Foundations of Type

Programming in Mathematics

Edward O'Callaghan

"Foundations of Type" © 2013 Edward O'Callaghan

Book version: 0.1

ISBN: ???- ???- ???.

This work is licensed under the *Creative Commons Attribution-ShareAlike* 3.0 *Unported License*. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/.

This book is freely available at http://victoredwardocallaghan.github.io/book/

Acknowledgment

Thanks to github...

Preface

Book development

The following people participated in the development of this text.

Edward O'Callaghan

About this book

This is a textbook that I am writing on a number of topics that have a deep unexpected connection. In particular, this book introduces programming and the foundations of mathematics from scratch by way of *homotopy type* and *category theory* and explores aspects of these topics to lead to a new era in high assurance software design and implementations.

Foundations of Type Edward O'Callaghan Australia, Jun 2013

Contents

Preface	iii
Introduction	1
I Foundations	3
II Mathematics	7
1 Category theory 1.1 Groupoids	9 9
Index of symbols	13
Bibliography	13
Index	14

vi

Introduction

.. foo bar

2 Introduction

Part I Foundations

..

Part II Mathematics

Chapter 1

Category theory

..

1.1 Groupoids

The extension from *group* to *groupoid* is motivated with the desire to describe reversible mappings which may traverse a number of states. Intuitively, in *group theory* we study mappings of the form $\tau: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ that are total functions. Whereas in *groupoid theory* one considers a set of compositable and invertible mappings of the form $\phi \circ \psi: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ where ϕ and ψ need only be partial functions on \mathcal{G} .

Definition 1.1.1 (Groupoid). A **groupoid** is a small category in which every morphism is an isomorphism.

Thus, as a result one may view groups as a groupoid with one object. More precisely, a groupoid X with one object x is uniquely determined by its automorphism group $\mathcal{G}=\operatorname{Aut}(x)$. Consequently, any group may be regarded as a groupoid with one object. Notice that can naturally view morphisms between $\operatorname{groupoids}$ are $\operatorname{functors}$ between categories.

Index of symbols

 $x :\equiv a$

definition, p. 1

Evan t	1 T.	

We present *Homotopy type theory* as the corner stone to understanding both mathematics and programming.

Get a free copy of the book at http://victoredwardocallaghan.github.io/book/.