

2	0
0	2

2x2 convolution matrix

1	1		
3	4		

10	2	0	
3	40	2	

Convolution

Scale and Rotational invariance

Try building a 3 layer CNN in Ex. 3.1

- Convolution matrix
- Role of max pooling
- Image based problem types:
 - Classification
 - Semantic Segmentation
 - Object detection

Supervised Learning problem types

Try Ex. 3.3

Teaser

How do I solve yes/no problems where the output is constrained to lie between **zero** and **1**?

Can I even have such an output?

Let us, using pyplot, plot this function:

1/(1+exp(-x))

Can we, computationally, succeed getting a zero (not 0.0000something) or even a perfect 1(not 0.99999something) from the above expression

Why is having something close to one/zero (and not one/zero!) so important? We'll revisit this question later...

Curve Fitting - Activations

A word about activations. Why neural networks work even for highly non-linear predictions?

Activation Functions

Curve Fitting - Activations

A word about activations. Why neural networks work for even highly non-linear predictions?

Activation Functions

Curve Fitting - Logistic regression

How does the *traditional* loss - mse work for yes/no problems?

Ground truth	Predictor	MSE
1	0.02	0.96
1	0.002	0.996 ??
1	0.5	0.25
1	0.95	0.0025
1	0.4	0.36

Curve Fitting - Logistic regression

Which loss do you think is better?

Ground truth	Predictor	MSE	New loss
1	0.02	0.96	3.9
1	0.002	0.996	6.21
1	0.5	0.25	1.38
1	0.95	0.0025	0.05
1	0.4	0.36	0.91
1	1E-10	1	23

Curve Fitting - Logistic regression

Such a loss is termed as cross-entropy

Mathematically, loss =

-1*{prediction * log(ground_truth) + (1-prediction)*log(1-ground_truth)}

Don't worry about getting a log(0) (1E-10 is still not zero!).