CESKalman

Christian S. Kastrup DREAM

26. Maj, 2020

Virksomhedens optimeringsproblem

- To inputs i produktionen, f.eks. kapital (K_t) og arbejdskraft (L_t)
- Produktionsfunktion er af typen CES:

$$Y_{t} = \left[\left(\Gamma_{t}^{K} K_{t} \right)^{\frac{\sigma - 1}{\sigma}} + \left(\Gamma_{t}^{L} L_{t} \right)^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{\sigma - 1}} \tag{1}$$

- Γ_t^K og Γ_t^L er såkaldte augmenterende teknologier
- \bullet σ er substitutionselasticiteten
- Relative (log) budgetandel er:

$$\log\left(\frac{q_t K_t}{w_t L_t}\right) = (\sigma - 1)\log\left(\frac{\Gamma_t^K}{\Gamma_t^L}\right) + (1 - \sigma)\log\left(\frac{q_t}{w_t}\right) \tag{2}$$

...Hvad nu hvis relativ teknologi er uobserveret?

- ullet Hvis relativ teknologi kendes, så kan σ udregnes residualt
- Men hvad nu hvis teknologi er uobserveret?
- ... Da må man gøre sig en række antagelser om udvikling i relativ teknologi
 - Hicks-neutral vækst (teknologi er konstantled)
 - Konstant vækstrate (teknologi er lineær trend)
 - Eller bruge vores metode (teknologi følger en I(2) process)

Estimationstilgang

- Ligning (2) har en state space repræsentation
- Inkluderer træg tilpasning ved en fejlkorrektionsmodel
- Antager en I(2)-process for teknologi
- Kan da anvende et Kalman filter til at estimere ligning (2)
- Looper over forskellige initiale parameterværdier
 - Vælger den kombination, der maksimerer likelihood, givet velspecifikation

Observationsligningen

 Da kapitalapparat kan tilpasse sig trægt anvendes en fejlkorrektionsmodel af formen:

$$\Delta s_{t} = \alpha \left(s_{t-1} - (1 - \sigma) p_{t-1} - \mu_{t-1} \right) + \sum_{i=0}^{n} \kappa_{i} \Delta p_{t-i} + \sum_{i=1}^{n} \gamma_{i} \Delta s_{t-i} + \varepsilon_{t}$$
(3)

$$s_t \equiv log\left(rac{q_t K_t}{w_t L_t}
ight), \quad p_t \equiv log\left(rac{q_t}{w_t}
ight), \quad \mu_t \equiv (\sigma-1) \log\left(rac{\Gamma_t^K}{\Gamma_t^L}
ight)$$

- α afgør tilpasningen til langsigtsligevægten og σ er langsigtselasticiteten
- κ, γ er kortsigtselasticiteter, ε_t er normalfordelt fejlled med varians Σ^{ε}

Tilstandsligningen

- Vi identificerer teknologi som en process der
 - Sandsynligvis indeholder en trend
 - Bevæger sig trægt
 - Indeholder "medium-run" fluktuationer
- Vi specificerer μ_t som en I(2)-process

$$\Delta \mu_t = \Delta \mu_{t-1} + \eta_t, \quad \eta_t \sim N(0, \Sigma^{\eta})$$
 (4)

Træghed af teknologi

- Graden af træghed i teknologi afgøres af det inverse støj-signal forhold $\lambda \equiv \Sigma^{\varepsilon}/\Sigma^{\eta}$
 - ullet Kan tænkes på som λ i HP-filter
 - ullet $\lambda
 ightarrow 0$: Alle fluktuationer, der ikke skyldes priser, er teknologi
 - $\lambda \to \infty$: Ingen kort- eller mellemsigtede fluktuationer skyldes teknologi (lineær trend)
- Kan enten estimeres eller kalibrereres til en given værdi
 - Standard værdi er =100 på årsdata med HP-filter

CESKalman

- Varianser $(\Sigma^{\varepsilon}, \Sigma^{\eta})$ estimeres med maksimum likelihood
- Yderligere parametre $(\sigma, \alpha, \kappa, \gamma)$ kalibreres med Kalman filter
 - Antages med nul-varians, så konstante over tid
- Anvender et grid af forskellige initiale parameterværdier (næste slide)
 - Vælger den kombination, der maksimerer likelihood givet ingen autokorrelation og overholdelse af NIS test

CESKalman: Fremgangsmåde

- 1. Looper over forskellige værdier af α og σ . Vælger den kombination, der maksimerer likelihood
- 2. Tilføjer et ekstra lag, hvis der er autokorrelation i residualerne. I så fald, start forfra fra step 1
- 3. Hvis elasticiteten estimeres til at være negativ, så restringeres den til at være 0. Returnér til step 1
- 4. Foretag step 1-3 for forskellige værdier af λ . Første er en ML estimation, næste er et grid af forskellige værdier. Vælg den, der er velspecificeret og har højest likelihood

Estimering af forbrugsfunktioner

- Ikke sikkert at fejlkorrektionsformen er optimal for forbrugsfunktioner også
- CESKalman_Static anvender en statisk regression af (2) med autoregressivt fejlled (MA-led)
- Looper over forskellige parameterværdier vælger den der maksimerer likelihood givet velspecificeret
- MAKRO working paper om denne metode er lige på trapperne

CESKalman_Static: Fremgangsmåde

- 1. Looper over forskellige værdier af σ . Vælger den værdi, der maksimerer likelihood
- 2. Tilføjer et ekstra MA-led, hvis der er autokorrelation i residualerne. I så fald, start forfra fra step 1
- 3. Hvis elasticiteten estimeres til at være negativ, så restringeres den til at være 0. Returnér til step 1
- 4. Foretag step 1-3 for forskellige værdier af λ . Første er en ML estimation, næste er et grid af forskellige værdier. Vælg den, der er velspecificeret og har højest likelihood