COMPARISON OF IDENTIFICATION METHODS ON DATA SETS FROM DAISY

Ivan Markovsky, Jan C. Willems, and Bart De Moor ESAT/SCD, Katholieke Universiteit Leuven, Belgium

Data sets from DAISY:

#	Data set name	T	m	p	l
1	Lake Erie	57	5	2	1
2	Distillation column	90	5	3	1
3	Heating system	801	1	1	2
4	Industrial dryer	867	3	3	1
5	Hair dryer	1000	1	1	5
6	Ball-and-beam setup in SISTA	1000	1	1	2
7	Wing flutter data	1024	1	1	5
8	Flexible robot arm	1024	1	1	4
9	Glass furnace (Philips)	1247	3	6	1
10	Heat flow density	1680	2	1	2
11	pH neutralization process	2001	2	1	6
12	CD-player arm	2048	2	2	1
13	Industrial winding process	2500	5	2	2
14	Heat exchanger	4000	1	1	2
15	Industrial evaporator	6305	3	3	1
16	Tank reactor	7500	1	2	1
17	Steam generator	9600	4	4	1

m — number of inputs T — number of data points p — number of outputs l — lag of the identified model

In all examples, the data w = (u, y) is split into

 w_{idt} — identification part, and w_{val} — validation part.

The model class is LTI systems with a bound n = lp on the order.

Compared methods:

Name	Description
subid	robust combined subspace algorithm
uy2ssbal	balanced subspace identification
w2x2ss	deterministic subspace algorithm
cva	n4sid with N4Weight = CVA
moesp	n4sid with N4Weight = MOESP
pem	OE identification in the PEM setting
gtls	OE identification using STLS

The validation criterion corresponds to the "simulation fit" computed by the function compare of the System Identification Toolbox.

Given w = (u, y) and \mathcal{B} , define the approximation \hat{y} of y in \mathcal{B}

$$\hat{y}\big((u,y),\mathscr{B}\big) := \min_{\hat{y}} \|y - \hat{y}\| \quad \text{subject to} \quad \operatorname{col}(u,\hat{y}) \in \mathscr{B}.$$

Let
$$\bar{y} := \sum_{t=1}^{T} y(t)/T$$
. The fit of w by \mathscr{B} is defined as
$$F(w,\mathscr{B}) := 100 \max(0, 1 - \|y - \hat{y}(w,\mathscr{B})\|/\|y - \bar{y}\|).$$

pem is called with options:

- 'dist', 'none', which chooses output error model structure,
- 'nk', 0, which requires a feedthrough term to be estimated, and
- 'LimitError', 0 which disables the default robustification of the cost function.

We list $F(w_{\mathrm{val}}, \hat{\mathscr{B}})$ for the models produced by the compared identification methods.

Average fit in % on all datasets:

Experiment		subid	uy2ssbal	w2x2ss	moesp	cva	pem	gtls
	idt	51.18	49.27	46.39	55.52	49.79	57.43	68.46
70i/30v	val	32.14	31.57	32.34	38.97	33.38	37.77	48.40
	idt	46.34	47.46	48.83	53.86	50.78	59.13	68.87
30v/70i	val	36.96	37.69	38.15	40.43	37.10	45.17	53.72
	idt	49.14	46.82	45.56	55.13	50.88	56.84	68.36
80i/20v	val	30.01	28.20	29.75	33.01	31.75	36.17	44.14
	idt	49.47	48.20	48.07	54.48	51.90	58.93	68.48
20v/80i	val	46.09	37.30	40.81	39.79	39.81	45.28	56.88
	idt	50.92	47.61	48.59	54.79	51.25	58.39	68.95
90i/10v	val	40.47	32.89	31.46	37.06	35.07	39.48	48.55
	idt	48.16	48.46	47.34	53.93	50.71	58.78	69.06
10v/90i	val	45.58	43.71	45.13	44.12	39.71	43.62	56.28
Execution time		0.11	0.95	0.05	4.45	5.03	14.79	25.14

Discussion points:

- Data preprocessing
- -detrending
- -scaling
- -??
- Imposing stability
- Fitting criteria
- -Determinant vs. trace
- -output error
- -errors-in-variables
- -??

"70i/30v" is a short notation for "first 70% of the data is used for identification and the remaining 30% for validation"

The best fits and smallest execution times obtained by subspace and optimization methods are marked with **bold face**.