Decision making among alternatives

- Types of investment proposals:
 - ◆ independent proposal
 - dependent proposal
 - ◆ contingent proposal
 - mutually exclusive proposal
- Mutually exclusive investment alternatives

Forming mutually exclusive alternatives

■ Enumeration of all possible combinations of the proposals: 2 proposals \rightarrow 2^K = 2² = 4 alternatives

		P ₁	P ₂	Action
	A_0	0	0	Do nothing
	A ₁	1	0	Accept P ₁
ſ	A ₂	0	1	Accept P ₂
Γ	A_3	1	1	Accept P ₁
				Accept P ₂

Forming mutually exclusive alternatives

■ Enumeration of all possible combinations of the proposals: K proposals → 2^K alternatives

	P_1	P ₂	P ₃		P _{K-1}	P _K
A_0	0	0	0		0	0
A_1	1	0	0		0	0
A_2	0	1	0		0	0
A_3	1	1	0		0	0
A_4	0	0	1		0	0
A(2 ^K -2)	0	1	1		1	1
A(2 ^K -1)	1	1	1	1	1	1

Number of $zeros = 2^{k-1}$

Example

	P ₁	P ₂	P_3
Initial investment	30	22	82
Net annual benefit	8	6	18
Salvage value	3	2	7

 P_1 and P_2 are mutually exclusive P_3 is contingent on P_1 Budget limit = 100

K=3 proposals \rightarrow 2^K = 2³ = 8 alternatives

	P ₁	P ₂	P ₃	Initial Investment	Net annual benefit	Salvage value
A_0	0	0	0	0	0	0
A_1	1	0	0	30	8	3
A_2	0	1	0	22	6	2
A_3	1	1	0	52	14	5
A_4	0	0	1	82	18	7
A_5	1	0	1	112	26	10
A_6	0	1	1	104	24	9
A ₇	1	1	1	134	32	12

Decision Process - Differences between alternatives

	A ₁	A_2	A ₂ - A ₁
0	-1000	-1500	-500
1	800	700	-100
2	800	1300	500
3	800	1300	500

$$A_2 = A_1 + (A_2 - A_1)$$

If $A_2 - A_1$ is economically desirable, the alternative A_2 is preferred to A_1

If $A_2 - A_1$ is economically undesirable, the alternative A_1 is preferred to A_2

MARR policy

The Minimum Attractive Rate of Return (MARR) is a cut-off rate representing a yield on investments that is considered minimally acceptable

The Do Nothing Alternative $\rightarrow i_{A_0}^* = MARR$

The equivalent profit of the Do Nothing alternative is always zero, it is not necessary to know its cash flows since it can be assumed that the cash flows are zero

Decision rules on incremental investment (i=MARR)

If
$$PV(MARR)_{A2-A1} > 0 \rightarrow accept A_2$$

If $PV(MARR)_{A2-A1} \le 0 \rightarrow accept A_1$

Incremental cash flows
pass Test 1 or Test 2?

if $i*_{A2-A1} > MARR \rightarrow accept A_2$ YES if $i*_{A2-A1} \leq MARR \rightarrow accept A_1$

Decision rules on total investment (i = MARR)

If
$$PV(i)_{A2} > PV(i)_{A1} \rightarrow accept A_2$$

If $PV(i)_{A2} \le PV(i)_{A1} \rightarrow accept A_1$

If
$$FV(i)_{A2} > FV(i)_{A1} \rightarrow accept A_2$$

If $FV(i)_{A2} \le FV(i)_{A1} \rightarrow accept A_1$

The IRR is calculated for each proposal, and then the proposal are ranked in descending order of IRR. We can accept all the proposals with IRR > MARR

The two methods lead to the same solutions:

$$\begin{split} \mathbf{PW(i)}_{A_{2}} - \mathbf{PW(i)}_{A_{1}} &= \mathbf{PW(i)}_{A_{2-A1}} \\ \mathbf{PW(i)}_{A_{2}} - \mathbf{PW(i)}_{A_{1}} &= \sum_{t=0}^{n} \mathbf{F}_{A_{2,t}} (1+\mathbf{i})^{-t} - \sum_{t=0}^{n} \mathbf{F}_{A_{1,t}} (1+\mathbf{i})^{-t} = \\ \mathbf{F}_{A_{2,0}} - \mathbf{F}_{A_{1,0}} + \mathbf{F}_{A_{2,1}} (1+\mathbf{i})^{-1} - \mathbf{F}_{A_{1,1}} (1+\mathbf{i})^{-1} + \cdots + \\ \mathbf{F}_{A_{2,n}} (1+\mathbf{i})^{-n} - \mathbf{F}_{A_{1,n}} (1+\mathbf{i})^{-n} &= \\ \mathbf{F}_{A_{2}-A_{1,0}} + \mathbf{F}_{A_{2}-A_{1,1}} (1+\mathbf{i})^{-1} + \cdots + \mathbf{F}_{A_{2}-A_{1,n}} (1+\mathbf{i})^{-n} &= \\ \sum_{t=0}^{n} \mathbf{F}_{A_{2}-A_{1,t}} (1+\mathbf{i})^{-t} &= \mathbf{PW(i)}_{A_{2}-A_{1}} \end{split}$$

1	
Exampl	le

	t	Α	В	С	D
	0	-10000	-12000	-12000	-15000
,	1	-2500	-1500	-1200	-400
O	2	-2500	-1500	-1200	-400
	3	1000	1500	1500	3000

$$PW(10)_A = -10000 - 2500(1+0,10)^{-1} - 2500(1,10)^{-2} + 1000(1,10)^{-3} = -13587$$
 we choose C $PW(10)_B = -13476$ $PW(10)_C = -12956$ $PW(10)_D = -13440$

$$\begin{split} PW(10)_{B-A} &= -2000 + 1000(1,10)^{-1} + 1000(1,10)^{-2} + \\ &+ 500(1,10)^{-3} = 111 > 0 \text{ accept B, reject A} \\ PW(10)_{C-B} &= 0 + 300(1,10)^{-1} + 300(1,10)^{-2} + 0 = 520 > 0 \text{ accept C, reject B} \\ PW(10)_{D-C} &= -3000 + 800(1,10)^{-1} + 800(1,10)^{-2} + 1500(1,10)^{-3} = \\ &-485 < 0 \text{ accept C, reject D} \end{split}$$

Inflation Example

MARR = 10%

t	А	В	С	D
0	-10000	-12000	-12000	-15000
1	-2500	-1500	-1200	-400
2	-2500	-1500	-1200	-400
3	1000	1500	1500	3000

Lack of inflation (constant money)

$$PW(10)_A = -13587 PW(10)_B = -13476$$

$$f = 0$$
 $i = i$

$$PW(10)_{C} = -12956 PW(10)_{D} = -13440$$

Presence of inflation f = 9%. We need to transform the constant money in current money multiplying by $(1+f)^n$

Inflation example

MARR = 10%

t	А	В	С	D
0	-10000	-12000	-12000	-15000
1	-2725	-1635	-1308	-436
2	-2970	-1792	-1426	-475
3	1295	1943	1943	3885

$$PW(10)_A = -13959 PW(10)_B = -13499$$

 $PW(10)_C = -12908 PW(10)_D = -12870$ The choice changes

The constant dollar method provides the same results with less calculation considering the inflation-free rate i'

$$\mathbf{i'} = \frac{\mathbf{i} - \mathbf{f}}{1 + \mathbf{f}} = \frac{0,10 - 0,09}{1 + 0,09} = \frac{0,01}{1,09} = 0,00917$$

$$\mathbf{P} = \mathbf{F} \frac{1}{(1+\mathbf{i})^n}$$

$$\mathbf{P} = \mathbf{F'} \frac{1}{(1+\mathbf{i'})^n}$$

$$\mathbf{F'} = \mathbf{F} \frac{1}{(1+\mathbf{f})^n}$$

$$\mathbf{P} = \mathbf{F'} \frac{1}{(1+\mathbf{i'})^n} = \mathbf{F} \frac{1}{(1+\mathbf{f})^n} \frac{1}{(1+\mathbf{i'})^n}$$

$$(1+i) = (1+f)(1+i')$$
 $i' = \frac{i-f}{1+f}$

NPV – IRR relationship

NPV – IRR relationship

Comparing alternatives with unequal lives

What's happened if we have to compare alternative with unequal service lives?

The time period over which the alternatives are to be compared is usually referred to as the study period or planning horizon n*.

Example

Alternatives	A	В	C
Initial Cost	4000	16000	20000
Annual Cost	6400	1400	1000
Lifetime	6 years	3 years	4 years

A, B and C all fulfill the same objective, but for a different number of years; select the least costly for i=7%

NPVof Original Alternatives

$$NPV(A, 6 \text{ yrs}) = 4 + 6.4(P/A, 7\%, 6) = 4 + (6.4)(4.76) = $34,460$$

$$NPV(B, 3 \text{ yrs}) = 16 + 1.4 (P/A, 7\%, 3) = 16 + (1.4)(2.62) = $19,680$$

$$NPV(C, 4 \text{ yrs}) = 20 + 1 (P/A, 7\%, 4) = 20 + 1(3.4) = $23,400$$

These are the PWs of costs over the actual lifetimes.

Best alternative: B

Evaluating Public Activities Benefit-Cost Analysis

Benefit-Cost Analysis

BC(i) = Equivalent Benefits / Equivalent Costs

BC(i) = 1 represents the minimum justification for an expenditure by a public agency

Benefits = All the advantages, less disadvantages to the user

Costs = All the disbursements, less any savings to the sponsor

Benefit-Cost Analysis

Aggregated benefit-cost ratio

$$\mathbf{R}_{\mathbf{A}} = \frac{\mathbf{B}}{\mathbf{C}} = \frac{\sum_{t=0}^{n} \mathbf{b}_{t} (1+\mathbf{i})^{-t}}{\sum_{t=0}^{n} \mathbf{c}_{t} (1+\mathbf{i})^{-t}} = \frac{\mathbf{B}}{\mathbf{I} + \mathbf{C}'} > 1$$

Net benefit-cost ratio

$$\mathbf{R_N} = \frac{\mathbf{B} - \mathbf{C'}}{\mathbf{I}} > 1$$
 Expected net gain per unit money invested

The incremental benefit-cost analysis will again provide results consistent with NPV (or PW)

Consistent base

if
$$BC(i)_{A_2-A_1} > 1 \to PW(i)_{A_2} > PW(i)_{A_1}$$
 Accept A_2

$$\frac{B(i)_{A_{2}} - B(i)_{A1}}{I(i)_{A_{2}} - I(i)_{A1} + [C(i)_{A_{2}} - C(i)_{A_{1}}]} > 1$$

$$\frac{B(i)_{A_{2}} - B(i)_{A1} + [C(i)_{A_{2}} - C(i)_{A_{1}}]}{I(i)_{A_{2}} - B(i)_{A1}} > I(i)_{A_{2}} - I(i)_{A1} + C(i)_{A_{2}} - C(i)_{A_{1}}$$

$$\frac{B(i)_{A_{2}} - I(i)_{A_{2}} - C(i)_{A_{2}} > B(i)_{A_{1}} - I(i)_{A1} - C(i)_{A_{1}}}{PW(i)_{A_{2}} > PW(i)_{A_{1}}}$$

Example

		Annual	Annual	B/C
		Equivalent	Equivalent	
		Benefits	Costs	
A	1	182000	91500	1.90
A	\ 2	167000	79500	2.10
A	\ 3	115000	78500	1.46
A	\ ₄	95000	50000	1.90

	Incremental annual benefits	Incremental annual costs	Incremental B/C	Decision
$A_4 - A_0$	95000	50000	1.90	Accept A ₄
$A_3 - A_4$	20000	28500	0.70	Accept A ₄
$A_2 - A_4$	<mark>720</mark> 00	29500	2.44	Accept A ₂
$A_1 - A_2$	1 <mark>50</mark> 00	12000	1.25	Accept A ₁

Benefit-Cost Analysis deficiencies

- identifying costs
- identifying benefits:

primary and secondary benefits

negative and positive externalities

valuation of benefits in monetary terms