Chapitre 18. Espaces vectoriels de dimension finie

1 Définitions et lemmes fondamentaux

1.1 Sous-familles

Définition 1.1.

- * Une sous-famille d'une famille $F = (x_i)_{i \in I}$ est une famille de la forme $(x_j)_{j \in I}$ où $J \subseteq I$
- * En particulier, une sous-famille de $(x_i)_{i=1}^n$ est une famille de la forme $(x_{i_k})_{k=1}^r$ où $1 \le i_1 < i_2 < ... < i_r \le n$

Proposition 1.2. Soit *F* une famille de vecteurs d'un ev *E* et *G* une sous-famille de *F*.

- * Si *F* est libre, alors *G* aussi.
- * Si G est génératrice, alors F aussi.

Lemme 1.3 (Lemme de précipitation). Soit $(x_1, ..., x_n)$ une famille libre d'un ev E et $y \in E$. Alors $(x_1, ..., x_n, y)$ est liée ssi $y \in \text{Vect}(x_1, ..., x_n)$

1.2 Espaces vectoriels de dimension finie

On fixe un ev E.

Lemme 1.4 (Théorème de la base incomplète, version forte).

Soit $(x_1, ..., x_n, y_1, ..., y_p)$ une famille de vecteurs de E telle que :

- * $(x_1, ..., x_n)$ libre.
- * $(x_1, \dots, x_n, y_1, \dots, y_p)$ génératrice.

Alors il existent $1 \le j_1 < ... < j_r \le p$ tels que $(x_1, ..., x_n, y_{j_1}, ..., y_{j_r})$ soit une base de E.

Corollaire 1.5 (théorème de la base extraite). Soit $(y_1, ..., y_p)$ une famille génératrice de E.

Alors on peut en "extraire" une base : il existe $1 \le j_1 < ... < j_r \le p$ tels que $(y_{j_1}, ..., y_{j_r})$ soit une base de E.

Corollaire 1.6. *E* admet une base finie ssi *E* admet une famille génératrice finie.

Définition 1.7. On dit que *E* est de dimension finie s'il admet une base finie (ou une famille génératrice finie, puisque c'est équivalent).

Corollaire 1.8 (Théorème de la base incomplète, version faible). Supposons *E* de dimension finie.

Soit $(x_1, ..., x_n)$ une famille libre de vecteurs de E. On peut alors la "compléter" en une base :

on peut trouver $z_1, ..., z_r \in E$ tels que $(x_1, ..., x_n, z_1, ..., z_r)$ soit une base de E.

1.3 Dimension

Lemme 1.9 (Lemme de l'échange de Steinitz). Soit $e_1, ..., e_n \subseteq E$.

Alors toute famille de n+1 vecteurs de $Vect(e_1, ..., e_n)$ est liée.

Corollaire 1.10. Soit *E* un espace vectoriel de dimension finie.

- * Si \mathcal{L} est une famille libre de vecteurs de E et \mathcal{G} une famille génératrice de vecteurs de E alors \mathcal{G} a au moins autant d'éléments que \mathcal{L} .
- * Toutes les bases de *E* ont le même nombre d'éléments.

Définition 1.11. Soit *E* un evdf [ev de dimension finie].

On en définit sa dimension dim $E \in \mathbb{N}$ comme étant le nombre de vecteurs de ses bases.

Définition 1.12.

- * Une droite (vectorielle) est un ev de dimension 1.
- * Un plan (vectoriel) est un ev de dimension 2.

Théorème 1.13. Soit *E* un evdf et $\mathcal{F} = (x_1, ..., x_n)$ une famille de vecteurs de *E*.

Alors:

- * Si \mathcal{F} est libre, on a $n \leq \dim E$
- * Si \mathcal{F} est génératrice, on a dim $E \leq n$
- * Si $n = \dim E$, alors LASSÉ:
 - (i) \mathcal{F} libre.
 - (ii) \mathcal{F} engendre E.
- (iii) \mathcal{F} est une base de E.

1.4 Retour aux familles échelonnées

Théorème 1.14. Soit $P_0, P_1, ..., P_k \in K[X]$ tels que $\forall i \in [0, n]$, deg $P_i = i$. Alors $(P_0, ..., P_n)$ est une base de $K_n[X]$.

1.5 Classification des evdf à isomorphisme près

Théorème 1.15. Soit *E*, *F* deux ev.

- * Si E et F sont isomorphes, E est de dimension finie si et seulement si F l'est.
- * Si E et F sont de dimension finie, alors E et F sont isomorphes ssi dim $E = \dim F$.

2 EV de dimension infinie (hors-programme)

Si E possède une famille libre infinie $(e_i)_{i \in I}$, alors E est de <u>dimension infinie</u> (càd qu'il n'est pas de dimension finie).

En effet, si E était de dimension finie $d = \dim E$ on pourrait extraire de $(e_i)_{i \in I}$ une famille (nécessairement libre) à d+1 vecteurs, ce qui est absurde. Cela donne des exemples d'espaces vectoriels de dimension infinie :

* K[X], avec sa base $(X^n)_{n\in\mathbb{N}}$

*
$$\mathbb{R}^{\mathbb{N}}$$
, e.g. $\begin{pmatrix} (1,0,0,0,...,) \\ (0,1,0,0,...,) \\ (0,0,1,0,...,)$, etc... $\end{pmatrix}$

* $\mathbb{R}^{\mathbb{R}}$, ou $C^{\infty}(\mathbb{R}, \mathbb{R})$ e.g. $(x \to e^{\alpha x})_{\alpha \in \mathbb{R}}$

Toute la suite du B est hors-programme.

2.1 Existence de bases

- * Le lemme de précipitation marche très bien avec des familles infinies.
- * Le théorème de la base incomplète reste vrai avec essentiellement la même preuve : la famille libre maximale est fournie par le lemme de Zorn.

Lemme 2.1. Soit $(I_{\tau})_{\tau \in T}$ une famille d'ensembles telle que $\forall \tau_1, \tau_2 \in T$, $I_{\tau_1} \subseteq I_{\tau_2}$ ou $I_{\tau_2} \subseteq I_{\tau_1}$

On note $I = \bigcup_{I \in T} I_{\tau}$ et on prend une famille $(x_i)_{i \in I}$.

Si toutes les familles $(x_i)_{i \in I_\tau}$ sont libres, alors $(x_i)_{i \in I}$ est libre.

Corollaire 2.2. Tout espace vectoriel admet une base.

2.2 Définition de la dimension

Lemme 2.3. Soit $(x_i)_{i \in I}$ et $(y_j)_{j \in J}$ une famille libre de vecteurs de $\text{Vect}(x_i)_{i \in I}$ Alors il existe une injection $I \to I$.

Corollaire 2.4. Si $(e_i)_{i \in I}$ et $(f_i)_{i \in I}$ sont deux bases d'un même ev E, alors I et J sont en bijection.

2.3 Bases de Hamel

Définition 2.5. Une base de Hamel est une base du \mathbb{Q} -ev \mathbb{R} .

3 Sous-espaces vectoriels et dimensions

3.1 Inégalité des dimensions, base adaptée

Théorème 3.1. Soit *E* un espace vectoriel de dimension finie et *F* un sev de *E*.

Alors F est de dimension finie et dim $F \leq \dim E$.

Théorème 3.2. Soit *E* un evdf et *F* un sev de *E*.

Alors il existe une base $(e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ de E telle que (e_1, \dots, e_r) soit une base de F.

Théorème 3.3. Soit *E* un evdf et *F* un sev de *E*.

Si dim $F = \dim E$, alors F = E.

Définition 3.4. Un <u>hyperplan</u> d'un espace vectoriel de dimension finie E est un sev de E de dimension dim E-1.

3.2 Sommes (directes) et dimension

Lemme 3.5. Soit E un espace vectoriel et $F_1, ..., F_r$ des sous-espaces vectoriels de E de dimension finie et en somme directe. Alors $\bigoplus_{i=1}^r F_i$ est de dimension finie et $\dim(\bigoplus_{i=1}^r F_i) = \sum_{i=1}^r \dim F_i$

Proposition 3.6. Soit $E_1, ..., E_r$ des espaces vectoriels de dimension finie.

Alors $E_1 \times ... \times E_r$ est de dimension finie, et $\dim(E_1 \times ... \times E_r) = \sum_{i=1}^r \dim E_i$

Proposition 3.7. Soit E un evdf et F un sev de E.

Alors F possède (au moins) un supplémentaire dans E et tous les supplémentaires de F sont de dimension $\dim E - \dim F$

3

Théorème 3.8 (Formule de Grassmann). Soit *E* un ev. Soit *F*, *G* deux sev de *E* de dimension finie.

Alors $\dim(F + G) = \dim F + \dim G - \dim(F \cap G)$

Théorème 3.9. Soit *F*, *G* deux sev de dimension finie d'un ev *E*.

- * F et G sont en somme directe ssi $\dim(F+G) = \dim F + \dim G$
- * Supposons E de dimension finie dim $E = \dim F + \dim G$.

Alors les assertions suivantes sont équivalentes :

- (i) *F* et *G* sont en somme directe.
- (ii) F + G = E
- (iii) F et G sont supplémentaires : $E = F \oplus G$

3.3 Rang d'une famille de vecteurs

Définition 3.10. Soit $x_1, ..., x_p$ des vecteurs d'un ev E.

On définit le rang de cette famille : $rg(x_1, ..., x_p) = dim Vect(x_1, ..., x_p)$

Proposition 3.11.

- * On a $\operatorname{rg}(x_1, \dots, x_p) \leq p$
- * Si *E* est de dimension finie, $\operatorname{rg}(x_1, \dots, x_p) \leq \dim E$ (et donc $\operatorname{rg}(x_1, \dots, x_p) \leq \min(p, \dim E)$)
- * On a $(x_1, ..., x_p)$ libre ssi $rg(x_1, ..., x_p) = p$
- * On a $(x_1, ..., x_p)$ engendre E ssi $\operatorname{rg}(x_1, ..., x_p) = \dim E$
- * (x_1, \dots, x_p) est une base de E ssi $\operatorname{rg}(x_1, \dots, x_p) = p = \dim E$

4 Applications linéaires et dimensions

4.1 Injectivité et surjectivité

Théorème 4.1. Soit *E* et *F* deux espaces vectoriels et $f \in \mathcal{L}(E, F)$

- * Si F est de dimension finie et f injective, alors E est de dimension finie et dim $E \leq \dim F$
- * Si *E* est de dimension finie et que *f* est surjective, alors *F* est de dimension finie et dim $F \leq \dim E$
- * Si E et F sont de dimension finie et que dim $E = \dim F$, LASSÉ :
 - (i) *f* injective.
 - (ii) f surjective.
- (iii) f est un isomorphisme.

Corollaire 4.2. Soit *E* un evdf et $f \in \mathcal{L}(E)$.

Alors f injectif \iff f surjective \iff $f \in GL(E)$

Corollaire 4.3. Soit *E* un evdf et $u \in \mathcal{L}(E)$. LASSÉ :

- (i) u est inversible à gauche : $\exists v \in \mathcal{L}(E), v \circ u = id_E$
- (ii) u est inversible à droite : $\exists v \in \mathcal{L}(E), u \circ v = id_E$
- (iii) *u* est un isomorphisme.

Théorème 4.4. Soit *A* une *K*-algèbre et *B* une sous-algèbre de *A* de dimension finie.

Soit $x \in B \cap A^{\times}$ (càd $x \in B$ et il possède un inverse dans A).

Alors $x \in B^{\times}$ (càd l'inverse $x^{-1} \in B$).

4.2 Rang d'une application linéaire

Définition 4.5. Soit *E*, *F* deux ev et $f \in \mathcal{L}(E, F)$

- * On dit que *f* est de rang fini si im *f* est de dimension finie.
- * Si c'est le cas, le rang de f est rg(f) = dim(im f)

Proposition 4.6. Soit *E*, *F* deux espaces vectoriels et $f \in \mathcal{L}(E, F)$

- * Si E est de dimension finie, alors f est de rang fini, est rg $f \leq \dim E$
- * Si *F* est de dimension finie, alors *f* est de rang fini, est rg $f \leq \dim F$

Proposition 4.7. Soit *E*, *F*, *G* trois espaces vectoriels et $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(F, G)$.

- * Si f est de rang fini, alors $g \circ f$ aussi et $rg(g \circ f) \leq rg f$
- * Si g est de rang fini, alors $g \circ f$ aussi et $rg(g \circ f) \leq rg g$

Proposition 4.8. On reprend les notations de la question précédente.

- * Si f est un isomorphisme et que g est de rang fini, on a $rg(g \circ f) = rg g$
- * Si g est un isomorphisme et que f est de rang fini, on a $rg(g \circ f) = rg f$

4.3 Théorème du rang

Théorème 4.9 (du rang / rank-nullity theorem). Soit E, F deux espaces vectoriels de dimension finie et $f \in \mathcal{L}(E,F)$.

- * Soit S un supplémentaire de $\ker f$ dans E ($E = \ker f \oplus S$).
 - Alors f induit un isomorphisme $\tilde{f}:S\to\operatorname{im} f$
- * On a la formule du rang : $\operatorname{rg} f = \dim E \dim \ker f$

Corollaire 4.10. Avec les mêmes notations, on a :

- * f injective \iff dim ker $f = 0 \iff$ rg $f = \dim E$
- * f surjective \iff rg $f = \dim F$
- * f iso \iff rg $f = \dim E = \dim F$

On retrouve les résultats de la section 1.

4.4 Formes linéaires et hyperplans

Définition 4.11. Soit *E* un espace vectoriel de dimension finie.

Une forme linéaire sur E est une AL $E \rightarrow K$.

On note $E^* = \mathcal{L}(E, K)$ et on appelle dual de E l'espace des formes linéaires sur E.

Proposition 4.12. Soit E un espace vectoriel de dimension finie.

- * Soit $\alpha \in E^*$ non nulle. Alors $\ker \alpha$ est un hyperplan de E.
- * Soit *H* un hyperplan de *E*
 - Il existe $\alpha \in E^*$ non nulle tel que $H = \ker \alpha$
 - Si $\alpha, \beta \in E^*$ vérifient ker $\alpha = \ker \beta = H$ alors $\exists \lambda \in K \setminus \{0\} : \beta = \lambda \alpha$

Proposition 4.13. Soit E un ev de dimension n.

- * Tout sev F de E de dimension d est l'intersection $F = H_1 \cap ... \cap H_{n-d}$ de n-d hyperplans.
- * Réciproquement, si $H_1, ..., H_r$ sont r hyperplans de E, alors $\dim(H_1 \cap ... \cap H_r) \geq n r$.

Définition 4.14. Étant donné un sev F de E, on définit sa codimension cod(F) = dim E - dim F

Lemme 4.15. Si $F_1, ..., F_r$ sont des sev de E, alors $cod(F_1 \cap ... \cap F_r) \leq \sum_{i=1}^r cod(F_i)$

5 Représentation matricielle

5.1 Matrices d'un vecteur, d'une famille, d'une AL

Dans toute cette section, E est un espace vectoriel de dim p, muni d'une base $\mathcal{B} = (e_1, \dots, e_p)$ F est un espace vectoriel de dim p, muni d'une base $\mathcal{C} = (f_1, \dots, f_p)$

Rappel: Tout vecteur
$$y \in F$$
 a une matrice $\mathrm{Mat}_{\mathcal{C}}(y) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$, où $\lambda_1, \dots, \lambda_n \in K$ sont tels que $y = \sum_{i=1}^n \lambda_i f_i$

Définition 5.1. Soit $y_1, ..., y_p \in F$. On définit la matrice de la famille $(y_1, ..., y_p)$ dans la base C:

$$\operatorname{Mat}_{\mathcal{C}}(y_1, \dots, y_p) = \left(\operatorname{Mat}_{\mathcal{C}}(y_1) \mid \dots \mid \operatorname{Mat}_{\mathcal{C}}(y_p)\right) \in M_{np}(K)$$

Définition 5.2. Soit $u \in \mathcal{L}(E, F)$. On définit le matrice de u dans les bases \mathcal{B} et \mathcal{C} :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) = \operatorname{Mat}_{\mathcal{C}}(u(e_1), \dots, u(e_p)) = \Big(\operatorname{Mat}_{\mathcal{C}}(u(e_1)) \quad \Big| \quad \cdots \quad \Big| \quad \operatorname{Mat}_{\mathcal{C}}(u(e_p))\Big) \in M_{np}(K)$$

5

Définition 5.3. Soit $u \in \mathcal{L}(E)$. On définit la matrice de u dans la base \mathcal{B} :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(u) \in M_p(K)$$

Proposition 5.4 ("évaluer c'est multiplier"). Soit $x \in E$.

Alors

$$Mat_{\mathcal{C}}(u(x)) = Mat_{\mathcal{B},\mathcal{C}}(u) Mat_{\mathcal{B}}(x)$$

Corollaire 5.5. Soit $u \in \mathcal{L}(E, F)$. On a :

- * Pour tout $x \in E$, $x \in \ker u \iff \operatorname{Mat}_{\mathcal{B}}(x) \in \ker \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$
- * Pour tout $y \in F$, $y \in \text{im } u \iff \text{Mat}_{\mathcal{C}}(y) \in \text{im Mat}_{\mathcal{B},\mathcal{C}}(u)$

Proposition 5.6 ("composer c'est multiplier"). Soit E, F, G trois evdf de bases $\mathcal{B} = (e_1, \dots, e_p)$, $\mathcal{C} = (f_1, \dots, f_n)$, $\mathcal{D} = (g_1, \dots, g_m)$ et $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ Alors

$$\operatorname{Mat}_{\mathcal{B},\mathcal{D}}(v \circ u) = \operatorname{Mat}_{\mathcal{C},\mathcal{D}}(v) \operatorname{Mat}_{\mathcal{C},\mathcal{D}}(u)$$

5.2 Application linéaire associées à des matrices

Théorème 5.7.

- * $Mat_C: F \to K^n$ est un isomorphisme (d'év).
- * $Mat_{\mathcal{B},\mathcal{C}}: \mathcal{L}(E,F) \to M_{np}(K)$ est un isomorphisme (d'év).
- * $Mat_{\mathcal{B}}: \mathcal{L}(E) \to M_p(K)$ est un isomorphisme (d'év).

Corollaire 5.8. On a dim $\mathcal{L}(E, F) = \dim E \cdot \dim F$

Corollaire 5.9 (du corollaire).

- * $\dim \mathcal{L}(E) = (\dim E)^2$
- $* \dim E^* = \dim \mathcal{L}(E, K) = \dim E$

Corollaire 5.10. Soit $u \in \mathcal{L}(E)$

Alors u est un automorphisme ssi $Mat_{\mathcal{B}}(u)$ est inversible.

Autrement dit : $u \in GL(E) \iff \operatorname{Mat}_{\mathcal{B}}(u) \in GL_p(K)$

5.3 Rang d'une matrice

Définition 5.11. Soit $A \in M_{np}(K)$

On définit le rang de A : rg A = dim(im A)

Proposition 5.12.

- * Soit $y_1, ..., y_p \in F$. On a $rg(y_1, ..., y_p) = rg Mat_{\mathcal{C}}(y_1, ..., y_p)$
- * Soit $u \in \mathcal{L}(E, F)$. On a rg $u = \operatorname{rg} \operatorname{Mat}_{\mathcal{B}, \mathcal{C}}(u)$

Théorème 5.13.

- * $\forall A \in M_{np}(K)$, $\operatorname{rg} A \leq \min(n, p)$
- * $\forall A \in M_{np}(K), \forall B \in M_{pq}(K), \operatorname{rg}(AB) \leq (\operatorname{rg} A, \operatorname{rg} B)$

*
$$\forall A \in M_{np}(K)$$
,
$$\begin{cases} \forall P \in GL_n(K), \operatorname{rg}(PA) = \operatorname{rg} A \\ \forall Q \in GL_p(K), \operatorname{rg}(AQ) = \operatorname{rg} A \end{cases}$$

Théorème 5.14 (Théorème du rang).

- * $\forall A \in M_{np}(K)$, $\operatorname{rg} A = p \dim \ker A$
- * Pour tout $A \in M_{np}(K)$, $\ker A = \{0_{K^p}\} \iff \operatorname{rg} A = p$ $\operatorname{im} A = K^n \iff \operatorname{rg} A = n$
- * En particulier, pour tout $A \in M_n(K)$, on a $\operatorname{rg} A = n \iff A \in GL_n(K) \iff \ker A = \{0_{K^n}\} \iff \operatorname{im} A = K^n$

Corollaire 5.15. Soit $A \in M_{np}(K)$ et $A' \in M_{np}(K)$ la matrice obtenue en effectuant des opérations élémentaires (échanges, dilatations, transvections) sur les lignes et les colonnes de A. Alors $\operatorname{rg}(A') = \operatorname{rg}(A)$ "Le rang est invariant par opérations élémentaires".

6 Changement de bases

6.1 Formules

Définition 6.1. Soit F un ev de dimension n et $C = (f_1, ..., f_n)$ et $C' = (f'_1, ..., f'_n)$ deux bases de F. On définit la matrice de passage de C à C':

$$P_{\mathcal{C} \to \mathcal{C}'} = \operatorname{Mat}_{\mathcal{C}}(\mathcal{C}') = \operatorname{Mat}_{\mathcal{C}}(f'_1, \dots, f'_n)$$

Proposition 6.2. Soit F un ev de dim n et C, C' deux bases de F.

- * On a $P_{\mathcal{C} \to \mathcal{C}'} = \operatorname{Mat}_{\mathcal{C}', \mathcal{C}}(id_F)$
- * On a $P_{\mathcal{C} \to \mathcal{C}'} \in GL_n(K)$ et $P_{\mathcal{C} \to \mathcal{C}'}^{-1} = P_{\mathcal{C}' \to \mathcal{C}}$
- * Pour toute matrice $Q \in GL_n(K)$ et toute base \mathcal{D} de F, il existe une unique base \mathcal{D}' de F telle que $P_{\mathcal{D} \to \mathcal{D}'} = Q$

Théorème 6.3 (Changement de bases pour un vecteur). Soit F un ev de dim n et C, C' deux bases de F. Pour tout $x \in F$, on a

$$\operatorname{Mat}_{\mathcal{C}'}(x) = P_{\mathcal{C} \to \mathcal{C}'}^{-1} \operatorname{Mat}_{\mathcal{C}}(x)$$

Théorème 6.4 (Changement de bases pour les AL). Soit E et F deux ev, de dimension p et n respectivement. Soit B, B' deux bases de E et deux bases C, C' de F. Alors, pour tout $u \in \mathcal{L}(E, F)$, on a

$$\operatorname{Mat}_{\mathcal{B}',\mathcal{C}'} = P_{\mathcal{C} \to \mathcal{C}'}^{-1} \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) P_{\mathcal{B} \to \mathcal{B}'}$$

Corollaire 6.5. Soit *E* un ev de dim *p* et \mathcal{B} , \mathcal{B}' deux bases de *E*. Pour tout $u \in \mathcal{L}(E)$, on a :

$$\operatorname{Mat}_{\mathcal{B}'}(u) = P_{\mathcal{B} \to \mathcal{B}'}^{-1} \operatorname{Mat}_{\mathcal{B}}(u) P_{\mathcal{B} \to \mathcal{B}'}$$

6.2 Similitude

Définition 6.6. Deux matrices $A, B \in M_p(K)$ sont <u>semblables</u> (et on note $A \sim B$) si $\exists P \in GL_p(K) : B = P^{-1}AP$

6.3 Équivalence

Définition 6.8. Soit $A, B \in M_{np}(K)$.

On dit que A et B sont équivalents s'il existe $P \in GL_n(K)$ et $Q \in GL_n(K)$ telles que B = PAQ

Proposition 6.9. La relation d'équivalence est une relation d'équivalence.

Proposition 6.7. \sim est une relation d'équivalence sur $M_p(K)$

Théorème 6.10.

- * Deux matrices de $M_{np}(K)$ sont équivalentes ssi elles ont le même rang.
- * Toute matrice de $M_{np}(K)$ de rang $r \in [0, \min(n, p)]$ est équivalente à

6.4 Rang d'une transposée

Théorème 6.11. Soit $A \in M_{np}(K)$.

Alors $\operatorname{rg}(A) = \operatorname{rg}(A^T)$

Lemme 6.12. $\mathcal{B}^* = (e_1^*, \dots, e_n^*)$ est une base de E^* (que l'on appelle la base duale de \mathcal{B}).

Définition 6.13. Soit $A \in M_{np}(K)$.

Soit $I = \{i_1, \dots, i_q\} \subseteq \llbracket 1, n \rrbracket$ et $J = \{j_1, \dots, j_s\} \subseteq \llbracket 1, p \rrbracket$ tels que $i_1 < \dots < i_q$ et $j_1 < \dots < j_s$

On définit alors la matrice extraite :

$$A_{I,J} = (a_{i_k,j_l})_{\substack{1 \le k \le q \\ 1 \le l \le s}} \in M_{qs}(K)$$

Autrement dit, on ne garde que les lignes dont le numéro appartient à I et les colonnes dont le numéro appartient à J.

Théorème 6.14. Soit $A \in M_{np}(K)$.

- * Toute matrice extraite de A possède un rang \leq rg A
- * Le rang de *A* est la taille maximale d'une matrice carrée inversible extraite de *A*.

6.5 Forme des matrices carrées

Soit E un ev de dimension n et $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E. Examinons des cas où $\mathrm{Mat}_{\mathcal{B}}(u)$ possède des formes remarquables.

1)

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in D_n(K)$$

signifie $\forall i \in [1, n], u(e_i) = \lambda_i e_i$

 $\operatorname{Mat}_{\mathcal{B}}(u)$ est diagonalisable ssi \mathcal{B} est une base de vecteurs propres de u. On dira que u est <u>diagonalisable</u> s'il existe une telle base.

2)

$$\operatorname{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{c|c} * & * \\ \hline (0) & * \end{array}\right)$$

"triangulaire par blocs"

Signifie $\forall i \in [1, r], u(e_i) \in Vect(e_i, ..., e_r)$

Autrement dit, $Vect(e_1, ..., e_r)$ stable sous u.

3)

$$\operatorname{Mat}_{\mathcal{B}}(u) = \left(\begin{array}{c|c} * & (0) \\ \hline & (0) & * \end{array}\right)$$

"diagonale par blocs"

Signifie que $\operatorname{Vect}(e_1,\ldots,e_r)$ et $\operatorname{Vect}(e_{r+1},\ldots,e_n)$ sont stables sous u.

Autrement dit, u stabilise les deux sev de la décomposition $E = \text{Vect}(e_1, \dots, e_r) \oplus \text{Vect}(e_{r+1}, \dots, e_n)$

4)

$$\operatorname{Mat} \mathcal{B}(u) = \begin{pmatrix} * & & (*) \\ & \ddots & \\ (0) & & * \end{pmatrix} \in T_n^+(K)$$

Signifie que u stabilise tous les sev $\text{Vect}(e_1, \dots, e_k)$, pour $k \in [0, n]$ qui forment une suite de sev emboîtés les uns dans les autres (ce qu'on appelle un <u>drapeau</u>. Ici, on a des sev de toutes les dimensions, donc on parle de drapeau complet).