Problem 1. Determine the Fourier series expansion of the signals depicted below.

Problem 2. Determine the Fourier series expansion of the following signals/functionals:

1.
$$x_1(t) = \sum_{n=-\infty}^{\infty} (-1)^n \delta(t - nT)$$

2.
$$x_2(t) = \sum_{n=-\infty}^{\infty} \delta'(t - nT)$$

3.
$$x_3(t) = \cos(t) + \cos(2.5t)$$

4.
$$x_4(t) = e^{t-n}$$
 for $n \le t < n+1$

5.
$$x_5(t) = |\cos(2\pi f_0 t)|$$

6.
$$x_6(t) = |\cos(2\pi f_0 t)| + \cos(2\pi f_0 t)$$

Problem 3. Consider the signal x(t) with fundametral period T=4 and Fourier series coefficients a_k . If the signal is presented as below in one period, find the result of the following expressions:

•
$$\sum_{k=-\infty}^{+\infty} |a_k|^2$$
 • $\sum_{k=-\infty}^{+\infty} a_{2k}$

Problem 4. Let x(t) and y(t) be continuous-domain periodic signals with period T_0 and Fourier series representations given by

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}, \quad y(t) = \sum_{k=-\infty}^{+\infty} b_k e^{jk\omega_0 t}$$

(a) Show that the Fourier series coefficients of the signal

$$z(t) = x(t)y(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$$

are given by the discrete convolution $c_k = \sum_{n=-\infty}^{+\infty} a_n b_{k-n}$

(b) Use part (a) to compute the Fourier series coefficients of the following signal:

$$x_1(t) = \sin(20\pi t). \sum_{k=-\infty}^{+\infty} \Pi(\frac{1}{2}(t-3k)),$$

where $\Pi(t)$ is

• $\sum_{k=-\infty}^{+\infty} j^k a_k$

$$\Pi(t) = \left\{ \begin{array}{ll} 1 & |t| \leq \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{array} \right.$$

(c) Prove the following expression.

$$\frac{1}{T_0} \int_{\alpha}^{\alpha + T_0} x(t) \overline{y(t)} dt = \sum_{k = -\infty}^{+\infty} a_k b_k^*$$
 (1)

Problem 5. Show that for all periodic signals with finite power, the Fourier series coefficients a_k tend to zero as $k \to \infty$.

Problem 6. We know the following information about signal x(t):

- 1. x(t) is real-valued,
- **2.** x(t) is periodic with period T=6 and Fourier coefficients a_k ,
- **3.** $a_k = 0$ for k = 0 and k > 2,
- **4.** x(t) = -x(t-3),
- **5.** $\frac{1}{6} \int_{-3}^{3} |x(t)|^2 dt = \frac{1}{2}$, and
- **6.** a_1 is a positive real number.

Show that $x(t) = A\cos(Bt + C)$, and find the constants A, B and C.