Faculty of Engineering & Technology Fourth Semester B.E. (Computer Technology/C.S.E./ I.T./C.E.) (C.B.S.) Examination DISCRETE MATHEMATICS AND GRAPH THEORY

Time—Three Hours]

[Maximum Marks—80

INSTRUCTIONS TO CANDIDATES

- (1) All questions carry marks as indicated.
- (2) Due credit will be given to neatness and adequate dimensions.
- (3) Solve SIX questions as follows:

Que. No. 1 OR Que. No. 2

Que. No. 3 OR Que. No. 4

Que. No. 5 OR Que. No. 6

Que. No. 7 OR Que. No. 8

Que. No. 9 OR Que. No. 10

Que. No. 11 **OR** Que. No. 12

1. (a) Prove that:

$$(A \cap B) - C = (A - C) \cap (B - C)$$

(ii) $(A \cap B)' = A' \cup B'$.

5

(b). Show that $((p \lor \sim q) \land (\sim p \lor \sim q)) \lor q$ is a tautology.

OR

مؤجهما

- 2. (a) In a group of students, 70 have a personal computer,
 120 have personal stereo and 41 have both. How
 many own at least one of these devices? Draw and
 appropriate Venn diagram also.
 - (b) Show that:

$$1^2 + 2^2 + 3^2 + \dots \cdot n^2 = \frac{n(n+1)(2n+1)}{6}$$
, $n \ge 1$.

6

6

- 3. (a) Define equivalence relation. Is the relation R defined on the set of positive integers such that aRb iff a ≤ b is an equivalence relation? Explain if not.
 - (b) Let A = {1, 2, 3, 4, 5, 6}. Define a relation R on A such that R = {(x, y) | x + y is divisor of 24}. Find:
 - (i) Relation matrix of R
 - (ii) Relation matrix of RoR
 - (iii) Draw digraph of R and RoR.

6

- Let $f: A \to B$ and $g: B \to C$ such that f(a) = a 1 and $g(b) = b^2$. Find:
 - (i) $f \circ g(x)$
 - (ii) $g \circ f(x)$
 - (iii) $g_0g(x)$
 - (iv) $f \circ f(x)$.

OR

- The relation R defined on set $A = \{0, 1, 2, 3\}$ $R = \{(0, 1), (1, 2), (2, 3)\}$. Find transitive closure of R.
 - (b) Let A = {1, 2, 3}, B = {a, b, c, d}. Let R and S be relations from A to B with relation matrices given by:

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}, \quad \mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Find:

- (i) M_{R-1} and M_{S-1}
- (ii) Show that $M_{(R \cap S) \circ R^{-1}} = M_{R \circ R^{-1}} \wedge M_{S \circ R^{-1}}$. 6
- Let $f: A \to B$ defined by $f(x) = 2x^3 1$. Prove that f is one-to-one and onto.
- 5. (a) Define Grupoid, Semigroup, Monoid and Group with examples.
 - (b) Show that the set $H = \{a + ib \in C | a^2 + b^2 = 1\}$ is a subgroup of (C, *), where * = multiplication of complex numbers.

OR

$$g^{-1}hg \in H \ \forall \ h \in H \ and \ g \in G.$$

- (b) If * is a binary operation in Q^+ , defined by $a * b = \frac{ab}{3}$, $\forall a, b \in Q^+$, show that $(Q^+, *)$ are form an abelian group.
- (a) If R is a set of all real numbers, then prove that (R, +, .) is an integral domain.
 - Find the complements of every element of the lattice (D_{20}, \leq) .

OR

8. (a) Let
$$R = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in z \right\}$$
 is a ring. If f be the mapping that takes $\begin{bmatrix} a & b \\ b & a \end{bmatrix} \rightarrow a - b$. Show that f is homomorphism. Also determine the Kernel of f.

Draw the switching system circuit represented by the Boolean Expression:

$$F = (A + B)(\overline{B} + C) + (\overline{C} + A)(C + B)$$

Simplify F and draw the simplified equivalent circuit.

6

9. (a) Define isomorphic graphs. Show that the following graphs are isomorphic.

Find the adjacency matrix of the following graphs and its complement:

(c) Draw the tree for the algebraic expression:

$$(a + 5) * [{(7 * b) + c} / (g + d)].$$
 6

10. (a) Define in-degree and out-degree of the graph. Find the in-degree and out-degree of each vertex of graph:

6

6

MIS--50633

5

Contd.

(b) Define Eulerian path and Eulerian circuit. Show that the graph given below is an Eulerian graph and circuit.

6

(c) Use Prim's algorithm to find minimal spanning tree for the graph:

6

11. (a) Find the general solution of the recurrence relation:

$$2a_{n} - 7a_{n-1} + 3a_{n-2} = 2^{n}.$$

1

Show that if any 30 people are selected, then one may choose a subset of 5 so that all five were born on the same day of the week.

OR

6

MIS---50633

Contd.

12. (a) Apply the generating function technique to solve the recurrence relation

$$a_{n+2} - 5a_{n+1} + 6a_n = 2$$
, $a_0 = 1$, $a_1 = 2$.

Define Pigeon-hole Principle. Show that if 9 books are to be kept in 4 shelves, there must be at least one shelf which contains at least 3 books.