Афинни координатни системи

Координати спрямо базис в линейно пространство (припомняне от алгебрата)

Нека V е n-мерно реално линейно пространство и $e = (e_1, \dots, e_n)$ е базис на V.

Определение 1 Нека $v \in V$. Тогава v се представя по единствен начин като линейна комбинация на базисните вектори: $v = \lambda_1 e_1 + \dots + \lambda_n e_n$. Коефициентите $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ в тая линейна комбинация се наричат *координати на v спрямо базиса* $e = (e_1, \dots, e_n)$. Пишем $v(\lambda_1, \dots, \lambda_n)$.

Векторът $\lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathbb{R}^n$ се нарича *координатен вектор на v спрямо е*. За i=1 — n функцията.

$$x_i:V o\mathbb{R}:\quad v\mapsto i$$
-тата координата на $v\ (=\lambda_i)$

се нарича i-та координатна функция, съответна на базиса e. (И следователно имаме $v=\sum_{i=1}^n x_i(v)e_i$.)

Изображението

$$x:V\to\mathbb{R}^n:\quad v\mapsto$$
 координатния вектор на $v\ (=\lambda),\qquad$ тоест $\quad x=\begin{pmatrix} x_1\\ \vdots\\ x_n\end{pmatrix}$

се нарича координатно изображение, съответно на базиса е или (поради Твърдение 1 по-долу) координатен изоморфизъм, съответен на базиса е.

Забележка 1 Разглеждайки $e=(e_1,\ldots,e_n)$ като ред, а $\lambda=\begin{pmatrix}\lambda_1\\\vdots\\\lambda_n\end{pmatrix}$ като стълб и счи-

тайки, че вектор може да се умножава с число отдясно, получаваме, че равенството

$$v = \lambda_1 e_1 + \dots + \lambda_n e_n$$
 може да се запише в матричен вид като $v = (e_1, \dots, e_n) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$,

тоест $v=e.\lambda$, тоест v=e.x(v). Следователно координатното изображение се задава с $x(e.\lambda)=\lambda$.

Пример 1 $x(0) = 0 \in \mathbb{R}^n$.

Пример 2 Нека $e^0 = (e_1^0, \dots, e_n^0)$ е стандартният базис на \mathbb{R}^n , тоест

$$e_i^0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i , \quad i = 1, \dots, n$$

(i-тата компонента на e_i^0 е 1, всички останали са 0). Тогава за $a=\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}\in\mathbb{R}^n$ имаме

 $a = a_1 e_1^0 + \dots + a_n e_n^0$. Следователно координатите спрямо стандартния базис са си компонентите на вектора. В частност, координатното изображение $x^0 : \mathbb{R}^n \to \mathbb{R}^n$ е $x^0(a) = a$, тоест x^0 е тъждественото изображение на \mathbb{R}^n .

Твърдение 1 Координатните функции $x_1, \ldots, x_n : V \to \mathbb{R}$ са линейни изображения. Координатното изображение $x : V \to \mathbb{R}^n$ е линеен изоморфизъм.

Забележка 2 В направеното по-горе не се използват никакви специфични свойства на полето на реалните числа, така че то важи и за линейни пространства над произволно поле F — навсякъде вместо $\mathbb R$ се пише F, тоест вместо реални числа се взимат елементи на F.

Афинни координатни системи

Нека A е n-мерно афинно пространство, моделирано върху линейното пространство V.

Определение 2 Афинна координатна система K в A е двойка, състояща се от точка $O \in A$ и базис $e = (e_1, \ldots, e_n)$ на V. Пишем $K = Oe_1 \ldots e_n$. Точката O се нарича начало на координатната система, а e_1, \ldots, e_n – координатни или базисни вектори.

Определение 3 Нека $K = Oe_1 \dots e_n$ е афинна координатна система в A и $P \in A$. Koopdunamu на P спрямо K се наричат координатите на вектора \overrightarrow{OP} спрямо базиса $e = (e_1, \dots, e_n)$, тоест координатите на P спрямо K са $\lambda_1, \dots, \lambda_n \Leftrightarrow \overrightarrow{OP} = \lambda_1 e_1 + \dots + \lambda_n e_n$. Пишем $P(\lambda_1, \dots, \lambda_n)$.

(Векторът $\overrightarrow{OP} \in V$ се нарича paduyc-вектор на P спрямо K.)

Векторът
$$\lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = x \left(\overrightarrow{OP}\right) \in \mathbb{R}^n$$
, където x е координатният изоморфизъм, съотве-

тен на базиса e, се нарича $\kappa oop \partial u$ натен вектор на P спрямо K . За $i=1,\ldots,n$ функцията

$$x_i:A o\mathbb{R}:\quad P\mapsto i$$
-тата координата на $P\ (=\lambda_i=x_i\left(\overrightarrow{OP}
ight)),$

където дясното x_i е i-тата координатна функция, съответна на базиса e, се нарича i-та координатна функция, съответна на координатната система K. (И следователно имаме $P(x_1(P), \ldots, x_n(P))$.) Изображението

$$x:A \to \mathbb{R}^n: \quad P \mapsto$$
 координатния вектор на $P \ (=\lambda), \quad$ тоест $x(P) = x \left(\overrightarrow{OP}\right),$

където дясното x е координатният изоморфизъм, съответен на базиса e, се нарича κ оординатно изображение съответно на κ оординатната система K.

Ако $v \in V$ е вектор, то под координати на v спрямо K ще разбираме координатите на v спрямо базиса $e = (e_1, \ldots, e_n)$.

Забележка 3 В горното определение означихме с x и съответния на базиса e координатен изоморфизъм $V \to \mathbb{R}^n$, и съответното на координатната система K координатно изображение $A \to \mathbb{R}^n$. Обикновено няма опасност от объркване, защото аргументите в първия случай са вектори от V, а във втория случай — точки от A. А и използването на едно и също означение е в съзвучие и с уговорката накрая на определението, че под координати на вектор относно K се разбират координатите му относно e. В случай, че има опасност от объркване, можем да слагаме индекси съответно e и K, тоест съответния на базиса e координатен изоморфизъм да е $x_e: V \to \mathbb{R}$, а съответното на координатната система K координатно изображение да е $x_K: A \to \mathbb{R}^n$.

Забележка 4 Вместо $K = Oe_1 \dots e_n$ често се пише $K = Ox_1 \dots x_n$.

Правата през началото O, която е успоредна на i-тия координатен вектор e_i и е ориентирана с e_i , се нарича i-тия координатна ос и се означава често с Ox_i .

(Ос е ориентирана права.)

Когато размерността на афинното пространство е малка, често координатите се означават с x, y, z вместо с x_1, x_2, x_3 .

Оста Ox_1 (или Ox, ако първата координата е означена с x) се нарича abcuucha oc, а координатата x_1 (или x) — abcuuca.

При $n \ge 2$ оста Ox_2 (или Oy, ако втората координата е означена с y) се нарича $op \partial u$ натна oc, а координатата x_2 (или y) — $op \partial u$ ната.

При n=3 оста Ox_3 (или Oz, ако третата координата е означена със z) се нарича $anликаmнa\ oc$, а координатата x_3 (или z) — anликama.

Пример 3 $x(O) = 0 \in \mathbb{R}^n$.

Пример 4 Нека A = V, тоест разглеждаме линейното пространство V като афинно пространство. Ако началото на K е O = 0 – нулевият вектор на V, то $x_K(P) = x_e(P)$. Ако началото O на K е произволно, то $x_K(P) = x_e(P) - x_e(O)$.

Пример 5 Нека $K^0 = 0e_1^0 \dots e_n^0$ е *стандартната координатна система в* \mathbb{R}^n , тоест началото е нулевият вектор на \mathbb{R}^n , а $e^0 = (e_1^0, \dots, e_n^0)$ е стандартният базис на \mathbb{R}^n . Тогава за $a \in \mathbb{R}^n$ имаме x(a) = a, тоест координатното изображение съответно на K^0 е тъждественото изображение на \mathbb{R}^n . В частност, координатите спрямо стандартната координатна система на \mathbb{R}^n на точката $a \in \mathbb{R}^n$ са си компонентите на a.

Теорема 1 Нека координатните вектори спрямо K на точките $P,Q \in A$ са съответно $a,b \in \mathbb{R}^n$. Тогава координатният вектор спрямо e на вектора $\overrightarrow{PQ} \in V$ e b-a, тоест $x\left(\overrightarrow{PQ}\right) = x(Q) - x(P)$.

Твърдение 2 Координатното изображение $x: A \to \mathbb{R}^n$ е биекция.

Забележка 5 В горните неща никъде не се използват някакви специфични свойства на полето на реалните числа, така че всичко важи без промяна и ако вместо $\mathbb R$ се вземе произволно поле F, тоест ако V е линейно пространство над произволно поле.

Ориентирани координатни системи

Определение 4 Афинна координатна система в ориентирано афинно пространство се нарича *положително ориентирана* или *дясна* (съответно *отрицателно ориентирана* или *лява*), ако координатният базис е положително (съответно отрицателно) ориентиран.

Пример 6 В \mathbb{R}^n , разглеждано като афинно пространство, имаме стандартната ориентация (зададена от стандартния базис). Спрямо нея стандартната афинна координатна система в \mathbb{R}^n е положително ориентирана.

Ортонормирани координатни системи

Нека A е n-мерно евклидово афинно пространство, моделирано върху линейното пространство U (и следователно U е евклидово линейно пространство).

Определение 5 Афинната координатна система $K = Oe_1 \dots e_n$ се нарича *ортонормирана*, когато координатният базис $e = (e_1, \dots, e_n)$ е ортонормиран.

Пример 7 В \mathbb{R}^n , разглеждано като афинно пространство, стандартната афинна координатна система е ортонормирана.

Теорема 2 Нека $K = Oe_1 \dots e_n$ е ортонормирана координатна система и спрямо нея точките $P, Q \in A$ имат координати $P(a_1, \dots, a_n), Q(b_1, \dots, b_n)$. Тогава

$$|PQ| = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}, \quad moecm |PQ| = \sqrt{\sum_{i=1}^{n} (x_i(Q) - x_i(P))^2}.$$