Kursrapport

ET2584 App-utveckling med bildtillämpningar

> Nenad Cuturic cnesko@gmail.com necu20

> > v1.1.0 Jul 05, 2021

Läsperiod 5 Våren 2021

Institutionen för matematik och naturvetenskap (TIMN) Blekinge Tekniska Högskola (BTH) Sverige

Innehåll

1	Litteraturstudie		4
	1.1	Bakgrund	2
	1.2	Bildförbättringstekniker	3
	1.3	Utvärdering av Android apps	5
	1.4	Egen bildförbättringsalgoritm	6
2	Ma	Matlabimplementation och utvärdering	
3	Java implementation för Android		9
4	Slut	tutvärdering	10

Litteraturstudie

1.1 Bakgrund

Sinnen är hos varelser, såväl djur som människor, de neurologiska och psykologiska system för perception av omvärlden och sig själva.[1]

Människans förmåga att, med ögat, uppfatta det synliga ljuset dvs. en elektromagnetisk strålning med våglängderna mellan 380 nm och 780 nm, kallas för syn.

Sedan urminnes tid har människan försökt fånga och föreställa sin omvärld i form av bilder. Dessa bilder har med tiden blivit alltmer sofistikerade men fram tills nyligen har bilderna varit uteslutande analoga. Med datorernas ankomst och moderna digitaliseringstekniker har den digitala bilden nästan helt ersatt den analoga.

Detta har dessutom öppnat upp för olika typer av automatiserade bild- och signalbehandlingstekniker. Begreppet signal är mer korrekt benämning för att den omfattar även elektromagnetisk strålning inom hela dess frekvensområde samt signaler skapade av eller med hjälp av (ultra)ljud medan bild associeras traditionellt med synligt ljus.

Bildbehandling kan delas upp i olika operationer på många olika sätt. Vi kommer använda följande uppdelning: **förbättring**, **återställning** och **bildanalys**. I denna rapport kommer vi koncentrera oss enbart på synligt ljus och bildförbättringstekniker.

1.2 Bildförbättringstekniker

Vi kan grovt dela upp bildförbättringar i två grupper:

- Kvalitativ, som syftar till att förbättra bildens kvalitet så att den blir mer tilltalande för en människa. Den tekniken är ganska subjektiv för olika personer har olika uppfattningar av vad som är mer eller mindre tilltalande.
- Kvantitativ, som underlättar extrahering av relevant information vilket till exempel underlättar segmentering och separation av objekt. Den här tekniken är mer objektiv för man kan oftast kvantitativt mäta resultatet.

Huvudmålet för en bildförbättring är en förändring av bildens attribut för att bättre anpassa bilden till den givna uppgiften och den specifika betraktaren.

Det finns två grundvillkor för en bildförbättringsprocess:

- Den förväntade informationen måste redan existera i bilden exempelvis om vi skall förbättra den blå färgen måste den redan existera i bilden.
- Den förväntade information måste kunna urskiljas från bruset dvs. signal-brusförhållande (SNR = signal-noise ratio) måste vara tillräckligt högt.

En digital bilds spatiella (rumsliga) egenskaper kan representeras av en tvådimensionell (2D) matris där kolumner och rader motsvarar de diskreta xy-koordinaterna för varje pixel. Varje element i matrisen är en- eller flerdimensionell vektor som representerar varje pixels färgegenskaper.

Det finns flera olika färgmodeller och de 3 viktigaste är:

- Monokrom-/Gråskalemodell, där varje pixelvärde motsvarar intensitet (GRAY) på en gråskala oftast n = k * 8bitar(k = 1, 2, 4, ...) nummer eller $(2^n + 1)$ -nivåer av grå.
- RGB, där varje pixel har tre intensitetsvärden (3-dimensionell vektor), ett för varje färg: röd (R), blå(B) och grön(G). Den här modellen efterliknar ögats sätt att tolka bilder (3 typer av koner för dessa tre färger). Omvandling av RGB till en monokrom bild sker enligt följande formel: GRAY = 0.30R + 0.59G + 0.11B
- HSV, där varje pixel, förutom spatiella koordinater, har ytterligare tre värden.

- Färgton: (H)ue = $0 360^{\circ}$, representeras av intervallet [0, 360]
- Mättnad: (S)aturation = 0 100%, representeras av intervallet [0, 1]
- Intensitet: (V)alue = 0 100%, representeras av intervallet [0, 1]

Det finns en uppsjö olika tekniker för bildförbättring bl.a. kontrastförbättring, filtrering, erosion, utvidgning, bakgrundskorrektion, tröskelvärdering, kantdetektering, vattendelare osv.[2]

För att uppnå något av dessa mål används olika metoder och dessa kan i stort sett delas upp i följande grupper:

- Metoder i den **spatiala domänen** där vi direkt manipulerar bildens pixlar.
- Metoder i **frekvensdomän**: Med hjälp av transformfunktion omvandlar vi bilden till frekvensdomänen där förbättringsprocessen sker (oftast används någon filter) för att sedan omvandla bilden tillbaka till spatial domän igen med hjälp av invers transformfunktion. Olika källor gör olika klassificeringar där ena grupperar Wavelats transformer och Furier transformer tillsammans medan andra separerar dem i olika grupper.
- Maskinlärning (ML) där man tränar en ML modell som, baserat på en mängd bildsampel, i sin tur på egen hand lär sig att utföra bildförbättringsfunktioner.

Om man begränsar området till bilder tagna under svagt/dåligt ljus kan man, enligt en granskning[3] från 2020, dela upp algoritmer i följande grupper:

- Linjära och icke linjära Transformationer av gråskalebilder, t.ex. förstoring/förminskning av bilden, spegling osv.
- Histogramutjämningsmetoder, syftar på att förbättra kontrasten
- textbfRetinex metoder, där man separerar belysnings- och reflekteringskomponenter i en bild
- Metoder inom frekvensdomän (se ovan),
- Bildfusion metoder, man använder sig av flera bilder med till exempel olika exponeringar, som kombineras till en förbättrad bild
- Metoder för att avlägsna dimman från bilder, man skulle kunna säga att det är en undergrupp till brusreduceringsmetoder
- Metoder som använder sig av maskinlärning (se ovan).

1.3 Utvärdering av Android apps

Numera finns det en stor mängd mobila appar som hävdar att de har någon form av bildförbättringsfunktionalitet. Urvalet av de analyserade apparna baseras på betyget i Google Play, antal nedladdningar, snabb koll på annonserad funktionalitet samt i Photoshop-fallet baserad på dess dominerande marknadsposition.

Dessutom har jag valt att ta med ett par appar som hävdar att de använder sig av någon form av maskinlärning.

Så den slutliga listan blev:

- 1. AI Image Enlarger[4]
- 2. AirBrush[5]
- 3. EnhanceFox[6]
- 4. **Lumii**[7]
- 5. Photoshop Express[8]
- 6. **Remini**[9]

Jag har valt att testa enbart de funktionaliteter som är fria vilket uteslöt Photoshop Express helt för det kräver att man måste lämna kreditkortsuppigfter för att kunna utnyttja 3-dagars testperiod.

Utvärderingen gav tyvärr ett magert resultat. Majoritet av applikationerna har lagt tyngdpunkten på olika typer av bildeffekter exempelvis, inramning, bakgrundsförändring, kombinering av två bilder i en osv. som är nog tänkt att locka yngre målgrupp och är rätt så svaga i området som traditionellt uppfattas som bildförbättring.

Applikationerna riktar sig oftast mot förändringar i selfiebilder utan att användare behöver förstå sig på tekniska detaljer. I de fall det även finns bildförbättringsfunktionalitet finns det oftast valet att antingen bara slå på eller slå av utan att kunna finjustera parametrar.

De mer avancerade funktionerna om de finns är låsta och enbart finns i en betalversion.

Av de två appar som hävdar AI-funktionalitet är den ena appen bara ett skal som tillåter uppladdning av bilden till någon server för att sedan i efter hand kunna ladda ner den färdigbehandlade bilden.

Den andra appen ger enbart valet att förbättrabilden utan att kunna justera parametrar. Ytterligare en funktionalitet den har är att färga svartvita bilder.

1.4 Egen bildförbättringsalgoritm

Sedan intåg av smarta telefoner med kameror har jag upplevt problem med bilder tagna under svagt ljus. Så det är ett område som jag har särskilt intresse av och lagt mitt fokus på i denna del av rapporten.

Ett annat område som jag tycker är intressant är förbättring av bilder tagna under vattnet. Här finns ännu fler parametrar som påverkar bildens kvalitet som ljusbrytning i vattnet, vatten som ger effekten av en förstoringsglas samt en annan typ och mycket större brus orsakad av olika partiklar i vattnet.

Mitt val föll på **LIME** (eng. Low-light Image Enhancement via Illumination Map Estimation)-algoritmen[10]. Enligt en färsk experimentell utvärdering [3] av algoritmer för förbättring av bilder under svaga ljusförhållanden ligger LIME i topp i samtliga test och i ett par av dem ligger best. Dessutom är resultat visuellt tilltalande jämfört med andra algoritmer.

LIME-algoritmen baseras på s.k. Retinex modelleringen. Dess syfte är att uppskatta belysningskartan genom att bevara den framstående strukturen av bilden, medan man avlägsnar de redundanta strukturdetaljerna (eng. texture). Lime-metoden baseras på följande modell:

$$L = I \odot T \tag{1.1}$$

där: L = originalbild tagen under svagt ljust, I = förbättrad bild, och T = belysningskarta

1. Uppskatta initial belysningskarta genom att beräkna max L^c över samtliga färgkanaler (R/G/B)

$$\hat{T}(x) \leftarrow \max_{c \in \{R,G,B\}} L^c(x) \tag{1.2}$$

2. Lös följande optimeringsproblem

$$\min_{T} ||\hat{T} - T||_F^2 + \alpha ||W \odot \nabla T||_1 \tag{1.3}$$

där F = Frobenious norm, 1 står för l1-norm, W = viktmatris, samt ∇ består av en horisontell $\nabla_h T$ och vertikal $\nabla_v T$ komponent dvs. (x,y) koordinater

- 3. Utifrån 1.3 och 1.2 kan man få en förbättrad bild I men den bilden har fortfarande en bruskomponent
- 4. Beräkna en förbättrad bild I_f utan brus med hjälp av:

$$I_f \leftarrow I \odot T + I_d \odot (1 - T) \tag{1.4}$$

där $I_d=$ brusreduserad bild med hjälp av BM3D-algoritmen, och 1-T är en invers (negativ) av belysningskartan T

Som en andra algoritm har jag funderat på att använda Haar wavelat transform för brusreducering. Eventuellt använda den algoritmen i stället för BM3D i sista steget ovan. BM3D, vad jag förstår, är en algoritm som fungerar bra över ett bredare brusspektrum medan Haar wavelet används för ett smalare område (Gaussian brus).

Matlabimplementation och utvärdering

Här skriver du din redovisningstext för detta kursmoment.

Java implementation för Android

Här skriver du din redovisningstext för detta kursmoment.

Slututvärdering

Här skriver du din redovisningstext för detta kursmoment.

Litteratur

- [1] Wikipedia. "Sinne". I: (2020). URL: https://sv.wikipedia.org/wiki/Sinne. (besökt: 29.06.2021).
- [2] Anders A.; Lamis A.; Alvaro G. "DATORTOMOGRAFI SOM UNDER-SÖKNINGSMETOD FÖR UNG OCH GAMMAL, SPRUTAD OCH GJU-TEN BETONG FÖR TUNNLAR". I: (2016). ISSN 1104 - 1773, ISRN BEFO-R—165—SE, BeFo Rapport 165. URL: https://www.befoonline. org/UserFiles/Archive/706/BeFo-Rapport_165_webb.pdf. (besökt: 01.07.2021).
- [3] Wencheng Wang m. fl. "An Experiment-Based Review of Low-Light Image Enhancement Methods". I: *IEEE Access* 8 (2020), s. 87884–87917. DOI: 10.1109/ACCESS.2020.2992749.
- [4] Vertexshare Software Ltd. AI Image Enlarger. Android app. URL: https://play.google.com/store/apps/details?id=com.app.aiimglarger. (besökt: 04.07.2021).
- [5] PIXOCIAL TECHNOLOGY (SINGAPORE) PTE. LTD. AirBrush. Android app. URL: https://play.google.com/store/apps/details?id=com.magicv.airbrush. (besökt: 04.07.2021).
- [6] risingcabbage. EnhanceFox. Android app. URL: https://play.google.com/store/apps/details?id=com.changpeng.enhancefox. (besökt: 04.07.2021).
- [7] InShot Inc. Lumii. Android app. URL: https://play.google.com/ store/apps/details?id=photo.editor.photoeditor.filtersforpictures. (besökt: 04.07.2021).
- [8] Adobe. *Photoshop Express*. Android app. URL: https://play.google.com/store/apps/details?id=com.adobe.psmobile. (besökt: 04.07.2021).
- [9] ernata derli. Remini. Android app. URL: https://play.google.com/store/apps/details?id=com.guide_enhance_old_photos_and_low_quality_photos_enhance_photos_taken_with_old_cameras.guia_remini_repairing_blurred_videos. (besökt: 04.07.2021).

LITTERATUR 12

[10] Xiaojie Guo. "LIME: A Method for Low-light IMage Enhancement". I: (2016). URL: https://arxiv.org/pdf/1605.05034.pdf. (besökt: 05.07.2021).