

Coherence as a Resource for Shor's Algorithm

<u>Felix Ahnefeld*</u>, Thomas Theurer, Dario Egloff, Juan Mauricio Matera, Martin B. Plenio*

*Institute of Theoretical Physics
Ulm University

Quantum Resources 2022

Phys. Rev. Lett. 129, 120501 (2022)

Coherence as a Resource for Shor's Algorithm

<u>Felix Ahnefeld*</u>, Thomas Theurer, Dario Egloff, Juan Mauricio Matera, Martin B. Plenio*

*Institute of Theoretical Physics
Ulm University

Quantum Resources 2022

Phys. Rev. Lett. 129, 120501 (2022)

Factoring à la Shor

Factor N via order finding of r: $U^r = 1$

Factoring à la Shor

Factor N via finding the order r: $U^r = 1$

Coherence

$$\mathcal{N} \in \mathcal{MIO}: \quad \mathcal{N}\Delta = \Delta \mathcal{N}\Delta$$

Åberg, arXiv: 0612146 (2006) Liu et al, PRL 118, 060502 (2017) García Díaz et al, Quantum 2, 100 (2018)

Incoherent states ${\cal I}$

$$\sigma \in \mathcal{I}: \quad \Delta(\sigma) = \sigma$$

Coherence

Free operations

$$\mathcal{N} \in \mathcal{MIO}: \quad \mathcal{N}\Delta = \Delta \mathcal{N}\Delta$$

Åberg, arXiv: 0612146 (2006) Liu et al, PRL 118, 060502 (2017) García Díaz et al, Quantum 2, 100 (2018)

Incoherent states ${\cal I}$

$$\sigma \in \mathcal{I}: \quad \Delta(\sigma) = \sigma$$

$$\mathcal{M} \in \mathcal{DI}: \quad \Delta \mathcal{M} = \Delta \mathcal{M} \Delta$$

Liu et al, PRL 118, 060502 (2017) Theurer et al, PRL 122, 190405 (2019)

Incoherent measurements \mathcal{IM}

$$\mathbb{M} \in \mathcal{IM}$$
:

$$\operatorname{Tr}\left[M_n\Delta(\rho)\right] = \operatorname{Tr}\left[M_n\rho\right] \quad \forall \rho, M_n$$

Coherence

Free operations

$$\mathcal{N} \in \mathcal{MIO}: \quad \mathcal{N}\Delta = \Delta \mathcal{N}\Delta$$

Åberg, arXiv: 0612146 (2006) Liu et al, PRL 118, 060502 (2017) García Díaz et al, Quantum 2, 100 (2018)

Incoherent states \mathcal{I}

Vidal and Tarrach, PRA 59, 141 (1999) Napoli et al, PRL 116, 150502 (2016)

$$\sigma \in \mathcal{I}: \quad \Delta(\sigma) = \sigma$$

$$\mathcal{M} \in \mathcal{DI}: \quad \Delta \mathcal{M} = \Delta \mathcal{M} \Delta$$

Liu et al, PRL 118, 060502 (2017) Theurer et al, PRL 122, 190405 (2019)

Incoherent measurements \mathcal{IM}

$$\mathbb{M} \in \mathcal{IM}$$
:

$$\operatorname{Tr}\left[M_n\Delta(\rho)\right] = \operatorname{Tr}\left[M_n\rho\right] \quad \forall \rho, M_n$$

$$\mathscr{C}(\mathcal{N}) = \max_{\sigma \in \mathcal{I}} C(\mathcal{N}(\sigma))$$
$$C(\rho) = \min_{\tau} \left\{ r \ge 0 \mid \frac{\rho + r\tau}{1 + r} \in \mathcal{I} \right\}$$

$$\mathscr{D}(\mathcal{M}) = \min_{\mathcal{D} \in \mathcal{DI}} \max_{\rho} ||\Delta(\mathcal{M} - \mathcal{D})\rho||_{1}$$

Theurer et al, PRL 122, 190405 (2019)

A level playing field

A level playing field

A level playing field

Bounds on success probability

Optimal usage of resources by maximizing over all free super-channels, free states and free measurements

Result 1: For coherence creating channels $\mathcal N$ and unital detection channels $\mathcal M$

$$P^{\mathrm{succ}}(\mathcal{N}, \mathcal{M}) \ge c(r) \left[\frac{1 + \mathscr{C}(\mathcal{N})\mathscr{D}(\mathcal{M})}{2} \right]^L$$

Bounds on success probability

Optimal usage of resources by maximizing over all free super-channels, free states and free measurements

Result 1 & 2: For coherence creating channels $\mathcal N$ and unital detection channels $\mathcal M$

$$P^{\mathrm{succ}}(\mathcal{N}, \mathcal{M}) \ge c(r) \left[\frac{1 + \mathscr{C}(\mathcal{N}) \mathscr{D}(\mathcal{M})}{2} \right]^{L}$$

&

$$P^{\text{succ}}(\mathcal{N}, \mathcal{M}) \leq C(L, r) \left\lceil \frac{1 + \mathscr{C}(\mathcal{N})\mathscr{D}(\mathcal{M})}{2} \right\rceil^{L}$$

Free limit

No coherence; no entanglement generation

Free limit

No usage of coherence in this protocol; no entanglement generation

$$[C(L,r) - \tilde{c}(L,r)] \frac{1}{2^L} \le P^{\text{succ}}(\mathcal{N}_{\text{free}}, \mathcal{M}_{\text{free}}) \le C(L,r) \frac{1}{2^L}$$

$$c(r) \left[\frac{1 + \mathscr{C}(\mathcal{N}) \mathscr{D}(\mathcal{M})}{2} \right]^{L} \leq P^{\text{succ}}(\mathcal{N}, \mathcal{M}) \leq C(L, r) \left[\frac{1 + \mathscr{C}(\mathcal{N}) \mathscr{D}(\mathcal{M})}{2} \right]^{L}$$

Conclusion

- ♦ Coherence as a resource bounds performance
- Creation and detection on equal footing by optimal usage

$$P^{\text{succ}}(\mathcal{N}, \mathcal{M}) \sim \left[\frac{1 + \mathscr{C}(\mathcal{N})\mathscr{D}(\mathcal{M})}{2}\right]^{L}$$

(for a algorithms with a fixed structure)

- ♦ Generalizations to other (factorization) algorithms?
- ♦ Interplay with other resources?

Phys. Rev. Lett. 129, 120501 (2022)

Thank you!

Success probability and post-processing

Optimizing over free states, measurements and super-channels gives

$$P^{\text{succ}}(\mathcal{N}, \mathcal{M}) = \max_{\substack{\sigma \in \mathcal{I} \\ \mathbb{M} \in \mathcal{IM}}} \max_{\substack{S_1 \in \mathcal{MIOS} \\ S_2 \in \mathcal{DIS}}} \sum_{k} P(k \to r \mid \text{CFA}) p_k(S_1[\mathcal{N}], S_2[\mathcal{M}]; \sigma, \mathbb{M})$$

Precise bounds

Lower Bound: For creating operations \mathcal{N} and unital detection operations \mathcal{M}

$$P^{\mathrm{succ}}(\mathcal{N}, \mathcal{M}) \ge \frac{4}{\pi^2} \left(\frac{\varphi(r)}{r} \right) \left[\frac{1 + \mathscr{C}(\mathcal{N})\mathscr{D}(\mathcal{M})}{2} \right]^L.$$

Upper Bound: For creating operation \mathcal{N} and unital detecting operation \mathcal{M}

$$P^{\text{succ}}(\mathcal{N}, \mathcal{M}) \le \varphi(r) \left(1 + 2 \left\lfloor \frac{2^L}{r^2} \right\rfloor \right) \left[\frac{1 + \mathscr{C}(\mathcal{N})\mathscr{D}(\mathcal{M})}{2} \right]^L$$