1.对下面的文法 G(S):

$$S \rightarrow SaA \mid bB$$

 $A \rightarrow aB \mid c$

$$B \rightarrow Bb \mid d$$

- 1) 消除该文法的左递归;
- 2) 计算消除左递归后的文法的每个非终结符的 FIRST 集和 FOLLOW 集;
- 3) 判断文法是否为 LL(1)文法; 若是 LL(1)的,请构造它的预测分析表。

答案:

1) 消除文法的左递归,得到文法 G(S):

$$S \rightarrow bBS'$$

 $S' \rightarrow aAS' \mid \epsilon$
 $A \rightarrow aB \mid c$
 $B \rightarrow dB'$
 $B' \rightarrow bB' \mid \epsilon$

2) 消除左递归后的文法没有左公因子,直接计算它的每个非终结符的

FIRST 集和 FOLLOW 集:

3)

$$FIRST(S) = \{b\}$$
 $FIRST(S') = \{a, {}^{\bullet}\}$

$$FIRST(A) = \{a, c\}$$
 $FIRST(B) = \{d\}$

$$FIRST(B') = \{b, {}^{\bullet}\}$$

FOLLOW (S) =
$$\{\#\}$$
 FOLLOW (S') = $\{\#\}$

FOLLOW (A) =
$$\{a, \#\}$$
 FOLLOW (B) = $\{a, \#\}$

FOLLOW (B') =
$$\{a, \#\}$$

- 4) 对于改造后的文法:检查文法的所有产生式,我们可以得到:
- 1. 该文法不含左递归,
- 2. 该文法中每一个非终结符 S, S', A, B, B'的各个产生式的候选首符集两

两不相交。

3. 该文法的非终结符 S'和 B',它们都有候选式,而且

$$\begin{aligned} & FIRST(S') \cap FOLLOW(S') = & \varphi \\ & FIRST(B') \cap FOLLOW(B') = & \varphi \end{aligned}$$

所以该文法是LL(1)文法。其预测分析表如下:

	a	b	c	d	#
S		S→bBS'			
S'	S'→aAS				S'→ε
	•				
A	$A \rightarrow aB$		$A \rightarrow c$		
В				B→dB'	
B'	Β'→ε	B'→ bB'			Β'→ε

2.考虑文法 G(S):

$$S \rightarrow S*aT \mid aT$$

 $T \rightarrow +aT \mid \epsilon$

- (1) 消去左递归, 然后, 计算每个非终结符的 FIRST 集和 FOLLOW 集;
- (2) 构造消去左递归后的文法的预测分析表。

答案:

消去左递归, 文法变为 G(S):

S
$$\rightarrow$$
aTS'
S' \rightarrow *aTS' | ϵ
T \rightarrow +aT | ϵ

计算每个非终结符的 FIRST 集和 FOLLOW 集:

构造预测分析表如下:

	*	+	а	#
1		'	u	11

S			S→aT	
			S'	
S'	S'→*aTS			S'→ε
	•			
Т	T→ε	$T \rightarrow +aT$		Т→ε