Support Vector Machine

Il-Chul Moon
Dept. of Industrial and Systems Engineering
KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn the support vector machine classifier
 - Understand the maximum margin idea of the SVM
 - Understand the formulation of the optimization problem
- Learn the soft-margin and penalization
 - Know how to add the penalization term
 - Understand the difference between the log-loss and the hinge-loss
- Learn the kernel trick
 - Understand the primal problem and the dual problem of SVM
 - Know the types of kernels
 - Understand how to apply the kernel trick to SVM and logistic regression

SUPPORT VECTOR MACHINE

Detour: Decision Boundary

• $f^*(x) = argmax_{Y=y}P(Y = y|X = x)$ = $argmax_{Y=y}P(X = x|Y = y)P(Y = y)$

What-if Gaussian class conditional density?

•
$$P(X=x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(X=x|Y=y)P(Y=y)$$

Detour: Decision Boundary in Two Dimension

$$f^*(x) = argmax_{Y=y}P(Y = y|X = x)$$

= $argmax_{Y=y}P(X = x|Y = y)P(Y = y)$

- Two multivariate normal distribution for the class conditional densities
- Decision boundary
 - A linear line
- Linear decision boundary
- Any problem in the real world applications?
 - Observing the combination of x₁ and x₂

$$P(X = (x_1, x_2)|Y = y) = \frac{1}{\sqrt{2\pi|\Sigma_y|}} \exp(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)'}{2})$$

Decision Boundary without Prob.

- Which is a better decision boundary?
 - Without considering the probability distribution?
- Which points are at the front line?

Decision Boundary with Margin

- Decision boundary with maximum margin
 - Between the points close to the boundary
 - How many points?
- Decision boundary line
 - $\mathbf{w} \cdot \mathbf{x} + b = 0$
 - Positive case
 - $\mathbf{w} \cdot \mathbf{x} + b > 0$
 - Negative case
 - $\mathbf{w} \cdot \mathbf{x} + b < 0$
 - Confidence level
 - $(\mathbf{w} \cdot \mathbf{x}_j + b) y_j$
- Margin?
 - Perpendicular distance from the closest point to the decision boundary

How many parameters?

Margin Distance

- Let's say
 - $f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$
 - A point x on the boundary has

•
$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b = 0$$

A positive point x has

• between an arbitrary point x and a point x_p on the boundary and on the perpendicular line from x to the boundary

•
$$x = x_p + r \frac{w}{||w||}$$
, $f(x_p) = 0$
• $f(x) = w \cdot x + b = w \left(x_p + r \frac{w}{||w||} \right) + b = w \left(x_p + r \frac{w \cdot w}{||w||} = r ||w|| \right)$

• The distance is $r = \frac{f(x)}{||w||}$

Maximizing the Margin

- Good decision boundary?
 - Maximum margin!

•
$$r = \frac{a}{||w||}$$

- Need to consider the both side
- Optimization problem?

•
$$max_{w,b} 2r = \frac{2a}{||w||}$$

 $s.t.(wx_j + b)y_j \ge a, \forall j$

- a is an arbitrary number and can be normalized
 - $min_{w,b}||w||$ $s.t.(wx_j + b)y_j \ge 1, \forall j$

This becomes a quadratic optimization problem. Why?

Support Vector Machine with Hard Margin

- Support Vector Machine (SVM)
 - Constructs a set of hyperplanes to have the largest distance to the nearest training data point of any class.
- Hard margin
 - No error cases are allowed
 - What If there is an error case?
- Let's implement the hard margin SVM
 - $min_{w,b}||w||$ $s.t.(wx_j + b)y_j \ge 1, \forall j$

SOFT MARGIN

"Error" Cases in SVM

- Data points that are
 - Impossible to classify with a linear decision boundary
- So called, "error" cases...
- How to manage these?
 - Option 1
 - Make decision boundary more complex
 - Go to non-linear
 - Any problem?
 - Option 2
 - Admit there will be an "error"
 - Represent the error in our problem formulation.
 - Try to reduce the error as well.
 - Any problem?

"Error" Handling in SVM

- How to handle
- Option 1)
 - Counting the error cases and reduce the counts
 - $min_{w,b} ||w|| + C \times \#_{error}$ $s.t.(wx_j + b)y_j \ge 1, \forall j$
 - Any problem?
- Option 2)
 - Introduce a slack variable
 - $\xi_j > 1$ when mis-classified
 - $min_{w,b}||w|| + C \sum_{j} \xi_{j}$ $s.t.(wx_{j} + b)y_{j} \ge 1 - \xi_{j}, \forall j$ $\xi_{j} \ge 0, \forall j$
 - Any problem?
- C = trade-off parameter

Soft-Margin SVM

- $min_{w,b} ||w|| + C \sum_{j} \xi_{j}$ s.t. $(wx_{j} + b)y_{j} \ge 1 - \xi_{j}, \forall j$ $\xi_{i} \ge 0, \forall j$
- We soften the constraints
 - By adding a slack variable
- Instead, we penalize the misclassification cases in the objective function
 - $C\sum_{j}\xi_{j}$
- How to recover the hardmargin SVM?

Comparison to Logistic Regression

- Loss function
 - $\xi_j = loss(f(x_j), y_j)$
- SVM loss function: Hinge Loss
 - $\xi_j = (1 (wx_j + b)y_j)_+$
- Logistic Regression loss function: Log Loss
 - $\hat{\theta} = argmax_{\theta} \sum_{1 \leq i \leq N} log(P(Y_i|X_i;\theta))$ $= argmax_{\theta} \sum_{1 \leq i \leq N} \{Y_i X_i \theta log(1 + e^{X_i \theta})\}$
 - $\xi_j = -\log\left(P(Y_j|X_j, w, b)\right) = \log\left(1 + e^{(wx_j+b)y_j}\right)$
- Which loss function is preferable?
 - Around the decision boundary?
 - Overall place?

Strength of the Loss Function

• $min_{w,b,\xi_j} ||w|| + C \sum_j \xi_j$ s.t. $(wx_j + b)y_j \ge 1 - \xi_j, \forall j$ $\xi_j \ge 0, \forall j$

- Let's implement the model
- How does the decision boundary evolves over the variations of C?

KERNEL TRICK

Enough of Studying SVM?

- You can train the SVM when you even have "error" cases
 - Use a soft-margin to handle such errors
- However, this does not change the complexity of the decision boundary
- In the real world, there are situations which require complex decision boundary...
 - Option 1
 - Make decision boundary more complex
 - Go to non-linear
 - Option 2
 - Admit there will be an "error"
 - Represent the error in our problem formulation.

Feature Mapping to Expand Dim.

 $min_{w,b,\xi_j}||w|| + C\sum_j \xi_j$ s.t. $(w\varphi(x_i) + b)y_i \ge 1 - \xi_i, \forall j$ $\xi_i \geq 0, \forall j$

• $\varphi(< x_1, x_2 >) =$ $< x_1, x_2, x_1^2, x_2^2, x_1x_2, x_1^3, x_2^3, x_1^2x_2, x_1x_2^2 >$

Any problem??? # of Params, Representation, Computation.... 100

Rethinking the Formulation

- SVM turns
 - Classification → Constrained quadratic programming
- Constrained optimization
 - $min_x f(x)$
 - $s.t. g(x) \le 0, h(x) = 0$

inf: infimum "Greatest Lower Bound"
inf{1,2,3} = 1

- Lagrange method
 - Lagrange Prime Function: $L(x, \alpha, \beta) = f(x) + \alpha g(x) + \beta h(x)$
 - Lagrange Multiplier: $\alpha \geq 0, \beta$
 - Lagrange Dual Function: $d(\alpha, \beta) = \inf_{x \in X} L(x, \alpha, \beta) = \min_{x} L(x, \alpha, \beta)$
 - $\max_{\alpha \ge 0, \beta} L(x, \alpha, \beta) = \begin{cases} f(x) : if \ x \ is \ feasible \\ \infty : otherwise \end{cases}$
 - $min_x f(x) \rightarrow min_x max_{\alpha \ge 0, \beta} L(x, \alpha, \beta)$
- Take advantage of the formulation technique of the constrained optimization
 - Primal and Dual Problems!

Primal and Dual Problem

Primal Problem

$$\min_{x} f(x)$$
s. t. $g(x) \le 0, h(x) = 0$

 $min_x max_{\alpha \geq 0, \beta} L(x, \alpha, \beta)$

Lagrange Dual Problem

$$\max_{\alpha>0,\beta}d(\alpha,\beta)$$

s. t. $\alpha>0$

- Weak duality theorem
 - $d(\alpha, \beta) \le f(x^*)$ for $\forall \alpha, \forall \beta$
 - $d^* = max_{\alpha \ge 0, \beta} min_{\alpha} L(x, \alpha, \beta) \le min_{\alpha} max_{\alpha \ge 0, \beta} L(x, \alpha, \beta) = p^*$
 - Maximizing the dual function provides the lower bound of $f(x^*)$
 - Duality gap = $f(x^*) d(\alpha^*, \beta^*)$
- Strong duality
 - $d^* = max_{\alpha \ge 0, \beta} min_{\alpha} L(x, \alpha, \beta) = min_{\alpha} max_{\alpha \ge 0, \beta} L(x, \alpha, \beta) = p^*$
 - When Karush-Kunh-Tucker (KKT) Conditions are satisfied

KKT Condition and Strong Duality

- Strong duality
 - $d^* = max_{\alpha \ge 0, \beta} min_x L(x, \alpha, \beta) = min_x max_{\alpha \ge 0, \beta} L(x, \alpha, \beta) = p^*$
- Holds when KKT conditions are met

•
$$\nabla L(x^*, \alpha^*, \beta^*) = 0$$

- $\alpha^* \ge 0$
- $g(x^*) \leq 0$
- $h(x^*) = 0$
- $\alpha^* g(x^*) = 0$

Active Constraint $\alpha^* = 0 \Rightarrow g(x^*) = 0$ Inactive Constraint $g(x^*) < 0 \Rightarrow \alpha^* = 0$ \Rightarrow Complementary Slackness

Primal Problem

 $min_x f(x)$ s. t. $g(x) \le 0$, h(x) = 0

Strong Duality $d^* = p^*$

Always

For convex optimization

KKT Condition

Primal and dual problems are equivalent for the constrained convex optimization

Dual Problem of SVM

 $min_x f(x)$ $s.t. g(x) \leq 0$, h(x) = 0

Lagrange Prime Function

Primal Problem of Linearly Separable SVM

Primal Problem of Linearly Separable SVM
$$L(x,\alpha,\beta) = f(x) + \alpha g(x) + \beta h(x)$$

$$\begin{aligned} \min_{w,b} ||w|| \\ s.t. (wx_j + b)y_j &\geq 1, \forall j \\ \\ \min_{w,b} \max_{\alpha \geq 0, \beta} \frac{1}{2} w \cdot w - \sum_j \alpha_j [(wx_j + b)y_j - 1] \\ s.t. \alpha_i &\geq 0, for \forall j \end{aligned}$$

- Linearly separable case
- **Lagrange Prime Function**
 - $L(w,b,\alpha)$ $= \frac{1}{2}w \cdot w - \sum_{i} \alpha_{j} [(wx_{j} + b)y_{j} - 1]$
- Lagrange Multiplier
 - $\alpha_i \geq 0$, for $\forall j$

Dual Problem of Linearly Separable SVM

$$\begin{aligned} & \max_{\alpha \geq 0} \min_{w,b} \frac{1}{2} w \cdot w - \sum_{j} \alpha_{j} \left[\left(w x_{j} + b \right) y_{j} - 1 \right] \\ & s.t. \alpha_{j} \geq 0, for \ \forall j \end{aligned}$$

KKT Condition to Eliminate the Duality Gap

$$\frac{\partial L(w,b,\alpha)}{\partial w} = 0, \frac{\partial L(w,b,\alpha)}{\partial b} = 0$$

$$\alpha_i \ge 0, \forall i$$

$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0, \forall i$$

Dual Representation of SVM

•
$$L(w,b,\alpha) = \frac{1}{2}w \cdot w - \sum_{j} \alpha_{j} [(wx_{j}+b)y_{j}-1]$$

• =
$$\frac{1}{2}ww - \sum_{j} \alpha_{j}y_{j}wx_{j} - b\sum_{j} \alpha_{j}y_{j} + \sum_{j} \alpha_{j}$$

• =
$$\frac{1}{2}\sum_{i}\sum_{j}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j} - \sum_{i}\sum_{j}\alpha_{i}\alpha_{j}y_{i}y_{j}x_{i}x_{j} - b \times 0 + \sum_{j}\alpha_{j}$$

• =
$$\sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

- Again, a quadratic programming
- Once, α_i is known

•
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

•
$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0$$

- Now, we can find out the w and b again.
 - Why is this better?
 - Most of α_i are....
 - Location of *x* is....
- Let's find out from the implementation...

Dual Problem of Linearly Separable SVM

$$\max_{\alpha \ge 0} \min_{w,b} \frac{1}{2} w \cdot w - \sum_{j} \alpha_{j} [(wx_{j} + b)y_{j} - 1]$$

s.t. $\alpha_{j} \ge 0$, for $\forall j$

KKT Condition to Eliminate the Duality Gap

$$\frac{\partial L(w,b,\alpha)}{\partial w} = 0, \frac{\partial L(w,b,\alpha)}{\partial b} = 0$$

$$\alpha_i \ge 0, \forall i$$

$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0, \forall i$$

$$w = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

24

Mapping Functions

- Suppose that there are non-linearly separable data sets...
- The non-linear separable case can be linearly separable when we increase the basis space
 - Standard basis: e_1 , e_2 , e_3 ..., $e_n \rightarrow$ Linearly independent and generate \mathbb{R}^n
- Expanding the Basis through Space mapping function $\phi: L \to H$
 - Or, transformation function, etc...
- Any problem????
 - Feature space becomes bigger and bigger....

Kernel Function

- The kernel calculates the inner product of two vectors in a different space (preferably without explicitly representing the two vectors in the different space)
 - $K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$
- Some common kernels are following:
 - Polynomial(homogeneous)
 - $k(x_i, x_j) = (x_i \cdot x_j)^d$
 - Polynomial(inhomogeneous)
 - $k(x_i, x_j) = (x_i \cdot x_j + 1)^d$
 - Gaussian kernel function, a.k.a. Radial Basis Function
 - $k(x_i, x_j) = \exp(-\gamma ||x_i x_j||^2)$
 - For $\gamma > 0$. Sometimes parameterized using $\gamma = \frac{1}{2\sigma^2}$
 - Hyperbolic tangent, a.k.a. Sigmoid Function
 - $k(x_i, x_j) = \tanh(\kappa x_i \cdot x_j + c)$
 - For some(not every) $\kappa > 0$ and c < 0

Polynomial Kernel Function

- Imagine we have
 - $\mathbf{x} = \langle x_1, x_2 \rangle$ and $\mathbf{z} = \langle z_1, z_2 \rangle$
 - Polynomial Kernel Function of degree 1
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = \langle x_1, x_2 \rangle \cdot \langle z_1, z_2 \rangle = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$
 - Polynomial Kernel Function of degree 2
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = \langle x_1^2, \sqrt{2}x_1x_2, x_2^2 \rangle \cdot \langle z_1^2, \sqrt{2}z_1z_2, z_2^2 \rangle$
 - $=x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2 = (x_1 z_1 + x_2 z_2)^2 = (\mathbf{x} \cdot \mathbf{z})^2$
 - Polynomial Kernel Function of degree 3
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = (\mathbf{x} \cdot \mathbf{z})^3$
 - Polynomial Kernel Function of degree n
 - $K(\langle x_1, x_2 \rangle, \langle z_1, z_2 \rangle) = (\mathbf{x} \cdot \mathbf{z})^n$
- Do we need to express and calculate the transformed coordinate values for x and z to know the polynomial kernel of K?
 - Do we need to convert the feature spaces to exploit the linear separation in the high order?
 - Condition: only the inner product is computable with this trick

Dual SVM with Kernel Trick

•
$$\max_{\alpha \geq 0} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \varphi(x_{i}) \varphi(x_{j})$$

•
$$\max_{\alpha \geq 0} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$$

•
$$\alpha_i \left((wx_j + b)y_j - 1 \right) = 0, C > \alpha_i > 0$$

•
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \varphi(\mathbf{x}_i)$$

•
$$b = y_i - \sum_{i=1}^N \alpha_i y_i \varphi(x_i) \varphi(x_i)$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

- $C \ge \alpha_i \ge 0, \forall i$
- Dual formulation lets SVM utilize
 - Kernel trick
 - Reduced parameters to estimate
 - Only store alpha values instead of w
 - How many alpha values are needed?
 - Consider meaningful alphas

Dual Problem of Linearly Separable SVM

$$\max_{\alpha \ge 0} \sum_{j} \alpha_{j} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$C \ge \alpha_{i} \ge 0, \forall i$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \left((wx_{j} + b) y_{j} - 1 \right) = 0, C > \alpha_{i} > 0$$

- Linear case
 - $sign(w \cdot x + b)$
 - $min_{w,b}||w||$
 - $(wx_i + b)y_i \ge 1, \forall j$
- Transformed case
 - $sign(w \cdot \varphi(x) + b)$
 - $min_{w,b,\xi_j}||w|| + C\sum_j \xi_j$
 - $(w\varphi(x_j) + b)y_j \ge 1 \xi_j, \forall j$
 - $\xi_j \ge 0, \forall j$
- Kernel trick case
 - $sign(w \cdot \varphi(x) + b)$
 - $\max_{\alpha \geq 0} \sum_{j} \alpha_{j} \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j})$
 - $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \varphi(\mathbf{x}_i)$
 - $b = y_j w\varphi(x_j)$ when $0 < \alpha_j < C$
 - $\sum_{i=1}^{N} \alpha_i y_i = 0$
 - $0 \le \alpha_i \le C, \forall i$

Classification with SVM Kernel Trick

$$\begin{cases}
f(x) = w \cdot x + b = -a \\
f(x) = w \cdot x + b = 0
\end{cases}$$

$$\begin{cases}
f(x) = w \cdot x + b = 0 \\
f(x) = w \cdot x + b = a
\end{cases}$$

$$sign(w \cdot \varphi(x) + b) = sign\left(\sum_{i=1}^{N} \alpha_i y_i \varphi(x_i) \cdot \varphi(x) + y_j - \sum_{i=1}^{N} \alpha_i y_i \varphi(x_i) \varphi(x_j)\right)$$

$$= sign\left(\sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + y_j - \sum_{i=1}^{N} \alpha_i y_i K(x_i, x_j)\right)$$

$$0 < \alpha_j < C$$

SVM with Various Kernels

- SVM is very adaptable to the non-linearly separable cases with the kernel trick
 - Easy expand to the high dimension features (for free!)

Logistic Regression with Kernel

- Logistic regression
 - $P(Y|X) = \frac{1}{1 + e^{-\dot{\theta}^T x}}$
 - Finding the MLE of θ
- Can we kernelize the logistic regression?

•
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \varphi(\mathbf{x}_i)$$

•
$$P(Y|X) = \frac{1}{1 + e^{-\dot{\theta}^T x}} = \frac{1}{1 + e^{\sum_{i=1}^{N} \alpha_i y_i \varphi(x_i) \varphi(x) + b}} = \frac{1}{1 + e^{\sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + b}}$$

- Problem changes
 - From finding θ to finding α_i
 - How to solve this problem?
 - In other words...
 - Is this a constrained optimization?
 - If not, what does it imply?

Acknowledgement

- This slideset is greatly influenced
 - By Prof. Carlos Guestrin at CMU
 - By Prof. Eric Xing at CMU

Further Readings

• Bishop Chapter $7 \rightarrow 6$