Университет ИТМО

Мой прекрасный диплом «сверхбыстрая динамика носителей заряда в полупроводниковых нитевидных нанокристаллах.»

Студент: Елисеев А.

Группа: V3400

Научрук: Валерий Николаевич

Санкт-Петербург 2017

КИДАТОННА

СОДЕРЖАНИЕ

	Стр.
АННОТАЦИЯ	2
ГЛАВА 1 Введение	4
1.1 Актуальность темы работы	4
1.2 Динамика носителей в ННК, что изучено?	5
1.2.1 Динамика носителей в объемных полупроводниках	5
1.2.2 Динамика носителей в одиночном ННК	5
1.2.3 Динамика носителей в массивах ННК	5
ГЛАВА 2 Основная часть	6
2.1 Генерация ТГц излучения в полупроводниковых ННК	6
2.2 Схема установки, описание метода	7
2.3 Упорядоченные образцы ННК на основе $GaAs$	8
2.4 Результаты измерений для упорядоченных ННК на основе	
GaAs	9
2.5 Упорядоченные образцы ННК на основе AlGaAs	10
2.6 Результаты измерений для упорядоченных ННК на основе	
AlGaAs	10
2.7 Неупорядоченные ННК на основе $GaAs$	11
2.8 Результаты измерений для неупорядоченных ННК на основе	
GaAs	12
2.9 Сравнение и анализ динамики носителей в разных образцах	13
ГЛАВА 3 Заключение	14
3.1 Динамика	14
3.2 Где следует применить полученные результаты	
3.3 Положения дипломной работы	14
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	
СПИСОК ТЕРМИНОВ	
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	
ПРИЛОЖЕНИЯ	18

ГЛАВА 1

Введение

1.1 Актуальность темы работы.

Полупроводниковые наноструктуры в виде свободно стоящих полупроводниковых нитевидных нанокристаллов (ННК), а так же отдельные ННК, являются одними из наиболее перспективных объектов для применения в наноэлектронике, нанофотонике, а так же во многих других областях науки и техники. Так ННК используются для создания сверхчувствительных фотодиодов [1], транзисторов сверхвысокой плотности [2], эмиттеров излучения видимого диапазона волн [3] и ТГц диапазона [4].

Огромная перспективность таких нанообъектов и структур на их основе обусловлена рядом уникальных электрических и оптических свойств. При создании метаповерхностей на основе свободно стоящих ННК, характерные размеры которых порядка 100 нм в диаметре и 1 мкм по высоте, получаются структуры с огромным по сравнению с объемными материалами соотношением площади поверхности к объему. В работе [4] было показано, что генерация ТГц излучения от упорядоченного массива ННК на основе GaAs может быть практически в два раза эффективнее, чем от InAs - объемного полупроводникового материала, который обладает наибольшей эффективностью генерации ТГц излучения. Такая высокая эффективность обусловлена именно тем, что соотношение площади поверхности к объему у таких структур значительно выше, чем у объемных материалов.

При создании структур описанных в предыдущем параграфе, первостепенную важность занимает изучение вопроса влияния формы материала и ее размеров на динамику носителей заряда. Например, при значительном увеличении отношения площади поверхности к объему увеличивается вклад поверхностной рекомбинации носителей в материале. Таким образом время жизни электронов и дырок в наноструктурах на основе свободно стоящих полупроводниковых ННК может существенно отличаться от времени жизни в соответствующем объемном полупроводнике. Исследование этих отличий является основной задачей, которую необходимо решить перед тем, как использовать подобные материалы

в качестве основы для базовых элементов наноэлектроники и нанофотоники.

Кроме того необходимо учитывать, что в полупроводниковых ННК при диаметрах порядка десятка нанометров и меньше и при концентрации $\geqslant 10^{17} {\rm cm}^{-3}$ процессы переноса в статических внешних полях описываются только продольной составляющей квазиимпульса, как это имеет место в чисто одномерном (1D)случае. Динамика носителей заряда в таких структурах существенно отличается от динамики в объемных материалах. Например, в таких низкоразмерных системах как тонкие ННК, экранирование внешнего электромагнитного поля носит качественно иной характер, чем в объемных полупроводниках. Заряды, которые экранируют внешнее электромагнитное поле во всем пространстве, сами ограничены в своем движении одной линией. В связи с этим, эффективность экранирования в одномерных и квазиодномерных ННК значительно ниже, чем в случае трехмерных систем. Кроме того, как показано в [5], в одномерных структурах процессы релаксации происходят по диффузионному закону, а дрейф носителей вносит лишь небольшую поправку в эффективный коэффициент диффузии. В то же время в трехмерном случае релаксация заряда в основном определяется дрейфовыми процессами.

1.2 Динамика носителей в ННК, что изучено?

В связи с высокой значимостью изучения динамики носителей в полупроводниковых ННК для различных областей науки и техники, на текущий момент представлено немало работ, посвященных этой тематике.

- 1.2.1 Динамика носителей в объемных полупроводниках
- 1.2.2 Динамика носителей в одиночном ННК
- 1.2.3 Динамика носителей в массивах ННК

ГЛАВА 2

Основная часть

Коротко о том, что я напишу в этой главе.

2.1 Генерация ТГц излучения в полупроводниковых ННК

Коротко, о том, от чего зависит Т Γ ц излучение от ННК. Определяющие процессы.

2.2 Схема установки, описание метода

Ссылочка На статью, где впервые описан этот метод и его описание Схема, ссылка на приложение, в котором описаны характеристики элементов, используемых в схеме.

2.3 Упорядоченные образцы ННК на основе GaAs

Метод газофазной эпитаксии, ссылка на статью и короткое описание Ориентация GaAs, получившиеся образцы, фото СЭМ

2.4 Результаты измерений для упорядоченных ННК на основе GaAs

Волновые формы

Типичные волновые формы

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

Начальный спад - "быстрая динамика"

Зависимость от мощности накачки, для короткой динамики.

Восстановление - "медленная динамика"

Интерполяционная модель. Физическая интерпретация двухэкспоненциального восстановления. Оценка вкладов

2.5 Упорядоченные образцы ННК на основе *AlGaAs*

По динамике можно косвенно определить проявление изменения концентрации ловушек на поверхности и вообще изменения встроенного поля. Тут же надо привести зонную диаграмму.

2.6 Результаты измерений для упорядоченных ННК на основе AlGaAs

Волновые формы

Типичные волновые формы

Динамика, для упорядоченных образцов, при разной мощности накачки Характерные участки (короткая и длинная динамика)

Tе-же самые величины и результаты, как для образцов на основе GaAs

Зависимость от мощности накачки, для короткой динамики.

Интерполяционная модель. Физическая интерпретация двухэкспоненциального восстановления. Оценка вкладов

2.7 Неупорядоченные ННК на основе GaAs

Метод получения, ссылка на статью и короткое описание.

2.8 Результаты измерений для неупорядоченных ННК на основе GaAs

Динамика, основные параметры

2.9 Сравнение и анализ динамики носителей в разных образцах

Объяснение разницы в динамике

ГЛАВА 3

Заключение

3.1 Динамика

Все, что удалось узнать.

3.2 Где следует применить полученные результаты

Наверное важно сказать об этом.

3.3 Положения дипломной работы

Все что удалось узнать, но в виде выражений и емких утверждений.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

СПИСОК ТЕРМИНОВ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Agarwal R., Lieber C. M. Semiconductor nanowires: optics and optoelectronics //Applied Physics A. − 2006. − T. 85. − №. 3. − C. 209.
- 2. Tomioka K., Yoshimura M., Fukui T. A III-V nanowire channel on silicon for high-performance vertical transistors //Nature. − 2012. − T. 488. − №. 7410. − C. 189-192.
- 3. Duan X. et al. Single-nanowire electrically driven lasers //Nature. 2003. T. $421. N_0. 6920.$ C. 241-245.
- 4. Trukhin V. N. et al. Generation of terahertz radiation in ordered arrays of GaAs nanowires //Applied Physics Letters. 2015. T. 106. №. 25. C. 252104.
- 5. Аверкиев Н.С., Шик А.Я. Контактные явления в квантовых нитях и пористом кремнии//Физика и техника полупроводников. 1996. №.2 С. 199

ПРИЛОЖЕНИЯ