COMPLEMENTI DI RICERCA OPERATIVA

Prof. Marco Trubian 6 CFU

Luca Cappelletti

Lecture Notes Year 2017/2018

Magistrale Informatica Università di Milano Italy 25 aprile 2018

Indice

I	Programmazione non lineare	2
1	Alcune definizioni base 1.1 La convessità	
2	Ottimizzazione non vincolata 2.1 Condizioni necessarie di ottimalità del primo ordine	4
3	Programmazione quadratica	5
4	Convergenza 4.1 Algoritmo convergente localmente e globalmente 4.1.1 Convergente localmente 4.1.2 Convergente globalmente 4.2 Velocità di convergenza 4.2.1 Q-lineare 4.2.2 Q-superlineare 4.2.3 Q-quadratica	6 6 6 6
5	Metodi di ottimizzazione continua5.1 Condizioni di Wolfe	7
6	Metodi di ottimizzazione6.1 Metodi a discesa rapida6.2 Metodi Newton6.2.1 Metodi Newton modificati6.3 Metodi Quasi-Newton	9
II	Programmazione lineare intera	11
7	Programmazione lineare intera	12

Parte I Programmazione non lineare

1

Alcune definizioni base

1.1 La convessità

Definizione 1.1.1 (Insieme convesso). Un insieme $X \subset \mathbb{R}^n$ è convesso se comunque presi due punti $\underline{x}, \underline{y} \in X$, allora $\lambda \underline{x} + (1 - \lambda)\underline{y} \in X$, per ogni $\lambda \in [0, 1]$.

La proprietà di convessità è invariante rispetto alle operazioni di moltiplicazione con uno scalare, unione e intersezione con un altro insieme convesso.

Definizione 1.1.2 (Funzione convessa). Una funzione $f : \mathbb{R}^n \to \mathbb{R}$ è convessa se il suo dominio è un insieme convesso $X \subseteq \mathbb{R}^n$ e comunque presi due punti $\underline{x}, y \in X$ vale la relazione:

$$f(\lambda \underline{x} + (1 - \lambda)y) \le \lambda f(\underline{x}) + (1 - \lambda)f(y) \quad \forall \lambda \in [0, 1]$$

La proprietà di convessità è invariante rispetto a moltiplicazione con uno scalare e somma tra funzioni convesse.

Vale inoltre che la funzione max di una o più funzioni convesse e che il luogo dei punti x per i quali vale che $f(x) \le \alpha$ è convesso.

Definizione 1.1.3 (Problema convesso). Un problema di ottimizzazione con funzione obiettivo e regione ammissibile entrambe convesse viene detto problema convesso.

1.2 Massimi e minimi locali

Definizione 1.2.1 (Minimo globale). Un punto $\underline{x}^* \in X$ è un punto di minimo globale di $f(\underline{x})$ se:

$$f(\underline{x}^*) \le f(\underline{x}) \quad \forall \underline{x} \in X$$

Definizione 1.2.2 (Minimo locale). Un punto $\underline{x}^* \in X$ è un punto di minimo locale di $f(\underline{x})$ se esiste un intorno aperto $I(\underline{x}^*, \epsilon)$ di \underline{x}^* avente raggio $\epsilon > 0$ tale che:

$$f(\underline{x}^*) \le f(\underline{x}) \quad \forall \underline{x} \in X \cap I(\underline{x}^*, \epsilon)$$

Ottimizzazione non vincolata

Definizione 2.0.1 (Direzione di discesa). Data una funzione $f : \mathbb{R}^n \to \mathbb{R}$, un vettore $\underline{d} \in \mathbb{R}^n$ si dice direzione di discesa per f in \underline{x} se:

$$\exists \lambda > 0 : f(\underline{x} + \lambda \underline{d}) < f(\underline{x})$$

Definizione 2.0.2 (Derivata direzionale). Sia data una funzione $f : \mathbb{R}^n \to \mathbb{R}$, un vettore $\underline{d} \in \mathbb{R}^n$ e un punto dove f è definita. Se esiste il limite:

 $\lim_{0^{+}} \frac{f(\underline{x} + \lambda \underline{d}) - f(\underline{x})}{\lambda}$

allora tale limite prende il nome di derivata direzionale della funzione f nel punto \underline{x} lungo la direzione \underline{d}

2.1 Condizioni necessarie di ottimalità del primo ordine

Teorema 2.1.1 (Condizioni necessarie di ottimalità del primo ordine). Data una funzione $f : \mathbb{R}^n \to \mathbb{R}$, derivabile in $\underline{x}^* \in \mathbb{R}^n$, condizione necessaria affinchè il punto \underline{x}^* sia un minimo locale per f è che il gradiente della funzione calcolato in \underline{x}^* sia nullo.

2.2 Condizioni necessarie di ottimalità del secondo ordine

Teorema 2.2.1 (Condizioni necessarie di ottimalità del secondo ordine). Data una funzione $f: \mathbb{R}^n \to \mathbb{R}$ di classe $\underline{C}^2(\underline{x}^*)$, condizione necessarie affinchè il punto \underline{x}^* sia un minimo locale per f è che il gradiente della funzione calcolato in \underline{x}^* sia nullo e che valga la relazione seguente:

$$\mathbf{d}^T H(\mathbf{x}^*) \mathbf{d} \ge 0 \forall \mathbf{d} \in \mathbb{R}^n$$

Cioè l'hessiana è definita come semipositiva.

2.3 Condizioni necessarie di ottimalità in senso stretto del secondo ordine

Teorema 2.3.1 (Condizioni necessarie di ottimalità del secondo ordine). Data una funzione $f: \mathbb{R}^n \to \mathbb{R}$ di classe $\underline{C}^2(\underline{x}^*)$, condizione necessarie affinchè il punto \underline{x}^* sia un minimo locale in **senso stretto** per f è che il gradiente della funzione calcolato in \underline{x}^* sia nullo e che valga la relazione seguente:

$$\boldsymbol{d}^T H(\boldsymbol{x}^*) \boldsymbol{d} > 0 \forall \boldsymbol{d} \in \mathbb{R}^n$$

Cioè l'hessiana è definita come positiva.

Programmazione quadratica

Nella programmazione quadratica si approssima f con il seguente modello quadratico:

$$\min f(\underline{\boldsymbol{x}}) = \frac{1}{2}\underline{\boldsymbol{x}}^T Q \underline{\boldsymbol{x}}\underline{\boldsymbol{b}}^T \underline{\boldsymbol{x}}$$

Esistono pochi casi possibili:

Q non è semidefinita positiva f non ha un punto di minimo.

Q è definita positiva $\,\underline{\boldsymbol{x}}^* = Q^{-1}\underline{\boldsymbol{b}}$ è l'unico minimo globale.

Q è definita semi-positiva Q non è singolare $\underline{x}^* = Q^{-1}\underline{b}$ è l'unico minimo globale.

Q è singolare non esiste una soluzione o esistono infinite soluzioni.

Convergenza

Ovviamente un algoritmo è buono se converge rapidamente.

4.1 Algoritmo convergente localmente e globalmente

4.1.1 Convergente localmente

Un algoritmo è convergente localmente quando converge solo se il punto da cui parte è in un intorno del punto ottimo.

4.1.2 Convergente globalmente

Un algoritmo è convergente globalmente quando converge partendo da qualsiasi punto del dominio.

4.2 Velocità di convergenza

4.2.1 Q-lineare

Quando il rapporto tra lo step k e lo step k+1 mantiene un valore costante.

4.2.2 Q-superlineare

Quando il rapporto tra lo step k e lo step k+1 all'infinito è nullo.

4.2.3 Q-quadratica

Quando il rapporto tra lo step k quadro e lo step k+1 mantiene un valore costante.

Metodi di ottimizzazione continua

Si tratta del problema di determinare a partire dallo steo k lo step k+1 in modo tale da avvicinarsi all'ottimo della funzione. Esistono due strategie:

Line search Si determina una direzione e quindi si stabilisce una distanza con cui muoversi in questa direzione.

Trust region Si determina un raggio (una distanza) di confidenza e quindi si stabilisce una direzione nel limite di questa circonferenza verso cui muoversi.

Esiste chiaramente un tradeoff tra velocità e precisione nello stabilire la distanza con cui muoversi.

5.1 Condizioni di Wolfe

Per essere efficace, la line-search approssimata richiede che siano rispettate le condizioni di Wolfe. Esse sono due, una di **decremento** sufficiente ed una di curvatura, dove i coefficienti \underline{c} sono tali che $0 < c_1 < c_2 < 1$

$$f(\underline{\mathbf{x}} + \alpha \underline{\mathbf{d}}) \leq f(\underline{\mathbf{x}}) + c_1 \alpha \nabla f(\underline{\mathbf{x}})^T \underline{\mathbf{d}}$$

$$\phi(\alpha) \leq \phi(0) + \alpha c_1 \phi'(0)$$

$$f(\underline{\mathbf{x}} + \alpha \underline{\mathbf{d}})^T \underline{\mathbf{d}} \geq c_2 \alpha \nabla f(\underline{\mathbf{x}})^T \underline{\mathbf{d}}$$

$$\phi'(\alpha) \leq c_2 \phi'(0)$$

(a) Condizione di decremento sufficiente

(b) Condizione di curvatura

Figura 5.1: Condizioni di Wolfe

Le condizioni di Wolfe forti introducono un vincolo di segno sulla curvatura (valore assoluto).

5.2 Metodo di Armijo per stabilire la stepsize

Si itera riducendo gradualmente la distanza di un fattore σ , usualmente pari circa a 0.9 sino a che il valore dello step successivo è più vicino all'ottimo dello step corrente. Nei metodi Newton e quasi Newton il coefficiente della distanza è inizializzato usualmente a 1.

5.3 Convergenza dei metodi di ricerca lineare approssimata

Se definiamo θ_k come l'angolo tra $\underline{\boldsymbol{d}}_k$ e $-\nabla f_k$, allora possiamo determinare il coseno dell'angolo come:

$$\cos \theta_k = \frac{-\nabla f(\underline{\boldsymbol{x}})_k^T \underline{\boldsymbol{d}}_k}{\|\nabla f(\underline{\boldsymbol{x}})_k\| \cdot \|\underline{\boldsymbol{d}}_k\|}$$

Teorema 5.3.1. Sia \underline{d}_k una direzione di discesa e sia α_k una distanza che rispetti le condizioni di Wolfe. Sia inoltre f una funzione limitata inferiormente su \mathbb{R}^n , **differenziabile continuamente** sull'insieme M che contiene $L_f = \{\underline{x} : f(\underline{x}) \le f(\underline{x}_0)\}$, dove \underline{x}_0 è il punto di inizio. Assumiamo inoltre che ∇f sia **lipschitziana** sull'insieme M. Allora:

$$\sum_{j=0}^{\infty} \cos^2 \theta_j \left\| \nabla f(\underline{x}_j) \right\|^2 \le \infty$$

Dimostrazione. Essendo valida la condizione di curvatura, allora vale la disequazione:

$$\nabla f_{k+1}^T \underline{\boldsymbol{d}}_k \ge c_2 \nabla f_k^T \underline{\boldsymbol{d}}_k$$

Sottraggo ad ambo i lati $\nabla f_k \underline{\boldsymbol{d}}_k$ ed ottengo:

$$(\nabla f_{k+1}^T - \nabla f_k) \underline{\boldsymbol{d}}_k \ge (c_2 - 1) \nabla f_k^T \underline{\boldsymbol{d}}_k$$

Siccome il gradiente della funzione è lipschitziano vale la disequazione:

$$(\nabla f_{k+1}^T - \nabla f_k)\underline{\boldsymbol{d}}_k \leq \|\nabla f_{k+1}^T - \nabla f_k\| \|\underline{\boldsymbol{d}}_k\| \leq L \|\underline{\boldsymbol{x}}_{k+1} - \underline{\boldsymbol{x}}_k\| \|\underline{\boldsymbol{d}}_k\| = \alpha_k L \|\underline{\boldsymbol{d}}_k\|^2$$

Da questa disequazione ricaviamo il valore di α_k :

$$\alpha_k \ge \frac{c_2 - 1}{L} \frac{\nabla f_k^T \underline{\boldsymbol{d}}_k}{\|\underline{\boldsymbol{d}}_k\|^2}$$

Essendo quindi valida la condizione di decremento sufficiente vale la disequazione:

$$f_{k+1} \leq f_k + c_1 \alpha_k \underline{\boldsymbol{d}}_k^T \nabla f_k = f_k - c_1 \frac{1 - c_2}{L} \frac{(\nabla f_k^T \underline{\boldsymbol{d}}_k)^2}{\|\boldsymbol{d}_k\|^2}$$

Pongo $c = c_1 \frac{1 - c_2}{L}$ ed ottengo:

$$f_{k+1} \leq f_k + c_1 \alpha_k \underline{\boldsymbol{d}}_k^T \nabla f_k = f_k - c \frac{(\nabla f_k^T \underline{\boldsymbol{d}}_k)^2}{\|\underline{\boldsymbol{d}}_k\|^2}$$

Sostituisco $\cos \theta_k = \frac{-\nabla f(\mathbf{x})_k^T \underline{d}_k}{\|\nabla f(\mathbf{x})_k\| \cdot \|\underline{d}_k\|}$ ed ottengo:

$$f_{k+1} \leq f_k + c_1 \alpha_k \underline{\boldsymbol{d}}_k^T \nabla f_k = f_k - c \cos^2 \theta_k \left\| \nabla f_k \right\|^2$$

Per ricorsione ottengo la sommatoria:

$$f_{k+1} \leq f_k + c_1 \alpha_k \underline{\boldsymbol{d}}_k^T \nabla f_k = f_0 - c \sum_{j=0}^k \cos^2 \theta_j \| \nabla f_j \|^2$$

Siccome la funzione f è limitata inferiormente si ottiene la **condizione di Zoutendijk**:

$$c \sum_{j=0}^{k} \cos^2 \theta_j \|\nabla f_j\|^2 \le f_0 - f_{k+1} < \infty$$

Questo implica che:

$$\cos^2 \theta_j \left\| \nabla f_j \right\|^2 \to 0$$

Quindi se l'algoritmo soddisfa anche la **condizione angolare** (cioè sceglie una direzione di discesa che la rispetta) $\cos \theta_k \ge \epsilon > 0$ allora **converge**:

$$\lim_{k \to \infty} \left\| \nabla f(\underline{\boldsymbol{x}}_k) \right\| = 0$$

Metodi di ottimizzazione

6.1 Metodi a discesa rapida

Son metodi che usano come funzione di aggiornamento $\underline{x}_{k+1} = \underline{x}_k - \alpha_k \nabla f_k$, in cui le direzioni sono ortogonali al contorno della funzione. Non dovendo calcolare l'hessiana lo sforzo computazionale non è eccessivo e converge globalmente, ma estremamente piano quando una funzione è patologica.

Teorema 6.1.1 (Velocità di convergenza locale dei metodi a discesa rapida). Data una matrice Q definita positiva, la seguente relazione vale $\forall x \in \mathbb{R}^n$:

$$\frac{(\underline{x}^T\underline{x})^2}{(x^TQx)(x^TQ^-1x)} \geq \frac{4\lambda_{\min}\lambda_{\max}}{(\lambda_{\min}+\lambda_{\max})^2}$$

Dove λ_{\min} e λ_{\max} son gli autovalori mimimo e massimo di Q.

Ne segue che la velocità di covergenza dei metodi a discesa rapida è lineare per i modelli quadratici.

$$\frac{\left\|\underline{\boldsymbol{x}}_{k+1} - \underline{\boldsymbol{x}}^*\right\|_Q}{\left\|\underline{\boldsymbol{x}}_k - \underline{\boldsymbol{x}}^*\right\|_Q} \leq \frac{(\lambda_{\max} - \lambda_{\min})}{(\lambda_{\max} + \lambda_{\min})}$$

6.2 Metodi Newton

Prendendo in considerazione l'approssimazione di Taylor fermata al secondo ordine, quindi con l'hessiana, otteniamo come direzione di discesa quella che minimizza $\nabla f^T \underline{d} + \frac{1}{2} \underline{d}^T H \underline{d}$, cioè $\underline{d} = -(H)^{-1} \nabla f$. Quando H è **definita positiva** vale che:

$$\nabla f^T \underline{\boldsymbol{d}} = -\underline{\boldsymbol{d}} H \underline{\boldsymbol{d}} \leqslant -\sigma \left\| \underline{\boldsymbol{d}} \right\|^2$$

Cioè quando H è **definita positiva** la direzione di Newton è la **direzione di discesa**.

Nei **modelli quadratici** con *Q* **definita positiva** il metodo di Newton converge in un'iterazione, altrimenti non converge. Su funzioni generiche, la qualità della direzione dipende da quanto è definita positiva la matrice hessiana.

Teorema 6.2.1 (Convergenza dei metodi di Newton). Sia $f \in C^2$ e sia H(x) continuamente lipschitziana in un intorno del punto ottimo \underline{x}^* . Si assuma che valga $\underline{x}_{k+1} = \underline{x}_k + \underline{d}_k$. Allora:

- 1. Se \underline{x}_0 è sufficientemente vicino a \underline{x}^* , allora $\{\underline{x}_k\} \to \underline{x}^*$
- 2. $\{\underline{\boldsymbol{x}}_k\}$ converge quadraticamente

3. $\{\|\nabla f(\underline{x}_k)\|\}$ converge quadraticamente a zero.

I metodi Newton sono convergenti localmente.

La complessità computazionale è di $O(n^3)$

6.2.1 Metodi Newton modificati

Sono metodi che modificano l'Hessiano, o rendendo la matrice positiva o scegliendo una direzione di discesa tramite metodi di discesa rapida quando necessario.

6.3 Metodi Quasi-Newton

Sono metodi in cui viene utilizzata un'approssimazione dell'Hessiano, che è computazionalmente costoso da calcolare. Viene utilizzata al suo posto una matrice chiamata G_k al posto di H_k^{-1} , e quindi calcolano la direzione di discesa come $\underline{\boldsymbol{d}}_k = -G_k \nabla f(\underline{\boldsymbol{x}}_k)$.

Definizione 6.3.1 (Relazione secante). Definendo $\underline{\boldsymbol{p}}_k = \nabla f(\underline{\boldsymbol{x}}_{k+1}) - \nabla f(\underline{\boldsymbol{x}}_k)$ possiamo definire la relazione secante:

$$H(\underline{\boldsymbol{x}}_k)\underline{\boldsymbol{h}}_k \approx \underline{\boldsymbol{p}}_k \quad \text{or} \quad H(\underline{\boldsymbol{x}}_k)^{-1}\underline{\boldsymbol{p}}_k \approx \underline{\boldsymbol{h}}_k$$

Inizializzando $G_0 = I$, possiamo imporre che ad ogni iterazione la matrice G_{k+1} debba soddisfare la relazione secante con la seguente uguaglianza:

$$G_{k+1}\underline{\boldsymbol{p}}_k = \underline{\boldsymbol{h}}_k$$

La realizzazione specifica di come si ottiene G_{k+1} partendo da G_k varia dai differenti metodi Quasi-Newton. Questi metodi impongono che $G_k = G_k^T$ e che $G_{k+1} - G_k$ abbia un rango basso.

Ne esistono di due categorie:

- 1. Matrice a rango unitario simmetrico o SR1.
- 2. A rango due:
 - (a) DFP
 - (b) BFGS

I metodi a rango due hanno alcune proprietà interessanti:

- 1. La matrice G_k converge a $H(\underline{x}_k)^{-1}$ sui modelli quadratici.
- 2. Se G_0 è definita positiva allora tutte le G_k sono definite positive.
- 3. Il costo computazionale è di $O(n^2)$ in ogni iterazione.
- 4. La velocità di convergenza è superlineare.
- 5. In particolare il metodo BFGS garantisce convergenza globale se lo step-size rispetta le condizioni di Wolfe.

Parte II

Programmazione lineare intera

Programmazione lineare intera