University of Toronto

Faculty of Applied Science and Engineering

FINAL EXAMINATION, APRIL 2001

Fourth Year - Program: Electrical and Computer Engg (Elective)

ECE 417S - DIGITAL COMMUNICATION

Exam Type: D

Examiner: S. Pasupathy

- A single aid sheet (8.5"x11", two-sided, handwritten) and a non-programmable calculator are the only aids allowed.
- Answer all five [5] questions.
- The value of each question is indicated beside each question; total marks = 60.
- Start each new question on a new page.
- If you need to make any assumptions, state them clearly.
- Answers should be clear, crisp and brief; answers without logical reasoning steps showing all the work will **not** be given credit.
- Lengthy reproductions of text material should be avoided. Credit is for solving the problems.

- 12 points
- 1. The figure below shows the block schematic of a Partial Response(PRS) $(1+D+D^2)$ system.
 - (a) Write out the mathematical expressions for the PRS coder output b_k , c_k in terms of their respective inputs. (Assume that the channel is noiseless.)

(b) Assume that a_k , k = 3, 4, ..., 10 are given by $1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1$,

and write out the corresponding b_k , c_k . What is the decoding rule? Write out the corresponding \hat{a}_k . assuming first that $b_1 = b_2 = 1$ and then $b_1 = 0$; $b_2 = 1$. Does the decoded sequence and rule change under the two different assumptions? Explain.

- 12 marks
- 2. Consider finite-energy signals, non-zero over the entire interval of (0,1). Consider two signals $s_1(t)$ and $s_2(t)$ in such a space.

Use the usual inner-product for finite-energy signals, time-limited to (0,1).

- (a) Find the norm of $s_1(t)$ and $s_2(t)$ and the inner-product of these two signals in signal space.
- (b) Find the innerproduct between $s_1(t) + s_2(t)$ and $s_1(t) s_2(t)$.
- (c) Sketch a signal (non-zero over the entire interval(0,1)) that is orthogonal to both $s_1(t)$ and $s_2(t)$.
- (d) Use Gram-Schmidt procedure on $s_1(t)$ and $s_2(t)$ and find and sketch two orthonormal signals, $\phi_1(t)$ and $\phi_2(t)$ in the space.
- (e) Find and sketch a signal $s_3(t)$ (non-zero over (0,1)) that is in the subspace spanned by $s_1(t)$ and $s_2(t)$ and is orthogonal to $s_1(t)$.

- 12 marks
- 3. For the two signals shown below, assuming the usual environment of Additive White Gaussian Noise channel transmission (symbol rate=1/T), find the following:
 - (a) Sketch the causal matched-filter impulse responses.
 - (b) Relate the constants A and B such that both cases give the same peak-signal-torms noise ratio at the matched-filter noise output.
 - (c) If $\pm x(t)$ are used in equi-probable binary communication, what would be the power spectral density of the signal stream, assuming a PAM transmission at the symbol rate of 1/T.
 - (d) Suppose we want to use x(t) and y(t) for Minimum Shift Keying modulation. Sketch the signal for a sample data sequence of $0\ 0\ 1\ 0\ 1$.

- 12 marks
- 4. A discrete memoryless source emits six symbols A, B, C, D, E and F with probabilities

$$P_A = 0.44$$
; $P_B = 0.28$; $P_C = 0.03$; $P_D = 0.07$; $P_E = 0.04$; $P_F = 0.14$.

- (a) Calculate the source entropy.
- (b) The above source is to be encoded using a Huffman code with a binary alphabet (0,1) and having the average word-length with the minimum variance. Find the code, the average word-length and its variance.
- (c) Design another code for the above source using a ternary alphabet (0,1,2).
- (d) What is the maximum entropy possible for a new digital source with six possible messages? When is this maximum value achieved?
- 12 marks
- 5. A code consists of three information bits m_1, m_2, m_3 and three check bits c_1, c_2, c_3 . The transmitted sequence is $m_1c_1m_2c_2m_3c_3$. At the transmiter the check digits are formed from the following equations:

$$c_1 = m_1 \oplus m_2 \oplus m_3$$
$$c_2 = m_2 \oplus m_3$$
$$c_3 = m_1 \oplus m_2$$

- (a) How many code words are there in the code?
- (b) Write down the H matrix.
- (c) Will this code correct single errors? Why?
- (d) For the message $m_1 = 0$, $m_2 = 1$, $m_3 = 1$, find the transmitted codeword.
- (e) Assume that the sequence 1 0 1 1 0 0 is received and that no more than one error has occurred. Decode the sequence. Find the location of the error and the transmitted message $m_1m_2m_3$.