Бинарные отношения

Опр Бинарное отношение R множеств A и B - подмножество декартова произведения АхВ

Если пара (0, b) $\not\in$ (0, 0), то записывают (0, 0), т.е. (0, 0)

Если A = B, то R - подмножество AxA и тогда оно называется бинарным отношеним на A.

Пример: $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5, 6\}.$

(5018442) $R = \{(2,1),(3,1),(3,2)\}$ $R = \{(4,1),(4,2),...\}$

A={1,2,3,4,5}

 $Q = \{(1,2), (1,3), (1,5), (2,3), (2,5), (3,5)\}$

Пример: про родственные отношения.

R-about poscabennum A-MM-6 Jasen $R = \{(x,y) \in A \times A : y - poscab \times 3\}$

Способы задания бинарных отношений

1. Правило

chopernol surcounce

(X,y) CAxB: 9>53

[2,1)

2. Перечисление

2(1,2),(3,1), --- 3

3. Табличный или на плоскости

3. Taominandin min na na	/IOCKOC
B	
4 + .	
3 - · ·	
Z — 🐞 · ·	
1 2 3	\longrightarrow

$\{(1,1),(1,2),(2,4),(2,5),(3,5)\}$							
	\int	2	7	4	5		
1	1	1	\bigcirc	0	0	(X 10. 7)	
2	0	0	O	1	5		
J /	0	0	0	0	1		

4. Граф

Опр Граф G(V, E) - множество вершин Vи множество ребер E, т.ч.

Пример $V = \{a, b, c\}, E = \{(a, b), (b, c)\}.$

$$E = \{\{a, b\}, \{b, c\}\}.$$

$$(x, x)$$

$$(x, y)$$

$$R = \{(a,b), (b,a), (b,c), (c,b)\}$$

Обратное отношение

Опр Область определения отношения R на A и B - множество $X \in A$, $\mathcal{T} : \mathcal{T} :$

- множество всех ПЕРВЫХ координат упорядоченных пар из R

Опр Область значений отношения R на A и B - множество $y \in B + T \cdot T = \frac{1}{2}(x,y) \in R$

- множество всех BTOPЫХ координат упорядоченных пар из R

Опр Обратное отношение

$$\exists \mathcal{R} \subseteq \mathcal{A}_{\mathcal{R}} \mathcal{B}$$
 - отношение на AxB, тогда

$$\frac{R' = ((b,a) : (a,b) \in R3 \text{ ha } 13 \times A}{b \cdot a}$$

Пример $R = \{(1, r), (1, s), (3, s)\},$ тогда

$$R^{-\frac{1}{2}} \{ (V, 1), (S, 1)(S, 3) \}$$

Пример $R = \{(x, y): y является мужем x\}, тогда$

$$2^{-1}=\{(y,x), x \text{ als ALLENOTE } y\}$$

Пример $R = \{(x, y): y является родственником x\}, тогда$

$$R = R^{1}$$

Композиция отношений

Опр Композиция отношений

такое отношение на хС:

$$T = \mathcal{L}(a,c): \exists b \in B, T.1 \quad (a,b) \in R, \quad (b,c) \in S \} A B C$$

$$T = R \cdot S$$

Пример $A = \{1, 2, 3\}, B = \{2, 3\}, C = \{0, 1\}$

$$R \in A \times B$$
: $R = \{(1,2), (1,3), (2,2), (3,2)\}$
 $S \in B \times C$: $S = \{(2,0), (2,1), (3,0)\}$

$$\frac{1}{1} \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$$

$$\{(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)\}$$

Th Ассоциативность композиции отношений

A, B, C,
$$\oplus$$
 - who R = A × B S = B × C T = C × D

$$\frac{(R \circ S) \circ T}{(R \circ S) \circ T} = R \circ (S \circ T)$$

$$\frac{(R \circ S) \circ T}{(R \circ S) \circ T} = R \circ (S \circ T)$$

$$\frac{(R \circ S) \circ T}{(R \circ S) \circ T} = R \circ (S \circ T)$$

