Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	M3304	К работе допущен	
Студент	Гаджиев Саид	Работа выполнена	1.12.2024
Преподаватель_	Шоев В.И.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №4 (IBM.1)

Основы работы в системе IBM Quantum

1. Цель работы.

Освоение основных операций при составлении квантовых схем и их тестировании в симуляторе квантовых схем IBM Quantum. Разработка квантовых схем, состоящих из однокубитных вентилей и реализация с их помощью кубитов в состояниях с произвольными амплитудами вероятности каждого состояния.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Построить однокубитные квантовые цепи.
 - 2. Зарегистрировать результаты моделирования цепей.
 - 3. Сравнить данные моделей с теоретическими распределениями.
- 3. Объект исследования.

Квантовый компьютер, распределение вероятности однокубитных и многокубитных цепей.

4. Метод экспериментального исследования.

Внедрение вентилей в построение схем, проведение моделирований.

- 5. Выполнение упражнения №1:
 - 1. Зарегистрируйтесь на сайте по адресу https://quantum-computing.ibm.com/
 - 2. Перейдите в «IBM Quantum Composer» и соберите схему, состоящую из двух кубитов. Установите для одного кубита состояние |0>, а для второго - состояние |1>. Добавьте операцию измерения для обоих кубитов и выполните получившуюся схему в режиме симуляции:

Кубит — это физический носителем квантовой информации. Это квантовая версия бита, и его квантовое состояние может быть записано в терминах двух уровней, помеченных $|0\rangle$ и $|1\rangle$, которые могут быть представлены в "вычислительном базисе" двумерными векторами

$$|0\rangle = \binom{1}{0} |1\rangle = \binom{0}{1}$$

Однокубитный квантовый вентиль — это унитарная матрица 2x2 матрица (матрицы унитарные, потому что квантовые вентили должны быть обратимыми и сохранять амплитуды вероятности). Квантовый вентиль — удобный способ описать эволюцию квантового состояния. Действие вентиля заключается в преобразовании начального состояния $|\psi\rangle$ в конечное $|\psi'\rangle = U|\psi\rangle$, где U представляют собой вентиль. Это просто

матрично-векторное умножение.

3. В «ІВМ Quantum Composer» создайте схему, состоящую из одного кубита. Приведите кубит в состояние суперпозиции $\frac{1}{\sqrt{2}}(\mid 0\rangle + \mid 1\rangle)$. Примените измеритель к кубиту. Для полученной схемы запустите симуляцию с числом выполнений 1, 2, 8, 32, 64, 128, 512, 1024, 8192. Сделайте выводы на основе получившихся результатов.

Суперпозиция — это взвешенная сумма или разность двух или более состояний; другими словами, это линейная комбинация.

Та	Task 2 (One qubit in superposition):				
	Shots	1> (quantity)	0) (quantity)	1> (out of 1)	0) (out of 1)
0	1	0	1	0.000000	1.000000
1	2	1	1	0.500000	0.500000
2	8	3	5	0.375000	0.625000
3	32	15	17	0.468750	0.531250
4	64	34	30	0.531250	0.468750
5	128	67	61	0.523438	0.476562
6	512	264	248	0.515625	0.484375
7	1024	505	519	0.493164	0.506836
8	8192	4057	4135	0.495239	0.504761

Из результатов симуляции видно, что теоретическая модель подтверждается. Оператор Адамара можно рассматривать как однокубитный аналог системы из двух кубитов в противоположных состояниях, где вероятность обоих состояний — |0> и |1> — равна. Результаты моделирования наглядно подтверждают этот факт.

4. Сравнить две схемы по вентилю CNOT.

	Frequency	
Shots	01>	<00
1024	497	503

	Frequency		
Shots	01>	00>	
1024	0	1024	

При использовании первого кубита q[0] в качестве управляющего, он может быть с равной вероятностью в состояниях $|0\rangle$ или $|1\rangle$. В этом случае состояние управляемого кубита q[1] также будет с равной вероятностью находиться в $|0\rangle$ или $|1\rangle$. Если управляющим является q[1], то это не оказывает влияния на состояние q[0]. Измерения для q[0] уже проводились, и в данном случае нас интересует состояние второго кубита q[1]. Как упоминалось ранее, q[1] может принимать как равновероятные (при выборе его в качестве управляющего) так и фиксированные (при выборе его в качестве управляющего) состояния.

5. Сравнить схемы на двух кубитах по оператору Адамара.

	Frequency		
Shots	0>	1>	
1024	492	508	

	Frequency		
Shots	0>	1>	
1024	490	510	

Возможно, стоило изменить схемы так, чтобы увеличить количество считывающих битов. Это позволило бы рассмотреть состояния каждого из кубитов в рамках одной схемы:

Уже теперь очевидно, что оба кубита с равной вероятностью могут находиться в состояниях $|0\rangle$ и $|1\rangle$. Это подтверждают первые две таблицы, в которых представлены результаты измерений кубитов q[0] и q[1] соответственно. При желании, в схеме можно было бы обойтись без использования CNOT-вентиля: в этом случае состояния кубитов оказались бы ортогональными.

6. Создать схемы и проанализировать в Q-сфере

a) Kyбит RESET + MEASUREMENT:

Не наблюдается ничего: кубит стабильно находится в состоянии |0).

	Frequency (quantity)		
Shots	1>	0>	
1024	0	1024	

	Frequency (out of 1)		
Shots	1> 0>		
1024	0	1	

b) Кубит RESET + NOT + MEASUREMENT: Не наблюдается ничего: кубит остается в состоянии $|1\rangle$ из-за действия X-вентиля.

	Frequency (quantity)		
Shots	1>	0>	
1024	1024	0	

	Frequency (out of 1)		
Shots	1> 0>		
1024	1	0	

с) Кубит + оператор Адамара + MEASUREMENT:
 Фиксируем почти равномерное распределение вероятностей между состояниями |0⟩
 и |1⟩. При этом на Q-сфере отображается только одно состояние, что связано с детерминированностью результата из-за операции измерения (MEASUREMENT).

Результаты симуляции подтверждают равновероятное распределение между двумя состояниями:

	Frequency (quantity)		
Shots	1>	0>	
1024	525	475	

	Frequency (out of 1)		
Shots	1>	0>	
1024	0.53	0.48	

d) Kyбит + NOT + оператор Адамара + MEASUREMENT

Наблюдается почти равное распределение вероятностей между состояниями |0⟩ и |1⟩. На Q-сфере видно только одно состояние с противоположной фазой, что связано с проведением измерения (MEASUREMENT), которое фиксирует результат.

Результаты симуляции подтверждают равновероятное распределение между двумя состояниями:

	Frequency (quantity)		
Shots	1>	0>	
1024	497	503	

		Frequency (out of 1)		
S	hots	1>		0>
1	024	C).49	0.50

e) Кубит + RX + MEASUREMENT Вентиль RX используется для поворота состояния на Q-сфере вокруг оси X.

	Frequency (quantity)		
Shots	1>	0>	
1024	259	765	

	Frequency (out of 1)		
Shots	1>	0>	
1024	0.26	0.76	

f) Kyбит + RX + NOT + MEASUREMENT

	Frequency (quantity)		
Shots	1> 0>		
1024	776	225	

	Frequency (out of 1)		
Shots	1>	0>	
1024	0.78	0.23	

- 6. Выполнение упражнения №2:
- 1. Получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

	Frequency (quantity)		
Shots	1>	0>	
1024	506	518	
	Frequency (out of 1)		
Shots	1>	0>	
1024	0.4941	0.5058	

2. Двумя способами получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

	Frequency (quantity)		
Shots	1> 0>		
1024	499	525	

	Frequency (out of 1)		
Shots	1>	0>	
1024	0.4873	0.5127	

3. Получите кубит в состоянии суперпозиции $\frac{1}{\sqrt{2}}(-|0\rangle + |1\rangle)$

Frequency (quantity)			Frequen	cy (out of 1)	
Shots	1>	0>	Shots	1>	0>
1024	509	515	1024	0.4970	0.5029

Вариант №7 (из таблицы 1). Вероятность $|1\rangle = 35$. Вероятность $|0\rangle = 65$

4. С помощью вентиля RX создайте кубит в состоянии $(a \mid 0) + b \mid 1)$). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

$$(\sqrt{0.65} |0\rangle + \sqrt{0.35} |1\rangle)$$

Вентиль RX выполняет вращение кубита на угол θ вокруг оси X, начиная из состояния $|0\rangle$.

Для понимания работы вентиля важно изучить матрицу поворота, чтобы учесть её действие в общем случае:

$$\begin{split} \widehat{RX} &= exp\left(-i\frac{\theta}{2}\widehat{X}\right) = cos\frac{\theta}{2}\widehat{I} - i\sin\frac{\theta}{2}\widehat{X} \\ \widehat{RX} &= \left(\left(cos\frac{\theta}{2}; -i\sin\frac{\theta}{2}\right)^T; \left(-i\sin\frac{\theta}{2}; cos\frac{\theta}{2}\right)^T\right) \end{split}$$

Таким образом, становится ясно, что для выполнения условий варианта следует выбрать угол:

$$\theta = 2\arccos(\sqrt{0.65}) \approx 1.2661$$

Также следует использовать квантиль $P(\frac{\pi}{2}) \equiv S$, чтобы скорректировать фазу ϕ .

	Frequency (quantity)		
Shots	1> 0>		
2048	696	1352	

	Frequency (out of 1)		
Shots	1>	0>	
2048	0.3398	0.6602	

5. С помощью однокубитного вентиля RY получите кубит в состоянии суперпозиции ($a \mid 0$) + $b \mid 1$). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

$$(\sqrt{0.65} |0\rangle + \sqrt{0.35} |1\rangle)$$

Вентиль RY выполняет вращение кубита на угол θ относительно оси Y. Для понимания работы вентиля важно изучить матрицу поворота, чтобы учесть её действие в общем случае:

$$\widehat{RY} = exp\left(-i\frac{\theta}{2}\widehat{Y}\right) = cos\frac{\theta}{2}\widehat{I} - i\sin\frac{\theta}{2}\widehat{Y}$$

$$\widehat{RY} = \left(\left(cos\frac{\theta}{2}; sin\frac{\theta}{2}\right)^T; \left(-sin\frac{\theta}{2}; cos\frac{\theta}{2}\right)^T\right)$$

Таким образом, становится ясно, что для выполнения условий варианта следует выбрать угол:

$$\theta = 2\arccos(\sqrt{0.65}) \approx 1.2661$$

	Frequency (quantity)		
Shots	1>	0>	
2048	715	1333	

	Frequency (out of 1)		
Shots	1>	0>	
2048	0.3491	0.6508	

6. С помощью однокубитного вентиля U получите кубит в состоянии суперпозиции ($a \mid 0 \rangle + b \mid 1 \rangle$). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

$$(\sqrt{0.65} |0\rangle + \sqrt{0.35} |1\rangle)$$

Вентиль U выполняет вращение кубита на заданные углы (θ, ϕ, λ) , начиная с произвольного исходного состояния.

Для понимания работы вентиля важно изучить матрицу поворота, чтобы учесть её действие в общем случае:

$$\widehat{U}\left(\theta, -\frac{\pi}{2}, \frac{\pi}{2}\right) = \widehat{RX}(\theta)$$

$$\widehat{U}(\theta, 0, 0) = \widehat{RY}(\theta)$$

$$\widehat{U} = \left(\left(\cos \frac{\theta}{2}; e^{i\varphi} \sin \frac{\theta}{2} \right)^T; \left(-e^{i\lambda} \sin \frac{\theta}{2}; e^{i(\varphi + \lambda)} \cos \frac{\theta}{2} \right)^T \right)$$

Таким образом, становится ясно, что для выполнения условий варианта следует выбрать угол:

$$\theta = 2\arccos(\sqrt{0.65}) \approx 1.2661$$

	Frequency (quantity)		
Shots	1>	0>	
2048	731	1317	

	Frequency (out of 1)			
Shots	1> 0>			
2048	0.3569	0.6431		

7. С помощью однокубитного вентиля RX получите кубит в состоянии суперпозиции ($a \mid 0 \rangle - b \mid 1 \rangle$). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

$$(\sqrt{0.65} |0\rangle - \sqrt{0.35} |1\rangle)$$

Чтобы получить состояние в зависимости от указанных значений, нужно применить оператор Паули, который преобразует состояние $|0\rangle$ в $|0\rangle$, а $|1\rangle$ в $-|1\rangle$.

P-gate используется для компенсации фазы состояния $\cos\frac{1.2661}{2}|0\rangle + \sin\frac{1.2661}{2}e^{i\frac{\pi}{2}}|1\rangle$.

	Frequency (quantity)		
Shots	1>	0>	
2048	727	1321	

	Frequency (out of 1)		
Shots	1>	0>	
2048	0.3550	0.6450	

- 8. С помощью однокубитного вентиля RY получите кубит в состоянии суперпозиции ($a \mid 0$) – $b \mid$
- 1)). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

$$(\sqrt{0.65} \mid 0\rangle - \sqrt{0.35} \mid 1\rangle)$$

	Frequency (quantity)		
Shots	1>	0>	
2048	710	1338	

		Frequency (out of 1)			
Shot	:S		1>		0>
204	8	0.3467		0.	6533

9. С помощью однокубитного вентиля U получите кубит в состоянии суперпозиции $(a \mid 0) - b \mid 1)$). Вероятности реализации каждого состояния приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

$$(-\sqrt{0.65} |0\rangle + \sqrt{0.35} |1\rangle)$$

Подробно разберем математический принцип построения. Ранее получили состояние $0.65|0\rangle+0.35|1\rangle$. В текущем задании нужно определить последовательность квантовых гейтов, которая преобразует это состояние в суперпозицию $-0.65|0\rangle+0.35|1\rangle$.

К сожалению, обратного гейта Z^{-1} , описываемого как $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ не существует в стандартной библиотеке.

Но мы можем составить такой вентиль самостоятельно, поскольку он эквивалентен комбинации XZX:

$$\hat{X}\hat{Z} = ((0;1)^T;(1;0)^T) \cdot ((1;0)^T;(0;-1)^T) = ((0;1)^T;(-1;0)^T)$$

$$\hat{X}\hat{Z}\hat{X} = ((0;1)^T; (-1;0)^T) \cdot ((0;1)^T; (1;0)^T) = ((-1;0)^T; (0;1)^T) = Z^{-1}$$

Разберём то, как этот вентиль влияет на состояния |0 и |1 :

$$Z^{-1} \mid 0 \rangle = Z^{-1} \cdot (1;0)^T = (-1;0)^T \equiv - \mid 0 \rangle$$

$$Z^{-1} \mid 1 \rangle = Z^{-1} \cdot (0; 1)^T = (0; 1)^T \equiv \mid 1 \rangle$$

	Frequency (quantity)		
Shots	1>	0>	
2048	687	1361	

	Frequency (out of 1)		
Shots	1>	0>	
2048	0.3354	0. 6645	

10. С помощью вентилей поворота получите кубит в состоянии $(a \mid 0)+b \mid 1)$). Вероятности реализации каждого состояния, приведены в таблице 1. Выполните симуляцию. Получите математическое обоснование результата.

$$(\sqrt{0.65} |0\rangle + \sqrt{0.35} |1\rangle)$$

	Frequency (quantity)		
Shots	1>	0>	
2048	1104	944	

	Frequency (out of 1)		
Shots	1>	0>	
2048	0.5391	0.4609	

11. С помощью вентиля RX получите кубит в состоянии суперпозиции ($a \mid 0\rangle + b \mid 1\rangle$) в соответствии с вариантом, представленном в таблице 1. Далее составьте 46 схему, представленную на рис. 20. Выполните симуляцию. Получите математическое обоснование результата.

Результаты напоминают вероятностное распределение суперпозиции, создаваемой оператором Адамара, где состояния |0\/ и |1\/ равновероятны.

Но следует учитывать, что после поворота R_X остаётся фазовый сдвиг ϕ в зависимости от 1.2661.

	Frequency (quantity)			
Shots	1> 0>			
2048	1029	1019		

	Frequency (out of 1)			
Shots	1> 0>			
2048	0.5024	0.4976		

12. С помощью вентиля Rx получите кубит в состоянии суперпозиции a|0>+b|1>. Вероятности реализации каждого состояния, приведены в таблице 1. Далее составьте схему, представленную на рис. 21. Выполните симуляцию. Получите математическое обоснование результата.

$$(\sqrt{0.65} |0\rangle + \sqrt{0.35} |1\rangle)$$

Последовательное двукратное применение оператора Адамара в схеме не изменяет результаты симуляции, поскольку оператор Н является унитарным.

	Frequency (quantity)			
Shots	1> 0>			
2048	756	1292		

	Frequency (out of 1)		
Shots	1> 0>		
2048	0.3691	0.6308	

13. Соберите квантовые схемы, показанные на рис. 22. Выполните симуляцию. Получите математическое обоснование результата.

a)

Поскольку вентиль H создаёт равномерную суперпозицию состояний $|0\rangle$ и $|1\rangle$, мы ожидаем, что частоты для $|0\rangle$ и $|1\rangle$ будут примерно одинаковыми, что будет отражать 50% вероятность для каждого состояния.

	Frequency (quantity)		
Shots	1> 0>		
2048	1008	1040	

	Frequency (out of 1)		
Shots	1>	0>	
2048	0.4922	0.5078	

b)

Ожидаемое состояние после выполнения схемы:

После применения Х: Кубит будет находиться в состоянии |1).

После применения Н: Кубит будет находиться в состоянии суперпозиции $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$, т.е. вероятности для состояний $|0\rangle$ и $|1\rangle$ будут равны $\frac{1}{2}$.

	Frequency (quantity)			
Shots	1> 0>			
2048	1005	1043		

	Frequency (out of 1)		
Shots	1>	0>	
2048	0.4907	0.5092	

c)

Вентиль Н: применяется к кубиту, что переводит его в состояние суперпозиции $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$. Это означает, что вероятности для состояний $|0\rangle$ и $|1\rangle$ будут равны 50% после применения этого вентиля.

Вентиль Z: Этот вентиль изменяет фазу состояния $|1\rangle$ на -1, но не влияет на состояние $|0\rangle$. Таким образом, состояние кубита остается суперпозицией $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$, но с фазой, добавленной к состоянию $|1\rangle$. В результате измерение все равно будет давать равные вероятности для состояний $|0\rangle$ и $|1\rangle$, так как фазовый сдвиг не изменяет вероятность измерений.

	Frequency (quantity)		
Shots	1>	0>	
2048	1017	1031	

	Frequency (out of 1)		
Shots	1> 0>		
2048	0.4966	0.5034	

14. Соберите квантовые схемы, показанные на рис. 23. Выполните симуляцию. Получите математическое обоснование результата.

a)

Применение вентилей Н:

- Первый кубит после применения вентиля H будет в состоянии $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$.
- Второй кубит также после применения вентиля Н будет в состоянии $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$.
- Это приводит к тому, что система из двух кубитов находится в состоянии равномерной суперпозиции всех четырех возможных состояний: |00>, |01>, |10>, |11>

Измерение:

• Когда мы выполняем измерение на первом и втором кубите, мы получаем результат, который может быть любым из этих состояний с равными вероятностями.

	Frequency (quantity)			
Shots	00>	01>	10>	11>
2048	507	487	505	549
	Frequency (out of 1)			
Shots	00>	01>	10>	11>
2048	0.2475	0.2378	0.2466	0.2681

b)

	Frequency (quantity)			
Shots	1> 0>			
2048	1016	1036		

	Frequency (out of 1)	
Shots	1>	0>
2048	0.4961	0.5039

7. Вывод:

В ходе выполнения работы были освоены основные операции при составлении квантовых схем и проведении их моделирования в симуляторе квантовых схем IBM Quantum. Были разработаны квантовые схемы, состоящие из однокубитных вентилей, что позволило реализовать состояния кубитов с различными амплитудами вероятностей. Результаты моделирования однокубитных квантовых цепей были зарегистрированы и сопоставлены с теоретическими распределениями вероятностей. Сравнение показало соответствие экспериментальных данных теоретическим предположениям, что подтверждает правильность построения квантовых цепей и применения вентилей.

Таким образом, работа позволила приобрести практические навыки в создании и тестировании квантовых схем, а также углубить понимание распределения вероятностей в квантовых системах.