CONTENT ANALYSIS DICTIONARIES 2

William Lowe

Hertie School

28th September 2020

SOLUTIONS: SOME THEOLOGICAL APPROACHES

SOLUTIONS: SOME THEOLOGICAL APPROACHES

How bad is it?

- → Recall: the proportion of words used that way that are in your dictionary
- → Precision: the proportion of words used the way your dictionary assumes they are used

Precision and recall

Every field reinvents this distinction:

- → precision and recall
- → specificity and sensitivity
- → users and producer's accuracy
- → type 1 and type 2 error
- → sins of omission and sins of commission

PRECISION

Keyword in context analyses (KWIC) allow you to scan all contexts of a word

→ How many of them *are* the sense or usage you want?

Let's take a look at benefit* as a 'pro government intervention in the economy' word

	pre	keyword	post
1	also keep all the other	benefits	that pensioners currently receive,
2	regulation will have to have	benefits	exceeding costs, and regulations
3	and Controlled Immigration Britain has	benefited	from immigration . We all
4	positive contribution But if those	benefits	are to continue to flow
5	Northern Ireland brings	benefits	to all parts of our
6	their home, will also	benefit	first-time buyers . Empowering individuals
7	you help yourself; you	benefit	and the country benefits .
8	you benefit and the country	benefits	. So now , I
9	result of our tax and	benefit	measures compared to 1997.
10	result of personal tax and	benefit	measures introduced since 1997,
11	, the savings on unemployment	benefits	will go towards investing more
12	trebled the number on incapacity	benefits	. We will help 17
13	Work programme and reform Incapacity	Benefit	, with the main elements
14	main elements of the new	benefit	regime in place from 2008
15	stronger penalties . To the	benefit	of business and household consumers
16	effective directive to provide real	benefits	to consumers and new opportunities
17	better.We are examining the potential	benefits	of a parallel Expressway on
18	ways to lock in the	benefit	of new capacity . We
19	are determined to spread the	benefits	of enterprise to every community
20	to get ahead , to	benefit	from improving public services

PRECISION

Of the 20 instances, these are (arguably)

- → 6 used the way we expect from the topic
- → 3 used in the opposite sense: anti-government intervention in the economy
- → 11 used in ways that are neither

So...0.3 correct, 0.15 mistaken, and 0.55 unrelated 'noise'

→ Perhaps not an amazing choice

There are two kinds of precision failures here with different consequences

- → Mistaking an *topic-unrelated* word for this topic (11 of these)
- → Mistaking a word used in the sense of a *different* topic for this one (3 of these)

The first mistake does not really harm precision, but the second does

RECALL

Bad recall is a mixture of two problems

- → Assigning words to a topic that are mostly used for a different one: $P(W \mid Z = k) < P(W \mid Z = j)$ but we assigned it to k anyway
- \rightarrow Failing to assign a topic-informative word to any topic: Dictionary says $P(W \mid Z = k) = 0$, but it's not. This is about *coverage*

Let's consider coverage first

COVERAGE

One possible checking procedure:

- → Take a random matched sample of words not in the dictionary but present in the corpus e.g. match each dictionary word to another of the same frequency
- → Examine their KWICs to see if they should have been assigned to a topic

If we were feeling even more energetic

- → Assign them their most likely topic manually
- ightarrow Compare this $\tilde{\theta}$ to the dictionary's own estimate θ
- → These should not be wildly different

RECALL

The other kind of mistake is difficult because the natural procedure is

- → Assign *every word* (or at least every instance of a word that the dictionary knows about in a document) to a topic
- → For each topic, see what proportion of times the dictionary agrees it is in that topic

This also promises to be very tiring.

)

However, two facts may help us:

- → We have a tireless computer available
- \rightarrow Recall and precision relate $P(W \mid Z)$ and $P(Z \mid W)$ respectively
- → ...and we know how

Let's call the *true* topic of a word Z as before, and the *dictionary's idea of the topic* of a word Z because it's kind of an estimate of that. So,

Recall:
$$\sum_{k}^{K} P(\hat{Z} = k \mid Z = k)$$

Precision:
$$\sum_{k}^{K} P(Z = k \mid \hat{Z} = k)$$

If we have a sense of dictionary topic precision, could we use it to get a sense of dictionary topic recall?

If we have a sense of dictionary topic precision, could we use it to get a sense of dictionary topic recall? Why yes, by borrowing methods from King and Lowe (2003).

If we have a sense of dictionary topic precision, could we use it to get a sense of dictionary topic recall? Why yes, by borrowing methods from King and Lowe (2003).

According to the Rev. Bayes

$$P(\hat{Z} = k \mid Z = k) = \frac{P(Z = k \mid \hat{Z} = k)P(\hat{Z} = k)}{\sum_{j}^{K} P(Z = j \mid \hat{Z} = j)P(\hat{Z} = j)}$$

$$= P(Z = k \mid \hat{Z} = k)\frac{P(\hat{Z} = k)}{P(Z = k)}$$
 (recall is reweighted precision)
$$\propto P(Z = k \mid \hat{Z} = k)P(\hat{Z} = k)$$

Conveniently

- → we don't need the denominator because it only ensure the recall measures add to one
- \rightarrow We can get $P(\hat{Z} = k)$ by running the dictionary over the entire corpus

PERSPECTIVE

Precision and recall are useful, but we are most interested in the *consequences* of being wrong Previously: consequences for a left-right ideology measure from Laver and Garry (2000)

Let's look at a related conflict-cooperation score assigned by experts to dictionary 'topics' (King & Lowe, 2003)

A machine coding system 'read' Agence France Press leads on the Bosnian wars and generated event data

→ Who did what to whom when

We were interested in evaluating the 'what'

- → Topics are event types in a large ontology of international events
- → topic *scores* represent how conflictual or cooperative that event is
- → Some topic categorization mistakes will matter more than others

EVENT TOPICS

Goldstein	IDEA	Definition	Goldstein	IDEA	Definition
0.1	091	ask for information	-7.6	1826	military border fortification
0.1	024	optimistic comment	-7.6	1825	military mobilization
0	99	sports contest	-7.6	1824	military troops display
0	98	A and E performance	-7.6	1823	military naval display
0	97	accident	-7.6	1821	military alert
0	96	natural disaster	-7.6	182	military demonstration
0	95	human death	-8.3	224	riot or political turmoil
0	94	human illness	-8.7	221	bombings
0	72	animal death	-9.2	2236	military seizure
0	27	economic status	-9.2	2123	abduction
0	26	adjust	-9.2	211	seize possession
0	25	vote	-9.6	2228	assassination
0	24	adjudicate	-9.6	2227	guerrilla assault
0	2321	government default on payments	-9.6	2226	paramilitary assault
0	2312	private transactions	-9.6	2225	torture
0	2311	government transactions	-9.6	2224	sexual assault
0	231	transactions	-9.6	2223	bodily punishment
0	23	economic activity	-9.6	2222	shooting
-0.1	094	ask for protection	-9.6	2221	beatings
-0.1	022	pessimistic comment	-9.6	222	physical assault
-0.1	021	decline comment	-9.6	22	force
-0.1	02	comment	-10	2237	biological weapons use
-0.9	141	deny responsibility	-10	2235	assault
-1	14	deny	-10	2234	military occupation
-1.1	0631	grant asylum	-10	2233	coups and mutinies
-2.2	192	reduce routine activity	-10	2232	military raid
-2.2	121	criticize or blame	-10	223	military engagements
-2.4	132	formally complain			, , ,
0.4	101				

TOPIC SCORES

TOPIC SCORES

Not bad (or at least not bad relative to undergraduate coders)

All the evaluation principles we've seen here apply to

- → document classifiers
- → content analysis dictionaries
- → human coders

Nothing is more practical than a good theory...

TOPIC SCORES

Not bad (or at least not bad relative to undergraduate coders)

All the evaluation principles we've seen here apply to

- → document classifiers
- → content analysis dictionaries
- → human coders

Nothing is more practical than a good theory...

Next week we'll see how we learn dictionaries rather than write them

→ but all the same considerations will apply

REFERENCES

- King, G. & Lowe, W. (2003). 'An automated information extraction tool for international conflict data with performance as good as human coders: A rare events evaluation design'. *International Organization*, 57(3), 617–642.
- Laver, M. & Garry, J. (2000). 'Estimating policy positions from political texts'. *American Journal of Political Science*, 44(3), 619–634.
- Mikhaylov, S., Laver, M. & Benoit, K. R. (2011). 'Coder reliability and misclassification in the human coding of party manifestos'. *Political Analysis*, 20(1), 78–91.