Day-9

Placement Statement

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
d=pd.read_csv(r"C:\Users\user\Downloads\placement.csv")
d
```

Out[2]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1

1000 rows × 3 columns

In [4]:

```
d.columns
```

Out[4]:

```
Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')
```

```
In [5]:
d.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 3 columns):
     Column
                            Non-Null Count Dtype
 0
     cgpa
                            1000 non-null
                                            float64
 1
     placement_exam_marks 1000 non-null
                                            float64
     placed
                            1000 non-null
                                            int64
dtypes: float64(2), int64(1)
memory usage: 23.6 KB
In [6]:
x=d[['cgpa', 'placement_exam_marks']]
y=d['placed']
In [7]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [8]:
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
Out[8]:
LinearRegression()
In [9]:
print(lr.intercept_)
0.49414191144655434
In [10]:
print(lr.score(x_test,y_test))
-0.011936529299728438
In [11]:
print(lr.score(x_train,y_train))
```

Ridge Regression

0.002748581875469336

```
In [12]:
from sklearn.linear_model import Ridge,Lasso
In [13]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
rr.score(x_test,y_test)
Out[13]:
-0.011974434362202357
In [14]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
rr.score(x_test,y_test)
Out[14]:
-0.011974434362202357
Lasso Regression
In [16]:
la=Lasso(alpha=10)
In [17]:
la.fit(x_train,y_train)
Out[17]:
Lasso(alpha=10)
In [18]:
la.score(x_test,y_test)
Out[18]:
-0.0069095270958625665
```