Licence Informatique deuxième année Mathématiques discrètes – groupes 2 - 3 - 4 Contrôle continu- 15 octobre 2020 – Durée 1 heure

Aucun document autorisé. Calculatrices, ordinateurs , tablettes objets connectés et téléphones portables sont interdits.

Les exercices sont indépendants et peuvent être faits dans un ordre quelconque. Attention à bien soigner la rédaction des exercices, le barème tient compte de cette rédaction!

Exercice 1: arbres binaires.

- 1. Soit A un arbre binaire ayant n noeuds et de hauteur h. Montrer par induction que $h \le n 1$.
- 2. Un arbre binaire est dit localement complet si il est non vide et si chaque nœud a 0 ou 2 descendants.
 - (a) Ecrire le schéma d induction des arbres localement complets.
 - (b) Dresser la liste des arbres binaires localement complets de hauteur 2.

Exercice 2: Ensembles

Si X et Y sont des ensembles avec $X \subset Y$.

On notera \mathcal{C}^X_Y le complémentaire de X dans Y .

Soient E un ensemble et A et B des sous-ensembles de E tous non vides.

- 1. Définir C_E^A et $C_{E \times E}^{A \times B}$
- 2. On considère $F=\mathcal{C}_{E\times E}^{A\times B}$ et $\mathbf{G}=\mathcal{C}_{E}^{A}\times\mathcal{C}_{E}^{B}$ Montrer que $G\subset F$.
- 3. L'inclusion inverse est-elle vérifiée? (On justifiera la réponse donnée).

Exercice 3: Injection, surjection, bijection

Soit f une application d'un ensemble A dans un ensemble B.

- 1. Quand dit-on que f est une application injective? surjective? bijective?
- 2. On définit l'application f par :

Que peut-on dire de f? Est-elle injective? Est-elle surjective? Est-elle bijective?

3. On considère la fonction g de \mathbb{R}^2 vers \mathbb{R}^2 définie par :

$$q(x,y) = (x-y,x+y)$$

Montrer que g est bijective de \mathbb{R}^2 dans \mathbb{R}^2 . Déterminer son application réciproque g^{-1}

Exercice 4 : relations

On définit sur $\mathbb Z$ la relation $\mathcal R$ par $a\mathcal Rb$ si et seulement si 4 divise $a^2-b^2.$

- 1. Quelles sont les propriétés que doit vérifier $\mathcal R$ pour être une relation d'équivalence ? (on définira chacune d'entre elles).
- 2. Montrez que $\mathcal R$ est une relation d'équivalence.