

Including Noise in Exhaust System Design Optimization

Making aeroacoustics an engineering science

James Bridges
October 2012

Issue being addressed

- Aircraft design make use of large numbers of design variables and surrogate models for critical performance objectives: cost/pax-mi, TOGW, etc.
- Analysis from multiple disciplines feed evaluation of thousands of design variables to find 'optimal' system.
- Noise is rarely one of the standard performance objectives and even more rarely an integral discipline in the process.
- How can we make noise an equal partner in the design process?
- NASA has been working noise prediction tools for exhaust system noise for decades, with some success.
- Time to capitalize on the success, refocus tool development.

Multi-Disciplinary Analysis and Optimization Processes

- Consists of
 - Variable database
 - Multiple objectives
 - Analysis modules
 - Framework to connect modules
 - Optimizer
- Analysis modules
 - Input from variable database
 - Output objectives to optimizer
- MDAO operations handle ~O(100) of variables, ~O(10) objectives
- When analysis modules are too time-consuming, take offline and create surrogate models in their place.

Examples of experimentally obtained surrogate models

- Chevron designs for overexpanded military nozzles
 - Penetration
 - Width
 - Length
- Rectangular nozzles with aft deck extensions
 - Aspect ratio
 - Bevel length

- Fan-Vane deflected fan flow for low bypass ratio jets
 - Vane angles of attack
 - Vane azimuthal locations
 - Vane chords
 - Vane distances from end

– Common Form (ANOPP2 MDOE module):

 $SPL(f,\theta,\phi;\alpha_i) = \alpha_0 C_0(f,\theta,\phi) + \alpha_1 C_1(f,\theta,\phi) + \alpha_2 C_2(f,\theta,\phi) + \alpha_1 \alpha_2 C_{12}(f,\theta,\phi) + \dots$

Design of Experiments-based Optimization Strategy Using CFD Instead of Experiments

- Populate variable space with CFD runs.
- Evaluate objective (noise metric) from CFD runs.
- Create surrogate model of objective over design space variables.
- Optimize system using surrogate models from many disciplines.

Even if offline surrogate model approach used, how to provide ~O(5^N) evaluations for N-variable design space in timely manner?

Optimization for Noise & Performance Wroblewski's Pilot System

Initial Design Space

- Geometry variables: chevron length and penetration angle on 8:1 rectangular nozzle.
 - Positive angle is penetrating inward.
 - Create parametric study to find smallest sample space using low-order model. (Here, a uniform sampling was used.)
 - Populate space with simple CFD runs.

Surrogate Model

- Automated geometry/adaptive grid/RANS process using SolidWorks FlowSolver (COSMOS) with k-ε turbulence model.
- 55 initial runs accomplished on single workstation over weekend. 100 runs in surrogates.
- Post process for thrust coefficient and integral noise estimate.

Pareto Optimization

- The MATLAB multi-objective optimization routine (NSGA-II) applied to 2000 surrogate candidates with 500 generations to determine the Pareto front. Top 25% candidates shown.
- Note breaks in variable space as thrust is traded for lower noise along Pareto

Issues to be addressed in optimization for exhaust noise

- Validate CFD accuracy for aeroacoustics predictions
- Create and validate low-cost approximations to objectives (noise, thrust, etc)
- Use more flexible geometry scheme for design space (flexible body descriptors)
- Work out programming details integrating into MDAO framework (ANOPP/ ANOPP2)
- Demonstrate machinery by exercising on sample problem (High Speed Project Milestone)

Flow Solver Validation

- Flow solver requirements
 - U, density, temperature, TKE, epsilon
 - Robust, quick turnaround from design variables to flow solution
- Codes currently being evaluated
 - WindUS (GRC/Inlet&Nozzle Branch)
 - FUN3D (Steve Miller)
 - SolidWorks (Adam Wroblewski/James Bridges)
 - OpenFOAM(?)
- Quantities to be validated
 - U, TKE on centerline, lipline (PC length, peak TKE level & location)
- Datasets for validation
 - Single-stream subsonic, hot jets (GRC PIV consensus dataset)
 - Rectangular subsonic jets (ERN12)
 - Supersonic (GRC PIV)
- Measure of robustness? Speed? Support? Licensing?

Validate Flow Solver Accuracy for Aeroacoustics

- Compare SolidWorks plume results with WindUS for round jet
- Results similar (uses same turbulence model, auto gridding good)

SolidWorks Flow Solver applied to Rectangular Jets

Validate Flow Solver Accuracy for Aeroacoustics

Good enough for acoustics?

Computing Noise from RANS

Spectrum of acoustic source/coupling models for noise estimation:

Range of noise metrics

- Match cost, accuracy of acoustic calculation and flow sol'n
- Aim for accurate trends at fidelity matching other disciplines.

Baseline rectangular nozzles: iTKE vs OAPWL

- Note that OAPWL integrates over all azimuth and polar angles, and frequencies.
 - ERN11 experimental data integrated over 0.1 < St < 1.0
 - iTKE=TKE³.5 integrated over plume volume.
- iTKE approximation overpredicts impact of aspect ratio on OAPWL.
- Error in CFD or in acoustic approximation?

Baseline rectangular nozzles: High-End AA

- Leib's AA code applied to WindUS and SolidWorks RANS solutions
 - Non-axisymmetry addressed by Conformal Mapping
 - Cold, Ma = 0.9 flow only
- Same trends predicted with both CFD solutions
- High-end AA code works on cheap CFD.
- Fault lies with oversimple acoustic approximation.
- Bigger Picture:
 - 'Cheap' CFD good enough!
 - Still need cheap acoustic calculation.

2016 High Speed Project Level 1 Milestone

"Validate predicted sensitivities of boom, thrust, and noise of propulsion system to design variables for an N+2 aircraft design which meets FAP goals."

Questions, Comments, Criticisms?

james.e.bridges@nasa.gov