Ejercicios

Módulo 13

- 1. Sea $T : \mathbb{R}^2 \to \mathbb{R}^2$ definida como T(x, y) = (x 2y, x + 2y). Sean B_1 la base estándar de \mathbb{R}^2 y $B_2 = \{(1, -1), (0, 1)\}$. Determine la matriz que representa a T con respecto a:
 - a. B_1
 - b. $B_1 y B_2$
 - c. $B_2 y B_1$
 - d. B_2
 - e. Calcule T(2,-1) empleando la definición de T y las matrices obtenidas en a,b,c y d.
- 2. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida como T(x, y, z) = (x + 2y + z, 2x y, 2y + z). Sea B_1 la base natural para \mathbb{R}^3 y $B_2 = \{(1, 0, 1), (0, 1, 1), (0, 0, 1)\}$ otra base para \mathbb{R}^3 . Determine la matriz de T con respecto a:
 - a. B_1
 - b. $B_1 y B_2$
 - c. $B_2 y B_1$
 - d. *B*.
 - e. Calcule T(1, 1, -2) empleando la definición de T y las matrices obtenidas en a, b, c, d.
- 3. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida como $T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y \\ y-z \end{bmatrix}$. Sean B_1 y B_2 las bases naturales de \mathbb{R}^3 y \mathbb{R}^2 , respectivamente;

además, sean $B_1' \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \right\}$ y $B_2' \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ bases para \mathbb{R}^3 y \mathbb{R}^2 , respectivamente. Determine la matriz

de T con respecto a:

- a. $B_1 y B_2$
- b. $B'_1 y B'_2$
- c. Calcule $T \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$ utilizando la definición de T y las matrices obtenidas en a y b.

Capítulo 3: Transformaciones lineales

4. Sea $T: \mathbb{P}_1 \to \mathbb{P}_2$ definida por T(p(x)) = xp(x) + p(0).

Sean
$$B_1 = \{1, x\}$$
 y $B_1' = \{1 + x, -1 + x\}$ bases para \mathbb{P}_1 .

Sean
$$B_2 = \{1, x, x^2\}$$
 y $B'_2 = \{1 + x^2, -1 + x, 1 + x\}$ bases para \mathbb{P}_2 .

Determine la matriz de *T* con respecto a:

- a. $B_1 y B_2$
- b. $B_1' y B_2'$
- c. Determine T(3-3x) utilizando la definición de T y las matrices obtenidas en a y b.
- 5. Sea $T: \mathbb{P}_1 \to \mathbb{P}_3$ definida por $T(p(x)) = x^2 p(x)$. Sean $B_1 = \{1, x\}$ y $B_1' = \{x, 1 + x\}$ bases para \mathbb{P}_1 . Sean $B_2 = \{1, x, x^2, x^3\}$ y $B_2' = \{1 + x, x, -1 + x^2, x^3\}$ bases para \mathbb{P}_3 .

Determine la matriz de T con respecto a:

- a. $B_1 y B_2$
- b. $B_1' y B_2'$
- 6. Sea $C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ y sea $T : M_{22} \to M_{22}$ la transformación lineal definida por T(A) = AC CA para A en M_{22} . Sean

$$B_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ y } B_2 = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ bases para } M_{22} \text{. Determine } M_{22} \text{.}$$

la matriz de T con respecto a:

- a. B_1
- b. B_2
- c. $B_1 y B_2$
- d. $B_2 y B_1$
- 7. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal cuya matriz con respecto a las bases naturales para \mathbb{R}^3 es:

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Determine:

a.
$$T\begin{bmatrix} 1\\2\\3\end{bmatrix}$$

b.
$$T\begin{bmatrix} 0\\1\\1\end{bmatrix}$$

8. Suponga que la matriz de $T: \mathbb{R}^3 \to \mathbb{R}^2$ con respecto a las bases $B_1 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ y $B_2 = \{\mathbf{w}_1, \mathbf{w}_2\}$ es $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix}$,

donde
$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{w}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- a. Calcule $(T(\mathbf{v}_1))_{B_2}$, $(T(\mathbf{v}_2))_{B_2}$, $(T(\mathbf{v}_3))_{B_2}$.
- b. Calcule $T(\mathbf{v}_1)$, $T(\mathbf{v}_2)$ y $T(\mathbf{v}_3)$.
- c. Calcule $T\begin{bmatrix} 2\\1\\-1\end{bmatrix}$.
- d. Calcule $T\begin{bmatrix} x \\ y \\ z \end{bmatrix}$.
- 9. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal. Suponga que la matriz de T con respecto a la base $B_1 = \{\mathbf{v}_1, \mathbf{v}_2\}$ es

$$A = \begin{bmatrix} 2 & -3 \\ -1 & 4 \end{bmatrix}$$
, donde $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- a. Calcule $[T(\mathbf{v}_1)]_{B_1}$ y $[T(\mathbf{v}_2)]_{B_1}$.
- b. Calcule $T(\mathbf{v}_1)$ y $T(\mathbf{v}_2)$.
- c. Calcule $T = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$.
- 10. Sea $T: \mathbb{P}_1 \to \mathbb{P}_2$ una transformación lineal. Suponga que la matriz de T con respecto a las bases $B_1 = \{\mathbf{v}_1, \mathbf{v}_2\}$ y

$$B_2 = \{\mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3}\} \text{ es } A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & -2 \end{bmatrix}, \text{ donde } \mathbf{v_1} = 1 + x, \mathbf{v_2} = -1 + x, \mathbf{w_1} = 1 + x^2, \mathbf{w_2} = x, \mathbf{w_3} = -1 + x.$$

Capítulo 3: Transformaciones lineales

- Calcule $[T(\mathbf{v}_1)]_{B_2}$ y $[T(\mathbf{v}_2)]_{B_2}$. a.
- Calcule $T(\mathbf{v}_1)$ y $T(\mathbf{v}_2)$. b.
- Calcule T(1+2x). c.
- Calcule T(b+ax). d.
- 11. En las transformaciones lineales definidas en los ejercicios 1, 3, 5 y 7 describa su núcleo y su imagen por medio de alguna de sus matrices asociadas.
- 12. Demuestre las partes c y f del teorema 6.
- 13. Se dan parejas de matrices A y B. En cada caso muéstrese que A y B no son similares.

a.
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 1 \\ 3 & 2 \end{bmatrix}.$$

b.
$$A = \begin{bmatrix} 9 & 3 & 7 \\ 0 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

c.
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
.

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$