Year (aggressive)	2003	2005	2007
Node (nm)	90	65	45
低漏電 (LSTP) -ITRS			_
EOT (nm)	2.1	1.6	1.3
$I_g (A/cm^2@1V/V_t)$	5e-3	2.3e-2	8e-2
介電氧化層	SiON	HfSiON	HfSiON
電極層	poly	poly	poly
高性能 (HP) -ITRS			
EOT (nm)	1.2	0.9	0.7
$I_g (A/cm^2@1V/V_t)$	450	930	1900
介電氧化層	SiON	SiON	HfO ₂
電極層	poly	poly	metal

圖 8-25 不同世代對閘極氫化物的要求與發展中的高介電常數材料。

在過去幾年,已有許多有關高介電常數材料的研究,其中以鋯基(Zr-based)、鋁基(Al-based)與鉿基(Hf-based)氧化物為主。因為鋯基在複晶矽閘極製程中的穩定性較差(意指其在高介電材料/閘極介面容易形成金屬矽化物)。此外,由於氧原子或摻雜物容易沿晶界擴散,應避免採用易於形成結晶結構的氧化物。氧化鋁閘極氧化物(Al₂O₃)在金氧半導體系統中的使用可使EOT 大幅縮小到 1.0 奈米以下。然而,由於鋁基材料有著嚴重的電荷相關問題,造成其在臨界電壓的控制與遷移率方面的表現令人無法接受,目前研究大多傾向鉿基材料系統。在鉿基中,與 HfO₂ 相比,HfSi_xO_y和 HfSi_xO_yN_z不僅改善了熱穩定性,也提高了結晶溫度,但是其介電常數卻相對較低,這將使其尺寸微縮的能力限制僅在未來幾個世代上。

8.5.2 高介電閘極氧化層的工程問題

雖然在新閘極介電材料系統的研究已經有相當多的努力,但是在高介電材料能被整合到CMOS製程前仍有幾項關鍵議題待解。其中最重要的是:等效氧化層厚度(equivalent oxide thickness, EOT)與閘極漏電流的降低以符合ITRS的