1.2 Vector Analysis (Part 1)

Definition (1.2.1. Gradient).

Let $f: \mathbb{R}^n \to \mathbb{R}$, we define the **gradient** of f, denoted either by grad f or by ∇f , by

$$\operatorname{grad} f = \nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

$$f' = \left(\frac{\partial x}{\partial f}, \frac{\partial x}{\partial f}, - \cdots, \frac{\partial x}{\partial x}\right)$$

$$\Delta t = (k_i)_{\Delta}$$
 $t_i = (\Delta k)_{\Delta}$

Example.

(a) Let
$$f(x_1, x_2) = x_2 e^{x_1}$$
 then $\nabla f(x_1, x_2) = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{pmatrix} - \begin{pmatrix} x_2 e^{x_1} \\ e^{x_2} \end{pmatrix}$.

(b) Let
$$f(x, y, z) = (x^2 - y^2)e^z$$
. Find $\nabla f(2, 1, -1)$.

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{2f}{\partial z} \end{pmatrix} = \begin{pmatrix} 2xe^{\frac{z}{z}} \\ -2ye^{\frac{z}{z}} \\ (x^{2}-y^{2})e^{\frac{z}{z}} \end{pmatrix}$$

$$\nabla f(2,1,-1) = \begin{pmatrix} 4e^{-1} \\ -2e^{-1} \\ 3e^{-1} \end{pmatrix}.$$

$$\nabla f(2,1,-1) = \begin{cases} 4e^{-1} \\ -2e^{-1} \\ 3e^{-1} \end{cases}$$

Note. As we will prove later if $f: \mathbb{R}^n \to \mathbb{R}$ then:

- (a) $\nabla f(\underline{x})$ is the direction we must move from \underline{x} for f to increase fastest and $\|\nabla f(\underline{x})\|$ is the rate of increase at f as one moves in the direction of $\nabla f(\underline{x})$ from \underline{x} .
- (b) If we consider the implicit curve given by f(x,y) = c where c is a constant, let (x_0, y_0) be a point on this curve, then $\nabla f(x_0, y_0)$ is a normal to the curve at (x_0, y_0) .
- (c) If we consider the implicit surface given by f(x, y, z) = c. Let (x_0, y_0, z_0) be a point on this surface, then $\nabla f(x_0, y_0, z_0)$ is a normal to this surface at (x_0, y_0, z_0) .
- (d) Special case: For $f: \mathbb{R}^n \to \mathbb{R}$ and $h \in \mathbb{R}^n$ we have

Note. We can think symbolically of $\nabla = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}$ then

$$\nabla f = \begin{pmatrix} \frac{\partial}{\partial x_n} \\ \frac{\partial}{\partial x_n} \\ \frac{\partial}{\partial x_2} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

1.2 Vector Analysis (Part 2)

Definition (1.2.2. Divergence).

Let $F: \mathbb{R}^n \to \mathbb{R}^n$ we define the **divergence** of F, denoted divF or $\nabla \cdot F$, by

vector valued

div
$$\underline{F} = \nabla \cdot \underline{F} = \sum_{i=1}^n \frac{\partial F_j}{\partial x_j}$$
.

$$F: \mathbb{R}^3 \to \mathbb{R}^3$$
 div $f = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial x_3}$

$$F: R^2 \to R^2 \qquad \text{div } F = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2}$$

"Source" div E >0 (more out than in) "Sink" (more in than out)

Example. (a) Let
$$\underline{F}(x_1, x_2) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 i.e $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$.

$$\operatorname{div} F(x_1,x_2) = \nabla \cdot F(x_1,x_2)$$

$$= \frac{\partial}{\partial x_1} F_1 + \frac{\partial}{\partial x_2} F_2$$

$$= \frac{\partial x_1}{\partial x_1} + \frac{\partial x_2}{\partial x_2}$$

(b) Let
$$\underline{F}(x_1, x_2) = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix}$$
 i.e $\begin{pmatrix} x_2 \\ -x_1 \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix}$.

$$\operatorname{div} \, \mathbf{F} = \frac{\partial \mathbf{F}_1}{\partial \mathbf{x}_1} + \frac{\partial \mathbf{F}_2}{\partial \mathbf{x}_2}$$

$$= \frac{\partial x_2}{\partial x_1} + \frac{\partial}{\partial x_2} (-x_1)$$

Note. (a) $\nabla \cdot \underline{F}(\underline{x})$ gives a measure of the amount at a fluid being created $(\nabla \cdot \underline{F} > 0)$ or destroyed $(\nabla \cdot \underline{F} < 0)$ per unit area at \underline{x} , as indicated in the two examples.

(b) Again, symbolically we can think of

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \quad \text{and} \quad \nabla \underline{F} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \\ \vdots \\ F_n \end{pmatrix} = \sum_{j=1}^n \frac{\partial F_j}{\partial x_j}.$$

Definition (1.2.3. Laplacian, harmonic).

Let $f: \mathbb{R}^n \to \mathbb{R}$, we define the **Laplacian** of f, denoted $\nabla^2 f$, by

$$\nabla^2 f = \nabla \cdot \nabla f = \sum_{j=1}^n \frac{\partial^2 f}{\partial x_j^2}.$$
 (scalar)

We say that f is **harmonic** on a set Ω if $\nabla^2 f \equiv 0$ for all $\underline{x} \in \Omega$.

Example. (a) Let $f(x,y) = x + 2y + e^x \cos y$. Is f harmonic?

$$\nabla^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}} = \frac{\partial}{\partial x} \left(1 + e^{x} \cos y \right) + \frac{\partial}{\partial y} \left(2 - e^{x} \sin y \right)$$

$$= e^{x} \cos y - e^{x} \cos y$$

$$= 0. \qquad \text{if } f \text{ is harmonic.}$$

(b) Let $f(x, y, z) = x + xz - e^y$. Is f harmonic?

$$\nabla^{2}f = \frac{\partial^{2}f}{\partial x^{2}} + \frac{\partial^{2}f}{\partial y^{2}} + \frac{\partial^{2}f}{\partial z^{2}} = \frac{\partial}{\partial x}(1+z) + \frac{\partial}{\partial y}(-e^{y}) + \frac{\partial}{\partial z}(x)$$

$$= 0 - e^{y} + 0$$

$$= -e^{y}f + 0 \qquad \text{if is not harmonic.}$$

1.2 Vector Analysis (Part 3)

Definition (1.2.4. Curl).

Let $\underline{F}: \mathbb{R}^3 \to \mathbb{R}^3$, we define the **curl** of \underline{F} , denoted curl \underline{F} or $\nabla \times \underline{F}$, by

$$\operatorname{curl} \underline{F} = \nabla \times \underline{F} = \begin{bmatrix} \frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} \\ \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} \\ \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \end{bmatrix} = \begin{bmatrix} \underline{i} & \underline{j} & \underline{k} \\ \frac{\partial}{\partial x_1} & \frac{\overline{\partial}}{\partial x_2} & \frac{\overline{\partial}}{\partial x_3} \\ F_1 & F_2 & F_3 \end{bmatrix}$$

$$=\frac{1}{2}\left(\frac{\partial}{\partial x_{2}}F_{3}-\frac{\partial}{\partial x_{3}}F_{2}\right)$$

$$+\frac{1}{2}\left(\frac{\partial}{\partial x_{3}}F_{1}-\frac{\partial}{\partial x_{1}}F_{3}\right)$$

$$+\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}F_{1}-\frac{\partial}{\partial x_{2}}F_{1}\right)$$

Note. $\nabla \times \underline{F}$ gives a measure of the local rotation of a fluid. (To make this concept rigorous we need Green's Theorem and Stoke's Theorem)

Example. (a) Let
$$\underline{F}(x_1, x_2, x_3) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 i.e $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ F_3 \end{pmatrix}$.

$$Curl F = \nabla \times F$$

$$= \begin{vmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \frac{1}{1} \left(\frac{\partial}{\partial x_2} x_3 - \frac{\partial}{\partial x_3} x_2 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_1 - \frac{\partial}{\partial x_1} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_2} x_2 - \frac{\partial}{\partial x_2} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_2 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_2 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 - \frac{\partial}{\partial x_3} x_3 \right) + \frac{1}{1} \left(\frac{\partial}{\partial x_3} x_3 - \frac{\partial}{$$

(b) Let
$$\underline{F}(x_1, x_2, x_3) = \begin{pmatrix} x_2 \\ -x_1 \\ 0 \end{pmatrix}$$
.

Curl $\underline{F} = \nabla \times \underline{F}$

$$= \begin{bmatrix} 1 & j & k \end{bmatrix}$$

$$= \left| \frac{1}{2} \frac{j}{2x_1} \frac{j}{2x_2} \frac{j}{2x_3} \right|$$

$$= \left| \frac{1}{2} \frac{j}{2x_1} \frac{j}{2x_2} \frac{j}{2x_3} \right|$$

$$= \left| \frac{1}{2} \frac{j}{2x_1} \frac{j}{2x_2} \frac{j}{2x_3} \right|$$

$$= \left| \frac{1}{2} \frac{j}{2} \frac{k}{2} \right|_{\partial X_{2}} = \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} - \frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \frac{j}{2} \right) + \frac{1}{2} \left(\frac{1}{2}$$

1.2 Vector Analysis (Part 4)

Theorem (1.2.5). For $a, b \in \mathbb{R}, f, g : \mathbb{R}^n \to \mathbb{R}$ and $\underline{F}, \underline{G} : \mathbb{R}^n \to \mathbb{R}^n$ we have: $(a f(\underline{x}) + bg(\underline{x})) = a \nabla f(\underline{x}) + b \nabla g(\underline{x})$

(7 is linear) $\sqrt{(a)} \nabla (af + bg) = a\nabla f + b\nabla g$

(V product rule) \checkmark (b) $\nabla (fq) = q\nabla f + f\nabla q$

(div is linear) (c) $\nabla \cdot (aF + bG) = a\nabla \cdot F + b\nabla \cdot G$ (div product rule) (d) $\nabla \cdot (g\underline{F}) = (g\nabla) \cdot \underline{F} + (\nabla g) \cdot \underline{F}$ and if n = 3 we in addition have:

(curl is linear) (e) $\nabla \times (aF + bG) = a\nabla \times F + b\nabla \times G$ (curl product rule) (f) $\nabla \times (qF) = (\nabla q) \times F + q\nabla \times F$.

(div-curl product rule) (g) $\nabla \cdot (F \times G) = (\nabla \times F) \cdot G - (\nabla \times G) \cdot F$;

Proof. Exercise!

$$: \mathbb{R}^n \to \mathbb{R}.$$

Example. Let $g, f: \mathbb{R}^n \to \mathbb{R}$. $\forall f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$

(a) Show that $\nabla \cdot (g\nabla f) = \nabla g \cdot \nabla f + g\nabla^2 f$.

Let
$$F = \nabla f$$
.

Let
$$F = \nabla f$$
. $\nabla \cdot (g F) = g(\nabla \cdot F) + (\nabla g) \cdot F$

(Thm 1.2.5 (d))

$$= g((\nabla \cdot \nabla f) + (\nabla g) \cdot (\nabla f)$$
$$= (\nabla g) \cdot (\nabla f) + g(\nabla^2 f).$$

$$+ g(\nabla^2 f)$$

(b) If f is harmonic prove that $\nabla^2 gf = 2\nabla g \cdot \nabla f + f\nabla^2 g$.

$$\nabla^2 f = 0$$
. $\nabla^2 g f = \nabla \cdot (\nabla g f)$

$$= \nabla \cdot (\nabla g) \cdot f + g(\nabla f) \qquad (\text{Thm 1.2.5 (b)})$$

$$= \nabla \cdot (f(\nabla g)) + \nabla \cdot (g \nabla f) \qquad (\text{Thm 1.2.5 (c)})$$

$$= f \cdot \nabla^2 g + (\nabla f) \cdot (\nabla g) \qquad (\text{Thm 1.2.5 (d)})$$

$$+ g \cdot \nabla^2 f + (\nabla \cdot g) \cdot (\nabla f) \qquad (\text{Thm 1.2.5 (d)})$$

$$= 2(\nabla f) \cdot (\nabla g) + f \nabla^2 g.$$

Theorem (1.2.6). Equivalence of mixed partial derivatives Let $f: \mathbb{R}^n \to \mathbb{R}$, then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ for all i, j = 1, ..., n.

Let
$$f: \mathbb{R}^n \to \mathbb{R}$$
, then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$ for all $i, j = 1, ..., f$

Proof. See tutorial Q6 for a proof when n=2.

$$\frac{\partial x_i}{\partial x_j} \frac{\partial x_j}{\partial x_j} f = \frac{\partial x_j}{\partial x_j} \frac{\partial x_i}{\partial x_i} f$$

Example. Let $f(x,y) = xe^{2y}$.

$$\frac{\partial f}{\partial x} = e^{2y}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} e^{2y}$$
$$= 2e^{2y}$$

$$\frac{\partial f}{\partial y} = 2xe^{2y}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} 2xe^2 y$$
$$= 2e^2 y$$

$$\int_{-\infty}^{\infty} \frac{\partial^2 f}{\partial x \partial x} = \frac{\partial^2 f}{\partial x \partial y}.$$

Theorem (1.2.7).

Let $g: \mathbb{R}^3 \to \mathbb{R}$ and $\underline{F}: \mathbb{R}^3 \to \mathbb{R}^3$ then

- 1. $\nabla \times \nabla q \equiv 0$
- curl (grad g) ≥ 6 div (curl g) ≥ 0 2. $\nabla \cdot (\nabla \times \underline{F}) \equiv 0$

Proof. Exercise! identically equal

Example. Verify that
$$\nabla \cdot (\nabla \times \underline{F}) = 0$$
 for $\underline{F}(x, y, z) = \begin{pmatrix} x^2 \\ xy \\ ye^z \end{pmatrix}$.

$$\nabla \times \underline{F} = \begin{vmatrix} \dot{1} & \dot{j} & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ x^2 & xy & ye^2 \end{vmatrix} = \begin{pmatrix} e^{z} - o \\ o - o \\ y - o \end{pmatrix} = \begin{pmatrix} e^{z} \\ o \\ y \end{pmatrix}$$

$$\nabla \cdot (\nabla \times E) = \frac{\partial}{\partial x} e^{z} + \frac{\partial}{\partial y} o + \frac{\partial}{\partial z} y = o + o + 6$$

$$= 0 \quad \sqrt{2}$$