ANSLib Flow Solver Overview

Carl Ollivier-Gooch and Gary Yan

Advanced Numerical Simulation Laboratory
The University of British Columbia

Fourth High-Order CFD Workshop June, 2016

Space Discretization Highlights

- Cell- or vertex-centered unstructured finite-volume solver; density based
- Core: k-exact reconstruction
 - ▶ Reconstruction of conserved or **non-conserved** variables
 - Pre-solve least-squares system (via SVD) and store
 - ► Local body-fitted coordinates for high AR cells near walls
- Inviscid fluxes via Roe's scheme
- Viscous fluxes
 - Use arithmetic average of cell gradients reconstructed at Gauss points
 - Add a jump term (a la Nishikawa) for stability and accuracy
- Negative Spalart-Allmaras turbulence model
 - ► Full-order discretization, include source terms
 - Fully coupled to flow equations
- Boundary integration by Gauss quadrature
 - Arclength-based
 - Support from GRUMMP

Time Discretization and Steady-State Convergence

- Implicit Euler time advance, with local time stepping
- Compute the exact Jacobian via chain rule
- Solve linear system using GMRES
 - ► Matrix explicit
 - Unknowns ordered along lines perpendicular to wall for high AR meshes
 - Preconditioning
 - Variant on block tri-diagonal solution along those lines
 - ILU(3) for low AR meshes
 - ► Converge linear system to relative tolerance of 10⁻⁵
 - Implemented using PETSc
- Non-linear solver follows Ceze and Fidkowski
 - Use line search backtracking to avoid aphysical solution states
 - By default, increase CFL number even if the non-linear residual increases slightly
 - ▶ If backtracking is severe, decrease CFL number
 - For mild backtracking, keep CFL number constant

