

PRÁCTICA

Departamento Académico	Sistemas y Computación			
Programa Académico	Plan de Estudios	Formato		
Ing. en Sistemas Computacionales	ISIC-2010-224	SyC-01-2015-P		
Asignatura	Clave de la Asignatura	Créditos SATCA	Semestre	
Fundamentos de Programación	AED-1285	3-2-5	1ro.	

No. de Práctica	Nombre de la Práctica		
P_03_02 Estructuras Iterativas			
Competencia de la Práctica			
Resolver problemas mediante programación con estructuras iterativas			

1. INTRODUCCIÓN

2. REQUERIMIENTOS

Equipo, herramientas y material.	Software
Computadora Cuaderno (apuntes), lápiz y USB	Sistema Operativo Windows Dropbox Adobe Acrobat IDE con JAVA, por ejemplo Netbeans

3. DESCRIPCIÓN DE LA PRÁCTICA.

Instrucciones:

- De manera individual representa cada uno de los siguientes problemas prácticos en un lenguaje de programación.
- Utiliza el software que te indica tu profesor para crear los programas.
- Guarda los archivos en la carpeta Unidad 3/Prácticas de tu unidad de almacenamiento Flash Drive (USB)

Un docente de ISC realiza una encuesta a un número indeterminado de alumnos para obtener:

- La cantidad de alumnos que obtuvieron un promedio general mayor a 90 en el semestre anterior
- La edad promedio de los alumnos que cumplieron con el punto anterior

Realiza el programa en JAVA para calcular lo solicitado; para cada alumno se ingresa la EDAD y el PROMEDIO general; y para terminar la captura se debe introducir 0 en el campo de la edad.

Datos de prueba:

EDAD	17	18	20	21	19	21	21	22	18	22	0
PROMEDIO	82	91	95	98	75	94	91	80	98	72	
•	1	2	3	4	5	6	7	8	9	10	11

Resultado: Hubo 6 alumnos con un promedio general mayor de 90 y la edad promedio de los mismos fue de 19.833333 años

EXPLICACIÓN: Las edades de los 6 alumnos con promedio mayor fueron 18, 20, 21, 21 y 18, que sumadas dan 119, y al dividirlas por 6 da como resultado una edad promedio de 19.83 años

Código en JAVA	

Realiza el programa en JAVA que muestre los valores obtenidos al aplicar la conjetura del matemático S. Ulam, la cual tiene el siguiente proceso:

- Se inicia con cualquier entero positivo
- Si es par, se divide entre 2
- Si es impar, se multiplica por 3 y se agrega 1
- Se repite el proceso obteniendo enteros sucesivamente
- Al final, se obtendrá el número 1, independientemente del entero inicial.

```
Ejemplo 1, cuando el entero inicial es 26, la secuencia será: 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
```

Ejemplo 2, si el número inicial es 30, la secuencia será: 30, 15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

Realiza el programa en Java que determine si un número NUM, introducido por teclado, es un número primo o si no lo es. Se dice que un número entero positivo NUM es un **número primo** si los únicos enteros positivos que lo dividen son 1 y NUM (él mismo).

Pensando algorítmicamente, se debe obtener la cantidad de divisores enteros; se puede concluir que un número no primo tiene más de dos divisores enteros.

Por ejemplo, si se introduce el número 5 se debe mostrar el mensaje que indique que:

```
El número 5 es un número primo (pues solo puede ser divisible por el 1 y el 5)
```

Pero si se introduce el número 6 se debe mostrar el mensaje que indique que:

```
El número 6 NO es un número primo (ya que es divisible por el 1, por el 2 y por el 3)
```

```
Ejemplos de números primos: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
Ejemplos de números NO primos: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24
```


Se requiere un programa en JAVA tal que, dadas las presiones Sistólica y Diastólica de una cantidad indeterminada de personas se indique en qué grado o categoría se encuentra cada persona. Para terminar el programa se debe introducir una presión sistólica de 0 (cero).

Categoría	Sistólica		Diastólica
Normal	Menos de 120	Υ	Menos de 80
Elevada	120-129	Υ	Menos de 80
Arterial Alta Nivel 1 (hipertensión)	130-139	0	80-89
Arterial Alta Nivel 2 (hipertensión)	140 o más	0	90 o más
Crisis de Hipertensión	Mas de 180	0	120 o más

Código en JAVA	

4. FUENTES DE INFORMACIÓN.

Introducción a las computadoras y al procesamiento de información, Long, Larry, 3er. Edición, Prentice Hall, México, 1995.

Metodología de la Programación, 3° Edición Cairó Battistutti, O., Editorial Alfaomega, 2005.