

다각형의 내각의 크기의 합

중1

1 다음 그림에서 $\angle x$ 의 크기를 구하시오.

원과 부채꼴

중1

▶ **호** AB(ÂB)

원 위의 두 점 A, B에 의해 나누어진 원의 두 부분

현 AB(ĀB)

원 위의 두 점 A, B를 이은 선분 2 오른쪽 그림의 원 0에 다음을 나타내시오.

- (1) 호 AB
- (2) 현 CD
- (3) 호 DE의 중심각

원과 부채꼴

중1

한 원에서 부채꼴의 호의 길 이는 중심각의 크기에 정비 례한다. 3 다음 그림에서 x의 값을 구하시오.

직각삼각형의 합동 조건

중 2

4 다음 그림에서 x의 값을 구하시오.

평등의 상징, 원!

세계 각국 정상들이 모인 중요한 외교 회담은 원형 탁자에서 많이 이루어진다. 이처럼 원형 탁자에 일정한 간격으로 둘러앉아 진행하는 회의를 원탁회의라고 한다.

왜 원형 탁자에 둘러앉아 회의를 하는 것일까?

직사각형 모양의 탁자에서는 〈그림 1〉과 같이 어디 앉았는지에 따라 이웃한 두 사람을 바라보는 각의 크기가 다르다. 그러나 원형 탁자에서는 〈그림 2〉와 같이 어느 자리에 앉아도 이웃한 두 사람을 바라보는 각의 크기가 같다.

이러한 원의 성질 때문에 원형 탁자에 둘러앉은 사람은 모두 평등한 위치에 놓인다.

❸ 이 단원에서는 원에서 볼 수 있는 여러 가지 성질에 대하여 알아본다.

원의 현에 관한 성질

원의 현에 관한 성질을 이해한다.

\iint 탐구 학습

▶ 워의 중심과 현의 수직이등분선 사이에는 어떤 관계가 있나요?

열기

컴퍼스로 색종이에 원 0를 그려 오려 낸 후 다음과 같은 활동을 하고. 물음에 답하여 보자.

- 1 원 O에 현 AB를 그린다.
- 종이를 접었다가 펼친다.
- ② 두 점 A. B가 만나도록 색 ③ 접은 선 l을 그려 현 AB와 만나는 점을 M이라고 한다.
- (1) $\angle OMA$ 와 $\angle OMB$ 의 크기, \overline{AM} 과 \overline{BM} 의 길이를 각각 비교하여 보자.
- (2) (1)의 결과로부터 현 AB의 수직이등분선은 원의 중심 O를 지나는지 추측하여 보자.

· 다지기

- (1) 원 O에서 두 점 A, B가 만나도록 색종이를 접었다가 펼쳤으므로 $\angle OMA \square \angle OMB = 90^{\circ}, \overline{AM} \square \overline{BM}$
- (2) 위의 활동에서 접은 선 l은 원의 중심 O를 지난다. 또, (1)의 결과로부터 접은 선 l은 현 AB의 이다. 따라서 현 AB의 수직이등분선은 원의 중심 O를 지난다고 추측할 수 있다.

> 키우기

원에서 현의 수직이등분선은 항상 그 원의 중심을 지날까?

원의 중심과 현의 수직이등분선

탐구 학습에서 현 AB의 수직이등분선은 원의 중심 O를 지 남을 추측할 수 있다. 이제 원 O에서 현 AB의 중점을 M이 라고 할 때. $\overline{AB} \perp \overline{OM}$ 임을 설명하여 보자.

설명 하기

■ 단계 | 보조선 긋기

점 O와 점 A를 잇는 보조선을 긋고, 점 O와 점 B를 잇는 보조선을 긋는다.

2 단계 | 두 삼각형이 합동임을 보이기

△OAM과 △OBM에서

 $\overline{AM} = \overline{BM}$

····· ①

 $\overline{OA} = \overline{OB}$ (반지름)

····· (2)

OM은 공통

···· (3)

①, ②, ③에서 두 삼각형의 대응하는 세 변의 길이가 각각 같으므로 $\triangle OAM \equiv \triangle OBM$ 이다.

3 단계) 현의 수직이등분선이 원의 중심을 지남을 보이기

따라서 $\angle OMA = \angle OMB = 90^{\circ}$ 이므로 $\overline{AB} \perp \overline{OM}$ 이다. 즉, 현의 수직이등분선은 그 원의 중심을 지난다.

이제 원의 중심 O에서 현 AB에 내린 수선의 발을 M이라 고 할 때, $\overline{AM} = \overline{BM}$ 임을 설명하여 보자.

■ 단계 | 보조선 긋기

점 O와 점 A를 잇는 보조선을 긋고, 점 O와 점 B를 잇는 보조선을 긋는다.

A M B

) 이전에 배운 내용

빗변의 길이와 다른 한 변의 길 이가 각각 같은 두 직각삼각형 은 서로 합동이다.

2 단계 | 두 삼각형이 합동임을 보이기

△OAM과 △OBM에서

 $\angle OMA = \angle OMB = 90^{\circ}$

····· ①

 $\overline{OA} = \overline{OB}$ (반지름)

····· (2)

OM은 공통

···· (3)

①, ②, ③에서 두 직각삼각형의 빗변의 길이와 다른 한 변의 길이가 각각 같으므로 $\triangle OAM \equiv \triangle OBM$ 이다.

3 단계 | 원의 중심에서 현에 내린 수선은 그 현을 이동분함을 보이기

따라서 $\overline{AM} = \overline{BM}$ 이다. 즉, 원의 중심에서 현에 내린 수선은 그 현을 이등분한다.

이상을 정리하면 다음과 같다.

원의 중심과 현의 수직이등분선

- 1 원에서 현의 수직이등분선은 그 원의 중심을 지난다.
- 2 원의 중심에서 현에 내린 수선은 그 현을 이동분한다.

원에서 현의 길이 구하기

문제 1 다음 그림에서 x의 값을 구하시오.

♪ 원의 중심에서 현까지의 거리와 현의 길이 사이에는 어떤 관계가 있나요?

원의 중심에서 현까지의 거리와 현의 길이 사이의 관계 한 원에서 중심으로부터 같은 거리에 있는 두 현의 길이는 서로 같은지 알아보자.

오른쪽 그림과 같이 한 원의 중심 O에서 두 현 \overline{AB} , \overline{CD} 에 내린 수선의 발을 각각 \overline{M} , \overline{NO} 이면 $\overline{AB} = \overline{\overline{CD}}$ 임을 설명하여 보자.

생각 열기

설명하기

1 단계 │ 보조선 긋기

점 O와 점 A를 잇는 보조선을 긋고, 점 O와 점 C를 잇는 보조선을 긋는다.

△OAM과 △OCN에서

 $\angle OMA = \angle ONC = 90^{\circ}$

•••••

 $\overline{OA} = \overline{OC}$ (반지름)

····· ②

 $\overline{OM} = \overline{ON}$

..... ③

①, ②, ③에서 두 직각삼각형의 빗변의 길이와 다른 한 변의 길이가 각각 같으므로 $\triangle OAM \equiv \triangle OCN$ 이다.

3 단계 | 두 현의 길이가 서로 같음을 보이기

따라서 $\overline{\mathrm{AM}} = \overline{\mathrm{CN}}$ 이다.

그런데 $\overline{AB} = 2\overline{AM}$. $\overline{CD} = 2\overline{CN}$ 이므로 $\overline{AB} = \overline{CD}$ 이다.

즉, 한 원에서 중심으로부터 같은 거리에 있는 두 현의 길이는 서로 같다.

점과 직선 사이의 거리는 점에 서 직선에 내린 수선의 발까지 의 거리이다.

D

한편, 한 원에서 길이가 같은 두 현은 원의 중심으로부터 서로 같은 거리에 있는지 알아보자.

오른쪽 그림과 같이 한 원의 중심 O에서 두 현 AB. CD 에 내린 수선의 발을 각각 M. N이라고 할 때, $\overline{AB} = \overline{CD}$ 이 면 $\overline{OM} = \overline{ON}$ 임을 설명하여 보자

OM과 ON을 각각 포함 하는 삼각형 두 개를 만들 어 합동임을 보이면 돼

1 단계 │ 보조선 긋기

점 O와 점 A를 잇는 보조선을 긋고. 점 O와 점 C를 잇는 보 조선을 긋는다.

$$\angle OMA = \angle ONC = 90^{\circ}$$

$$\cdots\cdots \textcircled{1}$$

$$\overline{OA} = \overline{OC}$$
(반지름)

$$\overline{AM} = \frac{1}{2}\overline{AB} = \frac{1}{2}\overline{CD} = \overline{CN}$$
 3

①, ②, ③에서 두 직각삼각형의 빗변의 길이와 다른 한 변의 길이가 각각 같으므로 $\triangle OAM = \triangle OCN$ 이다.

3 _{단계} | 두 수선의 길이가 서로 같음을 보이기

따라서 $\overline{OM} = \overline{ON}$ 이다.

즉, 한 원에서 길이가 같은 두 현은 원의 중심으로부터 서로 같은 거리에 있다.

이상을 정리하면 다음과 같다.

원의 중심에서 현까지의 거리와 현의 길이 사이의 관계

- 한 원에서 중심으로부터 같은 거리에 있는 두 현의 길이는 서로 같다.
- 한 원에서 길이가 같은 두 현은 원의 중심으로부터 서로 같은 거리에 있다.

✓ 개념확인

원의 중심으로부터 같은 거리에 있는 현의 길이 구하기

문제 2 다음 그림에서 x의 값을 구하시오.

문제 3 오른쪽 그림과 같이 원 O에 내접한 \triangle ABC에서 $\angle x$ 의 크기를 구하시오.

의사소통

어느 유적지에서 오른쪽 그림과 같이 깨진 접시를 발굴하였 다. 이 접시가 원 모양이라고 할 때, 원래의 모양으로 복원 하기 위해 원의 반지름의 길이를 구하는 방법을 친구들에게 설명하여 보자.

스스로 확인하기

1

다음 그림에서 x의 값을 구하시오.

2

오른쪽 그림과 같이 원의 중심 O에서 현 AB에 내린 수선의 발을 M, OM의 연장선이 원과 만나는 점을 C라고 할 때, x의 값을 구하시오.

3

다음 그림에서 x의 값을 구하시오.

4

오른쪽 그림에서 $\angle x$ 의 크기를 구하시오.

5

오른쪽 그림과 같이 원의 중심 O에 서 현 AB에 내린 수선의 발을 M이라고 하자. $\overline{AB} = \overline{CD}$ 일 때, $\triangle ODC$ 의 넓이를 구하시오.

6 창의 • 융합

오른쪽 그림과 같이 중심이 같은 두 원 모양으로 만든 트랙이 있다. 원의 중심 O에서 현 AB에 내린 수선을 발을 H라고 하면

 \overline{AB} =120 m, \overline{CD} =80 m, \overline{OH} =50 m이다. 이 트랙의 넓이를 구하시오.

현이 지나간 부분의 넓이 구하기

다음 순서에 따라 활동을 하고, 물음에 답하여 보자.

- 1 반지름의 길이가 1 cm보다 큰 원 O를 그린다.
- 2 원 O에 길이가 2 cm인 현을 한 개 그린다.
- 3 길이가 2 cm인 현을 원 O에 여러 개 그린다.

- 1 원 O에서 길이가 2 cm인 현의 중점이 지나간 자리는 원이 됨을 설명하여 보자.
- 2 오른쪽 그림과 같이 반지름의 길이가 1 cm보다 큰 원 O에 길이가 2 cm인 한 현을 그리고, 그 현에 접하면서 원 O와 중심이 같도록 작은 원을 그린다. 큰 원의 반지름의 길이가 다음과 같을 때, 표를 완성하여 보자.

					(단위: cm)
큰 원의 반지름	2	3	4	5	6
작은 원의 반지름					

3 2를 이용하여 반지름의 길이가 1 cm보다 큰 원에서 길이가 2 cm인 현이 지나간 부분의 넓이를 구하여 보자.

수행 과제

문제 해결

위와 같은 방법으로 반지름의 길이가 2 cm보다 큰 원에서 길이가 4 cm인 현이 지나간 부분의 넓이를 구하여 보자.

원의 접선에 관한 성질

원의 접선에 관한 성질을 이해한다.

개기 일식은 태양, 달, 지구가 나란히 늘어서서 태양이 달의 그림 자에 완전히 가려 보이지 않는 현상이다.

탐구 학습

▶ 원의 접선에는 어떤 성질이 있나요?

열기

컴퓨터 프로그램을 이용하여 다음 순서에 따라 활동을 해 보고, 원 밖의 한 점 P를 움직이면서 \overline{PA} 와 \overline{PB} 의 길이를 비교하여 보자.

 ● O를 그리고, 원 밖의 한 점 P에서 원 O에 접선 2개를 긋는다.

2 접선과 원 O의 교점을 각각 A, B라 하고, PA와 PB의 길이를 측정한다.

다지기

컴퓨터 프로그램을 이용하여 원 밖의 한 점 P를 움직이면서 \overline{PA} 와 \overline{PB} 의 길이를 측정하고 이를 비교하여 보면 \overline{PA} \overline{PB} 이다.

키우기

원 밖의 한 점에서 원에 두 접선을 그을 때, 그 점에서 두 접점까지의 거리는 항상 서로 같을까?

원의 접선

원 O 밖의 한 점 P에서 원 O에 그을 수 있는 접선은 2개이다. 이 두 접선의 접점을 각각 A, B라고 할 때, PA=PB임을 설명하여 보자.

1 단계 │ 보조선 긋기

점 O와 점 A, 점 O와 점 B, 점 O와 점 P를 잇는 보조선을 긋는다.

○ 이전에 배운 내용

원의 접점에서 접선과 반지름 은 수직으로 만난다.

2 단계 | 두 삼각형이 합동임을 보이기

△PAO와 △PBO에서

 $\angle PAO = \angle PBO = 90^{\circ}$ (1)

OP는 공통 ······ ②

····· ③ OA = OB(반지름) ····· ③

①, ②, ③에서 두 직각삼각형의 빗변의 길이와 다른 한 변의 길이가 각각 같으므로 $\triangle PAO \equiv \triangle PBO$ 이다.

3 단계 I 두 선분의 길이가 서로 같음을 보이기

따라서 $\overline{PA} = \overline{PB}$ 이다. 즉, 원 O 밖의 한 점 P에서 원 O에 그은 두 접선의 접점을 각각 A, B라고 할 때, 두 선분 PA와 PB의 길이는 서로 같다.

이상을 정리하면 다음과 같다.

원의 접선에 관한 성질

원 밖의 한 점에서 원에 두 접선을 그을 때, 그 점에서 두 접점까지의 거리는 서로 같다.

즉. $\overline{PA} = \overline{PB}$ 이다.

원 밖의 한 점에서 접점까지의 거리 구하기

문제 1 다음 그림에서 두 점 A, B가 원 O의 접점일 때, x의 값을 구하시오.

|원의 접선에 관한 성질 이해하기

□ 예제 1 오른쪽 그림과 같이 원 O가 □ABCD의 각 변과 네 점 P. Q. R. S에서 접하고 있다. \overline{AB} =12 cm.

 $\overline{
m BC}{=}10~{
m cm},~\overline{
m CD}{=}8~{
m cm}$ 일 때, $\overline{
m AD}$ 의 길이를 구하 시오.

풀이 $\overline{AS} = x$ cm, $\overline{DS} = y$ cm라고 하면 \overline{AB} , \overline{BC} , \overline{CD} , \overline{AD} 는 원 O의 접선이 므로

$$\overline{AP} = \overline{AS} = x$$
 cm, $\overline{BQ} = \overline{BP} = 12 - x$ (cm) $\overline{DR} = \overline{DS} = y$ cm, $\overline{CQ} = \overline{CR} = 8 - y$ (cm) 이다. 그런데 $\overline{BC} = \overline{BQ} + \overline{CQ}$ 이고, $\overline{BC} = 10$ cm이므로

$$10=(12-x)+(8-y)$$
, $x+y=10$
따라서 $\overline{\mathrm{AD}}=\overline{\mathrm{AS}}+\overline{\mathrm{DS}}=x+y=10$ (cm)이다.

₽ 10 cm

문제 $\mathbf 2$ 오른쪽 그림에서 원 O는 \triangle ABC에 내접하고, 세 점 P, Q, R는 접점이다. $\overline{AB} = 5$ cm, $\overline{BC} = 7$ cm, $\overline{CA} = 6$ cm일 때, \overline{BQ} 의 길이를 구하시오.

추론 · 의사소통

오른쪽 그림과 같이 원 O가 육각형 ABCDEF의 각 변과 접할 때, 육각형의 둘레의 길이 l은 $l=2(\overline{AB}+\overline{CD}+\overline{EF})$ 이다. 그 이유를 친구들에게 설명하여 보자.

다음 그림에서 세 점 A, B, C가 원 O의 접점일 때, x의 값을 구하시오.

2

다음 그림에서 원 O는 \triangle ABC에 내접하고, 세 점 P, Q, R는 접점이다. $\overline{AP} = 3 \text{ cm}$. $\overline{BQ} = 9 \text{ cm}$. $\overline{CR} = 4 \text{ cm}$ 일 때. △ABC의 둘레의 길이를 구하시오.

3

오른쪽 그림에서 두 점 A, B 는 원 ()의 접점이고 ∠PAB=70°일 때. ∠APB의 크기를 구하시오.

4

오른쪽 그림과 같이 \overline{AD} , \overline{AE} , \overline{BC} 는 각각 세 점 D. E. F에서 원 O에 접하고 $\overline{AB} = 8 \text{ cm}, \overline{AC} = 6 \text{ cm},$ BD=2 cm일 때. △ABC 의 둘레의 길이를 구하시오.

5

오른쪽 그림과 같이 반지름의 길이가 6 cm인 원 O가 □ABCD의 각 변과 네 점 P. Q. R. S에서 접하고 있다.

 $\overline{AB} = 15 \text{ cm}. \overline{BC} = 18 \text{ cm}$ 일 때. □ABCD의 넓이를 구하시오.

6 발전 문제

오른쪽 그림과 같이 원 〇의 지 름 AB의 양 끝 점에서 그은 접 선과 원 O 위의 한 점 P에서 그은 접선이 만나는 점을 각각 C. D라고 하자. $\overline{AD} = 2 \text{ cm}$.

 \overline{BC} =5 cm일 때. \overline{BD} 의 길이를 구하시오.

원주각과 그 성질

원주각의 성질을 이해한다.

드라마의 한 장면을 일정한 각도로 여러 방향에서 촬영하기 위해 원 모양의 레일을 사용하기도 한다.

▶ 원주각에는 어떤 성질이 있나요?

열기

컴퓨터 프로그램을 이용하여 다음 순서에 따라 활동을 해 보고, 물음에 답하여 보자.

원 O 위에 두 점 A, B
 를 잡고 중심 O와 각
 각 잇는다.

② 호 AB 위에 있지 않은 점 P를 원 위에 잡고 두 점 A, B와 각각 잇는다.

③ ∠APB와 ∠AOB의 크기를 측 정한다.

- (1) 원 위의 점 P를 움직이면서 $\angle APB$ 의 크기가 어떻게 변하는지 확인하여 보자.
- (2) $\angle APB$ 와 $\angle AOB$ 의 크기 사이의 관계를 추측하여 보자.

다지기

- (1) 점 P의 위치에 관계없이 ∠APB의 크기는
- (2) ∠APB의 크기는 ∠AOB의 크기의 01다

키우기

위에서 $\angle APB$ 의 크기는 항상 $\angle AOB$ 의 크기의 $\frac{1}{2}$ 일까?

원주각과 중심각

오른쪽 그림과 같이 원 O에서 호 AB 위에 있지 않은 원 위의 한 점 P에 대하여 \angle APB를 호 AB에 대한 **원주각**이라 하고, 호 AB를 원주각 \angle APB에 대한 호라고 한다.

호 AB에 대한 중심각 ∠AOB는 하나로 정해지지만 원주각 ∠APB는 점 P의 위치에 따라 무수히 많다.

이제 한 호에 대한 원주각의 크기는 그 호에 대한 중심각의 크기의 $\frac{1}{2}$ 인지 알아보자.

원 O에서 호 AB에 대한 원주각 ∠APB의 크기가 호 AB에 대한 중심각 ∠AOB의 크기와 어떤 관계가 있는지 점 P의 위치에 따라 다음과 같이 세 가지경우로 나누어 설명할 수 있다.

① ∠APB의 변 위에 원의 중심 O가 있는 경우

- ① 이등변삼각형에서 두 밑각 의 크기는 서로 같다.
- ② 삼각형의 한 외각의 크기는 그와 이웃하지 않은 두 내 각의 크기의 합과 같다.

 \triangle OPA는 $\overline{\text{OP}}=\overline{\text{OA}}$ (반지름)이므로 이등변삼각 형이다. 따라서 \angle OPA= \angle OAP이다. 그런데 \angle AOB는 \triangle OPA의 한 외각이므로 \angle AOB= \angle OPA+ \angle OAP= $2\angle$ OPA = $2\angle$ APB 즉, \angle APB= $\frac{1}{2}\angle$ AOB이다.

② ∠APB의 내부에 원의 중심 O가 있는 경우

그림과 같이 지름 PQ를 그으면 ①에 의하여 $\angle APQ = \frac{1}{2} \angle AOQ, \ \angle BPQ = \frac{1}{2} \angle BOQ$ 이므로 $\angle APB = \angle APQ + \angle BPQ \\ = \frac{1}{2} (\angle AOQ + \angle BOQ) = \frac{1}{2} \angle AOB$

③ ∠APB의 외부에 원의 중심 O가 있는 경우

그림과 같이 지름 PR를 그으면 ①에 의하여 $\angle \text{RPB} = \frac{1}{2} \angle \text{ROB}, \ \angle \text{RPA} = \frac{1}{2} \angle \text{ROA} \cap \text{므로}$ $\angle \text{APB} = \angle \text{RPB} - \angle \text{RPA}$ $= \frac{1}{2} (\angle \text{ROB} - \angle \text{ROA}) = \frac{1}{2} \angle \text{AOB}$

이처럼 한 호에 대한 원주각의 크기는 그 호에 대한 중심각의 크기의 $\frac{1}{2}$ 이다.

한편, 한 호에 대한 원주각은 무수히 많지만 그 호에 대한 중심각은 하나이므로 한 호에 대한 원주각의 크기는 모두 같다.

이상을 정리하면 다음과 같다.

● 반원에 대한 중심각의 크 기는 180°이므로 원주각의 성질로부터 반원에 대한 원 주각의 크기는 90°임을 알

원주각과 중심각의 크기

- ① 한 호에 대한 원주각의 크기는 그 호에 대한 중심각의 크 기의 $\frac{1}{2}$ 이다. 즉, $\angle APB = \frac{1}{2} \angle AOB$ 이다.
- ② 한 호에 대한 원주각의 크기는 모두 같다.즉, ∠APB=∠AQB이다.

| 참고 | 두 점 P, Q가 직선 AB에 대하여 같은 쪽에 있을 때, ∠APB=∠AQB이면 네 점 A, B, P, Q는 한 원 위에 있다.

▼ 개념확인

원주각과 중심각의 크기 구하기

 $lue{}$ 예제 $lue{}$ 오른쪽 그림과 같이 네 꼭짓점이 한 원 위에 있는 $\Box {
m ABCD}$ 에서 $\angle A + \angle C = 180^{\circ}$, $\angle B + \angle D = 180^{\circ}$ 임을 설명하시 오.

풀이 오른쪽 그림과 같이 두 점 B. D와 원의 중심 O를 각각 연결하여 생긴 두 중심각을 $\angle a$. $\angle b$ 라고 하 면 한 호에 대한 원주각의 크기는 그 호에 대한 중 심각의 크기의 $\frac{1}{2}$ 이므로

$$\angle \mathbf{A} + \angle \mathbf{C} = \frac{1}{2} \angle a + \frac{1}{2} \angle b = \frac{1}{2} (\angle a + \angle b)$$

이다. 그런데 ∠a+∠b=360°이므로

$$\angle A + \angle C = 180^{\circ}$$

이다. 같은 방법으로 ∠B+∠D=180°이다.

답 풀이 참조

문제 2 다음 그림에서 $\angle x$. $\angle y$ 의 크기를 구하시오.

원주각과 호

) 이전에 배운 내용

한 원에서 길이가 같은 호에 대 한 중심각의 크기는 서로 같다. 오른쪽 그림과 같이 원 O에서 \widehat{AB} . \widehat{CD} 의 길이가 같으면 그 호에 대한 중심각 ∠AOB. ∠COD의 크기가 같으므로 ∠APB=∠CQD이다.

또한, 원 O에서 \widehat{AB} , \widehat{CD} 에 대한 원주각 $\angle APB$, ∠CQD의 크기가 같으면 그 호에 대한 중심각 ∠AOB. ∠COD의 크기가 같으므로 AB=CD이다.

이상을 정리하면 다음과 같다.

● 원주각의 크기와 호의 길이 사이의 관계는 합동인 두 원에 대해서도 성립한다.

원주각의 크기와 호의 길이

- 한 원에서 길이가 같은 호에 대한 원주각의 크기는 서로 같다.
- ② 한 원에서 크기가 같은 원주각에 대한 호의 길이는 서로 같다.

▼ 개념확인

원수각의 크기와 호의 길이 사이의 비례 관계

문제 3 다음 그림에서 x의 값을 구하시오.

정보 처리

다음 그림은 컴퓨터 프로그램을 이용하여 원 O를 그린 후 원 O 위에 세 점 A, B, P를 잡고 현 AB의 중점 M과 점 P를 지나는 직선이 원과 만나는 점을 C라고 한 것이다. 컴퓨터 프로 그램을 이용하여 $\angle APC$ 와 $\angle BPC$ 의 크기를 측정해 보고, 민정이의 설명이 틀린 이유를 말하여 보자.

스로 확인하기

다음 그림에서 $\angle x$ 의 크기를 구하시오.

4

오른쪽 그림과 같이 네 꼭짓점이 한 원 위에 있는 □ABCD에서 ∠B: ∠D=2:3일 때, ∠D의 크기를 구하시오.

2

다음 그림에서 $\angle x$ 의 크기를 구하시오.

5

오른쪽 그림에서 $\widehat{AB} = \widehat{BC}$ 일 때. $\angle a$ 와 $\angle b$ 의 크기를 구하시 오.

3

다음 그림에서 두 점 A, B는 원 O의 접점이고 $\angle APB = 60^{\circ}$ 일 때, $\angle x$ 의 크기를 구하시오.

6 창의 • 융합

오른쪽 그림과 같이 원 모양의 시 계가 10시 30분을 나타내고 있을 때, ∠APB의 크기를 구하시오.

원의 접선과 현이 이루는 각

원의 접선과 현이 이루는 각의 성질을 이해한다.

고대 그리스의 수학자인 탈레스(Thales, B.C. 624?~B.C. 546?)는 반원에 대한 원주각은 직각이라는 사실을 논리적으로 설명하였다.

▶ 원의 접선과 현이 이루는 각에는 어떤 성질이 있나요?

열기

오른쪽 그림에서 직선 AT는 원 O의 접선이고, $\angle BDA = 35^{\circ}$ 이다. 물음에 답하여 보자.

- (1) $\angle ABD$ 가 반원에 대한 원주각임을 이용하여 $\angle DAB$ 의 크기를 구하여 보자.
- (2) ∠BAT의 크기를 구하여 보자.
- (3) ∠BCA의 크기를 구하고, ∠BAT의 크기와 비교하여 보자.

다지기

(1) \triangle ABD에서 $\angle ABD$ 가 반원에 대한 원주각이므로 $\angle ABD = 90^{\circ}$ 이고, 삼각형의 내 각의 크기의 합은 180° 이므로

$$\angle DAB = 180^{\circ} - (90^{\circ} + 35^{\circ}) = \boxed{}$$

(2) 직선 AT는 원 O의 접선이므로 $\angle DAT = 90^{\circ}$ 이다. 따라서

(3) 호 AB에 대한 원주각의 크기는 모두 같으므로

이다. 즉, ∠BCA □∠BAT이다.

원의 접선과 현이 이루는 각의 크기는 그 현이 만드는 원주각의 크기와 항상 같을까?

원의 접선과 현이이루는 각

원주각의 성질을 이용하여 원의 접선과 그 접점을 지나는 현이 이루는 각의 크기는 그 각의 내부에 있는 호에 대한 원주각의 크기와 항상 같은지 알아보자.

원 O 위에 세 점 A, B, C가 있을 때, 점 A에서의 접선 AT와 현 AB가 이루는 \angle BAT의 크기가 호 AB에 대한 원주각 \angle BCA의 크기와 어떤 관계가 있는 지 \angle BAT의 크기에 따라 다음과 같이 세 가지 경우로 나누어 설명할 수 있다.

의 경우가 성립함을 알아본 후 이를 이용하여 ②, ③의 경 우가 성립함을 보이면 돼

1 ∠BAT가 직각인 경우

반원에 대한 원주각의 크기는 90°임을 이용 하여 설명해 볼까?

∠BAT=90°일 때. 현 AB는 원 O의 지름이므로 ∠BCA는 반원에 대한 원주각이다. 따라서 ∠BCA=90°이므로 ∠BAT=∠BCA이 다.

△BAT가 예각인 경우

그림과 같이 지름 AD와 현 CD를 그으면 **1**에 의하여 ∠DAT=∠DCA=90°이다. 또. ∠DAB와 ∠DCB는 DB에 대한 원주각이므 로 ∠DAB=∠DCB이다. 따라서 $\angle BAT = \angle DAT - \angle DAB$ $= \angle DCA - \angle DCB = \angle BCA$

③ ∠BAT가 둔각인 경우

그림과 같이 지름 AD와 현 CD를 그으면 **1**에 의하여 ∠DAT=∠DCA=90°이다.

또. ∠BAD와 ∠BCD는 BD에 대한 원주각이므 로 ∠BAD=∠BCD이다 따라서

 $\angle BAT = \angle DAT + \angle BAD$

 $= \angle DCA + \angle BCD = \angle BCA$

이상을 정리하면 다음과 같다.

원의 접선과 현이 이루는 각

원의 접선과 그 접점을 지나는 현이 이루는 각의 크기는 그 각의 내부에 있는 호에 대한 원주각의 크기와 같다.

즉, ∠BAT=∠BCA이다.

식선 TT'이 원 O의 접선일 때, 각의 크기 구하기

문제 1 다음 그림에서 직선 AT가 원 O의 접선일 때, $\angle x$, $\angle y$ 의 크기를 구하시오.

문제 2 오른쪽 그림에서 직선 PA가 원 O의 접선일 때, $\angle x$ 의 크기를 구하시오.

생각

오른쪽 그림에서 직선 AT는 원 O의 접선이다. 원 O의 반지름의 길이 가 4~cm이고 $\angle CAT = 60°$ 일 때, $\triangle ABC$ 의 넓이를 구하여 보자.

문제 해결

다음 그림에서 직선 AT가 원 O의 접선일 때, $\angle x$ 의 크 기를 구하시오.

2

다음 그림에서 직선 AT가 원 O의 접선일 때, $\angle x$, $\angle y$ 의 크기를 구하시오.

오른쪽 그림에서 직선 AT가 원 O의 접선일 때, $\angle x$ 의 크 기를 구하시오.

4

오른쪽 그림에서 직선 PA가 원 O의 접선일 때, $\angle x$ 의 크 기를 구하시오.

5

오른쪽 그림에서 직선 AT가 원 O의 접선일 때. $\angle x$ 의 크 기를 구하시오.

6 발전 문제)

다음 그림에서 두 점 A, B는 원 O의 접점이고 AC: BC=1: 201다. ∠APB=36°일 때. ∠ABC의 크기를 구하시오.

원의 성질 탐구하기

컴퓨터 프로그램을 이용하여 원 위의 점을 움직여 보면서 원의 성질을 관찰하여 보자.

 원 O를 그리고, 원 위에 네 점 A, B, C, D를 잡아 사각형을 그린다. 선분 BC의 연장선 위에 점 E를 잡고, ∠DAB와 ∠DCE의 크기를 측정한다.

② 각 꼭짓점을 움직이면서 ∠DAB와 ∠DCE의 크 기를 비교한다.

③ 점 C를 원을 따라 점 B 쪽으로 움직인다.

4 두 점 B, C가 일치할 때, ∠DAB와 ∠DCE의 크 기를 비교한다.

수행 과제

컴퓨터 프로그램을 이용하여 위와 같은 방법으로 점 C를 원을 따라 점 A쪽으로 움직일 때, $\angle DAB$ 와 $\angle DCB$ 의 크기를 측정하여 비교해 보자.

정답 및 풀이 267쪽

개념 콕콕

1 원의 현에 관한 성질

- (1) 원에서 현의 수직이등분선은 그 원의 중심을 지난다.
- (2) 원의 중심에서 현에 내린 수선 은 그 현을 이등분한다.
- (3) 한 원에서 중심으로부터 같은 거리에 있는 두 현의 길이는 서 로 같다.
- (4) 한 원에서 길이가 같은 두 현은 원의 중심으로부터 서로 같은 거리에 있다.

2 원의 접선에 관한 성질 $\overline{PA} = \overline{PB}$

3 원주각과 그 성질 $\angle APB = \frac{1}{2} \angle AOB$

4 원의 접선과 현이 이루는 각 $\angle BAT = \angle BCA$

1 오른쪽 그림의 원 O에서 $\overline{AB}\bot\overline{CO}$ 이다. 반지름의 길 0|7 10 cm. $\overline{CM} = 4$ cm 일 때, \overline{AB} 의 길이는?

- ① 14 cm
- ② 15 cm
- (4) 17 cm
- ⑤ 18 cm
- ③ 16 cm

02 오른쪽 그림에서 $\angle x$ 의 크기 를 구하시오.

03 오른쪽 그림은 반지름의 길 이가 6 cm인 원 모양의 종 이를 원 위의 점 P가 원의 중심 🔾와 겹치도록 접은 것 이다. 이때 \overline{AB} 의 길이를 구하시오.

□4 오른쪽 그림에서 두 점 A, B는 원 O의 접점이 $\overline{PA} = 8 \text{ cm}$.

∠APB=60°일 때. 현 AB의 길이는?

- ① 4 cm
- ② 5 cm
- ③ 6 cm

- ④ 7 cm
- ⑤ 8 cm

05 오른쪽 그림에서 두 직선 AD, AE와 BC 가 각각 세 점 D, E, F에서 원 O에 접할 때, \overline{AD} 의 길이는?

- ① 13 cm
- ② 13.5 cm
- ③ 14 cm
- ④ 14.5 cm ⑤ 15 cm

○6 오른쪽 그림과 같이 네 점 A, B, C, D가 한 원 위에 있 을 때, ∠x의 크기는?

- $\bigcirc 30^{\circ}$
- ② 35°
- ③ 40°

- 45°
- (5) 50°

07 오른쪽 그림에서 $\angle x$ 의 크기 를 구하시오.

 \widehat{OB} 다음 그림에서 $\widehat{AB} = \widehat{BC} = \widehat{CD} = \widehat{DE} = \widehat{EA}$ 일 때, ∠CAD의 크기를 구하시오.

 \bigcirc 다음 그림에서 직선 PA가 원 O의 접선일 때, $\angle x$ 의 크기를 구하시오.

10 다음 그림에서 두 점 A, B는 원 O의 접점이고 $\angle AQB = 100$ °일 때, $\angle APB$ 의 크기를 구하시오.

서술형

 11
 다음 그림과 같이 원 O는 직사각형 ABCD의 세

 변과 접한다. DE가 원 O의 접선이고

 DC=12 cm, DE=13 cm일 때, BE의 길이를

 구하시오. (단, 네 점 F, G, H, I는 접점이다.)

12 다음 그림과 같이 네 꼭짓점이 한 원 위에 있는 $\Box ABCD$ 에서 각 변의 연장선의 교점을 P, Q라고 하자. $\angle APB = 42^\circ$, $\angle BQC = 36^\circ 일$ 때, $\angle x$ 의 크기를 구하시오.

사고력 높이기

13 오른쪽 그림에서 원 O 는 △ABC의 내접원 이고 PQ는 원 O의 접 선이다. AB=15 cm, BC=13 cm,

 $\overline{\mathrm{CA}} = 12~\mathrm{cm}$ 일 때, \triangle PQC의 둘레의 길이를 구하시오.

14 다음 그림과 같이 무대의 길이가 12 m인 원형 극장이 있다. 원 위의 한 점에서 무대의 양 끝을 바라본 각의 크기가 60°일 때, 이 원형 극장의 지름의길이를 구하시오.

원주각의 성질을 이용한 포토 존 만들기

다음과 같은 순서에 따라 활동을 하여 보자.

종이 위에 적당한 간격으로 두 개의 압정 A, B를 꽂는다.

③ 각의 꼭짓점의 구멍에 연필을 꽂고 각의 두 변이 각각 두 압정과 만나 게 유지하면서 천천히 두꺼운 종이 를 움직인다.

♥ 탐구 과제

1 위에서 그린 곡선 위에 두 점 C, D를 잡은 후 $\angle ACB$ 와 $\angle ADB$ 의 크기를 비교해 보고, 이 곡 선이 원의 일부임을 설명하여 보자.

2 다음 그림과 같이 학교 건물이 카메라 화면에 꽉 차도록 위치를 이동하며 촬영해 보고, 그 위치를 표시하여 보자. 이때 촬영 위치는 모두 한 원 위에 있음을 확인하고, 그 이유를 설명하여 보자.

이렇게 찾은 원의 일부는 어디든지 학교 건물을 한 번에 다 담아서 찍을 수 있는 포토 존이 돼.

