Smart Greenhouse.

Davide Marchetti / 815990 Laboratorio IoT / Prof. Paolo Napoletano A.A. 2020 / 2021

Materials.

Description of the ingredients employed.

	Name	Quantity
Sensors	DHT11	1
	Photoresistor	1
	Soil Humidity Detection Module	1
	Push Button	1
Actuators	LEDs (Red/Green)	2
	LCD Display 16x2	1

Method.

Temperature

- If temperature is outside the 22°C-26°C range, adjust the temperature (turn on the red led).
- Temperature can be adjusted manually through a web interface.

Humidity

• Monitors the ambient humidity.

Light

· Monitors the ambient light amount.

Terrain Moisture

- If moisture < 30%, water the terrain (turn on the green led).
- Watering can be forced through a web interface.

Fig.1: Smart Greenhouse web interface

ADDITIONAL INFORMATION:

- LCD Display is organized in pages, one for each sensor reading. The push button allows to loop through the pages.
- Sensor readings are stored in InfluxDB every two seconds.
- The MCU exposes a web interface through an http server to monitor and control the system.

Method.

Final Remarks.

- Soil Moisture Detector Sensor is not always accurate and responsive.
- Smart Greenhouse system works as designed, despite the limited number of analog and digital pins of the ESP8266.
- Future extensions:
 - Adjustment of humidity and light amount.
 - Monitoring of more parameters.
 - Settings customization without firmware modifications.
 - Use capacitive soil moisture detection sensors instead of resistive ones.