Αβεβαιότητα και σφάλμα μέτρησης,

Δημήτρης Κουγιουμτζής

10 Μαΐου 2011

Συστηματικά και τυχαία σφάλματα

Διάδοση σφάλματος μέτρησης

Εισαγωγικά

Αβεβαιότητα μέτρησης

Παγκόσμιος Οργανισμός Μέτρων (International Organization for Standards, ISO): μεθοδολογίες για τον καθορισμό μέτρων και σταθμών και αβεβαιότητας των μετρήσεων

Αβεβαιότητα μοντέλου: απλουστευμένο μαθηματικό μοντέλο για μια φυσική διαδικασία που περιέχει παράγοντες που δεν έχουμε συμπεριλάβει στο μοντέλο.

Υπολογιστική (αριθμητική) αβεβαιότητα: αριθμητική επίλυση μαθηματικών εξισώσεων \Rightarrow αβεβαιότητα μοντέλου

Αβεβαιότητα μοντέλου:

δύσκολο να προσδιοριστεί, εύκολο να απαλειφεί.

Αβεβαιότητα μέτρησης:

εύκολο να προσδιοριστεί, δύσκολο να απαλειφεί.

Αβεβαιότητα μοντέλου: πηγάζει από ανεπάρκεια του μοντέλου λόγω έλλειψης γνώσης για τη διαδικασία που μελετάμε σφάλμα του μοντέλου: αναγνωρισμένη ανεπάρκεια που δίνει το μοντέλο όταν το εφαρμόζουμε στην πράξη.

Αβεβαιότητα μέτρησης: σύνολο δυνατών τιμών για μια συγκεκριμένη μέτρηση σφάλμα μέτρησης: διαφορά πραγματικής και παρατηρούμενης τιμής

Συστηματικά και τυχαία σφάλματα

Άλλη μέτρηση \Rightarrow άλλο αποτέλεσμα (πειραματικές αποκλίσεις)

- Συστηματικά σφάλματα: επαναλαμβάνονται και υπάρχει κάποιο αίτιο που τα δημιουργεί.
 Μπορούν να εξουδετερωθούν με βαθμονόμηση
 Τα συστηματικά σφάλματα ορίζουν την ακρίβεια (ορθότητα) μέτρησης. Εκτίμηση παραμέτρων ⇒ μεροληψία.
- Τυχαία σφάλματα δεν επαναλαμβάνονται με το πείραμα αλλά αντιπροσωπεύουν την τυχαιότητα. Τα τυχαία σφάλματα ορίζουν την ακρίβεια επανάληψης.

Αβεβαιότητα στην εκτίμηση της μέσης τιμής

Αβεβαιότητα μέτρησης = εκτίμηση του σφάλματος μέτρησης = τυπική απόκλιση s Όριο της ακρίβειας επανάληψης: για κάθε (επόμενη) μέτρηση σε επίπεδο σημαντικότητας α

$$\bar{x} \pm t_{n-1,1-\alpha/2}s$$

Αβεβαιότητα μέσης τιμής = εκτίμησης σφάλματος για μέση τιμή = σταθερό σφάλμα του μέσου όρου $s_{\overline{x}}=s/\sqrt{n}$ Όριο της ακρίβειας για τη μέση τιμή

$$\bar{x} \pm t_{n-1,1-\alpha/2} s / \sqrt{n}$$

Παράδειγμα: Τάση σε αντιστάτη

Μέτρηση τάσης
$$V$$
 σε έναν αντιστάτη (σε mV) i 1 2 3 4 5 6 7 8 9 10 V_i 123.5 125.3 124.1 123.9 123.7 124.2 123.2 123.7 124.0 123.2

$$\bar{V} = \frac{1}{10} \sum_{i=1}^{10} V_i = 123.880 \text{ mV}$$

 Υ πόθεση: $V \sim \mathit{N}(\mu, \sigma^2) \; \Rightarrow \;$ αβεβαιότητα για κάθε μέτρηση V_i

$$s_V = \sqrt{\frac{1}{10-1} \sum_{i=1}^n (V_i - \bar{V})^2} = 0.607 \text{ mV}.$$

$$V_1 = (123.5 \pm 0.6) \text{mV}, \ V_2 = (125.3 \pm 0.6) \text{mV}, \ \dots, \ V_{10} = (123.2 \pm 0.6) \text{mV}.$$

Παράδειγμα: Τάση σε αντιστάτη (συνέχεια)

Αβεβαιότητα για $ar{V}$

$$s_{ar{V}}=rac{s_V}{\sqrt{10}}=$$
 0.192 mV

$$ar{V} = (123.880 \pm 0.192) \; \mathrm{mV}.$$

Όριο αβεβαιότητας (lpha=0.05) για κάθε νέα μέτρηση

$$ar{V} \pm t_{n-1,1-\alpha/2} s_V = 123.88 \pm t_{9,0.975} \cdot 0.607$$

= $123.88 \pm 2.2622 \cdot 0.607$
= $123.88 \pm 1.373 \text{ mV}$,

Όριο αβεβαιότητας για μέση τιμή μ

$$ar{V} \pm t_{n-1,1-\alpha/2} s_V / \sqrt{n} = 123.88 \pm 2.2622 \cdot 0.607 / \sqrt{10}$$

= 123.88 ± 0.434 mV.

Διάδοση σφάλματος μέτρησης

Έστω ότι γνωρίζουμε X με κάποια αβεβαιότητα σ_X .

$$Y = f(X)$$

Η μεταβολή του Y για κάθε μικρή μεταβολή $\mathrm{d} X$ γύρω από κάποια τιμή x

$$dY \simeq \left(\frac{df}{dX}\right)_{X=x} dX,$$

Έστω d $X=x-ar{x}$ και d $Y=y-ar{y}$

$$\sigma_Y^2 \simeq \left(\frac{\mathrm{d}f}{\mathrm{d}X}\right)_{X=x}^2 \sigma_X^2 \iff \sigma_Y \simeq \left|\frac{\mathrm{d}f}{\mathrm{d}X}\right|_{X=x} \sigma_X$$

Διάδοση σφάλματος μέτρησης (συνέχεια)

Αν Y είναι συνάρτηση των X_1, X_2, \ldots, X_m

$$\sigma_{Y}^{2} \simeq \sum_{i=1}^{m} \left(\frac{\mathrm{d}f}{\mathrm{d}X_{i}}\right)_{X_{i}=x_{i}}^{2} \sigma_{X_{i}}^{2} + 2\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} \left(\frac{\mathrm{d}f}{\mathrm{d}X_{i}}\right)_{X_{i}=x_{i}}^{2} \left(\frac{\mathrm{d}f}{\mathrm{d}X_{j}}\right)_{X_{j}=x_{j}}^{2} \sigma_{X_{i},X_{j}}$$

νόμος διάδοσης των σφαλμάτων

Η σχέση είναι ακριβής μόνο όταν f γραμμική.

Αν X_1, X_2, \ldots, X_m ανεξάρτητες

$$\sigma_{Y} \simeq \sqrt{\sum_{i=1}^{m} \left(\frac{\mathrm{d}f}{\mathrm{d}X_{i}}\right)_{X_{i}=x_{i}}^{2} \sigma_{X_{i}}^{2}}$$

f γραμμική

$$Y = \sum_{i=1}^{m} a_i X_i = \mathbf{a}^\mathsf{T} \mathbf{X}$$

 $\mathbf{a} = [a_1, a_2, \dots, a_m]^\mathsf{T}$, $\mathbf{X} = [X_1, X_2, \dots, X_m]^\mathsf{T}$. Πίνακας συνδιασποράς

$$\Sigma = \begin{bmatrix} \sigma_{X_1}^2 & \sigma_{X_1, X_2} & \dots & \sigma_{X_1, X_m} \\ \sigma_{X_2, X_1} & \sigma_{X_2}^2 & \dots & \sigma_{X_2, X_m} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{X_m, X_1} & \sigma_{X_m, X_2} & \dots & \sigma_{X_m}^2 \end{bmatrix}.$$

f γραμμική (συνέχεια)

Η διασπορά της Υ είναι

$$\sigma_Y^2 = \sum_{i=1}^m \sum_{i=1}^m a_i \sigma_{X_i, X_j} a_j = \mathbf{a}^\mathsf{T} \Sigma \mathbf{a}.$$

 $ho_{X_i,X_j} = \sigma_{X_i,X_j}/(\sigma_{X_i}\sigma_{X_j})$: συντελεστής συσχέτισης των X_i και X_j

$$\sigma_{\mathsf{Y}}^2 = \sum_{i=1}^m a_i \sigma_{\mathsf{X}_i}^2 + 2 \sum_{i=1}^{m-1} \sum_{j=i+1}^m a_i a_j \rho_{\mathsf{X}_i, \mathsf{X}_j} \sigma_{\mathsf{X}_i} \sigma_{\mathsf{X}_j}.$$

Αν X_1, X_2, \ldots, X_m ανεξάρτητες

$$\sigma_Y^2 = \sum_{i=1}^m a_i \sigma_{X_i}^2.$$

σχετική αβεβαιότητα : σ_X/X

Παράδειγμα: Νόμος του Ωμ

Νόμος του Ω μ: R=V/I,

- I: ένταση ρεύματος στον αντιστάτη με αβεβαιότητα σ_I
- ightharpoonup V: τάση ρεύματος στον αντιστάτη με αβεβαιότητα σ_V
- ightharpoonup R: αντίσταση με αβεβαιότητα σ_R

$$\sigma_R = \sqrt{\left(\frac{\sigma_V}{I}\right)^2 + \left(\frac{V}{I^2}\sigma_I\right)^2} = R\sqrt{\left(\frac{\sigma_V}{V}\right)^2 + \left(\frac{\sigma_I}{I}\right)^2}.$$

Σχετική αβεβαιότητα σ_R/R : τετραγωνική ρίζα του αθροίσματος των τετραγώνων των σχετικών αβεβαιοτήτων της έντασης και τάσης.