On Sampling

1 Continuous Sampling

Define $ball(x,r) = \{p \in \mathbb{R} : |p-x| \leq r\}$ as a ball in 1D. Consider sampling a 1D real line L = [0,1]. Denote obstacles $O = \bigcup_{finite openintervals \in L}$, free space $F = \{x \in L/O\}$ Let $S_c = \{ball(x,r) | \forall x \in L\}$. We define the sphere as a close sphere because we are using the upper bound of time for traveling from one configuration to another, the point on the boundary of a sphere is reachable. Let $C(S_c)$ be the space covered by S_c . $C(S) = \bigcup_{b \in S}$.

1.1 Outer Sample

Continuously sample spheres from left to right in the real line L, let the set of sphere be S_n , such that no sphere in S_n is centered within any sphere of S_n . $S_n = \{ball(x) | \forall x_i \in \mathbb{R}, |x_i - x_j| \geq r_j, \forall j \neq i\}.$

Theorem 1.1 $C(S_n) = C(S_c)$.

Proof:

 $\forall p \in L, \exists q = (p,r) \in S_c$, meaning every point in L is covered by one sphere centered at x in S_c , $C(S_c) = L$. If sphere q = (p,r) is not centered inside any spheres in S_n , then $q \in S_n$ and $p \in C(S_n)$. Assume point p is inside some existing spheres centered to the left of p, then $p \in C(S_n)$.

To sum up, if point p is sampled, then $p \in C(S_c)$ and $p \in C(S_n)$, if point p is not sampled, still $p \in C(S_c)$ and $p \in C(S_n)$. Therefore, $C(S_n) = C(S_c)$.

This holds true also for 2D and 3D cases. If a point p is sampled, then $p \in C(S_n)$, if p is not sampled, that is because it is already inside some existing spheres, so $p \in C(S_n)$.

Continuously sample points that are not inside any sphere is equivalent to continuously sample on the boundary of existing spheres.

Theorem 1.2 Sampling 1D real line L, S_n is a finite set if the number of obstacles is finite.

Proof:

Specify the real line to be a line segment $L = \{x | 0 \le x \le 1\}$, with obstacles in both ends. Start sampling from left to right, assume we are now sampling the i-th point $0 < x_i <= 0.25$, $q_i = (x_i, r_i)$, $r_i = x_i$. Because $|x_i - x_{i-1}| < x_i = r_i$, $q_{i-1} \notin S_n$. If $0.25 < x_{i+1} < 0.5$, $S_n = \{q_{i+1}, q_{i+2}\}$. If $x_{i+1} = 0.5$, $S_n = \{q_{i+1}\}$. Every real line segment can be cut into finite number of smaller line segments with obstacles in both ends, if the number of obstacles is finite. Therefore S_n is a finite set.

1.2 Minimum Radius Spheres

Let S_m be a subset of S_n , such that no sphere in S_m has radius less than r_{min} . $S_m = \{q = (x, r) | \forall q \in S_n, r \geq r_{min}\}$

Theorem 1.3 S_m is a finite set.

Proof:

Consider 2D case first.

(The idea is to find some iso-contours, where every point in a contour is equally far from obstacles, and sample on these contours. Then prove 3 things: 1. finite sample on a contour. 2. finite number of contours. 3. the sampled spheres set satisfies the definition of S_m)

To prove this, we need some medium conclusions:

1. Let λ be a finite path in 2D world, $S_p = \{q = x, r | \forall x \in \lambda, r = C\}$, where C is a constant. S_p is a finite set. This is because every sphere with

fixed radius will cover at least $2 \cdot C$ length of the path, as long as the path is finite, the number of spheres sampled in the path will not be infinite.

- 2. (By choosing the distance between each contour, the number of contours is finite, because we have minimum distance from obstacles and upper bound distance from obstacles.)
- 3. (Assume we have some initial contours, say voronoi graph edges, and we sample spheres on the contour, if we choose the new contours to be 1/2 distance from obstacles to the existing contours, then sample on the new contour. Repeat the process until converge(the new contour is exactly r_{min} away from obstacles).)

1.3 Inaccurate Metric

Sample spheres continuously in the space such that no sphere is inside existing ones and all spheres have radius more than r_{min} . Assume the sampling metric gives 1/n of the real distance to obstacles. Denote the set of spheres as S_{in} .

Theorem 1.4 Any point p within $(n-1) \cdot r_{min}$ distance away from obstacles, $p \notin C(S_i(in))$.

Proof:

Assume p is $(n-1) \cdot r_{min}$ distance away from obstacles, if there exists point x that is $n \cdot r_{min}$ distance away from obstacles, then sphere q_x has radius r_{min} , $p \in q_x$.

If p is $(n-1) \cdot r_{min} - \epsilon$ distance away from obstacles, where $\epsilon >= 0$, we need a point x that is within $n \cdot r_{min} - \frac{n \cdot \epsilon}{n-1}$ distance from obstacle. The sphere sampled at x has radius less than r_{min} thus will not cover point p.

This is also true for 2D and 3D cases. Introduce a line from the closest point in obstacle in normal direction, then the proof is the same. However, uncovered area as shown in Theorem 1.2 stays still.

Theorem 1.5 Let S_d be a subset of S_{in} by discrete sampling in the real line. Assume every two neighbor samples are d distance away from each other. If $d <= \frac{r_{min}}{k}, k >= 1$, in the worst case, any point p that has clearance less than $\frac{r_{min} \cdot (n-1)}{k \cdot n} + (n-1) \cdot r_{min}, p \notin C(S_d)$.

As is shown in last theorem, the smallest clearance a point x should have in order to be sampled is $n \cdot r_{min}$. $\exists \epsilon > 0$, point x_t with clearance $n \cdot r_{min} + d - \epsilon$. The point the sphere q_{x_t} can cover has clearance more than $(n-1) \cdot r_{min} + \frac{d \cdot (n-1)}{n} - \frac{(n-1) \cdot \epsilon}{n}$. The worst case is $\epsilon = 0$, so the clearance is $(n-1) \cdot r_{min} + \frac{d \cdot (n-1)}{n} = (n-1) \cdot r_{min} + \frac{r_{min} \cdot (n-1)}{k \cdot n}$

In 2D the possible position for x_t is a square, it will be a cube in 3D, the result is very similar except for that the uncovered area introduced by Theorem 1.2 is still can't be removed.