SR Latch Latch(SR锁存器)

- S = 0, R = 0: then $Q = Q_{prev}$ and $\overline{Q} = \overline{Q_{prev}}$ (memory!)

- S = 1, R = 1: then Q = 0 and $\overline{Q} = 0$ (invalid state: $\overline{Q} \neq \text{NOT } Q$)

D Latch(D锁存器)

锁存器(Latch)是一种对<u>脉冲</u>电平敏感的<u>存储单元</u>电路,它们可以在特定输入脉冲电平作用下改变状态。锁存器的最主要作用是<u>缓存</u>,把信号暂存以维持某种电平状态,其次完成高速的控制器与慢速的外设的不同步问题,再其次是解决驱动的问题,最后是解决一个 I/O 口既能输出也能输入的问题。锁存器是利用电平控制数据的输入,包括不带使能控制的锁存器和带使能控制的锁存器。

D Flip-Flop (D触发器)。

- 具有记忆功能, 时钟边沿触发来更新输出数据的
- Two inputs: *CLK*, *D*
- Function
 - The flip-flop "samples" D on the rising edge of CLK
 - When CLK rises from 0 to 1, D passes through to Q
 - Otherwise, Q holds its previous value
 - Q changes only on the rising edge of CLK
- A flip-flop is called an *edge-triggered* (时钟边沿触发)device because it is activated on the clock edge

 D Flip-Flop

D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q

- Thus, on the edge of the clock (when *CLK* rises from $0\rightarrow 1$)
 - D passes through to Q

D Flip-Flop (D触发器)

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When CLK = 0
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When CLK = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q

CLK Ó锁存器1 CLK CLK 在下个时钟沿 到来后,数据 从这里输出

在上个时钟结 束时,数据保 存在这里

D Latch vs. D Flip-Flop

4-bit Registers (4-位寄存器)

Enabled Flip-Flops

- Inputs: *CLK*, *D*, *EN*
 - The enable input (EN) controls when new data (D) is stored
- Function
 - EN = 1
 - D passes through to Q on the clock edge
 - -EN=0
 - the flip-flop retains its previous state

Resettable Flip-Flops

- Inputs: *CLK*, *D*, *Reset*
- Function:
 - Reset = 1 (\rightarrow Reset = 0)
 - Q is forced to 0
 - Reset = 0
 - the flip-flop behaves like an ordinary D flip-flop

Settable Flip-Flops

- Inputs: CLK, D, Set
- Funtion:
 - Set = 1
 - *Q* is set to 1
 - Set = 0
 - the flip-flop behaves like an ordinary D flip-flop

Symbols

