QUANTUM MECHANICS 2 - WORKSHOP 4

The common eigenfunctions of the angular momentum operators L^2 and L_z are the spherical harmonics, Y_{lm} , which satisfy

$$L^2Y_{lm} = l(l+1)\hbar^2Y_{lm}$$

and

$$L_z Y_{lm} = m\hbar Y_{lm}.$$

The associated ladder operators are $L_{+}=L_{x}+iL_{y}$ and $L_{-}=L_{x}-iL_{y}$ for which

$$L_{+}Y_{lm} = (L_{x} \pm iL_{y})Y_{lm} = A_{lm+}Y_{lm+1},$$

where $A_{lm\pm}$ is a constant which depends on l,m and which of L_+ or L_- we are using. So for example

$$L_{-}Y_{22} = A_{22} - Y_{21}.$$

- a) Use the definitions above to explicitly show that $[L^2, L_z]Y_{lm} = 0$. If the observable L^2 is measured to be $30\hbar^2$, what are the possible values of a measurement of L_z ?
- b) Show that $L_x = \frac{1}{2}(L_+ + L_-)$. Use this, together with the orthornormal properties of wavefunctions, to calculate $\langle L_x \rangle$ for any spherical harmonic Y_{lm} .
- c) Give a general argument showing that the eigenfunctions of L_+L_- are $\propto Y_{lm}$. Rewrite L_+L_- in terms of $L^2=L_x^2+L_y^2+L_z^2$ and L_z remembering

$$[L_x, L_y] = i\hbar L_z.$$

Hence write down the eigenvalues of L_+L_- . Show explicitly that this is consistent with $A_{lm\pm} = \hbar\sqrt{(l(l+1)-m(m\pm1))}$, i.e. $A_{lm-} = \hbar\sqrt{(l(l+1)-m(m-1))}$ and $A_{lm+} = \hbar\sqrt{(l(l+1)-m(m+1))}$.

d) Use the definition of L_x in b) above and the definition of $A_{lm\pm}$ in c) above to find the values of the coefficients a, b, c in order that $L_x\psi = \hbar q\psi$ for $\psi = aY_{11} + bY_{10} + cY_{1-1}$ Solve this explicitly to find the normalised eigenfunctions of L_x for q = 1, 0, -1.