O CIRCUITO RLC PARALELO

Considere uma associação em paralelo com elementos resistivo (R), indutivo (L) e capacitivo (C) submetida a uma força eletromotriz harmônica na forma $\varepsilon = \varepsilon_0 \operatorname{sen}(\omega t)$.

- a) Escreva uma expressão para a impedância complexa $Z(\omega)$ da associação, em função da frequência angular ω e de R, L e C.
- b) Obtenha uma expressão para o módulo $|Z(\omega)|$ (valor absoluto) de $Z(\omega)$.
- c) Há um valor crítico ω_0 de ω para o qual $|Z(\omega)|$, como função de ω , assume um valor máximo ou mínimo? Em caso afirmativo expresse ω_0 em função de R, L e C.
- d) Calcule o valor de ω_0 para o caso em que $R=22.0 \text{ k}\Omega$, $L=150 \text{ }\mu\text{H}$ e C=1.00 nF.

Você deve compreender que a corrente total i da associação (aquela fornecida pela fonte) se divide em três correntes, $i_{\rm R}$, $i_{\rm L}$ e $i_{\rm C}$, que percorrem os braços resistivo, indutivo e capacitivo da associação, respectivamente.

- e) Construa, em escala apropriada, um diagrama fasorial, representando as amplitudes ε_0 , I, I_R , I_L e I_C , da força eletromotriz e das correntes, para o caso em que $\omega = 2\omega_0$. O que ocorre neste caso, a corrente na fonte está adiantada em relação à força eletromotriz aplicada, atrasada ou em fase com a mesma?
- f) Construa, em escala apropriada, um diagrama fasorial, representando as amplitudes ε_0 , I, I_R , I_L e I_C , da força eletromotriz e das correntes, para o caso em que $\omega = \frac{\omega_0}{2}$. O que ocorre neste caso, a corrente na fonte está adiantada em relação à força eletromotriz aplicada, atrasada ou em fase com a mesma?
- g) Construa, em escala apropriada, um diagrama fasorial, representando as amplitudes ε_0 , I, I_R , I_L e I_C , da força eletromotriz e das correntes, para o caso em que $\omega = \omega_0$. O que ocorre neste caso, a corrente na fonte está adiantada em relação à força eletromotriz aplicada, atrasada ou em fase com a mesma?