

Test 1

Type: Closed Time: 60 mins Max Marks: 40 Date: 29.02.2016 All parts of the same question should be answered together.

- **1.** Suppose a group of 12 *sales price* records has been sorted as follows: 5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215. Partition them into three bins by each of the following methods. [6 Marks] (a) equal-frequency partitioning (b) equal-width partitioning (c) clustering
- 2. In real-world data, tuples with *missing values* for some attributes are a common occurrence. Describe all possible methods for handling this problem. [5 Marks]
- 3.a. What is the confidence for the rules $\emptyset \to A$ and $A \to \emptyset$?

[7 Marks]

- 3.b. Let c1, c2, and c3 be the confidence values of the rules $\{p\} \rightarrow \{q\}, \{p\} \rightarrow \{q, r\}, \text{ and } \{p, r\} \rightarrow \{q\}, \text{ respectively.}$ If we assume that c1, c2, and c3 have different values, what are the possible relationships that may exist among c1, c2, and c3? Which rule has the lowest confidence?
- 3.c. Repeat the analysis in part (b) assuming that the rules have identical support. Which rule has the highest confidence?
- 3.d. Transitivity: Suppose the confidence of the rules $A \to B$ and $B \to C$ are larger than some threshold, *minconf*. Is it possible that $A \to C$ has a confidence less than *minconf*?
- 4.a. Use the transactional database of the below example with support threshold of 33.34%, confidence threshold of 60% and build a frequent pattern tree (FP-Tree). Show for each transaction how the tree evolves.

Transaction ID	Items
T1	HotDogs, Buns, Ketchup
T2	HotDogs, Buns
T3	HotDogs, Coke, Chips
T4	Chips, Coke
T5	Chips, Ketchup
T6	HotDogs, Coke, Chips

4.b. Use Fp-Growth to discover the frequent itemsets from this FP-tree.

[11 Marks]

- 5. Let $I = \{i_1, i_2, ..., i_d\}$ be the item set of a rule generation data mining problem. Prove that the total number of possible rules extracted from a data set that contain d items is $3^d 2^{d+1} + 1$. [5 Marks]
- 6. Consider the problem of finding the K nearest neighbors of a data object. A programmer designs the below mentioned algorithm for this task. [6 Marks]

Algorithm Algorithm for finding *K* nearest neighbors.

- 1: **for** i = 1 to number of data objects **do**
- 2: Find the distances of the *ith* object to all other objects.
- 3: Sort these distances in decreasing order.

(Keep track of which object is associated with each distance.)

- 4: **return** the objects associated with the first K distances of the sorted list
- 5: end for
- (a) Describe the potential problems with this algorithm if there are duplicate objects in the data set. Assume the distance function will only return a distance of 0 for objects that are the same.
- (b) How would you fix this problem?