Overview of the data

funnel.csv

Data about events occurring on Affirm's checkout product (try it out at a merchant like <u>Casper</u> to get a sense for the flow)

- merchant id: Unique identifier for the merchant (links to merchants.csv)
- user_id: Unique identifier for the user (only populated after the user logins when 'Loan Terms Run' action takes place)
- checkout_id: Unique identifier for a given checkout (links to loans.csv)
- action: Name of the event, can be "Checkout Loaded" = checkout page was loaded, "Loan Terms Run" = user applied for a loan, "Loan Terms Approved" = user was approved for a loan, "Checkout Completed" = user took the loan for which they were approved
- action_date: Date when the event happened

Loans, csv

Data on each loan from the 'Completed Checkout' action

- merchant_id: Unique identifier for the merchant
- user id: Unique identifier for the user
- checkout_id: Unique identifier for a given checkout
- checkout_date: Date when checkout was completed
- loan_amount: total amount of the loan
- user_first_capture: first date the user took out a loan with Affirm (only populated if repeat Affirm user)
- user dob year: year the user was born
- loan length months: length of the loan in months
- mdr: merchant discount rate (transaction rate charged to the merchant for each loan)
- apr: annual percentage rate (interest rate charged to the user)
- fico_score: score that measures a user's risk, higher score means less risk (ranges from 300-850)
- loan_return_percentage: The return Affirm saw on the loan (negative values mean the loan was not paid back in full)

merchants.csv

Data on each merchant that integrates Affirm's checkout product

- merchant_id: Unique identifier for the merchant
- merchant name: Name of the merchant
- category: The merchant's industry

Questions

 Please review the integrity of the data. Do you notice any data anomalies? If so, please describe them.

2. Calculate conversion through the funnel by day such that the data structure is:

Date	num_loaded	num_applie	num_approve	num_confirmed	application_rate	approval_rate	confirmation_rat
		d	d				е
2016-05-01	100	80	60	30	0.8	0.75	0.50
2016-05-02	120	90	81	63	0.75	0.90	0.78

- 2a. Please provide a SQL query you used or would use to calculate the application rate by merchant category (the merchant's industry provided in *merchants.csv*).
- 3. Provide a set of recommendations on how to improve our business or product based on the attached dataset (assume we have roughly the same market penetration in each so that saturation isn't a concern and assume revenue to Affirm = (mdr + loan_return_percentage). Please put together a 3-page PowerPoint presentation to the executive team with your recommendation.

This is intended to be fairly open-ended - there's no right or wrong answer. We're more concerned with your approach and the insights you uncover.

- 4. Choose one of the recommendations/insights you uncovered (in #3) and outline one experiment you would like to run to test your suggested product/business recommendation. Please state your hypothesis, describe how you would structure your experiment, list your success metrics and describe the implementation.
- 5. Let's assume that the experiment you ran (in #4) proved your hypothesis was true. How would you suggest implementing the change on a larger scale? What are some operational challenges you might encounter and how would you mitigate their risk?