<110> Gao, Zeren

SEQUENCE LISTING

	Hart, Charles E. Piddington, Christopher S. Sheppard, Paul O. Shoemaker, Kimberly E. Gilbertson, Debra G. West, James W.
<120>	GROWTH FACTOR HOMOLOG ZVEGF3
<130>	98-60C1
<160>	50
<170>	FastSEQ for Windows Version 3.0
<210> <211> <212> <213>	1760
<220> <221> <222>	CDS (154)(1191)
agtgcagcct 1	1 aactaccctg cgattctctg ctgccagagc aggctcggcg cttccacccc 60 tcccctggcg gtggtgaaag agactcggga gtcgctgctt ccaaagtgcc 120 gagctctcac cccagtcagc caa atg agc ctc ttc ggg ctt ctc 174 Met Ser Leu Phe Gly Leu Leu 1 5
	tct gcc ctg gcc ggc cag aga cag ggg act cag gcg gaa Ser Ala Leu Ala Gly Gln Arg Gln Gly Thr Gln Ala Glu 15 20
	agt agt aaa ttc cag ttt tcc agc aac aag gaa cag aac 270 Ser Ser Lys Phe Gln Phe Ser Ser Asn Lys Glu Gln Asn 30 35

	gat Asp												318
	cac His											_	366
	tgg Trp 75		-	-	-		-		_				414
	gat Asp								-	_	_		462
_	gat Asp	_	-	_		-		_	•				510
	tgg Trp												558
	caa Gln			_		-		-	_				606
	999 Gly 155							_	-				654
	gtg Val								-	_		-	702
	aat Asn				-		-		_	_	_		750

att cga tat ctt gaa cca gag aga tgg cag ttg gac tta gaa Ile Arg Tyr Leu Glu Pro Glu Arg Trp Gln Leu Asp Leu Glu 200 205 210										
tat agg cca act tgg caa ctt ctt ggc aag gct ttt gtt ttt Tyr Arg Pro Thr Trp Gln Leu Leu Gly Lys Ala Phe Val Phe 220 225										
aaa tcc aga gtg gtg gat ctg aac ctt cta aca gag gag gta Lys Ser Arg Val Val Asp Leu Asn Leu Leu Thr Glu Glu Val 235 240 245	-									
tac agc tgc aca cct cgt aac ttc tca gtg tcc ata agg gaa Tyr Ser Cys Thr Pro Arg Asn Phe Ser Val Ser Ile Arg Glu 250 255 260	~									
aag aga acc gat acc att ttc tgg cca ggt tgt ctc ctg gtt Lys Arg Thr Asp Thr Ile Phe Trp Pro Gly Cys Leu Leu Val 265 270 275	_									
tgt ggt ggg aac tgt gcc tgt tgt ctc cac aat tgc aat gaa Cys Gly Gly Asn Cys Ala Cys Cys Leu His Asn Cys Asn Glu 280 285 290	=									
tgt gtc cca agc aaa gtt act aaa aaa tac cac gag gtc ctt Cys Val Pro Ser Lys Val Thr Lys Lys Tyr His Glu Val Leu 300 305	- •									
aga cca aag acc ggt gtc agg gga ttg cac aaa tca ctc acc Arg Pro Lys Thr Gly Val Arg Gly Leu His Lys Ser Leu Thr 315 320 325										
gcc ctg gag cac cat gag gag tgt gac tgt gtg tgc aga ggg Ala Leu Glu His His Glu Glu Cys Asp Cys Val Cys Arg Gly 330 335 340										
gga gga tag ccgcatcacc accagcagct cttgcccaga gctgtgcagt Gly Gly * 345										
gcagtggctg attctattag agaacgtatg cgttatctcc atccttaatc tcagttgttt gcttcaagga cctttcatct tcaggattta cagtgcattc tgaaagagga gacatcaaac agaattagga gttgtgcaac agctcttttg agaggaggcc taaaggacag gagaaaaggt										

ttaccatgta cgt ggtaatgtca gta aactctaaag ctc	attccac tagct caggaaa aaaac catgtcc tgggc tcacata tgtaa	gggtt ctgtattt tgtgc aagtgagc ctaaa atcgtata accag aacattct	cag atcaccagct cca gttctttcga cac ctgattccgt aaa atctggattt cat gtactacaaa gtg ctgatagga	tacggcttag tgccttgctt ttttttttt							
<210> 2 <211> 345 <212> PRT <213> Homo sapiens											
<400> 2 Met Ser Leu Ph 1	e Gly Leu Leu 5	Leu Leu Thr S 10	Ser Ala Leu Ala	Gly Gln 15							
			Ser Ser Lys Phe 30								
	s Glu Gln Asn		Asp Pro Gln His 45	Glu Arg							
	l Ser Thr Asn 55	· =	lis Ser Pro Arg 60	Phe Pro							
His Thr Tyr Pr 65	o Arg Asn Thr 70		rp Arg Leu Val 75	Ala Val 80							
Glu Glu Asn Va	l Trp Ile Gln 85	Leu Thr Phe A 90	Asp Glu Arg Phe	Gly Leu 95							
Glu Asp Pro Gl 10		Cys Lys Tyr A 105	Asp Phe Val Glu 110	Val Glu							
Glu Pro Ser As 115	o Gly Thr Ile	Leu Gly Arg T 120	rp Cys Gly Ser 125	Gly Thr							
Val Pro Gly Ly 130		Lys Gly Asn G	Gln Ile Arg Ile 140	Arg Phe							
Val Ser Asp Gl 145	ı Tyr Phe Pro 150		Gly Phe Cys Ile .55	His Tyr 160							
Asn Ile Val Me	t Pro Gln Phe 165	Thr Glu Ala V 170	/al Ser Pro Ser	Val Leu 175							
Pro Pro Ser Ala 18		Asp Leu Leu A 185	Asn Asn Ala Ile 190	Thr Ala							
Phe Ser Thr Le	u Glu Asp Leu		eu Glu Pro Glu. 205	Arg Trp							
	u Glu Asp Leu 215	Tyr Arg Pro T	hr Trp Gln Leu 220	Leu Gly							
		Lys Ser Arg V	/al Val Asp Leu 235	Asn Leu 240							

```
Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe Ser
                245
                                     250
Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe Trp Pro
            260
                                 265
                                                     270
Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala Cys Cys Leu
                            280
                                                 285
His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys Val Thr Lys Lys
                        295
                                             300
Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr Gly Val Arg Gly Leu
305
                    310
                                         315
                                                              320
His Lys Ser Leu Thr Asp Val Ala Leu Glu His His Glu Glu Cys Asp
                325
                                     330
Cys Val Cys Arg Gly Ser Thr Gly Gly
            340
                                 345
      <210> 3
      <211> 116
      <212> PRT
      <213> Artificial Sequence
      <220>
      <223> peptide motif
      <221> VARIANT
      <222> (2)...(19)
      <223> Xaa is any amino acid
      <221> VARIANT
      <222> (20)...(34)
      <223> Xaa is any amino acid or not present
      <221> VARIANT
      <222> (36)...(36)
      <223> Xaa is any amino acid
      <221> VARIANT
      <222> (38)...(38)
      <223> Xaa is any amino acid
      <221> VARIANT
      <222> (40)...(45)
      <223> Xaa is any amino acid
```

```
<221> VARIANT
   <222> (46)...(72)
   <223> Xaa is any amino acid or not present
   <221> VARIANT
   <222> (74)...(93)
   <223> Xaa is any amino acid
   <221> VARIANT
   <222> (94)...(113)
   <223> Xaa is any amino acid not present
   <221> VARIANT
   <222> (115)...(115)
   <223> Xaa is any amino acid
   <400> 3
Xaa Xaa Cys Xaa Gly Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
     35
                  40
                              45
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
90
          85
105
                                 110
Xaa Cys Xaa Cys
     115
   <210> 4
   <211> 24
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> peptide motif
   <221> VARIANT
```

```
<222> (2)...(2)
     <223> Xaa is Lys or Arg
     <221> VARIANT
     <222> (4)...(4)
     <223> Xaa is Asp, Asn or Glu
     <221> VARIANT
     <222> (5)...(5)
     <223> Xaa is Trp, Tyr or Phe
     <221> VARIANT
     <222> (6)...(16)
     <223> Xaa is any amino acid
     <221> VARIANT
     <222> (17)...(20)
     <223> Xaa is any amino acid or not present
     <221> VARIANT
     <222> (22)...(22)
     <223> Xaa is Lys or Arg
     <221> VARIANT
     <222> (23)...(23)
     <223> Xaa is Trp, Tyr or Phe
     <400> 4
10
                                                    15
Xaa Xaa Xaa Gly Xaa Xaa Cys
           20
     <210> 5
     <211> 6
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> peptide tag
     <400> 5
Glu Tyr Met Pro Met Glu
```

```
1
                 5
      <210> 6
      <211> 1035
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> degenerate sequence derived from SEQ ID NOS: 1 and
      <221> misc feature
      <222> (1)...(1035)
      <223> n = A,T,C or G
      <400> 6
                                                                        60
atgwsnytnt tyggnytnyt nytnytnacn wsngcnytng cnggncarmg ncarggnacn
cargongarw snaayytnws nwsnaartty carttywsnw snaayaarga roaraayggn
                                                                       120
gtncargayc cncarcayga rmgnathath acngtnwsna cnaayggnws nathcaywsn
                                                                       180
configuration concayachta yeenfiquaay acngthytig thiggingnyt ngthqcngth
                                                                       240
gargaraayg tntggathca rytnacntty gaygarmgnt tyggnytnga rgayccngar
                                                                       300
gaygayatht gyaartayga yttygtngar gtngargarc cnwsngaygg nacnathytn
                                                                       360
ggnmgntggt gyggnwsngg nacngtnccn ggnaarcara thwsnaargg naaycarath
                                                                       420
                                                                       480
mgnathmgnt tygtnwsnga ygartaytty ccnwsngarc cnggnttytg yathcaytay
aayathgtna tgccncartt yacngargen gtnwsneenw sngtnytnee neenwsngen
                                                                       540
ytnccnytng ayytnytnaa yaaygcnath acngcnttyw snacnytnga rgayytnath
                                                                       600
mgntayytng arccngarmg ntggcarytn gayytngarg ayytntaymg nccnacntgg
                                                                       660
carytnytng gnaargcntt ygtnttyggn mgnaarwsnm gngtngtnga yytnaayytn
                                                                       720
ytnacngarg argtnmgnyt ntaywsntgy acnccnmgna ayttywsngt nwsnathmgn
                                                                       780
gargarytna armgnacnga yacnathtty tggccnggnt gyytnytngt naarmgntgy
                                                                       840
ggnggnaayt gygcntgytg yytncayaay tgyaaygart gycartgygt nccnwsnaar
                                                                       900
gtnacnaara artaycayga rgtnytncar ytnmgnccna aracnggngt nmgnggnytn
                                                                       960
cayaarwsny tnacngaygt ngcnytngar caycaygarg artgygaytg ygtntgymgn
                                                                      1020
ggnwsnacng gnggn
                                                                      1035
     <210> 7
     <211> 17
      <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Oligonucleotide primer
```

```
<221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 7
mgntgyggng gnaaytg
                                                                          17
      <210> 8
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 8
mgntgydsng gnwrytg
                                                                          17
      <210> 9
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 9
carywnccns hrcanck
                                                                          17
      <210> 10
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
```

```
<223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 10
ttytggccng gntgyyt
                                                                          17
      <210> 11
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 11
ntnddnccnn sntgybt
                                                                          17
      <210> 12
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 12
avrcansnng gnhhnan
                                                                          17
      <210> 13
      <211> 17
      <212> DNA
      <213> Artificial Sequence
```

```
<220>
      <223> Oligonucleotide primer
      <400> 13
caygargart gygaytg
                                                                         17
      <210> 14
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 14
caynnnnvnt gyvvntg
                                                                         17
      <210> 15
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A.T.C or G
      <400> 15
canbbrcanb nnnnrtg
                                                                         17
      <210> 16
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
```

```
<223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 16
tgyacnccnm gnaaytt
                                                                         17
      <210> 17
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 17
tgyhnnmcnm knrmndh
                                                                         17
      <210> 18
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 18
dhnkynmkng knndrca
                                                                         17
      <210> 19
      <211> 17
      <212> DNA
      <213> Artificial Sequence
```

	<220> <223> Oligonucleotide primer	
tgyaa	<400> 19 urtayg aytwygt	17
	<210> 20 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
acrwa	<400> 20 urtcrt ayttrca	17
	<210> 21 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
	<221> misc_feature <222> (1)(17) <223> n = A,T,C or G	
ywngg	<400> 21 Inmrnt dbtgygg	17
	<210> 22 <211> 17 <212> DNA <213> Artificial Sequence	
	<220> <223> Oligonucleotide primer	
	<pre><221> misc_feature <222> (1)(17)</pre>	

```
<223> n = A,T,C or G
      <400> 22
ccrcavhany knccnwr
                                                                         17
      <210> 23
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
     <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 23
tdbccnmand vntaycc
                                                                         17
      <210> 24
      <211> 17
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <221> misc_feature
      <222> (1)...(17)
      <223> n = A,T,C or G
      <400> 24
ggrtanbhnt knggvha
                                                                         17
      <210> 25
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
```

<400> 25 agcaggtcca gtggcaaagc	20
<210> 26 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 26 cgtttgatga aagatttggg c	21
<210> 27 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 27 ggaggtctat ataagcagag c	21
<210> 28 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	
<400> 28 taacagagga ggtaagat	18
<210> 29 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer	

<400> 29 tcggttctct tta		18
<210> 30 <211> 25 <212> DN <213> Ar	5	
<220> <223> 01	igonucleotide primer	
<400> 30 tctggacgtc ctc		25
<210> 31 <211> 25 <212> DN <213> Ar	5	
<220> <223> 01	ligonucleotide primer	
<400> 31 ggtatggagc cag		25
<210> 32 <211> 27 <212> DN <213> Ar	7	٠
<220> <223> 01	ligonucleotide primer	
<400> 32 gagtggcaac ttc	2 ccagggcc aggagag	27
<210> 33 <211> 27 <212> DN <213> Ar	7	
<220>		

<223> Oligonucleotide primer	
<400> 33 cttttgctag cctcaaccct gactatc	27
<210> 34 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer ZC20,180	
<400> 34 cgcgcggttt aaacgccacc atgagcctct tcggg	35
<210> 35 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide primer ZC20,181	
<400> 35 cgtatcggcg cgccctatcc tcctgtgctc cc	32
<210> 36 <211> 1882 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (226)(1338)	
<pre><400> 36 ccgtcaccat ttatcagctc agcaccacaa ggaagtgcgg cacccacacg cgctcggaaa gttcagcatg caggaagttt ggggagagct cggcgattag cacagcgacc cgggccagcg cagggcgagc gcaggcggcg agagcgcagg gcggcgcggc gtcggtcccg ggagcagaac ccggctttt cttggagcga cgctgtctct agtcgctgat cccaa atg cac cgg ctc</pre>	60 120 180 237

			atc Ile					285
			agc Ser					333
			agc Ser					381
			aaa Lys					429
			agg Arg 75					477
			ata Ile					525
			gat Asp					573
			agt Ser					621
			agg Arg					669
			gac Asp 155					717

							-	-	-	tca Ser		765
										tat Tyr 195		813
										gac Asp		861
				-	_	_		_		ttc Phe		909
										acc Thr		957
				_		_			_	gac Asp	_	1005
										agg Arg 275		1053
										gtc Val		1101
										ggc Gly		1149
										acc Thr		1197
					_					aag Lys		1245

agg ggt aga gct aag acc atg gct cta gtt gac atc cag ttg gat cac Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile Gln Leu Asp His 345 350 355	1293								
cat gaa cga tgc gat tgt atc tgc agc tca aga cca cct cga taa His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro Pro Arg * 360 365 370	1338								
gagaatgtgc acatccttac attaagcctg aaagaacctt tagtttaagg agggtgagat aagagaccct tttcctacca gcaaccaaac ttactactag cctgcaatgc aatgaacaca agtggttgct gagtctcagc cttgctttgt taatgccatg gcaagtagaa aggtatatca tcaacttcta tacctaagaa tataggattg catttaataa tagtgtttga ggttatatat gcacaaacac acacagaaat atattcatgt ctatgtgtat atagatcaaa tgttttttt ttttggtata tataaccagg tacaccagag gttacatatg tttgagttag actcttaaaa tcctttgcca aaataaggga tggtcaaata tatgaaacat gtctttagaa aatttaggag ataaaatttat ttttaaattt tgaaacacga aacaattttg aatcttgctc tcttaaagaa agcatcttgt atattaaaaa tcaaaagatg aggctttctt acatatacat cttagttgat tatt									
<210> 37 <211> 370 <212> PRT <213> Homo sapiens									
<pre><400> 37 Met His Arg Leu Ile Phe Val Tyr Thr Leu Ile Cys Ala Asn Phe Cys</pre>									
1 5 10 15 Ser Cys Arg Asp Thr Ser Ala Thr Pro Gln Ser Ala Ser Ile Lys Ala 20 25 30									
Leu Arg Asn Ala Asn Leu Arg Arg Asp Glu Ser Asn His Leu Thr Asp 35 40 45									
Leu Tyr Arg Arg Asp Glu Thr Ile Gln Val Lys Gly Asn Gly Tyr Val 50 55 60									
Gln Ser Pro Arg Phe Pro Asn Ser Tyr Pro Arg Asn Leu Leu Thr 65 70 75 80									
Trp Arg Leu His Ser Gln Glu Asn Thr Arg Ile Gln Leu Val Phe Asp 85 90 95									
Asn Gln Phe Gly Leu Glu Glu Ala Glu Asn Asp Ile Cys Arg Tyr Asp 100 105 110									
Phe Val Glu Val Glu Asp Ile Ser Glu Thr Ser Thr Ile Ile Arg Gly 115 120 125									

```
Arg Trp Cys Gly His Lys Glu Val Pro Pro Arg Ile Lys Ser Arg Thr
                        135
                                             140
Asn Gln Ile Lys Ile Thr Phe Lys Ser Asp Asp Tyr Phe Val Ala Lys
                    150
                                         155
Pro Gly Phe Lys Ile Tyr Tyr Ser Leu Leu Glu Asp Phe Gln Pro Ala
                165
                                    170
Ala Ala Ser Glu Thr Asn Trp Glu Ser Val Thr Ser Ser Ile Ser Gly
                                185
Val Ser Tyr Asn Ser Pro Ser Val Thr Asp Pro Thr Leu Ile Ala Asp
        195
                            200
Ala Leu Asp Lys Lys Ile Ala Glu Phe Asp Thr Val Glu Asp Leu Leu
                        215
                                             220
Lys Tyr Phe Asn Pro Glu Ser Trp Gln Glu Asp Leu Glu Asn Met Tyr
                    230
                                         235
Leu Asp Thr Pro Arg Tyr Arg Gly Arg Ser Tyr His Asp Arg Lys Ser
                                    250
                245
                                                         255
Lys Val Asp Leu Asp Arg Leu Asn Asp Asp Ala Lys Arg Tyr Ser Cys
                                265
Thr Pro Arg Asn Tyr Ser Val Asn Ile Arg Glu Glu Leu Lys Leu Ala
                            280
                                                 285
Asn Val Val Phe Phe Pro Arg Cys Leu Leu Val Gln Arg Cys Gly Gly
                        295
                                             300
Asn Cys Gly Cys Gly Thr Val Asn Trp Arg Ser Cys Thr Cys Asn Ser
                    310
                                         315
Gly Lys Thr Val Lys Lys Tyr His Glu Val Leu Gln Phe Glu Pro Gly
                325
                                    330
His Ile Lys Arg Arg Gly Arg Ala Lys Thr Met Ala Leu Val Asp Ile
                                345
Gln Leu Asp His His Glu Arg Cys Asp Cys Ile Cys Ser Ser Arg Pro
        355
                            360
                                                 365
Pro Arg
    370
      <210> 38
      <211> 20
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> oligonucleotide primer ZC21,222
      <400> 38
tgagccctcg ccccagtcag
```

```
<210> 39
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> oligonucleotide primer ZC21,224
      <400> 39
acatacagga aagccttgcc caaaa
                                                                         25
      <210> 40
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> oligonucleotide primer ZC21,223
      <400> 40
aaactaccct gcgattctct gctgc
                                                                         25
      <210> 41
      <211> 21
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> oligonucleotide primer ZC21,334
      <400> 41
ggtaaatgga gcttggctga g
                                                                         21
      <210> 42
      <211> 3571
      <212> DNA
      <213> Mus musculus
      <220>
      <221> CDS
      <222> (1049)...(2086)
```

<400> 42 60 gaattcccgg gtcgacccac gcgtccgggc gcccagggga aaggaagctg ggggccgcct ggcggcattc ctcgccgcag tgtgggctcc gtctgccgcg gggcccgcag tgcccctgt 120 ctgcgccagc acctgttggc ccgccagctg gccgcccgcg cccccqcgc cccccqcqcc 180 240 ggggacaaga gcgatcctcc aggccagcca ggccttccct tagccgcccg tgcttagccg 300 ccacctetee teagecetge gteetgeeet geettaggge aggeateega gegetegega 360 ctccgagccg cccaagctct cccggcttcc cgcagcactt cgccggtacc cgagggaact 420 teggtggcca ecgaetgcag caaggaggag geteegeggt ggateeggge cagteecgag 480 tegteeege ggeetetetg eeegeeggg accegegegg caetegeagg geaeggteee 540 ctcccccag gtgggggtgg ggcgccgcct gccgccccga tcagcagctt tgtcattgat 600 cccaaggtgc tcgcctcgct gccgacctgg cttccagtct ggcttggcgg gaccccgagt 660 cetegeetgt gteetgteee ceaaactgae aggtgeteee tgegagtege cacgaeteat 720 cgccgctccc ccgcgtcccc accccttctt tcctccctcg cctaccccca cccccgcac 780 ttcggcacag ctcaggattt gtttaaacct tgggaaactg gttcaggtcc aggttttgct 840 ttgatccttt tcaaaaactg gagacacaga agagggctct aggaaaaact tttggatggg 900 attatgtgga aactaccctg cgattctctg ctgccagagc cggccaggcg cttccaccgc 960 agegeagect tteecegget gggetgagee ttggagtegt egetteecea gtgeeegeeg 1020 cgagtgagcc ctcgccccag tcagccaa atg ctc ctc ctc ggc ctc ctc ctg 1072 Met Leu Leu Gly Leu Leu Leu 1 ctg aca tot goo ctg goo ggo caa aga acg ggg act cgg got gag too 1120 Leu Thr Ser Ala Leu Ala Gly Gln Arg Thr Gly Thr Arg Ala Glu Ser 10. 15 aac ctg agc agc aag ttg cag ctc tcc agc gac aag gaa cag aac gga 1168 Asn Leu Ser Ser Lys Leu Gln Leu Ser Ser Asp Lys Glu Gln Asn Gly 25 30 35 40 gtg caa gat ccc cgg cat gag aga gtt gtc act ata tct ggt aat ggg 1216 Val Gln Asp Pro Arg His Glu Arg Val Val Thr Ile Ser Gly Asn Gly 45 50 55 ago ato cao ago cog aag ttt cot cat aca tao coa aga aat atg gtg 1264 Ser Ile His Ser Pro Lys Phe Pro His Thr Tyr Pro Arg Asn Met Val 60 65 70 ctg gtg tgg aga tta gtt gca gta gat gaa aat gtg cgg atc cag ctg 1312 Leu Val Trp Arg Leu Val Ala Val Asp Glu Asn Val Arg Ile Gln Leu 75 85 80

	gag aga tt Glu Arg Ph			_	_	_
	ttt gta ga Phe Val Gl 11	u Val Glu (Glu Pro S			
	tgt ggt to Cys Gly Se 125					
	atc agg at Ile Arg Il 140	e Arg Phe	-			
	a ttc tgc at Phe Cys Il			-	_	
	g agt cct to Ser Pro Se			_	_	•
	aat gct gt Asn Ala Va 19	l Thr Ala i	Phe Ser T			
	ı gag cca ga ı Glu Pro As 205				_	
-	tgg cag ct Trp Gln Le 220	u Leu Gly I		-		
	gtg aat ct Val Asn Le	_				
	ccc cgg aa Pro Arg As					_

agg aca gat acc ata ttc tgg cca ggt tgt ctc ctg gtc aag cgc tgt Arg Thr Asp Thr Ile Phe Trp Pro Gly Cys Leu Leu Val Lys Arg Cys 265 270 275 280	1888
gga gga aat tgt gcc tgt tgt ctc cat aat tgc aat gaa tgt cag tgt Gly Gly Asn Cys Ala Cys Cys Leu His Asn Cys Asn Glu Cys Gln Cys 285 290 295	1936
gtc cca cgt aaa gtt aca aaa aag tac cat gag gtc ctt cag ttg aga Val Pro Arg Lys Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg 300 305 310	1984
cca aaa act gga gtc aag gga ttg cat aag tca ctc act gat gtg gct Pro Lys Thr Gly Val Lys Gly Leu His Lys Ser Leu Thr Asp Val Ala 315 320 325	2032
ctg gaa cac cac gag gaa tgt gac tgt gtg tgt aga gga aac gca gga Leu Glu His His Glu Glu Cys Asp Cys Val Cys Arg Gly Asn Ala Gly 330 335 340	2080
ggg taa ctgcagcctt cgtagcagca cacgtgagca ctggcattct gtgtaccccc Gly * 345	2136
atggtaaaga tcttactcgt ctccaaccaa attctcagtt gtttgcttca atagccttcc cctgcaggac ttcaagtgtc ttctaaaaga ccagaggcac caagaggagt caatcacaaa gcactgcctt ctagaggaag cccagacaat ggtcttctga ccacagaaac aaatgaaatg	2256 2316 2376 2436 2496 2556 2616 2676 2736 2796 2856
atttaatatt ctttttatg acaacctaga gcaattattt ttagcttgat aattttttt tctaaacaaa attgttatag ccagaagaac aaagatgatt gatataaaaa tcttgttgct ctgacaaaaa catatgtatt tcttccttgt atggtgctag agcttagcgt catctgcatt tgaaaagatg gaatggggaa gtttttagaa ttggtaggtc gcagggacag tttgataaca actgtactat catcaattcc caattctgtt cttagagcta cgaacagaac agagcttgag taaatatgga gccattgcta acctacccct ttctatggga aataggagta tagctcagag	2916 2976 3036 3096 3156

225

aagcacgtcc ccagaaacct	cgaccatttc	taggcacagt	gttctgggct	atgctgcgct	3276
gtatggacat atcctattta	tttcaatact	agggttttat	tacctttaaa	ctctgctcca	3336
tacacttgta ttaatacatg	gatatttta	tgtacagaag	tatatcattt	aaggagttca	3396
cttattatac tctttggcaa	ttgcaaagaa	aatcaacata	atacattgct	tgtaaatgct	3456
taatctgtgc ccaagttttg	tggtgactat	ttgaattaaa	atgtattgaa	tcatcaaata	3516
aaataatctg gctattttgg	ggaaaaaaaa	aaaaaaaaa	aaaaagggcg	gccgc	3571

<210> 43

<211> 345

<212> PRT

<213> Mus musculus

<400> 43 Met Leu Leu Gly Leu Leu Leu Thr Ser Ala Leu Ala Gly Gln Arg Thr Gly Thr Arg Ala Glu Ser Asn Leu Ser Ser Lys Leu Gln Leu 25 Ser Ser Asp Lys Glu Gln Asn Gly Val Gln Asp Pro Arg His Glu Arg Val Val Thr Ile Ser Gly Asn Gly Ser Ile His Ser Pro Lys Phe Pro His Thr Tyr Pro Arg Asn Met Val Leu Val Trp Arg Leu Val Ala Val 70 75 Asp Glu Asn Val Arg Ile Gln Leu Thr Phe Asp Glu Arg Phe Gly Leu 90 Glu Asp Pro Glu Asp Asp Ile Cys Lys Tyr Asp Phe Val Glu Val Glu 105 Glu Pro Ser Asp Gly Ser Val Leu Gly Arg Trp Cys Gly Ser Gly Thr 115 120 125 Val Pro Gly Lys Gln Thr Ser Lys Gly Asn His Ile Arg Ile Arg Phe 135 140 Val Ser Asp Glu Tyr Phe Pro Ser Glu Pro Gly Phe Cys Ile His Tyr 150 155 Ser Ile Ile Met Pro Gln Val Thr Glu Thr Thr Ser Pro Ser Val Leu 165 170 Pro Pro Ser Ser Leu Ser Leu Asp Leu Leu Asn Asn Ala Val Thr Ala 180 185 Phe Ser Thr Leu Glu Glu Leu Ile Arg Tyr Leu Glu Pro Asp Arg Trp 200 205 Gln Val Asp Leu Asp Ser Leu Tyr Lys Pro Thr Trp Gln Leu Leu Gly 215 210 220 Lys Ala Phe Leu Tyr Gly Lys Lys Ser Lys Val Val Asn Leu Asn Leu

235

240

230

Leu	Lys	Glu	Glu	Va1 245	Lys	Leu	Tyr	Ser	Cys 250	Thr	Pro	Arg	Asn	Phe 255	Ser	
Val	Ser	Ile	Arg 260	Glu	Glu	Leu	Lys	Arg 265	Thr	Asp	Thr	Пе	Phe 270		Pro	
Gly	Cys	Leu 275	Leu	Val	Lys	Arg	Cys 280	Gly	Gly	Asn	Cys	A1 a 285	Cys	Cys	Leu	
His	Asn 290		Asn	Glu	Cys	G1n 295		Val	Pro	Arg	Lys 300		Thr	Lys	Lys	
Tyr 305		Glu	Val	Leu	Gln 310		Arg	Pro	Lys	Thr 315	Gly	Val	Lys	Gly	Leu 320	
	Lys	Ser	Leu	Thr 325		Val	Ala	Leu	G1u 330		His	Glu	Glu	Cys 335		
Cys	Val	Cys	Arg 340		Asn	Ala	Gly	Gly 345								
	<'a	220>	65 DNA Art			Seque tide		mer 2	ZC20	.572						
tcac ggcc	cacç	100> gcg a		cggta	ac cá	gctgo	gttco	c gc(gtgga	atcc	ggco	caga	gac a	aggg	gactca	60 65
	<2 <2	210> 211> 212> 213>	65 Dna	ific [.]	ial (Seque	ence									
	_	220> 223>	olig	gonuc	cleot	tide	prin	mer Z	ZC20	.573						
tctg tgca	gtato	100> cag g		aaaat	tc ti	tatct	cato	c cgo	ccaaa	aca	ctat	cct	cct (gtgci	tccctc	60 65
	<'a	210> 211> 212> 213>	40 DNA	ific [.]	ial S	Seque	ence									

<220> <223> oligonucleotide primer ZC19,372	
<400> 46 tgtcgatgaa gccctgaaag acgcgcagac taattcgagc	40
<210> 47 <211> 60 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide primer ZC19,351	
<400> 47 acgcgcagac taattcgagc tcccaccatc accatcacca cgcgaattcg gtaccgctgg	60
<210> 48 <211> 60 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide primer ZC19,352	
<400> 48 actcactata gggcgaattg cccgggggat ccacgcggaa ccagcggtac cgaattcgcg	60
<210> 49 <211> 42 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide primer ZC19,371	
<400> 49 acggccagtg aattgtaata cgactcacta tagggcgaat tg	42
<210> 50 <211> 1095 <212> DNA	

<213> Artificial Sequence

<220>

<223> Fused DNA

<400> 50

ctgaaagacg	cgcagactaa	ttcgagctcc	${\tt caccatcacc}$	atcaccacgc	gaattcggta	60
ccgctggttc	cgcgtggatc	cggccagaga	caggggactc	aggcggaatc	caacctgagt	120
agtaaattcc	agttttccag	caacaaggaa	cagaacggag	tacaagatcc	tcagcatgag	180
agaattatta	ctgtgtctac	taatggaagt	attcacagcc	caaggtttcc	tcatacttat	240
ccaagaaata	cggtcttggt	atggagatta	gtagcagtag	aggaaaatgt	atggatacaa	300
cttacgtttg	atgaaagatt	tgggcttgaa	gacccagaag	atgacatatg	caagtatgat	360
tttgtagaag	ttgaggaacc	cagtgatgga	actatattag	ggcgctggtg	tggttctggt	420
actgtaccag	gaaaacagat	ttctaaagga	aatcaaatta	ggataagatt	tgtatctgat	480
		agggttctgc		-	-	540
acagaagctg	tgagtccttc	agtgctaccc	ccttcagctt	tgccactgga	cctgcttaat	600
		taccttggaa		-		660
tggcagttgg	acttagaaga	tctatatagg	ccaacttggc	aacttcttgg	caaggctttt	720
		agtggtggat				780
		cttctcagtg				840
		tctcctggtt				900
ctccacaatt	gcaatgaatg	tcaatgtgtc	ccaagcaaag	ttactaaaaa	ataccacgag	960
		gaccggtgtc				1020
gccctggagc	accatgagga	gtgtgactgt	gtgtgcagag	ggagcacagg	aggatagtgt	1080
tttggcggat	gagat					1095