

I cannot follow the lectures. Where are we?

- We have covered Ch 1 4
- We are in the middle of Chapter 5
 - Review functional and structural modeling and the corresponding UML notations:
 - Read again Ch 3, pp. 43 61, Ch 5.3
- From use cases to class diagrams
 - Identify participatory objects in flow of events descriptions
 - Exercise: Apply Abbot's technique to Fig. 5-7, p. 175
 - Identify entity, control and boundary objects
 - Heuristics to find these types: Ch 5, Section 5.4
- We are now moving into dynamic modeling
- Notations for dynamic models are
 - Interaction-, Communication-, Statechart-, Activity diagrams, Reread Ch. 2, pp. 62-68

Outline of the Lecture

- Dynamic modeling
 - Interaction Diagrams (Choreography)
 - Sequence diagrams
 - Communication diagrams
 - BPMN & DCR Choreographies
 - State diagrams
 - DCR Graphs
- Requirements analysis model validation
- Analysis Example

Dynamic Modeling with UML

- Two UML diagrams types for describing dynamic models:
 - Statechart diagrams describe the dynamic behavior of a single object (Also called process models)
 - Interaction diagrams describe the dynamic behavior between objects. (Also called choreographies)

UML State Chart Diagram

State Chart Diagram

 A notation for a state machine that describes the response of an object of a given class to the receipt of outside stimuli (Events)

State Machine

 A model of behavior composed of a finite number of states, transitions between those states, and actions

Moore Machine

 A special type of state machine, where the output depends only on the state

Mealy Machine

 A special type of state machine where the output depends on the condition, event, action of the transition and the state.

UML Interaction Diagrams

- Two types of interaction diagrams:
 - Communication Diagram:
 - Shows the temporal relationship among objects
 - Position of objects is identical to the position of the classes in the corresponding UML class diagram
 - Good for identifying the protocol between objects
 - Does not show time
 - Sequence Diagram:
 - Describes the dynamic behavior between several objects over time
 - Good for real-time specifications.

Example of a Communication Diagram

- 1) We start with the Class Diagram for 2Bwatch
- 2) Then we look at the sequence of events when Joe sets the time on 2Bwatch

Example of a Communication Diagram

Joe sets the time on 2Bwatch

Dynamic Modeling

- Definition of a dynamic model:
 - Describes the components of the system that have interesting dynamic behavior
- The dynamic model is described with
 - State diagrams: One state diagram for each class with interesting dynamic behavior
 - Classes without interesting dynamic behavior are not modeled with state diagrams
 - Sequence and communication diagrams: For the interaction between classes

Purpose:

 Identify new classes in the object model and supply operations for the classes.

Identify Classes and Operations

- We have already established several sources for class identification:
 - Application domain analysis: We find classes by talking to the client and identify abstractions by observing the end user
 - General world knowledge and intuition
 - Textual analysis of event flow in use cases (Abbot)
- Two additional heuristics for identifying classes from dynamic models:
 - Actions in state chart diagrams are candidates for public operations in classes
 - Activity lines in sequence diagrams are candidates for objects.

How do we detect Operations?

- We look for objects, who are interacting and extract their "protocol"
- We look for objects, who have interesting behavior on their own
- Good starting point: Flow of events in a use case description
- From the flow of events we proceed to the sequence diagram to find the participating objects.

How do we detect Operations?

- We look for objects, who are interacting and extract their "protocol"
- We look for objects, who have interesting behavior on their own
- Good starting point: Flow of events in a use case description
- From the flow of events we proceed to the sequence diagram to find the participating objects.

What is an Event?

- Something that happens at a point in time
- An event sends information from one object to another
- Events can have associations with each other:
 - Causally related:
 - An event happens always before another event
 - An event happens always after another event
 - Causally unrelated:
 - Events that happen concurrently
- Events can also be grouped in event classes with a hierarchical structure => Event taxonomy.

The term 'Event' is often used in two ways

- Instance of an event class:
 - "Slide 14 shown on Friday November 27 at 9:23"
 - Event class "Lecture Given", Subclass "Slide Shown"
- Attribute of an event class
 - Slide Update(8:55 AM, 11/27/2009)
 - Train_Leaves(4:45pm, Manhattan)
 - Mouse button down(button#, tablet-location).

Finding Participating Objects

- Heuristic for finding participating objects:
 - A event always has a sender and a receiver
 - Find the sender and receiver for each event => These are the objects participating in the use case.

An Example

- Flow of events in "Get SeatPosition" use case :
 - 1. Establish connection between smart card and onboard computer
 - 2. Establish connection between onboard computer and sensor for seat
 - 3. Get current seat position and store on smart card
- Where are the objects?

Sequence Diagram for "Get SeatPosition"

Heuristics for Sequence Diagrams

Layout:

1st column: Should be the actor of the use case 2nd column: Should be a boundary object 3rd column: Should be the control object that manages the rest of the use case

Creation of objects:

- Create control objects at beginning of event flow
- The control objects create the boundary objects

Access of objects:

- Entity objects can be accessed by control and boundary objects
- Entity objects should not access boundary or control objects.

Is this a good Sequence Diagram?

The first column is not an actor

It is not clear where the boundary object is

It is not clear where the control object is

Another Example: Finding Objects from a Sequence Diagram

- Let's assume ARENA's object model contains at this modeling stage - the following six objects
 - League Owner, League, Tournament, Match and Player

Another Example: Finding Objects from a Sequence Diagram

- Let's assume ARENA's object model contains at this modeling stage - the following six objects
 League Owner, League, Tournament, Match and Player
 - We now model the use case CreateTournament with a sequence diagram

ARENA Sequence Diagram: Create Tournament

Another Example: Finding Objects from a Sequence Diagram

The Sequence Diagram identified 3 new Classes

Tournament Boundary, Announce_Tournament_Control and Arena

ARENA Sequence Diagram: Create Tournament :Tournament :Arena :League **Boundary** League **Owner** newTournament (league) :Announce «new» **Tournament** Control checkMax Tournament() setName(name) setMaxPlayers (maxp) commit() create createTournament **Tournament** «new» (name, maxp) (name, maxp) :Tournament Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 26

Impact on Arena's Object Model

Impact on ARENA's Object Model (2)

- The sequence diagram also supplies us with many new events
 - newTournament(league)
 - setName(name)
 - setMaxPlayers(max)
 - commit
 - checkMaxTournament()
 - createTournament
- Question:
 - Who owns these events?
- Answer:
 - For each object that receives an event there is a public operation in its associated class
 - The name of the operation is usually the name of the event.

Example from the Sequence Diagram :Tournament :Arena :League **Boundary** League **Owner** newTournament (league) :Announce «new» **Tournament** Control checkMax Tournament() setName(name) setMaxPlayers (maxp) commit() create createTournament **Tournament** «new» (name, maxp) :Tournament (name, maxp) Bernd Bruegge & Allen H. Dutoit Object-Oriented Software Engineering: Using UML, Patterns, and Java 29

What else can we get out of Sequence Diagrams?

- Sequence diagrams are derived from use cases
- The structure of the sequence diagram helps us to determine how decentralized the system is
- We distinguish two structures for sequence diagrams
 - Fork Diagrams and Stair Diagrams (Ivar Jacobsen)

Fork Diagram

- The dynamic behavior is placed in a single object, usually a control object
 - It knows all the other objects and often uses them for direct questions and commands

Stair Diagram

- The dynamic behavior is distributed. Each object delegates responsibility to other objects
 - Each object knows only a few of the other objects and knows which objects can help with a specific behavior

Fork or Stair?

- Object-oriented supporters claim that the stair structure is better
- Modeling Advice:
 - Choose the stair a decentralized control structure if
 - The operations have a strong connection
 - The operations will always be performed in the same order
 - Choose the fork a centralized control structure if
 - The operations can change order
 - New operations are expected to be added as a result of new requirements.

Review: UML Statechart Diagram Notation

- Events are italics
- Conditions are enclosed with brackets: []
- Actions are prefixed with a slash /
- UML statecharts are based on work by Harel
 - Added are a few object-oriented modifications.

Example of a StateChart Diagram

State

- State: An abstraction of the attributes of a class
 - State is the aggregation of several attributes a class
- A state is an equivalence class of all those attribute values and links that do no need to be distinguished
 - Example: State of a bank
- State has duration.

State Chart Diagram vs Sequence Diagram

- State chart diagrams help to identify:
 - Changes to an individual object over time
- Sequence diagrams help to identify:
 - The temporal relationship of between objects over time
 - Sequence of operations as a response to one ore more events.

Dynamic Modeling of User Interfaces

- Statechart diagrams can be used for the design of user interfaces
- States: Name of screens
- Actions are shown as bullets under the screen name

Navigation Path Example

Diagnostics Menu

••User moves cursor to Control Panel or Graph

Control panel

• User selects functionality of sensors

Define

• User defines a sensor event from a list of events

Enable

 User can enable a sensor event from a list of sensor events

Disable

 User can disable a sensor event from a list of sensor events

Graph

• User selects data group and type of graph

Selection

- User selects data group
 - Field site
 - Car
 - Sensor group
 - Time range

Practical Tips for Dynamic Modeling

- Construct dynamic models only for classes with significant dynamic behavior
 - Avoid "analysis paralysis"
- Consider only relevant attributes
 - Use abstraction if necessary
- Look at the granularity of the application when deciding on actions and activities
- Reduce notational clutter
 - Try to put actions into superstate boxes (look for identical actions on events leading to the same state).

Outline of the Lecture

- Dynamic modeling
 - Interaction Diagrams
 - Sequence diagrams
 - Communication diagrams
 - State diagrams
- Requirements analysis model validation
 - Analysis Example

Model Validation and Verification

- Verification is an equivalence check between the transformation of two models
- Validation is the comparison of the model with reality
 - Validation is a critical step in the development process Requirements should be validated with the client and the user.
 - Techniques: Formal and informal reviews (Meetings, requirements review)
- Requirements validation involves several checks
 - Correctness, Completeness, Ambiguity, Realism

Checklist for a Requirements Review

- Is the model correct?
 - A model is correct if it represents the client's view of the system
- Is the model complete?
 - Every scenario is described
- Is the model consistent?
 - The model does not have components that contradict each other
- Is the model unambiguous?
 - The model describes one system, not many
- Is the model realistic?
 - The model can be implemented

Verification vs Validation of models

Examples for Inconsistency and Completeness Problems

- Different spellings in different UML diagrams
- Omissions in diagrams

Different spellings in different UML diagrams

UML Sequence Diagram

UML Class Diagram

Omissions in some UML Diagrams

Class Diagram

Checklist for a Requirements Review (2)

- Syntactical check of the models
- Check for consistent naming of classes, attributes, methods in different subsystems
- Identify dangling associations ("pointing to nowhere")
- Identify double- defined classes
- Identify missing classes (mentioned in one model but not defined anywhere)
- Check for classes with the same name but different meanings

When is a Model Dominant?

- Object model:
 - The system has classes with nontrivial states and many relationships between the classes
- Dynamic model:
 - The model has many different types of events: Input, output, exceptions, errors, etc.
- Functional model:
 - The model performs complicated transformations (eg. computations consisting of many steps)
- Which model is dominant in these applications?
 - Compiler
 - Database system
 - Spreadsheet program

Examples of Dominant Models

Compiler:

- The functional model is most important
- The dynamic model is trivial because there is only one type input and only a few outputs
 - Is that true for development □ environments (e.g. Eclipse)?

Database systems:

- The object model most important
- The functional model is trivial, because the purpose of the functions is to store, organize and retrieve data

Spreadsheet program:

- The functional model most important
- The dynamic model is interesting if the program allows computations on a cell
- The object model is trivial.

Requirements Analysis Document Template

- 1. Introduction
- 2. Current system
- 3. Proposed system
 - 3.1 Overview
 - 3.2 Functional requirements
 - 3.3 Nonfunctional requirements
 - 3.4 Constraints ("Pseudo requirements")
 - 3.5 System models
 - 3.5.1 Scenarios
 - 3.5.2 Use case model
 - 3.5.3 Object model
 - 3.5.3.1 Data dictionary
 - 3.5.3.2 Class diagrams
 - 3.5.4 Dynamic models
 - 3.5.5 User interfae
- 4. Glossary

Section 3.5 System Models

3.5.1 Scenarios

- As-is scenarios, visionary scenarios

3.5.2 Use case model

- Actors and use cases

3.5.3 Object model

- Data dictionary
- Class diagrams (classes, associations, attributes and operations)

3.5.4 Dynamic model

- State diagrams for classes with significant dynamic behavior
- Sequence diagrams for collaborating objects (protocol)

3.5.5 User Interface

- Navigational Paths, Screen mockups

Requirements Analysis Questions

1. What are the transformations?

Create scenarios and use case diagrams

- Talk to client, observe, get historical records
- 2. What is the structure of the system?

Object Modeling

Create class diagrams

- Identify objects.
- What are the associations between them?
- What is their multiplicity?
- What are the attributes of the objects?
- What operations are defined on the objects?
- 3. What is its behavior?

Dynamic Modeling

Create sequence diagrams

- Identify senders and receivers
- Show sequence of events exchanged between objects.
- Identify event dependencies and event concurrency.

Create state diagrams

- Only for the dynamically interesting objects.

Let's Do Analysis: A Toy Example

- Analyze the problem statement
 - Identify functional requirements
 - Identify nonfunctional requirements
 - Identify constraints (pseudo requirements)
- Build the functional model:
 - Develop use cases to illustrate functional requirements
- Build the dynamic model:
 - Develop sequence diagrams to illustrate the interaction between objects
 - Develop state diagrams for objects with interesting behavior
- Build the object model:
 - Develop class diagrams for the structure of the system

Problem Statement: Direction Control for a Toy Car

- Power is turned on
 - Car moves forward and car headlight shines
- Power is turned off
 - Car stops and headlight goes out.
- Power is turned on
 - Headlight shines
- Power is turned off
 - Headlight goes out
- Power is turned on
 - Car runs backward with its headlight shining

- Power is turned off
 - Car stops and headlight goes out
- Power is turned on
 - Headlight shines
- Power is turned off
 - Headlight goes out
- Power is turned on
 - Car runs forward with its headlight shining

Find the Functional Model: Use Cases

- Use case 1: System Initialization
 - Entry condition: Power is off, car is not moving
 - Flow of events:
 - 1. Driver turns power on
 - Exit condition: Car moves forward, headlight is on
- Use case 2: Turn headlight off
 - Entry condition: Car moves forward with headlights on
 - Flow of events:
 - 1. Driver turns power off, car stops and headlight goes out.
 - 2. Driver turns power on, headlight shines and car does not move.
 - 3. Driver turns power off, headlight goes out
 - Exit condition: Car does not move, headlight is out

Use Cases continued

- Use case 3: Move car backward
 - Entry condition: Car is stationary, headlights off
 - Flow of events:
 - 1. Driver turns power on
 - Exit condition: Car moves backward, headlight on
- Use case 4: Stop backward moving car
 - Entry condition: Car moves backward, headlights on
 - Flow of events:
 - 1. Driver turns power off, car stops, headlight goes out.
 - 2. Power is turned on, headlight shines and car does not move.
 - 3. Power is turned off, headlight goes out.
 - Exit condition: Car does not move, headlight is out

Use Cases Continued

- Use case 5: Move car forward
 - Entry condition: Car does not move, headlight is out
 - Flow of events
 - 1. Driver turns power on
 - Exit condition:
 - Car runs forward with its headlight shining

Use Case Pruning

- Do we need use case 5?
- Let us compare use case 1 and use case 5:

Use case 1: System Initialization

- Entry condition: Power is off, car is not moving
- Flow of events:
 - 1. Driver turns power on
- Exit condition: Car moves forward, headlight is on

Use case 5: Move car forward

- Entry condition: Car does not move, headlight is out
- Flow of events
 - 1. Driver turns power on
- Exit condition:
 - Car runs forward with its headlight shining

Dynamic Modeling: Create the Sequence Diagram

- Name: Drive Car
- Sequence of events:
 - Billy turns power on
 - Headlight goes on
 - Wheels starts moving forward
 - Wheels keeps moving forward
 - Billy turns power off
 - Headlight goes off
 - Wheels stops moving
 - . . .

Sequence Diagram for Drive Car Scenario

Toy Car: Dynamic Model

Toy Car: Object Model

Modeling Concurrency of Events

Two types of concurrency:

- 1. System concurrency
 - The overall system is modeled as the aggregation of state diagrams
 - Each state diagram is executing concurrently with the others.

2. Concurrency within an object

- An object can issue concurrent events
- Two problems:
 - Show how control is split
 - Show how to synchronize when moving to a state without object concurrency

Example of Concurrency within an Object

