Unsymmetrischer Verbraucher in Sternschaltung mit verbundenem Sternpunkt

Auch in diesem Fall sind die Strangströme unabhängig voneinander bestimmbar:

$$\underline{I}_{1} = \frac{\underline{U}_{1N}}{\underline{Z}_{1}} \ \underline{I}_{2} = \frac{\underline{U}_{2N}}{\underline{Z}_{2}} \ \underline{I}_{3} = \frac{\underline{U}_{3N}}{Z_{3}}$$
 Strom im Nullleiter:
$$\underline{I}_{N} = \underline{I}_{1} + \underline{I}_{2} + \underline{I}_{3} \neq 0$$

Bei unsymmetrischer Last und angeschlossenem Nullpunkt fließt ein Ausgleichsstrom über den Nullleiter

Unsymmetrischer Verbraucher in Sternschaltung mit **abgetrenntem** Sternpunkt

Der abgetrennte Sternpunkt verhindert das Fließen eines Ausgleichsstromes:

$$\underline{I}_N = 0$$

Symmetrische Drehstromquelle:

$$\underline{U}_{1N} = U_N \cdot e^{j0^{\circ}}$$

$$\underline{U}_{2N} = U_N \cdot e^{-j120^{\circ}}$$

$$\underline{U}_{3N} = U_N \cdot e^{j120^{\circ}}$$

Unsymmetrischer Drehstromverbraucher:

$$\underline{U}_{1M} = \underline{U}_{1N} - \underline{U}_{MN}$$

$$\underline{U}_{2M} = \underline{U}_{2N} - \underline{U}_{MN}$$

$$\underline{U}_{3M} = \underline{U}_{3N} - \underline{U}_{MN}$$

Berechnung der unsymmetrisch belasteten Sternschaltung mit abgetrenntem Sternpunkt

Knotengleichung:

$$\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = \underline{0}$$

Maschengleichungen:

$$-\underline{U}_{1N} + \underline{I}_1 \cdot \underline{Z}_1 + \underline{U}_{MN} = \underline{0} \quad \mathbf{M1}$$

$$-\underline{U}_{2N} + \underline{I}_2 \cdot \underline{Z}_2 + \underline{U}_{MN} = \underline{0}$$

$$-\underline{U}_{3N} + \underline{I}_3 \cdot \underline{Z}_3 + \underline{U}_{MN} = \underline{0}$$

Gleichungssystem mit 4 Unbekannten lösen:

$$\begin{bmatrix} \underline{Z}_{1} & 0 & 0 & 1 \\ 0 & \underline{Z}_{2} & 0 & 1 \\ 0 & 0 & \underline{Z}_{3} & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \underline{I}_{1} \\ \underline{I}_{2} \\ \underline{I}_{3} \\ U_{MN} \end{bmatrix} = \begin{bmatrix} \underline{U}_{1N} \\ \underline{U}_{2N} \\ \underline{U}_{3N} \\ 0 \end{bmatrix} \implies \underline{I}_{1}, \underline{I}_{2}, \underline{I}_{3}, \underline{U}_{MN}$$

Zeigerdiagramme für unsymmetrische Sternschaltung

Bei unsymmetrischer Last und abgetrenntem Nullleiter tritt an mindestens einem Verbraucher eine Spannungserhöhung auf!

Dreieckschaltung

Bei der Dreieckschaltung werden drei Spannungsquellen zyklisch so in Reihe geschaltet, dass Strang- und Leiterspannungen identisch sind

$$\underline{U}_{12} = \underline{U}_1$$
 $\underline{U}_{23} = \underline{U}_2$ $\underline{U}_{31} = \underline{U}_3$

$$\underline{U}_{31} = \underline{U}_3$$

allgemein:

$$U_{{\it Leiter}} = U_{{\it Strang}}$$

Anschluss von Verbrauchern in Dreieckschaltung

Leiterspannungen = Strangspannungen:

$$\underline{U}_{12} = U_0 \cdot e^{j30^{\circ}}$$

$$\underline{U}_{23} = U_0 \cdot e^{-j90^{\circ}}$$

$$\underline{U}_{31} = U_0 \cdot e^{j150^{\circ}}$$

Strangströme:

$$\underline{I}_{12} = \frac{\underline{U}_{12}}{\underline{Z}_{12}}$$
 $\underline{I}_{23} = \frac{\underline{U}_{23}}{\underline{Z}_{23}}$ $\underline{I}_{31} = \frac{\underline{U}_{31}}{\underline{Z}_{31}}$

$$\underline{I}_{23} = \frac{\underline{U}_{23}}{\underline{Z}_{23}}$$

$$\underline{I}_{31} = \frac{\underline{U}_{31}}{\underline{Z}_{31}}$$

Leiterströme:

$$\underline{I}_{1} = \underline{I}_{12} - \underline{I}_{31}
\underline{I}_{2} = \underline{I}_{23} - \underline{I}_{12}
\underline{I}_{3} = \underline{I}_{31} - \underline{I}_{23}$$

Symmetrische Verbraucher in Dreieckschaltung

Leiterströme:

$$\underline{I}_{1} = \underline{I}_{12} - \underline{I}_{31} = \underline{I}_{0} \cdot (e^{j30^{\circ}} - e^{j150^{\circ}}) = \sqrt{3} \cdot \underline{I}_{0} \cdot e^{j0^{\circ}}
\underline{I}_{2} = \underline{I}_{23} - \underline{I}_{12} = \underline{I}_{0} \cdot (e^{-j90^{\circ}} - e^{j30^{\circ}}) = \sqrt{3} \cdot \underline{I}_{0} \cdot e^{-j120^{\circ}}
\underline{I}_{3} = \underline{I}_{31} - \underline{I}_{23} = \underline{I}_{0} \cdot (e^{j150^{\circ}} - e^{-j90^{\circ}}) = \sqrt{3} \cdot \underline{I}_{0} \cdot e^{j120^{\circ}}$$

$$I_{Leiter} = \sqrt{3} \cdot I_{Strang}$$

Umrechnung zwischen Stern- und Dreieckschaltung

Beliebige Widerstände:

$$\underline{Z}_{1N} = \frac{\underline{Z}_{12} \cdot \underline{Z}_{31}}{\underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{31}}$$

$$\underline{Z}_{2N} = \frac{\underline{Z}_{23} \cdot \underline{Z}_{12}}{\underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{31}}$$

$$\underline{Z}_{3N} = \frac{\underline{Z}_{31} \cdot \underline{Z}_{23}}{\underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{31}}$$

$$\underline{Y}_{12} = \frac{\underline{Y}_{1N} \cdot \underline{Y}_{2N}}{\underline{Y}_{1N} + \underline{Y}_{2N} + \underline{Y}_{3N}}$$

$$\underline{Y}_{23} = \frac{\underline{Y}_{2N} \cdot \underline{Y}_{3N}}{\underline{Y}_{1N} + \underline{Y}_{2N} + \underline{Y}_{3N}}$$

$$\underline{Y}_{31} = \frac{\underline{Y}_{3N} \cdot \underline{Y}_{1N}}{\underline{Y}_{1N} + \underline{Y}_{2N} + \underline{Y}_{3N}}$$

Bei Symmetrie:

$$\underline{Z}_{2N} = \frac{\underline{Z}_{23} \cdot \underline{Z}_{12}}{\underline{Z}_{12} + \underline{Z}_{23} + \underline{Z}_{31}} \qquad \qquad \underline{Z}_{1N} = \underline{Z}_{2N} = \underline{Z}_{3N} \\ = \underline{Z}_{12} / 3 = \underline{Z}_{23} / 3 = \underline{Z}_{31} / 3$$

$$\underline{Y}_{23} = \frac{\underline{Y}_{2N} \cdot \underline{Y}_{3N}}{\underline{Y}_{1N} + \underline{Y}_{2N} + \underline{Y}_{3N}} \qquad \begin{vmatrix} \underline{Y}_{12} = \underline{Y}_{23} = \underline{Y}_{31} \\ = \underline{Y}_{1N} / 3 = \underline{Y}_{2N} / 3 = \underline{Y}_{3N} / 3 \end{vmatrix}$$

Leistung in symmetrischen Dreiphasensystemen

$$P_{gesamt} = 3 \cdot U_{Strang} \cdot I_{Strang} \cdot \cos \varphi$$

$$Q_{gesamt} = 3 \cdot U_{Strang} \cdot I_{Strang} \cdot \sin \varphi$$

Bezug auf Leitergrößen

Sternschaltung:

$$I_{\mathit{Strang}} = I_{\mathit{Leiter}}$$

$$U_{Strang} = \frac{1}{\sqrt{3}} \cdot U_{Leiter}$$

Dreieckschaltung:

$$I_{\mathit{Strang}} = \frac{1}{\sqrt{3}} \cdot I_{\mathit{Leiter}}$$
 $U_{\mathit{Strang}} = U_{\mathit{Leiter}}$

$$U_{\mathit{Strang}} = U_{\mathit{Leiter}}$$

$$\Longrightarrow$$

$$\Rightarrow P_{gesamt} = \sqrt{3} \cdot U_{Leiter} \cdot I_{Leiter} \cdot \cos \varphi$$

$$mit: \varphi = \varphi_u - \varphi_i$$

$$Q_{gesamt} = \sqrt{3} \cdot U_{Leiter} \cdot I_{Leiter} \cdot \sin \varphi$$

$$\underline{S}_{gesamt} = P + jQ = \sqrt{3} \cdot U_{Leiter} \cdot I_{Leiter} \cdot e^{j\varphi} = \sqrt{3} \cdot \underline{U}_{Leiter} \cdot \underline{I}_{Leiter}^*$$

Vorteile von Drehstrom

Bei symmetrischer Belastung in Sternschaltung oder bei Verwendung einer Dreieckschaltung ergibt die Summe der Leitungsströme zu jedem Zeitpunkt Null, so dass **kein Rückleiter** benötigt wird.

In Sternschaltung stehen zum Anschluss von Verbrauchern **zwei unterschiedliche Spannungen** zur Verfügung (220V und 380V)

Bei der Erzeugung in Generatoren und Wandlung mit Transformatoren entstehen aufgrund der hohen Symmetrie nur **geringe Verluste**

Die um 120° phasenverschobenen Ströme erzeugen ein **Drehfeld** zum Antrieb verlustarmer, robuster Motoren

Prinzip der Drehstromübertragung

Bild aus Patentanmeldung von F. A. Haselwander (1888)

Generator Motor

