Chapitre 1

Antenne dipôle

1.1 Objectif

Le but est de réaliser une antenne qui résonne autour de 2.45 GHz. Le s_{11} à cette fréquence doit être inférieur à 10 dB.

FIGURE 1.1 – Dimensions de l'antenne dipôle

Variables		
$\overline{l_1}$	Hauteur du pied	
i	Épaisseur des brins	
L	Longueur de l'antenne	
Constantes		Valeur
$\overline{w_l}$	Espacement entre les brins	
w_s	Largeur du PCB	$30\mathrm{mm}$
l_s	Longueur du PCB	$80\mathrm{mm}$
h	Épaisseur du PCB	$1.6\mathrm{mm}$
e	Épaisseur de cuivre	$35\mu m$

Table 1.1 – Liste des dimensions

1.2 FR-4

La longueur des brins est donnée par l'équation 1.1

$$L = \frac{\lambda}{2\sqrt{\epsilon_r}} = \frac{c}{2f\sqrt{\epsilon_r}} \Rightarrow L = \frac{3e8}{2 \cdot 2.45e9\sqrt{4.3}} = 29.5 \,\text{mm}$$
(1.1)

La dimension du pied est donnée par

$$l_1 = \frac{\lambda}{8} = \frac{c}{8f} = 15.3 \,\text{mm}$$
 (1.2)

La largeur des brins (i) a été fixée à $0.8\,\mathrm{mm}$ pour le moment.

1.2.1 Itérations

Premières itérations

Afin de ce familiariser avec le dimensionnement de l'antenne planaire, la méthode utilisé consiste à modifier un seul des paramètres jusqu'à obtenir le résultat le plus proche possible des performances souhaitées puis de réaliser le même démarche pour un second paramètre et ainsi de suite pour les autre paramètre.

Figure 1.2 – Dimensionnement de l'antenne en ne variant que L

Une fois la meilleur valeur de L déterminée, il est ensuite nécessaire d'améliorer les performances de l'antenne en variant uniquement la longueur L_2 et en gardant la longueur L déterminée à l'étape précédente.

FIGURE 1.3 – Dimensionnement de l'antenne en variant que l_1

1.2.2 Balayage des paramètres variables

FIGURE 1.4 – Balayage de paramétrique de l'antenne bipolaire avec substrat $\mathrm{FR}4$

FIGURE 1.5 – Variation normalisée des performances

Var	ID	S_{11} [dB]	$dS_{11} \ [\%]$	F_c [GHz]	dF_c [%]	BW[MHz]	dBW [%]
i - 10%	1	-32.19	0.29715	2.452	-0.80906	260	-1.5152
i - 1%	2	-30.763	-4.1498	2.68	8.4142	292	10.606
i + 0%	3	-32.095	0	2.472	0	264	0
i + 1%	4	-32.326	0.72114	2.428	-1.7799	260	-1.5152
i + 10%	5	-33.418	4.1218	2.256	-8.7379	236	-10.606
11 - 10%	6	-30.849	-3.8817	2.448	-0.97087	260	-1.5152
11 - 1%	7	-32.077	-0.056551	2.452	-0.80906	260	-1.5152
11 + 1%	8	-32.302	0.64708	2.452	-0.80906	260	-1.5152
11 + 10%	9	-33.309	3.7842	2.452	-0.80906	264	0
12 - 10%	10	-32.641	1.7011	2.452	-0.80906	260	-1.5152
12 - 1%	11	-32.235	0.43667	2.452	-0.80906	260	-1.5152
12 + 1%	12	-31.888	-0.64415	2.448	-0.97087	256	-3.0303
12 + 10%	13	-32.139	0.13769	2.452	-0.80906	260	-1.5152
ls - 10%	14	-31.693	-1.2519	2.452	-0.80906	260	-1.5152
ls - 1%	15	-32.207	0.34869	2.452	-0.80906	260	-1.5152
ls + 1%	16	-32.229	0.41726	2.452	-0.80906	260	-1.5152
ls + 10%	17	-32.621	1.6405	2.452	-0.80906	264	0
ws - 10%	18	-32.83	2.29	2.456	-0.64725	260	-1.5152
ws - 1%	19	-32.329	0.73046	2.452	-0.80906	260	-1.5152
ws + 1%	20	-32.117	0.068609	2.448	-0.97087	260	-1.5152
ws + 10%	21	-31.623	-1.47	2.448	-0.97087	260	-1.5152

Table 1.2 – Table de la variation des performances de l'antenne - FR4

1.3 Céramique

1.3.1 Balayage des paramètres variables

FIGURE 1.6 – Balayage de paramétrique de l'antenne bipolaire avec substrat en céramique

FIGURE 1.7 – Variation normalisée des performances

1.3.2 Rayonnement de l'antenne

Directivité

| Farfield (F=2.45) [1] | Type | Farfield | Approximation enabled (kR >> 1) | Component | Abs | Output | Directivity | Frequency | 2.45 GHz | Rad. Effic. | -0.01015 dB | Tot. Effic. | -0.01256 dB | Component |

Figure 1.8 – Directivité de l'antenne - Céramique

Type	Farfield
Approximation	enable(kR >> 1)
Component	Abs
Output	Directivity
Frequency	$2.45\mathrm{GHz}$
Rad. Effic.	$-0.01015{\rm dBi}$
Tot. Effic.	$-0.01256\mathrm{dBi}$
Dir.	$2.421\mathrm{dBi}$

Gain IEEE

FIGURE 1.9 – Gain IEEE de l'antenne Céramique

Type	Farfield
Approximation	enable(kR >> 1)
Component	Abs
Output	Gain
Frequency	$2.45\mathrm{GHz}$
Rad. Effic.	$-0.01015\mathrm{dBi}$
Tot. Effic.	$-0.01256\mathrm{dBi}$
Gain	$2.411\mathrm{dBi}$

Gain Realized

pproximation enabled (kR >> component Abs Dutput Realized Gain requency 2.45 GHz lad. Effic. -0.01015 dB lot. Effic. -0.01256 dB ltd. Gain 2.408 dB

Figure 1.10 – Gain Realized de l'antenne Céramique

Type	Farfield
Approximation	enable(kR >> 1)
Component	Abs
Output	Realized Gain
Frequency	$2.45\mathrm{GHz}$
Rad. Effic.	$-0.01015{\rm dBi}$
Tot. Effic.	$-0.01256\mathrm{dBi}$
Rlzd. Gain	$2.408\mathrm{dBi}$

Var	ID	S_{11} [dB]	dS_{11} [%]	F_c [GHz]	dF_c [%]	BW[MHz]	dBW [%]
i - 10%	1	-16.683	-0.84429	2.444	-0.1634	252	-3.0769
i - 1%	2	-16.431	-2.3437	2.66	8.6601	284	9.2308
+ 0%	3	-16.825	0	2.448	0	260	0
i + 1%	4	-16.836	0.066212	2.448	0	260	0
i + 10%	5	-16.849	0.14586	2.448	0	260	0
11 - 10%	6	-16.994	1.0042	2.452	0.1634	264	1.5385
11 - 1%	7	-16.954	0.76524	2.456	0.3268	260	0
11 + 1%	8	-16.846	0.12802	2.452	0.1634	256	-1.5385
11 + 10%	9	-16.825	-0.00029718	2.448	0	260	0
12 - 10%	10	-16.726	-0.58812	2.444	-0.1634	260	0
12 - 1%	11	-16.805	-0.11929	2.468	0.81699	260	0
12 + 1%	12	-16.859	0.20505	2.432	-0.65359	256	-1.5385
12 + 10%	13	-17.083	1.5331	2.272	-7.1895	232	-10.769
ls - 10%	14	-16.195	-3.743	2.448	0	248	-4.6154
ls - 1%	15	-16.781	-0.25861	2.448	0	260	0
ls + 1%	16	-16.89	0.38859	2.448	0	260	0
ls + 10%	17	-17.307	2.864	2.452	0.1634	268	3.0769
ws - 10%	18	-17.005	1.0731	2.452	0.1634	260	0
ws - 1%	19	-16.853	0.16719	2.448	0	260	0
ws + 1%	20	-16.82	-0.0274	2.448	0	260	0
ws + 10%	21	-16.682	-0.85065	2.448	0	256	-1.5385

Table 1.3 – Table de la variation des performances de l'antenne - Céramique

1.3.3 Rayonnement de l'antenne

Directivité

Figure 1.11 – Directivité de l'antenne - Céramique

Type	Farfield
Approximation	enable(kR >> 1)
Component	Abs
Output	Directivity
Frequency	$2.45\mathrm{GHz}$
Rad. Effic.	$-0.01119{\rm dBi}$
Tot. Effic.	$-0.09294{\rm dBi}$
Dir.	$2.820\mathrm{dBi}$

Gain IEEE

FIGURE 1.12 – Gain IEEE de l'antenne Céramique

Type	Farfield
Approximation	enable(kR >> 1)
Component	Abs
Output	Gain
Frequency	$2.45\mathrm{GHz}$
Rad. Effic.	$-0.01119{\rm dBi}$
Tot. Effic.	$-0.09294\mathrm{dBi}$
Gain	$2.809\mathrm{dBi}$

Gain Realized

FIGURE 1.13 – Gain Realized de l'antenne Céramique

Type	Farfield
Approximation	enable(kR >> 1)
Component	Abs
Output	Realized Gain
Frequency	$2.45\mathrm{GHz}$
Rad. Effic.	$-0.01119{\rm dBi}$
Tot. Effic.	$-0.09294{\rm dBi}$
Rlzd. Gain	$2.727\mathrm{dBi}$