1. kolokvij iz OVS (16.4.2010)

Pri reševanju nalog ni potrebno izračunati numeričnih vrednosti binomskih simbolov, potenc in ekponentne funkcije (primer: rezultat lahko pustite v obliki $1-\frac{\binom{10}{3}2^5}{\rho^{10}}$).

- 1. Aleš ima v predalu 10 črnih nogavic, 4 bele in 1 nogavico z vzorcem (ta je brez para). Zjutraj iz predala na slepo vzame dve nogavici.
 - (a) Kakšna je verjetnost, da je izvlekel par črnih nogavic?
 - (b) Kakšna je verjetnost, da je dobil dve nogavici iste barve?
 - (c) Vzel je dve nogavici in nima para iste barve. S kakšno verjetnostjo bo v rokah držal par, če iz predala vzame še tretjo nogavico?

Rešitev:

(a)
$$p = \frac{\binom{10}{2}}{\binom{15}{2}}$$

(b)
$$p = \frac{\binom{10}{2}}{\binom{15}{2}} + \frac{\binom{4}{2}}{\binom{15}{2}}$$

- (c) A: dve nogavici, brez para. B: tri nogavice s parom. Zanima nas P(B|A). $P(A) = \frac{10 \cdot 4}{15 \cdot 14} + \frac{10 \cdot 1}{15 \cdot 14} + \frac{4 \cdot 1}{15 \cdot 14}$. $P(A \cap B) = \frac{10 \cdot 4}{15 \cdot 14} \left(\frac{9}{13} + \frac{3}{13} \right) + \frac{10 \cdot 1}{15 \cdot 14} \frac{9}{13} + \frac{4 \cdot 1}{15 \cdot 14} \frac{3}{13}$. $P(B|A) = \frac{P(A \cap B)}{P(A)}$.
- 2. Vržemo tri poštene kocke. Označimo z *A* dogodek, da vsaj na dveh izmed treh kock pade šestica.
 - (a) Kakšna je verjetnost dogodka A?
 - (b) Kakšna je verjetnost, da se v dvajsetih ponovitvah poskusa dogodek *A* zgodi vsaj trikrat?
 - (c) Koliko je pričakovano število metov, ki jih potrebujemo, da se zgodi dogodek *A*? Kakšna je verjetnost, da se dogodek *A ne zgodi* v prvih desetih metih?

Rešitev:

(a)
$$p = 3\left(\frac{1}{6}\right)^2 - 2\left(\frac{1}{6}\right)^3 = \frac{2}{27}$$

(b)
$$p = 1 - \left(\left(\frac{25}{27} \right)^{20} + {20 \choose 1} \left(\frac{2}{27} \right) \left(\frac{25}{27} \right)^{19} + {20 \choose 2} \left(\frac{2}{27} \right)^2 \left(\frac{25}{27} \right)^{18} \right)$$

(c)
$$E = \frac{27}{2}$$
, $p = \left(\frac{25}{27}\right)^{10}$.

3. Poleg poštenih trgovin se odpirajo tudi poštene igralnice. V njih se igrajo zgolj takšne igre, pri katerih je pričakovani dobiček enak 0. Da bodo bolj zanimivi za obiskovalce sestavljajo posebno igro s srečkami, pri kateri bo vsaka srečka stala 1€. Polovica srečk bo praznih, šestina pa jih bo

prinašala dobitek 3€. Koliko srečk z dobitkom za 1€ in koliko srečk z dobitkom za 6€ naj natisnejo, da bo igra poštena?

Rešitev: Rešiti je potrebno sistem enačb $\frac{1}{2} \cdot 0 + \frac{1}{6} \cdot 3 + p_1 \cdot 1 + p_6 \cdot 6 = 1$ in $\frac{1}{2} + \frac{1}{6} + p_1 + p_6 = 1$. Rešitev je $p_1 = \frac{3}{10}$ in $p_6 = \frac{1}{30}$.

4. Slučajni spremenljivki X in Y sta podani s porazdelitveno shemo

$$\begin{array}{c|cccc}
x & 0 & 1 \\
\hline
0 & \frac{1}{15} & \frac{1}{3} \\
1 & \frac{1}{5} & \frac{2}{15} \\
4 & \frac{1}{15} & c
\end{array}$$

- (a) Določi konstanto c.
- (b) Določi porazdelitvi slučajnih spremenljivk *X* in *Y*. Ali sta slučajni spremenljivki neodvisni?
- (c) Izračunaj kovarianco K(X, Y).

Rešitev:

- (a) $c = \frac{1}{5}$.
- (b) $X \sim \begin{pmatrix} 0 & 1 & 4 \\ \frac{2}{5} & \frac{1}{3} & \frac{4}{15} \end{pmatrix}$, $Y \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$. Spremenljivki sta nista neodvisni $(P(X=0,Y=0) \neq P(X=0)P(Y=0))$.
- (c) K(X,Y) = 0.