University of Salzburg

Machine Learning (911.236)

Exercise sheet **F**

Exercise 1. 6P.

We are going to do a (step-by-step) proof of an (empirical) Rademacher complexity bound for a **two-layer neural network**, i.e., functions of the form

$$f_{\theta} = \langle \mathbf{w}, \phi(\mathbf{U}\mathbf{x}) \rangle$$

with $U \in \mathbb{R}^{m \times d}$, $\mathbf{w} \in \mathbb{R}^m$ and $\mathbf{x} \in \mathbb{R}^d$. Here, $\phi(a) = \max(a, 0)$ will be the **ReLU** activation function (which operates component-wise on each dimension of **Ux**). In particular, our hypothesis class \mathcal{H} is

$$\mathcal{H} = \{ f_{\theta} : \|\mathbf{w}\|_{2} \le B, \forall j \in \{1, ..., m\} : \|\mathbf{u}_{j}\|_{2} \le C \}$$

where $\theta = (U, \mathbf{w})$ subsumes the parameters of the two-layer neural network. Also note that \mathbf{u}_j denotes the *j*-th column of U. You will start with the definition of empirical Rademacher complexity

$$\begin{split} \hat{\mathcal{R}}_{S}(\mathcal{H}) &= \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{\theta \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} f_{\theta}(\mathbf{x}_{i}) \right] \\ &= \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{\theta \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} \langle \mathbf{w}, \phi(\mathbf{U}\mathbf{x}_{i}) \rangle \right] \\ &= \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{\mathbf{U}: \|\mathbf{u}_{j}\|_{2} \leq B} \sup_{\|\mathbf{w}\|_{2} \leq C} \sum_{i=1}^{n} \sigma_{i} \langle \mathbf{w}, \phi(\mathbf{U}\mathbf{x}_{i}) \right] \end{split}$$

In the next step(s), you (1) write the summation term as an inner product of \mathbf{w} and $\sum_i \ldots$ and (2) bound that inner product (and thus the whole expression) using the Cauchy-Schwartz inequality (as we did in the previous PS). This should allow you to eliminate one of the supremums. Next, (3) use $\|\mathbf{v}\|_2 \leq \sqrt{m} \|\mathbf{v}\|_{\infty}$ for $\mathbf{v} \in \mathbb{R}^m$ to bound the $\|\cdot\|_2$ norm (via the $\|\cdot\|_{\infty}$ norm) and (4) replace $\|\cdot\|_{\infty}$ by its definition. Overall, completing steps (1)–(4) will get you to

$$\cdots \leq \frac{B\sqrt{m}}{n} \mathbb{E}_{\sigma} \left[\sup_{\|\mathbf{u}\|_{2} \leq C} \left| \sum_{i=1}^{n} \sigma_{i} \phi(\mathbf{u}^{\mathsf{T}} \mathbf{x}_{i}) \right| \right]$$
 (1)

Lemma 1. Let $\sigma = (\sigma_1, ..., \sigma_n)$ be Rademacher variables (i.e., $\sigma_i \sim Uniform(\{\pm 1\})$), then

$$\mathbb{E}_{\sigma} \left[\sup_{\theta} \left| \sum_{i=1}^{n} \sigma_{i} f_{\theta}(\mathbf{x}_{i}) \right| \right] \leq 2 \mathbb{E}_{\sigma} \left[\sum_{i=1}^{n} \sigma_{i} f_{\theta}(\mathbf{x}_{i}) \right]$$

In step (5), use Lemma 1 to bound Eq. (1).

Lemma 2 (Contraction). For each $i \in \{1, ..., m\}$ let $\phi_i : \mathbb{R} \to \mathbb{R}$ be a ρ -Lipschitz function; namely, for all $\alpha, \beta \in \mathbb{R}$ we have $|\phi_i(\alpha) - \phi_i(\beta)| \le \rho |\alpha - \beta|$. For $\mathbf{a} \in \mathbb{R}^m$ let $\phi(\mathbf{a})$ denote $(\phi(a_1), ..., \phi(a_m))$ and let $\phi \circ A = \{\phi(\mathbf{a}) : \mathbf{a} \in A\}$. Then

$$\hat{\mathcal{R}}_S(\phi \circ A) \le \rho \hat{\mathcal{R}}_S(A) \ .$$

Finally, (6) use Lemma 2, knowing that ReLU is 1-Lipschitz, and (7) complete the bound by using our result empirical Rademacher complexity bound for linear classes from the previous PS. For completeness, there we had $\mathcal{G} = \{\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{w} \rangle : \|\mathbf{w}\|_2 \le 1\}$ and $\hat{\mathcal{R}}_S(\mathcal{G}) \le \max_i \|\mathbf{x}_i\|_2 1/\sqrt{n}$.

Lecturer: Roland Kwitt