CS2109S Tutorial 3

AY 25/26 Sem 1—github/omgeta

A. 1. At root:

$$\begin{split} H(Y) &= 1 \\ H(Y \mid Education) &= \frac{4}{10}H(\frac{1}{4},\frac{3}{4}) + \frac{3}{10}H(\frac{1}{3},\frac{2}{3}) + \frac{3}{10}H(\frac{3}{3},0) = 0.6 \\ \Longrightarrow IG(Y;Education) &= H(Y) - H(Y \mid Education) = 1 - 0.4 = 0.6 \\ H(Y \mid Age) &= \frac{5}{10}H(\frac{3}{5},\frac{2}{5}) + \frac{5}{10}H(\frac{2}{5},\frac{3}{5}) = 0.971 \\ \Longrightarrow IG(Y;Age) &= H(Y) - H(Y \mid Age) = 1 - 0.971 = 0.029 \\ H(Y \mid Experience) &= \frac{6}{10}H(\frac{3}{6},\frac{3}{6}) + \frac{4}{10}H(\frac{2}{4},\frac{2}{4}) = 1 \\ \Longrightarrow IG(Experience) &= H(Y) - H(Y \mid Experience) = 0 \end{split}$$

Since Education has the highest information gain, we choose it as root. Since all Education = PhD have same classification, we only build a new subtree for Education = Masters, Bachelors. For Education = Masters:

$$H(Y \mid Education = Masters) = H(\frac{1}{3}, \frac{2}{3}) = 0.918$$

$$H(Y \mid Education = Masters, Experience) = \frac{2}{3}H(\frac{1}{2}, \frac{1}{2}) + \frac{1}{3}H(1, 0) = 0.667$$

$$\implies IG(Y \mid Education = Masters; Experience) = 0.918 - 0.667 = 0.251$$

$$H(Y \mid Education = Masters, Age) = \frac{1}{3}H(\frac{1}{1}, \frac{0}{1}) + \frac{2}{3}H(\frac{0}{2}, \frac{2}{2}) = 0$$

$$\implies IG(Y \mid Education = Masters; Age) = 0.918 - 0 = 0.918$$

Since Age has the highest information gain, we choose it as subroot. For Education = Bachelors:

$$H(Y \mid Education = Bachelors) = H(\frac{1}{4}, \frac{3}{4}) = 0.811$$

$$H(Y \mid Education = Bachelors, Experience) = \frac{2}{4}H(\frac{2}{2}, \frac{0}{2}) + \frac{2}{4}H(\frac{1}{2}, \frac{1}{2}) = 0.5$$

$$\implies IG(Y \mid Education = Bachelors; Experience) = 0.811 - 0.5 = 0.311$$

$$H(Y \mid Education = Bachelors, Age) = \frac{2}{4}H(\frac{0}{2}, \frac{2}{2}) + \frac{2}{4}H(\frac{1}{2}, \frac{1}{2}) = 0.5$$

$$\implies IG(Y \mid Education = Bachelors; Age) = 0.811 - 0.5 = 0.311$$

With equal information gain, we tiebreak choosing Experience as subroot. We are left with splitting by Age in Experience = High

2. Outliers would be the applicant with Bachelors, High Experience and Age \geq 30, as well as the applicant with Masters and age <3

3. Based on the predicted and actual decisions, TP=3, TN=1, FP=1, FN=2 so that $Accuracy=\frac{4}{7}, Precision=\frac{3}{4}, Recall=\frac{3}{5}, F1=0.667$ where F1=0.667>0.6 which indicates the model achieves a stronger balance than expected providing more reliable predictions for the positive class.

B. 1. Construct
$$X = \begin{pmatrix} 1 & 2 & 1 & 4 & 2 & 1 \\ 1 & 3 & 2 & 9 & 6 & 4 \\ 1 & 5 & 3 & 25 & 15 & 9 \\ 1 & 7 & 4 & 49 & 28 & 16 \\ 1 & 8 & 5 & 64 & 40 & 25 \\ 1 & 9 & 6 & 81 & 54 & 36 \end{pmatrix}$$
 then $w = \begin{pmatrix} 7.5 \\ -4 \\ 6.5 \\ -9.5 \\ 33.5 \\ -28 \end{pmatrix}$, giving $\hat{y} = 7.5 - 4x_1 + 6.5x_2 - 9.5x_1^2 + 33.5x_1x_2 - 28x_2^2$

- 2. Column $x_3 = x_1^2 + 2x_1x_2 + x_2^2$ is a linear combination of the existing columns $\implies X$ loses full column rank $\implies X^T X$ is singular. We can drop one of the dependent columns.
- C. 1. For $\hat{y} = 2$, $L_{MSE} = 0.005$, $L_{MAE} = 0.05$; For $\hat{y} = 4$, $L_{MSE} = 0.405$, $L_{MAE} = 0.45$
 - 2. MSE magnifies large outliers

D. 1. Given $y = x^2$, $\frac{dy}{dx} = 2x$, then $x_{t+1} = x_t - \gamma 2x_t = (1 - 2\gamma)x_t$

					_
	γ	t	x_t	$y_t = x_t^2$	_
	all	0	5	25	
_	10	1	-95	9025	$\gamma = 0.1$ converges the fastest
		2	1805	3258025	
		3	-34295	1176147025	
		4	651605	424589076025	
		5	-12380495	153276656445025	
_	1	1	-5	25	
		2	5	25	
		3	-5	25	
		4	5	25	
		5	-5	25	
	0.1	1	4	16	
		2	3.2	10.24	
		3	2.56	6.5536	
		4	2.048	4.1943	
		5	1.6384	2.6844	
_	0.01	1	4.9	24.01	
		2	4.802	23.0592	
		3	4.706	22.1461	
		4	4.6118	21.2691	
		5	4.5196	20.4268	
_					

2. Add learning rate decay or an adaptive learning rate