1. 키르히호프의 전압법칙 (Kirchhoff's Voltage Law, KVL)

1.1. 기본 원리

- 정의: 폐회로를 따라 이동할 때, 모든 전기요소(저항, 커패시터, 인덕터 등)를 거쳐 전압을 더한 값의 합은 항상 0입니다.
- 이는 에너지 보존 법칙에 근거하며, 회로의 한 루프를 따라서 이동하는 동안 전압의 증가와 감소가 균형을 이루어야 한다는 의미입니다.

1.2. 수식 표현

• 수학적으로 표현하면: $\sum_{i=1}^n V_i = 0$ 여기서 V_i 는 회로의 각 요소에서의 전압입니다. 각 전압은 부호를 가지고 있으며, 전압원(배터리)의 경우 양(+) 또는 음(-)의 방향에 따라 전압이 결정됩니다.

1.3. 예시와 적용 방법

• 간단한 직류 회로에서 저항 3개와 전압원이 있다고 가정하겠습니다. 예를 들어, 전압원이 10V이고 저항의 전압강하가 각각 $V_1 = 2V$, $V_2 = 3V$, $V_3 = 5V$ 라고 하면: $V_{\text{source}} - V_1 - V_2 - V_3 = 10V - 2V - 3V - 5V = 0$ 이 렇게 폐회로를 따라 모든 전압의 함이 0이 되는 것을 확인할 수 있습니다.

1.4. KVL 적용시 유의사항

- 전압의 부호 결정: 전류의 방향에 따라 저항 등의 전압강하를 부호로 표시해야 합니다. 즉, 전류의 진행 방향에 따라 저항을 지날 때 전압강하는 음(-)으로, 전압원을 지날 때는 양(+)으로 표시됩니다.
- **다수의 루프가 있는 경우**: 복잡한 회로에서는 여러 개의 폐회로를 따라 **KVL**을 적용하며, 각 폐회로의 전압합이 **0**임을 확인해야 합니다.

2. 키르히호프의 전류법칙 (Kirchhoff's Current Law, KCL)

2.1. 기본 원리

- 정의: 회로의 특정 노드에서 유입되는 전류의 총합은 그 노드에서 유출되는 전류의 총합과 같습니다.
- 이는 전하 보존 법칙에 기반하며, 전류가 노드에 모이거나 사라질 수 없음을 의미합니다.

2.2. 수식 표현

• 수학적으로 표현하면: $\sum_{i=1}^{n} I_i = 0$ 여기서 I_i 는 노드로 유입 또는 유출되는 각 전류입니다. 유입 전류는 양 (+), 유출 전류는 음(-) 부호로 나타냅니다.

2.3. 예시와 적용 방법

• 예를 들어, 노드에 세 개의 전류가 있다고 가정합시다. 전류 $I_1 = 5A$ 와 $I_2 = 3A$ 는 노드로 들어가고, I_3 가 노드에서 나간다고 하면: $I_1 + I_2 - I_3 = 0$. $5 + 3 - I_3 = 0$ 따라서 $I_3 = 8A$ 임을 알 수 있습니다.

2.4. KCL 적용시 유의사항

- 전류의 방향 결정: 전류의 방향이 처음에 잘못 설정되더라도, 해석 과정에서 음(-)의 부호로 나타나 수정됩니다. 따라서 KCL 적용 시 전류 방향을 임의로 설정해도 됩니다.
- 복잡한 회로: 회로에 여러 개의 노드가 있는 경우, 각 노드마다 KCL을 적용하여 시스템의 전체 전류 관계를 해석합니다.

3. 두 법칙의 차이와 통합적인 적용

- KVL과 KCL의 차이점:
- KVL은 폐회로에서 전압을 분석하는 것이며, 에너지 보존에 관한 원리를 다룹니다.
- KCL은 노드에서 전류를 분석하는 것이며, 전하 보존 원리에 근거합니다.

1. 회로 분석과 키르히호프의 전압법칙 (KVL) 적용주어진 회로 요소:

- 전압원 e = 10 V
- 저항 $R = 10 \Omega$
- 커패시턴스 C = 0.5 F
- 시간 t = 0에서 전하량 q(0) = 0 C

회로에 적용된 KVL

키르히호프의 전압법칙에 따르면, 회로를 따라 전압의 합은 0이어야 합니다. 따라서 다음 식이 성립합니다:

$$10 - V_C - V_R = 0$$

여기서:

- V_C 는 커패시터에 걸리는 전압
- V_R 은 저항에 걸리는 전압

2. 각 전압의 표현

- 커패시터에 걸리는 전압 V_C 는 전하량 q와 커패시턴스 C의 관계에 의해 $V_C = \frac{q}{C}$ 로 표현됩니다.
- 저항에 걸리는 전압 V_R 는 옴의 법칙에 의해 $V_R=iR$ 로 표현됩니다. 여기서 i는 저항을 지나는 전류이고, 이는 $i=\frac{dq}{dt}$ 입니다.

3. 방정식 정리

위의 관계식을 이용하여 KVL 식을 정리하면 다음과 같습니다:

$$10 - \frac{q}{C} - \frac{dq}{dt} \cdot R = 0$$

이 식에 C = 0.5 F, $R = 10 \Omega$ 를 대입하면:

$$10 - \frac{q}{0.5} - 10\frac{dq}{dt} = 0$$

$$10 - 2q - 10\frac{dq}{dt} = 0$$

이를 정리하면:

$$10\frac{dq}{dt} + 2q = 10$$

또는

$$5\frac{dq}{dt} + q = 5$$

4. 미분방정식 풀이

미분방정식은 다음과 같습니다:

$$\frac{dq}{dt} + \frac{1}{5}q = 1$$

적분인자를 사용하여 해를 구합니다:

적분인자 $\mu(t)$ 는:

$$\mu(t) = e^{\int \frac{1}{5} dt} = e^{\frac{t}{5}}$$

이 적분인자를 원래 식에 곱하면:

$$e^{\frac{t}{5}}\frac{dq}{dt} + \frac{1}{5}e^{\frac{t}{5}}q = e^{\frac{t}{5}}$$

이는

$$\frac{d}{dt}\left(e^{\frac{t}{5}}q\right) = e^{\frac{t}{5}}$$

와 같습니다. 양변을 적분하면:

$$e^{\frac{t}{5}}q = 5e^{\frac{t}{5}} + C$$

따라서

$$5q(t) = 5 + Ce^{-\frac{t}{5}}$$

초기 조건을 적용

•
$$q(0) = 0$$
 이므로, $0 = 5 + C \rightarrow C = -5$

따라서 $q(t) = 5(1 - e^{-\frac{t}{5}})$

5. 10초 후의 전하량 계산

t = 10일 때,

$$q(10) = 5(1 - e^{-2})$$

 $e^{-2} \approx 0.1353$ 이므로

$$q(10) \approx 5(1 - 0.1353) \approx 4.32 C$$

문제

- 초기 조건: 1000L의 물에 설탕 50g이 녹아있다.
- 들어오는 양: 1분당 10g의 설탕을 포함한 설탕물이 분당 10L씩 수조 안으로 들어온다.
- 나가는 양: 수조에서 혼합된 설탕물이 분당 10L씩 유출된다.

목표

• 임의의 시간 t에서 수조 안에 있는 전체 설탕의 양 S(t)를 구하라.

1. 미분방정식 세우기

- S(t): 시간 t에서 수조에 있는 설탕의 양 (g)
- 들어오는 설탕의 농도: **1L**당 **1g**이므로, 분당 들어오는 설탕의 양은 $10 \times 1 = 10 \, g$
- 나가는 설탕의 농도: 시간t에서 수조에 있는 설탕의 농도는 $\frac{S(t)}{1000} g/L$. 분당 나가는 설탕의 양은

$$10 \times \frac{S(t)}{1000} = \frac{S(t)}{100}g$$

따라서, 설탕의 변화율에 대한 미분방정식은 다음과 같습니다:

$$\frac{dS}{dt} = 10 - \frac{S(t)}{100}$$

2. 미분방정식 풀이

위의 방정식은 1계 선형 상미분방정식이며 다음과 같이 정리됩니다:

$$\frac{dS}{dt} + \frac{1}{100}S = 10$$

2.1. 적분인자 구하기

적분인자 $\mu(t)$ 는 다음과 같습니다:

$$\mu(t) = e^{\int \frac{1}{100} dt} = e^{\frac{t}{100}}$$

양변에 적분인자를 곱하면:

$$e^{\frac{t}{100}} \frac{dS}{dt} + \frac{1}{100} e^{\frac{t}{100}} S = 10 e^{\frac{t}{100}}$$

이는 다음과 같이 표현할 수 있습니다:

$$\frac{d}{dt}\left(e^{\overline{100}}S\right) = 10e^{\overline{100}}$$

양변을 적분하면:

$$e^{\frac{t}{100}}S = 1000e^{\frac{t}{100}} + C$$

따라서,

$$S(t) = 1000 + Ce^{-\frac{t}{100}}$$

2.2. 초기 조건 적용

초기 조건S(0) = 50을 적용하면:

$$50 = 1000 + C \rightarrow C = -950$$

따라서, 전체적인 해는

$$S(t) = 1000 - 950e^{-\frac{t}{100}}$$

일반해 구하기

시간 t에서 수조 안에 있는 전체 설탕의 양은

$$S(t) = 1000 - 950e^{-\frac{t}{100}}(g)$$

3. 완전 상미분방정식으로 변환하기

비제차 항(여기서는 상수인 10)이 있는 경우, 방정식은 완전 상미분방정식이 아닙니다. 완전 상미분방정식으로 만들기 위해서는 다음 두 가지 방법 중 하나를 적용할 수 있습니다.

방법 1: 새로운 변수를 도입하여 제차 미분방정식으로 변환

일반적으로, 완전 상미분방정식은 비제차 항이 없는 형태여야 합니다. 그러므로 새로운 변수를 사용하여 비제차 항을 제거합니다.

3.1. 새로운 변수의 도입

우리는 새로운 변수 u(t)를 다음과 같이 정의할 수 있습니다:

$$S(t) = u(t) + 1000$$

여기서**1000**은 원래 방정식의 상수해 $S_p = 1000$ 입니다.

미분해보면
$$\frac{dS}{dt} = \frac{du}{dt}$$

원래 방정식에 이 값을 대입하면

$$\frac{du}{dt} + \frac{1}{100}(u + 1000) = 10$$

즉,

$$\frac{du}{dt} + \frac{1}{100}u = 0$$

이 식은 이제 완전 상미분방정식의 형태입니다.

4. 완전 상미분방정식의 검증

변환된 식

$$\frac{du}{dt} + \frac{1}{100}u = 0$$

이 형태의 미분방정식은 완전 상미분방정식의 조건을 만족합니다. 따라서, 이 변환을 통해 주어진 문제를 완전상미분방정식의 형태로 만들 수 있습니다.

```
% 매개변수 설정
t = linspace(0, 600, 1000); % 시간 범위: 0에서 600분 (10시간까지), 점 개수는 1000개로 설정
S = 1000 - 950 * exp(-t / 100); % 일반해 식

% 그래프 그리기
figure;
plot(t, S, 'b-', 'LineWidth', 2);
xlabel('Time (minutes)');
ylabel('Amount of Sugar (g)');
title('Amount of Sugar in the Tank Over Time');
grid on;
xlim([0, 600]); % x축 범위 설정
ylim([0, 1050]); % y축 범위 설정
```


시간 $t \to \infty$ 일 때, 설탕의 양은 1000g에 가까워지며 거의 변화가 없어집니다. 이 상태를 평형 상태라고 합니다.

```
% 시간 범위 및 상수 범위 설정
t = linspace(0, 600, 100); % 시간 t의 범위: 0에서 600까지 (단위: 초)
C = linspace(0, 50, 100);
                         % 상수 C의 범위: 0에서 50까지
% 그리드 생성
[T, C grid] = meshgrid(t, C); % T와 C의 그리드 생성
% 일반해 계산
U = C_{grid} \cdot * exp(-T / 100); % u(t) = C * exp(-t/100)
% Surface Plot 그리기
figure;
surf(T, C_grid, U);
xlabel('Time (t)');
ylabel('Constant (C)');
zlabel('u(t)');
title('Surface Plot of the Solution u(t) = Ce^{-t/100}');
colormap jet;
shading interp;
grid on;
```


이 그래프는 시스템이 시간이 지남에 따라 어떻게 안정화되는지를 보여줍니다. 초기값이 다르더라도, 미분방정식이 지수적으로 감쇠하는 시스템을 나타낸다는 것을 의미합니다. 즉, 시간이 지남에 따라 u(t)는 지속적으로 감소하고, 결국 0에 수렴하는 것을 보여줍니다.