

Hatványsorok

előadás Királv Balázs

Adminisztrác

követelmények Hatványsorok

Taylorpolinom és alkalmazásai

Érintő egyenlete

A differenc álszámítás középértéktételei

Elméleti kérdések

Definíció

Legyen $x_0 \in \mathbb{R}$ rögzített szám és $a=(a_n,\ n\in\mathbb{N})$ pedig egy valós számsorozat. Az ezekkel képzett

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

formális összeget hatványsornak nevezzük. Az $(a_n, n \in \mathbb{N})$ sorozat tagjait a hatványsor együtthatóinak, az $x_0 \in \mathbb{R}$ számot a hatványsor konvergencia-középpontjának nevezzük.

Megjegyzés

Vegyük észre, hogy minden valós x helyettesítésével egy-egy végtelensorhoz jutunk. A továbbiakban azt fogjuk vizsgálni, milyen x-ek esetén konvergens a kapott végtelensor.

Taylor-sor, MacLaurin-sor

előadás

Király Balázs

Hatványsorok

Definíció Legyen az f függyény az $x_0 \in \mathbb{R}$ pont valamely környezetében végtelensokszor

differenciálható, ekkor a

hatványsort x_0 -körüli **Taylor-sor**nak nevezzük, ha az a_n együtthatókra teljesül, hogy

ahol $f^{(n)}(x_0)$ jelöli az f függvény n-edik deriváltjának x_0 -beli helyettesítési értékét

Definíció

és $a_0 = f(x_0)$.

Az $x_0 = 0$ körüli Taylor-sort **MacLaurin-sornak** nevezzük.

 $\sum_{n=0}^{\infty} a_n (x - x_0)^n$

 $a_n = \frac{f^{(n)}(x_0)}{n!}, \quad n \in \mathbb{N}^*$

Hatványsorok konvergenciája

előadás Király Balázs

Hatványsorok

kérdések

Definíció

Azon valós x-ek halmazát, melyekre a hatványsor konvergens, a hatványsor konvergencia tartományának nevezzük.

Megjegyzés

 x_0 mindig eleme a konvergencia tartománynak.

Definíció

Legyen $\alpha:=\limsup_{n\to\infty}\sqrt[n]{|a_n|}$, ekkor az $R:=\left\{ \begin{array}{ll} 0, & \alpha=\infty\\ \infty, & \alpha=0\\ 1/\alpha, & 0<\alpha<\infty \end{array} \right.$

Vegyük észre, hogy az $x = x_0$ helyen a hatványsor szükségszerűen konvergens, azaz

Cauchy-Hadamard tétel

előadás Királv Balázs

Adminisztrác

követelmények

Hatványsorok

Taylorpolinom és alkalmazásai

Érintő egyenlete

A differenciálszámítás középértéktételei

Elméleti kérdések

Tétel (Cauchy-Hadamard tétel)

Legyen R a hatványsor konvergencia sugara. Ekkor a hatványsor a

$$K_R(x_0) := \{ x \in \mathbb{R} : |x - x_0| < R \}$$

halmaz minden pontjában abszolút konvergens, $|x-x_0|>R$ esetén pedig divergens.

Megjegyzés

Az $|x-x_0|=R$ feltétel teljesülése esetén, azaz a fenti intervallum végpontjaiban a konvergenciát külön vizsgálni kell.

Hatványsor összegfüggvénye

Kalkulus II előadás

Király Balázs

Adminisztrá követelmények

Hatványsorok

Taylorpolinom és alkalmazásai

Érintő egyenlete

A differenci álszámítás középérték-

Elméleti kérdések

Definíció

Tegyük fel, hogy a hatványsor konvergenciasugara pozitív. A

$$K_R(x_0) \ni x \mapsto f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \in \mathbb{R}$$

függvényt a hatványsor összegfüggvényének nevezzük.

Definíció

Legyen $H\subseteq\mathbb{R}$ nyílt halmaz. Akkor mondjuk, hogy az $f:H\to\mathbb{R}$ függvény analitikus, ha bármely $a\in H$ pontnak van olyan környezete, amelyben az f előállítható hatványsor összegfüggvényeként.

Taylor-polinom

előadás

Király Balázs

Adminisztráció követelmények

Hatványsorok

Taylorpolinom és alkalmazásai

Érintő egyenlete

A differencialszámítás középértéktételei

Elméleti kérdések

Definíció

Legyen $n\in\mathbb{N}$. Az x_0 helyen n-szer differenciálható $f:H\to\mathbb{R}$ függvény x_0 körüli n-edik Taylor-polinomján a

$$T_n(x) := f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0)^1 + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n =$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k$$

n-edfokú polinomot értjük.

Megjegyzés

Vegyük észre, hogy a Taylor-polinom nem más, mint a Taylor-sor n-edik részletösszege.

előadás

Király Balázs

Taylor-formula

Tétel (Taylor-formula)

Taylorpolinom és alkalmazásai

Ha az f függvény az x_0 pont valamely $K_r(x_0)$ környezetében (n+1)-szer differenciálható, akkor minden $x \in K_r(x_0)$ pont esetén

$$f(x) = T_n(x) + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!} \cdot (x - x_0)^{n+1}}_{,},$$

ahol ξ az x és az x_0 közötti hely.

Definíció

Az előző tételben bevezetett $R_n(x)$ kifejezést n-edik Lagrange-féle maradéktagnak nevezzük.

Megjegyzés Ha belátható, hogy $R_n(x)$ minden szóbajöhető x esetén "elegendően kicsi", akkor használható az $f(x) \approx T_n(x)$ közelítés.

Érintő egyenlete

Kalkulus II előadás

Király Balázs

Adminisztrác követelmények

Hatványsorok

Taylorpolinom és alkalmazásai

Érintő egyenlete

A differenci álszámítás középértéktételei

Elméleti kérdések

Definíció

Legyen az f függvény az $a \in \mathcal{D}_f$ helyen differenciálható. Az (a, f(a)) ponton áthaladó, f'(a) meredekségű egyenest az f függvény a helyhez tartozó **érintőjének** nevezzük, azaz az érintő egyenlete:

$$y = f(a) + f'(a)(x - a).$$

Megjegyzés

Gondoljunk vissza a differencia-hányados és a differenciál-hányados geometriai jelentésével kapcsolatban megbeszéltekre.

A differenciálszámítás középérték-tételei, Rolle-tétel

Kalkulus II előadás

Király Balázs

Adminisztrác követelmények

Hatványsoro

Taylorpolinom és alkalmazásai

Érintő egyenlete

A differenciálszámítás középértéktételei

Elméleti kérdések

Tétel (Rolle-tétel)

Ha az $f:[a,b] o \mathbb{R}$ függvény

 $oxed{i}$ folytonos az [a,b] zárt intervallumon

iii differenciálható az (a,b) nyílt intervallumon

f(a) = f(b),

akkor létezik olyan $\xi \in (a,b)$ pont ahol

$$f'(\xi) = 0.$$

A differenciálszámítás középérték-tételei, Rolle-tétel

Kalkulus II előadás

Király Balázs

Adminisztrá követelmények

Hatványsoro

Taylorpolinom és alkalmazása

Érintő egyenlet

A differenciálszámítás középértéktételei

Elméleti kérdések

Megjegyzés

Azaz ha teljesülnek a Rolle-tétel feltételei, akkor van legalább egy olyan belső pont, ahol a függvény érintője vízszintes.

előadás

A differenciálszámítás középérték-tételei, Lagrange-féle középértéktétel

Király Balázs

Ha az $f:[a,b]\to\mathbb{R}$ függvény i) folytonos az [a, b] zárt intervallumon

akkor létezik olyan $\xi \in (a,b)$ pont ahol

A differenciálszámítás

kérdések

középértéktételei

Megjegyzés

 $f'(\xi) = \frac{f(b) - f(a)}{b - a}.$

Vegyük észre, hogy a Lagrange-féle középérték tétel az f(a) = f(b) speciális

Tétel (Lagrange-féle középértéktétel)

iii differenciálható az (a,b) nyílt intervallumon

A differenciálszámítás középérték-tételei, Lagrange-féle középértéktétel

Kalkulus II előadás

Király Balázs

Adminisztrác követelmények

Hatványsorol

Taylorpolinom és alkalmazása

Érintő egyenlet

A differenciálszámítás középértéktételei

Elméleti kérdések

Megjegyzés

Azaz ha teljesülnek a Lagrange-tétel feltételei, akkor van legalább egy olyan belső pont, ahol a függvény érintője párhuzamos az (a, f(a)) és (b, f(b))pontokon átmenő szelővel.

A differenciálszámítás középérték-tételei, Cauchy-féle középértéktétel

előadás Királv Balázs

Adminisztráció követelmé-

Hatványsoro

Taylorpolinom és

Érintő egyenlete

A differenciálszámítás középértéktételei

Elméleti kérdések

Tétel (Cauchy-féle középértéktétel)

Ha az $f,g:[a,b] \to \mathbb{R}$ függvények

- $oxed{i)}$ folytonosak az [a,b] zárt intervallumon
- $oxed{ii}$ differenciálhatók az (a,b) nyílt intervallumon

továbbá tetszőleges $x \in (a,b)$ esetén $g'(x) \neq 0$, akkor létezik olyan $\xi \in (a,b)$ pont

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Megjegyzés

ahol

Vegyük észre, hogy a Lagrange-féle középértéktétel a Cauchy-féle középértéktétel speciális esete, ha q(x)=x.

Logaritmikus deriválás

Kalkulus II előadás

Király Balázs

Logaritmikus deriválás

L'Hospital

Monotonitás és

Konvexitás

Elméleti kérdések Legyen g(x) és h(x) függvény differenciálható a H halmazon, továbbá g(x) > 0. Ekkor $f(x) = [g(x)]^{h(x)}$ is differenciálható a H-n és f'(x) az alábbi módokon határozható meg.

1. Megoldás:

Ha g(x) > 0, akkor f(x) > 0. Ekkor

$$\ln(f(x)) = \ln\left(g(x)^{h(x)}\right) = h(x) \cdot \ln(g(x))$$

Deriváljuk az egyenlet mindkét oldalát:

$$\frac{1}{f(x)} \cdot f'(x) = h'(x) \cdot \ln(g(x)) + h(x) \cdot \frac{1}{g(x)} \cdot g'(x)$$
$$f'(x) = f(x) \cdot \left[h'(x) \cdot \ln(g(x)) + h(x) \cdot \frac{1}{g(x)} \cdot g'(x) \right].$$

Logaritmikus deriválás

előadás Király Balázs

Logaritmikus

deriválás L'Hospital

2. Megoldás:

Ugyanehhez az eredményhez jutunk, ha az

$$f(x) = e^{\ln(f(x))} = e^{\ln(g(x)^{h(x)})} = e^{h(x) \cdot \ln(g(x))}$$

átalakításból indulunk ki. Ekkor

$$f'(x) = \left(e^{h(x)\cdot\ln(g(x))}\right)' =$$

$$= e^{h(x)\cdot\ln(g(x))} \cdot \left(h'(x)\right)$$

$$= \underbrace{e^{h(x)\cdot \ln(g(x))}}_{=f(x)} \cdot \left(h'(x)\cdot \ln g(x) + h(x)\cdot \frac{1}{g(x)}\cdot g'(x)\right).$$

Megjegyzés

A feladatok megoldása során a két módszer egyformán hatásos. A 2. Megoldásnak mégis van egy kis előnye, a későbbiekben a L'Hospital szabály alkalmazásakor ehhez a módszerhez meglehetősen hasonlító eljárásra van szükség.

Kalkulus II előadás

Király Balázs

Logaritmiki deriválás

L'Hospital

Monotonitá és szélsőértéke

Konvexitás és inflexió

Elméleti kérdések

Tétel (L'Hospital szabály véges helyen " $\frac{0}{0}$ " alakra)

Az f és a g függvények legyenek az x_0 valamely (esetleg féloldali) környezetében differenciálhatók és x_0 -ban folytonosak, melyekre $f(x_0) = g(x_0) = 0$. Továbbá tegvük fel. hogy létezik a

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

határérték. Ekkor létezik a $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ határérték is és

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

előadás

Király Balázs

L'Hospital szabály

Flméleti kérdések

Tétel (L'Hospital szabály véges helyen " $_{\infty}^{\infty}$ " alakra)

Az f és a q függvények legyenek az x_0 valamely (esetleg féloldali) környezetében differenciálhatók, melyekre

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty.$$

Továbbá tegyük fel, hogy létezik a

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

határérték. Ekkor létezik a $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ határérték is és $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

előadás

Király Balázs

Logaritmiku: deriválás

L'Hospital szabály

Monotonita

és szélsőértéke

Konvexitás és inflexió

Elméleti kérdések

Tétel (L'Hospital szabály végtelenben)

Az f és a g függvények legyenek az differenciálhatók a (K,∞) intervallumon és legyen

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0 \quad (vagy \pm \infty).$$

Továbbá tegyük fel, hogy létezik a

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

határérték. Ekkor létezik a $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ határérték is és

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Kalkulus II előadás

Király Balázs

deriválás

L'Hospital szabály

Monotonitás és

szélsőértékek

Konvexitás és inflexió

Elméleti kérdések

Megjegyzés

Hasonló tétel mondható ki $-\infty$ -ben is.

Megjegyzés

Azaz a L'Hospital szabály véges-, vagy végtelen helyen $\frac{0}{0}$, vagy $\frac{\infty}{\infty}$ alak esetén alkalmazható, ha a deriváltak hányadosának határértéke kiszámolható.

L'Hospital szabály – Feladatok

Kalkulus II előadás

Király Balázs

deriválás

L'Hospital szabály

Monotonitá

szélsőértékek

Konvexitá és inflexió

Elméleti kérdések

Feladat

Számoljuk ki az alábbi határértékeket:

$$\lim_{x \to 4} \frac{\sqrt{x^2 + 9} - 5}{x^2 - x - 12}$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

$$\lim_{x \to 0} \frac{x - \sin x}{x^4}$$

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

$$\lim_{x \to 0^+} x \cdot \log_2 x$$

Monotonitás

előadás

Király Balázs

Logaritmikus deriválás

L'Hospital

Monotonitás és szélsőértékek

Konvexitás

Elméleti kérdések

Definíció

Akkor mondjuk, hogy az $f:(\alpha,\beta)\to\mathbb{R}$ függvény az $a\in(\alpha,\beta)$ pontban lokálisan növekvő, ha a-nak van olyan $K_r(a)\subseteq(\alpha,\beta)$ környezete,

$$f(x) \le f(a), \quad ha \ x \in (a-r,a),$$

 $f(x) \ge f(a), \quad ha \ x \in (a,a+r).$

Definíció

Akkor mondjuk, hogy az $f:(\alpha,\beta)\to\mathbb{R}$ függvény az $a\in(\alpha,\beta)$ pontban lokálisan fogyó, ha a-nak van olyan $K_r(a)\subseteq(\alpha,\beta)$ környezete,

$$f(x) \geq f(a), \quad ha \ x \in (a-r,a),$$

$$f(x) \leq f(a), \quad ha \ x \in (a,a+r).$$

Szélsőérték definíciója

előadás

Király Balázs

deriválás

Monotonitás

és szélsőértékek

Konvexitás és inflexió

Elméleti kérdések

Megjegyzés

Könnyen látható, hogy a monoton növő függvények értelmezési tartományuk minden belső pontjában lokálisan növekednek illetve a monoton fogyó függvények értelmezési tartományuk minden belső pontjában lokálisan fogynak.

Definíció

Akkor mondjuk, hogy az $f:(\alpha,\beta)\to\mathbb{R}$ függvénynek az $a\in(\alpha,\beta)$ pontban **lokális** maximuma van, ha a-nak létezik olyan $K_r(a)\subseteq(\alpha,\beta)$ környezete,

$$f(x) \le f(a), \quad ha \ x \in K_r(a).$$

Szélsőérték definíciója

előadás Királv Balázs

Logaritmikus deriválás

Monotonitás és szélsőértékek

Konvexitás

Elméleti kérdések

Definíció

Akkor mondjuk, hogy az $f:(\alpha,\beta) \to \mathbb{R}$ függvénynek az $a \in (\alpha,\beta)$ pontban **lokális** minimuma van, ha a-nak létezik olyan $K_r(a) \subseteq (\alpha,\beta)$ környezete, $f(x) \geq f(a), \quad ha \ x \in K_r(a).$

Megjegyzés

A lokális maximumot és a lokális minimumot összefoglaló néven **lokális** szélsőértéknek nevezzük.

Megjegyzés

A középiskolában tanult maximum egyben lokális maximum is illetve a minimum lokális minimum is. Az egyértelmű elnevezés kedvéért ezeket a szélsőértékeket ezentúl abszolút szélsőértékeknek nevezziik

A monotonitás és a derivált kapcsolata

előadás Királv Balázs

deriválás

Monotonitás és szélsőértékek

Konvexitás

Elméleti kérdések

Tétel

Legyen az $f:(\alpha,\beta)\to\mathbb{R}$ függvény az $a\in(\alpha,\beta)$ pontban differenciálható.

- i) Ha f az a pontban (lokálisan) növő, akkor $f'(a) \ge 0$.
- ii) Ha f az a pontban (lokálisan) fogyó, akkor $f'(a) \leq 0$.

Tétel

Legyen az $f:(\alpha,\beta)\to\mathbb{R}$ függvény az $a\in(\alpha,\beta)$ pontban differenciálható.

- ii Ha f'(a) > 0, akkor az f függvény az a pontban szigorúan növő.
- $Ha \ f'(a) < 0$, akkor az f függvény az a pontban szigorúan fogyó.

Király Balázs

Monotonitás

szélsőértékek

Szélsőérték-tételek

Tétel

Ha az $f:(\alpha,\beta)\to\mathbb{R}$ függvény az $a\in(\alpha,\beta)$ pontban differenciálható és itt lokális szélsőértéke van. akkor f'(a) = 0

L'Hospital

Megjegyzés Az előző tétel a lokális szélsőérték létezésének szükséges, de nem elégséges feltétele.

Például az $f(x) = x^3$ függvénynek az $x_0 = 0$ pontban nincs szélsőértéke, pedig f'(0) = 0.

Tétel (A szélsőérték létezésének elsőrendű elégséges feltétele)

Legyen $f: H \to \mathbb{R}$ $(H \subseteq \mathbb{R} \text{ nyilt halmaz}), a \in H, f \in \mathcal{D}_a$. Ha f'(a) = 0 és f' az

a-ban előjelet vált, akkor f-nek a-ban lokális szélsőértéke van. Ha a derivált negatívból pozitívvá válik, akkor az eredeti függvénynek lokális minimuma, ha pozitívból negatívvá válik, akkor lokális maximuma van az a pontban.

Szélsőérték-tételek

előadás

Király Balázs

Logaritmiku deriválás

L'Hospital szabály

Monotonitás és szélsőértékek

Konvexitás és inflexió

Elméleti kérdések

Definíció (Emlékeztető)

Ha az $f: H \to \mathbb{R}$ differenciálható függvény f' deriváltja az $a \in H$ pontban differenciálható, akkor azt mondjuk, hogy az f kétszer differenciálható az a pontban és az

$$f''(a) := (f')'(a)$$

számot a függvény a pontbeli **második deriváltjának**, vagy **másodrendű differenciálhányadosának** nevezzük.

Tétel (A szélsőérték létezésének másodrendű elégséges feltétele)

Legyen $f: H \to \mathbb{R}$ $(H \subseteq \mathbb{R} \text{ nyílt halmaz}), a \in H, f \in \mathcal{D}_a^2$. Ha f'(a) = 0 és $f''(a) \neq 0$, akkor f-nek a-ban lokális szélsőértéke van. Ha f''(a) > 0, akkor f-nek a-ban lokális minimuma, ha f''(a) < 0, akkor f-nek a-ban lokális maximuma van.

Szélsőérték-tételek

előadás

Király Balázs

L'Hospita

szabály

Monotonitás és szélsőértékek

Konvexitás és inflexió

Elméleti kérdések

Definíció

Legyen $n \in \mathbb{N}$ és $f: H \to \mathbb{R}$ függvény (n-1)-szer differenciálható. Ha a függvény (n-1)-edik deriváltja $(f^{(n-1)})$ differenciálható az $a \in H$ pontban, akkor azt mondjuk, hogy f az a pontban n-szer differenciálható és legyen $f^{(n)}(a) := (f^{(n-1)})'(a)$.

Tétel (A szélsőérték létezésének magasabbrendű elégséges feltétele)

Legyen $f: H \to \mathbb{R}$ $(H \subseteq \mathbb{R} \text{ nyílt halmaz})$, az $a \in H$ pontban n-szer differenciálható. Tegyük fel, hogy

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0, \quad \text{\'es} \quad f^{(n)}(a) \neq 0.$$

Az f-nek akkor és csak akkor van az a-ban lokális szélsőértéke, ha n páros. Ekkor ha $f^{(n)}(a)>0$, akkor f-nek a-ban lokális minimuma, ha $f^{(n)}(a)<0$, akkor lokális maximuma van.

Monotonitás, szélsőérték – Feladatok

előadás

Király Balázs

L'Hospita

szabály

Monotonitás

és szélsőértékek

Konvexitás és inflexió

Elméleti kérdések

Feladat

- Mit mondhatunk az $f(x) = x^2 4x + 7$ függvény monotonitásáról az $x_0 = -5$, az $x_0 = 3$ és az $x_0 = 2$ pontokban? Vizsgáljuk a monotonitását és adjuk meg a szélsőértékeit a teljes értelmezési tartományán.
- $\hbox{Mit mondhatunk az } f(x) = \frac{1}{(x-3)^2} \hbox{ függvény monotonitásáról az } x_0 = -4 \hbox{ és} \\ \hbox{az } x_0 = 5 \hbox{ helyeken? Az } x_0 = 3 \hbox{ van-e szélsőértéke? Vizsgáljuk a monotonitását} \\ \hbox{és adjuk meg a szélsőértékeit a teljes értelmezési tartományán.}$

Konvexitás és inflexió

előadás

Király Balázs

L'Hospital

Konvexitás és inflexió

Definíció

Akkor mondiuk, hogy az $f: H \to \mathbb{R}$ függvény egy $I \subseteq H$ intervallumon konvex, ha bármely $a, b \in I$, a < b esetén az (a, f(a)) és (b, f(b)) pontokon áthaladó egyenes (szelő) az (a,b)-ben az f fölött fekszik.

Definíció

Akkor mondjuk, hogy az $f: H \to \mathbb{R}$ függvény egy $I \subseteq H$ intervallumon konkáv, ha bármely $a, b \in I$, a < b esetén az (a, f(a)) és (b, f(b)) pontokon áthaladó egyenes (szelő) az (a,b)-ben az f alatt fekszik.

Definíció

Akkor mondjuk, hogy az $f: H \to \mathbb{R}$ függvénynek az $a \in H$ helyen inflexiója van, ha ott a függvény konvexitást vált.

A konvexitás és a deriváltak kapcsolata

előadás Király Balázs

Konvexitás és inflexió

Tétel (A konvexitás és az első derivált kapcsolata)

Tekintsük az $f:(a,b)\to\mathbb{R}$ függvényt, tegyük fel, hogy f az (a,b)-n differenciálható, ekkor

- i) Ha f konvex (a,b)-n, akkor f' monoton nő (a,b)-n
- ii) Ha f szigorúan konvex (a,b)-n, akkor f' szigorúan monoton nő (a,b)-n
- iii Ha f konkáv (a,b)-n, akkor f' monoton csökken (a,b)-n
- Ha f szigorúan konkáv (a,b)-n, akkor f' szigorúan monoton csökken (a,b)-n

A konvexitás és a deriváltak kapcsolata

előadás Királv Balázs

I amountaments

L'Hospital

szabály

és szélsőértékek

Konvexitás és inflexió

Elméleti kérdések

Tétel (A konvexitás és a második derivált kapcsolata)

Tekintsük az $f:(a,b)\to\mathbb{R}$ függvényt, tegyük fel, hogy f az (a,b)-n kétszer differenciálható, ekkor

- i) Ha f konvex (a,b)-n, akkor $f''(x) \ge 0$
- ii) Ha f konkáv (a,b)-n, akkor $f''(x) \leq 0$
- Hi Ha f''(x)>0, akkor f szigorúan konvex (a,b)-on
- ightharpoonup Ha f''(x) < 0, akkor f szigorúan konkáv (a,b)-on

Tételek az inflexiós ponttal kapcsolatban

előadás

Király Balázs

deriválás L'Hospita

L'Hospital szabály

és szélsőértékel

Konvexitás és inflexió

Elméleti kérdések

Tétel (Inflexióspont létezésének szükséges feltétele)

Ha az $f:H\to\mathbb{R}$ függvény az $a\in H$ pontban kétszer differenciálható és f-nek a-ban inflexiója van, akkor f''(a)=0.

Megjegyzés

Az előző tétel szükséges de nem elégséges, például az $f(x) = x^4$ függvénynek a = 0-ban nincs inflexiója, pedig f''(0) = 0.

Tétel (Inflexióspont létezésének másodrendű elégséges feltétele)

Legyen $f: H \to \mathbb{R}$ az $a \in H$, pontban kétszer differenciálható. Ha f''(a) = 0 és f'' az a-ban előjelet vált, akkor f-nek a-ban inflexióspontja van.

Tételek az inflexiós ponttal kapcsolatban

előadás

Király Balázs

deriválás L'Hospital

szabály Monotonitás

és szélsőértékek

Konvexitás és inflexió

Tétel (Inflexióspont létezésének harmadrendű elégséges feltétele)

Legyen $f:H\to\mathbb{R}$ az $a\in H$, pontban háromszor differenciálható. Ha f''(a)=0 és $f'''(a)\neq 0$, akkor f-nek a-ban inflexióspontja van.

Tétel (Inflexióspont létezésének magasabbrendű elégséges feltétele)

Legyen $f:H o\mathbb{R}$ az $a\in H$, pontban n-szer differenciálható. Tegyük fel, hogy

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0$$
 és $f^{(n)}(a) \neq 0$,

f-nek a-ban akkor és csak akkor van inflexióspontja, ha n páratlan.

I. Alaptulajdonságok megállapítása

előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elméleti kérdések

- Értelmezési tartomány meghatározása
 - Szinguláris helyek
 - Értelmezési tartomány szélső pontjai
- szimmetria tulajdonságok vizsgálata
 paritás
 - Ha \mathcal{D}_f szimmetrikus és $f(-x)=f(x),\;(\forall x\in\mathcal{D}_f)$, akkor f páros
 - Ha \mathcal{D}_f szimmetrikus és $f(-x) = -f(x), \ (\forall x \in \mathcal{D}_f)$, akkor f ptlan
 - különben se nem páros, se nem páratlan
 periodicitás

Az f függvény periódusa p, ha p a legkisebb pozitív szám, melyre minden $x \in \mathcal{D}_f$

- esetén f(x+p) = f(x). • Folytonosság vizsgálata
 - Differenciálhatóság vizsgálata
- Tengelymetszetek meghatározása
 - y-tengely: f(0) meghatározása
 - x-tengely: f(x) = 0 megoldása, ha lehetséges

II. Vizsgálatok az első derivált alapján

Kalkulus II előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elmélet kérdésel

- Monotonitási intervallumok meghatározása
- szélsőértékek keresése

Mindkét szempont vizsgálható a szélsőérték létezésének elsőrendű elégséges feltételének alkalmazásakor használt táblázattal

A táblázat oszlopait a kritikus pontok (szinguláris helyek, intervallum szélső pontjai, szakadási helyek, lehetséges szélsőérték helyek) által meghatározott intervallumok adják

A táblázatnak két sora van, az első a derivált, a második az eredeti függvény viselkedését írja le

III. Vizsgálatok a második derivált alapján

Kalkulus II előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elméleti kérdések

- Konvexitási intervallumok meghatározása
- inflexióspontok keresése

Mindkét szempont vizsgálható az inflexiós pont létezésének másodrendű elégséges feltételének alkalmazásakor használt táblázattal.

A táblázat oszlopait a kritikus pontok (szinguláris helyek, intervallum szélső pontjai, szakadási helyek, lehetséges inflexióspontok helyei) által meghatározott intervallumok adják

A táblázatnak két sora van, az első a második derivált, a második az eredeti függvény viselkedését írja le

IV. A függvény határértékei

Kalkulus II előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elmélet kérdésel

- ullet Az értelmezési tartomány végpontjaiban (vagy $\pm\infty$ -ben)
- A függvény szinguláris pontjaiban és szakadási helyeinél

V. A derivált határértékei:

Kalkulus II előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elméleti kérdések

- ullet Ahol f folytonos, de nem differenciálható
- ullet Ahol f nem folytonos, de létezik legalább féloldali véges határérték

VI. Aszimptoták

Kalkulus II előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elméleti kérdések

- ullet vízszintes aszimptota van, ha $\lim_{x o \infty} f(x) = c$, vagy $\lim_{x o -\infty} f(x) = c$, ahol $c \in \mathbb{R}$
- függőleges aszimptota, ahol $\lim_{x \to x_0} f(x) = \pm \infty$ (elég ha az egyoldali határérték végtelen)
- ferde aszimptota, ha $\lim_{x\to\pm\infty}f(x)=\pm\infty$ és $\lim_{x\to\infty}\frac{f(x)}{x}=m,\ m\in\mathbb{R}.$ Ekkor az aszimptota:

$$y = m \cdot x + \underbrace{\lim_{x \to \pm \infty} (f(x) - m \cdot x)}_{\cdot}$$

VII. Ábrázolás

Kalkulus II előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elmélet kérdésel Ábrázolás előtt érdemes a II. és III. pontban elkészített táblázatokat összevonni.

A táblázat oszlopait a kritikus pontok (szinguláris helyek, intervallum szélső pontjai, szakadási helyek, lehetséges szlsőérték helyek és lehetséges inflexióspontok helyei) által meghatározott intervallumok adják

A táblázatnak három sora van, az első az első derivált, a második a második derivált, a harmadik pedig az eredeti függvény viselkedését írja le

VIII. Értékkészlet leolvasása

Kalkulus II előadás

Király Balázs

A teljes függvényvizsgálat lépései

Elméleti kérdések

A grafikon segítségével megadjuk a függvény értékkészletét.

Primitív függvény

Kalkulus II előadás

Király Balázs

Primitív függvény, határozatlan integrál

Helyettesítés integrálás

Parciális integrálás

Példák

Definíció

Legyen $I \subset \mathbb{R}$ egy intervallum és $f: I \mapsto \mathbb{R}$ egy intervallumon értelmezett valósértékű függvény. Akkor mondjuk, hogy a $F: I \mapsto \mathbb{R}$ függvény a f függvénye, ha

- $F \in \mathcal{D}_I$
- F'(x) = f(x) minden $x \in I$ esetén

Tétel

Ha F a f primitív függvénye az I intervallumon és $C \in \mathbb{R}$ konstans, akkor F+C is a f primitív függvénye.

Bizonyítás.

Ha F a f primitív függvénye, akkor $F \in \mathcal{D}_I$, így a differenciálhatóság műveleti tulajdonságai alapján $F + C \in \mathcal{D}_I$ és (F + C)' = F' + C' = f + 0 = f.

A határozatlan integrál

előadás

Király Balázs

Primitív függvény, határozatla integrál

Helyettesítés integrálás

Parciáli integrá

Tétel

Ha F_1 és F_2 a f primitív függvényei az I intervallumon, akkor $F_1 - F_2 = \acute{a}lland\acute{o}$, azaz f primitív függvényei csak egy additív konstansban különböznek.

Bizonyítás.

 $F_1,F_2\in\mathcal{D}_I$ így a differenciálhatóság műveleti tulajdonságai alapján $F_1-F_2\in\mathcal{D}_I$ $(F_1-F_2)'=F_1'-F_2'=f-f=0,$ az I intervallumon, így $F_1-F_2=$ állandó. \square

Definíció

Legyen $f: I \mapsto \mathbb{R}$ olyan függvény, melynek van primitív függvénye az I intervallumon. Ekkor az f primitív függvényeinek halmazát az f határozatlan integráljának nevezzük. Jelölés:

$$\int f(x) \ dx = \int f = \{F(x) + C, C \in \mathbb{R}\},\$$

ahol F a f egy primitív függvénye.

Műveleti tulajdonságok

Kalkulus II előadás

Király Balázs

Primitív

függvény. határozatlan integrál

minden $x \in I$ esetén.

Tétel

Ha az f az I intervallumon folytonos, akkor létezik primitív függvénye.

Tétel

Ha $f, q: I \mapsto \mathbb{R}$ függvényeknek van primitív függvénye és $\lambda \in \mathbb{R}$, akkor f+q-nek és

 $\lambda \cdot f$ -nek is van primitívfüggvénye és

 $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx,$ $\int \lambda \cdot f(x) \ dx = \lambda \cdot \int f(x) \ dx.$

Bizonyítás.

Legyen $\int f(x) dx = F(x) + C_1$ és $\int g(x) dx = G(x) + C_2$, ahol $C_1, C_2 \in \mathbb{R}$. Ekkor a definíció alapján $F, G \in \mathcal{D}_I$ és F'(x) = f(x), valamint G'(x) = g(x)

Műveleti tulajdonságok

Kalkulus II előadás

Király Balázs

Primitív függvény, határozatlan integrál

Helyettesítési integrálás

Parciális integrálá: A derivált műveleti tulajdonságai miatt F+G és $\lambda\cdot F$ is differenciálható I-n és

$$(F+G)' = F'+G' = f+g,$$

 $(\lambda \cdot F)' = \lambda \cdot F' = \lambda \cdot f.$

Azaz $\lambda \cdot F$ a $\lambda \cdot f$ egy primitív függvénye illetve F+G a f+g egy primitív függvénye.

Helyettesítéses integrálás

előadás

Király Balázs

Primitív függvény, határozatla integrál

Helyettesítéses integrálás

Parciális integrálás

Példák

Tétel

Legyen $\varphi:I\mapsto J$ és $f:J\mapsto\mathbb{R}$, ahol $I,J\subset\mathbb{R}$ intervallumok. Ha

- i) $arphi\in\mathcal{D}_I$ és
- ii) F a f függvény primitív függvénye J-n,

akkor $(f\circ\varphi)\cdot\varphi'$ függvénynek is létezik primitív függvénye és

$$\int (f \circ \varphi) \cdot \varphi' = F \circ \varphi + C.$$

Bizonyítás.

 $F \in \mathcal{D}_J$ és $\varphi \in \mathcal{D}_I \Rightarrow F \circ \varphi \in \mathcal{D}_I$ és

$$(F \circ \varphi)'(t) = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t) \quad \forall t \in I,$$

azaz az $F \circ \varphi$ függvény az $(f \circ \varphi) \cdot \varphi'$ függvény primitív függvénye.

Helyettesítéses integrálás, 2. módszer

Kalkulus II előadás

Király Balázs

Primitív függvény, határozatlar

Helyettesítéses integrálás

Parciális integrálás

Tétel

Legyen $\varphi:I\mapsto J$ és $f:J\mapsto\mathbb{R}$, ahol $I,J\subset\mathbb{R}$ intervallumok. Ha

- $\varphi \in \mathcal{D}_I \text{ \'es } \varphi'(x) \neq 0, \ x \in I,$
- $lacktriang{iii}$ Legyen arphi kölcsönösen egyértelmű és jelölje \overline{arphi} az inverzét
- III legyen $h:=(f\circ\varphi)\cdot\varphi'$. h-nak van primitív függvénye, ez legyen H,

ekkor f függvénynek is létezik primitív függvénye és

$$\int f(x) \ dx = (H \circ \overline{\varphi})(x) + C.$$

Helyettesítéses integrálás, 2. módszer

Kalkulus II előadás

Király Balázs

Primitív függvény, határozatlai

Helyettesítéses integrálás

Parciális integrálás

Példák

Bizonyítás.

$$H \in \mathcal{D}_I$$
 és $H'(x) = h(x) = ((f \circ \varphi) \cdot \varphi')(x) = f(\varphi(x)) \cdot \varphi'(x)$

Mivel $\overline{\varphi} \in \mathcal{D}_J$ és a közvetett függvény deriválási szabálya alapján $H \circ \overline{\varphi} \in \mathcal{D}_J$ legyen $x \in J$ ekkor

$$\begin{array}{lcl} (H(\overline{\varphi}(x)))' & = & H'(\overline{\varphi}(x)) \cdot \overline{\varphi}'(x) = h(\overline{\varphi}(x)) \cdot \overline{\varphi}'(x) = \\ & = & f(\varphi(\overline{\varphi}(x))) \cdot \varphi'(\overline{\varphi}(x)) \cdot \overline{\varphi}'(x) = \\ & = & f(x) \cdot \varphi'(\overline{\varphi}(x)) \cdot \overline{\varphi}'(x) = \\ & = & f(x) \cdot \varphi'(\overline{\varphi}(x)) \cdot \frac{1}{\varphi'(\overline{\omega}(x))} = f(x). \end{array}$$

Parciális integrálás

előadás

Király Balázs

Primitív függvény, határozatla integrál

Helyettesítése integrálás

Parciális integrálás

Páldák

Tétel

Tegyük fel, hogy $f,g\in\mathcal{D}_I$. Ha az $f\cdot g'$ függvénynek van primitívfüggvénye az I intervallumon, akkor $f'\cdot g$ függvénynek is van és

$$\int f' \cdot g = f \cdot g - \int f \cdot g'.$$

Bizonyítás.

 $f,g\in\mathcal{D}_I\Rightarrow f\cdot g\in\mathcal{D}_I$ és

$$(f \cdot g)' = f' \cdot g + f \cdot g' \quad \Rightarrow \quad f' \cdot g = (f \cdot g)' - f \cdot g'$$

Az $(f\cdot g)'$ és $f\cdot g'$ függvényeknek van primitív függvényük, így a különbségüknek, $f'\cdot g$ -nek is van és

$$\int f' \cdot g = \int (f \cdot g)' - \int f \cdot g' = f \cdot g - \int f \cdot g'.$$

Parciális integrálás, alapesetek

Kalkulus II előadás

Király Balázs

Primitív függvény, határozatla integrál

Helyettesítése integrálás

Parciális integrálás

Példál

Megjegyzés

Nyilvánvaló, hogy a módszer akkor használható jól, ha az f és g függvényeket úgy választjuk, hogy $f\cdot g'$ függvény primitív függvénye könnyebben számolható, mint az eredeti $f'\cdot g$ függvényé. A következő négy típus esetén érdemes parciálisan integrálni:

Polinom függvény és exponenciális-, vagy trigonometrikus függvény szorzata. **Megoldás:** A parciális integrálás során legyen g a polinom, így a fenti eljárást alkalmazva a kiszámítandó $\int f(x) \cdot g'(x) dx$ hasonló típusú lesz, mint az eredeti primitív függvény, de a polinom fokszáma eggyel csökken. A parciális integrálást egészen addig ismételten alkalmazzuk, amíg a polinom konstanssá nem válik, ekkor már elemi úton integrálhatunk.

Parciális integrálás, alapesetek

Kalkulus II előadás

Király Balázs

Primitív függvény, határozatla integrál

Helyettesítése integrálás

Parciális integrálás

Példák

- a) Polinom és logaritmus-, vagy ciklometrikus ("arkusz") függvény szorzata. **Megoldás:** A parciális integrálás során legyen f' a polinom, így a fenti eljárást alkalmazva a kiszámítandó $\int f(x) \cdot g'(x) dx$ integrálban a polinom mellett egy könnyebben kezelhető függvény jelenik meg.
 - Logaritmus-, vagy ciklometrikus ("arkusz") függvény integrálása.
 Megoldás: Ilyenkor az integrandust tekinthetjük olyan szorzatnak, melynek az egyik tényezője az eredeti integrandus, a másik tényezője pedig az azonosan 1 polinom. A parciális integrálás során ugyanúgy járunk el, mint az előző típus esetén.

Parciális integrálás, alapesetek

Kalkulus II előadás

Király Balázs

Primitív függvény, határozatla integrál

Helyettesítése integrálás

Parciális integrálás

DALJAL

Exponenciális- és szinusz-, vagy koszinusz függvény szorzata. Megoldás: Kétszer egymás után parciálisan integrálunk. (Tetszőleges megfeleltetéssel, de mindkétszer ugyanolyan szerepkiosztással.) A második lépés után egy függvényegyenlethez jutunk, melyből elemi átalakítással "kifejezhetjük" a keresett függvényt.

Kalkulus II előadás

Király Balázs Racionális

függvények

Definíció

Az

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$x \in \mathbb{R}, \ n \in \mathbb{N}, \ a_i \in \mathbb{R} \ (i = 0, \dots, n)$$

$$f(x) = \frac{Ax + B}{(ax^2 + bx + c)^n},$$

$$A, B \in \mathbb{R}, \ x \in \mathbb{R}, \ a, b, c \in \mathbb{R}, (b^2 - 4ac < 0), \ n \in \mathbb{N}^*,$$

alakú függvényeket elemi törtfüggvényeknek nevezzük.

előadás Király Balázs

Racionális függvények

Tétel

Minden racionális függvény felbontható véges számú elemi törtfüggvény összegére.

Megjegyzés

A tétel bizonyításától eltekintünk. Helyette egy, a gyakorlatban jól alkalmazható eljárás lépéseit írjuk le, amellyel a felbontást elő is állíthatjuk.

1.lépés: A racionális függvényt polinom és valódi racionális tört összegére bontjuk.

osztást végezve felbontiuk:

ahol $\frac{R(x)}{Q(x)}$ már valódi racionális tört.

Az $f(x)=rac{P(x)}{Q(x)}$ $x\in\mathbb{R}\backslash\Lambda_Q,\ \Lambda_Q=\{\lambda\in\mathbb{R}|\ Q(\lambda)=0\}$ (P,Q polinomok) racionális

 $P(x) = P_1(x) \cdot Q(x) + R(x)$, ahol R = 0, vagy deg $R < \deg Q$.

 $f(x) = \frac{P(x)}{O(x)} = \frac{P_1(x) \cdot Q(x) + R(x)}{O(x)} = P_1(x) + \frac{R(x)}{O(x)},$

törtfüggvényt valódi racionális törtnek nevezzük, ha $\deg P < \deg Q$. (Ha

Ha $f(x) = \frac{P(x)}{Q(x)} (x \in \mathbb{R} \setminus \Lambda_Q)$ egy racionális áltört, akkor P-n Q-val maradékos

 $\deg P > \deg Q$, akkor a függvényt racionális áltörtnek hívjuk.)

Definíció

Ekkor

Király Balázs

Racionális függvények

Kalkulus II előadás

Király Balázs

Racionális függvények

Elemi törte

Trigonomet rikus függvények 2.lépés: A nevezőt irreducibilis (elsőfokú-, vagy negatív diszkriminánsú másodfokú-) tényezők szorzatára bontjuk.

3.lépés: A törtet elemi törtek összegére bontjuk az egyenlő együtthatók módszerével.

Kalkulus II előadás

Király Balázs

Racionáli

függvényel Elemi törtek

Trigonometrikus függvények Ha f polinom, akkor tagonként integrálunk.

III. Ha $f(x) = \frac{A}{(x-a)^n}$, $(n \in \mathbb{N}^*)$, akkor az alábbi két eset lehetséges.

a) Ha n=1, akkor

$$\int \frac{A}{x-a} dx = A \int \frac{1}{x-a} dx = A \int \frac{1}{t} dt = A \cdot \ln|t| + C = A \cdot \ln|x-a| + C.$$

b) Ha $n \geq 2$, akkor

$$\int \frac{A}{(x-a)^n} dx = A \int \frac{1}{(x-a)^n} dx = A \int t^{-n} dt = A \cdot \frac{t^{-n+1}}{-n+1} + C =$$

$$t = x-a = -\frac{A}{n-1} \cdot \frac{1}{(x-a)^{n-1}} + C.$$

$$dt = dx$$

előadás

Király Balázs

Elemi törtek

 \hbox{III} Ha $f(x)=rac{Ax+B}{(ax^2+bx+c)^n}, \quad (n\in \mathbb{N}^*)$, ahol $D=b^2-4ac<0$, akkor első lépésként a nevezőt teljes négyzetté alakítjuk:

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right) =$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} + \underbrace{\frac{4ac - b^{2}}{4a^{2}}}_{=:\alpha^{2} > 0}\right)$$

előadás

Király Balázs

függvénye Elemi törtek

Trigonometrikus függvények Ekkor

$$\int f(x)dx = \int \frac{Ax + B}{a^n \left(\left(x + \frac{b}{2a} \right)^2 + \alpha^2 \right)^n} dx = \int \frac{A \cdot \left(t - \frac{b}{2a} \right) + B}{a^n \left(t^2 + \alpha^2 \right)^n} dt =$$

$$t = x + \frac{b}{2a}$$

$$x = t - \frac{b}{2a}$$

$$dt = dx$$

$$= \frac{A}{a^n} \int \frac{t}{(t^2 + \alpha^2)^n} dt + \frac{B - \frac{Ab}{2a}}{a^n} \int \frac{1}{(t^2 + \alpha^2)^n} dt.$$

Ezek után a következő négy fajta integrál kiszámítására lehet szükség.

 $\int \frac{\mathrm{d} \tilde{\mathbf{J}}}{t^2 + \alpha^2} dt = \frac{1}{\alpha^2} \int \frac{1}{1 + \left(\frac{t}{\alpha}\right)^2} dt = \frac{1}{\alpha} \int \frac{1}{1 + u^2} du = \frac{1}{\alpha} \mathrm{arctg} u + C = \frac{1}{\alpha} \mathrm{arctg} \frac{t}{\alpha} + C$

 $\int \frac{1}{t^2 + \alpha^2} dt = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln|t^2 + \alpha^2| + C$

 $\int \frac{t}{(t^2 + \alpha^2)^n} dt = \frac{1}{2} \int \frac{1}{u^n} du = \frac{1}{2} \cdot \frac{u^{-n+1}}{-n+1} + C = \frac{-1}{2(n-1)} \cdot \frac{1}{(t^2 + \alpha^2)^{n-1}} + C$

Kalkulus II előadás Király Balázs

függvénye Elemi törtek

Trigonometrikus függvények

$$\int \frac{1}{(t^2 + \alpha^2)^n} dt = \int \frac{1}{(\alpha^2 \operatorname{tg}^2 u + \alpha^2)^n} \cdot \frac{\alpha}{\cos^2 u} du =
t = \alpha \cdot \operatorname{tg} u - \frac{\pi}{2} < u < \frac{\pi}{2}
dt = \alpha \cdot \frac{1}{\cos^2 u} du
= \int \frac{1}{\alpha^{2n-1} (1 + \operatorname{tg}^2 u)^n} \cdot \frac{1}{\cos^2 u} du = \frac{1}{\alpha^{2n-1}} \int \frac{1}{(\frac{\cos^2 u + \sin^2 u}{\cos^2 u})^n} \cdot \frac{1}{\cos^2 u} du =
= \frac{1}{\alpha^{2n-1}} \int \frac{\cos^{2n} u}{\cos^2 u} du = \frac{1}{\alpha^{2n-1}} \int \cos^{2(n-1)} u \ du$$

Az eljárás folytatására visszatérünk a trigonometrikus függvények integrálásakor.

előadás Királv Balázs

Király Bal

Racionál függvény

Trigonometrikus függvények I.

- $\int \sin x \ dx = -\cos x + C, \qquad \int \cos x \ dx = \sin x + C$
- $\int \sin^n x \cdot \cos^m x \ dx \quad (n, m \in \mathbb{N})$
 - i) Az n=m=0 eset érdektelen, hiszen ekkor valójában nem is trigonometrikus függvényről van szó.
 - n Ha n páratlan (m tetszőleges)
 - Legyen n=2k+1, ahol $k\in\mathbb{N}$. Ekkor
- $\int \sin^n x \cdot \cos^m x \, dx = \int \sin^{2k+1} x \cdot \cos^m x \, dx = \int \sin^{2k} x \cdot \cos^m x \cdot \sin x \, dx =$
- $= \int (\sin^2 x)^k \cdot \cos^m x \cdot \sin x \, dx = \int (1 \cos^2 x)^k \cdot \cos^m x \cdot \sin x dx = -\int (1 t^2)^k \cdot t^m dt$ $t = \cos x$

= $-\sin r dr$

Ezzel a feladatot egy polinom integrálására vezettük vissza.

Kalkulus II előadás

Király Balázs

Racionális függvények

Trigonometrikus függvények I.

m Ha m páratlan (n tetszőleges) Legyen $m=2\ell+1$, ahol $\ell\in\mathbb{N}$. Ekkor $\int \sin^n x \cdot \cos^m x \, dx = \int \sin^n x \cdot \cos^{2\ell+1} x \, dx =$ $= \int \sin^n x \cdot \cos^{2\ell} x \cdot \cos x \, dx = \int \sin^n x \cdot (\cos^2 x)^{\ell} \cdot \cos x \, dx =$ $= \int \sin^{n} x \cdot (1 - \sin^{2} x)^{\ell} \cdot \cos x \, dx = \int u^{n} \cdot (1 - u^{2})^{\ell} du$ $= \cos x \, dx$

Ezzel a feladatot most is egy polinom integrálására vezettük vissza.

előadás Királv Balázs

Racionális függvények

Trigonometrikus függvények I. Ehhez a jól ismert addíciós képletből és a trigonometrikus Pitagorasz tételből ún. linearizáló formulák vezethetők le:

$$\cos 2x = \cos^2 x - \sin^2 x$$
$$1 = \cos^2 x + \sin^2 x$$

A fenti egyenletrendszerből $\cos^2 x$ -t illetve $\sin^2 x$ -t kifejezve:

Linearizáló formulák

$$\cos^2 x = \frac{1 + \cos 2x}{2} \quad x \in \mathbb{R}$$
$$\sin^2 x = \frac{1 - \cos 2x}{2} \quad x \in \mathbb{R}$$

Kalkulus II előadás

Racionális

Trigonometrikus függvények I.

$$\int \sin^n x \cdot \cos^m x \, dx = \int \sin^{2k} x \cdot \cos^{2\ell} x \, dx = \int (\sin^2 x)^k \cdot (\cos^2 x)^\ell dx =$$

$$= \int \left(\frac{1 - \cos 2x}{2}\right)^k \cdot \left(\frac{1 + \cos 2x}{2}\right)^\ell dx = \dots$$

Megmutatható, hogy véges sok lépésben

$$\int \cos^m ax \ dx \quad (a \in \mathbb{Z}^+, m \in \mathbb{N} \text{ páratlan}) \text{ integrálására vezethető a probléma}.$$

Megjegyzés

Parciális integrálással rekurziós formula adható erre az esetre.

Trigonometrikus függvények racionális függvényeinek integrálása

Kalkulus II előadás

Király Baláz

Trigonometrikus függvények II.

Irracionális függvények

III.
$$\int \frac{1}{\sin^n x} dx \text{ \'es } \int \frac{1}{\cos^n x} dx \text{ alak\'u integr\'alok}$$
I) Ha $n = 2k$ $k \in \mathbb{N}^*$

$$\int \frac{1}{\sin^n x} dx = \int \frac{1}{\sin^{2k} x} dx = \int \frac{1}{\sin^{2k-2} x} \cdot \frac{1}{\sin^2 x} dx =$$

$$= \int \left(\frac{1}{\sin^2 x}\right)^{k-1} \cdot \frac{1}{\sin^2 x} dx = \int \left(\frac{\sin^2 x + \cos^2 x}{\sin^2 x}\right)^{k-1} \cdot \frac{1}{\sin^2 x} dx =$$

$$= \int \left(1 + \operatorname{ctg}^2 x\right)^{k-1} \cdot \frac{1}{\sin^2 x} dx = -\int (1 + t^2)^{k-1} dt.$$

$$t = \operatorname{ctgx}_{1 \to 2} x \in (0, \pi)$$

$$dt = \frac{-1}{\sin^2 x} dx$$

Ezzel a feladatot egy polinom integrálására vezettük vissza.

Trigonometrikus függvények racionális függvényeinek integrálása

előadás

Király Baláz

Trigonometrikus függvények II.

Irracionális függvények

Hasonlóan járhatunk el
$$\int \frac{1}{\cos^n x} dx = \operatorname{set\'{e}n} \operatorname{is}:$$

$$\int \frac{1}{\cos^n x} dx = \int \frac{1}{\cos^{2k} x} dx = \int \frac{1}{\cos^{2k-2} x} \cdot \frac{1}{\cos^2 x} dx =$$

$$= \int \left(\frac{1}{\cos^2 x}\right)^{k-1} \cdot \frac{1}{\cos^2 x} dx = \int \left(\frac{\cos^2 x + \sin^2 x}{\cos^2 x}\right)^{k-1} \cdot \frac{1}{\cos^2 x} dx =$$

$$= \int \left(1 + \operatorname{tg}^2 x\right)^{k-1} \cdot \frac{1}{\cos^2 x} dx = \int (1 + u^2)^{k-1} du.$$

$$u = \operatorname{tg} x \quad x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$du = \frac{1}{\cos^2 x} dx$$

Ezzel ezt a feladatot is egy polinom integrálására vezettük vissza.

Trigonometrifüggvények II.

Trigonometrikus függvények racionális függvényeinek integrálása

Kalkulus II előadás Király Balázs
$$\int \frac{1}{\sin^n x} dx = \int \frac{1}{\sin^{2k+1} x} dx = \int \frac{\sin x}{(\sin^2 x)^{k+1}} dx = \int \frac{\sin x}{(1-\cos^2 x)^{k+1}} dx = \int \frac{1}{(1-t^2)^{k+1}} dt$$

$$= -\int \frac{1}{(1-t^2)^{k+1}} dt$$

$$= -\sin x dx$$

A feladatot ezzel egy racionális tört integrálására vezettük.

Hasonlóan:

$$\int \frac{1}{\cos^{n} x} dx = \int \frac{1}{\cos^{2k+1} x} dx = \int \frac{\cos x}{(\cos^{2} x)^{k+1}} dx = \int \frac{1}{(1-\sin^{2} x)^{k+1}} dx = \int \frac{1}{(1-t^{2})^{k+1}} dt$$

$$= \int \frac{1}{(1-t^{2})^{k+1}} dt$$

$$= \int \frac{1}{(1-t^{2})^{k+1}} dt$$

$$= \int \frac{1}{(1-t^{2})^{k+1}} dt$$

Ezzel ezt a feladatot is egy racionális tört integrálására vezettük.

Megjegyzés

Parciális integrálással rekurziós formula adható.

Trigonometrikus függvények racionális függvényeinek integrálása

Kalkulus II előadás

Király Balázs

Trigonometrikus függvények II.

Irracionális függvényel

tgx, vagy ctgx racionális tört-függvényeinek integrálása
$$\int \mathcal{R}(\mathsf{tg}x) dx = \int \mathcal{R}(t) \cdot \frac{1}{1+t^2} dt$$

$$t = \mathsf{tg}x \quad x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$x = \mathsf{arct}gt$$

Így egy racionális tört-függvényt kell integrálnunk.

 $dx = \frac{1}{1+t^2}dt$

$$\int \mathcal{R}(\operatorname{ctg} x) dx = \int \mathcal{R}(y) \cdot \frac{-1}{1 + y^2} dy.$$

$$y = \operatorname{ctg} x \quad x \in (0, \pi)$$

$$x = \operatorname{arcctg} y$$

$$dx = \frac{-1}{1 + y^2} dy$$

Így egy racionális tört-függvényt kell integrálnunk.

Trigonometrikus függvények racionális függvényeinek integrálása

előadás

Király Balázs

Trigonometrikus függvények II.

Irracionális függvényel $\sin x$ és $\cos x$ racionális tört-függvényeinek integrálása

$$\mathcal{R}(\sin x, \cos x)dx = 0$$

$$t = \operatorname{tg}\frac{x}{2} \quad x \in (-\pi, \pi)$$

$$x = 2 \operatorname{arctg} t$$

$$dx = \frac{2}{1+t^2}dt$$

 $\sin x$ és $\cos x$ átírásához tekintsük a következő ábrát:

Trigonometrikus függvények racionális függvényeinek integrálása

Trigonometrifüggvények II.

 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \frac{1 - \log^2 \alpha}{1 + \log^2 \alpha}$.

Azaz újfent elég egy racionális tört-függvényt integrálni.

ĺgy

 $\alpha = \frac{x}{2}$ esetén

Az addíciós összefüggések alapján:

 $\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha = \frac{2 \cdot \lg \alpha}{1 + \lg^2 \alpha}$

 $\sin x = \frac{2 \cdot \lg \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{2t}{1 + t^2}$ $\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$

Trigonometrikus függvények racionális függvényeinek integrálása

előadás

Király Balázs

Trigonometrikus függvények II.

Irracionális függvényel Ezeket az összefüggéseket megkaphatjuk pusztán az addíciós képletek és a négyzetes összefüggés (trigonometrikus Pitagorasz-tétel) alkalmazásával:

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = 2\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}} \cdot \cos^{2}\frac{x}{2} = 2tg\frac{x}{2} \cdot \frac{1}{\frac{1}{\cos^{2}\frac{x}{2}}} =$$

$$= \frac{2tg\frac{x}{2}}{\frac{\sin^{2}x2 + \cos^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}}} = \frac{2tg\frac{x}{2}}{1 + tg^{2}\frac{x}{2}} = \frac{2t}{1 + t^{2}}$$

$$\cos x = \cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2} = \frac{\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2}}{\cos^{2}\frac{x}{2}} \cdot \cos^{2}\frac{x}{2} =$$

$$= \left(1 - tg^{2}\frac{x}{2}\right) \cdot \frac{1}{1 + tg^{2}\frac{x}{2}} = \frac{1 - t^{2}}{1 + t^{2}}$$

Trigonometrikus függvények racionális függvényeinek integrálása

előadás

Király Balázs

Trigonometrikus függvények II.

Irracionális függvényel

Megjegyzés

Ezzel a módszerrel minden ilyen típusú integrál megoldható (a korábban tárgyalt esetek is), de nem mindig ez a célszerű út.

Összefoglalva $t = tg\frac{x}{2}$ -es helyettesítés során az alábbiak igazak:

$$t = tg\frac{x}{2} \quad x \in (-\pi, \pi)$$

$$dx = \frac{2}{1+t^2}dt$$

$$\sin x = \frac{2t}{1+t^2}$$

$$\cos x = \frac{1-t^2}{1+t^2}$$

Trigonometrikus függvények racionális függvényeinek integrálása

előadás

Király Balázs

Trigonometrikus függvények II.

Irracionális függvények Az előző típusba tartozó integrálok esetén, ha $\mathcal{R}(\sin x, \cos x) = \mathcal{R}(-\sin x, -\cos x)$, akkor az $y = \operatorname{tg} x$ -es helyettesítés is célravezető és egyszerűbb eredményt ad. Ilvenkor

$$\cos^{2} x = \frac{1}{\frac{1}{\cos^{2} x}} = \frac{1}{\frac{1}{\sin^{2} x + \cos^{2} x}} = \frac{1}{1 + tg^{2} x} = \frac{1}{1 + y^{2}}$$

$$\sin^{2} x = \frac{\sin^{2} x}{\cos^{2} x} \cdot \cos^{2} x = tg^{2} x \frac{1}{\frac{1}{\cos^{2} x}} = \frac{tg^{2} x}{1 + tg^{2} x} = \frac{y^{2}}{1 + y^{2}}$$

$$\sin x \cdot \cos x = \frac{\sin x}{\cos x} \cdot \cos^{2} x = tgx \frac{1}{1 + tg^{2} x} = \frac{y}{1 + y^{2}}$$

Trigonometrikus függvények racionális függvényeinek integrálása

Kalkulus II előadás

Király Balázs

Trigonometrikus függvények II.

Irracionális függvények Összefoglalva, a helyettesítés során az alábbiak igazak:

Megjegyzés

A $\mathcal{R}(\sin x, \cos x) = \mathcal{R}(-\sin x, -\cos x)$ feltétel a gyakorlatban annyit jelent, hogy mind a $\sin x$, mind pedig a $\cos x$ hatványai az integrandusban páros kitevősek és a vegyes szorzatok esetén a kitevők összege páros.

Kalkulus II előadás

Király Balá:

Trigonometri kus függvények l

Irracionális függvények ... x és $\sqrt[n]{x}$ racionális tört-függvényeinek integrálása $\int \mathcal{R}(x, \sqrt[n]{x}) dx = \int \mathcal{R}(t^n, t) n \cdot t^{n-1} dt,$ $t = \sqrt[n]{x}$ $x = t^n$ $dx = n \cdot t^{n-1} dt$

Ezzel racionális tört integrálására vezettük vissza a problémát.

II) Az $\int \mathcal{R}(x, \sqrt[n]{\sqrt{x}}, \sqrt[n]{\sqrt{x}}, \dots, \sqrt[n]{\sqrt{x}}) dx$ alakú integrálok esetén legyen $n := [n_1; n_2; \dots; n_k]$, ahol [a; b] az a és b számok legkisebb közös többszöröse, ekkor a $t = \sqrt[n]{x}$ helyettesítés célravezető.

előadás

Király Balá

Trigonometri kus függvények

Irracionális függvények

III.
$$x$$
 és $\sqrt[n]{ax+b}$ racionális tört-függvényeinek integrálása
$$\int \mathcal{R}(x, \sqrt[n]{ax+b}) dx = \int \mathcal{R}\left(\frac{t^n-b}{a}, t\right) \cdot \frac{n}{a} \cdot t^{n-1} dt,$$

$$t = \sqrt[n]{ax+b}$$

$$t^n = ax+b$$

$$\frac{t^n-b}{a} = x$$

$$\frac{n}{a} \cdot t^{n-1} dt = dx$$
 így most is egy racionális törtet kell integrálni.

M Az $\int \mathcal{R}(x, \sqrt[n_k]{ax+b}, \sqrt[n_k]{ax+b}, \dots, \sqrt[n_k]{ax+b}) dx$ alakú integrálok esetén legyen $n := [n_1; n_2; \dots; n_k]$, ahol [a; b] az a és b számok legkisebb közös többszöröse, ekkor a $t = \sqrt[n]{ax+b}$ helyettesítés célravezető.

Kalkulus II előadás

Király Balázs

Trigonometr kus függvények

Irracionális függvények

$$x ext{ is } \sqrt[n]{\frac{ax+b}{cx+d}}$$
 racionális tört-függvényeinek integrálása
$$\int \mathcal{R}\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx = ,$$

$$t = \sqrt[n]{\frac{ax+b}{cx+d}}$$

$$t^n \cdot (cx+d) = ax+b$$

$$x \cdot (t^n c-a) = b-dt^n$$

$$x = \frac{b-dt^n}{t^n c-a}$$

$$dx = \frac{-ndt^{n-1} \cdot (t^n c-a) - cnt^{n-1} \cdot (b-dt^n)}{(ct^n - a)^2} dt$$

$$= \int \mathcal{R}\left(\frac{b-dt^n}{t^n c-a}, t\right) \cdot \frac{-ndt^{n-1} \cdot (t^n c-a) - cnt^{n-1} \cdot (b-dt^n)}{(ct^n - a)^2} dt$$

Azaz most is egy racionális törtfüggvényt kell integrálni.

előadás

Trigonometri

kus függvények l

Irracionális függvények Az $\int \mathcal{R}\left(x, \sqrt[n_1]{\frac{ax+b}{cx+d}}, \sqrt[n_2]{\frac{ax+b}{cx+d}}, \ldots, \sqrt[n_k]{\frac{ax+b}{cx+d}}\right) dx$ alakú integrálok esetén legyen legyen $n:=[n_1;n_2;\ldots;n_k]$, ahol [a;b] az a és b számok legkisebb közös többszöröse, ekkor a $t=\sqrt[n]{\frac{ax+b}{cx+d}}$ helyettesítés célravezető.

VII Az $\int \mathcal{R}\left(x, \sqrt{ax^2 + bx + c}\right) dx$ alakú integrálok esetén a másodfokú kifejezés főegyűtthatójától és diszkriminánsától függően a teljes-négyzetté alakítás és helyettesítés után a következő három integrál valamelyikéhez jutunk.

Kalkulus II előadás

Király Balázs

Irracionális

a)
$$a < 0, D > 0$$

$$\int \sqrt{1 - t^2} dt = \int \sqrt{1 - \sin^2 u} \cdot \cos u \, du =$$

$$t = \sin u - \frac{\pi}{2} \le u \le \frac{\pi}{2}$$

$$dt = \cos u \, du$$

$$= \int \sqrt{\cos^2 u} \cdot \cos u \, du = \int |\cos u| \cdot \cos u \, du =$$

$$-\frac{\pi}{2} \le u \le \frac{\pi}{2} \Rightarrow \cos u \ge 0$$

$$= \int \cos^2 u \, du = \dots$$

Ezzel a feladatot egy korábban tárgyalt problémára vezettük vissza.

Kalkulus II előadás

Király Balázs

Irracionális

$$\int \sqrt{1+t^2} dt = \int \sqrt{1+tg^2 u} \cdot \frac{1}{\cos^2 u} du = \int \sqrt{1+tg^2 u} \cdot \frac{1}{\cos^2 u} du = \int \sqrt{\frac{1}{\cos^2 u}} du = \int \sqrt{\frac{1}{\cos^2 u}} \cdot \frac{1}{\cos^2 u} du = \int \frac{1}{|\cos u|} \cdot \frac{1}{\cos^2 u} du = \int \frac{1}{|\cos u|} \cdot \frac{1}{\cos^2 u} du = \int \frac{1}{\cos^2 u} du = \int \frac{1}{\cos^3 u} du = \dots$$

Ezzel a feladatot egy korábban tárgyalt problémára vezettük vissza.

előadás

Király Balá:

Trigonometri-

függvények II

Irracionális függvények c) Az a > 0, D > 0 esetben úgynevezett *Euler-helyettesítés*t használunk.

$$\sqrt{ax^{2} + bx + c} = \sqrt{ax + t}
ax^{2} + bx + c = ax^{2} + 2\sqrt{axt} + t^{2}
x(b - 2\sqrt{at}) = t^{2} - c
x = \frac{t^{2} - c}{b - 2\sqrt{at}}
dx = \frac{2t(b - 2\sqrt{at}) + (t^{2} - c)2\sqrt{a}}{(b - 2\sqrt{at})^{2}} dt$$

ĺgy

$$\sqrt{ax^{2} + bx + c} = \sqrt{a} \frac{t^{2} - c}{b - 2\sqrt{at}} + t$$

$$x = \frac{t^{2} - c}{b - 2\sqrt{at}}$$

$$dx = \frac{2t(b - 2\sqrt{at}) + (t^{2} - c)2\sqrt{a}}{(b - 2\sqrt{at})^{2}} dt$$

Ezzel a feladatot racionális tört integrálására vezettük.

Intervallum felosztása

előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Impropri integrál

Határozott integrál alkalmazásai Legyen $\mathcal{I} := [a, b]$ véges, zárt intervallum.

Definíció

A au halmazt az $\mathcal{I}:=[a,b]$ intervallum egy **felosztás**ának nevezzük, ha

i)
$$\tau \subseteq \mathcal{I}$$
,

ii) τ véges halmaz,

iii)
$$a, b \in \tau$$
.

Jelölés: $\tau = \{a = x_0 < x_1 < \dots < x_k < \dots < x_{n-1} < x_n = b\}.$

Az $\mathcal I$ intervallum felosztásainak halmazát $\mathcal F(\mathcal I)$ -vel jelöljük.

Felosztás finomsága

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatóság

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Határozott integrál

Definíció

Legyen $au \in \mathcal{F}(\mathcal{I})$ az \mathcal{I} intervallum egy felosztása. A au felosztás **finomság**án a

$$\|\tau\| := \max_{i=1}^{n} \{x_i - x_{i-1}\}$$

számot értjük.

Megjegyzés

A felosztás finomsága tehát a felosztással létrehozott $[x_{i-1}, x_i]$ részintervallumok hosszainak maximuma

Alsó- és felső- közelítő összeg

előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonságai

A határozott ntegrál kiszámítása

Határozott integrál alkalmazásai

Definíció

Ekkor a

Legyen $f: \mathcal{I} \to \mathbb{R}$ egy korlátos függvény és

$$au = \{a = x_0 < x_1 < \cdots < x_k < \cdots < x_{n-1} < x_n = b\} \in \mathcal{F}(\mathcal{I}) \text{ az } \mathcal{I} \text{ intervallum egy felosztása. Jelölje}$$

$$m_i := \inf\{f(x) | x_{i-1} \le x \le x_i\}, \quad i = 1, \dots, n$$

$$M_i := \sup\{f(x) | x_{i-1} \le x \le x_i\}, \quad i = 1, \dots, n$$

$$S(f,\tau) := \sum_{i=1} M_i \cdot (x_i - x_{i-1})$$

összeget a függvény, au felosztáshoz tartozó **felső közelítő összegének**, a $s(f, au):=\sum_{i=1}^n m_i\cdot(x_i-x_{i-1})$

i=1 i=1

Alsó- és felső- közelítő összeg

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatóság feltételei

A hatarozott integrál tulajdonsága

A határozott integrál kiszámítása

Határozott integrál alkalmazásai

Megjegyzés

Mivel $m_i \leq M_i$ minden i index esetén, ezért bármely τ felosztás mellett $s(f,\tau) \leq S(f,\tau)$.

Felosztás finomítása és a közelítő összegek

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatósá feltételei

A határozot integrál tulajdonság

A határozot integrál kiszámítása

Impropr integrál

Határozott integrál alkalmazásai

Definíció

Legyen $\tau_1, \tau_2 \in \mathcal{F}(\mathcal{I})$ ugyanazon intervallum két felosztása. Akkor mondjuk, hogy a τ_2 felosztás a τ_1 felosztás **finomítása**, ha annak minden osztópontját tartalmazza, azaz ha $\tau_1 \subset \tau_2$.

Tétel

a) Ha $au_1, au_2\in\mathcal{F}(\mathcal{I})$ és $au_1\subset au_2$, akkor

$$s(f, \tau_1) \le s(f, \tau_2)$$
 és $S(f, \tau_1) \ge S(f, \tau_2)$,

azaz a felosztás finomításával az alsó közelítő összeg nem csökken, a felső közelítő összeg pedig nem növekszik.

b) Bármely két $\tau_1, \tau_2 \in \mathcal{F}(\mathcal{I})$ felosztás esetén

$$s(f, \tau_1) \leq S(f, \tau_2).$$

Darboux-féle alsó- és felső integrál

előadás

Király Balázs

Határozott integrál

Következmény

A $\{s(f,\tau), \tau \in \mathcal{F}(\mathcal{I})\}\$ számhalmaz felülről korlátos, míg a $\{S(f,\tau), \tau \in \mathcal{F}(\mathcal{I})\}\$

számhalmaz alulról korlátos.

Definíció

Legyen f az $\mathcal{I} = [a, b]$ zárt intervallumon korlátos függvény. Az

 $I_*(f) := \sup\{s(f,\tau): \tau \in \mathcal{F}(\mathcal{I})\}$

értéket az f Darboux-féle alsó integráljának, az

 $I^*(f) := \inf\{S(f,\tau) : \tau \in \mathcal{F}(\mathcal{I})\}$

értéket az f **Darboux-féle felső integráljának** nevezzük.

Riemann-integrálhatóság, A Riemann integrál geometriai jelentése

előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonsága

A határozot integrál kiszámítása

Határozott integrál alkalmazásai

Definíció

Akkor mondjuk, hogy az f függvény az $\mathcal{I}=[a,b]$ intervallumon **Riemann-integrálható**, ha $I_*(f)=I^*(f)=:I$. Ekkor az I számot az f függvény **Riemann-integrál**jának nevezzük és $\int f(x)dx:=I$ jelölést használjuk.

Definíció

 $\mathsf{Ha} f: [a,b] o \mathbb{R}_0^+$ és f Riemann integrálható az [a,b] intervallumon, akkor a

$$H := \{(x, y) \in \mathbb{R}^2 : a \le x \le b, \ 0 \le y \le f(x)\}$$

halmaznak létezik területe és $T(H) = \int f(x)dx$.

A Riemann integrál geometriai jelentése

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatósá feltételei

integrál tulajdonság

A határozo integrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai

A Riemann integrál geometriai jelentése

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Határozott integrál

Definíció

 $\mathsf{Ha} f: [a,b] o \mathbb{R}_0^-$ és f Riemann integrálható az [a,b] intervallumon, akkor a

$$K := \{(x, y) \in \mathbb{R}^2 : a \le x \le b, f(x) \le y \le 0\}$$

halmaznak létezik területe és $T(K) = -\int_{-\infty}^{b} f(x)dx$.

Riemann-közelítőösszeg

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Határozott integrál

Definíció

Legyen $f:[a,b] \to \mathbb{R}$ függvény és $\tau \in \mathcal{F}(\mathcal{I})$ az [a,b] intervallum egy felosztása, amelyre $\tau = \{a = x_0 < x_1 < \dots < x_k < \dots < x_{n-1} < x_n = b\}$. Legyen továbbá

$$A_{\tau} := \{ \xi = (\xi_1, \xi_2, \dots, \xi_n) | x_{i-1} \le \xi_i \le x_i, i = 1, 2, \dots, n \}$$

úgynevezett közbeeső pontok rendszere. Ekkor a

$$\sigma(f,\tau,\xi) := \sum_{i=1}^{n} f(\xi_i) \cdot (x_i - x_{i-1}), \quad \tau \in \mathcal{F}(\mathcal{I}), \xi \in A_{\tau}$$

számot az f függvény τ , ξ paraméterpárhoz tartozó **Riemann-közelítőösszegének** nevezzük.

Riemann-közelítőösszeg

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozot integrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai

$$\sigma(f,\tau,\xi)$$

Riemann-közelítőösszeg

Kalkulus II előadás

Király Balázs

Határozott integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Impropi integrál

Határozott integrál alkalmazásai

Definíció

Akkor mondjuk, hogy a $\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_k \subseteq \ldots$ felosztás-sorozat minden határon túl finomodó, ha bármely $\varepsilon > 0$ esetén létezik k_0 index, hogy $\|\tau_{k_0}\| < \varepsilon$.

Tétel

 $Azf:[a,b] \to \mathbb{R}$ függvény akkor és csak akkor Riemann-integrálható, ha $\sigma(f,\tau,\xi)$ közelítő összegek sorozata a felosztás minden határon túl való finomítása mellett a ξ közbeeső pontok rendszer választásától függetlenül ugyanahhoz a I számhoz tart.

A Riemann-integrálhatóság feltételei

előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Határozott integrál

Tétel (szükséges feltétel)

Haf Riemann-integrálható, akkor korlátos.

Tétel (elégséges feltételek)

- A véges zárt intervallumon értelmezett folytonos függvény Riemann-integrálható.
- ii) A véges zárt intervallumon értelmezett korlátos függvény Riemann-integrálható, ha legfeljebb véges sok szakadása van.
- A véges zárt intervallumon értelmezett korlátos és monoton függvény Riemann-integrálható.

A Riemann-integrálhatóság feltételei

előadás

Király Balázs

łatározo ntegrál

A Riemannintegrálhatóság feltételei

A határozot integrál tulajdonság

A határozott integrál kiszámítása

Improp integrá

Határozott integrál alkalmazásai

Következmény

Ha az f függvény értékét az intervallumban véges sok helyen megváltoztatjuk, akkor az sem az integrálhatóságot, sem pedig az integrál értékét nem változtatja meg.

Megjegyzés

Például a Dirichlet-függvény nem integrálható a [0, 1] intervallumon.

$$D(x) := \left\{ \begin{array}{ll} 1, & x \in \mathbb{Q} \cap [0, 1], \\ 0, & x \in [0, 1] \backslash \mathbb{Q}. \end{array} \right.$$

Mivel bármely részintervallumban van racionális szám, ezért minden $M_i = 1$ és mivel minden részintervallumban van irracionális szám, ezért minden $m_i = 0$. Így a felső Darboux-integrál 1, az alsó Darboux-integrál pedig 0. A függvény korlátos, de végtelen sok szakadási helye van.

Kalkulus II előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonságai

A határozott integrál kiszámítása

Határozott integrál alkalmazásai

Tétel

Legyen az f függvény az [a,b] intervallumon integrálható és c tetszőleges valós szám, ekkor a $c \cdot f$ függvény is integrálható az [a,b] intervallumon és

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

Tétel

Ha az f és a g függvények az [a,b] intervallumon integrálhatók, akkor az f+g függvény is integrálható az [a,b] intervallumon és

$$\int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

előadás

Király Balázs

atározo

A Riemannintegrálhatósá feltételei

A határozott integrál tulaidonságai

A határozo integrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai

Tétel

Ha az f függvény az [a,b] intervallumon integrálható, akkor annak bármely részintervallumán is integrálható.

Tétel (intervallum szerinti additivitás 1.)

Ha az f függvény az [a,b] intervallumon integrálható és a < c < b, akkor

$$\int_{-b}^{b} f(x)dx = \int_{-c}^{c} f(x)dx + \int_{-c}^{b} f(x)dx.$$

Tétel (intervallum szerinti additivitás 2.)

Ha az f függvény az [a, c] és [c, b] intervallumokon integrálható, akkor integrálható az [a, b] intervallumon és

$$\int_{-\infty}^{b} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{-\infty}^{b} f(x)dx.$$

előadás

Király Balázs

Határozot integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonságai A határozott

ntegrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai

Tétel

Ha az f függvény az [a,b] intervallumon integrálható és $f(x) \ge 0$ minden $x \in [a,b]$ esetén, akkor

$$\int_{-\infty}^{b} f(x)dx \ge 0.$$

Tétel

Ha az f és a g függvények az [a,b] intervallumon integrálhatók és $f(x) \le g(x)$ minden $x \in [a,b]$ esetén, akkor

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

előadás

Király Balázs

Határozo

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonságai

A határozott integrál kiszámítása

Határozott integrál alkalmazásai

Tétel

Legyen f függvény az [a,b] intervallumon integrálható, ekkor

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

Tétel

Legyen f függvény az [a,b] intervallumon integrálható, továbbá $m := \inf\{f(x) | a \le x \le b\}$ és $M := \sup\{f(x) | a \le x \le b\}$, ekkor

$$m \cdot (b-a) \le \int_{-\infty}^{\infty} f(x) dx \le M \cdot (b-a).$$

Az integrálszámítás középérték-tétele

előadás Király Balázs

integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonságai

A határozott integrál kiszámítása

Határozott integrál

Tétel (Az integrálszámítás középérték-tétele)

Ha az f függvény folytonos az [a,b] intervallumon, akkor létezik olyan $\xi \in [a,b]$ hely, hogy

$$\int_{-\infty}^{b} f(x)dx = f(\xi) \cdot (b-a).$$

Integrálfüggvény

Kalkulus II előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonság:

A határozott integrál kiszámítása

Határozott integrál

Definíció

Legyen f függvény az [a,b] intervallumon integrálható. Értelmezzük a F függvényt a következőképpen:

$$\mathcal{D}_F = [a, b], \quad F(x) := \int_{-\infty}^{x} f(t) dt.$$

Ekkor a $F:[a,b] \to \mathbb{R}$ függvényt a f függvény **integrálfüggvényének** nevezzük.

Tétel

Ha a f függvény folytonos az [a,b] intervallumon, akkor a $F(x) := \int_a^x f(t)dt$ integrálfüggvény az [a,b] intervallumon differenciálható és F' = f.

Newton-Leibniz formula

Kalkulus II előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonság:

A határozott integrál kiszámítása

Határozott integrál

Megjegyzés

Az előző tétel alapján nyilvánvaló, hogy az integrálfüggvény egy primitív függvény.

Tétel (Newton-Leibniz formula)

Legyen az f függvény integrálható az [a,b] intervallumon. Ha az f függvénynek létezik az [a,b] intervallumon F primitív függvénye, akkor

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Integrálási szabályok határozott integrálra

előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Határozott integrál

Tétel (Helyettesítéses integrálás szabálya határozott integrálra)

Legyen a $\varphi:[a,b]\to\mathbb{R}$ függvény folytonos [a,b]-n, differenciálható (a,b)-n és a φ' deriváltfüggvény legyen integrálható az [a,b]-n, továbbá f legyen folytonos a $\varphi([a,b])$ intervallumon. Ekkor

$$\int_{\varphi(a)}^{\varphi(b)} f(u)du = \int_{a}^{b} f(\varphi(x)) \cdot \varphi'(x)dx.$$

Integrálási szabályok határozott integrálra

előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

integrál Határozott

Határozott integrál alkalmazásai

Tétel (Parciális integrálás szabálya határozott integrálra)

Legyen f és g függvény az [a,b] intervallumon differenciálható és f',g' függvények legyenek Riemann-integrálhatók az [a,b]-n. Ekkor

$$\int_a^b f(x)g'(x)dx = \left[f(x) \cdot g(x)\right]_a^b - \int_a^b f'(x) \cdot g(x)dx.$$

Improprius integrál

előadás

Király Balázs

Határozot integrál

A Riemannintegrálhatósáç feltételei

A hatarozott integrál tulajdonsága

A határozott integrál kiszámítása Improprius

Határozott integrál

integrál

A Riemann-integrálhatóság szükséges feltételein (véges intervallumon értelmezett, korlátos függvény) próbálunk lazítani. Így a következő esetekhez jutunk:

- Végtelen intervallumon értelmezett függvények integrálása
 - - $\int_{0}^{b} f(x) dx$
 - $\int_{-\infty}^{-\infty} f(x) \ dx$
- Nem korlátos függvény integrálása
 - A függvény nem korlátos a bal végpont közelében
 - A függvény nem korlátos a jobb végpont közelében
 - Az intervallum belsejében található egy pont, melynek környezetében a függvény nem korlátos

Improprius integrál

Kalkulus II előadás

Király Balázs

Határozot integrál

A Riemannintegrálhatóság feltételei

A natarozott integrál tulajdonsága

A határozott integrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai

Definíció

Legyen $f:[a,\infty)\to\mathbb{R}$ olyan függvény, amely integrálható minden [a,x] intervallumon, ahol x>a. Azt mondjuk, hogy az

$$\int_{-\infty}^{\infty} f(x)dx$$

improprius integrál konvergens, ha létezik a

$$\lim_{\beta \to \infty} \int_{a}^{\beta} f(x) dx$$

véges határérték. Ekkor definíció szerint

$$\int_{-\beta}^{\infty} f(x)dx := \lim_{\beta \to \infty} \int_{-\beta}^{\beta} f(x)dx.$$

Improprius integrál

Kalkulus II előadás

Király Balázs

Határozot integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozott ntegrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai

Definíció

Legyen $f:(-\infty,b]\to\mathbb{R}$ olyan függvény, amely integrálható minden [x,b] intervallumon, ahol x< b. Azt mondjuk, hogy az

$$\int_{0}^{b} f(x)dx$$

improprius integrál konvergens, ha létezik a

$$\lim_{\alpha \to -\infty} \int_{\alpha}^{b} f(x) dx$$

véges határérték. Ekkor definíció szerint

$$\int_{a}^{b} f(x)dx := \lim_{\alpha \to -\infty} \int_{a}^{b} f(x)dx.$$

Kalkulus II előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatósá feltételei

A hatarozott integrál tulajdonsága

A határozott integrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai

Definíció

Ha az f függvény integrálható minden véges [x,y] intervallumon és létezik a véges

$$\lim_{\alpha \to -\infty} \lim_{\beta \to \infty} \int_{\alpha}^{\beta} f(x) dx$$

határérték, akkor

$$\int_{-\infty}^{\infty} f(x)dx := \lim_{\alpha \to -\infty} \lim_{\beta \to \infty} \int_{\alpha}^{\beta} f(x)dx.$$

Kalkulus II előadás

Király Balázs

Határozot integrál

A Riemannintegrálhatósáç feltételei

A határozott integrál tulaidonságai

A határozott ntegrál kiszámítása

Improprius

integrál Határozott integrál

Definíció

Legyen $f:(a,b]\to\mathbb{R}$ nem korlátos függvény az a pont környezetében. Tegyük fel, hogy bármely $x\in(a,b]$ esetén f integrálható az [x,b] intervallumon. Akkor mondjuk, hogy az

$$\int_{a}^{b} f(x)dx$$

improprius integrál konvergens, ha létezik a

$$\lim_{\varepsilon \to 0^+} \int_{a+\varepsilon}^{\varepsilon} f(x) dx$$

véges határérték. Ekkor definíció szerint

$$\int_{a}^{b} f(x)dx := \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x)dx.$$

Kalkulus II előadás

Király Balázs

Improprius integrál

Definíció

Legyen $f:[a,b)\to\mathbb{R}$ nem korlátos függvény a b pont környezetében. Tegyük fel, hogy bármely $x \in [a,b]$ esetén f integrálható az [a,x] intervallumon. Akkor mondjuk, hogy az

$$\int_{-\infty}^{0} f(x)dx$$

improprius integrál konvergens, ha létezik a

$$\lim_{\varepsilon \to 0^+} \int_{a}^{b-\varepsilon} f(x) dx$$

véges határérték. Ekkor definíció szerint

$$\int_{-\varepsilon}^{b} f(x)dx := \lim_{\varepsilon \to 0^+} \int_{-\varepsilon}^{b-\varepsilon} f(x)dx.$$

Kalkulus II előadás

Király Balázs

integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Improprius integrál

Határozott integrál

Megjegyzés

Ha az $f:[a,b]\to\mathbb{R}$ függvény valamely $c\in(a,b)$ belső pont környezetében nem korlátos, akkor az integrál intervallum szerinti additivitását kihasználva két, az előző definíciók alapján számolható improprius integrál összegére bontható az

$$\int_{a}^{b} f(x)dx$$

improprius integrál:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Területszámítás

Kalkulus II előadás

Király Balázs

Határozot integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Improprius integrál

Határozott ntegrál alkalmazásai Területszámítás Görbe ívhossza Forgástest térfogat $\operatorname{Ha} f:[a,b] o \mathbb{R}^+_0$ és f Riemann integrálható az [a,b] intervallumon, akkor az f függvény [a,b] intervallum fölé eső darabja, az x -tengely és az x=a illetve az x=b egyenesek által határolt síkidom területe, a korábbi definíció alapján:

$$T = \int_{-\infty}^{b} f(x) \ dx.$$

Ha $f:[a,b]\to\mathbb{R}^-_0$ és f Riemann integrálható az [a,b] intervallumon, akkor az f függvény [a,b] intervallum fölé eső darabja, az x -tengely és az x=a illetve az x=b egyenesek által határolt síkidom területe, a korábbi definíció alapján:

$$T = -\int f(x) \ dx.$$

Területszámítás

előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonsága

A határozot integrál kiszámítása

Impropi integrál

Határozott integrál alkalmazása Területszámítás ^{Görbe ívhossza} $\operatorname{Ha} f:[a,b] o \mathbb{R}$ függvény az [a,b] intervallumban előjelet vált és f Riemann integrálható az [a,b] intervallumon, akkor az f függvény [a,b] intervallum fölé eső darabja, az x -tengely és az x=a illetve x=b egyenesek által határolt síkidom területe, az integrál intervallum szerinti additivitása alapján, kiszámítható az előző két típusba eső területek összegeként.

 $\operatorname{Ha} f,g:[a,b] o \mathbb{R}$ függvények az [a,b] intervallumon Riemann integrálhatók és $f(x) \leq g(x), \ (x \in [a,b])$, akkor a két függvény [a,b] intervallum fölé eső darabja, az x=a és az x=b egyenesek által határolt síkidom területe:

$$T = \int g(x) - f(x) dx.$$

Görbe ívhossza

Kalkulus II előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatósá feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Határozott integrál alkalmazása

Területszámítás Gőrbe ívhossza

Definíció

Folytonos görbe **ívhosszán** értjük a görbéhez írt törött vonalak hosszának szuprémumát, feltéve, hogy ez létezik. Legyen adott a görbe az [a,b] intervallumon az y=f(x) egyenlettel, ahol f(x) folytonosan differenciálható [a,b]-n. Ekkor a görbe ívhossza:

$$s = \int_{0}^{b} \sqrt{1 + (f'(x))^2} dx.$$

Ha a görbének létezik ívhossza, akkor **rektifikálható**nak nevezzük.

Forgástest térfogata

előadás

Király Balázs

Forgástest térfogata

Tétel

 $Az f : [a, b] \to \mathbb{R}_0^+$ folytonos függvény grafikonjának x-tengely körüli megforgatásával nyert forgástest térfogata:

$$V_x = \pi \cdot \int_a^b f^2(x) dx.$$

Tétel

 $Az f: [a,b] \to \mathbb{R}, (a,b>0)$ kölcsönösen egyértelmű, folytonos függvény grafikonjának u-tengely körüli megforgatásával nyert forgástest térfogata:

$$V_y = \pi \cdot \int_{f(g)}^{f(b)} \overline{f}^2(y) dy.$$

Forgástest térfogata

Kalkulus II előadás

Király Balázs

Határozo integrál

A Riemannintegrálhatóság feltételei

A hatarozott integrál tulajdonsága

A határozott integrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai Területszámítás Görbe ívhossza Forgástest térfogata

x-tengely körüli megforgatással nyert forgástest

Forgástest térfogata

Kalkulus II előadás

Király Balázs

Határozo

A Riemannintegrálhatóság feltételei

A határozott integrál tulajdonsága

A határozott integrál kiszámítása

Improprius integrál

Határozott integrál alkalmazásai Területszámítás Görbe ívhossza Forgástest térfogata

y-tengely körüli megforgatással nyert forgástest

Forgásfelület felszíne

Kalkulus II előadás Király Balázs

Határozot integrál

A Riemannintegrálhatóság feltételei

A határozott integrál tulaidonságai

A határozot integrál kiszámítása

integrál

Határozott
integrál

Tétel

 $Azf:[a,b]\to\mathbb{R}^+_0$ folytonosan differenciálható függvény grafikonjának x-tengely körüli megforgatásával nyert forgásfelület felszíne:

$$A = 2\pi \cdot \int_{a}^{b} f(x) \cdot \sqrt{1 + (f'(x))^2} dx.$$

alkalmazása Területszámítás Gőrbe ívhossza Forgástest térfog

Differenciálegyenletek

előadás

Király Balázs

Differenciálegyenletek

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérté probléma

Differenciál egyenletek megoldási módszerei

Definíció

Az olyan egyenletet, melyben az ismeretlen egy függvény **függvényegyenlet**nek nevezzük.

Definíció

Az függvényegyenletet, melyben az ismeretlen függvény deriváltja, vagy deriváltjai szerepelnek **differenciálegyenlet**nek nevezzük.

Differenciálegyenletek osztályozása

Kalkulus II előadás

Király Balázs

Differenc egyenlete

Differenciálegyenletek osztályozása

Megoldásoł osztályozás

A kezdetiértél probléma

Differenciál egyenletek megoldási módszerei

Definíció

Ha az ismeretlen függvény egyváltozós valós függvény, akkor a differenciálegyenletet közönséges differenciálegyenletnek nevezzük.

Definíció

Ha az ismeretlen függvény többváltozós valós függvény, akkor a differenciálegyenletet **parciális differenciálegyenlet**nek nevezzük.

Megjegyzés

A félév során csak közönséges differenciálegyenletekkel foglalkozunk.

Differenciálegyenletek osztályozása

Kalkulus II előadás

Király Balázs

Difference egyenlete

Differenciálegyenletek osztályozása

Megoldásol osztályozás

A kezdetiérté probléma

Differenciálegyenletek megoldási módszerei

Definíció

A differenciálegyenletet **lineáris**nak nevezzük, ha az egyenletben mind az ismeretlen függvény, mind annak deriváltjai csak az első hatványon szerepelnek és sem ezek szorzatai sem pedig irracionális vagy transzcendens függvényei nem fordulnak elő.

Megjegyzés

Azaz a DE nem-lineáris, ha következők közül bármelyik szerepel:

- Az ismeretlen függvény, vagy bármely deriváltjának magasabb hatványa (például y²)
- Az ismeretlen függvény és valamelyik deriváltjának szorzata (például y · y')
- Az ismeretlen függvény, vagy bármely deriváltjának irracionális vagy transzcendens függvénye (például \sqrt{y} vagy $\sin y'$)

Differenciálegyenletek osztályozása

Kalkulus II előadás

Király Balázs

Differenci egyenlete

Differenciálegyenletek osztályozása

Megoldásol osztályozás

A kezdetiértél probléma

Differenciálegyenletek megoldási módszerei

Definíció

A differenciálegyenletet n**-edrendű**nek nevezzük, ha az ismeretlen függvény deriváltjai közül az egyenletben az n-edik derivált a legmagasabbrendű.

Definíció

A differenciálegyenletet **homogén**nak nevezzük, ha nincs benne konstans illetve olyan tag, amely csak a független változótól függ. (Azaz a differenciál egyenlet minden tagja tartalmazza az ismeretlen függvényt, vagy annak valamelyik deriváltját.) Ha a differenciálegyenlet nem homogén, akkor **inhomogénnak** nevezzük.

Differenciálegyenletek megoldásai

Kalkulus II előadás

Király Balázs

Differencia egyenlete

Differenciál egyenletek osztályozás

Megoldások osztályozása A kezdetiérté

Differenciálegyenletek megoldási

Definíció

A differenciálegyenlet **megoldása** olyan függvény, amely a deriváltjaival együtt kielégíti a differenciálegyenletet.

Definíció

Az n-edrendű differenciálegyenlet általános megoldása olyan függvény, amely a deriváltjaival együtt kielégíti a differenciálegyenletet és pontosan n darab, egymástól független szabad paramétert tartalmaz.

Definíció

Az n-edrendű differenciálegyenlet **partikuláris megoldása** egy olyan függvény, amely a deriváltjaival együtt kielégíti a differenciálegyenletet és **legfeljebb** n-1 darab, egymástól független szabad paramétert tartalmaz.

Differenciálegyenletek megoldásai

előadás

Király Balázs

Differenci egyenlete

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérték probléma

Differenciálegyenletek megoldási módszerei

Definíció

A differenciálegyenlet **szinguláris megoldása** olyan függvény, amely a deriváltjaival együtt kielégíti a differenciálegyenletet, de nem része az általános megoldásnak.

A kezdetiérték probléma

előadás

Király Balázs

Differenc egyenlete

Differenciál egyenletek osztályozás

Megoldások osztályozása

A kezdetiérték probléma

Differenciá egyenletek megoldási módszerei

Definíció

A **kezdetiérték probléma** (KÉP) egy differenciálegyenletből és egy vagy több **kezdeti feltételből** álló rendszer, melynek megoldása során a differenciálegyenlet azon partikuláris megoldásait keressük, melyek kielégítik a kezdeti feltételeket.

Megjegyzés

A kezdeti feltételek általában megadják a keresett függvény illetve deriváltjainak értékét egy rögzített pontban. (Azaz olyan partikuláris megoldást keresünk, amely átmegy egy adott ponton. Esetleg olyat, amely a megadott pontban megadott meredekségű érintővel rendelkezik, stb.)

Kalkulus II előadás

Király Balázs

Difforoncid

Differenciálegyenletek

Megoldások osztályozása

A kezdetiérték probléma

Differenciálegyenletek megoldási módszerei

1. Feladat

Osztályozzuk a korábban megismert szempontok alapján az alábbi differenciálegyenletet:

$$9y''' - 3y'' + 6y' + y = \frac{10}{3}\cos\frac{x}{3} + \frac{8}{3}\sin\frac{x}{3}$$

Igazoljuk, hogy az

$$y(x) = 2\sin\frac{x}{3}$$

függvény a differenciálegyenlet egyik megoldása.

Kalkulus II előadás

Király Balázs

Differenci egyenlete

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérték probléma

Differenciál egyenletek megoldási módszerei

1. Feladat

A $9y''' - 3y'' + 6y' + y = \frac{10}{3}\cos\frac{x}{3} + \frac{8}{3}\sin\frac{x}{3}$ diff.egy.:

- Közönséges de., mert megoldásként az y=y(x) egyváltozós valós függvényt keressük.
- harmadrendű, mert az y''' a szereplő legmagasabb rendű derivált.
- lineáris, mert az y ismeretlen függvénynek sem egynél magasabb kitevős hatványai, sem irracionális, vagy transzcendens függvényei nem szerepelnek, továbbá nem található az egyenletben az ismeretlen függvénynek és deriváltjainak egymással vett szorzatai.
- inhomogén, a $\frac{10}{3}\cos\frac{x}{3} + \frac{8}{3}\sin\frac{x}{3}$ tag miatt

Kalkulus II előadás

Királv Balázs

Differenciá egyenletek

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérték probléma

Differenciálegyenletek megoldási módszerei

1. Feladat

Az $y(x) = 2\sin\frac{x}{3}$ függvény akkor megoldása a differenciálegyenletnek, ha deriváltjaival kielégíti azt.

Az egyenletben a függvény első, másod és harmadrendű deriváltja szerepel, így ezeket felírjuk:

$$y'(x) = \frac{2}{3} \cos \frac{x}{3}$$

$$y''(x) = -\frac{2}{9} \sin \frac{x}{3}$$

$$y'''(x) = -\frac{2}{27} \cos \frac{x}{3},$$

így valóban

$$9y''' - 3y'' + 6y' + y = -\frac{2}{3}\cos\frac{x}{3} + \frac{2}{3}\sin\frac{x}{3} + 4\cos\frac{x}{3} + 2\sin\frac{x}{3} = \frac{10}{3}\cos\frac{x}{3} + \frac{8}{3}\sin\frac{x}{3}$$

Elsőrendű szétválasztható változójú differenciálegyenletek

Kalkulus II előadás

Király Balázs

Differencia egyenlete

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérté probléma

egyenletek megoldási módszerei szétválasztható változójú differenciál egyenletek Elsőrendű lineáris A következő megoldási módszereket egy-egy példán keresztül mutatjuk be.

Elsőrendű szétválasztható változójú differenciálegyenlet általános alakja

$$y' = g(x) \cdot h(y)$$
, ahol g és h intervallumon értelmezett folytonos függvények.
 $\Rightarrow \frac{y'}{h(y)} = g(x)$ (ha $h(y) \neq 0$)

2. Feladat

Oldjuk meg az $y' = x \cdot y$ differenciálegyenletet!

Megoldás:

A differenciálegyenlet egy elsőrendű, homogén lineáris (közönséges) differenciálegyenlet, a megoldás módját tekintve pedig szétválasztható változójú.

Elsőrendű szétválasztható változójú differenciálegyenletek

előadás

Király Balázs

Differencia egyenletel

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérték probléma

Differenciálegyenletek megoldási módszerei Szétválasztható változójú differenciálegyenletek Elsőrendű lineáris differenciálegyenletek Másodrendű lineáris

Megoldás:

A változók szétválasztásához y-nal kell osztanunk. Ezt csak akkor tehetjük meg, ha $y \neq 0$.

- ha $y = 0 \Leftrightarrow y' = 0 \Leftrightarrow y \equiv 0$ szinguláris megoldás.

$$\int \frac{y'}{y} dx = \int x dx$$

$$\int \frac{1}{y} dy = \frac{1}{2}x^2 + C_1 \quad (C_1 \in \mathbb{R})$$

$$\ln |y| = \frac{1}{2}x^2 + C_1$$

$$|y| = e^{\frac{1}{2}x^2 + C_1} = e^{C_1} \cdot e^{\frac{1}{2}x^2}$$

Elsőrendű szétválasztható változójú differenciálegyenletek

Kalkulus II előadás

Király Balázs

Differenci egyenlete

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérté probléma

Differenciálegyenletek megoldási módszerei Szétválasztható

változójú differenciál egyenletek Elsőrendű lineáris differenciálegyenletek

Másodrendű lineáris homogén Láttuk tehát, hogy $|y| = e^{\frac{1}{2}x^2 + C_1} = e^{C_1} \cdot e^{\frac{1}{2}x^2}$

Legyen
$$C := \begin{cases} \pm e^{C_1} \\ 0 \end{cases}$$

Ekkor

$$y = C \cdot e^{\frac{1}{2}x^2} \quad (C \in \mathbb{R})$$

Az $y(x) = C \cdot e^{\frac{1}{2}x^2}$ ($C \in \mathbb{R}$) alakban adott függvénysereget nevezzük a fenti differenciálegyenlet általános megoldásának.

Könnyen látható, hogy a C=0 esettel beépítettük az $y\equiv 0$ szinguláris megoldást is.

Kalkulus II előadás

Király Balázs

Szétválasztható változójú differenciál

3. Feladat

Adjuk meg az

$$\begin{cases} y'(x) &= x \cdot y(x) \\ y(0) &= 5 \end{cases}$$
 kezdetiérték probléma megoldását!

Megoldás:

Először megoldjuk az $y'(x) = x \cdot y(x)$ differenciálegyenletet.

Majd az általános megoldásból kiválasztjuk azt a partikuláris megoldást, amelyre teljesül a kezdeti feltétel.

A differenciálegyenlet általános megoldását az előző feladatban már felírtuk:

$$y(x) = C \cdot e^{\frac{1}{2}x^2}. \quad (C \in \mathbb{R})$$

előadás

Király Balázs

Differenci egyenlete

Differenciálegyenletek osztálvozása

Megoldások osztályozása

A kezdetiértél probléma

Differenciálegyenletek megoldási módszerei

Szétválasztható változójú differenciál egyenletek

Elsőrendű lineáris differenciálegyenletek Másodrendű lineári homogén állandéegyűtthatós Az általános megoldás paraméterét a kezdeti feltétel felhasználásával kiküszöbölhetjük:

$$y(0) = C \cdot e^0 = 5 \quad \Leftrightarrow \quad C = 5.$$

Így a kezdetiérték probléma megoldása az $y(x) = 5 \cdot e^{\frac{1}{2}x^2}$ függvény.

Elsőrendű lineáris (inhomogén) differenciálegyenletek

Kalkulus II előadás

Király Balázs

Difference egyenlete

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérté probléma

egyenletek megoldási módszerei

Szétválasztható változójú differencia egyenletek

Eisorendu linearis differenciálegyenletek Másodrendű lineáris homogén

Elsőrendű lineáris (inhomogén) differenciálegyenletek általános alakja

$$y' + p(x) \cdot y = q(x),$$

ahol p,q intervallumon értelmezett folytonos függvények.

A megoldás menete

- A homogén egyenlet $(Y'+p(x)\cdot Y=0)$ megoldása. $\Rightarrow Y_{hom}^{\text{ált}}$ a homogén egyenlet általános megoldása
- Állandó variálásának módszere. $\Rightarrow y_{inh}^{part}$ az inhomogén egyenlet egy partikuláris megoldása
- Belátható, hogy $y_{inh}^{\text{ált}} = Y_{hom}^{\text{ált}} + y_{inh}^{part}$

Elsőrendű lineáris (inhomogén) differenciálegyenletek

Kalkulus II előadás

Király Balázs

Állandó variálásának módszere.

- A homogén egyenlet általános megoldásában jelölje C a szabad paramétert.
- Minden $C \in \mathbb{R}$ választás mellett olyan függvényt kapunk, amely kielégíti a homogén egyenletet.
- Ha a $C \in \mathbb{R}$ paraméter helyett C(x) x-től függő függvényt használunk, olyan függvényt kapunk, amelyre $y' + p(x) \cdot y \neq 0$
- Keressük azt a C(x) függvényt, amelyre éppen $y' + p(x) \cdot y = q(x)$
- Így az inhomogén egyenlet egy partikuláris megoldását találtuk.

Kalkulus II előadás

Király Balázs

4. Feladat

Oldjuk meg az $y' - \frac{y}{x} = x^2$ differenciálegyenletet

Megoldás:

A homogén egyenlet: $Y' - \frac{Y}{x} = 0$.

Megoldása során a változók szétválasztásához Y-nal kell osztani.

Ezt csak akkor tehetjük meg, ha
$$Y \neq 0$$
.
Ha $Y = 0 \Leftrightarrow Y' = 0 \Leftrightarrow \underbrace{Y'}_{=0} - \underbrace{\frac{Y}{x}}_{=0} = 0$

Azaz az $Y \equiv 0$ függvény a homogén egyenlet szinguláris megoldása.

Kalkulus II előadás Király Balázs

Elsőrendű lineáris

$$Y' - \frac{Y}{x} = 0 \quad \text{Ha } Y \neq 0$$

$$Y' = \frac{Y}{x}$$

$$\frac{Y'}{Y} = \frac{1}{x}$$

$$\int \frac{Y'}{Y} dx = \int \frac{1}{x} dx$$

$$\int \frac{1}{Y} dY = \ln|x| + C_1 \quad (C_1 \in \mathbb{R})$$

$$\ln|Y| = \ln|x| + C_1 \quad (C_1 \in \mathbb{R})$$

 $= C \cdot x$ $(C \in \mathbb{R} \setminus \{0\})$ A szinguláris megoldás a C=0 eset megengedésével az általános megoldásba beolvasztható.

 $|Y| = e^{\ln|x| + C_1} = e^{C_1} \cdot e^{\ln|x|} = |x| \cdot e^{C_1}, \quad C := \pm e^{C_1}$

A homogén egyenlet általános megoldása: $Y_{hom}^{\text{ált}} = C \cdot x$ $(C \in \mathbb{R})$.

Kalkulus II előadás

Király Balázs

Differenciá egyenletek

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérték probléma

egyenletek megoldási módszerei szétválasztható változójú differenciálegyenletek Elsőrendű lineáris differenciál-

4. Feladat

Állandó variálásának módszere:

Keressük a megoldást $y = c(x) \cdot x$ alakban. Ekkor $y' = c'(x) \cdot x + c(x)$

Visszahelyettesítve az egyenletbe:

$$\underbrace{c'(x) \cdot x + c(x)}_{y'} - \underbrace{c(x) \cdot x}_{x} \cdot \frac{1}{x} = x^{2}$$

$$c'(x) \cdot x = x^{2}$$

$$c'(x) = x$$

$$c(x) = \int c'(x) dx = \int x dx = \frac{x^{2}}{2} + C$$

Az inhomogén egyenlet egy partikuláris megoldása:

$$y_{\text{inh}}^{\text{part}} = \frac{x^2}{2} \cdot x = \frac{x^3}{2} \quad \Rightarrow \quad y_{\text{inh}}^{\text{ált}} = y_{\text{inh}}^{\text{part}} + Y_{\text{hom}}^{\text{ált}} = \frac{x^3}{2} + C \cdot x \quad (C \in \mathbb{R}).$$

Másodrendű lineáris homogén állandóegyütthatós differenciálegyenletek

Kalkulus II előadás

Király Balázs

Másodrendű lineáris állandóegyűtthatós

Másodrendű lineáris homogén differenciálegyenletek általános alakja

 $p(x) \cdot y'' + q(x) \cdot y' + r(x) \cdot y = 0$, ahol p, q, r intervallumon értelmezett folytonos függvények.

Másodrendű lineáris homogén állandóegyütthatós differenciálegyenletek

általános alakja $A \cdot y'' + B \cdot y' + C \cdot y = 0$, ahol $A, B, C \in \mathbb{R}$.

Megoldási ötlet

A megoldást
$$y=e^{\lambda x}$$
 alakban keressük. Ekkor
$$y'=\lambda\cdot e^{\lambda x}$$

$$y''=\lambda^2\cdot e^{\lambda x}$$

Másodrendű lineáris homogén állandóegyütthatós differenciálegyenletek

előadás

Király Balázs

Megoldás

Visszahelyettesítve az egyenletbe:

$$A \cdot \lambda^{2} \cdot e^{\lambda x} + B \cdot \lambda \cdot e^{\lambda x} + Ce^{\lambda x} = 0$$
$$e^{\lambda x} \cdot (A \cdot \lambda^{2} + B \cdot \lambda + C) = 0$$

 $e^{\lambda x} \cdot \left(A \cdot \lambda^2 + B \cdot \lambda + C\right) = 0$ Mivel $e^{\lambda x} \neq 0$, ezért $A \cdot \lambda^2 + B \cdot \lambda + C = 0$ egyenlethez jutunk.

A kapott equenlet a de. karakterisztikus equenlete.

Tétel

Ha a karakterisztikus egyenletnek két különböző valós megoldása van (λ_1 és λ_2), akkor a differenciálegyenlet általános megoldása: $y_{alt} = C_1 \cdot y_1 + C_2 \cdot y_2 = C_1 \cdot e^{\lambda_1 x} + C_2 \cdot e^{\lambda_2 x}$ $C_1, C_2 \in \mathbb{R}$.

Másodrendű lineáris homogén állandóegyütthatós differenciálegyenletek

előadás

Király Balázs

Másodrendű lineáris

állandóegyűtthatós

Tétel

Ha a karakterisztikus egyenletnek egyetlen valós megoldása van (λ), akkor a

$$y_1 = e^{\lambda x}$$

$$y_2 = x \cdot e^{\lambda x}$$

két lineárisan független partikuláris megoldás és így a differenciálegyenlet általános megoldása:

$$y_{alt} = C_1 \cdot y_1 + C_2 \cdot y_2 = C_1 \cdot e^{\lambda x} + C_2 \cdot x \cdot e^{\lambda x}$$
 $C_1, C_2 \in \mathbb{R}$.

Másodrendű lineáris homogén állandóegyütthatós differenciálegyenletek

Kalkulus II előadás

Király Balázs

Differencia egyenlete

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiértél probléma

egyenletek megoldási módszerei Szétválasztható változójú differenciálegyenletek Elsőrendű lineáris differenciál-

Tétel

Ha a karakterisztikus egyenletnek nincs valós megoldása (mert $D = B^2 - 4AC < 0$), legyen:

$$\alpha := \frac{-B}{2A}, \quad \beta := \frac{\sqrt{4AC - B^2}}{2A}.$$

Ekkor

$$y_1 = e^{\alpha x} \cdot \cos \beta x$$

$$y_2 = e^{\alpha x} \cdot \sin \beta x$$

két lineárisan független partikuláris megoldás és így a differenciálegyenlet általános megoldása:

 $y_{\acute{a}lt} = C_1 \cdot y_1 + C_2 \cdot y_2 = C_1 \cdot e^{\alpha x} \cdot \cos \beta x + C_2 \cdot e^{\alpha x} \cdot \sin \beta x \quad C_1, C_2 \in \mathbb{R}.$

Másodrendű lineáris homogén állandóegyűtthatós

Kalkulus II előadás

Király Balázs

5. Feladat

5. Feladat

Oldjuk meg az y'' + 2y' - 15y = 0 differenciálegyenletet!

Megoldás:

Keressük a megoldást $y = e^{\lambda x}$ alakban! Ekkor

$$y' = \lambda \cdot e^{\lambda x}$$

$$y'' = \lambda^2 \cdot e^{\lambda x}$$

Visszahelyettesítve az egyenletbe:

$$\lambda^2 \cdot e^{\lambda x} + 2\lambda \cdot e^{\lambda x} - 15e^{\lambda x} = 0$$

$$e^{\lambda x} \cdot (\lambda^2 + 2\lambda - 15) = 0$$

egyénletek mégoldási módszerei
$$\underbrace{e^{\lambda x}}_{\neq 0} \cdot \left(\lambda^2 + 2\lambda - 15\right) = 0$$

$$\underbrace{e^{\lambda x}}_{\neq 0} \cdot \left(\lambda^2 + 2\lambda - 15\right) = 0 \quad \text{(Karakterisztikus egyenlet)}$$

$$\underbrace{\lambda^2 + 2\lambda - 15}_{\text{objected interval in$$

Másodrendű lineáris állandóegyűtthatós

előadás Király Balázs

Differencia egyenletel

Differenciálegyenletek osztályozása

Megoldások osztályozása

A kezdetiérték probléma

egyenletek megoldási módszerei Szétválasztható váttozójú differenciál egyenletek Elsőrendű lineáris differenciálegyenletek Másodrendű lineáris homogén állandóegyűtthatós Tehát a két lineárisan független partikuláris megoldás:

$$y_1 = e^{-5x}$$
 $y_2 = e^{3x}$.

Az általános megoldás ezen partikuláris megoldások lineáris kombinációiként kapható:

$$y = C_1 \cdot e^{-5x} + C_2 \cdot e^{3x}.$$
 $(C_1, C_2 \in \mathbb{R})$