

Algorithms and Complexity

Problem Analysis

Lecturer: Dr. Alaa Ahmed Abbood

Lecture 2. Class 2nd.

Time: 8:30-10:30

Department: Businesses Information Technology (BIT)

Outline

- > Introduction
- ➤ Algorithm pseudocodes
- **Flowchart**

ALGORITHMS AND FLOWCHARTS

 A typical programming task can be divided into two phases:

Problem solving phase

- produce an ordered sequence of steps that describe solution of problem
- this sequence of steps is called an algorithm

Implementation phase

implement the program in some programming language

Steps in Problem Solving

- First produce a general algorithm (one can use pseudocode)
- Refine the algorithm successively to get step by step detailed *algorithm* that is very close to a computer language.
- Pseudocode is an artificial and informal language that helps programmers develop algorithms.
 Pseudocode is very similar to everyday English.

Pseudocode & Algorithm

 Example 1: Write an algorithm to determine a student's final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.

Pseudocode & Algorithm

Pseudocode:

- Input: a set of 4 marks
- output: Calculate their average by summing and dividing by 4
- if average is below 50

 Print "FAIL"

 else

 Print "PASS"

Pseudocode & Algorithm

Detailed Algorithm

```
Step 1: Input: M1,M2,M3,M4
Step 2: Output: GRADE of student
Step 3: GRADE \leftarrow (M1+M2+M3+M4)/4
            if (GRADE < 50) then
Step 3:
                  Print "FAIL"
            else
                  Print "PASS"
            endif
```


The Flowchart

- A graphical representation of the sequence of operations in an information system or program.
 - Information system flowcharts show how data flows from source documents through the computer to final distribution to users.
 - Program flowcharts show the sequence of instructions in a single program or subroutine. Different symbols are used to draw each type of flowchart.

The Flowchart

A Flowchart

- shows logic of an algorithm
- emphasizes individual steps and their interconnections
- e.g. control flow from one action to the next

Flowchart Symbols

Step 1: Input M1,M2,M3,M4

Step 2: GRADE \leftarrow (M1+M2+M3+M4)/4

Step 3: if (GRADE <50) then

Print "FAIL"

else

Print "PASS"

endif

 Write an algorithm and draw a flowchart to convert the length in feet to centimeter.

Pseudocode:

- Input the length in feet (Lft)
- Output the length in centimeter (Lcm)
- Calculate the length in cm (Lcm) by multiplying LFT with 30
- Print length in cm (LCM)

Algorithm

- Step 1: Input Lft
- Step 2: Lcm \leftarrow Lft x 30
- Step 3: Print Lcm

Flowchart

Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area.

Pseudocode

- Input: the width (W) and Length (L) of a rectangle
- Output: Area of rectangle
- Calculate the area (A) by multiplying L with W
- Print A

Algorithm

• Step 1: Input W,L

• Step 2: A ← L x W

• Step 3: Print A

Flowcharts

- Flowcharts is a graph used to depict or show a step by step solution using **symbols** which represent a task.
- The symbols used consist of geometrical shapes that are connected by **flow lines**.
- It is an alternative to pseudocoding; whereas a pseudocode description is verbal, a flowchart is graphical in nature.

Flowchart Symbols cont...

Off-page connector - provides continuation of a logical path on another page.

On-page connector - provides continuation of logical path at another point in the same page.

Flow lines - indicate the logical sequence of execution steps in the algorithm.

Flowchart – sequence control structure

Flowchart – selection control structure

Flowchart – repetition control structure

write an algorithm and flowchart to check whether a number is odd or even.

- Input: Any number
- Output: Message "Even" or "Odd"
- PRINT "Enter the Number" INPUT number
- IF number MOD 2 == 0 THEN
- PRINT "Number is Even"
- ELSE PRINT "Number is Odd"

write a pseudocode and draw a flowchart where multiple conditions are checked to categories a person as either child (<13), teenager (>=13 but <20) or adult (>=20),based on age specified:

- INPUT Age
- Output category of the age
- if Age < 13 then
 - PRINT "Child"
- else if Age < 20 then
 - PRINT "Teenager"
- Else
 - PRINT "Adult"

Home work

- 1. Create an algorithm and a flowchart that will accept/read two numbers and then display the bigger number.
- 2. Write pseudocode and draw flowchart to accept numbers till the user enters 0 and then find their average.
- 3. Write pseudocode that reads two numbers and divide one by another and display the quotient.

THANK YOU