# Report on the 2D Paper

Jie Liu

Delft University of Technology, the Netherlands

December 8, 2020

#### Problem statement

#### Equation to be solved

$$\nabla \cdot (T_1 \nabla u) + T_2 \frac{\partial u}{\partial x} + T_3 \frac{\partial u}{\partial y} + T_4 u = f, \qquad (x, y) \in \Omega = [0, 1] \times [0, 1], \tag{1}$$

where  $T_1$ ,  $T_2$ ,  $T_3$  and  $T_4$  are coefficient functions<sup>a</sup>. The solution u can be both real-valued and complex-valued if not stated otherwise. By choosing different  $T_i$ , we can have Poisson, diffusion or Helmholtz problems.

 $<sup>\</sup>mbox{\ensuremath{^{a}}}\xspace T_2$  and  $\ensuremath{T_3}\xspace$  have not been included practically in the code yet.

## Aim of the second paper

- ① To determine  $\alpha_R$  and  $\beta_R$  for different FEM methods of different FEM packages for various 2D problems.
- ② To choose FEM methods/elements that give smaller round-off error, i.e.  $\alpha_R$  and  $\beta_R$ .
- To apply the strategy in the 1D paper to find the optimal number of DoFs of 2D problems\*.

3/8

Jie Liu December 8, 2020

#### FEM Status

The status of the application of FEM methods of different FEM packages, including deal. II and FEniCS, on various Eq. (1) is shown in Table 1.

|                                         | deal.II   | FEniCS |
|-----------------------------------------|-----------|--------|
| Standard FEM $(P_p)$                    | $\odot^1$ | ©      |
| Mixed FEM $(RT_p/P_p^{\rm disc})$       | 0         | _      |
| Mixed FEM $(BDM_p/Q_{p-1}^{ m disc})^2$ | ©         | ⊜      |

Table 1: Status of application of FEM methods. The element degree p can be of different order if not stated otherwise.



<sup>&</sup>lt;sup>1</sup>Working well.

 $<sup>^{2}</sup>$ The notation Q is based on the notation in the deal.II code.

### **Progress**

- Round-off errors of BDM elements of deal.II and FEniCS compared.
- The components of different error norms in deal. II are illustrated.

#### Discussion

- Results of FEniCS or IGA as a supplement?
- ② Based on the results of 2D problems, using the relative error instead of the absolute error for the 2D case?
- 3 Super convergence common when using  $RT_p/P_p^{\text{disc}}$  elements solving a problem with the solution only varying on the x direction in deal.II?

#### Future work

• To consider  $T_2$  and  $T_3$ , i.e. first-order parts, of Eq. (1) in deal.II.

## Possible topics of the third paper

- Applying the mixed FEM on problems caused by boundary layers and/or constructing a method to avoid these boundary layers [1].
- 2D lagrangian polynomials not the same order in each direction, which is a feature of the IGA analysis?

Jie Liu



Mohit Kumar, Henk M Schuttelaars, Pieter C Roos, and Matthias Möller.

Three-dimensional semi-idealized model for tidal motion in tidal estuaries.

Ocean dynamics, 66(1):99-118, 2016.