Correction exercice 5

Partie A: étude d'une fonction auxiliaire

On considère la fonction g définie sur]0; $+\infty[$ par

$$g(x) = -2 \ln x - xe + 1.$$

$$\lim_{x \to 0} -2\ln(x) = +\infty$$

$$\lim_{x \to 0} -xe + 1 = 1$$

$$\lim_{x \to 0} -xe + 1 = 1$$

$$\lim_{x \to 0} -2\ln x - xe + 1 = +\infty.$$

Conclusion: $\lim_{x\to 0} g(x) = +\infty$.

— Limite en $+\infty$:

$$\lim_{\substack{x \to +\infty \\ n \to +\infty}} -2\ln(x) = -\infty$$

$$\lim_{\substack{x \to +\infty \\ n \to +\infty}} -xe + 1 = -\infty$$

$$\Rightarrow \lim_{\substack{x \to +\infty \\ x \to +\infty}} -2\ln x - xe + 1 = -\infty.$$

Conclusion: $\lim_{x \to +\infty} g(x) = -\infty$.

2. La fonction g est dérivable sur $]0; +\infty[$.

Pour tout réel x > 0, $g'(x) = \frac{-2}{x}$ – e qui est une expression strictement négative sur]0; + ∞ [: on en déduit que la fonction g est strictement décroissante sur $]0; +\infty[$.

- 3. Sur [0,5; 1]:
 - la fonction g est continue car dérivable.
 - g est strictement décroissante.
 - On a $g(1) = -2\ln(1) e + 1 = 1 e < 0$ et $g(0,5) = -2\ln(0,5) 0,5e + 1 > 0$.

 $0 \in [1 - e; -2\ln(0,5) - 0,5e + 1]$ intervalle image de l'intervalle [0,5;1] par la fonction g.

D'après le corollaire du théorème des valeurs intermédiaires, l'équation g(x) = 0 admet une unique solution α dans l'intervalle [0,5; 1].

Utilisons la méthode balayage pour déterminer un encadrement de α à 0,1 près.

g(0,6) > 0 et g(0,7) < 0 donc $0,6 < \alpha < 0,7$.

4. Des questions précédentes, on en déduit le signe de g(x) sur $]0; +\infty[$:

x	0	α	+∞
signe de $g(x)$		+ 0 -	

Partie B : étude de la fonction f

$$f(x) = \frac{\ln x + xe}{x^2}.$$

- 1. Écrivons $f(x) = \frac{1}{x^2} \times (\ln x + xe)$
 - Limite en 0 :

$$\lim_{x \to 0} \frac{1}{x^2} = +\infty$$

$$\lim_{x \to 0} \ln x + xe = -\infty$$

$$\lim_{x \to 0} \ln x + xe = -\infty$$

$$\lim_{x \to 0} \ln x + xe = -\infty.$$

Conclusion: $\lim_{x\to 0} f(x) = -\infty$.

— Limite en +∞: on a une forme indéterminée du type « $\frac{\infty}{\infty}$ », donc on change d'écriture.

$$f(x) = \frac{\ln x}{x^2} + \frac{e}{x}$$

$$\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0 \quad \text{limite de cours}$$

$$\lim_{x \to +\infty} \frac{e}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e}{x} = 0.$$

Conclusion: $\lim_{x \to +\infty} f(x) = 0$.

2. f est dérivable sur]0; $+\infty[$ et pour tout réel x > 0,

$$f'(x) = \frac{\left(\frac{1}{x} + e\right) \times x^2 - (\ln x + xe) \times 2x}{x^4}$$

$$= \frac{x + ex^2 - 2x \ln x - 2x^2 e}{x^4}$$

$$= \frac{1 + ex - 2\ln x - 2xe}{x^3}$$

$$= \frac{-2\ln x - xe + 1}{x^3}$$

$$= \frac{g(x)}{x^3}$$

Pour tout réel x > 0 on a $x^3 > 0$ donc f'(x) a le même signe que g(x) sur $]0; +\infty[$, signe connu à la question 4 de la partie A.

On en déduit que :

- f est strictement croissante sur $]0; \alpha]$
- f est strictement décroissante sur $[\alpha; +\infty[$

3. On a
$$f(\alpha) = \frac{\ln \alpha + \alpha e}{\alpha^2}$$
.
Or $g(\alpha) = 0 \iff -2\ln \alpha - e\alpha + 1 = 0 \iff \ln \alpha = \frac{1 - e\alpha}{2}$.

On en déduit que :

$$f(\alpha) = \frac{\ln \alpha + \alpha e}{\alpha^2}$$

$$= \frac{\frac{1 - e\alpha}{2} + \alpha e}{\frac{2}{\alpha^2}}$$

$$= \frac{1 + \alpha e}{2\alpha^2}$$

4. On en déduit le tableau de variation complet de f sur $]0; +\infty[$:

x	0	α + ∞
Signe de $f'(x)$		+ 0 –
Variation de f	-0	$\frac{1+\alpha e}{2\alpha^2} \longrightarrow 0$

5. Construction pas utile.

Partie C: intégrale et suite

Soit $I_n = \int_{e^n}^{e^{n+1}} \frac{\ln t}{t^2} dt$ et $A_n = \int_{e^n}^{e^{n+1}} f(t) dt$ pour tout entier naturel n.

1. On pose $u(t) = \ln t$ et $v'(t) = \frac{1}{t^2}$.

On a alors $u'(t) = \frac{1}{t}$ et $v(t) = -\frac{1}{t}$ par exemple avec u, u', v et v' dérivables sur $[e^n; e^{n+1}]$ à dérivées continues, on intègre par parties :

$$I_{n} = \left[-\frac{1}{t} \ln t \right]_{e^{n}}^{e^{n+1}} + \int_{e^{n}}^{e^{n+1}} \frac{1}{t^{2}} : dt$$

$$= \left[-\frac{1}{t} \ln t \right]_{e^{n}}^{e^{n+1}} + \left[-\frac{1}{t} \right]_{e^{n}}^{e^{n+1}}$$

$$= -\frac{\ln(e^{n+1})}{e^{n+1}} + \frac{\ln(e^{n})}{e^{n}} - \frac{1}{e^{n+1}} + \frac{1}{e^{n}}$$

$$= -\frac{n+1}{e^{n+1}} + \frac{n}{e^{n}} - \frac{1}{e^{n+1}} + \frac{1}{e^{n}}$$

$$= \frac{n+1}{e^{n}} - \frac{n+2}{e^{n+1}}$$

2. (a) On a:

$$A_{n} = \int_{e^{n}}^{e^{n+1}} \frac{\ln t + te}{t^{2}} dt$$

$$= \int_{e^{n}}^{e^{n+1}} \frac{\ln t}{t^{2}} dt + e \int_{e^{n}}^{e^{n+1}} \frac{1}{t} dt$$

$$= I_{n} + e \left[\ln |t| \right]_{e^{n}}^{e^{n+1}}$$

$$= I_{n} + e(n+1-n)$$

$$= I_{n} + e$$

- (b) On a $I_0 = \frac{0+1}{e^0} \frac{0+2}{e^{0+1}}$ donc $I_0 = 1 \frac{2}{e}$. $A_0 = I_0 + e$ donc $A_0 = 1 - \frac{2}{e} + e$.
- (c) Soit n = 0 on a $e^0 = 1$ et $e^{0+1} = e$. Sur l'intervalle [1; e] la fonction f est positive donc A_0 désigne l'aire de la surface délimitée par la courbe représentative de la fonction f, l'axe des abscisses et les droites d'équation x = 1 et x = e.
- 3. On calcule la limite de A_n . On commence par calculer celle de I_n .

On a:

$$I_n = \frac{n+1}{e^n} - \frac{n+2}{e^{n+1}}$$
$$= \frac{n}{e^n} + \frac{1}{e^n} - \frac{1}{e} \left(\frac{n}{e^n} + \frac{2}{e^n} \right)$$

Or $\lim_{n\to+\infty}\frac{\mathrm{e}^n}{n}=+\infty$ (limite de cours) donc par inverse $\frac{n}{texte^n}=0$ et par suite $\lim_{n\to+\infty}I_n=0$. On a $A_n=I_n+\mathrm{e}$ et donc la suite (A_n) converge vers e.