Алгоритми та структури даних. Основи алгоритмізації

Додаток 1

Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені
Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>25</u>

Виконав студент	Павленко Микита Андрійович		
	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
	(прізвище, ім'я, по батькові)		

Лабораторна робота Дослідження ітераційних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 25 Завдання

Нехай
$$\upsilon_1 = \upsilon_2 = 0$$
, $\upsilon_3 = 1.5$, $\upsilon_3 = 1.5$, $\upsilon_i = \frac{i+1}{i^2+1}\upsilon_{i-1} - \upsilon_{i-2}\upsilon_{i-3}$,

 $i = 4, 5, \dots$ Для заданого натурального числа $n \ (n \ge 4)$ знайти υ_n .

1) Постановка задачі

За допомогою заданого закону послідовності знайти елемент послідовності під номером п.

2) Побудова математичної моделі

Таблиця імен змінних:

Змінна	Тип	Ім'я	Призначення
Номер бажаного	Дійсний	n	Вхідні дані
елементу			
Бажаний елемент	Дійсний	v	Вихідні дані
послідовності			
Попередній елемент	Дійсний	v1	Проміжні дані
послідовності			
Передуючий на 2	Дійсний	v2	Проміжні дані
елемент послідовності			
Передуючий на 3	Дійсний	v3	Проміжні дані
елемент послідовності			
Лічильник ітерацій	Дійсний	i	Проміжні дані

Отже, математичне формулювання задачі зводиться до проходження заданої кількості ітерацій циклом зі збереженням проміжних даних до знаходження бажаного значення.

3) Псевдокод алгоритму

Крок 1:

початок

Введення п

Обчислення початкових значень v, v1, v2, v3

Знаходження бажаного елементу

Виведення результату

кінець

Крок 2:

початок

Введення **n**

v := 1.5

v1 := 0

v2 := 0

v3 := 0

Знаходження бажаного елементу

Виведення результату

кінець

Крок 3:

початок

Введення **n**

$$\mathbf{v} := \mathbf{0}$$

$$v2 := 0$$

$$v3 := 0$$

Для і від 4 до **п повторити**

$$\mathbf{v} := (i+1)/(i*i+1)*v1 - v2*v3$$

$$v2 := v1$$

$$v1 := v$$

все повторити

Виведення результату

кінець

4) Блок-схема алгоритму

5) Випробування алгоритму

Блок	Дія
	Початок
1	Введення: k := 6
2	i := 4
3	i <= 6 == true
4	v := 0,4411764705882353 v1 := 0,4411764705882353 v2 := 1,5 v3:= 0
5	i := 5
6	i <= 6 == true
7	v := 0,10180995475113122 v1 := 0,10180995475113122 v2 := 0,4411764705882353 v3 := 1,5
8	i := 6
9	i <= 6 == true
10	v := -0,6425033630915984 v 1:= -0,6425033630915984 v2:=0,10180995475113122 v3 := 0,4411764705882353
11	Виведення: -0,6425033630915984
	Кінець

Блок	Дія
	Початок
1	Введення: 15
2	Виведення: 7,129760201019881Е-08
	Кінець

Алгоритми та структури даних. Основи алгоритмізації

Блок	Дія
	Початок
1	Введення: 10
2	Виведення: -0,003098047975012219
	Кінець

6) Висновки

Я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Успішно вирішив поставленню задачу із використанням арифметичного циклу.