B.E. 1

BE à rendre rédigé "Etude de la réparation d'un tambour"

1.1 Position du problème

On s'intéresse à la réparation de la membrane d'un tambour, percée en son centre, que l'on répare en collant un patch sur le trou. On désire obtenir le même son avant et après la réparation.

Le problème peut être modéliser comme un problème de vibration propre d'une membrane de surface S_1 mise sous tension avec une tension T. La membrane a une masse m_1 , correspondant à une densité surfacique $\rho_1 = m_1/S_1$, et une dimension caractéristique L_1 . On suppose que la membrane est déchirée en son centre, avec un trou de surface S_2' et de longueur caractéristique $L_2' = 0.8 * L_2$. Le patch, collé sur la membrane pour réparer le trou, a la même forme S_2 , mais une longueur L_2 et une masse m_2 (donc de densité surfacique $\rho_2 = m_2/S_2$).

En notant u(x, y, t) le déplacement de la membrane, l'équation d'équilibre en vibrations libres s'écrit :

$$\rho \frac{\partial^2 u}{\partial t^2} = T \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \quad \operatorname{sur} \Omega = S_1 \cup S_2$$

associée à la condition aux limites u=0 sur $\Gamma=\partial\Omega$. La densité ρ vaut ρ_1 sur S_1 , ρ_2 sur S_2' et $\rho_1+\rho_2$ sur S_2-S_2' .

1.2 Simulation numérique

On s'intéresse au cas de la membrane numéro avec un trou de surface numéro et un rapport $L_2/L_1 = 1/3$

- 1. Déterminer les paramètres du problème et les nombres sans dimension dont dépendent la solution
- 2. Mettre le problème sous forme sans dimension
- 3. Rappeler brièvement le principe de détermination des modes de vibration propres par la méthode des éléments finis
- 4. En utilisant FEMLAB, créer un modèle MATLAB du problème pour la détermination des premiers modes de vibrations
- 5. Faire une étude de précision pour la détermination de la fréquence des premiers modes propres
- 6. Déterminer les premières fréquences de vibration **distinctes** du système en fonction des paramètres sans dimension du problème.

1.3 Étude paramétrique

- 1. En utilisant le modèle FEMLAB, déterminer les premiers modes de vibrations de la membrane sans trou.
- 2. Faire ensuite l'étude dans le cas de la membrane trouée, et comparer les premiers modes avec le cas précédent.
- 3. Étudier ensuite le cas de la réparation par un patch de section S_2 et de masse m_2 . En déduire la loi de variation de la fréquence des premiers modes en fonction de la masse m_2/m_1 .
- 4. Pour quelle valeur de m_2 arrive-t-on à retrouver les modes de vibrations de la membrane initiale ?
- 5. En comparant avec l'étude faite sur la membrane circulaire, que peut-on dire de la variation de la fréquence en fonction de la forme de la membrane ?
- 6. Conclusion

1.4 Liste des cas

- forme de la membrane de longueur caractéristique L_1
 - 1. ellipse d'axes L_1 , $2L_1/3$
 - 2. carré de coté L_1
 - 3. rectangle de coté L_1 et $2L_1/3$
 - 4. pentagone régulier de diamètre L_1
 - 5. hexagone régulier de diamètre L_1
 - 6. heptagone régulier de diamètre L_1
 - 7. octogone régulier de diamètre L_1
 - 8. triangle isosèle de coté L_1
 - 9. triangle rectangle de coté droit L_1
 - 10. cercle de diamètre L_1
- forme du trou et du patch ajoutée de longueur caractéristique L_2
 - 1. cercle de diamètre L_2
 - 2. ellipse d'axes L_2 , $2L_2/3$
 - 3. carré de coté L_2
 - 4. rectangle de coté L_2 et $2L_2/3$
 - 5. pentagone régulier de diamètre L_2
 - 6. hexagone régulier de diamètre L_2
 - 7. heptagone régulier de diamètre L_2
 - 8. octogone régulier de diamètre L_2
 - 9. triangle rectangle de coté droit L_2
 - 10. triangle isosèle de coté L_2