VİTMO

НИУ ИТМО

Отчет по лабораторной работе №3

"Фильтрация изображений"

Выполнили:

Александр Иванов, Ф ТЕХ.ЗРЕНИЕ 1.1

Ани Аракелян, ТЕХ.ЗРЕНИЕ 1.1

Никита Братушка, ТЕХ.ЗРЕНИЕ 1.3

Преподаватель:

Шаветов С. В.

Санкт-Петербург, 2024

Содержание

1.	Исп	ользованные функции	•		
2.	Teo	ретическая часть	3	ì	
3.	Типы шумов				
	3.1.	Импульсный шум	3	;	
	3.2.	Аддитивный шум		;	
3.3. Мультипликативный шум		Мультипликативный шум	4	Ł	
	3.4.	Гауссов (нормальный) шум	4	L	
	3.5.	Шум квантования	4	Į	
4. Фильтрация изображений			4	Ĺ	
	4.1.	Низкочастотная фильтрация		í	
		4.1.1. Контргармонический усредняющий фильтр		í	
		4.1.2. Фильтр Гаусса	6	;	
	4.2.	Нелинейная фильтрация	6	;	
		4.2.1. Медианная фильтрация	6	;	
		4.2.2. Взвешенная медианная фильтрация	6	;	
		4.2.3. Адаптивная медианная фильтрация	6	;	
		4.2.4. Ранговая фильтрация	6	;	
		4.2.5. Винеровская фильтрация	6	;	
	4.3.	Высокочастотная фильтрация	6	;	
		4.3.1. Фильтр Робертса	6	;	
		4.3.2. Фильтр Превитта	7	7	
		4.3.3. Фильтр Собела	7	7	

	4.3.4.	Фильтр Лапласа	7
	4.3.5.	Алгоритм Кэнни	7
5.	Выводы		7
6.	Ответы на	а вопросы	7

1. Использованные функции

2. Теоретическая часть

3. Типы шумов

Шум – разнообразные искажения на цифровых изображениях, обусловленные разного рода помехами.

В данной лабораторной работе мы рассмотрим наиболее распространенные модели шумов.

3.1. Импульсный шум

Зашумленное изображение I описывается следующей системой, причем значение интенсивности пикселя I(x,y) будет изменено на значение $d \in [0,255]$:

$$\begin{cases} d, c вероятностью $p, \\ s_{x,y}, c вероятностью (1-p), \end{cases}$ (1)$$

где $s_{x,y}$ — интенсивность пикселя исходного изображения, если d=0 — шум типа «перец», если d=255 — шум типа «соль».

3.2. Аддитивный шум

Аддитивный шум описывается следующим выражением:

$$I_{new}(x,y) = I(x,y) + \eta(x,y), \tag{2}$$

где I_{new} — зашумленное изображение, I — исходное изображение, η — не зависящий от сигнала аддитивный шум с гауссовым или любым другим распределением функции плотности вероятности.

3.3. Мультипликативный шум

Мультипликативный шум описывается следующим выражением:

$$I_{new}(x,y) = I(x,y) \cdot \eta(x,y), \tag{3}$$

Частным случаем мультипликативного шума является спекл-шум, который мы и рассмотрим

3.4. Гауссов (нормальный) шум

Функция распределения плотности вероятности p(z) случайной величины z описывается следующим выражением:

$$p(z) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(z-\mu)^2}{2\sigma^2}},$$
 (4)

где z — интенсивность изображения (например, для полутонового изображения $z \in [0, 255]$), η — среднее (математическое ожидание) случайной величины z, σ — среднеквадратичное отклонение, дисперсия σ^2 определяет мощность вносимого шума.

3.5. Шум квантования

Приближенно шум квантования можно описать распределением Пуассона. Такой шум не устраняется.

4. Фильтрация изображений

Покальным преобразованием называется такое преобразование, при котором для вычисления значения интенсивности каждого пикселя учитываются значения соседних пикселей в некоторой окрестности, называемой окном, представляющей собой некоторую матрицу, которую также называют маской, фильтром, ядром фильтра, а сами значения элементов матрицы соответсвенно коэффициентами. Как правило, маска имеет квадратную форму.

Фильтрация изображения I, имеющего размеры $M \times N$, с помощью маски размера $m \times n$ описывается формулой:

$$I_{new}(x,y) = \sum_{s} \sum_{t} w(s,t)I(x+s,y+t),$$
 (5)

где s и t — координаты элементов маски относительно ее центра (в центре s=t=0). Такого рода преобразования называются линейными.

 Φ ильтрация в скользящем окне — преобразование, при котором после вычисления нового значения интенсивности пикселя $I_{new}(x,y)$ окно w, в котором описана маска фильтра, сдвигается и вычисляется интенсивность следующего пикселя.

4.1. Низкочастотная фильтрация

Низкочастотные пространственные фильтры ослабляют высокочастотные компоненты (области с сильным изменением интенсивностей) и оставляют низкочастотные компоненты изображения без изменений. Отличительными особенностями ядра низкочастотного фильтра являются: неотрицательные коэффициенты маски и то, что сумма всех коэффициентов равна единице.

4.1.1. Контргармонический усредняющий фильтр

Фильтр базируется на выражении:

$$I_{new}(x,y) = \frac{\sum_{i=0}^{m} \sum_{j=0}^{n} I(i,j)^{Q+1}}{\sum_{i=0}^{m} \sum_{j=0}^{n} I(i,j)^{Q}},$$
где Q — порядок фильтра. (6)

Рассмотрим применение фильтра при $Q>0,\ Q<0$ и Q=0.

4.1.2. Фильтр Гаусса

При фильтрации изображений будем использовать двумерный фильтр Гаусса:

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-x^2}{2\sigma^2}} \cdot \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-y^2}{2\sigma^2}}$$
(7)

- 4.2. Нелинейная фильтрация
- 4.2.1. Медианная фильтрация
- 4.2.2. Взвешенная медианная фильтрация
- 4.2.3. Адаптивная медианная фильтрация
- 4.2.4. Ранговая фильтрация
- 4.2.5. Винеровская фильтрация
- 4.3. Высокочастотная фильтрация
- 4.3.1. Фильтр Робертса

4.3.2. Фильтр Превитта

4.3.3. Фильтр Собела

4.3.4. Фильтр Лапласа

4.3.5. Алгоритм Кэнни

5. Выводы

6. Ответы на вопросы

Q1. В чем заключаются основные недостатки адаптивных методов фильтрации изображений?

A1.

- Q2. При каких значениях параметра Q контргармонический фильтр будет работать как арифметический, а при каких как гармонический?
- А2. Q это порядок фильтра. Контргармонический фильтр является обобщением усредняющих фильтров. При Q=0 фильтр превращается в арифметический, а при Q=-1 в гармонический.
- Q3. Какими операторами можно выделить границы на изображении?
- А3. Можно выделить границы с использованием дифференциального оператора Робертса.
- Q4. Для чего на первом шаге выделения контуров, как правило, выполняется низкочастотная фильтрация?

A4.