CSE 4711: Artificial Intelligence

Md. Bakhtiar Hasan

Assistant Professor
Department of Computer Science and Engineering
Islamic University of Technology

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Video: AIBO - Initial, AIBO - Training, AIBO - Finished, SNAKE, Toddler, Crawler

- Still assume a Markov Decision Process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s, a, s')
 - A reward function R(s, a, s')
- Still looking for a policy $\pi(s)$

- Still assume a Markov Decision Process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s, a, s')
 - A reward function R(s, a, s')
- Still looking for a policy $\pi(s)$
- New twist: **don't know** T **or** R
 - i.e. we don't know which states are good or what the actions do
 - Must try out actions and states to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct.

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s,a,s')$
 - Discover each $\hat{R}(s,a,s')$ when we experience (s,a,s')

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s,a,s')$
 - Discover each $\hat{R}(s,a,s')$ when we experience (s,a,s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Example: Model-Based Learning

Goal: Compute expected age of students

Goal: Compute expected age of students

Goal: Compute expected age of students

Known P(A)
$$E[A] = \sum_a P(a) \cdot a \qquad = 0.35 \times 20 + \dots$$

Goal: Compute expected age of students

Known P(A) $E[A] = \sum_a P(a) \cdot a \qquad = 0.35 \times 20 + \dots$

Goal: Compute expected age of students

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

Goal: Compute expected age of students

Known P(A)
$$E[A] = \sum_a P(a) \cdot a \qquad = 0.35 \times 20 + \dots$$

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Unknown P(A): "Model Based"

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

Goal: Compute expected age of students

Known P(A) $E[A] = \sum P(a) \cdot a = 0.35 \times 20 + \dots$

Without P(A), instead collect samples [a₁, a₂, ... a_N]

Unknown P(A): "Model Based"

$$\hat{P}(a) = \frac{\operatorname{num}(a)}{N}$$

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Goal: Compute expected age of students

Goal: Compute expected age of students

Goal: Compute expected age of students

Unknown P(A): "Model Free"
$$E[A] \approx \frac{1}{N} \sum_i a_i$$

Goal: Compute expected age of students

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions $T(s,a,s^\prime)$
 - You don't know the rewards $R(s,a,s^\prime)$
 - Goal: learn the state values

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world

Direct Evaluation

- lacksquare Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples

Input Policy π

Assume: $\gamma = 1$

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1

C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1

D, exit,

Episode 2

B, east, C, -1 C, east, D, -1

D, exit, $x, \pm 10$

Episode 4

E, north, C, -1

C, east, A, -1 A, exit, x, -10

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

	-10 A	
+8 B	C ⁺⁴	+10 D
	-2 E	

Pros and Cons of Direct Evaluation

Pros

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

Pros and Cons of Direct Evaluation

Pros

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

Cons

- It wastes information about state connections
- Each state must be learned separately \rightarrow takes a long time to learn

Pros and Cons of Direct Evaluation

Pros

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

Cons

- It wastes information about state connections
- Each state must be learned separately → takes a long time to learn

If B and E both go to C under this policy, how can their values be different?

lacksquare Simplified Bellman updates calculate V for a fixed policy:

- lacksquare Simplified Bellman updates calculate V for a fixed policy:
 - \bullet Each round, replace V with a one-step look-ahead layer over V

$$\begin{array}{l} V_0^{\pi}(s) = 0 \\ V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right] \end{array}$$

This approach fully exploited the connections between the states

- lacksquare Simplified Bellman updates calculate V for a fixed policy:
 - \bullet Each round, replace V with a one-step look-ahead layer over V

$$\begin{array}{l} V_0^{\pi}(s) = 0 \\ V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right] \end{array}$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- lacktriangle Simplified Bellman updates calculate V for a fixed policy:
 - \bullet Each round, replace V with a one-step look-ahead layer over V

$$\begin{array}{l} V_0^\pi(s) = 0 \\ V_{k+1}^\pi(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^\pi(s') \right] \\ \bullet \text{ This approach fully exploited the connections between the} \end{array}$$

- Unfortunately, we need T and R to do it!
- $lue{}$ Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

lacktriangle We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right]$$

• We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_k^{\pi}(s') \right]$$

 \blacksquare Idea: Take samples of outcomes s' (by doing the action!) and average

- We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^{\pi}(s') \right]$
- \blacksquare Idea: Take samples of outcomes s' (by doing the action!) and average

■ We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^{\pi}(s') \right]$

lacktriangle Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s_1') + \gamma V_k^{\pi}(s_1')$$

- We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^{\pi}(s') \right]$
- \blacksquare Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_1 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

- We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^{\pi}(s') \right]$
- lacktriangle Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_1 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

- We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^{\pi}(s') \right]$
- \blacksquare Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{k}^{\pi}(s'_{1})$$

$$sample_{1} = R(s, \pi(s), s'_{2}) + \gamma V_{k}^{\pi}(s'_{2})$$

$$...$$

$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma V_{k}^{\pi}(s'_{n})$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

- We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^{\pi}(s') \right]$
- \blacksquare Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_1 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_i sample_i$$

Almost! But we can't rewind time to get sample after sample from state s.

- We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum\limits_{s'} T(s,\pi(s),s') \left[R(s,\pi(s),s') + \gamma V_k^{\pi}(s') \right]$
- lacktriangle Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_1 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s,a,s^{\prime},r)
 - Likely outcomes s' will contribute updates more often

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average Sample of V(s):

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):

$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):

$$V^{\pi}(s) \leftarrow (1 - \alpha) V^{\pi}(s) + \underline{(\alpha)} sample$$

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s,a,s^\prime,r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):

$$sample = R(s, \pi(s), s') + V^{\pi}(s')$$

Update to V(s):

$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:

$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

■ The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

■ The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

■ Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

■ The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

■ Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

■ Forgets about the past (distant past values were wrong anyway)

■ The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

■ Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

States

Assume: $\gamma = 1$, $\alpha = 1/2$

States

Assume: $\gamma = 1$, $\alpha = 1/2$

States

Observed Transitions

Assume: $\gamma = 1$, $\alpha = 1/2$

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

B, east, C, -2

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

B, east, C, -2

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

B, east, C, -2

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

$$\frac{0-2}{2} = -$$

0

0

0

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \operatorname{argmax} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \operatorname{argmax} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s, a, s')
 - You don't know the rewards $R(s,a,s^\prime)$
 - You choose the actions now
 - Goal: learn the optimal policy/values
- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states

$$V_k + 1(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states

$$V_k + 1(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a)=0$, which we know is right
 - Given Q_k , calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Learn Q(s,a) values as you go

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Learn Q(s,a) values as you go

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- lacktriangle Learn Q(s,a) values as you go
 - Receive a sample (s, a, s', r)

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s, a, s', r)
 - Consider your old estimate: Q(s, a)

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s, a, s', r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate: $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s, a, s', r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate: $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$
 - Incorporate the new estimate into a running average: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)[sample]$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy even if you're acting suboptimally!
- This is called off-policy learning

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ...but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Suggested Reading

- Russell & Norvig: Chapter 21
- Sutton and Barto: 6.1, 6.2, 6.5