

re: pozNM 35

JP6159079 Biblio

Page 1

Drawing

۱ħ	1T	Al	(E	D	E	V	IC	E	F	O	R	E	N	G	11	1	Ε
----	----	----	----	---	---	---	----	---	---	---	---	---	---	---	----	---	---

Patent Number: JP6159079 Publication date: 1994-06-07

KANEKO MAKOTO; others: 02 Inventor(s):

Applicant(s): **FUJI HEAVY IND LTD**

Requested Patent: ☐ JP6159079

Application Number: JP19920341393 19921126

Priority Number(s):

IPC Classification: F02B31/02; F01L3/06; F02B17/00; F02M35/10

EC Classification:

Equivalents:

Abstract

PURPOSE:To enhance an effect of combustion acceleration by generating intensive tumble flow only at the time of low loading at low speeds, and concurrently letting gas flow be stratified in a method which generates tumble flow by splitting each intake port by a bulkhead.

CONSTITUTION: The inside of each intake port 11 and 12 is split by a vertical bulkhead 20 so as to be formed into a tumble port 21 and a bypass port 22, the inside of the tumble port 21 is furthermore split by a crosswise bulkhead 30 so as to be formed into a central port 31 and the side port, the central port 31, the side port and the bypass port 22 are joined together directly in front of each intake valve 14 and 15 so as to be communicated with a combustion chamber 6, an injector 23 is disposed at the side of the inlet of the central port 31, and a tumble control valve 24 is disposed at the side of the inlet of the bypass port 22 in such a way as to be opened/closed as specified. Air is sucked in from the central port 31, and concurrently fuel is injected, moreover, air is also sucked in from the side port, so that tumble flow formed by mixture and air within a cylinder is stratified by means of aforesaid gas flow.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-159079

(43)公開日 平成6年(1994)6月7日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FI	技術表示箇所
F 0 2 B 31/02	J	7541-3G		
F01L 3/06	Α	8206-3G		
	В	8206-3G		•
F02B 17/00	D	9039-3G		
F02M 35/10	301 B	9247-3G		
			1	審査請求 未請求 請求項の数1(全 4 頁)
(21)出願番号	特願平4-341393		(71) 出願人	000005348
				富士重工業株式会社
(22)出願日	平成4年(1992)11月	∄26日		東京都新宿区西新宿一丁目7番2号
			(72)発明者	金子 誠
				東京都三鷹市大沢三丁目9番6号 株式会
				社スパル研究所内
			(72)発明者	
		•		東京都三鷹市大沢三丁目9番6号 株式会
				社スパル研究所内
			(72)発明者	
				東京都三鷹市大沢三丁目9番6号 株式会
				社スパル研究所内
			(74)代理人	弁理士 小橋 信淳 (外1名)

(54) 【発明の名称】 エンジンの吸気装置

(57) 【要約】

【目的】 吸気ボートを隔壁により分割してタンブル流を生成する方式において、低速低負荷時にのみ強いタンブル流を生成すると共に確実に成層化して、燃焼促進の効果を増大する。

【構成】 吸気ボート11,12の内部を上下隔壁20により分割してタンプルポート21とバイバスポート22を形成し、タンプルポート31の内部を更に左右隔壁30で分割して中央ポート31と側ポート32を形成し、中央ポート31、側ポート32及びバイバスポート22を吸気弁14,15の直前で合流して燃焼室6に連通し、中央ポート31の入口側にインジェクタ23を配置し、バイバスポート22の入口側にタンプル制御弁24を所定の条件で開閉するように設ける。そして低速低負荷時には、中央ポート31から吸気すると共に燃料噴射し、且つ側ポート32から吸気し、これらのガス流によりシリンダ3内に混合気と空気とのタンプル流を成層化して生成する。

特開平6-159079

1

【特許請求の範囲】

吸気ポートの内部に上下隔壁を設けて上 【語录項1】 下に分割することでタンプルポートとパイパスポートを 形成し、タンブルポートの内部に更に左右隔壁を設けて 左右に分割することで中央ポートと側ポートを形成し、 これらの中央ポート、側ポート及びパイパスポートを吸 気弁の直前で合流して燃焼室に連通し、中央ポートの入 口側にインジェクタを配置し、パイパスポートの入口側 にタンブル制御弁を所定の条件で開閉するように設ける ことを特徴とするエンジンの吸気装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、車両用の4サイクルガ ソリンエンジンにおいて吸気の際にシリンダ内にタンプ ル流を発生する吸気装置に関し、詳しくは、吸気ポート を隔壁により分割してタンブル流を生成する方式におい て、タンプル流を生成すると共に混合気を成層化するも のに関する。

[0002]

【従来の技術】エンジンの運転領域において、特に低速 20 低負荷時には吸入空気量が大幅に絞られることで燃焼が 悪くなり、燃費、エミッション、運転性能が悪化する傾 向にある。そこでこのような低速低負荷時の燃費等を改 善する手段としては、吸気の際にシリンダ内の軸方向に 旋回するタンブル流(縦スワール)を生成し、圧縮行程 後半でタンプル崩壊する際に生じる乱れて、燃焼室内に 強い乱流を有効に発生する。また燃焼室内の混合気をリ ッチ層とリーン層を明確に区分して成層化し、これらの 混合気の乱流や成層化により燃焼を促進することが有効 を効果的に生成し、且つ混合気を成層化することが望ま れる。

【0003】従来、この種のエンジンの吸気装置に関し ては、例えば実開平1-125863号公報の先行技術 がある。ここで2個の吸気ポートの内部に仕切り板を設 置して、中央とその左右の3つの通路に分割し、中央通 路の直前にインジェクタを配置する。そして全負荷域で 3つの通路から吸気すると共に中央通路からのみ燃料噴 射し、シリンダ内の中央に混合気のリッチ層を、その左 右にリーン層を配置するように成層化することが示され 40 ている。

[0004]

【発明が解決しようとする課題】ところで、上記先行技 術のものにあっては、低速低負荷時の吸入空気量の少な い状態でも吸気ポート全域から吸気されるので、シリン ダ内に生成されるタンプル流が弱く、このタンプル流に よる燃焼促進の効果があまり期待できない。また高負荷 時にも混合気が成層化するため、空気利用率がむしろ低 下してスモークが発生する等の問題がある。

で、吸気ポートを隔壁により分割してタンプル流を生成 する方式において、低速低負荷時にのみ強いタンプル流 を生成すると共に確実に成層化して、燃焼促進の効果を 増大することを目的とする。

2

[0006]

【課題を解決するための手段】上記目的を達成するた め、本発明は、吸気ポートの内部に上下隔壁を設けて上 下に分割することでタンブルポートとパイパスポートを 形成し、タンプルポートの内部に更に左右隔壁を設けて 10 左右に分割することで中央ポートと側ポートを形成し、 これらの中央ポート、側ボート及びパイパスポートを吸 気弁の直前で合流して燃焼室に連通し、中央ポートの入 口側にインジェクタを配置し、パイパスポートの入口側 にタンプル制御弁を所定の条件で開閉するように設ける ものである。

[0007]

【作用】上記構成に基づき、例えば低速低負荷時に、夕 ンプル制御弁を閉じて中央ポートと側ポートから吸気さ れ、中央ポートの吸入空気にインジェクタにより燃料噴 射して混合気が生成され、これにより中央ポートの混合 気と側ポートの空気が燃焼室の排気ポート側を経由して シリンダに流入する。そこでこれらのガス流により、シ リンダ内にその軸方向に旋回する混合気と空気とのタン ブル流が効果的に生成され、この場合に両タンブル流は 明確に区分して成層化されるのであり、こうしてタンプ ル流と成層化の両機能により燃焼が促進される。また高 速高負荷時にタンプル制御弁が開くと、中央ポート、側 ポート及びパイパスポートの全域から吸気され、この場 合は各ポートの空気が吸気弁の直前で合流して、そこに である。そこで低速低負荷の運転条件では、タンブル流 30 予め滞留する燃料と良好に混合してシリンダに流入する ようになる。

[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明 する。図1ないし図3において、2吸気弁式エンジンに ついて説明する。符号1はエンジン本体であり、シリン ダブロック2のシリンダ3にはピストン4が往復移動可 能に挿入され、シリンダヘッド5においてシリンダ3の 頂部に燃焼室6が設けられている。また、1つの吸気通 路10から2つの吸気ポート11、12が分岐壁13に より二叉状に分岐され、これらの2つの吸気ポート1 1. 12が燃焼室6の片側に連通され、各吸気ポート1 1, 12にそれぞれ吸気弁14, 15が開閉可能に設置 されている。

【0009】ここで吸気ポートは、シリングの軸線に対 して略直角に屈曲して連通しているため、特に吸気ポー ト内の上部を通る空気流は、シリンダ中心より排気ポー ト側に指向してシリンダ内に流入する。従って、吸気ボ ート内部を隔壁により上下に分割して、隔壁の上部のみ から吸気することで、シリンダ内にタンプル流を生成す 【0005】本発明は、この点に鑑みてなされたもの 50 ることができる。また隔壁の上部の左右方向を更に隔壁

により分割し、中央のみからインジェクタにより燃料噴 射することで、シリンダ内に混合気のリッチ層とリーン 層を分離して形成して成層化することができる。更に、 高速高負荷時に吸気ポート全域で吸気する際の燃料との 混合を考慮すると、吸気弁の直前で上下と左右の隔壁で 分割したポートを連通した構成にする必要がある。

【0010】そこで2つの吸気ポート11,12の内部 において、入口から吸気弁14, 15の直前までの領域 に上下隔壁20が水平に設置される。上下隔壁20は、 図4のように、全体がポート形状に沿って湾曲し、一部 10 が二叉状に分岐して形成される。そしてこの上下隔壁2 0により吸気ポート11, 12の内部が上下に2分割さ れ、上下隔壁20の上部にタンプルポート21が、上下 隔壁20の下部にパイパスポート22がそれぞれ形成さ

【0011】また上下隔壁20の上の略同一の領域には 2つの左右隔壁30が垂直に設置され、この左右隔壁3 0によりタンプルポート21が更に左右に3分割され る。そしてタンプルポート21の内部において、内側に 二叉状の中央ポート31が、その両サイドに直線状の側 ポート32が形成される。ここで中央ポート31は、左 右隔壁30の傾斜により下が狭くて上が広い断面に形成 され、流速分布をシリンダ中心に向け、且つ左右隔壁3 0に付着する燃料をスムースに流下することが可能にな っている。更に、これらの隔壁20,30の終端は吸気 弁14, 15の直前に位置して、パイパスポート22と 中央ポート31、側ポート32がこの吸気弁直前で相互 に連通される。

【0012】一方、中央ポート31の入口の上方には、 インジェクタ23が吸気弁側に指向して燃料噴射するよ 30 うに配置される。またパイパスポート22の入口には夕 ンプル制御弁24が、アクチュエータ25により開閉す るように設けられる。ここでインジェクタ23による燃 料は、低速低負荷時では吸入空気量、エンジン回転数等 に基づいて少なく定めて吸気行程中の時期に噴射し、高 速高負荷時には多量の燃料を定めて吸気行程前に噴射す るように設定される。またタンプル制御弁24はアクチ ュエータ25により、低速低負荷時にのみ閉じるように 制御される.

【0013】次に、この実施例の作用について説明す 40 る。先ずエンジン運転時の吸気行程では、所定のタイミ ングで吸気弁14, 15が開閉し、シリンダ3の内部の ピストン4が往復移動し、更にインジェクタ23から燃 料噴射される。そこでアイドリング等の低速低負荷時に は、アクチュエータ25によりタンブル制御弁24が閉 じることで、パイパスポート22からの吸気がカットさ れる。このため吸気行程で2つの吸気弁14,15が開 くと、タンブルポート21の中央ポート31と倒ポート 32から吸気され、中央ボート31の吸入空気にのみイ ンジェクタ23により燃料噴射して混合気が生成され 50 直前に滞留する燃料は、いずれもその箇所で合流する多

る。そして中央ポート31の混合気とその両側の側ボー ト32の空気は、左右隔壁30により混合防止して、2 つの吸気ポート11, 12から燃焼室6を介してシリン ダ3に流入する。

【0014】そこで先ず、中央ポート31の混合気と側 ポート32の空気は、吸気ポート内上部の大きい曲率半 径の流路により案内されて排気ポート側に指向される。 次いで、中央ポート31の混合気は二叉に分岐して2つ の吸気ポート11.12の内側からそれぞれ流入する が、そのポート断面形状によりシリンダ中心寄りに集め て指向される。このためバルプ回りの流速分布は、図2 のように中央の混合気とその両側の空気とが分離して、 いずれも排気ポート側に向いたものになる。

【0015】そこで2つの吸気ポート11,12からの 混合気と空気は、シリンダ軸方向に向くように変向され ながら、直線的に排気ポート側を経由してシリンダ3内 に流入することになる。このためこれらのガス流によ り、図5のようにシリンダ3と燃焼室6の内部には、シ リンダ軸方向に旋回する混合気のタンプル流Tiと空気 のタンプル流Taとが効率良く生成される。この場合 に、混合気のタンプル流Tiはシリンダ中心付近と共に 点火プラグ7近傍に、空気のタンプル流Taはその両側 にそれぞれ明確に区分して生成され、確実に成層化した ものになる。

【0016】次いで圧縮行程では、シリンダ3内の混合 気がピストン4の移動で圧縮されることで、タンブル流 Ti, Taも崩れるようになる。そして圧縮行程後半で タンプル崩壊する際に大きく乱れて、燃焼室6内に強い 乱流を生じる。また燃焼室6内の混合気は、点火プラグ 7付近がリッチでその周囲がリーンな分布状態になる。 そこで燃焼室6の中央の点火プラグ7により着火される と、混合気は強い乱流により速い燃焼速度で燃焼し、且 つ良好に成層燃焼するのであり、こうして燃焼が促進さ れる。このため運転性能を犠牲にすることなく、希薄混 合気で燃焼することが可能になり、EGR制御によりエ ミッションを向上することができる。

【0017】高速高負荷時には、アクチュエータ25に よりタンブル制御弁24が開くことで、パイパスポート 22も連通する。そこで吸気行程では、2つの吸気ボー ト11, 12の中央ポート31、側ポート32及びパイ パスポート22の全域により多量の空気が吸入され、空 気の充填効率が向上して出力アップする。この場合に吸 気行程の前に予めインジェクタ23により多量の燃料が 噴射制御され、このため燃料が閉じている2つの吸気弁 14, 15の直前に一次的に滞留する。また吸気行程で 2つの吸気弁14, 15が開くと、中央ポート31、側 ポート32及びパイパスポート22を流れる空気は2つ の吸気弁14, 15の直前で合流し、一緒になってシリ ンダ3に吸入される。そこで2つの吸気弁14,15の

特開平6-159079

5

量の空気に触れて良好に混合することになり、こうして2つの吸気ポート11,12からシリンダ3に空気と燃料が混合して流入する。このためシリンダ3内に均一な混合気が生成して、良好に燃焼される。

【0018】以上、本発明の実施例について説明したが、インジェクタとタンブル制御弁の配置は逆であっても良い。また3吸気弁式にも適応することができる。

[0019]

【発明の効果】以上説明したように、本発明によれば、吸気ポートを隔壁により分割してタンプル流を生成する 10 方式において、タンプルポートを更に分割して中央ポートと側ポートが形成され、低速低負荷時には中央ポートからの燃料噴射による混合気と側ポートからの空気とを、排気ポート側に指向して吸入するように構成されるので、両者のタンプル流を効果的に生成することができる。この場合に混合気と空気とのタンプル流が明確に区分して生成されるので、確実に成層化される。

【0020】従って、タンブル流と成層化の両機能により、燃焼が安定且つ促進されて運転性能が向上する。また希薄混合気でも安定して燃焼することができるので、燃費やNOxのエミッションを共に低減できる。 高速高負荷時には、3つのポートの空気が吸気弁の直前で合流して、そこに滞留する燃料と良好に混合するので、高出力化する。吸気ポート内部を上下隔壁と左右隔壁により

4つのポートに分割する構成であるから、構造も簡単である。

【図面の簡単な説明】

【図1】本発明に係るエンジンの吸気装置の実施例を示す縦断面図である。

【図2】図1のA-A断面図である。

【図3】ポート側の正面図である。

【図4】上下隔壁と左右隔壁の構成を示す斜視図である。

10 【図5】混合気と空気とのタンブル流の生成状態を示す 図である。

【符号の説明】

3 シリンダ

6 燃焼室

11, 12 吸気ポート

14,15 吸気弁

20 上下隔壁

21 タンプルポート

22 パイパスポート

23 インジェクタ

24 タンプル制御弁

30 左右隔壁

31 中央ポート

32 側ポート