cs348-hw1 Name: Ji Ma

Email: ma438@purdue.edu

Part1

```
For the Course Registry database given below –
Students(snum, sname, major, standing, age, gpa)
Faculty(fid, fname, deptid)
Courses(cnum, cname, course_level, credits)
Offerings(onum, cnum, day, starttime, endtime, room, max_occupancy, fid)
Enrolled(snum, onum)
```

1. (20 Points) (RA,TRC,DRC,QBE) Write a query which displays the student names and the courses (course name) which the student has taken.

 $\mathsf{RA}\prod_{sname,cname} \mathit{Students} \bowtie \mathit{Enrolled} \bowtie \mathit{Offerings} \bowtie \mathit{Courses}$

TRC

 $t|\exists s, e, o, c : s \in Students \land e \in Enrolled \land o \in Offerings \land c \in Courses \land (t[sname] = s[sname] \land s[snum] = e[snum] \land e[onum] = o[onum] \land o[cnum] = c[cnum) \land t[cname] = c[cname])$

DRC { $< sname, cname > | \exists snum, major, standing, age, gpa, cnum, course_level, credits, onum, cnum, day, starttime, endtime, room, max_occupancy, fid$

- < snum, sname, major, standing, age, gpa $> \in$ Students
 - $< snum, onum > \in Enrolled$
 - < onum, cnum, day, starttime, endtime, room, max_occupancy, fid $> \in Offerings$
 - $< cnum, cname, course_level, credits > \in Courses \}$

QBE

Students	snum	sname	major	standing	age	gpa
	_snum	P.				

Enrolled	snum	onum
	_snum	_onum

Offerings	onum	cnum	day	starttime	endtime	room	max_occupancy	fid
	_onum	_cnum						

Courses	cnum	cname	course_level	credits
	_cnum	P.		

2. (20 Points) (RA,TRC,DRC,QBE) Find the names of students who are not enrolled in any course.

$$\mathsf{RA} \prod_{sname} ((\prod_{snum} Students - \prod_{snum} Students \bowtie Enrolled) \bowtie Students)$$

TRC
$$\{t | \neg (\exists s, e : s \in Students \land e \in Enrolled \land t[sname] = s[sname] \land s[snum] = e[snum])\}$$

DRC { $< sname > | \neg (\exists snum, major, standing, age, gpa, onum :$

- < snum, sname, major, standing, age, gpa $> \in$ Students
- $< snum, onum > \in Enrolled)$

QBE

Students	snum	sname	major	standing	age	gpa
	_snum	P.				

Enrolled	snum	onum
٦	_snum	

 $deptid1 \neq deptid2$

3. (20 Points) (RA, TRC, DRC, QBE) Find the courses taught by faculty from more than two departments.

RA ρ_{result} cnum g count(distinct(deptid))(Offerings \bowtie Faculty)

TRC
$$\{t | \exists o1 \in Offerings \exists o2 \in Offerings \exists f1 \in Faculty \exists f2 \in Faculty : o1 \neq o2 \land o1[cnum] = o2[cnum] \land o1[fid] = f1[fid] \land o2[fid] = f2[fid] \land f1[deptid] \neq f2[deptid]\}$$

Offerings	onum	cnum	day	starttime	endtime	room	max_occupancy	fid
		P.Gcnum						_fid

Faculty	fid	fname	deptid
	_fid		_deptid

conditions

CNT.UNQ._deptid>2

4. (10 Points) (DRC, QBE) Find the name of the course with the highest total maximum occupancy (over all course offerings).

DRC

```
 \{ < cnum, cname > | \exists max\_occupancy1 = \sum < occupancy_t : \exists onum_t, day_t, starttime_t, endtime_t, room_t : \\ < cnum, onum_t, day_t, starttime_t, endtime_t, room_t > \in Offerings > \land \\ \neg (\exists max\_occupancy2 = \sum < occupancy_t : \exists onum_t, day_t, starttime_t, endtime_t, room_t : \\ < cnum2, onum_t, day_t, starttime_t, endtime_t, room_t > \in Offerings > \land \\ max\_occupancy2 > max\_occupancy1) \land \\ (\exists course\_level, credits : < cnum, cname, course\_level, credits > \in Courses >) \}
```

QBE

Offerings	onum	cnum	day	starttime	endtime	room	max_occupancy	fid
		Gcnum P.Gcnum					SUMmax0 SUMmax1	

Courses	cnum	cname	course_level	credits
	_cnum	P.		

```
conditions

MAX.SUM._max0 = SUM._max1
```

5. (10 Points) (RA,TRC) Find the courses that have been taken by all students.

$$\mathsf{RA} \prod_{cnum,cname} (\prod_{cnum,cname,snum} (Enrolled \bowtie Offerings \bowtie Courses) \div \prod_{snum} Student)$$

$$\mathsf{TRC} (\mathsf{t}| \exists s \in Courses : \mathsf{t}[snum] = \mathsf{s}[snum] \land \mathsf{t}[snum] = \mathsf{t}[snum] = \mathsf{t}[snum] \land \mathsf{t}[snum] = \mathsf{t}[snum] \land \mathsf{t}[snum] = \mathsf{t}[s$$

TRC
$$\{t | \exists c \in Courses : t[cnum] = c[cnum] \land t[cname] = c[cname] \land (\forall s \in Students \exists o \in Offerings \exists e \in Enrolled : s[snum] = e[snum] \land e[onum] = o[onum])\}$$

6. (10 Points) (RA,DRC) Find students with a GPA > 3.0 that are taking exactly two courses.

 $\mathsf{RA} \prod_{\mathit{snum},\mathit{sname}} ((\sigma_{\mathit{count}(\mathit{onum})=2}(\mathit{snum} \ \mathit{g} \ \mathit{count}(\mathit{onum}) \sigma_{\mathit{GPA}>3.0} \mathit{Students} \bowtie \mathit{Enrolled})) \bowtie \mathit{Students})$

DRC { $< snum, sname > | \exists major, standing, age, gpa :$

< snum, sname, major, standing, age, $gpa > \in Students \land$

 $\exists onum1, onum2 : onum1 \neq onum2 \land$

 $< snum, onum1 > \in Erolled \land$

 $< snum, onum2 > \in Erolled \land$

 $\neg (\exists onum3 : onum3 \neq onum1 \land onum3 \neq onum2 \land < snum, onum3 > \in Enrolled) \}$

7. (10 Points) (TRC, QBE) Find courses taught by only one faculty member.

```
TRC \{t | \exists c \in Courses : t[cnum] = c[cnum] \land t[cname] = c[cname] \land (\exists o1 \in Offerings : o1[cnum] = c[cnum] \land \neg(\exists o2 \in Offerings : o2[cnum] = c[cnum] \land o1[fid] \neq o2[fid]))\}
```

QBE

Offerings	onum	cnum	day	starttime	endtime	room	max_occupancy	fid
7		_cnum						¬ _fid _fid

Courses	cnum	cname	course_level	credits
	Pcnum	P.		