Google AI Challenge 2011: Analyse der Algorithmen und Strategien

Bachelorarbeit von Olexandr Savchuk

Inhalt

Google AI Challenge

- AI Challenge 2011: Ants
- Algorithmen
 - Suche und Ausbreitung
 - Kampf
 - Weitere Algorithmen
- Zusammenfassung

Google AI Challenge

- Öffentlicher KI-Wettbewerb
 - ursprünglich von University of Waterloo
 - gesponsert durch Google
- Programme ("Bots") spielen ein Spiel gegeneinander
 - in diversen Sprachen geschrieben
 - alles läuft auf den Challenge-Servern
- Gewinner durch ein Ranking-System ermittelt
 - früher ELO, jetzt TrueSkill

AI Challenge 2011: Ants

- Jeder Bot steuert eine Kolonie von Ameisen
- Rechteckiges Spielfeld mit überlaufenden Rändern
 - Ein oder mehrere Ameisenhaufen pro Spieler
 - Spielfeld symmetrisch
 - Essen erscheint zufällig, aber symmetrisch
- Zugbasiert mit Zeitlimit
 - Alle Bots ziehen gleichzeitig
 - Jede Ameise kann pro Zug um ein Feld bewegt werden
- Ziel: die Haufen der anderen Spieler zu überrennen
 - 2 Punkte für das Überrennen, -1 für Verlust eines Haufens

AI Challenge 2011: Ants

Demospiel

http://aichallenge.org/visualizer.php?game=346155&user=871

AI Challenge 2011: Ants

- Umgebung des Spiels:
 - Mehrere Agenten
 - Adversarial
 - Unvollständige Information
 - Fog of War
 - Stochastisch
 - Zufällig generierte Karten
 - Zufällige Verteilung des Essens
 - Unbekannte Aktionen der Gegner

Inhalt

- Google AI Challenge
- AI Challenge 2011: Ants

Algorithmen

- Suche und Ausbreitung
- Kampf
- Weitere Algorithmen
- Zusammenfassung

Suche: BFS

- Breitensuche
 - Eine oder mehrere Quellen sowie Ziele
 - Erweiterbar als A*

- Baustein für weitere Algorithmen
- Vielseitig anwendbar:
 - Pfadfindung
 - Essen einsammeln
 - Ausbreitung
 - Gegnersuche

• ...

Quelle: Ben Jackson, http://forums.aichallenge.org/viewtopic.php?f=24&t=2010

Ausbreitung: mein Ansatz

- Breitensuche von Ameisen zum unbekannten sowie unsichtbaren Terrain
- Verteilung auf Prioritätsziele
 - Round-Robin verteilt gleichmäßig auf alle Ziele
 - Ziele:
 - 1. Grenzen des erkundeten Gebiets
 - 2. Gegnerische Hügel
 - 3. Gegnerische Ameisen
 - 4. Laufende Kämpfe
- Diffusion von übrigen Ameisen

Ausbreitung: Collaborative Diffusion

- Collaborative Diffusion: Programming Antiobjects (A. Repenning, University of Colorado, OOPSLA 2006)
- Diffusionswerte auf allen Feldern für FOOD, EXPLORE, HILL
 - Werte sind auf jeweiligen Zielfeldern maximal
 - und verteilen sich auf die Felder drum herum
 - Miteinbezogen wird, wann das Feld zuletzt gesehen wurde
- Bewegung immer zum Feld mit größtem Wert
- Vorteile:
 - Lineare Laufzeit abhängig nur von Kartengröße
 - Keine explizite Pfadfindung notwendig

Kampf: Minimax

- Suchbaum mit möglichen Bewegungen in Knoten
- Evaluation zum Bestimmen des Optimums
- Komplex
 - Hoher Branching Faktor: 5 Möglichkeiten pro Ameise
 - Muss in limitierter Zeit durchlaufen!
- Viele Fragen zu beantworten:
 - Wie die Baumknoten generieren?
 - Welche Bewegungen betrachten?
 - Wie tief den Baum durchsuchen?

- ...

Kampf: Minimax (mein Ansatz)

- Baumebene = Halbzug
- Evaluation nach jeder 2. Ebene
- Bewegungen für ganze Gruppen von Ameisen
 - Attack, Hold, Retreat, N/S/W/E, Idle

Vorteile:

- Beliebig große Gruppen
- Hohe Suchtiefe erreichbar

• Nachteile:

- Unvollständig
- Etwas unflexibel bei sehr großen Kämpfen

Kampf: Minimax (xathis)

	A			
		В		
			С	
X				
	Y			

Quelle:

Mathis Lichtenberger

http://xathis.com/posts/ai-challenge-2011-ants.html

Kampf: Influence map (Memetix)

• Algorithmus:

- 1. Für alle Ameisen, für jede der 5 möglichen Positionen :
 - rechnen, wieviele Gegner im Kampfradius maximal sein können
- 2. Für alle meine Ameisen, markiere jede der 5 Positionen:
 - -1 wenn meine Ameise dort stirbt
 - -0.5 bei einem 1-1 Austausch
 - 0 sonst
- 3. Bewege Ameisen in die Felder mit höchster Markierung

Vorteile:

- Gute Integration mit Collaborative Diffusion
- Einfache Implementierung
- Geringe Laufzeit

Nachteile:

- Unvollständig
- In manchen Situationen ungenau
- Kein Vorausschauen

Genetische Optimierung

- Optimierung der Heuristiken durch genetische Verfahren
 - Evaluation im Kampf
 - Startwerte für Diffusion

Schwierigkeiten:

- Laufzeit
 - ~200 Züge á 500ms = 100s und mehr pro Spiel
 - Ergebnis eines Spiels wenig aussagekräftig
- Unzureichende Vielfalt der Gegner
 - Spiele nur innerhalb der Population

Symmetrieerkennung

- Bekannte Information:
 - Größe der Spielkarte
- Unbekannte Information:
 - Anzahl der Gegner
 - Positionen der gegnerischen Hügel
- Ableitung der unbekannten Information möglich!
- Information über Symmetrie:
 - sichtbares Wasser und Hügel
 - erscheinendes Essen

Weitere Strategien

Statische Formationen

- Verteidigung der Hügel
- "Gitternetze" zum Abdecken des erkundeten Gebiets
- Spawn Control
 - Absichtliches Blockieren der eigenen Hügel
- Neuronale Netzwerke

Zusammenfassung

- Große Vielfalt von Algorithmen
- Viele Ansätze und Kombinationen
- Keine eindeutig beste Lösung!

Vielen Dank fürs Zuhören!

Fragen?

