Spadina Paper*

My subtitle if needed

Sean Liu

March 12, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

1 Introduction

we are interested in the US political support. In particular we are interested in whether we can forecast who a respondent is likely to vote for, based on knowing their employment status, highest level of education, and race. That means we are interested in a dataset with variables for who an individual voted for, and some of their characteristics, such as employment status, education level, and their race. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2....

2 Data

Some of our data is of penguins (?@fig-bills), from (palmerpenguins?).

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

^{*}Code and data are available at: https://github.com/Sluuu/Politics.git

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the number of seconds that the plane remained a loft. Then β_i is the wing length, both measured in millimeters.

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in Table 1.

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

Table 1: Explanatory models of flight time based on wing width and wing length

	Supported Biden
(Intercept)	0.209
	(0.074)
genderMale	-0.469
	(0.019)
educationHigh school graduate	-0.184
	(0.076)
educationSome college	0.356
	(0.075)
education2-year	0.220
	(0.078)
education4-year	0.681
	(0.077)
educationPost-grad	1.015
	(0.079)
Num.Obs.	43554
R2	0.046
Log.Lik.	-28357.925
ELPD	-28364.9
ELPD s.e.	58.1
LOOIC	56729.7
LOOIC s.e.	116.3
WAIC	56729.7
RMSE	0.48

Figure 1: Explanatory models of flight time based on wing width and wing length

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

B.1 Posterior predictive check

In Figure 2a we implement a posterior predictive check. This shows...

In Figure 2b we compare the posterior with the prior. This shows...

Figure 2: Examining how the model fits, and is affected by, the data

B.2 Diagnostics

Figure 3a is a trace plot. It shows... This suggests...

Figure 3b is a Rhat plot. It shows... This suggests...

Figure 3: Checking the convergence of the MCMC algorithm

References

Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.

R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.