Университет ИТМО

Факультет программной инженерии и компьютерной техники

Сети ЭВМ и телекоммуникации

Учебно-исследовательская работа №5 Технологии QoS в компьютерных сетях

> Лабушев Тимофей Группа Р3302

Санкт-Петербург 2020

Цель

Изучение эффективности приоритизации трафика для управления качеством обслуживания (Quality of Service, QoS) в компьютерных сетях.

Задание

Студент кафедры ВТ Университета ИТМО на каникулах собирается поехать на море и при этом планирует использовать планшет как для онлайн-трансляции видео о посещаемых достопримечательностях (т.е. видео по запросу, ВПЗ), так и для одновременного с этими трансляциями разговора с родными и близкими с использованием Skype или любого другого подобного программного обеспечения, генерирующего потоковое видео реального времени. Тарифы на интернет-связь в роуминге на море достаточно высоки, поэтому студент хочет подобрать самый низкоскоростной тариф, который бы обеспечил качественный Skype-разговор при одновременном комфортном качестве онлайн-трансляции.

Полагая, что исходящий интернет-канал на планшете является узким местом при передаче трафика, студент решил настроить в сетевом драйвере планшета различные дисциплины обслуживания, которые обеспечат различные характеристики качества передачи для Skype и ВПЗ трафика при соблюдении требований «ITU-T Y.1541». Требуется найти такую дисциплину обслуживания, при которой требуемая скорость исходящего канала связи будет минимальной. По результатам экспериментов необходимо сравнить особенности исследованных дисциплин обслуживания и выбрать оптимальную из них для поездки на море.

Исходные данные

В качестве платформы для ВПЗ использовалась площадка для вебинаров Webinar.ru.

Размеры буферов S = 7 килобайт

Скорость канала связи N = 7 Мбит/с

Коэффициент веса более требовательного класса в ДО WFQ K = 2

Ход работы

Сбор и анализ трафика

Трафик видеозвонка Skype был собран с помощью программы Wireshark. В ходе его анализа было установлено, что аудио- и видеоданные отправляются по протоколу udp с порта 2769, что было использовано в качестве фильтра:

No. Time Source Destination	Protocol Length Info
1 0.000000000 176.53.227.14 192.168.	0.101 UDP 110 1703 → 2769 Len=68
2 0.008575589 192.168.0.101 176.53.2	27.14 UDP 165 2769 → 1703 Len=123
3 0.019655299 176.53.227.14 192.168.	0.101 UDP 113 1703 → 2769 Len=71
4 0.021833459 192.168.0.101 176.53.2	27.14 UDP 168 2769 → 1703 Len=126
5 0.022783697 176.53.227.14 192.168.	0.101 UDP 1114 1703 → 2769 Len=1072
6 0.023327055 176.53.227.14 192.168.	0.101 UDP 1114 1703 → 2769 Len=1072
7 0.023327154 176.53.227.14 192.168.	0.101 UDP 1114 1703 → 2769 Len=1072
8 0.023327191 176.53.227.14 192.168.	0.101 UDP 1114 1703 → 2769 Len=1072
9 0.023327224 176.53.227.14 192.168.	0.101 UDP 1114 1703 → 2769 Len=1072
10 0.023793992 176.53.227.14 192.168.	0.101 UDP 1114 1703 → 2769 Len=107
11 0.023794139 176.53.227.14 192.168.	0.101 UDP 1114 1703 → 2769 Len=1072
12 0.026863824 192.168.0.101 176.53.2	27.14 UDP 1198 2769 → 1703 Len=1156
13 0.026885709 192.168.0.101 176.53.2	27.14 UDP 1198 2769 → 1703 Len=1150
14 0.026892677 192.168.0.101 176.53.2	27.14 UDP 1198 2769 → 1703 Len=115
15 0.026898655 192.168.0.101 176.53.2	27.14 UDP 1198 2769 → 1703 Len=1156
16 0.026904580 192.168.0.101 176.53.2	27.14 UDP 1195 2769 → 1703 Len=115
17 0.026912009 192.168.0.101 176.53.2	27.14 UDP 1206 2769 → 1703 Len=116
18 0.026921418 192.168.0.101 176.53.2	27.14 UDP 1206 2769 → 1703 Len=116
19 0.026931252 192.168.0.101 176.53.2	27.14 UDP 1206 2769 → 1703 Len=116
20 0.026940141 192.168.0.101 176.53.2	27.14 UDP 1203 2769 → 1703 Len=116
21 0.027332397 192.168.0.101 176.53.2	27.14 UDP 208 2769 → 1703 Len=166
22 0.028505971 176.53.227.14 192.168.	9.101 UDP 1114 1703 → 2769 Len=107
23 0.040115781 176.53.227.14 192.168.	9.101 UDP 115 1703 → 2769 Len=73
24 0.047256329 192.168.0.101 176.53.2	27.14 UDP 174 2769 → 1703 Len=132
25 0.047785154 192.168.0.101 176.53.2	27.14 UDP 140 2769 → 1703 Len=98
26 0.058283835 176.53.227.14 192.168.	9.101 UDP 1110 1703 → 2769 Len=106
27 0.058937576 176.53.227.14 192.168.	9.101 UDP 1110 1703 → 2769 Len=106
28 0.058937657 176.53.227.14 192.168.	9.101 UDP 1110 1703 → 2769 Len=106
29 0.058937690 176.53.227.14 192.168.	9.101 UDP 1110 1703 → 2769 Len=1068
30 0.058937725 176.53.227.14 192.168.	9.101 UDP 1110 1703 → 2769 Len=106
31 0.059249335 176.53.227.14 192.168.	9.101 UDP 1110 1703 → 2769 Len=1068
32 0.059249447 176.53.227.14 192.168.	0.101 UDP 1110 1703 → 2769 Len=106

Рис. 1. Захваченный трафик видеозвонка Skype

При рассмотрении ВПЗ трафика было установлено, что он передается по протоколу TCP на IP-адрес сервера Webinar.ru, что было использовано в качестве фильтра:

П	■ tcp && ip.addr == 37.130.192.56								
No.	Time	Source	Destination	Protocol	Length Info				
Г	1 0.000000000	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=1 Win=16409 Len=0 TSval=2564720895 TSecr=459238611				
	2 0.006142365	192.168.0.101	37.130.192.56	SSL	251 Continuation Data				
	3 0.009369504	192.168.0.101	37.130.192.56	SSL	1187 Continuation Data				
	4 0.012958222	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=2243 Win=16409 Len=0 TSval=2564720898 TSecr=459238621				
	5 0.023664338	192.168.0.101	37.130.192.56	SSL	251 Continuation Data				
	6 0.028138701	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=3549 Win=16409 Len=0 TSval=2564720901 TSecr=459238634				
	7 0.050300895	192.168.0.101	37.130.192.56	SSL	251 Continuation Data				
	8 0.062965895	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=3919 Win=16409 Len=0 TSval=2564720911 TSecr=459238651				
	9 0.068190630	192.168.0.101	37.130.192.56	SSL	251 Continuation Data				
	10 0.071763862	192.168.0.101	37.130.192.56	SSL	1166 Continuation Data				
	11 0.078911389	192.168.0.101	37.130.192.56	SSL	1166 Continuation Data				
	12 0.081799093	192.168.0.101	37.130.192.56	SSL	1166 Continuation Data				
	13 0.084309028	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=5204 Win=16409 Len=0 TSval=2564720916 TSecr=459238696				
	14 0.086568424	192.168.0.101	37.130.192.56	SSL	251 Continuation Data				
	15 0.092131347	192.168.0.101	37.130.192.56	SSL	1167 Continuation Data				
	16 0.095113072	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=7404 Win=16409 Len=0 TSval=2564720919 TSecr=459238707				
	17 0.097309918	192.168.0.101	37.130.192.56	SSL	1167 Continuation Data				
	18 0.102466981	192.168.0.101	37.130.192.56	SSL	1167 Continuation Data				
	19 0.103855521	192.168.0.101	37.130.192.56	SSL	251 Continuation Data				
	20 0.105557825	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=8690 Win=16409 Len=0 TSval=2564720921 TSecr=459238714				
	21 0.115427478	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=10892 Win=16409 Len=0 TSval=2564720924 TSecr=459238725				
	22 0.129281134	192.168.0.101	37.130.192.56	SSL	251 Continuation Data				
	23 0.142010470	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=11262 Win=16409 Len=0 TSval=2564720930 TSecr=459238732				
	24 0.147566446	192.168.0.101	37.130.192.56	SSL	239 Continuation Data				
	25 0.156419071	192.168.0.101	37.130.192.56	SSL	172 Continuation Data				
	26 0.165508684	192.168.0.101	37.130.192.56	SSL	236 Continuation Data				
	27 0.169146003	37.130.192.56	192.168.0.101	TCP	66 443 → 60000 [ACK] Seq=1 Ack=11541 Win=16409 Len=0 TSval=2564720937 TSecr=459238775				
	28 0.169428717	192.168.0.101	37.130.192.56	SSL	1190 Continuation Data				
	29 0.169472359	37.130.192.56	192.168.0.101	SSL	132 Continuation Data				
	30 0.169472457	37.130.192.56	192.168.0.101	SSL	172 Continuation Data				
	31 0.169510260	192.168.0.101	37.130.192.56	TCP	66 60000 → 443 [ACK] Seq=12835 Ack=173 Win=501 Len=0 TSval=459238797 TSecr=2564720937				
	32 0.170283656	192.168.0.101	37.130.192.56	SSL	132 Continuation Data				

Рис. 2. Захваченный трафик ВПЗ

Анализ распределения межпакетных интервалов и размера пакетов

На основе собранного трафика были получены табличные функции распределения межпакетных интервалов и размеров пакеты. Построим графики функций, на которых по оси X отложены интервалы/размеры пакетов, а по оси Y — значение функции распределения.

Для Skype-трафика:

Рис. 3. Функция распределения межпакетного интервала Skypeтрафика

Рис. 4. Функция распределения размера пакетов Skype-трафика Для трафика Webinar.ru:

Рис. 5. Функция распределения межпакетного интервала трафика Webinar.ru

Рис. 6. Функция распределения размера пакетов трафика Webinar.ru

Нахождение минимально возможной пропускной способности

Для дисциплин обслуживания FIFO (БП), PQ (ОП), WFQ (взвешенная справедливая очередь) были проведены эксперименты, в ходе которых постепенно изменялась пропускная способность канала связи до тех пор, пока не будет найдена минимальная, при которой характеристики QoS каждого вида трафика соответствуют нормам ITU-T Y.1541.

Согласно ITU-Т Y.1541, для трафика Skype допустима задержка 100 мс, джиттер 50 мс, вероятность потери 0.001 (0.1%). Для ВПЗ трафика допустима задержка 1 с, вероятность потерь 0.001.

FIFO

Для исходных данных (S = 7 килобайт, N = 7 Мбит/с) с дисциплиной обслуживания FIFO (БП) были получены неудовлетворительные результаты — задержка соответствует нормам, но допустимая вероятность потери значительно превышена:

Параметры

```
закон распределения интервалов между поступлениями пакетов Т, мин=0.1, мода=0.2, макс=0.3 мс Т, мин=0.3, мода=0.4, макс=0.5 мс закон распределения размеров пакетов Т, мин=100, мода=728, макс=200 байт Т, мин=45, мода=728, макс=1500 байт пропускная способность канала связи С, Кбит/с 7,000 дисциплина обслуживания ДО вп мемсеть накопителя Е, байт
```

Характеристики

```
загрузка р
0.536 +- 0.002
вероятность потери т
0.06 +- 1.591E-5
среднее время ожидания W, мс
2.151 +- 0.009
среднее время пребывания U, мс
3.038 +- 0.009
текущая длина очереди, пакетов
0
средняя длина очереди I, пакетов
1.301 +- 0.006
```

Рис. 7. Полученные значения характеристик с ДО FIFO при N = 7

В ходе эксперимента было проведено увеличение пропускной способности канала до момента нахождения минимальной скорости С = 215Мбит/с, при которой вероятность потери равна максимально допустимому значению 0.001:

Параметры

```
закон распределения интервалов между поступлениями пакетов Т, мин=0.1, мода=0.2, макс=0.3 мс Т, мин=0.3, мода=0.4, макс=0.5 мс закон распределения размеров пакетов Т, мин=100, мода=728, макс=200 байт Т, мин=45, мода=728, макс=1500 байт пропускная способность канала связи С, Кбит/с 215,000 дисциплина обслуживания ДО 6П емкость накопителя E, байт 7,000
```

Характеристики

```
загрузка р

0.019 +- 4.21E-4
вероятность потери т

0.001 +- 5.569E-7
среднее время ожидания W, мс

0.021 +- 1.432E-4
среднее время пребывания U, мс

0.05 +- 1.672E-4
текущая длина очереди, пакетов

0
средняя длина очереди I, пакетов

0.013 +- 5.602E-4
```

Рис. 8. Полученные значения характеристик с ДО FIFO при N = 215

По полученным в ходе эксперимента значениям были построены графики зависимости задержки и вероятности потери от пропускной способности:

Рис. 9. Зависимость задержки от пропускной способности (ДО FIFO)

Рис. 10. Зависимость вероятности потери от пропускной способности (ДО FIFO)

Полученные графики позволяют сделать вывод о том, что увеличение пропускной способности влияет на характеристики нелинейно: каждое последующее изменение характеристик требует большего увеличения C.

PQ

Для исходных данных с дисциплиной обслуживания PQ (ОП) также были получены неудовлетворительные результаты (задержка в пределах нормы, но допустимая вероятность потери значительно превышена):

Рис. 11. Полученные значения характеристик с ДО PQ при N = 7

В ходе эксперимента было проведено увеличение пропускной способности канала до момента нахождения минимальной скорости С = 215Мбит/с, при которой вероятность потери равна максимально допустимому значению 0.001:

Рис. 12. Полученные значения характеристик с ДО PQ при N = 215

По полученным в ходе эксперимента значениям были построены графики зависимости задержки и вероятности потери от пропускной способности:

Рис. 13. Зависимость задержки от пропускной способности (ДО РQ)

Рис. 14. Зависимость вероятности потери от пропускной способности (ДО PQ)

Полученные результаты позволяют сделать вывод о том, что увеличение пропускной способности сильнее отражается на низкоприоритетном трафике: пакеты меньшее время находятся в накопителе, ожидая обработку более требовательного трафика.

WFO

Дисциплина обслуживания WFQ (взвешенная справедливая очередь) подразумевает присвоение каждому классу веса, согласно которому выбираются пакеты для передачи. Согласно варианту, разница между приоритетами K = 2, следовательно, более требовательному классу установлен вес w1 = 0.67, а менее требовательному — w2 = 0.33.

Для исходных данных задержка отсутствует, но допустимая вероятность потери значительно превышена:

Рис. 15. Полученные значения характеристик с ДО WFQ (0.67/0.33) при N=7

В ходе эксперимента было проведено увеличение пропускной способности канала до момента нахождения минимальной скорости С = 267Мбит/с, при которой вероятность потери равна максимально допустимому значению 0.001:

Рис. 16. Полученные значения характеристик с ДО WFQ (0.67/0.33) при N=267

В ходе варьирования весов было установлено, что оптимальным является соотношение K = 9 (w1 = 0.9, w2 = 0.1), при котором достаточной является пропускная способность C = 240Мбит/с:

Рис. 17. Полученные значения характеристик с ДО WFQ (0.9/0.1) при N=240

По полученным в ходе эксперимента значениям были построены графики зависимости задержки низкоприоритетного класса (для высокоприоритетного задержка равна 0) и вероятности потери от пропускной способности. На графиках приведены данные для K = 2 и K = 9:

Рис. 18. Зависимость задержки от пропускной способности (ДО WFQ)

Рис. 19. Зависимость вероятности потери от пропускной способности (ДО WFQ)

Полученные результаты позволяют заключить, что увеличение коэффициента соотношения весов K = w1/w2 в ДО WFQ позволяет добиться лучших характеристик QoS для более приоритетного трафика.

Выводы

В ходе выполнения работы были рассмотрены три дисциплины обслуживания — FIFO, PQ, WFQ — для каждой из которых была установлена минимально возможная пропускная способность канала связи, при которой характеристики QoS Skype и ВПЗ трафика соответствуют нормам ITU-T Y.1541.

Поскольку задержка в рассмотренных случаях на порядок ниже, чем норма (100 мс для Skype и 1000 мс для ВПЗ), при сравнительном анализе ДО рассматривается только пропускную способность, которую по условию работы необходимо найти минимально возможную:

Таблица 1. Сравнение ДО

	FIFO	PQ	WFQ
Мин. пропускная способность, Кбит/с	215000	215000	240000
Задержка Skype, мс	0.021	0.028	0
Задержка ВПЗ, мс		0.01	0.018

В ходе работы было установлено, что при исходном размере буфера S равным 7 килобайт соответствующая нормам конфигурация требует канала с пропускной способностью не менее 215Мбит/с, что на практике труднодостижимо и экономически не целесообразно. При решении реальной задачи это может указывать на необходимость пересмотреть изначальное предположение о том, что единственным узким местом системы является пропускная способность канала.

Дисциплина обслуживания WFQ, хотя и обеспечивает наименьшую задержку трафика Skype, является более требовательной к пропускной способности в данной конфигурации, поэтому не может считаться оптимальной.

Сравнивая дисциплины обслуживания FIFO и PQ, можно отметить, что в проведенных экспериментах разница между ними уменьшалась по мере увеличения пропускной способности. FIFO имеет существенный недостаток в том, что трафик не делится на классы, что может привести к недопустимому возрастанию потери более требовательного трафика

при перегрузках. Таким образом, оптимальной дисциплиной обслуживания будем считать PQ.