Grau en Enginyeria Informàtica Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

MATEMÀTIQUES 1

Part I: Teoria de grafs

Respostes a alguns exercicis

Setembre 2016

Aquest document conté les respostes a alguns dels problemes de la segona part de l'assignatura Matemàtiques 1. Aprofitem per fer constar i agrair la tasca del becari docent Gabriel Bernardino en la redacció de les solucions.

Us ho agraïrem si ens comuniqueu qualsevol errada que detecteu.

Anna de Mier Montserrat Maureso Dept. Matemàtica Aplicada 2

Conceptes bàsics de grafs

$$M_A(T_5) = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad M_A(C_5) = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$M_A(W_5) = \left(\begin{array}{ccccc} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array}\right)$$

3) Per a $n \geq 3$ $(n \geq 4$ en el cas del graf W_n):

$$N_n = (V, E)$$
: $|V| = n$, $|E| = 0$, $\delta(N_n) = 0$, $\Delta(N_n) = 0$

$$K_n = (V, E): |V| = n, |E| = \binom{n}{2}, \delta(K_n) = n - 1, \Delta(K_n) = n - 1$$

$$T_n = (V, E): |V| = n, |E| = n - 1, \delta(T_n) = 1, \Delta(T_n) = 2$$

$$C_n = (V, E): |V| = n, |E| = n, \delta(C_n) = 2, \Delta(C_n) = 2$$

$$W_n = (V, E): |V| = n, |E| = 2 \cdot n - 2, \delta(W_n) = 3, \Delta(W_n) = n - 1$$

1.2

■ Solució d' 1. i 2.

1	2	3	4	5	6
4	4	4	1	1	1
5	5	5	2	2	2
6	6	6	3	3	3

■ Solució de 3. i 4.

1	2	3	4	5	6	7
7	7	7	7	7	7	1
						2
						3
						4
						5
						6

1.4 1) $\frac{r \cdot n}{2}$; 2) $r \cdot s$;

1.6

- 1) 5; 4.
- 2) 4; 2.
- 3) 5; 5.
- 4) 9; 8.
- 5) 9; 12.

1.8

1) G^c

$$A = \{14, 15, 25, 35\}$$

$$M_A(G^c) = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix} \quad M_I(G^c) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

2)
$$G-4$$

$$A = \{12, 13, 23\}$$

$$M_A(G-4) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad M_I(G-4) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

3)
$$G-45$$

$$A = \{12, 13, 23, 24, 34\}$$

$$\stackrel{5}{\bullet} M_A(G-45) = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} M_I(G-45) = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

4)
$$G + 25$$

$$A = \{12, 13, 23, 24, 25, 34, 45\}$$

$$M_A(G+25) = \left(egin{array}{cccccc} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array}
ight)$$

$$M_A(G+25) = \left(egin{array}{ccccc} 0 & 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 1 & 1 \ 1 & 1 & 0 & 1 & 0 \ 0 & 1 & 1 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 \end{array}
ight) \quad M_I(G+25) = \left(egin{array}{ccccccccc} 1 & 1 & 0 & 0 & 0 & 0 & 0 \ 1 & 0 & 1 & 1 & 1 & 0 & 0 \ 0 & 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{array}
ight)$$

- $G^c = (V, A): |V| = n; |A| = \binom{n}{2} m.$
- $\blacksquare G v = (V, A)$: |V| = n 1; |A| = m q(u).
- $\blacksquare G a = (V, A): |V| = n; |A| = m 1.$

1.10

$$A = \{(1, \mathbf{a})(1, \mathbf{b}); \ (1, \mathbf{a})(1, \mathbf{c}); \ (1, \mathbf{a})(2, \mathbf{a}); \ (1, \mathbf{b})(1, \mathbf{c}); \ (1, \mathbf{b})(2, \mathbf{b}); \ (1, \mathbf{c})(2, \mathbf{c}); \ (2, \mathbf{a})(2, \mathbf{b}); \ (2, \mathbf{a})(3, \mathbf{a}); \ (3, \mathbf{a})(3, \mathbf{c}); \ (3, \mathbf{b})(3, \mathbf{c})\}$$

 $\textbf{1.11} \quad \text{Ordre } |V_1||V_2|, \ g_{G_1 \times G_2}(u_1,u_2) = g_{G_1}(u_1) + g_{G_2}(u_2) \text{ i mida } |V_1||A_2| + |V_2||A_1|.$

1.13

1.14 20349.

1.15 $2^{n(n-1)/2}$.

1.17

2) No existeix.

4) No existeix.

6) No existeix.

1.23 4 la Maria i 4 la parella.

1.24

- $\blacksquare \ G_1 \cong G_2$
- $\blacksquare \ G_3 \cong G_4$
- $\blacksquare \ G_5 \cong G_6$
- G₇
- $\blacksquare G_8 \cong G_9 \cong G_{10}$
- $\blacksquare G_{11}$
- $\blacksquare G_{12}$

 $\blacksquare G_{13}$

1.27 2.

Recorreguts, connexió i distància

2.1 G_1 : Camí de longitud 9: 12345107968. No hi ha camins de longitud 11 ja que té ordre 10. Cicles: 123451; 12381051; 1681079451; 12349710861.

 G_2 : 12345106789. No hi ha camins de longitud 11 ja que té ordre 11. Cicles: 123451; 510611945; 2345109872; 512349116105.

- **2.2** K_6 : 4; 12; 24; 24; 0. $K_{3,3}$: Si els vèrtexs pertanyen a la mateixa part estable: 3; 0; 6; 0; 0. Altrament: 0; 4; 0; 4; 0.
- **2.5** 1) $\langle \{a,b,d,e,f,g,i,j\} \rangle \bigcup \langle \{c,h\} \rangle$. 2) $\langle \{a,b,d,e,g,h,j,m\} \rangle \bigcup \langle \{c,f,i,k\} \rangle \bigcup \langle \{l\} \rangle$.

2.14
$$n = 10$$

- G_1 no és 2-connex, ja que 4 és un vèrtex de tall.
- \blacksquare G_2 no és 2-connex, ja que 3 i 6 són vèrtexs de tall.
- G_3 és 2-connex.

- **2.19** 1) 1. 2) $D(G_1) = 2$, $D(G_2) = 4$. 3) 2. 4) $\lfloor n/2 \rfloor$. 5) 2. 6) n-1.
- **2.20** 1) $G = W_6$ i u un vèrtex de grau 3. 2) $G = W_7$, u el vèrtex de grau 6. 3) $G = ([4], \{12, 13, 14, 23\}), u = 4.$
- **2.21** 1) a) G_1 : e(v) = 2, $1 \le v \le 10$; r(G) = 2; tots els vèrtexs són centrals. G_2 : e(1) = e(11) = 4, e(v) = 3, $2 \le v \le 10$; r(G) = 3; v vèrtex central si $2 \le v \le 10$. b) G: e(4) = 2, e(v) = 3, $v \ne 4$; r(G) = 2; l'únic vèrtex central és el 4. 2) C_6 . 3) T_5 .

Grafs eulerians i hamiltonians

3.1 Només és eulerià el graf G_4

3.3

3.4 r i s parells.

3.5 2) 2^n ; $n2^{n-1}$; Q_n és n-regular. 3) n parell.

 $\bf 3.6$ Si els dos components són complets, $\bf 4$; altrament, $\bf 3$.

3.7 Tots, llevat del primer dibuix.

3.8 1) 7; 2) 4.

3.10 Només són hamiltonians els grafs G_1 i G_2 .

3.11 *n*!

3.18 Dues.

Arbres

4.5 n = 18; ordre de T_2 : 36; mida de T_2 : 35.

4.6 n(n-1).

4.7 4,3,3,3,2,1,1,1,1,1,1.

4.16 $n i r 2^{r-1}$.

4.18 Un.

4.20 (1, 1, 1, 5); (1, 1, 2, 2, 2, 1); (3, 3, 1, 2, 4, 4, 2, 5, 5).

4.22 Els trajectes d'ordre 3.

4.23 Els grafs estrella.

Excercicis de repàs i consolidació

A.1

A.9 4 components connexos. 7,14,2,4,6,8,10,12,3,9,15,5.

A.19 Sí; no.

A.22 K_1 i T_4 .

A.23 k-1.

A.24 3,3,2,1,1,1,1.

A.30 Els trajectes d'ordre $n \geq 4$.