Pattern Recognition Elements of Decision Theory

Francesco Tortorella

University of Cassino and Southern Latium Cassino, Italy

- Pattern Recognition lies on two pillars:
 - Probability
 - Decision Theory

- A key concept in the field of pattern recognition is that of uncertainty. It arises both through noise on measurements, as well as through the finite size of data sets.
- Probability theory provides a consistent framework for the quantification and manipulation of uncertainty and forms one of the central foundations for pattern recognition.

 When combined with probability theory, decision theory allows us to make optimal decisions in situations involving uncertainty such as those encountered in pattern recognition

Decision Theory: characteristics

- The goal of the decision theory is to make a quantitative comparison among different classification decisions by using probability arguments and the costs related to the particular decisions
- Basic assumptions:
- The decision problem is cast in probabilistic terms
- All the probability functions relevant to the problem are known

- Let's consider a problem with C classes, with labels ω_i with j=1,2,...,C.
- Let's call α_i i=1,2,...,A the decisions we can take (A<>C?).
- Initially, let's suppose to know the probability $P(\omega_j)$ that a sample belongs to the class ω_j (a priori probability or prior).

- We must take a decision about the class of a sample s (s is described by a feature vector X with size N)
- If we have not any other source of information, the decision rule should be entirely based on the priors P(ω_i)
- Who wins?

Principles

- Let's add some information about the classes
- It is available in the form of the classconditional density or likelihood p(x| ω_j), i.e. the probability of having the value x, when we know that it belongs to the class ω_i

Pattern Recognition

F. Tortorella

 P(A|B) is the probability of the event A given that (by assumption, presumption, assertion or evidence) the event B has occurred and is defined as:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Pattern Recognition

F. Tortorella

Pattern Recognition

F. Tortorella

What we have? What we want?

- In our case, we have the values of the feature vector x (knowledge) and we want to decide about the class ω_i it belongs to (uncertainty).
- Thus we have to consider another probability:

Help, rev. Bayes !!!

Thanks to Bayes' Theorem we are able to evaluate the probability $P(\omega_i|x)$ that the observed f.v. x was produced by a sample of the class ω_i (a posteriori probability) if we know the priors $P(\omega_i)$ and the likelihoods $p(x|\omega_i)$.

Rev. Thomas Bayes
b. 1702, London
d. 1761, Tunbridge Wells,
Kent

Pattern Recognition

F. Tortorella

It says that:

$$P(\omega_j|x) = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)}$$

where
$$p(x) = \sum_{j=1}^{C} p(x|\omega_j) \cdot P(\omega_j)$$
 is the *unconditional*

density function of the f.v. x

Post probabilities when P(ω_1)=2/3 and P(ω_2)=1/3 .

Pattern Recognition

F. Tortorella

F. Tortorella

- Reasonably the decision is toward the class with the highest post probability:
 - Choose ω_1 if $P(\omega_1|x) > P(\omega_2|x)$ otherwise choose ω_2
- Maximum a Posteriori (MAP) rule
- Actually this rule minimizes the probability of error:

$$P(error|x)=min\{P(\omega_1|x), P(\omega_2|x)\}$$

- Let's consider the sources of error for a classifier.
- In the two-class problem, the classifier has divided the space T into two (possibly nonoptimal) regions R₁ and R₂ (T=R₁∪R₂).
- Two possible errors:
 - $x \in \omega_1$ but it falls in R_2
 - $x \in \omega_2$ but it falls in R_1

• Thus the value of the error probability P_e can be written:

$$P_{e} = p(x \in R_{2}, \omega_{1}) + p(x \in R_{1}, \omega_{2}) =$$

$$p(x \in R_{2}|\omega_{1}) \cdot P(\omega_{1}) + p(x \in R_{1}|\omega_{2}) \cdot P(\omega_{2}) =$$

$$\int_{R_{2}} p(x|\omega_{1})dx \cdot P(\omega_{1}) + \int_{R_{1}} p(x|\omega_{2})dx \cdot P(\omega_{2}) =$$

$$\int_{R_{2}} p(x|\omega_{1})P(\omega_{1})dx + \int_{R_{1}} p(x|\omega_{2})P(\omega_{2})dx$$

Pattern Recognition

F. Tortorella

Decision regions and errors

Pattern Recognition

F. Tortorella

• The error probability is bounded below:

$$\begin{split} P_{e} &= \int_{R_{2}} p(x|\omega_{1})P(\omega_{1})dx + \int_{R_{1}} p(x|\omega_{2})P(\omega_{2})dx \geq \\ &\int_{R_{2}} min\{p(x|\omega_{1})P(\omega_{1}), p(x|\omega_{2})P(\omega_{2})\}dx + \\ &\int_{R_{1}} min\{p(x|\omega_{1})P(\omega_{1}), p(x|\omega_{2})P(\omega_{2})\}dx = \\ &\int_{T} min\{p(x|\omega_{1})P(\omega_{1}), p(x|\omega_{2})P(\omega_{2})\}dx \end{split}$$

University of Cassino and S.L.

MAP rule

Decision regions and errors

Pattern Recognition

F. Tortorella

Decision

 From a practical point of view, p(x) does not affect the decision, thus the rule can be written as:

Choose
$$\omega_1$$
 if $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$ otherwise choose ω_2

- Particular situations:
 - if $p(x|\omega_1) = p(x|\omega_2)$ the knowledge of the value of the f.v. x does not add further information to what we know from the priors
 - if $P(\omega_1) = P(\omega_2)$ the decision is made only on the base of the likelihood

- In the case of multiclass problems the decision rule becomes
 α(x) = argmax {P(ω_i|x)}.
- Also in this case the decision rule minimizes the error probability
- In summary, the Maximum A Posteriori (MAP) rule provides the optimal classifier.

How much this costs?

- Now let's suppose to know some information about the consequences of our decisions.
- This is given by a *loss function* $\lambda(\alpha_i | \omega_j)$ that provides the cost produced by the decision α_i when the sample belongs to the class ω_j .
- The cost of the decision α_{i} for the sample x is

$$R(\alpha_i|x) = \sum_{j=1}^{S} \lambda(\alpha_i|\omega_j) \cdot P(\omega_j|x)$$

This is the conditional risk or conditional cost

- In this setting the most reasonable decision rule is to minimize the risk
- Thus we have:

$$\alpha(x) = \underset{1 \le j \le A}{\operatorname{argmin}} R(\alpha_i | x)$$

Decision regions

The decision rule induces in the feature space a set of decision regions

$$x \in R_i \Leftrightarrow \alpha(x) = \alpha_i$$

Pattern Recognition

F. Tortorella

- As a particular case, consider a problem with 2 classes (the worst ones!!) and call α_i the decision for the class ω_i with i=1,2 (A==C)
- If $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$, the conditional risk for the two decisions are:

$$R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$$

$$R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$$

• Reasonable values for the costs are such that $\lambda_{ii} < \lambda_{ii}$ with $j \neq i$

2 class problems

• Choose ω_1 if $R(\alpha_1|x) < R(\alpha_2|x)$, i.e. if:

$$\lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x}) < \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$$
 equivalent to:

$$(\lambda_{11}-\lambda_{21})P(\omega_1|x) < (\lambda_{22}-\lambda_{12})P(\omega_2|x)$$

• Since $(\lambda_{11}-\lambda_{21})<0$ e $(\lambda_{22}-\lambda_{12})<0$, we can multiply both members by -1 and change the sign in the inequality:

$$(\lambda_{21}-\lambda_{11})P(\omega_1|x) > (\lambda_{12}-\lambda_{22})P(\omega_2|x)$$

or:

$$\frac{P(\omega_1|x)}{P(\omega_2|x)} \stackrel{\omega_1}{>} \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}$$

Pattern Recognition

F. Tortorella

 If we recall the Bayes' theorem, the rule can be written:

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} \stackrel{\omega_1}{\underset{\omega_2}{>}} \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \frac{P(\omega_2)}{P(\omega_1)}$$

where the first term is the *likelihood ratio*

Likelihood Ratio Test (LRT)

- The minimum error decision rule can be derived by the minimum risk rule by assigning $\lambda_{21}=\lambda_{12}=1$ e $\lambda_{11}=\lambda_{22}=0$ (zero-one loss).
- The LRT becomes:

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{P(\omega_2)}{P(\omega_1)}$$

2 class problems

- We have seen two decision criteria:
 - Minimum probability of error
 - Minimum risk
- In some cases, instead of minimizing an overall penalty (risk or error), we need to fix a bound on the error on one class while minimizing the error on the other class.
- Example: we want the probability of error ε_2 on the class ω_2 is lower than α and that the probability of error ε_1 on the class ω_1 is minimum.
- This is the Neyman-Pearson decision rule

- When using the minimum error rule, there can be cases where the probability of error, although minimum, is too high to be accepted.
- In these cases, it is more convenient abstaining from the decision rather than running the risk of providing a wrong answer.
- In other words, we add another possible decision: the "no decision" (or reject)

- With the minimum error rule, the probability of error when classifying a sample x is P_e(x) = 1-max{P(ω_i|x)}.
- Suppose we cannot accept the decision if P_e is higher than a threshold t.

Minimum error decision rule with reject

• The decision rule is now:

$$\alpha(x) = \begin{cases} \omega_i & \text{if } P(\omega_i|x) > P(\omega_j|x) \ \forall i \neq j \ \text{and} \\ P(\omega_i|x) > 1 - t \end{cases}$$
 'reject' otherwise

Reject region

Error/reject curve

When t varies, we obtain different pairs (P_e,P_r) (probability of error,probability of reject), lying on an *error/reject curve*

Minimum risk decision rule with reject (uniform costs)

- The reject option can be applied also in the cost-sensitive setting
- In this case the reject has a proper cost:

$$\lambda_{ij} = \begin{cases} c \text{ if } i=j \\ e \text{ if } i\neq j \\ r \text{ if } i=\text{`reject'} \end{cases}$$
 Reasonable costs:
$$c < e \\ c < r \\ r < e \end{cases}$$

Minimum risk decision rule with reject (uniform costs)

• The conditional risk is:

$$R(\alpha|\mathbf{x}) = \begin{cases} r \text{ if } \alpha = \text{`reject'} \\ c P(\omega_i|\mathbf{x}) + e (1 - P(\omega_i|\mathbf{x})) \text{ if } \alpha = \omega_i \end{cases}$$

• Thus the decision rule becomes:

$$\alpha(x) = \begin{cases} \omega_i & \text{if } P(\omega_i|x) > P(\omega_j|x) \ \forall i \neq j \text{ and} \\ P(\omega_i|x) > (e-r)/(e-c) \end{cases}$$
 'reject' otherwise Chow's Rule

Pattern Recognition

F. Tortorella

Minimum risk decision rule with reject (2 classes, non-uniform costs)

- Consider now a 2-class cost-sensitive problem with non-uniform costs
- How is the reject option applied?
- Consider the conditional risks:

$$R(\alpha_0) = \lambda_0$$

$$R(\alpha_1) = \lambda_{11} P(\omega_1 | \mathbf{x}) + \lambda_{12} P(\omega_2 | \mathbf{x})$$

$$R(\alpha_2) = \lambda_{21} P(\omega_1 | \mathbf{x}) + \lambda_{22} P(\omega_2 | \mathbf{x})$$

Minimum risk decision rule with reject (2 classes, non-uniform costs)

• We decide for class ω_1 if $R(\alpha_1) = \min[R(\alpha_1), R(\alpha_2)]$ and $R(\alpha_1) \le R(\alpha_0)$ that leads to:

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \ge \frac{\lambda_{12} - \lambda_0}{\lambda_0 - \lambda_{11}} \frac{P_2}{P_1}$$

• While for the deciding for class ω_2 :

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} \leq \frac{\lambda_0 - \lambda_{22}}{\lambda_{21} - \lambda_0} \frac{P_2}{P_1}$$

with
$$R(\alpha_2) = \min[R(\alpha_1), R(\alpha_2)]$$

Pattern Recognition

F. Tortorella

Minimum risk decision rule with reject (2 classes, non-uniform costs)

• The condition for rejecting the sample is:

$$\frac{\lambda_0 - \lambda_{22}}{\lambda_{21} - \lambda_0} \frac{P_2}{P_1} < \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} < \frac{\lambda_{12} - \lambda_0}{\lambda_0 - \lambda_{11}} \frac{P_2}{P_1}$$

