On Vanishing Sums of Roots of Unity in Polynomial Calculus and Sum-of-"Squares"

Ilario Bonacina

UPC Barcelona Tech
Wien, August 25 2022 MFCS

This talk in one sentence

"Sum-of-Squares, the proof system underlying semidefinite programming, cannot reason about divisibility."

Plan of the talk

- Non-Boolean encodings
- Polynomial Calculus over Calcu
 - $^{\circ}$ Sum-of-"Squares" over ${\mathbb R}$ and ${\mathbb C}$
 - Knapsack and Sums of Roots of Unity
 - Hint on lower bound techniques

Definitions

Results

Examples

Boolean and Fourier encodings

Given G = (V, E) a graph. Is G 3-colorable?

Boolean encoding

 x_{vc} "the vertex v gets color c"

$$\begin{cases} x_{v0} + x_{v1} + x_{v2} = 1 \\ x_{v0}^2 = x_{v0} \quad x_{v1}^2 = x_{v1} \quad x_{v2}^2 = x_{v2} \end{cases} \quad \forall v \in G \qquad \begin{cases} z_v^3 = 1 \\ z_v^3 = 1 \end{cases}$$

$$x_{v0}x_{w0} = 0$$

$$x_{v1}x_{w1} = 0$$

$$x_{v2}x_{w2} = 0$$

Fourier encoding

 z_{v} "the color given to vertex v"

$$\forall v \in G \qquad \left\{ \begin{array}{l} z_v^3 = 1 \\ \end{array} \right.$$

$$x_{v0}x_{w0} = 0$$

$$x_{v1}x_{w1} = 0$$

$$x_{v2}x_{w2} = 0$$

$$\forall \{v, w\} \in E$$

$$z_v^2 + z_v z_w + z_w^2 = 0$$

Two natural encodings for CSPs

Fourier variables $z^{\kappa} = 1$

$$z \in \{1, \zeta, \zeta^2, ..., \zeta^{\kappa-1}\}$$

where ζ is a primitive κ -th root of unity

Boolean variables
$$x^2 = x$$

$$x \in \{0,1\}$$

Two natural encodings for CSPs

Fourier variables $z^{\kappa} = 1$

$$z \in \{1, \zeta, \zeta^2, ..., \zeta^{\kappa-1}\}$$

where ζ is a primitive κ -th root of unity

Boolean variables $x^2 = x$

$$x \in \{0,1\}$$

$$z = x_0 + x_1 \zeta + \dots + \zeta^{\kappa - 1} x_{\kappa - 1}$$

together with the constraints

$$x_0 + \dots + x_{\kappa-1} = 1$$

and $x_0^2 = x_0, \dots, x_{k-1}^2 = x_{k-1}$

A practical motivation

The Fourier encoding is used in practice to solve

k-COLORING and verification of arithmetic

multiplier circuits via Groebner basis computations.

Sum of Squares

Sum-of-Squares $SOS_{\mathbb{R}}$

Y set of n variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{R}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \ldots + p_mq_m + s_1^2 + \ldots + s_\ell^2 = -1$$

Sum-of-Squares $SOS_{\mathbb{R}}$

Y set of n variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{R}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1^2 + \dots + s_\ell^2 = -1$$

Complexity measures

Degree: $\max\{\deg(q_i p_i), \deg(s_j^2) : i \in [m], j \in [\ell]\}$

Size: number of monomials in the proof

Knapsack

$$\operatorname{Kn}_{n}^{r} = \left\{ \sum_{i=1}^{n} x_{i} = r, \quad x_{1}^{2} = x_{1}, \quad \dots \quad , x_{n}^{2} = x_{n} \right\}$$

(Interesting special case $r \approx \frac{n}{2}$)

Example. A refutation of Kn_n^{-1} in $SOS_{\mathbb{R}}$:

$$-(\sum_{j} x_{j} + 1) - \sum_{j} (x_{j}^{2} - x_{j}) + \sum_{j} x_{j}^{2} = -1$$

Thm. [G'01] The hardness of Kn_n^r in $SOS_{\mathbb{R}}$ depends on r: degree $\geq \min\{n, 2\min\{r, n-r\}+3\}$

Y set of variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

Y set of variables, $P=\left\{p_1=0,\ \dots\ ,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

on Boolean variables: s^* is the conjugate of s

Y set of variables, $P=\left\{p_1=0,\ldots,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

on Boolean variables: s^* is the conjugate of s

on Fourier variables $z^{\kappa} = 1$: s^* is the conjugate of s after substituting z^j with $z^{\kappa-j}$

Y set of variables, $P=\left\{p_1=0,\ \dots\ ,p_m=0\right\}$ where $p_j\in\mathbb{C}[Y]$

Proof of unsatisfiability of P

$$p_1q_1 + \dots + p_mq_m + s_1s_1^* + \dots + s_\ell s_\ell^* = -1$$

where s_j^* is the formal conjugate of s_j

on Boolean variables: s^* is the conjugate of s

on Fourier variables $z^{\kappa} = 1$: s^* is the conjugate of s after substituting z^j with $z^{\kappa-j}$

Complexity measures

Degree: $\max\{\deg(q_i p_i), \deg(s_j s_j^*) : i \in [m], j \in [\ell]\}$

Size: number of monomials in the proof

Examples of conjugate polynomials

On **Boolean** variables:

$$p = ix + 1$$

$$p^* = -ix + 1$$

$$pp^* = x^2 + 1$$

On Fourier variables ($z^{\kappa} = 1$):

$$p = iz + 1$$
 $p^* = -iz^{\kappa-1} + 1$

$$pp^* = z^k + iz - iz^{\kappa - 1} + 1$$

Knapsack (again)

Example. A refutation of Kn_n^i in $SOS_{\mathbb{R}}$:

$$-(\sum_{j} x_{j} + \underline{i})(\sum_{j} x_{j} - \underline{i}) + (\sum_{j} x_{j})^{2} = -1$$

THM. In $SOS_{\mathbb{C}}$ the hardness of Kn_n^r depends on r:

- $r \in \mathbb{R}$ the hardness is the same as for $SOS_{\mathbb{R}}$.
- -For $r \notin \mathbb{R}$ it is easy in $SOS_{\mathbb{C}}$

Some remarks on $SOS_{\mathbb{R}}$ / $SOS_{\mathbb{C}}$

Thm. [AH'19] Over Boolean variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$ lower bounds

Some remarks on $SOS_{\mathbb{R}}$ / $SOS_{\mathbb{C}}$

Thm. [AH'19] Over Boolean variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$ lower bounds

Thm. [S'20] Over Fourier $\{\pm 1\}$ variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$ lower bounds

but for a different set of polynomials

Some remarks on $SOS_{\mathbb{R}}$ / $SOS_{\mathbb{C}}$

Thm. [AH'19] Over Boolean variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$ lower bounds

Thm. [S'20] Over Fourier $\{\pm 1\}$ variables,

Degree D lower bounds in $SOS_{\mathbb{R}}$ imply size $\exp \left((D-d)^2/n \right)$ lower bounds

but for a different set of polynomials

Thm. For polynomials with real coefficients and Boolean encoding,

 $SOS_{\mathbb{C}}$ is equivalent to $SOS_{\mathbb{R}}$

Proof idea. The real part of the $SOS_{\mathbb{C}}$ refutation is a valid $SOS_{\mathbb{R}}$ refutation.

Sums of Roots of Unity

Sums of Roots of Unity

$$SRU_n^{\kappa,r} = \left\{ \sum_{i \in [n]} z_i = r, \quad z_1^{\kappa} = 1, \quad \dots, z_n^{\kappa} = 1 \right\} \text{ with } r \in \mathbb{C}$$

(Interesting special case r = 0)

THM. If $\kappa = p^m$ for some prime p, $SRU_n^{\kappa,0}$ is satisfiable if and only if p divides n.

THM. If κ not a power of a prime,

 $SRU_n^{\kappa,0}$ for n large enough is always satisfiable. [LL'01]

Sums of Roots of Unity

$$SRU_n^{\kappa,r} = \left\{ \sum_{i \in [n]} z_i = r, \quad z_1^{\kappa} = 1, \quad \dots, z_n^{\kappa} = 1 \right\} \text{ with } r \in \mathbb{C}$$

(Interesting special case r = 0)

THM. If $\kappa = p^m$ for some prime p, $SRU_n^{\kappa,0}$ is satisfiable if and only if p divides n.

THM. If κ not a power of $\mathcal{S}RU_n^{\kappa,0}$ for n large enough tways satisfiable. [LL'01]

SOS cannot reason about divisibility

κ prime

$$\zeta$$
 primitive κ th root of unity $r = r_1 + \zeta r_2$ with $r_1, r_2 \in \mathbb{R}$

THM. (Degree lower bound)

If
$$\kappa D \leq \min\{r_1 + r_2 + (\kappa - 1)n + \kappa, n - r_1 - r_2 + \kappa\}$$
,

then $SOS_{\mathbb{C}}$ refutations of $SRU_{n}^{\kappa,r}$ require degree at least D

COR. $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,0}$ require degree $\Omega(n/\kappa)$

THM. (Size lower bound)

If $n \gg \kappa$, $SOS_{\mathbb{C}}$ refutations of $SRU_n^{\kappa,0}$ require size $2^{\Omega(n)}$

Degree lower bounds

Proof Technique for degree lb in $SOS_{\mathbb{C}}$

$$\left\{p_1=0,\ \dots\ ,p_m=0\right\}$$
 does not have $SOS_{\mathbb{C}}$ refutations of degree $\leq D$

 \exists pseudo-expectation $E: \mathbb{R}[Y]_{< D} \to \mathbb{R}$ s.t.

- -E(1)=1
- Elinear
- $E(q_j p_j) = 0 \text{ for all } q_j \text{ s.t } \deg(q_j p_j) \le D$
- $E(ss^*) \ge 0$ for all s s.t. $deg(ss^*) \le D$

Degree lower bounds of $SRU_n^{\kappa,r}$ in $SOS_{\mathbb{C}}$

- Use the associate Boolean encoding of $SRU_n^{\kappa,r}$
- Construct a candidate pseudo-expectation E (only one choice under symmetry)
- Interpret E(p) as the evaluation of a symmetric polynomial \mathcal{S}_E
- Use **Bleckherman's theorem** (adapted to $\mathbb C$) to prove properties of S_E
- E is a pseudo-expectation

Size lower bounds

Size lower bound of $SRU_n^{\kappa,r}$ in $SOS_{\mathbb{C}}$

- The technique is a non-trivial adaptation of Sokolov's **gadgets** from $\{\pm 1\}$ variables to generic Fourier variables. [S'20]
- A degree-D $SOS_{\mathbb{C}}$ lower bound for P, implies a monomial size lower

bound for
$$P \circ g$$
 of the form $\exp\left(\frac{(D-d)^2}{\kappa^{\kappa}n}\right)$

- The gadget could be taken as a sum of variables and hence it transforms instances of SRU into itself.

Thanks

Questions?

- Non-Boolean encodings
- $^{\circ}$ Sum-of-"Squares" over $\mathbb R$ and $\mathbb C$
- Sums of Roots of Unity and Knapsack
- Hint on lower bound techniques

"Sum-of-Squares, the proof system underlying semidefinite programming, cannot reason about divisibility."