import pandas as pd

import numpy as np

from google.colab import drive

drive.mount('/content/drive')

Mounted at /content/drive

df = pd.read\_csv('/content/drive/MyDrive/Prifina/FitBit\_data.csv')

df

|     | ActivityDate | TotalSteps | TotalDistance | Active Status |
|-----|--------------|------------|---------------|---------------|
| 0   | 3/25/2016    | 11004      | 7.110000      | Highly Active |
| 1   | 3/26/2016    | 17609      | 11.550000     | Highly Active |
| 2   | 3/27/2016    | 12736      | 8.530000      | Highly Active |
| 3   | 3/28/2016    | 13231      | 8.930000      | Highly Active |
| 4   | 3/29/2016    | 12041      | 7.850000      | Highly Active |
|     |              |            |               |               |
| 452 | 04-08-2016   | 23014      | 20.389999     | Highly Active |
| 453 | 04-09-2016   | 16470      | 8.070000      | Highly Active |
| 454 | 04-10-2016   | 28497      | 27.530001     | Highly Active |
| 455 | 04-11-2016   | 10622      | 8.060000      | Highly Active |
| 456 | 04-12-2016   | 2350       | 1.780000      | low active    |
|     |              |            |               |               |

457 rows × 4 columns

#### df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 457 entries, 0 to 456
Data columns (total 4 columns):

| #    | Column          | Non-Null Count   | Dtype   |
|------|-----------------|------------------|---------|
|      |                 |                  |         |
| 0    | ActivityDate    | 457 non-null     | object  |
| 1    | TotalSteps      | 457 non-null     | int64   |
| 2    | TotalDistance   | 457 non-null     | float64 |
| 3    | Active Status   | 457 non-null     | object  |
| dtyp | es: float64(1), | int64(1), object | t(2)    |
|      |                 | 175              |         |

memory usage: 14.4+ KB

df.shape

(457, 4)

#### df.head()

|   | ActivityDate | TotalSteps | TotalDistance | Active Status |
|---|--------------|------------|---------------|---------------|
| 0 | 3/25/2016    | 11004      | 7.11          | Highly Active |
| 1 | 3/26/2016    | 17609      | 11.55         | Highly Active |
| 2 | 3/27/2016    | 12736      | 8.53          | Highly Active |
| 3 | 3/28/2016    | 13231      | 8.93          | Highly Active |
| 4 | 3/29/2016    | 12041      | 7.85          | Highly Active |

# df.tail()

|     | ActivityDate | TotalSteps | TotalDistance | Active Status |
|-----|--------------|------------|---------------|---------------|
| 452 | 04-08-2016   | 23014      | 20.389999     | Highly Active |
| 453 | 04-09-2016   | 16470      | 8.070000      | Highly Active |
| 454 | 04-10-2016   | 28497      | 27.530001     | Highly Active |
| 455 | 04-11-2016   | 10622      | 8.060000      | Highly Active |
| 456 | 04-12-2016   | 2350       | 1.780000      | low active    |

#### df.isnull().sum()

ActivityDate 0
TotalSteps 0
TotalDistance 0
Active Status 0
dtype: int64

#replacing values in Active Status

df['Active Status'].replace(['low active','Active','Highly Active'],[0,1,2], inp
df.head()

|   | ActivityDate | TotalSteps | TotalDistance | Active Status |
|---|--------------|------------|---------------|---------------|
| 0 | 3/25/2016    | 11004      | 7.11          | 2             |
| 1 | 3/26/2016    | 17609      | 11.55         | 2             |
| 2 | 3/27/2016    | 12736      | 8.53          | 2             |
| 3 | 3/28/2016    | 13231      | 8.93          | 2             |
| 4 | 3/29/2016    | 12041      | 7.85          | 2             |

#### df.tail()

|     | ActivityDate | TotalSteps | TotalDistance | Active Status |
|-----|--------------|------------|---------------|---------------|
| 452 | 04-08-2016   | 23014      | 20.389999     | 2             |
| 453 | 04-09-2016   | 16470      | 8.070000      | 2             |
| 454 | 04-10-2016   | 28497      | 27.530001     | 2             |
| 455 | 04-11-2016   | 10622      | 8.060000      | 2             |
| 456 | 04-12-2016   | 2350       | 1.780000      | 0             |

df['Active Status'].value\_counts().sort\_values(ascending=True)

- 1 42
- 2 126
- 0 289

Name: Active Status, dtype: int64

# df.dtypes

ActivityDate object
TotalSteps int64
TotalDistance float64
Active Status int64

dtype: object

from sklearn.preprocessing import LabelEncoder

lb\_make = LabelEncoder()

df['ActivityDate'] = lb\_make.fit\_transform(df['ActivityDate'])

df

|     | ActivityDate | TotalSteps | TotalDistance | Active Status |
|-----|--------------|------------|---------------|---------------|
| 0   | 25           | 11004      | 7.110000      | 2             |
| 1   | 26           | 17609      | 11.550000     | 2             |
| 2   | 27           | 12736      | 8.530000      | 2             |
| 3   | 28           | 13231      | 8.930000      | 2             |
| 4   | 29           | 12041      | 7.850000      | 2             |
|     |              |            |               |               |
| 452 | 8            | 23014      | 20.389999     | 2             |
| 453 | 9            | 16470      | 8.070000      | 2             |
| 454 | 10           | 28497      | 27.530001     | 2             |
| 455 | 11           | 10622      | 8.060000      | 2             |
| 456 | 12           | 2350       | 1.780000      | 0             |

457 rows × 4 columns

# df.dtypes

ActivityDate int64
TotalSteps int64
TotalDistance float64
Active Status int64
dtype: object

new\_df=df

x = new\_df.drop(['Active Status'],axis=1)

Χ

|     | ActivityDate | TotalSteps | TotalDistance |
|-----|--------------|------------|---------------|
| 0   | 25           | 11004      | 7.110000      |
| 1   | 26           | 17609      | 11.550000     |
| 2   | 27           | 12736      | 8.530000      |
| 3   | 28           | 13231      | 8.930000      |
| 4   | 29           | 12041      | 7.850000      |
|     |              |            |               |
| 452 | 8            | 23014      | 20.389999     |
| 453 | 9            | 16470      | 8.070000      |
| 454 | 10           | 28497      | 27.530001     |
| 455 | 11           | 10622      | 8.060000      |
| 456 | 12           | 2350       | 1.780000      |

457 rows × 3 columns

y = new\_df['Active Status']

У

Name: Active Status, Length: 457, dtype: int64

from sklearn import preprocessing

scaler = preprocessing.StandardScaler()

df2 = pd.DataFrame(scaler.fit\_transform(x))

df2

|     | 0         | 1 2       |           |
|-----|-----------|-----------|-----------|
| 0   | 1.985128  | 0.826587  | 0.599979  |
| 1   | 2.110467  | 2.051417  | 1.688854  |
| 2   | 2.235806  | 1.147769  | 0.948223  |
| 3   | 2.361145  | 1.239561  | 1.046320  |
| 4   | 2.486484  | 1.018888  | 0.781458  |
|     |           |           |           |
| 452 | -0.145635 | 3.053720  | 3.856794  |
| 453 | -0.020296 | 1.840201  | 0.835411  |
| 454 | 0.105043  | 4.070486  | 5.607823  |
| 455 | 0.230382  | 0.755749  | 0.832959  |
| 456 | 0.355721  | -0.778210 | -0.707161 |

457 rows × 3 columns

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
knn = KNeighborsClassifier(n_neighbors=10)
knn.fit(x_train, y_train)
              KNeighborsClassifier
     KNeighborsClassifier(n neighbors=10)
y_pred = knn.predict(x_test)
accuracy_score(y_test, y_pred)
    1.0
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,y_pred)
    array([[85, 0,
            [ 0, 13, 0],
[ 0, 0, 40]])
from sklearn.metrics import ConfusionMatrixDisplay
disp = ConfusionMatrixDisplay(confusion_matrix(y_test,y_pred))
```

# disp.plot()

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at
0x7f775ac754c0>



from sklearn.metrics import classification\_report

from sklearn import metrics

print(classification\_report(y\_test, y\_pred))

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 85      | 1.00     | 1.00   | 1.00      | 0            |
| 13      | 1.00     | 1.00   | 1.00      | 1            |
| 40      | 1.00     | 1.00   | 1.00      | 2            |
| 138     | 1.00     |        |           | accuracy     |
| 138     | 1.00     | 1.00   | 1.00      | macro avg    |
| 138     | 1.00     | 1.00   | 1.00      | weighted avg |

from sklearn.naive\_bayes import GaussianNB

from sklearn.metrics import accuracy\_score

gau = GaussianNB()

gau.fit(x\_train,y\_train)

▼ GaussianNB GaussianNB()

y\_pred = gau.predict(x\_test)

accuracy\_score(y\_test,y\_pred)

0.9347826086956522

from sklearn.metrics import confusion\_matrix

confusion\_matrix(y\_test,y\_pred)

from sklearn.metrics import ConfusionMatrixDisplay

disp = ConfusionMatrixDisplay(confusion\_matrix(y\_test,y\_pred))

disp.plot()

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x7f7758208bb0>



from sklearn.metrics import classification\_report

from sklearn import metrics

print(classification\_report(y\_test, y\_pred))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.99      | 0.96   | 0.98     | 85      |
| 1            | 0.60      | 0.92   | 0.73     | 13      |
| 2            | 1.00      | 0.88   | 0.93     | 40      |
| accuracy     |           |        | 0.93     | 138     |
| macro avg    | 0.86      | 0.92   | 0.88     | 138     |
| weighted avg | 0.95      | 0.93   | 0.94     | 138     |

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy\_score

rf = RandomForestClassifier()

rf.fit(x\_train,y\_train)

RandomForestClassifier
 RandomForestClassifier()

y\_pred = rf.predict(x\_test)

accuracy\_score(y\_test,y\_pred)

0.9927536231884058

from sklearn.metrics import confusion\_matrix

confusion\_matrix(y\_test,y\_pred)

from sklearn.metrics import ConfusionMatrixDisplay

disp = ConfusionMatrixDisplay(confusion\_matrix(y\_test,y\_pred))

# disp.plot()

<sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at
0x7f775ac756a0>



from sklearn.metrics import classification\_report

from sklearn import metrics

# print(classification\_report(y\_test, y\_pred))

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 85      | 0.99     | 1.00   | 0.99      | 0            |
| 13      | 0.96     | 0.92   | 1.00      | 1            |
| 40      | 1.00     | 1.00   | 1.00      | 2            |
| 138     | 0.99     |        |           | accuracy     |
| 138     | 0.98     | 0.97   | 1.00      | macro avg    |
| 138     | 0.99     | 0.99   | 0.99      | weighted avo |

Colab paid products - Cancel contracts here

×