Tests d'hypothèses

Université Hassiba Benbouali de Chlef

Soit X_1,\ldots,X_n un échantillon dont la loi dépend d'un paramètre réel ou multidimensionnel $\theta\in\Theta$. Dans le cadre du modèle statistique paramétrique $(\mathcal{X},\mathcal{A},\{\mathbb{P}_{\theta},\theta\in\Theta\})$, nous supposons que Θ est partitionné en Θ_0 et Θ_1 , i.e. :

$$\Theta_0 \cap \Theta_1 = \emptyset$$
 et $\Theta_0 \cup \Theta_1 = \Theta$.

La vraie valeur du paramètre θ est donc soit dans Θ_0 , soit dans Θ_1 . A cette partition nous associons les hypothèses suivantes :

$$\begin{cases}
H_0 : \theta \in \Theta_0 \\
H_1 : \theta \in \Theta_1
\end{cases}$$

 H_0 s'appelle l'hypothèse nulle et H_1 s'appelle l'hypothèse alternative.

Étant donné un modèle statistique paramétrique $(\mathcal{X}, \mathcal{A}, \{\mathbb{P}_{\theta}, \theta \in \Theta\})$, il est possible de définir un ensemble des problèmes de tests paramétriques se rapportant au paramètre θ .

- ▶ Test simple : $\begin{cases} H_0 \ : \ \theta = \theta_0 \\ H_1 \ : \ \theta = \theta_1 \end{cases} \text{, où } \theta_0 \text{ et } \theta_1 \text{ sont connus et } \theta_0 \neq \theta_1.$

$$\begin{cases} H_0 : \theta \notin [\theta_0, \theta_1] \\ H_1 : \theta \in [\theta_0, \theta_1] \end{cases}$$

► Test bilatéral : $\begin{cases} H_0 : \theta = \theta_0 \\ H_1 : \theta \neq \theta_0 \end{cases}$

On appelle l'erreur de première espèce, notée α , la probabilité de rejeter à tort l'hypothèse nulle, i.e. :

$$\alpha = \mathbb{P} \left(\mathsf{choisir} \ H_1 | H_0 \ \mathsf{est} \ \mathsf{vraie} \right).$$

Remarque

Fixer le risque de première espèce du test α selon la gravité des conséquences de l'erreur de première espèce. En général on choisit α petit (0.01 ou 0.05), ce choix nous donne la probabilité maximale de rejeter à tort l'hypothèse H_0 .

On appelle l'erreur de deuxième espèce, notée β , la probabilité de conserver à tort l'hypothèse nulle, i.e. :

$$\beta = \mathbb{P} \left(\text{conserver } H_0 | H_1 \text{ est vraie} \right).$$

Définition 1.4

La puissance du test, notée $1-\beta$, est la probabilité de rejeter avec raison H_0 .

Remarque

On considère généralement que la puissance doit au moins être égale à 0.80 pour être satisfaisante.

On appelle règle de décision, une règle qui permet de décider H_0 ou H_1 au vu des observations, sous la contrainte que le risque de première espèce du test α soit fixé.

Définition 1.6

On appelle région de rejet d'un test, notée W, l'ensemble des valeurs de la statistique de test qui conduisent à rejeter H_0 au profit de H_1 . On a donc :

$$\alpha = \mathbb{P}_{H_0}(W), \quad 1 - \alpha = \mathbb{P}_{H_0}(\bar{W}) \text{ et } 1 - \beta = \mathbb{P}_{H_1}(W).$$

Erreurs et risques

Pour la règle de décision nous avons le tableau suivant :

Décision	Vérité	
	H_0 est vraie	H_1 est vraie
Ne pas rejeter H_0	$1-\alpha$	β
Rejeter H_0	α	$1-\beta$

Remarque

Il vaut mieux dire « ne pas rejeter H_0 » que « accepter H_0 ». En effet, si l'on rejette H_0 , c'est que les observations sont telles qu'il est improbable que H_0 soit vraie. Par contre, si on ne rejette pas H_0 , c'est que les observations ne permettent pas de dire que H_0 est fausse, mais cela ne veut pas dire pour autant que H_0 est vraie.

Construction d'un test

Les démarches de la construction d'un test sont les suivantes :

- \blacksquare choix de H_0 et de H_1
- 2 détermination de la statistique de test
- 3 allure de la région de rejet
- 4 détermination de la loi de la statistique de test sous l'hypothèse H_0 et le calcul de la région de rejet en fonction de α
- f f f eta calcul de la valeur expérimentale de la statistique de test et regarder si les observations se trouvent ou non dans W
- **6** conclusion : rejet ou non-rejet de H_0 .

Exemple : Test de moyenne d'une loi normale avec variance connue

Soit (X_1,\ldots,X_n) un échantillon de loi $\mathcal{N}(m,\sigma^2)$ avec σ connu. On note Φ^{-1} la fonction des quantiles. $z_{1-\alpha}=\Phi^{-1}(1-\alpha)$.

- **2** La statistique du test : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
- 3 La région de rejet : comme $m_1>m_0$, on rejette l'hypothèse H_0 si \bar{X}_n est "trop grand". La région critique sera de la forme $W=\left\{\bar{X}_n>K_\alpha\right\}$

Exemple : Test de moyenne d'une loi normale avec variance connue (suite)

4 Sous l'hypothèse H_0 , \bar{X}_n suit une loi $\mathcal{N}\left(m_0,\frac{\sigma^2}{n}\right)$, il vient donc :

$$\mathbb{P}_{H_0}(\bar{X}_n > K_\alpha) = \mathbb{P}\left(\frac{\sqrt{n}(\bar{X}_n - m_0)}{\sigma} > \frac{\sqrt{n}(K_\alpha - m_0)}{\sigma}\right)$$
$$= 1 - \Phi\left(\frac{\sqrt{n}(K_\alpha - m_0)}{\sigma}\right) = \alpha$$

d'où
$$K_{\alpha}=m_0+\frac{\sigma}{\sqrt{n}}z_{1-\alpha}.$$

Exemple : Test de moyenne d'une loi normale avec variance connue (suite)

f 5 On rejette donc l'hypothèse H_0 si :

$$\boxed{\bar{x}_n > m_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}}$$

6 Puissance : sous l'hypothèse H_1 , \bar{X}_n suit une loi $\mathcal{N}(m_1, \frac{\sigma^2}{n})$, la puissance de ce test est donc définie par :

$$\mathbb{P}_{H_1}(\bar{X}_n > K_\alpha) = \mathbb{P}\left(\frac{\sqrt{n}(\bar{X}_n - m_1)}{\sigma} > \frac{\sqrt{n}(K_\alpha - m_1)}{\sigma}\right)$$
$$= 1 - \Phi\left(\frac{\sqrt{n}(m_0 - m_1)}{\sigma} + z_{1-\alpha}\right).$$

Exemple : Test de moyenne d'une loi normale avec variance connue (suite)

FIGURE – Test de la moyenne d'une loi normale.

Soit un test T de région de rejet W, de niveau α .

- ▶ Un test T' de région de rejet W' est dit plus puissant que T s'il est de niveau $\alpha' \leq \alpha$ et si $\mathbb{P}_{H_1}(W) < \mathbb{P}_{H_1}(W')$.
- Le test T est uniformément plus puissant (en abrégé : UPP) s'il n'existe pas de test T' plus puissant que T.

Théorème de Neyman-Pearson

Soit deux nombres réels $\theta_0 \neq \theta_1$. On cherche à tester, au niveau α :

$$H_0: \theta = \theta_0$$

Contre
 $H_1: \theta = \theta_1$

Théorème 1.8

Pour tout $\alpha \in]0,1[$ donné, il existe un test UPP de niveau α , défini par la région de rejet

$$W = \left\{ (X_1, \dots, X_n) : \frac{\mathcal{L}(\theta_0, X_1, \dots, X_n)}{\mathcal{L}(\theta_1, X_1, \dots, X_n)} \le K \right\}$$

Remarque

La signification intuitive de ce théorème est claire : il s'agit de refuser H_0 lorsque la vraisemblance de l'échantillon en θ_0 est plus « petite » que celle en θ_1 .

Exemple

Soit (X_1,\ldots,X_n) un échantillon de loi $\mathcal{N}(m,\sigma^2)$ avec σ connu. On veut construire un test UPP au niveau α pour

$$\begin{cases} H_0 : m = m_0 \\ H_1 : m = m_1 \end{cases}$$

On rejette l'hypothèse H_0 si $\frac{\mathcal{L}\left(m_0, X_1, \ldots, X_n\right)}{\mathcal{L}\left(m_1, X_1, \ldots, X_n\right)} \leq K$

$$\Leftrightarrow -\frac{1}{2} \sum_{i=1}^{n} (X_i - m_0)^2 + \frac{1}{2} \sum_{i=1}^{n} (X_i - m_1)^2 \le \log(K)$$

$$\Leftrightarrow (m_0 - m_1) \sum_{i=1}^{n} X_i - \frac{nm_0^2}{2} + \frac{nm_1^2}{2} \le \log(K)$$

Exemple (suite)

$$\Leftrightarrow (m_0 - m_1) \sum_{i=1}^n X_i \le \log(K) + \frac{nm_0^2}{2} - \frac{nm_1^2}{2}$$

Si $m_1 > m_0$, l'inégalité devient

$$\sum_{i=1}^{n} X_i > \frac{1}{m_1 - m_0} \left(\log(K) + \frac{nm_1^2}{2} - \frac{nm_0^2}{2} \right)$$

La région critique sera de la forme $W = \left\{ \bar{X}_n > K_{\alpha}
ight\}.$

Sous l'hypothèse H_0 , \bar{X}_n suit une loi $\mathcal{N}\left(m_0,\frac{\sigma^2}{n}\right)$, il vient donc :

$$K_{\alpha} = m_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}.$$

p-valeur

Définition 1.9

La p-valeur associée à l'observation d'une statistique de test est le seuil auquel on rejetterait l'hypothèse nulle compte tenu de cette observation.

Exemple

Soit (X_1, \ldots, X_n) un échantillon de loi $\mathcal{N}(m, \sigma^2)$ avec σ connu.

Test simple :
$$\left\{ \begin{array}{l} H_0 \ : \ m = m_0 \\ H_1 \ : \ m = m_1 \end{array} \right. \text{, on suppose que } m_0 < m_1.$$

Par conséquent, nous avons

$$\left\{ \bar{X}_n > \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right\} = \left\{ \bar{X}_n > \frac{\sigma}{\sqrt{n}} \Phi^{-1} (1-\alpha) \right\}
= \left\{ \frac{\sqrt{n} \bar{X}_n}{\sigma} > \Phi^{-1} (1-\alpha) \right\}
= \left\{ \alpha > 1 - \Phi \left(\frac{\sqrt{n} \bar{X}_n}{\sigma} \right) \right\}$$

Exemple (suite)

Pour une valeur donnée de la moyenne empirique \bar{X}_n , l'infimum par rapport au niveau α est

$$\hat{p} = 1 - \Phi\left(\frac{\sqrt{n}\bar{X}_n}{\sigma}\right).$$

Interprétation de la p-valeur

- ▶ Une grande valeur de la p-valeur s'interprète en faveur de ne pas vouloir rejeter l'hypothèse.
- ▶ Ne pas vouloir rejeter l'hypothèse peut signifier deux choses :
 - L'hypothèse est vraie
 - L'hypothèse est fausse mais le test n'est pas puissant (erreur de seconde espèce grande).