

Lost lecture we introduced the idea of kerrel menn embeddigs of prob. Mess

heP(X) hr= (k(x,·) h(dx) 8 intern the MMD: = $\mathbb{E}_{x \sim \mu} R(x, \cdot)$ MMD $(\mu, \mu') := \| M_{\kappa} - \mu_{\kappa} \|_{K}$

In this lecture we will take a closer look at the proporties of kernel man embeddigs & the MMD. Startiz with the following obs.

Observation In HW3 you showed for any φ = Hn" Hut φ(f) = <f, Kp> Vf Elln where $K\phi := X \mapsto \phi(K(X, \cdot)) \cdot Tahij$ $\phi(f) := \int f(x) \mu(dx)$ we infer that $K\phi = \mu_{k}$!

Im: If SJK(x,x) p(dx) <+00 Hen Mx & HK & Sf(x) \((dx) = \(\frac{1}{x} \rightarrow f(x) = \left\{ \frac{1}{x} \rightarrow \frac{1}{x} \right Proof: Based on above observation we only need to check that I -> St(x) u(dx) is a bdd lin. op. on H. $|\int f(x) \mu(dx)| \leq \int |f(x)| \mu(dx)$ (Jensan's) in eq. $= \int |\langle f, K(x, \cdot) \rangle_{K} | \mu(dx)$ < 5 [k(x,x) | f|| (dx) (C-5) Kernel mean embeddings are deeply connected to well-lenew objects in probability theory. eg: (moment generating func.) Consider the kerrel K(x,x')= exp(xTx) then we have M(x') = Exymet (x'x')
which is the multi-variate moment generality
function (when it exists).

(2)

eg: (Characteristic function) Consider the Fourier Kernel K(x,x') = exp(ixx') to $\mu(\underline{x}') = \left(exp(z'\underline{x}'\underline{x}')\mu(d\underline{x}) \right)$ which is precisely the Characteristic fine. or Fourier trusform of M! More generally, by Mercer's thm K(x,x') = \(\Sigma\) \(\forall \) \(\forall Mr= Expk(x,·) = E \ \(\sum_{\text{X-M}} \sum_{\text{Y-(\overline{\chi})}} \forall_{\text{Y-(\overline{\chi})}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \forall_{\text{Y-(\overline{\chi})}}} \ $= \sum_{i=1}^{\infty} (\lambda_i) E_{x_{n,n}} (Y_i(\underline{x})) (Y_i(\cdot))$ Since Y are orth normal in L2(X, v) them 1 Mrll = [() Exmy(x))2 so, le RKHS normo & Mx is a weighted sum ob generalized moments of M!

19.2	Properties of MMD & its empirical Approx.
	Recall that earlier we mentioned that MMD
	is not necessarily a metric!
	Let Pr(x) = { \mathbb{P}(x) \ \land \int(x,x) \mu(dx) <+ \sightarrow \frac{7}{2}.
	Now let u, n, n'ePr(X) thu
(Sy	m) 1) MMD (p,p') = p_k-p'x K = MMD (p,p)
(Pos	s.) 2) MMI) (µ,µ') ≥0
(<u>4</u> -in	ey) 3) MMD(μ,μ') = μη-μκ χ < μ-μ' χ+ μ"-μ' κ
-	
	= MMD(p,p") + MMD(p", p)
	= MMD(\mu,\mu') + MMD(\mu',\mu) 4) MMD(\mu,\mu) = 0 but we may also have
	4) MMD(µ,µ) = 0 but we may also have
	4) MMD(µ,µ) = 0 but we may also have MMD(µ,µ') = 0 while µ ≠ µ'! ie, the
	4) MMD(\(\mu,\mu) = 0 but we may also have MMD(\(\mu,\mu') = 0 while \(\mu \neq \mu') \) ie, the Livergence property may fail!
	4) MMD(\mu,\mu) = 0 but me may also have MMD(\mu,\mu') = 0 while \mu \neq \mu' ie, the Livergence property may fail! Given a distance-like function D:P(X)xP(X) -> 1R
	4) MMD(\(\mu,\mu') = 0 but me may also home MMD(\(\mu,\mu') = 0 while \(\mu \neq \mu') \\ ie, the Livergence property may fail! Given a distance-like function D:P(X)xP(X) -o/R we say D has the divergence property if
	4) MMD(µ,µ) = 0 but we may also have MMD(µ,µ') = 0 while µ ≠ µ'! ie, the Livergence property many fail! Given a distance-like function D: P(X)xP(X) - o/R We say D has the divergence property if D(µ,µ') = 0 iff µ=µ'
	4) MMD(\(\mu,\mu') = 0 but me may also home MMD(\(\mu,\mu') = 0 while \(\mu \neq \mu') \\ ie, the Livergence property may fail! Given a distance-like function D:P(X)xP(X) -o/R we say D has the divergence property if

So in general MMDs may not satisfy the div. property which means MMD may not be a metric (hence the phrose "discrepancy").
This essentially comes down to our chaice of the Kennet.

Defn: We suy a kernel K·X×X-o/R(or C) is Characteristic if the map

P(X) >M -> Mr & Hr

is injective. In that are me may also sury Uk is characteristic.

Intuitively, a kernel / RKHS is characteristic if the is sufficiently vich/large so that its elements can caputure higher moments of prob. mesores in P(x).

The best eg. of a characteristic kernel is the Fourier kernel $K(\underline{x},\underline{x}') = exp(i\underline{x}'\underline{x}')$ since its mean embeddig is simply the Fourier tras form.

Table 3.1: Various characterizations of well-known kernel functions. The columns marked 'U', 'C', 'TI', and 'SPD' indicate whether the kernels are universal, characteristic, translation-invariant, and strictly positive definite, respectively, w.r.t. the domain \mathcal{X} . For the discrete kernel, $\#_s(\mathbf{x})$ is the number of times substrings s occurs in a string \mathbf{x} . K_{ν} is the modified Bessel function of the second kind of order ν and Γ is the Gamma function.

Kernel Function	$k(\mathbf{x},\mathbf{y})$	Domain $\mathcal X$	\mathbf{U}	\mathbf{C}	TI	\mathbf{SPD}
Dirac	$\mathbb{1}_{\mathbf{x}=\mathbf{y}}$	$\{1,2,\ldots,m\}$	✓	1	Х	/
Discrete	$\sum_{s \in \mathcal{X}} w_s \#_s(\mathbf{x}) \#_s(\mathbf{y})$ with $w_s > 0$ for all s	$\{s_1, s_2, \ldots, s_m\}$	1	1	X	1
Linear	$\langle \mathbf{x}, \mathbf{y} angle$	\mathbb{R}^d	X	X	X	×
Polynomial	$(\langle \mathbf{x}, \mathbf{y} \rangle + c)^p$	\mathbb{R}^d	X	X	X	×
Gaussian	$\exp(-\sigma \ \mathbf{x} - \mathbf{y}\ _2^2), \ \sigma > 0$	\mathbb{R}^d	1	1	/	/
Laplacian	$\exp(-\sigma \ \mathbf{x} - \mathbf{y}\ _1), \ \sigma > 0$	\mathbb{R}^d	1	1	/	1
Rational quadratic	$(\ \mathbf{x} - \mathbf{y}\ _2^2 + c^2)^{-\beta}, \ \beta > 0, c > 0$	\mathbb{R}^d	1	1	/	/
B_{2l+1} -splines	$B_{2l+1}(\mathbf{x} - \mathbf{y})$ where $l \in \mathbb{N}$ with $B_i := B_i \otimes B_0$	[-1, 1]	1	1	/	/
Exponential	$\exp(\sigma(\mathbf{x}, \mathbf{y})), \ \sigma > 0$	compact sets of \mathbb{R}^d	×	1	X	1
Matérn	$\frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \ \mathbf{x} - \mathbf{x}'\ _2}{\sigma} \right) K_{\nu} \left(\frac{\sqrt{2\nu} \ \mathbf{x} - \mathbf{x}'\ _2}{\sigma} \right)$	\mathbb{R}^d	✓	/	1	✓
Poisson	$1/(1-2\alpha\cos(\mathbf{x}-\mathbf{y})+\alpha^2),\ 0<\alpha<1$	$([0,2\pi),+)$	1	/	1	✓

(Tuble from Muandet et al (2017)

