Solución

Sea $(x,y)=(r\cos\theta,r\sin\theta)$. Por la identidad $x^2+y^2=r^2\cos^2\theta+r^2\sin^2\theta=r^2\leq 1$, vemos que el conjunto de puntos $(x,y)\in\mathbb{R}^2$ tales que $(x,y)\in D$ tienen la propiedad de que $x^2+y^2\leq 1$, y por tanto D está contenido en el disco unidad. Además, cualquier punto (x,y) del disco unidad se puede expresar como $(r\cos\theta,r\sin\theta)$ para ciertos $0\leq r\leq 1$ y $0\leq\theta\leq 2\pi$. Por tanto, D es el disco unidad (véase la Figura 6.1.2).

Figura 6.1.2 T proporciona un cambio de variables entre coordenadas euclídeas y polares. El círculo unidad es la imagen de un rect ángulo.

Ejemplo 2

Sea T la aplicación definida como T(x,y)=((x+y)/2,(x-y)/2) y sea $D^*=[-1,1]\times[-1,1]\subset\mathbb{R}^2$ un cuadrado cuya longitud del lado es 2 y está centrado en el origen. Determinar la imagen D obtenida al aplicar T a D^* .

Solución

En primer lugar, determinamos el efecto de T sobre la recta $\mathbf{c}_1(t)=(t,1)$, donde $-1 \leq t \leq 1$ (véase la Figure 6.1.3). Tenemos que $T(\mathbf{c}_1(t))=((t+1)/2,(t-1)/2)$. La aplicación $t\mapsto T(\mathbf{c}_1(t))$ es una parametrización de la recta $y=x-1,0\leq x\leq 1$, ya que (t-1)/2=(t+1)/2-1. Este es el segmento de recta que une (1,0) y (0,-1).

Figura 6.1.3 Dominio de la transformación T del Ejemplo 2.

Sean

$$\mathbf{c}_{2}(t) = (1, t), \qquad -1 \le t \le 1$$

 $\mathbf{c}_{3}(t) = (t, -1), \qquad -1 \le t \le 1$
 $\mathbf{c}_{4}(t) = (-1, t), \qquad -1 \le t \le 1$