CSE3318: Dynamic Programming Matrix Chain Multiplication by Dr. Bhanu Jain

Unauthorized copying, distribution, or reproduction of this material is **strictly prohibited**.

All slides are based on: *Introduction to Algorithms*, by Thomas H. Cormen, Charles E. Leiserson, Ronald E. Rivest, Clifford Stein, 3rd edition (CLRS)

Dynamic Programming

Divide and Conquer method:

- solve problems by combining the solutions to subproblems
- partition the problem into disjoint subproblems
- solve the subproblems recursively, and then combine their solutions to solve
- does more work than necessary, repeatedly solving the common subproblems

Dynamic programming:

- applies when the subproblems overlap —that is, when subproblems share subproblems.
- solves each subproblem just once and then saves its answer in a table
- avoiding the work of recomputing the answer every time it solves each subproblem
- applied to optimization problems
- such subproblems can have many possible solutions
- such solution has a value, find a solution with the optimal (minimum or maximum) value
- call such a solution an optimal solution to the problem, as opposed to the optimal solution

Dynamic Programming

- Dynamic-programming algorithm, follows a sequence of four steps:
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
 - 4. Construct an optimal solution from computed information.

- Steps 1–3 form the basis of a dynamic-programming solution to a problem
- If we need only the value of an optimal solution, and not the solution itself, omit step 4
- When we do perform step 4, we sometimes maintain additional information during step 3 so that we can easily construct an optimal solution

Dynamic Programming

- Like divide-and-conquer, solve problem by combining the solutions to sub-problems.
- Differences between divide-and-conquer and DP:
 - Independent sub-problems, solve sub-problems independently and recursively, (so same sub(sub)problems solved repeatedly)
 - DP is applicable when the sub-problems are not independent, i.e. when sub-problems share subsub-problems. It solves every sub-sub-problem just once and save the results in a table to avoid duplicated computation.

Elements of Dynamic Programming Algorithms

- **Sub-structure:** decompose problem into smaller sub-problems. Express the solution of the original problem in terms of solutions for smaller problems.
- **Table-structure:** Store the answers to the sub-problem in a table, because sub-problem solutions may be used many times.
- **Bottom-up computation:** combine solutions on smaller sub-problems to solve larger sub-problems, and eventually arrive at a solution to the complete problem.

Applicability to Optimization Problems

- Optimal sub-structure (principle of optimality): for the global problem to be solved optimally, each sub-problem should be solved optimally. This is often violated due to sub-problem overlaps. Often by being "less optimal" on one problem, we may make a big savings on another sub-problem.
- Small number of sub-problems: Many NP-hard problems can be formulated as DP problems, but these formulations are not efficient, because the number of sub-problems is exponentially large.
 - Ideally, the number of sub-problems should be at most a polynomial number.

Matrix-Chain Multiplication

- An example of dynamic programming is an algorithm that solves the problem of matrix-chain multiplication
- Problem: Given a sequence (chain) < A₁, A₂,, A_n > compute A₁*A₂*...*A_n
- Matrix multiplication is associative, and so all parenthesizations yield the same product.
- A product of matrices is fully parenthesized if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses.
- The chain of matrices $< A_1, A_2, A_3, A_4 >$ can be parenthesized in 5 distinct ways.
- Each of these 5 choices have a different cost for evaluating the product.

```
(A_1(A_2(A_3A_4))),

(A_1((A_2A_3)A_4)),

((A_1A_2)(A_3A_4)),

((A_1(A_2A_3))A_4),

(((A_1A_2)A_3)A_4).
```

Matrix Multiplication (A,B)

```
MATRIX-MULTIPLY (A, B)

1 if A.columns \neq B.rows

2 error "incompatible dimensions"

3 else let C be a new A.rows \times B.columns matrix

4 for i = 1 to A.rows

5 for j = 1 to B.columns

6 c_{ij} = 0

7 for k = 1 to A.columns

8 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}

9 return C
```


Matrix Chain Products

Matrix Chain-Product:

- Compute A=A₀*A₁*...*A_{n-1}
- A_i is $d_i \times d_{i+1}$
- Problem: How to parenthesize?
- Example
 - B is 3 × 100
 - C is 100 × 5
 - D is 5 × 5
 - (B*C)*D takes 1500 + 75 = 1575 ops
 - B*(C*D) takes 1500 + 2500 = 4000 ops

BC 3X5 (BC)D (3x5)* 5X5 => 3X5X5

Enumeration Approach

- Matrix Chain-Product Algorithm.:
 - Try all possible ways to parenthesize A=A₁*A₂*...*A_n
 - Calculate number of ops for each one
 - Pick the one that is best
- Running time:
 - The number of parenthesizations is equal to the number of binary trees with n nodes
 - This is **exponential**!

Greedy Approach

- Idea #1: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99

 - Greedy idea #1 gives A*((B*C)*D)), which takes 109989+9900+108900=228,789 ops

• (A*B)*(C*D) takes **9999+89991+89100**=189090 ops

AxB 101x11x9 =>**9999** C*D 9x100x99 =>**89100** (A*B)*(C*D) 101x9x99 =>89,991

BC 11x9x100=>9900

(B*C)*D 11x100x99 =>108900

A*((B*C)*D)) 101x11x99 =>**109989**

The greedy approach is not giving us the optimal value.

Recursive Approach

- Define subproblems:
 - Find the best parenthesization of $A_i * A_{i+1} * ... * A_i$.
 - Let **m[i, j]** denote the number of operations done by this subproblem.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiplication is at index i: $(A_1^*...*A_i)^*(A_{i+1}^*...*A_n)$.
 - Then the optimal solution m[1, n] is the sum of two optimal subproblems, m[1, i] and m[i+1, n] plus the time for the last multiplication.

Recursive Tree For The Computation of Recursive-Matrix-Chain (p,1,4)

- This divide-and-conquer recursive algorithm solves the overlapping problems over and over.
- In contrast, DP
 - solves the same (overlapping) subproblems only once (at the first time), then store the result in a table
 - when the same subproblem is encountered later, just look up the table to get the result.
- The divide-and-conquer is better for the problem which generates brand-new problems at each step of recursion.

Subproblem Overlap

```
Algorithm Recursive Matrix Chain(S, i, j):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal parenthesization of S

if i=j

then return 0

for k \leftarrow i to j do

N_{i,j} \leftarrow \min\{N_{i,j}, Recursive Matrix Chain(S, i, k) + Recursive Matrix Chain(S, k+1, j) + d_{i-1} d_k d_j\}

return N_{i,j}
```

Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiplication is at.
- Let us consider all possible places for that final multiplication:
 - m[i, j] = the minimum cost for computing the subproducts $A_{i...k}$ and $A_{k+1...j}$ plus the cost of multiplying these two matrices together
 - Computing matrix product A_{i..k} A_{k+1..j} takes p_{i-1} p_k p_j scalar multiplications

$$m[i, j] = m[i, k] + m[k + 1, j] + p_{i-1}p_k p_j$$

• The recursive definition for the minimum cost of parenthesizing the product A_i A_{i+1} ...A_i is

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

- m[i, j] values give the costs of optimal solutions to subproblems, but do not provide all the information to construct an optimal solution
- s[i, j] is a value of k at which to split the product A_i* A₂*...* A_i in an optimal paranthesization.
- Note that subproblems are not independent—the subproblems overlap.

MATRIX-CHAIN-ORDER(p)

Input: Array p of size n+1 representing the dimensions of n matrices

```
Output: Two tables: m[i,j] (min cost) and s[i,j] (split points)
   n = length(p) - 1
    let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
    for i \leftarrow 1 to n
       m[i, i] \leftarrow 0
    for I \leftarrow 2 to n // I is the chain length
       for i \leftarrow 1 to n - l + 1
        j ← i + l - 1
          m[i, i] \leftarrow \infty
          for k \leftarrow i to j - 1
              q \leftarrow m[i, k] + m[k+1, j] + p[i-1] * p[k] * p[j]
10
              if q < m[i, j]
11
12
                 m[i, j] \leftarrow q
                 s[i, j] \leftarrow k
13
     return m, s
```

- This procedure assumes that matrix A_i has dimensions p_{i-1} p_i for i=1,2,...n
 - Its input is a sequence $p = \langle p_0, p_1, ..., p_n \rangle$, where p.length= n+ 1
- The procedure uses an auxiliary table m[1..n, 1..n] for storing the m[i, j] costs
- The procedure uses an auxiliary table s[1..n-1, 2..n] that records which index of k achieved the optimal cost in computing m[i, j].
- We use the table s to construct an optimal solution.
- Recursive definition for the minimum cost of parenthesizing the product $A_iA_{i+1}...A_j$ becomes
- Equation shows that the cost m[I,j] of computing a matrix-chain product of j-I+1 matrices depends only on the costs of computing matrix-chain products of fewer than j-I+1 matrices.
- The algorithm fills the table m in a manner that corresponds to solving the parenthesization problem on matrix chains of increasing length

```
A = [2,3,2,4,5]

A1(2x3) A2(3X2) A3(2X4) A4(4X5)
```

MATRIX-CHAIN-ORDER(p)

Input: Array p of size n+1 representing the dimensions of n matrices

```
Output: Two tables: m[i,j] (min cost) and s[i,j] (split points)
```

```
1 n = length(p) - 1
   let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
    for i \leftarrow 1 to n
       m[i, i] \leftarrow 0
    for I \leftarrow 2 to n // I is the chain length
       for i \leftarrow 1 to n - l + 1
      j ← j + l - 1
      m[i, j] ← ∞
         for k \leftarrow i to j - 1
             q \leftarrow m[i, k] + m[k+1, j] + p[i-1] * p[k] * p[j]
10
         if q < m[i, j]
11
                m[i, j] \leftarrow q
12
                s[i, j] \leftarrow k
13
    return m, s
```

- Line 3-4: First compute m[i,i]= 0 for i=1,2,... n (the minimum costs for chains of length 1)
- Line 5-13: Use recurrence to compute m[i, i+1] for i = 1, 2,... n − 1 (min cost for chains of length 2)
 - Then compute m[i, i+2] for i = 1, 2,... n − 2 (min cost for chains of length l= 3) an so on
- Lines 10–13: At each step, the m[i, j] cost computed depends only on table entries m[i, k] and m[k+1, j] already computed
- Since we have defined m[i, j] only for i ≤ j, only the portion of the table m strictly above the main diagonal is used.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}$$

$$A = [2,3,2,4,5]$$

 $A1(2x3)$ $A2(3X2)$ $A3(2X4)$ $A4(4X5)$

MATRIX-CHAIN-ORDER(p)

Input: Array p of size n+1 representing the dimensions of n matrices

```
Output: Two tables: m[i,j] (min cost) and s[i,j] (split points)
1 n = length(p) - 1
    let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
    for i \leftarrow 1 to n
       m[i, i] \leftarrow 0
    for I \leftarrow 2 to n // I is the chain length
       for i \leftarrow 1 to n - l + 1
         j ← i + l - 1
          m[i, j] \leftarrow \infty
          for k \leftarrow i to i - 1
              q \leftarrow m[i, k] + m[k+1, j] + p[i-1] * p[k] * p[j]
10
              if q < m[i, j]
11
12
                 m[i, j] \leftarrow q
13
                 s[i, j] \leftarrow k
    return m, s
```

- The nested loop structure of MATRIX-CHAIN-ORDER yields a running time of O(n³) for the algorithm
 - The loops are nested three deep, and each loop index (l, i, and k) takes on at most n-1 values
- The algorithm requires $\Theta(n^2)$ space to store the m and s tables
- The algorithm is more efficient than the exponential-time method of enumerating all possible parenthesizations and checking each one

$$A = [2,3,2,4,5]$$

 $A1(2x3)$ $A2(3X2)$ $A3(2X4)$ $A4(4X5)$

```
A = [2,3,2,4,5]
A1(2x3) A2(3X2) A3(2X4) A4(4X5)
```

MATRIX-CHAIN-ORDER(p)

```
Input: Array p of size n+1 representing the dimensions of n matrices
Output: Two tables: m[i,j] (min cost) and s[i,j] (split points)
   n = length(p) - 1
    let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
    for i \leftarrow 1 to n
       m[i, i] \leftarrow 0
    for I \leftarrow 2 to n // I is the chain length
       for i \leftarrow 1 to n - l + 1
         j ← i + l - 1
          m[i, j] \leftarrow \infty
          for k \leftarrow i to j - 1
10
             q \leftarrow m[i, k] + m[k+1, j] + p[i-1] * p[k] * p[j]
11
             if q < m[i, j]
12
                 m[i, j] \leftarrow q
13
                s[i, j] \leftarrow k
    return m, s
                                            m=
                                                      [[0, 12, 28, 68],
                                                       [ , 0, 24, 70],
                                                                 0, 40],
                                                                       0]]
```

	41.	AZ 3,XZ	A 3 244	A4- AX5	
2 1 2 3 3 1. 2 4 1	1 K 2 1 3 2 4 3 3 1 2 4 2 3 4 1	m[l, K] 0 0 0 2×3×2=12 0 3×2×4=24 -0 2×3×2=12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$43 \times 2 = 12 = 12$ $3 \times 2 \times 2 = 24 = 24$ $3 \times 4 \times 5 = 40 = 40$ $43 \times 4 = 24 = 48$ $40 \times 4 = 16 = 28$ $47 \times 4 = 20 = 100$ $44 \times 5 = 60 = 84$ $47 \times 3 \times 6 = 30 = 100$ $47 \times 2 \times 5 = 20 = 72$	
m Ci, 02/ 5 CKAP 1 2	· © F:	28 2/1 28/2 0 24/2 0	0 2 4 .62/3 70/.2 .40/3	*48=40 (68)	
4	((A)	A 2)	A3) A	14)	9 nu Jain 2

The END!