COL 351: Analysis and Design of Algorithms

Lecture 22

Pattern Matching

Given: String T = $(t_{n-1}, ..., t_1, t_0)$ and a pattern X = $(x_{k-1}, ..., x_1, x_0)$, both binary.

Find: If there exists a sub-string of T that is identical to X.

Yottom $X = (x_{k-1}, ..., x_1, x_0)$ $N_X = 2^{k-1}x_{k-1} + ... + 2^1x_1 + 2^0x_0$ (decimal form of X)

$$\chi = 11001$$
 $N_{x} = 16 + 8 + 1 = 25$

$$T = (t_{n-1}, \dots, t_1, t_0)$$

$$N_T(j) = 2^{k-1}t_{j+k-1} + \dots + 2^{1}t_{j+1} + 2^{0}t_j$$
(decimal form of $(t_{j+k-1}, \dots, t_{j+1}, t_j)$)

Algorithm

```
Flag= False

For j = 0 to (n - k):

If N_X = N_T(j) then

Flag = True

Return Flag
```

Time =
$$O(nk)$$

Algorithm

```
p = \text{random prime in range } [2, n^4].
```

Hash Function $H: z \to z \mod p$

```
Flag= False

For j = 0 to (n - k):

If H(N_X) = H(N_T(j)) then

Flag = True

Return Flag
```

Show:

- Answer returned is correct with probability (1 1/n).
- Implementation in O(n) time.

Computing random prime in range $[2, n^4]$

Prime Number Theorem: Number of primes in the range [2,L] is $\Theta\left(\frac{L}{\log L}\right)$.

• Probability (a random number in
$$> \frac{c}{\log L}$$

AKS Primality Test (By Agarwal, Kayal, Sanena)

• Checks if a number
$$n$$
 is prime or not in

 $O(\log^c(n))$ time, for some fined $c \ge 1$.

Observations

Claim 1: For any integer $z \le 2^k$, the number of distinct prime factors of z is at most k.

$$Z = \begin{array}{cccc} i_1 & i_2 & i_{\alpha} \\ & \downarrow_{2} & \ddots & \downarrow_{\alpha} \end{array} \leq \begin{array}{cccc} Z & & & \\ & \downarrow_{2} & & & \\ & & \downarrow_{2} & & \\ & \downarrow_{2} & & \\ & & \downarrow_{2} & & \\ & & \downarrow_{2} & & \\ & \downarrow_{2}$$

Claim 2: For any j, the number of distinct prime factors of $(N_T(j) - N_X)$ is at most n.

$$N_{\tau}(j) \leq 2^{n}$$
 $N_{x} \leq 2^{R} \leq 2^{n}$
 $N_{x} \leq 2^{R} \leq 2^{n}$
 $N_{\tau}(j) - N_{x} \leq 2$
 $N_{\tau}(j) - N_{x} \leq 2$
 $N_{\tau}(j) - N_{x} \leq 2$

Claim 3: For any
$$j \in [0, n-k]$$
 with $N_T(j) \neq N_X$.

$$\operatorname{Prob}\left(\frac{p}{p} \operatorname{divides}\left(N_{T}(j) - N_{X}\right)\right) \leqslant \frac{1}{n^{2}}.$$

Claim 4: If
$$X$$
 is not a substring of T . Then

Prob
$$\exists j$$
, such that $H(N_T(j)) = H(N_X) \leq \frac{1}{n}$.

By union bound,

$$\operatorname{Prob}\left(\mathsf{Error}\,\mathsf{in}\,\mathsf{entire}\,\mathsf{algo}\right) \leq \sum_{j=0}^{n-k}\operatorname{Prob}\left(\mathsf{E}\,\mathsf{rror}\,\mathsf{at}\,\mathsf{bcation}\,j\right) \leq \frac{n-k+1}{n^2} \leq \frac{1}{n}$$

$$\leq \frac{n}{0(n^4/\log n^4)} \leq \frac{1}{n^2}$$

How to recursively compute $N_T(j)$?

$$N_T(j) = \text{Decimal form of } \underbrace{(t_{j+k-1}, \cdots, t_{j+1}, t_j)}_{\text{N}_T(j+1)}$$
 Remarks $N_T(j+1) = \text{Decimal form of } \underbrace{(t_{j+k}, t_{j+k-1}, \cdots, t_{j+1})}_{\text{Added}}$ Added $N_T(j+1) = \frac{N_T(j) - t_j}{2} + 2^{k-1} t_{j+k}$

Recursively Computing Hash of $N_T(j)$

$$N_{T}(j+1) = \frac{N_{T}(j) - t_{j}}{2} + 2^{k-1} t_{j+k}$$

$$H(N_{T} C_{j}^{*}+1)) = N_{T} (j+1)$$

$$= (N_{T}(j) - t_{j}^{*}) \cdot 2^{j} - 2^{k-1} \cdot t_{j+k} \mod p$$

$$= (N_{T}(j) \mod p - t_{j}^{*} \mod p) \cdot 2^{p-2} \mod p - 2^{nod}p - t_{j+k}^{*} \mod p$$

$$H(N_{T}(j)) \qquad O(i) \text{ time}$$

$$= M_{T}(j) \mod p - M_{T}(j) \qquad M_{T}($$

Claim:
$$H(N_{\tau}(j+1))$$
 can be obtained from $H(N_{\tau}(j))$ in $O(1)$ space, $O(1)$ time if we know A, B .

Efficiently Computing A and B

$$A = 2^{p-2} \mod p$$

$$B = 2^{k-1} \mod p$$

$$2 \pmod p$$

$$3 \pmod p$$

$$4 \pmod p$$

$$5 \pmod p$$

$$5 \pmod p$$

$$6 \pmod p$$

Claim:
$$y$$
 we know z (mod p) then we can compute z (mod p) in $O(1)$ space, time.

Computing
$$A - O(\log b) = O(\log n)$$
 Time, $O(1)$ Space
Computing $B - O(\log k) = O(\log n)$ Time, $O(1)$ Space

Base Case

We can compute 2ⁱ⁺¹ mod p from 2ⁱ mad p in O(1) space, O(1) quey time.

Claim: We can compute $H(N_T(0))$ and $H(N_X)$ in O(R) time and O(1) space.