

Deep Learning for Semantics, Geometry, and Physics in Robotics

Hao Su

Course website

• http://robotmlcourse.github.io

Who are we?

Instructor: Hao Su

Teaching Assistant: Jiayuan Gu

Goal

- A research-driven course
- Explore how to apply machine learning for object manipulation tasks
- We study the topic together!

Why we are interested in this topic?

Passive Al

- We know how to fit data well (by "deep learning")
 - e.g., computer vision, natural language processing

Why we are interested in this topic?

- We aspire that autonomous agents can discover knowledge by itself through exploration
 - Need the ability to interact

3D Vision Interactive Learning Perception World Model Actuation

Three Components of Interaction

To interaction with the environment, we need

- Observe the environment (perception)
- Build the environment model (modeling)
- Select the actions (planning)

Perception

- Perception: observe the status of the environment
 - Classification
 - Detection
 - Reconstruction

Environment Modeling

- Models: structured knowledge about the current environment from the observation.
 - Physical laws
 - 3D geometry
 - Theory of mind

Planning

Planning: select the action based on the model

Shortest path

Gradient descent

Evolutionary Algorithm

Environment Modeling

Structure of the Course (I)

- First semi-quarter: My Ph.D. students will teach the basics of robotics
 - Deep reinforcement learning
 - Basics concepts in mechanics
 - Forward/inverse kinematics/dynamics
 - Motion planning
 - Control
 - Rigid-body simulation
 - Fluid simulation
- Students are asked to finish a small project to implement a robot arm for object movement (mid-term project)

SAPIEN: A SimulAted Part-based Interactive Environment

https://sapien.ucsd.edu/

Structure of the Course (II)

- Second semi-quarter: Paper presentation by students
 - Cover classic and latest papers
- Students are asked to work on an object manipulation challenge using SAPIEN benchmark (final project)

Logistics

Grading (tentative)

- Class presence: 10%
- Mid-term project: 30%
- Paper presentation: 30%
- Final project: 30%
- There will not be a final exam.

Pre-requisite

- Try to be as self-contained as possible
- Proficiency in Python and C
- Calculus, Linear Algebra
- Machine learning