Discrete Mathematics: Homework 5 (Deadline: March 25, 2022)

- 1. (20 points) Let A and B be any sets. Show that if $\mathcal{P}(A) = \mathcal{P}(B)$, then A = B. (Remark: $\mathcal{P}(A)$ is the power set of A, i.e., the set of all subsets of A)
- 2. (20 points) Construct a bijection from $A = (0,1) \cup [2,3) \cup (4,5]$ to $B = (6,7) \cup [8,+\infty)$.
- 3. (20 points) Prove or disprove $|\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}| = |\mathbb{R}|$.
- 4. (20 points) Prove or disprove $|\{(a_1, a_2, a_3, \ldots) : a_i \in \{1, 2, 3\} \text{ for all } i = 1, 2, 3, \ldots\}| = |\mathbb{Z}^+|$.
- 5. (20 points) Find a countably infinite number of subsets of \mathbb{Z}^+ , say $A_1, A_2, \ldots \subseteq \mathbb{Z}^+$ such that the following requirements are simultaneously satisfied:
 - $|A_i| = |\mathbb{Z}^+|$ for all i = 1, 2, ...;
 - $A_i \cap A_j = \emptyset$ for all $i \neq j$;
 - $\bullet \ \cup_{i=1}^{\infty} A_i = \mathbb{Z}^+.$