Math 184A Homework 4

Spring 2018

This homework is due on gradescope by Friday May 11th at 11:59pm. Remember to justify your work even if the problem does not explicitly say so. Writing your solutions in IATEX recommend though not required.

Question 1 (Permutation Parity, 20 points). Let n > 1 be an integer and let S be a set of pairs of numbers (i,j) with $i,j \in [n]$. Say that a permutation π of [n] avoids S if $\pi(i) \neq j$ for all $(i,j) \in S$. So, for example, a derangement is a permutation that avoids $\{(1,1),(2,2),(3,3),\ldots,(n,n)\}$. Suppose that for any n-1 elements of S that either some two share a first coordinate or some two share a second coordinate. Prove that the number of permutations that avoid S is even. [Hint: Count the number using Inclusion-Exclusion.]

Solution. Let m = |S|. We have $S = \{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}$, where a_i, b_i s are in [n]. Let A_i be the set of all permutations that avoids (a_k, b_k) , equivalently, A_i^c is the set of all permutations π that agrees on (a_i, b_i) , that is, $\pi(a_i) = b_i$. For distinct i and j values, (a_i, b_i) and (a_j, b_j) cannot have both of their first and second entries equal to one another. (Namly $a_i \neq a_j$ or $b_i \neq b_j$)

Claim 1. If $a_i = a_j$ or $b_i = b_j$, then $A_i^c \cap A_j^c = \emptyset$, therefore $|A_i^c \cap A_j^c| = 0$.

Proof. If $a_i = a_j$, suppose there exists a permutation $\pi \in A_i^c \cap A_j^c$, then by definition, $\pi(a_i) = b_i$ and $\pi(a_j) = b_j$. However, we have $b_i = \pi(a_i) = \pi(a_j) = b_j \Rightarrow (a_i, b_i) = (a_i, b_j)$. Contradiction! If $b_i = b_j$, suppose $\exists \pi \in A_i^c \cap A_j^c$, then by definition, $\pi(a_i) = b_i = b_j = \pi(a_j)$. Since π is a permutation, π is bijective, hence $a_i = a_j \Rightarrow (a_i, b_i) = (a_i, b_j)$. Contradiction.

Claim 2. The intersection of any $k \ [1 \le k < n-1]$ distinct A_i^c sets is either empty or contains (n-k)! elements.

Proof. Suppose A_i^c and A_j^c are 2 distinct sets among those k sets and we have $a_i = a_j$ or $b_i = b_j$. In either case, we have $A_i^c \cap A_j^c = \emptyset$. Since the k-sets intersection is a subset of $A_i^c \cap A_j^c$, the k-sets intersection must be empty. Suppose for all the pairs of sets A_i^c and A_j^c , we have $a_i \neq a_j$ and $b_i \neq b_j$, then for each permutation π contained in the k-sets intersection, we have $\pi(a_i) = b_i$ for all i such that A_i^c is one of those k sets, which means we require k entries of the permutation to be of fixed values, while having no restrictions whatsoever on the other entries, therefore we have (n-k)! total number of permutations that satisfy the requirement.

Claim 3. The intersection of any $k [n-1 \le k \le m]$ distinct A_i^c sets is empty.

Proof. Since $k \ge n-1$, by problem assumption, there exist i, j in [m] s.t. either $a_i = a_j$ or $b_i = b_j$. In either case, we have we have $A_i^c \cap A_j^c = \emptyset$. Since the k-sets intersection is a subset of $A_i^c \cap A_j^c$, the k-sets intersection must be empty.

Now by Principle of Inclusion and Exclusion, $|\bigcup_{i\in[m]}A_i^c|=\sum_{1\leq i\leq m}|A_i^c|-\sum_{1\leq i< j\leq m}|A_i^c\cap A_j^c|+\ldots+(-1)^{n-1}|\bigcap_{i\in[m]}A_i^c|$, which is even by Claim 2 and 3.

Thus (the number of permutations that avoid S) = $|\bigcap_{i \in [m]} A_i| = |(all \ n\text{-permutations}) - \bigcup_{i \in [m]} A_i^c| = n! - |\bigcup_{i \in [m]} A_i^c|$, since n! is even $\forall n \geq 2$, we have that (the number of permutations that avoid S) is even.

Question 2 (Size of Central Binomial Coefficients, 20 points). Show that for any $n \ge 1$

$$4^n \ge \binom{2n}{n} \ge 4^n/(2n+1).$$

[Hint: for the lower bound show that $\binom{2n}{n} \geq \binom{2n}{k}$ for any k.] [Note: For those who know some number theory, it is not hard to see that $\binom{2n}{n}$ is divisible by the product of all primes $n \leq p \leq 2n$. This allows one to prove rough upper bounds on the number of primes.]

Solution. The number of binary string of length 2n is $2^{2n} = (2^2)^n = 4^n$, while the number of binary string of length 2n which contains k ones is $\binom{2n}{k}$. Therefore we have

$$\sum_{k=0}^{2n} \binom{2n}{k} = 4^n$$

which gives us the right inequality,

$$\binom{2n}{n} \le \sum_{k=0}^{2n} \binom{2n}{k} = 4^n$$

Notice that $\frac{4^n}{2n+1}$ is the average of the 2n+1 values $\binom{2n}{0},\binom{2n}{1},\binom{2n}{2},\ldots,\binom{2n}{2n}$. To prove that

$$\binom{2n}{n} \ge 4^n/(2n+1)$$

It suffices to prove that

$$\binom{2n}{n} \ge \binom{2n}{n-1} \ge \dots \ge \binom{2n}{1} \ge \binom{2n}{0}$$

Proof. Let $0 \le k \le n-1$, we have

$$2(n-1) \ge 2k \Rightarrow 2n = 2(n-1) + 2 \ge 2(k+1) \Rightarrow 2n-k-1 \ge k+1 \Rightarrow \frac{2n-k}{k+1} \ge \frac{2n-k-1}{k+1} \ge 1$$

now

$$\binom{2n}{k} = \frac{(2n)!}{k!(2n-k)!} \le \frac{2n-k-1}{k+1} \frac{(2n)!}{k!(2n-k)!} \le \frac{(2n)!}{(k+1)!(2n-k-1)!} = \binom{2n}{k+1}$$

By symmetry, we have

$$\binom{2n}{n} \ge \binom{2n}{n+1} \ge \dots \ge \binom{2n}{2n-1} \ge \binom{2n}{2n}$$

Hence, $\binom{2n}{n}$ is the greatest among all 2n+1 values, hence it must be greater than the average.

Question 3 (Sums of Binomial Coefficients, 30 points). .

(a) Give a formula for $\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \ldots + \binom{n}{2\lfloor n/2\rfloor}$ as a function of n. [Hint: use the binomial theorem. You'll need a way to make the odd terms go away.][10 points]

Solution.
$$2^n = (1+1)^n = \sum_{k=0}^n \binom{n}{k} (1)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k} (1)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k} (1)^k (1)^{n-k} = \sum_{k=0}^n (-1)^k \binom{n}{k} (1)^k (1)^{n-k} = \sum_{k=0}^n (-1)^k \binom{n}{k} (1)^k (1)^{n-k} = \sum_{k=0}^n (-1)^k \binom{n}{k} (1)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k} (1)^k (1)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k} (1)^k (1)$$

(b) Give a formula for $\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \ldots + \binom{n}{3\lfloor n/3 \rfloor}$ as a function of n. [Hint: same idea, but you might need to use complex numbers.][20 points]

Solution. Let $w = e^{\frac{2\pi i}{3}}$, the 3rd root root of unity, which has the following properties:

(a)
$$w^3 = (e^{\frac{2\pi i}{3}})^3 = e^{2\pi i} = 1$$
 (By Euler's identity)

(b)
$$1 + w + w^2 = \frac{w^3 - 1}{w - 1} = \frac{0}{w - 1} = 0$$

(c)
$$w^i = w^j$$
 iff $i \equiv j \pmod{3}$

Claim.
$$1^n + w^n + (w^2)^n = 0$$
 if $n \not\equiv 0 \pmod{3}$ and $1^n + w^n + (w^2)^n = 3$ if $n \equiv 0 \pmod{3}$

Proof. if $n \equiv 1 \pmod{3}$, $w^n = w$ (by property 1), and $w^{2n} = w^2$ since $n \equiv 1 \pmod{3} \Rightarrow 2n \equiv 2 \pmod{3} \Rightarrow 1^n + w^n + (w^2)^n = 0$

if $n \equiv 2 \pmod{3}$, $w^n = w^2$ since $n \equiv 2$ (by property 1), and $w^{2n} = w$ since $n \equiv 2 \pmod{3} \Rightarrow 2n \equiv 1 \pmod{3} \Rightarrow 1^n + w^n + (w^2)^n = 0$

if $n \equiv 0 \pmod{3}$, we have $w^n = w^3 = 1$ and $(w^2)^n = (w^n)^2 = 1^2 = 1 \Rightarrow 1^n + w^n + (w^2)^n = 3$

$$now \ (1+1)^n + (w+1)^n + (w^2+1)^n = \sum_{k=0}^n \binom{n}{k} (1)^k (1)^{n-k} + \sum_{k=0}^n \binom{n}{k} (w)^k (1)^{n-k} + \sum_{k=0}^n \binom{n}{k} (w)^k (1)^{n-k} + \sum_{k=0}^n \binom{n}{k} (w)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k} (1)^k (1)^{n-k} + \binom{n}{k} (w)^k (1)^{n-k} + \binom{n}{k} (w)^k (1)^{n-k} = \sum_{k=0}^n \binom{n}{k} (1)^k + w^k + (w^2)^k = 3 \sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} \binom{n}{3k} + kence \sum_{k=0}^{\lfloor \frac{n}{3} \rfloor} \binom{n}{3k}$$
 as a function of n is $\frac{1}{3} ((1+1)^n + ((e^{\frac{2\pi i}{3}}) + 1)^n + ((e^{\frac{2\pi i}{3}})^2 + 1)^n)$

Question 4 (Linear Homogeneous Recurrence Relations, 30 points). Suppose that a sequence A_n satisfies a linear homogeneous recurrence relation with constant coefficients. Namely, suppose that there are constants C_1, C_2, \ldots, C_k so that

$$A_n = C_1 A_{n-1} + C_2 A_{n-2} + \dots + C_k A_{n-k}$$

for all $n \geq k$.

(a) Show that the generating function $F(x) = \sum_{n=0}^{\infty} A_n x^n$ is given by a rational function in x (namely a ratio of polynomials in x). [15 points]

Solution. $F(x) = \sum_{n=0}^{\infty} A_n x^n = \sum_{n=k}^{\infty} A_n x^n + \sum_{n=0}^{k} A_n x^n = \sum_{n=k}^{\infty} (C_1 A_{n-1} + C_2 A_{n-2} + \dots + C_k A_{n-k}) + \sum_{n=0}^{k} A_n x^n = C_1 x F(x) + C_2 x^2 F(x) + \dots + C_k x^k F(x) + \sum_{n=0}^{k} A_n x^n = (\sum_{n=1}^{k} C_n x^n) F(x) + \sum_{n=0}^{k} A_n x^n$ $let \ P(x) = \sum_{n=1}^{k} C_n x^n \ and \ Q(x) = \sum_{n=0}^{k} A_n x^n$

Thus we have $F(x) = P(x)F(x) + Q(x) \Rightarrow F(x) = \frac{Q(x)}{1 - P(x)}$, which proves that F(x) is given by a rational function in x.

(b) Given that partial fraction decompositions, allow you to write any rational function as a polynomial plus a linear combination of terms of the form $1/(1-b_ix)^{a_i}$, show that there's a formula expressing A_n as some linear combination of terms of the form $n^{k_i}b_i^n$ for all sufficiently large n. [15 points]

Solution. Given the partial fraction decomposition, there exists some polynomial P(x), and $\{a_i\}_{i=1}^m$, $\{b_i\}_{i=1}^m$, and $\{c_i\}_{i=1}^m$ s.t.

$$F(x) = P(x) + \sum_{i=1}^{m} \frac{c_i}{(1 - b_i x)^{a_i}}$$

For each i, we have

$$\frac{c_i}{(1 - b_i x)^{a_i}} = c_i (1 + (b_i x) + (b_i x)^2 + (b_i x)^2 + \dots)^{a_i}$$

by product of generating functions

$$=c_i \sum_{k=0}^{\infty} {k+a_i-1 \choose k} b_i^{\ k} x^k$$

hence

$$F(x) = P(x) + \sum_{i=1}^{m} \frac{c_i}{(1 - b_i x)^{a_i}} = P(x) + c_i \sum_{i=1}^{m} \sum_{k=0}^{\infty} \binom{k + a_i - 1}{k} b_i^k x^k = P(x) + \sum_{k=0}^{\infty} [c_i \sum_{i=1}^{m} \binom{k + a_i - 1}{k} b_i^k] x^k$$

now A_n = the coefficient of x^n in $F(x) = c_i \sum_{i=1}^m {k+a_i-1 \choose k} b_i^k$ for n > deg(P(x)), which is some linear combination of terms of the form $n^{k_i}b_i^n$ for all sufficiently large n.

Question 5 (Extra credit, 1 point). Approximately how much time did you spend on this homework?