	EXAMINATION QUESTIONS/SOLUTIONS 2013-2014	Course Comp245
Question 1.		Marks & seen/unseen
Parts (i)	$x_{(\{n+1\}/2)}=3$, $\bar{x}=4$, $IQR=x_{(6)}-x_{(2)}=5$, $s_n=2\sqrt{2}$. Answer is $\underline{(c)}$.	seen sim.
(ii)	Using Bayes Theorem, $P(\overline{B} A) = \frac{P(A \cap \overline{B})}{P(A)} = \frac{P(A \overline{B})P(\overline{B})}{P(A)} = \frac{(1 - P(\overline{A} \overline{B}))(1 - P(B))}{P(A)}$ $= \frac{(1 - 0.8)(1 - 0.3)}{0.2} = 0.7.$	
	Answer is <u>(e)</u> .	seen sim.
(iii)	The probability of not observing a 3 is $(5/6)^3 \approx 0.58$, so the probability of at least one 3 is $1-0.58=0.42$. Answer is $\underline{(c)}$.	seen sim.
(iv)	Let X be the number of draws until the black ball is found. Without replacement, X is equally likely to be any number between 1 and 6, so $E(X)=3.5$. With replacement, $X \sim \text{Geometric}(1/6)$, so $E(X)=6$. Answer is $\underline{(d)}$.	unseen
(v)	By the Central Limit Theorem, an approximate distribution for S_n is $N(n\mu, n\sigma^2)$. The distribution of $T_n = S_n / \sqrt{n}$ is then, approximately, $N(\sqrt{n}\mu, \sigma^2)$. Answer is $\underline{(a)}$.	unseen
		4 marks each
	Setter's initials Checker's initials MM	Page number 1 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2013-2014	Course Comp245
Question 2.		Marks & seen/unseen
Parts (i)	$P(X \ge x) = \sum_{k=x}^{\infty} p(k) = p \sum_{k=x}^{\infty} (1-p)^{k-1} = p \times \frac{(1-p)^{x-1}}{1 - (1-p)} = (1-p)^{x-1}.$	seen 4 marks
	We then have $E(X) = \sum_{x=1}^{\infty} P(X \ge x) = \sum_{x=1}^{\infty} (1-p)^{x-1} = \frac{1}{1-(1-p)} = \frac{1}{p}$.	unseen 4 marks
(ii)	If X is the number of rolls required, then $X \sim \text{Geom}\left(\frac{1}{6}\right)$, so $E(X) = \frac{1}{\frac{1}{6}} = 6$.	seen sim. 3 marks
(iii)	This is the same as the probability of failing to roll a 6 in five attempts; the first five unsuccessful rolls have no bearing on subsequent attempts (the Geometric is memoryless). The probability is $P(X \le 10 X > 5) = 1 - P(X \ge 11 X > 5) = 1 - \left(1 - \frac{1}{6}\right)^5 = 0.598$.	seen sim. 4 marks
(iv)	$\sum_{x=1}^{\infty} P(X \ge x) = \sum_{x=1}^{\infty} \sum_{k=x}^{\infty} p(k) = \sum_{k=1}^{\infty} \sum_{x=1}^{k} p(k) = \sum_{k=1}^{\infty} kp(k) = E(X).$	unseen 5 marks
	Setter's initials Checker's initials	Page number
	MM	2 of 4

	EXAMINATION QUESTIONS/SOLUTIONS 2013-2014	Course Comp245
Question		
3.		Marks & seen/unseen
Parts		scen unscen
(i)		
	$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\lambda^{\sum_{i=1}^{n} x_i} e^{-n\lambda}}{\prod_{i=1}^{n} x_i!} \implies \ell(\lambda) = (\sum_{i=1}^{n} x_i) \log(\lambda) - n\lambda - \log(\prod_{i=1}^{n} x_i!)$	
	$\implies \frac{d}{d\lambda}\ell(\lambda) = \frac{\sum_{i=1}^{n} x_i}{\lambda} - n \implies \hat{\lambda} = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}.$	
	This is a maximum since $\implies \frac{d^2}{d\lambda^2}\ell(\lambda) = -\frac{\sum_{i=1}^n x_i}{\lambda^2}$	seen 7 marks
	is negative for all $\lambda > 0$.	
(ii)	$\hat{\lambda} = \bar{x} = 1.615.$	3 marks
(iii)	Assuming a Poisson(1.61) distribution, we would have the following expected counts.	
	Number of emails (i) $0 1 2 3 \geq 4$	
	Number of emails (i) 0 1 2 3 ≥4 Observed Frequency (O_i) 14 39 29 11 7 Expected Frequency (E_i) 19.89 32.12 25.94 13.96 8.09	
	These give a chi-square statistic of	
	$X^2 = \sum_{i=0}^4 \frac{(O_i - E_i)^2}{E_i} = 4.35$	
	which is less than $\chi^2_{3,0.95}$ = 7.81. So insufficient evidence to reject the null hypothesis that the email counts follow a Poisson distribution.	seen sim. 5 marks
(iv)	Now assuming a Poisson(2) distribution, we would have the following expected counts.	
	Number of emails (i) 0 1 2 3 \geq 4 Expected Frequency (E_i) 13.53 27.07 27.07 18.04 14.29	
	Here,	
	$X^2 = \sum_{i=0}^4 \frac{(O_i - E_i)^2}{E_i} = 11.88$	
	which is greater than $\chi^2_{4,0.95}$ =9.49, so we reject the null hypothesis that the email counts follow a Poisson(2) distribution. This suggests the mean number of emails per hour is not close to 2.	seen sim. 5 marks

	EXAMINATION QUESTIONS/SOLUTIONS 2013-2014	Course Comp245
Question 4.		Marks & seen/unseen
Parts (i)	$X_i \sim U(0,b)$ has cumulative distribution function $F_{X_i}(x) = \begin{cases} 0, & x \leq 0 \\ \frac{x}{b}, & 0 < x < b \\ 1, & x \geq b. \end{cases}$	seen 2 marks
(ii)	By independence of the $\{X_i\}$, $F_{X_{(n)}}(x) = P(X_{(n)} < x) = \prod_{i=1}^n P(X_i < x) = \left(\frac{x}{b}\right)^n, 0 \le x \le b.$	unseen 3 marks
	The density is the first derivative of this distribution function, giving $f_{X_{(n)}}(x) = \frac{d}{dx} F_{X_{(n)}}(x) = \frac{d}{dx} \left(\frac{x}{b}\right)^n = \frac{n}{b} \left(\frac{x}{b}\right)^{n-1}, 0 \le x \le b.$	seen 4 marks
(iii)	$E(X_{(n)} b) = \int_{-\infty}^{\infty} x f_{X_{(n)}}(x) dx = n \int_{0}^{b} \left(\frac{x}{b}\right)^{n} dx = \frac{n}{n+1} \frac{x^{n+1}}{b^{n}} \bigg _{0}^{b} = \left(\frac{n}{n+1}\right) b.$	seen 5 marks
(iv)	As an estimator of b , $\operatorname{Bias}(X_{(n)}) = \operatorname{E}(X_{(n)} b) - b = -\frac{b}{n+1}.$	unseen 3 marks
	Since $E(X_{(n)} b) = \left(\frac{n}{n+1}\right)b$, consider a revised estimator $T = \left(\frac{n+1}{n}\right)X_{(n)}$. Then clearly $E(T b) = b$, so T is now an unbiased estimator for b .	unseen 3 marks
	Setter's initials Checker's initials MM	Page number 4 of 4