

OBJECTIVES

In this session, you will learn to:

- Explain IoT
- Enumerate the history of IoT
- List the objects in IoT
- Describe the role of cloud computing in IoT
- Describe the role of big-data in IoT

INTRODUCTION TO 10T 1/3

▶ A proposed development of the Internet in which everyday objects have network connectivity, enabling sending and receiving data.

How does it work?With unique identifiers (IDs) and without human intervention.

INTRODUCTION TO 10T 2/3

- What does it do?
 IoT makes daily life objects smarter
- A SMART clip gives alerts with an automated message to the user's smartphone.

INTRODUCTION TO 10T 3/3

Objectives of loT

To make varied tasks simpler for users

To offer supplementary tasks

To connect:

objects, machines, or things to the communication framework

WIRED AND WIRELESS TECHNOLOGIES

Wired and wireless technologies provide communication abilities and connections in IoT

It offers a wide range of services based on:

Individual-to-individual

Individual-tomachine Machine-toindividual Machine-tomachine interactions

SMART TECHNOLOGY 1/2

- loT makes objects smarter as most of devices now-a-days are electrified.
- Electrification is defined as the process of powering by electricity. The electrified world and the extensive usage of embedded processing make objects smarter.

SMART TECHNOLOGY 2/2

Micro Controller Unit (MCU)

- Helps to remotely access the devices from a distant location
- Controls the working of the instrument automatically

USE OF IOT IN REAL-LIFE TECHNOLOGY 1/2

Machine-toinfrastructure communication System-tosystem communication Tele-health:
remote or realtime persistent
observing of
automated
traffic
management

Home and industrial building automation

Continuous checking and firmware improvements of vehicles

Remote security and control

USE OF IOT IN REAL-LIFE TECHNOLOGY 2/2

Asset tracking of goods on the move

Smart applications of IoT include - agriculture, grid, ater, meters, buildings, broadband, cities, cars, appliances, tags, animal farming, and the environment

Environmental monitoring and control

IOT AND QUALITY LIFE OF USERS

Banking or shopping

Home intruder sensor triggers the surveillance and security cameras around the house and residential area

Reduces paperwork and improves quality of life

MOVING TOWARDS UBIQUITOUS OR PERVASIVE COMPUTING

The primary tools that supports ubiquitous or pervasive computing:

FUNDAMENTAL COMPONENTS OF IOT 1/4

- Hardware Makes physical objects approachable and enables data recovery, and it reacts to instructions.
- Software Facilitates data collection, storage, manipulating, instructing, and processing.
- Communication Infrastructure Most vital of all, it is a communication infrastructure which includes protocols and technologies to support two physical objects to exchange data.

FUNDAMENTAL COMPONENTS OF IOT 2/4

Significant architectural building blocks:

- Connectivity and Normalization for carrying various protocols and data formats.
- Device Management for updating software and other applications running on the device or edge gateways.
- Database a mountable storage of device data generating the necessities for hybrid cloud-based databases.

FUNDAMENTAL COMPONENTS OF IOT 3/4

- Processing and Action Management for giving life to data with rule-based event action triggers.
- Analytics for performing an array of compound analysis and excavate the maximum value out of the IoT data stream.
- Visualization for facilitating humans to perceive patterns and witness trends depicted through stacked, line, or pie charts as well as 2D or 3D models.

FUNDAMENTAL COMPONENTS OF IOT 4/4

- Additional Tools for supporting IoT developers' prototype.
- External Interfaces for communicating with third-party systems and rest of the IT-ecosystem through Software Development Kits (SDK), built-in Application Programming Interfaces (API), and gateways.

HISTORY OF IOT 1/12

- The term IoT was coined by Kevin Ashton in 1999.
- Ashton is the Executive Director of the Auto-ID Centre at the Massachusetts Institute of Technology (MIT), Cambridge, USA.
- The Internet links software across the world includes:
 - Wearables
 - Machine-to-Machine (M2M)
 - Ubiquitous Computing
 - Radio Frequency Identification (RFID)
 - Context-aware computing and the Web of Things

HISTORY OF IOT 2/12

1926	Tesla had prophesied that the present day smartphones would be the size of a shirt pocket that would be easy to carry and simple to handle
1946	 The two-way wrist-radio, which was worn by fictional characters such as Dick Tracy and his colleagues, made its appearance first and became most identifiable icons
1949	Barcode was conceived
1955	Tiny automatic device were invented
1960	Telesphere Mask, the first instance of a Head-Mounted Display (HMD) was invented

HISTORY OF IOT 3/12

1966	 Learnmatrix, an 'Associative-Memory-like Architecture,' was developed and an initial implementation of Artificial Neural Networks (ANN) happened
1967	An 'analogue wearable computer' was created
1307	All allalogue wearable computer was created
1050	
1969	The first message from ARPANET was transmitted
1973	 Received the first patent for a passive, read-write RFID tag to mechanically
13/3	categorize and detect tags attached to objects
1974	For the Got time UDC label was used to vive weeklesses the second at
	 For the first time, UPC label was used to ring up purchases at a supermarket

HISTORY OF IOT 4/12

1977	A five-pound wearable PC, which had a camera that could be fitted on the head was invented
1981	 Mann developed a backpack-mounted 'wearable personal computer- imaging system and lighting kit
1989	Sir Timothy John Berners-Lee designed the 'world wide web (www)'
1990	An 'Active Badge' system, using electromagnetic signals was developed
1990	 An internet toaster was invented and connected the toaster to the internet with TCP/IP networking

HISTORY OF IOT 5/12

1993	Started using a specially rigged computer and heads-up display as a wearable device
1994	Exhibit the 'Forget-Me-Not', a wearable device that communicates via wireless transmitters and records communications
1994	Coined the term 'context-aware' for the first time in a network article
1995	Sets up a department to develop and launch a Global System for Mobile Communication (GSM)
1995	Invented the first wearable wireless Webcam, the first example of life logging

HISTORY OF IOT 6/12

1997	 It was predicted that in the near-term technology expansions in sensors will help prepare people for the ensuing effect of nanotechnology
1998	 Constructed a water fountain outside his office whose flow and height calculated the volume
1999	 Procter and Gamble's Kevin Ashton first mentioned IoT-denoting to the link between supply chain and Internet
2000	Launched the world's first internet refrigerator, 'Internet Digital DIOS'

HISTORY OF IOT 7/12

2002	 Showed that the Dow Jones 'personal finance and weather information' was centered on Internet data and changes its color based on the active structures
2003	A waste management company announced that it aims to transform its trash cans to double the wireless hotspots throughout New York City
2003	 Projects such as, Cool Town, Internet are implemented. RFID is installed on an enormous scale by the US Department of Defense. ICT and Internet of Things were introduced.
2005	Created 'Arduino', an inexpensive and simple-to-use 'single-board microcontroller

HISTORY OF IOT 8/12

• IoT reached new heights, when the UN's International 2005 Telecommunications Union, ITU, published its first report • Nabaztag, a Wireless Fidelity (WiFi) device, which is rabbit-shaped, 2005 collected information from the Internet • Recognition by the European Union (EU), and the first European IoT 2006 conference was held • The IPSO alliance presently has over 50 member companies, including 2008 corporate giants such as Bosch, Cisco, Ericsson, and others.

HISTORY OF IOT 9/12

• The Internet of Things was born 2008 • The U.S .National Intelligence Council warned that the IoT would be an 2008 interruptive technology by 2025 • An array of IoT platforms (Pachube, Thingspeak standards (6LoWPAN, 2008 Dash7) hardware and software (Contiki, TinyOS) was developed 2010 The concept of IoT became popular

HISTORY OF IOT 10/12

• In May 2010, Zigbee Alliance and Internet Protocol version 6, (Ipv6) Forum form strategic partnership with IPSO for speedy implementation 2010 of IP networked smart objects • Gartner, the market research company that designed the well-known 2011 'hype-cycle for developing technologies' included 'The Internet of Things' • In February 2011, the wireless firm envisaged that there would a 2011 whopping 50 billion IoT devices by 2020 Introduced its 'Nest Learning Thermostat', which uses sensor 2011 algorithms, machine learning, and cloud computing

HISTORY OF IOT 11/12

2012	Begins testing its Google Glass prototype which is a pair of glasses with an optical HMD that exhibits information gathered wirelessly
2012	On June 6,2012, World IPv6 Launch Day was organized
2012	 In July 2012, US gets Food and Drug Administration (FDA) clearance for its ingestible medical device that wirelessly transmits information to the patient's vital signs
2012	Internet of Things grows rapidly on social networks such as LinkedIn

HISTORY OF IOT 12/12

2013	 US published a report stating that the Internet of Things would be an \$8.9 trillion market in 2020. Do It Yourself Consumers (DIY'ers) will take interest in the topic
2014	• In April 2014, Google Glass goes on sale to the general public for a hefty \$1500
2015	 Microsoft, Apple, Oracle, HP, Google, GE, and many others have some sort of IoT platform established. By 2020, Internet is expected to have 7.6 billion users

OBJECTS OR THINGS IN IOT

► Various sectors that use IoT smart devices:

Business and Manufacturing

Healthcare

Retail

Security

29

SMART OBJECTS 1/2

- A thing or object in the context of IoT is an entity or physical object that has:
 - A unique identifier
 - An embedded system
 - □ The ability to transfer data over a network

SMART OBJECTS 2/2

Examples of the objects or things of IoT are:

Smart Power Meter Smartphones Safety Security and Safety Smart TVs Smart Bulbs Personal Entertainment House Cleaning Robots

THE INTERNET EVOLUTION

By 2020:

- Human intelligence and machine intelligence will merge
- Users will use their brain waves for communicating through smart objects

Networked Robots:

■ Will absorb from each other and work in teams to increase the productivity and solve scientific problems

ADVENT OF INTERNET ERA

- Used for global communication
- Internet technology made objects or things smarter
- ► It includes:
 - Smart-TVs
 - Smartphones
 - Smart bulbs
 - Smart homes

IOT IN CLOUD COMPUTING

Cloud computing is a type of Web-based computing

It provides applications and services to users on demand

It involves provisioning of shared processing resources and data to users on request

Cloud computing resources do not require interactions with the cloud service providers

Cloud computing and storage solutions offer individual users and organizations benefits to

- Store
- Monitor
- > Process and control their data from external data centers

IOT IN BIG DATA 1/2

- Datasets that are so large or complex that traditional data processing applications are inadequate
- Big-data is the key product of device interconnectivity and enables precise targeting
- New era of economic growth and competitiveness

IOT IN BIG DATA 2/2

Usefulness of Big-data:

- Less downtime
- Predictive health monitoring
- Improved quality
- Higher quantity
- Lower reject rates
- More efficient use of labor
- Improved safety and enable mass customization of manufacturing

Examples of Big-data:

- Extensive E-commerce
- Internet script
 - Google
- Call detail records
- Astronomy
- Atmospheric science
- Genomics

SUMMARY 1/2

- Internet of Things (IoT), is the way to a smart-world with ubiquitous computing and networking.
- loT-based services concentrate on offering more automation of many tasks around people and allied objects so as to build a smart world not only in manufacturing units, also in office, at home and across the world.
- Quality of our life is improving in numerous ways with smart IoT devices; whether it is banking or shopping it can be done fairly with a single click.
- Internet of Things (IoT) is not a technology, however, a system that permits for modifications with a certain degree of flexibility.

SUMMARY 2/2

- loT includes wide range of connected objects computers smaller than a grain of sand can be sprayed or injected almost all over to measure chemicals in the soil or to sense problems in the human body.
- Combination of IoT along with cloud computing, support sensing services and commanding process of sensing data stream.
- ▶ Big-data functions vary for each single IoT device it is connected, on the other hand chiefly it captures and stores all the incoming data. This information will be examined in one point center to improve the performance and process.