Modular Abstractions of Reactive Nodes using Disjunctive Invariants

David MONNIAUX and Martin BODIN

December 5, 2011

- Goal
 - Reactive Nodes
 - Approximating a reactive node
- Seeking an Invariant
 - Predicate Abstraction
 - Algorithm
 - Building the transitions
- 3 Improvements

• A reactive node (LUSTRE, SCADE, SAO, SIMULINK):

- It is an automaton.
- The internal state is usually given by some variables's values.
 - \Longrightarrow Exponential number of state.

• A reactive node (LUSTRE, SCADE, SAO, SIMULINK):

- It is an automaton.
- The internal state is usually given by some variables's values.
 - \implies Exponential number of state.

Goal:

- ullet Abstract a reactive node \longrightarrow an automaton.
- A bounded number of states.

Abstraction:

- It over-approximates the behavior of the node.
- We loose determinism.

Node Hierarchy:

- Modular analysis.
- Compositional analysis.

Building an automaton

Process steps:

- Decompose an over-approximation of the reachable states as a union of n abstract states.
- 2 Compute which transitions are possible between those abstract states.

What we need

- Reachable states ← Solvers. SAT-solvers and SMT-solvers (satisfiability modulo theory). \mathcal{NP} -complete, but some tools (like YICES) try do do it efficiently.
- Entry point \longrightarrow A finite set of predicates π_1, \ldots, π_m .

What we need

- Reachable states ← Solvers.
 SAT-solvers and SMT-solvers (satisfiability modulo theory).
 NP-complete, but some tools (like YICES) try do do it efficiently.
- Entry point \longrightarrow A finite set of predicates π_1, \ldots, π_m . They will be used to build the abstract states.
 - \rightarrow We more or less know what the invariant shall look like.

$$n = 2$$
 $\{\pi_1, \pi_2, \pi_3\} = \{c = 0, c < 0, c > 0\}$
 $C_1 \equiv c = 0$
 $C_2 \equiv c > 0$

• An abstract state is given by a conjonction C_i of predicates.

$$C_i = \bigwedge_{j=1}^m (b_{i,j} \Rightarrow \pi_j)$$

• We seek an invariant of the form $\mathcal{T} = \bigvee_{i=1}^{n} C_i$. (n is given.) $\Longrightarrow 2^{nm}$ possibilities for the Booleans $b_{i,i}$.

Some formulae used by the algorithm:

The constraints ∀σ, F over the variables (given).
 Typically, F states (among other things) that T is an invariant.

The idea is to "discover" step by step what contraints F yields for the state partition.

• A sequence of formulae H_k (computed) that represents the discovered contraints over the Booleans $b_{i,j}$. Initially, $H_1 = \texttt{true}$.

```
No set of states follows the
                       constraints H.
H := true
Loop:
    match SAT(H) with
          UnSat → return No Solution
          \mathsf{Sat}(B_{i,i}) \to
             match SMT(\neg F[B/b]) with
                  | UnSat \rightarrow return (SOLUTION B)
                  | \operatorname{\mathsf{Sat}}(\Sigma) \to H := H \wedge F[\Sigma/\sigma]
```

```
No set of states follows the
                     constraints H.
H := true
                                        F is thus always true with this
Loop:
                                        state partitioning.
    match SAT(H) with
         UnSat → return No Solution
         \mathsf{Sat}(B_{i,i}) \to
            match SMT(\neg F[B/b]) with
                 | UnSat 
ightarrow return (SOLUTION B)
                 \mathsf{Sat}(\Sigma) \to H := H \wedge F[\Sigma/\sigma]
```

```
No set of states follows the
                     constraints H.
H := true
                                        F is thus always true with this
Loop:
                                       state partitioning.
    match SAT(H) with
         UnSat → return No SOLUTION
         \mathsf{Sat}(B_{i,i}) \to
            match SMT(\neg F[B/b]) with
                 UnSat \rightarrow return (SOLUTION B)
                 \mathsf{Sat}(\Sigma) \to H := H \wedge F[\Sigma/\sigma]
                               Add the new discovered contraint
                               and retry.
```

- ullet This loop computes an invariant o true is an invariant!
- We need a (*locally*) minimal invariant.
- After getting an invariant $B^{(0)}$, restart the algorithm with a new constraint: the new invariant $B^{(1)} \subseteq B^{(0)}$.

- This loop computes an invariant → true is an invariant!
- We need a (*locally*) minimal invariant.
- After getting an invariant $B^{(0)}$, restart the algorithm with a new constraint: the new invariant $B^{(1)} \subsetneq B^{(0)}$.

```
bool b;
int i = 0, a; /* precondition a > 0 */
while ( i < a ) {
    b = random ( );
    if (b)
        i = i + 1;
}</pre>
```

$$\begin{split} F &\triangleq \quad ((\mathtt{i} = \mathtt{0} \land \mathtt{a} \geqslant \mathtt{1}) \Longrightarrow \mathcal{T}(\mathtt{b}, \mathtt{i}, \mathtt{a})) \\ & \land ((\mathtt{b'} \land \mathtt{i'} = \mathtt{i} + \mathtt{1}) \lor (\neg \mathtt{b'} \land \mathtt{i'} = \mathtt{i})) \\ & \land (\mathcal{T}(\mathtt{b}, \mathtt{i}, \mathtt{a}) \Longrightarrow (\mathcal{T}(\mathtt{b'}, \mathtt{i'}, \mathtt{a'}) \lor \mathtt{i'} \geqslant \mathtt{a'})) \end{split}$$

$$\begin{split} F \triangleq & \quad \left((\mathtt{i} = \mathtt{0} \land \mathtt{a} \geqslant \mathtt{1}) \Longrightarrow \mathcal{T}(\mathtt{b}, \mathtt{i}, \mathtt{a}) \right) \\ & \quad \land \left((\mathtt{b}' \land \mathtt{i}' = \mathtt{i} + \mathtt{1}) \lor (\neg \mathtt{b}' \land \mathtt{i}' = \mathtt{i}) \right) \\ & \quad \land \left(\mathcal{T}(\mathtt{b}, \mathtt{i}, \mathtt{a}) \Longrightarrow \left(\mathcal{T}(\mathtt{b}', \mathtt{i}', \mathtt{a}') \lor \mathtt{i}' \geqslant \mathtt{a}' \right) \right) \end{split}$$

We set n = 2 and the predicates

$$\{\pi_1,\ldots,\pi_8\} \triangleq \{\mathtt{i} = \mathtt{0},\mathtt{i} < \mathtt{0},\mathtt{i} > \mathtt{0},\mathtt{i} = \mathtt{a},\mathtt{i} < \mathtt{a},\mathtt{i} > \mathtt{a},\mathtt{b},\lnot\mathtt{b}\}.$$

Н	SAT(H): invariant candidate	$SMT(\neg F[B/b])$
true	$(i = 0 \land i = a \land b) \lor (i = 0 \land i = a \land \neg b)$	$\mathtt{i} = \mathtt{0}, \mathtt{a} = \mathtt{1}, \mathtt{b} = \bot$
$F(0,1,\perp)$	$\big(\mathtt{i} = \mathtt{0} \land \mathtt{i} = \mathtt{a} \land \mathtt{b}\big) \lor \big(\mathtt{i} = \mathtt{0} \land \mathtt{i} < \mathtt{a} \land \mathtt{b}\big)$	$\mathtt{i}=\mathtt{0},\mathtt{a}=-\mathtt{1},\mathtt{b}=ot$

 H_6 $(i = 0 \land i < a) \lor i > 0$ accepted!

Thus $I_1 = (i = 0 \land i < a) \lor i > 0$ is an invariant, but we want a minimal one. We thus restart the algorithm.

$$\begin{split} F \triangleq & \quad \left((\mathtt{i} = \mathtt{0} \land \mathtt{a} \geqslant \mathtt{1}) \Longrightarrow \mathcal{T}(\mathtt{b}, \mathtt{i}, \mathtt{a}) \right) \\ & \quad \land \left((\mathtt{b'} \land \mathtt{i'} = \mathtt{i} + \mathtt{1}) \lor (\neg \mathtt{b'} \land \mathtt{i'} = \mathtt{i}) \right) \\ & \quad \land \left(\mathcal{T}(\mathtt{b}, \mathtt{i}, \mathtt{a}) \Longrightarrow \left(\mathcal{T}(\mathtt{b'}, \mathtt{i'}, \mathtt{a'}) \lor \mathtt{i'} \geqslant \mathtt{a'} \right) \right) \end{split}$$

We set n = 2 and the predicates

$$\{\pi_1,\ldots,\pi_8\} \triangleq \{\mathtt{i} = \mathtt{0},\mathtt{i} < \mathtt{0},\mathtt{i} > \mathtt{0},\mathtt{i} = \mathtt{a},\mathtt{i} < \mathtt{a},\mathtt{i} > \mathtt{a},\mathtt{b},\lnot\mathtt{b}\}.$$

Н	SAT(H): invariant candidate	$SMT(\neg F[B/b])$
true	$(i = 0 \land i = a \land b) \lor (i = 0 \land i = a \land \neg b)$	$\texttt{i} = \texttt{0}, \texttt{a} = \texttt{1}, \texttt{b} = \bot$
$F(0,1,\perp)$	$\big(\mathtt{i} = \mathtt{0} \land \mathtt{i} = \mathtt{a} \land \mathtt{b}\big) \lor \big(\mathtt{i} = \mathtt{0} \land \mathtt{i} < \mathtt{a} \land \mathtt{b}\big)$	$\mathtt{i} = \mathtt{0}, \mathtt{a} = -\mathtt{1}, \mathtt{b} = \bot$

Thus $I_1 = (i = 0 \land i < a) \lor i > 0$ is an invariant, but we want a minimal one. We thus restart the algorithm.

3

4

5

6

- When adding the new condition $I_2 \subsetneq I_1$, we get within two steps that no new solution exists.
- Thus $I_1 = (i = 0 \land i < a) \lor i > 0$ was already a minimal one.

```
bool b;
int i = 0, a ; /* precondition a > 0 */
while ( i < a ) {
    b = random ( ) ;
    if (b)
        i = i + 1;
}</pre>
```


A state: a conjonction C_i of predicates.

There exists a transition from the state i to the state j iff there exists variables following C_i whose next variables follows C_j .

Using quantifier elimination on $\exists \sigma, \sigma', C_i(\sigma) \land C_j(\sigma') \land T(\sigma, \sigma')$, we can precise the transition by a condition on inputs.

 \rightarrow Mjollnir tool.

Idea: modifying $F \longrightarrow add$ any constraint we want.

- → implement different languages (adding precondition, postconditions, . . .).
- \rightarrow Used to decrease the number of time SMT-solvers are called (but this increases their computation time).

- Removal of Permutations
 We add a canonical ordering for the disjunction $C_1 \wedge ... \wedge C_n$.
- Satisfiability of Conjonctions
 We add the condition that each C_i is satisfiable. (require a SMT-solver.)
- Removal of Subsumed Disjuncts
 We require that no C_i is subsumed by an other C_i.

Reactive node + Set of predicates \longrightarrow invariant

- \longrightarrow inductive disjunctive invariant \Rightarrow decomposition in states
- → labelling of transitions by quantifier elimination
- → automaton:

 \longrightarrow easy to change and optimize.