

ملحوظة:

اختبار عبارة عن إجتهاد ذاتي

من المعـلم بهدف التدريب

وَزَارَةُ الرَّبِينِ وَالتَّجِلِيمْ مُ

الامتحان التجريبي – دبلوم التعليم العام مادة الفيـــزياء - الفصل الـدراسي الأول للعام الدراسي 2024/2023

إعــداد:

أ. أشرف مرعي

للإستفسار: 78215018

سرعي	أ. أشرف م
رباح – _{سرور}	مدرسة بلال بن

- - زمن الامتحان: ثلاث ساعات.
 - الدرجة الكلية للامتحان: ٧٠ درجة.
 - الامتحان في (١٦) صفحة.
 - الإجابة في الدفتر نفسه.
 - يسمح باستخدام الآلة الحاسبة.
 - ظلل الشكل (□) المقترن بالإجابة الصحيحة باستخدام القلم الرصاص عند حل مفردات الاختيار من متعدد.
 - أجب عن جميع المفردات التي تستلزم توضيح خطوات الحل في الفراغ المخصص أسفل كل مفردة.
 - تم إدراج درجة كل مفردة في جهة اليسار بين الحاصرتين [].
 - مرفق ورقة القوانين والثوابت.

الدرجة	رقم المفردة	الدرجة	رقم المفردة
[2]/	18	[1]/	1
[1]/	أ-19	[2]/	2
[2]/	19-ب	[2]/	3
[1]/	20	[2]/	4
[2]/	21	[1]/	5
[2]/	22	[4]/	6
[4]/	23	[2]/	7
[1]/	24	[1]/	8
[3]/	25	[1]/	9
[1]/	أ-26	[2]/	10
[1]/	26-ب	[2]/	11
[1]/	26-ج	[1]/	12
[2]/	27	[2]/	13
[1]/	28	[3]/	أ-14
[1]/	29	[1]/	14-ب
[5]/	30	[1]/	15
[1]/	31	[6]/	16
[3]/	32	[2]/	17
			مجموع
	المصحح		درجات
			الطالب
	111	70	المجموع
	المراجع	/0	الكلي

لطالب:	اسم ا
_ف 12//12	الصـــ

أجب عن جميع الأسئلة الآتية

، $m_B = 500~Kg$ و $m_A = 100~Kg$. يوضح (الشكل 1-1) جسمين كتلتهما كالتالي (1

B A

القوى المؤثرة بينهما و مع الأرض:

B على الجسم الجسم معلى الجسم على الجسم على الجسم على الجسم

A على الجسم على الجسم على الجسم $\overline{F_2}$

قوة وزن الجسم A (الجاذبية الأرضية) = $\overrightarrow{W_A}$

قوة وزن الجسم B (الجاذبية الأرضية) = $\overrightarrow{W_B}$

أي البدائل الآتية توضح العلاقة بين مقدار هذه القوى؟

ظلل الشكل 🗖 أمام الإجابة الصحيحة:

الشكل 1-1

$$F_1 = F_2 < W_A < W_B \square$$

$$F_1 = F_2 < W_A = W_B \square$$

$$F_1 = W_A < F_2 = W_B \square$$

$$F_1 < F_2 < W_A < W_B \square$$

2) ضع العلامـة "√" في الخانة المناسبة لكل عبارة موجودة في الجدول التالي:

خطأ	صواب	العبارة
		خطوط مجال الجابية بالقرب من سطح الأرض شعاعية متجهه إلي مركزها
		جهد الجابية هو الشغل المبذول لنقل كتلة نقطية من نقطة ما إلى اللانهاية

ں خط	ة ثابتة على	ِ فوق نقط	صناعي يدور	بإطلاق قمر	عدى الدول	ت، قامت اح	ات الاتصالات	نحسين خدم	ಬ (3
			لأرض؟	اء دورانه با	الصناعي أثن	لمدار القمر	نصف قطر ا	واء. أحسب	لاستو
	•••••								

 $\mathbf{r} = \mathbf{.....} \mathbf{m}$.

[2]

[1]

[2]

		طح الكوكب؟	$oldsymbol{h}=oldsymbol{d}$ عن س	ضائية تدور في مداريبكِ
			Φ =	J.Kg ⁻
قيمتها	بسرعة مدارية ف $r=1719$	لغ نصف قطره <i>km</i> (ول كوكب ما في مدار يبا	ا قمر صناعي يدور ح
حة :	كل 🗖 أمام الإجابة الصحي	الصناعي. ظلـــل الش	ا الزمن الدوري T للقمر	م . $V=2000m$. s^-
	430 s	708 s □	860 s□	5400 s
9M	ī			
		l	جسمين في الفضاء كتلتهم	ا يوضح (الشكل 6- 1).
/ 	r <u>P</u>	M	بين مركزّي كتلتهما تساو;	
<u> </u>	X= 6 m		" ، الجاذبيّة عند النقطة (•	•
1-6		**	مت أن النقطة P تبعد	
1-6	الأكبر كتلة. الشكل ة	X= 6111 عن الجسم ا	مت أن النقطة ٢ ببعد	جد المساقة (r) إذا عد

[4]

.R يوضح التمثيل البياني في (الشكل 7-1) العلاقة بين تغير جهد جاذبية الأرض Φ و البعد عن مركزها

تم بذل شغل قيمته \mathbf{W} = 5,2 \mathbf{G} لرفع قمر صناعي كتلته \mathbf{m} من سطح الأرض إلى مسافة أحسب كتلة القمر الصناعي؟

	•••••	

8) أربعة أقمار صناعية مختلفة الكتلة رصدت في 4 مواقع لمدار إهليجي (A, B, C, D) كما هو موضح في

(الشكل 8-1). بالإعتماد على المعطيات في الجدول أدناه، عند أي موقع تكون فيه قوة التجاذب بين القمر

الصناعي و الأرض أقل قيمة . ظلـل الشكل 🗖 أمام الإجابة الصحيحة

[2]

كتلة القمر	البعد القمر	موقع القمر
الصناعي	الصنعي عن الأرض	الصناعي
m	2r	A
m	r	В
2m	2r	С
2m	r	D

 $C \square$ $D \square$ $B \square$ $A \square$ [1]

المادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: 2024/2023 والمادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: $\mathbf{Q} = \mathbf{Z} \ \mathbf{n} \mathbf{C}$ عند تحريك شحنة نقطية كتلها $\mathbf{m} = \mathbf{1} \ \mathbf{m} \mathbf{g}$ تحمل شحنة موجبة $\mathbf{Q} = \mathbf{C} \ \mathbf{n} \mathbf{C}$ عند تحريك شحنة نقطية كتلها شدّته فهل سيتم بذل شغل أم تحرير طاقة $E=1000~Vm^{-1}$ وما مقدار تسارع الشحنة النقطية في هذه الحالة (قوة الوزن مهملة). ظلل الشكل 🗖 أمام الإجابة الصحيحة:

$a=2\ m.s^{-2}$	بذل شغل	
$a = 0,002 \ m. s^{-2}$	بذل شغل	
$a=2\ m.s^{-2}$	تحرير طاقة	
$a = 0,002 \ m. \ s^{-2}$	تحرير طاقة	

أرسم خطوط المجال الكهربائي؟ ما نوع المجال الكهربائي؟ (10

 $d=5\ cm$ يوضح (الشكل 11-11) شحنتان متماثلتان قطر كل منهما (11 شحنة كهربائية لكل منهما مقدارها $\mathbf{Q} = \mathbf{2} \; \mu \mathbf{C}$ أحسب الفجوة "x" بين F = 10 N الكرتين في حالة كان مقدار القوة الكهربائية بينهما

	•••••	•••••	•••••	•••••	•••••	 	•••••	
 •••••	•••••					 		
 			•••••			 		

[2]

[2]

[1]

العام الدراسي: 2024/2023

[2]

المادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: $q_{1}/2023$ المادة: الفيزياء – تجريبي الشحنة $q_{2}/2023$ المسافة بين مركزيهما تساوي $q_{2}/2023$ المسافة بين مركزيهما تساوي $q_{2}/2023$

حاصل الجهد الكهربائي ${f V}$ عند النقطة ${f P}$ تقع في المنتصف بين مركزي الشحنتين يساوي:

ظلل الشكل 🗖 أمام الإجابة الصحيحة:

[1] $-18 \times 10^{12} \,\mathrm{V}$ -18 V □ □صفر

 ${f A}$ اللوح ${f B}$ المجالاً كهربائيا منتظما بين لوحين، عند انتقال بروتون من اللوح ${f B}$ إلى وبافتراض أن كل الطاقة التي اكتسبها البروتون تحولت إلى طاقة حركة. ما سرعة البروتون عندما يصل إلى $(m_p = 1.67 \times 10^{-27} \ kg$ اللوح A. (كتلة البروتون

يحمل $\mathbf{R} = \mathbf{0,1} \; \mathbf{m}$ مولد ڤان دي غراف مكون من قبة كروية نصف قطرها $\mathbf{R} = \mathbf{0,1} \; \mathbf{m}$ سطحها شحنة موجبة قيمتها $\mathbf{Q} = +1~\mu\mathbf{C}$. كما يوضح التمثيل البياني في (الشكل 2-14) العلاقة بين تغير طاقة الوضع الكهربائية لجسم ما يحمل شحنة كهربائية ${f p}$ مع المسافة عن مركز قبة المولد.

الشكل 14-1

	أ- حدد إشارة الشحنة الجسم p (موجبة أو سالبة) ثم أحسب قيمتها $?$
[3]	q = C
	${f r}_1$ ما مقدار الشغل المبذول عند تحريك الجسم من مسافة ${f r}_1$ = 9 ${f r}_1$ إلى ${f r}_2$ من مركز القبة
[1]	W = J

الشكل 1-16

المادة: الفيزياء - تجريبي الفصل الدراسي الأول العام الدراسي: 2024/2023 العام الدراسي: 2024/2023 اليار الكهربائي؟

ظلل الشكل 🗖 أمام الإجابة الصحيحة:

□ النيترونات □الإلكترونات □ الأيونات □البروتونات [1]

16) تحتوي الدائرة الكهربائية في (الشكل 16-1) على بطاريتان و ثلاث مقاومات. إعتبر أن المقاومة

الداخلية للبطاريتين مهملة.

 $I_1 = A$

 $I_2 =$ A

 $I_3 = \dots A$

17) سلك من الفــضّة مساحة مقطعه العرضي $A=8.0~mm^2$ حيث يبلغ متوسط السرعة الإنجرافية

للإلكترونات الحرة $m.s^{-1}$ الكثافة العدديــة $\nu = 10 \times 10^{-5}$ للإلكترونات الحرة أن الكثافة العدديــة

 $n = 5.9 \times 10^{28} \text{ m}^{-3}$ لالكترونات الفضّة

I = A

[2]

[6]

18) يوضح (الشكل 18-1) دائرة مجزئ جهد كهربائي و بطارية فيها متغيرة فرق الجهد بين طرفيها. كما يوضح التمثيل البياني في (الشكل 2-18) العلاقة بين تغير فرق الجهد $m V_{out}$ بين طرفي المقاومة $m R_2$ مع فرق الجهد V_{in} بن طرفي البطارية.

 R_2 أحسب قيمة المقاومة

منزلق الشكل 1-19

 $R_2 = \dots \Omega$

19) يوضح (الشكل 19-1) خلية قوتها الدافعة الكهربائية

 $({f AB}=1\ {f m})$ موصلة بين طرفي سلك مقاومة طوله $arepsilon_0=12\ {f V}$ لعمل مقياس جهد لقياس قوة الدافعة الكهربائية $oldsymbol{arepsilon}_x$ ووجدت

AY = 75 cm نقطة الإتزان عند النقطة Y

أ- ما إسم الجهاز الذي يرمز له ب " G " و ما اسم الطريقة المتبعة لإيجاد نقطة الإتزان؟

 ε_x أحسب مقدار قوة الدافعة الكهربائية

[2]

[1]

[2]

الشكل 21-1

[2]

المادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: 2024/2023 المادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: $\mathbf{r} = \mathbf{1,5} \ \mathbf{10^{-4} m}$ كم نحتاج من طول للسلك للحصول على (20

 $ho=1,2 imes10^{-7}~\Omega$ m مقاومة للقصدير R = 9 Ω

ظلل الشكل 🗖 أمام الإجابة الصحيحة:

[1] $L = 1,69 \text{ m} \square$ $L = 5,30 \text{ m} \square$ L = 1,86 mL = 150 m

21) يوّضح (الشكل 21-1) تغير فرق الجهد بين طرفي المكثف مع الشحنة الكهربائية المخزنة أثناء عملية

أكمل الجدول بالكمية الفيزيائية التي يمثلها كل من:

ميل المنحنى	المساحة تحت منحنى التمثيل البياني

يوضح (الشكل 22-1) تمثيلا بيانيّا للطاقة المخزنة (\mathbf{W}) في المكثف موصل ببطارية و مربع فرق الجهد (22) الكهربائي (V^2) بين لوحى المكثف. أحسب سعة المكثف.

المادة: الفيزياء – تجريبي الفصل الـــدراسي الأول العام الدراسي: 2024/2023 والمادة: الفيزياء – تجريبي الفصل البياني لتغير فرق الجهد بين طرفي مكثف سعته $C = 20~\mu$ التمثيل البياني لتغير فرق الجهد بين طرفي مكثف سعته $C = 20~\mu$ اثناء

 $R=100~k\Omega$ تفریغه خلال مقاومة قیمتها

أكتب معادلة الإضمحلال الأسي لفرق الجهد بين لوحي المكثف ثم أحسب الزمن الذي يستغرقه هبوط فرق $V = \frac{V_0}{10}$ الجهد إلى عشر قيمته القصوى

24) السعة المكافئة لشبكة المكثفات الموضحة في (الشكل 1-24) (ظلّل الشكل ◘ أمام الإجابة الصحيحة)

[1]

[4]

	رو ($C_1 = 100 \; \mathrm{mF}$) و ($C_2 = 50 \; \mathrm{mF}$) و ($C_1 = 100 \; \mathrm{mF}$) و ($C_1 = 100 \; \mathrm{mF}$) مكثفيـــن سعة كل منهما ($C_1 = 100 \; \mathrm{mF}$) و ($C_2 = 100 \; \mathrm{mF}$) مكثفيــن سعة كل منهما ($C_1 = 100 \; \mathrm{mF}$) و ($C_2 = 100 \; \mathrm{mF}$) و ($C_3 = 100 \; \mathrm{mF}$) و ($C_4 = 100 \; \mathrm{mF}$) و ($C_5 = 1$
	و فصل عن مصدر الطاقة الكهربائــية، ثم وصِل مع المكثف الآخــر ${f C}_2$. احسب مقدار الطاقة المخزنة المفقودة بعد توصيل المكثفين معًا.
[3]	$\Delta W =$ J CD = 25 cm يوضح (الشكل 1-26) سكتان نحاسيتان متوازيتان فوقهما ساق من النحاس طولها (26
	B = 20 mT يوطيع (دون احتكاك، تغمر الساق في حقل مغناطسي منتظم متجه نحو الأعلى شدته
	و <u>م</u> ر بها تيار شدته I = 4 A مين نماستين الشكل 1-26 الشكل 1-26
	A تيار کهربائي C A' ساق نحاسية
	أ- اشرح لماذا لا يمكننا استخدام سكة أو ساق مصنوعة من الحديد ؟
[1]	ب- عين اتجاه القوة المغناطيسية في هذه الحالة (نحو اليمين / نحو اليسار)
[1]	ج- ما مقدار القوة المغناطيسية .
[1]	F=

[2]

[1]

[1]

المادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: 2024/2023 المادة: الفيزياء – تجريبي الفصل الشمالي \mathbf{N} و الجنوبي \mathbf{S} للملف الحلزوني ثم ارسم (27)

خطوط المجال المغناطيسي في (الشكل $^{-1}$)

28) تكتب وحدة قياس كثافة الفيض المغناطيسي "تسلا" حسب النظام الدولي للوحدات الأساسية

(ظلّل الشكل 🗖 أمام الإجابة الصحيحة)

 $KgA^{-1}s^{-1}$ $mA^{-1}s^{-2}$ \square $KgA^{-1}s^{-2}$ \square $A^{-1}s^{-2}$

29) يوضح (الشكل 29-1) قاعدة فليمنج لليد اليمنى. تشير الأصابع الى الإتجهات التالية:

(ظلّل الشكل 🗖 أمام الإجابة الصحيحة)

الوسطى	السبابة	الإِبهام	
كثافة الفيض المغناطيسي	شدة التيار	الحركة	
شدة التيار	كثافة الفيض المغناطيسي	الحركة	
الحركة	شدة التيار	كثافة الفيض المغناطيسي	
شدة التيار	الحركة	كثافة الفيض المغناطيسي	

المادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: 2024/2023 المادة: الفيزياء – تجريبي الفصل النحاس طوله لا الفصل العام الدراسي عر من (الشكل 1-30) عركة سلك من النحاس طوله L=5~cm ، يدور حول محور عمودي يمر من

 $B = 2,55 \ T$ النقطة و كثافة فيضه ثابتة O داخل مجال مغناطيسي عمودي على مستوى الدوران السلك و

ره.	ـــط مقدار القوة الدافعة المستحثة المتولــدة بين طرفي السلك عندما يستغرق زمنا قد	ب متوس	احسد
	للقيام بنصف دورة (ينتقل طرف السلك من A إلـــى C داخل المجال)		
		•••••	
		•••••	•••••
		•••••	••••••
		••••••••••	••••••
		•••••	••••••

ε

31) يوضح (الشكل 31-1 و الشكل 31-2) الزمن اللازم الذي يستغرقه مغناطيسين متماثلين للدخول داخل ملفين، أحدهما دائري و آخر حلزوني يحوي 5 لفات بحيث لهما نفس مساحة المقطع العرضي، و التوقف داخلهما. فإن العلاقة بين القوى الدافعة الكهربائية N = 5

[5]

المستحثة $\frac{\varepsilon_2}{\varepsilon_1}$ تساوي:

(ظلّل الشكل 🗖 أمام الإجابة الصحيحة)

2.5 0.5

الشكل 31-1 الشكل 31-2 [1] 10 🗀 5

[3]

المادة: الفيزياء – تجريبي الفصل الدراسي الأول العام الدراسي: 2024/2023 وضح (الشكل 1-32) ساق نحاسية طولها L=0,10~m متصلة بدائرة كهربائية مغلقة معلقة في ميزان زنبركي فكانت قرائته ($\mathbf{0,10}\ \mathbf{N}$) و عندما غمرت الساق في المجال المغناطيسي منتظم كثافة فيضة $(0,15\ N)$ عنيرت قراءة الميزان الزنبركي و أصبحت (B = 0,40 T كما هو موضح في (الشكل 32-2) تغيرت قراءة الميزان الزنبركي و

	على الرسم أعلاه.	مع تحديد إتجاهه	في الساق النحاسية ،	و مقدار التيار المار في	حسب
•••••					
	••••••	••••••			
•••••			••••••		•••••
	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••			•••••
					•••••
••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••••••••••••••	••••••••••••	••••••
•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••			
			T		

انتهت الأسئلة مع دعائنا لكم بالتوفيق و النجاح

الثوابت و القوانين لامتحان التجريبي لشهادة دبلوم التعليم العام لمادة الفييزياء

$g=9,81\ ms^{-2}$ $G=6,67\times 10^{-11}Nm^2kg^{-2}$ $e=1,6\times 10^{-19}C$ $e_0=8,85\times 10^{-12}Fm^{-1}$ $g_p=1,6\times 10^{-19}C$ $g=1,6\times $	الثوابت	
$ g = G \frac{M}{r^2} $		$1.6 \times 10^{-19} C$
$\Delta \emptyset = GM \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \qquad T = \sqrt{\frac{4\pi^2 r^3}{GM}} \qquad E_p = \text{m}\Delta \emptyset \qquad E_p = -G \frac{mM}{r}$ $E = \frac{F}{Q} \qquad E = \frac{V}{d} \qquad F = \frac{qQ}{4\pi\varepsilon_0 r^2} \qquad \Delta V = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_2} - \frac{1}{r_1}\right) \qquad \text{at the part of } k$ $E = \frac{Q}{4\pi\varepsilon_0 r^2} \qquad V = \frac{Q}{4\pi\varepsilon_0 r} \qquad E_p = \frac{qQ}{4\pi\varepsilon_0 r} \qquad F = \frac{eV}{d} \qquad \text{at the part of } k$ $E = \frac{Q}{4\pi\varepsilon_0 r^2} \qquad V = \frac{Q}{4\pi\varepsilon_0 r} \qquad V = \frac{Q}{4\pi\varepsilon_0 r} \qquad F = \frac{eV}{d} \qquad \text{at the part of } k$ $I = \frac{Q}{t} \qquad I = nAve \qquad \Delta W = VQ \qquad V = \varepsilon - Ir \qquad \varepsilon_x = \frac{AY}{AB}\varepsilon_0 \qquad \text{at the part of } k$ $R = \frac{V}{I} \qquad \rho = \frac{RA}{L} \qquad V_{out} = \frac{R_2}{R_1 + R_2}V_{in} \qquad \frac{V_1}{V_2} = \frac{R_1}{R_2}$ $W = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} \qquad C = \frac{Q}{V} \qquad \tau = RC \qquad \ln e^x = x$ $X = X_0e^{-\frac{t}{RC}} \qquad C_T = C_1 + C_2 + C_3 + \cdots \qquad \frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $F = BILsin\theta \qquad \emptyset = BAcos\theta \qquad \varepsilon = N\frac{\Delta\emptyset}{\Delta t} \qquad \text{at the part of } k$	المعادلات	الوحدة
$E=rac{Q}{4\pi arepsilon_0 r^2}$ $V=rac{Q}{4\pi arepsilon_0 r}$ $E_p=rac{qQ}{4\pi arepsilon_0 r}$ $F=rac{eV}{d}$ $E_p=rac{qQ}{4\pi arepsilon_0 r}$ $F=rac{eV}{d}$ $E_p=rac{qQ}{4\pi arepsilon_0 r}$ $E_p=racq$		مجالات الجاذبية
$R = \frac{V}{I}$ $\rho = \frac{RA}{L}$ $V_{out} = \frac{R_2}{R_1 + R_2} V_{in}$ $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ $W = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$ $C = \frac{Q}{V}$ $\tau = RC$ $\ln e^x = x$ $T = \frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $T = \frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$ $T = \frac{1}{C_T} = \frac{1}{C_T} + \frac{1}{C_T}$		&
$X = X_0 e^{-\frac{t}{RC}}$ $C_T = C_1 + C_2 + C_3 + \cdots$ $\left(\frac{1}{c_T} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} + \cdots\right)$ $\delta = BILsin\theta$ $\delta = BAcos\theta$		الدوائـــر الكهربائية
- C		المكثفـــات
الحث الكهرومغناطيسي	$\boxed{F = BILsin\theta} \qquad \boxed{\emptyset = BAcos\theta} \qquad \boxed{\varepsilon = N\frac{\Delta\emptyset}{\Delta t}}$	_

غنوذج إجابة ال متحان التجريبي دبلوم التعليم العام

للعام الدراسي: 1445/1446هـ - 2023/2024م

الفصل الدرايس: الأول

الـمـادة: الفيزياء

ملاحظات أخرى	الهدف التعلمي	هدف التقويم	الصفحة	الوحدة	الدرجة	الإجابة	رقم المفردة
		AO1		الأولى	1	$F_1 = F_2 < W_A < W_B \blacksquare$	1
						العبارة صواب خطأ	
		AO1		الأولى	2	خطوط مجال الجابية بالقرب من سطح الأرض شعاعية متجهه إلي مركزها	2
						جهد الجابية هو الشغل المبذول لنقل كتلة نقطية من نقطة ما إلى اللانهاية	
		AO2	34	الأولى	2	$T = 24 h = 86400 s = \sqrt{\frac{4\pi^{2}r^{3}}{GM}} \Rightarrow \Rightarrow r = \sqrt[3]{\frac{T^{2}GM}{4\pi^{2}}}$ $r = 4,23 \times 10^{7} m$	

4	$\frac{1}{1} = -4 \times 10^6 J. kg^{-1}$	$\emptyset = -\frac{GM}{\left(\frac{d}{2} + \right)}$	2	الأولى	AO1	AC	
0 s 5	T = 5400 s	\2	1	الأولى	AO2	AC	
6	$\frac{M}{(x)^2} \Longrightarrow \frac{9}{x^2} = \frac{1}{(r-x)^2} \Longrightarrow \frac{3}{x} = \frac{1}{r-x}$ $\mathbf{r} = 8 \mathbf{m}$	$g_1 = g_2 \Longrightarrow \frac{G(9M)}{x^2} = \frac{G(9M)}{(r-1)^2}$	4	الأولى	AO2	AC	
7	$\frac{5.2 \times 10^9}{-8 - (-60)) \times 10^6} \Rightarrow m = 100 kg$	$W = m\Delta\emptyset \Longrightarrow m = \frac{W}{\Delta\emptyset} = \frac{W}{(M)^2}$	2	الأولى	AO2	AC	
A 8			1	الأولى	AO1	AC	
9	تحرير طاقة	$a=2\ m.s^{-2}$	1	الثانية	AO1	AC	
	أرسم خطوط المجال الكهربائي؟	ما نوع المجال الكهربائي؟					
10	- +	منتظم	2	الثانية	AO1	AC	
-		شعاعي					

11	$F = \frac{Q^2}{4\pi\varepsilon_0(\frac{d}{2} + x + \frac{d}{2})^2} \Longrightarrow d + x = \sqrt{\frac{Q^2}{4\pi\varepsilon_0 F}} \implies x = \frac{Q}{\sqrt{4\pi\varepsilon_0 F}} - d$	2	الثانية	AO2	
	x = 1 cm				
12	- 9 V	1	الثانية	AO2	
13	$\Delta Ep = -\Delta Ec \implies e (V_A - V_B) = -\frac{1}{2} m_p (v^2 - 0) \implies$ $v = \sqrt{\frac{-2e(V_A - V_B)}{m_p}} = \sqrt{\frac{-2 \times 1,6 \times 10^{-19} (0 - 10000)}{1.67 \times 10^{-27}}}$ $\implies v = 1,38 \times 10^6 ms^{-1}$	2	الثانية	AO2	
	اً- q موجبة $E_p=rac{qQ}{4\piarepsilon_0R}=90~\mu J$ على السطح القبة مثلا $q=rac{4\piarepsilon_0RE_p}{Q}\cong 1 imes 10^{-9}~C$	3	الثانية	AO2	
	$W = \Delta Ep = (30 - 10) \times 10^{-6} = 20 \times 10^{-6} J$ - ψ	1		AO1	
15	النيترونات	1	الثالثة	AO1	
16	$I_{1} = I_{2} + I_{3}$ $6 = 2I_{1} + 2I_{3} \Rightarrow 3 = I_{1} + I_{3} \Rightarrow I_{1} = 3 - I_{3}$ $2 = I_{2} - 2I_{3} \Rightarrow I_{2} = 2 + 2I_{3}$ $I_{1} = I_{2} + I_{3} \Rightarrow 3 - I_{3} = 2 + 2I_{3} + I_{3} \Rightarrow 4I_{3} = 1 \Rightarrow I_{3} = 0, 25 A$ $I_{2} = 2 + 2I_{3} = 2, 5 A$ $I_{1} = 3 - I_{3} = 2, 75 A$	6	الثالثة	AO2	
17	$I_1 = 3 - I_3 = 2,75 A$ $I = nAve = 5,9 \times 10^{28} \times 8 \times 10^{-6} \times 10 \times 10^{-5} \times 1,6 \times 10^{-19}$ $I = 7,55 A$	2	الثالثة	AO2	
18	$I=7,55~A$ $\lim_{N \to \infty} \frac{R_2}{R_1 + R_2} = \frac{1}{5} \implies R_2 = 20~\Omega$	2	الثالثة	AO1	
10	أ- جالفانوميتر طريقة الصفرية	1	******	AO1	
19	$\varepsilon_{x} = \frac{AY}{AB} \varepsilon = \frac{0.75}{1} \times 12 \Longrightarrow \varepsilon_{x} = 8 V$ — φ	2	الثالثة ا	AO1	
20	L = 5,30 m	1	الثالثة	AO2	

AO1	الرابعة	2	المساحة تحت منحنى التمثيل البياني ميل المنحنى التمثيل البياني الطاقة المخزونة بين لوحى المكثف مقلوب سعة المكثف	21
AO1	الرابعة	2	$W=rac{1}{2}CV^2=\Longrightarrow$ الميل $C\Longrightarrow C=1$ الميل $X\simeq C=1$ الميل $X\simeq C=1$	22
AO2	الرابعة	4	$V = V_0 e^{-\frac{t}{\tau}}$ $V_0 = 50 \text{ V} \qquad \tau = RC = 2 \text{ s}$ $V = \frac{V_0}{10} = V_0 e^{-\frac{t}{\tau}} \implies t = -\tau \ln(\frac{1}{10}) = = \implies t = 4, 6 \text{ s}$	23
AO2	الرابعة	1	9 μF	24
AO2	الرابعة	3	$Q=C_1V_i=1$ C و الشحنة المخزنة $W_i=rac{1}{2}C_1{V_i}^2=5J$ و الشحنة المخزنة $V_f=rac{Q}{C_T}=rac{1}{0.15}=6,67V======$ $C_T=150~\mathrm{mF}=0,15~\mathrm{F}$ الطاقة النهائية $W_f=rac{1}{2}C_T{V_f}^2=3,34J$ الطاقة المفقودة $\Delta W=W_i-W_f=1,66J$	25
AO1		1	أ- لأن الحديد مادة ممغنطة و لا يتوازن داخل مجال المغناطيسي	
AO1	الخامسة	1	ب- نحو اليمين	26
AO2		1	F = BIL = 0.02 * 0.25 * 4 ==== F= 0.02 N -ج	
AO1	الخامسة	2	الشكل 1-27 الشكل	27

AO2	الخامسة	1	KgA ⁻¹ s ⁻² □	28
AO1	الخامسة	1	الحركة كثافة الفيض المغناطيسي شدة التيار	29
AO2	الخامسة	5	$\varepsilon = N \frac{\Delta \emptyset}{\Delta t} = N \frac{B \frac{1}{2} \pi L^2}{\Delta t} = 0.2 V$	30
AO2	الخامسة	1	2.5	31
AO2	الخامسة	3	C فيلمنج لليد اليسرى === اتجاه التيار من A إلى $F=0,15$ - $0,10=BIL$ $I=rac{0,05}{BL}=rac{0,05}{0,40\times0,10}=====$ $I=1,25$ A	32