Galaxy Zoo: Classifications for Galaxies in HST Legacy Imaging

Lead Author and other Galaxy Zoo science team

* This publication has been made possible by the participation of more than 200,000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at http://www.galaxyzoo.org/volunteers.

E-mail: lead.author@university.edu

7 March 2014

ABSTRACT

This will be the data release paper for GZ Hubble. We present the classifications, the methodology for data reduction and corrections for redshift dependent biases in the observed morphologies.

1 INTRODUCTION

2 SAMPLE AND DATA

2.1 Summary of HST Legacy Survey Imaging

- AEGIS has 1 orbit each (2200 seconds) in F606W (V band) and F814W filter and has been dithered to 0.03 "/pixel; the imaging covers 710 arcmin².
- GOODS targeted 2 fields, GOODS-N and GOODS-S, imaging in 4 filters F435W (B), F606W (V), F775W (i), and F850LP (z). The mean exposure times vary, from 1000 2100 seconds. The images have been dithered to a pixel scale of 0.03 "/pixel and covers at total area of 320 arcmin² (160 arcmin² per field). The filters that Griffith et al uses for the colored images were F606W and F775W for GOODS-N and F606W and F850LP for GOODS-S.
- \bullet COSMOS has 1 orbit (2028 seconds) in the F814W (I band) filter and has been dithered to 0.05 "/pixel; it covers the largest area, 1.8 $\deg^2.$
- \bullet GEMS has 1 orbit (2160 and 2286 seconds) in the F606W and F850LP filters, with a pixel scale of 0.03 "/pixel; it covers 800 $\rm arcmin^2$

2.2 User Weighting

The votes of individual users who classified galaxies in Galaxy Zoo Hubble are combined to make a vote fraction for each question on the classification tree. Users votes are weighted slightly (in a method identical to that described in Willett et al. 2013) such that users who frequently disagree with all other users end up having very low weights. The majority of users have weights very close to 1.0 (STEVEN: Is this true for GZH - do you have a plot of the distribution of user weights or consistencies we can include here?.

3 CORRECTING FOR REDSHIFT DEPENDENT CLASSIFICATION BIAS

Previous version of Galaxy Zoo morphology classifications (Lintott et al. 2011, Willett et al. 2013) were based on observations of galaxies in the Sloan Digital Sky Survey (SDSS) which are typically at z < 0.1. In these cases it could be assumed that there was no real evolution of the morphologies of galaxies and therefore any observed changes in the distribution of galaxies with different consensus morphologies was assumed to be due to the effects of redshift on the image quality (i.e., the reduction in physical resolution, surface brightness dimming etc). So for both previous releases of GZ morphogloies, a correction was provided for redshift dependent bias based on matching the classification fractions at the highest redshifts with those at the lowest redshift. See Bamford et al. (2009) and Willett et al. (2013) for the details.

In the GZH samples the redshift range is so large that we expect to find redshift evolution of the types and morphologies of galaxies which are seen. So the previous methods of correcting for redshift dependent bias will not work. In addition the effects of band shifting will change the images even more across these redshift ranges. Figure ?? which illustrates one possible effect of losing features in spiral galaxies at high redshift).

In order to test the effects of redshift we made images of the same galaxy at a variety of redshifts using input images from the SDSS (cite the SDSS) and the FERENGI code (cite Ferengi) to produce images from these typical of those observed in the HST surveys.

3.1 Selection of FERENGI Input Galaxies

We select 288 different galaxies in SDSS imaging to run through the FERENGI code.

The selection spanned a variety of galaxy morphologies (as indicated by GZ2 classifications), with a range of surface

Table 1. Summary of GZ Hubble Samples

Survey	$t_{\rm exp}$ seconds	Filters	Resolution "/pix	Area sq arcmin	$N_{ m galaxies}$
AEGIS	2200	F606W (V) and F814W (I)	0.03	710	
COSMOS	2028	F814W (I)	0.05	6480	
GEMS	2160/2286	F606W (V) and F850LP (z)	0.03	800	
GOODS	1000-2100s	F435W (B), F606W (V), F775W (i), F850LP (z)	0.03	320	

Figure 1. Examples of an obvious spiral and obvious elliptical at z = 0 which both look similar when redshifted to z = 0.8. See below for the description of the method for redshirting.

brightnesses, and also spanned the redshift range of SDSS targets (in $N_z=4$ bins) in order to be optimised for different target minimum redshifts in HST imaging.

The selection criteria for the different morphological categories is summarised in Table 2. The surface brightness selection ($N_{\mu}=3$) was (1) low: $\mu>21.5 \mathrm{magarsec^2}$; (2) mid: $20.5<\mu<21.5 \mathrm{magarsec^2}$; and (3) high: $\mu<20.5 \mathrm{magarsec^2}$.

For each of the four "target redshifts" (z = 0.3, 0.5, 0.8and 1.0), the images were redshifted in $\Delta z = 0.1$ bins up to z = 1.0. In addition different evolution models were assumed in FERENGI. This evolution is a crude mechanism that is suppose to mimic the brightness increase of galaxies with increasing redshift. The evolution mechanism allows us to make galaxies brighter as linear function of redshift, and that is it. It is an empirical addition to the magnitude of a galaxy of the form M' = ez + M, where M' is the corrected magnitude, e is the evolutionary correction in magnitudes. (i.e. e = -1 essentially brightens the galaxy by 1 magnitude by z=1). We ran FERENGI for values of e starting from e=0 and decreasing to e=-3.5 in $\Delta e=0.5$ steps. Depending on the target, or starting redshift we ran FERENGI for several final redshifts and different evolution models as summarized in Table 3.

Two series of example redshifted images are shown in Figure 2, both for runs with no evolution (e = 0).

Table 3. Summary of FERENGI runs

$z_{ m target}$	$N_{z m bins}$	$N_{ m evolution}$	e_{\max}	$N_{ m runs}$	$N_{ m total}$
0.3	8	7	-3.0	56	4031
0.5	6	4	-1.5	24	1728
0.8	3	3	-1.0	9	648
1.0	1	3	-1.0	3	216

Figure 3. Fake results of the FERENGI redshifting exercise. For three vote fraction levels with three surface-brightness levels and 7 evolutionary corrections each, we show the evolution of the vote fractions for feature X with redshift.

3.2 Results of FERENGI Analysis

We show here the **currently fake** results of citizen scientist classifications of images of galaxies placed at artificial redshifts. Figure \ref{figure} shows the **currently fake** change of vote fractions for the change of $p_{features}$ with redshift, for three galaxies with different vote fraction levels, three surface-brightness levels and 7 evolutionary corrections.

3.2.1 TODO LIST

We need to do:

- Calculate the magnitudes, surface brightnesses and sizes of the galaxies in the FERENGI images....
- Plot of magnitude distribution of galaxies in each of the four GZH subsamples with the magnitudes of our fake galaxies over plotted.
 - Instructions of how to link the z = 0 p_X values for

TD-1-1-0	C	C 1 1	4	-14-1 C	DEDENGI1	_
Table ∡.	Summarv	of morphological	categories s	serected for	FERENGI sampl	е.

Morphology	Label	Selection	$N_{ m objects} \ (N_z \times N_\mu)$
Features	Yes	$p_{\text{features}} > 0.8, p_{\text{odd}} < 0.1$	12
	Int	$0.3 < p_{\text{smooth}} < 0.6, p_{\text{odd}} < 0.1$	12
	No	$p_{\text{smooth}} > 0.8, p_{\text{odd}} < 0.1$	12
Merger	No	$p_{\text{features}} > 0.8, p_{\text{odd} < 0.1}, p_{\text{merger}} < 0.1$	12
	Int	$p_{\rm odd} > 0.5, 0.1 < p_{\rm merger} < 0.4$	12
	Yes	$p_{\rm odd} > 0.5, p_{\rm merger} > 0.4$	12
Edge-on	Yes	$p_{\rm edgeon} > 0.8, p_{\rm features} > 0.5$	12
	Int	$0.4 < p_{\text{edgeon}} < 0.8$, $p_{\text{features}} > 0.5$	12
	No	$p_{\rm edgeon} < 0.2, p_{\rm features} > 0.5$	12
Bar	No	$p_{\rm bar} < 0.1, p_{\rm features} > 0.5, p_{\rm edgeon} < 0.2$	24
	Int	$0.2 < p_{\text{bar}} < 0.4, p_{\text{features}} > 0.5, p_{\text{edgeon}} < 0.2$	24
	Yes	$p_{\rm bar} > 0.8, p_{\rm features} > 0.5, p_{\rm edgeon} < 0.2$	24
Visible spiral	No	$p_{\rm spiral} < 0.2, p_{\rm features} > 0.5, p_{\rm edgeon} < 0.2, p_{\rm bar} < 0.1$	12
	Int	$0.2 < p_{\text{spiral}} < 0.8, p_{\text{features}} > 0.5, p_{\text{edgeon}} < 0.2, p_{\text{bar}} < 0.1$	12
	Yes	$p_{\rm spiral} > 0.8, p_{\rm features} > 0.5, p_{\rm edgeon} < 0.2, p_{\rm bar} < 0.1$	12
Oblique Bulge Size	No	$p_{\text{nobulge}>0.6}, p_{\text{features}} > 0.5, p_{\text{edgeon}} < 0.5, p_{\text{bar}} < 0.2$	12
	Int	$p_{\text{just noticeable}} > 0.6, p_{\text{features}} > 0.5, p_{\text{edgeon}} < 0.5, p_{\text{bar}} < 0.2$	12
	Yes	$p_{\text{obvious/dominent}} > 0.5^1$, $p_{\text{features}} > 0.5$, $p_{\text{edgeon}} < 0.5$, $p_{\text{bar}} < 0.2$	12
Edge-on bulge shape	Round	$p_{\text{rounded}} > 0.5, p_{\text{features}} > 0.5, p_{\text{edgeon}} > 0.5$	12
	Boxy	$p_{\text{boxy}} > 0.4, p_{\text{features}} > 0.5, p_{\text{edgeon}} > 0.2$	12
	Non	$p_{ m nobulge} > 0.5, p_{ m features} > 0.5, p_{ m edgeon} > 0.5$	12

Figure 2. Examples of two galaxies which have been run through the FERENGI code to produce simulated HST images.

galaxies with a given size, magnitude (surface brightness) in the GZH images.

4 SUMMARY

Now people go and do science with these awesome Galaxy Zoo Hubble classifications.

ACKNOWLEDGEMENTS. This publication has been made possible by the participation of more than 200,000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at http://www.galaxyzoo.org/volunteers. Galaxy Zoo 2 was developed with the help of a grant from The Leverhulme

Trust. KS gratefully acknowledges support from Swiss National Science Foundation Grant PP00P2_138979/1.

KS, KLM, BS, CL thank ASIAA for hosting the "Citizen Science in Astronomy" workshop at which some of this analysis was done.

HST acknowledgements.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natu-

4 Lead Author et al.

ral History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington.

REFERENCES