Mathematics I Continuity

Amit K. Verma

Department of Mathematics IIT Patna

Continuous Functions: Sequential Criterion

Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$. Then f is continuous at $x_0 \in D$ if for every sequence $\{x_n\}$ in D converging to x_0 , we have $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Continuous Functions

Let $f: D \subseteq \mathbb{R} \to \mathbb{R}$. Then f is continuous at $x_0 \in D$ iff for every $\epsilon > 0$ there exists a $\delta > 0$ ($\delta = \delta(x_0, \epsilon)$) such that

$$|x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\epsilon.$$

Remark 1: Show that $f(x) = 2x^2 + 1$ is continuous over \mathbb{R} . Use both sequential criterion and $\epsilon - \delta$ definition. Observe that δ is function of both x_0 and ϵ .

Remark 2: Let f(x) be defined as $f(x) = x^2 \sin \frac{1}{x}$, $x \in 0$ and f(0) = 0. Use $\epsilon - \delta$ definition to show that f is continuous on \mathbb{R} .

Remark 3: Show that $f(x) = \frac{1}{x^2}$ is continuous over $(0, \infty)$. Use $\epsilon - \delta$ definition. Observe that δ is function of both x_0 and ϵ .

Remark 4: Algebra of Continuous functions, Composition, some results e.g., Max-Min of continuous function on closed interval, Intermediate value theorem (zeros of a function), Monotonic Functions etc.

Remark 5: Continuity is property of function at a point.

Results on Continuity

Theorem

Let f be a real valued function with $dom(f) \subset \mathbb{R}$. If f is continuous at $x_0 \in dom(f)$, then |f| and kf, $k \in \mathbb{R}$, are continuous at x_0 .

Theorem

Let f and g be real valued functions that are continuous at x_0 in \mathbb{R} . Then

- f + g is continuous at x_0 .
- fg is continuous at x_0 .
- f/g is continuous at x_0 if $g(x_0) \neq 0$.

Theorem

If f is continuous at x_0 and g is continuous at $f(x_0)$, then the composite function g of continuous at x_0 .

Exercise

Let f and g be real valued functions which are continuous at x_0 .

• Show that $\max\{f,g\}$ and $\min\{f,g\}$ are continuous at x_0 . Hint: Use $\max\{f,g\} = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$, $\min\{f,g\} = \frac{1}{2}(f+g) - \frac{1}{2}|f-g|$ or $\min\{f,g\} = -\max\{-f,-g\}$.

Exercise

Let f(x) = 1 for rational numbers x and f(x) = 0 for irrational numbers. Show that f is discontinuous at every x in \mathbb{R} .

Exercise

Let h(x) = x for rational numbers x and h(x) = 0 for irrational numbers. Show that h is continuous at x = 0 and at no other point.

Theorem

Let f be a continuous real valued function on the closed interval [a, b] then f is a bounded function. Moreover f assumes it maximum and minimum values on [a, b], that is, there exists $x_0, y_0 \in [a, b]$ such that $f(x_0) \le f(y)$ for all $x \in [a, b]$.

Theorem [Intermediate Value Theorem]

If f is a continuous real valued function on an interval I, then f has intermediate value property on I: Whenever $a, b \in I$, a < b and y lies between f(a) and f(b) [i.e., f(a) < y < f(b) or f(b) < y < f(a)] there exists at least one $x \in (a, b)$ such that f(x) = y.

Home Work

Exercise

Let f be continuous real valued function with domain (a, b). Show that if f(r) = 0 for each rational number $r \in (a, b)$, then f(x) = 0 for all $x \in (a, b)$.

Exercise

Let f and g be continuous real valued functions with domain (a, b) such that f(r) = g(r) for each rational number $r \in (a, b)$, then prove that f(x) = g(x) for all $x \in (a, b)$.

Exercise

For each rational number x write x as p/q where p and q are integers with no common factors and q > 0, and then define f(x) = 1/q. Also define f(x) = 0 for all $x \in \mathbb{R} \setminus \mathbb{Q}$. Thus f(x) = 1 for each integer. Show that f is continuous at each point of $\mathbb{R} \setminus \mathbb{Q}$ and discontinuous at each point of \mathbb{Q} .

Uniformly Continuous Functions

Let $f:D\subseteq\mathbb{R}\to\mathbb{R}$. Then f is uniformly continuous on D iff for every $\epsilon>0$ there exists a $\delta>0$ ($\delta=\delta(\epsilon)$) such that for any $x',x''\in D$

$$|x'-x''|<\delta\Rightarrow |f(x')-f(x'')|<\epsilon.$$

Example

- 1. $1/x^2$ is continuous on $(0,\infty)$ but not uniformly continuous on $(0,\infty)$.
- 2. $1/x^2$ is uniformly continuous on $[a, \infty)$, a > 0.
- 3. $2x^2 + 1$ is uniformly continuous on $[-M, M] \subset \mathbb{R}$, where M > 0 and finite.

Amit K. Verma (HTP) MA101 8/16 8/16

Example

Continuity vs Uniform Continuity

- Continuity is property of a function at a point where as uniform continuity is defined on a set.
- ② Order of occurrence of the point, ϵ and δ .

 In Continuity we have the point x_0 , ϵ and then $\delta = \delta(x_0, \epsilon)$.

 In Uniform continuity we have the positive number ϵ , then

 $\delta = \delta(\epsilon)$, then the points x', x''.

Results on Uniform Continuity

Theorem

If f is continuous on a closed and bounded interval [a, b], then f is uniformly continuous on [a, b].

Theorem

If f is uniformly continuous on a set S, and $\{s_n\}$ is a Cauchy Sequence then $\{f(s_n)\}$ is a Cauchy Sequence.

Ex. Show that $\frac{1}{x^2}$ is not uniform continuous in (0, 1).

Theorem

Let f be a continuous function on an interval I [I may be bounded or unbounded]. Let I^o be an interval obtained by removing from I any end points that happen to be in I. If f is differentiable on I^o and if f' is bounded on I^o , then f is uniformly continuous on I.

Use the above theorem and discuss uniform continuity of the following:

Ex. Take $1/x^2$ on $[a, \infty)$ where a > 0.

Ex. Consider $\sin x$ over \mathbb{R} .

Ex. Consider x + 1 over \mathbb{R} .

This result is not discussed in class interested students may read

Definition: Extension of a function

We say that a function \tilde{f} is an extension of f if

$$dom(f) \subset dom(\widetilde{f})$$
 and $f(x) = \widetilde{f}(x)$ for all $x \in dom(f)$.

Theorem

A real valued function f on (a,b) is uniformly continuous on (a,b) if and only if it can be extended to a continuous function \widetilde{f} on [a,b]. Ex. Take $f(x) = \frac{\sin x}{x}$ on $(0,\frac{1}{\pi})$.

Exercise

Let f be continuous function on $[0,\infty)$. Prove that if f is uniformly continuous on $[k,\infty)$ for some k, then f is uniformly continuous on $[0,\infty)$.

Exercise: Uniform Continuity

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at zero and satisfies the following conditions:

$$f(0) = 0, f(x_1 + x_2) \le f(x_1) + f(x_2), \ \forall x_1, x_2 \in \mathbb{R}.$$

Prove that if f is uniformly continuous on \mathbb{R} .

Solution: Discussed in class.

Differentiation

Review

- Differentiability
- 2 Rolle's theorem, Mean Value Theorem
- 3 Derivative Test for monotonic function
- Convexity and Concavity
- O L'Hospital Rule

Generalized (Cauchy's) Mean Value Theorem

Let f & g be continuous on [a,b] and differentiable on (a,b) and assume that $g'(x) \neq 0$ for all $x \in (a,b)$. Then there exists c in (a,b) such that

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$$

Proof. Hint: Construct $h(x) = \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a) - f(x) + f(a))$

Exercise

Let f & g be two functions continuous on [a,b] and differentiable on (a,b) and let f(a) = f(b) = 0. Show that there exists a point $x \in (a,b)$ such that g'(x)f(x) + f'(x) = 0.

Exercise

Let f be continuous on [a,b] and differentiable on (a,b) and let $f^2(a)-f^2(b)=b^2-a^2$ then equation f'(x)f(x)=x has at least one root in (a,b).

15/16

Inverse Function Theorem

Let f(x) be a 1-1 function defined on some open interval (a,b) such that f(a,b)=(c,d), where (c,d) is some open interval. Let f be differentiable at $x_0 \in (a,b)$ such that $f'(x_0) \neq 0$. Then f^{-1} is differentiable at $y_0 = f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Example: Let $f(x) = \sin x$ on $[-\pi/2, \pi/2]$. Discuss.