Web 3.0 Architecture & Security

Table of Contents

- 1. Overview & Learning Objectives
- 2. Lecture Notes (Expanded)
 - 2.1 Web 1.0 vs Web 2.0 vs Web 3.0 Primer
 - 2.2 Core Web 3.0 Architecture Layers
 - 2.3 Web 3.0 Design Principles
 - 2.4 Security Threat Landscape
 - 2.5 Case Studies: The DAO (2016) & Bybit Breach (2025)
- 3. Investigation Labs
- 4. Homework & Discussion Prompts
- 5. Embedded Diagrams (Graphviz)
- 6. APA-formatted References

1 Overview & Learning Objectives

- Distinguish the technological and governance differences among Web 1.0, Web 2.0 and Web 3.0.
- Identify common smart-contract, protocol and infrastructure vulnerabilities.
- Reproduce a historic exploit in a safe environment and trace attacker funds on a public test network.
- Propose layered security controls for a decentralised application.

2 Lecture Notes — Comprehensive Edition

2.1 Web 1.0 -- Web 2.0 -- Web 3.0 Primer

2.1.1 Evolutionary Context

- Web 1.0 (≈ 1990 2004) Static HyperText Markup Language pages served from a handful of centrally managed servers. No dynamic sessions; limited server-side code via Common Gateway Interface (CGI).
- Web 2.0 (≈ 2004 2020) Asynchronous JavaScript, user-generated content, application programming interfaces and mega-platforms (e.g., Facebook, YouTube). Identity delegated to Open Authorization (OAuth) providers; data lives in cloud warehouses.
- Web 3.0 (≈ 2020) Programmable blockchains, permissionless smart contracts, token incentives, self-sovereign identity and composable services executed on a deterministic state machine (e.g., Ethereum Virtual Machine EVM).

2.1.2 Comparative Breakdown

Dimension	Web 1.0 Example	Web 2.0 Example	Web 3.0 Example	Prim Security
Identity	HTTP Basic Auth	Google OAuth	Externally-Owned Account (EOA) + Ethereum Name Service	Secret k becomes single re factor
Data	MySQL on Apache	Amazon Relational Database Service (RDS)	InterPlanetary File System (IPFS) / Arweave permanent storage	Content addressi tamper-a archives
Compute	CGI scripts	AWS Lambda function	EVM byte-code or WebAssembly roll-up	Fully determir ⇒ forma proofs fe
			Decentralised	Economi

Governance	Webmaster	Corporate board	Autonomous Organisation (DAO) with on-chain voting	incentive be game (governa bribes)
Monetisation	Banner ads	Targeted advertising	Token issuance, decentralised finance staking	Complia key cust risks

2.1.3 Illustrative User Path

Web 1.0: Carol loads company.com/about.html and passively reads.

Web 2.0: Carol logs into Instagram and posts an image that Instagram stores and monetises.

Web 3.0: Carol signs a transaction with a hardware wallet; the transaction mints her photo as a non-fungible token (NFT) whose ownership record is immutable on a public ledger.

2.2 Core Architecture Layers (Deep Dive)

The Web 3.0 software stack can be visualised as a seven-layer onion. Each layer exposes a minimal, explicit interface to the layer above, enabling composability and trust minimisation.

#	Layer	Internals & Protocols	Typical Tooling
1	Client / User Interface	Wallet browser extension, message signer, transaction builder, QR code scanner	React + Ethers.js, Svelte WalletConnect, Progressive Web App offline cache
	Wallet & Key	Elliptic-curve cryptography (secp256k1) key-pairs, BIP-39 seed	MetaMask, Ledger Nand Trezor, Fireblocks

2	Management	mnemonic, BIP-32 hierarchical deterministic derivation	Multi-Party Computatio (MPC)
3	Smart-Contract / Execution Layer	Solidity byte-code, storage trie, Application Binary Interface (ABI), event logs	Hardhat, Foundry, Brownie, OpenZeppelin libraries
4	Consensus Layer	Validator set, proposer-builder separation, finality gadget (e.g., Ethereum Gasper), block gossip network	Geth, Prysm, Lighthous Solana Validator
5	Data Availability & Storage	Merkle-DAG chunking, erasure coding, pinning incentives, permanence endowments	IPFS Cluster, Arweave, Celestia namespaced-merkle-tre
6	Off-chain Services	Oracle scripts, indexer GraphQL subgraphs, miner-extractable value (MEV) relays, account abstraction bundlers	Chainlink OCR, The Graph, Flashbots, Biconomy
7	DevOps & Monitoring	Continuous integration, container signing, infrastructure-as-code, log shipping	Docker, Kubernetes, HashiCorp Vault, Grafana, OpenZeppelin Defender

2.2.1 End-to-End Transaction Lifecycle

Call-flow explanation: the signed transaction leaves the wallet, propagates through peer-to-peer gossip, is packaged into a proposal, validated via proof-of-stake attestation, executed by the EVM and finally indexed for front-end consumption.

2.2.2 Smart-Contract Storage Anatomy

A Solidity contract persists data inside a **Merkle-Patricia Trie**. Each uint256 or mapping slot is addressed by keccak256(slot-position). The deterministic layout enables:

- Static-analysis tools to reason about storage collisions.
- Incremental state diffs for light clients.

Example: for the Treasury contract below, balances[address] is found at

```
keccak256(abi.encode(address, 0))
```

because it occupies slot 0.

```
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.24;
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
/// @title Minimal Treasury Vault
/// @dev Demonstrates pull-over-push withdrawal and event logging.
contract Treasury is ReentrancyGuard {
    mapping(address => uint256) private balances;
    event Deposit(address indexed from, uint256 amount);
    event Withdraw(address indexed to, uint256 amount);
    function deposit() external payable {
        balances[msq.sender] += msq.value;
        emit Deposit(msg.sender, msg.value);
    }
    function withdraw(uint256 amount) external nonReentrant {
        require(balances[msa.sender] >= amount. "Insufficient
balance"):
        balances[msq.sender] -= amount;
```

```
emit Withdraw(msg.sender, amount);
  (bool ok, ) = msg.sender.call{value: amount}("");
  require(ok, "Transfer failed");
}
```

2.3 Web 3.0 Design Principles (Highlighted)

- Decentralisation compute and storage replicated across thousands of nodes, eliminating single control points.
- Semantic Interoperability self-describing data and contracts allow programmes (and artificial agents) to compose services without brittle adapters.
- Artificial Intelligence machine-learning oracles inject predictive insights (e.g., volatility feeds) while zero-knowledge proofs verify inference integrity.
- Ubiquitous Connectivity edge devices, sensors and browsers interact directly with blockchains using lightweight protocols such as JSON-RPC over WebSockets.
- Trust-Minimised Execution deterministic smart contracts plus cryptographic consensus replace platform promises, shrinking the trusted-computing base.

Mnemonic: **D-S-A-U-T** (Decentralisation, Semantics, AI, Ubiquitous connectivity, Trust minimisation).

2.4 Security Threat Landscape

Layer	Attack Vector	Detection -> Response Toolkit
Wallet	Seed-phrase phishing, clipboard malware	Hardware wallets, domain-bound signing, passphrase shard backup

Smart-Contract	Re-entrancy, storage collision, tx-origin check misuse	Slither static audit, Echidna fuzzing, invariant formal proofs (Certora)
Protocol	Long-range attack, proposer equivocation, time warp	Fork-choice monitoring, stake-weight diversity, distributed key generation
Bridge & Oracle	Validator collusion, Merkle proof spoofing	Light-client relay contracts, cryptographic attestation enclave, threshold multi-sig
DeFi Economic	Flash-loan price manipulation, sandwich front-running, miner-extractable value (MEV)	Time-weighted average price oracles, anti-MEV bundle relay, forced-inclusion auctions
Off-chain Infra	CI/CD supply-chain malware, misconfigured object storage (e.g., public Amazon Simple Storage Service bucket)	SBOM attestation, policy-as-code (Open Policy Agent), object-lock legal hold

A canonical **STRIDE-on-Web 3.0** mapping is provided in *docs/stride-matrix.csv* (not shown here).

2.5 Case Studies and Root-Cause Narratives

This section dissects two landmark security incidents, providing code-level forensics, attack-chain diagrams, and a structured

lessons-learned catalogue that can be mapped directly onto preventive controls in Sections 2.2 and 2.4.

2.5.1 The DAO Exploit (2016)

Attribute	Detail
Attack Vector	Recursive call enabled by missing state update before external call (splitDAO)
Funds Drained	\approx 3.6 million Ether — valued around US \$50 million at the time (out of \approx US \$168 million total raised)
Detection Lag	Roughly 3 hours; withdrawal count anomaly surfaced on community explorer channels
Resolution	Community hard-fork at block 1 920 000 on 20 July 2016; Ethereum Classic chain preserved original state

Alignment with Mehar et al. (2017)

The case-study in "Understanding a Revolutionary and Flawed Grand Experiment in Blockchain: The DAO Attack" lists:

- anonymous attacker siphoning > US \$50 M;
- exploitation of DAO's recursive withdraw flaw;
- subsequent community vote leading to the ledger-rewind fork;
- controversy around "code-is-law" vs bailout ethos; incorporated in Lesson 4 below.

Vulnerable Code (simplified)

```
function splitDAO(uint withdrawAmount) {
    if (balances[msg.sender] >= withdrawAmount) {
        msg.sender.call.value(withdrawAmount)(); // external call
FIRST
        balances[msg.sender] -= withdrawAmount; // state change
LAST (bug)
    }
}
```

Secure Refactor (Checks-Effects-Interactions + nonReentrant):

Graphviz – Exploit Loop


```
digraph Reentrancy {
  rankdir=LR;
  node [shape=box, fontsize=10];
  Attacker -> "splitDAO()" [label="1. call"];
  "splitDAO()" -> Attacker [label="2. fallback", style=dashed];
  Attacker -> "splitDAO()" [label="3. re-enter", style=dashed];
  "splitDAO()" -> Treasury [label="4. drain"];
}
```

Key Lessons (per Mehar et al.)

- 1. Check-Effects-Interactions pattern is mandatory.
- 2. Off-chain voting and fork governance should have predefined emergency playbooks.
- 3. Automated testing must include fallback path coverage.
- 4. Immutable ledgers require a social-layer override—"code is law" is not absolute.

Bybit Heist (February 21, 2025)

Attribute	Detail
Amount Stolen	≈ US \$1.5 billion in Ethereum-based tokens
Attribution	Lazarus Group (North Korea)
Initial Laundering	≈ US \$160 million moved within 48 hours
Root Cause	Vulnerability in Safe Wallet (open-source multisig UI) exploited during routine cold-wallet → hot-wallet transfer; attackers injected malicious frontend code and socially engineered multisig co-signers to approve the tampered transaction
Multisig Failure Point	Transaction metadata spoofed → signers believed they were approving a legitimate internal transfer

Simplified Attack Sequence

- Reconnaissance & Weaponisation Adversary audits Safe Wallet source, locates unchecked tx.to rendering in the React component.
- 2. **Initial Access** Phishing campaign compromises build pipeline; malicious bundle pushed to Bybit's internal package mirror.
- 3. **Execution** On Feb 21, 2025 CEO Ben Zhou and other signers load the poisoned UI, review an *apparently valid* transfer request and co-sign.
- 4. **Privilege Escalation & Impact** Malcode swaps destination address with attacker wallet just before hardware signing prompt.
- 5. **Exfiltration** Funds bridged from Ethereum to Tron, then swapped into privacy coins via decentralised exchanges.
- 6. **Obfuscation** Peel-chain dispersal across >50 wallets; mixers and privacy chains make tracing onerous.

Timeline (UTC)

Time	Event

18:03	Multisig UI prompts first signer (legitimate transaction hash)
18:05	Malicious bundle auto-substitutes attacker address as signature payload broadcast
18:07– 18:12	Remaining signers co-sign; Safe Wallet executes batch transfer of \approx US \$1.5 bn
18:18	First laundering hop detected by on-chain analytics
20:40	\approx US \$160 m already exchanged across decentralised exchanges

Compromised Multisig Flow

```
digraph BybitHeist {
  rankdir=LR;
  node [shape=box, fontsize=10];
  "Poisoned UI" -> "Signer 1 HSM" [label="sign"];
  "Signer 1 HSM" -> "Malicious Bundle" [label="payload swap",
  style=dashed];
  "Malicious Bundle" -> "Signer 2 & 3" [label="sign"];
  "Signer 2 & 3" -> "Ethereum Mainnet" [label="broadcast tx"];
  "Ethereum Mainnet" -> "Attacker Wallet" [label="1.5 B USD eq."];
  "Attacker Wallet" -> "DEX / Bridges" [label="swap & bridge"];
}
```

Observed Indicators of Compromise (IOCs)

- SHA-256 of malicious Safe Wallet bundle: aa4e...b7f
- Initial attacker wallet: 0x59cd...c17e
- Bridge contract interactions: Tron Bridge block 389 217, Tx 0x8fab...
 c2b1.

Lessons Learned

- Third-Party Dependency Hygiene Pin package hashes and enforce reproducible builds.
- 2. Signer UX Transparency Display human-readable pre-image of

- destination address on hardware screen.
- 3. **Multisig Anomaly Detection** Out-of-band co-signer confirmation channel and statistical alerts on transfer size.
- 4. **Cold-Wallet Transfer Policy** Minimum 24-hour time-lock on large withdrawals.

Mitigation in Progress

- Adoption of threshold Multi-Party Computation signing with geo-distributed shards.
- Continuous security audits of wallet software with Software Bill of Materials attestation.
- EIP-7611 emergency deny-list smart contract integrated across major exchanges.

2.5.3 Lessons Synthesis Lessons Synthesis

Category	Observation	Recommended Control
Coding Practice	State update after external call caused DAO exploit	Checks-Effects-Interactions pattern; Slither re-entrancy detector
Key Custody	HSM override permitted without quorum	Geo-fenced threshold signatures; enforced four-eyes principle
Monitoring	Exchange alerts triggered only after >20 min	Sub-minute telemetry with anomaly detection and auditor fail-safe
Community/Governance	Fork decision created chain split	Pre-defined incident response playbooks; on-chain vote cooldown

2.5.4 Security Architecture Implications

Why Conventional Web 2.0 Security Architectures Fall Short

- **Central trust anchors** (cloud provider, identity federation) conflict with Web 3.0's *trust-minimised* ethos.
- **Perimeter-centric controls** are ineffective when every blockchain node is reachable over the public Internet.
- Mutable infrastructure (patched servers, rotating keys) contrasts with immutable smart contracts that demand preventive rather than reactive security.
- Account recovery flows built on email or SMS do not exist; loss of a private key equals irrevocable asset loss.

Framework Relevance Matrix

Framework	Core Premise	Relevance to Web	Gaps / Req Adaptatio
Defense-in-Depth	Multiple stacked safeguards; breach of one tier mitigated by the next	Still useful: re-imagined tiers become on-chain logic, off-chain services, key custody and governance	Traditional fir and network segmentation limited utility peer-to-peer
Zero Trust Architecture (ZTA)	"Never trust, always verify" at each request	Aligns with wallet-centric authentication and contract-level access checks	Must shift verification fi identity-prov tokens to cryptographi proofs and on-chain assertions
	Validate a	Native to	Circuit comp

Zero-Knowledge Proofs (ZKP)	statement without exposing sensitive data	privacy-preserving decentralised finance and regulator-friendly compliance proofs	and auditabil remain early- tooling matui uneven
Secure Software Development Lifecycle (SSDLC)	Embed security gates into every phase of development	Critical for smart-contract pipelines, static analysis and formal verification	Needs blockchain-s scanners (Sli fuzzers (Echi and byte-coc invariant tool
Cybersecurity Mesh Architecture (CSMA)	Distributed policy enforcement via interconnected security services	Resonant with oracle quorums, bridge guardians and cross-chain reputation feeds	Requires on- policy oracle signed telem avoid single; of failure
Adaptive Security Architecture (ASA)	Continuous monitoring, analytics and dynamic response	Maps to on-chain telemetry streams and auto-pause kill-switch contracts	Decentralised analytics infrastructure nascent; false-positive governance occurrentious
Secure Access Service Edge (SASE)	Cloud edge + zero-trust network access for enterprise users	Largely irrelevant because blockchain nodes bypass enterprise edge; remains useful for DevOps pipelines and key-management consoles	Must integral hardware sig modules and threshold signatures ra than virtual p networks

Web 3.0-Native Reference Security Architecture – Detailed Breakdown

Layer	Core Purpose	Key Terms Explained
Consensus & Network	Establish canonical blockchain state and propagate blocks/transactions.	Validator slashing – Economic penalty (loss of stake) imposed on validators that double-sign, equivocate or remain offline, deterring mis-behaviour. Proposer-builder separation (PBS) – Protocol split where one party constructs a block (searches MEV-optimal order) and another finalises it, reducing censorship and centralisation risks. Encrypted peer-to-peer gossip – Transport layer security (e.g., libp2p Noise, QUIC + TLS) wrapping block/tx messages so eavesdroppers cannot map validator sets or inject false data.
Execution	Deterministically run smart-contract logic and update state.	Formally verified byte-code – Proving properties (e.g., no overflow, termination) on EVM or WebAssembly using the K framework, Coq, or Cairo-safe-LLVM. Runtime re-entrancy guards – Mutex-style modifiers (nonReentrant) or storage write-ahead patterns preventing recursive calls from draining funds.

		Fee-metering isolation – Gas accounting that forces the caller to pre-pay for compute/storage so denial-of-service costs are externalised to the attacker.
Data	Persist large objects and ensure long-term availability.	Content addressing – Identifiers (CIDs) derived from the hash of the content itself; any byte change results in a new address, guaranteeing integrity (IPFS, Arweave). Proof-of-replication (PoRep) – Cryptographic scheme proving a storage node holds a unique, full copy of data (Filecoin). Erasure-coded availability – Splitting data into N shards such that any K shards reconstruct the file; light clients sample shards to verify availability (Celestia, EigenDA).
		Hardware secure element (HSE) – Tamper-resistant chip (Ledger Secure Element, iPhone Secure Enclave) isolating signing keys from host OS. Multi-Party Computation

Key Custody
& Wallet

Secure private keys and user authorisations.

Secure private keys and user authorisations.

Secure private keys and user signature without reconstructing the full private key (Fireblocks, ZenGo).

Socially recoverable accounts – Smart-contract wallets

		rotate keys if the owner loses credentials; avoids exchange custody risks.
Interface	Bridge human interaction with on-chain actions.	Domain-bound signing prompts – Signatures include the web-origin to mitigate phishing (EIP-4361, Sign-In With Ethereum). Sub-Resource Integrity (SRI) – HTML attribute (integrity=sha256) ensuring fetched scripts match expected hashes. Supply-chain attestation – In-toto/SIsa provenance metadata proving front-end bundles are built from audited source using reproducible compilers.
Governance	Coordinate	Time-locked upgrades – Programmable delay (e.g., 48 h) between proposal approval and execution, giving stakeholders chance to exit or veto. 4-of-7 multi-signature emergency pause – Guardian council requiring 4 signatures

upgrades and

emergency actions.

& Response

(EIP-4337) that allow

pre-authorised "quardians" to

out of 7 hardware keys to toggle

On-chain incident playbooks – Pre-coded runbooks (smart contracts) that automatically run containment steps (freeze

a circuitBreaker that halts

critical functions.

		tokens, deploy patch) when a trigger transaction is executed.
Observability & Al	Detect anomalies and enforce adaptive controls.	Decentralised message buses emitting signed metrics – Validators or oracles publish telemetry (latency, balance deltas) over peer-to-peer pub/sub with cryptographic signatures (Waku v2, GossipSub). Anomaly-detection models – Machine-learning or statistical rules (e.g., Z-score on transfer size) executed off-chain; severe alerts produce a signed payload that a control contract uses to throttle or pause the protocol automatically.

Web 3.0 Security Reference Architecture

Governance & Response Layer

Observability & Artificial-Intelligence Layer


```
digraph Web3SecRA {
  rankdir=TB;
  node [shape=box, style=rounded, fontsize=10];
  "Governance & Response Layer" -> "Observability &
Artificial-Intelligence Layer";
  "Observability & Artificial-Intelligence Layer" -> "Interface
Layer";
  "Interface Layer" -> "Key Custody & Wallet Layer";
  "Key Custody & Wallet Layer" -> "Execution Layer";
  "Execution Layer" -> "Consensus & Network Layer";
  "Consensus & Network Layer" -> "Data Layer";
}
```

6 APA References

- Chainalysis. (2025, March). 2025 Crypto Crime Report: Introduction. https://www.chainalysis.com/
- Chainalysis. (2025, March 22). Collaboration in the wake of record-breaking Bybit theft. https://www.chainalysis.com/
- Financial Times. (2025, February 22). Hackers steal \$1.5 bn from crypto exchange Bybit.
- Gemini. (n.d.). What was the DAO hack? https://www.gemini.com/
- Kasireddy, P. (2021). The architecture of a Web 3.0 application. https://preethikasireddy.com/
- Medium. (2022). Web3 architecture and tech stack. https://medium.com/
- Associated Press. (2025, February 22). Cryptocurrency exchange says it was victim of \$1.5 bn hack.
- CoinDesk. (2023). How the DAO hack changed Ethereum. https://coindesk.com/