Congratulations! You passed! Go to next item **Latest Submission To pass** 80% or Grade received 100%Grade 100% higher 1. A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. 1/1 point (Sequential architecture). False ○ True Expand Correct! A Transformer Network can ingest entire sentences all at the same time. 2. The major innovation of the transformer architecture is combining the use of LSTMs and RNN sequential 1/1 point processing. False ○ True

✓ Correct

The major innovation of the transformer architecture is combining the use of attention based representations and a CNN convolutional neural network style of processing.

3. How does the Self-Attention mechanism of transformers use neighboring words to compute a word's context?

1/1 point

- Selecting the maximum word values to map the Attention related to that given word.
- Multiplication of the word values to map the Attention related to that given word.
- Selecting the minimum word values to map the Attention related to that given word.
- Summation of the word values to map the Attention related to that given word.

⊘ Correct

k is represented by the ? in the representation.

5.	Which of the following statements represents Key (K) as used in the self-attention calculation?	1 / 1 point
	K = qualities of words given a Q	
	K = interesting questions about the words in a sentence	
	K = specific representations of words given a Q	
	K = the order of the words in a sentence	
	∠ ⁷ Expand	
	○ Correct The qualities of words given a Q are represented by Key (K).	
6.	$Attention(W_i^QQ,W_i^KK,W_i^VV)$	1/1 point
	What does i represent in this multi-head attention computation?	
	The computed attention weight matrix associated with the ith "head" (sequence)	
	The computed attention weight matrix associated with the ith "word" in a sentence.	
	The computed attention weight matrix associated with the order of the words in a sentence	
	 The computed attention weight matrix associated with specific representations of words given a Q 	

 $\it i$ here represents the computed attention weight matrix associated with the $\it ith$ "head" (sequence).

7. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

1/1 point

What is generated from the output of the *Decoder's* first block of *Multi-Head Attention*?

- K
- O V
- Q

∠ Expand

This first block's output is used to generate the Q matrix for the next Multi-Head Attention block.

8. Following is the architecture within a Transformer Network (without displaying positional encoding and output layers(s)).

1/1 point

What does the output of the *encoder* block contain?

- Softmax layer followed by a linear layer.
- Ontextual semantic embedding and positional encoding information
- Linear layer followed by a softmax layer.
- Prediction of the next word.

	Correct The output of the <i>encoder</i> block contains contextual semantic embedding and positional encoding information.	
9.	Which of the following statements is true about positional encoding? Select all that apply.	1/1 point
	Positional encoding is used in the transformer network and the attention model. Positional encoding uses a combination of sine and cosine equations.	
	Correct This is a correct answer, but other options are also correct. To review the concept watch the lecture <i>Transformer Network</i> .	
	Positional encoding is important because position and word order are essential in sentence construction of any language.	
	Correct This is a correct answer, but other options are also correct. To review the concept watch the lecture <i>Transformer Network</i> .	
	Positional encoding provides extra information to our model.	
	Correct This is a correct answer, but other options are also correct. To review the concept watch the lecture <i>Transformer Network</i> .	
	∠ [™] Expand	
	✓ CorrectGreat, you got all the right answers.	
10. \	Which of these is a good criterion for a good positionial encoding algorithm?	1 / 1 point
	The algorithm should be able to generalize to longer sentences.	
	It must be nondeterministic.	
	Oistance between any two time-steps should be inconsistent for all sentence lengths.	
	It should output a common encoding for each time-step (word's position in a sentence).	
	∠ ⁷ Expand	
	 Correct This is a good criterion for a good positional encoding algorithm. 	