Prova del 17/02/2017

Traccia A

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	χ^2	X ² *f
2	100	200	4	400
3	40	120	9	360
6	54	324	36	1944
10	106	1060	100	10600
	300	1704		13304

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 10

$$V(X) = M(X^2) - m(X)^2 = 13304/300 - 5,68^2 = 12,0843$$

	X	Υ	X * Y	χ^2	Y ²
	1	15	15	1	225
	3	50	150	9	2500
	6	99	594	36	9801
	11	170	1870	121	28900
•	21	334	2629	167	41426

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{21}{4} = 5,25$$

$$M(Y) = \frac{334}{4} = 83,5$$

$$Cov(X;Y) = M(X^*Y) - M(X)^*M(Y) = \frac{2629}{4} - 5,25 * 83,5 = 218,8750$$

$$V(X) = M(X^2) - M(X)^2 = \frac{167}{4} - 5,25^2 = 14,1875$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{218,875}{14,1875} = 15,4273$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{41426}{4} - 83,5^2 = 3384,2500$$

$$\sigma(Y) = \text{RADQ}(3384,25) = 58,1743$$

$$\sigma(X) = \text{RADQ}(14,1875) = 3,7666$$

$$r = \frac{218,875}{58,1743 \, ^{\circ} 3,7666} = 0,9989$$
 Si registra una forte relazione lineare diretta

83,5 - (15,4273) * 5,25 =

c) Giudicare la bontà di accostamento:

M(Y) - bM(X) =

a =

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9989)^2 = 0.9978$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0.25
n = 5
```

La distribuzione di probabilità quindi è la seguente:

```
X P(X)

0 0,23730469

1 0,39550781

2 0,26367188

3 0,08789063

4 0,01464844

5 0,00097656

1
```

Media = np = 1,25Varianza = npq = 0,9375

ESERCIZIO 4

```
# CREO IL VETTORE DELLE X:
k=c(0:5)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 5, 0.25)

# LA MEDIANA E':
qbinom(0.5, 5, 0.25)

# IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE:
qbinom(0.25, 5, 0.25)

# IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE:
qbinom(0.75, 5, 0.25)

# DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA':
barplot(dbinom(k, 5, 0.25), names.arg=k, xlab="X", ylab="P(X)")
```

ESERCIZIO 5

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MINORE DEL P-VALUE CALCOLATO (0.953) SI ACCETTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 34.16839 E 41.63161

Prova del 17/02/2017

Traccia B

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	Χ²	X ² *f
4	10	40	16	160
5	25	125	25	625
6	36	216	36	1296
11	29	319	121	3509
	100	700		5590

a) Calcolo della media aritmetica, armonica e geometrica:

$$M(X) = \sum_{x \in X} X f = 700 = 7,0000$$

b) Calcolo della mediana e della moda:

X50° =< mediana =< X51° : **me** = **6**

moda = 6

$$V(X) = M(X^2) - m(X)^2 = 5590/100 - 7^2 = 6,9000$$

Χ	Υ	X * Y	Χ²	Y ²
5	8	40	25	64
11	18	198	121	324
20	30	600	400	900
25	41	1025	625	1681
61	97	1863	1171	2969

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX:

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{61}{4} = 15,25$$

$$M(Y) = \frac{97}{4} = 24,25$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{1863}{4} - 15,25 * 24,25 = 95,9375$$

$$V(X) = M(X^2) - M(X)^2 = \frac{1171}{4} - 15,25^2 = 60,1875$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{95,9375}{60,1875} = 1,5940$$

$$a = M(Y) - bM(X) = 24,25 - (1,594) * 15,25 = -0,0582$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{2969}{4} - 24,25^2 = 154,1875$$

$$\sigma(Y) = \text{RADQ}(154,1875) = 12,4172$$

$$\sigma(X) = \text{RADQ}(60,1875) = 7,7581$$

$$r = \frac{95,9375}{12,4172 \, ^* 7,7581} = 0,9959$$
 Si registra una forte relazione lineare diretta

c) Giudicare la bontà di accostamento:

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9959)^2 = 0.9918$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0.2
n = 5
```

La distribuzione di probabilità quindi è la seguente:

X	P(X)
0	0,32768
1	0,4096
2	0,2048
3	0,0512
4	0,0064
5	0,00032
	1

Media = np = 1Varianza = npq = 0.8

ESERCIZIO 4

```
# CREO IL VETTORE DELLE X:
k=c(0:5)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 5, 0.2)

# LA MEDIANA E':
qbinom(0.5, 5, 0.2)

# IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE:
qbinom(0.25, 5, 0.2)

# IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE:
qbinom(0.75, 5, 0.2)

# DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA':
barplot(dbinom(k, 5, 0.2), names.arg=k, xlab="X", ylab="P(X)")
```

ESERCIZIO 5

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MAGGIORE DEL P-VALUE (0.0008356) SI RIFIUTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 34.16839 E 41.63161

Prova del 17/02/2017

Traccia C

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	X^2	X ² *f
3	5	15	9	45
8	10	80	64	640
10	12	120	100	1200
12	23	276	144	3312
	50	491		5197

a) Calcolo della media aritmetica, armonica e geometrica:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{491}{50} = 9,8200$$

b) Calcolo della mediana e della moda:

moda = 12

$$V(X) = M(X^2) - m(X)^2 = 5197/50 - 9.82^2 = 7.5076$$

Χ	Υ	X * Y	Χ²	Y^2
1	10	10	1	100
2	21	42	4	441
5	49	245	25	2401
7	75	525	49	5625
15	155	822	79	8567

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{15}{4} = 3,75$$

$$M(Y) = \frac{155}{4} = 38,75$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{822}{4} - 3,75 * 38,75 = 60,1875$$

$$V(X) = M(X^2) - M(X)^2 = \frac{79}{4} - 3,75^2 = 5,6875$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{60,1875}{5,6875} = 10,5824$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

$$r = \frac{\text{Cov}(X;Y)}{\sigma(X) \, \sigma(Y)}$$

$$V(Y) = \frac{8567}{4} - 38,75^2 = 640,1875$$

$$\sigma(Y) = \text{RADQ}(640,1875) = 25,3019$$

$$\sigma(X) = \text{RADQ}(5,6875) = 2,3848$$

$$r = \frac{60,1875}{25,3019 * 2,3848} = 0,9975$$
 Si registra una forte relazione lineare diretta

38.75 - (10.5824) * 3.75 = -0.9341

c) Giudicare la bontà di accostamento:

M(Y) - bM(X) =

a =

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9975)^2 = 0.9949$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0.3
n = 5
```

La distribuzione di probabilità quindi è la seguente:

Χ	P(X)
0	0,16807
1	0,36015
2	0,3087
3	0,1323
4	0,02835
5	0,00243
	1

Media = np = 1,5Varianza = npq = 1,05

ESERCIZIO 4

```
# CREO IL VETTORE DELLE X:
k=c(0:5)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 5, 0.3)

# LA MEDIANA E':
qbinom(0.5, 5, 0.3)

# IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE:
qbinom(0.25, 5, 0.3)

# IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE:
qbinom(0.75, 5, 0.3)

# DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA':
barplot(dbinom(k, 5, 0.3), names.arg=k, xlab="X", ylab="P(X)")
```

ESERCIZIO 5

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MINORE DEL P-VALUE CALCOLATO (0.9263) SI ACCETTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 17.04528 E 26.55472

Prova del 17/02/2017

Traccia D

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- a) la media aritmetica, la media armonica e la media geometrica;
- b) la mediana e la moda;
- c) la varianza.

X	f	X*f	Χ²	X ² *f
1	15	15	1	15
2	28	56	4	112
5	33	165	25	825
9	24	216	81	1944
	100	452		2896

a) Calcolo della media aritmetica, armonica e geometrica:

b) Calcolo della mediana e della moda:

moda = 5

$$V(X) = M(X^2) - m(X)^2 = 2896/100 - 4,52^2 = 8,5296$$

Χ	Υ	X * Y	χ^2	Y ²
3	15	45	9	225
6	29	174	36	841
7	33	231	49	1089
10	50	500	100	2500
26	127	950	194	4655

Sui dati presentati in tabella calcolare:

- a) i parametri della retta interpolante Y'=a+bX;
- b) il coefficiente di correlazione lineare, commentandolo brevemente;
- c) giudicare la bontà di accostamento.

a) Calcolo dei parametri della retta interpolante Y'=a+bX :

Calcolo attraverso le formule dirette (ma si poteva anche sviluppare il sistema):

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} \qquad a = M(Y) - bM(X)$$

$$M(X) = \frac{26}{4} = 6,5$$

$$M(Y) = \frac{127}{4} = 31,75$$

$$Cov(X;Y) = M(X*Y) - M(X)*M(Y) = \frac{950}{4} - 6,5 * 31,75 = 31,1250$$

$$V(X) = M(X^2) - M(X)^2 = \frac{194}{4} - 6,5^2 = 6,2500$$

$$b = \frac{\text{Cov}(X;Y)}{\text{V}(X)} = \frac{31,125}{6,25} = 4,9800$$

b) Calcolo del coefficiente di correlazione lineare e suo breve commento:

31,75 - (4,98) * 6,5 =

c) Giudicare la bontà di accostamento:

M(Y) - bM(X) =

a =

Per giudicare la bontà di accostamento del modello teorico, calcolo il coefficiente di determinazione:

$$r^2 = (0.9978)^2 = 0.9956$$

Il modello teorico spiega in maniera ottima la variabilità delle frequenze osservate.

-0,6200

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

```
p = 0.1
n = 5
```

La distribuzione di probabilità quindi è la seguente:

```
X P(X)
0 0,59049
1 0,32805
2 0,0729
3 0,0081
4 0,00045
5 0,00001
1
```

Media = np = 0.5Varianza = npq = 0.45

ESERCIZIO 4

```
# CREO IL VETTORE DELLE X:
k=c(0:5)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 5, 0.1)

# LA MEDIANA E':
qbinom(0.5, 5, 0.1)

# IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE:
qbinom(0.25, 5, 0.1)

# IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE:
qbinom(0.75, 5, 0.1)

# DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA':
barplot(dbinom(k, 5, 0.1), names.arg=k, xlab="X", ylab="P(X)")
```

ESERCIZIO 5

POICHE' IL LIVELLO DI SIGNIFICATIVITA' (0.05) E' MINORE DEL P-VALUE CALCOLATO (0.9505) SI ACCETTA L'IPOTESI NULLA # L'INTERVALLO DI CONFIDENZA PER LA MEDIA E' COMPRESO FRA 25.71191 39.88809