Chemistry 121 Spring 2007 Exam 2

Name:	
-------	--

Take a deep breath, and relax! First, answer the questions you know how to do and then work on the more difficult problems. Don't forget to show all your work, so I can give you as much credit as possible.

Good Luck!

Unwittingly, and against his mother's advice, Vince the first-row Transition Metal had been lured far away from home, and now found himself surrounded by heavier elements of the P-block.

Q1. Fill in the blanks: (15 pts.)

Name	Formula
Nitrate ion	
Sulfate ion	
Carbonate ion	
Bicarbonate ion	
Ammonium ion	
	NO_2^-
	SO ₃ ²⁻
	$\mathrm{H_2PO_4}^-$
	PO ₄ ³⁻
	OH-

- Q2. Write the formula for the following compounds: (15 pts.)
 - a) sodium iodide
 - b) potassium nitride
 - c) iron(II) chloride
 - d) dinitrogen heptoxide
 - e) sodium sulfate
 - f) ammonium sulfide
 - g) pentachlorine octoxide
 - h) copper(I) acetate
 - i) tetraboron decafluoride
 - j) lithium oxide
- Q3. What is meant by the term, *valence electrons?* How many valence electrons does an atom of carbon have? (5 pts.)

Q4.	Name the following compounds: (15 pts.)								
	a) MgCl ₂	b) NaNO ₃							
	c) N ₂ Cl ₆	d) CaSO ₄							
	e) P ₂ O ₅	f) CuBr ₂							
	g) Cl ₂ O	h) NH ₄ F							
	i) Li ₂ SO ₃	j) Fe ₂ O ₃							
Q5.	Write a valid Lewis structure for the following compounds: (15 pts.)								
	a) CCl ₄								
	1) 277								
	b) NF ₃								
	c) SO ₂								

Q6.	Using VSEPR theory, predict the shape of N	Cl ₃ . Your answer should include: (16 pts.)
	☐ A valid Lewis structure	☐ a sketch of the geometry
	☐ the name of the molecular geometry, and	☐ approximate bond angles

- Q7. Which bond is more polar, C—F or N—F? Explain why. (4 pts.)
- Q8. Predict whether F₂O will be polar or non-polar. Be sure to show all working, including a valid Lewis structure, a sketch of the approximate geometry, and any other necessary information. (15 pts.)

Useful Information

	Periodic Table of the Elements																
IA	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA
1	_																18
1																	2
H																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	1	
	**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		
		[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		