Упражнение 11 по СЕМ - Задачи и Решения

6 януари 2021 г.

1 Задачи

Теорема 1.1. Нека $X \in \mathfrak{S}$ е непрекъсната случайна величина с плътност f_X и $g: \mathbb{R} \longrightarrow \mathbb{R}$ е диференцируема и строго монотонна функция, то $Y = g \circ X$ има плътност

$$f_Y(y) = \pm f_X(g^{-1}(y)) \frac{d}{dy}(g^{-1}(y)),$$

като знакът e +, ако $g \ e \ pастяща. Тук <math>c \ g^{-1} \ e \ o$ значена обратната функция на g.

Задача 1 Нека случайната величина $X \in \text{Ex}(\lambda)$. Да се намерят плътностите на следните случайни величини:

- a) Y = -X;
- 6) Y = 2X 1;
- B) $Y = \sqrt{X}$;
- Γ) $Y = X^a$, a > 0.

Задача 2 Напрежението на пробив на диоди произвеждани от машина е нормално разпределена случайна величина с очакване 100 и дисперсия 49. Втора машина произвежда диоди с очакване 90 и дисперсия 25. Диод е годен, ако напрежението му на пробив е по-голямо от 85. Каква е вероятността случайно избран диод да бъде годен?

Задача 3 Височината на прилива е нормално разпределена случайна величина с очакване 6м и стандартно отклонение 1.5м. Дига предпазва от наводнение при височина на прилива до 8м.

- а) Каква е вероятността за наводнение;
- б) Колко висока трябва да е дигата, така че от 200 прилива най-много при един да има наводнение?

Задача 4 Неправилна монета (вероятността за падане на герб е 3/4) се хвърля 2000 пъти. Каква е вероятността броя на падналите се гербове да е между 1475 и 1535.

Задача 5 Каква трябва да бъде дължината на интервал, така че вероятността за едновременно попадане в него на две независими, нормално разпределени случайни величини да бъде 0.09, ако математическото им очакване съвпада със средата на интервала, а дисперсията им е 25.

2 Решения

Задача 1 По условие $X\in Ex(\lambda),$ следователно $f_X(x)=\left\{egin{array}{ll} \lambda e^{-\lambda x}, & x>0 \\ 0, & x\leq 0 \end{array}\right.$

а) Функцията $g: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto -x$ е намаляваща и диференцируема, като $g^{-1}(y) = -y$, следователно за плътността на $Y = g \circ X = -X$ по теорема 1.1 намираме

$$f_Y(y) = -f_X(g^{-1}(y)) \frac{d}{dy}(g^{-1}(y)) = -f_X(g(y)) \frac{d}{dy}(g(y)) = f_X(-y) = \begin{cases} \lambda e^{\lambda y}, & y < 0 \\ 0, & y \ge 0 \end{cases}$$

b) Функцията $g: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto 2x-1$ е растяща и диференцируема, като $g^{-1}(y) = \frac{y+1}{2}$, следователно за плътността на $Y = g \circ X = 2X-1$ по теорема 1.1 намираме

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy}(g^{-1}(y)) = f_X(\frac{y+1}{2}) \frac{d}{dy}(\frac{y+1}{2}) = \frac{1}{2} f_X(\frac{y+1}{2}) = \begin{cases} \frac{1}{2} \lambda e^{-\frac{\lambda(y+1)}{2}}, & y > -1 \\ 0, & y \le -1 \end{cases}$$

с) Функцията $g:\mathbb{R}^+\longrightarrow\mathbb{R}^+$ $x\longmapsto\sqrt{x}$ е растяща и диференцируема, като $g^{-1}(y)=y^2,$

следователно за плътността на
$$Y=g\circ X=\sqrt{X}$$
 по теорема 1.1 намираме
$$f_Y(y)=f_X(g^{-1}(y))\frac{d}{dy}(g^{-1}(y))=f_X(y^2)\frac{d}{dy}(y^2)=2yf_X(y^2)=\left\{\begin{array}{cc}2y\lambda e^{-\lambda y^2}, & y>0\\ 0, & y\leq0\end{array}\right.$$

d) Функцията $g: \mathbb{R}^+ \longrightarrow \mathbb{R}^+ \ x \longmapsto x^a, \ a>0$ е растяща и диференцируема, като $g^{-1}(y)=y^{\frac{1}{a}},$ следователно за плътността на $Y=g\circ X=X^a$ по теорема 1.1 намираме

$$f_Y(y) = f_X(g^{-1}(y)) \frac{d}{dy}(g^{-1}(y)) = f_X(y^{\frac{1}{a}}) \frac{d}{dy}(y^{\frac{1}{a}}) = \frac{1}{a} y^{\frac{1-a}{a}} f_X(y^{\frac{1}{a}}) = \begin{cases} \frac{\lambda}{a} y^{\frac{1-a}{a}} e^{-\lambda y^{\frac{1}{a}}}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

Задача 2 Нека $X_i,\ i=1,2$ са съответно случайните величини: напрежение на пробив на диод произведен на i-тата машина. По условие $X_1 \in \mathcal{N}(100,7^2), \ X_2 \in \mathcal{N}(90,5^2)$. Нека $A, H_i, \ i=1,2$ са съответно събитията: случайно избран диод е годен, избраният диод е произведен от i-тата машина. Ще считаме, че $P(H_1) = P(H_2) = 0.5; \ X \in \mathcal{N}(0,1)$ и търсим P(A). Следователно $X_1 = 7X + 100, X_2 = 5X + 90.$ По формулата за пълната вероятност

$$P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) = \frac{1}{2}[P(X_1 > 85) + P(X_2 > 85)]$$

$$\approx \frac{1}{2}[P(X > -2.142) + P(X > -1)] = \frac{1}{2}[2 - P(X \le -2.142) - P(X \le -1)]$$

$$= \frac{1}{2}[2 - F_X(-2.142) - F_X(-1)] = \frac{1}{2}[F_X(2.142) + F_X(1)] \approx 0.91255$$

Задача 3 Ако X е случайната величина - височина на прилива, то по условие $X \in \mathcal{N}(6, 1.5^2)$. При $Y \in \mathcal{N}(0,1)$, то $X = \frac{3}{2}Y + 6$.

- а) Ако A е събитието: при един прилив да настъпи наводнение, то P(A) = P(X > 8) = P(Y > 8)1.33) = 1 - $P(Y \le 1.33)$ = 1 - $F_Y(1.33) \approx 0.0918$
- b) Нека α е най-малката (ако съществува) височина на дигата така, че $P(X>\alpha) \leq \frac{1}{200}$ Получаваме $\min\{\alpha | 1 - P(X \le \alpha) \le \frac{1}{200}\} = \min\{\alpha | P(X \le \alpha) \ge 0.995\} = 0.995$

$$= \{\alpha \mid P(X < \alpha) \le 0.995 \le P(X \le \alpha)\} \Longleftrightarrow 0.995 = F_X(\alpha) = F_Y\left(\frac{2}{3}(\alpha - 6)\right).$$

Понеже F_X е непрекъсната и строго монотонна, то квантилът α съществува и е единствен. Получаваме $\frac{2}{3}(\alpha-6)\approx 2.58\Longrightarrow \alpha=9.87$

Задача 4 Ако $X\in \mathrm{Bi}(2000,\frac{3}{4})$, то по теорема ?? получаваме $P(1475\leq X\leq 1535)\approx \Phi(\frac{1535-1500}{\sqrt{375}})-\Phi(\frac{1475-1500}{\sqrt{375}})=\Phi(1.8073)-\Phi(-1.2909)=\Phi(1.8073)+\Phi(1.2909)-1=0.8664$

Задача 5 Нека $X_1, X_2 \in \mathcal{N}(\mu, 5^2)$ са независими, а търсеният интервал е $I = [\mu - a, \mu + a]$. Ако $Y \in \mathcal{N}(0,1)$, то $X_i = 5Y + \mu, \ i = 1, 2$ и пресмятаме:

$$0.09 = \mathbf{P}(X_1 \in I, X_2 \in I) = \mathbf{P}(X_1 \in I)\mathbf{P}(X_2 \in I)$$

$$= \mathbf{P}^2(5Y + \mu \in I) = \mathbf{P}^2\left(-\frac{a}{5} \le Y \le \frac{a}{5}\right)$$

$$= \left(\Phi\left(\frac{a}{5}\right) - \Phi\left(-\frac{a}{5}\right)\right)^2 = \left(2\Phi\left(\frac{a}{5}\right) - 1\right)^2$$

$$\Phi\left(\frac{a}{5}\right) = 0.65 \Rightarrow \frac{a}{5} \approx 0.4 \Rightarrow a = 2.$$

Дължината на I е равна на 2a=4.