USN						

18MCE13

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU, Belagavi)
I Semester Master of Technology (Computer Science and Engineering)
DATA SCIENCE

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Each unit consists of two questions of 20 marks each.
- 2. Answer FIVE full questions selecting one from each unit.

UNIT-1

1	а	How is Machine learning different from Data Mining> Explain with	
		the help of an example.	06
	b	Illustrate with an example, 'rules with exceptions' and 'rules with	
		relations'.	10
	c	Paraphrase enumerating a concept space.	04
		OR	
2	а	List and explain properties of bias of the search in machine learning.	10
	b	Discuss over fitting and under fitting scenario in a learning model.	10

UNIT-2

3	а	Briefly explain the major data science project roles and	
		responsibilities.	10
	b	Explain why precision and recall are the major essential quality	
		measures of an information retrieval system. Compute the precision	
		and recall of the model at the threshold values given below:	
		+ -	
		Actual + 3 2	
		- 1 4	10
		OR	
4	а	With the help of a diagram, explain the stages of a data science	
		project.	12
	b	Explain bias and variance. How can it be overcome in a model.	08

UNIT-3

5	a	Consider the following dataset to answer:					
		i) What is the entropy of this collection of training examples					
		with respect to positive class?					
		ii) What are the information gains of A1 and A2, relative to					
		these training examples?					
		iii) What is the best split (between A1 and A2) according to the					
		Gini index?					

		Instance A_1	A_2	A_3	Target class			
		$\frac{1}{T}$	T	1.0	+			
		$\frac{1}{2}$ T	T	6.0	+			
		$\frac{1}{3}$ T	F	5.0	<u> </u>			
		$\frac{1}{4}$ F	F	4.0	+			
		5 <i>F</i>	Т	7.0	_			
		6 F	Т	3.0	_			
		7 <i>F</i>	F	8.0	_			
		8 <i>T</i>	F	7.0	+			
		9 <i>F</i>	Т	5.0	_		12	
	b	Explain the need and criterion	for t	ree p	runing.		08	
		_						
			0	R				
		TTT':1 :1 1 1 C	•		•.			
6	a	With the help of an example i		eacn,	write a note	on set, frequent	00	
	h	item set, support and confidence		nd +c	hla O mirran ha	10***	08	
	b	Consider the contingency table		IIU te	$\frac{\text{BB-2 given be}}{B \mid \bar{B} \mid}$	elow		
			<u>B</u>	1				
			1 89	$A \over \bar{A}$	89 1			
		<u> </u>				o of malos A \ D		
		i) For table-1, compute support and confidence of rules $A \rightarrow B$						
		and $B \rightarrow A$ ii) For table-2, compute support and confidence of rules $A \rightarrow B$						
		, 1						
	c	Consider the dataset shown be	low:				80	
	Č	Record	A	ВС	class			
		1	0	0 0				
		2	0	0 1				
		3	0	1 1	- 			
		4	0	1 1	_			
		5	0	0 1	+			
		6	1	0 1	+			
		7	1	0 1				
		8	1	0 1				
		9	1	1 1	+			
		10	1	0 1	•			
		Estimate the conditional prob	oabi	lities	for $P(A/+)$,	P(B/+), P(C/+),		
		P(A/-), P(B/-), P(C/-)					04	

UNIT-4

7	a	Compare and analyze linear regression and Logistic regression in detail with suitable examples.	10
	b	Design Perceptron learning algorithm for linearly separable hyper plane.	10
		OR	
8	а	Discuss bagging, boosting and stacking in detail with an example for each of them.	10
	b	How are Bayesian networks drawn? Explain with the help of an	
		example. Is Bayesian network useful for classification or prediction?	10

UNIT-5

9	a	Why is unsupervised learning considered more challenging than supervised learning?	05
	b	Explain hierarchical clustering algorithm considering the common types of linkages.	10
	С	Why are support vectors considered most important for classification?	05
		OR	
10	а	Explain K-means clustering with an example.	10
	b	Write a note on the following:	
		i) Principle Component analysis	
		ii) Cross validation	
		iii) Stacked Generalization	
		iv) Non linear decision boundaries	10