Projeto e Análise de Algoritmos

Prof. Hamilton José Brumatto

Bacharelado em Ciência da Computação - UESC

18 de novembro de 2010

Classes de Problemas

Algoritmos Eficientes

- Foram trabalhados vários problemas, e para muitos deles obtivemos algoritmos eficientes:
 - Localização de um valor em um vetor (ordenado ou não);
 - Ordenação de vetores;
 - Multiplicação de matrizes;
 - Árvore Geradora Mínima de um Grafo;
 - Caminhos mais curtos em grafos;...
- Um algoritmo é eficiente se ele é executado na complexidade de tempo da cota inferior do problema.
- Ou seja, um problema tem um algoritmo eficiente se sua cota inferior for da complexidade de tempo de sua cota superior.

Problemas Tratáveis e Intratáveis

- Os problemas acima, e muitos outros puderam ser resolvidos em tempo polinomial.
- Um algoritmo que resolve um problema em tempo polinomial é $O(n^k)$ para alguma constante k.
- Os problemas resolvidos em tempo polinomial são considerados problemas tratáveis.
- No entanto existem problemas que podem ser resolvidos, mas não no tempo polinomial, estes problemas são considerados intratáveis, ou difíceis.
- Existem até mesmo problemas que não podem ser resolvidos, como o Problema de parada (halting) de Turing.

Classes de problemas

- Existe um conjunto de problemas que n\u00e3o se conhece algoritmos eficientes.
- É difícil encontrar um algoritmo polinomial que resolva o problema, mas existe um algoritmo polinomial que verifica se uma proposta de solução resolve de fato o problema.
- Costuma-se catalogar os problemas como estando em pelo menos duas classes:
 - A classe dos problemas para os quais se conhece um algoritmo eficiente para resolução
 - A classe dos problemas para os quais se conhece um algoritmo eficiente para verificação
- O estudo é feito tradicionalmente para Problemas de Decisão

Tipos de reduções

 Vamos tratar somente com Redução de Karp, que será usada em provas de pertinência de problemas de decisão às diferentes classes de problemas.

 \mathcal{A}_Q deve responder SIM para \mathbb{I}_Q se e somente se \mathbb{I}_P for uma instância SIM para o problema P

Problemas de decisão × Problemas de otimização

- Apesar de tratarmos apenas problemas de decisão, muitos problemas de interesse são problemas de otimização. Por exemplo, o caminho mais curto entre dois pontos.
- Existe um relacionamento conveinente entre problemas de decisão e problemas de otimização. Por exemplo, um problema de decisão é identificar se existe um caminho cujo comprimento no máximo é L.
- Assim, uma vez identificado um problema de decisão em uma classe de problemas, é possível abstrair quão difícil (ou fácil) é um problema de otimização (Por Quê?)
- Lembre-se que é possível reduzir um problema de decisão em um problema de otimização (relacionado àquele problema de decisão)!

Problemas de decisão × Problemas de otimização

- Apesar de tratarmos apenas problemas de decisão, muitos problemas de interesse são problemas de otimização. Por exemplo, o caminho mais curto entre dois pontos.
- Existe um relacionamento conveinente entre problemas de decisão e problemas de otimização. Por exemplo, um problema de decisão é identificar se existe um caminho cujo comprimento no máximo é L.
- Assim, uma vez identificado um problema de decisão em uma classe de problemas, é possível abstrair quão difícil (ou fácil) é um problema de otimização (Por Quê?)
- Lembre-se que é possível reduzir um problema de decisão em um problema de otimização (relacionado àquele problema de decisão)!

Problemas de Tempo Polinomial

- Apesar de enunciado que problemas com cota superior $O(n^k)$ são tratáveis, parece incorreto pensar que um algoritmo $O(n^{100})$ seja algo tratável.
- A experiência mostra que uma vez encontrado um algoritmo polinomial, outros mais eficientes são encontrados.
- Um algoritmo de computador resolve um problema concreto no tempo O(T(n)) se, quando é fornecida uma instância de problema i de comprimento n=|i|, o algoritmo pode produzir a solução no tempo máximo O(T(n)).
- Um problema concreto pode ser resolvido em tempo polinomial se existe um algoritmo para resolvê-lo no tempo O(n^k) para alguma constante k.
- Um problem que possua um algoritmo determinístico de tempo polinomial pertence à classe de complexidade \mathcal{P} .

Algoritmos não-determinísticos

- Até o momento somente trabalhamos com algoritmos determinísticos. Uma operação por vez e o resultado da operação é interpretado de maneira única.
- No modelo de computação não-determinístico existe o comando Escolha(S) que retorna um elemento do conjunto S.
- Escolha define de forma aleatória um elemento de |S| possíveis, e Escolha $(S) \in O(1)$.
- Um algoritmo não-determinístico é construído em duas partes:
 - CONSTRUÇÃO: irá de forma não-determinística construir uma proposta de solução (conhecida como Certificado) para o problema
 - VERIFICAÇÃO: irá de forma determinística verificar a validade do Certificado. Se o Certificado resolve o problema, o algoritmo define o resultado ACEITAR, caso contrário REJEITAR.

Exemplo de algoritmo não-determinístico

 Determinar se um valor x pertence a um vetor A de n posições.

Algoritmo BuscaND(A, x)

- 1. ▷ Construção
- 2. $i \leftarrow Escolha(1, ..., n)$
- 3. ⊳ Verificação
- 4. **se** A[i] = x
- 5. **então retorne** Aceitar
- 6. **senão retorne** Rejeitar
 - Como interpretar a execução de um algoritmo não-determinístico?

"Entendendo" uma máquina não-determinística

- Considere um computador com *infinitos* processadores, todos se comunicando com tempo 0 (zero).
- Escolha, na Construção, gera um certificado para cada processador.
- Na Verificação, cada processador verifica um certificado, se um certificado resolve o problema, este processador avisa (em tempo 0) os demais e a resposta é ACEITAR

Complexidade de um algoritmo não-determinístico

- Um algoritmo não-determinístico tem complexidade O(f(n)) se existem constantes positivas c e n₀ tais que para toda instância de tamanho n ≥ n₀ para o qual ele resulta em ACEITAR, o tempo de execução é limitado a cf(n).
- Escolha é O(1).
- A comparação também é O(1), logo este algoritmo é O(1).
- Observe que qualquer algoritmo determinístico para este problema é $\Omega(n)$.
- Como seria um algoritmo não-determinístico para o problema de ordenação?

Complexidade de um algoritmo não-determinístico

- Um algoritmo não-determinístico tem complexidade O(f(n)) se existem constantes positivas c e n₀ tais que para toda instância de tamanho n ≥ n₀ para o qual ele resulta em ACEITAR, o tempo de execução é limitado a cf(n).
- Escolha é O(1).
- A comparação também é O(1), logo este algoritmo é O(1).
- Observe que qualquer algoritmo determinístico para este problema é $\Omega(n)$.
- Como seria um algoritmo não-determinístico para o problema de ordenação?

Exemplo de algoritmo não-determinístico para partição

• Determinar se um vetor S de n posições pode ser particionado em dois vetores S_1 e S_2 tal que $\sum_{v_i \in S_1} v_i = \sum_{v_i \in S_2} v_i$.

Algoritmo ParticaoND(S)

- 1. ⊳ Construção
- 2. $S_2 \leftarrow S$; $k \leftarrow Escolha(1, ..., n-1)$
- 3. para $i \leftarrow 1$ até k
- 4. **faça** $s \leftarrow Escolha(S_2)$; $S_1 \leftarrow S_1 \cup \{s\}$; $S_2 \leftarrow S_2 \{s\}$
- 7. para $i \leftarrow 1$ até $tamanho[S_1]$
- 8. **faça** $s_1 \leftarrow s_1 + S_1[i]$
- 9. **para** $i \leftarrow 1$ **até** $tamanho[S_2]$
- 10. **faça** $s_2 \leftarrow s_2 + S_2[i]$
- 11. **se** $s_1 = s_2$
- 12. então retorne Aceitar
- 13. senão retorne Rejeitar
 - Observe que a complexidade deste algoritmo $\in O(n_{\epsilon}^2)$

As classes \mathcal{P} e \mathcal{NP}

- Definição: P é o conjunto de problemas que podem ser resolvidos por um algoritmo determinístico polinomial.
- Definição: NP é o conjunto de todos os problemas que podem ser resolvidos por um algoritmo não-determinístico polinomial.
- Todo algoritmo determinístico é um caso particular de um algoritmo não-determinístico, de forma que:

$$\mathcal{P} \subseteq \mathcal{NP}$$

$$\mathcal{P} = \mathcal{N}\mathcal{P}$$
?

- Esta é uma questão aberta da Teoria da Computação.
- Até o momento não há prova de que algum problema que pertença à classe \mathcal{NP} não possa ser resolvido por nenhum algoritmo determinístico.
- Também não é possível mostrar que todos os problemas na classe \mathcal{NP} possua algoritmo polinomial.
- No entanto, a tendência é interpretar que a proposição é falsa.

\mathcal{NP} -difícil

- Um problema é \mathcal{NP} -difícil se ele for tão difícil quanto qualquer problema da classe \mathcal{NP} .
- Ou seja, é possível realizar uma redução polinomial (τ_I e τ_S são polinomiais) de qualquer problema da classe \mathcal{NP} a este problema.
- Um problema que é \mathcal{NP} -difícil não precisa estar necessariamente na classe \mathcal{NP} .

\mathcal{NP} -completo

- Um problema $A \in \mathcal{NP}$ -completo, se:
 - $A \in \mathcal{NP}$ e
 - $A \in \mathcal{NP}$ -difícil
- Se um problema é \mathcal{NP} -completo, e houver um algoritmo determinístico polinomial que resolve o problema, então todos os problemas da classe \mathcal{NP} podem ser resolvidos por um algoritmos determinísticos de tempo polinomial, ou seja: $\mathcal{P} = \mathcal{N}\mathcal{P}$

Primeiro problema \mathcal{NP} -completo: SAT

Problema da Satisfatibilidade de uma Expressão Booleana

Dada uma Fórmula lógica booleana construída com os seguintes elementos:

- Variáveis: x_1, \ldots, x_n (e suas negações: $\bar{x_i}$ para todo i).
- Operadores lógicos: "+" e "." (OU e E lógicos)
- Cláusulas: C_1, C_2, \ldots, C_m da forma $C_i = (x_{i1} + x_{i2} + \ldots)$
- Fórmula: $F = C_1.C_2.\cdots.C_m$

Existe uma instância de entradas nas variáveis de forma que a fórmula retorne *VERDADE*?

- O SAT é \mathcal{NP} . Por quê?
- Resta provar que o SAT é \mathcal{NP} -difícil.

Primeiro problema \mathcal{NP} -completo: SAT

- Como provar que um problema é \mathcal{NP} -completo? É preciso saber a dificuldade de todos os problemas da classe \mathcal{NP} , conhecidos ou não.
- Cook provou que o problema de satisfatibilidade SAT é \mathcal{NP} -completo.
 - De uma forma muito breve, uma característica dos problemas da classe \mathcal{NP} é que existe um algoritmo verificador determinístico polinomial para analisar o certificado.
 - Todo algoritmo eficiente pode ser descrito por instruções da máquina de Turing, logo a máquina de Turing descreve o algoritmo verificador para um problema A de \mathcal{NP} .
 - Uma instância x do problema A tem resposta SIM se e somente se uma fórmula F tem resposta SIM para SAT.
- Será que existem outros problemas NP-completo? ou SAT é o único. Como provar?

Provas de \mathcal{NP} -completude

- Depois que Cook (1971) provou que SAT estava em \mathcal{NP} -completo, Karp (1972) mostrou que 24 problemas famosos também estavam em \mathcal{NP} -completo.
- Para provar que um problema A está em NP-completo é necessário:
 - 1 Provar que A está em \mathcal{NP} .
 - ② Provar que A está em \mathcal{NP} -difícil: pode ser feito encontrando-se uma redução polinomial de um problema B qualquer em \mathcal{NP} -difícil para A.

CLIQUE é um problema \mathcal{NP} -completo ?

O problema CLIQUE

Dado um grafo não-orientado G=(V,E) e um valor inteiro $k\in\{1,\ldots,n\}$, onde n=|V|, pergunta-se: G possui uma $clique^a$

^aClique de k vértices é um subgrafo completo que possua k vértices

- TEOREMA: CLIQUE $\in \mathcal{NP}$ -completo
 - **1** CLIQUE $\in \mathcal{NP}$. Por quê?
 - 2 SAT \propto_{poli} CLIQUE

CLIQUE é um problema \mathcal{NP} -completo ?

Grafo t-partido

DEFINIÇÃO: um grafo G = (V, E) é t-partido se o conjunto de vértices pode ser particionado em t subconjuntos V_1, V_2, \ldots, V_t tal que não existam arestas em E ligando dois vértices em um mesmo subconjunto V_i , $i \in \{1, \ldots, t\}$.

- Transormação de uma instância SAT em uma instância CLIQUE:
 - Seja $F = C_1.C_2.....C_c$ uma fórmula booleana nas variáveis $x_1, x_2,...,x_v$. Construa o grafo c-partido $G = ((V_1, V_2,...,V_c), E)$ tal que:
 - Em um subconjunto V_i existe um vértice associado a cada variável que aparece na cláusual C_i de F.
 - A aresta (a, b) está em E se e somente se a e b estão em subconjuntos distintos e, além disso, a e b não representam simultaneamente uma variável e a sua negação.

CLIQUE é um problema \mathcal{NP} -completo ?

- O grafo possui O(cv) vértices e $O(c^2v^2)$ arestas, a redução é em tempo polinomial
- SAT tem resposta SIM se e somente se o grafo possui uma CLIQUE de c vértices.
- Exemplo: $F = (x_1 + \bar{x_2} + x_3)(\bar{x_1} + x_2)(\bar{x_3})$

CLIQUE é um problema \mathcal{NP} -completo \checkmark

- A prova de que a redução é correta segue nos seguintes argumentos:
- Uma clique só acontece quando cada vértice é adjacente a todos os demais vértices.
- Só um vértice de uma particão participa da clique.
- Vértice que representam contradições $(x_i \in \bar{x_i})$ não são adjacente.
- Uma clique representa um conjunto de variáveis que podem ser todas VERDADE ao mesmo tempo.
- Tendo uma variável em cada cláusula (partição) como VERDADE indica que a fórmula é verdade.
- Só existe a clique se e somente se SAT é satisfeita.

Outros problemas \mathcal{NP} -completos

• Em breve.

Atividades

Em breve.