SECOND SEMESTER 2020-2021 Course Handout (Part II)

Date: 18/01/2021

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE F241
Course Title : Heat Transfer
Instructor-in-Charge : BANASRI ROY

Instructors (Tutorial) : SOMAK CHATTERJEE, SRINIVAS APPARI

1. Course Description

Steady state and unsteady state conduction, Fourier's law, Concepts of resistance to heat transfer and the heat transfer coefficient. Heat transfer in Cartesian, cylindrical and spherical coordinate systems, Insulation, critical radius, Convective heat transfer in laminar and turbulent boundary layers, Theories of heat transfer and analogy between momentum and heat transfer, Heat transfer by natural convection, Boiling and condensation, Radiation, Heat exchangers: LMTD, epsilon-NTU method, Co-current counter-current and cross flows,

NTU – epsilon method for heat exchangers.

2. Scope & Objectives

After completion of this course the students are expected to:

- Estimate the rate of heat transfer for one dimensional steady state systems involving temperature gradient
- Define (both conceptually and mathematically) fundamental mechanisms of three heat transfer modes; Conduction, Convection (free and forced both), and radiation.
- Apply these three mechanisms of heat transfer in solving practically relevant chemical engineering problems; single phase and with phase change (boiling and condensation)
- Perform basic calculations related to the dependence of heat transfer coefficient on various physical and fluid property parameters theoretically and empirically for; free convection, forced convection, and boiling & condensation.
- Recognize and explain the construction and working principle of the various types of heat exchangers
- Apply the Kern's method to perform the process design of the new shell and tube heat exchangers
- Apply epsilon- NTU method to carry out the process design of the existing heat exchanger
- Recognize and explain the construction and working principle of the various types of evaporators

3. Prescribed Textbook (T)

Holman, J.P., Bhattacharyya, S. (2011), "Heat Transfer", 10th Ed., Tata McGraw Hill Education Pvt Ltd, New Delhi.

4. Reference Books

R1: Sinnot, R.K. (2003), "Coulson & Richardson's chemical engineering vol 6", 3rd edition, Butterworth Heinemann, Oxford.

R2:Mccabe, W.L., Smith, J.C., Harriott, P. (2005), "Unit operations of chemical engineering", 7th edition, McGraw Hill International Edition, Singapore.

5. Course Plan

Module Number and Title	Topics to be Covered in Lecture (L)	Reference Ch./Sec.	Learning Outcomes (students be able:)	
1. Basics of heat transfer	L1. Introduction to conductive, convective and radiative heat transfer		 To define basic mechanisms of heat transfer To develop the generalized 	
	L2. Energy Equation Development	T:1.1	form of energy equation	
2. One dimensional steady state conduction	L3. Application of Fourier's law in simple systems and thermal resistance formulation L4. Application of Fourier's law in cylindrical and spherical	T: 2.4 – 2.5	 To apply the Fourier's law of heat conduction in plane wall, cylindrical and spherical systems to calculate the heat loss in each case 	
	systems and thermal resistance formulation		To calculate the critical thickness of insulation for	
	L5. Critical thickness of insulation for cylindrical and spherical systems	T: 2.6	insulated pipe and spherical tank To analyze the temperature	
	L6. Temperature distribution in plane wall and cylindrical system with heat source	T: 2.7 – 2.8	distribution in systems with heat source and in systems having fin	
	L7. Temperature distribution in a fin and fin efficiency & its effectiveness	2.10	 To calculate the heat loss, efficiency and effectiveness of fin 	
	L8.Thermal contact resistance	T: 2.11		
3. One dimensional	L9. Lumped heat capacity System	T: 4.2	To analyze the temperature variation with time using	
unsteady state conduction	L10. Heat flow in infinite plate and in semi-infinite solid	T: 4.1, 4.3	lumped heat capacity approachanalytical solution of semi-	
	L11. Temperature distribution and heat loss calculation using Heisler charts	T: 4.4	infinite wall/cylinder & sphere (Heisler charts)	
4. Principles of	L12. Laminar Boundary Layer on a flat plate	T:5.4	To develop the relation of • Boundary layer thickness with	
convection	L13. Energy Equation of the Boundary Layer	T:5.5	Reynolds number for laminar flow over a flat plate	
	L14. Thermal boundary layer on a flat plate and heat transfer coefficient	T:5.6	Heat transfer coefficient with Reynolds number and Prandtl number for laminar/turbulent	
	L15. Analogy: fluid friction and heat transfer and its application to turbulent heat transfer	T:5.7 – 5.8	flow over a flat plate and in a tube	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

१॥न परमं बले				
	L16 Heat transfer in tube flow: laminar and turbulent flow	T: 5.10- 5.11		
5. Empirical and practical relations for forced convection heat transfer	L17. Empirical relations for pipe and tube flow	T: 6.2	To estimate the heat transfer coefficient for a given system using most appropriate empirical equations available and compare	
	L18. Empirical relations for flow across cylinders and spheres	T: 6.3		
	L19. Empirical relations for flow across tube banks	T:6.4		
	L20. Example problems to estimate heat transfer coefficient	T: 6.2-6.4		
6. Natural convection	L21. Free convection heat transfer on a vertical flat plate	T: 7.2	To estimate the heat transfer coefficient for a given system using different appropriate empirical equation available and	
	L22. Empirical relations for free convection: planes, cylinders	T: 7.3-7.6, 7.10		
	and spheres L23. Empirical relations for free	T: 7.11 -	compare	
	convection: enclosed spaces & combine free and forced convection	7.12		
7.Condensat ion and Boiling	L24. Condensation heat transfer phenomena & condensation	T: 9.1 -9.3	To estimate the heat transfer coefficient and/or heat loss for a given system involving phase change using most appropriate	
	number L25. Film condensation inside	T: 9.4-9.5		
	horizontal tubes and introduction to boiling heat transfer	T: 9.5 –	theoretical/empirical equation and compare	
0 114	L26.boiling heat transfer and its empirical relations	9.6		
8. Heat exchangers	L27. Introduction, LMTD and fouling factor	T:10.1- 10.5	To explain construction and working principle of various types of best explanators.	
	L28. Overall heat transfer coefficient and types of heat exchangers	T:10.1- 10.5	types of heat exchangersApply Kern's method to perform the process design of	
	L29. General design considerations & Kern's method	R1:12.5- 12.9.3	the new shell and tube heat exchangers	
	L30. Example Problem: Kern's method	R1:12.5- 12.9.3	• Apply epsilon- NTU method to carry out the process design of	
	L31. Effectiveness NTU method	T: 10.6	the existing heat exchanger	
	L32. Example problem: Effectiveness NTU method	T: 10.6		
9. Radiation heat transfer	L33. Physical mechanisms, radiation properties and	T: 8.1 – 8.3	• To estimate the rate of steady state heat transfer between two	
	governing laws L34. Radiation shape factors and relation amongst them	T: 8.4 – 8.5	 or more nonblack/black bodies To develop the radiation resistance network and analyze 	
	L35. Heat exchange radiation network	T: 8.6 – 8.7	it using electrical analogy	

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, Pilani Pilani Campus AUGS/ AGSR Division

	L36. Radiation shields & Radiation network for an absorbing and transmitting medium	T: 8.8 - 8.10	
10.Evaporat	L37. Introduction, application and types of evaporator		To explain construction and working principle of the various types of evaporators
	L38. Performance of evaporator L39. Multiple effect evaporation	R2: 16 R2: 16	 To evaluate the performance of evaporators in terms of the
	L40. Effect of boiling point elevation on multiple effect operation and vapor recompression	R2: 16	capacity, economy and steam consumption

6. Evaluation Scheme

Sl	Evaluation Component	Duration	Weightage	Date, Time	Remarks
No.	(EC)		(Marks/ %)		
1	Mid semester test	90 min	90/30		CB /OB
2	Tutorial tests (TT)		75/25	During tutorial	CB/OB
	(5 best out of XX conducted)			class. Surprise in	
				nature	
3	Assignment (Aspen/Matlab)		15/5%		
4	Comprehensive examination	120 min	120/40		CB/ OB

• Notes: CB= Closed book, OB= Open book

Important:

- Chamber consultation hour: It will be announced in the class. Prior appointment via email or discussion in class is encouraged.
- The **notices**, if any, concerning the course will be displayed on the Google Classroom/Nalanda only.
- **Make-up** will be granted for **genuine cases only**. Proper certificate from authenticated doctor, say from the BITS Medical Center, must accompany make-up application (*only prescription or vouchers for medicines will not be sufficient*). Prior permission of IC is compulsory. **No** make-up will be granted for the **tutorial** tests.

Instructor-in-charge Heat Transfer | **CHE F241**