

定点小数原/反/补码的转换 一样一样的,大哥 $[X]_{\overline{\mathbb{Q}}}$ [-X]₃ 正数相同; 负数末位+1 正数相同; 全部位按位取 负数"数值 反、末位+1 位"按位取反 0正1负 正数相同; [X] X_{真值} 负数从右往左找到第一 左边的所有"数值位"按位取反 王道考研/CSKAOYAN.COM 4

定点小数的加/减运算

对两个定点小数A、B进行加法/减法时,需要先转换为补码

计算机硬件如何做<mark>定点小数补码</mark>的<mark>加法</mark>:从最低位开始,按位相加(<mark>符号位参与运算</mark>),并往更高位进位

- 计算机硬件如何做<mark>定点小数补码的减法</mark>: ①"被减数"不变,"减数"全部位按位取反、末位+1,减法变加法
- ② 从最低位开始,按位相加,并往更高位进位

我们不一样! 有啥 不一样? 其实都一样

王道考研/CSKAOYAN.COM

定点小数

定点小数 vs 定点整数

定点整数

n+1 bit	合法表示范围	最大的数	最小的数	真值0的表示
定点整数:原码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,111111 = -(2"-1)	[+0] _原 = 0 ,000000 [-0] _原 = 1 ,000000
定点整数:反码	$-(2^n-1) \le x \le 2^n-1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -(2"-1)	$[+0]_{\overline{\mathbb{D}}} = 0,000000$ $[-0]_{\overline{\mathbb{D}}} = 1,111111$
定点整数:补码	$-2^n \le x \le 2^n - 1$	0 ,111111 = 2 ⁿ -1	1 ,000000 = -2 ⁿ	[0] _补 = 0 ,000000 真值0只有一种补码
定点小数:原码	$-(1-2^{-n}) \le x \le 1-2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,111111 = -(1-2 ⁻ⁿ)	[+0] _原 = 0 ,000000 [-0] _原 = 1 ,000000
定点小数:反码	$-(1-2^{-n}) \le x \le 1-2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	$1,000000 \\ = -(1-2^{-n})$	[+0] _反 = 0 ,000000 [-0] _反 = 1 ,111111
定点小数:补码	$-1 \le x \le 1 - 2^{-n}$	0 ,111111 = 1-2 ⁻ⁿ	1 ,000000 = -1	[0] _补 = 0 ,000000 真值0只有一种补码

王道考研/CSKAOYAN.COM

定点小数 vs 定点整数

特别注意: 位数扩展时, 拓展位置不一样

定点小数

符 2-1 2-2 2-3 2-4 2-5 2-6 2-7

定点整数

符 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

定点小数: [x]原=1.110

[x]原 = **1.**1100000

定点整数: [x]原= 1,110

[x]原=**1,**0000110

王道考研/CSKAOYAN.COM

7

整数补码的加法运算(例1)

A: +19 → 补码

0 0 0 1 0 0 1 1

B: -19 → 补码

1 1 1 0 1 1 0 1 8bit寄存器

按位相加

A+B=0 → 补码

0 0 0 0 0 0 0

8bit寄存器

8bit寄存器

计算机硬件如何做<mark>补码</mark>的<mark>加法</mark>:从最低位开始,按位相加(<mark>符号位参与运算</mark>),并往更高位进位

王道考研/CSKAOYAN.COM

你还可以在这里找到我们

快速获取第一手计算机考研信息&资料

购买2024考研全程班/领学班/定向班 可扫码加微信咨询

- 微博: @王道计算机考研教育
- B站: @王道计算机教育
- 小红书: @王道计算机考研
- 知 知乎: @王道计算机考研
- 抖音: @王道计算机考研
- 淘宝:@王道论坛书店