Benjamín Rivera **Notas de clase**

Universidad de Guanajuato

Lic. en Computación Matemática

Materia: Inteligencia Artificial y Teoría de la Computación

Grupo: Único

Periodo: Ago-Dic 2020

 $\acute{U}ltima~actualizaci\'on:$ 14 de septiembre de 2020

Información general

Notas del curso **Inteligencia Artificial y Teoría de la Computación** impartido por los profesores *Jesús Rodríguez Viorato* (jesus@cimat.mx) y *Arturo Hernández Aguirre* (artha@cimat.mx). Este curso fue ofrecido para los estudiantes de la *Lic. en Computación Matemática* durante el periodo *Ago-Dic 2020*.

Dado el panorama del momento, las clases seran ofrecidas en modalidad a distancia. En el caso de este curso se decidio por usar *Classroom* y *BlueJueans* para organizar el curso y realizar videoconferencias, respectivamente. Es importante tener en cuenta que, a pesar de que el curso es virtual, no es autogestivo; esto implica que se debe asistir a clases en un horario especifico.

Calificación

La calificación de este curso estara dividida en dos partes

- I Teoría de la computación $50\,\%$
 - a) Tareas 0%
 - b) Participación 30 %
 - c) Exámenes 70%
- II Inteligencia Artificial 50 %
 - a) Pendiente
 - b) ...

List of Theorems

I.1. Definicion (Autómata Finito)		1:
-----------------------------------	--	----

Índice general

Ι	Teoría de la Computación	7
1.	Autómatas1.1. Autómatas finitos	11 12 12
2.	Computabilidad	13
3.	Complejidad	15
II	Inteligencia Artificial	17

Parte I Teoría de la Computación

Biblografía

Sugeridas

- 1. Introduction to Languages and the Theory of Computation. Jhon C. Martin
- 2. Sipser, Michael. Introduction to the Theory of Computation. Thomson Course Technology, 2006.
- 3. Hopcroft, John E. et. Al. Introduction to Automata Theory, Languages and Computation. Pearson. 2008.

Extras

1. Viso G., E. (2015). *Introducción a Autómatas y Lenguajes Formales* (2.a ed.). Las prensas de Ciencia.

Capítulo 1

Autómatas

La historia corta es que los *Autómatas* son **maquinas de estados** que usamos para representar procesos. No todos los autómatas tienen las mismas capacidades, y después estos son usados para calcular la complejidad de los procesos que pueden, o no, ser representados. Después de trabajar un rato con ellos llegamos a la instancia más importante de estos, la **Máquina de Turing**; que como dato curioso podemos decir que nuestras computadoras actuales (las no cuánticas) son intentos de reporoducir a este autómata.

La teoría de autómatas es el modelo computacional más sencillo.

Posteriormente se usara a estos para estudiar conceptos como **computabilidad** y **complejidad**.

Todo autómata esta compuesto de tres partes escenciales; estados, estados iniciales, estados aceptores y relaciones entre estados; en la figura 1.1. Después se van agregando partes y limitantes, pero estas son las partes escenciales de estos.

Figura 1.1: Autómata Finito

1.1. Autómatas Finitos

Los Autómatas Finitos (AF) son los más simples de los autómatas que se estudiaran en este curso. Su definición formal es

Definicion I.1 (Autómata Finito). Un **Autómata Finito** (**AF**) es una 5-tupla $(Q, \Sigma, \delta, q_0, F)$ donde

- 1. Q es un conjunto finito que representa a los **estados**
- 2. Σ es un conjunto finito que representa el **alfabeto**
- 3. δ es una aplicación tal que $\delta: Q \times \Sigma \mapsto Q$ como la función de transición.
- 4. $q_0 \in Q$ como el estado inicial.
- 5. $F \subseteq Q$ como el conjunto de los estados aceptores. por lo que

1.2. Autómatas Finitos Deterministas

Capítulo 2

Computabilidad

La **computabilidad** implica resolver la pregunta Se puede resolver?

Capítulo 3

Complejidad

La **complejidad** trata de encontrar una medida respecto a que tan complicado es un problema.

Parte II Inteligencia Artificial