第一章

第四节元穷小与无穷大

- 一、无穷小
- 二、无穷大

三、无穷小与无穷大的关系

一、无穷小

定义1. 若 $x \to x_0$ 时,函数 $f(x) \to 0$,则称函数 f(x) (或 $x \to \infty$)

为 $x \rightarrow x_0$ 时的无穷小. (或 $x \rightarrow \infty$)

例如:

 $\lim_{x\to 1} (x-1) = 0$, 函数 x-1 当 $x\to 1$ 时为无穷小;

定义1. 若 $x \to x_0$ (或 $x \to \infty$) 时, 函数 $f(x) \to 0$, 则则称函数 f(x)为 $x \to x_0$ (或 $x \to \infty$) 时的无穷小.

说明:除0以外任何很小的常数都不是无穷小! 因为

显然 C 只能是 0!

定理1.(无穷小与函数极限的关系)

$$\lim_{x \to x_0} f(x) = A \longrightarrow f(x) = A + a$$
,其中 a 为 $x \to x_0$ 时的无穷小量.

$$\lim_{x \to x_0} f(x) = A$$

$$\forall e > 0, \exists d > 0, \text{ } \leq 0 < |x - x_0| < d$$
 时, 有
$$|f(x) - A| < e$$

$$\underbrace{a = f(x) - A}_{x \to x_0} \lim_{a \to 0} a = 0$$

对自变量的其他变化过程类似可证.

二、无穷大

定义2. 若任给 M > 0,总存在 $\delta > 0$ (正数 X),使对

一切满足不等式
$$0 < |x-x_0| < \delta(|x| > X)$$
 的 x ,总有
$$|f(x)| > M$$
 ①

则称函数 f(x) 当 $x \to x_0$ $(x \to \infty)$ 时为无穷大, 记作 $\lim_{x \to x_0} f(x) = \infty \quad (\lim_{x \to \infty} f(x) = \infty).$

若在定义中将 ①式改为
$$f(x) > M$$
 ($f(x) < -M$),

则记作
$$\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = +\infty$$
 ($\lim_{\substack{x \to x_0 \\ (x \to \infty)}} f(x) = -\infty$)

注意:

- 1. 无穷大不是很大的数, 它是描述函数的一种状态.
- 2. 函数为无穷大, 必定无界. 但反之不真!

例如, 函数
$$f(x) = x \cos x, x \in (-\infty, +\infty)$$

$$f(2n\pi) = 2n\pi \rightarrow \infty \ (\stackrel{\text{def}}{=} n \rightarrow \infty)$$

$$(\underline{\exists} f(\frac{\pi}{2} + n\pi) = 0$$

所以 $x \to \infty$ 时, f(x)不是无穷大!

例.证明
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$

证: 任给正数 M, 要使 $\left| \frac{1}{x-1} \right| > M$, 即 $|x-1| < \frac{1}{M}$,

只要取 $d = \frac{1}{M}$,则对满足 $0 < |x-1| < \delta$ 的一切 x,有

$$\left|\frac{1}{x-1}\right| > M$$

所以 $\lim_{x\to 1} \frac{1}{x-1} = \infty$.

说明: 若 $\lim_{x\to x_0} f(x) = \infty$, 则直线 $x = x_0$

为曲线 y = f(x) 的铅直渐近线.

三、无穷小与无穷大的关系

定理2. 在自变量的同一变化过程中,

若
$$f(x)$$
 为无穷大,则 $\frac{1}{f(x)}$ 为无穷小;
若 $f(x)$ 为无穷小,且 $f(x) \neq 0$,则 $\frac{1}{f(x)}$ 为无穷大.
(自证

说明:据此定理,关于无穷大的问题都可转化为无穷小来讨论.

内容小结

- 1. 无穷小与无穷大的定义
- 2. 无穷小与函数极限的关系 Th1
- 3. 无穷小与无穷大的关系 Th2

思考与练习 P42 题1,*3

P42 题*3 提示:

$$|y| = \left| \frac{1}{x} + 2 \right| \ge \left| \frac{1}{x} \right| - 2, \qquad \therefore \quad 0 < |x| \le \frac{1}{10^4 + 2}$$

作业

P42 *2 (2) ; 4 (1) ; 8

