Likelihood-free statistical inference

Michael Gutmann

https://sites.google.com/site/michaelgutmann

Bayesian Statistics Group University of Helsinki

22nd January 2015

Presentation based on:

- ► M.U. Gutmann, R. Dutta, S. Kaski, and J. Corander Likelihood-free inference via classification
 - http://arxiv.org/abs/1407.4981

http://arxiv.org/abs/1501.03291

► M.U. Gutmann and J. Corander

Bayesian optimization for likelihood-free inference of simulator-based statistical models

Introduction
Likelihood-free inference for simulator-based models
Difficulty 1: The measurement of discrepancy
Difficulty 2: Computational efficiency
Summary

Introduction

Statistical models and inference Likelihood-based inference Likelihood-free inference

Likelihood-free inference for simulator-based models

Importance

Principle: Find parameters st. simulated data \approx observed data

Difficulty 1: The measurement of discrepancy

Our approach: Measuring discrepancy via classification Application

Difficulty 2: Computational efficiency

Our approach: Increasing efficiency via Bayesian optimization Application

Summary

Likelihood-free inference

Big picture of statistical inference

▶ Given: A statistical model which describes data $\mathbf{y} = (y_1, \dots, y_n)$, with model parameters $\boldsymbol{\theta}$

Summary

- ► Given: Observed data **y**°
- Possibly given: A (prior) probability density function (pdf) for θ , p_{θ}
- ightharpoonup Wanted: Some probabilistic statement about heta
 - ▶ which value has generated **y**^o most likely?
 - what is the mean value of θ given \mathbf{v}^o ?
 - given \mathbf{y}^o , which interval contains θ_1 with probability 0.95 ?
 - **.** . . .

Statistical models and inference

Likelihood-based inference Likelihood-free inference

Three types of statistical models

1. Statistical model as family of pdfs, e.g.

$$p_{\mathbf{y}|\boldsymbol{\theta}}(\mathbf{y}|\boldsymbol{\theta}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right), \quad \boldsymbol{\theta} = (\mu, \sigma)$$

Unnormalized models (scale of $p_{\mathbf{v}|\theta}$, that is, the partition function, is not known)

Summary

$$p_{\mathbf{y}|\boldsymbol{\theta}}^{0}(\mathbf{y}|\boldsymbol{\theta}) \propto \prod_{i=1}^{n} \exp\left(-\frac{1}{2\sigma^{2}}(y_{i}-\mu)^{2}\right)$$

Simulator-based models (shape and scale of $p_{\mathbf{v}|\theta}$ are not known but sampling is possible)

$$\mathbf{y} \sim p_{\mathbf{y}|\theta}(\mathbf{y}|\theta), \qquad y_i = \mu + \sigma n_i \quad n_i \sim \mathcal{N}(0,1)$$

Likelihood-based statistical inference

► Likelihood function: pdf of the observed data **y**^o as a function of the model parameters

$$L(\theta) \propto p_{\mathbf{y}|\theta}(\mathbf{y}^{o}|\theta)$$

- Plays a central role in statistical inference
 - Maximum likelihood estimation:

$$\hat{\boldsymbol{\theta}}_{\mathrm{MLE}} = \operatorname{argmax}_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

Bayesian inference:

$$p_{\theta|\mathbf{y}}(\theta|\mathbf{y}^o) \propto L(\theta)p_{\theta}(\theta)$$

- \triangleright Allows to make probabilistic statements about θ .
- Generally not computable for unnormalized and simulator-based models.

Likelihood-free inference (LFI)

- LFI: Procedure to obtain probabilistic statements about θ if likelihood is not available, as for unnormalized or simulator-based statistical models.
- Existing methods for unnormalized models:
 - pseudo-likelihood (Besag, JRSSB, 1974)
 - contrastive divergence (Hinton, NeCo, 2002)

Summary

- score matching (Hyvärinen, JMLR, 2005)
- ▶ noise-contrastive estimation (Gutmann and Hyvärinen, JMLR, 2012)
- Here: simulator-based models

Why simulator-based models?

- Allows to implement hypotheses of how the data were generated without having to make excessive compromises in the modeling.
- Neat interface with physical or biological models of data.
- Can handle (infinitely many) unobserved variables.

Principle behind the inference algorithms

- ► There are several flavors of likelihood-free inference for simulator-based models, e.g.
 - ► Approximate Bayesian computation (ABC) (for recent review: Marin, Statistics and Computing, 2012)
 - ▶ Synthetic likelihood (Wood, Nature, 2010)
- ▶ Basic idea: Identify values of θ for which simulated data resemble the observed data (discrepancy Δ_{θ} between simulated and observed data is small).

Example

- ▶ Inference of the mean θ of a Gaussian of variance one.
- Discrepancy:

$$\Delta_{\theta} = (\hat{\mu}^{\circ} - \hat{\mu}_{\theta})^{2},$$

$$\hat{\mu}^{\circ} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{\circ},$$

$$\hat{\mu}_{\theta} = \frac{1}{n} \sum_{i=1}^{n} y_{i},$$

$$y_{i} \sim \mathcal{N}(\theta, 1)$$

Figure 1 : Distribution of Δ_{θ} , the squared distance between the sample averages

Example

Figure 2 : Probability that Δ_{θ} is below some threshold h approximates the likelihood.

Example

▶ In this simple example, the probability can be computed in closed form, with $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right) du$

$$\Pr(\Delta_{\theta} \leq h) = \Phi\left(\sqrt{n}(\hat{\mu}^{o} - \theta) + \sqrt{nh}\right) - \Phi\left(\sqrt{n}(\hat{\mu}^{o} - \theta) - \sqrt{nh}\right)$$

- ▶ For *nh* small: $Pr(\Delta_{\theta} \leq h) \propto \sqrt{h}L(\theta)$
- ▶ For realistic models, sample average is used

$$\Pr(\Delta_{\theta} \leq h) pprox \frac{1}{N} \sum_{i=1}^{N} 1_{[0,h]}(\Delta_{\theta}^{(i)}) \lesssim L(\theta)$$

- ► Good news: For small enough *h* and large enough *N*, good approximation of likelihood.
- Bad news: Procedure is computationally costly

Two major difficulties in likelihood-free inference

- 1. How to measure the discrepancy between simulated and observed data
- 2. How to handle the computational burden of the inference

Two major difficulties in likelihood-free inference

- How to measure the discrepancy between simulated and observed data
 - → Use classification M.U. Gutmann, R. Dutta, S. Kaski, and J. Corander Likelihood-free inference via classification http://arxiv.org/abs/1407.4981
- 2. How to handle the computational burden of the inference
 - → Use Bayesian optimization
 M.U. Gutmann and J. Corander
 Bayesian optimization for likelihood-free inference of simulator-based statistical models
 http://arxiv.org/abs/1501.03291

Discrepancy measurement via classification

▶ Correctly classifying data into two categories is usually easier if the two data sets were generated with very different values of θ (left) than with similar values (right).

Figure 3: Discriminability (classifiability) as discrepancy measure Δ_{θ} .

Discrepancy measurement via classification

- ▶ We proposed to use the discriminability of the observed and simulated data as discrepancy measure.
- Complete arsenal of classification methods becomes available to likelihood-free inference.

Figure 4: Discriminability of 1/2 indicates similarity.

Application to epidemiology of infectious diseases

Data: Colonization states of sampled attendees of 29 day care centers (DCCs).

Figure 5: Example data from a DCC. Each square indicates an attendee colonized with a strain of the bacterium *Streptococcus pneumoniae*.

Application to epidemiology of infectious diseases

- Simulator-based model: latent continuous-time Markov chain for the transmission dynamics in a DCC and an observation model (Numminen et, Biometrics, 2013).
- ► The model has three parameters:
 - \triangleright β : rate of infections within a DCC
 - Λ: rate of infections outside a DCC
 - \triangleright θ : possibility to be infected with multiple strains
- ▶ Likelihood is intractable because there are infinitely many unobserved variables (data at a single time point are available only).

Application to epidemiology of infectious diseases

- Our classification-based discrepancy measure does not use domain/expert knowledge.
- ► Performs as well as a discrepancy measure based on domain knowledge (Numminen et, Biometrics, 2013).

Figure 6: The results are kernel density estimates of 1000 samples.

Increasing efficiency via Bayesian optimization

- ▶ Increase computational efficiency by evaluating Δ_{θ} where it tends to be small.
- ▶ This is possible by combining probabilistic modeling of Δ_{θ} with optimization.

Increasing efficiency via Bayesian optimization

Application to parameter inference in chaotic systems

- ▶ Data: Time series with counts y_t (animal population size)
- ► Simulator-based model: Stochastic version of the Ricker map followed by an observation model

$$\log N_t = \log(r) + \log N_{t-1} - N_{t-1} + \sigma e_t, \quad e_t \sim \mathcal{N}(0, 1)$$

$$y_t | N_t, \varphi \sim \operatorname{Poisson}(\varphi N_t)$$

- \triangleright Parameters θ :
 - ▶ log *r* (growth rate)
 - $\triangleright \sigma$ (noise var),
 - φ (scale parameter)

Figure 7 : Example data, $\theta^o = (3.8, 0.3, 10)$.

Application to parameter inference in chaotic systems

- lacktriangle Discrepancy $\Delta_{m{ heta}}$ given by synthetic likelihood (Wood, Nature, 2010)
- ▶ Speed up: \approx 600 times fewer evaluations of $\Delta_{ heta}$
- Slight shift in posterior mean towards the data generating parameter θ^o (marked by green circles)

Figure 8: Comparison with results using MCMC (Wood, Nature, 2010)

Summary

- The topic was likelihood-free inference for simulator-based models.
- Two difficulties:
 - 1. measurement of discrepancy (similarity)
 - 2. computational efficiency
- ▶ We proposed to measure the discrepancy via classification
 - Reduces the difficult problem of choosing an appropriate discrepancy measure to a standard problem
- ► We proposed to increase the computational efficiency via Bayesian optimization
 - Yields speed-ups of the order of one day versus one year of computation time.