Inhaltsverzeichnis

1	Cod	ierungst	theorie	3	
	1.1	Grundbegriffe und einfache Beispiele			
		1.1.1	Codierung	3	
		1.1.2	Ziele	3	
	1.2	Grund	prinzip	3	
		1.2.1	FEC-Verfahren (Forward Error Correction)	4	
		1.2.2	ARQ-Verfahren (Automatic Repeat Request)	4	
		1.2.3	Parity-Check-Codes	4	
		1.2.4	Wiederholungscode	4	
		1.2.5	(ehmaliger) ISBN-Code	5	
		1.2.6	EAN-13-Code	6	
	1.3	Blocke		8	
		1.3.1	Definition	8	
		1.3.2	Definition: Hamming-Abstand	8	
		1.3.3	Definition	9	
	1.4	Titel???			
		1.4.1	Definition: Perfekter Code	10	
		1.4.2	Gibt es perfekte Codes?	11	
		1.4.3	Lemma	11	
		1.4.4	Bsp: Binärer Hamming-Code der Länge 7	12	
	1.5	e Codes	13		
		1.5.1	Definition: linearer Code	13	
		1.5.2	Definition: Informationsrate	14	
		1.5.3	Bemerkung über endliche Körper	14	
		1.5.4	Bsp	14	
		1.5.5	Definition: Gewicht und Minimalgewicht	14	
		1.5.6	Satz	15	
		1.5.7	Definition: Erzeugermatrix	15	
		1.5.8	Satz	15	
		1.5.9	Bemerkung	15	
		1.5.10	Beispiel: Hamming-[7, 4]-Code über \mathbb{Z}_7	15	
		1.5.11	Definition: Standardform	16	
		1.5.12	Satz	16	

	1.5.13 Beweis	6
	1.5.14 Bermerkung	7
	1.5.15 Beispiel	7
	1.5.16 Satz	8
	1.5.17 Beispiel: [7,4]-Hamming-Code über \mathbb{Z}_2	8
	1.5.18 Korollar: (Singleton-Schranke)	9
	1.5.19 Bemerkung: (Nebenklassen von Unterräumen in Vektorräumen)	19
1.6	Syndrom-Decodierung linearer Code	9
	1.6.1 Beispiel	0.
1.7	Beispiel guter linear Codes	2
	1.7.1 Hamming-Codes 2	2

Kapitel 1

Codierungstheorie

1.1 Grundbegriffe und einfache Beispiele

1.1.1 Codierung

(Kanalcodierung)

Sicherung von Daten/Nachrichten gegen zufällig auftretenden Fehler bei Speicherung/Übertragung.

Abbildung 1.1: Schaubild der Codierung

1.1.2 Ziele

- Möglichst viele Fehler erkennen und gegebenenfalls korrigieren.
- Aufwand für Codierung und Decodierung möglichst gering.

1.2 Grundprinzip

Hinzufügen von Redundanz

Es gibt zwei Typen um Redundanz zu erzeugen.

1.2.1 FEC-Verfahren (Forward Error Correction)

Aufgetretene Fehler sollen erkannt <u>und</u> korrigiert werden.

Vorteil: keine Verzögerung der Übertragung aber ggf. große Redundanz notwendig.

1.2.2 ARQ-Verfahren (Automatic Repeat Request)

Aufgetretene Fehler sollen erkannt werden, werden nicht korrigiert. Stattdessen wiederholt die Übertragung beim Sender anfordern.

Vorteil: geringe Redundanz, aber Verzögerung.

Beispiele

1.2.3 Parity-Check-Codes

z.B. Nachrichten: 00, 01, 10, 11

Codierung:

 $00 \rightarrow 000$

 $01 \rightarrow 011$

 $10 \rightarrow 101$

 $11 \rightarrow 110$

(gerade Anzahl von Einsen in den Codewörtern)

- 1 Fehler wird erkannt, nicht korrigiert.
- 2 Fehler werden nicht erkannt.

1.2.4 Wiederholungscode

Nachrichten wie in 1.

Codierung:

 $00 \rightarrow 000000$

 $01 \to 010101$

 $10 \rightarrow 101010$

 $11 \rightarrow 111111$

(3-Fache Wiederholung)

1 Fehler wird erkannt und korrigiert.

 $010101 \rightarrow 010101 \rightarrow 01$

Nachrichten wie in 1. Codierung:

$$00 \rightarrow 00000$$
 $01 \rightarrow 01101$
 $10 \rightarrow 10110$
 $11 \rightarrow 11011$

Je zwei Codewörter unterscheiden sich an mindestens 3 Positionen.

Angenommen 1 Fehler tritt bei Übertragung auf. Dann gibt es genau ein Codewort, dass sich vom empfangenen Wort an genau einer Stelle unterscheidet; in das wird decodiert.

Muss immer Ungerade unterschiede in Codewörtern sein. Bei 5 diffs sind 2 Fehler korrigierbar.

1.2.5 (ehmaliger) ISBN-Code

International Standard Book Number

10-Stelliger Code

Erste 9 Ziffern haben inhaltliche Bedingung ($\stackrel{\wedge}{=}$ Nachricht)

10. Ziffer: Prüfziffer

Beispiel: 3-540-26121-? (Land - Verlag - Buchnummer - Prüfziffer)

Uncodierte Wörter sind gebildet über $R = \{0, ..., 9\}$

Codierte Wörter sind gebildet über $S = \{0, ..., 9, X\}$

ISBN-Wort $C_{10}C_9 \dots C_2C_1$

 $C_{10} \dots C_2$ inhaltliche Bedingung, C_1 wird so gewählt, dass

$$\sum_{k=1}^{10} k \cdot C_k \equiv 0 \pmod{11}$$

$$10 \cdot C_{10} + \ldots + 2 \cdot C_2 + C_1 \equiv 0 \pmod{11}$$

falls $C_1 = 10$ so setzte $C_1 = X$

 C_1 vom Beispiel ausrechnen.

$$10 \cdot 3 + 9 \cdot 5 + 8 \cdot 4 + 7 \cdot 0 + 6 \cdot 2 + 5 \cdot 6 + 4 \cdot 1 + 3 \cdot 2 + 2 \cdot 1 + C_1 \equiv 0 \pmod{11}$$
$$161 + C_1 \equiv 0 \pmod{11} \Rightarrow C_1 = 4$$

Ändern einer Ziffer wird erkannt:

$$C_{10}C_9 \dots C_2C_1 \rightarrow C_i \text{ wird } X_i \neq C_i \text{ ersetzt}$$

$$C_{10} \dots C_{i+1} X_i C_{i-1} \dots C_1$$

$$\sum_{k=1, k \neq i}^{10} k \cdot C_k + i \cdot x_i = \underbrace{\sum_{k=1, k \neq i}^{10} k \cdot C_k}_{\equiv 0 \pmod{11}} \underbrace{\downarrow 0 \pmod{11}}_{\neq 0 \pmod{11}} \neq 0 \pmod{11}$$

Fehler wird erkannt, Korrektur nicht möglich.

$$3 - 540 - 26121 - 4 \equiv 0 \pmod{11}$$

$$3 - 540 - 26121 - 6$$

 $3 - 540 - 26122 - 4$ Prüfsumme 2.

Vertauschung von Zwei Ziffern wird erkannt.

 C_i und C_j vertauscht.

O.B.d.A
$$C_i \neq C_j$$

 $C_{10} \dots C_j \dots C_i \dots C_1$
 $\uparrow \qquad \uparrow \qquad \uparrow$

$$\sum_{k=1, k \neq i, j}^{10} k \cdot C_k + i \cdot C_j + j \cdot C_i = \sum_{k=1}^{10} k \cdot C_k + i(C_j - C_i) + j(C_i - C_j)$$

$$= \sum_{k=1}^{10} k \cdot C_k + \underbrace{(C_j - C_i)}_{\neq 0 \pmod{11}} \underbrace{(i - j)}_{\neq 0 \pmod{11}} \not\equiv 0 \pmod{11}$$

Vertauschung wird durch gewichtete Quersummen erkannt.

1.2.6 EAN-13-Code

European Article Number

13-Stelliger Code, erste 12 Ziffer sind inhaltlich festgelegt.

13. Ziffer ist Prüfziffer.

$$R = S = \{0, \dots, 9\}$$

$$C_1 \dots C_{12} C_{13}$$

 $C_1 \dots C_{12}$ inhaltliche Angabe (in der Regel):

C₁C₂ Herstellerland (40-43 Deutschland)

 $C_6 \dots C_7$ Hersteller $C_8 \dots C_{12}$ interne Produktions Nummer

 C_{13} so gewählt, dass

$$C_1 + 3 \cdot C_2 + C_3 + 3 \cdot C_4 + \ldots + 3 \cdot C_{12} + C_{13} \equiv 0 \pmod{10}$$

 $x \to 3x$ Permutation auf $\mathbb{Z}_{10} \pmod{10}$, da ggT(3, 10) = 1, 1 Fehler wird erkannt. Vertauschung in der Regel nicht erkannt.

Übersetzung in Barcode:

$$C_1C_2\ldots C_7C_8\ldots C_{13}$$

Jede der Ziffern C_2, \ldots, C_{13} wird durch einen 0-1-String der Länge 7 binär codiert. $0 \stackrel{\wedge}{=}$ weißer Balken, $1 \stackrel{\wedge}{=}$ schwarzer Balken.

Codierung sorgt dafür, dass nie mehr als 4 weiße oder schwarze Balken nebeneinander stehen.

Abbildung 1.2: EAN-13 Barcode

Schmalen Balken in Mitte und am Rand, sind nur Abtrennzeichen, die nichts mit EAN zu tun haben und nur beim einscannen helfen.

5 zu 0110001₂

 C_2, \ldots, C_7 werden nach Code A oder Code B codiert. C_1 bestimmt welcher dieser beiden Codes verwendet wird.

 C_8, \ldots, C_{13} werden nach Code C codiert.

 C_1 ergibt sich aus der Art der Codierung von C_2, \ldots, C_7

	Ziffern C ₂ – C ₇		Ziffern C ₈ – C ₁₃	bestimmt
				durch C ₁
Zeichen	Code A	Code B	Code C	Code D
0	0001101	0100111	1110010	AAAAAA
1	0011001	0110011	1100110	AABABB
2	0010011	0011011	1101100	AABBAB
3	0111101	0100001	1000010	AABBBA
4	0100011	0011101	1011100	ABAABB
5	0110001	0111001	1001110	ABBAAB
6	0101111	0000101	1010000	ABBBAA
7	0111011	0010001	1000100	ABABAB
8	0110111	0001001	1001000	ABABBA
9	0001011	0010111	1110100	ABBABA

Codewörter von Code A,B oder C kommen nur einmal vor. Daher treten nie mehr als 4 gleiche Balken nebeneinander auf.

1.3 Blockcodes

$$00 \rightarrow 00000$$
 $01 \rightarrow 01101$
 $10 \rightarrow 10110$
 $11 \rightarrow 11011$

1.3.1 Definition

S endl. Menge (=Alphabet), $n \in \mathbb{N}$.

Ein Blockcode C der (Block-)Länge n über S ist Teilmenge von $S^n = S \times ... \times S$

Elemente von C heißen Codewörter.

Ist
$$|S| = 2$$
 (i.d.R. $S = \{0, 1\}$, so **binär** Code. $|C| = m$, so ist $m \le |S|^n$.

Dann lassen sich *n* Informationssymbole (oder Strings von Informationssymbolen) codieren (Codierungsfunktion). Folge von Informationssymbolen (oder Strings) werden dann in Folge von Codewörtern codiert.

1.3.2 Definition: Hamming-Abstand

S endl. Alphabet,
$$n \in \mathbb{N}$$
.
 $a, b \in S^n \ a = (a_1, ..., a_n), b = (b_1, ..., b_n)$
 $d(a, b) = \sharp \{i : a_i \neq b_i\}$

Hamming-Abstand von *a* und *b* (Anzahl der unterschiedlichen Stellen). (Richard W. Hamming, 1915-1998, Begründer der Codierungstheorie)

Eigenschaften

- **a**) $d(a,b) = 0 \Leftrightarrow a = b$
- **b**) d(a,b) = d(b,a)
- c) $d(a,b) \le d(a,c) + d(c,b)$ (Dreiecksungleichung) $(a_i \ne b_i \Rightarrow a_i \ne c_i \text{ oder } b_i \ne c_i)$
- **d**) Wenn (S, +) komm. Gruppe, dann auch S^n $[(a_1, \ldots a_n) + (b_1, \ldots b_n) = (a_1 + b_1, \ldots, a_n + b_n)]$ d(a, b) = d(a + c, b + c) (Translationsinvarianz)

Also: Wird $x \in C$ gesendet und $y \in S^n$ wird empfangen und d(x, y) = k, so sind k Fehler aufgetreten.

1.3.3 Definition

a) Hamming-Decodierung

für Blockcode $C \subseteq S^n$

Wird $y \in S^n$ empfangen, so wird y zu einem Codewort $x' \in C$ decodiert, das unter allen Codewörtern minimalen Hamming-Abstand zu y hat.

$$d(x', y) = min d(x, y), x \in C$$

(x') muss nicht eindeutig bestimmt sein)

z.B. $C = \{(0000), (1111)\}$

Empfangen: 0011 x' nicht eindeutig in diesem Fall.

(|S| = 2: Hamming-Decodierung ist bestmöglich, falls jedes Symbol in einem Codewort mit der gleichen Wahrscheinlichkeit $p < \frac{1}{2}$ verändert wird und wenn jedes Codewort gleich wahrscheinlich ist.)

b) Minimalabstand

C Blockcode in S^n , Minimalabstand von C:

$$d(C) = min \ d(x, x'), \ x, x' \in C, x \neq x'$$

(Ist
$$|C| = 1$$
, so $d(C) = n$)
 $|Bsp: C = \{(00000), (01101), (10110), (11011)\}, d(C) = 3\}$

c)

Ein Blockcode C ist **t-Felder-korrigierend**, falls $d(C) \ge 2t + 1$, und er heißt **t-Felder-erkennend**, falls $d(C) \ge t + 1$.

Begründung für die Bezeichnung in c)

"Kugel" vom Radius t um $x \in C$: $K_t(x) = \{y \in S^n : d(x, y) \le t\}$

Ist $d(C) \ge 2t + 1$, so sind Kugelm vom Radius t um Codewörter disjunkt.

Angenommen es existiert $y \in S^n$ mit $y \in K_t(x) \cap K_t(x')$, $x, x' \in C$, $x \neq x'$. Dann $d(x, x') \le d(x, y) + d(y, x') \le t + t = 2t$. Widerspruch

 $x \in C$ gesendet, y wird empfangen, und angenommen maximal t-Fehler sind aufgetreten, dann $y \in K_t(x)$ und Abstand zu jedem anderem Codewort ist > t \Rightarrow Hamming-Decodierung ist korrekt.

 $d(C) \ge t + 1$ und es treten maximal t minimal 1 Fehler auf, so ist y kein Codewort.

Bsp:

a) n-fach Wiederholungscode

$$S_{n} \rightarrow S_{1}S_{1}...S_{1}$$

$$\vdots$$

$$S_{k} \rightarrow S_{k}S_{k}...S_{k}$$

$$\leftarrow n \rightarrow$$

$$C = \{(s, s, ..., s) : s \in S\} \subseteq S^{n}$$

$$d(C) = n$$

$$\left| \frac{n-1}{2} \right|$$
-Fehler-korr.

b) ISBN, EAN-Codes, d(C) = 2, 1-Fehler-erkennend.

1.4 Titel???

$$d(C) \ge 2 \cdot t + 1, \ C \subseteq R^N$$

$$K_t(x) \cap K_t(x') = \emptyset$$

$$x, x' \in C, \ x \ne x'$$

y empfangen:

- falls y in $K_t(x)$ liegt für einen $x \in C$, so wird y nach x decodiert (Korrekt, falls max. t Fehler aufgetreten sind)
- falls y in keiner $K_t(x)$ liegt, so kann es mehrere Codewörter geben mit gleichem min. Abstand zu y. (Dann keine eindeutige Decodierung)

1.4.1 Definition: Perfekter Code

Code $C \subseteq \mathbb{R}^n$ heißt perfekt, falls es ein $t \in \mathbb{N}_0$ gibt, mit der Eigenschaft:

$$R^n = \bigcup_{x \in C} K_t(x)$$
 und $K_t(x) \cap K_t(x') = \emptyset$ für $x, x' \in C, x \neq x'$

Dann ist $d(C) = 2 \cdot t + 1$, falls |C| > 1: Ang. $d(C) \le 2 \cdot t$. Wähle $x, x' \in C$, $x \ne x'$, mit $d(x, x') = d(C) \le 2 \cdot t$. Wähle $y \in R^n$ mit d(x, y) = t, $d(y, x') \le t$ $y \in K_t(x) \cap K_t(x')$ Widerspruch $d(C) \le 2 \cdot t + 1$

Wähle $x \in C$, wähle $y \in R^n$ mit d(x, y) = t + 1. Nach Vorraussetzung existiert $x' \in C$ mit $y \in K_t(x')$.

$$d(x, x') \le d(x, y) + d(y, x') \le t + 1 + t = 2 \cdot t + 1$$

$$d(C) \le 2 \cdot t + 1$$

1.4.2 Gibt es perfekte Codes?

Trivial Beispiele:

- einelementige Codes (t=n)
- $C = R^n$ (t=0) (Jedes Element ist ein Codewort)
- *n*-fache Wiederholungscode über Z_2 $n = 2 \cdot t + 1$ $C = \{(0, \dots, 0), (1, \dots, 1)\}$ $\leftarrow n \rightarrow$

1.4.3 Lemma

$$|R| = q, \ x \in R^n, \ t \in \mathbb{N}$$

Dann ist $|K_t(x)| = \sum_{i=0}^t \binom{n}{i} \cdot (q-1)^i$
 $\binom{\binom{n}{i}}{i} = \frac{n}{i(n-i)}$

Beweis

Abstand 0 zu x: 1 Word (nämlich x): $\binom{n}{0} \cdot (q-1)^0 = 1$ Abstand i > 0 zu x: Anzahl der Auswahl von i Positionen aus n Positionen: $\binom{n}{i}$ An jeder Position q-1 Änderungsmöglichkeiten. \rightarrow insgesamt $(q-1)^i$ Möglichkeiten, Anzahl der Wörter vom Abstand i von x: $\binom{n}{i} \cdot (q-1)^i$

Satz

Sei C ein Code der Länge n über R, |C|>1, |R|=q. Sei $t\in\mathbb{N}_0$ maximal mit $d(C)\geq 2\cdot t+1$, $t=\lfloor\frac{d(C)-1}{2}\rfloor$.

- a) (Kugelpackungsschranke) $|C| \le \frac{q^n}{\sum_{i=0}^{l} \binom{n}{i} \cdot (q-1)^i}$
- b) C ist perfekt \Leftrightarrow in a) gilt Gleichheit, d.h. $|C| = \frac{q^n}{\sum_{i=0}^{l} \binom{n}{i!} \cdot (q-1)^i}$

Beweis

$$d(C) \ge 2 \cdot t + 1, \text{ daher } K_t(x) \cap K_t(x') = \emptyset, \ x \ne x', \ x, x' \in C$$

$$R^n \ge \bigcup_{x \in C} K_t(x)$$

$$q^n = |R^n|$$

$$\left|\bigcup_{x \in C} K_t(x)\right| = \sum_{x \in C} |K_t(x)| \underset{Lemma}{=} |C| \cdot \sum_{i=0}^t \binom{n}{i} \cdot (q-1)^i$$

$$\Rightarrow: d(C) = 2 \cdot t + 1$$

$$R^{n} = \bigcup_{x \in C} K_{t}(x) \Rightarrow \text{Gleichheit in a}$$

$$\Leftarrow: \text{Gleichheit} \Rightarrow R^{n} = \bigcup_{x \in C} K_{t}(x) \Rightarrow C \text{ perfekt.}$$

1.4.4 Bsp: Binärer Hamming-Code der Länge 7

 $R = \mathbb{Z}_2 = \{0, 1\} C$ perfekt, d(C) = 3, |C| = 16 1-Fehler-Korrigierend

$$C = \{(C_1, \dots, C_7) : C_i \in \mathbb{Z}_2, C_1 + C_4 + C_6 + C_7 = 0,$$

$$C_2 + C_4 + C_5 + C_7 = 0,$$

$$C_3 + C_5 + C_6 + C_7 = 0$$

$$\} \subseteq \mathbb{Z}_2^7$$

C ist Unterraum von \mathbb{Z}_2^7

$$(C_1, \ldots, C_7) \in C$$
, $(C_1', \ldots, C_7') \in C$
 $(C_1 + C_1', \ldots, C_7 + C_7')$ $(C_1 + C_1') + (C_4 + C_4') + (C_6 + C_6') + (C_7 + C_7') = 0$
 $dim(C) = 4$, C_4, C_5, C_6, C_7 frei wählbar C_7 C_7 festgelegt
Basis:

$$(\dots 1000) \rightarrow (1101000)$$

 $(\dots 0100) \rightarrow (0110100) \quad |C| = 2^4 = 16$
 $(\dots 0010) \rightarrow (1010010)$
 $(\dots 0001) \rightarrow (1110001)$

$$d(C) = 3$$
:

Ang. d(C) = d. Wähle $x, x' \in C$ mit d(x, x') = d

Translationsinvarianz der Metrik:

$$d = d(x, x') = d(x + x, x + x') = d(0, x + x')$$

$$wt(x) = \text{Anzahl der Einsen in } x$$

$$= d(0, x)$$

$$d(C) = \min wt(x), \quad x \in C, \quad x \neq V$$

Zeige: Jeder Vektor $\neq v$ in C enthält mind. 3 Einsen.

= 3 weist man nach durch überprüfen aller 15 von \mathcal{V} verschiedenen Codewörtern oder durch Analyse der Gleichung.

$$(C_1, ..., C_7) \in C$$
 Ang. $C_7 = 1$
 $\Rightarrow C_1 + C_4 + C_6 = 1$. Wenn alle Eins \checkmark
 $C_1 = 1, C_4 = C_6 = 0$
 $C_4 = 1, C_1 = C_6 = 0$
 $C_6 = 1, C_1 = C_4 = 0$
 C_1, C_2 oder $C_3 = 1$

- 2. Fall: $C_7 = 1$, $C_4 = 1$, $C_1 = 0$, C_2 oder $C_3 = 1$
- 3. Fall: analog zu Fall 2.

1. Fall:
$$C_1 = 1, C_4 = C_6 = 0, C_7 = 1$$
, o.B.d.A. $C_2 = C_3 = 0 \Rightarrow C_5 = 1$ $d(C) \le 3, d(C) = 3 = 2 \cdot 1 + 1$

Prüfe nach, ob bei Kugelpackungsschranke Gleichheit gilt:

$$|C| = 16$$

$$|C| \le \frac{q^n}{\sum_{i=0}^t \binom{n}{i} \cdot (q-1)^i} \quad (q=2, t=1, n=7)$$

$$= \frac{2^7}{1 + \binom{7}{1}} = \frac{2^7}{2^3} = 2^4 = 16$$

$$C \text{ perfekt!}$$

1.5 Lineare Codes

1.5.1 Definition: linearer Code

Sei K ein endlicher Körper, $n \in \mathbb{N}$. Ein linearer Code C der Länge n ist ein Unterraum von K^n . (Zeilenvektoren) [Alphabet = k]

Ist dim(C) = k, so heißt C[n, k]-Code. Ist d(C) = d, so [n, k, d]-Code. Beachte: $|K| = q \Rightarrow |C| = q^k$.

1.5.2 Definition: Informationsrate

Informations rate (Rate) von $C: \frac{k}{n}$.

1.5.3 Bemerkung über endliche Körper

- a) p Primzahl, \mathbb{Z}_p ist Körper der Ordnung p
- b) K endlicher Körper $\Rightarrow |K| = p^m$, p Primzahl, $m \in \mathbb{N}$.
- c) Zu jeder Primzahlpotenz p^m existiert (bis auf Isomorphie) genau ein Körper der Ordnung p^m .
- d) f sei irreduzibles Polynom vom Grad m über \mathbb{Z}_p . $K = \{g \in \mathbb{Z}_p[x] : Grad(g) \le m-1\}, \quad |K| = p^m$ K wird Körper: Addition = übliche Addition von Polynomen Multiplikation = normale Multiplikation + Reduktion mod f (AES: $|K| = 2^8$)

1.5.4 Bsp

- a) n-facher Wiederholungscode über \mathbb{Z}_p $C = \{(0, \dots, 0), (1, \dots, 1), \dots, (p-1, \dots, p-1)\}$ C ist linerer Code, $C = <(1, \dots, 1) > [n, 1, n]$ -Code
- b) Hamming-Code ist linearer [7,4,3]-Code über \mathbb{Z}_2
- c) $C = \{(c_1, ..., c_n) : c_i \in \mathbb{Z}_p, \sum_{i=1}^n c_i = 0\}$ $(p = 2 : \text{Parity Check Code}), \text{ linear } [n, n - 1, 2]\text{-Code "uber } \mathbb{Z}_p$ Basis von C : (1, 0, ..., 0, p - 1), (0, 1, 0, ..., 0, p - 1), ..., (0, ..., 0, 1, p - 1)

1.5.5 Definition: Gewicht und Minimalgewicht

K endl. Körper

- a) $x \in K^n$, so Gewicht von x, wt(x), definiert durch $wt(x) = \sharp \{i : x_i \neq 0\}$
- b) $\{0\} \neq C \subseteq K^n$, so ist das Minimalgewicht von C definiert durch $wt(C) = \min_{x \in C, x \neq 0} wt(x)$

1.5.6 **Satz**

Ist $C \neq \{0\}$ ein linearer Code, so ist d(C) = wt(C). (Beweis wie beim [7,4,3]-Hamming Code)

1.5.7 Definition: Erzeugermatrix

Sei *C* ein [n, k]-Code über *K*, sei $g_1 = (g_{11}, \dots, g_{1n}), \dots, (g_{k1}, \dots, g_{kn}) = (g_{k1}, \dots, g_{kn})$ eine Basis von C.

Dann heißt die
$$k \times n$$
 -Matix $G = \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix} = \begin{pmatrix} g_{11} & \cdots & g_{1n} \\ \vdots & & \vdots \\ g_{k1} & \cdots & g_{kn} \end{pmatrix}$ Erzeugermatrix von C

1.5.8 Satz

Sei G ein Erzeugermatrix von C.

Dann ist
$$C = \{ u \cdot G : u \in K^k \}$$

Beweis:

$$u = (u_1, \dots, u_k), u_i \in K$$

 $uG = (u_1, \dots, u_k) \cdot (g_1, \dots, g_k)^t = u_1 g_1 + \dots + u_k g_k \in C$

1.5.9 Bemerkung

a) Die Abb
$$\begin{cases} K^k & \to C \\ u & \mapsto uG \end{cases}$$
 ist bijektiv.

 $u \in K^k$ Informationswörter

Codert in Codewörter durch uG.

b) Elementare Zeilenumformungen an Erzeugermatrix liefern Erzeugermatrix.

1.5.10 Beispiel: Hamming-[7, 4]-Code über \mathbb{Z}_7

$$C = \{(C_1, \dots, C_7) : C_i \in \mathbb{Z}_2, C_1 + C_4 + C_6 + C_7 = 0,$$

$$C_2 + C_4 + C_5 + C_7 = 0,$$

$$C_3 + C_5 + C_6 + C_7 = 0$$

$$\} \subseteq \mathbb{Z}_2^7$$

Erzeugermatrix:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Cod. eines Informationswort (u_1, u_2, u_3, u_4) mit G

$$(u_1, u_2, u_3, u_4) \rightarrow (u_1, u_2, u_3, u_4) \cdot G = (\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}, u_1 + u_3 + u_4, u_2 + u_3 + u_4, u_1 + u_2 + u_3)$$

1.5.11 Definition: Standardform

C[n,k]-Code Erzeugermatix C ist in Standardform, falls sie folgende Gestalt hat.

$$G = k \begin{cases} 1 & 0 \\ & \ddots & * \\ 0 & 1 \\ & & k \rightarrow \leftarrow (n-k) \rightarrow \end{cases}$$

Cod.
$$(u_1, ..., u_k) \cdot G = (u_1, ..., u_k, *, ..., *)$$

1.5.12 Satz

Sei C ein [n,k]-Code über K. Dann existiert $(n-k) \times n$ -Matrix H über K mit folgenden Eigenschaften:

Sei $y \in K^n$. Dann: $y \in C \Leftrightarrow H \cdot y^t = \vec{0}$

H heißt Kontrollmatrix von $C \iff y \cdot H^t = \vec{0}$

Es ist rg(H) = n - k (Dann ist $H \cdot G^t = 0$)

1.5.13 Beweis

Sei
$$g_1, \ldots, g_k$$
 Basis von $C, G = \begin{pmatrix} g_1 \\ \vdots \\ g_2 \end{pmatrix}$

 $g_i = (g_{i1}, \ldots, g_{in})$

Betrachte LGS:

$$g_{11}x_1 + \dots + g_{1n}x_n = 0$$

$$\vdots$$

$$g_{k1}x_1 + \dots + g_{kn}x_n = 0$$

d.h.
$$G \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0$$
. Koeffizientmatrix G hat Rang k .

Dimension des Löungsraums dieses LGS = n - k

Sei $h_1, \ldots, h_{n-k} \in K^n$ Basis des Lösungsraums dieses LGS.

$$H = \begin{pmatrix} m \\ \vdots \\ h_{n-k} \end{pmatrix}, \quad H \cdot g_i^t = \begin{pmatrix} h_1 g_i^t \\ \vdots \\ h_{n-k} g_i^t \end{pmatrix} = 0, i = 1, \dots, k$$

$$Hy^t = 0$$
 für alle $y \in C$.
 $rg(H) = n - k \Rightarrow dim \ Kern(H) = k = dim(C)$
 $C = Kern(H)$

1.5.14 Bermerkung

- Kontrollmatrix kann zur Fehlererkennung verwendet werden.
- Beweis liefert Verfahren: Erzeugermatrix → Kontrollmatrix
- Umgekehrt: Kontrollmatrix \rightarrow Erzeugermatrix (Bilde Basis des Lösungsraums von $Hy^t = 0$)

1.5.15 Beispiel

- a) Parity-Check-Code über \mathbb{Z}_p $C = \{(c_1, \dots, c_n) : \sum_{i=1}^n c_i = 0\}$ $H = (1, 1, \dots, 1)$ $H \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0 \Leftrightarrow c_1 + \dots c_n = 0 \Leftrightarrow (c_1, \dots, c_n) \in C$
- b) [7, 4]-Hamming-Code

$$C = \{(C_1, \dots, C_7) : C_i \in \mathbb{Z}_2, C_1 + C_4 + C_6 + C_7 = 0,$$

$$C_2 + C_4 + C_5 + C_7 = 0,$$

$$C_3 + C_5 + C_6 + C_7 = 0$$

$$\} \subseteq \mathbb{Z}_2^7$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

c) C Code mit Erzeugermatrix

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} [4, 2]\text{-Code "uber } \mathbb{Z}_2$$

$$G \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} = 0$$

$$x_1 + x_2 + x_4 = 0$$
$$x_2 + x_4 = 0$$

 x_5, x_4 frei wählen, x_1, x_2 fesgelegt.

Basis (0010), (0101)

Kontrollmatrix
$$H = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$C\{(c_1,\ldots,c_4):c_3=0,c_2+c_4=0\}$$

1.5.16 Satz

C[n,k]-Code, $C \neq \{\vec{0}\}, K^n$, Kontrollmatrix H.

$$d(C) = wt(C) = min$$
 {r: in H gibt es r linear abhänige Spalten}
= max {r: je r-1 Spalten linear unabhängig}

Beweis

 s_1, \ldots, s_n Spalten von H, Länge n - k.

 $C \neq \{\vec{0}\}, k \geq 1, n - k < n \Rightarrow s_1, \dots, s_n \text{ lin. abhängig.}$

Sei $min\{r: \ldots\} = w. \ s_{i_1}, \ldots, s_{i_w}$ lin. abhängig.

Existiert $c_{i_1}, \ldots, c_{i_w} \in K$, nicht alle = 0, $c_{i_1}s_{i_1} + \ldots + c_{i_w}s_{i_w} = 0$

 $w \quad min \Rightarrow \text{alle } c_{i_1}, \ldots, c_{i_w} \neq 0.$

Def. $c = (c_1, ..., c_n)$ mit den c_{i_i} an den Stellen i_j , übrige $c_i = 0$

$$\sum_{i=1}^{n} c_i s_i = c_{i_1} s_{i_1} + \ldots + c_{i_w} s_{i_w} = 0$$

$$\sum_{i=1}^{n} c_i s_i^t = 0$$

$$Hc^t = 0$$
 $c \in C$

wt(c) = w, Min. Gewicht von $C \le wt(c) = w$

Ang. es ex. $0 \neq c' \in C$, wt(c') = w' < w. $Hc'^t = 0$

 $c' = (c'_1, \dots, c'_n)$ $\sum c'_i s_{i=1}^n = 0 \Rightarrow w'$ der Spalten c_1, \dots, c_n sind linear abhänging. Widerspruch!

wt(c) = w

1.5.17 Beispiel: [7,4]-Hamming-Code über \mathbb{Z}_2

$$H = \begin{pmatrix} 1 & & 0 & 1 & 0 & 1 \\ & \ddots & & 0 & 1 & 1 \\ 0 & & 1 & 1 & 1 & 1 \end{pmatrix} \text{Kontrollmatrix}.$$

Keine Spalte ist Nullspalte, keine zwei Spalten sind gleich. 1.,2.,4. Spalte sind linear abhänging.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad d(C) = 3$$

1.5.18 Korollar: (Singleton-Schranke)

Ist *C* ein linearer [n, k]-Code, d(C) = d, so gilt:

$$d \le n - k + 1$$

Beweis

2. Gleichheit: $d \le rg(H) + 1 = n - k + 1$ (Zeilen von H sind lin. unabhängig)

1.5.19 Bemerkung: (Nebenklassen von Unterräumen in Vektorräumen)

C ein Umterraum von Vektorraum V. Für jedes $v \in V$:

$$v + C = \{v + x : x \in C\}$$

Nebenklasse von C zu v.

- a) $v_1, v_2 \in V$. Dann: $v_1 + C = v_2 + C \text{ oder } (v_1 + C) \cap (v_2 + C) = \emptyset$
- b) $v_1 + C = v_2 + C \Leftrightarrow v_1 v_2 \in C$ $(v + C = C (= \vec{0} + C) \Leftrightarrow v \in C)$
- c) Wähle aus jeder Nebenklasse einen Vektor v_i :

$$V = \bigcup_{i=1}^{\bullet} (v_i + C)$$

- d) V Vektorraum über endl. Körper: |v + C| = |C|
- e) C[n,k]-Code $(V = K^n, dim(C) = k, |C| = q^k, \text{ falls } |K| = q)$ Anzahl der Nebenklassen ist q^{n-k}

1.6 **Syndrom-Decodierung linearer Code**

C[n, k]-Code über K, |K| = q, Kontrollmatrix $H, (n - k) \times n$ -Matrix. Ist $y \in K^n$, so heißt $Hy^t \in K^{n-k}$ **Syndrom** von y.

- a) $x \in C \Leftrightarrow Hx^t = 0$ (x hat Syndrom 0)
- b) $y_1, y_2 \in K^n$. y_1, y_2 liegen in der gleichen Nebenklasse zu C (d.h. $y_1 + C =$ \Leftrightarrow y_1, y_2 haben gleiches Syndrom

$$(d.h. Hy_1^t = Hy_2^t)$$

$$[y_1 + C = y_2 + C \Leftrightarrow y_1 - y_2 \in C \Leftrightarrow 0 = H(y_1 - y_2)^t = Hy_1^t - Hy_2^t \Leftrightarrow Hy_1^t = Hy_2^t]$$

c) Jedes $z \in K^{n-k}$ tritt als Syndrom auf.

Ang. $x \in C$ wird gesendet, y = x + f, wird empfangen. f "Fehlervektor". y + C = f + C, y und f haben das gleiche Syndrom, nämlich Hy^t . Bestimmt in der Nebenklasse von y ein e mit kleinstmögliche Gewicht (**Nebenklassenführer**) Decodierung: $y \to y - e \in C$ (Hamming-Decodierung)

Ordne die Nebenklassenführer nach der lexikogr. ihrer Syndome. Speicherbedarf: q^{n-k} Nebenklassenführer, jeder hat Länge n (Besser als Durchforsten der Liste aller Codewörter (q^k) , falls $k \ge \frac{n}{2}$) C [70, 50]-Code über \mathbb{Z}_2 . 2^{20} Nebenklassenführer, je 70 BitLänge. Speicher: $70 \cdot 2^{20}$ Bit ≈ 8 , 75 MegaByte Speicher für Codewörter: $70 \cdot 2^{50}$ Bit = 9 PetaByte

1.6.1 Beispiel

C [5, 2]-Code über \mathbb{Z}_2 , Kontrollmatrix

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

d(C) = 3

$$(x_1, ..., x_5) \in C \Leftrightarrow x_1 + x_5 = 0$$

 $x_2 + x_3 = 0$
 $x_2 + x_4 + x_5 = 0$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Nebenklassen von C.

$$C = (000000) + C = \{(00000), (11101), (01110), (10011)\}$$

$$(10000) + C = \{(10000), (01101), (11110), (00011)\}$$

$$Nebenklassenf\(\text{uhrer:}(10000)$$

$$(01000) + C = \{(01000), (10101), (00110), (11011)\}$$

$$Nebenklassenf\(\text{uhrer:}(01000)$$

$$(00100) + C = \{(00100), (11001), (01010), (10111)\}$$

$$Nebenklassenf\(\text{uhrer:}(00100)$$

$$(00010) + C = \{(00010), (11111), (01100), (10001)\}$$

$$Nebenklassenf\(\text{uhrer:}(00010)$$

$$(00001) + C = \{(00001), (11100), (01111), (10010)\}$$

$$Nebenklassenf\(\text{uhrer:}(00001)$$

$$(00111) + C = \{(00111), (11010), (01001), (10100)\}$$

$$M\(\text{ogliche Nebenklassenf\(\text{uhrer:}(01001), (10100)$$

$$(00101) + C = \{(00101), (11000), (01011), (10110)\}$$

$$M\(\text{ogliche Nebenklassenf\(\text{uhrer:}(00101), (11000)$$

Angenommen als Nebenklassenführer werden gewählt:

$$f_0 = (00000), f_1 = (10000), \dots, f_5 = (00001), f_6 = (01001), f_7 = (00101)$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Syndrome:

$$Hf_{0}^{t} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, Hf_{1}^{t} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, Hf_{2}^{t} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, Hf_{3}^{t} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, Hf_{4}^{t} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, Hf_{5}^{t} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, Hf_{6}^{t} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, Hf_{7}^{t} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
(Ordnung: $f_{0}, f_{4}, f_{3}, f_{2}, f_{1}, f_{5}, f_{6}, f_{7}$)

Empfangen: y = (10110)

$$Hy^t = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Decodierung: $y \rightarrow y + f_7 = (10011) \in C$

(Hätte man für die Nebenklasse $f_7 + C$ als Nebenklassenführer (11000) gewählt, so wäre decodiert worden in $y + (11000) = (01110) \in C$)

1.7 Beispiel guter linear Codes

1.7.1 Hamming-Codes

Sei q ein Primzahlpotenz, K Körper mit |K|=qSei $l\in\mathbb{N}$. $n=\frac{q^l-1}{q-1}, k=n-l$ Denn ex. perfekter [n,k]-Code C über K,d(C)=3. Hamming-Code.

Konstruktion

 $|K^l \setminus \{\vec{0}\}| = q^l - 1$, je q - 1 von 0 versch. Vektoren erzeugen den gleichen 1-dim. Unterräume in K^l , d.h.

$$n = \frac{q^l - 1}{q^l - 1}$$
 1-dim Unterraum

Bilde $l \times n$ -Matrix H: Wähle aus jedem der 1-dim. Unterraum von K^l einen Vektor $\neq 0$ aus und schreibe ihn als Spalte in H

$$C = \{x \in K^n : Hx^t = 0\}$$
 $rg(H) = l$, denn H enthält l lin. unabhängige Spalten. $dim(C) = n - l = k$, $|C| = q^k$ $d(C) = 3$

Nach Konstruktion von H sind je zwei Spalten linear unabhänging. Es gibt drei linear abhängige Spalten:

$$\begin{pmatrix} a \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ b \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} c \\ c \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad a, b, c \neq 0$$

$$\frac{c}{a} \begin{pmatrix} a \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \frac{c}{b} \begin{pmatrix} 0 \\ b \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} c \\ c \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Kugelpackungsbed.:

$$\begin{split} \sum_{j=0}^{1} \binom{n}{j} (q-1)^{i} &= 1 + n \cdot (q-1) = 1 + \frac{q^{l}-1}{q-1} = q^{l} \\ \frac{q^{n}}{q^{l}} &= q^{n-l} = q^{k} = |C| \\ C \text{ perfekt.} \end{split}$$