Cours du 17 septembre 2020

Mathématiques 3 (IF13E010).

Rappel

Nous avons rappelé lors du premier cours la notion de limite d'une suite u_n (lorsque n tend vers $+\infty$ ou celle d'une fonction lorsque x tend vers x_0 (u vers $+\infty$ ou vers $-\infty$). Nous avons indiqué qu'une limite était unique (lorsqu'elle existe), que l'on peut passer à la limite dans une inégalité et que l'on a des résultats généraux permettent des opérations sur les limites (multiplication par un scalaire, somme, produit et quotient de limites).

Cependant quelques situations conduisent à des formes indéterminées (additives : " $\infty - \infty$ ", multiplicatives : " $0 \times \infty$ " et issues d'un quotient : " $\frac{0}{0}$ " ou " $\frac{\infty}{\infty}$ ").

Enfin nous avons introduit les notions de fonctions équivalentes en un point et de fonctions négligeables devant une autre en un point.

Continuité.

Définition

Soit f une fonction numériques de la variable réelle x. On suppose que f est définie sur un voisinage de x_0 . On dit que f est continue en x_0 si et seulement si f admet une limite lorsque x tend ers x_0 et que cette limite est $f(x_0) = y_0$.

Exemples.

Remarque

Grâce aux opérations sur les limites, on voit immédiatement que toute fonction polynomiale est continue en tout point de $\mathbb R$. Les fonctions classiques exp , ln , sin , cos et tan sont continues sur leurs domaines de définition. La fonction E(x) (partie entière de x) est continue en tout point non entier. Elle n'est pas continue aux points $x_0 \in \mathbb Z$. Rappelons que

$$E(x) = n \text{ si } n \le x < n+1.$$

Propriétés.

Théorème

Soit λ un réel. Soient f et g deux fonctions numériques de la variable réelle x.

- si f est continue en x_0 alors λf est continue en x_0 ;
- si f est continue en x_0 et si g est continue en x_0 alors f + g est continue en x_0 ;
- si f est continue en x₀ et si g est continue en x₀ alors fg est continue en x₀;
- si f est continue en x₀ , si g est continue en x₀ et g(x₀) ≠ 0
 alors f/g est continue en x₀;
- si f est continue en x_0 et si g est continue en y_0 où $y_0 = f(x_0)$ alors $g \circ f$ est continue en x_0 .

Propriétés globales des fonctions continues.

Théorème

Soit f une fonction continue sur l'intervalle fermé et borné I = [a, b] (on parlera d'intervalle compact). Alors f est bornée sur I et atteint son maximum et son minimum.

Remarques (attention).

Toutes les hypothèses du théorème sont utiles. La fonction f définie par f(0)=0 et $f(x)=\frac{1}{x}$ si $x\neq 0$ n'est pas bornée sur [-1,1] ou sur [0,1] (elle n'est pas continue en 0). La fonction x n'est pas bornée sur $[0,+\infty[$ (l'intervalle n'étant pas borné). La fonction 1-x n'atteint pas sa borne inférieure sur [0,1[mais l'intervalle n'est pas fermé en 1 .

Démonstration.

Indications.

On peut raisonner par l'absurde et par dichotomie. Si f n'est pas bornée sur [a,b], c'est qu'elle n'est pas bornée sur (au moins) l'un des intervalles $[a,\frac{a+b}{2}]$ ou $[\frac{a+b}{2},b]$. On construit ainsi deux suites a_i et b_i avec $a_0=a$ et $b_0=b$ telles que a_i est croissante, b_i décroissante, $a_i < b_i$ et $b_i - a_i = \frac{b-a}{2^i}$. Elles sont donc adjacentes et ont une limite commune c (élément de [a,b]). Or f est continue en c et donc doit être bornée sur tout voisinage assez petit de c. Un tel voisinage contient $[a_i,b_i]$ dès que i est assez grand. C'est absurde puisque f n'y est pas bornée par construction.

Propriétés globales (suite).

Théorème

Corollaire

(Théorème des valeurs intermédiaires) Soit f une fonction continue sur l'intervalle I de la droite réelle. Alors l'image de I par f est un intervalle.

Exemple.

TVI.

FIGURE – -1/2 est atteint par $(x^2 - 1) \exp(-|x|)$

Une application.

Théorème

Soit f une fonction continue et strictement monotone sur un intervalle I. Alors f définit une bijection de I sur f(I). Sa bijection réciproque $g=f^{-1}$ est continue et monotone (avec le même sens de variation que f) de f(I) sur I.

Remarque

Le graphe de la fonction g s'obtient en effectuant la symétrie par rapport à la première bissectrice du graphe de la fonction f. La plupart des fonctions classiques permettent de définir des fonctions réciproques (penser à exp et ln ou à x^n et $\sqrt[n]{x}$).

Contre-exemple.

Fonction Partie entière

Si l'on reprend la fonction partie entière, on voit qu'une fonction non continue ne satisfait pas le théorème des valeurs intermédiaires. En effet cette fonction E prend toute valeur entière mais ne prend aucun valeur non entière. Or, par exemple, on a bien sûr $0<\frac{1}{2}<1$.

FIGURE – Fonction Partie entière

Développements limités.

Définition

Soit x_0 un réel. Soit a>0 un réel strictement positif. Soit y=f(x) une fonction numérique définie sur l'intervalle $]x_0-a,x_0+a[$ où x_0 appartient à son domaine de définition (ou non). On dit que f admet un développement limité en x_0 à l'ordre n ($n\geq 0$) s'il existe une fonction polynôme P(x) de degré au plus n telle que

$$f(x) = P(x - x_0) + (x - x_0)^n \epsilon(x) = a_0 + a_1(x - x_0) + \dots + a_i(x - x_0)^i + \dots + a_n(x - x_0)^n + (x - x_0)^n \epsilon(x)$$

où la fonction e(x) admet 0 pour limite si x tend vers x_0 . Si l'on veut utiliser le vocabulaire introduit précédemment, f admet un développement limité à l'ordre n en x_0 si et seulement si il existe une fonction polynôme P(x) telle que $f(x) - P(x - x_0)$ soit

Premières propriétés des DL.

Remarque

On voit immédiatement que si f admet un développement limité en x_0 à l'ordre n, elle admet un développement limité en x_0 à tout ordre m inférieur ou égal à n.

Il suffit de "tronquer" la fonction polynôme P en ne prenant que ses termes de degré au plus m .

Nous allons généraliser l'unicité de la limite lorsqu'elle existe.

Proposition

Si la fonction numérique y=f(x) admet un développement limité à l'ordre n en x_0 , la fonction polynôme P (de degré au plus n) est unique.

Démonstration.

Indications.

Supposons que l'on ait deux telles fonctions polynômes (de degré au plus n) P et Q et qu'elles soient distinctes. Soit i le premier indice pour lequel le coefficient de P et celui de Q ne coïncident pas. En retranchant les égalités

$$f(x) = P(x-a) + (x-a)^n \epsilon(x)$$
 et $f(x) = Q(x-a) + (x-a)^n \epsilon'(x)$,

on obtient

$$P(x-x_0)-Q(x-x_0)=(x-x_0)^n\epsilon''(x)$$
.

Or $P(x-x_0) - Q(x-x_0)$ est équivalent à $(a_i - b_i)(x-x_0)^i$ si a_i n'est pas égal à b_i . Cela contredit le fait que cette fonction soit négligeable devant $(x-x_0)^n$.

Remarque.

Remarque

On notera que a_m (coefficient de degré m de P) est obtenu comme la limite du rapport

$$\frac{f(x) - \sum_{i=0}^{m-1} a_i (x - x_0)^i}{(x - x_0)^m}$$

lorsque x tend vers x_0 .

Un premier exemple.

La fonction $x\mapsto x+x^2\sin\left(\frac{1}{x}\right)$ admet un développement limité à l'ordre 1 en 0 (sans être définie en 0). En effet $x^2\sin\left(\frac{1}{x}\right)=x\varepsilon(x)$ avec $\varepsilon(x)=x\sin\left(\frac{1}{x}\right)$. Or $\lim_{x\to 0}\varepsilon(x)=0$.

Rappel.

Nombre dérivé.

Quelques rappels avant de donner un premier résultat sur les développements limités.

Définition

Soit f une fonction numérique de la variable réelle x. On suppose que f est définie sur un voisinage de x_0 . On dit que f est dérivable en un point x_0 si $\frac{f(x)-f(x_0)}{x-x_0}$ tend vers une limite finie I si x tend vers x_0 . On appelle alors nombre dérivé en x_0 la limite I et on pose $f'(x_0) = I$ (notation de Newton) ou $\frac{df}{dx}(x_0) = I$ (notation de Leibnitz).

Remarque

Le nombre dérivé est unique s'il existe (comme toute limite).

Premières propriétés des DL (suite).

Proposition

Une fonction est continue en x_0 (ou y est prolongeable par continuité) si et seulement si elle admet un développement limité à l'ordre 0 en x_0 . Une fonction est dérivable en x_0 si et seulement si elle admet un développement limité à l'ordre 1 en x_0 . Mais, si une fonction admet un développement limité à l'ordre n ($n \ge 2$), elle n'est pas nécessairement dérivable à l'ordre n en x_0 .

Indications. Si f est continue en x_0 alors $\lim_{x\to x_0} f(x) = f(x_0)$ donc $f(x) = f(x_0) + \varepsilon(x)$ où $\varepsilon(x)$ tend vers 0 si x tend vers x_0 . Réciproquement, si $f(x) = a_0 + \varepsilon(x)$ alors, quitte à poser $f(x_0) = a_0$, la fonction f est continue en x_0 par définition (on parle alors de prolongement par continuité en x_0).

Éléments de démonstration (suite).

Si f est dérivable en x_0 , elle y est continue donc $f(x)=a_0+\varepsilon(x)$ où $a_0=f(x_0)$. Par ailleurs

$$\frac{f(x) - f(x_0)}{x - x_0} \to f'(x_0) \text{ si } x \to x_0 \ .$$

Posons donc

$$\frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + \eta(x) \Leftrightarrow f(x) - f(x_0) = f'(x_0)(x - x_0) + (x - x_0)$$

où $\eta(x)$ est une fonction qui tend vers 0 si x tend vers x_0 . Bref

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + (x - x_0)\eta(x) \dots$$

= $a_0 + a_1(x - x_0) + (x - x_0)\eta(x)$.

Éléments de démonstration (suite).

Donc si f est dérivable en x_0 , elle admet bien un développement limité à l'ordre 1 en x_0 . Réciproquement, supposons que

$$f(x) = a_0 + a_1(x - x_0) + (x - x_0)\eta(x)$$

pour des réels a_0 et a_1 donnés. Tout d'abord, l'expression $a_0+a_1(x-x_0)+(x-x_0)\eta(x)$ tend vers a_0 si x tend vers x_0 par application simple des résultats sur les opérations sur les limites. Donc f est continue en x_0 si $f(x_0)=a_0$ ou prolongeable par continuité en posant $f(x_0)=a_0$. Il reste à étudier le rapport

$$\frac{f(x)-f(x_0)}{x-x_0}=\frac{a_0+a_1(x-x_0)+(x-x_0)\eta(x)-a_0}{x-x_0}=a_1+\eta(x);$$

donc

$$\lim \frac{f(x)-f(x_0)}{a_1}=a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_4 \cdot a_4 \cdot a_5 \cdot$$

Exemples.

Exemple

La fonction sin est dérivable en 0 de dérivée égale à $\cos{(0)}=1$ aussi on a

$$\sin(x) = \sin(0) + \cos(0)(x - 0) + x\epsilon(x) = x + x\epsilon(x)$$

soit

$$\lim_{x\to 0}\frac{\sin\left(x\right)}{x}=1\ .$$

Nous venons donc de démontrer le résultat que vous aviez appris.

Exemples (suite).

Exemple

La fonction exp est dérivable en 0 de dérivée égale à $\exp(0) = 1$ aussi on a

$$\exp(x) = \exp(0) + \exp(0)(x - 0) + x\epsilon(x) = 1 + x + x\epsilon(x)$$

soit

$$\lim_{x\to 0}\frac{\exp\left(x\right)-1}{x}=1\ .$$

Nous venons donc à nouveau de démontrer le résultat que vous aviez appris.

Exemples (suite).

Exemple

La fonction $x\mapsto \ln\left(1+x\right)$ est dérivable en 0 de dérivée égale à $\frac{1}{1+0}=1$ aussi on a

$$\ln(1+x) = \ln(1) + \frac{1}{1+0}(x-0) + x\epsilon(x) = 0 + x + x\epsilon(x)$$

soit

$$\lim_{x\to 0}\frac{\ln\left(1+x\right)}{x}=1\ .$$

Nous venons donc à nouveau de démontrer le résultat que vous aviez appris.

Une propriété générale des DL.

Proposition

Supposons que la fonction numérique y = f(x) admette un développement limité à l'ordre n en 0, et que la fonction f soit paire (resp. impaire) la fonction polynôme P (de degré au plus n) est paire (resp. impaire) i.e. ne comporte que des termes pairs (resp. impairs).

Indications. Nous allons utiliser l'unicité du développement limité. Étudions le cas d'une fonction paire. Nous devons avoir

$$f(x) = a_0 + \ldots + a_i(x-0)^i + \ldots + a_n(x-0)^n + x^n \epsilon(x)$$

Mais on a également

$$f(-x) = a_0 + \ldots + a_i(-x-0)^i + \ldots + a_n(-x-0)^n + (-x)^n \epsilon(-x)$$
.

Indications (suite).

Comme
$$\forall x \in \mathbb{R}$$
 , $f(x) = f(-x)$,

$$a_0 + \ldots + a_i(x-0)^i + \ldots + a_n(x-0)^n + x^n \epsilon(x)$$

$$\ldots = a_0 + \ldots + (-1)^i a_i x^i + \ldots + (-1)^n a_n x^n + x^n (-1)^n \epsilon (-x)$$

où l'unicité des coefficients impose $\forall i \in \{0, ..., n\}$ $a_i = (-1)^i a_i$ soit

$$\forall h ; 0 \le 2h+1 \le n \ a_{2h+1} = -1a_{2h+1} \Rightarrow a_{2h+1} = 0 .$$

Lorsque la fonction est impaire, le même raisonnement impose cette fois aux coefficients pairs a_{2h} du développement limité de s'annuler.

Applications et un dernier exemple.

Le développement limité (s'il existe) de la fonction $\sin(x)$ ou $\tan(x)$ ou $\sinh(x)$ ou $\th(x)$ en 0 ne comporte que des termes impairs. Celui (s'il existe) de la fonction $\cos(x)$ ou $\cosh(x)$ en 0 ne comporte que des termes pairs.

La fonction

$$f(x) = \begin{cases} 0 & \text{si } x = 0\\ x^3 \sin\left(\frac{1}{x^2}\right) & \text{si } x \neq 0 \end{cases}$$

admet un développement limité en 0 à l'ordre 2 sans être dérivable en 0 à l'ordre 2 .