5. Рабочие формулы и исходные данные.

$$M_{0} = (70.27 \pm 0.01)$$
гр, $M_{A} = (40 \pm 0.01)$ гр, $c_{0} = (0.230 \pm 0.001) \frac{\text{кДж}}{\text{кг} \cdot \text{K}},$ $c_{A} = (0.460 \pm 0.001) \frac{\text{кДж}}{\text{кг} \cdot \text{K}},$ $\lambda = (c_{0} + c_{A} \cdot \frac{M_{A}}{M_{0}}) \cdot \Delta t_{\kappa p} \cdot K (T_{\kappa p} - T_{0}) \text{ кДж/кг}$ $S_{2} - S_{1} = -\frac{\lambda M_{0}}{T_{\kappa p}}$ Дж/моль*К
$$T_{\kappa p} = T'_{\kappa p} + T_{0}. \quad \Delta T_{\kappa p} = \frac{1}{2} \left(T'(E_{\mathbf{a}}) - T'(E_{\mathbf{b}}) \right) \frac{\Delta \left(S_{2} - S_{1} \right)}{\left(S_{2} - S_{1} \right)} = \sqrt{\left(\frac{\Delta \lambda}{\lambda} \right)^{2} + \left(\frac{\Delta M_{0}}{M_{0}} \right)^{2} + \left(\frac{\Delta T_{\kappa p}}{T_{\kappa p}} \right)^{2}}$$
 $\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta t_{\kappa p}}{t_{-m}} \right)^{2} + \left(\frac{\Delta K}{K} \right)^{2} + \left(\frac{\Delta T_{\kappa p}}{T_{-m} - T_{0}} \right)^{2}}.$

6. Измерительные приборы.

Nº	Наименование	Предел измерений	Цена деления	Класс точности	Δи
1	Секундомер	99 мин	0,01 с/дел	-	0,005 c

7. Схема установки.

8. Результаты прямых измерений и их обработки.

Время t, c	ЭДС термопары Е, мВ
0	20,1
15	19,3
30	18,6
45	17,9
60	17,2
75	16,4
90	15,9
105	15,3
120	14,7
135	15,0
150	15,1
165	15,2
180	15,2
195	15,1
210	15,0
225	15,0
240	15,0
255	14,9
270	14,8
285	14,6
300	14,6
315	14,5
330	14,4
345	14,2
360	14,0
375	
390	13,5
405	13,1
420	12,6
435	12,1
	11,6
450	11,2
465	10,7
480	10,4
495	10,0
510	9,7
525	9,4
540	9,0
555	8,7
570	8,4
585	8,2
600	8,0

 $T_{\text{окр.cp}}$ = 23,5 °C

Время t, с	Температура Т _{ол} , °С	Разность (Тол- Токр.ср)	In(T _{ол} - Т _{окр.ср})
0	-	-	-
15	-	-	-
30	-	-	-
45	-	-	-
60	255,6	232,1	5,447
75	246	222,5	5,405
90	239,9	216,4	5,377
105	229,3	205,8	5,327
120	217,4	193,9	5,267
135	228,8	205,3	5,324
150	229	205,5	5,325
165	229,2	205,7	5,326
180	229,2	205,7	5,326
195	229	205,5	5,325
210	228,8	205,3	5,324
225	228,8	205,3	5,324
240	228,8	205,3	5,324
255	228,7	205,2	5,324
270	226,4	202,9	5,313
285	224	200,5	5,301
300	224	200,5	5,301
315	223,9	200,4	5,300
330	221,5	198,0	5,288
345	218,9	195,4	5,275
360	216,5	193,0	5,263
375	210,2	186,7	5,2295
390	205,3	181,8	5,203
405	199	175,5	5,168
420	193,4	169,9	5,135
435	186,3	162,8	5,093
450	180,9	157,4	5,059
465	174,5	151,0	5,017
480	170,6	147,1	4,991
495	165,4	141,9	4,955
510	161,4	137,9	4,927
525	157,4	133,9	4,897
540	151,9	128,4	4,855
555	148	124,5	4,824
570	144	120,5	4,792
585	141,3	117,8	4,769
600	138,6	115,1	4,746

9. Расчёт результатов косвенных измерений.

$$\lambda = \left(c_0 + c_A * \frac{M_A}{M_0}\right) * \Delta t_{\mathrm{KP}} * K \left(T_{\mathrm{KP}} - T_0\right) = 56,593 \;$$
кДж/кг $S_2 - S_1 = -\frac{\lambda M_0}{T_{\mathrm{KP}}} = -0,01933$

10. Расчёт погрешностей измерений.

$$\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta t_{\rm KP}}{t_{\rm KP}}\right)^2 + \left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta T_{\rm KP}}{T_{\rm KP} - T_0}\right)^2} = 0.0714$$

$$\frac{\Delta(S_2 - S_1)}{(S_2 - S_1)} = \sqrt{\left(\frac{\Delta \lambda}{\lambda}\right)^2 + \left(\frac{\Delta M_0}{M_0}\right)^2 + \left(\frac{\Delta T_{KP}}{T_{KP}}\right)^2} = 0,263$$

11. Графики.

График зависимости натурального логарифма разности температур олова и окружающей среды от времени в процессе охлаждения кристаллического олова:

12. Окончательные результаты.

$$T_{KP} = 229,5 \text{ K}$$

$$\lambda = 56,593 \, кДж/кг$$

$$S_2 - S_1 = -rac{\lambda M_0}{T_{ ext{KD}}} = -0$$
,01933 $rac{\kappa Дж}{ ext{моль}*K}$

13. Выводы и анализ результатов работы.

Итак, в ходе работы были экспериментально проверены значения удельной теплоты кристаллизации олова, а также температура кристаллизации олова. Оба значения отклонены от табличных в меньшую сторону на менее чем 4%, что можно объяснить погрешностью построения графиков, округлением, а также неточностью приборов и человеческим фактором. В методичке найдена ошибка — в предоставляемых для проверки табличных данных нам представлена удельная теплоёмкость олова, а не его удельная теплота кристаллизации.