CS1231S Chapter 9

Relations

9.1 Basics

Definition 9.1.1. Let A, B be sets.

tuple?

- (1) A relation from A to B is a subset of $A \times B$.
- (2) Let R be a relation from A to B and $(x,y) \in A \times B$. Then we may write

$$x R y$$
 for $(x, y) \in R$ and $x \not R y$ for $(x, y) \not \in R$.

We read "x R y" as "x is R-related to y" or simply "x is related to y".

Example 9.1.2. Let S be the set of all NUS students and M be the set of all modules offered by the NUS. Then "is enrolled in" is a relation from S to M. As a set, this relation is

$$\{(x,y) \in S \times M : x \text{ is enrolled in } y\}.$$

Example 9.1.3. Let $A = \{0, 1, 2\}$ and $B = \{1, 2, 3, 4\}$. Define the relation R from A to B by setting

$$x R y \Leftrightarrow x < y.$$

Then 0 R 1 and 0 R 2, but 2 R 1. As a set,

$$R = \{(0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4), (2,3), (2,4)\}.$$

Arrow diagram. Let $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Consider the relation R from A to B defined by

$$R \neq \{(1,x),(1,y),(2,x),(2,y),(2,z),(3,z),(4,z)\}.$$

One can represent this relation by the following $arrow \ diagram$, where the existence of an arrow from a to b indicates $a \ R \ b$:

discussing the overall set of relations, not just 1 arrow but all the arrows

helps with visualization

9.2 Equivalence relations

Definition 9.2.1. A (binary) relation on a set A is a relation from A to A.

Definition 9.2.2. Let A be a set and R be a relation on A.

(2)
$$R ext{ is } symmetric ext{ if } \forall x, y \in A \ (x R y \Rightarrow y R x).$$

(3)
$$R$$
 is transitive if $\forall x, y, z \in A \ (x R y \land y R z \Rightarrow x R z)$.

Example 9.2.3. Let R denote the equality relation on a set A, i.e., for all $x, y \in A$,

$$x R y \Leftrightarrow x = y.$$

Then R is reflexive, symmetric, and transitive.

Example 9.2.4. Let R' denote the subset relation on a set U of sets, i.e., for all $x, y \in U$,

$$x R' y \Leftrightarrow x \subseteq y.$$

Then R' is reflexive, may not be symmetric (when U contains x, y such that $x \subseteq y$), but is transitive.

Example 9.2.5. Let R denote the non-strict less-than relation on \mathbb{Q} , i.e., for all $x, y \in \mathbb{Q}$,

$$x R y \Leftrightarrow x \leqslant y$$
.

Then R is reflexive, not symmetric, but transitive.

Example 9.2.6. Let R' denote the strict less-than relation on \mathbb{Q} , i.e., for all $x, y \in \mathbb{Q}$,

$$x R' y \Leftrightarrow x < y.$$

Is R' reflexive? Is R' transitive? Is R symmetric

∅ 9a

Example 9.2.7. Let R denote the divisibility relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$,

$$x R y \Leftrightarrow x \mid y$$
.

Is R reflexive? Is R transitive? Is R symmetric?

chapter

@ 9b

Example 9.2.8. Let $n \in \mathbb{Z}^+$ and R' denote the congruence-mod-n relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$,

$$x R' y \Leftrightarrow x \equiv y \pmod{n}$$
.

Then R' is reflexive, symmetric, and transitive by Lemma 8.6.5.

Definition 9.2.9. An equivalence relation is a relation that is reflexive, symmetric and transitive.

Definition 9.2.10. Let A be a set and R be an equivalence relation on A. For each $x \in A$, the *equivalence class* of x with respect to R, denoted $[x]_R$, is defined by

$$[x]_R = \{ y \in A : x R y \}.$$

When there is no risk of confusion, we may drop the subscript R and write simply [x]. Define $A/R = \{[x]_R : x \in A\}$.

Example 9.2.11. The equality relation R on a set A is an equivalence relation. The equivalence classes are of the form

$$[x] = \{ y \in A : x = y \} = \{ x \},$$

where $x \in A$. So $A/R = \{[x] : x \in A\} = \{\{x\} : x \in A\}$.

 $A = \{1,2,3\} \quad R = \{(1,1),(2,2),(3,3),(1,2),(2,1)\} \quad 44$ $[1] = \{1,2\}, [2] = \{1,2\}, [3] = \{3\}$

 $A/R = \{ \{1,2\}, \{1,2\}, \{3\} \} = \{ \{1,2\}, \{3\} \}$

Example 9.2.12. Fix $n \in \mathbb{Z}^+$. The congruence-mod-n relation R_n on \mathbb{Z} is an equivalence relation. The equivalence classes are of the form alternative definition

$$[x] = \{ y \in \mathbb{Z} : x \equiv y \pmod{n} \} = \{ x + nk : k \in \mathbb{Z} \},\$$

where $x \in \mathbb{Z}$. So $\mathbb{Z}/R_n = \{\{x + nk : k \in \mathbb{Z}\} : x \in \mathbb{Z}\} = \{[0], [1], \dots, [n-1]\}$. If n = 2, then there are two equivalence classes: $[x] = [x \mod n]$

$$\{2k: k \in \mathbb{Z}\}$$
 and $\{2k+1: k \in \mathbb{Z}\}.$

Proposition 9.2.13. Let R be an equivalence relation on a set A. The following are equivalent for all $x, y \in A$.

- (i) x R y. (ii) [x] = [y].

Proof. 1. $((i) \Rightarrow (ii))$

- 1.1. Suppose x R y.
- 1.2. Then y R x by symmetry.
- 1.3. For every $z \in [x]$,
 - 1.3.1. x R zby the definition of [x];
 - 1.3.2. y R zby transitivity, as y R x;
 - 1.3.3. ∴. $z \in [y]$ by the definition of [y].
- 1.4. This shows $[x] \subseteq [y]$.
- 1.5. Switching the roles of x and y, we see also that $[y] \subseteq [x]$.
- 1.6. So [x] = [y].
- 2. $((ii) \Rightarrow (iii))$ If [x] = [y], then $[x] \cap [y] = [x]$, which is nonempty because the reflexivity of R implies $x \in [x]$.
- 3. $((iii) \Rightarrow (i))$
 - 3.1. Suppose $[x] \cap [y] \neq \emptyset$.
 - 3.2. Take $z \in [x] \cap [y]$.
 - 3.3. Then x R z and y R z.
 - 3.4. The latter implies z R y by symmetry.
 - 3.5. So x R y by transitivity.

9.3 **Partitions**

Definition 9.3.1. A nartition of a set A is a set \mathscr{C} of nonempty subsets of A such that

- $(\geqslant 1)$ $\forall x \in A \exists S \in \mathscr{C} (x \in S);$ and every element in the original set is put into at least 1 bag
- $(\leqslant 1) \quad \forall x \in A \ \ \forall S, S' \in \mathscr{C} \ \ (x \in S \ \land \ x \in S' \ \Rightarrow \ S = S')$. every element in the original set is put into at most 1 bag

Elements of a partition are called *components* of the partition.

Example 9.3.2. The set $A = \{1, 2, 3\}$ has the following partitions: essentially a smaller set of a set

$$\{\{1\},\{2\},\{3\}\}, \{\{1\},\{2,3\}\}, \{\{2\},\{1,3\}\}, \{\{3\},\{1,2\}\}, \{\{1,2,3\}\}.$$

Example 9.3.3. The congruence-mod-2 relation gives rise to the following partition of \mathbb{Z} :

$$\{\{2k: k \in \mathbb{Z}\}, \{2k+1: k \in \mathbb{Z}\}\}.$$

Theorem 9.3.4. Let R be an equivalence relation on a set A. Then A/R is a partition of A.

Proving that all will be inside

Proof. 1. ($\geqslant 1$)

- 1.1. Let $x \in A$.
- 1.2. Then x R x by reflexivity.
- 1.3. So $x \in [x] \in A/R$.
- 2. (≤ 1) By Proposition 9.2.13, for all $[x], [y] \in A/R$, if $[x] \cap [y] \neq \emptyset$, then [x] = [y].

Theorem 9.3.5. Let \mathscr{C} be a partition of a set A. Then there is an equivalence relation R on A such that $A/R = \mathscr{C}$.

Proof. 1. Define a relation R on A, by setting, for all $x, y \in A$,

 $x R y \Leftrightarrow x, y \in S \text{ for some } S \in \mathscr{C}.$

- 2. (Reflexivity)
 - 2.1. Let $x \in A$.
 - 2.2. Axiom ($\geqslant 1$) for partitions gives $S \in \mathscr{C}$ such that $x \in S$.
 - 2.3. So x R x.
- 3. (Symmetry)
 - 3.1. Let $x, y \in A$ such that x R y.
 - 3.2. Find $S \in \mathcal{C}$ such that $x, y \in S$.
 - 3.3. Then $y, x \in S \in \mathscr{C}$ and thus y R x.
- 4. (Transitivity)
 - 4.1. Let $x, y, z \in A$ such that x R y and y R z.
 - 4.2. Use the definition of R to find $S, S' \in \mathcal{C}$ such that $x, y \in S$ and $y, z \in S'$.
 - 4.3. Then $y \in S \cap S'$.
 - 4.4. So S = S' by axiom (≤ 1) for partitions.
 - 4.5. Thus $x, z \in S$, making x R z.
- 5. So R is an equivalence relation.
- 6. 6.1. Let $x \in S \in \mathscr{C}$.
 - 6.2. $S \subseteq x$ because x is related to all the elements of S by the definition of R.
 - 6.3. Let $y \in [x]$. Then x R y by the definition of [x].
 - 6.4. So the definition of R gives some $S' \in \mathcal{C}$ such that $x, y \in S'$.
 - $^{\text{\tiny M}}$ 6.5. Since $x \in S \cap S'$, we deduce that S = S' by axiom (≤ 1) for partitions.
 - 6.6. Hence $y \in S' = S$.
 - 6.7. Since the choice of $y \in [x]$ was arbitrary, we infer that $[x] \subseteq S$.
 - 6.8. Thus [x] = S.
- 7. Block 6 shows that if $x \in S \in \mathcal{C}$, then [x] = S.
- 8. 8.1. Let $[x] \in A/R$.
 - 8.2. Use axiom ($\geqslant 1$) for partitions to find $S \in \mathscr{C}$ such that $x \in S$.
 - 8.3. Then line 7 implies $[x] = S \in \mathscr{C}$.
- 9. Since the choice of $[x] \in A/R$ was arbitrary, we infer that $A/R \subseteq \mathscr{C}$.
- 10.10.1. Let $S \in \mathscr{C}$.
 - 10.2. Then $S \neq \emptyset$ as \mathscr{C} is a partition.
 - 10.3. Take $x \in S$. (by line 6.1)
 - 10.4. Then line 7 implies $S = [x] \in A/R$.
- 11. Since the choice of $S \in \mathscr{C}$ was arbitrary, we infer that $\mathscr{C} \subseteq A/R$.
- 12. Hence $A/R = \mathscr{C}$.

9.4 Partial orders

Definition 9.4.1. Let A be a set and R be a relation on A.

- (1) R is antisymmetric if $\forall x, y \in A$ $(x R y \land y R x \Rightarrow x = y)$.
- (2) R is a (non-strict) partial order if R is reflexive, antisymmetric, and transitive.
- (3) Suppose R is a partial order. Let $x, y \in A$. Then x, y are comparable (under R) if

$$x R y$$
 or $y R x$.

(4) R is a (non-strict) total order if R is a partial order and $\forall x, y \in A$ ($x R y \lor y R x$).

Note 9.4.2. A total order is always a partial order.

comparable

Example 9.4.3. Let R denote the non-strict less-than relation on \mathbb{Q} , i.e., for all $x, y \in \mathbb{Q}$,

$$x R y \Leftrightarrow x \leqslant y.$$

Then R is antisymmetric. In fact, it is a total order.

Example 9.4.4. Let R' denote the strict less-than relation on \mathbb{Q} , i.e., for all $x, y \in \mathbb{Q}$,

xRy ^ yRx is false, therefore implication is vacuously true

$$x R' y \Leftrightarrow x < y.$$

Is R' antisymmetric? Is R' a partial order:

Ø 9c

Example 9.4.5. Let R denote the equality relation on a set A, i.e., for all $x, y \in A$,

$$(x R y) \Leftrightarrow x = y.$$

Then R is antisymmetric. It is a partial order, but not a total order unless $|A| \leq 1$.

Example 9.4.6. Fix $n \in \mathbb{Z}^+$. Let R' denote the congruence-mod-n relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$,

$$x R' y \Leftrightarrow x \equiv y \pmod{n}$$
.

Then R is not antisymmetric because 0 R' n and n R' 0 but $0 \neq n$.

Example 9.4.7. Let R denote the divisibility relation on \mathbb{Z} , i.e., for all $x, y \in \mathbb{Z}$,

$$x R y \Leftrightarrow x \mid y$$
.

Is R antisymmetric? Is R a partial order? Is R a total order?

∅ 9d

Example 9.4.8. Let R' denote the divisibility relation on \mathbb{Z}^+ , i.e., for all $x, y \in \mathbb{Z}^+$,

$$x R' y \Leftrightarrow x \mid y$$
.

will become antisymmetric if only positive numbers

ightharpoonup Is R antisymmetric? Is R a partial order? Is R a total order?

Ø 9e

Example 9.4.9. Let R denote the subset relation on a set U of sets, i.e., for all $x, y \in U$,

$$x R y \Leftrightarrow x \subseteq y.$$

Then R is antisymmetric. It is always a partial order, but it may not be a total order.

Notation 9.4.10. We often use \leq to denote a partial order. In this case, we write $x \prec y$ for $x \leq y \land x \neq y$.

Definition 9.4.11. Let \leq be a partial order on a set A. A Hasse diagram of \leq satisfies the following condition for all $x, y \in A$:

If $x \prec y$ and no $z \in A$ is such that $x \prec z \prec y$, then x is placed below y and there is a line joining x to y.

Example 9.4.12. Consider $\{d \in \mathbb{Z}^+ : d \mid 30\}$ partially ordered by the divisibility relation |. A Hasse diagram is as follows:

Example 9.4.13. Consider $\mathcal{P}(\{1,2,3\})$ partially ordered by the inclusion relation \subseteq . A Hasse diagram is as follows:

Hasse diagram will reveal the internal structure

Example 9.4.14. Consider $\{1, 2, 3, 4\}$ partially ordered by the non-strict less-than relation \leq . A Hasse diagram is as follows:

9.5 Linearization

Definition 9.5.1. Let \leq be a partial order on a set A, and $c \in A$.

(1) c is a minimal element if

$$\forall x \in A \ (x \preceq c \Rightarrow c = x).$$

finding the element which is at the top of the diagram

(2) c is a maximal element if

nothing that is strictly above it
$$\forall x \in A \ (c \leq x \Rightarrow c = x).$$

(3) c is the smallest element (or the minimum element) if

$$\forall x \in A \ (c \preccurlyeq x).$$

(4) *c* is the *largest element* (or the *maximum element*) if must be at the top of everything else

$$\forall x \in A \ (x \preceq c).$$

Example 9.5.2. The divisibility relation | on $\{1, 2, ..., 10\}$ is represented by the Hasse diagram

- The only minimal element is 1.
- The maximal elements are 6, 7, 8, 9, 10.
- The smallest element is 1.
- There is no largest element.

Example 9.5.3. (1) \mathbb{Q}^+ under the non-strict less-than relation \leq has neither a minimal element nor a maximal element.

(2) \mathbb{Z}^+ under the non-strict less-than relation \leq has a smallest element but no maximal element.

Definition 9.5.4. A well-order on a set A is a total order on A with respect to which every nonempty subset of A has a smallest element.

Lemma 9.5.5. Consider a partial order \leq on a set A.

- (1) A smallest element is minimal.
- (2) There is at most one smallest element.

Proof. (1) 1. Let c be a smallest element.

- 2. Take any $x \in A$ such that $x \leq c$.
- 3. By smallestness, we know $c \leq x$ too.
- 4. So c = x by antisymmetry.
- (2) 1. Let c, c' be smallest elements.
 - 2. Then $c \leq c'$ and $c' \leq c$ by the smallestness of c and c' respectively.
 - 3. So c = c' by antisymmetry.

Exercise 9.5.6. Show the statements analogous to Lemma 9.5.5 for largest and maximal elements.

Proposition 9.5.7. With respect to any partial order \leq on a nonempty finite set A, one can find a minimal element.

Proof. 1. Take any $c_0 \in A$. This is possible since $A \neq \emptyset$.

- 2. If c_0 is not minimal, then find $c_1 \in A$ such that $c_1 \prec c_0$.
- 3. Continue this process: if c_n is not minimal, then find $c_{n+1} \in A$ such that $c_{n+1} \prec c_n$.
- 4. Note that $c_{n+1} \neq c_i$ for any $i \in \{0, 1, ..., n\}$ because if $i \in \{0, 1, ..., n\}$ such that $c_{n+1} = c_i$, then
 - 4.1. $c_n \prec c_{n-1} \prec \cdots \prec c_i = c_{n+1}$;
 - 4.2. so $c_n \leq c_{n+1}$ by transitivity;
 - 4.3. so $c_n = c_{n+1}$ by antisymmetry as $c_{n+1} \prec c_n$;
 - 4.4. so we have a contradiction with $c_{n+1} \prec c_n$.
- 5. Since A is finite, this process must end, say with c_n .

6. c_n must be minimal for this process to end.

Exercise 9.5.8. Convince yourself that the statement analogous to Proposition 9.5.7 is true 9g for maximal elements.

Theorem 9.5.9. Let A be a set and \leq be a partial order on A. Then there exists a total order \leq^* on A such that for all $x, y \in A$,

$$x \preceq y \implies x \preceq^* y.$$

Proof for finite A (due to Kahn 1962). 1. Consider the following process.

- (1) Set $A_0 := A$ and i := 0.
- (2) If $A_i = \emptyset$, then stop, else
 - (2.1) use Proposition 9.5.7 to find a minimal element c_i of A_i with respect to $\leq \cap (A_i \times A_i)$;
 - (2.2) set $A_{i+1} := A_i \setminus \{c_i\}$.
- (3) Set i := i + 1, and go back to step (2).
- 2. Since A is finite, this process stops.
- 3. Let $c_0, c_1, \ldots, c_{n-1}$ be the sequence of elements of A produced.
- 4. We know $A = \{c_0, c_1, \dots, c_{n-1}\}$ because the process stopped after picking out these elements.
- 5. Define \leq^* on A by setting, for all $i, j \in \{0, 1, ..., n-1\}$,

$$c_i \preccurlyeq^* c_j \quad \Leftrightarrow \quad i \leqslant j.$$

- 6. Let $i, j \in \{0, 1, ..., n-1\}$ such that $c_i \prec c_j$.
- 7. 7.1. Suppose i > j.
 - 7.2. The minimality of c_i in A_i means $\forall x \in A_i \ (x \leq c_i \Rightarrow c_i = x)$.
 - 7.3. Since $c_i \leq c_j$ and $c_j \neq c_i$, we deduce that $c_i \notin A_j$.
 - 7.4. As $A_j \supseteq A_{j+1} \supseteq \cdots \supseteq A_i$, this implies $c_i \notin A_i$, which is a contradiction.
- 8. So $i \leq j$.
- 9. Thus $c_i \preceq^* c_j$ by the definition of \preceq^* .

Example 9.5.10. Consider $\{d \in \mathbb{Z}^+ : d \mid 30\}$ partially ordered by the divisibility relation | as in Example 9.4.12.

- Set $A_0 := \{ d \in \mathbb{Z}^+ : d \mid 30 \}.$
- 1 is the only minimal element of A_0 . Set $c_0 := 1$ and $A_1 := A_0 \setminus \{1\}$.
- 2, 3, 5 are the minimal elements of A_1 . Set $c_1 := 3$ and $A_2 := A_1 \setminus \{3\}$.
- 2,5 are the minimal elements of A_2 . Set $c_2 := 2$ and $A_3 := A_2 \setminus \{2\}$.
- 5,6 is the only minimal element of A_3 . Set $c_3 := 5$ and $A_4 := A_3 \setminus \{5\}$.
- 6, 10, 15 are the minimal elements of A_4 . Set $c_4 := 6$ and $A_5 := A_4 \setminus \{6\}$.
- 10, 15 are the minimal elements of A_5 . Set $c_5 := 15$ and $A_6 := A_5 \setminus \{15\}$.
- 10 is the only minimal element of A_6 . Set $c_6 := 10$ and $A_7 := A_6 \setminus \{10\}$.
- 30 is the only (minimal) element of A_7 . Set $c_7 := 30$ and $A_8 := A_7 \setminus \{30\}$.
- $A_8 = \emptyset$ and so we stop.

A linearization is $1 \preceq^* 3 \preceq^* 2 \preceq^* 5 \preceq^* 6 \preceq^* 15 \preceq^* 10 \preceq^* 30$.

extending from partial order to total order