Started on	Friday, 8 March 2024, 9:00 PM
State	Finished
Completed on	Friday, 8 March 2024, 9:37 PM
Time taken	37 mins 38 secs
Grade	9.00 out of 10.00 (90 %)

Question $\bf 1$

Correct

Mark 1.00 out of 1.00

The likelihood of the complete data is

$$\prod_{j=1}^{M} \prod_{i=1}^{K} \left(p_{i} \times \left(\frac{1}{2\pi\sigma^{2}} \right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{i}\|^{2}} \right)^{\alpha_{i}(j)}$$

$$\prod_{j=1}^{M} \prod_{i=1}^{K} \left(\alpha_{i}(j) p_{i} \times \left(\frac{1}{2\pi\sigma^{2}} \right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{i}\|^{2}} \right)$$

$$\prod_{j=1}^{M} \sum_{i=1}^{K} p_{i} \times \left(\frac{1}{2\pi\sigma^{2}} \right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \|\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}}_{i}\|^{2}}$$

$$\sum_{j=1}^{M} \sum_{i=1}^{K} \alpha_{i}(j) p_{i} \times \left(\frac{1}{2\pi\sigma^{2}} \right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \|\bar{\mathbf{x}} - \bar{\boldsymbol{\mu}}_{i}\|^{2}}$$

Your answer is correct.

The correct answer is:
$$\prod_{j=1}^{M} \prod_{i=1}^{K} \left(p_i \times \left(\frac{1}{2\pi\sigma^2} \right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \|\overline{\mathbf{x}}(j) - \overline{\boldsymbol{\mu}}_i\|^2} \right)^{\alpha_i(j)}$$

The quantity $\alpha_i^{(l)}(j) = \Pr(\mathcal{C}_i | \bar{\mathbf{x}}(j))$ is given as

$$\frac{p_i \times \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \left\| \bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_i^{(l-1)} \right\|^2}}{\prod_{k=1}^K p_k \times \left(\frac{1}{2\pi\sigma^2}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^2} \left\| \bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_k^{(l-1)} \right\|^2}}$$

$$\frac{\left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^{2}}\left\|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{i}^{(l-1)}\right\|^{2}}{\sum_{k=1}^{K}\left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{N}{2}}e^{-\frac{1}{2\sigma^{2}}\left\|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{k}^{(l-1)}\right\|^{2}}$$

$$\frac{p_{i} \times \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \left\|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{i}^{(l-1)}\right\|^{2}}{\sum_{k=1}^{K} p_{k} \times \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \left\|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{k}^{(l-1)}\right\|^{2}}$$

$$\frac{p_i}{\sum_{k=1}^K p_k}$$

Your answer is correct.

The correct answer is:

$$\frac{p_{i} \times \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \left\|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{i}^{(l-1)}\right\|^{2}}}{\sum_{k=1}^{K} p_{k} \times \left(\frac{1}{2\pi\sigma^{2}}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \left\|\bar{\mathbf{x}}(j) - \bar{\boldsymbol{\mu}}_{k}^{(l-1)}\right\|^{2}}}$$

Question ${\bf 3}$

Correct

Mark 1.00 out of 1.00

The entropy H(X) of this source is

$$\sum_{i=1}^n p(x_i) \log_2 p(x_i)$$

$$\sum_{i=1}^{n} \frac{1}{p(x_i)} \log_2 \frac{1}{p(x_i)}$$

$$\sum_{i=1}^{n} p(x_i) \log_2 \frac{1}{p(x_i)}$$

$$\sum_{i=1}^{n} \log_2 \frac{1}{p(x_i)}$$

Your answer is correct.

The correct answer is:

$$\sum_{i=1}^{n} p(x_i) \log_2 \frac{1}{p(x_i)}$$

Question 4

Incorrect

Mark 0.00 out of 1.00

Consider a source with symbols with probabilities $\frac{1}{2^n}$, n=1,2,..., ∞ . What is its entropy?

×

- 1
- 0 1.5
- 3
- O 2

Your answer is incorrect.

The correct answer is:

2

Question ${\bf 5}$

Correct

Mark 1.00 out of 1.00

Consider the table given below

	IC	ĪC
СНОС	$\frac{1}{2}$	$\frac{1}{8}$
СНОС	$\frac{1}{4}$	$\frac{1}{8}$

The quantity H(Y|X = IC) is

- 0.73
- 0.92
- 0.55
- 0.29

Your answer is correct.

The correct answer is: 0.92

Question **6**

Correct

Mark 1.00 out of 1.00

How to calculate constant b in the SVM?

- For any point for which $\lambda_i \neq 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) 1 = 0$
- For any point for which $\lambda_i = 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) 1 = 0$
- For any point for which $\lambda_i = 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) = 0$
- For any point for which $\lambda_i = 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) + 1 = 0$

Your answer is correct.

The correct answer is:

For any point for which $\lambda_i \neq 0$, solve $y_i(\bar{\mathbf{a}}^T\bar{\mathbf{x}}_i + b) - 1 = 0$

Question ${\bf 7}$

Correct

Mark 1.00 out of 1.00

The kernel $K(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}_j) = (\bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_j)^2$ can be written as $\phi^T(\bar{\mathbf{x}}_i)\phi(\bar{\mathbf{x}}_j)$, where $\phi(\bar{\mathbf{x}}_j)$ is defined as

 $\bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_i$

 $\overline{\mathbf{x}}_{j} \mathbf{O} \overline{\mathbf{x}}_{j}$

$$(\bar{\mathbf{x}}_j^T + \bar{\mathbf{x}}_j)^T (\bar{\mathbf{x}}_i^T + \bar{\mathbf{x}}_j)$$

 $\bar{\mathbf{x}}_{j} \otimes \bar{\mathbf{x}}_{j}$

Your answer is correct.

The correct answer is:

 $\bar{\mathbf{x}}_i \otimes \bar{\mathbf{x}}_i$

Question 8

Correct

Mark 1.00 out of 1.00

Consider the graphical model shown

The joint PDF $p(x_1, x_2, x_3, x_4, x_5, x_6)$ This can be simplified as

- $p(x_1) \times p(x_1|x_2) \times p(x_1,x_2|x_3) \times p(x_1,x_2,x_3|x_4) \times p(x_1,x_2,x_3,x_4|x_5)$ $\times p(x_1,x_2,x_3,x_4,x_5|x_6) \times p(x_1,x_2,x_3,x_4,x_5,x_6|x_7)$

Your answer is correct.

The correct answer is: $p(x_1) \times p(x_2) \times p(x_3) \times p(x_4|x_1,x_2,x_3) \times p(x_5|x_1,x_3) \times p(x_6|x_4) \times p(x_7|x_4,x_5)$

Question **9**

Correct

Mark 1.00 out of 1.00

Consider the model below

 $p(d\ ^{0}$, $i\ ^{1}$, $g\ ^{2}$, $s\ ^{1}$, $l\ ^{0}$) can be evaluated as approximately

- 0.004608
- 0.002315
- 0.019827
- 0.000379

Your answer is correct.

The correct answer is: 0.004608

Question 10

Correct

Mark 1.00 out of 1.00

Consider the model below

The quantity $p(i\ ^1\ | g\ ^2$, $d\ ^1$) is an example of

- Evidential Reasoning
- Not possible to evaluate
- Intercausal Reasoning
- Causal reasoning

Your answer is correct.

The correct answer is: Intercausal Reasoning