ОПРЕДЕЛЕНИЕ КОНСТАНТ ДИССОЦИАЦИИ УКСУСНОЙ И МУРАВЬИНОЙ КИСЛОТ

Гарина Ольга Аксенова Светлана Криворучко Мария Б04-901

10 марта 2021 г.

Цель работы: исследовать электрические свойства растворов уксусной и муравьиной кислот и определить их константы диссоциации.

В работе используются:

- 1. Кодуктометр «Анион 4100» и измерительная ячейка
- 2. Раствор слабого электролита с концентрацией 0.01 М (уксусная кислота)
- 3. Мерный цилиндр
- 4. Две пипетки
- 5. Дистиллированная вода

1 Введение

Ствень диссоциации α - это отношение числа молекул электролита, распавшихся в растворе на ионы, к первоначальному числу молекул. По величине степени диссоциации α различают электролиты:

- 1. Сильные это электролиты, которые в растворе практически полностью диссоциируют на ионы. Степень диссоциации принимает значения в пределах $0.8 \le \alpha \le 1$.
- 2. Слабые это электролиты, которые диссоциируют в растворе частично. Степень диссоциации равна $0 < \alpha \le 0.2$.

$$CH_3COOH = CH_3COO^- + H^+$$

Константа равновесия реакции диссоциации слабого электролита называется константой диссоциации. Константа диссоциации для бинарного разбавленного электролита выражается законом Оствальда:

$$K_{D} = \frac{c\alpha^{2}}{1 - \alpha} \tag{1}$$

В слабых электролитах $\alpha -> 0$ и $(1 - \alpha) -> 1$, поэтому

$$\alpha = \sqrt{\frac{K_D}{c}},$$

таким образом, если концентрация раствора увеличивается, то степень диссоциации электролита будет уменьшаться

Электрическая проводимость — это способность растворов электролитов проводить электрический ток. Растворы электролитов характеризуются удельной и молярной электрической проводимостью.

 $Удельная электрическая проводимость (<math>\varkappa$) — это электрическая проводимость объема раствора электролита, заключенного между двумя параллельными электродами, имеющими площадь по 1 м² и расположенными на расстоянии 1 м друг от друга.

Удельная электрическая проводимость \varkappa — величина, обратная удельному сопротивлению:

$$\varkappa = \frac{1}{\rho}.$$

Рисунок 1 – Зависимость степени диссоциации от концентрации электролита

Молярная (эквивалентная) электрическая проводимость (λ) — это электрическая проводимость объема раствора электролита, содержащего 1 моль или 1 моль-экв. растворенного вещества и находящегося между двумя параллельными электродами, расположенными на расстоянии 1 м друг от друга. Удельная и молярная электрические проводимости связаны между собой соотношением:

 $\lambda = \frac{\varkappa}{c}$.

Молярная электрическая проводимость с уменьшением концентрации раствора увеличивается. При концентрации раствора, стремящейся к нулю (с -> 0) молярная электрическая проводимость стремится к некоторому предельному (максимальному) значению λ^{∞} , которое называется молярной электрической проводимостью при предельном разведении.

Способность электролита проводить электрический ток зависит также от свойств растворителя и электролита.

Влияние природы растворителя на величину λ . Чем выше диэлектрическая проницаемость растворителя, тем больше электропроводность раствора.

Bлияние природы электролита на величину λ . Чем выше заряд ионов, тем больше скорость их движения и тем больше электропроводность. Чем больше радиус ионов, тем меньше подвижность ионов и меньше электропроводность раствора электролита.

Изменение электрической проводимости с изменением концентрации раствора объясняется торможением движения ионов в электрическом поле вследствие их электростатического вза-имодействия. С увеличением концентрации раствора ионы сближаются и электростатическое взаимодействие между ними возрастает. При этом возникают эффекты электростатического торможения ионов:

• Электрофоретический эффект: заключается в том, что в водной среде все ионы гидратированы и под действием внешнего электрического поля движутся в противоположных

Рисунок 2 — Зависимость молярной электрической проводимости от концентрации раствора электролита

направлениях. Между движущимися ионами и средой, перемещающейся в противоположном направлении, возникает сила трения, которая снижает скорость движения ионов.

• Релаксационный эффект: обусловлен нарушением симметрии расположения ионной атмосферы вокруг центрального иона при его движении под действием электрического поля. Движение приводит к разрушению ионной атмосферы и образованию её в новом положении иона. Для этого требуется время релаксации, и потому позади движущегося иона всегда имеется некоторый избыток заряда противоположного знака, который тормозит движение центрального иона.

Кондуктометрия основана на измерении электрической проводимости растворов. Этот метод широко применяется в производстве и лабораторной практике. На основе электропроводности можно сделать рациональный выбор состава раствора электролита. Кондуктометрия позволяет автоматизировать контроль производства в процессах, имеющих дело с растворами электролитов или расплавами, определять содержание солей в различных растворах при испарении воды для контроля её качества.

Рисунок 3 — Зависимость молярной электрической проводимости от концентрации раствора электролита

2 Экспериментальная часть

2.1 Уксусная кислота

Сосуд и электроды промыть дистиллированной водой, затем ополоснуть исследуемым раствором слабого электролита, указанного преподавателем. Налить 20 мл исследуемого раствора в сосуд для измерений и произвести измерение его электропроводности κ_i . Затем раствор слабого электролита следует разбавить в 2 раза. Для этого из сосуда нужно отобрать 10 мл раствора и прилить 10 мл дистиллированной воды, выдержанной при той же температуре что и исследуемый раствор. Одна пипетка на 10 мл должна быть использована для отбора раствора из сосуда, другая для добавления воды. Измерить электропроводность полученного раствора. Повторить последовательное разбавление 4 раза, каждый раз измеряя электропроводность полученного раствора. После окончания опыта тщательно промыть сосуд и электроды и приступить к обработке экспериментальных данных.

$$\varkappa_i = \phi \kappa_i$$
.

В ходе первого эксперимента были получены следующие данные для уксусной кислоты (таблица 1)

Nº	c, M	κ , Cm/cm,	λ , См см 2 /моль	α	K_D
1	3.0	0.001486	0.4953	0.001268	$4.83 \cdot 10^{-6}$
2	1.5	0.00134	0.8933	0.002286	$7.86 \cdot 10^{-6}$
3	0.75	0.001163	1.551	0.003969	$1.19 \cdot 10^{-5}$
4	0.375	0.000733	1.955	0.005	$9.43 \cdot 10^{-6}$
5	0.1875	0.000602	3.211	0.00822	$1.28 \cdot 10^{-5}$
6	0.09375	0.000416	4.44	0.01136	$1.22 \cdot 10^{-5}$

Таблица 1 – Результаты первого эксперимента

По данным эксперимента были построены следующие графики (рис 4, 5, 6 и 7)

Рисунок 4 — Зависимость $\alpha()$ для уксусной кислоты

$$\begin{split} K_{\mathrm{Dcnpaboчh}} &= 1.74 \cdot 10^{-5} \\ K_{\mathrm{Dcpeдhee}} &= 9.83 \cdot 10^{-6} \\ K_{\mathrm{Drpaфик}} &= 0.0045 \\ \lambda_{\mathrm{cnpaboчh}}^{\infty} &= 390.7 \\ \lambda_{\mathrm{rpaфиk}}^{\infty} &= 2 \end{split}$$

2.2 Муравьиная кислота

Аналогичные действия были проведены для исследования электрических свойств муравыной кислоты. Результаты преведены в таблице 2.

Рисунок 5 – Зависимость \varkappa от концентрации для уксусной кислоты

No	c, M	ж , См/см	λ , См см 2 /моль	α	$ m K_D$
1	13.0	$2.96 \cdot 10^{-6}$	0.000228	$5.63 \cdot 10^{-7}$	$4.12 \cdot 10^{-12}$
2	6.5	0.00825	1.27	0.0032	$6.42 \cdot 10^{-5}$
3	3.25	0.01	3.08	0.0076	0.00019
4	1.625	0.00677	4.17	0.01	0.00017
5	0.8125	0.00522	6.42	0.0159	0.00021

Таблица 2 – Результаты второго эксперимента

$$egin{align*} K_{D_{\mbox{cправочн}}} &= 0.0001772 \\ K_{D_{\mbox{cреднеe}}} &= 0.000127 \\ K_{D_{\mbox{график}}} &= -1.44 \\ \lambda^{\infty}_{\mbox{cправочн}} &= 404.4 \\ \lambda^{\infty}_{\mbox{график}} &= 0.1322 \\ \end{gathered}$$

По данным эксперимента были построены графики (рис 8, 9, 10 и 11)

Рисунок 6 – Зависимось λ от концентрации для уксусной кислоты

3 Вывод

В ходе лабораторной работы удалось изучить электрические свойства уксусной и муравьиной кислот.

Рисунок 7 — Зависимость $1/\lambda(\lambda_c)$ для уксусной кислоты

Рисунок 8 — Зависимость α от концентрации для муравьиной кислоты

Рисунок 9 — Зависимость \varkappa от концентрации для муравьиной кислоты

Рисунок 10 — Зависимость λ от концентрации для муравьиной кислоты

Рисунок 11 — Зависимость $1/\lambda(\lambda_c)$ для муравьиной кислоты