STBC, STLC Algorithm

2021/05/28 김상유

Space Time Code

- Spatial Diversity : Multiple Channel Gain
- Time Diversity : Consecutive Time Transmission

TX : RX = 2 : 1

STBC(Space Time Block Code)

CSI(Channel State/Status Information) : 통신 채널에 대한 상태 정보

Pilot으로 Channel estimation

TX : RX = 1 : 2

STLC(Space Time Line Code)

Space Time Code

- Spatial Diversity parameter

안테나 개수

TX : M 개

RX : N 개

MN spatial channel

 $\alpha = MN$ 으로 정의

채널을 표시할 때,

$$h_{(m-1)(N+n)}$$
TX m번째 RX n번째 안테나 안테나

- lpha spatial channel gain의 합

$$\frac{\gamma_{\alpha}}{\gamma_{\alpha}} = \sum_{m=1}^{M} \sum_{n=1}^{N} \left| h_{(m-1)(N+n)} \right|^{2}$$

$$\frac{1}{\gamma_{\alpha}} = \sum_{m=1}^{M} \sum_{n=1}^{N} \left| h_{(m-1)(N+n)} \right|^{2}$$

Space Time Block Code(STBC)

1. TX Signal

	antenna 0	antenna 1
time t	80	s ₁₀
time $t + T$	-s ₁ *	*02

2. RX Signal

- RX Signal 처리 순서

Space Time Block Code(STBC)

T = symbol duration

STBC(Space Time Block Code)

가정

$$r_0 = r(t)$$
 Channel $r_1 = r(t+T)$ estimator

$$h_0(t) = h_0(t+T) = 0.0$$
 $h_1(t) = h_1(t+T) = 0.0$

$$\frac{1}{1}$$
 大树 蜓位 \Rightarrow $\frac{1}{1}$ $\frac{1$

$$\Gamma = \begin{bmatrix} r_{1,1} \\ r_{1,2}^* \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} h_1 & h_2 \\ h_2^* - h_1^* \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} z_{1,1} \\ z_{1,2}^* \end{bmatrix} \stackrel{\triangle}{=} \frac{1}{\sqrt{2}} H_{0,2}, z_0 + Z$$
 orthogonal
$$H^{\text{H}} + I$$

$$r = \begin{bmatrix} h_1 & h_2 \\ \vdots & \vdots & \vdots \\ 1 & \vdots & \vdots \end{bmatrix}$$

covariance:
$$\mathrm{E}[z'(z')^H] = \gamma_2 \sigma_z^2 \mathbf{I}_2$$
.

$$H_{(1,2)}^{H} \Gamma = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} \Gamma_{1,1} \\ \Gamma_{1,2}^* \end{bmatrix} \stackrel{\triangle}{=} \frac{V_2}{\sqrt{2}} I_2 Z + H_{(1,2)}^{H} Z \Rightarrow Z' + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} Z + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} Z + \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} Z + \frac{1}{2} \frac{1$$

Space Time Line Code(STLC)

1. TX Signal

- TX Signal 처리 순서

STLC(Space Time Line Code)

RX에서 보낸 pilot

Channel estimator

 $C_{(1,2)}$ x_0, x_1

Encoding Scheme

 s_0 , s_1 전송

$$\begin{bmatrix} s_1^* \\ s_2 \end{bmatrix} = C_{(1,2)} \begin{bmatrix} x_1^* \\ x_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2 \end{bmatrix}$$

	Tx time $t = 1$	Tx time $t = 2$
Tx antenna 1	$s_1 = h_1^* x_1 + h_2^* x_2^*$	$s_2 = h_2^* x_1^* - h_1^* x_2$

2. RX Signal

	Rx time $t = 1$	Rx time $t=2$
Rx antenna 1	$r_{1,1}$	$r_{1,2}$
Rx antenna 2	$r_{2,1}$	$r_{2,2}$

- RX Signal 처리 순서

T=1시점에서 받은 신호 $\Rightarrow r_{1,1}r_{1,2}$ T=2시점에서 받은 신호 $\Rightarrow r_{2,1}r_{2,2}$ Decoding Scheme

 $\widetilde{x_0}$, $\widetilde{x_1}$

ML detector

 x_0 , x_1

Space Time Line Code(STLC)

C(1,2) = H(1,2) 와 공항하게 다 한 경 .

STLC(Space Time Line Code)

Encoding
$$s_0$$
, s_1 전송

$$s_0$$
 , s_1 전송
$$\begin{bmatrix} s_1^* \\ s_2 \end{bmatrix} = \begin{bmatrix} c_{(1,2)} \\ c_{(1,2)} \\ c_{(1,2)} \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2 \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2 \end{bmatrix}$$

$$\frac{S_1^* = h_1 x_1^* + h_2 x_2}{S_2 = h_2^* x_1^* - h_1^* x_2} \Rightarrow S_1 = h_1^* x_1 + h_2^* x_2^*$$

RX Signal => Time 2번, Antenna 2개
=> 총 4개의 신호
=>
$$r_{1,1}r_{1,2}, r_{2,1}r_{2,2}$$

 $\begin{bmatrix} r_{1,1} & r_{1,2} \\ r_{3,1} & r_{1,2} \end{bmatrix} = \frac{1}{\sqrt{r_{3}}} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} \begin{bmatrix} S_{1} & S_{2} \end{bmatrix} + \begin{bmatrix} g_{1,1} & g_{2,1} \\ g_{3,1} & g_{3,n} \end{bmatrix}$
= $\frac{1}{\sqrt{r_{3}}} \begin{bmatrix} S_{1}h_{1} & S_{2}h_{1} \\ S_{1}h_{2} & S_{3}h_{3} \end{bmatrix}$

$$\Gamma_{1,1} = \frac{1}{\sqrt{Y_2}} h_1 S_1 + Z_{1,1} = \frac{1}{\sqrt{Y_2}} h_1 h_1^* Z_1 + h_2^* Z_2^* + Z_{1,1}$$

$$\Gamma_{1,2} = \frac{1}{\sqrt{Y_2}} h_1 S_2 + Z_{1,2} = \frac{1}{\sqrt{Y_2}} h_1 h_2^* Z_1^* - h_1^* Z_2 + Z_{1,2}$$

$$\Gamma_{2,1} = \frac{1}{\sqrt{Y_2}} h_2 S_1 + Z_{2,1} = \frac{1}{\sqrt{Y_2}} h_2 h_1^* Z_1 + h_2^* Z_2^* + Z_{2,1}$$

$$\Gamma_{2,12} = \frac{1}{\sqrt{Y_2}} h_2 S_2 + Z_{2,2} = \frac{1}{\sqrt{Y_2}} h_2 h_2^* Z_1^* - h_1^* Z_2 + Z_{2,2}$$
Of of the first of the firs

Space Time Line Code(STLC)

	STLC encoding	Decoding function	f(a,b) = a + b	
	matrices	for \tilde{x}_1	for \tilde{x}_2	
	$C_{(1,2)}^a = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix}$	$f(r_{1,1}^*, r_{2,2})$	$f(r_{2,1}^*, -r_{1,2})$	
	$C_{(1,2)}^b = \begin{vmatrix} h_1 & h_2 \\ -h_2^* & h_1^* \end{vmatrix}$	$f(r_{1,1}^*, -r_{2,2})$	$f(r_{2,1}^*, r_{1,2})$	
$oldsymbol{C}_{(1,2)}$	$C_{(1,2)}^c = \begin{bmatrix} h_2^* & h_1^* \end{bmatrix}$	$f(r_{1,1}^*, r_{2,2})$	$f(-r_{2,1}^*, r_{1,2})$	
	$m{C}^d_{(1,2)} = \left[egin{array}{ccc} -h_1 & h_2 \\ h_2^* & h_1^* \end{array} ight]$	$f(-r_{1,1}^*, r_{2,2})$	$f(r_{2,1}^*, r_{1,2})$	
Type	Encoding s_1 and s_2	Decoding for \tilde{x}_1	Decoding for \tilde{x}_2	
1	$\begin{bmatrix} s_1^* \\ s_2^* \end{bmatrix} = C_{(1,2)} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	$f(\cdot,\cdot)$	$f(\cdot,\cdot)$	
2	$\begin{bmatrix} s_1^* \\ s_2 \end{bmatrix} = C_{(1,2)} \begin{bmatrix} x_1^* \\ x_2 \end{bmatrix}_{t_1}$	$f^*(\cdot,\cdot)$	$f(\cdot,\cdot)$	
3	$\left[egin{array}{c} s_1^* \ s_2 \end{array} ight] = oldsymbol{C}_{(1,2)} \left[egin{array}{c} x_1^* \ x_2^* \end{array} ight]$	$f(\cdot,\cdot)$	$f^*(\cdot, \cdot)$	
4	$\begin{bmatrix} s_1^* \\ s_2^* \end{bmatrix} = C_{(1,2)} \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix}$	$f^*(\cdot, \cdot)$	$f^*(\cdot, \cdot)$	
5	$\left[egin{array}{c} s_1^s \\ s_2^* \end{array} ight] = oldsymbol{C}^*_{(1,2)} \left[egin{array}{c} x_1 \\ x_2 \end{array} ight]$	$f^*(\cdot, \cdot)$	$f^*(\cdot, \cdot)$	
6	$\left[egin{array}{c} s_1^* \ s_2^* \end{array} ight] = oldsymbol{C}^*_{(1,2)} \left[egin{array}{c} x_1^* \ x_2^* \end{array} ight]$	$f(\cdot,\cdot)$	$f^*(\cdot, \cdot)$	
7	$\left[egin{array}{c} s_1 \ s_2^* \end{array} ight] = oldsymbol{C}_{(1,2)}^* \left[egin{array}{c} x_1 \ x_2^* \end{array} ight]$	$f^*(\cdot, \cdot)$	$f(\cdot, \cdot)$	
8	$\left[egin{array}{c} s_1\ s_2^* \end{array} ight] = oldsymbol{C}_{(1,2)}^* \left[egin{array}{c} x_1^*\ x_2^* \end{array} ight]$	$f(\cdot,\cdot)$	$f(\cdot,\cdot)$	
9	$\left[egin{array}{c} s_1^* \\ s_2^* \end{array} ight] = -oldsymbol{C}_{(1,2)}\left[egin{array}{c} x_1 \\ x_2 \end{array} ight]$	$-f(\cdot,\cdot)$	$-f(\cdot,\cdot)$	
10	$\begin{bmatrix} s_1^* \\ s_2 \end{bmatrix} = -C_{(1,2)} \begin{bmatrix} x_1^* \\ x_2 \end{bmatrix}$	$-f^*(\cdot,\cdot)$	$-f(\cdot,\cdot)$	
11	$\begin{bmatrix} s_1^* \\ s_2^* \end{bmatrix} = -C_{(1,2)} \begin{bmatrix} x_1 \\ x_2^* \end{bmatrix}$	$-f(\cdot,\cdot)$	$-f^*(\cdot,\cdot)$	
12	$\begin{bmatrix} s_1^* \\ s_2^* \end{bmatrix} = -C_{(1,2)} \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix}$	$-f^*(\cdot, \cdot)$	$-f^*(\cdot,\cdot)$	
13	$\left[egin{array}{c} s_1 \ s_2^* \end{array} ight] = -oldsymbol{C}^*_{(1,2)} \left[egin{array}{c} x_1 \ x_2 \end{array} ight]$	$-f^*(\cdot,\cdot)$	$-f(\cdot,\cdot)^*$	
14	$\begin{vmatrix} s_1^{s_1} \\ s_2^{*} \end{vmatrix} = -C_{(1,2)}^{*} \begin{vmatrix} x_1^{*} \\ x_2^{*} \end{vmatrix}$	(67A.)	$-f^*(\cdot,\cdot)$	
15	$\left[\left[\left$	$-f^*(\cdot, \cdot)$	$-f(\cdot, \cdot)$	
16	$\left[egin{array}{c} s_1 \ s_2^* \end{array} ight] = -oldsymbol{C}^*_{(1,2)} \left[egin{array}{c} x_1 \ x_2^* \end{array} ight]$	$-f(\cdot,\cdot)$	$-f(\cdot,\cdot)$	

		STLC encoding	Decoding function: $f(a, b) = a + b$	
		matrices	for \tilde{x}_1	for \tilde{x}_2
	7	$C^a_{(1,2)} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix}$	$f(r_{1,1}^*, r_{2,2})$	$f(r_{2,1}^*, -r_{1,2})$
		$oldsymbol{C}^b_{(1,2)} = \left[egin{array}{ccc} h_1 & h_2 \ -h_2^* & h_1^* \end{array} ight]$	$f(r_{1,1}^*, -r_{2,2})$	$f(r_{2,1}^*, r_{1,2})$
	$C_{(1,2)}$	$oldsymbol{C}^c_{(1,2)} = \left[egin{smallmatrix} h_1 & -h_2 \ h_2^* & h_1^* \end{smallmatrix} ight]$	$f(r_{1,1}^*, r_{2,2})$	$f(-r_{2,1}^*, r_{1,2})$
		$oldsymbol{C}_{(1,2)}^d = \left[egin{array}{cc} -h_1 & h_2 \ h_2^* & h_1^* \end{array} ight]$	$f(-r_{1,1}^*, r_{2,2})$	$f(r_{2,1}^*, r_{1,2})$
	Type	Encoding s_1 and s_2	Decoding for \tilde{x}_1	Decoding for \tilde{x}_2
	1	$\left[egin{array}{c} s_1^* \\ s_2^* \end{array} ight] = oldsymbol{C}_{(1,2)} \left[egin{array}{c} x_1 \\ x_2 \end{array} ight]$	$f(\cdot,\cdot)$	$f(\cdot,\cdot)$
~	/ 2	$\left[egin{array}{c} s_1^* \ s_2^* \end{array} ight] = oldsymbol{C}_{(1,2)} \left[egin{array}{c} x_1^* \ x_2^* \end{array} ight]$	$f^*(\cdot, \cdot)$	$f(\cdot, \cdot)$
		Rine		

Space Time Block Code(STBC)

FIGURE 4. BER performance comparison of coherent BPSK with 1 \times 2 MRC, 2 \times 1 MRT, 2 \times 1 STBC, and 1 \times 2 STLC during Rayleigh fading.

 σ_x^2/σ_z^2 dB

 \rightarrow STLC (1Tx,2Rx)

 10^{-6}

THANK-YOU

For watching my presentation