Станция метро Китай-город Кружок в ИТМО, группа А, 11 апреля 2019

Задача А.	Ultra Weak Goldbach's Conjecture [3 секунды, 256 мегабайт]	2
Задача В.	Cockroaches [6 секунд, 256 мегабайт]	3

Задача A. Ultra Weak Goldbach's Conjecture [3 секунды, 256 мегабайт]

Гипотеза Гольдбаха утверждает, что каждое четное натуральное число, большее 2, представимо в виде суммы двух простых чисел. Более простая версия этой гипотезы утверждает, что каждое нечетное число, большее 5, представимо в виде суммы трёх простых чисел.

Рассмотрим ещё более слабую версию гипотезы Гольдбаха: каждое натуральное число, большее 11, представимо в виде суммы шести простых чисел. Сможете ли вы доказать или опровергнуть эту гипотезу?

Формат входных данных

В первой строке записано целое число t ($1 \le t \le 200$), — количество тестов для которых нужно проверить гипотезу.

В каждой из следующих t строк записано одно целое число n_i ($1 \le n_i \le 10^{12}$), — число для которого нужно проверить выполняется ли гипотеза.

Формат выходных данных

Для каждого теста, выведите сначала «Case x:», где x это номер теста (тесты нумеруются с 1). Если решение существует, выведите через пробел шесть простых чисел, дающих в сумме n_x , в противном случае выведите «IMPOSSIBLE». Если решений несколько выведите любое из них.

Примеры

stdin	stdout
5	Case 1: IMPOSSIBLE
6	Case 2: 2 2 2 2 3
13	Case 3: 43 29 31 29 31 37
200	Case 4: 97 101 103 107 101 61
570	Case 5: 137 137 107 113 89 97
680	

Задача В. Cockroaches [6 секунд, 256 мегабайт]

На поле находится N тараканов. i-ый таракан находится в точке (x_i, y_i) . Никакие два таракана не расположены в одной точке. У Лю есть очень сильный яд, который может уничтожить всех тараканов, находящихся на одной горизонтальной или вертикальной прямой с точкой, в которой он был применен. Т.е. тараканы с такой же координатой x или с такой же координатой y будут убиты.

Лю интересно, какое максимальное количество тараканов он может убить, так же ему интересно, сколько различных подмножеств всех тараканов, содержащих максимальное возможное число тараканов, он может уничтожить.

Формат входных данных

В первой строке записано целое число t ($1 \leqslant t \leqslant 100$) — количество тестов для которых нужно проверить гипотезу.

В первой строке каждого из тестов записано одно целое число N ($1 \leqslant N \leqslant 10^5$) — количество тараканов. В каждой из последующих N строк записано два целых числа x и y ($1 \leqslant x,y \leqslant 10^9$) — координаты тараканов.

Гарантируется, что хотя бы в 80 тестах $N \leq 5000$.

Формат выходных данных

Для каждого теста, выведите одну строку, содержащую «Case x: y z», где x это номер теста (тесты нумеруются с 1), y максимальное число уничтоженных тараканов, а z количество различных подмножеств тараканов размера y, которые могут быть уничтожены.

Примеры

stdin	stdout
2	Case 1: 3 5
5	Case 2: 2 3
1 2	
1 3	
2 3	
4 5	
6 7	
3	
1 2	
2 3	
3 1	

Замечание

В первом тесте может быть убито максимум три таракана. Всего есть пять возможных подмножеств убитых [1,2,3], [1,2,4], [1,2,5], [2,3,4], [2,3,5].

Во втором тесте может быть убито не более двух тараканов. И все возможные подмножества: [1,2], [1,3], [2,3].