Дорогой храбрый воин или храбрая воительница! Удачи тебе на большом празднике по эконометрике! Начни с того, что напиши клятву и подпишись под ней:

Я клянусь честью студента, что буду выполнять эту работу самостоятельно.

А теперь — задачки:

- 1. Исходная выборка y вектор из n независимых случайных величин, равномерных на [0;1]. Пусть y^* одна из бутстрэп-выборок.
 - а) Найди $E(y_i^*)$, $Var(y_i^*)$, $E(\bar{y}^*)$, $Var(\bar{y}^*)$.
 - б) Найди $Cov(y_i, y_i^*), Cov(\bar{y}, \bar{y}^*).$
 - в) Что происходит с указанными величинами при $n \to \infty$?
- 2. Исследователь Винни-Пух использует две модели, описывающие вектор $y=(y_1,y_2,\ldots,y_n)$. Одна модель подсказана Совой, вторая Кроликом. Как известно, у Винни-Пуха опилки в голове, поэтому обе модели содержат k=0 параметров.

Величины y_i в обеих моделях и в реальности независимы и одинаково распределены.

Рассмотрим оценку $\hat{\Delta} = (AIC_{\text{Кролик}} - AIC_{\text{Сова}})/2$ для параметра $\Delta = KL(p||p_{\text{Кролик}}) - KL(p||p_{\text{Сова}}).$ Здесь p — реальное распределение вектора y, а $p_{\text{Кролик}}$ и $p_{\text{Сова}}$ — модельные.

- а) Верно ли, что оценка Винни-Пуха $\hat{\Delta}$ является несмещённой?
- б) Верно ли, что оценка $\hat{\Delta}$ является состоятельной? В каком смысле в данном случае корректно говорить о состоятельности?
- 3. Исследователь Пятачок считает, что в модели

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

имеется гетероскедастичность следующего вида: $Var(\varepsilon_i) = \exp(\alpha_0 + \alpha_1 x_i)$.

- а) Скорректируйте гетероскедастичность и выведите формулу эффективной оценки в явном виде.
- б) Поясните, как построить доверительный интервал, устойчивый к гетероскедастичности, используя стандартные ошибки Уайта.
- в) Сформулируйте гипотезу о гомоскедастичности и найдите оценки неизвестных параметров в предположении о гомоскедастичности методом максимального правдоподобия.

- 4. Исследователь Кролик сравнивает два сорта Морковки, А и Б. Морковки сорта А имеют случайный размер $\mathcal{N}(\mu_A, \sigma_A^2)$. Морковки сорта Б имеют случайный размер $\mathcal{N}(\mu_B, \sigma_B^2)$.
 - У Кролика n наблюдений по морковам сорта $A, a_1, ..., a_n$, и ещё n наблюдений по морковкам сорта $B, b_1, ..., b_n$. Все четыре параметра неизвестные.
 - а) Найдите оценки всех параметров с помощью максимального правдоподобия.
 - б) Выведите явную формулу для статистики Вальда для проверки гипотезы $\mu_A = \mu_B$.
- 5. Исследователь Кролик сравнивает два сорта Морковки, А и Б. Вероятность того, что морковка имеет сорт А описывается функцией

$$\mathbb{P}(y_i = A \mid r_i) = \Lambda(\beta_1 + \beta_2 r_i),$$

где r_i — размер морковки и Λ — логистическая функция.

Выведите явную формулу для статистики множителей Лагранжа для проверки гипотезы $\beta_2 = 0$.

6. Исследователь Кролик знает, что размер сорта морковки А имеет нормальное распределение $\mathcal{N}(10,9)$. Сорт Б Кролику не знаком, поэтому он предполагает, что размер морковки сорта Б имеет нормальное распределение $\mathcal{N}(\mu,\sigma^2)$.

На поле равновероятно встречаются оба сорта морковки. К сожалению, определить сорт морковки по её виду Кролик не может.

У Кролика есть 100 наблюдений r_i за размером морковки.

- а) Выпишите функцию правдоподобия для данной задачи.
- б) Выпишите условия первого порядка. Если возможно, найдите оценки правдоподобия в явном виде.