MACS203: Martingales

1 Préliminaires de la théorie des probabilités

Variables aléatoires

Def. Soit T un ensemble et $\{X_{\tau}, \tau \in T\}$ une famille quelconque de v.a. La σ -algèbre \mathcal{X} engendrée par cette famille est la plus petite σ -algèbre sur Ω telle que X_{τ} est \mathcal{X} -mesurable pour tout $\tau \in T$, i.e.

$$\mathcal{X} = \sigma(X_{\tau}, \tau \in \mathbf{T}) = \sigma(\{X_{\tau}^{-1}(A) \mid \tau \in \mathbf{T}, A \in \mathcal{B}(\mathbf{R})\}).$$

Lem. Soit X et Y deux v.a. sur $(\Omega, \mathcal{A}, \mathbf{P})$ à valeurs respectivement dans \mathbf{R} et \mathbf{R}^n . Alors X est $\sigma(Y)$ -mesurable ssi $\exists f \colon \mathbf{R}^n \to \mathbf{R}, X = f(Y)$.

Espérance de variables aléatoires

Th (Inégalité de Jensen). Soit $X \in \mathcal{L}^1(\mathcal{A}, \mathbf{P})$ et $g \colon \mathbf{R}^d \to \bar{\mathbf{R}}$ une fonction convexe telle que $\mathbf{E}(|g(X)|) < \infty$. Alors $\mathbf{E}(g(X)) \geqslant g(\mathbf{E}(X))$.

Def. Soit X une v.a. à valeurs dans \mathbf{R}^d . Sa fonction caractéristique est Φ_X : $\begin{array}{ccc} \mathbf{R}^d & \to & \mathbf{C} \\ u & \mapsto & \mathbf{E} \left[e^{i\langle u|X\rangle} \right] \end{array}$.

Lem. $\Phi_X(0) = 1$ et Φ_X est continue bornée (par 1) sur \mathbf{R}^d .

Prop. Soit $X \sim \mathcal{N}(b, V)$. On a $\Phi_X(u) = e^{\langle u|b\rangle - \frac{1}{2}\langle u|Vu\rangle}$.

Prop. Soit X réelle avec $\mathbf{E}(|X|^p) < \infty$ pour un certain $p \in \mathbf{N}^*$. Alors Φ_X est p fois dérivable et $\forall k \in [1; p], \Phi_X^{(k)}(0) = i^k \mathbf{E}(X^k)$.

Espaces \mathcal{L}^p et convergences fonctionnelles des v.a.

La corrélation entre deux v.a. X et Y est $\mathrm{Cor}(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\|X\|_2 \|Y\|_2}$. Le théorème de Pythagore s'écrit

$$\mathbf{E}(XY) = 0 \implies \mathbf{E}[(X+Y)^2] = \mathbf{E}\left[X^2\right] + \mathbf{E}\left[Y^2\right] \qquad \text{ou} \qquad \mathrm{Cov}(X,Y) = 0 \implies \mathrm{Var}(X+Y) = \mathrm{Var}(X) + \mathrm{Var}(Y) \,.$$

et la loi du parallélogramme s'écrit $\|X + Y\|_2^2 + \|X - Y\|_2^2 = 2\|X\|_2^2 + 2\|Y\|_2^2$.

Lem. La convergence p.s. ou la convergence en norme dans L^p impliquent la convergence en probabilité.

Lem. La convergence en probabilité est équivalente à la convergence au sens de la distance $D: (X,Y) \mapsto \mathbf{E}(|X-Y| \wedge 1)$ **Th.** (L^0,D) est un espace métrique complet.

Def. Une famille C de v.a. est dite uniformément intégrable (U.I.) si $\lim_{c\to\infty} \sup_{X\in C} \mathbf{E}\left[|X|\mathbf{1}_{|X|\geqslant c}\right]=0$.

Th. Soit $(X_n)_n$ et X des v.a. dans \mathcal{L}^1 . Alors $X_n \longrightarrow X$ dans L^1 si et seulement si $X_n \longrightarrow X$ en probabilité et $(X_n)_n$ est U.I.

Convergence en loi

2 Vecteurs gaussiens

Def. X est un **vecteur gaussien** (ou variable gaussienne multivariée ou variable normale multivariée) si et seulement si $\forall a \in \mathbf{R}^d$, la loi de $\langle a \mid X \rangle$ est une loi gaussienne (éventuellement de variance nulle).

Th. X est un vecteur gaussien d'espérance m et de matrice de covariance Γ si et seulement si sa fonction caractéristique est $t \mapsto \exp\left(i \langle t \mid m \rangle - \frac{1}{2}t^{\mathsf{T}}\Gamma t\right)$. On écrit $X \sim \mathcal{N}_d(m,\Gamma)$.

Prop. Soit (X,Y) un vecteur gaussien à valeurs dans $\mathbf{R}^n \times \mathbf{R}^m$, de moyenne $\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$ et de matrice de variances-

covariances $V = \begin{pmatrix} V_X & V_{XY}^\mathsf{T} \\ V_{XY} & V_Y \end{pmatrix}$. Supposons que $\mathrm{Var}(Y) = V_Y$ est inversible. Alors la loi conditionnelle de X sachant Y = y est gaussienne de moyenne $\mathbf{E}(X \mid Y = y) = \mu_X + V_{XY}V_Y^{-1}(y - \mu_Y)$ et variance $\mathrm{Var}(X \mid Y = y) = V_Y + V_{XY}V_Y^{-1}(y - \mu_Y)$

 $V_X - V_{XY}V_Y^{-1}V_{XY}^{\mathsf{T}}.$

3 Processus aléatoires et structure d'information

Def. Un **processus** est une suite $(X_n)_n$ de v.a. sur (Ω, A) à valeurs dans un ensemble mesuré (E, \mathcal{E}) .

Def. Une filtration de \mathcal{A} est une suite croissante $\mathbf{F} = (\mathcal{F}_n)_{n \geqslant 0}$ de sous- σ -algèbres de \mathcal{A} . On dit que $(\Omega, \mathcal{A}, \mathbf{F})$ est un espace probabilisable filtré et $(\Omega, \mathcal{A}, \mathbf{F}, \mathbf{P})$ un espace probabilisé filtré.

Ex. La suite $(\mathcal{F}_n^X)_{n\in\mathbb{N}}=(\sigma(X_i,i\leqslant n))_{n\in\mathbb{N}}$ est une filtration de \mathcal{A} appelée filtration naturelle de X.

Def. Soit $X = (X_n)_n$ un processus aléatoire et $(\mathcal{F}_n)_n$ une filtration de \mathcal{A} . On dit que X est :

- **F-adapté** si $\forall n \in \mathbb{N}$, X_n est \mathcal{F}_n -mesurable,
- **F-prévisible** si $\forall n \in \mathbb{N}$, X_n est \mathcal{F}_{n-1} -mesurable, où $\mathcal{F}_{-1} := \{\emptyset, \Omega\}$.

Def. Un **temps** d'arrêt ν est une variable aléatoires à valeurs dans $\mathbf{N} \cup \{\infty\}$ telle que $\forall n \in \mathbf{N}, \{\nu = n\} \in \mathcal{F}_n$. On note \mathcal{T} l'ensemble des temps d'arrêt.

Prop. Soit $(X_n)_{n \in \mathbb{N}}$ un processus **F**-adapté à valeurs dans (E, \mathcal{E}) . Pour tout $A \in \mathcal{E}$, on définit le **premier temps** d'atteinte $T_A := \inf\{n \in \mathbb{N} \mid X_n \in A\}$, avec la convention $\inf \emptyset = \infty$. Alors T_A est un temps d'arrêt.

Prop. Soit $\tau, \theta, (\tau_n)_{n \in \mathbb{N}}$ des temps d'arrêt.

- (i) $\tau \wedge \theta$, $\tau \vee \theta$ et $\tau + \theta$ sont des temps d'arrêt,
- (ii) soit $c \ge 0$ une constante, alors $\tau + c$ et $(1 + c)\tau$ sont des temps d'arrêt,
- (iii) $\lim \inf_n \tau_n$ et $\lim \sup_n \tau_n$ sont des temps d'arrêt.

Prop. Soit $(X_n)_n$ un processus aléatoire à valeurs dans un espace mesuré (E,\mathcal{E}) et τ un temps d'arrêt. Alors $X_\tau \colon \omega \in \Omega \mapsto X_{\tau(\omega)}(\omega)$ est une v.a.

Prop. Pour tout temps d'arrêt $\tau \in \mathcal{T}$, $\mathcal{F}_{\tau} \subset \mathcal{A}$ est une sous- σ -algèbre de \mathcal{A} . Si X est un processus aléatoire \mathbf{F} -adapté, X_{τ} est \mathcal{F}_{τ} -mesurable.

Def. L'information disponible à un temps d'arrêt est $\mathcal{F}_{\tau} := \{A \in \mathcal{A} \mid \forall n \in \mathbb{N}, A \cap \{\tau = n\} \in \mathcal{F}_n\}.$

Prop. Pour tout temps d'arrêt $\tau \in \mathcal{T}$, \mathcal{F}_{τ} est une sous- σ -algèbre de \mathcal{A} . Si X est un processus aléatoire \mathbf{F} -adapté, X_{τ} est \mathcal{F}_{τ} -mesurable.

Prop. Soit τ et θ deux temps d'arrêt. Alors $\{\tau \leq \theta\}$, $\{\tau \geq \theta\}$ et $\{\tau = \theta\}$ appartiennent à $\mathcal{F}_{\tau} \cap \mathcal{F}_{\theta}$, et pour toute v.a. X intégrable, on a $\mathbf{E}(\mathbf{E}(X \mid \mathcal{F}_{\tau}) \mid \mathcal{F}_{\theta}) = \mathbf{E}(\mathbf{E}(X \mid \mathcal{F}_{\theta}) \mid \mathcal{F}_{\tau}) = \mathbf{E}(X \mid \mathcal{F}_{\tau \wedge \theta})$.

4 Chaînes de Markov

Soit $X = (X_n)_{n \in \mathbb{N}}$ un processus stochastique défini sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ et à valeurs dans un espace d'états discret E, fini ou dénombrable.

Not. π_n est la distribution marginale de X_n : $\forall x \in E, \pi_n(x) := \mathbf{P}(X_n = x)$.

Def. On dit que X est un chaîne de Markov si $\forall A \subset E, \forall n \in \mathbb{N}^*, \mathbf{P}[X_n \in A \mid \mathcal{F}_{n-1}^X] = \mathbf{P}[X_n \in A \mid X_{n-1}].$

Les **probabilités de transition** sont représentées par les **matrices de transition** P_n définies par $\forall n \in \mathbb{N}, \forall x, y \in E, P_n(x,y) := \mathbf{P}[X_n = y \mid X_{n-1} = x]$. Ce sont des matrices stochastiques : leurs composantes sont positives et leurs lignes somment à l'unité.

Prop. Soit $(P_n)_{n \in \mathbb{N}^*}$ une suite de matrices stochastiques sur E. Pour toute distribution initiale π_0 il existe une chaîne de Markov de loi initiale π_0 et de matrices de transition $(P_n)_{n \in \mathbb{N}^*}$.

Les probabilités marginales π_n se déduisent par $\forall n \in \mathbf{N}^*, \pi_n = \pi_0 P_1 \dots P_n$, où π_0 est un vecteur ligne de taille $\operatorname{Card}(E)$.

Prop (Formule de Chapman-Kolmogorov). $\forall x,y \in E, \forall k \in [0\,;n], \mathbf{P}(X_n=y\mid X_0=x) = \sum_{z\in E}\mathbf{P}(X_n=y\mid X_k=z)\mathbf{P}(X_k=z\mid X_0=x).$

Not. P_x est la probabilité conditionelle sachant $X_0 = x$, et E_x est l'espérance associée.

Th (Propriété de Markov forte). Soit $(X_n)_{n \in \mathbb{N}}$ une chaîne de Markov et τ un temps d'arrêt à valeurs dans \mathbb{N} . Alors $\forall A \subset E, \forall n \in \mathbb{N}^*, \mathbf{P}(X_{\tau+n} \in A \mid \mathcal{F}^X_{\tau+n-1}) = \mathbf{P}(X_{\tau+n} \in A \mid X_{\tau+n-1})$.

Def. Une chaîne de Markov est dite **homogène** si sa matrice de transition P_n est indépendante de n.

5 Lois invariantes et classification des états

Soit X une chaîne de Markov homogène de matrice de transition P.

Def. Une probabilité ν sur E est représentée par un vecteur ligne $(\nu(x))_{x\in E}$. On dit que ν est une probabilité invariante pour X si $\nu P = \nu$.

Th. Soit E un espace d'état fini. Alors il existe au moins une probabilité invariante.

Si
$$\forall x \in E, \forall n \in \mathbf{N}\pi_n(x) > 0$$
 on définit $Q_n(x,y) := \mathbf{P}(X_n = y \mid X_{n+1} = x) = \frac{P(y,x)\pi_n(y)}{\pi_{n+1}(x)}$.

Def. On dit que X (homogène) est **réversible** par rapport à une mesure de probabilité ν si $\forall x, y \in E, \nu(x)P(x,y) = \nu(y)P(y,x)$, i.e. si les lois marginales π_n sont données par ν , $Q_n = P$ pour tout n.

Prop. Soit ν une mesure de probabilité par rapport à laquelle X est invariant. Alors ν est une probabilité invariante.

Def. Soit $x \in E$. On définit le temps d'arrêt de premier retour à $x : R_x := R_1^x = \inf\{n \in \mathbf{N}^* \mid X_n = x\}$. x est dit récurrent si $\mathbf{P}(R_x < \infty) = 1$, dont récurrent positif si $\mathbf{E}_x(R_x) < \infty$ et récurrent nul si $\mathbf{E}_x(R_x) = \infty$. Sinon on dit que x est transitoire ou transient.

On introduit les mesures à valeurs dans $[0;\infty]$ définies par $\forall x,y\in E, \mu_x(y)=\mathbf{E}_x\left[\sum_{n=0}^{R_x-1}\mathbf{1}_{\{X_n=y\}}\right]=\sum_{n\in\mathbf{N}}\mathbf{P}_x(R_x>n,X_n=y).$

Prop. Soit $x \in E$. Alors,

- (i) $\mu_x P = \mu_x \, ssi \, x \, est \, un \, \acute{e}tat \, r\acute{e}current$,
- (ii) μ_x est une mesure finie ssi x est récurrent positif, dans ce cas $\nu_x = \frac{\mu_x}{\mathbf{E}_x(R_x)}$ est une probabilité invariante.

Def. Soit $x, y \in E$. On dit que :

- x communique avec y, noté $x \leftarrow y$ si $\exists n \in \mathbb{N}, x_1, \dots, x_n, P(x, x_1) \cdots P(x_n, y) > 0$,
- x et y communiquent, noté $x \leftrightarrow y$, si $x \leftarrow y$ et $y \leftarrow x$.

Def. Une classe $E_0 \subset E$ est dite **irréductible** si $\forall x, y \in E_0, x \leftarrow y$. X est dite irréductible si E est irréductible. Une classe $E_0 \subset E$ est dite **fermée** si $\forall x, y \in E, (x \in E_0 \land x \leftarrow y) \implies y \in E_0$. Si $\{x_0\}$ est fermée, on dit que x_0 est absorbant.

On introduit le nombre de visite d'un état $x: N^x := \sum_{n \in \mathbb{N}} \mathbf{1}_{\{X_n = x\}}$.

Prop. Soit $x, y \in E$.

- (i) Si $x \leftarrow y$ et x est récurrent, alors y est récurrent et $N^y = \infty$, \mathbf{P}_x -p.s.
- (ii) Si $x \leftrightarrow y$, alors x et y sont simultanément soit transitoires soit récurrents.

Th. Supposons X irréductible. Alors X est récurrente positive si et seulement si X admet une loi invariante ν . De plus, ν est unique, strictement positive, donnée par $\forall x \in E, \nu(x) = \frac{1}{\mathbf{E}_x(R_x)}$.

Prop. Soit X une chaîne de Markov sur un espace d'état dénombrable E, et $x \in E$ récurrent. Alors, pour toute mesure ν sur E, $\nu \geqslant \nu P \implies \nu = \nu(x)\mu_x$.

6 Théorèmes ergodiques

Théorèmes ergodiques

Th. Soit X une chaîne de Markov irréductible, $\forall x,y \in E, \frac{1}{n}N_n^y := \frac{1}{n}\sum_{i=0}^n \mathbf{1}_{\{X_i=y\}} \longrightarrow \frac{1}{\mathbf{E}_y(R^y)}$, \mathbf{P}_x -p.s.

En particulier il vient $\forall x,y \in E, \frac{1}{n} \sum_{i=0}^{n} \mathbf{P}(X_i = x) = \frac{1}{n} \sum_{i=0}^{n} \pi_i(x) \longrightarrow \nu(x), \mathbf{P}_y$ -p.s. avec ν une loi invariante.

Th. Soit X une chaîne de Markov irréductible et récurrente positive sur E dénombrable, de matrice de transition P et d'unique loi invariante ν . Alors, pour toute fonction $g\colon E\times E\to \mathbf{R}$ positive ou telle que $\mathbf{E}_{\nu}\left[|g(X_0,X_1)|\right]<\infty$, on a $\forall \pi_0, \frac{1}{n}\sum_{i=1}^n g(X_{i-1},X_i) \xrightarrow{p.s.} \mathbf{E}_{\nu}\left[g(X_0,X_1)\right] = \sum_{x\in E}\nu(x)\sum_{y\in E}P(x,y)g(x,y)$.

Th. Soit X et g comme précedemment. Supposons qu'il existe $x \in E$ tel que

$$s(x)^2 := \mathbf{E}_x \left[\sum_{i=1}^{R_x} \left(g(X_{i-1}, X_i) - \mathbf{E}_{\nu}(g(X_0, X_1)) \right)^2 \right] < \infty.$$

Alors $\sigma^2 := \nu(x)s(x)^2$ est une constante (indépendante de x) et

$$\sqrt{x}\left(\frac{1}{n}\sum_{i=1}^n g(X_{i-1},X_i) - \mathbf{E}_{\nu}(g(X_0,X_1))\right) \longrightarrow \mathcal{N}(0,\sigma^2)$$
 en loi.

Convergence des lois marginales et apériodicité

Not. Pour tout état $x \in E$ on définit $I(x) := \{n \in \mathbb{N}^* \mid P^n(x, x) > 0\}$ et $\mathbf{p}(x) := \operatorname{pgcd}(I(x))$.

Prop. Soit X une chaîne de Markov irréductible. Alors la fonction $\mathbf{p}(x) = \mathbf{p}_X$ est constante.

Def. Soit X une chaîne de Markov irréductible. On dit que X est apériodique si $p_X = 1$.

Lem. Pour $x \in E$, $\mathbf{p}(x) = 1 \iff \exists \mathbf{n}(x) \in \mathbf{N}, \forall n \geqslant \mathbf{n}(x), P^n(x, x) > 0$.

Th. Soit X une chaîne de Markov irréductible, apériodique et récurrente positive d'unique loi invariante ν . Alors $\forall x \in E, \pi_n(x) \longrightarrow \nu(x)$.

Prop. Soit X^1 et X^2 deux chaînes de Markov indépendantes de même matrice de transition P irréductible apériodique. Alors la chaîne produit $Y := (X^1, X^2)$ est irréductible apériodique. Si de plus P est récurrente positive, il en est de même pour Y.

Prop. Soit X une chaîne de Markov irréductible apériodique sur E fini. Alors sa matrice de transition P vérifie la **condition de Dobelin**: il existe $k \in \mathbb{N}$, $\epsilon > 0$ et une loi δ sur E tels que $\forall x, y \in E$, $P^k(x, y) \geqslant \epsilon \cdot \delta(y)$.

Th. Soit P une matrice de transition vérifiant la condition de Dobelin. Alors il existe une unique loi invariante $\nu \geqslant \epsilon \cdot \delta$ vérifiant

$$\sup_{x \in E} \sum_{y \in E} |P^n(x, y) - \nu(y)| \leq 2(1 - \epsilon)^{\lfloor n/k \rfloor}.$$

Che Bedara - BDE Télécom ParisTech

7 Martingales en temps discret

Martingales et temps d'arrêt

Def. Soit $(X_n)_{n\geqslant 0}$ un processus aléatoire adapté sur l'espace probabilisé filtré $(\Omega, \mathcal{A}, \mathbf{F}, \mathbf{P})$. On dit que X est une **surmartingale** (resp. **sous-martingale**) si X_n est **P**-intégrable pour tout n et $\forall n \in \mathbf{N}^*, \mathbf{E}[X_n \mid \mathcal{F}_{n-1}] \leqslant (\text{resp. } \geqslant)X_{n-1}$. X est une **martingale** s'il est à la fois surmartingale et sous-martingale.

Def. Pour un processus aléatoire $X=(X_n)_{n\geqslant 0}$, on définit le **processus arrêté** au temps d'arrrêt ν par $\forall n\in \mathbb{N}, X_n^{\nu}:=X_{n\wedge \nu}.$

Lem. Soit X une surmartingale (resp. sous-martingale, martingale) et ν un temps d'arrêt. Alors le processus arrêté X^{ν} est une surmartingale (resp. sous-martingale, martingale).

Th. Soit X une martingale (resp. surmartingale) et $\underline{\nu}$, $\overline{\nu}$ deux temps d'arrêt bornés dans \mathcal{T} vérifiant $\underline{\nu} \leqslant \overline{\nu}$ p.s. Alors $\mathbf{E}[X_{\overline{\nu}} \mid \mathcal{F}_{\underline{\nu}}] = (resp. \leqslant) X_{\underline{\nu}}$.

Prop. Soit $X = (X_n)_n$ un processus aléatoire **F**-adapté, $\forall n \in \mathbb{N}, \mathbf{E}(|X_n|) < \infty$. Alors X est une martingale ssi $\mathbf{E}[X_\nu] = \mathbf{E}[X_0]$ pour tout temps d'arrêt n borné.

Martingales fermées

Def. Une martingale $(X_n)_n$ est **fermée** s'il existe une v.a. réelle intégrable Y telle que $\forall n \in \mathbb{N}, X_n = \mathbf{E}(Y \mid X_n)$. **Th.** Toute martingale fermée est uniformément intégrable.

Inégalités et décomposition

Th (Inégalité maximale de Doob). Soit $M = (M_n)_{n \geqslant 0}$ une sous-martingale, et $M_n^* := \sup_{k \leqslant n} M_k$ son processus de maximum courant.

- (i) $\forall c > 0, \forall n \in \mathbf{N}, c\mathbf{P}(M_n^* \geqslant c) \leqslant \mathbf{E}(M_n \mathbf{1}_{M_n^* \geqslant c})$
- (ii) Soit p > 1 et supposons que la sous-martingale M est positive et $\forall n \in \mathbb{N}, M_n \in \mathcal{L}^p$. Alors $M_n^* \in \mathcal{L}^p$ et $\|M_n^*\|_p \leqslant \frac{p}{p-1} \|M_n\|_p$.

Prop (**Décomposition de Doob**). Soit $(X_n)_n$ un processus aléatoire intégrable. Il existe une martingale $(M_n)_n$ et un processus **F**-prévisible $(V_n)_n$ tels que $M_0 = V_0 = 0$ et $\forall n \ge 0, X_n = X_0 + M_n + V_n$. Cette décomposition est unique.

Rem. On voit que : X est une surmartingale ssi V est décroissant, X est une sous-martingale ssi V est croissant et X est une martingale ssi V=0.

Prop. Soit $X=(X_n)_n$ une martingale de carré intégrable, et $\Delta X_n:=X_n-X_{n-1}$. Alors $X_n^2=X_0^2+N_n+[X]_n$ où $N_n:=2\sum_{i=1}^n X_{i-1}\Delta X_i$, $[X]_n:=\sum_{i=1}^n (\Delta X_i)^2$ et $N_0=[X]_0=0$. Dans cette décomposition, $(N_n)_n$ est une martingale nulle en zéro, et $([X]_n)_n$ est un processus **F**-adapté croissant intégrable appelé variation quadratique de la martingale X.

Def. Un processus $X = (X_n)_{n \in \mathbb{N}}$ est une **martingale locale** s'il existe une suite de temps d'arrêt $(\tau_n)_n$ telle que $\tau_n \longrightarrow \infty$ **P**-p.s. et le processus arrêté X^{τ_n} est une martingale pour tout n.

Lem. Soit $X = \{X_n, n \in [0; N]\}$ une martingale locale telle que $\mathbf{E}[X_N^-] < \infty$. Alors X est une martingale.

8 Convergence des martingales

Rem. La suite $(\mathbf{E}[M_n^2])_{n \in \mathbb{N}}$ est croissante.

Th. Soit $(M_n)_{n\in\mathbb{N}}$ une martingale bornée dans L^2 , i.e. $\sup_n \mathbf{E}[M_n^2] < \infty$. Alors il existe une v.a. $M_\infty \in L^2$ telle que $M_n \xrightarrow{L^2} M_\infty$ et $M_n \xrightarrow{p.s.} M_\infty$.

Th. Soit $(M_n)_{n\in\mathbb{N}}$ une martingale de carré intégrable telle que $\sum_{n\geqslant 1}\frac{1}{n^2}\mathbf{E}[|\Delta M_n|^2]<\infty$. Alors $\frac{1}{n}M_n\longrightarrow 0$ p.s. et dans L^2 .

Th (Loi forte des grands nombres). Soit $(X_n)_{n\geqslant 0}$ une suite iid de v.a. intégrables. Alors $\frac{1}{n}\sum_{i=1}^n X_i \xrightarrow{p.s.} \mathbf{E}[X_1]$. Lem. Soit $(X_n)_{n\in \mathbb{N}}$ une sous-martingale, et a < b. Alors la moyenne du nombre de traversées montantes de l'intervalle [a;b] vérifie $\mathbf{E}[U_n^{a,b}] \leqslant \frac{1}{b-a}\mathbf{E}[(X_n-a)^+]$.

Th. Soit $(X_n)_n$ une sous-martingale. Si $\sup_{n\geqslant 0} \mathbf{E}[X_n^+] < \infty$, alors $\exists X \in L^1, X_n \xrightarrow{p.s.} X$.

Th. Soit $(X_n)_n$ une sous-martingale. Si $\sup_{n\geqslant 0} \mathbf{E}[X_n^+] < \infty$ alors il existe une v.a. $X\in L^1$ telle que $X_n \stackrel{p.s.}{\longrightarrow} X$.

Rem. Une sous-martingale est bornée dans L^1 si et seulement si $\sup_{n\geqslant 0}\mathbf{E}[X_n^+]<\infty$.

Th. Pour une martingale $M = (M_n)_n$, les deux assertions suivantes sont équivalentes :

- (i) M est fermée et, en prenant $Y \in L^1$ tel que $\forall n \in \mathbb{N}, M_n = \mathbf{E}[Y \mid \mathcal{F}_n]$, on a $M_n \xrightarrow{L^1} Y$ et $M_n \xrightarrow{p.s.} Y$,
- (ii) M est uniformément intégrable.

Th (central limite martingale). Soit $(M_n)_n$ une martingale telle que $\mathbf{E}[(\Delta M_n)^2 \mid \mathcal{F}_n] = 1$ et $K := \sup_{n \geqslant 1} \mathbf{E}(|\Delta M_n|^3) < \infty$. Alors $\frac{1}{\sqrt{n}} M_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$.