Serial No. 09/806,801, filed April 4, 2001 Docket No. 1103326-0659 Page 2 of 10

Amendments to the Claims

The following listing of claims will replace all prior versions and listings of claims in the application.

- 1. (Currently amended) An apparatus for use in analysing [solid] pharmaceutical samples, comprising:
 - (a) means for feeding one or more [solid] samples through at least one predetermined analysing position, wherein at least one measuring radiation beam irradiates the sample when the sample is located in the analysing position; and
 - (b) means for temporarily fixing the sample in the analysing position, wherein the fixing means comprises a first and a second holding part, [arranged at the analysing position,] wherein the first holding part defines a first aperture in said first holding part, and the second holding part defines a second aperture in said second holding part, and the first and second apertures together define an effective optical aperture in the closed position, and; wherein [, at the analysing position,] the holding parts open at the analysing position to receive the sample from the feeding means and close at the analysing position for analysis [are adapted to move between an open position when the sample is provided for analysis, and a closed position when the sample is analysed; and wherein the first and second apertures together define an effective optical aperture in the closed position].
- (Previously presented) The apparatus according to claim 1 or 27, wherein the first and second holding parts are located on opposite sides of the sample when in the closed position.
- (Previously presented) The apparatus according to claim 1 or 27, wherein the first and second holding parts do not contact the sample in the open position.
- 4. (Cancelled)
- 5. (Cancelled)

Serial No. 09/806,801, filed April 4, 2001 Docket No. 1103326-0659 Page 3 of 10

- 6. (Previously presented) The apparatus according to claim 1 or 27, wherein the first and second holding parts each define a first and second compartment which together define a predetermined volume.
- 7. (Previously presented) The apparatus according to claim 1 or 27, wherein the means for feeding samples through the analysing position comprises at least one pre-alignment means for receiving and holding a sample during transport of the sample to the analysing position.
- 8. (Previously presented) The apparatus according to claim 7, wherein the pre-alignment means comprises an elastically compressible member for flexibly engaging the sample.
- 9. (Previously presented) The apparatus according to claim 8, wherein the elastically compressible member is an elastically compressible ring which in an uncompressed state has an inner dimension which is slightly smaller than an outer dimension of the sample.
- 10. (Previously presented) The apparatus according to claim 7, wherein the pre-alignment means comprises a spring-loaded arm for embracing the sample.
- 11. (Previously presented) The apparatus according to claim 10, wherein the spring-loaded arm and a part of the feeding means are provided with an indentation for receiving the sample.
- 12. (Previously presented) The apparatus according to claim 1 or 27, wherein the means for feeding samples through the analysing position is a rotating feeder wheel comprising at least one pre-alignment means for receiving at least one sample.
- 13. (Previously presented) The apparatus according to claim 12, wherein the rotating feeder wheel is connected to a sample receiver which provides the feeder wheel with samples to be analysed.
- 14. (Previously presented) The apparatus according to claim 13, wherein the sample receiver is an on-line sample receiver which provides the pre-alignment means with samples.

Serial No. 09/806,801, filed April 4, 2001 Docket No. 1103326-0659

Page 4 of 10

- 15. (Previously presented) The apparatus according to claim 13, wherein the sample receiver is an at-line sample receiver which provides the pre-alignment means with samples.
- 16. (Previously presented) The apparatus according to claim 15, wherein the at-line sample receiver comprises a conical rotating part defining the bottom of an open vessel with cylindrical geometry, wherein samples fall upon the conical rotating part to be sequentially aligned before entering the pre-alignment means in the feeder wheel.
- 17. (Previously presented) The apparatus according to claim 1 or 27, wherein the sample is a solid dosage form.
- 18. (Currently amended) A method for presenting [solid] pharmaceutical samples to the apparatus according to claim 1, the method comprising the steps of:
 - (a) feeding a [solid] sample to the holding parts which are open at the analysing position for receiving the sample from the feeding means;
 - (b) temporarily fixing the sample at the analysing position in a closed fixing position by closing the first and second holding parts; and
 - (c) moving the first and second holding parts to an open position to allow the sample to be transported to an ejecting position.
- 19. (Previously presented) The method according to claim 18 or 28, wherein a measurement is performed by irradiating the sample with at least one measuring radiation beam while the sample is being temporarily fixed in the analysing position.
- 20. (Previously presented) The method according to claim 19, wherein the measurement is an optical measurement.
- 21 (Previously presented) The method according to claim 20, wherein the optical measurement is carried out by means of one or more spectroscopic methods selected from the group consisting of near-infrared (NIR) spectrometry, Raman scattering spectrometry, absorption in the UV, visible, or infra-red (IR) wavelength regions, luminescence spectrometry, fluorescence spectrometry, and X-ray spectrometry.

Serial No. 09/806,801, filed April 4, 2001 Docket No. 1103326-0659

Page 5 of 10

- 22. (Previously presented) The method according to claim 21, wherein the optical measurement is carried out by means of one or more spectroscopic imaging methods selected from the group consisting of near-infrared (NTR) spectrometric imaging, Raman scattering spectrometric imaging, imaging based on absorption in the UV, visible, or infra-red (TR) wavelength regions, luminescence spectrometric imaging, fluorescence spectrometric imaging, and X-ray spectrometric imaging.
- 23. (Previously presented) The method according to claim 19, wherein the radiation beam is a microwave beam.
- 24. (Cancelled)
- 25. (Previously presented) The apparatus according to claim 14, wherein the sample receiver is a transport line connected on-line to an instrument which performs a tabletting process.
- 26. (Previously presented) The apparatus according to claim 17, wherein the dosage form is a tablet, pellet, or capsule.
- 27. (Currently amended) An apparatus for use in analysing [solid] pharmaceutical samples, comprising:
 - -(a) means for feeding one or more [solid] samples through at least one predetermined analysing position, wherein at least one measuring radiation beam irradiates the sample when the sample is located in the analysing position; and
 - (b) means for temporarily fixing the sample in the analysing position, wherein the fixing means comprises a first and a second holding part, and [arranged at the analysing position, and]

wherein [at the analysing position,] the holding parts open at the analysing position to receive the sample from the feeding means and close at the analysing position for analysis [are adapted to move between an open position when the sample is provided for analysis, and a closed position when the sample is analysed].

Serial No. 09/806,801, filed April 4, 2001 Docket No. 1103326-0659 Page 6 of 10

- 28. (Currently amended) A method for presenting pharmaceutical samples to the apparatus according to claim 27, the method comprising the steps of:
 - (a) feeding a [solid] sample to the holding parts which are open at the analysing position for receiving the sample from the feeding means;
 - (b) temporarily fixing the received sample at the analysing position by closing the first and second holding parts; and
 - (c) moving the first and second holding parts to an open position to allow the sample to be transported to an ejecting position.