"大雾实验工具"的开发

《程序设计进阶与实践》大作业报告

姓名 (组长)	孙旭磊	学号	PB21000270	
姓名(组员1)	秦沁*	学号	PB21111630	
姓名(组员2)	赵弈	学号	PB21000033	
姓名(组员3)	鲍政廷	学号	PB21111741	
姓名(组员4)	张学涵	学号	PB21000079	
项目名称	大雾实验工具——绘制图像&计算不确定度&生成计算公式			

项目需求分析 1

项目功能设计 2

2.1 总体功能说明

大雾实验工具是本组成员 2022 春季学期程 序设计进阶与实践的大作业项目。本工具搭建于 网页平台, 支持任何设备自由访问。传入实验数 据后, 本工具立刻完成绘制图像、计算不确定度、 生成计算公式一系列操作,并将最终结果整理成 一份 Word 文档,下载后即可直接使用。本工具 支持一级大物的所有实验(如表 2),大大提升了 学生们撰写实验报告的效率。由于本工具只是将 传入的实验数据进行自动分析, 故不会造成抄袭、 造假等学术不端问题。

2.2具体功能点说明

使用本工具时,用户只需输入他们做实验时 测量到的原始数据, 而无需任何额外的计算处理, 用户所要做的只有按照规定的格式上传 Excel 文 档。本工具支持 xlsx, csv 等各种格式的数据表 格。具体而言,每个实验都会有一张示例数据表 供用户参考,如图1的界面所示。用户也可以直 接下载示例数据,并直接在它的基础上进行修改。 因此, 本工具没有任何学习成本, 是一款即点即 用、免安装的简单轻应用。

绘制图像

图 1: "拉伸法测钢丝杨氏模量"的工具界面

据拟合、双 y 图等多种图像生成需求, 如图 2 所 示。

计算不确定度

本工具在生成的 Word 文档中渲染了各种公 式,如图 3 所示。用户可以直观看到不确定度每 一步的计算过程,并在自己的报告中直接使用这 些算式与结果。

生成计算公式

在 Word 文档中除了有已经渲染好的公式外, 我们还提供了它们的IATEX源码,如图 4 所示。这 本工具根据输入的数据以及实验原理,自动 极大方便了用LATEX, Markdown 等排版实验报告的 生成美观的实验图像。本工具支持平滑去噪、数 用户,他们再也不需要手动敲入每一个算式了。

图 2: 平滑连接的光电效应伏安特性曲线

钢丝直径 d 的平均值:

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{0.291 + 0.292 + 0.293 + 0.294 + 0.295}{5} \text{ mm} = 0.293 \text{ mm}$$

钢丝直径 d 的标准差:

$$\begin{split} &\sigma_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2} \\ &= \sqrt{\frac{(0.291 - 0.293)^2 + (0.292 - 0.293)^2 + (0.293 - 0.293)^2 + (0.294 - 0.293)^2 + (0.295 - 0.293)^2}}_{5-1} \text{ mm} \\ &= 0.0015811 \text{ mm} \end{split}$$

钢丝直径 d 的 B 类不确定度:

$$\Delta_{B,d} = \sqrt{\Delta_{(\chi)}^2 + \Delta_{(b)}^2} = \sqrt{0.004^2 + 0.005^2} \text{ mm} = 0.0064031 \text{ mm}$$

钢丝直径 d 的展伸不确定度

$$U_{d,P} = \sqrt{(t_P \frac{\sigma_d}{\sqrt{n}})^2 + (k_P \frac{\Delta_{B,d}}{C})^2} = \sqrt{(2.78 \times \frac{0.0015811}{\sqrt{5}})^2 + (1.96 \times \frac{0.0064031}{3})^2} \text{ mm}$$

$$= 4.6222 \times 10^{-3} \text{ mm}. P = 0.95$$

图 3: 不确定度计算的详细过程

 $0.293)^2 + (0.295 - 0.293)^2 \} \{5 - 1\} \} \setminus \{mm\} \setminus \{mm\} \}$ $\&= 0.0015811 \setminus \{mm\} \}$ $&= 0.0015811 \setminus \{mm\} \}$

钢丝直径 d 的 B 类不确定度:

\$\$

 $\label{eq:logarticond} $$\left(\frac{B}-\sqrt{2}\right)^2+\left(\frac{C}{2}-\frac{C}{2}\right)^2+$

钢丝直径 d 的展伸不确定度:

\$\$

\begin{aligned}

 $U_{d,P}\&= \sqrt{L_P\frac{d}{L_P}} \label{eq:U_d,P} $$ U_{d,P}^2 - \left(\frac{P}\frac{d}{L_P}\right)^2 + \left(\frac{R_P\frac{d}{L_P}}{L_P}\right)^2 + \left(\frac{R_P\frac{d}{L_P}}{L_$

 $=4.6222 \times 10^{-3}\,\mathrm{mm},P=0.95$

图 4: 不确定度算式的IATEX源码

2.3 功能点设计细节

本工具后端使用 Python 编写,使用的包与模块如表 1 所示。前端由 HTML 编写,并使用了Flask Web 应用框架。

2.3.1 图像绘制

图像由 matplotlib 绘制。我们的规范如下:

- 面向绘图对象作图: fig, ax = matplotlib
 .pyplot.subplots()
- 设置副刻度为主刻度的一半,主刻度为默认: ax.xaxis.set_minor_locator(matplotlib .ticker.AutoMinorLocator(2))
- 刻度朝内: matplotlib.rcParams["xtick .direction"] = matplotlib.rcParams ["ytick.direction"] = "in"

表 1: 本工具使用的全部 Python 包与模块

Python 包或模块	用途		
chardet	检测用户上传的数据表格的编码		
collections	通过 namedtuple 使代码更清晰		
Flask	Web 应用框架		
latex2mathml	LATEX代码转换为 MathML 代码		
lxml	渲染 MathML 代码以用于 Word		
math, numpy	不确定度数字运算		
matplotlib	绘制物理图像		
os, random, shutil	后台文件操作与管理		
pandas	数据表格处理		
python-docx	生成 Word 文档		
scipy	数据拟合		
sympy	不确定度符号运算		
time, threading	定时删除生成的 Word 文档		
traceback	打印运行错误以便调试		

- 若一张图有且只有一组点线,则点使用红色(color="r"),线使用蓝色(color="b"),且线覆盖在点的上面;若一张图有多组点线,则同一组点线的颜色应当相同,并依次使用蓝(b)、红(r)、绿(g)、紫(m)、橙(orange)、青(c)。
- ▲ 点的类型使用实心圆("o"),若一张图有多组点线,则依次使用实心圆(o)、正方形(s)、上三角(^)、菱形(D)、下三角(v)、星号(*)。
- 线条粗细使用 linewidth=1.5, 点的大小使用 markersize=3, 可视数据量、数据组数适当调 整, 但应保持统一性。
- 绘制双y轴图使用 twinx() 方法。
- 只有一组点线的图,一般不显示图例。
- 图像字体: SourceHanSansSC-Regular.otf

● 轴标签和标题中的物理量名称与单位应使 用LFT_EX。

2.3.2 数据处理

无论使绘制图像时的线性拟合,还是计算不确定度的大小,都绕不开数据处理。我们利用pandas, scipy, sympy 等包自主编写了 calc.py 应用程序接口,它提供以下函数:

科学计数法输出 numlatex: (num: float,

prec: int = 5) -> str

返回一个数的科学计数法形式的IATFX代码

不确定度计算 analyse: (data: pandas.DataFrame,

num: 要转成科学计数法的数字 prec: 有效数字位数 (默认值: 5)

delta_b1: float = 0., delta_b2: float = 0., symbol: str = "x", unit: str = "", confidence_C: float = 3., confidence_P: float = 0.95) -> collections.namedtuple ("AnalyseData", ["average", "averagex", "averagex2", "sigma", "sigmax", "sigmax2", "delta_b", "delta_bx", "delta_bx2", "unc", "uncx", "uncx2"]) 返回一组数据的平均值、标准差、不确定度 data: 要处理的一组实验数据 delta_b1: 仪器最大允差 Δ_{α} (默认值: 0) delta_b2: 估读最大允差 Δ_{α} (默认值: 0) symbol: 数据的物理符号 (默认值: "x") unit: 数据的单位 (默认值: "")

confidence_C: 置信系数 C (默认值: 3) confidence_P: 置信概率 P (缺省值: 0.95)

AnalyseData.average/averagex/averagex2:数据的平均值/平均值计算过程的EATFX代

码/平均值计算过程的 MathML 代码

AnalyseData.sigma/sigmax/sigmax2:数据的标准差/标准差计算过程的IPTEX代码/标准差计算过程的 MathML 代码

AnalyseData.delta_b/delta_bx/delta_bx2:数据的B类不确定度/B类不确定度计算过程的IFTEX代码/B类不确定度计算过程的MathML 代码

AnalyseData.unc/uncx/uncx2:数据的展伸不确定度/展伸不确定度计算过程的IATEX代码/展伸不确定度计算过程的MathML代码

最小二乘法线性回归 analyse_lsm: (data_X:

pandas.DataFrame, data_Y: pandas

.DataFrame, symbol_X: str = "X",

symbol_Y: str = "Y", unit_m: str = "",
unit_b: str = "") -> collections

.namedtuple("AnalyseLsmData", ["m",

"mx", "mx2", "b", "bx", "bx2", "r",

"rx", "rx2", "s_m", "s_mx", "s_mx2",

"s_b", "s_bx", "s_bx2"])

返回最小二乘法拟合数据得到的直线参数

data_X: x轴数据(自变量数据)

data_Y: y轴数据(因变量数据)

symbol_X: 自变量物理符号(默认值: "X")

symbol_Y: 因变量物理符号 (默认值: "Y")

unit_m: 斜率的单位(默认值: "")

unit_b: 截距的单位(默认值: "")

AnalyseData.m/mx/mx2: 拟合直线的斜率/斜率计算过程的IATEX代码/斜率计算过程的MathML 代码

AnalyseData.b/bx/bx2: 拟合直线的截距/截距计算过程的IATEX代码/截距计算过程的MathML 代码

AnalyseData.r/rx/rx2: 线性拟合的相关系数/相关系数计算过程的LATEX代码/相关系数计算过程的 MathML 代码

AnalyseData.s_m/s_mx/s_mx2: 拟合直线的 斜率标准差/斜率标准差计算过程的IATEX代码/斜率标准差计算过程的 MathML 代码

AnalyseData.s_b/s_bx/s_bx2: 拟合直线的 截距标准差/截距标准差计算过程的IATEX代码/截距标准差计算过程的 MathML 代码

- 3 测试、运行情况
- 4 设计、开发过程中的难点
- 5 小组分工
- 6 总结与收获
- 7 参考资料

表 2: 全部大雾实验工具

实验分类	实验 ID	实验名称	开发者	子实验
通用	0	通用工具	孙旭磊	

A Appendix

未完成: 斜率计算过程的 \LaTeX X与 MathML 代码,截距与 Pearson's r 的计算公式错误