

Outline Blackbody Radiation Flux and Luminosity Inverse square law Magnitudes A2290-13 Flux and Magnitudes 2

Radiation from objects

- All objects have internal energy which is manifested by the microscopic motions of particles.
- There is a continuum of energy levels associated with this motion.
- If the object is in thermal equilibrium then it can be characterized by a single quantity, it's temperature.
- An object in thermal equilibrium emits energy at all wavelengths.
 - resulting in a continuous spectrum
- We call this thermal radiation.

A2290-13

Flux and Magnitudes

- 3

Blackbody Radiation

- A black object or blackbody absorbs all light which hits it.
- This blackbody also emits thermal radiation, e.g. photons!
 Like a glowing poker just out of the fire.
- The amount of energy emitted (per unit area) depends <u>only</u> on the temperature of the blackbody.
- In 1900 Max Planck characterized the light coming from a blackbody.
- The equation that predicts the radiation of a blackbody at different temperatures is known as Planck's Law.

$$B_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1}$$
 W/m²/Hz/si

- h = Planck's constant, k = Boltzmann's constant, c = speed of light
- This is the power radiated per unit area in the frequency range ν to $\nu + d\nu$ into a unit solid angle $(d\Omega = d\phi \sin\theta \, d\theta \, \text{in spherical coordinates})$

A2290-13

Flux and Magnitudes

Properties of Blackbodies

The peak emission from the blackbody moves to shorter wavelengths as the temperature increases (Wien's law).

$$\lambda_{peak} = 2900/T$$
 λ in μ m and T in K

- Hot objects look blue, cool ones look red
- The hotter the blackbody the more energy emitted per unit area at all wavelengths (Stefan-Boltzmann law).

$$F = \sigma T^4$$
 $\sigma = 5.7 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$

- Note bigger objects emit more radiation
- Except for their surfaces, stars behaves as a blackbodies

A2290-13 Flux and Magnitudes 6

Energy Flux and Luminosity

The Energy Flux, F, is the power per unit area radiated from an object.

$$F = \sigma T^4$$
 W/m² (at all λ)

- The units are energy, area and time.
- Luminosity is the total energy radiated from star of radius R is given by:
- \square So the luminosity, L, is:

$$L = 4\pi R^2 \sigma T^4$$
 Watts

 If stars behave like blackbodies, stars with large luminosities must be very hot and/or very big.

A2290-13

Flux and Magnitudes

7

Luminosity and Flux

- Luminosity, L
 - The total energy radiated from an object per second.
 - Measured in Watts
- Emitted Flux, F
 - The flow of energy out of a surface.
 - Measured in Watts/m²
- Observed flux, f
 - The power per unit area we receive from an object
 - Depends on the distance to the object.
 - Measured in W/m² e.g. $f_{sun} = 1 \text{ kW/m}^2$
 - Also called flux or apparent brightness
- Meaning of Observed Flux
 - Make a sphere of radius, r, around an object (such as the Sun or a light bulb) which is radiating power.
 - All energy radiated from the object must pass through this sphere
 - The size of the sphere does not matter!

A2290-13

Flux and Magnitudes

8

Inverse square law

□ The flux, f, of energy through a sphere of radius, r, is given by

$$f = \frac{L}{4\pi r^2} \quad \text{(W/m}^2\text{)}$$

Inverse square law

where L is the luminosity of the object

- Why do we care about flux?
 - The flux is what we measure.
 - We use a telescope (or our eye) and measure a small fraction of the light passing through this sphere.

A2290-13

Flux and Magnitudes

11

An illuminating example?

- A 100 W light bulb
 - about 1/5 of power goes into light
- □ It's total power output is always 100 W.
- It's apparent brightness to us depends upon how far away it is.
- For instance at 1 m the flux is:
 - Flux = 0.08 W/m² [$f = 100 \text{ W}/(4\pi(1\text{m})^2) \text{ W/m}^2$]
- ☐ If we double the distance away from the light bulb, the flux drops by a factor of 4.
 - At 2 m, the flux is 0.02 W/m²

A2290-13

Flux and Magnitudes

12

Observed Flux – Distance Example:

 $\hfill \Box$ A star like the sun has an observed flux of $2.4x10^{\text{-}10}\ W/m^2.$ If the flux of the sun at the Earth is $1\ kW/m^2,$ how far away is the star?

$$\begin{split} L_{sun} &= 4\pi d^2 f \quad \Rightarrow \quad L_{sun} = 4\times 3.14\times \left(1.5\times 10^{11}\,\mathrm{m}\right)^2 1000~\mathrm{W/m^2} \\ &\Rightarrow \quad L_{sun} = 3\times 10^{26}\,\mathrm{W} \end{split}$$

□ Nov

$$d = \sqrt{L_{sun} / 4\pi f} \implies d = \sqrt{3 \times 10^{26} \,\text{W/} \left(4 \times 3.14 \times 2.4 \times 10^{-10} \,\text{W/m}^2\right)}$$

$$\Rightarrow d = 3 \times 10^{17} \,\text{m} = 10 \,\text{pc}$$

 $\ \square$ We could also have used ratios rather than compute L_{sun} first.

$$\frac{d_{star}}{d_{sun}} = \sqrt{\frac{f_{sun}}{L_{star}}} \frac{L_{star}}{f_{star}} = \sqrt{\frac{f_{sun}}{f_{star}}} \qquad \Rightarrow \qquad d_{star} = d_{sun} \sqrt{\frac{f_{sun}}{f_{star}}}$$

A2290-13

Flux and Magnitudes

13

Distances to stars: Stellar Parallax

- As stars get further away, their parallax becomes smaller.
- - Interferometry is improving on this for selected applications
- Parallax is measured in arcseconds.
- Equations are for distances in AU and parsecs (pc), respectively

$$d(AU) = \frac{206265}{p(arcsec)}$$
 or $d(pc) = \frac{1}{p}$ 1.0 arcsec => 1 pc, 0.5 arcsec => 2 pc

A2290-13

Flux and Magnitudes

14

			i		a .		
h		\sim	\sim	es	- ~ •		2
	$\boldsymbol{\vdash}$	(:1	() 5				
	$\mathbf{\circ}$	\mathbf{v}				u	-

-	Star	Parallax (arcsec)	Distance (pc)	Luminosity (L _{sun} =1)
	Proxima Centauri	0.763	1.31	5x10 ⁻⁵
	α Centauri A	0.741	1.35	1.45
	α Centauri B	0.741	1.35	0.4
	Barnard's Star	0.522	1.81	4x10 ⁻⁴
	Wolf 359	0.426	2.35	2x10 ⁻⁵
	Lalande 21185	0.397	2.52	5x10 ⁻³
	Sirius A	0.377	2.65	23
	Sirius B	0.377	2.65	2x10 ⁻³

Parallax is motion of a star on the sky due to the Earth orbiting around the Sun. 1" parallax corresponds to 1 pc. The more distant a star the smaller the parallax. (1 pc = 3.26 lyr)

$$d(pc) = \frac{1}{p(arcsec)}$$

A2290-13

Flux and Magnitudes

Current status

Astrometry mission, produced two catalogs

□ Hipparcos catalog: ~120,000 stars

• Measured parallaxes to better than $0.002" \Rightarrow d < 500 \text{ pc}$

□ Tycho catalog: ~ 1,100,000 stars

Measured parallaxes and proper motions to ~ 0.025" (40 pc)

□ Tycho 2 catalog: 2,500,000 stars

- Update version of Tycho catalog
- Reprocessed raw Tycho data & used 144 other catalogs to obtain proper motions
- Proper motions to 0.0025"/yr
- Parallaxes are the key to knowing distances in the universe.
- Nearby stars are the stepping stone to measuring distance to everything else in the universe.
- We can now compute the luminosity of stars!

A2290-13

Flux and Magnitudes

16

Magnitudes

- We would like a way of specifying the relative brightness of stars
- Hipparchus
 - Devised a the magnitude system 2100 years ago to classify stars according to their apparent brightness.
 - He labeled 1080 stars as class 0, 1,.. 6.
 - 0 was the brightest, 1 the next brightest, etc.
- The magnitude scale is logarithmic.
- An increase in magnitude by 2.5 means an object is a factor of 10 dimmer, e.g.
 - a 0 mag star is 10 times brighter than a 2.5 mag star.
 - a 0 mag star is 100 times brighter than a 5 mag star.

A2290-13

Flux and Magnitudes

17

Example magnitudes

Star	m_{v}	Designations
Sun	-26.8	
Sirius	-1.47	α CMa
Canopus	-0.72	α Car
Arcturus	-0.06	α Βοο
Vega	0.03	α Lyr
Betegeuse	0.45	β Ori
Altair	0.77	α Aqu
Deneb	1.26	α Cyg

- ☐ A dark adapted person with good eyesight can see to ~ 6th magnitude.
- Hubble Space Telescope can observed objects fainter than 30 mag.
 - 4x10⁹ times fainter than the eye!

A2290-13

Flux and Magnitudes

18

Fluxes and Magnitudes

- □ Flux is the power per unit area received from an object, e.g. $f_{sun} = 1 \text{ kW/m}^2$

$$m_A - m_B = -2.5\log(f_A/f_B)$$

- Thus if $f_{\rm B}/f_{\rm A}=10$, then $m_{\rm A}$ $m_{\rm B}=2.5$
- We can also write the inverse relation

$$\frac{f_B}{f_A} = 10^{\frac{m_A - m_B}{2.5}}$$

• So that if $m_A = 5$ and $m_B = 0$, $f_B/f_A = 100$.

A2290-13

Flux and Magnitudes

10

Absolute & Bolometric Magnitudes

- How bright a star appears in the sky.
- \square M_{v} absolute magnitude
 - Brightness if the star were at 10 pc
 - This is an intrinsic property of the star!
- □ *M* absolute bolometric magnitude
 - Brightness at ALL wavelengths (and 10 pc).
- \Box To get M_{ν} or M we must know the distance to the star.
- Example:
 - Suppose a star has $m_v = 7.0$ and is located 100 pc away.
 - It is 10 times the standard distance, thus, it would be 100 times brighter to us at the standard distance.
 - Or 5 magnitudes brighter => $M_v = 2.0$

A2290-13

Flux and Magnitudes

20

Exam	ole A	Ahsol	lute	Mag	ınitu	des
LAam		7030	lute	iviay	ji iitu	JES

5.8 2.6 47 72	4.77 (32) 1.4 -3.1
47	1.4
72	-3.1
06	-0.3
26	-7.2

The Distance Modulus Equation

 $\hfill\Box$ The relation between $m_{\hfill \nu}$ and $M_{\hfill \nu}$ is written in equation form as:

$$m_{\rm v}$$
 - $M_{\rm v}$ = -5 + 5 log₁₀(d) (d in pc)

- Examples:
 - Deneb: $m_v = 1.26$ and is 490 pc away.

$$m_{\rm v} - M_{\rm v} = -5 + 5 \log_{10}(d)$$

1.26 - $M_{\rm v} = -5 + 5 \log_{10}(490) = -8.5$

$$=> M_{\rm v} = -7.2$$

■ Sun:
$$m_v = -26.8$$
, $d = 1$ AU
 $-26.8 - M_v = -5 + 5 \log_{10}(1/206265)$
 $=> M_v = 4.8$

A2290-13 Flux and Magnitudes

Bonus: Deriving the S-B Law

We get the Stefan-Boltzmann law by integrating the Planck function over all frequencies (area under the curve)

$$B = \int_{0}^{\infty} B_{\nu} d\nu = \int_{0}^{\infty} \frac{2h\nu^{3}}{c^{2}} \frac{d\nu}{\exp(h\nu/kT) - 1}$$

$$x = \frac{hv}{kT}$$
 \Rightarrow $v = \frac{kT}{h}x$ & $dv = \frac{kT}{h}dx$

$$\Rightarrow B = \frac{2h}{c^2} \left(\frac{kT}{h}\right)^4 \int_0^\infty \frac{x^3 dx}{\exp(x) - 1} \qquad \Rightarrow \qquad B \propto T^4 \qquad \text{W/m}^2/\text{sr}$$

- The total power emitted from a surface is proportional to the temperature to the fourth power just as the S-B law
 - The constant of proportionality is not quite the S-B constant because we need to integrate over all solid angles to get it (which gives an additional factor of π). The integral is related to the Riemann zeta function giving

$$\sigma = \pi \frac{2k^4}{c^2h^3} \frac{\pi^4}{15} \implies \sigma = 5.67 \times 10^{-8} \quad \text{W/m}^2/\text{K}^4$$

A2290-13

Flux and Magnitudes

23

Another form of Planck function

- Let's rewrite the Planck function in terms of power per unit wavelength rather than frequency interval
 - Note that
- $B_{\nu}d\nu = B_{\lambda}d\lambda$ & $\nu = \frac{c}{\lambda}$ $\Rightarrow d\nu = -\frac{c}{\lambda^2}d\lambda$
- where B_{λ} is over the interval λ to $\lambda + \Delta \lambda$ rather than ν to $\nu + \Delta \nu$.
- This relationship must be true since the integral over frequencies and over wavelengths much be the same.
- Substituting gives

$$B_{\lambda} = B_{\nu} \frac{d\nu}{d\lambda} = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/kT) - 1} \frac{c}{\lambda^2}$$

 \Box Which yields for B_{λ}

$$\Rightarrow B_{\lambda} = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(hc/\lambda kT) - 1} \qquad \text{W/m}^2/\text{m/sr or W/m}^2/\mu\text{m/sr}$$

Note that the units are now per m rather than per Hz.

A2290-13

Flux and Magnitudes

24

Bonus: Deriving Wien's Law

 $\,\,$ To find the peak we differentiate with respect to λ and setting this equal to zero to get the peak

$$\frac{dB_{\lambda}}{d\lambda} = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(hc/\lambda kT) - 1} \left(-\frac{5}{\lambda} + \frac{\exp(hc/\lambda kT)}{\exp(hc/\lambda kT) - 1} \frac{hc}{\lambda^2 kT} \right) = 0$$

$$\Rightarrow \left(-5 + \frac{1}{1 - \exp(-hc/\lambda kT)} \frac{hc}{\lambda kT}\right) = 0$$

□ Letting $x = hc/\lambda kT$ and solving iteratively solving for x,

$$x = 5(1 - \exp(x)) \qquad \Longrightarrow \qquad x = 4.965$$

Putting back into the equation defining x

$$\lambda T = \frac{hc}{xk} = \frac{6.626 \times 10^{-34} \,\text{J} \cdot \text{s} \times 3 \times 10^8 \,\text{m/s}}{4.965 \times 1.38 \times 10^{-23} \,\text{J/K}} \times \frac{10^6 \,\mu\text{m}}{\text{m}} \qquad \Longrightarrow \qquad \lambda T = 2900 \,\,\mu\text{m} \,\text{K}$$

$$\lambda T = 5100 \, \mu \text{m K}$$
 $B_{\nu} \, \text{space}$

 \square Both forms is correct since the peak is different between B_{ν} and B_{λ} space.

A2290-13

Flux and Magnitudes

25