- ✓ MOS Cascode
- ✓ BJT Cascode
- ✓ BiCMOS Cascode
- ✓ Par Darlington
- ✓ Outros Pares amplificadores

Amplificador Cascode MOS

FC

Alta impedância de entrada e transcondutância

PC

Buffer de corrente e ótima resposta em freqüência

Amp. Fonte Comum + Porta Comum

Análise do Amp. PC

Análise do Amp. PC

Transformador de impedâncias

Ex.1 – Considere um amplificador porta comum com r_o = 20 k Ω , I_D = 100 μ A, g_m = 1,25 mA/V, χ = 0,2, R_S = 20 k Ω e R_L = 100 k Ω . Encontre: A_{vo} , R_{in} , R_{out} , G_v , G_i .

$$A_{vo} = 1 + (g_m + g_{mb})r_o$$

$$R_{in} = \frac{r_o + R_L}{A_{vo}} \qquad R_{out} = r_o + A_{vo}R_S$$

$$G_{v} = A_{vo} \frac{R_{L}}{R_{L} + R_{out}}$$

$$G_{is} = A_{vo} \frac{R_S}{R_{out}}$$

$$G_i = G_{is} \frac{R_{out}}{R_{out} + R_{I.}}$$

Amplificador Cascode MOS

Amplificador Cascode MOS

Modelos de pequenos sinais para determinar o ganho A_{ν}

Amplificador Cascode x Fonte Comum

	Common Source	Cascode
Circuit	$V_{i} \circ \longrightarrow \begin{array}{ c c } & & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & &$	$A_0 r_o $ $A_0 R_L $ C_L
DC Gain	$-g_m R'_L$	$-A_0g_mR'_L$
$f_{ m 3dB}$	$\frac{1}{2\pi(C_L + C_{gd})R'_L}$	$\frac{1}{2\pi(C_L+C_{gd})A_0R'_L}$
f_t	$\frac{g_m}{2\pi(C_L+C_{gd})}$	$\frac{g_m}{2\pi(C_L+C_{gd})}$

Amplificador Cascode x Fonte Comum

Produto Ganho x Banda = cte!

Amplificador Cascode TBJ

Espelho de Corrente Cascode MOS

Possibilita o aumento da impedância de saída e diminuição dos efeitos de descasamento ao custo de uma diminuição da excursão da tensão de saída

"Folded" Cascode - CMOS

nMOS Fonte Comum, pMOS porta comum.

BiCMOS Cascode

Cascode

Alta impedância de entrada

Alta impedância de saída

Alto Ganho ou Largura de Banda

Ótima isolação entre saída e entrada

Diminuição do efeito Miller

Par Darlington

Outras configurações

Outras configurações

DC+PC

Ex.2 – Compare o desempenho do amplificador Fonte comum com o amplificador Cascode. Assuma para todos os transistores:

$$W/L = 20$$
, gm = 1,25 mA/V, $\chi = 0.2$, $r_0 = 20$ k Ω , $C_{GD} = 200$ fF, e $C_L = 500$ fF.

a)
$$R_L = r_0$$

b)
$$R_L = Rout$$

Sugestão de Estudo:

- Sedra & Smith 5ed.

Cap. 6, item 6.7

Cap. 6, item 6.8

Cap. 6, item 6.11

- Razavi. 2ed. (somente estágio *cascode*) Cap. 9, item 9.1

Exercícios correspondentes.