Introduction to Machine Learning - CS725 Instructor: Prof. Ganesh Ramakrishnan Lecture 13 - Mercer and Positive Definite Kernels, SMO Algorithm

The Kernelized version of SVR

The kernelized dual problem:

$$max_{lpha_i,lpha_i^*} - rac{1}{2} \sum_i \sum_j (lpha_i - lpha_i^*) (lpha_j - lpha_j^*) \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) \ - \epsilon \sum_i (lpha_i + lpha_i^*) + \sum_i y_i (lpha_i - lpha_i^*)$$

s.t.

$$\sum_{i} (\alpha_i - \alpha_i^*) = 0$$

• $\alpha_i, \alpha_i^* \in [0, C]$

• The kernelized decision function: $f(x) = \sum_{n=0}^{\infty} (x_n - x_n^*) V(x_n - x_n^*) + h$

$$f(\mathbf{x}) = \sum_{i} (\alpha_{i} - \alpha_{i}^{*}) K(\mathbf{x}_{i}, \mathbf{x}) + b$$

• Using any point x_j with $\alpha_j \in (0, C)$: $b = y_i - \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}_i)$

• Computing $K(\mathbf{x}_1, \mathbf{x}_2)$ often does not even require computing $\phi(\mathbf{x}_1)$ or $\phi(\mathbf{x}_2)$ explicitly

An Example Kernel

- Let $K(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^{\top} \mathbf{x}_2)^2$
- Which value of $\phi(\mathbf{x})$ will yield $\phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2) = K(\mathbf{x}_1,\mathbf{x}_2) = (1+\mathbf{x}_1^{\top}\mathbf{x}_2)^2$
- ullet Is such a ϕ guaranteed to exist?
- Is there a unique ϕ for given K?

An Example Kernel

- ullet We can prove that such a ϕ exists
- For example, for a 2-dimensional \mathbf{x}_i :

$$\phi(\mathbf{x}_i) = \begin{bmatrix} 1\\ x_{i1}\sqrt{2}\\ x_{i2}\sqrt{2}\\ x_{i1}x_{i2}\sqrt{2}\\ x_{i1}^2\\ x_{i2}^2 \end{bmatrix}$$

- $\phi(\mathbf{x}_i)$ exists in a 6-dimensional space
- But, to compute $K(\mathbf{x}_1, \mathbf{x}_2)$, all we need is $x_1^\top x_2$ without having to enumerate $\phi(\mathbf{x}_i)$

More on the Kernel Trick

- **Kernels** operate in a *high-dimensional*, *implicit* feature space without necessarily computing the coordinates of the data in that space, but rather by simply computing the Kernel function
- This approach is called the "kernel trick" and will subsequently talk about valid kernels
- This operation is often computationally cheaper than the explicit computation of the coordinates
- Claim: If $K_{ij} = K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$ are entries of an $n \times n$ **Gram Matrix** K then
 - ullet $\mathcal K$ must be positive semi-definite

• Proof:
$$\mathbf{b}^T \mathcal{K} \mathbf{b} = \sum_{i,j} b_i \mathcal{K}_{ij} b_j = \sum_{i,j} b_i b_j \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

 $= \langle \sum_i b_i \phi(\mathbf{x}_i), \sum_j b_j \phi(\mathbf{x}_j) \rangle = ||\sum_i b_i \phi(\mathbf{x}_i)||_2^2 \ge 0$

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K}=U\Sigma U^T=(U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T=RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

¹Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem ²That is, if every Cauchy sequence is convergent.

Existence of basis expansion ϕ for symmetric K?

• Positive-definite kernel: For any dataset $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m\}$ and for any m, the Gram matrix \mathcal{K} must be positive definite

$$\mathcal{K} = \begin{bmatrix} K(\mathbf{x}_1, \mathbf{x}_1) & \dots & K(\mathbf{x}_1, \mathbf{x}_n) \\ \dots & K(\mathbf{x}_i, \mathbf{x}_j) & \dots \\ K(\mathbf{x}_m, \mathbf{x}_1) & \dots & K(\mathbf{x}_m, \mathbf{x}_m) \end{bmatrix}$$

so that $\mathcal{K} = U\Sigma U^T = (U\Sigma^{\frac{1}{2}})(U\Sigma^{\frac{1}{2}})^T = RR^T$ where rows of U are linearly independent and Σ is a positive diagonal matrix

• *Mercer kernel:* Extending to eigenfunction decomposition¹:

$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{j=1}^{\infty} \alpha_j \phi_j(\mathbf{x}_1) \phi_j(\mathbf{x}_2)$$
 where $\alpha_j \geq 0$ and $\sum_{j=1}^{\infty} \alpha_j^2 < \infty$

 Mercer kernel and Positive-definite kernel turn out to be equivalent if the input space {x} is compact²

¹Eigen-decomposition wrt linear operators. See https://en.wikipedia.org/wiki/Mercer%27s_theorem ²That is, if every Cauchy sequence is convergent.

- Mercer kernel: $K(\mathbf{x}_1, \mathbf{x}_2)$ is a Mercer kernel if $\int \int K(\mathbf{x}_1, \mathbf{x}_2) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$ for all square integrable functions $g(\mathbf{x})$ $(g(\mathbf{x})$ is square integrable iff $\int (g(\mathbf{x}))^2 dx$ is finite)
- Mercer's theorem:

An implication of the theorem:

for any Mercer kernel
$$K(\mathbf{x}_1, \mathbf{x}_2)$$
, $\exists \phi(\mathbf{x}) : \mathbb{R}^n \mapsto H$, s.t. $K(\mathbf{x}_1, \mathbf{x}_2) = \phi^{\top}(\mathbf{x}_1)\phi(\mathbf{x}_2)$

- where H is a Hilbert space³, the infinite dimensional version of the Eucledian space.
- Eucledian space: $(\Re^n, <.,.>)$ where <.,.> is the standard dot product in \Re^n
- Advanced: Formally, Hibert Space is an inner product space with associated norms, where every Cauchy sequence is convergent

³Do you know Hilbert? No? Then what are you doing in his space? :) ←□→←♂→←≧→←≧→ ≥ → へへ

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

- We want to prove that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) \, d\mathbf{x}_1 d\mathbf{x}_2 \geq 0,$ for all square integrable functions $g(\mathbf{x})$
- ullet Here, $old x_1$ and $old x_2$ are vectors s.t $old x_1, old x_2 \in \Re^t$
- Thus, $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$

s.t.
$$\sum_{i=1}^{t} n_i = d$$
(taking a leap)

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, \ d \geq 1)$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \prod_{j=1}^t (x_{1j} x_{2j})^{n_j} g(x_1) g(x_2) dx_1 dx_2$$

$$= \sum_{n_1...n_t} \frac{d!}{n_1! \dots n_t!} \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (x_{11}^{n_1} x_{12}^{n_2} \dots x_{1t}^{n_t}) g(x_1) (x_{21}^{n_1} x_{22}^{n_2} \dots x_{2t}^{n_t}) g(x_2) dx_1 dx_2$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{2}} \prod_{j=1}^{t} (x_{1j}x_{2j})^{n_{j}} g(x_{1})g(x_{2}) dx_{1} dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \int_{\mathbf{x}_{1}} \int_{\mathbf{x}_{2}} (x_{11}^{n_{1}} x_{12}^{n_{2}} \dots x_{1t}^{n_{t}}) g(x_{1}) \left(x_{21}^{n_{1}} x_{22}^{n_{2}} \dots x_{2t}^{n_{t}} \right) g(x_{2}) dx_{1} dx_{2}$$

$$= \sum_{n_{1}...n_{t}} \frac{d!}{n_{1}! \dots n_{t}!} \left(\int_{\mathbf{x}_{1}} (x_{11}^{n_{1}} \dots x_{1t}^{n_{t}}) g(x_{1}) dx_{1} \right) \left(\int_{\mathbf{x}_{2}} (x_{21}^{n_{1}} \dots x_{2t}^{n_{t}}) g(x_{2}) dx_{2} \right)$$

$$(integral of decomposable product as product of integrals)$$

$$\text{s.t. } \sum_{i}^{t} n_{i} = d$$

Prove that $(\mathbf{x}_1^{\top}\mathbf{x}_2)^d$ is a Mercer kernel $(d \in \mathbb{Z}^+, d \geq 1)$

- Realize that both the integrals are basically the same, with different variable names
- Thus, the equation becomes:

$$\sum_{n_1...n_t} \frac{d!}{n_1! \ldots n_t!} \left(\int_{\mathbf{x}_1} (x_{11}^{n_1} \ldots x_{1t}^{n_t}) g(x_1) \, dx_1 \right)^2 \geq 0$$

(the square is non-negative for reals)

ullet Thus, we have shown that $(\mathbf{x}_1^{ op}\mathbf{x}_2)^d$ is a Mercer kernel.

What about
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t. $\alpha_d \geq 0$?

•
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(x_1) g(x_2) dx_1 dx_2 =$$

What about
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t. $\alpha_d \geq 0$?

•
$$K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$

• Is
$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d(\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \ge 0$$
?

We have

$$\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} \left(\sum_{d=1}^r \alpha_d (\mathbf{x}_1^\top \mathbf{x}_2)^d \right) g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 =$$

$$\sum_{d=1}^r \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$

What about
$$\sum_{d=1}^{\infty} \alpha_d (\mathbf{x}_1^{\top} \mathbf{x}_2)^d$$
 s.t. $\alpha_d \geq 0$?

- We have already proved that $\int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x}_1^\top \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$
- Also, $\alpha_d \geq 0$, $\forall d$
- Thus,

$$\sum_{d=1}^{r} \alpha_d \int_{\mathbf{x}_1} \int_{\mathbf{x}_2} (\mathbf{x} 1^{\top} \mathbf{x}_2)^d g(\mathbf{x}_1) g(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2 \geq 0$$

- By which, $K(\mathbf{x}_1, \mathbf{x}_2) = \sum_{d=1}^{r} \alpha_d(\mathbf{x}_1^{\top} \mathbf{x}_2)^d$ is a Mercer kernel.
- Examples of Mercer Kernels: Linear Kernel, Polynomial Kernel, Radial Basis Function Kernel

Closure properties of Kernels

Let $K_1(\mathbf{x}_1, \mathbf{x}_2)$ and $K_2(\mathbf{x}_1, \mathbf{x}_2)$ be positive definite (valid) kernels. Then the following are also kernels.

• $\alpha_1 K_1(\mathbf{x}_1, \mathbf{x}_2) + \alpha_2 K_2(\mathbf{x}_1, \mathbf{x}_2)$ for $\alpha_1, \alpha_2 \ge 0$. **Proof:**

Closure properties of Kernels

Let $K_1(\mathbf{x}_1, \mathbf{x}_2)$ and $K_2(\mathbf{x}_1, \mathbf{x}_2)$ be positive definite (valid) kernels. Then the following are also kernels.

- $\alpha_1 K_1(\mathbf{x}_1, \mathbf{x}_2) + \alpha_2 K_2(\mathbf{x}_1, \mathbf{x}_2)$ for $\alpha_1, \alpha_2 \geq 0$.
 - **Proof:**
- $K_1(x_1, x_2)K_2(x_1, x_2)$ Proof:

Kernels in SVR

• Recall:

$$\max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$
 and the decision function: $f(\mathbf{x}) = \sum_i (\alpha_i - \alpha_i^*) K(\mathbf{x}_i, \mathbf{x}) + b$ are all in terms of the kernel $K(\mathbf{x}_i, \mathbf{x}_i)$ only

• One can now employ any mercer kernel in SVR or Ridge Regression to implicitly perform linear regression in higher dimensional spaces

Solving the SVR Dual Optimization Problem

The SVR dual objective is:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \text{ such that } \sum_i (\alpha_i - \alpha_i^*) = 0, \ \alpha_i, \alpha_i^* \in [0, C]$$

• This is a linearly constrained quadratic program (LCQP), just like the

⁴https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_

^{.28}programming.29_languages

Solving the SVR Dual Optimization Problem

The SVR dual objective is:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \text{ such that } \sum_i (\alpha_i - \alpha_i^*) = 0, \ \alpha_i, \alpha_i^* \in [0, C]$$

- This is a linearly constrained quadratic program (LCQP), just like the constrained version of Lasso
- There exists no closed form solution to this formulation
- Standard QP (LCQP) solvers⁴ can be used
- Question: Are there more specific and efficient algorithms for solving SVR in this form?

⁴https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_

^{.28}programming.29_languages

Sequential Minimial Optimization Algorithm for Solving SVR

Solving the SVR Dual Optimization Problem

• It can be shown that the objective:

$$\max_{\alpha_i,\alpha_i^*} -\frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*)$$

can be written as:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

 $^{^5} https://en.wikipedia.org/wiki/Quadratic_programming \#Solvers_and_scripting_$

^{.28}programming.29_languages

Solving the SVR Dual Optimization Problem

• It can be shown that the objective:

$$\begin{array}{l} \max_{\alpha_i,\alpha_i^*} - \frac{1}{2} \sum_i \sum_j (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) K(x_i, x_j) \\ -\epsilon \sum_i (\alpha_i + \alpha_i^*) + \sum_i y_i (\alpha_i - \alpha_i^*) \end{array}$$

can be written as:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

- $\sum_i \beta_i = 0$
- $\overline{\beta_i} \in [-C, C]$, $\forall i$
- Even for this form, standard QP (LCQP) solvers⁵ can be used
- Question: How about (iteratively) solving for two β_i 's at a time?
 - This is the idea of the Sequential Minimal Optimization (SMO) algorithm

⁵https://en.wikipedia.org/wiki/Quadratic_programming#Solvers_and_scripting_

^{.28}programming.29_languages

Sequential Minimal Optimization (SMO) for SVR

Consider:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

- $\sum_i \beta_i = 0$
- $\beta_i \in [-C, C]$, $\forall i$
- The SMO subroutine can be defined as:

Sequential Minimal Optimization (SMO) for SVR

Consider:

$$\max_{\beta_i} - \frac{1}{2} \sum_i \sum_j \beta_i \beta_j K(\mathbf{x}_i, \mathbf{x}_j) - \epsilon \sum_i |\beta_i| + \sum_i y_i \beta_i$$
 s.t.

- $\sum_i \beta_i = 0$
- $\beta_i \in [-C, C]$, $\forall i$
- The SMO subroutine can be defined as:
 - **1** Initialise β_1, \ldots, β_n to some value $\in [-C, C]$
 - 2 Pick β_i , β_i to estimate closed form expression for next iterate (i.e. β_i^{new} , β_i^{new})
 - Check if the KKT conditions are satisfied
 - If not, choose β_i and β_j that worst violate the KKT conditions and reiterate