INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY BANGALORE

BASIC COMPUTATIONAL TOPOLOGY SM 402

BCT Implementation Assignment

April 26, 2022

Group 7

Aryan Bhatt (IMT2020020) Balaji Sankapal (IMT2020090) Anmol Shetty (IMT2020551) Abhinav Mahajan (IMT2020553)

Problem Statement P7

Given a volumetric scalar data, compute a sub-level set corresponding to a given scalar value. Integrate with P1 and compute β_0 for an increasing sequence of scalar values.

Algorithm

- For a given data-set with length d_x , breadth d_y and height d_z , if $f(i, j, k) \le c$ for a given threshold value of c it is considered as a vertex in the sub-level set.
- For every point (i, j, k), if either one of the neighbouring points (i + 1, j, k), (i, j + 1, k), (i, j, k + 1) belong to sub-level set, it is considered as an edge and the edge values are stored as a single unique number.
- To map (i, j, k) to a single number we use $i + jd_x + kd_xd_y$. Suppose the two edge numbers are x, y then they are stored as an array with opposite parity.
- Finally β_0 is calculated by taking the difference of the number of vertices with the rank of the above matrix.

We have used the formula given below in our code to calculate β_0 :

$$\beta_0 = \dim(H_0(K)) = \dim(C_0(K)) - \dim(Im(\partial_1)) \tag{1}$$

In our program we obtain the vertices and edges as input and create a matrix ∂_1 and then compute $dim(Im(\partial_1))$ using the python matrix operations.

As we also know that $C_0(K)$ is the vector space of 0-chains $\implies dim(C_0(K)) \implies$ Total No of vertices.

• By using all the above facts we can easily calculate β_0 for a simplicial complex.

Implementation Steps

- 1. First we ask for filename as input from user (.raw file). From here we generate vertices and edges from the above algorithm and also $dim(C_0(K))$.
- 2. In the next step we create the matrix corresponding to ∂_1 using the edges of the input.
- 3. In the last and the final step we calculate β_0 using 1 and using the knowledge of the total count of the vertices.

Steps to run the code

- 1. Open the terminal.
- 2. Enter the command pip3 install numpy.
- 3. Enter the command python3 temp1.py.
- 4. Enter the filename of the .raw file you want to take input from.
- 5. Specify the threshold value to get different values of β_0 .
- 6. Press Enter to get the final result.

Python Code

Python code for calculating β_0 for increasing values of c

```
1 import numpy as np
 2 import time
 3 begin=time.time()
 4 #INPUT - file
 5 filename = "marschner_lobb_41x41x41_uint8.raw.txt"
 6 # Hardcoding the dimensions
 7 \text{ dim}_x, \text{ dim}_y, \text{ dim}_z = 41, 41, 41
 8 #Number of Vertices -> Mapping
9 v = dim_x*dim_y*dim_z
10 #Number of EDGES in SUB LEVEL SET
_{11} e = 0
^{12} # A is array of Mapped Inputs
13 A = np.fromfile(filename, dtype='uint8', sep="")
14 print("The Total Number of Vertices in raw file are :")
print(len(A))
A = A.reshape((dim_x, dim_y, dim_z))
17 #Taking C value
18 c=int(input("Enter the c value: "))
19 # Number of VERTICES in SUB LEVEL SET
20 a=0
21
22 #Traversal
for i in range(0,dim_x):
24
       for j in range(0,dim_y):
            for k in range(0,dim_z):
25
                if (A[i][j][k] <= c):</pre>
26
27
                     a+=1
                     if(i+1 < dim_x):</pre>
28
                         if (A[i+1][j][k] <= c):</pre>
29
                              e+=1
31
32
                     if(j+1 < dim_y):
                          if (A[i][j+1][k] <= c):</pre>
33
                              e += 1
34
35
                     if(k+1<dim_z):</pre>
36
                         if(A[i][j][k+1] \le c):
37
                              e+=1
39 print("The Total Number of Vertices in Sub-Level Set are :")
40 print(a)
41 print("The Total Number of Edges in Sub-Level Set are :")
42 print(e)
44 #For delta 1 matrix
45 t=0
46 k = 0
arr=[ [0] * int(e) for i in range(int(v))]
  for i in range(0,dim_x):
48
       for j in range(0,dim_y):
            for k in range(0,dim_z):
50
51
                if (A[i][j][k]<=c):</pre>
                     if(i+1 < dim_x):</pre>
52
                         if (A[i+1][j][k] <= c):</pre>
53
54
                              x=i+j*dim_x+k*dim_x*dim_y
                              y=(i+1)+j*dim_x+k*dim_x*dim_y
                              arr[x][t]=-1
56
57
                              arr[y][t]=1
                              t+=1
58
59
                     if(j+1 < dim_y):</pre>
60
                         if (A[i][j+1][k]<=c):</pre>
61
62
                              x=i+(j)*dim_x+k*dim_x*dim_y
                              y=(i)+(j+1)*dim_x+k*dim_x*dim_y
63
                              arr[x][t]=-1
64
                              arr[y][t]=1
                              t += 1
66
                     if (k+1<dim_z):</pre>
67
                         if (A[i][j][k+1] <= c):</pre>
68
                              x=i+(j)*dim_x+k*dim_x*dim_y
69
70
                              y=(i)+(j)*dim_x+(k+1)*dim_x*dim_y
                              arr[x][t]=-1
71
                              arr[y][t]=1
72
                              t += 1
```

```
74
75
76 rank=np.linalg.matrix_rank(arr)
77 print("Rank: " + str(rank))
78 betti_0 = a - rank
79
80 print("=======")
81 print('| \n{GREEK SMALL LETTER BETA}\n{SUBSCRIPT ZERO} = ',betti_0,'|')
82 print("========")
83 end=time.time()
84 print("Total execution time(in sec) = ",end-begin)
```

Examples

Figure 1

Figure 2

Figure 3

Note: The python script includes extra functionality of the run time of the code for a particular .raw file.

GitHub Link

Please visit this for the source code. https://github.com/Anmol-S314/Topo-Proj-P7