In [51]:	<pre>import pandas as pd import numpy as np import statsmodels.api as sm from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler from sklearn.pipeline import.Pipeline</pre>
In [52]: In [53]: Out[53]:	<pre>pd.set_option('max_columns', None) raw_df = pd.read_csv('DelayedFlights.csv', sep=",", encoding='utf8') Unnamed: Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime UniqueCarrier FlightNum Tailly</pre>
	0 0 2008 1 3 4 2003.0 1955 2211.0 2225 WN 335 N71 1 1 2008 1 3 4 754.0 735 1002.0 1000 WN 3231 N77 2 2 2008 1 3 4 628.0 620 804.0 750 WN 448 N429 3 4 2008 1 3 4 1829.0 1755 1959.0 1925 WN 3920 N469 4 5 2008 1 3 4 1940.0 1915 2121.0 2110 WN 378 N72
In [54]:	Unnamed: 0 Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSAria Count 1.936758e+06 1936758.0 1.936758e+06 1.
In [55]: Out[55]: In [56]:	max 7.009727e+06 2008.0 1.200000e+01 3.100000e+01 7.000000e+00 2.400000e+03 2.359000e+03 2.400000e+03 2.400000e raw_df.shape (1936758, 30) raw_df.dtypes
	Unnamed: 0 int64 Year int64 Nonth int64 Dayof Month int64 Dayof Meek int64 Dayof Meek int64 CRSDeptime float64 CRSDeptime int64 ArrTime float64 CRSDeptime int64 CRSDeptime int64 TailNum object FlightNum int64 TailNum object Actual BlapsedTime float64 CRSDelays float64 ArrDelay float64 ArrDelay float64 ArrDelay float64 ArrDelay float64 ArrDelay float64 Crsdelay float64 Crsdelay float64 Crsdelay float64 Crsdelay float64 Crsdelay float64 Cancelled int64 Taxiout float64 Cancelled int64 Cancelled int64 Cancelled int64 Cancelled float64 Carrier Delay float64 Security Delay float64 Security Delay float64 Security belay float64 Security Delay float64 Security float64 S
	Modelo de regresion lineal. Para poder empezar a trabajar con el, se tratan los datos NaN para la columna ArrDelay reemplazando por el valor de la media de ArrDelay. Se extraen los datos que interesa predecir, el retraso de salida y el retraso de llegada de los aviones. Se creará el modelo y su ajuste posterior para obtener los datos de predicción. raw_df['ArrDelay']=raw_df['ArrDelay'].fillna(raw_df['ArrDelay'].mean()) x = np.array(raw_df['DepDelay']).reshape((-1, 1)) y = np.array(raw_df['ArrDelay']) print (x,y) [[8.]
In [60]:	<pre>[19.] [8.] [80.] [11.] [7.]] [-14.</pre>
In [61]:	<pre>print('coefficient of determination:', r_sq) print('intercept:', model.intercept_) print('slope:', model.coef_) coefficient of determination: 0.8995207508716909 intercept: -1.2579166978369898 slope: [1.00631293]</pre>
	y_pred = model.predict(x) print('predicted response:', y_pred, sep='\n') predicted response: [6.79258674 17.86202898 6.79258674 79.24711772 9.81152553 5.78627381] Se prepara el modelo de regresión polynomial. Este modelo requiere una tranformación del input para incluir el valor de x² en el array X. Una vez realizado, se ajusta al modelo y se obtienen las predicciones.
In [63]: In [64]:	<pre>x_2 = PolynomialFeatures(degree=2, include_bias=False).fit_transform(x) print (x_2) [[8. 64.] [19. 361.] [8. 64.]</pre>
In [65]: In [66]:	<pre>[80. 6400.] [11. 121.] [7. 49.]] model_2 = LinearRegression().fit(x_2, y) r_sq_2 = model_2.score(x_2, y) print('coefficient of determination:', r_sq_2) print('intercept:', model 2.intercept)</pre>
In [67]:	<pre>print('coefficients:', model_2.coef_) coefficient of determination: 0.8995862528489823 intercept: -1.5303942104420258 coefficients: [1.01579534e+00 -2.90498437e-05] y_pred_2 = model_2.predict(x_2) print (y_pred_2)</pre>
	[6.59410929 17.75923019 6.59410929 79.54731371 9.63983946 5.5787497] Advanced Linear Regression con statsmodels. Una forma de obtener una regresión lineal que aporta más detalles que la regresión lineal x_3 = sm.add_constant(x_2) print (x_3)
	[[1.00e+00 8.00e+00 6.40e+01] [1.00e+00 1.90e+01 3.61e+02] [1.00e+00 8.00e+00 6.40e+01] [1.00e+00 8.00e+01 6.40e+03] [1.00e+00 1.10e+01 1.21e+02] [1.00e+00 7.00e+00 4.90e+01]]
In [70]: In [71]: In [72]:	<pre>model_3 = sm.OLS(y, x_3) results = model_3.fit() print(results.summary()) OLS Regression Results</pre>
	Dep. Variable: y R-squared: 0.900 Model: OLS Adj. R-squared: 0.900 Method: Least Squares F-statistic: 8.675e+06 Date: Fri, 06 May 2022 Prob (F-statistic): 0.00 Time: 15:21:18 Log-Likelihood: -8.3412e+06 No. Observations: 1936758 AIC: 1.668e+07 Df Residuals: 1936755 BIC: 1.668e+07 Df Model: 2 Covariance Type: nonrobust
[n [73]:	<pre>print('coefficient of determination:', results.rsquared) print('adjusted coefficient of determination:', results.rsquared_adj) print('regression coefficients:', results.params) coefficient of determination: 0.8995862528489823 adjusted coefficient of determination: 0.8995861491562105 regression coefficients: [-1.53039421e+00 1.01579534e+00 -2.90498437e-05]</pre>
	print('predicted response:', results.predict(x_3), sep='\n') predicted response: [6.59410929 17.75923019 6.59410929 79.54731371 9.63983946 5.5787497] Se realiza un cuarto modelo de regresión, esa vez random forest. Para ello, hay que transformar primero los datos a tipo Integer (random forest solo acepta integer como valor). Después se realiza un train test split y se usará para realizar la predicción de los retrasos.
n [75]: n [76]: n [77]:	<pre>X = x.round(0).astype(int) Y = y.round(0).astype(int) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)</pre>
in [78]: Out[78]: In [79]:	<pre>model_4 = RandomForestRegressor(random_state = 42) model_4.fit(X_train, y_train) RandomForestRegressor(random_state=42) y_pred_4 = model_4.predict(X_test)</pre>
in [80]:	<pre>print('predicted response:', y_pred_4, sep='\n') predicted response: [8.77399531 434.97427653 19.56738872 6.12044374 4.03793344 29.93782911] r_sq_4 = model_4.score(X, Y) print (r sq 4)</pre>
[n [82]:	0.9001126119515857 • Exercici 2: Compara'ls en base al MSE i al R2. print ('Mean squared error for all models:')
	print('Linear Regression model:', mean_squared_error(y, y_pred_2)) print('Polynomial Regression:', mean_squared_error(y, y_pred_2)) print('Advanced Linear Regression:', mean_squared_error(y, y_pred_2)) print('Random Forest:', mean_squared_error(y_test, y_pred_4)) Mean squared error for all models: Linear Regression model: 322.5925190396327 Polynomial Regression: 322.3822240F8516 Advanced Linear Regression: 322.3822240F8516 Advanced Linear Regression: 322.5925190396327 Random Forest: 323.67522778814583 print('Coefficient of determination for all models:') print('Linear Regression model:', r_sq) print('Polynomial Regression:', r_sq_2) print('Advanced Linear Regression: 0.900') print('Random Forest:', r_sq_4) Coefficient of determination for all models: Linear Regression model: 0.8995207508716909 Polynomial Regression: 0.8995862528489823 Advanced Linear Regression: 0.900 Random Forest: 0.9001126119515857 • Exercici 3: Entrena'ls utilitzant els diferents paràmetres que admeten. Linear Model con n_jobs para controlar el tamaño y el tiempo de ejecución, ya que es un dataset bastsante amplio. El siguiente es controlar con fit_intercept, que se encargará de encontar el mejor fiting.
In [84]:	<pre>linear_model = LinearRegression(n_jobs=-1, normalize=True).fit(x, y) sq1 = linear_model.score(x, y) print('coefficient of determination:', sq1) coefficient of determination: 0.8995207508716909 /opt/anaconda3/lib/python3.9/site-packages/sklearn/linear_model/_base.py:141: FutureWarning: 'normalize' was of precated in version 1.0 and will be removed in 1.2. If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing stage. To reproduce the precated in the prec</pre>
	<pre>evious behavior: from sklearn.pipeline import make_pipeline model = make_pipeline(StandardScaler(with_mean=False), LinearRegression()) If you wish to pass a sample_weight parameter, you need to pass it as a fit parameter to each step of the pipe ine as follows:</pre>
[n [85]:	<pre>kwargs = {s[0] + 'sample_weight': sample_weight for s in model.steps} model.fit(X, y, **kwargs) warnings.warn(linear_model_2 = LinearRegression(fit_intercept=False).fit(x, y) sq2 = linear_model_2.score(x, y) print('coefficient of determination:', sq2)</pre>
	coefficient of determination: 0.8992227601508445 linear_model_3 = LinearRegression(copy_X=False).fit(x, y) sq3 = linear_model_3.score(x, y) print('coefficient of determination:', sq3) coefficient of determination: 0.3112766341229223 Entreno de modelos con randomforest. Se controla con max_features el tamaño del split que sea igual a sqrt. También se crea u
in [87]:	<pre>random_forest_model = RandomForestRegressor(max_features = 'sqrt', random_state = 42).fit(X_train,y_train) rf_sq = random_forest_model.score(X, y) print('coefficient of determination: ', rf_sq) coefficient of determination: 0.9001240244300632 random_forest_model_2 = RandomForestRegressor(n_estimators = 50, random_state = 42, bootstrap = True, verbose rf_sq2 = random_forest_model_2.score(X, y) print('coefficient of determination:', rf_sq2)</pre>
	Described On So Description Descri
[n [89]: [n [91]:	<pre>[Parallel(n_jobs=1)]: Done 50 out of 50 elapsed: 4.6s finished random_forest_model_3 = RandomForestRegressor(n_estimators = 200, max_depth=2, random_state=0).fit(X_train,y_rf_sq3 = random_forest_model_3.score(X, y)</pre>
[n [92]:	<pre>model_2 = LinearRegression(fit_intercept=False).fit(X, y) r_sq2 = model_2.score(X, y) print('coefficient of determination:', r_sq2) coefficient of determination: 0.8992227601508445 model_3 = LinearRegression(copy_X=False).fit(X, y) r_sq3 = model_3.score(X, y) • Exercici 4: Compara el seu rendiment utilitzant l'aproximació traint/test o utilitzant totes les dades (validació interna).</pre>
	Regresión lineal simple. Resultados impresos en un Dataset. X_train, X_test, y_train, y_test = train_test_split(x, y , test_size=0.33, random_state=42) model = LinearRegression().fit(X_train, y_train) model.score(X_train, y_train) pred = model.predict(X_test)
[n [95]: Out[95]:	<pre>df = pd.DataFrame({'Original data': y_test, 'Predicted data': pred}) df Original data Predicted data 0 71.0 8.798748</pre>
	1 548.0 562.393604 2 9.0 19.870645 3 52.0 53.086336 4 22.0 5.779139 639126 51.0 80.262811 639127 158.0 166.824916 639128 6.0 6.785675 639129 -3.0 4.772603 639130 42.0 29.936006
	639131 rows × 2 columns Random Forest con resultados impresos en un dataset model2 = RandomForestRegressor(random_state = 42).fit(X_train, y_train) model2.score(X_train, y_train) pred2=model.predict(X_test)
In [97]: Out[97]:	<pre>df2 = pd.DataFrame({'Original data': y_test, 'Predicted data': pred2})</pre>
	2 9.0 19.870645 3 52.0 53.086336 4 22.0 5.779139 639126 51.0 80.262811 639127 158.0 166.824916
	639127 158.0 166.824916 639128 6.0 6.785675 639129 -3.0 4.772603 639130 42.0 29.936006 639131 rows × 2 columns Polynomial con resultados en un nuevo dataset.
In [99]: In [100…	<pre>X = PolynomialFeatures(degree=4, include_bias=False).fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) model = LinearRegression().fit(X_train, y_train) pred3 = model.predict(X_test) df3 = pd.DataFrame({'Original data': y_test, 'Predicted data': pred3})</pre>
Out[100	Original data Predicted data O 9.0 20.758196 1 -3.0 5.251061 2 13.0 20.758196 3 11.0 14.564190
	4 19.0 17.662649 387347 147.0 161.458917 387348 9.0 17.662649 387349 36.0 33.111803
	387350 41.0 42.347762 387351 72.0 60.747623 387352 rows × 2 columns Nivell 2
	• Exercici 5: Realitza algun procés d'enginyeria de variables per millorar-ne la predicció. Nivell 3