METHOD FOR SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES

INVENTORS:

Deborah Mowrey-Evans 1247 McIntosh Broomfield, Colorado 80020

Timothy Gardner 8229 Sprenger Dr NE Albuquerque, New Mexico 87109

Linda I. McLaughlin 6609 Barber Place NE Albuquerque, New Mexico 87109

Express Mail No.: EV332388063US

METHOD FOR SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES

期間發於於過程的自身逐步的學科學自己的一樣多可能的一個一個學學學學的主義的學與學生的目標的例如,但例如

This invention was made with Government support under Contract No.

DE-AC04-94AL85000 awarded by the Department of Energy. The Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

5

10

15

20

The invention relates to a method for selective catalytic reduction of nitrogen oxides and, more particularly, to a method for selective catalytic reduction of nitrogen oxides using catalysts on a hydrous titanium oxide support.

Certain compounds in the exhaust stream of a combustion process, such as the exhaust stream from an internal combustion engine, are undesirable in that they must be controlled in order to meet government emissions regulations. Among the regulated compounds are nitrogen oxide compounds (NO_x), hydrocarbons, and carbon monoxide. There are a wide variety of combustion processes producing these emissions, for instance, coal- or oil-fired furnaces, reciprocating internal combustion engines (including gasoline and diesel engines), and gas turbine engines. In each of these combustion processes, control measures to prevent or diminish atmospheric emissions of NO_x , hydrocarbons, and carbon monoxide are needed.

Industry has devoted considerable effort to reducing regulated emissions from the exhaust streams of combustion processes. In particular, it is now usual in the industry to place a catalytic converter in the exhaust system of gasoline

滿盆發展的發展和數學養養物質的觀

engines to remove undesirable emissions from the exhaust by chemical treatment. Typically, a "three-way" catalyst system of platinum, palladium, and rhodium metals dispersed on an oxide support is used to oxidize carbon monoxide and hydrocarbons to water and carbon dioxide and to reduce nitrogen oxides to nitrogen. The catalyst system is applied to a ceramic substrate such as beads, pellets, or a monolith. When used, beads are usually porous, ceramic spheres having the catalyst metal impregnated in an outer shell. The beads or pellets are of a suitable size and number in the catalytic converter in order to place an aggregate surface area in contact with the exhaust stream that is sufficient to treat the compounds of interest. When a monolith is used, it is usually a cordierite honeycomb monolith and may be precoated with γ -alumina and other specialty oxide materials to provide a durable, high surface area support phase for catalyst deposition. The honeycomb shape, used with the parallel channels running in the direction of the flow of the exhaust stream, both increases the surface area exposed to the exhaust stream and allows the exhaust stream to pass through the catalytic converter without creating undue back pressure that would interfere with operation of the engine.

工業 四國動用書戶提前門 電

5

10

15

20

When a gasoline engine is operating under stoichiometric conditions or nearly stoichiometric conditions with respect to the fuel:air ratio (just enough oxygen to completely combust the fuel, or perhaps up to 0.3% excess oxygen), a "three-way" catalyst has proven satisfactory for reducing emissions. Unburned fuel (hydrocarbons) and oxygen are consumed in the catalytic converter, and the relatively small amount of excess oxygen does not interfere with the intended

operation of the conventional catalyst system. The stoichiometric conditions or nearly stoichiometric conditions will be referred to as non-oxidizing conditions or as producing a non-oxidizing atmosphere.

一遭到大量可能的信息。但是可遭到機能發展

5

10

15

20

However, it is desirable to operate the engine at times under lean burn conditions, with excess air, in order to improve fuel economy. While conventional non-oxidizing engine conditions might have a fuel:air ratio having 0.1-0.3% excess oxygen, a lean burn engine has a substantially greater excess of oxygen, from about 1% to perhaps up to 10% excess oxygen relative to the amount of fuel. Under lean burn conditions, conventional catalytic devices are not very effective for treating the NO_x in the resulting oxygen-rich exhaust stream. Lean burn conditions will be referred to as oxidizing conditions or as producing an oxidizing atmosphere.

The exhaust stream from a diesel engine also has a substantial oxygen content, from perhaps about 2-18% oxygen. It is also believed that other combustion processes result in emissions of NO_x, hydrocarbons, and carbon monoxide that are difficult or expensive to control because of an oxidizing effluent stream or poor conversion of the compounds using conventional means.

In spite of efforts over the last decade to develop a catalytic converter effective for reducing NO_x to nitrogen under oxidizing conditions in a gasoline engine or in a diesel engine, the need for improved conversion effectiveness has remained unsatisfied. The materials developed prior to the present invention have exhibited unacceptably low efficiencies for reduction of NO_x in an oxidizing

exhaust stream, even with such high levels of expensive noble metal catalysts as to make them impractical for use by the automotive industry. Moreover, there is a continuing need for improved effectiveness in treating NO_x, hydrocarbons, and carbon monoxide emissions from any combustion process.

相關的情報,把自身發展 哪位 "由解除官吏的意思性"多字字子的自编的都以他就是强制着中国自由的对于中部的对对自由

The industry has also been concerned with the related problem of the temperatures at which catalytic converter devices are effective for reducing nitrogen oxides and other emissions. Typically, NO_x reduction catalysts are evaluated by the maximum NO_x conversion of the catalyst and the temperature at which that maximum occurs. Automotive exhaust catalysts are expected to perform over a wide range of operating temperatures encompassing cold start (i.e., start when the engine is at ambient temperature) to wide-open throttle conditions. For this reason, a catalyst having a higher peak NO_x reduction performance occurring at one certain temperature may not decrease NO_x emissions as much during the whole period of engine operation as a catalyst having a lower peak NO_x reduction performance but having a wider temperature window over which it has high NO_x reduction activity. Another consideration is the temperature required for a particular catalyst to have any appreciable activity. The standard "three-way" catalyst system is ineffective for treating emissions until a temperature of approximately 250°C, the light-off temperature of the catalyst system, is reached. This threshold temperature for effective operation of the catalytic converter is often referred to as the "light-off" temperature. It would be desirable to reduce the light-off temperature as much as possible because significant amounts of emissions are produced from the time when the engine is

10

15

20

started until the catalytic converter is finally heated to the light-off temperature. In addition, diesel engines and engines that are run under lean burn (oxidizing) conditions have lower average exhaust temperatures, usually in the range of about 150 to 350°C. The conventional three-way catalytic converter systems reach maximum efficiency at temperatures between 400 and 800°C, above the operating temperature ranges of these engines.

5

10

15

20

另繼續的標準學術的形式 计特别逻辑 化二甲胂四甲基乙烯 化间期的流生 计多种模型键的 医美国维斯斯尔

The selective catalytic reduction of nitrogen oxides (NO_x, defined as nitric oxide, NO, + nitrogen dioxide, NO₂) by urea/ammonia has been identified as a promising technology to enable lean-burn gasoline and diesel engines to meet U.S. EPA Tier 2 emissions standards. Titania-supported vanadia catalyst formulations, generally containing promoter phases such as tungsten oxide or molybdenum oxide, are the current industrial standard for ammonia selective catalytic reduction (SCR) of NO applications involving stationary source (power plant) emissions. These steady state applications are very different from automotive exhaust aftertreatment applications, which are highly transient in nature. Considerable work has been performed recently in an attempt to adapt this technology for mobile source applications. Vanadia-based catalysts, although possessing many positive attributes, such as high activity, selectivity, durability, and resistance to SO₂ aging, also possess negative attributes related to potential toxicity and volatility issues associated with catalyst manufacture and potential use in exhaust aftertreatment applications.

Useful would be a method for the selective catalytic reduction of nitrogen oxide compounds with a catalytic material having high activity, selectivity and durability that has less toxicity than vanadia-based catalysts.

BRIEF DESCRIPTION OF THE DRAWINGS

5

15

- FIG. 1 illustrates NO_x conversion and N_2O selectivity profiles for Mn/HTO:Si catalyst in powder form.
- FIG. 2 illustrates NO_x conversion and N_2O selectivity profiles for Mn-WO₃/HTO:Si catalyst in powder form at 600, 700 and 800°C.
- FIG. 3 illustrates NO_x conversion and N₂O selectivity profiles for Mn10 WO₃/HTO:Si catalyst in powder form at 350°C for 24 and 48 h.
 - FIG. 4 illustrates NO_x conversion and N_2O selectivity profiles for Mn-WO₃/TiO₂ in powder form at 600 and 700°C.
 - FIG. 5 illustrates NO_x conversion and N_2O selectivity profiles for Mn-WO₃/Al₂O₃ catalyst in powder form at 350°C for 24 and 48 h.
 - FIG. 6 illustrates NO_x conversion profiles for fresh supplier benchmark catalysts and Mn-WO₃/HTO:Si in monolith core form.
 - FIG. 7 illustrates NO_x conversion and N_2O selectivity profiles for a CuO/HTO:Si catalyst in powder form at 600 and 700°C.
- FIG. 8 illustrates NO_x conversion and N₂O selectivity profiles for a CuO-20 WO₃/HTO:Si catalyst in powder form at 600, 700, and 800°C.

- FIG. 9 illustrates NO_x conversion and N₂O selectivity profiles for a Mn-CuO-WO₃/HTO:Si catalyst in powder form at 600, 700, and 800°C.
- FIG. 10 illustrates NO_x conversion and N_2O selectivity profiles for Mn-CuO-WO₃/HTO:Si catalyst in powder form at 350°C for 24 h.
- FIG. 11 illustrates NO_x conversion and N_2O selectivity profiles for Mn-CuO-WO₃/TiO₂ catalyst in powder form in its fresh state .
- FIG. 12 illustrates NO_x conversion profiles for for Mn-WO₃/HTO:Si catalyst in powder form for different $NO:NO_2$ ratios.
- FIG. 13 illustrates NO_x conversion profiles for Mn-WO₃/TiO₂ in powder form for different NO:NO₂ ratios.
 - FIG. 14 illustrates NO_x conversion profiles for Mn-WO₃/Alumina in powder form for different NO:NO₂ ratios.
 - FIG. 15 illustrates NO_x conversion profiles for CuO-WO₃/HTO:Si in powder form for different $NO:NO_2$ ratios.
 - FIG. 16 illustrates NO_x conversion profiles for Mn-CuO-WO₃/HTO:Si in powder form for different NO:NO₂ ratios.
 - FIG. 17 illustrates NO_x conversion profiles for Mn-Cu/HTO:Si in powder form for different $NO:NO_2$ ratios.

15

5

中,但屬某時候發展的心臟發展自由的特別的一個影響中,則是

DETAILED DESCRIPTION OF THE INVENTION

In the method of the present invention, nitrogen oxide compounds (NO_x, defined as nitric oxide, NO, + nitrogen dioxide, NO₂) in a gas are catalytically reduced by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support.

Additionally, the addition of a promoter, such as tungsten oxide or molybdenum oxide, has been shown to increase conversion efficiency. This method provides good conversion of NO_x to N₂, good selectivity, good durability, resistance to SO₂ aging and low toxicity compared with methods utilizing vanadia-based catalysts.

5

10

15

20

Applications utilizing this method include the reduction of NO_x for furnaces, internal combustion engines and gas turbine engines. The gas containing the NO_x can be at temperatures varying between approximately 100-750°C with concentrations of NO_x generally in the range of 100-400 parts per million (ppm) for internal combustion engine gas streams and more generally less than approximately 1000 ppm. Other gas components generally include other hydrocarbon compounds, sulfur oxides (SO_x), water vapor, oxygen, carbon dioxide, carbon monoxide and hydrogen. Prior to contact of the gas with the catalytic base metal material, urea or ammonia is added as a fluid to the gas. If ammonia is added, the ammonia is added in an approximately 1:1 ratio with the NO_x concentration. If urea is added, the urea is added in an approximate ratio of 1 mole urea to 2 moles NO_x as one mole of urea thermally decomposes at elevated temperatures in the gas to yield two moles ammonia.

For applications involving reduction of NO_x emissions from internal combustion engine exhaust, it is desirable to have a NO_x conversion to N_2 or approximately greater than 90% over a temperature range of 200 to 400°C. Therefore, in the SCR method of the present invention, different base metals (the active phase) on various oxide supports were considered, including aluminum oxide (γ -Al₂O₃), titanium oxide (TiO_2), and activated metal hydrous metal oxide supports. Testing showed that catalysts comprising base metal phases CuO and Mn (and oxides of Mn, referred hereinto as MnO_x) on hydrous metal oxide (HMO), with or without the addition of a promoter component met the stated criteria and that the catalytic reduction of nitrogen oxides using catalysts on the HMO supports was significantly more effective than the catalytic reduction of nitrogen oxides using catalysts on the γ -Al₂O₃ and TiO_2 supports.

5

10

15

20

主新是沒個體學的學說的表明時期的 人名巴拉克德国德巴尔尔德德德国德国德国 医神经囊 医紫檀 计多几个的 经验证的 第三十八十八年

The active phase of Mn on the catalyst can be Mn or an oxided form of Mn such as MnO, MnO₂, MnO_{1.5} and other oxides. Promoter phases that can be added to the catalyst include WO₃ and MoO₃. The promoter is generally at a concentration less than approximately 5% by weight of the catalyst. Active and promoter phase additions to the hydrous metal oxide supported catalysts were made using a combination of ion exchange and incipient wetness impregnation techniques while conventional oxide-supported catalysts were prepared using only incipient wetness impregnation techniques. The HMO-supported catalyst can be applied to a ceramic substrate such as beads, pellets, or a monolith. When used, beads are usually porous, ceramic spheres having the catalyst metal impregnated in an outer shell. The beads or pellets are of a suitable size and

number in the catalytic converter in order to place an aggregate surface area in contact with the exhaust stream that is sufficient to treat the compounds of interest. When a monolith is used, it is usually a cordierite honeycomb monolith and may be precoated with γ-alumina and other specialty oxide materials to provide a durable, high surface area support phase for catalyst deposition. The honeycomb shape, used with the parallel channels running in the direction of the flow of the exhaust stream, both increases the surface area exposed to the exhaust stream and allows the exhaust stream to pass through the catalytic converter without creating undue back pressure that would interfere with operation of the engine.

5

10

15

20

· 數學位置的數據自發發達自可發射線於影響的基礎。例如於自然可能對于由一直通過。對於國際機能

In the method of the present invention, the active metal phase is supported by an activated hydrous metal oxide material. In general, the activated hydrous metal oxide material, such as a hydrous titanium oxide or hydrous zirconium oxide, is prepared through a first step of forming an intermediate sol in a lower alcohol by the reaction of an alkali or alkaline earth metal hydroxide dissolved in the lower alcohol with a transition metal alkoxide. The alcohol used preferably has up to 8 carbon atoms, more preferably up to 4 carbon atoms, and it is particularly preferred to use methanol. The intermediate is then hydrolyzed to form a hydrous metal oxide containing the alkali or alkaline earth metal cation. An ion exchange of the hydrous metal oxide with the doping metal or metals follows, and, finally, the doped material is calcined to activate the metal-doped hydrous metal oxide material. General preparative procedures for catalytic hydrous metal oxide materials are described in Dosch et al., U.S. Pat.

No. 4,511,455, Dosch et al., U.S. Pat. No. 4,929,582, Dosch et al., U.S. Pat. No. 5,461,022, and Gardner et al., U.S. Pat. No. 6,165,934, the entire contents of all patents now being incorporated herein by reference.

5

10

15

20

One useful HMO material includes the use of silicates, such as tetraalkylorthosilicates, including tetramethylorthosilicate and tetraethylorthosilicate, in the synthesis of the HMO materials. When the metaldoped hydrous HMO material includes silica, the material has greater thermal stability, being stable at temperatures up to 1000°C. The silicate is mixed with the transition metal alkoxide prior to the reaction with the alkali or alkaline earth metal hydroxide. It is believed that the presence of silica inhibits metal oxide particle growth and high temperature crystallization to prevent loss of surface area. This can be beneficial when the device is used for treating the exhaust stream from an automotive engine because of possible temperature spikes under certain conditions, such as an engine misfire, at which times temperatures can rise as high as 1000°C. When silica is included to form the HMO material, designated as HMO:Si, it can be included in a molar ratio of transition metal, such as titanium or zirconium, to silicon of from about 4:1 to about 6:1. If the transition metal used is titanium, the designation of the hydrous metal oxide is HTO:Si. The tetraalkylorthosilicate is mixed with the transition metal alkoxide, alcohol, and hydroxide to produce a co-network with silicon-oxygen, transition metal-oxygen, and silicon-oxygen-transition metal bonds.

The activated metal-doped hydrous metal oxide material, can be introduced onto a substrate, such as ceramic beads or a cordierite monolith

optionally precoated with γ -alumina, by one of at least two methods. In the first method, hereinafter referred to as the powder slurry method, an aqueous slurry is made of an activated noble metal-doped hydrous metal oxide powder, and is contacted with the target substrate. The first method has the advantage of having the same steps for the manufacturer of ceramic substrates for automotive catalytic converters as methods already used in the industry.

5

10

15

20

Catalysts were evaluated for use in the method of the present invention by using simulated exhaust gas compositions containing nitrogen oxides and other compounds characteristic of exhaust gases. The simulated exhaust gas compositions were exposed to catalysts, both with and without promoters, at varied temperatures for varied times and with varied gas component concentrations. Catalysts using HMO supports were prepared and the performance in reducing nitrogen oxides compared with catalysts prepared with the aluminum oxide and titanium oxide supports. In particular, the performance of the catalysts in reducing NO_x in a gas stream were evaluated for fresh, hydrothermally-aged and SO₂-aged states of the catalysts, with a goal of greater than 90% conversion to nitrogen over a temperature range from 200 to 400°C. The gas stream evaluated included 14% O₂, 5% CO₂, 4.6% H₂O, 0-20 ppm SO₂, 0-350 ppm NH₃, 175 ppm NO, and 175 ppm NO₂ at a space velocity of 30,000 cm³/cm³/h at temperatures ranging from 110-400°C.

FIG. 1 shows the fresh catalyst activity and short-term durability performance of an unpromoted Mn/HTO:Si catalyst in powder form. This catalyst possesses good fresh activity with no significant NO_x adsorption. Although the

fresh catalyst activity and 600°C hydrothermal aging results are very close to the acceptance criteria (set at greater than 90% NOx conversion between 200 and 400°C, see dotted line in FIG. 1 used as a reference), significant deactivation occurred for this catalyst during hydrothermal aging at 700°C. Although not shown herein, the short-term durability performance of this catalyst was significantly better than that of an unpromoted Mn/conventional TiO₂ (the TiO₂ material was the product Sachtleben Hombikat, provided by Sachtleben Chemie BmbH, Duisburg, Germany) catalyst, which showed significantly more deactivation after 600°C hydrothermal aging. The direct comparison of the HTO:Si-supported Mn catalysts to Mn supported on commercial TiO₂ demonstrates specific short-term durability advantages for the catalysts utilizing HMO supports.

机使物 神经精力性经验的 化二氯甲基

建建设 1995 ·

5

10

15

20

The effect of the WO₃ promoter phase on improving fresh catalyst activity and short-term durability performance is shown in FIG. 2. In addition to improving fresh catalyst activity (particularly at low temperature, as seen when comparing FIG. 1 to FIG. 2), the promoter phase significantly improves the resistance to catalyst deactivation during hydrothermal aging for Mn/HTO:Si. Note that the results for Mn-WO₃/HTO:Si after 800°C hydrothermal aging are superior to those of Mn/HTO:Si after 700°C aging (see FIG. 1). A slight increase in N₂O selectivity is observed with increasing hydrothermal aging temperature, possibly consistent with sintering of the active phase component of the Mn/HTO:Si formulation.

3. 跨國學學: 网络《養君·2010年》

FIG. 3 shows that the Mn-WO₃/HTO:Si catalyst shows no significant deactivation after 48 h of SO₂ aging at 350°C. The high level of catalyst activity over a wide temperature range demonstrates, along with the short-term durability data shown in FIG. 2, acceptable performance of this catalyst formulation.

网络沙漠西沙拉河 雲鐵器 沙塞尔姆斯斯拉舞 化设施工 计一线 经指偿证券

5

10

15

20

The ion-exchangeable hydrous metal oxide supports used in the method of the present invention demonstrate performance advantages relative to commercial catalyst support materials. For fresh catalysts in powder form, it was found that the SNL HTO:Si support offers distinct advantages with respect to the Mn-WO₃ formulation dispersed on several commercial catalyst support materials. FIG. 4 shows fresh catalyst activity and short-term durability results obtained for a Mn-WO₃ formulation on a commercial TiO₂ (Sachtleben Hombikat). By comparing FIG. 2 with FIG. 4, it is seen that the HTO:Si-supported Mn-WO₃ formulation is more resistant to hydrothermal aging than the equivalent TiO₂-supported formulation. Specifically, hydrothermal aging of the HTO:Si-supported for Mn-WO₃ at 800°C is nominally equivalent to hydrothermal aging of the TiO₂-supported for Mn-WO₃ at 700°C. These results are consistent with results for the case of unpromoted Mn formulations supported on HTO:Si versus commercial TiO₂.

A second commercial support material, Al_2O_3 (γ -form), was also evaluated with the equivalent Mn-WO₃ formulation. In this case, the HTO:Si-supported Mn-WO₃ was found to possess both better low temperature activity and improved resistance to SO_2 poisoning relative to the Al_2O_3 -supported material (catalysts in

powder form). FIG. 5 shows the fresh catalyst activity of the Al₂O₃-supported Mn-WO₃ relative to the activity obtained after SO₂ aging for 24 h. Unlike the Mn-WO₃ formulation on the HTO:Si support, which showed no observable deactivation due to SO₂ aging over 48 h at 350°C (see FIG. 3), a slight deactivation was observed after 24 h of SO₂ aging at 350°C for the equivalent catalyst formulation on the Al₂O₃ support. Examination of the low temperature portion of the NO_x conversion profiles in FIG. 3 and FIG. 5 clearly shows the superior low temperature performance of the HTO:Si-supported Mn-WO₃ material. Only one previous report was found in the literature related to Al₂O₃-supported MnO-WO₃ catalysts used for SCR of NO. This paper showed that the main attribute of the WO₃ promoter is to improve selectivity to product N₂ (rather than N₂O), although this comes at a cost of lower activity (L. Singoredo, R. Korver, F. Kapteijn, and J. Moulijn, Appl. Catal. B, 1992, 1, 297). Singoredo et al., concluded that the role of WO₃ was not clearly elucidated for supported Mn catalysts.

医鼻骨 医克里克氏 医多种 医多种多种 医克里克斯氏氏病

5

10

15

20

The HTO:Si-supported Mn-WO₃ formulation were also evaluated in monolith core form using the direct coating method developed as part of previous monolith coating activities. Using the direct coating method, an alumina-coated cordierite monolith core was soaked in the organometallic soluble intermediate to provide a precursor to the ion exchangeable silica-doped hydrous titanium oxide (HTO:Si) coating. Following atmospheric hydrolysis of the soluble intermediate coating and drying, the monolith core itself was put through the ion exchange and/or other subsequent processes to add promoter and/or active metal phases.

An example of fresh catalyst activity test results for the Mn-WO₃/HTO:Si formulation relative to supplier benchmark materials in monolith core form is shown in FIG. 6. All of the catalysts shown in FIG, 6 show good to excellent ammonia SCR activity between 200 and 400°C. The zeolite-supported base metal A catalyst exhibits the best low temperature (less than 200°C) performance of the supplier benchmark materials. The efforts at producing the HTO:Si-supported Mn-WO₃ formulation in monolith core form yielded excellent results. This catalyst has fresh catalyst activity at least as good as the best commercial supplier support material over the entire temperature range of interest. In particular, high ammonia SCR activity in the 150-200°C range is desirable for both light- and medium-duty exhaust applications. Preliminary hydrothermal and SO₂ aging studies show that the Mn-WO₃/HTO:Si formulation in monolith core form also passes the staged catalyst acceptance protocol.

10

15

20

人物的"紫癜素的物质,可精液的",这种是个鲜嫩的精液,多次,如"紫癜肿素的药品等",如此一个一个一个一个一个

Similar positive effects of WO₃ promotion were observed with other HTO:Si-supported base metal catalysts. FIG. 7 shows the fresh activity and short term durability performance of a HTO:Si-supported CuO catalyst. Although meeting activity requirements in the fresh state, hydrothermal aging at 600°C for 16 h resulted in a significant decrease in catalyst activity. Further hydrothermal aging at 700°C resulted in a severe decrease in catalyst performance. Overall hydrothermal aging performance for this material was significantly worse than the Mn/HTO:Si catalyst shown in FIG. 1.

2. 《《明論學》:關係學學,發展,數學,數學學學,不可以

Similar to the results obtained for the Mn/HTO:Si catalyst system, the addition of a WO₃ promoter phase to the CuO/HTO:Si catalyst formulation resulted in a significant positive effect with respect to fresh catalyst activity, short-term durability, and SO₂ aging. A specific example of the positive effect of the WO₃ promoter is shown in FIG. 8. In contrast to the CuO/HTO:Si catalyst, the CuO-WO₃/HTO:Si catalyst passed short-term durability requirements after 600°C hydrotherrmal aging. Although significant catalyst deactivation was observed upon further catalyst hydrothermal aging at 700 and 800°C, the performance of this formulation relative to the unpromoted formulation (see FIG. 7) was significantly improved. Although showing a slight sensitivity to SO₂ aging, the CuO-WO₃/HTO:Si catalyst also passed the SO₂ aging criterion, demonstrating that this catalyst formulation demonstrated acceptable characteristics for SCR of nitrogen oxides.

大學學 建水气管 衛星觀察衛衛衛衛 经订额证券证券

4-21 s

5

10

15

20

An additional group of catalysts were developed that contained Mn and CuO as well as the WO₃ promoter. As shown in FIG. 9 and FIG. 10, these catalysts also passed the fresh activity, short-term hydrothermal aging and SO₂ aging criteria. These catalysts behaved similarly to Mn-WO₃/HTO:Si, although they showed slightly more deactivation after SO₂ aging (FIG. 9 compared to FIG. 3).

A Mn- CuO-WO₃ catalyst was also made on a commercially available TiO₂ support, Degussa P25. This catalyst demonstrated much lower NO_x activity and selectivity to N₂ than the HTO:Si supported material (FIG. 11) once again

confirming advantages of catalyst performance in SCR of nitrogen oxides using the HTO:Si material.

新疆疆域 (1986年) 1986年 · 1986年 ·

5

10

15

20

Three catalyst formulations, Mn-WO₃/HTO:Si, CuO-WO₃/HTO:Si, and Mn-CuO-WO₃/HTO:Si, were tested under a variety of NO:NO₂ ratios. In these tests, the total amount of NO + NO₂ remained constant at 350 ppm, but the relative amounts of NO and NO₂ were varied.

As shown in FIG. 12, Mn-WO₃/HTO:Si catalysts show significant dependence on the NO:NO₂ ratio. As expected, the best results were achieved with NO:NO₂=1 and activity falls off with deviations from this optimal value. When all the NO_x is present as NO, there is no significant conversion below approximately 200 °C. MnO_x-WO₃ on a commercial TiO₂ (Sachtleben Hombikat) support shows similar results as on the HTO:Si support (FIG. 13).

When the NO:NO₂ ratio was varied over a Mn-WO₃ catalyst on a conventional alumina support, the performance effect was even more pronounced than on the other supports, as shown in FIG. 14. In fact, in the NO only case, there is almost no activity at temperatures below 400 °C.

Results from varying the NO:NO₂ ratio for Cu-WO₃/HTO:Si formulations are shown in FIG. 15. When compared to MnWO₃/HTO:Si, Cu-WO₃/HTO:Si catalysts have lower activity with the original screening condition with NO:NO₂=1; however, they had much better activity with NO only

The Mn-CuO-WO₃/HTO:Si catalyst has the advantage of demonstrating both excellent activity with NO:NO₂=1 (similar to the Mn-WO₃/HTO:Si catalysts)

医三环异宫畸形 藏医宇宙性 网络科马马德勒勒赫翰斯博用

and good activity for a wide range of NO:NO₂ ratios (like the CuO-WO₃/HTO:Si catalysts) (FIG. 16). In fact, even with the feed NO_x as only NO, 90% conversion can be achieved at 200 °C. Selective catalytic reduction of nitrogen oxides using this catalyst formulation is an excellent candidate for possible commercialization.

When Mn-CuO/HTO:Si (no WO₃ promoter) was tested under a range of NO:NO₂ ratios, poor activity was seen with the NO only case (FIG. 17). Therefore the promoter phase also increases the activity of the catalyst with NO only.

5

10

15

The non-vanadia catalyst formulations Mn-WO₃/HTO:Si, Mn-WO₃/TiO₂, Mn-WO₃/Al₂O₃, and CuO-WO₃/HTO:Si, Mn-CuO-WO₃/HTO:Si all demonstrated acceptable performance in reducing NO_x in simulated exhaust gas streams using the method of the present invention. The catalysts with the HTO:Si supports used according to the method of the present invention demonstrated advantages over conventional supports.

The invention being thus described, it will be apparent that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.