A. Kapanowski

Fizyka - ćwiczenia nr 13

10 czerwca 2024

Zadanie 1. Światło padające na powierzchnię sodu wywołuje zjawisko fotoelektryczne zewnętrzne. Potencjał hamujący wynosi $V_0=5.0\,V$, a praca wyjścia dla radu jest równa $W=2.2\,eV$. Jaka jest długość fali padającego światła?

Zadanie 2. Lampa sodowa emituje energię z mocą $P=100\,W.$ Załóżmy, że emitowane jest wyłącznie światło o długości fali $\lambda=590\,nm.$ Ile fotonów na sekundę emituje lampa?

Zadanie 3. Jaka jest długość fali de Broglie'a dla elektronu o energii kinetycznej $120\,eV?$

Zadanie 4. Załóżmy, że elektron o energii całkowitej $E=5.1\,eV$ zbliża się do bariery o wysokości $U_0=6.8\,eV$ i szerokości $L=0.75\,nm$. Jakie jest prawdopodobnieństwo, że elektron pokona barierę i zostanie wykryty po jej drugiej stronie?

Zadanie 5. Wypisać dozwolone zestawy liczb kwantowych (n,l,m_l) atomu wodoru dla n=1,2,3,4,5.

Zadanie 6. Elektron został uwięziony w trójwymiarowym prostokątnym pudle (trójwymiarowej studni potencjału) o wymiarach $L_x=L_y=L_z=L$. Wyznaczyć energię najniższych pięciu poziomów energetycznych elektronu w pudle. Znaleźć różnicę energii między stanem podstawowym i trzecim stanem wzbudzonym elektronu.