CO 432 Spring 2025:

Lecture Notes

1	Entropy										3							
	1.1	Definition																3
	1.2	Entropy as expected surprise																4
	1.3	Entropy as optimal lossless data comp	pre	ssion														5
2	Relative entropy									9								
	2.1	The boolean k -slice																12
	2.2	Rejection sampling																15
3	Mu	tual information																22
	3.1	Definition and chain rules																22
	3.2	Markov chains and data processing .																25
	3.3	Communication complexity																26
	3.4	Sufficient statistics																28
	3.5	Concentration of measure																30
4	Coding theory 3:								32									
	4.1	Source coding																32
	4.2	Channel coding																34
	4.3	Interlude: Packing, covering, and Vor	one	oi tilin	g													35
	4.4	Shannon's channel coding for discrete	e m	emory	less o	chai	nne	ls										38
5	Par	allel repetition																41
Ba	ack N	Matter																42
		of Named Results																42
		ex of Defined Terms																
		notes taken, unless otherwise specifie aght by Vijay Bhattiprolu.	d, l	by my	self o	luri	ng	the	Sp	rin	g 2	02	5 o	ffei	ring	g	of	СО
T.	ecti:	ıres		Lectu	re 4		Ma	v 1	5 .									9
				Lectu				•	0.									12
Le	cture	1 May 6	3	Lectu					$\frac{\circ}{2}$.									15
	${ m cture}$			Lectu				•	 7 .									17
	cture	V	7	Lectu					9.									19

CO 432 Spr	ing 2025: Lecture Notes			James Ah Yong
Lecture 9	June 3	22	Lecture 15	June 24
Lecture 11	June 10	25	Lecture 16	June 26
Lecture 10	June 5	26	Lecture 17	July 3
Lecture 12	June 12	28	Lecture 18	July 8
Lecture 13	June 17	30	Lecture 19	July 10
	June 19			•

Chapter 1

Entropy

Notation. I will be using my usual LATEX typesetting conventions:

- [n] means the set $\{1, 2, ..., n\}$
- $\{0,1\}^*$ means the set of bitstrings of arbitrary length (i.e., the Kleene star)
- $\sum_{i=1}^{n}$ is implicitly $\sum_{i=1}^{n}$ A, B, ..., Z are random variables (in sans-serif)
- $\mathsf{X} \sim (p_1, p_2, \dots, p_n)$ means X is a discrete random variable with n outcomes such that $\Pr[\mathsf{X}=1]=p_1, \Pr[\mathsf{X}=2]=p_2, \text{ etc. (abbreviate further as } \mathsf{X}\sim(p_i))$

1.1 Definition

 \downarrow Lecture 1 adapted from Arthur \downarrow

Lecture 1 May 6

Definition 1.1.1 (entropy)

For a random variable $X \sim (p_i)$, the entropy H(X) is

$$H(\mathsf{X}) = -\sum_i p_i \log p_i = \sum_i p_i \log \frac{1}{p_i}.$$

Convention. By convention, we usually use \log_2 . Also, we define entropy such that $\log_2(0) = 0$ so that impossible values do not break the formula.

Example 1.1.2. If X takes on the values a, b, c, d with probabilities 1, 0, 0, 0, respectively, then $H(X) = 1 \log 1 = 0$.

If X takes on those values instead with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{8}$, respectively, then $H(X) = \frac{7}{4}$.

Fact 1.1.3. H(X) = 0 if and only if X is a constant.

Proof. Suppose X is constant. Then, $H(X) = 1 \log 1 = 0$.

Suppose H(X) = 0. Probabilities are in [0,1], so $p_i \log \frac{1}{p_i} \ge 0$. Since $H(X) = \sum_i p_i \log \frac{1}{p_i} = 0$ and each term is non-negative, each term must be zero. Thus, each p_i is either 0 or 1. We cannot have $\sum p_i > 1$, so exactly one $p_i = 1$ and the rest are zero. That is, X is constant.

Theorem 1.1.4 (Jensen's inequality)

Let $f: \mathbb{R} \to \mathbb{R}$ be concave. That is, for any a and b in the domain of f and $\lambda \in [0,1)$, $f(\lambda a + (1-\lambda)b) \ge \lambda f(a) + (1-\lambda)f(b)$. For any discrete random variable X,

$$\mathbb{E}[f(\mathsf{X})] \leq f(\mathbb{E}[\mathsf{X}])$$

Proof. Consider a random variable X with two values a and b, each with probabilities λ and $1 - \lambda$. Then, notice that

$$\mathbb{E}[f(\mathsf{X})] = \lambda f(a) + (1 - \lambda)f(b) \le f(\lambda a + (1 - \lambda)b) = f(\mathbb{E}[\mathsf{X}])$$

by convexity of f.

TODO: This can be generalized by induction.

Fact 1.1.5. Assume X is supported on [n]. Then, $0 \le H(X) \le \log n$.

Proof. Start by claiming without proof that $\log n$ is concave, so we can apply Jensen's inequality. Let $\mathsf{X}' = \frac{1}{p_i}$ with probability p_i . Then,

$$\begin{split} H(\mathsf{X}) &= \sum_{i} p_{i} \log \frac{1}{p_{i}} \\ &= \mathbb{E} \left[\log(\mathsf{X}') \right] \\ &\leq \log(\mathbb{E}[\mathsf{X}']) \\ &= \log \left(\sum p_{i} \frac{1}{p_{i}} \right) \\ &= \log n \end{split}$$

It is not a coincidence that $\log_2 n$ is the minimum number of bits to encode [n].

1.2 Entropy as expected surprise

We want $S:[0,1] \to [0,\infty)$ to capture how "surprised" we are S(p) that an event with probability p happens. We want to show that under some natural assumptions, this is the only function we could have defined as entropy. In particular:

- 1. S(1) = 0, a certainty should not be surprising
- 2. S(q) > S(p) if p > q, less probable should be more surprising
- 3. S(p) is continuous in p
- 4. S(pq) = S(p) + S(q), surprise should add for independent events. That is, if I see something twice, I should be twice as surprised.

 \uparrow Lecture 1 adapted from Arthur \uparrow

Lecture 2 May 8

Proposition 1.2.1

If S(p) satisfies these 4 axioms, then $S(p) = c \cdot \log_2(1/p)$ for some c > 0.

Proof. Suppose a function $S:[0,1]\to[0,\infty)$ exists satisfying the axioms. Let $c:=S(\frac{1}{2})>0$.

By axiom 4 (addition), $S(\frac{1}{2^k}) = kS(\frac{1}{2})$. Likewise, $S(\frac{1}{2^{1/k}} \cdots \frac{1}{2^{1/k}}) = S(\frac{1}{2^{1/k}}) + \cdots + S(\frac{1}{2^{1/k}}) = kS(\frac{1}{2^{1/k}})$.

Then, $S(\frac{1}{2^{m/n}}) = \frac{m}{n}S(\frac{1}{2}) = \frac{m}{n} \cdot c$ for any rational m/n.

By axiom 3 (continuity), $S(\frac{1}{2^z}) = c \cdot z$ for all $z \in [0, \infty)$ because the rationals are dense in the reals. In particular, for any $p \in [0, 1]$, we can write $p = \frac{1}{2^z}$ for $z = \log_2(1/p)$ and we get

$$S(p) = S\left(\frac{1}{2^z}\right) = c \cdot z = c \cdot \log_2(1/p)$$

as desired.

We can now view entropy as expected surprise. In particular,

$$\sum_i p_i \log_2 \frac{1}{p_i} = \mathop{\mathbb{E}}_{x \sim \mathsf{X}}[S(p_x)]$$

for a random variable X = i with probability p_i .

1.3 Entropy as optimal lossless data compression

Suppose we are trying to compress a string consisting of n symbols drawn from some distribution.

Problem 1.3.1

What is the expected number of bits you need to store the results of n independent samples of a random variable X?

We will show this is nH(X).

Notice that we assume that the symbols we are drawn <u>independently</u>, which is violated by almost all data we actually care about.

Definition 1.3.2

Let $C: \Sigma \to (\Sigma')^*$ be a code. We say C is a <u>uniquely decodable</u> code (UDC) if there does not exist a collision $x, y \in \Sigma^*$, with identical encoding $C(x_1)C(x_2)\cdots C(x_k) = C(y_1)C(y_2)\cdots C(y_{k'})$.

Also, C is <u>prefix-free</u> (sometimes called <u>instantaneous</u>) if for any distinct $x, y \in \Sigma$, C(x) is not a prefix of C(y).

Proposition 1.3.3

Prefix-freeness is sufficient for unique decodability.

Example 1.3.4. Let $C : \{A, B, C, D\} \to \{0, 1\}^*$ where C(A) = 11, C(B) = 101, C(C) = 100, and C(D) = 00. Then, C is prefix-free and uniquely decodable.

We can easily parse 1011100001100 unambiguously as 101.11.00.00.11.00 (BADDAD).

Recall from CS 240 that a prefix-free code is equivalent to a trie, and we can decode it by traversing the trie in linear time.

Theorem 1.3.5 (Kraft's inequality)

A prefix-free binary code $C:\{1,\ldots,n\}\to\{0,1\}^*$ with codeword lengths $\ell_i=|C(i)|$ exists if and only if

$$\sum_{i=1}^{n} \frac{1}{2^{\ell_i}} \le 1.$$

Proof. Suppose $C: \{1, ..., n\} \to \{0, 1\}^*$ is prefix-free with codeword lengths ℓ_i . Let T be its associated binary tree and let W be a random walk on T where 0 and 1 have equal weight (stopping at either a leaf or undefined branch).

Define E_i as the event where W reaches i and E_{\emptyset} where W falls off. Then,

$$\begin{split} 1 &= \Pr(E_\varnothing) + \sum_i \Pr(E_i) \\ &= \Pr(E_\varnothing) + \sum_i \frac{1}{2^{\ell_i}} & \text{(by independence)} \\ &\geq \sum_i \frac{1}{2^{\ell_i}} & \text{(probabilities are non-negative)} \end{split}$$

Conversely, suppose the inequality holds for some ℓ_i . Wlog, suppose $\ell_1 < \ell_2 < \dots < \ell_n$.

Start with a complete binary tree T of depth ℓ_n . For each i = 1, ..., n, find any unassigned node in T of depth ℓ_i , delete its children, and assign it a symbol.

Now, it remains to show that this process will not fail. That is, for any loop step i, there is still some unassigned node at depth ℓ_i .

Let $P \leftarrow 2^{\ell_n}$ be the number of leaves of the complete binary tree of depth ℓ_n . After the i^{th} step, we decrease P by $2^{\ell_n-\ell_i}$. That is, after n steps,

$$P = 2^{\ell_n} - \sum_{i=1}^n \frac{2^{\ell_n}}{2^{\ell_i}}$$

$$= 2^{\ell_n} - 2^{\ell_n} \sum_{i=1}^n \frac{1}{2^{\ell_i}}$$

$$\ge 0$$

by the inequality.

Recall the problem we are trying to solve:

Lecture 3 May 13

Problem 1.3.1

What is the expected number of bits you need to store the results of n independent samples of a random variable X?

Solution (Shannon & Faro). Consider the case where X is symbol i with probability p_i . We want to encode independent samples $x_i \sim X$ as $C(x_i)$ for some code $C: [n] \to \{0,1\}^*$.

Suppose for simplification that $p_i = \frac{1}{2^{\ell_i}}$ for some integers ℓ_i . Since $\sum p_i = 1$, we must have $\sum \frac{1}{2^{\ell_i}} = 1$. Then, by Kraft's inequality, there exists a prefix-free binary code $C : [n] \to \{0,1\}^*$ with codeword lengths $|C(i)| = \ell_i$. Now,

$$\underset{x_i \sim \mathsf{X}}{\mathbb{E}} \left[\sum_i |C(x_i)| \right] = \sum_i p_i \ell_i = \sum_i p_i \log_2 \frac{1}{p_i} = H(\mathsf{X})$$

Proceed to the general case. Suppose $\log_2 \frac{1}{p_i}$ are non-integral. Instead, use $\ell_i' = \left\lceil \log_2 \frac{1}{p_i} \right\rceil$. We still satisfy Kraft since $\sum_i \frac{1}{2^{\ell_i'}} \leq \sum_i p_i = 1$. Then,

$$\underset{x_i \sim \mathsf{X}}{\mathbb{E}} \left[\sum_i |C(x_i)| \right] = \sum_i p_i \ell_i' = \sum_i p_i \left\lceil \log_2 \frac{1}{p_i} \right\rceil$$

which is bounded by

$$H(\mathsf{X}) = \sum_i p_i \log_2 \frac{1}{p_i} \leq \sum_i p_i \left\lceil \log_2 \frac{1}{p_i} \right\rceil < \sum_i p_i \left(1 + \log_2 \frac{1}{p_i}\right) = H(\mathsf{X}) + 1$$

We call the code C generated by this process the <u>Shannon–Faro code</u>.

We can improve on this bound $[H(\mathsf{X}), H(\mathsf{X}) + 1)$ by amortizing over longer batches of the string. Solution (batching). For Y defined on [n] equal to i with probability q_i , define the random variable $\mathsf{Y}^{(k)}$ on $[n]^k$ equal to the string $i_1 \cdots i_k$ with probability $q_{i_1} \cdots q_{i_k}$. That is, $\mathsf{Y}^{(k)}$ models k independent samples of Y .

Apply the Shannon–Fano code to $\mathsf{Y}^{(k)}$ to get an encoding of $[n]^k$ as bitstrings of expected length ℓ

satisfying $H(\mathsf{Y}^{(k)}) \le \ell \le H(\mathsf{Y}^{(k)}) + 1$.

$$\begin{split} H(\mathsf{Y}^{(k)}) &= \underset{i_1 \cdots i_k \sim \mathsf{Y}^{(k)}}{\mathbb{E}} \left[\log_2 \frac{1}{q_{i_1} \cdots q_{i_k}} \right] & \text{(by def'n)} \\ &= \underset{i_1 \cdots i_k \sim \mathsf{Y}^{(k)}}{\mathbb{E}} \left[\log_2 \frac{1}{q_{i_1}} + \cdots + \log_2 \frac{1}{q_{i_k}} \right] & \text{(log rules)} \\ &= \sum_{j=1}^k \underset{i_1 \cdots i_k \sim \mathsf{Y}^{(k)}}{\mathbb{E}} \left[\log_2 \frac{1}{q_{i_j}} \right] & \text{(linearity of expectation)} \\ &= \sum_{j=1}^k \underset{i \sim \mathsf{Y}}{\mathbb{E}} \left[\log_2 \frac{1}{q_i} \right] & \text{(q}_{i_j} \text{ only depends on one character)} \\ &= kH(\mathsf{Y}) & \text{(by def'n, no j-dependence in sum)} \end{split}$$

For every k symbols, we use ℓ bits, i.e., $\frac{\ell}{k}$ bits per symbol. From the Shannon–Faro bound, we have

$$\begin{split} \frac{H(\mathsf{Y}^{(k)})}{k} & \leq \frac{\ell}{k} < \frac{H(\mathsf{Y}^{(k)})}{k} + \frac{1}{k} \\ H(\mathsf{Y}) & \leq \frac{\ell}{k} < H(\mathsf{Y}) + \frac{1}{k} \end{split}$$

Then, we have a code for Y bounded by $[H(\mathsf{Y}),H(\mathsf{Y})+\frac{1}{k}).$

Taking a limit of some sort, we can say that we need H(Y) + o(1) bits.

Chapter 2

Relative entropy

Definition 2.0.1 (relative entropy)

Given two discrete distributions $p = (p_i)$ and $q = (q_i)$, the <u>relative entropy</u>

$$D(p \parallel q) := \sum p_i \log_2 \frac{1}{q_i} - \sum_i p_i \log_2 \frac{1}{p_i} = \sum p_i \log_2 \frac{p_i}{q_i}$$

This is also known as the KL divergence.

The KL divergence works vaguely like a "distance" between distributions. (In particular, KL divergence is not a metric since it lacks symmetry and does not follow the triangle inequality, but it can act sorta like a generalized squared distance.)

Lecture 4 May 15

Fact 2.0.2. $D(p \parallel q) \geq 0$ with equality exactly when p = q.

Proof. Observe that

$$-D(p \parallel q) = \sum_i p_i (-\log_2 \frac{p_i}{q_i}) = \sum_i p_i \log_2 \frac{q_i}{p_i}$$

and then define $X' = \frac{q_i}{p_i}$ with probability p_i . By construction, we get

$$-D(p \parallel q) = \mathbb{E}[\log_2 \mathsf{X}'] \leq \log_2(\mathbb{E}[\mathsf{X}'])$$

by Jensen's inequality (as $f = \log_2$ is concave). Finally,

$$D(p \parallel q) \geq -\log_2(\mathbb{E}[\mathsf{X}']) = \log_2\left(\sum_i p_i \frac{q_i}{p_i}\right) = \log_2 1 = 0 \qquad \qquad \square$$

Proposition 2.0.3

Any prefix-free code has an expected length at least H(X).

Proof. Let $X \sim (p_i)$. Suppose C is a prefix-free code with codeword lengths ℓ_i .

Then, by Kraft's inequality, $\sum_i 2^{-\ell_i} \leq 1$. We want to show that $\sum_i p_i \ell_i \geq H(\mathsf{X})$, and we will prove this by showing that $\sum_i p_i \ell_i - H(\mathsf{X}) = D(p \parallel q)$ for some distribution q (then apply fact 2.0.2).

We will take q to be the random walk distribution corresponding to the binary tree associated to the candidate prefix-free code.

Let T be the binary tree associated to C. Consider the process of randomly going left/right at each node and stopping when either falling off the tree or hitting a leaf.

Let $q_i = 2^{-\ell_i}$ be the probability that this random walk reaches the leaf for the symbol i and let $q_{n+1} = 1 - \sum_i 2^{-\ell_i}$ be the probability that the random walk falls off the tree. Also, to keep ranges identical, let $\tilde{p}_i = p_i$ and $\tilde{p}_{n+1} = 0$. Now,

$$\begin{split} D(\tilde{p} \parallel q_C) &= \sum_{i=1}^{n+1} \tilde{p}_i \log_2 q_i^{-1} - \sum_{i=1}^{n+1} \tilde{p}_i \log_2 \frac{1}{p_i} \\ &= \sum_{i=1}^{n} p_i \log_2 2^{\ell_i} - \sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i} \\ &= \sum_{i=1}^{n} p_i \ell_i - H(\mathsf{X}) \end{split} \tag{$\tilde{p}_{n+1} = 0$}$$

Therefore, by fact 2.0.2, $\sum_i p_i \ell_i \ge H(\mathsf{X})$.

This proof technique generalizes. Recall the distinction between UDCs and prefix-free codes:

Definition 1.3.2

Let $C: \Sigma \to (\Sigma')^*$ be a code. We say C is a <u>uniquely decodable</u> code (UDC) if there does not exist a collision $x, y \in \Sigma^*$, with identical encoding $C(x_1)C(x_2)\cdots C(x_k) = C(y_1)C(y_2)\cdots C(y_{k'})$.

Also, C is <u>prefix-free</u> (sometimes called <u>instantaneous</u>) if for any distinct $x, y \in \Sigma$, C(x) is not a prefix of C(y).

Example 2.0.4. The code C(1, 2, 3, 4) = (10, 00, 11, 110) is a uniquely decodable code.

The code C'(1,2,3,4) = (0,10,110,111) is a prefix-free code.

Remark 2.0.5. A natural additional requirement for unique decodability is that for any $k \in \mathbb{N}$, $x \in [n]^k$, $y \in [n]^k$, $C(x) \neq C(y)$.

Theorem 2.0.6

For any uniquely decodable code $C:[n] \to \{0,1\}^*$ of codeword lengths ℓ_i , there is also a prefix-free code $C':[n] \to \{0,1\}^*$ of lengths ℓ_i .

We will show that for any UDC C, the lengths $\sum_i 2^{-\ell_i} \le 1$. Then, Kraft's inequality applies and we have a prefix-free code C'.

Partition the code's codomain $C([n]) = C_1 \cup C_2 \cup C_3 \cup \cdots$ by the length of the codeword $C_j \subseteq \{0,1\}^j$. We must instead show $\sum_j \frac{|C_i|}{2^j} \leq 1$.

Consider the easy case $C([n]) = C_2 \cup C_3$. If there are no collisions of length 5, we have

$$2 \cdot |C_2| \cdot |C_3| \le 2^5$$

because every string in $\{xy: x \in C_2, y \in C_3\} \cup \{yx: x \in C_2, y \in C_3\}$ is unique in $\{0,1\}^5$. That is, $|C_2|\cdot |C_3| \leq 2^4$.

Likewise, if there are no collisions of length 5k, we get

$$\frac{(2k)!}{k! \cdot k!} \cdot |C_2|^k \cdot |C_3|^k \le 2^{5k}$$

because the union $\bigcup_{\substack{\alpha \in \{2,3\}^{2k}, \\ \alpha_i = 2 \text{ for } k \text{ choices of } i}} C_{\alpha_i}$ consists of only unique strings.

In the limit, by Sterling's approximation,

$$\begin{split} \frac{2^{2k}}{\sqrt{k}} \cdot \left| C_2 \right|^k \cdot \left| C_3 \right|^k &\leq 2^{5k} \\ \left| C_2 \right| \cdot \left| C_3 \right| &\leq \frac{2^5}{2^2} (\sqrt{k})^{1/k} \approx 1 + \mathcal{O}(\log k/k) \end{split}$$

I have no idea where this was going.

Proof. Fix a $k \ge 1$. Let $\ell_{max} = \max \ell_i$. Write $C^{(k)}$ to be the set of encoded k-length strings.

Consider the distribution: sample a length m uniformly from the set $[k \cdot \ell_{max}]$. Also, sample a uniformly random string $s \in \{0,1\}^m$. For each $x \in C^{(k)}$, let E_x be the event where s=x.

Now, we can write

$$\sum_{x \in C^{(k)}} \Pr[E_x] \le 1$$

because the events E_x are mutually exclusive. Then,

$$\begin{split} \sum_{x \in C^{(k)}} \frac{1}{k \cdot \ell_{max}} \cdot \frac{1}{2^{\ell(x)}} &\leq 1 \\ \sum_{x \in C^{(k)}} \frac{1}{2^{\ell(x)}} &\leq k \cdot \ell_{max} \end{split}$$

where $\ell(x)$ is the length of x. Since summing over each codeword $x \in C$ is the same as summing

over each codeword ℓ_i ,

$$\begin{split} \left(\sum_{i} \frac{1}{2^{\ell_{i}}}\right)^{k} &= \left(\sum_{x \in C} \frac{1}{2^{\ell(x)}}\right)^{k} \\ &= \sum_{x_{1}, \dots, x_{k} \in C} \frac{1}{2^{\ell(x_{1})}} \cdot \frac{1}{2^{\ell(x_{2})}} \cdots \frac{1}{2^{\ell(x_{k})}} \\ &= \sum_{x_{1}, \dots, x_{k} \in C} \frac{1}{2^{\ell(x_{1}) + \ell(x_{2}) + \dots + \ell(x_{k})}} \\ &= \sum_{x_{1}, \dots, x_{k} \in C} \frac{1}{2^{\ell(x_{1}x_{2} \cdots x_{k})}} \\ &= \sum_{x \in C^{(k)}} \frac{1}{2^{\ell(x)}} \end{split}$$

where we can take the last step by uniquely decoding $x_1x_2\cdots x_k$ into x. Combining,

$$\begin{split} \left(\sum_{i} \frac{1}{2^{\ell_{i}}}\right)^{k} &\leq k \cdot \ell_{max} \\ &\sum_{i} \frac{1}{2^{\ell_{i}}} \leq (k \cdot \ell_{max})^{\frac{1}{k}} \\ &\leq 1 + \mathcal{O}\left(\frac{\ell_{max} \cdot \log_{2} k}{k}\right) \end{split}$$

which tends to 1 as $k \to \infty$, as desired.

Notation. Write H(p) to denote H(X) for $X \sim \text{Bernoulli}(p)$.

That is, $H(p) = p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$.

Likewise, write $D(q \parallel p)$ to be $D(\mathsf{Y} \parallel \mathsf{X})$ where $\mathsf{Y} \sim \mathrm{Bernoulli}(q)$.

Lecture 5 May 20

Recall Sterling's approximation (which we have used before):

Theorem 2.0.7 (Sterling's approximation) m! behaves like $\sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \mathcal{O}\left(\frac{1}{m}\right)\right)$

2.1 The boolean k-slice

Consider the <u>boolean k-slice</u> (also known as the <u>Hamming k-slice</u>) of the hypercube $\{0,1\}^n$ defined by

$$B_k := \{ x \in \{0,1\}^n : x \text{ has exactly } k \text{ ones} \}$$

Remark 2.1.1.

$$|B_k| \approx 2^{H(\frac{k}{n}) \cdot n}$$

Proof. By Sterling's approximation, knowing that $|B_k| = \binom{n}{k}$:

$$\begin{split} |B_k| &= \binom{n}{k} \\ &= \frac{n!}{n!(n-k)!} \\ &\approx \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n}{\sqrt{2\pi k} \left(\frac{k}{e}\right)^k \sqrt{2\pi (n-k)} \left(\frac{n-k}{e}\right)^{n-k}} \\ &= \sqrt{\frac{n}{2\pi k (n-k)}} \cdot \frac{n^k \left(\frac{n}{n-k}\right)^{n-k}}{k^k} \end{split}$$

Now, notice that $\left(\frac{n}{n-k}\right)^{n-k} = \left(1 + \frac{k}{n-k}\right)^{n-k} \approx e^k$ for $k \ll n-k$ because $1+x \approx e^x$ for small x. Then, $\left(1 + \frac{k}{n-k}\right)^{n-k} \approx \left(e^{k/(n-k)}\right)^{n-k} = e^k$ and

$$|B_k| \approx \left(\frac{ne}{k}\right)^k$$

$$= 2^{k \log_2 \frac{ne}{k}}$$

$$= 2^{k \log_2 \frac{n}{k} + k \log_2 e}$$

$$= 2^{(\frac{k}{n} \log_2 \frac{n}{k})n + k \log_2 e}$$

$$\approx 2^{(\frac{k}{n} \log_2 \frac{n}{k})n}$$

$$\approx 2^{(\frac{k}{n} \log_2 \frac{n}{k})n}$$
(2.1)

for $1 \ll k \ll n$. Then, given that same assumption,

$$H\left(\frac{k}{n}\right) = \frac{k}{n}\log_2\frac{n}{k} + \underbrace{\left(1 - \frac{k}{n}\right)\log_2\frac{1 - \frac{k}{n}}{1 - \frac{k}{n}}}^{0}$$

$$\approx \frac{k}{n}\log_2\frac{n}{k}$$

because if $n \gg k$, $\frac{k}{n} \to 0$ and $1\log_2 1 = 0$. Combining these approximations yields

$$|B_k| \approx 2^{H(\frac{k}{n})n} \qquad \Box$$

Let X be a uniformly chosen point in B_k and $X_1, \dots, X_n \sim \text{Bernoulli}(\frac{k}{n})$.

This means that $H(\mathsf{X}) \approx H((\mathsf{X}_1, \dots, \mathsf{X}_n))$, which is remarkable because the latter could produce points in B_k or points with n ones or points with no ones.

This seems to imply that the majority of the mass of $(X_1, ..., X_n)$ lies within the boolean k-slice. Formally, we make the following claim about the <u>concentration</u> of measure:¹

¹cf. Dvoretzky–Milman theorem

Proposition 2.1.2

Fix any $\varepsilon > 0$. The probability

$$\Pr\left[(\mathsf{X}_1,\dots,\mathsf{X}_n)\notin\bigcup_{\ell=(1-\varepsilon k)}^{(i+\varepsilon)k}B_\ell\right]=\frac{1}{2^{n/\varepsilon^2}}$$

Informally, the probability of the randomly-drawn vector lying outside of the boolean k-slice is exponentially small.

We will prove a stronger claim:

Claim 2.1.3. Fix any $p \in (0,1)$ and consider any q > p. Then,

$$\Pr[w((\mathsf{X}_i)) > q \cdot n] \le 2^{-D(q\|p) \cdot n}$$

where $w((X_i))$ is the number of ones. Likewise, consider any q < p. Then,

$$\Pr[w((\mathsf{X}_i)) < q \cdot n] \le 2^{-D(q\|p) \cdot n}$$

Consider a toy example first. Let X be the number of heads after n fair coin tosses.

Then, $\mathbb{E}[X] = \frac{n}{2}$ and

$$\Pr[\mathsf{X} \ge 0.51n] = \frac{1}{2^n} \sum_{k>0.51n}^n \binom{n}{k} \approx \frac{1}{2^n} \sum_{k>0.51n}^n \left(\frac{ne}{k}\right)^k \to 0 \text{ very quickly}$$

by the same magic that we did in eq. (2.1) and because $\frac{1}{2^n}$ goes to 0 very quickly.

Now we can prove the claim.

Proof. Let $\theta_p(x)$ denote the probability of sampling a vector $x \in \{0,1\}^n$ where each bit is IID Bernoulli(p). Then,

$$\begin{split} \frac{\theta_p(x)}{\theta_q(x)} &= \frac{p^k (1-p)^k}{q^k (1-q)^k} \\ &= \frac{(1-p)^n}{(1-q)^n} \left(\frac{\frac{p}{1-p}}{\frac{q}{1-q}}\right)^k \\ &\leq \frac{(1-p)^n}{(1-q)^n} \left(\frac{\frac{p}{1-p}}{\frac{q}{1-q}}\right)^{qn} \end{split}$$

for any $k \ge qn$ because (1) if $q \ge p$, then $\frac{q}{1-q} \ge \frac{p}{1-p}$ and the ugly fraction is greater than 1 and (2) increasing the exponent increases the quantity if the base is greater than 1.

Let $B_{\geq k} := \bigcup_{\ell \geq k} B_{\ell}$. Then, for all $x \in B_{\geq qn}$, we must show that

$$\theta_p(x) \leq \frac{(1-p)^n}{(1-q)^n} \left(\frac{\frac{p}{1-p}}{\frac{q}{1-q}}\right)^{qn} \cdot \theta_q(x) = 2^{-nD(q\|p) \cdot \theta_q(x)}$$

Consider the right-hand expression:

$$\begin{split} 2^{n \cdot D(q \parallel p)} &= 2^{n \cdot (q \log_2 \frac{1}{p} + (1-q) \log_2 \frac{1}{1-p} - q \log_2 \frac{1}{q} - (1-q) \log_2 \frac{1}{1-q})} \\ &= \left(\frac{1}{p^q} \cdot \frac{1}{(1-p)^{1-q}} \cdot q^q \cdot (1-q)^{1-q}\right)^n \end{split}$$

and the left-hand expression:

$$\frac{(1-p)^n}{(1-q)^n} \left(\frac{\frac{p}{1-p}}{\frac{q}{1-q}}\right)^{qn} = \left(\frac{(1-p)^{1-q}p^q}{(1-q)^{1-q}q^q}\right)^n \\
= \left(p^q \cdot (1-p)^{1-q} \cdot \frac{1}{q^q} \cdot \frac{1}{(1-q)^{1-q}}\right)^n$$

which is clearly the reciprocal of the right-hand expression.

Now, we know that $\theta_p(x) = 2^{-nD(q||p)}\theta_q(x)$, so

$$\begin{split} &\Pr_{\substack{\mathsf{X}_1,\ldots,\mathsf{X}_n\sim \mathrm{Bernoulli}(p)\\ =\sum_{x\in B_{\geq qn}}\theta_p(x)\\ \leq 2^{-nD(q||p)}\sum_{x\in B_{\geq qn}}\theta_q(x)\\ < 2^{-nD(q||p)}\end{split}$$

since the sum of the probabilities of x being any given entry in $B_{\geq qn}$ must be at most 1.

2.2 Rejection sampling

The KL divergence can give us a metric of how accurately we can sample one distribution using another distribution.

Example 2.2.1. Suppose
$$X = \begin{cases} 0 & p = \frac{1}{2} \\ 1 & p = \frac{1}{2} \end{cases}$$
 and $Y = \begin{cases} 0 & p = \frac{1}{4} \\ 1 & p = \frac{3}{4} \end{cases}$.

How can we sample Y using X?

Solution (naive). Take IID X_1 and X_2 . Return 0 if $x_1 = x_2 = 0$ and 1 otherwise.

Solution (fancy). Take an infinite IID queue $\mathsf{X}_1, \mathsf{X}_2, \dots$

Starting at i=1, if $X_i=0$, then output 0 with probability $\frac{1}{2}$, otherwise increment i until $X_i=1$. \square

 \downarrow Lecture 6 adapted from Arthur \downarrow -

Problem 2.2.2 (rejection sampling)

Given access to a distribution $Q=(Q(x))_{x\in\mathcal{X}},$ how efficiently can you simulate $P=(P(x))_{x\in\mathcal{X}}?$

Lecture 6 May 22

Example 2.2.3. Suppose $Q = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ and $P = (\frac{1}{2}, \frac{1}{2})$. We want to obtain the P distribution from Q.

Solution. Since Q and P are both uniform, we can just keep sampling from Q until we get something in P. That is, for $i = 1, ..., \infty$:

- 1. Sample $X_i \sim Q$.
- 2. If $\mathsf{X}_i \in \{1,2\},$ accept and output $\mathsf{Y} \leftarrow \mathsf{X}_i.$
- 3. Otherwise, $i \leftarrow i + 1$.

This works because

$$\Pr[\mathsf{Y} = 1] = \Pr[\mathsf{X}_i = 1 \mid \mathsf{X}_i = 1 \vee \mathsf{X}_i = 2] = \frac{1/3}{2/3} = \frac{1}{2}$$

for the final round i, and similarly for Y = 2.

Example 2.2.4. Consider a slightly more complex distribution $P = (\frac{1}{3}, \frac{2}{3})$ and $Q = (\frac{1}{2}, \frac{1}{2})$.

Solution. We will create a more complex rejection sampling protocol with some cheating.

Again, iterate and draw independent X_i :

- If $X_1 = 1$, accept with probability $\frac{2}{3}$. Otherwise, reject and continue to X_2 with probability $\frac{1}{3}$.
- If $X_1 = 2$, accept.
- For $i \geq 2$, accept if $X_i = 1$ and reject if $X_i = 2$.

Then, the probability of accepting $X_1 = 1$ is $\frac{1}{3}$, $X_1 = 2$ is $\frac{1}{2}$, and rejecting X_1 is $\frac{1}{6}$.

Since later rounds only output 1, we output 1 with probability $\frac{1}{3} + \frac{1}{6} = \frac{1}{2}$ and 2 with probability $\frac{1}{2}$.

Definition 2.2.5 (rejection sampler)

A <u>rejection sampler</u> is a procedure that reads sequentially independent random samples $X_i \sim Q$ and in each round i either

- accepts the value of X_i and terminates with an index i^* , or
- rejects and continues.

The iteration we terminated on i^* is a random variable since it is a function of other random variables. It satisfies $X_{i^*} \sim P$, which is weird since for all fixed i, $X_i \sim Q$.

An interesting application is communication complexity. Suppose Alice has some hidden distribution P. Alice and Bob have access to a shared random IID sequence $X_i \sim Q$.

Alice can send an encoding of i^* to Bob who outputs $X_{i^*} \sim P$. This encoding i^* can be encoded using $\log i^*$ bits.

We will show that $\mathbb{E}[\log i^*] \leq D(P \parallel Q) + \mathcal{O}(1)$. You can also show that $D(P \parallel Q) \leq \mathbb{E}[\log i^*]$.

For each round i and symbol x, we need to know whether x was sampled before round i, i.e., the probability assigned to x in previous rounds.

For round $i \geq 1$, define:

- $\alpha_i(x)$ to denote the probability that the procedure accepts X_i and that $X_i = x$
- $p_i(x)$ to denote the probability that the procedure halts at round $i^* \leq i$ and $X_{i^*} = x$

We want to construct our procedure such that

- for all x, $P(x) = \sum_{i=1}^{n} \alpha_i(x)$
- for all x and i, $p_i(x) = \sum_{k=1}^i \alpha_k(x)$
- the probability that we halt on or before round i is $p_i^* := \sum_{x \in \mathcal{X}} p_i(x)$

 \uparrow Lecture 6 adapted from Arthur \uparrow

Lecture 7
May 27

Algorithm 1 RejectionSampling(P, Q)

```
Require: \forall x \in \mathcal{X}, Q(x) > 0 \iff D(P \parallel Q) < \infty
  1: for x \in \mathcal{X} do p_0(x) \leftarrow 0
  2: p_0^* \leftarrow 0
  3: for i = 1, ..., \infty do
               sample X_i \sim Q
               \begin{split} & \textbf{if } P(\mathsf{X}_i) - P_{i-1}(\mathsf{X}_i) \leq (1 - p^*_{i-1}) \cdot Q(\mathsf{X}_i) \textbf{ then} \\ & \textbf{ with probability } \beta_i(\mathsf{X}_i) = \frac{P(\mathsf{X}_i) - p_{i-1}(\mathsf{X}_i)}{(1 - p^*_{i-1})(Q(\mathsf{X}_i))} \textbf{ do} \end{split}
  5:
  6:
                              > so \ that \ the \ net \ probability \ of \ sampling \ \mathsf{X}_i \ will \ be \ \alpha_i(\mathsf{X}_i) = P(\mathsf{X}_i) - p_{i-1}(\mathsf{X}_i) 
  7:
                                                                                                                                                                                                            \triangleleft
                             return X<sub>i</sub>
  8:
  9:
               else
                       with probability \beta_i(X_i) = 1 do
 10:
                              \triangleright so that the net probability of sampling X_i is \alpha_i(1-p_{i-1}^*)\cdot Q(X_i)
 11:
                                                                                                                                                                                                            \leq
 12:
                              return X_i
```

In this case, for all x and for all i:

- the probability of accepting x in round i is $\alpha_i(x) = \min\{P(x) p_{i-1}(x), (1 p_{i-1}^*)Q(x)\}$
- the probability of accepting x on or before round i is $p_i(x) = p_{i-1}(x) + \alpha_i(x)$
- the probability of terminating on or before round i is $p_i^* = p_{i-1}^* + \sum_{x \in \mathcal{X}} \alpha_i(x) = \sum_{x \in \mathcal{X}} p_i(x)$

Example 2.2.6. Let $P = (\frac{1}{2}, \frac{3}{8}, \frac{1}{8})$ and $Q = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Do the procedure.

Solution. In round 1, sample $X_1 \sim Q$.

- If $X_1 = 1$, accept with probability 1.
- If $X_1 = 2$, accept with probability 1.
- If $X_1 = 3$, accept with probability $\frac{3}{8}$.

Then, $p_1(1) = \frac{1}{3}$, $p_1(2) = \frac{1}{3}$, $p_1(3) = \frac{1}{8}$, and $p_1^* = \frac{19}{24}$.

In round 2, sample $X_2 \sim Q$.

- If $X_2 = 1$, accept with probability 1. There is a $\frac{5}{72}$ chance of getting here, but deficit probability is $\frac{1}{6}$, so no need to reduce.
- If $X_2 = 2$, accept with probability $\frac{3}{5}$. There is a $\frac{5}{72}$ chance of getting here and deficit probability is $\frac{3}{8} - \frac{1}{3} = \frac{1}{24}$. For equality, use probability $\frac{3}{5} \cdot \frac{5}{72} = \frac{1}{24}$.

 • If $X_3 = 3$, accept with probability 0. We already fulfilled $P(3) = p_1(3)$.

Then,
$$p_2(1) = \frac{29}{72}$$
, $p_2(2) = \frac{3}{8}$, $p_3(2) = \frac{1}{8}$, and $p_2^* = \frac{19}{24} + \frac{5}{24} \cdot (\frac{1}{3} + \frac{3/5}{5}) = \frac{65}{72}$.

In round 3, sample $X_3 \sim Q$.

- If $X_3 = 1$, accept with probability 1.
- If $X_3 = 2$ or 3, accept with probability 0.

Keep repeating until we accept a 1.

Proposition 2.2.7

 $(p_i(x))_{x\in\mathcal{X}}$ converges to P(x) as $i\to\infty$. In fact, the residual decays exponentially fast

$$P(x) - p_i(x) \le P(x) \cdot (1 - Q(x))^i.$$

Proof. Begin with the claim that the probability of reaching round i is at least the residual at i for any x:

$$1-p_{i-1}^* \geq P(x) - p_{i-1}(x) \quad \forall x$$

Intuitively, either you returned prior to round i (i.e., p_{i-1}^*) or you did not (i.e., the residual).

$$\begin{split} 1 - p_{i-1}^* &= \sum_{x \in \mathcal{X}} P(x) - \sum_{x \in \mathcal{X}} p_{i-1}(x) \\ &= \sum_{x \in \mathcal{X}} (P(x) - p_{i-1}(x)) \end{split} \tag{2.2}$$

Also, claim that

$$\alpha_i \geq (P(x) - p_{i-1}(x)) \cdot Q(x) \tag{2.3}$$

If $\alpha_i = P(x) - p_{i-1}(x)$, then clearly $\alpha_i \ge \alpha_i Q(x)$. Otherwise, if $\alpha_i = (1 - p_{i-1}^*)Q(x)$, then eq. (2.2) applies.

Proceed by induction.

Base case: exercise.

Inductive step: suppose that $P(x) - p_i(x) \le P(x) \cdot (1 - Q(x))^i$. Then,

$$\begin{split} P(x) - p_{i+1}(x) &= P(x) - p_i(x) - \alpha_{i+1}(x) \\ &\leq (P(x) - p_{i-1}(x))(1 - Q(x)) & \text{(by eq. (2.3))} \\ &\leq (P(x) \cdot (1 - Q(x))^i)(1 - Q(x)) & \text{(by supposition)} \\ &< P(x) \cdot (1 - Q(x))^{i+1} & \Box \end{split}$$

Now, we will prove that this is related to relative entropy.

Proposition 2.2.8

Let i^* be the iteration at which the procedure returns. Then, $\mathbb{E}[\log_2 i^*] \leq D(P \parallel Q) + 2\log_2 e$.

Proof. First, claim that for all $x \in \mathcal{X}$ and any $i \geq 2$ such that $\alpha_i(x) > 0$,

$$i \le \frac{P(x)}{(1 - p_{i-1}^*) \cdot Q(x)} + 1 \tag{2.4}$$

That is, if we reach a particular round i, the probability mass left must be sufficiently large.

We know that $P(x) \ge p_{i-1}(x)$ since we increase to P(x). Then,

$$\begin{split} P(x) &\geq p_{i-1}(x) \\ &= \alpha_1(x) + \dots + \alpha_{i-1}(x) \\ &\geq (1 - p_1^*) \cdot Q(x) + \dots + (1 - p_{i-1}) \cdot Q(x) \\ &\geq (1 - p_{i-1}^*) \cdot Q(x) + \dots + (1 - p_{i-1}) \cdot Q(x) \\ &= (i - 1)(1 - p_{i-1}^*) \cdot Q(x) \\ i &\leq \frac{P(x)}{(1 - p_{i-1}^*) \cdot Q(x)} + 1 \end{split}$$

as long as $\alpha_{j-1} < \alpha_j$ for all j.

Do a gigantic algebra bash:

Lecture 8 May 29

$$\begin{split} \mathbb{E}[\log_2 i^*] &= \sum_{i=1}^{\infty} \left(p_i^* - p_{i-1}^*\right) \cdot \log_2 i \\ &= \sum_{i=1}^{\infty} \sum_{x \in \mathcal{X}} \alpha_i(x) \cdot \log_2 i \\ &\leq \sum_{i=1}^{\infty} \sum_{x \in \mathcal{X}} \alpha_i(x) \cdot \log_2 \left[\frac{P(x)}{(1 - p_{i-1}^*)Q(x)} + 1 \right] \qquad \text{(by eq. (2.4))} \\ &\leq \sum_{i=1}^{\infty} \sum_{x \in \mathcal{X}} \alpha_i(x) \cdot \log_2 \left[\frac{1}{(1 - p_{i-1}^*)} \left(\frac{P(x)}{Q(x)} + 1 \right) \right] \\ &= \underbrace{\sum_{i=1}^{\infty} \sum_{x \in \mathcal{X}} \alpha_i(x) \log_2 \frac{1}{(1 - p_{i-1}^*)}}_{A} + \underbrace{\sum_{i=1}^{\infty} \sum_{x \in \mathcal{X}} \alpha_i(x) \log_2 \left(\frac{P(x)}{Q(x)} + 1 \right)}_{B} \end{split}$$

Consider the first term A:

$$\begin{split} A &= \sum_{i=1}^{\infty} \sum_{x \in \mathcal{X}} \alpha_i(x) \log_2 \frac{1}{(1 - p^*_{i-1})} \\ &= \sum_{i=1}^{\infty} (p^*_i - p^*_{i-1}) \log_2 \frac{1}{(1 - p^*_{i-1})} \end{split}$$

Notice that this is a left-handed Riemann sum of $\log_2 \frac{1}{1-x}$:

$$A \le \int_0^1 \log_2 \frac{1}{1-x} \, \mathrm{d}x$$
$$= \log_2 e$$

Now, consider the second term B:

$$\begin{split} B &= \sum_{i=1}^{\infty} \sum_{x \in \mathcal{X}} \alpha_i(x) \log_2 \left(\frac{P(x)}{Q(x)} + 1 \right) \\ &= \sum_{x \in \mathcal{X}} \sum_{i=1}^{\infty} \alpha_i(x) \log_2 \left(\frac{P(x)}{Q(x)} + 1 \right) \\ &= \sum_{x \in \mathcal{X}} P(x) \log_2 \left(\frac{P(x)}{Q(x)} + 1 \right) \\ &= \sum_{x \in \mathcal{X}} P(x) \log_2 \left(\frac{P(x)}{Q(x)} \cdot \left(1 + \frac{Q(x)}{P(x)} \right) \right) \\ &= \sum_{x \in \mathcal{X}} P(x) \log_2 \left(\frac{P(x)}{Q(x)} \right) + \sum_{x \in \mathcal{X}} P(x) \log_2 \left(1 + \frac{Q(x)}{P(x)} \right) \\ &= D(P \parallel Q) + \sum_{x \in \mathcal{X}} P(x) \log_2 \left(1 + \frac{Q(x)}{P(x)} \right) \\ &\leq D(P \parallel Q) + \sum_{x \in \mathcal{X}} P(x) \log_2 \left(e^{Q(x)/P(x)} \right) \\ &= D(P \parallel Q) + \sum_{x \in \mathcal{X}} P(x) \frac{Q(x)}{P(x)} \log_2 e \\ &= D(P \parallel Q) + \log_2 e \sum_{x \in \mathcal{X}} Q(x) \\ &= D(P \parallel Q) + \log_2 e \end{split}$$

Therefore,

$$\mathbb{E}[\log_2 i^*] \leq A + B \leq D(P \parallel Q) + 2\log_2 e$$

completing the proof.

Intuition: for any $x \in \mathcal{X}$, if $\alpha_i(x) \leq Q(x) \ll P(x)$, then you need an expected amount of $\frac{P(x)}{Q(x)}$ steps to succeed, because you just won't roll x that often.

Also, if $\alpha_{i+1}(x) > 0$ (any round prior to termination), $(1 - p_{i-1}^*(x))Q(x) \le \alpha_i(x)$.

Proposition 2.2.9

For any rejection sampler, let i^* be the index where it returns. Then,

$$\mathbb{E}[\ell(i^*)] > D(P \parallel Q)$$

 $\textit{Proof.} \text{ For convenience, redefine } \alpha_i(x) \coloneqq \Pr[i^* = i \wedge \mathsf{X}_i = x].$

First, observe that for any $x \in \mathcal{X}$, a rejection sampler must have

$$\alpha_i(x) \le Q(x)$$

because we only have a Q(x) chance of rolling x to accept it in round i.

Now, fix $x \in \mathcal{X}$. Consider the random variable $i^*|_{\mathsf{X}_{i^*}=x}$. Then, by Kraft's inequality,

$$\begin{split} \mathbb{E}[\ell(i^*) \mid \mathsf{X}_{i^*} &= x] \geq H(i^* \mid \mathsf{X}_{i^*} = x) \\ &= \sum_{i=1}^{\infty} \Pr[i^* = i \mid \mathsf{X}_{i^*} = x] \log_2 \frac{1}{\Pr[i^* = i \mid \mathsf{X}_{i^*} = x]} \\ &= \sum_{i=1}^{\infty} \frac{\alpha_i(x)}{P(x)} \log_2 \frac{P(x)}{\alpha_i(x)} \\ &\geq \sum_{i=1}^{\infty} \frac{\alpha_i(x)}{P(x)} \log_2 \frac{P(x)}{Q(x)} \\ &= \log_2 \frac{P(x)}{Q(x)} \cdot \sum_{i=1}^{\infty} \frac{\alpha_i(x)}{P(x)} \\ &= \log_2 \frac{P(x)}{Q(x)} \end{split}$$

because $\sum_{i=1}^{\infty} \alpha_i(x) = P(x)$. Apply the law of total probability:

$$\begin{split} \mathbb{E}[\ell(i^*)] &= \sum_{x \in \mathcal{X}} \Pr[\mathsf{X}_{i^*} = x] \; \mathbb{E}[\ell(i^*) \mid \mathsf{X}_{i^*} = x] \\ &= \sum_{x \in \mathcal{X}} P(x) \; \mathbb{E}[\ell(i^*) \mid \mathsf{X}_{i^*} = x] \\ &\geq \sum_{x \in \mathcal{X}} P(x) \log_2 \frac{P(x)}{Q(x)} \\ &= D(P \parallel Q) \end{split}$$

as desired.

Chapter 3

Mutual information

3.1 Definition and chain rules

Notation. Given two jointly distributed random variables (X,Y) over sample space $\mathcal{X}\times\mathcal{Y},$ write p_{xy} for $\Pr[\mathsf{X}=x,\mathsf{Y}=y].$

Lecture 9
June 3

Definition 3.1.1

Given two jointly distributed random variables (X,Y) over sample space $\mathcal{X} \times \mathcal{Y}$, define the <u>mutual information</u> I(X:Y) by

$$\begin{split} I(\mathsf{X}:\mathsf{Y}) &= H(\mathsf{X}) + H(\mathsf{Y}) - H((\mathsf{X},\mathsf{Y})) \\ &= H(\mathsf{X}) - H(\mathsf{X}\mid\mathsf{Y}) \\ &= H(\mathsf{Y}) - H(\mathsf{Y}\mid\mathsf{X}) \end{split}$$

where the conditional entropy $H(X \mid Y)$ is

$$\sum_{y \in \mathcal{Y}} p_y \cdot H((\mathsf{X}|_{\mathsf{Y}=y}))$$

This is entirely analogous to saying that $|A \cap B| = |A| + |B| - |A \cup B| = |A| - |A \setminus B|$.

Theorem 3.1.2 (chain rule for entropy)

Given two jointly distributed random variables (X,Y) over a discrete sample space $\mathcal{X} \times \mathcal{Y}$,

$$H((\mathsf{X},\mathsf{Y})) = H(\mathsf{X}) + H(\mathsf{Y} \mid \mathsf{X})$$

Proof. Do a bunch of algebra:

$$\begin{split} H(\mathsf{X}) + H(\mathsf{Y} \mid \mathsf{X}) &= \sum_{x \in \mathcal{X}} p_x \log \frac{1}{p_x} + \sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} \Pr[\mathsf{Y} = y \mid \mathsf{X} = x] \log \frac{1}{\Pr[\mathsf{Y} = y \mid \mathsf{X} = x]} \\ &= \sum_{x \in \mathcal{X}} p_x \log \frac{1}{p_x} + \sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} \frac{p_{xy}}{p_x} \log \frac{p_x}{p_{xy}} \\ &= \sum_{x \in \mathcal{X}} p_{xy} \log \frac{1}{p_x} + \sum_{x \in \mathcal{X}} p_{xy} \log \frac{p_x}{p_{xy}} \\ &= \sum_{x \in \mathcal{X}} p_{xy} \left(\log \frac{1}{p_x} + \log \frac{p_x}{p_{xy}} \right) \\ &= \sum_{x \in \mathcal{X}} p_{xy} \log \frac{1}{p_{xy}} \\ &= H((\mathsf{X}, \mathsf{Y})) \end{split}$$

Corollary 3.1.3. For two independent variables, since $(Y \mid X) = Y$, we have H((X,Y)) = H(X) + H(Y) as expected.

Corollary 3.1.4.
$$H((X_1, X_2, X_3)) = H(X_1) + H(X_2 \mid X_1) + H(X_3 \mid (X_1, X_2))$$

Proof. Consider $(X_1, X_2, X_3) = ((X_1, X_2), X_3)$. Then, by the chain rule for entropy,

$$H(((\mathsf{X}_1,\mathsf{X}_2),\mathsf{X}_3)) = H((\mathsf{X}_1,\mathsf{X}_2)) + H(\mathsf{X}_3 \mid (\mathsf{X}_1,\mathsf{X}_2))$$

and then by another application,

$$H(((\mathsf{X}_1,\mathsf{X}_2),\mathsf{X}_3)) = H(\mathsf{X}_1) + H(\mathsf{X}_2 \mid \mathsf{X}_1) + H(\mathsf{X}_3 \mid (\mathsf{X}_1,\mathsf{X}_2))$$

as desired. \Box

Theorem 3.1.5 (general chain rule for entropy)

For k random variables $\mathsf{X}_1,\dots,\mathsf{X}_k,$

$$H((\mathsf{X}_1,\dots,\mathsf{X}_k)) = \sum_{i=1}^k H(\mathsf{X}_i \mid (\mathsf{X}_1,\dots,\mathsf{X}_{i-1}))$$

Proof. By induction on the chain rule for entropy.

Notation. Although relative entropy is defined only on *distributions*, write $D(X \parallel Y)$ to be $D(f_X \parallel f_Y)$ where $X \sim f_X$ and $Y \sim f_Y$.

Theorem 3.1.6 (chain rule for relative entropy)

Let p and $q: \mathcal{X} \times \mathcal{Y} \to [0,1]$ be distributions. Let $p(x) \coloneqq \sum_{y \in \mathcal{Y}} p(x,y)$ denote marginals of p and $p(y|x) \coloneqq \frac{p(x,y)}{p(x)}$ denote conditionals of p. Then,

$$\begin{split} D(p(x,y) \parallel q(x,y)) &= D(p(x) \parallel q(x)) + D(p(y|x) \parallel q(y|x)) \\ &= D(p(x) \parallel q(x)) + \sum_{x \in \mathcal{X}} p(x) \cdot D((p(y|x))_{y \in \mathcal{Y}} \parallel (q(y|x))_{y \in \mathcal{Y}}) \end{split}$$

where $D(p(y|x) \parallel q(y|x))$ is the <u>conditional relative entropy</u>.

Equivalently, let $(\mathsf{X}_1,\mathsf{Y}_1)$ and $(\mathsf{X}_2,\mathsf{Y}_2)$ be two joint random variables. Then,

$$D((\mathsf{X}_1,\mathsf{Y}_1) \parallel (\mathsf{X}_2,\mathsf{Y}_2)) = D(\mathsf{X}_1 \parallel \mathsf{X}_2) + \sum_{x \in \mathcal{X}} \Pr[\mathsf{X}_1 = x] \cdot D(\mathsf{Y}_1|_{\mathsf{X}_1 = x} \parallel \mathsf{Y}_2|_{\mathsf{X}_2 = x})$$

Proof (for distributions). Do algebra:

$$\begin{split} &D(p(x) \parallel q(x)) + D(p(y \mid x) \parallel q(y \mid x)) \\ &= \sum_{x \in \mathcal{X}} p_x \log \frac{p_x}{q_x} + \sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} p(y \mid x) \log \frac{p(y \mid x)}{q(y \mid x)} \\ &= \sum_{x \in \mathcal{X}} p_x \log \frac{p_x}{q_x} + \sum_{x \in \mathcal{X}} p_x \sum_{y \in \mathcal{Y}} \frac{p_{xy}}{p_x} \log \frac{p_{xy}q_x}{q_{xy}p_x} \\ &= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p_{xy} \log \frac{p_x}{q_x} + \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p_{xy} \log \frac{p_{xy}q_x}{q_{xy}p_x} \\ &= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p_{xy} \left(\log \frac{p_x}{q_x} + \log \frac{p_{xy}q_x}{q_{xy}p_x} \right) \\ &= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p_{xy} \log \frac{p_{xy}}{q_{xy}} \\ &= D(p(x,y) \parallel q(x,y)) \end{split}$$

as in the proof of chain rule for entropy.

Fact 3.1.7.
$$I[\mathsf{X}:\mathsf{Y}] = \mathop{\mathbb{E}}_{x \leftarrow \mathsf{X}}[D(\mathsf{Y}|_{\mathsf{X}=x} \parallel \mathsf{Y})] = \sum_{x \in \mathcal{X}} p_x D(\mathsf{Y}|_{\mathsf{X}=x} \parallel \mathsf{Y})$$

Proof. First, claim that

$$I[\mathsf{X}:\mathsf{Y}] = D((\mathsf{X},\mathsf{Y}) \parallel \tilde{\mathsf{X}} \otimes \tilde{\mathsf{Y}}) \tag{3.1}$$

where $\tilde{X} \otimes \tilde{Y}$ denotes a random variable consisting of \tilde{X} (resp. \tilde{Y}) independently sampled according

to the distribution of X (resp. Y) so that $\Pr\left[\tilde{X}=x,\tilde{Y}=y\right]=p_xp_y$. Expand the left-hand side:

$$\begin{split} I[\mathsf{X}:\mathsf{Y}] &= \sum_{x \in \mathcal{X}} p_x \log \frac{1}{p_x} + \sum_{y \in \mathcal{Y}} p_y \log \frac{1}{p_y} - \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p_{xy} \log \frac{1}{p_{xy}} \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{xy} \log \frac{1}{p_x} + \sum_{y} \sum_{x} p_{xy} \log \frac{1}{p_y} - \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p_{xy} \log \frac{1}{p_{xy}} \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{xy} \left(\log \frac{1}{p_x} + \log \frac{1}{p_y} - \log \frac{1}{p_{xy}} \right) \\ &= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p_{xy} \log \frac{p_{xy}}{p_x p_y} \\ &= D((\mathsf{X}, \mathsf{Y}) \parallel \tilde{\mathsf{X}} \otimes \tilde{\mathsf{Y}}) \end{split}$$

Now, apply the chain rule for relative entropy:

$$\begin{split} D((\mathsf{X},\mathsf{Y}) \parallel \tilde{\mathsf{X}} \otimes \tilde{\mathsf{Y}}) &= D(\mathsf{X} \parallel \tilde{\mathsf{X}}) + D((\mathsf{X},\mathsf{Y}) \mid (\mathsf{X},\tilde{\mathsf{X}}) \parallel (\tilde{\mathsf{X}} \oplus \tilde{\mathsf{Y}}) \mid (\mathsf{X},\tilde{\mathsf{X}})) \\ &= 0 + \sum_{x} p_{x} D(\mathsf{Y}|_{\mathsf{X}=x} \parallel \mathsf{Y}) \\ &= \underset{x \leftarrow \mathsf{X}}{\mathbb{E}} D(\mathsf{Y}|_{\mathsf{X}=x} \parallel \mathsf{Y}) \end{split} \quad \Box$$

Theorem 3.1.8 (chain rule for mutual information)

Let X_1 , X_2 , and Y be random variables. Then,

$$I((\mathsf{X}_1,\mathsf{X}_2):\mathsf{Y}) = I(\mathsf{X}_1:Y) + I(\mathsf{X}_2:(Y\mid \mathsf{X}_1))$$

and in general

$$I((\mathsf{X}_1,\ldots,\mathsf{X}_n):\mathsf{Y}) = \sum_{i=1}^n I(\mathsf{X}_1:(\mathsf{Y}\mid (\mathsf{X}_1,\ldots,\mathsf{X}_{i-1})))$$

3.2 Markov chains and data processing

Definition 3.2.1

The random variables X, Y, and Z form a <u>Markov chain</u> if the conditional distribution of Z depends only on Y and is conditionally independent of X. Equivalently,

$$\Pr[\mathsf{X} = x, \mathsf{Y} = y, \mathsf{Z} = z] = \Pr[\mathsf{X} = x] \cdot \Pr[\mathsf{Y} = y \mid \mathsf{X} = x] \cdot \Pr[\mathsf{Z} = z \mid \mathsf{Y} = y]$$

Then, we write $X \to Y \to Z$.

Lecture 11
June 10

Example 3.2.2 (*Legend of the Drunken Master*). In $\Omega = \mathbb{R}^2$, Jackie Chan is drunk and takes steps in random directions. He starts at $J_0 = (0,0)$. Then, $J_1 = J_0 + d_1$ where d_1 is an independent random unit vector in \mathbb{R}^2 , and $J_2 = J_1 + d_2$ and so on.

First, J_3 and J_1 are not independent. But if we fix $J_2 = j_2 \in \mathbb{R}^2$, then $J_1 \mid J_2 = j_2$ and $J_3 \mid J_2 = j_2$ are independent. In fact, they are uniformly distributed random points on the circle of radius 1 centred at j_2 .

Proposition 3.2.3 (Markov chain characterization)

Let X, Y, and Z be random variables. TFAE:

- 1. $X \rightarrow Y \rightarrow Z$
- 2. X and Z are conditionally independent given Y. That is,

$$\Pr[\mathsf{X} = x, \mathsf{Z} = z \mid \mathsf{Y} = y] = \Pr[\mathsf{X} = x \mid \mathsf{Y} = y] \cdot \Pr[\mathsf{Z} = z \mid \mathsf{Y} = y]$$

3. Z is distributed according to f(Y, R) for some R independent of X and Y.

Exercise 3.2.4. Prove the definitions are equivalent.

Theorem 3.2.5 (data-processing inequality)

If
$$X \to Y \to Z$$
, then $I(X : Z) \le I(X : Y)$.

Equality happens if and only if $X \to Z \to Y$.

Proof. By the chain rule,

$$I(\mathsf{X}:(\mathsf{Y},\mathsf{Z})) = I(\mathsf{X}:\mathsf{Y}) + I(\mathsf{X}:\mathsf{Z}\mid\mathsf{Y}) = I(\mathsf{X}:\mathsf{Z}) + I(\mathsf{X}:\mathsf{Y}\mid\mathsf{Z})$$

so that

$$I(X : Y) = I(X : Z) + I(X : Y \mid Z)$$

One may show that the mutual information is always non-negative, so we have $I(X : Y) \ge I(X : Z)$ as desired. We defer the proof of the equality case for section 3.4.

3.3 Communication complexity

Problem 3.3.1

Suppose there is a joint distribution (X,Y) that Alice and Bob wish to jointly compute. Alice and Bob have access to a shared random string $R = (R_i)$. Alice is given $x \in \mathcal{X}$ and wants to send Bob a prefix-free message of minimum length so that Bob can compute a sample from $Y \mid X = x$.

Lecture 10 June 5

Definition 3.3.2

A protocol Π is a pair of functions (M,y) where $M: \mathcal{X} \times \Omega_{\mathsf{R}} \to \{0,1\}^*$ is the message Alice sends to Bob and $y: \{0,1\}^* \times \Omega_{\mathsf{R}} \to \mathcal{Y}$ is Bob's output.

The performance of Π is $\mathbb{E}_{X,R} |M(X,R)|$

Suppose X and Y are independent. Then, Bob needs no information so we can use the trivial protocol $M(X, R) = \emptyset$ with performance 0.

Otherwise, we can use a strategy of prefix-free encoding x so that $\mathbb{E}|M(X,R)| \approx H(X)$.

Theorem 3.3.3

There exists a protocol $\Pi = (M, y)$ such that expected message length

$$\mathbb{E} |M(\mathsf{X}, \mathsf{R})| \le I(\mathsf{X} : \mathsf{Y}) + \mathcal{O}(\log I(\mathsf{X} : \mathsf{Y}))$$

For all other protocols $\Pi' = (M', y')$,

$$\mathbb{E}\left|M'(\mathsf{X},\mathsf{R})\right| \geq I(\mathsf{X}:\mathsf{Y})$$

Proof. Let X be a random point on the hypercube $\{\pm 1\}^n$. Let Y be a random point on $\{\pm 1\}^n$ that is ε -correlated with X. That is, $Y_i = X_i$ with probability ε and is uniformly random otherwise.

Observe that, individually, X and Y have the same distribution. In particular, in the ε case, then $Y_i = X_i$ is Uniform $\{\pm 1\}$. In the $1 - \varepsilon$ case, $Y_i \sim \text{Uniform}\{\pm 1\}$ by definition.

We can calculate H(X) = H(Y) = n.

Also, $H(Y \mid X) = \sum_x p_x H(Y \mid X = x) \approx (1 - \varepsilon)n$. One can show that $Y \mid X = x$ is approximately uniformly distributed over the vectors of length n that agree on εn coordinates with x. This sample space has size $2^{(1-\varepsilon)n}$.

Therefore, $I(X : Y) = H(Y) - H(Y \mid X) \approx \varepsilon n$.

By prop. 2.2.8, there exists a rejection sampler such that $\mathbb{E}[\ell(i^*)] \leq D(P \parallel Q) + \mathcal{O}(\log D(P \parallel Q))$.

Recall from STAT 230 that we can transform R into any distribution with the change of variable bullshit. In particular, transform R_i to IID $Y_i \sim Y$ and the biased coins.

Alice will run Rejection Sampler $(Y|_{X=x}, Y)$ to find a random index i^* such that Y_{i^*} has distribution $Y|_{X=x}$.

Alice sends a prefix-free encoding of i^* . Bob outputs Y_{i^*} . The performance is:

$$\begin{split} \underset{\mathsf{X},\mathsf{R}}{\mathbb{E}}|M(\mathsf{X},\mathsf{R})| &= \sum_{x \in \mathcal{X}} p_x \underset{i^*,\mathsf{Y}_1,\mathsf{Y}_2,\ldots}{\mathbb{E}}[\ell(i^*)] \\ &\leq \sum_{x \in \mathcal{X}} p_x (D(\mathsf{Y}|_{\mathsf{X}=x} \parallel \mathsf{Y}) + \mathcal{O}(\log D(\mathsf{Y}|_{\mathsf{X}=x} \parallel \mathsf{Y}))) \\ &= I(\mathsf{X}:\mathsf{Y}) + \sum_{x \in \mathcal{X}} p_x \mathcal{O}(\log D(\mathsf{Y}|_{\mathsf{X}=x} \parallel \mathsf{Y})) \\ &\leq I(\mathsf{X}:\mathsf{Y}) + \mathcal{O}(\log I(\mathsf{X}:\mathsf{Y})) \end{split}$$

where the last step is by Jensen's inequality.

Now, let Π be any protocol. We will apply the data-processing inequality.

Lecture 11
June 10
(con'd)

Notice that $X \to (M(X, R), R) \to Y$ if and only if Π is a valid protocol. If we sample $x \sim X$ and Alice sends M(x, R), then Bob outputs something distributed according to $Y \mid X = x$, i.e., just Y since x was arbitrary. Then,

$$\begin{split} I(\mathsf{X}:\mathsf{Y}) &\leq I(\mathsf{X}:(M(\mathsf{X},\mathsf{R}),\mathsf{R})) & \text{(data processing inequality)} \\ &= I(\mathsf{X}:\mathsf{R}) + \sum_{r \in \Omega_\mathsf{R}} p_r I(\mathsf{X}|_{\mathsf{R}=r}:M(\mathsf{X},\mathsf{R})|_{\mathsf{R}=r}) & \text{(chain rule)} \\ &= 0 + I(\mathsf{X}:M(\mathsf{X},\mathsf{R})\mid\mathsf{R}) & \text{(independence)} \\ &\leq H(M(\mathsf{X},\mathsf{R})\mid\mathsf{R}) & (I(\mathsf{A}:\mathsf{B}) \leq \min\{H(\mathsf{A}),H(\mathsf{B})\}) \\ &\leq H(M(\mathsf{X},\mathsf{R})) & (H(\mathsf{A}\mid\mathsf{B}) \leq H(\mathsf{A})) \\ &\leq \mathbb{E}\left|M(\mathsf{X},\mathsf{R})\right| & \text{(Kraft inequality)} \end{split}$$

completing the proof.

3.4 Sufficient statistics

We will develop the idea of sufficient statistics and data processing towards the asymptotic equipartition property. This is a warmup for the joint asymptotic equipartition property which we will use to prove one direction of Shannon's channel-coding theorem.

Lecture 12 June 12

Problem 3.4.1

Suppose $\mathsf{X}=(\mathsf{X}_1,\dots,\mathsf{X}_n)$ are IID sampled according to $\mathsf{Bernoulli}(\theta)$ for some fixed parameter $\theta\in[0,1].$

If we have a sample $x = (x_1, \dots, x_n)$, how can we recover θ ?

The classical solution (recall from STAT 230) is the maximum likelihood estimator $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$ such that $\Pr[|\hat{\theta} - \theta| > \varepsilon] \leq 2^{-\Omega(\varepsilon^2 n)}$. In essence, we are reducing the number of bits to send θ from n to [whatever it is you need to send a float of desired accuracy lol].

Definition 3.4.2

A function T(X) is a <u>sufficient statistic</u> relative to a family $\{f_{\theta}(x)\}\$ if $\theta \to T(X) \to X$.

We are considering the case where f_{θ} is Bernoulli(θ). Clearly, $\theta \to X \to T(X)$ is a Markov chain because X is distributed based on θ and T is a function of X which is not influenced θ .

Example 3.4.3. $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a sufficient statistic relative to the family {Bernoulli(θ)}.

Proof. We must show $\theta \to T(X) \to X$ is a Markov chain.

Fix $x = (x_1, \dots, x_n)$. Notice that

$$\Pr\left[\mathsf{X}_{1}=0,\ldots,\mathsf{X}_{n}=0 \mid \frac{1}{n}\sum\mathsf{X}_{i}=\frac{1}{2}\right]=0$$

and

$$\Pr\left[\mathsf{X}_1=1,\dots,\mathsf{X}_n=1\mid\frac{1}{n}\sum\mathsf{X}_i=\frac{1}{2}\right]=0$$

since we obviously cannot have half the X_i 's be 1 if they are all 0s or all 1s.

But if we set exactly half of the X_i 's to be 1, the distribution is uniform

$$\Pr\left[\mathsf{X}_{1}=1,\ldots,\mathsf{X}_{\frac{n}{2}}=1,\mathsf{X}_{\frac{n}{2}+1}=0,\ldots,\mathsf{X}_{n}=0 \mid \frac{1}{n}\sum\mathsf{X}_{i}=\frac{1}{2}\right] = \Pr\left[\mathsf{X}=x \mid \frac{1}{n}\sum\mathsf{X}_{i}=\frac{1}{2}\right] = \frac{1}{\binom{n}{n/2}}$$

for all $x \in \{0,1\}^n$ such that $\frac{n}{2}$ entries are 1.

More generally, suppose x has exactly k ones where $k = n\bar{\theta}$. Then,

$$\Pr\left[\mathsf{X} = x \mid \frac{1}{n} \sum \mathsf{X}_i = \bar{\theta}\right] = \begin{cases} 1/\binom{n}{n\bar{\theta}} & \frac{1}{n} \sum x_i = \bar{\theta} \\ 0 & \text{otherwise} \end{cases}$$

so we have that $X \mid \frac{1}{n} \sum X_i = \bar{\theta}$ is independent of θ .

We can also see this by saying that $X \sim \text{Bernoulli}(\theta)^n$ can be equivalently sampled as:

- 1. first sampling K = k with probability $\Pr\left[\frac{1}{n} \sum X_i = k\right]$,
- 2. then sampling a uniform random point that has exactly K ones.

which clearly shows that X can be sampled as $f(\frac{1}{n}\sum X_i, R)$ for some new randomness R (the uniform randomness) independent of θ .

Example 3.4.4 ("mostly unrelated *Drunken Master III*"). A public domain generic drunkard legally distinct from Jackie Chan begins at (0,0) and takes steps in random directions d_i of length $\ell \sim |\mathcal{N}(0,\theta^2)|$.

Let X_n be the position at time n. We can show that

$$\left\| \mathbf{X}_{n} \right\|_{2} = c(1 \pm o(1))\theta\sqrt{n}$$

with probability very close to 1. To be more precise,

Pr[length from origin > (1 + o(1))(expected length from origin)]

is exponentially small in n. That is, after n steps, the randomness cancels out, and we have a pretty good idea of where we end up.

The whole point of this exercise is to notice that if we have a sufficient statistic, the probability measure is extremely concentrated around some constant, and we can almost just treat the statistic as a constant itself.

Example 3.4.5. Consider IID Gaussians $\mathsf{X}_1,\dots,\mathsf{X}_n\sim\mathcal{N}(0,1)$. Then, what is the probability $\Pr\left[\mathsf{X}_1,\dots,\mathsf{X}_n>t\sqrt{n}\right]$ we overshoot the estimator by t times?

Solution. Apply simple properties of Gaussians from STAT 230:

$$\Pr \left[\mathsf{X}_1, \dots, \mathsf{X}_n > t \sqrt{n} \right] = \Pr \left[\sqrt{n} \mathcal{N}(0,1) > t \sqrt{n} \right] = \Pr [\mathcal{N}(0,1) > t] = \Phi(t) \approx e^{-t^2/2}$$

Lemma 3.4.6 (rotation invariance of the Gaussian)

Let X be a Gaussian and O be an orthonormal matrix. Then, $O\mathsf{X}$ is distributed identically to X .

Proof (super sketchy). Consider IID $\mathsf{X}_1,\ldots,\mathsf{X}_n\sim\mathcal{N}(0,1)$. Then, since $p(x_i)=\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x_i^2}{2}\right)$, we have

$$p(x_1,\dots,x_n) = \frac{1}{\sqrt{2\pi}^n} \exp\!\left(-\frac{\left\|x\right\|_2^2}{2}\right)$$

Notice that this only depends on the length of x, so we are uniformly distributing on the n-ball of length $||x||_2$.

Now consider what's going on with a summation. Notice that $\sum X_i = \langle X, \mathbb{1} \rangle$. There exists some rotation O such that $O\mathbb{1} = \sqrt{n}e_1$ (the first basis vector). Inner products preserve rotations, so $\sum X_i = \langle OX, O\mathbb{1} \rangle = \sqrt{n} \langle OX, e_1 \rangle = \sqrt{n}OX_1$. But by rotation invariance, this has the same distribution as $\sqrt{n}X_1$, which is just a Gaussian.

Lecture 13 June 17

3.5 Concentration of measure

Definition 3.5.1 (shapes!)

Let B^n be the unit *n*-ball, i.e., $\{x \in \mathbb{R}^n : ||x||_2 \le 1\}$.

Also write S^n for the unit *n*-sphere, i.e., $\partial B^n = \{x \in \mathbb{R}^n : ||x||_2 = 1\}.$

Problem 3.5.2 (isoparametric problem)

Of all $A \subseteq \mathbb{R}^n$ such that $\operatorname{Vol}_n(A) = 1$, what A minimizes $\operatorname{Vol}_{n-1}(\partial A)$?

It can be shown that $A = B^n$ with minimal "surface area". The proof uses symmetrization: take an axis, then align all the perpendicular fibres to that axis.

Very similarly, we can show that of all n-1 dimensional shapes lying on the n-1-sphere, the one that minimizes the spherical volume is the hemispherical cap. The proof uses a spherical version of symmetrization where great circles take the place of lines.

Since we know that with stupidly high probability, n IID Gaussians will end up on a sphere with radius \sqrt{n} , we can consider the "Gaussian isoparametric problem".

Suppose again that $\mathsf{G}_i \sim \mathcal{N}(0,1)$ and g_i is a sample. If we imagine the vector g lying on an n-ball, we showed that $\|g\|_2 \approx \sqrt{n}$ with exponential decay.

Definition 3.5.3 (Lipschitz continuity)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is <u>L-Lipschitz continuous</u> if for all x and y in \mathbb{R}^n , $|f(x) - f(y)| \le L||x - y||_2$.

Theorem 3.5.4 (Gaussian concentration inequality)

Let f be any 1-Lipschitz function $f: \mathbb{R}^n \to \mathbb{R}$ and for all $x, y, |f(x) - f(y)| \leq ||x - y||_2$. Then,

$$\Pr(|f(g) - \text{median}(f(g))| > t)$$

is exponentially small in t and n.

We will not prove this rigorously. Milman used this to show that for any convex body C in John position that is origin-symmetric, a random subspace S of dimension $\log n$ "looks like a ball" with probability $1 - e^{-n}$. That is, $(1 - \varepsilon)B^n \subseteq S \cap C \subseteq (1 + \varepsilon)B^n$ for $\varepsilon \to 0$ as $n \to \infty$.

Proof (sketchier than the Tenderloin). We can pretend that the Gaussian variable just lies on $\sqrt{n}S^{n-1}$. Define

$$A = \{ x \in S^{n-1} : f(x) \ge \underset{z \sim S^{n-1}}{\text{median}} f(z) \}$$

such that

$$\Pr_{\mathsf{X} \sim S^{n-1}}[\mathsf{X} \in A] = \frac{1}{2}$$

Also define a slight relaxation of A

$$A_\varepsilon = \{x \in S^{n-1}: f(x) \geq \mathop{\mathrm{median}}_{z \sim S^{n-1}} f(z) - \varepsilon\}$$

We can show "fairly easily" that

$$\lim_{\varepsilon \to 0} \frac{\Pr[\mathsf{X} \in A_e] - \Pr[\mathsf{X} \in A]}{\varepsilon} = 0$$

and we can relate $\Pr[|f(x) - \text{median } f(x)| \ge \varepsilon]$ to the spherical volume of ∂A .

[something something isoparametric] A must be a hemisphere.

A hemisphere can be written as $\{x \in S^{n-1} : \langle x, a \rangle \ge 0\}$.

Then, we can rephrase the question as $\Pr[\sum x_i \in [-\varepsilon, \varepsilon]]$ being exponentially small which we already showed?

Chapter 4

Coding theory

4.1 Source coding

Shannon used a nice choice of f with the Gaussian concentration inequality to develop his channel coding theorem.

Let X be a random variable over a finite sample space \mathcal{X} . On average and in expectation, we need $H(X) + \varepsilon$ bits/symbol to store symbols X_1, \dots, X_n . Then, we can say that

$$\lim_{n \to \infty} \Pr \left[\left| \frac{1}{n} \sum_{i} \log p(\mathbf{X}_i) - H(\mathbf{X}) \right| > \varepsilon \right] = 0 \tag{4.1}$$

for any fixed ε (via the central limit theorem).

We can define a typical set A_{ε} where eq. (4.1) fails (i.e., $|\cdots| \leq \varepsilon$ and the probability does not go to zero) and use naive 0/1 encodings of those $|A_{\varepsilon}| = 2^{H(\mathsf{X})n + \varepsilon n}$ common strings. Encode the remainder with garbage long strings, and we experience no penalty since we still have an expected length $H(\mathsf{X})n + \varepsilon n$.

Theorem 4.1.1 (Shannon's source coding theorem)

Let $\mathsf{X} \sim (p(x))$ be a random variable over a finite sample space \mathcal{X} . Let $\mathsf{X}_1, \dots, \mathsf{X}_n$ be IID copies of X .

For all $\varepsilon > 0$ and any sufficiently large n, there exists an encoding map $E: \mathcal{X}^n \to \{0,1\}^*$ such that the performance of E

$$\operatorname{perf}(E) = \frac{1}{n} \operatorname{\mathbb{E}} |E(\mathsf{X}_1, \dots, \mathsf{X}_n)| \leq H(\mathsf{X}) + \varepsilon$$

Further, for all encoding maps $E: \mathcal{X}^n \to \{0,1\}^*$,

$$perf(E) \ge H(X)$$

Consider an example: let $\mathcal{X} = \{1, \dots, \Sigma\}$ and $\mathsf{X} = \mathrm{Uniform}(\mathcal{X})$. Then, $H(\mathsf{X}) = \log_2 \Sigma$. If this is an integer, we can encode using the base-2 encoding of \mathcal{X} so that

$$\operatorname{perf}(E) = |E(x_1, \dots, x_n)| = |B_2(x_1) \cdots B_2(x_n)| = (\log_2 \Sigma)n = nH(\mathsf{X})$$

Lecture 14 June 19 for any sample.

Otherwise, interpret $x \in \mathcal{X}^n$ as a base- Σ number and convert that to base-2 so that

$$\operatorname{perf}(E) = |E(x)| = \left|B_2\left(\sum_i \Sigma^{i-1}(x_i-1)\right)\right| \leq |B_2(\Sigma^n)| = \lceil n\log_2 \Sigma \rceil = \lceil nH(\mathsf{X}) \rceil$$

The key observation of Shannon's theorem is that taking copies of *any* random variable will eventually "look a lot like" a uniform random variable over some special set.

The intuition here is that if we have a very large n, the proportions are pretty much fixed and you have a uniform distribution over the permutations.

Recall the central limit theorem. Then,

Corollary 4.1.2. For all $\varepsilon > 0$ and any $n \in \mathbb{N}$, if $X = (X_1, \dots, X_n)$ are IID, then

$$\Pr\bigg[\bigg|\frac{1}{n}\sum_{i=1}^n\log_2\frac{1}{p(\mathsf{X}_i)}-H(\mathsf{X})\bigg|>\varepsilon\bigg]\leq o(1)$$

Notice that all the $p(X_i)$'s are identical since the X_i 's are IID. Then, $\mathbb{E}[\log_2 \frac{1}{p(X_i)}] = H(X)$ so what we are really measuring is the difference between theoretical entropy and the "entropy" of the sample.

Definition 4.1.3

Let

$$\begin{split} A_{(\varepsilon)}^{(n)} &:= \left\{ x \in \mathcal{X}^n \;\middle|\; H(\mathsf{X}) - \varepsilon \leq \frac{1}{n} \sum \log_2 \frac{1}{p(x_i)} \leq H(\mathsf{X}) + \varepsilon \right\} \\ &= \left\{ x \in \mathcal{X}^n \;\middle|\; \frac{1}{2^{(H(\mathsf{X}) + \varepsilon)n}} \leq p(x_1, \dots, x_n) \leq \frac{1}{2^{(H(\mathsf{X}) - \varepsilon)n}} \right\} \end{split}$$

be the set of values that work nicely with the CLT corollary, or, equivalently, the set of strings that have an equal-ish probability.

Quick exercise: we have a random variable R over $[\Sigma]$, and we know that $\frac{1}{k^{1+\varepsilon}} \leq \Pr[\mathsf{R} = i] \leq \frac{1}{k^{1-\varepsilon}}$. Then, we can bound Σ by $k^{1-\varepsilon} \leq \Sigma \leq k^{1+\varepsilon}$. This is because if we had more/symbols, the sum of probabilities would be over/under 1.

If R instead could take other values with probability at most ε , then our upper bound on Σ remains the same and the lower bound becomes $(1-\varepsilon)k^{1-\varepsilon} \leq \Sigma$.

Claim 4.1.4.
$$(1-o(1))2^{(H(\mathsf{X})+\varepsilon)n} \leq \left|A_{(\varepsilon)}^{(n)}\right| \leq 2^{H(\mathsf{X})n}$$
 assuming $H(\mathsf{X}) \geq 1$.

Informally: we can divide the possibilities into $A_{(\varepsilon)}^{(n)}$, where the distribution looks uniform, and $\mathcal{X} \setminus A_{(\varepsilon)}^{(n)}$, which has vanishingly small probability.

Now, we can naively encode $A_{(\varepsilon)}^{(n)}$ using the binary numbers up to $\left|A_{(\varepsilon)}^{(n)}\right|$.

Encode the rest of \mathcal{X}^n using larger numbers.

The performance of this encoding is

$$\begin{split} n \operatorname{perf}(E) &= \underset{\mathsf{X}_1, \dots, \mathsf{X}_n}{\mathbb{E}} |E(\mathsf{X}_1, \dots, \mathsf{X}_n)| \\ &= \Pr \left[(\mathsf{X}_1, \dots, \mathsf{X}_n) \in A_{(\varepsilon)}^{(n)} \right] \cdot \lceil \log_2 A_{(\varepsilon)}^{(n)} \rceil + \Pr \left[(\mathsf{X}_1, \dots, \mathsf{X}_n) \notin A_{(\varepsilon)}^{(n)} \right] \cdot \lceil \log_2 |\mathcal{X}|^n \rceil \\ &= (1 - o(1)) \lceil (H(\mathsf{X}) + \varepsilon) n \rceil + o(1) \lceil n \log_2 |\mathcal{X}| \rceil \end{split}$$

In particular here it turns out that the o(1) term is around about $\frac{1}{\sqrt{n}}$ and

$$\operatorname{perf}(E) = H(\mathsf{X})n + \varepsilon n + \sqrt{n}\log|\mathcal{X}|$$

This does not actually help us in real life, since sorting the symbols by their presence in $A_{(\varepsilon)}^{(n)}$ would take 2^n space.

4.2 Channel coding

Shannon set up a noise model where:

Lecture 15 June 24

- Start with a source message.
- Encode it in some alphabet \mathcal{X} .
- As it goes through the noisy channel $\mathcal{X} \to \mathcal{Y}$, apply a probabilistic mapping to each character independently. Every $x \in \mathcal{X}$ is mapped to a random $y \in \mathcal{Y}$ with some probability.
- The message is decoded from \mathcal{Y} .
- We must recover the original message with high probability.

Definition 4.2.1 (binary symmetric channel)

The <u>binary symmetric channel</u> BSC(p) is as described above where $\mathcal{X} = \mathcal{Y} = \{0, 1\}$ such that $b \mapsto 1 - b$ with probability p and $b \mapsto b$ with probability 1 - p.

We can now state Shannon's channel coding theorem.

Theorem 4.2.2 (Shannon's channel coding theorem for BSC(p))

For all $0 \le p < \frac{1}{2}$ and $0 < \varepsilon < \frac{1}{2} - p$ with n sufficiently large:

• Possibility: For all $k \leq \lfloor (1-H(p+\varepsilon))n \rfloor$, there exists $E:\{0,1\}^k \to \{0,1\}^n$ and $D:\{0,1\}^n \to \{0,1\}^k$ such that

$$\forall m \in \{0,1\}^k, \quad \Pr_{\mathbf{e} \sim B(p)^n}[D(E(m) + \mathbf{e}) = m] \geq 1 - \frac{1}{2^{\Omega(n)}}$$

• Impossibility: If $k \geq \lceil (1 - H(p) + \varepsilon)n \rceil$, then for every pair of encoding and decoding maps $E : \{0,1\}^k \to \{0,1\}^n$ and $D : \{0,1\}^n \to \{0,1\}^k$,

$$\exists m \in \{0,1\}^k, \quad \Pr_{\mathbf{e} \sim B(p)^n}[D(E(m) + \mathbf{e}) = m] \leq \frac{1}{2}$$

Before we prove this, let's develop a proof technique using geometric intuition.

4.3 Interlude: Packing, covering, and Voronoi tiling

Consider the space $\{0,1\}^n$. Then, by our discussion of concentration of measure, $\mathbb{E}[m] + \mathsf{e}$ lives with extremely high probability inside a "ball". In particular, e is in the <u>Hamming ball</u> of radius $(p+\varepsilon)n$,

$$\operatorname{Ball}_{H}((p+\varepsilon)n) = \{e : |e|_{H} \le (p+\varepsilon)n\}$$

where $|e|_H$ is the number of non-zero entries in e^{1} .

Now, consider this deterministic form of Shannon's channel coding theorem for BSC(p):

Proposition 4.3.1

Possibility: There exists encoding/decoding maps $E:\{0,1\}^k\to\{0,1\}^n$ and $D:\{0,1\}^n\to\{0,1\}^k$ such that for all messages $m\in\{0,1\}^k$, there exists a subset S_m of the Hamming ball $\mathrm{Ball}_H((p+\varepsilon)n)$ of fractional size

$$\frac{|S_m|}{|\mathrm{Ball}_H((p+\varepsilon)n)|} = 1 - \frac{1}{2^{\Omega(n)}}$$

such that for all errors $e \in S_m$,

$$D(E(m) + e) = m$$

Impossibility: for all E, D, and m, it cannot be that the correctly encoded vectors $S_m = \{e : D(E(m) + e) = m\}$ have fractional size

$$\frac{|S_m|}{|\{\}|} \geq \frac{1}{2}$$

Consider any m and let D_m be the set of vectors decoded to m. Geometrically, in $\{0,1\}^n$, the space must be partitioned according to the D_m 's.

Remark 4.3.2. If we have a shape $S \subseteq \mathcal{S}$ we would like to tile the space \mathcal{S} with, the volume ratio $\frac{|S|}{|\mathcal{S}|}$ is an upper bound on the number of S's you can fit inside \mathcal{S} .

In high dimensions, for almost all shapes, this also becomes a good estimate. In particular, it works for the Hamming ball.

Remark 4.3.3. For the Hamming ball, there is a Euclidean ball of appropriate radius such that in almost all directions, the two balls look the same.

Proof (of the impossibility direction). D_m has large intersection with a large set $E(m) + \operatorname{Ball}_H((p+\varepsilon)n)$

¹We may think of the Hamming wall as a 0-norm ball.

So D_m must have high volume.

But the D_m shape tiles the space $\{0,1\}^n$ with finite volume.

Therefore, k cannot be too large otherwise there are too many D_m 's.

TODO

Lecture 16
June 26
Lecture 17
July 3

Definition 4.3.4

Fix some small fixed constant $\varepsilon > 0$. Let $p \in (0, \frac{1}{2})$, $k = (1 - H(p) - \varepsilon)n$, and n grows to ∞ .

The encoding map $E: \mathbb{F}_2^k \to \mathbb{F}_2^n$ is defined randomly and independent message-wise.

Let $D: \mathbb{F}_2^n \to \mathbb{F}_2^k$ be the nearest-codeword map associated to E.

We will delete a fraction $2^{-\varepsilon'n}$ of codewords that are bad.

Definition 4.3.5

An element E(m) is $\underline{\text{bad}}$ if $\frac{(E(m) + \text{Ball}_H(pn)) \cap D_m}{\text{Ball}_H(pn)} \le 1 - 2^{-\varepsilon''n}$ for $\varepsilon'' = ?$ (fill in later).

We call another element y corrupt if it causes E(m) to be bad.

Definition 4.3.6

The Voronoi cell $D_m = \{y \in \mathbb{F}_2^n : d_H(y, m) = \min_{m' \in \mathbb{F}_2^k} d(y, m')\}.$

Claim 4.3.7. Fix an E(m) and a y in its Hamming ball $E(m) + \text{Ball}_H(pn)$. Then,

$$\Pr_{E(m')}[d(y,E(m')) < d(y,E(m))] \leq \frac{1}{2^k} \cdot \frac{1}{2^{\varepsilon n}}$$

Proof.

$$\begin{split} \Pr_{E(m')}[d(y, E(m')) &< d(y, E(m))] \leq \Pr_{E(m')}[E(m') \in y + \operatorname{Ball}_H(pn-1)] \\ &= \frac{\operatorname{Vol}(\operatorname{Ball}_H(pn-1))}{|F_2^n|} \\ &\leq \frac{2^{H(p)n}}{2^n} \\ &= \frac{1}{2^k} \cdot \frac{1}{2^{\varepsilon n}} \end{split}$$

Now, what is the probability a codeword is bad?

Claim 4.3.8. Fix an E(m) and a y in its Hamming ball $E(m) + \text{Ball}_H(pn)$. Of the remaining encoding maps,

$$\Pr_{E:\mathbb{F}_2^k \setminus \{m\} \to \mathbb{F}_2^n}[y \text{ is corrupt}] \le \frac{1}{2^{\varepsilon n}}$$

Proof.

$$\begin{split} \Pr_{E:\mathbb{F}_2^k \smallsetminus \{m\} \to \mathbb{F}_2^n}[E(m) \text{ is bad}] &\leq \sum_{m' \neq m} \Pr_{E:\mathbb{F}_2^k \smallsetminus \{m\} \to \mathbb{F}_2^n}[E(m') \text{ is closer to } y \text{ than } E(m)] \\ &= \sum_{m' \neq m} \Pr_{E(m')}[E(m') \text{ is closer to } y \text{ than } E(m)] \qquad \text{(by independence)} \\ &\leq 2^k \cdot \frac{1}{2^k} \cdot \frac{1}{2^{\varepsilon n}} \\ &= \frac{1}{2^{\varepsilon n}} \end{split}$$

Aside: Markov's inequality Let $a_1,\ldots,a_n\in\mathbb{R}_{\geq 0}$. Suppose $\frac{1}{n}\sum a_i\leq \lambda$. Can εn indices a_i satisfy $a_i>\frac{\lambda}{\varepsilon}$? No! Otherwise, $\sum a_i\geq \sum_{\mathrm{big}}a_i>\varepsilon n\cdot\frac{\lambda}{\varepsilon}>n\lambda$. Take this principle and generalize.

Theorem 4.3.9 (Markov's inequality)

Let X be a random variable. Fix $\varepsilon > 0$. Then,

$$\Pr_{\mathsf{X}}\left[\mathsf{X} > \mathbb{E}[\mathsf{X}] \cdot \varepsilon\right] \leq \varepsilon$$

Claim 4.3.10. Fix any m. Then,

$$\Pr_{E:\mathbb{F}^k_2\to\mathbb{F}^n_2}[E(m)\text{ is bad}]\leq \frac{1}{2^{\varepsilon n/2}}$$

Proof.

$$\begin{split} \Pr_{E:\mathbb{F}_2^k \smallsetminus \{m\} \to \mathbb{F}_2^n}[E(m) \text{ is bad}] &= \Pr_{E:\mathbb{F}_2^k \to \mathbb{F}_2^n}[E(m) \text{ is bad}] & \text{(by independence)} \\ &= \Pr_{E} \left[|\{y \in \operatorname{Ball}_H(pn) + E(m) : y \text{ is corrupt}\}| > \frac{1}{2^{\varepsilon n/2} \cdot |\operatorname{Ball}_H(pn)|} \right] \\ &\leq \frac{1}{2^{\varepsilon n/2}} & \text{(Markov's inequality)} \end{split}$$

because

$$\mathbb{E}[|\{y \in \operatorname{Ball}_H(pn) + E(m) : y \text{ is corrupt}\}|] \leq \frac{1}{2^{\varepsilon n}}|\operatorname{Ball}_H(pn)|$$

Proposition 4.3.11

With probability 1 - o(1), there are at most $|\mathbb{F}_2^k| 2^{-\varepsilon n/4}$ bad codewords.

Proof.

$$\begin{split} \Pr_E \left[|\{m: E(m) \text{ is bad}\}| > \frac{1}{2^{\varepsilon n/4}} \cdot \left| \mathbb{F}_2^k \right| \right] &\leq \frac{\mathbb{E}[|\{m: E(m) \text{ is bad}\}|]}{\left| \mathbb{F}_2^k \right| / 2^{\varepsilon n/4}} \\ &\leq \frac{2^{\varepsilon n/4}}{2^k} \cdot \frac{2^k}{2^{\varepsilon n/2}} \\ &= \frac{1}{2^{\varepsilon n/4}} \end{split}$$

Therefore, with probability $1-2^{-\varepsilon n/4}=1-o(1)$, there are at most $|\mathbb{F}_2^k|2^{-\varepsilon n/4}$ bad codewords. \square

Problem 4.3.12

We have shown an almost-packing of Hamming balls in \mathbb{F}_2^n .

What about an exact packing of Hamming balls? This is an open question.

What about in a continuous field?

4.4 Shannon's channel coding for discrete memoryless channels

Consider a message $m \in \{0,1\}^k$ deterministically encoded into a sentence $E(m) = X = (x_1, \dots, x_n) \in \mathcal{X}^n$. Then, we send the words through a noisy channel $\mathcal{X} \to \mathcal{Y}$ where each symbol $x_i \mapsto y_j \in \mathcal{Y}$ with some probability $p(y_j \mid x_i)$. This results in a random sentence Y. We try to decode $D(Y) = \hat{m}$.

Lecture 18 July 8

Definition 4.4.1

The <u>performance</u> of an encoding/decoding pair (E, D) is

$$\operatorname{perf}(E,D) = \min_{m \in \mathbb{F}_2^k} \Pr_p[D(\mathsf{Y} \mid m) = m]$$

We will show a scheme that gives performance $\geq 1 - \varepsilon$.

Fix any marginal distribution $(p(x))_{x \in X}$. Then, let X be the random variable taking x with probability p(x). Let Y be the channel noising of X. We will consider the joint distribution (X, Y).

Definition 4.4.2

Given a channel $(p(y \mid x))_{x \in \mathcal{X}, y \in \mathcal{Y}}$, the <u>channel capacity</u>

$$C := \sup_{(p(x))_{x \in \mathcal{X}}} I(\mathsf{X} : \mathsf{Y})$$

For BSC(p), C = 1 - H(p) as expected.

Channel capacity characterizes the length of messages that can be sent.

Theorem 4.4.3 (Shannon's channel coding for discrete memoryless channels)

Fix $\varepsilon > 0$. For n sufficiently large, if $\frac{k}{n} < C$, there exists (E, D) such that $\operatorname{perf}(E, D) \ge 1 - \varepsilon$. If $\frac{k}{n} \ge C$, then no such (E, D) exists.

Proof. Consider the following encoding scheme:

Pick marginal $(p(x))_{x \in \mathcal{X}}$ that attains C and fix it. We will pick 2^k IID random codewords X_i in \mathcal{X}^n according to the distribution $\mathsf{X}_i \sim p^n$, then assign them to the messages $m \in \{0,1\}^k$.

Let $X, X' \in \mathcal{X}^n$ be random codewords. Let $Y \in \mathcal{Y}^n$ be the random sentence received if X is sent over the channel. How likely does Y get decoded to X'?

First, what does $(X,Y) \in \mathcal{X}^n \times \mathcal{Y}^n$ look like? Start by considering $X \in \mathcal{X}^n$. It is almost certainly uniformly distributed over the typical set $\mathcal{X}_{\varepsilon}^{(n)}$. Likewise, Y is almost certainly uniformly distributed over the typical set $\mathcal{Y}_{\varepsilon}^{(n)}$.

Using the fact that CLT needs only independence and *not* identical distributions, we similarly get that (X,Y) is roughly uniformly distributed over a "typical set" of some sort.

Formally: suppose that

$$\mathcal{X}_{\varepsilon}^{(n)} = \{X \in \mathcal{X}^n : 2^{-H(x)n(1+\varepsilon)} \leq \Pr[\mathsf{X} = X] \leq 2^{-H(x)n(1-\varepsilon)}\}$$

$$\mathcal{Y}_{\varepsilon}^{(n)} = \{Y \in \mathcal{Y}^n : 2^{-H(y)n(1+\varepsilon)} < \Pr[\mathsf{Y} = Y] < 2^{-H(y)n(1-\varepsilon)}\}$$

then we can write

$$\begin{split} \mathcal{X}\mathcal{Y}^n_\varepsilon &= \{(X,Y) \in \mathcal{X}^n \times \mathcal{Y}^n : X \in \mathcal{X}^{(n)}_\varepsilon \wedge Y \in \mathcal{Y}^{(n)}_\varepsilon \wedge \\ & 2^{-H(x,y)n(1+\varepsilon)} \leq \Pr[(\mathsf{X},\mathsf{Y}) = (X,Y)] \leq 2^{-H(x,y)n(1-\varepsilon)} \} \end{split}$$

To be precise, observe that

Lecture 19 July 10

$$\begin{split} \Pr[(\mathsf{X},\mathsf{Y}) = (X,Y)] &= \prod_{i=1}^n p(X_i,Y_i) \\ \log \Pr[(\mathsf{X},\mathsf{Y}) = (X,Y)] &= \sum_{i=1}^n \log p(X_i,Y_i) \end{split}$$

because the pairwise X_i and Y_i are independent (but not the whole X and Y).

Then, let R be the random variable $\log p(x,y)$ with probability p(x,y) and let $\mathsf{R}_1,\dots,\mathsf{R}_n\sim\mathsf{R}$. Observe that $\sum \mathsf{R}_i$ has the same distribution as $\log \Pr \bigl[(\mathsf{X},\mathsf{Y}) = (\tilde{X},\tilde{Y}) \bigr]$. We can then apply the central limit theorem to say

$$\Pr\bigg[\bigg|\frac{1}{n}\sum_{i=1}^n\mathsf{R}_i-\mathbb{E}[\mathsf{R}]\bigg|>\varepsilon\bigg]\leq\varepsilon'$$

For a codeword $X \in \mathcal{X}^n$, define its <u>neighbourhood</u> by

neighbourhood
$$(X) = \{Y \in \mathcal{Y}^n : (X, Y) \in \mathcal{XY}_{\varepsilon}^{(n)}\}\$$

and now by (some combination of corollaries from the CLT discussion),

$$\Pr_{(X,Y)}[Y\notin \mathrm{neighbourhood}(X)] \leq \varepsilon'$$

and (X,Y) is nearly uniform within the neighbourhood.

Now, specify the decoding scheme.

Find any X_i in our list of codewords such that the received $Y \in \text{neighbourhood}(X_i)$ and return the message underlying i.

Fix a codeword X_i . Notice that $|\text{neighbourhood}(X_i)| \leq \left| \mathcal{X} \mathcal{Y}_{\varepsilon}^{(n)} \right| = 2^{H(x,y)n}$. Also, we can bound

$$\underset{\mathsf{X}_1,\dots,\mathsf{X}_n}{\mathbb{E}}\Pr_{(\mathsf{X}_i,\mathsf{Y})}[\mathsf{Y} \in \mathsf{neighbourhood}(\mathsf{X}_i)] \leq \frac{2^{(H(x,y)-\varepsilon)n}}{2^{(H(x)+H(y))n}} \leq 2^{-(I(x:y)+\varepsilon)n}$$

and

$$\underset{\mathsf{X}_1,\dots,\mathsf{X}_n}{\mathbb{E}}\Pr_{(\mathsf{X}_i,\mathsf{Y})}[\mathsf{Y} \in \mathsf{neighbourhood}(\mathsf{X}_j)] \leq \frac{2^k}{2^{(I(x:y)+\varepsilon)n}} \leq 2^{-\varepsilon n}$$

because k < I(x:y)n. Then, we can say that at most $2^{-\varepsilon n/2}$ of the X_i 's have

$$\underset{\mathsf{X}_1,\ldots,\mathsf{X}_k}{\mathbb{E}} \Pr_{(\mathsf{X}_1,\mathsf{Y})}[\mathsf{Y} \in \mathrm{neighbourhood}(\underset{j}{\mathbb{E}})] > \frac{1}{2^{\varepsilon n/2}}$$

Chapter 5

Parallel repetition

List of Named Results

1.1.4	Theorem (Jensen's inequality)
1.3.5	Theorem (Kraft's inequality)
2.0.7	Theorem (Sterling's approximation)
3.1.2	Theorem (chain rule for entropy)
3.1.5	Theorem (general chain rule for entropy)
3.1.6	Theorem (chain rule for relative entropy)
3.1.8	Theorem (chain rule for mutual information)
3.2.3	Proposition (Markov chain characterization)
3.2.5	Theorem (data-processing inequality)
3.4.6	Lemma (rotation invariance of the Gaussian)
3.5.4	Theorem (Gaussian concentration inequality)
4.1.1	Theorem (Shannon's source coding theorem)
4.2.2	Theorem (Shannon's channel coding theorem for $BSC(p)$)
4.3.9	Theorem (Markov's inequality)
4.4.3	Theorem (Shannon's channel coding for discrete memoryless channels) 39

Index of Defined Terms

binary symmetric channel,	concentration of measure,	Lipschitz continuity, 31			
boolean k -slice, 12	entropy, 3 conditional, 22	Markov chain, 25 mutual information, 22			
channel capacity, 38 code	relative, 9 conditional, 24	rejection sampler, 16			
prefix-free, 6, 10 Shannon–Faro, 7	Hamming k -slice, 12	sufficient statistic, 28			
uniquely decodable, 6,	Hamming ball, 35	volume ratio, 35 Voronoi cell, 36			
10	KL divergence, 9	voronoi cen, 50			