Kempe recoloring of planar graphs

Clément Legrand-Duchesne

LaBRI, Bordeaux

November 24, 2022

Joint work with Quentin Deschamps, Carl Feghali, František Kardoš and Théo Pierron

Clément Legrand 1 / 9

Kempe chain (1879)

Maximal bichromatic connected component in ${\it G}$

Kempe chain (1879)

Maximal bichromatic connected component in ${\it G}$

Kempe chain (1879)

Maximal bichromatic connected component in ${\it G}$

Kempe chain (1879)

Maximal bichromatic connected component in G

Reconfiguration graph

- $V(R^k(G)) = k$ -colorings of G.
- $\bullet \ \alpha$ and β adjacent if $\alpha \longleftrightarrow_{\mathsf{Kempe}} \beta$

Kempe chain (1879)

Maximal bichromatic connected component in G

Reconfiguration graph

- $V(R^k(G)) = k$ -colorings of G.
- $\bullet \ \alpha$ and β adjacent if $\alpha \longleftrightarrow_{\mathsf{Kempe}} \beta$

Usual questions

- Given two *k*-colorings α and β , $\alpha \leftrightarrow \beta$?
- Is $R^k(G)$ connected ?
- What is $diam(R^k(G))$?
- Does the corresponding Markov chain mix well ?

Fundamental lemma

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are equivalent, for k > d

By induction: Let v with $deg(v) \leq d$, consider

$$G' = G \setminus \{v\}$$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v

Fundamental lemma

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are equivalent, for k > d

By induction: Let v with $deg(v) \leq d$, consider

$$G' = G \setminus \{v\}$$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v

Fundamental lemma

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are equivalent, for k > d

By induction: Let v with $deg(v) \leq d$, consider

$$G' = G \setminus \{v\}$$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v

Recoloring planar graphs

Meyniel 1978

- All 5-colorings of a planar graph are Kempe equivalent
- False for 4-colorings:

Bounding the reconfiguration diameter

Conjecture of Bonamy, Bousquet, Feghali, Johnson 19

 $R^k(G)$ has diameter $O(n^2)$, if G is d-degenerate and k > d

Bonamy, Delecroix, L. 22+

 $R^k(G)$ has polynomial diameter for:

- $k \ge \Delta$ (unless, k = 3 and $G = K_2 \square K_3$),
- $k \geq \operatorname{mad}(G) + \varepsilon$
- $k \geq \mathsf{tw}(G) + 1$

Journées GrR 2021

What about planar graphs with k=5 or k=6 ?

Bounding the reconfiguration diameter

Conjecture of Bonamy, Bousquet, Feghali, Johnson 19

 $R^k(G)$ has diameter $O(n^2)$, if G is d-degenerate and k > d

Bonamy, Delecroix, L. 22+

 $R^k(G)$ has polynomial diameter for:

- $k \ge \Delta$ (unless, k = 3 and $G = K_2 \square K_3$),
- $k \geq \operatorname{mad}(G) + \varepsilon$
- $k \ge \mathsf{tw}(G) + 1$

Journées GrR 2021

What about planar graphs with k = 5 or k = 6?

Deschamps, Feghali, Kardoš, L., Pierron 22+

 $R^k(G)$ has diameter $O(n^{195})$ if G is planar and $k \ge 5$

Clément Legrand Some context 5 / 9

Recoloring 3-colorable planar graphs

Mohar 2007

 $R_4(G)$ is connected if G is a 3-colorable planar graph

Fisk 1977

 $R_4(G)$ has polynomial diameter if G is a triangulation of the plane

non-singular

Sketch of proof

Theorem

For every 5-coloring α and every 4-coloring β , there is a sequence of Kempe changes going from α to β recoloring each vertex P(n) times

Idea of proof

Assumption: there exist 1.

- I linear size independent set
- monochrome in α and in β
- $\forall v \in I, \deg(v) < 4$

```
F = G \setminus I
                                                                        H = G \setminus B
\alpha
                                    \alpha_{|F}
                                       Induction
                                    \gamma avoiding \alpha(I)
  trivial changes
\delta s. t.\delta(B) = 1
                                                                        \delta_{|B} 4-col
                                                                         \beta_{IB} 3-col
```

Fisk

Collapsing

Collapsable configurations

Non-collapsable collapsable in at most 3 Kempe changes

Collapsing

Collapsable configurations

Non-collapsable collapsable in at most 3 Kempe changes

Collapsing

Collapsable configurations

Non-collapsable collapsable in at most 3 Kempe changes

Open questions

Question 1

Let G be a d-degenerate graph. For k > d, do we have diam $(R^k(G)) = O(n^2)$?

Question 2

If $R^k(G)$ is connected, can we have a non-linear lower bound on $diam(R^k(G))$?

Question 3

Are there other arguments than frozen colorings to prove that $R^k(G)$ is disconnected?

Thank you!