QoS-aware Fog Computing System: Load Distribution and Task Offloading

Presenter: Te-Yi Kan

Te-Yi Kan, Yao Chiang, Hung-Yu Wei Dept. of Electrical Engineering
National Taiwan University

2018/08/23

Introduction

* Mobile-Edge Computing (MEC) system

- * A type of fog computing system.
- Providing computation resources at the edge of RAN?

Motivation

- * Promoting QoS as well as considering two critical features of tasks and devices.
 - Different tasks have different delay tolerance.
 - * Task execution cannot run out of the energy of the device.
- * We take two types of resource allocation into account.
 - * Radio resource allocation
 - **Computation resource allocation**
- * Multi-server scenario and load distribution are considered.

System Model

*** Three major parts:**

- * Multiuser system
- Multi-channel system
- *** Multi-server system**
 - Each server has limited computation resources.
 - Servers are interconnected with each other.
- * Four correspond problems:
 - **❖** Offloading decision problem
 - * Radio resource allocation
 - Load distribution and computation resource allocation

Problem Description

***** Formulation of these problems:

- * Each device has its own offloading decision $x_{n_s} \in \{0,1,2,...,M\}$ (*Three possible locations*).
 - + If $x_{n_s} = 0$: This device selects *local execution*.
 - + Else if $x_{n_s} = s$: This device offloads its task to **Serving MEC Server**.
 - \div Else, $x_{n_s} > 0 \& x_{n_s} = m \neq s$: This device offloads its task to *Nearby MEC Server*.
- ***** Each offloading device has its own channel selection $h_{n_s} \in \{h_s^1, h_s^2, ..., h_s^H\}$.

Cost Function

*** Cost function:**

* To take delay tolerance and remaining energy into account.

Completion time: T_{n_s}

Delay tolerance: $T_{n_s}^{max}$

Energy consumption: E_{n_c}

Remaining energy: $E_{n_s}^R$

- * The weight β_{n_s} is negatively correlated with delay tolerance.
- * The cost of failed task φ is much greater than normal cost.
- * The lower the cost is, the better QoS is achieved.

Proposed Algorithm

* Three steps in our algorithm:

Inside each MEC Server

Devices Classification & Priority Assignment

Radio Resource Allocation

Among multiple MEC Servers

Load Distribution & Computation Resource Allocation

Devices Classification & Priority Determination

* Devices Classification

- * Two sets: $S_{mec,s}$ and $S_{other,s}$
- * Task execution failure should be avoided.

* Priority Determination

* The devices with lower \emptyset_{n_s} values have higher priority to offload

Radio Resource Allocation

* Radio Resource Allocation

- * First, assigning sub-channels to the devices in $S_{mec,s}$
- * After assignment for $S_{mec,s}$, we'll consider $S_{other,s}$.

Load Distribution & Computation Resource Allocation

Load Distribution

- (1) First, assigning tasks to their Serving MEC Server in ascending order of Δ_{n_s}
- (2) After assignment in each server, we'll distribute unserved tasks to other server with adequate resources.
- (3) Finally, terminating all the unserved tasks.

* Computation Resource Allocation

* Adopting Lagrange Multiplier.

Load Distribution – sub-step 1

*** Load Distribution**

First, assigning tasks to their Serving MEC Server in ascending order of Δ_{n_s} (Δ_{n_s} is the minimum required resources to complete the task within its delay tolerance).

* Assigned task n_s occupy Δ_{n_s} computation resources.

Load Distribution – sub-step 2

* Load Distribution

* After assignment in each server, we'll distribute unserved tasks to other servers with adequate resources.

Load Distribution – sub-step 3 & Computation Resource Allocation

*** Load Distribution**

- * First, assigning tasks to their Serving MEC Server in ascending order of Δ_{n_s}
- * After assignment in each server, we'll distribute unserved tasks to other server with adequate resources.
- * Finally, terminating all the unserved tasks.

*** Computation Resource Allocation**

* Adopting Lagrange Multiplier.

Simulation Settings

*** Scenario:**

- \gg Number of the BSs M=5
- * Number of the sub-channel H = 15
- * Bandwidth of each sub-channel $B = 1.5 \times 10^6 \text{ Hz}$

*** Comparison schemes:**

- ***** Local execution
 - + Tasks can be executed only on local mobile device
- **Remote execution**
 - + Tasks can be executed only on MEC system.
- **No Load Distribution**
 - Tasks can be executed on local mobile devices or their Serving MEC Server.

Simulation Results (Maximal Number of Mobile Devices per MEC Server)

- * Following Uniform Distribution $unif\{x-10,x\}, x=maximal\ number.$
- * Our algorithm achieves best QoS due to the consideration of offloading decision and load distribution.

Simulation Results (Minimal Computation Capacity of Each MEC Server)

*No load Distribution scheme will get close to our algorithm with the increment of resources.

Conclusion

- * We discuss three issues in MEC system.
 - * Task offloading
 - Load distribution
 - Resource allocation
- * Formulating a cost minimization problem.
 - To take delay tolerance and remaining energy into account.
- * Our solution is more efficient and consistent with reality.
 - * Taking delay tolerance and remaining energy into account.
 - * We consider multi-server system.

Thanks for your attention!

