Lower bounds on the sizes of integer programs without additional variables

Volker Kaibel · Stefan Weltge

Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Presentation structure

- Simple facts on integer linear programming and combinatorial optimization
- Initial question and definitions
 - How many inequalities needed to formulate a specific combinatorial problem as an ILP?
 - No "extra" variables allowed.
- Main technique and results
 - Hiding sets
 - Exponential lower bounds for many problems.
- 4 Later results on the topic

Solving combinatorial optimization problems by linear programming

Typical combinatorial optimization problem

- Finite ground set *E*.
- Feasible solution: Any set $F \subseteq E$ with some property.
- Vector $c \in \mathbb{R}^E$.
- Objective value of feasible solution F is $\sum_{e \in F} c_e$.

Solving combinatorial optimization problems by linear programming

Typical combinatorial optimization problem

- \bullet Finite ground set E.
- Feasible solution: Any set $F \subseteq E$ with some property.
- Vector $c \in \mathbb{R}^E$.
- Objective value of feasible solution F is $\sum_{e \in F} c_e$.

Typical solution approach

- Make ordering for $e_1, e_2, ...$ of E
- Identify each F with its characteristic vector $\chi(F) \in \{0,1\}^E$
- $(\chi(F))_i = 1 \iff e_i \in F$
- Vector $c \in \mathbb{R}^E$.
- Objective value of feasible solution F is $c^T \chi(F)$.

Solving combinatorial optimization problems

Need algebraic description of set $X := \{\chi(F) : F \subseteq E \text{ feasible}\}.$

Standard approach

 $X = \{x \in \mathbb{Z}^E : Ax \leq b\}$, for well chosen A, b

Solving combinatorial optimization problems

Need algebraic description of set $X := \{\chi(F) : F \subseteq E \text{ feasible}\}.$

Standard approach

 $X = \{x \in \mathbb{Z}^E : Ax \leq b\}$, for well chosen A, b

Example

- Let $K_n = (V_n, E_n)$ be the undirected complete graph on n nodes.
- Let $X=\mathsf{STSP}_n$ be the set of characteristic vectors of Hamiltonian cycles in K_n .
- Formulate $STSP_n$ as

Solving combinatorial optimization problems

Need algebraic description of set $X := \{\chi(F) : F \subseteq E \text{ feasible}\}.$

Standard approach

 $X = \{x \in \mathbb{Z}^E : Ax \leq b\}$, for well chosen A, b

Example

- Let $K_n = (V_n, E_n)$ be the undirected complete graph on n nodes.
- Let $X=\mathsf{STSP}_n$ be the set of characteristic vectors of Hamiltonian cycles in K_n .
- Formulate $STSP_n$ as

$$STSP_n = \{x \in \{0,1\}^{E_n} : x(\delta(S)) \ge 2, \ \forall S \ne \emptyset, V_n$$
 (1)

$$x(\delta(v)) = 2 \ \forall v \in V_n \} \tag{2}$$

Standard approach

 $X = \{x \in \mathbb{Z}^E : Ax \leq b\}$, for well chosen A, b

- ullet Feasible solution: Any set $F\subseteq E$ with some property.
- Vector $c \in \mathbb{R}^E$.
- Objective value of feasible solution F is $\sum_{e \in F} c_e$.

Standard approach

 $X = \{x \in \mathbb{Z}^E : Ax \leq b\}$, for well chosen A, b

- ullet Feasible solution: Any set $F\subseteq E$ with some property.
- Vector $c \in \mathbb{R}^E$.
- Objective value of feasible solution F is $\sum_{e \in F} c_e$.

Example

- Let $K_n = (V_n, E_n)$ be the undirected complete graph on n nodes.
- Let $X = \mathsf{STSP}_n$ be the set of characteristic vectors of Hamiltonian cycles in K_n .
- Formulate $STSP_n$ as

$$STSP_n = \{x \in \{0,1\}^{E_n} : x(\delta(S)) \ge 2\forall S : \emptyset = S \subset V_n$$
 (3)

$$x(\delta(v)) = 2\forall v \in Vn\} \tag{4}$$

Standard approach

 $X = \{x \in \mathbb{Z}^E : Ax \leq b\}$, for well chosen A, b

- ullet Feasible solution: Any set $F\subseteq E$ with some property.
- Vector $c \in \mathbb{R}^E$.
- Objective value of feasible solution F is $\sum_{e \in F} c_e$.

Example

- Let $K_n = (V_n, E_n)$ be the undirected complete graph on n nodes.
- Let $X = \mathsf{STSP}_n$ be the set of characteristic vectors of Hamiltonian cycles in K_n .
- Formulate $STSP_n$ as

$$STSP_n = \{x \in \{0,1\}^{E_n} : x(\delta(S)) \ge 2\forall S : \emptyset = S \subset V_n$$
 (3)

$$x(\delta(v)) = 2\forall v \in Vn\} \tag{4}$$

Example

- Let $K_n = (V_n, E_n)$ be the undirected complete graph on n nodes.
- Let $X=\mathsf{STSP}_n$ be the set of characteristic vectors of Hamiltonian cycles in K_n .
- Formulate $STSP_n$ as

$$STSP_n = \{x \in \{0,1\}^{E_n} : x(\delta(S)) \ge 2, \ \forall S \ne \emptyset, V_n$$
 (5)

$$x(\delta(v)) = 2 \ \forall v \in V_n \} \tag{6}$$

Example

- Let $K_n = (V_n, E_n)$ be the undirected complete graph on n nodes.
- Let $X=\mathsf{STSP}_n$ be the set of characteristic vectors of Hamiltonian cycles in K_n .
- Formulate $STSP_n$ as

$$STSP_n = \{x \in \{0,1\}^{E_n} : x(\delta(S)) \ge 2, \ \forall S \ne \emptyset, V_n$$
 (5)

$$x(\delta(v)) = 2 \ \forall v \in V_n \} \tag{6}$$

- Uses exponentially many (in n) linear inequalities.
- Nevertheless, computationally efficient (both in theory and practise).
 The separation problem associated with these inequalities can be solved efficiently.

Initial question

Do all formulations of the form $STSP_n = \{x \in \mathbb{Z}^E : Ax \leq b\}$ need exponential size?

Question answered for number of linear inequalities.

Motivators

- Pure mathematical curiosity
- Simplicity of implementation may be more important issue than efficiency.
 - A small ILP-formulation that can be fed immediately into a black box ILP-solver is likely to be preferred over one for which a separation procedure has to be implemented and linked to the solver.

Initial question

Do all formulations of the form $STSP_n = \{x \in \mathbb{Z}^E : Ax \leq b\}$ need exponential size?

Question answered for number of linear inequalities.

Motivators

- Pure mathematical curiosity
- Simplicity of implementation may be more important issue than efficiency.
 - A small ILP-formulation that can be fed immediately into a black box ILP-solver is likely to be preferred over one for which a separation procedure has to be implemented and linked to the solver.

We extend this question to many combinatorial problems.

Extra inequalities and variables

• As for extra inequalities and variables?

Extra inequalities and variables

- As for extra inequalities and variables?
- Formulations for $X=\mathsf{STSP}_n=\{x\in\mathcal{Z}^E:\exists y\in\mathcal{Z}^m:Ax+By\leq b\}$ of polynomial size known.
- ullet Actually, using the reduction proving integer programming is NP-hard, this holds for any $L\in \! {\sf NP}.$

Extra inequalities and variables

- As for extra inequalities and variables?
- Formulations for $X=\mathsf{STSP}_n=\{x\in\mathcal{Z}^E:\exists y\in\mathcal{Z}^m:Ax+By\leq b\}$ of polynomial size known.
- Actually, using the reduction proving integer programming is NP-hard, this holds for any $L \in NP$.

Integer programming

Given a language $L\subseteq\{0,1\}^*\in {\sf NP},$ there is a system $Ax+By\le b$ such that

$${x \in {0,1}^k : x \in L} = {x \in {0,1}^k : \exists y \in {0,1}^m Ax + By \le b}$$

where the number of extra variables m and the number of inequalities is polynomially bounded by the size of the input x.

Given a set $X\subseteq \mathbb{Z}^d$, let us call a polyhedron $R\subseteq \mathbb{R}^d$ a relaxation for X if $R\cap \mathbb{Z}^d=conv(X)\cap \mathbb{Z}^d$ holds.

Given a set $X\subseteq \mathbb{Z}^d$, let us call a polyhedron $R\subseteq \mathbb{R}^d$ a relaxation for X if $R\cap \mathbb{Z}^d=conv(X)\cap \mathbb{Z}^d$ holds.

So they have the same set of integer solutions.

Given a set $X\subseteq \mathbb{Z}^d$, let us call a polyhedron $R\subseteq \mathbb{R}^d$ a relaxation for X if $R\cap \mathbb{Z}^d=conv(X)\cap \mathbb{Z}^d$ holds.

So they have the same set of integer solutions. If $R=\{x\in\mathbb{R}^d|Ax\leq b\}$, then $\mathrm{conv}(X)=\{x\in\mathbb{Z}^d|Ax\leq b\}$, an ILP problem.

The smallest number rc(X) of facets among any relaxation for X will be called the relaxation complexity of X.

The smallest number rc(X) of facets among any relaxation for X will be called the relaxation complexity of X.

As we know, we need as many inequalities as facets.

The smallest number rc(X) of facets among any relaxation for X will be called the relaxation complexity of X.

As we know, we need as many inequalities as facets.

With this notation, the initial question asks for the asymptotic behavior of $rc(STSP_n)$, the traveling salesman problem.

Previous work

- No reference that deals with a similar quantity except for a paper by Jeroslow.
- For a set $X\subseteq\{0,1\}^d$ of binary vectors, Jeroslow introduces the term index of X (short: $\operatorname{ind}(X)$), defined as the smallest number of inequalities needed to separate X from the remaining points in $\{0,1\}^d$.
- ullet Thus, relaxation complexity can be seen as a natural extension of the index with respect to general subsets of \mathbb{Z}^d .

Previous work

- No reference that deals with a similar quantity except for a paper by Jeroslow.
- For a set $X\subseteq\{0,1\}^d$ of binary vectors, Jeroslow introduces the term index of X (short: $\operatorname{ind}(X)$), defined as the smallest number of inequalities needed to separate X from the remaining points in $\{0,1\}^d$.
- Thus, relaxation complexity can be seen as a natural extension of the index with respect to general subsets of \mathbb{Z}^d .

How to find RC(X)?

We introduce a simple framework to achieve that. Assume from now on X is polyhedral, that is, conv(X) is a polyhedron.

Definition

Let $X\subseteq \mathbb{Z}^d$. A set $H\subseteq \operatorname{aff}(X)\cap \mathbb{Z}^d\setminus conv(X)$ is called a hiding set for X if for any two distinct points $a,\ b\in H$ we have that $conv\{a,b\}\cap conv(X)\neq \emptyset$.

We introduce a simple framework to achieve that. Assume from now on X is polyhedral, that is, conv(X) is a polyhedron.

Definition

Let $X \subseteq \mathbb{Z}^d$. A set $H \subseteq \operatorname{aff}(X) \cap \mathbb{Z}^d \setminus conv(X)$ is called a hiding set for X if for any two distinct points $a, b \in H$ we have that $conv\{a,b\} \cap conv(X) \neq \emptyset$.

Thinking of $\operatorname{conv}(X)$ as an obstacle, every pair $a,b\in H$ is "hidden" from each other.

Thinking of $\operatorname{conv}(X)$ as an obstacle, every pair $a,b\in H$ is "hidden" from each other.

Proposition

Let $X\subseteq \mathbb{Z}^d$ be polyhedral and $H\subseteq aff(X)\cap \mathbb{Z}^d\setminus X$ a hiding set for X. Then, $rc(X)\geq |H|$.

Thinking of $\operatorname{conv}(X)$ as an obstacle, every pair $a,b\in H$ is "hidden" from each other.

Proposition

Let $X\subseteq \mathbb{Z}^d$ be polyhedral and $H\subseteq aff(X)\cap \mathbb{Z}^d\setminus X$ a hiding set for X. Then, $rc(X)\geq |H|$.

Proposition

Let $X\subseteq \mathbb{Z}^d$ be polyhedral and $H\subseteq aff(X)\cap \mathbb{Z}^d\setminus X$ a hiding set for X. Then, $rc(X)\geq |H|$.

Proposition

Let $X\subseteq \mathbb{Z}^d$ be polyhedral and $H\subseteq aff(X)\cap \mathbb{Z}^d\setminus X$ a hiding set for X. Then, $rc(X)\geq |H|$.

Proof.

Let R be a relaxation of X. We will prove that if an inequality $\langle a,x\rangle \leq \beta$ of R removes more than 1 points of H from the set of feasible solutions, it must also remove a point of R, a contradiction.

Proposition

Let $X\subseteq \mathbb{Z}^d$ be polyhedral and $H\subseteq aff(X)\cap \mathbb{Z}^d\setminus X$ a hiding set for X. Then, $rc(X)\geq |H|$.

Proof.

Let R be a relaxation of X. We will prove that if an inequality $\langle a,x\rangle \leq \beta$ of R removes more than 1 points of H from the set of feasible solutions, it must also remove a point of R, a contradiction. As such, to remove all points of H, we need |H| inequalities at least.

Proposition

Let $X\subseteq \mathbb{Z}^d$ be polyhedral and $H\subseteq aff(X)\cap \mathbb{Z}^d\setminus X$ a hiding set for X. Then, $rc(X)\geq |H|$.

Proof.

Let R be a relaxation of X. We will prove that if an inequality $\langle a,x\rangle \leq \beta$ of R removes more than 1 points of H from the set of feasible solutions, it must also remove a point of R, a contradiction. As such, to remove all points of H, we need |H| inequalities at least. Suppose $h_1,h_2\in H$ violate $\langle a,x\rangle \leq \beta$. Then, all of $\operatorname{conv}(h_1,h_2)$ does as

Suppose $h_1, h_2 \in H$ violate $\langle a, x \rangle \leq \beta$. Then, all of $conv(h_1, h_2)$ does as well. But $conv\{a, b\} \cap conv(X) \neq \emptyset$, and $conv(X) \subseteq R$.

STSP

• We are ready to prove that the subtour relaxation for STSP_n has asymptotically smallest size, i.e., $rc(STSP_n) = 2^{\Theta(n)}$.

STSP

- We are ready to prove that the subtour relaxation for STSP_n has asymptotically smallest size, i.e., $rc(STSP_n) = 2^{\Theta(n)}$.
- Assume number of nodes is even, $n = 2(N+1), N \ge 0$.

- We are ready to prove that the subtour relaxation for STSP_n has asymptotically smallest size, i.e., $rc(STSP_n) = 2^{\Theta(n)}$.
- Assume number of nodes is even, $n = 2(N+1), N \ge 0$.
- Let node set be $V := \{v_1, ..., v_{N+1}, w_1, ..., w_{N+1}\}$

- We are ready to prove that the subtour relaxation for STSP_n has asymptotically smallest size, i.e., $rc(STSP_n) = 2^{\Theta(n)}$.
- Assume number of nodes is even, $n = 2(N+1), N \ge 0$.
- Let node set be $V := \{v_1, ..., v_{N+1}, w_1, ..., w_{N+1}\}$
- ullet In fact, we first prove this for the directed version, ATSP. We have an arc set A instead of edge set E.

Let us keep only some edges to define the following subgraph (example for N=6).

Let us keep only some edges to define the following subgraph (example for N=6).

Not the only graph we care about, so to make notation easier, rather than $\{(v_6,v_1),(w_6,w_1)\}\cup\{(v_1,v_2),(w_1,w_2)\}\cup\{(v_2,w_3),(w_2,v_3)\}\cup\{(v_3,v_4),(w_3,w_4)\}\cup\{(v_4,v_5),(w_4,w_5)\}\cup\{(v_5,w_6),(w_5,v_6)\}$ represent this graph with "01001".

Other variations possible.

Other variations possible.

Definition

Let there be a binary vector $b \in \{0,1\}^N$. Let us define an arc set as a function of b: $E_b := \{(v_{N+1},v_1),(w_{N+1},w_1)\} \cup \bigcup_{i:b_i=0}\{(v_i,v_{i+1}),(w_i,w_{i+1})\} \cup \bigcup_{i:b_i=1}\{(v_i,w_{i+1}),(w_i,v_{i+1})\}$

Definition

Let there be a binary vector $b \in \{0,1\}^N$. Let us define an arc set as a function of b: $E_b := \{(v_{N+1},v_1),(w_{N+1},w_1)\} \cup \bigcup_{i:b_i=0} \{(v_i,v_{i+1}),(w_i,w_{i+1})\} \cup \bigcup_{i:b_i=1} \{(v_i,w_{i+1}),(w_i,v_{i+1})\}$

Hiding set

Note E_b is a directed Hamiltonian cycle on node set V if and only if $\sum_{i=1}^{N} b_i$ is odd.

Definition

Let there be a binary vector $b \in \{0,1\}^N$. Let us define an arc set as a function of b: $E_b := \{(v_{N+1},v_1),(w_{N+1},w_1)\} \cup \bigcup_{i:b_i=0} \{(v_i,v_{i+1}),(w_i,w_{i+1})\} \cup \bigcup_{i:b_i=1} \{(v_i,w_{i+1}),(w_i,v_{i+1})\}$

Hiding set

Note E_b is a directed Hamiltonian cycle on node set V if and only if $\sum_{i=1}^{N} b_i$ is odd. Define our hiding set as the other E_b s. $H_N := \{\chi(E_b) : b \in \{0,1\}^N, \sum_{i=1}^{N} b_i \text{ is even}\}$

 $H_N := \{\chi(E_b) : b \in \{0,1\}^N, \sum_{i=1}^N b_i \text{ is even}\}$ is a hiding set.

 $H_N := \{\chi(E_b) : b \in \{0,1\}^N, \sum_{i=1}^N b_i \text{ is even}\}\$ is a hiding set.

$$H_N \subseteq aff(ATSP_{2(N+1)}) \cap \mathbb{Z}^A \setminus conv(ATSP_{2(N+1)})$$
:

 $H_N := \{\chi(E_b) : b \in \{0,1\}^N, \sum_{i=1}^N b_i \text{ is even}\}$ is a hiding set.

$H_N \subseteq aff(ATSP_{2(N+1)}) \cap \mathbb{Z}^A \setminus conv(ATSP_{2(N+1)})$:

ullet H_N only has values in \mathbb{Z}^A

 $H_N := \{\chi(E_b) : b \in \{0,1\}^N, \sum_{i=1}^N b_i \text{ is even}\}\$ is a hiding set.

$H_N \subseteq aff(ATSP_{2(N+1)}) \cap \mathbb{Z}^A \setminus conv(ATSP_{2(N+1)})$:

- ullet H_N only has values in \mathbb{Z}^A
- $\chi(\delta^{out}(S) > 1 \text{ for all } S \text{ for any element of } \operatorname{conv}(X), \text{ but not for all } S \text{ when it comes to elements of } H_N.$

 $H_N := \{\chi(E_b) : b \in \{0,1\}^N, \sum_{i=1}^N b_i \text{ is even}\}$ is a hiding set.

$H_N \subseteq aff(ATSP_{2(N+1)}) \cap \mathbb{Z}^A \setminus conv(ATSP_{2(N+1)})$:

- ullet H_N only has values in \mathbb{Z}^A
- $\chi(\delta^{out}(S) > 1$ for all S for any element of conv(X), but not for all S when it comes to elements of H_N .
- $H_N \subseteq aff(ATSP_{2(N+1)}) = \{x \in \mathbb{R}^A : x(\delta^{in}(v)) = x(\delta^{out}(v)) = 1, \forall v \in V\}$

 $H_N := \{\chi(E_b) : b \in \{0,1\}^N, \sum_{i=1}^N b_i \text{ is even}\}$ is a hiding set.

$H_N \subseteq aff(ATSP_{2(N+1)}) \cap \mathbb{Z}^A \setminus conv(ATSP_{2(N+1)})$:

- ullet H_N only has values in \mathbb{Z}^A
- $\chi(\delta^{out}(S) > 1$ for all S for any element of conv(X), but not for all S when it comes to elements of H_N .
- $H_N \subseteq aff(ATSP_{2(N+1)}) = \{x \in \mathbb{R}^A : x(\delta^{in}(v)) = x(\delta^{out}(v)) = 1, \forall v \in V\}$

$\operatorname{conv}(\chi(E_b), \chi(E_b)) \cap \operatorname{conv}(ATSP_{2(N+1)}) \neq \emptyset$:

Let $b,b'\in\{0,1\}^N$ be distinct with b and b' having an even number of ones. Let j be an index with $b_j\neq b'_j$. Flip b_j,b'_j to get c,c'. c,c' have an odd number of ones, hence $\chi(E_c)$ and $\chi(E_{c'})$ are both contained in ATSP $_2(N+1)$. Clearly $\chi(E_b)+\chi(E_{b'})=\chi(E_c)+\chi(E_{c'})$.

The asymptotic growth of $rc(ATSP_n)$ and $rc(STSP_n)$ is $2^{\Theta(n)}$.

Proof.

Clearly, $|H_N|=2^{\Theta(n)}$. Note both ATSP and ASTP have formulations of size $2^{O(n)}$. rc(ATSP_n)= $2^{\Theta(n)}$ follows instantly.

For ${\sf STSP}_n$, replace all directed arcs with undirected edges, H_N is still a hiding set.

• Let $CONN_n$ be the set of all characteristic vectors of edge sets that form a connected spanning subgraph in the complete graph on n nodes.

- Let $CONN_n$ be the set of all characteristic vectors of edge sets that form a connected spanning subgraph in the complete graph on n nodes.
- The polytope $\{x \in [0,1]^{E_n} : x(\delta(S)) \ge 1, \ \forall \emptyset \ne S \subset V_n\}$ is a relaxation for CONN_n .

- Let $CONN_n$ be the set of all characteristic vectors of edge sets that form a connected spanning subgraph in the complete graph on n nodes.
- The polytope $\{x \in [0,1]^{E_n} : x(\delta(S)) \ge 1, \ \forall \emptyset \ne S \subset V_n\}$ is a relaxation for CONN_n .
- Thus, we have that $rc(CONN_n) \leq O(2^n)$.

- Let $CONN_n$ be the set of all characteristic vectors of edge sets that form a connected spanning subgraph in the complete graph on n nodes.
- The polytope $\{x \in [0,1]^{E_n} : x(\delta(S)) \ge 1, \ \forall \emptyset \ne S \subset V_n\}$ is a relaxation for CONN_n .
- Thus, we have that $rc(CONN_n) \leq O(2^n)$.
- We prove the asymptotic growth of $rc(CONN_n)$ is $2^{\Theta(n)}$.

- Let $CONN_n$ be the set of all characteristic vectors of edge sets that form a connected spanning subgraph in the complete graph on n nodes.
- The polytope $\{x \in [0,1]^{E_n} : x(\delta(S)) \ge 1, \ \forall \emptyset \ne S \subset V_n\}$ is a relaxation for CONN_n .
- Thus, we have that $rc(CONN_n) \leq O(2^n)$.
- We prove the asymptotic growth of $rc(CONN_n)$ is $2^{\Theta(n)}$.
- ullet So, something as simple as encoding connectivity on a graph requires an exponential in n number of inequalities.

- Let $CONN_n$ be the set of all characteristic vectors of edge sets that form a connected spanning subgraph in the complete graph on n nodes.
- The polytope $\{x \in [0,1]^{E_n} : x(\delta(S)) \ge 1, \ \forall \emptyset \ne S \subset V_n\}$ is a relaxation for CONN_n .
- Thus, we have that $rc(CONN_n) \leq O(2^n)$.
- We prove the asymptotic growth of $rc(CONN_n)$ is $2^{\Theta(n)}$.
- So, something as simple as encoding connectivity on a graph requires an exponential in n number of inequalities.
 - H_N from before for undirected graphs is still a hiding set:

Remember, the polytope $\{x\in [0,1]^{E_n}: x(\delta(S))\geq 1, \ \forall \emptyset\neq S\subset V_n\}$ is a relaxation for CONN_n .

Proof.

 $H_N \subseteq aff(CONN_n) \cap \mathbb{Z}^d \setminus conv(CONN_n)$:

- ullet H_N only has values in \mathbb{Z}^{E_n}
- $\chi(\delta(S) \ge 1$ for all S for any element of $\operatorname{conv}(X)$, and not for all S for elements of H_N .
- It holds that $\operatorname{aff}(\mathsf{CONN}_n) = \mathbb{R}^{E_n}$.

Let $a, b \in H_N$.

 $\emptyset \neq conv\{a,b\} \cap conv(STSP_n) \subseteq conv\{a,b\} \cap conv(CONN_n).$

- Connectivity on a graph requires an exponential in n number of inequalities.
- Perhaps something like, such as spanning trees or an arborescence?
- Formulations of $2^{\mathcal{O}(n)}$ known for both.

- Connectivity on a graph requires an exponential in n number of inequalities.
- Perhaps something like, such as spanning trees or an arborescence?
- Formulations of $2^{\mathcal{O}(n)}$ known for both.

Spanning tree

Arborescence

- ullet Connectivity on a graph requires an exponential in n number of inequalities.
- Perhaps something like, such as spanning trees or an arborescence?
- Formulations of $2^{\mathcal{O}(n)}$ known for both.

Towards a lower bound

Let us modify the definition of E_b by removing arc (w_{N+1},w_1) . Then, if $b\in\{0,1\}^N$ with b having an even number of ones, we have that E_b is a node-disjoint union of a cycle and a path and hence not an arborescence.

We will obtain that the modified set H_N is a hiding set for ARB_n.

Proof.

 $H_N \subseteq aff(ARB_N) \cap \mathbb{Z}^d \setminus conv(ARB_N)$:

- ullet H_N only has values in \mathbb{Z}^{E_n}
- $\chi(\delta^{out}(S) \ge 1$ for all S for any element of ${\rm conv}(X)$, and not for all S of H_N .
- It holds that $aff(ARB_n) = \mathbb{R}^{A_n}$.

Proof.

 $H_N \subseteq aff(ARB_N) \cap \mathbb{Z}^d \setminus conv(ARB_N)$:

- ullet H_N only has values in \mathbb{Z}^{E_n}
- $\chi(\delta^{out}(S) \ge 1$ for all S for any element of $\mathrm{conv}(X)$, and not for all S of H_N .
- It holds that ${\sf aff}({\sf ARB}_n) = {\mathbb R}^{A_n}$.

 $\operatorname{conv}(ARB_N) \cap \operatorname{conv}(\chi(E_b), \chi(E_{b'})) \neq \emptyset$:

• Choosing b,b' with even number of ones, and flipping a bit they differ on, we still have $\chi(E_b) + \chi(E_{b'}) = \chi(E_c) + \chi(E_{c'})$, where E_c and $E_{c'}$ are hamilton paths, and thus arborescences, therefore $\operatorname{conv}(ARB_N) \cap \operatorname{conv}(\chi(E_b),\chi(E_{b'})) \neq \emptyset$.

Proof.

 $H_N \subseteq aff(ARB_N) \cap \mathbb{Z}^d \setminus conv(ARB_N)$:

- ullet H_N only has values in \mathbb{Z}^{E_n}
- $\chi(\delta^{out}(S) \ge 1$ for all S for any element of $\mathrm{conv}(X)$, and not for all S of H_N .
- It holds that $\operatorname{aff}(\mathsf{ARB}_n) = \mathbb{R}^{A_n}$.

 $\operatorname{conv}(ARB_N) \cap \operatorname{conv}(\chi(E_b), \chi(E_{b'})) \neq \emptyset:$

• Choosing b,b' with even number of ones, and flipping a bit they differ on, we still have $\chi(E_b) + \chi(E_{b'}) = \chi(E_c) + \chi(E_{c'})$, where E_c and $E_{c'}$ are hamilton paths, and thus arborescences, therefore $\operatorname{conv}(ARB_N) \cap \operatorname{conv}(\chi(E_b),\chi(E_{b'})) \neq \emptyset$.

By undirecting all arcs, H_N also yields a hiding set for SPT_n . We deduce a lower bound of $|H_N| = 2^{\Omega(n)}$ for both $rc(ARB_n)$ and $rc(SPT_n)$.

Let $BRANCH_n$ (FORESTS_n) be the set of characteristic vectors of branchings (forests) in the complete directed (undirected) graph.

Let BRANCH_n (FORESTS_n) be the set of characteristic vectors of branchings (forests) in the complete directed (undirected) graph.

Notice

$$\mathsf{SPT}_n = \mathsf{FORESTS}_n \cap \{x \in \mathbb{R}^{E_n} : \sum_{e \in \mathbb{R}^{E_n}} x_e = n - 1\}.$$

Let BRANCH_n (FORESTS_n) be the set of characteristic vectors of branchings (forests) in the complete directed (undirected) graph.

Notice

 $\mathsf{SPT}_n = \mathsf{FORESTS}_n \cap \{x \in \mathbb{R}^{E_n} : \sum_{e \in \mathbb{R}^{E_n}} x_e = n-1\}.$ So, if we could encode FORESTS, in $2^{\mathcal{O}(n)}$ inequalities, we

So, if we could encode FORESTS $_n$ in $2^{\mathcal{O}(n)}$ inequalities, we could do the same with SPT_n .

Let BRANCH_n (FORESTS_n) be the set of characteristic vectors of branchings (forests) in the complete directed (undirected) graph.

Notice

 $\mathsf{SPT}_n = \mathsf{FORESTS}_n \cap \{x \in \mathbb{R}^{E_n} : \sum_{e \in \mathbb{R}^{E_n}} x_e = n - 1\}.$

So, if we could encode FORESTS_n in $2^{\mathcal{O}(n)}$ inequalities, we could do the same with SPT_n. Similarly,

 $\mathsf{ARB}_n = \mathsf{BRANCH}_n \cap \{x \in \mathbb{R}^{A_n} : \sum_{e \in \mathbb{R}^{E_n}} x_e = n - 1\}.$

Binary-all-different

How about encoding that an $m \times n$ 0-1 matrix has no double row?

Binary-all-different

How about encoding that an $m \times n$ 0-1 matrix has no double row? $\mathsf{DIFF}_{m,n} := \{x \in \{0,1\}^{m \times n} : x \text{ has pairwise distinct rows}\}$

Binary-all-different

How about encoding that an mxn 0-1 matrix has no double row? $\mathsf{DIFF}_{m,n} := \{x \in \{0,1\}^{mxn} : x \text{ has pairwise distinct rows} \}$ Can be done in $\binom{m}{2}2^n + 2mn$ inequalities.

Binary-all-different

How about encoding that an $m \times n$ 0-1 matrix has no double row? $\mathsf{DIFF}_{m,n} := \{x \in \{0,1\}^{m \times n} : x \text{ has pairwise distinct rows} \}$ Can be done in $\binom{n}{2} 2^n + 2mn$ inequalities. Almost tight, even for 2 rows.

Hiding set

$$\mathsf{H}_{2,n} := \{(x,x)^T \in \{0,1\}^{2 \times n} : x \in \{0,1\}^n\}$$

Binary-all-different

How about encoding that an $m \times n$ 0-1 matrix has no double row? $\mathsf{DIFF}_{m,n} := \{x \in \{0,1\}^{m \times n} : x \text{ has pairwise distinct rows} \}$ Can be done in $\binom{n}{2} 2^n + 2mn$ inequalities. Almost tight, even for 2 rows.

Hiding set

$$\mathsf{H}_{2,n} := \{(x,x)^T \in \{0,1\}^{2 \times n} : x \in \{0,1\}^n\}$$

Proof.

$$H_{2,n} \subseteq \mathsf{aff}(\mathsf{DIFF}_{2xn}) \cap \mathbb{Z}^d \setminus \mathsf{conv}(\mathsf{DIFF}_{m,n})$$
:

- $H_{2,n}$ only has values in $\mathbb{Z}^{2\times n}$
- ullet conv(DIFF $_{m,n}$)) has no common element with $H_{2,n}$, clearly.
- It holds that $aff(DIFF_{2xn}) = \mathbb{R}^{2xn}$.

Let
$$(x, x)^T, (y, y)^T \in H_{2,N}$$
.
 $\frac{(x, x)^T + (y, y)^T}{2} = \frac{(x, y)^T + (y, x)^T}{2} \in \mathsf{CONV}(\mathsf{DIFF}_{2,n})$.

Permutahedron

 $PERM_n = (\pi(1), ..., \pi(n)) \in \mathbb{Z}^n : \pi \text{ is a permutation of } [n].$

Permutahedron

 $PERM_n = (\pi(1), ..., \pi(n)) \in \mathbb{Z}^n : \pi \text{ is a permutation of } [n].$ It's proven that

$$conv(Perm_n) = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = n(n+1)/2$$

$$\sum_{i \in S} x_i \ge |S|(|S|+1)/2 \text{ for all } \emptyset \ne S \subset [n]$$

$$x \ge 0\}$$

Permutahedron

 $PERM_n = (\pi(1),...,\pi(n)) \in \mathbb{Z}^n : \pi \text{ is a permutation of } [n].$ It's proven that

$$conv(Perm_n) = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = n(n+1)/2$$
$$\sum_{i \in S} x_i \ge |S|(|S|+1)/2 \text{ for all } \emptyset \ne S \subset [n]$$
$$x \ge 0\}$$

The asymptotic growth of $rc(PERM_n)$ is $2^{\Theta(n)}$

Preliminary

Set $S:=\{i\in[n]: i \text{ is odd}\}.\ |S|=\lfloor\frac{n}{2}\rfloor.$ Select an integer vector $x\in\mathbb{Z}^n$ with $\{x_i: i \text{ is odd}(=S)\}=\{1,...,\lfloor\frac{n}{2}\rfloor-1\}$ and $\lfloor\frac{n}{2}\rfloor-1$ occurring twice, and $\{x_i: i\notin S\}=\{\lfloor\frac{n}{2}\rfloor+2,...,n\}$ and $\lfloor\frac{n}{2}\rfloor+2$ occurring twice. Such a vector is not contained in $\text{conv}(\mathsf{PERM}_n)$.

$$conv(Perm_n) = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = n(n+1)/2$$

$$\sum_{i \in S} x_i \ge |S|(|S|+1)/2 \text{ for all } \emptyset \ne S \subset [n]$$

$$x \ge 0\}$$

Preliminary

$$\sum_{i \in S} x_i = 1 + 2 + \dots + (|S| - 1) + (|S| - 1) < |S|(|S| + 1)/2$$

Note

- The only violated inequality is this one.
- $x \in aff(Perm_n)$ as it satisfies all implied equalities.
- We used only the cardinality of S so this holds for any S so that $|S|=\left|\frac{n}{2}\right|$

 $H:=\{x^S:S\subseteq [n],|S|=\left\lfloor\frac{n}{2}\right\rfloor-1\}\text{ is a hiding set for PERM}_n\text{, where }x^S\text{ is defined as follows: Select an integer vector }x\in\mathbb{Z}^n\text{ with }\{x_i:i\in S\}=\{1,...,\left\lfloor\frac{n}{2}\right\rfloor-1\}\text{ and }\left\lfloor\frac{n}{2}\right\rfloor-1\text{ occurring twice, and }\{x_i:i\notin S\}=\{\left\lfloor\frac{n}{2}\right\rfloor+2,...,n\}\text{ and }\left\lfloor\frac{n}{2}\right\rfloor+2\text{ occurring twice.}$

$$\begin{split} H := \{x^S : S \subseteq [n], |S| = \left\lfloor \frac{n}{2} \right\rfloor - 1\} \text{ is a hiding set for PERM}_n, \text{ where } x^S \\ \text{is defined as follows: Select an integer vector } x \in \mathbb{Z}^n \text{ with} \\ \{x_i : i \in S\} = \{1, ..., \left\lfloor \frac{n}{2} \right\rfloor - 1\} \text{ and } \left\lfloor \frac{n}{2} \right\rfloor - 1 \text{ occurring twice, and} \\ \{x_i : i \notin S\} = \{\left\lfloor \frac{n}{2} \right\rfloor + 2, ..., n\} \text{ and } \left\lfloor \frac{n}{2} \right\rfloor + 2 \text{ occurring twice.} \end{split}$$

Proof.

 $H \subseteq \mathsf{aff}(\mathsf{PERM}_n) \cap \mathbb{Z}^n \setminus \mathsf{conv}(\mathsf{PERM}_n)$:

- H only has values in \mathbb{Z}^n .
- $conv(PERM_n)$) has no common element with H, as demonstrated.
- $H \subseteq aff(PERM_n)$, as demonstrated.

Let $S_1, S_2 \in H$. We will show that $x := \frac{1}{2} \cdot (x^{S_1} + x^{S_2}) \in \operatorname{conv}(\operatorname{PERM}_n)$ holds. Since x satisfies all constraints that are satisfied by both x^{S_1} and x^{S_2} , it suffices to show that $\sum_{i \in S_1} x_i \geq |S_1|(|S_1|+1)/2$, $\sum_{i \in S_1} x_i \geq |S_2|(|S_2|+1)/2$ holds.

Proof.

Let $S_1, S_2 \in H$. We will show that $x := \frac{1}{2} \cdot (x^{S_1} + x^{S_2}) \in \operatorname{conv}(\operatorname{PERM}_n)$ holds. Since x satisfies all constraints that are satisfied by both x^{S_1} and x^{S_2} , it suffices to show that $\sum_{i \in S_1} x_i \geq |S_1|(|S_1|+1)/2$, $\sum_{i \in S_1} x_i \geq |S_2|(|S_2|+1)/2$ holds.

$$\sum_{i \in S_1} x_1 = \frac{1}{2} \sum_{i \in S_1} x_i^{S_1} + \frac{1}{2} \sum_{i \in S_1} x_i^{S_2}$$

$$= \frac{1}{2} \left(\frac{m(m+1)}{2} - 1 \right) + \frac{1}{2} \frac{m(m+1)}{2} + 2 \right)$$

$$\geq \frac{m(m+1)}{2}$$

Rational relaxations

Rational relaxations

- What happens if we restrict ourselves to rational values in our description?
- We don't lose too much.

Rational relaxations

Rational relaxations

- What happens if we restrict ourselves to rational values in our description?
- We don't lose too much.

Theorem

Let $X\subseteq \mathbb{Z}^d$ be finite and $rc_Q(X)$ be the smallest number of facets of any rational relaxation for X. Then, $rc_Q(X)\leq rc(X)+dim(X)+1$.

If $X\subseteq\{0,1\}^d$ only, the coefficients of this rational relaxation R can be polynomially bounded in size by d.

Open questions

Questions

- Is it true that $rc(X) \geq dim(X) + 1$ holds for all polyhedral (or at least finite) sets $X \subseteq \mathbb{R}^d$? (holds for $X \subset \{0,1\}^d$).
- Is there any polyhedral (or even finite) set $X\subset \mathbb{Z}^d$ such that $rc(X)< rc_O(X)$?

Weltge PHD thesis:

- In dimension two, rc(X) and $rc_Q(X)$ coincide and are computable.
- $dim(X) \ge k! \implies rc(X) \ge k$

On the Size of Integer Programs with Bounded Coefficients or Sparse Constraints (2018)

- A simple algorithm to compute the maximum hiding set for $X \subset S$ where $|S| < |\mathbb{N}|$ is given.
- Given a nonempty set $X\subset\{0,1\}^n$, build a graph G=(V,E) with $V=\{0,1\}^n$ X. The edge set E of G is defined as $E=\{\{x,y\}:x,y\in V,conv(x,y)\cap conv(X)\neq\emptyset\}.$
- Any clique in G is a hiding set by definition. By computing the size of a maximum clique in G, we get the maximum size of any hiding set $H\subseteq 0,1^n$ for X.

Complexity of linear relaxations in integer programming (2020)

Main results: (X assumed a finite lattice-convex set)

- - \bullet X is at most four-dimensional,
 - 2 X represents every residue class in $(Z/2Z)^d$
 - $oldsymbol{\circ}$ the convex hull of X contains an interior integer point,
 - $oldsymbol{0}$ the lattice-width of X is above a certain threshold.
- - X is at most three-dimensional, or
 - X satisfies one of the last three conditions above.
- **3** An improved lower bound on $\operatorname{rc}(X)$ in terms of the dimension of X is obtained. $\operatorname{rc}(X) > \log(\dim(X)) \log\log(\dim(X))$.

Strong IP formulations need large coefficients (2021)

Generalization of hiding sets.

- A set $H \subseteq (aff(X) \cap Z^n) \ X$ is called a hiding set for X if $conv\{x1, x2\} \cap conv(X) \neq \emptyset$ for each pair of distinct points $x1, x2 \in H$.
- A set $H \subseteq (aff(X) \cap F) \ X$ is called an F-hiding set for X if $\operatorname{conv}\{\mathsf{x1},\,\mathsf{x2}\} \cap \operatorname{conv}(\mathsf{X}) \neq \emptyset$ for each pair of distinct points $x1,x2 \in H$, where $F \subseteq \mathbb{R}^n$.
- Let $X \subseteq \mathbb{Z}^n$ be polyhedral, let $F \subseteq \mathbb{R}^n$, and let H be an F-hiding set for X. Then, every family of inequalities separating $F \cap \text{conv}(X)$ and $F \setminus \text{conv}(X)$ has size at least |H|.

Computational Aspects of Relaxation Complexity: Possibilities and Limitations (2021)

- Tight and computable upper bounds on $rc_Q(X)$.
- \bullet rc(X) can be computed in polynomial time if X is 2-dimensional.
- Explicit formula for rc(X) for specific classes of sets X.
- First practically applicable approach to compute rc(X) for specific classes of sets X.

Efficient MIP Techniques for Computing the Relaxation Complexity (2022)

• Techniques to efficiently compute a numerically more robust variant of the relaxation complexity, $rc_{\varepsilon}(X)$, where $\operatorname{conv}(X) \cap \mathbb{Z}^d = \{x \in \mathbb{Z}^d | Ax < b + \varepsilon\}$ instead of $\{x \in \mathbb{Z}^d | Ax < b\}$.

Ευχαριστούμε!

Βιβλιογραφία

- R. D. Carr, L. Fleischer, V. J. Leung, and C. A. Phillips, Strengthening integrality gaps for capacitated network design and covering problems, in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 106–115.
- N. Bansal and K. Pruhs, Weighted geometric set multi-cover via quasi-uniform sampling, in Proceedings of the European Symposium on Algorithms, 2012, pp. 145–156.