Unit-7 Polyphase circuits

Prepared by:

Jigar Sarda

M & V Patel Department of Electrical Engineering

jigarsarda.ee@charusat.ac.in

Introduction

- The generator producing a single-phase supply has only one armature winding.
- But if the generator is arranged to have three separate but identical winding displaced 120 degree apart and rotate in a common magnetic field, it produces three voltages of same magnitude and frequency but displaced by 120 degree electrical from one another. This is called a three-phase system.

Advantages of 3-phase system over ³ single-phase system

- 1. **Constant Power:-** In a single phase system, output power varies sinusoidally at a frequency twice the supply frequency.
- This pulsating nature of current is harmful to some applications whereas the balanced 3-phase system supplies constant current at all instants of time.
- 2. **Self start:-** The 3-phase systems are self starting as they do not require any starting device.
- ▶ However, single phase systems require starting device.

Advantages of 3-phase system over single-phase system

- 3. **Greater output:-** The power generated by a 3-phase system is greater than that of a single phase system for a given volume and weight of the generator.
- ▶ This is the distinct advantages over the single phase generator
- 4. **More economical:-** The 3-phase system is much smaller and less expensive than single phase system because less material is required for a given output power at a given voltage.

Advantages of 3-phase system over single-phase system

- 5. Less voltage drop: The voltage drop from the generator to the load is less in a 3-phase system in comparison to the single-phase system
- 6. **Power transmission economics:-** The conductor material required to transmit a given power at a given voltage of material required in single phase system.
- ▶ This means a saving in material and strength of transmitting towers.
- 7. **High Efficiency:-** The 3-phase motors are efficient and have a higher power factor than single phase motors of the same capacity.

Phase sequence

- In three phase system, there are three voltages having same magnitude and frequency displaced by an electrical angle of 120 degree.
- They are attaining their positive maximum value in a particular order.
- The order in which voltages in the three-phase attain their maximum positive value is known as phase sequence.

Voltage and current relation in star connected system

- The emf across each winding is called phase voltage.
- They are denoted by E_{RN} , E_{YN} and E_{BN} .
- The voltage between any two lines is called line voltage.
- They are represented by V_{RY} , V_{YB} and V_{BR} respectively.
- Similarly currents flowing in the each winding is known as the phase current and current flowing in each line is called the line current.

Since the system is balanced, $I_R = I_Y = I_B = I_{Ph}$ $I_{L1} = I_{L2} = I_{L3} = I_L$ $E_{RN} = E_{YN} = E_{BN} = E_{Ph}$ $V_{RY} = V_{YB} = V_{BR} = V_L$

Relation between line current and phase current:

From Fig. 1, it is clear that

$$I_{R} = I_{L1} \rightarrow I_{Ph} = I_{L}$$

$$I_{Y} = I_{L2} \rightarrow I_{Ph} = I_{L}$$

$$I_{B} = I_{L3} \rightarrow I_{Ph} = I_{L}$$

Thus in star connection,

Line current, I_L = Phase current, I_{Ph}

- **Relation between line voltage and phase voltage:**
- It is seen from figure that in star connection, there are two phase windings between each pair of line terminals.
- Since similar ends of these two winding are connected together, the emfs across them oppose each other and their instantaneous values will have opposite polarities.
- Therefore the rms value of line voltage between any two lines will be obtained by the vector difference of the two phase voltages.
- The phasor diagram of the phase emfs and currents in a star connected system is shown below:

Line voltage between terminals R and Y, $V_{RY} = E_{RN} + E_{NY}$ $= E_{RN} + (-E_{YN})$ $= E_{RN} - E_{YN}$ = phasor difference

Similarly

$$E_{YB} = E_{YN} - E_{BN}$$
 and $E_{BR} = E_{BN} - E_{RN}$

- Hence it is clear that in a star connected system, the line voltage is obtained as the vector difference of the two corresponding phase voltages.
- This is shown in fig below, for examples V_{RY} is found by adding V_{RN} and V_{YN} reversed and its magnitude is given by the diagonal of the parallelogram.

- Since side of the parallelogram are of equal length and angle between two phase voltages is 60 degree.
- The line voltage is given by,

$$V_{RY} = V_{RN} - V_{YN}$$

$$= 2 V_{Ph} \cos \frac{60^{\circ}}{2}$$

$$= 2 V_{Ph} \cos 30^{\circ}$$

$$= 2 E_{Ph} \times \frac{\sqrt{3}}{2}$$

$$= \sqrt{3} E_{Ph}$$

$$\text{early } V_{VP} = V_{PP} = \sqrt{3} E_{Ph} = V_{Ph}$$

Similarly $V_{YR} = V_{RR} = \sqrt{3} E_{Ph} = V_{L}$

Thus in balanced star connected system,

$$V_L = \sqrt{3} E_{Ph}$$

 $V_L = \sqrt{3} \ E_{Ph}$ i.e. Line voltage = $\sqrt{3} \times$ phase voltage

The total power dissipated in the 3-phase star connected system is the arithmetic sum of the powers dissipated in the three phases.

Total power =
$$3 \times \text{power per phase}$$

= $3 \times V_{\text{ph}} \times I_{\text{ph}} \times \cos \phi$
= $3 \times \frac{V_L}{\sqrt{3}} \times I_L \times \cos \phi$
= $\sqrt{3} V_L I_L \cos \phi$

It should be noted that ϕ is the angle between phase voltage and phase current and not between the line voltage and line current.

Voltage and current relation in delta connected system

- The emf across each winding is called phase voltage.
- ▶ They are denoted by E_R , E_Y and E_B .
- The voltage between any two lines is called line voltage.
- They are represented by V_{RY} , V_{YB} and V_{BR} respectively.
- Similarly currents flowing in the each winding is known as the phase current and current flowing in each line is called the line current.

• Since the system is balanced, $I_R = I_Y = I_B = I_{PL}$

$$I_{R} = I_{Y} = I_{B} = I_{Ph}$$

$$I_{L1} = I_{L2} = I_{L3} = I_{L}$$

$$E_{R} = E_{Y} = E_{B} = E_{Ph}$$

$$V_{RY} = V_{YB} = V_{BR} = V_{L}$$

▶ Relation between line voltage and phase voltage:

It is clear that

$$E_R = V_{RY} \rightarrow E_{Ph} = V_L$$

$$E_Y = V_{YB} \rightarrow E_{Ph} = V_L$$

$$E_B = V_{BR} \rightarrow E_{Ph} = V_L$$

Thus in delta connection,

Line voltage, V_L = Phase voltage, E_{Ph}

Relation between line current and phase current:

- It is seen from figure that current flowing in each line is the vector difference of the two phase currents.
- Current in line 1, $I_{L1} = I_R I_B$
- Current in line 2, $I_{L2} = I_y I_R$
- Current in line 3, $I_{L3} = I_B I_Y$
- Current in line 1 can be found as the vector difference of the two corresponding phase currents. This is shown in fir below:

- I_{L1} can be obtained by adding I_R and I_B reversed and its value is given by the diagonal of the parallelogram as shown in vector diagram.
- ▶ Since the sides of parallelogram are equal in magnitude and the angle between them is 60 degree, the line current is given as:

$$I_{L1} = I_R - I_B \text{ (vector difference)}$$

 $= 2 \times I_{Ph} \times \cos \frac{60^{\circ}}{2}$
 $= 2 \times I_{Ph} \times \cos 30^{\circ}$
 $= 2 \times I_{Ph} \times \frac{\sqrt{3}}{2}$
 $= \sqrt{3} I_{Ph}$
Similarly $I_{L2} = I_{L3} = \sqrt{3} I_{Ph} = I_L$

Thus, in delta connection,

Line current, $I_L = \sqrt{3} \times \text{Phase current}$

- The total power in the 3-phase circuit is equal to the arithmetic sum of three phase power.
- ▶ Hence,

Total power =
$$3 \times \text{power per phase}$$

$$= 3 \times V_{ph} I_{ph} \cos \phi$$

1. A 415 V, 3-phase voltage is applied to a balanced star-connected 3-phase load of phase impedance (3+j4) ohms each. Calculate (i) line current and (ii) total power supplied in kW.

 $V_{i} = 415 \text{ V}$

$$V_P = \frac{V_L}{\sqrt{3}}$$
 $Z_{ph} = 3 + j + 4$
 $= \frac{415}{\sqrt{3}}$
 $= 239.6 \text{ Volt}$
 $Z_{ph} = 3 + j + 4$
 $= \sqrt{3^2 + 4^2}$
 $= 5 \Omega$

$$Z_{ph} = 3 + j + 4$$

$$I_{Ph} = \frac{V_{Ph}}{Z_{Ph}}$$

$$= \frac{239.6}{5}$$

$$= 47.92 \text{ A}$$

$$l_L = l_{ph} = 47.92 \text{ A}$$

$$\cos \phi = \frac{R_{Ph}}{Z_{Ph}} = \frac{3}{5} = 0.6$$

Power =
$$\sqrt{3} V_L I_L \cos \phi$$

= $\sqrt{3} \times 415 \times 47.92 \times 0.6$
= 20.666 kW

2. A balanced mesh-connected load of 6+j8 ohms per phase is connected to a 3-phase, 230 V supply. Find the line current, p.f and power.

Solution: - Connection Delta

$$Z_{ph} = 6 + j 8$$
 $V_L = V_{ph} = 230 \text{ V}$
= 10 \Omega (magnitude)

$$\therefore I_{ph} = \frac{V_{ph}}{Z_{ph}} = \frac{230}{10} = 23 \text{ A}$$

$$\therefore I_L = \sqrt{3} I_{ph} = \sqrt{3} \times 23 = \boxed{39.83 \text{ A}}$$

Power factor =
$$\cos \phi = \frac{R_{ph}}{Z_{ph}}$$

= $\frac{6}{10}$
= 0.6 (lag)

Power = $\sqrt{3}$ V_L I_L $\cos \phi$
= $\sqrt{3} \times 230 \times 39.83 \times 0.6$
= 9.520 kW

3. Three similar coils each of resistance 15 ohms and inductance of 0.25 H are connected (i) in star and (ii) in delta to a 3-phase, 400 V, 50 Hz supply. Calculate line and phase values of current and voltage in both the cases. Also calculate the power absorbed.

Solution:-
$$R_{Ph} = 15 \Omega$$
, $L_{Ph} = 0.25 \text{ H}$ $X_{Ph} = \omega L_{Ph} = 2 \times \pi \times 50 \times 0.25 = 78.54$
 $Z_{Ph} = \sqrt{R_{Ph}^2 + X_{Ph}^2} = \sqrt{15^2 + 78.54^2} = 79.96 \Omega$

Star connection:

$$V_L = \boxed{400 \text{ V}}$$

$$V_{Ph} = \frac{V_L}{\sqrt{3}} = \frac{400}{\sqrt{3}} = 230.94 \text{ V}$$

$$I_{Ph} = \frac{V_{Ph}}{Z_{Ph}} = \frac{230.94}{79.96} = \boxed{2.888 \text{ A}}$$

$$l_L = 2.888 \text{ A}$$

Power factor
$$\cos \phi = \frac{R_{Ph}}{Z_{Ph}} = \frac{15}{79.96} = 0.1875 \text{ (lagging)}$$

Total power =
$$\sqrt{3} V_L I_L \cos \phi$$
 (or = 3 × $V_{Ph} \times I_{Ph} \cos \phi$)
= $\sqrt{3} \times 400 \times 2.888 \times 0.1875$
= 375.17 W

Delta connection:

$$V_L = \boxed{400 \text{ V}}$$

$$V_{Ph} = V_L = 400 \text{ V}$$

$$I_{Ph} = \frac{V_{Ph}}{Z_{Ph}} = \frac{400}{79.96} = 5.0025 \text{ A}$$

$$l_L = \sqrt{3} \ l_{Ph} = \sqrt{3} \times 5.0025 =$$
8.664 A

$$\cos \phi = \frac{R_{Ph}}{Z_{Ph}} = \frac{15}{79.96} = 0.1875 \text{ (lag)}$$

Total power =
$$\sqrt{3} V_L I_L \cos \phi = \sqrt{3} \times 400 \times 8.664 \times 0.1875$$

= 1125.56 watt

Thank you