SIEMENS

PHOTOTRANSISTOR

Industry Standard Single Channel 6 Pin DIP Optocoupler

DEVICE TYPES

Part No.	CTR, % Min.	Part No.	CTR % Min.
4N25	20	MCT2	20
4N26	20	MCT2E	20
4N27	10	MCT270	50
4N28	10	MCT271	45-90
4N35	100	MCT272	75–150
4N36	100	MCT273	125-250
4N37	100	MCT274	225-400
4N38	10	MCT275	70–90
H11A1	50	MCT276	15–60
H11A2	20	MCT277	100
H11A3	20		
H11A4	10		
H11A5	30		

FEATURES

- Interfaces with Common Logic Families
- Input-output Coupling Capacitance < 0.5 pF
- Industry Standard Dual-in-line 6-pin Package
- Field Effect Stable by TRIOS
- 5300 VAC_{RMS} Isolation Test Voltage
- Recognized under Underwriters Laboratory File #E52744
- VDE #0884 Approval Available with Option -001

APPLICATIONS

- AC Mains Detection
- Reed Relay Driving
- Switch Mode Power Supply Feedback
- Telephone Ring Detection
- Logic Ground Isolation
- Logic Coupling with High Frequency Noise Rejection

Notes:

- 1. TRIOS=TRansparent IOn Shield
- Designing with data sheet is covered in Application Note 45, Application Notes section of Data Book.

DESCRIPTION

This data sheet presents five families of Siemens Industry Standard Single Channel Phototransistor Couplers. These families include the 4N25/26/27/28 types, the 4N35/36/37/38 couplers, the H11A1/A2/A3/A4/A5, the MCT2/2E, and MCT270/271/272/273/274/275/276/277 devices. Each optocoupler consists of Gallium Arsenide infrared LED and a silicon NPN phototransistor.

All couplers are Underwriters Laboratories (UL) listed to comply with a 7500 $V_{AC(PK)}$ Isolation Test Voltage. This isolation performance is accomplished through Siemens double molding isolation manufacturing process. Compliance to VDE 0884 partial discharge isolation specification is available for these families by ordering option -001. Phototransistor gain stability, in the presence of high isolation voltages, is insured by incorporating a TRansparent IOn Shield (TRIOS) on the phototransistor substrate. These isolation processes and the Siemens IS09001 Quality program results in the highest isolation performance available for a commercial plastic phototransistor optocoupler.

The devices are available in lead formed configuration suitable for surface mounting and are available either on tape and reel, or in standard tube shipping containers.

Maximum Ratings $T_A=25^{\circ}C$

_			
-	m	ıtt€	31

Reverse Voltage	60 mA 2.5 A
Detector	
Collector-Emitter Breakdown Voltage	
Emitter-Base Breakdown Voltage	
Collector Current	50 mA
Collector Current (t < 1 ms)	
Power Dissipation	150 mW
Package	
Isolation Test Voltage	5300 VAC _{RMS}
Creepage	≥7 mm
Clearance	≥7 mm
Isolation Thickness between Emitter and Detector	≥0.4 mm
Comparative Tracking Index per DIN IEC 112/VDE0303, part	1 175
Isolation Resistance	
V _{IO} =500 V, T _A =25°C	$10^{12} \Omega$
V _{IO} =500 V, T _A =100°C	$10^{11} \Omega$
Storage Temperature	
Operating Temperature	
Junction Temperature	
Soldering Temperature (max. 10 s, dip soldering:	
distance to seating plane ≥1.5 mm)	260°C
	200 0

4N25/26/27/28—Characteristics T_A =25°C

Emitter		Symbol	Min.	Тур.	Max.	Unit	Condition
Forward Voltage*		V _F		1.3	1.5	V	I _F =50 mA
Reverse Current*		I _R		0.1	100	μА	V _R =3.0 V
Capacitance		C ₀		25		рF	V _R =0
Detector							
Breakdown Voltage*	Collector-Emitter	BVCEO	30			V	I _C =1 mA
	Emitter-Collector	BV _{ECO}	7				I _E =100 μA
	Collector-Base	ВУсво	70				Ι _C =100 μΑ
I _{CEO} (dark)*	4N25/26/27 4N28			5 10	50 100	nA	V _{CE} =10 V, (base open)
I _{CBO} (dark)*				2	20	nA	V _{CB} =10 V, (emitter open)
Capacitance, Collector-Emitter		C _{CE}		6		pF	V _{CE} =0
Package			•		•		
DC Current Transfer Ratio*	4N25/26	CTR	20	50		%	V _{CE} =10 V, I _F =10 mA
	4N27/28		10	30			
Isolation Voltage*	4N25	V _{IO}	2500			V	Peak, 60 Hz
	4N26/27		1500				
	4N28		500				
Saturation Voltage, Collector-Emitter		V _{CE(sat)}			0.5	V	I _{CE} =2.0 mA, I _F =50 mA
Resistance, Input to Output*		R _{IO}	100			GΩ	V _{IO} =500 V
Coupling Capacitance		C _{IO}		0.5		рF	f=1 MHz
Rise and Fall Times				2		μS	I_{F} =10 mA V_{CE} =10 V, R_{E} =100 Ω

^{*} Indicates JEDEC registered values

4N35/36/37/38—Characteristics T_A =25°C

Emitter		Symbol	Min.	Тур.	Max.	Unit	Condition	
Forward Voltage*		V _F	0.9	1.3	1.5 1.7	V	I _F =10 mA I _F =10 mA, T _A =-55°C	
Reverse Current*		I _R		0.1	10	μА	V _R =6.0 V	
Capacitance		Со		25		pF	V _R =0, f=1 MHz	
Detector								
Breakdown Voltage, Collector-Emitter*	4N35/36/37	BVCEO	30			V	I _C =1 mA	
	4N38		80					
Breakdown Voltage, Emitter-Collector*		BV _{ECO}	7			V	ΙΕ=100 μΑ	
Breakdown Voltage, Collector-Base*	4N35/36/37	ВУсво	70			V	I _C =100 μA, I _B =1 μA	
	4N38		80					
Leakage Current, Collector-Emitter*	4N35/36/37	ICEO		5	50	nA	V _{CE} =10 V, I _F =0	
	4N38				50		V _{CE} =60 V, I _F =0	
Leakage Current, Collector-Emitter*	4N35/36/37	I _{CEO}			500	μА	V _{CE} =30 V, I _F =0, T _A =100°C	
	4N38			6			V _{CE} =60 V, I _F =0, T _A =100°C	
Capacitance, Collector-Emitter		C _{CE}		6		pF	V _{CE} =0	
Package								
DC Current Transfer Ratio*	4N35/36/37	CTR	100			%	V _{CE} =10 V, I _F =10 mA,	
	4N38		20				V _{CE} =1 V, I _F =20 mA	
DC Current Transfer Ratio*	4N35/36/37	CTR	40	50		%	V _{CE} =10 V, I _F =10 mA,	
	4N38			30			$T_{A} = -55 \text{ to } 100^{\circ}\text{C}$	
Resistance, Input to Output*		R _{IO}	10 ¹¹			W	V _{IO} =500 V	
Coupling Capacitance*		C _{IO}		0.5		pF	f=1 MHz	
Switching Time*		ton, toff		10		μs	$I_C=2$ mA, $R_E=100 \Omega$, $V_{CC}=10 V$	

^{*} Indicates JEDEC registered value

H11A1 through H11A5—Characteristics T_A =25°C

Emitter		Symbol	Min.	Тур.	Max.	Unit	Condition	
Forward Voltage	H11A1-H11A4	V _F		1.1	1.5	V	I _F =10 mA	
	H11A5			1.1	1.7			
Reverse Current		I _R			10	μА	V _R =3 V	
Capacitance		C ₀		50		pF	V _R =0, f=1 MHz	
Detector								
Breakdown Voltage, Collector-Emi	tter	BVCEO	30			V	I _C =1 mA, I _F =0 mA	
Breakdown Voltage, Emitter-Collec	ctor	BVECO	7			V	I _E =100 μA, I _F =0 mA	
Breakdown Voltage, Collector-Base		ВУсво	70			V	I _C =10 μA, I _F =0 mA	
Leakage Current, Collector-Emitter		ICEO		5	50	nA	V _{CE} =10 V, I _F =0 mA	
Capacitance, Collector-Emitter	Capacitance, Collector-Emitter			6		рF	V _{CE} =0	
Package								
DC Current Transfer Ratio	H11A1	CTR	50			%	V _{CE} =10 V, I _F =10 mA	
	H11A2/3		20					
	H11A4		10					
	H11A5		30					
Saturation Voltage, Collector-Emitter		V _{CEsat}			0.4	V	I _{CE} =0.5 mA, I _F =10 mA	
Capacitance, Input to Output		CIO		0.5		pF		
Switching Time		ton, toff		3.0		μs	I_{C} =2 mA, R_{E} =100 Ω , V_{CE} =10 V	

MCT2/MCT2E—Characteristics T_A=25°C

Emitter		Symbol	Min.	Тур.	Max.	Unit	Condition	
Forward Voltage		٧ _F		1.1	1.5	V	I _F =20 mA	
Reverse Current		I _R			10	μА	V _R =3 V	
Capacitance		C ₀		25		pF	V _R =0, f=1 MHz	
Detector		I					,	
Breakdown Voltage	Collector-Emitter	BV _{CEO}	30			V	I _C =1 mA, I _F =0 mA	
	Emitter-Collector	BV _{ECO}	7				$I_{E}=100 \mu A, I_{F}=0 mA$	
	Collector-Base	ВУсво	70				I _C =10 μA, I _F =0 mA	
Leakage Current	Collector-Emitter	I _{CBO}		5	50	nA	V _{CE} =10 V, I _F =0	
	Collector-Base	I _{CBO}			20			
Capacitance, Collector-Emitter		C _{CE}		10		pF	V _{CE} =0	
Package		1						
DC Current Transfer Ratio		CTR	20	60		%	V _{CE} =10 V, I _F =10 mA	
Capacitance, Input to Output		C _{IO}		0.5		pF		
Resistance, Input to Output		R _{IO}		100		GΩ		
Switching Time		^t ON ^{, t} OFF		3.0		μs	$I_{C}=2$ mA, $R_{E}=100 \Omega$, $V_{CE}=10 V$	

Emitter			Min.	Тур.	Max.	Unit	Condition
Forward Voltage					1.5	V	I _F =20 mA
Reverse Current					10	μА	V _R =3 V
Capacitance		Со		25		pF	V _R =0, f=1 MHz
Detector				'	'		
Breakdown Voltage	Collector-Em"itter	BVCEO	30			V	$I_{C}=10 \mu A, I_{F}=0 mA$
	Emitter-Collector	BV _{ECO}	7				$I_{E}=10 \mu A, I_{F}=0 mA$
	Collector-Base	ВУсво	70				$I_{C}=10 \mu A, I_{F}=0 mA$
Leakage Current, Collector-Emitter		ICEO			50	nA	V _{CE} =10 V, I _F =0 mA
Package							
DC Current Transfer Ratio	MCT270	CTR	50			%	V _{CE} =10 V, I _F =10 mA
	MCT271		45		90		
	MCT272		75		150		
	MCT273		125		250		
	MCT274		225		400		
	MCT275		70		210		
	MCT276	-	15		60	-	
	MCT277		100			1	
Current Transfer Ratio, Collector–Emitter	MCT271-276	CTR _{CE}	12.5			%	V _{CE} =0.4 V, I _F =16 mA
	MCT277	-	40				
Collector–Emitter Saturation Voltage		V _{CEsat}			0.4	V	I _{CE} =2 mA, I _F =16 mA
Capacitance, Input to Output		C _{IO}		0.5		pF	
Resistance, Input to Output		R _{IO}		10 ¹²		W	V _{IO} =500 VDC
Switching Time	MCT270/272	t _{ON} , t _{OFF}			10	μs	$I_C=2$ mA, $R_E=100 \Omega$,
	MCT271	-			7		V _{CE} =5 V
	MCT273	-			20		
	MCT274				25		
	MCT275/277				15	1	
	MCT276	1			3.5	-	

Figure 1. Forward voltage vs. forward current

Figure 2. Normalized non-saturated and saturated CTR, T_{Δ} =25°C vs. LED current

Figure 3. Normalized non-saturated and saturated CTR, $T_A\!=\!50^{\circ}\text{C}$ vs. LED current

Figure 4. Normalized non-saturated and saturated CTR, T_A =70°C vs. LED current

Figure 5. Normalized non-saturated and saturated CTR, T_A=85°C vs. LED current

Figure 6. Collector-emitter current vs. temperature and LED current

Figure 7. Collector-emitter leakage current vs. temp.

Figure 8. Normalized CTRcb vs. LED current and temp.

Figure 9. Normalized photocurrent vs. If and temperature

Figure 13. Switching timing

Figure 10. Normalized non-saturated HFE vs. base current and temperature

Figure 11. Normalized HFE vs. base current and temp.

Figure 12. Propagation delay vs. collector load resistor

Figure 14. Switching schematic

