Artificial Neural Network

- Pelatihan ANN di RC-OPPINET ITB
- ·Sri Kusumadewi, Artificial Intelligence (Teknik dan Aplikasinya).
- Perkuliah ANN Elektro ITB

ANN

- Model komputasi yang terinspirasi dari nuerological model brain/otak.
- Otak manusia bekerja dengan cara yang berbeda dibandingkan komputer digital.
 - highly complex, nonlinear, and parallel computing
 - many times faster than d-computer in
 - · pattern recognition, perception, motor control
 - has great structure and ability to build up its own rules by experience
 - dramatic development within 2 years after birth
 - continues to develop afterward
 - Language Learning Device before 13 years old
 Plasticity: ability to adapt to its environment

Jaringan Syaraf Biologi

- Struktur otak manusia sangat komplek
- Otak manusia terdiri dari sel-sel syaraf (neuron) dan penghubung (sinapsis)
- Neuron bekerja berdasarkan impuls/sinyal yang diberikan padanya, dan diteruskan ke neuron lainnya.

Kemampuan otak

Diantaranya :

- Mengenali pola
- Melakukan perhitungan
- Mengontrol organ-organ tubuh semuanya dilakukan dengan kecepatan tinggi dibandingkan komputer digital.

Contoh:

Pengenalan wajah seseorang yang sedikit berubah (memakai topi, jenggot tambahan).

Biological Neuron

Excerpted from *Artificial Intelligence: Modern Approach* by S. Russel and P. Norvig LSR, AI: IK103 12/11/2009

Komponen Penting Neuron

Dendrit

 Menerima sinyal kimia listrik dari neuron lain

Soma

- Menjumlahkan semua sinyal yang masuk
- Jika hasil penjumlahan sinyal cukup kuat atau melebihi threshold, sinyal akan diteruskan ke sel lain melalui axon

Axon

 Mengirimkan sinyal ke neuron lain

Koneksi Antar Neuron

- Pengiriman sinyal / informasi terjadi pada sinapsis
- Sinapsis memperkuat atau memperlemah sinyal yang hendak dikirimkan

Jaringan Syaraf Tiruan

- Sistem Pemrosesan informasi dengan karakteristik menyerupai jaringan syaraf biologi.
- Dibentuk sebagai generalisasi model matematika dari jaringan syaraf biologi.
- Asumsi pada model:
 - Pemrosesan informasi terjadi pada neuron.
 - Sinyal dikirimkan antar neuron melalui penghubung.
 - Penghubung antar neuron memiliki bobot yang akan memperkuat atau memperlemahkan sinyal.
 - Untuk menentukan output, setiap neuron menggunakan fungsi aktivasi, yang menentukan sinyal diteruskan ke neuron lain atau tidak.

Definisi Neural Network

- Machine designed to model the way in which brain performs tasks
 - implemented by electronic devices and/or software (simulation)
 - Learning is the major emphasis of NN
- Massively parallel distributed processor
 - massive interconnection of simple processing units
 - simple processing units store experience and make it available to use
 - knowledge is acquired from environment thru learning process
- Learning Machine
 - modify synaptic weights to obtain design objective
 - modify own topology neurons die and new one can grow
- Connectionist network connectionism

Human Brain

Human nervous system

- 10¹¹ neurons in human cortex
- 60 x 10¹² synaptic connections
- 10⁴ synapses per neuron
- 10⁻³ sec cycle time (computer: 10⁻⁹ sec)
- energetic efficiency: 10⁻¹⁶ joules operation per second

Human Brain

- Neuron structure
 - nucleus, cell body, axon, dendrite, synapses
- Neurotransmission
 - Neuron's output is encoded as a series of voltage pulses
 - called action potentials or spikes
 - by means of electrical impulse effected by chemical transmitter
 - Period of latent summation
 - generate impulse if total potential of membrane reaches a level : firing
 - excitatory r inhibitory

Models of Neuron

- Neuron is information processing unit
- A set of synapses or connecting links
 - characterized by weight or strength
- An adder
 - summing the input signals weighted by synapses
 - a linear combiner
- An activation function
 - also called squashing function
 - squash (limits) the output to some finite values

Biological Neuron

Excerpted from *Artificial Intelligence: Modern Approach* by S. Russel and P. Norvig LSR, AI: IK103 12/11/2009

Sejarah Jaringan Syaraf Tiruan

- JST sederhana pertama kali diperkenalkan oleh McCulloh dan Pitts tahun 1943.
 - Menyimpulkan bahwa kombinasi beberapa neuron sederhana menjadi sebuah sistem neuron akan meningkatkan kemampuan komputasinya.
 - Bobot dalam jaringan diatur untuk melakukan fungsi logika sederhana
 - Fungsi aktivasi yang digunakan adalah fungsi threshold.
- Tahun 1958, Rosenblatt memperkenalkan model jaringan perceptron
 - Terdapat metode pelatihan untuk mengoptimalkan hasil iterasi.

Sejarah JST (2)

- Widrow dan Hoff (1960) mengembangkan perceptron dengan memperkenalkan aturan pelatihan jaringan (ADALINE = adative Linear Neuron).
 - Disebut aturan delta (kuadrat rata-rata terkecil)
 - Mengubah bobot perceptron apabila keluaran yang dihasilkan tidak sesuai dengan target yang diinginkan.
- Apa yang dilakukan peneliti sebelumnya hanya menggunakan single layer.
- Rumelhart (1986) mengembangkan perceptron menjadi backpropagation.
 - Jaringan di proses menjadi beberapa layer.

Aplikasi JST

- Pengenalan pola (pattern recognition)
 - Mengenal huruf, angka, suara, tanda tangan.
 - Menyerupai otak manusia yang masih mampu mengenali orang sudah beberapa lama tidak dijumpai (wajah/bentuk tubuh sedikit berubah)
- Pengolahan signal
 - Menekan noise dalam saluran telepon
- Peramalan (forecasting)
 - Meramal kejadian masa datang berdasarkan pola kejadian yang ada di masa lampau.
 - JST mampu mengingat dan membuat generalisasi dari apa yang sudah ada sebelumnya.

Kelebihan dan Kekurangan JST

Kelebihan :

Banyak hal/aplikasi yang dapat dilakukan oleh JST.

Kekurangan:

- Ketidak akuratan hasil yang diperoleh.
- Bekerja berdasarkan pola yang terbentuk pada inputnya.
- Membutuhkan data pelatihan yang banyak.

Komponen ANN

- Input: data masukan beserta bobotbobotnya.
- Summation(Σ): menjumlahkan semua hasil perkalian nilai dengan bobotnya.
- Fungsi aktifasi: sebagai penentuan nilai ambang, jika terpenuhi maka signal diteruskan.
- Output: hasil dari komputasi.

Nonlinear model of a neuron

$$\mathbf{y}_{k} = \sum_{i=1}^{m} \mathbf{w}_{kj} \mathbf{x}_{j} + \mathbf{b}_{k} \qquad \mathbf{y}_{k} = \boldsymbol{\varphi}(\mathbf{v}_{k})$$

Ilustrasi Processing Unit ANN

Processing Unit ANN (cont'd)

- Input: data masukan dari processing unit sebelumnya atau dari luar.
- Bobot(weight): derajat pengaruh nilai input pada processing unit.
- Summation: weighted sum dari nilai input.

$$\sum w_{ij}x_{ij}$$

- Nilai ambang(threshold value): jika weighted sum melebihi nilai threshold maka signal akan ditransmisikan.
- Ouput: signal yang keluar lewat axon.

Proses Pembelajaran ANN

- Pembelajaran terawasi: jika output yang diharapkan telah diketahui sebelumnya.
- Pembelajaran tak terawasi: tidak memerlukan/tidak dapat ditentukan target output.

Pembelajaran Terawasi(supervised learning)

- McCulloch dan Pitts (penemu)
- Hebb Rule.
- Perceptron.
- Delta rule. (ADALINE = Adative Linear Neuron)
- Backpropagation.
- Heteroassociative Memory.
- Bidirection Associative Memory (BAM).
- Learning Vector Quantization (LVQ).

Pembelajaran tak terawasi (Unsupervised Learning)

Jaringan Kohonen

0. McCulloch dan Pitts

- Model JST pertama pada tahun 1943
- Menyimpulkan bahwa kombinasi beberapa neuron sederhana menjadi suatu sistem neuron dapat meningkatkan kemampuan komputasi.
- Digunakan untuk melakukan fungsi logika sederhana.
- Banyak prinsipnya yang masih digunakan pada JST saat ini.

Karakteristik McCulloch-Pitts

Karakteristik model neuron McCulloch-Pitts:

- Fungsi aktivasi neuron dalam biner
 - Neuron meneruskan sinyal : aktivasi bernilai 1
 - Neuron tidak meneruskan sinyal : aktivasi bernilai 0
- Setiap neuron pada jaringan dihubungkan dengan jalur terarah yang memiliki bobot tertentu
 - Jika bobot jalur bernilai positif, jalur diperkuat
 - Jika bobot jalur bernilai negatif, jalur diperlemah

Fungsi aktivasi unit Y:

f(net)=1, if net >= 0, else 0

Dimana:

- net adalah total sinyal input = X1w1+X2w2+X3w3
- θ adalah nilai threshold Y

Karakteristik McCulloch-Pitts

- Seluruh jalur bernilai positif yang terhubung ke neuron tertentu, memiliki bobot sama
 - Bobot koneksi yang berbeda dapat terhubung ke neuron lain
 - Setiap neuron memiliki nilai threshold tetap
- Jika net input ke neuron lebih besar dari threshold, neuron akan meneruskan sinyal (fire)
 - Threshold di-set sedemikian sehingga setiap masukan yang memperlemah akan mencegah neuron meneruskan sinyal

- Ditentukan θ = 4
- net = 2.X1 + 2.X2 + (-1).X3
- f(net)=1, if $net >= \theta$, else 0

Jaringan dapat meneruskan sinyal (*fire*) jika masukan X1 dan X2 bernilai 1 dan X3 bernilai nol

A. Hebb Rule

- Metode pembelajaran paling sederhana.
- Untuk menghitung nilai logika.
- Pembelajaran dengan cara memperbaiki nilai bobot yaitu bobot dinaikkan jika terdapat 2 neuron yang terhubung dan keduanya pada kondisi "on" pada saat yang sama.

$$w_i(baru) = w_i(lama) + x_i * y$$

w_i= bobot pada input ke-i.

 $x_i = input data ke-i$

y = output data

Contoh kasus

Misalkan kita ingin membangun jaringan dengan kriteria sbb:

Input		Bias	Target/Out put
x 1	X2		put
-1	-1	1	-1
-1	1	1	1
1	-1	1	1
1	1	1	1

Bobot awal dan bobot bias = 0

Arsitektur Jaringan

Langkah:

- Hitung perubahan bobot untuk tiap data input.
- Lakukan iterasi sebanyak data input.
- Lakukan testing/pengujian.

Komputasi Hebb Rule

Perubahan bobot: w1 = wawal + x1*y1

Data ke-1

$$w1=0+(-1)(-1)=1$$

 $w2=0+(-1)(-1)=1$
 $b=0+(1)(-1)=-1$

Data ke-2

$$w1=1+(-1)(1)=0$$

 $w2=1+(1)(1)=2$
 $b=-1+(1)(1)=0$

Data ke-3

$$w1 = 0 + (1)(1) = 1$$

 $w2 = 2 + (-1)(1) = 1$
 $b = 0 + (1)(1) = 1$

Data ke -4

w1 = 1 + (1)(1) = 2

$$b = 1 + (1)(1) = 2$$

Pengujian:

Misal ambil data x=[-1,-1]

Maka

$$Y = 1*b + x1*w1 + x2*w2$$
$$Y = 2 + (-1*2) + (-1*2) = -2$$

Berdasarkan fungsi aktifasi maka

$$f(y_in) = \begin{cases} -1, \ y_in < 0 \\ 1, \ y_in \ge 0 \end{cases}$$

Target yang dihasilkan = -1 (cocok).

LSR, AI: IK103 12/11/2009

B Perceptron

- Jaringan perceptron menyerupai arsitektur jaringan Hebb.
- Diperkenalkan oleh Rosenblatt (1962) dan Minsky-Papert(1969).
- Model dengan aplikasi dan pelatihan yang terbaik pada masa tersebut.

Arsitektur Jaringan

- Jaringan satu layer
 - Beberapa neuron masukan dihubungkan langsung dengan sebuah neuron keluaran
 - Ditambah satu buah bias
- Fungsi aktivasi memiliki nilai -1, 0 dan 1

$$f(net) = \begin{cases} 1, net > \theta \\ 0, -\theta \le net \le \theta \\ -1, net < -\theta \end{cases}$$

Pelatihan Perceptron

Algoritma pelatihan

- Inisialisasi semua bobot, bias dan learning rate
 - $w_i = 0$ (i=1, ..., n), b=0, learning rate = nilai antara 0 s/d 1
- Selama ada elemen masukan s yang keluarannya tidak sama dengan target t, lakukan
 - Set aktivasi unit masukan : x_i = s_i (i=1, ..., n)
 - Hitung respon unit keluaran net dan y = f(net)
 - Bila y ≠ t, perbaiki bobot dan bias menurut persamaan :

```
w_i(baru)=w_i(lama)+delta\ w\ (i=1, ..., n),

dimana\ delta\ w=\alpha t\ x_i

b(baru)=b(lama)+\alpha\ t
```

Pelatihan Perceptron

- Iterasi dilakukan terus menerus hingga seluruh keluaran sama dengan target yang ditentukan
 - Jaringan sudah memahami pola
 - Pada Hebb, iterasi berhenti setelah semua pola dimasukkan
- Perubahan bobot hanya dilakukan bila keluaran jaringan tidak sama dengan target
 - Yaitu bila y = f(net) ≠ t
- Kecepatan iterasi ditentukan oleh laju pemahanan (learning rate, α)
 - Umumnya, 0 < α < 1
 - Semakin besar α, semakin sedikit iterasi yang diperlukan
 - Bila α terlalu besar dapat merusak pola yang sudah benar dan mengakibatkan pemahaman menjadi lama
- Satu siklus pelatihan yang melibatkan semua pola disebut epoch
 - Pada Hebb, pelatihan hanya dilakukan dalam satu epoch saja

Kelebihan Perceptron

- Seluruh pola yang dimasukkan dibandingkan dengan target yang sesungguhnya
 - Jika terdapat perbedaan, maka bobot akan dimodifikasi
 - Bobot tidak selalu dimodifikasi pada setiap iterasi
- Modifikasi bobot menggunakan laju pemahaman yang nilainya dapat diatur
 - Modifikasi bobot tidak hanya ditentukan oleh perkalian antara target dan masukan saja
- Pelatihan dilakukan secara terus menerus hingga jaringan dapat mengerti pola yang ditentukan
 - Teorema konvergensi perceptron menyatakan bahwa apabila ada bobot yang tepat, maka proses pelatihan akan konvergen ke bobot yang tepat tersebut

Kasus 1: Fungsi Logika

Kasus :

- Buat perceptron yang dapat menyatakan fungsi logika AND
- \rm Representasi masukan/keluaran yang digunakan :
 - A. Masukan dan keluaran bipolar (-1 atau 1)
 - B. Masukan biner (0 atau 1) dan keluaran bipolar (-1 atau 1)

Inisialisasi :

- Bobot dan bias awal w_i = 0, b = 0
- Learning rate α = 1 (penyederhanaan)
- Threshold θ = 0

A. Representasi Bipolar

Tabel masukan dan target fungsi logika AND:

	Target					
x1	x1 x2 bias					
1	1	1	1			
1	-1	1	-1			
-1	1	1	-1			
-1	-1	1	-1			

Masukan bipolar dan target bipolar

Arsitektur jaringan Perceptron:

Fungsi aktivasi untuk $\theta = 0$:

$$y = f(net) = \begin{cases} 1, net > 0 \\ 0, net = 0 \\ -1, net < 0 \end{cases}$$

Epoch Pertama (Bipolar)

Ι.	1asuka	asukan Target		Keluaran		Perubahan Bobot			Bobot Baru		
x1	x2	bias	t	net	f(net)	dw1	dw2	db	w1	w2	b
									0	0	0
1	1	1	1	0	0	1	1	1	1	1	1
1	-1	1	-1	1	1	-1	1	-1	0	2	0
-1	1	1	-1	2	1	1	-1	-1	1	1	-1
-1	-1	1	-1	٦	-1	0	0	0	1	1	-1

$$net = \sum_{i=1}^{2} x_i w_i + b$$

$$y = f(net) = \begin{cases} 1, net > 0 \\ 0, net = 0 \\ -1, net < 0 \end{cases}$$

 $w_i(baru) = w_i(lama) + \alpha t x_i$ $b(baru) = b(lama) + \alpha t$

- Epoch pertama terdiri dari empat iterasi
- Pada iterasi pertama-ketiga, keluaran y = f(net) tidak sama dengan target → bobot diubah.
- Pada iterasi keempat, nilai f(net) = -1 yang sama dengan target → bobot tidak diubah.
- ♣ Pada epoch pertama, belum seluruh f(net) sama dengan target → iterasi dilanjutkan pada epoch kedua

Epoch Kedua (Bipolar)

Ι.	1asuka	n	Target	Keluaran		Perubahan Bobot			Bobot Baru		
x1	x2	bias	t	net	f(net)	dw1	dw2	db	w1	w2	b
									1	1	-1
1	1	1	1	1	1	0	0	0	1	1	-1
1	-1	1	-1	-1	-1	0	0	0	1	1	-1
-1	1	1	-1	-1	-1	0	0	0	1	1	-1
-1	-1	1	-1	-3	-1	0	0	0	1	1	-1

$$net = \sum_{i=1}^{2} x_i w_i + b$$

$$y = f(net) = \begin{cases} 1, net > 0 \\ 0, net = 0 \\ -1, net < 0 \end{cases}$$

 $b(baru) = b(lama) + \alpha t$

- Bobot awal diperoleh dari epoch pertama
- ♣ Pada setiap iterasi dalam epoch kedua, semua pola f(net) sama dengan target t → tidak dilakukan perubahan bobot
- Jaringan sudah mengenal pola, iterasi dihentikan

Arsitektur Perceptron Diperoleh

Arsitektur jaringan Perceptron:

Masukan bipolar dan target bipolar

Tabel masukan dan target fungsi logika AND :

	Target					
x1	t					
1	1	1	1			
1	-1	1	-1			
-1	1	1	-1			
-1	-1 -1 1					

Fungsi aktivasi untuk $\theta = 0$:

$$y = f(net) = \begin{cases} 1, net > 0 \\ 0, net = 0 \\ -1, net < 0 \end{cases}$$

Pengenalan Pola Karakter

- Pengenalan pola karakter menggunakan perceptron
 - Pola masukan menyerupai huruf alfabet
 - Perceptron hendak dilatih untuk mengenal pola tersebut
- Algoritma pengenalan karakter
 - Nyatakan setiap pola masukan sebagai vektor bipolar yang elemennya adalah tiap titik dalam pola tersebut.
 - Berikan nilai target = 1 jika pola masukan menyerupai huruf yang diinginkan. Jika tidak, beri nilai target = -1.
 - Tentukan inisialisasi bobot, bias, learning rate dan threshold
 - Lakukan proses pelatihan perceptron

Kasus 2: Pengenalan Karakter

Pengenalan sebuah pola karakter

- Diketahui 6 buah pola masukan seperti pada slide berikut
- Buat model perceptron untuk mengenali pola menyerupai huruf "A"

Representasi Kasus

- Setiap karakter pola dianggap sebagai sebuah unit masukan
 - Karakter "#" diberi nilai 1, karakter "." diberi nilai -1
 - Pembacaan pola dilakukan dari kiri ke kanan, dimulai dari baris paling atas

1	•	•	#	#			•		-1	-1	1	1	-1	-1	-1
2				#					-1	-1	-1	1	-1	-1	-1
3				#				\rightarrow	-1	-1	-1	1	-1	-1	-1
4		•	#		#		•		-1	-1	1	-1	1	-1	-1
5		•	#		#		•		-1	-1	1	-1	1	-1	-1
6		#	#	#	#	#	•		-1	1	1	1	1	1	-1
7		#				#			-1	1	-1	-1	-1	1	-1
8		#				#			-1	1	-1	-1	-1	1	-1
9	#	#	#		#	#	#		1	1	1	-1	1	1	1
	1	2	3	4	5	6	7								

- Setiap pola terdiri dari 9 baris dan 7 kolom
 - Perceptron terdiri dari 63 unit masukan (x1 s/d x63) dan sebuah bias bernilai = 1

Representasi Kasus

Target

- Keluaran jaringan bernilai 1 jika diberi masukan menyerupai huruf "A" dan bernilai -1 jika tidak menyerupai huruf "A"
- Pola yang menyerupai huruf "A" adalah pola 1 dan 4.

Pola Masukan	Target
Pola 1	1
Pola 2	-1
Pola 3	-1
Pola 4	1
Pola 5	-1
Pola 6	-1

Arsitektur Perceptron

Perceptron memiliki 63 unit masukan, Sebuah bias dan sebuah unit keluaran

- Asumsi parameter :
 - Bobot awal = 0
 - Learning rate α = 1
 - Threshold $\theta = 0.5$
- Pelatihan dilakukan dengan memasukkan seluruh pola huruf
- Hitung

net =
$$\sum_{i=1}^{63} x_i w_i + b$$

$$y = f(net) = \begin{cases} 1, & net > 0.5 \\ 0, -0.5 \le net \le 0.5 \\ -1, & net < 0.5 \end{cases}$$

- ♣ Bila f(net) ≠ target, bobot dan bias diubah
- Proses pelatihan terus dilakukan hingga semua keluaran sama dengan target.

Pengenalan Beberapa Karakter

- Pengenalan beberapa pola sekaligus dilakukan dengan menggabungkan beberapa perceptron
 - Terdapat beberapa unit keluaran
- Setiap unit masukan dan bias dihubungkan dengan setiap target
 - Bobot koneksi dari unit x_i ke y_j diberi label w_{ji}
 - Bobot bias diberi label b₁, b₂, ...
 b_m

Algoritma Pelatihan

- Algoritma pelatihan perceptron untuk pengenalan beberapa pola :
 - Nyatakan tiap pola masukan sebagai vektor bipolar yang elemennya adalah tiap titik dalam pola tersebut
 - Berikan nilai target t_j = 1 jika pola masukan menyerupai huruf yang diinginkan, dan berikan nilai t_j = -1 jika sebaliknya (j=1, 2, ...m)
 - Inisialisasi semua bobot, bias dan learning rate
 - Lakukan proses pelatihan perceptron seperti dibahas sebelumnya
 - Untuk setiap unit keluaran, hitung respon unit keluaran net dan y_i=f(net_i)
 - Perbaiki bobot pola bila respon keluaran tidak sama dengan target $(y_j \neq t_j)$ menurut persamaan

$$w_{ji}(baru)=w_{ji}(lama)+ \alpha t_j x_i$$

 $b_j(baru)=b_j(lama)+ \alpha t_j$

Lakukan proses pelatihan hingga y_i = t_i (j=1, 2, ... m)

Kasus 3: Pengenalan Pola "A B C"

Bila diketahui 6 buat pola masukan seperti pada kasus 2, buat model perceptron untuk mengenali pola menyerupai huruf "A", "B" atau "C".

Arsitektur Perceptron

Arsitektur jaringan perceptron pengenalan pola menyerupai huruf A, B dan C dengan 6 pola masukan

Tabel pasangan pola target

Pola		Target					
Masukan	t1	t2	t3				
Pola 1	1	-1	-1				
Pola 2	-1	1	-1				
Pola 3	-1	-1	1				
Pola 4	1	-1	-1				
Pola 5	-1	1	-1				
Pola 6	-1	-1	1				

Tabel Pelatihan

Mas	Masukan Target Keluaran		uaran	Perubahan Bo	bot	Bobot Baru		
x1- x63	bias	t1-t3	net1- net3	f(net1)- f(net3)	dw11-dw1.63, dw21-dw2.63, dw31-dw3.63	db1- db63	w11-w1.63, w21-w2.63, w31-w3.63	b1- b63
							0000	00

Terdiri dari:

- ♣ 63 unit masukan dan sebuah bias b (x1, x2, ... x63)
- 3 kolom target (t1, t2 dan t3)
- 3 kolom net (net1, net2 dan net3)
- 3 kolom fungsi aktivasi (y1=f(net1), y2=f(net2), y3=f(net3))
- 3*63 kolom perubahan bobot
 - dw11,dw12, ..., dw1.63, dw21, dw22, ... dw2.63, dw31, dw32, ... dw3.63
- 3*63 kolom bobot
 - w11,w12, ...,w1.63, w21, w22, ... w2.63, w31, w32, ... w3.63

C. Perceptron dengan Delta Rule

- Termasuk bentuk jaringan syaraf yang sederhana.
- Jaringan dengan satu layer.

Kasus Awal

Input	t	Outp	Output				
X1	X2	OR	AN D	XO R			
0	0	0	0	0			
0	1	1	0	1			
1	0	1	0	1			
1	1	1	1	0			

- Misalkan ANN akan digunakan untuk melakukan logical AND, OR dan XOR.
- Telah dibangun jaringan neural spt terlihat diatas
- Misalkan bobot diberikan untuk tiap kasus
- Nilai threshold (θ) = 1

$$y = f(\sigma) = \begin{cases} 1, \sigma > 1 \\ 0, \sigma \le 1 \end{cases}$$

Implementasi AND

AND

$$\theta = 1$$

$$y = f(\sigma) = \begin{cases} 1, \sigma > 1 \\ 0, \sigma \le 1 \end{cases}$$

INPUT	σ	OUTPUT
(x1=1, x2=1)	$\sigma = (0.7)(1) + (0.7)(1) = 1.4 > \theta$	1
(x1=0, x2=1)	$\sigma = (0.7)(0) + (0.7)(1) = 0.7 < \theta$	0
(x1=1, x2=0)	$\sigma = (0.7)(1) + (0.7)(0) = 0.7 < \theta$	0
(x1=0, x2=0)	$\sigma = (0.7)(0) + (0.7)(0) = 0.0 < \theta$	0

Implementasi OR

$$\theta = 1$$

$$y = f(\sigma) = \begin{cases} 1, \sigma > 1 \\ 0, \sigma \le 1 \end{cases}$$

$$\frac{x_1}{w_1 = 1.4}$$

$$\frac{x_2}{w_2 = 1.4}$$

INPUT	σ	OUTPUT
(x1=1, x2=1)	$\sigma = (1.4)(1) + (1.4)(1) = 2.8 > \theta$	1
(x1=1, x2=0)	$\sigma = (1.4)(1) + (1.4)(0) = 1.4 > \theta$	1
(x1=0, x2=1)	$\sigma = (1.4)(0) + (1.4)(1) = 1.4 > \theta$	1
(x1=0, x2=0)	$\sigma = (1.4)(0) + (1.4)(0) = 0.0 < \theta$	0

Pertanyaan ????

- Bagaimana kita tahu bobot yang tepat untuk menghasilkan output seperti yg kita inginkan?
 - Dengan training, kita bisa melakukan inisialisasi weight sembarang.
- Bagaimana untuk operasi XOR ?
 - dengan konfigurasi jaringan neural seperti itu (2 layer) tidak akan mendapatkan hasil XOR. Lantas bagaimana cara mendapatkannya ?

Training Phase

- Adalah mengatur kembali besarnya bobot sebagai jawaban atas ketidaktepatan hasil (output).
- Yang dirubah pada training hanyalah bobot, nilai aktivasi/threshold value, susunan input tidak diubah.
- Prinsip training: Besarnya kontribusi link thd error menentukan besarnya perubahaan bobot pada link tsb.

Modifikasi Bobot

- Bobot dimodifikasi sedemikian hingga error yang terjadi minimum
- ♣ Error adalah kuadrat selisih antara target t dan keluaran jaringan y = f(net) :

$$Error = E = (t - f(net))^{2} = \left(t - \left(\sum_{i} x_{i} w_{i} + b\right)\right)^{2}$$

- Error merupakan fungsi dari bobot wi
- Kecepatan penurunan Error :

$$\frac{\partial E}{\partial w_i} = -2\left(t - \left(\sum_i x_i w_i + b\right)\right) x_i = -2(t - y)x_i$$

🖊 Maka perubahan bobot :

$$\Delta w_i = \alpha (t - y) x_i$$

α adalah bilangan positif bernilai kecil (α umumnya = 0,1)

Training Phase (cont'd)

• Gunakan delta rule: $\Delta w_{ij} = c(g_j - a_j)a_i$ Dimana:

```
\Delta w_{ij}: Perubahan bobot pada link antara unit i dan j
```

c: learning constant (konstanta pembelajaran)

 g_j : hasil yang diharapkan dari unit j (target)

 a_j : hasil(ouput) yang didapat dari unit j

a, : hasil(ouput) yand didapat dari unit i

$$\Delta w_{ij} = c(g_j - a_j) \cdot a_i$$

C = konstanta (learning rate), biasanya c = 0.35 berhasil

 g_{j} = nilai target unit j

 a_i = nilai output unit j

 a_i = nilai output unit i

Implementasi Training Menggunakan delta rule

Lakukan Implementasi Ann Dengan Bobot Seperti Pada Gambar Untuk Mendapatkan Target (Or)

 $\theta = 1$

IN	PUT	TARGET	Output
1	1	1	1
1	0	1	0
0	1	1	0
0	0	0	0
		L3R, Al. IK103	12/11/2009

Implementasi Training Menggunakan delta rule

Misal: Parameter
$$c = 0.35$$

 w_{13} dan $w_{23} = 0.7$

$$\Delta w_{ij} = c(g_j - a_j)a_i$$

$$(1,1) \quad --- \rightarrow 1 \qquad \Delta w_{13} = (0.35)(1-1)(1) = 0$$

$$\Delta w_{23} = (0.35)(1-1)(1) = 0$$

Dihasilkan:
$$w_{13} = 0.7 + 0 = 0.7$$

 $w_{23} = 0.7 + 0 = 0.7$

$$g_i$$

$$\Delta w_{ij} = c(g_j - a_j)a_i$$

$$(1,0) \longrightarrow$$

$$(1,0)$$
 $--- \rightarrow 1$ $\Delta w_{13} = (0.35)(1-0)(1) = 0.35$

$$\Delta w_{23} = (0.35)(1-0)(0) = 0$$

$$W_{13} = 0.7 + 0.35 = 1.05$$

$$W_{23} = 0.7 + 0 = 0.7$$

 g_i

$$(0,1) --- \rightarrow 1$$

$$(0.1)$$
 $--- \rightarrow 1$ $\Delta w_{13} = (0.35)(1-0)(0) = 0$

$$\Delta w_{23} = (0.35)(1-0)(1) = 0.35$$

Dihasilkan :

$$W_{13} = 1.05 + 0 = 1.05$$

$$w_{23} = 0.7 + 0.35 = 1.05$$

 g_i

$$(0,0) \longrightarrow 0$$

$$\Delta w_{13} = (0.35)(0-0)(0) = 0$$

$$\Delta w_{23} = (0.35)(0-0)(0) = 0$$

Dihasilkan :

$$W_{13} = 1.05 + 0 = 1.05$$

$$W_{23} = 1.05 + 0 = 1.05$$

Hasil

 $\theta = 1$

- Jadi diperoleh
 - $V_{13} = 1.05$
 - $^{\circ} W_{23} = 1.05$
- Update bobot pada jaringan, lakukan perhitungan

OR

INPUT	σ	OUTPUT
(x1=1, x2=1)	$\sigma = (1.05)(1)+(1.05)(1)=2.1 > \theta$	1
(x1=1, x2=0)	$\sigma = (1.05)(1)+(1.05)(0)=1.05 > \theta$	1
(x1=0, x2=1)	$\sigma = (1.05)(0) + (1.05)(1) = 1.05 > \theta$	1
(x1=0, x2=0)	$\sigma = (1.05)(0)+(1.05)(0)=0.0 < \theta$	0

sesuai dengan target

XOR network dengan 1 Hidden Layer

XOR

XOR				
INPUT		OUTPUT		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

+

	INPUT	σ	OUTPUT
	(x1=1, x2=1)	Input untuk u3: $\sigma 3 = w13.x1+w23.x2$ = (1)(1)+(-1)(1)=0 < θ	Output untuk u3: $y3 = f(\sigma3) = 0$
		Input untuk u4: $\sigma 4 = w14.x1+w24.x2$ = $(-1)(1)+(1)(1)=0 < \theta$	Output untuk u4: $y4 = f(\sigma 4) = 0$
		Input untuk u5: $\sigma 5 = w35.y3+w45.y4$ = (1)(0) +(1)(0)=0 < θ	Output untuk u5: y5 = f(σ5) = 0
•	(x1=0, x2=1)	Input untuk u3: $\sigma 3 = w13.x1+w23.x2$ = (1)(0)+(-1)(1)=-1 < θ	Output untuk u3: y3 = f(σ3) = 0
		Input untuk u4: $\sigma 4 = w14.x1+w24.x2$ = (-1)(0)+(1)(1)=1=0	Output untuk u4: $y4 = f(\sigma 4) = 1$
		Input untuk u5: $\sigma 5 = w35.y3+w45.y4$ = (1)(0) +(1)(1)=1 = θ	Output untuk u5: y5 = f(σ5) = 1

Key points

- Proses menghitung untuk mendapatkan output disebut FEED FORWARD.
- Proses mengubah bobot di tiap link disebut LEARNING.
- Algorithma standard untuk proses learning adalah Back Propagation.

Fungsi Aktivasi

Fungsi Heaviside

$$y = f(x) = \begin{cases} 1, x > \theta \\ 0, x \le \theta \end{cases}$$

Fungsi Sigmoid

$$y = f(x) = \frac{1}{1 + e^{-x}}$$
$$f'(x) = f(x)(1 - f(x))$$

Fungsi Aktivasi

$$y = f(x) = \frac{1}{1 + e^{-rx}}$$

Fungsi
$$f(x) = \tanh(x)$$

$$y = f(x) = \tanh(x)$$

$$= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = 2\frac{1}{1 + e^{-2x}} - 1$$

$$(\tanh(x))' = 1 - (\tanh(x))^{2}$$

Fungsi Aktifasi

Biasanya pilihannya adalah fungsi sigmoid dan tanh(x), keuntungannya fungsi-fungsi tersebut dapat diturunkan dengan mudah.

D. NN multi layer dengan Backpropagation

Representasi Lain:

Gambar lingkaran - lingkaran putih di bawah menunjukkan diagram seperti yang dijelaskan di atas:

12/11/2009

Back Propagation

- Merupakan algorithma pebelajaran untuk melakukan update bobot.
- Biasanya digunakan untuk multilayer (input, hidden, dan output).
- Langkah komputasi: lakukan proses maju (forward propagation), kemudian update error dari bobot dengan backward propagation.
- Biasanya menggunakan fungsi aktifasi sigmoid. $y = f(x) = \frac{1}{1 + e^{-x}}$

$$f'(x) = f(x)(1 - f(x))$$

Algorithma ANN Backpropagation (1)

- Inisialisasi bobot (ambil acak) → jangan terlalu besar/kecil biasanya [-0.5;0.5], [-1,1].
- Tetapkan: maksimum epoh, target error, learning rate (α).
- Inisialisasi: epoh = 0, MSE (mean square error) = 1.
- Kerjakan langkah berikut selama (epoh < maks epoh) dan MSE > target error.
 - 1. Epoh = Epoh + 1
 - 2. Untuk tiap tiap pasangan elemen yang akan dilakukan pembelajaran, lakukan :
 - 3. Feed Forward.
 - 4. Back Propagation.
 - 5. Hitung MSE
- Cek kondisi pemberhentiaan

Algorithma (2)

- Feed Forward:
 - a. Setiap unit input $(x_i, i=1,..n)$ menerima input x_i dan meneruskannya ke semua hidden layer.
 - b. Hitung:

C. Hitung:
$$z_i = v_{0j} + \sum_{i=1}^n x_i v_{ij} \ dan \ z_j = f(z_i = 1), (j = 1, ..., p)$$

$$y_{ink} = w_{0k} + \sum_{j=1}^{p} z_{j} w_{jk} \ dan \ y_{k} = f(y_{ink}), (k = 1, ..., m)$$

Algorithm (3)

- Back Propagation of Error
 - a. Tiap unit output menerima target t_k (k=1,...,m) hitung:

$$\varsigma_{2k} = (t_k - y_k).f'(y_ink), (k = 1,...,m)$$

hitung koreksi bobot: $\Delta w_{jk} = \alpha.\varsigma_{2k}.z_j$ hitung koreksi bobot pada bias : $\Delta w_{0k} = \alpha.\varsigma_{2k}$

b. Hitung:

$$\varsigma_{-}inj = \sum_{k=1}^{m} \varsigma_{2k}.w_{jk}$$

$$\varsigma_{1j} = \varsigma_{-}inj.f'(z_{-}inj)$$

$$\Delta v_{ij} = \alpha.\varsigma_{1j}.x_{i} (koreksi bobot(input-> hidden))$$

$$\Delta v_{0j} = \alpha.\varsigma_{1j}(koreksi bobot bias(input-> hidden))$$

Algorithm (4)

c. Update bobot dan bias

$$w_{jk}(baru) = w_{jk}(lama) + \Delta w_{jk}$$
$$v_{ij}(baru) = v_{ij}(lama) + \Delta v_{ij}$$