

Prof. Dr. Georg Umlauf

Content

- §2.1 Basics of character coding
- §2.2 Standards
- §2.3 Unicode

Character:

Elementary text entity

- atomic information entity to represent, organize, or control text
- Example: Letter, digit, punctuation marks, accents, graphical symbols, ideographic symbols, space, tabulators, line feed, control codes, etc.
- Not to be confused with:
 - Glyph: graphical representation of a symbol
 - E.g.: the abstract form of "A", realized by glyph images A A A A
 - Input symbols (key press)
 - Phonetic entities (phoneme, syllable, word)

Plain text:

Written text as sequence of elementary text entities (characters), such as letters, digits, punctuation marks, etc. including

- escape mechanisms (example: cursor positioning) and
- markup (formatting instructions).
- E.g.: XML defined as plain text, structured by syntactical rules.

Fancy text:

Text with font attributes, margin alignment, page arrangement, etc.

- Character set:
 - Pool of possible characters
 - E.g.: Letters of an alphabet, digits, symbols, etc.
- Character code: Unique mapping of characters of a character set to socalled code positions of the code space.
- Code positions are usually natural numbers.
- **Encoding scheme:** Method to represent code positions in the computer as bit- or byte-sequences (code units).

- The size (cardinality) of the code space determines the number of bits of the code units necessary to represent all code positions.
 - E.g.:
 - 8 Bit = 256 values in the code space,
 - 16 Bit = 65.536 values in the code space.

- Code tables: Mapping of characters to code positions rsp. code-units in table form:
 - Characters and assigned code positions are given in a table.
 - For a trivial encoding scheme characters and assigned code units are given in a table.
- Code page: Aggregation of character set, code space and character code.

- Text coding: Transformation of a text in bits and bytes for the computerized representation following the rules of a character coding scheme.
- → A text becomes the sequence of code positions of its characters.
- ▶ In the computer, a text is represented as the sequence of code units of its characters.

Problems:

- Huge number of characters and
- numerous national coding schemes.

Synonymous terms (German and English)

Character: Schriftzeichen, Zeichen

Character Set: Zeichenvorrat, Zeichensatz, character repertoire

Character coding: Zeichencodierung, Codierungsschema, coded

character set

Code Position: Code-Punkt, Code, code set position, code point,

character number

Code Space: Code-Raum, Code-Menge, code set

Encoding Scheme: character encoding form (cef), encoding form,

character encoding scheme (ces)

Code-Tabelle, coded character set (ccs), Code Table:

character code.

E.g.: ASCII

Content

- §2.1 Basics of character coding
- §2.2 Standards
- §2.3 Unicode

ASCII: American Standard Code for Information Interchange

- 1963-1968 developed: US-ASCII (ANSI X3.4).
- Character set: printable characters of the English alphabet (incl. space character) and some control characters (line feed, etc.).
- Code space: natural numbers 0 127, i.e. 0 7F.
- Code positions:
 - 32 126 printable characters (95 characters),
 - 0 31, 127 control characters (33 characters).
- Coding scheme: Every characters is mapped to a natural number of the code space in its binary representation stored in one byte.
 - The most significant bit is zero (7-Bit-ASCII).
 - Coding scheme and encoding form coincide.
 - Code tables suffice for the compete characterization.

ASCII code table (hexadecimal)

Code	. 0	. 1	. 2	.3	. 4	. 5	. 6	.7	. 8	. 9	.A	. В	. С	. D	. E	. F
0.	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	SO	SI
1.	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2.	SP	!	"	#	\$	%	&	•	()	*	+	,	-		/
3.	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4.	@	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О
5.	Р	Q	R	S	Т	U	V	W	X	Y	Z	[\]	٨	_
6.	`	a	b	С	d	e	f	g	h	i	j	k	1	m	n	О
7.	р	q	r	S	t	u	V	W	X	у	Z	{		}	~	DEL

Further Standards

- ISO 646 corresponds basically to US-ASCII, with some national special characters (e.g. Umlauts).
 - There are 16 national variants of ISO 646.
 - E.g.: ISO 646-DE for German.
- ISO 8859-1 (ISO Latin 1) extends the code tables of US-ASCII to characters at code positions 128 to 255.
 - Code space: 0 FF.
 - Encoding scheme is trivial (8-Bit-ASCII), i.e. using code tables.
 - Other ASCII extensions in the ISO 8859 family:
 - ISO 8859-9 (ISO Latin 5) fur Turkish and
 - ISO 8859-15 (ISO Latin 9) with the Euro-Symbol.

ISO-8859-15 Cod table

8.	PAD	НОР	ВРН	NBH	IND	NEL	SSA	ESA	HTS	HTJ	VTS	PLD	PLU	RI	SS2	SS3
9.	DCS	PU1	PU2	STS	ССН	MW	SPA	EPA	SOS	SGCI	SCI	CSI	ST	OSC	PM	APC
Α.	NBSP	i	¢	£	€	¥	Š	§	š	©	a	«	Г	SHY	®	_
В.	0	±	2	3	Ž	μ	•		ž	1	o	»	Œ	œ	Ÿ	i
С.	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ϊ
D.	Đ	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	В
E.	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
F.	ð	ñ	ò	ó	ô	õ	ö	÷	Ø	ù	ú	û	ü	ý	þ	ÿ

Standardized code tables

Language	Code table	Cardinality
English	US-ASCII (ISO 646:1991)	95
German/French	ISO 8856-1:1987	191
Chinese	GB 2312-80	7.455
Chinese	Big 5	13.523
Japanese	JIS X 0208-1990	6.897
Korean	KS C 5601-1992	8.224
All	ISO/IEC 10646-1:2000 (Unicode 3)	> 100.000

■ ... and many more: EBCDIC, ISO/IEC 6937:2001, etc.

Content

- §2.1 Basics of character coding
- §2.2 Standards
- §2.3 Unicode

Goal

- Coding of all alphabets of the world.
- Basis for the implementation of word processing of arbitrary texts.

Design principles

- Unicode codes characters, not glyphs.
- Unicode codes plain text, no markup.
- Coding model: conceptual frame to structure the coding of some billion characters to bit pattern.

It consists of:

- Character sets
- Character codes using code tables
- Non-trivial encoding scheme (code format)

Character set:

Universal Character Set (UCS) rsp. ISO/IEC 10646

- Defines a universal character set, which is meant to cover all alphabets of the world.
- Contains today more than 100,000 characters.
- Character code:

Unicode, UCS rsp. ISO/IEC 10646 defines a code table for UCS

- Codes today more than 100,000 characters.
- Standardized character sets are already covered:
 - BMP (Basic Multilingual Plane): Unicode characters, with code in the range 0-FFFF (65.536 characters).

Comparison of code spaces

Coding	Code space	Code positions	Code length [bit]
US-ASCII	0-1F	128	7
ISO 8859	0-FF	256	8
Unicode	0-10FFFF	65.536+1.048.576	"21"
ISO/IEC 10646	0-7FFFFFF	2.147.483.648	31

Unicode

- Character set is subdivided in 17 planes of 2¹⁶ = 65.536 characters each.
- Each plane is subdivided in blocks for different alphabets.
 - E.g.: Latin, Greek, Cyrillic, etc.
- Only six planes are used today.

Unicode planes

Name	Description	Plane
ВМР	Basic Multilingual Plane: currently used alphabets, punctuation marks, symbols, control characters, etc.	0
SMP	Supplementary Multilingual Plane: historical alphabets, collection of special characters, etc.	1
SIP	Supplementary Ideographic Plane: Rare CJK-characters.	2
TIP	Tertiary Ideographic Plane: Empty, but reserved.	3
	Unused	4-13
SSP	Supplementary Special-purpose Plane: Control characters for language identification.	14
PUA	Supplementary Private Use Area-A und –B: For private use based on individual agreement between sender/receiver of a text.	15+16

Comparison of code formats

Format	Coding	Code space	Code length [byte]
	US-ASCII	0-1F	fix, 1
	ISO 8859	0-FF	fix, 1
UCS-2	ISO 10646	0-FFFF	fix, 2
UCS-4	ISO 10646	0-7FFFFFF	fix, 4
UTF-32	Unicode 3.0	0-10FFFF	fix, 4
UTF-8	Unicode 3.0	0-10FFFF	variable, 1-4
UTF-8	ISO 10646	0-7FFFFFF	variable, 1-6
UTF-16	Unicode 3.0	0-10FFFF	variable, 2/4

UTF = Unicode Transformation Format

UTF-8

- Variable length of code units of 1-6 Bytes.
 - Encoded code positions in the range of 0-FFFF using 1-3 Bytes (BMP).
 - Encoded code positions in the range of 0-7FFFFFF using 1-6 Bytes.
- Transparent for binary numbers from 0 to 127, coded with one byte with most significant bit zero.
 - → US-ASCII-downward-compatible
- Multi-Byte-sequences have a leading byte and 1-5 continuation bytes.
 - Number of leading "1" in leading byte (succeeded by one "0") yields the number of used bytes for the corresponding code position.
 - Continuation bytes start with the bit sequence "10".
 - The remaining bits are used to encode the code positions (padded with leading "0" where necessary).

UTF-8 Encoding

Bytes	UTF-8 represe	Bits	Largest code	
	Leading byte	Continuation bytes		position
1	0xxxxxx		7	7F
2	110xxxxx	10xxxxx	11	7FF
3	1110xxxx	10xxxxxx 10xxxxxx	16	FFFF
4	11110xxx	10xxxxxx 10xxxxxx 10xxxxxx	21	1FFFFF
5	111110xx	10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx	26	3FFFFF
6	1111110x	10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx	31	7FFFFFF

UTF-8

- Pros
 - Self-synchronizing since the beginning of a code position can be at most five bytes earlier.
 - At an interruption, bytes starting with "10" are ignored.
 - If "0..." or "11..." is detected, a new code position starts.
 - Automatic detection of UTF-8.
 - Usage for the internet.
- Cons
 - There are multiple code units for the same character:
 - E.g.: "a" is coded as 01100001 or erroneously as 11000001 10100001
 - Only the shortest code unit is valid.
 - There are certain invalid bit-/byte-sequences.

UTF-16

- Represents every valid code position in the range of 0-FFFF canonically by two bytes
 - UCS-2 downward compatible.
- Represents code positions in the range of 10000 to 10FFFF (20 bits)
 with two surrogate positions (surrogate of 2 byte)

E.g.:

Character	Unicode	UTF-16BE binary	UTF-16BE hex
у	0079	0000000 01111001	00 79
ä	00E4	00000000 11100100	00 E4
€	20AC	00100000 10101100	20 AC
&	1D11E	11011000 00110100 11011101 00011110	D8 34 DD 1E

Goals

- What is the code space and what is an encoding scheme?
- What is text coding?
- What is ASCII and what is the size of its code space?
- What is the Unicode BMP?