Math 357 Long quiz 01A

2024-02-05 (M)

Your name:	

Let $(R, +, \times)$ be a commutative ring with a (multiplicative) identity $1 \neq 0$, and let $I \leq R$ be an ideal. Prove the following.

(a) I = R if and only if I contains a unit.

Solution: (\Rightarrow) Let I = R. By hypothesis, there exists $1 \in R$. By definition of a (multiplicative) identity, 1 is a unit: $1 \times 1 = 1$. (Is using 1 our only option?)

- (\Leftarrow) Let I contain a unit, denote it $\mathfrak u$. By definition of a unit, there exists some $v \in R$ such that $\mathfrak u v = 1$ and $\mathfrak v \mathfrak u = 1.^1$ By definition of an ideal, I is closed under (left- and right-) multiplication by elements of R. In particular, $v \in R$ and $\mathfrak u \in I$, so $1 = v\mathfrak u \in I$. Using the same logic with $1 \in I$ and arbitrary $r \in R$, we conclude that I = R.
 - (b) R is a field if and only if its only ideals are (0) and (1).

Solution: (\Rightarrow) Let R be a field, and let I \leq R be an ideal. Case 1: I = (0). We are done. Case 2: I \neq (0). In this case there exists an element $\alpha \in$ I such that $\alpha \neq$ 0. Because R is a field, $\alpha \in$ R $^{\times}$; that is, α is a unit. By part (a), I = R = (1).

 (\Leftarrow) Let (0) and (1) be the only ideals of R. To show that R is a field, we need to show that every nonzero element of R is a unit. Let $r \in R$ such that $r \neq 0$. Consider the (principal) ideal (r). Because $r \neq 0$ and $r \in (r)$, it follows that $(r) \neq (0)$. Hence (r) = (1). In particular, $1 \in (1) = (r)$, so there exists some $s \in R$ such that sr = 1. (Do we have to worry whether this s satisfies rs = 1, too?) That is, r is a unit.

¹In this exercise, we're assuming that R is commutative, so these two conditions are equivalent.