2. Data & Proses Datamining

Data

- 1. Input (Dataset)
- 2. Pengolahan Data Awal
- 3. Metode Learning

Tahapan Utama Proses Data Mining

1. Input (Dataset)

- Dataset: (Data Record/point/vector/pattern/event/case)
 Kumpulan obyek data berserta atributnya.
- Atribut: (field/karakteristik, fitur)
 Sifat/property/karakteristik obyek data.

Atribut, Class dan Tipe Data

- Atribut(variabel) adalah faktor atau parameter yang menyebabkan class/label/target terjadi
- Class adalah atribut yang akan dijadikan target, sering juga disebut dengan label(AtributTarget)
- Tipe data untuk variabel pada statistik terbagi menjadi empat: nominal, ordinal, interval, ratio
- Tapi secara praktis, tipe data untuk atribut pada data mining hanya menggunakan dua:
 - 1. Nominal (Kategorikal)
 - 2. Numeric (Kontinyu)

Tipe Atribut

Kualitatif/Kategoris

Kuantitatif/Numerik

Nominal

[distinctness =,#]
Misl: NIM,KodePos,JenisKelamin

Ordinal

[Order <.<=,>,>=]

Misl: tk kelulusan:[cumlaude,sangat memuaskan,memuaskan] Suhu:[dingin,normal,panas]

Interval

Misl: Tanggal, Suhu

Rasio

Misl: Umur, panjang, tinggi

Jenis Dataset

- Jenis dataset ada dua: Private dan Public
- Private Dataset: data set dapat diambil dari organisasi yang kita jadikan obyek penelitian
 - Bank, Rumah Sakit, Industri, Pabrik, Perusahaan Jasa, etc.
- Public Dataset: data set dapat diambil dari repositori pubik yang disepakati oleh para peneliti data mining
 - UCI Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html)
 - ACM KDD Cup (http://www.sigkdd.org/kddcup/)
- Trend penelitian data mining saat ini adalah menguji metode yang dikembangkan oleh peneliti dengan public dataset, sehingga penelitian dapat bersifat: comparable, repeatable dan verifiable

Tipe Dataset

- Data Record
 - Data Matrix
 - Data Transaksi
 - Data Graph
- Data Terurut

		-		7		~
1	0	1	1	0	0	1
2	1	0	1	1	0	1
3	1	1	0	1	1	0
4	0	1	1	0	1	0
5	0	0	1	1	0	1
6	1	1	0	0	1	0
Ite	ms					

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Kualitas Data

- Kesalahan Pengukuran: Nilai yg dicatat berbeda dg nilai sebenarnya (noise,bias,precission,acuracy)
- Kesalahan Pengumpulan: spt hilangnya obyek data/nilai dr atribut/lingkup obyek data yg tdk tetap
- Duplicate Data: obyek data ganda

Kesalahan Pengumpulan

- Outliers: obyek data yg memiliki sifat yg berbeda sekali dari kebanyakan obyek data.
- Missing Value: nilai pd suatu atribut yg tdk ditemukan/kosong.
 - Bisa krn responden menolak memberikan informasi
 - Atribut tdk bisa diterapkan ke semua kasus
 - Diatasi dg mengurangi obyek data,memperkirakan missing value,mengganti dg nilai yg memungkinkan

Dataset with Attribute and Class

Attribute

Class/Label

	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
3	4.7	3.2	1.3	0.2	Iris setosa
4	4.6	3.1	1.5	0.2	Iris setosa
5	5.0	3.6	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
53	6.9	3.1	4.9	1.5	Iris versicolor
54	5.5	2.3	4.0	1.3	Iris versicolor
55	6.5	2.8	4.6	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	Iris virginica
103	7.1	3.0	5.9	2.1	Iris virginica
104	6.3	2.9	5.6	1.8	Iris virginica
105	6.5	3.0	5.8	2.2	Iris virginica

Estimasi Waktu Pengiriman Pizza

Customer	Jumlah Pesanan (P)	Jumlah Lampu Merah (L)	Jarak (J)	Waktu Tempuh (T)
1	3	3	3	16
2	1	7	4	20
3	2	4	6	18
4	4	6	8	36
1000	2	4	2	12

Waktu Tempuh (T) = 0.48P + 0.23L + 0.5J

Penentuan Kelulusan Mahasiswa

NIM	Gender	Nilai UN	Asal Sekolah	IPS1	IPS2	IPS3	IPS 4	•••	Lulus Tepat Waktu
10001	L	28	SMAN 2	3.3	3.6	2.89	2.9		Ya
10002	Р	27	SMA DK	4.0	3.2	3.8	3.7		Tidak
10003	Р	24	SMAN 1	2.7	3.4	4.0	3.5		Tidak
10004	L	26.4	SMAN 3	3.2	2.7	3.6	3.4		Ya
•••									
•••									
11000	L	23.4	SMAN 5	3.3	2.8	3.1	3.2		Ya

Klastering Bunga Iris

Row No.	id	label	a1	a2	a3	a4
1	id_1	Iris-setosa	5.100	3.500	1.400	0.200
2	id_2	Iris-setosa	4.900	3	1.400	0.200
3	id_3	Iris-setosa	4.700	3.200	1.300	0.200
4	id_4	Iris-setosa	4.600	3.100	1.500	0.200
5	id_5	Iris-setosa	5	3.600	1.400	0.200
6	id_6	Iris-setosa	5.400	3.900	1.700	0.400
7	id_7	Iris-setosa	4.600	3.400	1.400	0.300
8	id_8	Iris-setosa	5	3.400	1.500	0.200
9	id_9	Iris-setosa	4.400	2.900	1.400	0.200
10	id_10	Iris-setosa	4.900	3.100	1.500	0.100
11	id_11	Iris-setosa	5.400	3.700	1.500	0.200
12	id_12	Iris-setosa	4.800	3.400	1.600	0.200
13	id_13	Iris-setosa	4.800	3	1.400	0.100
14	id_14	Iris-setosa	4.300	3	1.100	0.100
15	id_15	Iris-setosa	5.800	4	1.200	0.200
16	id_16	Iris-setosa	5.700	4.400	1.500	0.400
17	id_17	Iris-setosa	5.400	3.900	1.300	0.400
18	id_18	Iris-setosa	5.100	3.500	1.400	0.300
19	id_19	Iris-setosa	5.700	3.800	1.700	0.300
20	id_20	Iris-setosa	5.100	3.800	1.500	0.300
21	id_21	Iris-setosa	5.400	3.400	1.700	0.200
22	id_22	Iris-setosa	5.100	3.700	1.500	0.400
23	id_23	Iris-setosa	4.600	3.600	1	0.200
24	id 24	Iris-setosa	5.100	3.300	1.700	0.500

Klastering Bunga Iris

2. Pemrosesan Awal Data

- Agregasi
- Sampling
- Binerisasi dan Diskretisasi
- Pengurangan Dimensi
- Pemilihan Fitur
- Transformasi Variabel

Agregasi

- Penggabungan obyek ke dalam sebuah obyek tunggal
- Sum, average, min, max

Cabang	IDTX	Tanggal	Total
Gresik	2012102	30-01-2013	250,000
Gresik	2012103	30-01-2013	300,000
Surabaya	2012201	30-01-2013	500,000
Surabaya	2012202	30-01-2013	450,000
Surabaya	2012203	31-01-2013	350,000

Cabang	Tanggal	Total
Gresik	30-01-2013	550000
Surabaya	30-01-2013	950000
Surabaya	31-01-2013	350000

Agregasi

Row No. 🛆	Cabang	IDT	Tgl	D
1	Semarang	t001	17-03-2016	10000000
2	Kendal	t002	17-03-2016	8000000
3	Kendal	t003	17-03-2016	7000000
4	Semarang	t004	17-03-2016	10000000
5	Semarang	t005	18-03-2016	15000000
6	Semarang	t006	18-03-2016	25000000
7	Semarang	t007	18-03-2016	10000000
8	Kendal	t008	18-03-2016	8000000
9	Kendal	t009	19-03-2016	7000000
10	Semarang	t010	19-03-2016	10000000

- Zampiooot	(o ovarribioo!	o opooiai aminato	o, o rogalal authorio
Row No. 🛦	Cabang	Tgl	average(D)
1	Semarang	17-03-2016	10000000
2	Semarang	18-03-2016	16666666667
3	Semarang	19-03-2016	10000000
4	Kendal	17-03-2016	7500000
5	Kendal	18-03-2016	8000000
6	Kendal	19-03-2016	7000000

Sampling

- Pemilihan bagian obyek data yang akan dianalisis.
- Sample harus representatif (mewakili seluruh data)
- Sample disebut resprentatif jika mempunyai sifat yang sama dengan seluruh data biasa diukur dengan rata-rata/mean
- Penggunaan sample yang baik tidak menjamin bahwa hasil pemrosesan datamining pada sample sama bagusnya dengan pemrosesan pada seluruh data asli

Sampling

- Pendekatan sampling
 - Simple random sampling
 - Tanpa pengembalian
 - Dengan pengembalian

Binerisasi

- Transformasi data dari tipe continue, diskret menjadi tipe biner.
- Algoritma asosiasi membutuhkan data dengan atribut bertipe biner
- Jumlah atribut yg dibutuhkan utk binerisasi adalah N=log₂(M), M= jml kelas kategori
- Contoh: {rusak,jelek,sedang,bagus,sempurna}, M=5
- $N = log_2(5) = 3$, sehingga tdp 3 atribut x1,x2,x3

Class	Nilai integer	x1	x2	Х3
Rusak	0	0	0	0
Jelek	1	0	0	1
Sedang	2	0	1	0
Bagus	3	0	1	1
Sempurna	4	1	0	0

Contoh Binerisasi

ExampleSet (30 examples, 0 special attributes, 7 regular attributes)							
Row No.	IDTX	TGL	IDPASIEN	IDOBAT	OBAT	JML	HARGA
1	20150702-1	Jul 2, 2015 7	40402156	011M	CLEANSER-	1	20000
2	20150702-1	Jul 2, 2015 7	32200265	022J	SABUN WAJ	1	40000
3	20150702-1	Jul 2, 2015 7	11800586	011M	CLEANSER-	1	20000
4	20150702-1	Jul 2, 2015 7	30401779	22	SABUN WAJ	1	35000
5	20150702-1	Jul 2, 2015 7	41301650	022J	SABUN WAJ	1	40000
6	20150702-1	Jul 2, 2015 7	30800645	22	SABUN WAJ	1	35000
7	20150702-1	Jul 2, 2015 7	40402156	022J	SABUN WAJ	1	40000
8	20150702-1	Jul 2, 2015 7	31200692	22	SABUN WAJ	1	35000
9	20150702-1	Jul 2, 2015 7	32200316	011M	CLEANSER-	1	20000
10	20150701-1	Jul 1, 2015 7	52501079	22	SABUN WAJ	1	35000
11	20150701-1	Jul 1, 2015 7	30200352	22	SABUN WAJ	1	35000
12	20150701-1	Jul 1, 2015 7	31401342	022J	SABUN WAJ	1	40000
13	20150701-1	Jul 1, 2015 7	11901068	022J	SABUN WAJ	1	40000
14	20150701-1	Jul 1, 2015 7	41801994	022J	SABUN WAJ	1	40000
15	20150701-1	Jul 1, 2015 7	30102734	22	SABUN WAJ	1	35000
16	20150701-1	Jul 1, 2015 7	11200061	022J	SABUN WAJ	1	40000
17	20150701-1	Jul 1, 2015 7	10100392	11	CLEANSER-	1	15000
18	20150701-1	Jul 1, 2015 7	41902888	22	SABUN WAJ	1	35000
19	20150701-1	Jul 1, 2015 7	31401210	022J	SABUN WAJ	1	40000
20	20150701-1	Jul 1, 2015 7	31401244	22	SABUN WAJ	4	35000
21	20150701-1	Jul 1, 2015 7	30102976	022J	SABUN WAJ	1	40000
22	20150701-1	Jul 1, 2015 7	30901589	022J	SABUN WAJ	1	40000
23	20150701-1	Jul 1, 2015 7	30600605	11	CLEANSER-	1	15000
24	20150701-1	Jul 1, 2015 7	10400824	022J	SABUN WAJ	2	40000

Contoh Binerisasi

Lyailibicoe	(30 examples	, 0 special attributes, 2 reg	Row No.	OBAT = CLEANSER-1M	OBAT = SABUN WAJAH	OBAT = SABUN WAJAH-2	OBAT = CLEANSER-1	IDTX
Row No.	IDTX	OBAT	1	true	false	false	false	20150702-1
1	20150702-1	CLEANSER-1M	2	false	true	false	false	20150702-1
2	20150702-1	SABUN WAJAH-2J	3	true	false	false	false	20150702-
3	20150702-1	CLEANSER-1M	4	false	false	true	false	20150702-1
3			5	false	true	false	false	20150702-1
4	20150702-1	SABUN WAJAH-2	6	false	false	true	false	20150702-1
5	20150702-1	SABUN WAJAH-2J	8	false	true	false	false	20150702-1
3	20150702-1	SABUN WAJAH-2	9	false true	false false	true false	false false	20150702-1
- 7	20150702-1	SABUN WAJAH-2J	10	false	false	true	false	20150701-
			11	false	false	true	false	20150701-
8	20150702-1	SABUN WAJAH-2	12	false	true	false	false	20150701-1
9	20150702-1	CLEANSER-1M	13	false	true	false	false	20150701-1
10	20150701-1	SABUN WAJAH-2	14	false	true	false	false	20150701-
11	20150701-1	SABUN WAJAH-2	15	false	false	true	false	20150701-
12	20150701-1	SABUN WAJAH-2J	16	false	true	false	false	20150701-
			17	false	false	false	true	20150701-1
13	20150701-1	SABUN WAJAH-2J	18	false	false	true	false	20150701-1
14	20150701-1	SABUN WAJAH-2J	19	false	true	false	false	20150701-1
15	20150701-1	SABUN WAJAH-2	20	false	false	true	false	20150701-1
16	20150701-1		21	false	true	false	false	20150701-1
			22	false	true	false false	false	20150701-1
17	20150701-1	CLEANSER-1	23	false	false	false	true	20150701-1
18	20150701-1	SABUN WAJAH-2	24	false	true	false	false	20150701-1
19	20150701-1	SABUN WAJAH-2J						
20		SABUN WAJAH-2						

20150701-1 SABUN WAJAH-2J

20150701-1 SABUN WAJAH-2J

20150701-1 SABUN WAJAH-2J

20150701-1 CLEANSER-1

22

23

24

Binerisasi

Diskretisasi

Transformasi data dari tipe kontinyu ke diskrit.

ID	Pajak
1	125
2	100
3	70
4	120
5	95
6	60
7	220
8	85
9	75
10	90

Kategori	range
Rendah	60 – 113
Sedang	114 – 167
Tinggi	168 - 220

ID	Pajak
1	Sedang
2	Rendah
3	Rendah
4	Sedang
5	Rendah
6	Rendah
7	Tinggi
8	Rendah
9	Rendah
10	Rendah

Contoh Diskretisasi

Meta Data view <u>Data view</u> Plot view Annotations							
ExampleSet (14 examples, 1 special attribute, 4 regular attributes)							
Row No.	Play	Outlook	Temperature	Humidity	Wind		
1	no	sunny	85	85	false		
2	no	sunny	80	90	true		
3	yes	overcast	83	78	false		
4	yes	rain	70	96	false		
5	yes	rain	68	80	false		
6	no	rain	65	70	true		
7	yes	overcast	64	65	true		
8	no	sunny	72	95	false		
9	yes	sunny	69	70	false		
10	yes	rain	75	80	false		
11	yes	sunny	75	70	true		
12	yes	overcast	72	90	true		
13	yes	overcast	81	75	false		
14	no	rain	71	80	true		

Meta Data View Data View Plot View Annotations							
ExampleSet (14 examples, 1 special attribute, 4 regular attributes)							
Row No.	Play	Humidity	Outlook	Temperature	Wind		
1	no	range3 [79 - 87.500]	sunny	85	false		
2	no	range4 [87.500 - ∞]	sunny	80	true		
3	yes	range2 (67.500 - 79)	overcast	83	false		
4	yes	range4 [87.500 - ∞]	rain	70	false		
5	yes	range3 [79 - 87.500]	rain	68	false		
6	no	range2 (67.500 - 79)	rain	65	true		
7	yes	range1 [-∞ - 67.500]	overcast	64	true		
8	no	range4 [87.500 - ∞]	sunny	72	false		
9	yes	range2 [67.500 - 79]	sunny	69	false		
10	yes	range3 [79 - 87.500]	rain	75	false		
11	yes	range2 [67.500 - 79]	sunny	75	true		
12	yes	range4 [87.500 - ∞]	overcast	72	true		
13	yes	range2 [67.500 - 79]	overcast	81	false		
14	no	range3 [79 - 87.500]	rain	71	true		

Diskretisasi

Pengurangan Dimensi

- Mengurangi jumlah waktu dan memory yg dibutuhkan
- Membuat data lebih mudah divisualisasi
- Membantu mengurangi fitur-fitur yang tdk relevan/mengurangi gangguan/derau

- Teknik yang digunakan
 - Principal Component Analysis (PCA)
 - Singular Value Decomposition(SVD)

Pemilihan Fitur (Feature Subset Selection)

- Proses pencarian terhadap semua kemungkinan subset fitur.
 - Menghilangkan fitur yang redundan
 - misl: harga_jual,pajak,discount
 - Menghilangkan fitur-fitur yang tidak mengandung informasi yang berguna untuk pekerjaan datamining

Misl: tinggi badan mhs pada pekerjaan prediksi kelulusan mhs , tidak relevan

Pemilihan Fitur

- Teknik yang digunakan:
 - Brute-force

Pada proses data mining dilakukan dengan mencoba semua fitur.

– Filtering:

Memilih fitur sebelum proses datamining dilakukan

wrapper

menggunakan algoritma datamining utk memilih sub-set fitur yang paling baik.

Pemilihan Fitur

Proses:

- Melakukan pengukuran untuk evaluasi suatu subset fitur.
- Menggunakan metode pencarian yang mengontrol pemilihan subset-fitur baru
- Menggunakan kriteria untuk melakukan penghentian proses.
- Menggunakan validasi

Pembuatan Fitur

- Proses membuat fitur baru yang dapat menangkap informasi penting dalam sebuah himpunan fitur yang lebih efisien daripada fiturfitur yang ada.
- Metode Pembuatan Fitur:
 - Ekstraksi Fitur
 - Pemetaan menggunakan transformasi fourier/wavelet
 - Konstruksi fitur dengan menggabungkan fitur-fitur yang ada.

Transformasi Fitur

- Merupakan proses yang memetakan keseluruhan himpunan nilai dari fitur-fitur yang diberikan ke suatu subset nilai pengganti sedemikian sehingga nilai yang lama dapat dikenali dengan satu dari nilai-nilai yang baru tersebut.
- Metode dalam transformasi fitur:
 - Standarisasi (median , standar deviasi).
 - Normalization, dimana data sebuah atribut diskalakan ke dalam rentang (kecil) yang ditentukan Metode: Min-max Normalization, z-score Normalization, Normalization by Decimal Scaling).

3. Metode Learning Pada Algoritma DM

Metode Learning Pada Algoritma DM

1. Supervised Learning (Pembelajaran dengan Guru):

- Sebagian besar algoritma data mining (estimation, prediction/forecasting, classification) adalah supervised learning
- Variabel yang menjadi target/label/class ditentukan
- Algoritma melakukan proses belajar berdasarkan nilai dari variabel target yang terasosiasi dengan nilai dari variable prediktor

Dataset with Attribute and Class

Attribute Class/Label

	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
3	4.7	3.2	1.3	0.2	Iris setosa
4	4.6	3.1	1.5	0.2	Iris setosa
5	5.0	3.6	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
53	6.9	3.1	4.9	1.5	Iris versicolor
54	5.5	2.3	4.0	1.3	Iris versicolor
55	6.5	2.8	4.6	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	Iris virginica
103	7.1	3.0	5.9	2.1	Iris virginica
104	6.3	2.9	5.6	1.8	Iris virginica
105	6.5	3.0	5.8	2.2	Iris virginica

Metode Learning Pada Algoritma DM

2. Unsupervised Learning (Pembelajaran tanpa Guru):

- Algoritma data mining mencari pola dari semua variable (atribut)
- Variable (atribut) yang menjadi target/label/class tidak ditentukan (tidak ada)
- Algoritma clustering adalah algoritma unsupervised learning

Dataset with Attribute (No Class)

Attribute

	Sepal Length (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)		
1	5.1	3.5	1.4	0.2		
2	4.9	3.0	1.4	0.2		
3	4.7	3.2	1.3	0.2		
4	4.6	3.1	1.5	0.2		
5	5.0	3.6	1.4	0.2		
51	7.0	3.2	4.7	1.4		
52	6.4	3.2	4.5	1.5		
53	6.9	3.1	4.9	1.5		
54	5.5	2.3	4.0	1.3		
55	6.5	2.8	4.6	1.5		
101	6.3	3.3	6.0	2.5		
102	5.8	2.7	5.1	1.9		
103	7.1	3.0	5.9	2.1		
104	6.3	2.9	5.6	1.8		
105	6.5	3.0	5.8	2.2		

...

Metode Learning Pada Algoritma DM

3. Association Learning (Pembelajaran untuk Asosiasi Atribut)

- Proses learning pada algoritma asosiasi (association rule) bertujuan untuk mencari atribut yang muncul bersamaan dalam satu transaksi
- Algoritma asosiasi biasanya untuk analisa transaksi belanja, dengan konsep utama adalah mencari "produk/item mana yang dibeli bersamaan"
- Pada pusat perbelanjaan banyak produk yang dijual, sehingga pencarian seluruh asosiasi produk memakan cost tinggi, karena sifatnya yang kombinatorial
- Algoritma association rule seperti a priori algorithm, dapat memecahkan masalah ini dengan efisien

Dataset Transaction

ExampleSet (3 examples, 0 special attributes, 6 regular attributes)								
Row No. CAR = true APPARTEMENT = true VILLA = true POOR = true AVERAGE = true RICH = true								
1	false	true	false	true	false	false		
2	true	true	false	false	true	false		
3	3 true false true false true							

Association Rules

AssociationRules

```
Association Rules
[VILLA = true] --> [CAR = true] (confidence: 1.000)
[RICH = true] --> [CAR = true] (confidence: 1.000)
[AVERAGE = true] --> [CAR = true] (confidence: 1.000)
[POOR = true] --> [APPARTEMENT = true] (confidence: 1.000)
[AVERAGE = true] --> [APPARTEMENT = true] (confidence: 1.000)
[VILLA = true] --> [RICH = true] (confidence: 1.000)
[RICH = true] --> [VILLA = true] (confidence: 1.000)
[CAR = true, APPARTEMENT = true] --> [AVERAGE = true] (confidence: 1.000)
[AVERAGE = true] --> [CAR = true, APPARTEMENT = true] (confidence: 1.000)
[CAR = true, AVERAGE = true] --> [APPARTEMENT = true] (confidence: 1.000)
[APPARTEMENT = true, AVERAGE = true] --> [CAR = true] (confidence: 1.000)
[VILLA = true] --> [CAR = true, RICH = true] (confidence: 1.000)
[CAR = true, VILLA = true] --> [RICH = true] (confidence: 1.000)
[RICH = true] --> [CAR = true, VILLA = true] (confidence: 1.000)
[CAR = true, RICH = true] --> [VILLA = true] (confidence: 1.000)
[VILLA = true, RICH = true] --> [CAR = true] (confidence: 1.000)
```

