

COMPUTER VISION LECTURE 21 – FACE RECOGNITION

Prof. Dr. Francesco Maurelli 2018-11-20

What we will learn today

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71–86.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Detection versus Recognition

Detection finds the faces in images

Recognition recognizes WHO the person is

Digital photography

- Digital photography
- Surveillance

- Digital photography
- Surveillance
- Album organization

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions
- Security/warfare
- Tele-conferencing
- Etc.

The Space of Faces

- An image is a point in a high dimensional space
 - If represented in grayscale intensity,
 an N x M image is a point in R^{NM}
 - E.g. 100x100 image = 10,000 dim

100x100 images can contain many things other than faces!

The Space of Faces

- A face image
- A (non-face) image

- An image is a point in a high dimensional space
 - If represented in grayscale intensity,
 an N x M image is a point in R^{NM}
 - E.g. 100x100 image = 10,000 dim
- However, relatively few high dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images

Where have we seen something like this before?

- A face image
- A (non-face) image

- Compute n-dim subspace such that the projection of the data points onto the subspace has the largest variance among all n-dim subspaces.
- Maximize the scatter of the training images in face space

Key Idea

 So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs.

 USE PCA for estimating the sub-space (dimensionality reduction)

•Compare two faces by projecting the images into the subspace and measuring the EUCLIDEAN distance between them.

What we will learn today

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, *Journal of Cognitive Neuroscience* **3** (1): 71–86.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Eigenfaces: key idea

- Assume that most face images lie on a lowdimensional subspace determined by the first k (k<<d) directions of maximum variance
- Use PCA to determine the vectors or "eigenfaces" that span that subspace
- Represent all face images in the dataset as linear combinations of eigenfaces

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

Training images: **x**₁,...,**x**_N

Top eigenvectors: $\phi_1,...,\phi_k$

Mean: μ

Training

1. Align training images $x_1, x_2, ..., x_N$

Note that each image is formulated into a long vector!

- 2. Compute average face $m = \frac{1}{N} \mathring{a} x_i$
- Compute the difference image (the centered data matrix)

$$\boldsymbol{X}_{c} = \begin{bmatrix} 1 & & & 1 \\ \boldsymbol{X}_{1} & \dots & \boldsymbol{X}_{n} \\ 1 & & 1 \end{bmatrix} - \begin{bmatrix} 1 & & & 1 \\ \mu & \dots & \mu \\ 1 & & & 1 \end{bmatrix}$$

4. Compute the covariance matrix

$$\Sigma = \frac{1}{n} \begin{bmatrix} 1 & & 1 \\ x_1^c & \dots & x_n^c \\ 1 & & 1 \end{bmatrix} \begin{bmatrix} - & x_1^c & - \\ & \vdots & \\ - & x_n^c & - \end{bmatrix} = \frac{1}{n} X_c X_c^T$$

- 5. Compute the eigenvectors of the covariance matrix Σ
- 6. Compute each training image x_i 's projections as

$$x_i \rightarrow \left(x_i^c \cdot f_1, x_i^c \cdot f_2, \dots, x_i^c \cdot f_K\right) \equiv \left(a_1, a_2, \dots, a_K\right)$$

7. Visualize the estimated training face x_i

$$x_i \gg m + a_1 f_1 + a_2 f_2 + ... + a_K f_K$$

6. Compute each training image x_i 's projections as

$$x_i \rightarrow \left(x_i^c \cdot f_1, x_i^c \cdot f_2, \dots, x_i^c \cdot f_K\right) \equiv \left(a_1, a_2, \dots, a_K\right)$$

7. Visualize the reconstructed training face x_i

$$x_i \gg m + a_1 f_1 + a_2 f_2 + ... + a_K f_K$$

Eigenvalues (variance along eigenvectors)

Reconstruction and Errors

- Only selecting the top K eigenfaces

 reduces the dimensionality.
- Fewer eigenfaces result in more information loss, and hence less discrimination between faces.

Testing

- 1. Take query image t
- 2. Project into eigenface space and compute projection

$$t \to ((t - m) \cdot f_1, (t - m) \cdot f_2, ..., (t - m) \cdot f_K) \equiv (w_1, w_2, ..., w_K)$$

- 3. Compare projection w with all N training projections
 - Simple comparison metric: Euclidean
 - Simple decision: K-Nearest Neighbor
 (note: this "K" refers to the k-NN algorithm, is different from the previous K's referring to the # of principal components)

Shortcomings

- Requires carefully controlled data:
 - All faces centered in frame
 - Same size
 - Some sensitivity to angle
- Alternative:
 - "Learn" one set of PCA vectors for each angle
 - Use the one with lowest error
- Method is completely knowledge free
 - (sometimes this is good!)
 - Doesn't know that faces are wrapped around 3D objects (heads)

Summary for Eigenface

Pros

Non-iterative, globally optimal solution

Limitations

 PCA projection is optimal for reconstruction from a low dimensional basis, but may NOT be optimal for discrimination... Besides face recognitions, we can also do Facial expression recognition

Happiness subspace (method A)

Disgust subspace (method A)

Facial Expression Recognition Movies (method A)

What we will learn today

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71–86.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.

Which direction is the first principle component?

Fischer's Linear Discriminant Analysis

Goal: find the best separation between two classes

Slide inspired by N. Vasconcelos

Difference between PCA and LDA

PCA preserves maximum variance

- LDA preserves discrimination
 - Find projection that maximizes scatter between classes and minimizes scatter within classes

Illustration of the Projection

Using two classes as example:

LDA

We want a projection that maximizes:

$$J(w) = \max \frac{between \ class \ scatter}{within \ class \ scatter}$$

Fischer's Linear Discriminant Analysis

Slide inspired by N. Vasconcelos

Visualization

Between class scatter

PCA vs. LDA

- Eigenfaces exploit the max scatter of the training images in face space
- Fisherfaces attempt to maximise the between class scatter, while minimising the within class scatter.

Results: Eigenface vs. Fisherface

• Input: 160 images of 16 people

• Train: 159 images

• Test: 1 image

Variation in Facial Expression, Eyewear, and Lighting

With glasses

Without glasses 3 Lighting conditions

5 expressions

Eigenface vs. Fisherface

What we have learned today

- Introduction to face recognition
- The Eigenfaces Algorithm
- Linear Discriminant Analysis (LDA)

Turk and Pentland, Eigenfaces for Recognition, *Journal of Cognitive Neuroscience* **3** (1): 71–86.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection". *IEEE Transactions on pattern analysis and machine intelligence* **19** (7): 711. 1997.