WPI. txt 1/5/2DIALOG(R)File 352:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv. 010660105 **Image available** WPI Acc No: 1996-157059/*199616* XRAM Acc No: C96-049243 Low toxicity nitrogen monoxide synthetase inhibitor - contg. guanidine or isothiourea deriv, used e.g. for treating shock, hypotension, rheumatism Patent Assignee: ONO PHARM CO LTD (ONOY) Number of Countries: 001 Number of Patents: 001 Patent Family: Kind Date Applicat No Kind Patent No Date Week 19960213 JP 94197203 JP 8041008 Α 19940729 199616 B Α Priority Applications (No Type Date): JP 94197203 A 19940729 Patent Details: Patent No Kind Lan Pg Main IPC Filing Notes JP 8041008 32 C07C-279/14 Α Abstract (Basic): JP 8041008 A A nitrogen monoxide synthetase (NOS) inhibitor contains a guanidine deriv of formula (I) or isothiourea deriv of formula (II). R1 = H or 1-4C alkyl; R2 = -A-COR3, -(CH2)m-E-G-R8, -M-R19, etc.; A = 1-8C alkylene (opt substd by OH or NHCOMe); R3 = OR4 or NHR5; R4, R5 = H, 1-4C alkyl or -(CH2)1-R6; R6 = gp of formula (c) or (d); l=1-4; R7 = 1-4C alkyl; m=0 or 1; E=4-7C cycloalkylene or phenylene; G=0, S, or a gp of formula (e) or (f); R8 = H, 1-4C alkyl, etc.; M = direct bond, 1-4C alkylene, N=CH or NHSO2; R19 = 1-7C alkyl (opt substd.); R29-R31 = H, 2-4C alkenyl, phenyl or 1-4C alkyl (opt substd); R32 = 1-12C alkyl (opt substd.), sulpho-substd 1-12C alkyl, etc. USE - (I) and (II) are useful for the prophylaxis and/or treatment

of shock, hypotension, chronic rheumatism, ulcerative colitis, ischaemic encephalopathy, tumours, insulin-dependent diabetes mellitus,

ADVANTAGE - (I) and (II) have low toxicity. Dwg. 0/0

Title Terms: LOW; TOXIC; NITROGEN; MONO; OXIDE; SYNTHETASE; INHIBIT; CONTAIN; GUANIDINE; ISO; THIOUREA; DERIVATIVE; TREAT; SHOCK; HYPOTENSIVE; RHEUMATISM; TUMOUR

Derwent Class: B05

International Patent Class (Main): CO7C-279/14

International Patent Class (Additional): A61K-031/155; A61K-031/165;

-A61K-031/17; -A61K-031/18; A61K-031/19; A61K-031/215; A61K-031/255; A61K-031/35; A61K-031/425; A61K-031/445; A61K-031/495; C07C-335/32;

C07C-335/36; C07D-211/14; C07D-277/26; C07D-277/34; C07D-295/16; C07D-311/58; C07D-311/72; C07H-005/10; C07H-013/06

File Segment: CPI

					,		
*							
en amenda vites (m). To havinde i stabilito stabilito se decentro e se se la region de la region	: : =	2					
					F94 . Cr . Er .	entur tile i	
			•				
		,			•.		

.

(11)特許出願公開番号

特開平8-41008

(43)公開日 平成8年(1996)2月13日

(51) Int.Cl. ⁶ C 0 7 C 2 A 6 1 K	•	識別記号 AED	庁内整理番号 9451-4H 9455-4C 9455-4C	FΙ				技術表示箇所
	31/17 31/18	ABN	9455-4C 9455-4C 審査請求	未請求	請求項の数1	FD	(全 32 頁)	最終頁に続く

(21)出願番号 特願平6-197203 (71)出願人 000185983

(22)出願日 平成6年(1994)7月29日 大阪府大阪市中央区道修町2丁目1番5号

小野薬品工業株式会社

(72) 発明者 谷口 直之

大阪府豊中市上野東2丁目2-19-32-

201

(74)代理人 弁理士 大家 邦久

(54) 【発明の名称】 一酸化窒素合成酵素阻害剤

(57)【要約】

一般式(I)及び(II)の化合物を有効成分 【構成】 とする一酸化窒素合成酵素 (NOS) 阻害剤 [式中、R 1 tH, $\text{T}N + N : \mathbb{R}^{2}$ $\text{th} - \text{A} - \text{COR}^{3}$, - (C) H₂) m=E-G=R⁸、チアゾール-L=R¹⁷、-M $-R^{19}$, $-Q-T-Ph-R^{24}$; R^{29} , R^{30} , R^{31} H、アルキル等; R³²は(1) R²⁹、R³⁰、R³¹が同時に Hを表わさないとき (置換) アルキル、-U- (R³⁶) $_{\rm U}$, -V-S-C (=NR²⁹⁰) NR³⁰⁰ R³¹⁰ (2) R²⁹、R³⁰、R³¹が同時にHを表わすときSO₃ H置換 アルキル、 $-U-(R^{50})_{u}$ 、-W-S-C(=NR 290) NR300 R310] .

【化1】

【効果】 一般式(I)及び(II)の化合物とそれらの 塩は、NOS阻害作用を有しており、ショック、低血

圧、慢性関節リウマチ、潰瘍性大腸炎、虚血性脳障害、 腫瘍、インスリン依存性糖尿病等の治療及び/又は予防 に有用である。

【特許請求の範囲】

【請求項1】 一般式(I)

【化1】

[式中、 R^1 は水素原子または $C1\sim 4$ アルキル基を表わし、 R^2 は(1) $-A-COR^3$ 基(基中、AはC1

【化3】

を表わし、 R^{28} は $C_1 \sim 4$ のアルキル基または $C_1 \sim 4$ のアルコキシ基を表わし、 R^{15} は $C_1 \sim 4$ のアルキル基を表わし、 R^{16} は $C_1 \sim 4$ のアルキル基または $C_1 \sim 4$ のアルコキシ基を表わす。)、(3)

【化5】

(基中、LはC1~7のPルキレン基、C1~7のPルキレン-S-基または-CONH-(C1~7のPルキレン) 甚を表わし、R¹⁷は

【化6】

 ~ 8 のアルキレン基、または水酸基あるいはNHCOC H_3 基が置換しているC1 ~ 8 のアルキレン基を表わし、 R^3 はO R^4 基またはNH R^5 基を表わし、 R^4 および R^5 は、水素原子、C1 ~ 4 のアルキル基または一(CH $_2$) -1 $-R^6$ 基を表わし、-1 は1 ~ 4 の整数を表ったわし、 R^6 は

【化2】

を表わし、nは0または $1\sim4$ の整数を表わし、 R^{10} および R^{11} は、-COO-、 $-CONR^{12}$ -基、 $-SO_2$ NH-基またはピペラジンージイル基を表わし、 R^{12} は 水素原子またはC $1\sim4$ のアルキル基を表わし、 R^8 は 水素原子、C $1\sim4$ のアルキル基、-CH (CH_2 S H) $-COOR^{13}$ 基または $-(CH_2)_p$ $-R^{14}$ 基を表 わし、 R^{13} は水素原子またはC $1\sim4$ のアルキル基を表 わし、 R^{14} は

【化4】

を表わし、 R^{18} は水素原子または C^{1} ~4のアルキル基を表わす。)、(4) $-M-R^{19}$ 基(基中、Mは単結合、 C^{1} 0~40アルキレン基、 $-NH-(C^{1})_q$ 0(基中、qは0または1を表わす。)、 $-N=C^{1}$ 日のアルキル基、 C^{19} は C^{1} 0~ C^{1} 0アルキル基、 C^{19} 10 に C^{1} 00アルキル基、 C^{19} 10 に C^{1} 1~ C^{1} 10 に C^{1} 1~ C^{1} 1 に C^{1} 1 に C^{1} 2 が置換した C^{1} 1~ C^{1} 1 に C^{1} 2 に C^{1} 3 に C^{1} 4 に C^{1} 5 に C^{1} 6 に C^{1} 7 のアルキル基、 C^{1} 7 に $C^{$

(基中、 R^{22} は水素原子または $C_1\sim 4$ のアルキル基を表わし、 R^{23} は水素原子または $C_1\sim 4$ のアルキル基を表わす。)、または(5)

【化9】

(基中、QはC $1\sim 8$ のアルキレン基またはフェニレン基を表わし、Tは-COO-、-CONH-または-COS-基を表わし、R 24 は- (CH $_2$) $_t$ -COOR 25 基または-SO $_2$ NR 26 R 27 基を表わし、tは0または $1\sim 4$ の整数を表わし、 R^{25} は水素原子またはC1 ~ 4 のアルキル基を表わし、 R^{26} および R^{27} は、それぞれ独立して水素原子またはC1 ~ 4 のアルキル基を表わす。)を表わす。〕で示される化合物、または-般式(II)

【化10】

- (1) R^{29} および R^{30} が同時に水素原子を表わさない場合、 R^{31} と一緒になって C^{2} 2~30アルキレン基を表わし、
- (2) R²⁹、R³⁰およびR³¹が同時に水素原子を表わさな い場合、
- (a) C1~12のアルキル基、
- (b) 水酸基、COOR 33 基(基中、R 33 は水素原子またはC 1 ~4のアルキル基を表わす。)、スルホ基、N R 34 R 35 基(基中、R 34 およびR 35 はそれぞれ独立して、水素原子またはC 1 ~4のアルキル基を表わす。)および 1 S ~ (C 1 ~4のアルキル基)から選ばれる基1個で置換されているC 1 ~1 2のアルキル基、または(c) 1 C (R 36) 1 U 基(基中、Uは単結合またはC 1 C ~4のアルキレン基を表わし、 1 U は 1 または 2 E を表わし、R 36 Gは、(i) C 4 ~ 1 C のシクロアルキル基、(ii)

を表わし、r は 1 または 2 を表わし、 R^{20} は水素原子、ハロゲン原子、ニトロ基、スルファモイル基または+ (C H_2) $_S$ - R^{21} 基を表わし、 $_S$ は 1 \sim 7 の整数を表わし、 $_R^{21}$ は

【化8】

【化11】

(基中、 R^{37} は水素原子、ハロゲン原子、ニトロ基、-COOR 40 基(基中、 R^{40} は水素原子または C^{1} ~4のアルキル基を表わす。)、 $-OR^{41}$ 基(基中、 R^{41} は水素原子、 C^{1} ~4のアルキル基または C^{1} ~4のアルキルカルボニル基を表わす。)、 $-SR^{42}$ 基(基中、 R^{42} は水素原子、 C^{1} ~4のアルキル基または C^{1} ~4のアルキルカルボニル基を表わす。)、ハロゲン原子が置換しているフェニル基または C^{1} ~4のアルキル基を表わす。)、(iii)

【化12】

(基中、R38は水素原子、ハロゲン原子、ニトロ基、-COOR⁴³基 (基中、R⁴³は水素原子またはC1~4の アルキル基を表わす。)、-OR⁴⁴基(基中、R⁴⁴は水 素原子、C1~4のアルキル基またはC1~4のアルキ ルカルボニル基を表わす。)、-SR⁴⁵基(基中、R⁴⁵ は水素原子、C1~4のアルキル基またはC1~4のア ルキルカルボニル基を表わす。)、ハロゲン原子が置換 しているフェニル基またはC1~4のアルキル基を表わ す。)、または(iv) 置換されていないか、またはハロゲ ン原子、ニトロ基、C1~4のアルキル基、-COOR 46基 (基中、R46は水素原子またはC1~4のアルキル 基を表わす。)、 $-OR^{47}$ 基(基中、 R^{47} は水素原子、 C1~4のアルキル基またはC1~4のアルキルカルボ ニル基を表わす。)、-SR⁴⁸基(基中、R⁴⁸は水素原 子、C1~4のアルキル基またはC1~4のアルキルカ ルボニル基を表わす。)、およびハロゲン原子が置換し ているフェニル基から選ばれる基1~4個で置換されて いる酸素原子1個、窒素原子1個、窒素原子2個、窒素 原子1個および酸素原子1個または窒素原子1個および 硫黄原子1個を含有する4~7員のヘテロ環あるいはそ れにベンゼン環が縮合した環基を表わすか、または

(d)

(基中、Vは単結合、C1~8のアルキレン基または 【化14】

を表わし、 R^{49} は水素原子または $C_1 \sim 4$ のアルキル基を表わし、 R^{290} 、 R^{300} および R^{310} は、それぞれ独立して水素原子、 $C_1 \sim 4$ のアルキル基、 $C_2 \sim 4$ のアルケニル基、フェニル基、または水酸基および/またはフェニル基で置換されている $C_1 \sim 4$ のアルキル基を表わす。)を表わし、

- (3) R^{29} 、 R^{30} および R^{31} が同時に水素原子を表わす場合、
- (a) スルホ基で置換されたC1~12のアルキル基、
- (b) $-U-(R^{50})_u$ 基(基中、Uは単結合またはC1~4のアルキレン基を表わし、uは1または2を表わし、 R^{50} は(i)

【化15】

(基中、 R^{51} は $C1\sim 4$ のアルキルカルボニルオキシ基、 $C1\sim 4$ のアルキルカルボニルチオキシ基またはハロゲン原子が置換しているフェニル基を表わす。)、(ii)

【化16】

(R⁵³)_w
C1~4のアルキル基を表わし、wは (式中

を表わし、 R^{53} は $C_1\sim 4$ のアルキル基を表わし、wは 1 または 2 を表わし、 R^{290} 、 R^{300} および R^{310} は前 記と同じ意味を表わす。)を表わす。]で示される化合物を有効成分として含有する一酸化窒素合成酵素阻害 剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は一酸化窒素合成酵素阻害 剤に関する。さらに詳しくは一般式(I)

【化19】

$$\begin{array}{ccc}
 & \text{NH}_2 & . \\
 & \text{HN} & \text{N} & -R^2 & & (I) \\
 & & \text{R}^1 & & &
\end{array}$$

(基中、 R^{52} は $C1\sim 4$ のアルキルカルボニルオキシ基、 $C1\sim 4$ のアルキルカルボニルチオキシ基またはハロゲン原子が置換しているフェニル基を表わす。)、または(iii) 置換されていないか、または $C1\sim 4$ のアルキルカルボニルオキシ基、 $C1\sim 4$ のアルキルカルボニルチオキシ基およびハロゲン原子が置換しているフェニル基から選ばれる基 $1\sim 4$ 個で置換されている酸素原子1個、窒素原子1個、窒素原子2個、窒素原子1個および酸素原子1個または窒素原子1個および硫黄原子1個を含有する $4\sim 7$ 員のヘテロ環あるいはそれにベンゼン環が縮合した環基を表わすか、または

(c)

【化17】

(基中、Wは単結合または 【化18】

(式中、すべての記号は後記と同じ意味を表わす。) および一般式 (II)

【化20】

(式中、すべての記号は後記と同じ意味を表わす。)で 示される化合物を有効成分として含有する一酸化窒素合 成酵素阻害剤に関する。

[0002]

【発明の背景】免疫担当細胞の一つであるマクロファージが多量の硝酸塩を産生するという発見から、一酸化窒素(NO)が生体内で生成されるということが発見され

た [Proc. Natl. Acad. Sci. USA, <u>82</u>, 7738-7742 (198 5); J. Immunol., <u>138</u>, 550-565 (1987)]。また、循環器系分野では血管内皮細胞から放出される弛緩作用を有する物質が発見され、血管内皮由来弛緩因子 (EDRF) と名付けられた。さらに、このEDRFの本体がNOであることがわかった [Nature, <u>327</u>, 524-526 (198 7)]。

【0003】このように生体内で産生されることが明らかになったNOは、L-アルギニンを基質として一酸化窒素合成酵素(NOS)により生成される。

【0004】NOSには少なくとも非誘導型(血管内皮型および神経型)および誘導型のアイソザイムが存在する。血管内皮型NOSは、主に血管内皮細胞に存在し、細胞内カルシウム濃度により活性が制御されている。神経型NOSは、中枢神経細胞、末梢神経細胞、または膵島β細胞、消化管神経、副腎髄質、腎臓緻密斑等に存在し、血管内皮型NOSと同様に細胞内カルシウム濃度により活性が制御されている。

【0005】血管内皮型NOSおよび神経型NOSは細胞内に恒常的に存在し、生理的変化による酵素量の変化はほとんど見られない。誘導型NOSは、肝実質細胞、好中球、マクロファージ、平滑筋、線維芽細胞、腎メサンギウム細胞、消化管上皮、膵島β細胞、血管平滑筋細胞またはグリア細胞等に存在する。これは通常細胞内で認められず、エンドトキシンや各種サイトカイン等によ

る刺激により誘導される。

【0006】NOSにより生成されるNOの作用は多彩であり、ほとんど全ての細胞がNOを産生し多くの生物作用に関与するが、そのNOの作用が非誘導型NOSによるのか、誘導型NOSによるのかは明確ではない。作用としては、例えば、血管弛緩作用、血小板凝集抑制作用、粘着抑制、白血球粘着・遊走抑制、交感神経活動抑制、エンドトキシンショック、エンドトキシン・サイトカインによる低血圧、神経細胞間の情報伝達物質としての作用、虚血性脳細胞障害、抗腫瘍・殺菌作用、自己免疫疾患、インスリン依存性糖尿病、関節炎、移植後組織障害、拒絶反応等が挙げられる。

[0007]

【従来の技術】生体内でのNOの生理活性を解析する上で、NO合成酵素阻害剤は有用であり、またショックや虚血性疾患等の治療薬として用いられる可能性があることより、近年種々のNOS阻害剤の開発が現在進められている。例えば、基質競合剤としてアルギニン類似体があり、N ω ーモノメチルーLーアルギニン(LーNMMA)、N ω ーニトローLーアルギニン(LーNAA)、N ω ーアミノーLーアルギニン(LーNAA)、N ω ーイミノーLーオルニチン(LーNIO)等がそれに当たる。また、コファクター(Cofactor)競合阻害剤としてジフェニレンヨードニウム(DPI)、ジー2ーチェニルヨードニウム(DTI)、カルシニューリン等がある。また、遺伝子転写、誘導阻害するものとしては、コルチコステロイド、TGF β 、ILー4、ILー10等が挙げられる。

【0008】また、(1) PCT公開第W09324126 号の明細書中に一般式(A)

【化22】

$$H_2N - H_2N -$$

(式中、 R^A はー(CH_2) y_ACH_3 基または水素原子を表わし、 R^{A1} はー CH_2 ーまたはーCH((CH_2) y_ACH_3) ー基を表わし、 R^{A2} はー CH_2 ーまたはーCH((CH_2) y_ACH_3) ー基を表わし、YAは0~5を表わし、YAは0~5を表わし、YAは0~1を表わし、YAは0~5のアルキル基、アミノ基またはニトロ基を表わす。)で示される化合物が選択的に誘導型NOSを阻害するアルギニン拮抗剤である旨の開示がある。

【0009】(2)PCT公開第WO9313055 号の明細書 中に一般式(B)

【化23】

(式中、 R^{1B} は C^{1} ~6のアルキル、 C^{2} ~6のアルケニル、 C^{2} ~6のアルキニル、 C^{3} ~6のシクロアルキル、 C^{3} ~6のシクロアルキル、 C^{3} 0~6のシクロアルキル(C^{4} 1)アルキル基を表わし、 C^{4} 2 は C^{4} 3のアルキル基1個以上で置換されているかあるいは置換されていない C^{4} 3~ C^{4} 6のアルキレン、アルケニレン、アルキニレン基、 C^{4} 6のアルキレン、アルケニレン、アルキニレン基、 C^{4} 7 (C^{4} 8) は C^{4} 8 (C^{4} 9 は C^{4} 8 は C^{4} 9 は C^{4} 9 は $C^{$

原子または $C1\sim6$ のアルキル基を表わし、r Bおよび s Bは $0\sim2$ を表わし、 A^B は $C3\sim6$ の炭素環または \sim テロ環を表わす。)で示される化合物が非誘導型NO Sに対し、誘導型NO Sをより選択的に阻害する化合物 である旨の開示がある。

【0010】(3) PCT公開第W09412163 号の明細書中に一般式(C)

【化24】

(式中、R1cは水素原子、C1~6のアルキル基、C6 ~12のアリールー (C1~4) アルキル基等を表わ し、 R^{2c} は水素原子、 $C1\sim6$ のアルキル基またはC6~12のアリールー(C1~4)アルキル基を表わし、 R^{3c}はCOOR^{6c}、CH (R^{7c}) OR^{8c}等を表わし、R 4cは水素原子、C1~6のアルキル基またはC6~12 のアリールー (C1~3) アルキル基を表わし、Wc は C2~4のアルキレン、アルケニレン、アルキニレン、 フェニレン基等を表わし、R^{9c}およびR^{10c} は水素原子 またはC1~6のアルキル基を表わし、Zc は硫黄原子 または置換されていてもよい窒素原子を表わし、R5cは 置換されたフェニル基あるいはC9~14の二環または 三環の炭素環を表わし、R6cは水素原子、C1~6のア ルキル基、C2~6のアルケニル基等を表わし、R^{7c}は 水素原子、C1~6のアルキル基、C3~7のシクロア ルキル基等を表わし、R8cは水素原子、C1~6のアル キル基等を表わす。) で示される化合物がグアニル酸シ クラーゼまたは一酸化窒素合成酵素の阻害剤である旨の 開示がある。

【0011】(4) PCT公開第W09412165 号の明細書中に一般式(D)

【化25】

(式中、 R^d は(a) $C1\sim14$ の炭化水素基、(b) 5 または 6 員のヘテロ環、または(c) 9 員の二環ヘテロ環を表わし、 R^d 基には 1 または 2 個の置換基が置換していてもよく、その置換基は以下から選ばれる。

【0012】(i) ハロゲン原子、(ii)-XR^{1d}基 (基

中、Xは酸素原子、C (O) md (式中、m d は1または 2 を表わす。)、S(O)_{nd}(式中、ndは0、1また は2を表わす。) またはNR^{2d} (式中、R^{2d}は水素原 子、C1~6のアルキル基、C3~6のシクロアルキル 基等を表わす。)を表わし、 R^{1d} は水素原子、 $C_1 \sim 6$ のアルキル基、C2~6のアルケニル基、C3~6のシ クロアルキル基、C7~9のアラルキル基、C6~10 のアリール基、5または6員のヘテロ環を表わすか、ま たは上記した各基はC1~3のアルキル基、水酸基、C 1~3のアルコキシ基、アミノ基、C1~3のアルキル アミノ基、ハロゲン原子、ニトロ基、C (O) md' R^{2d} (式中、md) は1または2を表わし、 R^{2d} は水素原子 またはC1~4のアルキル基を表わす。)から選ばれる 基1または2個で置換されていてもよく、あるいはNR 3dR4d (式中、R3dおよびR4dはそれぞれ独立して、水 素原子、C1~4のアルキル基または一緒になって、C 2~6のアルキレン基を表わす。)を表わす。)、(ii i)

【化26】

【化27】

$$--(Y^d)_{wd}-Q^d-S-\langle NH_{NH_2}$$

で置換されていてもよいヘテロ環を表わす。)、または (v) C $1\sim6$ のアルキル基、C $2\sim6$ のアルケニル基またはC $3\sim6$ のシクロアルキル基。

【0013】あるいはR^d 基中の炭素原子1個が一般式(D)中のイミノ基の窒素原子に結合して5または6員のヘテロ環を表わす。)で示される化合物が一酸化窒素合成酵素の阻害剤である旨の開示がある。

【0014】また最近、(5)シトルリン誘導体として、Lーチオシトルリン、LーホモチオシトルリンおよびSーメチルーLーチオシトルリン

【化28】

Lーチオシトルリン Lーホモチオシトルリン SーメチルーLーチオシトルリン

がNOS阻害作用を有する旨開示された[J. Med. Che

m., 37, 885-887 (1994)]

[0015]

【発明の目的】本発明者等は、一酸化窒素合成酵素(非 誘導型NOSおよび誘導型NOS)を阻害する化合物を 見出すべく鋭意研究を行なった結果、一般式(I)およ び(II)で示される化合物が目的を達成することを見出 し、本発明を完成した。

[0016]

【従来技術との比較】従来技術の項で記載した化合物 中、L-NMMA、L-NNA、L-NAA、一般式 (A) および一般式 (B) で示される化合物はアルギニ ン構造を必須とする化合物群である。一般式(C)で示 される化合物はアミン構造を必須とする化合物であっ て、グアニジル基やイソチオウレア構造は全く取り得な い。一般式(D)で示される化合物はイソチオウレア誘 導体である。また、従来技術(5)で示した化合物はシ トルリン誘導体であり、いずれも末端にアミノ酸構造を 有する。

【0017】一方、本発明化合物中、一般式(I)で示 される化合物はグアニジル基を必須とする化合物群では あるが、アルギニン誘導体とは全く異なる。また、一般 式(II)で示される化合物はイソチオウレア誘導体であ るが、シトルリン誘導体とは全く異なる構造であるこ と、またその基中の窒素原子に水素以外の置換基を有す る化合物であること、またたとえその基中の窒素原子に

水素以外の置換基を有さない場合でも、硫黄原子の置換 基 R^{32} が表わす基は、一般式(D)中の R^d が表わす基 とは全く異なることから、一般式(D)で示される化合 物とは重複しない。従って、本発明化合物は従来知られ ている化合物とは異なった構造を有する化合物であり、 その化合物がNOS阻害作用を有するということは容易 に予測できないことである。

[0018]

【発明の開示】本発明は、一般式(1)

【化29】

$$HN = \begin{pmatrix} NH_2 \\ N - R^2 \end{pmatrix}$$
 (I)

「式中、 R^1 は水素原子または $C1\sim4$ アルキル基を表 わし、R² は

【0019】(1) -A-COR³ 基 (基中、AはC1 ~8のアルキレン基、または水酸基あるいはNHCOC H₂ 基が置換しているC₁~8のアルキレン基を表わ し、R³ はOR⁴ 基またはNHR⁵ 基を表わし、R⁴ お よびR⁵ は、水素原子、C1~4のアルキル基または一 (CH₂)₁-R⁶ 基を表わし、 $1は1\sim4$ の整数を表 わし、R6は

を表わし、nは0または $1\sim4$ の整数を表わし、 R^{10} お

よびR¹¹は、-COO-、-CONR¹²-基、-SO₂ NH-基またはピペラジンージイル基を表わし、R12は

水素原子または $C1\sim4$ のアルキル基を表わし、 R^8 は 水素原子、C1~4のアルキル基、-CH (CH₂ S

-H) - COOR-¹³基または- (CH₂) p - R ¹⁴基を表⁻

わし、R13は水素原子またはC1~4のアルキル基を表

わし、pは1~5の整数を表わし、R¹⁴は

【化30】

を表わし、 R^7 は $C1\sim4$ のアルキル基を表わす。)、 [0020] (2) - (CH₂)_m-E-G-R⁸基 (基中、mは0または1を表わし、Eはフェニレン基、 C4~7のシクロアルキレン基、またはハロゲン原子あ るいは-COOR9 基(基中、R9 は水素原子またはC 1~4のアルキル基を表わす。一)で置換されたフェニレ ン基を表わし、Gは-O-、-S-、-(CH₂)_n-R¹⁰-基、-CH=CH-R¹¹-基、

を表わし、 R^{28} は $C_1\sim 4$ のアルキル基または $C_1\sim 4$ のアルコキシ基を表わし、 R^{15} は $C_1\sim 4$ のアルキル基を表わし、 R^{16} は $C_1\sim 4$ のアルキル基または $C_1\sim 4$ のアルコキシ基を表わす。)、

 $[0\ 0\ 2\ 1]$ [3]

【化33】

(基中、LはC1~7のTルキレン基、C1~7のTルキレン-S-基または-CONH-(C1~7のTルキレン) 甚を表わし、R¹⁷は

【化34】

(基中、 R^{22} は水素原子または $C_1 \sim 4$ のアルキル基を表わし、 R^{23} は水素原子または $C_1 \sim 4$ のアルキル基を表わす。)、または

[0023](5)

【化37】

(基中、QはC $1\sim 8$ のアルキレン基またはフェニレン基を表わし、Tは-COO-、-CONH-または-COS-基を表わし、R 24 は-(CH $_2$) $_t$ -COOR 25 基または-SO $_2$ NR 26 R 27 基を表わし、 $_t$ は0または $1\sim 4$ の整数を表わし、 $_R^{25}$ は水素原子またはC $1\sim 4$ のアルキル基を表わし、 $_R^{26}$ および $_R^{27}$ は、それぞれ独立して水素原子またはC $1\sim 4$ のアルキル基を表わす。)を表わす。〕で示される化合物、または

【0024】一般式 (II)

I the second

【化38】

[式中、 R^{29} 、 R^{30} および R^{31} は、それぞれ独立して水素原子、 $C1\sim4$ のアルキル基、 $C2\sim4$ のアルケニル基、フェニル基、または水酸基および/またはフェニル基で置換されている $C1\sim4$ のアルキル基を表わし、

【0025】 R^{32} は、(1) R^{29} および R^{30} が同時に水素原子を表わさない場合、 R^{31} と一緒になって C^{2} 2~3の

を表わし、 R^{18} は水素原子または $C_1 \sim 4$ のアルキル基を表わす。)、

【0022】 (4) $-M-R^{19}$ 基(基中、Mは単結合、 $C1\sim4$ のアルキレン基、 $-NH-(CH_2)_q$ - (基中、-qは0 はたは1 を表わす。) - -N=CH-または $-NHSO_2$ -基を表わし、 R^{19} は $C1\sim7$ のアルキル基、 NH_2 が置換した $C1\sim7$ のアルキル基、

【化35】

を表わし、r は 1 または 2 を表わし、 R^{20} は水素原子、ハロゲン原子、ニトロ基、スルファモイル基またはー (CH_2) $_S$ $-R^{21}$ 基を表わし、 $_S$ は $1\sim7$ の整数を表わし、 $_R^{21}$ は

【化36】

アルキレン基を表わし、

【0·0 2 6】(2) R²⁹、R³⁰およびR³¹が同時に水素原子を表わさない場合、

(a) C1~12のアルキル基、

【0027】(b) 水酸基、 $COOR^{33}$ 基(基中、 R^{33} は水素原子または $C1\sim4$ のアルキル基を表わす。)、スルホ基、 $NR^{34}R^{35}$ 基(基中、 R^{34} および R^{35} はそれぞれ独立して、水素原子または $C1\sim4$ のアルキル基を表わす。) および-S-($C1\sim4$ のアルキル基)から選ばれる基1個で置換されている $C1\sim1$ 2のアルキル基、または

【0028】 (c) $-U-(R^{36})_u$ 基(基中、Uは単結合または $C1\sim4$ のアルキレン基を表わし、uは1または2を表わし、 R^{36} は、(i) $C4\sim7$ のシクロアルキル基、(ii)

【化39】

(基中、 R^{37} は水素原子、ハロゲン原子、ニトロ基、-COOR 40 基(基中、 R^{40} は水素原子または $C^{1}\sim 4$ のアルキル基を表わす。)、 $-OR^{41}$ 基(基中、 R^{41} は水素原子、 $C^{1}\sim 4$ のアルキル基または $C^{1}\sim 4$ のアルキルカルボニル基を表わす。)、 $-S^{42}$ 基(基中、 R^{42} は水素原子、 $C^{1}\sim 4$ のアルキル基または $C^{1}\sim 4$ のアルキルカルボニル基を表わす。)、ハロゲン原子が置換しているフェニル基または $C^{1}\sim 4$ のアルキル基を表わ

す。)、(iii) 【化40】

(基中、 R^{38} は水素原子、ハロゲン原子、ニトロ基、-COOR 43 基(基中、 R^{43} は水素原子または $C1\sim 4$ のアルキル基を表わす。)、 $-OR^{44}$ 基(基中、 R^{44} は水素原子、 $C1\sim 4$ のアルキル基または $C1\sim 4$ のアルキルカルボニル基を表わす。)、 $-SR^{45}$ 基(基中、 R^{45} は水素原子、 $C1\sim 4$ のアルキル基または $C1\sim 4$ のアルキルカルボニル基を表わす。)、ハロゲン原子が置換しているフェニル基または $C1\sim 4$ のアルキル基を表わす。)、または(iv)置換されていないか、またはハロゲン原子、ニトロ基、 $C1\sim 4$ のアルキル基、 $-COOR^{46}$ 基(基中、 R^{46} は水素原子または $C1\sim 4$ のアルキル

基を表わす。)、 $-OR^{47}$ 基(基中、 R^{47} は水素原子、 $C1\sim4$ のアルキル基または $C1\sim4$ のアルキルカルボニル基を表わす。)、 $-SR^{48}$ 基(基中、 R^{48} は水素原子、 $C1\sim4$ のアルキル基または $C1\sim4$ のアルキルカルボニル基を表わす。)、およびハロゲン原子が置換しているフェニル基から選ばれる基 $1\sim4$ 個で置換されている酸素原子1個、窒素原子1個の変素原子1個の変素原子1個および酸素原子1個または窒素原子1個および硫黄原子1個を含有する $1\sim4$ 0のヘテロ環あるいはそれにベンゼン環が縮合した環基を表わすか、または

[0029] (d)

【化41】

(基中、Vは単結合、C1~8のアルキレン基または 【化42】

を表わし、 R^{49} は水素原子または $C_1\sim 4$ のアルキル基を表わし、 R^{290} 、 R^{300} および R^{310} は、それぞれ独立して水素原子、 $C_1\sim 4$ のアルキル基、 $C_2\sim 4$ のアルケニル基、フェニル基、または水酸基および/またはフェニル基で置換されている $C_1\sim 4$ のアルキル基を表わす。)を表わし、

【0030】(3) R^{29} 、 R^{30} および R^{31} が同時に水素原子を表わす場合、

(a) スルホ基で置換された $C1\sim12$ のアルキル基、 ${OO31}$ (b) $-U-(R^{50})_u$ 基(基中、Uは単結合または $C1\sim4$ のアルキレン基を表わし、uは1または2を表わし、 R^{50} は(i)

【化43】

(基中、 R^{51} はC 1 \sim 4 のアルキルカルボニルオキシ基またはハ 基、C 1 \sim 4 のアルキルカルボニルチオキシ基またはハ ロゲン原子が置換しているフェニル基を表わす。)、(i i)

【化44】

(基中、 R^{52} は $C1\sim 4$ のアルキルカルボニルオキシ基、 $C1\sim 4$ のアルキルカルボニルチオキシ基またはハロゲン原子が置換しているフェニル基を表わす。)、または(iii) 置換されていないか、または $C1\sim 4$ のアルキルカルボニルオキシ基、 $C1\sim 4$ のアルキルカルボニルオキシ基およびハロゲン原子が置換しているフェニル基から選ばれる基 $1\sim 4$ 個で置換されている酸素原子1個、窒素原子1個に窒素原子1個および破素原子1個または窒素原子1個および硫黄原子1個を含有する $4\sim 7$ 員のヘテロ環あるいはそれにベンゼン環が縮合した環基を表わすか、または

[0032] (c)

【化45】

(基中、Wは単結合または 【化46】

を表わし、R⁵³はC1~4のアルキル基を表わし、wは 1または2を表わし、R²⁹⁰、R³⁰⁰およびR³¹⁰は前 記と同じ意味を表わす。)を表わす。]で示される化合 物を有効成分として含有する一酸化窒素合成酵素阻害剤 ---に関する。

【0033】一般式(I) 中、 R^1 、 R^4 、 R^5 、 R^7 、 R^8 、 R^9 、 R^{12} 、 R^{13} 、 R^{15} 、 R^{16} 、 R^{18} 、 R^{22} 、 R^{23} 、 R^{25} 、 R^{26} 、 R^{27} および R^{28} によって表わされる $C1\sim 4$ のアルキル基とは、メチル、エチル、プロピル、ブチル基およびそれらの異性体基である。

【0034】一般式(I)中、R¹⁹によって表わされるC1~7のアルキル基とは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル基およびそれらの異性体基である。一般式(I)中、AおよびQによって表わされるC1~8のアルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン基およびそれらの異性体基である。

【0035】一般式(I) 中、Eによって表わされるC4~7のシクロアルキル基とは、シクロブチル、シクロペンチル、シクロヘキシルおよびシクロペプチル基である。一般式(I) 中、 R^{16} および R^{28} によって表わされるC1~4のアルコキシ基とは、メトキシ、エトキシ、プロポキシ、ブトキシ基およびそれらの異性体基である。

【0036】一般式(I)中、Lによって表わされるC1~7のアルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン基およびそれらの異性体基である。一般式(I)中、Mによって表わされるC1~4のアルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン基およびそれらの異性体基である。一般式(I)中、ハロゲン原子とはフッ素、塩素、臭素およびヨウ素原子である。

【0037】一般式(II)中、 R^{29} 、 R^{30} 、 R^{31} 、 R^{33} 、 R^{34} 、 R^{35} 、 R^{37} 、 R^{38} 、 R^{40} 、 R^{41} 、 R^{42} 、 R^{43} 、 R^{44} 、 R^{45} 、 R^{46} 、 R^{47} 、 R^{48} 、 R^{49} 、 R^{53} 、 R^{290} 、 R^{300} および R^{310} によって表わされる $C1\sim 4$ のアルキル基、 R^{32} 中の $C1\sim 4$ のアルキル基、 π^{32} 中の π^{32} 中の π^{32} 中の π^{33} 中の π^{32} 中の π^{32} 中の π^{33} 中の π^{34} 中の π^{35} 中

【0038】一般式(II)中、R 32 によって表わされる C1~12のアルキル基とはメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル基およびそれらの異性体基である。一般式(II)中、R 29 、R 30 、R 31 、R 290 、R 300 およびR 310 によって表わされる C2~4のアルケニル基とはビニル、プロペニル、ブテニルおよびそれらの異性体基である。

【0039】一般式 (II) 中、R³¹とR³²が一緒になって表わすC2~3のアルキレン基とはエチレンおよびトリメチレン基である。一般式 (II) 中、R³⁶によって表わされるC4~7のシクロアルキル基とは、シクロブチル、シクロペンチル、シクロペキシルおよびシクロペプチル基である。一般式 (II) 中、Uによって表わされるC1~4のアルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン基およびそれらの異性体基である。

【0040】一般式 (II) 中、Vによって表わされるC 1~8のアルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレン基およびそれらの異性体基である。一般式 (II) 中、VまたはW中のC1~4のアルキレン基とは、メチレン、エチレン、トリメチレン、テトラメチレン基およびそれらの異性体基である。一般式 (II) 中、R41、R42、R44、R45、R47およびR48によって表わされるC1~4のアルキルカルボニルとは、メチルカルボニル、エチルカルボニル、プロピルカルボニル、ブチルカルボニルとなる。

【0041】一般式(II)中、 R^{51} および R^{52} によって表わされる $C1\sim 4$ のアルキルカルボニルオキシ基、および R^{50} 中のヘテロ環の置換基としての $C1\sim 4$ のアルキルカルボニルオキシ基とは、メチルカルボニルオキシ、エチルカルボニルオキシ、プロピルカルボニルオキシ、ブチルカルボニルオキシ基およびそれらの異性体基である。一般式(II)中、 R^{51} および R^{52} によって表わされる $C1\sim 4$ のアルキルカルボニルチオキシ基、および R^{50} 中のヘテロ環の置換基としての $C1\sim 4$ のアルキルカルボニルチオキシ基とは、メチルカルボニルチオキシ、エチルカルボニルチオキシ、プロピルカルボニルチオキシ、ブチルカルボニルチオキシ、プラルカルボニルチオキシ、ブチルカルボニルチオキシ、ボチルカルボニルチオキシ、ブチルカルボニルチオキシ表およびそれらの異性体基である。

【0042】一般式(II)中、ハロゲン原子とはフッ素、塩素、臭素およびョウ素原子である。一般式(II)中、R36およびR50によって表わされる窒素原子1個を含有する4~7員のヘテロ環とはピロール、ピリジン、アゼピン環およびそれらの一部または全部が飽和した環(ピロリン、ピロリジン、ピペリジン等)またはそれにベンゼン環が縮合した環(インドール、キノリン等)が挙げられる。一般式(II)中、R36およびR50によっに装わされる窒素原子2個を含有する4~7員のヘテロ環とはジアゾール(イミダゾール、ピラゾール)、ジアゼピン(ピリダジン、ピリミジン、ピラジン)、ジアゼピン、ピリダジン、ピリミジン、ピラジン)、ジアゼピン、はよびそれらの一部または全部が飽和した環(イミダゾリン、イミダゾリジン、ピラゾリン、ピラブリジン、ピペラジン等)またはそれにベンゼン環が縮合した環(インダゾール、キナゾリン等)が挙げられる。

【0043】一般式 (II) 中、R³⁶およびR⁵⁰によって

表わされる酸素原子1個を含有する4~7員のヘテロ環とはフラン、ピラン、オキセピン環およびそれらの一部または全部が飽和した環またはそれにベンゼン環が縮合した環(ベンゾフラン、クロメン、クロマン等)が挙げられる。一般式(II)中、R 36 およびR 50 によって表わされる窒素原子1個および酸素原子1個を含有する4~7員のヘテロ環とはオキサゾール、イソオキサゾール、オキサジン、オキサゼピン環およびそれらの一部または全部が飽和した環(モルホリン環等)またはそれにベンゼン環が縮合した環(ベンゾオキサゾール等)が挙げられる。

【0044】一般式(II)中、 R^{36} および R^{50} によって表わされる窒素原子 1 個および硫黄原子 1 個を含有する $4\sim7$ 員のヘテロ環とはチアゾール、イソチアゾール、チアジン、チアゼピン環およびそれらの一部または全部が飽和した環またはそれにベンゼン環が縮合した環(ベンゾチアゾール等)が挙げられる。

【0045】一般式 (I) および一般式 (II) で示される化合物のうち特に好ましい化合物は、次の表 1 から表 1 3 に示す化合物および実施例に挙げた化合物である。

【0046】【表1】

m	E	G	R ⁸
0	—	N	~ toto
0	+	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1	•	•	→ to → oH
0	*	*	*
0	*	•	•
1	•	4	•
1	•	•	•
1	•	~~\ [\] _\	4
0	*	•	*
_0			
1	· •	•	٠
1	ø	4	*
	0 1 0 0 1 1 0 0 0 1 1		m E G 0

[0047]

【表 2】

Ri	· m	· -= E :	- G -	- R ⁸
н	0	T C	N	OH OH
Н	1	*	٠	•
н	o	COOCH₂CI	H ₃	·
н	1	*	•	•
н	0	\longrightarrow	4	•
н	1	4	4	•
н	0	—		~ COH
Н	1	•	•	

【0048】 【表3】

(13)

【0050】 【表5】

NR³⁰R³¹ S—R³²

R ²⁹	R ³⁰	R ³¹	R ³²
CH ₂ CH ₃	H	CH ₂ CH ₃	CH ₂ CH ₃
CH₂CH₃	н	CH₂CH₃	(CH ₂) ₂ CH ₃
CH₂CH₃	н	CH ₂ CH ₃	CH(CH ₃) ₂
CH₂CH₃	н	CH ₂ CH ₃	(CH ₂) ₃ CH ₃
CH₂CH₃	Н	CH ₂ CH ₃	(CH ₂) ₇ CH ₃
CH ₂ CH ₃	н	CH₂CH₃	OH
CH ₂ CH ₃	. H	CH ₂ CH ₃	OH
CH ₂ CH ₃	н	CH ₂ CH ₃	∕∕_SO ₃ H
CH₂CH₃	н	CH₂CH₃	✓NH ₂
CH₂CH₃	н	CH ₂ CH ₃	✓_NMe₂
CH₂CH₃	н	CH ₂ CH ₃	
CH₂CH₃	н	CH₂CH₃	CI
CH₂CH₃	н	CH ₂ CH ₃	OMe
CH₂CH₃	н	CH₂CH₃	O_NO ₂
CH₂CH₃	н	CH₂CH₃	T)
CH ₂ CH ₃	н	CH₂CH₃	AcO OAc AcO OAc

R ²⁹	R ³⁰	R ³¹	R ³²
н	н	CH ₂ CH ₃	CH ₂ CH ₃
Н	н	CH ₂ CH ₃	(CH ₂) ₂ CH ₃
н	н	CH ₂ CH ₃	CH(CH ₃) ₂
н	н	CH ₂ CH ₃	(CH ₂) ₃ CH ₃
н	н	CH ₂ CH ₃	(CH ₂) ₇ CH ₃
Н	н	CH ₂ CH ₃	OH
н	н	CH ₂ CH ₃	~~oH
н	н	CH₂CH₃	~~SO₃H
н	н	CH ₂ CH ₃	\sim NH ₂
н	н	CH ₂ CH ₃	→NMe₂
н	н	CH₂CH₃	
н	н	CH₂CH₃	CI
н	н	CH ₂ CH ₃	OMe
н	н	CH₂CH₃	O_NO ₂
н	н	CH₂CH₃	
н	н	CH₂CH₃	ACO TOAC ACO TOAC

R ²⁹	R ³⁰	R ³¹	R ³²
Н	Н	~//	CH ₂ CH ₃
н	Н	//	(CH ₂) ₂ CH ₃
н	н	/ /	CH(CH ₃) ₂
н	н	~//	(CH ₂) ₃ CH ₃
Н	н	~//	(CH ₂) ₇ CH ₃
н	н	/ /	OH
Н	н	/ /	~√OH
н	н	/ //	~~SO₃H
н	н	/ /	\sim NH ₂
н	н	//	✓ NMe₂
н	н	/ /	
н	н	/ /	C
н	н	/ /	OMe
н	н	/ /	NO ₂
н	н	~	THE STATE OF THE S
н	Н	~	ACO TOAC ACO TOAC

【8】

R ²⁹	R ³⁰	R ³¹	R ³²
н	CH₂CH₃	C ₆ H ₅	CH₂CH₃
Н	CH₂CH₃	C ₆ H ₅	(CH ₂) ₂ CH ₃
н	CH ₂ CH ₃	C ₆ H ₅	CH(CH ₃) ₂
н	CH ₂ CH ₃	C ₆ H ₅	(CH ₂) ₃ CH ₃
н	CH₂CH₃	C ₈ H ₅	(CH ₂) ₇ CH ₃
н	CH₂CH₃	C ₆ H ₅	ОН
н	CH₂CH₃	C ₆ H ₅	~√O _H
н	CH₂CH₃	C ₆ H ₅	∕∕SO ₃ H
н	CH ₂ CH ₃	C ₈ H ₅	✓VNH ₂
н	CH₂CH₃	C ₆ H ₅	✓ NMe₂
н	CH₂CH₃	C ₆ H ₅	
н	CH₂CH₃	C ₈ H ₅	CI
н	CH ₂ CH ₃	C ₆ H ₅	OMe
н	CH₂CH₃	C ₆ H ₅	NO ₂
н	CH ₂ CH ₃	C ₆ H ₅	
Н	CH₂CH₃	C ₆ H ₅	ACO TOAC ACO TOAC

【0055】 【表10】

. R ²⁹	R ³⁰	R ³¹	V	R ²⁹⁰	R ³⁰⁰	R ³¹⁰
Н	н	CH₂CH₃	bond	Н	н	CH₂CH₃
н	Н	CH ₂ CH ₃	-(CH ₂) ₂	Н	н	CH₂CH₃
н	Н	CH ₂ CH ₃	-(CH ₂) ₃	Н	н	CH₂CH₃
н	н	CH ₂ CH ₃	-(CH ₂) ₄ -	Н	н	CH₂CH₃
н	н	CH₂CH₃	$-CH_2$	н	н	CH₂CH₃
н	н	CH₂CH₃	-CH ₂ CH ₂ -	н	н	CH₂CH₃
н	н	CH₂CH₃	$-(CH_2)_2$	н	н	CH ₂ CH ₃
н	н	CH₂CH₃	(CH ₂) ₂ (CH ₂) ₂ —	н	н	CH₂CH₃

[0056]

NB300B310

R ²⁹	R ³⁰	R ³¹	V	R ²⁹⁰	R ³⁰⁰	R ³¹⁰
н	н	CH₂CH₃	-CH ₂ CH ₃	н	н	CH₂CH₃
H	H 	CH ₂ CH ₃	—CH₂ CH₃ CH₂—	<u> </u>	H	_СН ₂ СН ₃
н	н	CH₂CH₃	(CH ₂) ₂ (CH ₂) ₂ CH ₃	н	н	CH ₂ CH ₃
н	н	CH₂CH₃	$-(CH_2)_2$ CH_3 CH_3 $CH_2)_2$ CH_3	н	Н	CH₂CH₃

R ²⁹	R ³⁰	R ³¹	· · · · · · · · · · · · · · · · · · ·	R ²⁰⁰	R ³⁰⁰ -	
CH₂CH₃	Н	CH₂CH₃	bond	CH ₂ CH ₃	н	CH₂CH₃
CH₂CH₃	Н	CH₂CH₃	-(CH ₂) ₂ -	CH ₂ CH ₃	н	CH₂CH₃
CH₂CH₃	Н	CH₂CH₃	-(CH ₂) ₃ -	CH₂CH₃	н	CH₂CH₃
CH₂CH₃	н	CH₂CH₃	-(CH ₂) ₄ -	CH₂CH₃	н	CH ₂ CH ₃
CH₂CH₃	н	CH₂CH₃	-CH ₂ CH ₂ -	CH₂CH₃	н	CH₂CH₃
CH ₂ CH ₃	н	CH ₂ CH ₃	−cH₂ CH₂	CH ₂ CH ₃	н	CH₂CH₃
CH ₂ CH ₃	н	CH₂CH₃	-(CH ₂) ₂ (CH ₂) ₂	— CH₂CH₃	н	CH₂CH₃
CH₂CH₃	Н	CH₂CH₃	-(CH ₂) ₂	CH₂CH₃ :H₂)₂ —	н	CH ₂ CH₃
					-	

[0058]

R ²⁹	R ³⁰	R ³¹	V	R ²⁹⁰	R ³⁰⁰	R ³¹⁰
CH₂CH₃	н	CH₂CH₃	-CH ₂	CH₂CH₃	н	CH₂CH₃
CH₂CH₃	н	CH₂CH₃		CH₂CH₃	н	CH₂CH₃
CH₂CH₃	н	CH₂CH₃	(CH ₂) ₂ CH ₃	CH₂CH₃	н	CH ₂ CH ₃
CH₂CH₃	н	CH₂CH₃	(CH ₂) ₂ CH ₃ (CH ₂) ₂	CH₂CH₃ —	Н	CH₂CH₃

【0059】本発明においては、特に指示しない限り異性体はこれをすべて包含する。例えば、アルキル基、アルコキシ基、アルキレン基、およびアルケニル基には直鎖のもの、分枝鎖のものが含まれ、アルケニル基中の二重結合は、E、ZおよびEZ混合物であるものを含む。

また、分枝鎖のアルキル基が存在する場合等の不斉炭素 原子の存在により生ずる異性体も含まれる。

【0060】一般式(I) および(II) で示される本発明化合物は、公知の方法で相当する塩に変換される。塩は、毒性のない水溶性のものが好ましい。適当な塩とし

ては、アルカリ金属(カリウム、ナトリウム等)の塩、アルカリ土類金属(カルシウム、マグネシウム等)の塩、アンモニウム塩、薬学的に許容される有機アミン(テトラメチルアンモニウム、トリエチルアミン、メチルアミン、ジメチルアミン、シクロペンチルアミン、ベンジルアミン、フェネチルアミン、ピペリジン、モノエタノールアミン、ジエタノールアミン、トリス(ヒドロキシメチル)アミン、リジン、アルギニン、NーメチルーDーグルカミン等)の塩が挙げられる。

【0061】一般式(I)および(II)で示される本発明化合物は、公知の方法で相当する酸付加塩に変換される。塩は、毒性のない水溶性のものが好ましい。適当な酸付加塩としては、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、リン酸塩、硝酸塩のような無機酸塩、または酢酸塩、乳酸塩、酒石酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、クエン酸塩、安息香酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、イセチオン酸塩、グルクロン酸塩、グルコン酸塩のような有機酸塩が挙げられる。

【0062】一般式

【化47】

で示される本発明化合物は以下の2つの一般式で示され る化合物と同じ意味を表わす。

[0063]

【化48】

(式中、H Z は酸付加塩を表わす。つまり Z では塩素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、リン酸イオン、硝酸イオン、酢酸イオン、乳酸イオン、酒石酸イオン、シュウ酸イオン、フマル酸イオン、マレイン酸イオン、クエン酸イオン、安息香酸イオン、メタンスルホン酸イオン、エタンスルホン酸イオン、ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、イセチオン酸イオン、グルクロン酸イオン、グルコン酸イオン等を表わす。その他の記号は前記と同じ意味を表わす。)

[0064]

【本発明化合物の製造方法】一般式 (I) で示される本発明化合物は、特開昭64-83059号明細書、特開平2-765号明細書、特開平3-204874号明細書、特公昭49-2107号明細書、特開昭49-24917号明細書、特開昭50-4038号明細書、特開昭54-70241号明細書または特開昭55-115865号明細書中に記載されている方法によるか、あるいはそれらの記載に類似した方法またはその他の公知の方法によって製造することができる。

【0065】例えば、

で示される化合物の製造方法は、特開昭64-83059号明細 書に記載されている。

【0066】また、

【化50】

で示される化合物の製造方法は、特開平2-765 号明細書 に記載されている。

【0067】また、

【化51】

および

で示される化合物の製造方法は、特開平3-204874号明細 書に記載されている。

【0068】また、

【化53】

で示される化合物の製造方法は、特開昭49-24917号明細 書に記載されている。

【0069】一般式(II)で示される本発明化合物は、

(a) 一般式(III)

【化54】

(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物と、一般式(IV)

【化55】 X — R ^{32a}

(17)

(式中、Xはハロゲン原子を表わし、

【0070】R^{32a} は、(1) C1~12のアルキル 基、 【0071】(2) 水酸基、 $-COOR^{33a}$ 基(基中、 R^{33a} は水素原子または $C1\sim 4$ のアルキル基を表わす。)、スルホ基、 $-NR^{34a}$ R^{35a} 基(基中、 R^{34a} および R^{35a} はそれぞれ独立して、水素原子または $C1\sim 4$ のアルキル基を表わす。)および $-S-(C1\sim 4$ のアルキル基)から選ばれる基1個で置換されている $C1\sim 12$ のアルキル基、または

【0072】 (3) $-U^a$ $-(R^{36a})$ $_{va}$ 基(基中、 U^a は単結合または $C1\sim 4$ のアルキレン基を表わし、 V^a は V^a は V^a は V^a は V^a は V^a は V^a のシクロアルキル基、 V^a (V^a)

【化56】

(基中、 R^{37a} は水素原子、ハロゲン原子、ニトロ基、 $-COOR^{40a}$ 基(基中、 R^{40a} は水素原子またはC1 ~4のアルキル基を表わす。)、 $-OR^{41a}$ 基(基中、 R^{41a} は水素原子、C1 ~4のアルキル基またはC1 ~4のアルキルカルボニル基を表わす。)、 $-SR^{42a}$ 基(基中、 R^{42a} は水素原子、C1 ~4のアルキル基またはC1 ~4のアルキルカルボニル基を表わす。)、ハロゲン原子が置換しているフェニル基またはC1 ~4のアルキルルホール基を表わす。)、(iii)

【化57】

(基中、R^{38a} は水素原子、ハロゲン原子、ニトロ基、 -COOR^{43a} 基(基中、R^{43a} は水素原子またはC1

—(C1-4のアルキレン) — (C1-4のアルキレン) — 基 (R^{49a})_{wa}

を表わし、R^{49a} は水素原子またはC1~4のアルキル 基を表わす。)、ハロゲン原子が置換しているフェニル 基またはC1~4のアルキル基を表わし、waは1また は2を表わす。)で示される化合物とを反応させるか、

【化61】

(式中、全ての記号は前記と同じ意味を表わす。)で示される化合物と、酸化剤とを反応させるか、

【0075】(d)一般式(VI)

[化62] $R^{30}R^{31}N-C \equiv N$ (VI)

(式中、全ての記号は前記と同じ意味を表わす。) で示される化合物と、一般式 (VII)

~4のアルキル基を表わす。)、-OR^{44a} 基 (基中、 R^{44a} は水素原子、C1~4のアルキル基またはC1~ 4のアルキルカルボニル基を表わす。)、-SR^{45a} 基 (基中、R^{45a} は水素原子、C1~4のアルキル基また はClで4のアルキルカルボニル基を表わす。ティハロー ゲン原子が置換しているフェニル基またはC1~4のア ルキル基を表わす。)、または(iv)置換されていない か、あるいはハロゲン原子、ニトロ基、-COOR46a 基(基中、R^{46a} は水素原子またはC1~4のアルキル 基を表わす。)、-OR^{47a} 基 (基中、R^{47a} は水素原 子、C1~4のアルキル基またはC1~4のアルキルカ ルボニル基を表わす。)、-SR^{48a} 基 (基中、R^{48a} は水素原子、C1~4のアルキル基またはC1~4のア ルキルカルボニル基を表わす。)、ハロゲン原子が置換 しているフェニル基およびC1~4のアルキル基から選 ばれる基1から4個で置換されている窒素原子1個、窒 素原子2個、窒素原子1個および酸素原子1個または窒 素原子1個および硫黄原子1個を含有する4~7員のへ テロ環またはそれにベンゼン環が縮合した環を表わ す。) で示される化合物とを反応させるか、

【0073】(b)一般式(III)

【化58】

(式中、全ての記号は前記と同じ意味を表わす。) で示される化合物と、一般式 (V)

【化59】 $X-V^a-X$ (V)

(式中、Xはハロゲン原子を表わし、 V^a はC 1 \sim 8 の アルキレン基または

【化60】

【化63】 Y - S - R 32a (VII)

(式中、Yは水素原子あるいはアルカリ金属を表わし、 その他の記号は前記と同じ意味を表わす。) で示される 化合物とを反応させるか、

【0076】(e)一般式(VIII)

[
$$\{(164]\ R^{30}-NH-(CH_2)_x-X$$
 (VII

(式中、xは2~3の整数を表わし、その他の記号は前記と同じ意味を表わす。)で示される化合物と、一般式(IX)

【化65】

(式中、R²⁹は前記と同じ意味を表わす。) で示される

化合物とを反応させることにより製造することができる。

【0077】反応 (a) および (b) は公知であり、例えば、有機溶媒(アセトン、メチルエチルケトン等)中、25 \mathbb{C} \sim 50 \mathbb{C} で反応させることにより行なわれる。反応 (c) は公知であり、例えば、塩酸存在下で過酸化水素水中、0 \mathbb{C} \sim 25 \mathbb{C} で反応させることにより行なわれる。反応 (d) は公知であり、例えば、有機溶媒(アセトニトリル、ジメチルホルムアミド等)中、25 \mathbb{C} \sim 50 \mathbb{C} で反応させることにより行なわれる。反応 (e) は公知であり、例えば、水溶液中、25 \mathbb{C} \sim 15 0 \mathbb{C} で反応させることにより行なわれる。

【0078】本発明における出発物質および各試薬はそれ自体公知であるかまたは公知の方法により製造することができる。例えば、一般式(III)で示される化合物中、チオウレアは市販されている。また、実施例中に用いた化合物(42)~(49)はすでに市販されている化合物である。

[0079]

【本発明化合物の効果】一般式(I)および(II)で示 される本発明化合物は、一酸化窒素合成酵素の阻害活性 を有する。従って、一般式(I)および(II)で示され る本発明化合物、およびそれらの非毒性塩および酸付加 塩は、ショック、低血圧、リウマチ性炎症、慢性関節リ ウマチ、変形性関節炎、潰瘍性大腸炎、ストレス性胃潰 瘍、クローン病、自己免疫疾患、臓器移植後の組織障 害、拒絶反応、虚血再灌流障害、急性冠微小血管塞栓、 ショック性血管塞栓(DIC)、虚血性脳障害、動脈硬 化、悪性貧血、ファンコニー貧血症、鎌形赤血球性貧血 病、膵炎、ネフローゼ症候群、糸球体腎炎、インスリン 依存性糖尿病、肝性ポルフィリン、アルコール中毒、パ ーキンソン病、慢性白血病、急性白血病、腫瘍、骨髄 腫、抗癌剤副作用軽減、幼児および成人性呼吸窮迫症候 群、肺気腫、アルツハイマー症、多発性硬化症、ビタミ ンE欠乏症、老化、サンバーン、筋ジストロフィー、白 内障、インフルエンザ感染症、マラリア、AIDS、放 射線障害・火傷、体外受精効率化等の治療および/また は予防に有用であることが期待される。また、一般式

(I) および(II) で示される本発明化合物の毒性は、 非常に低いものであり、医薬として使用するために十分 安全であると判断できる。

[0080]

【医薬品への適用】一般式(I) および(II) で示される本発明化合物、およびそれらの非毒性塩および酸付加塩は、一酸化窒素合成酵素を阻害する作用を有しており、ショック、低血圧、リウマチ性炎症、慢性関節リウマチ、変形性関節炎、潰瘍性大腸炎、ストレス性胃潰瘍、クローン病、自己免疫疾患、臓器移植後の組織障害、拒絶反応、虚血再灌流障害、急性冠微小血管塞栓、ショック性血管塞栓(DIC)、虚血性脳障害、動脈硬

化、悪性貧血、ファンコニー貧血症、鎌形赤血球性貧血病、膵炎、ネフローゼ症候群、糸球体腎炎、インスリン依存性糖尿病、肝性ポルフィリン、アルコール中毒、パーキンソン病、慢性白血病、急性白血病、腫瘍、骨髄腫、抗癌剤副作用軽減、幼児および成人性呼吸窮迫症候群、肺気腫、アルツハイマー症、多発性硬化症、ビタミンE欠乏症、老化、サンバーン、筋ジストロフィー、白内障、インフルエンザ感染症、マラリア、AIDS、放射線障害・火傷、体外受精効率化等の治療および/または予防に有用であることが期待される。

【0081】本発明に含まれる各有効成分およびその非毒性の塩を上記の目的で用いるには、通常、全身的または局所的に、経口または非経口で投与される。投与量は、年齢、体重、症状、治療効果、投与方法、処理時間等により異なるが、通常成人一人あたり、1回に1mg~1000mgの範囲で、1日1回から数回経口投与されるか、または1回に100μg~100mgの範囲で、1日1回から数回非経口投与(好ましくは静脈内または脳室内投与)される。もちろん、前記したように投与量は種々の条件で変動するので、上記投与量より少ない量で十分な場合もあるし、また範囲を超えて投与する必要のある場合もある。本発明化合物を投与する際には、経口投与のための固体組成物、液体組成物およびその他の組成物、非経口投与のための注射剤、外用剤、坐剤等として用いられる。

【0082】経口投与のための固体組成物には、錠剤、 丸剤、カプセル剤、散剤、顆粒剤などが含まれる。この ような固体組成物においては、ひとつまたはそれ以上の 活性物質が、少なくともひとつの不活性な希釈剤(乳 糖、マンニトール、ブドウ糖、ヒドロキシプロピルセル ロース、微結晶セルロース、デンプン、ポリビニルピロ リドン、メタケイ酸アルミル酸マグネシウム等)と混合 して用いられる。

【0083】これらの組成物は、常法に従って、不活性な希釈剤以外の添加物、例えば潤滑剤(ステアリン酸マグネシウム等)、崩壊剤(線維素グリコール酸カルシウム等)、溶解補助剤(アルギニン、グルタミン酸、アスパラギン酸等)や安定化剤(ヒト血清アルブミン、ラクトース等)を含有していてもよい。錠剤または丸剤は、必要により胃溶性または腸溶性物質(白糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート等)のフィルムで被覆していてもよい。カプセル剤にはハードカプセルおよびソフトカプセルが含まれる。

【0084】経口投与のための液体組成物としては、溶液剤、乳濁剤、懸濁剤、シロップ剤、エリキシル剤が含まれる。このような液体組成物においては、一般的に用いられる不活性な希釈剤(精製水、エタノール等)が含まれる。これらの組成物は、不活性な希釈剤以外に、湿潤剤、懸濁剤のような補助剤、甘味料、風味料、芳香

剤、防腐剤を含有していてもよい。経口投与のためのその他の組成物としては、1種または2種以上の活性物質を含み、常法により処方されるスプレー剤が含まれる。スプレー剤は、不活性な希釈剤以外に安定化剤(亜硫酸ナトリウム等)や等張性を与えるための緩衝剤(塩化ナトリウム、クエン酸ナトリウム、クエン酸等)を含有していてもよい。スプレー剤の製造には、例えば米国特許第2868691 号、同第3095355 号明細書記載の方法を用いることができる。

【0085】非経口投与のための注射剤としては、無菌

の水性または非水性の溶液剤、懸濁剤、乳濁剤が含まれる。このような注射剤においては、1種または2種以上の活性物質が少なくとも1種の不活性な水性の希釈剤 (注射用蒸留水、生理食塩水等)や不活性な非水性の希釈剤 (プロピレングリコール、ポリエチレングリコール、ポリエチレングリコール、ポリンルベート80 (登録商標)等)と混合して用いられている。これらの注射剤は、さらに防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(ヒト血清アルブミン、ラクトース等)、溶解補助剤(ヒト血清アルブミン酸、アスパラギン酸、ポリビニルピロリドン等)のような補助剤を含有しているよい。これらは、通常、バクテリア保留フィルター等を用いるろ過、殺菌剤の配合または照射によって無菌化されるか、またはこれらの処理をした後、凍結乾燥等の方法により固体組成物とし、使用直前に無菌水または無菌の

[0086]

注射用希釈剤を加えて使用される。

【実施例】以下に、実施例を挙げて本発明をより具体的 に説明するが、これらは本発明の範囲を制限するもので はない。

【0087】実施例1:非誘導型NOSの阻害作用 (in vitro)

50mM Hepes (N-2-ヒドロキシエチルピペ ラジン-N'-2-エタンスルホン酸)(pH7.8)、 1 mM DTT (ジチオトレイトール)、1 mM Ca Cl2、1mM NADPH (還元型ニコチンアミドア デニンジヌクレオチドリン酸)、0.1 mM Biopterin (ビオプテリン)、10μM FAD (フラビンアデニ ンジヌクレオチド)を含む溶液(70μ1)に、L- $[U-^{14}C]$ $P \mu = 0.05 \mu C i$ $(1 \mu 1)$ $(5 \mu C i)$ ット脳ホモジネート (10μ1) および化合物 (10μ 1) を加え、水で100μ1とした。溶液を37℃で1 O分間インキュベーションし、Dowex 50WX (Na+ fo rm, vol. 250 μ 1) にアプライした。100 mM H epes (500μ1; pH5.4) および10mM E DTA (エチレンジアミン四酢酸) をDowex 50WXに 通し、未反応のL-アルギニンを除いて、液体シンチレ ーションカウンターでNO合成酵素によってL-「U-14C] アルギニンから変換されるL-シトルリンの生成 阻害率を測定し、NO合成酵素の阻害活性とした。結果 を表14および表15に示す。

[0088]

【表14】

化合物	添加量 (µM)	阻害率 (%)
1	100	43.6
2	100	60.1
3	50	95.3
4	100	86.6
5	100	94. 2
6	100	93.6
7	100	94. 3
8	100	49.0
9	100	81.4
10	100	69.4
11	100	90.8
1 2	100	83.6
13	100	82.3
14	100	94.8
15	100	68. 7
16	100	94.1
17	100	94.2
18	100	96.7
19	100	97.3
20	5 0	90.0
21	100	56.6
22	5 0	90.1
23	100	90.3
24	100	63.1
2 5	100	90.9

[0089]

【表15】

化合物	添加量 (μΜ)	阻害率 (%)
26	100	86. 3
27	100	8.9 - 6
28	100	73.8
29	100	49. 2
30	100	66. 9
31	100	93.0
3 2	100	96.6
3 3	100	95.5
3 4	100	96.1
35	100	95.6
36	100	69.9
37	100	63.1
38	100	90.6
3 9	1 0	36.0
40	1 0	27.0
42	1 0	34.0
43	10	25.0
44	1 0	27.0
4 5	10	46.0
47	10	61.0
49	1 0	36.0

【0090】表14および表15より、本発明化合物は 非誘導型NOSに対する阻害作用を有することが確認さ れた。

【0091】実施例2:誘導型NOSの阻害作用マウス由来のマクロファージ様細胞であるRAW264.7(106/m1)を35mm dish に固定し、一夜培養後、インターフェロンッ(IFNッ)(50U/m1)とリポポリサッカライド(LPS)(100ng/m1)および化合物を添加し、インキュベーターで37 $^{\circ}$ C、24時間培養した。培養液(100 $^{\mu}$ 1)にGriess試薬(100 $^{\mu}$ 1)を加えて、540nmでの吸光度の変化により、蓄積されたNO2の量を測定し、NO合成酵素の阻

害活性とした。結果を表16および表17に示す。 【0092】

【表16】

化合物	Ι C ₅₀ (μΜ)
L-NMMA	5 2
1 9	1 2

L-NMMA: N-モノメチル-L-アルギニン 【0093】 【表17】

化合物	添加量 (μ M)	阻害率(%)
3 9	5 0	8 2
40	5 0	7 2
41	50	77
4 2	5 0	9 1
43	5 0	74
44	5 0	87
45	50	98
46	5 0	61
47	5 0	7 2
48	5 0	73
49	5 0	70

【0094】表16および表17より、本発明化合物は 誘導型NOSに対する阻害作用を有することが確認され た。 【0097】 【表19】

【0095】実施例1および2で用いた化合物の構造を 以下の表18から表24に示す。

[0096]

【表18】

化合物番号	A	R ³
1	(CH ₂) ₄	0~{OH
2	(CH ₂)₄	NH NHO
3	(CH ₂) ₅	ОН

化合物番号	m	E	G	R⁵
4	0		coo	ОСН. ОСН3 ОН
5	0	-	(CH ₂) ₂ -COO	A CHOH
6	1	~	coo	- HOLDOH
7	0		coo	~forfoh
8	0	~ >	coo	OCH3
9	0	COOC₂H₅	CONH	AO TOH
10	0	~ >	CONH	Y _{cooch³}
11	0	~ >	~c∞	→ to to H
12	0	-	∠CONH	-fo-foh
13	0	-	∠CONCH ₃	-fo-for

[0098]

$$NH_{2}$$
 NH_{2}
 N

化合物番号	m	E	G	R ⁸
14	1		COO	У ОН
15	1	→	CONH	OHO OHO
16	0	-	0	A POH
17	0	cooo	G ₂ H ₅ O	-foldon
18	0	-	s	OH
19	0	~	-N_N-	-forton
20	0	-	~ N_N-	→ to → oH
21	0	~	N_N-	-to-to-
22	0	—	0~CN-	→ to to the

【0099】 【表21】

化合物番号	L	R ¹⁷
23	(CH ₂) ₂	tBu OH tBu
24	(CH ₂) ₂	tBu OCH₃ tBu
25	(CH ₂)₄	HO CH ₃
26	(CH ₂) ₄ —S	tBu OH tBu
27	(CH ₂) ₂ —S	tBu OH tBu

【0100】 【表22】

化合物番号	M	R ¹⁹
1001017		
28	NH	O _F
29	NHSO ₂	NO ₂
30	bond	NO ₂
31	N=CH	HO CH ₃
32	bond	1Bu OH tBu
33	N=CH	1Bu OH (CH ₂)4 tBu
34	NHCH ₂	H ₃ CO (CH ₂)4 O
35	N=CH	(CH ₂) ₂ CH ₃ HO CH ₃
39	bond	CH₂CH₃
40	bond	(CH ₂) ₄ -NH ₂
41	CH ₂	

【0101】 【表23】

NH₂
HN N-Q-T-R²⁴

化合物番号	Q	Т	H ²⁴
36		coo	SO ₂ NH ₂
37		coo	SO ₂ NHCH ₃
38		cos	CH ₂ -COOH

【0102】

化合物番号	
42	AcO OAc NH₂ • HBr
43	NH H₂N S^SO₃H
44	NH H₂N S—S Y NH₂ •2HCI NH
45	H ₂ N S NH ₂ NH · 2HCI
46	NH S-CH₃
47	M s-cH³
48	M,H S-CH³
49	√l s-cμ³

【0103】製剤実施例1:錠剤の製造 以下の化合物を常法により混合し、打錠して一錠中に1 00mgの活性成分を含有する錠剤100個を得た。

- ・4-(4-(2-(6-ヒドロキシ-2, 5, 7, 8-テトラメチルクロマン
-) エチル) ピペラジニル) フェニルグアニジン·······10g
- ・繊維素グリコール酸カルシウム (崩壊剤) …………200mg
- ・ステアリン酸マグネシウム (潤滑剤) ……………100mg
- ・微結晶セルロース……9.7 g

- ・S, S' (1, 2-(4, 5-ジメチルフェニレン) ビス (1, 2-エタン ジイル) ジイソチオウレア………………10g
- ・繊維素グリコール酸カルシウム (崩壊剤) ……………200mg
- ・ステアリン酸マグネシウム (潤滑剤) ························· 100mg
- ・微結晶セルロース…………9.7 g

フロントページの続き

(51) Int. Cl. 6 識別記号 庁内整理番号 F I A 6 1 K 31/19 9455-4 C 31/215 9455-4 C 31/255 9455-4 C 31/35

技術表示箇所

	31/425		
	31/445		
	31/495		
C 0 7 C	335/32		7106-4H
9 . 9	335/3G·	717 - 54 - 1 - 1 - 4	7106-4H
C 0 7 D	211/14		
	277/26		
	277/34		
	295/16	Α	
	311/58		
	311/72	1 0 1	
C 0 7 H	5/10		
	13/06		

.