

Blended observational datasets

Simon Grainger

Climate Services Section, Bureau of Meteorology

Observational datasets are changing

Past:

- Manual in situ observations, paper records, multiple formats
- The challenge to digitise data and apply quality control

Present:

- Automated in situ observation platforms (e.g. AWS), automated digital data flow
- The challenge to automate quality control

Future:

- Data from multiple sources: in situ, remote sensing, atmospheric reanalysis
- The challenge to blend datasets with different temporal and spatial characteristics

Remotely sensed data

Himawari 8 – infrared channel

- Geostationary satellite
- 16 channels in visible to infrared
- 0.5 to 2km resolution
- Full disk scan every 10 minutes

Example – Evapotranspiration

Combined evaporation due to soil and crop

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T_{mean} + 273} u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$

Class A Evaporation Pan

By Bidgee - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=391066

- Reference equation allows a good approximation from weather data
 - Fixed albedo and crop type
- Pan evaporation integrates the effects of temperature, humidity, wind and radiation
 - Less reliable than Ref. Eq.
 - In situ measurement
- Satellite temperature, radiation and albedo also can be used as an approximation
 - Full spatial coverage
 - How to relate this to in situ measurements?

Atmospheric reanalysis

- Historical, 3-dimensional description of the atmosphere, produced by optimally combining many observations and best model physics in retrospective (i.e. an "analysis")
- Use of <u>unchanging methods</u> (analysis scheme and physical models) to perform this "analysis" with all available observations

Courtesy: Chun-Hsu Su (adapted)

In situ observations are a small part of a reanalysis

Setup	Resolution	Techniques	Model	Output
Regional	12km	4DVar, 3DVar (screen), VarBC, SURF-EKF	UM10.2	Hourly, and 10min fields
Sub-domains	1.5km	Hindcast setup	UM10.6	Ditto

Courtesy: Chun-Hsu Su (adapted)

Observational equipment is changing

- Example: In situ temperature measurements
 - Temperature instrument
 - Instrument shelter
 - Automatic Weather Station (AWS)
- For continuity of long-term climate records, statistically test equipment changes for inhomogeneities
 - Recent equipment changes have had no impact on the historical Australian temperature record

Challenges

- Blending of data on different spatial and temporal scales to enable continuity of measurement of important climate variables
- Use of contemporary reanalysis data to characterise the uncertainty in spatial analyses of historical observations
- Complementing homogenisation methods with experimental design to maintain the continuity of climate data sets in future in situ networks