Лабораторная работа 1

Численное решение алгебраических и трансцендентных уравнений

Цель работы: изучить методы решения нелинейных уравнений, алгоритм каждого метода, формулы для вычисления и условия выбора начальных приближений, написать программу на языке программирования для реализации данных методов.

К методам решения нелинейного уравнения относят метод половинного деления, метод простых итераций, метод касательных и метод хорд. Рассмотрим алгоритм каждого из перечисленных методов.

Алгоритм метода половинного деления

Ввод a, b, ε, n

Начало цикла

$$x = \frac{a+b}{2}$$

$$F1 = f(a)$$

$$F2 = f(x)$$

Если F1 * F2 > 0, то a = x иначе b = x

n = n + 1

Конец цикла, условие $|b-a| > \varepsilon$

Печать x, f(x), n

Ход решения:

- 1. Построить график функции.
- 2. Найти точку пересечения функции с осью X, т.е. найти корень уравнения.
- 3. Определить отрезок [a, b] содержащий корень уравнения. Теорема: Если функция определена, непрерывна, строго монотонна и меняет знак на границах отрезка [a, b] то в этом отрезке есть корень уравнения, причем единственный.
- 4. Написать программу, реализующий описанный выше алгоритм, и ввести начальные данные согласно первым пунктам.
 - 5. Вывести на экран результат программы.

Алгоритм метода простых итераций

Ввод x, ε, n

Начало цикла

$$x1 = \varphi(x)$$

$$c = |x1 - x|$$

$$x = x1$$

$$n = n + 1$$

Конец цикла, условие $c > \varepsilon$

Печать x, f(x), n

Ход решения:

- 1. Найти $\varphi(x)$ уравнения, т.е. выразить x.
- 2. Проверить условие сходимости для корректного ввода начального приближения (значение x): $|\varphi'(x)| < 1$.
- 3. Написать программу, реализующий описанный выше алгоритм, и ввести начальные данные.
 - 4. Вывести на экран результат программы.

Алгоритм метода касательных (Ньютона)

Ввод x, ε , n, h

Начало цикла

$$pr = \frac{fnx(x+h) - fnx(x)}{h}$$

$$x1 = x - \frac{f(x)}{pr}$$

$$c = |x1 - x|$$

$$x = x1$$

$$n = n + 1$$

Конец цикла, условие $c>\varepsilon$

Печать x, f(x), n

Ход решения:

- 1. Найти $f(x_0) * f''(x_0) > 0$ уравнения.
- 2. Проверить условие сходимости для корректного ввода начального приближения (значение x): $f(x_0) * f''(x_0) > 0$.
- 3. Найти fn(x) уравнения, т.е. найти первую производную функции.
- 4. Написать программу, реализующий описанный выше алгоритм, и ввести начальные данные.
 - 5. Вывести на экран результат программы.

Алгоритм метода хорд

Ввод x, p, ε, n

Начало шикла

$$x1 = x - \frac{f(x) * (x - p)}{f(x) - f(p)}$$

$$c = |x1 - x|$$

$$x = x1$$

$$n = n + 1$$

Конец цикла, условие $c > \varepsilon$

Печать x, f(x), n

Ход решения:

- 1. Найти f(x) * f''(x) < 0 уравнения.
- 2. Проверить условие сходимости для корректного ввода начального приближения (подвижной границы) f(x) * f''(x) < 0.
- 3. Написать программу, реализующий описанный выше алгоритм, и ввести начальные данные.
 - 4. Вывести на экран результат программы.

Замечание. Значение f(x) на выходе программы должно быть максимально близким к 0, результаты каждого метода должны быть приближенно равными между собой.

ВАРИАНТЫ ЗАДАНИЙ

№ варианта	Уравнение	Точность
1	2	3
1	$x^3 + 4x - 6 = 0$	$\varepsilon = 0.0001$
2	$x^3 + 3x + 1 = 0$	$\varepsilon = 0.0001$
3	$3x - \cos x - 1 = 0$	$\varepsilon = 0.0001$
4	$3x^4 + 4x^3 - 12x^2 - 5 = 0$	$\varepsilon = 0.0001$
5	$x^3 + 4x - 6 = 0$	$\varepsilon = 0.0001$
6	$3x - e^x = 0$	$\varepsilon = 0.0001$
7	$x^3 - 2x^2 - 4x + 7 = 0$	$\varepsilon = 0.0001$
8	$x^3 + 3x - 1 = 0$	$\varepsilon = 0.0001$

9	$2x^4 - 8x^3 + 8x^2 - 1 = 0$	$\varepsilon = 0.0001$
10	$3x^4 + 8x^3 + 6x^2 - 10 = 0$	$\varepsilon = 0.0001$

Входные данные, после запуска программы – отрезок, содержащий корень (или начальное приближение) и точность вычисления.

Выходные данные – найденный корень уравнения и проверка (подстановка найденного значения в исходное уравнение).

Реализация алгоритмов на языке С#

Ниже представлен программный код реализации метода половинного деления. В основной части программы задаются значения переменных, необходимых для реализации алгоритма, описывается сам алгоритм в виде цикла с предусловием WHILE, на каждом шаге которого вызывается метод func для вычисления функции при значениях a или x, и организовывается вывод значения x, количество итераций n и значение функции F(x).

```
Static double funs (double x) //метод для нахождения функции \{ Return Math. Pow (x,3)+4*x-6; \} staticvoid Main (string[] args); \{ Console. Write Line («Метод половинного деления»); double a=1,\,b=2,\,n=0,\,e=0.0001,\,x=0; while (Math. Abs (b-a)>e); \{ x=(a+b)/2; if (func(a) * func (x)>0) a=x; else b=x; n++; \} x=(a+b)/2; Console. Write Line ("x="+x+"n="+n+"F(x)="+func(x)).
```

Для реализации, например, $метода \ xopd$, необходимо использовать цикл с постусловием, в котором также производится многократный вызов метода func.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Корень уравнения.
- 2. Основные этапы нахождения решения.
- 3. Метод половинного деления. Геометрическая интерпретация. Причина выбора отрезка [a,b].
- 4. Метод простых итераций. Геометрическая иллюстрация и условие сходимости.
- 5. Метод касательных. Геометрическое представление и условие сходимости.
- 6. Метод хорд. Геометрическая интерпретация и условие сходимости.