

Diskrete Strukturen Tutorium

Jay Zhou Technische Universität München Garching b. München, 29. Januar 2023

Kombinatorik — Stirling Zahl

Stirling Zahl 1. Art

– $s_{n,k}$ gibt die Anzahl der Permutationen in Zyklenschreibweise von n Elementen mit genau k# Permutionen über [N],

Zyklen an.

$$- s_{n,k} = s_{n-1,k-1} + (n-1) \cdot s_{n-1,k}$$

$$-s_{0,0} = 1$$
, $s_{n,0} = 0$, $s_{n,n} = 1$

welche in je
$$\lambda_i$$
 viele Zykel der Länge i zerfallen \mathcal{N} !

$$\frac{\mathcal{N}!}{\lambda_1! \lambda_2! ... \lambda_N! \cdot 1^{\lambda_1} 2^{\lambda_2} ... N^{\lambda_N}}$$

Stirling Zahl 2. Art

- $S_{n,k}$ gibt die Anzahl der Partitionen einer n-elementigen Menge in k nichtleere Klassen an.

$$- S_{n,k} = S_{n-1,k-1} + k \cdot S_{n-1m,k}$$

$$-S_{0,0} = 1, S_{n,0} = 0, S_{n,n} = 1$$

Äquiv. relationen über [N],

welche genau
$$\lambda$$
; viele i-elementige Äquiv. klassen besitzt

 $\frac{N!}{\lambda_1! \lambda_2! ... \lambda_N! \cdot (1!)^{\lambda_1} (2!)^{\lambda_2} ... (N!)^{\lambda_N}}$

Kombinatorik — Verteilung: Die Goldene Tabelle

K Bälle → N Urnen	Pro Vrne Beliebig viele Bälle (Beliebig)	Pro Urne Höchstens 4 Ball (Injektiv)	Pro Urne Mindestens 4 Ball (Surjektiv)	Pto Urne Genau 1 Ball (Bijektiv)
Bälle unterscheidbar Urnen unterscheidbar	n ^k	$n^{\underline{k}} = \frac{n!}{(n-k)!}$	n (· S _{k,n}	k!
Baille gleich Urnen unterscheidbar	$\binom{n+k-1}{k}$	$\binom{n}{k}$	(k - 1 (n - 4)	1
Bälle unterscheidbar Urnen gleich	$\sum_{i=0}^{n} S_{k,i}$	1	Sk,n	1
Baille gleich Urnen gleich	$\sum_{i=0}^{n} P_{k,i}$	1	Pk,n	1

Aufgaben

Eine Grundschulklasse bestehend aus n=19 Kindern macht einen Tagesausflug. Hierzu sollen die Kinder selbst Gruppen der Größe mindestens 3, aber maximal 5 bilden.

(a) Wie viele solche Einteilungen gibt es, wenn man allein daran interessiert ist, wie viele Gruppen es einer bestimmten Größe gibt?

Aufzählung

Drei	Vier	Fünf	
0	7	3	Mit 3 Fünfer-Gruppen bleiben noch 4 Kinder übrig Einzige Möglichkeit : 1 Vierer-Gruppe
3	0		Mit 2 Fünfer-Gruppen bleiben noch 9 Kinder übrig Einzige Möglichkeit : 3 Dreier-Gruppen
2	2	1	Mit 1 Fünfer-Gruppen bleiben noch 14 Kinder übrig Einzige Möglichkeit : 2 Dreier-Gruppen und 2 Vierer-Gruppen
1	4	0	Mit 3 Fünfer-Gruppen bleiben noch 4 Kinder übrig 2 Möglichkeiten: 4 Vierer-Gruppen und 1 Dreier-Gruppe
5	1	0	1 Vierer-Gruppe und 5 Dreier-Gruppe

Eine Grundschulklasse bestehend aus n=19 Kindern macht einen Tagesausflug. Hierzu sollen die Kinder selbst Gruppen der Größe mindestens 3, aber maximal 5 bilden.

(b) Wie viele solche Einteilungen gibt es, wenn man die Gruppen anhand ihrer Mitglieder unterscheidet und noch zusätzlich jeder Gruppe einen eindeutigen Gruppenname zuordnet?

& (Partition)			
λ3	λ4	λ5	
Drei	Vier	Fünf	
0	7	3	
3	0	2	
2	2	1	
1	4	0	
5	1	0	

Eine Grundschulklasse bestehend aus n=19 Kindern macht einen Tagesausflug. Hierzu sollen die Kinder selbst Gruppen der Größe mindestens 3, aber maximal 5 bilden.

(c) Zum Mittagessen wird jede Gruppe von Kindern an einen eigenen runden Tisch gesetzt.

Wie viele mögliche Sitzordnungen für die Kinder gibt es, wenn es nur entscheidend ist, wer die jeweiligen

& (Partition)			
λ3	λ4	λ5	
Drei	Vier	Fünf	
0	7	3	
3	0	2	
2	2	1	
1	4	0	
5	1	0	

linken und rechten Sitznachbarn sind?

Permutionen über [N],
welche in je
$$\lambda$$
; viele λ ; v

13.2

(a) Wie viele Wurzelbäume der Höhe ≤ 3 gibt es mit genau n+1 Knoten $(n \in \mathbb{N})$, wenn isomorphe Wurzelbäume identifiziert, d.h. nur einmal gezählt werden?

Bemerkung: Nach Vorlesung ist die Höhe eines Wurzelbaums die Länge eines längsten Pfades von der Wurzel zu einem Blatt plus 1.

Beispiel: Bis auf Isomorphie gibt es folgende Wurzelbäume der Höhe ≤ 3 mit 4 Knoten (Wurzel als Quadrat):

Wurzel

n+1-1 = n Knoten auf Teilbäume verteilt
↑

ohne Wurzel

Da die Teilbäume Höhe 2 besitzen, hat jeder Teilbaum ein Wurzel. Die sonstige Knoten sind sowohl Kindern, als auch Blätter. Daher hat jeder Teilbaum bis auf Isomorphie nur 1 Variante, weshalb wir nur auf die Anzahl der Knoten pro Teilbaum aufpassen sollen.

Aufteilung n Euro in k Päckchen, jedes Päckchen enthält mind. l Euro $\Rightarrow P_{n,k}$

Fälle 0 bis n Teilbäume
$$\Rightarrow \sum_{k=0}^{n} P_{n,k} = P_{2n,n}$$

13.2

(b) $S_1, S_2, ..., S_n$ bezeichnen $n \in \mathbb{N}$ unterschiedlich große Scheiben: die Scheibe S_j darf auf die Scheibe S_i genau dann gelegt werden, wenn j < i gilt. Es darf immer höchstens eine Scheibe direkt auf einer anderen Scheibe liegen (siehe unten).

Wie viele Möglichkeiten gibt es dann, die n Scheiben zu $k \in \mathbb{N}$ Türmen zu stapeln? Die Reihenfolge der Türme ist egal.

Beispiel: Für n=4 und k=2 gibt es **unter anderem** folgende Möglichkeiten:

Umformulieren: n Scheiben in k nicht leere Stapeln partitionieren

→ Reihenfolge gibt es schon: Die Scheiben werden nach Größe sortiert

– $S_{n,k}$ gibt die Anzahl der Partitionen einer n-elementigen Menge in k nichtleere Klassen an.

$$\Rightarrow S_{n,k}$$

Wie viele Möglichkeiten gibt es, 42 Meerschweinchen 23 Meerschweinchenzüchtern zuzuordnen, wenn

- (a) sowohl Meerschweinchen als auch Meerschweinchenzüchter jeweils nicht unterschieden werden, und jedem Meerschweinchenzüchter mindestens ein Meerschweinchen zugeordnet werden soll?
- (b) nur Meerschweinchen unterschieden werden, Meerschweinchenzüchter jedoch nicht?
- nur Meerschweinchenzüchter unterschieden werden, Meerschweinchen jedoch nicht?

k Bälle 42 23 → n Urnen	Pro Urne Beliebig viele Bälle (Beliebig)	Pro Urne Höchstens 4 Ball (Injektiv)	Pro Urne Mindestens 4 Ball (Surjektiv)	Pro Urne Genau 1 Ball (Bijektiv)
Bälle unterscheidbar Urnen unterscheidbar	n ^k	$V_{\overline{k}} = \frac{V_{\overline{k}}}{(V - K)!}$	n! · S _{k,n}	k!
Bälle gleich Urnen unterscheidbar	$\binom{n+k-1}{k}$	$\binom{n}{k}$	$\binom{k-1}{n-1}$	1
Bälle unterscheidbar Urnen gleich	$\sum_{i=0}^{n} S_{k,i}$	1	Skin	1
Bälle gleich Urnen gleich	∑ P _{k.i}	4	P _{k,n}	1

a)
$$P_{42,13}$$

b) $\sum_{i=0}^{23} S_{42,i}$
c) $\binom{42+23-1}{23}$

Wie viele Möglichkeiten gibt es, 42 Meerschweinchen 23 Meerschweinchenzüchtern zuzuordnen, wenn

- (d) sowohl Meerschweinchen als auch Meerschweinchenzüchter jeweils unterschieden werden?
- (e) sowohl Meerschweinchen als auch Meerschweinchenzüchter jeweils unterschieden werden, und jedem Meerschweinchenzüchter mindestens ein Meerschweinchen zugeordnet werden soll?
- (f) sowohl Meerschweinchen als auch Meerschweinchenzüchter jeweils nicht unterschieden werden?

k Bälle 41 23 → n Urnen	Pro Urne Beliebig viele Bälle (Beliebig)	Pro Urne Höchstens 4 Ball (Injektiv)	Pro Urne Mindestens 4 Ball (Surjektiv)	Pro Urne Genau 1 Ball (Bijektiv)
Bälle unterscheidbar Urnen unterscheidbar	$\binom{n^k}{n^k}$	$N_{\underline{k}} = \frac{v_{\underline{k}}}{(v_{\underline{k}}-v_{\underline{k}})!}$	$n! \cdot \int_{k,n}$	k!
Bälle gleich Urnen unterscheidbar	$\binom{n+k-1}{k}$	$\binom{n}{k}$	(K-1)	1
Bälle unterscheidbar Urnen gleich	$\sum_{i=0}^{n} S_{k,i}$	1	Skin	1
Bälle gleich Urnen gleich	$\sum_{i=0}^{n} \mathcal{P}_{k,i}$	1	Pk,n	1

c)
$$\sum_{i=0}^{23} P_{42,i} = P_{65,23}$$

Fragen?