CS559 lecture 9 FDA and Perceptron

Readings: Bishop: Chapter 4.1, Chapter 7.

Outline

Outline:

- Fisher Linear Discriminant
- Algorithms for linear decision boundary
- Support vector machines
- Maximum margin hyperplane.
- Support vectors.
- Support vector machines.
- Extensions to the non-separable case.
- Kernel functions.

Linear decision boundaries

What models define linear decision boundaries?

Logistic regression model

Discriminant functions:

$$g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$
 $g_0(\mathbf{x}) = 1 - g(\mathbf{w}^T \mathbf{x})$

where

$$g(z) = 1/(1 + e^{-z})$$
 - is a logistic function

$$f(\mathbf{x}, \mathbf{w}) = g_1(\mathbf{w}^T \mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$

Linear discriminant analysis (LDA)

• When covariances are the same

$$\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}), y = 0$$

 $\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), y = 1$

Linear decision boundaries

• Any other models/algorithms?

Project data into one dimension

$$y = \mathbf{w}^T \mathbf{x}$$
Decision: $y = \mathbf{w}^T \mathbf{x} + w_0 \ge 0$

• How to find the projection line?

How to find the projection line?

$$y = \mathbf{w}^T \mathbf{x}$$

Assume:

$$\mathbf{m}_{1} = \frac{1}{N_{1}} \sum_{i \in C_{1}}^{N_{1}} \mathbf{x}_{i}$$
 $\mathbf{m}_{2} = \frac{1}{N_{2}} \sum_{i \in C_{2}}^{N_{2}} \mathbf{x}_{i}$

Maximize the difference in projected means:

$$m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$$

Problem 1: $m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$ can be maximized by increasing \mathbf{w}

Problem 2: variance in class distributions after projection is

changed

Fisher's solution:

$$J(\mathbf{w}) = \frac{m_2 - m_1}{s_1^2 + s_2^2}$$

Within class variance

$$s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2$$

Error:

$$J(\mathbf{w}) = \frac{m_2 - m_1}{s_1^2 + s_2^2}$$

Within class variance after the projection

$$s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2$$

Optimal solution:

$$\mathbf{w} \approx \mathbf{S}_{\mathbf{w}}^{-1} (\mathbf{m}_{2} - \mathbf{m}_{1})$$

$$\mathbf{S}_{\mathbf{w}} = \sum_{i \in C_{1}} (\mathbf{x}_{i} - \mathbf{m}_{1}) (\mathbf{x}_{i} - \mathbf{m}_{1})^{T}$$

$$+ \sum_{i \in C_{1}} (\mathbf{x}_{i} - \mathbf{m}_{2}) (\mathbf{x}_{i} - \mathbf{m}_{2})^{T}$$

Linearly separable classes

There is a hyperplane that separates training instances with no error

Hyperplane:

$$\mathbf{w}^T \mathbf{x} + w_0 = 0$$

Class (+1)

$$\mathbf{w}^T \mathbf{x} + w_0 > 0$$

Class (-1)

$$\mathbf{w}^T \mathbf{x} + w_0 < 0$$

Algorithms for linearly separable set

Separating hyperplane

$$\mathbf{w}^T \mathbf{x} + w_0 = 0$$

- We can use **gradient methods** or Newton Rhapson for sigmoidal switching functions and learn the weights
- Recall that we learn the linear decision boundary

Algorithms for linearly separable set

• Separating hyperplane $\mathbf{w}^T \mathbf{x} + w_0 = 0$

$$\mathbf{w}^T \mathbf{x} + w_0 = 0$$

Algorithms for linearly separable sets

Perceptron algorithm:

- Simple iterative procedure for modifying the weights of the linear model
- Works for inputs x where each x_i is in [0,1]

Initialize weights w

Loop through examples (\mathbf{x}, y) in the dataset D

- 1. Compute $\hat{y} = \mathbf{w}^T \mathbf{x}$
- 2. If $y \neq \hat{y} = -1$ then $\mathbf{w}^T \leftarrow \mathbf{w}^T + \mathbf{x}$
- 3. If $y \neq \hat{y} = +1$ then $\mathbf{w}^T \leftarrow \mathbf{w}^T \mathbf{x}$

Until all examples are classified correctly

Properties:

guaranteed convergence if the classes are linearly separable

Algorithms for linearly separable sets

Linear program solution:

 Finds weights that satisfy the following constraints:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 0$$

For all i, such that $y_i = +1$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le 0$$

For all i, such that $y_i = -1$

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 0$$

Property: if there is a hyperplane separating the examples, the linear program finds the solution