Basics of the Periodic Table

1. History and Development

- Dmitri Mendeleev (1869):
 - Mendeleev is credited with creating the first version of the periodic table.
 - He arranged the 63 known elements by increasing atomic mass and grouped them based on similar chemical properties.
 - His table had gaps where he predicted the existence and properties of elements yet to be discovered (e.g., scandium, gallium, and germanium).

 Mendeleev's periodic law stated: "The properties of elements are a periodic function of their atomic masses."

• Henry Moseley (1913):

- Moseley, through X-ray spectroscopy, discovered that elements are more accurately arranged by atomic number (proton number) rather than atomic mass.
- He formulated Moseley's Law, which resolved anomalies in Mendeleev's table, such as the positioning of iodine and tellurium.
- His work established the modern periodic law and led to the modern arrangement of the periodic table.

2. Periodic Law

 Mendeleev's Periodic Law: "The properties of the elements are periodic functions of their atomic masses."

Modern Periodic Law (Moseley's Periodic Law):

"The properties of the elements are periodic functions of their atomic numbers."

 The modern periodic table arranges elements by increasing atomic number, which determines the chemical properties of the elements.

3. Structure of the Modern Periodic Table

• Periods:

- Horizontal rows in the periodic table.
- There are 7 periods, each corresponding to the number of electron shells.

• Groups:

- Vertical columns, also known as families.
- There are 18 groups, and elements in the same group have similar chemical properties due to having the same number of valence electrons.

Blocks:

- The table is divided into four blocks (s, p, d, f) based on the electron configuration of the elements.
- os-block: Groups 1 and 2 (alkali metals and alkaline earth metals).
- p-block: Groups 13 to 18 (includes metalloids, non-metals, and noble gases).
- od-block: Groups 3 to 12 (transition metals).
- o **f-block**: Lanthanides and actinides (inner transition metals).

4. Periodic Trends

• Atomic Radius:

- Decreases across a period (left to right) due to increasing nuclear charge, which pulls electrons closer to the nucleus.
- Increases down a group as additional electron shells are added.

Ionization Energy:

- Increases across a period due to stronger attraction between the nucleus and electrons.
- Decreases down a group because outer electrons are farther from the nucleus and more shielded by inner electrons.

• Electronegativity:

- Increases across a period as the nuclear charge increases, making atoms more likely to attract electrons.
- Decreases down a group as the distance between the nucleus and the outermost electrons increases.

• Electron Affinity:

 Generally becomes more negative across a period, indicating that atoms more readily gain electrons. Becomes less negative down a group due to the increased distance between the nucleus and the added electron.

5. Significance of the Periodic Table

- Predictive Power: The periodic table predicts the chemical and physical properties of elements and their compounds.
- Organization: Elements are systematically organized, making it easier to study and understand their behavior.
- Discovery of Elements: The periodic table has guided the discovery of new elements and the confirmation of their properties.
- Chemical Behavior: Helps in understanding chemical reactions and bonding patterns.