CSIR-Summer Research Training Program (SRTP)-2020

By

Debasis D. Mohanty, Ph.D.
Assistant Professor, Scientist C
Geo Sciences and Technology Division,
CSIR-NEIST Jorhat, Assam
debasis@neist.res.in

Frequency-Magnitude Distribution

Average number of earthquakes per year

The global distribution of earthquakes

Level	Richter Magnitude	Frequency/Year
Great	+8.0	1
Major	7.0-7.9	18
Destructive	6.0-6.9	120
Moderate	5.0-5.9	1000
Minor	4.0-4.9	6000
Generally Felt	3.0-3.9	49000
Potentially Perceptible	2.0-2.9	300,000
Imperceptible	<2.0	+600,000

Basics of Frequency-Magnitude Distribution

➤ The Gutenberg–Richter relation (Gutenberg and Richter, 1944) is one of the well known empirical relations in seismology.

log10 N = a - bM

➤ It is the robust method in understanding the plate dynamics and assessing the earthquake hazard analyses.

The global Gutenber-Ritcher Frequency-Magnitude distribution 1976-2005 Global CMT catalog

 Log_{10} probability of earthquake occurrence, $M_W > 5.8$ eq/day $(100 km)^2$

Kagan and Jackson (2014)

- ✓ a is the productivity
- ✓ b is the b-value
- ✓ N is the number of earthquakes per year of magnitude M

Sepideh Karimi and Dario Baturan, 2018

Spatio-temporal variation of b-value

b-Value Estimation

✓ The Least-Square Fit Method:

The log values of the cumulative number of earthquakes (N) are plotted against magnitude (M).

✓ The Maximum Likelihood Method:

The maximum likelihood estimate of b-value is given by Aki (1965) – b = $log_{10}e/M-M_0$

Case study of variability of b-value with location

Global Scenario of b-value

Continental Rift- b-value is related to the state of stress of a region

Depth slices of b-value for Afar Rifts (Including Red Sea and Gulf of Aden); at depth of (a) 12 km (b) 28kM. (Lamessa et al., 2019)

Evolution of b-value with seismic cycle on a simulated fault

Shear stress and b-value evolution as a function of time during the transition between stick—slip, at 4 MPa, irregular stick—slip, at 3 MPa and stable sliding at 2 MPa. (*Rivière et al.*, 2017).

Subduction Zone-b-value depends on state of stress and faulting style

Mexico Subduction zone. Color indicates the segmentation (R1 to R15) used to study spatial *b*-value depth variations. Stars show the epicentral location of the 8 and 19 September 2017 normal-faulting intraplate events. (*Pérez and Zuñiga*, 2018)

Seismo-tectonics and b-value study in Indian context

Indo-Burmese Wedge

28.5 - [ded] 28 - 27.5 - 27.5 - 27.5

Central and North-East India

- High b-value- low stressed region; small to moderate earthquakes.
- Low b-value- high stressed; moderate to large earthquakes

Longitude [deg]

Kumar and Sharma, 2019

Continuous fall of b-value for over a decade just before the Nepal earthquake

THANK YOU