From Pixels to Prognosis: Deep Learning for Brain Tumor Detection

Travis Bates
Capstone 3 Presentation

Problem Statement

What opportunities exist for oncologists to automate and decrease tumor diagnosis time by 50% while maintaining an accuracy of 95% or higher with the use of machine learning and MRI images to detect the presence of a tumor?

Background

- ☐ Brain tumors are among the most serious neurological disorders, often requiring timely and precise diagnosis to improve patient outcomes.
- ☐ MRI imaging is one of the most reliable imaging techniques for diagnosing brain abnormalities, but manual interpretation is time-consuming and subject to human error.
- Recent advancements in deep learning, particularly convolutional neural networks (CNNs), have shown great promise in medical imaging tasks. By training a model on labeled MRI scans, we can automate the tumor detection process, reduce diagnostic workload, and potentially enhance diagnostic accuracy

Dataset Overview

The dataset contained 7,023 images of human brain MRI scans which are classified into 4 classes:

Glioma

Meningioma

Pituitary

No Tumor

Source: Kaggle- https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset

Data Wrangling And EDA

Meta Data	Raw Images	Cleaned Images
Image Sizes	There were 388 different images sizes in the data set	All images converted to (224, 224)
Image Modes	There were 4 different modes in the data set.	All images converted to RGB

Data had class imbalance ratio of 2.51

Figure 1: Class distribution between tumor and non-tumor images

Models Tested

Feature	MobileNetV2	EfficientNetB0	Custom CNN
Туре	Pretrained (Transfer Learning)	Pretrained (Transfer Learning)	From Scratch
Input Size	224×224×3	224×224×3	224×224×3
Parameters	~2.2 million	~5.3 million	~12.9 million
Pretrained Weights	ImageNet	ImageNet	None
Model Size	Lightweight	Medium	Lightweight
Train Time	Fast (~minutes)	Moderate (~minutes)	Fast

Training Strategy

Evaluation Metrics

Selected Metrics	Importance
Accuracy	Reflects how often the model correctly identifies both tumor and non-tumor cases. However, can be misleading with imbalanced data.
Precision	In healthcare scenarios missing a tumor (false negative) could delay diagnosis and treatment.
Recall (Sensitivity)	Helps reduce false alarms, avoiding unnecessary stress, further testing, or treatments for healthy individuals.
F1-Score	Ensures a balanced view, especially when classes are imbalanced (e.g., more "Tumor" than "No Tumor").
Confusion Matrix	Gives a transparent view into model behavior across both classes.

Results Comparison

Figure 2: Model Comparison: Precision, Recall, F1-Score

Figure 3: Confusion Matrix Comparison: MobileNet, Custom CNN, EfficientNet

Key Takeaways & Challenges

Class Imbalance • Led to poor generalization and biased predictions • Despite fine-tuning, it consistently predicted one class due to likely preprocessing mismatches and sensitivity to hyperparameters. • Required careful inspection of generators, labels, and output shapes

Future Work

