Lista 4

Równania różniczkowe 1R

Exercise 1. Załóżmy, że funkcja f = f(t,y) jest klasy C^1 na zbiorze $t_0 \le t < \infty$, $-\infty < y < \infty$ oraz spełnia dodatkowe oszacowanie $|f(t,y)| \le K$ na całym tym zbiorze dla pewnej stałej K > 0. Udowodnić, że rozwiązanie zagadnienia

$$y' = f(t, y), y(t_0) = y_0$$

istnieje dla wszystkich $t \geq t_0$.

Euler generalnie robi małe kroczki i w ten sposób dostaje szacowanie rozwiązania równania. Jeśli $h \to 0$, to spełniona jest równość:

$$y'(t) = \frac{y(t+h) - y(t)}{h}$$

To ja tak sobie mogę dojść od t_0 do t lols