Tensors

"ML generalization of vectors and matrices to any number of dimensions"

scalar	X	Dimensions	Mathematical Name	Description	
vector	$\begin{bmatrix} \chi_1 & \chi_2 & \chi_3 \end{bmatrix}$	0	scalar	magnitude only	-
	$[\chi, \chi]$	1	vector	array	
matrix	X1,1 X1,2 X2,1 X2,2	2	matrix	flat table, e.g., square	
		3	3-tensor	3D table, e.g., cube	
3-tensor		n	<i>n</i> -tensor	higher dimensional	K

Scalars

- No dimensions
- Single number
- Denoted in lowercase, italics, e.g.: x
- Should be typed, like all other tensors: e.g., int, float32

1

Vectors

- One-dimensional array of numbers
- Denoted in lowercase, italics, bold, e.g.: x
- Arranged in an order, so element can be accessed by its index
 - Elements are scalars so *not* bold, e.g., second element of x is x_2
- Representing a point in space:
 - Vector of length two represents location in 2D matrix (shown)
 - Length of three represents location in 3D cube
 - Length of n represents location in n-dimensional tensor

Vector Transposition

$$\begin{bmatrix} \chi_1 & \chi_2 & \chi_3 \end{bmatrix}^T = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$$
row vector

Shape is $(1,3)$

$$(3,1)$$

Norms

Vectors represent a magnitude and direction from origin:

Norms are functions that quantify vector magnitude.

L² Norm

Described by:

$$\|\chi\|_2 = \sqrt{\sum_i \chi_i^2}$$

- Measures simple (Euclidean) distance from origin
- Most common norm in machine learning
 - Instead of $||x||_2$, it can be denoted as ||x||

.

Unit Vectors

- Special case of vector where its length is equal to one
- Technically, x is a unit vector with "unit norm", i.e.: ||x|| = 1

L¹ Norm

Described by:

$$\|\chi\|_1 = \sum_i |\chi_i|$$

- Another common norm in ML
- Varies linearly at all locations whether near or far from origin
- Used whenever difference between zero and non-zero is key

Squared L² Norm

Described by:
$$\|\chi\|_2^2 = \sum_i \chi_i^2$$

- Computationally cheaper to use than L^2 norm because:
 - Squared L^2 norm equals simply $\mathbf{x}^T \mathbf{x}$
 - Derivative (used to train many ML algorithms) of element x requires that element alone, whereas L^2 norm requires x vector
- Downside is it grows slowly near origin so can't be used if distinguishing between zero and near-zero is important

Max Norm (or L[∞] Norm)

Described by:

$$\|\chi\|_{\infty} = \max_{i} |\chi_{i}|$$

- Final norm we'll discuss; also occurs frequently in ML
- Returns the absolute value of the largest-magnitude element

Generalized L^p Norm

Described by:

$$\|\mathbf{x}\|_{\mathbf{p}} = \left(\sum_{i} |\mathbf{x}_{i}|^{\mathbf{p}}\right)^{\frac{1}{p}}$$

- p must be:
 - A real number
 - Greater than or equal to one
- Can derive L^1 , L^2 , and L^∞ norm formulae by substituting for p
- Norms, particularly L^1 and L^2 , used to regularize objective functions

Orthogonal Vectors

- x and y are orthogonal vectors if $x^Ty = 0$
- Are at 90° angle to each other (assuming non-zero norms)
- n-dimensional space has max n mutually orthogonal vectors (again, assuming non-zero norms)
- Orthonormal vectors are orthogonal and all have unit norm
 - Basis vectors are an example

Hands-on code demo

Basis Vectors

- Can be scaled to represent any vector in a given vector space
- Typically use unit vectors along axes of vector space (shown)

Exercises

1. What is the transpose of this vector?

2. Using algebraic notation, what are the dimensions of this matrix *Y*?

$$y = \begin{bmatrix} 42 & 4 & 7 & 99 \\ -99 & -3 & 17 & 22 \end{bmatrix}$$

3. Using algebraic notation, what is the position of the element in this matrix \mathbf{Y} with the value of 17?

Generic Tensor Notation

- Upper-case, bold, italics, sans serif, e.g., X
- In a 4-tensor \boldsymbol{X} , element at position (i, j, k, l) denoted as $\boldsymbol{X}_{(i, j, k, l)}$

Segment 1: Data Structures for Algebra

- What Linear Algebra Is
- A Brief History of Algebra
- Tensors
- Scalars
- Vectors and Vector Transposition
- Norms and Unit Vectors
- Basis, Orthogonal, and Orthonormal Vectors
- Arrays in NumPy
- Matrices
- Tensors in TensorFlow and PyTorch

ML Foundations Series

Intro to Linear Algebra is foundational for:

- 1. Intro to Linear Algebra
- 2. Linear Algebra II: Matrix Operations
- 3. Calculus I: Limits & Derivatives
- 4. Calculus II: Partial Derivatives & Integrals
- 5. Probability & Information Theory
- 6. Intro to Statistics
- 7. Algorithms & Data Structures
- 8. Optimization

Intro to Linear Algebra

- 1. Data Structures for Algebra
- 2. Common Tensor Operations
- 3. Matrix Properties

Segment 2: Tensor Operations

- Tensor Transposition
- Basic Tensor Arithmetic
- Reduction
- The Dot Product
- Solving Linear Systems

Tensor Transposition

- Transpose of scalar is itself, e.g.: $x^{T} = x$
- Transpose of vector, seen earlier, converts column to row (and vice versa)
- Scalar and vector transposition are special cases of matrix transposition:
 - Flip of axes over main diagonal such that:

$$(X^{T})_{i,j} = X_{j,i}$$

$$\begin{bmatrix} \chi_{1,1} & \chi_{1,2} \\ \chi_{2,1} & \chi_{2,2} \\ \chi_{3,1} & \chi_{3,2} \end{bmatrix}^{T} = \begin{bmatrix} \chi_{1,i} & \chi_{2,1} & \chi_{3,1} \\ \chi_{1,2} & \chi_{2,2} & \chi_{3,2} \end{bmatrix}$$

Exercises

1. What is
$$Y^{T}$$
?

$$y = \begin{bmatrix} 42 & 4 & 7 & 99 \\ -99 & -3 & 17 & 22 \end{bmatrix}$$

2. What is the Hadamard product of these matrices?

$$\begin{bmatrix} 25 & 10 \\ -2 & 1 \end{bmatrix} \bigcirc \begin{bmatrix} -1 & 7 \\ 10 & 8 \end{bmatrix}$$

3. What is the dot product of the tensors w and x?

$$\omega = [-1 \ 2 \ -2]$$
 $\alpha = [5 \ 10 \ 0]$