Исходные данные:

- 1. индекс n нумерует точки и пробегает от 1 до N. Полное число точек $N \sim 10^6$ (чем больше тем лучше).
- 2. область с координатами (x, y) от 0 до L, периодические граничные условия (то есть область является тором). L берём ~ 20 (чем больше тем лучше); плотность точек $\rho = N/L^2$.
- 3. радиус кольца r по определению равен 1.
- 4. толщина кольца $\delta \sim 0.05$ (чем меньше тем лучше).
- 5. среднее число точек в кольце толщины δ примерно $2\pi r \rho \delta \equiv 2\pi \xi$ (чем больше тем лучше).

Часть 1.

- 1.1. Генерация точек случайно распределяем точки по области.
- 1.2. Для каждой точки с номером n находим номера всех точек $\{j_1, j_2, ..., j_k\} = j[n]$, расстояние от которых до n-ой точки больше, чем $r \delta/2$, но меньше чем $r + \delta/2$ (с учётом периодических граничных условий). Называем их "соседями" точки n.
- 1.3. Строим гистограмму распределения числа соседей, вычисляем среднее число соседей.

Часть 2.

- 2.1. Каждой точке n случайно приписываем вектор "цвета" p(n), имеющий q компонент: $p(n) = (p_1, p_2, ..., p_q)_n$. Типичные q будут от 2 до 8. Лишь одна из компонент p_i равна 1, остальные равны нулю. Говорим тогда, что точка покрашена в i-ый цвет. Нужно предусмотреть визуализацию, когда точки действительно раскрашиваются на экране в реальные разные цвета.
- 2.2. Вычисляем энергию конфигурации

$$E = A \cdot \sum_{n=1}^{N} \sum_{i=1}^{q} \sum_{j[n]} (p_i(n) \cdot p_i(j[n]))$$

где сумма по j[n] - сумма по всем соседям точки n. Нормировочный фактор A естественно брать $A=\frac{L^2q}{2\pi N^2\delta}=\frac{q}{2\pi N\xi}$, тогда для случайной конфигурации $E\sim 1$. Это надо проверить, в том числе, для разных распределений p(n).

Цель - минимизация E. Один из способов - вычисляем вектор с компонентами $P_i(n) = \sum\limits_{j[n]} p_i(j[n])$. Находим его минимальную компоненту, пусть это компонента i^* (то есть ищем, какой цвет среди соседей в кольце представлен меньше всего) . Заменяем p(n) в точке n на новый $p(n)^*$, у которого $p_{i^*}=1$, а все остальные компоненты равны нулю. Эта операция заведомо не увеличивает E. Повторяем с другой точкой и т.д.