Non-negative FIR Filter Design

Philippe Proctor

White Noise and PSD

Filter #1 Triangle Filter

Filter #1 Triangle Filter(.1 π cutoff)

Filter #1 Triangle Filter(.1 π cutoff)

Filter #1 Triangle Filter(.1 π cutoff)

Filter #1 Triangle Filter($.2\pi$ cutoff)

Filter #1 Triangle Filter($.2\pi$ cutoff)

Filter #1 Triangle Filter($.2\pi$ cutoff)

Filter #1 Triangle Filter($.3\pi$ cutoff)

Filter #1 Triangle Filter($.3\pi$ cutoff)

Triangle Filter explanation

- b[n] = 1 |n| if |n| < 1, 0 otherwise
- Fits the noncausal, symmetric, and positive
- Numerator coefficients were normalized by sum of the numerator coefficients

Filter #2 Blackman Filter

Filter #2 Blackman Filter(.1 π cutoff)

Filter #2 Blackman Filter(.1 π cutoff)

Filter #2 Blackman Filter(.1 π cutoff)

Filter #2 Blackman Filter(.2π cutoff)

Filter #2 Blackman Filter(.2π cutoff)

Filter #2 Blackman Filter(.2π cutoff)

Filter #2 Blackman Filter(.3π cutoff)

Filter #2 Blackman Filter(.3π cutoff)

Filter #2 Blackman Filter(.3π cutoff)

Blackman Filter explanation

- $b[n] = .42 .5\cos(2\pi n/N) + .08\cos(2\pi n/N)$
- Fits the noncausal, symmetric, and positive
- Numerator coefficients were normalized by sum of the numerator coefficients

Filter #3 SMA Filter

Filter #3 SMA Filter(.1 π cutoff)

Filter #3 SMA Filter(.1 π cutoff)

Filter #3 SMA Filter($.1\pi$ cutoff)

Filter #3 SMA Filter($.2\pi$ cutoff)

Filter #3 SMA Filter($.2\pi$ cutoff)

Filter #3 SMA Filter($.2\pi$ cutoff)

Filter #3 SMA Filter($.3\pi$ cutoff)

Filter #3 SMA Filter($.3\pi$ cutoff)

Filter #3 SMA Filter($.3\pi$ cutoff)

SMA Filter Explanation

- $b[n] = (1/N)\sum^{N}_{i=1}1$
- Fits the noncausal, symmetric, and positive
- Numerator coefficients were normalized by sum of the numerator coefficients

Filter #4 Hamming Filter

Filter #4 Hamming Filter(.1 π cutoff)

Filter #4 Hamming Filter(.1 π cutoff)

Filter #4 Hamming Filter(.1 π cutoff)

Filter #4 Hamming Filter(.2π cutoff)

Filter #4 Hamming Filter(.2π cutoff)

Filter #4 Hamming Filter(.2π cutoff)

Filter #4 Hamming Filter($.3\pi$ cutoff)

Filter #4 Hamming Filter(.3π cutoff)

Filter #4 Hamming Filter($.3\pi$ cutoff)

Hamming Filter Explanantion

- $b[n] = .54 .46\cos(2\pi n/N)$
- Fits the noncausal, symmetric, and positive
- Numerator coefficients were normalized by sum of the numerator coefficients

Filter #5 WMA Filter

Filter #5 WMA Filter(.1 π cutoff)

Filter #5 WMA Filter(.1 π cutoff)

Filter #5 WMA Filter(.1 π cutoff)

Filter #5 WMA Filter($.2\pi$ cutoff)

Filter #5 WMA Filter($.2\pi$ cutoff)

Filter #5 WMA Filter($.2\pi$ cutoff)

Filter #5 WMA Filter (.3 π cutoff)

Filter #5 WMA Filter (.3 π cutoff)

Filter #5 WMA Filter (.3 π cutoff)

WMA Filter Explanation

- $b[n] = a^{n}(n)$
- Fits the noncausal, symmetric, and positive
- Numerator coefficients were normalized by sum of the numerator coefficients

Filter #1 Triangle HP Filter

Filter #1 Triangle HP Filter

Filter #1 Triangle HP Filter

Filter #2 Blackman High Pass Filter

Filter #2 Blackman High Pass Filter

Filter #2 Blackman High Pass Filter

Filter #3 SMA HP Filter

Filter #3 SMA HP Filter

Filter #3 SMA HP Filter

Filter #4 Hamming HP Filter

Filter #4 Hamming HP Filter

Filter #4 Hamming HP Filter

Filter #5 WMA HP Filter

Filter #5 WMA HP Filter

Filter #5 WMA HP Filter

Handling Edge Conditions and Use cases

- Edge conditions: I wrote a convolution function to perform a non-causal convolution.
 - o i.e using future data values that don't exist in the original recording
 - For all filters, concatenated equivalent statistic white noise edges where filter has no overlap with signal
 - o I believe this is an appropriate method because we can assume that the signal is WSS

Tradeoffs:

- All these noncausal, symmetric, and positive filters have linear phase and are FIR.
 - These types of filters would be most appropriate in applications where phase behavior is a priority
- These filters are also better for applications with signals that only take on positive values. A
 well designed frequency selective filter might have some pos./neg. Magnitude ripple that
 creates negative amplitude artifacts in the output signal.
- Noncausal, symmetric, and positive FIR filters will be less frequency selective in comparison.