Problemas de Análisis Funcional Avanzado

Tema 3: Topologías débiles

David Cabezas Berrido

Ejercicio 1: Sean X, Y espacios normados. Caracterizar las aplicaciones lineales de X en Y que son (n-w)-continuas.

Solución:

Sea $T: X \to Y$ una aplicación lineal. Sabemos por las propiedades de la topología inicial y por la definición de la topología débil que T es (n-w)-continua si y solo si $y^* \circ T: X \to \mathbb{K}$ es continua (considerando la topología τ_X) para cada $y^* \in Y^*$. En tal caso, se tiene $y^* \circ T \in X^*$ para todo $y^* \in Y^*$ (la composición de aplicaciones lineales es claramente lineal). Por tanto, las aplicaciones lineales de X en Y que son (n-w)-continuas son aquellas $T: X \to Y$ que cumplen $y^* \circ T \in X^*$ para todo $y^* \in Y^*$.

Ejercicio 2: Sean X un espacio normado, Y un espacio de Banach. Caracterizar las aplicaciones lineales de X en Y^* que son $(n-w^*)$ -continuas.

Solución: Sea $T: X \to Y^*$ una aplicación lineal. Sabemos por las propiedades de la topología inicial y por la definición de la topología débil* que T es $(n-w^*)$ -continua si y solo si $\delta_y \circ T: X \to \mathbb{K}$ es continua (considerando la topología τ_X) para cada $\delta_y \in J_Y(Y)$. Fijado $y \in Y$ y dada una red en X convergente a un punto de X ($\{x_\lambda\} \to x \in X$), que $\delta_y \circ T$ sea continua en x implica que la red $\{T(x_\lambda)(y)\}$ converge a T(x)(y) en \mathbb{K} . Pero si esto pasa para toda red $\{x_\lambda\} \to x$, justamente significa que $\delta_y \circ T$ es continua en x. Por tanto, una aplicación lineal $T: X \to Y^*$ es continua si y solo si la red de imágenes de toda red convergente en X es una red de Y^* puntualmente convergente a la imagen del límite. Por la linealidad, basta con que para toda red en X convergente a 0 (en la topología de la norma), la red de imágenes converja puntualmente al funcional nulo $0 \in Y^*$.

Otra forma de verlo: Como la composición de aplicaciones lineales es lineal, podemos asegurar que $T: X \to Y^*$ es continua si y solo si $\delta_y \circ T \in X^*$ para cada $\delta_y \in J_Y(Y)$.

Ejercicio 3: Sean X, Y espacios normados. Caracterizar las aplicaciones lineales de X en Y que son (w-n)-continuas.

Solución: Sea $T: X \to Y$ una aplicación lineal. Tomemos $\{x_{\lambda}\}$ una red en X w-convergente a 0: $\{x^*(x_{\lambda})\} \to 0 \quad \forall x^* \in X^*$. Para que T sea continua, es necesario que $\{T(x_{\lambda})\}$ converja a 0 en la topología de la norma de Y. Recíprocamente, T es continua si esto le ocurre a toda red débilmente convergente a 0. Por tanto, T es continua si y solo si para toda red $\{x_{\lambda}\}$ en X satisfaciendo $\{x^*(x_{\lambda})\} \to 0 \quad \forall x^* \in X^*$, se tiene $\{\|T(x_{\lambda})\|_Y\} \to 0$.

Otra forma de verlo: Como estamos tratando con topologías vectoriales, basta con que la preimagen de todo entorno de 0 en Y sea w-entorno de 0 en X. Además, como las homotecias son homeomorfismos, basta comprobarlo para la bola cerrada unidad de Y. Ser un entorno débil de 0 equivale a contener a un básico: que existan $\varepsilon > 0$ y $f_1, \ldots, f_n \in X^*$ tales que

$$U(0,\varepsilon,f_1,\ldots,f_n) = \{x \in X : |f_k(x)| < \varepsilon \ \forall k = 1,\ldots,n\} \subset T^{-1}(B_Y).$$

Por tanto, T es continua si y solo si existen $\varepsilon > 0$ y $f_1, \ldots, f_n \in X^*$ tales que

$$T\left(\bigcap_{k=1}^{n} f_k^{-1}(D(0,\varepsilon))\right) \subset B_Y.$$

Ejercicio 4: Sean X un espacio normado, Y un espacio de Banach. Caracterizar las aplicaciones lineales de X en Y^* que son $(w-w^*)$ -continuas.

Solución: Sea $T: X \to Y^*$ una aplicación lineal. Sabemos por las propiedades de la topología inicial y por la definición de la topología débil* que T es $(w-w^*)$ -continua si y solo si $\delta_y \circ T: X \to \mathbb{K}$ es continua (considerando la topología débil en X) para cada $\delta_y \in J_Y(Y)$. Como la composición

de aplicaciones lineales es lineal, esto es lo mismo que decir que $\delta_y \circ T \in (X, w)^* = X^*$ para todo $\delta_y \in J_Y(Y)$. Por tanto, T es $(w - w^*)$ -continua si y solo si es (n - w)-continua.

Ejercicio 5: Sean X, Y espacios normados. Caracterizar las aplicaciones lineales de X^* en Y que son $(w^* - n)$ -continuas.

Solución: Sea $T: X^* \to Y$ una aplicación lineal. T es continua si y solo si para cada red $\{x_{\lambda}\}$ w^* -convergente en X^* (puntualmente convergente como red de funciones de X en \mathbb{K}) al funcional nulo, la red de escalares $\{\|T(x_{\lambda})\|\}$ converge a 0.

Ejercicio 6: Sean X, Y espacios normados. Caracterizar las aplicaciones lineales de X^* en Y que son $(w^* - w)$ -continuas.

Solución: Sea $T: X^* \to Y$ una aplicación lineal. Sabemos por las propiedades de la topología inicial y por la definición de la topología débil que T es $(w^* - w)$ -continua si y solo si $y^* \circ T: X^* \to \mathbb{K}$ es continua (considerando la topología débil* en X^*) para cada $y^* \in Y^*$. Como la composición de aplicaciones lineales es lineal, esto equivale a que $y^* \circ T \in (X^*, w^*)^* = J_X(X)$ para cada $y^* \in Y^*$. Por tanto, T es continua si y solo si $y^* \circ T \in (X^*, w^*)^* = J_X(X)$ para todo $y^* \in Y^*$.