Gaussian distribution, Rejection sampling, Rings and Modules

Notations

- ℝ, real numbers
- Z, integers
- N, positive integers
- $\|x\| = \sqrt{\sum_{i \in [n]} x_i^2}$, the ℓ_2 or Euclidean norm of a vector $ec{x} \in \mathbb{R}^n$.
- $\|x\|_{\infty} = \mathsf{max}_{i \in n}(x_i)$, the ℓ_{∞} norm of a vector $ec{x} \in \mathbb{R}^n$.
- L or Λ, lattice
- $\mathcal{L}(B)$ or $\Lambda(B)$, lattice generated by basis B
- $\rho(x)$, Gaussian probability density (Gaussian function)
- D_s, \mathcal{D}_s , (discrete or continuous) Gaussian distribution of parameter (or width) s
- P(B), fundamental parallelepiped generated by B

1. Gaussian distribution

- 1. why do we need Gaussian distribution
- 2. what is it
- 3. how to obtain a Gaussian distribution rejection sampling

1.1 Recall good/bad bases

Because a lattice \mathcal{L} is an additive subgroup of \mathbb{R}^n , we have the quotient group \mathbb{R}^n/\mathcal{L} of cosets

$$c + \mathcal{L} = \{c + v : v \in \mathcal{L}\}, \quad c \in \mathbb{R}^n,$$

with the usual induced addition operation $(\mathbf{c}_1 + \mathcal{L}) + (\mathbf{c}_2 + \mathcal{L}) = (\mathbf{c}_1 + \mathbf{c}_2) + \mathcal{L}$. A fundamental domain of \mathcal{L} is a set $\mathcal{F} \subset \mathbb{R}^n$ that contains exactly one representative $\bar{\mathbf{c}} \in (\mathbf{c} + \mathcal{L}) \cap \mathcal{F}$ of every coset $\mathbf{c} + \mathcal{L}$. For example, the half-open intervals [0,1) and $[-\frac{1}{2},\frac{1}{2})$ are fundamental domains of the integer lattice \mathbb{Z} , where coset $c + \mathbb{Z}$ has representative $c - \lfloor c \rfloor$ and $c - \lfloor c \rceil$, respectively.

1.2 Blur

Signature Scheme [GGH'96]

- lacktriangle Key idea: pk= "bad" basis f B for ${\cal L}$, sk= "short" trapdoor basis f S
- ▶ Sign: $H(msg) = c + \mathcal{L}$; get short $x \in c + \mathcal{L}$ via round-off [Babai'86]
- $lackbox{ Verify(msg, x) check } \mathbf{x} \in H(\mathsf{msg}) = \mathbf{c} + \mathcal{L}$, and \mathbf{x} short enough

Algorithm 1: Babai Nearest-Plane algorithm

```
Input: A basis \mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) of a lattice \Lambda and a target t \in \operatorname{span}(\Lambda).

Output: (\mathbf{v}, \mathbf{e}) such that \mathbf{v} + \mathbf{e} = \mathbf{t}, \mathbf{v} \in \Lambda and \mathbf{e} \in \mathcal{P}_{sym}(\widetilde{\mathbf{B}}).

\mathbf{e} := \mathbf{t}
\mathbf{v} := 0
\mathbf{for} \ i = n \ down \ to \ 1 \ \mathbf{do}
\begin{vmatrix} k := \lceil \frac{\langle \mathbf{e}, \widetilde{\mathbf{b}}_i \rangle}{\|\widetilde{\mathbf{b}}_i\|^2} \rfloor \\ \mathbf{e} := \mathbf{e} - k \mathbf{b}_i \\ \mathbf{v} := \mathbf{v} + k \mathbf{b}_i \end{aligned}
\mathbf{end}
\mathbf{return} \ (\mathbf{v}, \mathbf{e})
```


Figure 1: A lattice distribution with different amounts of Gaussian noise

1.3 Gaussian

Definition 1 We define the function $ho_s: \mathbb{R}^n \mapsto \mathbb{R}$ by

$$\rho_s(\mathbf{x}) := e^{-\pi \|\mathbf{x}/s\|^2}, \qquad s > 0,$$

and from this we define the periodic Gaussian $f_s:\mathbb{R}^n \to \mathbb{R}$ by

$$f_s(\mathbf{t}) := \rho_s(\mathcal{L} + \mathbf{t}) = \sum_{\mathbf{x} \in \mathcal{L}} \rho_s(\mathbf{x} + \mathbf{t}).$$

The function f approaches a constant function as $s \to \infty$, and approaches separate Gaussian densities as $s \to 0$. Later in this lecture we will formalize this notion by defining a *smoothing* parameter.

Figure 1.1: Discrete Gaussian on \mathbb{Z} .

Definition 1. Discrete Gaussian distribution over coset $c + \mathcal{L}$ is defined as

$$D_{\mathbf{c}+\mathcal{L},s}(\mathbf{x}) = \frac{\rho_s(\mathbf{x})}{\rho_s(\mathbf{c}+\mathcal{L})}$$
(3.40)

for all $x \in c + \mathcal{L}$.

$$\Pr_{X \sim D_{\mathcal{L} + c, s}}[X = x] = rac{
ho_s(x)}{
ho_s(c + \mathcal{L})}$$

if $x \in c + \mathcal{L}$ and 0 otherwise.

1.4 Dual lattice

DEFINITION 1 For a full-rank lattice Λ we define its dual lattice (sometimes known as the reciprocal lattice)

$$\Lambda^* = \{ y \in \mathbb{R}^n \mid \forall x \in \Lambda, \ \langle x, y \rangle \in \mathbb{Z} \}.$$

In general, we define

$$\Lambda^* = \{ y \in \text{span}(\Lambda) \mid \forall x \in \Lambda, \ \langle x, y \rangle \in \mathbb{Z} \}.$$

understand it: fix y or x, separated by distance $\frac{1}{\|x\|}$ or $\frac{1}{\|y\|}$.

Figure 1: A lattice and its dual

its basis: For $\mathcal{L}(B)$ and $L^*(B) = L(D)$, it holds $B^{\top}D = I$.

1.5 Smoothing parameter

Smoothing parameter. Micciancio and Regev [MR04] introduced a very important quantity called the *smoothing parameter* of a lattice \mathcal{L} . Informally, this is the amount of Gaussian "blur" required to "smooth out" essentially all the discrete structure of \mathcal{L} . Alternatively, it can be seen as the smallest width s>0 such that every coset $\mathbf{c}+\mathcal{L}$ has nearly the same Gaussian mass $\rho_s(\mathbf{c}+\mathcal{L}):=\sum_{\mathbf{x}\in\mathbf{c}+\mathcal{L}}\rho_s(\mathbf{x})$, up to some small relative error.

Formally, the smoothing parameter $\eta_{\varepsilon}(\mathcal{L})$ is parameterized by a tolerance $\varepsilon > 0$, and is defined using the dual lattice as the minimal s > 0 such that $\rho_{1/s}(\mathcal{L}^*) \leq 1 + \varepsilon$. This condition can be used to formalize and prove the above-described "smoothing" properties. For the purposes of this survey, we often omit ε and implicitly take it to be very small, e.g., a negligible $n^{-\omega(1)}$ function in the dimension n of the lattice.

Lemma 1. Let \mathcal{L} be a lattice with basis B. Then the statistical distance between the uniform distribution on P(B) and the distribution obtained by sampling from $\frac{\rho_s(x)}{s^n}$ and reducing the result modulo P(B), or $D_{c+\mathcal{L},s}$, is at most $\frac{1}{2}\rho_{1/s}(\mathcal{L}^*)$.

Definition 2. For any ε > 0, the smoothing parameter, denoted it by $\eta_{\varepsilon}(\mathcal{L})$, of \mathcal{L} with parameter ε is the smallest s > 0 such that $\rho_{1/s}(\mathcal{L}^*/\{0\}) \leq \varepsilon$.

First, let us recall some of the things we saw in the previous lecture. For any s>0 we define $\rho_s(x)=e^{-\pi\|x/s\|^2}$ and for the special case s=1 we denote $\rho\equiv\rho_1$. As we saw in the previous class, the Fourier transform of ρ_s is given by $\widehat{\rho_s}(x)=s^n\rho_{1/s}(x)$. Moreover, by a property of the Fourier transform, the Fourier transform of the function mapping x to $\rho_s(x+u)$ is $s^n\rho_{1/s}(x)\cdot e^{2\pi i\langle u,x\rangle}$. Hence, from the Poisson summation formula we get

$$\rho_s(\Lambda) = \det(\Lambda^*) \cdot s^n \cdot \rho_{1/s}(\Lambda^*) \tag{1}$$

$$\rho_s(\Lambda + u) = \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y) \cdot e^{2\pi i \langle y, u \rangle}.$$
 (2)

Theorem 2.3.1 ([Ban93, MR04]). For any full-rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$, we have $\eta_{2^{-n}}(\mathcal{L}) \leq \sqrt{n}/\lambda_1(\mathcal{L}^*)$.

Theorem 2.3.2 ([MR04, GPV08]). For any full-rank lattice $\mathcal{L} \subseteq \mathbb{R}^n$ and $\varepsilon \in (0, 1/2)$,

$$\eta_{\varepsilon}(\mathcal{L}) \leq \min_{\text{basis B of } \mathcal{L}} \|\widetilde{\mathbf{B}}\| \cdot \sqrt{\log O(n/\varepsilon)} \leq \lambda_n(\mathcal{L}) \cdot \sqrt{\log O(n/\varepsilon)},$$

where $\|\widetilde{\mathbf{B}}\| = \max_i \|\widetilde{\mathbf{b}}_i\|$ denotes the maximal length of the Gram-Schmidt orthogonalized vectors $\{\widetilde{\mathbf{b}}_i\}$ of the ordered basis $\mathbf{B} = \{\mathbf{b}_i\}$.

Tail Bounds

An important property on Gaussian distributions is that a sample from a continuous or a discrete Gaussian distribution is short with overwhelming probability.

Lemma 1.36 ([Ban93, Le. 1.5]). For any lattice $\Lambda \subseteq \mathbb{R}^n$, vector $\mathbf{c} \in \mathbb{R}^n$, and parameter s > 0, we have

$$\Pr_{\boldsymbol{b} \leftarrow D_{\Lambda,s,c}}[\|\boldsymbol{b} - \boldsymbol{c}\| \le \sqrt{n}s] \ge 1 - 2^{-\Omega(n)}.$$

Lemma 1.37 (Adapted from [Pei08, Cor. 5.3]). For any n-dimensional lattice $\Lambda \subseteq \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}^n$,

$$\Pr_{\boldsymbol{b} \leftarrow D_{\Delta,s,c}}[|\langle \boldsymbol{b} - \boldsymbol{c}, \boldsymbol{u} \rangle| \geq st] \leq \frac{1+\varepsilon}{1-\varepsilon}t\sqrt{2\pi e} \cdot e^{-\pi t^2}.$$

Lemma 1.38 (Adapted from [Pei08, Cor. 5.3]). Let Λ be an n-dimensional lattice, $\varepsilon \in (0,1)$ and $\mathbf{r} \in \mathbb{R}^n$ with $r_i \geq \eta_{\varepsilon}(\Lambda)$ for all $i \leq n$. Then we have

$$Pr_{\boldsymbol{x} \leftarrow D_{\Lambda,r}} \left[\|\boldsymbol{x}\|_{\infty} \ge (\max_{i} r_{i}) \cdot t \right] \le 2en \cdot \exp(-\pi t^{2}),$$

for all t > 0. In particular, for $t = \omega(\sqrt{\log n})$ (resp. $t = \Omega(\sqrt{n})$) the above probability is at most $n^{-\omega(1)}$ (resp. $2^{-\Omega(n)}$).

2. Rejection sampling

2.1 Sampling over one dimensional integer lattice

We first define the subroutine SampleZ, which samples from the discrete Gaussian $D_{\mathbb{Z},s,c}$ over the one-dimensional integer lattice \mathbb{Z} . Let $t(n) \geq \omega(\sqrt{\log n})$ be some fixed function, say, $t(n) = \log n$. SampleZ uses rejection sampling, and works as follows: on input (s,c) and (implicitly) the security parameter n, choose an integer $x \leftarrow Z \doteq \mathbb{Z} \cap [c - s \cdot t(n), c + s \cdot t(n)]$ uniformly at random. Then with probability $\rho_s(x-c) \in (0,1]$, output x, otherwise repeat.

The correctness of the Sample \mathbb{Z} relies on the following tail inequality on the distribution $D_{\mathbb{Z},s,c}$.

Lemma 4.2. For any $\epsilon > 0$, any $s \ge \eta_{\epsilon}(\mathbb{Z})$, and any t > 0,

$$\Pr_{x \sim D_{\mathbb{Z},s,c}} \left[|x-c| \geq t \cdot s \right] \leq 2e^{-\pi t^2} \cdot \tfrac{1+\epsilon}{1-\epsilon}.$$

In particular, for $\epsilon \in (0, \frac{1}{2})$ and $t \ge \omega(\sqrt{\log n})$, the probability that $|x - c| \ge t \cdot s$ is negligible.

2.2 Sampling from arbitrary lattice

We now describe a randomized nearest-plane algorithm, called SampleD, that samples from a discrete Gaussian $D_{\Lambda,s,c}$ over *any* lattice Λ . In each iteration, the algorithm simply chooses a plane at random by sampling from an appropriate discrete Gaussian over the integers \mathbb{Z} .

The input to SampleD is an (ordered) basis **B** of an n-dimensional lattice Λ , a parameter s > 0, and a center $\mathbf{c} \in \mathbb{R}^n$. We describe the algorithm as if it has access to an oracle that samples exactly from $D_{\mathbb{Z},s',c'}$ for any desired s' > 0 and $c' \in \mathbb{R}$. (As long as s' is sufficiently large, the oracle can be implemented by the Sample \mathbb{Z} algorithm described above.) SampleD proceeds as follows:

- 1. Let $\mathbf{v}_n \leftarrow \mathbf{0}$ and $\mathbf{c}_n \leftarrow \mathbf{c}$. For $i \leftarrow n, \dots, 1$, do:
 - (a) Let $c'_i = \langle \mathbf{c}_i, \tilde{\mathbf{b}}_i \rangle / \langle \tilde{\mathbf{b}}_i, \tilde{\mathbf{b}}_i \rangle \in \mathbb{R}$ and $s'_i = s / \|\tilde{\mathbf{b}}_i\| > 0$.
 - (b) Choose $z_i \sim D_{\mathbb{Z},s_i',c_i'}$ (this is the only step that differs from the nearest-plane algorithm).
 - (c) Let $\mathbf{c}_{i-1} \leftarrow \mathbf{c}_i z_i \mathbf{b}_i$ and let $\mathbf{v}_{i-1} \leftarrow \mathbf{v}_i + z_i \mathbf{b}_i$.
- 2. Output \mathbf{v}_0 .

Assuming scalar operations take unit time, the running time of the algorithm is $O(n^2)$ plus the running time of the n oracle calls. Note that every variable is assigned exactly once, and the value \mathbf{c}_i (respectively, \mathbf{v}_i, c_i', s_i') is never used once \mathbf{c}_{i-1} (resp., $\mathbf{v}_{i-1}, c_{i-1}', s_{i-1}'$) is defined. Therefore, an implementation would typically use one mutable register to store the successive values of \mathbf{c}_i (likewise, \mathbf{v}_i, c_i', s_i'); the indices are only in place to aid the analysis.

By construction, the output of SampleD is always a lattice vector, and there is a bijective correspondence between the random choices of the z_i s and the lattice. In the following, for any fixed lattice vector $\mathbf{v} = \sum_{i \in [n]} \hat{z}_i \mathbf{b}_i \in \Lambda$ (where the input $(\mathbf{B}, s, \mathbf{c})$ is implicit), let SampleD $\to \mathbf{v}$ denote the collection of values assinged to all the internal variables during a hypothethical execution of SampleD that outputs \mathbf{v} , i.e., where every choice of $z_i = \hat{z}_i$.

Lemma 4.5. For any input $(\mathbf{B}, s, \mathbf{c})$ and any $\mathbf{v} = \sum_{i \in [n]} \hat{z}_i \mathbf{b}_i \in \mathcal{L}(\mathbf{B})$, the probability that SampleD outputs \mathbf{v} is exactly

$$\rho_{s,\mathbf{c}}(\mathbf{v}) \cdot \prod_{i \in [n]} \frac{1}{\rho_{s'_i,c'_i}(\mathbb{Z})},$$

where the values s_i', c_i' are as in SampleD \rightarrow v.

Proof. Consider the event E that SampleD outputs \mathbf{v} . First, observe that E occurs if and only if every random choice $z_i = \hat{z}_i$ for $i = n, \ldots, 1$. For each i, the probability that $z_i = \hat{z}_i$, conditioned on $z_j = \hat{z}_j$ for all $j = n, \ldots, i+1$, is exactly $D_{\mathbb{Z}, s'_i, c'_i}(\hat{z}_i)$. Therefore, the probability of E is

$$\prod_{i\in[n]} D_{\mathbb{Z},s_i',c_i'}(\hat{z_i}) = \frac{\prod_{i\in[n]} \rho_{s_i',c_i'}(\hat{z_i})}{\prod_{i\in[n]} \rho_{s_i',c_i'}(\mathbb{Z})}.$$

The numerator in the above expression is

$$\prod_{i \in [n]} \rho_{s'_i, c'_i}(\hat{z}_i) = \prod_{i \in [n]} \rho_s((\hat{z}_i - c'_i) \cdot ||\tilde{\mathbf{b}}_i||) = \rho_s \left(\sum_{i \in [n]} (\hat{z}_i - c'_i) \cdot \tilde{\mathbf{b}}_i \right) = \rho_s(\mathbf{v} - \mathbf{c}) = \rho_{s, \mathbf{c}}(\mathbf{v}),$$

where the first equality is by definition of s'_i and $\rho_{s'_i,c'_i}$, the second equality is by mutual orthogonality of the Gram-Schmidt vectors $\tilde{\mathbf{b}}_i$ and the definition of ρ_s , and the third equality is by Lemma 4.4. This completes the proof.

Theorem 4.1. There is a probabilistic polynomial-time algorithm that, given a basis \mathbf{B} of an n-dimensional lattice $\Lambda = \mathcal{L}(\mathbf{B})$, a parameter $s \geq \|\tilde{\mathbf{B}}\| \cdot \omega(\sqrt{\log n})$, and a center $\mathbf{c} \in \mathbb{R}^n$, outputs a sample from a distribution that is statistically close to $D_{\Lambda,s,\mathbf{c}}$.

as
$$s \geq \|\tilde{B}\| \cdot \omega(\sqrt{\log n})$$
, each $s_i' = s/\|\tilde{b_i}\| \geq \omega(\sqrt{\log n})$.

3. Rings and Modules

3.1 Ring-SIS

The ring-SIS problem is parameterized by:

• A ring R, which is often (but not always) taken to be a degree-n polynomial ring of the form $R = \mathbb{Z}[X]/(f(X))$, e.g., $f(X) = X^n - 1$ as in [MicO2], or $f(X) = X^{2^k} + 1$ as in [LMPRO8]. Note that elements of R can be canonically represented by their residues modulo f(X), which are integer polynomials of degree less than n.

We also endow R with a norm $\|\cdot\|$, which is not necessarily the norm of the argument's vector of coefficients; see Section 4.3.3 for further details. For a vector \vec{z} over R we define $\|\vec{z}\| = (\sum_i \|z_i\|^2)^{1/2}$.

- A positive integer modulus q. We define $R_q := R/qR = \mathbb{Z}_q[X]/(f(X))$, whose canonical representatives are polynomials of degree less than n with coefficients from some set of canonical representatives of \mathbb{Z}_q .
- A real norm bound $\beta > 0$ for the "short" solution, and a number m of samples. (As usual, m tends to be of secondary importance, so we often leave it unspecified.)

For concreteness, the degree n, modulus q, and norm bound β can be thought of as roughly comparable to their counterparts in the SIS problem, whereas m is typically an n factor smaller for ring-SIS (as explained below).

Definition 4.3.1 (R-SIS $_{q,\beta,m}$). Given m uniformly random elements $a_i \in R_q$, defining a vector $\vec{a} \in R_q^m$, find a nonzero vector $\vec{z} \in R^m$ of norm $\|\vec{z}\| \le \beta$ such that

$$f_{\vec{a}}(\vec{z}) := \langle \vec{a}, \vec{z} \rangle = \vec{a}^t \cdot \vec{z} = \sum_i a_i \cdot z_i = 0 \in R_q. \tag{4.3.1}$$

The primary advantage of R-SIS over SIS is its relative compactness and efficiency: the number m of elements $a_i \in R_q$ required to guarantee the existence of a sufficiently short solution is only $m \approx \log q$, rather than $m \approx n \log q$ for SIS. This is essentially because there are an exponential $2^{\Omega(n)}$ number of short ring elements $z_i \in R$ that can be used as coefficients for each $a_i \in R_q$, versus just a few small *integer* coefficients for each $a_i \in \mathbb{Z}_q^n$ in the SIS problem. In addition, using FFT-like techniques one can compute each $z_i \cdot a_i \in R_q$ in quasi-linear $\tilde{O}(n)$ time, so the total time to compute $f_{\vec{a}}(\vec{z})$ is also quasi-linear for typical choices of q and m.

This problem over rings can be interpreted in terms of structured integer matrices. For example, when n is a power of 2, then R and R_q are isomorphic to $\mathbb{Z}[x]/(x^n+1)$ and $\mathbb{Z}_q[x]/(x^n+1)$ respectively, and the ring multiplication $a_i \cdot z_i$ can be written as the multiplication of the vector of \mathbb{Z}^n whose entries are the coefficients of z_i and, with a nega-circulant matrix whose entries are derived from the coefficients of a_i . In this setup, R-SIS is a variant of SIS where A is restricted to being block negacirculant: $A = [\text{Rot}(a_1)|\dots|\text{Rot}(a_m)]$, with:

$$\operatorname{Rot}(b) := \begin{bmatrix} b_0 & -b_{n-1} \cdots -b_1 \\ b_1 & b_0 & \cdots -b_2 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n-1} & b_{n-2} & \cdots & b_0 \end{bmatrix}, \text{ for } b = \sum_{i=0}^{n-1} b_i x^i \in R.$$

3.2 Module-SIS

$$\begin{bmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = 0 \mod q.$$

Ideals. An (integral) ideal I of R is an additive subgroup of R that is closed under multiplication by every element of R. The smallest ideal of R containing the set S is denoted by (S). The quotient R/I is the set of the equivalence classes g + I of R modulo I. For any nonzero ideal, the norm $\mathcal{N}(I)$ of the ideal is the number of elements of the quotient ring R/I. We have $\mathcal{N}((x)) = \mathcal{N}(x)$, for all $x \in K$.

Let I and J be ideals of R. We define the *product* of two ideals by $IJ = \{\sum_i \alpha_i \beta_i : \alpha_i \in I, \beta_i \in J\}$ and their sum by $I + J = \{\alpha + \beta : \alpha \in I, \beta \in J\}$. An ideal $I \subsetneq R$ is *prime* if for any $ab \in I$ then $a \in I$ or $b \in I$. Every ideal of R can be represented as a unique product of prime ideals, and for a prime ideal I, the quotient ring R/I is the finite field of order $\mathcal{N}(I)$. A fractional ideal $I \subseteq K$ is a set such that $dI \subseteq R$ is an (integral) ideal for a nonzero $d \in R$. The inverse of a fractional I is defined by $I^{-1} = \{\alpha \in K : \alpha I \subseteq R\}$ and is itself a fractional ideal. We have $II^{-1} = R$. The dual of an ideal is defined as $I^{\vee} = \{x \in K : \operatorname{Tr}(xI) \subseteq \mathbb{Z}\}$. We have $I^{\vee} = I^{-1} \cdot R^{\vee}$.

Ideal and module lattices. As σ_H is an embedding from K to \mathbb{R}^n and I an ideal of R, the set $\sigma_H(I)$ is a lattice. We call it ideal lattice with respect to K. To ease the presentation, we often identify I and $\sigma_H(I)$. We let Id-GIVP denote the restriction of GIVP to ideal lattices.

We define module lattices similarly. The map $(\sigma_H, \ldots, \sigma_H)$ is an embedding from K^d to \mathbb{R}^N , with N = nd, and $M \subseteq K^d$ a module of R. By abuse of notation, we also call it σ_H . The set $\sigma_H(M)$ is a module lattice. Similarly to ideal lattices, we let Mod-GIVP denote the restriction of GIVP to module lattices. Note that if M is a rank d module and if K has degree n, then the corresponding module lattice has dimension N = nd.

Definition 3.5. The problem M-SIS_{q,m,β} is as follows: Given $\mathbf{a}_1,\ldots,\mathbf{a}_m \in R_q^d$ chosen independently from the uniform distribution, find $z_1,\ldots,z_m \in R$ such that $\sum_{i=1}^m \mathbf{a}_i \cdot z_i = 0 \mod q$ and $0 < \|\mathbf{z}\| \le \beta$, where $\mathbf{z} = (z_1,\ldots,z_m)^T \in R^m$.

Like R-SIS, M-SIS can be interpreted in terms of matrices. In the same setting as above for R-SIS, it consists in taking a SIS matrix \boldsymbol{A} of the form:

Next time: FFT, quasi linear multiplication over rings.

----- This is the end of this lecture ;) ------