Regularization

To Address Overfitting

Flexibility of High-Order Polynomials

$$y_i = w_0 + w_1 x_i + w_2 x_i^2 + ... + w_p x_i^p + \varepsilon_i$$

Desired Total Cost Format

We want to balance the following:

- a) How well function fits the data
- b) Magnitude of coefficients

Total cost

= measure of fit + measure of magnitude of coefficients

Small number indicates

= good fit to training data + reduce overfitting

Measure of Magnitude of Regression Coefficient

What summary number is indicative of size of regression coefficients?

- A. Sum?
 - Positive coefficients and negative coefficients canceling effect
- B. Sum of absolute value?
 - L1 norm; Lasso Regression (also known as L1 regularization)
- c. Sum of squared value?
 - L2 norm; Ridge Regression (also known as L2 regularization)
- D. Use both L1 norm and L2 norm?
 - Elastic Net

Ridge Regression: Part I

$$y = b + \sum w_i x_i$$
The functions with smaller w_i are better
$$L = \sum_n \left(\hat{y}^n - \left(b + \sum w_i x_i \right) \right)^2 + \lambda \sum (w_i)^2$$

$$\Rightarrow \text{Smaller } w_i \text{ means ...} \quad \text{Smoother} \quad y = b + \sum w_i x_i$$

$$y + \sum w_i \Delta x_i = b + \sum w_i (x_i + \Delta x_i)$$

➤ We believe smoother function is more likely to be correct Do you have to apply regularization on bias?

What to do With Large Variance?

Regularization May increase bias

Ridge Regression: Part II

Bias/Variance as a Function of the Regularization Parameter

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{\substack{i=1 \ m_{cv}}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

Training Testing 102.3 **Regularization Outline** 68. 3.5 25.7 10 120 100 4.1 smoother 12.8 100 1000 5.6 18.7 10000 6.3 80 26.8 100000 60 40 20 How smooth? 10 0 100 1000 100000 Select λ obtaining

- \triangleright Training error: Larger λ , considering the training error less
- > We prefer smooth function, but don't be too smooth.

—Training —Testing

the best model

How to Choose Regularization Hyperparameter λ : Part I

How to Choose Regularization Hyperparameter λ : Part II

For k=1,...,K

- 1. Estimate $\hat{\mathbf{w}}_{\lambda}^{(k)}$ on the training blocks
- 2. Compute error on validation block: $error_k(\lambda)$

Compute average error:
$$CV(\lambda) = \frac{1}{K} \sum_{k=1}^{K} error_k(\lambda)$$

Lasso Regression for Feature Selection: Part I

Lot size
Single Family
Year built
Last sold price
Last sale price/sqft

Finished sqft Unfinished sqft

Finished basement sqft

floors

Flooring types

Parking type Parking amount

Cooling

Heating

Exterior materials

Roof type

Structure style

Dishwasher

Garbage disposal

Microwave Range / Oven

Refrigerator

Washer

Dryer

Laundry location

Heating type

Jetted Tub

Deck

Fenced Yard

Lawn Garden

Sprinkler System

:

Lasso Regression for Feature Selection: Part II

$$y = b + \sum w_i x_i$$

$$L = \sum_n \left(\hat{y}^n - \left(b + \sum w_i x_i \right) \right)^2$$

$$The functions with smaller w_i are better
$$+\lambda \sum |w_i|$$$$

Impact of L2 Regularization Hyperparameter

Impact of L1 Regularization Hyperparameter

Comparison Between L1 and L2 Regularization: Part I

Comparison Between L1 and L2 Contour

Comparison Between L1 and L2 Regularization: Part II

Why are Lasso Solutions Often Sparse?

• If the features are orthogonal, then the loss function contours are circles.

• The OLS solution in green or red regions implies L1 constrained solution

will be at corner.

Comparison Between L1 and L2 Regularization: Part III

Elastic Net (Combination of L1 and L2)

