Step-1

Let \hat{I}_{y_1} be the smallest eigenvalue of the matrix A and the corresponding eigenvector be x_1 . Let \hat{I}_{y_2} be the second smallest eigenvalue of the matrix A and let x_2 be the corresponding eigenvector.

Consider the Subspace S_2 , which is spanned by the eigenvectors x_1 and x_2 .

Consider
$$\max_{x \in S_2} R(x)$$
.

Step-2

Then the minimum value of \hat{I}_{1} is \hat{I}_{2} and its maximum value will be \hat{I}_{2} .

Thus,
$$\max_{x \in S_2} R(x) = \lambda_2$$

This gives the following

$$\min_{S_j} \left[\max_{x \in S_j} R(x) \right] = \min_{S_2} \left[\max_{x \in S_2} R(x) \right]$$
$$= \min_{S_2} \left[\lambda_2 \right]$$
$$= \lambda_2$$

Step-3

Therefore, when the subspace S_2 is spanned by the eigenvectors x_1 and x_2 , we get $\sup_{S_j} \left[\max_{x \in S_j} R(x) \right] = \lambda_2$.