Grupo de Ciencia Computacional HIMFG

Algoritmos de Clustering (I)

Introducción al algoritmo de clustering K-means

CC Creative Commons

¿Qué es un algoritmo de clustering?

Sea una población de individuos descritos por varias características

¿Ves grupos de individuos?

Peso

¿Ves grupos de individuos?

Peso

Definimos los clusters atendiendo a la distancia entre individuos

Cluster vs. Comunidad

¿Qué es la distancia?

Una función definida entre dos puntos que cumple para todo punto A, B o C:

Una función definida entre dos puntos que cumple para todo punto A, B o C:

1. No negatividad (Identidad de los indiscernibles)

$$d(A,B) \ge 0$$
 \forall $d(A,B) = 0$ siysolosi $A = B$

Una función definida entre dos puntos que cumple para todo punto A, B o C:

2. Simetría

$$d(A,B)=d(B,A)$$

Una función definida entre dos puntos que cumple para todo punto A, B o C:

3. Desigualdad triangular

$$d(A,B) \leq d(A,C) + d(C,B)$$

Una función definida entre dos puntos que cumple para todo punto A, B o C:

3. Desigualdad triangular

$$d(A,B) \leq d(A,C) + d(C,B)$$

C

Una función definida entre dos puntos que cumple para todo punto A, B o C:

3. Desigualdad triangular

$$d(A,B) \leq d(A,C) + d(C,B)$$

Cuantifica cuan separados están dos puntos en un espacio dado

Distancia de Manhattan

$$d(A,B) = |x_A - x_B| + |y_A - y_B|$$

Distancia de Chebyshev

$$d(A,B)=max(|x_A-x_B|,|y_A-y_B|)$$

Distancia Euclidea 2D

$$d(A,B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Distancia Euclidea 3D

$$d(A,B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Distancia Euclidea 4D

$$d(A,B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2 + (u_B - u_A)^2}$$

Distancia Euclidea 5D

$$d(A,B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2 + (u_B - u_A)^2 + (v_B - v_A)^2}$$

Si tu sistema es multidimensional...

¿por qué clusterizas sólo en 2 o 3 dimensiones?

¿Comerías una papa multidimensional pelada o sin pelar?

¿Qué otras "paradojas" encontrarás en un hiperespacio?

- Fenómeno de la distancia de concentración
- Paradoja de Borel
- Separabilidad en espacios de alta dimensionalidad
- Maldición de la dimensionalidad
- Concentración de la medida

- ...

Si tu sistema es multidimensional...

Prueba a clusterizar en más dimensiones...

Algoritmos de clustering

Algunos algoritmos de clustering

- · K-means
- Hierarchical clustering
- · DBSCAN
- · Gaussian Mixture Models
- · Agglomerative Clustering

•

K-means

Sea una población de individuos descritos por varias características

Pseudo-código del algoritmo de K-means

- 1. Elije el número de centroides k.
- **2.** Inicializa de forma aleatoria las coordenadas de los k centroides en el espacio de coordenadas de tus individuos.
- 3. Itera:
 - 4. Asigna cada individuo al centroide más cercano.
- **5.** Calcula las nuevas coordenadas de cada centroide como el centro geométrico del conjunto de individuos que le fueron asignados en el paso 4.
 - **6.** Calcula la distancia que se desplazó cada centroide.
- **7.** Sal de la iteración si todos los desplazamientos calculados en 6 son prácticamente nulos.
- **8.** Identifica los k clusters resultantes como los k conjuntos de individuos asignados a cada centroide.

Ningún algoritmo de clustering es perfecto

Ningún algoritmo de clustering es perfecto

2 problemas de K-means...

1. El algoritmo no "detecta" el número de clusters

- · Elbow method
- · Silhouette score
- · Gap statistic
- · Cross-validation
- · Varianza total explicada

•

1. El algoritmo no "detecta" el número de clusters

· Elbow method

2. El algoritmo no es determinista

(los clusters pueden depender de la elección inicial de las coordenadas de los centroides)

- · Multiples ejecuciones minimizando la dispersión intra-cluster
- · K-means++

Otras versiones de K-means más sofisticadas

- · Mini-Batch K-means
- · Fuzzy C-means
- · K-medians
- · K-medoids
- · Weighted K-means
- · Constrained K-means

K-means en Python

K-means pasito a pasito

https://ciencia-computacional-himfg.github.io/Clustering/build/html/contents/k_means/k_means_paso_a_paso.html

K-means con Scikit-learn

https://ciencia-computacional-himfg.github.io/Clustering/build/html/contents/k_means/k_means_scikit_learn.html

¿Te vas a atrever...?

Más documentación y foro técnico de soporte en: github.com/Ciencia-Computacional-HIMFG/Clustering