Problem 1:

According to the equation

$$u_i = \left| \frac{C + c_i - \sum_{j=1}^n c_j}{c_i} \right|$$

We can get the upper bound for each $\,m_i$. Thus we may know how many devices (D_i) there can be at most in module $\,n$. And then we can transform this problem into a knapsack problem:

There are n kinds of object. The i th kind object consists of u_i objects whose value (performance) is $p_{i,k}=1-\left(1-r_i\right)^k$ and whose weight (cost) is $c_{i,k}^{'}=c_i\cdot k$, where $1\leq k\leq u_i$. The objects we can pick from looks like:

$$\begin{bmatrix} p_{1,k=1} \\ \dots \\ p_{1,k=u_2} \end{bmatrix}, \begin{bmatrix} p_{2,k=1} \\ \dots \\ p_{2,k=u_2} \end{bmatrix} \dots \begin{bmatrix} p_{i,k=1} \\ \dots \\ p_{i,k=u_i} \end{bmatrix} \dots \begin{bmatrix} p_{n,k=1} \\ \dots \\ p_{n,k=u_n} \end{bmatrix}$$

(Each column is the i th kind of objects)

We must pick one and only one of each kind object to our knapsack and try to maximum the value (performance) with the equation:

$$P_{\max} = \prod_{i=1}^{n} p_{i,k=m_i}$$

 \emph{m}_{i} is the number of device $\ \emph{D}_{i}$ in $\ \emph{i}$ th module which maximum system performance.

It is easy to see we can apply the theory of knapsack here: Suppose $P_{i,c}$ is the optimal solution for a system with i modules and cost constraint c, and P_{i,m_i} is the optimal performance for module i. Then $P_{i-1,c-c_i\cdot m_i}$ must be an optimal solution for a system with i-1 modules and cost constraint $c-c_i\cdot m_i$, as we can remove the ith module. In

other words, $P_{i,c} = p_{i,m_i} \cdot P_{i-1,c-c_i \cdot m_i}$, for some m_i .

Thus the decomposition equation will be

$$P_{i,c} = \begin{cases} 0 & c \leq c_i \cdot k \\ \max \left\{ p_{i,k} \left| 1 \leq k \leq u_i, c \geq c_i \cdot k \right. \right\} & i = 0 \\ \max \left\{ p_{i,k} \cdot P_{i-1,c-c_i \cdot k} \left| 1 \leq k \leq u_i, c \geq c_i \cdot k \right. \right\} & i \geq 1 \end{cases}$$

We can do the bottom-up algorithm by generating tables of all possible performances, which are sets of solutions to all possible sub-problems. Starting from the first module, we can calculate all $P_{1,c}$ where $1 \le c \le C$. Then for each module after the first one, we can get $P_{i,c}$ by applying the decomposition equation as we mentioned above. After all calculation is done, $P_{n,C}$ will be the optimal solution we are looking for.

So, define P[n-1][C] as the performance of module n with a cost of C here, the algorithm will be:

Where P[n-1][C] will be the final optimal solution

And we can see the time complexity of this algorithm is $O\left(C \cdot \sum_{i=1}^{n} u_i\right)$.

Problem 2: We can make sub-problem tables as following:

С	3	6	9	12	15
$p_{i,c}$	0.9	0.99	0.999	0.9999	0.99999

3

5

When n = 2 (start from n = 2, the table is generated based on the previous table)

C	8	11	13	16	19	21	24	27	30
$p_{i,c}$	0.7200	0.7920	0.8640	0.9504	0.9590	0.9821	0.9910	0.9919	0.9920
$m_{i,c}$	1	1	2	2	2	3	3	3	3

When n = 3

When n=1

 $m_{i,c}$

С	10	12	14	16	17	19	21	22	24	26	28	29
$p_{i,c}$	0.4320	0.6048	0.6739	0.7016	0.7413	0.8087	0.8419	0.8896	0.9261	0.9407	0.9465	0.9569
$m_{i,c}$	1	2	3	4	3	3	4	3	4	5	6	4

When n = 4

С	14	16	18	20	21	22	23	25	26	27	29	30
$p_{i,c}$	0.3672	0.5141	0.5728	0.5963	0.6301	0.6588	0.6874	0.7246	0.7561	0.7905	0.8229	0.8696
$m_{i,c}$	1	1	1	1	1	2	1	2	1	2	2	2

From the last column of the last table, we can see our optimal solution (maximal system performance) is 0.869559 , which also shows $\,m_4=2\,$

Tracing back by calculating $\ c = C - c_i \cdot m_i = 30 - 4 \times 2 = 22$, we can find $\ m_3 = 3$ from

table 3. Keep on digging, we will find $\, \, m_2 = 2 \,$ and $\, \, m_1 = 2 \, . \,$

To summarize, the maximum performance is 0.869559, when

$$m_1=2$$
 , $m_2=2$, $m_3=3$, $m_4=2$

```
#include "stdio.h"
#include "malloc.h"
#include "math.h"
// define NULL as 0
#define NULL 0
// input int array
void inputIntArray(int * arr, int n, char arrName) {
    int i=0;
    for (i=0;i<n;i++){</pre>
        printf("Please input %c(%d): ", arrName, i+1);
        scanf("%d", (arr+i));
    }
}
// intput double array
void inputDoubleArray(double * arr, int n, char arrName) {
    int i=0;
    for (i=0;i<n;i++){</pre>
        printf("Please input %c(%d): ", arrName, i+1);
        scanf("%lf", (arr+i));
    }
}
// output int array
void outIntArray(int* arr, int n, char arrName) {
    int i=0;
    for (i=0;i<n;i++)</pre>
        printf("%c(%d): %d\n", arrName, i+1, arr[i]);
}
// output double array
void outDoubleArray(double* arr, int n, char arrName) {
    int i=0;
    for (i=0;i<n;i++)</pre>
        printf("%c(%d): %1.21f\n", arrName, i+1, arr[i]);
}
// output formatted p(i) table
void outPiArrays(double **p, int **m, int n, int C) {
    int i=0,j=0;
```

```
for (i=0;i<n;i++) {</pre>
        printf("\nn=%d -----,i+1);
        printf("\nc");
        for (j=1;j<=C;j++)</pre>
            if (p[i][j]!=p[i][j-1])
                 printf("\t%d", j);
        printf("\np",i+1);
        for (j=1;j<=C;j++)</pre>
            if (p[i][j]!=p[i][j-1])
                 printf("\t%1.4lf",p[i][j]);
        printf("\nm");
        for (j=1;j<=C;j++)</pre>
            if (p[i][j]!=p[i][j-1])
                 printf("\t%d",m[i][j]);
    }
}
// generate u(i) table basing on C and c(i)
void calculateUi(int *u, int *c, int C, int n){
    int i=0, sumC=0;
    for (i=0;i<n;i++)</pre>
        sumC += c[i];
    // calculate U(i)
    for (i=0;i<n;i++)</pre>
        u[i]=(C+c[i]-sumC)/c[i];
}
int main(){
    int C,n,i,j,k,cost;
    int *c=NULL, *u=NULL, **m=NULL, *M=NULL;
    double *r=NULL,**P=NULL, finalP, p;
    puts("Please input the number of modules (n)");
    scanf("%d", &n);
    if (n<0) {</pre>
        puts("n CANNOT be EQUAL or LESS then zero!");
        getchar(); getchar();
        return 0;
    }
    // try to allocate memory before program start
    c = (int *)malloc(sizeof(int)*n);
                                          // c(i)
    r = (double *)malloc(sizeof(double)*n); // r(i)
```

```
u = (int *)malloc(sizeof(int)*n); // u(i)
    M = (int *)malloc(sizeof(int)*n); // stores final result of m(i)
    m = (int **)malloc(sizeof(int*)*n); // stores m(i) for p(i,c)
    P = (double **)malloc(sizeof(double*)*n); // p(i,c)
    // unable to allocate so many memory...
    if (c==NULL || r==NULL || M==NULL || m==NULL || P==NULL) {
        puts("Out of memory. Press any key to exit...");
        getchar(); getchar();
        return 0;
    }
    inputIntArray(c,n,'c');
    inputDoubleArray(r,n,'r');
    puts("Please input the cost constraint C");
    scanf("%d", &C);
    puts("Your input is :");
    printf("C=%d, n=%d\n", C, n);
    outIntArray(c,n,'c');
    outDoubleArray(r,n,'r');
    puts("Now calculating, please wait..");
    // now calculate u(i)
    calculateUi(u,c,C,n);
    outIntArray(u,n,'u');
    // check ui
    for (i=0;i<n;i++)</pre>
        if (u[i]<0) {</pre>
            printf("Wrong C or c(i). Causes u(%d) be %d. Unable to continue. Press
any key to exit...\n", i, u[i]);
            getchar(); getchar();
            return 0;
        }
    for (i = 0; i < n; i++) {
        P[i] = (double *)malloc(sizeof(double)*(C+1));
        m[i] = (int *)malloc(sizeof(int)*(C+1));
        for (j = 0; j <= C; j++) {
            P[i][j] = 0;// init the performance as 0
            m[i][j] = 0;
```

```
}
    for (j = 1; j <= C; j++)</pre>
        for (i=0; i < n; i++)</pre>
            for (k = 0; k < u[i]; k++) {
                cost = c[i] * k;// current module's cost
                if (cost <= j) {</pre>
                     p = 1 - pow(1-r[i],k); // performance
                     if (i>0)
                         p *= P[i-1][j-cost];// if this is not the first device, we
need to multiply the previous device's performance
                     if (p > P[i][j]) { // get a better answer
                         P[i][j] = p;// update p(i,j)
                         m[i][j] = k;// record m(i,j)
                     }
                }
    finalP = P[n-1][C];
    // seek the solution path m(i)
    for (i=n-1, cost=C;i>=0;i--) {
        M[i]= m[i][cost];
        cost -= c[i] * m[i][cost];
    }
    outPiArrays(P,m,n,C);
    printf("\n\nFinal Optimal solution:\n");
    outIntArray(M,n,'m');
    printf("\nMax. System Performance : %lf", finalP);
    // free resource
    for (i=0;i<n;i++) {</pre>
        free(P[i]);
        free(m[i]);
    }
    free(c); free(r); free(u); free(P); free(m); free(M);
    puts("\nPress ENTER to exit the program..");
    getchar(); getchar();
    return 0;
```