VNU-HUS MAT3500: Toán rời rạc

Bài tập Các cấu trúc cơ bản I

Hoàng Anh Đức

Bộ môn Tin học, Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

1 Tập hợp

Bài tập 1. Cho $A = \{1, 2, 3, 4, 5\}$ và $B = \{0, 3, 6\}$. Tìm

(a) $A \cup B$

(c) A - B

(b) $A \cap B$

(d) $A\Delta B$

Bài tập 2. Tìm các tập A và B, biết rằng $A - B = \{1, 5, 7, 8\}$, $B - A = \{2, 10\}$, và $A \cap B = \{3, 6, 9\}$.

Bài tập 3. Cho các tập hợp A, B. Chứng minh

(a) $(A \cap B) \subseteq A$

(d) $A \cap (A - B) = \emptyset$

(b) $A \subseteq (A \cup B)$

(e) $A \cup (B - A) = A \cup B$

(c) $A - B \subseteq A$

Bài tập 4. Hãy chứng minh rằng với các tập $A, B, C, \overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ bằng cách

- (a) Chứng minh theo định nghĩa. (Nhắc lại: A = B khi và chỉ khi $A \subseteq B$ và $B \subseteq A$.)
- (b) Dùng bảng tính thuộc.

Bài tập 5. Với các tập A, B, C, có thể kết luận rằng A = B nếu

- (a) $A \cup C = B \cup C$?
- (b) $A \cap C = B \cap C$?
- (c) $A \cup C = B \cup C$ và $A \cap C = B \cap C$?

Bài tập 6. Với A là tập con của một tập vũ tru U, chứng minh rằng

- (a) $A\Delta U = \overline{A}$
- (b) $A\Delta \overline{A} = U$

Bài tập 7. Với hai tập A, B bất kỳ, chứng minh

- (a) $A\Delta B = (A \cup B) (A \cap B)$
- (b) $A\Delta B = B\Delta A$
- (c) $(A\Delta B)\Delta B = A$

Bài tập 8. Có thể nói gì về các tập A, B nếu $A\Delta B = A$?

Bài tập 9. Chứng minh rằng $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$ với A, B, C là các tập hữu hạn bất kỳ. (Đây là trường hợp đặc biệt của nguyên lý bù trừ (inclusion-exclusion principle) sẽ được đề cập ở phần sau.)

Bài tập 10. Chứng minh hoặc tìm phản ví dụ cho

- (a) $A \times (B \cup C) = (A \times C) \cup (B \times C)$
- (b) $A \times (B \cap C) = (A \times C) \cap (B \times C)$

trong đó A, B, C là các tập bất kỳ.

2 Hàm

Bài tập 11. Hãy tìm ví dụ một hàm f từ $\mathbb N$ đến $\mathbb N$ thỏa mãn

- (a) f là đơn ánh nhưng không là toàn ánh
- (c) f là song ánh và f khác hàm đồng nhất trên $\mathbb N$
- (b) f là toàn ánh nhưng không là đơn ánh
- (d) f vừa không là đơn ánh vừa không là toàn ánh

Bài tập 12. Hàm $f: \mathbb{Z} \to \mathbb{Z}$ trong mỗi trường hợp sau đây có phải là đơn ánh không?

(a) f(n) = n - 1

(c) $f(n) = n^3$

(b) $f(n) = n^2 + 1$

(d) $f(n) = \lceil n/2 \rceil$

Bài tập 13. Hàm $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ trong mỗi trường hợp sau đây có phải là toàn ánh không?

(a) f(m,n) = 2m - n

(c) f(m,n) = m + n + 1

(b) $f(m,n) = m^2 - n^2$

(d) $f(m,n) = m^2 - 4$

Bài tập 14. Hàm $f: \mathbb{R} \to \mathbb{R}$ trong mỗi trường hợp sau đây có phải là song ánh không?

(a) f(x) = -3x + 4

(e) f(x) = 2x + 1

(b) $f(x) = -3x^2 + 7$

(f) $f(x) = x^2 + 1$

(c) f(x) = (x+1)/(x+2)

(g) $f(x) = x^3$

(d) $f(x) = x^5 + 1$

(h) $f(x) = (x^2 + 1)/(x^2) + 2$

Bài tập 15. Gọi $f:A\to B$ là một hàm với A,B là các tập hữu hạn thỏa mãn |A|=|B|. Chứng minh rằng f là đơn ánh khi và chỉ khi nó là toàn ánh.

Bài tập 16. Cho các hàm $g: A \to B$ và $f: B \to C$. Chứng minh rằng

- (a) Nếu cả g và f đều là đơn ánh thì $f \circ g$ cũng là đơn ánh.
- (b) Nếu cả g và f đều là toàn ánh thì $f \circ g$ cũng là toàn ánh.
- (c) Nếu $f \circ g$ là toàn ánh thì f cũng là toàn ánh
- (d) Nếu $f \circ q$ là đơn ánh thì q cũng là đơn ánh
- (e) Nếu $f \circ g$ là song ánh thì g là toàn ánh khi và chỉ khi f là đơn ánh

Bài tập 17. Tìm ví dụ các hàm f và g thỏa mãn $f \circ g$ là song ánh, nhưng g không phải toàn ánh và f không phải đơn ánh.

Bài tập 18. Chứng minh các tính chất sau của hàm trần và hàm sàn, trong đó $x \in \mathbb{R}$ và $n \in \mathbb{Z}$

- (1a) |x| = n khi và chỉ khi $n \le x < n + 1$
- (3a) $|-x| = -\lceil x \rceil$
- (1b) $\lceil x \rceil = n$ khi và chỉ khi $n 1 < x \le n$
- (3b) [-x] = -|x|
- (1c) |x| = n khi và chỉ khi $x 1 < n \le x$
- (4a) |x+n| = |x| + n
- (1d) $\lceil x \rceil = n$ khi và chỉ khi $x \le n < x+1$
- (4b) $\lceil x + n \rceil = \lceil x \rceil + n$
- $(2) x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$
- (40) |x+n| = |x| + n

Bài tập 19. Chứng minh rằng nếu $n \in \mathbb{N}$ thì $\lfloor n/2 \rfloor = n/2$ nếu n chẵn và $\lfloor n/2 \rfloor = (n-1)/2$ nếu n lẻ.

Bài tập 20. Chứng minh rằng nếu $x \in \mathbb{R}$ thì |2x| = |x| + |x + 1/2|.

(**Gợi ý:** Khi xét các bài toán liên quan đến hàm sàn, một cách tiếp cận hữu ích là đặt $x = n + \epsilon$ trong đó $n = |x| \in \mathbb{Z}$ và ϵ là một số thực thỏa mãn $0 \le \epsilon < 1$. Tương tự, với hàm trần, có thể đặt $x = n - \epsilon$.)

2