Описательная документация информационной системы по контролю за проектами нормативных правовых актов LEGISFLOW.TECH (MVP)

1. Введение

LEGISFLOW.TECH – автоматизированная система мониторинга и анализа законопроектов, предназначенная для упрощения работы юристов и повышения их эффективности. Система собирает данные с государственных порталов, анализирует их и предоставляет пользователям персонализированные уведомления о важных изменениях в законодательстве.

2. Обоснование выбора технологий

2.1. Язык программирования: Python

Обоснование выбора:

- Широкая экосистема библиотек для парсинга и обработки текстов
- Простота интеграции с различными АРІ
- Поддержка асинхронного программирования
- Большое сообщество разработчиков и обширная документация
- Кроссплатформенность

2.2. Основные библиотеки и фреймворки

Для парсинга данных:

- Selenium: Автоматизация взаимодействия с динамическими веб-страницами Обоснование:

Данная библиотека обеспечивает надежный сбор информации даже с защищенных или динамически формируемых страниц государственных порталов.

Для работы с документами:

- -Pymypdf: Извлечение текста из PDF-документов
- striprtf: Обработка документов формата rft

Обоснование:

Государственные порталы публикуют законопроекты преимущественно в этих форматах, что делает данные библиотеки необходимыми.

Для работы с базой данных:

- sqlite3 – для работы с СУБД

Обоснование:

Sqlite3 был выбран как надежная реляционная СУБД, что критично для работы с законодательными документами.

Для реализации Telegram-бота:

- Aiogram: Асинхронный фреймворк для Telegram API

Обоснование:

Aiogram предоставляет удобный интерфейс для работы с Telegram Bot API и поддерживает асинхронную модель программирования.

2.3. База данных: SQLite Обоснование выбора:

- Надежность и отказоустойчивость
- Возможность масштабирования
- Простота использования
- Бесплатная лицензия

2.4. Хостинг: RuVDS

Обоснование выбора:

- Простота развертывания Python-приложений
- Гибкость в настройке расписания задач
- Доступная стоимость
- Надежная инфраструктура

3. Архитектура системы

3.1. Компоненты системы

- 1. Модуль сбора данных:
 - Реализован на Python с использованием selenium
- Запускается по расписанию (каждые 12 часов)
- Сохраняет сырые данные в базу
- 2. Модуль обработки:
 - Анализирует и структурирует полученные данные
 - Применяет фильтры по ключевым словам
 - Генерирует краткие сводки
- 3. Модуль уведомлений:
 - Отправляет персонализированные сообщения через Telegram
 - Формирует ежедневные/еженедельные отчеты
- 4. База данных:
 - Хранит все собранные законопроекты
 - Сохраняет пользовательские настройки и фильтры

3.2. Взаимодействие компонентов

[Гос. порталы] \rightarrow [Парсер] \rightarrow [База данных] \rightarrow [Анализатор] \rightarrow [Тelegram-бот] \rightarrow [Пользователь]

4. Особенности реализации

4.1. Обработка различных форматов документов

Система поддерживает:

- PDF-документы (обработка через Pymypdf)
- RTF-файлы (чтение через striprtf)

4.2. Механизм фильтрации

Реализована многоуровневая фильтрация:

- 1. По ключевым словам (точное соответствие)
- 2. По категориям законодательства
- 3. По дате публикации
- 4. По статусу законопроекта

4.3. Система уведомлений

Особенности:

- Персонализированные настройки для каждого пользователя
- Гибкое расписание отправки
- Разные форматы уведомлений (краткие/подробные)

5. Заключение

Выбранный стек технологий обеспечивает:

- Надежность работы системы
- Простоту дальнейшего развития
- Хорошую производительность
- Удобство сопровождения и модификации

Все компоненты системы имеют открытые лицензии, что делает решение экономически эффективным и не создает юридических рисков.