ResearchGate

Magnesium Strip produced by Twin Roll Casting

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321361076

Poster · June 2007

DOI: 10.13140/RG.2.2.17116.08327

2 authors, including: Bernd Friedrich RWTH Aachen University 701 PUBLICATIONS 2,853 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Bilateral Project Serbia-Germany: Electrochemical synthesis of titanium (Ti-6Al-4V) matrix composites in chloride based molten salts View project

Pure Metals (Zone melting, crystallization, distillation) View project

READS 21

Mg Thin Strip Casting

1. Motivation for Mg Use

- Lightest structural metal
- High specific strength and E-modulus
- Well-balanced mechanical properties of rolled products

2. Aims of the research

- Producing Mg-Strip with little segregation and a good surface quality
- Investigation of the effect of parameters on the quality of Mg-strip
- Developing a CFD-model to study the flow and temperature impact on rapid solidification

4. Results

- Segregation of Al<1% and Zn<0.5%, when roll foce F<100kN
- Roll force and segregation are strongly affected by the variable factors (Tab.2).
- Meltflow- and temperaturfield could be investigated by CFD-Simulation (Fig.2).
- The grain size of as-cast strip is 200µm and after homogenization and hot-rolling reduced to 10 µm (Fig. 3).

Tab.2 Effect of variable factors

	variable factors			oim
	d	V	СС	aim
roll force		1	44	
segregation		-		

3. Experiments

- Horizontal twin-roll-casting of MgAZ31
- Variable parameters (factors) investigated according to Tab.1.
- Using the DoE-method, the number of experiments are reduced from 48 (full-factorexperiments) to 18.

Tab.1 Variable factors and their levels

variable factors	Nr. of levels	levels	
d, (gap, mm)	4	3/3,5/4/4,5	
v, (casting velocity, m/min)	4	2,5/3/3,5/4	
cc, (cooling capacity, I/min)	3	25 / 30 / 35	

Fig.2 Fluidflow (left) and temperature (right) simulation during twin-rollcasting of MgAZ31

Fig.3 Mg-strip and its microstructure

5. Conclusion

- A suitable process-window for the production of Mg-strip is determined: d = 3 - 3.5 mm, v = 2.5 - 3.6 m/min, cc = 30 l/min
- The flow- and temperature-model for the twin-roll-casting of Mg-strip is developed.
- Mg-strips with little segregation and smooth surface are produced.

