Продвинутый матанализ для продолжающих на втором курсе ФОПФ

- (1) Конечная и бесконечная размерность линейных пространств.
- (2) Полилинейные формы, детерминант, тензоры.
- (3) Гладкие многообразия и гладкие функции на них.
- (4) Регулярные значения и степень гладкого отображения многообразий.
- (5) Теорема Брауэра о неподвижной точке.
- (6) Отображения сферы в сферу и векторные поля на сфере.
- (7) Неравенство Брунна-Минковского и изопериметрическое неравенство.

Список задач для самостоятельного решения

3adaua 0.1. Докажите, что если поле \mathbb{K} алгебраически замкнуто (например, поле комплексных чисел \mathbb{C}), V — конечномерное пространство над этим полем, $A:V\to V$ — линейный оператор, то существует полный флаг в V, инвариантный относительно A (в том смысле, что все составляющие флаг подпространства инварианты относительно A).

3adaua 0.2. Приведите примеры линейных операторов $A:V\to V$, не имеющих инвариантных полных флагов для поля, не являющегося алгебраически замкнутым (например, поле действительных чисел $\mathbb R$).

 $3adaчa\ 0.3.*$ Проверьте, что в бесконечномерном случае размерности V и V^* (определённые как мощности базисов) не обязаны быть равны.

3adaчa~0.4. * Проверьте, что в бесконечномерном случае тавтологическое вложение $s:V\to V^{**}$ не является изоморфизмом. Попробуйте придумать элемент V^{**} , не лежащий в V.

 $3a\partial a$ ча 0.5. Докажите, что если dim V=n, то dim $\wedge^k V^*=\binom{n}{k}$.

 $3a\partial a$ ua 0.6. Проверьте, что если $W\subset V$ и линейный оператор $f:V\to V$ обладает свойством $f(W)\subseteq W$, то

$$\det f = \det f|_W \cdot \det \bar{f},$$

где $\bar{f}:V/W \to V/W$ индуцирован f.

 $3a\partial aua$ 0.7. Опишите собственные значения оператора $\wedge^k f^*: \wedge^k V^* \to \wedge^k V^*$ в терминах собственных значений исходного оператора $f: V \to V$.

 $3a\partial a$ ча 0.8. Пусть V и W — конечномерные векторные пространства. Найдите минимальное число k (в зависимости от V и W), такое что всякий элемент тензорного произведения $V\otimes W$ можно представить в виде $\sum_{i=1}^k v_i\otimes w_i$ с некоторыми $v_i\in V$ и $w_i\in W$.

 $3a\partial a$ ча 0.9. Докажите, что для вложенного в \mathbb{R}^N гладкого многообразия M гомоморфизмы \mathbb{R} -алгебр $C^\infty(M) \to \mathbb{R}$ находятся во взаимно однозначном соответствии с точками M.

3a da ua~0.10. Докажите, что для вложенных в \mathbb{R}^N гладких многообразий M и N гомоморфизмы \mathbb{R} -алгебр $C^\infty(N) \to C^\infty(M)$ находятся во взаимно однозначном соответствии с гладкими отображениями $M \to N$.

 $3a\partial a$ ча 0.11. * Докажите, что для вложенного в \mathbb{R}^N гладкого многообразия M всякая гладкая функция $f:M\to\mathbb{R}$ продолжается до гладкой функции $\bar{f}:\mathbb{R}^N\to\mathbb{R}$.

 $3a\partial a$ ча 0.12. Докажите, что компактное подмножество абстрактного гладкого многообразия является замкнутым.

3adaча 0.13. Докажите, что множество всех полных флагов в \mathbb{R}^n является гладким многообразием.

3a daчa~0.14. Какую может иметь размерность пространство когомологий де Рама с компактным носителем $H^n_c(M) = \Omega^n_c(M)/d\Omega^{n-1}_c(M)$ для гладкого n-мерного связного многообразия без края M?

3a da 4a 0.15. Пусть $f:N \to M$ — гладкое собственное отображение ориентированных многообразий без края одной и той же размерности n, причём M связно. Докажите, что для всякой $\omega \in \Omega^n_c(M)$ выполняется

$$\int_N f^* \omega = \deg f \cdot \int_M \omega.$$

 $3a\partial a 4a 0.16$. Пусть $f: N \to M$ — гладкое отображение компактных ориентированных многообразий с краем одной и той же размерности, причём $f(\partial N) = \partial M$ и M связно. Докажите, что в этом случае степень корректно определена и $\deg f = \deg f|_{\partial N}$.

 $3a\partial a$ иа 0.17. * Докажите, что всякое вложенное в \mathbb{R}^3 компактное двумерное многообразие без края S ориентируемо.

 $3a \partial a a a 0.18$. Докажите, что всякое выпуклое компактное множество $K \subset \mathbb{R}^n$ гомеоморфно шару некоторой размерности и всякое непрерывное отображение $f: K \to K$ имеет неподвижную точку.

3a da 4a 0.19. Предположим, что для компакта $K \subset \mathbb{R}^n$ существует непрерывная $pempa \kappa uu x$ $r : \mathbb{R}^n \to K, \ r|_K = \mathrm{id}_K$. Докажите, что всякое непрерывное отображение $f : K \to K$ имеет неподвижную точку.

 $3a\partial a$ ча 0.20. Докажите, что гомеоморфизм $f:B\to B$ единичного шара $B\subset \mathbb{R}^n$ переводит сферу ∂B в себя.

3a da ua~0.21. Докажите, что для непрерывного отображения сферы в себя $f: \mathbb{S}^n \to \mathbb{S}^n$ либо найдётся x, такая что f(x) = -x, либо f сюръективно.

 $3a\partial a ua \ 0.22$. Докажите, что если степень непрерывного отображения $f: \mathbb{S}^n \to \mathbb{S}^n$ не равна $(-1)^{n-1}$, то f имеет неподвижную точку f(x) = x.

 $3a\partial a$ ча 0.23. Докажите, что если на сфере \mathbb{S}^n есть всюду ненулевое касательное векторное поле, то n должно быть нечётным.

Задача 0.24. Приведите пример всюду ненулевого касательного векторного поля на сфере нечётной размерности.

 $3a\partial a$ ча 0.25. Постройте три векторных поля на \mathbb{S}^3 , которые в каждой точке сферы дают базис касательного пространства.

 $3a\partial a$ ча 0.26. Классифицируйте непрерывные отображения окружности в себя $f:\mathbb{S}^1\to\mathbb{S}^1$ с точностью до гомотопии.

 $3a\partial a ua~0.27.$ * Докажите, что если непрерывное отображение сферы в себя $f: \mathbb{S}^n \to \mathbb{S}^n$ нечётно, то есть для любого $x \in \mathbb{S}^n$ верно f(-x) = -f(x), то степень отображения f нечётна.

3adaча 0.28. Докажите, что максимум объёма множества в \mathbb{R}^n данного диаметра достигается на шаре.

 $3a\partial a ua\ 0.29.$ Функция $f:\mathbb{R}^n \to \mathbb{R}^+$ называется логарифмически вогнутой, если для любых $x,y\in\mathbb{R}^n$ и 0< t< 1 выполняется $f((1-t)x+ty)\geqslant f(x)^{1-t}f(y)^t$. Докажите, что если логарифмически вогнутую функцию n переменных проинтегрировать по одной переменной, то получится логарифмически вогнутая функция (n-1) переменной (или $+\infty$).

Определения и пояснения смотрите в конспекте

[1] Р.Н. Карасёв. Отдельные темы математического анализа. rkarasev.ru/common/upload/an explanations.pdf.