polynomial commitments

building block for universal SNARKs

part 1—context part 2—landscape part 3—mechanics part 4—gadgets

the fine print

B.1 Definition

A polynomial commitment scheme over a field family \mathcal{F} for a single degree bound and a single evaluation point is a tuple of algorithms $PC_{\varepsilon} = (Setup, Commit, Open, Check)$ with the following syntax.

- PC_s.Setup(1^λ, D) → (ck, rk). On input a security parameter λ (in unary), and a maximum degree bound D ∈ N, PC_s.Setup samples a key pair (ck, rk). The keys contain the description of a finite field F ∈ F.
- PC_s.Commit(ck, $p; \omega$) $\to c$. On input ck and univariate polynomials $p = [p_i]_{i=1}^n$ over the field $\mathbb F$ with $\deg(p_i) \le D$, PC_s.Commit outputs commitments $c = [c_i]_{i=1}^n$ to the polynomials p. The randomness $\omega = [\omega_i]_{i=1}^n$ is used if the commitments c are meant to be hiding.
- $\mathsf{PC}_s.\mathsf{Open}(\mathsf{ck},p,z,\xi;\omega) \to \pi$. On input ck , univariate polynomials $p = [p_i]_{i=1}^n$, evaluation point $z \in \mathbb{F}$, and opening challenge $\xi, \mathsf{PC}_s.\mathsf{Open}$ outputs an evaluation proof π . The randomness ω must equal the one previously used in $\mathsf{PC}_s.\mathsf{Commit}$.
- PC_s. Check(rk, c, z, v, π, ξ) $\in \{0, 1\}$. On input rk, commitments $c = [c_i]_{i=1}^n$, evaluation point $z \in \mathbb{F}$, alleged evaluations $v = [v_i]_{i=1}^n$, evaluation proof π , and opening challenge ξ , PC_s. Check outputs 1 if π attests that, for each $i \in [n]$, the polynomial committed in c_i has degree at most D and evaluates to v_i at z.

The polynomial commitment scheme satisfies the completeness and extractability properties defined below. The polynomial commitment scheme is (perfectly) hiding if it also satisfies the hiding property defined below.

Definition B.1 (Completeness). For every maximum degree bound $D \in \mathbb{N}$ and efficient adversary A it holds that

$$\Pr \left[\begin{array}{c} \deg(\boldsymbol{p}) \leq D \\ \\ \mathsf{PC}_{\mathsf{s}}.\mathsf{Check}(\mathsf{rk},\boldsymbol{c},z,\boldsymbol{v},\pi,\xi) = 1 \\ \\ \mathsf{PC}_{\mathsf{s}}.\mathsf{Cpen}(c,\boldsymbol{p},z,\xi) \end{array} \right. \left(\begin{array}{c} (\mathsf{ck},\mathsf{rk}) \leftarrow \mathsf{PC}_{\mathsf{s}}.\mathsf{Setup}(1^{\wedge},D) \\ (\boldsymbol{p},z,\xi) \leftarrow \mathcal{A}(\mathsf{ck},\mathsf{rk}) \\ c \leftarrow \mathsf{PC}_{\mathsf{s}}.\mathsf{Comm}(\mathsf{ck},\boldsymbol{p}) \\ v \leftarrow \mathsf{p}(z) \\ \pi \leftarrow \mathsf{PC}_{\mathsf{s}}.\mathsf{Open}(\mathsf{ck},\boldsymbol{p},z,\xi) \end{array} \right] = 1 \ .$$

Definition B.2 (Extractability). For every maximum degree bound $D \in \mathbb{N}$ and efficient adversary A, there exists an efficient extractor \mathcal{E} such that for every round bound $\mathbf{r} \in \mathbb{N}$, efficient public-coin challenger \mathcal{C} , efficient query sampler \mathcal{Q} , and efficient adversary $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ the following probability is negligibly close

$$\Pr\left[\begin{array}{c} (\mathsf{ck},\mathsf{rk}) \leftarrow \mathsf{PC}_{\mathsf{s}}.\mathsf{Setup}(1^{\lambda},D) \\ For \ i = 1,\dots,r; \\ \rho_i \leftarrow \mathcal{C}(\mathsf{ck},\mathsf{rk},i) \\ c_i \leftarrow \mathcal{A}(\mathsf{ck},\mathsf{rk},[\rho_j]_{j=1}^j) \\ p_i \leftarrow \mathcal{E}(\mathsf{ck},\mathsf{rk},[\rho_j]_{j=1}^j) \\ \deg(\mathbf{p}) \leq D \ and \ \mathbf{v} = \mathbf{p}(z) \\ \\ Set \ [c_i]_{i=1}^n := [c_i]_{i=1}^r, \ [p_i]_{i=1}^n := [p_i]_{i=1}^r, \ [d_i]_{i=1}^r := [d_i]_{i=1}^r \\ Parse \ Q \ aT \ X \geq f \ or \ some \ T \subseteq [n] \ and \ z \in \mathbb{F} \\ Set \ c := [c_i]_{i\in T}, \ \mathbf{p} := [p_i]_{i\in T}, \ \mathbf{d} := [d_i]_{i\in T} \end{bmatrix}$$

Definition B.3 (Succinctness). A polynomial commitment scheme is **succinct** if the size of commitments, the size of evaluation proofs, and the time to check an opening are all independent of the degree of the committed polynomials. That is, $|c| = n \cdot \text{poly}(\lambda)$, $|\pi| = \text{poly}(\lambda)$, and time(Check) = $n \cdot \text{poly}(\lambda) = n \cdot \text{poly}(\lambda)$.

Definition B.4 (Hiding). There exists a polynomial-time simulator S = (Setup, Commit, Open) such that, for every maximum degree bound $D \in \mathbb{N}$, round bound $r \in \mathbb{N}$, and (even unbounded) non-uniform adversary $A = (A_1, A_2, A_3)$, the probability that b = 1 in the following two experiments is identical.

```
Real(1^{\lambda}, D, A):
                                                                                          Ideal(1^{\lambda}, D, A):
1. (ck, rk) \leftarrow PC_s.Setup(1^{\lambda}, D).
                                                                                         I. (ck, rk, trap) \leftarrow S.Setup(1^{\lambda}, D).
2. Letting \mathbf{c}_0 := \bot, for i = 1, \ldots, r:
                                                                                          2. Letting c_0 := \bot, for i = 1, \ldots, r:
      (a) (\boldsymbol{p}_i, h_i) \leftarrow \mathcal{A}_1(\mathsf{ck}, \mathsf{rk}, \boldsymbol{c}_0, \boldsymbol{c}_1, \dots, \boldsymbol{c}_{i-1}).
                                                                                                 (a) (p_i, h_i) \leftarrow A_1(ck, rk, c_0, c_1, \dots, c_{i-1}).
      (b) If h_i = 0: sample commitment randomness \omega_i.
                                                                                                (b) If h_i = 0: sample randomness \omega_i and compute simu-
      (c) If h_i = 1: set randomness \omega_i to \perp.
                                                                                                        lated commitments c_i \leftarrow S.Commit(trap, |p_i|; \omega_i).
      (d) c_i \leftarrow PC_s.Commit(ck, p_i; \omega_i).
                                                                                                 (c) If h_i = 1: set \omega_i := \bot and compute (real) commitments
3. c := [c_i]_{i=1}^r, p := [p_i]_{i=1}^r, \omega := [\omega_i]_{i=1}^r.
                                                                                                        c_i \leftarrow \mathsf{PC_s}.\mathsf{Commit}(\mathsf{ck}, p_i; \omega_i).
4. ([Q_i]_{i=1}^{\tau}, [\xi_i]_{i=1}^{\tau}, \text{st}) \leftarrow \mathcal{A}_2(\text{ck}, \text{rk}, c).
                                                                                          3. c := [c_i]_{i=1}^r, p := [p_i]_{i=1}^r, \omega := [\omega_i]_{i=1}^r.
5. For j \in [\tau]:
                                                                                          4. Zero out hidden polynomials: p' := [h_i p_i]_{i=1}^r.
             \pi_i \leftarrow \mathsf{PC_s}.\mathsf{Open}(\mathsf{ck}, \boldsymbol{p}, Q_i, \xi_i; \boldsymbol{\omega}).
                                                                                          5. ([Q_j]_{j=1}^{\tau}, [\xi_j]_{j=1}^{\tau}, st) \leftarrow A_2(ck, rk, c).
6. b \leftarrow \mathcal{A}_3(\mathsf{st}, [\pi_i]_{i=1}^\tau).
                                                                                          6. For j \in [\tau]:
                                                                                                        \pi_i \leftarrow \mathcal{S}.\mathsf{Open}(\mathsf{trap}, \boldsymbol{p}', \boldsymbol{p}(Q_i), Q_i, \xi_i; \boldsymbol{\omega})
                                                                                          7. b \leftarrow A_3(st, [\pi_i]_{i=1}^{\tau}).
```

Above we implicitly assume that A_1 outputs $\operatorname{poly}(\lambda)$ polynomials in each round, and that A_2 outputs $\tau = \operatorname{poly}(\lambda)$ query sets Q_i , so that $\operatorname{PC}_{\varepsilon}$.Commit, $\operatorname{PC}_{\varepsilon}$.Open, $\mathcal S$.Commit, and $\mathcal S$.Open are all efficient.

part 1—context part 2—landscape part 3—mechanics part 4—gadgets

	FRI	
	hash function	
setup	H hash function w in F root of unity	
commitment	root(f(w ⁰),, f(w ^{kd}))	

	FRI	KZG	
	hash function	pairing group	
setup	H hash function w in F root of unity	 G₁, G₂ groups g₁, g₂ generators e pairing s in F secret 	
commitment	root(f(w ⁰),, f(w ^{kd}))	a ₀ s ⁰ g ₁ + + a _n s ^d g ₁	

	FRI	KZG	DARK	
hash function		pairing group	unknown order group	
setup	H hash function w in F root of unity	 G₁, G₂ groups g₁, g₂ generators e pairing s in F secret 	G unknown order g in G random q large integer	
commitment	root(f(w ⁰),, f(w ^{kd}))	a ₀ s ⁰ g ₄ + + a _n s ^d g ₄	a₀ <mark>q⁰g + + a₀</mark> q⁰g	

	FRI	KZG DARK		Bulletproof
	hash function	pairing group		
setup	H hash function w in F root of unity	 G₁, G₂ groups g₁, g₂ generators e pairing s in F secret 	G unknown order g in G random q large integer	G elliptic curve g _i in G independent
commitment	root(f(w ⁰),, f(w ^{kd}))	a ₀ s ⁰ g ₄ + + a _n s ^d g ₄	a₀q⁰g + + a₀q⁰g	a ₀ g ₀ + + a _d g _d

algebraic (with linear homomorphism)

	FRI
	hash function
transparent	
succinct	
unbounded	
updatable	
post-quantum	

	FRI	KZG
	hash function	pairing group
transparent		
succinct		
unbounded		
updatable		
post-quantum		

	FRI	KZG	DARK		
	hash function	pairing group	RSA group	class group	Jacobian group
transparent					
succinct					
unbounded					
updatable					
post-quantum					

	FRI	KZG	DARK			Bulletproof
	hash function	pairing group	RSA group	class group	Jacobian group	discrete log group
transparent						
succinct						
unbounded						
updatable						
post-quantum						

asymptotic performance

asymptotic performance

asymptotic performance

max(commitment size, opening proof size)			
/ [FRI	KZG	DARK
	hash function	pairing group	unknown order group
size	O(log²(d))	O(1)	O(log(d))
verifier time	O(log²(d))	O(1)	O(log(d))
prover time	O(d*log(d))	O(d)	O(d)

max(commitment time, opening time)

asymptotic performance

n	nax(commitment size, o	pening proof size)		
	FRI	KZG	DARK	Bulletproof
	hash function	pairing group	unknown order group	discrete log group
size	O(log²(d))	O(1)	O(log(d))	O(log(d))
verifier time	O(log²(d))	O(1)	O(log(d))	O(d)
prover time	O(d*log(d))	O(d)	O(d)	O(d)

max(commitment time, opening time)

commitment size (with security parameter λ and $d \ll \lambda$)

	subexponential attacks (sieve based)		icks I	polynomial attac	k
FRI	KZG		DARK		Bulletproof
hash function	pairing group	RSA group	class group	Jacobian group	discrete log group
Ο(1) * Ο(λ)	O(1) * O(λ ³)	O(1) * O(λ ³)	Ο(1) * Ο(λ²)	???	Ο(1) * Ο(λ)

commitment size (with security parameter λ and $d \ll \lambda$)

part 1—context part 2—landscape part 3—mechanics part 4-gadgets

even-odd and left-right decomposition

$$f(X) = even(f)(X^2) + X*odd(f)(X^2)$$

even-odd decomposition

$$f(X) = left(f)(X) + X^{d/2}*right(f)(X)$$

left-right decomposition

decompose-reduce

$$f(X) = even(f)(X^2) + X*odd(f)(X^2)$$

even-odd decomposition

$$f(X) = left(f)(X) + X^{d/2}*right(f)(X)$$

left-right decomposition

	hash function (FRI)	UO group (DARK)	discrete log group (Bulletproof)
coefficients	even(f) + r*odd(f)	even(f) + r*odd(f)	r*left(f) + r ⁻¹ *right(f)
basis	N/A	g	r ⁻¹ *left(g) + r*right(g)

consistency checks

FRI (hash function)

Bulletproof (discrete log)

$$2zf_{i+1}(z^{2})$$
?=
$$z(f_{i}(z) + f_{i}(-z))$$
+
$$r_{i}(f_{i}(z) - f_{i}(-z))$$

consistency checks

FRI (hash function)

$$2zf_{i+1}(z^2)$$

?=

$$z(f_i(z) + f_i(-z))$$

+

$$r_i(f_i(z) - f_i(-z))$$

DARK (UO group)

 $commit(f_{i+1})$

?=

 $commit(even(f_i))$

+

 $r_i*q*commit(odd(f_i))$

Bulletproof (discrete log)

consistency checks

FRI (hash function)

DARK (UO group)

Bulletproof (discrete log)

$$2zf_{i+1}(z^{2})$$
?=
$$z(f_{i}(z) + f_{i}(-z))$$
+
$$r_{i}(f_{i}(z) - f_{i}(-z))$$

 $commit(f_{i+1})$?= $commit(even(f_i))$ + $r_i*q*commit(odd(f_i))$

commit(f_{i+1})
?=
commit(f_i)
+ $(r_i)^2 L + (r_i)^{-2} R$

quotient argument openings

$$f(X) - f(z) = q(X)(X - z)$$

FRI (hash function)

(f(X) - f(z))/(X - z) low degree proof

(within unique decoding radius)

KZG10 (pairing group)

quotient argument openings

$$f(X) - f(z) = q(X)(X - z)$$

FRI (hash function)

(f(X) - f(z))/(X - z) low degree proof

(within unique decoding radius)

KZG10 (pairing group)

 $e(commit(f) - f(z), g_2)$

?=

e(commit(q), (s - z)g₂)

other openings

DARK (UO group)

Bulletproof (discrete log)

 $even(f_i)(z), odd(f_i)(z)$

<coeff(f), powers(x)>

recent developments

novel constructions

- lattice-based polynomial commitment
- Jacobian groups with unknown order
- sparse polynomial commitments

part 1—context part 2—landscape part 3—mechanics part 4—gadgets

modularity

information theory interactive oracle proof

cryptography

polynomial commitment

modularity

modularity

testing polynomial identities

fundamental theorem of algebra

f₁, **f**₂ low-degree polynomials

 $\mathbf{f}_1 = \mathbf{f}_2$ with high probability

 $f_1(z) = f_2(z)$ at random point z

Schwartz-Zippel lemma

 $f_1(X), ..., f_k(X)$ low-degree polynomials **G**(X₁, ..., Xκ, Y) low-degree

 $G(f_1, ..., f_n, Y) = 0$ with high probability \Leftrightarrow $G(f_1, ..., f_n, Y)|_{X=z} \text{ at random point } z$

basic tricks

	trick
range	(f // Z _S)*Z _S

commitments to **f, f // Z_s**

check that $f(z) = (f // Z_s)(z)*Z_s(z)$

basic tricks

	trick
range	(f // Z _S)*Z _S
multi-point opening	(f // Z _S)*Z _S + f % Z _S

check that
$$f(z) = (f // Z_s)(z)*Z_s(z) + (f % Z_s)(z)$$

basic tricks

	trick
range	(f // Z _S)*Z _S
multi-point opening	(f // Z _s)*Z _s + f % Z _s
multi-polynomial opening	Y ⁰ f ₀ + + Y ^k f _k

multi-point opening

check that
$$(\mathbf{r}^0\mathbf{f}_0 + ... + \mathbf{r}^k\mathbf{f}_k)(\mathbf{z}) = \mathbf{r}^0\mathbf{f}_0(\mathbf{z}) + ... + \mathbf{r}^k\mathbf{f}_k(\mathbf{z})$$

basic tricks

	trick
range	(f // Z _S)*Z _S
multi-point opening	$(f // Z_S)*Z_S + f % Z_S$
multi-polynomial opening	Y ⁰ f ₀ + + Y ^k f _k
multi-{point, polynomial}	see <u>here</u>
degree bound	$X^{N-d}f(X)$

side note—Lagrange basis

barycentric formula

a₀ a₁ a₂ a₃ a₄ a₅

/side note—Lagrange basis

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_{L}(X) + a_{i}X^{i} + X^{i+1}f_{R}(X)$

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_L(X) + a_i X^i + X^{i+1} f_R(X)$
shift	f(w ⁱ X)	X ⁱ f(X)

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_{L}(X) + a_{i}X^{i} + X^{i+1}f_{R}(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)

sum argument

sum argument

sum argument

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_L(X) + a_i X^i + X^{i+1} f_R(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)

sum check alternative

 $|S|^{-1}(f(X) \% Z_S(X))|_{X=0}$

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_{L}(X) + a_{i}X^{i} + X^{i+1}f_{R}(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)
grand product	g(wX) = f(X)g(X)	see Sonic appendix B

	Lagrange basis	monomial basis
encode	$a_0^{}L_0^{}(X) + + a_d^{}L_d^{}(X)$	a ₀ X ⁰ + + a _d X ^d
query	f(w ⁱ)	$f_{L}(X) + a_{i}X^{i} + X^{i+1}f_{R}(X)$
shift	f(w ⁱ X)	X ⁱ f(X)
sum	g(wX) = f(X) + g(X)	f(1)
grand product	g(wX) = f(X)g(X)	see Sonic appendix B
permutation	f(X) + Yσ(X) + Z and f(X) + YX + Z grand products	see Sonic appendix A

 σ : $(a_i) \rightarrow (a_j)$ is a permutation

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation \Leftrightarrow $a_i = a_j$ whenever $i = \sigma(j)$

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation
 \Leftrightarrow

$$a_i = a_j \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$a_i + i*X = a_j + \sigma(j)*X \text{ whenever } i = \sigma(j)$$

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation \Leftrightarrow

$$a_i = a_j \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$a_i + i*X = a_j + \sigma(j)*X \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$\{a_i + i*X\} = \{a_i + \sigma(j)*X\} \text{ as multisets}$$

$$\sigma$$
: $(a_i) \rightarrow (a_j)$ is a permutation

 \Leftrightarrow
 $a_i = a_j$ whenever $i = \sigma(j)$
 \Leftrightarrow
 $a_i + i*X = a_j + \sigma(j)*X$ whenever $i = \sigma(j)$
 \Leftrightarrow
 $\{a_i + i*X\} = \{a_j + \sigma(j)*X\}$ as multisets

 \Leftrightarrow
 $product_i(a_i + i*X + Y) = product_j(a_j + \sigma(j)*X + Y)$ as polynomials in X, Y

$$\sigma: (a_i) \rightarrow (a_j) \text{ is a permutation}$$

$$\Leftrightarrow$$

$$a_i = a_j \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$a_i + i*X = a_j + \sigma(j)*X \text{ whenever } i = \sigma(j)$$

$$\Leftrightarrow$$

$$\{a_i + i*X\} = \{a_j + \sigma(j)*X\} \text{ as multisets}$$

$$\Leftrightarrow$$

$$product_i(a_i + i*X + Y) = product_j(a_j + \sigma(j)*X + Y) \text{ as polynomials in } X, Y$$

$$\Leftrightarrow$$

$$product_i(a_i + i*r_1 + r_2) = product_j(a_j + \sigma(j)*r_1 + r_2) \text{ for random challenges } r_1, r_2$$

Lagrange superpower Lagrange basis trick $f_1(X)f_2(X)$ **Hadamard product** sum over $f_1(X)f_2(X)$ inner product sparse matrix multiplication two sum cheks; see here range checks see Aztec research **RAM** read and write see Aztec research

thank you:)