$$\frac{7}{8} = \frac{1}{8} + \frac{1}{4} + \frac{1}{2} = 2^{3} + 2^{7} + 2^{7} \longrightarrow (0.111)_{2}^{230201057} \text{ Furkan Emi}$$

$$|0.5 = 10 + \frac{1}{2} \qquad (10)_{10} = (1010)_{2}$$

$$(\frac{1}{2})_{10} = (0.1)_{2} \qquad (10.5)_{10} = (1010.1)_{2}$$

$$12.8 = 12 + 0.8$$

$$0.8 \times 2 = 0.0 + 1$$

$$0.6 \times 2 = 0.2 + 1$$

$$0.2 \times 2 = 0.4 + 0$$

$$0.4 \times 2 = 0.8 + 0$$

$$(12)_{10} = (1100)_{2}$$

$$(0.8)_{10} = (\overline{1100})_{2}$$

$$(12.8)_{10} = (1100.\overline{1100})_{2}$$

$$\frac{2}{3} \times 2 = \frac{1}{3} + 1$$

$$\frac{1}{3} \times 2 = \frac{2}{3} + 0$$

$$\left(\frac{2}{3}\right)_{10} = \left(0.\overline{10}\right)_{2}$$

$$3.2 = 3 + 0.2$$
 $(3)_{10} = (0011)_2$
 $0.2 \times 2 = 0.4 + 0$ $(0.2)_{10} = (\overline{0011})_2$
 $0.6 \times 2 = 0.6 + 1$ $(3.2)_{10} = (0011.\overline{0011})_2$
 $0.6 \times 2 = 0.2 + 1$

Find the IEEE dable precision representation (1(x), and find the exact difference fl(x) -x for the numbers 1, 3,3, and 9

a) first convert
$$\frac{1}{3}$$
 to binary

$$\frac{1}{3} \times 2 = \frac{2}{3} + 0$$

$$\frac{1}{3} \times 2 = \frac{1}{3} + 1$$

$$\frac{2}{3} \times 2 = \frac{1}{3} + 1$$

$$\frac{1}{3} \times 2 = \frac{2}{3} \times 0$$

$$\frac{1}{3} \times 2 = \frac{2}{3} \times 0$$

$$\frac{2}{3} \times 2 = \frac{1}{3} + 1$$

Second step using IFFE double precision we first convert number to normalised format $(0.\overline{01})_2 = (01.\overline{01}) \times 2^2$

$$(0.\overline{01})_2 = (01.\overline{01}) \times \overline{2}^2$$

= $(1.\overline{01}) \times \overline{2}^2$

we know that in double precision we have 52 bit for mantissa so, we can write number such as

to represent the number we discard infinite tail 2-2x 2-52 (0.01)2 > discarded

$$f(\frac{1}{3}) = \frac{1}{3} - \frac{1}{3}x^{2} - \frac{1}{3}$$
 $(0,\overline{01})_{2} = \frac{1}{3}$

$$f(\frac{1}{3}) - \frac{1}{3} = -\frac{1}{3} \times 2^{-54}$$

Using the same steps as before

$$3.3 = 3.0 + 0.3$$

$$3/2 = 1.2 + 1$$
 $1/2 = 0.2 + 1$

$$(3)_{10} = (11)_2$$

 $(0.01001)_2 = (0.3)_{10}$

$$(3.3)_{10} = (41.0\overline{1001})_{2}$$

$$0.3 \times 2 = 0.6 + 0$$

 $0.6 \times 2 = 0.1 + 1$
 $0.1 \times 2 = 0.4 + 0$
 $0.4 \times 2 = 0.8 + 0$
 $0.8 \times 2 = 0.6 + 1$
 $0.6 \times 2 = 0.1 + 1$
 $0.1 \times 2 = 0.1 + 1$

Normalized form can be written as (1.101001) x 21

can be represented in computer as

to represent the number we discard infinite tail

$$1(3.3) = 3.3 - 2^{51} \times (0.4)$$

$$1(3.3) - 3.3 = -2^{-51} \times (0.4)$$

$$(0.0110)_{x} =) 2^{4}x = (410.0110)_{2}$$

$$- x = (0.0110)_{2}$$

$$15x = (110)_{2}$$

$$x = \frac{2}{5} = 0.4$$

c) first convert
$$\frac{9}{7}$$
 to binary $\frac{9}{7}$ = 1+ $\frac{2}{7}$ $\frac{2$

$$\left(\frac{9}{7}\right)_{10} = \left(1.0100\right)_{2}$$

This number already in normalized form so our multiplier 20

We can represent in f(x) as

we need to round up

if we round up our number can be represented as

At the end lets consider what we added what we substracted we added

we substracted or discorded

$$\rightarrow (0.\overline{100})_2 = (4)_{10}$$

Therefore result is

Ob the following computation by hand in IEEE abubble precision computer arithmetic using Round the nearest rule: 4.3 - 3.3

first convert the numbers binary

st convert the numbers bring
$$4/2 = 2.2 + 0 \text{ (100)}_2 = 4$$

$$2/2 = 1.2 + 0 \text{ (0.01001)}_2 = (0.3)_{10}$$

$$1/2 = 0.2 + 1$$

we already know broary equivalent of 3,3 is

$$(3.3)_{10} = (41.01001)_{2}$$

Second represent numbers in fl(x) $(100.01001)_2 = (1.000\overline{1001})_2 \times 2^2$

to represent the number we discarded infinite tail

$$= 2^{2} \cdot 2^{52} \quad (0.0011)_{2}$$

$$= 2^{50} \times (0.2)$$

this number represent our error, from question two we know the error of 3.3 is $2^{-51} \times 0.4$. $x = \frac{3}{15} = \frac{1}{5} = 0.2$

If we need to speak clearly

$$f(4.3) + 2^{-50} \times (0.2) = 4.3$$

$$f(3.3) + 2^{-51} \times (0.4) = 3.3$$

If we substract this numbers because of error we made for each floating point number is some we will find the exactly 1

$$6.3 - 3.3 = 1$$
 $= 1$

A solution is corr	2 0 0 V C W N 2 0	in 1
£	2 2.0625 2.0625 2.0625 2.0625 obvious, no need obvious, no need to indicate all the numbers here	O .
6		or and a second
p decimal places if the error	2.55 2.0825 2.0825 2.0825 2.08203125 2.08203125 2.0805640625 2.08013516315625 2.08013516315625 2.08082833716564 2.08008183963716564 2.08008183963715820 2.08008183963715820	C)
we applied H		f(c)
2	3 2:5 2:15 2:0975	ñ.
0.5 × 10-6	The state of the s	F(5:)

Q5 1	てのた	that	f(x) = cosx-sinx	f(n)=-1	f(0)=+1	
-,	0	f(o;)	C,	f(c;)	ũ,	f(L;)
	7	-	9640451	1	0	+
٦ (9640457	1	365340	+	0	+
2 -	1,570796	1	1.178097	1	3665840	++
ا در	7008 tl. 1	1	T4186.0	1	0.785798	+ -
- ,	とりも1%6 ′	-	0.88352	. (Ç	
			0.834485			,
4.4	~ /	_	0.809941			
			0404040			~
			15 3164.0		-	-1004
		_	9948840			•
		_	186937			, , , , , ,
;	-	_	0.786165			~
	~	-	134534.0	en en es		، نیر
	-	_	6.355 at 0			
1	_		h6458t.0			
			944534.0			
Y Teas		-	724584.0			
			017545.0			
			101636.0			
5		-	104584.0			
30			0.78535	_		•
		-				

Find each fixed point of $g(x) = x^2 + \frac{1}{2}x - \frac{1}{2}$ and decide whether fixed Point Heration is locally convergent to it.

ATThe real number r is a fixed point of the function g if g(r)=r If fixed - Point Heration is locally convergent if Igi(r)/k1

Based on this definition lets first find the fixed point of the finction

$$x = x^2 + \frac{1}{2}x - \frac{1}{2}$$

This means we are labeling for solutions to

$$y = x^{2} + \frac{1}{2}x - \frac{1}{2}$$

Drowing these frictions we can learn whether we have such point or not easily We will find two intersection point -0.5 and I these are our fixed points for this functions.

Lets try to find these points are locally convergent or not

$$g'(x) = 2x + \frac{1}{2}$$

(g'(-0.5)) < 1 so -0.5 point is locally convergent

$$g'(1) = 2 + \frac{1}{2}$$

= $\frac{3}{2}$

so (81(1)) < 1 is not satisfied. It means, it is not locally convergent for 1.

When we apply fixed-point iteration method for different initial point we can e function converges to -0.5 sufficiently near this point. For example; see function

Q9-
$$x_0 = initial$$
 guess
 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$ for $i = 0, 1$
 $f(x) = x^3 + x^2 - 1$ $f'(x) = 3x^2 + 2x$
 $x_0 = 1$

for
$$i=0$$
,
 $x_1 = x_0 - \frac{f(x_0)}{f(x_0)} = 1 - \frac{1}{5} = 0.8$

THE PERSON

for
$$i = 1$$
,
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.8 - \frac{0.152}{3.52} \approx 0.7564$