Aufgabe

In dieser Aufgabe betrachten wir die Menge

$$\mathbb{Q}(\sqrt{2}) := \left\{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \right\}.$$

Folgende Aussagen sind zu beweisen:

- 1. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$
- 2. $\forall x, y \in \mathbb{Q}(\sqrt{2}) \colon x + y, x \cdot y \in \mathbb{Q}(\sqrt{2})$
- 3. $\forall x \in \mathbb{Q}(\sqrt{2}) : \exists y \in \mathbb{Q}(\sqrt{2}) : x + y = 0$
- 4. $\forall 0 \neq x \in \mathbb{Q}(\sqrt{2}) : \exists y \in \mathbb{Q}(\sqrt{2}) : x \cdot y = 1$

Wegen der Teilmengenbeziehung $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ gelten die Assoziativ-, Kommutativund Distributivgesetze, die in \mathbb{R} gelten, auch in $\mathbb{Q}(\sqrt{2})$. Außerdem folgt daraus auch, dass

$$\forall x \in \mathbb{Q}(\sqrt{2}) \colon x + 0 = x \land x \cdot 1 = x$$

gilt. Damit ist $\mathbb{Q}(\sqrt{2})$ insbesondere ein Körper.

Lösung

1. Behauptung: $\mathbb{Q} \subsetneq \mathbb{Q}(\sqrt{2}) \subsetneq \mathbb{R}$

Beweis:

Zuerst zeigen wir $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$:

Für jedes $q \in \mathbb{Q}$ können wir schreiben: $q = q + 0 \cdot \sqrt{2}$ mit $q, 0 \in \mathbb{Q}$. Somit ist $q \in \mathbb{Q}(\sqrt{2})$, also $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2})$.

Um zu zeigen, dass die Inklusion echt ist, betrachten wir $\sqrt{2} = 0 + 1 \cdot \sqrt{2} \in \mathbb{Q}(\sqrt{2})$. Wir zeigen, dass $\sqrt{2} \notin \mathbb{Q}$:

Angenommen, $\sqrt{2} \in \mathbb{Q}$. Dann existieren $p,q \in \mathbb{Z}$ mit $q \neq 0$ und $\gcd(p,q) = 1$, sodass $\sqrt{2} = \frac{p}{q}$. Durch Quadrieren erhalten wir:

$$2 = \frac{p^2}{q^2} \implies 2q^2 = p^2$$

Dies zeigt, dass p^2 gerade ist, also muss auch p gerade sein. Sei p=2k für ein $k\in\mathbb{Z}.$ Einsetzen liefert:

$$2q^2 = (2k)^2 = 4k^2 \implies q^2 = 2k^2$$

Also ist auch q^2 gerade, und damit q gerade. Dies ist ein Widerspruch zu $\gcd(p,q)=1$. Somit ist $\sqrt{2}\notin\mathbb{Q}$ und daher $\mathbb{Q}\subsetneq\mathbb{Q}(\sqrt{2})$.

Nun zeigen wir $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$:

Offensichtlich ist $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$, da alle Elemente der Form $a + b\sqrt{2}$ mit $a, b \in \mathbb{Q}$ reelle Zahlen sind.

Um zu zeigen, dass die Inklusion echt ist, betrachten wir $\sqrt{3} \in \mathbb{R}$. Wir zeigen, dass $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$:

Angenommen, $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$. Dann existieren $a, b \in \mathbb{Q}$ mit $\sqrt{3} = a + b\sqrt{2}$. Durch Quadrieren erhalten wir:

$$3 = a^2 + 2ab\sqrt{2} + 2b^2 = (a^2 + 2b^2) + 2ab\sqrt{2}$$

Da $3\in\mathbb{Q}$ und die Darstellung $c+d\sqrt{2}$ mit $c,d\in\mathbb{Q}$ eindeutig ist (was wir gleich zeigen werden), folgt:

$$a^2 + 2b^2 = 3$$
 und $2ab = 0$

Aus 2ab = 0 folgt a = 0 oder b = 0.

Fall 1: a=0. Dann ist $2b^2=3 \implies b^2=\frac{3}{2}$. Dies würde bedeuten, dass $\sqrt{\frac{3}{2}} \in \mathbb{Q}$, was ein Widerspruch ist.

Fall 2: b = 0. Dann ist $a^2 = 3 \implies a = \sqrt{3}$. Dies würde bedeuten, dass $\sqrt{3} \in \mathbb{Q}$, was ein Widerspruch ist.

Somit ist $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ und daher $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{R}$.

Anmerkung zur Eindeutigkeit der Darstellung: Seien $a_1 + b_1\sqrt{2} = a_2 + b_2\sqrt{2}$ mit $a_1, a_2, b_1, b_2 \in \mathbb{Q}$. Dann ist $(a_1 - a_2) + (b_1 - b_2)\sqrt{2} = 0$. Falls $b_1 \neq b_2$, dann wäre $\sqrt{2} = \frac{a_2 - a_1}{b_1 - b_2} \in \mathbb{Q}$, was ein Widerspruch ist. Also ist $b_1 = b_2$ und damit auch $a_1 = a_2$.

2. Behauptung: $\forall x, y \in \mathbb{Q}(\sqrt{2}) : x + y, x \cdot y \in \mathbb{Q}(\sqrt{2})$

Beweis:

Seien $x = a_1 + b_1\sqrt{2}$ und $y = a_2 + b_2\sqrt{2}$ mit $a_1, a_2, b_1, b_2 \in \mathbb{Q}$.

Addition:

$$x + y = (a_1 + b_1\sqrt{2}) + (a_2 + b_2\sqrt{2}) \tag{1}$$

$$= (a_1 + a_2) + (b_1 + b_2)\sqrt{2}$$
 (2)

Da $a_1 + a_2 \in \mathbb{Q}$ und $b_1 + b_2 \in \mathbb{Q}$ (denn \mathbb{Q} ist unter Addition abgeschlossen), ist $x + y \in \mathbb{Q}(\sqrt{2})$.

Multiplikation:

$$x \cdot y = (a_1 + b_1 \sqrt{2}) \cdot (a_2 + b_2 \sqrt{2}) \tag{3}$$

$$= a_1 a_2 + a_1 b_2 \sqrt{2} + b_1 a_2 \sqrt{2} + b_1 b_2 (\sqrt{2})^2$$
(4)

$$= a_1 a_2 + (a_1 b_2 + b_1 a_2)\sqrt{2} + 2b_1 b_2 \tag{5}$$

$$= (a_1 a_2 + 2b_1 b_2) + (a_1 b_2 + b_1 a_2)\sqrt{2}$$
(6)

Da $a_1a_2 + 2b_1b_2 \in \mathbb{Q}$ und $a_1b_2 + b_1a_2 \in \mathbb{Q}$ (denn \mathbb{Q} ist unter Addition und Multiplikation abgeschlossen), ist $x \cdot y \in \mathbb{Q}(\sqrt{2})$.

3. Behauptung: $\forall x \in \mathbb{Q}(\sqrt{2}) \colon \exists y \in \mathbb{Q}(\sqrt{2}) \colon x + y = 0$

Beweis:

Sei $x = a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ mit $a, b \in \mathbb{Q}$.

Wir suchen $y \in \mathbb{Q}(\sqrt{2})$ mit x + y = 0.

Setze $y = -a - b\sqrt{2}$. Da $-a \in \mathbb{Q}$ und $-b \in \mathbb{Q}$ (denn \mathbb{Q} enthält additive Inverse), ist $y \in \mathbb{Q}(\sqrt{2})$.

Wir prüfen:

$$x + y = (a + b\sqrt{2}) + (-a - b\sqrt{2}) \tag{7}$$

$$= (a - a) + (b - b)\sqrt{2} \tag{8}$$

$$= 0 + 0\sqrt{2} \tag{9}$$

$$=0 (10)$$

Somit existiert für jedes $x \in \mathbb{Q}(\sqrt{2})$ ein additives Inverses $y = -x \in \mathbb{Q}(\sqrt{2})$.

4. Behauptung: $\forall 0 \neq x \in \mathbb{Q}(\sqrt{2}) \colon \exists y \in \mathbb{Q}(\sqrt{2}) \colon x \cdot y = 1$

Beweis:

Sei $x = a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ mit $x \neq 0$, also $a \neq 0$ oder $b \neq 0$.

Wir suchen $y \in \mathbb{Q}(\sqrt{2})$ mit $x \cdot y = 1$.

Wir verwenden die Methode der Konjugation. Definiere das Konjugat von x als $\overline{x} = a - b\sqrt{2}$.

Berechne:

$$x \cdot \overline{x} = (a + b\sqrt{2})(a - b\sqrt{2}) \tag{11}$$

$$= a^2 - ab\sqrt{2} + ab\sqrt{2} - b^2(\sqrt{2})^2 \tag{12}$$

$$= a^2 - 2b^2 (13)$$

Wir zeigen, dass $a^2 - 2b^2 \neq 0$:

Angenommen, $a^2 - 2b^2 = 0$, also $a^2 = 2b^2$.

Falls b = 0, dann $a^2 = 0$, also a = 0, was x = 0 bedeutet - Widerspruch.

Falls $b \neq 0$, dann $\left(\frac{a}{b}\right)^2 = 2$, also $\frac{a}{b} = \pm \sqrt{2}$. Da $a, b \in \mathbb{Q}$ mit $b \neq 0$, ist $\frac{a}{b} \in \mathbb{Q}$. Dies würde bedeuten, dass $\sqrt{2} \in \mathbb{Q}$, was ein Widerspruch ist.

Somit ist $a^2 - 2b^2 \neq 0$.

Setze nun:

$$y = \frac{\overline{x}}{x \cdot \overline{x}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2}$$

Da $a^2 - 2b^2 \neq 0$ und $a, b, a^2 - 2b^2 \in \mathbb{Q}$, sind $\frac{a}{a^2 - 2b^2} \in \mathbb{Q}$ und $\frac{-b}{a^2 - 2b^2} \in \mathbb{Q}$. Somit ist $y \in \mathbb{Q}(\sqrt{2})$.

Wir verifizieren:

$$x \cdot y = x \cdot \frac{\overline{x}}{x \cdot \overline{x}}$$

$$= \frac{x \cdot \overline{x}}{x \cdot \overline{x}}$$
(14)
(15)

$$=\frac{x\cdot\overline{x}}{x\cdot\overline{x}}\tag{15}$$

$$=1\tag{16}$$

Somit existiert für jedes $x \in \mathbb{Q}(\sqrt{2})$ mit $x \neq 0$ ein multiplikatives Inverses $y=x^{-1}\in \mathbb{Q}(\sqrt{2}).$

Fazit: Wir haben gezeigt, dass $\mathbb{Q}(\sqrt{2})$ eine echte Teilmenge von \mathbb{R} ist, die \mathbb{Q} echt enthält, und dass $\mathbb{Q}(\sqrt{2})$ unter Addition und Multiplikation abgeschlossen ist sowie additive und multiplikative Inverse besitzt. Zusammen mit den gegebenen Eigenschaften folgt, dass $\mathbb{Q}(\sqrt{2})$ ein Körper ist.