آمار و احتمال مهندسي

استقلال و آزمایشهای تکراری (Ross 3.4-3.5)

1 of 30 >

پیشامدهای مستقل

$$P(A\cap B)=P(A)P(B)$$
 دو پیشامد A و B را مستقل گویند اگر: \circ

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$$

o پس اگر A و B مستقل باشند:

$$P(A|B) = P(A)$$
 , $P(B|A) = P(B)$

$$P(A)\cong rac{n_A}{n}=rac{n_{A\cap B}}{n_B}=P(A|B)$$
 تعبیر بسامدی: \circ

یعنی فرکانس نسبی وقوع
$$A$$
 در کل n آزمایش، با فرکانس نسبی آن در n_B آزمایش که B در آنها رخ داده است، برابر است.

$$P(B|A) = P(B)$$
 در نتیجه A هیچ اثری بر رد یا تایید B ندارد: $P(A|B) = P(B|A) = P(B|A)$ در نتیجه A

آمار و احتمال مهندسی بهنام بهرک

2 of 30 >

پیشامدهای مستقل

ullet قضیه: اگر A و B مستقل باشند، $ar{A}$ و B هم مستقل هستند. اثبات:

$$P(A \cap B) = P(A)P(B)$$

از طرفي:

$$P(\bar{A}|B) = 1 - P(A|B) \Rightarrow \frac{P(\bar{A} \cap B)}{P(B)} = 1 - \frac{P(A \cap B)}{P(B)}$$

$$\Rightarrow P(\bar{A} \cap B) = P(B) - P(A \cap B) = P(B) - P(B)P(A) = P(B)(1 - P(A))$$

$$\Rightarrow P(\bar{A} \cap B) = P(B)P(\bar{A})$$

بنابراین $ar{A}$ و B هم مستقل هستند.

مستقل هستند. $ar{B}$ و $ar{B}$ مستقل هستند. $ar{B}$ و مستقل هستند.

آمار و احتمال مهندسی بهنام بهرک

3 of 30

استقلال سه پیشامد

- C اگر A از B و B از A از B و یا ترکیبهای دیگر B و A مستقل نخواهد بود.
 - تعریف استقلال سه پیشامد باید فراتر از استقلال دو به دوی آنها باشد.
 - سه پیشامد A، و C را مستقل گویند، هرگاه هر چهار رابطه زیر برقرار باشند: \circ
- 1) $P(A \cap B) = P(A)P(B)$
- 2) $P(A \cap C) = P(A)P(C)$
- 3) $P(B \cap C) = P(B)P(C)$
- 4) $P(A \cap B \cap C) = P(A)P(B)P(C)$

 اگر سه پیشامد مستقل باشند، دو به دو نیز مستقل خواهند بود، ولی عکس این گزاره لزوماً صحیح نیست.

آمار و احتمال مهندسی بهنام بهرک

∢ 4 of 30 **>**

اصولاً هیچ یک از این چهار رابطه از سه رابطه دیگر نتیجه نمی شود.

- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(A)P(B)$
- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(A)P(C)$
- $\mathbb{E}\frac{1}{8} \neq \frac{1}{2} \times \frac{1}{2} = P(B)P(C)$

A و B مستقل، A و C مستقل

- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(A)P(B)$
- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(A)P(C)$
- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(B)P(C)$

- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(A)P(B)$
- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(A)P(C)$
- $\square \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = P(B)P(C)$

دو به دو مستقل

آمار و احتمال مهندسی بهنام بهرک

5 of 30

استقلال بیش از دو پیشامد

ویند، هرگاه برای هر دسته اعداد صحیح ، A_n ، ... ، A_2 ، A_1 پیشامد n \circ داشته باشیم: $r \leq n$ که k_1, k_2, \dots, k_r

$$P(A_{k_1}A_{k_2}...A_{k_r}) = P(A_{k_1})P(A_{k_2})...P(A_{k_r})$$

○ مثال: در ۵ بار پرتاب یک تاس، خروجیها مستقل هستند، بنابراین احتمال ۵ بار آمدن عدد ۶ برابر است با:

$$P(\{6,6,6,6,6\}) = P(\{6\})P(\{6\})P(\{6\})P(\{6\})P(\{6\}) = \left(\frac{1}{6}\right)^5$$

- برای استقلال n پیشامد، چه تعداد رابطه باید برقرار باشند؟ \circ
- هر زیر مجموعه از مجموعه n عضوی $\{A_1,...,A_n\}$ با بیش از یک عضو، یک رابطه \circ $2^n - (n+1)$ به ما می دهد، پس تعداد کل برابر است با:

آمار و احتمال مهندسی بهنام بهرک

< 6 of 30 >

 \circ یک لینک مخابراتی بین نقاط ۱ و ۲ از ایستگاههای A و B و D و D و B استفاده می کند (از D وقتی استفاده می شود که B یا C از کار بیافتد). همه ایستگاههای رله مانند یکدیگر هستند، و بررسیهای آماری نشان داده است که احتمال سالم بودن آنها در یک بازه زمانی مشخص برابر با p است. با فرض استقلال خرابی رلهها، احتمال این که لینک بین ۱ و ۲ در این بازه زمانی برقرار باشد چقدر است؟

B احتمال برقرار بودن لینک E $P(A(BC \cup D)E) = D$ E $P(A)P(BC \cup D)P(E) = D$ E $P(A)(P(BC) + P(D) - P(BCD))P(E) = P(A)(P(B)P(C) + P(D) - P(B)P(C)P(D))P(E) = P(p^2 + p - p^3)p = p^3(p + 1 - p^2)$

آمار و احتمال مهندسی بهنام بهرک

₹ 7 of 30

مثال ۲

 \circ یک نرمافزار خاص توسط \circ تیم مستقل از متخصصین تست نرمافزار به منظور یافتن باگهای احتمالی آن مورد بررسی قرار می گیرد. در صورت وجود باگ، این تیمها به ترتیب با احتمال \circ .0.0 .0.3 .0.3 و \circ .0.5 قادر به کشف آن هستند. فرض کنید نرمافزار مورد نظر دارای باگ است. احتمال پیدا کردن این باگ توسط حداقل یک تیم چقدر است؟

 $A_i = i$ پیشامد کشف باگ توسط تیم

$$\begin{split} P\left\{\text{مديق تيم}\right\} &= 1 - P\left\{\text{مديج تيم}\right\} = 1 - P(\overline{A_1}, \overline{A_2}, \overline{A_3}, \overline{A_4}, \overline{A_5}) \\ &= 1 - P(\overline{A_1})P(\overline{A_2})P(\overline{A_3})P(\overline{A_4})P(\overline{A_5}) \\ &= 1 - (1 - 0.1)(1 - 0.2)(1 - 0.3)(1 - 0.4)(1 - 0.5) \\ &= 0.8488 \end{split}$$

آمار و احتمال مهندسی بهنام بهرک

∢ 8 of 30 **>**

دو تاس را پرتاب می
$$\,$$
کنیم و خروجی آنها را $\,D_1$ و $\,D_2$ می $\,$ امیم. $\,$

. و
$$D_1=1$$
 تعریف می کنیم $\{D_2=6\}$ بیشامد $\{D_1=1\}$ تعریف می کنیم $E_1=1$

آیا
$$E$$
 و F مستقل هستند؟ بله! \circ

. باشد.
$$\{D_1+D_2=7\}$$
 باشد. فرض کنید G

آیا
$$E$$
 و G مستقل هستند؟ بله!

$$P(E) = 1/6, \qquad P(G) = 1/6, \qquad P(E \cap G) = 1/36$$

اً و
$$G$$
 مستقل هستند؟ بله! G

$$P(F) = 1/6$$
, $P(G) = 1/6$, $P(F \cap G) = 1/36$

آیا
$$F$$
، E و G مستقل هستند؟ خیر!

$$P(E \cap F \cap G) = P(E \cap F) = \frac{1}{36} \neq \frac{1}{216} = P(E)P(F)P(G)$$

آمار و احتمال مهندسی بهنام بهرک

9 of 30 >

مفهوم آزمایش تکراری

- وقتی یک آزمایش تصادفی را تحت شرایط یکسانی تکرار میکنیم، دو تعبیر موجود است:
 - . تعبیر تجربی: احتمال پیشامد A در فضای Ω حدود n_A/n است.
- تعبیر مفهومی: با تکرار آزمایش، به جای فضای Ω قبلی، یک فضای جدید Ω_n داریم که $\Omega_n=\Omega \times \Omega \times \cdots \times \Omega$
 - Ω نقاط این فضای نمونه جدید، nتاییهای مرتبی هستند که هر عنصر آن عضوی از Ω قبلی است.
- $P\{T\}=q=1-p$ و $P\{H\}=p$ این سکه: $P\{H\}=p$ و کنیم. برای این سکه: $P\{H\}=p$ و که در آن فقط دو بار اول شیر بیاید و بقیه خط، چقدر است؟ ب) احتمال پیشامد $P\{H\}=p$ که در آن دو بار شیر بیاید (با هر ترتیبی) چقدر است؟

آمار و احتمال مهندسی بهنام بهرک

< 10 of 30 >

الف) Ω مجموعه کلیه Δ تاییهای مرتبی است که هر عضو این Δ تاییهای مرتب Δ یا Δ است: $\Omega = \{(HHHHHH), (THHHHH), ..., (TTTTT)\}$

يعنى 2^5 عنصر دارد كه لزوماً متساوىالاحتمال نيستند، چون p لزوماً $\frac{1}{2}$ نيست.

 $B = \{(HHTTT)\}$

را می توان به صورت اشتراک Δ پیشامد مستقل در نظر گرفت:

 $B = \{ \text{Ho, weak in } \cap \{ \text{Ho, sphoken in } \} \cap \{ \text{Ho, weak in } \cap \{ \text{Ho, weak in } \} \cap \{ \text{Ho, weak in }$

بنابراین با فرض استقلال آزمایشها داریم: $P(B) = P(H_1)P(H_2)P(T_3)P(T_4)P(T_5) = \ p^2q^3$

اصولاً n آزمایش را مستقل گویند، اگر پیشامدهای A_1 همیند، اگر پیشامدهای A_1 مستقل باشند که A_1 پیشامدی است که نتیجه آن در ارتباط با آزمایش iام حاصل می شود.

بهنام بهرک

< 11 of 30 >

ادامه مثال

ب) برای پیشامد D داریم:

{دو شیر و سه خط (با هر ترتیبی) بیاید} D = {

کلیه وقایع ساده مانند B که دو H و سه T (با ترتیب مشخص) دارند، دارای احتمال p^2q^3 هستند، و این پیشامدها از هم جدا بوده و D در واقع اجتماع چنین پیشامدهایی است. پس کافی است تعداد چنین پیشامدهایی را حساب کنیم.

 $\binom{5}{2}$ به چند طریق می توان ۲ تا H و ۳ تا T را در ۵ جایگاه مختلف قرار داد؟

پس داريم:

$$P(D) = \binom{5}{2} p^2 q^3$$

حالت كلى اين مثال را أزمايش برنولي مي گوييم.

آمار و احتمال مهندسی بهنام بهرک

< 12 of 30 >

آزمایش برنولی (Bernoulli Trials)

P(A)=p و P(A)=p=1 و در فضای P(A)=p در هر بار انجام P(A)=p=1 و گر برای پیشامد P(A)=1 در هر بار انجام آزمایش یا P(A)=1 انفاق می افتد، و آزمایشها در شرایط یکسان اتفاق افتاده و مستقل از هم هستند.

این باشد که پیشامد B در فضای $\Omega \times \Omega \times \Omega \times \Omega \times \Omega$ این باشد که پیشامد B در فضای Ω اتفاق افتد، مثلاً در λ بار اول A اتفاق افتد و در (n-k) بار بعدی λ داریم:

 $\Omega_n = \{(00 \dots 00), (00 \dots 01), \dots, (11 \dots 11)\}$

$$B = \{ (\underbrace{11 \dots 100 \dots 0}_{j \mid k}) \}$$

پیشامد A_i : رخ دادن A در آزمایش -iام

$$\begin{split} \mathbf{P}(\mathbf{B}) = \mathbf{P}(\mathbf{A}_1 \mathbf{A}_2 \cdots \mathbf{A}_k \overline{\mathbf{A}}_{k+1} \cdots \overline{\mathbf{A}}_n) &= \mathbf{P}(\mathbf{A}_1) \mathbf{P}(\mathbf{A}_2) \cdots \mathbf{P}(\mathbf{A}_k) \mathbf{P}(\overline{\mathbf{A}}_{k+1}) \cdots \mathbf{P}(\overline{\mathbf{A}}_n) \\ &= \underbrace{pp \dots p}_{\mathbf{U}} \underbrace{pq \dots q}_{\mathbf{U}} = p^k q^{n-k} \\ &= \underbrace{p \dots p}_{\mathbf{U}} \underbrace{n-k}_{\mathbf{U}} \underbrace{n-k} \end{split}$$

آمار و احتمال مهندسی بهنام بهرک

< 13 of 30 >

آزمایش برنولی

- این باشد که پیشامد k ،A بار با هر ترتیبی اتفاق بیافتد، Ω_n این باشد که پیشامد $P(D) = P_n(k)$ احتمال $P(D) = P_n(k)$
- تعداد پیشامدهای سادهای که A در آنها k بار اتفاق میافتد $\binom{n}{k}$ است، و همگی احتمال $p^k q^{n-k}$ دارند. از آنجا که این پیشامدها ناسازگار هستند، طبق اصل $p^k q^{n-k}$ داریم:

$$P_n(k) = p^k q^{n-k} + \dots + p^k q^{n-k} = \binom{n}{k} p^k q^{n-k}$$

٥ توجه کنید که:

$$\sum_{k=0}^{n} P_n(k) = \sum_{k=0}^{n} {n \choose k} p^k q^{n-k} = (p+q)^n = 1^n = 1$$

آمار و احتمال مهندسی بهنام بهرک

< 14 of 30 >

یادآوری

0 در حالت کلی:

$$P(A \cap B) = P(A)P(B|A)$$

: B و A در حالت استقلال A

$$P(A \cap B) = P(A)P(B)$$

0 در حالت کلی:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

: B و A در حالت ناسازگاری A و \circ

$$P(A \cup B) = P(A) + P(B)$$

آمار و احتمال مهندسی بهنام بهرک

15 of 30 >

آزمایش برنولی تعمیمیافته

- $ar{A}$ در آزمایش برنولی فقط دو حالت داشتیم: وقوع A یا وقوع $ar{A}$.
- و در حالت کلی اگر A_i ها مجموعه Ω را افراز کنند، و احتمال هر یک از آنها p_i باشد، و آزمایشها در شرایط یکسان تکرار شده و مستقل از هم باشند، احتمال پیشامد B در فضای $k_1+\cdots+k_r=n$ که در n آزمایش، aها هر یک a بار اتفاق افتند، به شرط a برابر است با: a
- = احتمال پیشامد D که A_i ها هر یک k_i بار (با هر ترتیبی) اتفاق افتند A_i که A_i که A_i که A_i حتمال پیشامد A_i که A_i که A_i حتمال پیشامد A_i که A_i که

 $P_n(k_1, k_2, \dots, k_r) = \frac{n!}{k_1! k_2! \dots k_r!} p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$

آمار و احتمال مهندسی بهنام بهرک

∢ 16 of 30 ▶

يعنى:

جعبهای شامل N کارت حافظه است که M تا از آنها خراب هستند. به طور تصادفی کارتی را از جعبه برداشته و آزمایش می کنیم و دوباره به جعبه برمی گردانیم. اگر این کار را n بار انجام دهیم n بار با کارت حافظه خراب مواجه شویم چقدر است؟

چون کارت را پس از تست به جعبه برمی گردانیم، شرایط آزمایش تغییری نمی کند و لذا یک آزمایش برنولی است.

بیشامد A مورد نظر در Ω اصلی (یک آزمایش)، پیشامد خراب بودن کارت حافظه است که داریم: $p=rac{M}{N}$: احتمال خراب بودن

لذا احتمال این پیشامد در فضای نمونه Ω_n ، که k تا از n کارت خراب باشند (مجموعه کلیه زوج مرتبهایی که k عنصر آنها یک است) برابر است با:

$$p_1(k) = inom{n}{k} \Big(rac{M}{N} \Big)^k \Big(1 - rac{M}{N} \Big)^{n-k}$$
: این احتمال را با $p_1(k)$ نیز نمایش می دهیم

آمار و احتمال مهندسی بهنام بهرک

< 17 of 30 >

ادامه مثال ۱

- اگر انتخاب بدون جایگزینی باشد، احتمال این که k تا از این n کارت حافظه خراب باشند چقدر خواهد بود؟
- \circ این مساله مشابه انتخاب تعداد مشخصی توپ سیاه و قرمز از میان تعداد مفروضی توپ با این دو رنگ است که در جلسات قبل دیدیم.
- با فرض انتخاب n کارت از N کارت موجود در یک جعبه، احتمال این که k تا از آنها از میان M کارت خراب، و n-k تای دیگر از بین M-M کارت سالم انتخاب شده باشند، چقدر است؟

$$p_2(k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$

آمار و احتمال مهندسی بهنام بهرک

< 18 of 30 >

$p_2(k)$ مقایسه $p_1(k)$ مقایسه برای مقایسه $p_1(k)$ و $p_2(k)$ هر دو آنها را بر حسب p=M/N بیان می کنیم: $p_1(k) = \binom{n}{k} p^k (1-p)^{n-k}$: دوجملهای $p_2(k) = rac{inom{Np}{k}inom{N(1-p)}{n-k}}{inom{N}{k}}$: فوق هندسی اگر $M \ll N$ و $n \ll N$ باشد، داریم: $p_1 \cong p_2$ N = 100M = 20M = 200.25 n = 50n = 10 $\bullet p_1(k)$ $\cdot p_1(k)$ $\bullet p_2(k)$ $\bullet p_2(k)$ 0.05 آمار و احتمال مهند < 19 of 30 > بهنام بهرک

- یک جدول درهمسازی شامل n خانه (bucket) در اختیار داریم، و m رشته داخل این جدول ذخیره می شوند.
- . هر رشته به طور مستقل درهمسازی شده و با احتمال p_i در خانه i-ام جدول قرار می گیرد. \circ
 - احتمال این که حداقل یک رشته داخل خانه اول قرار بگیرد چقدر است؟

$$P(E)=1-\{$$
احتمال این که هیچ رشتهای داخل خانه اول قرار نگیرد $\}$ $=1-(1-p_1) imes(1-p_1) imes\cdots imes(1-p_1)$ $=1-(1-p_1)^m$

مار و احتمال مهندسی هنام بهرک

< 23 of 30 >

مثال

است؟ و احتمال این که حداقل در یکی از خانههای 1 تا k رشتهای قرار بگیرد چقدر است؟

 $F_i = \mathcal{L}$ حداقل یک رشته داخل خانه i قرار بگیرد

 $P(F_1 \cup F_2 \cup \cdots \cup F_k) = ?$

 $P(F_1 \cup F_2 \cup \cdots \cup F_k) = 1 - P\big((F_1 \cup F_2 \cup \cdots \cup F_k)^c\big)$

 $= 1 - P(F_1^c \cap F_2^c \cap \dots \cap F_k^c)$

 $P(F_1^c \cap F_2^c \cap \dots \cap F_k^c) = (1 - p_1 - p_2 - \dots - p_k)^m$

 $P(F_1 \cup F_2 \cup \cdots \cup F_k) = 1 - (1-p_1-p_2-\cdots-p_k)^m$

آمار و احتمال مهندسی بهنام بهرک

< 24 of 30 >

قضیه میمون نامتناهی (Infinite monkey theorem)

قضیه: اگر یک میمون به صورت تصادفی کلیدهای یک ماشین تحریر را بفشارد و این کار را به صورت نامتناهی ادامه دهد، به احتمال قریب به یقین هر متن متناهی (مثلاً آثار کامل ویلیام شکسپیر) را تایپ خواهد کرد.

اثبات: فرض کنید طول متن مورد نظر (مثلاً هملت شکسپیر) برابر با m بیت باشد. دنباله نامتناهی را به زیردنبالههای m بیتی می شکنیم:

است. با احتمال این که در یکی از این m-بیتیها دنباله مورد نظر ظاهر نشود برابر با $(\frac{1}{2^m}-1)$ است. با توجه به استقلال این m-بیتیها، احتمال این که کلاً دنباله مورد نظر ظاهر نشود برابر است با:

$$\lim_{n \to \infty} \left(1 - \frac{1}{2^m} \right)^{n/m} = 0$$

آمار و احتمال مهندسی بهنام بهرک

< 25 of 30 >

مغالطه استقلال

- در سال ۱۹۹۹ سالی کلارک به قتل دو نوزاد پسر خود متهم
 شد.
- ⊙ وکلای مدافع او مدعی شدند این دو نوزاد بر اثر سندرم مرگ ناگهانی نوزاد (SIDS) فوت کردهاند.
- پروفسور **روی میدو**، پزشک کودکان معروف انگلیسی، با شهادت در دادگاه احتمال چنین پیشامدی را ۱ در ۷۳ میلیون عنوان کرد:

$$\frac{1}{8500} \times \frac{1}{8500} = \frac{1}{72250000}$$

 انجمن سلطنتی آمار با صدور بیانیهای، این ادعا را نمونهای از استفاده نادرست از آمار در دادگاهها معرفی کرد.

آمار و احتمال مهندسی بهنام بهرک

< 26 of 30 >

استقلال شرطي

 $P(E\cap F)=P(E)P(F)$ دو پیشامد E مستقل هستند اگر: F مستقل هستند اگر: F

صحیح G مستقل از هم باشند، آیا رابطه زیر برای پیشامد دلخواه F صحیح است؟

$$P(E \cap F|G) = P(E|G)P(F|G)$$

٥ در حالت كلى خير!

○ پیشامدهای مستقل ممکن است به شرط وجود اطلاعات اضافی، وابسته شوند.

آمار و احتمال مهندسی بهنام بهرک

27 of 30
 ▶

مثال

- ۰ دو تاس را پرتاب می کنیم و خروجی آنها را D_1 و D_2 مینامیم.
- . و کنیم $\{D_1=1\}$ تعریف می کنیم $\{D_1=1\}$ تعریف می کنیم E
 - $P(E\cap F)=P(E)P(F)$ دیدیم که E و F مستقل هستند F
 - . فرض کنید G پیشامد $\{D_1+D_2=7\}$ باشد \circ

٥داريم:

P(E|G) = 1/6, P(F|G) = 1/6, $P(E \cap F|G) = 1/6$ $P(E \cap F|G) \neq P(E|G)P(F|G)$

. بنابراین E|G و F|G به هم وابسته هستند. \circ

آمار و احتمال مهندسی بهنام بهرک

28 of 30

استقلال شرطى

دو پیشامد F و E را مستقل به شرط G می گوییم، اگر: \circ

 $P(E \cap F|G) = P(E|G)P(F|G)$

E ، G در حالت کلی وابسته به هم باشند، آیا ممکن است که برای یک پیشامد E و F به شرط G مستقل از هم شوند؟

 $P(E \cap F) \neq P(E)P(F)$

ىلە!

 $P(E \cap F|G) = P(E|G)P(F|G)$

آمار و احتمال مهندسی بهنام بهرک

< 29 of 30 >

مثال

- یک روز هفته به صورت تصادفی انتخاب می شود.
 - o پیشامد A: این روز شنبه نباشد
 - پیشامد B: این روز پنجشنبه باشد \circ
 - پیشامد C: این روز پنجشنبه یا جمعه باشد \circ
 - و B وابسته هستند: $A \circ$

P(A) = 6/7, $P(A|B) = 1 \rightarrow P(A|B) \neq P(A)$

از سوی دیگر داریم:

P(A|C) = 1 , P(B|C) = 1/2 , $P(A \cap B|C) = 1/2$

 $P(A \cap B|C) = P(A|C)P(B|C)$

مستقل از هم هستند. B|C و A|C مستقل از هم هستند.

آمار و احتمال مهندسی بهنام بهرک

∢ 30 of 30 **>**