Vigas "T"

Este tipo de estructuras se presentan comúnmente en concreto armado sobre todo en los sistemas de vigas y losas. En algunos casos, ambos miembros son vaciados simultáneamente según recomendaciones del ACI. En otros se vacía primero las vigas y luego las losas, tomando previsiones para que se comporten como una unidad. En ambos casos, la losa colabora con la viga para resistir las cargas aplicadas y es conveniente tomar en cuenta esta ayuda, analizándola como una sección.

También es usual encontrar este tipo de sección en elementos prefabricados, cuando se quiere proveer a la sección de un área adicional de concreto que dé mayor resistencia en la zona comprimida. Esto se consigue a través del ala de la sección T.

Secciones T y L simplemente armadas sometidas a Flexión Pura.

Las secciones T y L son vigas con un ala a compresión de ancho b, la cual colabora con el nervio de la viga a resistir los momentos exteriores solicitantes. La sección transversal de la viga que resulta tiene forma de T o L en vez de ser rectangular.

Figura 2.12.- Secciones T y L

(a) Distribución real de los esfuerzos de compresión

(b) Propuesta del ACI

Pre-dimensionamiento viga "T" continua

Tabla 6.3.2.1 — Límites dimensionales del ancho sobresaliente del ala para vigas T

Ubicación del ala	Ancho sobresaliente efectivo del ala, má allá de la cara del alma	
		8 <i>h</i>
A cada lado del alma	El menor de:	$s_w/2$
		$\ell_n/8$
A un solo lado	El menor de:	6 <i>h</i>
		$s_w/2$
		$\ell_n/12$

$$bf = bw + 2 * \min(8h, \frac{sw}{2}, \frac{ln}{8})$$
 Viga T dos alas
 $bf = bw + \min(6h, \frac{sw}{2}, \frac{ln}{12})$ Viga T un ala (L)

(a) Viga interior y losa

Pre-dimensionamiento viga "T" aislada

6.3.2.2 En vigas T no preesforzadas aisladas, en las cuales se utilice la forma T para proporcionar por medio del ala un área adicional de compresión, el ala debe tener un espesor mayor o igual a $0.5b_w$ y un ancho efectivo del ala menor o igual a $4b_w$.

(a) Viga interior y losa

Teoría a flexión

$$\phi Mn = \phi (As - Asf)fy\left(d - \frac{a}{2}\right) + \phi Asf * fy(d - \frac{hf}{2})$$

Asw = (As - Asf)

Trabaja como rectangular bw y H, ya que el patín esta a tensión

Trabaja como viga T

Trabaja como rectangular bw y H, ya que el patín esta a tensión

Una sección T sometida a flexión puede trabajar de tres maneras:

La primera es bajo un momento flector negativo, la compresión se presenta en la zona inferior y su distribución será rectangular, es decir, se comporta como una viga rectangular y se diseñara como una sección rectangular. Para este caso la sección se analizará como una sección

rectangular de ancho b_w.

(a) Sección rectangular de ancho bw

 $ightharpoonup La segunda se presenta si el momento flector es positivo y <math>a \le h_f$. Esta corresponde también a una distribución rectangular de la compresión, por lo que se comporta como una viga rectangular y se diseñara como una sección rectangular. Para este caso la sección se analizará como una sección rectangular de ancho b.

(b) Sección rectangular de ancho b

 \gt Si la sección está sujeta a un momento positivo y $a > h_f$, entonces se observará el tercer tipo de comportamiento. La zona en compresión de la viga tendrá la forma de T y las expresiones que se deducirán en seguida deben ser utilizadas. En este tercer caso no es necesario que se verifique la condición que c > hf, basta con que a > hf, del mismo modo que no importa la forma de la sección por debajo del eje neutro con tal que la sección comprimida tenga la forma de T.

Análisis de una sección T con falla dúctil.

Cuantías:

 $\rho = \frac{A_{\rm S}}{b_{w} \cdot d} \xrightarrow{\longrightarrow} \begin{array}{l} \textit{Área de Acero a tracción} \\ \textit{Área útil de la sección de Concreto} \end{array}$

p : Cuantía Geométrica de la sección a tracción.

$$\rho_f = \frac{A_{sf}}{b_w \ . \ d} \overset{\bigwedge}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-\!\!\!\!-} \overset{\bigwedge}{-\!\!\!\!-} \overset{\bigwedge}{-\!\!$$

P' : Cuantía Geométrica del acero ficticio.

Cuantía Mínima:

$$m_{nin} = \frac{14}{F_{v}}$$

Análisis de una sección T con falla dúctil.

Cuantías Máximas:

$$\begin{array}{c}
\rho_{m\acute{a}x} \\
\hline
\rho_{m\acute{a}x}
\end{array}
\begin{array}{c}
0.75 \cdot \rho_b + \rho_f \\
0.7142 \cdot \rho_b + \rho_f \\
0.625 \cdot \rho_b + \rho_f
\end{array}
\begin{array}{c}
\longrightarrow \quad Zona \ No \ Sismica \\
\hline
\rho max = 0.5 * (\rho b + \rho f) \rightarrow Zona \ sismica
\end{array}$$

$$\overline{
ho_{m\acute{a}x}}$$
 : Cuantía Geométrica Máxima para secciones T.

ρ_h : Cuantía Geométrica Balanceada de una sección simplemente armada .

$$\rho_b = \frac{0.85 \cdot \beta_1 \cdot F'_c}{F_v} \cdot \left(\frac{6300}{6300 + F_v}\right)$$

 $\overline{\rho_b}$: Cuantía Geométrica Balanceada para secciones T.

$$\rho_{min} \le \rho_{real} \le \rho_{max}$$

Ejemplo:

Diseñe la siguiente viga "T" (no aislada), simplemente apoyada, si se aplica el siguiente momento al centro, considere que solo soporta carga gravitacional.

Mu+= 90720.00 kg-m

fy =	4210.00 kg/cm2
f'c=	240.00 kg/cm2

Paso 1 calculo del peralte efectivo

Paso 1	
Rec=	4.00 cm
Φ Long No.	6
Φ est No.	3
d=	54.09500 cm

Paso 2 Determinación del acero suponiendo que es viga rectangular

Paso 2		
ф=	0.9	
fy =	4210.00 kg/cm2	
f'c=	240.00 kg/cm2	
B1=	0.85	22.2.2.4.3
Mu+=	90720.00 kg-m	
B=bf=	120.00 cm 1	
d=	54.10 cm ı	
As+=	47.910 cm2	

Paso 3 determinación del valor de "a":

8.24 cm

$$a = \frac{As * Fy}{0.85 * f'c * bf} = \frac{47.91 * 4210}{0.85 * 240 * 120} = 8.24 cm$$

Paso 4 Verificación del valor de "a"

- 1. Si el valor de "a", es menor al espesor "h" del patín, trabaja como viga rectangular.
- Si el valor de "a", es mayor que el espesor del patín h, trabaja como viga T

Paso 5 Acero requerido en los patines

Paso 5	
Asf=Asp=	33.435 cm2

$$A_{sf} = \frac{0.85f'_c (b - b_w) h}{f_y}$$

Paso 6 Momento ultimo soportado por los patines

Paso 6	
φMnf=Mup=	63779.06 kg-m

$$\phi M_{nf} = \phi \left[A_{sf} f_y \left(d - \frac{h_f}{2} \right) \right]$$

Paso 7 Momento a soportar por el alma

Paso 7	
Mua=	26940.94 kg-m

$$Mua = Mu - Mup$$

Paso 8 Acero requerido en el alma

Paso 8	
Asw=Asa=	14.228 cm2
As=Asa+Asp=	47.662 cm2

$$Asw = \frac{Mua}{\phi * fy * (d - \frac{a}{2})}$$

Paso 9 propuesta de armado

Asf=Asp= 33.435 cm2 9#

Asw=Asa= 14.228 cm2 4#7

As=9#7+4#7

Paso 10 Revisión acero mínimo y máximo

$$\rho = \frac{50.44}{28 * 54.095} = 0.0333$$

$$\rho min = \frac{14}{4210} = 0.003325$$

$$\rho max = 0.75 * \left(\frac{0.85 * 0.85 * 240}{4210} * \left(\frac{6300}{6300 + 4210}\right) + \frac{34.92}{28 * 54.095}\right) = 0.0358$$

$$\rho min = 0.003325 < \rho = 0.0333 < \rho max = 0.0358$$