UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MEK 1100 — Feltteori og vektoranalyse.

Eksamensdag: Tirsdag 15 mars 2016.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 2 sider.

Vedlegg: Formeltillegg på 2 sider.

Tillatte hjelpemidler: K. Rottmann: Matematische Formelsamlung,

godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Det er 10 delspørsmål. Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for fullstendig svar, 0 for blank). Maksimal oppnåelig poengsum er 100. Kontroller at du ikke overser noen av spørsmålene.

Oppgave 1

Temperaturen i et område er gitt på dimensjonell form som

$$T = T_0 + \alpha x + \beta y^2 \tag{1}$$

hvor T_0 og α og β er konstanter. Vi måler T og T_0 med enhet Celsius. De horisontale koordinatene x og y måler vi med enhet meter. De er orientert slik at x-aksen peker mot øst og y-aksen peker mot nord.

1a

Finn de fysiske enhetene til α og β .

1b

Regn ut den retningsderiverte av temperaturen mot nordøst i punktet (x, y).

1c

Skaler likning (1) slik at den kommer på dimensjonsløs form.

Oppgave 2

Et vektorfelt er gitt på dimensjonsløs form som $\boldsymbol{v} = y\boldsymbol{i} - x\boldsymbol{j} + z\boldsymbol{k}$.

(Fortsettes på side 2.)

2a

Regn ut divergensen til \boldsymbol{v} .

2b

Regn ut virvlingen til \boldsymbol{v} .

2c

Undersøk om vektorfeltet \boldsymbol{v} har et potensial ϕ , og finn i så fall potensialet.

2d

I denne deloppgaven skal vi studere feltet for z=0, legg merke til at da er vektorfeltet et plant felt i xy-planet.

Tegn et vektor pil-plott (tilsvarende quiver i Matlab eller Python) for v i et område rundt origo. La styrken til feltet være proporsjonal med lengden til pilene.

Finn alle stagnasjonspunkter (der hvor v = 0) og vis dem med symbolet •.

2e

Finn sirkulasjonen til \boldsymbol{v} rundt sirkelen $\gamma:\{x^2+y^2=R^2,z=0\}$ ved direkte utregning. La sirkelen være orientert slik at vi vandrer fra kvadrant 1 til 2 til 3 til 4 i xy-planet.

Kontroller svaret ved å regne ut sirkulasjonen som et flateintegral ved å anvende en passende integralsats. Hva heter den integralsatsen du bruker?

2f

Regn ut den integrerte fluksen av \boldsymbol{v} gjennom flaten $S: \{x=1, 0 \leq y \leq 1, -1 \leq z \leq 1\}$ orientert vekk fra origo.

2g

Finn likninger som representerer strømlinjene til vektorfeltet v. Beskriv med ord hvordan disse strømlinjene ser ut for z = 0, for z > 0, og for z < 0.

Hint: Differensiallikningene som må løses kan virke vanskelige da de ikke umiddelbart ser ut som separable likninger. De kan likevel bringes over til separabel form ved å innføre nye variable r og θ slik at $x=r\cos\theta$ og $y=r\sin\theta$.