Binary adders and subtractors

- Half adder, full adder, parallel adder
- Half subtractor, full subtractor, parallel subtractor
- Subtraction using complements, parallel adder/subtractor
- Carry Look ahead adder, Decimal adder

Binary Addition

Half adder(HA)

• Adds 2, 1-bit numbers A and B, generated two outputs sum(S) and carry (C).

HA circuit

Using basic logic gates

Using XOR and AND gate

Full adder

Truth Tak

ble ABC > 3, one-bit inputs. each > 0

	msib	ABC 🛩	Carry	Sum
		0 0 0	0	0
0 8		0 0 1	0	١
0		0 1 0	0	1
		011		O
		100	0	t
		101		0
		011	1	0
		1 1 1	1	- 1
		C S 7		

Sun= A @ B@C

FA circuit using basic logic gates

Full adder circuit using XOR operations

FA using 2 HA s and one external gate

4-bit Parallel adder using FA blocks

• Consider addition of 2, 4-bit numbers: (A₃ A₂ A₁ A₀) and (B₃ B₂ B₁ B₀) C3 C1 C1 C0 O A -> 4-bit wunder A A A A AB, B->4-bil- Number B3 B2 B1 BC C3 S352 S1 S0 FA FAZ FA HA Cin =0

FA3FA2FA

4-bit parallel adder

Added in parallel

7483 IC: 4-BIT PARALLEL ADDER

Half subtractor

Full subtractor

76
0-
150
\ 0
7

X	Y	Z	D B
0	0	0	0 0
0	0	Ī	1 1
0	l	D	1 1
0	١	1	0 1
l	D	D	1 0
l	0		0 0
l	1	D	0 0
1	1	1	1 1

FS circuit

Draw the circuit for FS using

1/@

010

B = xy + x2+42 = 51,2,3,7

• (i) basic logic gates only

D = X + 7 + 2 = = 1, 2, 4, 7

• (ii) XOR and basic logic gates

Full subtractor using 2 HS s and one external gate

4-bit parallel subtractor using FS blocks

Consider subtraction of 2, 4-bit numbers: (A3 A2 A1 A0) and (B3 B2 B1 B0)

Subtraction using complements

- □ Using 2's complement method
- □ Using 1's complement method

Subtraction using complements

