

SALEAGLE® PLL 用户指南

1 术语/缩略词

EAGLE : 上海安路信息科技有限公司 EAGLE 系列 FPGA 芯片

PLL : Phase Locked Loop 锁相环

2 关于本手册

本手册主要介绍了上海安路信息科技有限公司 EAGLE 系列芯片的 PLL 的使用方法。

3 EAGLE PLL 简介

EG_PHY_PLL 是 FPGA 内部的时钟锁相环硬核 IP 模块,Eagle 系列 FPGA 内嵌 4 个多功能锁相环 (PLL0~PLL3),分布在器件四角,可实现高性能时钟管理功能。每个 PLL 都能实现时钟分频/倍频/输入和反馈时钟对准/多相位时钟输出功能,支持动态相位调整和 PLL 动态参数配置。

图 3-1 EG_PHY_PLL

表 3- 1 端口描述

名称	输入/输出	位宽/bit	描述
clkc	OUT	7	PLL 时钟输出
extlock	OUT	1	PLL 锁定输出,高有效
stdby	IN	1	standby 使能,只有在 STDBY_ENABLE =
Scuby			"ENABLE"时才有效,1 = 暂停,0 = 不暂停
refclk	IN	1	PLL 参考时钟输出
fbclk	IN	1	反馈时钟输出
reset	IN	1	复位,高有效
psdone	OUT	1	动态相位移位完成
psclk	IN	1	动态相位移位时钟
psdown	IN	1	动态相移方式,增加或者减少
psstep	IN	1	动态相移脉冲数
psclksel	IN	3	动态相位移位选择某一路输出进行相移

EAGLE 系列 FPGA 最多内嵌有 4 个多功能锁相环,可实现高性能时钟管理功能。可以实现时钟分频、倍频、输入和反馈时钟对准、多相位时钟输出等功能。

PLL 参考时钟输入有: GCLK PIN, 时钟网络 BUFG, 互连 PIB 和内部振荡器 OSC。

PLL 反馈时钟输入有: 时钟网络 BUFG、互连 PIB、PLL 内部反馈时钟以及分频时钟 CO~C4。

图 3-2 ELF2 PLL 架构图

PLL 有专门的输出驱动芯片的专用时钟输出管脚,已获得更好的抖动性能,如图 3-3。

图 3-3 PLL CO 直接输出到时钟输出 IO 管脚(差分模式)

表 3- 2 EAGLE PLL 特性表

Feature	EAGLE PLL
输入时钟频率范围	10-500 Mhz
VCO 频率范围	300-1200 Mhz
输出端口数	5 (各端口相位独立可选)
参考时钟分频系数(M)	1 to 128
反馈时钟分频系数(N)	1 to 128
输出时钟分频系数(CO-4)	1 to 128
相移分辨率	45°/N (相对 VCO)
用户动态相移控制	支持
锁定状态输出	Lock
专用时钟输出管脚	支持

4 时钟反馈模式

EAGLE 系列 PLL 支持 4 种反馈模式,每种模式都支持时钟分频/倍频和相移。

a) 源同步模式(Source Synchronous Mode)

源同步模式通过相移功能,调节时钟相位保证数据端口到 IOB 输入寄存器的延迟和时钟输入端口到 IOB 寄存器的延迟相等(数据和时钟输入端口模式相同情况下)。

b) 无补偿模式(No Compensation Mode)

在无补偿模式,PLL 不对时钟网络延迟进行补偿,PLL 采用内部自反馈,这会降低 PLL 的输出抖动。 PLL 输出的内部时钟之间相位是对齐的。PLL 时钟输出能够超前或滞后于 PLL 输入时钟。

c) 普通模式(Normal Mode)

普通模式中,PLL 会补偿 GCLK 网络延迟,保证内部寄存器输入时钟相位和时钟管脚相位一致。

d) 零延迟缓冲模式(Zore Delay Buffer Mode)

零延迟缓冲模式,时钟输出管脚相位和 PLL 参考时钟输入管脚相位对齐。当使用该模式时,需要在普通模式的前提下,输入时钟与输出时钟上使用同一 I/0 标准,以保证输入与输出管脚上的时钟对齐。

5 动态相移

EAGLE 系列 PLL 支持静态配置,即由用户通过软件设置生成码流,上电下载后不能更改。此外,EAGLE 系列 FPGA 支持动态相移功能。

静态配置参数包括:

- 1、参考/反馈时钟输入/输出选择
- 2、参考时钟分频系数(M)
- 3、反馈时钟分频系数(N)
- 4、输出时钟分频系数(CO-C4)

动态相移特性允许对锁相环的每个独立输出相位进行动态调整,通过对给定的计数器递增或递减实时改变输出时钟相。每次移动相位为 1/8VCO 周期。表 5-1 列出了用于动态相移的控制信号。

信号名称	描述	信号来源	信号目的地
PSCLKSEL	要进行动态移相的时钟选择信号,从 CO-C4 中选出一路或者同时进行动态相位移动。	PIB 或者 IO 引脚	PLL reconfiguration 电 路
PSDOWN	动态相移方向选择,1=向上,0= 向下,PSCLK 的上升沿采样。	PIB 或者 IO 引脚	PLL reconfiguration 电 路
PSSTEP	PSSTEP=1,使能动态相移	PIB 或者 IO 引脚	PLL reconfiguration 电 路
PSCLK	动态相移时钟	GCLK 或者 IO 引脚	PLL reconfiguration 电 路
PSDONE	信号为高电平时,表明相位调整 结束,PSCLK 的上升沿采样。	PLL reconfiguration 电 路	PIB 或者 IO 引脚

表 5- 1 动态相移控制信号

对于动态相移,每次能对一路输出进行相位调整或者对 CO-C4 五路时钟同时调整,由 PIB 的接口 PSCLKSEL [2:0] 来选择 C[4:0] 中的一路或全部输出执行动态相移,如下表所示。

PSCLKSEL [2:0]	PLL 输出选择
000 (default)	C[0]
001	C[1]
010	C[2]
011	C[3]
100	C[4]
101	保留

表 5- 2 动态相移输出选择

执行一次动态相移调整,必须遵循以下步骤:

- (1) 根据需要设置 PSDOWN 和 PSCLKSEL。
- (2) 打开相位调整,相位调整 PSSETP 至少需要四个 PSCLK 周期,每一个 PSSTEP 脉冲进行一次相位移动。
- (3) 关闭相位调整。
- (4) 等待 PSDONE 变为高电平。
- (5) 重复上述步骤 1-4,可以进行多次动态相位调整。

PSCLKSEL [2:0], PSSTEP, PSDOWN 和 PSCLK 同步, 必须由 PSCLK 同步过后送给 PLL。

图 5- 1PLL 动态相移

PSSTEP 信号在 PSCLK 的上升沿被锁存,如图 5-1 所示,PSSTEP 必须在至少四个 PSCLK 周期内保持高电平。在 PSCLK 采样到 PSSTEP 后再经过 2 个 PSCLK 的周期,PSDONE 信号变为低电平并保持 2 个 PSCLK 时钟周期。然后 PSDONE 由低变为高电平,必须再经过四个 PSCLK 周期以上才可以执行另一个动态相移操作。

每一次动态相移,动态相移使能信号 PSSTEP 必须维持至少四个 PSCLK 周期,同时 PSDONE 信号为高电平也至少维持 4 个 PSCLK 时钟周期,也就是完成一次动态相移至少需要 8 个 PSCLK 周期。

注意: 在动态相移过程中被调节时钟可能会产生 glitch。

6 锁相环的使用

用户可通过如下步骤进行使用 EAGLE 中的锁相环。

1、在 TD 界面下点击 Tools->IP Generator->Creat a new IP core, IP core 界面下选择 PLL, 如图 6-1。

图 6-1 IP 选择

2、进入到 PLL 配置界面,用户需要根据实际情况配置输入时钟频率、反馈模式、输入设置及动态设置等,参见图 6-2;

图 6- 2 PLL 设置(a)

3、PLL 带宽选择,用户可根据需求选择需要带宽设置,建议使用默认选项,如图 6-3;

图 6-3 PLL 设置(b)

4、用户可根据需求选择 PLL 输出管脚的个数、频率和偏移相位

图 6- 4 PLL 设置(c)

5、如图 6-5 所示,点击 OK 按钮完成 PLL 的全部配置工作,用户例化调用生成的 PLL 文件即可。

图 6- 5 PLL 设置(d)

7 使用建议

(1)建议用户待输入信号稳定后,再给锁相环进行复位以保证锁相环输出时钟信号的频率和相位:

(2) 用户在使用中应关注 PLL 的 lock 信号是否为高。

8 动态配置

动态配置是用户可以在 PLL 工作过程中通过专门的输入输出接口直接控制锁相环的配置参数,包括:

- 参考时钟分频系数(M);
- 反馈时钟分频系数(N);
- 输出时钟分频系数(CO-4);

PLL 的每个参数都存储在 32*8 的 RAM 空间中。动态配置功能通过 EG_PHY_PLL 中的类似 MEMORY 访问的 8 位动态接口来实现。此应用以 PLL CO/C1 输出占空比为例,对 PLL 动态配置使用进行说明。其动态配置寄存器列表如下:

地址	说明
5' h00	NC NC
5' h01	[7]=0, [6:0]=参考时钟分频系数;
5' h02	[7]=0, [6:0]=反馈时钟分频系数;
5' h03	[7]=0, [6:0]=通道 0 延迟系数;
5' h04	[7]=0, [6:0]=通道 0 分频系数;
5' h05	[7]=0, [6:0]=通道 1 延迟系数;
5' h06	[7]=0, [6:0]=通道 1 分频系数;
5' h07	[7]=0, [6:0]=通道2延迟系数;
5' h08	[7]=0, [6:0]=通道 2 分频系数;
5' h09	[7]=0, [6:0]=通道3延迟系数;
5' h0A	[7]=0, [6:0]=通道 3 分频系数;
5' h0B	[7]=0, [6:0]=通道 4 延迟系数;
5' h0C	[7]=0, [6:0]=通道 4 分频系数;

表 8-1 PLL 寄存器

注:上述寄存器的值与 TD PLL GUI 界面值之差为 1,即 GUI=20,配置 Reg=19;

为了保证 PLL 动态配置达到预期,配置 PLL 相关寄存器需严格按照控制位列表进行,先读取后,只更新用户可定义寄存器值,最后再复位,确保配置成功。

VCO 公式

1) 当反馈模式选择 VCO 反馈时:

$$F_{VCO} = F_{refclk} \times \frac{M}{N}$$

2) 当反馈模式选择 CO~C4 某个通道作为反馈时:

$$F_{VCO} = F_{refclk} \times \frac{M}{N} \times CLKCx_div$$

其中, $\mathit{CLKCx_div}$ 为 PLL 输出通道的分频系数。参考时钟分频系数(N),反馈时钟分频系数 (M)控制来实现;

PLL IP Core 动态配置端口声明如下表 8-2 所示:

表 8-2 PLL IP 动态配置端口

EG_PHY_PLL	方向	说明
dclk	输入	时钟输入,上升沿有效
dcs	输入	片选输入,高有效,时钟上升沿被锁存
daddr [5:0]	输入	读写地址,时钟上升沿被锁存
dwe	输入	写使能,高有效,时钟上升沿锁存
di [7:0]	输入	写入数据
do[7:0]	输出	数据无延迟输出,PLL 配置数据读出端口

PLL IP Core 动态配置时序如下图 2 所示:

图 8-2 动态配置

版本信息

日期	版本	说明
2018/8/15	1.0	初版建立
2018/9/13	1. 1	文档格式调整
2022/01/15	1. 2	新增第8章节: 动态配置,增加相关寄存器列表,端口介绍。时序图等内容; 表 5-3 动态相移输出选择

版权所有© 2022 上海安路信息科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除安路科技在其产品的销售条款和条件中声明的责任之外,安路科技概不承担任何法律或非法律责任。安路科技对安路科技产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。安路科技对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,安路科技保留修改文档中任何内容的权利,恕不另行通知。安路科技不承诺对这些文档进行适时的更新。