Exercise # 7

Consider the Ackley function defined as

$$f(x, y) = -20e^{(-0.2 \cdot \sqrt{0.5(x^2+y^2)})} - e^{(0.5[\cos(2\pi x) + \cos(2\pi y)])} + e + 20$$

where the global optimum point is f(0, 0) = 0. Use particle swarm optimization algorithm to find the global minimizer of f(0, 0) = 0. Use particle swarm optimization algorithm to find the global minimizer of f(0, 0) = 0. Use particle swarm optimization and in the global minimizer of f(0, 0) = 0.

1. Give the graph of the particles after N-500 together with the graph of the f(gbest) as iteration goes to 500.

Using Python, we produced the following graphs below

Figure 1. Graph of the particles

Figure 2. The trend of *f(gbest)* up to 500 iterations.

2. Specify another two set of values for w, c_1, and c_2. What happens to the particles and the *f(gbest)* as the iteration goes? What are the noticeable changes that you have noticed?

Experimenting with different values of w, c_1 , c_2 values we set w_values = [1, 0.5, 1.5], c_1 values = [1.47, 1.5, 1.8], c_2 values = [1.62, 1.3, 1.9] in the Python code. We let the code pick among these values and we got the two graphs for the particles with the values w = 0.5, c_1 = 1.5, c_2 = 1.3, and w = 1.5, c_1 = 1.8, c_2 = 1.9. Their graphs are shown below.

Figure 3. Graph of the particles with values w = 0.5, $c_1 = 1.5$, $c_2 = 1.3$.

Figure 4. The trend of f(gbest) up to 500 iterations with values w = 0.5, $c_1 = 1.5$, $c_2 = 1.3$.

Figure 5. Graph of the particles with values w = 1.5, $c_1 = 1.8$, $c_2 = 1.9$.

Figure 6. The trend of f(gbest) up to 500 iterations with values w = 1.5, $c_1 = 1.8$, $c_2 = 1.9$.

We can see above that the particles converge to the point (0,0) at the center of figures 3 and 5 and the f(gbest) is approaching the value 0 at figures 4 and 6. From the

graphs, the noticeable changes are when the c_2 is higher the particles converge faster to the global optimum point. Also, when w is low, the movement of the particles is slower.