### 마케터를 위한 데이터분석

김우찬

```
1번
코드
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
s0, mu, sigma, cT=10000,0.05,0.2,0.01
M = 100
i=10
S = np.zeros([i,M])
t=np.arange(0,1,0.01)
for y in range(0,i-1):
    S[y,0]=s0
     for x in range(0,M-1):
          epsilon=np.random.randn()
         S[y,x+1]=S[y,x]*np.exp((mu-
0.5*sigma**2)*cT+sigma*epsilon*np.sqrt(cT)).round(2)
     plt.plot(t,S[y])
plt.title('10 simulated paths of stock prices')
plt.xlabel('time')
plt.show()
```

#### 코드의 실행결과



2번

2-1)

#### 코드

import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.tree import plot\_tree import matplotlib.pyplot as plt

df=pd.read\_excel('C:/data/final/mortgage.xlsx')
df\_1=df[['pbcr','self','single','black']].astype(str)
df\_2=df.drop(['pbcr','self','single','black'],axis=1)
df\_3=pd.concat([df\_1,df\_2],axis=1)
df\_dummy=pd.get\_dummies(data=df\_3,columns=['pbcr','self','single','black'])

X=df\_dummy.drop('deny',axis=1) y=df\_dummy['deny']

model=DecisionTreeClassifier(criterion='gini',max\_depth=4)
result=model.fit(X,y)

fig=plt.figure(figsize=(25,10)) a=plot\_tree(result,class\_names=['accepted','denied'], feature\_names=X.columns, filled=True, fontsize=10)

#### 코드의 실행결과





### 대출신청이 승인된 고객들의 특성

(\*accepted에 해당되는 leaf node 중 gini<0.2에 해당돼 뚜렷한 특성을 보여줄 수 있는 3개의 leaf node로 대출신청이 승인된 고객들의 특성을 분석했습니다.)

- (1) 신용불량기록(pbcr)이 없으며, 총소득 비율대비 부채상환액(dir)이 40%보다 낮으며, 부동산 평가액 대비 대출규모비율(lvr)이 94%를 넘지 않으며, 고객의 신용점수(ccs)가 2.5점 보다 낮은 고객의 주택담보대출신청은 대부분 승인됐다.
- (2) 신용불량기록(pbcr)이 없으며, 총소득 비율대비 부채상환액(dir)이 40%보다 높으며, 부동산 평가액 대비 대출규모비율(lvr)이 88%를 넘지 않으며, 고객의 주택담보대출 신용점수(mcs)가 1.5점 보다 낮은 고객의 주택담보대출신청은 대부분 승인됐다.



(3) 신용불량기록(pbcr)이 있으며, 고객신용점수(ccs)가 3.5점 보다 낮으며, 총

소득 비율대비 부채상환액(dir)이 20%보다 낮은 고객의 주택담보대출신청은 대부분 승인됐다.

2-2)

#### 코드

from sklearn.model\_selection import train\_test\_split from sklearn.tree import DecisionTreeClassifier from sklearn import metrics

X=df\_dummy.drop('deny',axis=1) y=df\_dummy['deny']

X\_train, X\_test, y\_train, y\_test=train\_test\_split(X,y,test\_size=0.1) model=DecisionTreeClassifier(criterion='gini',max\_depth=4) result=model.fit(X\_train,y\_train)

predictions=result.predict(X test)

accuracy=metrics.accuracy\_score(y\_test,predictions)
accuracy

#### 코드의 실행결과

accuracy=metrics.accuracy\_score(y\_test,predictions)
accuracy

0.8870292887029289

#### 2-3)

#### (\*2-1문제의 답에 기반해서 작성했습니다.)

신용불량기록(pbcr)이 없고, 총소득 비율대비 부채상환액(dir)이 낮으며, 신용점수(ccs)가 1에 가까운 고객에게는 먼저 주택담보대출을 허가해 준다. 또한, 비록총소득 비율대비 부채상환액(dir)이 좀 높더라도 부동산 평가액 대비 대출규모비율(lvr)이 약 90%를 넘지 않으며 주택담보대출 신용점수(mcs)가 1점에 가까운고객에게도 주택담보대출을 허가해 준다. 마지막으로, 비록 신용불량기록이 있더라도 고객신용점수(ccs)가 3.5보다 낮으며 총소득 비율대비 부채상환액(dir)이 20%보다 낮은 고객에게도 주택담보대출을 허가해 준다.

# 3번

#### 코드#1 (Elbow point)

import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans import matplotlib.pyplot as plt

df=pd.read\_excel("C:/data/final/Cars.xlsx")
df.dropna(axis=0,inplace=True)

```
Brand=df['Brand']
df.drop('Brand',axis=1,inplace=True)

scaler=StandardScaler()
df_scaled=scaler.fit_transform(df)

inertias=[]
for k in range(1,6):
    model=KMeans(n_clusters=k,random_state=0)
    result=model.fit(df_scaled)
    inertias.append(result.inertia_)

plt.plot(range(1,6),inertias)
plt.xticks(range(1,6))
plt.xlabel("Number of Clusters")
plt.ylabel("Inertial")
plt.show()
```

### <mark>코드#1 실행결과(Elbow point)</mark>



: 3개 이후에 inertia의 감소폭이 현저히 적기에 Cluster 3개가 Elbow point입니다. 따라서, KMeans Clustering에서 cluster의 개수는 3개로 둡니다.

## 코드#2(Clustering)

(\*코딩#1에 이어서 쓴 코딩입니다.)

model=KMeans(n\_clusters=3,random\_state=0)
result=model.fit(df\_scaled)
cluster=result.labels\_
df['cluster']=cluster
df.head()

### 코드#2 실행결과(Clustering)

|   | Price | MPGcity | MPGhighway | Cylinders | EngineSize | Horsepower | RPM  | Revpermile | Fueltankcapacity | Passengers | Length |
|---|-------|---------|------------|-----------|------------|------------|------|------------|------------------|------------|--------|
| 0 | 15.9  | 25      | 31         | 4         | 1.8        | 140        | 6300 | 2890       | 13.2             | 5          | 177    |
| 1 | 33.9  | 18      | 25         | 6         | 3.2        | 200        | 5500 | 2335       | 18.0             | 5          | 198    |
| 2 | 29.1  | 20      | 26         | 6         | 2.8        | 172        | 5500 | 2280       | 16.9             | 5          | 180    |
| 3 | 37.7  | 19      | 26         | 6         | 2.8        | 172        | 5500 | 2535       | 21.1             | 6          | 198    |
| 4 | 30.0  | 22      | 30         | 4         | 3.5        | 208        | 5700 | 2545       | 21.1             | 4          | 186    |

| Le | ength | Wheelbase | Width | Turncircle | Rearseatroom | Luggageroom | Weight | cluster |
|----|-------|-----------|-------|------------|--------------|-------------|--------|---------|
|    | 177   | 102       | 68    | 37         | 26.5         | 11.0        | 2705   | 2       |
|    | 195   | 115       | 71    | 38         | 30.0         | 15.0        | 3560   | 1       |
|    | 180   | 102       | 67    | 37         | 28.0         | 14.0        | 3375   | 2       |
|    | 193   | 106       | 70    | 37         | 31.0         | 17.0        | 3405   | 1       |
|    | 186   | 109       | 69    | 39         | 27.0         | 13.0        | 3640   | 2       |

#### <del>코드#3</del>

(\*군집별로 자료를 시각화 할 때 사용하는 코딩은 틀이 같고, values=['']에서 ['']에 들어가는 변수만 바꾸면 됩니다. 따라서, 밑에 제시된 ['Price','MPGcity','Passengers']의 values를 제외하고 군집별로 자료를 시각화 하는 코딩문 기입은 생략했습니다. 또한, 데이터를 막대그래프로 그릴때 수치가 비슷한 항목끼리 묶어서 출력했습니다.)

table=df.pivot\_table(index='cluster',values=['Price','MPGcity', 'MPGhighway'],aggfunc='mean')
table.plot(kind='bar')

### 코드#3 실행결과





# 중고차 유형별 특성의 평균차이

| 특성               | Cluster0 | Cluster1 | Cluster2 |  |  |  |  |
|------------------|----------|----------|----------|--|--|--|--|
| 가격 관련 특성         |          |          |          |  |  |  |  |
| Price            | \$10,000 | \$30,000 | \$17,000 |  |  |  |  |
| 길이/크기 관련 특성      |          |          |          |  |  |  |  |
| Length           | 160      | 200      | 175      |  |  |  |  |
| Wheelbase        | 90       | 110      | 100      |  |  |  |  |
| Whidth           | 65       | 70       | 68       |  |  |  |  |
| Turncirle        | 35       | 40       | 38       |  |  |  |  |
| Revpermile       | 2,900    | 1,800    | 2,200    |  |  |  |  |
|                  | 적재량 -    | 관련 특성    |          |  |  |  |  |
| Fueltankcapacity | 12.5     | 19       | 17       |  |  |  |  |
| Luggaggeroom     | 12       | 17       | 13       |  |  |  |  |
| Rearseatroom     | 25       | 30       | 26       |  |  |  |  |
| Passengers       | 4.5      | 5.5      | 5        |  |  |  |  |
| Weight           | 2,100    | 3,600    | 2,900    |  |  |  |  |
| 마력 관련 특성         |          |          |          |  |  |  |  |
| EngineSize       | 1.5      | 4        | 2.5      |  |  |  |  |
| RPM              | 5,500    | 4,900    | 5,200    |  |  |  |  |
| Horsepower       | 85       | 185      | 135      |  |  |  |  |
| 연비 관련 특성         |          |          |          |  |  |  |  |
| MPGcity          | 30       | 17       | 23       |  |  |  |  |
| MPGhighway       | 36       | 25       | 30       |  |  |  |  |

Cluster0: 소형차에 속하며 적재량과 마력은 낮지만, 연비가 좋고 가격은 저렴한 유형이다.

Cluster1: 대형차에 속하며 적재량과 마력이 높지만, 연비가 좋지 않고 가격은 비싼 유형이다.

Cluster2: 중형차에 속하며 적재량과 마력과 연비와 가격이 모두 높지도 낮지도 않은 유형이다.

## 4번 코드

import pandas as pd

from mlxtend.frequent patterns import apriori

from mlxtend.frequent patterns import association rules

df=pd.read\_excel("C:/data/final/supermarket.xlsx")

basket=df.groupby(['Member number','Product'])['Product'].count()

basket 1=basket.unstack(level=1)

basket 1.fillna(0,inplace=True)

basket 2=basket 1.applymap(lambda x:1 if  $x \ge 1$  else 0)

frequent itemsets=apriori(basket 2, min support=0.02, use colnames=True)

rules=association\_rules(frequent\_itemsets, metric="lift", min\_threshold=1.7) rules

### 코드의 실행결과

|   | antecedents                    | consequents                    | antecedent support | consequent support | support  | confidence | lift     | leverage | conviction |
|---|--------------------------------|--------------------------------|--------------------|--------------------|----------|------------|----------|----------|------------|
| 0 | (yogurt, bottled water)        | (whole milk, other vegetables) | 0.066444           | 0.191380           | 0.022063 | 0.332046   | 1.735009 | 0.009346 | 1.210593   |
| 1 | (whole milk, other vegetables) | (yogurt, bottled water)        | 0.191380           | 0.066444           | 0.022063 | 0.115282   | 1.735009 | 0.009346 | 1.055201   |
| 2 | (yogurt, other vegetables)     | (whole milk, sausage)          | 0.120318           | 0.106978           | 0.023089 | 0.191898   | 1.793806 | 0.010217 | 1.105085   |
| 3 | (whole milk, sausage)          | (yogurt, other vegetables)     | 0.106978           | 0.120318           | 0.023089 | 0.215827   | 1.793806 | 0.010217 | 1.121796   |
| 4 | (whole milk, sausage)          | (yogurt, rolls/buns)           | 0.106978           | 0.111339           | 0.022832 | 0.213429   | 1.916929 | 0.010921 | 1.129791   |
| 5 | (sausage, rolls/buns)          | (yogurt, whole milk)           | 0.082350           | 0.150590           | 0.022832 | 0.277259   | 1.841148 | 0.010431 | 1.175261   |
| 6 | (yogurt, whole milk)           | (sausage, rolls/buns)          | 0.150590           | 0.082350           | 0.022832 | 0.151618   | 1.841148 | 0.010431 | 1.081648   |
| 7 | (yogurt, rolls/buns)           | (whole milk, sausage)          | 0.111339           | 0.106978           | 0.022832 | 0.205069   | 1.916929 | 0.010921 | 1.123396   |

#### 코드결과에 따른 Display 전략

(\*A를 산 사람은 B를 살 확률이 높다는 문장은 B를 산 사람은 A를 살 확률이 높다는 뜻도 동시에 됩니다.)

- (1) yogurt와 bottled water을 같이 사는 사람은 milk와 vegetables도 동시에 같이 살 확률이 높다. 따라서, yogurt와 bottled water을 진열하는 곳 근처에 milk와 vegetables도 같이 진열하면 좋다.
- (2) yogurt와 vegetables를 같이 사는 사람은 milk와 sausage도 같이 살 확률이 높다. 따라서, yogurt와 vegetables을 진열하는 곳 근처에 milk와 sausage도 같이 진열하면 좋다.
  - (3) milk와 sausage를 같이 사는 사람은 yogurt와 rolls/buns도 같이 살 확률

- 이 높다. 따라서, milk와 sausage를 진열하는 곳 근처에 yogurt와 rolls/buns도 같이 진열하면 좋다.
- (4) sausage와 rolls/buns를 같이 사는 사람은 yogurt와 milk도 같이 살 확률이 높다. 따라서, sausage와 rolls/buns을 진열하는 곳 근처에 yogurt와 milk도 같이 진열하면 좋다.
- (5) yogurt와 milk를 사는 사람은 sausage와 rolls/buns를 살 확률이 높다. 따라서, yogurt와 milk을 진열하는 곳 근처에 sausage와 rolls/buns도 같이 진열하면 좋다.