HW1

Himanshu Nimbarte

Installing Packages

Following commands are use to install packages

```
# First run this
if(!require('pacman'))
  install.packages("pacman")
```

Loading required package: pacman

Loading Data

For loading data we will use function data()

```
data(algae, package = "DMwR2")
algae |> glimpse()
```

```
Rows: 200
Columns: 18
$ season <fct> winter, spring, autumn, spring, autumn, winter, summer, autumn,~
         <fct> small, small, small, small, small, small, small, small, small, -
$ size
$ speed
        <fct> medium, medium, medium, medium, high, high, high, mediu~
$ mxPH
         <dbl> 8.00, 8.35, 8.10, 8.07, 8.06, 8.25, 8.15, 8.05, 8.70, 7.93, 7.7~
$ mn02
         <dbl> 9.8, 8.0, 11.4, 4.8, 9.0, 13.1, 10.3, 10.6, 3.4, 9.9, 10.2, 11.~
$ C1
         <dbl> 60.800, 57.750, 40.020, 77.364, 55.350, 65.750, 73.250, 59.067,~
$ NO3
         <dbl> 6.238, 1.288, 5.330, 2.302, 10.416, 9.248, 1.535, 4.990, 0.886,~
$ NH4
         <dbl> 578.000, 370.000, 346.667, 98.182, 233.700, 430.000, 110.000, 2~
         <dbl> 105.000, 428.750, 125.667, 61.182, 58.222, 18.250, 61.250, 44.6~
$ oP04
$ P04
         <dbl> 170.000, 558.750, 187.057, 138.700, 97.580, 56.667, 111.750, 77~
         <dbl> 50.000, 1.300, 15.600, 1.400, 10.500, 28.400, 3.200, 6.900, 5.5~
$ Chla
         <dbl> 0.0, 1.4, 3.3, 3.1, 9.2, 15.1, 2.4, 18.2, 25.4, 17.0, 16.6, 32.~
$ a1
         <dbl> 0.0, 7.6, 53.6, 41.0, 2.9, 14.6, 1.2, 1.6, 5.4, 0.0, 0.0, 0.0, ~
$ a2
         <dbl> 0.0, 4.8, 1.9, 18.9, 7.5, 1.4, 3.2, 0.0, 2.5, 0.0, 0.0, 0.0, 2.~
$ a3
$ a4
         <dbl> 0.0, 1.9, 0.0, 0.0, 0.0, 0.0, 3.9, 0.0, 0.0, 2.9, 0.0, 0.0, 0.0~
         <dbl> 34.2, 6.7, 0.0, 1.4, 7.5, 22.5, 5.8, 5.5, 0.0, 0.0, 1.2, 0.0, 1~
$ a5
         <dbl> 8.3, 0.0, 0.0, 0.0, 4.1, 12.6, 6.8, 8.7, 0.0, 0.0, 0.0, 0.0, 0.~
$ a6
         <dbl> 0.0, 2.1, 9.7, 1.4, 1.0, 2.9, 0.0, 0.0, 0.0, 1.7, 6.0, 1.5, 2.1~
$ a7
```

Central tendency: mean, median, mode

Mean

The **mean** function in R is used to calculate the arithmetic mean, also known as the average, of a numeric vector, matrix, or data frame. The mean is a measure of central tendency and represents the sum of all values divided by the number of values in the dataset.

```
algae$a1 |>
  mean()
```

[1] 16.9235

Median

In R, the **median** function is used to calculate the median of a numeric vector, matrix, or data frame. The median is a measure of central tendency that represents the middle value in a

dataset when it's sorted in ascending or descending order. If there is an even number of values, the median is the average of the two middle values.

```
algae$a1 |> median()
```

Mode

In R, the **mode** function is used to calculate the mode of a numeric vector or factor. The mode represents the value or values that occur most frequently in a dataset. Unlike the **mean** and **median**, which are measures of central tendency, the mode is a measure of the most common or frequent value(s).

```
Mode <- function(x, na.rm=FALSE){
  if(na.rm) x<-x[!is.na(x)]
  ux <- unique (x)
  return (ux[which.max(tabulate(match(x, ux)))])
}
algae$a2 |> Mode()
```

[1] 0

DMwRcentralValue() function:

This function returns median or mode for the nominal variables.

```
# Numerical variable
algae$a1 |> centralValue()

[1] 6.95

# Nominal variable
algae$speed |> centralValue()

[1] "high"
```

Statistics of spread(variation)

Variance

In R, you can calculate the variance of a numeric vector, matrix, or data frame using the **var** function. Variance measures the spread or dispersion of data points around the mean. A higher variance indicates greater variability in the data.

```
algae$a1 |> var()
```

[1] 455.7532

Standard deviation

In R, you can calculate the standard deviation of a numeric vector, matrix, or data frame using the **sd** function. The standard deviation measures the dispersion or spread of data points around the mean. It's a common measure of variability in statistics.

```
algae$a1 |> sd()
```

[1] 21.34838

Range

In R, you can calculate the range of a numeric vector, which represents the difference between the maximum and minimum values in the dataset. To calculate the range, you can use the range function or simply subtract the minimum value from the maximum value.

```
algae$a1 |> range()
```

[1] 0.0 89.8

Maximum value

To find the maximum value in a numeric vector or matrix in R, you can use the **max** function. This function returns the highest value within the specified data.

```
algae$a1 |> max()
```

[1] 89.8

Minimum value

To find the minimum value in a numeric vector or matrix in R, you can use the min function. This function returns the smallest value within the specified data.

```
algae$a1 |> min()
```

[1] 0

Interquartile Range

The Interquartile Range (IQR) is a statistical measure that represents the spread or variability of a dataset. It is defined as the range between the first quartile (Q1) and the third quartile (Q3) of a dataset when it is sorted in ascending order.

```
3rd quartile (75\%) - 1st quartile (25\%)
```

```
algae$a1 |> IQR()
```

[1] 23.3

Quantiles

Quantiles are values that divide a dataset into specified portions or intervals. Common quantiles include the median (which divides the data in half), quartiles (which divide the data into four equal parts), and percentiles (which divide the data into 100 equal parts).

```
algae$a1 |> quantile()

0% 25% 50% 75% 100%

0.00 1.50 6.95 24.80 89.80
```

Specifying specific quantiles:

```
algae$a1 |> quantile(probs = c(0.2, 0.8))

20% 80%
1.20 32.18
```

Missing Values

```
library(purrr)
# Compute the total number of NA values in the dataset
nas <- algae %>%
   purrr::map_dbl(~sum(is.na(.))) %>%
   sum()

cat("The dataset contains ", nas, "NA values. \n")
```

The dataset contains 33 NA values.

```
# Compute the number of incomplete rows in the dataset
incomplete_rows <- algae %>%
   summarise_all(~!complete.cases(.)) %>%
   nrow()
```

Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated in dplyr 1.1.0.

- i Please use `reframe()` instead.
- i When switching from `summarise()` to `reframe()`, remember that `reframe()` always returns an ungrouped data frame and adjust accordingly.
- i The deprecated feature was likely used in the dplyr package.

 Please report the issue at https://github.com/tidyverse/dplyr/issues.

```
cat("The dataset contains ", incomplete_rows, "(out of ", nrow(algae),") incomplete rows.
```

The dataset contains 200 (out of 200) incomplete rows.

Summaries of dataset

Base R's summary()

```
algae |> summary()
```

season	size	speed	mxPH	mn02
autumn:40	large :45	high :84	Min. :5.600	Min. : 1.500
spring:53 r	medium:84	low :33	1st Qu.:7.700	1st Qu.: 7.725
	small :71	medium:83	Median :8.060	Median : 9.800
winter:62			Mean :8.012	Mean : 9.118
			3rd Qu.:8.400	
			Max. :9.700	Max. :13.400
			NA's :1	NA's :2
Cl		NO3	NH4	oP04
Min. : 0.2		: 0.050	Min. : 5.0	
1st Qu.: 10.9		u.: 1.296	1st Qu.: 38.3	
Median : 32.7	-	n: 2.675	Median: 103.1	
Mean : 43.6		: 3.282	Mean : 501.3	
3rd Qu.: 57.8		u.: 4.446	3rd Qu.: 226.9	
Max. :391.5	-	:45.650	Max. :24064.0	<u>-</u>
NA's :10	NA's		NA's :2	NA's :2
P04		hla	a1	a2
Min. : 1.0	_	: 0.200	Min. : 0.00	~-
1st Qu.: 41.3		.: 2.000	1st Qu.: 1.50	1st Qu.: 0.000
Median :103.2	•	: 5.475	Median : 6.95	Median : 3.000
Mean :137.8		: 13.971	Mean :16.92	Mean : 7.458
3rd Qu.:213.7		.: 18.308		3rd Qu.:11.375
Max. :771.6		:110.456	Max. :89.80	Max. :72.600
MA's :2			Max. :09.00	Max. :/2.000
a3	NA's	a4	o.E	o. C
			a5	a6
Min. : 0.00		: 0.000	Min. : 0.000	Min. : 0.000
1st Qu.: 0.00		.: 0.000	1st Qu.: 0.000	1st Qu.: 0.000
Median: 1.55		: 0.000	Median : 1.900	Median : 0.000
Mean : 4.30		: 1.992	Mean : 5.064	Mean : 5.964
3rd Qu.: 4.92		.: 2.400	3rd Qu.: 7.500	3rd Qu.: 6.925
Max. :42.80	UU Max.	:44.600	Max. :44.400	Max. :77.600

a7

Min. : 0.000 1st Qu.: 0.000 Median: 1.000 Mean: 2.495 3rd Qu:: 2.400 Max: :31.600

Hmisc's describe()

```
data("penguins")
penguins |> Hmisc::describe()
```

penguins

8 Variables	344	Observations
species		

n missing distinct 344 0 3

Value Adelie Chinstrap Gentoo Frequency 152 68 124 Proportion 0.442 0.198 0.360

island

n missing distinct 344 0 3

ValueBiscoeDreamTorgersenFrequency16812452Proportion0.4880.3600.151

bill_length_mm

n	missing	distinct	Info	Mean	Gmd	.05	.10
342	2	164	1	43.92	6.274	35.70	36.60
.25	.50	.75	.90	.95			
39.23	44.45	48.50	50.80	51.99			

lowest: 32.1 33.1 33.5 34 34.1, highest: 55.1 55.8 55.9 58 59.6

bill_depth_mm

n	missing	distinct	Info	Mean	Gmd	.05	.10		
342	2	80	1	17.15	2.267	13.9	14.3		
.25	.50	.75	.90	.95					
15.6	17.3	18.7	19.5	20.0					
lowest :	13.1 13.2	2 13.3 13.4	13.5, hig	ghest: 20	.7 20.8 2	1.1 21.2	21.5		
flipper_l	• -								
		distinct							
342	2	55	0.999	200.9	16.03	181.0	185.0		
		.75							
190.0	197.0	213.0	220.9	225.0					
_	450 454					004			
		176 178 179, 	_			231			
body_mass									
• –		distinct	Tnfo	Moan	Cmd	05	10		
342	_	94				3150			
		.75			911.0	3130	3300		
3550	4050	4750	5400	5050					
lowest ·	2700 2850	2900 2925	2975 hid	rhast· 58	S50 5950 6	000 6050	6300		
sex									
	missing	distinct							
333	_								
000		2							
Value	female	male							
Frequency									
Proportion									
year									
•	missing	distinct	Info	Mean	Gmd				
344	0	3	0.888	2008	0.8919				
	ŭ	-							
Value	2007	2008 2009							
Frequency		114 120							
Proportion 0.320 0.331 0.349									
•									
For the frequency table, variable is rounded to the nearest 0.02									
	The first and subject to the first state of the fir								

dlookr's describe()

```
penguins |> dlookr::describe()
# A tibble: 5 x 26
  described variables
                          n
                               na
                                    mean
                                              sd se mean
                                                              IQR skewness
                      <int> <int> <dbl>
  <chr>>
                                           <dbl>
                                                    <dbl>
                                                            <dbl>
                                                                     <dbl>
1 bill_length_mm
                        342
                                2
                                    43.9
                                           5.46
                                                  0.295
                                                             9.27
                                                                    0.0531
                                    17.2
2 bill_depth_mm
                        342
                                2
                                           1.97
                                                  0.107
                                                             3.1
                                                                   -0.143
3 flipper_length_mm
                        342
                                2 201.
                                          14.1
                                                  0.760
                                                            23
                                                                    0.346
                                                                    0.470
4 body_mass_g
                        342
                                2 4202. 802.
                                                 43.4
                                                          1200
                                0 2008.
                                                             2
                        344
                                           0.818 0.0441
                                                                   -0.0537
5 year
# i 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
   p99 <dbl>, p100 <dbl>
```

Summaries on a subset of data

```
algae |>
    summarise(avgNO3 = mean(NO3, na.rm=TRUE),
              medA1 = median(a1))
# A tibble: 1 x 2
  avgNO3 medA1
   <dbl> <dbl>
  3.28 6.95
  algae |>
    select(mxPH:Cl) |>
    summarise_all(list(mean, median), na.rm = TRUE)
# A tibble: 1 x 6
  mxPH_fn1 mnO2_fn1 Cl_fn1 mxPH_fn2 mnO2_fn2 Cl_fn2
     <dbl>
              <dbl> <dbl>
                              <dbl>
                                        <dbl> <dbl>
      8.01
               9.12
                               8.06
                                                32.7
1
                      43.6
                                          9.8
```

```
algae |>
             select(a1:a7) |>
             summarise_all(funs(var))
Warning: `funs()` was deprecated in dplyr 0.8.0.
i Please use a list of either functions or lambdas:
# Simple named list: list(mean = mean, median = median)
# Auto named with `tibble::lst()`: tibble::lst(mean, median)
# Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
# A tibble: 1 x 7
                                a2 a3
                                                                     a4
                                                                                        a5
                                                                                                          a6
      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
1 456. 122. 48.3 19.5 56.1 136. 26.6
       algae |>
             select(a1:a7) |>
             summarise_all(c("min", "max"))
# A tibble: 1 x 14
     a1_min a2_min a3_min a4_min a5_min a6_min a7_min a1_max a2_max a3_max a4_max
         <dbl> 
                                          0
                                                                                    0
                                                                                                                               0
                                                                                                                                                    0 89.8
                                                                                                                                                                                  72.6 42.8
                                                                                                                                                                                                                                 44.6
# i 3 more variables: a5_max <dbl>, a6_max <dbl>, a7_max <dbl>
Use sumarise() with group_by()
       algae |>
             group_by(season, size) |>
             summarise(nObs = n(), mA7 = median(a7))
`summarise()` has grouped output by 'season'. You can override using the
`.groups` argument.
```

```
# A tibble: 12 x 4
# Groups: season [4]
                n0bs
  season size
                       mA7
  <fct> <fct> <int> <dbl>
1 autumn large
                  11 0
2 autumn medium
                  16 1.05
3 autumn small
                  13 0
                 12 1.95
4 spring large
5 spring medium
                  21 1
6 spring small
                  20 0
7 summer large
                 10 0
8 summer medium
                  21 1
9 summer small
                  14 1.45
10 winter large
                  12 0
11 winter medium
                  26 1.4
12 winter small
                  24 0
  penguins |>
    group_by(species) |>
    summarise(var = var(bill_length_mm, na.rm = TRUE))
# A tibble: 3 x 2
 species
           var
 <fct>
           <dbl>
1 Adelie
           7.09
2 Chinstrap 11.2
3 Gentoo
            9.50
```

Aggregating Data

```
penguins |>
    group_by(species) |>
    reframe(var = quantile(bill_length_mm, na.rm = TRUE))
# A tibble: 15 x 2
  species
          var
  <fct>
            <dbl>
1 Adelie
            32.1
2 Adelie
         36.8
```

```
3 Adelie
              38.8
4 Adelie
              40.8
5 Adelie
              46
6 Chinstrap
              40.9
7 Chinstrap
              46.3
8 Chinstrap
              49.6
9 Chinstrap
              51.1
10 Chinstrap
              58
11 Gentoo
              40.9
12 Gentoo
              45.3
              47.3
13 Gentoo
14 Gentoo
              49.6
15 Gentoo
              59.6
  penguins |>
    group_by(species) |>
    dlookr::describe(bill_length_mm)
# A tibble: 3 x 27
 described_variables species
                                          na mean
                                                      sd se_mean
                                                                    IQR skewness
                                    n
  <chr>
                      <fct>
                                 <int> <int> <dbl> <dbl>
                                                           <dbl> <dbl>
                                                                           <dbl>
                                              38.8
1 bill_length_mm
                      Adelie
                                   151
                                           1
                                                    2.66
                                                           0.217 4
                                                                          0.162
                                                           0.405
2 bill_length_mm
                                    68
                                           0
                                              48.8 3.34
                                                                  4.73
                                                                        -0.0906
                      Chinstrap
3 bill_length_mm
                                   123
                                           1 47.5 3.08
                                                           0.278 4.25
                      Gentoo
                                                                          0.651
# i 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
   p99 <dbl>, p100 <dbl>
```

Getting to know your data set

To load the dataset we will use data().

```
data("algae")
str(algae)

tibble [200 x 18] (S3: tbl_df/tbl/data.frame)
$ season: Factor w/ 4 levels "autumn", "spring",..: 4 2 1 2 1 4 3 1 4 4 ...
$ size : Factor w/ 3 levels "large", "medium",..: 3 3 3 3 3 3 3 3 3 ...
```

```
$ speed : Factor w/ 3 levels "high","low","medium": 3 3 3 3 3 1 1 1 3 1 ...
       : num [1:200] 8 8.35 8.1 8.07 8.06 8.25 8.15 8.05 8.7 7.93 ...
$ mnO2
       : num [1:200] 9.8 8 11.4 4.8 9 13.1 10.3 10.6 3.4 9.9 ...
$ C1
        : num [1:200] 60.8 57.8 40 77.4 55.4 ...
        : num [1:200] 6.24 1.29 5.33 2.3 10.42 ...
$ NO3
$ NH4
        : num [1:200] 578 370 346.7 98.2 233.7 ...
$ oP04
       : num [1:200] 105 428.8 125.7 61.2 58.2 ...
$ P04
        : num [1:200] 170 558.8 187.1 138.7 97.6 ...
$ Chla : num [1:200] 50 1.3 15.6 1.4 10.5 ...
$ a1
        : num [1:200] 0 1.4 3.3 3.1 9.2 15.1 2.4 18.2 25.4 17 ...
        : num [1:200] 0 7.6 53.6 41 2.9 14.6 1.2 1.6 5.4 0 ...
$ a2
        : num [1:200] 0 4.8 1.9 18.9 7.5 1.4 3.2 0 2.5 0 ...
$ a3
$ a4
        : num [1:200] 0 1.9 0 0 0 0 3.9 0 0 2.9 ...
        : num [1:200] 34.2 6.7 0 1.4 7.5 22.5 5.8 5.5 0 0 ...
$ a5
$ a6
        : num [1:200] 8.3 0 0 0 4.1 12.6 6.8 8.7 0 0 ...
$ a7
        : num [1:200] 0 2.1 9.7 1.4 1 2.9 0 0 0 1.7 ...
```

Here we will use install.packages() to install moments package which is use to use skewness function.

In R, there is a package called **moments** that provides functions for calculating various statistical moments, including mean, variance, skewness, and kurtosis. This package can be useful when you need to compute these moments for a dataset. To use the **moments** package, follow these steps:

```
install.packages("moments")

Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
(as 'lib' is unspecified)

library(moments)

Attaching package: 'moments'
```

The following objects are masked from 'package:dlookr':

kurtosis, skewness

Calculating Skewness for particular attribute in the dataset

skewness(algae\$a6)

[1] 3.160766

To check co-relation between the attributes we will use $\operatorname{cor}()$

This will help us find co-relation between the attributes in the dataset

```
correlation_matrix <- cor(algae[, sapply(algae,is.numeric)])
print(correlation_matrix)</pre>
```

	mxPH	mn02	Cl	NO3	NH4	oP04	P04	Chla	a1	a2	a3
mxPH	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
mn02	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cl	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA
NO3	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA
NH4	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA
oP04	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA
P04	NA	NA	NA	NA	NA	NA	1	NA	NA	NA	NA
Chla	NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA
a1	NA	NA	NA	NA	NA	NA	NA	NA	1.00000000	-0.29376781	-0.14656656
a2	NA	NA	NA	NA	NA	NA	NA	NA	-0.29376781	1.00000000	0.03214032
a3	NA	NA	NA	NA	NA	NA	NA	NA	-0.14656656	0.03214032	1.00000000
a4	NA	NA	NA	NA	NA	NA	NA	NA	-0.03795656	-0.17189273	0.01226780
a5	NA	NA	NA	NA	NA	NA	NA	NA	-0.29154923	-0.16046344	-0.10832262
a6	NA	NA	NA	NA	NA	NA	NA	NA	-0.27342831	-0.11641942	-0.17174646
a7	NA	NA	NA	NA	NA	NA	NA	NA	-0.21290633	0.04897715	0.05636698
		ä	a4			a5		a6	5 a7	•	
mxPH]	NA			NA		NA	NA NA	1	
mn02]	NA			NA		NA	NA NA	1	
Cl]	NA			NA		NA	NA NA	1	
NO3]	NA			NA		NA	NA NA	1	
NH4]	NA			NA		NA	NA NA	1	
oP04]	NA			NA		NA	NA NA	1	
P04]	NA			NA		NA	NA NA	1	
Chla]	NA			NA		NA	NA NA	1	
a1	-0.03	37956	56 -	-0.29	91549	923 -(273	342831	-0.21290633	3	
a2	-0.17	71892	73 -	-0.16	60463	344 -(0.116	641942	0.04897715	5	
a3	0.03	122678	80 ·	-0.10	08322	262 -0	0.17	174646	0.05636698	3	
a4	1.00	00000	00 -	-0.10	09030)79 -(0.090	009059	0.04306195	5	

```
a5
     -0.10903079 1.00000000 0.40473499 -0.02785471
     -0.09009059 0.40473499 1.00000000 -0.01349437
a6
      0.04306195 -0.02785471 -0.01349437 1.00000000
a7
To check for missing values we will use .na().
  any_missing <- any(is.na(algae))</pre>
  print(any_missing)
[1] TRUE
  name = names(which(colSums(is.na(algae))>0))
  print(name)
[1] "mxPH" "mnO2" "C1"
                         "NO3" "NH4"
                                       "oP04" "P04"
                                                     "Chla"
  algae[, c(name)]
# A tibble: 200 x 8
    mxPH mnO2
                  Cl
                        NO3
                              NH4 oPO4
                                          PO4 Chla
                      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
   <dbl> <dbl> <dbl>
 1
           9.8 60.8 6.24
                            578
                                  105
                                        170
                                              50
 2 8.35
           8
                57.8 1.29
                            370
                                  429.
                                        559.
                                               1.3
 3 8.1
          11.4 40.0 5.33
                            347.
                                  126.
                                        187.
                                              15.6
 4
  8.07
          4.8 77.4 2.30
                             98.2 61.2 139.
                                               1.4
 5
  8.06
                55.4 10.4
                                   58.2 97.6 10.5
           9
                            234.
 6 8.25
         13.1 65.8 9.25
                            430
                                   18.2 56.7 28.4
 7
   8.15 10.3 73.2 1.54
                            110
                                   61.2 112.
                                               3.2
  8.05 10.6 59.1 4.99
                            206.
                                   44.7 77.4 6.9
 9 8.7
           3.4 22.0 0.886 103.
                                   36.3 71
                                               5.54
10 7.93
                      1.39
                              5.8 27.2 46.6 0.8
           9.9
                 8
# i 190 more rows
```

In this case as there are numerical values missing we can use mean of the present values and can replace them with the missing values, otherwise we can also use median and mode.

We can omit the rows by using .omit() function

```
algae1 <- algae #Duplicating dataframe
algae1_clean <- na.omit(algae1)
print(algae1_clean)</pre>
```

```
# A tibble: 184 x 18
  season size speed
                        mxPH mnO2
                                      Cl
                                            NO3
                                                  NH4 oPO4
                                                              PO4 Chla
                                                                            a1
  <fct> <fct> <fct>
                       <dbl> <dbl> <dbl>
                                          <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 winter small medium
                               9.8
                                    60.8
                                          6.24
                                                578
                                                      105
                                                             170
                                                                  50
                                                                           0
2 spring small medium
                                                370
                                                      429.
                                                            559.
                       8.35
                               8
                                    57.8
                                          1.29
                                                                   1.3
                                                                           1.4
3 autumn small medium
                       8.1
                              11.4 40.0 5.33
                                                347.
                                                      126.
                                                            187.
                                                                  15.6
                                                                           3.3
4 spring small medium
                        8.07
                               4.8 77.4 2.30
                                                 98.2
                                                       61.2 139.
                                                                   1.4
                                                                           3.1
5 autumn small medium
                       8.06
                               9
                                    55.4 10.4
                                                234.
                                                       58.2 97.6 10.5
                                                                          9.2
6 winter small high
                        8.25
                             13.1 65.8 9.25
                                                430
                                                       18.2 56.7 28.4
                                                                          15.1
7 summer small high
                        8.15
                              10.3 73.2 1.54
                                                110
                                                       61.2 112.
                                                                   3.2
                                                                          2.4
8 autumn small high
                              10.6 59.1
                                          4.99
                                                       44.7 77.4 6.9
                                                                          18.2
                        8.05
                                                206.
9 winter small medium 8.7
                               3.4
                                    22.0
                                          0.886 103.
                                                       36.3 71
                                                                   5.54
                                                                         25.4
10 winter small high
                                                       27.2 46.6 0.8
                        7.93
                               9.9
                                     8
                                          1.39
                                                  5.8
                                                                          17
# i 174 more rows
# i 6 more variables: a2 <dbl>, a3 <dbl>, a4 <dbl>, a5 <dbl>, a6 <dbl>,
   a7 <dbl>
```