Homological Algebra

Original lectures notes by Baptiste Rognerud, but now typeset in LATEX

1 Introduction to category theory

References:

- Emily Riehl, Category Theory in Context (chapter I)
- Saunders Mac Lane, Categories for the Working Mathematician
- Ibrahim Assem, Introduction au langage catégorique (chapters I, II)

▶ Near 1945 Eilenberg and Mac Lane gave the good formalism for a "natural isomorphism" (the general theory of natural transformations). For instance, if V is a finite-dimensional vector space, $V \simeq V^*$ and $V \simeq V^{**}$, but the first isomorphism is not natural ("a choice needs to be made"), while the second is. But why?

It turns out solving this question gave a formalism, category theory, that unified already existing mathematical concepts, gave new links between different notions and also gave new questions!

A Category theory is not a theory that trivializes mathematics.

It is used today by (almost) everyone: algebraic geometry, algebra, representation theory, topology, combinatorics, . . .

1.1 Categories and functors

Definition 1.1. A category C is the data of

- A collection of morphisms Mor(C)
- A collection of *objects* Ob(C)

such that

- 1. Every morphism $f \in \text{Mor}(\mathcal{C})$ has a specified domain $X \in \text{Ob}(\mathcal{C})$ and codomain $Y \in \text{Ob}(\mathcal{C})$. We write $f: X \to Y$.
- 2. For every object $X \in \mathrm{Ob}(\mathcal{C})$ there exists a morphism $1_X : X \to X$ (the *identity* of X), also written id_X
- 3. For any three objects $X,Y,Z\in \mathrm{Ob}(\mathcal{C})$ and morphism $f:X\to Y$ and $g:Y\to Z$ there exists a morphism $g\circ f:X\to Z$ (we often omit \circ and just write gf)

satisfying

(Identity)
$$\forall f: X \to Y, 1_Y f = f = f1_X$$

(Associativity) $\forall f: W \to X, g: X \to Y, h: Y \to Z, h(gf) = (hg)f$

Remark.

- 1. We use the term "collection" because we don't want to worry about set-theoretical issues
- 2. If $Mor(\mathcal{C})$ is a set, we say that \mathcal{C} is small
- 3. We denote by $\operatorname{Hom}_{\mathcal{C}}(X,Y)$ (or $\mathcal{C}(X,Y)$) the collection of $f:X\to Y\in\operatorname{Mor}(\mathcal{C})$

Examples 1.2 (Concrete categories).

- 1. The category **Set**, where objects are sets and morphisms are just maps.
- 2. **Top**, where objects are topological spaces and morphisms are continuous maps.
- 3. Groups together with group homomorphisms form a category called **Grp**. The same can be said about rings, fields...
- 4. k-vector spaces, or more generally left/right R-modules, together with linear maps, form a category denoted RMod or ModR (for left or right R-modules).

In these previous examples, objects are sets with additional structure, and morphisms between two objects are in particular maps between the two underlying sets. Such categories are called *concrete categories* (a rigorous definition will be given later). However, a category need not be concrete.

Examples 1.3 (Abstract categories).

- 1. Let k be a field. There exists a category \mathbf{Mat}_k where objects are the natural numbers \mathbb{N} and morphisms are $\mathrm{Hom}(m,n)=\mathrm{Mat}_{n,m}(k)$, where composition is given by matrix multiplication.
- 2. If G is a group, there exists a category BG which has only one object \bullet , and morphisms $\operatorname{Hom}(\bullet, \bullet) = G$, where composition is multiplication in G.
- 3. If (P, \leq) is a poset (a partially ordered set, that is a set P together with a reflexive, transitive relation \leq), then one can construct a category \hat{P} by setting $\mathrm{Ob}(\hat{P}) = P$ and $|\mathrm{Hom}(x,y)| = \begin{cases} 1 & \text{if } x \leq y \\ 0 & \text{otherwise} \end{cases}$, where composition is defined in the only possible way.
- 4. The homotopy category of topological spaces: objects are topological spaces, and $\operatorname{Hom}(X,Y)$ is $\operatorname{Hom}_{\mathbf{Top}}(X,Y)/\sim$ where \sim is homotopy of continuous maps.

Exercise. Check the categories defined above really are categories. In (2), what are the minimal hypotheses needed on G for BG to be a category? In (3), what are the minimal hypotheses needed on \subseteq for \widehat{P} to be a category?

Examples 1.4 (Categories constructed from categories).

1. If \mathcal{C} is a category, one can construct its *opposite category* \mathcal{C}^{op} , defined by $\text{Ob}(\mathcal{C}^{\text{op}}) = \text{Ob}(\mathcal{C})$ and $\text{Hom}_{\mathcal{C}^{\text{op}}}(X,Y) = \text{Hom}_{\mathcal{C}}(Y,X)$, with composition described by the following diagram:

$$\begin{array}{ccc}
X & X \\
\downarrow f & f^{\text{op}} & \downarrow \\
Y & \leadsto & Y \\
\downarrow g & g^{\text{op}} & \downarrow \\
Z & Z
\end{array}$$

- 2. Let \mathcal{C} be a category. A subcategory \mathcal{D} of \mathcal{C} is another category such that $\mathrm{Ob}(\mathcal{D}) \subset \mathrm{Ob}(\mathcal{C})$ and $\mathrm{Mor}(\mathcal{D}) \subset \mathrm{Mor}(\mathcal{C})$ and the composition in \mathcal{D} is induced by the one in \mathcal{C} . For instance, \mathbf{Ab} , the category of abelian groups and group homomorphisms, is a subcategory of \mathbf{Grp} .
- 3. Let \mathcal{C} and \mathcal{D} be categories. The *product category* of \mathcal{C} and \mathcal{D} is the category $\mathcal{C} \times \mathcal{D}$ defined by $\mathrm{Ob}(\mathcal{C} \times \mathcal{D}) = \mathrm{Ob}(\mathcal{C}) \times \mathrm{Ob}(\mathcal{D})$ and $\mathrm{Mor}(\mathcal{C} \times \mathcal{D}) = \mathrm{Mor}(\mathcal{C}) \times \mathrm{Mor}(\mathcal{D})$, composition and identities being defined componentwise.

Exercise. Describe $(BG)^{op}$ for G a group and \hat{P}^{op} for (P, <) a poset.

▲ Set^{op} is not Set. TODO

Remark. In a category \mathcal{C} the objects can be anything, so saying $x \in X$ for $X \in \mathrm{Ob}(\mathcal{C})$ doesn't make sense. Hence, categorical notions are defined using arrows and not elements.

Definition 1.5. Let \mathcal{C} be a category.

- 1. $f: X \to Y$ is an isomorphism if there exists $g: Y \to X$ such that $gf = \mathrm{id}_X$ and $fg = \mathrm{id}_Y$.
- 2. $f: X \to Y$ is a monomorphism if for all $g, h: W \to X$ such that fg = fh, g = h (f is left-cancellable).
- 3. $f: X \to Y$ is an *epimorphism* if for all $g, h: Y \to Z$ such that gf = hf, g = h (f is right-cancellable).

A Being both a mono and an epi doesn't imply being an iso. TODO

Definition 1.6. Let \mathcal{C}, \mathcal{D} be two categories. A *(covariant) functor* $F : \mathcal{C} \to \mathcal{D}$ is the data of

- An object $F(X) \in \mathrm{Ob}(\mathcal{D})$ for all $X \in \mathrm{Ob}(\mathcal{C})$
- A morphism $F(f) \in \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y))$ for all $f \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$

such that $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$ for all $X \in \mathrm{Ob}(\mathcal{C})$ and F(gf) = F(g)F(f) whenever $f, g \in \mathrm{Mor}(\mathcal{C})$ are composable.

Definition 1.7. A contravariant functor from \mathcal{C} to \mathcal{D} is a functor from \mathcal{C}^{op} to \mathcal{D} (so composition is reversed, i.e. F(gf) = F(f)F(g)).

Examples 1.8.

1. $U : \mathbf{Grp} \to \mathbf{Set}, U(G) = G, U(f) = f$ the functor that to a group assigns it its underlying set and to a homomorphism the underlying map. It is called the *forgetful functor* from groups to sets, because it forgets the group structure.

- 2. $U: \mathbf{Ass} \to \mathbf{Lie}$ the forgetful functor from the category of associative algebras to the category of Lie algebras. It forgets the "associative structure" but remembers the underlying abelian group.
- 3. $F: \mathbf{Set} \to \mathbf{Ab}, X \mapsto \mathbb{Z}[X], f \mapsto \mathbb{Z}[f]$, which to a set assigns the free abelian group with basis X (the group of finite linear combinations of elements of X). A map $f: X \to Y$ can then be uniquely extended to a linear map $\mathbb{Z}[f]: \mathbb{Z}[X] \to \mathbb{Z}[Y]$ that agrees with f on the bases of $\mathbb{Z}[X]$ and $\mathbb{Z}[Y]$.
- 4. Suppose \mathcal{C} is locally small (i.e. for any X, Y, $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ is a set). For all $X \in \mathcal{C}$, $\operatorname{Hom}(X, -)$ is a functor $\mathcal{C} \to \mathbf{Set}$. Similarly, $\operatorname{Hom}_{\mathcal{C}}(-, X)$ is a contravariant functor $\mathcal{C} \to \mathbf{Set}$. $\operatorname{Hom}_{\mathcal{C}}(-, -)$ is a functor $\mathcal{C} \times \mathcal{C}^{\operatorname{op}} \to \mathbf{Set}$.
- 5. Functors $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ can be composed in the obvious sense.

TODO: DRAW DIAGRAMS

Definition 1.9. Let $\mathcal{C} \xrightarrow{F} \mathcal{D}$ be two functors. A natural transformation η from F to G is the data of morphisms $\eta_X : F(X) \to G(X) \in \operatorname{Mor}(\mathcal{D})$ for all $X \in \operatorname{Ob}(\mathcal{C})$ such that for all

is the data of morphisms $\eta_X : F(X) \to G(X) \in \operatorname{Mor}(\mathcal{D})$ for all $X \in \operatorname{Ob}(\mathcal{C})$ such that for all $f: X \to Y \in \operatorname{Mor}(\mathcal{C})$, the diagram

$$F(X) \xrightarrow{\eta_X} G(X)$$

$$\downarrow^{F(f)} \qquad \downarrow^{G(f)}$$

$$F(Y) \xrightarrow{\eta_Y} G(Y)$$

commutes, that is $G(f)\eta_X = \eta_Y F(f)$. We write $\eta: F \Rightarrow G$ or draw $\mathcal{C} \xrightarrow{F} \mathcal{D}$

Example 1.10. Let V be a k-vector space. $\mathrm{id}_{\mathbf{Vect}_k}$ and $D^2 = \mathrm{Hom}_{\mathbf{Vect}_k}(\mathrm{Hom}_{\mathbf{Vect}_k}(-,k),k)$ are two endofunctors of \mathbf{Vect}_k . $\mathrm{ev}_-: V \to V^{**}$ defines a natural transforma-

$$\begin{array}{cccc} v & v \\ v & \mapsto & \operatorname{Hom}(V,k) & \to & k \\ \phi & \mapsto & \phi(v) \end{array}$$

tion between them:

$$V \xrightarrow{\text{ev}} V^{**}$$

$$f \downarrow \qquad \qquad \downarrow D^2(f)$$

$$W \xrightarrow{\text{ev}} W^{**}$$

For $a \in V$, $D^2(f) \circ \operatorname{ev}_a$: $W^* \to k$ $\phi \mapsto \phi(f(a))$ $\in W^{**}$ and in the other direction $(\operatorname{ev} \circ f)(a) = \operatorname{ev}_{f(a)}$.

However, there is no natural transformation from $id_{\mathbf{Vect}_k}$ to D. For one, the first is covariant and the second is contravariant. To get a natural transformation from a covariant to a contravariant

functor, we can modify the definition of naturality to be that $V \to V^*$ commutes, but even such $W \to W^*$

natural transformations do not exist from $id_{\mathbf{Vect}_k}$ to D.

Definition 1.11. A natural transformation $\mathcal{C} \underbrace{\downarrow \eta}_{G} \mathcal{D}$ is a *natural isomorphism* if η_X is an isomorphism for all $X \in \mathrm{Ob}(\mathcal{C})$.

Remark. One can compose natural transformations in two ways, "vertical composition":

$$C \xrightarrow{F} \mathcal{D} \xrightarrow{F} \mathcal{C} \xrightarrow{F} \mathcal{D} \text{ where } (\beta \circ \alpha)_X = \beta_X \circ \alpha_X$$

or "horizontal composition":

$$\mathcal{C} \underbrace{ \underbrace{ \int_{G_1}^{F_1}}_{G_1} \mathcal{D} \underbrace{ \int_{G_2}^{F_2}}_{G_2} \mathcal{E}}_{G_2} \mathcal{E} \xrightarrow{\mathcal{C}} \mathcal{C} \underbrace{ \underbrace{ \int_{\alpha_2 * \alpha_1}^{F_2 \circ F_1}}_{G_2 \circ G_1} \mathcal{E}}_{\mathcal{C}_{2} \circ G_1} \mathcal{E} \text{ where } (\alpha_2 * \alpha_1)_X = G_2((\alpha_1)_X) \circ (\alpha_2)_{F_1(X)}$$

Horizontal composition can also be defined in another equivalent way using commutativity of

$$F_{2}F_{1}(X) \xrightarrow{(\alpha_{2})_{F_{1}(X)}} G_{2}F_{1}(X)$$

$$F_{2}((\alpha_{1})_{X}) \downarrow \qquad \qquad \downarrow G_{2}((\alpha_{1})_{X})$$

$$F_{2}G_{1}(X) \xrightarrow{(\alpha_{2})_{G_{1}(X)}} G_{2}G_{1}(X)$$

The diagram commutes by naturality of α_2 , so $(\alpha_2 * \alpha_1) = (\alpha_2)_{G_1(X)} \circ F_2((\alpha_1)_X)$.

Definition 1.12. Let \mathcal{C}, \mathcal{D} be two categories. Then the functor category from \mathcal{C} to \mathcal{D} written $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ or $\mathcal{D}^{\mathcal{C}}$ is the category whose objects are functors from \mathcal{C} to \mathcal{D} and morphisms are natural transformations.

Remark. Categories, together with functors and natural transformations between them is the prototypal example of a 2-category.

1.2 Equivalences of categories

Definition 1.13. Let \mathcal{C} and \mathcal{D} be two categories. An equivalence of categories from \mathcal{C} to \mathcal{D} is the data of

- 1. $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ we functors
- 2. Natural isomorphisms $\eta: 1_{\mathcal{C}} \Rightarrow GF$ and $\varepsilon: FG \Rightarrow 1_{\mathcal{D}}$ where $1_{\mathcal{C}}$ and $1_{\mathcal{D}}$ are the identity functors of \mathcal{C} and \mathcal{D} .

Remark.

- 1. G is called a quasi-inverse of F.
- 2. Most of the time we say that F is an equivalence if there exists G such that (F,G) is an equivalence.

- 3. If F, G are contravariant, we speak of duality between C and D.
- 4. If two categories are equivalent, every property that can be expressed "in terms of arrows" is preserved.

Definition 1.14. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then, we say

- 1. F is faithful if $\forall X, Y \in \mathrm{Ob}(\mathcal{C}), F : \mathrm{Hom}_{\mathcal{C}}(X,Y) \to \mathrm{Hom}_{\mathcal{D}}(F(X),F(Y))$ is injective. $f \mapsto F(f)$
- 2. F is full if the previous map is surjective.
- 3. F is essentially surjective if for all $Y \in \mathrm{Ob}(\mathcal{D})$ there is $X \in \mathrm{Ob}(\mathcal{C})$ such that $F(X) \simeq Y$ in \mathcal{D} .

Theorem 1.15. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F is an equivalence of categories if and only if it is fully faithful and essentially surjective.

Proof. lacktriangle There is a little set-theoretic issue: an equivalence of categories is always fully faithful and essentially surjective, but the converse requires the axiom of choice for the class $\mathrm{Ob}(\mathcal{C})$. Suppose $F:\mathcal{C}\to\mathcal{D}$ is an equivalence of categories, and let $G:\mathcal{D}\to\mathcal{C}$ be a quasi-inverse of F, together with natural isomorphisms $\eta:1_{\mathcal{C}}\to GF$ and $\varepsilon:1_{\mathcal{D}}\to FG$. If Y is an object of \mathcal{D} , then $Y\simeq FG(Y)$, so F is essentially surjective. Let X,Y be objects of \mathcal{C} . To show F is fully faithful we will construct an inverse to $F:\mathrm{Hom}_{\mathcal{C}}(X,Y)\to\mathrm{Hom}_{\mathcal{D}}(F(X),F(Y))$. For any $f\in\mathrm{Hom}_{\mathcal{D}}(F(X),F(Y))$, we have a commutative diagram

$$X \xrightarrow{\eta_X} GF(X)$$

$$f \downarrow \qquad \qquad \downarrow_{GF(f)}$$

$$Y \xrightarrow{\eta_Y} GF(Y)$$

which prompts us to define $\phi: \operatorname{Hom}_{\mathcal{D}}(F(X),F(Y)) \to \operatorname{Hom}_{\mathcal{C}}(X,Y)$. We now check it is $g \mapsto \eta_Y^{-1} \circ G(g) \circ \eta_X$ the map we're looking for. If $f: X \to Y$, since the above diagram commutes and η_Y is invertible, we

the map we're looking for. If $f: X \to Y$, since the above diagram commutes and η_Y is invertible, we get that $\phi(F(f)) = f$, so $\phi \circ F = \mathrm{id}_{\mathrm{Hom}_{\mathcal{C}}(X,Y)}$, which means F is faithful. We have two commutative diagrams, by definition of ϕ and by naturality of η :

$$X \xrightarrow{\eta_X} GF(X) \qquad X \xrightarrow{\eta_X} GF(X)$$

$$\phi(g) \downarrow \qquad \qquad \qquad \phi(g) \downarrow \qquad \qquad \downarrow GF(\phi(g))$$

$$Y \xrightarrow{\eta_Y} GF(Y) \qquad \qquad Y \xrightarrow{\eta_Y} GF(Y)$$

therefore, $G(g) \circ \eta_X = GF(\phi(g)) \circ \eta_X$. Since η_X is invertible, $G(g) = GF(\phi(g))$. The previous point shows that G is faithful, so $g = F(\phi(g))$, hence F is full.

Now suppose F is fully faithful and essentially surjective. Our goal is to construct G. For any $Y \in \mathrm{Ob}(\mathcal{D})$, since F is essentially surjective, there exists $X_Y \in \mathrm{Ob}(\mathcal{C})$ and an isomorphism $\varepsilon_Y : Y \to F(X_Y)$. Therefore, for any $Y, Z \in \mathrm{Ob}(\mathcal{D})$ and $f: Y \to Z$, we have a commutative diagram

$$Y \xrightarrow{f} Z$$

$$\downarrow^{\varepsilon_Y} \qquad \downarrow^{\varepsilon_Z}$$

$$F(X_Y) \xrightarrow[\varepsilon_Z \circ f \circ \varepsilon_Y^{-1}]{} F(X_Z)$$

Which leads us to define $G(Y) = X_Y$ and G(f) to be the unique morphism $m_f : X_Y \to X_Z$ such that $F(m_f) = \varepsilon_Z \circ f \circ \varepsilon_Y^{-1}$ (this works because F is fully faithful). We have $G(\mathrm{id}_Y) = \mathrm{id}_{X_Y}$ since $\varepsilon_Y \circ \mathrm{id}_Y \circ \varepsilon_Y^{-1} = \mathrm{id}_Y$ and $F(\mathrm{id}_{X_Y}) = \mathrm{id}_Y$. The next diagram shows $G(g \circ f) = G(g) \circ G(f)$:

$$W \xrightarrow{f} Y \xrightarrow{g} Z$$

$$\downarrow \varepsilon_W \qquad \downarrow \varepsilon_Y \qquad \downarrow \varepsilon_Z$$

$$F(X_W) \xrightarrow{F(m_f)} F(X_Y) \xrightarrow{F(m_g) \circ F(m_f)} F(X_Z)$$

By this construction, ε is a natural isomorphism $\mathrm{id}_{\mathcal{D}} \Rightarrow FG$ (look at the above diagrams). Now, pick $Y,Z\in \mathrm{Ob}(\mathcal{C})$ and $f:Y\to Z$. We have $GF(Y)=X_{F(Y)}$ and $\varepsilon_Y:F(Y)\stackrel{\sim}{\to} F(X_{F(Y)})$. Since F is fully faithful, there exists a unique $\eta_Y:Y\to X_{F(Y)}=GF(Y)$ such that $F(\eta_Y)=\varepsilon_Y$. Here, $\eta_Y=G(\varepsilon_Y)$, which means that η_Y is an isomorphism since functors preserve isomorphisms. We obtain the diagram

$$Y \xrightarrow{\eta_Y} GF(Y)$$

$$\downarrow^f \qquad \qquad \downarrow^{GF(f)}$$

$$Z \xrightarrow{\eta_Z} GF(Z)$$

The diagram commutes because GF(f) is the unique morphism such that

$$F(GF(f)) = \varepsilon_Z \circ F(f) \circ \varepsilon_Y^{-1} = F(\eta_Z \circ f \circ \eta_Y^{-1})$$

and F is faithful. η is then a natural isomorphism $id_{\mathcal{C}} \Rightarrow GF$.

Example 1.16. Vect_k \simeq Mat_k through the functor $n \mapsto k^n$ and $(A : n \to m) \mapsto (f_A : k^n \to k^m)$.

2 Universal properties

References:

- Riehl (Chapters II, III, IV)
- Mac Lane (Chapters III, IV, V)
- Assem (Chapters III, IV, V)

▶ Let S be a set together with an equivalence relation \sim . Let S/\sim be the quotient set, and $\pi: S \to S/\sim$ be the projection. For any $f: S \to X$ compatible with \sim , there exists a unique map $\bar{f}: S/\sim \to X$ such that $f=\bar{f}\circ\pi$. This is represented by the following commutative diagram:

We say that $S \xrightarrow{\pi} S/\sim$ is a solution to the universal problem posed by the compatible maps. Such a solution is unique up to unique isomorphism: if $S \xrightarrow{p} S'$ is another solution, then we get the three commutative diagrams

then $abp = a\pi = p$. The identity of S' also makes this diagram commute so by uniqueness $ab = \mathrm{id}_{S'}$ and similarly $ba = \mathrm{id}_{S/\sim}$.

2.1 Initial and final objects

Definition 2.1. Let \mathcal{C} be a category. An object $c \in \mathrm{Ob}(\mathcal{C})$ is *initial* (*final*) if for all $d \in \mathrm{Ob}(\mathcal{C})$ there exists a unique morphism $c \to d$ (a unique morphism $d \to c$).

Proposition 2.2. If an initial/final object exists, then it is unique up to unique isomorphism.

Proof. Let c, c' be two initial objects. Then there exists a unique morphism $f: c \to c'$ and a unique morphism $g: c' \to c$. There also exists a unique morphism $c \to c$, that is id_c . Therefore, $gf = \mathrm{id}_c$. In the same way, $fg = \mathrm{id}_{c'}$. Therefore, c and c' are isomorphic and the isomorphism is unique. \square

Examples 2.3.

- 1. \emptyset is initial in **Set** and any singleton is final.
- 2. $\{0\}$ is both initial and final in \mathbf{Vect}_k (or $R\mathbf{Mod}$).
- 3. The category of fields does not have initial/final objects (reason on field characteristics).

We want to say a universal object is an initial or final object. A category has at most 2, so this may seem a little restrictive, but this is solved by thinking of a good category.

Definition 2.4. Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor. Let $\int F$ be the category defined by

$$Ob(\int F) = \{(c, x) \mid c \in Ob(C) \text{ and } x \in F(c)\}$$

 $Hom((c, x), (c', x')) = \{f \in Hom(c, c') \mid F(f)(x) = x'\}$

where composition is composition in C, and $\mathrm{id}_{(c,x)} = \mathrm{id}_c$ for all x. If F is contravariant, let $\int F$ have the same objects and morphisms $\mathrm{Hom}((c,x),(c',x')) = \{f \in \mathrm{Hom}(c,c') \mid F(f)(x') = x\}$.

Proposition 2.5. There is a forgetful functor $\pi: \int F \to \mathcal{C}$ defined by $\pi(c, x) = c$ and $\pi(f: (c, x) \to (c', x')) = f: c \to c'$.

Example 2.6. Let S be a set, and \sim an equivalence relation on S. Let $F : \mathbf{Set} \to \mathbf{Set}$ be defined by $F(X) = \{f : S \to X \mid x \sim y \Rightarrow f(x) = f(y)\}$ and $F(\alpha : X \to Y) = \alpha \circ -$.

 $\int F$ has for objects $(X, S \xrightarrow{f} X)$ where f is compatible with \sim , and for morphisms α that makes

this diagram commute: $\int_{1}^{S} \int_{\alpha}^{f'} X'$

 $(S/\sim, S \xrightarrow{\pi} S/\sim)$ is an initial object of $\int F$.

Definition 2.7. Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor. A universal element for F is an initial object of f, that is a pair (c, x) with $c \in \mathrm{Ob}(\mathcal{C})$ and $x \in F(c)$ such that

$$\forall (d, y), d \in \mathrm{Ob}(\mathcal{C}), y \in F(d), \exists ! \alpha : c \to d, y = F(\alpha)(x)$$

Definition 2.8. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor and $d \in \mathrm{Ob}(\mathcal{D})$. A universal arrow from d to F is a pair (c, f) where $c \in \mathrm{Ob}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(d, F(c))$, such that

$$\forall (c', f'), c' \in \mathrm{Ob}(\mathcal{C}), f' : d \to F(c'), \exists ! \alpha \in \mathrm{Hom}_{\mathcal{C}}(c, c'), F(\alpha) \circ f = f'$$

$$f \not d$$

$$F(c) \xrightarrow{F(\alpha)} F(c')$$

$$c \xrightarrow{\exists ! \alpha} c'$$

Exercise. Define a category $d \downarrow F$ such that a universal arrow is an initial object of $d \downarrow F$.

Example 2.9. Let $U: \mathbf{Vect}_k \to \mathbf{Set}$ be the forgetful functor. Let $X \in \mathbf{Set}$. A universal arrow from X to U is the "best" k-vector space V_X with a map $X \to V_X$. Set $V_X = k[X]$ the k-vector space with basis X, and $i: X \to V_X$ that maps $x \in X$ to the corresponding basis element. Then, for any vector space V and map $f: X \to U(V)$, f can be extended by linearity into a linear map $\tilde{f}: k[X] \to V$, which makes this diagram commute:

If α is another map that makes the diagram commute then α and \tilde{f} coincide on a basis of k[X] and therefore are equal.

Proposition 2.10. Universal elements and arrows are two equivalent notions.

Proof. Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor and (c,x) a universal element for F. Consider $f_x: \{*\} \to F(c)$. Then, (c,f_x) is a universal arrow $*\to F$, because $F(\alpha)(x)=y$ iff $F(\alpha)\circ f_x=f_y$.

$$\begin{cases}
f_x \\
f_y
\end{cases}$$

$$F(c) \xrightarrow{F(\alpha)} F(c')$$

Conversely, if $F: \mathcal{C} \to \mathcal{D}$ is a functor and (c, f) is a universal arrow $d \to F$, then consider the functor $\operatorname{Hom}_{\mathcal{D}}(d, F(-)): \mathcal{C} \to \operatorname{\mathbf{Set}}$ (we need to assume \mathcal{D} is locally small so the $x \mapsto \operatorname{Hom}_{\mathcal{D}}(d, F(x))$

functor is set-valued). Then, $f \in \text{Hom}_{\mathcal{D}}(d, F(c))$ is a universal element for this functor.

2.2 Representable functors

Definition 2.11. Let \mathcal{C} be a (locally small) category, and $F: \mathcal{C} \to \mathbf{Set}$ a functor.

- 1. We say that F is representable if there is some $c \in \text{Ob}(\mathcal{C})$ such that F and $\text{Hom}_{\mathcal{C}}(c, -)$ are naturally isomorphic (if F is contravariant, use $\text{Hom}_{\mathcal{C}}(-, c)$ instead).
- 2. A representation of F is the data of $c \in \mathrm{Ob}(\mathcal{C})$ and a natural isomorphism $\eta : \mathrm{Hom}(c, -) \Rightarrow F$.

Example 2.12. The forgetful functor $U: \mathbf{Grp} \to \mathbf{Set}$ is representable since $\mathrm{Hom}_{\mathbf{Grp}}(\mathbb{Z}, -) \simeq U$. The natural isomorphism is given by $\alpha \in \mathrm{Hom}_{\mathbf{Grp}}(\mathbb{Z}, G) \mapsto \alpha(1) \in G$.

The following theorem explains how to find the natural isomorphism $\alpha: \text{Hom}_{\mathcal{C}}(c, -) \Rightarrow F$ in general.

Theorem 2.13 (Yoneda lemma). Let $F: \mathcal{C} \to \mathbf{Set}$ be a functor with \mathcal{C} locally small, and $c \in \mathrm{Ob}(\mathcal{C})$. Then.

$$\operatorname{Nat}(\operatorname{Hom}(c, -), F) \xrightarrow{\sim} F(c)
\alpha \mapsto \alpha_c(\operatorname{id}_c)$$

and this isomorphism is natural in c and in F.

Proof. Let $\alpha \in \text{Nat}(\text{Hom}(c, -), F)$. Let $d \in \mathcal{C}$ and $f : c \to d$. By naturality, we have a commutative diagram

$$\operatorname{Hom}(c,c) \xrightarrow{\alpha_c} F(c)$$

$$\downarrow^{f \circ -} \qquad \downarrow^{F(f)}$$

$$\operatorname{Hom}(c,d) \xrightarrow{\alpha_d} F(d)$$

This means that $F(f) \circ \alpha_c = \alpha_d \circ (f \circ -)$. Evaluating at id_c , we get $F(f) \circ \alpha_c(\mathrm{id}_c) = \alpha_d(f)$. This shows that the natural transformation α is entirely determined by the value of $\alpha_c(\mathrm{id}_c)$, which shows the map defined above is injective. Conversely, if $e \in F(c)$, then we define $\alpha^e : \mathrm{Hom}(c, -) \Rightarrow F$ by $\alpha_d^e : g \mapsto F(g)(e)$. We check it is a natural transformation:

$$\operatorname{Hom}(c,c) \xrightarrow{g \mapsto F(g)(e)} F(c)$$

$$\downarrow^{f \circ -} \qquad \downarrow^{F(f)}$$

$$\operatorname{Hom}(c,d) \xrightarrow{h \mapsto F(h)(e)} F(d)$$

and this diagram commutes since for $g: c \to c$ we have

$$F(f)(F(g)(e)) = F(f \circ g)(e) = F((f \circ -)(g))(e)$$

This shows the map in the theorem is surjective, therefore an isomorphism, and its inverse is given by $e \in F(c) \mapsto \alpha^e$. We now check naturality. We first need to understand what it means to say the isomorphism is natural in c. Let $f: c \to d$. Nat(Hom(c, -), F) is functorial in c, as it is the composition of two contravariant hom-functors. More concretely:

$$c \xrightarrow{f} d \leadsto \operatorname{Hom}(d,-) \xrightarrow{-\circ f} \operatorname{Hom}(c,-) \leadsto \operatorname{Nat}(\operatorname{Hom}(c,-),F) \xrightarrow{-\circ (-\circ f)} \operatorname{Nat}(\operatorname{Hom}(d,-),F)$$

(Nat is the hom-functor of the functor category $C^{\mathbf{Set}}$). One thing to note is that the morphism $f: c \to d$ induces a natural transformation $\operatorname{Hom}(d,-) \xrightarrow{-\circ f} \operatorname{Hom}(c,-)$, and this makes the whole thing work. This is in general a property of functors defined on a product category, see the remark below. Now, saying the isomorphism, which we'll write $\Phi_{d,F}$, is natural means that the square

$$\operatorname{Nat}(\operatorname{Hom}(c,-),F) \xrightarrow{\Phi_{c,F}} F(c)$$

$$\downarrow^{-\circ(-\circ f)} \qquad \downarrow^{F(f)}$$

$$\operatorname{Nat}(\operatorname{Hom}(d,-),F) \xrightarrow{\Phi_{d,F}} F(d)$$

commutes. And indeed, if $\alpha: \text{Hom}(c, -) \Rightarrow F$ is a natural transformation,

$$\Phi_{d,F}(\alpha \circ (-\circ f)) = (\alpha \circ (-\circ f))_d(\mathrm{id}_d) = [\alpha_d \circ (-\circ f)](\mathrm{id}_d) = \alpha_d(f)$$

$$F(f)(\Phi_{c,F}(\alpha)) = F(f)(\alpha_c(\mathrm{id}_c)) = \alpha_d(f \circ \mathrm{id}_c) = \alpha_d(f)$$

The second to last equality comes from the naturality of α .

We now turn to naturality in F. Let G be another functor $\mathcal{C} \to \mathbf{Set}$ and $\beta : F \Rightarrow G$ be a natural transformation. We check that

$$\operatorname{Nat}(\operatorname{Hom}(c,-),F) \xrightarrow{\Phi_{c,F}} F(c)$$

$$\downarrow^{\beta \circ -} \qquad \qquad \downarrow^{\beta_c}$$

$$\operatorname{Nat}(\operatorname{Hom}(c,-),G) \xrightarrow{\Phi_{c,G}} G(c)$$

commutes. For $\alpha: \text{Hom}(c, -) \Rightarrow F$, we have

$$\beta_c(\Phi_{c,F}(\alpha)) = \beta_c(\alpha_c(\mathrm{id}_c)) = (\beta \circ \alpha)_c(\mathrm{id}_c) = \Phi_{c,G}(\beta \circ \alpha)$$

which completes the proof of naturality.

Remark.

1. If $F: \mathcal{C} \to \mathbf{Set}$, then (c, x) is a universal element for F if and only if the natural transformation $\alpha_x : \mathrm{Hom}(c, -) \Rightarrow F$ induced by x is an isomorphism. Indeed, α_x is an isomorphism iff $\forall c' \in \mathcal{C}$, $(\alpha_x)_{c'} : \mathrm{Hom}(c, c') \to F(c')$ is bijective iff

$$\forall c' \in \mathcal{C}, \forall y \in F(c'), \exists ! f : c \to c', F(f)(x) = y$$

- 2. For universal arrows, use $\operatorname{Hom}_{\mathcal{D}}(d, F(-))$ as before.
- 3. Let \mathcal{C}, \mathcal{D} and \mathcal{E} be categories, and $F: \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ be a functor. Let $c, d \in \mathrm{Ob}(\mathcal{C}), x, y \in \mathrm{Ob}(\mathcal{D})$ and morphisms $f: c \to d, g: x \to y$. The morphism f induces a natural transformation $F(f, \mathrm{id}_{-}): F(c, -) \Rightarrow F(d, -)$, see the commutative square:

$$F(c,x) \xrightarrow{F(f,\mathrm{id}_x)} F(d,x)$$

$$\downarrow^{F(\mathrm{id}_c,g)} \qquad \downarrow^{F(\mathrm{id}_d,g)}$$

$$F(c,y) \xrightarrow{F(f,\mathrm{id}_y)} F(d,y)$$

2.3 Examples of objects defined by universal properties

2.3.1 Products, coproducts

Let \mathcal{C} be a small category and $X, Y \in \mathrm{Ob}(\mathcal{C})$. We define a category $\mathcal{C}_{X,Y}$ whose objects are tuples (Z, f, g) where $Z \in \mathrm{Ob}(\mathcal{C})$ and $f: Z \to X$, $g: Z \to Y$ and morphisms are maps $\alpha: Z \to Z'$ in \mathcal{C} such that the following diagram commutes:

$$\begin{array}{c|c}
 & Z \\
 & X \\
 & Y \\
 & X \\
 & Y \\$$

Definition 2.14. A product of X and Y is a final object in $\mathcal{C}_{X,Y}$. Concretely, it is an object $X \times Y$ together with two maps $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ such that for any $(Z, f, g) \in \mathrm{Ob}(\mathcal{C}_{X,Y})$, we have a commutative diagram

$$Z \\ \downarrow \exists ! \alpha \\ X \xleftarrow{} X \times Y \xrightarrow{} T_{Y} Y$$

Since it is defined as being a final object, if it exists, a product is unique up to unique isomorphism.

Examples 2.15. In **Set**, the product of X and Y is the cartesian product. In **Grp**, it is the product group. In **Top**, it is the cartesian product equipped with the product topology. In these examples, the maps in the definition are the canonical projections.

The notion dual to the one of a product is called a coproduct.

Definition 2.16. A coproduct of X and Y is a product in C^{op} . Concretely, it satisfies the universal property expressed by this commutative diagram:

$$X \xrightarrow{i_X} X \sqcup Y \xleftarrow{i_Y} Y$$

$$\downarrow_{\exists ! \alpha} \qquad \forall g$$

Examples 2.17. In **Set**, the coproduct of X and Y is the disjoint union together with canonical inclusion. In **Top**, the coproduct of X and Y is their disjoint union equipped with the disjoint union topology. However, in **Grp**, the underlying set of the coproduct of two groups is not the disjoint union.

2.3.2 Equalizers and coequalizers

Definition 2.18. Let \mathcal{C} be a category and $X, Y \in \text{Ob}(\mathcal{C}), f, g : X \to Y$. Consider the contravariant functor $F : \mathcal{C} \to \mathbf{Set}$ defined by $F(c) = \{\alpha : c \to X \mid f\alpha = g\alpha\}$ and $F(\beta) = -\circ \beta$. An equalizer in \mathcal{C} is a representation of the contravariant functor F.

By the Yoneda lemma, a natural transformation $\operatorname{Hom}(-,c)\Rightarrow F$ is the same as an element of F(c), so a representation of F is a pair (c,e) with $c\in\operatorname{Ob}(\mathcal{C})$ and $e\in F(c)$ such that the natural transformation given by the Yoneda lemma is an isomorphism. Concretely, we want $\eta_e:\operatorname{Hom}(d,c)\to F(d)$ to be an isomorphism for all $d\in\operatorname{Ob}(c)$. This translates into $h\mapsto F(h)(e)$

the follwing diagram:

$$c \xrightarrow{\exists ! \alpha} d$$

$$\downarrow^{\forall h} \qquad \downarrow^{e} X \xrightarrow{f} Y$$

Example 2.19. In Set, $E = \{x \in X \mid f(x) = g(x)\} \hookrightarrow X$ is an equalizer.

The dual notion is that of a coequalizer.

Definition 2.20. A coequalizer of $X \xrightarrow{f} Y$ is an object $Z \in \text{Ob}(\mathcal{C})$ together with a morphism $\pi: Y \to Z$ such that $\pi f = \pi g$ and that universal to this property:

$$X \xrightarrow{f} Y \xrightarrow{\pi} Z$$

$$\downarrow^{\forall h} \qquad \exists ! \alpha$$

$$Z'$$

Example 2.21. In **Set**, consider the equivalence relation \sim on Y generated by $f(x) \sim g(x)$ (the smallest equivalence relation on Y with this property). Then $y \xrightarrow{\pi} Y/\sim$ is a coequalizer.

2.4 Adjoint functors

This notion was introduced by Kan in 1958.

Definition 2.22. An adjunction (G, D) is a pair of functors $G : \mathcal{C} \to \mathcal{D}$ and $D : \mathcal{D} \to \mathcal{C}$ together with an isomorphism $\operatorname{Hom}_{\mathcal{D}}(G(c), d) \simeq \operatorname{Hom}_{\mathcal{C}}(c, D(d))$ which is natural in both c and d. We write $G \dashv D$ and say G is left adjoint to D and D is right adjoint to G.

If $G \dashv D$ we have $\forall c, d \in \mathrm{Ob}(\mathcal{C}) \times \mathrm{Ob}(\mathcal{D})$,

$$\operatorname{Hom}_{\mathcal{D}}(G(c),d) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(c,D(d))$$

and in particular when d = G(c) we get $\operatorname{Hom}_{\mathcal{D}}(G(c), G(c)) \xrightarrow[\alpha_{c,G(c)}]{\sim} \operatorname{Hom}_{\mathcal{C}}(c, DG(c))$.

Let $\eta_c: c \to DG(c)$ be the image of $\mathrm{id}_{G(c)}$. This gives a collection of morphisms $-\to DG(-)$.

Proposition 2.23. These morphisms make up a natural transformation $id_{\mathcal{C}} \Rightarrow DG$.

Proof. Let $f: c \to d$. We want to show that

$$c \xrightarrow{\eta_c = \alpha_{c,G(c)}(\mathrm{id}_{G(c)})} DG(c)$$

$$\downarrow^f \qquad \qquad \downarrow^{DG(f)}$$

$$d \xrightarrow{\eta_d = \alpha_{d,G(d)}(\mathrm{id}_{G(d)})} DG(d)$$

commutes. By naturality of the isomorphism α given by the adjunction, we get the following commutative diagram

which gives us these equations:

$$DG(f) \circ \eta_c = DG(f) \circ \alpha_{c,G(c)}(\mathrm{id}_{G(c)}) = \alpha_{c,G(d)}(G(f) \circ \mathrm{id}_{G(c)}) = \alpha_{c,G(d)}(G(f))$$
$$\eta_d \circ f = \alpha_{d,G(d)}(\mathrm{id}_{G(d)}) \circ f = \alpha_{c,G(d)}(\mathrm{id}_{G(c)} \circ G(f)) = \alpha_{c,G(d)}(G(f))$$

which completes the proof.

We also get a natural transformation $\varepsilon: GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ when c = D(d) by setting $\varepsilon_d = \alpha_{D(d),d}^{-1}(\mathrm{id}_{D(d)})$.

Definition 2.24. The natural transformation $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow DG$ is called the *unit* of the adjunction. The natural transformation $\varepsilon : GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ is called its *counit*.

Proposition 2.25. Let $C \xrightarrow{G} \mathcal{D}$ be two functors. Then, $G \dashv D$ if and only if there are natural transformations $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow DG$ and $\varepsilon : GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ such that the following diagrams commute:

$$G \xrightarrow{G\eta} GDG \qquad D \xrightarrow{\eta D} DGD$$

$$\downarrow_{\varepsilon G} \qquad \downarrow_{D\varepsilon}$$

$$G \qquad D \xrightarrow{id_D} DGD$$

where $G\eta$ is the natural transformation given by the morphisms $G(\eta_c)$ and εG is the one give by morphisms $\varepsilon_{G(c)}$ (and similarly for ηD and $D\varepsilon$).

Proof. Suppose $G \dashv D$. Let $\eta : \mathrm{id}_{\mathcal{C}} \Rightarrow DG$ and $\varepsilon : GD \Rightarrow \mathrm{id}_{\mathcal{D}}$ be the unit and counit of the adjunction. Let $c \in \mathcal{C}$. We have

$$(\varepsilon G)_c \circ (G\eta)_c = \varepsilon_{G(c)} \circ G(\eta_c) = \alpha_{DG(c),G(c)}^{-1}(\mathrm{id}_{DG(c)}) \circ G(\alpha_{c,G(c)}(\mathrm{id}_{G(c)}))$$

and the naturality of α gives the following commutative diagram

$$\begin{array}{c} \operatorname{Hom}(G(c),G(c)) \xleftarrow{\sim} & \operatorname{Hom}(c,DG(c)) \\ -\circ G(\alpha_{c,G(c)}(\operatorname{id}_{G(c)})) \uparrow & \uparrow^{-\circ\alpha_{c,G(c)}(\operatorname{id}_{G(c)})} \\ \operatorname{Hom}(GDG(c),G(c)) \xleftarrow{\sim} & \operatorname{Hom}(DG(c),DG(c)) \end{array}$$

which shows that $(\varepsilon G)_c \circ (G\eta)_c = \mathrm{id}_{G(c)}$, hence $\varepsilon G \circ G\eta = \mathrm{id}_G$. The commutativity of the other triangle is treated in a similar way.

Now assume that there are natural transformations η and ε that make both triangles commute. We define two maps

$$\alpha_{c,d}: \operatorname{Hom}(G(c),d) \to \operatorname{Hom}(c,D(d))$$

$$f \mapsto D(f) \circ \eta_{c}$$

$$\beta_{c,d}: \operatorname{Hom}(c,D(d)) \to \operatorname{Hom}(G(c),d)$$

$$g \mapsto \varepsilon_{d} \circ G(g)$$

and we show these are natural isomorphisms that give us the adjunction. First we check naturality of α . Let $f: c \to c' \in \operatorname{Mor}(\mathcal{C})$ and $g: d \to d' \in \operatorname{Mor}(\mathcal{D})$. We need to check that the diagrams

$$\operatorname{Hom}_{\mathcal{D}}(G(c),d) \xrightarrow{\alpha_{c,d}} \operatorname{Hom}_{\mathcal{C}}(c,D(d)) \qquad \operatorname{Hom}_{\mathcal{D}}(G(c),d) \xrightarrow{\alpha_{c,d}} \operatorname{Hom}_{\mathcal{C}}(c,D(d))$$

$$-\circ G(f) \uparrow \qquad -\circ f \uparrow \qquad \qquad \downarrow g \circ - \qquad \downarrow D(g) \circ -$$

$$\operatorname{Hom}_{\mathcal{D}}(G(c'),d) \xrightarrow{\alpha_{c',d}} \operatorname{Hom}_{\mathcal{C}}(c',D(d)) \qquad \operatorname{Hom}_{\mathcal{D}}(G(c),d') \xrightarrow{\alpha_{c,d'}} \operatorname{Hom}_{\mathcal{C}}(c,D(d'))$$

commute. We only check the left diagram and leave the right to the reader (sorry). We have

$$\alpha_{c,d} \circ (-\circ G(f)) = (D(-)\circ \eta_c) \circ (-\circ G(f)) = D(-\circ G(f)) \circ \eta_c = D(-)\circ DG(f) \circ \eta_c$$
$$(-\circ f) \circ \alpha_{c',d} = (-\circ f) \circ (D(-)\circ \eta_{c'}) = D(-)\circ \eta_{c'} \circ f = D(-)\circ DG(f) \circ \eta_c$$

One shows β is natural in c and d in a similar way. We leave it to the reader (sorry again). Now we need to check that α and β are inverses of each other, and that's where the triangle diagrams come into play.

$$\alpha_{c,d} \circ \beta_{c,d} = D(\varepsilon_d \circ G(-)) \circ \eta_c = D(\varepsilon_d) \circ DG(-) \circ \eta_c = D(\varepsilon_d) \circ \eta_{D(d)} \circ - = -$$

We used the definitions of α and β , the functoriality of D, the naturality of η and the second triangle diagram. We leave to the reader (sorry) to check that $\beta_{c,d} \circ \alpha_{c,d}$ is also the identity.

Examples 2.26.

- 1. The forgetful functor $Ab \to Set$ is right adjoint to the free abelian group functor $Set \to Ab$.
- 2. The forgetful functor $\mathbf{Ab} \to \mathbf{Grp}$ is right adjoint to the abelianization functor $\mathbf{Grp} \to \mathbf{Ab}$ that sends a group G to its abelianization $G^{ab} = G/[G,G]$ and a morphism $f: G \to H$ to the induced morphism $f^{ab}: G^{ab} \to H^{ab}$.
- 3. The forgetful functor $\mathbf{Top} \to \mathbf{Set}$ is right adjoint to the functor $\mathbf{Set} \to \mathbf{Top}$ that takes a set and equips it with the coarse topology. The forgetful functor $\mathbf{Top} \to \mathbf{Set}$ is also left adjoint to the functor $\mathbf{Set} \to \mathbf{Top}$ that equips a set with the discrete topology.
- 4. Let G be a group, H one of its subgroups and k be a field. We have a functor from the category $\mathbf{Rep}_k(G)$ of representations of G on k-vector spaces to the category $\mathbf{Rep}_k(H)$ of representations of H on k-vector spaces. It is the restriction functor \mathbf{Res}_H^G . Its left adjoint is \mathbf{Ind}_H^G , the induced representation functor.

Theorem 2.27. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. The following are equivalent:

- 1. F admits a left adjoint
- 2. For all $X \in \text{Ob}(\mathcal{D})$, $\text{Hom}_{\mathcal{D}}(X, F(-))$ is representable
- 3. For all $X \in Ob(\mathcal{D})$, there exists a universal arrow $X \to F$

Corollary 2.28. If they exist, adjoints are unique up to isomorphism.

Proof. 2 \iff 3 was the subject of a previous remark right after the Yoneda lemma. We prove $1 \iff 2$. Suppose F admits a left adjoint G. Let $X \in \mathrm{Ob}(\mathcal{D})$. Then for all $Y \in \mathrm{Ob}(\mathcal{C})$ we have a bijection $\mathrm{Hom}_{\mathcal{D}}(X, F(Y)) \simeq \mathrm{Hom}_{\mathcal{C}}(G(X), Y)$ which is natural in Y, so G(X) represents $\mathrm{Hom}_{\mathcal{D}}(X, F(-))$. For the converse, suppose all functors $\mathrm{Hom}_{\mathcal{D}}(X, F(-))$ are representable. We define G(X) to be an object of \mathcal{C} that represents $\mathrm{Hom}_{\mathcal{D}}(X, F(-))$. Now choose $X, Y \in \mathrm{Ob}(\mathcal{D})$ and $f: X \to Y$. We need to define G(f). We wish to have a commuting square

$$\begin{array}{ccc} \operatorname{Hom}(G(X),-) & \stackrel{\sim}{\longrightarrow} & \operatorname{Hom}(X,F(-)) \\ & & & & & -\circ f \\ \operatorname{Hom}(G(Y),-) & \stackrel{\sim}{\longrightarrow} & \operatorname{Hom}(Y,F(-)) \end{array}$$

We need to recover a map $G(X) \to G(Y)$ such that composing with it gives us γ . This works by the Yoneda lemma, which tells us that the natural transformation γ comes from an element $\operatorname{Hom}(G(X),G(Y))$. Call it G(f). It remains to check this does define a functor. Using this diagram with X=Y and $f=\operatorname{id}_X$ shows that $G(\operatorname{id}_X)=\operatorname{id}_{G(X)}$. Let $X\xrightarrow{f} Y\xrightarrow{g} Z$ in C. Then we draw

$$\operatorname{Hom}(G(Z),-) \xrightarrow[-\circ G(g)]{-\circ G(g)} \operatorname{Hom}(G(Y),-) \xrightarrow[-\circ G(f)]{} \operatorname{Hom}(G(X),-)$$

$$\downarrow^{\wr} \qquad \qquad \downarrow^{\wr} \qquad \qquad \downarrow^{\wr}$$

$$\operatorname{Hom}(Z,F(-)) \xrightarrow[-\circ (g\circ f)]{} \operatorname{Hom}(X,F(-))$$

and this diagram shows that $G(g \circ f) = G(g) \circ G(f)$ (because the map γ above is unique).

This theorem shows there is a deep link between universal properties and adjoint functors.

2.5 Limits and colimits

(This subsection may be skipped on a first reading.) Let us recall the definition of a functor category.

Definition 2.29. Let \mathcal{C}, \mathcal{D} be two categories. Then $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$, also written $\mathcal{D}^{\mathcal{C}}$, is the category whose objects are functors $\mathcal{C} \to \mathcal{D}$ and morphisms are natural transformations between such functors, with composition given by vertical composition. It is called the *functor category category from* \mathcal{C} to \mathcal{D} . When \mathcal{J} is a small category we also say that $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ is the category of diagrams of shape \mathcal{J} in \mathcal{C} .

Examples 2.30.

1. Let **2** be the category • → • which has two objects 1 and 2 and three morphisms (two of them being identities).

identities). Then, a functor from 2×2 to \mathcal{C} is a commutative diagram of this shape in \mathcal{C} .

2. If \mathcal{J} is a small category, there is a functor $\Delta : \mathrm{Ob}(\mathcal{C}) \to \mathrm{Fun}(\mathcal{J}, \mathcal{C})$ where $\Delta(c)$ is the constant functor at c, that is the functor that sends all objects to c and all morphisms to id_c , and $\Delta(f) = f$, which works since a natural transformation $\Delta(c) \Rightarrow \Delta(d)$ is just the data of one morphism $c \to d$.

Definition 2.31. A cone above a diagram $F: \mathcal{J} \to \mathcal{C}$ with summit $c \in \mathcal{C}$ is a natural transformation $\lambda: \Delta(c) \Rightarrow F$. Dually, a cone under F with summit c, also called a cocone, is a natural transformation $\lambda: F \Rightarrow \Delta(c)$.

Let us unwrap this definition. A cone is a collection of maps $\lambda_j : c \to F(j)$ for all $j \in \text{Ob}(\mathcal{J})$, such that for any morphism $f : i \to j \in \text{Mor}(\mathcal{J})$, this diagram commutes:

$$F(i) \xrightarrow{F(f)}^{c} F(j)$$

Definition 2.32. Let $F: \mathcal{J} \to \mathcal{C}$ be a diagram. A *limit* (or *projective limit* or *inverse limit*) of F is a universal cone above F, in the sense that it is a final object in the category of cones above F. Dually, a *colimit* (or *inductive limite* or *direct limit*) is a universal cocone, that is an initial object in the category of cones under F.

Concretely, a limit of $F: \mathcal{J} \to \mathcal{C}$ is a pair $(\lim F, \phi)$ with $\lim F \in \mathrm{Ob}(\mathcal{C})$ and $\phi: \Delta(\lim F) \Rightarrow F$ is such that for any cone $\lambda: \Delta(c) \Rightarrow F$, there exists a unique morphism $f: X \to \lim F \in \mathrm{Mor}(\mathcal{C})$, such that the diagram on the left commutes:

$$\Delta(c) \xrightarrow{\Delta(f)} \Delta(\lim F)$$

$$\downarrow \qquad \qquad \text{which is equivalent to} \qquad c \xrightarrow{f} \lim F$$

$$\forall j \in \mathcal{J}, \qquad \downarrow \phi_j$$

$$F(j)$$

In compact form, $\operatorname{Hom}_{\mathcal{C}}(-, \lim F) \simeq \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J},\mathcal{C})}(\Delta(-), F)$.

Exercise. Do the same for colimits.

Remark.

- 1. If a limit exists it is unique up to isomorphism (unique isomorphism that commutes with the legs of the cone)
- 2. If all limits exist, then lim becomes a functor $\lim : \operatorname{Fun}(\mathcal{J},\mathcal{C}) \to \mathcal{C}$ in the following way. Recall that theorem 2.27 says a functor D admits a left adjoint iff for all objects X in its codomain, $\operatorname{Hom}(X,D(-))$ is representable. The compact form of the definition of a limit says that the functor $\operatorname{Hom}(\Delta(-),F)$ is representable for all F (since we assume all limits exist). A dual version of the theorem gives that Δ admits a right adjoint, which is $\limsup \operatorname{Hom}(c,\lim F) \simeq \operatorname{Hom}(\Delta(c),F)$. If $\eta:F\Rightarrow G$ is a natural transformation, then $\lim(\eta)$ can be constructed in the following way: $\lim F\Rightarrow F\Rightarrow G$ is a cone above G, and $\lim(\eta):\lim F\to\lim G$ comes from the universality of $\lim G$.

Corollary 2.33.

- 1. If C has all \mathcal{J} -limits, then $\lim : \operatorname{Fun}(\mathcal{J}, C) \to C$ is a right adjoint to Δ .
- 2. If C has all \mathcal{J} -colimits, then colim: $\operatorname{Fun}(\mathcal{J},C) \to C$ is a left adjoint to Δ .

Example 2.34.

1. If \mathcal{J} is discrete, that is has no morphisms other than identities, then a functor $F: \mathcal{J} \to \mathcal{C}$ is the same as a collection $(X_i)_{i \in \mathcal{J}}$ of objects of \mathcal{C} . Then, a limit of F is an object $\lim F \in \mathrm{Ob}(\mathcal{C})$ with morphisms $f_i: \lim F \to X_i$ such that for all objects $X \in \mathrm{Ob}(\mathcal{C})$ with morphisms $p_i: X \to X_i$, we have a unique map $\alpha: X \to \lim F$ that makes this diagram commute for all $i, j \in \mathcal{J}$:

We write $\lim F = \prod_{j \in \mathcal{J}} F(j)$ and call it the *product of the* F(j)s. Morphisms f_i are written π_i and called *canonical projections*.

Dually, the colimit of F is called a coproduct and written $\bigsqcup_{j \in \mathcal{I}} F(j)$.

2. If $\mathcal{J} = \bullet \rightrightarrows \bullet$, then a functor $F : \mathcal{J} \to \mathcal{C}$ is the data of two parallel morphisms in \mathcal{C} . A limit is an equalizer and a colimit is a coequalizer.

18

- 3. If $\mathcal{J} = \bigcup_{\bullet \to \bullet}^{\bullet}$ then $F : \mathcal{J} \to \mathcal{C}$ is the data of $A, B, C \in \mathrm{Ob}(\mathcal{C})$ with two morphisms
 - $f:A\to C$ and $g:B\to C$. The limit $\lim F$ is called a *pullback* of f and g, with universal property depicted here:

4. If $\mathcal{J} = \omega^{\text{op}}$, that is $\mathcal{J} = \cdots \to 2 \to 1 \to 0$, then $\lim F$ is often called the "inverse limit" of F. Concretely, F is the data of $\cdots \to F(2) \xrightarrow{\alpha_2} F(1) \xrightarrow{\alpha_1} F(0)$, and a cone above F looks like

$$\begin{array}{c}
\lambda_2 & \lambda_0 \\
\downarrow \lambda_1 & \lambda_0
\end{array}$$
 we have $(\alpha_i \circ \cdots \circ \alpha_n) \circ \lambda_n = \lambda_i$.
$$\cdots \longrightarrow F(2) \xrightarrow{\alpha_2} F(1) \xrightarrow{\alpha_1} F(0)$$

The typical example of an inverse limit is the one given by $F(n) = \mathbb{Z}/p^n\mathbb{Z}$ in **Ring** with morphisms $\mathbb{Z}/p^{n+1}\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}$ being reduction mod p^n . The inverse limit $\varprojlim \mathbb{Z}/p^n\mathbb{Z}$ is the ring of p-adic integers. Concretely, $a \in \varprojlim \mathbb{Z}/p^n\mathbb{Z}$ iff $a = (a_i)_{i \in \mathbb{N}}$ such that $a_i \equiv a_j \mod p^i \forall i \leq j$.

5. The dual notion, given by $\mathcal{J}=0 \to 1 \to 2 \to \cdots$, is obtained by taking the colimit. It is called a *direct limit*. The typical example here is the Prüfer *p*-group $\varprojlim \mathbb{Z}/p^n\mathbb{Z}=\mathbb{Z}(p^{\infty})$.

Definition 2.35. Let \mathcal{C} be a category. We say \mathcal{C} is (co) complete if it has all small (co) limits i.e. if for all diagrams $F: \mathcal{J} \to \mathcal{C}$ with \mathcal{J} small, F has a (co) limit.

Theorem 2.36. A category C is (co)complete if and only if it has all small (co)products and (co)equalizers.

Proof. Let \mathcal{J} be a small category and $D: \mathcal{J} \to \mathcal{C}$ be a diagram. We have the products $\prod_{k \in \mathrm{Ob}(\mathcal{J})} D(k)$ and $\prod_{g \in \mathrm{Mor}(\mathcal{J})} D(\mathrm{cod}(g))$ where $\mathrm{cod}(g)$ is the codomain of g. We have two morphisms

$$\prod_{k \in \mathrm{Ob}(\mathcal{J})} D(k) \xrightarrow{\underline{\quad \ \ }} \prod_{g \in \mathrm{Mor}(\mathcal{J})} D(\mathrm{cod}(g))$$

given by $s = \prod_{f:i \to j} D(f)\pi_i$ and $t = \prod_{f:i \to j} \pi_j$, or with diagrams, for any $f: i \to j \in \text{Mor}(\mathcal{J})$:

$$\prod_{k \in \mathrm{Ob}(\mathcal{J})} D(k) \xrightarrow{\exists ! \underline{s}} \prod_{g \in \mathrm{Mor}(\mathcal{J})} D(\mathrm{cod}(g)) \qquad \qquad \prod_{k \in \mathrm{Ob}(\mathcal{J})} D(k) \xrightarrow{- \exists ! \underline{t}} \longrightarrow \prod_{g \in \mathrm{Mor}(\mathcal{J})} D(\mathrm{cod}(g))$$

$$\downarrow^{\pi_i} \qquad \qquad \downarrow^{\pi_f}$$

$$D(i) \xrightarrow{D(f)} D(j) \qquad \qquad D(j)$$

We call $\lim D$ an equalizer of s and t. A cone above D is given by compositions

$$\lim D \xrightarrow{\alpha} \prod_{k \in \mathrm{Ob}(\mathcal{J})} D(k) \xrightarrow{\pi_i} D(i)$$

Indeed, for any morphism $f: i \to j \in \operatorname{Mor}(\mathcal{J}), D(f)\pi_i\alpha = \pi_f s\alpha = \pi_f t\alpha = \pi_j\alpha$. Now let $\Delta(c) \underset{\lambda}{\Rightarrow} D$ be another cone above D. For any $k \in \operatorname{Ob}(\mathcal{J})$, we have $\lambda_k: c \to D(k)$, which gives a unique morphism $\lambda_*: c \to \prod_{k \in \operatorname{Ob}(\mathcal{J})} D(k)$ such that $\pi_i \lambda_* = \lambda_i$. Then, for any $f: i \to j \in \operatorname{Mor}(\mathcal{J})$, we have

$$\pi_f s \lambda_* = D(f) \pi_i \lambda_* = D(f) \lambda_i = \lambda_j$$

$$\pi_f t \lambda_* = \pi_j \lambda_* = \lambda_j$$

and applying the universal property of the product shows that $s\lambda_* = t\lambda_*$. By the universal property of equalizers this gives the existence of a unique morphism $c \to \lim D$ and completes the proof. \square

Definition 2.37. $F: \mathcal{C} \to \mathcal{D}$ preserves (co)limits if for every diagram $D: \mathcal{J} \to \mathcal{C}$ and any (co)limit cone (c, ϕ) of D, the image $(F(c), F\phi)$ is a (co)limit cone over $FD: \mathcal{J} \to \mathcal{D}$.

Remark. Preserving limits is like having $F(\lim D) \simeq \lim FD$, but stronger:

$$\lim_{\phi_i} D \qquad F(\lim_{\phi_i} D) \xrightarrow{\exists !\alpha} \lim_{\lambda_i} FD$$

$$\downarrow^{\phi_i} \qquad \leadsto \qquad FD(\phi_i) \downarrow \qquad \qquad \lambda_i$$

$$FD(i) \qquad FD(i)$$

and α is an isomorphism since $(F(\lim D), F\phi)$ is a limit cone.

Proposition 2.38. Let C be a locally small category and $X \in Ob(C)$. Then

- 1. $\operatorname{Hom}_{\mathcal{C}}(X,-)$ preserves all limits that exist in \mathcal{C}
- 2. The contravariant functor $\operatorname{Hom}_{\mathcal{C}}(-,X)$ transforms colimits in \mathcal{C} into limits in Set.

Proof. Let \mathcal{J} be a small category and $D: \mathcal{J} \to \mathcal{C}$ be a diagram. Let $F: \mathcal{C} \to \mathbf{Set}$ be te hom-functor $\mathrm{Hom}_{\mathcal{C}}(X,-)$. Let (L,λ) be a limit cone for D. Then, $(F(L),F(\lambda))$ is a cone in \mathbf{Set} over FD, since for any $\alpha: i \to j \in \mathrm{Mor}(\mathcal{J})$ we have the commutative diagram

$$F(L) \xrightarrow{F(\lambda_i)} \text{Hom}_{\mathcal{C}}(X, D(i)) \xrightarrow{D(\alpha) \circ -} \text{Hom}_{\mathcal{C}}(X, D(j))$$

It remains to show that $(F(L), F(\lambda))$ is a limit cone for FD. Let $S \Rightarrow FD$ be another cone. We have $f(i): S \to \operatorname{Hom}(X, D(i))$ (we work in **Set** so morphisms are actual maps here). Fixing $s \mapsto f_i(s)$ S, we get commutative diagrams:

$$X$$

$$f_{i}(s) / f_{j}(s)$$

$$D(i) \xrightarrow[D(\alpha) \circ -]{} D(j)$$

so $(X, f_i(s))$ is a cone over D hence there exists a unique morphism $u_s: X \to L$ such that $\lambda_i \circ u_s = f_i(s)$ for all $i \in \text{Ob}(\mathcal{J})$. Now set $u: S \to \text{Hom}(X, L)$ and we have $(F\lambda \circ u)(s) = (F\lambda)(u_s) = f_s \to u_s$

so $u: S \to F(L)$ is a morphism of cones. We need to check it is unique. If v is another one then $\lambda_i \circ v(s) = f_i(s)$ so $v(s) = u_s$ by uniqueness of u_s , which shows v = u. Another proof is given here:

$$\operatorname{Hom}_{\mathcal{C}}(X, \lim D) \simeq \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \mathcal{C})}(\Delta X, D)$$

$$\simeq \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \mathbf{Set})}(\Delta 1, \operatorname{Hom}_{\mathcal{C}}(X, D(-)))$$

$$\simeq \operatorname{Hom}_{\mathbf{Set}}(1, \lim \operatorname{Hom}_{\mathcal{C}}(X, D(-)))$$

$$\simeq \lim \operatorname{Hom}_{\mathcal{C}}(X, D(-))$$

(1 is a singleton.) The first and third isomorphisms are by definition of a limit. The last isomorphism comes from the fact that for any set A, maps $1 \to A$ correspond to elements of A. The second isomorphism works since a natural transformation $\Delta X \Rightarrow D$ is the same as a collection of morphisms $f_i: X \to D(i)$ indexed by $\mathrm{Ob}(\mathcal{J})$.

Theorem 2.39. Right adjoints preserve limits. Left adjoints preserve colimits.

Proof. We only need to prove the statement about right adjoints and then use opposite categories

for left adjoints. Let
$$\mathcal{C} \xrightarrow{F} \mathcal{D}$$
 be two functors with $F \dashv G$ and $D : \mathcal{J} \to \mathcal{D}$ be a diagram,

with $\eta:\Delta(\lim D)\Rightarrow D$ its limit cone. Our goal is to show that $(G\lim D,G\eta)$ is a limit cone for $G\circ D$. The fact that it is a cone above $G\circ D$ is clear. Now let $\mu:\Delta(c)\Rightarrow GD$ be another cone. For any $j\in \mathrm{Ob}(\mathcal{J})$, we have $\mu_j\in \mathrm{Hom}(c,GD(j))$. By adjunction, it corresponds to a morphism $\mu_j^*\in \mathrm{Hom}(F(c),D(j))$. We claim these morphisms make up a natural transformation $\mu^*:\Delta(F(c))\Rightarrow D$. Indeed, for any morphism $f:i\to j\in \mathrm{Mor}(\mathcal{J})$, we have by naturality of the adjunction a commutative diagram

$$\begin{array}{ccc} \operatorname{Hom}(F(c),D(i)) & \stackrel{\sim}{\longrightarrow} & \operatorname{Hom}(c,GD(i)) \\ & & & \downarrow^{D(f)\circ-} & & \downarrow^{GD(f)\circ-} \\ \operatorname{Hom}(F(c),D(j)) & \stackrel{\sim}{\longrightarrow} & \operatorname{Hom}(c,GD(j)) \end{array}$$

so $D(f) \circ \mu_i^* = (GD(f) \circ \mu_i)^* = \mu_j^*$. By universality of $\lim D$, there exists a unique morphism $\tau : F(c) \to \lim D$ that makes the appropriate diagram commute. Using the adjunction, we get a morphism $\tau^* : c \to G(\lim D)$, which is the morphism we are looking for. The commutativity of the appropriate diagram comes from naturality of the adjunction. Uniqueness comes from the uniqueness of τ .

In compact form:

$$\begin{aligned} \operatorname{Hom}_{\mathcal{C}}(c, \lim GD) &\simeq \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \mathcal{C})}(\Delta c, GD) \\ &\simeq \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \mathcal{D})}(F\Delta c, D) \\ &\simeq \operatorname{Hom}_{\operatorname{Fun}(\mathcal{J}, \mathcal{D})}(\Delta Fc, D) \\ &\simeq \operatorname{Hom}_{\mathcal{D}}(Fc, \lim D) \\ &\simeq \operatorname{Hom}_{\mathcal{C}}(C, G \lim D) \end{aligned}$$

3 Tensor products

All rings considered here are assumed to be associative and to have a multiplicative unit 1. Let A be a ring.

Definition 3.1.

- A right A-module is an abelian group (M,+) with a map $M \times A \rightarrow M$ such that $(m,a) \mapsto m \cdot a$
 - (1) $(m+n) \cdot a = m \cdot a + n \cdot a$ (3) $m \cdot (ab) = (m \cdot a)b$
 - (2) $m \cdot (a+b) = m \cdot a + m \cdot b$ (4) $m \cdot 1_A = m$

by symmetry one gets the notion of a *left A-module* (which is the equivalent of a vector space, but with a ring in place of the field).

- If A, B are two rings, an A-B-bimodule is an abelian group M with a left A-module and a right B-module structure such that for $(a, b) \in A \times B$ and $m \in M$, $a \cdot (m \cdot b) = (a \cdot m) \cdot b$.
- Let M be a right A-module, N be a left A-module and G be an abelian group. A bilinear (or balanced) map $f: M \times N \to G$ is a map f such that
 - (1) $f(m_1 + m_2, n) = f(m_1, n) + f(m_2, n)$
 - (2) $f(m, n_1 + n_2) = f(m, n_1) + f(m, n_2)$
 - (3) f(ma, n) = f(m, an)

The following theorem shows that there exists an abelian group $M \otimes_A N$ that is "universal" with respect to bilinear maps.

Theorem 3.2. Let M be a right A-module and N be a left A-module. There exists an abelian group $M \otimes_A N$ together with a bilinear map $t: M \times N \to M \otimes_A N$ such that for any abelian group G and bilinear map $b: M \times N \to G$, there exists a unique group homomorphism \tilde{b} that makes this diagram commute:

$$M \times N \xrightarrow{\forall b} G$$

$$\downarrow \qquad \qquad \exists \tilde{b}$$

$$M \otimes_A N$$

Proof. Let $L = \mathbb{Z}[M \times N]$ be the free abelian group on $M \times N$. It has a basis, namely $\{(m, n) \mid m \in M, n \in N\}$. Now consider the subgroup

$$I = \langle (m_1 + m_2, n) - (m_1, n) - (m_2, n), (m, n_1 + n_2) - (m, n_1) - (m, n_2), (ma, n) - (m, an) \rangle$$

It is chosen so the relations we want hold in L/I, for instance (ma,n)=(m,an) in the quotient group. Set $M\otimes_A N=L/I$ and $t: M\times N \to L/I$. By construction $M\otimes_A N$ is an abelian $(m,n)\mapsto [(m,n)]$

group and t is bilinear. We need to check the universal property. Pick a bilinear map $b: M \times N \to G$. We have a diagram

where $i:(m,n)\mapsto (m,n)$ is the inclusion map and $\pi:L\to L/I$ is the canonical projection. The map \tilde{b} exists by universal property of the free abelian group. Moreover it passes to the quotient $(I\subset\ker(\tilde{b}))$, so we get the map \bar{b} . We now check uniqueness. Let $f:M\otimes_A N\to G$ be another linear map that makes the diagram commute. Then, $f\circ\pi$ makes the top triangle commute, so by the universal property of the free abelian group, $f\circ\pi=\tilde{b}$. Applying the universal property of the quotient allows us to conclude $f=\bar{b}$.

Remark.

- 1. The abelian group $M \otimes_A N$ is a unique up to unique isomorphism.
- 2. The class $[(m,n)] \in M \otimes_A N$ is written $m \otimes n$. It is called a "pure tensor". Pure tensors generate the tensor product:

$$x \in M \otimes_A N \iff \exists (m_i, n_i) \in M^n \times N^n, x = \sum_{i=1}^n m_i \otimes n_i$$

> The tensor product is a functor. Precisely, it is a bifunctor $- ⊗_A - : \mathbf{Mod}A \times A\mathbf{Mod} \to \mathbf{Ab}$. If M, M' are two right A-modules, N, N' are two left A-modules and $f: M \to M', g: N \to N'$ are linear maps, then writing (f ⊗ g)(m ⊗ n) = f(m) ⊗ g(n) gives a commutative diagram

$$\begin{array}{c} M \otimes_A N \xrightarrow{\operatorname{id}_M \otimes g} M \otimes_A N' \\ f \otimes \operatorname{id}_N \downarrow & f \otimes g & \downarrow f \otimes \operatorname{id}_{N'} \\ M' \otimes_A N \xrightarrow{\operatorname{id}_{M'} \otimes g} M' \otimes_A N' \end{array}$$

One needs to be careful as $M \otimes_A N$ can be defined using a quotient or a universal property. Obtaining the arrow $f \otimes g$ is easier with the universal property:

$$\begin{array}{ccc} M\times N & \xrightarrow{(f,g)} & M'\times N' \\ & \downarrow^t & & \downarrow^{t'} \\ M\otimes_A N & \xrightarrow{f\otimes g} & M'\otimes_A N' \end{array}$$

Since $t' \circ (f, g)$ is bilinear, we obtain the unique map $f \otimes g$ using the universal property of $M \otimes_A N$. Hence we obtain the lemma:

Lemma 3.3. $-\otimes_A - is \ a \ bifunctor.$

Corollary 3.4. 1. If M is a B-A-bimodule, then $M \otimes_A N$ is a left B-module

- 2. If N is an A-C-bimodule, then $M \otimes_A N$ is a right C-module
- 3. If M is a B-A-bimodule and N is a A-C-bimodule then $M \otimes_A N$ is a B-C-bimodule.

Proof. We do the proof of 1. We set $b \bullet (m \otimes n) = (bm) \otimes n$ and now we need to check that it is well defined. A good way is to fix $b \in B$ and let $\ell_b : M \to M$ and notice that $\ell_b \in \operatorname{End}_A(M)$. $m \mapsto b \cdot m$

By functoriality, we get a map $\ell_b \otimes \operatorname{id}_N : M \otimes_A N \to M \otimes_A N$ so our action is well defined $m \otimes n \mapsto (bm) \otimes n$

and this is a *B*-module structure on the tensor product. The proof of 2. is similar. The proof of 3. comes from the fact that $\ell_b \otimes \mathrm{id}_N$ and $\mathrm{id}_M \otimes r_c$ commutes.

Examples 3.5.

- 1. $A \otimes_A N \simeq N$ as left A-modules. Isomorphisms are given by $a \otimes n \mapsto a \cdot n$ and $n \mapsto 1 \otimes n$. The well-definition of these maps comes from the universal property.
- 2. If R is commutative then an R-module M is an R-R-bimodule $R \times M \times R \rightarrow (x, m, y)$ $M \mapsto mxy = myx$ so $M \otimes_R N$ is always an R-module.

A Over a field, $\dim(V \otimes W) = \dim(V) \dim(W)$ but this is false in general for a ring. Exercise. Show that $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} = \{0\}$ when $\gcd(m,n) = 1$.

Theorem 3.6 (Tensor-hom adjunction). Let A, B be two rings and M be an A-B-bimodule. We have a functor $-\otimes_A M: \mathbf{Mod}A \to \mathbf{Mod}B$ and a functor $\mathrm{Hom}_B(M,-): \mathbf{Mod}B \to \mathbf{Mod}A$. Then $-\otimes_A M$ is left adjoint to $\mathrm{Hom}_B(M,-)$.

The A-module structure on $\operatorname{Hom}_B(M,Y)$ for Y a B-module is given by

$$\begin{array}{cccc} \operatorname{Hom}_B(M,Y) \times A & \to & \operatorname{Hom}_B(M,Y) \\ (f,a) & \mapsto & f \cdot a : M & \to & Y \\ & & m & \mapsto & f(am) \end{array}$$

Proof. TODO

4 Additive categories

4.1 Preadditive and additive categories

Definition 4.1. A zero object in a category \mathcal{C} is an object that is both final and initial.

Example 4.2. $\{0\}$ is a zero objet in $\mathbf{Mod}A$ for A a ring.

Definition 4.3. Let k be a commutative ring. A k-category is a category \mathcal{C} such that all hom-sets are k-modules and composition is bilinear. When $k = \mathbb{Z}$ we say that \mathcal{C} is *preadditive*.

Remark. One says that C is "enriched" over $\mathbf{Mod}k$.

Lemma 4.4. Let C be a k-category. For $X, Y \in Ob(C)$, the product $X \times Y$ exists iff the coproduct $X \sqcup Y$ exists. If so, they are isomorphic.

Proof. Suppose $X \times Y$ exists. Define $i_X = (\mathrm{id}_X, 0) : X \to X \times Y$ and $i_Y = (0, \mathrm{id}_Y) : Y \to X \times Y$. We claim these maps together with the product are the coproduct of X and Y. Let $Z \in \mathrm{Ob}(\mathcal{C})$ and $f: X \to Z, \ g: Y \to Z$. Then, define $f \sqcup g: X \times Y \to Z$ by $f \sqcup g = f\pi_X + g\pi_Y$. This makes this diagram commute:

$$X \xrightarrow{i_X} X \times Y \xleftarrow{i_Y} Y$$

$$\downarrow^{f \sqcup g}$$

$$Z \xleftarrow{g}$$

Now let $h: X \times Y \to Z$ be another arrow that makes the diagram commute. Then

$$h \circ (i_X \pi_X + i_Y \pi_Y) = hi_X \pi_X + hi_Y \pi_Y = f \pi_X + g \pi_Y = f \sqcup g$$

And uniqueness follows since $\mathrm{id}_{X\times Y}=i_X\pi_X+i_Y\pi_Y$. This comes from the universal property of the product and the diagram

$$X \times Y \xrightarrow{\pi_{Y}} X \times Y \xrightarrow{\pi_{Y}} X \times X \times Y \xrightarrow{\pi_{Y}} Y$$

Definition 4.5. Let \mathcal{C} be a k-category. A biproduct of X and Y is an object $X \oplus Y \in \mathcal{C}$ with morphisms $X \xleftarrow{i_X} X \oplus Y \xleftarrow{\pi_X} Y$ such that

1. $i_X \pi_X + i_Y \pi_Y = \mathrm{id}_{X \oplus Y}$

2. $\pi_X i_Y = 0$, $\pi_Y i_X = 0$, $\pi_X i_X = \mathrm{id}_X$, $\pi_Y i_Y = \mathrm{id}_Y$

Definition 4.6. Let k be a commutative ring. A k-additive (or k-linear) category is a k-category with finite products and finite coproducts.

Remark.

1. When $k = \mathbb{Z}$, we simply say the category is additive.

2. As seen above, finite products are finite coproducts and vice versa. Both are finite biproducts.

3. For C a k-category, the following are equivalent:

(a) C is k-additive

(b) \mathcal{C} has a zero object and every pair of objects has a product

(c) \mathcal{C} has a zero object and every pair of objects has a coproduct

(d) \mathcal{C} has a zero object and every pair of objects has a biproduct

Moreover $(b) \iff (c) \iff (d)$, and for (a) we are just missing the empty product (or coproduct), which is the zero object.

4. If A is additive there is a canonical interpretation of the group structure on Hom(-,-) using $-\oplus -$. See exercise sheets.

Examples 4.7.

- 0. The category **Ab** of abelian groups is additive.
- 1. If A is a ring (or k-algebra) then $\mathbf{Mod}A$, $A\mathbf{Mod}$ and finitely generated versions are k-additive.
- 2. If \mathcal{C} is additive, then \mathcal{C}^{op} is additive.
- 3. If \mathcal{C} is additive and I is a category then $\operatorname{Fun}(I,\mathcal{C})$ is additive.
- 4. If A is a ring, then the category BA with one object \bullet and $\operatorname{Hom}(\bullet, \bullet) = A$ is preadditive but not additive.

Definition 4.8. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor between two k-linear categories. The functor F is said to be k-linear (or additive when $k = \mathbb{Z}$) if for any $X, Y \in \mathrm{Ob}(\mathcal{C})$, $\mathrm{Hom}(X,Y) \to \mathrm{Hom}(FX,FY)$ $f \mapsto F(f)$

is a k-linear map.

Proposition 4.9. A functor $F: \mathcal{C} \to \mathcal{D}$ is additive if and only if $F(0) \simeq 0$ and $F(X \oplus Y) \simeq F(X) \oplus F(Y)$.

Proof. Suppose F is additive. id_0 is the zero morphism of $\mathrm{Hom}_{\mathcal{C}}(0,0)$. Therefore $F(\mathrm{id}_0)=\mathrm{id}_{F(0)}$ is the zero morphism of $\mathrm{Hom}_{\mathcal{D}}(F(0),F(0))$. For any $Y\in\mathrm{Ob}(\mathcal{D})$ and $f:F(0)\to Y$, $f=f\mathrm{id}_{F(0)}=0$. This shows F(0) is initial. A similar reasoning shows it is final. Therefore F(0) is isomorphic to

the zero object of \mathcal{D} . Now let $X \xleftarrow{i_X} X \oplus Y \xleftarrow{\pi_Y} Y$ be a biproduct in \mathcal{C} . Then we have a diagram

$$F(X) \xrightarrow{F(i_X)} F(X \oplus Y) \xrightarrow{F(\pi_Y)} F(Y)$$

And the relations we require for this diagram to be a biproduct are satisfied since F is additive and $X \oplus Y$ is a biproduct.

Now assume $F(0) \simeq 0$ and $F(X \oplus Y) \simeq F(X) \oplus F(Y)$ for all $X, Y \in Ob(\mathcal{C})$. Let $X, Y \in Ob(\mathcal{C})$.

Example 4.10. Let A, B be two rings and M be an A-B-bimodule. Then, $-\otimes_A M_B : \mathbf{Mod}A \to \mathbf{Mod}B$ is additive. This can be quickly proven using the proposition above: the functor is a left adjoint so it preserves coproducts!

4.2 Chain complexes in an additive category

In this subsection, all categories are assumed to be additive.

Definition 4.11. A chain complex in \mathcal{C} is a collection $C_{\bullet} = \{C_n \mid n \in \mathbb{Z}\}$ of objects of \mathcal{C} together with morphisms $\partial_n : C_n \to C_{n-1}$ of \mathcal{C} such that $\partial_{n-1} \circ \partial_n = 0$. The morphisms ∂_n are called the differentials of the complex.

Dually, a cochain complex in \mathcal{C} is a collection $C^{\bullet} = \{C^n \mid n \in \mathbb{Z}\}$ of objects of \mathcal{C} together with morphisms $\delta_n : C^n \to C^{n+1}$ of \mathcal{C} such that $\delta^{n+1} \circ \delta^n = 0$.

Remark. If C_{\bullet} is a chain complex, then $(C')^{\bullet} = C_{-n}$ together with $\delta^n = \partial_{-n}$ is a cochain complex, so both notions are mathematically the same. However in practice chain and cochain complexes represent different objects so it is good to distinguish the two.

Definition 4.12. Let C_{\bullet} and D_{\bullet} be two chain complexes in C. A morphism of chain complexes $f_{\bullet}: C_{\bullet} \to D_{\bullet}$ is a collection of morphisms $f_n: C_n \to D_n$ such that all diagrams

$$\longrightarrow C_n \xrightarrow{\partial_n^C} C_{n-1} \longrightarrow \downarrow^{f_n} \qquad \downarrow^{f_{n-1}} \longrightarrow D_n \xrightarrow{\partial_n^D} D_{n-1} \longrightarrow$$

commute (" $\partial f = f \partial$ ").

Definition 4.13. If \mathcal{C} is an additive category, then the category $\mathrm{Ch}(\mathcal{C})$ is the category whose objects are chain complexes in \mathcal{C} and morphisms are morphisms of chain complexes. We also write $\mathrm{Ch}_{\bullet}(\mathcal{C})$.

Remark. One can check that $\mathrm{Ch}(\mathcal{C})$ is an additive category.

Example 4.14. Let $\Delta_n = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^n x_i = 1 \text{ and } x_i \geq 0\} = \operatorname{Conv}(e_0, \dots, e_n)$ be the standard n-simplex. Δ_n appears n+1 times as a face of the standard n+1-simplex, and

$$d^{i}: \qquad \Delta_{n} \rightarrow \Delta_{n+1} (x_{0}, \dots, x_{n}) \mapsto (x_{0}, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_{n})$$

is the i-th face map. Δ_n is a topological space, so when X is a topological space we can consider

$$\operatorname{Hom}_{\mathbf{Top}}(\Delta_n, X) = \{ f : \Delta_n \to X \mid f \text{ continuous} \}$$

and we get

$$d_i: \operatorname{Hom}_{\mathbf{Top}}(\Delta_{n+1}, X) \to \operatorname{Hom}_{\mathbf{Top}}(\Delta_n, X)$$

 $\sigma \mapsto (\Delta_{n+1} \xrightarrow{d^i} \Delta_n \xrightarrow{\sigma} X)$

for $0 \le i \le n+1$.

Singular Chain Complex **TODO**

Definition 4.15. Singular simplices **TODO**

Example 4.16. Singular chain complex. TODO

Proposition 4.17. $C^{\text{sing}} : \mathbf{Top} \to \mathrm{Ch}_{\bullet}(\mathbf{Ab})$ is a functor.

Simplicial methods

Definition 4.18.

• We define the *simplicial category* (or *simplex category*) Δ whose objects are $[n] = \{0, 1, ..., n\}$ for $n \in \mathbb{N}$, and $\text{Hom}([n], [m]) = \{f : [n] \to [m] \mid f \text{ increasing}\}$. This category is equivalent to the category of non-empty, finite, totally ordered sets with increasing maps as morphisms.

- A simplicial set is a contravariant functor $\Delta \to \mathbf{Set}$. More generally, if \mathcal{C} is a category, a simplicial object in \mathcal{C} is a contravariant functor from Δ to \mathcal{C} .
- Simplicial objects in a category \mathcal{C} are objects of the category $\mathcal{C}^{\Delta^{\text{op}}}$. We write $s\mathcal{C} = \mathcal{C}^{\Delta^{\text{op}}}$ (so $s\mathbf{Set}$ is the category of simplicial sets).
- If $X: \Delta^{\mathrm{op}} \to \mathcal{C}$ is a simplicial object, we define $X_n = X([n])$ the *n-simplices* of X.
- In Δ , we have $d^i:[n-1]\to[n]$ the injective map that "misses i", defined by

$$d^{i}(k) = \begin{cases} k & \text{if } k < i \\ k+1 & \text{if } k \ge i \end{cases}$$

Proposition 4.19. We have $d^i \circ d^j = d^{j+1} \circ d^i$ when $i \leq j$.

Proof. You can do it. I believe in you. (**TODO**)

If $X: \Delta^{\text{op}} \to \mathbf{Ab}$ is a simplicial abelian group, then we can define (X_{\bullet}, d) with $X_n = X([n])$ and $d_n: X_n \to X_{n-1}$. $x \mapsto \sum_{i=0}^n (-1)^i X(d^i)(x)$

Proposition 4.20. If $X \in s\mathbf{Ab}$, then (X_{\bullet}, d) is a chain complex of abelian groups. Moreover, $X \mapsto X_{\bullet}$ is a functor $s\mathbf{Ab} \to \mathrm{Ch}_{\bullet}(\mathbf{Ab})$.

$$Proof.$$
 TODO

Let $s^i: [n+1] \to [n]$ be the map that "hits i twice". $k \mapsto \begin{cases} k & \text{if } k \leq i \\ k-1 & \text{if } k > i \end{cases}$

Theorem 4.21. Every morphism in Δ is a composition of maps of the form d^i and s^i . These maps are subject to the so-called simplicial relations

$$\begin{cases}
d^{j} \circ d^{i} = d^{i} \circ d^{j-1} & i < j & (1) \\
s^{i} \circ s^{j} = s^{j} \circ s^{i-1} & i > j & (2) \\
d^{i} \circ s^{j} = \begin{cases}
s^{j-1} \circ d^{i} & i < j \\
\text{id} & i \in \{j, j+1\} \\
s^{j} \circ d^{i-1} & i > j+1
\end{cases}$$
(*)

TODO better typography

and this is a presentation of Δ by generators and relations

This theorem says that to define a functor F from Δ to C it is enough to define $F(d^i), F(s^i)$ and show that (*) holds.

Proof. "Voir annexe."
$$TODO$$

The maps d^i s generate $\Delta_{\rm inj}$ so to construct $F:\Delta_{\rm inj}^{\rm op}\to\mathcal{C}$ and use proposition 4.20 we only need to define $F(d^i)$ and check (1).

Theorem 4.22. If $F: \Delta_{\text{inj}}^{\text{op}} \to \mathbf{Ab}$ is a (semisimplicial abelian group) functor then $(F([n]), d_{\bullet})$ with $d_n: F([n]) \to F[n-1]$ is a chain complex of abelian groups. This also works if $x \mapsto \sum_i (-1)^i F(d^i)(x)$

 \mathbf{Ab} is replaced by any additive category \mathcal{C} .

Examples 4.23.

1. Writing

$$\mathbf{Top} \longrightarrow s\mathbf{Set} \longrightarrow s\mathbf{Ab}$$

$$X \longmapsto \mathrm{Hom}_{\mathbf{Top}}(\Delta(-), X) \longmapsto \mathbb{Z}[\mathrm{Hom}_{\mathbf{Top}}(\Delta(-), X)]$$

allows us to use the theorem to recover what we said about the singular chain complex before.

2. Let G be a finite group, and F_n be the free abelian group on $G^{n+1} = \{(g_0, \ldots, g_n) \mid g_i \in G\}$. F_n is a $\mathbb{Z}[G]$ -module for $g \bullet (g_0, \ldots, g_n) = (gg_0, \ldots, gg_n)$, so $F_n \in \mathbb{Z}[G]$ **Mod**. We define maps

$$\partial_i: F_n \rightarrow F_{n-1}$$

 $(g_0,\ldots,g_n) \mapsto (g_0,\ldots,g_{i-1},g_{i+1},\ldots,g_n)$

(the map removes g_i). For i < j, we have

$$\partial_i \circ \partial_j(g_0, \dots, g_n) = \partial_i(-, \mathscr{G}, -) = (-, \mathscr{G}, -, \mathscr{G}, -)$$
$$\partial_{j-1} \circ \partial_i(g_0, \dots, g_n) = \partial_{j-1}(-, \mathscr{G}, -) = (-, \mathscr{G}, -, \mathscr{G}, -)$$

so setting $F([n]) = F_n$ and $F(d^i) = \partial_i$ defines a functor $F : \Delta_{\text{inj}}^{\text{op}} \to \mathbb{Z}[G]\mathbf{Mod}$. Applying theorem 4.22 we have $(F_n, \partial_{\bullet}) \in \text{Ch}(\mathbb{Z}[G]\mathbf{Mod})$ called the *bar resolution* of G.

3. Koszul complex, Hochschild complex...

Definition 4.24. Let \mathcal{C} be an additive category, C_{\bullet} , $D_{\bullet} \in \operatorname{Ch}_{\bullet}(\mathcal{C})$ and $f, g \in \operatorname{Hom}(C_{\bullet}, D_{\bullet})$. A homotopy H from f to g is the data of maps $h_i : C_i \to D_{i+1}$ in \mathcal{C} such that the following diagram commutes

$$C_{n+1} \xrightarrow{d_{n+1}^C} C_n \xrightarrow{d_n^C} C_{n-1}$$

$$f_{n+1} \xrightarrow{g_{n+1}} h_n \xrightarrow{f_n - g_n} h_{n-1} \xrightarrow{f_{n-1} - g_{n-1}} D_{n+1} \xrightarrow{d_{n+1}^D} D_n \xrightarrow{d_n^D} D_{n-1}$$

which means $f_n - g_n = h_{n-1}d_n^C + d_{n+1}^D h_n$ ("f - g = hd + dh"). We write $f \sim g$ if f and g are homotopic. f and g are homotopy equivalences if $fg \sim \mathrm{id}_D$ and $gf \sim \mathrm{id}_C$.

The motivation for this definition comes from topology. Let $f, g: X \to Y$ be continuous maps between topological spaces. We say f and g are homotopic if there exists a continuous map $H: X \times I \to Y$ (here I is the unit interval [0,1]) such that H(-,0) = f and H(-,1) = g. The map H is a called a homotopy from f to g.

Theorem 4.25. Let X, Y be two topological spaces and $f, g: X \to Y$ be two homotopic continuous maps. Then the induced maps $C^{\text{sing}}(f), C^{\text{sing}}(g): C^{\text{sing}}(X) \to C^{\text{sing}}(Y)$ are homotopic as morphisms of chain complexes.

$$Proof.$$
 TODO

Lemma 4.26. Let $X, Y, Z \in Ch(\mathcal{C})$ and $f: X_{\bullet} \to Y_{\bullet}, g: Y_{\bullet} \to Z_{\bullet}$ be morphisms of chain complexes. Then $f \sim 0$ implies $g \circ f \sim 0$.

Proof. Let h_{\bullet} be a homotopy between f and 0. Then $g_{\bullet} \circ h_{\bullet}$ is a homotopy between $g \circ f$ and 0. \square

Definition 4.27. Let \mathcal{C} be a category. The homotopy category $K(\mathcal{C})$ of chain complexes in \mathcal{C} is the category defined by $\mathrm{Ob}(K(\mathcal{C})) = \mathrm{Ob}(\mathrm{Ch}(\mathcal{C}))$ and $\mathrm{Hom}_{K(\mathcal{C})}(X,Y) = \mathrm{Hom}_{\mathrm{Ch}(\mathcal{C})}(X,Y)/\sim$.

Lemma 4.26 above shows that composition in $K(\mathcal{C})$ is well-defined: if $f \sim g$, then $f - g \sim 0$ so $h(f - g) \sim 0$, so $hf \sim hg$. In the same vein, if $f - g \sim 0$, $(f - g)h \sim 0$, so $fh \sim fg$. This shows composition in $K(\mathcal{C})$ is well-defined.

Remark.

- 1. $K(\mathcal{C})$ is an additive category.
- 2. \triangle In general, $K(\mathcal{C})$ is a complicated object: it is a triangulated category.

5 Abelian categories

Definition 5.1. Let \mathcal{C} be an additive category. A *kernel* of $f \in \text{Mor}(\mathcal{C})$ is an equalizer of (f, 0). Dually, a *cokernel* of f is a coequalizer of (f, 0).

Concretely, we have universal arrows for any α such that $f\alpha = 0$ (or $\alpha f = 0$ for a cokernel)

If we assume that every morphism in $\mathcal C$ has a kernel and a cokernel, then

$$\ker f \xrightarrow{\iota} X \xrightarrow{f} Y \xrightarrow{\pi} \operatorname{coker} f$$

$$\downarrow^{p} \qquad \uparrow$$

$$\operatorname{coker}(\ker f) \qquad \ker(\operatorname{coker} f)$$

where $\operatorname{coker}(\ker f)$ is notation for $\operatorname{coker}(\iota)$ and $\operatorname{ker}(\operatorname{coker} f)$ is notation for $\operatorname{ker}(\pi)$. Since $f \circ \iota = 0$, we have a unique map $\tilde{f} : \operatorname{coker}(\ker f) \to Y$ by the universal property of the cokernel.

$$\ker f \xrightarrow{\iota} X \xrightarrow{f} Y \xrightarrow{\pi} \operatorname{coker} f$$

$$\downarrow^{p} \qquad \qquad \downarrow^{\tilde{f}}$$

$$\operatorname{coker}(\ker f)$$

And we have $\pi \circ \tilde{f} \circ p = \pi \circ f = 0$.

Lemma 5.2. Kernels are monomorphisms and cokernels are epimorphisms.

Proof. Draw a diagram

$$W \atop b \downarrow \downarrow a \ker f \xrightarrow{\iota} X \xrightarrow{f} Y$$

such that $\iota a = \iota b$. Then $f\iota(a-b) = 0$, so there is a unique map $c: W \to \ker f$ such that we have a commutative diagram

$$\begin{array}{c} W \\ \downarrow c \\ \downarrow c \\ \end{array} \qquad \begin{array}{c} \iota(a-b) \\ \ker f \xrightarrow{\iota} X \xrightarrow{f} Y \end{array}$$

However a - b and 0 already make the diagram commute, so a - b = 0, so a = b. The proof that a cokernel is an epimorphism is similar.

Hence, $\pi \circ \tilde{f} \circ p = \pi \circ f = 0 = 0 \circ p$ means that $\pi \circ \tilde{f} = 0$ since p is an epimorphism. This means that \tilde{f} factorizes through $\ker(\operatorname{coker} f)$. Setting $\operatorname{coim} f = \operatorname{coker}(\ker f)$ and $\operatorname{im} f = \ker(\operatorname{coker} f)$, we obtain the following commutative diagram

$$\ker f \xrightarrow{\iota} X \xrightarrow{f} Y \xrightarrow{\pi} \operatorname{coker} f$$

$$\downarrow \qquad \qquad \uparrow$$

$$\operatorname{coim} f \xrightarrow{---} \operatorname{im} f$$

Example 5.3. In C = A**Mod**, we have the canonical factorization

$$\ker f \xrightarrow{\iota} X \xrightarrow{f} Y \xrightarrow{\pi} Y/\operatorname{im} f$$

$$\downarrow \qquad \qquad \uparrow$$

$$X/\ker f \xrightarrow{----} \operatorname{im} f$$

and \overline{f} is an isomorphism by the first isomorphism theorem.

Definition 5.4. Let \mathcal{C} be an additive category. Then \mathcal{C} is abelian if

- 1. Every morphism has a kernel and a cokernel in C.
- 2. $\forall f: X \to Y$, the canonical morphism $\overline{f}: \operatorname{coim} f \to \operatorname{im} f$ is an isomorphism.

Examples 5.5.

- 1. If A is a ring, $\mathbf{Mod}A$ is abelian. If A is noetherian, then the full subcategory $\mathbf{mod}A$ of finitely generated modules is abelian.
- 2. If \mathcal{C} is abelian, then so is \mathcal{C}^{op} .
- 3. There are examples of categories that satisfy 1 but not 2. For instance, Hausdorff topological abelian groups, where kernels are given by the usual kernel and cokernels are the quotients by the closure of the image. We have

$$0 \longrightarrow \mathbb{Q} \hookrightarrow \mathbb{R} \longrightarrow 0$$

$$\downarrow \qquad \qquad \uparrow$$

$$\mathbb{Q} \stackrel{\cancel{>}}{\longrightarrow} \mathbb{R}$$

Proposition 5.6. Let A be an abelian category and \mathcal{J} a small category. Then

- 1. Fun(\mathcal{J}, \mathcal{A}) is an abelian category.
- 2. $Ch_{\bullet}(A)$ is an abelian category.

Sketch of proof. Let $F, G \in \text{Fun}(\mathcal{J}, \mathcal{A})$ and $\eta : F \Rightarrow G$. We want to construct $\ker \eta$. For any morphism $f : i \to j \in \text{Mor}(\mathcal{J})$, we have a diagram

$$\ker(\eta_i) \xrightarrow{\iota_i} F(i) \xrightarrow{\eta_i} G(i)$$

$$\downarrow^{\alpha_f} \qquad \qquad \downarrow^{F(f)} \qquad \downarrow^{G(f)}$$

$$\ker(\eta_j) \xrightarrow{\iota_j} F(j) \xrightarrow{\eta_j} G(j)$$

We have $0 = G(f)\eta_i \iota = \eta_j F(f)\iota$ so $F(f)\iota$ factorizes through $\ker(\eta_j)$, which gives the morphism α_f . One can check $\ker(\eta)$, defined by $\ker(\eta)(i) = \ker(\eta_i)$ and $\ker(\eta)(f) = \alpha_f$ is a functor (this is proved using uniqueness of α_f). One can check that $\iota : \ker(\eta) \Rightarrow F$ is a kernel of η by drawing the adequate diagrams. Constructing cokernels is done similarly. The canonical factorization is an isomorphism since its evaluation at every object is an isomorphism because \mathcal{A} is abelian.

 $\mathrm{Ch}_{\bullet}(\mathcal{A})$ is a subcategory of $\mathrm{Fun}(\mathbb{Z},\mathcal{A})$ so kernels and cokernels exist in $\mathrm{Fun}(\mathbb{Z},\mathcal{A})$. There is a commutative diagram

And the universal property of $\ker(f_{i-1})$ means that $\alpha_i \alpha_{i-1}$ is the unique morphism induced by $d_{i+1}d_i = 0$, so $\alpha_i \alpha_i - 1 = 0$ and kernels, cokernels of chain complexes are again chain complexes. \square

- 1. There is another equivalent definition of abelian categories: a category is abelian iff it is preabelian (additive, and all kernels/cokernels exist) and every monomorphism is a kernel of some morphism and every epimorphism is a cokernel of some morphism.
- 2. Abelian categories have finite limits and colimits.

Remark.

3. If $f \in \text{Mor}(A)$ with A abelian, then f is a monomorphism if and only if $\ker f = 0$ and f is an epimorphism if and only if $\operatorname{coker} f = 0$. Moreover, a monomorphism that is also an epimorphism is an isomorphism.

Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be two composable morphisms in an abelian category such that gf = 0. The left diagram below shows that $0 = gf = g\alpha \overline{f}\pi = 0$, however $\overline{f}\pi$ is an epi so $g\alpha = 0$. Therefore, α factorizes into a map im $f \to \ker g$ as shown in the right diagram.

Definition 5.7. Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ such that gf = 0.

- We say it is exact if the canonical map im $f \to \ker g$ is an isomorphism.
- A chain complex $(C_{\bullet}, d_{\bullet})$ is *exact* if the canonical maps $\operatorname{Im}(d_i) \simeq \ker(d_i)$ are isomorphisms for all $i \in \mathbb{Z}$.
- A short exact sequence if an exact complex of the form $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$.

Example 5.8. In ModA, gf = 0 means that im $f \subset \ker g$, so exactness is equivalent to im $f = \ker g$.

Remark. $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z$ is exact if and only if $f = \ker g$.

The sequence $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is exact if and only if f is a monomorphism, g is an epimorphism and im $f \xrightarrow{\sim} \ker g$ is an isomorphism, which is equivalent to $g = \operatorname{coker} f$ and $f = \ker g$. Remark. There is a difficult theorem of Freyd and Mitchell that says any abelian category can be seen as a full subcategory of $\operatorname{\mathbf{Mod}} A$ for some ring A in such a way that the abelian structure is induced by the usual one in $\operatorname{\mathbf{Mod}} A$.

Definition 5.9. Let \mathcal{A} be an abelian category and $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, $0 \to D \xrightarrow{h} E \xrightarrow{k} F \to 0$ be two short exact sequences. A morphism of short exact sequences between them is the data of three morphisms $\alpha: A \to D$, $\beta: B \to E$ and $\gamma: C \to F$ such that the following diagram commutes:

Lemma 5.10 (Short five lemma). Using the same notations as in the definition above:

- If α and γ are monomorphisms, so is β .
- If α and γ are epimorphisms, so is β .
- If α and γ are isomorphisms, so is β .

We give two proofs of this result.

Proof by diagram chase. Assume we work in a category of modules $\mathbf{Mod}A$. Assume α, γ are monos. Let $x \in \ker \beta$. Then $\gamma g(x) = k\beta(x) = 0$ and γ is a mono so g(x) = 0. By exactness at B, there exists $y \in A$ such that f(y) = x. Then $0 = \beta f(y) = h\alpha(y)$. By exactness at D, h is a mono, so $\alpha(y) = 0$. since α is a mono, y = 0, so x = 0, which means β is a mono.

Now assume α, γ are epis. Let $x \in E$. Since γ, g are epis, there exists $y \in B$ such that $\gamma(g(y)) = k(x)$. Then, $k(\beta(y) - x) = 0$. By exactness at E and since α is epi, there exists $z \in A$ such that $h(\alpha(z)) = \beta(y) - x$. Therefore $\beta f(z) = \beta(y) - x$, so $\beta(y - f(z)) = x$ and β is epi.

Categorical proof in any abelian category. Assume α, γ are monos. Let us add ker β to the diagram.

We have $\beta i = 0$, so $\gamma g i = k \beta i = 0$. Since γ is a mono, g i = 0. Exactness tells us $f = \ker g$, so we obtain the map $j : \ker \beta \to A$ with the universal property of $\ker g$. Since the diagram commutes, $0 = \beta i = \beta f j = h \alpha j$. Since h and α are both monos, j = 0, so i = 0, so β is a mono. Now assume α, γ are epis and consider the commutative diagram

We have $\pi\beta = 0$, so $\pi\beta f = \pi h\alpha = 0$. Since α is an epi, $\pi h = 0$. Exactness tells us $k = \operatorname{coker} h$, which gives us η . Then, $\eta k\beta = 0$, so $\eta \gamma g = 0$. Since γ , g are epis, $\eta = 0$, so $\pi = 0$, so β is an epi. \square

Theorem 5.11 (Splitting lemma). Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a short exact sequence in an abelian category A. The following are equivalent:

- (1) $\exists r: B \to A, rf = \mathrm{id}_A$
- (2) $\exists s: C \to B, gs = \mathrm{id}_C$
- (3) $\exists h: B \xrightarrow{\sim} A \oplus C \text{ such that }$

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\parallel \qquad \downarrow_{h} \qquad \parallel$$

$$0 \longrightarrow A \xrightarrow{i_{A}} A \oplus C \xrightarrow{\pi_{C}} C \longrightarrow 0$$

is an isomorphism of short exact sequences.

When these conditions are satisfied, we say the short exact sequence splits.

Proof. Assume we have (3). Then we have the projection $\pi_A: A \oplus C \to A$. Letting $r = \pi_A h$, we have $rf = \pi_A h f = \pi_A i_A = \mathrm{id}_A$. Similarly, setting $s = h^{-1}i_C$ gives $gs = \pi_C h h^{-1}i_C = \mathrm{id}_C$. Now assume (1). We have $r: B \to A$ and $g: B \to C$. This gives a morphism $r \oplus g: B \to A \oplus C$ defined by $r \oplus g = i_A r + i_C g$. Then, $(r \oplus g)f = i_A$ since gf = 0 and $\pi_C(r \oplus g) = g$ by properties of the biproduct. This means that $r \oplus g$ makes the diagram above commute. The short five lemma then tells us $r \oplus g$ is an isomorphism.

Assume (2). Then $f: A \to B$ and $s: C \to B$ induce a morphism $f \oplus s: A \oplus C \to B$ defined by $f \oplus s = f\pi_A + s\pi_C$. This morphism satisfies

$$(f \oplus s)i_A = f$$
 and $g(f \oplus s) = \pi_C$

so again we get an isomorphism of short exact sequences by the short five lemma.

Definition 5.12. Let \mathcal{C} and \mathcal{D} be two abelian categories. Let $F:\mathcal{C}\to\mathcal{D}$ be a functor.

- 1. We say F is *left exact* if F preserves finite limits.
- 2. We say F is right exact if F preserves finite colimits.
- 3. We say F is *exact* if it preserves finite limits and finite colimits.

Lemma 5.13. Let $F: \mathcal{C} \to \mathcal{D}$ be an additive functor between abelian categories. The following are equivalent;

- (1) The functor F is left exact.
- (2) The functor F preserves kernels i.e. $F(\ker f) \simeq \ker(F(f))$.
- (3) If $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z$ is an exact sequence in C, the sequence $0 \to F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z)$ is also exact.
- (4) If $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$ is a short exact sequence in C, the sequence $0 \to F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z)$ is also exact.

Proof.

- $(1) \Rightarrow (2)$ This is clear since a kernel is a limit (an equalizer).
- (2) \Rightarrow (3) Assume we have (2). Then $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z$ is an exact sequence in \mathcal{C} if and only if $f = \ker g$, so F(f) is a kernel of F(g), so $0 \to F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z)$ is exact.
- $(3) \Rightarrow (4)$ This is clear.

- $(2) \Rightarrow (1)$ The functor F is additive so it preserves products. The equalizer of $X \xrightarrow{f} Y$ is the kernel of f g, so F preserving kernels means it also preserves equalizers. Since any finite limit can be built out of products and equalizers, F is left-exact.
- $(4)\Rightarrow (3)$ Let $0\to X\xrightarrow{f}Y\xrightarrow{g}Z$ be an exact sequence. Consider $0\to X\xrightarrow{f}Y\to \operatorname{coker}(f)\to 0$. Applying F shows that F(f) is a monomorphism, so F preserves monos. Moreover we have the exact sequence $0\to X\xrightarrow{f}Y\xrightarrow{\overline{g}}\operatorname{Im}g\to 0$ so $0\to F(X)\xrightarrow{F(f)}F(Y)\xrightarrow{F(\overline{g})}F(\operatorname{Im}g)$ is also exact. **TODO**: FINISH This **TODO**: UNDERSTAND ABOVE REMARK