A Tiny Example

Andrew Mertz and William Slough

June 15, 2005

Suppose we have an (infinite) collection of sets \mathcal{F} . We define a shatter function $\pi_{\mathcal{F}}(n)$

$$\pi_{\mathcal{F}}(n) = \max\{\# \text{ of atoms in boolean algebra generated by } S$$

$$\mid S \subset \mathcal{F} \text{ with } |S| = n\}$$

Example: Let \mathcal{F} consist of all discs on a plane.

$$\pi_{\mathcal{F}}(1) = 2$$
 $\pi_{\mathcal{F}}(2) = 4$ $\pi_{\mathcal{F}}(3) = 8$ $\pi_{\mathcal{F}}(4) = 14$ $\pi_{\mathcal{F}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$

More examples:

1. Let \mathcal{F} be a set of lines on a plane. Then

$$\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$$

2. Let ${\mathcal F}$ be a set of disks on a plane. Then

$$\pi_{\mathcal{F}}(n) = n^2 - n + 2$$

3. Let \mathcal{F} be a set of balls in \mathbb{R}^3 . Then

$$\pi_{\mathcal{F}}(n) = n(n^2 - 3n + 8)/3$$

4. Let \mathcal{F} be a set of intervals on a line. Then

$$\pi_{\mathcal{F}}(n) = 2n$$

5. Let \mathcal{F} be a set of half-planes. Then

$$\pi_{\mathcal{F}}(n) = n(n+1)/2 + 1$$

6. Let \mathcal{F} be a collection of finite subsets of \mathbb{N} . Then

$$\pi_{\mathcal{F}}(n) = 2^n$$

7. Let \mathcal{F} be a collection of polygons in a plane. Then

$$\pi_{\mathcal{F}}(n)=2^n$$