5. Video coding (Part 1)

Yi-Shin Tung National Taiwan University

PCM

- Sampling: an array of samples on a rectangular spatial grid sampled at a frame rate, B(x,y,t).
- Each sample is quantized to 2^K levels, called pulse coded modulation.
 - Time discreteness is provided by sampling the signal at lease at the Nyquist rate. (both spatial and temporal)
 - Amplitude discreteness is provided by using a sufficient number of quantization levels
- PCM does not remove any statistical or perceptual redundancy.

Predictive coding: DPCM

- Prediction next pel using values of the "previously transmitted" pels, and transmitting quantized prediction error, called Differential PCM.
 - Intra-frame prediction
 - Inter-frame prediction
 - The same spatial location in case of no motion
 - A displaced location in case of it is part of motion object.

DPCM

Simple DPCM coder

- Predictor
- Quantizer
- Entropy coder

DPCM

- 1D predictor (1 pixel memory)
- 2D predictor (1 line memory)
- Temporal predictor (1 frame/2 fields memory)
- Motion compensated predictor \(\ldots \) The cost of computation drops, \(\ldots \) ME/MC become practical.

Direction of Scan			
Previous Line (E) (B) (C) (F)			
Interlaced Line — () — () — ()			
Present Line G A X			
1D/2D predictor			

	Prediction Coefficients			Variance
Video Signal	α_A	α_B	α_C	σ_E^2
r	1			53.1
•	1	-1/2	1/2	29.8
	3/4	-1/2	3/4	27.9
	7/8	-5/8	3.4	26.3
RY	1			22.6
			1	5.6
	1/2	-1/2	·	4.9
	5/8	-1/2	7/8	4.7
B-Y	1			13.3
			1 -	3.2
	1/2	-1/2	1	2.5
	3/8	-1/4	7/8	2.5

The cost of memory drops,

the distinction becomes blurring.

Power of 2 is easy to implement.

Temporal predictor

- Frame difference predictor becomes inefficient when motion is larger than 1~2 pels.
- Motion becomes larger, all temporal predictors fail.

Transmitted Signal $Z - \hat{Z}$	Prediction $\hat{\mathcal{Z}}$	Entropies in Bits per Moving-Area Pel (35 Level Quantization)
Frame-difference	M	≈2.1 to 3.9
Element-difference	H	\approx 2.0 to 3.7
Element-difference	M + H - L	≈1.8 to 3.1
Line-difference of frame-difference	$M+B-\mathcal{J}$	≈1.5 to 3.5
Field-difference	$(E + S_i/2)$	≈ 1.8 to 3.2
Element-difference of field-difference	H + (E + S)/2 - $(D + R)/2$	≈1.5 to 2.5

Motion compensated predictor

- If a scene contains moving objects and an estimate of their translation is available, temporal prediction can be adapted, called MCP.
- Real motion is complex combination of 3D translation and rotation, but 2D translational motion works well in most cases.
 - Object motion is in a plane perpendicular to the camera axis.
 - Illumination is spatially and temporally uniform.
 - Occluded object and uncovered background are relatively small.

$$b(Z,t) = b(Z-D,t-\tau)$$

b(.): brightness function

Z: spatial position

 τ : the time between two frames

D: 2D translational motion

Motion estimation

Block matching methods: assume motion is constant within M×N block of pels.

$$PE(D) = \sum G(b(Z,t) - b(Z - D, t - \tau))$$

- \Box G(.) is distant metric such as magnitude or square function.
- Exhaustive search

$$PE(Z_0, i, j) = \frac{1}{M \times N} \sum_{|m| \le \frac{M}{2}} \sum_{|n| \le \frac{N}{2}} \left| b(Z_{mn}, t) - b(Z_{m+i, n+j}, t - \tau) \right|$$

where
$$-d_{\max} \le i, j \le d_{\max}, Z_{mn} = Z_0 + [m, n]$$

If assuming $PE(Z_0,i,j)$ increases monotonically as the shift (i,j) moves away from the minimum, fast algorithms apply.

Fast motion estimation

- TSS, logarithmic search
- Fractional pel accuracy
- Bits for motion vector have to be transmitted.
- Reduce the time of cost function evaluation from $(2 \times d_{max} + 1)^2$ to $n \times log(d_{max})$.
- For 5x5 block size, d_{max}=8, half-pel resolution,
 - Motion rate is 0.4bits/pel.

Motion Estimation

Motion Compensation

- Motion Compensation
 - using motion vector between current frame and reference frame to reconstruct the prediction of current frame

Motion Compensation (conti.)

- Motion vector is coded by DPCM.
- Half-pel motion vector is applicable by using interpolation.

$$a = A$$

$$b = (A+B+1)/2$$

$$c = (A+C+1)/2$$

$$d = (A+B+C+D+2)/4$$

Motion estimation

- Recursive methods
- Minimize recursively displaced frame distortion (DFD) at each moving area pel using steepest descent algorithm.

Quantization

- DPCM achieve compression by quantizing the prediction error more coarsely than original signal.
- Properly placing quantization levels results in excellent picture quality.
- Quantization artifacts
 - Granular noise
 - Slope overload
 - Edge busyness

Fig. 6.12 An intuitive classification of distortion due to coarse DPCM quantization. Three classes of quantization noise are identified: granular noise, edge business, and slope overload.

Quantization design

Statistical design

$$D = \sum_{k=1}^{L} \int_{t_{k-1}}^{t_k} f(x - l_k) \cdot p(x) dx$$

where
$$t_0 < t_1 < ... < t_L$$
 and $l_1 < l_2 < ... < l_L$

Differentiating with respect to t_k and I_k

$$f(t_{k-1} - l_{k-1}) = f(t_{k-1} - l_k), k = 2...L$$

$$\int_{t_k}^{t_k} \frac{df(x - l_k)}{dx} \cdot p(x) dx = 0, k = 1...L$$

If f is MSE, then...

$$t_{k} = \frac{1}{2}(l_{k} + l_{k+1}), l_{k} = \int_{t_{k-1}}^{t_{k}} x \cdot p(x) dx / \int_{t_{k-1}}^{t_{k}} p(x) dx$$

- Lloyd-Max iteration process solves the problem.
- p(x) for pel-differential coder can be approximated by a Laplacian density.

- 0 5 13 22 31 40 52 0 27 35 36 45 46 255
 - 13 Level MSE Quantizer
- - 13 Level MSSD Quantizer

- MSE⇒companded
 - Less granular noise.
 - Frequent slope overload and edge busyness.
- Minimize quant distortion subjective to fixed entropy
 - Uniform quant

MSSD Quantizer with Entropy 2.6 Bits/Pel

Quantization design

- Subjective design
 - Consider psychovisual
- Replace MSE with weighted MSE.
 - Less companded.
 - Faithful edge.

Subjective quantization design

- Make quant error below the threshold of visibility.
- Content dependent.
 - If previous pel is used as predictor, 27 levels are required for typical Luminance video conf. seq.
 - 13 levels for 2D predictor.
 - 9 and 5 for Cb and Cr.

Visibility

Threshold

Adaptive quantization

- Adapting the DPCM quantizer usually lead to higher compression.
 - Variation of the image statistics
 - Different fidelity of reproduction
- Divide a picture into regions and then use different quantizers on each region.
- Spatial detail is measured by 3x3 matrix.

Entropy coding

- The probability distribution of quantizer output levels is highly non-uniform both in intra-coding and intercoding.
- Huffman code is widely used.
 - Prefix rule
 - Minimize the average word length
 - Require a fairly reliable knowledge of the probability distribution
 - Result in variable bitrate
- The probability distributions for DPCM are approximately Laplacian, and Huffman code is not too sensitive to different pictures.

Construction of Huffman code

Construction of Huffman code

Transform coding

- By transforming block of pels, correlation between different transform coefficients is reduced substantially.
- Effective especially for low bitrates
 - Not all of coefficients need to be transmitted.
 - Need not be represented with full accuracy.
 - Coefficients have a very non-uniform probability.
- DCT becomes the most widely used unitary transform.
 - Ability to compress, fast and inexpensive computation.
 - Fast algorithm exists.
 - 2D block is better than 1D. 3D is too complex, requires multiple frame store and inability to incorporate motion compensation.
 - Size of 8x8 is adopted. Above 8x8 does not help too much.

Transform coding

Fig. 6.25 Basis vectors for the DCT with N = 16.

Fig. 6.27 DCT coefficient mean square values for the image "Karen" with various block sizes. (a) One-dimensional, arranged according to increasing frequency. (b) Separable two-dimensional, arranged according to increasing spatial frequency.

Quantization in transform coding

- Quantization error will spread to all pels within the block.
 - The low-energy higher order transform coefficients are set to zero, blurring or loss of sharpness occurs in regions of rapid luminance variation.
 - Coarse quantization of DC coefficient causes visible discontinuity between adjacent blocks.
 - The quantization error in higher order coefficients appears as granular noise.
- Threshold sampling
- Low detail blocks with a large number of insignificant coefficients are coded with fewer bits.
- High detail blocks are coded more coarsely.

Hybrid transform coding

Reading assignment

Mandatory

 Barry G. Haskell, Atul Puri, Arun N. Netravali, "Chapter 6: Digital compression: Fundamentals," Digital video: An introduction to MPEG-2, 1997.