

Description

The VSM100N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 100A$ $R_{DS(ON)} < 13m\Omega @ V_{GS} = 10V$ (Typ:9.9m Ω)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-263

Schematic Diagram

Package Marking and Ordering Information

Ī	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
	VSM100N10-T3	VSM100N10	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Symbol	ol Parameter		Unit	
V _{DS}	Drain-Source Voltage		V	
Vgs	Gate-Source Voltage	te Voltage ±20		
I _D	I _D Drain Current-Continuous		А	
I _D (100℃)	Drain Current-Continuous(TC=100℃)	80	Α	
I _{DM}	Pulsed Drain Current	380	Α	
P _D	Maximum Power Dissipation	ation 200		
	Derating factor	1.33	W/℃	
E _{AS}	Single pulse avalanche energy (Note 5)	800	mJ	
T_{J}, T_{STG}	Operating Junction and Storage Temperature Range	-55 To 175	$^{\circ}\mathbb{C}$	

Thermal Characteristic

R _{0,JC} Thermal Resistance, Junction-to-Case (Note 2) 0.75 °C	C/W
---	-----

Electrical Characteristics (T_C=25°C unless otherwise noted)

Symbol		Parameter Condition		Min	Тур	Max	Unit
Off Characteris	tics			•			
BV _{DSS}	Drain-Source Breakdov	Drain-Source Breakdown Voltage		100	110	-	V
I _{DSS}	Zero Gate Voltage Dra	Zero Gate Voltage Drain Current		-	-	1	μΑ
I _{GSS}	Gate-Body Leakage	Gate-Body Leakage Current		-	-	±100	nA
On Characteris	tics (Note 3)						
V _{GS(th)}	Gate Threshold V	Gate Threshold Voltage		2	3	4	V
R _{DS(ON)}	Drain-Source On-State	Drain-Source On-State Resistance		-	9.9	13	mΩ
g FS	Forward Transcond	Forward Transconductance		V _{DS} =10V,I _D =20A 50		-	S
Dynamic Chara	cteristics (Note4)			•			
C _{lss}	Input Capacitar	nce	V _{DS} =50V,V _{GS} =0V,	-	4800	-	PF
C _{oss}	Output Capacita	Output Capacitance		-	340	-	PF
C _{rss}	Reverse Transfer Capacitance		F=1.0MHz	-	150	-	PF
Switching Char	acteristics (Note 4)			•			
t _{d(on)}	Turn-on Delay T	ime		-	15	-	nS
t _r	Turn-on Rise Ti	ime	V _{DD} =50V,I _D =40A	-	50	-	nS
$t_{d(off)}$	Turn-Off Delay Time		V_{GS} =10V, R_{GEN} =2.5 Ω	-	40	-	nS
t _f	Turn-Off Fall Ti	me		-	55	-	nS
Qg	Total Gate Cha	rge	\/ -90\/ -40 \	-	85	-	nC
Q _{gs}	Gate-Source Ch	arge	$V_{DS}=80V,I_{D}=40A,$ $V_{GS}=10V$	-	18	-	nC
Q_{gd}	Gate-Drain Cha	arge	VGS-10V	-	28	-	nC
Drain-Source D	iode Characteristics			•			
V _{SD}	Diode Forward Voltag	e (Note 3)	V _{GS} =0V,I _S =40A	-	-	1.2	V
Is	Diode Forward Currer	nt (Note 2)	-	-	-	57	Α
t _{rr}	Reverse Recovery	Time	TJ = 25°C, IF = 40A	-	38	80	nS
Qrr	Reverse Recovery Charge		di/dt = 100A/µs(Note3)	-	53	100	nC
t _{on}	Forward Turn-On	Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance