1er Parcial Lógica 2010

1. V o F. Justifique.

- a. Sea (B, s, i, c, 0, 1) un álgebra de boole y sea $F \subsetneq B$ un filtro. Entonces F es primo sii para cada $a \in B$ vale que $a \in F$ o $a^c \in F$.
- b. Sean (L, s, i) y (L, s', i') reticulados, y sea f un isomorfismo de (L, s, i) en (L, s', i'). Entonces s = s'.
- c. Sea (L,s,i) un reticulado y sean $a,b,c\in L$ tales que a s c=b s c y a i c=b i c. Entonces a = b.
- d. Sea τ un tipo. Si $t \in T_k^{\tau}$ entonces $|t|_{\mathsf{X}} \leq 2^k + 1$.
- (e. Sea $(L,\mathsf{s},\mathsf{i})$ un reticulado y sea R una relación de equivalencia sobre L tal que cada — clase de equivalencia de R es un intervalo (es decir de la forma $\{x: a \leq x \leq b\}$ para algunos $a \leq b$). Entonces R es una congruencia de (L, s, i).
- 2. Sean (L, s, i, c, 0, 1) y (L', s', i', c', 0', 1') reticulados complementados. Supongamos que $f:L \to L'$ es un homomorfismo sobre. Supongamos además que $(a^c)^c=a$ para todo $a\in L$. Pruebe que $\left(a^{c'}\right)^{c'}=a$ para todo $a\in L'$.
- 3. Sea (L, s, i) es un reticulado distributivo, y sean $a, b \in L$ tales que a < b. Pruebe que la relación θ definida por $x\theta y$ si y solo si a i x=a i y y b s x=b s y es una congruencia de (L, s, i). Probar solo que θ preserva s.