

$$S_z = E[X]$$
 mruse starts in 2

$$S_1 = \frac{1}{3} \cdot 1 + \frac{1}{3} (S_1 + 1) + \frac{1}{3} (S_2 + 1)$$

$$5_{2}=\frac{1}{3}\cdot 1+\frac{1}{3}\left(S_{2}+1\right) +\frac{1}{3}\left(S_{1}+1\right)$$

$$\Rightarrow$$
 $S_1 = S_2$. replace all S_2 's w/s ,

$$S_1 = \frac{1}{3} + \frac{1}{3}(S_1 + 1) + \frac{1}{3}(S_1 + 1)$$

$$3s_1 = 1 + 2s_1 + 2 \Rightarrow s_1 = 3$$

2.	On the day before an exam, Math $130\mathrm{B}$ students go to Liam's office hours to ask questions. Each
	question asked will appear on the exam with probability p . The number of questions asked is a
	Poisson distributed random variable with mean λ . What is the probability that Liam does not
	have to answer an exam question?

Let
$$N = \#$$
 questions asked.
 n Pois(1)

$$=\sum_{n=0}^{\infty}\Pr[N=n]\cdot P_{\sigma}[N=n]$$

$$= \frac{-1}{2} \left[\frac{\lambda(1-\beta)}{\lambda(1-\beta)} \right]^{\gamma}$$

$$= e^{\lambda} \cdot e^{\lambda(1-P)} = e^{-\lambda P}$$

3. If X and Y are independent continuous random variables, show that

$$\Pr[Y < X] = \int_{\mathbb{R}} F_Y(x) f_X(x) \ dx,$$

where $F_Y(\cdot)$ is the cdf of Y and $f_X(\cdot)$ is the pdf of X. Use this to compute $\Pr[Y < X]$ where $X \sim Exp(\mu)$ and $Y \sim Exp(\lambda)$ are independent.

Pt:
$$Pr[Y \leq X] = \iint f_{X_{iY}}(x_{iY}) dy dx$$

$$= \iint f(y|x) f_{X}(x) dy dx$$

$$= y \leq x$$

$$= \int_{\mathbb{R}} \int_{-\infty}^{\infty} f(y|x) f_{x}(x) dy dx$$

$$= \int_{\mathbb{R}} P(\{Y \leq X \mid X = x\}) f_{X}(x) dx$$

$$=\int_{\mathcal{R}} P_{G}[Y \leq x \mid X = x] f_{X}(x) dx$$

$$=\int_{\mathbb{R}} \operatorname{Pr}[Y \leq x] f_{x}(x) dx$$

$$= \int_{\mathbb{R}} F_{Y}(x) f_{X}(x) dx$$

$$= \int_$$