Es02B:Circuito RC - Filtri passivi

Gruppo 1.BN Massimo Bilancioni, Alessandro Foligno

4 ottobre 2018

1 Filtro Passa-basso

1.1

I valori misurati sono: $R_1=(3.24\pm0.03)\mathrm{k}\Omega$ e $C_1=(9.7\pm0.4)\mathrm{nF}.$

a) La frequenza di taglio teorica è $f_T = 1/2\pi R_1 C_1$ che in base ai valori viene $f_T = 5.09 \pm 0.21)$ kHz b) A bassa frequenza la funzione di guadagno vale

$$1 - \frac{f^2}{2ft^2}$$

dove la condizione è

$$2\pi RCf \ll 1$$

c)A 2kHz il guadagno vale

$$A = 0.93 \pm 0.01$$

d)A 20kHz il guadagno vale

$$A = 0.24 \pm 0.01$$

. Notiamo che già non siamo più nel regime di basse frequenze per usare la formula del punto b).

1.2

2.b Partitore con resistenze da circa 1 k Ω Valori misurati R_1 e R_2 e valore atteso di $A_{\rm exp}$:

$$R_1 = (0.988 \pm 0.008) \,\mathrm{k}\Omega, \quad R_2 = (1.187 \pm 0.01) \,\mathrm{k}\Omega, \quad A_\mathrm{exp} = (0.544 \pm 0.002) \,\mathrm{k}\Omega$$

1.3

La misura del tempo di salita è $t_{sal}=(70\pm5)\mu s$

$$f_t = \frac{1.1}{\pi t_{sal}} = (5.00 \pm 0.36) \text{kHz}$$

1.4

- a) l'impedenza di ingresso del circuito è
 - a bassa frequenza infinita, è un circuito aperto per la presenza del condensatore.
 - ad alta frequenza $Z_{circuito} \sim R_1$, perchè l'impedenza del condensatore è trascurabile
 - alla frequenza di taglio $Z_{circuito} = R_1(1-j)$.
- b) Se R_c è la resistenza di carico e A_1 la funzione di trasferimento del passa-basso senza il carico, la nuova funzione di trasferimento diventa:

$$A_{1c} = v_{out}/v_{in} = \frac{A_1}{1 + \frac{R_1}{R_c} A_1}$$

Si vede che $A_{1c} \sim A_1$ nel limite in cui $R_1 \ll R_c$, che risulta ragionevolmente vero per $R_c = 100 \mathrm{k}\Omega$. Nel caso in cui $R_c = 10 \mathrm{k}\Omega$, A_{1c} è sensibilmente diversa:

 $\max |A_{1c}| = \frac{1}{1+R_1/R_C} = 0.755$ (il guadagno massimo è minore di 1) e la frequenza di taglio aumenta $f_{tc} = 1.18 f_t$.

2 Filtro Passa-banda

2.1

Ivalori di R_1 e C_1 sono quelli della sezione 1.1, mentre i valori misurati di C_2 e R_2 sono $R_2=(3.28\pm0.03)$ k Ω e $C_2=(102\pm4)$ nF

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.