Домашнее задание №9

Задание 1:

Найти экстремумы функции $f(x_1,\dots,x_n)=\sum_{i=1}^n x_i^2$ на множестве $\sum_{i=1}^n x_i^4 \leq 1$, то есть решить задачу

$$\left\{egin{array}{l} x_1^2+\cdots+x_n^2 o extr\ x_1^4+\cdots+x_n^4-1\leq 0 \end{array}
ight.$$

Решить аналитически и проверить при помощи оптимизатора в Python.

Решение:

Составим функцию Лагранжа:

$$L = \lambda_0(x_1^2 + \dots + x_n^2) + \lambda_1(x_1^4 + \dots + x_n^4 - 1)$$

Найдем производные:

$$rac{\partial L}{\partial x_i} = 2\lambda_0 x_i + 4\lambda_1 x_i^3$$

$$\left\{egin{aligned} 2\lambda_0x_i+4\lambda_1x_i^3=0, i=\overline{1,n}\ \lambda_1(x_1^4+\cdots+x_n^4-1)=0 \end{aligned}
ight.$$

Рассмотрим первый случай $\lambda_0=0$:

$$\left\{egin{array}{l} 4\lambda_1x_i^3=0,i=\overline{1,n}\ \lambda_1(x_1^4+\cdots+x_n^4-1)=0 \end{array}
ight.$$

В данном случае есть два варианта:

- ullet $\lambda_1=0$: в таком случае весь вектор λ будет нулевой
- $\lambda_1
 eq 0$: в таком случае система будет несовместной

$$\Rightarrow \lambda_0 \neq 0$$

Рассмотрим второй случай $\lambda_0 \neq 0$:

Пусть $\lambda_1=2$, тогда:

$$egin{cases} x_i + \lambda_1 x_i^3 = 0, i = \overline{1, n} \ \lambda_1 (x_1^4 + \cdots + x_n^4 - 1) = 0 \ \end{cases} \ egin{cases} x_i (1 + \lambda_1 x_i^2) = 0, i = \overline{1, n} \ \lambda_1 (x_1^4 + \cdots + x_n^4 - 1) = 0 \end{cases}$$

Из первого уравнения $\Rightarrow x_i = 0$ или $1 + \lambda_1 x_i^2 = 0$

1.
$$x_i = 0$$

В таком случае из второго уравнения $\Rightarrow \lambda_1 = 0 \Rightarrow a = (0,0,\dots,0)$

$$f(a)=0$$
 2. $1+\lambda_1x_i^2=0$ $x_i^2=-rac{1}{\lambda_i}\Rightarrow \lambda_1>0$ из второго уравнения $\Rightarrow (rac{1}{\lambda_1^2}+\ldots+rac{1}{\lambda_1^2}-1)\lambda_1=0\Rightarrow rac{n}{\lambda_1^2}-1=0\Rightarrow \lambda_1=-\sqrt{n}\Rightarrow x_i=\pmrac{1}{\sqrt[4]{n}}\Rightarrow b=(\pmrac{1}{\sqrt[4]{n}},\pmrac{1}{\sqrt[4]{n}})$ $f(b)=rac{n}{\sqrt{n}}=\sqrt{n}$

Итого 2^n+1 точек экстремума. Все точки b - точки максимума, при этом значения функции в точках b одинаковое и равно \sqrt{n} . Точка a - точка минимума. Значение функции в точке a равно 0

Проверка с помощью оптимизатора на Python

Зададим нашу функцию и ограничения

```
In []: from scipy.optimize import minimize

def target_function(x):
    # Φy+κνμμя
    return (sum(i**2 for i in x))

# Ο≥ρα+μν+εμμε
constraints = ({'type': 'eq', 'fun': lambda x: sum(i**4 for i in x) - 1})
```

Предположим что n=6 и найдем минимум функции

```
In []: # Начальное значение для переменных
n = 6
initial_guess = [0.0 for _ in range(n)] #, 0.0, 0.0

# Проведем оптимизацию для поиска минимума с ограничением
result_min = minimize(target_function, initial_guess, method='trust-constr', constraints

# Выведем результаты минимизации
print("Минимум функции:", result_min.fun)
print("Аргумент минимума:", result_min.x)
```

Минимум функции: 0.0 Аргумент минимума: [0. 0. 0. 0. 0. 0.]

Ответ совпал. Дальше найдем максимум функции. Для этого найдем минимум функции -f(x)

```
In [ ]: def target_function(x):
    # Φyμκция
    return -1*(sum(i**2 for i in x))
```

Предположим что в этот раз n=15 и найдем минимум для этой функции

```
In [ ]: # Начальное значение для переменных n = 15 initial_guess = [0.0 for _ in range(n)] #, 0.0, 0.0
```

```
# Проведем оптимизацию для поиска минимума с ограничением
result_min = minimize(target_function, initial_guess, method='trust-constr', constraints

# Выведем результаты минимизации
print("Минимум функции:", result_min.fun)
print("Аргумент минимума:", result_min.x)
```

Минимум функции: -3.8729833462074175

 $0.50813275 \ \ 0.50813275 \ \ 0.50813275 \ \ 0.50813275 \ \ 0.50813275$

0.50813274 0.50813275 0.50813275]

Проверим ответы:

Исходя из аналитического решения, следует что максимум функции равен \sqrt{n} . В данном случе $n=15\Rightarrow\sqrt{n}=3.87298$ Аргументы для точки максимума равны следующим значениям $b=(\pm\frac{1}{\sqrt[4]{n}},\pm\frac{1}{\sqrt[4]{n}},\ldots,\pm\frac{1}{\sqrt[4]{n}})$; $\frac{1}{\sqrt[4]{n}}=0.508133$ при n=15

Ответ снова совпал.

Задание 2:

- 1. Решить аналитически и проверить при помощи оптимизатора в Python.
- 2. Также дополнительно помимо оптимизатора использовать какой-нибудь метаэвристический алгоритм (имитация отжига / квантовый отжиг / муравьиный алгоритм / генетический алгоритм) для проверки результатов.
- 3. Дать оценку устойчивости метаэвристики в зависимости от начальной точки и от количества итераций.

Решить задачу коммивояжёра методом ветвей и границ:

$$\begin{pmatrix}
\infty & 4 & 5 & 7 & 5 \\
8 & \infty & 5 & 6 & 6 \\
3 & 5 & \infty & 9 & 6 \\
3 & 5 & 6 & \infty & 2 \\
6 & 2 & 3 & 8 & \infty
\end{pmatrix}$$

Решение методом ветвей и границ:

Шаг 1

Город	Α	В	C	D	E	d_i
Α	М	4	5	7	5	4
В	8	М	5	6	6	5
С	3	5	М	9	6	3
D	3	5	6	М	2	2

E 6 2 3 8 M 2

Шаг 2

Город	Α	В	С	D	E
Α	М	0	1	3	1
В	3	М	0	1	1
С	0	2	М	6	3
D	1	3	4	М	0
E	4	0	1	6	M
d_{j}	0	0	0	1	0

Шаг 3

Город	Α	В	С	D	E
Α	М	0	1	2	1
В	3	М	0	0	1
С	0	2	М	5	3
D	1	3	4	М	0
Е	4	0	1	5	М

$$H_0 = 4 + 5 + 3 + 2 + 2 + 0 + 0 + 0 + 1 + 0 = 17$$

Город	Α	В	С	D	E
А	М	0(1)	1	2	1
В	3	М	0(1)	0(2)	1
С	0(3)	2	М	5	3
D	1	3	4	М	0(2)
Е	4	0(1)	1	5	М

Наибольшая сумма для ребра C-A (3) \Rightarrow разбиваем на два множества C-A и C-A

Шаг 4

Исключение ребра С-А

Город	Α	В	C	D	E	d_i
Α	М	0	1	2	1	0
В	3	М	0	0	1	0
C	М	2	М	5	3	2
D	1	3	4	М	0	0
Е	4	0	1	5	М	0
d_i	1	0	0	0	0	

$$H_1^* = 17 + 3 = 20$$

Включение ребра С-А

Город	В	C	D	E	d_i
Α	0	М	2	1	0
В	М	0	0	1	0
D	3	4	М	0	0
Е	0	1	5	М	0
d_{j}	0	0	0	0	

$$H_1 = 17 + 0 = 17$$

Так как 17 < 20 \Rightarrow включаем в маршрут ребро C-A

Шаг 5

Город	В	С	D	E
Α	0(1)	М	2	1
В	М	0(1)	0(2)	1
D	3	4	М	0(4)
E	0(1)	1	5	М

Наибольшая сумма для ребра D-E (4) \Rightarrow разбиваем на два множества D-E и D-E

Шаг 6

Исключение ребра D-E

Город	В	C	D	E	d_i
А	0	М	2	1	0
В	М	0	0	1	0
D	3	4	М	М	3
E	0	1	5	М	0
d_{j}	0	0	0	1	
$H_2^*=1$.7 +	- 4 :	= 2	1	

Включение ребра D-E

Город	В	C	D
Α	0	М	2
В	М	0	0
Е	0	1	М
d_{j}	0	0	0

$$H_2 = 17 + 0 = 17$$

Так как 17 < 21 \Rightarrow включаем в маршрут ребро D-E

Шаг 7

Город	В	C	D
А	0(2)	М	2
В	М	0(1)	0(2)
Е	0(1)	1	М

Наибольшая сумма для ребра B-D (2) \Rightarrow разбиваем на два множества B-D и B-D

Шаг 8

Исключение ребра B-D

Город	В	C	D	d_i
Α	0	М	2	0
В	М	0	М	0
Е	0	1	М	0
d_{j}	0	0	2	
$H_3^* = 1$	17 +	- 2 :	= 1	9

Включение ребра B-D

Город	В	c	d_i
Α	0	М	0
Е	0	1	0
d_{j}	0	1	

Так как 18 < 19 \Rightarrow включаем в маршрут ребро B-D

Шаг 7

Город	В	C
Α	0	М
E	0(1)	1

Наибольшая сумма для ребра E-B (1) \Rightarrow разбиваем на два множества E-B и E-B

Шаг 8

Исключение ребра Е-В

Город	В	С	d_i
А	0	М	0
Е	М	1	0
d_{j}	0	1	
$H_4^* = 1$	18 -	⊢ 1	= 19

Включение ребра Е-В

```
Город С
```

```
H_3=17+\infty=\infty Так как 19 < \infty \Rightarrow исключаем в маршрут ребро E-B \Rightarrow включаем в маршрут оставшиеся ребра A-B и E-C \Rightarrow H=18 Итоговый маршрут C \to A \to B \to D \to E \to C
```

Проверка с помощью ORTools

```
In [ ]: from ortools.constraint_solver import routing_enums pb2
        from ortools.constraint_solver import pywrapcp
        def create data model():
             """Stores the data for the problem."""
            data = \{\}
            data["distance_matrix"] = [
                [0, 4.0, 5.0, 7.0, 5.0],
                [8.0, 0, 5.0, 6.0, 6.0],
                [3, 5, 0, 9, 6.0],
                [3.0, 5.0, 6.0, 0, 2.0],
                [6.0, 2.0, 3.0, 8.0, 0]
            data["num vehicles"] = 1
            data["depot"] = 0
            return data
        data = create_data_model()
        manager = pywrapcp.RoutingIndexManager(
            len(data["distance_matrix"]), data["num_vehicles"], data["depot"]
        routing = pywrapcp.RoutingModel(manager)
        def distance_callback(from_index, to_index):
            """Returns the distance between the two nodes."""
            # Convert from routing variable Index to distance matrix NodeIndex.
            from_node = manager.IndexToNode(from_index)
            to_node = manager.IndexToNode(to_index)
            return data["distance_matrix"][from_node][to_node]
        transit_callback_index = routing.RegisterTransitCallback(distance_callback)
        routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
        search parameters = pywrapcp.DefaultRoutingSearchParameters()
        search_parameters.first_solution_strategy = (
            routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC
        def print_solution(manager, routing, solution):
            """Prints solution on console."""
            print(f"Objective: {solution.ObjectiveValue()} miles")
            index = routing.Start(0)
            plan_output = "Route for vehicle 0:\n"
            route_distance = 0
            while not routing.IsEnd(index):
                plan_output += f" {manager.IndexToNode(index)} ->"
                previous_index = index
```

```
index = solution.Value(routing.NextVar(index))
    route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)
    plan_output += f" {manager.IndexToNode(index)}\n"
    print(plan_output)
    plan_output += f"Route distance: {route_distance}miles\n"

In []: solution = routing.SolveWithParameters(search_parameters)
    if solution:
        print_solution(manager, routing, solution)

Objective: 18 miles
    Route for vehicle 0:
        0 -> 1 -> 3 -> 4 -> 2 -> 0
```

Результаты совпали, следовательно решение можно считать верным

Реализация муравьиного алгоритма

Реализация была взята из следующего репозитория https://github.com/ppoffice/ant-colony-tsp

```
In [ ]: import random
        import numpy as np
        class Graph(object):
            def __init__(self, cost_matrix: list, rank: int):
                :param cost_matrix:
                 :param rank: rank of the cost matrix
                self.matrix = cost matrix
                self.rank = rank
                # noinspection PyUnusedLocal
                self.pheromone = [[1 / (rank * rank) for j in range(rank)] for i in range(rank)]
        class ACO(object):
            def __init__(self, ant_count: int, generations: int, alpha: float, beta: float, rho:
                          strategy: int):
                :param ant_count:
                :param generations:
                 :param alpha: relative importance of pheromone
                 :param beta: relative importance of heuristic information
                 :param rho: pheromone residual coefficient
                 :param q: pheromone intensity
                 :param strategy: pheromone update strategy. 0 - ant-cycle, 1 - ant-quality, 2 -
                self.Q = q
                self.rho = rho
                self.beta = beta
                self.alpha = alpha
                self.ant_count = ant_count
                self.generations = generations
                self.update_strategy = strategy
             def _update_pheromone(self, graph: Graph, ants: list):
                 for i, row in enumerate(graph.pheromone):
                     for j, col in enumerate(row):
                         graph.pheromone[i][j] *= self.rho
                         for ant in ants:
                             graph.pheromone[i][j] += ant.pheromone_delta[i][j]
```

```
# noinspection PyProtectedMember
    def solve(self, graph: Graph):
       :param graph:
       best_cost = float('inf')
       best_solution = []
        for gen in range(self.generations):
            # noinspection PyUnusedLocal
            ants = [ Ant(self, graph) for i in range(self.ant count)]
           for ant in ants:
                for i in range(graph.rank - 1):
                    ant._select_next()
                ant.total_cost += graph.matrix[ant.tabu[-1]][ant.tabu[0]]
                if ant.total cost < best cost:</pre>
                    best cost = ant.total cost
                    best_solution = [] + ant.tabu
                # update pheromone
                ant._update_pheromone_delta()
            self._update_pheromone(graph, ants)
            # print('generation #{}, best cost: {}, path: {}'.format(gen, best_cost, bes
       return best_solution, best_cost
class Ant(object):
    def __init__(self, aco: ACO, graph: Graph):
       self.colony = aco
       self.graph = graph
       self.total_cost = 0.0
       self.tabu = [] # tabu list
       self.pheromone_delta = [] # the local increase of pheromone
        self.allowed = [i for i in range(graph.rank)] # nodes which are allowed for the
        self.eta = [[0 if i == j else 1 / graph.matrix[i][j] for j in range(graph.rank)]
                    range(graph.rank)] # heuristic information
       start = random.randint(0, graph.rank - 1) # start from any node
       self.tabu.append(start)
       self.current = start
       self.allowed.remove(start)
    def select next(self):
       denominator = 0
        for i in self.allowed:
            denominator += self.graph.pheromone[self.current][i] ** self.colony.alpha *
        # noinspection PyUnusedLocal
       probabilities = [0 for i in range(self.graph.rank)] # probabilities for moving
       for i in range(self.graph.rank):
            try:
                self.allowed.index(i) # test if allowed list contains i
                probabilities[i] = self.graph.pheromone[self.current][i] ** self.colony.
                    self.eta[self.current][i] ** self.colony.beta / denominator
            except ValueError:
               pass # do nothing
       # select next node by probability roulette
       selected = 0
       rand = random.random()
        for i, probability in enumerate(probabilities):
           rand -= probability
           if rand <= 0:
                selected = i
                break
        self.allowed.remove(selected)
        self.tabu.append(selected)
        self.total_cost += self.graph.matrix[self.current][selected]
        self.current = selected
    # noinspection PyUnusedLocal
```

```
def _update_pheromone_delta(self):
    self.pheromone_delta = [[0 for j in range(self.graph.rank)] for i in range(self.
    for _ in range(1, len(self.tabu)):
        i = self.tabu[_ - 1]
        j = self.tabu[_]
        if self.colony.update_strategy == 1:  # ant-quality system
            self.pheromone_delta[i][j] = self.colony.Q
        elif self.colony.update_strategy == 2:  # ant-density system
            # noinspection PyTypeChecker
            self.pheromone_delta[i][j] = self.colony.Q / self.graph.matrix[i][j]
        else:  # ant-cycle system
            self.pheromone_delta[i][j] = self.colony.Q / self.total_cost
```

```
In []: cities = []
    points = []
    cost_matrix = [
        [0, 4.0, 5.0, 7.0, 5.0],
        [8.0, 0, 5.0, 6.0, 6.0],
        [3, 5, 0, 9, 6.0],
        [3.0, 5.0, 6.0, 0, 2.0],
        [6.0, 2.0, 3.0, 8.0, 0]
]
    rank = 5
    aco = ACO(10, 100, 1.0, 10.0, 0.5, 10, 2)
    graph = Graph(cost_matrix, rank)
    path, cost = aco.solve(graph)
    print('cost: {}, path: {}'.format(cost, path))
```

cost: 18.0, path: [2, 0, 1, 3, 4]

Маршрут и стоимость маршрута совпали, следовательно реализация и решение верное.

Оценка устойчивости метаэвристики в зависимости от параметров

Так как в алгоритме начальная точка задается случайно, то вместо её оценки устойчивости рассмотрим такой параметр как число муравьев.

Число муравьев

Число муравьев является важным параметром в муравьином алгоритме

- Важность числа муравьев: Увеличение числа муравьев может улучшить исследование пространства решений. Больше муравьев может означать больше возможностей для параллельного исследования различных путей. И наоборот, слишком маленькое число муравьев может ограничить разнообразие исследуемых путей, что может снизить вероятность нахождения оптимального решения.
- Устойчивость: Обычно увеличение числа муравьев делает алгоритм менее зависимым от конкретного начального решения и более устойчивым к случайным вариациям.

Количество итераций

- **Важность**: Количество итераций определяет, насколько долго алгоритм может исследовать пространство решений. Большее количество итераций может улучшить вероятность нахождения более оптимального решения.
- **Устойчивость**: Муравьиный алгоритм обычно стабилен при различных значениях количества итераций, но слишком низкое количество итераций может привести к недостаточному исследованию пространства решений.