Lab: Databases and SQL Language

You can check your solutions here: https://judge.softuni.org/Contests/3136/Additional-Exercises.

1. Display All Information about the Departments

Write a SQL query to find all available information about the Departments.

Example

DepartmentID	Name	ManagerID
1	Engineering	12
2	Tool Design	4
3	Sales	273

Hints

2. Display All Department Names

Write SQL query to find all Department names.

Example

Hints

3. Salary of Each Employee

Write SQL query to find the first name, last name and salary of each employee.

Example

FirstName	LastName	Salary
Guy	Gilbert	12500.00
Kevin	Brown	13500.00
Roberto	Tamburello	43300.00

4. All Different Employee's Salaries

Write a SQL query to find all different employee's salaries. Show only the salaries.

Example

Salary
9000.00
9300.00
9500.00

5. Names of All Employees by Salary in Range

Write a SQL query to find the first name, last name and job title of all employees whose salary is in the range [20000, 30000].

Example

FirstName	LastName	JobTitle	
Rob	Walters	Senior Tool Designer	

Thierry	D'Hers	Tool Designer
JoLynn	Dobney	Production Supervisor

6. All Employees Without Manager

Write a SQL query to find first and last names about those employees that does not have a manager.

Example

FirstName	LastName	
Ken	Sanchez	
Svetlin	Nakov	

7. All Employees with Salary More Than 50000

Write a SQL query to find first name, last name and salary of those employees who has salary more than 50000. Order them in decreasing order by salary.

Example

FirstName	LastName	Salary
Ken	Sanchez	125500.00
James	Hamilton	84100.00

8. 5 Best Paid Employees.

Write SQL query to find first and last names about 5 best paid Employees ordered descending by their salary.

Example

FirstName	LastName	
Ken	Sanchez	
James	Hamilton	

9. Last 7 Hired Employees

Write a SQL guery to find last 7 hired employees. Select their first, last name and their hire date.

Example

FirstName	LastName HireDate	
Rachel	Valdez	2005-07-01 00:00:00
Lynn	Tsoflias	2005-07-01 00:00:00
Syed	Abbas	2005-04-15 00:00:00

10. Increase Salaries

Write a SQL query to increase salaries of all employees that are in the Engineering, Tool Design, Marketing or Information Services department by 12%. Then select Salaries column from the Employees table.

Example

Salary
12500.00
15120.00
48496.00
33376.00

Employee Address 11.

Write a query that selects:

- **EmployeeId**
- **JobTitle**
- **AddressId**
- AddressText

Return the first 5 rows sorted by AddressId in ascending order.

Example:

Employeeld	JobTitle	AddressId	AddressText
142	Production Technician	1	108 Lakeside Court
30	Human Resources Manager	2	1341 Prospect St

12. Addresses with Towns

Write a query that selects:

- **FirstName**
- LastName
- Town
- AddressText

Sorted by FirstName in ascending order then by LastName. Select first 50 employees.

Example:

FirstName	LastName	Town	AddressText
A.Scott	Wright	Newport Hills	1400 Gate Drive
Alan	Brewer	Kenmore	8192 Seagull Court

13. Sales Employee

Write a query that selects:

- **EmployeeID**
- **FirstName**

- LastName
- DepartmentName

Sorted by EmployeeID in ascending order. Select only employees from "Sales" department.

Example:

EmployeeID	FirstName	LastName	DepartmentName
268	Stephen	Jiang	Sales
273	Brian	Welcker	Sales

14. Employee Departments

Write a query that selects:

- **EmployeeID**
- **FirstName**
- Salary
- DepartmentName

Filter only employees with salary higher than 15000. Return the first 5 rows sorted by DepartmentID in ascending order.

Example:

EmployeeID	FirstName	Salary	DepartmentName
3	Roberto	43300.00	Engineering
9	Gail	32700.00	Engineering

Employees Without Project 15.

Write a query that selects:

- **EmployeeID**
- **FirstName**

Filter only employees without a project. Return the first 3 rows sorted by EmployeeID in ascending order.

Example:

EmployeeID	FirstName
2	Kevin
6	David

16. Employees Hired After

Write a query that selects:

- **FirstName**
- LastName
- **HireDate**
- **DeptName**

Filter only employees hired after 1.1.1999 and are from either "Sales" or "Finance" departments, sorted by HireDate (ascending).

Example:

FirstName	LastName	HireDate	DeptName
Debora	Poe	2001-01-19 00:00:00	Finance
Wendy	Kahn	2001-01-26 00:00:00	Finance

17. Create View Highest Peak

Write a SQL query to create view v_HighestPeak that selects all the information about the highest peak in the table Peaks. Use the Geography database.

Example:

Id	PeakName	Elevation	MountainId
68	Everest	8848	9

Students and Classes 18.

Create database called School.

The school has classes and students and each class has many students and each student has many classes. There should be no student enrolled twice in a course. To create appropriate database you will need:

Table **Student** columns:

- StudentID int, identity and primary key
- Name string with size up to 100

Table Class columns:

- ClassID int, identity and primary key
- Course string with size up to 100

Table **StudentClassRelation** columns:

- StudentID int and not null
- ClassID int and not null
- Two FOREIGN KEY with references to tables Student and Class
- Primary key pair of (StudentID, ClassID)

Insert the following data:

- Add two students with names: Olaf Alfonso and Clark Davis
- Add the following classes: Biology, Chemistry, Physics, English, Computer Science, History
- The **student** Olaf Alfonso studies in these **classes**: Chemistry, English, History
- The **student** Clark Davis studies in these **classes**: Biology, Physics, History

The table **StudentClassRelation** should look like this:

Example:

StudentID	ClassID
1	2
1	4
1	6
2	1
2	3
2	6

