

Ciencia de datos energéticos

Ing. Oscar Germán Duarte Velasco M.Sc., Ph.D.

Universidad Nacional de Colombia Facultad de Ingeniería Departamento de Ingeniería Eléctrica y Electrónica Sede Bogotá

Bogotá, septiembre del 2023

Derechos de autor

Las lecturas del curso Ciencias de datos energéticos están publicadas bajo una licencia Creative Commons:

Reconocimiento-NoComercial-Compartirlgual 3.0 Unported (CC BY-NC-SA 3.0)

Usted es libre de:

Compartir - copiar y redistribuir el material en cualquier medio o formato. Adaptar - remezclar, transformar y crear a partir del material.

Bajo las condiciones siguientes:

BY	Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.	
NC NC	NoComercial — No puede utilizar el material para una <u>finalidad comercial</u> .	
3 SA	Compartirigual — Si remezcla, transforma o crea a partir del material, deberá difundir sus contribuciones bajo la misma licencia que el original.	
No hay restricciones adicionales — No puede aplicar términos legales		
o medidas tecnológicas que legalmente restrinjan realizar		

aquello que la licencia permite.

Texto completo de la licencia en:

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.es_ ES

Créditos curso Ciencia de datos energéticos

PhD. Oscar Germán Duarte Velasco

Profesor titular Departamento de Ingeniería Eléctrica y Electrónica

M. Sc. Diana Milena Jaramillo Quiceno

Coordinadora convenio Coursera - Universidad Nacional de Colombia Asesora pedagógica, metodológica y de políticas de accesibilidad.

Agradecimientos:

M. Sc. Gabriel Ernesto Barrero Tapias

Director Nacional de Innovación Académica

Juan David Alejandro Becerra Becerra Editor y Realizador

Daniel Reyes Leguizamón

Diseñador gráfico CE-Lab

Unimedios Medellín Imagen Institucional - Unimedios Bogotá Vicerrectoría Académica Universidad Nacional de Colombia 2023

Ciencia de datos energéticos

Contextualización

Oscar Duarte, Ph.D.

Universidad Nacional de Colombia Departamento de Ingeniería Eléctrica y Electrónica

El encuentro de dos disciplinas Propósitos complementarios

Ingeniería Eléctrica

Asegurar la disponibilidad de la Energía Eléctrica allí donde se necesite, y lograr que sea utilizada de la mejor forma posible.

Ciencia de datos

Obtener información útil y conocimientos valiosos a partir de datos.

¿Cómo agrega valor lo digital?

Plataforma de negocio:

Automatización

¿Cómo agrega valor lo digital?

¿Cómo agrega valor lo digital?

¿Cómo agrega valor lo digital?

¿Cómo agrega valor lo digital?

El encuentro de dos disciplinas Propósitos complementarios

Un problema usual, en un escenario específico

Berthold et al. Guide to Intelligent Data Science

Tipo de problema	Perspectiva del experto	Perspectiva del analista de
	temático	datos
Comunicación	El experto no comprende los	El analista no comprende los
	términos técnicos del analista	términos del dominio del experto
Falta de	El experto no está seguro de qué	El analista encuentra dificultades
entendimiento	podrá obtener el analista	para entender cómo ayudar al
		experto
	Los modelos del analista difieren	
	de lo que se imaginó el experto	
Organización	Las especificaciones se definen en	El equipo de expertos es
	una etapa tardía, cuando se hacen	heterogéneo y con visiones
	evidentes los problemas con los	disímiles del problema
	datos	

Dos cadenas de valor

Tipos de problemas en Ingeniería Eléctrica

Sistema eléctrico

Eficiencia
Seguridad
Calidad de potencia
Confiabilidad
Robustez y resiliencia
Redes inteligentes

Económicos

Grandes inversiones Entorno multiagente Protección al usuario Demanda cambiante Inventarios de energía Políticas energéticas

Ambientales

Fuentes fósiles Transición energética Impacto del transporte Uso final O.D.S. Predicción ambiental

Estructura del curso

Estructura del curso Temas abordados en los módulos

	Tema de energía.	Tema de ciencia de datos.
1	La cadena de la electricidad.	El proceso de la ciencia de datos.
2	Potencia y energía en CA. Sistemas Trifásicos.	Comprensión de datos.
3	Consumo de Energía. Eficiencia energética.	Preparación de datos.
4	Transporte de Energía Eléctrica.	Descubrimiento de patrones. Clasificación.
5	Generación de Energía Eléctrica.	Descubrimiento de explicaciones. Regresiones.
6	Comercialización y mercados de Energía.	Series de tiempo.

Recursos didácticos para cada módulo

Recursos didácticos para cada módulo

Temas del Módulo 1

- Contextualización
- La cadena de la electricidad.
- El proceso de la ciencia de datos.
- Flujo de datos de energía.
- Marco de para un análisis para proyectos de Ciencia de Datos Energéticos.
- Dataframes en python.

¡Gracias! ogduartev@unal.edu.co @ogduartev

Ciencia de datos energéticos

Cadena de valor de la electricidad

Oscar Duarte, Ph.D.

Universidad Nacional de Colombia Departamento de Ingeniería Eléctrica y Electrónica

Dos cadenas de valor

Generación Transmisión Distribución Conocimiento Información Datos

Generación de energía Aprovechamiento de los recursos

Generación de energía Aprovechamiento de los recursos

Transmisión de energía Transporte de grandes cantidades de energía

Transmisión de energía Transporte de grandes cantidades de energía

Distribución de energía Transporte en los centros poblados

Consumo de energía Uso final

Energía eléctrica

¡Gracias! ogduartev@unal.edu.co @ogduartev

Ciencia de datos energéticos

Dominios del sector eléctrico

Oscar Duarte, Ph.D.

Universidad Nacional de Colombia Departamento de Ingeniería Eléctrica y Electrónica

◆□▶◆□▶◆≣▶◆≣▶ 豊 か9へで

¡Gracias! ogduartev@unal.edu.co @ogduartev

Ciencia de datos energéticos

El proceso de la ciencia de datos

Oscar Duarte, Ph.D.

Universidad Nacional de Colombia Departamento de Ingeniería Eléctrica y Electrónica

Dos cadenas de valor

Generación Transmisión Distribución Conocimiento Información Datos

Ciencia de datos Dos situaciones factibles

Ciencia de datos

Un problema conocido y solucionado de alguna forma. Hay datos históricos asociados a resultados.

Un problema nuevo y poca experiencia.

Hay datos históricos, quizás relacionados con el problema.

Ciencia de datos Dos situaciones factibles

Ciencia de datos

Un problema conocido y solucionado de alguna forma. Predicción de la demanda de energía.

Un problema nuevo y poca experiencia.

Un nuevo proceso industrial.

Ciencia de datos Dos situaciones factibles

El proceso de la ciencia de datos CRISP-DM: CRoss Industry Standard Process for Data Mining

◆□ → ◆□ → ◆ 圭 → ・ 圭 ・ 夕 へ ○

El proceso de la ciencia de datos Comprensión del problema

- ¿Cuál es *exactamente* el problema?
- ¿Qué beneficios se obtendrían si se soluciona?
- ¿Cómo debería verse una solución?
- ¿Qué se sabe del dominio del problema?
- ¿A quiénes afecta el problema?
- ¿A quiénes afectaría una solución?
- ¿En qué contexto sucede el problema?

El proceso de la ciencia de datos Comprensión de los datos

- ¿Qué datos hay disponibles?
- ¿Son relevantes los datos para nuestro problema?
- ¿Qué características técnicas tienen los datos?
- ¿La cantidad es suficiente? ¿La calidad es suficiente?
- ¿Son válidos? ¿Están completos?
- ¿Son recientes? ¿Se actualizan?
- ¿Quién es el dueño de los datos?
- ¿Cómo es el acceso a los datos y cómo será después?

El proceso de la ciencia de datos CRISP-DM: CRoss Industry Standard Process for Data Mining

El proceso de la ciencia de datos Preparación de los datos

- ¿En cuáles datos debemos concentrarnos?
- ¿Cuál es la mejor forma de transformalos para el modelamiento?
- ¿Qué nuevos atributos puedo construir?
- ¿Cómo puedo enriquecer los datos?
- ¿Puedo mejorar la calidad de los datos?

El proceso de la ciencia de datos CRISP-DM: *CRoss Industry Standard Process for Data Mining*

El proceso de la ciencia de datos Modelamiento

- ¿En qué categoría se enmarca mejor el problema?
- ¿Qué tipo de arquitectura de modelo se ajusta mejor al problema?
- ¿Qué métodos de solución deben probarse?
- ¿Qué restricciones de desempeño existen?
- ¿Se necesita obtener un modelo interpretable?

El proceso de la ciencia de datos CRISP-DM: *CRoss Industry Standard Process for Data Mining*

El proceso de la ciencia de datos Evaluación

- ¿Se han logrado los objetivos del proyecto?
- ¿Qué se ha aprendido en el desarrollo del proyecto?
- ¿ Qué nuevos objetivos podrían formularse?

El proceso de la ciencia de datos Despliegue

- ¿Cuál es la mejor forma de implementar el modelo?
- ¿Cómo verificar el funcionamiento del modelo?
- ¿Qué labores de mantenimiento deberán hacerse sobre el modelo?
- ¿Qué nivel de automatización se espera en la actualización del modelo?
- ¿Cómo medir el impacto del modelo en el negocio?

El proceso de la ciencia de datos CRISP-DM: CRoss Industry Standard Process for Data Mining

¡Gracias! ogduartev@unal.edu.co @ogduartev

Ciencia de datos energéticos

Flujo de datos de energía

Oscar Duarte, Ph.D.

Universidad Nacional de Colombia Departamento de Ingeniería Eléctrica y Electrónica

Variables de interés.

- 1. Variables eléctricas.
- 2. Variables económicas.
- 3. Variables ambientales.
- 4. Variables asociadas al recurso energético.
- 5. Variables asociadas al usuario.
- 6. Variables provenientes de simulaciones.

Variables de interés.

1. Variables eléctricas.

- Tensiones, corrientes, potencias, energía, distorsiones, desfases.
- Registros manuales o automáticos.
- Muestreos desde milisegundos hasta meses.
- En equipos, procesos del usuario, contacto con el usuario o subestaciones de distribución y transmisión.

◆□ → ◆□ → ◆ 圭 → ・ 圭 ・ 夕 へ ○

1. Variables eléctricas.

Contador de energía

AMI - Advanced Metering Instrument

Variables de interés. 1. Variables eléctricas.

SMART METER APPLICATION Power Station Commercial & Industrial Business Consumers METER RF Data Concentrator Concentrator Substation 1 Phase Consumers 3 Phase Consumers Analytics and Billing Report Mobile App

1. Variables eléctricas.

Variables de interés.

1. Variables eléctricas.

Más allá del dato:

- ¿Cuál es la precisión de la medición?.
- ¿Cuál es la exactitud de la medición?.
- ¿Cuál es la confiabilidad del sistema de medición?

2. Variables económicas.

◆□▶ ◆□▶ ◆■▶ ◆■ ● 990

Variables de interés.

3. Variables ambientales.

4. Recursos energéticos.

Variables de interés.

5. Comportamiento del usuario.

6. Simulaciones del sistema eléctrico.

Variables de interés.

¡Gracias! ogduartev@unal.edu.co @ogduartev

Ciencia de datos energéticos

Un marco general de análisis para proyectos

Oscar Duarte, Ph.D.

Universidad Nacional de Colombia Departamento de Ingeniería Eléctrica y Electrónica

Un marco de análisis para proyectos de Ciencia de datos energéticos Dimensiones

Un marco de análisis para proyectos de Ciencia de datos energéticos Dimensiones

Dimensiones de análisis

1. Dominio (ambiente) del problema

Dimensiones de análisis

1. Dominio (ambiente) del problema

- ¿En qué punto de la cadena de valor de la electricidad sucede el problema?
- ¿Desde qué perspectiva se analiza?

Dimensiones de análisis 2. Impacto efectivo

- ¿Qué beneficio real o esperado se obtiene con el proyecto?
- ¿Cómo se inserta el resultado en la cadena de valor?

Dimensiones de análisis 3. Ciclo de vida

Dimensiones de análisis 3. Ciclo de vida

■ ¿En qué etapa del ciclo de vida se ubica el problema?

Dimensiones de análisis 4. Flujo de datos

Dimensiones de análisis 4. Flujo de datos

- ¿De dónde provienen los datos?
- ¿Qué proceso han tenido previo al proyecto?

Dimensiones de análisis

5. Categoría del problema de datos

Clasificación

Predecir con posibles resultados discretos.

Regresión

Predecir con posibles resultados numéricos.

Agrupamiento/segmentación

Resumir. Encontrar prototipos.

Análisis de Asociación

Encontrar relaciones entre atributos.

Análisis de Desviación

Encontrar/explicar comportamientos atípicos.

Dimensiones de análisis

5. Categoría del problema de datos

■ ¿En qué categoría se podría enmarcar el problema?

Dimensiones de análisis 6. Método de solución

Descubrimiento de patrones

Descubrimiento de explicaciones

Descubrimiento de predictores

Dimensiones de análisis 6. Método de solución

- ¿Qué tipo de métodos se han empleado?
- ¿Qué métodos alternativos podrían probarse?

¡Gracias! ogduartev@unal.edu.co @ogduartev

