依在我们可以证明两个非常重要的Thms. EVT, DVT

Thmo Extreme Value Thm (compact)

if $A \subseteq \mathbb{R}$ $(A \neq D)$ is closed and bounded

and $f: A \longrightarrow \mathbb{R}$ is ctn. $f: A \longrightarrow \mathbb{R}$ is ctn. $f: A \longrightarrow \mathbb{R}$ is $f: A \longrightarrow \mathbb{R}$ is f: A

即: Compact ASR上的 ch. 函数从有两端报值.

If Let $M = \sup \{f(x) \mid x \in A\} \in \mathbb{R} \cup \{\pm 00\}$ Let (x_n) be a seq. in A (will prove its impossible) $s.t. \lim_{n\to\infty} f(x_n) = M$ Since (x_n) is bounded, $\ni conv.$ subseq. $(x_{n_k}) \to y_0$ Since A is conv. closed conv. subseq. $(x_{n_k}) \to y_0$ Since f is conv. closed conv. subseq. $(x_{n_k}) \to y_0$ Since f is conv. closed conv. subseq. $(x_{n_k}) \to y_0$ $f(x_n) = \lim_{k\to\infty} f(x_n) = f(y_0) \in \mathbb{R}$ So f is bounded above and $f(y_0) = \max \{f(x_0) \mid x \in A\}$ Dually, there is $x_0 \in A$ s.t. $f(x_0) = \min \{f(x_0) \mid x \in A\}$

Ifw, flb] + state.

Pf WLOG say f(a) < l < f(b)Let $S = \{x \in [a,b] \mid f(x) \le l\}$ So S is nonempty and bounded above

Let C = Sup(S), then a < c < b by continuity of fLet CSn) be a seq. in S conv. to CFor each $n \in IN$ let $bn = min(Ct \cdot \frac{1}{n}, b)$ So $tn \rightarrow C$ and c < tn for all $n \in IN$ But by continuity of f, $\lim_{n \to \infty} f(sn) = f(c) = \lim_{n \to \infty} f(tn)$ So l = f(c)

ex If $f:[0,1] \rightarrow [0,1]$ is ctn. then

Those a fixed pt. (i.e. a pt. $x_0 \in [0,1]$ st. $f(y_0) = x_0$)

Of by graph)

If f(0) = 0 or f(1) = 1 \Rightarrow fixed pt. found.

Balante when f(0) > 0 If f(1) < 1Let $g(x) = \pi - f(x)$ They is choose $g(x) = \pi$ Balante $g(x) = \pi$ $g(x) = \pi$

CorollaryO 如果ISR為一个 interval 且f:IIR ch 即f[[] 如是一个 interval

If let $y_1 < y_2 \in I[I]$ fix $x_1, x_2 \in I$ s.t. $f(x_1) = y_1$, $f(x_2) = y_2$ (WLOG assume $x_1 < x_2$) $\# x_1 f(x_1, x_2) \not = ctn \not = b$ by IVI, $\forall L \in (y_1, y_2)$, $\exists x_0 between x_1 and x_2$ s.t. $f(x_0) = l \implies l \in I[I]$ $\# \pi f[I] \not = f' \text{ in terval.}$

(srollange 如果I是个closed+bounded 的 internal [a,b] 且于: [一) R ctn 一种 f[]也是个closed+bounded interval

Pf let $f: [a, b] \rightarrow \mathbb{R}$ be th By EVT, $\exists \pi_0, \pi_1 \in [a, b] \text{ s-t.}$ $\forall x \in [a, b], \underline{m} = f(\pi_0) \leq f(\pi_1) = M$ $\underline{(m, h)}$ $\underline{(max)}$ Then ranfl=[m,M] by IVT (or Corollary 0)