Általános információk, a diplomaterv szerkezete

A diplomatery szerkezete a BME Villamosmérnöki és Informatikai Karán:

- 1. Diplomaterv feladatkiírás
- 2. Címoldal
- 3. Tartalomjegyzék
- 4. A diplomatervező nyilatkozata az önálló munkáról és az elektronikus adatok kezeléséről
- 5. Tartalmi összefoglaló magyarul és angolul
- 6. Bevezetés: a feladat értelmezése, a tervezés célja, a feladat indokoltsága, a diplomaterv felépítésének rövid összefoglalása
- 7. A feladatkiírás pontosítása és részletes elemzése
- 8. Előzmények (irodalomkutatás, hasonló alkotások), az ezekből levonható következtetések
- 9. A tervezés részletes leírása, a döntési lehetőségek értékelése és a választott megoldások indoklása
- 10. A megtervezett műszaki alkotás értékelése, kritikai elemzése, továbbfejlesztési lehetőségek
- 11. Esetleges köszönetnyilvánítások
- 12. Részletes és pontos irodalomjegyzék
- 13. Függelék(ek)

Felhasználható a következő oldaltól kezdődő LATEXdiplomatervsablon dokumentum tartalma.

A diplomaterv szabványos méretű A4-es lapokra kerüljön. Az oldalak tükörmargóval készüljenek (mindenhol 2,5 cm, baloldalon 1 cm-es kötéssel). Az alapértelmezett betűkészlet a 12 pontos Times New Roman, másfeles sorközzel, de ettől kismértékben el lehet térni, ill. más betűtípus használata is megengedett.

Minden oldalon – az első négy szerkezeti elem kivételével – szerepelnie kell az oldalszámnak.

A fejezeteket decimális beosztással kell ellátni. Az ábrákat a megfelelő helyre be kell illeszteni, fejezetenként decimális számmal és kifejező címmel kell ellátni. A fejezeteket decimális aláosztással számozzuk, maximálisan 3 aláosztás mélységben (pl. 2.3.4.1.). Az ábrákat, táblázatokat és képleteket célszerű fejezetenként külön számozni (pl. 2.4. ábra, 4.2. táblázat vagy képletnél (3.2)). A fejezetcímeket igazítsuk balra, a normál szövegnél viszont használjunk sorkiegyenlítést. Az ábrákat, táblázatokat és a hozzájuk tartozó címet igazítsuk középre. A cím a jelölt rész alatt helyezkedjen el.

A képeket lehetőleg rajzoló programmal készítsék el, az egyenleteket egyenlet-szerkesztő segítségével írják le (A LATEX ehhez kézenfekvő megoldásokat nyújt).

Az irodalomjegyzék szövegközi hivatkozása történhet sorszámozva (ez a preferált megoldás) vagy a Harvard-rendszerben (a szerző és az évszám megadásával). A teljes lista névsor szerinti sorrendben a szöveg végén szerepeljen (sorszámozott irodalmi hivatkozások esetén hivatkozási sorrendben). A szakirodalmi források címeit azonban mindig az eredeti nyelven kell megadni, esetleg zárójelben a fordítással. A listában szereplő valamennyi publikációra hivatkozni kell a szövegben (a LATEX-sablon a BibTEX segítségével mindezt automatikusan kezeli). Minden publikáció a szerzők után a következő adatok szerepelnek: folyórirat cikkeknél a pontos cím, a folyórirat címe, évfolyam, szám, oldalszám tól-ig. A folyóriratok címét csak akkor rövidítsük, ha azok nagyon közismertek vagy nagyon hosszúak. Internetes hivatkozások megadásakor fontos, hogy az elérési út előtt megadjuk az oldal tulajdonosát és tartalmát (mivel a link egy idő után akár elérhetetlenné is válhat), valamint az elérés időpontját.

Fontos:

- A szakdolgozatkészítő / diplomatervező nyilatkozata (a jelen sablonban szereplő szövegtartalommal) kötelező előírás, Karunkon ennek hiányában a szakdolgozat/diplomaterv nem bírálható és nem védhető!
- Mind a dolgozat, mind a melléklet maximálisan 15 MB méretű lehet!

Jó munkát, sikeres szakdolgozatkészítést, ill. diplomatervezést kívánunk!

FELADATKIÍRÁS

A feladatkiírást a tanszéki adminisztrációban lehet átvenni, és a leadott munkába eredeti, tanszéki pecséttel ellátott és a tanszékvezető által aláírt lapot kell belefűzni (ezen oldal helyett, ez az oldal csak útmutatás). Az elektronikusan feltöltött dolgozatban már nem kell beleszerkeszteni ezt a feladatkiírást.

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Control Engineering and Information Technology

Comparison of convolution and transformer-based image processing neural networks

BACHELOR'S THESIS

Author István Péter

Advisor dr. Bálint Kiss Ádám Gyula Nemes

Contents

Kivonat				
\mathbf{A}	bstra	ct	ii	
1	Intr	roduction	1	
	1.1	The field of Computer Vision	1	
	1.2	Object Detection	1	
	1.3	My Goal	1	
2	Ove	erview of the Literature	2	
	2.1	YOLO: You Only Look Once	2	
		2.1.1 Implementation details	2	
	2.2	DETR: The Detection Transformer	2	
		2.2.1 The Transformer in Natural Language Processing	2	
		2.2.1.1 Multi	3	
		2.2.1.2 What is the difference between a neural layer and the attention?	3	
		2.2.2 DETR	3	
		2.2.3 Explainability	3	
	2.3	Comparison	3	
3	Pra	ctical Applications: Training on a Specific Task	4	
	3.1	The datasets covered	4	
	3.2	Training via Transfer Learning	4	
		3.2.1 DETR	4	
4	Hig	her-order Applications: Multi Object Tracking	5	
	4.1	Multi Object Tracking Metrics	5	
Bibliography				

HALLGATÓI NYILATKOZAT

Alulírott *Péter István*, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2022. november 27.	
	$P\'eter~Istv\'an$
	hallgató

Kivonat

Jelen dokumentum egy diplomaterv sablon, amely formai keretet ad a BME Villamosmérnöki és Informatikai Karán végző hallgatók által elkészítendő szakdolgozatnak és diplomatervnek. A sablon használata opcionális. Ez a sablon IATEX alapú, a TeXLive TEX-implementációval és a PDF-IATEX fordítóval működőképes.

Abstract

This document is a LATeX-based skeleton for BSc/MSc theses of students at the Electrical Engineering and Informatics Faculty, Budapest University of Technology and Economics. The usage of this skeleton is optional. It has been tested with the TeXLive TeX implementation, and it requires the PDF-LATeX compiler.

Introduction

A bevezető tartalmazza a diplomaterv-kiírás elemzését, történelmi előzményeit, a feladat indokoltságát (a motiváció leírását), az eddigi megoldásokat, és ennek tükrében a hallgató megoldásának összefoglalását.

A bevezető szokás szerint a diplomaterv felépítésével záródik, azaz annak rövid leírásával, hogy melyik fejezet mivel foglalkozik.

1.1 The field of Computer Vision

Computer Vision is a branch of Artificial Intelligence aimed at deducting higher-order information from visual input like images, videos, or more specialised sensor data like LI-DAR point clouds etc. Some individual tasks in Computer Vision are image classification, object detection, segmentation, pose estimation of specific entities etc.

1.2 Object Detection

Blah Blah

1.3 My Goal

My goal in this thesis is to give an overview of the differences between already estabilished Fully Convolutional Neural Networks (FCN) compared to upcoming Transformer-based architectures in the task of Object Detection. In the former, i restrict myself to single-stage detectors, namely the YOLO architecture.

Overview of the Literature

In this chapter I am going to review the theoretical background for the two competing paradigms I cover: the fully convolutional, one-stage detector, whose most prominent variant is the You Only Look Once (YOLO) architecture, and the Transformer-based Detectection Transformer (DETR). For the former, I will explain in some detail chosing it over its competitors of the same kind, for example the Single Shot Detector (SSD).

In the case of the Tranformer-based category, I chose, for the sake of simplicity, the DETR architecture over its later successors, like DINO or Deformable DETR. The changes introduced in **its paper (insert citation)** are important enough to be discussed on their own, but I will mention the improvements achieved by the successors whenever the state-of-the-art is concerned.

Likewise, I have chosen the YOLOv5 for in-depth comparison as the DETR's counterpart, mainly because it is a contemporary of the latter (both being introduced in 2020), but mentioning the latest improvements introduced by YOLOv7 as well.

2.1 YOLO: You Only Look Once

2.1.1 Implementation details

2.2 DETR: The Detection Transformer

2.2.1 The Transformer in Natural Language Processing

The Transformer architecture has been introduced in the *Attention is All You Need* [1] paper in 2017, originally intended for Natural Language Processing (NLP) tasks, more specifically sequence transduction problems, like translation.

At the time, the attention mechanism and some variants of the encoder-decoder architecture was already widely used in the state-of-the-art, along with convolutional layers, Long Short Term Memory (LSTM) cells or Gated Recurrent Units (GRU). The Transformer was a successful attempt at replacing the latter three with trainable versions of the attention mechanisms called *Multi-Head Attention*.

In the Transformer model, the bulk of the learning happens at the weights of the linear transformations that estabilish the **heads** of the Attention layers, as the Attention layer itself does only mathematical operations on its input.

The article mentions that attention mechanisms and encoder-decoder based architectures have already been used at the time in the state-of-the art models. The novelty of the Transformer was getting rid of the convolutional, or traditionally recurrent components, and relying almost solely on the attention mechanism, namely a slightly modified version of it: the *multi-head self-attention*.

2.2.1.1 Multi

2.2.1.2 What is the difference between a neural layer and the attention?

2.2.2 DETR

The main advantage of the Detection Transformer is its capacity for every region to attend to every other region. In the fully convolutional case, this is done with hierarchical convolutions that together define large *receptive fields*.

2.2.3 Explainability

2.3 Comparison

Practical Applications: Training on a Specific Task

- 3.1 The datasets covered
- 3.2 Training via Transfer Learning
- 3.2.1 DETR

Higher-order Applications: Multi Object Tracking

4.1 Multi Object Tracking Metrics

Bibliography

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.