TÍN HIỆU VÀ HỆ THỐNG

Chương 5: Biến đổi Z và áp dụng cho phân tích hệ thống tuyến tính bất biến rời rạc

Trần Thị Thúy Quỳnh

$$y[n] = H\{x[n]\}$$

$$= h[n] * x[n]$$

$$= \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

Lối vào:
$$x[n] = z^n$$

$$Lol Vao: x[n] = x^n$$

Lối ra:
$$y[n] = \sum_{k=-\infty}^{\infty} h[k] z^{n-k}$$

$$=z^{n}\left(\sum_{k=-\infty}^{\infty}h[k]z^{-k}\right)$$

$$H(z) = \sum_{k=-\infty}^{\infty} h[k]z^{-k}$$

$$y[n] = \mathbf{T}\{z^n\} = H(z)z^n$$

A. Định nghĩa

Với tín hiệu liên tục x[n], biến đổi Z của X(z) (biến đổi hai phía) được định nghĩa bởi:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Với
$$z = re^{j\Omega}$$

Biến đổi Z một phía (unilateral) cho bởi:

$$X_I(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Biến đổi Z một phía và hai phía tương đương nhau nếu x[n]=0 với n<0.

Ký hiệu:

$$X(z) = \Im\{x[n]\}$$

$$X(z) = Z\{x[n]\}$$

$$x[n] \longleftrightarrow X(z)$$
 gọi là cặp biến đổi Z.

B. Vùng hội tụ

Khoảng giá trị của z đảm bảo cho biến đổi Z hội tụ được gọi là vùng hội tụ ROC (Region of Convergence).

Ví dụ:

Xác định biến đổi Z và vùng ROC của tín hiệu sau (với a là số thực):

$$x[n] = a^n u[n]$$

Bài giải:

Biến đổi Z:
$$X(z) = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n$$

Để X(z) hội tụ cần:
$$\sum |az^{-1}|^n < \infty$$

$$n = 0$$

Vậy vùng ROC sẽ là:
$$|az^{-1}| < 1$$
 hay $|z| > |a|$

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} \qquad |z| > |a|$$

Vùng hội tụ: |z| > |a|

VÍ DỤ 1:

Tìm biến đổi Z, vùng ROC, điểm không, điểm cực trên mặt phẳng Z của tín hiệu nhân quả sau:

$$x[n] = \alpha^n u[n]$$

với α là số thực.

VÍ DỤ 1:

Biến đổi Z

$$X(z) = \sum_{n=-\infty}^{\infty} \alpha^n u[n] z^{-n}$$

$$= \sum_{n=0}^{\infty} \left(\frac{\alpha}{z}\right)^n.$$

$$X(z) = \frac{1}{1 - \alpha z^{-1}}, \quad |z| > |\alpha|.$$

$$= \frac{z}{z - \alpha}, \quad |z| > |\alpha|.$$

VÍ DỤ 1:

Điểm cực $z = \alpha$ Điểm không z = 0Vùng ROC: $|z| > |\alpha|$

VÍ DŲ 2:

Tìm biến đổi Z, vùng ROC của tín hiệu phản nhân quả sau:

$$y[n] = -\alpha^n u[-n-1]$$

với α là số thực.

VÍ DŲ 2:

$$Y(z) = \sum_{n=-\infty}^{\infty} -\alpha^n u [-n-1] z^{-n}$$

$$= -\sum_{n=-\infty}^{-1} \left(\frac{\alpha}{z}\right)^n$$

$$= -\sum_{k=1}^{\infty} \left(\frac{z}{\alpha}\right)^k$$

$$= 1 - \sum_{k=1}^{\infty} \left(\frac{z}{\alpha}\right)^k$$

$$Y(z) = 1 - \frac{1}{1 - z\alpha^{-1}}, \quad |z| < |\alpha|,$$
$$= \frac{z}{z - \alpha}, \quad |z| < |\alpha|.$$

VÍ DŲ 2:

Điểm cực z = α

Điểm không z = 0

Vùng ROC: $|z| < |\alpha|$

VÍ DU 3:

Tìm biến đổi Z, vùng ROC, điểm không, điểm cực trên mặt phẳng Z của tín hiệu sau:

$$x[n] = -u[-n-1] + \left(\frac{1}{2}\right)^n u[n]$$

VÍ DU 3:

$$X(z) = \sum_{n=-\infty}^{\infty} \left(\frac{1}{2}\right)^n u[n] z^{-n} - u[-n-1] z^{-n}$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2z}\right)^n - \sum_{n=-\infty}^{-1} \left(\frac{1}{z}\right)^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2z}\right)^n + 1 - \sum_{k=0}^{\infty} z^k.$$

$$X(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + 1 - \frac{1}{1 - z}, \quad 1/2 < |z| < 1$$

$$= \frac{z(2z - \frac{3}{2})}{(z - \frac{1}{2})(z - 1)}, \quad 1/2 < |z| < 1.$$

VÍ DŲ 3:

Điểm cực z = 1/2, x=1Điểm không z = 0, z=3/4Vùng ROC: 1/2 < |z| < 1

C. Tính chất của vùng ROC

- 1. Vùng ROC không chứa các điểm cực.
- 2. Nếu x[n] là chuỗi hữu hạn x[n]=0 ngoài khoảng $[N_1,N_2]$ thì ROC là toàn bộ mặt phẳng z trừ z=0 và $z=\infty$.
- 3. Nếu x[n] là tín hiệu phía phải x[n] = 0 ngoài khoảng $[N_1, \infty]$ thì ROC là $|z| > r_{max}$, r_{max} là biên độ lớn nhất trong các điểm cực của X(z).
- 4. Nếu x[n] là tín hiệu phía trái x[n] = 0 ngoài khoảng $[-\infty, N_1]$ thì ROC là $|z| < r_{min}$, r_{min} là biên độ nhỏ nhất trong các điểm cực của X(z).
- 5. Nếu x[n] là tín hiệu hai phía (thời gian vô hạn) thì ROC là $r_1 < |z| < r_2$, r_1 và r_2 là các biên độ của hai điểm cực của X(z).

MỘT SỐ CẶP BIẾN ĐỔI Z THÔNG DỤNG

x[n]	X(z)	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	z > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	z < 1
$\delta[n-m]$	z - m	All z except 0 if $(m > 0)$ or ∞ if $(m < 0)$
$a^n u[n]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z < a
$na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z > a
$-na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z < a

MỘT SỐ CẶP BIẾN ĐỔI Z THÔNG DỤNG

x[n]	X(z)	
$(n+1)a^nu[n]$	$\frac{1}{\left(1-az^{-1}\right)^2}, \left[\frac{z}{z-a}\right]^2$	z > a
$(\cos \dot{\Omega}_0 n) u[n]$	$\frac{z^2 - (\cos \Omega_0) z}{z^2 - (2\cos \Omega_0) z + 1}$	z > 1
$(\sin \Omega_0 n)u[n]$	$\frac{(\sin\Omega_0)z}{z^2 - (2\cos\Omega_0)z + 1}$	z > 1
$(r^n\cos\Omega_0 n)u[n]$	$\frac{z^2 - (r\cos\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$	z > r
$(r^n \sin \Omega_0 n) u[n]$	$\frac{(r\sin\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$	z > r
$\begin{cases} a^n & 0 \le n \le N - 1 \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0

TÍNH CHẤT CỦA BIẾN ĐỔI Z

Property	Sequence	Transform	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_{l}(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linearity	$a_1 x_1[n] + a_2 x_2[n]$	$a_1 X_1(z) + a_2 X_2(z)$	$R' \supset R_1 \cap R_2$
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	$R'\supset R\cap\{0< z <\infty\}$
Multiplication by z_0^n	$z_0^n x[n]$	$X\left(\frac{z}{z_0}\right)$	$R' = z_0 R$
Multiplication by $e^{j\Omega_0 n}$	$e^{j\Omega_0 n}x[n]$	$X(e^{-j\Omega_0}z)$	R' = R
Time reversal	x[-n]	$X\left(\frac{1}{z}\right)$	$R'=rac{1}{R}$
Multiplication by n	nx[n]	$-z\frac{dX(z)}{dz}$	R' = R
Accumulation	$\sum_{k=-\infty}^{n} x[n]$	$\frac{1}{1-z^{-1}}X(z)$	$R'\supset R\cap\{ z >1\}$
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	$R' \supset R_1 \cap R_2$

$$x[n] = 3^{-1}{X(z)}$$

 $x[n] = Z^{-1}{X(z)}$

A. Công thức biến đổi ngược

Tính tích phân đổi với biến phức rất phức tạp.

$$x[n] = \frac{1}{2\pi i} \oint_C X(z) z^{n-1} dz$$

B. Sử dụng các cặp biến đổi Z thông dụng và tính chất của biến đổi Z

$$X(z) = X_1(z) + \cdots + X_n(z)$$

$$\rightarrow x[n] = x_1[n] + \cdots + x_n[n]$$

C. Khai triển chuỗi mũ

$$X[z] = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$= \cdots + x[-2]z^{2} + x[-1]z + x[0] + x[1]z^{-1} + x[2]z^{-2} + \cdots$$

D. Khai triển phân số thành phần

$$X(z) = \frac{N(z)}{D(z)} = k \frac{(z-z_1)\cdots(z-z_m)}{(z-p_1)\cdots(z-p_n)}$$

TH1: Điểm cực đơn (phân biệt)

Khi $n \geq m$:

$$\frac{X(z)}{z} = \frac{c_0}{z} + \frac{c_1}{z - p_1} + \frac{c_2}{z - p_2} + \dots + \frac{c_n}{z - p_n} = \frac{c_0}{z} + \sum_{k=1}^n \frac{c_k}{z - p_k}$$

Với
$$c_0 = X(z)|_{z=0}$$
 $c_k = (z - p_k) \frac{X(z)}{z}|_{z=p_k}$

$$X(z) = c_0 + c_1 \frac{z}{z - p_1} + \cdots + c_n \frac{z}{z - p_n} = c_0 + \sum_{k=1}^n c_k \frac{z}{z - p_k}$$

Khi m > n:

$$X(z) = \sum_{q=0}^{m-n} b_q z^q + \sum_{k=1}^n c_k \frac{z}{z - p_k}$$

TH 2: Điểm cực kép (hệ số lặp lại r)

$$\frac{X(z)}{z} = \frac{\lambda_1}{z - p_i} + \frac{\lambda_2}{(z - p_i)^2} + \cdots + \frac{\lambda_r}{(z - p_i)^r}$$

Với

$$\lambda_{r-k} = \frac{1}{k!} \frac{d^k}{dz^k} \left[\left(z - p_i \right)^r \frac{X(z)}{z} \right]_{z=p_i}$$

HÀM TRUYỀN CỦA HỆ THỐNG LTI

$$y[n] = x[n] * h[n]$$

Lấy biến đổi Z hai vế:

$$Y(z) = X(z)H(z)$$

$$\to H(z) = \frac{Y(z)}{X(z)}$$

H(z) được gọi là hàm truyền của hệ thống.

PHÂN LOẠI HỆ THỐNG

A. Tính nhân quả

Hệ thống LTI liên tục là nhân quả nếu: h[n] = 0 n < 0

 \rightarrow h[n] là tín hiệu phía phải nên ROC của H(z) có dạng:

$$|z| > r_{\text{max}}$$

PHÂN LOẠI HỆ THỐNG

B. Tính ổn định

Hệ thống LTI liên tục là ổn định nếu:

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

$$H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}$$

Đặt
$$z = e^{j\Omega}$$

$$|H(e^{j\Omega})| = \left|\sum_{n=-\infty}^{\infty} h[n] e^{-j\Omega n}\right| \leq \sum_{n=-\infty}^{\infty} |h[n] e^{-j\Omega n}| = \sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

Hay H(z) hội tụ với $z=e^{j\Omega}$

ROC của H(z) chứa $z=e^{j\Omega}$

HỆ THỐNG LTI BIỂU DIỄN BẰNG PHƯƠNG TRÌNH SAI PHÂN

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Thực hiện biến đổi Z hai vế:

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

KẾT HỢP CÁC HỆ THỐNG

Các hệ thống mắc nối tiếp:

$$h[n] = h_1[n] * h_2[n]$$

 $H(z) = H_1(z)H_2(z)$ $R \supset R_1 \cap R_2$

Các hệ thống mắc song song:

$$h[n] = h_1[n] + h_2[n]$$

 $H(z) = H_1(z) + H_2(z)$ $R \supset R_1 \cap R_2$

BIẾN ĐỔI Z MỘT PHÍA

$$X_I(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Biến đổi Z một phía của chuỗi x[n] có thể coi như biến đổi Z hai phía của chuỗi x[n]u[n], là chuỗi phía phải nên ROC luôn là vùng nằm ngoài vòng tròn trong mặt phẳng z.

TÍNH CHẤT CỦA BIẾN ĐỔI Z MỘT PHÍA

Tương tự như biến đổi Z hai phía, ngoại trừ:

Phép dịch theo thời gian:

Nếu:
$$x[n] \longleftrightarrow X_I(z)$$
 thì với $m \ge 0$

$$x[n-m] \longleftrightarrow z^{-m}X_I(z) + z^{-m+1}x[-1] + z^{-m+2}x[-2] + \cdots + x[-m]$$

$$x[n+m] \longleftrightarrow z^m X_I(z) - z^m x[0] - z^{m-1} x[1] - \cdots - zx[m-1]$$

SO SÁNH GIỮA BIẾN ĐỔI MỘT PHÍA VÀ HAI PHÍA

	Unilateral Transform	Bilateral Transform	ROC
	$x[n] \stackrel{z_u}{\longleftrightarrow} X(z)$	$x[n] \stackrel{z}{\longleftrightarrow} X(z)$	$z \in R_x$
Signal	$y[n] \stackrel{z_n}{\longleftrightarrow} Y(z)$	$y[n] \stackrel{z}{\longleftrightarrow} Y(z)$	$z \in R_{\gamma}$
ax[n] + by[n]	aX(z) + bY(z)	aX(z) + bY(z)	At least $R_x \cap R_y$
x[n-k]	See below	$z^{-k}X(z)$	R_x , except possibly $ z =0,\infty$
$\alpha^n x[n]$	$X\left(\frac{z}{\alpha}\right)$	$X\left(\frac{z}{\alpha}\right)$	$ lpha R_x$
x[-n]	_	$X\left(\frac{1}{z}\right)$	$\frac{1}{R_x}$
x[n] * y[n]	X(z)Y(z) if $x[n] = y[n] = 0$ for $n < 0$	X(z)Y(z)	At least $R_x \cap R_y$
nx[n]	$-z\frac{d}{dz}X(z)$	$-z\frac{d}{dz}X(z)$	R_x , except possibly addition or deletion of $z = 0$

Biến đổi Fourier:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega n}$$

Biến đổi Z:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$X(\Omega) = X(z)|_{z=e^{j\Omega}}$$

Đặt $z=e^{j\Omega}$ thì biến đổi Z của tín hiệu x[n] cũng bằng biến đổi Fourier của tín hiệu x[n] hay nếu vùng ROC chứa vòng tròn đơn vị |z|=1 thì biến đổi Fourier của x[n] bằng biến đổi Z được tính trên vòng tròn đơn vị.

Biến đổi Fourier được tính từ biến đổi Z khi đặt $\mathbf{z} = e^{j\Omega}$ nếu x[n] có thể tính tổng tuyệt đối hay:

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

Ví dụ: Cho tín hiệu mũ với hằng số a thực:

Biến đổi Z:
$$X(z) = \frac{1}{1 - az^{-1}}$$
 $|z| > |a|$

Với |a| < 1 vùng ROC của X(z) chứa vòng tròn đơn vị nên tồn tại biến đổi Fourier:

$$X(e^{j\Omega}) = \frac{1}{1 - ae^{-j\Omega}} \qquad |a| < 1$$

Biến đổi Fourier theo định nghĩa:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} a^{n} u[n] e^{-j\Omega n} = \sum_{n=0}^{\infty} a^{n} e^{-j\Omega n} = \sum_{n=0}^{\infty} \left(a e^{-j\Omega} \right)^{n} = \frac{1}{1 - a e^{-j\Omega}} \qquad |ae^{-j\Omega}| = |a| < 1$$

$$\longrightarrow X(\Omega) = X(z) \Big|_{z=e^{j\Omega}}$$

Chú ý: x[n] có thể tính tổng tuyệt đối.

Ví dụ: Cho chuỗi nhảy bậc u[n]

Biến đổi Z:

$$\Im\{u[n]\} = \frac{1}{1-z^{-1}} \qquad |z| >$$

Biến đổi Fourier:

$$\mathscr{F}\{u[n]\} = \pi \delta(\Omega) + \frac{1}{1 - e^{-j\Omega}} \qquad |\Omega| \le \pi$$

Biến đổi Fourier của x[n] không thể tính từ biến đổi Z do ROC của biến đổi Z không chứa vòng tròn đơn vị và chuỗi x[n] không thể tính tổng tuyệt đối.

