Informe previo Práctica-3

Apellidos y nombre: Albor (omos	Grupo: 22
Apellidos y nombre:	Grupo:
(por orden alfabético)	•

<u>Pregunta 1</u>

a)

Χ	0	1	
0	0	0	
概1图	0	1	

b)

A	B	A·B (W)
10011	0 10 1	0 0 0 0 1 1 1 1 1 1

No hang d'arres Perque les volores que Puede Toman la mustiplitación no rulera d L (0-1), no has folta.

Maren folta 16 bits Para reformation le multiplicación, o es o en 16 bits o es al millimo numero que multiplica de 16 bits

$$\frac{000000110000111}{00000000} = \frac{301}{30000000}$$

$$\frac{14 = 00010001}{00010000}$$

$$\frac{13 = 00010111}{00010000}$$

$$\frac{13 = 00010111}{00010000}$$

$$\frac{14 = 00010001}{00010000}$$

$$\frac{14 = 00010001}{00010000}$$

$$\frac{14 = 00010001}{0001000}$$

Pregunta 3	000110000111	
do	W(0) =	

Estado inicial	1	W(0) =	D(0) =	B(0) =
Iteración / ciclo j	M = MULBit (D(j), B(j)<0>)	W(j+1) = ADD(W(j), M)	D(j+1) = SL-1(D(j))	B(j+1) = SRL-1(B(j))
0	00010010 .	00010110	00/01/00	00100110
1	00000000	00010110	01041000	00010011
2	01041000 2	01101110	10010000	00001001
3	10 d 10000 3	00011116	0000010	00000100
4		000/1110	\$1000000	0100000
5	0000 0000	000/1110	1000 0000	7000000
6	0000000	100/1110	0000 0000	0000 0000
	1000000		0000 0000	0000 0000
7	00000000	1001 1110	0000	
Resul. Final W		100/1110	,	1194

¿Cuál es el resultado correcto de la multiplicación, $W_u = X_u \times Y_u$? $22 \cdot ?? = 1.694$

¿Los 8 bits que se obtienen como resultado del algoritmo anterior, representan el resultado correcto de la multiplicación? W = 158

¿Porqué? No la refreserran lengue cajernes las 8 bits de mondr Pesa. En esta multiplicación hacian polta 2.m (16 bish) here refresenta la bien.

Pregunta 5

ROM Q+MUL

0x00 0x01 0x02.0x02 0x03 0x03 0x04 0x04 0x05

0x05 0x06 0x06 0x06 0x09 0x08 0x08 0x09 0x09

0x04 0x04 0x03 0x03 0x06 0x06 0x06 0x08 0x08

0x07 0x07 0x06 0x06 0x11 0x11 0x00 0x01

ROM OutMUL

<u>Pregunta 6</u>

a) Reg -> MultBit -> Mux -> ADD