DAY 5

In last section, we have discussed about similarity of triangles. In this section we shall discuss about applications of similarity.

1. In the given figure, If PQ | | RS. Prove that $\triangle POQ \sim \triangle SOR$.

[Example 4]

Sol:- Given PQ | | SR

To prove $\triangle POQ \sim \triangle SOR$

Proof: Now In \triangle POQ and \triangle SOR

 $\angle P = \angle S$ {alternate angles}

and $\angle Q = \angle R$ {alternate angles}

∴ $\triangle POQ \sim \triangle SOR$ (AA similarity)

2. ABCD is a trapezium in which AB | DC and its diagonals intersect each other at the point O. Show that $\frac{OA}{OC} = \frac{OB}{OD}$ [Ex 6.3, Q4]

Sol :- Given AB | DC

To Prove:
$$\frac{OA}{OC} = \frac{OB}{OD}$$

Proof: Now In $\triangle AOB$ and $\triangle COD$

$$\angle 1 = \angle 2$$
 {alternate angles}

and
$$\angle 3 = \angle 4$$
 {alternate angles}

∴
$$\triangle AOB \sim \triangle COD$$
 (AA similarity)

$$\Rightarrow \frac{OB}{OD} = \frac{OA}{OC} \quad \text{or} \quad \frac{OA}{OC} = \frac{OB}{OD} \quad \text{Hence the result}$$

3. S and T are points on the sides PR and QR of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that $\triangle RPQ \sim \triangle RTS$

Sol:- In
$$\triangle$$
RPQ and \triangle RTS

$$\angle P = \angle RTS \{given\}$$

and
$$\angle R = \angle R$$
 {common}

$$\triangle ARPQ \sim \Delta RTS$$
 (AA similarity)

4. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that \triangle ABE \sim \triangle CFB [Ex 6.3, Q8]

Sol :- In
$$\triangle$$
ABE and \triangle CFB

 $\angle A = \angle C$ {Opposite angles of parallelogram} and $\angle E = \angle FBC$ {Alternate angles}

 $\therefore \triangle ABE \sim \triangle CFB$ (AA similarity)

5. In figure altitudes AD and CE of \triangle ABC intersect each other at the point P. Show that

i) $\triangle AEP \sim \triangle CDP$ ii) $\triangle AEP \sim \triangle CDP$

[Ex 6.3, Q7]

Sol:-

i) In
$$\triangle$$
AEP and \triangle CDP

$$\angle 1 = \angle 2$$
 {Vertically opposite angles}

and
$$\angle 3 = \angle 4 = 90^{\circ}$$

∴ \triangle AEP ~ \triangle CDP (AA similarity)

376hyaa

$$\angle B = \angle B$$
 {Common}

and
$$\angle 1 = \angle 2 = 90^{\circ}$$

∴
$$\triangle$$
ABD ~ \triangle CBE (AA similarity)

6. D is a point on the side BC of \triangle ABC, such that

$$\angle ADC = \angle BAC$$
. Show that

$$CA^2 = CB \times CD$$

[Ex 6.3, Q13]

Sol :- **Given**:
$$\angle ADC = \angle BAC$$

To prove:
$$CA^2 = CB \times CD$$

Proof: - In $\triangle DAC$ and $\triangle ABC$, we've

$$\angle ADC = \angle BAC$$
 (Given)

$$\angle C = \angle C$$
 (Common)

∴ $\triangle DAC \sim \triangle ABC$ (AA Similarity)

∴ Their corresponding sides are in proportional

$$\Rightarrow \frac{AC}{BC} = \frac{AD}{AB} = \frac{CD}{AC}$$
From 1st and last $\frac{AC}{BC} = \frac{CD}{AC}$

$$\Rightarrow AC^2 = CD \times BC \quad \text{or} \quad CA^2 = CB \times CD$$

EXERCISE

- 1. Example 6
- **2.** Ex 6.3, Q 2,7,11,15

come-become-educated

