Documento de Visão

Aprenda QEE

1. Introdução

1.1 Visão Geral

Este documento permite o entendimento do escopo e propósito do software que será construído delimitando todas as características, informações necessárias, participação dos envolvidos, recursos e restrições para o desenvolvimento do produto final.

1.2 Escopo

Com o interesse de criação da disciplina de Qualidade da Energia Elétrica (QEE) no curso da Engenharia de Energia da Universidade de Brasília, pensou-se na criação de uma ferramenta que pudesse auxiliar tanto o docente quanto aos alunos no processo de ensino-aprendizado. A utilização de uma ferramenta facilitaria a explanação dos conceitos pelo docente e a visualização e entendimento dos fenômenos da QEE pelos alunos, o que não seria tão simples com as ferramentas convencionais de ensino como quadro, projetor, entre outros.

Também, com o desenvolvimento desta ferramenta de ensino haverá maior possibilidade de interação entre aluno-professor durante a apresentação do conteúdo que poderá despertar maior interesse no aprendizado e, assim, menores índices de evasão de alunos da disciplina e de reprovações.

Dessa maneira, utilizando-se como referência uma ferramenta de ensino de QEE já existente, o Power Quality Teaching Toy (PQTT), a **Aprenda QEE** irá apresentar de forma didática, além das simulações já existentes no PQTT, algumas outras que não foram acrescentadas. A ferramenta estará disponível de forma livre para qualquer pessoa da Universidade de Brasília que tenha interesse em aprender sobre o assunto .

2. Posicionamento

2.1 Oportunidade de Negócios

Com a inserção da disciplina de QEE no curso da Engenharia de Energia da Universidade de Brasília, a proposta de criação de uma ferramenta de ensino que aborde os conceitos por meio de simulações dos fenômenos visa estimular o interesse dos alunos pelo conteúdo mediante interação com o software e, também, facilitar o processo de ensino-aprendizado no ambiente da sala de aula.

2.2 Descrição do Problema

O problema é	Dificuldade de explanação dos fenômenos de QEE apenas com as ferramentas convencionais de ensino como quadro, projetor, entre outros.
que afeta	os alunos no entendimento e absorção do conteúdo da matéria
cujo impacto é	a evasão dos alunos da disciplina e maiores índices de reprovação
uma boa solução seria	criação de uma ferramenta de ensino que apresente as simulações de forma didática

2.3 Sentença de Posição do Produto

Para	os alunos e discentes da UnB
que	necessitam de um ambiente que facilite o entendimento e explanação do conteúdo abordado na disciplina
а	a Aprenda QEE
que	permite efetuar simulações

diferente do	Power Quality Teaching Toy (PQTT)
nosso produto	fornece as simulações que ainda não foram desenvolvidas no PQTT

3. Descrição dos Envolvidos e dos Usuários

3.1 Resumo dos Envolvidos

Nome	Descrição	Responsabilidade
Rita Figueiredo	Graduanda da Universidade de Brasília do curso da Engenharia de Energia	Fazer especificação da ferramenta
Jorge Cormane	Discente da Universidade de Brasília do curso da Engenharia de Energia	Fazer especificação da ferramenta
Desenvolvedores	Graduandos da Universidade de Brasília do curso da Engenharia de Software	Desenvolver a ferramenta
Usuários	Alunos e professores da Universidade de Brasília	Executar simulações com o software

3.2 Ambiente de Usuário

A ferramenta terá aplicação que funcione para Windows e Linux.

3.4 Perfis dos Envolvidos

3.4.1 Graduanda

Representantes	Rita Figueiredo
Descrição	Aluna
Tipo	Estudante da Universidade de Brasília da disciplina de Trabalho de Conclusão de Curso 2
Responsabilidades	Especificação do software
Critérios de Sucesso	A implementação do software de acordo com os requisitos definidos
Envolvimentos	Alto

3.4.2 Orientador

Representantes	Jorge Cormane
Descrição	Discente
Tipo	Discente da Universidade de Brasília do curso de Engenharia de Energia interessado na implantação da disciplina de QEE
Responsabilidades	Especificação do software

Critérios de Sucesso	A implementação do software de acordo com os requisitos definidos
Envolvimentos	Médio

3.4.3 Desenvolvedores

Representantes	Profissionais da área de TI
Descrição	Desenvolvedores
Tipo	Profissionais da área de TI
Responsabilidades	Desenvolver, testar e implantar a aplicação
Critérios de Sucesso	Implementar a solução de acordo com a especificação do Software
Envolvimentos	Alto

3.6 Principais necessidades dos Usuários ou dos Envolvidos

Necessidade	Solução atual	Solução proposta
Fazer simulações.	usar o PQTT	Utilizar o Aprenda QEE
Efetuar simulações que não estão presentes no PQTT de forma prática e didática.	Tentar simular com auxílio de calculadora e/ou Matlab.	Utilizar o Aprenda QEE.

3.7 Alternativas e Concorrência

3.7.1 Power Quality Teaching Toy (PQTT)

O PQTT é uma ferramenta didática do Power Standards Lab para ensino da QEE. A ferramenta é encontrada livremente na internet e foi criada por Alex McEachern. A primeira publicação foi em 2003 e, desde então, a última revisão foi realizada em 2005. A Figura 1, apresenta a página inicial do programa.

Figura 1: Página inicial do PQTT. Fonte: Autora.

Diferente do PQTT, a **Aprenda QEE** irá abordar outros fenômenos da QEE qua ainda não foram inseridos .O sistema feito pelo Power Standards Lab que fornece os seguintes tipos de simulações:

- Simulação 1: fluxo de potência fundamental
- Simulação 2: distorção harmônica

- Simulação 3: fluxo de potência harmônico
- Simulação 4: sequência de fases dos harmônicos
- Simulação 5: sequência de vetores fundamentais
- Simulação 6: efeito flicker
- Simulação 7: efeitos de afundamento de tensão
- Simulação 8: fonte de impedância de distorção

Porém o sistema não possui as seguintes simulações:

- Simulação 9: fator de potência
- Simulação 10: resposta em frequência
- Simulação 11: filtros
- Simulação 12: causas do afundamento de tensão, entre outros.

4. Visão Geral do Produto

4.1 Perspectiva do Produto

O Aprenda QEE irá fornecer de forma gratuita a simulação de vários fenômenos da disciplina de QEE facilitando o entendimento do conteúdo pelos alunos da Engenharia de Energia e, também, facilitar a exposição dos conceitos pelo discente durante as aulas da disciplina de QEE.

4.2 Recursos do Produto

Benefícios para o Cliente	Recurso de Suporte
Software gratuito	Fornecimento e utilização do Software de forma gratuita pelos usuários.
Simulações adicionadas	O software fornece a simulação de vários cálculos que não existem nos concorrentes atualmente.

5. Funcionalidades do Produto

O sistema oferece as seguintes funcionalidades ao usuário:

- Simular fluxo de potência fundamental (Simulação 1);
- Simular distorção harmônica (Simulação 2);
- Simular fluxo de potência harmônico (Simulação 3);

- Simular sequência de fases dos harmônicos (Simulação 4);
- Simular seguência de vetores fundamentais (Simulação 5);
- Simular o fator de potência (Simulação 9);
- Simular resposta em frequência (Simulação 10);
- Simular filtros (Simulação 11);
- Simular causas do afundamento de tensão (Simulação 12);

6. Restrições

6.1 Restrições de Design

O sistema deve apresentar de forma correta e entendível todos os gráficos e resultados das entradas inseridas pelos usuários. Quando alguma informação não ficar adequada no espaço do gráfico deve ser reorganizado de forma a melhorar a compreensão dele.

6.2 Restrições de Implementação

O sistema não tem restrições de linguagens ou tecnologias para implementação, porém deve funcionar em Sistemas Operacionais Windows e Linux.

7. Requisitos Não-Funcionais

7.1 Requisitos de Suportabilidade

- A aplicação deve funcionar em sistemas operacionais Windows (a partir da versão 7) e Linux (Debian e Ubuntu a partir do 14.04).
- O sistema pode ser desenvolvido para plataformas web ou desktop, desde que atendam o tópico anterior.

7.2 Requisitos de Design

- O design do sistema deve garantir o entendimento de toda interação com o usuário, desde inserção de dados como apresentação de resultados.
- O Sistema deve ter mecanismos de organização de Layout, ampliação ou contraste de cores quando for identificado a necessidade.
- Quando algum dado informado pelo usuário não for adequado, mensagens de erro devem ser apresentadas informando o tipo do erro para o usuário.

• Se algum erro inesperado ocorrer, deve ser informado ao usuário.

7.3 Requisitos de Desempenho

 O sistema deve apresentar os resultados dos cálculos em menos de 3 segundos após a requisição do usuário.

8. Referências Bibliográficas

IBM.com. *Vision Document*. Disponível em:http://www.ibm.com/support/knowledgecenter/SSYMRC_4.0.5/com.ibm.rational.rrm.help.doc/topics/r_vision_doc.html. 08 de Outubro de 2017 às 09:29.

FUNPAR.UFPR.br. *Visão*. Disponível em: http://www.funpar.ufpr.br:8080/rup/webtmpl/templates/req/rup_vision.htm. 08 de Outubro de 2017 às 09:25.

POWERSTANDARDS.com Resources. Disponível em: https://www.powerstandards.com/resources/teaching-toy/. 08 de Outubro de 2017 às 10:16.