

ML for Bioinformatics / NAIL107

Classification of Adverse Drug Reactions

Term Project

Julian Krumm | Juraj Trappl

1. General Information

- Adverse Drug reactions
- Stereochemistry
- SMILES
- 2. Data
 - SIDER dataset
- 3. Aims & Problems
- 4. Word Emedding Network
 - Preprocessing
 - Autoencoder architecture
- 5. Classifiers
- 6. <u>Discussion</u>

1. General Information

- Adverse Drug reactions
- Stereochemistry
- SMILES
- 2. <u>Data</u>
 - SIDER dataset
- 3. Aims & Problems
- 4. Word Emedding Network
 - Preprocessing
 - Autoencoder architecture
- 5. Classifiers
- 6. Discussion

General Information / Adverse Drug Reactions

- ADRs are harmful or unpleasant reactions to a medication or other therapeutic intervention that are based on a variety of factors:
 - 1. <u>Patient-related factors:</u> age, gender, weight, genetics,
 - 2. Route of administration: intravenous vs oral administration etc.
 - 3. Environmental factors: exposure to toxins, pollutants, or other chemicals
 - 4. <u>Drug-related factors:</u> drug dosage, drug interactions, duration of use, **stereochemistry**

General Information / Stereochemistry

- Carbon that is bound to 4 different atoms is considered as chirality center
- (R)/(S) forms of compounds are called enatiomers

> Different chemical properties

General Information / Stereochemistry

The Thalidomide Scandal:

 Medical compound developed for treating anxiety trouble sleeping, tension and morning sickness

Considered as safe for pregnant women even though not clinically tested

(R)-Thalidomide

50:50 Racemat

(S)-Thalidomide

General Information / SMILES

Simplified molecular-input line-entry system (SMILES):

(+)-Thalidomide:

C1CC(=O)NC(=O)C1N2C(=O)C3=CC=CC=C3C2=O

(-)-Thalidomide:

C1CC(=O)NC(=O)C1N2C(=O)C3=CC=CC=C3C2=O

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$\begin{array}{c}
3\\
N\\
\end{array}$$

$$\begin{array}{c}
N\\
\end{array}$$

$$\begin{array}{c}
4\\
\end{array}$$

$$\begin{array}{c}
0\\
\end{array}$$

В

D N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

General Information / SMILES

Simplified molecular-input line-entry system (SMILES):

(+)-Thalidomide:

C1CC(=O)NC(=O)C1N2C(=O)C3=CC=CC=C3C2=O

C1CC(=O)NC(=O)[C@@H]1N2C(=O)C3=CC=CC=C3C2=O

(-)-Thalidomide:

C1CC(=O)NC(=O)C1N2C(=O)C3=CC=CC=C3C2=O

C1CC(=O)NC(=O)[C@H]1N2C(=O)C3=CC=CC=C3C2=O

> Isomeric SMILES

В

D

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

1. General Information

- Adverse Drug reactions
- Stereochemistry
- SMILES

2. Data

- SIDER dataset
- 3. Aims & Problems
- 4. Word Emedding Network
 - Preprocessing
 - Autoencoder architecture
- 5. Classifiers
- 6. Discussion

Data / SIDER data set

- SIDER contains information on marketed medicines and their recorded adverse drug reactions
- More comprehensive data set available via DeepChem:

>1427 medical compounds with 27 distinct binary labeled ADRs

C1C(C2=CC=CC=C2N(C3=CC=CC=C31)C(=O)N)O

0

1. General Information

- Adverse Drug reactions
- Stereochemistry
- SMILES

2. <u>Data</u>

SIDER dataset

3. Aims & Problems

- 4. Word Emedding Network
 - Preprocessing
 - Autoencoder architecture
- 5. Classifiers
- 6. Discussion

Aim: train the best possible classifier to predict ADRs

Problems:

- Numerical representation of SMILES
- Class Imbalance

Tanimoto coefficient:
 Measures the structural
 similarity between molecules

• SIDER molecules show generally a strong structural correlation

> One-hot-encoding not suitable

- NLP technique
- Word embedding = representation of a word
- Result is typically a real valued vector
- Captures similarity

- Class imbalance if the ratio of samples in the minority class is much lower than the ratio of majority class
 - > Synthetic Minority Oversampling Technique (SMOTE)
 - > Duplicate samples from the minority class

ADR	Negative count	Positive count	Count difference	Minority ratio	Majority ratio	Ratio difference
Hepatobiliary disorders	684	743	59	48	52	4
Metabolism and nutrition disorders	431	996	565	30	70	40
Product issues	1405	22	1383	2	98	96
Eye disorders	551	876	325	39	61	22
Investigations	276	1151	875	19	81	62
Musculoskeletal and connective tissue disorders	430	997	567	30	70	40

1. General Information

- Adverse Drug reactions
- Stereochemistry
- SMILES
- 2. Data
 - SIDER dataset
- 3. Aims and Problems
- 4. Word Emedding Network
 - Preprocessing
 - Autoencoder architecture
- 5. Classifiers
- 6. <u>Discussion</u>

WE Network / Preprocessing

SMILES (string)

['C1=CC(C(C(=C1)C(=O)O)O)O'] > input

SMILES Pair Encoding (list of strings)

['C1=', 'CC(', 'C(', 'C(=', 'C1)', 'C(=O)O)', 'O)', 'O'] > structural groups

Keras Tokenizer

{'c1=':1, 'cc(':2, 'c(':3, 'c(=':4, 'c1)':5, 'c(=o)o)':6, 'o)':7, 'o':8}

> vocabulary based on word frequency

[[1, 2, 3, 4, 5, 6, 7, 8]]

> padded numerical SMILES representation based on structural groups

WE Network / Training Data

Train a word embedding network for finding structural patterns / correlations

> floating vector with 50 entries for each SMILE

WE Network / Encoder

Model: "we_encoder"

Layer (type)	Output Shape	Param #
encoder_input (InputLayer)	[(None, 358)]	0
<pre>encoder_embedding (Embeddin g)</pre>	(None, 358, 50)	102400
<pre>encoder_rnn (Bidirectional)</pre>	(None, 358, 256)	628736
<pre>encoder_avg_pool (GlobalAve ragePooling1D)</pre>	(None, 256)	0
encoder_fc_dense_1 (Dense)	(None, 256)	65792
encoder_fc_dense_2 (Dense)	(None, 256)	65792
<pre>encoder_output (Dense)</pre>	(None, 50)	12850

Total params: 875,570

Trainable params: 875,570 Non-trainable params: 0

Encoder

> generates a WE from preprocessed SMILE

WE Network / Decoder

Model: "we decoder"

Layer (type)	Output Shape	Param #
decoder_input (InputLayer)	[(None, 50)]	0
decoder_fc_dense_1 (Dense)	(None, 50)	2550
decoder_fc_dense_2 (Dense)	(None, 256)	13056
decoder_fc_dense_3 (Dense)	(None, 256)	65792
decoder_output (Dense)	(None, 358)	92006

Total params: 173,404

Trainable params: 173,404 Non-trainable params: 0

Decoder

- > Takes word embedding created by the encoder
- > Tries to reconstruct back the initial SMILE

WE Network / Architecture

Model: "we network"

Layer (type)	Output Shape	Param #
encoder_input (InputLayer)	[(None, 358)]	0
<pre>encoder_embedding (Embeddin g)</pre>	(None, 358, 50)	102400
<pre>encoder_rnn (Bidirectional)</pre>	(None, 358, 256)	628736
<pre>encoder_avg_pool (GlobalAve ragePooling1D)</pre>	(None, 256)	0
encoder_fc_dense_1 (Dense)	(None, 256)	65792
encoder_fc_dense_2 (Dense)	(None, 256)	65792
<pre>encoder_output (Dense)</pre>	(None, 50)	12850
we_decoder (Functional)	(None, 358)	173404

Total params: 1,048,974 Trainable params: 1,048,974 Non-trainable params: 0

Autoencoder

- > Comprise both models into one network
- > capture semantics of SMILE and return word embeddings

> Only Encoder part of the Autoencoder model is needed for generation of Word Embeddings

1. General Information

- Adverse Drug reactions
- Stereochemistry
- SMILES

2. Data

- SIDER dataset
- 3. Aims and Problems
- 4. Word Emedding Network
 - Preprocessing
 - Autoencoder architecture

5. Classifiers

6. <u>Discussion</u>

Classifier

Training Data

SIDER Dataset (1427,28)

Preprocessing

SMILES (string)

['C1=CC(C(C(=C1)C(=0)0)0)0'] > input

SMILES Pair Encoding (list of strings)

['C1=', 'CC(', 'C(', 'C(=', 'C1)', 'C(=0)0)', '0)', '0'] > structural groups

Keras Tokenizer

 $\{ \texttt{'c1=':1, 'cc(':2, 'c(':3, 'c(=':4, 'c1)':5, 'c(=0)0)':6, 'o)':7, 'o':8} \}$

> vocabulary based on word frequency

[[1, 2, 3, 4, 5, 6, 7, 8]]

> padded numerical SMILES representation based on structural groups

Vectors (50,) **Decision Tree** $Rank \le 6.5$ gini = 0.497samples = 13value = [6, 7]False True Nationality <= 0.5 gini = 0.0gini = 0.219samples = 5AdaBoost samples = 8value = [5, 0]value = [1, 7] $Age \le 35.5$ gini = 0.0gini = 0.375samples = 4samples = 4value = [0, 4]value = [1, 3]Experience ≤ 9.5 gini = 0.0gini = 0.5samples = 2samples = 2value = [0, 2]value = [1, 1]gini = 0.0gini = 0.0samples = 1samples = 1value = [0, 1]value = [1, 0]

Classifier / Results

Decision Tree

ADR	Accuracy score	F1 score
Hepatobiliary disorders	64 %	58 %
Metabolism and nutrition disorders	98 %	98 %
Product issues	59 %	53 %
Eye disorders	75 %	75 %
Investigations	62 %	62 %
Musculoskeletal and connective tissue disorders	78 %	78 %
Gastrointestinal disorders	73 %	77 %
Social circumstances	64 %	70 %
Immune system disorders	68 %	75 %
Reproductive system and breast disorders	87 %	85 %
Neoplasms benign, malignant and unspecified (i	70 %	72 %
General disorders and administration site cond	70 %	72 %
Endocrine disorders	68 %	73 %
Surgical and medical procedures	56 %	67 %
Vascular disorders	87 %	86 %
Blood and lymphatic system disorders	64 %	61 %
Skin and subcutaneous tissue disorders	70 %	73 %
Congenital, familial and genetic disorders	71 %	67 %
Infections and infestations	62 %	64 %
Respiratory, thoracic and mediastinal disorders	63 %	66 %
Psychiatric disorders	86 %	87 %
Renal and urinary disorders	66 %	61 %
Pregnancy, puerperium and perinatal conditions	81 %	82 %
Ear and labyrinth disorders	58 %	57 %

	ADR	Accuracy score	F1 score
	Hepatobiliary disorders	76 %	71 %
	Metabolism and nutrition disorders	100 %	100 %
	Product issues	66 %	64 %
	Eye disorders	85 %	84 %
ر ا	Investigations	77 %	73 %
SC	Musculoskeletal and connective tissue disorders	95 %	95 %
0	Gastrointestinal disorders	88 %	90 %
B	Social circumstances	80 %	78 %
Decision Tree + AdaBoost	Immune system disorders	83 %	85 %
A	Reproductive system and breast disorders	94 %	93 %
+	Neoplasms benign, malignant and unspecified (i	83 %	85 %
e l	General disorders and administration site cond	90 %	91 %
re	Endocrine disorders	81 %	80 %
⊢	Surgical and medical procedures	69 %	68 %
_	Vascular disorders	95 %	95 %
); 	Blood and lymphatic system disorders	88 %	90 %
;;	Skin and subcutaneous tissue disorders	77 %	75 %
	Congenital, familial and genetic disorders	83 %	82 %
D	Infections and infestations	75 %	73 %
	Respiratory, thoracic and mediastinal disorders	72 %	69 %
	Psychiatric disorders	93 %	93 %
	Renal and urinary disorders	78 %	75 %
	Pregnancy, puerperium and perinatal conditions	94 %	94 %
	Ear and labyrinth disorders	72 %	68 %

1. General Information

- Adverse Drug reactions
- Stereochemistry
- SMILES
- 2. <u>Data</u>
 - SIDER dataset
- 3. Aims and Problems
- 4. Word Emedding Network
 - Preprocessing
 - Autoencoder architecture
- 5. Classifiers
- 6. <u>Discussion</u>

Discussion

- Data Augmentation:
 - > Creating tautomeric structures from SIDER SMILES

- Better Word Embedding Network
- Using Graph Embeddings
- More comprehensive dataset with better covering of the dynamics of ADRs

Thank you for your Attention!

&

Don't forget to SMILE

 $C_{C_{QR}}$ (SC(=C(C#N) N2C=CN=C2) S1) C3=C(C=C(C=C3) C1) C1

Sources

Pictures:

https://www.welt.de/geschichte/article169174727/Wie-die-Atombombe-gegen-Contergan-blind-machte.html
https://www.welt.de/kultur/history/article108632744/Der-Kampf-der-Contergan-Firma-gegen-die-Opfer.html
https://www.freepik.com/free-photo/portrait-happy-pregnant-woman-touching-her-belly_7336825.htm
https://en.wikipedia.org/wiki/File:SMILES.png
https://www.u-helmich.de/che/Sek2/Organik/Mechanismen/SN/Bilder/SN1-02.jpg

https://www.uibk.ac.at/organic/micura/teaching/grundlagen-organische-chemie/download/ocphkap6.pdf https://www.w3schools.com/python/python_ml_decision_tree.asp

Data Sources:

Drug components with annotated ADRs https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/sider.csv.gz

Isomeric SMILES for WE-network training https://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/

Software

https://pypi.org/project/SmilesPE/

https://github.com/jurajtrappl/adverse-drug-reactions