

GHG Emissions in Cambridge Buildings CS 109A Final Project

Sukhraj Dulay, Maitri Shah, Josh Zhang, Paula Zhuang

Table of Contents

01

02

03

Problem Statement

EDA Visualizations

Baseline Model

04

05

06

Final Model Pipeline

Results/Inferences

Future Work

01

Problem Statement

Finalized Research Question

"How do building characteristics, such as size, age, and primary use type, impact energy use and greenhouse gas emissions in Cambridge, MA?"

- Dataset: Cambridge Building Energy Use Disclosure Ordinance (BEUDO) Data 2022
 - Data about buildings and their properties in Cambridge (year built, square footage, type of building, residential vs. non-residential, etc.)
 - Data about *resource usage and emissions* (energy usage, water usage, greenhouse gas emissions, etc.)

Data Cleaning

Total Records: 851 buildings

Cleaning Steps:

- Removed columns with > 50% missing values.
- Imputed missing values for Year Built and Property Area with means
 - Assuming averages which maintains any correlations within the variables

NEXT: EDA to determine good predictors

Total GHG Emissions vs. Property Type

Key Insights:

Total Greenhouse Gas (GHG) Emissions:

- Differs significantly by property type
- Higher emissions: Non-residential categories like hospitals and offices.
- Lower emissions: Residential and smaller properties.

Total GHG Emissions vs. Property Area

Key Insights:

- Larger properties tend to have higher absolute emissions.
- Emissions vary more as property size increases

Outliers: Large buildings with unexpectedly low emissions likely use renewable energy.

Total GHG Emissions vs. Year Built

Key Insights:

- Positive trend for GHG emissions on average, but increase in variability as year built increases
- High concentration of low GHG emissions across all years
- Weak overall correlation:
 Building age alone is not a strong predictor.

Normal scale ,

Log scale

03 Baseline Model

Baseline Model: Lasso Regression

Rationale

- Lasso assumes linear relationship (our relationships have a positive, almost linear trend)
- Shrinks coefficients of less relevant variables to zero → Provides an interpretable
 model

Predictors and Target

- Predictors: 'Property Area', 'Year Built', 'Dataset Category'
- Target: 'Total GHG Emissions'

Baseline Model: Pipeline

Baseline Model Pipeline:

- 1. Data preprocessing:
 - a. Imputation, scaling, and encoding.
- 2. **Model training**:
 - a. GridSearchCV to find the best alpha value (alpha = 10⁻⁵)
 - b. Train the Lasso algorithm
- 3. **Evaluation**: Assessing cross-validated RMSE and R² metrics

Baseline Model: Results & Analysis

Performance in Context

- **RMSE**: 0.76
 - Smaller than the standard deviation of the target variable (1.000629) and is a small fraction of the range (20.4) → model is performing reasonably well in predicting values
- R²: 0.4
 - Pretty low, only explains 40% of the variability in the target variable
- Key Predictors: Property Area and Dataset Category
 - Makes sense: most clear and "linear" relationships to target variable

04 Final Model

Final Model: Random Forest

Steps to Improve Baseline Model

- Switch to Random Forest: Can handle more complex, non-linear relationships;
 models interactions between predictors; reduces variance
- 2. Feature Selection & Engineering: Experimenting with adding an important feature from our original analysis, 'Primary Property Type', and adding interaction terms
- 3. Taking Logs: Experimenting with logging response variables and predictors to convert exponential trends into linear understandings
- 4. **Optimal Parameters**: Grid search to find best n_estimators (100-500)

Final Pipeline

Data preprocessing

→ Add combination of estimator, interaction terms, extra features, and logging

Final Model Pipeline - Results

Best Model:

450 Estimators, No Interaction Terms, Include Property Type, Log X and y

Scores:

- OOB R² 0.690
- o **RMSE -** 0.373
- o Train R² 0.861

Key predictors:

Property Area
 (followed by
 Laboratory and
 Year Built)

Combination	Log_X	Log_Y	OOB R ²	RMSE	R ²	Best_Params
{'interaction_terms': False, 'include_property_type': False}	FALSE	FALSE	0.338106719550621	0.2832159947536660	0.9197887003156920	{'random_forestn_estimators': 100}
{'interaction_terms': False, 'include_property_type': False}	TRUE	FALSE	0.3160021416595370	0.29059178417217900	0.9155564149716300	{'random_forestn_estimators': 150}
{'interaction_terms': False, 'include_property_type': False}	FALSE	TRUE	0.5437126004395560	0.40248935784183800	0.8380023168240650	{'random_forestn_estimators': 450}
{'interaction_terms': False, 'include_property_type': False}	TRUE	TRUE	0.5370711806825500	0.4045506177907470	0.8363387976451250	{'random_forestn_estimators': 300}
{'interaction_terms': True, 'include_property_type': False}	FALSE	FALSE	0.3004761816986500	0.2901329058375100	0.9158228969502830	{'random_forestn_estimators': 100}
{'interaction_terms': True, 'include_property_type': False}	TRUE	FALSE	0.30748118550667300	0.28923906610001000	0.9163407626415940	{'random_forestn_estimators': 100}
{'interaction_terms': True, 'include_property_type': False}	FALSE	TRUE	0.520936600079633	0.4211339867580890	0.8226461651972380	{'random_forestn_estimators': 450}
{'interaction_terms': True, 'include_property_type': False}	TRUE	TRUE	0.5263772679090560	0.408552690303497	0.8330846992457750	{'random_forestn_estimators': 500}
{'interaction_terms': False, 'include_property_type': True}	FALSE	FALSE	0.44651043083281500	0.2668378385327570	0.9287975679271670	{'random_forestn_estimators': 450}
{'interaction_terms': False, 'include_property_type': True}	TRUE	FALSE	0.45182379784099300	0.25555472414268900	0.934691782968354	{'random_forestn_estimators': 150}
{'interaction_terms': False, 'include_property_type': True}	FALSE	TRUE	0.6884901024645230	0.3654923083820490	0.866415372513561	{'random_forestn_estimators': 500}
{'interaction_terms': False, 'include_property_type': True}	TRUE	TRUE	0.6903692515713370	0.3726355494274600	0.8611427473028950	{'random_forestn_estimators': 450}
{'interaction_terms': True, 'include_property_type': True}	FALSE	FALSE	0.44801780551072400	0.26225575383646800	0.9312219195796660	{'random_forestn_estimators': 400}
{'interaction_terms': True, 'include_property_type': True}	TRUE	FALSE	0.4419559488864530	0.26742271662480300	0.9284850906330100	{'random_forestn_estimators': 450}
{'interaction_terms': True, 'include_property_type': True}	FALSE	TRUE	0.6796364017342340	0.3749816289958010	0.8593887779156550	{'random_forestn_estimators': 450}
{'interaction_terms': True, 'include_property_type': True}	TRUE	TRUE	0.6752541933591420	0.3755284757102870	0.8589783639307090	{'random_forestn_estimators': 450}

Final Model Pipeline - Analysis

Scores

- The OOB R² (0.690) recognizes that the model is statistically significant in terms of generalizability against unseen data
- The **RMSE** (0.373) infers our model is interpreting trends with minimal error
- The train R² (0.861) shows that our model is capable of explaining 86.1% of the variability of emissions

Model Performance Comparison

	Lasso Regression	Random Forest		
R^2	0.40	0.69		
RMSE	0.76	0.37		
Key Predictors	Property Area, Dataset Category	Property Area, Laboratory, Year Built		

Results and Inferences

- Larger buildings are more energy-intensive
- **Non-linear relationships** between predictors and GHG emissions, because:
 - Log-transformation of predictors improved the model
 - Random forest performed much better than Lasso regression
- **Non-residential buildings** are primary contributors to emissions, especially certain energy-intensive property types (like laboratories)
- Building age offers information when interactions with other features are considered, indicating that factors like expansion or usage change may be impactful

06 Future Work

Future Work / Next Steps

Actionable Outcomes:

- Targets large non-residential buildings and energy-intensive property types for emission reduction initiatives.
- Focus efforts on a small number of outliers, due to non-linearity of problem

á

Future Work:

- Individually log or square root every combination of predictor variables to account for exponential or logarithmic variable trends in the final model.
- Compare against other water or energy variables, such as water or electricity usage, in Cambridge buildings.

GHG Emissions in Cambridge Buildings CS 109A Final Project

Sukhraj Dulay, Maitri Shah, Josh Zhang, Paula Zhuang

Characteristics vs. Property Type

Key Insights:

- Property floor area varies widely across property types.
 - Large properties: College/University, Enclosed Mall.
 - Smaller properties: Bank Branch, Medical Offices.

Year Built trends:

- Older: Religious worship facilities, universities.
- Newer: Hotels, recreation facilities.

ENERGY STAR Scores:

- High: Residence Halls/Dormitories, Financial Offices.
- Low: Mixed-Use Properties, Medical Offices.

