Introduktion til Programmering og Problemløsning (PoP)

Binære tal

Jon Sporring
Department of Computer Science
2022/09/07

UNIVERSITY OF COPENHAGEN

Alt på computeren er relateret til binære tal

Decimal:

- Base -10 Base -2 Alphabet $-\{0,1,...,9\}$ Alphabet $-\{0,1\}$

Binær:

$$v = \sum_{i=-m}^{n} d_i 10^i.$$
 $v = \sum_{i=-m}^{n} b_i 2^i,$

101,11₂

$$v = \sum_{i=-m}^{n} b_i 2^i,$$

Dec	Bin		
0	0		
1	1		
2	10		
3	11		
4	100		
5	101		
6	110		
7	111		
8	1000		
9	1001		
10	1010		
11	1011		
12	1100		
13	1101		
14	1110		
15	1111		
16	10000		
17	10001		
18	10010		
19	10011		
20	10100		
21	10101		
22	10110		
23	10111		
24	11000		
25	11001		
26	11010		
27	11011		
28	11100		
29	11101		
30	11110		
31	11111		

Dec	Bin		
32	100000		
33	100001		
34	100010		
35	100011		
36	100100		
37	100101		
38	100110		
39	100111		
40	101000		
41	101001		
42	101010		
43	101011		
44	101100		
45	101101		
46	101110		
47	101111		
48	110000		
49	110001		
50	110010		
51	110011		
52	110100		
53	110101		
54	110110		
55	110111		
56	111000		
57	111001		
58	111010		
59	111011		
60	111100		
61	111101		
62	111110		
63	111111		

Dividér med 2 algoritmen

Fra binær til decimal $1010_2 = ?$

$$v = \sum_{i=-m}^{n} b_i 2^i,$$

$$1010_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

= 8 + 0 + 2 + 0
= 10

Fra decimal til binær $11 = ?_2$

11 div
$$2 = 5$$
, 11 rem $2 = 1$
5 div $2 = 2$, 5 rem $2 = 1$
2 div $2 = 1$, 2 rem $2 = 0$
1 div $2 = 0$, 1 rem $2 = 1$

Oktale og Heksadecimale tal

Oktale tal:

- Base 8
- Alphabet {0,1,2,3,4,5,6,7}

$$O_n \cdots O_2 O_1 O_0, O_{-1} O_{-2} \cdots O_{-m}$$

27,3₈

Oktalciffer svarer til 3 bit:

$$10111_2 \rightarrow 010\ 111_2 \rightarrow 27_8$$

Heksadecimale tal:

- Base 16
- Alphabet: {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

$$h_n \cdots h_2 h_1 h_0, h_{-1} h_{-2} \cdots h_{-m}$$

a3,9₁₆

Heksalciffer svarer til 4 bit:

$$10111_2 \rightarrow 0001 \ 0111_2 \rightarrow 17_{16}$$

Et heksalciffer

oktalciffer

Dec	Bin	Oct	Hex	Dec	Bin	Oct	Hex
0	0	0	0	32	100000	40	20
1	1	1	1	33	100001	41	21
2	10	2	2	34	100010	42	22
3	11	3	3	35	100011	43	23
4	100	4	4	36	100100	44	24
5	101	5	5	37	100101	45	25
6	110	6	6	38	100110	46	26
7	111	7	7	39	100111	47	27
8	1000	10	8	40	101000	50	28
9	1001	11	9	41	101001	51	29
10	1010	12	a	42	101010	52	2a
11	1011	13	b	43	101011	53	2b
12	1100	14	\mathbf{c}	44	101100	54	2c
13	1101	15	d	45	101101	55	2d
14	1110	16	e	46	101110	56	2e
15	1111	17	f	47	101111	57	2f
16	10000	20	10	48	110000	60	30
17	10001	21	11	49	110001	61	31
18	10010	22	12	50	110010	62	32
19	10011	23	13	51	110011	63	33
20	10100	24	14	52	110100	64	34
21	10101	25	15	53	110101	65	35
22	10110	26	16	54	110110	66	36
23	10111	27	17	55	110111	67	37
24	11000	30	18	56	111000	70	38
25	11001	31	19	57	111001	71	39
26	11010	32	1a	58	111010	72	3a
27	11011	33	1b	59	111011	73	3b
28	11100	34	1c	60	111100	74	3c
29	11101	35	1d	61	111101	75	3d
30	11110	36	1e	62	111110	76	3e
31	11111	37	1f	63	111111	77	3f

Resumé

I denne video har du hørt om:

- Talsystem (decimale, binære, oktale, hexadecimale)
- Dividér med 2 algoritmen