

IMPRIMER 🛱

1

Mesures et erreurs

A) Je connais les sources d'erreurs

 \equiv

- erreur **systématique** : erreur identique qui se répète sur une série de mesures
- erreur aléatoire : variation du résultat lorsqu'un opérateur répète plusieurs fois une expérience

B) Je sais définir l'incertitude et la précision sur une mesure

- incertitude de mesure :
 - notée Δx ou U(x)
 - permet de juger de la qualité d'une mesure
- incertitude de type A :
 - concerne les mesures que tu peux effectuer plusieurs fois dans les mêmes conditions
 - fait appel au calcul statistique
- incertitude de type B :
 - concerne une mesure unique
 - prend en compte l'instrument de mesure et l'utilisateur
- précision :
 - compare la **qualité** de différentes mesures
 - consiste à comparer l'incertitude mesurée par rapport à la valeur mesurée

2

Évaluation des incertitudes sur une mesure

A) Je sais calculer les incertitudes sur une série de mesures (type A)

- **moyenne** \bar{x} : valeur qu'aurait chacune des mesures si elles étaient toutes identiques.
 - Plus il y a de mesures, plus la moyenne est **précise**.
 - Pour une série de n mesures de valeurs x_i , $ar{x} = rac{\sum_{i=0}^n x_i}{n}$
- écart-type : évalue la répartition des mesures autour de la moyenne
 - Plus l'écart type est grand plus les valeurs des mesures sont éloignées de la moyenne.
 - ullet écart type expérimental (généralement utilisé) : $s_{ ext{exp}} = \sqrt{\frac{\sum_{i=1}^n (x_i ar{x})^2}{n-1}}$

- ullet écart type usuel : $\sigma = \sqrt{rac{\sum_{i=1}^n (x_i ar{x})^2}{n}}$
- incertitude-type s:
 - permet d'estimer la qualité de l'écart type expérimental
 - $s = \frac{s_{\text{exp}}}{\sqrt{n}}$
- intervalle de confiance Δx : pour un taux de confiance choisi (souvent 95 %), il donne un encadrement autour de la moyenne où la valeur mesurée a une certaine chance de se trouver.
 - $\bullet \quad [\bar{x} \Delta x; \bar{x} + \Delta x]$
 - $\Delta x = ks$
 - k le facteur d'élargissement.
 - Pour un taux de 95 %, on prendra k=2.

B) Je sais calculer les incertitudes pour une mesure unique (type B)

- **appareil avec graduations** (éprouvettes graduées, etc.) : incertitude-type $s=\frac{1\,{
 m graduation}}{\sqrt{12}}$
- lacksquare appareil avec indication du fabricant : incertitude-type $s=rac{ ext{\'ecart fabriquant}}{\sqrt{3}}$

3

Expression et acceptabilité du résultat

A) Je sais utiliser le bon nombre de chiffres significatifs

- Le résultat d'un calcul doit avoir le **même nombre** de chiffres significatifs que la donnée en ayant le moins.
- Ce sont les chiffres autres que les « 0 situés à gauche du nombre ».

B) Je sais présenter un résultat

- présentation classique :
 - valeur mesurée ou moyenne
 - incertitude ou intervalle de confiance
 - symbole de l'unité
 - éventuellement le niveau de confiance

C) Je sais comparer avec une valeur de référence

- lacksquare formule de calcul : $r=rac{x_{ ext{mesuré}}-x_{ ext{référence}}}{x_{ ext{référence}}}$
- Si $r>1\,\%$ il faut chercher comment **améliorer** la qualité de la mesure effectuée.

D) Je sais comparer une valeur avec l'incertitude de la mesure

- Pour une valeur x, il faut calculer le **rapport** $\frac{\Delta x}{x}$
- S'il est inférieur à 1 % c'est une valeur de **bonne qualité**.