Gradient Descent. Non-smooth case. Linear Least squares with $\it l_1$ -regularization.

Daniil Merkulov

Optimization methods. MIPT

∌ ດ ⊘

Previously

 Gradient Descent. Convergence for strongly convex quadratic function. Optimal hyperparameters.

$$\alpha = \frac{2}{\mu + L} \quad \varkappa = \frac{L}{\mu} \ge 1 \quad \rho = \frac{\varkappa - 1}{\varkappa + 1}$$
$$\|x_k - x^*\| \le \rho^k \|x_0 - x^*\|$$

Non-convex PL function

Figure 1: PL function

Recap

∌ ດ ⊘

Previously

• Gradient Descent. Convergence for strongly convex quadratic function. Optimal hyperparameters.

$$\alpha = \frac{2}{\mu + L}$$
 $\varkappa = \frac{L}{\mu} \ge 1$ $\rho = \frac{\varkappa - 1}{\varkappa + 1}$

$$||x_k - x^*|| \le \rho^k ||x_0 - x^*||$$

Gradient Descent. Smooth convex case convergence.

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||^2}{2k}.$$

Figure 1: PL function

Previously

 Gradient Descent. Convergence for strongly convex quadratic function. Optimal hyperparameters.

$$\alpha = \frac{2}{\mu + L}$$
 $\varkappa = \frac{L}{\mu} \ge 1$ $\rho = \frac{\varkappa - 1}{\varkappa + 1}$

$$||x_k - x^*|| \le \rho^k ||x_0 - x^*||$$

Gradient Descent. Smooth convex case convergence.

$$f(x_k) - f^* \le \frac{L \|x_0 - x^*\|^2}{2k}.$$

Gradient Descent. Smooth PL case convergence.

$$f(x_k) - f^* \le \left(1 - \frac{\mu}{L}\right)^k (f(x_0) - f^*).$$

Figure 1: PL function

∌ ମ ୭

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$

$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$
$$= \left(\nabla f(x)^T - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) =$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T}(x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) =$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T}(x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) =$$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

Putting
$$y = x^*$$
:

 $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^{T} - \frac{\mu}{2}(x^{*} - x)\right)^{T} (x - x^{*}) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) =$$

Let
$$a = \frac{1}{\sqrt{\mu}} \nabla f(x)$$
 and $b = \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x)$

Theorem

If a function f(x) is differentiable and μ -strongly convex, then it is a PL-function.

Proof

By first order strong convexity criterion:

Putting
$$y = x^*$$
:

 $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||_2^2$

 $b = \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}}\nabla f(x)$ Then $a+b=\sqrt{\mu}(x-x^*)$ and $a-b=\frac{2}{\sqrt{\mu}}\nabla f(x)-\sqrt{\mu}(x-x^*)$

Let $a = \frac{1}{\sqrt{\mu}} \nabla f(x)$ and

$$f(x^*) \ge f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} ||x^* - x||_2^2$$
$$f(x) - f(x^*) \le \nabla f(x)^T (x - x^*) - \frac{\mu}{2} ||x^* - x||_2^2 =$$

$$= \left(\nabla f(x)^T - \frac{\mu}{2}(x^* - x)\right)^T (x - x^*) =$$

$$= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x)^T - \sqrt{\mu} (x^* - x) \right)^T \sqrt{\mu} (x - x^*) =$$

$$f \to \min_{x,y,z}$$

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$

which is exactly PL-condition. It means, that we already have linear convergence proof for any strongly convex function.

 $f \to \min_{x,y}$

⊕ 0 @

$$f(x) - f(x^*) \le \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$
$$f(x) - f(x^*) \le \frac{1}{2\mu} \|\nabla f(x)\|_2^2,$$

which is exactly PL-condition. It means, that we already have linear convergence proof for any strongly convex function.

Non-smooth optimization

$$\min_{x \in \mathbb{R}^n} f(x),$$

A classical convex optimization problem is considered. We assume that f(x) is a convex function, but now we do not require smoothness.

Figure 2: Norm cones for different p - norms are non-smooth

Non-smooth optimization

Wolfe's example

Figure 3: Wolfe's example. **Open in Colab**

⊕ n ø

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

Algorithm

A vector g is called the **subgradient** of the function $f(x): S \to \mathbb{R}$ at the point x_0 if $\forall x \in S$:

$$f(x) \ge f(x_0) + \langle g, x - x_0 \rangle$$

The idea is very simple: let's replace the gradient $\nabla f(x_k)$ in the gradient descent algorithm with a subgradient g_k at point x_k :

$$x_{k+1} = x_k - \alpha_k q_k, \tag{SD}$$

where g_k is an arbitrary subgradient of the function f(x) at the point x_k , $g_k \in \partial f(x_k)$

 $f \to \min_{x,y,z}$ Subgradient Descent

റമ

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

 $f \to \min_{x,y,z}$ Subgradient Descent

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

 $f \to \min_{x,y,z}$ Subgradient Descent

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

 $f \to \min_{x,y,z}$ Subgradient Descent

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for $k = 0, \dots, T-1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

• Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

∂ ດ **ø**

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x_k x^* \rangle \leq f(x_k) f(x^*) = f(x_k) f^*$.

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

$$2\alpha_k \langle g_k, x_k - x \rangle = ||x_k - x|| + \alpha_k ||g_k|| - ||x_{k+1} - x||$$

Let us sum the obtained equality for $k = 0, \dots, T - 1$:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x_k x^* \rangle \le f(x_k) f(x^*) = f(x_k) f^*$.
- We additionaly assume, that $\|g_k\|^2 \leq G^2$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

$$2\alpha_k \langle g_k, x_k - x^* \rangle = ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - ||x_{k+1} - x^*||^2$$

Let us sum the obtained equality for k = 0, ..., T - 1:

$$\sum_{k=0}^{T-1} 2\alpha_k \langle g_k, x_k - x^* \rangle = \|x_0 - x^*\|^2 - \|x_T - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq \|x_0 - x^*\|^2 + \sum_{k=0}^{T-1} \alpha_k^2 \|g_k^2\|$$

$$\leq R^2 + G^2 \sum_{k=0}^{T-1} \alpha_k^2$$

- Let's write down how close we came to the optimum $x^* = \arg\min_{x \in \mathbb{R}^n} f(x) = \arg f^*$ on the last iteration:
- For a subgradient: $\langle g_k, x_k x^* \rangle \le f(x_k) f(x^*) = f(x_k) f^*$.
- We additionally assume, that $\|g_k\|^2 \le G^2$ • We use the notation $R = \|x_0 - x^*\|_2$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$\sum_{k=0}^{\infty} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$

 $\sum \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR \frac{1}{\sqrt{T}}$$

 $\sum \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR \frac{1}{\sqrt{T}}$$

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^*=\frac{R}{G}\sqrt{\frac{1}{T}}$ and $\sum_{k=0}^{T-1}\langle g_k,x_k-x^*\rangle\leq GR\sqrt{T}.$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T} \sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T} \left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR \frac{1}{\sqrt{T}}$$

Important notes:

 Obtaining bounds not for x_T but for the arithmetic mean over iterations x̄ is a typical trick in obtaining estimates for methods where there is convexity but no

monotonic decreasing at each iteration. There is no guarantee of success at each iteration, but there is a guarantee of success on average

Convergence bound

Assuming $\alpha_k = \alpha$ (constant stepsize), we have:

$$\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \le \frac{R^2}{2\alpha} + \frac{\alpha}{2} G^2 T$$

Minimizing the right-hand side by α gives $\alpha^* = \frac{R}{G} \sqrt{\frac{1}{T}}$ and $\sum_{k=0} \langle g_k, x_k - x^* \rangle \le GR\sqrt{T}.$

$$f(\overline{x}) - f^* = f\left(\frac{1}{T}\sum_{k=0}^{T-1} x_k\right) - f^* \le \frac{1}{T}\left(\sum_{k=0}^{T-1} (f(x_k) - f^*)\right)$$
$$\le \frac{1}{T}\left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)$$
$$\le GR\frac{1}{\sqrt{T}}$$

Important notes:

• Obtaining bounds not for x_T but for the

arithmetic mean over iterations \overline{x} is a typical trick in obtaining estimates for methods where there is convexity but no

monotonic decreasing at each iteration. There is no guarantee of success at each iteration, but there is a guarantee of success on average

- To choose the optimal step, we need to know (assume) the number of iterations in advance. Possible solution: initialize Twith a small value, after reaching this
 - number of iterations double T and restart the algorithm. A more intelligent way: adaptive selection of stepsize.

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$||x_{k+1} - x^*||^2 = ||x_k - x^* - \alpha_k g_k||^2 =$$

$$= ||x_k - x^*||^2 + \alpha_k^2 ||g_k||^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=}$$

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \end{split}$$

 $f \to \min_{x,y,z}$ Subgradient Descent

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \end{split}$$

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ \langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right) G^2 \end{split}$$

$$\begin{split} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ \langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ \sum_{k=1}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=1}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \end{split}$$

 $f \to \min_{x,y,z}$ Subgradient Descent

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \\ &\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)^2 \leq \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \leq GR\sqrt{T} \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \\ &\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)^2 \leq \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \leq GR\sqrt{T} \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|^2 &= \|x_k - x^* - \alpha_k g_k\|^2 = \\ &= \|x_k - x^*\|^2 + \alpha_k^2 \|g_k\|^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \stackrel{\circ}{=} \\ \alpha_k &= \frac{\langle g_k, x_k - x^* \rangle}{\|g_k\|^2} \text{ (from minimizing right hand side over stepsize)} \\ &\stackrel{\circ}{=} \|x_k - x^*\|^2 - \frac{\langle g_k, x_k - x^* \rangle^2}{\|g_k\|^2} \\ &\langle g_k, x_k - x^* \rangle^2 &= \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) \|g_k\|^2 \leq \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \\ &\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq \sum_{k=0}^{T-1} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2\right) G^2 \leq \left(\|x_0 - x^*\|^2 - \|x_T - x^*\|^2\right) G^2 \\ &\frac{1}{T} \left(\sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle\right)^2 \leq \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle^2 \leq R^2 G^2 \qquad \sum_{k=0}^{T-1} \langle g_k, x_k - x^* \rangle \leq GR\sqrt{T} \end{aligned}$$

Which leads to exactly the same bound of $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ on the primal gap. In fact, for this class of functions, you can't get a better result than $\frac{1}{\sqrt{T}}$.

Linear Least Squares with l_1 -regularization

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$$

Algorithm will be written as:

$$x_{k+1} = x_k - \alpha_k \left(A^{\top} (Ax_k - b) + \lambda \operatorname{sign}(x_k) \right)$$

where signum function is taken element-wise.

LLS with I_1 regularization. 2 runs. $\lambda = 1$

400 500

Great illustration of l_1 -regularization

ℓ^1 induces sparse solutions for least squares

by @itayevron

Support Vector Machines

Let
$$D = \{(x_i, y_i) \mid x_i \in \mathbb{R}^n, y_i \in \{\pm 1\}\}$$

We need to find $\omega \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that

$$\min_{\omega \in \mathbb{R}^n, b \in \mathbb{R}} \frac{1}{2} \|\omega\|_2^2 + C \sum_{i=1}^m \max[0, 1 - y_i(\omega^\top x_i + b)]$$

 $f \to \min_{x,y,z}$ Subgradient Descent