ASModee Asynchronous RISC V Core

THIRION NATHAN, LESAGE XAVIER 04/05/2020

RISC V - Ibex

ARISC – Jens Sparsø

Muller's gate

F	R	Z
0	0	0
0	1	Memory
1	0	Memory
1	1	1

Architecture d'un bloc

Asynchrone - Handshake

Flot et Méthodologie

Conception de Blocs combinatoires fonctionnels

vérification en banc de test

Actualisation des données en entrée sur un signal enable (cf Architecture d'un Bloc)

Conception d'un contrôleur asynchrone universelle (réglage des délais simple)

Forks et Joins adaptées

Mise en place du circuit de requête asynchrone et de l'initialisation

Connection des blocs au contrôleur asynchrone

Définition d'une mémoire d'instruction pour tester le core

Résultats & Perspectives

POF:

Gestion des exceptions

Architecture fonctionnelle et adaptable

Différents modes d'exécution (Debug)

Exécution de programme assembleur simple

Gestion des CSR

Ajout de fonctionnalités supplémentaires (p.

ex. Mult/Div)

Revoir Fork et Join en Split et Merge

Conclusion

Annexe A: 4-Phase Handshake

Annexe B: Chronogramme C-element

Annexe C: Chronogramme 2 controleurs

Annexe D: Chronogramme contrôleur et BUS

