Partie III

I – Fonction Arc sinus

II – Fonction Arc cosinus

III - Fonction Arc tangente

IV – Fonction Arc cotangente

I. Fonction Arc sinus

$$sin: \mathbb{R} \to [-1,1]$$

$$\forall x \in \mathbb{R}; \quad sin(-x) = -sin(x)$$

$$\sin(x + 2\pi) = sin(x)$$

$$sin' = cos$$

$$cos(x) = 0 \iff x = \frac{\pi}{2} + k\pi, \qquad k \in \mathbb{Z}$$

Aspect de la courbe de la fonction sinus 2

Définition:

La fonction sinus est continue et strictement croissante sur l'intervalle $I = [-\pi/2, \pi/2]$, elle réalise une bijection de cet intervalle sur l'intervalle J = sin(I) = [-1, +1].

La bijection réciproque de la fonction $sin_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}$ est par définition la fonction Arc

sinus notée arcsin

arcsin:
$$[-1,+1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$

De plus; pour tout
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

 $y = sin(x) \Leftrightarrow x = arcsin(y)$

Proposition:

Pour tout $x \in [-1, +1]$, le réel arcsin(x) est l'unique élément de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dont le sinus vaut x.

On a

$$\forall x \in [-1, +1] \ sin(arcsin(x)) = x$$

$$\forall \alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad arcsin(sin(\alpha)) = \alpha$$

Remarque:

Pour tout réel α l'expression $arcsin(sin(\alpha))$ possède un sens , car $sin(\alpha)$ est toujours compris entre -1 et +1, mais l'égalité $arcsin(sin(\alpha)) = \alpha$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc sinus, c'est-à-dire $-\frac{\pi}{2}, \frac{\pi}{2}$

Exemple:

$$\arcsin\left(\sin\frac{5\pi}{6}\right) = \frac{\pi}{6}$$

$$\operatorname{Car}\sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) \text{ avec}$$

$$\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Proposition:

Pour tout
$$x \in [-1, +1]$$

$$cos(arcsin(x)) = \sqrt{1 - x^2}$$

Preuve:

On sait que pour tout $\theta \in \mathbb{R}$

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

D'où pour tout $x \in [-1, +1]$ $cos^2(arcsin(x)) + sin^2(arcsin(x)) = 1$

et

$$cos^{2}(arcsin(x)) = 1 - sin^{2}(arcsin(x))$$

vue que $-\frac{\pi}{2} \le \arcsin(x) \le \frac{\pi}{2}$ il vient que $\cos(\arcsin(x)) \ge 0$ et donc

$$cos(arcsin(x)) = \sqrt{1 - x^2}$$

Proposition:

La fonction Arc sinus est dérivable sur l'intervalle]-1, +1[
et de plus
Pout tout $x \in]-1, +1[$ on a $(arcsin)'(x) = \frac{1}{\sqrt{1-x^2}}$

Preuve:

pour tout
$$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $y = sin(x) \iff x = arcsin(y)$

Avec

$$(sin)'(x) = cos(x) = 0 \Leftrightarrow x = \pm \frac{\pi}{2}$$

$$sin\left(-\frac{\pi}{2}\right) = -1 \quad sin\left(\frac{\pi}{2}\right) = +1$$

$$(arcsin)'(y) = \frac{1}{(sin)'(x)} = \frac{1}{cos(x)}$$

$$= \frac{1}{cos(arcsin(y))}$$

$$(arcsin)'(y) = \frac{1}{\sqrt{1 - y^2}}$$

Tableau de variation:

On résume les variations de la fonction Arc sinus dans le tableau suivant

Représentation graphique de Arc sin:

I. Fonction Arc cosinus

$$cos: \mathbb{R} \to [-1,1]$$

$$\forall x \in \mathbb{R}; \ cos(-x) = cos(x)$$

$$cos' = -sin$$

$$sin(x) = 0 \iff x = k\pi, \qquad k \in \mathbb{Z}$$

Aspect de la courbe de la fonction cosinus

Définition:

La fonction cosinus est continue et strictement décroissante sur l'intervalle $I = [0, \pi]$, elle réalise une bijection de cet intervalle sur l'intervalle J = cos(I) = [-1, +1]

La bijection réciproque de la fonction $\cos_{|[0,\pi]}$ est par définition la fonction Arc cosinus notée \arccos

arccos:
$$[-1,+1] \rightarrow [0,\pi]$$

De plus; pour tout $x \in [0, \pi]$ $y = cos(x) \Leftrightarrow x = arccos(y)$

Proposition:

Pour tout $x \in [-1, +1]$, le réel arccos(x) est l'unique élément de $[0, \pi]$ dont le cosinus vaut x.

On a

$$\forall x \in [-1, +1] \ cos(arccos(x)) = x$$

$$\forall \alpha \in [0, \pi] \quad arccos(cos(\alpha)) = \alpha$$

Remarque:

Pour tout réel α l'expression $\arccos(\cos(\alpha))$ possède un sens , car $\cos(\alpha)$ est toujours compris entre -1 et +1, mais l'égalité $\arccos(\cos(\alpha))$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc cosinus, c'est-à-dire $[0,\pi]$

Exemple:

$$arccos\left(cos - \frac{5\pi}{6}\right) = \frac{5\pi}{6}$$

Car
$$\cos\left(-\frac{5\pi}{6}\right) = \cos\left(\frac{5\pi}{6}\right)$$
 avec $\frac{5\pi}{6} \in [0,\pi]$

Proposition:

Pour tout
$$x \in [-1, +1]$$

$$sin(arccos(x)) = \sqrt{1 - x^2}$$

Preuve:

On sait que pour tout
$$\theta \in \mathbb{R}$$
 $\cos^2(\theta) + \sin^2(\theta) = 1$
D'où pour tout $x \in [-1, +1]$ $\cos^2(\arccos(x)) + \sin^2(\arccos(x)) = 1$
et $\sin^2(\arccos(x)) = 1 - \cos^2(\arccos(x))$
vue que $0 \le \arccos(x) \le \pi$ il vient que $\sin(\arccos(x)) \ge 0$ et donc $\sin(\arccos(x)) = \sqrt{1 - x^2}$

Proposition:

La fonction Arc cosinus est dérivable sur l'intervalle]-1,+1[et de plus Pout tout $x \in]-1,+1[$ on a

$$(arccos)'(x) = -\frac{1}{\sqrt{1-x^2}}$$

Preuve:

pour tout
$$x \in [0, \pi]$$

 $y = cos(x) \Leftrightarrow x = arccos(y)$
Avec

$$(cos)'(x) = -sin(x) = 0$$

$$\Leftrightarrow x = 0, \quad x = \pi$$

$$cos(0) = -1 \quad cos(\pi) = +1$$

$$(arccos)'(y) = \frac{1}{(cos)'(x)} = -\frac{1}{sin(x)}$$

$$= -\frac{1}{sin(arccos(y))}$$

$$(arccos)'(y) = -\frac{1}{\sqrt{1 - y^2}}$$

Tableau de variation:

On résume les variations de la fonction Arc cosinus dans le tableau suivant

Représentation graphique de Arc cosinus:

Fonction Arc tangente

$$tan: \mathbb{R} - \left\{ (2k+1)\frac{\pi}{2}, k \in \mathbb{Z} \right\} \to \mathbb{R}$$

$$tan(x) = \frac{\sin(x)}{\cos(x)} \quad , (tan)'(x) = \frac{1}{\cos^2(x)}$$

Définition:

La fonction tangente est continue et strictement croissante sur l'intervalle I =

 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, elle réalise une bijection de cet intervalle sur l'intervalle

$$J = tan(I) = \lim_{\substack{> \\ x \to -\pi/2}} tan(x), \lim_{\substack{\leq \\ x \to \pi/2}} tan(x), [$$

 $= \mathbb{R}$

La bijection réciproque de la fonction $tan_{\left| -\frac{\pi}{2},\frac{\pi}{2} \right|}$ est par définition la fonction Arc

tangente notée arctan

$$arctan: \mathbb{R} \rightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

De plus; pour tout
$$x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

 $y = tan(x) \Leftrightarrow x = arctan(y)$

Proposition:

Pour tout $x \in \mathbb{R}$, le réel $\arctan(x)$ est l'unique élément de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ dont la tangente vaut x.

On a

$$\forall x \in \mathbb{R} \ tan(arctan(x)) = x$$

$$\forall \alpha \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\arctan(\tan(\alpha)) = \alpha$$

Remarque:

Pour tout réel $\alpha \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$ l'expression $\arctan(\tan(\alpha))$ possède un sens , car $\tan(\alpha)$ est dans \mathbb{R} , mais l'égalité $\arctan(\tan(\alpha))$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc tangente, c'est-à-dire $-\frac{\pi}{2}, \frac{\pi}{2}$

Exemple:

$$\arctan\left(\tan - \frac{5\pi}{6}\right) = \frac{\pi}{6}$$

$$\operatorname{Car} \tan\left(-\frac{5\pi}{6}\right) = \tan\left(-\pi + \frac{\pi}{6}\right) = \tan\left(+\frac{\pi}{6}\right)$$

$$\operatorname{avec} \frac{\pi}{6} \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

Proposition:

La fonction Arc tangente est dérivable sur l'intervalle R

et de plus

Pout tout $x \in \mathbb{R}$ on a

$$(arctan)'(x) = \frac{1}{1+x^2}$$

Preuve:

pour tout
$$x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$

$$y = tan(x) \Leftrightarrow x = arctan(y)$$

$$(tan)'(x) = \frac{1}{cos^2(x)} = 1 + tan^2(x) \neq 0$$

$$(arctan)'(y) = \frac{1}{(tan)'(x)} = \frac{1}{1 + tan^2(x)}$$

$$= \frac{1}{1 + tan^2(arctan(y))}$$

$$(arctan)'(y) = \frac{1}{1 + y^2}$$

Tableau de variation:

On résume les variations de la fonction Arc tangente dans le tableau suivant

x	-∞	0	+ ∞
$(arctan)'(x) = \frac{1}{1+x^2}$		+	
arctan(x)	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$

Proposition:

Pour tout $x \in \mathbb{R}^*$

$$arctan(x) + arctan\left(\frac{1}{x}\right) = \varepsilon \frac{\pi}{2}$$

Avec
$$\varepsilon = \begin{cases} -1, & x < 0 \\ +1, & x > 0 \end{cases}$$

Preuve:

$$f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$$
$$f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \frac{1}{1+\left(\frac{1}{x}\right)^2} = 0$$

La fonction f est donc constante sur \mathbb{R}^* , de la forme

$$f(x) = \begin{cases} c_1, & x < 0 \\ c_2, & x > 0 \end{cases}$$

Où c_1 , c_2 sont des constantes réelles.

Prenons x = -1 puis x = +1, il vient que

$$c_1 = -\frac{\pi}{2}, \qquad c_2 = \frac{\pi}{2}$$

I. Fonction Arc cotangente

$$cotan: \mathbb{R} - \{k\pi, k \in \mathbb{Z}\} \to \mathbb{R}$$

$$cotan(x) = \frac{cos(x)}{sin(x)}$$

$$(cotan)'(x) = -\frac{1}{sin^2(x)}$$

$$= -(1 + cotan^2 x)$$

Définition:

La fonction cotangente est continue et strictement décroissante sur l'intervalle $I =]0, \pi$ [, elle réalise une bijection de cet intervalle sur l'intervalle

$$J = cotan(I) = \mathbb{R}$$

La bijection réciproque de la fonction $\cot an_{|]0,\pi}[$ est par définition la fonction Arc cotangente notée arccot

$$arccot: \mathbb{R} \rightarrow]0, \pi[$$

De plus; pour tout
$$x \in]0, \pi[$$

 $y = cotan(x) \Leftrightarrow x = arccot(y)$

Proposition:

Pour tout $x \in \mathbb{R}$, le réel arccot(x) est l'unique élément de $]0,\pi$ [dont la cotangente vaut x.

On a

$$\forall x \in \mathbb{R} \ cotan(arccot(x)) = x$$

$$\forall \alpha \in]0, \pi[arccot(cotan(\alpha)) = \alpha]$$

Remarque:

Pour tout réel α l'expression $\operatorname{arccot}(\operatorname{cotan}(\alpha))$ possède un sens , car $\operatorname{cotan}(\alpha)$ est dans \mathbb{R} , mais l'égalité $\operatorname{arccot}(\operatorname{cotan}(\alpha))$, n'est valable que pour α dans l'intervalle particulier formé de l'ensemble des valeurs de la fonction Arc $\operatorname{cotangente}$, c'est-à-dire]0, π [

Exemple:

$$arccotan\left(cotan - \frac{5\pi}{6}\right) = \frac{\pi}{6}$$

$$Car \cot \left(-\frac{5\pi}{6}\right) = \cot \left(-\pi + \frac{\pi}{6}\right) = \cot \left(\frac{\pi}{6}\right)$$

$$\cot \left(\frac{\pi}{6}\right) \operatorname{avec} \frac{\pi}{6} \in \left]0, \pi\right[$$

Proposition:

La fonction Arc cotangente est dérivable sur l'intervalle R

et de plus

Pout tout $x \in \mathbb{R}$ on a

$$(arccotan)'(x) = -\frac{1}{1+x^2}$$

Preuve:

pour tout
$$x \in]0, \pi[$$

$$y = cotan(x) \Leftrightarrow x = arccot(y)$$

$$(cotan)'(x) = -\frac{1}{sin^2(x)}$$

$$= -(1 + cotan^2(x)) \neq 0$$

$$(arccot)'(y) = \frac{1}{(cotan)'(x)}$$

$$= -\frac{1}{1 + cotan^2(x)}$$

$$= -\frac{1}{1 + cotan^2(arccot(y))}$$

$$(arccot)'(y) = -\frac{1}{1 + y^2}$$

Proposition:

Pour tout $x \in \mathbb{R}$

$$arccotan(x) + arctan(x) = \frac{\pi}{2}$$

Preuve:

$$f(x) = arccotan(x) + arctan(x)$$
$$f'(x) = -\frac{1}{1+x^2} + \frac{1}{1+x^2} = 0$$

La fonction f est donc constante sur $\mathbb R$, de la forme

Prenons
$$x = 1$$
 puis, il vient que
$$f(x) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$$

Merci Au prochain cours