DEVOIR À LA MAISON Nº 11 : CORRIGÉ

SOLUTION 1.

- 1. Il suffit de vérifier les différents axiomes :
 - \blacktriangleright x est une loi interne sur \mathbb{U}_n . En effet, si $z_1, z_2 \in \mathbb{U}_n$, alors $(z_1 z_2)^n = z_1^n z_2^n = 1$ donc $z_1 z_2 \in \mathbb{U}_n$.
 - \triangleright × étant associative sur \mathbb{C} , elle l'est encore sur \mathbb{U}_n .
 - ▶ 1 est l'élément neutre de (\mathbb{U}_n, \times) .
 - ▶ Si $z \in \mathbb{U}_n$, $\frac{1}{z} \in \mathbb{U}_n$ donc tout élément de \mathbb{U}_n possède un inverse dans \mathbb{U}_n .

Remarque. On peut également montrer que \mathbb{U}_n est un sous-groupe de (\mathbb{C}^*, \times) .

2. a. Soit $z \in \mathbb{U}_{\mathfrak{m} \wedge \mathfrak{n}}$. On a donc $z^{\mathfrak{m} \wedge \mathfrak{n}} = 1$. Puisque \mathfrak{m} et \mathfrak{n} sont des multiples de $\mathfrak{m} \wedge \mathfrak{n}$, on a également $z^{\mathfrak{m}} = 1$ et $z^{\mathfrak{n}} = 1$. Donc $z \in \mathbb{U}_{\mathfrak{m}} \cap \mathbb{U}_{\mathfrak{n}}$.

Soit $z \in \mathbb{U}_m \cap \mathbb{U}_n$. On a donc $z^m = 1$ et $z^m = 1$. D'après le théorème de Bezout, il existe $(u, v) \in \mathbb{Z}^2$ tel que $mu + nv = m \wedge n$. Ainsi $z^{m \wedge n} = (z^m)^u (z^n)^v = 1$ et $z \in \mathbb{U}_{m \wedge n}$.

Par double inclusion, on a donc $\mathbb{U}_{\mathfrak{m}} \cap \mathbb{U}_{\mathfrak{n}} = \mathbb{U}_{\mathfrak{m} \wedge \mathfrak{n}}$.

b. Soit $z \in \mathbb{U}_m \mathbb{U}_n$. Il existe donc $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$ tels que $z = z_1 z_2$. Dans ce cas, $z^{m \vee n} = z_1^{m \vee n} z_2^{m \vee n}$. Mais comme $m \vee n$ est un multiple de m, $z_1^{m \vee n} = 1$. De même, $m \vee n$ étant un multiple de n, $z_2^{m \vee n} = 1$. Ainsi $z^{m \vee n} = 1$ et $z \in \mathbb{U}_{m \vee n}$.

Soit $z \in \mathbb{U}_{m \vee n}$. Par le théorème de Bezout, il existe $(u,v) \in \mathbb{Z}^2$ tel que um + vn = 1. Posons $z_1 = z^{vn}$ et $z_2 = z^{um}$. On a bien $z = z_1 z_2$. De plus, $z_1^m = z^{vmn} = 1$ car vmn est un multiple de $m \vee n$. De même, $z_2^n = z^{umn} = 1$. Ainsi $z = z_1 z_2$ avec $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$. Donc $z \in \mathbb{U}_m \mathbb{U}_n$.

- 3. a. \times étant une loi interne associative sur \mathbb{U}_m et \mathbb{U}_n , * est une loi interne associative sur $\mathbb{U}_m \times \mathbb{U}_n$.
 - **b.** La structure de groupe commutatif de $(\mathbb{U}_m \times \mathbb{U}_n, *)$ découle de la structure de groupe commutatif de (\mathbb{U}_m, \times) et (\mathbb{U}_n, \times) . Son élément neutre est (1,1).

Remarque. $\mathbb{U}_{\mathfrak{m}} \times \mathbb{U}_{\mathfrak{n}}$ est appelé le *produit cartésien* de $\mathbb{U}_{\mathfrak{n}}$ et $\mathbb{U}_{\mathfrak{n}}$.

- **4. a.** Pour $z \in \mathbb{U}_{mn}$, $z^{mn} = 1$. Ainsi $(z^n)^m = 1$ et $(z^m)^n = 1$. Ceci prouve que $z^n \in \mathbb{U}_n$ et $z^m \in \mathbb{U}_n$. Ainsi f est bien définie.
 - **b.** Pour $(z, z') \in \mathbb{U}_{mn}^2$,

$$\mathsf{f}(zz') = ((zz')^{\mathfrak{m}}, (zz')^{\mathfrak{m}}) = (z^{\mathfrak{m}}z'^{\mathfrak{m}}, z^{\mathfrak{m}}, z'^{\mathfrak{m}}) = (z^{\mathfrak{n}}, z^{\mathfrak{m}}) * (z'^{\mathfrak{n}}, z'^{\mathfrak{m}}) = \mathsf{f}(z) * \mathsf{f}(z')$$

Donc f est bien un morphisme de groupes.

c. On a la série d'équivalences suivantes :

$$z \in \operatorname{Ker} f \iff (z^{\mathfrak{n}}, z^{\mathfrak{m}}) = (1, 1) \iff (z^{\mathfrak{n}} = 1 \operatorname{ET} z^{\mathfrak{m}} = 1) \iff z \in \mathbb{U}_{\mathfrak{m}} \cap \mathbb{U}_{\mathfrak{n}}$$

Ainsi Ker $f=\mathbb{U}_{\mathfrak{m}}\cap\mathbb{U}_{\mathfrak{n}}=\mathbb{U}_{\mathfrak{m}\wedge\mathfrak{n}}$ d'après une question précédente.

- $\mathbf{d.} \ f \ \mathrm{est \ injectif} \ \Longleftrightarrow \ \mathrm{Ker} \ f = \{1\} \ \Longleftrightarrow \ \mathbb{U}_{\mathfrak{m} \, \wedge \, \mathfrak{n}} = \{1\} \ \Longleftrightarrow \ \mathfrak{m} \, \wedge \, \mathfrak{n} = 1.$
- e. Comme $|\mathbb{U}_{mn}| = |\mathbb{U}_m \times \mathbb{U}_n| = mn$, f est bijectif si et seulement si f est injectif. Donc f est un isomorphisme si et seulement si $m \wedge n = 1$.
- 5. a. Si $z_1 \in \mathbb{U}_m$ et $z_2 \in \mathbb{U}_n$, alors $(z_1 z_2)^{mn} = (z_1^m)^n (z_2^n)^m = 1$. Donc $z_1 z_2 \in \mathbb{U}_{mn}$. Ainsi g est bien définie.
 - **b.** Pour $((z_1, z_2), (z_1', z_2')) \in (\mathbb{U}_m \times \mathbb{U}_n)^2$

$$g((z_1, z_2) * (z_1', z_2')) = g(z_1 z_1', z_2 z_2') = z_1 z_1' z_2 z_2' = (z_1 z_2)(z_1' z_2') = g(z_1, z_2)g(z_1', z_2')$$

Donc g est bien un morphisme de groupes.

- c. Im $g = \mathbb{U}_m \mathbb{U}_n = \mathbb{U}_{m \vee n}$ d'après une question précédente.
- $\mathbf{d.}\ g \ \mathrm{est} \ \mathrm{surjectif} \ \Longleftrightarrow \ \mathrm{Im} \ g = \mathbb{U}_{mn} \ \Longleftrightarrow \ \mathbb{U}_{m \,\vee\, n} = \mathbb{U}_{mn} \ \Longleftrightarrow \ m \,\vee\, n = mn \ \Longleftrightarrow \ m \,\wedge\, n = 1.$
- e. Comme $|\mathbb{U}_{mn}| = |\mathbb{U}_m \times \mathbb{U}_n| = mn$, g est bijectif si et seulement si g est surjectif. Donc g est un isomorphisme si et seulement si $m \wedge n = 1$.

REMARQUE. On a donc prouvé de deux manières différentes que les groupes $\mathbb{U}_m \times \mathbb{U}_n$ et \mathbb{U}_{mn} étaient isomorphes si et seulement si $m \wedge n = 1$. Vous retrouverez ce résultat l'année prochaine sous une autre forme connue sous le nom de lemme chinois.

SOLUTION 2.

1. On trouve

$d_0 = 123$	$\varepsilon_0 = 0,456$
$d_1 = 4$	$\varepsilon_1 = 0,56$
$d_2 = 5$	$\varepsilon_2 = 0, 6$
$d_3 = 6$	$\varepsilon_3 = 0$

On montre alors par récurrence que $d_n = \varepsilon_n = 0$ pour tout $n \geqslant 4$. En effet, $d_4 = \lfloor 10\varepsilon_3 \rfloor = 0$ et $\varepsilon_4 = 10\varepsilon_3 - d_4 = 0$ puisque $\varepsilon_3 = 0$. Supposons que $d_n = 0$ pour un certain $n \geqslant 4$. Alors $d_{n+1} = \lfloor 10\varepsilon_n \rfloor = 0$ et $\varepsilon_{n+1} = 10\varepsilon_n - d_{n+1} = 0$. Par récurrence, $d_n = 0$ pour tout $n \geqslant 4$.

- $\textbf{2.} \quad \textbf{a.} \ \mathrm{Soit} \ n \in \mathbb{N}. \ \mathrm{Si} \ n = 0, \ \epsilon_0 = x \lfloor x \rfloor \in [0,1[\ \mathrm{puisque} \ \lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1. \ \mathrm{Sinon} \ \epsilon_n = 10\epsilon_{n-1} \lfloor 10\epsilon_{n-1} \rfloor \in [0,1[\ \mathrm{car} \ \lfloor 10\epsilon_{n-1} \rfloor \leqslant 10\epsilon_{n-1} \rfloor + 1.$
 - **b.** Soit $n \in \mathbb{N}^*$. Alors $\varepsilon_{n-1} \in [0,1[$ d'après la question **2.a** et donc $10\varepsilon_{n-1} \in [0,10[$. On en déduit que $d_n = |10\varepsilon_{n-1}| \in [0,9]$.
 - c. On raisonne à nouveau par récurrence. Tout d'abord, $x = \lfloor x \rfloor + x \lfloor x \rfloor = d_0 + \epsilon_0 = S_0 + \frac{\epsilon_0}{10^n}$. Supposons que $x = S_n + \frac{\epsilon_n}{10^n}$ pour un certain $n \in \mathbb{N}$. En remarquant que $S_{n+1} = S_n + \frac{d_{n+1}}{10^{n+1}}$ et que $10\epsilon_n = d_{n+1} + \epsilon_{n+1}$:

$$x = S_{n+1} - \frac{d_{n+1}}{10^{n+1}} + \frac{d_{n+1} + \epsilon_{n+1}}{10^{n+1}} = S_{n+1} + \frac{\epsilon_{n+1}}{10^{n+1}}$$

Par récurrence, $x = S_n + \frac{\varepsilon_n}{10^n}$ pour tout $n \in \mathbb{N}$.

d. Puisque $\varepsilon_n \in [0,1[$ pour tout $n \in \mathbb{N},$ on déduit de la question précédente que pour tout $n \in \mathbb{N}$

$$x - \frac{1}{10^n} < S_n \leqslant x$$

Puisque $\lim_{n\to+\infty}\frac{1}{10^n}=0$, on obtient $\lim_{n\to+\infty}S_n=x$ d'après le théorème des gendarmes.

3. a. Soit $n \in \mathbb{N}$.

$$\begin{split} u_{n+1} &= 10^{N+T} S_{n+N+T+1} - 10^N S_{N+n+1} = 10^{N+T} \left(S_{n+N+T} + \frac{d_{n+N+T+1}}{10^{n+N+T+1}} \right) - 10^N \left(S_{n+N} + \frac{d_{n+N+1}}{10^{n+N+1}} \right) \\ &= u_n + \frac{d_{n+N+T+1} - d_{n+N+1}}{10^{n+1}} = u_n \end{split}$$

 $\operatorname{car}\left(d_{n}\right)$ est T-périodique à partir du rang N. On en déduit que (\mathfrak{u}_{n}) est constante.

b. Comme (u_n) est constante, $u_n = u_0$ pour tout $n \in \mathbb{N}$.

$$u_0 = 10^{N+T} S_{N+T} - 10^N S_N = \sum_{k=0}^{N+T} d_k 10^{N+T-k} - \sum_{k=0}^{N} d_k 10^{N-k}$$

 $\mathrm{Pour}\ k \in [\![0,N+T]\!],\, 10^{N+T-k} \in \mathbb{Z}\ \mathrm{et}\ d_k \in \mathbb{Z}.$

De même, pour $k \in [0, N]$, $10^{N-k} \in \mathbb{Z}$ et $d_k \in \mathbb{Z}$.

On en déduit que $u_0 \in \mathbb{Z}$. En posant $p = u_0$, on a donc bien pour tout $n \in \mathbb{N}$

$$10^{N+T}S_{n+N+T} - 10^{N}S_{n+N} = p$$

- c. Puisque (S_{n+N}) et (S_{n+N+T}) convergent toutes deux vers x (en tant que suites extraites de (S_n)), on obtient par unicité de la limite $10^{N+T}x 10^Nx = p$ et donc $x = \frac{p}{10^N(10^T-1)}$ puisque $10^T \ge 10 > 1$. Ceci prouve que x est rationnel.
- **4.** On remarque que $10^6 x 10^3 x = 123333$. Ainsi $x = \frac{123333}{999000} = \frac{41111}{333000}$.

- 5. a. La suite (r_n) est à valeurs dans l'ensmble fini [0, q-1]. Elle ne peut donc être injective. Ainsi il existe des entiers N et M distincts tels que $r_N = r_M$.
 - **b.** Pour simplifier, supposons N < M et posons T = M N. On va montrer par récurrence que (r_n) est T-périodique à partir du rang N.

On a bien $r_{N+T} = r_N$.

Supposons que $r_{n+T} = r_n$ pour un certain entier $n \ge N$. On sait que r_{n+1} et r_{n+1+T} sont les restes respectifs des divisions euclidiennes de $10r_n$ et $10r_{n+T}$ par b. Mais puisque $10r_n = 10r_{n+T}$, on a $r_{n+1} = r_{n+1+T}$ par unicité du reste dans la division euclidienne.

Par récurrence, $r_{n+T} = r_n$ pour tout $n \geqslant N$. Ainsi (r_n) est T-périodique à partir du rang N.

c. Soit $n \ge N+1$. On sait que q_n et q_{n+T} sont les quotients respectifs de $10r_{n-1}$ et $10r_{n-1+T}$ par b. Puisque $n-1 \ge N$ et que (r_n) est T-périodique à partir du rang N, $r_{n-1}=r_{n-1+T}$ et donc $10r_{n-1}=10r_{n-1+T}$. Par unicité du quotient dans la division euclidienne, $q_n=q_{n+T}$.

On a donc prouvé que (q_n) était T-périodique à partir du rang N+1.

d. Tout d'abord, $a = bq_0 + r_0$ avec $0 \le r_0 < b$. On en déduit que

$$x - 1 = \frac{a}{b} - 1 < q_0 \leqslant \frac{a}{b} = x$$

et donc que $q_0 = |x| = d_0$. Par ailleurs,

$$r_0 = a - bq_0 = b\left(\frac{a}{b} - q_0\right) = b\left(x - \lfloor x \rfloor\right) = b\epsilon_0$$

Supposons que $q_n = d_n$ et $r_n = b\epsilon_n$ pour un certain $n \in \mathbb{N}$. Par définition,

$$10\varepsilon_n = d_{n+1} + \varepsilon_{n+1}$$

et donc

$$10b\varepsilon_n = bd_{n+1} + b\varepsilon_{n+1}$$

ou encore

$$10r_n = bd_{n+1} + b\varepsilon_{n+1}$$

On sait que $d_{n+1} \in \mathbb{Z}$ d'après la question **2.b**. De plus, $b\epsilon_{n+1} = 10r_n - bd_{n+1} \in \mathbb{Z}$. Enfin, $\epsilon_{n+1} \in [0,1[$ d'après la question **2.a** donc $0 \le b\epsilon_{n+1} < b$. On en déduit que d_{n+1} et $q\epsilon_{n+1}$ sont le quotient et le reste de la division euclidienne de $10r_n$ par b. Par unicité du quotient et du reste dans la division euclidienne, $q_{n+1} = d_{n+1}$ et $r_{n+1} = b\epsilon_{n+1}$.

Par récurrence, $q_n = d_n$ et $r_n = b\epsilon_n$ pour tout $n \in \mathbb{N}$.

6. On trouve successivement

$q_0 = 0$	$r_0 = 13$
$q_1 = 3$	$r_1 = 25$
$q_2 = 7$	$r_2 = 5$
$q_3 = 1$	$r_3 = 15$
$q_4 = 4$	$r_4 = 10$
$q_5 = 2$	$r_5 = 30$
$q_6 = 8$	$r_6 = 20$
$q_7 = 5$	$r_7 = 25$

On a $r_1 = r_7$ donc (r_n) est 6-périodique à partir du rang 1 d'après la question **5.b**. Toujours d'après la question **5.b**, (q_n) est 6-périodique à partir du rang 2. Mais puisque les suites (d_n) et (q_n) sont identiques, (d_n) est également 6-périodique à partir du rang 2.