Basic Electrical Technology

[=== 1051

SINGLE PHASE AC CIRCUITS

Topics covered...

- Complex numbers
- Comparison of DC & AC
- How is AC generated?
- Terminologies of AC

Complex Number

A complex number is of the form a + ib

Represented on complex plane as:

The operator 'j'

$$j = 1 \angle 90^{\circ}$$

$$j^{2}A$$

$$j^{2}A$$

$$Ref$$

$$j^{3}A = -jA$$

$$j(jA) = j^{2}A = -A$$

The operator 'j' rotates the given vector by 90 degrees in anti-clockwise direction

Therefore, $j^2 = -1$; $j = \sqrt{-1}$

Rectangular ↔ Polar conversion

Rectangular to polar:

$$|a| = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1} \frac{y}{x}$$

Polar to Rectangular:

$$x = |a| \cos \theta$$
$$y = |a| \sin \theta$$

Representation of a complex number

• Rectangular form:
$$\mathbf{a} = \mathbf{x} \pm \mathbf{j}\mathbf{y}$$

• Polar form:
$$a = |a| \angle \pm \theta$$

Exponential form:
$$\mathbf{a} = |\mathbf{a}| \mathbf{e}^{\pm j\theta}$$

• Trigonometric form: $a = |a|(\cos\theta \pm j\sin\theta)$

Rectangular ↔ Polar conversion

Convert the following into polar form

1)
$$3 + i = 5 \angle 53.13^{\circ}$$

2)
$$8 + j 6 = 10 \angle 36.87^{\circ}$$

3)
$$8-j6 = 10 \angle -36.87^{\circ}$$

Convert the following into rectangular form

1)
$$5 \angle 30^{\circ} = 4.33 + j 2.5$$

2)
$$3 \angle -60^{\circ} = 1.5 - j \ 2.59$$

3)
$$-(10 \angle 45^{\circ}) = -7.07 - j 7.07$$

DC vs. AC

	DC	AC
Obtained from	Battery / cell / derived from AC	AC Generator
Polarity	Positive and Negative	Oscillatory
Frequency	Zero	50Hz or 60Hz
Types	Constant or pulsating	Sinusoidal, Trapezoidal, Triangular, Square

Generation of Alternating EMF

Generator working principle

EMF Equation

EMF induced per conductor is

$$e = B I v sin \theta$$

EMF Induced in one turn of a coil is

$$e = 2 B I v sin \theta$$

 $\mathbf{v} = \mathbf{\pi} \mathbf{b} \mathbf{n}$ 'n' is the speed in revolutions per sec.

$$e = 2 B I b \pi n sin\theta$$

=
$$2BA\pi n \sin\theta$$

If there are N turns in the coil, the emf induced is,

$$e = 2 \pi n BA N sin\theta$$

$$e = E_m \sin\theta$$

Turn of a coil

Terminologies in AC waveform

Cycle: Each repetition of the alternating quantity, recurring at equal intervals

Period (T): Duration of one cycle

Instantaneous Value (e(t)): The magnitude of a waveform at any instant in time

Peak Amplitude: Maximum value or peak value of alternating quantity

Frequency (f): Number of cycles in one second (Hz) $f = \frac{1}{T}$