pullbacks von Serre-Faserungen sind Serre-Faserungen.

Beweis. Sei $p:E\to B$ eine Serre-Faserung und $g:X\to B$ stetig. Wir müssen die Existenz des Morphismus \tilde{H} im folgenden Diagramm zeigen:

$$D^{n} \xrightarrow{H_{0}} g^{*}(E) \xrightarrow{h} E$$

$$\downarrow i_{0} \qquad \downarrow f \qquad \downarrow g^{*}(p) \qquad \downarrow p$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Aus der HLE von p erhält wie folgt einen Morphismus K:

$$D^{n} \xrightarrow{H_{0}} X \times_{B} E \xrightarrow{h} E$$

$$\downarrow i_{0} \downarrow K$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Nun ist $D^n \times I$ vermöge H und K ein Kegel über dem Diagramm ($X \xrightarrow{g} B \xleftarrow{p} E$). Die universelle Eigenschaft von $g^*(E)$ induziert einen Morphismus $\tilde{H}: D^n \times I \to X \times_B E$ mit $g^*(p) \circ \tilde{H} = H$ und $h \circ \tilde{H} = K$. Aus der univ. Eigenschaft von $g^*(E)$ (Eindeutigkeit) folgt nun $\tilde{H} \circ i_0 = H_0$. \square

Definition. Ein Morphismus $(g, \tilde{g}): p' \to p$ von Serre-Faserungen $p': E' \to B'$ und $p: E \to B$ ist ein kommutatives Quadrat der Form

$$E' \xrightarrow{\tilde{g}} E$$

$$\downarrow^{p'} \qquad \downarrow^{p}$$

$$B' \xrightarrow{g} B$$

Beispiel. Pullback einer Serre-Faserung p entlang einer stetigen Abbildung g induziert einen Morphismus $(g, \tilde{g}) : g^*(p) \to p$ von Serre-Faserungen.

Lemma. Die langen exakten Sequenzen der Homotopiegruppen von Faserungen sind natürlich: Es sei $(g, \tilde{g}): p' \to p$ ein Morphismus von Serre-Faserungen $p': E' \to B'$ und $p: E \to B$, $b'_0 \in B'$, $b_0 \coloneqq g(b'_0)$, $F' \coloneqq p'^{-1}(b'_0)$, $F \coloneqq p^{-1}(b_0)$, $f'_0 \in F'$, $f_0 \coloneqq \tilde{g}(f'_0)$. Dann gibt es eine "Leiter" bestehend aus kommutativen Quadraten zwischen den Homotopiesequenzen:

$$\dots \longrightarrow \pi_n(F', f'_0) \xrightarrow{i'_*} \pi_n(E', f'_0) \xrightarrow{p'_*} \pi_n(B', b'_0) \xrightarrow{\partial} \pi_{n-1}(F', f'_0) \longrightarrow \dots$$

$$\downarrow^{(\tilde{g}|_{F'})_*} \qquad \downarrow^{\tilde{g}_*} \qquad \downarrow^{g_*} \qquad \downarrow^{(\tilde{g}|_{F'})_*}$$

$$\dots \longrightarrow \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \longrightarrow \dots$$

Beweis. Folgt aus der Natürlichkeit der langen exakten Homotopiesequenz von Raumpaaren. \Box

Es sei $p:E\to B$ eine Serre-Faserung, $\gamma:I\to B$ ein stetiger Weg. Betrachte die lange exakte Sequenz

$$\dots \to \pi_n(F_{\gamma(0)}) \to \pi_n(\gamma^*(E)) \to \pi_n(I) \to \pi_{n-1}(F_{\gamma(0)}) \to \dots$$

der Homotopiegruppen von $\gamma^*(p): \gamma^*(E) \to I$ mit Faser

$$F_{\gamma(t)} \coloneqq \gamma^*(p)^{-1}(t) \subset \gamma^*(E) = \{(t,e) \in I \times E \,|\, \gamma(t) = p(e)\}.$$

In dieser Sequenz sind die Gruppen $\pi_n(I)$ trivial. Folglich sind die Abbildungen $(i_{\gamma(t)})_*: \pi_n(F_{\gamma(t)}, *) \to \pi_n(\gamma^*(E), *)$ Isomorphismen. In anderen Worten: $i_{\gamma(t)}$ ist eine schwache Äquivalenz. Aus einem Korollar des Whitehead-Theorems folgt nun, dass i_t auch in Homologie und Kohomologie Isomorphismen induziert (vgl. Spanier, AT, S. 406, Cor 7.6.25). Wir untersuchen den Isomorphismus

$$T_{\gamma} := (i_{\gamma(1)})^* \circ ((i_{\gamma(0)})^*)^{-1} : H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\gamma(1)}).$$

Lemma. T_{γ} hängt lediglich von der Weghomotopieklasse von γ ab, d. h. ist η ein zweiter Weg mit $\gamma \simeq \eta$, so gilt $T_{\gamma} = T_{\eta}$.

Beweis. Sei $H: I \times I \to B$ eine Homotopie zw. den Wegen γ und η , d.h. $H_0 \coloneqq H(0,-) = \gamma$, $H_1 = \eta$, $H(-,0) \equiv x$ und $H(-,1) \equiv y$ mit $x \coloneqq \gamma(0) = \eta(0)$ und $y \coloneqq \gamma(1) = \eta(1)$. Für festes $s \in I$ sei $i_s: I \to I \times I$, $t \mapsto (s,t)$ die Inklusion als $\{s\} \times I$. Betrachte das kommutative Diagramm

$$H_{s}^{*}(E) \stackrel{\widetilde{i_{s}}}{\longleftarrow} H^{*}(E) \stackrel{F}{\longrightarrow} E$$

$$H_{s}^{*}(p) \downarrow \qquad \qquad \downarrow p$$

$$I \stackrel{i_{s}}{\longleftarrow} I \times I \stackrel{H}{\longrightarrow} B$$

$$H_{s}$$

Sei $t \in I$ fest. Sei $F_{s,t} := (H_s^*(p))^{-1}(t) = (H^*(p))^{-1}((s,t))$ und $f_0 \in F$. Das linke komm. Diagramm induziert einen Morphismus zw. den langen ex. Homotopieseq. von $H_t^*(p)$ und $H^*(p)$:

$$\dots \longrightarrow \pi_{n+1}(I,t) \xrightarrow{\partial} \pi_n(F_{s,t},f_0) \xrightarrow{(i'_{s,t})^*} \pi_n(H_s^*(E),f_0) \xrightarrow{H_s^*(p)_*} \pi_n(I,t) \longrightarrow \dots$$

$$\downarrow^{i_{s*}} \qquad \qquad \downarrow \qquad \downarrow^{(\widetilde{i_s})_*} \qquad \downarrow^{i_{s*}} \qquad \downarrow^{i_{s*}}$$

$$\dots \longrightarrow \pi_{n+1}(I \times I,(s,t)) \xrightarrow{\partial} \pi_n(F_{s,t},f_0) \xrightarrow{(i_{s,t})_*} \pi_n(H^*(E),f_0) \xrightarrow{H^*(p)_*} \pi_n(I \times I,(s,t)) \longrightarrow \dots$$

In diesen Sequenzen verschwinden die Gruppen $\pi_n(I,t)$ bzw. $\pi_n(I \times I,(s,t))$. Folglich induzieren die Abbildungen $\widetilde{i_s}$ Isomorphismen in Homotopie und in Kohomologie. Es gilt nun

$$\begin{split} T_{\gamma} &= (i'_{0,1})^* \circ ((i'_{0,0})^*)^{-1} = (i'_{0,1})^* \circ (\widetilde{i_0})^* \circ (\widetilde{i_0})^{-1} \circ ((i'_{0,0})^*)^{-1} \\ &= (i_{0,1})^* \circ ((i_{0,0})^*)^{-1} \stackrel{(\star)}{=} (i_{1,1})^* \circ ((i_{1,0})^*)^{-1} \\ &= (i'_{1,1})^* \circ (\widetilde{i_1})^* \circ (\widetilde{i_1})^{-1} \circ ((i'_{1,0})^*)^{-1} = (i'_{1,1})^* \circ ((i'_{1,0})^*)^{-1} = T_{\eta}. \end{split}$$

Die Gleichung (*) gilt wegen $i_{0,1} \simeq i_{1,1}$ und $i_{0,0} \simeq i_{1,0}$.

Mit ganz ähnlicher Technik kann man zeigen:

Lemma. Seien $\gamma, \eta: I \to B$ stetige Wege mit $\gamma(1) = \eta(0)$. Dann gilt

$$T_{\eta} \circ T_{\gamma} = T_{\gamma,\eta} : H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\eta(1)}).$$

Dabei ist die Komposition von γ und η folgender Weg:

$$\gamma \cdot \eta : I \to B, \quad s \mapsto \begin{cases} \gamma(2s), & \text{falls } s \in [0, \frac{1}{2}], \\ \eta(2s-1), & \text{falls } s \in [\frac{1}{2}, 1]. \end{cases}$$

Beweis. Betrachte folgendes kommutatives Diagramm:

$$\gamma^{*}(E) \xrightarrow{\tilde{j}} (\gamma \cdot \eta)^{*}(E) \longrightarrow E$$

$$\gamma^{*}(p) \downarrow \qquad (\gamma \cdot \eta)^{*}(p) \downarrow \qquad \qquad \downarrow p$$

$$I \xrightarrow{j} I \xrightarrow{\gamma \cdot \eta} B$$

Dabei ist $j:I\to I$ die Abbildung $s\mapsto s/2$. Analog zum letzten Lemma sieht man anhand des Leiterdiagramms der langen exakten Sequenzen der Faserungen $\gamma^*(p)$ und $(\gamma \cdot \eta)^*(p)$, dass \widetilde{j} einen Isomorphismus in Homotopie und Kohomologie induziert. Es gibt ein ähnliches Diagramm mit η statt γ und $k:I\to I,\ s\mapsto (1+s)/2$ statt j. Es induziert auch \widetilde{k} einen Isomorphismus in Kohomologie. Es gilt nun

$$T_{\eta} \circ T_{\gamma} = (i_{\eta(1)})^{*} \circ ((i_{\eta(0)})^{*})^{-1} \circ (i_{\gamma(1)})^{*} \circ ((i_{\gamma(0)})^{*})^{-1}$$

$$= (i_{\eta(1)})^{*} \circ \tilde{k}^{*} \circ (\tilde{k}^{*})^{-1} \circ ((i_{\eta(0)})^{*})^{-1} \circ (i_{\gamma(1)})^{*} \circ \tilde{j}^{*} \circ (\tilde{j}^{*})^{-1} \circ ((i_{\gamma(0)})^{*})^{-1}$$

$$= (\tilde{k} \circ i_{\eta(1)})^{*} \circ ((\tilde{k} \circ i_{\eta(0)})^{*})^{-1} \circ (\tilde{j} \circ i_{\gamma(1)})^{*} \circ ((\tilde{j} \circ i_{\gamma(0)})^{*})^{-1}$$

$$= (i_{\gamma.\eta(1)})^{*} \circ ((i_{\gamma.\eta(1/2)})^{*})^{-1} \circ (i_{\gamma.\eta(1/2)})^{*} \circ ((i_{\gamma.\eta(0)})^{*})^{-1}$$

$$= (i_{\gamma.\eta(1)})^{*} \circ ((i_{\gamma.\eta(0)})^{*})^{-1} = T_{\gamma.\eta}.$$

Sei im Folgenden B wegzusammenhängend. Wir haben gezeigt, dass dann alle Fasern diesselbe Kohomologiegruppen besitzen. Wir können also von der Kohomologie der Faser F sprechen, wobei $F := p^{-1}(b_0)$ für ein beliebiges $b_0 \in B$. Die Fundamentalgruppe $\pi_1(B, b_0)$ operiert auf $H^*(F)$ durch $[\gamma] \mapsto T_{\gamma}$.