

# Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2014/2015



| KOD UCZNIA | Etap:                | wojewódzki                          |
|------------|----------------------|-------------------------------------|
|            | Data:<br>Czas pracy: | 4 marca 2015 r.<br><b>120 minut</b> |

### Informacje dla ucznia

- 1. Na stronie tytułowej arkusza, w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 8 stron i 14 zadań.
- 3. Czytaj uważnie wszystkie teksty i zadania.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. W zadaniach od 2. do 10. postaw "\*" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- **6.** Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem **⊗** i zaznacz inną odpowiedź znakiem "**\***".
- **7.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane (chyba, że wskażesz w nim fragmenty, które należy ocenić).
- 9. Nie wolno Ci korzystać z kalkulatora.

Liczba punktów możliwych do uzyskania: 60 Liczba punktów pozwalająca uzyskać tytuł laureata: 54

#### WYPEŁNIA KOMISJA KONKURSOWA

| Nr zadania                                                   | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Razem |
|--------------------------------------------------------------|----|---|---|---|---|---|---|---|---|----|----|----|----|----|-------|
| Liczba punktów<br>możliwych                                  | 16 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3  | 4  | 4  | 4  | 5  | 60    |
| do zdobycia                                                  |    |   |   |   |   |   |   |   |   |    |    |    |    |    |       |
| Liczba punktów<br>uzyskanych<br>przez uczestnika<br>konkursu |    |   |   |   |   |   |   |   |   |    |    |    |    |    |       |

Podpisy przewodniczącego i członków komisji:

| 1. | Przewodniczący |
|----|----------------|
| 2. | Członek -      |
| 3. | Członek        |
| 4. | Członek        |

#### **Zadanie 1. (0-16)**

Rozwiąż krzyżówkę. Hasło w zacieniowanych okienkach zawiera tytuł najsłynniejszego w historii podręcznika geometrii oraz imię jego autora. Hasło nie jest oceniane, ale zweryfikuje Twoje odpowiedzi.



- 1. Powstaje w wyniku obrotu trójkata prostokatnego wokół jednej z jego przyprostokatnych.
- 2. Trapez, którego ramiona są równoległe.
- 3. Liczba  $3\frac{1}{2}$  w zestawie danych: 4, 4, 3, 7, 1, 2, 2, 2, 6, 6 uporządkowanych niemalejąco.
- 4. Element dziedziny funkcji.
- 5. Proste, których punkt wspólny jest środkiem okręgu opisanego na trójkącie.
- 6. Figura geometryczna, która jest częścią wspólną kwadratu i prostej przechodzącej przez przeciwlegle wierzchołki tego kwadratu.
- 7. Odcinek łączący wierzchołek stożka z punktem na obwodzie jego podstawy.
- 8. Przedstawienie funkcji liczbowej w układzie współrzędnych.
- 9. Liczba na osiach wyznaczająca początek układu współrzędnych.
- 10. Na przykład środek okręgu, koniec odcinka, wierzchołek wielokąta.
- 11. Wszystkie liczby naturalne wraz z zerem i liczby do nich przeciwne.
- 12. Wynik działania podany z określoną dokładnością.
- 13. Odcinek łączący dwa punkty okręgu.
- 14. Jedna z metod rozwiazywania układu równań.
- 15. Trójkąt równoramienny może ich mieć jedną lub trzy.
- 16. Działanie odwrotne do potęgowania.

| W zadaniach od 2. do 10. oceń, czy czy fałszywe. Zaznacz właściwą odpowied              | -                            | są prawdziwe,  |
|-----------------------------------------------------------------------------------------|------------------------------|----------------|
| <b>Zadanie 2.</b> (0-3)                                                                 |                              |                |
| Przez 11 jest podzielna liczba                                                          |                              |                |
| I. $10^4 - 1^4$                                                                         | □ PRAWDA                     | □ FAŁSZ        |
| II. $10^{99} + 1^{99}$                                                                  | □ PRAWDA                     | □ FAŁSZ        |
| III. $10^{200} + 1^{200}$                                                               | □ PRAWDA                     | □ FAŁSZ        |
| <b>Zadanie 3.</b> (0-3)                                                                 |                              |                |
| Liczby a i b są ułamkami właściwymi.                                                    |                              |                |
| I. Suma $a + b$ może być liczbą naturalną.                                              |                              |                |
| II. Iloczyn $a \cdot b$ może być liczbą naturalną.                                      |                              |                |
| III. Iloraz $\frac{a}{b}$ może być liczbą naturalną.                                    | □ PRAWDA                     | □ FAŁSZ        |
| Zadanie 4. (0-3)                                                                        |                              |                |
| Stopiono 120 stalowych kulek o średnicy                                                 | 2 cm i z otrzyma             | nego materiału |
| wykonano stożek o wysokości 3 dm.  I. Objętość stożka jest równa 160π cm <sup>3</sup> . |                              |                |
| 1. Objętość stożka jest towna 100% cm .                                                 | □ PRAWDA                     | □FAŁSZ         |
| II. Średnica podstawy stożka jest równa 8                                               |                              | _ 111252       |
| 1 3 3                                                                                   | □ PRAWDA                     | □ FAŁSZ        |
| III. Tworząca stożka ma długość równą 31                                                | cm.                          |                |
|                                                                                         | □ PRAWDA                     | □ FAŁSZ        |
| <b>Zadanie 5.</b> (0-3)                                                                 |                              |                |
| Dane są: walec o promieniu podstawo średnicy podstawy 4r i wysokości 3r ora             | •                            |                |
| I. Spośród wymienionych brył największa                                                 |                              | =              |
| II Objets 11 500/ - bjets 1:                                                            | □ PRAWDA                     | □ FAŁSZ        |
| II. Objętość walca stanowi 50% objętości                                                | $\square$ PRAWDA             | □ FAŁSZ        |
| III. Suma objętości walca i stożka jest równ                                            | na objętości kuli.<br>PRAWDA | □ FAŁSZ        |
|                                                                                         |                              |                |
| <b>Zadanie 6. (0-3)</b>                                                                 |                              |                |
| Działanie n! (czyt. n silnia) definiujemy na                                            | astępująco:                  |                |
| $0! = 1, n! = 1 \cdot 2 \cdot \cdot n dla n \ge 1$                                      |                              |                |
| I. $12! - 10! = 2!$                                                                     | □ PRAWDA                     | □ FAŁSZ        |
| II. 20! jest podzielne przez 15!                                                        | □ PRAWDA                     | □ FAŁSZ        |
| III. 18! Jest podzielne przez 18 <sup>3</sup>                                           | □ PRAWDA                     | □ FAŁSZ        |

### **Zadanie 7.** (0-3)

Długość trasy kolejowej z miejscowości A do B wynosi 760 km. Pociąg jechał ze stacji oddalonej od A o 100 km do miejscowości B. Na całej trasie średnia prędkość jazdy pociągu była równa 60 km/h.

| całej trasie srednia prędkość jazdy poci             | to v               |                          |
|------------------------------------------------------|--------------------|--------------------------|
| I. Zależność odległości pociągu od mie               | jscowości A od cz  | zasu jazdy może          |
| przedstawiać funkcja: $s = 100 + 60t$ .              |                    |                          |
|                                                      | $\square$ PRAWDA   | □ FAŁSZ                  |
| II. Długość drogi przebytej przez pociąg             | g może wynosić 86  | 60 km.                   |
|                                                      | $\square$ PRAWDA   | □ FAŁSZ                  |
| III. Czas przejazdu pociągu może wynos               | ić 11 h.           |                          |
|                                                      | □ PRAWDA           | □ FAŁSZ                  |
| <b>Zadanie 8.</b> (0-3)                              |                    |                          |
| W klasie 3a każdy uczeń trenuje g                    | rę w piłkę noż     | ną lub w tenisa          |
| stołowego, przy czym w piłkę nożną g                 | ra 15 osób, w te   | nisa 20 osób, a 7        |
| uczniów uprawia oba te sporty. Z tej                 | klasy wybrano      | w sposób losowy          |
| jednego ucznia. Prawdopodobieństwo, z                | że wylosowany ud   | czeń uprawia             |
| _                                                    |                    |                          |
| I. piłkę nożną, wynosi $\frac{2}{7}$ .               | □ PRAWDA           | □ FAŁSZ                  |
| 4                                                    | □ PRAWDA           |                          |
| III. tylko jeden z tych sportów wynosi $\frac{3}{4}$ | . 🗆 PRAWDA         | □ FAŁSZ                  |
| Zadanie 9. (0-3)                                     |                    |                          |
| I. Środek okręgu opisanego na trójkącie              | e równoramiennyr   | n należy do              |
| prostej zawierającej jedną z jego wys                | =                  | -                        |
|                                                      | □ PRAWDA           | □ FAŁSZ                  |
| II. Każdy bok trójkąta ostrokątnego jest             | krótszy od średnie | ey okręgu                |
| opisanego na tym trójkącie.                          | Ž                  | ,                        |
| F and Or any of J                                    | □ PRAWDA           | □ FAŁSZ                  |
| III. Nie istnieje trójkąt, którego bok jest i        |                    |                          |
| nim.                                                 |                    | . (8 ob 10 m11 e 8 o 110 |
|                                                      | □ PRAWDA           | □ FAŁSZ                  |
|                                                      |                    |                          |
| Zadanie 10. (0-3)                                    |                    |                          |
| Cztery spośród pięciu punktów wspólny                | vch par prostvch   | v = -x + 2               |
| x = 2, y = -x - 2, y = x + 2 są wierzcho             |                    | -                        |
|                                                      |                    | a ABCD.                  |
| I. Powstały czworokąt jest trapezem o p              |                    |                          |
|                                                      | □ PRAWDA           | □ FAŁSZ                  |
| II. Obwód czworokąta wynosi $8\sqrt{2} + 4$ .        |                    |                          |
|                                                      | $\square$ PRAWDA   | □ FAŁSZ                  |
| III. Kat ostry w trapezie ma miarę $60^{\circ}$ .    |                    |                          |
|                                                      | □ PRAWDA           | □ FAŁSZ                  |

**BRUDNOPIS** 

## **Zadanie 11.** (0-4)

Rowerzysta wyjechał na szczyt, a następnie tą samą drogą zjechał na miejsce startu. Jaka była średnia prędkość jazdy rowerzysty pod górę, jeżeli średnia prędkość zjazdu wynosiła  $70\frac{km}{h}$ , a średnia prędkość jazdy na całej trasie  $20\frac{km}{h}$ .

| Zadanie 12. (0-4)<br>Wypisz wszystkie<br>wynosi 3. | liczby | naturalne | pięciocyfrowe, | których | suma | cyfr | BRUDNOPIS |
|----------------------------------------------------|--------|-----------|----------------|---------|------|------|-----------|
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |
|                                                    |        |           |                |         |      |      |           |

| Zadanie 13. (0-4)<br>W stopie miedzi i cynku stosunek masy miedzi do masy cynku jest równy<br>13 : 8. Oblicz masę stopu, jeżeli miedzi jest o 2,5 kg więcej niż cynku. |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                        |  |  |  |  |  |  |  |

**BRUDNOPIS** 

### **Zadanie 14. (0-5)**

**BRUDNOPIS** 

Dwa sąsiednie boki kwadratu są styczne do okręgu o danym promieniu *r*. Wierzchołek wspólny dla dwóch pozostałych boków kwadratu należy do tego okręgu. Uzasadnij, że pole koła ograniczonego okręgiem jest większe od pola kwadratu. Wykonaj rysunek, oznaczając na nim długości wszystkich odcinków potrzebnych do obliczeń.