Model Free Control Exploration

Marius Lindauer

Winter Term 2021

Recap Model-free Policy Iteration

- Initialize policy π
- ► Repeat:
 - ▶ Policy evaluation: compute Q^{π}
 - lacktriangle Policy improvement: update π given Q^π

Recap Model-free Policy Iteration

- lacktriangle Initialize policy π
- ► Repeat:

Lindauer

- ▶ Policy evaluation: compute Q^{π}
- ▶ Policy improvement: update π given Q^{π}
- May need to policy evaluation
 - lacksquare If π is deterministic, we may not observe all possible actions $a\in A$ in a state s
 - \blacktriangleright So, we cannot compute Q(s,a) for any $a\neq \pi(s)$

Recap Model-free Policy Iteration

- ▶ Initialize policy π
- ► Repeat:

Lindauer

- ▶ Policy evaluation: compute Q^{π}
- ▶ Policy improvement: update π given Q^{π}
- May need to policy evaluation
 - lacksquare If π is deterministic, we may not observe all possible actions $a\in A$ in a state s
 - lacksquare So, we cannot compute Q(s,a) for any $a \neq \pi(s)$
- → How to interleave policy evaluation and improvement?

Policy Evaluation with Exploration

- lacktriangle Want to compute a model-free estimate of Q^π
- ► In general seems subtle
 - ▶ Need to try all (s,a) pairs but then follow π
 - lacktriangle Want to ensure resulting estimate Q^π is good enough so that policy improvement is a monotonic operator
- For certain classes of policies can ensure all (s,a) pairs are tried such that asymptotically Q^{π} converges to the true value

ϵ -greedy Policies

- ► Simple idea to balance exploration and exploitation
- ightharpoonup Let |A| be the number of actions
- ▶ Then a ϵ -greedy policy wrt a state-action value Q(s,a) is $\pi(a \mid s) \in$
 - $\arg \max_{a \in A} Q(s, a)$ with probability 1ϵ
 - lacktriangle a random action with probability ϵ

Monotonic ϵ -greedy Policy Improvement

▶ Theorem: For any ϵ -greedy policy π_i , the ϵ -greedy policy wrt Q_i^π is a monotonic improvement $V^{\pi_{i+1}} > V^{\pi_i}$

$$\begin{split} Q^{\pi_i}(s,\pi_{i+1}(s)) &= \sum_{a \in A} \pi_{i+1}(a \mid s) Q^{\pi_i}(s,a) \\ &= \left(\epsilon/|A| \right) \left[\sum_{a \in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a \in A} Q^{\pi_i}(s,a) \\ &= \left(\epsilon/|A| \right) \left[\sum_{a \in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a \in A} Q^{\pi_i}(s,a) \frac{1-\epsilon}{1-\epsilon} \\ &= \left(\epsilon/|A| \right) \left[\sum_{a \in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a \in A} Q^{\pi_i}(s,a) \sum_{a \in A} \frac{\pi_i(a \mid s) - \frac{\epsilon}{|A|}}{1-\epsilon} \\ &\geq \left(\epsilon/|A| \right) \left[\sum_{a \in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \qquad Q^{\pi_i}(s,a) \sum_{a \in A} \frac{\pi_i(a \mid s) - \frac{\epsilon}{|A|}}{1-\epsilon} \end{split}$$

 $(-1-)\Omega\pi_i(--)$ $\mathbf{T}_i(\pi_i(-))$

Greedy in the Limit of Infinite Exploration (GLIE)

- Definition of GLIE:
 - All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty}N_i(s,a)\to\infty$$

Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i \to \infty} \pi(a \mid s) \to \argmax_{a \in A} Q(s,a)$$

with probability 1

Greedy in the Limit of Infinite Exploration (GLIE)

- Definition of GLIE:
 - All state-action pairs are visited an infinite number of times

$$\lim_{i \to \infty} N_i(s, a) \to \infty$$

Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i \to \infty} \pi(a \mid s) \to \argmax_{a \in A} Q(s,a)$$

with probability 1

Simple Strategy:

Lindauer

 \blacktriangleright $\epsilon\text{-greedy}$ where ϵ is annealed to 0 with $\epsilon_i=1/i$

Greedy in the Limit of Infinite Exploration (GLIE)

- Definition of GLIE:
 - All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty} N_i(s,a)\to\infty$$

Behavior policy (policy used to act in the world) converges to greedy policy

$$\lim_{i \to \infty} \pi(a \mid s) \to \argmax_{a \in A} Q(s, a)$$

with probability 1

- Simple Strategy:
 - \blacktriangleright $\epsilon\text{-greedy}$ where ϵ is annealed to 0 with $\epsilon_i=1/i$
- ► Theorem:
 - \blacktriangleright GLIE Monte–Carlo control converges to the optimal state–action value function $Q(s,a)\to Q^*(s,a)$