Lecture 24: Operational amplifier (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Noninverting amplifier (1)

- Calculate the gain.
 - The input resistance of the op amp is large.

$$V_{in2} = \frac{R_2}{R_1 + R_2} V_{out}$$

Due to the high op amp gain,

$$V_{in2} \approx V_{in}$$

Therefore, the "closed-loop" gain is

$$\frac{V_{out}}{V_{in}} \approx \frac{R_1 + R_2}{R_2}$$

Noninverting amplifier (2)

- Repeat it again with a finite A_0 .
 - Now,

$$V_{out} = A_0(V_{in} - V_{in2})$$

- Remember that $V_{in2} = \frac{R_2}{R_1 + R_2} V_{out}$.

Then, the closed-loop gain is

$$\frac{V_{out}}{V_{in}} = \frac{A_0}{1 + \frac{R_2}{R_1 + R_2} A_0}$$

Example 8.3

- Let us assume that $A_0 = 1000$.
 - (a)
 - When we have $\frac{R_1}{R_2} = 4$, we expect to have a closed-loop gain of 5. (For a case of an ideal op amp)
 - However, with a finite A_0 , the gain becomes $\frac{1000}{201} \approx 4.9751$. About 0.5 % reduction. It is called a gain error.

(b)

- When we have $\frac{R_1}{R_2} = 49$, we expect to have a closed-loop gain of 50.
- The gain becomes $\frac{1000}{21} \approx 47.619$. About 4.8 % reduction.
- A higher closed-loop gain inevitably suffers from less accuracy.

Inverting amplifier (1)

- The inverting input is called a "virtual ground."
 - Then, the output voltage is

$$V_{out} = -R_1 \frac{V_{in}}{R_2}$$

– Its input impedance is equal to R_2 .

Inverting amplifier (2)

- Repeat it again with a finite A₀.
 - The op amp states that

$$V_{out} = A_0(-V_{in2})$$

The KCL at the inverting node yields

$$\frac{V_{in} - V_{in2}}{R_2} = \frac{V_{in2} - V_{out}}{R_1}$$

- After manipulation,

$$\frac{V_{out}}{V_{in}} = -\frac{1}{\frac{R_2}{R_1} + \frac{1}{A_0} \left(1 + \frac{R_2}{R_1}\right)}$$

Example 8.4

- Let us assume that $A_0 = 5000$.
 - When we want to have a nominal gain of 4 (Actually -4), $\frac{R_1}{R_2} = 4$.
 - What is the gain error due to the finite A_0 ? It is about 0.1 %.
 - An input impedance of $10 k\Omega$ is required.
 - Since the input inpedance is approximately R_2 , we choose $R_2=10~k\Omega$ and $R_1=40~k\Omega$.

Integrator

- Instead of a resistor, a capacitor is introduced.
 - In the time domain,

$$\frac{V_1}{R_1} = -C_1 \frac{dV_{out}}{dt}$$

