Q1: Data Frame

1. Read the dataset

python

Copy code

import pandas as pd

Load the Iris dataset

url = "https://github.com/neurospin/pystatsml/raw/master/datasets/iris.csv"

df = pd.read_csv(url)

2. Print column names

python

Copy code

print(df.columns.tolist())

3. Get numerical columns

python

Copy code

numerical_columns = df.select_dtypes(include=['float64', 'int64']).columns.tolist()

print(numerical_columns)

4. Compute mean of numerical columns grouped by species

python

Copy code

stats_table = df.groupby("species")[numerical_columns].mean().reset_index()

print(stats_table)

Q2: McCulloch-Pitts (M-P) Neuron

Write a Python program to define the weights and bias for the described M-P neuron:

python

Copy code

def mcculloch_pitts(x, y, z):

```
weights = [1, 1] # Equal weights for x and y
bias = -1  # Threshold value

# Weighted sum
weighted_sum = weights[0] * x + weights[1] * y + bias

# Activation logic
if x == -1 and y == 1:
    return z # z is the output if condition matches
return -1 # Otherwise
```

Example usage:

```
python

Copy code

print(mcculloch_pitts(-1, 1, 1)) # Outputs 1

print(mcculloch_pitts(0, 1, -1)) # Outputs -1
```

Q3: Data Preparation

1. Load the heart dataset

```
python

Copy code

heart_url = "https://www.kaggle.com/zhaoyingzhu/heartcsv/download"

heart_data = pd.read_csv(heart_url)
```

2. Perform operationsa) Find Shape of Data

```
python
Copy code
print(heart_data.shape)
```

b) Find Missing Values

python

Copy code

print(heart_data.isnull().sum())

c) Find Data Types

python

Copy code

print(heart_data.dtypes)

d) Find Zeros

python

Copy code

zeros_per_column = (heart_data == 0).sum()

print(zeros_per_column)

e) Find Mean Age

python

Copy code

mean_age = heart_data['Age'].mean()

print(mean_age)

f) Extract Specific Columns and Split Data

python

Copy code

selected_columns = ['Age', 'Sex', 'ChestPain', 'RestBP', 'Chol']

subset = heart_data[selected_columns]

Split into training and testing datasets

train_data = subset.sample(frac=0.75, random_state=42)

test_data = subset.drop(train_data.index)

print(train_data.shape, test_data.shape)

Q4: Matrix and Vector Computations

The matrix MMM and vector vvv are given as:

 $M=[123230133], v=[302]M = \left[123230133 \right], v=[302]M = \left[12323303 \right], v=[302]M = \left[123233303 \right], v=[302$

We need to compute:

- 1. M·vM \cdot vM·v
- 2. vT·Mv^T \cdot MvT·M
- 3. vT·vv^T \cdot vvT·v

Using Python and NumPy:

```
python
Copy code
import numpy as np
# Define M and v
M = np.array([[1, 2, 3], [2, 3, 0], [1, 3, 3]])
v = np.array([3, 0, 2])
# Compute M · v
Mv = np.dot(M, v)
# Compute v^T · M
vT_M = np.dot(v.T, M)
# Compute v^T · v
vT_v = np.dot(v.T, v)
# Display results
print("M \cdot v = ", Mv)
print("v^T \cdot M = ", vT_M)
print("v^T \cdot v = ", vT_v)
```

Results:

- $M \cdot v = [969]M \cdot cdot v = \left[\frac{9}{0} \right] M \cdot v = \frac{9}{0}$
- $vT \cdot M = [91515]v^T \cdot M = \left[91515\right]v^T \cdot M = \left[91515\right]$
- $vT \cdot v = 13v^T \cdot cdot v = 13vT \cdot v = 13$

Q5: Regression Technique

To analyze the temperature dataset, follow these steps:

1. Load the dataset:

```
python

Copy code

import pandas as pd

# Load the temperature data

url = "https://www.kaggle.com/venky73/temperatures-of-india/download"

data = pd.read_csv(url)

print(data.head())
```

2. Preprocess the data:

- o Handle missing values (if any).
- o Normalize or standardize the data if necessary.

```
python
Copy code
# Check for missing values
print(data.isnull().sum())

# Fill missing values (if any)
data.fillna(data.mean(), inplace=True)
```

3. Fit a regression model:

```
python
Copy code
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# Define features (X) and target (y)
X = data[['Month']] # Example feature
```

```
y = data['Temperature'] # Target variable

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

# Fit the regression model
model = LinearRegression()
model.fit(X_train, y_train)

# Predict and evaluate
predictions = model.predict(X_test)
print("Model Coefficients:", model.coef_)
print("Model Intercept:", model.intercept_)
```

4. Plot results (optional):

```
python

Copy code

import matplotlib.pyplot as plt

plt.scatter(X_test, y_test, color='blue', label='Actual')

plt.plot(X_test, predictions, color='red', label='Predicted')

plt.xlabel('Month')

plt.ylabel('Temperature')

plt.legend()

plt.show()
```

Q6. Classification Technique (Decision Tree for Graduate Admissions)

A. Data Preprocessing

```
python
Copy code
import pandas as pd
from sklearn.model_selection import train_test_split
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, classification_report

# Load Dataset
url = 'https://www.kaggle.com/mohansacharya/graduate-admissions'
data = pd.read_csv(url)

# Data Cleaning & Transformation
data['Admitted'] = data['Admitted'].apply(lambda x: 1 if x == 'yes' else 0) # Adjust target column
X = data.drop('Admitted', axis=1)
y = data['Admitted']
```

B. Data Preparation (Train-Test Split)

python

Copy code

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

C. Apply Machine Learning Algorithm

python
Copy code

Train Decision Tree Classifier

clf = DecisionTreeClassifier(random_state=42)

clf.fit(X_train, y_train)

Make Predictions

y_pred = clf.predict(X_test)

D. Model Evaluation

python

Copy code

Evaluate Model

accuracy = accuracy_score(y_test, y_pred)

```
print("Accuracy:", accuracy)
print(classification_report(y_test, y_pred))
```

Q7. Clustering Techniques (Mall Customers Dataset)

Load Dataset and Preprocess

```
python
Copy code
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

# Load Dataset
url = 'https://www.kaggle.com/shwetabh123/mall-customers'
data = pd.read_csv(url)

# Select Relevant Features
features = data[['Annual Income', 'Spending Score']]
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)
```

Apply K-Means Clustering

```
Copy code

# Apply K-Means

kmeans = KMeans(n_clusters=3, random_state=42)

data['Cluster'] = kmeans.fit_predict(scaled_features)

# Visualize Clusters

plt.figure(figsize=(10, 6))

for cluster in range(3):

plt.scatter(features.iloc[data['Cluster'] == cluster, 0],
```

```
features.iloc[data['Cluster'] == cluster, 1], label=f'Cluster {cluster}')

plt.title('K-Means Clustering of Mall Customers')

plt.xlabel('Annual Income')

plt.ylabel('Spending Score')

plt.legend()

plt.show()
```

Q5. Linear Regression for Month-Wise Temperature

A. Apply Linear Regression

```
python
Copy code
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

# Assuming `temperature_data` is loaded
X = temperature_data[['Month']] # Features
y = temperature_data['Temperature'] # Target

# Train-Test Split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train Model
lr = LinearRegression()
lr.fit(X_train, y_train)

# Predictions
y_pred = lr.predict(X_test)
```

B. Performance Assessment

```
python
Copy code
# Evaluate Model
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"MSE: {mse}, MAE: {mae}, R2: {r2}")
```

C. Visualization

```
python

Copy code

# Plot Regression Line

plt.scatter(X_test, y_test, color='blue', label='Actual')

plt.plot(X_test, y_pred, color='red', label='Predicted')

plt.title('Month-Wise Temperature Prediction')

plt.xlabel('Month')

plt.ylabel('Temperature')

plt.legend()

plt.show()
```

Q8. Association Rule Learning (Market Basket Optimization)

A. Data Preprocessing

```
python
Copy code
import pandas as pd
from mlxtend.frequent_patterns import apriori, association_rules

# Load Dataset
dataset = pd.read_csv('https://www.kaggle.com/hemantkumar05/market-basket-optimization', header=None)
```

Convert Dataset into a Transaction List

transactions = []

for i in range(0, len(dataset)):

transactions.append([str(dataset.values[i, j]) for j in range(0, dataset.shape[1]) if

str(dataset.values[i, j]) != 'nan'])

B. Generate List of Transactions

python

Copy code

from mlxtend.preprocessing import TransactionEncoder

Transform Transaction Data

te = TransactionEncoder()

te_array = te.fit(transactions).transform(transactions)

df = pd.DataFrame(te_array, columns=te.columns_)

C. Train Apriori Algorithm

python

Copy code

Apply Apriori

frequent_itemsets = apriori(df, min_support=0.01, use_colnames=True)

Generate Association Rules

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)

D. Visualize the Rules

python

Copy code

Print and Visualize Rules

print(rules[['antecedents', 'consequents', 'support', 'confidence', 'lift']])

Q9. Clustering Techniques (Mall Customers Dataset)

A. Apply Preprocessing

python

Copy code

from sklearn.preprocessing import StandardScaler

Load Dataset

data = pd.read_csv('https://www.kaggle.com/shwetabh123/mall-customers')

Select Spending Score for Clustering

X = data[['Spending Score']]

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

B. Perform Train-Test Split

(Not required for unsupervised learning; we use the entire dataset.)

C. Apply Machine Learning Algorithms

1. K-Means Clustering

python

Copy code

from sklearn.cluster import KMeans

Apply K-Means

kmeans = KMeans(n_clusters=3, random_state=42)

data['KMeans_Cluster'] = kmeans.fit_predict(X_scaled)

2. Hierarchical Clustering

python

Copy code

from scipy.cluster.hierarchy import linkage, dendrogram, fcluster

import matplotlib.pyplot as plt

```
# Apply Hierarchical Clustering

Z = linkage(X_scaled, method='ward')

dendrogram(Z)

plt.title('Dendrogram for Hierarchical Clustering')

plt.show()

# Assign Clusters

data['Hierarchical_Cluster'] = fcluster(Z, t=3, criterion='maxclust')
```

D. Evaluate Model

```
python

Copy code

# Visualize Clusters (K-Means Example)

plt.scatter(X_scaled[data['KMeans_Cluster'] == 0], [0] * len(X_scaled[data['KMeans_Cluster'] == 0]), label='Cluster 0')

plt.scatter(X_scaled[data['KMeans_Cluster'] == 1], [0] * len(X_scaled[data['KMeans_Cluster'] == 1]), label='Cluster 1')

plt.scatter(X_scaled[data['KMeans_Cluster'] == 2], [0] * len(X_scaled[data['KMeans_Cluster'] == 2]), label='Cluster 2')

plt.legend()

plt.show()
```

E. Apply Cross-Validation

Cross-validation is typically not applicable for clustering. Instead, clustering performance can be evaluated using metrics like the silhouette score:

```
python

Copy code

from sklearn.metrics import silhouette_score

silhouette_avg = silhouette_score(X_scaled, data['KMeans_Cluster'])

print("Silhouette Score for K-Means:", silhouette_avg)
```

Q9. Clustering Techniques (Mall Customers Dataset)

A. Preprocessing

python

Copy code

from sklearn.preprocessing import StandardScaler

Load the dataset

data = pd.read_csv('https://www.kaggle.com/shwetabh123/mall-customers')

Select Spending Score for Clustering

X = data[['Spending Score']]

Standardize the data

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

B. Apply Machine Learning Algorithms

1. K-Means Clustering

python

Copy code

from sklearn.cluster import KMeans

Apply K-Means

kmeans = KMeans(n_clusters=3, random_state=42)

data['KMeans_Cluster'] = kmeans.fit_predict(X_scaled)

2. DBSCAN Clustering

python

Copy code

from sklearn.cluster import DBSCAN

Apply DBSCAN

```
dbscan = DBSCAN(eps=0.5, min_samples=5)
data['DBSCAN_Cluster'] = dbscan.fit_predict(X_scaled)
```

C. Evaluate Models

python

Copy code

from sklearn.metrics import silhouette_score

Evaluate K-Means

 $kmeans_silhouette = silhouette_score(X_scaled, data['KMeans_Cluster'])$

print("Silhouette Score for K-Means:", kmeans_silhouette)

Evaluate DBSCAN

 $dbscan_silhouette = silhouette_score(X_scaled, data['DBSCAN_Cluster'], metric='euclidean')$

print("Silhouette Score for DBSCAN:", dbscan_silhouette)

D. Cross-Validation

Cross-validation for clustering is non-trivial; use silhouette scores as a proxy for evaluating different numbers of clusters in K-Means.

python

Copy code

Example: Cross-validation for K-Means

for n_clusters in range(2, 6):

kmeans = KMeans(n_clusters=n_clusters, random_state=42)

clusters = kmeans.fit_predict(X_scaled)

silhouette_avg = silhouette_score(X_scaled, clusters)

print(f"Silhouette Score for {n_clusters} clusters: {silhouette_avg}")

Q10. PCA on the Iris Dataset

A. Describe the Dataset

The Iris dataset contains 150 samples with four features: sepal length, sepal width, petal length, and petal width, classified into three species. Standardization is necessary because PCA is sensitive to the scale of the data.

B. Standardization

python
Copy code
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler

Load dataset
iris = load_iris()
X = iris.data
y = iris.target

Standardize the data
scaler = StandardScaler()
X_standardized = scaler.fit_transform(X)

C. Compute PCA

python

Copy code

from sklearn.decomposition import PCA

Apply PCA

pca = PCA(n_components=4)

X_pca = pca.fit_transform(X_standardized)

D. Principal Component Directions and Correlations

python

Copy code

Explained variance

print("Explained Variance Ratio:", pca.explained_variance_ratio_)

Principal components

print("Principal Components:\n", pca.components_)

E. Plot Samples Projected into First K PCs

```
python
Copy code
import matplotlib.pyplot as plt

# Plot the first two principal components
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', edgecolor='k')
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component')
plt.title('PCA on Iris Dataset')
plt.colorbar()
plt.show()
```

F. Color Samples by Their Species

```
python

Copy code

# Visualize with species

species = iris.target_names

plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='viridis', edgecolor='k')

plt.xlabel('First Principal Component')

plt.ylabel('Second Principal Component')

plt.title('PCA - Iris Species')

plt.colorbar(ticks=[0, 1, 2], label='Species')

plt.clim(-0.5, 2.5)

plt.show()
```