自動機與形式語言 Homework 4

Class 02 B03902086 李鈺昇

(1)

L1

Set $q_0 = q_{acc}$ so that the Turing machine directly accepts any input.

L2

Set $q_0 = q_{rej}$ so that the Turing machine directly rejects any input.

L3

First scan through the input to ensure (1) it's non-empty, (2) it only contains 0 or 1, otherwise reject. Then check the rightmost symbol of the input: If it is a 0, accept; otherwise, reject.

L4

Use a 3-tape (containing tape 1, 2, 3) TM to decide L4. Assume that on input w, tape 1 contains w, and other tapes are empty.

- 1. On input w, scan through tape 1 to ensure $w \in \{0,1\}^* \{\epsilon\}$, otherwise reject.
- 2. Assume w = |n|, the binary representation of n. If n = 1, reject.
- 3. Put |2| on tape 2.
- 4. Let i be the number on tape 2 now. If i = n, accept; otherwise, do the following to check if $n \mod i = 0$:
 - Copy |n| to tape 3.
 - While the number on tape 3 is non-negative, subtract i from tape 3.
 - After the loop, it's clear that $n \mod i = 0$ iff the number on tape 3 is 0.
- 5. If $n \mod i = 0$, reject; otherwise, add 1 to the number on tape 2 and go back to step 4.

(2)

Let $L_1 = \{0^n \mid n \ge 0\}$, $L_2 = \{1^n \mid n \ge 0\}$. Since L_1 and L_2 can be generated by regex (0* and 1*, respectively), they are regular and thus decidable. Let M_1 be the decider of L_1 , M_2 be the decider of L_2 .

Now if there is a parallel universe, M_1 decides L; otherwise M_2 decides L. Only one condition would be true, and in either case we know there **exists** a TM that decides L. So L is decidable.

(3)

We can first make the following table by definition:

	∃ acc run, ∄ rej run	∄ acc run, ∃ rej run	∃ acc run, ∃ rej run	∄ acc run, ∄ rej run
Original NTM	accept	reject	accept	reject
Bob's NTM	accept	reject	?	?

For a TM \mathcal{M} and an input w,

- On one hand, if there are both accepting run(s) and rejecting run(s), then in the original version \mathcal{M} accepts w, while in Bob's version \mathcal{M} does not accept w. The behavior is not even undefined.
- On the other hand, if there is neither accepting run nor rejecting run, then in the original version \mathcal{M} rejects w, while in Bob's version \mathcal{M} does not reject w. The behavior is not even undefined.

Hence Bob's definition may lead to some confusion in the above situations.

(4)

Restate this problem as CFL-DFA-Equality = $\{ \lfloor \mathcal{G}, \mathcal{A} \rfloor \mid \mathcal{G} \text{ is CFG, } \mathcal{A} \text{ is DFA, and } L(\mathcal{G}) = L(\mathcal{A}) \}$. First we know that CFL-Universality = $\{ \lfloor \mathcal{G} \rfloor \mid \mathcal{G} = \langle \Sigma, V, R, S \rangle \text{ is CFG and } L(\mathcal{G}) = \Sigma^* \}$ is undecidable. Let \mathcal{A}_0 be the trivial DFA that accepts all strings, i.e. $L(\mathcal{A}_0) = \Sigma^*$.

Now define the computable function $F: \Sigma^* \to \Sigma^*$ such that $F: \lfloor \mathcal{G} \rfloor \mapsto \lfloor \mathcal{G}, \mathcal{A}_0 \rfloor$. Since $\lfloor \mathcal{G} \rfloor \in \mathsf{CFL}$ -Universality if and only if $L(\mathcal{G}) = \Sigma^* = L(\mathcal{A}_0)$ if and only if $\lfloor \mathcal{G}, \mathcal{A}_0 \rfloor \in \mathsf{CFL}$ -DFA-Equality, we know CFL-Universality \leq_m CFL-DFA-Equality. It follows that CFL-DFA-Equality is undecidable since CFL-Universality is undecidable.

(5)

Restate this problem as CFL-Complement = $\{ \lfloor \mathcal{G} \rfloor \mid \mathcal{G} = \langle \Sigma, V, R, S \rangle \text{ is CFG and } \Sigma^* - L(\mathcal{G}) \text{is CFL} \}$. From (4) we know that CFL-DFA-Equality = $\{ \lfloor \mathcal{G}, \mathcal{A} \rfloor \mid \mathcal{G} \text{ is CFG}, \mathcal{A} \text{ is DFA}, \text{ and } L(\mathcal{G}) = L(\mathcal{A}) \}$ is undecidable. Since DFA can be trivially transformed to deterministic pushdown automaton (DPDA), it follows that CFL-DPDA-Equality = $\{ \lfloor \mathcal{G}, \mathcal{D} \rfloor \mid \mathcal{G} \text{ is CFG}, \mathcal{D} \text{ is DPDA}, \text{ and } L(\mathcal{G}) = L(\mathcal{D}) \}$ is undecidable.

Suppose CFL-Complement is decidable by TM ${\mathcal M}$. Then we can use the following procedure to decide CFL-DPDA-Equality:

- Given CFG \mathcal{G} and DPDA \mathcal{D} , run \mathcal{M} on $|\mathcal{G}|$.
- If the output of \mathcal{M} is false, then $L(\mathcal{G})$ is not DCFL (as shown in the textbook). Then $L(\mathcal{G})$ cannot be equal to $L(\mathcal{D})$, so output false. Otherwise, if the output of \mathcal{M} is true, then convert \mathcal{G} to a DCFG $\mathcal{G}_{\mathcal{D}}$. Since the equality problem of DCFL, DCFL-Equality = $\{\lfloor L_1, L_2 \rfloor \mid L_1, L_2 \text{ are DCFL, and } L_1 = L_2\}$, is decidable, say by TM \mathcal{N} , we can output the result of \mathcal{N} on $|L(\mathcal{D}), L(\mathcal{G}_{\mathcal{D}})|$.

Since CFL-DPDA-Equality is undecidable, we know CFL-Complement is undecidable.