

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI
Department of Chemistry
CH-101 (B.Tech. 1st Semester), Quiz-1

Name: Roll No: 90123046 Tutorial Gr: T18 Av Celho
Duration: 8.00 - 8.45 AM Full marks: 15 Date: 27/08/2019 (Tuesday) Answer all the questions and write the answers inside the box. Only fully correct answers will be accepted and there will be no partial marks.
1. Given the Planck's radiation law expressed in wavelength, $\rho(\lambda)d\lambda = \frac{8\pi hc}{\lambda^5} \frac{1}{\frac{hc}{(e^{\lambda kT}-1)}} d\lambda$ and considering
$\lambda << \frac{hc}{kT}$, the wavelength at which the radiation would be maximum (λ_{max}) is, (Tick inside the appropriate box)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2. For a particle-in-a-box of length L = 6.63 Å, the wave function can be written as $\Psi(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$. The value of linear momentum in the 3 rd excited state (ground state is the lowest energy state) (in the unit of kg m s ⁻¹) would be, (Use h = 6.63× 10 ⁻³⁴ Js). (Tick inside the appropriate box) (2.5 Marks) (A) 0.2×10^{-24} ; (B) 2.0×10^{-24} ; (C) 2.0×10^{-34} ; (D) 0.2×10^{-34}
3. Draw the Lewis structures of IF ₄ and ClF ₄ with appropriate molecular geometry. (1.0 Mark)
IF4 (Answer) CIF4 (Answer) Figure F:
4. Arrange the following complexes in the decreasing order of crystal field splitting energy Δ_0 .
(i) $[Cr(NH_3)_6]^{3+}$, $[CrCl_6]^{3-}$, $[Cr(CN)_6]^{3-}$ (ii) $[Co(H_2O)_6]^{2+}$, $[Rh(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$ (ii) $[Cr(CN)_6]^{3-} > [Cr(NH_3)_6]^{3+} > [Cr(NH_3)_6]^$

5. Using Slater's rules, calculate the effective nuclear charge for 3d electron in copper.

(1.0 Mark)

Answer

6. State whether the following statements are True (T) or False (F)

(1.0 Mark)

Statements	T/F
(i) N ₂ has a very high electron affinity	F
(ii) For the isoelectronic pair Br and Rb ⁺ , the one with the larger radius is Br	T
(iii) For the Compounds EH ₃ (E = As, N and P), the increasing order of their H-E-H bond	T
angles is AsH ₃ < PH ₃ < NH ₃	

7. Using CFT indicate the correct d-orbital splitting pattern for a square planar complex. (Tick inside the appropriate box)

(1.0 Mark)

(i) $d_z 2 < d_x 2 - y 2 < d_{xy} < d_{xz} < d_{yz}$	(ii) $d_{xy} < d_z 2 < d_x 2 - y 2 < d_{xz} < d_{yz}$	
(iii) $d_{xz} = d_{yz} < d_z 2 < d_x 2 - y 2 < d_{xy}$	(iv) $d_{xz} = d_{yz} < d_z 2 < d_{xy} < d_x 2 - y 2$	

8. Do the following structure pairs represent identical molecules, a pair of enantiomers or a pair of diastereoisomers? (3.0 Marks)

enantiomers

identical

c) C:1181Br

enantiomers

9. Enantiomerically pure 2-Butanol (25.00 g) is dissolved in 20.0 mL of ethanol. 5.00 mL of this solution is placed in a 200 mm polarimeter tube at 25 °C. The observed rotation is 60° counter-clockwise. The optical rotation of a sample of 2-Butanol (10 g in 20 mL of ethanol) was measured in the same polarimeter under identical conditions. The observed rotation was found to be + 19°. What is the enantiomeric excess of the sample?

Answer

(2.0 Marks)