Scilab Textbook Companion for Basics Of Electrical Engineering by S. Sharma¹

Created by
Arundhati Yadava
B.Tech
Electrical Engineering
School of Engineering, JRE Group of Institutions
College Teacher
Mr. Abrar Ahmad
Cross-Checked by

October 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basics Of Electrical Engineering

Author: S. Sharma

Publisher: I. K. International Publishing House, New Delhi

Edition: 2

Year: 2008

ISBN: 978-81-906942-5-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	DC Circuit Analysis and Network Theorems	5
2	Steady State Analysis of Single Phase AC Circuit	73
3	Three Phase AC Circuits	140
4	Measuring Instruments	158
6	Magnetic Circuits	169
7	Single Phase Transformer	179
8	Direct Current Machines	248
10	Three Phase Induction Machines	293
11	Single Phase Induction Motor	317

List of Scilab Codes

Exa 1.1	Independent loop equations	5
Exa 1.2	Resistance between A and B	6
Exa 1.3	Resistance between A and B	7
Exa 1.4	Values of Rab Rcd and Rde	8
Exa 1.5	Rac and Rbd	10
Exa 1.6	Finding value of current by mesh analysis	11
Exa 1.7	Source transformation	12
Exa 1.8	Source transformation and mesh analysis	14
Exa 1.9	Equivalent resistance	15
Exa 1.10	Current through R3 using nodal analysis	16
Exa 1.11	Current through R3 using mesh analysis	17
Exa 1.12	Current through R3 using superposition theorem	18
Exa 1.13	Current through R3 using Thevenin theorem	19
Exa 1.14	Current through R3 using Norton theorem	20
Exa 1.15	To find Vx by mesh analysis	21
Exa 1.16	To find Vx by nodal analysis	22
Exa 1.17	To find Vx by Superposition theorem	23
Exa 1.18	To find Vx by Thevenin theorem	24
Exa 1.19	To find Vx by Norton theorem	25
Exa 1.20	To find I using Norton theorem	27
Exa 1.21	To find I using Thevenin theorem	28
Exa 1.22	To find I using mesh analysis	29
Exa 1.23	To find I using nodal analysis	30
Exa 1.24	To find I using Superposition theorem	32
Exa 1.25	To find I using mesh analysis	33
Exa 1.26	To find I using nodal analysis	34
Exa 1.27	To find I using Thevenin theorem	34
Exa 1.28	To find I using Norton theorem	35

Exa 1.29	To find I using Superposition theorem
Exa 1.30	Source transformation and mesh and nodal methods . 3
Exa 1.31	Delta to star transformation
Exa 1.32	To find I through 1 ohm by mesh analysis 4
Exa 1.33	To find I through 1 ohm R by nodal analysis 4
Exa 1.34	To find I through 1 ohm R by Superposition theorem . 4
Exa 1.35	To find I through 1 ohm by Thevenin theorem 4
Exa 1.36	To find I through 1 ohm R by Norton theorem 4
Exa 1.37	To calculate Vab by Thevenin and Norton theorm 4
Exa 1.38	Thevenin and Norton equivalent
Exa 1.39	Delta to star transformation to find I
Exa 1.40	Currents in different branches
Exa 1.41	Current when resistance is connected across AB 5
Exa 1.42	Thevenin and Nodal analysis
Exa 1.43	Superposition theorem
Exa 1.44	Determination of voltage
Exa 1.45	value of resistance
Exa 1.46	Resistance of metal filament lamp
Exa 1.47	Copper wire and platinum silver wire 5
Exa 1.48	Cells B1 and b2
Exa 1.49	Values of R1 and R2 6
Exa 1.50	Currents i1 and i2
Exa 1.51	Currents in all branches
Exa 1.52	The venin theorem and Norton theorem 6
Exa 1.53	Thevenin equivalent circuit 6
Exa 1.54	Thevenin theorem
Exa 1.55	Nodal analysis
Exa 1.56	Delta values
Exa 1.57	Superposition theorem to find I 6
Exa 1.58	The venin or Norton theorem
Exa 1.59	Mesh anlysis
Exa 2.1	Form factor of sine wave
Exa 2.3	Average and rms value
Exa 2.4	Vav and Vrms
Exa 2.5	Fluorescent lamp
Exa 2.6	Single phase motor
Exa 2.7	Apparent power of 300 kVA
Exa 2.8	Two element series circuit.

E 0.0	100 W 100 W 1	70
Exa 2.9	120 V 100 W lamp	79
Exa 2.10	Current and power drawn	80
Exa 2.11	To calculate parameters of coil and power factor	81
Exa 2.13	Current in load in rectangular form	82
Exa 2.14	To find frequency and current elements	83
Exa 2.15	Choke coil takes current of 2 Amperes	85
Exa 2.16	Two coils of 5 ohm and 10 ohm connected in parellel .	86
Exa 2.17	AC voltage applied to series RC circuit	89
Exa 2.18	Non inductive resistance of 10 ohm	91
Exa 2.19	Admittance in each parallel branch	92
Exa 2.20	Resonant frequency and band width	94
Exa 2.22	Series RLC circuit	95
Exa 2.23	An alternating current of frequency of 50 Hertz	97
Exa 2.24	RMS value average value and form factor	98
Exa 2.25	50 Hz sinusoidal voltage wave shape	99
Exa 2.26	Sinusoidal alternating current of frequency 25 Hz	100
Exa 2.27	Impedance resistance reactance and power factor of the	
	circuit	101
Exa 2.28	Total impedance current drawn from the supply	103
Exa 2.29	An alternating current of frequency of 60 Hertz	105
Exa 2.30	An alternating current with RMS value of 20 A	106
Exa 2.31	Significance of RMS and average values of wave	107
Exa 2.32	Average value effective value and form factor	108
Exa 2.33	Three coils of resistances	109
Exa 2.34	To draw the vector diagram	110
Exa 2.35	Total impedance and total current	111
Exa 2.36	Total current taken from supply	113
Exa 2.37	Current taken by each branch	114
Exa 2.38	To solve example 27 by j method	116
Exa 2.39	To draw the complete vector diagram	116
Exa 2.40	Power factor and average power delivered to the circuit	118
Exa 2.41	100 V 60 W lamp	119
Exa 2.42	Three sinusoidaly alternating currents	121
Exa 2.43	Resultant current wave made up of two components .	122
Exa 2.44	To find power consumed by the circuit	123
Exa 2.45	Quality factor and bandwidth	124
Exa 2.46	To find power consumed and reactive power	125
Exa 2.47	RL series circuit	127

Exa 2.48	Power factor of the combination	128
Exa 2.49	kVA and kW in each branch circuit and in the main	
	circuit	130
Exa 2.50	Current in each branch when total current is 20 A	132
Exa 2.51	Admittance and impedance of the circuit	133
Exa 2.52	Total impedance and current in each branch	134
Exa 2.53	Total impedance and power taken	137
Exa 2.54	Q factor at resonance	138
Exa 3.1	Identical impedances each consisting of 15 ohm in series	140
Exa 3.2	Resistance and reactance values of each impedance	141
Exa 3.3	Three similar coils each of 30 ohms	142
Exa 3.4	Line and phase current when phase sequence is positive	144
Exa 3.5	Power measurement by 2 wattmeter method	146
Exa 3.6	3300 V synchronous alternator	147
Exa 3.7	Three phase star connected system	149
Exa 3.8	Balanced delta connection	150
Exa 3.9	400 V 50 Hz three phase supply	151
Exa 3.11	Balanced load of 20kVA	153
Exa 3.12	Three identical impedances each having a resistance R	156
Exa 4.1	Deflecting torque exerted on a coil	158
Exa 4.2	Current through galvanometer	159
Exa 4.3	Resistance of wire	159
Exa 4.4	Resistance required to read current and voltage	160
Exa 4.5	Number of revolutions made by energy meter and per-	
	centage error	161
Exa 4.6	Series resistance to measure 500 V on full scale	162
Exa 4.7	Percentage error of energy meter	163
Exa 4.8	Resistance required to read current and voltage	164
Exa 4.9	Percentage error of meter	164
Exa 4.10	Readings of two voltmeters	165
Exa 4.11	Readings of two voltmeters with different internal resis-	
	tances	166
Exa 4.12	Total current carried by two ammeters	167
Exa 6.1	Magnetic circuit having two air gaps	169
Exa 6.2	Steel ring of 25 cm mean diameter	171
Exa 6.3	Magnetic circuit with cast steel core	173
Exa 6.4	Iron ring made of round iron rod	174
Exa 6.5	Ring made of composite material	176

Exa 7.1	To calculate magnetizing component of no load current	179
Exa 7.2	To calculate the primary current	180
Exa 7.3	To find the voltage regulation	182
Exa 7.4	10 kVA transformer	184
Exa 7.5	Transformer with 350 primary and 1050 secondary turns	186
Exa 7.6	Primary current and power factor	187
Exa 7.8	Efficiency of transformer	188
Exa 7.9	Core loss current of distribution transformer	191
Exa 7.10	Number of turns on HT and LT sides	192
Exa 7.11	To calculate primary and full load currents	193
Exa 7.12	Magnetising component of no load current	194
Exa 7.13	Current taken by primary	196
Exa 7.14	To calculate total resistance and reactance referred to	
	primary	197
Exa 7.15	To calculate percent regulation at full load	199
Exa 7.16	Maximum value of percent regulation	200
Exa 7.17	200 kVA transformer with 1000 W iron loss and 2000	
	W copper loss at full load	202
Exa 7.18	To calculate all day efficiency	203
Exa 7.19	Open circuit and short circuit test	205
Exa 7.20	4kVA 200 400 V transformer	207
Exa 7.21	To determine the regulation while supplying full load	209
Exa 7.22	Total equivalent resistance referred to primary and sec-	
	ondary	210
Exa 7.23	33 kVA 2200 220 V 50 Hz transformer	211
Exa 7.24	To calculate secondary terminal voltage	214
Exa 7.25	15 kVA 2200 110 V transformer	216
Exa 7.26	Open circuit and short circuit test	219
Exa 7.27	Open and short circuit test	221
Exa 7.28	Open and short circuit test	223
Exa 7.29	200 kVA 4000 1000 V transformer	227
Exa 7.30	Secondary terminal voltage at full load	229
Exa 7.31	To calculate the value of maximum flux density in the	
	core and the emf \dots	230
Exa 7.32	To calculate total copper loss	231
Exa 7.33	No load and short circuit results of transformer	233
Exa 7.34	50 kVA transformer of 5 is to 1 ratio of turns	235
Exa 7.35	No load and short circuit results of transformer	237

Exa 7.36	Value of load for maximum efficiency	239
Exa 7.37	To calculate regulation at full load	240
Exa 7.38	Total no load loss	242
Exa 7.39	Percentage of hysteresis and copperloss	243
Exa 7.40	To draw the phasor diagram	245
Exa 7.41	Star connected auto transformer	246
Exa 8.1	Generated emf	248
Exa 8.2	Ratio of speed	249
Exa 8.3	Armature induced emf and developed torque and effi-	
	ciency	250
Exa 8.4	Armature resistance and load current at maximum effi-	
	ciency	251
Exa 8.5	BHP of prime mover	252
Exa 8.6	20 HP 230 V 1150 rpm shunt motor	254
Exa 8.7	New operating speed	255
Exa 8.8	250 V DC shunt machine	256
Exa 8.9	Torque developed in the motor	258
Exa 8.10	6 pole DC machine with 400 conductors	259
Exa 8.11	Total emf generated in the armature	261
Exa 8.12	Terminal voltage of the machine	262
Exa 8.13	Current in each conductor and emf generated	263
Exa 8.14	Armature resistance and load current at maximum effi-	
	ciency	264
Exa 8.15	Full load speed	265
Exa 8.16	250 V 4 pole shunt motor	266
Exa 8.17	200 V DC shunt motor	267
Exa 8.18	Value of inserted resistance	269
Exa 8.19	New speed of motor on inserting a 250 ohm resistance	270
Exa 8.20	Reduction of main flux to raise the speed by 50 percent	271
Exa 8.21	10 kW 6 pole DC generator	272
Exa 8.22	Shunt wound motor running at 600 rpm from a 230 V	
	supply	274
Exa 8.23	Value of inserted resistance in field circuit for increasing	
	the speed	275
Exa 8.24	New speed of motor on inserting a 250 ohm resistance	
	in the field circuit	276
Exa 8.25	24 slot 2 pole DC machine	277
Exa 8 27	Counter emf of motor and power developed in armature	279

Exa 8.28	Voltage between far end of feeder and bus bar
Exa 8.29	Speed of motor when connected in series with 5 ohm
	resistance
Exa 8.30	Value of starting torque
Exa 8.31	Value of speed when flux is increased by 20 percent
Exa 8.32	$250~\mathrm{V}$ series motor with $20~\mathrm{A}$ current and $1000~\mathrm{rpm}$.
Exa 8.33	Resistance to be added to obtain rated torque at starting
	and at 1000 rpm
Exa 8.34	Total emf and armature current
Exa 8.35	Armature current and induced emf
Exa 8.36	Constant losses and full load efficiency
Exa 8.37	Hysteresis and eddy current losses
Exa 8.38	Speed of motor when flux per pole is increased by 10
	percent
Exa 10.2	6 pole wound rotor induction motor
Exa 10.3	3 phase induction motor running at 1140 rpm
Exa 10.4	3 phase squirrel cage motor
Exa 10.5	Speed of motor
Exa 10.6	Speed of 4 pole induction motor
Exa 10.7	4 pole 3 phase induction motor
Exa 10.8	3 phase induction motor with synchronous speed 1200
	rpm
Exa 10.9	150 kW 6 pole star connected induction motor
Exa 10.10	6 pole 60 Hz induction motor
Exa 10.11	4 pole induction motor
Exa 10.12	3 phase 440 V distribution
Exa 10.13	3 phase 50 Hz induction motor
Exa 10.14	10 kW 400 V delta connected induction motor
Exa 10.15	4 pole 3 phase SRIM
Exa 10.16	3 phase induction motor
Exa 11.1	Shaft torque
Exa 11.2	Slip and resistance in forward and backward direction

Chapter 1

DC Circuit Analysis and Network Theorems

Scilab code Exa 1.1 Independent loop equations

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 1
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 1");
8 //VARIABLE INITIALIZATION
                                  //number of branches
9 b = 14;
10 n=8;
                                  //number of nodes
11
12 //SOLUTION
                                 //number of loop
13 m=b-n+1;
      equations
14 disp(sprintf("The total number of independent loop
      equations are %d",m));
15
16 / END
```

Scilab code Exa 1.2 Resistance between A and B

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 2
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 2");
7
8 //VARIABLE INITIALIZATION
9 //star values ra, rc and rd
10 ra=2;
                                     //in Ohms
                                    //in Ohms
11 \text{ rc} = 4;
12 \text{ rd} = 3;
                                     //in Ohms
                                     //in Ohms
13 \text{ r1=5};
                                     //in Ohms
14 \text{ r2}=4;
15 \text{ r3=6};
                                     //in Ohms
16
17 //SOLUTION
18 //converting star with points A, C and D into delta
19 r=(ra*rc)+(rc*rd)+(rd*ra); // 'r' is the
      resistance that appears in the numerator of the
      equation of star-delta conversion
20
21 //delta values rac, rcd and rad
22 rac=r/rd;
23 rcd=r/ra;
24 rad=r/rc;
25 req1=(r1*rad)/(r1+rad);
                                      //equivalent
      resistance between A and D
26 \text{ req2}=(r2*rcd)/(r2+rcd);
                                      //equivalent
      resistance between C and D
```

Scilab code Exa 1.3 Resistance between A and B

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 3
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 3");
8 //VARIABLE INITIALIZATION
9 \text{ r1=4.6};
                                       //in Ohms
                                       //in Ohms
10 \text{ r2=7.6};
11
12
13 //star values
14 \text{ rc} = 3;
15 \text{ rd} = 7;
16 \text{ re=5};
17
18 //SOLUTION
19 //converting star with points C, D and E to delta
20 r=(rc*rd)+(rd*re)+(re*rc); //'r' is the
```

```
resistance that appears in the numerator of the
       equation of star-delta conversion
21
22 //delta values rcd, rde and rec
23 rcd=r/re;
24 rde=r/rc;
25 \text{ rec=r/rd};
26 \text{ req1} = (8*\text{rec})/(8+\text{rec});
                                            //equivalent
       resistance between C and E
27 \text{ req2}=(6*\text{rde})/(6+\text{rde});
                                            //equivalent
       resistance between D and E
28 \text{ req3}=(4*\text{rcd})/(4+\text{rcd});
                                            //equivalent
       resistance between C and D
29 \text{ req4=req2+req3};
30 \text{ req5}=(\text{req1}*\text{req4})/(\text{req1}+\text{req4});
                                            //parallel
       combination of resistors
31 req6=req5+r1;
                                            //series combination
       of resistors
32 \text{ req7} = (\text{req6} * \text{r2}) / (\text{req6} + \text{r2});
33 disp(sprintf("The equivalent resistance between
       points A and B is %f ",req7));
34
35 / END
```

Scilab code Exa 1.4 Values of Rab Rcd and Rde

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NEIWORK
THEOREMS
//Example 4

clc;
disp("CHAPTER 1");
disp("EXAMPLE 4");

//VARIABLE INITIALIZATION
```

```
9 r1=1;
                                          //LHS resistance in
       Ohms
10 r2=2;
                                          //in Ohms
11 r3=3;
                                          //in Ohms
12 \text{ r4=4};
                                          //in Ohms
13 \text{ r5=5};
                                          //in Ohms
14 \text{ r6=6};
                                          //in Ohms
15 \text{ r7=7};
                                          //in Ohms
                                          //RHS resistance in
16 r8=8;
       Ohms
17
18 //SOLUTION
19
20 //To find resistance between a and b
21 req1=r1+r2;
                                         //series combination
       of resistors
22 \text{ req2}=(\text{req1}*\text{r3})/(\text{req1}+\text{r3}); //parallel combination
        of resistors
23 \text{ req3=req2+(r4+r5)};
24 req4=(req3*r6)/(req3+r6);
25 \text{ req5=req4+r7};
26 \text{ req6} = (\text{req5} * \text{r8}) / (\text{req5} + \text{r8});
27 disp(sprintf("The equivalent resistance between
       points a and b is %f ",req6));
28
29 //To find resistance between c and d
30 \text{ req7=r7+r8};
31 \text{ reg8}=(\text{reg7}*\text{r6})/(\text{reg7}+\text{r6});
32 req9=req2+r5+req8;
33 \text{ req10=(req9*r4)/(req9+r4)};
34 disp(sprintf("The equivalent resistance between
       points c and d is %f ",req10));
35
36 //To find resistance between d and e
37 \text{ req}11=\text{req}2+\text{r}4+\text{r}5;
38 \text{ req12=(req11*r6)/(req11+r6)};
39 req13=(req12*req7)/(req12+req7);
40 disp(sprintf("The equivalent resistance between
```

```
points d and e is %f ",req13));
41
42 //END
```

Scilab code Exa 1.5 Rac and Rbd

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 5
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 5");
8 //VARIABLE INITIALIZATION
                                   //in Ohms
9 r1=2;
                                   //in Ohms
10 \text{ r}2=4;
                                   //in Ohms
11 r3=8;
12 \text{ r4=8};
                                   //in Ohms
13 \text{ r5=2};
                                   //middle resistance in
      Ohms
14
15 //SOLUTION
16
17 //To find resistance between a and c
18 req1=r1+r2;
19 \text{ req2=r1+r4};
20 req3=(req1*r1)/(req1+r1);
21 rac=(req3*req2)/(req3+req2);
22 disp(sprintf("The equivalent resistance between
      points a and c is %f ",rac));
23
24 //To find resistance between b and d
25 //converting delta abc into star with points a, b
      and c
```

```
26 //delta values
27 rab=r1;
28 rbc=r2;
29 rac=6;
30 //star values
                                         // 'r' is the resistance
31 r=rab+rbc+rac;
        that appears in the denominator of the equation
       of delta-star conversion
32 \text{ ra}=(\text{rab}*\text{rbc})/\text{r};
33 \text{ rb}=(\text{rab}*\text{rac})/\text{r};
34 \text{ rc}=(\text{rbc}*\text{rac})/\text{r};
35 \text{ req5=rb+rac};
36 req6=rc+8;
37 rbd=ra+((req5*req6)/(req5+req6));
38 disp(sprintf("The equivalent resistance between
       points b and d is %f ",rbd));
39
40 / END
```

Scilab code Exa 1.6 Finding value of current by mesh analysis

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NEIWORK
THEOREMS
//Example 6

clc;
disp("CHAPTER 1");
disp("EXAMPLE 6");

//VARIABLE INITIALIZATION
n=4;
nodes
//number of
branches
//number of
```

```
12 //SOLUTION
                                         //number of
13 m=b-n+1;
     mesh equations
14 disp(sprintf("Number of mesh equations are %d",m));
15 \quad nd=n-1;
                                         //number of
     node equations
16 disp(sprintf("Number of node equations are %d",nd));
17
18 //(5/2) I1+(-2) I2+(-1/2) I3 = 4.... eq (1)
20 //(-2) I1 + (10/3) I2 + (-1/3) I3 = 0.... eq (3)
21 //using matrix method to solve the set of equations
22 A = [5/2 -2 -1/2; -2 10/3 -1/3; 0 0 1];
23 b = [4;0;-2];
24 x = inv(A) *b;
                                           //to access
25 \quad I = x(1,:);
     the 1st element of 3X1 matrix
  disp(sprintf("The current from the source Vs is %d A
     ",I));
27
28 //END
```

Scilab code Exa 1.7 Source transformation

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NEIWORK
    THEOREMS
2 //Example 7
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 7");
7
8 //VARIABLE INITIALIZATION
9 I1=1; //current source in Amperes
```

```
//voltage source in
10 v1=4;
      Volts
                                        //voltage source in
11 v2=3:
      Volts
12 \text{ v3=6};
                                        //voltage source in
      Volts
13 r1=2;
                                        //resistance in Ohms
14 \text{ r2=2};
                                        //resistance in Ohms
15 \text{ r3=1};
                                        //resistance in Ohms
16 \text{ r4=3};
                                        //resistance in Ohms
17
18 //SOLUTION
19 //converting all the voltage sources into current
      sources
20 I2=v1/r1;
21 \quad I3=v2/r3;
22 I4 = v3/r4;
23 disp(sprintf("The four current sources are %d A, %d
      A, \%d A and \%d A", I1, I2, I3, I4));
24
25 \text{ req1}=(r1*r2)/(r1+r2);
                                        //parallel
      combination of resistors
26 \text{ req2}=(r3*r4)/(r3+r4);
27 v2 = (I1 + I4) * req1;
28 \text{ v3}=(I3-I2)*req2;
29 req=req1+req2;
30 v = v2 + v3;
31 \text{ I=v/req};
32 disp("VOLTAGE EQUIVALENT CIRCUIT:");
33 disp(sprintf("
                      Voltage source= %f V", v));
34 disp(sprintf("
                      Equivalent resistance (in series)=
      %f ",req));
35 disp("CURRENT EQUIVALENT CIRCUIT:");
                    Current source= %f A",I));
36 disp(sprintf("
37 disp(sprintf("
                      Equivalent resistance (in parallel)=
           ",req));
       \%f
38
39 //END
```

Scilab code Exa 1.8 Source transformation and mesh analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 8
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 8");
8 //VARIABLE INITIALIZATION
                                         //current source
9 I = 2;
      in Amperes
10 \text{ r1=1/2};
                                         //in Ohms
                                         //in Ohms
11 r2=1/2;
12
13 //SOLUTION
14 //the current source of 2A is converted into two 1V
      sources
15 v1=I*r1;
16 \text{ v2=I*r2};
17 disp(sprintf("The voltage sources after conversion
      are %d V \text{ and } %d V", v1, v2));
  //(5/2) I1 + (-1) I2 = 0 \dots eq (1)
                                        //applying KVL in
18
      mesh 1
19 //(-1)I1 + (7/2)I2 = 2 \dots eq (2) // applying KVL in
      mesh 2
20 //using matrix method to solve the set of equations
21 A = [5/2 -1; -1 7/2];
22 b=[2;2];
23 x = inv(A) *b;
24 x=x(2,:);
25 disp(sprintf("The current in 2 resistor is \%f A",x
      ));
```

```
26
27 //END
```

Scilab code Exa 1.9 Equivalent resistance

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
  //Example 9
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 9");
8 //VARIABLE INITIALIZATION
                                      //in Ohms
9 r1=1;
                                      //in Ohms
10 \text{ r2=2};
                                      //in Ohms
11 r3=3;
                                      //in Ohms
12 \text{ r4=1};
13
14 //SOLUTION
15
16 //delta values
                                      //between points a
17 rab=r1;
      and b
                                      //between points a
18 rac=r2;
      and c
19 rbc=r3;
                                      //between points b
      and c
20 //coverting delta abc into star with points a, b and
21 //star values ra, rb and rc
                                      //'r' is the
22 r=rab+rbc+rac;
      resistance that appears in the denominator of the
       equation of delta-star conversion
23 \text{ ra=(rab*rac)/r};
```

Scilab code Exa 1.10 Current through R3 using nodal analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
  //Example 10
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 10");
8 //VARIABLE INITIALIZATION
9 v = 10;
                                     //voltage source in
      Volts
                                     //current source in
10 I = 5;
      Amperes
11 r1=2;
                                     //in Ohms
12 r2=2;
                                     //in Ohms
13 \text{ r3}=4;
                                     //in Ohms
14
15 //SOLUTION
16 \text{ res=I+(v/r1)};
17 v1=res/((1/r1)+(1/r2)+(1/r3));
18 I1=v1/r3;
19 disp(sprintf("By Nodal analysis, the current through
```

```
resistor R3 is %d A",I1));
20
21 //END
```

Scilab code Exa 1.11 Current through R3 using mesh analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
  //Example 11
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 11");
  //VARIABLE INITIALIZATION
9 I3 = -5;
                                         //direction of
      I3 is opposite to the current which flows from
      the current source
10
11 //SOLUTION
12
13 //using mesh analysis, the following equations are
      obtained
14 //(4) I1+(-2) I2 = 10....eq (1)
15 //(-2) I1+(6) I2 = -20....eq (2)
16 //solving the two equations using matrix method
17 A = [4 -2; -2 6];
18 b = [10; -20];
19 x = inv(A) *b;
20 \quad I1=x(1,:);
                                         //to access 1st
      element of 2X1 matrix
                                         //to access 2nd
21 \quad I2=x(2,:);
      element of 2X1 matrix
22 I=I2-I3;
23 disp(sprintf("By mesh analysis, the current through
```

```
resistor R3 is %d A",I));
24
25 //END
```

Scilab code Exa 1.12 Current through R3 using superposition theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 12
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 12");
7
8 //VARIABLE INITIALIZATION
                                        //voltage source
9 v = 10;
     in Volts
10 I = 5;
                                        //current source
     in Amperes
                                        //in Ohms
11 r1=2;
                                        //in Ohms
12 r2=2;
13 \text{ r3}=4;
                                        //in Ohms
14
15 //SOLUTION
16
17 //deactivating current source
18 v1=(v/r1)/((1/r1)+(1/r2)+(1/r3)); //using nodal
      analysis
19 I1=v1/r3;
20
21 //deactivating voltage source
v2=I/((1/r1)+(1/r2)+(1/r3));
                                        //using nodal
      analysis
23 I2=v2/r3;
                                        //applying
24 I_tot=I1+I2;
```

```
Superposition Theorem (I1 and I2 are in same direction)

25

26 disp(sprintf("By Superposition Theorem, the current through resistor R3 is %d A",I_tot));

27

28 //END
```

Scilab code Exa 1.13 Current through R3 using Thevenin theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 13
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 13");
8 //VARIABLE INITIALIZATION
9 v = 10;
                                    //voltage source in
      Volts
10 I = 5;
                                    //current source in
      Amperes
                                    //in Ohms
11 r1=2;
                                    //in Ohms
12 r2=2;
13 \text{ r3}=4;
                                    //in Ohms
14
15 //SOLUTION
16 //solving by nodal analysis
17 res=I+(v/r1);
                                    // 'res' is used to
     make the calculation easy
                                    //Thevenin voltage
18 vth=res/((1/r1)+(1/r2));
19 rth=(r1*r2)/(r1+r2);
                                    //Thevenin resistance
20 \text{ Ith=vth/(rth+r3)};
                                //Thevenin current
21 disp(sprintf("By Thevenin Theorem, the current
```

```
through resistor R3 is %d A", Ith));
22
23 //END
```

Scilab code Exa 1.14 Current through R3 using Norton theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
  //Example 14
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 14");
8 //VARIABLE INITIALIZATION
                                       //voltage source in
9 v = 10;
      Volts
10 I3 = -5;
                                       //current source in
      Amperes
                                       //in Ohms
11 r1=2;
12 r2=2;
                                       //in Ohms
13 \text{ r3} = 4;
                                       //in Ohms
14
15 //SOLUTION
16 //by loop analysis
17 //(1) I1 + (-1) I2 = 0 \dots eq (1)
18 //(4) I1+(-2) I2 = 10....eq (2)
19 //solving the equations by matrix method
20 \quad A = [1 \quad -1; 4 \quad -2];
21 b = [0; 10];
22 x = inv(A) *b;
23 I1=x(1,:);
                                       //to access 1st
      element of 2X1 matrix
24 \quad I2=x(2,:);
                                       //to access 2nd
      element of 2X1 matrix
```

Scilab code Exa 1.15 To find Vx by mesh analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 15
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 15");
8 //VARIABLE INITIALIZATION
9 v = 7;
                                      //voltage source in
      Volts
10 I = 7;
                                      //current source in
      Amperes
11 r3=1;
                                      //in Ohms
12
13 //SOLUTION
14 //(1) I1+(-4) I2+(4) I3 = 7.....eq (1)
15 //(-1) I1+(6) I2+(-3) I3 = 0 ..... eq (2)
16 //(1) I1 + (0) I2 + (-1) I3 = 7 \dots eq (3)
17 //solving the equations by matrix method
18 A = [1 -4 4; -1 6 -3; 1 0 -1];
19 b = [7;0;7];
20 x = inv(A) *b;
21 \quad I1=x(1,:);
                                      //to access the 1st
      element of 3X1 matrix
```

Scilab code Exa 1.16 To find Vx by nodal analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 16
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 16");
7
  //VARIABLE INITIALIZATION
9 v = 7;
                                        //voltage source in
      Volts
10 I = 7;
                                        //current source in
      Amperes
11 r1=1;
                                        //in Ohms
12 \text{ r2=2};
                                        //in Ohms
13 \text{ r3=1};
                                        //in Ohms
14 \text{ r4=2};
                                        //in Ohms
                                        //in Ohms
15 \text{ r5} = 3;
16
17 //SOLUTION
18 //(4) vb+(-1) vc = 0....eq (1)
19 //(-2) vb + (11) vc = 21.... eq (2)
20 //solving the equations by matrix method
```

Scilab code Exa 1.17 To find Vx by Superposition theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 17
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 17");
8 //VARIABLE INITIALIZATION
9 v = 7;
                                        //voltage source in
      Volts
10 I = 7;
                                        //current source in
      Amperes
11 r1=1;
                                        //in Ohms
12 r2=2;
                                        //in Ohms
13 \text{ r3=1};
                                        //in Ohms
                                        //in Ohms
14 \text{ r4=2};
                                        //in Ohms
15 \text{ r5}=3;
16
17 //SOLUTION
```

```
18
19 //deactivating the current source
20 res=(v/4)+(v/2);
21 vc=res/((1/4)+(1/r1)+(1/r2));
22 \text{ vx1} = -\text{vc};
23
24 //deactivating voltage source
25 //(4) \text{ va} + (-1) \text{ vb} = -21 \dots \text{eq} (1)
26 //(2) va+(-11) vb = 0....eq (2)
27 //solving the equations by matrix method
28 \quad A = [4 \quad -1; 2 \quad -11];
29 b = [-21; 0];
30 x = inv(A)*b;
                                              //to access 1st
31 \text{ va=x}(1,:);
       element of 2X1 matrix
                                              //to access 2nd
32 \text{ vb}=x(2,:);
       element of 2X1 matrix
33 \text{ vx}2 = -\text{vb};
34 \quad vx = vx1 + vx2;
35 disp(sprintf("By Superposition Theorem, the value of
        Vx \text{ is } %d V", vx));
36
37 / END
```

Scilab code Exa 1.18 To find Vx by Thevenin theorem

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 18

clc;
disp("CHAPTER 1");
disp("EXAMPLE 18");
//VARIABLE INITIALIZATION
```

```
//voltage source in
9 v = 7;
      Volts
10 I=7;
                                         //current source in
      Amperes
11 r1=1;
                                         //in Ohms
                                         //in Ohms
12 r2=2;
                                         //in Ohms
13 \text{ r3}=1;
                                         //in Ohms
14 \text{ r4=2};
15 \text{ r5=3};
                                         //in Ohms
16
17 //SOLUTION
18 //solving by mesh analysis
19 I2=0;
                                         //since mesh 2 is
      open
20 I1=I-I2;
                                         //from the equation
21 I3=I1/6;
      of mesh 3
22 \text{ vth} = -(r2*I3) + v;
                                         //Thevenin voltage
23 r=r1+r5;
                                         //series combination
       of resistors
24 \text{ rth}=(r*r4)/(r+r4);
                                         //parallel
      combination of resistors (Thevenin resistance)
                                         //Thevenin current
25 I=vth/(rth+r3);
26 \text{ vx} = -1 * r3;
27 disp(sprintf("By Thevenin Theorem, the value of Vx
      is %d V", vx));
28
29 / END
```

Scilab code Exa 1.19 To find Vx by Norton theorem

```
    1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
    2 //Example 19
    3
```

```
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 19");
7
8 //VARIABLE INITIALIZATION
                                          //voltage source in
9 v = 7;
      Volts
10 I = 7;
                                          //current source in
      Amperes
11 r1=1;
                                          //in Ohms
                                          //in Ohms
12 r2=2;
13 \text{ r3=1};
                                          //in Ohms
14 \text{ r4=2};
                                          //in Ohms
15 \text{ r5=3};
                                          //in Ohms
16
17 //SOLUTION
18 //by using mesh analysis, the following equations
      are obtained
19 //(1) I1+(-4) I2+(3) In = 7.... eq (1)
20 //(-1) I1 + (6) I1 + (-3) In = 0 \dots eq (2)
21 //(0) I1+(1) I2+(-1) In = 0...... eq (3)
22 //solving the equations by matrix method
23 \quad A = [1 \quad -4 \quad 3; -1 \quad 6 \quad -3; 0 \quad 1 \quad -1];
24 b = [7;0;0];
25 \quad x = inv(A) *b;
26 \quad I1=x(1,:);
                                          //to access the 1st
      element of 3X1 matrix
  12=x(2,:);
                                          //to access the 2nd
27
      element of 3X1 matrix
                                          //to access the 3rd
  IN = x(3,:);
      element of 3X1 matrix; IN is Norton current
29 r=r1+r5;
                                          //series combination
        of resistors
30 \text{ rN} = (r*r4)/(r+r4);
                                          //parallel
      combination of resistors (Norton resistance)
31 I = (rN*IN)/(rN+r3);
32 \text{ vx} = -1 * r3;
33 disp(sprintf("By Norton Theorem, the value of Vx is
```

```
%d V", vx));
34
35 //END
```

Scilab code Exa 1.20 To find I using Norton theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
   //Example 20
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 20");
8 //VARIABLE INITIALIZATION
                                            //current source
9 I = 20;
      in Amperes
                                            //voltage source
10 \text{ v1} = 10;
      in Volts
11 v2=40;
                                            //voltage source
      in Volts
12 r1=8;
                                            //in Ohms
13 \text{ r2=5};
                                            //in Ohms
                                            //in Ohms
14 \text{ r3}=4;
                                            //in Ohms
15 \text{ r4=12};
16
17 //SOLUTION
18 req=r1+r2;
19 rn = (req * r3) / (req + r3);
20 //finding In by mesh analysis
21 / (17) I2 + (-4) I3 = 110 \dots eq (1)
22 //(1) I2+(-1) I3 = -10.....eq (2)
23 //solving the equations by matrix mehod
24 \quad A = [17 \quad -4; 1 \quad -1];
25 b = [110; -10];
```

Scilab code Exa 1.21 To find I using Thevenin theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 21
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 21");
8 //VARIABLE INITIALIZATION
9 I = 20;
                                           //current source
      in Amperes
                                           //voltage source
10 \text{ v1=10};
      in Volts
11 v2=40;
                                           //voltage source
      in Volts
12 r1=8;
                                           //in Ohms
                                           //in Ohms
13 \text{ r2=5};
                                           //in Ohms
14 \text{ r3}=4;
15 \text{ r4=12};
                                           //in Ohms
16
17 //SOLUTION
```

```
18
                                          //series
19 req=r1+r2;
      combination of resistors
                                          //parallel
  rth=(req*r3)/(req+r3);
      connection of resistors (Thevenin resistance)
21
22 //by using nodal analysis, the following equations
      are obtained
  //(13) v1 + (-8) v2 = 750...eq (1)
23
24 / (-4) v1 + (9) v2 = 200 \dots eq (2)
25 //solving the equations by matrix mehod
26
27 \quad A = [13 \quad -8; -4 \quad 9];
28 b = [750; 200];
29 x = inv(A) *b;
                                          //to access the 1
30 \text{ v1}=x(1,:);
      st element of 2X1 matrix
31 \quad v2=x(2,:);
                                          //to access the 2
      nd element of 2X1 matrix
32 \text{ vth=v2};
                                          //Thevenin voltage
33 I=vth/(rth+r4);
                                          //Thevenin current
34 disp(sprintf("By Thevenin Theorem, the value of I is
       %f A",I);
35
36 / END
```

Scilab code Exa 1.22 To find I using mesh analysis

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 22

clc;
disp("CHAPTER 1");
disp("EXAMPLE 22");
```

```
8 //VARIABLE INITIALIZATION
9 I1 = 20;
                                           //current source
      in Amperes
10 \text{ v1} = 10;
                                           //voltage source
      in Volts
11 v2=40;
                                           //voltage source
      in Volts
                                           //in Ohms
12 r1=8;
13 \text{ r2=5};
                                           //in Ohms
14 \text{ r3}=4;
                                           //in Ohms
15 \text{ r4}=12;
                                           //in Ohms
16
  //SOLUTION
17
18
  //by using mesh analysis the following equations are
       obtained
20 / (17) I2 + (-4) I3 = 110 \dots eq (1)
21 / (-1) I 2 + (4) I 3 = 10 \dots eq (2)
22 //solving the equations by matrix method
23 A = [17 -4; -1 4];
24 b = [110; 10];
25 x = inv(A) *b;
26 \quad I2=x(1,:);
                                            //to access the 1
      st element of 2X1 matrix
                                            //to access the 2
27
   I3=x(2,:);
      nd element of 2X1 matrix
28 I = I3;
29 disp(sprintf("By mesh analysis, the value of I is %f
       A", I));
30
31
  //END
```

Scilab code Exa 1.23 To find I using nodal analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 23
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 23");
7
8 //VARIABLE INITIALIZATION
9 I1 = 20;
                                           //current source
      in Amperes
                                           //voltage source
10 \text{ v1} = 10;
      in Volts
11 v2=40;
                                           //voltage source
      in Volts
12 r1=8;
                                           //in Ohms
                                           //in Ohms
13 \text{ r2=5};
14 \text{ r3=4};
                                           //in Ohms
                                           //in Ohms
15 \text{ r4}=12;
16
17 //SOLUTION
18 //(17) I2+(-4) I3 = 110....eq (1)
19 //(-4) v1 + (16) I3 = 40 \dots eq (2)
20 //solving the equations by matrix mehod
21 \quad A = [17 \quad -4; -4 \quad 16];
22 b = [110; 40];
23 x = inv(A) *b;
                                            //to access the 1
24 \quad I2=x(1,:);
      st element of 2X1 matrix
25 \quad I3=x(2,:);
                                            //to access the 2
      nd element of 2X1 matrix
  disp(sprintf("By Nodal analysis, the value of I is
26
      %f A", I3));
27
28 / END
```

Scilab code Exa 1.24 To find I using Superposition theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 24
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 24");
8 //VARIABLE INITIALIZATION
9 I = 20;
                                          //current source
      in Amperes
10 \text{ v1} = 10;
                                          //voltage source
      in Volt
11 v2=40;
                                          //voltage source
      in Volts
12 r1=8;
                                          //in Ohms
13 \text{ r2=5};
                                          //in Ohms
14 \text{ r3}=4;
                                          //in Ohms
15 \text{ r4=12};
                                          //in Ohms
16
17 //SOLUTION
18
19 //activating 20A current source
20 r=r2+((r3*r4)/(r3+r4));
21 I1=(r*I)/(r+r1);
22 I_20 = (r3*I1)/(r3+r4);
23
24 //activating 10V battery source
25 \text{ req=r1+r2};
v_10 = (-v1/req)/((1/req) + (1/r3) + (1/r4));
27 I_10=v_10/r4;
28
```

Scilab code Exa 1.25 To find I using mesh analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
  //Example 25
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 25");
8 //SOLUTION
9 //(1) I1+(0) I2+(0) I3 = 5.....eq (1)
10 //(-20) I1 + (50) I2 + (-20) I3 = 0 .......... eq. (2)
11 //(0) I1+(1) I2+(-1) I3 = 5.....eq (3)
12 //solving the equations by matrix mehod
13 A = [1 \ 0 \ 0; -20 \ 50 \ -20; 0 \ 1 \ -1];
14 b = [5;0;5];
15 x=inv(A)*b;
16 I1=x(1,:);
                                         //to access the 1
      st element of 3X1 matrix
17 I2=x(2,:);
                                         //to access the 2
     nd element of 3X1 matrix
  I3=x(3,:);
                                         //to access the 3
     rd element of 3X1 matrix
20 disp(sprintf("By Mesh analysis, the value of I is %d
```

```
A",I));
21
22 //END
```

Scilab code Exa 1.26 To find I using nodal analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
  //Example 26
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 26");
8 //VARIABLE INITIALIZATION
9 I1=5;
                                      //current source in
      Amperes
10 \quad v2 = 100;
                                      //voltage source in
      Volts
11 r1=20;
                                      //in Ohms
                                      //in Ohms
12 r2=10;
                                      //in Ohms
13 \text{ r3=20};
14
15 //SOLUTION
16 v1 = (I1 + (v2/r2))/((1/r1) + (1/r2));
17 I = (v1 - v2) / r2;
18 disp(sprintf("By Nodal analysis, the value of I is
      %d A", I);
19
20 / END
```

Scilab code Exa 1.27 To find I using Thevenin theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 27
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 27");
  //VARIABLE INITIALIZATION
9 I1=5;
                                     //current source in
      Amperes
10 \text{ vb} = 100;
                                     //voltage source in
      Volts
                                     //in Ohms
11 r1 = 20;
                                     //in Ohms
12 r2=10;
13 \text{ r3}=20;
                                     //in Ohms
14
15 //SOLUTION
16 va=I1*r1;
                                     //by applying node
      analysis at point 'a'
17 vth=va-vb;
                                     //Thevenin voltage
      vth=vab
18 rth=r1+((r3*0)/(r3+0));
                                     //Thevenin resistance
19 I=vth/(rth+r2);
20 disp(sprintf("By Thevenin Theorem, the value of I is
       %d A",I);
21
22 / END
```

Scilab code Exa 1.28 To find I using Norton theorem

```
    1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NEIWORK
THEOREMS
    2 //Example 28
```

```
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 28");
8 //VARIABLE INITIALIZATION
9 I1=5;
                                      //current source in
      Amperes
10 \text{ va} = 100;
                                      //voltage source in
      Volts
11 r1=20;
                                      //in Ohms
                                      //in Ohms
12 r2=10;
                                      //in Ohms
13 \text{ r3} = 20;
14
15 //SOLUTION
16 IN=I1-(va/r1);
                                      //using nodal
      analysis at point 'a'
17 rN=r1+((r3*0)/(r3+0));
18 I = (rN*IN)/(rN+r2);
19 disp(sprintf("By Norton Theorem, the value of I is
      %d A", I);
20
  //END
21
```

Scilab code Exa 1.29 To find I using Superposition theorem

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 29

clc;
disp("CHAPTER 1");
disp("EXAMPLE 29");

//VARIABLE INITIALIZATION
I=5; //current source in
```

```
Amperes
10 v = 100;
                                     //voltage source in
      Volts
                                     //in Ohms
11 r1 = 20;
12 r2=10;
                                     //in Ohms
13 \text{ r3}=20;
                                     //in Ohms
14
15 //SOLUTION
16
17 //activating current source
18 I1=(I*r1)/(r1+r2);
                                     //by current divider
      law
19
20 //activating voltage source
21 I2=-(v/(r1+r2));
22
23 I_tot=I1+I2;
24 disp(sprintf("By Superposition Theorem, the value of
       I is %d A",I_{tot});
25
26 //END
```

Scilab code Exa 1.30 Source transformation and mesh and nodal methods

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 30

clc;
disp("CHAPTER 1");
disp("EXAMPLE 30");

//VARIABLE INITIALIZATION
I1=25;  //current source
in Amperes
```

```
10 \quad I2 = 20;
                                            //current source
      in Amperes
11 v = 20;
                                            //voltage source
      in Volts
12 \text{ r1=4};
                                            //LHS resistance
      in Ohms
13 \text{ r2=10};
                                            //in Ohms
                                            //in Ohms
14 \text{ r3=2};
                                            //in Ohms
15 \text{ r4=1};
16 \text{ r5=10};
                                            //RHS resistance
      in Ohms
17
18 //SOLUTION
19
20 //source transformation
                                            //current source
21 v1 = I1 * r1;
      I1 is converted to voltage source v1
22 v2 = I2 * r3;
                                            //current source
      I2 is converted to voltage source v2
23
24 //using mesh analysis
25 //(8) IA+(-1) IB = 30....eq (1)
26 //(-2)IA + (3)IB = 20...eq (2)
27 //solving the equations by matrix method
28 \quad A = [8 \quad -1; -2 \quad 3];
29 b = [30; 20];
30 x = inv(A)*b;
                                            //to access the 1
31 IA = x(1,:);
      st element of 2X1 matrix
32 \text{ IB}=x(2,:);
                                            //to access the 2
      nd element of 2X1 matrix
33 disp(sprintf("By Mesh analysis I_A = \%d A and I_B = \%d
       A", IA, IB));
34
35 //using nodal analysis
36 \text{ req=r1+r2};
37 \text{ res}=(v1/req)+(v2/r3)+(v/r4);
38 \text{ v3=res/((1/req)+(1/r3)+(1/r4))};
```

Scilab code Exa 1.31 Delta to star transformation

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
  //Example 31
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 31");
8 //VARIABLE INITIALIZATION
9 r1=6;
                                         //in Ohms
                                         //in Ohms
10 \text{ r}2=4;
                                         //in Ohms
11 r3=4;
                                         //in Ohms
12 \text{ r4=4};
13 \text{ r5=6};
                                         //in Ohms
14 \text{ r6=6};
                                         //in Ohms
15 \text{ r7=6};
                                         //in Ohms
16 r8=8;
                                         //in Ohms
17 \text{ r9}=4;
                                         //in Ohms
18 r10=10;
                                         //in Ohms
                                         //middle resistance
19 r11=10;
      in Ohms
20
21 //SOLUTION
22 //converting delta cde in a star
```

```
23 \text{ req1} = r5 + r6 + r7;
24 \text{ req2}=(r6*r7)/req1;
25 \text{ req3}=(r5*r6)/req1;
26 \text{ req4}=(r5*r7)/req1;
27
28 \text{ req}5=r1+r2+r3;
                                           //on LHS of middle
       resistance
29 \text{ req6=r4+req2};
                                           //top LHS
30 \text{ req7}=\text{req4}+\text{r11};
                                           //equivalent middle
       resistance
31 req8=req3+r8+r9+r10;
                                           //top RHS
32
33 \text{ req9=(req7*req8)/(req7+req8)};
                                           //parallel
       combination of resistors
                                           //series combination
34 \text{ req10=req9+req6};
        of resistors
  req11=(req5*req10)/(req5+req10);
35
36
37 disp(sprintf("The equivalent resistance between A
       and B is %d
                       ",req11));
38
39
  //END
```

Scilab code Exa 1.32 To find I through 1 ohm by mesh analysis

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
   THEOREMS
//Example 32

clc;
disp("CHAPTER 1");
disp("EXAMPLE 32");

//VARIABLE INITIALIZATION
I=10; //current source in
```

```
Amperes
10 v = 10;
                                      //voltage source in
      Volts
11 \text{ r1=4};
                                      //top resistance in
      Ohms
12 \text{ r1=4};
                                      //right resistance
      in Ohms
13 \text{ r3}=4;
                                      //bottom resistance
      in Ohms
                                      //left resistance in
14 \text{ r4=6};
       Ohms
                                      //in Ohms
15 \text{ r5}=1;
16
17 //SOLUTION
18 //without converting the current source into voltage
20 //(-4) I1 + (9) I2 + (-4) I3 = 0 \dots eq (2)
21 / (0) I1 + (-4) I2 + (8) I3 = 10 \dots eq (3)
22 //solving the equations by matrix method
23 A = [10 -4 0; -4 9 -4; 0 -4 8];
24 b = [50;0;10];
25 x = inv(A) *b;
26 \quad I2=x(2,:);
                                       //to access the 2nd
       element of 3X1 matrix
  disp(sprintf("By Mesh analysis, the current through
          resistor is %f A", I2));
28
29
  //END
```

Scilab code Exa 1.33 To find I through 1 ohm R by nodal analysis

```
    1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
    2 //Example 33
```

```
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 33");
8 //VARIABLE INITIALIZATION
9 I = 10;
                                          //current source in
      Amperes
                                          //voltage source in
10 v = 10;
      Volts
11 \text{ r1=4};
                                          //top resistance in
      Ohms
12 \text{ r1=4};
                                          //right resistance
      in Ohms
                                          //bottom resistance
13 \text{ r3}=4;
      in Ohms
                                          //left resistance in
14 \text{ r4=6};
       Ohms
                                          //in Ohms
15 \text{ r5}=1;
16
17 //SOLUTION
18
19 //by applying nodal analysis at node 1, the
       following equations are obtained:
20 //(17) v1 + (-12) v2 = 150 \dots eq (1)
21 / (-4) v1 + (6) v2 = 10 \dots eq (2)
22 //solving the equations by matrix method
23
24 \quad A = [17 \quad -12; -4 \quad 6];
25 b=[150;10];
26 \quad x = inv(A) *b;
27 \text{ v1}=x(1,:);
                                           //to access the 1st
        element of 2X1 matrix
28 \text{ v2=x(2,:)};
                                           //to access the 1st
        element of 2X1 matrix
29 \quad if(v1>v2) \quad then
30 I = (v1 - v2) / r5;
31 disp(sprintf("By nodal analysis, the current through
```

Scilab code Exa 1.34 To find I through 1 ohm R by Superposition theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 34
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 34");
8 //VARIABLE INITIALIZATION
9 I = 10;
                                        //current source in
      Amperes
                                        //voltage source in
10 v = 10;
      Volts
                                        //top resistance in
11 r1=4;
      Ohms
12 \text{ r1=4};
                                        //right resistance
      in Ohms
13 \text{ r3} = 4;
                                        //bottom resistance
      in Ohms
14 \text{ r4=6};
                                        //left resistance in
       Ohms
15 \text{ r5=1};
                                        //in Ohms
16
```

```
17 //SOLUTION
18
19 //activating the current source
20 / (17) v1 + (-12) v2 = 120...eq (1)
21 / (-4) v1 + (6) v2 = 0 \dots eq (2)
22 //solving the equations by matrix method
23 \quad A = [17 \quad -12; -4 \quad 6];
24 b = [120; 0];
25 x = inv(A) *b;
26 v1=x(1,:);
                                            //to access the 1st
        element of 2X1 matrix
27 \quad v2=x(2,:);
                                            //to access the 1st
        element of 2X1 matrix
28 \text{ if}(v1>v2) \text{ then}
29 I1=(v1-v2)/r5;
30 else
31 I1 = (v2 - v1) / r5;
32 \quad end;
33
34 //activating the voltage source
35 //(17) v1 + (-12) v2 = 30 \dots eq (1)
36 / (-4) v1 + (6) v2 = 10 \dots eq (2)
37 //solving the equations by matrix method
38 \quad A = [17 \quad -12; -4 \quad 6];
39 b = [30; 10];
40 \quad x = inv(A) *b;
                                            //to access the 1st
41 \quad v3=x(1,:);
        element of 2X1 matrix
42 \quad v4=x(2,:);
                                            //to access the 1st
        element of 2X1 matrix
43 if (v3>v4) then
44 I2=(v3-v4)/r5;
45 else
46 \quad I2 = (v4 - v3) / r5;
47 \text{ end};
48
49 I_tot=I1+I2;
50 disp(sprintf("By Superposition Theorem, the current
```

```
through 1 resistor is %f A",I_tot));
51
52 //END
```

Scilab code Exa 1.35 To find I through 1 ohm by Thevenin theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
  //Example 35
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 35");
8 //VARIABLE INITIALIZATION
                                        //current source in
9 I = 10;
      Amperes
10 v = 10;
                                        //voltage source in
      Volts
11 \text{ r1=4};
                                        //top resistance in
      Ohms
12 \text{ r2=4};
                                        //right resistance
      in Ohms
13 \text{ r3} = 4;
                                        //bottom resistance
      in Ohms
14 \text{ r4=6};
                                        //left resistance in
       Ohms
15 \text{ r5}=1;
                                        //in Ohms
16
17 //SOLUTION
                                        // 'res' is used to
18 res=I+(v/r1);
      make calucations easy
19 va=res/((1/r4)+(1/r1));
                                        //applying nodal
      analysis at node 1
20 vb = (v/r2)/((1/r2)+(1/r3));
                                        //applying nodal
```

```
analysis at node 2
21 vth=va-vb;
22 req1=(r1*r4)/(r1+r4);
23 req2=(r2*r3)/(r2+r3);
24 rth=req1+req2;
25 Ith=vth/(rth+r5);
26 disp(sprintf("By Thevenin's Theorem, the current through the 1 resistor is %f A",Ith));
27
28 //END
```

Scilab code Exa 1.36 To find I through 1 ohm R by Norton theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 36
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 36");
8 //VARIABLE INITIALIZATION
9 I = 10;
                                             //current source
      in Amperes
                                             //voltage source
10 v = 10;
      in Volts
11 \text{ r1} = 4;
                                             //top resistance
      in Ohms
12 \text{ r}2=4;
                                             //right
      resistance in Ohms
                                             //bottom
13 \text{ r3} = 4;
      resistance in Ohms
                                             //left resistance
14 \text{ r4=6};
       in Ohms
                                             //in Ohms
15 \text{ r5=1};
```

```
16
17 //SOLUTION
18 //(1) v1 + (12/5) In = 30 \dots eq (1)
19 //(2) v1+(-4) In = 10....eq (2)
20 \quad A = [1 \quad 12/5; 2 \quad -4];
21 b = [30; 10];
22 x = inv(A) *b;
                                             //to access the
23 v1=x(1,:);
      1st element of 2X1 matrix
  In=x(2,:);
                                             //to access the
      2nd element of 2X1 matrix
25 \text{ req1}=(r1*r4)/(r1+r4);
26 \text{ req2=(r2*r3)/(r2+r3)};
27 rn=req1+req2;
28 I1=(rn*In)/(rn+r5);
29 disp(sprintf("By Norton Theorem, the current through
         resistor is %f A", I1));
30
  //END
31
```

Scilab code Exa 1.37 To calculate Vab by Thevenin and Norton theorm

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 37

clc;
disp("CHAPTER 1");
disp("EXAMPLE 37");

//VARIABLE INITIALIZATION
v1=90;
in Volts
//voltage source
in Volts
//in Ohms
r2=6;
```

```
//in Ohms
12 \text{ r3=5};
13 \text{ r4=4};
                                               //in Ohms
                                               //diagonal
14 r5=8;
      resistance in Ohms
                                               //in Ohms
15
  r6=8;
16
17
  //SOLUTION
18
19 //solution (i): using Thevenin's Theorem
20 //(3) v1 + (-2) v2 = 90... eq (1) //applying nodal
        analysis at node 1
21 //(-2) v1 + (4) v2 = -90 \dots eq (2)
                                               //applying nodal
        analysis at node 2
22 \quad A = [3 \quad -2; -2 \quad 4];
23 b = [90; -90];
24 x = inv(A) *b;
25 \text{ v1}=x(1,:);
26 \text{ v2=x(2,:)};
27 \text{ vth=v1};
28 \text{ req1}=(r1*r5)/(r1+r5);
29 \text{ req2=req1+r4};
30 \text{ req3}=(\text{req2*r6})/(\text{req2+r6});
31 \text{ rth=req3+r2};
32 vab1=(vth*r3)/(rth+r3);
33 disp(sprintf("By Thevenin's Theorem, the value of
      Vab is \%f V", vab1));
34
35 //solution (ii): using Norton's Theorem
36 //(13) v1 + (-7) v2 = 270 \dots eq (1) //applying nodal
        analysis at node 1
37 / (7) v1 + (-13) v2 = 0 \dots eq (2)
                                               //applying nodal
        analysis at node 2
38 A = [13 -7;7 -13];
39 b = [270; 0];
40 x = inv(A) *b;
41 v1=x(1,:);
42 \quad v2=x(2,:);
43 \text{ req1}=(r1*r5)/(r1+r5);
```

```
44 req2=req1+r4;
45 req3=(req2*r6)/(req2+r6);
46 rN=req3+r2;
47 if(v1>v2) then
48 In=(v1-v2)/r2;
49 else
50 IN=(v2-v1)/r2;
51 end;
52 vab2=(r3*IN)*(rN/(rth+r3));
53 disp(sprintf("By Norton's Theorem, the value of Vabis %f V",vab2));
54
55 //END
```

Scilab code Exa 1.38 Thevenin and Norton equivalent

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
  //Example 38
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 38");
7
8 //VARIABLE INITIALIZATION
                                        //current source in
9 I = 2;
       Amperes
10 r1=2;
                                        //in Ohms
11 r2=1;
                                        //in Ohms
                                        //in Ohms
12 \text{ r3=1};
                                        //in Ohms
13 \text{ r4=2};
14
15 //SOLUTION
16
17 // Thevenin Equivalent circuit
```

```
//since there is
18 I1=1;
       equal resistance of 3, hence, current=1A
19 vth=(I1*r2)+(-I1*r4);
20 \text{ req1=r1+r2};
21 \text{ req2=r3+r4};
21 \text{ rth}=(\text{req1*req2})/(\text{req1+req2});
23 disp("THEVENIN EQUIVALENT CIRCUIT IS-");
24 disp(sprintf("
25 disp(sprintf("
                            Thevenin voltage= %d V", vth));
                            Thevenin resistance= %f ",rth)
       );
26
27 // Norton Equivalent circuit
28 v1=I/((1/r2)+(1/r4));
29 v2=-I/((1/r3)+(1/r1));
30 \text{ req1=r1+r2};
31 \text{ req2=r3+r4};
32 \text{ rn=(req1*req2)/(req1+req2)};
33 Isc=(v1/r4)+v2;
34 disp("NORTON EQUIVALENT CIRCUIT IS-");
35 disp(sprintf(" Norton current= %f A", Isc));
36 disp(sprintf(" Norton resistance= %f ",rn));
37
38 / END
```

Scilab code Exa 1.39 Delta to star transformation to find I

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NEIWORK
THEOREMS
//Example 39

clc;
disp("CHAPTER 1");
disp("EXAMPLE 39");

//VARIABLE INITIALIZATION
```

```
//in Volts
9 v = 2;
10 r=2;
                                          //in Ohms
11
12 //SOLUTION
13 z_star=r/3;
14 \text{ req1}=(r/3)+r;
15 \text{ req2}=(r/3)+r;
16 req3=(req1*req2)/(req1+req2);
17 \text{ req4}=(r/3)+req3;
18 \text{ req5} = (\text{req4*r})/(\text{req4+r});
19 I=v/req5;
20 disp(sprintf("The value of I is %d A",I));
21
22 //END
```

Scilab code Exa 1.40 Currents in different branches

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 40
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 40");
8 //VARIABLE INITIALIZATION
                                      //in Volts
9 v1 = 20;
                                      //in Volts
10 v2=10;
11 r1=5;
                                      //top resistance in
      Ohms
12 \text{ r2=10};
                                      //bottom resistance in
       Ohms
13 \text{ r3=5};
                                      //in Ohms
14 \text{ r4=5};
                                      //in Ohms
15 \text{ r5=10};
                                      //in Ohms
```

```
16
17 //SOLUTION
18 //(5) I1 + (10) I3 + (-10) I4 = 20.....eq (1)
19 //(0) I1 + (10) I3 + (10) I4 = -50.....eq (2)
20 //(5) I1 + (20) I3 + (0) I4 = -30....eq (3) (eq (1) +
       eq (2))
21 // Since the determinant of matrix A is 0, hence, the
       set of these equations cannot be solved by
      matrix method
22 //So, solving them directly,
23
24 \quad I3 = -15/25;
25 \quad I1 = -3 - (3/5);
26 \quad I4 = -5 - (-3/5);
27 I = I1 + 3 + 5;
28 disp("The currents (in Amperes) flowing in different
       branches are:");
29 disp(I1);
30 disp(I3);
31 disp(I4);
32 disp(sprintf("The total current is %f A",I));
33
34 / END
```

Scilab code Exa 1.41 Current when resistance is connected across AB

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 41

clc;
disp("CHAPTER 1");
disp("EXAMPLE 41");
//VARIABLE INITIALIZATION
```

```
9 \text{ vs} = 6;
                                            //in Volts
10 Is=4;
                                            //in Amperes
11 \text{ r1=5};
                                            //in Ohms
12 r2=2;
                                            //in Ohms
13 \text{ r3=2};
                                            //in Ohms
14 r = 2/3;
                                            //in Ohms
                                            //in Ohms
15 \text{ r4=3};
16 \text{ r5=1};
                                            //in Ohms
17 \text{ r6=2};
                                            //in Ohms
18
19 //SOLUTION
20 \text{ req1}=(r2*r3)/(r2+r3);
21 req2=req1+r1;
                                            //resistance across
       VS
22 va=vs/req2;
                                            //voltage divider law
23 \text{ rth1}=(\text{req1}*\text{r1})/(\text{req1}+\text{r1});
24 I1=Is*(r2/req2);
                                            //current divider law
25 \text{ vb=I1*r4};
26 \text{ rth2}=(r4*r4)/(r4+r4);
27 I=(vb-va)/(rth1+r+rth2);
28 disp(sprintf("The value of the current is %d A",I));
29
30 / END
```

Scilab code Exa 1.42 Thevenin and Nodal analysis

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 42

clc;
disp("CHAPTER 1");
disp("EXAMPLE 42");
//VARIABLE INITIALIZATION
```

```
9 v = 10;
                                           //in Volts
10 I = 0.5;
                                           //in Amperes
11 \text{ r1=4};
                                           //top LHS
      resistance in Ohms
12 \text{ r2=2};
                                           //top RHS
      resistance in Ohms
13 \text{ r3=2};
                                           //first
      resistance in Ohms
                                           //second
14 \text{ r4=2};
      resistance in Ohms
15
16 //SOLUTION
17
18 //using Thevenin's theorem
19 rth=(r1*r3)/(r1+r3);
20 \text{ vth=v*(r3/(r1+r3))};
                                           //Thevenin
      voltage
21 R=(40-(56*I))/(24*I);
                                           //solving for R
      directly
22 disp(sprintf("(i) By Thevenin's Theorem, the value
      of R is %d ",R));
23
24 / v1 = (10R+4) / (3R+4) \dots eq (1)
                                          //using nodal
      analysis at node 1
25 / v1 = 1 + R \dots eq(2)
                                          //using nodal
      analysis at node 2
26 //the following the quadratic equation is formed
      when both the equations are compared
27 //(3)R^2+(-3)R+(0)=0
28 //solving the quadratic equation
29 a=3;
30 b = -3;
31 c=0;
32 D=(b^2)-(4*a*c);
                                           //discriminant
33 R1=(-b+sqrt(D))/(2*a);
34 R2 = (-b - sqrt(D)) / (2*a);
35 if (R1==1) then
36 disp(sprintf("(ii) By Nodal analysis, the value of R
```

```
is %d ",R1));
37 else
38 disp(sprintf("(ii) By Nodal analysis, the value of R
        is %d ",R1));
39 end;
40
41 //END
```

Scilab code Exa 1.43 Superposition theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 43
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 43");
8 //VARIABLE INITIALIZATION
9 \text{ Is1=2};
                                          //first current
      source in Amperes
10 Is2=4;
                                          //second current
      source in Amperes
                                          //in Volts
11 v=2;
                                          //in Ohms
12 \text{ r1} = 200;
                                          //in Ohms
13 \text{ r2}=100;
14 \text{ r3}=4;
                                          //in Ohms
15
16 //SOLUTION
17 \text{ req1}=34;
18 I1=Is2*(r3/req1);
19 \text{ req2=24};
20 Iab=Is1*(req2/req1);
21 I=Ia+Iab;
22 \text{ vab=I*10};
```

Scilab code Exa 1.44 Determination of voltage

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 44
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 44");
8 //VARIABLE INITIALIZATION
9 I = 40;
                                       //in Amperes
10 \text{ r=5};
                                       //in Ohms
11
12 //SOLUTION
                                       //Ohm's Law
13 v = I * r;
14 disp(sprintf("The voltage required is %d V", v));
15
16 / END
```

Scilab code Exa 1.45 value of resistance

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
    THEOREMS
2 //Example 45
3
4 clc;
5 disp("CHAPTER 1");
```

Scilab code Exa 1.46 Resistance of metal filament lamp

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
  //Example 46
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 46");
7
8 //VARIABLE INITIALIZATION
9 v = 240;
                                    //in Volts
10
11 //SOLUTION
12 / case1: p=60W
13 p1=60;
                                    //in Watts
14 r1=(v^2)/p1;
15 disp(sprintf("Resistance of the metal filament lamp
     is \%d ",r1));
16
17 / case2: p=100W
```

Scilab code Exa 1.47 Copper wire and platinum silver wire

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
2 //Example 47
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 47");
8 //VARIABLE INITIALIZATION
9 1c = 20;
                                    //length of copper
      wire in m
                                    //diameter of copper
10 dc = 0.015/100;
      wire in m
11 rhoc=1.7;
                                    //specific resistance
      for copper
                                    //length of platinum
12 \ lp=15;
      silver wire in m
13 dp = 0.015/100;
                                    //diameter of
      platinum silver wire in m
14 rhop=2.43;
                                    //specific resistance
```

```
for platinum silver
15
16 //SOLUTION
17
18 //for copper wire
19 sc = (\%pi/4)*(dc^2);
                                     //area
20 \text{ rc=rhoc*(lc/sc)};
21
22 //for platinum silver
23 sp=(\%pi/4)*(dp^2);
                                     //area
24 rp=rhop*(lp/sp);
25
26
27 if(rc>rp) then
28 disp("Copper wire has greater resistance");
29 else
30 disp("Platinum silver wire has greater resistance");
31 end;
32
33 //END
```

Scilab code Exa 1.48 Cells B1 and b2

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 48

clc;
disp("CHAPTER 1");
disp("EXAMPLE 48");

//VARIABLE INITIALIZATION
v1=2.05;
Volts
//2nd cell in
```

```
Volts
11 r1=0.05;
                                              //in Ohms
12 r2=0.04;
                                              //in Ohms
                                              //in Ohms
13 \text{ r3=1};
14
15 //SOLUTION
16 / (r3+r1) I1+(r3) I2=v1 \dots eq (1)
17 / (r3) I1 + (r3 + r2) I2 = v2 \dots eq (2)
18 req1=r3+r1;
19 \text{ req2=r3+r2};
20 A=[req1 r3;r3 req2];
21 b=[v1; v2];
22 x = inv(A) *b;
23 I1=x(1,:);
                                              //to access the
       1st element of 2X1 matrix
24 \quad I2=x(2,:);
                                              //to access the
       2nd element of 2X1 matrix
25 I=I1+I2;
26 \text{ pd} = I * r3;
27 disp(sprintf("Current through B1 is %f A", I1));
28 disp(sprintf("Current through B2 is %f A", I2));
29 disp(sprintf("Potential difference across AC is %f V
      ",pd));
30
31 / END
```

Scilab code Exa 1.49 Values of R1 and R2

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 49

clc;
disp("CHAPTER 1");
disp("EXAMPLE 49");
```

```
7
8 //VARIABLE INITIALIZATION
                                    //voltage source in
9 v1 = 110;
      Volts
10 v2=80;
                                    //voltage source in
      Volts
                                    //voltage source in
11 \quad v3=50;
      Volts
                                    //in Ohms
12 r=2;
13
14 //SOLUTION
15
16 //solution (a)
17 I1=4;
                                    //charging
                                    //charging
18 I2=6;
19 r1=((v1-v2)-((I1+I2)*r))/I1;
20 r2=((v1-v3)-((I1+I2)*r))/I2;
21 disp(sprintf("(a) R1= %f ",r1));
22 disp(sprintf(" R2= %f ",r2));
23
24 //solution (b)
                                     //discharging
25 I1=2;
                                     //charging
26 I2=20;
27 r1=((v1-v2)-((I2-I1)*r))/(-I1);
28 r2=((v1-v3)-((I2-I1)*r))/I2;
29 disp(sprintf("(b) R1= %f ",r1));
30 disp(sprintf(" R2= %f ",r2));
31
32 //solution (c)
33 I1=0;
34 I2 = (v1 - v2)/r;
35 r2 = ((v1 - v3) - (I2*r))/I2;
36 disp(sprintf("(c) I1=0 when R2=\%d ",r2));
37
38 //END
```

Scilab code Exa 1.50 Currents i1 and i2

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
  //Example 50
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 50");
8 //SOLUTION
9 //(5) I1+(-3) I2 = 10.....eq (1)
10 //(-3) I1 + (34) I2 = 40....eq (2)
11 A = [5 -3; -3 34];
12 b = [10; 40];
13 x=inv(A)*b;
                               //to access the 1st
14 I1=x(1,:);
      element of 2X1 matrix
                               //to access the 2nd
  12=x(2,:);
15
      element of 2X1 matrix
16 I=I2-I1;
17 disp(sprintf("Current i1 is %f A (loop EFAB)", I1));
18 disp(sprintf("Current i2 is %f A (loop BCDE)", abs(I)
     ));
19
20 / END
```

Scilab code Exa 1.51 Currents in all branches

```
    1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
    2 //Example 51
```

```
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 51");
7
8 //SOLUTION
9 //(9) I1+(-5) I2+(-3) I3 = 5....eq (1)
10 //(-5) I1 + (8) I2 + (-1) I3 = 5 \dots eq (2)
11 //(-3) I1+(-1) I2+(6) I3 = 3.... eq (3)
12 A = [9 -5 -3; -5 8 -1; -3 -1 6];
13 b = [5;5;3];
14 x=inv(A)*b;
15 I1=x(1,:);
                               //to access the 1st
      element of 3X1 matrix
                               //to access the 2nd
  12=x(2,:);
16
      element of 3X1 matrix
                               //to access the 3rd
  I3=x(3,:);
17
      element of 3X1 matrix
18 disp(sprintf("Current i1 is %f A (loop ABGH)", I1));
19 disp(sprintf("Current i2 is %f A (loop BCDH)", I2));
20 disp(sprintf("Current i3 is %f A (loop GDEF)", I3));
21
22 / END
```

Scilab code Exa 1.52 Thevenin theorem and Norton theorem

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 52

clc;
disp("CHAPTER 1");
disp("EXAMPLE 52");
//VARIABLE INITIALIZATION
```

```
//LHS voltage source
9 v1 = 20;
       in Volts
10 \quad v2=12;
                                        //RHS voltage source
       in Volts
11 r1=5;
                                        //LHS resistance in
      Ohms
12 r2=2;
                                        //in Ohms
13 \text{ r3=8};
                                         //in Ohms
14 \text{ r4}=10;
                                         //RHS resistance in
      Ohms
15
16 //SOLUTION
17
18 //by Thevenin's Theorem
19 rth=r3+((r1*r2)/(r1+r2));
                                        //Thevenin
      resistance
20 \text{ v=v1*(r2/(r1+r2))};
                                        //voltage divider
      law
21 \text{ vab=-v2+(r3*0)+(rth*0)+v};
                                        //current obtained
22 \text{ It=vab/(rth+r4)};
      by applying Thevenin's Theorem
23 Isc=vab/rth;
24 disp(sprintf("By Thevenin's Theorem, current in the
      10 resistor is %f A", It));
25
26 //verification by Norton's Theorem
27 //(7) I1 + (2) I2 = 20 \dots eq (1)
28 //(2) I1 + (10) I2 = 12....eq (2)
29 //solving the equations using matrix method
30 \quad A = [7 \quad 2; 2 \quad 10];
31 b = [20; 12];
32 x = inv(A) *b;
33 \times 1 = \times (1, :);
                                        //to access 1st
      element of 2X1 matrix
34 \times 2 = x(2,:);
                                        //to access 2nd
      element of 2X1 matrix and Isc=-x2
35 \operatorname{Isc} = -x2;
                                        //Isc is negative
      because its direction is opposite to I2
```

Scilab code Exa 1.53 Thevenin equivalent circuit

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
  //Example 53
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 53");
8 //VARIABLE INITIALIZATION
9 v1=10;
                                         //LHS voltage source
       in Volts
10 \text{ v} 2 = 4:
                                         //RHS voltage source
       in Volts
11 r1=2;
                                         //LHS resistance in
      Ohms
                                         //in Ohms
12 \text{ r2=3};
13 \text{ r3} = 10;
                                         //in Ohms
14 \text{ r4=3};
                                         //in Ohms
15 \text{ r5}=1;
                                         //RHS resistance in
```

```
Ohms
16
17 //SOLUTION
18 van=v1*(r2/(r1+r2));
                                     //voltage divider
     law
                                     //voltage divider
19 vbn=-v2*(r4/(r5+r4));
     law
20 \text{ ran}=(r1*r2)/(r1+r2);
21 rbn = (r4*r5)/(r4+r5);
22 vab=(ran*0)+van-vbn+(rbn*0); //current is zero as
      AB is open circuited when Thevenin's Theorem is
      applied
23 disp(sprintf("The Thevenin voltage is %d V", vab));
24
25 //END
```

Scilab code Exa 1.54 Thevenin theorem

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 54
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 54");
8 //VARIABLE INITIALIZATION
9 v = 5:
                                        //voltage source in
      Volts
10 r1=1;
                                        //LHS resistance in
      Ohms
11 \text{ r}2=5;
                                        //in Ohms
12 \text{ r3=1};
                                        //in Ohms
13 \text{ r4=1};
                                        //RHS resistance in
      Ohms
```

```
//current source in
14 I=10;
      Amperes
15
16 //SOLUTION
17
                                     //on deactivating
18 req1=r1+r3+r4;
      the current source, current I1 flows in the
      circuit
19 I1=v/req1;
20 \text{ vab1=v-(I1*r1)};
                                       //(I1*r1) is voltage
       drop across 1 resistance
21 I2=I/req1;
22 vab2=vab1+(I2*r1);
                                      //(I2*r1) is voltage
       drop across 1 resistance
23 \text{ req=r1+((r3*r4)/(r3+r4))};
                                      // 'req' is the same
      as 'Rth' mentioned in the book
24 I=vab2/(req+r2);
25 \text{ RTh} = (6/5) + (3/4);
26 req2=10+2;
27 \quad I3 = 9/12;
28 disp(sprintf("The value of the current is %f A", I3))
29
30 / END
```

Scilab code Exa 1.55 Nodal analysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
    THEOREMS
2 //Example 55
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 55");
7
```

```
8 //VARIABLE INITIALIZATION
9 \text{ vcd} = 50;
                                     //voltage source in
      Volts
10 v = 100;
                                     //voltage source in
      Volts
11 r1=40;
                                     //in Ohms
                                     //in Ohms
12 r2=50;
                                     //in Ohms
13 \text{ r3}=20;
14 \text{ r4}=10;
                                     //in Ohms
15
16 //SOLUTION
17 res=(vcd/r2)-(v/r3);
                                     // 'res' (short for
      result) is used to make calculations easy
18 vp=res/((1/r2)+(1/r3)+(1/r4));
19 vba=vp+v;
20 disp(sprintf("The voltage between A and B is %f V",
      vba));
21
22
  //END
```

Scilab code Exa 1.56 Delta values

```
//in Ohms
12 r3=r*3;
13
14 //SOLUTION
15 req=(r1*r2)+(r2*r3)+(r3*r1); // 'req' is the
      equivalent resistance that appears in the
      numerator of the equation of star-delta
      conversion
16 \text{ ra=req/r3};
17 rb=req/r1;
18 \text{ rc=req/r2};
19 disp(sprintf("The equivalent delta values are ra=(
      \%f \times r), rb = (\%f \times r) and rc = (\%f \times r)
      ra,rb,rc));
20
21 //END
```

Scilab code Exa 1.57 Superposition theorem to find I

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
      THEOREMS
2 //Example 57
3
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 57");
8 //VARIABLE INITIALIZATION
9 v = 10;
                                       //voltage source in
      Ohms
10 \text{ r1=2};
                                       //RHS resistance in
      Ohms
11 r2=2;
                                       //in Ohms
12 \text{ r3}=4;
                                       //in Ohms
13 \text{ r4}=4;
                                       //in Ohms
                                       //current source in
14 I = 20;
```

```
Amperes
15
  //SOLUTION
16
17
18 r=r1+r2;
19 //deactivating voltage source of 10
20 v1=-I/((1/r)+(1/r3)+(1/r4)); //from equation
21 I1=v1/r3;
22
23 //deactivating current source of 20A
24 v2=(v/r)/((1/r)+(1/r3)+(1/r4));
25 I2=v2/r3;
26
27 I_tot=I1+I2;
28 if(I_tot>0)
29 disp(sprintf("The value of I is %f A (upward)", I_tot
     ));
30 else
31 disp(sprintf("The value of I is %f A (downward)",-
      I_tot));
32
33 / END
```

Scilab code Exa 1.58 Thevenin or Norton theorem

```
//CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
THEOREMS
//Example 58

clc;
disp("CHAPTER 1");
disp("EXAMPLE 58");

//VARIABLE INITIALIZATION
v1=20; //LHS voltage source in
```

```
Volts
10 \text{ v2=5};
                                     //RHS voltage source in
       Volts
11 r1=100;
                                     //LHS resistance in
      Ohms
12 r2=2;
                                     //in Ohms
                                     //in Ohms
13 \text{ r3=1};
14 \text{ r4}=4;
                                      //in Ohms
15 \text{ r5=1};
                                      //RHS resistance in
      Ohms
16
17 //SOLUTION
18
19 //applying Thevenin's Theorem
20 //Thevnin's equivalent resistance, r_th is same as
      r_AB
21 r_{th} = ((r3+r5)*r2)/((r3+r5)+r2);
22 \text{ v_th} = (v1 - v2)/2;
                                     //from the equation
23 I1=v_{th}/(r_{th});
24 \text{ v1} = \text{I1} * \text{r4};
25 disp(sprintf("By Thevenin Theorem, the value of V is
       %d V", v1));
26
27 //applying Norton's Theorem
28 //Norton's equivalent resistance, r_n is same as
      r_AB
29 r_n = ((r3+r5)*r2)/((r3+r5)+r2);
                                       //\sin ce v_A=0
30 I_n = (v1 - v2) / r2;
31 I2=r_n*(I_n/(r4+r_n));
32 v2 = I2 * r4;
33 disp(sprintf("By Norton Theorem, the value of V is
      %d V", v2));
34
35 / END
```

Scilab code Exa 1.59 Mesh anlysis

```
1 //CHAPTER 1- D.C. CIRCUIT ANALYSIS AND NETWORK
     THEOREMS
  //Example 59
4 clc;
5 disp("CHAPTER 1");
6 disp("EXAMPLE 59");
8
  //SOLUTION
9
10 //I1+I2 = 20...eq (1)
11 //-I1+I2 = 10...eq (2)
12 //solving the simultaneous equations by matrix
     method
13
14 A = [1 1; -1 1];
15 b=[20;10];
16 I = inv(A) *b;
17 I1=I(1,:);
                            //to access 1st element of
     2X1 matrix
                            //to access 2nd element of
  I2=I(2,:);
18
     2X1 matrix
19 disp(sprintf("Current I1= %d A", I1));
20 disp(sprintf("Current I2= \%d A", I2));
21
22 / END
```

Chapter 2

Steady State Analysis of Single Phase AC Circuit

Scilab code Exa 2.1 Form factor of sine wave

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 1
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 1");
8 //SOLUTION
9
10 //average value
11 v_{av} = (integrate('sin(x)', 'x', 0, %pi))/(2*%pi);
12
13 //rms value
14 v_rms=(integrate('\sin(x)^2', 'x',0,%pi))/(2*%pi);
15 v_rms=sqrt(v_rms);
16
17 ff=v_rms/v_av;
18 disp(sprintf("The form factor is %f",ff));
```

```
19
20 //END
```

Scilab code Exa 2.3 Average and rms value

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 3
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 3");
8 //VARIABLE INITIALIZATION
                                   //peak value of
9 v_m = 5;
      voltage in Volts
10
11 //SOLUTION
12 v_av=(integrate('v_m*sin(x)', 'x',0,%pi))/(%pi);
13 v_{rms} = (integrate('(v_{m} * sin(x))^2', 'x', 0, \%pi))/(\%pi);
14 v_rms=sqrt(v_rms);
15 disp(sprintf("Average value of full wave rectifier
      sine wave is %f V", v_av);
16 disp(sprintf("Effective value of full wave rectifier
       sine wave is %f V", v_rms));
17
  //END
18
```

Scilab code Exa 2.4 Vav and Vrms

```
    1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
    .C. CIRCUIT
    2 //Example 4
```

```
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 4");
8 //VARIABLE INITIALIZATION
9 v_m = 10;
                                    //peak value of
      voltage in Volts
10 angle=60*(\%pi/180);
                                    //delay angle in
      radians
11
12 //SOLUTION
13 v_av = (integrate('v_m * sin(x)', 'x', angle, %pi))/(%pi);
14 v_rms=(integrate('(v_m*sin(x))^2', 'x', angle, \%pi))/(
      %pi);
15 v_rms=sqrt(v_rms);
16 disp(sprintf("Average value of full wave rectifier
      sine wave is \%f V, v_av);
17 disp(sprintf("Effective value of full wave rectifier
       sine wave is %f V", v_rms));
18
19
  //END
```

Scilab code Exa 2.5 Fluorescent lamp

```
//in Volts
10 v = 240;
11 f = 50;
                                       //in Hertz
12 p = 80;
                                       //in Watts
13
14 //SOLUTION
15 res=p/v;
16 \text{ pf1=res/I1};
                                       //1st power factor =
      \cos (1)
17 phi1=acos(pf1);
18 res1=tan(phi1);
                                       //\operatorname{result1} = \tan(1)
19 w = 2 * \%pi * f;
20
21 / solution (a)
                                       //\operatorname{result2} = \tan(2)
22 \text{ res2=0};
23 Ic1=res*(res1-res2);
24 c1 = Ic1/(v*w);
25 disp(sprintf("(a) When power factor is unity, the
      value of capacitance is \%f F",c1*(10^6));
26
27 //solution (b)
28 \text{ pf2=0.95};
                                       //given
29 phi2=acos(pf2);
30 res2=tan(phi2);
31 Ic2=res*(res1-res2);
32 c2 = Ic2/(v*w);
33 disp(sprintf("(b) When power factor is 0.95(lagging)
        the value of capacitance is \%f F",c2*(10^6))
34
35 / END
```

Scilab code Exa 2.6 Single phase motor

 $1\ \ // CHAPTER\ 2-\ STEADY-STATE\ ANALYSIS\ OF\ SINGLE-PHASE\ A$. C. CIRCUIT

```
2 //Example 6
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 6");
8 //VARIABLE INITIALIZATION
                                         //in Hertz
9 f = 50;
10 I1=20;
                                        //in Amperes
11 pf1=0.75;
                                         //power factor
12 v = 230;
                                         //in Volts
13 pf2=0.9;
                                         //power factor(
      lagging)
14
15 //SOLUTION
16 phi1=acos(pf1);
17 res1=tan(phi1);
                                        //\operatorname{result1} = \tan(1)
18 phi2=acos(pf2);
                                        //\operatorname{result2} = \tan(2)
19 res2=tan(phi2);
20 Ic=I1*pf1*(res1-res2);
21 \ w=2*\%pi*f;
22 c = Ic/(v*w);
23 disp(sprintf("The value of capacitance is %f F",c
      *(10^6)));
24 \quad Qc = v * Ic;
25 disp(sprintf("The reactive power is %f kVAR",Qc
      /(10^3)));
26 I2=I1*(pf1/pf2);
27 disp(sprintf("The new supply current is %f A", I2));
28
29 //END
```

Scilab code Exa 2.7 Apparent power of 300 kVA

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 7
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 7");
  //VARIABLE INITIALIZATION
9 s1=300;
                                     //apparent power in
     kVA
10 pf1=0.65;
                                     //power factor(
     lagging)
                                     //power factor(
11 pf2=0.85;
     lagging)
12
13 //SOLUTION
14
15 //solution (a)
16 p=s1*pf1;
                                     //active power
17 q1=sqrt((s1^2)-(p^2));
18 disp(sprintf("(a) To bring the power factor to unity
      , the capacitor bank should have a capacity of %f
      kVAR",q1));
19
20 //solution (b)
21 \text{ s2=p/pf2};
22 q2 = sqrt((s2^2) - (p^2));
23 disp(sprintf("(b) To bring the power factor to 85\%%
      lagging, the capacitor bank should have a
      capacity of %f kVAR",q2));
24
25 //END
```

Scilab code Exa 2.8 Two element series circuit

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 8
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 8");
7
8 //VARIABLE INITIALIZATION
9 v = 300/sqrt(2);
                                     //in Volts
                                     //in degrees
10 angle_v=110;
11 I=15/sqrt(2);
                                     //in Amperes
12 angle_I=80;
                                     //in degrees
13
14 //SOLUTION
15 Z=v/I;
16 angle_Z=angle_v-angle_I;
17 disp(sprintf("The circuit impedance is %d ",Z));
18 disp(sprintf("The phase angle is %d degrees", angle_Z
     ));
19 p_av=v*I*cos(angle_Z*(\%pi/180)); //to convert
      angle_z from degrees to radians
20 disp(sprintf("The average power drawn is %f W',p_av)
     );
21
22 //END
```

Scilab code Exa 2.9 120 V 100 W lamp

```
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
     .C. CIRCUIT
//Example 9

clc;
disp("CHAPTER 2");
```

```
6 disp("EXAMPLE 9");
8 //VARIABLE INITIALIZATION
                                     //voltage of lamp in
9 v1 = 120;
      Volts
10 p=100;
                                     //in Watts
11 v2 = 220;
                                     //supply voltage in
      Volts
12 f = 50;
                                     //in Hertz
13
14 //SOLUTION
15 vl=sqrt((v2^2)-(v1^2));
16 xl = (v1 * v1)/p;
17 L=x1/(2*\%pi*f);
18 disp(sprintf("The pure inductance should have a
      value of %f H",L));
19
20 //END
```

Scilab code Exa 2.10 Current and power drawn

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 10
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 10");
8 //VARIABLE INITIALIZATION
                                      //in Volts
9 v = 230;
10 z1=3+(\%i*4);
                                      //impedance in
     rectangular form in Ohms
11 z2=6+(\%i*8);
                                      //impedance in
     rectangular form in Ohms
```

```
12
13 //SOLUTION
14 function [z,angle]=rect2pol(x,y);
15 z = sqrt((x^2) + (y^2));
                                      //z is impedance &
      the resultant of x and y
                                      //to convert the
  angle=atan(y/x)*(180/\%pi);
16
      angle from radians to degrees
  endfunction;
17
18
19 [z1, angle1] = rect2pol(3,4);
20 [z2,angle2]=rect2pol(6,8);
21
22 z = (z1*z2)/(z1+z2);
23 I=v/z;
                                      //as angle1=angle2
24 angle=-angle1;
                                      //to convert the
25 p=v*I*cos(angle*%pi/180);
      angle from degrees to radians
  disp(sprintf("The power drawn from the source is %f
     kW",p/1000));
27
28 //END
```

Scilab code Exa 2.11 To calculate parameters of coil and power factor

```
//in Hertz
11 f = 50;
12 I1=10;
                                      //in Amperes
13 \quad I2=5;
                                      //in Amperes
14
15 //SOLUTION
16 \text{ r=vdc/I1};
17 z = vac/I2;
18 xl = sqrt((z^2) - (r^2));
19 L=x1/(2*\%pi*f);
20 \text{ pf=r/z};
21 disp(sprintf("The inductance of the coil is %f H",L)
      );
22
  disp(sprintf("The power factor of the coil is %f (
      lagging)",pf));
23
24 / END
```

Scilab code Exa 2.13 Current in load in rectangular form

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
     .C. CIRCUIT
2 //Example 13
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 13");
8 //VARIABLE INITIALIZATION
9 z=1+(\%i*1);
                                       //load impedance
     in rectangular form in Ohms
                                       //amplitude of
10 \ v=20*sqrt(2);
     rms value of voltage in Volts
11
12 //SOLUTION
13 function [zp,angle]=rect2pol(x,y); //function '
```

```
rect2pol()' converts impedance in rectangular
      form to polar form
14 zp=sqrt((x^2)+(y^2));
                                         //z = (x) + j(y) =
      (1)+ j(1); 'zp' is in polar form
15 angle=atan(y/x)*(180/\%pi);
                                         //to convert the
      angle from radians to degrees
16 endfunction;
17
18 //solution (i)
19 [zp,angle]=rect2pol(1,1);
                                        //\sin ce x=1 and y
      =1
20 \text{ v=v/sqrt}(2);
21 angle_v=100;
                                         //v = (20/ sqrt(2)) *
      \sin (t + 100)
22 \quad I = v/zp;
                                         //RMS value of
      current
23 angle_I=angle_v-angle;
24 Im=I*sqrt(2);
25 disp(sprintf("(i) The current in load is i = \%d \sin(a)
       t + \%d) A", Im, angle_I));
26
27 //solution (ii)
28 p=(v/sqrt(2))*(I*sqrt(2))*cos(angle*(%pi/180));
29 disp(sprintf("(ii) The real power is %f W",p));
30
31 //solution (iii)
32 pa=(v/sqrt(2))*(I*sqrt(2));
33 disp(sprintf("(ii) The apparent power is %f VAR",pa)
      );
34
35 / END
```

Scilab code Exa 2.14 To find frequency and current elements

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 14
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 14");
7
8 //VARIABLE INITIALIZATION
9 v = 100;
                                     //amplitude of rms
      value of voltage in Volts
                                     //amplitude of rms
10 I=20;
      value of current in Amperes
11
12 //SOLUTION
13
14 //solution(i)
15 \text{ w} = 314;
                                     //angular frequency
      in radian/sec
                                     //as w=2*(\%pi)*f
16 f=w/(2*\%pi);
17 f = ceil(f);
18 disp(sprintf("(i) The frequency is %d Hz",f));
19
20 //solution (ii)
21 \quad E=v/sqrt(2);
                                     //in degrees
22 \text{ angle}_{\text{E}} = -45;
23 I=I/sqrt(2);
                                      //in degrees
24 \text{ angle_I} = -90;
25 z=E/I;
26 angle=angle_E-angle_I;
27 disp(sprintf("(ii) The impedance is %d , %d
      degrees", z, angle));
28
29 function [x,y]=pol2rect(mag,angle1);
30 x=mag*cos(angle1*(%pi/180));
                                     //to convert the
      angle from degrees to radian
31 y=mag*sin(angle1*(%pi/180));
32 endfunction;
```

```
33 [r,x]=pol2rect(z,angle);
34 L=x/(2*%pi*f);
35 disp(sprintf(" The inductance is %f H",L));
36
37 //END
```

Scilab code Exa 2.15 Choke coil takes current of 2 Amperes

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 15
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 15");
7
8 //VARIABLE INITIALIZATION
9 I = 2;
                                          //in Amperes
10 angle_I=60;
                                          //in degrees
11 v1 = 200;
                                          //in Volts
12 f1=50;
                                          //in Hertz
13 \text{ v2} = 100;
                                          //in Volts
                                          //in Hertz
14 	ext{ f2=25};
15
16 //SOLUTION
17
18 //solution (i): when supply is 200V and frequency is
       50 Hz
19 z1 = v1/I;
20 disp(sprintf("(i) When the supply is 200V and
      frequency is 50 Hz:"));
21 disp(sprintf("The impedance is %d , %d degrees",z1
      ,angle_I));
22 function [x,y]=pol2rect(mag,angle); //function '
      pol2rect()' converts impedance in polar form to
```

```
rectangular form
23 x=mag*cos(angle*(%pi/180));
                                          //to convert
      the angle from degrees to radians
24 y=mag*sin(angle*(%pi/180));
25 endfunction;
26 [r,x1]=pol2rect(z1,angle_I);
27 disp(sprintf("The resistance is %d ",r));
28 L=x1/(2*\%pi*f1);
29 disp(sprintf("The inductance is %f H",L));
30
31 //solution (ii): when supply is 100V and frequency
     is 25 Hz
32 x2=2*\%pi*f2*L;
33 z2=sqrt((r^2)+(x2^2));
34 angle=atan(x2/r);
35 I1=v2/z2;
36 \text{ p=v2*I1*cos}(-angle);
37 disp(sprintf("(ii) When supply is 100V and frequency
       is 25 Hz:"));
  disp(sprintf("The power consumed is %f W",p));
38
39
  //Answer may be slightly different due to precision
40
      of floating point numbers
41
42 / END
```

Scilab code Exa 2.16 Two coils of 5 ohm and 10 ohm connected in parellel

```
7
8 //VARIABLE INITIALIZATION
9 \text{ r1=5};
                                             //in Ohms
10 \text{ r2=10};
                                             //in Ohms
11 L1=0.04;
                                             //in Henry
12 L2 = 0.05;
                                             //in Henry
                                             //in Volts
13 v = 200;
14 f=50;
                                             //in Hertz
15
16 //SOLUTION
17
18 // solution (i)
19 x11=L1*(2*\%pi*f);
20 \text{ x12=L2*(2*\%pi*f)};
21 z1=r1+(%i*xl1);
22 z2=r2+(\%i*x12);
23 function [z,angle]=rect2pol(x,y); //function '
      rect2pol() ' converts impedance in rectangular
      form to polar form
                                             //z=(x) + j(y)
24 z = sqrt((x^2) + (y^2));
      where 'x' represents resistance and 'y'
      represents inductive reactance
                                             //to convert
25 angle=atan(y/x)*(180/\%pi);
      the angle from radians to degrees
26 endfunction;
27 [z1, angle1] = rect2pol(r1, x11);
28 [z2,angle2]=rect2pol(r2,x12);
                                             //admittance
29 \text{ Y1=1/z1};
30 \text{ Y}2=1/z2;
31 function [x,y]=pol2rect(mag,angle); //function '
      pol2rect()' converts admittance in polar form to
      rectangular form
32 \text{ x=mag*} \cos(\text{angle*}(\%\text{pi}/180));
                                             //to convert
      the angle from degrees to radians
33 y=mag*sin(angle*(%pi/180));
34 endfunction;
35 [G1,B1]=pol2rect(Y1,angle1);
36 [G2, B2] = pol2rect(Y2, angle2);
```

```
37 disp(".....");
38 disp("SOLUTION (i)");
39 disp(sprintf("Conductance of 1st coil is %f S",G1));
40 disp(sprintf("Conductance of 2nd coil is %f S",G2));
41 disp(" ");
42 disp(sprintf("Susceptance of 1st coil is %f S",B1));
43 disp(sprintf("Susceptance of 2nd coil is %f S", B2));
44 disp(" ");
45 disp(sprintf("Admittance of 1st coil is %f S", Y1));
46 disp(sprintf("Admittance of 2nd coil is %f S", Y2));
47 disp(".....");
48
49 //solution (ii)
50 G = G1 + G2;
51 B = B1 + B2;
52 [Y,angle]=rect2pol(G,B);
53 I = v * Y:
54 pf=cos((angle)*(%pi/180));
55 disp("SOLUTION (ii)");
56 disp(sprintf("Total current drawn by the circuit is
     \%f A, \%f degrees", I,-angle));
57 disp(sprintf("Power factor of the circuit is %f (
     lagging)",pf));
58 disp("....");
59
60 //solution (iii)
61 p=v*I*pf;
62 disp("SOLUTION (iii)");
63 disp(sprintf("Power absorbed by the circuit is %f kW
     ",p/1000));
64 disp(".....");
65
66 //solution (iv)
67 z=v/I;
68 function [x,y]=pol2rect(mag,angle);
69 x=mag*cos(angle*(%pi/180));
                            //to convert the
     angle from degrees to radians
70 y=mag*sin(angle*(%pi/180));
```

```
71 endfunction;
72 [r,x]=pol2rect(z,angle);
73 L=x/(2*%pi*f);
74 disp("SOLUTION (iv)");
75 disp(sprintf("Resitance of single coil is %f ",r))
    ;
76 disp(sprintf("Inductance of single coil is %f H",L))
    ;
77 disp(".....");
78
79 //END
```

Scilab code Exa 2.17 AC voltage applied to series RC circuit

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 17
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 17");
8 //VARIABLE INITIALIZATION
9 e = 141.4;
                                           //amplitude of
     e(t) in Volts
10 E=141.4/sqrt(2);
                                           //RMS value of
      e(t) in Volts
11 angle_E=0;
                                           //in degrees
12 //i(t) = (14.14 < 0) + (7.07 < 120)
13 i1=14.14;
                                           //in Amperes
14 angle_i1=0;
                                           //in degrees
                                           //in Amperes
15 i2=7.07;
16 angle_i2=120;
                                           //in degrees
17
18 //SOLUTION
```

```
19 function [x,y]=pol2rect(mag,angle); //function '
      pol2rect()' converts current in polar form to
      rectangular form
20 x=mag*cos(angle*(\%pi/180));
                                          //to convert
      the angle from degrees to radians
21 y=mag*sin(angle*(%pi/180));
22 endfunction;
23 //the given current i(t) is composed of two currents
       i1(t) and i2(t)
24 //i1(t) and i2(t) are not mentioned in the book but
      are considered for the sake of convenience
   [i1_x, i1_y] = pol2rect(i1, angle_i1); //i1(t)= 14.14
      sin (120t)
  [i2_x, i2_y] = pol2rect(i2, angle_i2); //i2(t) = 7.07
26
      \cos (120 t + 30)
27 i = (i1_x + i2_x) + (%i*(i1_y + i2_y));
28 function [mag,angle]=rect2pol(x,y); //function '
      rect2pol(); converts current in rectangular form
      to polar form
29 mag = sqrt((x^2) + (y^2));
30 angle=atan(y/x)*(180/\%pi);
                                          //to convert
      the angle from radians to degrees
31 endfunction;
32 [I,angle_I]=rect2pol((i1_x+i2_x),(i1_y+i2_y));
33 I=I/sqrt(2);
34
35 //solution (i)
36 z=E/I;
37 angle_z=angle_E-angle_I;
38 [r,xc]=pol2rect(z,angle_z);
39 f=50;
40 c=1/(2*\%pi*f*(-xc));
41 disp(sprintf("(i) The value of resistance is %f
     r));
42 disp(sprintf("
                      The value of capacitance is %f
                                                        \mathbf{F}
     ",c*10^6));
43
44 //solution (ii)
```

```
45  pf=cos(angle_z*(%pi/180));
46  disp(sprintf("(ii) The power factor is %f ",pf));
47
48  //solution (iii)
49  p=E*I*pf;
50  disp(sprintf("(iii) The power absorbed by the source is %f W",p));
51
52  //END
```

Scilab code Exa 2.18 Non inductive resistance of 10 ohm

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 18
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 18");
7
  //VARIABLE INITIALIZATION
9 r = 10;
                                        //in Ohms
                                        //in Volts
10 v = 200;
                                        //in Hertz
11 f = 50;
                                        //in Amperes
12 I=10;
                                        //resistance of
13 \text{ rc} = 2;
      coil in Ohms
14
15 //SOLUTION
16
17 // solution (i)
18 z=v/I;
19 xl = sqrt((z^2) - ((r+rc)^2));
20 L=x1/(2*\%pi*f);
21 disp(sprintf("(i) The inductance of the coil is %f H
```

```
",L));
22
23 //solution (ii)
24 pf = (r+rc)/z;
25 disp(sprintf("(ii) The power factor is %f",pf));
26
27 //solution (iii)
28 \text{ vl} = I * (rc + (\%i * xl));
29 function [mag,angle]=rect2pol(x,y); //function '
      rect2pol()' converts voltage in rectangular form
      to polar form
30 mag = sqrt((x^2) + (y^2));
31 angle=atan(y/x)*(180/\%pi); //to convert the
      angle from radians to degrees
32 endfunction;
33 [vl,angle_vl]=rect2pol(real(vl),imag(vl));
34 disp(sprintf("(iii)) The voltage across the coil is
      \%f V, \%f degrees", vl, angle_vl));
35
36 //END
```

Scilab code Exa 2.19 Admittance in each parallel branch

```
rectangular form in Ohms
11 z3=1.6+(\%i*7.2);
                                      //impedance in
      rectangular form in Ohms
12 v = 100
                                      //in volts
13 //SOLUTION
14
15 //SOLUTION (i)
16
17 //Y1 and Y2 are admittances of each parallel branch
18 Y1=1/z1;
19 Y2=1/z2;
20 disp("SOLUTION (i)");
21 disp(sprintf("Admittance parallel branch 1 is %3f
      \%3fj S", real(Y1), imag(Y1)));
  disp(sprintf("Admittance parallel branch 2 is %3f+
      \%3fj S", real(Y2), imag(Y2)));
  disp(" ");
23
24
25 //SOLUTION (ii)
26
27 z=z3+(z2*z1)/(z1+z2)
                                       //series and
      parallel combination of impedances
28 disp("SOLUTION (ii)");
29 disp(sprintf("Total circuit impedance is %3f %3fj S"
      , real(z), imag(z)));
  //solution given in the book is wrong as j
      (7.2+0.798) cannot be equal to j11.598
31
32 //SOLUTION (iii)
33
34 I=V/Z;
35 function [Z,angle]=rect2pol(x,y); //function '
      rect2pol() ' converts impedance in rectangular
     form to polar form
36 \quad Z0 = sqrt((x^2) + (y^2));
                                       //z is impedance &
       the resultant of x and y
37 angle=atan(y/x)*(180/\%pi);
                                       //to convert the
      angle from radians to degrees
```

```
38 endfunction;
39 [Z, angle]=rect2pol(real(I), imag(I));
40 // disp(sprintf("\%f, \%f", z, angle));
41 //disp(sprintf("%f, %f",real(i), imag(i)));
42 pf=cos(angle*%pi/180);
43 disp("SOLUTION (iii)");
44 disp(sprintf("The power factor is %f",pf));
45
46
  //SOLUTION (iv)
47
48 \text{ P=v*real(i)*pf};
                                       //power supplied
     by source is either (VI cos ) or (I^2 . R)
49 disp("SOLUTION (iv)");
50 disp(sprintf("The power supplied by source is %f
      watt",P));
51 / END
```

Scilab code Exa 2.20 Resonant frequency and band width

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 20 // read it as example 19 in the book on
       page 2.72
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 20");
8 //VARIABLE INITIALIZATION
9 L = 0.5
                                     //in Henry
10 C=5
                                     //in mf, multiply by
       10^{-6} to convert to f
11 R=25
                                     //in ohms
12 //SOLUTION
13
```

```
14 // solution (i)
15 //Resonance frequency f = (1/2) \operatorname{sqrt}((1/LC)-R^2/L)
16 fr=(1/(2*\%pi))*sqrt((1/(L*C*10^-6))-(R^2)/(L^2));
17 disp("SOLUTION (i)");
18 disp(sprintf("For parallel circuit, Resonant frquency
       is \%3f Hz", fr));
19 disp(" ");
20
21 // solution (ii)
22 //Total circuit impedance at resonance is Z=L/RC
23 z=L/(R*C*10^-6);
24 disp("SOLUTION (ii)");
25 disp(sprintf("Total impedence at resonance is %3f
      k ", z/1000));
26 //
27 //solution (iii)
28 / Bandwidth (f2-f1)=R/(2.
29 bw=R/(2*\%pi*L);
30 disp("SOLUTION (iii)");
31 disp(sprintf("Bandwidth is %3f Hz", bw));
32 //
33 //solution (iv)
34 // Quality factor Q=1/R. sqrt (L/C)
35 Q=(1/R)*sqrt(L/(C*10^-6));
36 disp("SOLUTION (iv)");
37 disp(sprintf("Quality Factor is %3f", Q));
38 //solution in the book is wrong as there is a total
      mistake in imaginery part 7.2+0.798=11.598
39 //
40 //END
```

Scilab code Exa 2.22 Series RLC circuit

1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A

```
.C. CIRCUIT
2 //Example 22 (mentioned as 'example 21' in the book)
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 22");
8 //VARIABLE INITIALIZATION
9 L = 0.1
                                      //in Henry
10 C=8*10^-6
                                      //in Farad
11 R = 10
                                      //in Ohms
12 //SOLUTION
13
14 // solution (i)
15 fr=1/(2*%pi*sqrt(L*C));
                                    //resonant frequency
16 disp("SOLUTION (i)");
17 disp(sprintf("For series circuit, resonant frquency
      is \%3f Hz", fr));
18 disp(" ");
19
20 //solution (ii)
21 \ w=2*\%pi*fr;
22 \quad Q = w * L/R;
23 disp("SOLUTION (ii)");
24 disp(sprintf("The Q-factor at resonance is %3f k ",
       Q));
25
26 //solution (iii)
27 \text{ bw=R/(2*\%pi*L)};
28 f1=fr+bw/2;
29 disp("SOLUTION (iii)");
30 disp(sprintf("Half power frequencies are %3f Hz and
       \%3f Hz", f1,fr));
31
32 / END
```

Scilab code Exa 2.23 An alternating current of frequency of 50 Hertz

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
  //Example 22 (mentioned as 'example 22' in the book)
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 23");
8 //VARIABLE INITIALIZATION
9 A=100
                                      //amplitude in
      Amperes
10 f = 50
                                      //frequency in Hz
11 t1=1/600
                                      //time in seconds
      after wave becomes zero again
                                      //amplitude in
12
  a1 = 86.6
      Amperes at some time 't' after start
13
14 //SOLUTION
15
16 //solution (a)
17 //Amplitude at 1/600 second after it becomes zero
18 \text{ w=f*2*\%pi;}
                                      //angular speed
19 hp=1/(2*f);
                                      //half period, the
      point where sine beomes zero again after origin
20 t = hp + t1;
21 a2=A*sin(w*t);
22 disp("SOLUTION (a)");
23 disp(sprintf("Amplitude after 1/600 sec is \%3f A",
      a2));
24 disp(" ");
25 //solution (b)
26 / \sin ce A = A0. \sin wt, t = a \sin (A/A0) / w
```

Scilab code Exa 2.24 RMS value average value and form factor

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 22 // read it as example 23 in the book on
       page 2.77
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 24");
8 //VARIABLE INITIALIZATION
9 V = 200
                                     //Amplitude in Volts
10 \ w = 314
                                     //angular spped
11 R = 20
                                     //in ohms
12 //SOLUTION
13
14 //solution
15 //comparing with standard equation
16 Im=V/R;
                                     // in Amps
17 rms=Im/2;
18 Iav=Im/%pi;
                                     //average current
19 ff=rms/Iav;
20 disp("SOLUTION");
21 disp(sprintf("RMS value of current is %3f A", rms))
22 disp(sprintf("Average value of current is %3f A",
      Iav));
```

```
23 disp(sprintf("Form Factor of current is %3f A", ff)
    );
24 disp(" ");
25
26 //END
```

Scilab code Exa 2.25 50 Hz sinusoidal voltage wave shape

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 25 // read it as example 24 in the book on
       page 2.78
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 25");
8 //VARIABLE INITIALIZATION
9 V = 350
                                      //Amplitude in Volts
10 f=50
                                      //frequency in Hz
11 t1=0.005
                                      //sec after wave
      becomes zero again
                                       //sec after waves
12 t2=0.008
      passes through 0 in -ve direction
13 //SOLUTION
14 //e = E \sin wt
15 // solution (a)
16 //RAmplitude at 1/600 second after it becomes zero
17 w=f*2*\%pi;
                                      //angular speed
18 v1 = V * sin(w*t1);
19 disp("SOLUTION (a)");
20 disp(sprintf("Voltage after %f sec is %3f A", t1,v1
      ));
21 disp(" ");
\frac{22}{\sqrt{\text{solution}}} (b)
```

Scilab code Exa 2.26 Sinusoidal alternating current of frequency 25 Hz

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 26 // read it as example 25 in the book on
       page 2.79
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 26");
8 //VARIABLE INITIALIZATION
9 A = 100
                                      //Amplitude in Amps
10 f=25
                                      //frquency in Hz
                                      //svalue in Amps to
11 \quad a1 = 20
      be achieved in certain time
12 \quad a2 = 100
                                      //in Amps
13
14 //SOLUTION
15 // i = I \sin w t
16 // solution (a)
17 //RAmplitude at 1/600 second after it becomes zero
18 w=f*2*%pi;
                                      //angular speed
```

```
19 t1=(asin(a1/A))/w;
20 disp("SOLUTION (a)");
21 disp(sprintf("The time to reach value %f A is %3f sec", a1,t1));
22 disp("");
23 //solution (b)
24 //since wave will pass in -ve direction after half period
25 t2=(asin(a2/A))/w;
26 disp("SOLUTION (a)");
27 disp(sprintf("The time to reach value %f A is %3f sec", a2,t2));
28 disp("");
29 //
30 //END
```

Scilab code Exa 2.27 Impedance resistance reactance and power factor of the circuit

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 27 // read it as example 26 in the book on
       page 2.79
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 27");
8 //VARIABLE INITIALIZATION
                                       //Amplitude in
9 V = 250;
      Volts
10 \quad w = 314;
                                       //angular spped
11 pv=-10;
                                       //phase angle in
      degrees
12 I = 10;
                                       //Amplitude in Amps
```

```
//phase angle in
13 pi = 50
      degrees
14
15 //SOLUTION
16 //v = V \sin(wt + pv)
17 //i = I \sin (wt + pi)
18 //solution
19 //representing V in polar format as V=V0/sqrt(2)
      , we get
20 \text{ v1=V/sqrt}(2);
21 i1=I/sqrt(2);
22 //converting polar to rect
23 function [x,y]=pol2rect(mag,angle);
24 x=mag*cos(angle*%pi/180); // angle convert in
      radians
25 y=mag*sin(angle*%pi/180);
26 endfunction;
[x,y] = pol2rect(v1,pv);
28 \ V = x + y * \%i;
29 [x,y]=pol2rect(i1,pi);
30 I = x + y * \%i;
31 \quad Z=V/I;
32 //convert back into angles in deg
33 function [mag,angle]=rect2pol(x,y);
34 \text{ mag} = \text{sqrt}((x^2) + (y^2));
                                    //z is impedance &
      the resultant of x and y
35 angle=atan(y/x)*(180/\%pi);
                                      //to convert the
      angle from radians to degrees
36 endfunction;
37 [mag,angle]=rect2pol(real(Z),imag(Z));
38 disp("SOLUTION (a)");
39 disp(sprintf("The impedance is \%f < \%3f Deg",
      ,angle));
40 //disp("");
41 //power factor=cos(angle)
42 pf=cos(-1*angle*%pi/180);
                               //convert to radians
       and change sign
43 disp(sprintf("The power factor is %f", pf));
```

```
44 //Z=R-jXc by comparing real and imag paarts we get
45 disp(sprintf("The resistance is %f and Reactance
    is %3f", real(Z), imag(Z)));
46 disp("");
47 //
48 //END
```

Scilab code Exa 2.28 Total impedance current drawn from the supply

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 28 // read it as example 27 in the book on
       page 2.80
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 28");
8 //VARIABLE INITIALIZATION
9 z1=2+(\%i*3);
                                     //impedance in
      rectangular form in Ohms
10 z2=1-(\%i*5);
                                     //impedance in
      rectangular form in Ohms
11 z3=4+(\%i*2);
                                     //impedance in
      rectangular form in Ohms
                                     //in volts
12 v = 10;
13 //SOLUTION
14
15 // solution (a)
16 //Total impedance
17 // Total circuit impedance Z=(Z1 | | Z2)+Z3
18 z=z1+(z2*z3)/(z2+z3);
19 disp("SOLUTION (i)");
20 disp(sprintf("Total circuit impedance is %3f %3fj S"
      , real(z), imag(z)));
```

```
21 // Total supply current I=V/Z
\frac{22}{\sqrt{\text{solution}}} (b)
23 i=v/z;
24 function [mag,angle] = rect2pol(x,y);
25 mag = sqrt((x^2) + (y^2));
                                        //z is impedance &
       the resultant of x and y
                                      //to convert the
26 angle=atan(y/x)*(180/\%pi);
      angle from radians to degrees
27 endfunction;
28 [mag, angle] = rect2pol(real(i), imag(i));
29 disp("SOLUTION (b)");
30 disp(sprintf("Total current is %f<%f Amp", mag, angle)
      );
31 // solution (c)
32 / \text{Vbc=I.Zbc} where \text{Zbc} = (z2*z3) / (z2+z3)
33 Vbc=i*((z2*z3)/(z2+z3));
34 [mag1, angle1]=rect2pol(real(Vbc), imag(Vbc));
35 disp("SOLUTION (c)");
36 disp(sprintf("The voltage across the || circuit is
      \%f<\%f", mag1, angle1));
  disp(sprintf("The voltage Vbc lags circuit by %f Deg
      ",angle-angle1));
38 //solution (d)
39 //i2 = Vbc/z2, i3 = Vbc/z3
40 i2 = Vbc/z2;
41 i3=Vbc/z3;
42 [mag2, angle2]=rect2pol(real(i2), imag(i2));
43 [mag3, angle3]=rect2pol(real(i3), imag(i3));
44 disp(sprintf("The current across fist branch of ||
      circuit is \%f < \%f", mag2, angle2));
45 disp(sprintf("The current across second branch of |
       circuit is \%f < \%f", mag3, angle3));
46 //solution (e)
47 pf = cos(-1*angle*%pi/180);
48 disp("SOLUTION (e)");
49 disp(sprintf("The power factor is %f",pf));
50 //solution (iv)
51 // Apparent power s=VI, True Power, tp I^2R, Reactive
```

```
Power, rp=I^2X or VISSin(angle)
52 s=v*mag;
53 tp=mag*mag*real(z);
54 rp=v*mag*sin(-1*angle*%pi/180);
55 disp("SOLUTION (f)");
56 disp(sprintf("The Apparent power is %f VA, True power is %f W , Reactive power is %f vars",s,tp, rp));
57 disp(" ");
58 //END
```

Scilab code Exa 2.29 An alternating current of frequency of 60 Hertz

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 29 // read it as example 28 in the book on
       page 2.83
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 29");
8 //VARIABLE INITIALIZATION
9 I = 120;
                                      //Amplitude in Amps
                                      //Hz
10 f=60;
11 \ t1=1/360;
                                      //in sec time to
      find amplitude
12 i2=96;
                                      //in Amps ,2 to
      find time taken to reach this
13 //SOLUTION
14 //i = I \sin(wt)
15 //solution (a)
16 \ w=2*\%pi*f;
17 i=I*sin(w*t1);
18 disp("SOLUTION (a)");
```

```
disp(sprintf("The amplitude at time %f sec is %f Amp
        ", t1,i));

//solution (b)

t2=(asin(i2/I))/w;

disp("SOLUTION (b)");

disp(sprintf("The time taken to reach %f Amp is %f Sec", i2,t2));

disp(" ");

// 26 //END
```

Scilab code Exa 2.30 An alternating current with RMS value of 20 A

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 30 // read it as example 29 in the book on
       page 2.83
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 30");
8 //VARIABLE INITIALIZATION
9 f = 50;
                                          //Hz
10 \text{ rms} = 20;
                                          //in Amp
11 t1=0.0025;
                                          //in sec time to
       find amplitude
12 t2=0.0125;
                                          //in sec, to
      find amp after passing through +ve maximum
13 i3=14.14;
                                          //in Amps, to
      find time when will it occur after passing
      through +ve maxima
14 //SOLUTION
15 // i = I \sin (wt)
16 // solution (a)
```

```
17 w = 2 * \%pi * f;
18 Im=rms*sqrt(2);
19 disp(sprintf("The equation would be i=\%f. sin(\%f.t)"
     , Im,w));
  t0 = (asin(1)/w);
                                          //time to reach
      maxima in +ve direction
21 i=Im*sin(w*t1);
22 disp("SOLUTION (a)");
23 disp(sprintf("The amplitude at time %f sec is %f Amp
     ", t1,i));
24 //solution (b)
25 \text{ tx=t0+t2};
26 i2=Im*sin(w*tx);
27 disp("SOLUTION (b)");
28 disp(sprintf("The amplitude at time %f sec is %f Amp
     ", t2,i2));
29 //solution (c)
30 ty=(asin(i3/Im))/w;
                                         //since ty is
31 t3=t0-ty;
      the time starting from 0, the origin needs to be
      shifted to maxima
32 disp("SOLUTION (c)");
33 disp(sprintf("The amplitude of %f Amp would be
     reached in %f Sec", i3,t3));
34 disp(" ");
35 / /
36 / END
```

Scilab code Exa 2.31 Significance of RMS and average values of wave

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
.C. CIRCUIT
2 //Example 31 // read it as example 30 in the book on
page 2.84
3
```

```
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 31");
7
8 //VARIABLE INITIALIZATION
9 //function of the waveform is deduced to be y=10+10.
     t/T
10 //SOLUTION
11 / Yav = (1/T) . Integral (ydt) from 0 to T
12 // say
13 T=1;
                                          // 1 sec
14 Yav=(1/T)*integrate('(10+10*t/T)', 't', 0, 1);
15 disp(sprintf("The average value of waveform is %f",
       Yav));
16 / RMS \text{ value } Yrms = (1/T) . Integral (y^2.dt) from 0 to T
17 Yms = (1/T) * integrate('(10+10*t/T)^2', 't', 0, 1);
18 disp(sprintf("The RMS value of waveform is %f",
      sqrt(Yms)));
19 disp(" ");
20 //
21 //END
```

Scilab code Exa 2.32 Average value effective value and form factor

```
sin
10 //SOLUTION
11 //\operatorname{Iav} = (1/2). Integral (yd) from 0 to , and
      to 2. is zero, interval is 2.
12 //
13 // say
14 \text{ Im} = 1;
                                           // in Amp
15 Iav = (1/(2*\%pi))*integrate('(Im*sin(th))', 'th', 0,
  //disp(sprintf("The average value of waveform is %f
     ", Iav));
  //RMS mean square value (1/ ). Integral (y^2. d)
      from 0 to
18 Ims = (1/(2*\%pi))*integrate('(Im*sin(th))^2', 'th', 0,
       %pi);
  //disp(sprintf("The RMS value of waveform is %f",
      sqrt (Ims)));
20 ff=sqrt(Ims)/Iav;
21 disp(sprintf("The form factor of waveform is %f",ff)
      );
22 disp(" ");
23 //
24 //END
```

Scilab code Exa 2.33 Three coils of resistances

```
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
     .C. CIRCUIT
//Example 33 // read it as example 32 in the book on
     page 2.86

clc;
disp("CHAPTER 2");
disp("EXAMPLE 33");
```

```
8 //VARIABLE INITIALIZATION
9 r1=20;
                                          //in
10 \text{ r2=30};
11 \text{ r3}=40;
12 11=0.5;
                                          //in Henry
13 12 = 0.3;
14 \quad 13 = 0.2;
15 V = 230;
                                          // volts
16 f = 50;
                                          //Hz
17 //coils connected in series
18 //
19 //SOLUTION
20 R=r1+r2+r3;
21 L=11+12+13;
22 \text{ XL} = 2 * \% \text{pi} * \text{f} * \text{L};
23 //impedence Z=sqrt(R*2 +XL^2)
Z = sqrt(R^2 + XL^2);
25 I=V/Z;
26 \text{ pf}=R/Z;
27 \text{ pc=V*I*pf};
28 disp(sprintf("The total current is %f Amp", I));
29 disp(sprintf("The Power Factor is %f lagging", pf))
30 disp(sprintf("The Power consumed in the circuit is
      %f W, pc);
31 disp(" ");
32 //
33 / END
```

Scilab code Exa 2.34 To draw the vector diagram

```
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 34");
8 //VARIABLE INITIALIZATION
9 r = 100;
                                      //in
10 c=40*10^{(-6)};
                                      // volts
11 V = 400;
12 f = 50;
                                      //Hz
13 //
14 //SOLUTION
15 XC=1/(2*\%pi*f*c);
16 / \text{impedence Z=sqrt}(R^2 + XL^2)
17 Z=sqrt(r^2 + XC^2);
18 I=V/Z;
19 pf=r/Z;
20 pc=V*I*pf;
21 disp(sprintf("The total current is %f Amp", I));
22 disp(sprintf("The Power Factor is %f leading", pf))
23 disp(sprintf("The Power consumed in the circuit is
     %f W, pc));
24 disp(" ");
25 / /
26 //END
```

Scilab code Exa 2.35 Total impedance and total current

```
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
     .C. CIRCUIT
//Example 35 // read it as example 34 in the book on
     page 2.88

clc;
```

```
5 disp("CHAPTER 2");
6 disp("EXAMPLE 35");
8 //VARIABLE INITIALIZATION
9 R = 100;
                                      //in
10 L=0.2;
                                      //in Henry
                                      //farads
11 C=20*10^{(-6)};
                                      // volts
12 V = 240;
13 f=50;
                                      //Hz
14 //
15 //SOLUTION
16 //Solution (a)
17 XL=2*%pi*f*L;
18 XC=1/(2*\%pi*f*C);
19 //impedence Z=sqrt(R^2 + XL^2)
20 X = XL - XC;
21 Z = sqrt(R^2 + X^2);
22 disp("SOLUTION (a)");
23 disp(sprintf("The total impedence is \%f", Z));
24 I=V/Z;
25 disp("SOLUTION (b)");
26 disp(sprintf("The total current is %f Amp", I));
27 \text{ Vr} = I * R;
28 Vi = I * XL;
29 Vc = I * XC;
30 disp("SOLUTION (c)");
31 disp(sprintf("The voltage across resistance is %f V"
      , Vr));
32 disp(sprintf("The voltage across inductance is %f V"
      ,Vi));
33 disp(sprintf("The voltage across capacitance is %f V
      ", Vc));
34 \text{ pf}=R/Z;
35 \text{ pc=V*I*pf};
36 disp("SOLUTION (d)");
37 disp(sprintf("The Power Factor is %f leading", pf))
38 disp("SOLUTION (e)");
```

Scilab code Exa 2.36 Total current taken from supply

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 36 // read it as example 35 in the book on
       page 2.90
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 36");
8 //VARIABLE INITIALIZATION
                                        //in
9 R1 = 10;
10 XL = 15;
                                        //in
11 R2=12;
12 C = 20;
                                        //capacitative
      reactance in
13 V = 230;
                                        // volts
14 f = 50;
                                        //Hz
15 //
16 //SOLUTION
17 // Solution (a)
18 //conductance g, susceptance b
19 Z12 = (R1^2 + XL^2);
                                        //squared impedance
       Z<sup>2</sup> for branch 1
```

```
20 \quad Z22 = (R1^2 + C^2);
                                          //squared impedance
       Z<sup>2</sup> for branch 2
21 g1=R1/Z12;
22 \text{ g}2=R2/Z22;
23 b1 = -XL/Z12;
24 b2=C/Z22;
25 \text{ g=g1+g2};
26 b=b1+b2;
27 Y=sqrt(g^2+b^2);
28 I = V * Y;
29 disp("SOLUTION (a)");
30 disp(sprintf("The total current is %f Amp", I));
31 pf=g/Y;
32
33 disp("SOLUTION (b)");
34 disp(sprintf("The power factor is \%f", pf));
35 disp(" ");
36 //
37 / END
```

Scilab code Exa 2.37 Current taken by each branch

```
//in ohms
12 C=50;
      capacitative reactance
13 V = 200;
14 f=60;
                                          //Hz
15 //
16 //SOLUTION
17 // Solution (a)
18 //conductance g, susceptance b
19 Z1=sqrt(R1^2 +XL^2);
                                          //squared
      impedance Z^2 for branch 1
                                          //squared
20 \quad Z2 = sqrt(R2^2 + C^2);
      impedance Z^2 for branch 2
21 i1 = V/Z1;
22 i2=V/Z2;
23 disp("SOLUTION (a)");
24 disp(sprintf("The current in Branch 1 is %f Amp",
      i1));
25 disp(sprintf("The current in Branch 2 is %f Amp",
      i2));
26 phi1=atan(XL/R1);
27 phi2=%pi/2;
                                          // \operatorname{atan} (C/R2);
                           //R2=0, output is infinity
28 I\cos=i1*\cos(phi1)+i2*\cos(phi2);
                                          // phi in
      radians
29 Isin=-i1*sin(phi1)+i2*sin(phi2); // phi in
      radians
30 I=sqrt(Icos^2+Isin^2);
31 //
32 disp("SOLUTION (b)");
33 disp(sprintf("The total current is %f Amp", I));
34 //
35 \text{ pf=Icos/I};
36 disp("SOLUTION (c)");
37 disp(sprintf("The power factor is %f", pf));
38 disp(" ");
39 //
40 / END
```

Scilab code Exa 2.38 To solve example 27 by j method

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 38 // read it as example 37 in the book on
       page 2.93
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 38");
8 //VARIABLE INITIALIZATION
9 z1=10+15*\%i;
10 z2=12-20*\%i;
11 V = 230;
12 / invZ = 1/z1 + 1/z2;
13 Z=z1*z2/(z1+z2);
14 magZ=sqrt(real(Z)^2+imag(Z)^2);
15 I=V/magZ;
16 pf=real(Z)/magZ;
17 disp("SOLUTION (a)");
18 disp(sprintf("The current is %f Amp", I));
19 //
20 disp("SOLUTION (b)");
21 disp(sprintf("The Power factor is %f", pf));
22 disp(" ");
23 //
24 //END
```

Scilab code Exa 2.39 To draw the complete vector diagram

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 39 // read it as example 38 in the book on
       page 2.94
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 39");
8 //VARIABLE INITIALIZATION
9 z1=2.5+1.5*\%i;
10 z2=4+3*\%i;
11 z3=3-4*\%i;
12 V = 200;
13 f=50;
14 E = V + 0 * \%i;
                                          // representing
      as a vector
15 // invZ = 1/z1 + 1/z2;
16 \quad Z23=z2*z3/(z2+z3);
17 \ Z=z1+Z23;
18 I=E/Z;
                                          //total current
19 magI=sqrt(real(I)^2+imag(I)^2);
                                          //total phase
20 phi=atan(-imag(I)/real(I));
21 //
22 // Voltages across the branches
23 \text{ e12=I*z1};
                                          //voltage across
       series branch
24 mage12=sqrt(real(e12)^2+imag(e12)^2);
25 phi12=atan(imag(e12)/real(e12));
26 //
27 \text{ e}23=E-e12;
                                          //voltage across
       parallel branch
28 mage23=sqrt(real(e23)^2+imag(e23)^2);
29 phi23=atan(-imag(e23)/real(e23));
31 //current in branch 1 upper
32 i1=e23/z2;
33 magi1=sqrt(real(i1)^2+imag(i1)^2);
```

```
34 phii1=atan(-imag(i1)/real(i1));
35 / /
36 //current in branch 2 lower
37 i2=e23/z3;
38 magi2=sqrt(real(i2)^2+imag(i2)^2);
39 phii2=atan(imag(i2)/real(i2));
40 disp("SOLUTION (b)");
41 disp(sprintf("The current in Upper branch is %f
     Amp", magi1));
42 disp(sprintf("The current in Lower branch is %f
     Amp", magi2));
43 disp(sprintf("The Total current
                                      is %f Amp", magI))
44 //
45 pf = cos(phi);
                                        //
46 disp("SOLUTION (c)");
47 disp(sprintf("The Power factor is %f", pf));
48 //
49 disp("SOLUTION (d)");
50 disp(sprintf("The voltage across series branch is
     %f V", mage12));
51 disp(sprintf("The voltage across parallel branch is
       %f V", mage23));
52 //
53 \text{ tp=V*magI*pf};
54 disp("SOLUTION (e)");
55 disp(sprintf("The total power absorbed in circuit
      is %f W', tp));
56 disp(" ");
57 //
58 / END
```

Scilab code Exa 2.40 Power factor and average power delivered to the circuit

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 40 // read it as example 39 in the book on
       page 2.98
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 40");
8 //VARIABLE INITIALIZATION
9 V = 100;
                                         // max amplitude
       of wave
10 \quad w = 314;
                                         //angular speed
11 phiV=5;
                                          //phase angle
     in degrees
12 I=5;
                                         //max current
      amplitude
13 phiI = -40;
                                         //phase angle in
       current in deg
14
15 //
16 //SOLUTION
17 phi=phiI-phiV;
18 pf=cos(phi*%pi/180);
                                         //convert to
     radians
19 p=(V/sqrt(2))*(I/sqrt(2))*pf;
20 //
21 disp(sprintf("The Power factor is %f lagging", pf)
     );
22 disp(sprintf("The Power delivered is %f W", p));
23 disp(" ");
24 //
25 //END
```

Scilab code Exa 2.41 100 V 60 W lamp

```
1 //CHAPTER 2— STEADY—STATE ANALYSIS OF SINGLE—PHASE A
      .C. CIRCUIT
2 //Example 41 // read it as example 40 in the book on
       page 2.99
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 41");
8 //VARIABLE INITIALIZATION
9 lampV=100;
                                                //Volts
                                                //watts
10 lampW=60;
11 V = 250;
12 	ext{ f=50;}
13 //
14 //SOLUTION
15 lampI=lampW/lampV;
16 lampR=lampW/lampI^2;
                                              //W=I^2.R
17 //
18 disp("SOLUTION (a)");
19 disp(sprintf("The resistance of the lamp is t is %f
      Ohms", lampR));
20 //
21 //in purely resistive / non inductive circuit ,V=IR
      applies, and R=lampR+R
22 R=V/lampI-lampR;
23 disp(sprintf("The value value of resistor to be
      placed in series with the lamp is %f Ohms", R));
24 //
25 //in case of inductance
26 //XL = 2*\%pi*f*L;
27 /V=Z.I \text{ where } Z^2=R^2+XL^2
28 //L = sqrt ((V^2/I^2 - R^2)/2*\%pi*f)
29 L=sqrt((V/lampI)^2-lampR^2)/(2*%pi*f);
30 disp(sprintf("The inductive resistance to be placed
       is %f H",L));
31 disp(" ");
32 //
```

Scilab code Exa 2.42 Three sinusoidaly alternating currents

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 42 // read it as example 41 in the book on
       page 2.100
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 42");
7
8 //VARIABLE INITIALIZATION
9 I = 10;
                                             // max
      amplitude of wave in Amp
10 \text{ rms1} = 5;
11 \text{ rms} 2 = 7.5;
12 \text{ rms} 3 = 10;
13 phi1=30;
14 \text{ phi2} = -60;
15 phi3=45;
                                            //Hz
16 f=50;
17 w=2*\%pi*f;
18 //
19 //SOLUTION
20 \text{ av1=rms1/1.11};
21 \text{ av2=rms2/1.11};
22 av3=rms3/1.11;
23 disp("SOLUTION (i)");
24 disp(sprintf("The
                        average value of 1st current is
      %f Amp, av1));
25 disp(sprintf("The
                        average value of 2nd current is
      %f Amp", av2));
26 disp(sprintf("The
                        average value of 3rd current is
```

```
%f Amp, av3);
27 //
28 disp("SOLUTION (ii)");
29 disp(sprintf("The instantaneous value of 1st
      current is \%f \sin(\%f*t+\%f) Amp", rms1*sqrt(2), w,
     phi1));
30 disp(sprintf("The instantaneous value of 2nd
      current is \%f \sin(\%f*t\%f) Amp", rms2*sqrt(2), w,
     phi2));
31 disp(sprintf("The instantaneous value of 3rd
      current is \%f \sin(\%f*t+\%f) Amp", rms3*sqrt(2), w,
     phi3));
32 //
33 //instantaneous values of current at t=100 \,\mathrm{msec}=0.1
      sec
34 t=0.1;
35 i1=(rms1*sqrt(2))*(sin(w*t+phi1*%pi/180));
36 i2 = (rms2*sqrt(2))*(sin(w*t+phi2*%pi/180));
37 i3 = (rms3*sqrt(2))*(sin(w*t+phi3*%pi/180));
38 disp("SOLUTION (iv)");
39 disp(sprintf("The
                      instantaneous value of 1st
      current is %f Amp at %f Sec", i1, t));
40 disp(sprintf("The instantaneous value of 2nd
      current is %f Amp at %f Sec", i2, t));
41 disp(sprintf("The
                      instantaneous value of 3rd
      current is %f Amp at %f Sec", i3, t));
42 disp(" ");
43 //
44 / END
```

Scilab code Exa 2.43 Resultant current wave made up of two components

```
page 2.102
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 43");
8 //VARIABLE INITIALIZATION
                                          // max amplitude
9 I = 5;
       of wave in Amp
                                          //Hz
10 f = 50;
11 //wave for is to be obtained by adding the two waves
12 / i = 5 + 5. \sin(wt) = 5 + 5. \sin(theta)
13 //
14 //SOLUTION
15 Iav = (1/(2*\%pi))*integrate('5+5*sin(th)', 'th', 0, 2*
  Ims = (1/(2*\%pi))*integrate('(5+5*sin(th))^2', 'th')
16
      ,0,2*%pi);
17 //
18 disp(sprintf("The average value of resultant
      current is %f Amp", Iav));
19 disp(sprintf("The RMS value of resultant current is
       \%f Amp",
                 sqrt(Ims)));
20 disp(" ");
21 //
22 //END
```

Scilab code Exa 2.44 To find power consumed by the circuit

```
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
     .C. CIRCUIT
//Example 44

clc;
disp("CHAPTER 2");
```

```
6 disp("EXAMPLE 44");
8 //VARIABLE INITIALIZATION
                                     //in Ohms
9 r = 20;
10
11 //SOLUTION
12 p0=(4^2)*r;
13 p1=((5/sqrt(2))^2)*r;
14 p2=((3/sqrt(2))^2)*r;
15 p = p0 + p1 + p2;
16 I = sqrt(p/r);
17 disp(sprintf("The power consumed by the resistor is
     %d W",p));
  disp(sprintf("The effective value of current is %f A
     ",I));
19
20 //END
```

Scilab code Exa 2.45 Quality factor and bandwidth

```
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
  //Example 45
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 45");
  //VARIABLE INITIALIZATION
9 L=1.405;
                                     //in Henry
                                     //in Ohms
10 r = 40;
                                     //in Farad
11 c=20/(10^6);
12 v = 100;
                                     //in Volts
13
14 //SOLUTION
```

```
15 f0=1/(2*%pi*sqrt(L*c));
16 disp(sprintf("The frequency at which the circuit
      resonates is %d Hz",f0));
17
18 I0=v/r;
19 disp(sprintf("The current drawn from the supply is
      %f A", I0));
20
21 \times 10 = 2 * \%pi * f0 * L;
22 z0=sqrt((r^2)+(x10^2));
23 v10=I0*z0;
24 disp(sprintf("The voltage across the coil is %f V",
      v10));
25
26 \text{ xc0=1/(2*\%pi*f0*c)};
27 disp(sprintf("The capcitative reactance is %f
      xc0));
28
29 Q0 = (2*\%pi*f0*L)/r;
30 disp(sprintf("The quality factor is %f", Q0));
31
32 \text{ bw=r/L};
33 disp(sprintf("The bandwidth is %f Hz", bw));
34
35 / END
```

Scilab code Exa 2.46 To find power consumed and reactive power

```
//CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
     .C. CIRCUIT
//Example 46

clc;
disp("CHAPTER 2");
disp("EXAMPLE 46");
```

```
7
8 //VARIABLE INITIALIZATION
9 I=120-(\%i*(50));
                                     //in Amperes
                                      //in Volts
10 v=8+(\%i*(2));
11
12 //SOLUTION
13
14 //function to convert from rectangular form to polar
       form
15 function [mag,angle]=rect2pol(x,y);
16 mag = sqrt((x^2) + (y^2));
17 angle=atan(y/x)*(180/\%pi);
                                    //to convert the
      angle from radians to degrees
18 endfunction:
19 [v,angle_v]=rect2pol(real(v),imag(v));
20 [I,angle_I]=rect2pol(real(I),imag(I));
21
22 //solution (i)
23 z=v/I;
24 angle_z=angle_v-angle_I;
25 disp(sprintf("(i) The impedance is %f , %f degrees
      ",z,angle_z));
26
27 //solution (ii)
28 phi=angle_z;
29 pf=cos(phi*(%pi/180));
30 disp(sprintf("(ii) The power factor is %f (lagging)"
      ,pf));
31
32 //solution (iii)
33 \text{ s=v*I};
34 angle_s=angle_v-angle_I;
35 //function to convert from polar form to rectangular
       form
36 function [x,y]=pol2rect(mag,angle);
37 \text{ x=mag*} \cos(\text{angle*}(\%\text{pi}/180));
                                 //to convert the angle
       from degrees to radians
38 y=mag*sin(angle*(%pi/180));
```

```
39 endfunction;
40 [p,q]=pol2rect(s,angle_s);
41 disp(sprintf("(iii)) The power consumed is %f W",p));
42 disp(sprintf(" The reactive power is %f VAR",q)
     );
43
44 //END
```

Scilab code Exa 2.47 RL series circuit

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 47
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 47");
8 //VARIABLE INITIALIZATION
9 r = 10;
                                    //in Ohms
10 \text{ xl} = 8.66;
                                    //in Ohms
11 I=5-(\%i*10);
                                    //in Amperes
12
13 //SOLUTION
14 z=r+(\%i*(x1));
15 //function to convert from rectangular form to polar
       form
16 function [mag,angle] = rect2pol(x,y);
17 mag = sqrt((x^2) + (y^2));
18 angle=atan(y/x)*(180/\%pi); //to convert the
      angle from radians to degrees
19 endfunction;
20 [z,angle_z]=rect2pol(real(z),imag(z));
21 [I,angle_I]=rect2pol(real(I),imag(I));
22
```

```
23 //solution(i)
24 v = I * z;
25 angle_v=angle_I+angle_z;
26 disp(sprintf("(i) The applied voltage is %f V, %f
      degrees", v, angle_v));
27
28 //solution (ii)
29 phi=angle_I-angle_v;
30 pf=cos(phi*(%pi/180));
31 disp(sprintf("(ii) The power factor is %f (lagging)"
      ,pf));
32
33 //solution(iii)
34 \text{ s=v*I};
35 angle_s=angle_v-angle_I;
36 //function to convert from polar form to rectangular
       form
37 function [x,y]=pol2rect(mag,angle);
38 x=mag*cos(angle*(%pi/180));
                                //to convert the angle
     from degrees to radians
39 y=mag*sin(angle*(%pi/180));
40 endfunction;
41 [p,q]=pol2rect(s,angle_s);
42 disp(sprintf("(iii) The active power is %f W',p));
43 disp(sprintf("
                        The reactive power is %f VAR",q)
     );
44
  //END
45
```

Scilab code Exa 2.48 Power factor of the combination

```
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 48");
7
8 //VARIABLE INITIALIZATION
                                    //power factor of 1st
9 \text{ pf1=0.8};
       circuit
                                    //power factor of 2nd
10 \text{ pf2=0.6};
       circuit
                                    //this is an
11 z=1;
      assumption
12
13 //SOLUTION
14 angle1=acos(pf1)*(180/\%pi); //in degrees
15 angle2=acos(pf2)*(180/\%pi); //in degrees
16 //function to convert from polar form to rectangular
       form
17 function [x,y]=pol2rect(mag,angle);
18 x=mag*cos(angle*(%pi/180));
                                   //to convert the
      angle from degrees to radians
19 y=mag*sin(angle*(%pi/180));
20 endfunction;
21 [z1_x,z1_y]=pol2rect(z,angle1);
[z2_x,z2_y]=pol2rect(z,angle2);
                                    //numerator
23 nr=angle1+angle2;
24 z_x = z1_x + z2_x;
25 z_y = z1_y + z2_y;
26
27 //function to convert from rectangular form to polar
       form
28 function [z,angle]=rect2pol(x,y);
29 I = sqrt((x^2) + (y^2));
30 angle=atan(y/x)*(180/\%pi); //to convert the
      angle from radians to degrees
31 endfunction;
32 [z,angle]=rect2pol(z_x,z_y);
33 angle_z=nr-angle;
34 pf=cos(angle_z*(%pi/180));
```

Scilab code Exa 2.49 kVA and kW in each branch circuit and in the main circuit

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 49
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 49");
7
8 //VARIABLE INITIALIZATION
                                    //in Volts
9 v = 200;
                                    //in degrees
10 angle_v=30;
11 I1=20;
                                    //in Amperes
12 angle_I1=60;
                                   //in degrees
13 \quad I2 = 40;
                                    //in Amperes
14 angle_I2=-30;
                                    //in degrees
15
16 //SOLUTION
17 //function to convert from polar form to rectangular
       form
18 function [x,y]=pol2rect(mag,angle);
19 x=mag*cos(angle*(%pi/180)); //to convert the
      angle from degrees to radians
20 y=mag*sin(angle*(%pi/180));
21 endfunction;
[v_x, v_y] = pol2rect(v, angle_v);
23 [I1_x, I1_y] = pol2rect(I1, angle_I1);
24 [I2_x,I2_y]=pol2rect(I2,angle_I2);
```

```
25 \text{ s1=v*I1};
26 angle_s1=-angle_v+angle_I1;
27 disp(sprintf("The apparent power in 1st branch is %d
      kVA", s1/1000));
28 [s1_x,s1_y]=pol2rect(s1,angle_s1);
29 disp(sprintf("The true power in 1st branch is %f kW"
      ,s1_x/1000));
30
31 disp(" ");
32
33 \text{ s2=v*I2};
34 angle_s2=angle_v-angle_I2;
35 disp(sprintf("The apparent power in 2nd branch is %d
      kVA",s2/1000));
36 [s2_x, s2_y] = pol2rect(s2, angle_s2);
37 disp(sprintf("The true power in 2nd branch is %d kW"
      ,s2_x/1000));
38 I = (I1_x + I2_x) + (\%i * (I1_y + I2_y)); disp(I);
39
40 //function to convert from rectangular form to polar
       form
41 function [I,angle]=rect2pol(x,y);
42 I = sqrt((x^2) + (y^2));
43 angle=atan(y/x)*(180/\%pi);
                                    //to convert the
      angle from radians to degrees
44 endfunction;
45 [I,angle]=rect2pol(real(I),imag(I));
46 disp(I);
47 \text{ s=v*I};
48 angle_s=angle_v-angle;
49 disp(sprintf("The apparent power in the main circuit
       is \%f kVA",s/1000));
50 [p,q]=pol2rect(s,angle_s);
51 disp(sprintf("The true power in the main circuit is
      %f kW", p/1000);
52
53 //END
```

Scilab code Exa 2.50 Current in each branch when total current is 20 A

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
  //Example 50
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 50");
8 //VARIABLE INITIALIZATION
9 z1=6+(\%i*5);
                                      //impedance in Ohms
                                     //impedance in Ohms
10 z2=8-(\%i*6);
11 z3=8+(\%i*10);
                                     //impedance in Ohms
12 I = 20;
                                     //in Amperes
13
14 //SOLUTION
15 \quad Y1=1/z1;
16 \quad Y2=1/z2;
17 Y3=1/z3;
18 \quad Y = Y1 + Y2 + Y3;
19 //function to convert from rectangular form to polar
       form
20 function [Y,angle]=rect2pol(x,y);
21 Y = sqrt((x^2) + (y^2));
22 angle=atan(y/x)*(180/\%pi);
                                     //to convert the
      angle from radians to degrees
23 endfunction;
24 [Y_tot, angle] = rect2pol(real(Y), imag(Y));
25 \text{ v=I/Y\_tot};
26 angle_v=-angle;
27 [z1,angle1]=rect2pol(real(z1),imag(z1));
28 [z2, angle2] = rect2pol(real(z2), imag(z2));
29 [z3,angle3]=rect2pol(real(z3),imag(z3));
```

```
30  I1=v/z1;
31  angle_I1=angle_v-angle1;
32  I2=v/z2;
33  angle_I2=angle_v-angle2;
34  I3=v/z3;
35  angle_I3=angle_v-angle3;
36  disp("The current in each branch in polar form is-")
    ;
37  disp(sprintf(" %f A, %f degrees",I1,angle_I1));
38  disp(sprintf(" %f A, %f degrees",I2,angle_I2));
39  disp(sprintf(" %f A, %f degrees",I3,angle_I3));
40
41  //END
```

Scilab code Exa 2.51 Admittance and impedance of the circuit

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
  //Example 51
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 51");
7
8 //VARIABLE INITIALIZATION
9 Y1=0.4+(\%i*0.6);
                                    //admittance of 1st
      branch in Siemens
10 Y2=0.1+(\%i*0.4);
                                    //admittance of 2nd
      branch in Siemens
11 Y3=0.06+(\%i*0.23);
                                    //admittance of 3rd
      branch in Siemens
12
13 //SOLUTION
14 \quad Y = Y1 + Y2 + Y3;
15 //function to convert from rectangular form to polar
```

```
form

function [Y,angle]=rect2pol(x,y);

Y=sqrt((x^2)+(y^2));

angle=atan(y/x)*(180/%pi); //to convert the angle from radians to degrees

endfunction;

[Y1,angle]=rect2pol(real(Y),imag(Y));

disp(sprintf("The total admittance of the circuit is %f S, %f degrees",Y1,angle));

z=1/Y1;

disp(sprintf("The impedance of the circuit is %f degrees",z,-angle));

//END
```

Scilab code Exa 2.52 Total impedance and current in each branch

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
2 //Example 52
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 52");
8 //VARIABLE INITIALIZATION
                                    //in Ohms
9 \text{ r1=7};
10 L1=0.015;
                                    //in Henry
11 r2=12;
                                    //in Ohms
12 c2=180*(10^{(-6)});
                                    //in Farad
13 \text{ r3=5};
                                    //in Ohms
                                    //in Henry
14 L3 = 0.01;
                                    //in Volts
15 v = 230;
16 f=50;
                                    //in Hertz
17
```

```
18 //SOLUTION
19
20 / solition (a)
21 \times 11 = 2 * \%pi * f * L1;
22 \text{ xc2=1/(2*\%pi*f*c2)};
23 \times 13 = 2 \times \% pi \times f \times L3;
24 \quad Z1 = r1 + x11 * \%i;
                                         //complex
      representations
25 \quad Z2 = r2 - xc2 * \%i;
26 \quad Z3 = r3 + x13 * \%i;
27 //function to convert from rectangular form to polar
28 function [z,angle]=rect2pol(r,x);
29 z=sqrt((r^2)+(x^2));
30 angle=atan(x/r)*(180/\%pi); //to convert the angle
      from radians to degrees
31 endfunction;
32 [z1, angle1] = rect2pol(r1, x11);
33 [z2,angle2]=rect2pol(r2,xc2);
34 [z3,angle3]=rect2pol(r3,x13);
35 //to obtain rectangular form of (Z1+Z2)
36 \text{ req1=r1+r2};
37 \text{ xeq1=xl1-xc2};
\frac{38}{\text{to obtain polar form of }} (Z1+Z2)
39 [zeq1,angle_eq1]=rect2pol(req1,-xeq1);
40 \text{ zp}=(z1*z2)/(zeq1);
41 angle_p=(angle1-angle2)+angle_eq1;
42 //function to convert from polar form to rectangular
43 function [r,x]=pol2rect(z,angle);
                                   //to convert the angle
44 r=z*cos(angle*(%pi/180));
      from degrees to radians
45 x=z*sin(angle*(%pi/180));
46 endfunction;
47 [rp,xp]=pol2rect(zp,angle_p);
48 [req, xeq] = pol2rect(z3, angle3);
49 r_tot=req+rp;
50 x_tot=xeq+xp;
```

```
51 [z_tot,angle_tot]=rect2pol(r_tot,x_tot);
52 Z=r_tot+x_tot*\%i;
                                      //complex
      representation
                                                     , %f
53 disp(sprintf("(a) The total impedance is %f
      degrees",z_tot,angle_tot));
54
55 //solution (b)
56 I=v/Z;
                                      //complex division
57 angle_I=-angle_tot;
58 [I_x,I_y]=pol2rect(I,angle_I);
59 disp(sprintf("(b) The total currrent is (\%f-j\%f) A",
      real(I),imag(I)));
60
61 // solution (c)
62 //Voltage drop across Z3
63 Vab=I*Z3;
                      The Voltage between AB is (%f-j%f)
64 disp(sprintf("
       A", real(Vab), imag(Vab)));
65 //since we know that V=Vab+Vbc
66 \, \text{Vbc=v-Vab};
67 disp(sprintf("
                      The Voltage between BC is (%f-j%f)
       A", real(Vbc), imag(Vbc)));
68 \quad I1 = Vbc/Z1;
                                      //Branch 1 current
                                      //branch 2 current
69 \quad I2 = Vbc/Z2;
70 //I3=I, main branch current
71 [mag1, angle1] = rect2pol(real(I1), imag(I1));
72 [mag2,angle2]=rect2pol(real(I2),imag(I2));
73 disp(sprintf("(c)) Current in branch 1 is <math>\%f A, \%f
      degrees", mag1, angle1));
74 disp(sprintf("
                      The current in branch 1 is (%f-
      j\%f) A", real(I1), imag(I1)));
  disp(sprintf("
                      The current in branch 2 is %f A,
75
      %f 	ext{ degrees}", mag2, angle2));
76 disp(sprintf("
                      The current in branch 2 is (%f-
      j\%f) A", real(I2), imag(I2)));
77 //END
```

Scilab code Exa 2.53 Total impedance and power taken

```
1 //CHAPTER 2- STEADY-STATE ANALYSIS OF SINGLE-PHASE A
      .C. CIRCUIT
  //Example 53 Read Example 52 of the Text Book
3
4 clc;
5 disp("CHAPTER 2");
6 disp("EXAMPLE 53");
8 //VARIABLE INITIALIZATION
9 v = 230;
                                     //in Volts
10 angle_v=30;
                                    //in degrees
11 I1=20;
                                    //in Amperes
12 angle_I1=60;
                                    //in degrees
                                    //in Amperes
13 \quad 12 = 40;
14 angle_I2=-30;
                                    //in degrees
15
16 //SOLUTION
17 //function to convert from polar form to rectangular
       form
18 function [x,y]=pol2rect(mag,angle);
19 x=mag*cos(angle*(%pi/180));
                                    //to convert the
      angle from degrees to radians
20 y=mag*sin(angle*(%pi/180));
21 endfunction;
22 [x1,y1]=pol2rect(I1,angle_I1);
23 [x2,y2]=pol2rect(I2,angle_I2);
24 \quad X = x1 + x2;
25 \quad Y = y1 + y2;
26
27 //function to convert from rectangular form to polar
28 function [I,angle]=rect2pol(x,y);
```

```
29 I = sqrt((x^2) + (y^2));
30 angle=atan(y/x)*(180/\%pi); //to convert the
      angle from radians to degrees
31 endfunction;
32 [I,angle]=rect2pol(X,Y);
33
34 //solution (i)
35 z=v/I;
36 angle_z=angle_v-angle;
37 disp(sprintf("(i) The total impedance of the circuit
             , %f degrees",z,angle_z));
38
39 //solution (ii)
40 //disp(sprintf("The value of I is %f and angle is %f
     ", I, angle_z);
41 pf = cos(angle_z*(\%pi/180));
42 p = v * I * pf;
43 disp(sprintf("(ii) The power taken is %f W",p));
44 / END
```

Scilab code Exa 2.54 Q factor at resonance

```
12
13 //SOLUTION
14
15 //solution (i)
16 f_r=(1/(2*\%pi))*sqrt((1/(L*C)-(R^2/L^2)));
                                   //to round off the
17 f_r=round(f_r);
      value
18 disp(sprintf("(i) The resonant frequency is %d Hz",
      f_r));
19
20 //solution (ii)
21 q_factor=(2*%pi*f_r*L)/R;
22 disp(sprintf("(ii) The Q-factor of the circuit is %f
     ",q_factor));
23
24 //solution (iii)
25 \quad Z_r=L/(C*R);
26 disp(sprintf("(iii) The dynamic impedance of the
      circuit is \%f ",Z_r));
27
28 //END
```

Chapter 3

Three Phase AC Circuits

Scilab code Exa 3.1 Identical impedances each consisting of 15 ohm in series

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 1
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 1");
8 //VARIABLE INITIALIZATION
                                      //line voltage in
9 v_1=400;
     Volts
10 r = 15;
                                      //resistance in
     Ohms
11 xc=10;
                                      //capacitive
     reactance in Ohms
12
13 //SOLUTION
14
15 // solution (i)
16 v_ph=v_1/sqrt(3);
                                      //phase voltage=(
     line voltage)/sqrt(3) for star connection
```

```
17 disp(sprintf("(i) The phase voltage is %f V", v_ph));
18
19 //solution (ii)
20 z_{ph=sqrt}((r^2)+(xc^2));
21 \quad I_l=v_ph/z_ph;
                                       //phase current =
      line current for star connection
22 disp(sprintf("(ii) The line current is \%f A", I_1));
23
24 //solution (iii)
25 disp(sprintf("(iii) The phase current is %f A",I_1))
26
27 //solution (iv)
28 pow_fact=r/z_ph;
29 disp(sprintf("(iv) The power factor of the circuit
      is \sqrt[n]{}f (leading)",pow_fact));
30
31 // solution (v)
32 p=sqrt(3)*v_l*I_l*pow_fact;
33 disp(sprintf("(v) The total power absorbed is %f W',
      p));
34
35 //solution (vi)
36 \text{ va=} \frac{\text{sqrt}}{3} (3) * v_1 * I_1;
37 disp(sprintf("(vi) The apparent power is %f VA", va))
38 var=sqrt((va^2)-(p^2));
39 disp(sprintf("The reactive power is %f VAR", var));
40
41 //Answers (v) and (vi) are different due to
      precision of floating point numbers
42
43 //END
```

Scilab code Exa 3.2 Resistance and reactance values of each impedance

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 2
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 2");
8 //VARIABLE INITIALIZATION
9 v_1 = 400;
                                       //line voltage in
     Volts
10 I_1=30;
                                       //line current in
     Amperes
11 p=12*1000;
                                       //power absorbed
      in Watts
12
13 //SOLUTION
14 v_ph=v_1/sqrt(3);
                                       //phase voltage =
      (line voltage)/sqrt(3)
15 z_ph=v_ph/I_1;
                                       //phase current =
      line current for star connection
                                       //three-phase
16 pow_fact=p/(sqrt(3)*v_l*I_l);
      power = sqrt(3) * v_l * I_l * pow_fact
                                       //from impedance
17 r_ph=z_ph*pow_fact;
      tringle
18 disp(sprintf("The resisatnce of each impedance is %f
         ",r_ph));
19 x_ph=sqrt((z_ph^2)-(r_ph^2));
20 disp(sprintf("The ractance of each impedance is %f
       ",x_ph));
21
22 / END
```

Scilab code Exa 3.3 Three similar coils each of 30 ohms

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
```

```
2 //Example 3
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 3");
8 //VARIABLE INITIALIZATION
9 r_{ph}=30;
                                   //resistance of coils
      in Ohms
10 \quad 1 = 0.07;
                                   //inductance of coils
      in Henry
                                   //line voltage in Volts
11 v_1 = 400;
12 f = 50;
                                   //frequency in Hertz
13
14 //SOLUTION
15
16 // solution (a)
17 x_{ph}=2*(\%pi)*f*1;
                                   //inductive reactance
18 z_{ph=sqrt}((r_{ph^2})+(x_{ph^2}));
19 I_ph=v_1/z_ph;
                                   //phase voltage = line
      voltage for delta connection
20 disp(sprintf("(a) The phase current is %f A",I_ph));
21
\frac{22}{\sqrt{\text{solution}}} (b)
23 I_1=sqrt(3)*I_ph;
                                   //phase current = (line)
       current)/sqrt(3) for delta connection
24 disp(sprintf("(b)) The line current is %f A", I_1));
25
26 / solution (c)
27 pow_fact=r_ph/z_ph;
28 disp(sprintf("(c))) The power factor is %f(lagging)",
      pow_fact));
29
30 // solution (d)
31 p=sqrt(3)*v_1*I_1*pow_fact;
32 disp(sprintf("(d) The power absorbed is %f W",p));
33
34 //Answer is different due to precision of floating
```

```
point numbers
35
36 //END
```

Scilab code Exa 3.4 Line and phase current when phase sequence is positive

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 4
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 4");
8 //VARIABLE INITIALIZATION
9 v_1 = 866;
                                           //line voltage
      in Volts
10 z_{delta}=177-(\%i*246);
                                           //impedance of
       delta connected load in Ohms
11 z_{wire=1+(\%i*2)};
                                           //impedance of
       each wire of the line in Ohms
12
13 //SOLUTION
                                           //phase
14 v_ph=v_1/sqrt(3);
      current = (line current)/sqrt(3) for star
      connection
15 z_star=z_delta/3;
16 z=z\_wire + z\_star;
17 I=v_ph/z;
                                           //I_na in
      rectangular form
18 //I_na, I_nb and I_nc are same in magnitude and are
      the line currents for delta connection or vice-
      versa
19 //function is not used to covert quantities in
      rectangular form to polar form
```

```
20 //I_na
21 I_na=sqrt((real(I))^2+(imag(I))^2);
                                           //I_na from
      rectangular to polar form
                                           //angle in
22 a=atan(imag(I)/real(I));
      radians
23 a=a*(180/\%pi);
                                           //radians to
      degrees
24 //I_nb
25 I_na=sqrt((real(I))^2+(imag(I))^2);
26 b=a-120;
                                           //lags by 120
      degrees
27 //I_nc
28 I_na=sqrt((real(I))^2+(imag(I))^2);
                                           // lags by
29 c = a - 240;
      another 120 degrees ie.,240 degrees
30 disp(sprintf("The line currents are %f A (%f degrees
      ), %f A (%f degrees) and %f A (%f degrees)", I_na,
     a, I_na, b, I_na, c));
31
32
33 //line current lags phase current by 30 degrees,
      hence (-30)
34 //I_AB
35 I_AB=I_na/sqrt(3);
36 \quad a1=a-(-30);
37 //I_BC
38 I_BC=I_na/sqrt(3);
39 b1=b-(-30);
40 //I_AC
41 I_AC=I_na/sqrt(3);
42 c1=c-(-30);
43 disp(sprintf("The phase currents are \%f A (\%f
      degrees), %f A (%f degrees) and %f A (%f degrees)
     ", I_AB, a1, I_BC, b1, I_AC, c1));
44
45 //converting z_delta from polar form to rectangular
     form
46 z=sqrt((real(z_delta))^2+(imag(z_delta))^2);
```

```
47 angle=atan(imag(z_delta)/real(z_delta));
48 angle=angle*(180/\%pi);
49
50 //line voltages for load or phase voltages for the
      delta load-
51 //v_AB
52 \text{ v}_AB=I_AB*z;
53 a2=a1+angle;
54 / v_B
55 \text{ v}_BC=I_BC*z;
56 b2=b1+angle;
57 //v_AC
58 \text{ v_AC=I_AC*z};
59 c2=c1+angle;
60 disp(sprintf("The phase voltages for the delta load
      are %f A (%f degrees), %f A (%f degrees) and %f
     A (%f degrees)", v_AB, a2, v_BC, b2, v_AC, c2));
61
62 p_AB = (I_AB^2) * real(z_delta);
63 p_1oad=3*p_AB;
64 disp(sprintf("The power absorbed by the load is %f W
      ",p_load));
65 p_1=3*(I_na^2)*real(z_wire);
66 disp(sprintf("The power dissipated by the line is %f
      W'', p_1);
67 p=p_load+p_l;
68 disp(sprintf("The total power supplied by 3-
      source is %f W',p));
69
70 //Answers may be slightly different due to precision
       of floating point numbers
71
72 / END
```

Scilab code Exa 3.5 Power measurement by 2 wattmeter method

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 5
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 5");
8 //VARIABLE INITIALIZATION
                                    //reading of 1st
9 \text{ w1} = 5000;
     wattmeter in Watts
                                    //reading of 2nd
10 w2 = -1000;
     wattmeter in Watts
11
12 //SOLUTION
13
14 // solution (a)
15 p1=w1+w2;
16 disp(sprintf("(a) The total power is %d W',p1));
17
18 // solution (b)
19 p2=w1-w2;
20 phi=atan((sqrt(3)*p2)/p1); //this equation comes
      from two-wattmeter method
21 pow_fact=cos(phi);
22 disp(sprintf("(b) The power factor of the load is %f
     ", pow_fact));
23
24 //END
```

Scilab code Exa 3.6 3300 V synchronous alternator

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 6
3
4 clc;
```

```
5 disp("CHAPTER 3");
6 disp("EXAMPLE 6");
8 //VARIABLE INITIALIZATION
9 v_1=3300;
                                  //line voltage in
      Volts
10 p_out=1500*735.5;
                                  //output power in
     Watts (1 metric horsepower= 735.498W)
11 eff=0.85;
12 pow_fact=0.81;
13
14 //SOLUTION
15
16 // solution (a)
17 p_in=p_out/eff;
18 disp(sprintf("(a) The motor input is %f kW",p_in
      /1000));
19
20 //solution (b)
21 I=p_in/(sqrt(3)*v_l*pow_fact);//phase current = line
       current for star connection
22 disp(sprintf("(b) The line and phase current of the
      alternator is %f A",I));
23
24 //solution (c)
25 I_1=I;
26 \quad I_ph=I_1/sqrt(3);
                                  //phase current = (
     line current)/sqrt(3) for delta connection
  disp(sprintf("(c) The line current of the motor is
     %f A", I_1);
  disp(sprintf("The phase current of the motor is %f A
     ", I_ph));
29
30 //Answers may be different due to precision of
      floating point numbers
31
32 / END
```

Scilab code Exa 3.7 Three phase star connected system

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 7
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 7");
8 //VARIABLE INITIALIZATION
9 \text{ v_ph} = 200;
                                             //phase voltage
       in Volts
10 \text{ r1=5};
                                             //in Ohms
                                             //in Ohms
11 \text{ r2=8};
12 \text{ r3=10};
                                             //in Ohms
13
14 //SOLUTION
15 I1=v_ph/r1;
16 I2=v_ph/r2;
17 I3=v_ph/r3;
18 disp(sprintf("The current in the three phases are %d
       A, \%d A and \%d A", I1, I2, I3));
19
20 I_x=0+I2*(sqrt(3)/2)-I3*(sqrt(3)/2); //x-component
      of the three currents \Rightarrow I_x = I1*\cos(90) + I2*\cos(90)
      (30) + I3*\cos(30)
21 I_y=I1-(I2*0.5)-(I3*0.5);
                                             //y-component
      of the three currents =>I_y = I1*\sin(90) + I2*\sin(90)
      (30) + I3*sin(30)
22 I=sqrt((I_x^2)+(I_y^2));
23 disp(sprintf("The neutral current is %f A",I));
24
                                             //power
25 p1=v_ph*I1;
      consumed in 1st phase
```

Scilab code Exa 3.8 Balanced delta connection

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 8
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 8");
8 //VARIABLE INITIALIZATION
                                              //in Volts
9 \text{ v_ph} = 230;
      and in polar form
10 z=8+(\%i*6);
                                              //in Ohms
      and in rectanglar form
11
12 //SOLUTION
13 //converting z from rectangular form to polar form
14 z_mag=sqrt(real(z)^2+imag(z)^2);
                                              //atan()
15 phi=atan(imag(z)/real(z));
      gives output in radians
16
17 I_ph=v_ph/z_mag;
18 I_1 = sqrt(3) * I_ph;
```

```
19 disp(sprintf("The line current is %f A", I_1));
20
21 pow_fact=cos(phi);
22 disp(sprintf("The power factor is \%f",pow_fact));
23
24 p=sqrt(3)*v_ph*I_l*pow_fact;
                                            //phase volt=
      line volt in delta connection(v_l=v_ph)
  disp(sprintf("The power is %f W",p));
25
26
27 var=sqrt(3)*v_ph*I_l*sin(phi);
28 var=var/1000;
                                            //from VAR to
      kVAR
29 disp(sprintf("The reactive power is %f kVAR", var));
30
31 va=sqrt(3)*v_ph*I_1;
32 \text{ va=va}/1000;
                                            //from VA to
     kVA
33 disp(sprintf("The total volt amperes is %f kVA", va))
34
35 / END
```

Scilab code Exa 3.9 400 V 50 Hz three phase supply

```
//in Ohms
12 z_ab=100;
                                       //in Ohms
13 z_bc=100;
14 z_ac=100;
                                       //in Ohms
15
16 // solution (a)
17
18 //function to convert from polar to rectangular form
19 function [x,y]=pol2rect(mag,angle);
20 x=mag*cos(angle);
21 y=mag*sin(angle);
22 endfunction;
23
24 I_AB=v_ab/z_ab;
25 mag1=abs(real(I_AB));
26 ang1=0;
                               //I_AB is represented as
      mag1 ang1
27 I_BC=v_bc/z_bc;
28 \text{ ang} 2 = -210*(\%\text{pi}/180);
                                        //I_BC is represented
       as mag1 ang2
29 I_AC=v_ac/z_ac;
30 \text{ ang} 3 = 210 * (\% \text{pi} / 180);
                                        //I_AB is represented
        as mag1 ang3
31 [x1,y1]=pol2rect(I_AB, ang1);
32 [x2,y2]=pol2rect(I_BC,ang2);
33 [x3,y3]=pol2rect(I_AC,ang3);
34 //let us consider values X1, Y1, X2, Y2, X3 and Y3
      for the ease of calculation (these are not
      mentioned in the book)
35 \quad X1 = x1 - x3;
36 \quad Y1 = y1 - y3;
37 \quad X2 = x2 - x1;
38 \quad Y2 = y2 - y1;
39 \quad X3 = x3 - x2;
40 \quad Y3 = y3 - y2;
41 I_A = X1 + (\%i * Y1);
42 I_B=X2+(%i*Y2);
43 I_C = X3 + (\%i * Y3);
44
```

```
45 //function to convert from rectangular to polar form
46 function [z,angle]=rect2pol(x,y);
47 z = sqrt((x^2) + (y^2));
                                         //z is impedance &
       the resultant of x and y
48 if (x==0 \& y>0) then angle=90;
                                        //in case atan=
49 elseif (x==0 & y<0) then angle=-90 //in case atan=-
50 else
51 angle=atan(y/x)*(180/\%pi);
                                        //to convert the
      angle from radians to degrees
52 end;
53 endfunction;
54
55 [mag4, ang4] = rect2pol(X1, Y1);
56 [mag5, ang5] = rect2pol(X2, Y2);
57 [mag6,ang6]=rect2pol(X3,Y3);
58 disp(sprintf("(a) The line current I_A is %f %f A"
      ,mag4,ang4));
59 \mathtt{disp}(\mathtt{sprintf}("\mathrm{The\ line\ current\ I\_B\ is\ \%f\ \%f\ A"},
      mag5,(180+ang5)));
60 disp(sprintf("The line current I_C is %f %f A",
      mag6, ang6));
61
62 //solution (b)
63 //since power is consumed only by 100 resistance
      in the arm AB
64 \text{ r1}=100;
65 p1=(I_AB^2)*r1;
66 p2=160000;
67 \text{ r2=p2/p1};
68 disp(sprintf("(b) The star connected balanced
      resistance is %d ",r2));
69
70 / END
```

Scilab code Exa 3.11 Balanced load of 20kVA

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 11
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 11");
8 //SOLUTION
9 function power_sum=p1(phi);
10 power_sum = 20 * \cos(\text{phi});
                                              //power_sum=
      p1+p2=20*cos(phi) and in KiloWatts
11 endfunction;
12 function power_diff=p2(phi);
13 power_diff = (20*sin(phi))/sqrt(3);
                                             //power_diff=
      p1-p2=(20*\sin(phi))/sqrt(3) and in KiloWatts
14 endfunction;
15
16 //solution (a): when phi=0
17 power_sum = 20 * \cos(0);
                                              //eq(i)
                                              //eq(ii)
18 power_diff = (20*sin(0))/sqrt(3);
19 //solving eq(i) and eq(ii) to get values of p1 and
      p2
20 A = [1 \ 1; 1 \ -1];
21 b=[power_sum; power_diff];
22 x = inv(A) *b;
23 \times 1 = \times (1, :);
                                              //to access
      the 1st row of 2X1 matrix
24 \times 2 = \times (2, :);
                                              //to access
      the 2nd row of 2X1 matrix
25 disp("Solution (a)");
26 disp(sprintf("P1 + P2 = \%d kW", power_sum));
27 disp(sprintf("P1 - P2 = %d kW", power_diff));
28 disp(sprintf("The two wattmeter readings are %d kW
      and \%d kW", x1, x2));
29
30 //solution (b): when phi=30 or %pi/6 (lagging)
```

```
31 power_sum=20*\cos(\%pi/6);
32 power_diff = (20*\sin(\%pi/6))/sqrt(3);
33 A = [1 \ 1; 1 \ -1];
34 b=[power_sum;power_diff];
35 x = inv(A) *b;
36 \times 1 = \times (1, :);
37 \times 2 = \times (2, :);
38 disp("Solution (b)");
39 disp(sprintf("P1 + P2 = \%f kW", power_sum));
40 disp(sprintf("P1 - P2 = \%f kW",power_diff));
41 disp(sprintf("The two wattmeter readings are %f kW
       and \%f kW", x1, x2);
42
43 //solution (c): when phi=60 or \%pi/3
44 power_sum=20*\cos(\%pi/3);
45 power_diff=(20*sin(-(\%pi/3)))/sqrt(3); //leading
46 \quad A = [1 \quad 1; 1 \quad -1];
47 b=[power_sum;power_diff];
48 x = inv(A) *b;
49 x1=x(1,:);
50 x2=x(2,:);
51 disp("Solution (c)");
52 disp(sprintf("P1 + P2 = \%f kW", power_sum));
53 \operatorname{disp}(\operatorname{sprintf}("P1 - P2 = \%f \ kW", \operatorname{power\_diff}));
54 disp(sprintf("The two wattmeter readings are %f kW
       and \%f \ kW", x1, x2));
55
56 //solution (d): when phi=90 or \%pi/2
57 power_sum=20*\cos(\%pi/2);
58 power_diff = (20*\sin(\%pi/2))/\operatorname{sqrt}(3); //\operatorname{leading}
59 \quad A = [1 \quad 1; 1 \quad -1];
60 b=[power_sum;power_diff];
61 \quad x = inv(A) *b;
62 \times 1 = \times (1, :);
63 \times 2 = \times (2, :);
64 disp("Solution (d)");
65 disp(sprintf("P1 + P2 = \%f kW", power_sum));
disp(sprintf("P1 - P2 = \%f kW", power_diff));
```

```
67 disp(sprintf("The two wattmeter readings are %f kW and %f kW", x1, x2));
68
69 //END
```

Scilab code Exa 3.12 Three identical impedances each having a resistance ${\bf R}$

```
1 //CHAPTER 3- THREE-PHASE A.C. CIRCUITS
2 //Example 12
3
4 clc;
5 disp("CHAPTER 3");
6 disp("EXAMPLE 12");
8 //VARIABLE INITIALIZATION
9 v_1=400;
                                   //in Volts
10 f = 50;
                                   //in Hertz
                                   //in Watts
11 \text{ w1} = 2000;
12 \text{ w}2=800;
                                   //in Watts
13
14 //SOLUTION
15 //solution (a)
16 p1=w1+w2;
17 p2=w1-w2;
18 phi=atan((sqrt(3)*p2)/p1);
                                   //this equation comes
      from two-wattmeter method
19 pow_fact=cos(phi);
20 disp(sprintf("(a) The power factor of the circuit is
       %f (leading)",pow_fact));
21
\frac{22}{\sqrt{\text{solution}}} (b)
23 I_l=p1/(sqrt(3)*v_l*pow_fact);
24 disp(sprintf("(b) The line current is %f A",I_1));
25
```

Chapter 4

Measuring Instruments

Scilab code Exa 4.1 Deflecting torque exerted on a coil

```
//CHAPTER 4- MEASURING INSTRUMENTS
//Example 1

clc;
disp("CHAPTER 4");
disp("EXAMPLE 1");

//VARIABLE INITIALIZATION
N=10; //number of turns
I=5; //in amperes
B=500; //flux density in Wb/m^2
ar=15/10000; //area in m^2

//SOLUTION
T_d=N*B*I*ar;
disp(sprintf("The deflecting torque exerted on the coil is %f N-m",T_d));
//END
```

Scilab code Exa 4.2 Current through galvanometer

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
 2 //Example 2
 3
4 clc;
 5 disp("CHAPTER 4");
6 disp("EXAMPLE 2");
 8 //VARIABLE INITIALIZATION
                  //galvanometer resistance in Ohms
 9 G = 10;
10 S=1; //shunt resistance in Ohms
11 r=12; //total resistance in Ohms
12 emf=2; //emf of cell in Volts
13
14 //SOLUTION
                //current in the circuit
15 I = emf/r;
16 I_g = (S*I)/(S+G);
17 disp(sprintf("The current through the galvanometer
       is \%f A, I_g);
18
19 //END
```

Scilab code Exa 4.3 Resistance of wire

```
//CHAPTER 4- MEASURING INSTRUMENTS
//Example 3

clc;
disp("CHAPTER 4");
disp("EXAMPLE 3");
```

```
8 //VARIABLE INITIALIZATION
9 I = 1;
                       //in Amperes (I=1 is an
      assumption)
10 I_g=I/100;
                       //in Amperes
11 G = 2970;
                       //in Ohms
12
13 //SOLUTION
14 S = (G*I_g)/(I-I_g); //since I_g = (S*I)/(S+G);
15
16 disp(sprintf("The wire should have a resistance of
      %f ",S));
17
  //END
18
```

Scilab code Exa 4.4 Resistance required to read current and voltage

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
2 //Example 4
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 4");
7
8 //VARIABLE INITIALIZATION
                                 //in Ohms
9 r_A = 10;
10 I_A = 15/1000;
                                 //from mA to A
11 I=100;
                                 //in A
12 V = 500;
                                 //in Volts
13
14 //SOLUTION
15
16 // solution (a)
17 R_sh=r_A/((I/I_A)-1); //(I/I_A) is the
      multiplying factor of the shunt
18
```

Scilab code Exa 4.5 Number of revolutions made by energy meter and percentage error

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
2 //Example 5
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 5");
8 //VARIABLE INITIALIZATION
                               //meter constant in rev/
9 \text{ m_c} = 100;
     kWh
                               //load current in Amperes
10 I = 20;
                               //supply voltage in Volts
11 v = 230;
12 pow_fact = 0.8;
13 rev_act=360;
                               //actual number of
      revolutions
14
15 //SOLUTION
16 E=(v*I*pow_fact)/1000;
                               //'E' is energy consumed
      in one hour in kWh
17 rev=m_c*E;
                               //number of revolutions
```

```
for true energy

18 disp(sprintf("The number of revolutions made by the meter is %f",rev));

19 err=(rev_act-rev)/rev; //error
20 err=err*100; //percentage error
21 disp(sprintf("The percentage error is %f %%",err));
22 if(err<0) then
23 disp("The negative sign indicates that the meter will run slow");
24 end
25
26 //END</pre>
```

Scilab code Exa 4.6 Series resistance to measure 500 V on full scale

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
2 //Example 6
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 6");
8 //VARIABLE INITIALIZATION
                 //full scale deflection in
9 I_m = 20/1000;
     Amperes
10 v_m = 50/1000;
                       //applied potential difference
     in Volts
11 v = 500;
                        //in Volts
12
13 //SOLUTION
                       //resistance of moving-coil
14 r_m = v_m / I_m;
     instrument
15 r_s = (v/I_m) - r_m;
16 disp(sprintf("The series resistance to measure 500 V
      on full scale is %f ",r_s));
```

```
17
18 //END
```

Scilab code Exa 4.7 Percentage error of energy meter

```
//CHAPTER 4- MEASURING INSTRUMENTS
2 //Example 7
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 7");
8 //VARIABLE INITIALIZATION
9 \text{ m_c} = 100;
                            //meter constant in rev/kwh
10 I=20;
                            //in Amperes
                            //in Volts
11 v = 210;
12 pow_fact=0.8;
                            //leading
                            //actual revolution
13 rev_act = 350;
14
15 //SOLUTION
16 E=(v*I*pow_fact)/1000; //from Wh to kWh
17 rev_true=m_c*E;
18 disp(sprintf("The number of revolutions made by the
     meter is %f",rev_true));
19 err=(rev_act-rev_true)/rev_true;
                             //percentage error
20 err=err*100;
21 disp(sprintf("The percentage error is %f %%", err));
22 if (err<0) then
23 disp ("The negative sign indicates that the meter
      will run slow");
24 end
25
26 //END
```

Scilab code Exa 4.8 Resistance required to read current and voltage

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
2 //Example 8
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 8");
8 //VARIABLE INITIALIZATION
9 I_m = 15/1000;
                        //from mA to A
                         //in Ohms
10 r_m=5;
                         //in Amperes
11 I=2;
12 v = 30;
                         //in Volts
13
14 //SOLUTION
15 R_{sh}=(I_m*r_m)/I; //I_m=I*(R_{sh}/(R_{sh}+r_m)) if
      R_sh \ll 5 , then I_m = I * (R_sh/r_m) neglecting R_sh
      in the denominator
16 disp(sprintf("In order to read upto 2A, a shunt of
      %f has to be connected in parallel", R_sh));
17
18 R_se=(v-(I_m*r_m))/I_m;
19 disp(sprintf("In order to read upto 30V, a
      resistance of %f has to be connected in series
      ",R_se));
20
21 / END
```

Scilab code Exa 4.9 Percentage error of meter

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
```

```
2 //Example 9
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 9");
8 //VARIABLE INITIALIZATION
9 I = 50;
                               //in Amperes
                               //in Volts
10 v = 230;
11 rev=61;
                               //revolutions
                               //from seconds to hours
12 t = 37/3600;
13 \text{ m_c} = 500;
                               //meter constant in rev/
     kwh
                               //since load is purely
14 pow_fact=1;
      resistive
15
16 //SOLUTION
17 E1=(v*I*t*pow_fact)/1000; //energy consumed in 37
      seconds in kWh
18 E2=rev/m_c;
                               //energy consumption
      registered by meter
19 err=(E2-E1)/E1;
                               //percentage error
20 err=err*100;
21 disp(sprintf("The percentage error is \%f \%", err));
22 if (err<0) then
23 disp("The negative sign indicates that the meter
      will run slow");
24 end
25
26 //END
```

Scilab code Exa 4.10 Readings of two voltmeters

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
2 //Example 10
```

```
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 10");
8 //VARIABLE INITIALIZATION
9 r1=2;
                             //in Ohms (r1=2 is an
      assumption)
10 \text{ r2=2};
                             //in Ohms (since r1=r2)
11 v = 100;
                             //in Volts
12
13 //SOLUTION
14 v1=(v*r1)/(r1+r2); //voltage divider law
15 v2=(v*r2)/(r1+r2); //voltage divider law
16 disp(sprintf("Reading of the 1st voltmeter is %d V",
17 disp(sprintf("Reading of the 2nd voltmeter is %d V",
      v2));
18
19 / END
```

Scilab code Exa 4.11 Readings of two voltmeters with different internal resistances

Scilab code Exa 4.12 Total current carried by two ammeters

```
1 //CHAPTER 4- MEASURING INSTRUMENTS
2 //Example 12
3
4 clc;
5 disp("CHAPTER 4");
6 disp("EXAMPLE 12");
8 //VARIABLE INITIALIZATION
                         //full scale current in 1st
9 I1=1;
      ammeter in mA
10 \quad I2=10;
                         //full scale current in 2nd
      ammeter in mA
11 r1=100;
                         //internal resistance of 1st
      ammeter in Ohms
12 r2=25:
                         //internal resistance of 2nd
      ammeter in Ohms
13
14 //SOLUTION
15 R1=r2/(r1+r2);
16 R2=r1/(r1+r2);
                        //resistance for 1st ammeter
                        //resistance for 2nd ammeter
17 I = I1/R1;
                         //by current divider law I1=(I*
      r2)/(r1+r2) => I1=I*R1 => I=I1/R1
```

Chapter 6

Magnetic Circuits

Scilab code Exa 6.1 Magnetic circuit having two air gaps

```
1 //CHAPTER 6- MAGNETIC CIRCUITS
  //Example 1
3
4 clc;
5 disp("CHAPTER 6");
6 disp("EXAMPLE 1");
8 //VARIABLE INITIALIZATION
                      //length of A in meters (lA is
9 1A = 17/100;
      calculated in the solution in the book; here it
      is initialised directly for the sake of
      convinience)
                      //in meters
10 \ 1=3/100;
11 \log = 2/1000;
                      //width of air-gap in meters
                      //number of turns
12 N = 1000;
                      //in meters
13 AB = 10/100;
                      //in meters
14 BC=20/100;
15 \text{ CD} = 10/100;
                      //in meters
                      //exciting current in Amperes
16 I=1;
17 murA=1000;
               //relative permeability of part A
18 murB=1200;
                      //relative permeability of part B
```

```
19 mu0=4*%pi*10^(-7); //absolute permeability in Henry/
      meters
20
21 //SOLUTION
22
23 //solution (i)
24 ar=1*1;
                       //area of cross-section
25 \text{ rA=lA/(mu0*murA*ar)};
26 disp(sprintf("(i) Reluctance of part A is %E AT/Wb",
      rA));
27 \quad 1B = (AB - (1/2)) + (BC - 1) + (CD - (1/2));
28 \text{ rB=1B/(mu0*murB*ar)};
29 disp(sprintf("Reluctance of part B is %E AT/Wb", rB))
30
31 //solution (ii)
32 \log = 2 * \log;
33 murg=1;
34 rg=lg/(mu0*murg*ar);
35 disp(sprintf("(ii) Reluctance of the two air gaps is
       \%E AT/Wb",rg));
36
37 //solution (iii)
38 \text{ rT=rA+rB+rg};
39 disp(sprintf("(iii) Total reluctance is %E AT/Wb",rT
40
41 // solution (iv)
42 mmf = N * I;
43 disp(sprintf("(iv) MMF is %d AT", mmf));
44
45 //solution (v)
46 totFlux=mmf/rT;
47 disp(sprintf("(v) Total flux is %E Wb", totFlux));
48
49
50 //solution (vi)
51 b=totFlux/ar;
```

Scilab code Exa 6.2 Steel ring of 25 cm mean diameter

```
1 //CHAPTER 6- MAGNETIC CIRCUITS
2 //Example 2
3
4 clc;
5 disp("CHAPTER 6");
6 disp("EXAMPLE 2");
7
8 //VARIABLE INITIALIZATION
9 dr = 25/100;
                                       //diameter of steel
       ring in m
10 \, ds = 3/100;
                                       //diameter of
      circular section in m
11 lg=1.5/1000;
                                       //length of air-gap
       in m
12 N = 700;
                                       //number of turns
13 mu0=4*\%pi*10^{-7};
                                       //absolute
      permeability in Henry/m
14 I=2;
                                       //in Amperes
15
  //SOLUTION
16
17
18 // solution (i)
19 mmf = N * I;
20 disp(sprintf("(i) MMF is %d AT", mmf));
21
22 //solution (ii)
```

```
23 netMMF = (mmf - (0.35*mmf));
                                       //mmf taken by iron
       path is 35% of total mmf
                                       //phi=b*area, r=lg
24 b = (mu0*netMMF)/lg;
      /(mu0*area) & mmf=phi*r => mmf=(b*lg)/mu0 => b=(
      mmf*mu0)/lg
25 disp(sprintf("(ii) The flux density of the air gap
      is \%E \text{ Wb/m}^2", b));
26
27 //solution (iii)
28 \text{ ar=\%pi*((ds/2)^2)};
                                       //area of cross-
      section of circular section
29 phi=ar*b;
30 disp(sprintf("(iii) The magnetic flux is %E Wb", phi)
      );
31
32 //solution (iv)
33 rt=mmf/phi;
34 disp(sprintf("(iv) The total reluctance is %E AT/wb"
      ,rt));
35
36 // solution (v)
                                       //reluctance of air
37 \text{ rg=lg/(mu0*ar)};
       gap
                                       //reluctance of
  rs=rt-rg;
      steel
39 lr=%pi*dr;
                                       //circumference of
      ring
40 mur=lr/(mu0*rs*ar);
41 disp(sprintf("(v) The relative permeability of the
      steel ring is %E", mur));
42
43 //solution (vi)
44 disp(sprintf("(vi) Reluctance of steel is %E AT/Wb",
      rs));
45
46 / END
```

Scilab code Exa 6.3 Magnetic circuit with cast steel core

```
1 //CHAPTER 6- MAGNETIC CIRCUITS
2 //Example 3
3
4 clc;
5 disp("CHAPTER 6");
6 disp("EXAMPLE 3");
8 //VARIABLE INITIALIZATION
9 lg1=0.025/100;
                                    //length of 1st air-
      gap in m
10 a1=(1*1)/10000;
                                    //in m^2
                                    //length of 2nd air-
11 \ lg2=0.02/100;
      gap in m
12 \quad a2 = (1*1)/10000;
                                    //in m^2
                                    //length of 3rd air-
13 lg3=0.02/100;
      gap in m
                                    //in m<sup>2</sup>
14 \quad a3 = (2*1)/10000;
                                    //flux in Wb
15 phi=0.75/1000;
16 \ 1c1=0.5;
                                    //length through outer
       limb in m
17 \ 1c2=0.5;
                                    //length through outer
      limb in m
18 \ 1c3=0.2;
                                    //length through
      central limb in m
19 mu0=4*\%pi*10^{(-7)};
                                    //absolute
      permeability in Henry/m
20
21 //SOLUTUION
22
23 //solution (a): when mur=infinity i.e., no mmf drops
       in any member of the core
24 rg1=lg1/(mu0*a1);
                                    //reluctance of 1st
```

```
air – gap
25 \text{ rg2=lg2/(mu0*a2)};
                                   //reluctance of 2nd
      air-gap
26 \text{ rg3=lg3/(mu0*a3)};
                                   //reluctance of 3rd
      air-gap
27 rgeq=(rg1*rg2)/(rg1+rg2);
                                   //parallel combination
       of resistors
28 mmf1=phi*(rgeq+rg3);
29 mmf1=round(mmf1);
                                   //to round off the
      value
30 disp(sprintf("(a) MMF of the exciting coil when
      permeability is infinity is %d AT", mmf1));
31
32 //solution (b): when mur=5000 i.e., reluctance of
      magnetic core must be considered
33 mur=5000;
34 rc1=lc1/(mu0*mur*a1);
                                   //reluctance of first
      path in the core
35 rc2=1c2/(mu0*mur*a2);
                                   //reluctance of second
      path in the core
36 rc3=lc3/(mu0*mur*a3);
                                   //reluctance of third
      path in the core
37 r1=rg1+rc1;
38 r2 = rg2 + rc2;
39 r3=rg3+rc3;
40 \text{ req}=(r1*r2)/(r1+r2);
41 totr=req+r3;
                                   //total resistance
42 mmf2=phi*totr;
43 mmf2 = round(mmf2);
44 disp(sprintf("(b) MMF of the exciting coil when
      permeability is 5000 is %d AT", mmf2));
45
46 //END
```

Scilab code Exa 6.4 Iron ring made of round iron rod

```
1 //CHAPTER 6- MAGNETIC CIRCUITS
2 //Example 4
3
4 clc;
5 disp("CHAPTER 6");
6 disp("EXAMPLE 4");
7
8 //VARIABLE INITIALIZATION
                                        //diameter of iron
9 \text{ di} = 10;
      ring in cm
10 \, dr = 1.5;
                                        //diameter of iron
      rod in cm
11 mui=900;
                                        //relative
      permeability of rod
12 \text{ mu0}=4*\%\text{pi}*10^{(-7)};
                                        //absolute
      permeability in Henry/m
                                        //length of air-gap
13 \log = 5/10;
      in cm
                                        //number of turns
14 N = 400;
15 \quad I = 3.4;
                                        //current through
      the winding in Amperes
16
17 //SOLUTION
18 li=(di*%pi)-lg;
                                        //length of iron
      path
19 area=((dr^2)*\%pi)/4;
                                        //area of iron cross
      -section
20
21 // solution (a)
22 mmf = (4*\%pi*N*I)/10;
                                        //in gilberts, since
       1 AT=(4*pi)/10
23 mmf=round(mmf);
                                        //to round off the
      value
24 disp(sprintf("(a) MMF is %d Gilberts", mmf));
25
\frac{26}{\sqrt{\text{solution}}} (b)
27 //tot reluctance = iron reluctance + air gap
      reluctance (mur=1 for air)
```

```
28 totR=(li/(area*mu0*mui))+(lg/(area*mu0*1));
29 disp(sprintf("(b) The total reluctance is %E
      Gilberts/Maxwell", totR));
30
31 // solution (c)
32 phi=mmf/totR;
33 disp(sprintf("(c) The flux in the circuit is %f
     Maxwell", phi));
34
35 //solution (d)
36 b=phi/area;
37 disp(sprintf("(d) The flux density in the circuit is
      %f Gauss",b));
38
  //Answers of (b), (c) & (d) are different because
      absolute permeability is not included in (b)
40
41 //END
```

Scilab code Exa 6.5 Ring made of composite material

```
1 //CHAPTER 6- MAGNETIC CIRCUITS
2 //Example 5
3
4 clc;
5 disp("CHAPTER 6");
6 disp("EXAMPLE 5");
8 //VARIABLE INITIALIZATION
9 li=100/100;
                                    //length of iron part
       in m
10 ls = 200/100;
                                    //length of steel
      part in m
11 \log = 1/100;
                                    //length of air gap
     in m
```

```
12 \text{ ai} = 20/10000;
                                       //cross-sectional
      area of iron in m<sup>2</sup>
13 as=10/10000;
                                       //cross-sectional
      area of steel in m<sup>2</sup>
14 \text{ ag} = 20/10000;
                                       //cross-sectional
      area of air-gap in m<sup>2</sup>
                                       //relative
15 muRi = 300;
      permeability of iron
16 muRs = 900;
                                       //relative
      permeability of steel
                                       //relative
17 muRg=1;
      permeability of air
18 N = 170;
                                       //number of turns
19 phi=9000*10^(-8);
                                       //flux in Wb (1 line
      = 10^{(-8)} \text{ Wb}
                                       //leakage coefficient
20 \, lkg=1.2;
21 \text{ mu0}=4*\%\text{pi}*10^{(-7)};
                                       //absolute
      permeability in Henry/m
22
23 //SOLUTION
24 rg=lg/(mu0*muRg*ag);
25 mg=rg*phi;
                                       //to round off the
26 mg=round(mg);
      value
27 disp(sprintf("MMF of the air gap is %d AT", mg));
28
29 ri=li/(mu0*muRi*ai);
                                       //reluctance of iron
      paths
30 mi=lkg*ri*phi;
                                       //MMF for iron path
31 mi=round(mi);
32 disp(sprintf("MMF of iron is %d AT", mi));
33
34 \text{ rs=ls/(mu0*muRs*as)};
                                       //reluctance of steel
       paths
35 ms=lkg*rs*phi;
                                       //MMF for steel path
36 ms=round(ms);
37 disp(sprintf("MMF of cast steel is %d AT", ms));
38
```

```
39 totMMF=mg+mi+ms;
40 I=totMMF/N;
41 disp(sprintf("Current through the coil is %f A",I));
42
43 //END
```

Chapter 7

Single Phase Transformer

Scilab code Exa 7.1 To calculate magnetizing component of no load current

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 1
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 1");
8 //VARIABLE INITIALIZATION
9 I_0=10;
                                    //no load current in
      Amperes
10 pf=0.25;
                                    //power factor
                                    //in Volts
11 v1 = 400;
12 f = 50;
                                    //in Hertz
13
14 //SOLUTION
15
16 // solution (a)
17 //magnetizing component
18 //Iphi=I0.sin theta
                                     //taking value of
19 theta=acos(pf);
```

```
theta from the given power factor
20 I_{phi}=I_{0}*sin(theta);
21 disp(sprintf("(a) The magnetizing component of no
      load current is %.2 f A", I_phi));
22
23 / solution (b)
24 //iron loss
25 / Pc=V1. Ic
\frac{1}{26} //Ic=I0.cos theta & also Ic=I0.pf as pf=cos theta
27 p_c = v1 * I_0 * pf;
28 disp(sprintf("(b)) The iron loss is %d W', p_c));
29
30 //solution (c)
31 N1 = 500;
                                  // number of turns in
      primary given
32 phi_m=v1/(sqrt(2)*%pi*f*N1);
33 disp(sprintf("(c) The maximum value of flux in the
      core is \%.2 \, f \, \text{mWb}, phi_m*1000);
34
35 / END
```

Scilab code Exa 7.2 To calculate the primary current

```
in Volts
12 \quad I0 = 1;
                                      //in Amperes
                                      //power factor in
13 pf1=0.4;
      degrees on no load
14 I2=50;
                                      //secondary current
      in Amperes
15 pf2=0.8;
                                      //secondary supplies
       lagging power factor in degrees
16
17 //SOLUTION
18 //primary current is given by
19 / I1 = I0 + I2
20 //function to convert from polar to rectangular form
21 function [x,y]=pol2rect(mag,angle1);
22 \text{ x=mag*} \cos(\text{angle1});
23 y=mag*sin(angle1);
24 endfunction;
25 //
26 \text{ phi}_0=a\cos(pf1);
                                      // cosine inverse of
       the power factor which is given
27 phi=acos(pf2);
                                      // cosine inverse of
       the power factor which is given
                                      //v1.i1=v2.i2
28 I2_dash=(v2*I2)/v1;
29 //I0=1 < phi_0 in polar format
30 [x0,y0]=pol2rect(I0,-phi_0);
31 [x2_dash,y2_dash]=pol2rect(I2_dash,-phi);
32 \quad I1_x=x0+x2_dash;
                                      //x-component of I1
33 I1_y = y0 + y2_dash;
                                     //y-component of I1
34 disp(sprintf("The primary current in reactangular
      form is (\%.3 f-j\%.2 f) A", I1_x,-I1_y);
35 //
36 //function to convert from rectangular form to polar
       form
37 function [I,angle]=rect2pol(x,y);
38 I = sqrt((x^2) + (y^2));
39 angle=atan(y/x)*(180/\%pi); //to convert the
      angle from radians to degrees
40 endfunction;
```

Scilab code Exa 7.3 To find the voltage regulation

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 3
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 3");
8 \ // 2300/230 \ V \ 50 \ Hz \ transformer
9 //VARIABLE INITIALIZATION
10 \text{ v1} = 2300;
                                             //primary
      voltage in Volts
                                             //secondary
11 v2=230;
      voltage in Volts
12 f = 50;
13 R1=0.286;
14 X1 = 0.73;
15 R_dash_2=0.319;
16 X_dash_2=0.73;
17 Rc = 250;
18 Xphi=1250;
19 Z1=0.387+0.29*\%i;
20 //
21 //SOLUTION
22 Z_e1 = (R1 + R_dash_2) + (X1 + X_dash_2) * \%i;
23 Z_dash_l=(v1/v2)^2*Z1;
24 //
25 I_dash_1=v1/(Z_dash_1+Z_e1);
```

```
26 / [mag, angle] = rect2pol(real(I_dash_1), imag(I_dash_1))
  //disp(sprintf("The current is %f <%f A", mag, angle
      ));
28 //impedance of shunt branch
29 Zm=Rc*(Xphi*\%i)/(Rc+Xphi*\%i);
30 //[\text{mag, angle}] = \text{rect2pol}(\text{real}(\text{Zm}), \text{imag}(\text{Zm}));
31 // \operatorname{disp} (\operatorname{sprintf} (" \operatorname{The} \operatorname{Zm} \operatorname{is} \% f < \% f \operatorname{A}", \operatorname{mag}, \operatorname{angle}));
32 \quad IO = v1/Zm;
33 // [mag, angle] = rect2pol(real(I0), imag(I0));
34 //disp(sprintf("The I0 is %f < %f A", mag, angle));
35 //
36 //primary current
37 I1=I0+I_dash_1;
38 function [mag,angle]=rect2pol(x,y);
39 mag = sqrt((x^2) + (y^2));
                                             //z is impedance &
        the resultant of x and y
40 angle=atan(y/x)*(180/\%pi);
                                           //to convert the
       angle from radians to degrees
41 endfunction;
42 [mag,angle]=rect2pol(real(I1),imag(I1));
43 theta1=angle;
44 disp("SOLUTION (i)");
45 disp(sprintf("The primay current in rectangul form
       is \%.3 \, f - j\%.2 \, f A", real(I1), -imag(I1));
46 disp(sprintf("The primay current in polar form is \%
       .3 f < \%.2 f A, mag, angle));
47
48 //input power
                                                     //=I1.\cos(
49 Pin=v1*I1; ;
       theta1)
50 //disp(sprintf("The input power is %.3 f kW", Pin
       /1000);
51 //output power
52 V_dash_2=I_dash_1*Z_dash_1;
53 [mag,angle]=rect2pol(real(V_dash_2),imag(V_dash_2));
54 theta2=angle;
\frac{1}{5} // disp (sprintf ("The V_dash_2 is %.2 f <%.2 f A", mag,
```

```
angle));
56 //
57 Pout = V_dash_2*I_dash_1;
                                             //I_dash_1.
      cos(theta1)
  //disp(sprintf("The output power is %.3f kW", real(
     Pout) /1000));
59 // Efficiency
60 disp("SOLUTION (ii)");
61 disp(sprintf("The Efficiency is %.2 f kW", Pout*100/
     Pin));// text Book answer is 78.75%
62 //Losses
63 Pc = v1 * I0;
                                             //core loss
64 loss=Pin-Pout;
                                             //copper
65 Pcu=loss-Pc;
     loss
66 disp(sprintf("The core loss is %.2 f kW", Pc/1000));
     //text book answer is 0.8 kW
67 disp(sprintf("The copper loss is %.2 f kW", Pcu/1000)
      );//text book answer is 1..38 kW
68 //efficiency
69 / eff = Pout*100/Pin;
70 //disp(sprintf("The percent efficiency is %f W", eff
     ));
71 disp(" ");
72 // The answers from V_dash_2 calculation onward do
     not match with the book on page 7.21 and 7.22
73 / END
```

Scilab code Exa 7.4 10 kVA transformer

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 4
3
4 clc;
5 disp("CHAPTER 7");
```

```
6 disp("EXAMPLE 4");
  8 //10kVA Transformer with 50 turns on primary and 10
                       turns on secondary
  9 //connected to 440 V 50Haz supply
10 //VARIABLE INITIALIZATION
11 va=10*1000;
                                                                                                                                      //apparent power,
                       converting kVA to VA
                                                                                                                                      //number of turns on
12 N1 = 50;
                      primary side
                                                                                                                                      //number of turns on
13 N2=10;
                      secondary side
14 \text{ v1} = 440;
                                                                                                                                      //primary voltage in
                       Volts
15 f = 50;
                                                                                                                                      //in Hertz
16
17 //SOLUTION
18
19 //solution (a)
20 / K=N2/N1=V2/V1
21 v2=v1*(N2/N1);
22 disp(sprintf("(a) The secondary voltage on no load
                       is %d V", v2));
23
24 //solution (b)
25 // Current on Full load
26 //primary side I1=VA/V1
27 //secondary side I2=VA/V2
28 I1=va/v1;
29 disp(sprintf("(b) The full load primary current is \%
                       .4 f A", I1));
30 I2=va/v2;
31 disp(sprintf("The full load secondary current is %.4
                       f A", I2));
32
33 //solution (c)
34 //As per EMF equation
\frac{1}{2} \frac{1}
```

Scilab code Exa 7.5 Transformer with 350 primary and 1050 secondary turns

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 5
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 5");
7
8 //single phase transformer
9 //350 primary and 1050 secondary turns
10 //VARIABLE INITIALIZATION
11 N1=350;
                                      //number of turns on
      primary side
12 N2 = 1050;
                                      //number of turns on
      secondary side
13 \text{ v1} = 400;
                                      //primary voltage in
      Volts
14 f = 50;
                                      //in Hertz
15 \text{ ar} = 50/10000;
                                      //cross-sectional area
       of core in m<sup>2</sup>
16
17 //SOLUTION
18
19 // solution (i)
20 / \text{emf1} = \text{sqrt}(2). pi. f. Phimax. N1
21 //Phimax=Bm. Area, Bm=flux density
22 //Bm=e1/sqrt(2).pi.A.f.N1
```

Scilab code Exa 7.6 Primary current and power factor

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 6
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 6");
8 //2200/20V 50Hz single phase transformer
9 //VARIABLE INITIALIZATION
10 \text{ v1} = 2200;
                                         //primary voltage
       in Volts
11 v2=220;
                                         //secondary
      voltage in Volts
                                         //exciting
12 I=0.6;
      current in Amperes
                                         //core loss in
13 p_c = 361;
     Watts
                                         //load current in
14 I2=60;
       Amperes
15 pf=0.8;
                                         //power factor
```

```
16
17
  //SOLUTION
18
19 // solution (a)
20 //core loss components
                                        //vertical
21 I1=p_c/v1;
     component of I0
  I_phi=sqrt((I^2)-(I1^2));
                                        //horizontal
      component of IO
23 disp(sprintf("(a) The core loss component is %.3 f A"
      ,I1));
24 disp(sprintf("And the magnetising component is \%.3 f
     A", I_phi));
25
\frac{26}{\sqrt{\text{solution}}} (b)
27 //I1.N1=I2.N2
28 I1_dash=(v2/v1)*I2;
29 theta=acos(pf);
30 I1_x=I1_dash*sin(theta)+I_phi; //horizontal
     component of I0
31 I1_y=I1_dash*pf+I1;
                                       //vertical
     component of I0
32 I1_{res=sqrt}((I1_x^2)+(I1_y^2)); //primary current
                                        //primary power
33 pf_p=I1_y/I1_res;
      factor
34 disp(sprintf("(b) The primary current is %.3 f A",
     I1_res));
35 disp(sprintf("And the power factor is \%.3 f A",pf_p))
36
37 / END
```

Scilab code Exa 7.8 Efficiency of transformer

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
```

```
2 //Example 8
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 8");
8 //23 kVA 2300/230 V 60 Hz step down transformer
9
10 //VARIABLE INITIALIZATION
                                          //apparent power
11 \text{ va}=23000;
12 v1 = 2300;
                                          //primary voltage in
        Volts
13 v2 = 230;
                                          //secondary voltage
      in Volts
                                           //primary resistance
14 r1=4;
        in Ohms
                                          //secondary
15 \text{ r2=0.04};
       resistance in Ohms
                                          //leakage reactance
16 X1 = 12;
      primary in Ohms
17 \quad X2 = 0.12;
                                          //leake reactance in
        secondary in Ohms
                                          //power factor(
18 pf=0.866;
      leading)
19
20 //SOLUTION
21 //assume voltage across load be 230 V
22 /V'1 = I2 \cdot (Re2 + jXe2) + V2
23 / \text{Re} 2 = \text{R'} 1 + \text{R2}
24 / R'1 = R1 \cdot (N2/N1)^2
25 / Xe2 = X'1 + X2
26 / X'1 = X1 \cdot (N2/N1)^2
27 / \text{Ze} = \text{Re} + \text{j. Xe}
28 r1_dash=r1*((v2/v1)^2);
29 r_e2=r1_dash+r2;
30 X1_dash = X1 * ((v2/v1)^2);
31 \quad X_e2=X1_dash+X2;
32 //
```

```
33 // \operatorname{disp} (\operatorname{sprintf} ("The value of Re2 \% f and Xe2 \% f", r_e2)
      , X_{e2});
                                       //since transformer
34 \quad I2=0.75*(va/v2);
      operates at 75% of its rated load
35 //
36 function [x,y]=pol2rect(mag,angle);
37 x=mag*cos(angle*(%pi/180));
                                            //to convert the
       angle from degrees to radians
38 y=mag*sin(angle*(%pi/180));
39 endfunction;
40 [x,y] = pol2rect(I2,-30);
41 \quad I_dash_2=x+y*\%i;
42 //disp(sprintf("The value %f %f", real(I_dash_2), imag
      (I_dash_2));
43 //
                                       //in rect
44 \quad Z_e2=r_e2+X_e2*\%i;
      coordinates
  //disp(sprintf("The value %f %f", real(Z<sub>e2</sub>), imag(
      Z_{-}e2)));
46 / /
47 V_dash_1=v2+I_dash_2*Z_e2;
48 //disp(sprintf("The value %f %f", real(V_dash_1), imag
      (V_{dash_1}));
49 //
50 function [mag,angle]=rect2pol(x,y);
51 mag = sqrt((x^2) + (y^2));
                                         //z is impedance &
       the resultant of x and y
                                       //to convert the
52 angle=atan(y/x)*(180/\%pi);
      angle from radians to degrees
53 endfunction;
54 //
55 [magV1,angleV1]=rect2pol(real(V_dash_1),imag(
      V_dash_1));
56 //disp(sprintf("The value %f <%f", magV1, angleV1));
57 //
58 //Pin=V'1.I2.cos theta1
59 / Pout=V2.I2.cos theta2
60 Pin=magV1*I2*cos((30+angleV1)*%pi/180);
```

Scilab code Exa 7.9 Core loss current of distribution transformer

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 9
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 9");
8 //11000/400 V distribution transformer
9 //VARIABLE INITIALIZATION
                                      //primary voltage in
10 \text{ v1} = 11000;
       Volts
                                      //secondary voltage
11 v2=400;
      in Volts
                                      //primary current in
12 Io = 1;
       Amp
13 \text{ pf} = 0.24
                                      //power factor
      lagging
14
15 //SOLUTION
16 //core loss current
17 //Ic=Io.cos phi
18 //Ic=Io.pf
19 Ic=Io*pf;
20 disp("SOLUTION (a)");
```

```
21 disp(sprintf("The value of core loss current is %.2f
      Amp", Ic));
22 //
23 //magnetizing current
24 //Iphi = sqrt (Io^2 - Ic^2)
25 Iphi=sqrt(Io^2-Ic^2);
26 disp("SOLUTION (b)");
27 disp(sprintf("The value ofmagnetizing current is \%.3
      f Amp", Iphi));
28 //
29 // Iron Loss
30 //Iron loss=primary voltage X core loss current
31 IronLoss=v1*Ic;
32 disp("SOLUTION (c)");
33 disp(sprintf("The iron loss is %.0 f W", IronLoss));
34 disp(" ");
35 //
36 //END
```

Scilab code Exa 7.10 Number of turns on HT and LT sides

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 10
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 10");
8 //6600/220 V single phase transformer
9 //VARIABLE INITIALIZATION
                                      //primary voltage in
10 \text{ v1} = 6600;
       Volts
11 v2=220;
                                       //secondary voltage
      in Volts
                                      //core section m^2
12 \text{ coreA} = 0.05;
```

```
//flux density in wm
13 fluxD=1.2;
      /\mathrm{m}^2
                                         //Hz
14 f = 50;
15
16 //SOLUTION
17 / E1 = sqrt(2) . pi. f. N1. m
18 //flux density = Phimax/core area
19 phiM=coreA*fluxD;
20 N1=v1/(4.44*f*phiM); //4.44 = sqrt(2). pi
21 N1=round(N1);
22 //
23 / N2 = N1 \cdot E2 / E1
24 N2 = N1 * (v2/v1);
25 \text{ N2} = \text{round}(\text{N2});
26 disp(sprintf("The no. of turns on HT side is %d", N1)
  disp(sprintf("The no. of turns on LT side is %d", N2)
27
      );
28 disp(" ");
29 //
30 / END
```

Scilab code Exa 7.11 To calculate primary and full load currents

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 11

clc;
disp("CHAPTER 7");
disp("EXAMPLE 11");

//2200/220 V 44 kVA transformer with 50 turns in the secondary
//VARIABLE INITIALIZATION
va=44000;
//
```

```
//primary voltage in
11 v1 = 2200;
       Volts
12 v2 = 220;
                                     //secondary voltage
      in Volts
13 N2=50;
                                     //turns in secondary
       coil
14
15 //SOLUTION
16 // N1/N2=V1/V2
17 N1 = N2 * (v1/v2);
18 disp("SOLUTION (a)");
19 disp(sprintf("The no. of turns on HT side is %f", N1)
20 //
21 //since losses are negligible, input=output, V1.I1=
      V2. I2
22 I1=va/v1;
23 I2=va/v2;
24 disp("SOLUTION (b)");
25 disp(sprintf("The primary full load current is %.0f
     Amp", I1));
26 disp(sprintf("The secondary full load current is %.0
      f Amp", I2));
27 disp(" ");
28 //
29 //END
```

Scilab code Exa 7.12 Magnetising component of no load current

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 12

clc;
disp("CHAPTER 7");
disp("EXAMPLE 12");
```

```
8 //no load cuurent of transformer ia 10A at pf of
      0.25 lagging when connected to 400V, 50 Hz supply
9 //VARIABLE INITIALIZATION
10 \text{ v1} = 400;
                                      //primary voltage in
       Volts
11 f=50;
                                      //Hz
12 Io = 10;
                                      //in Amp no load
      current
13 \text{ pf} = 0.25;
                                      //lagging
14 N1=500;
                                      //given
15
16 //SOLUTION
17 //magnetizing component of no load current
18 // N1/N2=V1/V2
19 //Iphi=Io.sin phi0
20 / pf = \cos phi0
21 phi0=acos(pf);
22 Iphi=Io*sin(phi0);
23 disp("SOLUTION (a)");
24 disp(sprintf("The magnetic component of no load
      current is %f Amp", Iphi));
25
26 //iron loss
27 //Pi=ironloss=power input on no load
28 // Pi=Wo=V1. Io. cos phi0
29 ironLoss=v1*Io*pf;
30 disp("SOLUTION (b)");
31 disp(sprintf("The iron loss on no load is %.0 f W",
      ironLoss));
32 / /
33 //maximum flux in the core
34 / E1 = sqrt(2) . pi. f. N1. m
35 / E1=V1
36 \text{ phiM}=v1/(4.44*f*N1);
37 disp("SOLUTION (c)");
38 disp(sprintf("The value of flux in the core is \%5.4 f
      mWb", phiM*1000));
```

```
39 disp(" ");
40 //
41 //END
```

Scilab code Exa 7.13 Current taken by primary

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 13
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 13");
7 //230/115 V single phase transformer
8 //VARIABLE INITIALIZATION
                                        //primary voltage
9 v1 = 230;
      in Volts
10 v2 = 115;
11 f = 50;
                                        //Hz
12 Io=2;
                                       //in Amp no load
      current
13 \text{ pf0} = 0.28;
                                       //lagging
14 \quad I2=20;
                                       //lagging
15 \text{ pf2=0.8};
16
17 //SOLUTION
18 //
19 //given power factors in primary and secondary
20 // I1.N1=I2.N2
21 phi0=acos(pf0);
22 phi2=acos(pf2);
23 //let Ix and Iy be the components of IO and I'1
      along X and Y axes
24 / then
25 //Ix=Io.sin phi0 + I'2.sin phi2
26 //
```

Scilab code Exa 7.14 To calculate total resistance and reactance referred to primary

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 14
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 14");
8 //1100/110 V 22 kVA single phase transformer
9 //VARIABLE INITIALIZATION
                                       //apparent power
10 \text{ va} = 22000;
11 v1 = 1100;
                                       //primary voltage in
       Volts
12 v2=110;
                                       //secondary voltage
      in Volts
13 R1=2;
                                       //in Ohms
14 R2 = 0.02;
                                       //in Ohms
15 X1=5;
                                       //in Ohms
16 \quad X2 = 0.045;
                                       //in Ohms
17
18 //SOLUTION
19 / N1/N2 = v1/v2;
```

```
20
21 R_dash_2=R2*((v1/v2)^2);
22 \text{ X_dash_2=X2*((v1/v2)^2)};
23 disp("SOLUTION (a)");
24 disp(sprintf("The equivalent resistance of secondary
       referred to primary is %.1 f ",R_dash_2));
25 disp(sprintf("The equivalent reactance of secondary
      referred to primary is \%.1f ", X_dash_2));
26 //
27 R_e1=R_dash_2+R1;
28 \quad X_e1=X_dash_2+X1;
29 disp("SOLUTION (b)");
30 disp(sprintf("The total resistance referred to
      primary is \%.1f ",R_e1));
31 disp(sprintf("The total reactance referred to
     primary is \%.1f ", X_e1));
32 / /
33 R_dash_1=R1*((v2/v1)^2);
34 \text{ X_dash_1=X1*((v2/v1)^2)};
35 disp("SOLUTION (c)");
36 disp(sprintf("The equivalent resistance of secondary
       referred to secondary is %.2f ",R_dash_1));
37 disp(sprintf("The equivalent reactance of secondary
      referred to secondary is \%.2f ", X_dash_1));
38 / /
39 R_e2=R_dash_1+R2;
40 X_e2=X_dash_1+X2;
41 disp("SOLUTION (d)");
42 disp(sprintf("The total resistance referred to
      secondary is \%.3 f ", R_e2));
43 disp(sprintf("The total reactance referred to
      secondary is \%.3 f ", X_e2));
44 //
45 I1=va/v1;
46 I2=va/v2;
47 copperLoss=R1*I1^2+R2*I2^2;
48 disp("SOLUTION (e)");
49 disp(sprintf("The total copper loss is %4.0 f W",
```

```
copperLoss));
50 disp(" ");
51 //
52 //END
```

Scilab code Exa 7.15 To calculate percent regulation at full load

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 15
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 15");
7 //20kVA single phase transformer
8 //VARIABLE INITIALIZATION
                                        //apparent power
9 \text{ va} = 20000;
                                        //primary voltage
10 \text{ v1} = 2000;
      in Volts
                                        //secondary voltage
11 v2 = 200;
       in Volts
                                        //in Ohms
12 R1 = 2.5;
                                        //in Ohms
13 R2 = 0.04;
                                        //in Ohms
14 X1 = 8;
                                        //in Ohms
15 \quad X2 = 0.07;
16 pf2=0.8;
17
18 //SOLUTION
19 / N1b/N2 = v1/v2;
20 I2=va/v2;
21 phi2=acos(pf2);
22 //
23 R_dash_1=R1*((v2/v1)^2);
24 X_dash_1=X1*((v2/v1)^2);
25 //
26 R_e2=R_dash_1+R2;
```

```
27 \text{ X}_e2=X_dash_1+X2;
28 //disp(sprintf("The total resistance referred to
                          ", R_{-}e2);
      secondary is %f
   //disp(sprintf("The total reactance referred to
      secondary is %f
                          ", X_{-}e2));
30 //
31 //R=ercosphi2+vx.sinphi2
32 / E2 = V2 + I2 . R
33 V2=v2-(I2*R_e2*pf2+I2*X_e2*sin(phi2));
34 \text{ %reg} = (v2 - V2) * 100 / v2;
35 disp(sprintf("The secondary terminal voltage is \%.2 \,\mathrm{f}
       V", V2));
36 disp(sprintf("The percent regulation at full load is
       \%.2 f", %reg));
37 disp(" ");
38 //
39 / END
```

Scilab code Exa 7.16 Maximum value of percent regulation

```
//CHAPTER 7— SINGLE PHASE TRANSFORMER
2 //Example 16
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 16");
8 //Values from the previous example.
9 //VARIABLE INITIALIZATION
10 \text{ va} = 20000;
                                       //apparent power
                                       //primary voltage
11 v1 = 2000;
      in Volts
                                       //secondary voltage
12 v2 = 200;
       in Volts
13 R1=2.5;
                                       //in Ohms
```

```
//in Ohms
14 R2 = 0.04;
                                       //in Ohms
15 X1 = 8;
16 \quad X2 = 0.07;
                                       //in Ohms
17 pf2=0.8;
18
19 //SOLUTION
20 / N1/N2 = v1/v2;
21 I2=va/v2;
22 \text{ phi2} = a\cos(pf2);
23
24 //
25 R_dash_1=R1*((v2/v1)^2);
26 \text{ X_dash_1=X1*((v2/v1)^2)};
27 //
28 R_e2=R_dash_1+R2;
29 X_e2=X_dash_1+X2;
30 //disp(sprintf("The total resistance referred to
      secondary is %f
                         ", R_{-}e2);
31 //disp(sprintf("The total reactance referred to
                         ", X_{-}e2);
      secondary is %f
32 //
33 //power factor angle at which regulation is zero is
      given by tan.phi2=-Re2/Xe2
34 phi2=atan(-R_e2/X_e2);
35 disp(sprintf("The PF at which the regulation is zero
       is \%.3 \, f, cos(phi2));
36 //
37 //power factor angle at which regulation is maximum
      is given by tan.phi2=Xe2/Re2
38 phi2=atan(X_e2/R_e2);
39 disp(sprintf("The PF at which the regulation is
      maximum is \%.3 f", cos(phi2));
40 //R=ercosphi2+vx.sinphi2
41 / E2 = V2 + I2 . R
42
43 V2=v2-(I2*R_e2*cos(phi2)+I2*X_e2*sin(phi2));
44 %reg = (v2 - V2) * 100 / v2;
45 disp(sprintf("The maximum value of percent
```

```
regulation is %.2f ", %reg));
46 disp(" ");
47 //
48 //END
```

Scilab code Exa 7.17 200 kVA transformer with 1000 W iron loss and 2000 W copper loss at full load

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 17
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 17");
8 //200kVA single phase transformer
9 //VARIABLE INITIALIZATION
10 va=200000;
11 ironLoss=1000;
12 cuLoss=2000;
                                     //Watts
13 pf=0.8;
14 //
15 //SOLUTION
16 //
17 Pout=va*pf;
                                     //Full load output
18 loss=ironLoss+cuLoss;
                                     //INPUT=OUTPUT+LOSS
19 Pin=Pout+loss;
20 eff=Pout*100/Pin;
21 disp("SOLUTION (a)");
22 disp(sprintf("The percent efficiency at full load is
      \%.2 f", eff));
23 //
24 //at half load
25 \text{ Pout=va*pf/2};
26 loss=ironLoss+cuLoss*(1/2)^2;
                                        // ironloss is
```

```
independent of output
27 Pin=Pout+loss;
28 eff=Pout*100/Pin;
29 disp("SOLUTION (b)");
30 disp(sprintf("The percent efficiency at full load is
      \%.2 \, f , eff));
31 //
32 //fraction x of copperloss=ironloss for maximum
      efficiency
33 //x^2.cuLoss=ironLoss
34 x=sqrt(ironLoss/cuLoss);
35 \text{ Pout}=x*va*pf;
36 loss=ironLoss+cuLoss*x^2;
37 Pin=Pout+loss;
38 eff=Pout*100/Pin;
39 disp("SOLUTION (c)");
40 disp(sprintf("The percent efficiency at \%f load is \%
      .2 f ",x,eff));
41
42 disp(" ");
43 //
44 / END
```

Scilab code Exa 7.18 To calculate all day efficiency

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 18

clc;
disp("CHAPTER 7");
disp("EXAMPLE 18");

//400kVA distribution transformer variously loaded during day
//VARIABLE INITIALIZATION
```

```
10 \text{ va} = 400000;
                                       // Watts
11 ironLoss=1500;
                                       //Watts
12 \text{ cuLoss} = 4000;
13 //during the day frommidnight to midnight is as
      below:
                                       //first 6 hours from
14 h1=6;
       midnight to 6 hrs
15 load1=0;
16 pf1=0;
17 h2=6;
                                       //next 6 hours from
      6 am to noon
                                       //kVA converted to
18 load2=100000;
     VA
19 pf2=0.8;
                                       //next from noon to
20 h3=5;
      5 pm
21 load3=400000;
22 pf3=0.8;
23 \text{ h4=3};
                                       //next from 5 pm to
       8 pm
24 load4=300000;
25 \text{ pf4=0.7};
26 \text{ h5}=4;
                                       //next from 8 pm to
       midnight
27 load5=200000;
28 pf5=0.85;
29 //
30 //SOLUTION
31 //
32 //energy loss at any load=(VA output/VA rated)^2.
      Full load cuLoss
33 loss1=h1*load1;
34 loss2=h2*(load2/va)^2*cuLoss;
35 loss3=h3*(load3/va)^2*cuLoss;
36 \quad loss4=h4*(load4/va)^2*cuLoss;
37 \quad loss5=h5*(load5/va)^2*cuLoss;
38 // loss in 24 hours
39 loss24=loss1+loss2+loss3+loss4+loss5;
```

Scilab code Exa 7.19 Open circuit and short circuit test

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 19
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 19");
8 //Open circuit and short circuit test on 10 kVA
      transformer 500/250 V 50 Hz single phase
      transformer
9 //VARIABLE INITIALIZATION
10 va=10000;
                                          //apparent power
11 v1 = 500;
                                          //primary
      voltage in Volts
                                          //secondary
12 v2 = 250;
      voltage in Volts
13 f=50;
14 //open circuit parameters
15 \text{ Voc} = 500;
16 Io=2;
```

```
17 Wi = 100;
                                           // watts HT side
18 Woc=Wi;
                                             //just another
      nomenclature
19 //short circuit test
20 \ Vsc = 25;
21 \text{ Isc} = 20;
22 \text{ Wc} = 90;
                                           // watts HT side
23 //
24 pf=0.8;
25 //SOLUTION
26 //open circuit
27 phi0=acos(Woc/(v1*Io));
28 \text{ Ic=Io*}\cos(\text{phi0});
29 Iphi=Io*sin(phi0);
30 \text{ Rc=v1/Ic};
31 X=v1/Iphi;
32 disp("SOLUTION (a)");
33 disp(sprintf("The value of Ic is %.2f Amp", Ic));
34 disp(sprintf("The value of I is %.2 f Amp", Iphi));
35 disp(sprintf("The value of Rc is %.0f Ohm", Rc));
36 disp(sprintf("The value of X is \%.0 \text{ f} ",X));
37 //
38 //short circuit
39 phisc=acos(Wc/(Vsc*Isc));
40 \text{ pf1} = \cos(\text{phisc});
41 R_e1=Vsc*pf1/Isc;
42 \quad Z_e1=Vsc/Isc;
43 X_e1 = sqrt(Z_e1^2 - R_e1^2);
44 disp(sprintf("The value of Power factor is \%.3\,\mathrm{f}",pf1
      ));
45 disp(sprintf("The value of Re1 is %.3f Ohm", R_e1));
46 disp(sprintf("The value of Ze1 is %.3f Ohm", Z_e1));
47 disp(sprintf("The value of Xe1 is \%.3 f ", X_e1));
48 //
49 // Regulation and efficiency
50 //% Regulation
51 I1=va/v1;
52 phi=acos(pf);
```

```
\frac{1}{2} //R=ercosphi2+vx.sinphi2
54 / E2 = V2 + I2 . R
55 \text{ %reg} = (Isc*R_e1*pf+Isc*X_e1*sin(phi))*100/v1;
56 disp("SOLUTION (c(i))");
57 disp(sprintf("The percent regulation at full load is
       \%.2 f", %reg));
58 //
59 // Efficiency
60 //full load output at pf=0.8
61 Pout=va*pf;
62 ironLoss=Wi;
63 cuLoss=Wc;
64 loss=ironLoss+cuLoss;
65 Pin=Pout+loss;
66 eff=Pout*100/Pin;
67 disp("SOLUTION(c(ii))");
68 disp(sprintf("The percent efficiency at full load is
       \%.2\,\mathrm{f} ",eff));
69 disp(" ");
70 //
71 / END
```

Scilab code Exa 7.20 4kVA 200 400 V transformer

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 20

clc;
disp("CHAPTER 7");
disp("EXAMPLE 20");

// **
//4 kVA 200/400 V 50 hz single phase transformer
//VARIABLE INITIALIZATION
va=4000;
//apparent power
//primary
```

```
voltage in Volts
12 v2 = 400;
                                          //secondary
      voltage in Volts
13 f = 50;
14 R_e1=0.15;
15 Pi = 60;
                                          //core losses
      iron core
                                          //power factor
16 pf1=0.9;
      of primary
                                          //power factor
17 pf2=0.8;
      of secondary
18
19 //SOLUTION
20 //Copper loss on full load
21 R_e2 = (v2/v1)^2*R_e1;
22 I1=va/v1;
23 I2=va/v2;
24 Pcu=I2^2*R_e2;
                                          //cu losses
25 disp("SOLUTION (i)");
26 disp(sprintf("The value of Copper Losses at full
      load is %.0 f W", Pcu));
27 //
28 //efficiency
29 Pout=va*pf1;
30 Pin=Pout+Pi+Pcu;
31 eff=Pout*100/Pin;
32 disp("SOLUTION (ii)");
33 disp(sprintf("The percent efficiency at full load %f
       PF is \%.2 \, f", pf1, eff));
34 //
35 //
36 // efficiency at half load
37  Pout=va*pf2/2;
38 Pin=Pout+Pi+Pcu*(1/2)^2;
39 eff=Pout*100/Pin;
40 disp("SOLUTION (ii)");
41 disp(sprintf("The percent efficiency at half load %f
       PF is \%.2 \, f",pf2,eff));
```

```
42
43 disp(" ");
44 //
45 //END
```

 ${f Scilab\ code\ Exa\ 7.21}$ To determine the regulation while supplying full load

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 21
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 21");
8 //250/125 V 5kVA single phase transformer
9 //VARIABLE INITIALIZATION
                                           //apparent power
10 \text{ va} = 5000;
11 v1 = 250;
                                           //primary
      voltage in Volts
12 v2=125;
                                           //secondary
      voltage in Volts
                                           //resistance of
13 R1=0.2;
      primary
                                           //leakage
14 X1 = 0.75;
      reactance of primary
                                           //resistance of
15 R2 = 0.05;
      secondary
16 \quad X2 = 0.2;
                                           //leakage
      reactance of secondary
                                           //power factor (
17 pf=0.8;
      leading)
18
19 //SOLUTION
20 R_e2=(v2/v1)^2*R1+R2;
```

```
21 X_e2=(v2/v1)^2*X1+X2;
22 I1=va/v1;
23 I2=va/v2;
24 //
25 //at full load leading
26 phi=acos(pf);
27 \text{ %reg} = (I2*R_e2*pf-I2*X_e2*sin(phi))*100/v2;
28 disp("SOLUTION (i)");
29 disp(sprintf("The percent regulation at full load is
       \%.2 f", %reg));
30 //
31 / \%R = (E2-V2) . 100 / E2
32 \quad V2 = v2 - \% reg * v2 / 100;
33 disp("SOLUTION (ii)");
34 disp(sprintf("The secondary terminal voltage at full
       load is \%.2 f V, V2));
35 disp(" ");
36 //
37 / END
```

Scilab code Exa 7.22 Total equivalent resistance referred to primary and secondary

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 22

disp("CHAPTER 7");
disp("EXAMPLE 22");

//6600/400 V single phase transformer
//VARIABLE INITIALIZATION
v1=6600; //primary
voltage in Volts
v2=400; //secondary
```

```
voltage in Volts
12 R1=2.5;
                                        //primary
     resistance
                                        //secondary
13 R2 = 0.01;
     resistance
14
15 //SOLUTION
16 //while finding equivalent resistance referrd to
     primary
17 //transfer R2 resistance to R'2
18 R_dash_2=R2*(v1/v2)^2;
19 R_e1=R1+R_dash_2;
20 //
21 //to find total equivalent resistance referred to
     secondary
22 // first calculate R'1
23 R_dash_1=R1*(v2/v1)^2;
24 R_e2=R2+R_dash_1;
25 / /
26 disp(sprintf("The total equivalent resistance
      referred to primary is %.6f ",R_e1));
27 disp(sprintf("The total equivalent resistance
      referred to secondary is \%.6f ",R_e2));
28 disp(" ");
29 //
30 //END
```

Scilab code Exa 7.23 33 kVA 2200 220 V 50 Hz transformer

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 23

clc;
disp("CHAPTER 7");
disp("EXAMPLE 23");
```

```
7
8 //33kVA 2200/220 V 50Hz single phase transformer
9 //VARIABLE INITIALIZATION
10 \text{ va} = 33000;
11 v1 = 2200;
                                           //primary
      voltage in Volts
                                           //secondary
12 v2 = 220;
      voltage in Volts
13 f=50;
                                          // frequency in
      Hz
14 R1 = 2.4;
                                          //primary
      winding (High Voltage side) resistance
15
  X1 = 6;
                                          //primary
      winding (High Voltage side) leakage reactance
16 R2=0.03;
                                          //secondary
      winding (Low Voltage side) resistance
17 \quad X2 = 0.07;
                                          //secondary
      winding (Low Voltage side) leakage reactance
18
19 //SOLUTION
20 //
21 // Primary resistance and leakage reactance referred
      to secondary
22 //R'1 & X'1
23 //Secondary resistance and leakage reactance
      referred to primary
24 //R'2 & X'2
25 // Equivalent resistance & leakage reactance referred
       to primary
26 //Re1 & Xe1
27 //Equivalent resistance & leakage reactance referred
       to secondary
28 //Re2 & Xe2
29 //
30 R_dash_2 = R2*(v1/v2)^2;
31 R_e1=R1+R_dash_2;
32 X_dash_2=X2*(v1/v2)^2;
33 X_e1 = X1 + X_{dash_2};
```

```
34 //
35 R_dash_1=R1*(v2/v1)^2;
36 R_e2=R2+R_dash_1;
37 \text{ X_dash_1=X1*(v2/v1)^2};
38 X_e2 = X2 + X_dash_1;
39
40 disp("SOLUTION (a)");
41 disp(sprintf("The primary resistance referred to
      secondary %.2f ",R_dash_1));
42 disp(sprintf("The primary leakage reactance referred
       to secondary \%.2 f \, \x_dash_1));
43 //
44 disp("SOLUTION (b)");
45 disp(sprintf("The secondary resistance referred to
      secondary \%.2 f ", R_dash_2));
46 disp(sprintf("The secondary leakage reactance
      referred to secondary \%.2f ", X_dash_2));
47 //
48 disp("SOLUTION(C(i))");
49 disp(sprintf("The equivalent resistance referred to
     primary %.2 f ", R_e1));
50 disp(sprintf("The equivalent leakage reactance
      referred to primary \%.2 f ", X_e1));
51 //
52 disp("SOLUTION(C(ii))");
53 disp(sprintf("The equivalent resistance referred to
      secondaryy \%.2 f ", R_e2));
54 disp(sprintf("The equivalent leakage reactance
      referred to secondary %.2f ",X_e2));
55 //
56 //Ohmic load
57 I1=va/v1;
                                // primary full load
      current
                                // secondary full load
58 I2=va/v2;
      current
                                //ohmic loss
59 \text{ oLoss} = I2^2*R_e2;
60 disp("SOLUTION (d)");
61 disp(sprintf("The ohmic loss at full load %.0 f W",
```

```
oLoss));
62 //
63 // Voltage to be applied on the HV side
64 //to obtain short circuit currnet of 160 A in L.V
      side winding
65 Z_e1=sqrt(R_e1^2+X_e1^2);
      equivalent leakage impedance
  //voltage to be applied on HV side is equivalent
      leakage reactance x primary current
  //relationship between current and voltage in
      transformer
68 / I1 / I2 = V2/V1
69 //Given V2=220 \text{ V}, V1=2200 \text{ V}, I2=160 \text{ Amp}
70 //Therefore, I1=I2.(V2/V1)
71 I1=160*(v2/v1);
72 V = I1 * Z_e1;
                                      //160*(v2/v1)*Z_e1;
73 //Power Input
74 P = (I1)^2 * R_e1
                                      //P = I^2 . R
75 disp("SOLUTION (e)");
76 disp(sprintf("The voltage to be applied on HV side
      is \%.2 \, f \, V", V));
77 disp(sprintf("The power input is %.1 f W",P));
78 disp(" ");
79 //
80 //END
```

Scilab code Exa 7.24 To calculate secondary terminal voltage

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 24

clc;
disp("CHAPTER 7");
disp("EXAMPLE 24");
```

```
8 //10kVA 2500/250 V single phase transformer
9 //VARIABLE INITIALIZATION
10 va=10000;
11 v1 = 2500;
                                           //primary
      voltage in Volts
12 v2 = 250;
                                           //secondary
      voltage in Volts
                                           //primary HV
13 R1=4.8;
      side winding resistance
                                          //primary HV
14 X1=11.2;
      side winding leakage reactance
15 R2=0.048;
                                          //secondary LV
      side winding resistance
                                          //secondary LV
16 \quad X2 = 0.112;
      side winding leakage reactaance
17
18 //SOLUTION
19 //
20 //Primary resistance and leakage reactance referred
      to secondary
21 //R'1 & X'1
22 //Secondary resistance and leakage reactance
      referred to primary
23 //R'2 & X'2
24 //Equivalent resistance & leakage reactance referred
       to primary
25 //Re1 & Xe1
26 // Equivalent resistance & leakage reactance referred
       to secondary
27 //Re2 & Xe2
28 //
29 R_dash_2=R2*(v1/v2)^2;
30 R_e1=R1+R_dash_2;
31 \quad X_dash_2 = X2*(v1/v2)^2;
32 X_e1 = X1 + X_dash_2;
33 //
34 R_dash_1=R1*(v2/v1)^2;
35 R_e2=R2+R_dash_1;
```

```
36 \text{ X_dash_1=X1*(v2/v1)^2};
37 X_e2=X2+X_dash_1;
38 //leakage impedence
39 //The transformer leakage impedance=z0=Re2+j.Xe2
40 //Therefore:
41 z0=R_e2+X_e2*\%i;
42 //Further Given
43 //the LV winding side is connected to load impedance
       of 5+i.3.5 Ohm
44 //The power factor 0.8 lagging on LV side
45 //applied load is
46 \quad Z1 = 5 + 3.5 * \%i;
47 //total impedence in series
48 //The leakage impedance and load impedance are in
      series, therefore, total impedance is sum of the
      two
49 //
50 Z = z0 + Z1;
51 \text{ magZ} = \text{sqrt}(\text{real}(Z)^2 + \text{imag}(Z)^2);
52 magZl=sqrt(real(Z1)^2+imag(Z1)^2);
53 / V2 = I2 . Z1
54 I2=v2/magZ;
55 \quad V2 = I2 * magZ1
56 disp("SOLUTION (a)");
57 disp(sprintf("The secondary terminal voltage is %.0 f
       V", V2));
58 //
59 //part (b) and (c) of the problem cannot be solved
      mathematically alone.
60 disp(" ");
61 //
62 / END
```

Scilab code Exa 7.25 15 kVA 2200 110 V transformer

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 25
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 25");
8 //15kVA 2200/110 V transformer
9 //VARIABLE INITIALIZATION
10 va=25000;
                                            //power rating
11 v1 = 2200;
                                           //primary
      voltage in Volts
12 v2 = 110;
                                           //secondary
      voltage in Volts
13 f=50;
14 R1 = 1.75;
15 \quad X1 = 2.6;
16 R2 = 0.0045;
17 \quad X2 = 0.0075;
18
19 //SOLUTION
20 //
21 //Primary resistance and leakage reactance referred
      to secondary
22 //R'1 & X'1
23 //Secondary resistance and leakage reactance
      referred to primary
24 //R'2 & X'2
25 // Equivalent resistance & leakage reactance referred
       to primary
26 //Re1 & Xe1
27 // Equivalent resistance & leakage reactance referred
       to secondary
28 //Re2 & Xe2
29 //
30 R_dash_2=R2*(v1/v2)^2;
31 R_e1=R1+R_dash_2;
32 \text{ X_dash_2=X2*(v1/v2)^2};
```

```
33 \quad X_e1=X1+X_dash_2;
34 //
35 R_dash_1=R1*(v2/v1)^2;
36 R_e2=R2+R_dash_1;
37 X_dash_1 = X1 * (v2/v1)^2;
38 \quad X_e2=X2+X_dash_1;
39 //
40 Z_e1=R_e1+X_e1*\%i;
41 \quad Z_e2=R_e2+X_e2*\%i;
42 magZ_e1=sqrt(real(Z_e1)^2+imag(Z_e1)^2);
43 magZ_e2=sqrt(real(Z_e2)^2+imag(Z_e2)^2);
44 //
45 //
46 disp("SOLUTION (a)");
47 disp(sprintf("The equivalent resistance referred to
      primary %.2 f ",R_e1));
48 disp("SOLUTION (b)");
49 disp(sprintf("The equivalent resistance referred to
      secondaryy \%.5 f ", R_e2));
50 disp("SOLUTION (c)");
51 disp(sprintf("The equivalent leakage reactance
      referred to primary %.1f ",X_e1));
52 disp("SOLUTION (d)");
53 disp(sprintf("The equivalent leakage reactance
      referred to secondary %.3 f ", X_e2));
54 disp("SOLUTION (e)");
55 disp(sprintf("The equivalent impedance referred to
      primary %.5 f ",magZ_e1));
56 \text{ disp}("SOLUTION (f)");
57 disp(sprintf("The equivalent impedance referred to
      secondary \%.5 f ",magZ_e2));
58 //
59 //primary and secondary full load current and
      voltage relationship with power rating
                        //primary current
60 I1 = va/v1;
61 	 I2=va/v2;
                        //secondary current
62 \text{ cuLoss=} 12^2 R_e2;
                        //copper loss or also as I1
      ^{2}.R1 + I2^{2}.R2
```

Scilab code Exa 7.26 Open circuit and short circuit test

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 26
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 26");
7
8 //open circuit & short circuit test
9 //10 kVA 500/250 V 50 Hz single phase
10 //VARIABLE INITIALIZATION
11 va=10000;
                                             //apparent power
12 v1 = 500;
                                             //primary
      voltage in Volts
                                             //secondary
13 \text{ v2} = 250;
      voltage in Volts
14 f = 50;
                                             // frequency
15 //open circuit parameters
16 \text{ Voc} = 500;
17 Io = 2;
18 Wi = 100;
                                            // watts HT side
                                             //just to keep
19 Woc=Wi;
      symbology
20 //short circuit test
21 \ Vsc = 25;
22 \, \text{Isc} = 20;
23 \text{ Wc} = 90;
                                            // watts HT side
```

```
24 //
25 pf=0.8;
26 //SOLUTION
27 //open circuit
28 phi0=acos(Woc/(v1*Io));
29 \text{ Ic=Io*}\cos(\text{phi0});
30 Iphi=Io*sin(phi0);
31 \text{ Rc=v1/Ic};
32 \text{ X=v1/Iphi};
33 disp("SOLUTION (a)");
34 disp(sprintf("The value of Ic is %.2f Amp", Ic));
35 disp(sprintf("The value of I is <math>\%.2 f Amp", Iphi));
36 disp(sprintf("The value of Rc is %.2 f Ohm", Rc));
37 disp(sprintf("The value of X is \%.2 f ",X));
38 //
39 //short circuit
40 phisc=acos(Wc/(Vsc*Isc));
41 pf1=cos(phisc);
42 R_e1=Vsc*pf1/Isc;
43 \quad Z_e1=Vsc/Isc;
44 X_e1=sqrt(Z_e1^2-R_e1^2);
45 disp(sprintf("The value of Power factor is %f",pf1))
46 disp(sprintf("The value of Re1 is %f Ohm", R_e1));
47 disp(sprintf("The value of Ze1 is %f Ohm", Z_e1));
48 disp(sprintf("The value of Xel is %f ",X_el));
49 //
50 I1=va/v1;
51 phi=acos(pf);
52 //R=er.cos phi2+vx.sin phi2
53 / E2 = V2 + I2 . R
54 \text{ %reg} = (Isc*R_e1*pf+Isc*X_e1*sin(phi))*100/v1;
55 disp("SOLUTION(c(i))");
56 disp(sprintf("The percent regulation at full load is
      \%.2 f",%reg));
57 //
58 // full load output at pf=0.8
                                  // Output Power
59 Pout=va*pf;
```

Scilab code Exa 7.27 Open and short circuit test

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 27
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 27");
8 //200kVA 1100/400 V delta star distribution
      transformer
9 //three phase
10 //VARIABLE INITIALIZATION
                                            //apparent
11 va=200000;
      power
12 v1=11000;
                                             //primary
      voltage in Volts
                                           //secondary
13 \text{ v2} = 400;
      voltage in Volts
                                           // frequency
14 f=50;
15 //open circuit test parameters
16 \quad V3 = 400;
17 I3=9;
```

```
//load in watts
18 \text{ W3} = 1500;
      HT side
19 //short circuit test parameters
20 \text{ Vsc} = 350;
21 \, \text{Isc} = 20;
22 \text{ Wc} = 2100;
                                              //load in watts
       HT side
23 / /
24 pf=0.8;
25 //SOLUTION
26 \text{ Voc=V3/sqrt}(3);
                                             //per phase
      applied voltage in open circiut
27
  Io=9;
                                             //per phase
      exciting current.= I3
                                             // per phase
28 \text{ Wi} = \text{W3}/3;
      core loss in watts HT side
29 Pc=Wi:
                                             //core losses
30 //power factor Pc=V1. Io. cos phi0
                                           //v1=Voc
31 //open circuit test performed on LV side
32 phi0=acos(Wi/(Voc*Io));
33 \text{ Ic=Io*}\cos(\text{phi0});
                                             //core loss
      current
                                             //magnetising
34 Iphi=Io*sin(phi0);
      current
                                             //Core loss
35 \text{ Rc=Voc/Ic};
      resistance
36 X=Voc/Iphi;
                                             37 disp("SOLUTION (a)");
38 disp(sprintf("The value of Ic is %.0f Amp", Ic));
39 disp(sprintf("The value of I is %.2f Amp", Iphi));
40 disp(sprintf("The value of Rc is %.2 f Ohm", Rc));
41 disp(sprintf("The value of X is %.2 f ",X));
42 / /
43 //core loss resistance referred to hy side
44 Rch=Rc*(v1/Voc)^2;
45 XphiH=X*(v1/Voc)^2;
46 disp(sprintf("The value of Rch is \%.2 \, \mathrm{f} k", Rch
      /1000));
```

```
47 disp(sprintf("The value of X h is %.2 f K ", XphiH
      /1000));
48 //short circuit
49 //This test performed on HV side
50 // first find rated current
51 Isc=va/(3*v1);
52 Psc=Wc/3;
                                           //ohmic loss per
       phase
53 phisc=acos(Wc/(Vsc*Isc));
54 \text{ pf1} = \cos(\text{phisc});
55 R_e1=Psc/Isc^2;
56 \quad Z_e1=Vsc/Isc;
57 X_e1=sqrt(Z_e1^2-R_e1^2);
58 <code>disp(sprintf("The value of ohmic loss per phase is \%</code>
      .0 f W, Psc);
59 disp(sprintf("The value of Re1 is %.2 f Ohm", R_e1));
60 disp(sprintf("The value of Ze1 is %.2f Ohm", Z_e1));
61 disp(sprintf("The value of Xe1 is %.2 f ", X_e1));
62 //
63 // efficiency at half load
64 pf = 1;
                                               //unity
      power factor
65 Pout = (va/3)*(1/2)*pf;
66 //core losses=Pc
67 //cuLosses ohmic loss =Psc
68 Pin=Pout+Pc+(1/2)^2*Psc;
69 eff=Pout*100/Pin;
70 disp(sprintf("The efficiency at half load is %.2f",
      eff));
71
72 disp(" ");
73 //
74 / END
```

Scilab code Exa 7.28 Open and short circuit test

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 28
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 28");
8 //10 kVA 2500/250 V single phase transformer
9 //open circuit and short circuit tests
10 //VARIABLE INITIALIZATION
11 va=10000;
                                              //apparent
      power
12 v1 = 2500;
                                              //primary
      voltage in Volts
                                              //secondary
13 \text{ v2} = 250;
      voltage in Volts
14 f=50;
15 //open circuit parameters
16 \text{ Voc} = 250;
17 Io=0.8;
18 Wi = 50;
                                             // watts HT
      side
19 //short circuit test
20 \ Vsc = 60;
21 \text{ Isc=3};
22 \text{ Wc} = 45;
                                          // watts HT side
23 //
24 // loads
25 pf=0.8;
26 //SOLUTION
27 //Open circuit test conducted on ly because 250 V
      during this test is equal to rated voltage on ly
       side.
                                             //full rated
28 I1=va/v1;
      current on hv side
29 Psc0=Wc*(I1/Isc)^2;
                                             //ohmic loss/
      cu loss at full load rated current
30 \text{ Pc=Wi};
                                             // core losses
```

```
31 // 1/4  load
32 \text{ Psc} = (1/4)^2 * \text{Psc0};
33 Pout=va*pf*(1/4);
34 Pin=Pout+Pc+Psc;
35 eff=Pout*100/Pin;
36 disp("SOLUTION (a)");
37 disp(sprintf("The efficiency at 1/4 load is \%.2 \, \mathrm{f}",
      eff));
38 //
39 // 1/2 load
40 Psc = (1/2)^2 * Psc0;
41 Pout=va*pf*(1/2);
42 Pin=Pout+Pc+Psc;
43 eff=Pout*100/Pin;
44 disp(sprintf("The efficiency at 1/2 load is \%.2 f",
      eff));
45 //
46 // full load
47 Psc = (1/1)^2 * Psc0;
48 Pout=va*pf*(1/1);
49 Pin=Pout+Pc+Psc;
50 eff=Pout*100/Pin;
51 disp(sprintf("The efficiency at full load is %.2f",
      eff));
52 //
53 // 1 1/4 = 5/4  load
54 \text{ Psc} = (5/4)^2 * \text{Psc0};
55 Pout=va*pf*(5/4);
56 Pin=Pout+Pc+Psc;
57 eff=Pout*100/Pin;
58 disp(sprintf("The efficiency at 1 \frac{1}{4} or \frac{5}{4} load is
       \%.2 f", eff));
59 //
60 //maximum efficiency at x, but then ohmic loss=core
61 x = sqrt(Pc/Psc0);
62 Pout=va*x*pf;
63 Pin=Pout+Pc+Pc;
                                                      //Ohmic
```

```
losses = core losses at max efficiency
64 eff=Pout*100/Pin;
65 disp("SOLUTION (b)");
66 disp(sprintf("The maximum efficiency is %.2f", eff))
67 //
68 //short circuit test performed on ly side
69 phisc=acos(Wc/(Vsc*Isc));
70 pf1=cos(phisc);
71 R_e1=Vsc*pf1/Isc;
72 \quad Z_e1 = Vsc/Isc;
73 X_e1 = sqrt(Z_e1^2 - R_e1^2);
74 disp("SOLUTION (c)");
75 disp(sprintf("The value of Re1 is %.2f Ohm", R_e1));
76 disp(sprintf("The value of Ze1 is %.2f Ohm", Z_e1));
77 disp(sprintf("The value of Xe1 is %.2 f ", X_e1));
78 //
79 / ee, ex;
80 \text{ er=} 11*R_e1/v1;
81 \text{ ex=} 11*X_e1/v1;
82 disp(sprintf("The value of Er is %.3f pu", er));
83 disp(sprintf("The value of Ex is \%.3 f", ex));
84 //
85 phi=acos(pf);
86 //R=ercosphi2+vx.sinphi2
87 / E2 = V2 + I2 . R
88 reg=(I1*R_e1*pf+I1*X_e1*sin(phi))*100/v1; //same as
       using er and ex
89 disp(sprintf("The percent regulation at full load
      lagging is \%.2 \, f", \%reg);
90 %reg1 = (I1*R_e1*pf-I1*X_e1*sin(phi))*100/v1; //same
      as using er and ex
91 disp(sprintf("The percent regulation at full load
      leading is \%.2 \,\mathrm{f}, \%reg1));
92 V21 = (1 - \% reg / 100) * v2;
93 V22 = (1 - \% reg1/100) * v2;
94 disp(sprintf("The secondary terminal voltage at full
       load lagging is \%.2 \,\mathrm{f}, (21);
```

Scilab code Exa 7.29 200 kVA 4000 1000 V transformer

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 29
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 29");
8 //20kVA 4000/1000 V single phase transformer
9 //VARIABLE INITIALIZATION
10 va=200000;
                                                //apparent
      power
11 v1 = 4000;
                                              //primary
      voltage in Volts
                                                //secondary
12 \quad v2 = 1000;
      voltage in Volts
                                                 // frequency
13 f = 50;
       in Hz
14 // loads
15 \text{ pf=1};
                                                 //power
      factor is unity
16 \text{ eff} = 0.97;
                                                 // at full
      load and at 60% of full load
                                                 //no load pf
17 nlpf=0.5;
                                                 //lagging pf
18 lpf=0.8
19 \text{ reg=0.05};
      %regulation at 0.8 pf
20 //
```

```
21 //SOLUTION
22 loss=(1-eff)*va/eff;
                                                      //=Pc+Pcu
       losses
23 //simultaneous equation to be solved
24 // eq 1: Pc+Pcu=loss;
25 //fractipon of copper/ ohmic losses
                                                      // 60% of
26 f = (0.6)^2;
       full load
27 //the 2nd equation is Pc+f*Pcu=loss
28 //now the matrix
29 M = [1,1;1,f];
30 A = [loss, loss*0.6];
31 Mi = inv(M);
32 \quad Ans = A * inv(M);
33 Pc = Ans(1,1);
34 \text{ Pcu=Ans}(1,2);
35 // \operatorname{disp} (\operatorname{sprintf} (" \operatorname{The Pc is \%f"}, \operatorname{Pc}));
36 // \operatorname{disp} (\operatorname{sprintf} (" \operatorname{The Pcu is \%f"}, \operatorname{Pcu}));
37 / LV \text{ side}
38 R_e2=Pcu/va;
39 //from %reg find X<sub>e</sub>2
40 phi=acos(lpf);
41 X_e2=(reg-R_e2*cos(phi))/sin(phi);
42 //in oms units
43 R_e2=R_e2*v2^2/va;
                                                       // in ohms
44 X_e2=X_e2*v2^2/va;
                                                       // in ohms
45 disp(sprintf("The Re2 is %.3f
                                          ",R_e2));
                                           ",X_e2));
46 disp(sprintf("The Xe2 is %.3f
47 //
48 Rc=v2^2/Pc;
49 Ie2=Pc/(v2*0.25);
50 \text{ Ic=Pc/v2};
51 Iphi=sqrt(Ie2^2-Ic^2);
52 Xphi=v2/Iphi;
53 disp(sprintf("The Rc is %.2f ",Rc));
54 disp(sprintf("The Ie2 is \%.3 f A", Ie2));
55 disp(sprintf("The Ic is \%.3 f A",Ic));
56 disp(sprintf("The Iphi is %.4 f A", Iphi));
```

```
57 disp(sprintf("The Xphi is %.2f ",Xphi));
58 disp("");
59 //
60 //END
```

Scilab code Exa 7.30 Secondary terminal voltage at full load

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
\frac{2}{\sqrt{\text{Example }30}}
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 30");
7
8 //6600/440 V single phase transformer
9 //VARIABLE INITIALIZATION
10 \text{ v1=6600};
                                                //primary
      voltage in Volts
                                                //secondary
11 v2 = 440;
      voltage in Volts
12 e_r=0.02;
                                                //equivalent
       resistance
                                                //equivalent
13 e_x=0.05;
       reactance
                                                //power
14 pf=0.8;
      factor
15 //
16 //SOLUTION
17 //worked out differently a bit from the text book in
       terms of the steps
                                                //phase
18 phi=acos(pf);
      angle
19 reg=e_r*cos(phi)+e_x*sin(phi);
                                                //voltage
      regulation
                                                //secondary
20 V2 = v2 * (1 - reg);
```

```
terminal voltage
21 disp(sprintf("The secondary terminal voltage is %.2f
V", V2));
22 disp(" ");
23 //
24 //END
```

Scilab code Exa 7.31 To calculate the value of maximum flux density in the core and the emf

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 31
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 31");
8 //single phase transformer having 400 primary and
      1000 secondary turns
9 //VARIABLE INITIALIZATION
10 N1=400;
11 N2 = 1000;
                                                  //net core
12 \text{ coreA} = 60;
      area in cm<sup>2</sup>
13 \text{ v1} = 500;
                                                  //primary
      voltage in Volts
14 f = 50;
                                                  //frequency
15
16 //
17 //SOLUTION
18 / v1 = E1 = 4.44. \text{ m.N1.f. Volts}
19 phiM=v1/(4.44*N1*f);
20 //flux density Bm= m/area
21 Bm=phiM/coreA;
                                                 //lines per
      cm
```

Scilab code Exa 7.32 To calculate total copper loss

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 32
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 32");
8 //50 kVA 4400/220 V single phase transformer
9 //VARIABLE INITIALIZATION
10 \text{ va} = 50000;
11 v1 = 4400;
                                              //primary
      voltage in Volts
12 v2 = 220;
                                              //secondary
      voltage in Volts
13 f = 50;
14 R1=3.45;
15 \text{ X1=5.2};
16 R2 = 0.0009;
17 \quad X2 = 0.015;
18
19 //SOLUTION
```

```
20 //
21 //Primary resistance and leakage reactance referred
      to secondary
22 //R'1 & X'1
23 //Secondary resistance and leakage reactance
      referred to primary
24 //R'2 & X'2
25 //Equivalent resistance & leakage reactance referred
       to primary
26 //Re1 & Xe1
27 //Equivalent resistance & leakage reactance referred
       to secondary
28 //Re2 & Xe2
29 //
30 R_dash_2=R2*(v1/v2)^2;
31 R_e1=R1+R_dash_2;
32 \text{ X_dash_2=X2*(v1/v2)^2};
33 X_e1=X1+X_dash_2;
34 //
35 R_dash_1=R1*(v2/v1)^2;
36 R_e2=R2+R_dash_1;
37 X_dash_1=X1*(v2/v1)^2;
38 X_e2 = X2 + X_dash_1;
39 //
40 Z_e1=R_e1+X_e1*\%i;
41 \quad Z_e2=R_e2+X_e2*\%i;
42 magZ_e1=sqrt(real(Z_e1)^2+imag(Z_e1)^2);
43 magZ_e2=sqrt(real(Z_e2)^2+imag(Z_e2)^2);
44 //
45 disp("SOLUTION (i)");
46 disp(sprintf("The equivalent resistance referred to
      primary %.4f ",R_e1));//text book answer is
      7.05 ohm
47 disp("SOLUTION (ii)");
48 disp(sprintf("The equivalent resistance referred to
      secondaryy %.4 f ", R_e2));
49 disp("SOLUTION (iii)");
50 disp(sprintf("The equivalent leakage reactance
```

```
referred to primary %.4f ",X_e1));
51 disp(sprintf("The equivalent leakage reactance
     referred to secondary %.4f ",X_e2));
52 disp("SOLUTION (iv)");
53 disp(sprintf("The equivalent impedance referred to
                   ",magZ_e1)); // text book answer
     primary %.4 f
     is 13.23 ohm
54 disp(sprintf("The equivalent impedance referred to
     secondary %.4f ",magZ_e2));//text book answer
     is 0.0331 ohm
55 //
56 I1=va/v1;
57 I2=va/v2;
58 Pcu=I2^2*R_e2;
59 disp("SOLUTION (d)");
60 disp(sprintf("The copper loss at full load \%.0\,\mathrm{f} W",
     Pcu));
61 disp(" ");
62 //The answers in the book on page 7.77 are wrong for
       all but Xe1 and Xe2 values.
63 / END
```

Scilab code Exa 7.33 No load and short circuit results of transformer

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 33

clc;
disp("CHAPTER 7");
disp("EXAMPLE 33");

// 5kVA 400/200 V 50 Hz single phase transformer
//open ciruit and short circuit tests
//VARIABLE INITIALIZATION
//apparent
```

```
power
12 \text{ v1} = 400;
                                               //primary
      voltage in Volts
                                               //secondary
13 \text{ v2=200};
       voltage in Volts
14 f=50;
15 //no load parameters
16 \text{ Voc} = 400;
17 Io=1;
18 \text{ Woc} = 50;
                                               // watts HT side
19 //short circuit test
20 \text{ Vsc} = 12;
21 \, \text{Isc} = 10;
22 \text{ Wc} = 40;
                                              // watts HT side
23 / /
24 pf=0.8;
25 //SOLUTION
26 //no load condition
27 phi0=acos(Woc/(v1*Io));
28 \text{ Ic=Io*}\cos(\text{phi0});
29 Iphi=Io*sin(phi0);
30 \text{ Rc=v1/Ic};
31 X=v1/Iphi;
32 disp("SOLUTION (i)");
33 disp(sprintf("The value of Ic is %f Amp", Ic));
34 disp(sprintf("The value of I is %f Amp", Iphi));
35 //disp(sprintf("The value of Rc is %f Ohm", Rc));
36 // \operatorname{disp} (\operatorname{sprintf} ("The value of X is \% f ", X));
37 //
38 //short circuit
39 phisc=acos(Wc/(Vsc*Isc));
40 pf1=cos(phisc);
41 R_e1=Vsc*pf1/Isc;
42 \quad Z_e1=Vsc/Isc;
43 X_e1 = sqrt(Z_e1^2 - R_e1^2);
44 disp(sprintf("The value of Re1 is %.2f Ohm", R_e1));
45 disp(sprintf("The value of Ze1 is <math>\%.2 f Ohm", Z_e1));
46 disp(sprintf("The value of Xe1 is %.2 f ", X_e1));
```

```
47 //
48 I1=va/v1;
49 phi=acos(pf);
50 / R = ercosphi2 + vx.sinphi2
51 / E2 = V2 + I2 . R
52 %reg=(I1*R_e1*pf+I1*X_e1*sin(phi))*100/v1;
53 disp("SOLUTION (c(i))");
54 disp(sprintf("The percent regulation at full load is
       \%.3 f", %reg));
55 //
\frac{56}{\text{full load output at pf}} = 0.8
57 Pout=va*pf;
                                  //output power
58 ironLoss=Woc;
59 cuLoss=Wc;
60 loss=ironLoss+cuLoss;
61 Pin=Pout+loss;
                                  // input power
62 eff=Pout*100/Pin;
63 disp("SOLUTION (c(ii))");
64 disp(sprintf("The percent efficiency at full load is
       \%.2 \,\mathrm{f}, eff)); // not calculated in the text book
65 disp(" ");
66 //
67 / END
```

Scilab code Exa 7.34 50 kVA transformer of 5 is to 1 ratio of turns

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 35
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 35");
7
8 //single phase 50 hz, 200kVA, 11kVA/230 V
9 //open circuit and short circuit tests
```

```
10 //VARIABLE INITIALIZATION
11 va=200000;
                                                 //apparent
      power
                                                 //primary
12 v1 = 11000;
      voltage in Volts
13 \quad v2 = 230;
                                                 //secondary
      voltage in Volts
14 \, \text{Woc} = 1600;
                                                 //watts also
       equals core losses
                                                //watts, also
15 \text{ Wc} = 2600;
       equals cu losses
16 	ext{ f=50};
17 //no load parameters
18 //day cycle given
19 h1=8;
                                                 // hours
                                                 //load in
20 load1=160000;
      watts
                                                 //power
21 pf1=0.8;
      factor
22 h2=6;
23 load2=100000;
24 pf2=1;
25 \text{ h3} = 10;
26 \ load3=0;
27 \text{ pf3=0};
28 //SOLUTION
\frac{29}{24} hr energy output
30 Pout=load1*h1*pf1+load2*h2*pf2+load3*h3*pf3;
                                                 // 24 hours
31 \text{ Pc24=Woc*24};
      Pc loss
32 //cu loss= hours.(kva output/kva rated)^2.Full load
33 Pcu24=h1*(load1/va)^2*Wc+h2*(load2/va)^2*Wc+h3*(
      load3/va)^2*Wc;
34 Pin=Pout+Pc24+Pcu24;
35 eff=Pout*100/Pin;
36 //disp(sprintf("The value Pout is %f", Pout));
37 // disp(sprintf("The value Pc is %f", Pc24));
```

Scilab code Exa 7.35 No load and short circuit results of transformer

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 36
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 36");
8 // 100kVA 50 Hz 440/11000 V single phase transformer
9 //VARIABLE INITIALIZATION
10 va=100000;
                                                //apparent
     power
11 v1 = 440;
                                                //primary
      voltage in Volts
                                                //secondary
12 \quad v2 = 11000;
       voltage in Volts
13 f = 50;
                                                //
      efficiency
14 // loads
15 pf=1;
                                                //power
      factor at half load current
16 eff1=0.985;
                                               // at full
     load at 0.8 pf
17 eff2=0.99;
                                                //at half
      full load at unity pf
18 pf1=0.8;
                                               // power
      factor at full load current
```

```
//
19 pf2=1;
20 //
21 //SOLUTION
                                                                                                                                                                                                                                                     //=Pc
22 loss1=(1-eff1)*va*pf1/eff1;
                          +Pcu losses
23 \quad loss2 = (1 - eff2) * va * (1/2) * pf2/eff2;
                                                                                                                        //=Pc+Pcu losses
24 //simultaneous equation to be solved
\frac{25}{\text{eq}} = \frac{1}{\text{eq}} =
26 //fractipon of copper/ ohmic losses
27 f = (1/2)^2;
                                                                                                                                                                                                                   // 60\% of
                            full load
28 //the 2nd equation is Pc+f*Pcu=loss
29 //now the matrix
                                                                                                                                                                                                                   //Pc+Pcu=
30 M = [1,1;1,f];
                           loss1; Pc+(1/2)^2*Pcu=loss2: 1,1,; 1,f
31 \quad A = [loss1, loss2];
32 \text{ Mi} = inv(M);
33 Ans=A*inv(M);
34 \text{ Pc=Ans}(1,1);
35 \text{ Pcu=Ans}(1,2);
36 disp(sprintf("The Pc is %.1f W", Pc));
37 disp(sprintf("The Pcu is %.1f W", Pcu));
38 //
39 //maximumefficiency at farction x times the full
                          load; and then f.Pcu=Pc
40 \text{ x=} \text{sqrt}(Pc/Pcu);
41 disp(sprintf("The maximum efficiency would occur at
                           a load of \%.0 \text{ f kVA}", x*va/1000));
42 I1=va/v1;
43 I1maxEff=I1*x;
44 disp(sprintf("The current at maximum efficeincy is %
                            .0 f A", I1maxEff));
45 disp(" ");
46 //
47 //END
```

Scilab code Exa 7.36 Value of load for maximum efficiency

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 36
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 36");
8 //100kVA 50 Hz 440/1100 V single phase transformer
9 //VARIABLE INITIALIZATION
10 \text{ va} = 100000;
                                                 //apparent
      power
11 v1 = 440;
                                                 //primary
      voltage in Volts
                                                 //secondary
12 \quad v2 = 11000;
       voltage in Volts
13 f=50;
                                                // frequency
14 // loads
                                                 //power
15 pf=1;
      factor unity
16 \text{ eff1=0.985};
                                                 // at full
      load at 0.8 pf
                                                 //at half
17 \text{ eff2=0.99};
      full load at unity pf
18 pf1=0.8;
                                                 // power
      factor
                                                 //power
19 pf2=1;
      factor
20 //
21 //SOLUTION
22 loss1=(1-eff1)*va*pf1/eff1;
                                                        //=Pc
     +Pcu losses
23 loss2=(1-eff2)*va*(1/2)*pf2/eff2;
```

```
//=Pc+Pcu losses
24 //simultaneous equation to be solved
\frac{25}{\text{eq}} = \frac{1}{\text{eq}} =
26 //fractipon of copper/ ohmic losses
27 f = (1/2)^2;
                                                                                                                                                                                                                                            // 60% of
                                full load
28 //the 2nd equation is Pc+f*Pcu=loss
29 //now the matrix
30 M = [1,1;1,f];
                              loss1; Pc+(1/2)^2*Pcu=loss2: 1,1,; 1,f
31 \quad A = [loss1, loss2];
32 \text{ Mi} = inv(M);
33 Ans=A*inv(M);
34 \text{ Pc=Ans}(1,1);
35 \text{ Pcu=Ans}(1,2);
36 disp(sprintf("The Pc is %.1f W",Pc));
37 disp(sprintf("The Pcu is %.1f W", Pcu));
38 //
39 //maximumefficiency at farction x times the full
                              load; and then f. Pcu=Pc
40 \text{ x=sqrt}(Pc/Pcu);
41 disp(sprintf("The maximum efficiency would occur at
                              a load of \%.0 \text{ f kVA}", x*va/1000);
42 I1=va/v1;
43 I1maxEff=I1*x;
44 disp(sprintf("The current at maximum efficeincy is %
                               .0 f A, I1maxEff));
45 disp(" ");
46 / /
47 //END
```

Scilab code Exa 7.37 To calculate regulation at full load

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER2 //Example 37
```

```
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 37");
8 / 500 \text{ kVA } 3300 / 500 \text{ V} 50 hz single phase transformer
9 //VARIABLE INITIALIZATION
10 va=500000;
                                                     //
      apparent power
11 v1 = 3300;
      primary voltage in Volts
12 v2=500;
                                                     //
      secondary voltage in Volts
13 f = 50;
14 // loads
15 pf=1;
                                                     //power
      factor unity
16 \text{ eff} = 0.97;
                                                     // at
      3/4 full load at unity pf
                                                     //power
17 pf2=0.8;
      factor
18 //
19 //SOLUTION
20 I1=va/v1;
21 loss=(1-eff)*va*(3/4)*pf/eff;
                                                   //=Pc+Pcu
       losses at 3/4 load
22 //since the eff value is maximum, Pcu=Pc; therefore,
       2*Pc=loss
23 \text{ Pc=loss/2};
24 //(3/4)^2 * Pcu = Pc;
25 f = (3/4)^2;
                                                    //3/4
      load
26 / Pcu=Pc/f
27 Pcu=Pc/f;
28 //disp(sprintf("The Pc is %f W", Pc));
29 //disp(sprintf("The Pcu is %f W", Pcu));
30 //
31 R_e1=Pcu/I1^2;
```

```
disp(sprintf("The value of Re1 is %.3 f W', R_e1));
//10% impedance

Z_e1=v1*0.1/I1;

X_e1=sqrt(Z_e1^2-R_e1^2);
hi=acos(0.8);

%reg=(I1*R_e1*cos(phi)+I1*X_e1*sin(phi))*100/v1;
disp(sprintf("The percent regulation at full load 0.8 pf is %.2 f W', %reg));
disp(" ");
//
//END
```

Scilab code Exa 7.38 Total no load loss

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 38
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 38");
8 //220/115 V 25 Hz single phase transformer
9 //VARIABLE INITIALIZATION
                                                   //primary
10 \text{ v1} = 220;
       voltage in Volts
11 v2=115;
                                                    //
      secondary voltage in Volts
12 f1=25;
      frequency rating of the transformer in Hz
13 f2=50;
                                                    //
      frequency of the connected load
14 // loads
15 V=440
                                                    // i
      Volts
16 \text{ We1} = 100;
                                                     //in
```

```
Watts at 220 V, eddy losses
17 Pc1=2*We1;
      Total iron losses which equals We+Wh due to eddy
      and hysteresis
18 \text{ Wh1=Pc1-We1};
19 //
20 //SOLUTION
21 //since we know that We=kh.f.B^1.6 and Wh=Ke.Kf^2.f
      ^2.B^2
22 //since all being constant exept frequency, we may
      take We2/We1=f2^2/f1^2
23 //and Wh2/Wh1=f2/f1
24 //flux density in both cases is same as in second
      case voltage and frquency both are doubled
25 //find values for We2 and Wh2, whence Pc2=We2+Wh2
26 We2=f2^2*We1/f1^2;
27 \text{ Wh2=f2*Wh1/f1};
28 \text{ Pc2=We2+Wh2};
29 disp(sprintf("The total no load losses at 400 V is \%
      .0 f W', Pc2));
30 disp(" ");
31 //
32 / END
```

Scilab code Exa 7.39 Percentage of hysteresis and copperloss

```
1 //CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 39
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 39");
7
8 //220/440 v 50 Hz transformer
9 //VARIABLE INITIALIZATION
```

```
10 \text{ v1} = 220;
      //primary voltage in Volts
11 \quad v2 = 440;
      //secondary voltage in Volts
12 f1=50;
      //rated frequency in Hz
13
14 // loads
15 V = 110;
16 	ext{ f2=25};
      //frquency of the applied load
17 //say, else computation may not be possible using
      computer
18 Pout1=100;
                                                       //in
       watt, just assumed for computational purposes
      for the 220V supply
19 We1=0.01*Pout1;
                                                 //in
      Watts at 220 V, eddy losses which are 1% of the
      output at 220V
20 Wh1=0.01*Pout1;
                                                 //in
      Watts at 220 V, hysteresis losses which are 1% of
       the output at 220V
21 / Pc1=We1+Wh1;
                                                   //Total
      iron losses which equals We+Wh due to eddy and
      hysteresis
22 Pcu1=0.01*Pout1;
                                                //copper
      losses
23 / /
24 //SOLUTION
25 //since on connecting to half the power ie 110V, the
       output would get halved
26 Pout2=Pout1/2;
27 xPcu=Pcu1/Pout2;
```

```
28 disp(sprintf("The copper losses at 110 V would be %
      .0f percent of the output", xPcu*100));
29 //now coming to frequency dependant losses ie eddy
      and hysteresis
  //since we know that We=kh.f.B^1.6 and Wh=Ke.Kf^2.f
      ^2.B^2
31 //since all being constant exept frequency, we may
      take We2/We1=f2^2/f1^2
32 //and Wh2/Wh1=f2/f1
33 //find values for We2 and Wh2, whence Pc2=We2+Wh2
34 We2=f2^2*We1/f1^2;
35 \text{ Wh2=f2*Wh1/f1};
36 xWe=We2/Pout2;
37 \text{ xWh} = \text{Wh2/Pout2};
38 disp(sprintf("The eddy losses at 110 V would be %.2 f
       percent of the output", xWe *100));
39 disp(sprintf("The hysteresis losses at 110 V would
      be \%.2f percent of the output", xWh*100));
40 disp(" ");
41 //
42 / END
```

Scilab code Exa 7.40 To draw the phasor diagram

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
//Example 40

clc;
disp("CHAPTER 7");
disp("EXAMPLE 40");

//Given
//transformer on no load has a core loss 50W, draws a current of 2 A (RMS) and induced emf 220 V(RMS)
//VARIABLE INITIALIZATION
```

```
11 loss=50;
                                      //core loss in Watts
                                      //no load current in
12 I0=2;
      Amperes
13 \text{ v0} = 220;
                                      //induced emf in
      Volts
14
15 //SOLUTION
16 pf = loss/(v0*I0);
17 I_c=I0*pf;
                                      //core loss component
                                      //magnetizing
18 I_{phi}=I0*sin(acos(pf));
      component
19 disp(sprintf("The magnetizing component, I_c = \%.4 f A
      ,",I_phi));
20 disp(sprintf("The core loss component, I_{-} = \%.4 \, f \, A,
      ",I_c));
21
22 //END
```

Scilab code Exa 7.41 Star connected auto transformer

```
//CHAPTER 7- SINGLE PHASE TRANSFORMER
2 //Example 41
3
4 clc;
5 disp("CHAPTER 7");
6 disp("EXAMPLE 41");
8 //3-phase 550/440 V star connected transformer
      supplies a load of 400kW
9 //VARIABLE INITIALIZATION
                                      //primary voltage in
10 \text{ v1} = 550;
       Volts
11 v2 = 440;
                                      //secondary voltage
      in Volts
12 p = 400 * 1000;
                                      //load in Watts
```

```
//power factor (
13 pf=0.8;
     lagging)
14
15 //SOLUTION
16
17 //solution (a)
18 I2=p/(sqrt(3)*v2*pf);
                                      //current on
      secondary side
19 I1=I2*(v2/v1);
                                     // since I1: I2=N2: N1
20 I = I2 - I1;
                                     //in sections Oa, Ob
      and Oc
21 disp(sprintf("(a) The current flowing in sections Oa
      , Ob and Oc is \%.0 f A",I));
  disp(sprintf("The current flowing in sections aA, bB
       and cC is \%.0 f A", I1));
23
24 //solution (b)
25 //power transferred by transformer action = Pin.(1-k)
                                    //k = v2/v1
26 p_o = p*(1-(v2/v1));
27 disp(sprintf("(b) The power transferred by
      transformer action \%.0 \, f \, kW", p_o/1000));
28
29 / solution (c)
30 p_d=p-p_o;
31 disp(sprintf("(c) The power conducted directly %d kW
      ",p_d/1000));
32
33 / END
```

Chapter 8

Direct Current Machines

Scilab code Exa 8.1 Generated emf

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
  //Example 1
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 1");
8 //VARIABLE INITIALIZATION
9 v_t = 250;
                      //terminal voltage in Volts
                      //load current in Amperes
10 I_l=500;
11 r_a=0.04;
                      //armature resistance in Ohms
12 r_f=50;
                      //shunt field resistance in Ohms
13
14 //SOLUTION
15 I_f=v_t/r_f;
16 I_a=I_l+I_f;
17 E_a=v_t+(I_a*r_a); //E_a=emf of generator
18 disp(sprintf("The generated emf is %f V", E_a));
19
20 / END
```

Scilab code Exa 8.2 Ratio of speed

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 2
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 2");
8 //VARIABLE INITIALZATION
                        //terminal voltage in Volts
9 v_t = 230;
10 r_a=0.5;
                        //armature resistance in Ohms
11 r_f=115;
                        //shunt field resistance in Ohms
                        //line current in Amperes
12 I_1=40;
13
14 //SOLUTION
15
16 //for generator
17 I_f = v_t/r_f;
18 I_a=I_1+I_f;
19 E_a=v_t+(I_a*r_a); //here E_a=emf of generator
20
21 //for motor
22 I_f = v_t/r_f;
23 I_a=I_1-I_f;
24 E_b=v_t-(I_a*r_a); //here E_b=emf of motor
25
26 ratio=E_a/E_b;
                        //E_a:E_b=(k_a*flux*N_g):(k_a*
      flux*N_m) => E_a: E_b=N_g: N_m \text{ (as flux is constant)}
  disp(sprintf("The ratio of speed as a generator to
      the speed as a motor i.e. N_g:N_m is %f", ratio));
28
29 //END
```

Scilab code Exa 8.3 Armature induced emf and developed torque and efficiency

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 3
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 3");
8 //VARIABLE INITIALIZATION
9 p_o=10*1000;
                                 //output of generator in
      Watts
10 v_t = 250;
                                 //terminal voltage in
      Volts
11 N = 1000;
                                 //speed in rpm
                                 //armature resistance in
12 r_a=0.15;
      Ohms
13 I_f=1.64;
                                 //field current in
      Amperes
                                 //rotational loss in
14 rot_loss=540;
      Watts
15
16 //SOLUTION
17
18 // solution (i)
19 I_l=p_o/v_t;
20 I_a=I_1+I_f;
21 E_a=v_t+(I_a*r_a);
22 disp(sprintf("(i) The armature induced emf is %f V",
     E_a));
23
24 //solution (ii)
                                  //in radian/sec
25 w = (2*\%pi*N)/60;
```

Scilab code Exa 8.4 Armature resistance and load current at maximum efficiency

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
  //Example 4
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 4");
7
  //VARIABLE INITIALIZATION
                               //in Volts
9 v_t = 240;
10 I_1=200;
                                //full load current in
     Amperes
11 r_f=60;
                               //shunt field resisatnce
     in Ohms
12 eff=90;
                               //percentage full load
      efficiency
13 s_loss=800;
                               //stray(iron + friction)
      loss in Watts
14
```

```
15 //SOLUTION
16
17 // solution (a)
                                //output
18 p_o = v_t * I_1;
19 eff=eff/100;
20 p_i = p_o/eff;
21 tot_loss=p_i-p_o;
                                //since input=output+loss
22 I_f = v_t/r_f;
23 I_a = I_1 + I_f;
24 \text{ cu_loss=}(I_f^2)*r_f;
                              //copper loss
25 c_loss=cu_loss+s_loss; //constant loss
26 arm_loss=tot_loss-c_loss; //armature loss ((I_a^2)*
      r_a
27 r_a=arm_loss/(I_a^2);
28 disp(sprintf("(a) The armature resisatnce is %f
      r_a));
29
30 // solution (b)
31 //for maximum efficiency, armature loss = constant
      loss => (I_a^2) * r_a = c_loss
32    I_a=sqrt(c_loss/r_a);
33 disp(sprintf("(b) The load current corresponding to
     maximum efficiency is %f A", I_a));
34
35 / END
```

Scilab code Exa 8.5 BHP of prime mover

```
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 5

clc;
disp("CHAPTER 8");
disp("EXAMPLE 5");
```

```
8 //VARIABLE INITIALIZATION
                                //in Volts
9 v_t = 200;
                                //in Amperes
10 I_1=50;
                                //armature resistance in
11 r_a=0.1;
      Ohms
12 r_f=100;
                                //field resistance in Ohms
13  s_loss = 500;
                               //core and iron loss in
      Watts
14
15 //SOLUTION
16
17 //solution (a)
18 I_f=v_t/r_f;
                              //I_sh is same as I_f and
      r_sh is same as r_f
19 I_a=I_f+I_1;
20 E_a=v_t+(I_a*r_a);
21 disp(sprintf("(a)) The induced emf is %f V", E_a));
22
23 //solution (b)
24 \text{ arm_loss}=(I_a^2)*r_a;
                               //armature copper loss
25 	ext{ sh_loss=(I_f^2)*r_f;}
                              //shunt field copper loss
26 tot_loss=arm_loss+sh_loss+s_loss;
                               //output power
27 p_o = v_t * I_1;
                                //input power
28 p_i=p_o+tot_loss;
29 bhp=p_i/735.5;
                               //1 metric horsepower=
      735.498W
30 disp(sprintf("(b) The Break Horse Power(B.H.P.) of
      the prime mover is %f H.P.(metric)", bhp));
31
32 //solution (c)
33 c_{eff} = (p_o/p_i)*100;
34 p_EE=E_a*I_a;
                               //electrical power
35 \text{ m_eff} = (p_EE/p_i)*100;
36 \text{ e_eff} = (p_o/p_EE) * 100;
37 disp(sprintf("(c) The commercial efficiency is %f %%
      , the mechanical efficiency is %f %% and the
      electrical efficiency is %f %%", c_eff, m_eff, e_eff
      ));
```

```
38
39 //END
```

Scilab code Exa 8.6 20 HP 230 V 1150 rpm shunt motor

```
//CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 6
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 6");
  //VARIABLE INITIALIZATION
9 p_0=20*746;
                        //output power from H.P. to Watts
       (1 \text{ H.P.} = 745.699 \text{ or } 746 \text{ W})
                        //in Volts
10 \text{ v_t=} 230;
                        //speed in rpm
11 N = 1150;
12 P=4;
                        //number of poles
                        //number of armature conductors
13 Z=882;
14 r_a=0.188;
                        //armature resistance in Ohms
                        //armature current in Amperes
15 I_a=73;
16 I_f=1.6;
                        //field current in Amperes
17
18 //SOLUTION
19
20 //solution (i)
21 \quad E_b=v_t-(I_a*r_a);
22 w = (2*\%pi*N)/60;
                        //in radian/sec
23 T_e = (E_b * I_a) / w;
24 disp(sprintf("(i) The electromagnetic torque is %f N
      -m", T_e));
25
26 //solution (ii)
27 \quad A = P;
                        //since it is lap winding, so A=P
       and A=number of parallel paths
```

```
28 phi=(E_b*60*A)/(P*N*Z);
29 disp(sprintf("(ii) The flux per pole is %f Wb",phi))
30
31 // solution (iii)
32 p_rotor=E_b*I_a; //power developed on rotor
33 p_rot=p_rotor-p_o; //p_shaft=p_out
34 disp(sprintf("(iii) The rotational power is %f W',
     p_rot));
35
36 //solution (iv)
37 tot_loss=p_rot+((I_a^2)*r_a)+(v_t*I_f);
38 p_i=p_o+tot_loss;
39 \text{ eff} = (p_o/p_i)*100;
40 disp(sprintf("(iv) The efficiency is %f \%", eff));
41
42 //solution (v)
43 T=p_o/w;
44 disp(sprintf("(v) The shaft torque is %f N-m",T));
45
46 //The answers are slightly different due to the
      precision of floating point numbers
47
48 //END
```

Scilab code Exa 8.7 New operating speed

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 7
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 7");
7
8 //VARIABLE INITIALIZATION
```

```
//output power from H.P.
9 p_0=20*746;
     . to Watts (1 H.P.=745.699 or 746 W)
10 v_t = 230;
                                  //in Volts
11 N1=1150;
                                  //speed in rpm
12 P=4;
                                  //number of poles
13 Z=882;
                                  //number of armature
      conductors
14 r_a=0.188;
                                  //armature resistance
     in Ohms
  I_a1=73;
15
                                  //armature current in
      Amperes
                                  //field current in
16 I_f = 1.6;
     Amperes
17 ratio=0.8;
                                  // phi2: phi1 = 0.8 (here
      phi=flux)
18
19 //SOLUTION
20
21 E_b1=v_t-(I_a1*r_a);
                                  //(phi2*I_a2) = (phi1*
22   I_a2=I_a1/ratio;
      I_a1
23 E_b2=v_t-(I_a2*r_a);
24 N2=(E_b2/E_b1)*(1/ratio)*N1; //N2:N1=(E_b2/E_b1)*(
      phi1/phi2)
25 \text{ N2=round(N2)};
                                  //to round off the
      value of N2 (before rounding off N2=1414.695516
      rpm)
26 disp(sprintf("The new operating speed is %d rpm", N2)
27
  //The answer is slightly different due to the
      precision of floating point numbers
29
30 / END
```

Scilab code Exa 8.8 250 V DC shunt machine

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 8
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 8");
8 //VARIABLE INITIALIZATION
9 \text{ v_t=250};
                                    //in Volts
10 r_a=0.1;
                                    //armature resistance
      in Ohms
11 r_f=125;
                                    //field resistance in
      Ohms
12 p_o = 20 * 1000;
                                    //output power in Watts
13 N_g = 1000;
                                    //speed as generator in
       rpm
14
15 //SOLUTION
16
17 //machine as a generator
18 I_l=p_o/v_t;
19 I_f = v_t/r_f;
                                    //I_f is same as I_sh
20 I_ag=I_1+I_f;
21 E_a=v_t+(I_ag*r_a);
                                    //induced emf = E_a =
      E_g
22
23 //machine as a motor
24 I_l=p_o/v_t;
25 \quad I_f = v_t/r_f;
26 \quad I_am=I_1-I_f;
27 \quad E_b=v_t-(I_am*r_a);
                                 //back emf = E_b = E_m
28
29 //solution (a)
30 N_m = (N_g * E_b) / E_a;
31 N_m = round(N_m);
                                   //to round off the value
       of N<sub>m</sub>
```

```
32 disp(sprintf("(a) The speed of the same machine as a
      motor is %d rpm", N_m));
33
34 //solution (b)
35
36 //(i)
37 p1=(E_a*I_ag)/1000; //to express the answer
      in kW
38 disp(sprintf("(b) (i) The internal power developed
     as generator is %f kW",p1));
39
40 //(ii)
41 p2=(E_b*I_am)/1000;
42 disp(sprintf("(b) (ii) The internal power developed
     as motor is %f kW",p2));
43
44 //END
```

Scilab code Exa 8.9 Torque developed in the motor

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 9
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 9");
8 //VARIABLE INITIALIZATION
9 P = 4;
                                //number of poles
                                //in Volts
10 \text{ v_t} = 230;
11 I_1=52;
                                //in Amperes
                                //tottal number of
12 Z = 600;
      conductors
13 r_f=115;
                                //in Ohms
14 d=30/100;
                               //airgap diameter from cm
```

```
to m
15 \ 1=20/100;
                                 //effective length of pole
16 B = 4100/10000;
                                 //flux density from Gauss
      to Wb/m<sup>2</sup>
17
18 //SOLUTION
19 I_f=v_t/r_f;
                                //I_f is same as I_sh
20 I_a=I_1-I_f;
21 \text{ ar} = (\%pi*d*1)/P;
                                 //area of pole
                                 // phi = flux
22 \text{ phi=ar*B};
23 A=P;
24 T=(phi*Z*I_a)/(2*\%pi*A);
25 disp(sprintf("The torque developed in the motor is
      %f N-m",T));
26
27 //The answer is different as 'A' has not been
      included in the denominator (in the book)
28
  //END
29
```

Scilab code Exa 8.10 6 pole DC machine with 400 conductors

```
//flux per pole in Wb
12 phi=0.020;
13 N = 1800;
                                //in rpm
14
15 //SOLUTION
16
17 //soluion (a): for wave connected
18 disp("(a) For Wave connected");
19
20 //(i)
21 \quad A=2;
                                 //A=number of parallel
      paths
22 \quad I_a=I*A;
23 disp(sprintf("(i) The total current is %f A", I_a));
24
25 //(ii)
26 E_a = (phi*Z*N*P)/(60*A);
27 disp(sprintf("(ii) The emf is %f V", E_a));
28
29 //(iii)
30 p=E_a*I_a;
31 disp(sprintf("(iii) The power developed in armature
      is \%f \ kW, p/1000);
32 \text{ w} = (2*\%\text{pi}*\text{N})/60;
33 T_e=p/w;
34 disp(sprintf("The electromagnetic torque is %f N-m",
      T_e));
35
36
37 //soluion (b): for lap connected
38 disp("(b) For Lap connected");
39
40 //(i)
41 A=P;
42 I_a=I*A;
43 disp(sprintf("(i) The total current is %f A", I_a));
44
45 //(ii)
46 E_a=(phi*Z*N*P)/(60*A);
```

Scilab code Exa 8.11 Total emf generated in the armature

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 11
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 11");
8 //VARIABLE INITIALIZATION
                               //output in W
9 p_o = 20 * 1000;
10 v_t = 250;
                               //in Volts
11 r_a=0.05;
                               //aramture resistance in
     Ohms
12 r_se=0.025;
                               //series resistance in
     Ohms
13 r_sh=100;
                               //shunt resistance in Ohms
14
15 //SOLUTION
16 I_t=p_o/v_t;
17 \text{ v_se=I_t*r_se};
                               //for series winding
18 \quad v_sh=v_t+v_se;
                               //for shunt winding
```

```
19     I_sh=v_sh/r_sh;
20     I_a=I_sh+I_t;
21     E_a=v_t+(I_a*r_a)+v_se;
22     disp(sprintf("The total emf generated is %f V",E_a))
        ;
23
24     //END
```

Scilab code Exa 8.12 Terminal voltage of the machine

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 12
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 12");
8 //VARIABLE INITIALIZATION
                                  //number of poles
9 P = 4;
                                  //in rpm
10 N = 750;
11 r_a=0.4;
                                  //in Ohms
12 r_f = 200;
                                  //in Ohms
13 Z = 720;
14 phi=2.895*(10^6)*(10^(-8)); //in Wb (1 line=10^(-8)
      Wb)
15 r_l=10;
                                  //load resistance in
     Ohms
16 A = 2;
                                  //for wave winding
17
18 //SOLUTION
19 E_a=(phi*Z*N*P)/(60*A);
20 disp(sprintf("The induced emf is %f V", E_a));
21 // E_a=v+(I_a*r_a) but I_a=I_l+I_f and I_l=v/r_l,
      I_f = v/r_f = I_a = (v/r_l) + (v/r_f)
22 // => E_a = v + (((v/r_l) + (v/r_f)) * r_a)
```

```
// taking v common, the following equation is
   obtained
v=E_a/(1+(r_a/r_f)+(r_a/r_l));
disp(sprintf("The terminal voltage of the machine is
   %f V",v));

//The answer is slightly different due to the
   precision of floating point numbers
//END
```

Scilab code Exa 8.13 Current in each conductor and emf generated

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 13
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 13");
7
8 //VARIABLE INITIALIZATION
9 P = 4;
                                 //number of poles
                                 //in Volts
10 v_t=220;
                                 //load current in
11 I_1=42;
     Amperes
12 r_a=0.1;
                                 //in Ohms
13 r_f=110;
                                 //in Ohms
14 drop=1;
                                 //contact drop per brush
15 //SOLUTION
16
17 // solution (i)
                                 //for lap winding
18 A=P;
19 I_f=v_t/r_f;
                                 //I_f is same as I_sh
20 I_a=I_1+I_f;
21 I_c=I_a/A;
                                 //conductor current
```

Scilab code Exa 8.14 Armature resistance and load current at maximum efficiency

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 14
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 14");
8 //VARIABLE INITIALIZATION
                                 //in Volts
9 v_t = 220;
10 I_1 = 196;
                                 //in Amperes
                                 //stray loss in Watts
11 s_loss=720;
12 r_f=55;
                                 //shunt field ressitance
      in Ohms
13 eff=88/100;
                                 //efficiency
14
15 //SOLUTION
16 p_o = v_t * I_1;
17 p_i=p_o/eff;
                                 //electrical input
18 tot_loss=p_i-p_o;
19 I_f = v_t/r_f;
```

```
20 I_a=I_l+I_f;
21 cu_loss=v_t*I_f;
                              //shunt field copper
     loss
22 c_loss=cu_loss+s_loss; //constant loss
23 arm_loss=tot_loss-c_loss;
                              //armature copper loss
24 r_a=arm_loss/(I_a^2);
25 disp(sprintf("The armature resistance is %f
                                                ",r_a)
     );
26
27 //for maximum efficiency, armature loss = constant
     loss => (I_a^2)*r_a=c_loss
28 I_a=sqrt(c_loss/r_a);
29 disp(sprintf("The load current corresponding to
     maximum efficiency is %f A", I_a));
30
31 / END
```

Scilab code Exa 8.15 Full load speed

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 15
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 15");
8 //VARIABLE INITIALIZATION
9 v_t = 230;
                                 //in Volts
10 I_a1=3.33;
                                //in Amperes
11 N1 = 1000;
                                 //in rpm
                                 //armature resistance in
12 r_a=0.3;
      Ohms
13 r_f=160;
                                 //field resistance in
     Ohms
14 I_l=40;
                                 //in Amperes
```

```
//in Wb (phi=1 is an
15 phi1=1;
      assumption)
16 phi2=(1-(4/100));
                                 //in Wb (phi2 = 0.96 of
      phi1)
17
18
  //SOLUTION
19
20 //At no load
21 E_a1=v_t-(I_a1*r_a);
22 I_f = v_t/r_f;
23
24 //At full load
25 I_a2=I_1-I_f;
26 E_a2=v_t-(I_a2*r_a);
27 N2 = (E_a2/E_a1)*(phi1/phi2)*N1;
28 N2 = round(N2);
                                 //to round off the value
29 disp(sprintf("The full load speed is %d rpm", N2));
30
31 / END
```

Scilab code Exa 8.16 250 V 4 pole shunt motor

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 16
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 16");
7
8 //VARIABLE INITIALIZATION
                                //in Volts
9 v_t = 250;
                                //number of poles
10 P=4;
11 Z=500;
                                //number of conductors
                                //in Ohms
12 r_a=0.25;
13 r_f = 125;
                                //in Ohms
```

```
//in Wb
14 phi=0.02;
15 I_l=14;
                                 //in Amperes
16 A = 2;
17 rot_loss=300;
                                 //rotational loss in
      Watts
18
  //SOLUTION
19
20
21 // solution (i)
22 I_f = v_t/r_f;
23 I_a=I_1-I_f;
24 E_a=v_t-(I_a*r_a);
25 N = (E_a*A*60)/(phi*Z*P);
                                 //to round off the value
26 N = round(N);
      of N
27 disp(sprintf("(i) The speed is %d rpm", N));
28 p_e=E_a*I_a;
29 w = (2 * \%pi * N) / 60;
30 \quad T1=p_e/w;
31 disp(sprintf("The internal torque developed is %f N-
     m", T1));
32
33 //solution (ii)
34 p_o=p_e-rot_loss;
35 disp(sprintf("(ii)The shaft power is %f W",p_o));
36 T2=p_o/w;
37 disp(sprintf("The shaft torque is %f N-m",T2));
38 p_i=v_t*I_1;
39 \text{ eff} = (p_o/p_i)*100;
40 disp(sprintf("The efficiency is %f \%", eff));
41
42 / END
```

Scilab code Exa 8.17 200 V DC shunt motor

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 17
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 17");
7
8 //VARIABLE INITIALIZATION
                                //in Volts
9 v_t = 200;
                                //in Amperes
10 I_1=22;
11 N1=1000;
                                //in rpm
                                //in Ohms
12 r_a=0.1;
13 r_f=100;
                                //in Ohms
14 N2 = 800;
                                //in rpm
15
16 //SOLUTION
17
18 //solution (i)
19 I_f = v_t/r_f;
20 I_a1=I_1-I_f;
21 E_a1=v_t-(I_a1*r_a);
22 //on rearranging the equation E_a2:E_a1=N2:N1, where
       E_a2=v_t-I_a1*(r_a+r_s) and E_a1=v_t-(I_a1*r_a),
       we get,
23 r_s1=((v_t - ((N2*E_a1)/N1))/I_a1)-r_a;
24 disp(sprintf("(i) When the load torque is
      independent of speed, the additional resistance
      is %f
             ",r_s1));
25
\frac{26}{\sqrt{\text{solution}}} (ii)
27 I_a2 = (N2/N1) * I_a1;
28 //on rearranging the equation E_a2:E_a1=N2:N1, where
       E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a),
       we get,
29 r_s2=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
30 disp(sprintf("(ii))When the load torque is
      proportional to speed, the additional resistance
      is %f ",r_s2));
```

```
31
32 //solution (iii)
33 I_a2 = (N2^2/N1^2) * I_a1;
34 //on rearranging the equation E_a2:E_a1=N2:N1, where
       E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a),
      we get,
35 \text{ r_s3}=((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
36 disp(sprintf("(iii))When the load torque varies as
      the square of speed, the additional resistance is
       %f ",r_s3));
37
38 //solution (iv)
39 I_a2 = (N2^3/N1^3) * I_a1;
40 //on rearranging the equation E_a2:E_a1=N2:N1, where
       E_a2=v_t-I_a2*(r_a+r_s) and E_a1=v_t-(I_a1*r_a),
       we get,
41 r_s4 = ((v_t - ((N2*E_a1)/N1))/I_a2)-r_a;
42 disp(sprintf("(iv))When the load torque varies as the
       cube of speed, the additional resistance is %f
        ",r_s4));
43
44 / END
```

Scilab code Exa 8.18 Value of inserted resistance

```
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 18

clc;
disp("CHAPTER 8");
disp("EXAMPLE 18");

//VARIABLE INITIALIZATION
v_t=460;
//in Volts
p_o=10*736;
//in Watts (1 metric H.
```

```
P = 735.5 \text{ W}
11 ratio=85/100;
                                   //as given in the
      question
12 \text{ eff} = 84/100;
13 I_f=1.1;
                                    //in Amperes
14 r_a=0.2;
                                    //in Ohms
15
16 //SOLUTION
17 p_i=p_o/eff;
18 I_l=p_i/v_t;
19 I_a=I_l-I_f;
20 E1=v_t-(I_a*r_a);
21 E2=E1*ratio;
                                   //E2 : E1=N2 : N1=ratio
22 \quad v=v_t-E2;
                                    //voltage drop across
      r_a and r_s (r_s is the series resistance to be
      inserted)
23 r_s = (v/I_a) - r_a;
24 disp(sprintf("The resistance required is %f ",r_s)
      );
25
26 //The answer is different because ratio equals
      85/100 and not 75/100
27
28 / END
```

Scilab code Exa 8.19 New speed of motor on inserting a 250 ohm resistance

```
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 19

clc;
disp("CHAPTER 8");
disp("EXAMPLE 19");
```

```
8 //VARIABLE INITIALIZATION
9 \text{ v_t=250};
                                   //in Volts
10 r_a=0.5;
                                   //in Ohms
11 r_f = 250;
                                   //in Ohms
12 N1 = 600;
                                   //in rpm
13 I=21;
                                   //in Amperes
14 r_s = 250;
                                   //in Ohms
15
16 //SOLUTION
17 I_f1=v_t/r_f;
18 I_f2=v_t/(r_f+r_s);
19 I_a1=I-I_f1;
20 // T is directly proportional to (*I_a)
21 // I<sub>-</sub>f is directly proportional to
22 // \Rightarrow I_f1 * I_a1 = I_f2 * I_a2, therefore,
23 I_a2=(I_f1*I_a1)/I_f2;
24 E_b1=v_t-(I_a1*r_a);
25 E_b2=v_t-(I_a2*r_a);
26 // E<sub>b</sub> is directly proportional to (*N)
27 // ( *N) is directly proportinal to (I_f*N)
28 // = E_b1 : E_b2 = (I_f1 : I_f2) * (N1:N2)
29 N2=(I_f1/I_f2)*(E_b2/E_b1)*N1;
30 \text{ N2} = \text{round}(\text{N2});
                                 //to round off the value
31 disp(sprintf("The new speed of the motor is %d rpm",
      N2));
32
33 / END
```

Scilab code Exa 8.20 Reduction of main flux to raise the speed by 50 percent

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 20
3
4 clc;
```

```
5 disp("CHAPTER 8");
6 disp("EXAMPLE 20");
8 //VARIABLE INITIALIZATION
9 \text{ v_t=250};
                                  //in Volts
10 I_a1=20;
                                  //in Amperes
11 N1=1000;
                                  //in rpm
12 r_a=0.5;
                                  //in Ohms
                                  //brush contact drop in
13 drop=1;
      Volts
14 ratio=1.5;
                                  //N2:N1=1.5
                                  //it is an assumption
15 phi1=1;
16
17 //SOLUTION
18 E_1=v_t-(I_a1*r_a)-(2*drop);
19 //solving the quadratic equation directly,
20 a=1;
21 b = -496;
22 c = 14280;
23 D=b^2-(4*a*c);
24 x1 = (-b + sqrt(D))/(2*a);
25 	ext{ x2=(-b-sqrt(D))/(2*a);}
26 \text{ if}(x1 < 40)
27 I_a2=x1;
28 else if (x2<40)
29 I_a2=x2;
30 end;
31 phi2=(I_a1/I_a2)*phi1;
32 phi=(1-phi2)*100;
33 disp(sprintf("The flux to be reduced is %f \%% of the
       main flux", phi));
34
35 / END
```

Scilab code Exa 8.21 10 kW 6 pole DC generator

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 21
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 21");
7
8 //VARIABLE INITIALIZATION
9 p_o=10*1000;
                                    //in Watts
                                    //number of poles
10 P=6;
                                    //in Volts
11 E_g = 200;
12 N = 1500;
                                    //in rpm
13 A=P;
                                    //since the armature
      is lap connected
                                    //flux density in
14 B=0.9;
      Tesla
                                    //length of armature
15 \quad 1 = 0.25;
      in m
16 dia=0.2;
                                    //diameter of armature
       in m
17
18 //SOLUTION
19
20 / solution (a)
21 area=2*%pi*(dia/2)*1;
22 \text{ phi=B*area;}
23 disp(sprintf("(a) The flux per pole is %f Wb", phi));
24
25 //solution (b)
26 Z = (60*E_g)/(phi*N);
27 disp(sprintf("(b) The total number of active
      conductors is %d",Z));
28
29 //solution (c)
30 I_a=50;
31 p=E_g*I_a;
32 w = (2*\%pi*N)/60;
33 T=p/w;
```

Scilab code Exa 8.22 Shunt wound motor running at 600 rpm from a 230 V supply

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 22
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 22");
8 //VARIABLE INITIALIZATION
9 N1 = 600;
                                    //in rpm
10 v = 230;
                                    //in Volts
11 I_11=50;
                                    //line current in
      Amperes
12 r_a=0.4;
                                    //armature resistance
      in Ohms
                                    //field resistance in
13 r_f = 104.5;
      Ohms
                                    //brush drop in Volts
14 \text{ drop=2};
15
16 //SOLUTION
17
18 // solution (i)
19 I_12=5;
20 I_a1=I_11-(v/r_f);
21 \quad E_b1=v-(I_a1*r_a)-drop;
22 I_a2=I_12-(v/r_f);
23 E_b2=v-(I_a2*r_a)-drop;
24 N2 = (E_b2/E_b1) * N1;
```

```
25 \text{ N2} = \text{round}(\text{N2});
26 disp(sprintf("(i) The speed at no load is %d rpm", N2
      ));
27
28 //solution (ii)
29 I_12=50;
30 \text{ N2} = 500;
31 \quad E_b2 = (N2/N1) * E_b1;
                                      //difference
32 dif=v-drop;
33 I_a2=I_12-(v/r_f);
34 \text{ r_se}=((dif-E_b2)/I_a2)-r_a;
35 disp(sprintf("(ii) The additional resistance is %f
        ",r_se));
36
37 //solution (iii)
                                      //it is an assumption
38 phi1=1;
39 I_a3=30;
40 N2 = 750;
41 E_b3=v-(I_a3*r_a)-drop;
42 phi2=(E_b3/E_b1)*(N1/N2)*phi1;
43 red=((1-phi2)*100*phi1)/phi1;
44 disp(sprintf("(iii) The percentage reduction of flux
       per pole is %f %%", red));
45
46
  //END
```

Scilab code Exa 8.23 Value of inserted resistance in field circuit for increasing the speed

```
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 23

clc;
disp("CHAPTER 8");
disp("EXAMPLE 23");
```

```
7
8 //VARIABLE INITIALIZATION
                                    //in Volts
9 v = 230;
10 r_a=0.4;
                                    //in Ohms
11 r_f1=115;
                                    //in Ohms
12 I_a=20;
                                    //in Amperes
                                    //in rpm
13 N1=800;
14 N2 = 1000;
                                    //in rpm
15
16 //SOLUTION
17 I_f1=v/r_f;
18 E_b1=v-(I_a*r_a);
19 //rearranging the equation, we get,
20 r_{f2} = ((E_b1*N2)/((v*N1)-(N1*I_a*r_a)))*r_f1;
21 r_f2_dash=r_f2-r_f1;
22 disp(sprintf("The external resistance is %f
      r_f2_dash));
23
  //The answer is slightly different due to the
24
      precision of floating point numbers
25
26
  //END
```

Scilab code Exa 8.24 New speed of motor on inserting a 250 ohm resistance in the field circuit

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 24
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 24");
7
8 //This example is same as example 19
```

```
10 //VARIABLE INITIALIZATION
11 v = 250;
                                            //in Volts
12 r_a=0.5;
                                            //in Ohms
13 r_f=250;
                                            //in Ohms
14 N1=600;
                                            //in rpm
15 I_1=21;
                                            //in Amperes
16 \text{ r} = 250;
                                            //in Ohms
17
18 //SOLUTION
19 I_f1=v/r_f;
20 I_a1=I_1-I_f1;
21 I_a2=2*I_a1;
22 E_b1=v-(I_a1*r_a);
23 E_b2=v-(I_a2*r_a);
24 ratio=(r+r_f)/r_f;
25 N2 = (ratio * N1 * E_b2) / E_b1;
26 \text{ N2} = \text{round}(\text{N2});
27 disp(sprintf("The new speed is %d rpm", N2));
28
29 //END
```

Scilab code Exa 8.25 24 slot 2 pole DC machine

```
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 25

disp("CHAPTER 8");
disp("EXAMPLE 25");

//VARIABLE INITIALIZATION
slot=24; //number of slots
P=2; //number of poles
N=18; //number of turns per
```

```
coil
13 B=1;
                                    //in Webers
14 1 = 20/100;
                                    //effective length in
      meters
15 rad=10/100;
                                    //radius in meters
16 \quad w = 183.2;
                                    //angular velocity in
      rad/s
17
18 //SOLUTION
19 A = 2;
20 \quad Z = slot * P * N;
                                    //total number of
      conductors
21 ar1=(2*%pi*rad*1)/P;
22 ar2=ar1*0.8;
                                    //since the magnetic
      poles 80% of the armature periphery
23 \text{ phi=B*ar2};
                                    //effective flux per
      pole
24
25 //solution (a)
26 E_a = (P*Z*phi*w)/(2*%pi*A);
27 disp(sprintf("(a) The induced emf is %f V", E_a));
28
29 //solution (b)
30 coil=slot/P;
                                     //number of coils in
      each path
31 E_coil=E_a/coil;
32 disp(sprintf("(b) The induced emf per coil is %f V",
      E_coil));
33
34 // solution (c)
35 E_turn=E_coil/N;
36 disp(sprintf("(c) The induced emf per turn is %f V",
      E_turn));
37
38 //solution (d)
39 E_cond=E_turn/A;
40 disp(sprintf("(d) The induced emf per conductor is
      %f V", E_cond));
```

```
41
42 //The answers are slightly different due to the precision of floating point numbers
43
44 //END
```

Scilab code Exa 8.27 Counter emf of motor and power developed in armature

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 27
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 27");
7
8
  //VARIABLE INITIALIZATION
10 v_t = 200;
                                  //in volts
11 r_a=0.06;
                                  //in Ohms
                                  //in Ohms
12 r_se=0.04;
13 p_i = 20 * 1000;
                                  //in Watts
14
15 //SOLUTION
16
17 // solution (a)
18 I_a=p_i/v_t;
19 E_b=v_t-I_a*(r_a+r_se);
20 disp(sprintf("(a) The counter emf of the motor is %d
       V", E_b));
21
\frac{22}{\sqrt{\text{solution}}} (b)
23 p_a=E_b*I_a;
24 p_a=p_a/1000;
                                   //from W to kW
25 disp(sprintf("(b) The power developed in the
```

```
armature is %d kW",p_a));
26
27 //END
```

Scilab code Exa 8.28 Voltage between far end of feeder and bus bar

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
  //Example 28
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 28");
7
8 //VARIABLE INITIALIZATION
9 E_a=120;
                                 //in Volts
                                 //in Ohms
10 \text{ r_se=0.03};
                                 //in Ohms
11 r_a=0.02;
                                 //in Volts
12 v1 = 240;
                                 //in Ohms
13 r=0.25;
14 I=300;
                                 //in Amperes
15
16 //SOLUTION
17 v=I*(r_se+r_a+r);
18 disp(sprintf("The voltage drop across the three
      resistances is %d V",v));
19 v_t = v1 + E_a - v;
20 disp(sprintf("The voltage between far end and the
      bus bar is %d V", v_t));
21 disp(sprintf("The net increase of %d V may be beyond
       the desired limit", v_t-v1));
22 disp ("Hence, a field diverter resistance may be
      necessary to regulate the far-end terminal
      voltage");
23
24 //END
```

Scilab code Exa 8.29 Speed of motor when connected in series with 5 ohm resistance

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 29
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 29");
7
8 //VARIABLE INITIALIZATION
                                 //in Ohms
9 r_a=1;
                                 //in rpm
10 N1=800;
11 v_t=200;
                                 //in Volts
                                 //in Amperes
12 I_a=15;
                                 //series resistance in
13 \text{ r_s=5};
     Ohms
14
15 //SOLUTION
16 E_b1=v_t-(I_a*r_a);
17 E_b2=v_t-I_a*(r_a+r_s);
18 N2 = (E_b2/E_b1) * N1;
19 N2=round(N2);
                                 //to round off the value
20 disp(sprintf("The speed attained after connecting
      the series resistance is %d rpm", N2));
21
22 //END
```

Scilab code Exa 8.30 Value of starting torque

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
```

```
2 //Example 30
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 30");
8 //VARIABLE INITIALIZATION
9 p=5*735.5;
                                //in Watts (1 metric H.P
      .=735.5 \text{ W}
10 N = 1000;
                                //in rpm
                                //in Amperes
11 I=30;
12 I_s = 45;
                                //starting current in
     Amperes
13
14 //SOLUTION
15 T=(p*60)/(2*\%pi*1000);
16 T_s = (T*(I_s^2))/(I^2);
17 disp(sprintf("The starting torque is %f N-m", T_s));
18
19 //The answer is slightly different due to precision
      of floating point numbers
20
21
  //END
```

Scilab code Exa 8.31 Value of speed when flux is increased by 20 percent

```
//CHAPTER 8- DIRECT CURRENT MACHINES
//Example 31

clc;
disp("CHAPTER 8");
disp("EXAMPLE 31");

//VARIABLE INITIALIZATION
r_a=0.1; //combined resistance of
```

```
armature & field resistance in Ohms
10 v_t = 230;
                                  //in Volts
11 I_a1=100;
                                  //in Amperes
12 N1 = 1000;
                                  //in rpm
13 I_a2=200;
                                  //in Amperes
14 ratio=1.2;
                                  // ratio of 2 : 1 = 1.2
15
16 //SOLUTION
                                  //numerator of LHS
17 E_b1=v_t-(I_a1*r_a);
      according to the book
18 E_b2=v_t-(I_a2*r_a);
                                  //denominator of LHS
      according to the book
19 N2=(E_b2/E_b1)*(1/ratio)*N1;
20 N2 = round(N2);
                                  //to round off the value
21 disp(sprintf("The new speed of the armature is %d
      \operatorname{rpm} ', N2));
22
23 //END
```

Scilab code Exa 8.32 250 V series motor with 20 A current and 1000 rpm

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 32
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 32");
8 //VARIABLE INITIALIZATION
                                  //in Volts
9 v_t = 250;
10 I = 20;
                                  //in Amperes
                                  //in rpm
11 N1 = 1000;
                                  //number of poles
12 P=4;
13 r_p=0.05;
                                  //resistance of field
      coil on each pole in Ohms
```

```
//in Ohms
14 r_a=0.2;
15
16 //SOLUTION
17
18 \text{ r_se=P*r_p};
19 \text{ r_m=r_a+r_se};
                                    //resistance of motor
20 E_b1=v_t-(I*r_m);
21 T1=I^2;
22
23 // solution (a)
24 //solving the quadratic equation directly,
25 r = 10;
                                    //in Ohms
26 \quad a=1.02;
27 b = -25;
28 c = -400;
29 D=b^2-(4*a*c);
30 x1 = (-b + sqrt(D))/(2*a);
31 x2=(-b-sqrt(D))/(2*a);
32 //to extract the positive root out of the two
33 if (x1>0 & x2<0)
34 I1 = x1;
35 else (x1<0 & x2>0)
36 \quad I1 = x2;
37 \text{ end};
38 I_a = ((10.2*I1)-v_t)/r;
39 E_b2=v_t-(I_a*r_a);
40 N2=((E_b2/E_b1)*I*N1)/I1;
41 N2 = round(N2);
                                   //to round off the value
42 disp(sprintf("(a) The speed with 10 resistance in
       parallel with the armature is %d rpm", N2));
43
44 //solution (b)
45 //solving the quadratic equation directly,
46 \text{ a=} 5/7;
47 b=0;
48 c = -400;
49 D=b^2-(4*a*c);
50 y1=(-b+sqrt(D))/(2*a);
```

```
51 \text{ y2=}(-b-\text{sqrt}(D))/(2*a);
52 //to extract the positive root out of the two
53 if (y1>0 & y2<0)
54 I2 = y1;
55 else (y1<0 & y2>0)
56 \quad I2 = y2;
57 \text{ end};
58 E_b3=v_t-(I2*r_a);
59 N3 = ((E_b3/E_b1)*I*N1)/(I2*a);
                                  //to round off the value
60 N3=round(N3);
61 disp(sprintf("(b) The speed with 0.5
                                                resistance
      in parallel with series field is %d rpm", N3));
62
63 //The answers are slightly different due to the
      precision of floating point numbers
64
65 / END
```

Scilab code Exa 8.33 Resistance to be added to obtain rated torque at starting and at 1000 rpm

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 33
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 33");
8 //VARIABLE INITIALIZATION
9 \text{ v_t} = 230;
                                     //in Volts
10 N1=1500;
                                     //in rpm
                                     //in Amperes
11 I_a1=20;
                                     //armature resistance
12 r_a=0.3;
       in Ohms
13 r_se=0.2;
                                     //series field
```

```
resistance in Ohms
14
15 //SOLUTION
16
17 // solution (a)
18 E_b=0;
                                    //at starting
19 nr1=v_t-I_a1*(r_a+r_se);
                                    //value of numerator
20 r_ext=nr1/I_a1;
21 disp(sprintf("(a) At starting, the resistance that
      must be added is %f ",r_ext));
22
23 //solution (b)
24 I_a2=I_a1;
25 \text{ N2} = 1000;
26 \text{ ratio}=N2/N1;
27 nr2=v_t-I_a2*(r_a+r_se);
28 r_ext=((ratio*nr1)-nr2)/(-I_a2);
29 disp(sprintf("(b) At 1000 rpm, the resistance that
      must be added is %f ",r_ext));
30
31 / END
```

Scilab code Exa 8.34 Total emf and armature current

```
Ohms
11 r_sh=25;
                                  //shunt resistance in
     Ohms
                                  //in Volts
12 v_t=110;
13 I_l=100;
                                  //in Amperes
14
15 //SOLUTION
16
17 //solution (a)
18 I_sh=v_t/r_sh;
19 I_a=I_sh+I_l;
20 \quad E_g=v_t+I_a*(r_a+r_se);
21 disp("(a) When the machine is connected as long
      shunt compound generator—");
22 disp(sprintf("The armature current is %f A and the
      total emf is %f V", I_a, E_g);
23
24 //solution (b)
25 I_sh=(v_t/r_sh)+(I_l*r_se/r_sh);
26 I_a=I_sh+I_1;
27 E_g=v_t+(I_a*r_a)+(I_l*r_se);
28 disp("(b) When the machine is connected as short
      shunt compound generator—");
29 disp(sprintf("The armature current is \%f A and the
      total emf is %f V",I_a,E_g);
30
31 / END
```

Scilab code Exa 8.35 Armature current and induced emf

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 35
3
4 clc;
5 disp("CHAPTER 8");
```

```
6 disp("EXAMPLE 35");
8 //VARIABLE INITIALIZATION
9 r_a=0.06;
                                   //armature resistance
      in Ohms
10 \text{ r_se=0.04};
                                   //series resistance in
      Ohms
11 r_sh=25;
                                   //shunt resistance in
     Ohms
                                   //in Volts
12 v_t=110;
13 I_l=100;
                                   //in Amperes
14
15 //SOLUTION
16
17 // solution (a)
18 \quad I_sh=v_t/r_sh;
19 I_a=I_l-I_sh;
20 \quad E_g=v_t-I_a*(r_a+r_se);
21 disp("(a) When the machine is connected as long
      shunt compound generator—");
22 disp(sprintf("The armature current is %f A and the
      total emf is %f V",I_a,E_g);
23
24 //solution (b)
25 \quad I_sh=(v_t/r_sh)-(I_l*r_se/r_sh);
26 I_a=I_1-I_sh;
27 E_g=v_t-(I_a*r_a)-(I_l*r_se);
28 disp("(b) When the machine is connected as short
      shunt compound generator—");
  disp(sprintf("The armature current is %f A and the
      total emf is %f V",I_a,E_g));
30
31 / END
```

Scilab code Exa 8.36 Constant losses and full load efficiency

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 36
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 36");
7
8 //VARIABLE INITIALIZATION
                                  //in Volts
9 v_t = 250;
                                  //in Amperes
10 I_1=150;
11 \; loss1=1200;
                                  //core loss at full load
       in Watts
12 \ loss2=800;
                                  //mechanical loss in
      Watts
                                  //brush resistance in
13 \text{ r_b=0.08};
      Ohms
                                  //shunt field resistance
14 \text{ r\_sh} = 62.5;
       in Ohms
15 \text{ r_se=0.03};
                                  //series field
      resistance in Ohms
16 r_ip=0.02;
                                  //interpole resistance
      in Ohms
17
18 //SOLUTION
19
20 //solution (a)
21 p_o = v_t * I_1;
22 I_sh=v_t/r_sh;
23 I_a=I_1+I_sh;
24 r_tot=r_b+r_se+r_ip;
25 arm_loss=(I_a^2)*r_tot; //armature circuit
      copper loss
26 \text{ cu_loss=v_t*I_sh};
                                   //shunt field copper
      loss
27 c_loss=cu_loss+loss1+loss2; //constant loss
28 disp(sprintf("(a) The constant loss is %f W',c_loss)
      );
29
```

Scilab code Exa 8.37 Hysteresis and eddy current losses

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
2 //Example 37
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 37");
8 //VARIABLE INITIALIZATION
9 p_0=50*1000;
                                 //in Watts
                                //in Volts
10 v_t = 250;
11 \; loss1=5000;
                                 //total core loss in
     Watts
  loss2=2000;
                                //total core loss in
     Watts (when speed is reduced to half)
13 speed = 125/100;
14
15
  //SOLUTION
16
17 // solution (a)
18
19
  //W_h=A*N, where W_h=hysteresis loss, A=constant and
      N=speed
20 //W_e=B*(N^2), where W_e=eddy current loss, B=
      constant and N=speed
```

```
21 / W_h + (W_e^2) = loss1 => W_h + W_e = 5000
22 / (W_h/2) + (W_e/4) = loss2 = > (0.5*W_h) + (0.25*W_e) = 2000
      (when speed reduces to half)
23 //So, we get two equations
24 / W_h + W_e = 5000...eq(i)
25 / (0.5*W_h) + (0.25*W_e) = 2000...eq(ii)
26 //solving the equations by matrix method
27 A = [1 1; 0.5 0.25];
28 b = [5000; 2000];
29 x = inv(A) *b;
30 W_h1=x(1,:);
                                 //to access the 1st row
      of 2X1 matrix
31 \text{ W_e1=x(2,:)};
                                 //to access the 2nd row
      of 2X1 matrix
32 disp("Solution (a)");
33 disp(sprintf("The hysteresis loss at full speed is
     %d W', W_h1));
34 disp(sprintf("The eddy current loss at full speed is
      %d W', W_e1);
35
36 //solution (b)
37 W_h2=speed*W_h1;
38 \ W_e2 = (speed^2) * W_e1;
39 disp("Solution (b)");
40 disp(sprintf("The hysteresis loss at 125\% of the
      full speed is %d W", W_h2));
41 disp(sprintf("The eddy current loss at 125%% of the
      full speed is %d W', W_e2));
42
43 / END
```

Scilab code Exa 8.38 Speed of motor when flux per pole is increased by 10 percent

```
1 //CHAPTER 8- DIRECT CURRENT MACHINES
```

```
2 //Example 38
3
4 clc;
5 disp("CHAPTER 8");
6 disp("EXAMPLE 38");
8 //VARIABLE INITIALIZATION
9 v_t = 215;
                                  //in Volts
                                  //in Ohms
10 r_a=0.4;
                                  //in Watts
11 p=5*1000;
12 N_g = 1000;
                                  //speed as generator in
      rpm
13 ratio=1.1;
                                  //according to the
      solution, _{-}b:_{-}a=1.1
14
15 //SOLUTION
16
17 //As generator
18 I_ag=p/v_t;
19 E_a=v_t+(I_ag*r_a);
20
21 //As motor
22 I_am=p/v_t;
23 \quad E_b=v_t-(I_am*r_a);
N_m = (1/ratio) * N_g * (E_b/E_a);
                                   //to round off the
25 N_m = round(N_m);
      value
26 disp(sprintf("The speed of the machine as motor is
     %d \text{ rpm} , N_m));
27
28 / END
```

Chapter 10

Three Phase Induction Machines

Scilab code Exa 10.2 6 pole wound rotor induction motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 2
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 2");
8 //VARIABLE INITIALIZATION
                                    //number of poles
9 P=6;
                                    //stator frequency in
10 \text{ f1=60};
       Hertz
11 N_r1=1140;
                                    //in rpm
12
13 //SOLUTION
14 N_s = (120*f1)/P;
                                    //synchronous speed
                                    //slip at full load
15 s1=(N_s-N_r1)/N_s;
16
17 // solution (a)
                                    //rotor speed at
18 N_r2=0;
```

```
standstill is zero
19 s2=(N_s-N_r2)/N_s;
20 disp(sprintf("(a) At standstill, the slip is %f \%",
      s2*100));
21 	 if(s2>1)
22 disp ("Since the slip is greater than 100%, the motor
       operates as brake");
23 \quad end;
24 if (s2<0)
25 disp ("Since the slip is negative, the motor operates
       as generator");
26 \text{ end};
27 f2=s2*f1;
28 disp(sprintf("And the frequency of rotor current is
     %d Hz",f2));
29 if(f2<0)
30 disp("Since frequency is negative, phase sequence of
       voltage induced in rotor winding is reversed");
31 end;
32
33 //solution (b)
34 \text{ N_r3=500};
35 s3 = (N_s - N_r3) / N_s;
36 disp(sprintf("(b) At %d rpm, the slip is \%f \%%", N_r3
      ,s3*100));
37 if(s3>1)
38 disp("Since the slip is greater than 100%, the motor
       operates as brake");
39 end;
40 if(s3<0)
41 disp("Since the slip is negative, the motor operates
       as generator");
42 \quad end;
43 f3=s3*f1;
44 disp(sprintf("And the frequency is %d Hz",f3));
45 if(f3<0)
46 disp("Since frequency is negative, phase sequence of
       voltage induced in rotor winding is reversed");
```

```
47 \text{ end};
48
49 //solution (c)
50 N_r4=500;
51 s4 = (N_s + N_r4) / N_s;
                                       //as motor runs in
      opposite direction
52 disp(sprintf("(c) At %d rpm, the slip is %f %%", N_r4
      ,s4*100));
53 if(s4>1)
54 disp("Since the slip is greater than 100%, the motor
       operates as brake");
55 \text{ end};
56 if (s4<0)
57 disp("Since the slip is negative, the motor operates
       as generator");
58 \text{ end};
59 f4 = s4 * f1;
60 disp(sprintf("And the frequency is %d Hz",f4));
61 if (f4<0)
62 disp("Since frequency is negative, phase sequence of
       voltage induced in rotor winding is reversed");
63 end;
64
65 //solution (d)
66 N_r5 = 2000;
67 	 s5 = (N_s - N_r5) / N_s;
68 disp(sprintf("(d) At %d rpm, the slip is \%f \%", N_r5
      ,s5*100));
69 \text{ if } (s5>1)
70 disp("Since the slip is greater than 100%, the motor
       operates as brake");
71 \text{ end};
72 if(s5<0)
73 disp("Since the slip is negative, the motor operates
       as generator");
74 \text{ end};
75 f5=s5*f1;
76 disp(sprintf("And the frequency is %d Hz",f5));
```

```
77 if(f5<0)
78 disp("Since frequency is negative, phase sequence of
       voltage induced in rotor winding is reversed");
79 end;
80
81 //END</pre>
```

Scilab code Exa 10.3 3 phase induction motor running at 1140 rpm

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 3
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 3");
7
  //VARIABLE INITIALIZATION
                                       //full load speed
9 N_r = 1140;
     in rpm
                                       //frequency in Hz
10 f = 60;
11
12 //SOLUTION
13
14 // solution (i)
15 P = (120*f)/N_r;
16 P=round(P);
                                      //since the number
      of poles cannot be a fraction
17 disp(sprintf("(i) The number of poles is %d",P));
18
19 //solution (ii)
20 N_s = (120*f)/P;
21 s = (N_s - N_r) / N_s;
22 disp(sprintf("(ii) The slip at full load is %d \%",s
      *100));
23
```

```
24 //solution (iii)
25 f_r=s*f;
26 disp(sprintf("(iii) The frequency of the rotor
      voltge is %d Hz",f_r));
27
28 //solution (iv)
29 N1 = (120 * f_r)/P;
                                       //speed of rotor
      field w.r.t stator
30 \text{ N1} = \text{round}(\text{N1});
31 disp(sprintf("(iv) The speed of rotor field w.r.t
      rotor is %d rpm", N1));
32
33 //solution (v)
34 N2 = N_r + N1;
                                       //speed of stator
      field w.r.t stator field
  N3=N_s-N2;
                                       //speed of rotor
      field w.r.t stator field
  disp(sprintf("(v) The speed of rotor field w.r.t
      stator field is %d rpm", N3));
  disp("Hence, the rotor field is stationary w.r.t
      stator field");
38
39 //solution (vi)
40 ratio=10/100;
                                         //since it is
      specified that slip is 10%
41 N_r=N_s*(1-ratio);
42 N_r = round(N_r);
43 disp(sprintf("(vi) The speed of rotor at 10%% slip
      is %d rpm", N_r));
44 s1 = (N_s - N_r) / N_s;
45 fr=s1*f;
46 disp(sprintf(" The rotor frequency at this speed is
      %f Hz",fr));
47
48 //solution (vii)
49 v = 230;
50 \text{ ratio} 1 = 1/0.5;
                                       //stator to rotor
      turns ratio
```

Scilab code Exa 10.4 3 phase squirrel cage motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 4
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 4");
7
  //VARIABLE INITIALIZATION
9 \text{ r2=0.2};
                                     //in Ohms
                                     //in Ohms
10 X2=2;
11
12 //SOLUTION
13 s_m=r2/X2;
14
15 //solution (a)
16 \text{ s=1};
17 ratio1=2/((s/s_m)+(s_m/s)); //ratio of T_starting
       and T<sub>max</sub>
18 ratio2=2*ratio1;
                                     //ratio of T_starting
       and T_full-load (T_max=2*T_full-load)
19 disp(sprintf("(a) If the motor is started by direct-
      on-line starter, the ratio of starting torque to
      full load torque is %f", ratio2));
20
21 // solution (b)
22 ratio3=(1/3)*ratio2;
                                    //In star-delta
```

Scilab code Exa 10.5 Speed of motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 5
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 5");
8 //VARIABLE INITIALIZATION
                                      //number of poles
9 P1=12;
     of alternator
10 N_s1=500;
                                      //synchronous speed
       of 12-pole alternator in rpm
11 P2=8:
                                      //number of poles
      of motor
                                      //slip of the motor
12 s = 0.03;
      in p.u.
13
14 //SOLUTION
15 f = (N_s1*P1)/120;
16 N_s2=(120*f)/P2;
                                      //synchronous speed
```

Scilab code Exa 10.6 Speed of 4 pole induction motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 6
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 6");
8 //VARIABLE INITIALIZATION
9 P = 4;
                                  //number of poles
10 f_r=2;
                                  //rotor frequency in
     Hertz
11 f_s=50;
                                  //stator frequency in
     Hertz
                                  //line voltage in Volts
12 E=400;
13 ratio=1/0.5;
                                  //stator to rotor turn
      ratio
14
15 //SOLUTION
16 s=f_r/f_s;
17 N_s = (120*f_s)/P;
                                  //synchronous speed
18 N_r = N_s * (1-s);
                                  //rotor speed
19 N_r=round(N_r);
20 disp(sprintf("The speed of the motor is %d rpm", N_r)
      );
```

Scilab code Exa 10.7 4 pole 3 phase induction motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 7
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 7");
8 //VARIABLE INITIALIZATION
9 P = 4;
                                    //number of poles
                                    //frequency in Hz
10 f = 50;
                                    //rotor resistance in
11 r2=0.1;
      Ohms
12 X2=2;
                                    //standstill
      reactance in Ohms
13 E1=100;
                                    //induced emf between
       slip ring in Volts
14 N_r = 1460;
                                    //full load speed in
     rpm
15
16 //SOLUTION
17
18 // solution (i)
19 N_s = (120*f)/P;
```

```
20 s_fl=(N_s-N_r)/N_s;
21 disp(sprintf("(i) The slip at full load is %f \%",
      s_fl*100));
22 s_m=r2/X2;
23 disp(sprintf("The slip at which maximum torque
      occurs is \%f \%\%, s_m*100));
24
25 //solution (ii)
26 E2 = E1/sqrt(3);
                                    //phase voltage=(line
       voltage)/sqrt(3) for star connection
  disp(sprintf("(ii) The emf induced in rotor is %f V
     per phase", E2));
28
29 //solution (iii)
30 X2_dash=s_fl*X2;
31 disp(sprintf("(iii) The rotor reactance per phase is
           ", X2_dash));
32
33 //solution (iv)
34 z = sqrt((r2^2) + (X2_dash)^2);
35 I2=(s_f1*E2)/z;
36 disp(sprintf("(iv) The rotor current is %f A", I2));
37
38 //solution (v)
39 pow_fact_r=r2/z;
40 disp(sprintf("(v) The rotor power factor is %f (
      lagging)",pow_fact_r));
41
42 / END
```

Scilab code Exa 10.8 3 phase induction motor with synchronous speed 1200 rpm

```
1\ // {\rm CHAPTER}\ 10-\ {\rm THREE-PHASE}\ {\rm INDUCTION}\ {\rm MACHINES} 2\ // {\rm Example}\ 8
```

```
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 8");
7
8 //VARIABLE INITIALIZATION
9 N_s = 1200;
                                  //synchronous speed in
      rpm
10 p_in=80;
                                  //input power in kW
                                  //copper and iron
11 loss=5;
      losses in kW
                                  //friction and windage
12 f_loss=2;
      loss in kW
13 N = 1152;
                                  //rotor speed in rpm
14
15 //SOLUTION
16
17 // solution (a)
18 p_rotor=p_in-loss;
19 disp(sprintf("(a) The active power transmitted to
      rotor is %d kW",p_rotor));
20
21 / solution (b)
22 s = (N_s - N) / N_s;
23 cu_loss=s*p_rotor;
24 disp(sprintf("(b) The rotor copper loss is %d kW",
      cu_loss));
25
26 / solution (c)
                                  // since P2:Pcu:Pm=1:s
27 p_m = (1-s) * p_rotor;
     :(1-s)
28 disp(sprintf("(c) The mechanical power developed is
     %d kW", p_m);
29
30 // solution (d)
31 p_shaft=p_m-f_loss;
                                  //output power
32 disp(sprintf("(d) The mechanical power developed to
      load is %d kW",p_shaft));
```

Scilab code Exa 10.9 150 kW 6 pole star connected induction motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 9
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 9");
7
8 //VARIABLE INITIALIZATION
                                        //in Watts
9 p=150*1000;
10 \quad v = 3000;
                                         //in Volts
11 f = 50;
                                        //in Hertz
                                        //number of poles
12 P=6;
13 ratio=3.6;
                                        //ratio of stator
      turn to rotor turn
                                        //rotor resistance
14 \text{ r2=0.1};
      in Ohms
15 L=3.61/1000;
                                         //leakage
      inductance per phase in Henry
16
17 //SOLUTION
18
19 // solution (a)
20 X2 = 2 * \%pi * f * L;
21 \quad E1=v/sqrt(3);
22 E2=E1*(1/ratio);
```

```
23 z1=sqrt((r2^2)+(X2^2));
24 I2=E2/z1;
                                        //rotor current
25 I_s=I2/ratio;
                                        //stator current
26 \text{ N_s} = (120*f)/P;
27 w = (2*\%pi*N_s)/60;
28 T_s1=(3*E2^2*r2)/(w*z1^2);
29 disp(sprintf("(a) The starting current is %f A and
      torque is \%f N-m, I_s, T_s1);
30
31 //solution (b)
32 I_s1=30;
33 I_r=ratio*I_s1;
34 r = sqrt(((E2/I_r)^2) - (X2^2));
35 \text{ r_ext=r-r2};
36 z2 = sqrt((r_ext^2) + (X2^2));
37 T_s2=(3*E2^2*r)/(w*z2^2);
38 disp(sprintf("(b) The external resistance is %f
      and torque is \%f N-m, r_ext, T_s2));
39
40 //There answers are different due to precision of
      floating point numbers
41
42 / END
```

Scilab code Exa 10.10 6 pole 60 Hz induction motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 10
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 10");
7
8 //VARIABLE INITIALIZATION
9 P=6; //number of poles
```

```
10 f = 60;
                                       //in Hertz
                                       //stator input in
11 p=48;
      Watts
12 N_r = 1140;
                                       //in rpm
13 cu_loss=1.4;
                                       //stator copper loss
       in Watts
14 cr_loss=1.6;
                                       //stator core loss
      in Watts
15 \text{ me_loss=1};
                                       //rotor mechanical
      loss in Watts
16
17 //SOLUTION
18 N_s = (120*f)/P;
19 s = (N_s - N_r) / N_s;
20 p_g=p-(cu_loss+cr_loss);
                                       //rotor input
                                       //output mechanical
21 p_m = p_g * (1-s);
      power
22 p_sh=p_m-me_loss;
                                       //shaft power
23 \text{ eff=p_sh/p};
24 disp(sprintf("The motor efficiency is %f %%", eff
      *100));
25
26 //END
```

Scilab code Exa 10.11 4 pole induction motor

```
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
//Example 11

clc;
disp("CHAPTER 10");
disp("EXAMPLE 11");

//VARIABLE INITIALIZATION
P1=4; //number of poles
```

```
10 s = 5/100;
                                   //slip
                                   //frequency of
11 f=60;
      synchronous generator in Hertz
12
13 //SOLUTION
14
15 //solution (a)
16 N_s = (120*f)/P1;
                                   //synchronous speed of
       generator in rpm with four poles
17 N_r = N_s * (1-s);
                                   //rotor or motor speed
       in rpm
                                   //to round off the
18 N_r = round(N_r);
      value
19 disp(sprintf("(a) The speed of the motor is %d rpm",
     N_r));
20
21 / solution (b)
22 P2=6;
23 N_s = (120*f)/P2;
                                   //synchronous speed of
       generator in rpm with six poles
24 disp(sprintf("(b) The speed of the generator is %d
     rpm", N_s));
25
26 //END
```

Scilab code Exa 10.12 3 phase 440 V distribution

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 12
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 12");
7
8 //VARIABLE INITIALIZATION
```

```
9 v = 440;
                                      //line voltage in
      Volts
                                      //line current in
10 I = 1200;
     Amperes
11 eff=0.85;
                                      //full load
      efficiency
                                      //full load power
12 pow_fact = 0.8;
      factor
13
14 //SOLUTION
15
16 // solution (a)
17 I_fl1=I/5;
                                      //starting current
      at rated voltage is 5 times the rated full-load
      current
18 p1=sqrt(3)*v*I_fl1*pow_fact*eff;
19 disp(sprintf("(a) The maximum permissible kW rating
     when the motor when it starts at full voltage is
     %f kW", p1/1000);
20
21 / solution (b)
                                       //voltage is
22 x = 0.8;
     stepped down to 80%
23 I_f12=I/((x^2)*5);
24 p2=sqrt(3)*v*I_f12*pow_fact*eff;
25 disp(sprintf("(b) The maximum permissible kW rating
     when the motor is used with an auto-transformer
      is \%f kW",p2/1000);
26
27 //solution (c)
28 I_f13=I/((0.578^2)*5);
                                       //since a star-
      delta is equivalent to an auto-transformer
      starter with 57.8% tapping
29 p3=sqrt(3)*v*I_f13*pow_fact*eff;
30 disp(sprintf("(c) The maximum permissible kW rating
     when the motor is used with star-delta starter is
      %f \text{ kW}, p3/1000));
31
```

```
32 //The answers are slightly different due to precision of floating point numbers
33 34 //END
```

Scilab code Exa 10.13 3 phase 50 Hz induction motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 13
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 13");
8 //VARIABLE INITIALIZATION
                                    //frequency in Hertz
9 f = 50;
10 N_r = 1440;
                                    //full-load rotor
     speed in rpm
11
12 //SOLUTION
13
14 // solution (a)
15 function N=speed(pole); //function 'speed()'
      calculates the synchronous speed in rpm
16 N = (120*f)/pole;
17 endfunction;
18
19 pole=2;
20 N=speed(pole);
21 if(N>N_r & N<2000)
22 P=pole;
23 N_s1=N;
24 disp(sprintf("(a) The number of poles is %d",P));
25 end;
26 \text{ pole=4};
```

```
27 N=speed(pole);
28 if(N>N_r & N<2000)
29 P=pole;
30 N_s1=N;
31 disp(sprintf("(a) The number of poles is %d",P));
32 \text{ end};
33 \text{ pole=6};
34 N=speed(pole);
35 if(N>N_r & N<2000)
36 P=pole;
37 \, N_s1=N;
38 disp(sprintf("(a)) The number of poles is %d",P));
39 end;
40
41 // solution (b)
42 s = (N_s1 - N_r)/N_s1;
43 \text{ f_r=s*f};
44 disp(sprintf("(b) The slip is %f \% and rotor
      frequency is %d Hz",s*100,f_r));
45
46 // solution (c)
47 w1 = (2*\%pi*N_s1)/60;
48 \operatorname{disp}(\operatorname{sprintf}("(c(i))) The speed of stator field w.r.t
      . stator structure is %f rad/s",w1)); //Answer
      given in the book is wrong
49 N_s2=N_s1-N_r;
50 \text{ w2} = (2*\%\text{pi}*N_s2)/60;
51 disp(sprintf("(c(ii)) The speed of stator field w.r.
      t. rotor structure is %f rad/s", w2));
52
53 //solution (d)
                                       //converting rpm to
54 factor = (2*\%pi)/60;
      radian/second
55 \text{ N_r1} = (120*f_r)/P;
56 disp(sprintf("(d(i)))) The speed of rotor field w.r.t.
       rotor structure is %f rad/s", N_r1*factor));
57 N_r2 = N_r + N_r1;
58 disp(sprintf("(d(ii)) The speed of rotor field w.r.t
```

Scilab code Exa 10.14 10 kW 400 V delta connected induction motor

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 14
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 14");
7
8 //VARIABLE INITIALIZATION
9 p=10*1000;
                                     //in Watts
10 I_nl=8;
                                     //no load line
      current in Amperes
11 p_ni=660;
                                     //input power at no
     load in Watts
12 I_fl=18;
                                     //full load current
     in Amperes
13 p_fi=11.20*1000;
                                     //input power at
      full load in Watts
14 r=1.2;
                                     //stator resistance
     per phase in Ohms
15 \; loss=420;
                                     //friction and
      winding loss in Watts
16
17 //SOLUTION
18
19 //solution (a)
                                     //phase current=(
20 I1=I_nl/sqrt(3);
```

```
line current)/sqrt(3) for delta connection
21 i_sq_r1=(I1^2)*r*3;
                                     // stator ((I^2)*R)
      loss at no load; since resistance is given in per
       phase, 3 needs to be multiplied for 3-phase
22 \text{ s_loss=(p_ni-loss)-(i_sq_r1);}
23 disp(sprintf("(a) The stator core loss is %f W',
      s_loss));
24
25 //solution (b)
26 I2=I_f1/sqrt(3);
27 i_sq_r2=(I2^2)*r*3;
28 p_g=p_fi-s_loss-i_sq_r2; //air-gap power at
      full load
29 r_loss=p_g-p;
30 disp(sprintf("(b) The total rotor loss at full load
      is %f W, r_loss));
31
32 //solution (c)
33 o_loss=r_loss-loss;
34 disp(sprintf("(c) The total rotor ohmic loss at full
       load is %f W",o_loss));
35
36 //solution (d)
                                    //full load slip
37 \text{ s_fl=o_loss/p_g};
38 N_s = 1500;
39 N_r = N_s * (1 - s_f 1);
40 disp(sprintf("(d) The full load speed is %f rpm", N_r
      ));
41
42 //solution (e)
43 w = (2 * \%pi * N_s)/60;
44 T_e=p_g/w;
45 disp(sprintf("(e) The internal torque is %f N-m", T_e
      ));
46 T_{sh=p/(w*(1-s))};
47 disp(sprintf("
                      The shaft torque is %f N-m", T_sh))
48 \text{ eff=p/p_fi};
```

```
49 disp(sprintf(" The motor efficiency is %f %%",eff
     *100));
50
51 //The answers may be slightly different due to
     precision of floating point numbers
52
53 //END
```

Scilab code Exa 10.15 4 pole 3 phase SRIM

```
1 //CHAPTER 10- THREE-PHASE INDUCTION MACHINES
2 //Example 15
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 15");
  //VARIABLE INITIALIZATION
                                      //number of poles
9 P = 4;
10 f_s=50;
                                      //in Hertz
11 f_l=20;
                                      //in Hertz
12
13 //SOLUTION
14
15 // solution (a)
16 N1 = (120 * f_s)/P;
                                      //speed of rotor
      field w.r.t. stator structure
17 N2 = (120 * f_1)/P;
                                      //speed of rotor
      field w.r.t. rotor structure
18 N_r1=N1-N2;
19 N_r2=N1+N2;
20 disp("(a) The prime mover should should drive the
      rotor at two speeds—");
21 disp(sprintf("At %d rpm in the direction of stator
      field", N_r1));
```

```
22 disp(sprintf("At %d rpm against the direction of
      stator field", N_r2));
23
24 //solution (b)
25 s1 = (N1 - N_r1)/N1;
26 \text{ s2} = (N1 - N_r2) / N1;
                                       //all other
27 \text{ ratio}=s1/s2;
      parameters in the expressions of the two voltages
       are equal
  disp(sprintf("(b) The ratio of the two voltages at
      the two speeds is %d", ratio));
29
30 //solution (c)
31 disp("(c)) The poles sequence of -3 rotor voltage
      do not remain the same");
32
33 / END
```

Scilab code Exa 10.16 3 phase induction motor

```
//CHAPTER 10- THREE-PHASE INDUCTION MACHINES
  //Example 16
3
4 clc;
5 disp("CHAPTER 10");
6 disp("EXAMPLE 16");
  //VARIABLE INITIALIZATION
9 ratio1=1.5;
                                      //ratio of starting
      torque (T_est) and full load torque (T_efl)
10 ratio2=2.5;
                                      //ratio of maximum
      torque (T<sub>em</sub>) and T<sub>efl</sub>
11
12
  //SOLUTION
13
```

```
14 //solution (a) (taking the ratio of T_est and T_em)
15 \text{ s=1};
                                      //at starting slip is
       equal to 1
16
17 //directly solving the quadratic equation (a,b and c
       are the coefficients of the quadratic equation)
18 \ a=1;
19 b = -3.333;
20 c = 1;
21 D=(b)^2-(4*a*c);
                                      //discriminant
22 \text{ sm1} = (-b + \text{sqrt}(D)) / (2*a);
23 sm2 = (-b - sqrt(D)) / (2*a);
24 \text{ if } (sm1 \le 0 \& sm2 \le 0) \text{ then}
25 disp("The value of the slip at maximum torque (
      maximum slip) is not valid");
26 \text{ else if}(sm1>0 \& sm1<1)
27 disp(sprintf("The slip at maximum torque (maximum
      slip) is \%f", sm1)); //slip is a unitless
      quantity
28 else if (sm2>0 & sm2<1)
29 disp(sprintf("The slip at maximum torque (maximum
      slip) is %f", sm2));
30 \text{ end};
31
32 //solution (b) (taking the ratio of T_efl and T_em)
33 //directly solving the quadratic equation
34 a=1;
35 b = -1.665;
36 c = 0.111;
37 D=(b)^2-(4*a*c);
38 ans1=(-b+sqrt(D))/(2*a);
39 ans2=(-b-sqrt(D))/(2*a);
40 if (ans1>0 & ans1<1)
41 disp(sprintf("The full load slip is %f", ans1));
42 	 sfl=ans1;
43 else if (ans2>0 & ans2<1)
44 disp(sprintf("The full load slip is %f",ans2));
45 \text{ sfl=ans2};
```

```
46 end;
47
48 //solution (c)
49 I=sqrt(ratio1/sfl);
50 disp(sprintf("The rotor current at the starting in terms of full load current is %f A",I));
51
52 //END
```

Chapter 11

Single Phase Induction Motor

Scilab code Exa 11.1 Shaft torque

```
1 //CHAPTER 11- SINGLE PHASE INDUCTION MOTOR
2 //Examle 1
3
4 clc;
5 disp("CHAPTER 11");
6 disp("EXAMPLE 1");
8 //VARIABLE INITIALIZATION
9 P=6;
                              //number of poles
                              //frequency in Hz
10 f = 50;
                              //gross power absorbed by
11 p_fd=160;
     forward field in Watts
                              //gross power absorbed by
12 p_bd=20;
     backward field in Watts
13 N_r = 950;
                              //rotor speed in rpm
                              //no load frictional loss
14 loss=75;
     in Watts
15
16 //SOLUTION
17 P_g=p_fd-p_bd;
                              //air-gap power in Watts
18 N_s = (120*f)/P;
                              //synchronous speed in rpm
```

Scilab code Exa 11.2 Slip and resistance in forward and backward direction

```
1 //CHAPTER 11- SINGLE PHASE INDUCTION MOTOR
2 //Example 2
3
4 clc;
5 disp("CHAPTER 11");
6 disp("EXAMPLE 2");
8 //VARIABLE INITIALIZATION
                     //number of poles
9 P = 4;
                     //frequency in Hz
10 f = 60;
                     //rotor speed in rpm
11 N_r = 1710;
                     //rotor resistance at standstill
12 r2=12.5;
     in Ohms
13
14 //SOLUTION
15
16 N_s=(120*f)/P; //synchronous speed in rpm
17
18 // solution (a)
19 disp("Solution (a)");
```

```
20 S_f = (N_s - N_r)/N_s;
21 disp(sprintf("The per unit slip in the direction of
     rotation is %f pu",S_f));
22 r_f = 0.5*(r2/S_f);
23 disp(sprintf("The effective forward rotor resistance
       is %f ",r_f));
24
25 //solution (b)
26 disp("Solution (b)");
27 S_b = (N_s + N_r)/N_s;
28 disp(sprintf("The per unit slip in the opposite
      direction is %f pu", S_b));
29 r_b=0.5*(r2/S_b);
30 disp(sprintf("The effective backward rotor
     resistance is %f ",r_b));
31
32 / END
```