PRODUCT USER MANUAL

PRODUCT USER MANUAL

For the Global Ocean Physical Multi Year product GLOBAL_MULTIYEAR_PHY_001_030

Issue: 1.3

Contributors: M. Drévillon, E. Fernandez, J.M. Lellouche

Approval Date: NOV 2021

11/2021

Issue : 1.3

RECORD TABLE

Issue	Date	§	Description of Change	Author	Validated By
1.1	2018/02/16	All	initial version	E. Fernandez, J.M. Lellouche	C. Derval
1.2	2021/01/13	all	Addition of climatology dataset	M Drevillon	C. Derval
1.3	2021/11/15	All	Update nomenclature product and dataset	C. Derval	C. Derval

11/2021

Issue : 1.3

Table OF CONTENTS

I	INTRODUCTION	5
	I.1 Summary	5
II	DESCRIPTION OF THE PRODUCT SPECIFICATION	6
	II.1 General Information	6
	II.2 Details of datasets	7
	II.3 Details on some parameters	8
	II.4 Production System Description	9
	II.5 Processing information	10
	II.5.1 Time coverage	10
	II.5.2 Time averaging	10
II	I DOWNLOAD A PRODUCT	. 11
IV	FILES NOMENCLATURE AND FORMAT	. 12
	IV.1 Nomenclature of files when downloaded through the CMEMS Web Portal Subsetter Service	12
	IV.2 Nomenclature of files when downloaded through the CMEMS Web Portal DirectGetFile CMEMS FTP Service	
	IV.3 File Format: NetCDF	13
	IV.4 File size	13
	IV.5 Other information: mean centre of Products, land mask value, missing value	14
	I.1 Reading Software	14
	IV.6 Structure and semantic of NetCDF files	14

11/2021

Issue : 1.3

GLOSSARY AND ABBREVIATIONS

CF	Climate Forecast (convention for NetCDF)
CMEMS	Copernicus Marine Environment Monitoring Service
DGF	Direct Get File (FTP like CMEMS service tool to download a NetCDF file)
ECMWF	European Centre for Medium Range Weather forecast
FTP	Protocol to download files
GLO	Global
NetCDF	Network Common Data Form
PUM	Product User Manual
QUID	Quality Information Document
Subsetter	CMEMS service tool to download a NetCDF file of a selected geographical box and time range

11/2021

Issue: 1.3

INTRODUCTION

I.1 Summary

This document is the user manual for the CMEMS global reanalysis product **GLOBAL_MULTIYEAR_PHY_001_030**. The reanalysis is built to be as close as possible to the observations (i.e. realistic) and in agreement with the model physics. It covers the period from 1992 to Year-1

The goal of this CMEMS global ocean reanalysis is to provide an eddy resolving (1/12°) global ocean simulation, covering the recent period during which altimeter data are available (period starting with the launch of TOPEX POSEIDON and ERS-1 satellites early in the nineties), constrained by assimilation of observations and describing the space-time evolution of 3D thermodynamic variables (T, S), 3D dynamic variables (U, V), sea surface height and sea-ice features (concentration, thickness and horizontal velocity).

This product is defined on a standard regular grid at 1/12 degree (approx. 8km) and on 50 standard levels. It is interpolated from the 1/12 degree and 50 vertical levels Arakawa C native grid. All variables are on the same regular grid points.

GLOBAL_MULTIYEAR_PHY_001_030 product is organised in three datasets:

- cmems_mod_glo_phy_my_0.083_P1D-m which contains the <u>3D daily mean fields</u>: 3D potential temperature, salinity and currents information from top to bottom and 2D sea surface level, bottom potential temperature, mixed layer thickness, sea ice thickness, sea ice fraction and sea ice velocities information.
- cmems_mod_glo_phy_my_0.083_P1M-m which contains the monthly mean fields: 3D potential temperature, salinity and currents information from top to bottom and 2D sea surface level, bottom potential temperature, mixed layer thickness, sea ice thickness, sea ice fraction and sea ice velocities information.
- cmems_mod_glo_phy_my_0.083-climatology_P1M-m which contains the monthly climatology mean fields: for each month of the year, the 1993-2016 average of 3D potential temperature, salinity and currents information from top to bottom and 2D sea surface level, bottom potential temperature, mixed layer thickness, sea ice thickness, sea ice fraction and sea ice velocities information.
- **cmems_mod_glo_phy_my_0.083_static** which contains the <u>static fields</u> for the system: coordinates, mean sea surface level, mask and bathymetry.

The product is published on the CMEMS dissemination server after automatic and human quality controls. Product is available on-line and disseminated through the CMEMS Information System. Files downloaded are in NetCDF format and follow CF-1.4 convention.

The analysis and forecasting system is described in the Quality Information Document (QUID) CMEMS_GLO_QUID_001_030 (https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-030.pdf).

Information on operational issues on products and services can be found on our <u>User Notification</u> <u>Service</u>. If you have any questions, please <u>contact us</u>.

11/2021

Issue : 1.3

II DESCRIPTION OF THE PRODUCT SPECIFICATION

II.1 General Information

Product line	GLOBAL_MULTIYEAR_PI	HY_001_030		
Geographical coverage	Global (180°E to 180°E ; 89°S to 90°N)			
Variables	Potential temperature			
	Salinity			
	Sea surface height			
	Horizontal velocity (eastward and northward components)			
	Sea ice concentration			
	Sea ice velocity (eastward and northward components)			
	Sea ice thickness			
	Sea floor potential temperature			
	Density ocean mixed layer thickness			
	Reanalysis			
Update frequency	Yearly			
		1/12/1991 to year - 1		
Available time series	04/12/1991 to year - 1			
Available time series Target delivery time	04/12/1991 to year - 1			
	N/A	_ my_0.083_P1D-m : daily	mean	
Target delivery time	N/A - cmems_mod_glo_phy	_ my_0.083_P1D-m : daily _ my_0.083_P1M-m : mor		
Target delivery time	N/A - cmems_mod_glo_phy - cmems_mod_glo_phy		nthly mean	
Target delivery time	N/A - cmems_mod_glo_phy - cmems_mod_glo_phy	_my_0.083_P1M-m: mor	nthly mean	
Target delivery time Temporal resolution	N/A - cmems_mod_glo_phy - cmems_mod_glo_phy - cmems_mod_glo_phy	_my_0.083_P1M-m: mor _my_0.083-climatology_ DGF	nthly mean P1M-m	
Target delivery time Temporal resolution Delivery mechanism	N/A - cmems_mod_glo_phy - cmems_mod_glo_phy - cmems_mod_glo_phy Subsetter	_my_0.083_P1M-m: mor _my_0.083-climatology_ DGF	nthly mean P1M-m	

11/2021

Issue : 1.3

II.2 Details of datasets

GLOBAL_MULTIYEAR_PHY_001_030

cmems_mod_glo_phy_my_0.083_P1D-m contains the <u>daily mean fields</u>: 3D potential temperature, salinity and currents information from top to bottom and 2D sea surface level, bottom potential temperature, mixed layer thickness, sea ice thickness, sea ice fraction and sea ice velocities information

cmems_mod_glo_phy_my_0.083_P1M-m contains the <u>monthly mean fields</u>: 3D potential temperature, salinity and currents information from top to bottom and 2D sea surface level, bottom potential temperature, mixed layer thickness, sea ice thickness, sea ice fraction and sea ice velocities information.

cmems_mod_glo_phy_my_0.083-climatology_P1M-m contains the monthly climatology mean fields: for each month of the year, the 1993-2016 average of 3D potential temperature, salinity and currents information from top to bottom and 2D sea surface level, bottom potential temperature, mixed layer thickness, sea ice thickness, sea ice fraction and sea ice velocities information.

These 3 datasets contained all the variables described below:

thetao [°C]

Potential temperature

sea water potential temperature

so [psu]

Salinity

sea_water_salinity

uo [m/s]

Eastward ocean current velocity

eastward_sea_water_velocity

vo [m/s]

Northward ocean current velocity

northward_sea_water_velocity

zos [m]

Sea surface height

sea surface height above geoid

mlotst [m]

Mixed layer thickness

ocean_mixed_layer_thickness_defined_by_sigma_theta

bottomT [°C]

Sea floor potential temperature

sea_water_potential_temperature_at_sea_floor

siconc [1]

Sea ice concentration

sea ice area fraction

sithick [m]

Sea ice thickness

sea ice thickness

usi [m/s]

Eastward sea ice velocity

eastward_sea_ice_velocity

11/2021

Issue : 1.3

vsi [m/s]

Northward sea ice velocity

northward_sea_ice_velocity

cmems_mod_glo_phy_my_0.083_static contains the static fields for the system: coordinates, mean sea surface level,
mask and bathymetry

e1t [m]

Cell dimension along X axis

e2t [m]

Cell dimension along Y axis

e3t [m/s]

Cell dimension along Z axis

cell_thickness

mask [1]

Land-sea mask: 1 = sea; 0 = land

sea binary mask

deptho [m]

Bathymetry

sea_floor_depth_below_geoid

deptho_lev [1]

Model level number at sea floor

model_level_number_at_sea_floor

mdt [m]

Mean dynamic topography

sea_surface_height_above_geoid

Table 2: List of variables in datasets and their names and units in the NetCDF output files for the GLOBAL_MULTIYEAR_PHY_001_030 product

II.3 Details on some parameters

mlotst [m]	ocean_mixed_layer_thickness_defined_by_sigma_theta. It is the depth where the density increase compared to density at 10 m depth corresponds to a temperature decrease of 0.2°C in local surface conditions (θ10m, S10m, P0= 0 db, surface pressure)
zos [m]	sea_surface_height_above_geoid. The geoid is a surface of constant geopotential with which mean sea level would coincide if the ocean were at rest. The parameter "zos" is the difference between the actual sea surface height at any given time and place, and that which it would have if the ocean were at rest.

11/2021

Issue : 1.3

- The altimeter measures the SSH referenced to the ellipsoid of reference (Earth + Ocean contributions) = Geoid + ADT
- The NEMO Ocean General Circulation Model represents the SSH referenced to the geoid (Ocean only contribution) = ADT

SSH_altimeter = Geoid + ADT obs

SSH_model = ADT obs

SSH_model = SSH_altimeter-Geoid

Sea Level Anomaly SLA_altimeter ~ SSH_model - MDT

Absolute Dynamical Topography ADT_aviso ~ SSH_model

- - SSH model: Sea Surface Height above the Geoid
 - SSH altimeter: Sea Surface Height above the Ellipsoid of reference

- SLA: Sea Level Anomaly above Sea Level
- MSS: Mean Sea Surface above the Ellipsoid
- ADT: Absolute Dynamic Topography above Geoid
- MDT: Mean Dynamic Topography above Geoid

The Offset to apply is notified as arguments for the SSH_model variable in the NetCDF file

Figure 1 Altimetry principle https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-063-066-067.pdf

II.4 Production System Description

The Operational Mercator global ocean reanalysis system at 1/12 degree is providing a 28-years time series starting on December 4th, 1991 and ending on December 27th, 2016. This product includes daily and monthly mean files of temperature, salinity, currents, sea level, mixed layer depth and ice parameters from the top to the bottom over the global ocean.

11/2021

Issue : 1.3

Domain	GLOBAL (180°W-180°E ; 80°S – 90°N)	
Resolution and grid	1/12º ; regular grid ; 4320 x 2041	
Geographic coverage	This product is global with dedicated projection and spatial resolution. It is defined on a standard collocated grid at 1/12 degree (approx. 8 km). The parameters are interpolated from the native grid model, the 1/12 degree and 50 vertical levels Arakawa C native grid.	
	2074	
Model Version	LIM2 EVP NEMO 3.1	
Atmospheric forcing	3-h and 24-h atmospheric forcing from ERA-Interim, including precipitation and radiative fluxes (SW+LW) corrections.	
	Hourly ERA5 forcing from January 1st 2019	
Assimilation scheme	SAM2 (SEEK Kernel) + FGAT + IAU and 3D-VAR T/S bias correction	
Assimilated	Reynolds 0.25° AVHRR-only SST,	
observations	Delayed Time SLA from all altimetric satellites, in situ T/S profiles from CMEMS CORAv4.1 database, CERSAT Sea Ice Concentration	
Initial conditions	December 1991 T/S regressed from EN.4.2.0	
Bathymetry	ETOPO1 for deep ocean and GEBCO8 on coast and continental shelf.	

II.5 Processing information

II.5.1 Time coverage

The time series covers the following period: 04/12/1991 to 27/12/2019. (with periodic temporal extensions)

II.5.2 Time averaging

For the monthly dataset, the fields are monthly means over the calendar month (first to last day of the month). For the daily dataset, the fields are daily means over a day (midnight to midnight, centered at noon).

11/2021

Issue : 1.3

III DOWNLOAD A PRODUCT

After registration, you will be able to download our data. To assist you, our <u>HelpCenter</u> is available, and more specifically its <u>section about download</u>.

Information on operational issues on products and services can be found on our <u>User Notification</u> Service. If you have any questions, please contact us.

11/2021

Issue: 1.3

IV FILES NOMENCLATURE AND FORMAT

IV.1 Nomenclature of files when downloaded through the CMEMS Web Portal Subsetter Service

Files nomenclature when downloaded through the CMEMS Web Portal Subsetter is based on product dataset name and a numerical reference related to the request date on the portal.

The scheme is: datasetname_nnnnnnnnnnnn.nc

where:

- datasetname: as described previously
- **nnnnnnnnnnn**: 13 digit integer corresponding to the current time (download time) in milliseconds since January 1, 1970 midnight UTC.
- .nc: standard NetCDF filename extension.

Example: global-reanalysis-phy-001-030-daily 1303461772348.nc

IV.2 Nomenclature of files when downloaded through the CMEMS Web Portal <u>DirectGetFile</u> or <u>CMEMS FTP</u> Service

When downloading product via Directgetfile, you get data in ZIP archive format with a specific nomenclature. When ZIP archive is uncompressed, files are provided with the native nomenclature. When downloading via FTP, the files are provided with the native nomenclature.

• ZIP nomenclature:

datasetname_nnnnnnnnnnnnn.zip

Where:

- .datasetname is a character string containing the dataset name as described previously
- . nnnnnnnnnnn: 13 digit integer corresponding to the current time (download time) in milliseconds since January 1, 1970 midnight UTC,
- .zip: ZIP Archive filename extension.
- Native nomenclature:

For the daily dataset, the scheme is:

mercatorglorys12v1_gl12_mean_yyyymmdd_RYYYYMMDD.nc

Where:

- yyyymmdd: field daily mean central date, on YYYYMMDD format
- YYYYMMDD: creation date of the file

11/2021

Issue : 1.3

- .nc: standard NetCDF filename extension.

For the monthly dataset, the scheme is:

mercatorglorys12v1 gl12 mean yyyymm.nc

Where:

- yyyymm: field monthly mean central date, on YYYYMM format
- .nc: standard NetCDF filename extension.

IV.3 File Format: NetCDF

The products are stored using the NetCDF format.

NetCDF (network Common Data Form) is an interface for array-oriented data access and a library that provides an implementation of the interface. The NetCDF library also defines a machine-independent format for representing scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific data. The NetCDF software was developed at the Unidata Program Center in Boulder, Colorado. The NetCDF libraries define a machine-independent format for representing scientific data.

Please see Unidata NetCDF pages for more information, and to retrieve NetCDF software package.

NetCDF data is:

- * Self-Describing. A netCDF file includes information about the data it contains.
- * Architecture-independent. A NetCDF file is represented in a form that can be accessed by computers with different ways of storing integers, characters, and floating-point numbers.
- * Direct-access. A small subset of a large dataset may be accessed efficiently, without first reading through all the preceding data.
- * Appendable. Data can be appended to a NetCDF dataset along one dimension without copying the dataset or redefining its structure. The structure of a NetCDF dataset can be changed, though this sometimes causes the dataset to be copied.
 - * Sharable. One writer and multiple readers may simultaneously access the same NetCDF file.

IV.4 File size

DATASET NAME	NAME OF FILE	DIMENSION [GB]
cmems_mod_glo_phy_my _0.083_P1D-m	mercatorglorys12v1_gl12_mean_\${date1}_R\${date2}.n c	3.4
cmems_mod_glo_phy_my _0.083_P1M-m	mercatorglorys12v1_gl12_mean_\${yyyymm}.nc	3.4

11/2021

Issue : 1.3

IV.5 Other information: mean centre of Products, land mask value, missing value

```
Real_Value = (Display_Value X scale_factor) + add_offset
The missing value for this product is: -32767s
Land mask are equal to "FillValue" (see variable attribute on NetCDF file).
```

I.1 Reading Software

NetCDF data can be browsed and used through a number of software, like:

- ✓ ncBrowse: http://www.epic.noaa.gov/java/ncBrowse/,
- ✓ NetCDF Operator (NCO): http://nco.sourceforge.net/
- ✓ IDL, Matlab, GMT...

Useful information on UNIDATA: http://www.unidata.ucar.edu/software/netcdf/

IV.6 Structure and semantic of NetCDF files

```
netcdf mercatorglorys12v1_gl12_mean_20191230_R20200101 {
dimensions:
 longitude = 4320;
 latitude = 2041;
  depth = 50;
 time = UNLIMITED; // (1 currently)
variables:
 float longitude(longitude);
    longitude:valid_min = -180.f;
    longitude:valid_max = 179.9167f;
    longitude:step = 0.08332825f;
    longitude:units = "degrees_east";
    longitude:unit_long = "Degrees East";
    longitude:long_name = "Longitude";
    longitude:standard_name = "longitude";
    longitude:axis = "X";
 float latitude(latitude);
```


11/2021

Issue: 1.3

```
latitude:valid_min = -80.f;
  latitude:valid_max = 90.f;
  latitude:step = 0.08333588f;
  latitude:units = "degrees_north";
  latitude:unit_long = "Degrees North";
  latitude:long name = "Latitude";
  latitude:standard name = "latitude";
  latitude:axis = "Y";
float depth(depth);
  depth:valid_min = 0.494025f;
  depth:valid max = 5727.917f;
  depth:units = "m";
  depth:positive = "down";
  depth:unit_long = "Meters";
  depth:long_name = "Depth";
  depth:standard_name = "depth";
  depth:axis = "Z";
float time(time);
  time:long_name = "Time (hours since 1950-01-01)";
  time:standard name = "time";
  time:calendar = "gregorian";
  time:units = "hours since 1950-01-01 00:00:00";
  time:axis = "T";
short mlotst(time, latitude, longitude);
  mlotst:long_name = "Density ocean mixed layer thickness";
  mlotst:standard_name = "ocean_mixed_layer_thickness_defined_by_sigma_theta";
  mlotst:units = "m";
  mlotst:unit_long = "Meters";
  mlotst:add_offset = -0.152592554688454;
  mlotst:scale_factor = 0.152592554688454;
  mlotst:_FillValue = -32767s;
  mlotst:valid_min = 1s;
  mlotst:valid max = 4406s;
  mlotst:cell methods = "area: mean";
```


11/2021

Issue: 1.3

```
short zos(time, latitude, longitude);
  zos:long_name = "Sea surface height";
  zos:standard name = "sea surface height above geoid";
  zos:units = "m";
  zos:unit_long = "Meters";
  zos:add_offset = 0.;
  zos:scale factor = 0.000305185094475746;
  zos:_FillValue = -32767s;
  zos:valid_min = -6148s;
  zos:valid_max = 5409s;
  zos:cell methods = "area: mean";
short bottomT(time, latitude, longitude);
  bottomT:long_name = "Sea floor potential temperature";
  bottomT:standard_name = "sea_water_potential_temperature_at_sea_floor";
  bottomT:units = "degrees_C";
  bottomT:unit_long = "Degrees Celsius";
  bottomT:_FillValue = -32767s;
  bottomT:add_offset = 21.;
  bottomT:scale_factor = 0.000732444226741791;
  bottomT:valid_min = -32738s;
  bottomT:valid max = 20750s;
  bottomT:cell_methods = "area: mean";
short sithick(time, latitude, longitude);
  sithick:long_name = "Sea ice thickness";
  sithick:standard_name = "sea_ice_thickness";
  sithick:units = "m";
  sithick:unit_long = "Meters";
  sithick:add_offset = -0.000762962736189365;
  sithick:scale_factor = 0.000762962736189365;
  sithick: FillValue = -32767s;
  sithick:valid_min = 1s;
  sithick:valid_max = 5095s;
  sithick:cell_methods = "area: mean where sea_ice";
short siconc(time, latitude, longitude);
```


11/2021

Issue : 1.3

```
siconc:long_name = "Ice concentration";
  siconc:standard_name = "sea_ice_area_fraction";
  siconc:units = "1";
  siconc:unit_long = "Fraction";
  siconc:add_offset = -3.81481368094683e-05;
  siconc:scale_factor = 3.81481368094683e-05;
  siconc: FillValue = -32767s;
  siconc:valid_min = 1s;
  siconc:valid_max = 28007s;
  siconc:cell_methods = "area: mean where sea_ice";
short usi(time, latitude, longitude);
  usi:long_name = "Sea ice eastward velocity";
  usi:standard_name = "eastward_sea_ice_velocity";
  usi:units = "m s-1";
  usi:unit_long = "Meters per second";
  usi:add_offset = 0.;
  usi:scale_factor = 3.05185094475746e-05;
  usi:_FillValue = -32767s;
  usi:valid_min = -27495s;
  usi:valid_max = 32731s;
  usi:cell methods = "area: mean where sea ice";
short vsi(time, latitude, longitude);
 vsi:long_name = "Sea ice northward velocity";
 vsi:standard_name = "northward_sea_ice_velocity";
 vsi:units = "m s-1";
 vsi:unit_long = "Meters per second";
 vsi:add_offset = 0.;
 vsi:scale_factor = 3.05185094475746e-05;
 vsi:_FillValue = -32767s;
 vsi:valid_min = -31993s;
 vsi:valid_max = 32343s;
 vsi:cell_methods = "area: mean where sea_ice";
short thetao(time, depth, latitude, longitude);
 thetao:long_name = "Temperature";
```


11/2021

Issue : 1.3

```
thetao:standard_name = "sea_water_potential_temperature";
  thetao:units = "degrees_C";
  thetao:unit long = "Degrees Celsius";
  thetao:_FillValue = -32767s;
  thetao:add_offset = 21.;
  thetao:scale_factor = 0.000732444226741791;
  thetao:valid min = -32738s;
  thetao:valid_max = 20726s;
  thetao:cell_methods = "area: mean";
short so(time, depth, latitude, longitude);
  so:long_name = "Salinity";
  so:standard_name = "sea_water_salinity";
  so:units = "1e-3";
  so:unit_long = "Practical Salinity Unit";
  so:_FillValue = -32767s;
  so:add_offset = -0.00152592547237873;
  so:scale_factor = 0.00152592547237873;
  so:valid_min = 2s;
  so:valid_max = 28677s;
  so:cell_methods = "area: mean";
short uo(time, depth, latitude, longitude);
  uo:long_name = "Eastward velocity";
  uo:standard_name = "eastward_sea_water_velocity";
  uo:units = "m s-1";
  uo:unit_long = "Meters per second";
  uo:_FillValue = -32767s;
  uo:add_offset = 0.;
  uo:scale_factor = 0.000610370188951492;
  uo:valid_min = -2921s;
  uo:valid_max = 4580s;
  uo:cell_methods = "area: mean";
short vo(time, depth, latitude, longitude);
  vo:long_name = "Northward velocity";
  vo:standard_name = "northward_sea_water_velocity";
```


11/2021

Issue : 1.3

```
vo:units = "m s-1";
    vo:unit_long = "Meters per second";
    vo: FillValue = -32767s;
    vo:add_offset = 0.;
    vo:scale_factor = 0.000610370188951492;
    vo:valid_min = -3322s;
    vo:valid max = 3045s;
    vo:cell_methods = "area: mean";
// global attributes:
    :title = "daily mean fields from Global Ocean Physics Analysis and Forecast updated Daily";
    :easting = "longitude";
    :northing = "latitude";
    :history = "2020/11/28 14:31:11 MERCATOR OCEAN Netcdf creation";
    :source = "MERCATOR GLORYS12V1";
    :institution = "MERCATOR OCEAN";
    :references = "http://www.mercator-ocean.fr";
    :comment = "CMEMS product";
    :Conventions = "CF-1.4";
    :domain name = "GL12";
    :field type = "mean";
    :field_date = "2019-12-30 00:00:00";
    :field_julian_date = 25565.f;
    :julian_day_unit = "days since 1950-01-01 00:00:00";
    :forecast_range = "";
    :forecast_type = "";
    :bulletin_date = "2020-01-01 00:00:00";
    :bulletin_type = "operational";
    :longitude_min = -180.f;
    :longitude_max = 179.9167f;
    :latitude_min = -80.f;
    :latitude_max = 90.f;
    :z_min = 0.494025f;
    :z max = 5727.917f;
```