CSCI 3308: smartOBD.

Team 2: CodeHawks

Travis Cochran
Fallyn Logan
Avra Saslow
Brett Schneider
Will Walker
Andrew Weller

OBD-II

- Cheap
- Customizable
- Ease of access and use

Vision Statement

For automotive tinkers who need a flexible OBD-II scanner for unique use cases. The smartOBD is an OBD-II scanner that is customizable and open source.

Features

Process

- 1. Python script of OBD commands: ~200
- 2. Filling database with car information
- 3. Create template pug/jade website
- 4. Add dropdowns/buttons
- 5. Async, logs, home (NodeJS)
- 6. Styling pages and images
- 7. Adding JavaScript Widgets

04	ENGINE_LOAD	Calculated Engine Load	Unit.percent
05	COOLANT_TEMP	Engine Coolant Temperature	Unit.celsius
06	SHORT_FUEL_TRIM_1	Short Term Fuel Trim - Bank 1	Unit.percent
07	LONG_FUEL_TRIM_1	Long Term Fuel Trim - Bank 1	Unit.percent
08	SHORT_FUEL_TRIM_2	Short Term Fuel Trim - Bank 2	Unit.percent
09	LONG_FUEL_TRIM_2	Long Term Fuel Trim - Bank 2	Unit.percent
0A	FUEL_PRESSURE	Fuel Pressure	Unit.kilopascal
OB	INTAKE_PRESSURE	Intake Manifold Pressure	Unit.kilopascal
0C	RPM	Engine RPM	Unit.rpm
0D	SPEED	Vehicle Speed	Unit.kph
0E	TIMING_ADVANCE	Timing Advance	Unit.degree
OF	INTAKE_TEMP	Intake Air Temp	Unit.celsius
10	MAF	Air Flow Rate (MAF)	Unit.grams_per_second
11	THROTTLE_POS	Throttle Position	Unit.percent
12	AIR_STATUS	Secondary Air Status	string
13	O2_SENSORS	O2 Sensors Present	special
14	O2_B1S1	O2: Bank 1 - Sensor 1 Voltage	Unit.volt
15	O2_B1S2	O2: Bank 1 - Sensor 2 Voltage	Unit.volt

Tools Overview

Methodology: Waterfall ***

Communication Line: Slack **

VCS Repository: Github **

Hardware: Sparkfun OBD-II Board

Framework: Node.js ****

Database: PostgreSQL ****

Testing Tool: Pytest, TravisCI

Deployment: Ubuntu ***

Challenge 1: Parsing Through Log Values

- Different car brands support different OBD-II features
 - Dealing with the variety of returned commands, and the number of available commands in the client-side software was difficult

```
'Bank 1 - Sensor 1': '281.5',
            'Supported PIDs [41-60]': '11111110110100000000000000000000',
            'Monitor status this drive cycle': '<obd.OBDResponse.Status object at',
           'Control module voltage': '14.112',
            'Absolute load value': '24.705882352941178',
           'Commanded equivalence ratio': '0.999424',
            'Relative throttle position': '5.490196078431373',
            'Ambient air temperature': '48',
           'Absolute throttle position B': '16.07843137254902',
           'Accelerator pedal position D': '14.509803921568627',
           'Accelerator pedal position E': '7.0588235294117645',
            'Commanded throttle actuator': '7.0588235294117645',
           'Long term secondary O2 trim - Bank 1': '0.0',
           'Supported MIDs [01-20]': '110000000000000000000000000001',
           '02 Sensor Monitor Bank 1 - Sensor 1': 'Unknown: 0.592432 count',
            '02 Sensor Monitor Bank 1 - Sensor 2':
            'Rich to lean sensor threshold voltage: 743.59 millivolt [PASSED]\nLean to rich sensor threshold voltage: 743.59 millivolt [PASSED]\nRich to
ean sensor switch time : 20.0 millisecond [PASSED]\nMaximum sensor voltage for test cycle : 944.646 millivolt [PASSED]\nUnknown : 732.976 millivolt [PASSED]
nknown: 752.496 millivolt [PASSED]\nUnknown: 850.0 millisecond',
            'Supported MIDs [21-40]': '1000000000000000000000000111001',
            'Catalyst Monitor Bank 1': 'Unknown : 4716.0 count',
           'EVAP Monitor (0.040 )': 'Unknown : 3277.0 count',
            'EVAP Monitor (0.020 )': 'Unknown : 3912.0 count',
           'Purge Flow Monitor': 'Unknown : 0.0 count [PASSED] \nUnknown : -0.051545 count',
            'Supported MIDs [41-60]': '1100000000000000000000000000001',
           '02 Sensor Heater Monitor Bank 1 - Sensor 1': 'Unknown: 779.90000000000001 degC',
            'O2 Sensor Heater Monitor Bank 1 - Sensor 2': 'Unknown: 450.0 ohm'.
```

Unit.percent
Unit.celsius
Unit.percent
Unit.percent
Unit.percent
Unit.percent
Unit.kilopascal
Unit.kilopascal
Unit.rpm
Unit.kph
Unit.degree
Unit.celsius
Unit.grams_per_second
Unit.percent
string
special
Unit.volt
Unit.volt

Challenge 2: Async and Full Log

- Writing nodeJS middle-ware for full-log, live-data, and login was quite challenging.
- Had to connect user accounts with data read in dynamically by client program.
- Took more project time than expected

Challenge 3: Database

- PostgreSQL
- Users Table points to individual user tables
- Cars Table points to individual car tables

car0							
id	owner	data					
2	1						
†							

cars				
id				
2				

users					
name	id				
codehawk	1 📥				

Challenge 4: Javascript Widgets

- Used to visualize some of car data on home page
- Hard to interpret raw car data
- Lots of casting and converting
- Caused less overall widgets than planned

Final Product

http://198.23.146.166:3000/home

Skype Live Experience

Sponsored by Arby's

