TPUNB 模组 对接说明手册 V5.6

TP 技<u></u>規技

目录

— 、	引言		2
_,	模组基	本性能	2
三、	模组上	电入网流程	2
	3.1 自云	加入网流程	2
	3. 2 手云	加入网流程	3
四、	模组数	据通信	5
	4. 1.	TYPE A 模式模组数据通信	5
	4. 2.	TYPE C 模式模组数据通信	7
	4. 3.	TYPE D 模式模组数据通信	9
五、	模组和	上位机的串口数据交互	9
	5. 1.	透传模式下数据交互	9
	5. 2.	AT 模式下数据交互(推荐)1	0
六	、模组 /	AT 指令示例	1
七、	模组值	&功耗工作模式说明1	2
八、	Q&A		
	8. 1.	关于终端在不同网关下漫游的问题1	3
	8. 2.	关于终端在运输、仓储情况下模组耗电问题的处理1	3
	8. 3.	关于上位机发送完数据,是否提供指令告诉模组无需等待监听时间	J,
	模组进	入休眠状态	3
	8. 4.	原本方案为 NB-IOT 模块*C28, 硬件设计是否可以不修改原理图积	П
	PCB 就可	可以直接应用 TPUNB 模块 TP1107 进行替换? 1	3
	8. 5.	模组入网超时时间是多长?1	4

一、引言

本章针对使用 TPUNB 模组的各类终端应用提供设计指导和建议。具体 AT 格式请参考《TPUNB-AT 指令用户手册》。文档中提到的上位机指控制 TPUNB 模组的主控 MCU。

二、模组基本性能

唤醒时间小于 10ms;

AT 指令超时时间为 5s;

自动入网模式下入网最大超时时间为30分钟;

发送数据超时时间为 72s;

AT 串口的波特率 9600, 8N1;

三、模组上电入网流程

模组入网有两种方式:自动入网和手动入网。默认情况下模组以自动模式 入网(查询入网方式 AT+NCONFIG?模组返回+NCONFIG: AUTOCONNECT, TRUE\r\n)。

自动入网:控制简单,只需要查询入网状态,但是入网超时时间为模组固 定超时时间;

手动入网: 入网超时时间由上位机控制(拉低 wake 引脚模组进入休眠结束搜网),但是控制逻辑相对复杂。

3.1 自动入网流程

模组默认以自动入网模式入网。模组上电后系统开始运行,本地初始化完毕后,立即开始搜寻网络信号。

自动入网模式场景初始化流程如下图所示。

图 1 模组自动入网模式场景初始化流程

3.2 手动入网流程

模组可以设置为手动入网模式。模组上电后系统开始运行,进入AT模式后,发送指令AT+NCONFIG=AUTOCONNECT, FALSE设置为手动入网模式,重启后生效。模组重新上电后,本地初始化完毕后会进入休眠,当上位机拉高模组WAKE引脚,

TP 技 **科 P D**

发送入网指令给模组后,模组才开始搜寻网络信号,在搜寻网络信号过程中若上位机拉低模组 WAKE 引脚,模组会立即进入休眠。

手动入网模式场景初始化流程如下图所示:

图 2 模组手动入网模式场景初始化流程

四、模组数据通信

周期性上报消息,对于大批同时上电的不同终端,建议以模组入网后的时间点作为起始时间进行离散,避免大量终端在周期到达后同时上报导致网络拥塞。

发送数据过程中,模组回复失败,则需要上位机主动查询一次入网状态,如果模组处于离线状态则发送 join 命令组网,入网成功再进行数据通信。

4.1. TYPE A 模式模组数据通信

注:任何下行数据的接收,都要先上行一个数据。支持串口唤醒的模组则不需要控制 wake 引脚

唤醒模组: 当上位机拉高模组 WAKE 引脚或者串口唤醒 TPUNB 模组,上位机可以通过 AT 串口发送数据到模组。

休眠模组: 当上位机拉低模组的 WAKE 脚后,模组根据自身网络通信情况自动进入休眠,功耗约为 2uA 左右(模组 AT 串口 TX, RX 有内部上拉),此时模组已经与基站断开连接,无法接收到基站的任何消息,同时模组的各个内核也处于关闭状态。

模组 TYPE A 模式休眠唤醒数据通信场景流程如下图所示:

图 3 模组 TYPE A 休眠唤醒数据通信流程图

4.2. TYPE C 模式模组数据通信

唤醒模组: 当上位机拉高模组 WAKE 引脚或者串口唤醒 TPUNB 模组,上位机可以通过 AT 串口发送数据到模组。

休眠模组: 当上位机拉低模组的 WAKE 脚后,模组根据自身网络通信情况自动进入休眠(模组 AT 串口 TX, RX 有内部上拉),此时模组会周期性侦听空口唤醒信号,基站可以空中唤醒模组。

模组 TYPE C 模式休眠主动唤醒发送数据流程如下图所示:

图 4 模组 TYPE C 休眠主动唤醒发送数据流程图

模组 TYPE C 模式休眠空中唤醒接收数据流程如下图所示:

图 5 模组 TYPE C 空中唤醒数据接收流程图

4.3. TYPE D 模式模组数据通信

在 TYPE D 模式下模组会一直接收下行信号,可以随时进行数据发送。模组 TYPE D 模式发送数据流程如下图所示:

图 6 模组 TYPE D 发送数据流程图

五、模组和上位机的串口数据交互

模组支持上位机通过串口数据唤醒,建议上位机通过串口发送数据后进行 OK 状态检查,确保数据被模组正确接收到。

5.1. 透传模式下数据交互

透传模式下(如果进入AT模式,必须要用AT+EXIT退出),上位机发送的数据,TPUNB模组直接透传到网关,不作任何的数据头检查,上位机重发时间建议大于72秒。

5.2. AT 模式下数据交互(推荐)

AT 模式的交互请参考《TPUNB-AT 指令用户手册》,上位机通过串口往模组发送消息使用 TPUNBSEND 指令,上位机接收模组的下行消息格式是\r\n+NNMI:%d,%s\r\n,上位机重发时间建议大于72秒。

模组下行数据(ASCII字符串格式),通过串口发到上位机 MCU 的数据如下:

 $\r \n+NNMI:11, 3A2F008105000001000087\r\n$

六、模组 AT 指令示例

模组上电自动入网,入网成功后自动上报 joinedOK,如果上位机错过消息可以通过 AT+JOIN?查询。

上位机查询模组入网过程示例

+++ //进入 AT 模式

OK

AT+JOIN? //查询入网状态

joining OK

AT+JOIN? //查询入网状态

joined //已入网

OK

上位机通过模组发送数据和接收数据过程示例

OK

AT+UNBSEND=13,03410800000000000000643C9A,1 //发送数据

OK

1,SENT //网关回复发送成功

OK

+NNMI:5,034108B056 //收到平台下发的数据

七、模组低功耗工作模式说明

模式名				
侯八石 称	工作状态	描述	适用场景	注意事项
默认状态	1. 模组上电默认是 TypeA 模式,上电后等待入网,入网超时,则进入休眠。 2. 模组入网超时则一直停留在 TypeA模式,入网超时进入休眠后通过唤醒引脚唤醒(或者串口唤醒),然后通过手动入网指令重新发起入网。 3. 上电后入网成功,则根据平台分配的低功耗模式来配置当前的工作模式。	所有模组上电后的 共同行为	无	无
TypeA (先说后听)	3. 及迭元成后,等侍N个接收窗口 (目前是8个帧周期,后续通过协 议可配置) 4. 如果在接收窗口内接收到业务数 据,则延后N个时间窗 5. 如果在接收窗口未收到业务数据, 则关闭射频	1. 最省电的模式 2. 只能通过上位机 MCU 的唤醒模组 (Wakeup 引脚或 串口唤醒)。	采集类终端。 例如水表、地 下管道传感器 一个月甚至更 长时间才上报 一次数据。	1. 对电池一次性使 用时间要求比较 高。 2. 平台(网关)不能 随时对终端主动 发送控制指令, 需在终端上行数 据后8个帧周期 内下发。
TypeC (空口唤醒)	模组周期性自唤醒侦听,一个周期内通过检查唤醒帧来判断是否有自己的数据帧。 1. 模组唤醒后根据数据类型(是否本节点业务数据)决定是否唤醒上位机,具体参考硬件规格书)。 2. 模组的自唤醒周期为T1,唤醒后侦听T2,若期间未收到唤醒帧,则再次进入休眠。 3. 如果是本节点的业务数据,则流程和TypeA的2至5流程一致。	在没有任何数据交 互的情况下功耗包 括了:睡眠功耗和 侦听功耗两部分。	控制类终端, 需要随机进行 下行控制类命 令交互。	1. 相对于 TypeA, 对电池一次性使 用时间要求稍 低。 2. 终端上行数据发 送延迟为 2 秒以 内。
TypeD	1. 一直打开接收窗口,只在发送时短 暂关闭。 2. 可以在任意帧上报数据。	非低切耗模式。	1. 控制, 规制, 规制, 规制有 整工的 , 数据, 时, 时, 时, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一, 一,	无

八、Q&A

8.1. 关于终端在不同网关下漫游的问题

只有在同一网关分组下的模组可以进行漫游。

8.2. 关于终端在运输、仓储情况下模组耗电问题的处理

情况 1: 可关闭电源的终端产品,直接关闭产品电源即可。

情况 2: 不可关闭电源的终端产品

- 1) 可通过外部触发(如磁铁)或上位机 MCU 控制给模组断电;
- 2)设置模组进入手动入网模式,减低模组搜网功耗。

8.3.关于上位机发送完数据,是否提供指令告诉模组无需等待监听时间,模组进入休眠状态

考虑上位机和模组 OTA 功能,建议保留原有监听时间(8个帧周期),模组 监听功耗不到 NB 模组的三分之一,对终端整体功耗影响比较小。

8. 4. 原本方案为 NB-IOT 模块*C28, 硬件设计是否可以不修改原理图 和 PCB 就可以直接应用 TPUNB 模块 TP1107 进行替换?

一般建议按照 TP1107 技术规格书的要求进行设计;如果客户不想对 PCB 进行修改,则可通过以下几点修改进行兼容测试验证:

*C28 典型供电电压为 3.6V, TP1107 最大电压为 3.6V, 典型电压为 3.3V;

TP1107 的 PCB 封装与*C28 都为 FCC 封装,尺寸和模块的四周管脚焊盘兼容,但是 TP1107 的 PCB 封装无底部焊盘,如果生产上不作工艺的调整则存在隐患,如果不作 PCB 封装修改则至少要求作 SMT 的钢网的修改,修改的方案为 TP1107 的钢网要把*C28 的钢网所需底部中间的焊盘开窗删除;

TP1107 无 SIM 卡, *C28 的 SIM 卡信号管脚用作 TP1107 的 SW 下载口,兼容应用一般建议把 C28 的 SIM 卡对应的器件都删除。

8.5. 模组入网超时时间是多长?

情况 1: 自动入网模式

- 1) 入网时无信号: 入网超时 15 分钟将进入休眠。
- 2)入网时有信号:入网超时30分钟将进入休眠,待下一次心跳周期再次进行自动入网。

情况 2: 手动入网模式(模组上电后系统开始运行,进入 AT 模式后,发送指令 AT+NCONFIG=AUTOCONNECT, FALSE 设置为手动入网模式,重启后生效。)

模组重新上电后,本地初始化完毕后会进入休眠,当上位机拉高模组 WAKE 引脚,发送入网指令给模组后,模组将开始搜寻网络信号,在此过程中,若上位机拉低模组 WAKE 引脚,模组将立即进入休眠。

修订历史记录

版本	发布日期	更 改 内 容			
V5.2	2022/03/11	创建文档			
V5.3	2022/03/18	增加 TYPE C 和 TYPE D 通信流程描述			
V5.4	2022/3/22	修正数据通信流程图			
V5.5	2022/3/23	增加 Q&A 硬件设计相关内容			
V5.6	2022/8/15	优化手动入网和 TypeA/C 流程图			
	-				

官方微信公众号

联系电话: 020-32640281-815

联系邮箱: jx@techphant.net

官方网站: www.techphant.cn

公司地址:广州市海珠区新港东路 1378 号自编号 1 号楼 2 层

广州市海珠区新港中路 381 号