Произведения векторов

1° . Скалярное произведение

Скалярным произведением ненулевых векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ называется число, равное произведению длин этих векторов на косинус угла между ними. В случае, если хотя бы один из сомножителей есть нулевой вектор, скалярное произведение *считается* равным нулю.

Скалярное произведение обозначается как $(\stackrel{
ightarrow}{a}, \stackrel{
ightarrow}{b}$. По определению:

$$(\overrightarrow{a}, \overrightarrow{b}) = |\overrightarrow{a}| |\overrightarrow{b}| \cos \varphi; \ 0 \le \varphi \le \pi,$$

где ϕ - угол между векторами-сомножителями. Если $\vec{b} \neq \vec{o}$, то имеет место равенство $(\vec{a},\vec{b}) = |\vec{b}| \, \Pi p_{\vec{b}} \vec{a}$.

Свойства скалярного произведения

- 1°. $(\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b})=0$ при $\stackrel{\rightarrow}{a}\neq\stackrel{\rightarrow}{o}$ и $\stackrel{\rightarrow}{b}\neq\stackrel{\rightarrow}{o}$, когда $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ взаимно ортогональны,
- 2°. $(\overrightarrow{a}, \overrightarrow{b}) = (\overrightarrow{b}, \overrightarrow{a})$ (коммутативность);
- 3°. $(\lambda_1 \stackrel{\rightarrow}{a_1} + \lambda_2 \stackrel{\rightarrow}{a_2}, \stackrel{\rightarrow}{b}) = \lambda_1 (\stackrel{\rightarrow}{a_1}, \stackrel{\rightarrow}{b}) + \lambda_2 (\stackrel{\rightarrow}{a_2}, \stackrel{\rightarrow}{b})$ (линейность);
- 4°. $(\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{a})=|\stackrel{\rightarrow}{a}|^2\geq 0 \ \forall\stackrel{\rightarrow}{a}; \ |\stackrel{\rightarrow}{a}|=\sqrt{\stackrel{\rightarrow}{(a,a)}};$ (условия $\stackrel{\rightarrow}{(a,a)}=0 \ и\stackrel{\rightarrow}{a}=\stackrel{\rightarrow}{o}$ равносильны);
- 5°. При $\stackrel{\rightarrow}{a} \neq \stackrel{\rightarrow}{o}$ и $\stackrel{\rightarrow}{b} \neq \stackrel{\rightarrow}{o}$ $\cos \varphi = \frac{\stackrel{\rightarrow}{(a,b)}}{\stackrel{\rightarrow}{\rightarrow}}$.

2°. Векторное произведение

Векторным произведением неколлинеарных векторов $\stackrel{
ightarrow}{a}$ и $\stackrel{
ightarrow}{b}$ называется вектор $\stackrel{
ightarrow}{c}$ такой, что

- 1°. $|\stackrel{
 ightarrow}{c}|=|\stackrel{
 ightarrow}{a}|\stackrel{
 ightarrow}{b}|\sin \phi$, где ϕ угол между векторами $\stackrel{
 ightarrow}{a},\stackrel{
 ightarrow}{b}$; $0<\phi<\pi$.
- 2°. Вектор $\overset{
 ightarrow}{c}$ ортогонален вектору $\overset{
 ightarrow}{a}$ и вектору $\overset{
 ightarrow}{b}$.
- 3°. Тройка векторов $\{\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c}\}$ правая.

В случае, когда сомножители коллинеарны (в том числе, когда хотя бы один из сомножителей есть нулевой вектор), векторное произведение *считается* равным нулевому вектору.

Векторное произведение обозначается как $[\stackrel{
ightarrow}{a},\stackrel{
ightarrow}{b}].$

Свойства векторного произведения

- 1°. $\begin{vmatrix} \overrightarrow{a}, \overrightarrow{b} \end{vmatrix}$ равен площади параллелограмма, построенного на векторах $\overset{
 ightarrow}{a}$ и $\overset{
 ightarrow}{b}$.
- 2°. Для коллинеарности ненулевых векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ необходимо и достаточно, чтобы их векторное произведение было равно нулю.
- 3°. $[\vec{a},\vec{b}]=-[\vec{b},\vec{a}]$ (антикоммутативность, следует из определения и нечетности функции $\sin \phi$)
- $4^{\circ} \quad [\lambda \stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}] = \lambda [\stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}].$
- 5°. [a+b,c]=[a,c]+[b,c] (дистрибутивность).

3°. Смешанное произведение

Смешанным (или векторно-скалярным) произведением векторов $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{c}$, обозначаемым как $\stackrel{\rightarrow}{(a,b,c)}$, называется число ($\stackrel{\rightarrow}{[a,b]}$, $\stackrel{\rightarrow}{c}$)

Свойства смешанного произведения

- 1°. Абсолютная величина смешанного произведения векторов $(\vec{a},\vec{b},\vec{c})$ равна объему параллелепипеда, построенного на векторах \vec{a} , \vec{b} и \vec{c} . Знак смешанного произведения положительный, если тройка векторов \vec{a} , \vec{b} , \vec{c} правая, и отрицательный, если левая.
- 2°. $(\vec{a}, \vec{b}, \vec{c}) = (\vec{c}, \vec{a}, \vec{b}) = (\vec{b}, \vec{c}, \vec{a}) = -(\vec{b}, \vec{a}, \vec{c}) = -(\vec{c}, \vec{b}, \vec{a}) = -(\vec{a}, \vec{c}, \vec{b})$
- 3°. $(\lambda \vec{a}, \vec{b}, \vec{c}) = \lambda (\vec{a}, \vec{b}, \vec{c})$;
- 4°. $(\vec{a_1} + \vec{a_2}, \vec{b}, \vec{c}) = (\vec{a_1}, \vec{b}, \vec{c}) + (\vec{a_2}, \vec{b}, \vec{c})$,

Отметим, наконец, что смешанное произведение равно нулю, если среди сомножителей имеется хотя бы одна пара равных.

4°. Двойное векторное произведение

Двойным векторным произведением векторов $\stackrel{
ightarrow}{a}$, $\stackrel{
ightarrow}{b}$ и $\stackrel{
ightarrow}{c}$ называется вектор [$\stackrel{
ightarrow}{a}$ [$\stackrel{
ightarrow}{b}$ $\stackrel{
ightarrow}{c}$]].

Свойство двойного векторного произведения

$$[\vec{a}, [\vec{b}, \vec{c}]] = \vec{b}(\vec{a}, \vec{c}) - \vec{c}(\vec{a}, \vec{b}),$$

Задача

Какой угол образуют единичные векторы $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$, если известно, что векторы $\stackrel{\rightarrow}{a}+2\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{5}\stackrel{\rightarrow}{a}-4\stackrel{\rightarrow}{b}$ ортогональны?

Решение

Если векторы $\stackrel{\rightarrow}{a} + 2\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{5}\stackrel{\rightarrow}{a} - 4\stackrel{\rightarrow}{b}$ ортогональны, то их скалярное произведение равно нулю. Поэтому, с учетом коммутативности скалярного произведения и условий $\begin{vmatrix} \rightarrow \\ a \end{vmatrix} = \begin{vmatrix} \rightarrow \\ b \end{vmatrix} = 1$,

$$0 = (\vec{a} + 2\vec{b}, 5\vec{a} - 4\vec{b}) = (\vec{a}, \vec{a}) - 4(\vec{a}, \vec{b}) + 10(\vec{b}, \vec{a}) - 8(\vec{b}, \vec{b}) =$$

$$= \left| \vec{a} \right|^2 + 6(\vec{a}, \vec{b}) - 8 \left| \vec{b} \right|^2 = 6(\vec{a}, \vec{b}) - 3.$$

Откуда $(\stackrel{
ightarrow}{a},\stackrel{
ightarrow}{b})=rac{1}{2}$ и, следовательно, $\cos\phi=rac{1}{2}$ \Rightarrow $\phi=rac{\pi}{3}$.

Задача.

Показать, что векторное произведение пары векторов не изменится, если ко второму сомножителю прибавить вектор, коллинеарный первому.

Решение

Пусть даны
$$[\vec{a},\vec{b}]$$
 и $\vec{c}=\overset{\rightarrow}{\lambda}\vec{a}$. Найдем $[\vec{a},\vec{c}]$.
$$[\vec{a},\vec{c}]=[\vec{a},\vec{b}+\overset{\rightarrow}{\lambda}\vec{a}]=[\vec{a},\vec{b}]+\overset{\rightarrow}{\lambda}[\vec{a},\vec{a}]=[\vec{a},\vec{b}],$$
 поскольку $[\vec{a},\vec{a}]=\vec{o}$.

Решение получено

Заметим, что одновремено нами показано, что, по векторному произведению и одному из его сомножителей однозначно указать второй сомножитель невозможно.

Задача

 $\stackrel{
ightarrow}{\rightarrow} \stackrel{
ightarrow}{\rightarrow} \stackrel{
ightarrow}{\rightarrow} \stackrel{
ightarrow}{\rightarrow}$ Найти, лежащий в плоскости векторов $\stackrel{
ightarrow}{a}$ и $\stackrel{
ightarrow}{b}$, вектор $\stackrel{
ightarrow}{x}$, если

$$\begin{cases} (\overrightarrow{a}, \overrightarrow{x}) = \alpha, \\ (\overrightarrow{b}, \overrightarrow{x}) = \beta, \end{cases}$$

a векторы $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ неколлинеарны.

Решение

Векторы $\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{u} \stackrel{\rightarrow}{b}$ образуют базис в своей плоскости. Поэтому вектор $\stackrel{\rightarrow}{x}$ можно (и притом единственным образом) разложить по этому базису

$$\vec{x} = \vec{\xi} \vec{a} + \vec{\eta} \vec{b}$$
.

Коэффициенты разложения найдем из системы уравнений

$$\begin{cases} (\overrightarrow{a},\overrightarrow{a})\xi + (\overrightarrow{a},\overrightarrow{b})\eta = \alpha, \\ (\overrightarrow{b},\overrightarrow{a})\xi + (\overrightarrow{b},\overrightarrow{b})\eta = \beta. \end{cases}$$

Задача

Найти вектор \vec{x} , если

$$\begin{cases} (a, x) = \alpha, \\ (b, x) = \beta, \\ (c, x) = \gamma, \end{cases}$$

 $\stackrel{\rightarrow}{a}$ векторы $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{c}$ некомпланарны.

Решение

Векторы $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ $\stackrel{\rightarrow}{u}$ $\stackrel{\rightarrow}{c}$ линейно независимые, поэтому линейно независимы и векторы $\stackrel{\rightarrow}{[a,b]}$, $\stackrel{\rightarrow}{[b,c]}$ и $\stackrel{\rightarrow}{[c,a]}$, которые образуют базис в пространстве. Поэтому вектор $\stackrel{\rightarrow}{x}$ можно (и притом единственным образом) разложить по этому базису $\stackrel{\rightarrow}{x} = \xi[\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b}] + \eta[\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c}] + \kappa[\stackrel{\rightarrow}{c},\stackrel{\rightarrow}{a}]$.

Коэффициенты разложения найдем из системы уравнений

$$\begin{cases} (\overrightarrow{a}, \overrightarrow{a}, \overrightarrow{b},) \xi + (\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c},) \eta + (\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{a},) \kappa = \alpha ,\\ (\overrightarrow{b}, \overrightarrow{a}, \overrightarrow{b},) \xi + (\overrightarrow{b}, \overrightarrow{b}, \overrightarrow{c},) \eta + (\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{a},) \kappa = \beta ,\\ (\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b},) \xi + (\overrightarrow{c}, \overrightarrow{b}, \overrightarrow{c},) \eta + (\overrightarrow{c}, \overrightarrow{c}, \overrightarrow{a},) \kappa = \gamma , \end{cases}$$

которая по свойствам смешанного произведения равносильна системе

$$\begin{cases} (\vec{a}, \vec{b}, \vec{c},) \eta = \alpha ,\\ (\vec{b}, c, a,) \kappa = \beta ,\\ (\vec{c}, a, \vec{b},) \xi = \gamma . \end{cases}$$

Задача

Найти все векторы x , удовлетворяющие соотношению

$$[\overrightarrow{a}, \overrightarrow{x}] + [\overrightarrow{x}, \overrightarrow{b}] = [\overrightarrow{a}, \overrightarrow{b}],$$

Если $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ неколлинеарны.

Решение

Умножим обе части данного уравнения скалярно на \overrightarrow{b} , получим

$$([\vec{a},\vec{x}],\vec{b})+([\vec{x},\vec{b}],\vec{b})=([\vec{a},\vec{b}],\vec{b}) \text{ или } (\vec{a},\vec{x},\vec{b})+(\vec{x},\vec{b},\vec{b})=(\vec{a},\vec{b},\vec{b}) \ .$$

Согласно свойствам смешанного произведения (x,b,b)=(a,b,b)=0, то есть (a,x,b)=0 и, значит, векторы a,x и b компланарны и линейно зависимы. В этом случае вектор x может быть представлен как линейная комбинация векторов a и b. Следовательно, x=a a+b b.

Найдем теперь при каких значениях α и β вектор $\vec{x}=\overset{\rightarrow}{\alpha}\vec{a}+\overset{\rightarrow}{\beta}\vec{b}$ будет удовлетворять исходному уравнению.

Подставляя, получим

$$[\overrightarrow{a}, \alpha \overrightarrow{a} + \beta \overrightarrow{b}] + [\alpha \overrightarrow{a} + \beta \overrightarrow{b}, \overrightarrow{b}] = \alpha[\overrightarrow{a}, \overrightarrow{a}] + \beta[\overrightarrow{a}, \overrightarrow{b}] + \alpha[\overrightarrow{a}, \overrightarrow{b}] + \beta[\overrightarrow{b}, \overrightarrow{b}] = (\alpha + \beta)[\overrightarrow{a}, \overrightarrow{b}],$$

то есть необходимо, чтобы $\alpha+\beta=1$. Поэтому решение исходного уравнения имеет вид $\vec{x}=\overset{\rightarrow}{\alpha}\vec{a}+(1-\alpha)\vec{b}$, $\forall \alpha$.

Задача.

Найти вектор x из системы уравнений

$$\begin{cases} [a, x] = \overrightarrow{b}, \\ (c, x) = \alpha \end{cases}$$

ightarrow
ightarr

Решение

Умножив обе части первого уравнения векторно слева на $\stackrel{\circ}{c}$ и применив формулу для двойного векторного произведения, получим

$$[\overrightarrow{c}, [\overrightarrow{a}, \overrightarrow{x}]] = \overrightarrow{a}(\overrightarrow{c}, \overrightarrow{x}) - \overrightarrow{x}(\overrightarrow{c}, \overrightarrow{a}) = [\overrightarrow{c}, \overrightarrow{b}]$$

$$\overrightarrow{a} - \overrightarrow{x}(\overrightarrow{c}, \overrightarrow{a}) = [\overrightarrow{c}, \overrightarrow{b}],$$

поскольку, в силу второго уравнения системы, $(c,x) = \alpha$.

Откуда окончательно получаем

$$\vec{x} = \frac{\alpha \vec{a} - [\vec{c}, \vec{b}]}{(\vec{c}, \vec{a})}, \quad (\vec{c}, \vec{a}) \neq 0.$$

Если же $(\vec{c},\vec{a})=0$, то при $\vec{\alpha}$ $\vec{a}\neq [\vec{c},\vec{b}]$ решений нет, а для случая $\{ \vec{c},\vec{a})=0, \atop (\vec{c},\vec{a})=0, \atop (\vec{a},\vec{a})=0, \atop (\vec{c},\vec{a})=0, \atop (\vec$

являться любой вектор вида $\stackrel{\rightarrow}{x} = -\frac{\stackrel{\rightarrow}{[a,b]}}{\left|\stackrel{\rightarrow}{a}\right|^2} + \stackrel{\rightarrow}{\tau a}; \quad \forall \tau$