

결정트리의 최대 단점!!

과적합(오버피팅)이 너무 잘 일어난다!!

Over-fitting

앙상블 학습 (Ensenble Learning)

여러 개의 약한 분류기(Classifier)를 생성하고, 그 예측을 결합함으로써 보다 정확한 최종 예측을 도출하는 기법

Ensenbles (앙상블) (1)—보팅(Voting)

서로 다른 ML 알고리즘으로 여러 개의 분류기를 생성하고, 투표 (Vote)를 통해 최종 예측 결과를 결정하는 방식

사이킷런에서는 VotingClassifier 클래스로 제공됨

하드보팅(Hard Voting)과 소프트보팅(Soft Voting)

하드 보팅(Hard Voting) – 분류기 간 다수결로 최종 분류 값 예측

소프트 보팅(Soft Voting) – 분류기들의 분류 확률들을 평균 내어 최종 분류 값 예측 생존

Ensenbles (앙상블) (2) – 배깅(Bagging)

여러 개의 분류기가 투표를 통해 최종 예측 결과를 결정

- 분류기는 모두 같은 유형의 알고리즘 기반
- 각각의 분류기는 서로 다른 데이터로 학습 (부트스트랩)
- 가장 대표적인 것은 RandomForest 알고리즘

RandomForest의 주요 인자

n_estimators: integer, optional (default=10)

결정 트리의 개수. 값이 클수록 좋은 성능을 기대할 수 있지만, 학습 시간이 오래 걸림

The number of trees in the forest.

criterion : string, optional (default="gini")

The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. Note: this parameter is tree-specific.

max_features : int, float, string or None, optional (default="auto")

기본 값이 auto → sqrt(# of features)

The number of features to consider when looking for the best split:

- · If int, then consider max_features features at each split.
- If float, then max_features is a percentage and int(max_features *
 n_features) features are considered at each split.
- If "auto", then max_features=sqrt(n_features).
- If "sqrt", then max_features=sqrt(n_features) (same as "auto").
- If "log2", then max_features=log2(n_features).
- If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than <code>max_features</code> features.

max depth: integer or None, optional (default=None)

The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.

bootstrap: boolean, optional (default=True) Bootstrap 사용 여부

Whether bootstrap samples are used when building trees.

n_jobs integer, optional (default=1) 병렬 처리할 job의 수

The number of jobs to run in parallel for both fit and predict. If -1, then the number of jobs is set to the number of cores.

모델의 성능에는 영향 X 학습 시간에 영향 O

그 외에 min_samples_leaf, min_samples_split 등 결정 트리에 서 과적합을 개선하기 위한 하이퍼 파라미터들을 동일하게 적용 가능

Ensembles (앙상블) (3) - 부스팅(Boosting)

이전 트리의 오차를 보완하는 방식으로 순차적으로 트리를 개선시키는 방식

- 여러 개의 분류기가 순차적으로 학습을 수행
- 이전 분류기에서 예측이 틀렸던 데이터를 올바르게 예측할 수 있도록 다음 분류기에게는 가중치(weight)를 부여하면서 학습
- 예측 성능이 뛰어나지만 병렬 처리가 힘들어 학습 속도가 매우 느림
- Bagging에서 데이터를 단순히 샘플링해서 각 모델에 적용다면,
- Boosting은 이전 모델들이 예측하지 못한 Error 데이터에 가증 치를 부여하여, 다음 모델이 더 잘 예측하도록 한다.

Boosting 알고리즘들

알고리즘	특징	
AdaBoost	• 다수결을 통한 정답 분류 및 오답에 가중치 부여	→ Scikit-learn
GBM	• Loss Function의 gradient를 통해 오답에 가중치 부	에서 제공 4 여
Vahoost	• GBM 대비 성능향상	
Xgboost	 시스템 자원 효율적 활용 (CPU, Mem) Kaggle을 통한 성능 검증 (많은 상위 랭커가 사용) 	- Scikit-learn에서 제공X - 별도의 라이브러리 설치 - 최근 가장 많이 활용되
	Xgboost 대비 성능향상 및 자원소모 최소화	- 되는 가장 많이 필융되 는 boosting 방법들
Light GBM	• Xgboost가 처리하지 못하는 대용량 데이터 학습 가	능
	• Approximates the split (근사치의 분할)을 통한 성	능 향상

GBM(Gradient Boosting Machine) 하이퍼 파라미터 튜닝

파라미터명[기본값]	설명
loss [deviance]	경사 하강법에서 사용할 비용함수 지정. 특별한 이유가 없다면 기본값 사용
learning_rate [0.1]	GBM이 학습을 진행할 때마다 적용하는 학습률. (0부터 1사이의 값) - 오류값을 보정해 나가는 속도 값이 작으면 예측성능이 높아질 가능성이 높으나, 학습 시간이 오래 걸림 값이 너무 작으면 weak learner의 반복이 완료되어도 최소 오류 값을 찾지 못할 수 있음 값이 크면, 최소 오류값을 찾지 못하고 그냥 지나쳐 버려 예측 성능이 떨어질 가능성이 높으나, 학습 속도가 빠름.
n_estimators [100]	weak learner의 개수. - 값이 클수록 예측 ㅓㅅㅇ능이 일정 수준까지는 좋아질 수 있으나, 학습 시간이 오래 걸림
Subsample [1]	Weak learne가 학습에 사용할 데이터의 샘플링 비율 기본값 = 1: 전체 학습 데이터를 기반으로 학습 - 과적합이 우려되는 경우, 1보다 작은 값으로 설정하는 것을 권장함.

Random Forest(Bagging)와 GBM(Boosting) 방법 비교

	Random Forest (Bagging)	GBM (Boosting)
장점	 ✓ 모델 성능이 뛰어남. ✓ 파라미터 최적화를 많이 하지 않 아도 훌륭한 성능을 보장 ✓ 병렬 처리 ✓ 데이터 스케일을 맞출 필요도 없음 	 ✓ 지도 학습에서 가장 강력하고 널리 사용되는 모델 중하나 ✓ 데이터 스케일을 맞출 필요도 없음 ✓ 파라미터 최적화 시, 매우 훌륭한 성능
단점	✔ 메모리 사용량이 많음.	 ✓ 파라미터 최적화가 필수. (미 최적화 시, 성능 보장 X) ✓ 학습 시간이 김. ✓ 병렬 처리가 어려움

XGBoost (eXtreme Gradient Boost)

트리 기반의 앙상블 학습에서 최근 가장 각광받고 있는 알고리즘

- Kaggle에서 상위 데이터 과학자들이 많이 활용하면서 널리 알려짐
- GBM 기반으로 구현 & GBM 문제점 해결
- 핵심 라이브러리는 C/C++로 구현. 패키지명은 xgboost.
- 출시 초기에는 scikit-learn과 호환되지 않아, scikit-learn에서 제공해 주는 다양한 유틸리티 기능과 함께 사용 X
- 지금은 scikit-learn과 연동 가능한 래퍼 클래스(Warpper Class)를 제공. 클래스명은 XGBClassifier, XGBRegressor.

뛰어난 예측 성능	- 분류와 회귀 영역에서 뛰어난 예측 성능 발휘	
GBM 대비 빠른 수행 시 간	- 일반적인 GBM은 순차적으로 weak learne가 가중치를 증감하는 방법으로 학습하기 때문에 병렬 수행이 불가능하여 학습 속도가 느림 - XGBoost는 병렬 수행 및 다양한 기능으로 빠른 학습 성능 보장. (GBM 대비 빠른 것이지, 결정트리, 랜덤포레스트 등 타 ML 알고리즘에 비해서는 느림)	
과적합 규제	- 일반적인 GBM은 과적합 규제 기능 x	
나무 가지치기 (Tree Pruning)	- 일반적인 GBM은 분할 시 부정 손실이 발생하면, 분할 수행 X. (부정 손실이란 트리를 분할하면 오히려 엔트로피나 지니지수와 같은 정보 이득이 줄어듬을 의미함.) - XGBoost는 max_depth까지 진행한 뒤 loss function 에서의 개선이 일정 threshold에 못미칠 경 우까지 역방향으로 pruning과정을 수행.	
자체 내장된 교차 검증	- 반복 수행 시마다 내부적으로 교차검증을 수행 - 조기 중단 기능 있음. (지정된 반복 횟수가 아니라 교차검증을 통해 최적화되면 반복을 멈춤)	
결손값 자체 처리	결손값을 자체 처리할 수 있는 기능	

XGBoost Parameters - 일반 파라미터 (General parameters)

파라미터명[기본값]	설명
booster [gbtree]	모델의 종류
	- gbtree: tree-based models
	- gblinear: linear models
silent [0]:	메시지 출력 여부. If Silent = 1, 로그 출력 X
nthread [CPU의 전체 스	- CPU의 실행 스레드 개수
 레드 사용]	- 병렬 처리를 위한 인자
	- 미 설정 시, 자동으로 시스템에서 사용할 수 있는 최대의 CPU를 사용함.
	- 전체 CPU를 사용하지 않고, 일부만 사용해 ML애플리케이션 구동 시에 변경

공식 사이트: https://xgboost.readthedocs.io/en/latest/parameter.html
XGBoost 최적화 관련 : https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/

XGBoost Parameters - 부스터 파라미터 (Booster parameters)

파라미터명 [기본값]	설명
learning_rate (eta) [0.3]	- learning rate와 동일. XGBClassifier를 이용할 경우, learning_rate 인자로 사용 각 스텝 별로 weight를 감소시키는 정도. 클수록 빨리 감소시킴 0과 1 사이의 값 지정 가능. 일반적으로 [0.01, 0.2] 정도로 설정
min_child_weight [default=1]	- Child의 weights의 최소 합 - 더 높은 값을 설정할수록, overfitting을 방지함. - 하지만 너무 높은 값으로 설정하면 under-fitting 발생
max_depth [default=6]	트리의 최대 Depth Typical values: [3, 10]
min_split_loss(gamma) [default=0]	- 트리의 리프 노드를 추가적으로 확장(분할)할 것인지 결정할 최소 손실 감소 값. - 해당 값보다 큰 손실(loss)이 감소된 경우, 리프 노드 분리 - 값이 클수록 과적합 방지.
sub_sample(subsample) [default=1]	- 트리 확장 시, 고려되는 샘플의 비율 - Overfitting 발생 시, 이 값을 낮추면 overfitting을 방지할 수 있다. - 너무 낮은 값은 under fitting 유발할 가능성이 있음.
colsample_bytree[default=1]	- Max_features와 동일 - 보통 0.5~ 1 설정
reg_lambda(lambda) [default=1]	- L2 regularization 적용값 - 피처 개수가 많을 경우 검토. 자주 사용되진 않음. - 과적합 감소 효과
reg_alpha(alpha) [default=0]	- L1 regularization 적용값 - 피처 개수가 많을 경우 검토. - 과적합 감소 효과

XGBoost Parameters — 학습 파라미터 (Learning Task parameters)

파라미터명	설명
objective [default=reg:squarederror]	손실 함수(Loss function) 을 정의. 주로 이진/다중 분류 여부에 따라 선택 reg:squarederror: regression with squared loss - binary:logistic —logistic regression for binary classification, returns predicted probability (not class) - multi:softmax —multiclass classification using the softmax objective, returns predicted class (not probabilities) - multi:softprob —same as softmax, but returns predicted probability of each data point belonging to each class
eval_metric [default: rmse for regression error for classification]	검증에 사용되는 함수를 정의 rmse: root mean square error - mae: mean absolute error - logloss: negative log-likelihood - error: Binary classification error rate (0.5 threshold) - merror: Multiclass classification error rate - mlogloss: Multiclass logloss - auc: Area under the curve
seed [default=0]	랜덤 값 생성을 위한 Seed값

XGBoost의 과적합 개선 팁.

과적합을 방지하는 방법은 학습 모델을 단순화 하는 방향으로 하이퍼 파라미터 튜닝

- learning_rate 값은 낮춤과 함께 n_estimators는 높여줌.
- max_depth 값을 낮춤
- min_child_weight 값을 높임
- min_split_loss 값을 높임
- sub_sample 값을 줄임
- colsample_bytree 값을 줄임