IN THE UNITED STATES PAPTENT AND TRADEMARK OFFICE

APPLICATION FOR PATENT OF:

Dominic P. BEHAN, Karin LEHMANN-BRUINSMA, Derek T. CHALMERS, Ruoping CHEN, Huong T. DANG, Martin J. GORE, Chen W. LIAW, , I-Lin LIN, Kevin P. LOWITZ and Carol A. WHITE

FOR:

NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

ARENA PHARMACEUTICALS, INC. 6166 Nancy Ridge Drive San Diego, CA 92121 AREN-0054 PATENT

NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED HUMAN G PROTEIN-COUPLED RECEPTORS

This patent application is a continuation-in-part of, and claims priority from, U.S. Serial Number 09/170,496, filed with the United States Patent and Trademark Office on October 13, 1998. This application also claims the benefit of priority from the following provisional applications, all filed via U.S. Express Mail with the United States Patent and Trademark Office on the indicated dates: U.S. Provisional Number 60/110,060, filed November 27, 1998; U.S. Provisional Number 60/120,416, filed February 16, 1999; U.S. Provisional Number 60/121,852, filed February 26, 1999 claiming benefit of U.S.

- Provisional Number 60/109,213, filed November 20, 1998; U.S. Provisional Number 60/123,944, filed March 12, 1999; U.S. Provisional Number 60/123,945, filed March 12, 1999; U.S. Provisional Number 60/123,948, filed March 12, 1999; U.S. Provisional Number 60/123,951, filed March 12, 1999; U.S. Provisional Number 60/123,946, filed March 12, 1999; U.S. Provisional Number 60/123,949, filed March 12, 1999; U.S.
- Provisional Number 60/152,524, filed September 3, 1999, claiming benefit of U.S.
 Provisional Number 60/151,114, filed August 27, 1999 and U.S. Provisional Number
 60/108,029, filed November 12, 1998; U.S. Provisional Number 60/136,436, filed May 28,

20

AREN-0054 - 2 - PATENT

1999; U.S. Provisional Number 60/136,439, filed May 28, 1999; U.S. Provisional Number 60/136,567, filed May 28, 1999; U.S. Provisional Number 60/137,127, filed May 28, 1999; U.S. Provisional Number 60/137,131, filed May 28, 1999; U.S. Provisional Number 60/141,448, filed June 29, 1999 claiming benefit of U.S. Provisional Number 60/136,437, 5 filed May 28, 1999; U.S. Provisional Number 60/156,633, filed September 29, 1999; U.S. Provisional Number 60/156,555, filed September 29, 1999; U.S. Provisional Number 60/156,634, filed September 29, 1999;U.S. Provisional Number (Arena Pharmaceuticals, Inc. docket number: CHN10-1), filed September 29, 1999; U.S. Provisional Number (Arena Pharmaceuticals, Inc. docket number: RUP6-1), filed 10 October 1, 1999; U.S. Provisional Number ___(Arena Pharmaceuticals, Inc. docket number: RUP7-1), filed October 1, 1999; U.S. Provisional Number (Arena Pharmaceuticals, Inc. docket number: CHN6-1), filed October 1, 1999; U.S. Provisional Number ___(Arena Pharmaceuticals, Inc. docket number: RUP5-1), filed October 1, 1999; and U.S. Provisional Number (Arena Pharmaceuticals, Inc. docket number: CHN9-1), 15 filed October 1, 1999. This application is also related to co-pending U.S. Serial Number (Woodcock, Washburn, Kurtz, Makiewicz & Norris, LLP docket number AREN-0050), filed on October 12, 1999 (via U.S. Express Mail) and U.S. Serial Number 09/364,425, filed on July 30, 1999, both incorporated herein by reference. Each of the foregoing applications are incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

The invention disclosed in this patent document relates to transmembrane receptors, and more particularly to human G protein-coupled receptors, and specifically to

5

15

GPCRs that have been altered to establish or enhance constitutive activity of the receptor. Preferably, the altered GPCRs are used for the direct identification of candidate compounds as receptor agonists, inverse agonists or partial agonists having potential applicability as therapeutic agents.

BACKGROUND OF THE INVENTION

Although a number of receptor classes exist in humans, by far the most abundant and therapeutically relevant is represented by the G protein-coupled receptor (GPCR or GPCRs) class. It is estimated that there are some 100,000 genes within the human genome, and of these, approximately 2%, or 2,000 genes, are estimated to code for GPCRs. Receptors, including GPCRs, for which the endogenous ligand has been identified are referred to as "known" receptors, while receptors for which the endogenous ligand has not been identified are referred to as "orphan" receptors. GPCRs represent an important area for the development of pharmaceutical products: from approximately 20 of the 100 known GPCRs, 60% of all prescription pharmaceuticals have been developed.

GPCRs share a common structural motif. All these receptors have seven sequences of between 22 to 24 hydrophobic amino acids that form seven alpha helices, each of which spans the membrane (each span is identified by number, i.e., transmembrane-1 (TM-1), transmebrane-2 (TM-2), etc.). The transmembrane helices are joined by strands of amino acids between transmembrane-2 and transmembrane-3, transmembrane-4 and transmembrane-20 5, and transmembrane-6 and transmembrane-7 on the exterior, or "extracellular" side, of the cell membrane (these are referred to as "extracellular" regions 1, 2 and 3 (EC-1, EC-2 and EC-3), respectively). The transmembrane helices are also joined by strands of amino acids between transmembrane-1 and transmembrane-2, transmembrane-3 and transmembrane-4, and nonyess, neryna

transmembrane-5 and transmembrane-6 on the interior, or "intracellular" side, of the cell membrane (these are referred to as "intracellular" regions 1, 2 and 3 (IC-1, IC-2 and IC-3), respectively). The "carboxy" ("C") terminus of the receptor lies in the intracellular space within the cell, and the "amino" ("N") terminus of the receptor lies in the extracellular space outside of the cell.

Generally, when an endogenous ligand binds with the receptor (often referred to as "activation" of the receptor), there is a change in the conformation of the intracellular region that allows for coupling between the intracellular region and an intracellular "G-protein." It has been reported that GPCRs are "promiscuous" with respect to G proteins, i.e., that a GPCR can interact with more than one G protein. See, Kenakin, T., 43 Life Sciences 1095 (1988). Although other G proteins exist, currently, Gq, Gs, Gi, Gz and Go are G proteins that have been identified. Endogenous ligand-activated GPCR coupling with the G-protein begins a signaling cascade process (referred to as "signal transduction"). Under normal conditions, signal transduction ultimately results in cellular activation or cellular inhibition.

15 It is thought that the IC-3 loop as well as the carboxy terminus of the receptor interact with the G protein.

Under physiological conditions, GPCRs exist in the cell membrane in equilibrium between two different conformations: an "inactive" state and an "active" state.

A receptor in an inactive state is unable to link to the intracellular signaling transduction pathway to produce a biological response. Changing the receptor conformation to the active state allows linkage to the transduction pathway (via the G-protein) and produces a biological response.

A receptor may be stabilized in an active state by an endogenous ligand or a

10

15

compound such as a drug. Recent discoveries, including but not exclusively limited to modifications to the amino acid sequence of the receptor, provide means other than endogenous ligands or drugs to promote and stabilize the receptor in the active state conformation. These means effectively stabilize the receptor in an active state by simulating the effect of an endogenous ligand binding to the receptor. Stabilization by such ligand-independent means is termed "constitutive receptor activation."

SUMMARY OF THE INVENTION

Disclosed herein are non-endogenous versions of endogenous, human GPCRs and uses thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a representation of 8XCRE-Luc reporter plasmid (see, Example 4(c)3.)

Figures 2A and 2B are graphic representations of the results of ATP and ADP binding to endogenous TDAG8 (2A) and comparisons in serum and serum free media (2B).

Figure 3 is a graphic representation of the comparative signaling results of CMV versus the GPCR Fusion Protein H9(F236K):Gsα.

DETAILED DESCRIPTION

The scientific literature that has evolved around receptors has adopted a number of terms to refer to ligands having various effects on receptors. For clarity and consistency, the following definitions will be used throughout this patent document. To the extent that these definitions conflict with other definitions for these terms, the following definitions shall control:

AGONISTS shall mean materials (e.g., ligands, candidate compounds) that

DOMONIA DE DE DE DE LA CENTRE D

25

activate the intracellular response when they bind to the receptor, or enhance GTP binding to membranes.

AMINO ACID ABBREVIATIONS used herein are set out in Table A:

		TABLE A	
5	ALANINE	ALA	A
	ARGININE	ARG	R
	ASPARAGINE	ASN	N
	ASPARTIC ACID	ASP	D
	CYSTEINE	CYS	С
10	GLUTAMIC ACID	GLU	E
	GLUTAMINE	GLN	Q
	GLYCINE	GLY	G
	HISTIDINE	HIS	H
	ISOLEUCINE	ILE	I
15	LEUCINE	LEU	L
	LYSINE	LYS	K
	METHIONINE	MET	M ·
	PHENYLALANINE	PHE	F
	PROLINE	PRO	P
20	SERINE	SER	S
	THREONINE	THR	T
	TRYPTOPHAN	TRP	W
	TYROSINE	TYR	Y
	VALINE	VAL	v

PARTIAL AGONISTS shall mean materials (e.g., ligands, candidate compounds) that activate the intracellular response when they bind to the receptor to a lesser degree/extent than do agonists, or enhance GTP binding to membranes to a lesser degree/extent than do agonists.

ANTAGONIST shall mean materials (e.g., ligands, candidate compounds) that

competitively bind to the receptor at the same site as the agonists but which do not activate
the intracellular response initiated by the active form of the receptor, and can thereby inhibit
the intracellular responses by agonists or partial agonists. ANTAGONISTS do not diminish
the baseline intracellular response in the absence of an agonist or partial agonist.

CANDIDATE COMPOUND shall mean a molecule (for example, and not limitation,

DOOTEDER DESTINA

15

a chemical compound) that is amenable to a screening technique. Preferably, the phrase "candidate compound" does not include compounds which were publicly known to be compounds selected from the group consisting of inverse agonist, agonist or antagonist to a receptor, as previously determined by an indirect identification process ("indirectly identified compound"); more preferably, not including an indirectly identified compound which has previously been determined to have therapeutic efficacy in at least one mammal; and, most preferably, not including an indirectly identified compound which has previously been determined to have therapeutic utility in humans.

COMPOSITION means a material comprising at least one component; a

10 "pharmaceutical composition" is an example of a composition.

COMPOUND EFFICACY shall mean a measurement of the ability of a compound to inhibit or stimulate receptor functionality, as opposed to receptor binding affinity. Exemplary means of detecting compound efficacy are disclosed in the Example section of this patent document.

CODON shall mean a grouping of three nucleotides (or equivalents to nucleotides) which generally comprise a nucleoside (adenosine (A), guanosine (G), cytidine (C), uridine (U) and thymidine (T)) coupled to a phosphate group and which, when translated, encodes an amino acid

CONSTITUTIVELY ACTIVATED RECEPTOR shall mean a receptor subject to

constitutive receptor activation. A constitutively activated receptor can be endogenous or nonendogenous.

CONSTITUTIVE RECEPTOR ACTIVATION shall mean stabilization of a receptor in the active state by means other than binding of the receptor with its endogenous DOBYNDER DECYPI

ligand or a chemical equivalent thereof.

CONTACT or CONTACTING shall mean bringing at least two moieties together, whether in an in vitro system or an in vivo system.

phrase "candidate compound", shall mean the screening of a candidate compound against a constitutively activated receptor, preferably a constitutively activated orphan receptor, and most preferably against a constitutively activated G protein-coupled cell surface orphan receptor, and assessing the compound efficacy of such compound. This phrase is, under no circumstances, to be interpreted or understood to be encompassed by or to encompass the phrase "indirectly identifying" or "indirectly identified."

ENDOGENOUS in reference to, for example and not limitation, the term "receptor," shall mean that which is naturally produced by a mammal (for example, and not limitation, a human) or a virus. By contrast, the term NON-ENDOGENOUS in this context shall mean that which is not naturally produced by a mammal (for example, and not limitation, a human) or a virus. For example, and not limitation, a receptor which is not constitutively active in its endogenous form, but when manipulated becomes constitutively active, is most preferably referred to herein as a "non-endogenous, constitutively activated receptor." Both terms can be utilized to describe both "in vivo" and "in vitro" systems. For example, and not limitation, in a screening approach, the endogenous or non-endogenous receptor may be in reference to an in vitro screening system. As a further example and not limitation, where the genome of a mammal has been manipulated to include a non-endogenous constitutively activated receptor, screening of a candidate compound by means of an in vivo system is viable.

G PROTEIN COUPLED RECEPTOR FUSION PROTEIN and GPCR FUSION

PROTEIN, in the context of the invention disclosed herein, each mean a non-endogenous protein comprising an endogenous, constitutively activate GPCR or a non-endogenous, constitutively activated GPCR fused to at least one G protein, most preferably the alpha (α) subunit of such G protein (this being the subunit that binds GTP), with the G protein preferably being of the same type as the G protein that naturally couples with endogenous orphan GPCR. For example, and not limitation, in an endogenous state, if the G protein "Gsα" is the predominate G protein that couples with the GPCR, a GPCR Fusion Protein based upon the specific GPCR would be a non-endogenous protein comprising the GPCR fused to Gsα; in some circumstances, as will be set forth below, a non-predominant G protein can be fused to the GPCR. The G protein can be fused directly to the c-terminus of the constitutively active GPCR or there may be spacers between the two.

HOST CELL shall mean a cell capable of having a Plasmid and/or Vector incorporated therein. In the case of a prokaryotic Host Cell, a Plasmid is typically replicated as a autonomous molecule as the Host Cell replicates (generally, the Plasmid is thereafter isolated for introduction into a eukaryotic Host Cell); in the case of a eukaryotic Host Cell, a Plasmid is integrated into the cellular DNA of the Host Cell such that when the eukaryotic Host Cell replicates, the Plasmid replicates. Preferably, for the purposes of the invention disclosed herein, the Host Cell is eukaryotic, more preferably, mammalian, and most preferably selected from the group consisting of 293, 293T and COS-7 cells.

INDIRECTLY IDENTIFYING or INDIRECTLY IDENTIFIED means the traditional approach to the drug discovery process involving identification of an endogenous ligand specific for an endogenous receptor, screening of candidate compounds against the DOBYENGE DECYPL

15

receptor for determination of those which interfere and/or compete with the ligand-receptor interaction, and assessing the efficacy of the compound for affecting at least one second messenger pathway associated with the activated receptor.

INHIBIT or INHIBITING, in relationship to the term "response" shall mean that a
5 response is decreased or prevented in the presence of a compound as opposed to in the absence of the compound.

INVERSE AGONISTS shall mean materials (e.g., ligand, candidate compound) which bind to either the endogenous form of the receptor or to the constitutively activated form of the receptor, and which inhibit the baseline intracellular response initiated by the active form of the receptor below the normal base level of activity which is observed in the absence of agonists or partial agonists, or decrease GTP binding to membranes. Preferably, the baseline intracellular response is inhibited in the presence of the inverse agonist by at least 30%, more preferably by at least 50%, and most preferably by at least 75%, as compared with the baseline response in the absence of the inverse agonist.

KNOWN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has been identified.

LIGAND shall mean an endogenous, naturally occurring molecule specific for an endogenous, naturally occurring receptor.

MUTANT or MUTATION in reference to an endogenous receptor's nucleic acid
and/or amino acid sequence shall mean a specified change or changes to such endogenous
sequences such that a mutated form of an endogenous, non-constitutively activated receptor
evidences constitutive activation of the receptor. In terms of equivalents to specific
sequences, a subsequent mutated form of a human receptor is considered to be equivalent to

NOSTECT TESTIN

10

15

a first mutation of the human receptor if (a) the level of constitutive activation of the subsequent mutated form of a human receptor is substantially the same as that evidenced by the first mutation of the receptor; and (b) the percent sequence (amino acid and/or nucleic acid) homology between the subsequent mutated form of the receptor and the first mutation of the receptor is at least about 80%, more preferably at least about 90% and most preferably at least 95%. Ideally, and owing to the fact that the most preferred cassettes disclosed herein for achieving constitutive activation includes a single amino acid and/or codon change between the endogenous and the non-endogenous forms of the GPCR, the percent sequence homology should be at least 98%.

NON-ORPHAN RECEPTOR shall mean an endogenous naturally occurring molecule specific for an endogenous naturally occurring ligand wherein the binding of a ligand to a receptor activates an intracellular signaling pathway.

ORPHAN RECEPTOR shall mean an endogenous receptor for which the endogenous ligand specific for that receptor has not been identified or is not known.

PHARMACEUTICAL COMPOSITION shall mean a composition comprising at least one active ingredient, whereby the composition is amenable to investigation for a specified, efficacious outcome in a mammal (for example, and not limitation, a human). Those of ordinary skill in the art will understand and appreciate the techniques appropriate for determining whether an active ingredient has a desired efficacious outcome based upon the needs of the artisan.

PLASMID shall mean the combination of a Vector and cDNA. Generally, a Plasmid is introduced into a Host Cell for the purposes of replication and/or expression of the cDNA as a protein.

DOOTERS DESTRICT

STIMULATE or STIMULATING, in relationship to the term "response" shall mean that a response is increased in the presence of a compound as opposed to in the absence of the compound.

VECTOR in reference to cDNA shall mean a circular DNA capable of incorporating

at least one cDNA and capable of incorporation into a Host Cell.

The order of the following sections is set forth for presentational efficiency and is not intended, nor should be construed, as a limitation on the disclosure or the claims to follow.

A. Introduction

The traditional study of receptors has always proceeded from the a priori assumption

(historically based) that the endogenous ligand must first be identified before discovery could proceed to find antagonists and other molecules that could affect the receptor. Even in cases where an antagonist might have been known first, the search immediately extended to looking for the endogenous ligand. This mode of thinking has persisted in receptor research even after the discovery of constitutively activated receptors. What has not been heretofore recognized is that it is the active state of the receptor that is most useful for discovering agonists, partial agonists, and inverse agonists of the receptor. For those diseases which result from an overly active receptor or an under-active receptor, what is desired in a therapeutic drug is a compound which acts to diminish the active state of a receptor or enhance the activity of the receptor, respectively, not necessarily a drug which is an antagonist to the endogenous ligand.

This is because a compound that reduces or enhances the activity of the active receptor state need not bind at the same site as the endogenous ligand. Thus, as taught by a method of this invention, any search for therapeutic compounds should start by screening compounds against the ligand-independent active state.

neny

100 mm and 100 mm

B. Identification of Human GPCRs

The efforts of the Human Genome project has led to the identification of a plethora of information regarding nucleic acid sequences located within the human genome; it has been the case in this endeavor that genetic sequence information has been made available without

5 an understanding or recognition as to whether or not any particular genomic sequence does or may contain open-reading frame information that translate human proteins. Several methods of identifying nucleic acid sequences within the human genome are within the purview of those having ordinary skill in the art. For example, and not limitation, a variety of human GPCRs, disclosed herein, were discovered by reviewing the GenBank™ database,

10 while other GPCRs were discovered by utilizing a nucleic acid sequence of a GPCR, previously sequenced, to conduct a BLAST™ search of the EST database. Table B, below, lists several endogenous GPCRs that we have discovered, along with a GPCR's respective homologous receptor.

TABLE B

15	Disclosed Human Orphan GPCRs	Accession Number Identified	Open Reading Frame (Base Pairs)	Per Cent Homology To Designated GPCR	Reference To Homologous GPCR (Accession No.)
	hARE-3	AL033379	1,260 bp	52.3% LPA-R	U92642
20	hARE-4	AC006087	1,119 bp	36% P2Y5	AF000546
	hARE-5	AC006255	1,104 bp	32% Oryzias latipes	D43633
	hGPR27	AA775870	1,128 bp	•	
	hARE-1	AI090920	999 bp	43% KIAA0001	D13626
	hARE-2	AA359504	1,122 bp	53% GPR27	
25	hPPR1	H67224	1,053 bp	39% EBI1	L31581
	hG2A	AA754702	1,113 bp	31% GPR4	L36148

AREN-	0054		- 14 -		PATENT
	hRUP3	AL035423	1,005 bp	30% Drosophila	2133653
	hRUP4	AI307658	1, 29 6 bp	melanogaster 32% pNPGPR 28% and 29 % Zebra fish Ya	NP_004876 AAC41276 and
	hRUP5	AC005849	1,413 bp	and Yb, respectively 25% DEZ 23% FMLPR	AAB94616 Q99788 P21462
5	hRUP6 hRUP7	AC005871 AC007922	1,245 bp 1,173 bp	48% GPR66 43% H3R	NP_006047 AF140538
	hCHN3 hCHN4	EST 36581 AA804531	1,113 bp 1,077 bp	53% GPR27 32% thrombin	
	hCHN6 hCHN8	EST 2134670 EST 764455	1,503 bp 1,029 bp	36% edg-1 47%	4503637 NP_001391
10	hCHN9	EST 1541536	,	KIAA0001	D13626
10	hCHN10	EST 1365839	1,077 bp 1,055 bp	41% LTB4R 35% P2Y	NM_000752 NM_002563

Receptor homology is useful in terms of gaining an appreciation of a role of the receptors within the human body. As the patent document progresses, we will disclose techniques for mutating these receptors to establish non-endogenous, constitutively activated versions of these receptors.

The techniques disclosed herein have also been applied to other human, orphan GPCRs known to the art, as will be apparent as the patent document progresses.

C. Receptor Screening

Screening candidate compounds against a non-endogenous, constitutively activated version of the human GPCRs disclosed herein allows for the direct identification of candidate compounds which act at this cell surface receptor, without requiring use of the receptor's endogenous ligand. By determining areas within the body where the endogenous version of human GPCRs disclosed herein is expressed and/or over-expressed, it is possible to determine related disease/disorder states which are associated with the expression and/or over-expression

of th

.02570

of the receptor; such an approach is disclosed in this patent document.

With respect to creation of a mutation that may evidence constitutive activation of the human GPCR disclosed herein is based upon the distance from the proline residue at which is presumed to be located within TM6 of the GPCR; this algorithmic technique is disclosed in co-pending and commonly assigned patent document U.S. Serial Number 09/170,496, incorporated herein by reference. The algorithmic technique is not predicated upon traditional sequence "alignment" but rather a specified distance from the aforementioned TM6 proline residue. By mutating the amino acid residue located 16 amino acid residues from this residue (presumably located in the IC3 region of the receptor) to, most preferably, a lysine residue, such activation may be obtained. Other amino acid residues may be useful in the mutation at this position to achieve this objective.

D. Disease/Disorder Identification and/or Selection

As will be set forth in greater detail below, most preferably inverse agonists to the non-endogenous, constitutively activated GPCR can be identified by the methodologies of this invention. Such inverse agonists are ideal candidates as lead compounds in drug discovery programs for treating diseases related to this receptor. Because of the ability to directly identify inverse agonists to the GPCR, thereby allowing for the development of pharmaceutical compositions, a search for diseases and disorders associated with the GPCR is relevant. For example, scanning both diseased and normal tissue samples for the presence of the GPCR now becomes more than an academic exercise or one which might be pursued along the path of identifying an endogenous ligand to the specific GPCR. Tissue scans can be conducted across a broad range of healthy and diseased tissues. Such tissue scans provide a preferred first step in associating a specific receptor with a disease and/or disorder. See, for

TOUTENED DEDOTA

example, co-pending application (docket number ARE-0050) for exemplary dot-blot and RT-PCR results of several of the GPCRs disclosed herein.

Preferably, the DNA sequence of the human GPCR is used to make a probe for (a) dot-blot analysis against tissue-mRNA, and/or (b) RT-PCR identification of the expression of the receptor in tissue samples. The presence of a receptor in a tissue source, or a diseased tissue, or the presence of the receptor at elevated concentrations in diseased tissue compared to a normal tissue, can be preferably utilized to identify a correlation with a treatment regimen, including but not limited to, a disease associated with that disease.

Receptors can equally well be localized to regions of organs by this technique. Based on the known functions of the specific tissues to which the receptor is localized, the putative functional role of the receptor can be deduced.

E. Screening of Candidate Compounds

1. Generic GPCR screening assay techniques

When a G protein receptor becomes constitutively active, it binds to a G protein (e.g.,

15 Gq, Gs, Gi, Gz, Go) and stimulates the binding of GTP to the G protein. The G protein then
acts as a GTPase and slowly hydrolyzes the GTP to GDP, whereby the receptor, under normal
conditions, becomes deactivated. However, constitutively activated receptors continue to
exchange GDP to GTP. A non-hydrolyzable analog of GTP, [35S]GTPγS, can be used to
monitor enhanced binding to membranes which express constitutively activated receptors.

20 It is reported that [35S]GTPγS can be used to monitor G protein coupling to membranes in the
absence and presence of ligand. An example of this monitoring, among other examples wellknown and available to those in the art, was reported by Traynor and Nahorski in 1995. The
preferred use of this assay system is for initial screening of candidate compounds because the

system is generically applicable to all G protein-coupled receptors regardless of the particular G protein that interacts with the intracellular domain of the receptor.

2. Specific GPCR screening assay techniques

Once candidate compounds are identified using the "generic" G protein-coupled

receptor assay (i.e., an assay to select compounds that are agonists, partial agonists, or inverse
agonists), further screening to confirm that the compounds have interacted at the receptor site
is preferred. For example, a compound identified by the "generic" assay may not bind to the
receptor, but may instead merely "uncouple" the G protein from the intracellular domain.

a. Gs. Gz and Gi.

10

Gs stimulates the enzyme adenylyl cyclase. Gi (and Gz and Go), on the other hand, inhibit this enzyme. Adenylyl cyclase catalyzes the conversion of ATP to cAMP; thus, constitutively activated GPCRs that couple the Gs protein are associated with increased cellular levels of cAMP. On the other hand, constitutively activated GPCRs that couple Gi (or Gz, Go) protein are associated with decreased cellular levels of cAMP. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Thus, assays that detect cAMP can be utilized to determine if a candidate compound is, e.g., an inverse agonist to the receptor (i.e., such a compound would decrease the levels of cAMP). A variety of approaches known in the art for measuring cAMP can be utilized; a most preferred approach relies upon the use of anti-cAMP antibodies in an ELISA-based format. Another type of assay that can be utilized is a whole cell second messenger reporter system assay. Promoters on genes drive the expression of the proteins that a particular gene encodes. Cyclic AMP drives gene expression by promoting the binding of a cAMP-responsive DNA binding protein or

nosycals neryot

10

transcription factor (CREB) that then binds to the promoter at specific sites called cAMP response elements and drives the expression of the gene. Reporter systems can be constructed which have a promoter containing multiple cAMP response elements before the reporter gene, e.g., β-galactosidase or luciferase. Thus, a constitutively activated Gs-linked receptor causes the accumulation of cAMP that then activates the gene and expression of the reporter protein. The reporter protein such as β-galactosidase or luciferase can then be detected using standard biochemical assays (Chen et al. 1995).

b. Go and Ga.

Gq and Go are associated with activation of the enzyme phospholipase C, which in turn hydrolyzes the phospholipid PIP₂, releasing two intracellular messengers: diacycloglycerol (DAG) and inistol 1,4,5-triphoisphate (IP₃). Increased accumulation of IP₃ is associated with activation of Gq- and Go-associated receptors. See, generally, "Indirect Mechanisms of Synaptic Transmission," Chpt. 8, From Neuron To Brain (3rd Ed.) Nichols, J.G. et al eds. Sinauer Associates, Inc. (1992). Assays that detect IP₃ accumulation can be utilized to determine if a candidate compound is, e.g., an inverse agonist to a Gq- or Go-associated receptor (i.e., such a compound would decrease the levels of IP₃). Gq-associated receptors can also been examined using an AP1 reporter assay in that Gq-dependent phospholipase C causes activation of genes containing AP1 elements; thus, activated Gq-associated receptors will evidence an increase in the expression of such genes, whereby inverse agonists thereto will evidence a decrease in such expression, and agonists will evidence an increase in such expression. Commercially available assays for such detection are available.

DOODERS, DECEMBLE

3. GPCR Fusion Protein

The use of an endogenous, constitutively activate orphan GPCR or a non-endogenous, constitutively activated orphan GPCR, for use in screening of candidate compounds for the direct identification of inverse agonists, agonists and partial agonists provide an interesting screening challenge in that, by definition, the receptor is active even in the absence of an endogenous ligand bound thereto. Thus, in order to differentiate between, e.g., the non-endogenous receptor in the presence of a candidate compound and the non-endogenous receptor in the absence of that compound, with an aim of such a differentiation to allow for an understanding as to whether such compound may be an inverse agonist, agonist, partial agonist or have no affect on such a receptor, it is preferred that an approach be utilized that can enhance such differentiation. A preferred approach is the use of a GPCR Fusion Protein.

Generally, once it is determined that a non-endogenous orphan GPCR has been constitutively activated using the assay techniques set forth above (as well as others), it is possible to determine the predominant G protein that couples with the endogenous GPCR.

Coupling of the G protein to the GPCR provides a signaling pathway that can be assessed. Because it is most preferred that screening take place by use of a mammalian expression system, such a system will be expected to have endogenous G protein therein. Thus, by definition, in such a system, the non-endogenous, constitutively activated orphan GPCR will continuously signal. In this regard, it is preferred that this signal be enhanced such that in the presence of, e.g., an inverse agonist to the receptor, it is more likely that it will be able to more readily differentiate, particularly in the context of screening, between the receptor when it is contacted with the inverse agonist.

The GPCR Fusion Protein is intended to enhance the efficacy of G protein coupling

HODYSHED DEDYSH

with the non-endogenous GPCR. The GPCR Fusion Protein is preferred for screening with
a non-endogenous, constitutively activated GPCR because such an approach increases the
signal that is most preferably utilized in such screening techniques. This is important in
facilitating a significant "signal to noise" ratio; such a significant ratio is import preferred for
the screening of candidate compounds as disclosed herein.

The construction of a construct useful for expression of a GPCR Fusion Protein is within the purview of those having ordinary skill in the art. Commercially available expression vectors and systems offer a variety of approaches that can fit the particular needs of an investigator. The criteria of importance for such a GPCR Fusion Protein construct is 10 that the endogenous GPCR sequence and the G protein sequence both be in-frame (preferably, the sequence for the endogenous GPCR is upstream of the G protein sequence) and that the "stop" codon of the GPCR must be deleted or replaced such that upon expression of the GPCR, the G protein can also be expressed. The GPCR can be linked directly to the G protein, or there can be spacer residues between the two (preferably, no more than about 12, although this number can be readily ascertained by one of ordinary skill in the art). We have a preference (based upon convenience) of use of a spacer in that some restriction sites that are not used will, effectively, upon expression, become a spacer. Most preferably, the G protein that couples to the non-endogenous GPCR will have been identified prior to the creation of the GPCR Fusion Protein construct. Because there are only a few G proteins that have been identified, it is preferred that a construct comprising the sequence of the G protein (i.e., a universal G protein construct) be available for insertion of an endogenous GPCR sequence therein; this provides for efficiency in the context of large-scale screening of a variety of different endogenous GPCRs having different sequences.

DORYGUEL DECIDE

As noted above, constitutively activated GPCRs that couple to Gi, Gz and Go are expected to inhibit the formation of cAMP making assays based upon these types of GPCRs challenging (i.e., the cAMP signal decreases upon activation thus making the direct identification of, e.g., inverse agonists (which would further decrease this signal), interesting).

As will be disclosed herein, we have ascertained that for these types of receptors, it is possible to create a GPCR Fusion Protein that is not based upon the endogenous GPCR's endogenous G protein, in an effort to establish a viable cyclase-based assay. Thus, for example, a Gz coupled receptor such as H9, a GPCR Fusion Protein can be established that utilizes a Gs fusion protein – we believe that such a fusion construct, upon expression, "drives" or "forces" the non-endogenous GPCR to couple with, e.g., Gs rather than the "natural" Gz protein, such that a cyclase-based assay can be established. Thus, for Gi, Gz and Go coupled receptors, we prefer that that when a GPCR Fusion Protein is used and the assay is based upon detection of adenyl cyclase activity, that the fusion construct be established with Gs (or an equivalent G protein that stimulates the formation of the enzyme adenylyl cyclase).

15 F. Medicinal Chemistry

Generally, but not always, direct identification of candidate compounds is preferably conducted in conjunction with compounds generated via combinatorial chemistry techniques, whereby thousands of compounds are randomly prepared for such analysis. Generally, the results of such screening will be compounds having unique core structures; thereafter, these compounds are preferably subjected to additional chemical modification around a preferred core structure(s) to further enhance the medicinal properties thereof. Such techniques are known to those in the art and will not be addressed in detail in this patent document.

DOSTEDED DECTOR

10

20

G. Pharmaceutical compositions

Candidate compounds selected for further development can be formulated into pharmaceutical compositions using techniques well known to those in the art. Suitable pharmaceutically-acceptable carriers are available to those in the art; for example, see

Remington's Pharmaceutical Sciences, 16th Edition, 1980, Mack Publishing Co., (Oslo et al., eds.)

H. Other Utility

Although a preferred use of the non-endogenous versions the human GPCRs disclosed herein may be for the direct identification of candidate compounds as inverse agonists, agonists or partial agonists (preferably for use as pharmaceutical agents), these versions of human GPCRs can also be utilized in research settings. For example, in vitro and in vivo systems incorporating GPCRs can be utilized to further elucidate and understand the roles these receptors play in the human condition, both normal and diseased, as well as understanding the role of constitutive activation as it applies to understanding the signaling cascade. The value in non-endogenous human GPCRs is that their utility as a research tool is enhanced in that, because of their unique features, non-endogenous human GPCRs can be used to understand the role of these receptors in the human body before the endogenous ligand therefor is identified. Other uses of the disclosed receptors will become apparent to those in the art based upon, inter alia, a review of this patent document.

EXAMPLES

The following examples are presented for purposes of elucidation, and not limitation, of the present invention. While specific nucleic acid and amino acid sequences are disclosed herein, those of ordinary skill in the art are credited with the ability to make minor

15

modifications to these sequences while achieving the same or substantially similar results reported below. The traditional approach to application or understanding of sequence cassettes from one sequence to another (e.g. from rat receptor to human receptor or from human receptor A to human receptor B) is generally predicated upon sequence alignment techniques whereby the sequences are aligned in an effort to determine areas of commonality. The mutational approach disclosed herein does not rely upon this approach but is instead based upon an algorithmic approach and a positional distance from a conserved proline residue located within the TM6 region of human GPCRs. Once this approach is secured, those in the art are credited with the ability to make minor modifications thereto to achieve substantially the same results (i.e., constitutive activation) disclosed herein. Such modified approaches are considered within the purview of this disclosure

Example 1 ENDOGENOUS HUMAN GPCRS

1. Identification of Human GPCRs

Certain of the disclosed endogenous human GPCRs were identified based upon a review of the GenBank™ database information. While searching the database, the following cDNA clones were identified as evidenced below (Table C).

TABLE C

20	Disclosed Human Orphan GPCRs	Accession Number	Complete DNA Sequence (Base Pairs)	Open Reading Frame (Base Pairs)	Nucleic Acid SEQ.ID. NO.	Amino Acid SEQ.ID. NO.
	hARE-3	AL033379	111,389 bp	1,260 bp	1	2
	hARE-4	AC006087	226,925 bp	1,119 bp	3	4
25	hARE-5	AC006255	127,605 bp	1,104 bp	5	6
	hRUP3	AL035423	140,094 bp	1,005 bp	7	8

AREN-0054		- 24 -			PATENT
hRUP5	AC005849	169,144 bp	1,413 bp	9	10
hRUP6	AC005871	218,807 bp	1,245 bp	11	12
hRUP7	AC007922	158.858 bp	1.173 bp	13	14

Other disclosed endogenous human GPCRs were identified by conducting a BLASTTM

5 search of EST database (dbest) using the following EST clones as query sequences. The following EST clones identified were then used as a probe to screen a human genomic library (Table D).

TABLE D

10	Disclosed Human Orphan GPCRs	Query (Sequence)	EST Clone/ Accession No. Identified	Open Reading Frame	Nucleic Acid SEQ.ID.NO.	Amino Acid SEQ.ID.NO.
	hGPCR27	Mouse	AA775870	(Base Pairs) 1,125 bp	17	18
		GPCR27				
	hARE-1	TDAG	1689643 AI090920	999 bp	19	20
15	hARE-2	GPCR27	68530	1,122 bp	21	22
	hPPR1	Bovine	AA359504 238667	1,053 bp	23	24
		PPR1	H67224			
	hG2A	Mouse	See Example 2(a), helow	1,113 bp	25	26
	hCHN3	1179426 N.A.	EST 36581	1,113 bp	27	28
	nchns	N.A.	(full length)	1,113 bp	21	28
	hCHN4	TDAG	1184934	1,077 bp	29	30
			AA804531			
20	hCHN6	N.A.	EST 2134670 (full length)	1,503 bp	31	32
	hCHN8	KIAA0001	EST 764455	1,029 bp	33	34
	hCHN 9	1365839	EST 1541536	1,077 bp	35	36
	hCHN10	Mouse EST 1365839	Human 1365839	1,005 bp	37	38
	hRUP4	N.A.	AI307658	1,296 bp	39	40
25		N.A. = "not ap		-, F		

2. Full Length Cloning

a. Human G2A

Mouse EST clone 1179426 was used to obtain a human genomic clone containing all

Dogosana namena

but three amino acid G2A coding sequences. The 5'of this coding sequence was obtained by using 5'RACE, and the template for PCR was Clontech's Human Spleen Marathon-Ready™ cDNA. The disclosed human G2A was amplified by PCR using the G2A cDNA specific primers for the first and second round PCR as shown in SEQ.ID.NO.: 41 and SEQ.ID.NO.: 42

5 as follows:

5'-CTGTGTACAGCAGTTCGCAGAGTG-3' (SEQ.ID.NO.: 41; 1º round PCR)

5'-GAGTGCCAGGCAGAGCAGGTAGAC-3' (SEQ.ID.NO.: 42; second round PCR).

PCR was performed using Advantage GC Polymerase Kit (Clontech; manufacturing instructions will be followed), at 94°C for 30 sec followed by 5 cycles of 94°C for 5 sec and 70° for 4 min. An approximate 1.3 Kb PCR fragment was purified from agarose gel, digested with Hind III and Xba I and cloned into the expression vector pRC/CMV2 (Invitrogen). The cloned-insert was sequenced using the T7 Sequenase™ kit (USB Amersham; manufacturer instructions followed) and the sequence was compared with the presented sequence. Expression of the human G2A was detected by probing an RNA dot blot (Clontech; manufacturer instructions followed) with the P³²-labeled fragment.

b. CHN9

Sequencing of the EST clone 1541536 showed CHN9 to be a partial cDNA clone having only an initiation codon; *i.e.*, the termination codon was missing. When CHN9

was used to blast against data base (nr), the 3' sequence of CHN9 was 100% homologous to the 5' untranslated region of the leukotriene B4 receptor cDNA, which contained a termination codon in the frame with CHN9 coding sequence. To determine whether the 5' untranslated region of LTB4R cDNA was the 3' sequence of CHN9, PCR was performed using primers based upon the 5' sequence flanking the initiation codon found in CHN9 and

nearement nearth

- the 3' sequence around the termination codon found in the LTB4R 5' untranslated region.

 The 5' primer sequence utilized was as follows:
- 5'-CCCGAATTCCTGCTTGCTCCCAGCTTGGCCC-3' (SEQ.ID.NO.: 43; sense) and
- 5'-TGTGGATCCTGCTGTCAAAGGTCCCATTCCGG-3' (SEQ.ID.NO.: 44; antisense).
- 5 PCR was performed using thymus cDNA as a template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 uM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 65°C for 1 min and 72 °C for 1 min and 10 sec. A 1.1kb fragment consistent with the predicted size was obtained from PCR. This PCR fragment was subcloned into pCMV (see below) and sequenced (see, SEO.ID.NO.: 35).

c. RUP 4

The full length RUP4 was cloned by RT-PCR with human brain cDNA (Clontech) as templates:

- 5'-TCACAATGCTAGGTGTGGTC-3' (SEO.ID.NO.: 45; sense) and
- $15 \quad \ 5\text{'-TGCATAGACAATGGGATTACAG-3'} \ (SEQ.ID.NO.: 46; \ antisense).$

PCR was performed using TaqPlus Precision™ polymerase (Stratagene; manufacturing instructions followed) by the following cycles: 94°C for 2 min; 94°C 30 sec; 55°C for 30 sec, 72°C for 45 sec, and 72°C for 10 min. Cycles 2 through 4 were repeated 30 times.

The PCR products were separated on a 1% agarose gel and a 500 bp PCR fragment
was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and sequenced using the
T7 DNA Sequenase™ kit (Amsham) and the SP6/T7 primers (Stratagene). Sequence analysis
revealed that the PCR fragment was indeed an alternatively spliced form of AI307658 having
a continuous open reading frame with similarity to other GPCRs. The completed sequence
of this PCR fragment was as follows:

- 5'-TCACAATGCTAGGTGTGGTCTGGCTGGTGGCAGTCATCGTAGGATCACCCATGTGGCAC
 GTGCAACAACTTGAGATCAAATATGAACTTCCTATATGAAAAGGAACAACTTGCTGCTTAAGA
 GTGGACCAGCCCTGTGGCACCAGAAGATCTACACCACCTTCATCCTTGTCATCCTCTTCATCCTCTCTGC
 CTCTTATGGTGATGCTTATTCTGTACGTAAAATTGGTTATGAACTTTGGATAAAGAAAAGAGTT
 5 GGGATTGGTTCAGTGCTTTCGAACTATTCATGGAAAAGAAATGGTCCAAAATAGCCAGGAAGAAA
 AAACGAGCTGTCATTATGATGGTGACAGTGGTGGCTCTCTTTGCTGTGGCTGGGCACCATTCC
 ATGTTGTCCATATGATGATTGAATACAGTAATTTTGAAAAGGAATATGATGATGATGATCACAATCAA
 GATGATTTTTGCTATCGTGCAAATTATTGGATTTTCCAACTCCATCTGTAATCCCATTGTCTATGCA-3' (SEQ.ID.NO. 47)
- 10 Based on the above sequence, two sense oligonucleotide primer sets:
 - 5'-CTGCTTAGAAGAGTGGACCAG-3' (SEQ.ID.NO.: 48; oligo 1),
 - 5'-CTGTGCACCAGAAGATCTACAC-3' (SEQ.IDNO.: 49; oligo 2) and

two antisense oligonucleotide primer sets:

- 5'-CAAGGATGAAGGTGGTGTAGA-3' (SEQ.ID.NO.: 50; oligo 3)
- 15 5'-GTGTAGATCTTCTGGTGCACAGG-3' (SEQ.ID.NO.: 51; oligo 4)

were used for 3'- and 5'-RACE PCR with a human brain Marathon-Ready™ cDNA (Clontech, Cat# 7400-1) as template, according to manufacture's instructions. DNA fragments generated by the RACE PCR were cloned into the pCRII-TOPO™ vector (Invitrogen) and sequenced using the SP6/T7 primers (Stratagene) and some internal primers.

20 The 3' RACE product contained a poly(A) tail and a completed open reading frame ending at a TAA stop codon. The 5' RACE product contained an incomplete 5' end; i.e., the ATG initiation codon was not present.

Based on the new 5' sequence, oligo 3 and the following primer:

- 5'-GCAATGCAGGTCATAGTGAGC -3' (SEQ.ID.NO.: 52; oligo 5)
- 25 were used for the second round of 5' race PCR and the PCR products were analyzed as above.

A third round of 5' race PCR was carried out utilizing antisense primers:

- 5'-TGGAGCATGGTGACGGGAATGCAGAAG-3' (SEO.ID.NO.: 53; oligo 6) and
- 5'-GTGATGAGCAGGTCACTGAGCGCCAAG-3' (SEO.ID.NO.: 54: oligo7).

The sequence of the 5' RACE PCR products revealed the presence of the initiation codon

TOEFCEC INCIPEL

10

ATG, and further round of 5' race PCR did not generate any more 5' sequence. The completed 5' sequence was confirmed by RT-PCR using sense primer

5'-GCAATGCAGGCGCTTAACATTAC-3' (SEQ.ID.NO.: 55; oligo 8)

and oligo 4 as primers and sequence analysis of the 650 bp PCR product generated from

5 human brain and heart cDNA templates (Clontech, Cat# 7404-1). The completed 3' sequence was confirmed by RT-PCR using oligo 2 and the following antisense primer:

5'-TTGGGTTACAATCTGAAGGGCA-3' (SEO.ID.NO.:56; oligo 9)

and sequence analysis of the 670 bp PCR product generated from human brain and heart cDNA templates. (Clontech, Cat# 7404-1).

d. RUP5

The full length RUP5 was cloned by RT-PCR using a sense primer upstream from ATG, the initiation codon (SEQ.ID.NO.:57), and an antisense primer containing TCA as the stop codon (SEQ.ID.NO.:58), which had the following sequences:

5'-ACTCCGTGTCCAGCAGGACTCTG-3' (SEQ.ID.NO.: 57)

15 5'-TGCGTGTTCCTGGACCCTCACGTG-3' (SEQ.ID.NO.: 58)

and human peripheral leukocyte cDNA (Clontech) as a template. Advantage™ cDNA polymerase (Clontech) was used for the amplification in a 50ul reaction by the following cycle with step 2 through step 4 repeated 30 times: 94°C for 30 sec; 94° for 15 sec; 69° for 40 sec; 72°C for 3 min; and 72°C for 6 min. A 1.4kb PCR fragment was isolated and cloned with the pCRII-TOPO™ vector (Invitrogen) and completely sequenced using the T7 DNA Sequenase™ kit (Amsham). See, SEQ.ID.NO.: 9.

e. RUP6

The full length RUP6 was cloned by RT-PCR using primers:

5'-CAGGCCTTGGATTTTAATGTCAGGGATGG-3' (SEQ.ID.NO.: 59) and

OCCIONA DEDICATE

20

5'-GGAGAGTCAGCTCTGAAAGAATTCAGG-3' (SEQ.ID.NO.: 60);
and human thymus Marathon-Ready™ cDNA (Clontech) as a template. Advantage cDNA
polymerase (Clontech, according to manufacturer's instructions) was used for the
amplification in a 50ul reaction by the following cycle: 94°C for 30sec; 94°C for 5 sec; 66°C

for 40sec; 72°C for 2.5 sec and 72°C for 7 min. Cycles 2 through 4 were repeated 30 times.
A 1.3 Kb PCR fragment was isolated and cloned into the pCRII-TOPO™ vector (Invitrogen)
and completely sequenced (see, SEQ.ID.NO.: 11) using the ABI Big Dye Terminator™ kit
(P.E. Biosystem).

f. RUP7

The full length RUP7 was cloned by RT-PCR using primers:

5'-TGATGTGATGCCAGATACTAATAGCAC-3' (SEQ.ID.NO.: 61; sense) and

5'-CCTGATTCATTTAGGTGAGATTGAGAC-3' (SEQ.ID.NO.: 62; antisense)

and human peripheral leukocyte cDNA (Clontech) as a template. Advantage™ cDNA

polymerase (Clontech) was used for the amplification in a 50 ul reaction by the following

15 cycle with step 2 to step 4 repeated 30 times: 94°C for 2 minutes; 94°C for 15 seconds; 60°C

for 20 seconds; 72°C for 2 minutes; 72°C for 10 minutes. A 1.25 Kb PCR fragment was

isolated and cloned into the pCRII-TOPO™ vector (Invitrogen) and completely sequenced

using the ABI Big Dye Terminator™ kit (P.E. Biosystem). See, SEQ.ID.NO.: 13.

3. Angiotensin II Type 1 Receptor ("AT1")

The endogenous human angiotensin II type 1 receptor ("AT1") was obtained by PCR using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 μ M of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 55°C for 1 min and 72 °C for 1.5 min. The 5' PCR primer contains a HindIII site with the sequence:

DOBJEDED DEDJOY

5'-CCCAAGCTTCCCCAGGTGTATTTGAT-3' (SEQ.ID.NO.: 63)

and the 3' primer contains a BamHI site with the following sequence:

5'-GTTGGATCCACATAATGCATTTTCTC-3' (SEQ.ID.NO.: 64).

The resulting 1.3 kb PCR fragment was digested with HindIII and BamHI and cloned into

HindIII-BamHI site of pCMV expression vector. The cDNA clone was fully sequenced.

Nucleic acid (SEQ.ID.NO.: 65) and amino acid (SEQ.ID.NO.: 66) sequences for human AT1

were thereafter determined and verified.

4. GPR38

To obtain GPR38, PCR was performed by combining two PCR fragments, using human genomic cDNA as template and rTth poymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25uM of each primer, and 0.2 mM of each 4 nucleotides.

The cycle condition for each PCR reaction was 30 cycles of 94°C for 1 min, 62°C for 1 min and 72°C for 2 min.

The first fragment was amplified with the 5' PCR primer that contained an end site with the following sequence:

5'-ACCATGGGCAGCCCCTGGAACGGCAGC-3' (SEQ.ID.NO.:67)

and a 3' primer having the following sequence:

5'-AGAACCACCACCAGCAGGACGGGGGGGTCTGCCGGTGG-3' (SEQ.ID.NO.:68).

The second PCR fragment was amplified with a 5' primer having the following sequence:

20 5'-GTCCGCGTCCTGCTGGTGGTGGTTCTGGCATTTATAATT-3' (SEQ.ID.NO.: 69)

and a 3' primer that contained a BamHI site and having the following sequence:

5'-CCTGGATCCTTATCCCATCGTCTTCACGTTAGC-3' (SEQ.ID.NO.: 70).

The two fragments were used as templates to amplify GPR38, using SEQ.ID.NO.: 67 and SEQ.ID.NO.: 70 as primers (using the above-noted cycle conditions). The resulting 1.44kb

PCR fragment was digested with BamHI and cloned into Blunt-BamHI site of pCMV expression vector.

5. MC4

To obtain MC4, PCR was performed using human genomic cDNA as template and

7Th poymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25uM

of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition for each PCR reaction

was 30 cycles of 94°C for 1 min, 54°C for 1 min and 72°C for 1.5 min.

The 5' PCR contained an EcoRI site with the sequence:

5'-CTGGAATTCTCCTGCCAGCATGGTGA-3' (SEO.ID.NO.: 71)

10 and the 3' primer contained a BamHI site with the sequence:

5'-GCAGGATCCTATATTGCGTGCTCTGTCCCC'-3 (SEQ.ID.NO.: 72).

The 1.0 kb PCR fragment was digest with EcoRI and BamHI and cloned into EcoRI-BamHI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 73) and amino acid (SEQ.ID.NO.: 74) sequences for human MC4 were thereafter determined.

6. CCKB

15

To obtain CCKB, PCR was performed using human stomach cDNA as template and rTth poymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25uM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition for each PCR reaction was 30 cycles of 94°C for 1 min, 65°C for 1 min and 72°C for 1 min and 30 sec.

20 The 5' PCR contained a HindIII site with the sequence:

5'-CCGAAGCTTCGAGCTGAGTAAGGCGGCGGGCT-3' (SEO.ID.NO.: 75)

and the 3' primer contained an EcoRI site with the sequence:

5'-GTGGAATTCATTTGCCCTGCCTCAACCCCCA-3 (SEQ.ID.NO.: 76).

The resulting 1.44 kb PCR fragment was digest with HindIII and EcoRI and cloned into

NOSTEDED RENTA

HindIII-EcoRI site of pCMV expression vector. Nucleic acid (SEQ.ID.NO.: 77) and amino acid (SEQ.ID.NO.: 78) sequences for human CCKB were thereafter determined.

7. TDAG8

To obtain TDAG8, PCR was performed using genomic DNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 56°C for 1 min and 72 °C for 1 min and 20 sec. The 5' PCR primer contained a HindIII site with the following sequence:

- 5'-TGCAAGCTTAAAAAGGAAAAAATGAACAGC-3' (SEQ.ID.NO.: 79)
- and the 3' primer contained a BamHI site with the following sequence:

5'-TAAGGATCCCTTCCAAAACATCCTTG -3' (SEQ.ID.NO.: 80).

The resulting 1.1 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. Three resulting clones sequenced contained three potential polymorphisms involving changes of amino acid 43 from Pro to Ala, amino acid 97 from Lys to Asn and amino acid 130 from IIe to Phe. Nucleic acid (SEQ.ID.NO.: 81) and amino acid (SEQ.ID.NO.: 82) sequences for human TDAG8 were thereafter determined.

8. H9

To obtain H9, PCR was performed using pituitary cDNA as template and rTth polymerase (Perkin Elmer) with the buffer system provided by the manufacturer, 0.25 µM of 20 each primer, and 0.2 mM of each 4 nucleotides. The cycle condition was 30 cycles of 94°C for 1 min, 62°C for 1 min and 72°C for 2 min. The 5' PCR primer contained a HindIII site with the following sequence:

5'-GGAAAGCTTAACGATCCCCAGGAGCAACAT-3' (SEQ.ID.NO.:15)

and the 3' primer contained a BamHI site with the following sequence:

5'-CTGGGATCCTACGAGAGCATTTTTCACACAG-3' (SEQ.ID.NO.:16).

The resulting 1.9 kb PCR fragment was digested with HindIII and BamHI and cloned into HindIII-BamHI site of pCMV expression vector. H9 contained three potential polymorphisms involving changes of amino acid P320S, S493N and amino acid G448A. Nucleic acid (SEQ.ID.NO.: 139) and amino acid (SEQ.ID.NO.: 140) sequences for human H9 were thereafter determined and verified.

DOESELE DEDSOI

Example 2 PREPARATION OF NON-ENDOGENOUS, CONSTITUTIVELY ACTIVATED GPCRS

Those skilled in the art are credited with the ability to select techniques for

mutation of a nucleic acid sequence. Presented below are approaches utilized to create
non-endogenous versions of several of the human GPCRs disclosed above. The mutations
disclosed below are based upon an algorithmic approach whereby the 16th amino acid
(located in the IC3 region of the GPCR) from a conserved proline residue (located in the
TM6 region of the GPCR, near the TM6/IC3 interface) is mutated, most preferably to a

15 lysine amino acid residue.

1. Tranformer Site-Directed ™ Mutagenesis

Preparation of non-endogenous human GPCRs may be accomplished on human GPCRs using Transformer Site-DirectedTM Mutagenesis Kit (Clontech) according to the manufacturer instructions. Two mutagenesis primers are utilized, most preferably a lysine mutagenesis oligonucleotide that creates the lysine mutation, and a selection marker oligonucleotide. For convenience, the codon mutation to be incorporated into the human GPCR is also noted, in standard form (Table E):

TABLE E

	Receptor Identifier	Codon Mutation
	hARE-3	F313K
	hARE-4	V233K
5	hARE-5	A240K
	hGPCR14	L257K
	hGPCR27	C283K
	hARE-1	E232K
	hARE-2	G285K
10	hPPR1	L239K
	hG2A	K232A
	hRUP3	L224K
	hRUP5	A236K
	hRUP6	N267K
15	hRUP7	A302K
	hCHN4	V236K
	hMC4	A244K
	hCHN3	S284K
	hCHN6	L352K
20	hCHN8	N235K
	hCHN9	G223K
	hCHN10	L231K
	hH9	F236K

The following GPCRs were mutated according with the above method using the

designated sequence primers (Table F).

10

TABLE F

	Receptor Identifier	Codon Mutation	Lysine Mutagenesis (SEQ.ID.NO.) 5'-3' orientation, mutation sequence underlined	Selection Marker (SEQ.ID.NO.) 5'-3' orientation
	hRUP4	V272K	CAGGAAGAAG <u>AAA</u> CGAGC TGTCATTATGATGGTGACA GTG (83)	CACTGTCACCATCATAATG ACAGCTCGTTTCTTCTTCC TG (84)
	hAT1	see below	alternative approach; see below	alternative approach; see below
5	hGPR38	V297K	GGCCACCGGCAGACCAAAC GCGTCCTGCTG (85)	CTCCTTCGGTCCTCCTATC GTTGTCAGAAGT (86)
	hCCKB	V332K	alternative approach; see below	alternative approach; see below
	hTDAG8	1225K	GGAAAAGAAGAGAATCAA <u>AAA</u> ACTACTTGTCAGCATC (87)	CTCCTTCGGTCCTCCTATC GTTGTCAGAAGT (88)
	hH9	F236 K	GCTGAGGTTCGCAAT <u>AAA</u> C TAACCATGTTTGTG (143)	CTCCTTCGGTCCTCCTATC GTTGTCAGAAGT (144)
	hMC4	A244K	GCCAATATGAAGGGA <u>AAA</u> ATTACCTTGACCATC (137)	CTCCTTCGGTCCTCCTATC GTTGTCAGAAGT (138)

The non-endogenous human GPCRs were then sequenced and the derived and verified nucleic acid and amino acid sequences are listed in the accompanying "Sequence Listing" appendix to this patent document, as summarized in Table G below:

TABLE G

Non Endogenous Human	Nucleic Acid Sequence Listing	Amino Acid Sequence Listing
hRUP4	SEQ.ID.NO.: 127	SEQ.ID.NO.: 128
(V272K)		
hAT1		(see alternative approaches,
(see alternative approaches	below)	below)
below)		
hGPR38	SEQ.ID.NO.: 129	SEQ.ID.NO.: 130
(V297K)		
hCCKB	SEQ.ID.NO.: 131	SEQ.ID.NO.: 132
(V332K)		
HTDAG8	SEQ.ID.NO.: 133	SEQ.ID.NO.: 134
(I225K)		
hH9	SEQ.ID.NO.: 141	SEQ.ID.NO.: 142
(F236K)		
hMC4	SEQ.ID.NO.: 135	SEQ.ID.NO.: 136
(A244K)		
	GPCR hRUP4 (V272K) hAT1 (see alternative approaches below) hGPR38 (V297K) hCCKB (V332K) HTDAG8 (I225K) hH9 (F236K) hMC4	GPCR hRUP4 (V272K) hAT1 (see alternative approaches below) hGPR38 (V297K) hCCKB (V332K) HTDAG8 (I225K) hH9 (F236K) hMC4 SEQ.ID.NO.: 135

2. Alternative Approaches For Creation of Non-Endogenous Human GPCRs

a. AT1

1. F239K Mutation

Preparation of a non-endogenous, constitutively activated human AT1 receptor was accomplished by creating an F239K mutation (see, SEQ.ID.NO.: 89 for nucleic acid sequence, and SEQ.ID.NO.: 90 for amino acid sequence). Mutagenesis was performed using Transformer Site-Directed Mutagenesis™ Kit (Clontech) according to the to manufacturer's instructions. The two mutagenesis primers were used, a lysine mutagenesis oligonucleotide (SEQ.ID.NO.: 91) and a selection marker oligonucleotide (SEQ.ID.NO.: 92), which had the following sequences:

- 5'-CCAAGAAATGATAATAAAAAGATAATTATGGC-3' (SEQ.ID.NO.: 91)
 5'-CTCCTTCGGTCCTCCTATCGTTGTCAGAAGT-3' (SEQ.ID.NO.: 92),
- 15 respectively.

5

2. N111A Mutation

Preparation of a non-endogenous human AT1 receptor was also accomplished by creating an N111A mutation (see, SEQ.ID.NO.:93 for nucleic acid sequence, and SEQ.ID.NO.: 94 for amino acid sequence). Two PCR reactions were performed using pfu polymerase (Stratagene) with the buffer system provided by the manufacturer, supplemented with 10% DMSO, 0.25 µM of each primer, and 0.5 mM of each 4 nucleotides. The 5' PCR sense primer used had the following sequence: 5'-CCCAAGCTTCCCCAGGTGTATTTGAT-3' (SEQ.ID.NO.: 95)

25 and the antisense primer had the following sequence:

5'-CCTGCAGGCGAAACTGACTCTGGCTGAAG-3' (SEQ.ID.NO.: 96).

The resulting 400 bp PCR fragment was digested with HindIII site and subcloned into HindIII-SmaI site of pCMV vector (5' construct). The 3' PCR sense primer used had the following sequence:

- 5 5'-CTGTACGCTAGTGTTTTCTACTCACGTGTCTCAGCATTGAT-3' (SEQ.ID.NO.: 97) and the antisense primer had the following sequence:
 - 5'-GTTGGATCCACATAATGCATTTTCTC-3' (SEQ.ID.NO.: 98)

The resulting 880 bp PCR fragment was digested with BamHI and inserted into Pst (blunted by T4 polymerase) and BamHI site of 5' construct to generated the full length

N111A construct. The cycle condition was 25 cycles of 94°C for 1 min, 60°C for 1 min and 72°C for 1 min (5° PCR) or 1.5 min (3° PCR).

3. AT2K255IC3 Mutation

Preparation of a non-endogenous, constitutively activated human AT1 was accomplished by creating an AT2K255IC3 "domain swap" mutation (see, SEQ.ID.NO.:99 for nucleic acid sequence, and SEQ.ID.NO.: 100 for amino acid sequence). Restriction sites flanking IC3 of AT1 were generated to facilitate replacement of the IC3 with corresponding IC3 from angiotensin II type 2 receptor (AT2). This was accomplished by performing two PCR reactions. A 5' PCR fragment (Fragment A) encoded from the 5' untranslated region to the beginning of IC3 was generated by utilizing SEQ.ID.NO.: 63 as sense primer and the following sequence:

- 5'-TCCGAATTCCAAAATAACTTGTAAGAATGATCAGAAA-3' (SEQ.ID.NO.: 101)
- as antisense primer. A 3' PCR fragment (Fragment B) encoding from the end of IC3 to the
- 3' untranslated region was generated by using the following sequence:
- 5'-AGATCTTAAGAAGATAATTATGGCAATTGTGCT-3' (SEQ.ID.NO.: 102)

20

as sense primer and SEQ.ID.NO.: 64 as antisense primer. The PCR condition was 30 cycles of 94°C for 1 min, 55°C for 1 min and 72 °C for 1.5 min using endogenous AT1 cDNA clone as template and pfu polymerase (Stratagene), with the buffer systems provided by the manufacturer, supplemented with 10% DMSO, 0.25 µM of each primer, 5 and 0.5 mM of each 4 nucleotides. Fragment A (720 bp) was digested with HindIII and EcoRI and subcloned. Fragment B was digested with BamHI and subcloned into pCMV vector with an EcoRI site 5' to the cloned PCR fragment.

The DNA fragment (Fragment C) encoding IC3 of AT2 with a L255K mutation and containing an EcoRI cohesive end at 5' and a AfIII cohesive end at 3', was generated 10 by annealing 2 synthetic oligonucleotides having the following sequences:

5'AATTCGAAAACACTTACTGAAGACGAATAGCTATGGGAAGAACAGGATAACCCGTGACCAA G-3' (sense; SEO.ID.NO.: 103)

5°TTAACTTGGTCACGGGTTATCCTGTTCTTCCCATAGCTATTCGTCTTCAGT 15 AAGTGTTTTCG-3' (antisense; SEQ.ID.NO.: 104).

Fragment C was inserted in front of Fragment B through EcoRI and AfIII site. The resulting clone was then ligated with the Fragment A through the EcoRI site to generate AT1 with AT2K255IC3.

4. A243+ Mutation

Preparation of a non-endogenous human AT1 receptor was also accomplished by creating an A243+ mutation (see, SEQ.ID.NO.: 105 for nucleic acid sequence, and SEQ.ID.NO.: 106 for amino acid sequence). An A243+ mutation was constructed using the following PCR based strategy: Two PCR reactions was performed using pfu polymerase (Stratagene) with the buffer system provided by the manufacturer supplemented with 10% 25 DMSO, 0.25 µM of each primer, and 0.5 mM of each 4 nucleotides. The 5' PCR sense primer DOBUMENT OFFICE

utilized had the following sequence:

5'-CCCAAGCTTCCCCAGGTGTATTTGAT-3' (SEQ.ID.NO.: 107)

and the antisense primer had the following sequence:

5'-AAGCACAATTGCTGCATAATTATCTTAAAAATATCATC-3' (SEQ.ID.NO.: 108).

5 The 3' PCR sense primer utilized had the following sequence:

5'-AAGATAATTATGGCAGCAATTGTGCTTTTCTTTTCTTT-3' (SEQ.ID.NO.: 109)

containing the Ala insertion and antisense primer:

5'-GTTGGATCCACATAATGCATTTTCTC-3'(SEQ.ID.NO.: 110).

The cycle condition was 25 cycles of 94°C for 1 min, 54°C for 1 min and 72 °C for 1.5 min.

An aliquot of the 5' and 3' PCR were then used as co-template to perform secondary PCR using the 5' PCR sense primer and 3' PCR antisense primer. The PCR condition was the same as primary PCR except the extention time was 2.5 min. The resulting PCR fragment was digested with HindIII and BamHI and subcloned into pCMV vector. (See,

SEO.ID.NO.: 105)

15

4. CCKB

Preparation of the non-endogenous, constitutively activated human CCKB receptor was accomplished by creating a V322K mutation (see, SEQ.ID.NO.: 111 for nucleic acid sequence and SEQ.ID.NO.: 112 for amino acid sequence). Mutagenesis was performed by PCR via amplification using the wildtype CCKB from Example 1.

20 The first PCR fragment (1kb) was amplified by using SEQ.ID.NO.: 75 and an antisense primer comprising a V322K mutation:

5'-CAGCAGCATGCGCTTCACGCGCTTCTTAGCCCAG-3' (SEQ.ID.NO.: 113).

The second PCR fragment (0.44kb) was amplified by using a sense primer comprising the V322K mutation:

THE SECOND SECON

5'-AGAAGCGCGTGAAGCGCATGCTGCTGGTGATCGTT-3' (SEQ.ID.NO.: 114) and SEQ.ID.NO.: 76.

The two resulting PCR fragments were then used as template for amplifying CCKB comprising V332K, using SEQ.ID.NO.: 75 and SEQ.ID.NO.: 76 and the above-noted system and conditions. The resulting 1.44kb PCR fragment containing the V332K mutation was digested with HindIII and EcoRI and cloned into HindIII-EcoRI site of pCMV expression vector. (See, SEQ.ID.NO.: 111).

3. OuikChange™ Site-Directed™ Mutagenesis

Preparation of non-endogenous human GPCRs can also be accomplished by using QuikChange™ Site-Directed™ Mutagenesis Kit (Stratagene, according to manufacturer's instructions). Endogenous GPCR is preferably used as a template and two mutagenesis primers utilized, as well as, most preferably, a lysine mutagenesis oligonucleotide and a selection marker oligonucleotide (included in kit). For convenience, the codon mutation incorporated into the human GPCR and the respective oligonucleotides are noted, in standard form (Table H):

TABLE H

Receptor Identifier	Codon Mutation	Lysine Mutagenesis (SEQ.ID.NO.) 5'-3' orientation, mutation underlined	Selection Marker (SEQ.ID.NO.) 5'-3' orientation
hCHN3	S284K	ATGGAGAAAAGAATC <u>AAA</u> AGAA TGTTCTATATA (115)	TATATAGAACATTCTTTT GATTCTTTTCTCCAT (116)
hCHN6	L352K	CGCTCTCTGGCCTTG <u>AAG</u> CGCAC GCTCAGC (117)	GCTGAGCGTGCGCTTCA AGGCCAGAGAGCG (118)
hCHN8	N235K	CCCAGGAAAAAGGTG <u>AAA</u> GTCA AAGTTTTC (119)	GAAAACTTTGACTTTCAC CTTTTTCCTGGG (120)
hCHN9	G223K	GGGGCGCGGGTG <u>AAA</u> CGGCTGG TGAGC (121)	GCTCACCAGCCGTTTCA CCCGCGCCCC (122)
hCHN10	L231K	CCCCTTGA <u>AAA</u> GCCTAAGAACTT GGTCATC (123)	GATGACCAAGTTCTTAG GCTTTTCAAGGGG (124)

Example 3 RECEPTOR EXPRESSION

5

10

Although a variety of cells are available to the art for the expression of proteins, it is most preferred that mammalian cells be utilized. The primary reason for this is predicated upon practicalities, i.e., utilization of, e.g., yeast cells for the expression of a GPCR, while possible, introduces into the protocol a non-mammalian cell which may not (indeed, in the case of yeast, does not) include the receptor-coupling, genetic-mechanism and secretary 15 pathways that have evolved for mammalian systems - thus, results obtained in nonmammalian cells, while of potential use, are not as preferred as that obtained from mammalian cells. Of the mammalian cells, COS-7, 293 and 293T cells are particularly preferred, although the specific mammalian cell utilized can be predicated upon the particular needs of the artisan.

On day one, 1X107 293T cells per 150mm plate were plated out. On day two, two 20 reaction tubes were prepared (the proportions to follow for each tube are per plate): tube A was prepared by mixing 20µg DNA (e.g., pCMV vector; pCMV vector with receptor cDNA, etc.) in 1.2ml serum free DMEM (Irvine Scientific, Irvine, CA); tube B was

TOSTELL THEFT

prepared by mixing 120µl lipofectamine (Gibco BRL) in 1.2ml serum free DMEM. Tubes

A and B were admixed by inversions (several times), followed by incubation at room
temperature for 30-45min. The admixture is referred to as the "transfection mixture".

Plated 293T cells were washed with 1XPBS, followed by addition of 10ml serum free

DMEM. 2.4ml of the transfection mixture were added to the cells, followed by incubation
for 4hrs at 37°C/5% CO₂. The transfection mixture was removed by aspiration, followed
by the addition of 25ml of DMEM/10% Fetal Bovine Serum. Cells were incubated at
37°C/5% CO₂. After 72hr incubation, cells were harvested and utilized for analysis.

Example 4 10 ASSAYS FOR DETERMINATION OF CONSTITUTIVE ACTIVITY OF NON-ENDOGENOUS GPCRS

A variety of approaches are available for assessment of constitutive activity of the non-endogenous human GPCRs. The following are illustrative; those of ordinary skill in the art are credited with the ability to determine those techniques that are preferentially beneficial for the needs of the artisan.

1. Membrane Binding Assays: [35S]GTPγS Assay

When a G protein-coupled receptor is in its active state, either as a result of ligand binding or constitutive activation, the receptor couples to a G protein and stimulates the release of GDP and subsequent binding of GTP to the G protein. The alpha subunit of the G protein-receptor complex acts as a GTPase and slowly hydrolyzes the GTP to GDP, at which point the receptor normally is deactivated. Constitutively activated receptors continue to exchange GDP for GTP. The non-hydrolyzable GTP analog, [35S]GTPyS, can be utilized to demonstrate enhanced binding of [35S]GTPyS to membranes expressing constitutively activated receptors. The advantage of using [35S]GTPyS binding to measure constitutive

nosyspe menyna

activation is that: (a) it is generically applicable to all G protein-coupled receptors; (b) it is proximal at the membrane surface making it less likely to pick-up molecules which affect the intracellular cascade.

The assay utilizes the ability of G protein coupled receptors to stimulate [35S]GTPγS

5 binding to membranes expressing the relevant receptors. The assay can, therefore, be used in
the direct identification method to screen candidate compounds to known, orphan and
constitutively activated G protein-coupled receptors. The assay is generic and has application
to drug discovery at all G protein-coupled receptors.

The [35S]GTPγS assay can be incubated in 20 mM HEPES and between 1 and about 20mM MgCl₂ (this amount can be adjusted for optimization of results, although 20mM is preferred) pH 7.4, binding buffer with between about 0.3 and about 1.2 nM [35S]GTPγS (this amount can be adjusted for optimization of results, although 1.2 is preferred) and 12.5 to 75 μg membrane protein (e.g. COS-7 cells expressing the receptor; this amount can be adjusted for optimization, although 75μg is preferred) and 1 μM GDP (this amount can be changed for optimization) for 1 hour. Wheatgerm agglutinin beads (25 μl; Amersham) should then be added and the mixture incubated for another 30 minutes at room temperature. The tubes are then centrifuged at 1500 x g for 5 minutes at room temperature and then counted in a scintillation counter.

A less costly but equally applicable alternative has been identified which also meets

the needs of large scale screening. Flash platesTM and WallacTM scintistrips may be utilized
to format a high throughput [35S]GTPγS binding assay. Furthermore, using this technique,
the assay can be utilized for known GPCRs to simultaneously monitor tritiated ligand binding
to the receptor at the same time as monitoring the efficacy via [35S]GTPγS binding. This is

nosysaka nasyni

20

possible because the Wallac beta counter can switch energy windows to look at both tritium and ³⁵S-labeled probes. This assay may also be used to detect other types of membrane activation events resulting in receptor activation. For example, the assay may be used to monitor ³²P phosphorylation of a variety of receptors (both G protein coupled and tyrosine kinase receptors). When the membranes are centrifuged to the bottom of the well, the bound [³⁵S]GTPγS or the ³²P-phosphorylated receptor will activate the scintillant which is coated of the wells. Scinti[®] strips (Wallac) have been used to demonstrate this principle. In addition, the assay also has utility for measuring ligand binding to receptors using radioactively labeled ligands. In a similar manner, when the radiolabeled bound ligand is centrifuged to the bottom of the well, the scintistrip label comes into proximity with the radiolabeled ligand resulting in activation and detection.

2. Adenylyl Cyclase

A Flash PlateTM Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A)

designed for cell-based assays can be modified for use with crude plasma membranes. The

Flash Plate wells contain a scintillant coating which also contains a specific antibody recognizing cAMP. The cAMP generated in the wells was quantitated by a direct competition for binding of radioactive cAMP tracer to the cAMP antibody. The following serves as a brief protocol for the measurement of changes in cAMP levels in membranes that express the receptors.

Transfected cells are harvested approximately three days after transfection.

Membranes were prepared by homogenization of suspended cells in buffer containing 20mM

HEPES, pH 7.4 and 10mM MgCl₂. Homogenization is performed on ice using a Brinkman

Polytron™ for approximately 10 seconds. The resulting homogenate is centrifuged at 49,000

DOSTEDED GEDTA

X g for 15 minutes at 4°C. The resulting pellet is then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA, homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet can be stored at 80°C until utilized. On the day of measurement, the membrane pellet is slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL₂(these amounts can be optimized, although the values listed herein are preferred), to yield a final protein concentration of 0.60mg/ml (the resuspended membranes were placed on ice until use).

cAMP standards and Detection Buffer (comprising 2 µCi of tracer [125 I cAMP (100 µI] to 11 ml Detection Buffer) are prepared and maintained in accordance with the manufacturer's instructions. Assay Buffer is prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 µM GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer can be stored on ice until utilized. The assay is initiated by addition of 50ul of assay buffer followed by addition of 50ul of membrane suspension to the NEN Flash Plate. The resultant assay mixture is incubated for 60 minutes at room temperature followed by addition of 100ul of detection buffer. Plates are then incubated an additional 2-4 hours followed by counting in a Wallac MicroBeta™ scintillation counter. Values of cAMP/well are extrapolated from a standard cAMP curve that is contained within each assay plate.

20 C. Reporter-Based Assays

1. CREB Reporter Assay (Gs-associated receptors)

A method to detect Gs stimulation depends on the known property of the transcription factor CREB, which is activated in a cAMP-dependent manner. A PathDetect™ CREB trans-

15

Reporting System (Stratagene, Catalogue # 219010) can utilized to assay for Gs coupled activity in 293 or 293T cells. Cells are transfected with the plasmids components of this above system and the indicated expression plasmid encoding endogenous or mutant receptor using a Mammalian Transfection Kit (Stratagene, Catalogue #200285) according to the 5 manufacturer's instructions. Briefly, 400 ng pFR-Luc (luciferase reporter plasmid containing Gal4 recognition sequences), 40 ng pFA2-CREB (Gal4-CREB fusion protein containing the Gal4 DNA-binding domain), 80 ng pCMV-receptor expression plasmid (comprising the receptor) and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in transfection efficiency between samples) are combined in a calcium phosphate precipitate as per the Kit's instructions. Half of the precipitate is equally distributed over 3 wells in a 96-well plate, kept on the cells overnight, and replaced with fresh medium the following morning. Forty-eight (48) hr after the start of the transfection, cells are treated and assayed for, e.g., luciferase activity

AP1 reporter assay (Gq-associated receptors)

A method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing AP1 elements in their promoter. A Pathdetect™ AP-1 cis-Reporting System (Stratagene, Catalogue # 219073) can be utilized following the protocol set forth above with respect to the CREB reporter assay, except that the components of the calcium phosphate precipitate were 410 ng pAP1-Luc, 80 ng pCMV-receptor expression plasmid, and 20 ng CMV-SEAP.

3. CRE-LUC Reporter Assay

293 and 293T cells are plated-out on 96 well plates at a density of 2 x 104 cells per

well and were transfected using Lipofectamine Reagent (BRL) the following day according to manufacturer instructions. A DNA/lipid mixture is prepared for each 6-well transfection as follows: 260ng of plasmid DNA in 100µl of DMEM were gently mixed with 2µl of lipid in 100µl of DMEM (the 260ng of plasmid DNA consisted of 200ng of a 8xCRE-Luc reporter 5 plasmid (see below and Figure 1 for a representation of a portion of the plasmid), 50ng of pCMV comprising endogenous receptor or non-endogenous receptor or pCMV alone, and 10ng of a GPRS expression plasmid (GPRS in pcDNA3 (Invitrogen)). The 8XCRE-Luc reporter plasmid was prepared as follows: vector SRIF-β-gal was obtained by cloning the rat somatostatin promoter (-71/+51) at BglV-HindIII site in the pggal-Basic Vector (Clontech). 10 Eight (8) copies of cAMP response element were obtained by PCR from an adenovirus template AdpCF126CCRE8 (see, 7 Human Gene Therapy 1883 (1996)) and cloned into the SRIF-β-gal vector at the Kpn-BglV site, resulting in the 8xCRE-β-gal reporter vector. The 8xCRE-Luc reporter plasmid was generated by replacing the beta-galactosidase gene in the 8xCRE-β-gal reporter vector with the luciferase gene obtained from the pGL3-basic vector 15 (Promega) at the HindIII-BamHI site. Following 30 min. incubation at room temperature, the DNA/lipid mixture was diluted with 400 µl of DMEM and 100µl of the diluted mixture was added to each well. 100 ul of DMEM with 10% FCS were added to each well after a 4hr incubation in a cell culture incubator. The following day the transfected cells were changed with 200 µl/well of DMEM with 10% FCS. Eight (8) hours later, the wells were changed to 100 ul/well of DMEM without phenol red, after one wash with PBS. Luciferase activity were 20 measured the next day using the LucLite™ reporter gene assay kit (Packard) following manufacturer instructions and read on a 1450 MicroBeta™ scintillation and luminescence counter (Wallac).

4. SRF-LUC Reporter Assay

DODYCOMO NEDYDA

20

One method to detect Gq stimulation depends on the known property of Gq-dependent phospholipase C to cause the activation of genes containing serum response factors in their promoter. A Pathdetect™ SRF-Luc-Reporting System (Stratagene) can be utilized to assav 5 for Gq coupled activity in, e.g., COS7 cells. Cells are transfected with the plasmid components of the system and the indicated expression plasmid encoding endogenous or nonendogenous GPCR using a Mammalian Transfection™ Kit (Stratagene, Catalogue #200285) according to the manufacturer's instructions. Briefly, 410 ng SRF-Luc, 80 ng pCMV-receptor expression plasmid and 20 ng CMV-SEAP (secreted alkaline phosphatase expression plasmid; alkaline phosphatase activity is measured in the media of transfected cells to control for variations in transfection efficiency between samples) are combined in a calcium phosphate precipitate as per the manufacturer's instructions. Half of the precipitate is equally distributed over 3 wells in a 96-well plate, kept on the cells in a serum free media for 24 hours. The last 5 hours the cells are incubated with $1\mu M$ Angiotensin, where indicated. Cells are then lysed and assayed for luciferase activity using a Luclite™ Kit (Packard, Cat. #6016911) and "Trilux 1450 Microbeta" liquid scintillation and luminescence counter (Wallac) as per the manufacturer's instructions. The data can be analyzed using GraphPad Prism™ 2.0a (GraphPad Software Inc.).

5. Intracellular IP, Accumulation Assay

On day 1, cells comprising the receptors (endogenous and/or non-endogenous) can be plated onto 24 well plates, usually $1x10^5$ cells/well (although his umber can be optimized. On day 2 cells can be transfected by firstly mixing 0.25ug DNA in 50 ul serum free DMEM/well and 2 ul lipofectamine in 50 μ l serumfree DMEM/well. The solutions

are gently mixed and incubated for 15-30 min at room temperature. Cells are washed with 0.5 ml PBS and $400 \,\mu\text{l}$ of serum free media is mixed with the transfection media and added to the cells. The cells are then incubated for 3-4 hrs at 37°C/5%CO₂ and then the transfection media is removed and replaced with 1ml/well of regular growth media. On 5 day 3 the cells are labeled with ³H-myo-inositol. Briefly, the media is removed and the cells are washed with 0.5 ml PBS. Then 0.5 ml inositol-free/serum free media (GIBCO BRL) is added/well with 0.25 μ Ci of ³H-myo-inositol / well and the cells are incubated for 16-18 hrs o/n at 37°C/5%CO₂. On Day 4 the cells are washed with 0.5 ml PBS and 0.45 ml of assay medium is added containing inositol-free/serum free media 10 μ M pargyline 10 mM lithium chloride or 0.4 ml of assay medium and 50 ul of 10x ketanserin (ket) to final concentration of 10 µM. The cells are then incubated for 30 min at 37°C. The cells are then washed with 0.5 ml PBSand 200 ul of fresh/icecold stop solution (1M KOH; 18 mM Na-borate; 3.8 mM EDTA) is added/well. The solution is kept on ice for 5-10 min or until cells were lysed and then neutralized by 200 µl of fresh/ice cold neutralization sol. 15 (7.5 % HCL). The lysate is then transferred into 1.5 ml eppendorf tubes and 1 ml of chloroform/methanol (1:2) is added/tube. The solution is vortexed for 15 sec and the upper phase is applied to a Biorad AG1-X8TM anion exchange resin (100-200 mesh). Firstly, the resin is washed with water at 1:1.25 W/V and 0.9 ml of upper phase is loaded onto the column. The column is washed with 10 mls of 5 mM myo-inositol and 10 ml of 5 mM Na-borate/60mM Na-formate. The inositol tris phosphates are eluted into scintillation vials containing 10 ml of scintillation cocktail with 2 ml of 0.1 M formic acid/ 1 M ammonium formate. The columns are regenerated by washing with 10 ml of 0.1 M formic acid/3M ammonium formate and rinsed twice with dd H2O and stored at 4°C in water.

10

Exemplary results are presented below in Table I:

TABLE I

	Receptor	Mutation	Assay Utilized	Signal Generated: Endogenous Version (Relative Light Units)	Signal Generated: Non- Endogenous Version (Relative Light Units)	Percent Difference
	hAT1	F239K	SRF-LUC	34	137	75%1
		AT2K255IC3	SRF-LUC	34	127	73%1
5	hTDAG8	I225 K	CRE-LUC (293 cells)	2,715	14,440	81%†
		I225K	CRE-LUC (293T cells)	65,681	185,636	65%1
	hH9 hCCKB	F236K V332K	CRE-LUC CRE-LUC	1,887 785	6,096 3,223	69%1 76%1

C. Cell-Based Detection Assay (Example -TDAG8)

293 cells were plated-out on 150mm plates at a density of 1.3 x 10⁷ cells per plate, and were transfected using 12ug of the respective DNA and 60ul of Lipofectamine Reagent (BRL) per plate. The transfected cells were grown in media containing serum for an assay performed 24 hours post-transfection. For detection assay performed 48 hours post-transfection (assay comparing serum and serum-free media; see Figure 3), the initial media was changed to either serum or serum-free media. The serum-free media was comprised solely of Dulbecco's Modified Eagle's (DME) High Glucose Medium (Irvine Scientific #9024). In addition to the above DME Medium, the media with serum contained the following: 10% Fetal Bovine Serum (Hyclone #SH30071.03), 1% of 100mM Sodium Pyruvate (Irvine Scientific #9334), 1% of 20mM L-Glutamine (Irvine Scientific #9317), and 1% of Penicillin-

Streptomycin solution (Irvine Scientific #9366).

DGAPESS NEAPER

A 96-well Adenylyl Cyclase Activation Flashplate™ was used (NEN: #SMP004A). First, 50ul of the standards for the assay were added to the plate, in duplicate, ranging from concentrations of 50pmol to zero pmol cAMP per well. The standard cAMP (NEN: 5 #SMP004A) was reconstituted in water, and serial dilutions were made using 1xPBS (Irvine Scientific: #9240). Next, 50ul of the stimulation buffer (NEN: #SMP004A) was added to all wells. In the case of using compounds to measure activation or inactivation of cAMP, 10ul of each compound, diluted in water, was added to its respective well, in triplicate. Various final concentrations used range from 1uM up to 1mM. Adenosine 5'-triphosphate, ATP, (Research Biochemicals International: #A-141) and Adenosine 5'-diphosphate, ADP, (Sigma: #A2754) were used in the assay. Next, the 293 cells transfected with the respective cDNA (CMV or TDAG8) were harvested 24 (assay detection in serum media) or 48 hours posttransfection (assay detection comparing serum and serum-free media). The media was aspirated and the cells washed once with 1xPBS. Then 5ml of 1xPBS was added to the cells along with 3ml of cell dissociation buffer (Sigma: #C-1544). The detached cells were 15 transferred to a centrifuge tube and centrifuged at room temperature for five minutes. The supernatant was removed and the cell pellet was resuspended in an appropriate amount of 1xPBS to obtain a final concentration of 2x106 cells per milliliter. To the wells containing the compound, 50ul of the cells in 1xPBS (1x105 cells/well) were added. The plate was incubated 20 on a shaker for 15 minutes at room temperature. The detection buffer containing the tracer cAMP was prepared. In 11ml of detection buffer (NEN: #SMP004A), 50ul (equal to 1uCi) of [125] cAMP (NEN: #SMP004A) was added. Following incubation, 50ul of this detection buffer containing tracer cAMP was added to each well. The plate was placed on a shaker and The state of the s

incubated at room temperature for two hours. Finally, the solution from the wells of the plate were aspirated and the flashplate was counted using the Wallac MicroBeta™ scintillation counter.

In Figure 2A, ATP and ADP bind to endogenous TDAG8 resulting in an increase

of cAMP of about 59% and about 55% respectively. Figure 2B evidences ATP and ADP
binding to endogenous TDAG8 where endogenous TDAG8 was transfected and grown in
serum and serum-free medium. ATP binding to endogenous TDAG8 grown in serum
media evidences an increase in cAMP of about 65%, compared to the endogenous TDAG8
with no compounds; in serum-free media there was an increase of about 68%. ADP

binding to endogenous TDAG8 in serum evidences about a 61% increase, while in serumfree ADP binding evidences an increase of about 62% increase. ATP and ADP bind to
endogenous TDAG8 with an EC50 value of 139.8uM and 120.5uM, respectively (data not
shown).

Although the results presented in Figure 2B indicate substantially the same results
when serum and serum-free media were compared, our choice is to use a serum based
media, although a serum-free media can also be utilized.

Example 6 GPCR FUSION PROTEIN PREPARATION

The design of the constitutively activated GPCR-G protein fusion construct was accomplished as follows: both the 5' and 3' ends of the rat G protein Gsα (long form; Itoh, H. et al., 83 PNAS 3776 (1986)) were engineered to include a HindIII (5'-AAGCTT-3') sequence thereon. Following confirmation of the correct sequence (including the flanking HindIII sequences), the entire sequence was shuttled into pcDNA3.1(-) (Invitrogen, cat. no. V795-20) by subcloning using the HindIII restriction site of that vector. The correct

orientation for the Gsα sequence was determined after subcloning into pcDNA3.1(-). The modified pcDNA3.1(-) containing the rat Gsα gene at HindIII sequence was then verified; this vector was now available as a "universal" Gsα protein vector. The pcDNA3.1(-) vector contains a variety of well-known restriction sites upstream of the HindIII site, thus beneficially providing the ability to insert, upstream of the Gs protein, the coding sequence of an endogenous, constitutively active GPCR. This same approach can be utilized to create other "universal" G protein vectors, and, of course, other commercially available or proprietary vectors known to the artisan can be utilized – the important criteria is that the sequence for the GPCR be upstream and in-frame with that of the G protein.

10 TDAG8 couples via Gs, while H9 couples via Gz. For the following exemplary GPCR

Fusion Proteins, fusion to Gsα was accomplished.

A TDAG8(I225K)-Gs α Fusion Protein construct was made as follows: primers were designed as follows:

5'-gatcTCTAGAATGAACAGCACATGTATTGAAG-3' (SEQ.ID.NO.: 125; sense)

 $15 \quad 5'\text{-}ctagGGTACCCGCTCAAGGACCTCTAATTCCATAG-3'} \ (SEQ.ID.NO.: \ 126; \ antisense).$

Nucleotides in lower caps are included as spacers in the restriction sites between the G protein and TDAG8. The sense and anti-sense primers included the restriction sites for XbaI and KpnI, respectively.

PCR was then utilized to secure the respective receptor sequences for fusion within
the Gsα universal vector disclosed above, using the following protocol for each: 100ng cDNA
for TDAG8 was added to separate tubes containing 2ul of each primer (sense and anti-sense),
3uL of 10mM dNTPs, 10uL of 10XTaqPlus™ Precision buffer, 1uL of TaqPlus™ Precision
polymerase (Stratagene: #600211), and 80uL of water. Reaction temperatures and cycle times
for TDAG8 were as follows: the initial denaturing step was done it 94°C for five minutes, and

a cycle of 94°C for 30 seconds; 55°C for 30 seconds; 72°C for two minutes. A final extension time was done at 72°C for ten minutes. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was digested with XbaI and KpnI (New England Biolabs) and the desired inserts purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth *infra*. Each positive clone for TDAG8:Gs – Fusion Protein was sequenced to verify correctness.

GPCR Fusion Proteins comprising non-endogenous, constitutively activated

10 TDAG8(I225K) were analyzed as above and verified for constitutive activation.

An H9(F236K)-Gs α Fusion Protein construct was made as follows: primers were designed as follows:

5'-TTAgatatcGGGGCCCACCCTAGCGGT-3' (SEQ.ID.NO.: 145; sense)

DOSTEDED DESTROY

15

5'-ggtaccCCCACAGCCATTTCATCAGGATC-3' (SEQ.ID.NO.: 146; antisense).

Nucleotides in lower caps are included as spacers in the restriction sites between the G protein and H9. The sense and anti-sense primers included the restriction sites for EcoRV and KpnI, respectively such that spacers (attributed to the restriction sites) exists between the G protein and H9.

PCR was then utilized to secure the respective receptor sequences for fusion within

the Gsα universal vector disclosed above, using the following protocol for each: 80ng cDNA

for H9 was added to separate tubes containing 100ng of each primer (sense and anti-sense),

and 45uL of PCR Supermix™ (Gibco-Brl, LifeTech) (50ul total reaction volume). Reaction

temperatures and cycle times for H9 were as follows: the initial denaturing step was done it

94°C for one, and a cycle of 94°C for 30 seconds; 55°C for 30 seconds; 72°C for two

10

minutes. A final extension time was done at 72 °C for seven minutes. PCR product for was run on a 1% agarose gel and then purified (data not shown). The purified product was cloned into pCRII-TOPO™ System followed by identification of positive clones. Positive clones were isolated, digested with EcoRV and KpnI (New England Biolabs) and the desired inserts 5 were isolated, purified and ligated into the Gs universal vector at the respective restriction site. The positive clones was isolated following transformation and determined by restriction enzyme digest; expression using 293 cells was accomplished following the protocol set forth infra. Each positive clone for H9(F236K):Gs - Fusion Protein was sequenced to verify correctness. Membranes were frozen (-80°C) until utilized.

To ascertain the ability of measuring a cAMP response mediated by the Gs protein (even though H9 couples with Gz), the following cAMP membrane assay was utilized, based upon an NEN Adenyl Cyclase Activation Flahplate™ Assay kit (96 well format). "Binding Buffer" consisted of 10mM HEPES, 100mM NaCl and 10mM MgCl (ph 7.4). "Regeneration Buffer" was prepared in Binding Buffer and consisted of 20mM phosphocreatine, 20U 15 creatine phosphokinase, 20uM GTP, 0.2mM ATP, and 0.6mM IBMX. "cAMP Standards" were prepared in Binding Buffer as follows:

	cAM	P Stock	Added to	Final Assay Concentration
	(5 000 pmol	ml in 2ml H ₂ O)	indicted amount of Binding	(50ul into 100ul)
		n ul	Buffer	to achieve indicated pmol/well
20	A	250	1ml	50
	В	500 of A	500ul	25
	č	500 of B	500ul	12.5
	Ď	500 of C	750ul	5.0
	E	500 of D	500ul	2.5
25	F	500 of E	500ul	1.25
23	Ğ	500 of F	750ul	0.5

Frozen membranes (both pCMV as control and the non-endogenous H(-Gs Fusion Protein) were thawed (on ice at room temperature until in solution). Membranes were TODDCDCD FCD761

homogenized with a polytron until in suspension (2 x 15 seconds). Membrane protein concentration was determined using the Bradford Assay Protocol (see infra). Membrane concentration was diluted to 0.5mg/ml in Regeneration Buffer (final assay concentration – 25ug/well). Thereafter, 50ul of Binding Buffer was added to each well. For control, 50ul/well of cAMP standard was added to wells 11 and 12 A-G, with Binding Buffer alone to 12H (on the 96-well format). Thereafter, 50ul/well of protein was added to the wells and incubated at room temperature (on shaker) for 60min. 100ul[125T]cAMP in Detection Buffer (see infra) was added to each well (final – 50ul[125T]cAMP into 11ml Detection Buffer). These were incubated for 2hrs at room temperature. Plates were aspirated with an 8 channel manifold and sealed with plate covers. Results (pmoles cAMP bound) were read in a Wallac™ 1450 on "prot #15). Results are presented in Figure 3.

The results presented in Figure 3 indicate that the Gs coupled fusion was able to
"drive" the cyclase reaction such that measurement of the consitutive activation of H9(F236K)
was viable. Based upon these results, the direct identification of candidate compounds that
are inverse agonists, agonists and partial agonists is possible using a cyclase-based assay.

Example 6

Protocol: Direct Identification of Inverse Agonists and Agonists Using [35S]GTPγS

Although we have utilized endogenous, constitutively active GPCRs for the direct identification of candidate compounds as, e.g., inverse agonists, for reasons that are not altogether understood, intra-assay variation can become exacerbated. Preferably, then, a GPCR Fusion Protein, as disclosed above, is also utilized with a non-endogenous, constitutively activated GPCR. We have determined that when such a protein is used, intra-assay variation appears to be substantially stabilized, whereby an effective signal-to-noise ratio is obtained. This has the beneficial result of allowing for a more robust identification

HOSPEDED FEBRUARY

of candidate compounds. Thus, it is preferred that for direct identification, a GPCR Fusion Protein be used and that when utilized, the following assay protocols be utilized.

Membrane Preparation

Membranes comprising the non-endogenous, constitutively active orphan GPCR

5 Fusion Protein of interest and for use in the direct identification of candidate compounds as inverse agonists, agonists or partial agonists are preferably prepared as follows:

a. Materials

"Membrane Scrape Buffer" is comprised of 20 mM HEPES and 10 mM EDTA, pH 7.4;

"Membrane Wash Buffer" is comprised of 20 mM HEPES and 0.1 mM EDTA, pH 7.4;

10 "Binding Buffer" is comprised of 20 mM HEPES, 100 mM NaCl, and 10 mM MgCl₂, pH 7.4

b. Procedure

All materials are kept on ice throughout the procedure. Firstly, the media is aspirated from a confluent monolayer of cells, followed by rinse with 10ml cold PBS, followed by aspiration. Thereafter, 5ml of Membrane Scrape Buffer is added to scrape cells; this is followed by transfer of cellular extract into 50ml centrifuge tubes (centrifuged at 20,000 rpm for 17 minutes at 4°C). Thereafter, the supernatant is aspirated and the pellet is resuspended in 30ml Membrane Wash Buffer followed by centrifuge at 20,000 rpm for 17 minutes at 4°C.

The supernatant is then aspirated and the pellet resuspended in Binding Buffer. This is then homogenized using a Brinkman polytronTM homogenizer (15-20 second bursts until the all material is in suspension). This is referred to herein as "Membrane Protein".

Bradford Protein Assay

Following the homogenization, protein concentration of the membranes is determined using the Bradford Protein Assay (protein can be diluted to about 1.5mg/ml, aliquoted and

DOGTING CERTS 1.4

10

frozen (-80°C) for later use; when frozen, protocol for use is as follows: on the day of the assay, frozen Membrane Protein is thawed at room temperature, followed by vortex and then homogenized with a polytron at about 12 x 1,000 rpm for about 5-10 seconds; it is noted that for multiple preparations, the homogenizor should be thoroughly cleaned between 5 homoginezation of different preparations).

Materials

Binding Buffer (as per above); Bradford Dye Reagent; Bradford Protein Standard are utilized, following manufacturer instructions (Biorad, cat. no. 500-0006).

Procedure b.

Duplicate tubes are prepared, one including the membrane, and one as a control "blank". Each contained 800ul Binding Buffer. Thereafter, 10ul of Bradford Protein Standard (1mg/ml) is added to each tube, and 10ul of membrane Protein is then added to just one tube (not the blank). Thereafter, 200ul of Bradford Dye Reagent is added to each tube, followed by vortex of each. After five (5) minutes, the tubes were re-vortexed and the material therein 15 is transferred to cuvettes. The cuvettes are then read using a CECIL 3041 spectrophotometer, at wavelength 595.

Direct Identification Assay

Materials a.

GDP Buffer consists of 37.5 ml Binding Buffer and 2mg GDP (Sigma, cat. no. G-20 7127), followed by a series of dilutions in Binding Buffer to obtain 0.2 uM GDP (final concentration of GDP in each well was 0.1 uM GDP); each well comprising a candidate compound, has a final volume of 200ul consisting of 100ul GDP Buffer (final concentration, 0.1uM GDP), 50ul Membrane Protein in Binding Buffer, and 50ul [35S]GTPyS (0.6 nM) in Binding Buffer (2.5 ul [$^{35}{\rm S}]GTP\gamma S$ per 10ml Binding Buffer).

b. Procedure

DOSTEDED REEDING

Candidate compounds are preferably screened using a 96-well plate format (these can be frozen at -80°C). Membrane Protein (or membranes with expression vector excluding the 5 GPCR Fusion Protein, as control), are homogenized briefly until in suspension. Protein concentration is then determined using the Bradford Protein Assay set forth above. Membrane Protein (and control) is then diluted to 0.25mg/ml in Binding Buffer (final assay concentration, 12.5ug/well). Thereafter, 100 ul GDP Buffer is added to each well of a Wallac Scintistrip™ (Wallac). A 5ul pin-tool is then used to transfer 5 ul of a candidate compound into such well (i.e., 5ul in total assay volume of 200 ul is a 1:40 ratio such that the final screening concentration of the candidate compound is 10uM). Again, to avoid contamination, after each transfer step the pin tool should be rinsed in three reservoirs comprising water (1X), ethanol (1X) and water (2X) - excess liquid should be shaken from the tool after each rinse and dried with paper and kimwipes. Thereafter, 50 ul of Membrane Protein is added to each 15 well (a control well comprising membranes without the GPCR Fusion Protein is also utilized), and pre-incubated for 5-10 minutes at room temperature. Thereafter, 50 ul of [35S]GTPγS (0.6 nM) in Binding Buffer is added to each well, followed by incubation on a shaker for 60 minutes at room temperature (again, in this example, plates were covered with foil). The assay is then stopped by spinning of the plates at 4000 RPM for 15 minutes at 22°C. The plates are then aspirated with an 8 channel manifold and sealed with plate covers. The plates 20 are then read on a Wallacc 1450 using setting "Prot. #37" (as per manufacturer instructions).

Example 7 Protocol: Confirmation Assay

Using an independent assay approach to provide confirmation of a directly identified

TODYKAKA OKTYT

candidate compound as set forth above, it is preferred that a confirmation assay then be utilized. In this case, the preferred confirmation assay is a cyclase-based assay.

A modified Flash Plate™ Adenylyl Cyclase kit (New England Nuclear; Cat. No. SMP004A) is preferably utilized for confirmation of candidate compounds directly identified as inverse agonists and agonists to non-endogenous, constitutively activated orphan GPCRs in accordance with the following protocol.

Transfected cells are harvested approximately three days after transfection.

Membranes are prepared by homogenization of suspended cells in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCl₂. Homogenization is performed on ice using a Brinkman

Polytron™ for approximately 10 seconds. The resulting homogenate is centrifuged at 49,000 X g for 15 minutes at 4°C. The resulting pellet is then resuspended in buffer containing 20mM HEPES, pH 7.4 and 0.1 mM EDTA, homogenized for 10 seconds, followed by centrifugation at 49,000 X g for 15 minutes at 4°C. The resulting pellet can be stored at 80°C until utilized. On the day of direct identification screening, the membrane pellet is slowly thawed at room temperature, resuspended in buffer containing 20mM HEPES, pH 7.4 and 10mM MgCL2, to yield a final protein concentration of 0.60mg/ml (the resuspended membranes are placed on ice until use).

cAMP standards and Detection Buffer (comprising 2 μ Ci of tracer [125 I cAMP (100 μ l] to 11 ml Detection Buffer) are prepared and maintained in accordance with the 20 manufacturer's instructions. Assay Buffer is prepared fresh for screening and contained 20mM HEPES, pH 7.4, 10mM MgCl₂, 20mM phospocreatine (Sigma), 0.1 units/ml creatine phosphokinase (Sigma), 50 μ M GTP (Sigma), and 0.2 mM ATP (Sigma); Assay Buffer can be stored on ice until utilized.

Candidate compounds identified as per above (if frozen, thawed at room temperature) are added, preferably, to 96-well plate wells $(3\mu l/well; 12\mu M \text{ final assay concentration})$, together with 40 μl Membrane Protein $(30\mu g/well)$ and $50\mu l$ of Assay Buffer. This admixture is then incubated for 30 minutes at room temperature, with gentle shaking.

Following the incubation, 100µl of Detection Buffer is added to each well, followed by incubation for 2-24 hours. Plates are then counted in a Wallac MicroBeta™ plate reader using "Prot. #31" (as per manufacturer instructions).

5

10

It is intended that each of the patents, applications, and printed publications mentioned in this patent document be hereby incorporated by reference in their entirety.

As those skilled in the art will appreciate, numerous changes and modifications may be made to the preferred embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.

Although a variety of expression vectors are available to those in the art, for purposes of utilization for both the endogenous and non-endogenous human GPCRs, it is most preferred that the vector utilized be pCMV. This vector was deposited with the American Type Culture Collection (ATCC) on October 13, 1998 (10801 University Blvd., Manassas, VA 20110-2209 USA) under the provisions of the Budapest Treaty for the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure. The DNA was tested by the ATCC and determined to be. The ATCC has assigned the following deposit number to pCMV: ATCC #203351.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Behan, Dominic P.

Lehmann-Bruinsma, Karin

5 Chalmers, Derek T.

Lowitz, Kevin P. Lin, I-Lin Dang, Huong T.

Chen, Ruoping
10 Liaw, Chen W.

Gore, Martin J. White. Carol

(ii) TITLE OF INVENTION: Non-Endogenous, Constitutively Activated Human G Protein-Coupled Receptors

15 (iii) NUMBER OF SEQUENCES: 146

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Arena Pharmaceuticals, Inc.
 - (B) STREET: 6166 Nancy Ridge Drive
- (C) CITY: San Diego
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 92121
 - (v) COMPUTER READABLE FORM:
- 25 (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
- 30 (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Burgoon, Richard P.
- 35 (B) REGISTRATION NUMBER: 34,787
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (858) 453-7200 (B) TELEFAX: (858) 453-7210
 - (2) INFORMATION FOR SEQ ID NO:1:
- 40 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1260 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

DOSFERSO FLACTORIS

(D) TOPOLOGY: linear	(D)	TOPOLOGY:	linear
----------------------	-----	-----------	--------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	ATGGTCTTCT	CGGCAGTGTT	GACTGCGTTC	CATACCGGGA	CATCCAACAC	AACATTTGTC	60
5	GTGTATGAAA	ACACCTACAT	GAATATTACA	CTCCCTCCAC	CATTCCAGCA	TCCTGACCTC	120
	AGTCCATTGC	TTAGATATAG	TTTTGAAACC	ATGGCTCCCA	CTGGTTTGAG	TTCCTTGACC	180
	GTGAATAGTA	CAGCTGTGCC	CACAACACCA	GCAGCATTTA	AGAGCCTAAA	CTTGCCTCTT	240
	CAGATCACCC	TTTCTGCTAT	AATGATATTC	ATTCTGTTTG	TGTCTTTTCT	TGGGAACTTG	300
	GTTGTTTGCC	TCATGGTTTA	CCAAAAAGCT	GCCATGAGGT	CTGCAATTAA	CATCCTCCTT	360
10	GCCAGCCTAG	CTTTTGCAGA	CATGTTGCTT	GCAGTGCTGA	ACATGCCCTT	TGCCCTGGTA	420
	ACTATTCTTA	CTACCCGATG	GATTTTTGGG	AAATTCTTCT	GTAGGGTATC	TGCTATGTTT	480
	TTCTGGTTAT	TTGTGATAGA	AGGAGTAGCC	ATCCTGCTCA	TCATTAGCAT	AGATAGGTTC	540
	CTTATTATAG	TCCAGAGGCA	GGATAAGCTA	AACCCATATA	GAGCTAAGGT	TCTGATTGCA	600
	GTTTCTTGGG	CAACTTCCTT	TTGTGTAGCT	TTTCCTTTAG	CCGTAGGAAA	CCCCGACCTG	660
15	CAGATACCTT	CCCGAGCTCC	CCAGTGTGTG	TTTGGGTACA	CAACCAATCC	AGGCTACCAG	720
	GCTTATGTGA	TTTTGATTTC	TCTCATTTCT	TTCTTCATAC	CCTTCCTGGT	AATACTGTAC	780
	TCATTTATGG	GCATACTCAA	CACCCTTCGG	CACAATGCCT	TGAGGATCCA	TAGCTACCCT	840
	GAAGGTATAT	GCCTCAGCCA	GGCCAGCAAA	CTGGGTCTCA	TGAGTCTGCA	GAGACCTTTC	900
	CAGATGAGCA	TTGACATGGG	CTTTAAAACA	CGTGCCTTCA	CCACTATTTT	GATTCTCTTT	960
20	GCTGTCTTCA	TTGTCTGCTG	GGCCCCATTC	ACCACTTACA	GCCTTGTGGC	AACATTCAGT	1020
	AAGCACTTTT	ACTATCAGCA	CAACTTTTT	GAGATTAGCA	CCTGGCTACT	GTGGCTCTGC	1080
	TACCTCAAGT	CTGCATTGAA	TCCGCTGATC	TACTACTGGA	GGATTAAGAA	ATTCCATGAT	1140
	GCTTGCCTGG	ACATGATGCC	TAAGTCCTTC	AAGTTTTTGC	CGCAGCTCCC	TGGTCACACA	1200
	AAGCGACGGA	TACGTCCTAG	TGCTGTCTAT	GTGTGTGGGG	AACATCGGAC	GGTGGTGTGA	1260

25 (3) INFORMATION FOR SEQ ID NO:2:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 419 amino acids

⁽B) TYPE: amino acid

⁽C) STRANDEDNESS: single (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:2:

Met Val Phe Ser Ala Val Leu Thr Ala Phe His Thr Gly Thr Ser Asn 1 5 10 15

- 5 Thr Thr Phe Val Val Tyr Glu Asn Thr Tyr Met Asn Ile Thr Leu Pro \$20\$ \$25\$ \$30
 - Pro Pro Phe Gln His Pro Asp Leu Ser Pro Leu Leu Arg Tyr Ser Phe 35 40 45
- Glu Thr Met Ala Pro Thr Gly Leu Ser Ser Leu Thr Val Asn Ser Thr
 - Ala Val Pro Thr Thr Pro Ala Ala Phe Lys Ser Leu Asn Leu Pro Leu 65 70 75 80
 - Gln Ile Thr Leu Ser Ala Ile Met Ile Phe Ile Leu Phe Val Ser Phe 85 90 95
- 15 Leu Gly Asn Leu Val Val Cys Leu Met Val Tyr Gln Lys Ala Ala Met 100 105 110
 - Arg Ser Ala Ile Asn Ile Leu Leu Ala Ser Leu Ala Phe Ala Asp Met 115 120 125
- Leu Leu Ala Val Leu Asn Met Pro Phe Ala Leu Val Thr Ile Leu Thr 20 $$ 130 $$ 135 $$ 140
 - Thr Arg Trp Ile Phe Gly Lys Phe Phe Cys Arg Val Ser Ala Met Phe 145 $$ 150 $$ 155 $$ 160
 - Phe Trp Leu Phe Val Ile Glu Gly Val Ala Ile Leu Leu Ile Ile Ser 165 170 175
- 25 Ile Asp Arg Phe Leu Ile Ile Val Gln Arg Gln Asp Lys Leu Asn Pro 180 185 190
 - Tyr Arg Ala Lys Val Leu Ile Ala Val Ser Trp Ala Thr Ser Phe Cys 195 200 205
- Val Ala Phe Pro Leu Ala Val Gly Asn Pro Asp Leu Gln Ile Pro Ser 30 210 215 220
 - Arg Ala Pro Gln Cys Val Phe Gly Tyr Thr Thr Asn Pro Gly Tyr Gln 225 230 235 240
 - Ala Tyr Val Ile Leu Ile Ser Leu Ile Ser Phe Phe Ile Pro Phe Leu 245 250 255
- 35 Val Ile Leu Tyr Ser Phe Met Gly Ile Leu Asn Thr Leu Arg His Asn 260 265 270

Ala Leu Arg Ile His Ser Tyr Pro Glu Gly Ile Cys Leu Ser Gln Ala

	4
į	đ
	Ü
	1
1	2
1	U
Print.	FIL
	U
į	
-) (M/A-	
****	1
404	777
	4
-	1200
A	1

		275		280		285	
	Ser Lys 290	Leu Gly	Leu Met Se		Arg Pro Phe		r Ile
5	Asp Met 305	Gly Phe	Lys Thr Ar	rg Ala Phe	Thr Thr Ile 315	: Leu Ile Le	u Phe 320
	Ala Val		Val Cys Ti 325	rp Ala Pro	Phe Thr Thr	Tyr Ser Let 33	
10	Ala Thr	Phe Ser 340	Lys His Pl	ne Tyr Tyr 345	Gln His Asr	Phe Phe Gla	u Ile
	Ser Thr	Trp Leu 355	Leu Trp Le	eu Cys Tyr 360	Leu Lys Ser	Ala Leu As: 365	n Pro
	Leu Ile 370			le Lys Lys 75	Phe His Asp 380		u Asp
15	Met Met 385	Pro Lys	Ser Phe L	ys Phe Let	Pro Gln Let 395	ı Pro Gly Hi	s Thr 400
	Lys Arg	Arg Ile	Arg Pro S 405	er Ala Va	Tyr Val Cyr 410	s Gly Glu Hi 41	s Arg 5
20	Thr Val	. Val					
	(4) INFORMAT	TION FOR	SEQ ID NO:	3:			
25	() ()	A) LENGTH B) TYPE: :	ARACTERIST : 1119 bas nucleic ac EDNESS: si GY: linear	e pairs id ngle			
	(ii) MOI	LECULE TY	PE: DNA (g	genomic)			
	(xi) SE	QUENCE DE	SCRIPTION:	SEQ ID N	0:3:		
	ATGTTAGCCA	ACAGCTCCT	C AACCAACA	GT TCTGTT	CTCC CGTGTCC	TGA CTACCGA	CCT 60
30	ACCCACCGCC '	IGCACTTGG	T GGTCTACA	AGC TTGGTG	CTGG CTGCCGG	GCT CCCCCTC	AAC 120
	GCGCTAGCCC	TCTGGGTCT	T CCTGCGCC	G CTGCGC	GTGC ACTCGGI	GGT GAGCGTG	TAC 180
	ATGTGTAACC	TGGCGGCCA	G CGACCTG	CTC TTCACC	CTCT CGCTGCC	CGT TCGTCTC	TCC 240
	TACTACGCAC	TGCACCACT	G GCCCTTCC	CCC GACCTO	CTGT GCCAGA	GAC GGGCGCC	ATC 300
	TTCCAGATGA	ACATGTACG	G CAGCTGC	ATC TTCCTC	ATGC TCATCA	ACGT GGACCGC	TAC 360

25

	GCCGCCATCG	TGCACCCGCT	GCGACTGCGC	CACCTGCGGC	GGCCCCGCGT	GGCGCGGCTG	420
	CTCTGCCTGG	GCGTGTGGGC	GCTCATCCTG	GTGTTTGCCG	TGCCCGCCGC	CCGCGTGCAC	480
	AGGCCCTCGC	GTTGCCGCTA	CCGGGACCTC	GAGGTGCGCC	TATGCTTCGA	GAGCTTCAGC	540
	GACGAGCTGT	GGAAAGGCAG	GCTGCTGCCC	CTCGTGCTGC	TGGCCGAGGC	GCTGGGCTTC	600
5	CTGCTGCCCC	TGGCGGCGGT	GGTCTACTCG	TCGGGCCGAG	TCTTCTGGAC	GCTGGCGCGC	660
	CCCGACGCCA	CGCAGAGCCA	GCGGCGGCGG	AAGACCGTGC	GCCTCCTGCT	GGCTAACCTC	720
	GTCATCTTCC	TGCTGTGCTT	CGTGCCCTAC	AACAGCACGC	TGGCGGTCTA	CGGGCTGCTG	780
	CGGAGCAAGC	TGGTGGCGGC	CAGCGTGCCT	GCCCGCGATC	GCGTGCGCGG	GGTGCTGATG	840
	GTGATGGTGC	TGCTGGCCGG	CGCCAACTGC	GTGCTGGACC	CGCTGGTGTA	CTACTTTAGC	900
10	GCCGAGGGCT	TCCGCAACAC	CCTGCGCGGC	CTGGGCACTC	CGCACCGGGC	CAGGACCTCG	960
	GCCACCAACG	GGACGCGGGC	GGCGCTCGCG	CAATCCGAAA	GGTCCGCCGT	CACCACCGAC	1020
	GCCACCAGGC	CGGATGCCGC	CAGTCAGGGG	CTGCTCCGAC	CCTCCGACTC	CCACTCTCTG	1080
	TCTTCCTTCA	CACAGTGTCC	CCAGGATTCC	GCCCTCTGA			1119

- (5) INFORMATION FOR SEQ ID NO:4:
- (i) SEQUENCE CHARACTERISTICS: 15
 - (A) LENGTH: 372 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- 20 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Leu Ala Asn Ser Ser Ser Thr Asn Ser Ser Val Leu Pro Cys Pro

Asp Tyr Arg Pro Thr His Arg Leu His Leu Val Val Tyr Ser Leu Val 25 20

Leu Ala Ala Gly Leu Pro Leu Asn Ala Leu Ala Leu Trp Val Phe Leu

Arg Ala Leu Arg Val His Ser Val Val Ser Val Tyr Met Cys Asn Leu

Ala Ala Ser Asp Leu Leu Phe Thr Leu Ser Leu Pro Val Arg Leu Ser 30 75 65 70

Tyr Tyr Ala Leu His His Trp Pro Phe Pro Asp Leu Leu Cys Gln Thr

Thr Gly Ala Ile Phe Gln Met Asn Met Tyr Gly Ser Cys Ile Phe Leu Met Leu Ile Asn Val Asp Arg Tyr Ala Ala Ile Val His Pro Leu Arg Leu Arg His Leu Arg Arg Pro Arg Val Ala Arg Leu Leu Cys Leu Gly Val Trp Ala Leu Ile Leu Val Phe Ala Val Pro Ala Ala Arg Val His Arg Pro Ser Arg Cys Arg Tyr Arg Asp Leu Glu Val Arg Leu Cys Phe Glu Ser Phe Ser Asp Glu Leu Trp Lys Gly Arg Leu Leu Pro Leu Val Leu Leu Ala Glu Ala Leu Gly Phe Leu Leu Pro Leu Ala Ala Val Val Tyr Ser Ser Gly Arg Val Phe Trp Thr Leu Ala Arg Pro Asp Ala Thr Gln Ser Gln Arg Arg Arg Lys Thr Val Arg Leu Leu Leu Ala Asn Leu Val Ile Phe Leu Leu Cys Phe Val Pro Tyr Asn Ser Thr Leu Ala Val Tyr Gly Leu Leu Arg Ser Lys Leu Val Ala Ala Ser Val Pro Ala Arg Asp Arg Val Arg Gly Val Leu Met Val Met Val Leu Leu Ala Gly Ala Asn Cys Val Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ala Glu Gly Phe Arg Asn Thr Leu Arg Gly Leu Gly Thr Pro His Arg Ala Arg Thr Ser Ala Thr Asn Gly Thr Arg Ala Ala Leu Ala Gln Ser Glu Arg Ser Ala Val Thr Thr Asp Ala Thr Arg Pro Asp Ala Ala Ser Gln Gly Leu Leu Arg Pro Ser Asp Ser His Ser Leu Ser Ser Phe Thr Gln Cys Pro Gln Asp Ser Ala Leu

(6) INFORMATION FO	R SEQ II	NO:5:
--------------------	----------	-------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1107 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

	ATGGCCAACT	CCACAGGGCT	GAACGCCTCA	GAAGTCGCAG	GCTCGTTGGG	GTTGATCCTG	60
10	GCAGCTGTCG	TGGAGGTGGG	GGCACTGCTG	GGCAACGGCG	CGCTGCTGGT	CGTGGTGCTG	120
	CGCACGCCGG	GACTGCGCGA	CGCGCTCTAC	CTGGCGCACC	TGTGCGTCGT	GGACCTGCTG	180
	GCGGCCGCCT	CCATCATGCC	GCTGGGCCTG	CTGGCCGCAC	CGCCGCCCGG	GCTGGGCCGC	240
	GTGCGCCTGG	GCCCGCGCC	ATGCCGCGCC	GCTCGCTTCC	TCTCCGCCGC	TCTGCTGCCG	: 300
	GCCTGCACGC	TCGGGGTGGC	CGCACTTGGC	CTGGCACGCT	ACCGCCTCAT	CGTGCACCCG	360
15	CTGCGGCCAG	GCTCGCGGCC	GCCGCCTGTG	CTCGTGCTCA	CCGCCGTGTG	ggccgcggcg	420
	GGACTGCTGG	GCGCGCTCTC	CCTGCTCGGC	CCGCCGCCCG	CACCGCCCCC	TGCTCCTGCT	480
	CGCTGCTCGG	TCCTGGCTGG	GGGCCTCGGG	CCCTTCCGGC	CGCTCTGGGC	CCTGCTGGCC	540
	TTCGCGCTGC	CCGCCCTCCT	GCTGCTCGGC	GCCTACGGCG	GCATCTTCGT	GGTGGCGCGT	600
	CGCGCTGCCC	TGAGGCCCCC	ACGGCCGGCG	CGCGGGTCCC	GACTCCGCTC	GGACTCTCTG	660
20	GATAGCCGCC	TTTCCATCTT	GCCGCCGCTC	CGGCCTCGCC	TGCCCGGGGG	CAAGGCGGCC	720
	CTGGCCCCAG	CGCTGGCCGT	GGGCCAATTI	GCAGCCTGCT	GGCTGCCTTA	TGGCTGCGCG	780
	TGCCTGGCGC	CCGCAGCGCG	GGCCGCGGAA	GCCGAAGCGG	CTGTCACCTG	GGTCGCCTAC	840
	TCGGCCTTCG	CGGCTCACCC	CTTCCTGTAC	GGGCTGCTGC	AGCGCCCCGT	GCGCTTGGCA	900
	CTGGGCCGCC	TCTCTCGCCG	TGCACTGCCT	GGACCTGTGC	GGGCCTGCAC	TCCGCAAGCC	960
25	TGGCACCCGC	GGGCACTCTT	GCAATGCCTC	CAGAGACCCC	CAGAGGGCCC	TGCCGTAGGC	1020
	CCTTCTGAGG	CTCCAGAACA	GACCCCCGA	TTGGCAGGAG	GGCGGAGCCC	CGCATACCAG	1080
	GGGCCACCTC	AGAGTTCTCT	CTCCTGA				1107

(7) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 368 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
 - Met Ala Asn Ser Thr Gly Leu Asn Ala Ser Glu Val Ala Gly Ser Leu
 - Gly Leu Ile Leu Ala Ala Val Val Glu Val Gly Ala Leu Leu Gly Asn 20 25 30
- 10 Gly Ala Leu Leu Val Val Val Leu Arg Thr Pro Gly Leu Arg Asp Ala 35 40 45
- Leu Tyr Leu Ala His Leu Cys Val Val Asp Leu Leu Ala Ala Ala Ser 50 55 60
- Ile Met Pro Leu Gly Leu Leu Ala Ala Pro Pro Pro Gly Leu Gly Arg l5 $\,$ 65 $\,$ 70 $\,$ 75 $\,$ 80 $\,$
 - Val Arg Leu Gly Pro Ala Pro Cys Arg Ala Ala Arg Phe Leu Ser Ala 85 90 95
 - Ala Leu Leu Pro Ala Cys Thr Leu Gly Val Ala Ala Leu Gly Leu Ala 100 105 110
- 20 Arg Tyr Arg Leu Ile Val His Pro Leu Arg Pro Gly Ser Arg Pro Pro 115 120 125
 - Pro Val Leu Val Leu Thr Ala Val Trp Ala Ala Ala Gly Leu Leu Gly 130 135 140
- Ala Leu Ser Leu Leu Gly Pro Pro Pro Ala Pro Pro Pro Ala Pro Ala Pro Ala 25 145 150 150 155 160
 - Arg Cys Ser Val Leu Ala Gly Gly Leu Gly Pro Phe Arg Pro Leu Trp
 - Ala Leu Leu Ala Phe Ala Leu Pro Ala Leu Leu Leu Leu Gly Ala Tyr 180 185 190
- 30 Gly Gly Ile Phe Val Val Ala Arg Arg Ala Ala Leu Arg Pro Pro Arg 195 200 205
 - Pro Ala Arg Gly Ser Arg Leu Arg Ser Asp Ser Leu Asp Ser Arg Leu 210 215 220
 - Ser Ile Leu Pro Pro Leu Arg Pro Arg Leu Pro Gly Gly Lys Ala Ala 225 230 235
 - Leu Ala Pro Ala Leu Ala Val Gly Gln Phe Ala Ala Cys Trp Leu Pro

1000		4
ý	-	Š
- Paris	S. Och Sant	
ķ	1	
	ř	
	ì	
	Hard.	
	ì	
•		
		-
-	Head.	
-	Head of the Paris	
٠	ş	
		9
		į

			245				250					255		
	Tyr Gl	у Сув А. 20	la Cys 60	Leu Al	a Pro	Ala 265	Ala	Arg	Ala	Ala	Glu 270	Ala	Glu	
5	Ala Al	a Val Ti 275	hr Trp	Val Al	a Tyr 280		Ala	Phe	Ala	Ala 285	His	Pro	Phe	
	Leu Ty 29	r Gly L	eu Leu	Gln Ar 29		Val	Arg	Leu	Ala 300	Leu	Gly	Arg	Leu	
	ser Ar 305	g Arg A	la Leu	Pro Gl 310	y Pro	Val	Arg	Ala 315	Сув	Thr	Pro	Gln	Ala 320	
10	Trp Hi	s Pro A	rg Ala 325	Leu Le	u Glr	Cys	Leu 330	Gln	Arg	Pro	Pro	Glu 335	Gly	
	Pro Al	a Val G	ly Pro 40	Ser Gl	u Ala	Pro 345	Glu	Gln	Thr	Pro	Glu 350	Leu	Ala	
15	Gly Gl	y Arg S 355	er Pro	Ala Ty	r Glr 360	Gly	Pro	Pro	Glu	Ser 365	ser	Leu	Ser :	
	(8) INFORMA	TION FO	R SEQ	ID NO:	7:									
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1008 base pairs (B) TYPE: nucleic acid (C) SYRANDEDNESS: single (D) TOPOLOGY: linear													
	(ii) M	OLECULE	TYPE:	DNA (g	enomi	2)								
	(xi) S	EQUENCE	DESCRI	PTION:	SEQ	ID NO):7:							
	ATGGAATCAT	CTTTCT	CATT TG	GAGTGA	TC CT	TGCT	TCC	TGGC	CTC	CT C	ATCA	TTGC	T	60
25	ACTAACACAC	TAGTGG	CTGT GG	CTGTGC	TG CT	GTTG/	ATCC	ACA#	GAA?	rga 1	GGTG	TCAG	T	120
	CTCTGCTTCA	CCTTGA	ATCT GG	CTGTGG	CT GA	CACC	rtga	TTGG	TGT	GGC (CATCI	CTGG	C	180
	CTACTCACAG	ACCAGC	TCTC CA	GCCCTT	CT CG	GCCC	ACAC	AGA/	AGAC	CT	TGC	AGCCI	:G	240
	CGGATGGCAT	TTGTCA	CTTC CI	CCGCAG	CT GC	CTCT	TCC	TCA	CGGT	CAT	3CTG/	ATCAC	CC	300
	TTTGACAGGT	ACCTTG	CCAT C	AAGCAGC	CC TI	CCGC	TACT	TGA	AGAT	CAT	GAGT	GGT:	rc	360
30	GTGGCCGGGG	CCTGCA	TTGC CO	GGCTGT	GG TI	AGTG	TCTT	ACC	rcat'	TGG	CTTC	CTCC	CA	420

CTCGGAATCC CCATGTTCCA GCAGACTGCC TACAAAGGGC AGTGCAGCTT CTTTGCTGTA

TTTCACCCTC ACTTCGTGCT GACCCTCTCC TGCGTTGGCT TCTTCCCAGC CATGCTCCTC

TTTGTCTTCT TCTACTGCGA CATGCTCAAG ATTGCCTCCA TGCACAGCCA GCAGATTCGA

480

540

10
17
24
171
IU In
IF:
113
4
15
15
13
tok

, , ,	11 0051																_
	AAGATGGAA	C ATO	CAG	GAGC	CAT	GCT	GA (GTT	ATCG	AT C	CCA	CGGA	TCC	CAG	CGAC	•	560
	TTCAAAGCT	C TC	CGTA	CTGT	GTC'	TGTT	CTC A	ATTG	GAG	CT T	rgcto	TATO	CT	GAC	ccc		720
	TTCCTTATC	A CT	GCA'	TTGT	GCA	GGTG	GCC '	rgcc	AGGA	GT G	TCAC	CTCT	A CC	ragt	GCTG		780
	GAACGGTAC	C TG	rggc'	TGCT	CGG	CGTG	GGC I	AACT	CCCT	GC T	CAAC	CAC	r CA	TCTA	TGCC		840
5	TATTGGCAG	A AG	GAGG'	TGCG	ACT	GCAG	CTC '	TACC	ACAT	GG C	CCTA	ggag'	r GA	AGAA	GGTG		900
	CTCACCTCA	T TC	CTCC	TCTT	TCT	CTCG	GCC .	AGGA	ATTG	TG G	CCCA	GAGA	G GC	CCAG	GGAA		960
	AGTTCCTGT	C AC	ATCG'	TCAC	TAT	CTCC.	AGC	TCAG	AGTT	TG A	TGGC	TAA				1	008
	(9) INFOR	MATI	ON F	or s	EQ I	D NO	:8:										
10	(i)	(B)	LEN TYP STR	GTH: E: a ANDE	335 mino DNES	ami aci	no a d	cids									
	(ii)	MOLE	CULE	TYP	E: p	rote	in										
15	(xi)	SEQU	ENCE	DES	CRIF	TION	: SE	Q II	NO:	8:							
	Met 1	Glu	Ser	Ser	Phe 5	Ser	Phe	Gly		Ile 10	Leu	Ala	Val	Leu	Ala 15	Ser	
	Leu	Ile	Ile	Ala 20	Thr	Asn	Thr	Leu	Val 25	Ala	Val	Ala	Val	Leu 30	Leu	Leu	
20	Ile	His	Lys 35	Asn	Asp	Gly	Val	Ser 40	Leu	Cys	Phe	Thr	Leu 45	Asn	Leu	Ala	
	Val	Ala 50	Asp	Thr	Leu	Ile	Gly 55	Val	Ala	Ile	Ser	Gly 60	Leu	Leu	Thr	Asp	
25	Gln 65	Leu	Ser	Ser	Pro	Ser 70	Arg	Pro	Thr	Gln	Lys 75	Thr	Leu	Cys	Ser	Leu 80	
	Arg	Met	Ala	Phe	Val 85	Thr	Ser	Ser	Ala	Ala 90	Ala	Ser	Val	Leu	Thr 95	Val	
	Met	Leu	Ile	Thr 100	Phe	Asp	Arg	Tyr	Leu 105	Ala	Ile	Lys	Gln	Pro 110	Phe	Arg	
30	Tyr	Leu	Lys 115		Met	Ser	Gly	Phe 120		Ala	Gly	Ala	Cys 125	Ile	Ala	Gly	
	Leu	Trp		Val	Ser	Tyr	Leu 135		G1y	Phe	Leu	Pro	Leu	Gly	Ile	Pro	

Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val

150

145

brigg agent from	the state of the s	The same of the sa
State of the last	THE PARTY AND PA	The state of the s
ï	N 10 10 10 10 10 10 10 10 10 10 10 10 10	The same will be the
	Direct St	Brief of the Street

	Pl	he F	lis	Pro	His	Phe 165	Val	Leu	Thr	Leu	Ser 170	Cys	Val	Gly	Phe	Phe 175	Pro	
5	A	la M	Met		Leu 180	Phe	Val	Phe	Phe	Tyr 185	Cys	Asp	Met	Leu	Lys 190	Ile	Ala	
	S	er 1		His 195	Ser	Gln	Gln	Ile	Arg 200	Lys	Met	Glu	His	Ala 205	Gly	Ala	Met	
	A		Gly 210	Gly	Tyr	Arg	Ser	Pro 215	Arg	Thr	Pro	Ser	Asp 220	Phe	Lys	Ala	Leu	
10		rg ' 25	Thr	Val	Ser	Val	Leu 230	Ile	Gly	Ser	Phe	Ala 235	Leu	Ser	Trp	Thr	Pro 240	
	P	he :	Leu	Ilė	Thr	Gly 245	Ile	Val	Gln	Val	Ala 250	Cys	Gln	Glu	Cys	His 255	Leu	
15	т	уr	Leu	Val	Leu 260	Glu	Arg	Tyr	Leu	Trp 265	Leu	Leu	Gly	Val	Gly 270	Asn	Ser :	
	L	eu	Leu	Asn 275	Pro	Leu	Ile	Tyr	Ala 280	Tyr	Trp	Gln	Lys	Glu 285	Val	Arg	Leu	
	G		Leu 290	Tyr	His	Met	Ala	Leu 295	Gly	Val	Lys	Lys	Val 300	Leu	Thr	Ser	Phe	
20		eu 805	Leu	Phe	Leu	Ser	Ala 310		Asn	Cys	Gly	Pro 315	Glu	Arg	Pro	Arg	Glu 320	
	S	Ser	Ser	Cys	His	Ile 325		Thr	Ile	Ser	Ser 330		Glu	Phe	Asp	Gly 335		
	(10)	INFO	RMA'	TION	FOR	SEQ	ID	NO:9	:									
25		(i)	(A (B (C) LE) TY) ST	NGTH PE: RAND	ARAC : 14 nucl EDNE	13 b eic SS:	ase acid sing	pair I	s								
30	(:	ii)	MOL	ECUL	E TY	PE:	DNA	(ger	omic	:)								
	(:	xi)	SEQ	UENC	E DE	SCRI	PTIC	on: s	SEQ I	D NO	9:							
	ATGGA	CAC	TA C	CATO	GAAC	C TO	ACCI	rggg:	r gcc	CACTO	GCC	ACAC	GCCC	CCG (CACAC	AGCT	T	60
	GATGA	TGA	GG A	CTCC	TAC	c c	CAAGO	TGG	TGG	GAC	CGG	TCTT	CCT	GT (GCC	TGC	G.	120
	CTCCT	TGG	GC I	GCC	AGCC#	AA TO	GGTT	rgato	G GC	STGG	TGG	CCG	CTC	CCA (GCC	CGGC	AT	180
35	GGAGC	TGG	CA C	GCG1	CTG	GC GC	CTGC	CCT	G CT	CAGC	CTGG	ccc.	rctc:	rga (CTTC	TTGT	rc	240

	CTGGCAGCAG	CGGCCTTCCA	GATCCTAGAG	ATCCGGCATG	GGGGACACTG	GCCGCTGGGG	300
	ACAGCTGCCT	GCCGCTTCTA	CTACTTCCTA	TGGGGCGTGT	CCTACTCCTC	CGGCCTCTTC	360
	CTGCTGGCCG	CCCTCAGCCT	CGACCGCTGC	CTGCTGGCGC	TGTGCCCACA	CTGGTACCCT	420
	GGGCACCGCC	CAGTCCGCCT	GCCCCTCTGG	GTCTGCGCCG	GTGTCTGGGT	GCTGGCCACA	480
5	CTCTTCAGCG	TGCCCTGGCT	GGTCTTCCCC	GAGGCTGCCG	TCTGGTGGTA	CGACCTGGTC	540
	ATCTGCCTGG	ACTTCTGGGA	CAGCGAGGAG	CTGTCGCTGA	GGATGCTGGA	GGTCCTGGGG	600
	GGCTTCCTGC	CTTTCCTCCT	GCTGCTCGTC	TGCCACGTGC	TCACCCAGGC	CACAGCCTGT	660
	CGCACCTGCC	ACCGCCAACA	GCAGCCCGCA	GCCTGCCGGG	GCTTCGCCCG	TGTGGCCAGG	720
	ACCATTCTGT	CAGCCTATGT	GGTCCTGAGG	CTGCCCTACC	AGCTGGCCCA	GCTGCTCTAC	780
10	CTGGCCTTCC	TGTGGGACGT	CTACTCTGGC	TACCTGCTCT	GGGAGGCCCT	GGTCTACTCC	840
	GACTACCTGA	TCCTACTCAA	CAGCTGCCTC	AGCCCCTTCC	TCTGCCTCAT	GGCCAGTGCC	900
	GACCTCCGGA	CCCTGCTGCG	CTCCGTGCTC	TCGTCCTTCG	CGGCAGCTCT	CTGCGAGGAG	960
	CGGCCGGGCA	GCTTCACGCC	CACTGAGCCA	CAGACCCAGC	TAGATTCTGA	GGGTCCAACT	1020
	CTGCCAGAGC	CGATGGCAGA	GGCCCAGTCA	CAGATGGATC	CTGTGGCCCA	GCCTCAGGTG	1080
15	AACCCCACAC	TCCAGCCACG	ATCGGATCCC	ACAGCTCAGC	CACAGCTGAA	CCCTACGGCC	1140
	CAGCCACAGT	CGGATCCCAC	AGCCCAGCCA	CAGCTGAACC	TCATGGCCCA	GCCACAGTCA	1200
	GATTCTGTGG	CCCAGCCACA	GGCAGACACT	AACGTCCAGA	CCCCTGCACC	TGCTGCCAGT	1260
	TCTGTGCCCA	GTCCCTGTGA	TGAAGCTTCC	CCAACCCCAT	CCTCGCATCC	TACCCCAGGG	1320
	GCCCTTGAGG	ACCCAGCCAC	ACCTCCTGCC	TCTGAAGGAG	AAAGCCCCAG	CAGCACCCCG	1380
20	CCAGAGGCGG	CCCCGGGCGC	AGGCCCCACG	TGA			1413

(11) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 468 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro $30 \hspace{1cm} 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15 \hspace{1cm} 15 \hspace{1cm}$

	Arg	Thr		Leu 20	Asp	Asp	Glu	Asp	Ser 25	Tyr	Pro	Gln	Gly	Gly 30	Trp	Asp
	Thr	Val	Phe 35	Leu	Val	Ala	Leu	Leu 40	Leu	Leu	Gly	Leu	Pro 45	Ala	Asn	Gly
5	Leu	Met 50	Ala	Trp	Leu	Ala	Gly 55	Ser	Gln	Ala	Arg	His 60	Gly	Ala	Gly	Thr
	Arg 65	Leu	Ala	Leu	Leu	Leu 70	Leu	Ser	Leu	Ala	Leu 75	Ser	Asp	Phe	Leu	Phe 80
10	Leu	Ala	Ala	Ala	Ala 85	Phe	Gln	Ile	Leu	Glu 90	Ile	Arg	His	Gly	Gly 95	His
	Trp	Pro	Leu	Gly 100	Thr	Ala	Ala	Cys	Arg 105	Phe	Tyr	Tyr	Phe	Leu 110	Trp	Gly
	Val	Ser	Tyr 115	Ser	Ser	Gly	Leu	Phe 120	Leu	Leu	Ala	Ala	Leu 125	Ser	Leu	Asp
15	Arg	Cys 130	Leu	Leu	Ala	Leu	Сув 135	Pro	His	Trp	Tyr	Pro 140	Gly	His	Arg	Pro
	Val 145	Arg	Leu	Pro	Leu	Trp 150	Val	Cys	Ala	Gly	Val 155	Trp	Val	Leu	Ala	Thr 160
20	Leu	Phe	Ser	Val	Pro 165		Leu	Val	Phe	Pro 170	Glu	Ala	Ala	Val	Trp 175	Trp
	Tyr	Asp	Leu	Val 180	Ile	Cys	Leu	Asp	Phe 185		Asp	Ser	Glu	Glu 190	Leu	Ser
	Leu	Arg	Met 195		Glu	Val	Leu	Gly 200		Phe	Leu	Pro	Phe 205		Leu	Leu
25	Leu	Val 210		His	Val	Leu	Thr 215		Ala	Thr	Arg	Thr 220		His	Arg	Gln
	Gln 225		Pro	Ala	Ala	230	Arg	Gly	Phe	Ala	Arg 235		Ala	Arg	Thr	11e 240
30	Leu	Ser	Ala	Tyr	Val 245		Leu	Arg	Leu	250		G1n	Leu	Ala	G1n 255	
	Leu	Tyr	Leu	Ala 260		Leu	Trp	Asp	Val 265		Ser	Gly	Tyr	270	Leu	Trp
	Glu	Ala	Leu 275		Tyr	Ser	Asp	280		ı Ile	. Lev	ı Lev	285		Cys	Leu
35	Ser	Pro 290		Leu	Cys	Lev	Met 295		. Se	c Ala	a Asp	300		Thr	Leu	l Leu

Arg Ser Val Leu Ser Ser Phe Ala Ala Ala Leu Cys Glu Glu Arg Pro

		305					310					315					320
		Gly	Ser	Phe	Thr	Pro 325	Thr	Glu	Pro	Gln	Thr 330	Gln	Leu	Asp	Ser	Glu 335	Gly
5		Pro	Thr	Leu	Pro 340	Glu	Pro	Met	Ala	Glu 345	Ala	Gln	Ser	Gln	Met 350	Asp	Pro
		Val	Ala	Gln 355	Pro	Gln	Val	Asn	Pro 360	Thr	Leu	Gln	Pro	Arg 365	Ser	Asp	Pro
		Thr	Ala 370	Gln	Pro	Gln	Leu	Asn 375	Pro	Thr	Ala	Gln	Pro 380	Gln	Ser	Asp	Pro
10		Thr 385	Ala	Gln	Pro	Gln	Leu 390	Asn	Leu	Met	Ala	Gln 395	Pro	Gln	Ser	Asp	Ser 400
		Val	Ala	Gln	Pro	Gln 405	Ala	Asp	Thr	Asn	Val 410	Gln	Thr	Pro	Ala	Pro 415	Ala
15		Ala	ser	Ser	Val 420	Pro	ser	Pro	Сув	Asp 425	Glu	Ala	Ser	Pro	Thr 430	Pro	Ser
		Ser	His	Pro 435	Thr	Pro	Gly	Ala	Leu 440	Glu	Asp	Pro	Ala	Thr 445	Pro	Pro	Ala
		Ser	Glu 450	Gly	Glu	Ser	Pro	Ser 455	Ser	Thr	Pro	Pro	Glu 460	Ala	Ala	Pro	Gly
20		Ala 465	Gly	Pro	Thr												
(:	12)	INF	ORMA'	TION	FOR	SEQ	ID :	NO:1	1:								
25		(i)	(B) LE) TY) ST	NGTH PE:	: 12 nucl EDNE	48 b eic ss:	ase acid sing	pair	s							
		(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic)							
		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N:S	EQ I	D NO	:11:						

30	ATGTCAGGGA	TGGAAAAACT	TCAGAATGCT	TCCTGGATCT	ACCAGCAGAA	ACTAGAAGAT	60
	CCATTCCAGA	AACACCTGAA	CAGCACCGAG	GAGTATCTGG	CCTTCCTCTG	CGGACCTCGG	120
	CGCAGCCACT	TCTTCCTCCC	CGTGTCTGTG	GTGTATGTGC	CAATTTTTGT	GGTGGGGGTC	180
	ATTGGCAATG	TCCTGGTGTG	CCTGGTGATT	CTGCAGCACC	AGGCTATGAA	GACGCCCACC	240
	AACTACTACC	TCTTCAGCCT	GGCGGTCTCT	GACCTCCTGG	TCCTGCTCCT	TGGAATGCCC	300

ARE	N-0054		- 7	'6 -		PA	FENT
	CTGGAGGTCT	ATGAGATGTG	GCGCAACTAC	CCTTTCTTGT	TCGGGCCCGT	GGGCTGCTAC	360
	TTCAAGACGG	CCCTCTTTGA	GACCGTGTGC	TTCGCCTCCA	TCCTCAGCAT	CACCACCGTC	420
	AGCGTGGAGC	GCTACGTGGC	CATCCTACAC	CCGTTCCGCG	CCAAACTGCA	GAGCACCCGG	480
	CGCCGGGCCC	TCAGGATCCT	CGGCATCGTC	TGGGGCTTCT	CCGTGCTCTT	CTCCCTGCCC	540
5	AACACCAGCA	TCCATGGCAT	CAAGTTCCAC	TACTTCCCCA	ATGGGTCCCT	GGTCCCAGGT	600
	TCGGCCACCT	GTACGGTCAT	CAAGCCCATG	TGGATCTACA	ATTTCATCAT	CCAGGTCACC	660
	TCCTTCCTAT	TCTACCTCCT	CCCCATGACT	GTCATCAGTG	TCCTCTACTA	CCTCATGGCA	720
	CTCAGACTAA	AGAAAGACAA	ATCTCTTGAG	GCAGATGAAG	GGAATGCAAA	TATTCAAAGA	780
	CCCTGCAGAA	AATCAGTCAA	CAAGATGCTG	TTTGTCTTGG	TCTTAGTGTT	TGCTATCTGT	840
10	TGGGCCCCGT	TCCACATTGA	CCGACTCTTC	TTCAGCTTTG	TGGAGGAGTG	GAGTGAATCC	900
	CTGGCTGCTG	TGTTCAACCT	CGTCCATGTG	GTGTCAGGTG	TCTTCTTCTA	CCTGAGCTCA	9,60
	GCTGTCAACC	CCATTATCTA	TAACCTACTG	TCTCGCCGCT	TCCAGGCAGC	ATTCCAGAAT	1020
	GTGATCTCTT	CTTTCCACAA	ACAGTGGCAC	TCCCAGCATG	ACCCACAGTT	GCCACCTGCC	1080
	CAGCGGAACA	TCTTCCTGAC	AGAATGCCAC	TTTGTGGAGC	TGACCGAAGA	TATAGGTCCC	1140
15	CAATTCCCAT	GTCAGTCATC	CATGCACAAC	TCTCACCTCC	CAACAGCCCT	CTCTAGTGAA	1200
	CAGATGTCAA	GAACAAACTA	TCAAAGCTTC	CACTTTAACA	AAACCTGA		1248
	(13) INFOR	MATION FOR	SEO ID NO:1	2:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 415 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein

20

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
- 25 Met Ser Gly Met Glu Lys Leu Gln Asn Ala Ser Trp Ile Tyr Gln Gln
 1 10 15

 Lys Leu Glu Asp Pro Phe Gln Lys His Leu Asn Ser Thr Glu Glu Tyr
- Leu Ala Phe Leu Cys Gly Pro Arg Arg Ser His Phe Phe Leu Pro Val

Ser Val Val Tyr Val Pro Ile Phe Val Val Gly Val Ile Gly Asn Val

50 55 60 Leu Val Cys Leu Val Ile Leu Gln His Gln Ala Met Lys Thr Pro Thr 65 70 Asn Tyr Tyr Leu Phe Ser Leu Ala Val Ser Asp Leu Leu Val Leu Leu 5 Leu Gly Met Pro Leu Glu Val Tyr Glu Met Trp Arg Asn Tyr Pro Phe 105 Leu Phe Gly Pro Val Gly Cys Tyr Phe Lys Thr Ala Leu Phe Glu Thr 10 Val Cys Phe Ala Ser Ile Leu Ser Ile Thr Thr Val Ser Val Glu Arg Tyr Val Ala Ile Leu His Pro Phe Arg Ala Lys Leu Gln Ser Thr Arg 145 150 Arg Arg Ala Leu Arg Ile Leu Gly Ile Val Trp Gly Phe Ser Val Leu 15 Phe Ser Leu Pro Asn Thr Ser Ile His Gly Ile Lys Phe His Tyr Phe 185 Pro Asn Gly Ser Leu Val Pro Gly Ser Ala Thr Cys Thr Val Ile Lys 20 Pro Met Trp Ile Tyr Asn Phe Ile Ile Gln Val Thr Ser Phe Leu Phe Tyr Leu Leu Pro Met Thr Val Ile Ser Val Leu Tyr Tyr Leu Met Ala 225 230 235 Leu Arg Leu Lys Lys Asp Lys Ser Leu Glu Ala Asp Glu Gly Asn Ala 25 Asn Ile Gln Arg Pro Cys Arg Lys Ser Val Asn Lys Met Leu Phe Val 265 Leu Val Leu Val Phe Ala Ile Cys Trp Ala Pro Phe His Ile Asp Arg 275 30 Leu Phe Phe Ser Phe Val Glu Glu Trp Ser Glu Ser Leu Ala Ala Val 295 Phe Asn Leu Val His Val Val Ser Gly Val Phe Phe Tyr Leu Ser Ser 305 310 315 Ala Val Asn Pro Ile Ile Tyr Asn Leu Leu Ser Arg Arg Phe Gln Ala 35

Ala Phe Gln Asn Val Ile Ser Ser Phe His Lys Gln Trp His Ser Gln 340 345 350

į.	
į.	
	136.13
	10 10

15

ARE.	N-005	4						- 7	78 -							PA	TEN	T
		His	Asp	Pro 355	Gln	Leu	Pro	Pro	Ala 360	Gln	Arg	Asn	Ile	Phe 365	Leu	Thr	Glu	
		Cys	His 370	Phe	Val	Glu	Leu	Thr 375	Glu	Asp	Ile	Gly	Pro 380	Gln	Phe	Pro	Cys	
5		Gln 385	Ser	Ser	Met	His	Asn 390	Ser	His	Leu	Pro	Thr 395	Ala	Leu	Ser	Ser	Glu 400	
		Gln	Met	Ser	Arg	Thr 405	Asn	Tyr	Gln	Ser	Phe 410	His	Phe	Asn	Lys	Thr 415		
	(14)	INFO	ORMA:	rion	FOR	SEQ	ID I	NO:1	3:									
10		(i)	(A) (B)	TYI STI	NGTH PE: 1 RANDI	: 11' nucle	TERIS 73 ba eic a SS: s linea	ase pacid	pairs	3								
15		(ii)	MOL	ECULI	TY)	PE: 1	ANC	(gen	omic)									
		(xi)	SEQ	JENCI	E DES	CRI	PTIO	1: S	EQ II	OM C	:13:							
	ATGC	CAGA:	ra c	FAAT	AGCA	AA:	rcaa:	TTTA	TCA	CTAAC	GCA (CTCG:	FGTT	AC T	TTAG	CATT	r	60
	TTTA	TGTC	CT T	AGTA	GCTT	r TG	CTATA	AATG	CTA	3GAA	ATG (CTTTC	GTC/	T T	TAG	CTTT	r	120
	GTGG	TGGA	CA A	AAAC	CTTA	AC	ATCG	AAGT	AGT.	ratt:	TTT	TTCT:	TAAC	T G	GCCA.	rctc:	r	180
20	GACT"	TCTT:	rg r	GGT	GTGA:	CT	CCAT	CCT	TTG:	raca:	rcc (CTCA	CACGO	CT G	rtcg/	ATG	3	240

GATTTTGGAA AGGAAATCTG TGTATTTTGG CTCACTACTG ACTATCTGTT ATGTACAGCA

TCTGTATATA ACATTGTCCT CATCAGCTAT GATCGATACC TGTCAGTCTC AAATGCTGTG

TCTTATAGAA CTCAACATAC TGGGGTCTTG AAGATTGTTA CTCTGATGGT GGCCGTTTGG

GTGCTGGCCT TCTTAGTGAA TGGGCCAATG ATTCTAGTTT CAGAGTCTTG GAAGGATGAA

TTGGAATTCG TGATCCCAGT CATCTTAGTC GCTTATTTCA ACATGAATAT TTATTGGAGC

CTGTGGAAGC GTGATCATCT CAGTAGGTGC CAAAGCCATC CTGGACTGAC TGCTGTCTCT

TCCAACATCT GTGGACACTC ATTCAGAGGT AGACTATCTT CAAGGAGATC TCTTTCTGCA

TCGACAGAAG TTCCTGCATC CTTTCATTCA GAGAGACAGA GGAGAAAGAG TAGTCTCATG

CAATCAGATT CTGTAGCTCT TCACCAAAGG GAACATGTTG AACTGCTTAG AGCCAGGAGA

30 TTTTCCTCAA GAACCAAGAT GAATAGCAAT ACAATTGCTT CCAAAATGGG TTCCTTCTCC

25 GGTAGTGAAT GTGAACCTGG ATTTTTTCG GAATGGTACA TCCTTGCCAT CACATCATTC

300

360

420

480

540

600

660

720

780

840

	TTAGCCAAG	CACT	GGCCAT	TCT	CTTAC	GGG (GTTT:	TTGCT	rg T	rtgc:	rggg	TC	CATA	TCT		960
	CTGTTCACA	A TTGT	CCTTTC	ATT:	TAT:	rcc '	rcag	CAAC	AG G	TCCT	AAAT	C AG	TTTG	GTAT	1	020
	AGAATTGCA	r TTTC	GCTTCA	GTG	TTC	TAA	rcct	TTGT	CA A	TCCT	CTTT	r GT.	ATCC	ATTG	1	080
	TGTCACAAG	C GCTT	TCAAAA	GGC.	rttc'	TTG .	AAAA'	TATT:	TT G	TATA	AAAA	A GC.	AACC'	ICTA	1	140
5	CCATCACAA	C ACAC	STCGGTC	AGT	ATCT	TCT	TAA								1	173
	(15) INFO	RMATIO	ON FOR	SEQ :	ID N	0:14	:									
10		(A) I (B) 7 (C) 8 (D) 7	NCE CHA LENGTH: IYPE: a STRANDE IOPOLOG ULE TYP	390 mino DNES Y: n	ami aci S: ot r	no a d elev	cids									
	(d)	anorm:	NCE DES	CD T D	TT AN		ים דר	NO.	14.							
15			sp Thr					Asn		Ser	Leu	Ser		Arg 15	Val	
	Thr	Leu A	la Phe 20	Phe	Met	Ser	Leu	Val 25	Ala	Phe	Ala	Ile	Met 30	Leu	Gly	
	Asn	Ala L 3	eu Val 5	Ile	Leu	Ala	Phe 40	Val	Val	Asp		Asn 45	Leu	Arg	His	
20	Arg	Ser S 50	er Tyr	Phe	Phe	Leu 55	Asn	Leu	Ala	Ile	Ser 60	Asp	Phe	Phe	Val	
	Gly 65	Val I	le Ser	Ile	Pro 70	Leu	Tyr	Ile	Pro	His 75	Thr	Leu	Phe	Glu	Trp 80	
25	Asp	Phe G	ly Lys	Glu 85	Ile	Cys	Val	Phe	Trp 90	Leu	Thr	Thr	Asp	Tyr 95	Leu	
	Leu	Сув Т	hr Ala 100	Ser	Val	Tyr	Asn	Ile 105	Val	Leu	Ile	Ser	Tyr 110	Asp	Arg	
	Tyr		Ser Val	Ser	Asn	Ala	Val 120	Ser	Tyr	Arg	Thr	Gln 125	His	Thr	Gly	
30	Val	Leu I 130	ys Ile	Val	Thr	Leu 135	Met	Val	Ala	Val	Trp 140	Val	Leu	Ala	Phe	
	Leu 145	Val A	Asn Gly	Pro	Met 150	Ile	Leu	Val	Ser	Glu 155	Ser	Trp	Lys	Asp	Glu 160	
35	Gly	Ser (Glu Cys	Glu 165	Pro	Gly	Phe	Phe	Ser 170	Glu	Trp	Tyr	Ile	Leu 175	Ala	t

Ile Thr Ser Phe Leu Glu Phe Val Ile Pro Val Ile Leu Val Ala Tyr 185 Phe Asn Met Asn Ile Tyr Trp Ser Leu Trp Lys Arg Asp His Leu Ser 200 Arg Cys Gln Ser His Pro Gly Leu Thr Ala Val Ser Ser Asn Ile Cys 5 215 210 Gly His Ser Phe Arg Gly Arg Leu Ser Ser Arg Arg Ser Leu Ser Ala 230 235 Ser Thr Glu Val Pro Ala Ser Phe His Ser Glu Arg Gln Arg Arg Lys 10 250 255 Ser Ser Leu Met Phe Ser Ser Arg Thr Lys Met Asn Ser Asn Thr Ile Ala Ser Lys Met Gly Ser Phe Ser Gln Ser Asp Ser Val Ala Leu His 280 Gln Arg Glu His Val Glu Leu Leu Arg Ala Arg Arg Leu Ala Lys Ser 15 290 Leu Ala Ile Leu Leu Gly Val Phe Ala Val Cys Trp Ala Pro Tyr Ser 305 310 Leu Phe Thr Ile Val Leu Ser Phe Tyr Ser Ser Ala Thr Gly Pro Lys 20 325 330 335 Ser Val Trp Tyr Arg Ile Ala Phe Trp Leu Gln Trp Phe Asn Ser Phe Val Asn Pro Leu Leu Tyr Pro Leu Cys His Lys Arg Phe Gln Lys Ala 360 Phe Leu Lys Ile Phe Cys Ile Lys Lys Gln Pro Leu Pro Ser Gln His 25 370 375 Ser Arg Ser Val Ser Ser 385 (16) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: 30 (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: DNA (genomic)
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

15

660

GGAAAGCTTA	ACGATCCCCA	GGAGCAACAT		30

(17)	INFORMATION	FOR	GEO.	TD	NO - 16 -

	CHAPACTERISTICS .

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iv) ANTI-SENSE: YES
- 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CTGGGATCCT ACGAGAGCAT TTTTCACACA G

- (18) INFORMATION FOR SEO ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1128 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

	ATGGCGAACG	CGAGCGAGCC	GGGTGGCAGC	GGCGGCGGCG	AGGCGGCCGC	CCTGGGCCTC	60
	AAGCTGGCCA	CGCTCAGCCT	GCTGCTGTGC	GTGAGCCTAG	CGGGCAACGT	GCTGTTCGCG	120
	CTGCTGATCG	TGCGGGAGCG	CAGCCTGCAC	CGCGCCCCGT	ACTACCTGCT	GCTCGACCTG	180
	TGCCTGGCCG	ACGGGCTGCG	CGCGCTCGCC	TGCCTCCCGG	CCGTCATGCT	GGCGGCGCGG	240
25	CGTGCGGCGG	CCGCGGCGGG	GGCGCCGCCG	GGCGCGCTGG	GCTGCAAGCT	GCTCGCCTTC	300
	CTGGCCGCGC	TCTTCTGCTT	CCACGCCGCC	TTCCTGCTGC	TGGGCGTGGG	CGTCACCCGC	360
	TACCTGGCCA	TCGCGCACCA	CCGCTTCTAT	GCAGAGCGCC	TGGCCGGCTG	GCCGTGCGCC	420
	GCCATGCTGG	TGTGCGCCGC	CTGGGCGCTG	GCGCTGGCCG	CGGCCTTCCC	GCCAGTGCTG	480
	GACGGCGGTG	GCGACGACGA	GGACGCGCCG	TGCGCCCTGG	AGCAGCGGCC	CGACGGCGCC	540
30	cccgccccc	TGGGCTTCCT	GCTGCTGCTG	GCCGTGGTGG	TGGGCGCCAC	GCACCTCGTC	600

TACCTCCGCC TGCTCTTCTT CATCCACGAC CGCCGCAAGA TGCGGCCCGC GCGCCTGGTG

	CCCGCCGTC	GCCAC	GACTG	GAC	CTTC	CAC	GGCC	CGGG	CG C	CACC	GGCC#	A GG	CGGC	CGCC		720
	AACTGGACG	CGGGC	TTCGG	CCG	CGGG	CCC .	ACGC	CGCC	CG C	GCTT	GTGG	G CA	TCCG	GCCC		780
	GCAGGGCCG	GCCGC	GGCGC	GCG	CCGC	CTC	CTCG	TGCT	GG A	AGAA'	TTCA	A GA	CGGA	gaag		840
	AGGCTGTGC	AGATG	TTCTA	CGC	CGTC	ACG	CTGC'	TCTT	CC T	GCTC	CTCT	g gg	GGCC	CTAC		900
5	GTCGTGGCC	A GCTAC	CTGCG	GGT	CCTG	GTG	CGGC	CCGG	cg c	CGTC	cccc	A GG	CCTA	CCTG		960
	ACGGCCTCC	G TGTGG	CTGAC	CTT	CGCG	CAG	GCCG	GCAT	CA A	cccc	GTCG'	r gr	GCTT	CCTC	1	020
	TTCAACAGG	g AGCTG	AGGGA	CTG	CTTC.	AGG	GCCC	AGTT	cc c	CTGC	TGCC	A GA	.GCCC	CCGG	1	080
	ACCACCCAG	G CGACC	CATCO	CTG	CGAC	CTG	AAAG	GCAT	TG G	TTTA	TGA				1	128
	(19) INFO	RMATION	FOR	SEQ	ID N	0:18										
10	(i) :	SEQUENC	E CHA	RACT	ERIS	TICS	:									
		(A) LE (B) TY					cids									
		(C) ST	RANDE	DNES	S:		rant								:	
1.5	(11)						unc									
15	(11)	MOLECUI	E IYE	Æ: p	roce	:111										
	(xi)	SEQUENC	E DES	CRIP	TION	: SE	Q ID	NO:	18:							
	Met	Ala Ası	ı Ala	Ser 5	Glu	Pro	Gly	Gly	Ser 10	Gly	Gly	Gly	Glu	Ala 15	Ala	
	Ala	Leu Gly		Lys	Leu	Ala	Thr		Ser	Leu	Leu	Leu		Val	Ser	
20			20					25					30			
	Leu	Ala Gly	/ Asn	Val	Leu	Phe	Ala 40	Leu	Leu	Ile	Val	Arg 45	Glu	Arg	Ser	
	Leu	His Ar	g Ala	Pro	Tyr		Leu	Leu	Leu	Asp		Cys	Leu	Ala	Asp	
		50				55					60					
25	Gly 65	Leu Ar	g Ala	Leu	Ala 70	Сув	Leu	Pro	Ala	Val 75	Met	Leu	Ala	Ala	Arg 80	
	Arg	Ala Al	a Ala	Ala	Ala	Glv	Ala	Pro	Pro	Gly	Ala	Leu	Gly	Cys	Lys	
	5			85		-			90	-				95		
30	Leu	Leu Al	a Phe	Leu	Ala	Ala	Leu	Phe 105	Cys	Phe	His	Ala	Ala 110	Phe	Leu	
30	,			a1.	**- 3	m\-	3		T 0	7 1-	Tle	7.7 -		ui~	Arc	
	Leu	Leu Gl	y vai	GIY	val	ınr	Arg	ıyr	ьeu	wig	TIE	AId	nis	mis	ar 9	

Phe Tyr Ala Glu Arg Leu Ala Gly Trp Pro Cys Ala Ala Met Leu Val

	Cys 145	Ala	Ala	Trp	Ala	Leu 150	Ala	Leu	Ala	Ala	Ala 155	Phe	Pro	Pro	Val	Leu 160
	Asp	Gly	Gly	Gly	Asp 165	Asp	Glu	Asp	Ala	Pro 170	Cys	Ala	Leu	Glu	Gln 175	Arg
5	Pro	Asp	Gly	Ala 180	Pro	Gly	Ala	Leu	Gly 185	Phe	Leu	Leu	Leu	Leu 190	Ala	Val
	Val	Val	Gly 195	Ala	Thr	His	Leu	Val 200	Tyr	Leu	Arg	Leu	Leu 205	Phe	Phe	Ile
10	His	Asp 210	Arg	Arg	Lys	Met	Arg 215	Pro	Ala	Arg	Leu	Val 220	Pro	Ala	Val	Ser
	His 225	Asp	Trp	Thr	Phe	His 230	Gly	Pro	Gly	Ala	Thr 235	Gly	Gln	Ala	Ala	Ala 240
	Asn	Trp	Thr	Ala	Gly 245	Phe	Gly	Arg	Gly	Pro 250	Thr	Pro	Pro	Ala	Leu 255	Val
15	Gly	Ile	Arg	Pro 260	Ala	Gly	Pro	Gly	Arg 265	Gly	Ala	Arg	Arg	Leu 270	Leu	Val
	Leu	Glu	Glu 275	Phe	Lys	Thr	Glu	Lys 280	Arg	Leu	Cys	Lys	Met 285	Phe	Tyr	Ala
20	Val	Thr 290	Leu	Leu	Phe	Leu	Leu 295		Trp	Gly	Pro	Tyr 300		Val	Ala	Ser
	Tyr 305		Arg	Val	Leu	Val 310		Pro	Gly	Ala	Val 315		Gln	Ala	Tyr	Leu 320
	Thr	Ala	Ser	Val	Trp		Thr	Phe	Ala	Gln 330		Gly	Ile	Asn	Pro 335	Val
25	Val	Cys	Phe	Leu 340		Asn	Arg	Glu	Leu 345		Asp	Cys	Phe	Arg 350		Gln
	Phe	Pro	Cys 355		Gln	Ser	Pro	Arg 360		Thr	Gln	Ala	Thr 365		Pro	Cys
30	Asp	Leu 370	Lys	Gly	Ile	Gly	Leu 375									

- (20) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1002 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

- 84 -PATENT AREN-0054

	(x1) SE	QUENCE DESC	KIPTION: SE	Q ID NO:19:			
	ATGAACACCA	CAGTGATGCA	AGGCTTCAAC	AGATCTGAGC	GGTGCCCCAG	AGACACTCGG	60
	ATAGTACAGC	TGGTATTCCC .	AGCCCTCTAC	ACAGTGGTTT	TCTTGACCGG	CATCCTGCTG	120
	AATACTTTGG	CTCTGTGGGT	GTTTGTTCAC	ATCCCCAGCT	CCTCCACCTT	CATCATCTAC	180
5	CTCAAAAACA	CTTTGGTGGC	CGACTTGATA	ATGACACTCA	TGCTTCCTTT	CAAAATCCTC	240
	TCTGACTCAC	ACCTGGCACC	CTGGCAGCTC	AGAGCTTTTG	TGTGTCGTTT	TTCTTCGGTG	300
	ATATTTTATG	AGACCATGTA	TGTGGGCATC	GTGCTGTTAG	GGCTCATAGC	CTTTGACAGA	360
	TTCCTCAAGA	TCATCAGACC	TTTGAGAAAT	ATTTTTCTAA	AAAAACCTGT	TTTTGCAAAA	420
	ACGGTCTCAA	TCTTCATCTG	GTTCTTTTTG	TTCTTCATCT	CCCTGCCAAA	TACGATCTTG	480
0	AGCAACAAGG	AAGCAACACC	ATCGTCTGTG	AAAAAGTGTG	CTTCCTTAAA	GGGGCCTCTG	540
	GGGCTGAAAT	GGCATCAAAT	GGTAAATAAC	ATATGCCAGT	TTATTTTCTG	GACTGTTTTT	600
	ATCCTAATGC	TTGTGTTTTA	TGTGGTTATT	GCAAAAAAAG	TATATGATTC	TTATAGAAAG	660
	TCCAAAAGTA	AGGACAGAAA	AAACAACAAA	AAGCTGGAAG	GCAAAGTATT	TGTTGTCGTG	720
	GCTGTCTTCT	TTGTGTGTTT	TGCTCCATTI	CATTTTGCCA	GAGTTCCATA	TACTCACAGT	780
15	CAAACCAACA	ATAAGACTGA	CTGTAGACTG	CAAAATCAAC	TGTTTATTG	TAAAGAAACA	840
	ACTCTCTTTT	TGGCAGCAAC	TAACATTTGT	ATGGATCCCT	TAATATACAT	TATTCTTATGT	900
	AAAAAATTCA	CAGAAAAGCT	ACCATGTATO	CAAGGGAGAA	AGACCACAG	ATCAAGCCAA	960
	GAAAATCATA	GCAGTCAGAC	AGACAACAT	ACCTTAGGCT	'GA		1002

- (21) INFORMATION FOR SEQ ID NO:20:
- (i) SEQUENCE CHARACTERISTICS: 20
 - (A) LENGTH: 333 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein 25

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
- Met Asn Thr Thr Val Met Gln Gly Phe Asn Arg Ser Glu Arg Cys Pro
- Arg Asp Thr Arg Ile Val Gln Leu Val Phe Pro Ala Leu Tyr Thr Val 25 20

	Val		Leu 35	Thr	Gly	Ile		Leu 40	Asn	Thr	Leu .		Leu 45	Trp	Val	Phe
	Val	His 50	Ile	Pro	Ser		Ser 55	Thr	Phe	Ile	Ile	Tyr 60	Leu	Lys	Asn	Thr
5	Leu 65	Val	Ala	Asp	Leu	Ile 70	Met	Thr	Leu	Met	Leu 75	Pro	Phe	Lys	Ile	Leu 80
	Ser	Asp	Ser	His	Leu 85	Ala	Pro	Trp	Gln	Leu 90	Arg	Ala	Phe	Val	Cys 95	Arg
10	Phe	Ser	Ser	Val 100	Ile	Phe	Tyr	Glu	Thr 105	Met	Tyr	Val	Gly	Ile 110	Val	Leu
	Leu	Gly	Leu 115	Ile	Ala	Phe	Asp	Arg 120	Phe	Leu	Lys	Ile	Ile 125	Arg	Pro	Leu
	Arg	Asn 130	Ile	Phe	Leu	Lys	Lys 135	Pro	Val	Phe	Ala	Lys 140	Thr	Val	Ser	Ile
15	Phe 145	Ile	Trp	Phe	Phe	Leu 150	Phe	Phe	Ile	Ser	Leu 155	Pro	Asn	Thr	Ile	Lец 160
	Ser	Asn	Lys	Glu	Ala 165	Thr	Pro	Ser	Ser	Val 170	Lys	Lys	Cys	Ala	Ser 175	Leu
20	Lys	Gly	Pro	Leu 180	Gly	Leu	Lys	Trp	His 185	Gln	Met	Val	Asn	Asn 190	Ile	Cys
			195					200					205			Val
	Val	Ile 210		Lys	Lys	Val	Tyr 215	Asp	Ser	Tyr	Arg	Lys 220	Ser	Lys	Ser	Lys
25	Asp 225		Lys	Asn	Asn	Lys 230		Leu	Glu	Gly	Lys 235	Val	Phe	val	Val	Val 240
	Ala	Val	. Phe	Phe	245		Phe	Ala	Pro	250	His	Phe	e Ala	a Arg	Val 255	Pro
30	Tyr	Thi	His	260		1 Thr	Asr	ı Asr	1 Lys 265		Asp	Cys	s Arg	270	ı Glr	a Asn
	Glr	ı Leı	275		Ala	a Lys	Gl:	280		r Lei	ı Phe	Let	u Ala 289	a Ala	a Thi	: Asn
	Ile	29		. Asp	Pro	o Let	1 Ile 29!	ту: 5	r Ile	e Ph	e Let	1 Cy:	s Ly: 0	s Lys	s Phe	e Thr
35	Gl:		s Le	u Pro	с Су	s Me	t Gl:	n Gl	y Ar	g Ly	s Thi	r Th	r Al	a Se	r Se	r Gln 320

Glu Asn His Ser Ser Gln Thr Asp Asn Ile Thr Leu Gly

5

325 330

(22) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1122 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

10	ATGGCCAACA	CTACCGGAGA	GCCTGAGGAG	GTGAGCGGCG	CTCTGTCCCC	ACCGTCCGCA	60
	TCAGCTTATG	TGAAGCTGGT	ACTGCTGGGA	CTGATTATGT	GCGTGAGCCT	GGCGGGTAAC	120
	GCCATCTTGT	CCCTGCTGGT	GCTCAAGGAG	CGTGCCCTGC	ACAAGGCTCC	TTACTACTTC	180
	CTGCTGGACC	TGTGCCTGGC	CGATGGCATA	CGCTCTGCCG	TCTGCTTCCC	CTTTGTGCTG	240
	GCTTCTGTGC	GCCACGGCTC	TTCATGGACC	TTCAGTGCAC	TCAGCTGCAA	GATTGTGGCC	300
15	TTTATGGCCG	TGCTCTTTTG	CTTCCATGCG	GCCTTCATGC	TGTTCTGCAT	CAGCGTCACC	360
	CGCTACATGG	CCATCGCCCA	CCACCGCTTC	TACGCCAAGC	GCATGACACT	CTGGACATGC	420
	GCGGCTGTCA	TCTGCATGGC	CTGGACCCTG	TCTGTGGCCA	TGGCCTTCCC	ACCTGTCTTT	480
	GACGTGGGCA	CCTACAAGTT	TATTCGGGAG	GAGGACCAGT	GCATCTTTGA	GCATCGCTAC	540
	TTCAAGGCCA	ATGACACGCT	GGGCTTCATG	CTTATGTTGG	CTGTGCTCAT	GGCAGCTACC	600
20	CATGCTGTCT	ACGGCAAGCT	GCTCCTCTTC	GAGTATCGTC	ACCGCAAGAT	GAAGCCAGTG	660
	CAGATGGTGC	CAGCCATCAG	CCAGAACTGG	ACATTCCATG	GTCCCGGGGC	CACCGGCCAG	720
	GCTGCTGCCA	ACTGGATCGC	CGGCTTTGGC	CGTGGGCCCA	TGCCACCAAC	CCTGCTGGGT	780
	ATCCGGCAGA	ATGGGCATGC	AGCCAGCCGG	CGGCTACTGG	GCATGGACGA	GGTCAAGGGT	840
	GAAAAGCAGC	TGGGCCGCAT	GTTCTACGCG	ATCACACTGC	TCTTTCTGCT	CCTCTGGTCA	900
25	CCCTACATCG	TGGCCTGCTA	CTGGCGAGTG	TTTGTGAAAG	CCTGTGCTGT	GCCCCACCGC	960
	TACCTGGCCA	CTGCTGTTTG	GATGAGCTTC	GCCCAGGCTG	CCGTCAACCC	AATTGTCTGC	1020
	TTCCTGCTCA	ACAAGGACCT	CAAGAAGTGC	CTGACCACTC	ACGCCCCCTG	CTGGGGCACA	1080
	GGAGGTGCCC	CGGCTCCCAG	AGAACCCTAC	TGTGTCATGT	GA		1122

(23) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 373 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: 5 (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: Met Ala Asn Thr Thr Gly Glu Pro Glu Glu Val Ser Gly Ala Leu Ser Pro Pro Ser Ala Ser Ala Tyr Val Lys Leu Val Leu Leu Gly Leu Ile 10 Met Cys Val Ser Leu Ala Gly Asn Ala Ile Leu Ser Leu Leu Val Leu Lys Glu Arg Ala Leu His Lys Ala Pro Tyr Tyr Phe Leu Leu Asp Leu 15 Cys Leu Ala Asp Gly Ile Arg Ser Ala Val Cys Phe Pro Phe Val Leu Ala Ser Val Arg His Gly Ser Ser Trp Thr Phe Ser Ala Leu Ser Cys Lys Ile Val Ala Phe Met Ala Val Leu Phe Cys Phe His Ala Ala Phe 20 105 Met Leu Phe Cys Ile Ser Val Thr Arg Tyr Met Ala Ile Ala His His Arg Phe Tyr Ala Lys Arg Met Thr Leu Trp Thr Cys Ala Ala Val Ile 25 Cys Met Ala Trp Thr Leu Ser Val Ala Met Ala Phe Pro Pro Val Phe 155 150 Asp Val Gly Thr Tyr Lys Phe Ile Arg Glu Glu Asp Gln Cys Ile Phe 165 Glu His Arg Tyr Phe Lys Ala Asn Asp Thr Leu Gly Phe Met Leu Met 30 Leu Ala Val Leu Met Ala Ala Thr His Ala Val Tyr Gly Lys Leu Leu 195 Leu Phe Glu Tyr Arg His Arg Lys Met Lys Pro Val Gln Met Val Pro 35 215

Ala Ile Ser Gln Asn Trp Thr Phe His Gly Pro Gly Ala Thr Gly Gln

230

dista.	3
9	Ď
7100	10 17
	d
	99
	Ų
200	Į,
1	
-	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ñ
-	7
1	
*****	100
i	ni.

	Ala	Ala	Ala	Asn	Trp 245	Ile	Ala	Gly	Phe	Gly 250	Arg	Gly	Pro	Met	Pro 255	Pro	
	Thr	Leu	Leu	Gly 260	Ile	Arg	Gln	Asn	Gly 265	His	Ala	Ala	Ser	Arg 270	Arg	Leu	
5	Leu	Gly	Met 275	Asp	Glu	Val	Lys	Gly 280	Glu	Lys	Gln	Leu	Gly 285	Arg	Met	Phe	
	Tyr	Ala 290	Ile	Thr	Ľеu	Leu	Phe 295	Leu	Leu	Leu	Trp	Ser 300	Pro	Tyr	Ile	Val	
10	Ala 305	Cys	Tyr	Trp	Arg	Val 310	Phe	Val	Lys	Ala	Cys 315	Ala	Val	Pro	His	Arg 320	
	Tyr	Leu	Ala	Thr	Ala 325	Val	Trp	Met	Ser	Phe 330	Ala	Gln	Ala	Ala	Val 335	Asn	
	Pro	Ile	Val	Cys 340		Leu	Leu	Asn	Lys 345	Asp	Leu	Lys	Lys	Cys 350	Leu	Thr	
15	Thr	His	Ala 355		Cys	Trp	Gly	Thr 360		Gly	Ala	Pro	Ala 365		Arg	Glų	
	Pro	Tyr 370		Val	Met												
	(24) INE	FORMA	TION	FOR	SEQ	ID	NO:2	3:									
20	(i)	(B	UENC L) LE L) TY L) ST L) TC	NGTH PE: RAND	: 10 nucl	53 b eic SS:	ase acid	pair I	·s								
25	(ii)	MOL	ECUL	E TY	PE:	DNA	(ger	omic	:)								
	(xi	SEC	QUENC	E DE	SCRI	PTIC	on: S	SEQ 1	D NC	:23:							
	ATGGCTT	rgg A	ACAC	AACC	A GT	CAAC	CAGAT	TAT	TAT	TATG	AGG	LAAAI	GA A	AATGA	ATGG	C	60
	ACTTATG	ACT A	ACAGI	CAAT	TA TO	TAAE	GAT	TGT	TATC	AAAG	AAG	TGT	CAG A	AGAAT	TTGC	'A	120
	AAAGTTT	TCC 1	rccci	GTAT	T C	CTCAC	CAAT	A GC	TTC	TCA	TTG	ACT?	rgc 1	AGGCA	ATTO	:C	180
30	ATGGTAG	TGG (CAAT	TAT	C C	CATTA	ACAA	G AA	ACAG	AGAA	CCA	AAACI	AGA :	rgt g 1	ACAT	C.	240
	CTGAATT	TGG (CTGT	AGCA	BA T	rtac:	rcct	r cti	ATTC	ACTC	TGC	TTT:	TTG (GCT(TTAF	T	300
	GCAGTTC	ATG (GTG	GTT	TT AC	egga.	AAAT	A AT	GTGC	AAAA	TAA	CTTC	AGC	CTTG	CACAC	CA.	360
	CTAAACT	TTG T	TCTC	rgga	AT G	CAGT	TTCT	g gc	TTGC	ATCA	GCA	TAGA	CAG .	ATATO	TGG	CA	420

GTAACTAATG TCCCCAGCCA ATCAGGAGTG GGAAAACCAT GCTGGATCAT CTGTTTCTGT 480

13
1
10
14
121
16
13
111
÷
5 3
in
(3)
1
(2
sin

	GTCTGGATGG	CTGCCATCTT	GCTGAGCATA	CCCCAGCTGG	TTTTTTATAC	AGTAAATGAC	540
	AATGCTAGGT	GCATTCCCAT	TTTCCCCCGC	TACCTAGGAA	CATCAATGAA	AGCATTGATT	600
	CAAATGCTAG	AGATCTGCAT	TGGATTTGTA	GTACCCTTTC	TTATTATGGG	GGTGTGCTAC	660
	TTTATCACGG	CAAGGACACT	CATGAAGATG	CCAAACATTA	AAATATCTCG	ACCCCTAAAA	720
5	GTTCTGCTCA	CAGTCGTTAT	AGTTTTCATT	GTCACTCAAC	TGCCTTATAA	CATTGTCAAG	780
	TTCTGCCGAG	CCATAGACAT	CATCTACTCC	CTGATCACCA	GCTGCAACAT	GAGCAAACGC	840
	ATGGACATCG	CCATCCAAGT	CACAGAAAGC	ATTGCACTCT	TTCACAGCTG	CCTCAACCCA	900
	ATCCTTTATG	TTTTTATGGG	AGCATCTTTC	AAAAACTACG	TTATGAAAGT	GGCCAAGAAA	960
	TATGGGTCCT	GGAGAAGACA	GAGACAAAGT	GTGGAGGAGT	TTCCTTTTGA	TTCTGAGGGT	1020
10	CCTACAGAGC	CAACCAGTAC	TTTTAGCATT	TAA			1053

- (25) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 350 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
- Met Ala Leu Glu Gln Asn Gln Ser Thr Asp Tyr Tyr Tyr Glu Glu Asn 20 1 5 10 15
 - Glu Met Asn Gly Thr Tyr Asp Tyr Ser Gln Tyr Glu Leu Ile Cys Ile 20 25 30
 - Lys Glu Asp Val Arg Glu Phe Ala Lys Val Phe Leu Pro Val Phe Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$
- 25 Thr Ile Ala Phe Val Ile Gly Leu Ala Gly Asn Ser Met Val Val Ala 50 55 60
 - Ile Tyr Ala Tyr Tyr Lys Lys Gln Arg Thr Lys Thr Asp Val Tyr Ile 65 70 70 75 80
- Leu Asn Leu Ala Val Ala Asp Leu Leu Leu Leu Phe Thr Leu Pro Phe 30 \$90\$
 - Trp Ala Val Asn Ala Val His Gly Trp Val Leu Gly Lys Ile Met Cys 100 105 110
 - Lys Ile Thr Ser Ala Leu Tyr Thr Leu Asn Phe Val Ser Gly Met Gln

			115					120					125			
	Phe	Leu 130	Ala	Cys	Ile	Ser	Ile 135	Asp	Arg	Tyr	Val	Ala 140	Val	Thr	Asn	Val
5	Pro 145	Ser	Gln	Ser	Gly	Val 150	Gly	Lys	Pro	Cys	Trp 155	Ile	Ile	Cys	Phe	Cys 160
	Val	Trp	Met	Ala	Ala 165	Ile	Leu	Leu	Ser	Ile 170	Pro	Gln	Leu	Val	Phe 175	Tyr
	Thr	Val	Asn	Asp 180	Asn	Ala	Arg	Cys	Ile 185	Pro	Ile	Phe	Pro	Arg 190	Tyr	Leu
10	Gly	Thr	Ser 195	Met	Lys	Ala	Leu	Ile 200	Gln	Met	Leu	Glu	Ile 205	Cys	Ile	Gly
	Phe	Val 210	Val	Pro	Phe	Leu	Ile 215	Met	Gly	Val	Сув	Tyr 220	Phe	Ile	Thr	Ala
15	Arg 225		Leu	Met	Lys	Met 230	Pro	Asn	Ile	Lys	Ile 235	Ser	Arg	Pro	Leu	Lys 240
	Val	Leu	Leu	Thr	Val 245	Val	Ile	Val	Phe	Ile 250		Thr	Gln	Leu	Pro 255	Tyr
	Asn	Ile	Val	Lуs 260		Cys	Arg	Ala	Ile 265		Ile	Ile	Tyr	Ser 270	Leu	Ile
20	Thr	Ser	Cys 275		Met	Ser	Lys	Arg 280		Asp	Ile	Ala	Ile 285		Val	Thr
	Glu	Ser 290		Ala	Leu	Phe	His 295		Cys	Let	Asn	300		Leu	Tyr	Val
25	Phe 305		Gly	Ala	Ser	Phe 310		Asn	Туг	Val	Met 315		Val	Ala	Lys	Lys 320
	Туз	Gly	/ Ser	Trp	Arg 325		Gln	Arg	g Glr	330		Glu	Glu	ı Phe	9rc	Phe
	Ası	Se	r Glu	1 Gly 340		Thr	Glu	Pro	Th:		r Thi	r Phe	Sei	: Ile))	

- 30 (26) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 35 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

AREN-0054 - 91 - PATENT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

	ATGCCAGGAA	ACGCCACCCC	AGTGACCACC	ACTGCCCCGT	GGGCCTCCCT	GGGCCTCTCC	60
	GCCAAGACCT	GCAACAACGT	GTCCTTCGAA	GAGAGCAGGA	TAGTCCTGGT	CGTGGTGTAC	120
	AGCGCGGTGT	GCACGCTGGG	GGTGCCGGCC	AACTGCCTGA	CTGCGTGGCT	GGCGCTGCTG	180
5	CAGGTACTGC	AGGGCAACGT	GCTGGCCGTC	TACCTGCTCT	GCCTGGCACT	CTGCGAACTG	240
	CTGTACACAG	GCACGCTGCC	ACTCTGGGTC	ATCTATATCC	GCAACCAGCA	CCGCTGGACC	300
	CTAGGCCTGC	TGGCCTCGAA	GGTGACCGCC	TACATCTTCT	TCTGCAACAT	CTACGTCAGC	360
	ATCCTCTTCC	TGTGCTGCAT	CTCCTGCGAC	CGCTTCGTGG	CCGTGGTGTA	CGCGCTGGAG	420
	AGTCGGGGCC	GCCGCCGCCG	GAGGACCGCC	ATCCTCATCT	CCGCCTGCAT	CTTCATCCTC	480
10	GTCGGGATCG	TTCACTACCC	GGTGTTCCAG	ACGGAAGACA	AGGAGACCTG	CTTTGACATG	540
	CTGCAGATGG	ACAGCAGGAT	TGCCGGGTAC	TACTACGCCA	GGTTCACCGT	TGGCTTTGCC	600
	ATCCCTCTCT	CCATCATCGC	CTTCACCAAC	CACCGGATTT	TCAGGAGCAT	CAAGCAGAGC	660
	ATGGGCTTAA	GCGCTGCCCA	GAAGGCCAAG	GTGAAGCACT	CGGCCATCGC	GGTGGTTGTC	720
	ATCTTCCTAG	TCTGCTTCGC	CCCGTACCAC	CTGGTTCTCC	TCGTCAAAGC	CGCTGCCTTT	780
15	TCCTACTACA	GAGGAGACAG	GAACGCCATG	TGCGGCTTGG	AGGAAAGGCT	GTACACAGCC	840
	TCTGTGGTGT	TTCTGTGCCT	GTCCACGGTG	AACGGCGTGG	CTGACCCCAT	TATCTACGTG	900
	CTGGCCACGG	ACCATTCCCG	CCAAGAAGTG	TCCAGAATCC	ATAAGGGGTG	GAAAGAGTGG	960
	TCCATGAAGA	CAGACGTCAC	CAGGCTCACC	CACAGCAGGG	ACACCGAGGA	GCTGCAGTCG	1020
	CCCGTGGCCC	TTGCAGACCA	CTACACCTTC	TCCAGGCCCG	TGCACCCACC	AGGGTCACCA	1080
20	TGCCCTGCAA	AGAGGCTGAT	TGAGGAGTCC	TGCTGA			1116

(28) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 371 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
- Met Pro Gly Asn Ala Thr Pro Val Thr Thr Thr Ala Pro Trp Ala Ser $30 \\ 1 \\ 5 \\ 10 \\ 15$

0.555

	Leu	Gly	Leu	Ser 20	Ala	Lys	Thr		Asn 25	Asn	Val	Ser	Phe	Glu 30	Glu	Ser
	Arg	Ile	Val 35	Leu	Val	Val	Val	Tyr 40	Ser	Ala	Val	Cys	Thr 45	Leu	Gly	Val
5	Pro	Ala 50	Asn	Cys	Leu	Thr	Ala 55	Trp	Leu	Ala	Leu	Leu 60	Gln	Val	Leu	Gln
	Gly 65	Asn	Val	Leu	Ala	Val 70	Tyr	Leu	Leu	Cys	Leu 75	Ala	Leu	Cys	Glu	Leu 80
10	Leu	Tyr	Thr	Gly	Thr 85	Leu	Pro	Leu	Trp	Val 90	Ile	Tyr	Ile	Arg	Asn 95	Gln
	His	Arg	Trp	Thr 100	Leu	Gly	Leu	Leu	Ala 105	Ser	Lys	Val	Thr	Ala 110	Tyr	Ile
	Phe	Phe	Cys 115	Asn	Ile	Tyr	Val	Ser 120	Ile	Leu	Phe	Leu	Cys 125	Cys	Ile	Ser
15	Сув	Asp 130		Phe	Val	Ala	Val 135	Val	Tyr	Ala	Leu	Glu 140	Ser	Arg	Gly	Arg
	Arg 145		Arg	Arg	Thr	Ala 150	Ile	Leu	Ile	Ser	Ala 155	Cys	Ile	Phe	Ile	Leu 160
20	Val	Gly	Ile	Val	His 165		Pro	Val	Phe	Gln 170		Glu	Asp	Lys	Glu 175	Thr
	Cys	Phe	Asp	Met 180		Gln	Met	Asp	Ser 185		Ile	Ala	Gly	Tyr 190	Tyr	Tyr
	Ala	Arg	Phe 195		Val	Gly	Phe	Ala 200	Ile	Pro	Leu	Ser	11e 205		Ala	Phe
25	Thr	Asn 210		Arg	Ile	Phe	Arg 215		Ile	Lys	Gln	Ser 220		Gly	Leu	Ser
	Ala 225		Gln	Lys	Ala	Lys 230		Lys	His	: Ser	235		Ala	Val	Val	Val 240
30	Ile	Phe	e Leu	. Val	. Cys		Ala	Pro	Туг	His 250	Leu	val	Lev	Leu	Val 255	Lys
	Ala	a Ala	a Ala	260		туг	туг	Arg	Gl ₃ 265		Arg	Asr	ı Ala	Met 270		Gly
	Let	ı Glı	1 Glu 275		j Let	1 Туз	Thr	280		r Val	L Val	Phe	285	. Сув	Lev	ı Ser
35	Thi	r Vai		ı Gly	/ Val	L Ala	Asp 295		Ile	e Ile	е Туг	7 Va	L Let	ı Ala	Thi	Asp

						,	2 4 1 4	-
							See a	
						•	٤,	
N						-11.11	Part.	١
						ě	ì	
Ų	1	1	1			-	The same	
	1			100	2 1 2			

	His Ser Arg Gln Glu Val Ser Arg Ile His Lys Gly Trp Lys Glu Trp 305 310 315 320	
	Ser Met Lys Thr Asp Val Thr Arg Leu Thr His Ser Arg Asp Thr Glu 325 330 335	
5	Glu Leu Gln Ser Pro Val Ala Leu Ala Asp His Tyr Thr Phe Ser Arg $$340$$ $$350$	
	Pro Val His Pro Pro Gly Ser Pro Cys Pro Ala Lys Arg Leu Ile Glu 355 360	
10	Glu Ser Cys 370	
	(28) INFORMATION FOR SEQ ID NO:27:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1113 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	ATGGCGAACT ATAGCCATGC AGCTGACAAC ATTTTGCAAA ATCTCTCGCC TCTAACAGCC	60
20	TTTCTGAAAC TGACTTCCTT GGGTTTCATA ATAGGAGTCA GCGTGGTGGG CAACCTCCTG	120
	ATCTCCATTT TGCTAGTGAA AGATAAGACC TTGCATAGAG CACCTTACTA CTTCCTGTTG	180
	GATCTTTGCT GTTCAGATAT CCTCAGATCT GCAATTTGTT TCCCATTTGT GTTCAACTCT	240
	GTCAAAAATG GCTCTACCTG GACTTATGGG ACTCTGACTT GCAAAGTGAT TGCCTTTCTG	300
	GGGGTTTTGT CCTGTTTCCA CACTGCTTTC ATGCTCTTCT GCATCAGTGT CACCAGATAC	360
25	TTAGCTATCG CCCATCACCG CTTCTATACA AAGAGGCTGA CCTTTTGGAC GTGTCTGGCT	420
	GTGATCTGTA TGGTGTGGAC TCTGTCTGTG GCCATGGCAT TTCCCCCGGT TTTAGACGTG	480
	GGCACTTACT CATTCATTAG GGAGGAAGAT CAATGCACCT TCCAACACCG CTCCTTCAGG	540
	GCTAATGATT CCTTAGGATT TATGCTGCTT CTTGCTCTCA TCCTCCTAGC CACACAGCTT	600

GTCTACCTCA AGCTGATATT TTTCGTCCAC GATCGAAGAA AAATGAAGCC AGTCCAGTTT 660 30 GTAGCAGCAG TCAGCCAGAA CTGGACTTTT CATGGTCCTG GAGCCAGTGG CCAGGCAGCT

GCCAATTGGC TAGCAGGATT TGGAAGGGGT CCCACACCAC CCACCTTGCT GGGCATCAGG CAAAATGCAA ACACCACAGG CAGAAGAAGG CTATTGGTCT TAGACGAGTT CAAAATGGAG

720

	13
The state of the s	40
	10
	([1
	17
NO VO	H
NO VO	9
La Al Cal	100
17	
17	13
1 200	7 4 3
	123
1 1	juk

	AAAGAATCA GCAGAATGTT CTATATAATG ACTTTTCTGT TTCTAACCTT GTGGGGCCCC 900
	ACCTGGTGG CCTGTTATTG GAGAGTTTTT GCAAGAGGGC CTGTAGTACC AGGGGGATTT 960
	TRACAGCTG CTGTCTGGAT GAGTTTTGCC CAAGCAGGAA TCAATCCTTT TGTCTGCATT 1020
	TTCTCAAACA GGGAGCTGAG GCGCTGTTTC AGCACAACCC TTCTTTACTG CAGAAAATCC 1080
5	AGGTTACCAA GGGAACCTTA CTGTGTTATA TGA 1113
	(29) INFORMATION FOR SEQ ID NO:28:
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 370 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: protein
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
15	Met Ala Asn Tyr Ser His Ala Ala Asp Asn Ile Leu Gln Asn Leu Ser 1 10 15
	Pro Leu Thr Ala Phe Leu Lys Leu Thr Ser Leu Gly Phe Ile Ile Gly 20 25 30
	Val Ser Val Val Gly Asn Leu Leu Ile Ser Ile Leu Leu Val Lys Asp 35 40 45
20	Lys Thr Leu His Arg Ala Pro Tyr Tyr Phe Leu Leu Asp Leu Cys Cys 50 55 60
	Ser Asp Ile Leu Arg Ser Ala Ile Cys Phe Pro Phe Val Phe Asn Ser 65 70 75 80
25	Val Lys Asn Gly Ser Thr Trp Thr Tyr Gly Thr Leu Thr Cys Lys Val $$85$$
	Ile Ala Phe Leu Gly Val Leu Ser Cys Phe His Thr Ala Phe Met Leu 100 105 110
	Phe Cys Ile Ser Val Thr Arg Tyr Leu Ala Ile Ala His His Arg Phe 115 120 125
30	Tyr Thr Lys Arg Leu Thr Phe Trp Thr Cys Leu Ala Val Ile Cys Met 130 135 140
	Val Trp Thr Leu Ser Val Ala Met Ala Phe Pro Pro Val Leu Asp Val 145 150 150

Gly Thr Tyr Ser Phe Ile Arg Glu Glu Asp Gln Cys Thr Phe Gln His

165 170 175 Arg Ser Phe Arg Ala Asn Asp Ser Leu Gly Phe Met Leu Leu Leu Ala 185 Leu Ile Leu Leu Ala Thr Gln Leu Val Tyr Leu Lys Leu Ile Phe Phe 200 5 Val His Asp Arg Arg Lys Met Lys Pro Val Gln Phe Val Ala Ala Val 210 215 Ser Gln Asn Trp Thr Phe His Gly Pro Gly Ala Ser Gly Gln Ala Ala 235 Ala Asn Trp Leu Ala Gly Phe Gly Arg Gly Pro Thr Pro Pro Thr Leu 10 Leu Gly Ile Arg Gln Asn Ala Asn Thr Thr Gly Arg Arg Arg Leu Leu 260 265 Val Leu Asp Glu Phe Lys Met Glu Lys Arg Ile Ser Arg Met Phe Tyr 280 15 Ile Met Thr Phe Leu Phe Leu Thr Leu Trp Gly Pro Tyr Leu Val Ala 295 290 Cys Tyr Trp Arg Val Phe Ala Arg Gly Pro Val Val Pro Gly Gly Phe Leu Thr Ala Ala Val Trp Met Ser Phe Ala Gln Ala Gly Ile Asn Pro 20 330 Phe Val Cys Ile Phe Ser Asn Arg Glu Leu Arg Arg Cys Phe Ser Thr 345 340 Thr Leu Leu Tyr Cys Arg Lys Ser Arg Leu Pro Arg Glu Pro Tyr Cys 360 2.5 Val Ile 370

- (30) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (2)
 - (ii) MOLECULE TYPE: DNA (genomic)
- 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GCGATCGCGG TGGCCCTGCC CGTGGTGTAC TCGCTGGTGG CGGCGGTCAG CATCCCGGGC AACCTCTTCT CTCTGTGGGT GCTGTGCCGG CGCATGGGGC CCAGATCCCC GTCGGTCATC TTCATGATCA ACCTGAGCGT CACGGACCTG ATGCTGGCCA GCGTGTTGCC TTTCCAAATC 240 TACTACCATT GCAACCGCCA CCACTGGGTA TTCGGGGTGC TGCTTTGCAA CGTGGTGACC 5 GTGGCCTTTT ACGCAAACAT GTATTCCAGC ATCCTCACCA TGACCTGTAT CAGCGTGGAG 360 CGCTTCCTGG GGGTCCTGTA CCCGCTCAGC TCCAAGCGCT GGCGCCGCCG TCGTTACGCG 420 GTGGCCGCGT GTGCAGGGAC CTGGCTGCTG CTCCTGACCG CCCTGTGCCC GCTGGCGCGC 480 ACCGATCTCA CCTACCCGGT GCACGCCCTG GGCATCATCA CCTGCTTCGA CGTCCTCAAG 540 TGGACGATGC TCCCCAGCGT GGCCATGTGG GCCGTGTTCC TCTTCACCAT CTTCATCCTG 600 10 CTGTTCCTCA TCCCGTTCGT GATCACCGTG GCTTGTTACA CGGCCACCAT CCTCAAGCTG TTGCGCACGG AGGAGGCGCA CGGCCGGGAG CAGCGGAGGC GCGCGGTGGG CCTGGCCGCG 720 GTGGTCTTGC TGGCCTTTGT CACCTGCTTC GCCCCCAACA ACTTCGTGCT CCTGGCGCAC 780 ATCGTGAGCC GCCTGTTCTA CGGCAAGAGC TACTACCACG TGTACAAGCT CACGCTGTGT 840 CTCAGCTGCC TCAACAACTG TCTGGACCCG TTTGTTTATT ACTTTGCGTC CCGGGAATTC 900 15 CAGCTGCGCC TGCGGGAATA TTTGGGCTGC CGCCGGGTGC CCAGAGACAC CCTGGACACG 960 CGCCGCGAGA GCCTCTTCTC CGCCAGGACC ACGTCCGTGC GCTCCGAGGC CGGTGCGCAC 1020 CCTGAAGGGA TGGAGGGAGC CACCAGGCCC GGCCTCCAGA GGCAGGAGAG TGTGTTCTGA 1080

- (31) INFORMATION FOR SEQ ID NO:30:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Met Gln Val Pro Asn Ser Thr Gly Pro Asn Asn Ala Thr Leu Gln Met 1 5 10 15

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu 20 25 30

30 Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu

	Cys	Arg 50	Arg	Met	Gly	Pro	Arg 55	Ser	Pro	Ser	Val	Ile 60	Phe	Met	Ile	Asn
5	Leu 65	Ser	Val	Thr	Asp	Leu 70	Met	Leu	Ala	Ser	Val 75	Leu	Pro	Phe	Gln	Ile 80
	Tyr	Tyr	His	Cys	Asn 85	Arg	His	His	Trp	Val 90	Phe	Gly	Val	Leu	Leu 95	Cys
	Asn	Val	Val	Thr 100	Val	Ala	Phe	Tyr	Ala 105	Asn	Met	Tyr	Ser	Ser 110	Ile	Leu
10	Thr	Met	Thr 115	Cys	Ile	Ser	Val	Glu 120	Arg	Phe	Leu	Gly	Val 125	Leu	Tyr	Pro
	Leu	Ser 130	Ser	Lys	Arg	Trp	Arg 135	Arg	Arg	Arg	Tyr	Ala 140	Val	Ala	Ala	Cys
15	Ala 145		Thr	Trp	Leu	Leu 150	Leu	Leu	Thr	Ala	Leu 155	Cys	Pro	Leu	Ala	Arg 160
	Thr	Asp	Leu	Thr	Tyr 165		Val	His	Ala	Leu 170		Ile	Ile	Thr	Cys 175	Phe
	Asp	Val	Leu	Lys 180	Trp	Thr	Met	Leu	Pro 185		Val	Ala	Met	Trp 190	Ala	Val
20	Phe	Leu	Phe 195		Ile	Phe	Ile	Leu 200		Phe	Leu	Ile	Pro 205	Phe	Val	Ile
	Thr	Val	Ala	Cys	Tyr	Thr	Ala 215		Ile	Leu	Lys	Leu 220	Leu	Arg	Thr	Glu
25	Glu 225		His	Gly	Arg	Glu 230		Arg	Arg	Arg	Ala 235		Gly	r Leu	Ala	Ala 240
	Val	. Val	Leu	Leu	Ala 245		val	Thi	Cys	250		Pro	Ası	a Asr	Phe 255	
	Leu	ı Leı	ı Ala	His 260		e Val	. Ser	Arg	265		туг	Gl _y	/ Lys	Ser 270		Ту
30	His	va:	1 Tyr 275		Leu	ı Thi	Leu	280		ı Sei	c Cys	s Let	1 Asi 28	n Asr	ı Cys	Le
	Asp	Pro 29	⊃ Ph∈	e Val	Ту	г Туг	Phe 295		a Ser	r Ar	g Glu	1 Phe	e Gla	n Lei	ı Arg	g Le

Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr

Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu

Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu 340 345 350

Gln Arg Gln Glu Ser Val Phe 355

- 5 (32) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1503 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- 10 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

	ATGGAGCGTC	CCTGGGAGGA	CAGCCCAGGC	CCGGAGGGGG	CAGCTGAGGG	CTCGCCTGTG	60
	CCAGTCGCCG	CCGGGGCGCG	CTCCGGTGCC	GCGGCGAGTG	GCACAGGCTG	GCAGCCATGG	120
15	GCTGAGTGCC	CGGGACCCAA	GGGGAGGGG	CAACTGCTGG	CGACCGCCGG	CCCTTTGCGT	180
	CGCTGGCCCG	CCCCCTCGCC	TGCCAGCTCC	AGCCCCGCCC	CCGGAGCGGC	GTCCGCTCAC	240
	TCGGTTCAAG	GCAGCGCGAC	TGCGGGTGGC	GCACGACCAG	GGCGCAGACC	TTGGGGCGCG	300
	CGGCCCATGG	AGTCGGGGCT	GCTGCGGCCG	GCGCCGGTGA	GCGAGGTCAT	CGTCCTGCAT	360
	TACAACTACA	CCGGCAAGCT	CCGCGGTGCG	AGCTACCAGC	CGGGTGCCGG	CCTGCGCGCC	420
20	GACGCCGTGG	TGTGCCTGGC	GGTGTGCGCC	TTCATCGTGC	TAGAGAATCT	AGCCGTGTTG	480
	TTGGTGCTCG	GACGCCACCC	GCGCTTCCAC	GCTCCCATGT	TCCTGCTCCT	GGGCAGCCTC	540
	ACGTTGTCGG	ATCTGCTGGC	AGGCGCCGCC	TACGCCGCCA	ACATCCTACT	GTCGGGGCCG	600
	CTCACGCTGA	AACTGTCCCC	CGCGCTCTGG	TTCGCACGGG	AGGGAGGCGT	CTTCGTGGCA	660
	CTCACTGCGT	CCGTGCTGAG	CCTCCTGGCC	ATCGCGCTGG	AGCGCAGCCT	CACCATGGCG	720
25	CGCAGGGGGC	CCGCGCCCGT	CTCCAGTCGG	GGGCGCACGC	TGGCGATGGC	AGCCGCGGCC	780
	TGGGGCGTGT	CGCTGCTCCT	CGGGCTCCTG	CCAGCGCTGG	GCTGGAATTG	CCTGGGTCGC	840
	CTGGACGCTT	GCTCCACTGT	CTTGCCGCTC	TACGCCAAGG	CCTACGTGCT	CTTCTGCGTG	900
	CTCGCCTTCG	TGGGCATCCT	GGCCGCGATC	TGTGCACTCT	ACGCGCGCAT	CTACTGCCAG	961
	GTACGCGCCA	ACGCGCGGCG	CCTGCCGGCA	CGGCCCGGGA	CTGCGGGGAC	CACCTCGACC	102
30	CGGGCGCGTC	GCAAGCCGCG	CTCTCTGGCC	TTGCTGCGCA	CGCTCAGCGT	GGTGCTCCTG	108

GCCTTTGTGG	CATGTTGGGG	сссстсттс	CTGCTGCTGT	TGCTCGACGT	GGCGTGCCCG	1140
GCGCGCACCT	GTCCTGTACT	CCTGCAGGCC	GATCCCTTCC	TGGGACTGGC	CATGGCCAAC	1200
TCACTTCTGA	ACCCCATCAT	CTACACGCTC	ACCAACCGCG	ACCTGCGCCA	CGCGCTCCTG	1260
CGCCTGGTCT	GCTGCGGACG	CCACTCCTGC	GGCAGAGACC	CGAGTGGCTC	CCAGCAGTCG	1320
GCGAGCGCGG	CTGAGGCTTC	CGGGGGCCTG	CGCCGCTGCC	TGCCCCCGGG	CCTTGATGGG	1380
AGCTTCAGCG	GCTCGGAGCG	CTCATCGCCC	CAGCGCGACG	GGCTGGACAC	CAGCGGCTCC	1440
ACAGGCAGCC	CCGGTGCACC	CACAGCCGCC	CGGACTCTGG	TATCAGAACC	GGCTGCAGAC	1500
TGA						150

- (33) INFORMATION FOR SEQ ID NO:32:
- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 500 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- 15 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met Glu Arg Pro Trp Glu Asp Ser Pro Gly Pro Glu Gly Ala Ala Glu

Gly Ser Pro Val Pro Val Ala Ala Gly Ala Arg Ser Gly Ala Ala Ala 20 \$20\$ 25 30

Ser Gly Thr Gly Trp Gln Pro Trp Ala Glu Cys Pro Gly Pro Lys Gly

Arg Gly Gln Leu Leu Ala Thr Ala Gly Pro Leu Arg Arg Trp Pro Ala

25 Pro Ser Pro Ala Ser Ser Ser Pro Ala Pro Gly Ala Ala Ser Ala His 65 70 75 80

Ser Val Gln Gly Ser Ala Thr Ala Gly Gly Ala Arg Pro Gly Arg Arg 85 90 95

Pro Trp Gly Ala Arg Pro Met Glu Ser Gly Leu Leu Arg Pro Ala Pro 30 \$105\$

Val Ser Glu Val Ile Val Leu His Tyr Asn Tyr Thr Gly Lys Leu Arg 115 120 120 125

Gly Ala Ser Tyr Gln Pro Gly Ala Gly Leu Arg Ala Asp Ala Val Val 130 135 140

Cys Leu Ala Val Cys Ala Phe Ile Val Leu Glu Asn Leu Ala Val Leu 155 145 150 Leu Val Leu Gly Arg His Pro Arg Phe His Ala Pro Met Phe Leu Leu 170 Leu Gly Ser Leu Thr Leu Ser Asp Leu Leu Ala Gly Ala Ala Tyr Ala 5 185 180 Ala Asn Ile Leu Leu Ser Gly Pro Leu Thr Leu Lys Leu Ser Pro Ala 200 Leu Trp Phe Ala Arg Glu Gly Gly Val Phe Val Ala Leu Thr Ala Ser 10 Val Leu Ser Leu Leu Ala Ile Ala Leu Glu Arg Ser Leu Thr Met Ala 235 230 Arg Arg Gly Pro Ala Pro Val Ser Ser Arg Gly Arg Thr Leu Ala Met 250 Ala Ala Ala Trp Gly Val Ser Leu Leu Gly Leu Leu Pro Ala 15 260 Leu Gly Trp Asn Cys Leu Gly Arg Leu Asp Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys Ala Tyr Val Leu Phe Cys Val Leu Ala Phe Val 20 Gly Ile Leu Ala Ala Ile Cys Ala Leu Tyr Ala Arg Ile Tyr Cys Gln 310 305 Val Arg Ala Asn Ala Arg Arg Leu Pro Ala Arg Pro Gly Thr Ala Gly 330 Thr Thr Ser Thr Arg Ala Arg Arg Lys Pro Arg Ser Leu Ala Leu Leu 25 340 Arg Thr Leu Ser Val Val Leu Leu Ala Phe Val Ala Cys Trp Gly Pro 360 Leu Phe Leu Leu Leu Leu Asp Val Ala Cys Pro Ala Arg Thr Cys 30 Pro Val Leu Leu Gln Ala Asp Pro Phe Leu Gly Leu Ala Met Ala Asn 385 390 Ser Leu Leu Asn Pro Ile Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg 410 His Ala Leu Leu Arg Leu Val Cys Cys Gly Arg His Ser Cys Gly Arg 35 420

Asp Pro Ser Gly Ser Gln Gln Ser Ala Ser Ala Ala Glu Ala Ser Gly

Ġ		
	2	
	1	
-	20.00	
5	'n	
· temp	1	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1997	Du,	1
-	Į.	
5		
	3	
******	4110	٩
******	50	4
Ť	×	
-	20 20	
1	ş	

		435		440		445		
	Gly Leu 450	Arg Arg Cy	s Leu Pro 455	Pro Gly	Leu Asp	Gly Ser 460	Phe Ser	Gly
5	Ser Glu 465	Arg Ser Se	r Pro Gln 470	Arg Asp	Gly Leu 475	Asp Thr	Ser Gly	Ser 480
	Thr Gly	Ser Pro Gl 48			Ala Arg 490	Thr Leu	Val Ser 495	Glu
	Pro Ala	Ala Asp 500						
10	(34) INFORMA	rion for se	Q ID NO:3	3:				
15	(A) (B) (C)	UENCE CHARA) LENGTH: 1) TYPE: nuc) STRANDEDN) TOPOLOGY:	029 base leic acid ESS: sing	pairs l				ş
	(ii) MOL	ECULE TYPE:	DNA (ger	omic)				
	(xi) SEQ	UENCE DESCR	RIPTION: S	EQ ID NO	:33:			
	ATGCAAGCCG T	CGACAATCT (CACCTCTGC	CCTGGGA	ACA CCAG	TCTGTG (CACCAGAGA	.C 60
	TACAAAATCA C	CCAGGTCCT	CTTCCCACT	CTCTACA	CTG TCCT	GTTTTT :	IGTTGGACT	T 120
20	ATCACAAATG G	CCTGGCGAT (BAGGATTTT	TTTCAAA	TCC GGAG	TAAATC	AAACTTTAT	T 180
	ATTTTTCTTA A	GAACACAGT (CATTTCTGA	r cttctca	TGA TTCT	GACTTT '	TCCATTCAA	A 240
	ATTCTTAGTG A	TGCCAAACT	eggaacagg:	A CCACTGA	GAA CTTT	TGTGTG	TCAAGTTAC	C 300
	TCCGTCATAT T	TTATTTCAC	AATGTATAT	C AGTATTT	CAT TCCT	GGGACT	GATAACTAT	rc 360
	GATCGCTACC A	GAAGACCAC	CAGGCCATT	r aaaacat	CCA ACCC	CAAAAA	TCTCTTGGC	G 420
25	GCTAAGATTC T	CTCTGTTGT	CATCTGGGC.	A TTCATGT	TCT TACT	CTCTTT	GCCTAACA	rg 480
	ATTCTGACCA A	ACAGGCAGCC	GAGAGACAA	g aatgtga	AGA AATO	CTCTTT	CCTTAAAT	CA 540
	GAGTTCGGTC T	FAGTCTGGCA	TGAAATAGT	A AATTACA	TCT GTC	AGTCAT	TTTCTGGA'	TT 600
	AATTTCTTAA T	TTGTTATTGT	ATGTTATAC	A CTCATTA	ACAA AAGA	ACTGTA	CCGGTCAT	AC 660
	GTAAGAACGA (GGGTGTAGG	TAAAGTCCC	C AGGAAAA	AAGG TGAA	ACGTCAA	AGTTTTCA	TT 720
30	ATCATTGCTG	TATTCTTTAT	TTGTTTTGT	T CCTTTCC	CATT TTG	CCGAAT	TCCTTACA	CC 780
	CTGAGCCAAA (CCCGGGATGT	CTTTGACTG	C ACTGCT	AAA ATA	CTCTGTT	CTATGTGA	AA 840

	GAGAGCACTO	TGTGG	TAAC	TTC	CTTA	TAA	GCAT	GCCT	GG A	TCCG	PTCA	r ct.	ATTT	TTTC		900
	CTTTGCAAGT	CCTTC	AGAAA	TTC	CTTG.	ATA	AGTA	TGCT	ga a	GTGC	CCCA	A TT	CTGC	AACA		960
	TCTCTGTCCC	C AGGAC	AATAG	GAA	AAAA	GAA	CAGG	ATGG	TG G	TGAC	CCAA	A TG	AAGA	GACT	1	020
	CCAATGTAA														1	029
5	(35) INFO	RMATION	FOR :	SEQ	ID N	0:34	:									
10		(A) LEI (B) TY: (C) ST: (D) TO:	NGTH: PE: a RANDE POLOG	342 mino DNES Y: n	ami aci S: ot r	no a d elev	cids									
	(xi)	SEQUENC	E DES	CRIP	TION	: SE	Q II	NO:	34:							
	Met (Gln Ala		Asp 5	Asn	Leu	Thr	Ser	Ala 10	Pro	Gly	Asn	Thr	Ser 15	Leu [.]	
15	Cys	Thr Arg	Asp 20	Tyr	Lys	Ile	Thr	Gln 25	Val	Leu	Phe	Pro	Leu 30	Leu	Tyr	
	Thr	Val Leu 35	Phe	Phe	Val	Gly	Leu 40	Ile	Thr	Asn	Gly	Leu 45	Ala	Met	Arg	
20		Phe Phe 50	Gln	Ile	Arg	Ser 55	Lys	Ser	Asn	Phe	Ile 60	Ile	Phe	Leu	Lys	
	Asn 65	Thr Val	Ile	Ser	Asp 70	Leu	Leu	Met	Ile	Leu 75	Thr	Phe	Pro	Phe	Lys 80	
	Ile	Leu Ser	Asp	Ala 85	Lys	Leu	Gly	Thr	Gly 90	Pro	Leu	Arg	Thr	Phe 95	Val	
25	Cys	Gln Val	Thr 100	ser	Val	Ile	Phe	Tyr 105	Phe	Thr	Met	Tyr	Ile 110	Ser	Ile	
	Ser	Phe Leu 115		Leu	Ile	Thr	1le 120	Asp	Arg	Tyr	Gln	Lys 125	Thr	Thr	Arg	
30	Pro	Phe Lys	Thr	Ser	Asn	Pro 135	Lys	Asn	Leu	Leu	Gly 140	Ala	Lys	Ile	Leu	
	Ser 145	Val Va	l Ile	Trp	Ala 150	Phe	Met	Phe	Leu	Leu 155	Ser	Leu	Pro	Asn	Met 160	
	Ile	Leu Th	r Asn	Arg 165	Gln	Pro	Arg	Asp	Lys 170	Asn	Val	Lys	Lys	Cys 175	Ser	
35	Phe	Leu Ly	s Ser	Glu	Phe	Gly	Leu	Val	Trp	His	Glu	Ile	Val	Asn	Tyr	

	-MANAGE	-MANAGE	-MANAGE
Pet 18 B	Short.	Short.	N 30 10 10 10 10
Carried Party	Court Street	Sand was Street	to See and See

					180					185					190			
		Ile	Cys	Gln 195	Val	Ile	Phe	Trp	Ile 200	Asn	Phe	Leu	Ile	Val 205	Ile	Val	Cys	
5		Tyr	Thr 210	Leu	Ile	Thr	Lys	Glu 215	Leu	Tyr	Arg	Ser	Tyr 220	Val	Arg	Thr	Arg	
		Gly 225	Val	Gly	Lys	Val	Pro 230	Arg	Lys	Lys	Val	Asn 235	Val	Lys	Val	Phe	Ile 240	
		Ile	Ile	Ala	Val	Phe 245	Phe	Ile	Cys	Phe	Val 250	Pro	Phe	His	Phe	Ala 255	Arg	
10		Ile	Pro	Tyr	Thr 260	Leu	Ser	Gln	Thr	Arg 265	Asp	Val	Phe	Asp	Cys 270	Thr	Ala	
		Glu	Asn	Thr 275	Leu	Phe	Tyr	Val	Lys 280	Glu	Ser	Thr	Leu	Trp 285	Leu	Thr	Ser	
15		Leu	Asn 290	Ala	Cys	Leu	Asp	Pro 295	Phe	Ile	Tyr	Phe	Phe 300	Leu	Cys	Lys	Ser :	
		Phe 305	Arg	Asn	Ser	Leu	Ile 310	Ser	Met	Leu	Lys	Cys 315	Pro	Asn	Ser	Ala	Thr 320	
		Ser	Leu	Ser	Gln	Asp 325	Asn	Arg	Lys	Lys	Glu 330	Gln	Asp	Gly	Gly	Asp 335	Pro	
20		Asn	Glu	Glu	Thr 340	Pro	Met											
	(36)	INF	ORMA	TION	FOR	SEQ	ID	NO:3	5:									
25		(i)	(A (B	UENC) LE) TY) ST) TO	NGTH PE: RAND	: 10 nucl EDNE	77 b eic SS:	ase acid sing	pair	s								
		(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic	:)								
		(xi)	SEÇ	UENC	E DE	SCRI	PTIO	N:S	EQ I	D NC	:35:							
30	ATGT	CGGT	CT G	CTAC	CGTC	c cc	CAGG	GAAC	GAG	ACAC	TGC	TGAG	CTGG	AA G	ACTT	cgcc	G	60
	GCCA	.CAGG	CA C	AGCC	TTCC	T GC	TGCT	'GGCG	GCG	CTGC	TGG	GGCT	GCCI	rgg C	AACG	GCTT	C	120

GTGGTGTGGA GCTTGGCGGG CTGGCGGCCT GCACGGGGG GACCGCTGGC GGCCACGCTT

GTGCTGCACC TGGCGCTGGC CGACGGCGCG GTGCTGCTGC TCACGCCGCT CTTTGTGGCC

TTCCTGACCC GGCAGGCCTG GCCGCTGGGC CAGGCGGGCT GCAAGGCGGT GTACTACGTG 300

180

1	100
1	Û
1997	Ü
	1
i	P.
	ij
1949	n
1016	U
3	
diam'r.	20
-	F
-	ung carl
	4
	100
0.000	al.

	TGCGCGCTCA	GCATGTACGC	CAGCGTGCTG	CTCACCGGCC	TGCTCAGCCT	GCAGCGCTGC	360
	CTCGCAGTCA	CCCGCCCCTT	CCTGGCGCCT	CGGCTGCGCA	GCCCGGCCCT	ggcccgccgc	420
	CTGCTGCTGG	CGGTCTGGCT	GGCCGCCCTG	TTGCTCGCCG	TCCCGGCCGC	CGTCTACCGC	480
	CACCTGTGGA	GGGACCGCGT	ATGCCAGCTG	TGCCACCCGT	CGCCGGTCCA	CGCCGCCGCC	540
5	CACCTGAGCC	TGGAGACTCT	GACCGCTTTC	GTGCTTCCTT	TCGGGCTGAT	GCTCGGCTGC	600
	TACAGCGTGA	CGCTGGCACG	GCTGCGGGGC	GCCCGCTGGG	GCTCCGGGCG	GCACGGGGCG	660
	CGGGTGGGCC	GGCTGGTGAG	CGCCATCGTG	CTTGCCTTCG	GCTTGCTCTG	GGCCCCCTAC	720
	CACGCAGTCA	ACCTTCTGCA	GGCGGTCGCA	GCGCTGGCTC	CACCGGAAGG	GGCCTTGGCG	780
	AAGCTGGGCG	GAGCCGGCCA	GGCGGCGCGA	GCGGGAACTA	CGGCCTTGGC	CTTCTTCAGT	840
10	TCTAGCGTCA	ACCCGGTGCT	CTACGTCTTC	ACCGCTGGAG	ATCTGCTGCC	CCGGGCAGGT	900
	CCCCGTTTCC	TCACGCGGCT	CTTCGAAGGC	TCTGGGGAGG	CCCGAGGGGG	CGGCCGCTCT	960
	AGGGAAGGGA	CCATGGAGCT	CCGAACTACC	CCTCAGCTGA	AAGTGGTGGG	GCAGGGCCGC	1020
	GGCAATGGAG	ACCCGGGGGG	TGGGATGGAG	AAGGACGGTC	CGGAATGGGA	CCTTTGA	1077

- (37) INFORMATION FOR SEQ ID NO:36:
- (i) SEQUENCE CHARACTERISTICS: 15
 - (A) LENGTH: 358 amino acids (B) TYPE: amino acid
 - (C) STRANDEDNESS:

 - (D) TOPOLOGY: not relevant
- 20 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Ser Val Cys Tyr Arg Pro Pro Gly Asn Glu Thr Leu Leu Ser Trp 10

Lys Thr Ser Arg Ala Thr Gly Thr Ala Phe Leu Leu Leu Ala Ala Leu 25

Leu Gly Leu Pro Gly Asn Gly Phe Val Val Trp Ser Leu Ala Gly Trp

Arg Pro Ala Arg Gly Arg Pro Leu Ala Ala Thr Leu Val Leu His Leu

Ala Leu Ala Asp Gly Ala Val Leu Leu Leu Thr Pro Leu Phe Val Ala 30 70

Phe Leu Thr Arg Gln Ala Trp Pro Leu Gly Gln Ala Gly Cys Lys Ala

						85					90					95	
	,	Val	Tyr	Tyr	Val 100	Cys	Ala	Leu	Ser	Met 105	Tyr	Ala	Ser	Val	Leu 110	Leu	Thr
5	•	Gly	Leu	Leu 115	Ser	Leu	Gln	Arg	Cys 120	Leu	Ala	Val	Thr	Arg 125	Pro	Phe	Leu
			Pro 130	Arg	Leu	Arg	Ser	Pro 135	Ala	Leu	Ala	Arg	Arg 140	Leu	Leu	Leu	Ala
		Val 145	Trp	Leu	Ala	Ala	Leu 150	Leu	Leu	Ala	Val	Pro 155	Ala	Ala	Val	Tyr	Arg 160
10		His	Leu	Trp	Arg	Asp 165	Arg	Val	Cys	Gln	Leu 170	Cys	His	Pro	Ser	Pro 175	Val
		His	Ala	Ala	Ala 180	His	Leu	Ser	Leu	Glu 185	Thr	Leu	Thr	Ala	Phe 190	Val	Leu
15		Pro	Phe	Gly 195	Leu	Met	Leu	Gly	Cys 200	Tyr	Ser	Val	Thr	Leu 205	Ala	Arg	Leu
		Arg	Gly 210	Ala	Arg	Trp	Gly	Ser 215	Gly	Arg	His	Gly	Ala 220	Arg	Val	Gly	Arg
		Leu 225	Val	Ser	Ala	Ile	Val 230	Leu	Ala	Phe	Gly	Leu 235	Leu	Trp	Ala	Pro	Tyr 240
20		His	Ala	Val	Asn	Leu 245	Leu	Gln	Ala	Val	Ala 250	Ala	Leu	Ala	Pro	Pro 255	Glu
		Gly	Ala	Leu	Ala 260	Lys	Leu	Gly	Gly	Ala 265		Gln	Ala	Ala	Arg 270		Gly
25		Thr	Thr	Ala 275	Leu	Ala	Phe	Phe	Ser 280	Ser	Ser	Val	Asn	Pro 285		Leu	Tyr
		Val	Phe 290		Ala	Gly	Asp	Leu 295		Pro	Arg	Ala	Gly 300		Arg	Phe	Leu
		Thr 305		Leu	Phe	Glu	Gly 310		Gly	Glu	Ala	Arg 315		Gly	Gly	Arg	Ser 320
30		Arg	Glu	Gly	Thr	Met 325		Leu	Arg	Thr	330		Gln	. Leu	Lys	Val 335	Val
		Gly	Gln	Gly	Arg 340		Asn	Gly	Asp	345		Gly	Gly	Met	350	Lys	Asp
35		Gly	Pro	355		Asp	Leu	ı									
	(20)	****	ODMA	m T ON	FOR	CEC	TD	NO.3	7.								

(38) INFORMATION FOR SEQ ID NO:37:

/ i \	CECTEMOR	CHARACTERISTICS:	

(A) LENGTH: 1005 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

	ATGCTGGGGA	TCATGGCATG	GAATGCAACT	TGCAAAAACT	GGCTGGCAGC	AGAGGCTGCC	60
	CTGGAAAAGT	ACTACCTTTC	CATTTTTTAT	GGGATTGAGT	TCGTTGTGGG	AGTCCTTGGA	120
10	AATACCATTG	TTGTTTACGG	CTACATCTTC	TCTCTGAAGA	ACTGGAACAG	CAGTAATATT	180
	TATCTCTTTA	ACCTCTCTGT	CTCTGACTTA	GCTTTTCTGT	GCACCCTCCC	CATGCTGATA	240
	AGGAGTTATG	CCAATGGAAA	CTGGATATAT	GGAGACGTGC	TCTGCATAAG	CAACCGATAT	300
	GTGCTTCATG	CCAACCTCTA	TACCAGCATT	CTCTTTCTCA	CTTTTATCAG	CATAGATCGA	. 360
	TACTTGATAA	TTAAGTATCC	TTTCCGAGAA	CACCTTCTGC	AAAAGAAAGA	GTTTGCTATT	420
15	TTAATCTCCT	TGGCCATTTG	GGTTTTAGTA	ACCTTAGAGT	TACTACCCAT	ACTTCCCCTT	480
	ATAAATCCTG	TTATAACTGA	CAATGGCACC	ACCTGTAATG	ATTTTGCAAG	TTCTGGAGAC	540
	CCCAACTACA	ACCTCATTTA	CAGCATGTGT	CTAACACTGT	TGGGGTTCCT	TATTCCTCTT	600
	TTTGTGATGT	GTTTCTTTTA	TTACAAGATT	GCTCTCTTCC	TAAAGCAGAG	GAATAGGCAG	660
	GTTGCTACTG	CTCTGCCCCT	TGAAAAGCCT	CTCAACTTGG	TCATCATGGC	AGTGGTAATC	720
20	TTCTCTGTGC	TTTTTACACC	CTATCACGTO	ATGCGGAATG	TGAGGATCGC	TTCACGCCTG	780
	GGGAGTTGG	AGCAGTATCA	GTGCACTCAC	GTCGTCATCA	ACTCCTTTT	CATTGTGACA	840
	CGGCCTTTGC	CCTTTCTGAA	CAGTGTCATO	AACCCTGTCT	TCTATTTTC	TTTGGGAGAT	900
	CACTTCAGG	ACATGCTGAT	GAATCAACTO	G AGACACAACT	TCAAATCCCT	TACATCCTTT	960
	AGCAGATGG	CTCATGAACT	CCTACTTTC	A TTCAGAGAAA	AGTGA		1005

25 (39) INFORMATION FOR SEQ ID NO:38:

30

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 334 amino acids

(B) TYPE: amino acid
(C) STRANDEDNESS:

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: protein

(xi) SEOUENCE DESCRIPTION: SEO ID NO:38: Met Leu Gly Ile Met Ala Trp Asn Ala Thr Cys Lys Asn Trp Leu Ala Ala Glu Ala Ala Leu Glu Lys Tyr Tyr Leu Ser Ile Phe Tyr Gly Ile 5 25 Glu Phe Val Val Gly Val Leu Gly Asn Thr Ile Val Val Tyr Gly Tyr Ile Phe Ser Leu Lys Asn Trp Asn Ser Ser Asn Ile Tyr Leu Phe Asn 55 10 Leu Ser Val Ser Asp Leu Ala Phe Leu Cys Thr Leu Pro Met Leu Ile Arg Ser Tyr Ala Asn Gly Asn Trp Ile Tyr Gly Asp Val Leu Cys Ile Ser Asn Arg Tyr Val Leu His Ala Asn Leu Tyr Thr Ser Ile Leu Phe 15 Leu Thr Phe Ile Ser Ile Asp Arg Tyr Leu Ile Ile Lys Tyr Pro Phe Arg Glu His Leu Leu Gln Lys Lys Glu Phe Ala Ile Leu Ile Ser Leu 135 Ala Ile Trp Val Leu Val Thr Leu Glu Leu Leu Pro Ile Leu Pro Leu 20 145 Ile Asn Pro Val Ile Thr Asp Asn Gly Thr Thr Cys Asn Asp Phe Ala Ser Ser Gly Asp Pro Asn Tyr Asn Leu Ile Tyr Ser Met Cys Leu Thr 25 Leu Leu Gly Phe Leu Ile Pro Leu Phe Val Met Cys Phe Phe Tyr Tyr 200 Lys Ile Ala Leu Phe Leu Lys Gln Arg Asn Arg Gln Val Ala Thr Ala 215 Leu Pro Leu Glu Lys Pro Leu Asn Leu Val Ile Met Ala Val Val Ile 30 230 225 Phe Ser Val Leu Phe Thr Pro Tyr His Val Met Arg Asn Val Arg Ile 250 Ala Ser Arg Leu Gly Ser Trp Lys Gln Tyr Gln Cys Thr Gln Val Val 265 35 260

Ile Asn Ser Phe Tyr Ile Val Thr Arg Pro Leu Ala Phe Leu Asn Ser

40.00		i
ė	1	1
*****	304	4
	S 304 1	-
-	Street,	ì
	20.00	1
****	40.00	ř
******		100
į		
	2	à,
	=	ė
-	il.	3
-	H	7
*		-
*****	34	9
	u	

10

15

20

25

30

			275					280					285				
	Val	Ile 290	Asn	Pro	Val	Phe	Tyr 295	Phe	Leu	Leu	Gly	Asp 300	His	Phe	Arg	Asp	
	Met 305	Leu	Met	Asn	Gln	Leu 310	Arg	His	Asn	Phe	Lys 315	Ser	Leu	Thr	Ser	Phe 320	
	Ser	Arg	Trp	Ala	His 325	Glu	Leu	Leu	Leu	Ser 330	Phe	Arg	Glu	Lys			
(40)	INF	ORMA	TION	FOR	SEQ	ID I	NO : 3	9:									
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1296 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)																	
	(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic)								
	(xi)	SEC	UENC	E DE	SCRI	PTIO	N:S	EQ I	D NO	:39:						1	
ATGC			TAAC								TGCT	gcgg	ga c	CACA	ACCT	G	60
ACGC	GGGA	GC P	GTTC	ATCG	C TC	TGTA	.CCGG	CTG	CGAC	CGC	TCGT	CTAC	AC C	CCAG	AGCT	G	120
CCGG	GACG	CG C	CAAG	CTGG	c cc	TCGT	GCTC	ACC	GGCG	TGC	TCAT	CTTC	GC C	CTGG	CGCT	C	180
TTTG	GCAA	TG C	TCTG	GTGT	т ст	ACGT	GGTG	ACC	CGCA	GCA	AGGC	CATG	cg c	ACCG	TCAC	:C	240
AACA	TCTT	TA 7	CTGC	TCCI	T GG	CGCI	CAGT	GAC	CTGC	TCA	TCAC	CTTC	TT C	TGCA	TTCC	:C	300
GTCA	CCAT	GC :	rccad	AACA	T TI	CCGA	CAAC	TGG	CTGG	GGG	GTGC	TTTC	AT T	TGCA	AGAT	G	360
GTGC	CATI	TG :	rccac	TCTA	C CG	CTGT	TGTG	ACA	GAAA	TGC	TCAC	TATO	AC C	TGCA	TTGC	T	420
GTGG	AAAG	GC I	ACCAC	GGAC	T TO	TGCF	TCCT	TTT	AAAA	TGA	AGTG	GCA	TA C	CACCA	ACCG	BA	480
AGGG	CTTT	CA (CAATO	CTAC	G TO	TGGT	CTGG	CTC	GTGG	CAG	TCAT	CGT	AGG 1	ATCAC	CCAT	:G	540
TGGC	ACGI	GC I	AACAA	ACTTO	a gi	TCA	ATAT	GAC	CTTCC	TAT	ATGA	AAA	GA 1	ACAC	TCTG	3C	600
TGCT	TAGA	AG :	AGTGO	BACC	AG CO	CTG	rgcac	CAC	BAAGI	ATCT	ACAC	CAC	CTT (CATCO	CTTGT	rc	660
ATC	TCTI	cc '	гссто	CCT	т та	ATGG:	GATO	CTT	TATTO	CTGT	ACAC	TAA	TAA	rggt:	ratga	A.A.	720
CTT	rggal	AA.	AGAA	AAGA	T TO	GGGI	ATGGT	TC	AGTG	CTTC	GAAG	TAT	rca '	rgga <i>i</i>	AAAG/	AA	780
ATG	CCA	AAA	TAGC	CAGG	AA G	AAGA	AACGA	A GC	rgtc	ATTA	TGA	rggT	GAC 2	AGTG	STGG	CT	840
CTC	rttgo	CTG	TGTG	CTGG	GC A	CCAT'	rcca:	r GT	TGTC	CATA	TGA:	rgat'	rga .	ATAC	AGTA	AT	900

TTTGAAAAGG AATATGATGA TGTCACAATC AAGATGATTT TTGCTATCGT GCAAATTATT 960

	GGATTTTC	CA AC	TCCA	TCTG	TAA	TCCC	ATT	GTCT.	ATGC.	АТ Т	TATG	AATG.	A AA	ACTT	CAAA	1	020
	AAAAATGTT	T TG	TCTG	CAGT	TTG	TTAT	TGC .	ATAG	TAAA	TA A	AACC'	TTCT	C TC	CAGC.	ACAA	1	.080
	AGGCATGG	IA A	TCAG	GAAT	TAC	AATG	ATG	CGGA	AGAA	AG C	AAAG'	TTTT	c cc	TCAG.	AGAG	1	140
	AATCCAGT	eg Ag	GAAA	CCAA	AGG	AGAA	GCA	TTCA	GTGA	TG G	CAAC.	ATTG.	A AG	TCAA	ATTG	1	200
5	TGTGAACA	GA CA	GAGG	AGAA	GAA	AAAG	CTC	AAAC	GACA	TC T	TGCT	CTCT	г та	GGTC	TGAA	1	260
	CTGGCTGA	GA AT	TCTC	CTTT	AGA	CAGT	GGG	CATT	AA							1	1296
	(41) INF	ORMAT	CION	FOR	SEQ	ID N	O:40	:									
10	(i)	(B)	TYP STF	CHA IGTH: PE: a RANDE POLOG	431 minc DNES	ami aci s:	.no a .d	cids									
	(ii)	MOLI	CULE	TYF	E: p	rote	in										
	(xi)	SEQU	JENCI	DES	CRIE	PTION	I: SE	Q II	NO:	40:							
15	Met 1	Gln	Ala	Leu	Asn 5	Ile	Thr	Pro	Glu	Gln 10	Phe	Ser	Arg	Leu	Leu 15	Arg	
	Asp	His	Asn	Leu 20	Thr	Arg	Glu	Gln	Phe 25	Ile	Ala	Leu	Tyr	Arg 30	Leu	Arg	
20	Pro	Leu	Val 35	Tyr	Thr	Pro	Glu	Leu 40	Pro	Gly	Arg	Ala	Lys 45	Leu	Ala	Leu	
	Val	Leu 50	Thr	Gly	Val	Leu	Ile 55	Phe	Ala	Leu	Ala	Leu 60	Phe	Gly	Asn	Ala	
	Leu 65	Val	Phe	Tyr	Val	Val 70	Thr	Arg	Ser	Lys	Ala 75	Met	Arg	Thr	Val	Thr 80	
25	Asr	ıle	Phe	Ile	Cys 85	Ser	Leu	Ala	Leu	Ser 90	Asp	Leu	Leu	Ile	Thr 95	Phe	
	Phe	Cys	Ile	Pro 100	Val	Thr	Met	Leu	Gln 105	Asn	Ile	Ser	Asp	Asn 110	Trp	Leu	
30	Gl	, Gly	Ala 115		Ile	Cys	Lys	Met 120	Val	Pro	Phe	Val	Gln 125	Ser	Thr	Ala	
	Val	l Val		Glu	Met	Leu	Thr 135	Met	Thr	Cys	Ile	Ala 140	Val	Glu	Arg	His	:
	Gli	ı Gly	Leu	Val		Pro		Lys			Trp		Tyr	Thr	Asn	Arg	,

145

111-005	•						- 11								171	LLIT
	Arg	Ala	Phe	Thr	Met 165	Leu	Gly	Val	Val	Trp 170	Leu	Val	Ala	Val	Ile 175	Val
	Gly	Ser	Pro	Met 180	Trp	His	Val	Gln	Gln 185	Leu	Glu	Ile	Lys	Tyr 190	Asp	Phe
5	Leu	Tyr	Glu 195	Lys	Glu	His	Ile	Cys 200	Сув	Leu	Glu	Glu	Trp 205	Thr	Ser	Pro
	Val	His 210	Gln	Lys	Ile	Tyr	Thr 215	Thr	Phe	Ile	Leu	Val 220	Ile	Leu	Phe	Leu
10	Leu 225	Pro	Leu	Met	Val	Met 230	Leu	Ile	Leu	Tyr	Ser 235	Lys	Ile	Gly	Tyr	Glu 240
	Leu	Trp	Ile	Lys	Lys 245	Arg	Val	Gly	Asp	Gly 250	Ser	Val	Leu	Arg	Thr 255	Ile
	His	Gly	Lys	Glu 260	Met	Ser	Lys	Ile	Ala 265	Arg	Lys	Lys	Lys	Arg 270	Ala	Val
15	Ile	Met	Met 275	Val	Thr	Val	Val	Ala 280	Leu	Phe	Ala	Val	Сув 285	Trp	Ala	Pro
	Phe	His 290	Val	Val	His	Met	Met 295	Ile	Glu	Tyr	Ser	Asn 300	Phe	Glu	Lys	Glu
20	Tyr 305	Asp	Asp	Val	Thr	Ile 310	Lys	Met	Ile	Phe	Ala 315	Ile	Val	Gln	Ile	Ile 320
	Gly	Phe	Ser	Asn	Ser 325		Cys	Asn	Pro	11e 330		Tyr	Ala	Phe	Met 335	Asn
	Glu	Asn	Phe	Lys 340		Asn	Val	Leu	Ser 345		Val	Сув	Tyr	Cys 350	Ile	Val
25	Asn	Lys	Thr 355		Ser	Pro	Ala	Gln 360		His	Gly	Asn	365	Gly	Ile	Thr
	Met	Met 370		Lys	Lys	Ala	Lys 375		Ser	Leu	Arg	380	Asn	Pro	Val	Glu
30	Glu 385		Lys	Gly	Glu	Ala 390		Ser	Asp	Gly	395		e Glu	ı Val	Lys	Leu 400
	Cys	Glu	Gln	Thr	Glu 405		Lys	Lys	Lys	410	Lys	Arg	, His	Leu	415	Leu
	Phe	Arg	Ser	Gl: 420		ı Ala	Glu	Asr	425		Let	ı Asp	Se:	Gly 430	/ His	1

- 35 (42) INFORMATION FOR SEQ ID NO:41:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 24 base pairs

(iv) ANTI-SENSE: YES

13

7

100 mm

ARE	N-0054 - 112 - PAT	ENT
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
	TGTGGATCCT GCTGTCAAAG GTCCCATTCC GG	32
	(46) INFORMATION FOR SEQ ID NO:45:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
	TCACAATGCT AGGTGTGGTC	20
	(47) INFORMATION FOR SEQ ID NO:46:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
	TGCATAGACA ATGGGATTAC AG	22
	(48) INFORMATION FOR SEQ ID NO:47:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 511 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
	TCACAATGCT AGGTGTGGTC TGGCTGGTGG CAGTCATCGT AGGATCACCC ATGTGGCACG	60
	TGCAACAACT TGAGATCAAA TATGACTTCC TATATGAAAA GGAACACATC TGCTGCTTAG	120

ARE	N-0054 - 113 - PATE	NT							
	AAGAGTGGAC CAGCCCTGTG CACCAGAAGA TCTACACCAC CTTCATCCTT GTCATCCTCT	180							
	TCCTCCTGCC TCTTATGGTG ATGCTTATTC TGTACGTAAA ATTGGTTATG AACTTTGGAT	240							
	AAAGAAAAGA GTTGGGGATG GTTCAGTGCT TCGAACTATT CATGGAAAAG AAATGTCCAA	300							
	AATAGCCAGG AAGAAGAAAC GAGCTGTCAT TATGATGGTG ACAGTGGTGG CTCTCTTTGC	360							
5	TGTGTGCTGG GCACCATTCC ATGTTGTCCA TATGATGATT GAATACAGTA ATTTTGAAAA	420							
	GGAATATGAT GATGTCACAA TCAAGATGAT TTTTGCTATC GTGCAAATTA TTGGATTTTC	480							
	CAACTCCATC TGTAATCCCA TTGTCTATGC A	511							
	(49) INFORMATION FOR SEQ ID NO:48:								
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear								
	(ii) MOLECULE TYPE: DNA (genomic)								
15	(iv) ANTI-SENSE: NO								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:								
	CTGCTTAGAA GAGTGGACCA G	21							
	(50) INFORMATION FOR SEQ ID NO:49:								
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear								
	(ii) MOLECULE TYPE: DNA (genomic)								
25	(iv) ANTI-SENSE: NO								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:								
	CTGTGCACCA GAAGATCTAC AC	22							
	(51) INFORMATION FOR SEQ ID NO:50:								
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear								

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: YES
(iv) ANTI-SENSE: YES

10

10

10

1 20

171

13

10	(iv)	ANTI-SENSE: YES
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:54
	GTGATGAG	CA GGTCACTGAG CGCCAAG
	(56) INFO	DRMATION FOR SEQ ID NO:55:
15	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: DNA (genomic)
20	(iv)	ANTI-SENSE: NO
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:55
	GCAATGCA	GG CGCTTAACAT TAC
	(57) INF	ORMATION FOR SEQ ID NO:56:
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

(iv) ANTI-SENSE: YES

30

27

27

(61) INFORMATION FOR SEQ ID NO:60:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs

- 116 -

PATENT

AREN-0054

BYEZED

L. 1.1 12 6.2

30

D

in IU

1

13 119

13 1

(64) INFORMATION FOR SEQ ID NO:63:

CCTGATTCAT TTAGGTGAGA TTGAGAC

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
	CCCAAGCTTC CCCAGGTGTA TTTGAT	26
	(3) INFORMATION FOR SEQ ID NO:63:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
	GTTGGATCCA CATAATGCAT TTTCTC	26
	(66) INFORMATION FOR SEQ ID NO:65:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
	ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCCAAA	60
	GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATACAGTAT CATCTTTGTG	120
	GTGGGAATAT TTGGAAACAG CTTGGTGGTG ATAGTCATTT ACTTTTATAT GAAGCTGAAG	180
	ACTGTGGCCA GTGTTTTCT TTTGAATTTA GCACTGGCTG ACTTATGCTT TTTACTGACT	240
25	TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTTGG CAATTACCTA	300
	TGTAAGATTG CTTCAGCCAG CGTCAGTTTC AACCTGTACG CTAGTGTGTT TCTACTCACG	360
	TGTCTCAGCA TTGATCGATA CCTGGCTATT GTTCACCCAA TGAAGTCCCG CCTTCGACGC	420
	ACAATGCTTG TAGCCAAAGT CACCTGCATC ATCATTTGGC TGCTGGCAGG CTTGGCCAGT	480
	TTGCCAGCTA TAATCCATCG AAATGTATTT TTCATTGAGA ACACCAATAT TACAGTTTGT	540
20	TOTAL AND THE ANALYSIS AND THE CARCE CTTCCOATAG GCCTGGGCCT GACCAAAAAT	600

30

ATACTGGGTT	TCCTGTTTCC	TTTTCTGATC	ATTCTTACAA	GTTATACTCT	TATTTGGAAG	660
GCCCTAAAGA	AGGCTTATGA	AATTCAGAAG	AACAAACCAA	GAAATGATGA	TATTTTTAAG	720
ATAATTATGG	CAATTGTGCT	TTTCTTTTTC	TTTTCCTGGA	TTCCCCACCA	AATATTCACT	780
TTTCTGGATG	TATTGATTCA	ACTAGGCATC	ATACGTGACT	GTAGAATTGC	AGATATTGTG	840
GACACGGCCA	TGCCTATCAC	CATTTGTATA	GCTTATTTTA	ACAATTGCCT	GAATCCTCTT	900
TTTTATGGCT	TTCTGGGGAA	AAAATTTAAA	AGATATTTTC	TCCAGCTTCT	AAAATATATT	960
CCCCCAAAAG	CCAAATCCCA	CTCAAACCTT	TCAACAAAAA	TGAGCACGCT	TTCCTACCGC	1020
CCCTCAGATA	ATGTAAGCTC	ATCCACCAAG	AAGCCTGCAC	CATGTTTTGA	GGTTGAGTGA	1080

- (67) INFORMATION FOR SEQ ID NO:66:
- 10 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- 15 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp

Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$

Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu 35 40 45

Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser 50 $$

Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr 65 70 70 75 80

Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe 85 90 95

Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Asn Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$

Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp Arg Tyr Leu 115 120 125

Ala Ile Val His Pro Met Lys Ser Arg Leu Arg Arg Thr Met Leu Val

135 140 130 Ala Lys Val Thr Cys Ile Ile Ile Trp Leu Leu Ala Gly Leu Ala Ser 145 Leu Pro Ala Ile Ile His Arg Asn Val Phe Phe Ile Glu Asn Thr Asn 170 165 Ile Thr Val Cys Ala Phe His Tyr Glu Ser Gln Asn Ser Thr Leu Pro Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe Leu Ile Ile Leu Thr Ser Tyr Thr Leu Ile Trp Lys Ala Leu Lys Lys 10 215 Ala Tyr Glu Ile Gln Lys Asn Lys Pro Arg Asn Asp Asp Ile Phe Lys 230 Ile Ile Met Ala Ile Val Leu Phe Phe Phe Phe Ser Trp Ile Pro His 250 15 Gln Ile Phe Thr Phe Leu Asp Val Leu Ile Gln Leu Gly Ile Ile Arg Asp Cys Arg Ile Ala Asp Ile Val Asp Thr Ala Met Pro Ile Thr Ile Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly Phe 20 295 Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr Ile 305 Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser Thr 25 325 Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys Pro 350 345 Ala Pro Cys Phe Glu Val Glu 355

30 (68) INFORMATION FOR SEQ ID NO:67:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

CCTGGATCCT TATCCCATCG TCTTCACGTT AGC

30 (72) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

- 121 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

ACCATGGGCA GCCCCTGGAA CGGCAGC

PATENT

33

27

AREN-0054

TO

10

(D) TOPOLOGY: linear

	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
5	CTGGAATTCT CCTGCCAGCA TGGTGA	
J	26	
	(73) INFORMATION FOR SEQ ID NO:72:	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: YES	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
	GCAGGATCCT ATATTGCGTG CTCTGTCCCC 30	
	(74) INFORMATION FOR SEQ ID NO:73:	
20	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 999 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(21) 10220022 11121 2111 (3222222)	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
	ATGGTGAACT CCACCCACCG TGGGATGCAC ACTTCTCTGC ACCTCTGGAA CCGCAGCAGT	60
	TACAGACTGC ACAGCAATGC CAGTGAGTCC CTTGGAAAAG GCTACTCTGA TGGAGGGTGC	120
	TACGAGCAAC TTTTTGTCTC TCCTGAGGTG TTTGTGACTC TGGGTGTCAT CAGCTTGTTG	180
	GAGAATATCT TAGTGATTGT GGCAATAGCC AAGAACAAGA ATCTGCATTC ACCCATGTAC	240
30	TTTTTCATCT GCAGCTTGGC TGTGGCTGAT ATGCTGGTGA GCGTTTCAAA TGGATCAGAA	30
	ACCATTATCA TCACCCTATT AAACAGTACA GATACGGATG CACAGAGTTT CACAGTGAAT	36
	ATTCATAATC TCATTCACTC GCTGATCTGT AGCTCCTTGC TTGCATCCAT TTGCAGCCTG	42

13
10
(13
194
()
iu
171
Ш
.5
1 30
171
1.5
1 80
di

	CTTTCAATTG	CAGTGGACAG	GTACTTTACT	ATCTTCTATG	CTCTCCAGTA	CCATAACATT	480
	ATGACAGTTA	AGCGGGTTGG	GATCAGCATA	AGTTGTATCT	GGGCAGCTTG	CACGGTTTCA	540
	GGCATTTTGT	TCATCATTTA	CTCAGATAGT	AGTGCTGTCA	TCATCTGCCT	CATCACCATG	600
	TTCTTCACCA	TGCTGGCTCT	CATGGCTTCT	CTCTATGTCC	ACATGTTCCT	GATGGCCAGG	660
5	CTTCACATTA	AGAGGATTGC	TGTCCTCCCC	GGCACTGGTG	CCATCCGCCA	AGGTGCCAAT	720
	ATGAAGGGAG	CGATTACCTT	GACCATCCTG	ATTGGCGTCT	TTGTTGTCTG	CTGGGCCCCA	780
	TTCTTCCTCC	ACTTAATATT	CTACATCTCT	TGTCCTCAGA	ATCCATATTG	TGTGTGCTTC	840
	ATGTCTCACT	TTAACTTGTA	TCTCATACTG	ATCATGTGTA	ATTCAATCAT	CGATCCTCTG	900
	ATTTATGCAC	TCCGGAGTCA	AGAACTGAGG	AAAACCTTCA	AAGAGATCAT	CTGTTGCTAT	960
n	CCCCTGGGAG	GCCTTTGTGA	CTTGTCTAGC	AGATATTAA			999

- (75) INFORMATION FOR SEQ ID NO:74:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 332 amino acids
 - (B) TYPE: amino acid
- 15 (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:
- Met Val Asn Ser Thr His Arg Gly Met His Thr Ser Leu His Leu Trp 20 1 5 10 15

Asn Arg Ser Ser Tyr Arg Leu His Ser Asn Ala Ser Glu Ser Leu Gly \$20\$

Lys Gly Tyr Ser Asp Gly Gly Cys Tyr Glu Gln Leu Phe Val Ser Pro \$35\$

25 Glu Val Phe Val Thr Leu Gly Val Ile Ser Leu Leu Glu Asn Ile Leu 50 55 60

Val Ile Val Ala Ile Ala Lys Asn Lys Asn Leu His Ser Pro Met Tyr 65 70 75 80

Phe Phe Ile Cys Ser Leu Ala Val Ala Asp Met Leu Val Ser Val Ser 85 90 95

As nGly Ser Glu Thr Ile Ile Ile Thr Leu Leu As nSer Thr Asp Thr 100 \$105\$

Asp Ala Gln Ser Phe Thr Val Asn Ile Asp Asn Val Ile Asp Ser Val

115 120 125 Ile Cys Ser Ser Leu Leu Ala Ser Ile Cys Ser Leu Leu Ser Ile Ala 130 135 Val Asp Arg Tyr Phe Thr Ile Phe Tyr Ala Leu Gln Tyr His Asn Ile 5 155 Met Thr Val Lys Arg Val Gly Ile Ser Ile Ser Cys Ile Trp Ala Ala 165 170 Cys Thr Val Ser Gly Ile Leu Phe Ile Ile Tyr Ser Asp Ser Ser Ala 185 10 Val Ile Ile Cys Leu Ile Thr Met Phe Phe Thr Met Leu Ala Leu Met 200 Ala Ser Leu Tvr Val His Met Phe Leu Met Ala Arg Leu His Ile Lys Arg Ile Ala Val Leu Pro Gly Thr Gly Ala Ile Arg Gln Gly Ala Asn 15 Met Lys Gly Ala Ile Thr Leu Thr Ile Leu Ile Gly Val Phe Val Val 255 245 250 Cys Trp Ala Pro Phe Phe Leu His Leu Ile Phe Tyr Ile Ser Cys Pro 20 Gln Asn Pro Tyr Cys Val Cys Phe Met Ser His Phe Asn Leu Tyr Leu 280 Ile Leu Ile Met Cys Asn Ser Ile Ile Asp Pro Leu Ile Tyr Ala Leu 290 Arg Ser Gln Glu Leu Arg Lys Thr Phe Lys Glu Ile Ile Cys Cys Tyr 25 310 Pro Leu Gly Gly Leu Cys Asp Leu Ser Ser Arg Tyr

330

(76) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 32 base pairs

325

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

CCGAAGCTTC GAGCTGAGTA AGGCGGCGGG CT

	(77) INFORMATION FOR SEQ ID NO:76:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
	GTGGAATTCA TTTGCCCTGC CTCAACCCCC A	31
10	(78) INFORMATION FOR SEQ ID NO:77:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1344 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
	ATGGAGCTGC TAAAGCTGAA CCGGAGCGTG CAGGGAACCG GACCCGGGCC GGGGGCTTCC	60
	CTGTGCCGCC CGGGGGCGCC TCTCCTCAAC AGCAGCAGTG TGGGCAACCT CAGCTGCGAG	120
20	CCCCCTCGCA TTCGCGGAGC CGGGACACGA GAATTGGAGC TGGCCATTAG AATCACTCTT	180
	TACGCAGTGA TCTTCCTGAT GAGCGTTGGA GGAAATATGC TCATCATCGT GGTCCTGGGA	240
	CTGAGCCGCC GCCTGAGGAC TGTCACCAAT GCCTTCCTCC TCTCACTGGC AGTCAGCGAC	300
	CTCCTGCTGG CTGTGGCTTG CATGCCCTTC ACCCTCCTGC CCAATCTCAT GGGCACATTC	360
	ATCTTTGGCA CCGTCATCTG CAAGGCGGTT TCCTACCTCA TGGGGGTGTC TGTGAGTGTG	420
25	TCCACGCTAA GCCTCGTGGC CATCGCACTG GAGCGATATA GCGCCATCTG CCGACCACTG	480
	CAGGCACGAG TGTGGCAGAC GCGCTCCCAC GCGGCTCGCG TGATTGTAGC CACGTGGCTG	540
	CTGTCCGGAC TACTCATGGT GCCCTACCCC GTGTACACTG TCGTGCAACC AGTGGGGCCT	600
	CGTGTGCTGC AGTGCGTGCA TCGCTGGCCC AGTGCGCGGG TCCGCCAGAC CTGGTCCGTA	660
	CTGCTGCTTC TGCTCTTGTT CTTCATCCCA GGTGTGGTTA TGGCCGTGGC CTACGGGCTT	720
30	ATCTCTCGCG AGCTCTACTT AGGGCTTCGC TTTGACGGCG ACAGTGACAG CGACAGCCAA	780
	AGCAGGGTCC GAAACCAAGG CGGGCTGCCA GGGGCTGTTC ACCAGAACGG GCGTTGCCGG	840

15

CCTGAGACTG	GCGCGGTTGG	CAAAGACAGC	GATGGCTGCT	ACGTGCAACT	TCCACGTTCC	900
CGGCCTGCCC	TGGAGCTGAC	GGCGCTGACG	GCTCCTGGGC	CGGGATCCGG	CTCCCGGCCC	960
ACCCAGGCCA	AGCTGCTGGC	TAAGAAGCGC	GTGGTGCGAA	TGTTGCTGGT	GATCGTTGTG	1020
CTTTTTTTC	TGTGTTGGTT	GCCAGTTTAT	AGTGCCAACA	CGTGGCGCGC	CTTTGATGGC	108
CCGGGTGCAC	ACCGAGCACT	CTCGGGTGCT	CCTATCTCCT	TCATTCACTT	GCTGAGCTAC	114
GCCTCGGCCT	GTGTCAACCC	CCTGGTCTAC	TGCTTCATGC	ACCGTCGCTT	TCGCCAGGCC	120
TGCCTGGAAA	CTTGCGCTCG	CTGCTGCCCC	CGGCCTCCAC	GAGCTCGCCC	CAGGGCTCTT	126
CCCGATGAGG	ACCCTCCCAC	TCCCTCCATT	GCTTCGCTGT	CCAGGCTTAG	CTACACCACC	132
A TICA CCA CA C	TGGGCCCTGG	CTGA				134

- 10 (79) INFORMATION FOR SEQ ID NO:78:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 447 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

Met Glu Leu Leu Lys Leu Asn Arg Ser Val Gln Gly Thr Gly Pro Gly

- 20 Pro Gly Ala Ser Leu Cys Arg Pro Gly Ala Pro Leu Leu Asn Ser Ser 20 25 30
 - Ser Val Gly Asn Leu Ser Cys Glu Pro Pro Arg Ile Arg Gly Ala Gly 35 40 45
- Thr Arg Glu Leu Glu Leu Ala Ile Arg Ile Thr Leu Tyr Ala Val Ile 55 50 60
 - Phe Leu Met Ser Val Gly Gly Asn Met Leu Ile Ile Val Val Leu Gly 65 70 75 80
 - Leu Ser Arg Arg Leu Arg Thr Val Thr Asn Ala Phe Leu Leu Ser Leu 85 90 95
- 30 Ala Val Ser Asp Leu Leu Leu Ala Val Ala Cys Met Pro Phe Thr Leu 100 105 110
 - Leu Pro Asn Leu Met Gly Thr Phe Ile Phe Gly Thr Val Ile Cys Lys 115 120 125

REN-005	•						- 12	, -								
	Ala	Val 130	Ser	Tyr	Leu		Gly 135	Val	Ser	Val		Val 140	Ser	Thr	Leu	Ser
	Leu 145	Val	Ala	Ile		Leu 150	Glu	Arg	Tyr	Ser	Ala 155	Ile	Cys	Arg	Pro	Leu 160
5	Gln	Ala	Arg	Val	Trp 165	Gln	Thr	Arg	Ser	His 170	Ala	Ala	Arg	Val	Ile 175	Val
	Ala	Thr	Trp	Leu 180	Leu	Ser	Gly	Leu	Leu 185	Met	Val	Pro	Tyr	Pro 190	Val	Tyr
10	Thr	Val	Val 195	Gln	Pro	Val	Gly	Pro 200	Arg	Val	Leu	Gln	Cys 205	Val	His	Arg
	Trp	Pro 210	Ser	Ala	Arg	Val	Arg 215	Gln	Thr	Trp	Ser	Val 220	Leu	Leu	Leu	Leu
	Leu 225		Phe	Phe	Ile	Pro 230	Gly	Val	Val	Met	Ala 235	Val	Ala	Tyr	Gly	Leu 240
15	Ile	Ser	Arg	Glu	Leu 245	Tyr	Leu	Gly	Leu	Arg 250	Phe	Asp	Gly	Asp	Ser 255	Asp
	Ser	Asp	Ser	Gln 260	Ser	Arg	Val	Arg	Asn 265		Gly	Gly	Leu	Pro 270	Gly	Ala
20	Val	His	Gln 275	Asn	Gly	Arg	Cys	Arg 280	Pro	Glu	Thr	Gly	Ala 285	Val	Gly	Lys
	Asp	Ser 290		Gly	Cys	Tyr	Val 295	Gln	Leu	Pro	Arg	Ser 300	Arg	Pro	Ala	Leu
	Glu 305		Thr	Ala	Leu	Thr 310		Pro	Gly	Pro	Gly 315	Ser	Gly	Ser	Arg	Pro 320
25	Thr	Glr	Ala	Lys	Leu 325		Ala	Lys	Lys	330	Val	Val	. Arg	Met	Leu 335	Leu
	Va]	. Ile	val	. Val		Phe	Phe	Leu	Cys 345		Leu	Pro	val	Tyr 350	Ser	Ala
30	Asr	Thi	7rp		Ala	Phe	Asp	Gly 360	Pro	Gly	r Ala	His	365	Ala	Leu	Ser
	Va:	l Ala 370		Ile	Ser	Phe	375		Let	ı Let	ı Seı	Ty:	c Ala	s Ser	Ala	Cys
	Va:		n Pro) Leu	val	Tyr 390	Cys	Phe	Me1	t His	399	g Arg	g Phe	e Arg	g Gli	Ala 400
35	Cy	s Le	u Glu	ı Thi	Cys 405	a Ala	a Ar	g Cys	cy:	s Pro	o Arg	g Pro	o Pro	o Arg	41	a Arg

Pro Arg Ala Leu Pro Asp Glu Asp Pro Pro Thr Pro Ser Ile Ala Ser

420 425 430 Leu Ser Arg Leu Ser Tyr Thr Thr Ile Ser Thr Leu Gly Pro Gly 435 440 (80) INFORMATION FOR SEQ ID NO:79: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79: 30 TGCAAGCTTA AAAAGGAAAA AATGAACAGC (81) INFORMATION FOR SEQ ID NO:80: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs 15 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80: 20 30 TAAGGATCCC TTCCCTTCAA AACATCCTTG (82) INFORMATION FOR SEQ ID NO:81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1014 base pairs (B) TYPE: nucleic acid 25 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81: 30 ATGAACAGCA CATGTATTGA AGAACAGCAT GACCTGGATC ACTATTTGTT TCCCATTGTT 60 TACATCTTTG TGATTATAGT CAGCATTCCA GCCAATATTG GATCTCTGTG TGTGTCTTTC 120 CTGCAACCCA AGAAGGAAAG TGAACTAGGA ATTTACCTCT TCAGTTTGTC ACTATCAGAT 180

TTACTCTATG CATTAACTCT CCCTTTATGG ATTGATTATA CTTGGAATAA AGACAACTGG

	ACTTTCTCTC	CTGCCTTGTG	CAAAGGGAGT	GCTTTTCTCA	TGTACATGAA	GTTTTACAGC	300
	AGCACAGCAT	TCCTCACCTG	CATTGCCGTT	GATCGGTATT	TGGCTGTTGT	CTACCCTTTG	360
	AAGTTTTTT	TCCTAAGGAC	AAGAAGAATT	GCACTCATGG	TCAGCCTGTC	CATCTGGATA	420
	TTGGAAACCA	TCTTCAATGC	TGTCATGTTG	TGGGAAGATG	AAACAGTTGT	TGAATATTGC	480
5	GATGCCGAAA	AGTCTAATTT	TACTTTATGC	TATGACAAAT	ACCCTTTAGA	GAAATGGCAA	540
	ATCAACCTCA	ACTTGTTCAG	GACGTGTACA	GGCTATGCAA	TACCTTTGGT	CACCATCCTG	600
	ATCTGTAACC	GGAAAGTCTA	CCAAGCTGTG	CGGCACAATA	AAGCCACGGA	AAACAAGGAA	660
	AAGAAGAGAA	TCATAAAACT	ACTTGTCAGC	ATCACAGTTA	CTTTTGTCTT	ATGCTTTACT	720
	CCCTTTCATG	TGATGTTGCT	GATTCGCTGC	ATTTTAGAGC	ATGCTGTGAA	CTTCGAAGAC	780
10	CACAGCAATT	CTGGGAAGCG	AACTTACACA	ATGTATAGAA	TCACGGTTGC	ATTAACAAGT	840
	TTAAATTGTG	TTGCTGATCC	AATTCTGTAC	TGTTTTGTTA	CCGAAACAGG	AAGATATGAT	900
	ATGTGGAATA	TATTAAAATT	CTGCACTGGG	AGGTGTAATA	CATCACAAAG	ACAAAGAAAA	960
	CGCATACTTT	CTGTGTCTAC	AAAAGATACT	ATGGAATTAG	AGGTCCTTGA	. GTAG	1014

- (83) INFORMATION FOR SEQ ID NO:82:
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 337 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - 20 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:
 - Met Asn Ser Thr Cys Ile Glu Glu Gln His Asp Leu Asp His Tyr Leu 1 5 10 15
- Phe Pro Ile Val Tyr Ile Phe Val Ile Ile Val Ser Ile Pro Ala Asn $25 \hspace{1.5cm} 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$
 - Ile Gly Ser Leu Cys Val Ser Phe Leu Gln Pro Lys Lys Glu Ser Glu 35 40 45
 - Leu Gly Ile Tyr Leu Phe Ser Leu Ser Leu Ser Asp Leu Leu Tyr Ala 50 $\,$
- 30 Leu Thr Leu Pro Leu Trp Ile Asp Tyr Thr Trp Asn Lys Asp Asn Trp 65 70 75 80

Thr Phe Ser Pro Ala Leu Cys Lys Gly Ser Ala Phe Leu Met Tyr Met

85 90 95 Lys Phe Tyr Ser Ser Thr Ala Phe Leu Thr Cys Ile Ala Val Asp Arg Tyr Leu Ala Val Val Tyr Pro Leu Lys Phe Phe Phe Leu Arg Thr Arg 5 120 Arg Ile Ala Leu Met Val Ser Leu Ser Ile Trp Ile Leu Glu Thr Ile 135 130 Phe Asn Ala Val Met Leu Trp Glu Asp Glu Thr Val Val Glu Tyr Cys Asp Ala Glu Lys Ser Asn Phe Thr Leu Cys Tyr Asp Lys Tyr Pro Leu 10 165 Glu Lys Trp Gln Ile Asn Leu Asn Leu Phe Arg Thr Cys Thr Gly Tyr 185 Ala Ile Pro Leu Val Thr Ile Leu Ile Cys Asn Arg Lys Val Tyr Gln 15 Ala Val Arg His Asn Lys Ala Thr Glu Asn Lys Glu Lys Lys Arg Ile 215 210 Ile Lys Leu Leu Val Ser Ile Thr Val Thr Phe Val Leu Cys Phe Thr Pro Phe His Val Met Leu Leu Ile Arg Cys Ile Leu Glu His Ala Val 20 Asn Phe Glu Asp His Ser Asn Ser Gly Lys Arg Thr Tyr Thr Met Tyr 265 Arg Ile Thr Val Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile 280 25 Leu Tyr Cys Phe Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile 290 Leu Lys Phe Cys Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys 315 305 Arg Ile Leu Ser Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu 30 325 330

(84) INFORMATION FOR SEQ ID NO:83:

35 (i) SEQUENCE CHARACTERISTICS:

Glu

(A) LENGTH: 40 base pairs

(B) TYPE: nucleic acid

1	H-1 3 1	-
	ľ	į
	1	Ì
•	4	į
	Sie	Ì
	-	
	good! Many agend?	
0000	į	-
;		
· magazi		9
- Taran	15.4	1
Autor.	22 17	
		2
- mercen	17 17	-
***	c	4

20

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:
- 5 CAGGAAGAAG AAACGAGCTG TCATTATGAT GGTGACAGTG
 40
 - (85) INFORMATION FOR SEQ ID NO:84:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 40 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:
- 15 CACTGTCACC ATCATAATGA CAGCTCGTTT CTTCTTCCTG
 - (86) INFORMATION FOR SEQ ID NO:85:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:
- 25 GGCCACCGGC AGACCAAACG CGTCCTGCTG 30
 - (87) INFORMATION FOR SEC ID NO:86:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T 31 (88) INFORMATION FOR SEO ID NO:87: (i) SEQUENCE CHARACTERISTICS: 5 (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) 10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87: GGAAAAGAAG AGAATCAAAA AACTACTTGT CAGCATC 37 (89) INFORMATION FOR SEO ID NO:88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs 15 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88: 20 CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T 3.1 (90) INFORMATION FOR SEQ ID NO:89: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single 25 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89: ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCCAAA 60 30 GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATACAGTAT CATCTTTGTG 120 GTGGGAATAT TTGGAAACAG CTTGGTGGTG ATAGTCATTT ACTTTTATAT GAAGCTGAAG 180 ACTGTGGCCA GTGTTTTCT TTTGAATTTA GCACTGGCTG ACTTATGCTT TTTACTGACT 240 TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTTGG CAATTACCTA 300

-	3
¥	Q
1	Ü
1	4
-	
	u
*****	2
	ij
5	
1999	3
-	ñ
-	
1	o's

	TGTAAGATTG	CTTCAGCCAG	CGTCAGTTTC	AACCTGTACG	CTAGTGTGTT	TCTACTCACG	360
	TGTCTCAGCA	TTGATCGATA	CCTGGCTATT	GTTCACCCAA	TGAAGTCCCG	CCTTCGACGC	420
	ACAATGCTTG	TAGCCAAAGT	CACCTGCATC	ATCATTTGGC	TGCTGGCAGG	CTTGGCCAGT	480
	TTGCCAGCTA	TAATCCATCG	AAATGTATTT	TTCATTGAGA	ACACCAATAT	TACAGTTTGT	540
5	GCTTTCCATT	ATGAGTCCCA	AAATTCAACC	CTTCCGATAG	GGCTGGGCCT	GACCAAAAAT	600
	ATACTGGGTT	TCCTGTTTCC	TTTTCTGATC	ATTCTTACAA	GTTATACTCT	TATTTGGAAG	660
	GCCCTAAAGA	AGGCTTATGA	AATTCAGAAG	AACAAACCAA	GAAATGATGA	TATTAAAAAG	720
	ATAATTATGG	CAATTGTGCT	TTTCTTTTTC	TTTTCCTGGA	TTCCCCACCA	AATATTCACT	780
	TTTCTGGATG	TATTGATTCA	ACTAGGCATC	ATACGTGACT	GTAGAATTGC	AGATATTGTG	840
0	GACACGGCCA	TGCCTATCAC	CATTTGTATA	GCTTATTTTA	ACAATTGCCT	GAATCCTCTT	900
	TTTTATGGCT	TTCTGGGGAA	AAAATTTAAA	AGATATTTC	TCCAGCTTCT	AAAATATATT	960
	CCCCCAAAAG	CCAAATCCCA	CTCAAACCTT	TCAACAAAAA	TGAGCACGCT	TTCCTACCGC	1020
	CCCTCAGATA	ATGTAAGCTC	ATCCACCAAG	AAGCCTGCAC	CATGTTTTGA	GGTTGAGTGA	1080

- (91) INFORMATION FOR SEQ ID NO:90:
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
- 20 (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:
 - Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp
 - Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro 20 25 30
 - Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu
 - Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser
- 30 Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr 65 70 70 75
 - Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe

KEP	1-003	4						- 1	34 -							PA	TENT
						85					90					95	
		Gly	Asn	Tyr	Leu 100	Сув	Lys	Ile	Ala	Ser 105	Ala	Ser	Val	Ser	Phe 110	Asn	Leu
5		Tyr	Ala	Ser 115	Val	Phe	Leu	Leu	Thr 120	Cys	Leu	Ser	Ile	Asp 125	Arg	Tyr	Leu
			130		His			135					140				
		Ala 145	Lys	Val	Thr	Cys	Ile 150	Ile	Ile	Trp	Leu	Leu 155	Ala	Gly	Leu	Ala	Ser 160
10					Ile	165					170					175	
					Cys 180					185					190		
15		Ile	Gly	Leu 195	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
			210		Leu			215					220			-	-
		225			Ile		230					235					240
20					Ala	245					250					255	
					Thr 260					265					270		
25				275	Ile				280					285			
		Cys	Ile 290	Ala	Tyr	Phe	Asn	Asn 295	Cys	Leu	Asn	Pro	Leu 300	Phe	Tyr	Gly	Phe
		Leu 305	Gly	Lys	Lys	Phe	Lys 310	Arg	Tyr	Phe	Leu	Gln 315	Leu	Leu	Lys	Tyr	Ile 320
30		Pro	Pro	Lys	Ala	Lys 325	Ser	His	Ser	Asn	Leu 330	Ser	Thr	Lys	Met	Ser 335	Thr
		Leu	Ser	Tyr	Arg 340	Pro	Ser	Asp	Asn	Val 345	Ser	Ser	Ser	Thr	Lys 350	Lys	Pro
35		Ala	Pro	Cys 355	Phe	Glu	Val	Glu									
	(92)	INF	ORMA'	TION	FOR	SEQ	ID I	10:9	1:								

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
	CCAAGAAATG ATGATATTAA AAAGATAATT ATGGC	35
	(93) INFORMATION FOR SEQ ID NO:92:	
0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
	CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T	31
	(94) INFORMATION FOR SEQ ID NO:93:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1080 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
	ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCCAAA	60
	GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATACAGTAT CATCTTTGTG	120
	GTGGGAATAT TTGGAAACAG CTTGGTGGTG ATAGTCATTT ACTTTTATAT GAAGCTGAAG	180
	ACTGTGGCCA GTGTTTTCT TTTGAATTTA GCACTGGCTG ACTTATGCTT TTTACTGACT	240
30	TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTTGG CAATTACCTA	300
	TGTAAGATTG CTTCAGCCAG CGTCAGTTTC GCCCTGTACG CTAGTGTGTT TCTACTCACG	360
	TGTCTCAGCA TTGATCGATA CCTGGCTATT GTTCACCCAA TGAAGTCCCG CCTTCGACGC	420

ARE	N-0054		PATENT				
	ACAATGCTTG	TAGCCAAAGT	CACCTGCATC	ATCATTTGGC	TGCTGGCAGG	CTTGGCCAGT	480
	TTGCCAGCTA	TAATCCATCG	AAATGTATTT	TTCATTGAGA	ACACCAATAT	TACAGTTTGT	540
	GCTTTCCATT	ATGAGTCCCA	AAATTCAACC	CTTCCGATAG	GGCTGGGCCT	GACCAAAAAT	600
	ATACTGGGTT	TCCTGTTTCC	TTTTCTGATC	ATTCTTACAA	GTTATACTCT	TATTTGGAAG	660
5	GCCCTAAAGA	AGGCTTATGA	AATTCAGAAG	AACAAACCAA	GAAATGATGA	TATTTTTAAG	720
	ATAATTATGG	CAATTGTGCT	TTTCTTTTTC	TTTTCCTGGA	TTCCCCACCA	AATATTCACT	780
	TTTCTGGATG	TATTGATTCA	ACTAGGCATC	ATACGTGACT	GTAGAATTGC	AGATATTGTG	840
	GACACGGCCA	TGCCTATCAC	CATTTGTATA	GCTTATTTTA	ACAATTGCCT	GAATCCTCTT	900
	TTTTATGGCT	TTCTGGGGAA	AAAATTTAAA	AGATATTTTC	TCCAGCTTCT	AAAATATATT	96
10	CCCCCAAAAG	CCAAATCCCA	CTCAAACCTT	TCAACAAAAA	TGAGCACGCT	TTCCTACCGC	102
	CCCTCAGATA	ATGTAAGCTC	ATCCACCAAG	AAGCCTGCAC	CATGTTTTGA	GGTTGAGTGA	108
	(95) INFOR	MATION FOR	SEQ ID NO:9	4:			
15	(i) S	EQUENCE CHA (A) LENGTH: (B) TYPE: a (C) STRANDE (D) TOPOLOG	359 amino mino acid	acids			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

(ii) MOLECULE TYPE: protein

- 20 Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp
 - Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro 20 25 30
- - Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser 50 55 60
 - Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr 65 70 75 80
- 30 Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe 85 90 95
 - Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Ala Leu

				100					105					110		
	Tyr	Ala	Ser 115	Val	Phe	Leu	Leu	Thr 120	Cys	Leu	Ser	Ile	Asp 125	Arg	Tyr	Leu
5	Ala	Ile 130	Val	His	Pro	Met	Lys 135	Ser	Arg	Leu	Arg	Arg 140	Thr	Met	Leu	Val
	Ala 145	Lys	Val	Thr	Cys	Ile 150	Ile	Ile	Trp	Leu	Leu 155	Ala	Gly	Leu	Ala	Ser 160
	Leu	Pro	Ala	Ile	Ile 165	His	Arg	Asn	Val	Phe 170	Phe	Ile	Glu	Asn	Thr 175	Asn
10	Ile	Thr	Val	Cys 180	Ala	Phe	His	Tyr	Glu 185	Ser	Gln	Asn	Ser	Thr 190	Leu	Pro
	Ile	Gly	Leu 195	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
15	Leu	Ile 210	Ile	Leu	Thr	Ser	Tyr 215	Thr	Leu	Ile	Trp	Lys 220	Ala	Leu	Lys	Lys :
	Ala 225	Tyr	Glu	Ile	Gln	Lys 230	Asn	Lys	Pro	Arg	Asn 235	Asp	Asp	Ile	Phe	Lys 240
	Ile	Ile	Met	Ala	Ile 245	Val	Leu	Phe	Phe	Phe 250	Phe	Ser	Trp	Ile	Pro 255	His
20	Gln	Ile	Phe	Thr 260	Phe	Leu	Asp	Val	Leu 265	Ile	Gln	Leu	Gly	Ile 270	Ile	Arg
	Asp	Cys	Arg 275	Ile	Ala	Asp	Ile	Val 280	Asp	Thr	Ala	Met	Pro 285	Ile	Thr	Ile
25	Cys	Ile 290	Ala	Tyr	Phe	Asn	Asn 295	Cys	Leu	Asn	Pro	Leu 300	Phe	Tyr	Gly	Phe
	Leu 305	Gly	Lys	Lys	Phe	Lys 310	Arg	Tyr	Phe	Leu	Gln 315	Leu	Leu	Lys	Tyr	Ile 320
	Pro	Pro	Lys	Ala	Lys 325	Ser	His	Ser	Asn	Leu 330	Ser	Thr	Lys	Met	Ser 335	Thr
30	Leu	Ser	Tyr	Arg 340	Pro	Ser	Asp	Asn	Val 345		Ser	Ser	Thr	Lys 350	Lys	Pro
	Ala	Pro	Cys 355	Phe	Glu	Val	Glu									

(97) INFORMATION FOR SEQ ID NO:95:

35 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 26 base pairs
- (B) TYPE: nucleic acid

AREN-0054	- 138 -	PATENT				
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear					
(ii) MOLECULE TYPE: DNA (genomic)					
(iv) ANTI-SENSE: NO					
5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:					
CCCAAGO	TTC CCCAGGTGTA TTTGAT	26				
(97) IN	FORMATION FOR SEQ ID NO:96:					
10	.) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear					
(ii	.) MOLECULE TYPE: DNA (genomic)					
(iv	r) ANTI-SENSE: YES	:				
15 (x:	i) SEQUENCE DESCRIPTION: SEQ ID NO:96:					
CCTGCAG	GGCG AAACTGACTC TGGCTGAAG	29				
(98) II	NFORMATION FOR SEQ ID NO:97:					
20	i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear					
(i	i) MOLECULE TYPE: DNA (genomic)					
(i	v) ANTI-SENSE: NO					
25 (x	i) SEQUENCE DESCRIPTION: SEQ ID NO:97:					
CTGTAC	GCTA GTGTGTTTCT ACTCACGTGT CTCAGCATTG AT	42				
(99) I	NFORMATION FOR SEQ ID NO:98:					
30	i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear					
(4	i) MOLECITE TYPE: DNA (genomic)					

60

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GTTGGATCCA CATAATGCAT TTTCTC

(100) INFORMATION FOR SEQ ID NO:99:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1080 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic) 10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

ATGATTCTCA ACTCTTCTAC TGAAGATGGT ATTAAAAGAA TCCAAGATGA TTGTCCCAAA GCTGGAAGGC ATAATTACAT ATTTGTCATG ATTCCTACTT TATACAGTAT CATCTTTGTG 120 GTGGGAATAT TTGGAAACAG CTTGGTGGTG ATAGTCATTT ACTTTTATAT GAAGCTGAAG 180 15 ACTGTGGCCA GTGTTTTTCT TTTGAATTTA GCACTGGCTG ACTTATGCTT TTTACTGACT 240 TTGCCACTAT GGGCTGTCTA CACAGCTATG GAATACCGCT GGCCCTTTGG CAATTACCTA 300 TGTAAGATTG CTTCAGCCAG CGTCAGTTTC AACCTGTACG CTAGTGTGTT TCTACTCACG 360 TGTCTCAGCA TTGATCGATA CCTGGCTATT GTTCACCCAA TGAAGTCCCG CCTTCGACGC 420 ACAATGCTTG TAGCCAAAGT CACCTGCATC ATCATTTGGC TGCTGGCAGG CTTGGCCAGT 480 20 TTGCCAGCTA TAATCCATCG AAATGTATTT TTCATTGAGA ACACCAATAT TACAGTTTGT GCTTTCCATT ATGAGTCCCA AAATTCAACC CTTCCGATAG GGCTGGGCCT GACCAAAAAT 600 ATACTGGGTT TCCTGTTTCC TTTTCTGATC ATTCTTACAA GTTATTTTGG AATTCGAAAA 660 CACTTACTGA AGACGAATAG CTATGGGAAG AACAGGATAA CCCGTGACCA AGTTAAGAAG 720 ATAATTATGG CAATTGTGCT TTTCTTTTC TTTTCCTGGA TTCCCCACCA AATATTCACT 780 25 TTTCTGGATG TATTGATTCA ACTAGGCATC ATACGTGACT GTAGAATTGC AGATATTGTG 840 GACACGGCCA TGCCTATCAC CATTTGTATA GCTTATTTTA ACAATTGCCT GAATCCTCTT 900 TTTTATGGCT TTCTGGGGAA AAAATTTAAA AGATATTTC TCCAGCTTCT AAAATATATT 960 CCCCCAAAAG CCAAATCCCA CTCAAACCTT TCAACAAAAA TGAGCACGCT TTCCTACCGC 1020 CCCTCAGATA ATGTAAGCTC ATCCACCAAG AAGCCTGCAC CATGTTTTGA GGTTGAGTGA 1080

- (101) INFORMATION FOR SEQ ID NO:100:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 359 amino acids
- (B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:
- Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp 10
 - Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro
 - Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu
- Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser 15
 - Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr
- Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe 20
 - Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Asn Leu 100
 - Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp Arg Tyr Leu 120
- Ala Ile Val His Pro Met Lys Ser Arg Leu Arg Arg Thr Met Leu Val 2.5
 - Ala Lys Val Thr Cys Ile Ile Ile Trp Leu Leu Ala Gly Leu Ala Ser 145 150 155
- Leu Pro Ala Ile Ile His Arg Asn Val Phe Phe Ile Glu Asn Thr Asn 30
 - Ile Thr Val Cys Ala Phe His Tyr Glu Ser Gln Asn Ser Thr Leu Pro
 - Ile Gly Leu Gly Leu Thr Lys Asn Ile Leu Gly Phe Leu Phe Pro Phe 200
- Leu Ile Ile Leu Thr Ser Tyr Phe Gly Ile Arg Lys His Leu Leu Lys 35 215 210

10

15

20

25

37

11-005	•						- 1	41 -							PA	TEN
	Thr 225	Asn	Ser	Tyr	Gly	Lys 230	Asn	Arg	Ile	Thr	Arg 235	Asp	Gln	Val	Lys	Lys 240
	Ile	Ile	Met	Ala	Ile 245	Val	Leu	Phe	Phe	Phe 250	Phe	Ser	Trp	Ile	Pro 255	His
	Gln	Ile	Phe	Thr 260	Phe	Leu	Asp	Val	Leu 265	Ile	Gln	Leu	Gly	Ile 270	Ile	Arg
	Asp	Сув	Arg 275	Ile	Ala	Asp	Ile	Va1 280	Asp	Thr	Ala	Met	Pro 285	Ile	Thr	Ile
	Cys	Ile 290	Ala	Tyr	Phe	Asn	Asn 295	Cys	Leu	Asn	Pro	Leu 300	Phe	Tyr	Gly	Phe
	Leu 305	Gly	Lys	Lys	Phe	Lys 310	Arg	Tyr	Phe	Leu	Gln 315	Leu	Leu	Lys	Tyr	Ile 320
	Pro	Pro	Lys	Ala	Lys 325	Ser	His	Ser	Asn	Leu 330	Ser	Thr	Lys	Met	Ser 335	Thr
	Leu	Ser	Tyr	Arg 340	Pro	Ser	Asp	Asn	Val 345	Ser	Ser	Ser	Thr	Lys 350	Lys	Pro
	Ala	Pro	Cys 355	Phe	Glu	Val	Glu									

(102) INFORMATION FOR SEQ ID NO:101:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 37 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)

 - (iv) ANTI-SENSE: YES
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

TCCGAATTCC AAAATAACTT GTAAGAATGA TCAGAAA

(103) INFORMATION FOR SEQ ID NO:102:

- 30 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: DNA (genomic)
 - (iv) ANTI-SENSE: NO

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
	AGATCTTAAG AAGATAATTA TGGCAATTGT GCT	33
	(104) INFORMATION FOR SEQ ID NO:103:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 62 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
	AATTCGAAAA CACTTACTGA AGACGAATAG CTATGGGAAG AACAGGATAA CCCGTGACCA	60
	AG	62
	(105) INFORMATION FOR SEQ ID NO:104:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 62 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
	TTAACTTGGT CACGGGTTAT CCTGTTCTTC CCATAGCTAT TCGTCTTCAG TAAGTGTTTT	60
	CG	62
2	(106) INFORMATION FOR SEQ ID NO:105:	
3	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1083 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	

	ATGATTCTCA	ACTCTTCTAC	TGAAGATGGT	ATTAAAAGAA	TCCAAGATGA	TTGTCCCAAA	60
	GCTGGAAGGC	ATAATTACAT	ATTTGTCATG	ATTCCTACTT	TATACAGTAT	CATCTTTGTG	120
	GTGGGAATAT	TTGGAAACAG	CTTGGTGGTG	ATAGTCATTT	ACTTTTATAT	GAAGCTGAAG	180
	ACTGTGGCCA	GTGTTTTCT	TTTGAATTTA	GCACTGGCTG	ACTTATGCTT	TTTACTGACT	240
5	TTGCCACTAT	GGGCTGTCTA	CACAGCTATG	GAATACCGCT	GGCCCTTTGG	CAATTACCTA	300
	TGTAAGATTG	CTTCAGCCAG	CGTCAGTTTC	AACCTGTACG	CTAGTGTGTT	TCTACTCACG	360
	TGTCTCAGCA	TTGATCGATA	CCTGGCTATT	GTTCACCCAA	TGAAGTCCCG	CCTTCGACGC	420
	ACAATGCTTG	TAGCCAAAGT	CACCTGCATC	ATCATTTGGC	TGCTGGCAGG	CTTGGCCAGT	480
	TTGCCAGCTA	TAATCCATCG	AAATGTATTT	TTCATTGAGA	ACACCAATAT	TACAGTTTGT	540
10	GCTTTCCATT	ATGAGTCCCA	AAATTCAACC	CTTCCGATAG	GGCTGGGCCT	GACCAAAAAT	600
	ATACTGGGTT	TCCTGTTTCC	TTTTCTGATC	ATTCTTACAA	GTTATACTCT	TATTTGGAAG	660
	GCCCTAAAGA	AGGCTTATGA	AATTCAGAAG	AACAAACCAA	GAAATGATGA	TATTTTTAAG	720
	ATAATTATGG	CAGCAATTGT	GCTTTTCTTT	TTCTTTTCCT	GGATTCCCCA	CCAAATATTC	780
	ACTTTTCTGG	ATGTATTGAT	TCAACTAGGC	ATCATACGTG	ACTGTAGAAT	TGCAGATATT	840
15	GTGGACACGG	CCATGCCTAT	CACCATTTGT	ATAGCTTATT	TTAACAATTG	CCTGAATCCT	900
	CTTTTTTATG	GCTTTCTGGG	GAAAAAATTT	AAAAGATATT	TTCTCCAGCT	TCTAAAATAT	960
	ATTCCCCCAA	AAGCCAAATC	CCACTCAAAC	CTTTCAACAA	AAATGAGCAC	GCTTTCCTAC	1020
	CGCCCTCAG	ATAATGTAAG	CTCATCCACC	AAGAAGCCTG	CACCATGTTT	TGAGGTTGAG	1080
	TGA						1083

- 20 (107) INFORMATION FOR SEQ ID NO:106:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 360 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp 1 $\,$ 10 $\,$ 15

30 Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro

				20					25					30		
	Thr	Leu	Tyr 35	Ser	Ile	Ile	Phe	Val 40	Val	Gly	Ile	Phe	Gly 45	Asn	Ser	Leu
5	Va1	Val 50	Ile	Val	Ile	Tyr	Phe 55	Tyr	Met	Lys	Leu	Lys 60	Thr	Val	Ala	Ser
	Val 65	Phe	Leu	Leu	Asn	Leu 70	Ala	Leu	Ala	Asp	Leu 75	Cys	Phe	Leu	Leu	Thr 80
	Leu	Pro	Leu	Trp	Ala 85	Val	Tyr	Thr	Ala	Met 90	Glu	Tyr	Arg	Trp	Pro 95	Phe
10	Gly	Asn	Tyr	Leu 100	Cys	Lys	Ile	Ala	Ser 105	Ala	Ser	Val	Ser	Phe 110	Asn	Leu
	Tyr	Ala	Ser 115	Va1	Phe	Leu	Leu	Thr 120	Сув	Leu	Ser	Ile	Asp 125	Arg	Tyr	Leu
15	Ala	11e 130	Val	His	Pro	Met	Lys 135	Ser	Arg	Leu	Arg	Arg 140	Thr	Met	Leu	Val
	Ala 145	Lys	Val	Thr	Сув	Ile 150	Ile	Ile	Trp	Leu	Leu 155	Ala	Gly	Leu	Ala	Ser 160
	Leu	Pro	Ala	Ile	Ile 165	His	Arg	Asn	Val	Phe 170	Phe	Ile	Glu	Asn	Thr 175	Asn
20	Ile	Thr	Val	Cys 180	Ala	Phe	His	Tyr	Glu 185	Ser	Gln	Asn	Ser	Thr 190	Leu	Pro
	Ile	Gly	Leu 195	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
25	Leu	Ile 210	Ile	Leu	Thr	Ser	Tyr 215	Thr	Leu	Ile	Trp	Lys 220	Ala	Leu	Lys	Lys
	Ala 225	Tyr	Glu	Ile	Gln	Lys 230	Asn	Lys	Pro	Arg	Asn 235	Asp	Asp	Ile	Phe	Lys 240
	Ile	Ile	Met	Ala	Ala 245	Ile	Val	Leu	Phe	Phe 250	Phe	Phe	Ser	Trp	Ile 255	Pro
30	His	Gln	Ile	Phe 260	Thr	Phe	Leu	Asp	Val 265	Leu	Ile	Gln	Leu	Gly 270	Ile	Ile
	Arg	Asp	Cys 275	Arg	Ile	Ala	Asp	11e 280	Val	Asp	Thr	Ala	Met 285	Pro	Ile	Thr
35	Ile	Cys 290	Ile	Ala	Tyr	Phe	Asn 295	Asn	Суз	Leu	Asn	Pro 300	Leu	Phe	Tyr	Gly
	Phe 305	Leu	Gly	Lys	Lys	Phe 310	Lys	Arg	Tyr	Phe	Leu 315	Gln	Leu	Leu	Lys	Tyr 320

15

20

25

30

Ile Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser 325 330 Thr Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys 345 Pro Ala Pro Cys Phe Glu Val Glu 355 (108) INFORMATION FOR SEQ ID NO:107: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107: 26 CCCAAGCTTC CCCAGGTGTA TTTGAT (109) INFORMATION FOR SEQ ID NO:108: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108: AAGCACAATT GCTGCATAAT TATCTTAAAA ATATCATC 38 (110) INFORMATION FOR SEO ID NO:109: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO

- Page	79	
	6.3	
dilli.		
-		
	7	
	The Gard	
-	2	
100		
-		
****	62	
-	6 %	
ż	V	
-1118	19	
****	100	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
	AAGATAATTA TGGCAGCAAT TGTGCTTTTC TTTTTCTTT	39
	(111) INFORMATION FOR SEQ ID NO:110:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:	
	GTTGGATCCA CATAATGCAT TTTCTC	26
	(112) INFORMATION FOR SEQ ID NO:111:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1344 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:	
	ATGGAGCTGC TAAAGCTGAA CCGGAGCGTG CAGGGAACCG GACCCGGGCC GGGGGCTTCC	60
	CTGTGCCGCC CGGGGGCGCC TCTCCTCAAC AGCAGCAGTG TGGGCAACCT CAGCTGCGAG	120
	CCCCCTCGCA TTCGCGGAGC CGGGACACGA GAATTGGAGC TGGCCATTAG AATCACTCTT	180
	TACGCAGTGA TCTTCCTGAT GAGCGTTGGA GGAAATATGC TCATCATCGT GGTCCTGGGA	240
25	CTGAGCCGCC GCCTGAGGAC TGTCACCAAT GCCTTCCTCC TCTCACTGGC AGTCAGCGAC	300
	CTCCTGCTGG CTGTGGCTTG CATGCCCTTC ACCCTCCTGC CCAATCTCAT GGGCACATTC	360
	ATCTTTGGCA CCGTCATCTG CAAGGCGGTT TCCTACCTCA TGGGGGTGTC TGTGAGTGTG	420
	TCCACGCTAA GCCTCGTGGC CATCGCACTG GAGCGATATA GCGCCATCTG CCGACCACTG	480
	CAGGCACGAG TGTGGCAGAC GCGCTCCCAC GCGGCTCGCG TGATTGTAGC CACGTGGCTG	540
30	CTGTCCGGAC TACTCATGGT GCCCTACCCC GTGTACACTG TCGTGCAACC AGTGGGGCCT	600
	CGTGTGCTGC AGTGCGTGCA TCGCTGGCCC AGTGCGCGGG TCCGCCAGAC CTGGTCCGTA	660

Sept.	10	
	100	
	See British	
Ä	ł,	
-	in the	area.
-	Ų,	į
	Bill and	-
-	1	Onne.
ì		
		4
	1	
-	10	,
•	4	
-	10	-
711000		

	CTGCTGCTTC	TGCTCTTGTT	CTTCATCCCA	GGTGTGGTTA	TGGCCGTGGC	CTACGGGCTT	720
	ATCTCTCGCG	AGCTCTACTT	AGGGCTTCGC	TTTGACGGCG	ACAGTGACAG	CGACAGCCAA	780
	AGCAGGGTCC	GAAACCAAGG	CGGGCTGCCA	GGGGCTGTTC	ACCAGAACGG	GCGTTGCCGG	840
	CCTGAGACTG	GCGCGGTTGG	CAAAGACAGC	GATGGCTGCT	ACGTGCAACT	TCCACGTTCC	900
5	CGGCCTGCCC	TGGAGCTGAC	GGCGCTGACG	GCTCCTGGGC	CGGGATCCGG	CTCCCGGCCC	960
	ACCCAGGCCA	AGCTGCTGGC	TAAGAAGCGC	GTGAAACGAA	TGTTGCTGGT	GATCGTTGTG	1020
	CTTTTTTTC	TGTGTTGGTT	GCCAGTTTAT	AGTGCCAACA	CGTGGCGCGC	CTTTGATGGC	1080
	CCGGGTGCAC	ACCGAGCACT	CTCGGGTGCT	CCTATCTCCT	TCATTCACTT	GCTGAGCTAC	1140
	GCCTCGGCCT	GTGTCAACCC	CCTGGTCTAC	TGCTTCATGC	ACCGTCGCTT	TCGCCAGGCC	1200
10	TGCCTGGAAA	CTTGCGCTCG	CTGCTGCCCC	CGGCCTCCAC	GAGCTCGCCC	CAGGGCTCTT	1260
	CCCGATGAGG	ACCCTCCCAC	TCCCTCCATT	GCTTCGCTGT	CCAGGCTTAG	CTACACCACC	1320
	ATCAGCACAC	TGGGCCCTGG	CTGA				1344

- (113) INFORMATION FOR SEQ ID NO:112:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 447 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

Met Glu Leu Leu Lys Leu Asn Arg Ser Val Gln Gly Thr Gly Pro Gly 1 5 10 15

Pro Gly Ala Ser Leu Cys Arg Pro Gly Ala Pro Leu Leu Asn Ser Ser 20 25 30

25 Ser Val Gly Asn Leu Ser Cys Glu Pro Pro Arg Ile Arg Gly Ala Gly
35 40 45

Thr Arg Glu Leu Glu Leu Ala Ile Arg Ile Thr Leu Tyr Ala Val Ile 50 55 60

Phe Leu Met Ser Val Gly Gly Asn Met Leu Ile Ile Val Val Leu Gly 30 65707580

Leu Ser Arg Arg Leu Arg Thr Val Thr Asn Ala Phe Leu Leu Ser Leu 85 90 95

AREN-005	4						- 14	18 -							PA	IEN
	Ala	Val	Ser	Asp 100	Leu	Leu	Leu	Ala	Val 105	Ala	Cys	Met	Pro	Phe 110	Thr	Leu
	Leu	Pro	Asn 115	Leu	Met	Gly	Thr	Phe 120	Ile	Phe	Gly	Thr	Val 125	Ile	Cys	Lys
5	Ala	Val 130	Ser	Tyr	Leu	Met	Gly 135	Val	Ser	Val	Ser	Val 140	Ser	Thr	Leu	Ser
	Leu 145	Val	Ala	Ile	Ala	Leu 150	Glu	Arg	Tyr	Ser	Ala 155	Ile	Cys	Arg	Pro	Leu 160
10	Gln	Ala	Arg	Val	Trp 165	Gln	Thr	Arg	Ser	His 170	Ala	Ala	Arg	Val	Ile 175	Val
	Ala	Thr	Trp	Leu 180	Leu	Ser	Gly	Leu	Leu 185	Met	Val	Pro	Tyr	Pro 190	Val	Tyr
	Thr	Val	Val 195	Gln	Pro	Val	Gly	Pro 200		Val	Leu	Gln	Cys 205	Val	His	Arg
15	Trp	Pro 210	Ser	Ala	Arg	Val	Arg 215	Gln	Thr	Trp	Ser	Val 220	Leu	Leu	Leu	Leu
	Leu 225	Leu	Phe	Phe	Ile	Pro 230	Gly	Val	Val	Met	Ala 235	Val	Ala	Tyr	Gly	Leu 240
20	Ile	Ser	Arg	Glu	Leu 245	Tyr	Leu	Gly	Leu	Arg 250	Phe	Asp	Gly	Asp	Ser 255	Asp
	Ser	Asp	Ser	Gln 260	Ser	Arg	Val	Arg	Asn 265	Gln	Gly	Gly	Leu	Pro 270	Gly	Ala
	Val	His	Gln 275	Asn	Gly	Arg	Cys	Arg 280	Pro	Glu	Thr	Gly	Ala 285	Val	Gly	Lys
25	Asp	Ser 290	Asp	Gly	Cys	Tyr	Val 295		Leu	Pro	Arg	Ser 300		Pro	Ala	Leu
	Glu 305	Leu	Thr	Ala	Leu	Thr 310		Pro	Gly	Pro	Gly 315		Gly	Ser	Arg	Pro 320
30	Thr	Gln	Ala	Lys	Leu 325		Ala	Lys	Lys	Arg 330		Lys	Arg	Met	Leu 335	Leu
	Val	Ile	Val	Val 340		Phe	Phe	Leu	Cys 345		Leu	Pro	Val	Tyr 350		Ala
	Asn	Thr	Trp 355		Ala	Phe	Asp	Gly 360		Gly	Ala	His	Arg 365		Leu	Ser
35	Val	Ala 370		Ile	Ser	Phe	11e 375		Leu	Leu	Ser	Tyr 380		Ser	Ala	Cys

Val Asn Pro Leu Val Tyr Cys Phe Met His Arg Arg Phe Arg Gln Ala

25 AGAAGCGCGT GAAGCGCATG CTGCTGGTGA TCGTT (116) INFORMATION FOR SEQ ID NO:115: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single

(iv) ANTI-SENSE: NO

(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

35

(3

100 1 15

100

13

i nh

33 ATGGAGAAAA GAATCAAAAG AATGTTCTAT ATA (117) INFORMATION FOR SEQ ID NO:116: (i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid 5 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116: 10 33 TATATAGAAC ATTCTTTTGA TTCTTTTCTC CAT (118) INFORMATION FOR SEQ ID NO:117: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid 15 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117: 20 30 CGCTCTCTGG CCTTGAAGCG CACGCTCAGC (119) INFORMATION FOR SEQ ID NO:118: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid 25 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iv) ANTI-SENSE: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

GCTGAGCGTG CGCTTCAAGG CCAGAGAGCG
(120) INFORMATION FOR SEQ ID NO:119:

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

AREN-0054

15

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

- 151 -

CCCAGGAAAA AGGTGAAAGT CAAAGTTTTC

10 (121) INFORMATION FOR SEQ ID NO:120:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iv) ANTI-SENSE: YES
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

GAAAACTTTG ACTTTCACCT TTTTCCTGGG

20 (122) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)
 - (iv) ANTI-SENSE: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

GGGGCGCGGG TGAAACGGCT GGTGAGC

30 (123) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

30

3.0

PATENT

20

30

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

5 GCTCACCAGC CGTTTCACCC GCGCCCC

- 152 -

(124) INFORMATION FOR SEQ ID NO:123:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

15 CCCCTTGAAA AGCCTAAGAA CTTGGTCATC

(125) INFORMATION FOR SEQ ID NO:124:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 30 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

25 GATGACCAAG TTCTTAGGCT TTTCAAGGGG

(126) INFORMATION FOR SEQ ID NO:125:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 32 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

27

30

	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125: GATCTCTAGA ATGAACAGCA CATGTATTGA AG	32
5	(127) INFORMATION FOR SEQ ID NO:126: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
	CTAGGGTACC CGCTCAAGGA CCTCTAATTC CATAG	35
	(128) INFORMATION FOR SEQ ID NO:127:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1296 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
	ATGCAGGCGC TTAACATTAC CCCGGAGCAG TTCTCTCGGC TGCTGCGGGA CCACAACCTG	60
	ACGCGGGAGC AGTTCATCGC TCTGTACCGG CTGCGACCGC TCGTCTACAC CCCAGAGCTG	120
	CCGGGACGCG CCAAGCTGGC CCTCGTGCTC ACCGGCGTGC TCATCTTCGC CCTGGCGCTC	180
25	TTTGGCAATG CTCTGGTGTT CTACGTGGTG ACCCGCAGCA AGGCCATGCG CACCGTCACC	240
	AACATCTTTA TCTGCTCCTT GGCGCTCAGT GACCTGCTCA TCACCTTCTT CTGCATTCCC	300

GTCACCATGC TCCAGAACAT TTCCGACAAC TGGCTGGGGG GTGCTTTCAT TTGCAAGATG

GTGCCATTTG TCCAGTCTAC CGCTGTTGTG ACAGAAATGC TCACTATGAC CTGCATTGCT

GTGGAAAGGC ACCAGGGACT TGTGCATCCT TTTAAAATGA AGTGGCAATA CACCAACCGA

360

420

- 100	1
-	S
· Mar	Ü
ŧ	Ų
	Des.
-	Ų
1	ń
1000	U
1	
	100
-	M
-	104
4	. 3

	uris

30

	AGGGCTTTCA	CAATGCTAGG	TGTGGTCTGG	CTGGTGGCAG	TCATCGTAGG	ATCACCCATG	540
	TGGCACGTGC	AACAACTTGA	GATCAAATAT	GACTTCCTAT	ATGAAAAGGA	ACACATCTGC	60
	TGCTTAGAAG	AGTGGACCAG	CCCTGTGCAC	CAGAAGATCT	ACACCACCTT	CATCCTTGTC	660
	ATCCTCTTCC	TCCTGCCTCT	TATGGTGATG	CTTATTCTGT	ACAGTAAAAT	TGGTTATGAA	720
5	CTTTGGATAA	AGAAAAGAGT	TGGGGATGGT	TCAGTGCTTC	GAACTATTCA	TGGAAAAGAA	780
	ATGTCCAAAA	TAGCCAGGAA	GAAGAAACGA	GCTAAGATTA	TGATGGTGAC	AGTGGTGGCT	840
	CTCTTTGCTG	TGTGCTGGGC	ACCATTCCAT	GTTGTCCATA	TGATGATTGA	ATACAGTAAT	900
	TTTGAAAAGG	AATATGATGA	TGTCACAATC	AAGATGATTT	TTGCTATCGT	GCAAATTATT	960
	GGATTTTCCA	ACTCCATCTG	TAATCCCATT	GTCTATGCAT	TTATGAATGA	AAACTTCAAA	1020
10	AAAAATGTTT	TGTCTGCAGT	TTGTTATTGC	ATAGTAAATA	AAACCTTCTC	TCCAGCACAA	108
	AGGCATGGAA	ATTCAGGAAT	TACAATGATG	CGGAAGAAAG	CAAAGTTTTC	CCTCAGAGAG	114
	AATCCAGTGG	AGGAAACCAA	AGGAGAAGCA	TTCAGTGATG	GCAACATTGA	AGTCAAATTG	120
	TGTGAACAGA	CAGAGGAGAA	GAAAAAGCTC	AAACGACATC	TTGCTCTCTT	TAGGTCTGAA	126
	CTGGCTGAGA	ATTCTCCTTT	AGACAGTGGG	CATTAA			129

- 15 (129) INFORMATION FOR SEQ ID NO:128:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 431 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Met Gln Ala Leu Asn Ile Thr Pro Glu Gln Phe Ser Arg Leu Leu Arg 1 $$ 15

25 Asp His Asn Leu Thr Arg Glu Gln Phe Ile Ala Leu Tyr Arg Leu Arg

Pro Leu Val Tyr Thr Pro Glu Leu Pro Gly Arg Ala Lys Leu Ala Leu 35 40 45

Val Leu Thr Gly Val Leu Ile Phe Ala Leu Ala Leu Phe Gly Asn Ala 50 55 60

Leu Val Phe Tyr Val Val Thr Arg Ser Lys Ala Met Arg Thr Val Thr 65 70 75 80

	Asn	Ile	Phe		Cys 85	Ser	Leu	Ala	Leu	Ser 90	Asp	Leu	Leu	Ile	Thr 95	Phe
	Phe	Cys	Ile	Pro 100	Val	Thr	Met		Gln 105	Asn	Ile	Ser	Asp	Asn 110	Trp	Leu
5	Gly	Gly	Ala 115	Phe	Ile	Cys	Lys	Met 120	Val	Pro	Phe	Val	Gln 125	Ser	Thr	Ala
	Val	Val 130	Thr	Glu	Met	Leu	Thr 135	Met	Thr	Cys	Ile	Ala 140	Val	Glu	Arg	His
10	Gln 145	Gly	Leu	Val	His	Pro 150	Phe	Lys	Met	Lys	Trp 155	Gln	Tyr	Thr	Asn	Arg 160
	Arg	Ala	Phe	Thr	Met 165	Leu	Gly	Val	Val	Trp 170	Leu	Val	Ala	Val	Ile 175	Val
	Gly	Ser	Pro	Met 180	Trp	His	Val	Gln	Gln 185	Leu	Glu	Ile	Lys	Tyr 190	Asp	Phe
15	Leu	Tyr	Glu 195	Lys	Glu	His	Ile	Cys 200	Cys	Leu	Glu	Glu	Trp 205	Thr	Ser	Pro
	Val	His 210	Gln	Lys	Ile	Tyr	Thr 215	Thr	Phe	Ile	Leu	Val 220	Ile	Leu	Phe	Leu
20	Leu 225	Pro	Leu	Met	Val	Met 230		Ile	Leu	Tyr	Ser 235	Lys	Ile	Gly	Tyr	Glu 240
	Leu	Trp	Ile	Lys	Lys 245	Arg	Val	Gly	Asp	Gly 250	Ser	Val	Leu	Arg	Thr 255	Ile
	His	Gly	Lys	Glu 260		Ser	Lys	Ile	Ala 265		Lys	Lys	Lys	Arg 270	Ala	Lys
25	Ile	Met	Met 275		Thr	Val	Val	Ala 280		Phe	Ala	Val	. Сув 285	Trp	Ala	Pro
	Phe	His 290		Val	His	Met	Met 295		Glu	туг	Ser	300	Phe	Glu	Lys	Glu
30	Tyr 305		Asp	Val	Thr	310		Met	Ile	Phe	315	Ile	val	Gln	Ile	320
	Gly	Phe	e Ser	Asr	325		суя	Asr.	Pro	330		. Туз	Ala	Phe	335	Asn
	Glu	Ası	n Phe	340		Ası	ı Va	L Leu	34!		a Val	L Cys	туг	350	Ile	val
35	Asr	Ly:	355		s Se	Pro	Ala	Glr 360		g Hi	s Gl	y Ası	1 Set	r Gly	/ Ile	e Thr
	Met	: Met	t Arg	g Lys	Ly:	ala	a Ly	s Phe	e Se	r Le	u Ar	g Gl	ı Ası	n Pro	va:	l Glu

10

370 375 380

Glu Thr Lys Gly Glu Ala Phe Ser Asp Gly Asn Ile Glu Val Lys Leu 385 390 395 400

Cys Glu Gln Thr Glu Glu Lys Lys Lys Leu Lys Arg His Leu Ala Leu 5 410 415

Phe Arg Ser Glu Leu Ala Glu Asn Ser Pro Leu Asp Ser Gly His
420 425 430

- (130) INFORMATION FOR SEQ ID NO:129:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2040 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

 - (ii) MOLECULE TYPE: DNA (genomic)
- 5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

ATGGGCAGCC CCTGGAACGG CAGCGACGGC CCCGAGGGGG CGCGGGAGCC GCCGTGGCCC

GCGCTGCCGC CTTGCGACGA GCGCCGCTGC TCGCCCTTTC CCCTGGGGGC GCTGGTGCCG

20 GTGACCGCTG TGTGCCTGTG CCTGTTCGTC GTCGGGGTGA GCGGCAACGT GGTGACCGTG 180

ATGCTGATCG GGCGCTACCG GGACATGCGG ACCACCACCA ACTTGTACCT GGGCAGCATG 240

GCCGTGTCCG ACCTACTCAT CCTGCTCGGG CTGCCGTTCG ACCTGTACCG CCTCTGGCGC 25 - 300

TCGCGGCCCT GGGTGTTCGG GCCGCTGCTC TGCCGCCTGT CCCTCTACGT GGGCGAGGGC

TGCACCTACG CCACGCTGCT GCACATGACC GCGCTCAGCG TCGAGCGCTA CCTGGCCATC 30-420

TGCCGCCCGC TCCGCGCCCG CGTCTTGGTC ACCCGGCGCC GCGTCCGCGC GCTCATCGCT 480

GTGCTCTGGG CCGTGGCGCT GCTCTCTGCC GGTCCCTTCT TGTTCCTGGT GGGCGTCGAG

CAGGACCCCG GCATCTCCGT AGTCCCGGGC CTCAATGGCA CCGCGCGGAT CGCCTCCTCG

40 CCTCTCGCCT CGTCGCCGCC TCTCTGGCTC TCGCGGGCGC CACCGCCGTC CCCGCCGTCG

5

20

35

50

GGGCCCGAGA CCGCGGAGGC CGCGGCGCTG TTCAGCCGCG AATGCCGGCC GAGCCCCGCG

CAGCTGGGCG CGCTGCGTGT CATGCTGTGG GTCACCACCG CCTACTTCTT CCTGCCCTTT 780

CTGTGCCTCA GCATCCTCTA CGGGCTCATC GGGCGGGAGC TGTGGAGCAG CCGGCGGCCG 10-840

CTGCGAGGCC CGGCCGCCTC GGGGCGGGAG AGAGGCCACC GGCAGACCAA ACGCGTCCTG

15 CGTAAGTGGA GCCGCCGTGG TTCCAAAGAC GCCTGCCTGC AGTCCGCCCC GCCGGGGACC 960

GCGCAAACGC TGGGTCCCCT TCCCCTGCTC GCCCAGCTCT GGGCGCCGCT TCCAGCTCCC

TTTCCTATTT CGATTCCAGC CTCCACCCGC CGGTACTTCC CATCCCCCGA GAAAACCATG

TCCTGTCCCC CAGGAGCTCT GGGGGACCCC AGGGCGCTTT GAGGGTGGGA TCCCCGGATC 25 1140

CGATTCAGTA ACCAGCAGTG CTTTTCCAGA GCCTCTGAGA CCAGAAAGGA GAGTTGGTAA

30 TTCTTAATCC AACCACCTGT TAGATGCCAC AAATGAGGAG TCCTCACAGT GCTCTTGAGA 1260

AGACGAGGGA GATTTCATTA AGCTAAAATT TTTTATTTAA TGTTAAGTGA TGCTGAAGGC 1320

TARAGTARAC CTTGCTCGTA TCARARAGTA RAGATTGTGC AGACCTGTTG TAGARTTCTT 1380

TTCAACAGAG AACAGAAAAC TTGTCTCCGA AGTGGGTTTG TGGAAGGAAG CCTGCCAAGG 40 - 1440

CGGCTTGTTC AGAGAAATTG CTCCTTCTGG TTTATGTCCA GCCTTGATAA CACATATGGG 1500

45 AGCCTACTAT GCAGTTTTAA AGCAAGTATC CATGCAGCCT GCAGCCTGGT CATTTTTTCT 1560

GGGGTGAGGA TCTGCCTAGG TAGAAGTTTT CTCTAATTTA TTTTGCTGTT ACTTGTTATT

GCAGATGGTT CCTTGTCGGG GTGGGGGGGTT TATTTGCTTC CCAATGCTTT TGTTAATCCC 1680

GGTGCTGTGT CTTATGTTGC AGTGGTGGTG GTTCTGGCAT TTATAATTTG CTGGTTGCCC $55\,$ $174\,0$

20

TTCCACGTTG GCAGAATCAT TTACATAAAC ACGGAAGATT CGCGGATGAT GTACTTCTCT 1800

5 CAGTACTITA ACATCGTCGC TCTGCAACTT TTCTATCTGA GCGCATCTAT CAACCCAATC

CTCTACAACC TCATTTCAAA GAAGTACAGA GCGGCGGCCT TTAAACTGCT GCTCGCAAGG

AAGTCCAGGC CGAGAGGCTT CCACAGAAGC AGGGACACTG CGGGGGAAGT TGCAGGGGAC

ACTGGAGGAG ACACGGTGGG CTACACCGAG ACAAGCGCTA ACGTGAAGAC GATGGGATAA
5 2040

- (131) INFORMATION FOR SEO ID NO:130:
 - (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 412 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:
- Met Gly Ser Pro Trp Asn Gly Ser Asp Gly Pro Glu Gly Ala Arg Glu 25 1 5 10 15

Pro Pro Trp Pro Ala Leu Pro Pro Cys Asp Glu Arg Arg Cys Ser Pro $20 \\ 25 \\ 30$

Phe Pro Leu Gly Ala Leu Val Pro Val Thr Ala Val Cys Leu Cys Leu 35 40 45

30 Phe Val Val Gly Val Ser Gly Asn Val Val Thr Val Met Leu Ile Gly 50 55 60

Arg Tyr Arg Asp Met Arg Thr Thr Thr Asn Leu Tyr Leu Gly Ser Met 65 70 75 80

Ala Val Ser Asp Leu Leu Ile Leu Leu Gly Leu Pro Phe Asp Leu Tyr $35 \\ 85 \\ 90 \\ 95 \\ $

Arg Leu Trp Arg Ser Arg Pro Trp Val Phe Gly Pro Leu Leu Cys Arg \$100\$ \$105\$

Leu Ser Leu Tyr Val Gly Gly Gly Cys Thr Tyr Ala Thr Leu Leu His 115 120 125

40 Met Thr Ala Leu Ser Val Glu Arg Tyr Leu Ala Ile Cys Arg Pro Leu 130 135 140

	•															
	Arg 145	Ala	Arg	Val		Val 150	Thr	Arg	Arg		Val 155	Arg	Ala	Leu	Ile	Ala 160
	Val	Leu	Trp	Ala	Val 165	Ala	Leu	Leu	Ser	Ala 170	Gly	Pro	Phe	Leu	Phe 175	Leu
5	Val	Gly	Val	Glu 180	Gln	Asp	Pro	Gly	Ile 185	Ser	Val	Val	Pro	Gly 190	Leu	Asn
	Gly	Thr	Ala 195	Arg	Ile	Ala		Ser 200	Pro	Leu	Ala	Ser	Ser 205	Pro	Pro	Leu
10	Trp	Leu 210	Ser	Arg	Ala	Pro	Pro 215	Pro	Ser	Pro	Pro	Ser 220	Gly	Pro	Glu	Thr
	Ala 225	Glu	Ala	Ala	Ala	Leu 230	Phe	Ser	Arg	Glu	Cys 235	Arg	Pro	ser	Pro	Ala 240
	Gln	Leu	Gly	Ala	Leu 245	Arg	Val	Met	Leu	Trp 250	Val	Thr	Thr	Ala	Tyr 255	Phe
15	Phe	Leu	Pro	Phe 260	Leu	Cys	Leu	Ser	Ile 265	Leu	Tyr	Gly	Leu	Ile 270	Gly	Arg
	Glu	Leu	Trp 275	Ser	Ser	Arg	Arg	Pro 280	Leu	Arg	Gly	Pro	Ala 285		Ser	Gly
20	Arg	Glu 290	Arg	Gly	His	Arg	Gln 295	Thr	Lys	Arg	Val	Leu 300		Val	Val	Val
	Leu 305		Phe	Ile	Ile	Cys 310		Leu	Pro	Phe	His 315		Gly	Arg	Ile	11e 320
	Tyr	Ile	Asn	Thr	Glu 325		Ser	Arg	Met	Met 330		Phe	: Ser	Gln	Tyr 335	Phe
25	Asn	Ile	Val	Ala 340		Gln	Leu	Phe	Tyr 345		Ser	Ala	Ser	: Ile		Pro
	Ile	Let	Tyr 355		Leu	Ile	Ser	Lys 360		Tyr	Arg	Ala	365		Phe	. Lys
30	Leu	1 Let 370		Ala	Arg	Lys	375		Pro	Arg	g Gly	7 Phe 380		arg	g Ser	Arg
	Asp 385		Ala	Gly	Glu	Val		Gly	/ Asp	Thr	: Gly 395		/ Ası	Thi	. Val	L Gly 400
	Туз	Thi	Glu	Thi	Sei	Ala	a Asr	. Val	Lys	Thi		Gl:	Y			

- 35 (132) INFORMATION FOR SEQ ID NO:131:
 - (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1344 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

ATGGAGCTGC TAAAGCTGAA CCGGAGCGTG CAGGGAACCG GACCCGGGCC GGGGGCTTCC

CTGTGCCGCC CGGGGGCGCC TCTCCTCAAC AGCAGCAGTG TGGGCAACCT CAGCTGCGAG 120

10 CCCCCTCGCA TTCGCGGAGC CGGGACACGA GAATTGGAGC TGGCCATTAG AATCACTCTT

TACGCAGTGA TCTTCCTGAT GAGCGTTGGA GGAAATATGC TCATCATCGT GGTCCTGGGA 240

CTGAGCCGCC GCCTGAGGAC TGTCACCAAT GCCTTCCTCC TCTCACTGGC AGTCAGCGAC 15 300

CTCCTGCTGG CTGTGGCTTG CATGCCCTTC ACCCTCCTGC CCAATCTCAT GGGCACATTC

ATCTTTGGCA CCGTCATCTG CAAGGCGGTT TCCTACCTCA TGGGGGTGTC TGTGAGTGTG 420

20 TCCACGCTAA GCCTCGTGGC CATCGCACTG GAGCGATATA GCGCCATCTG CCGACCACTG

CAGGCACGAG TGTGGCAGAC GCGCTCCCAC GCGGCTCGCG TGATTGTAGC CACGTGGCTG

CTGTCCGGAC TACTCATGGT GCCCTACCCC GTGTACACTG TCGTGCAACC AGTGGGGCCT 25 600

CGTGTGCTGC AGTGCGTGCA TCGCTGGCCC AGTGCGCGGG TCCGCCAGAC CTGGTCCGTA

CTGCTGCTTC TGCTCTTGTT CTTCATCCCA GGTGTGGTTA TGGCCGTGGC CTACGGGCTT 720

30 ATCTCTCGCG AGCTCTACTT AGGGCTTCGC TTTGACGGCG ACAGTGACAG CGACAGCCAA

AGCAGGGTCC GAAACCAAGG CGGGCTGCCA GGGGCTGTTC ACCAGAACGG GCGTTGCCGG 840

CCTGAGACTG GCGCGGTTGG CAAAGACAGC GATGGCTGCT ACGTGCAACT TCCACGTTCC 35 900

CGGCCTGCCC TGGAGCTGAC GGCGCTGACG GCTCCTGGGC CGGGATCCGG CTCCCGGCCC

ACCCAGGCCA AGCTGCTGGC TAAGAAGCGC GTGAAACGAA TGTTGCTGGT GATCGTTGTG

CTTTTTTTC TGTGTTGGTT GCCAGTTTAT AGTGCCAACA CGTGGCGCGC CTTTGATGGC

CCGGGTGCAC ACCGAGCACT CTCGGGTGCT CCTATCTCCT TCATTCACTT GCTGAGCTAC

GCCTCGGCCT GTGTCAACCC CCTGGTCTAC TGCTTCATGC ACCGTCGCTT TCGCCAGGCC

10 TGCCTGGAAA CTTGCGCTCG CTGCTGCCCC CGGCCTCCAC GAGCTCGCCC CAGGGCTCTT 1260

CCCGATGAGG ACCCTCCCAC TCCCTCCATT GCTTCGCTGT CCAGGCTTAG CTACACCACC 1320

ATCAGCACAC TGGGCCCTGG CTGA

15 1344

- (133) INFORMATION FOR SEQ ID NO:132:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 447 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:
- Met Glu Leu Leu Lys Leu Asn Arg Ser Val Gln Gly Thr Gly Pro Gly 25 1 5 10 15
 - Pro Gly Ala Ser Leu Cys Arg Pro Gly Ala Pro Leu Leu Asn Ser Ser
 - Ser Val Gly Asn Leu Ser Cys Glu Pro Pro Arg Ile Arg Gly Ala Gly 35 \$40\$
- 30 Thr Arg Glu Leu Glu Leu Ala Ile Arg Ile Thr Leu Tyr Ala Val Ile 50 55 60
 - Phe Leu Met Ser Val Gly Gly Asn Met Leu Ile Ile Val Val Leu Gly 65 70 75 80
- Leu Ser Arg Arg Leu Arg Thr Val Thr Asn Ala Phe Leu Leu Ser Leu 35 $90 \ 95$
 - Ala Val Ser Asp Leu Leu Leu Ala Val Ala Cys Met Pro Phe Thr Leu

110 100 105 Leu Pro Asn Leu Met Gly Thr Phe Ile Phe Gly Thr Val Ile Cys Lys Ala Val Ser Tyr Leu Met Gly Val Ser Val Ser Val Ser Thr Leu Ser 5 Leu Val Ala Ile Ala Leu Glu Arg Tyr Ser Ala Ile Cys Arg Pro Leu 150 Gln Ala Arg Val Trp Gln Thr Arg Ser His Ala Ala Arg Val Ile Val Ala Thr Trp Leu Leu Ser Gly Leu Leu Met Val Pro Tyr Pro Val Tyr 10 Thr Val Val Gln Pro Val Gly Pro Arg Val Leu Gln Cys Val His Arg 200 Trp Pro Ser Ala Arg Val Arg Gln Thr Trp Ser Val Leu Leu Leu 215 15 Leu Leu Phe Phe Ile Pro Gly Val Val Met Ala Val Ala Tyr Gly Leu 230 Ile Ser Arg Glu Leu Tyr Leu Gly Leu Arg Phe Asp Gly Asp Ser Asp Ser Asp Ser Gln Ser Arg Val Arg Asn Gln Gly Gly Leu Pro Gly Ala 20 Val His Gln Asn Gly Arg Cys Arg Pro Glu Thr Gly Ala Val Gly Lys 280 Asp Ser Asp Gly Cys Tyr Val Gln Leu Pro Arg Ser Arg Pro Ala Leu 25 295 Glu Leu Thr Ala Leu Thr Ala Pro Gly Pro Gly Ser Gly Ser Arg Pro 310 305 Thr Gln Ala Lys Leu Leu Ala Lys Lys Arg Val Lys Arg Met Leu Leu Val Ile Val Val Leu Phe Phe Leu Cys Trp Leu Pro Val Tyr Ser Ala 30 340 Asn Thr Trp Arg Ala Phe Asp Gly Pro Gly Ala His Arg Ala Leu Ser 360 Val Ala Pro Ile Ser Phe Ile His Leu Leu Ser Tyr Ala Ser Ala Cys 35 375 Val Asn Pro Leu Val Tyr Cys Phe Met His Arg Arg Phe Arg Gln Ala 390 395 385

Cys Leu Glu Thr Cys Ala Arg Cys Cys Pro Arg Pro Pro Arg Ala Arg 405 410

Pro Arg Ala Leu Pro Asp Glu Asp Pro Pro Thr Pro Ser Ile Ala Ser

- Leu Ser Arg Leu Ser Tyr Thr Thr Ile Ser Thr Leu Gly Pro Gly 5 440
 - (134) INFORMATION FOR SEQ ID NO:133:
 - (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1014 base pairs 10
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

15	ATGAACAGCA	CATGTATTGA	AGAACAGCAT	GACCTGGATC	ACTATTTGTT	TCCCATTGTT	60
	TACATCTTTG	TGATTATAGT	CAGCATTCCA	GCCAATATTG	GATCTCTGTG	TGTGTCTTTC	120
	CTGCAAGCAA	AGAAGGAAAG	TGAACTAGGA	ATTTACCTCT	TCAGTTTGTC	ACTATCAGAT	180
	TTACTCTATG	CATTAACTCT	CCCTTTATGG	ATTGATTATA	CTTGGAATAA	AGACAACTGG	240
	ACTTTCTCTC	CTGCCTTGTG	CAAAGGGAGT	GCTTTTCTCA	TGTACATGAA	TTTTTACAGC	300
20	AGCACAGCAT	TCCTCACCTG	CATTGCCGTT	GATCGGTATT	TGGCTGTTGT	CTACCCTTTG	360
	AAGTTTTTT	TCCTAAGGAC	AAGAAGATTT	GCACTCATGG	TCAGCCTGTC	CATCTGGATA	420
	TTGGAAACCA	TCTTCAATGC	TGTCATGTTG	TGGGAAGATG	AAACAGTTGT	TGAATATTGC	480
	GATGCCGAAA	AGTCTAATTT	TACTTTATGC	TATGACAAAT	ACCCTTTAGA	GAAATGGCAA	540
	ATCAACCTCA	ACTTGTTCAG	GACGTGTACA	GGCTATGCAA	TACCTTTGGT	CACCATCCTG	60
25	ATCTGTAACC	GGAAAGTCTA	CCAAGCTGTG	CGGCACAATA	AAGCCACGGA	AAACAAGGAA	660
	AAGAAGAGAA	TCAAAAAACT	ACTTGTCAGC	ATCACAGTTA	CTTTTGTCTT	ATGCTTTACT	72
	CCCTTTCATG	TGATGTTGCT	GATTCGCTGC	ATTTTAGAGC	ATGCTGTGAA	CTTCGAAGAC	78
	CACAGCAATT	CTGGGAAGCG	AACTTACACA	ATGTATAGAA	TCACGGTTGC	ATTAACAAGT	84
	TTAAATTGTG	TTGCTGATCC	AATTCTGTAC	TGTTTTGTTA	CCGAAACAGG	AAGATATGAT	90
30	ATGTGGAATA	TATTAAAATT	CTGCACTGGG	AGGTGTAATA	CATCACAAAG	ACAAAGAAAA	96
	CGCATACTTT	CTGTGTCTAC	AAAAGATACT	ATGGAATTAG	AGGTCCTTGA	GTAG	101

- (135) INFORMATION FOR SEQ ID NO:134:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 337 amino acids
- (B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:
- Met Asn Ser Thr Cys Ile Glu Glu Glu His Asp Leu Asp His Tyr Leu $10 \hspace{1.5cm} 1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$
 - Phe Pro Ile Val Tyr Ile Phe Val Ile Ile Val Ser Ile Pro Ala Asn
 - Ile Gly Ser Leu Cys Val Ser Phe Leu Gln Ala Lys Lys Glu Ser Glu 35 40 45
- 15 Leu Gly Ile Tyr Leu Phe Ser Leu Ser Leu Ser Asp Leu Leu Tyr Ala
 50 55 60
 - Leu Thr Leu Pro Leu Trp Ile Asp Tyr Thr Trp Asn Lys Asp Asn Trp 65 70 75 80
 - Thr Phe Ser Pro Ala Leu Cys Lys Gly Ser Ala Phe Leu Met Tyr Met 85 90 95
 - Asn Phe Tyr Ser Ser Thr Ala Phe Leu Thr Cys Ile Ala Val Asp Arg 100 105 110
 - Tyr Leu Ala Val Val Tyr Pro Leu Lys Phe Phe Phe Leu Arg Thr Arg
- 25 Arg Phe Ala Leu Met Val Ser Leu Ser Ile Trp Ile Leu Glu Thr Ile 130 135 140
 - Phe Asn Ala Val Met Leu Trp Glu Asp Glu Thr Val Val Glu Tyr Cys 145 150 155 160
- Asp Ala Glu Lys Ser Asn Phe Thr Leu Cys Tyr Asp Lys Tyr Pro Leu 30 165 170 175
 - Glu Lys Trp Gln Ile Asn Leu Asn Leu Phe Arg Thr Cys Thr Gly Tyr 180 185 190
 - Ala Ile Pro Leu Val Thr Ile Leu Ile Cys Asn Arg Lys Val Tyr Gln
 195 200 205
- 35 Ala Val Arg His Asn Lys Ala Thr Glu Asn Lys Glu Lys Lys Arg Ile 210 215 220

Lys Lys Leu Leu Val Ser Ile Thr Val Thr Phe Val Leu Cys Phe Thr 225 230 235

Pro Phe His Val Met Leu Leu Ile Arg Cys Ile Leu Glu His Ala Val

- 5 Asn Phe Glu Asp His Ser Asn Ser Gly Lys Arg Thr Tyr Thr Met Tyr 260 265 270
 - Arg Ile Thr Val Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile 275 280 285
- Leu Tyr Cys Phe Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile $10 \hspace{1cm} 290 \hspace{1cm} 295 \hspace{1cm} 300$

Leu Lys Phe Cys Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys

Arg Ile Leu Ser Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu 325 330 335

15 Glu

20

- (136) INFORMATION FOR SEQ ID NO:135:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 999 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:
- 25 ATGGTGAACT CCACCCACCG TGGGATGCAC ACTTCTCTGC ACCTCTGGAA CCGCAGCAGT

TACAGACTGC ACAGCAATGC CAGTGAGTCC CTTGGAAAAG GCTACTCTGA TGGAGGGTGC

TACGAGCAAC TTTTTGTCTC TCCTGAGGTG TTTGTGACTC TGGGTGTCAT CAGCTTGTTG

GAGAATATCT TAGTGATTGT GGCAATAGCC AAGAACAAGA ATCTGCATTC ACCCATGTAC 240

TTTTTCATCT GCAGCTTGGC TGTGGCTGAT ATGCTGGTGA GCGTTTCAAA TGGATCAGAA

35 ACCATTATCA TCACCCTATT AAACAGTACA GATACGGATG CACAGAGTTT CACAGTGAAT 360

ATTGATAATG TCATTGACTC GGTGATCTGT AGCTCCTTGC TTGCATCCAT TTGCAGCCTG

CTTTCAATTG CAGTGGACAG GTACTTTACT ATCTTCTATG CTCTCCAGTA CCATAACATT

5 ATGACAGTTA AGCGGGTTGG GATCAGCATA AGTTGTATCT GGGCAGCTTG CACGGTTTCA

GGCATTTTGT TCATCATTTA CTCAGATAGT AGTGCTGTCA TCATCTGCCT CATCACCATG

TTCTTCACCA TGCTGGCTCT CATGGCTTCT CTCTATGTCC ACATGTTCCT GATGGCCAGG 10 660

CTTCACATTA AGAGGATTGC TGTCCTCCCC GGCACTGGTG CCATCCGCCA AGGTGCCAAT

ATGAAGGGAA AAATTACCTT GACCATCCTG ATTGGCGTCT TTGTTGTCTG CTGGGCCCCA 780

15 TTCTTCCTCC ACTTAATATT CTACATCTCT TGTCCTCAGA ATCCATATTG TGTGTGCTTC

ATGTCTCACT TTAACTTGTA TCTCATACTG ATCATGTGTA ATTCAATCAT CGATCCTCTG 900

ATTTATGCAC TCCGGAGTCA AGAACTGAGG AAAACCTTCA AAGAGATCAT CTGTTGCTAT 20 960

CCCCTGGGAG GCCTTTGTGA CTTGTCTAGC AGATATTAA 999

- (137) INFORMATION FOR SEQ ID NO:136:
- (i) SEQUENCE CHARACTERISTICS: 25
 - (A) LENGTH: 332 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

Met Val Asn Ser Thr His Arg Gly Met His Thr Ser Leu His Leu Trp 5 10 1

Asn Arg Ser Ser Tyr Arg Leu His Ser Asn Ala Ser Glu Ser Leu Gly

Lys Gly Tyr Ser Asp Gly Gly Cys Tyr Glu Gln Leu Phe Val Ser Pro 35 35 40

	Glu	Va1 50	Phe	Va1	Thr	Leu	Gly 55	Val	Ile	Ser	Leu	Leu 60	Glu	Asn	Ile	Leu
	Val 65	Ile	Val	Ala	Ile	Ala 70	Lys	Asn	Lys	Asn	Leu 75	His	Ser	Pro	Met	Tyr 80
5	Phe	Phe	Ile	Cys	Ser 85	Leu	Ala	Val	Ala	Asp 90	Met	Leu	Val	Ser	Val 95	Ser
	Asn	Gly	Ser	Glu 100	Thr	Ile	Ile	Ile	Thr 105	Leu	Leu	Asn	Ser	Thr 110	Asp	Thr
10	Asp	Ala	Gln 115	Ser	Phe	Thr	Val	Asn 120	Ile	Asp	Asn	Val	Ile 125	Asp	Ser	Val
	Ile	Cys 130	Ser	Ser	Leu	Leu	Ala 135	Ser	Ile	Cys	Ser	Leu 140	Leu	Ser	Ile	Ala
	Val 145	Asp	Arg	Tyr	Phe	Thr 150	Ile	Phe	Tyr	Ala	Leu 155	Gln	Tyr	His	Asn	Ile 160
15	Met	Thr	Val	Lys	Arg 165	Val	Gly	Ile	Ser	Ile 170	Ser	Cys	Ile	Trp	Ala 175	Ala
	Cys	Thr	Val	Ser 180	Gly	Ile	Leu	Phe	Ile 185	Ile	Tyr	Ser	Asp	Ser 190	Ser	Ala
20	Val	Ile	Ile 195	Cys	Leu	Ile	Thr	Met 200	Phe	Phe	Thr	Met	Leu 205	Ala	Leu	Met
	Ala	Ser 210	Leu	Tyr	Val	His	Met 215	Phe	Leu	Met	Ala	Arg 220	Leu	His	Ile	Lys
	Arg 225	Ile	Ala	Val	Leu	Pro 230		Thr	Gly	Ala	Ile 235	Arg	Gln	Gly	Ala	Asn 240
25	Met	Lys	Gly	Lys	Ile 245	Thr	Leu	Thr	Ile	Leu 250	Ile	Gly	Val	Phe	Val 255	Val
	Cys	Trp	Ala	Pro 260	Phe	Phe	Leu	His	Leu 265	Ile	Phe	Tyr	Ile	Ser 270	Cys	Pro
30	Gln	Asn	Pro 275	Tyr	Cys	Val	Cys	Phe 280	Met	Ser	His	Phe	Asn 285	Leu	Tyr	Leu
	Ile	Leu 290	Ile	Met	Cys	Asn	Ser 295	Ile	Ile	Asp	Pro	Leu 300		Tyr	Ala	Leu
	Arg 305	Ser	Gln	Glu	Leu	Arg 310		Thr	Phe	Lys	G1u 315		Ile	Cys	Cys	Tyr 320
35	Pro	Leu	Gly	Gly	Leu 325		Asp	Leu	Ser	Ser 330		Tyr				

(138) INFORMATION FOR SEQ ID NO:137:

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(11) MODECODE TYPE: DNA (Genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
	GCCAATATGA AGGGAAAAAT TACCTTGACC ATC 33	
10	(137) INFORMATION FOR SEQ ID NO:138:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138: CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T 31	
20	(140) INFORMATION FOR SEQ ID NO:139:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1842 base pairs (B) TYPE: nucleic acid (C) SYRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139: ATGGGGCCCA CCCTAGCGGT TCCCACCCCC TATGGCTGTA TTGGCTGTAA GCTACCCCAG	60
	CCAGAATACC CACCGCTCT AATCATCTTT ATGTTCTGCG CGATGGTTAT CACCATCGTT	120
30	GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAAGCTCCGG	180
	AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC	240
	CCATACCCTT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG	300
	TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG	360

	GCAATCGCTA	TCAACCGTTA	CTGCTACATC	TGCCACAGCC	TCCAGTACGA	ACGGATCTTC	420
	AGTGTGCGCA	ATACCTGCAT	CTACCTGGTC	ATCACCTGGA	TCATGACCGT	CCTGGCTGTC	480
	CTGCCCAACA	TGTACATTGG	CACCATCGAG	TACGATCCTC	GCACCTACAC	CTGCATCTTC	540
	AACTATCTGA	ACAACCCTGT	CTTCACTGTT	ACCATCGTCT	GCATCCACTT	CGTCCTCCCT	600
5	CTCCTCATCG	TGGGTTTCTG	CTACGTGAGG	ATCTGGACCA	AAGTGCTGGC	GGCCCGTGAC	660
	CCTGCAGGGC	AGAATCCTGA	CAACCAACTT	GCTGAGGTTC	GCAATTTTCT	AACCATGTTT	720
	GTGATCTTCC	TCCTCTTTGC	AGTGTGCTGG	TGCCCTATCA	ACGTGCTCAC	TGTCTTGGTG	780
	GCTGTCAGTC	CGAAGGAGAT	GGCAGGCAAG	ATCCCCAACT	GGCTTTATCT	TGCAGCCTAC	840
	TTCATAGCCT	ACTTCAACAG	CTGCCTCAAC	GCTGTGATCT	ACGGGCTCCT	CAATGAGAAT	900
10	TTCCGAAGAG	AATACTGGAC	CATCTTCCAT	GCTATGCGGC	ACCCTATCAT	ATTCTTCCCT	960
	GGCCTCATCA	GTGATATTCG	TGAGATGCAG	GAGGCCCGTA	CCCTGGCCCG	CGCCCGTGCC	1020
	CATGCTCGCG	ACCAAGCTCG	TGAACAAGAC	CGTGCCCATG	CCTGTCCTGC	TGTGGAGGAA	1080
	ACCCCGATGA	ATGTCCGGAA	TGTTCCATTA	CCTGGTGATG	CTGCAGCTGG	CCACCCCGAC	1140
	CGTGCCTCTG	GCCACCCTAA	GCCCCATTCC	AGATCCTCCT	CTGCCTATCG	CAAATCTGCC	1200
15	TCTACCCACC	: ACAAGTCTGT	CTTTAGCCAC	TCCAAGGCTG	CCTCTGGTCA	CCTCAAGCCT	1260
	GTCTCTGGCC	ACTCCAAGCC	TGCCTCTGGT	CACCCCAAGT	CTGCCACTGT	CTACCCTAAG	1320
	CCTGCCTCTG	TCCATTTCAA	GGGTGACTCT	GTCCATTTCA	AGGGTGACTO	TGTCCATTTC	1380
	AAGCCTGACT	CTGTTCATTT	CAAGCCTGCT	TCCAGCAACC	CCAAGCCCAT	CACTGGCCAC	1440
	CATGTCTCTC	G CTGGCAGCCA	CTCCAAGTCT	GCCTTCAGTG	CTGCCACCAC	CCACCCTAAA	1500
20	CCCATCAAGO	CAGCTACCAG	CCATGCTGAG	CCCACCACTG	CTGACTATC	CAAGCCTGCC	1560
	ACTACCAGC	CACCTAAGCC	CGCTGCTGCT	GACAACCCTG	AGCTCTCTG	C CTCCCATTGC	1620
	CCCGAGATCC	CTGCCATTGC	CCACCCTGTG	TCTGACGACA	GTGACCTCC	C TGAGTCGGCC	1680
	TCTAGCCCT	G CCGCTGGGCC	CACCAAGCC	GCTGCCAGCC	AGCTGGAGT	C TGACACCATC	1740
	GCTGACCTT	CTGACCCTAC	TGTAGTCACT	r accagtacca	A ATGATTACC	A TGATGTCGTG	1800
25	GTTGTTGAT	TTGAAGATGA	TCCTGATGA	ATGGCTGTGT	r GA		1842

(141) INFORMATION FOR SEQ ID NO:140:

⁽i) SEQUENCE CHARACTERISTICS:

⁽A) LENGTH: 613 amino acids

⁽B) TYPE: amino acid

- (C) STRANDEDNESS:
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEO ID NO:140:
- Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys
 1 10 15
 - Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe 20 25 30
- Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 10 $$\,^{45}$
 - Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 50 55 60
 - Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 65 70 75 80
- $_{\mbox{\scriptsize 15}}$ Pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu $_{\mbox{\scriptsize 85}}$ 90 95
 - Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val 100 105 110
 - Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys 115 120 125
 - Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn 130 135 140
 - Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val 145 150 155 160
- 25 Leu Pro Asn Met Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg Thr Tyr 165 170 170 175
 - Thr Cys Ile Phe Asn Tyr Leu Asn Asn Pro Val Phe Thr Val Thr Ile 180 185 190
- Val Cys Ile His Phe Val Leu Pro Leu Leu Ile Val Gly Phe Cys Tyr
 - Val Arg Ile Trp Thr Lys Val Leu Ala Ala Arg Asp Pro Ala Gly Gln 210 215 220
 - Asn Pro Asp Asn Gln Leu Ala Glu Val Arg Asn Phe Leu Thr Met Phe 225 230 235 240
- 35 Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu 245 250 255

	Thr	Val	Leu	Val 260	Ala	Val	Ser		Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
	Asn	Trp	Leu 275	Tyr	Leu	Ala		Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys
5	Leu	Asn 290	Ala	Val	Ile	Tyr	Gly 295	Leu	Leu	Asn	Glu	Asn 300	Phe	Arg	Arg	Glu
	Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Pro 320
10	Gly	Leu	Ile	Ser	Asp 325	Ile	Arg	Glu	Met	Gln 330	Glu	Ala	Arg	Thr	Leu 335	Ala
	Arg	Ala	Arg	Ala 340	His	Ala	Arg	Asp	Gln 345	Ala	Arg	Glu	Gln	Asp 350	Arg	Ala
	His	Ala	Cys 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
15	Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
	His 385		Lys	Pro	His	Ser 390		Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
20	Ser	Thr	His	His	Lys 405		Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
	His	Leu	Lys	Pro 420		Ser	Gly	His	Ser 425		Pro	Ala	Ser	Gly 430	His	Pro
	Lys	Ser	Ala 435		Val	Tyr	Pro	Lys 440	Pro	Ala	a Ser	Val	His	Phe	Lys	Gly
25	Asp	Ser 450		His	Phe	Lys	Gly 455		Se1	Val	L His	Phe 460	Lys	Pro	Asp	Ser
	Val		Phe	Lys	Pro	Ala 470	ser	Sei	Ası	ı Pro	475	Pro	o Ile	Thi	Gly	/ His 480
30	His	s Val	l Sei	: Ala	485		His	Sei	: Ly:	4 9 i	r Ala	a Phe	e Sei	- Ala	49!	a Thr
	Se	r Hi	s Pro	500		o Ile	e Lys	Pro	50		r Se	r Hi	s Ala	510	ı Pro	o Thr
	Th	r Al	a Asj 51		r Pro	o Ly	s Pro	52		r Th	r Se	r Hi	s Pro	o Ly	s Pr	o Ala
35	Al	a Al 53		p As:	n Pr	o Gl	u Let 53!	ı Se	r Al	a Se	r Hi	s Cy 54	s Pr 0	o Gl	u Il	e Pro
	Al	a Il	e Al	a Hi	s Pr	o Va	l Se	r As	p As	p Se	r As	p Le	u Pr	o Gl	u Se	r Ala

T		D VIII	A A A A A A A A A A A A A A A A A A A	Ŀ	
Ų,	U				
Ų,	U		٠	à	i
Ų,	U		-	Post!	
Ų,	U		9	diam'r.	2
U	L.			il.	-
Ē	05		0	0	-
	100		Ē		
100	13			,	1
100				*	1
100				5	

545 550 555 560 Ser Ser Pro Ala Ala Gly Pro Thr Lys Pro Ala Ala Ser Gln Leu Glu

565 570 575

Ser Asp Thr Ile Ala Asp Leu Pro Asp Pro Thr Val Val Thr Thr Ser 580 585 590

Thr Asn Asp Tyr His Asp Val Val Val Val Asp Val Glu Asp Asp Pro $595 \hspace{1cm} 605$

Asp Glu Met Ala Val

- 10 (142) INFORMATION FOR SEQ ID NO:141:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1842 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

ATGGGGCCCA CCCTAGCGGT TCCCACCCCC TATGGCTGTA TTGGCTGTAA GCTACCCCAG 60 CCAGAATACC CACCGGCTCT AATCATCTTT ATGTTCTGCG CGATGGTTAT CACCATCGTT 120 20 GTAGACCTAA TCGGCAACTC CATGGTCATT TTGGCTGTGA CGAAGAACAA GAAGCTCCGG 180 AATTCTGGCA ACATCTTCGT GGTCAGTCTC TCTGTGGCCG ATATGCTGGT GGCCATCTAC CCATACCCTT TGATGCTGCA TGCCATGTCC ATTGGGGGCT GGGATCTGAG CCAGTTACAG 300 TGCCAGATGG TCGGGTTCAT CACAGGGCTG AGTGTGGTCG GCTCCATCTT CAACATCGTG 360 GCAATCGCTA TCAACCGTTA CTGCTACATC TGCCACAGCC TCCAGTACGA ACGGATCTTC 420 25 AGTGTGCGCA ATACCTGCAT CTACCTGGTC ATCACCTGGA TCATGACCGT CCTGGCTGTC 480 CTGCCCAACA TGTACATTGG CACCATCGAG TACGATCCTC GCACCTACAC CTGCATCTTC 540 AACTATCTGA ACAACCCTGT CTTCACTGTT ACCATCGTCT GCATCCACTT CGTCCTCCCT 600 CTCCTCATCG TGGGTTTCTG CTACGTGAGG ATCTGGACCA AAGTGCTGGC GGCCCGTGAC 660 CCTGCAGGGC AGAATCCTGA CAACCAACTT GCTGAGGTTC GCAATAAACT AACCATGTTT 720 30 GTGATCTTCC TCCTCTTTGC AGTGTGCTGG TGCCCTATCA ACGTGCTCAC TGTCTTGGTG 780

GCTGTCAGTC CGAAGGAGAT GGCAGGCAAG ATCCCCAACT GGCTTTATCT TGCAGCCTAC

	TTCATAGCCT	ACTTCAACAG	CTGCCTCAAC	GCTGTGATCT	ACGGGCTCCT	CAATGAGAAT	900
	TTCCGAAGAG	AATACTGGAC	CATCTTCCAT	GCTATGCGGC	ACCCTATCAT	ATTCTTCTCT	960
	GGCCTCATCA	GTGATATTCG	TGAGATGCAG	GAGGCCCGTA	CCCTGGCCCG	CGCCCGTGCC	1020
	CATGCTCGCG	ACCAAGCTCG	TGAACAAGAC	CGTGCCCATG	CCTGTCCTGC	TGTGGAGGAA	1080
5	ACCCCGATGA	ATGTCCGGAA	TGTTCCATTA	CCTGGTGATG	CTGCAGCTGG	CCACCCCGAC	1140
	CGTGCCTCTG	GCCACCCTAA	GCCCCATTCC	AGATCCTCCT	CTGCCTATCG	CAAATCTGCC	1200
	TCTACCCACC	ACAAGTCTGT	CTTTAGCCAC	TCCAAGGCTG	CCTCTGGTCA	CCTCAAGCCT	1260
	GTCTCTGGCC	ACTCCAAGCC	TGCCTCTGGT	CACCCCAAGT	CTGCCACTGT	CTACCCTAAG	1320
	CCTGCCTCTG	TCCATTTCAA	GGCTGACTCT	GTCCATTTCA	AGGGTGACTC	TGTCCATTTC	1380
10	AAGCCTGACT	CTGTTCATTT	CAAGCCTGCT	TCCAGCAACC	CCAAGCCCAT	CACTGGCCAC	1440
	CATGTCTCTG	CTGGCAGCCA	CTCCAAGTCT	GCCTTCAATG	CTGCCACCAG	CCACCCTAAA	1500
	CCCATCAAGC	CAGCTACCAG	CCATGCTGAG	CCCACCACTG	CTGACTATCO	CAAGCCTGCC	1560
	ACTACCAGCC	ACCCTAAGCC	CGCTGCTGCT	GACAACCCTG	AGCTCTCTG	CTCCCATTGC	1620
	CCCGAGATCC	CTGCCATTGC	CCACCCTGTG	TCTGACGACA	GTGACCTCC	TGAGTCGGCC	1680
15	TCTAGCCCTG	CCGCTGGGCC	CACCAAGCCT	GCTGCCAGCC	AGCTGGAGT	TGACACCATC	1740
	GCTGACCTTC	CTGACCCTAC	TGTAGTCACT	ACCAGTACCA	ATGATTACC	A TGATGTCGTG	1800
	annanna i m	TTGAAGATG	TCCTGATGA	ATGGCTGTG	r ga		1842

PATENT

- (143) INFORMATION FOR SEQ ID NO:142:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 613 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: protein
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys 1 15

Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe $20 \hspace{0.25in} 25 \hspace{0.25in} 30 \hspace{0.25in}$

30 Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met
35 40 45

Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 5 pro Tyr Pro Leu Met Leu His Ala Met Ser Ile Gly Gly Trp Asp Leu Ser Gln Leu Gln Cys Gln Met Val Gly Phe Ile Thr Gly Leu Ser Val Val Gly Ser Ile Phe Asn Ile Val Ala Ile Ala Ile Asn Arg Tyr Cys 10 Tyr Ile Cys His Ser Leu Gln Tyr Glu Arg Ile Phe Ser Val Arg Asn Thr Cys Ile Tyr Leu Val Ile Thr Trp Ile Met Thr Val Leu Ala Val 150 155 Leu Pro Asn Met Tyr Ile Gly Thr Ile Glu Tyr Asp Pro Arg Thr Tyr 15 165 Thr Cys Ile Phe Asn Tyr Leu Asn Asn Pro Val Phe Thr Val Thr Ile 185 Val Cys Ile His Phe Val Leu Pro Leu Leu Ile Val Gly Phe Cys Tyr 20 195 Val Arg Ile Trp Thr Lys Val Leu Ala Ala Arg Asp Pro Ala Gly Gln Asn Pro Asp Asn Gln Leu Ala Glu Val Arg Asn Lys Leu Thr Met Phe 235 225 230 Val Ile Phe Leu Leu Phe Ala Val Cys Trp Cys Pro Ile Asn Val Leu 25 Thr Val Leu Val Ala Val Ser Pro Lys Glu Met Ala Gly Lys Ile Pro Asn Trp Leu Tyr Leu Ala Ala Tyr Phe Ile Ala Tyr Phe Asn Ser Cys 30 275 Leu Asn Ala Val Ile Tyr Gly Leu Leu Asn Glu Asn Phe Arg Arg Glu Tyr Trp Thr Ile Phe His Ala Met Arg His Pro Ile Ile Phe Phe Ser 310 Gly Leu Ile Ser Asp Ile Arg Glu Met Gln Glu Ala Arg Thr Leu Ala 35 325

Arg Ala Arg Ala His Ala Arg Asp Gln Ala Arg Glu Gln Asp Arg Ala

				340					345					350		
	His	Ala	Cys 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365	Arg	Asn	Val
5	Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
	His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
	Ser	Thr	His	His	Lys 405	Ser	Val	Phe	ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
10	His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
	Lys	Ser	Ala 435	Thr	Val	Tyr	Pro	Lys 440	Pro	Ala	Ser	Val	His 445	Phe	Lys	Ala
15	Asp	Ser 450	Val	His	Phe	Lys	Gly 455	Asp	Ser	Val	His	Phe 460		Pro	Asp	Ser
	Val 465	His	Phe	Lys	Pro	Ala 470		Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480
	His	Val	Ser	Ala	Gly 485		His	Ser	Lys	Ser 490	Ala	Phe	Asn	Ala	Ala 495	Thr
20	Ser	His	Pro	Lys 500		Ile	Lys	Pro	Ala 505		Ser	His	Ala	Glu 510	Pro	Thr
	Thr	Ala	Asp 515		Pro	Lys	Pro	Ala 520		Thr	Ser	His	Pro 525	Lys	Pro	Ala
25	Ala	Ala 530		Asn	Pro	Glu	Leu 535		Ala	Ser	His	Cys 540	Pro	Glu	ı Ile	Pro
	Ala 545		Ala	His	Pro	Val 550		Asp	Asp	Ser	Asp 555	Leu	Pro	Glu	ı Sei	Ala 560
	Sei	Ser	Pro	Ala	Ala 565		Pro	Thi	Lys	570		Ala	s Ser	Glr	575	ı Glu
30	Sei	Asp	Thr	580		Asp	Let	ı Pro	Asp 585		Thi	· Val	L Val	590	Thi	r Ser
	Th	Asr	Asp 595		c His	as Asp	o Val	600		l Va	l Ası	Va.	609) As	p Pro
35	Ası	Glu 610		: Ala	a Val	L										

(144) INFORMATION FOR SEQ ID NO:143:

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

5 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEOUENCE DESCRIPTION: SEO ID NO:143:

GCTGAGGTTC GCAATAAACT AACCATGTTT GTG

(145) INFORMATION FOR SEQ ID NO:144:

10 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic) 15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

CTCCTTCGGT CCTCCTATCG TTGTCAGAAG T

(146) INFORMATION FOR SEQ ID NO:145:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

25 (iv) ANTI-SENSE: NO

DOBYELLE

20

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

TTAGATATCG GGGCCCACCC TAGCGGT

(147) INFORMATION FOR SEO ID NO:146:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

33

31

(iv) ANTI-SENSE: YES

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

GGTACCCCCA CAGCCATTTC ATCAGGATC