

Design of the Fast Scanning Magnets for HUST Proton Therapy Facility

Liu Xu Doctoral Student

Institute of Applied Electromagnetic Engineering (IAEE)
Huazhong University of Science and Technology (HUST)

明德 厚学 求是 创新

Scanning Magnets

Two rotating gantries + One fixed beam treatment room

Scanning Magnets

STX STY

Two rotating gantries + One fixed beam treatment room

Layout of rotating gantry

Parameter	SMX	SMY	7 /	
Max. Deflection Angle	55 mrad	65 mrad	B3	
Max. Field Strength	0.52 T	0.39 T		
Magnet Gap	40 mm	90 mm	SMX(2.85m) $SMY(2.37m)$	
Repetition Frequency	100 Hz	40 Hz	$\mathcal{E} \left[\begin{array}{c} SMY(2.37m) \\ SMY(2.37m) \end{array} \right]$	
Num. of Coil Turn/pole	15	18	$\stackrel{\sim}{ }$	
Coil Inductance/coil	0.33 mH	0.60 mH		
Coil Resistance/coil	2.21 mOhm	2.74 mOhm	-center	
Н П	//			
$B1$ $Scanning\ Range:30cm{ imes}30cm$				

➤ Simulation method (SMX)

ELEKTRA/TR + TEMPO/SS

➤ Simulation method (SMX)

ELEKTRA/TR + TEMPO/SS

- > SLITS
- Slits Direction

Unoptimized Model

➤ Simulation method (SMX)

ELEKTRA/TR + TEMPO/SS

- > SLITS
- Slits Direction
- Slits Distribution

Num_slits	a/mm	b/mm	Max. T/°C
7	15	10	72.29
8	10	10	64.16
9	5	10	73.06

➤ Simulation method (SMX)

ELEKTRA/TR + TEMPO/SS

- > SLITS
 - ☐ Slits Direction
 - ☐ Slits Distribution
 - ☐ Slit Width

Unoptimized Model

➤ Simulation method (SMX)

ELEKTRA/TR + TEMPO/SS

- > SLITS
- Slits Direction vertical
- ☐ Slits Distribution 8 slits
- ☐ Slit Width 2mm wide

Unoptimized Model

176.8°C

Conclusion

- ➤ The length of SAD is optimized to 2.8m.
- ➤ The effect of eddy currents in the scanning magnets is large and the temperature rise will destroy the magnets.
- > Slits in the edge of the pole are an effective method to reduce the eddy current:
 - Vertical slits can reduce the eddy currents; horizontal slits will concentrate the eddy currents and increase the temperature.
 - The distance between the outermost slit and the edge of the pole is important, wide or tight length is not suitable.
 - The temperature is not sensitive to the slit width.
- The maximum temperature of these two magnets is reduced to 64.2°C and 43.7°C, lowing the allowance temperature rise.

Thanks for your listening

明德厚学

求是 创新