

TEORIA DOS ORBITAIS MOLECULARES (TOM)

- os orbitais moleculares podem acomodar no máximo dois elétrons de spins diferentes

H₂:

- orbital molecular ligante: baixa energia e tem densidade eletrônica entre os núcleos
- orbital molecular antiligante: baixa energia e pouca densidade eletrônica entre os núcleos
- ordem de ligação (O.L.): quanto maior é a O.L., maior a estabilidade e menor o comprimento da ligação

$$OL = \frac{1}{2} \times (n^{\circ} \text{ de elétrons ligantes} - n^{\circ} \text{ de elétrons antiligantes})$$

$$OL = \frac{1}{2} \times (n^{\circ} \text{ de elétrons ligantes} - n^{\circ} \text{ de elétrons antiligantes})$$

 $OL = \frac{1}{2} \times (8 - 4) = 2$

Pode-se concluir que, além de o O₂ possuir uma ligação dupla, o O₂ também é paramagnético

TEORIA DE BANDAS

- condutor: condutividade elétrica diminui com o aumento da temperatura
- semicondutor: condutividade elétrica aumenta com o aumento da temperatura
- supercondutor: resistência zero a passagem de corrente elétrica, sem perda de energia

Modelo orbital molecular para os metais:

-quanto maior o número de orbitais menor é o espaçamento de energia

- o número de e⁻ não preenche completamente a banda de orbitais
- os e⁻ podem ser promovidos para banda de energia desocupadas

