

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 July 2001 (19.07.2001)

PCT

(10) International Publication Number
WO 01/51666 A1

(51) International Patent Classification⁷: C12Q 1/68,
A61K 48/00, C12N 15/00

(21) International Application Number: PCT/US01/01212

(22) International Filing Date: 12 January 2001 (12.01.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/175,787 12 January 2000 (12.01.2000) US

(71) Applicant: THE GENERAL HOSPITAL CORPORATION [US/US]; 55 Fruit Street, Boston, MA 02114 (US).

(72) Inventor: FISHMAN, Mark, C.; 43 Kenwood Avenue, Newton Center, MA 02459 (US).

(74) Agent: ELBING, Karen, L.; Clark & Elbing LLP, 176 Federal Street, Boston, MA 02110-2214 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/51666 A1

(54) Title: METHODS FOR DIAGNOSING AND TREATING HEART DISEASE

(57) Abstract: The invention provides methods of diagnosing heart disease, such as heart failure, screening methods for identifying compounds that can be used to treat or to prevent heart disease, and methods of using these compounds to treat or to prevent heart disease. The invention also provides animal model systems for carrying out the screening methods.

METHODS FOR DIAGNOSING AND TREATING HEART DISEASE

Field of the Invention

5 This invention relates to methods for diagnosing and treating heart disease.

Background of the Invention

Heart disease is a general term used to describe many different heart conditions. For example, coronary artery disease, which is the most common heart disease, is characterized by constriction or narrowing of the arteries supplying the heart with oxygen-rich blood, and can lead to myocardial infarction, which is the death of a portion of the heart muscle. Heart failure is a condition resulting from the inability of the heart to pump an adequate amount of blood through the body. Heart failure is not a sudden, abrupt stop of heart activity, but, rather, typically develops slowly over many years, as the heart gradually loses its ability to pump blood efficiently. Risk factors for heart failure include coronary artery disease, hypertension, valvular heart disease, cardiomyopathy, disease of the heart muscle, obesity, diabetes, and a family history of heart failure.

20

Summary of the Invention

The invention provides diagnostic, drug screening, and therapeutic methods based on the observation that mutation of the *titin* gene leads to a phenotype in zebrafish that is similar to mammalian heart failure.

In one aspect, the invention provides a method of determining whether a test subject (*e.g.*, a mammal, such as a human) has, or is at risk of developing, a titin-related disease or condition (*e.g.*, heart failure). This method involves analyzing a nucleic acid molecule of a sample from the 5 test subject to determine whether the test subject has a mutation (for example, a mutation in a cardiac-specific exon, such as the N2B exon; *e.g.*, the *pickwick* mutation; see below) in a *titin* gene. The presence of such a mutation is an indication that the test subject has, or is at risk of developing, a titin-related disease. This method can further involve using 10 nucleic acid molecule primers specific for the *titin* gene for nucleic acid molecule amplification of the *titin* gene by the polymerase chain reaction, or sequencing *titin* nucleic acid molecules from the test subject.

In another aspect, the invention provides a screening method for identifying a compound that can be used to treat or to prevent heart failure. 15 This method involves contacting an organism (*e.g.*, a zebrafish) having a *titin* mutation (for example, a mutation in a cardiac-specific exon, such as the N2B exon; *e.g.*, the *pickwick* mutation) and a phenotype characteristic of heart failure with the compound, and determining the effect of the compound on the phenotype. Detection of an improvement in the 20 phenotype indicates the identification of a compound that can be used to treat or to prevent heart failure.

In another aspect, the invention provides a method of treating or preventing heart disease, such as heart failure, in a patient. This method involves administering to the patient a compound identified using the 25 screening method described above. A patient treated using this method can have a mutation in the *titin* gene.

In a further aspect, the invention provides a non-human animal (*e.g.*, a zebrafish or a mouse) that has a mutation in a *titin* gene. The

mutation can be, for example, in a cardiac-specific exon of the *titin* gene, such as the N2B exon, and can result in production of a truncated titin product, for example, by the introduction of a stop codon.

By “polypeptide” or “polypeptide fragment” is meant a chain of 5 two or more amino acids, regardless of any post-translational modification (e.g., glycosylation or phosphorylation), constituting all or part of a naturally or non-naturally occurring polypeptide. By “post-translational modification” is meant any change to a polypeptide or polypeptide fragment during or after synthesis. Post-translational modifications can be 10 produced naturally (such as during synthesis within a cell) or generated artificially (such as by recombinant or chemical means). A “protein” can be made up of one or more polypeptides.

By “titin,” “titin protein,” or “titin polypeptide” is meant a polypeptide that has at least 45%, preferably at least 60%, more preferably 15 at least 75%, and most preferably at least 90% amino acid sequence identity to the sequence of the human (see below) or the zebrafish titin polypeptides. Polypeptide products from splice variants of *titin* gene sequences and *titin* genes containing mutations are also included in this definition. A titin polypeptide as defined herein plays a role in heart 20 development, modeling, structure, and contractility. It can be used as a marker of heart disease, such as heart failure.

By a “*titin* nucleic acid molecule” is meant a nucleic acid molecule, such as a genomic DNA, cDNA, or RNA (e.g., mRNA) molecule, that encodes titin, a titin protein, a titin polypeptide, or a portion thereof, as 25 defined above.

The term “identity” is used herein to describe the relationship of the sequence of a particular nucleic acid molecule or polypeptide to the sequence of a reference molecule of the same type. For example, if a

polypeptide or nucleic acid molecule has the same amino acid or nucleotide residue at a given position, compared to a reference molecule to which it is aligned, there is said to be “identity” at that position. The level of sequence identity of a nucleic acid molecule or a polypeptide to a reference molecule is typically measured using sequence analysis software with the default parameters specified therein, such as the introduction of gaps to achieve an optimal alignment (*e.g.*, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705, BLAST, or PILEUP/Prettybox programs). These software programs match identical or similar sequences by assigning degrees of identity to various substitutions, deletions, or other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine, valine, isoleucine, and leucine; aspartic acid, glutamic acid, asparagine, and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine.

A nucleic acid molecule or polypeptide is said to be “substantially identical” to a reference molecule if it exhibits, over its entire length, at least 51%, preferably at least 55%, 60%, or 65%, and most preferably 75%, 85%, 90%, or 95% identity to the sequence of the reference molecule. For polypeptides, the length of comparison sequences is at least 16 amino acids, preferably at least 20 amino acids, more preferably at least 25 amino acids, and most preferably at least 35 amino acids. For nucleic acid molecules, the length of comparison sequences is at least 50 nucleotides, preferably at least 60 nucleotides, more preferably at least 75 nucleotides, and most preferably at least 110 nucleotides.

A *titin* nucleic acid molecule or titin polypeptide is “analyzed” or subject to “analysis” if a test procedure is carried out on it that allows the

determination of its biological activity or whether it is wild type or mutated. For example, one can analyze the *titin* genes of an animal (e.g., a human or a zebrafish) by amplifying genomic DNA of the animal using the polymerase chain reaction, and then determining whether the amplified 5 DNA contains a mutation, for example, the *pickwick* mutation, by, e.g., nucleotide sequence or restriction fragment analysis.

By "probe" or "primer" is meant a single-stranded DNA or RNA molecule of defined sequence that can base pair to a second DNA or RNA molecule that contains a complementary sequence ("target"). The stability 10 of the resulting hybrid depends upon the extent of the base pairing that occurs. This stability is affected by parameters such as the degree of complementarity between the probe and target molecule, and the degree of stringency of the hybridization conditions. The degree of hybridization stringency is affected by parameters such as the temperature, salt 15 concentration, and concentration of organic molecules, such as formamide, and is determined by methods that are well known to those skilled in the art. Probes or primers specific for *titin* nucleic acid molecules, preferably, have greater than 45% sequence identity, more preferably at least 55-75% sequence identity, still more preferably at least 75-85% sequence identity, yet more preferably at least 85-99% sequence identity, and most 20 preferably 100% sequence identity to the sequences of human (see below) or zebrafish *titin*.

Probes can be detectably-labeled, either radioactively or non-radioactively, by methods that are well-known to those skilled in the art. 25 Probes can be used for methods involving nucleic acid hybridization, such as nucleic acid sequencing, nucleic acid amplification by the polymerase chain reaction, single stranded conformational polymorphism (SSCP) analysis, restriction fragment polymorphism (RFLP) analysis, Southern

hybridization, northern hybridization, *in situ* hybridization, electrophoretic mobility shift assay (EMSA), and other methods that are well known to those skilled in the art.

A molecule, *e.g.*, an oligonucleotide probe or primer, a gene or
5 fragment thereof, a cDNA molecule, a polypeptide, or an antibody, can be said to be “detectably-labeled” if it is marked in such a way that its presence can be directly identified in a sample. Methods for detectably-labeling molecules are well known in the art and include, without limitation, radioactive labeling (*e.g.*, with an isotope, such as ^{32}P or ^{35}S)
10 and nonradioactive labeling (*e.g.*, with a fluorescent label, such as fluorescein).

By a “substantially pure polypeptide” is meant a polypeptide (or a fragment thereof) that has been separated from proteins and organic molecules that naturally accompany it. Typically, a polypeptide is
15 substantially pure when it is at least 60%, by weight, free from the proteins and naturally-occurring organic molecules with which it is naturally associated. Preferably, the polypeptide is a titin polypeptide that is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, pure. A substantially pure titin polypeptide can be obtained, for
20 example, by extraction from a natural source (*e.g.*, isolated heart tissue), by expression of a recombinant nucleic acid molecule encoding a titin polypeptide, or by chemical synthesis. Purity can be measured by any appropriate method, *e.g.*, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.

25 A polypeptide is substantially free of naturally associated components when it is separated from those proteins and organic molecules that accompany it in its natural state. Thus, a protein that is chemically synthesized or produced in a cellular system different from the

cell in which it is naturally produced is substantially free from its naturally associated components. Accordingly, substantially pure polypeptides not only include those derived from eukaryotic organisms, but also those synthesized in *E. coli* or other prokaryotes.

5 An antibody is said to "specifically bind" to a polypeptide if it recognizes and binds to the polypeptide (*e.g.*, a titin polypeptide), but does not substantially recognize and bind to other molecules (*e.g.*, non-titin related polypeptides) in a sample, *e.g.*, a biological sample that naturally includes the polypeptide.

10 By "high stringency conditions" is meant conditions that allow hybridization comparable with the hybridization that occurs using a DNA probe of at least 500 nucleotides in length, in a buffer containing 0.5 M NaHPO₄, pH 7.2, 7% SDS, 1 mM EDTA, and 1% BSA (fraction V), at a temperature of 65°C, or a buffer containing 48% formamide, 4.8 x SSC, 15 0.2 M Tris-Cl, pH 7.6, 1 x Denhardt's solution, 10% dextran sulfate, and 0.1% SDS, at a temperature of 42°C. (These are typical conditions for high stringency northern or Southern hybridizations.) High stringency hybridization is also relied upon for the success of numerous techniques routinely performed by molecular biologists, such as high stringency PCR, 20 DNA sequencing, single strand conformational polymorphism analysis, and *in situ* hybridization. In contrast to northern and Southern hybridizations, these techniques are usually performed with relatively short probes (*e.g.*, usually 16 nucleotides or longer for PCR or sequencing and 40 nucleotides or longer for *in situ* hybridization). The high 25 stringency conditions used in these techniques are well known to those skilled in the art of molecular biology, and examples of them can be

found, for example, in Ausubel *et al.*, *Current Protocols in Molecular Biology*, John Wiley & Sons, New York, NY, 1998, which is hereby incorporated by reference.

By “sample” is meant a tissue biopsy, amniotic fluid, cell, blood, 5 serum, urine, stool, or other specimen obtained from a patient or test subject. The sample can be analyzed to detect a mutation in a *titin* gene, or expression levels of a *titin* gene, by methods that are known in the art. For example, methods such as sequencing, single-strand conformational polymorphism (SSCP) analysis, or restriction fragment length 10 polymorphism (RFLP) analysis of PCR products derived from a patient sample can be used to detect a mutation in a *titin* gene; ELISA can be used to measure levels of titin polypeptide; and PCR can be used to measure the level of a *titin* nucleic acid molecule.

By “titin-related disease” or “titin-related condition” is meant a 15 disease or condition that results from inappropriately high or low expression of a *titin* gene, or a mutation in a *titin* gene that alters the biological activity of a *titin* nucleic acid molecule or polypeptide. Titin-related diseases and conditions can arise in any tissue in which titin is expressed during prenatal or post-natal life. Titin-related diseases and 20 conditions can include heart diseases, such as heart failure. Specific examples of different types of heart failure are provided below.

The invention provides several advantages. For example, using the diagnostic methods of the invention, it is possible to detect an increased likelihood of heart disease, such as heart failure, in a patient, so that 25 appropriate intervention can be instituted before any symptoms occur. This may be useful, for example, with patients in high-risk groups for heart failure (see above). Also, the diagnostic methods of the invention facilitate determination of the etiology of an existing heart condition, such

as heart failure, in a patient, so that an appropriate approach to treatment can be selected. In addition, the screening methods of the invention can be used to identify compounds that can be used to treat or to prevent heart conditions, such as heart failure.

5 Other features and advantages of the invention will be apparent from the following detailed description and the claims.

Brief Description of the Drawing

Fig. 1 is a schematic representation of the domain structure of the human titin filament. The nucleotide and amino acid sequences of human titin are provided in SEQ ID NOs:1 and 2, respectively. The modular architecture of cardiac titin as predicted by its full-length cDNA is shown.

A total of 244 copies of 100 residue repeats, as indicated by vertical rectangles, are contained in the molecule. One hundred and twelve of these belong to the Ig domain, and 132 belong to the FN3 superfamily.

15 The titin kinase domain, as well as the PEVK element N2-B 163-residue variant are also shown. Within the A-band , the D-zone contains six tandem repeats of the seven domains shown (A1 through A42), and the C-zone contains 11 tandem repeats of the 11 domains shown (A43 through A163). The positions of the tandemly repeated RMSP and VKSP motifs

20 in the Z-disc and M-line region are also shown

Detailed Description

The invention provides methods of diagnosing heart disease, screening methods for identifying compounds that can be used to treat or to prevent heart disease, and methods of treating or preventing heart

disease using these compounds. The invention also provides animal model systems that can be used in the screening methods of the invention.

In particular, we have discovered that a mutation (the *pickwick* mutation) in the *titin* gene is associated with heart disease, such as heart failure. Titin, which is also known as “connectin,” is the largest known single-chain protein, having a molecular weight of about 3,000 kDa. Titin is a structural protein, and plays a central role in the assembly and elasticity of vertebrate skeletal and cardiac muscle. Thus, the diagnostic methods of the invention involve detection of mutations in the *titin* gene, while the compound identification methods of the invention involve screening for compounds that affect the phenotype of *titin* mutants or other models of heart disease, such as heart failure. Compounds identified in this manner can be used in methods to treat or to prevent heart disease (e.g., heart failure). The diagnostic, screening, and therapeutic methods of the invention, as well as the animal model systems of the invention, are described further, as follows.

Diagnostic Methods

Titin nucleic acid molecules, polypeptides, and antibodies can be used in methods to diagnose or to monitor diseases and conditions involving mutations in, or inappropriate expression of, *titin* genes. As discussed further below, the *pickwick* mutation in zebrafish, which is present in the *titin* gene, is characterized by a phenotype that is similar to that of heart failure in humans. Thus, detection of abnormalities in *titin* genes or their expression can be used in methods to diagnose, or to monitor treatment or development of, human heart disease, such as heart failure. For use as references, the human cardiac *titin* cDNA sequence can be found at:

<http://www.embl-heidelberg.de/ExternalInfo/Titin/cardiacseq.html> (SEQ ID NO:1), while the corresponding protein sequence can be found at: <http://www.embl-heidelberg.de/ExternalInfo/Titin/cardiacpep.html> (SEQ ID NO:2).

5 As noted above, the diagnostic methods of the invention can be used, for example, with patients that have heart failure, in an effort to determine its etiology and, thus, to facilitate selection of an appropriate course of treatment. The diagnostic methods can also be used with 10 patients that have not yet developed heart failure, but who are at risk of developing such a disease, or with patients that are at an early stage of developing such a disease. Also, the diagnostic methods of the invention can be used in prenatal genetic screening, for example, to identify parents 15 who may be carriers of a recessive *titin* mutation.

Examples of heart failure that can be diagnosed (and treated) using 15 the methods of the invention include congestive heart failure, which is characterized by fluid in the lungs or body, resulting from failure of the heart in acting as a pump; right sided heart failure (right ventricular), which is characterized by failure of the pumping action of the right ventricle, resulting in swelling of the body, especially the legs and 20 abdomen; left sided heart failure (left ventricular), which is caused by failure of the pumping action of the left side of the heart, resulting in congestion of the lungs; forward heart failure, which is characterized by the inability of the heart to pump blood forward at a sufficient rate to meet the oxygen needs of the body at rest or during exercise; backward heart 25 failure, which is characterized by the ability of the heart to meet the needs of the body only if heart filling pressures are abnormally high; low-output,

which is characterized by failure to maintain blood output; and high-output, which is characterized by heart failure symptoms, even when cardiac output is high.

Titin may also play a role in cardiovascular diseases other than 5 heart failure, such as coronary artery disease or conditions associated with valve formation defects, and, thus, detection of abnormalities in *titin* genes or their expression can be used in methods to diagnose and monitor these conditions as well. The methods of the invention can be used to diagnose (or to treat) the disorders described herein in any mammal, for example, 10 humans, domestic pets, or livestock.

Titin abnormalities that can be detected using the diagnostic methods of the invention include those characterized by, for example, (i) abnormal titin polypeptides, (ii) *titin* genes containing mutations that result in the production of such polypeptides, and (iii) *titin* mutations that result 15 in production of abnormal amounts of titin. Detection of such abnormalities, thus, can be used in methods to diagnose human heart disease, such as heart failure. Exemplary of the *titin* mutations that can be detected using the methods of the invention is the *pickwick* mutation (see below).

20 Detection of *titin* mutations can be carried out using any diagnostic technique. For example, a biological sample obtained from a patient can be analyzed for one or more mutations in *titin* nucleic acid molecules (e.g., the *pickwick* mutation) using a mismatch detection approach. Generally, this approach involves polymerase chain reaction (PCR) amplification of 25 nucleic acid molecules from a patient sample, followed by identification of a mutation (*i.e.*, a mismatch) by detection of altered hybridization, aberrant electrophoretic gel migration, binding, or cleavage mediated by mismatch binding proteins, or by direct nucleic acid molecule sequencing. Any of

these techniques can be used to facilitate detection of mutant *titin* genes, and each is well known in the art. Examples of these techniques are described by Orita *et al.* (Proc. Natl. Acad. Sci. U.S.A. 86:2766-2770, 1989) and Sheffield *et al.* (Proc. Natl. Acad. Sci. U.S.A. 86:232-236, 5 1989).

Mutation detection assays also provide an opportunity to diagnose a titin-mediated predisposition to heart disease before the onset of symptoms. For example, a patient heterozygous for a *titin* mutation that suppresses normal titin biological activity or expression may show no 10 clinical symptoms of a titin-related disease, and yet possess a higher than normal probability of developing heart disease, such as heart failure. Given such a diagnosis, a patient can take precautions to minimize exposure to adverse environmental factors, and can carefully monitor their medical condition, for example, through frequent physical examinations. 15 As mentioned above, this type of diagnostic approach can also be used to detect *titin* mutations in prenatal screens.

The *titin* diagnostic assays described above can be carried out using any biological sample (for example, a muscle tissue sample) in which titin is normally expressed. Because of the limited number of tissues in which 20 titin is expressed, as well as the relative difficulties involved in obtaining samples of these tissues, it may be preferable to detect mutant *titin* genes in another, more easily obtained sample type, such as blood or amniotic fluid samples using, for example, mismatch detection techniques. Preferably, the DNA in such a sample is subjected to PCR amplification 25 prior to analysis.

Levels of titin expression in a patient sample can be determined by using any of a number of standard techniques that are well known in the art. For example, titin expression in a biological sample (e.g., a blood or

tissue sample, or amniotic fluid) from a patient can be monitored by standard northern blot analysis or by quantitative PCR (see, e.g., Ausubel *et al.*, *supra*; *PCR Technology: Principles and Applications for DNA Amplification*, H.A. Ehrlich, Ed., Stockton Press, NY; Yap *et al.*, *Nucl. Acids. Res.* 19:4294, 1991).

In yet another diagnostic approach of the invention, an immunoassay is used to detect or to monitor titin protein levels in a biological sample. Titin-specific polyclonal or monoclonal antibodies can be used in any standard immunoassay format (e.g., ELISA, Western blot, 10 or RIA; see, e.g., Ausubel *et al.*, *supra*) to measure titin polypeptide levels. These levels are compared to wild-type titin levels. For example, a decrease in titin production may be indicative of a condition or a predisposition to a condition involving insufficient titin biological activity.

Immunohistochemical techniques can also be utilized for titin 15 detection. For example, a tissue sample can be obtained from a patient, sectioned, and stained for the presence of titin using an anti-titin antibody and any standard detection system (e.g., one that includes a secondary antibody conjugated to horseradish peroxidase). General guidance regarding such techniques can be found in, e.g., Bancroft *et al.*, *Theory and Practice of Histological Techniques*, Churchill Livingstone, 1982, and 20 in Ausubel *et al.*, *supra*.

Identification of Molecules That Can Be Used to Treat or to Prevent Heart Failure

Identification of a mutation in *titin* as resulting in a phenotype that 25 is related to heart failure facilitates the identification of molecules (e.g., small organic molecules, peptides, or nucleic acid molecules) that can be

used to treat or to prevent heart failure. The effects of candidate compounds on heart failure can be investigated using, for example, the zebrafish system. The zebrafish, *Danio rerio*, is a convenient organism to use in genetic analysis of vascular development. In addition to its short 5 generation time and fecundity, it has an accessible and transparent embryo, allowing direct observation of blood vessel function from the earliest stages. As discussed further below, zebrafish and other animals having mutations in the *titin* gene, which can be used in these methods, are also included in the invention.

10 In one example of the screening methods of the invention, a zebrafish having a mutation in the *titin* gene (e.g., a zebrafish having the *pickwick* mutation; see below) is contacted with a candidate compound, and the effect of the compound on the development of a heart abnormality that is characteristic of heart failure, or on the status of such an existing 15 heart abnormality, is monitored, relative to an untreated, identically mutant control. As discussed further below, zebrafish having the *pickwick* mutation are characterized by, for example, reduction of peak systolic pressures, stretched and thin myocardium, excess cardiac jelly, absent A-V cushions, and an obstructed ventricular outflow tract. Thus, these 20 characteristics (in addition to other characteristics of heart failure) can be monitored using the screening methods of the invention.

After a compound has been shown to have a desired effect in the zebrafish system, it can be tested in other models of heart disease, for example, in mice or other animals having a mutation in the *titin* gene. 25 Alternatively, testing in such animal model systems can be carried out in the absence of zebrafish testing.

Candidate compounds can be purified (or substantially purified) molecules or can be one component of a mixture of compounds (e.g., an

extract or supernatant obtained from cells; Ausubel *et al.*, *supra*). In a mixed compound assay, the effect on a phenotype of heart failure is tested against progressively smaller subsets of the candidate compound pool (e.g., produced by standard purification techniques, e.g., HPLC or FPLC) 5 until a single compound or minimal compound mixture is demonstrated to have the desired effect.

Test compounds that can be screened in the methods described above can be chemicals that are naturally occurring or artificially derived. Such compounds can include, for example, polypeptides, synthesized 10 organic molecules, naturally occurring organic molecules, nucleic acid molecules, and components thereof. Candidate compound can be found, for example, in a cell extract, mammalian serum, or growth medium in which mammalian cells have been cultured.

In general, novel drugs for prevention or treatment of mutant titin-related heart diseases can be identified from large libraries of both natural 15 products, synthetic (or semi-synthetic) extracts, and chemical libraries using methods that are well known in the art. Those skilled in the field of drug discovery and development will understand that the precise source of test extracts or compounds is not critical to the screening methods of the 20 invention. Accordingly, virtually any number of chemical extracts or compounds can be screened using these methods. Examples of such extracts or compounds include, but are not limited to, plant-, fungal-, prokaryotic-, or animal-based extracts, fermentation broths, and synthetic compounds, as well as modifications of existing compounds.

25 Numerous methods are also available for generating random or directed synthesis (e.g., semi-synthesis or total synthesis) of any number of chemical compounds, including, but not limited to, saccharide-, lipid-, peptide-, and nucleic acid molecule-based compounds. Synthetic

compound libraries are commercially available from Brandon Associates (Merrimack, NH) and Aldrich Chemical (Milwaukee, WI). Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant, and animal extracts are commercially available from a number of sources, 5 including Biotics (Sussex, UK), Xenova (Slough, UK), Harbor Branch Oceanographic Institute (Ft. Pierce, FL), and PharmaMar, U.S.A. (Cambridge, MA). In addition, natural and synthetically produced libraries can be produced, if desired, according to methods known in the art, *e.g.*, by standard extraction and fractionation. Furthermore, if desired, 10 any library or compound can be readily modified using standard chemical, physical, or biochemical methods.

In addition, those skilled in the art of drug discovery and development readily understand that methods for dereplication (*e.g.*, taxonomic dereplication, biological dereplication, and chemical 15 dereplication, or any combination thereof) or the elimination of replicates or repeats of materials already known for their therapeutic activities for heart failure can be employed whenever possible.

When a crude extract is found to have an effect on the development or persistence of heart failure, further fractionation of the positive lead 20 extract can be carried out to isolate chemical constituents responsible for the observed effect. Thus, the goal of the extraction, fractionation, and purification process is the careful characterization and identification of a chemical entity within the crude extract having a desired activity. The same assays described herein for the detection of activities in mixtures of 25 compounds can be used to purify the active component and to test derivatives of these compounds. Methods of fractionation and purification of such heterogeneous extracts are well known in the art. If desired,

compounds shown to be useful agents for treatment can be chemically modified according to methods known in the art.

Treatment or Prevention of Heart Failure

- Compounds identified using the screening methods described above
- 5 can be used to treat patients that have or are at risk of developing heart disease, such as heart failure. Such treatment may be required only for a short period of time, or may, in some form, be required throughout a patient's lifetime. Any continued need for treatment, however, can be determined using, for example, the diagnostic methods described above.
- 10 In considering various therapies, it is understood that such therapies are, preferably, targeted to the affected or potentially affected organ, that is, the heart.

Treatment or prevention of diseases resulting from a mutated *titin* gene can be accomplished, for example, by modulating the function of a

15 mutant titin protein, delivering normal titin protein to the appropriate cells, altering the levels of normal or mutant titin protein, replacing a mutant *titin* gene with a normal *titin* gene or, administering a normal *titin* gene. It is also possible to correct a *titin* defect by modifying the physiological pathway (*e.g.*, a signal transduction pathway) in which the titin protein

20 participates.

In a patient diagnosed as heterozygous for a *titin* mutation, or as susceptible to *titin* mutations or aberrant titin expression (even if those mutations or expression patterns do not yet result in alterations in titin expression or biological activity), any of the above-described therapies can

25 be administered before the occurrence of the disease phenotype. In particular, compounds shown to modulate titin expression or to have an

effect on the phenotype of *titin* mutants can be administered to patients diagnosed with potential or actual heart disease by any standard dosage and route of administration.

- Any appropriate route of administration can be employed to
- 5 administer a compound found to be effective in treating or preventing heart failure, according to the invention. For example, administration can be parenteral, intravenous, intra-arterial, subcutaneous, intramuscular, intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intranasal, aerosol, or oral. However, as noted above, preferably, the
- 10 administration is local to the afflicted tissue, that is, the heart. Therapeutic formulations can be in the form of liquid solutions or suspensions; for oral administration, formulations can be in the form of tablets or capsules; and for intranasal formulations, in the form of powders, nasal drops, or aerosols.
- 15 A therapeutic compound of the invention can be administered within a pharmaceutically acceptable diluent, carrier, or excipient, in unit dosage form. Administration can begin before or after the patient is symptomatic. Methods that are well known in the art for making formulations are found, for example, in *Remington's Pharmaceutical Sciences*, (18th edition), ed. A. Gennaro, 1990, Mack Publishing Company, Easton, PA. Formulations for parenteral administration can, for example, contain excipients; sterile water; or saline; polyalkylene glycols, such as polyethylene glycol; oils of vegetable origin; or hydrogenated naphthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide
- 20 copolymer, or polyoxyethylene-polyoxypropylene copolymers can be used to control the release of the compounds. Other potentially useful parenteral delivery systems for compounds identified using the methods of the invention include ethylene-vinyl acetate copolymer particles, osmotic
- 25

pumps, implantable infusion systems, and liposomes. Formulations for inhalation can contain excipients, for example, lactose, or can be aqueous solutions containing, for example, polyoxyethylene-9-lauryl ether, glycocholate, and deoxycholate, or can be oily solutions for administration 5 in the form of nasal drops, or as a gel.

Titin nucleic acid molecules and polypeptides can also be used in tissue engineering, for example, in the manufacture of artificial or partially artificial hearts. As mentioned above, titin plays a role in cardiovascular elasticity, integrity, and contractility. Thus, a *titin* nucleic acid molecule 10 or polypeptide, as described above, can be used to impart such characteristics on an artificial or partially artificial heart.

Animal Model Systems

The invention also provides animal model systems for use in carrying out the screening methods described above. Examples of these 15 model systems include zebrafish and other animals, such as mice, that have mutations in a *titin* gene. For example, a zebrafish model that can be used in the invention can include a mutation that results in a lack of titin production or production of a truncated (*e.g.*, by introduction of a stop codon) or otherwise altered titin gene product. The mutation can, for 20 example, result in the presence of a stop codon in a cardiac-specific exon, such as the N2B exon (*e.g.*, in the IS3 region; see below). The mutation can be in a region encoding the I band, resulting in the production of a protein in which the I band is truncated and the A band and M line are absent, or can be in a region encoding another portion of the molecule, 25 such as the A band or M line region. As a specific example, a zebrafish having the *pickwick* mutation can be used.

Experimental Results

During a large-scale mutagenesis screening of the zebrafish genome, a group of mutations were identified that affect cardiac contractility. One of these mutations, called *pickwick* (*pik*), dramatically 5 reduces the function of both chambers, causing a recessive, lethal form of heart failure in the zebrafish embryo.

Direct *in vivo* recording of ventricular pressures by the null balance feedback system shows that *pickwick* causes a 5.8 fold reduction of peak systolic pressures, compared to age-matched controls (0.084+/- 0.008 vs. 10 0.49+/- 0.06 mm Hg). Morphological analysis of *pickwick* revealed a stretched and thin myocardium, excess cardiac jelly, absent A-V cushions, and an obstructed ventricular outflow tract. Extensive ultrastructural defects were found by transmission electron microscopy, affecting the assembly of Z-discs and the organization of myofilaments. Reciprocal 15 blastomere transplants identified *pickwick* as a cell autonomously acting mutation of the myoblast lineage.

A positional cloning approach was adopted for gene identification. The *pickwick* mutation has been assigned to a small chromosomal interval, which is covered by BAC clones. The *titin* gene spans this interval, and 20 thus the *pickwick* phenotype is due to a mutation in the *titin* gene. In particular, the *pickwick* gene was mapped to linkage group (LG) 9 by bulk segregant analysis using the *pikm242* allele, which is one of five cardiac specific alleles (*pikm242*, *pikm171*, *pikm740*, *pikm186*, *pikmnm2*). A panel of Z-markers in the linkage group was tested for simple sequence 25 length polymorphisms (SSLPs) using 931 homozygous mutant embryos. Markers Z8363 and Z26463 were shown to flank the *pickwick* locus, defining a 1.2 cM interval containing the gene. It is estimated that 1 cM corresponds to 500-600 kb DNA in the zebrafish genome (Postlethwait *et*

al., Science 264:699-703, 1994). We thus initiated chromosomal walking from the Z8363 marker, which is 0.7 cM from the mutation (12 recombinants out of 1750 meioses).

A positive YAC clone (YAC5) was identified that had a T7 end that
5 is highly homologous to human *titin* coding sequences. As the *titin* genomic region was estimated to be over 300 kb in humans, we decided to identify BAC clones based on sequence information of the zebrafish *titin* EST clones. A physical contig was constructed based on these sequences, which covers the whole *titin* genomic area. Single stranded
10 conformational polymorphisms (SSCPs) were developed from the ends and internal sequences of these clones were used for fine recombinational mapping. One SSCP marker inside the *titin* genomic area (B9F2) picked up one recombinant from the Z26463 side. The other four SSCP markers inside the *titin* genomic area (B4SP1, B2T7, B7SP, and B6SP) picked up
15 zero recombinants out of 1750 meioses. These genetic data indicated that the *pickwick* locus is very close to or within the *titin* genomic region.

As the *titin* cDNA alone is around 82 kb, rescuing the phenotype by RNA injection could prove to be quite difficult. However, we found evidence that the *pickwick* locus is within the *titin* gene by identification of
20 point mutations in one of the *pickwick* alleles. As most of the alleles of *pickwick* have a cardiac-specific phenotype, we presumed that the point mutation is located in a cardiac-specific exon. We focused on the N2B domain in the I-band of titin, as all of the cardiac isoforms are N2B domain based. The zebrafish N2B domain was cloned by RT-PCR. It is a
25 4.3 kb cDNA encoding infrastructures similar to those in humans and mice, and contains 4 IG repeats and three unique sequences, including longer IS3 and shorter IS1.

N2B domains from *pickwick* mutant embryos were then cloned. RNA mismatch analysis was performed to identify the location of the point mutation. One mismatch between the PCR products from *pikm171* and *pikm242* was identified. Sequencing of the PCR product resulted in 5 the identification of a T-> G transition in the *pikm171* allele. This mutation resulted in a change of leucine in the IS3 fragment of N2B domain (N2B-IS3) into a stop codon. The mutation was confirmed in all of the seven homozygous *pikm171* mutant embryos, but none of the four *pikm242* homozygous embryos. A truncated version of titin is predicted to 10 be in the *pikm171* mutant, only as a cardiac specific isoform. It should contain the Z-disc and part of the I-band and be sized around 4,000 amino acids, based on comparison to the homologous human titin sequence, which has a full length of 27,000 amino acids. The identification of a non-sense mutation in the cardiac specific N2B domain in *pikm171* allele 15 confirmed the hypothesis that *titin* is the *pickwick* gene.

Titin was expressed in the zebrafish embryo during the period when the *pickwick* phenotype was first detected. Whole mount *in situ* hybridization analysis indicated that *titin* was expressed strongly in both the heart and the somites at 24 hpf. *Titin* mRNA expression in the heart is 20 normal in *pikm171*. We confirmed the notion that N2B is a cardiac-specific exon in zebrafish by labeling a probe in the IS3 domain for the whole mount *in situ* hybridization.

The identification of a point mutation in the N2B domain thus establishes *pickwick* as the first *in vivo* vertebrate system to study the 25 functions of titin in the heart. If titin functions as a spring, as proposed, it is expected that the contraction will be much weaker. This is exactly what we observed in *pickwick* mutant embryos. If titin functions as a template during the sarcomere assembly, a “silent heart” phenotype would be

expected in titin null mutation. According to the current model of the myofibrillogenesis (Dabiri *et al.*, Proc. Natl. Acad. Sci. U.S.A. 94:9493-9498, 1997), the thick element and/or the sarcomere could not assemble into a beating machine. In contrast, the hearts in the homozygous *pikm171* mutant embryos and all of the other *pickwick* alleles still beat, despite being weaker.

The mutation in *pikm171* predicts a truncated protein in which most of the elastic I-band is deleted and the C-terminal A-band and M-line regions eliminated. It thus could be considered as a null mutation in terms of function as a spring and a potential dominant negative mutation in terms of its function as a template for sarcomere assembly (Turnacioglu *et al.*, Mol. Biol. Cell 8:705-717, 1997). The observation of the weak beating in the *pickwick* mutant embryos suggested the existence of primary contractile machinery without titin. Indeed, thick and thin elements can be detected in the ventricular myocardium cells. They have the capacity to assemble into a functional beating structure in the absence of titin.

We thus have carried out a detailed physiological and morphological analysis of *pickwick*, a zebrafish heart function mutation that reduces the contractility of both chambers. Several pieces of evidence pointed out that *titin* is the *pickwick* gene. Genetic analysis linked the *pickwick* locus closely to the *titin* genomic area. The identification of the *pikmVO62H*, a *pickwick* allele that has an additional somite phenotype, can be explained by the titin hypothesis. The point mutation is expected to be in the common exons that are shared between the cardiac and somatic isoforms of titin. Evidence confirming this hypothesis came from the identification of a point mutation in the cardiac specific N2B domain of titin in one of the *pickwick* alleles, *pikm171*. We went on to show that sarcomere structure is disrupted in the myocardium cells of *pikm171*, but

not the somatic muscle cells. The expression pattern of titin is consistent with this phenotype. Strong expression in both cardiac and skeletal muscles was detected at the onset of the *pickwick* phenotype.

- Thus, our observation in zebrafish is in consistent with the notion
5 that titin functions as a spring during the muscle contraction. As titin is a sarcomere structure protein, it is conceivable that myocardium is affected cell-autonomously in *pickwick* mutant embryos. The thin and stretched morphology could be due to the mechanic tension generated from the failure to form higher-order sarcomere structure and the loss of spring.
10 The mechanic tension may also be the reason for the separation between the myocardium cells and endocardium cells, generating the excess cardiac jelly. However, there is a possibility that the differentiation program of the myocardium was affected in the *titin* mutation. The valve formation phenotype in *pickwick* mutant embryos could be a secondary defect. It has
15 been suggested that the process of endothelial invasion during valve formation is under control of a localized myocardial signal. (For a review, see Fishman *et al.*, Development 124:2099-2117, 1997.) The physical distance between myocardium and endocardium and/or the stalked differential program in the myocardium could be the reason that prevents a
20 normal cushion formation.

Material and Methods

Zebrafish strains and maintenance

Zebrafish were maintained and staged as described. *pikm242*,
pikm171, *pikm740*, *pikm186* were generated in a screen on the AB
25 background (Stainier *et al.*, Development 123:285-292, 1996).
pikmVO62H and *pikmnml2* were generated in a screen on the TL
background. Mapping strains were constructed by crossing *pikm242* into

india strain. *pikm171* embryos used in expression analysis and EM were obtained from pair wise matings of *pikm171*/TL heterozygotes.

In situ hybridization

Whole mount *in situ* hybridization was performed as described 5 (Thisse *et al.*, Development 119:1203-1215, 1993). T5 probe was generated by digestion of the EST clone AI629069 (Research Genetics). The N2B and N2A probe were generated through PCR with a tagged T7 promoter. The primer pairs are:
P238F: 5'-AGGGACACTCAGAGACCATAG (SEQ ID NO:3); and
10 P3785RT: 5'-
TAATACGACTCACTATAGGGTCTGAGGATACTCGCCTTC (SEQ ID NO:4).

Mapping of pickwick

Linkage was established using DNA from 16 homozygous 15 mutations and 16 heterozygous or wild type pick *pikm242*/indian embryos in bulk segregation analysis (Michelmore *et al.*, Proc. Natl. Acad. Sci. U.S.A. 88:9828-9832, 1991). Z-markers (simple sequence length polymorphisms, SSLP) were developed in this lab (Knapik *et al.*, Nat. Genet. 18:338-343, 1998; Shimoda *et al.*, Genomics 58:219-232, 1999).
20 Genotyping products were resolved in 6% PAGE gels.

Chromosomal walking

YAC and BAC clones were screened by PCR as pools of clones (Research Genetics) according to the manufacturer's instruction. YAC ends were cloned by plasmid rescue (Zhong *et al.*, Genomics 48:136-138, 25 1998). Chimeric ends were determined by the RH panel (Geisler *et al.*,

Nat. Genet. 23:86-89, 1999). BAC DNA was extracted using the QIAgene kit and the end sequences were determined by direct sequencing. BLAST-X was performed to search for homologous sequence in Genebank. EST clones were generated by Washington University zebrafish EST project and obtained from Research Genetics. Oligonucleotides derived from the end sequences of YAC and BAC clones were used in standard PCR reactions to determine clone overlap. Primer pair B9F2 was derived from a fragment that was generated by digesting BAC5 with BamHI and then subcloning into the pUC19 vector. This clone can be hit by a primer pair derived from the T7 end of BAC7. Single-strand conformation polymorphisms (SSCP) were tested on 6% MDE acrylamide (FMC Bioproducts) gels at 40°C.

Cloning of the zebrafish N2B domain

Long RT-PCR was performed to amplify the N2B domain from adult zebrafish heart mRNA extracts. mRNA was extracted from pools of ten zebrafish adult hearts using TRIzole reagent (GibcoBRL), as described. The cDNA was synthesized using SuperScriptTMII RNase H-Reverse Transcriptase (GibcoBRL) and then treated with RNase H. The primer is derived from EST3: I19R1:

20 5'- TTTGAACCACCTTGAAGGTACACACCAGG (SEQ ID NO:5).

Long-PCR was performed using Expand 20kbPlus PCR System (Roch) as described. The primer pairs are:

I14F1: 5'- GCTAAGAACATGACTATGGAGTTGCCACAAGC (SEQ ID NO:6)

25 I19R2: 5'- TGAACCACCTTGAAGGTACACACCAGGAG (SEQ ID NO:7)

The 4.6 kb product was subcloned using TOPO TA Cloning Kit (Invitrogen) as described. The sequence was determined by primer walking. Forty eight reads were aligned by Phred/Phrad software to get a large contig that contains only one reading frame with around three fold 5 coverage.

To amplify the N2B region from the homozygous mutant zebrafish embryos, three overlapping primer pairs were designed according to the adult N2B sequence. The contamination from the skeletal muscle specific titin isoform was thus eliminated. mRNA was extracted from pools of ten 10 zebrafish day 2 embryos using TRIzole reagent (GibcoBRL) as described. Sequencing results indicated that the embryonic heart titin contain one less IG domain in the area.

Identification of the point mutation

N2B domains from the homozygous mutant embryos were further 15 amplified by primer pairs that generate six overlapping PCR products sized between 0.6 kb and about 1 kb. RNA mismatch analysis was performed using MutationScreenerTM (Ambion) according to the manufacturer's protocol. A mismatch was identified between *pikm171* and *pikm242* using the primer pairs:

20 P238FT:

5'-TAATACGACTCACTATAGGGAGGGACACTCAGAGACCATAG
(SEQ ID NO:8)

P3785RT: 5'-

TAATACGACTCACTATAGGGTCTGAGGATACTCGCCTTC (SEQ
25 ID NO:9). Sequencing results indicate a T->G non-sense mutation in the cDNA from homozygous *pikm171* embryos.

Genomic sequence in this region was amplified using the primer pair:

P238F: 5'-AGGGACACTCAGAGACCATAG (SEQ ID NO:10)

P341R: 5'- GGCAATGTTACTCTCTGTTGAG (SEQ ID NO:11)

and sent out directly for sequencing after purification using the Geneclean Spin Kit (BIO101).

5 Electron Microscopy

Forty eight hour embryos were fixed overnight at 4°C in 1.5% glutaraldehyde, 1% paraformaldehyde, 70 mM NaPO₄ pH 7.2, 3% Sucrose. They were then washed 3 times for 5 minutes each in 0.1M cacodylate buffer, pH 7.4.

10 Other Embodiments

Although the present invention has been described with reference to preferred embodiments, one skilled in the art can easily ascertain its essential characteristics and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed in the scope of the present invention.

20 All publications and patents mentioned in this specification are hereby incorporated by reference.

What is claimed is:

Claims

1. A method of determining whether a test subject has, or is at risk of developing, a titin-related disease or condition, said method comprising analyzing a nucleic acid molecule of a sample from the test subject to determine whether the test subject has a mutation in a *titin* gene, wherein the presence of said mutation is an indication that said test subject has, or is at risk of developing, a titin-related disease.
2. The method of claim 1, further comprising the step of using nucleic acid molecule primers specific for the *titin* gene for nucleic acid molecule amplification of the *titin* gene by the polymerase chain reaction.
3. The method of claim 1, further comprising the step of sequencing *titin* nucleic acid molecules from said test subject.
4. The method of claim 1, wherein said test subject is a mammal.
5. The method of claim 1, wherein said test subject is human.
- 15 6. The method of claim 1, wherein said disease or condition is heart failure.
7. The method of claim 1, wherein said mutation is the *pickwick* mutation.

8. A method for identifying a compound that can be used to treat or to prevent heart failure, said method comprising contacting an organism comprising a *titin* mutation and having a phenotype characteristic of heart failure with said compound, and determining the effect of said compound
5 on said phenotype, wherein detection of an improvement in said phenotype indicates the identification of a compound that can be used to treat or to prevent heart failure.

9. The method of claim 8, wherein said organism is a zebrafish.

10. The method of claim 8, wherein said *titin* mutation is the
10 *pickwick* mutation.

11. A method of treating or preventing heart failure in a patient, said method comprising administering to said patient a compound identified using the method of claim 8.

12. The method of claim 11, wherein said patient has a mutation in
15 the *titin* gene.

13. The method of claim 12, wherein said mutation is the *pickwick* mutation.

14. A non-human animal comprising a mutation in a *titin* gene.

15. The non-human animal of claim 14, wherein the non-human
20 animal is a zebrafish.

16. The non-human animal of claim 14, wherein the mutation is in a cardiac-specific exon of said *titin* gene.

17. The non-human animal of claim 16, wherein the mutation is in the N2B exon of said *titin* gene.

5 18. The non-human animal of claim 14, wherein the mutation results in the presence of a stop codon in said *titin* gene.

19. The non-human animal of claim 14, wherein the mutation is the *pickwick* mutation.

Fig. 1 Domain structure of the titin filament.

SEQUENCE LISTING

<110> The General Hospital Corporation
<120> Methods for Diagnosing and Treating
Heart Disease
<130> 00786/381W02
<150> US 60/175,787
<151> 2000-01-12
<160> 11
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 81940
<212> DNA
<213> Homo sapiens

<400> 1
attagaggct caccgattca tgcggagat ggtcagaaaa accaactctc cataggacgt 60
cgtttcagaa gcaacaccttgg gcttagtccc accctttta ggcactcttg agaaatcaga 120
gtgccttagaa agatgacaac tcaagcaccc acgtttacgc agccgttaca aagcgttgc 180
gtactggagg gtagtaccgc aacctttgag gctcacatta gtggtttcc agttccttag 240
gtgagcttgt ttagggatgg ccaggtgatt tccacttcca ctctgccccgg cgtcagatc 300
tccttttagcg atggccgcgc taaaactgacg atccccgcgc tgactaaagc caacagtgg 360
cgatattccc taaaaagccac caatggatct ggacaagcga ctgtactgc tgagcttctc 420
gtgaaagctg agacacgacc accccaacttc gttcaacgcac tgcatggatc gaccgtgaga 480
caaggaagcc aagtgagact ccaagtggaa gtgactggaa tccctacacc tgtgtgtgaa 540
ttctaccggg atggagccga aatccagagc tcccttggatt tccaaatttc acaagaaggc 600
gacctctaca gcttaactgtat tgcagaagca taccctgggg actcaggggac ctattcagta 660
aatgccacca atagcgttgg aagagacttc tcgactgctg aattacttgt tcaaggtgaa 720
gaagaagtac ctgctaaaaa gacaaagaca attgtttcgat ctgcataatc ctcagaatca 780
agacaaaccc gaattggaaa gaagatggaa gcccactttg atgcccagatc aatttcaaca 840
gtttagatgg tcatagatgg tgccgctggg caacagctgc cacataaaac acctccagg 900
attccctccga agccaaagtc aagatccccca acaccacccgt ctattgctgc caaagcacag 960
ctggctcggc agcagtcccc atcgccctata agacactcccc cttcccccgt cagacacgtg 1020
cgggcaccga ccccatctcc ggtcagggtcc gtgtctccag cagcaagaat ctccacatcc 1080
cccatcagggt ctgttaggtc tccattgctc atgcgttaaga ctcaggccatc caccgtggcc 1140
acaggcttgc aagtgcctcc ccccttggaaag caagagggtc acgtggctc ctcatctgag 1200
gctgagatga gagagacaac gctgacaacc tctactcaga tcaggacaga agagagatgg 1260
gaagggagat acgggtgtcca ggagcaagtg accatcagtg gtgctgcggg tgctgccc 1320
agtgtgtcgg ccagtgctag ctacgcagca gaggtgttgc ccactgggtc taaagaggtg 1380
aaacaagatg ctgacaaaag tgcagctgtt gcgactgttgc ttgctgcgt tgcataatggcc 1440
agagtggag aaccagtgtat cagcgctgtc gagcagactg ctcagaggac aaccacgact 1500
gctgtgcaca tccaaacctgc tcaagaacag gtaagaaaagg aagcggagaa gactgctgt 1560
actaaaggtag tagtggccgc cgataaaaggc aaggaacaag aattaaaatc aagaacccaa 1620
gaaataattt ccacaaaagca agagcagatg cacgttaactc atgagcagat aagaaaagaa 1680
actaaaaaaa catttgttacc aaaggtagta atttccgcag ctaaaagccaa agaacaagaa 1740
actagaattt ctgaagaaat tactaagaaa cagaaacaag taactcaaga agcaataatg 1800
aaggaaaacta ggaaaacagt tgtacctaaa gtcataatgg ccacacccaa agtcaaagaa 1860
caagatttag tatcaagagg tagagaaggc attactacca aaagagaaca agtgcacata 1920
actcaggaga agatgagaaaa ggaagccgag aaaactgcct tgcataat agcagttgt 1980
actgctaaag ccaaagaaca agaaaacaata ctgagaacta gagaaactat ggctactaga 2040
caagaacaaa tccaaagttac ccatggaaag gtggacgttgc gaaaaaaggc tgaagctgt 2100
gcaacagttg ttgctgcgtt agaccaggcc cgagtcagag agcccgagaa gcctggccat 2160
cttgaagaat cctatgctca gcagaccact ttggagttacg gatataagga acgcatttcc 2220
gccgcaaagg tagctgagcc tcccccaacgt ccagcctcag aaccccacgt tgcataatggcc 2280
gcagtcaagc ctagagtaat ccaggctcct tctgagactc atatcaaaac tactgatcaa 2340

aagggaatgc acatatcatc acagatcaag aaaactacag atctaacaac gaaaagatta 2400
 gtccatgtgg ataaacgccc cccgcacagct agccctcaact ttactgtttc aaaaatttct 2460
 gttcctaaga cagaacatgg atatgaggca tcaatagccg gtagtgctat tgccacatta 2520
 caaaaagagt tgcagccac atcttctgtc cagaagatca ccaaatacggt gaaggctcct 2580
 actgtgaagc ccagttagac tagagaagg gcagagccca cacccttgcc acagttcccc 2640
 ttcgctgaca caccagatac ttacaagagt gaagctggcg ttgaggtgaa aaaggaagta 2700
 ggggtgagca tcactggcac caccgtccgt gaagagcgct ttgaagtact gcacggacgc 2760
 gaagccaagg taacagaaac agcaagagta ccagcacctg ttgaaattcc tgttactcca 2820
 ccaactttgg tctcgggctt aaaaaatgtg actgtcatag aaggtgaatc tgtcacctt 2880
 gagtgccaca tctctggata cccatcccc acagtgcacat ggtacagggta agactaccaa 2940
 atcgaaagtt ccattgactt ccagataacc ttccagagt gaaattgctcg tcttatgatt 3000
 cgcgaaagcat ttgcgaaaga cagcgggca tttacttgca gtgctgtaaa tgaggctgga 3060
 accgtcagca catcctgcta tctggctgtc caggtgtcag aagaatttga aaagaaacc 3120
 acagccgtga ctgagaaatt tactacagaa gagaaacgct ttgttgagtc aagagatgtg 3180
 gttatgactg atactagcct cacagaggaa caagcaggc ctggagaacc tgccgcgcct 3240
 tacttttta caaaaaccagt ggtccagaaa ctgggtgaaag gtgggagcgt ggttttgga 3300
 tgccaagtttgcgcaaccc aaagccccat gtatactgaa aaaaatctgg tgttctcta 3360
 accactggat acagatacaa agtgagttac aacaaacaaa cccgtgaatg caagctggtg 3420
 atttctatga ctttgcgtga tgatgctgga gaatacacta ttgttggcgt caataagcat 3480
 ggagaaacctt ctgcattctgc ttccctgctt gaagaagctg attatgagg actgatgaag 3540
 tcccagcaag aaatgttttgcgttca ctagacacaa gtgactgcat ttgttcaaga acctgaagtt 3600
 ggagaaacacg cacctgggt tttacttactt gtagtggaa aagatgtga aaaagaacaa 3660
 gccttattt ggaagaaaat ggcacaaagat actgtgttgg tcagaactt tgtagaagat 3720
 caggaatttcc atatttcttcc ttgttgcggag agacttata aagaaattga atatagaata 3780
 ataagaacta cattagaaga acttcttgcggaa gaagatggag aagaaaagat ggcagttgac 3840
 atttctgaat ctgaagctgt tgaatcggaa tttgttattaa gaatcaagaa ttatagaatt 3900
 ctggggggg tgggtgtcac ttccatttgc aagatgtctg gatatccatt accaaagatt 3960
 gcttggtaca aagatggcaaa ggcacaaatcatggagaaa gataccaaat ggactttcta 4020
 caagatggca gagctgtct gcgtataacct ttgttcttc cagaagatga agaatctac 4080
 actgcatttt ccaccaatataaaggaaat gcaatttgcgt cagggaaattt gtatgtggag 4140
 cctgctgcac cacttggagc ttccacttac attcccacac tagagccagt gagcagaatc 4200
 agatctctc ctccacgttc agtgagcagg ttccctatac gcatgtctcc tgacggatg 4260
 tcacctgca ggtgtctcc tgcacggatg tccctgcggaa gaatgtcccc tggacgttagg 4320
 ctggaggaga cagatgttgc acaacttgcgt agactatata aaccagtctt tggtttaaaa 4380
 cctgttctt tcaaatgtttt aagatggcaaa actgcacat ttgacttaaa gtttgggtt 4440
 agacctatgc cagacgtt ctgggttcat gatggccagc aaattgtcaa tgactatacc 4500
 cataaaagtag tcattaaaga agatggact caatcactaa ttattgtccc tgccacaccc 4560
 agtgattctg gggatggac ttgtgttgcggaa caaaacaggc caggcagatc ttcaatttca 4620
 gtgattttaa ctgttgcgt tttgttgcgtt caggtttttttt cgtatgtttt agaaaaactg 4680
 aaaaatgtca atataaaggaa aggttcccgaa ctggaaatgaa agtgcagagc tacggtaac 4740
 cccaaaccctg acattgtatg ttgtggggaaat gtcacatca ttgtgcctca taaatatccc 4800
 aaaaatcgaaa ttgaagggaaac caagggggaa gctgcctta aatcgatc cactgtcagc 4860
 caagattctg cctggatac tgcactgtcattt attataaaatg ctggcagaga cactacaaga 4920
 tgcaaaagtaa atgttgcgtt tgatgttgcgtt gggccgttgc cagagagaaa gttatcatc 4980
 ccacggggggg catatagagc aaaggagatt gtcacatca ttgtgcctca taaatatccc 5040
 cgatatggcc aagacaaatg ggaagaaatg gatctctatg acaaagagaa acaacagaaaa 5100
 ccatttttca agaaaaaaact cacttccttta agacttaatgc gctttggccc tgccacttt 5160
 gaatgcaggc taacacccat tagtgcacca acgtatgggg tggagttggct ccatgatgg 5220
 aagccacttg aagcagccaa caggctccgt atgatcaatg aattttggta ctgcagccctt 5280
 gattatggcg ttgcatttc tagagacagt ggtatcattt cttgcagagc cactaacaaa 5340
 tatggaaacag atcacacatc tgctaccctt attgtttaaaatgagaaatg tcttggaa 5400
 gaatcccaat tgcctgaggc gaggaaaggc ttacagagaa ttgaagaattt agagagaatg 5460
 gtcacatgcgtt gtcacttac aggtgttaca acagatcaga aagaaaagca aaagccagac 5520
 attgtcttgcgtt accccagagcc agtttagagta ttgttgcgtt gtcacatccgtc 5580
 aggttaacag gtcacccatc gcccacaaatgc aactgttacc tcaatggaca gtcacatccgc 5640
 aaaaacaaatggtcaatgcgtt ggtatccattt acctggacat cgtggactgc 5700
 aatcatatgcgtt acacaggtga agtgcacatg accgcggaaa atcctgttcaatgcgtt 5760
 cattaaatgtca agcttgcgtt tcaacacatg gaaatggggaa ggttgcgtt gttatcatc 5820
 cctgttgcgtt ggcacccatc tcaacatgcgtt ggttgcgtt gttatcatc 5880
 aaaaatgtcaatgcgtt gacccatgcgtt ggttgcgtt gttatcatc 5940
 gaaatggggaaatgcgtt gacccatgcgtt ggttgcgtt gttatcatc 6000
 cgcacacatg aagagggccatgcgtt ggttgcgtt gttatcatc 6060

aaggatgaat cctatgagga actcctcagg aagacaaaag atgaacttct ccactggacc 6120
 aaagagttaa ctgaagagga aaagaaaagt cttgccgaag aaggcaaat cacgattcca 6180
 acttttaaac ctgacaagat tgaactaagt cctagtatgg aggctccaaa aatttcgaa 6240
 agaatccaga gccaaacagt gggcaagga tctgatgcac acttccgggt cagagtcgtg 6300
 gggaaaccag accccaaatg tgaatggtac aaaaatggt tcaaaattga acggctcgac 6360
 cggatctact ggtactggcc cgaagacaat gtttgtaat tggtcataag agatgtgact 6420
 gctgaggact ctgccagcat catggtaaaa gccatcaaca tagctggaga aaccccgat 6480
 cacgcattct tacttgtcca agccaagcaa ttgatcactt tcacacagga attacaagat 6540
 gtttgtcta agaaaaaga cactatggca accttgaat gtgaaacttc agaaccattt 6600
 gtc当地tga aatggtataa agatggtatg gaggttcatg agggagataa atacaggatg 6660
 cactctgaca gaaagttca cttccctctcc atactgacca ttgatcgtc tgatgctgaa 6720
 gattacagct gtgtacttgt ggaagatgaa aatgtcaaaa cgactgctaa acttattgtt 6780
 gaaggtgcag ttgttagtt tggaaagaaa cttcaggaca tagaagttcc agaattcatat 6840
 tcaggagaat tagagtgc当地 tggatccccaa gaaaatataa aaggaaaatg gtatcataat 6900
 gatgtggagc ttaaaatccaa tggcaaatat acaattacat ctcgtcggtt acgtcagaac 6960
 ctcacggc当地 aggatgtaac caaggaggac cagggagaat acagctttt catcgacggg 7020
 aaaaagacaa cctgttaattt aagatgaaa cccccc当地 ttgctatctt acaaggactt 7080
 agtgc当地 aagtctgtga gggtgc当地 ttgc当地 aagttaaatg ctccctggaa 7140
 agtgtggaaag gctgtggat gaaagacggc caagaagtgc agcccagttt cagggttcc 7200
 attgtgatag acaaacaatc tcatatgtctt ctc当地 aacttgc当地 ggaagatgct 7260
 ggaattact ctttccat tccagccccc ggcctctcc cagttggcg tgc当地 7320
 tatagtgtgg acgtgataac accttcaaaa gatgttataa tgattgaaagg caccaggct 7380
 gtc当地 gtaagggtgtc agtccctgtat gtc当地 ttaagggtt cttaaatgtat 7440
 gaacaaaatca agcctgatga ccgtgtacag gccattgtt aaggtactaa acagcgacta 7500
 gtc当地 accatgc ttc当地 acgaaatc ggacccctt aacttgc当地 tggcagagtt 7560
 gaaaccaact gtaatctctc tggatggaaa attaaaatta tcaagggtt tgc当地 7620
 acctgtacag aaacttcaaaa tggatggat gggatgtt gatgttgc当地 tggatgtt 7680
 gtc当地 gtaagggttca aaggaaatc aagccctt aacttgc当地 ttttttggat 7740
 catggaaaaa tatataattt gacagttctt aatatgtt aagatgtt aagaaaatc 7800
 acattttacg cgggagaaaaa tatgacatctt gggatgtt tggatggat tggatggat 7860
 tccaagccac tc当地 agatca gaccgttagt gatccc当地 aactgttgc当地 tggatgtt 7920
 gttgccaacc cagattccaa aggcaatgg tggatggat gcaaaacactt accactgact 7980
 aacaacatca gaagtggatc tggatggccatc aaaaggagac ttatcattgc tggatggat 8040
 ttagatgaca ttggatggat tacatgtt gatgttgc当地 tggatggat tggatggat 8100
 aaagttgaaatg ctgttcaaaa taagaagact ctgatgtt gatgttgc当地 agaaacacag 8160
 gatgtgtttt tcaactgttca gcttacacac cctaatgttca aaggtgttca tggatggat 8220
 aatggatgtt tgatgttcaatc caatgttcaaaa tatgttgc当地 tggatggat aacaatttac 8280
 tctctgatggat ttaaaaactt tggatggatc gatgttgc当地 tggatggat tggatggat 8340
 aggcttggat ccaactgttca gatgttgc当地 gagactgttca agatgttca aagccaaag 8400
 gatgtgacag ctttggaaaaa tggatggat gatgttgc当地 tggatggat tggatggat 8460
 gttccatgatc aatggatggat tggatggat gatgttgc当地 tggatggat tggatggat 8520
 gtctc当地 gggatgttca caagctgttca tggatggat gatgttgc当地 tggatggat 8580
 gaatacacatc ctgttgc当地 gcaatggat tggatggat tggatggat tggatggat 8640
 catattacaa aaaccatgaa aaatatgttca gatgttgc当地 tggatggat tggatggat 8700
 tggatggat tggatggat tggatggat tggatggat tggatggat tggatggat 8760
 atgatgttca aatggatgttca tggatggat tggatggat tggatggat tggatggat 8820
 accagcacatc aggactgttca gatgttgc当地 tggatggat tggatggat tggatggat 8880
 accctgacatc tcaacttcaat catgatgttca tggatggat tggatggat tggatggat 8940
 aaagacacta ttacttttca gatgttgc当地 tggatggat tggatggat tggatggat 9000
 aagaatggat tggatggat tggatggat tggatggat tggatggat tggatggat 9060
 cactactgttca acatgttca tggatggat tggatggat tggatggat tggatggat 9120
 gggatgttca catcaacatc acatgttca tggatggat tggatggat tggatggat 9180
 cacattaagg acatgttca tggatggat tggatggat tggatggat tggatggat 9240
 gaaacacttca tcaactgttca tggatggat tggatggat tggatggat tggatggat 9300
 ataaagatcc agaaggatgttca tggatggat tggatggat tggatggat tggatggat 9360
 gatgtgtggat tggatggat tggatggat tggatggat tggatggat tggatggat 9420
 gaaggc当地 agtacatgttca tggatggat tggatggat tggatggat tggatggat 9480
 ctttgc当地 tggatggat tggatggat tggatggat tggatggat tggatggat 9540
 ggc当地 tcaatttca agtcaatgttca tggatggat tggatggat tggatggat 9600
 caccgttcaatgttca tggatggat tggatggat tggatggat tggatggat tggatggat 9660
 ggaaggatgttca tggatggat tggatggat tggatggat tggatggat tggatggat 9720
 caggagctcc agcctgttca tggatggat tggatggat tggatggat tggatggat 9780

agaaaaagac ctgaagaaga agaacctaaa gtagaaccta aaaaactaga aaaagttaaa 13560
 aaacctgcag taccagaacc accacctcca aaacctgtt aagaggttga agtacctact 13620
 gttacaaaaa gggaaaggaa gattcctgaa ccaacaaaag tgcctgaaat caagccagca 13680
 atacctctcc ctgcacctga accgaaacca aagcccgaag cagaagtcaa aacaatcaaa 13740
 ccacctcctg tggaacctga accaaccccc atcgctgccc cagtaacagt gccagtggtt 13800
 ggaaagaaaag cagaagccaa agcacctaag gaagaggctg ccaagccaaa aggtcctatc 13860
 aaaggtgtac caaaaaagac tccttcacca atagaagccg aaaggagaaaa gttaaaggcca 13920
 ggaagtgggtg gagagaaacc tcctgatgaa gccccgttca cctaccagct aaaggctgtg 13980
 ccactgaagt ttgtaaaaga aatcaaagac atcatcttga cagaatcaga gttcgttggc 14040
 tcttcagcaa tcttgcata tttggtctcc cttccactg caattacaac ctggatgaaa 14100
 gacggtagca atatccgtga gagtcccaag cacaggttta ttgcagatgg taaagacaga 14160
 aagctgcaca tcattgtatgt tcaactttcc gatgtgttgc aatacacctg tgtttacgt 14220
 ttggaaaca aagaaaagac ctccacggct aaacttgtt tagaagaact tcctgtgcgt 14280
 tttgtaaaaa cactgaaaga gaaagtcaaa gtggtcaaag gacagccatt gtacttgac 14340
 tgcgagttaa acaaagagcg tgacgtggc tggaggaagg atggcaagat tttgtggag 14400
 aaacctggcc gaatttgtcc aggcgtcatt ggctgtatgc gggctctgac catcaacgat 14460
 gcagatgaca cagatgtctgg aacatacaca gttactgtgg aaaacgccaa caacctggag 14520
 ttttcatctt gcgtaaaagt agttagatgc attagagat ggctgtgaa acctatacga 14580
 gaccaggatg tggaaaaaaa gggggacagct atttttgcct gtatatacg aaaagatact 14640
 ccaaaccata agtggttcaa aggtatgtat gaaatccctg cggaaacaaa tgataagact 14700
 gaaatactga gagatggaaa tcatctgtac ctcaaaattt aagatgtat gccagaagat 14760
 attgctgagt atgcgttgc aattgaaaga aaaagatacc ctgcaaaagct gacacttgg 14820
 gaggcgtgaag ttgaaactgct taaaaccaata gaggacgtt ccatttatga gaaagaaaagt 14880
 gcaagctttt atgcagaaaat ctcagaggca gacattccctg gacaatggaa actgaaagg 14940
 gaacttctaa ggccttcacc tacttgtt aatcaaagcag aaggtggaaa acgcttctt 15000
 actttgcaca aagtcaaaact ggaccaagct ggtgaagtcc tctaccaggc ccttaatgca 15060
 attacaactg ccatttgac agtaaaagaa atcgaacttgc actttgtgtt gcccctgaag 15120
 gatgtcactg ttccagaaaag ggcacaggct cgattcgaat gtgtcctcac ccgagaggca 15180
 aatgttataat ggtccaaagg acctgtatata attaagtcat ctgacaaatt tgatatcatc 15240
 gctgtggaa agaaacatat tcttgttatt aatgattctc aatttgatga tgaaggggtc 15300
 tatactgctg aggtggaggg caagaagacc tcagctcggt tttgttgcac aggtataaga 15360
 ctgaaattca tgcacccct tgaagatcaa acagtaaaag aaggtgaaac agcaactttt 15420
 gtttgcac tttctcatga aaaaatgcatt gtagtctgg tcaaaaatga tgccaaactc 15480
 catacaagca gaacagttact catctcttctt gagggcaaga ctcacaaattt gaaatgaaa 15540
 gaagtgcacat tggatgatata tgcacgatata aaagctcaag tcaaggagct gagctccaca 15600
 gcacagctga aggtttttaga ggcgatccc tacttcactg tggaaatttaca tgacaaaact 15660
 gcagttggaga aggtttttagat tacttgtt gtagtctgg tcaaaaatgc tgccaaactc 15720
 tggttcaaaag atgggtgaaga gattgtccct tcacccaaat attctatcaaa ggcagatggc 15780
 ctgcgccgca tctaaaaat caaaaaggcg gacccatggaa ataaaggcgat atatgtgtt 15840
 gactgtggca cagacaagac caaggcaaat gttactgtt gggctcgact aatagaagt 15900
 gaaaagccctc tgcacggat agaggtgtt gttggtggaa cagcccaactt tgaaatttgc 15960
 ctttctgaac ctgatgttca cggccagttt aagctgaaag gacagccctt gacagcttcc 16020
 cctgactgtt aatcatttgc ggttgcacccat aagcatattt tgatccttca taactgtcag 16080
 ctgggtatga caggagggat tcccttccag gctgtaatg cccaaatctgc agccaaatctg 16140
 aaagtggaaat aattgcctt tatttttgcattt acacccctca gtagtgcattt agtcttcgag 16200
 aaagatgagg ctaagtttgc gtttgcacccat tccaggggagc cccaaacattt ccgttggct 16260
 aaaggaaccc aggaatcac aggtgtatgc agatttgcac ttataaaggaa tggcactaag 16320
 cattcaatgg tgcacccat agtgcattt gtttgcacccat cccaaatctgc agccaaatctg 16380
 gaagataagc acacaagtttgc cccaaatgcattt gtttgcacccat tccaggggagc 16440
 cctctcaaaat atgtacttgc cccaaatgcattt gtttgcacccat tccaggggagc 16500
 catgataaca tccgacccat atgggttcaag aatgaccaggc gcttacacac caccaggctg 16560
 gtctcaatgc aagaccaagg gaaaactcat tccatccat tccatccat tccatccat 16620
 gacccctccc aaatttagat agaagcttgc gggatgtt gggatgtt gggatgtt 16680
 ctttgcacccat tccatccat tccatccat tccatccat tccatccat tccatccat 16740
 gaagtttgcacccat tccatccat tccatccat tccatccat tccatccat tccatccat 16800
 gggaaaggaaa taaaggccatc cccaaatgcattt gtttgcacccat tccatccat tccatccat 16860
 ctaatccatc aaaaaggccatc cccaaatgcattt gtttgcacccat tccatccat tccatccat 16920
 gataagacccat cccaaatgcattt gtttgcacccat tccatccat tccatccat tccatccat 16980
 cacaggatgttgc aggtgttgc gtttgcacccat tccatccat tccatccat tccatccat 17040
 gataatccacccat cccaaatgcattt gtttgcacccat tccatccat tccatccat tccatccat 17100
 attaaggaaat aaggccaaat acactccctt gtttgcacccat tccatccat tccatccat 17160
 ggtgggtggg atttccatccat tccatccat tccatccat tccatccat tccatccat 17220

cgagtaattg gtcttctgag gcctttaaag gatgtcaccg tgactgcagg ggaaacagcc 17280
 accttcgact gcgagctctc ctacgaagat atcccagtgg aatggtatct caaaggaaag 17340
 aaactagagc ccagcgataa ggtggtccc cgttcagaag gaaaagttca tacacttact 17400
 ctgaggatg taaagttaga agatgctgg gaagtccaac taacagcaa agattcaaa 17460
 actcacgcca acctcttgc gaaagaaccc ccagttgaat tcactaagcc tcttgaggac 17520
 cagacggctcg aagaggagc cactgcagtg ctggagtgtg aagtctccag agaaaatgct 17580
 aaggtaaat ggttcaaaaa tgggacagaa atcctcaaaa gcaagaagta tgaattgtt 17640
 gctgatggca gggtcagaaa acttggtata catgactgta ccccagagga tattaaaaca 17700
 tacacttgc atgctaagga tttaagact tcctgtaacc tgaatgtcg gcctccat 17760
 gtggattct taagaccact caccgaccc caagtttagag aaaaagaat ggctcgattt 17820
 gagtgtgaac ttcccgaga aatgctaag gttaagtgg ttaaagatgg tgctgaaatt 17880
 aaaaaggggca aaaaatatga catcatatcc aagggagcag tgccgattt tgcataaac 17940
 aaatgtctac tggatgatga agctgaatat tcctgtaag taaggacagc gagaacttct 18000
 ggcatgctga cagttctgga agaagaagct gtcttacca aaaaatctgc caacattgaa 18060
 gtagtgaaa cagacactat aaaaactggg tgcaggactc ccaaaccctgg cgccagaatg 18120
 atttggtata aaggggatga ggagatatt gaaacaggaa gatataagat actgactgaa 18180
 ggacggaaga gaatccctgg tattcagaac gtcacccctg aggatgctgg caactacaac 18240
 tttcgactcc caagctctcg aaccgatggc aagtcaaag tatacatgaaat ggctgctgaa 18300
 ttatctcaa agcctcaaaa ctttgggaaata ctttgggaa aaaaaggctg attttgc 18360
 tctatataa aagaaagctt tccaggccag tggaaagaggg atgataagac acttgaatct 18420
 ggagataaat atgacgttat tgctgatggg aaaaagaggg tccctagttt gaaagatgcc 18480
 acattacaag atatggcac tttttttttt atggtagggg cggccagagc agcagctcac 18540
 ttgacagtca ttgaaaaact caggatcgta gttcccttta aggacacccgg ggtgaaggaa 18600
 caacaggaag ttgtctcaa ctgtgaagtc aatactgaag gtgcacaaagc caaatgggtc 18660
 aaaaatgaag aagctatatt tgatagttca aaatacatca ttctccaaaa agacctagtc 18720
 tacaccctca gaatttagaga tgcacactt gatgaccaag ccaactataa tgcgtctt 18780
 accaattcaca gaggtgaaaa ttgtttttttt gtcaggccatc taatagtaga agaggaagac 18840
 ctttaggattt ttgaggctct taaagatatt gaaacaatgg aagaaatggc tgcacattc 18900
 tggtgcaagg tgaatcgctt caatgttca ctgtttttttt tttttttttt tttttttttt 18960
 ccttttgaca accgtgtctc atacagagtt gataagtaca agcacatgtt aaccattttt 19020
 gactgtggct tcccagatgtt gatgtttttttt tttttttttt tttttttttt tttttttttt 19080
 gctgagcttc tcacataga agccccggc gttttttttt tttttttttt tttttttttt tttttttttt 19140
 gtcactgatg tgcgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt 19200
 aatgttaca gaaatgggag agaaatcaaa gttttttttt tttttttttt tttttttttt tttttttttt 19260
 ggaagtataac acagactcat tataaaatggt tttttttttt tttttttttt tttttttttt tttttttttt 19320
 tgcggggtag aagacaggaa gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 19380
 atcatcaggc ctccacaaga tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 19440
 gaactcaata aagataaggt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 19500
 ggtgataaac accagatgtt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 19560
 aagccccgtt accagggtga atacagattt tttttttttt tttttttttt tttttttttt tttttttttt 19620
 cttgaactgg cagctgcacc aaaaatcaag tttttttttt tttttttttt tttttttttt tttttttttt 19680
 gcaaggccctc tgacaatggt gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 19740
 tttaaagaaa atgaacctttt atctacaaaaa tttttttttt tttttttttt tttttttttt tttttttttt 19800
 ttccagaattt tagaaggccaa gaaaggagac tttttttttt tttttttttt tttttttttt tttttttttt 19860
 aaaaatggaa aagcagaagg attcatcaat tttttttttt tttttttttt tttttttttt tttttttttt 19920
 cgttaacttag aagtgcacaca aacattttgtt gttttttttt tttttttttt tttttttttt tttttttttt 19980
 ttaactgtatg tggaaagcaa aatcataggt tttttttttt tttttttttt tttttttttt tttttttttt 20040
 aagacctggg ttctggccac agaccgtgtt gttttttttt tttttttttt tttttttttt tttttttttt 20100
 cagaaaggag gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20160
 gagccagtag aaaaatggggaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20220
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20280
 ccagagttt atggggatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20340
 tctatcagggtt gggatactgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20400
 gatgtggtag aaggacagga tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20460
 gggaaaaccaat gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20520
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20580
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20640
 gggaaaagata atggggatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20700
 accggattgg aaaaaggaaa tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20760
 gtttccatcgc catctgaaat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20820
 acaatggattt taagtgcatt taaagatgtt tttttttttt tttttttttt tttttttttt tttttttttt 20880
 atccctggttt caagtacagg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 20940

gtactagaaaa caggggaccg ggtgaaaatg aagaccttgc ctgcctatgc cgaaccttgtc 21000
atttctccaa gtgaacgttc agacaaggc attatacac taaaattaga aaaccgtgt 21060
aaaacaattt ctggggaaat tgatgtcaat gtaattgctc gcccaagtgc acccaaagaa 21120
ttgaaatttg gtatataaac caaggactca gtacatttg cttggaaacc acctgtatgat 21180
gatggaggaa gtccgttaac tggatacgtt gttaaaaac gagaagttag ccggaaaaca 21240
tggactaaag ttatggactt tgtgactgtat ctagaattca cagttcctga tcttggtaa 21300
ggaaaagagt atttatttaa agtttgct cgtaacaat gtggccctgg agaacctgca 21360
tatgttcatg aacctgtaaa tatgtcaact cctgcaacgg tacctgaccc accagagaat 21420
gtttaatggg gagatcgAAC agccaatAGC atcttctta catggatcc acctaaaaat 21480
gatggtggtt cacgcatcaa aggatatata gttgaaagat gtccacgtgg ttctgataaa 21540
tgggtgcct gtggagaacc tggtcagaa aaaaaatgg aagtgcacgg tcttggaggaa 21600
ggcaaatggt atgcctaccg cgtgaagacc taaaacaggc aggggtctag caaaccac 21660
agaccacag aggaaatcca ggctgtggac acacaagagg ccccagaaat cttcctcgat 21720
gtgaagctcc ttgctggct cactgtaaaa gctgggacca agattgaact tcctgcccacc 21780
gtaaccggaa aacctgaacc taaaataact tgacaaagg ctgatatgtat tctgaagcag 21840
gacaaaagaa ttaccattga aatgtccct aagaaatcca cagtgcactat tttgtatagt 21900
aagagaagtg acactggcac atatatcatt gaggctgtga atgtgtgtgg cggggccact 21960
gctgtggtgg aagtgaacgt cttagataaa cccggaccac cagctgcctt tgacatcaca 22020
gatgtaccca atgagtcatg tcttctaaca tggacccac cacgcgtatga tggggatct 22080
aagatcacaa actatgttgc ggagagacga gcaactgtata gtgaagtgtg gcacaagctc 22140
tcatccaccg tcaaggatac aaacttcaag gccaccaaata taatccccaa taaagagat 22200
atcttcagag ttgctgcaga aaacatgtat ggtgctgtgg aaccaggatca ggcctctcca 22260
ataacagcca aatatcagtt tgatccacct ggtcctccaa ctcgcctaga accttctgtat 22320
atcaactaaag acgcgtatgc tctcacatgg tttgagccag atgtatgtgg tggcagccca 22380
atcacaggat actgggttgc aagactggat cctgatacag ataaatgggt tagatgcaat 22440
aagatgccag taaaaggacac aacatacaga gtgaaaggc tcactaataa gaaaaaatac 22500
agattccgtg tggggctga aatctgtct ggacctggaa aaccaagcaa atcaactgaa 22560
ccaatcttaa taaaaggatcc catagatccct ccatggcccc ctggaaaacc aactgtaaaa 22620
gatgtaggca aacatcatgt aaggttgc tggacaaaac cagaacatga tggaggtgca 22680
aagattgagt cttatgtcat taaaatgtc aagactggaa cagatgagtg ggtcagagtg 22740
gcggaaagggg ttcccaccac tcagcacttgc ctcccaggc tcatggagg aacccagtga acccagtgc 22800
tcattcccgag ttagagctgt gaataaggc gggggaaagtg aacccagtga acccagtgc 22860
cctgtgtttt gccccggagaa gctatatccct ccatcaccac cacgctggct tgaagttt 22920
aatatcacaa aaaatacagc agacctaataa tggacagttc ctgagaaaaga tggagggtcc 22980
cccatccacca actacattgt gaaaaagaga gacgtcaggc gaaaaggctg gcaaacagtg 23040
gataccactg tcaaggacac caagtgcaca gtaccccccac tgactgaggg ctctttat 23100
gtgtcccgag ttgtgcaga aatgttataa ggacaaagcg actacaccga aatttggagac 23160
tctgtgttgg ccaaagacac ctttaccact cctggaccac cctacgccc ggcagtgggt 23220
gatgtgacaa aacgacatgt tgacctaataa tggggagccac ctaaaaatga tggtggaga 23280
ccaatacaga gatatgtcat tgagaagaaa gaaaggtagt gtaccctgtt ggtgaaagct 23340
ggaaagactg caggacctga ctgttaacttca agagtaactg atgtcatcgaa aggaacagag 23400
gtcccgatcc aggttcgggc taaaatgaa gctggagttt gccaccacaa tgaacccaca 23460
gaaatccat ccattgaaga tccaacaatg cttccctcact cacccttga cttatcatgtg 23520
actgtatgtc ggagaaaaaca cattgcattt gcttggaaatc ctccagagaa aatggtggaa 23580
agtcctatca taggataccat ttttgcattt ttttgcattt gcaactgatggaaatg gcaactgagaa atggatgaga 23640
gttaatttcc gccccataaa ggacttgc ttttgcattt ttttgcattt aagaatgtgt ttttgcattt aagaatgtgt ttttgcattt 23700
aaaagatatg tcctgagagt gagagcgtt aatgtatgtt gtttgcattt ttttgcattt gtttgcattt gtttgcattt 23760
atctctgaaa atgtgggtgc caaagaccca gactgtcaatc caacaaatgtt ctttgcattt 23820
catgacatta ttgttattga aggtgaaaatg ttaagcatc ctttgcattt ttttgcattt ttttgcattt 23880
ccagttccaa ctgttagttt gcataaaatg gggcaaaaatg ttttgcattt ttttgcattt ttttgcattt 23940
acaatgaaga atgtatcatc ctgtgcacac ctttgcattt ttttgcattt ttttgcattt ttttgcattt 24000
gccccatattt ataccattac actggagaat aagctcggtt ctttgcattt ttttgcattt ttttgcattt 24060
gtcaaagtca taggcctacc tggaccatgc aaagatatta ttttgcattt ttttgcattt ttttgcattt 24120
agttcttgc agttaacttgc ggaaccttca gaatttgc ttttgcattt ttttgcattt ttttgcattt 24180
tatgtcttgg agcgcagaga agctgggggg agaacatata ttttgcattt ttttgcattt ttttgcattt 24240
aacaactgtt catggactgtt gaaggatctc ataccatgtt ttttgcattt ttttgcattt ttttgcattt 24300
aaagcgtca acaagggtgg tggaggagaa ttttgcattt ttttgcattt ttttgcattt ttttgcattt 24360
caagatccaa agcaaccccccc tgatccacat gtagatgtat ttttgcattt ttttgcattt ttttgcattt 24420
gaggcaatga ctattacatg gaagccacat ttttgcattt ttttgcattt ttttgcattt ttttgcattt 24480
tacatcatag agaagattgc taagggtgaa gaaagggtgg ttttgcattt ttttgcattt ttttgcattt 24540
gtaccaatcc tgacctatac agcaaaaggc ttttgcattt ttttgcattt ttttgcattt ttttgcattt 24600
gtgcgagcag agaacgcgc gggattttttt gtttgcattt ttttgcattt ttttgcattt ttttgcattt 24660

ccacccaaag atctgaaaatc cagtgatatac acaagggtta gttgcagact ttcatggaaag 28440
 atgccagacg acgatggagg agacaggatc aaaggctatg ttattgagaa gaggactatt 28500
 gatggaaaag cctggaccacaa agtcaatcca gactgtggaa gcaccacatt ttagtgcct 28560
 gatctcctct ctgaacagca atatttcctc cgtgtcgag cagaaaaccg ttttggtatt 28620
 ggcccacctg tggaaaccat tcagaggacc actgccagag atccgatata tcctcctgat 28680
 ctcctatta aactcaagat tggcctcatc acaaagaaca cagtgcacatc gtcatggaaa 28740
 cccccgaaga atgatggggg ctcccctgtt acccactata ttgttgagtg ctttgcattg 28800
 gaccctactg ggacaaaagaa agaaggctgg aggcaigtgcataa agcgtgta tgtgaaagaa 28860
 ctgcaattt ctgttgaaga cctagtagaa ggtggggat atgaattccg agtcaaagct 28920
 gtcaatgctg caggagtcag caagccttca gccactgttgc gcccctgtga ctgtcaaaga 28980
 ccagacatgc caccatcaat tgatctaaa gaattcatgg aggttgaaga aggaaccaat 29040
 gttaacattt tggccaaaat taaaggtgtt ccattcccg aactaacctg gtttaaagct 29100
 cctccaaaga agcctgataa caaagaacat gttctctatg acacccatgt caacaactg 29160
 gtggtagatg atacttgcac tttagtttcc cgccgtctc gcaggagtgca cactggctt 29220
 tataccatca cagctgtaaa taatctggaa acagcatcaat aggatgttgc actgaatgtc 29280
 ctgggtcgct ctggccctcc agtgggacc accaaaatttgc aatctgtttc agcagatcaa 29340
 atgacactat ctgggttcc acctaaagat gatgggtgggt ctaagattac aaactatgtt 29400
 attgagaaaa gagaagctaa caggaagaca tgggtccatg tctccagtgc acctaaggag 29460
 tgcacgtaca cgattcccaa attgcttagaa ggccatgaat atgtattccg aatcatggcc 29520
 cagaataaat atggcattgg agaaccttgc gacagtgaac ctgaaacacg aagaaacctc 29580
 ttctctgtcc ctggagcacc agataaaacca acagttgcac gctgtactcg taactccatg 29640
 actgtcaact gggaaagagcc agaataatgtt gggagctctc ctgtgacagg gtactggctg 29700
 gaaatgaaag acaccacttc aaagagatgg aagagatgtt accgagatcc tatcaaagcc 29760
 atgactttgg gtgttctta taaagtgtact ggtcttatttgc aaggttccga ctatcaattt 29820
 cgggtatatg caatcaatgc tgctggcggtt ggtccagca gtcgtccatc agacccagcg 29880
 actgcttagag atccaatttgc ccctcctgtt cctccatttgc ccaaagtgc agatggact 29940
 aaatcatctg cagatctggaa tgggtctccc ccactaaaag atgggtggatc caaagtaact 30000
 ggatacatcg ttgaatataa agaagaagaa aaagaagaat gggaaaaggaa taaagataaa 30060
 gaagttagag gaacaaagct ctttgtgaca ggattaaagg aaggagcatt ctacaaattt 30120
 agagtttagt cagtcaacat tgctggcatt ggagaacctg gagaggtcactt agatgtcatt 30180
 gaaatgaaag acagacttgtt ttcacctgtt cttcagcttgc atgcccagtgtt cagagataga 30240
 attgttgcctt atgctggagg ggtgatccga atcattgcctt atgtgtctgg aaaggcttcc 30300
 ccaaccgtca cctggaaacat gaatgaaaga accttacctc aagaagccac cattggagacc 30360
 acagccattt gctcatccat gtcatcaag aactgccaga ggagccatca aggcttctat 30420
 tctcttcttgc caaaaatgtt agccggagaa agaaagaaaga caattattttgc ttagtgcatt 30480
 gatgttccag gtcccgttgg aacaccattt ctagctcaca acctaaccatc tgagtccctg 30540
 aaactgacat ggtttctcc agaagatgtt ggaggctctc caatcaccaat ttatgtcatt 30600
 gaaaagcgttgc aatctgaccgc cagagcatgg accccagtgtt catatacagt taccgcacaa 30660
 aatgtctacttgc tccagggtctt cattcaagggaa aaagcctactt tttccgttgc tgcgctgaa 30720
 aatagtatttgc gcatgggtcc atttgttgc atcatcagagg cacttgcattt cagagagcc 30780
 ataactgtac cagagcgtcc tgaagacctg gaagtcaag aagtacttgc aaataactgtt 30840
 actttacttgc ggaatcttcc taagtatgtt ggtgggtcactt aattattttgc ttagtgcctt 30900
 gaaaagcggc tcattggcatt tgagaagtttgc cacaaggatca caaatgaccaat tttgttgc 30960
 agaaaaataatc ctgtttaaagg cttaaaagaa ggtgatccatc atgagtacccg tgcgtactgt 31020
 gtcaacatttgc ttggacaagg caaaccatca ttttgcacca aaccaatttgc ttgcaaggat 31080
 gagctggcac ccccaacgc tcacccctgc ttcagagata agctcacatc tgcgttgc 31140
 gaagcttttgc ccctcacttgc cgttacttgc ggcaaaacca agcctaaggtt ttcctgggtt 31200
 aaagatgttgc ggttgcatttgc gcaacttgcataa taaagacttgc accagcaaca 31260
 cttgttttagt agaagatcaat ggcacaaacgt tcagatccgc gcaaatacttgc tgcgttgc 31320
 gagaacagtttgc caggctcttgc gaaagggttttgc tgcgttgcatttgc ccatccctgg 31380
 ccaccaggatgc gaccaggatgc ttttgcatttgc gtcacccatca accatgttgc ttttgc 31440
 aaggcccttgc tagatgttgc aggcatcaat ttttgcatttgc ttttgcatttgc ttttgc 31500
 gttggtaaagg acgtctggat ggcacccatca ttttgcatttgc ttttgcatttgc ttttgc 31560
 tctaaacttgc ttggacaaggaa agatttatatttgc ttttgcatttgc ttttgcatttgc ttttgc 31620
 ataagtgtatc ctctgttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgc 31680
 gcaacccatca agccaaatgtt tacagaaggatgc acccaaggatgc ttttgcatttgc ttttgc 31740
 aagccacatgc atggggaaa accccatcaatc aactacatcc tggaaaaggaa agaaactatgc 31800
 tctaaacatgc gggcttagtgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgc 31860
 cttgttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgc 31920
 attggagatgc caagcccaccatc atccaaaccaatc gtcttgcatttgc aagatccatc ttttgc 31980
 agtccacccatgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgc 32040
 cagccaccatgc gtcacccatca ttttgcatttgc ttttgcatttgc ttttgcatttgc ttttgc 32100

gttggagatg aagagtggag aagagccaat cacacccctg agtcatgtcc taaaaactaaa 32160
tataaagtca ccggcttcg ggacggtaaa acctataagt ttagagtgtt agcagtcaat 32220
gcagctggtg aatcagatcc agctcatgtt ccggagccag tcctagtaaa agacaggct 32280
gaaccccctg agttgattct tgatgccaac atggcaagag aacaacacat taaaagggt 32340
gatactctaa gacttagtgc catcatcaaa ggagtgccat tcccaaaagt aacttggaaa 32400
aaagaagaca gagatgctcc aactaaagca agaattgtat tgactccagt tggtagcaag 32460
cttgaattc gtaatgctgc ccatgaagat ggtggattt attcttaac agtggagaat 32520
ccagctggtt caaaaactgt ctcagtaaaa gtacttgtat tagataaacc tggccacct 32580
agagatctgg aagtcaigtga aatttagaaaa gattcatgtt accttacttg gaaagaacca 32640
ctagatgatg gtggttctgt tattaccaat tatgtggttt agaggagaga tggtagccag 32700
gcccagtggt cacctctctc agctacatca aagaaaaaga gtcacttcgc taagcatctg 32760
aatgaaggca accagtacct cttccgagta gtcgcccaga accagtatgg acgtggctt 32820
tttggtaaaa caccaaaaacc aatcaaggct ttggatcctc tccatcccccc agggccaccc 32880
aaggacctgc accatgtaga gatcgatgtg gtggttctcc tggacaag actgaagtct ccctagtcg 32940
aatcactgga tatttggtag aatataaaga agaaggcacc 33000
caggactgga taaaatttaa gactgtgaca aacttagagt gtgtggttac tggactacaa 33060
caaggaaaga cctatagatt ccgtgtaaaa gctgaaaaca ttgtgggtct tggctccct 33120
gacacaacta tcccgtataga atgtcaagaa aaactagtgc ctccatccgt ggagctagat 33180
gtgaaattaa ttgaagggtct tggtaaaag gctggaacca cagtcagatt ccctgtatt 33240
ataagaggtg tgcctgttcc tactgcaaaag tggacaaccg atgggagtga gattaaaacc 33300
gatgagact acacagtta aacagacaac ttctcatcag tacttaccat taagaactgc 33360
ttaaggagag acactggggta atatcaaattc acagtttcca atgcagccgg tagaaaaca 33420
gtagccgtac atcttactgt tcttgatgtt cctgggcccac caacagggtcc tattaatatt 33480
ctggatgtta ctcctgaaca catgactatc tcatggcagc cacctaagga tggaggg 33540
agccctgtga taaaattat tggagaaaa caagatacaa gaaaagacac gtgggggtt 33600
gtctcttccg gaacgactaa gacaaagctg aaaatccac atctgcagaa ggctgtgaa 33660
tatgtttcc gaggtagagc agagaataag atagggtttg tggctccct tggactccaca 33720
cctactgttg ctaagcataa atttagtcct ccgtctccct ctggtaaacc agtggttact 33780
gacattactg aaaatgcagc aacagtgctc tggaccctgc caaaatctga tggccag 33840
ccaataactg gctactatata ggaacgtcga gaagtaactg gcaaatgggt gagggtcaac 33900
aaaacaccta tcgctgaccc gaaattcaga gtgactggac tctatgaagg aaatacatat 33960
gagtttagag ttttgcgtga aaatctgca ggactaagca aaccatcccc aagttctgat 34020
ccaataaaag ctggccggcc catcaaaacca cctggaccac ctattaatcc taaaactgaaa 34080
gacaagagca gagaacacagc tgatttggt tggacaaagc ctctcaigtga tgggtgttagc 34140
cccattctag gatatgttagt ggaatgtcag aaacctggca cggcacaatg gaacaggatt 34200
aataaagatg aactcattag gcaatgtgcc ttaggggtac ctggactaat tggaaat 34260
gagtagatc tccgtataaa ggcagctaat attgttaggag agggtgagcc aagagaacta 34320
gcagaatctg tgattgcaaa agatatccct catcctccag aagtagaact tggatgttact 34380
tgcgtgtat ttattacccgt gagagtggc caaactatcc gcattcttagc tggactcaaa 34440
ggcagacccgt aaccagacat aacttgact aaggaaggc aagtattggt ccgagaaaaag 34500
agggtggacc ttattcagga tctacccgt gttgggttac aaattaaaga agtggtaga 34560
gctgatcatg gcaagtatata catctcagct aagaacagca gtggacatgc ccaaggttca 34620
gccatcgta acgtccctga cagacccccc ccttgcaga atttgaagggt tccaaatgt 34680
accaaagaga actgtacaat ttcttggaa aaccctactg ataatggtgg ctcagaaata 34740
acaaacttca tagtagaata tcgcaaaacca aaccagaaaag gctggtaat tggcatca 34800
gatgtcaacta aacgattaat caaggccaaac cttttagccca acaatgaata ctatccga 34860
gtttgtgcag agaataaaagt aggtgttgg ccaaccatcg aaacaaaaac tccattctg 34920
gctattaacc ctattgacag accaggtgag cctgaaaacc ttcacattgc agataaaggag 34980
aagacatttgc tctacccataa gtggccggg cctgactatg atggtggcag tccaaatctg 35040
tcataatcatg tttagagagaag gcttaaggcc tccgatgact gggaaagagt gcatggatgg 35100
agcattaaag aaactcaacta catgggtgac agatgttttgg aaaacccatcg ttaggttttcc 35160
agagtgcataa caaagaatga aggtggggaa agtggactggg tggtagccatg 35220
gtgaaagaag acttacaaaaa accagtagtt gatctgaaaat taaaagggtt cctaaactgtc 35280
aaagcagggg acaccattag gcttgaggca ggggttagag gcaaacatt cccagaagtt 35340
gcatggacca aggacaaaga cgctacagac ttaacaagat cccaagggtt caagattgt 35400
acccgtgctg attcatctaa atttcttcc actaaagcaa agcgaagtga tgggggtaaa 35460
tatgttagtta cgcaactaa cacggctggc agtttggc tctatccac tgcataatgtt 35520
ttagataagc ctggctctgt gagaatctg aaaattgttg atgtgtccag tggatgtt 35580
actgtttgtct gggatccacc agaagatgtat gttggctgtg aaatccaaaa ttagattct 35640
aaaaatgtg agacaaagcg aatggttgg tctacccattt ctgctactgt cttgacaccc 35700
ggtactacag taacacgtct catagaagga aatgaatata ttttcagagt ccgtccagaa 35760
aataaaatag gcacagggcc tccaaacagaa agtaaaccatg tcatagccaa aaccaactgt 35820

gataaacctg gtcgcctga tccccagaa gtcactaaag taagcaaaga agagatgact 35880
 gtggtttggaa atccacctga atatgatggt ggaaagtcta taactggata cttttggag 35940
 aaaaaggaaa agcatcaac acgatgggtc cctgtcaaca agagtcaat ccctgagaga 36000
 cgtatgaaag tacagaatct cctccagac catgaatatc agttccgtgt caaggcagaa 36060
 aatgaaattg gaattggaga accaagctt ccttcaagac cgggtggc aaaagacccc 36120
 atagagccac ctggtccacc accaatttc agagtggttg atacaaccaa acattccata 36180
 actcttgggt gggaaaacc agtctatgtat ggtggtcac cgatcattgg atatgttg 36240
 gaaaatgagac caaaaatagc agatgcgtct cctgtatgaa gctggaaacg gtgtaatgct 36300
 gcagcacagc ttgtacgcaa gaaattcact gttaccagct tggatgaaaa ccagaatat 36360
 gagttcaggg tgtgtccca aaaccaagtt ggtattggc gcccgtcaga gctaaaggaa 36420
 gctatcaaacc ctaaagaaat actagaaccc ccggagattt atttggatgc cagcatgagg 36480
 aaactggtca tagtgagagc agatgcctt attcgctctt tgctataatg gagaggacga 36540
 ccagccctaa aagtcaactt gcgaaaagg ggcattgata atgtggtcag aaaaggacaa 36600
 gttgatctgg ttgacactat ggccttcattt gtcatccccca attctaccgg ttagtactca 36660
 gggaaaatatt ccttaacact tgtgaacccca gcaggagaaa aggctgtattt cgtaatgtc 36720
 agagtattag acactccctgg gcctgtgtct gatttaaaag tttcagatgt cactaaaaca 36780
 tcattgcctatg tgcctggc ccctccgtaa aacgcacggg gtagccaaat gacacattat 36840
 atcgtggaga aacgtggggc agacagaaag acatggtcga cggtaacccca agaagttaaag 36900
 aaaacaaagcttccatgtaaac caatcttgc cctggaaatg agtattaccc cagactaact 36960
 gctgtcaacg aatatggccc tggcgccca acagatgtcc caaaaccagg gcttgcattca 37020
 gatcctctaa gtgagccgg tcccccaagg aaattagaag cgactgaaat gaccaagaac 37080
 agtgcacccctt tagcctggg acctccctt cgtatggg gttgctaaaat cgatggctac 37140
 atcatttagttt acagagaaaga agagcggctt gcagatcgctt ggacagatggta 37200
 aaagatctga gccttgggtt cactggccta aaggaaggaa agaaatataaa atttagatg 37260
 gcgcccgaaatgctgttgg agtcgtttt ccaagagaag ctgaaggatgtt gatgaaagcc 37320
 aaagagcaac tggccacc aaaaatccctt atgcccggc aaataactat caaagctggg 37380
 aaaaaactcc gaatttggc acatgtgtat ggaaacccca atccccccctg taaatggaaa 37440
 aaaggagaag atgaagttgt cacatccagc cacctggcag tgcataaaacg agacagctct 37500
 tcaattctga tcataaaaaga tgtgacttagg aaagacatgtt gttactacag cctcacagca 37560
 gagaacagttt ctggacaga cactcagaaa atcaaaatgtt tagtcatgaa tgccccggc 37620
 cccccctcagc ctccatttga catttctgtat atagacgctg atgcttgc cctgtcatgg 37680
 cacatccctc tggagacgg aggacgttacatc accaaattt atatagtggaa gaagtgttat 37740
 gtaagccgag gtgactgggt cacggctcta gcttcaatgtca caaaaacttc ctgcagggtt 37800
 gggaaagctga tcccaaggcca agagtacatc ttccgggtcc gttgctgaaaa ccgatttggc 37860
 atttcagatgtt ctctcacatc tccaaagatgtt gttggcgtt gttccatggg tggatctgt 37920
 gaaccaaaga atgcacgagt caccaagatc aacaaggactt gtatttttt tgcttggac 37980
 agaccagata gtgatggagg gagccccattt attgggttattc tgattgaacg caaggaaaga 38040
 aacagtttgc tgggggtgaa agccaatgtt actcttgc gttcaactgtt atatccttgt 38100
 gctggcctt tagaagggtct tgtagtattca ttccaaatgtt atgcccctaa caaagctgg 38160
 tccagcccac ccagcaaacc cacagaatat gtaactgcaaa gaatgccagt tgatccctt 38220
 gggaaacctg aggttatttga tgcaccaatg agtactgtat ctctgatctg ggctcgatcca 38280
 aagcatgtatg gaggcgttacaa aattattggc tatttcgtatg aagtttgcacccatcc 38340
 gataaatggg tacggcgttac tactgcaccc caccatgttcc cccagggaaatgatc 38400
 actggccttag aagagaaaggc tcaatgttcaaa tttagatgtt ttgcggcaggac cgcggtaaac 38460
 attagcccac ctctgtatc ttctgtatcc gttcaatgttcc ttgcggcaggac tggccctccc 38520
 agatagagacc tgagttgttcc tatgaaatctt ttgttactgtt tgaaagctgg aactaatgtc 38580
 tgcttggatgtt ctactgtttt tggttacccatgttccaaatgtt atgcccctaa caaagctgg 38640
 acactgttacaa aaccaggcaga aggacataatgttccaaatgttccaaatgttccaaatgttcc 38700
 gagcttattca gctgttacccatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 38760
 atgggttcttca aatcagccac cattaatgttccaaatgttccaaatgttccaaatgttcc 38820
 tctgtttaaaa tcaacaaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 38880
 gaagatggggc gctcggaaat caccatgttccaaatgttccaaatgttccaaatgttcc 38940
 aactggccttca aagtcttgc aactgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39000
 gagggccatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39060
 gtttttccatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39120
 cctgtttaaaa tcaacataac caaagatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39180
 gatgggggttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39240
 tggactaagg tcaacaaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39300
 gaaggatggccatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39360
 agtgcacccatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39420
 ttccctaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39480
 tatgacggcgccatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttccaaatgttcc 39540

aactgggtga ggtgcaactt accacagaat ctacagaaaa cccgcttga ggttactggc 39600
 ctgatggaa acacacaata tcaattccgt gtgtatgccg ttaataagat tggatacagt 39660
 gaccccagtg atgtgccaga taaacactat cccaaggaca tcttaattcc acctgaggg 39720
 gaacatgatg cggacttaag gaagacactc atattacgtg ctggagttac tatgagacta 39780
 tatgtaccag taaaaggacg cccacctcca aagattactt ggtctaaacc aaatgtcaat 39840
 ctaagagaca ggattggact ggacataaaag tcaactgact ttgacactt cttgcgctgt 39900
 gaaaatgtga acaaataatga tgcaggaaaa tatatcttaa ccctggagaa cagctgttgt 39960
 aaaaaggaat ataccattgt tgtgaaagtgt ctgtatactc ctggggccacc tatcaatgtg 40020
 actgttaagg aaatatccaa agactctgt tatgttacct gggagcctcc cattattgtat 40080
 ggcggaaagcc ccatcataaa ctatgtggta caaaaacgtg atgcagagag gaaatcctgg 40140
 ttcacagtga caactgagtg ctccaaaaca agcttcagag tacctaattt ggaggaggg 40200
 aaatcctact tttccgagt gtttgcgtaa aatgagttatg gcattggta tccccgtgaa 40260
 actcgtatgt ctgtcaaagc ttcccaaact cctggaccag ttgtggact gaaagtgg 40320
 tctgttatcta agtcatccctg tagcatggc tggaaaaaagc ctcacagtga tggtggaaat 40380
 cggattattt gatatgtatg tggatccctg actgaagaaa ataagtggca acgagttatg 40440
 aaatccttaa gcctacagta ctctgcaaaa gatttgcgt aagggaaagga atataccctc 40500
 agagttagt ctgagaatga aaatggagaa ggaacccca gcgaaatcac tggatggca 40560
 agggatgtatg ttgtgctcc tgatcttgc ttaaagggtc tacctgattt gtgctacttg 40620
 gctaaagaaa acagcaactt ccggcttaag atccccataa aaggcaagcc agctccatca 40680
 gtctcctgga agaaaggggg agatcctcta gcaactgaca cttagtgcgt tggtgagtca 40740
 tctgcccgttta acacaactct tatagtgtac gattgcaaaa aatctgtatc tggaaaatac 40800
 acaatcacac ttaagaatgt tgctggcacc aaggaaggaa ctatctccat aaaggttgtt 40860
 ggcgaaggcctg gcatccccac tggaccaatc aaatttgcgt aagtcacagc agaagccatg 40920
 accttaaagt gggctcctcc aaaggatgtatg ggaggttctg aatcacccaa ctatatccta 40980
 gagaagaggg attctgtgaa caacaagtgg gtgacgtgcgt cctcagctgt ccagaaaacc 41040
 accttttagag taaccagact tcatgaggggc atggaatata ctttcagggt cagtgccgaa 41100
 aataaaatatg gtgttagggg aggccctgaaa tcggagccaa ttgttgcgag acatccattt 41160
 gatgtgcctg atgcccccc acctccaaat attgtggatg tcagacacga ttcatgtatct 41220
 ctaacttggaa ctgacccaa gaaaactgggt ggttcccaa ttacagggtt tcatctcgag 41280
 ttcaaggaaa gaaacagccct ttgtggaaag agagctaaca agactccgat aaggatgaga 41340
 gactttaaag tgacaggatt aactgaaggt ctgtatcattt aattcccgatg tatggcaatc 41400
 aatttagca ggtgtggcaa gccaaggccta ccatcagagc ctgttgcgtactggacccca 41460
 attgtatcctc ctggaaaacc tgaggattt aacataacaa ggaattcagt gactctcatt 41520
 tggactgaac ctaaaatataa cgggtgtcat aagttactg gatataatgtt ggagaagcga 41580
 gatctacattt cgaagtcttgcgt gatggaaagcc aaccatgttta atgtcccaga atgtgcctt 41640
 actgtactg accttgcgt ggggtggaaaa tatgaattca gaatttagagc aaagaataaca 41700
 gcagggtgcta tcagtgcctt atcagaaagt acagaaacca ttatggcaaa ggatgaaatac 41760
 gaggccacca caatttgcctt tgatcccaca ataaaagatg ggctaacaat taaagcaggg 41820
 gataccattt ttttgcgttgc cattagcatt ctggcaaac cccttccaaat atcaagttgg 41880
 tccaaggcag gaaaagacat tagaccatca gatattcactc agataactc aaccccaaca 41940
 tcttccatgc ttactatcaa gtatgccact agaaaagatg cgggtgaaata taccatcact 42000
 gctaccaatc ctggcactt gaaagggtggaa catgtgaagg taacagtccct tgatgtacct 42060
 ggtccccccat gtcctgttgcgt aatcagtaat gtttgcgt aaaaagcaac acttacatgg 42120
 acaccccttccat tggaaatgttggcggcttccatc attaagtccctt atataacttgc aagagagagaa 42180
 accagccgac ttttgcgttgcgtt ggggtggaaaa atcagatattt gatgttgcgt gcatgtggca 42240
 accaaacttca tccaaggaaa tgagtacatc ttccgggtct cagctgtaaa ccactatggc 42300
 aaaggagaac ctgtacagtc tgaacccgttca aaaatggtagt acagattttgg tccccctggc 42360
 cctccgtgaaa aaccaggatgttgcgttccatc attaacttgcgttccatc atcagttggaaa 42420
 aggccacttgcgttggcgttccatc attaacttgcgttccatc atcagttggaaa 42480
 aaaaggccatc gatgggtggcgttccatc attaacttgcgttccatc atcagttggaaa 42540
 acaggactgc aagaaggaaacccgttccatc attaacttgcgttccatc atcagttggaaa 42600
 attgggtccatc ccaggatgttgcgttccatc attaacttgcgttccatc atcagttggaaa 42660
 ggaccacccatc caaatccgc tggacttgcgttccatc attaacttgcgttccatc atcagttggaaa 42720
 ggcgaaggccttccatc attaacttgcgttccatc attaacttgcgttccatc atcagttggaaa 42780
 gttaggagacg aggccctggat aaaaagatacc acaggaacccgttccatc attaacttgcgttccatc atcagttggaaa 42840
 gttgttccatc atttccatc attaacttgcgttccatc attaacttgcgttccatc atcagttggaaa 42900
 gcagggtgttgcgttccatc attaacttgcgttccatc attaacttgcgttccatc atcagttggaaa 42960
 cctgatccatc aacttagatgc tggacttgcgttccatc attaacttgcgttccatc atcagttggaaa 43020
 attaggatatttgcgttccatc attaacttgcgttccatc attaacttgcgttccatc atcagttggaaa 43080
 aacatcaacc tggaaatccgc tggacttgcgttccatc attaacttgcgttccatc atcagttggaaa 43140
 atccccagaat gtaacagata tggatccgttccatc attaacttgcgttccatc atcagttggaaa 43200
 gggaaagaaaa gttggcttgcgttccatc attaacttgcgttccatc atcagttggaaa 43260

ctgcggccta cagacatcac aaaggacagt gtcaccctgc actgggacct ccctctgata 43320
 gatggaggct cacgtataac aaactacatt gtagagaaaac gtgaagcaac acgaaaatct 43380
 tattccacag ccaccactaa gtgccataaa tgacatata aagttaccgg cttgtctgaa 43440
 gggtgtgaat atttcttcag agtgatggca gagaatgaat atggaatttg tgagccaaca 43500
 gaaaactacag agcccgtaaa agcctctgaa gcaccatctc caccagacag ccttaacatc 43560
 atggacataa ctaagagcac cgtcagcctg gcatggccta agcccaaaca cgatggtggc 43620
 agcaagatca ctggctatgt gattgaagcc caaagaaaag gctctgacca gtggaccac 43680
 atcacaaccc tgaaagggtt agaatgttt gtgaggaatc taactgaagg agagaatat 43740
 accttccaag ttagtgcagt gaacagcgcg gggagaagtg cccctagaga aagcagaccc 43800
 gtcattgtca aggagcagac aatgcttcca gagctggatc tccgtggcat ctatcagaaa 43860
 ctggtcattt ccaaagctgg tgacaacatc aaagttgaaa ttccagtgtc cggtcgaccg 43920
 aagccccacag tgacatggaa aaaaggagac caaattctt aacagacaca gagagttat 43980
 tttgaaaccca cagcgactt aaccattttt aatatcaatg agtgtgtcag aagtgtatg 44040
 gggccctatc cattaacagc aaggaacatt gtaggagagg ttgggtatgt catcaccatt 44100
 caagtccatg atatccagg gccacactt ggaccaatca aatttgcata agttcatct 44160
 gattttgtaa ccttccttg ggacccacct gagaacgtg gtgggtgtacc aataagcaac 44220
 tatgtgtgg aaatgcggca gactgcacgt actacctggg ttgagttgc aaccaccgtt 44280
 atacgtacta cctataaagc caccggcctt actactggat tagatgtca gttccgtgt 44340
 aaagctcaga atagatgtt agttggacca ggcacatcacat cagcatggat agttgcaac 44400
 tatccatttta agtttcttgg acctccttggt accccctcagg taactgcacgt taccaggat 44460
 tcaatgacaa ttagctggca tgagccactt tctgtatgtt gaagcccat ttttaggat 44520
 catgttggaa gaaaagaacg aaatggattt ctctggcaga ctgtgagcaa agcttagta 44580
 ccaggcaaca ttttcaaattt aagtggactt acagatggta ttgcttatga gttccgggtg 44640
 attgcagaaa acatggcagg caaaagtaag ccaagcaagc catcagaacc tatgttgct 44700
 ctggatccca ttgacccacc tggaaaacca gtacctctaa atattacaag acacacagta 44760
 acacttaaat gggctaaagcc tgaatataact gggggcttta aatttaccag ttatatcg 44820
 gaaaagagag accttcctaa tggacggtgg ctgaaggcca acttcagcaa cattttggag 44880
 aatgaatttta cagtcagtgg ctaacacaaa gatgtgcattt atgaattccg tgtgatcgcc 44940
 aaaaatgctg caggtgccat cagtcacca tctgagccat ctgatgttat cacttcgagg 45000
 gatgtatgtt aggcacccaaa gataaaggtt gatgttaat ttaaggacac gtttatatta 45060
 aaagcagggt aagcatttcag actggaaagct gatgttcag gccgcccacc tccaaacatg 45120
 gaatggagca aagatggaaa agagctggaa ggcacagcaa agttagaaaat aaaaattgca 45180
 gatttctcta ctaatcttggt aaacaaagat tcaacaagaa gggatagtgg tgcctatacc 45240
 cttacagcga ctaatcttgg tggctttgtt aaacacattt tcaatgtcaa agtttttgac 45300
 agaccaggcc cacctgaagg acctttggct gtaactgaag tgacatcaga aaagtgtgt 45360
 ctatcatggt tcccttccact ggatgtggaa ggtgcacaaaa ttgatcatta catagtacag 45420
 aaacgtgaaa ccagcagatt ggcacatggaca aatgttagcct cagaagtccaa agtaacaaag 45480
 ctaaagggtca ctaaactctt gaaaggcaat gaatacatat tccgtgtcat ggctgtaaat 45540
 aaatatggag tgggagagcc actggaaatca gggcgtgtc ttgcagtgaa tccttatgga 45600
 cccccctgatc cggccaaaaaa ccctgaagtg acaactattt ctaaagattt gatggttgtc 45660
 tgcctggggac atccctgattc tgatgggtt gatggaaatca tcaatttat tgcggaaacgg 45720
 cgtgataaaag ctggccaacg ctggattttt tgcaacaaaaaa aactcttac tgatttaaga 45780
 tataaaagtgt ctggactgac agaaggacat gaatatgagt tcaggattat ggctgaaaat 45840
 gctgctggaa ttagtgcacc aagtccattt agtccattt acaaggctt gacactgtg 45900
 tttaaacctg gaccaccagg taacccacgt gttctggata caagcagatc atccatttca 45960
 atcgcttggaa ataaacctat ctatgtatgtt gtttgcataaa tcaactgggtt tatggttgag 46020
 attgcccctgc cagaggaaga tgaatggcag attgtcactc caccagcagg actcaaggca 46080
 acttcgtata ctatcactgg cctcacagag aatcaggaat ataagatccg catctatgcc 46140
 atgaattccg aaggacttgg ggaacctgccc cttgttcctg gaactccaaa ggctgaagac 46200
 agaatgctgc ctccacaaaat tgaactggat gctgacccgc gcaaaatgt tactataagg 46260
 gcctgctgca ccctgagact ttttgcattt atcaaaggaa ggcctgaccc tgaggtgaag 46320
 tggggccggg accatggaga atcttttagat aaagcttagca tcaatccgc aagcttccat 46380
 accctgctta ttgttggaaa ttagaaacaga tttgcacgtt gcaaaatata actaactgt 46440
 gaaaatagtt caggcagcaat gtctgcattt gtcaatgtt gatgttgcata tacaccaggc 46500
 ccccccacagg atctgaaggtt aaaaagggtt actaaagacat ctgtcacact cacatggac 46560
 ccacctcttc ttgtatgggg ttcaaaaatc aagaactata ttgttggaaa gcgggaaatca 46620
 acaagaaaag catattcaac tggcataaca aactgcccaca agactccctg gaaggttagac 46680
 cagcttcaag aaggctgttag ctactatttc agggttctcg cagaaaatga atatggcatt 46740
 ggctgcctg ctgaaaccgc agaatctgtt aaagcatcag aacgacaccc tccctccagga 46800
 aaaataactt ttagtgcattt cacaagaaaat gatgtgtcact tctcttggaa gaaaccagag 46860
 catgtatggag gcagccgaat tctaggctac attgtggaga tgcagacccaa aggcaagtc 46920
 aatgggcca cgtgtgccac agtcaaggtc actgaagcca ctatcactgg attaattcag 46980

ggtgaagaat actcttccg tgtttcagct cagaatgaaa agggcatcag tgatcctaga 47040
 caactgagtg tgccagtat cgccaaagat cttgtcattc caccaggcctt caaactcctg 47100
 ttcaatactt tcactgtact gcaggtgaa gacctaaaag ttgatgttcc attcattggc 47160
 cgccttaccc cagctgtaac ctggcataaa gataatgtac cactgaagca gacaactaga 47220
 gtaaatgcag agagcacaga aaataattca ctactgacaa taaaggacgc ctgcccagaa 47280
 gatgttggcc attatgttgt taaactgact aactcagctg gtgaagctat tgaaaccctt 47340
 aatgttatacg ttcttgacaa accaggcct ccaactggac cagttaaaat ggatgaagtg 47400
 acagctgata gtattactct ttcctggggc ccacccaagt atgatggcgg aagtctatc 47460
 aataattaca ttgttgagaa acgggacact tccacaacca cctggcaaat tgtatcagct 47520
 acagttgcaa ggacaacaat aaaggcttgc agactgaaga ctggatgtga atatcagtt 47580
 agaattgcag ctgaaaacag atatgggaag agtacctacc tcaattcaga gcctactgt 47640
 gccccatatacatttcaaagt tcctggtcct cctggcactc cagttgtcac actgtcctcc 47700
 agggacagca tggaaatcata atggatgag ccaatcagtg atggagaaag tagagtatt 47760
 ggctatcatac tagaacgcaa gaaagaaat agcatcctt gggtaagtt gaataaaaca 47820
 cttattcctt aaaccaagtt taagacaact ggccttgaag aaggtgttg atatgaattt 47880
 agagtctctg cagagaacat cgtgggcatt ggcaagccga gtaaagtatc agaatgttat 47940
 gtggctcgtg acccatgtga tccaccaggc cggccagagg caatcattgt cacaaggaat 48000
 tctgtactc ttcatggaa gaaacccacc tatgacgggtg gaagcaagat cactggttat 48060
 attgttggaa agaaagaatt acctgagggc cgttggatga aagccagtt tacaatatt 48120
 attgacactc attttgaagt aactggcta gttgaagatc acagatatga gttccgggtt 48180
 atagcccgaat atgcccagg agtgttttagt gagccttcag aaagcacagg agcaataaca 48240
 gctagagatg aggttagatcc accacgaata agtatggatc caaaatacaa agacacaatc 48300
 gtggttcatg ctggtaatc attcaagggtt gatgcagata tttatggcaa accaatacca 48360
 accattcagt ggataaaagg tgatcaggag ctttcaaaca cagctcgatt agaaataaag 48420
 agcaccgact ttgccaccag tctcgtgtaa aagatgcag tacgtgtcga cagtgaaat 48480
 tacatactga aggccaaaaa tgttgcaggaa gaaagatcag ttactgtgaa tgtcaagggtt 48540
 cttgacagac caggcccacc tgaaggaccc gttgttatct caggagttac agcagaaaaa 48600
 tgcacactag cttggaaacc cccacttcag gatggggcgt gtagacatcat aaattatatt 48660
 gtggaaaggg gagaaccagg cccgttagtt tggactgtgg ttgatgccaa tgtcagact 48720
 ctcagctgca aggttactaa gcttcttgc ggcataatgaa atactttccg tataatggca 48780
 gtaaaacaaat atgggtttgg tgaaccttcaatc gatctgagc cagtagttgc caagaatcca 48840
 tttgttagtac cagatgcacc aaaagctcca gaagtcacaa cagtgacccaa ggactcaatg 48900
 attgttgtat gggaaagacc agcatctgtat ggtgttagt gaaattcttgg atatgttctt 48960
 gagaacacggg ataaagaagg cattagatgg acaagatgcc ataaagcttct gattggagag 49020
 ttgcgcctgaa gactaactgg actcatagaa aatcagcatt atgagttcag agttctgt 49080
 gagaatgctg ctggacttag tgaaccaagc cctccctctg cttaccaaaa ggcttgat 49140
 cctatttata aaccaggacc cccaaacaaac cccaaagtca tagacataac cagatcttca 49200
 gtattcctt cttggagcaa accaatatat gatggggct gtgaaattca aggatacatt 49260
 gttaaaaat gtgatgtgaa tggtggatggaa tggacaatgt gcaactccacc aacaggaatt 49320
 aataaaacaa acatagaagt agagaagctg ttggaaaagc atgaatacaa cttccgtatc 49380
 tgtgcttata ataaagctgg agttggagaa catgctgacg tccctggacc tattatagtt 49440
 gaagaaaaat tagaagcacc agacattgtat cttgacccatg aactaaggaa aatcataaaat 49500
 ataaggcag gtggctcctt aaggtttattt gttccatataa aaggtcgatc tacaccagaa 49560
 gtaaaatggg gaaagggtgg tggtaatc cggatgcag ctataattgt tgtcaactagc 49620
 agtttaccc ctcttgcgtt tgacaatgtc aaccgatatg atagtgaaa atatacgctt 49680
 acattagaaa acagcgtgg aacaaagtct gccttgcgtt ctgtgagatc tctggacacg 49740
 ccaagtccac ctgttacccat gaaaggcaca gaaatccaca aagactcgtt atcaattaca 49800
 tggAACCTC CTTGGTGG AAAATAAAA ATTACATTGT tgagaaacgt 49860
 gaagccacaa gaaaatcata tgctgctgtt gtaactaact gccataagaa ttcttgaaa 49920
 atcgatcagg tccaagaagg ttgcgttactttagat tcacagctgtc gatgagtt 49980
 ggtattggcc ttcctggccca gactgtgtat ccaattaagg ttgcgttacttgc gccacaaccc 50040
 cttggaaaaaa taactgtgg tggatgtcacc agaaacagtg ttctctgtg ttggacaaaa 50100
 cttgaacatcg atggggcag taaaatcattt cagttatgttggaaatgtca agctaaacac 50160
 agtgagaaat ggtcgatgt tgctcgttacttgcgttacttgcgttacttgc gatgagtt 50220
 actcaaggggg aagaatatct ttttagatgtt gttgtgttacttgcgttacttgc gatgagtt 50280
 cttcggtccc ttgcgttcc aatagttgcc aaagatctgg taattggccc agatgtaaaa 50340
 cttgcattca gtagttacag tggatgttacttgcgttacttgcgttacttgc gatgagtt 50400
 tttggacgtc ctaagccaaac cattacctgg actaaagatg gtctcccact gaagcagacc 50460
 acaagaatca atgttaccga ttcatggat ctcaccacac tcgttataa agaaactcat 50520
 aaggatgtatg gtggacaata tggaaatcaca gttgccaatg ttgttggatca gaaagacagca 50580
 tccatcgaaa ttgttaactct agataaacct gatcctccaa aaggacgtt taaatttgc 50640
 gacgtcgttacttgcgttacttgcgttacttgcgttacttgc gatgagtt 50700

caaatcacca actacattgt tcagaaaaga gataacaacca ccacagtatg ggatgttgg 50760
 tctgctactg ttgctagaac tacactcaa gtgaccaa ac tgaaaactgg tacagaatac 50820
 caattttagaa tatttgcga aaacagatg ggacaaaagct ttgccttaga gtctgatcca 50880
 attttagctc aatattccca caaagaacca ggcccctccag gtacaccatt tgccacagcc 50940
 atttccaaag actccatggt catacagtgg catgaaccag tcaacaatgg tggaagcccc 51000
 gtcatacggtt accacctgga gagaaaagaa agaaaacagta ttttggac aaagtcaac 51060
 aaaactatta ttcatgacac ccaattcaa gcacagaatc ttgaagaagg cattgaatat 51120
 gaattcagag tggatgtga aaatattgtt ggtgtaggca aagcaagcaa gaattctgaa 51180
 tgctatgtag ccagagatcc ctgtgaccca ccaggaaccc cagaaccaat aatgatgg 51240
 agaaaatgaaa tcactttaca gtggaccaa cctgtgtatg atgggtggag tatgattaca 51300
 ggctacattt tagagaaaacg tgatggctt gatggtcgtt ggatggaaagc tagcttata 51360
 aatgtcattt aaactcaatt tactgtgtca ggtcttactg aagatcaaa atatgaattc 51420
 agagtcttgg caaagaatgc agctgggtca ataagtaaac cctctgacag tactggacca 51480
 ataactgcca aggatgaggt tgaactccca agaatttcaa tggatccaa attcagagac 51540
 acaatttgcg taaatgtgg agaaaacatc agacttgagg ctgtatgtca tggaagcccc 51600
 ctacctacca ttgagttgg aagggagat aaggaaatgg aagaatctgc tagatgtgaa 51660
 ataaaagaaca cagatttcaa gcgttactt attgtaaaag atgcaattttag aattgatgg 51720
 gggcgttata tttaagagc ttccaaatggt gcagggttca agtcattccc agtaatgt 51780
 aaagtatttag atagaccagg acctccagaa gggccagttc aggttactgg agtcaattt 51840
 gaaaaatgtt cttaacatg gtctccacca cttcaagatg gtggcgttca catttctcac 51900
 tatgttgggg aaaagcgaga aaccagtca cttgccttgc ctgttggc ttcagaagtt 51960
 gtgaccaattt ctctgaaatg taccaaactc tttagaaggta atgaatatgt tttccgtata 52020
 atggctgtca acaaataatgg tggtggagat ctttggat ctgcaccatg actaatgaaa 52080
 aatccatttt tgcttcctgg accaccaaaa agcttggaaatc tcacaaatat tgccaaagac 52140
 tccatgaccc tctgttggaa ccgttccagat agtgcgttgc gaagtgagat tattgttac 52200
 attttagaga aaagagacag aagtggcatt cgatggataa atgtaataa acgcgcatt 52260
 acagatttgc gtctaagatg gacaggatc acagaagatc atgagttatg attcagggtc 52320
 tctgcagaaa atgctgtgg agttggggaa ccaagttccag ctacagtta ttataaagcc 52380
 tctgtatcctg ttttcaacc tggcccacctt accaatgcac acattgttgc caccactaaa 52440
 aattcaatca cacttgcctg gggtaaaccctt atctatgttgc gccgcgttca gatcttggg 52500
 tatgttagtag aaatctgtaa agcagatggaa gaagaatggc aatagttac tccacagact 52560
 ggcctgagaaat tcactcgatt tggaaatccaa aactactg aacaccaaga gtataaaata 52620
 cgagtctgtg ccctcaacaa agttggttt ggtgaggctt catcgttcc tggtactgt 52680
 aaaccagaag ataaacttgc agcacctgaa cttgacccctt actccgaattt aagaaaagga 52740
 atttggtaa gagctgttgg atctgccaga attcacattc catttcaagg tcgttcaatg 52800
 cctgagatca ttggctctg agaggaaggt gaatttccatg ataaatgttca aattgaaaag 52860
 ggagtaaactt ataccaactt atcaatagat aactgtgttca gaaatgtatgc tgaaaatac 52920
 atttcttaatg tggaaaacag cagttgttca aagtctgttca ttgttactgt gaaagtttctt 52980
 gacactccag gaccaccaca gaatttggca gtcaaaagaa tgagaaaaga ttctgccttc 53040
 ctggtatggg agccacccat cattgtatgg gggccaaagg tcaagaacta tttgtatttgc 53100
 aaacgtgatg caaccagaaa agcgtatgtt aatgttgcgtt gtaatgttgc caaaacaatg 53160
 tttaaagtgg aaaacccatc agaaggagcc atttattact tcaatgttgc ggttgcgg 53220
 gaatttggag ttgggttcc agtggaaactt gttgtatggc tggaaatgttca tgaaccttcc 53280
 tccccaccatg gaaagtttac actactgtt gtttccatg ccagtgcattt acttatgtgg 53340
 gagaaaacccatg aacatgttgc cggtagcaga gtcctggggt acgttggatg aatgcagcccc 53400
 aaagggacttggg aaaaatgggg cattgtggctt gatccaaatg tctgtatgttgc agttgttact 53460
 ggtttggatgtt ctggacaaga atatcgttgc cgtgttgcagg cttataatgtt gaaaggaaaa 53520
 agcgatccaa ggttgggg ttttccatg atagccaaagg acttgcattt acaggcttagt 53580
 ttaaagtgtt catttacac atatgttgc caagctggatg aagatcttgc aatagaaattt 53640
 ccagtatgtt gccgaccaag accttacattt ttttgggtca aagatgttgc gctctttaaa 53700
 cagacaacaa ggttggatgtt gtaagaaaaca gtttgcattt ctttttgcattt aatgttgc 53760
 ggttggatgtt ggttggatgtt gtttgcattt gtttgcattt aatgttgc 53820
 acagaaaatc tcaatgttgc ttttgcattt aatgttgc gtttgcattt aatgttgc 53880
 ttttgcattt ggttggatgtt gtttgcattt aatgttgc gtttgcattt aatgttgc 53940
 ggctgccttcaaa taagcaactt cattgttagat ggttggatgtt gtttgcattt aatgttgc 54000
 atggatgttgc caacatgttgc aagaacaaca atttgcattt aatgttgc gtttgcattt aatgttgc 54060
 ggttggatgtt ggttggatgtt gtttgcattt aatgttgc gtttgcattt aatgttgc 54120
 aaggcgttca ttgttgcattt aatgttgc gtttgcattt aatgttgc gtttgcattt aatgttgc 54180
 acatcaatctt caaaatgttca gtttgcattt aatgttgc gtttgcattt aatgttgc 54240
 accaaaatattt ttggcttccatg ttttgcattt aatgttgc gtttgcattt aatgttgc 54300
 ttaaataaga ccccccatttca ggacacccaa ttcaaaacaa ctgggttccatg tgaggccctt 54360
 ggttggatgtt ggttggatgtt gtttgcattt aatgttgc gtttgcattt aatgttgc 54420

tcagaatgct ttgttgctcg tgatccatgt gaccCACCTG gtcGCCCTGA agccattgtt 54480
 attacaagaa acaatgtcac actgaaatgg aagaaACCTG CCTATGATGG tggtagcaaa 54540
 ataacagggtt atattgtaga aaagaaaAGT ctacCTGTG gCCGCTGGAT gaaAGCCAGC 54600
 tttaccaacg tattagaaac tgaatttaca gtgagtggac ttgtAGAAGA ccaaAGATAT 54660
 gaatttagag taattgcaag aaatgcAGT ggAAACTTA gtGAACCATC tgatAGTAGT 54720
 ggtGCCATTA ctgcaagaga tgaAAATTGAT gcACCAAAATG CCTCTCTGGT tccAAAATAT 54780
 aaagatgtca tcgttgtca tgcaggagag acTTTGTTC ttGAAGCCGA catCCGTGGC 54840
 aaacctatac ctgatgtgt ttggtaaaaa gatggAAAAG aacttGAAGA aacAGCTGCT 54900
 agaatggaa ttaaatctac tattcagaaa acaactCTG ttgtCAAAGA ctgtatacgg 54960
 actgatggag gacaatatac tctgaaACtC agcaatgttG gtggtaaaaa gtctataccc 55020
 atcaactgtaa aggtacttga caggCCAGGG tctcCTGAAG ggcCTCTGAA agttactggA 55080
 gttactgcgg aaaaatgttA cctggcatgg aaccCACCTT tgcaAGATGG tggtagctaat 55140
 atttcacatt acatcattGA aaagagggag acaagCCGAC tctCTTGAC ccAGGTTCA 55200
 actgaggtac aggCCCTTA ctacAAAGTT actAAACTTC ttccTGTGAA tgAGTACATT 55260
 ttccGTGTC tggCTGTGAA taaatATGGt attggAGAGC ccttGGAATC tggGCCTGTT 55320
 acggCCGTGTA atccTTATAA gccaccAGGT cctccCTCAA cacCTGAAGT ctcAGCAATC 55380
 accaaAGATT ctatGGTAGT aacatGGGCa CGCCCACTGAG acgACGGGAGG taccGAAATT 55440
 gagggCTACA ttcttGAAAAA acgAGATAAG gaaggCGTTA gatGGACCCA gtGCAACAAg 55500
 aaaacattaa cggatCTGCG gctcaggGTA actGGTCTTA cccGAAGGCA ttccTATGAA 55560
 ttcagagttG ctgCTGAAAAA tgcAGCTGGT gtggGAGAAC ctatGAGGC atctGTTTC 55620
 taccGTGCGT gtGATGCTT gtATCCACCA ggtccccCAA gcaatCCAAA agtGACGGAC 55680
 acttCCAGAT ctTCTGTCTC cctGGCATGG agtaAGCCAA ttatGATGG tggGcacCT 55740
 gttaaaggct atgttGtGA ggtCAAAGAA gctGCTGCGG atgaatGGAC aacCTGCACT 55800
 ccaccaacAG gattacaAGG aaAGCAGTTC acAGTGCACCA agcttAAAGA aaACACTGAA 55860
 tataacttCC gtatttGTGc catcaatttCt gaaggGTGAG tgtaACCTG aactCTACCT 55920
 ggctcAGTGG ttgCTCAGGA gaggatAGAG ccaccAGAAA tagaACTCGA tgCTGATCTC 55980
 agaaaggTGG tcgttCTGCG tgcaAGTGT actTTACGCT tatttGTcAC tatCAAAGGT 56040
 cgaccAGAAC ccGAAGTTAA atggGAAAG gCAGAAGGCA ttctCactGA caggGCTCAG 56100
 atagaggTGA ccAGCTCATT tacaATGTtG gtGATTGATA atgttAccAG atttGACAGT 56160
 ggTCGGTATA atctGACATT agaaaATAAT agtGGTCCA aAACAGCTT tgTTAACGTC 56220
 agagttCTTg actcACCAAG tgcccCTGTG aatttGACCA taAGAGAAGT gaAGAAAGAC 56280
 tcagtGACGT tgcTCTGGGA accaccACTT attGATGGTG gagCTAAGAT tacaAACTAC 56340
 attgtcgAAA aacgagAAAC tacaAGAAAAA gcCTATGCTA ccattACAAA taattGACT 56400
 aaaactACTT tcagaATTGA aaatCTACAA gaaggATGTT cttaCTACTT ccGAGTCTG 56460
 gottCCAATG aatATGGAT tggTTGCCA gctGAAACAA cagaACCCGT taaAGTGTCT 56520
 gaaccACCCC tcccACCTGG aagAGTAact ctGTTGATG tgACCCGTAAC tacAGCTACA 56580
 attaAGTGGG agaaACCAGA aagtGATGGT ggcAGCAAAA ttactGGTTA tggGTTGAA 56640
 atgcAGACTA aaggGAGTGA aaAGTGGAGC acCTGCAcAC aagttAAAGAC tctAGAAGCA 56700
 actatATCTG gcttaACTGC aggAGAAGAG tatGTTCTCA gggtagCTG agttaACGAA 56760
 aaggGAAGAA gtGATCCAAG acaACTTGGA gtGCCAGTAA ttGCAAGGGa tattGAAATA 56820
 aagCCTTCAG ttGAGCTTCC ttccATAACT ttCAATGTAA aggCTAGAGA acaACTTAAG 56880
 attGATGTGc cattCAAAGG aagACCTCAA gctACTGTGA actGGAGAAA agatGGTCAG 56940
 actCTTAAAG agacaACTAG agtCAATGTT tcttCTTCAA agactGTaac atcACTATCT 57000
 attaAGGAAG cttCAAAGGA agatGTTGGA acttatGAAT tatGTTTTC aaACAGTGT 57060
 ggatCCATAA cagTTCTAT tactATAATT gtcCTTGACA gaccAGGACC tccAGGTCT 57120
 atacGTATTG atGAGGTAG ttGTGACAGC ataACCATT CTTGGAAATCC tccAGAAATAT 57180
 gatGGTGGCT gccaAAATTAG caATTACATT gttGAAAAGA aagAAACCCAC ctCTACAAACA 57240
 tggcacATAG ttTCACAAGC agttGCAAGA acatCCATT AAATAGTTG cctGACAACA 57300
 ggaAGTGTAGT atcAGTTCCG tggTTGTC gaaaACCGCT atggAAAGAG ctccTACAGT 57360
 gaatCTTCAG ctGTTGTTGC agAGTATCCA ttCACTGCCCC caggCTCTCC tggTACTCT 57420
 aaAGTGTGc atGCCACAAA atCTACCATG ttGTAACCT ggCAAGTGCC agttaATGAT 57480
 ggAGGAAGTc gagtaATTGG ctatCATCTT gagtATAAG aagaAGCAG cattCTTTGG 57540
 tcaAAAGCAGA ataaaATCTT cattGCTGAT actCAAGTGA aagtCTCCGG ctttGATGAA 57600
 ggACTGTATGT atGAGTATCG tGTTATGTC gaaaATATTG ctGGAATTGG taaATGAGT 57660
 aaatCTTGTG aaccAGTCCC tgcaAGAGAT ccttGTGACC ctccTGGACa acCTGAAGTC 57720
 acaaATATCA caAGAAAATC agtGTACTT aaatGGTCA taccACATTA tgatGGTGG 57780
 gctaAGATCA caggACATC tggTAACGC agagaACTAC cAGATGGCCG gtggCTAAAG 57840
 tgcAAATTATA ctaATATAcA agaaACATAC tttGAAGTAA ctGACTTAC tgaAGATCAG 57900
 cgttATGAAAT tccGGTTTT tgcaAGGAAT gctGCTGACT cAGTGTGTA gccATCTGAA 57960
 tccACTGGGC ctattataGT taaAGATGAT gttGAGCCTC caAGAGTTAT gatGGATGTC 58020
 aagttCCAGG acgttATTGT tGTCAGAGCT ggAGAGGTCC ttaAGATAAA tgcAGACATT 58080
 gcaggGCGAC ctctGCCAGT aatttCCTGG gccaAGGATG gtatAGAAAT tgaAGAAAGA 58140

gcaagaacag aaatcatctc aacagacaat catactttgt taacagttaa agactgtata 58200
agacgagaca ctgggcataa tgtactaaca ctgaagaatg ttgcggcac tcggctgtgt 58260
gccctaatt gcaaagtact tgataaggct ggtccaccag caggaccact taaaataaat 58320
ggcctcactg ctgagaaatg ctctcttcc tgggacgtc cccaagaaga tggtggtca 58380
gatatcgact attaccatcg taaaaaacgt gaaacaagcc accttcgtat gacaatatgt 58440
gaaggagagt tacagatgac atcctgtaaa gtaaccaagt tactcaaagg caatgaatat 58500
atatttagag taactgggtg taataaatat ggtgttggg agccccatg gagtgttagct 58560
ataaaggcac tagatccatt tacagttca agtccaccca cgtcttgg aattacttct 58620
gtgaccaaag aacttatgac actttgtcgg tcaagacccg agagtgtatgg aggtgtgaa 58680
atatctggat atataattga aaggcgagag aaaaatagcc taagatgggt gogtgtaaac 58740
aaaaaaccag tttatgatct aagagtgaaa tcaacaggac ttccggagg atgtgaatat 58800
gaatatcgta tttatgcaga aatgctgct ggcttaagtc ttcaagtga aacctctccc 58860
ttaatttaggg cagaagatcc agtgttctc ccatctcctc catccaaacc caaaatttgt 58920
gactcaggca agacaactat aactattgcc tgggtaagc cgctgttga tggtggttgc 58980
ccgataactg gatatactgt agaatacaaa aatctgtat acactgactg gaaaacttcc 59040
attcagagct tacaggggac agaataataca ataagcggac taacaacagg agctgaatat 59100
gttttcagag taaaatctgt cctcagatag cttttatgg atattgacag taaaatgagg 59220
aagaccttga ttgtcaaggc tggtgctca tttaccatga ctgtgcctt ccgaggaga 59280
ccagtaccca atgtcttgcg gagaagccca gacactgacc tccgtactag agcttatgtt 59340
gataccacag actctcgatc atcactgacc attgaaaatg ccaacagaaa tgactctgga 59400
aagtacacat taacaattca gaatgtttt agtgctgttt cactgaccctt agttgtcaaa 59460
gttttagata ccccagggtcc tcccaaccac attactgtgc aagatgtaac caaagagtct 59520
gcagtgttat cctggatgtt caataaggtt ggtgtctgt accccagtga tagctctgac 59580
atagaaaaac gtgaggccag ctctcctaca aagttaccaa aagaaagca tggtctctg tgaccaacaa ctgttaaccgc 59640
gaaaatgagt ttgtgttgc tataccagct gaaacaaagg aaggagtaaa aataacagaa 59760
aaaccaagcc caccgtaaaa acctggatca tgatggcga agcagaattt tacactatgt cttgttgc 59820
acctggctga agcctgaaca ctagaaaaag gacagaaaaaa ctgggttaaa tggcgtatgg cttgttgc 59940
gtttccggtc tgagagagaa ttctgaatac ttttccgag gtttgc 59940
ggcctgaatg acccgagaga cttttccgag ttttgc 60000
cctgaaattt atatgaagaa cttaaagttt acattccat ttttgc 60000
gggtgtcccc ttaaggcaac catgagattt aataccgaaa ttactgtga gacactgacc 60060
atcaatctca aagaaagtgt tacagctgac gctgggagat ttttgc 60060
tccagtgtta caaccaaagg ttttccaaatc atttttgtgc ttttgc 60120
actggccctg ttgttattag tgatataact gaagaaagtgc ttttgc 60120
cctaagtatg acgggtggaaag tcaagtacc aactacattt ttttgc 60180
actcgatgt ggactgaatg gtctgcaaca gttgcaagaa ttactgtga gacactgacc 60240
ctgaccacag gagaagaata ccaatttccgc atcaaggcag ttttgc 60240
gatcatatacg attcagcttgc ttttgc 60240
tctacaccat gggtcaactt ttttgc 60240
gtgtcaatgt gaggcagtgc ttttgc 60240
atttttaggc aaaaagccaa caaatggtc atccgcacaa ttttgc 60240
atcagtgttgc gacttattta tgaatttgcg ttttgc 60240
aaacctagcc atccttctga accagtcttgc gcaatttgcg ttttgc 60240
gttcgtatca ctgatatttc aagaactct gtcagccctt ttttgc 60240
gatggaggtt gcaagattac aggctacatt gttgagagac ttttgc 60240
tggaccaagg ccagcttcac caatgttact gaaactcaat ttttgc 60240
cagaattccc agtatgaatt ccgtgtctt gcttaggaatg ttttgc 60240
ccatctgagg ttgttagggcc cattacttgc atcgattctt ttttgc 60240
ttgcctctag aataatacaga agttgtcaaa tacagagcag ttttgc 60240
gctggcattt ctgcaaaacc tgccctact attgagtggc ttttgc 60240
caaaccatg cactgggtgt ttttgc 60240
gatgccatc gccttaatag tggatgtat gaaattaaaac ttttgc 60240
gcctcaggca ccatcagatg acagatccctt gacaaaccag ttttgc 60240
gaatttaaga ctgtacttgc tgagaagatc acccttctt ttttgc 60240
gggtgtgcaa aaatcactca ctacattgtg gaaaagcgtg ttttgc 60240
tctatgggtt ctgacacattt ggaagagtgc atcattacaa ttttgc 60240
aatgaataca tcttccgggtt ccgagccgtg aacaaatatg ttttgc 60240
tctgttcccg ttgttagccaa gaacgcattt qttacacctq qgcccacccagg cataccagaa 61860

gtgacaaaga ttaccaagaa ttcgatgact gttgtatgga gcaggccaat tgcagatggc 61920
 ggtagtata taagtggcta tttccttggaa aaacgagaca agaagagcct aggatggtt 61980
 aaagtactaa aagagactat ccgtgacacc agacaaaaag taacaggact cacagaaaac 62040
 agtactatc aatacagagt ttgtgctgta aacgctgctg gacagggtcc attttctgaa 62100
 ccatctgaat tctacaaagc tgctgatcct attgatcctc caggtccacc tgctaagata 62160
 agaatcgca attcaaccaa gtcatccatc acccttggct ggagtaagcc tgtctatgat 62220
 gggggcagtg ctgttactgg gtatgttgc gagataagac aaggagagga agagaatgg 62280
 actactgtct ctaccaaagg agaggtcaga actacagaat atgtgttac caacctgaaa 62340
 cctggagtca attactactt ccgggtatct gctgtaaact gtgctggaca aggagaacct 62400
 atagaaatga atgaacctgt acaagctaaa gatatacttg aggccccaga gattgacctg 62460
 gatgtggctc tcagaacttc tggttattgccc aaagctggtg aagatgtaca agtgttgatt 62520
 ccctttaaag gcagacccctc acctactgtc acatggagaa aagatgagaa gaatcttggc 62580
 agtgtgcac gatacagcat tgaaaacact gattcatcct cattactcac cattcctcaa 62640
 gttactcgca atgatacagg aaaatatatt ctcacaatag aaaatggagt tggtaaacct 62700
 aagtcttcaa ctgtgagtgt taaaatgttt gacacccagg ctgcctgcac gaaactacag 62760
 gttaaacatc tttctcgagg cacatgtact ttgctctggg atcctcttct cattgatgga 62820
 ggtatctcaa taattaatta tgcattgaa aagagatg ccaccaagag aacatggct 62880
 gtcgtgtcac acaaatgtt tagcacatcc ttcaagctta tagatgttgc ggagaagact 62940
 ccattcttc tcaagatct tgcagaaaaat gaaattggaa ttggggaaacc ctgtgaaact 63000
 acagagccag tgaaggctgc tgaagttcca gctctatac gtatcttc aatgaaagac 63060
 tcaacaaaga catctgtcat ctcagctgg accaaacactg actttgtatgg tggtagcgtc 63120
 atcacagaat atgttgtaga aaggaaaggt aaaggtaac agacgtggc ccacgctggc 63180
 ataagaatc catgtgaaat tgaggttagc caacttaagg agcagtca gctggagttc 63240
 agagtgtttc caaaaatga gaaaggactg agtgcatttc tcaactattgg gccaattaca 63300
 gtgaaagaaac ttattattac acctgaagtt gacctgtcag atatccctgg ggcacaagtc 63360
 actgtgagaa ttgggcacaa tgcacatctt gattacctt ataaggaaa acccaaacca 63420
 tccatcgtt ggctgaaaga tggctgcac ctgaaagaaaa gtgaattttg tcgcttcagt 63480
 aaaaactgaaa acaaattac ttgatgtt aagaatgcca agaaggagca tggagaaaa 63540
 tacactgtt ttcttgataa tgcagtgtgt agaattgcag tccccattac agtcatcacc 63600
 cttggcccac catcaaagcc caaaggaccc attcgattt atgaaatcaa ggctgatagt 63660
 gtcatctgtt catggatgt acctgaagat aatggaggag gagaattac ttgttacagc 63720
 atcgagaagc gggaaacttc acaaactaac tggaaatgg tgcattcaag tggccaga 63780
 acgactttca aagttctaa tctgtcaaa gatgtcaat accagtttag agttagagca 63840
 gaaaacagat acggagtcag ccaaccactt gtctcaagca ttattgtggc aaaacaccag 63900
 ttcaggattc ctggcccccc agggaaagcca gttatataca atgtacttc tgatggcatg 63960
 tcactaactt gggatgtcc agtttatgtt ggtggttcag aagttactgg attccatgtt 64020
 gaaaagaaaag aaagaaatag catcctctgg caaaaagttt atacatcacc aatctctgga 64080
 agagaatata gagccactgg actggtagaa ggtctggatt accaattccg tgcataatgt 64140
 gaaaattctg ctggcctaag ctcacctgtt gaccaagca aatttacctt agctgtttct 64200
 ccagtagacc caccctggcac tcctgactac attgtatgtca cccggggaaac catcacactt 64260
 aaatggaaacc caccattgcg tgcattggc agtaagattt tggctatag cattgagaaaa 64320
 cggcaaggaa atgaacgctg ggtgagatgc aactttactg acgtcagtga atgtcagtac 64380
 acagttacag gactcgtcc tgggatcgc tatgtatgtca gaataattgc aagaaatgct 64440
 gttggacta taagcccgcc ctcacagtct tctggcatta ttatgacaag agataaaaat 64500
 gttccaccaa tagtagatg tggccctgaa tactttgtt gtctcattat taagtccgga 64560
 gagagcctta gaattaaagc ttggtagaa ggaagaccag tgcctcgagt aacttggttc 64620
 aaagatggag tggaaatcga aaagaggatg aatatggaaa taaccaacgt acttggatcc 64680
 accagcctat ttgttagaga tgcactctgg gaccatcgtg gtgtatcac agtggaaagcc 64740
 aaaaatgcat ctgggtctgc aaaaggcagaa attaaatgtt aagtacaaga tacaccagga 64800
 aaagttagttt ggccaaataag attcaccat attactgggg agaagatgac tctgtgggtgg 64860
 gatgccccac tcaatgacgg ttgtgctccc ataaccact acatcattga aaaacgggaa 64920
 accagcagac ttgcctggcc actaattgtt gataaatgtt aagccccaaat ttacactgcc 64980
 attaaactaa taaacggcaa tgaatccaa ttccgttctt ctgcagttt caagtttggt 65040
 gttggcaggc cacttgcattt tgatccatg tgcattttttt tgcattttttt 65100
 gccccctggca ttcccgaaacc tagcaacata acaggcaaca gcattaccctt gacatgggca 65160
 agggcagaat cagatgggg cagtggaaattt caacagtata tgcattttttt 65220
 aaaaggcacaat gatgggtaaa agtgcattttt tgcattttttt 65280
 gtcactggc tgcactggc caatgatgtt gatgtttttt tgcattttttt 65340
 ggagttggac ctgcactggc catctcaaga ctcattttttt tgcattttttt 65400
 ccaggccctc ccacactggc caaaggtaaca gacacatcaa agacaactgt gagctttttt 65460
 tggccaaac cagtgtttttt tgcattttttt tgcattttttt 65520
 aagaccgact taggagactg gcacaagggtt aatgcagagg catgtgtgaa aacaagat 65580

acagtcactg atctacaaggc aggtgaagaa tacaattcc gagttagtgc tatcaatgg 65640
 gctggaaaag gcgacagctg tgaagtact ggcacaatta aagcagttga ccggtaaca 65700
 gctcctgagt tagacataga tgcaaactc aaacagactc atgttggtag agctggggcc 65760
 agtattcgcc tcttcattgc ctaccaagt agaccactc ctacagctgt gtggagcaaa 65820
 ccagactcta accttagcct tcgggctgat atccatacaa cagattccct cagcaccctc 65880
 actgtggaaa actgcaacag aaatgatgca gggaaatata cccttactgt ggaaaacaac 65940
 agtggtagta agtcaatcac attcaccgtg aaagtgcgt acactccagg cccacctggc 66000
 ccaattacct tcaaagatgt gacccggga tctgtacat tgatgtggga tgccctt 66060
 cttgacgggt gtgcccgaat ccatcattat gtggtagaga aacgagaggc aagtggccgt 66120
 agtggcagg ttatcagtga aaaatgact cgtcagatct tcaaggtcaa tgacctggcc 66180
 gaaggtgttc cgtaacttcc cctgtttct gcagtaatg agtatgggt tggtgagccc 66240
 tatgaaatgc cagaaccaat tgtagccacg gaacagcctg ctccacccat gagacttgat 66300
 gttgttgata ctagcaaattc ctccgcagtc ttagcttggc ttaaacctga ccacgatgg 66360
 ggcagccggg tcaactggctt cctgttggaa atgagacaaa agggatctga cctctgggt 66420
 gaagctggc acaccaaaca gctaacttcc acagtagacg gtcttggta gaaaactgaa 66480
 tatgaattcc gtgtgaaggc caagaatgat gctggctata gtgaacccag agaagcctc 66540
 tcttcgtca tcatattaaggc gcctcaaattc gagccactg ctgacccatc tggaattacc 66600
 aatcagctta taacttgcaaa agcagggacg ccatttacca ttgacgtacc aatcagtgg 66660
 cgtcctgccc ccaaagtaac atggaaactg gaagaaatg gacttaaaga gacagatcga 66720
 gtgagcatta caacaacaaa agacagaacc acactgactg taaaggacag catgagaggt 66780
 gactctggaa gataacttctt gaccctggaa aatacagctg gtgttaaacc attagcgtc 66840
 acagttgtgg tcatttggaa gccaggtcca gtaaccggcc ccattgaggt ctcatctgtc 66900
 tcagctgaat cgtgtgtcc tcatggggaa gacactaaag atggaggagg cactgaaatt 66960
 actaattaca tagttaaaaa gcgtgaatcg ggtacaacag cttggcaggt tgtcaattcc 67020
 agtgtcaagc gcactcaaat taaagtact catctcacaat aatacatgaa atattcttc 67080
 cgtgtcaggta cagagaacag atttgggtgc agcaacccctc tagaatcagc accaataatt 67140
 gctgaacatc catttgcctt accaagcgtc cttaccagac ctgaggtcta ccattgtct 67200
 gccaatgcca tgcatttcg ttggggaaagaa ccattaccacg atgggtggcag taaaatcatt 67260
 ggctactggg ttgagaagaa agaacgtaat acaattctt gggtaaaga aaacaaagt 67320
 ccatgcttag agtcaacta caaagtaact gtttagtag aaggactgaa atatcagttc 67380
 agaactttagt cactcaatgc tgcaggtgtt agcaaggcca gcaagcttc aagacctata 67440
 atggctcaaa atccagttga tgcaccaggc agaccaggagg tgacagatgt cacaagatca 67500
 acagtatcac tgattggc tgccttcccg tatgtggag gcaagcaaggt tgcggctac 67560
 atcatagagc gtaagccagt cagtggatgg gggatggc gctggctgaa gtaactac 67620
 accattgttat ctgacaattt cttcaccgtg actgctctca gtaaggaga cacttatgag 67680
 ttccgtgtgt tagccaaagaa tgcagggc gtaattagca aagggtctga atctacaggc 67740
 cctgtcactt gccgagatga atacgctcca cccaaagccg aactggatgc ccgattacac 67800
 ggtgatctgg ttaccatcag agcagggttct gatcttggc tggatgctgc agttggggc 67860
 aaacctgaac ccaaattat ctggaccaaa ggagacaaagg agctagatct ctgtaaaaaa 67920
 gtctcttgc agtatactgg caaacggaca actgctgtga tcaagttctg tgacagaagt 67980
 gacagtggaa aatacactt aacagtggaa aatgccagcg gaccaaggc cgtgtctgtc 68040
 atggctcaag tgcttgattt ccctggcccc tggggaaagc tcaccgtcag cagagtaaca 68100
 caggagaagt gcaacttagc ctggagccct ccgcaggaaac acggaggaggc agaaatca 68160
 cactacatcg tggaaagacg cgagacttagc aggctcaact ggggtattt tgaaggcga 68220
 tgcccaaccc tattttatgt cgattaccagg ctcattcaaga acaatgatgaa catattccga 68280
 gtgaggcggc taaacaaata tggccctggt gtcgttgc aatcagggcc aattttagcc 68340
 agaaactcat tcactattcc atcaccaccc ggcataccctg aagaagttgg gactggcaaa 68400
 gagcatatca tcatttgc gacaaaaccc gatctgtg gtcgtatgaa aatcagcaac 68460
 taccttagt gacaaaacgtgaa gggaggaggc ctgcgttgc cacgtgtcaaa caaagactat 68520
 gtgggtgtatg ataccaggctt ggggtgttgc agccgtatgg aggggttgc ttaccgttc 68580
 cgggtgaccg cagtggatgc agtggtaac agtggccca gcaacgttc caacttcattc 68640
 tcatggatgg aaccatcata tacccttggc ccacccttgc ctccaagatgt tggatgatacc 68700
 accaaacaca gcatggatggcc aaaccatgtt acgtgggttgc tactgacatt 68760
 gtaggatatg ttctggaaat gcaagggaaag gacactgtac gttggatcc agtgcataacc 68820
 aatgcccaaa taagaaatac tgaatttactt gtcggccaggcc ttaaaaatggg ccagaaatatt 68880
 tccttcagag ttgctggcgtt gacggatggc ggtatggcgt aatacagcga atcaatttgc 68940
 gaaattggc gcatggaaag aatagaaata ccagatctt acgtggatcc tgatctaaag 69000
 aagactgtga ccatcaggcc tggggccctt ttgcgttgc tggatgtctgt atctggaaaga 69060
 ccacccctcg tcataacgtg gagcaaggc ggcatttgc ttgcaagccg gcaattatt 69120
 gacaccactg agagctactt attgcttata gttggacaaaag ttaatcggtt cgtatgtt 69180
 aaatacacaat ttgaaagctga aaaccaatct ggcaagaaaat cagcaacagt cttgtt 69240
 gtctatgata ctcctggc tgcattttca gtaaaatgtt aagagatttc aagagattct 69300

gtgactataa cttggggaaaat tcccacgatt gatgggtggc ctccaaatcaa caattacatc 69360
ggttggaaagc gtgaagctgc tatgagagca ttcaaaacag taactacca atgcagcaag 69420
acactttaca gaatttctgg acttgtagaa ggaaccatgc actatttcag agtgctgcc 69480
gaaaatattt atggcattgg agaaccttgc gaaacatctg atgcagtact ggtctcgaa 69540
gtgccttgg tgccctgcaaa gctagaagtgc gtcgatgtca ccaaattccac tggatccct 69600
gcctggaaa aaccactcta cgatgggtgt agccgactca ctggatatgt tctcgaggcc 69660
tgcaaagctg gcacagagag atggatgaag gttgtcacct taaaacccac agtccttagag 69720
cacactgtta cttccttaaa tgaaggtgaa caatacttat ttgaaataag ggcacaaaaat 69780
gagaaagggtg tgcagaacc aagagagact gtcacagccg tgactgtaca agacctcaga 69840
gtgttgc当地 caatcgatct ttctacaatg cctcagaaga ccattccatgt cccagctggc 69900
agaccagtag agtgggtgat acctattgct ggcgtccac ctccctgctgc ttccctggg 69960
tttgc当地 ctaaaactgag agaatcagag cgtgtcacag ttgaaactca cactaaagta 70020
gctaaattaa ccatccgtga aaccacttgc agagatactg gagaatacac acttgaattt 70080
aagaatgtt a cccgaaactac ttccagaaacc attaaagtt tcatttctga caaggctgg 70140
ccaccaacag gacctttaaa gattgatgaa attgatgctc catcaattac catttctgg 70200
gaaccacctg aattggacgg tgggtctcca ctgagtggtt atgtggtaga acaacgtgac 70260
gctcatcgcc caggatggct gcccgttctt gaatcagtga cttaggtccac gtttaagttt 70320
accagactca cccgaaaggaaa tgagtatgtg ttccgtgtgg ctgcaacaaa cccgcttcgg 70380
atggcttctt acttgcagtc tgaggctata gagtgtcgca gcagcatccg tattcctgg 70440
cccccagaaa cattacagat atttgatgtt tcccgtatg gcatgacact tacttgg 70500
ccaccagagg atgacgggtgg ctcccaagtgc actggatata ttgtggagcg caaagaagtg 70560
agagcagatc gatgggtccg tgtaaataaa gtacctgtga caatgacacg gtaccgctcc 70620
actggctta ctgaaggctt agaatatgaa caccgtgtca cagccattaa tgcaagaggg 70680
tctggaaaac caagtcgtcc ttccaaaccc atcgttgcca tggatccat tgcctctcca 70740
ggaaagccac aaaacccaag agttactgat acaacaagga catcagtctc cctggcctgg 70800
agtgttccag aagatgaaagg aggtactaaa gtcacaggct acttgattga aatgcaaaaa 70860
gttagatcaac atgaatggac caagtgtaaac accactccaa ccaagattcg agagtatact 70920
ctaacacacc tacccctcaggg tgccagaatac aggttcccgct tcctagcttga taatgctgg 70980
ggacctgggtg agctctgtca aagatccaa gaaggtatct ttgttaaggca agtgtggcgtc 71100
cctgattatg aacttgtatg aaaaagggaaa ccattcccaa tatgttaatg gaccaaggaa 71160
atcagactt ccataccaaat tgccatgatt gcaacatctg aaacacacac tgagcttgg 71220
ggccaggata ttagtaagcg atcaaaggaa cagacaggggg tgattctggc acttatgacc tggttctggaa aataaaatgt 71280
ggcaagaagg ctgtctacat ccactggat atgatgacat gatgtatggc gtgtcgatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 71340
ccactggat atgatgacat tgatgtatggc gtgtcgatccat ctagtccgc tctgtgaggg ccaagttccgc tatgttaatg gaccaaggaa 71400
gcctggata ccattgttcc gagaatgttag aataccattt tgtaaattctg aggttccgc atccctcgaga gacgagaagt gcttaaagcc 71460
atcggatggg ttagatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 71520
gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 71580
aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 71640
aaagatgtatgg tggatcttag gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 71700
gacaatgtgg tcagacacaaat cttgttcccg atgctgatg gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 71760
cctgaatgtg atgggtggaaat gacagtgcct ggaagaagag gggttgc当地 aagacttgccttcccg atgctgatg gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72000
gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72060
tgccagattt ttggaaaggcc atacaatggcc gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72120
atacaatggcc gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72180
acagaggaaac tttagatttcc gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72240
cctgaatgtg atgggtggaaat gacagtgcct ggaagaagag gggttgc当地 aagacttgccttcccg atgctgatg gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72300
gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72360
tgccagattt ttggaaaggcc atacaatggcc gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72420
atacaatggcc gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72480
acagaggaaac tttagatttcc gacaaatctg aggaaccatg aatccctcgatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72540
gtagaaacca gtagtaagct ctgaaagaga aatattatgg ggtcgtccag tacctgcccattt aacattacta ttgaaaacacaaat aagactcatg ctggaaaata atcctgtatg tggaaatataca gctctatttga agaactccgc tggatccatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72600
ctgaaagaga aatattatgg ggtcgtccag tacctgcccattt aacattacta ttgaaaacacaaat aagactcatg ctggaaaata atcctgtatg tggaaatataca gctctatttga agaactccgc tggatccatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72660
ggtcgtccag tacctgcccattt aacattacta ttgaaaacacaaat aagactcatg ctggaaaata atcctgtatg tggaaatataca gctctatttga agaactccgc tggatccatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72720
aacattacta ttgaaaacacaaat aagactcatg ctggaaaata atcctgtatg tggaaatataca gctctatttga agaactccgc tggatccatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72780
aagactcatg ctggaaaata atcctgtatg tggaaatataca gctctatttga agaactccgc tggatccatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72840
atcctgtatg tggaaatataca gctctatttga agaactccgc tggatccatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72900
tggatccatccat gatgtatggc tgatgtatggc ccattgttcc gagaatgttag aataccattt tgtaaaccatg agttctgttgc tggatccatccat caggtccgaa acagtcaaag tcactgaaat gttgaatat 72960
gtgtcttcag ccatctcaggta gacaacctgtt gacaaatctg agaatttgc当地 acctcacacaaat aatgtctggcc 73020

cagttctatg tgatgcctct tccacgcatt acagatcaat acagacctaa atggcgtatt 76800
 cctaaaactgt cccaaagatga tcttgagata gtgagaccag cccgcccggcg tacaccttct 76860
 cctgattatg actttacta ccgacctaga agacgttctc ttggggacat ctctgatgaa 76920
 gaattactcc tccccattga tgactactta gcaatgaaaa gaacagagga agagaggctg 76980
 cgtcttgaag aagagcttga gtttaggttt tcagcttcac ccccaagtctg aagccctcca 77040
 cactttgagc tttctagcct acgttactct tcaccacaag ctcatgtcaa ggtggagggaa 77100
 acaagaaaaa acttcaggtt tcacacccat cacatccaa cgaaggctga agctagtaca 77160
 agttatgcag aactgaggga acggcatgcc caggctgcgt acagacagcc aaagcaacgg 77220
 caaagaatca tggctgagag ggaggatgaa gagttctc gcccagttac gaccacccag 77280
 catctctcag aataaaaaa cgaacttgcac ttcatgtcaa aggagggaaa gtctagaaag 77340
 aatatcaaggc gacaaggaga agtgcacagaa ataacagaaa ttgaggaaga atacgaaatc 77400
 tcaaaaatcg ctcaaaagaga atcatcctca tctgcgtctc gactactgag acgacggcgc 77460
 tccctgtctc caacttatat tgagttatg aggccagttgt ctgagctgt ccggtcacgt 77520
 ccacaaccggc ctgaggataa cgaagatgac acagaaaaaaa ggtcacctac tccagagaga 77580
 actcgcccac gatccccag ccctgtgtcgt agtggagatg cactctcgag atttgagagg 77640
 tctgcaagat ttgatatctt ttccaggat ggtccatgt aagctgtttt aaaaactcg 77700
 aagacatcg aaaggaagta tgaagttttt agtcacgc acggccatcatgatcc 77760
 cctcgaatca cactgagaat ggcctcgac acgggatcatgatcc 77820
 attttaaatg ttcatgtctaa gccaacttgc gaggtaaat ggtaccacaa ttgggtggaa 77880
 ctccaagaaa gcagtaagat tcattacacc aacacgatg ggtccatgtc cctgaaattt 77940
 ctggactgtc atactgatga cagtggaaacc taccgtgtc tgcacccaa ctacaaggc 78000
 gaagcttctg actatgcac gttggacgtg acaggagggg attataccac ctatgcttcc 78060
 caacgcagag atgaagaggt ccccgatct gttttccctg agtgcacaag aacagaggcg 78120
 tatgctgttc catcattaa gaaaacatct gagatggaaat cttcgtctc tgcaggaa 78180
 gtgaaatcac agatgacgga gacaaggaa agtctcttc catatgaaca ctctgcac 78240
 gcagaaatga aaagtgcgc attagaagaa aagtcaactgg aagaaaaatc cacaaccaga 78300
 aagatcaaga cgacttggc agcaagaatt ctaacaaagc cacggccat gacggctac 78360
 gagggcgagt ctgcaagggtt ttcttgtac accgatggtg agccggtaacc aactgtgacc 78420
 tggctgcgtt aaggacaagt gctaagtact tctgcccggcc accaagtgc caccacaaag 78480
 tacaatcaa cctttgagat ctcttcagtc caggcttccg atgagggcaa ttacagcgt 78540
 gtggtagaaaa acagtgaagg gaaacaagaa gcagagttca ctctgactat tcaaaaggcc 78600
 agggtaactg aaaaggctgt gacatcacca ccaagagtca aatccccaga gcctcgggtg 78660
 aaatccccaa aagcgttaa gtctccaaaaa cgagtggaaat ctccagaacc ttctcaccgg 78720
 aaagccgtat caccacaga gacaaaacca acaccaagag agaaaattca gcaccccca 78780
 gtctctgccc caccaagat tactcagttc ctgaaaggcag aagttctaa agagattgca 78840
 aaactgaccc gtgtgttga aagcgtgtt aagggccaa aagaggtcac ctggataaaa 78900
 gatggcaaga aactgaagga aaatggccat ttccagtttca attattcagc agatggtacc 78960
 tatgagctca aaatcaataa cctcaactgaa tctgatcaag gagaatatgt ttgtgagatt 79020
 tctgggtgaag gtggacgtc taaaaccaac ttacaattta tggggcaagc cttaaaggaa 79080
 atccatgaga aggtatcaaa aatatcgaaa actaagaaaat cagatcagaa aaccactgag 79140
 tcaacagtaa ccagaaaaac tgaacccaaa gctcgtac caatttcctc aaaaccagta 79200
 attgttactg ggttgcagga tacaactgtt tcttcagaca gtgttgcataa atttgcagtt 79260
 aaggctactg gagaaccccg gccaacttgc atctggacaa aagatggaaa gcccattaca 79320
 caaggaggtt aatataaaact ctctgaagac aaggagggt tcttcattttttt aattcataag 79380
 actgtatctt ctgacagtgg actttataact tgcacgtttaaaaatcagc tggatctgt 79440
 tcctcttagct gcaaattaac aataaaagct ataaaagata ctgaggcaca gaaagtctct 79500
 acacaaaaga cttctgaaat tacacccatc aagaaggctg ttgtccaaaga ggaaatttcc 79560
 caaaaagccc taaggctgtg agaaaattaaat atgtcagagg caaaatctca agaaaaggta 79620
 gccctcaaaag aggaagcttcc aagggttctg atttctgttgc aagtcaagaa atcagcagca 79680
 acctccctgg aaaaatccat tgcacccatc gaaatcacta aacatcaca ggcacccatc 79740
 gaagtccatc ctcacatgtt gatccaaatggc ttttctactc agatggatc aacacgaaatg 79800
 caaagactgg ttttaaaggc caacattgtt ggtgcactg atgtgaaatg ggtactgaat 79860
 ggcgttagatc ttaccaactc tgaggatgtt cgtatggtg tctcaggccat cgtatcagacc 79920
 ctaaccatca agcaagccat tcacccatc gaaatggccatcc tccatgttgc aagcaaaaacc 79980
 aaggaaggaa tcgtcaatgt tcgtatgtt tgacactgaa gcaaaaggact ctcagatgt 80040
 ccagccctca tctccatccatc tagatctcaaa aatataatg aaggacaaaatg tggatcttt 80100
 acttgcgtttt tcagttggcga gccatccccctt gaaatggat ggtttaaaaaa caacccgttca 80160
 atttcttattt cttcaatgtt cagcataatc cgtccatgtt gtttgcacccatc ctttgcata 80220
 cggaaatgcattt cagtcacgttca ctttgcgtttt gtttgcacccatc aacccgttca 80280
 cagtgttgcgtt cttccatgttcc tttccatgtt gtttgcacccatc aacccgttca 80340
 gtgttgcgtt gtttgcacccatc aacccgttca 80400
 caaatgtctg cttccatgttcc tttccatgtt gtttgcacccatc aacccgttca 80460

agcatgactg agatgaaatt tgcaagcatg tctgccaaa gcatgtcctc catgcaagag 80520
 tcctttagt aaatgagttc cagcagctt atggaaatat ctaatatgac acaactggaa 80580
 agctcaacta gtaaaatgct taaagcaggc ataagaggaa ttccgcctaa aattgaagct 80640
 cttccatctg atatcagcat tgatgaaggc aaagttctaa cagtagcctg tgcttcacg 80700
 ggtgaggccta ccccagaagt aacatggtcc tgtggtgaa gaaaaatcca cagtaagaa 80760
 caggggaggt tccacattga aaacacagat gacctgacaa ccctgtatcat catgacgta 80820
 cagaaacaag atggtgact ttataccctg agtttaggaa atgaatttgg atctgactct 80880
 gccactgtga atatacatat tcgatccatt taagaggcc tggccctta tactctacac 80940
 tcattcttaa ctttcgcaa acgtttcaca cggactaattc ttctgtact gtaaatattt 81000
 aaagaaaaaa agtagtttgc tatcaaccta aatgagtcaa agttcaaaaa tattcatttc 81060
 aatctttca taatttgtga cctaagaata taatacattt gctagtgaca tgtacatact 81120
 gtatataggc ggattAACGG ttataaagggt ttgtaccatt tattttatga cattttacaa 81180
 tgtaagttt gaaactaact gttggtagga gaaagttct tatggaaacga ataccctgt 81240
 caacatttaa tcaatctttg tgcctcaaca tacttgtat gtctaagtat gcctcagtgg 81300
 gttgagaaaa tccccattga agatgtcctg tccacctaaa agagaatgt gctgtgcata 81360
 tcacttgata tgtgcaccaa tacctactga atcagaaatg taaggcatgg gtgtatgtt 81420
 catttacccct cctgttaagca acacttaac gtcttacatt ttctctgtat atgtcacaca 81480
 aaatttatcat gacaatattt accagagcaa agtgtaacgg ccaacacttt gttcgctcat 81540
 tttacgctgt ctctgacata aggagtgcct gaatagctt gaaaagtaac atctccctggc 81600
 catcccttca tttaaccaag ctattcaagt attccatgc cagagcagt gcaactctt 81660
 gaggtcccaag agtgcagcca atgcctttgt gtggtagttc taaattttaa ttgcacctga 81720
 aaaacctggg cacctaagca atgagccaca gcaaaaaagta aagaacaaca acaaaaataaa 81780
 gctgttgtt aattttaaac aatattacta attgccccaa atgtcaattt gatgtagttc 81840
 ttttcatgca agtataaattt caatttgtt tagtataattgt tggacctcct tgagatagta 81900
 acaacaaaat aaagcaagct atctgcaccc caaaaaaaaaa 81940

<210> 2
 <211> 26926
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Thr Thr Gln Ala Pro Thr Phe Thr Gln Pro Leu Gln Ser Val Val
 1 5 10 15
 Val Leu Glu Gly Ser Thr Ala Thr Phe Glu Ala His Ile Ser Gly Phe
 20 25 30
 Pro Val Pro Glu Val Ser Trp Phe Arg Asp Gly Gln Val Ile Ser Thr
 35 40 45
 Ser Thr Leu Pro Gly Val Gln Ile Ser Phe Ser Asp Gly Arg Ala Lys
 50 55 60
 Leu Thr Ile Pro Ala Val Thr Lys Ala Asn Ser Gly Arg Tyr Ser Leu
 65 70 75 80
 Lys Ala Thr Asn Gly Ser Gly Gln Ala Thr Ser Thr Ala Glu Leu Leu
 85 90 95
 Val Lys Ala Glu Thr Ala Pro Pro Asn Phe Val Gln Arg Leu Gln Ser
 100 105 110
 Met Thr Val Arg Gln Gly Ser Gln Val Arg Leu Gln Val Arg Val Thr
 115 120 125
 Gly Ile Pro Thr Pro Val Val Lys Phe Tyr Arg Asp Gly Ala Glu Ile
 130 135 140
 Gln Ser Ser Leu Asp Phe Gln Ile Ser Gln Glu Gly Asp Leu Tyr Ser
 145 150 155 160
 Leu Leu Ile Ala Glu Ala Tyr Pro Glu Asp Ser Gly Thr Tyr Ser Val
 165 170 175
 Asn Ala Thr Asn Ser Val Gly Arg Ala Thr Ser Thr Ala Glu Leu Leu
 180 185 190
 Val Gln Gly Glu Glu Val Pro Ala Lys Lys Thr Lys Thr Ile Val
 195 200 205
 Ser Thr Ala Gln Ile Ser Glu Ser Arg Gln Thr Arg Ile Glu Lys Lys
 210 215 220

Ile Glu Ala His Phe Asp Ala Arg Ser Ile Ala Thr Val Glu Met Val
 225 230 235 240
 Ile Asp Gly Ala Ala Gly Gln Gln Leu Pro His Lys Thr Pro Pro Arg
 245 250 255
 Ile Pro Pro Lys Pro Lys Ser Arg Ser Pro Thr Pro Pro Ser Ile Ala
 260 265 270
 Ala Lys Ala Gln Leu Ala Arg Gln Gln Ser Pro Ser Pro Ile Arg His
 275 280 285
 Ser Pro Ser Pro Val Arg His Val Arg Ala Pro Thr Pro Ser Pro Val
 290 295 300
 Arg Ser Val Ser Pro Ala Ala Arg Ile Ser Thr Ser Pro Ile Arg Ser
 305 310 315 320
 Val Arg Ser Pro Leu Leu Met Arg Lys Thr Gln Ala Ser Thr Val Ala
 325 330 335
 Thr Gly Pro Glu Val Pro Pro Trp Lys Gln Glu Gly Tyr Val Ala
 340 345 350
 Ser Ser Ser Glu Ala Glu Met Arg Glu Thr Thr Leu Thr Ser Thr
 355 360 365
 Gln Ile Arg Thr Glu Glu Arg Trp Glu Gly Arg Tyr Gly Val Gln Glu
 370 375 380
 Gln Val Thr Ile Ser Gly Ala Ala Gly Ala Ala Ala Ser Val Ser Ala
 385 390 395 400
 Ser Ala Ser Tyr Ala Ala Glu Ala Val Ala Thr Gly Ala Lys Glu Val
 405 410 415
 Lys Gln Asp Ala Asp Lys Ser Ala Ala Val Ala Thr Val Val Ala Ala
 420 425 430
 Val Asp Met Ala Arg Val Arg Glu Pro Val Ile Ser Ala Val Glu Gln
 435 440 445
 Thr Ala Gln Arg Thr Thr Thr Ala Val His Ile Gln Pro Ala Gln
 450 455 460
 Glu Gln Val Arg Lys Glu Ala Glu Lys Thr Ala Val Thr Lys Val Val
 465 470 475 480
 Val Ala Ala Asp Lys Ala Lys Glu Gln Glu Leu Lys Ser Arg Thr Lys
 485 490 495
 Glu Ile Ile Thr Thr Lys Gln Glu Gln Met His Val Thr His Glu Gln
 500 505 510
 Ile Arg Lys Glu Thr Glu Lys Thr Phe Val Pro Lys Val Val Ile Ser
 515 520 525
 Ala Ala Lys Ala Lys Glu Gln Glu Thr Arg Ile Ser Glu Glu Ile Thr
 530 535 540
 Lys Lys Gln Lys Gln Val Thr Gln Glu Ala Ile Met Lys Glu Thr Arg
 545 550 555 560
 Lys Thr Val Val Pro Lys Val Ile Val Ala Thr Pro Lys Val Lys Glu
 565 570 575
 Gln Asp Leu Val Ser Arg Gly Arg Glu Gly Ile Thr Thr Lys Arg Glu
 580 585 590
 Gln Val Gln Ile Thr Gln Glu Lys Met Arg Lys Glu Ala Glu Lys Thr
 595 600 605
 Ala Leu Ser Thr Ile Ala Val Ala Thr Ala Lys Ala Lys Glu Gln Glu
 610 615 620
 Thr Ile Leu Arg Thr Arg Glu Thr Met Ala Thr Arg Gln Glu Gln Ile
 625 630 635 640
 Gln Val Thr His Gly Lys Val Asp Val Gly Lys Lys Ala Glu Ala Val
 645 650 655
 Ala Thr Val Val Ala Ala Val Asp Gln Ala Arg Val Arg Glu Pro Arg
 660 665 670
 Glu Pro Gly His Leu Glu Glu Ser Tyr Ala Gln Gln Thr Thr Leu Glu
 675 680 685
 Tyr Gly Tyr Lys Glu Arg Ile Ser Ala Ala Lys Val Ala Glu Pro Pro
 690 695 700
 Gln Arg Pro Ala Ser Glu Pro His Val Val Pro Lys Ala Val Lys Pro
 705 710 715 720

Arg Val Ile Gln Ala Pro Ser Glu Thr His Ile Lys Thr Thr Asp Gln
 725 730 735
 Lys Gly Met His Ile Ser Ser Gln Ile Lys Lys Thr Thr Asp Leu Thr
 740 745 750
 Thr Glu Arg Leu Val His Val Asp Lys Arg Pro Arg Thr Ala Ser Pro
 755 760 765
 His Phe Thr Val Ser Lys Ile Ser Val Pro Lys Thr Glu His Gly Tyr
 770 775 780
 Glu Ala Ser Ile Ala Gly Ser Ala Ile Ala Thr Leu Gln Lys Glu Leu
 785 790 795 800
 Ser Ala Thr Ser Ser Ala Gln Lys Ile Thr Lys Ser Val Lys Ala Pro
 805 810 815
 Thr Val Lys Pro Ser Glu Thr Arg Val Arg Ala Glu Pro Thr Pro Leu
 820 825 830
 Pro Gln Phe Pro Phe Ala Asp Thr Pro Asp Thr Tyr Lys Ser Glu Ala
 835 840 845
 Gly Val Glu Val Lys Lys Glu Val Gly Val Ser Ile Thr Gly Thr Thr
 850 855 860
 Val Arg Glu Glu Arg Phe Glu Val Leu His Gly Arg Glu Ala Lys Val
 865 870 875 880
 Thr Glu Thr Ala Arg Val Pro Ala Pro Val Glu Ile Pro Val Thr Pro
 885 890 895
 Pro Thr Leu Val Ser Gly Leu Lys Asn Val Thr Val Ile Glu Gly Glu
 900 905 910
 Ser Val Thr Leu Glu Cys His Ile Ser Gly Tyr Pro Ser Pro Thr Val
 915 920 925
 Thr Trp Tyr Arg Glu Asp Tyr Gln Ile Glu Ser Ser Ile Asp Phe Gln
 930 935 940
 Ile Thr Phe Gln Ser Gly Ile Ala Arg Leu Met Ile Arg Glu Ala Phe
 945 950 955 960
 Ala Glu Asp Ser Gly Arg Phe Thr Cys Ser Ala Val Asn Glu Ala Gly
 965 970 975
 Thr Val Ser Thr Ser Cys Tyr Leu Ala Val Gln Val Ser Glu Glu Phe
 980 985 990
 Glu Lys Glu Thr Thr Ala Val Thr Glu Lys Phe Thr Thr Glu Glu Lys
 995 1000 1005
 Arg Phe Val Glu Ser Arg Asp Val Val Met Thr Asp Thr Ser Leu Thr
 1010 1015 1020
 Glu Glu Gln Ala Gly Pro Gly Glu Pro Ala Ala Pro Tyr Phe Ile Thr
 1025 1030 1035 1040
 Lys Pro Val Val Gln Lys Leu Val Glu Gly Ser Val Val Phe Gly
 1045 1050 1055
 Cys Gln Val Gly Gly Asn Pro Lys Pro His Val Tyr Trp Lys Lys Ser
 1060 1065 1070
 Gly Val Pro Leu Thr Thr Gly Tyr Arg Tyr Lys Val Ser Tyr Asn Lys
 1075 1080 1085
 Gln Thr Gly Glu Cys Lys Leu Val Ile Ser Met Thr Phe Ala Asp Asp
 1090 1095 1100
 Ala Gly Glu Tyr Thr Ile Val Val Arg Asn Lys His Gly Glu Thr Ser
 1105 1110 1115 1120
 Ala Ser Ala Ser Leu Leu Glu Glu Ala Asp Tyr Glu Leu Leu Met Lys
 1125 1130 1135
 Ser Gln Gln Glu Met Leu Tyr Gln Thr Gln Val Thr Ala Phe Val Gln
 1140 1145 1150
 Glu Pro Glu Val Gly Glu Thr Ala Pro Gly Phe Val Tyr Ser Glu Tyr
 1155 1160 1165
 Glu Lys Glu Tyr Glu Lys Glu Gln Ala Leu Ile Arg Lys Lys Met Ala
 1170 1175 1180
 Lys Asp Thr Val Val Arg Thr Tyr Val Glu Asp Gln Glu Phe His
 1185 1190 1195 1200
 Ile Ser Ser Phe Glu Glu Arg Leu Ile Lys Glu Ile Glu Tyr Arg Ile
 1205 1210 1215

Ile Lys Thr Thr Leu Glu Glu Leu Glu Glu Asp Gly Glu Glu Lys
 1220 1225 1230
 Met Ala Val Asp Ile Ser Glu Ser Glu Ala Val Glu Ser Gly Phe Asp
 1235 1240 1245
 Leu Arg Ile Lys Asn Tyr Arg Ile Leu Glu Gly Met Gly Val Thr Phe
 1250 1255 1260
 His Cys Lys Met Ser Gly Tyr Pro Leu Pro Lys Ile Ala Trp Tyr Lys
 1265 1270 1275 1280
 Asp Gly Lys Arg Ile Lys His Gly Glu Arg Tyr Gln Met Asp Phe Leu
 1285 1290 1295
 Gln Asp Gly Arg Ala Ser Leu Arg Ile Pro Val Val Leu Pro Glu Asp
 1300 1305 1310
 Glu Gly Ile Tyr Thr Ala Phe Ala Ser Asn Ile Lys Gly Asn Ala Ile
 1315 1320 1325
 Cys Ser Gly Lys Leu Tyr Val Glu Pro Ala Ala Pro Leu Gly Ala Pro
 1330 1335 1340
 Thr Tyr Ile Pro Thr Leu Glu Pro Val Ser Arg Ile Arg Ser Leu Ser
 1345 1350 1355 1360
 Pro Arg Ser Val Ser Arg Ser Pro Ile Arg Met Ser Pro Ala Arg Met
 1365 1370 1375
 Ser Pro Ala Arg Met Ser Pro Ala Arg Met Ser Pro Ala Arg Met Ser
 1380 1385 1390
 Pro Gly Arg Arg Leu Glu Glu Thr Asp Glu Ser Gln Leu Glu Arg Leu
 1395 1400 1405
 Tyr Lys Pro Val Phe Val Leu Lys Pro Val Ser Phe Lys Cys Leu Glu
 1410 1415 1420
 Gly Gln Thr Ala Arg Phe Asp Leu Lys Val Val Gly Arg Pro Met Pro
 1425 1430 1435 1440
 Glu Thr Phe Trp Phe His Asp Gly Gln Gln Ile Val Asn Asp Tyr Thr
 1445 1450 1455
 His Lys Val Val Ile Lys Glu Asp Gly Thr Gln Ser Leu Ile Ile Val
 1460 1465 1470
 Pro Ala Thr Pro Ser Asp Ser Gly Glu Trp Thr Val Val Ala Gln Asn
 1475 1480 1485
 Arg Ala Gly Arg Ser Ser Ile Ser Val Ile Leu Thr Val Glu Ala Val
 1490 1495 1500
 Glu His Gln Val Lys Pro Met Phe Val Glu Lys Leu Lys Asn Val Asn
 1505 1510 1515 1520
 Ile Lys Glu Gly Ser Arg Leu Glu Met Lys Val Arg Ala Thr Gly Asn
 1525 1530 1535
 Pro Asn Pro Asp Ile Val Trp Leu Lys Asn Ser Asp Ile Ile Val Pro
 1540 1545 1550
 His Lys Tyr Pro Lys Ile Arg Ile Glu Gly Thr Lys Gly Glu Ala Ala
 1555 1560 1565
 Leu Lys Ile Asp Ser Thr Val Ser Gln Asp Ser Ala Trp Tyr Thr Ala
 1570 1575 1580
 Thr Ala Ile Asn Lys Ala Gly Arg Asp Thr Thr Arg Cys Lys Val Asn
 1585 1590 1595 1600
 Val Glu Val Glu Phe Ala Glu Pro Glu Pro Glu Arg Lys Leu Ile Ile
 1605 1610 1615
 Pro Arg Gly Thr Tyr Arg Ala Lys Glu Ile Ala Ala Pro Glu Leu Glu
 1620 1625 1630
 Pro Leu His Leu Arg Tyr Gly Gln Glu Gln Trp Glu Glu Gly Asp Leu
 1635 1640 1645
 Tyr Asp Lys Glu Lys Gln Gln Lys Pro Phe Phe Lys Lys Lys Leu Thr
 1650 1655 1660
 Ser Leu Arg Leu Lys Arg Phe Gly Pro Ala His Phe Glu Cys Arg Leu
 1665 1670 1675 1680
 Thr Pro Ile Ser Asp Pro Thr Met Val Val Glu Trp Leu His Asp Gly
 1685 1690 1695
 Lys Pro Leu Glu Ala Ala Asn Arg Leu Arg Met Ile Asn Glu Phe Gly
 1700 1705 1710

Tyr Cys Ser Leu Asp Tyr Gly Val Ala Tyr Ser Arg Asp Ser Gly Ile
 1715 1720 1725
 Ile Thr Cys Arg Ala Thr Asn Lys Tyr Gly Thr Asp His Thr Ser Ala
 1730 1735 1740
 Thr Leu Ile Val Lys Asp Glu Lys Ser Leu Val Glu Glu Ser Gln Leu
 1745 1750 1755 1760
 Pro Glu Gly Arg Lys Gly Leu Gln Arg Ile Glu Glu Leu Glu Arg Met
 1765 1770 1775
 Ala His Glu Gly Ala Leu Thr Gly Val Thr Asp Gln Lys Glu Lys
 1780 1785 1790
 Gln Lys Pro Asp Ile Val Leu Tyr Pro Glu Pro Val Arg Val Leu Glu
 1795 1800 1805
 Gly Glu Thr Ala Arg Phe Arg Cys Arg Val Thr Gly Tyr Pro Gln Pro
 1810 1815 1820
 Lys Val Asn Trp Tyr Leu Asn Gly Gln Leu Ile Arg Lys Ser Lys Arg
 1825 1830 1835 1840
 Phe Arg Val Arg Tyr Asp Gly Ile His Tyr Leu Asp Ile Val Asp Cys
 1845 1850 1855
 Lys Ser Tyr Asp Thr Gly Glu Val Lys Val Thr Ala Glu Asn Pro Glu
 1860 1865 1870
 Gly Val Ile Glu His Lys Val Lys Leu Glu Ile Gln Gln Arg Glu Asp
 1875 1880 1885
 Phe Arg Ser Val Leu Arg Arg Ala Pro Glu Pro Arg Pro Glu Phe His
 1890 1895 1900
 Val His Glu Pro Gly Lys Leu Gln Phe Glu Val Gln Lys Val Asp Arg
 1905 1910 1915 1920
 Pro Val Asp Thr Thr Glu Thr Lys Glu Val Val Lys Leu Lys Arg Ala
 1925 1930 1935
 Glu Arg Ile Thr His Glu Lys Val Pro Glu Glu Ser Glu Glu Leu Arg
 1940 1945 1950
 Ser Lys Phe Lys Arg Arg Thr Glu Glu Gly Tyr Tyr Glu Ala Ile Thr
 1955 1960 1965
 Ala Val Glu Leu Lys Ser Arg Lys Lys Asp Glu Ser Tyr Glu Glu Leu
 1970 1975 1980
 Leu Arg Lys Thr Lys Asp Glu Leu Leu His Trp Thr Lys Glu Leu Thr
 1985 1990 1995 2000
 Glu Glu Glu Lys Ala Leu Ala Glu Glu Gly Lys Ile Thr Ile Pro
 2005 2010 2015
 Thr Phe Lys Pro Asp Lys Ile Glu Leu Ser Pro Ser Met Glu Ala Pro
 2020 2025 2030
 Lys Ile Phe Glu Arg Ile Gln Ser Gln Thr Val Gly Gln Gly Ser Asp
 2035 2040 2045
 Ala His Phe Arg Val Arg Val Val Gly Lys Pro Asp Pro Glu Cys Glu
 2050 2055 2060
 Trp Tyr Lys Asn Gly Val Lys Ile Glu Arg Ser Asp Arg Ile Tyr Trp
 2065 2070 2075 2080
 Tyr Trp Pro Glu Asp Asn Val Cys Glu Leu Val Ile Arg Asp Val Thr
 2085 2090 2095
 Ala Glu Asp Ser Ala Ser Ile Met Val Lys Ala Ile Asn Ile Ala Gly
 2100 2105 2110
 Glu Thr Ser Ser His Ala Phe Leu Leu Val Gln Ala Lys Gln Leu Ile
 2115 2120 2125
 Thr Phe Thr Gln Glu Leu Gln Asp Val Val Ala Lys Glu Lys Asp Thr
 2130 2135 2140
 Met Ala Thr Phe Glu Cys Glu Thr Ser Glu Pro Phe Val Lys Val Lys
 2145 2150 2155 2160
 Trp Tyr Lys Asp Gly Met Glu Val His Glu Gly Asp Lys Tyr Arg Met
 2165 2170 2175
 His Ser Asp Arg Lys Val His Phe Leu Ser Ile Leu Thr Ile Asp Thr
 2180 2185 2190
 Ser Asp Ala Glu Asp Tyr Ser Cys Val Leu Val Glu Asp Glu Asn Val
 2195 2200 2205

Lys Thr Thr Ala Lys Leu Ile Val Glu Gly Ala Val Val Glu Phe Val
 2210 2215 2220
 Lys Glu Leu Gln Asp Ile Glu Val Pro Glu Ser Tyr Ser Gly Glu Leu
 2225 2230 2235 2240
 Glu Cys Ile Val Ser Pro Glu Asn Ile Glu Gly Lys Trp Tyr His Asn
 2245 2250 2255
 Asp Val Glu Leu Lys Ser Asn Gly Lys Tyr Thr Ile Thr Ser Arg Arg
 2260 2265 2270
 Gly Arg Gln Asn Leu Thr Val Lys Asp Val Thr Lys Glu Asp Gln Gly
 2275 2280 2285
 Glu Tyr Ser Phe Val Ile Asp Gly Lys Lys Thr Thr Cys Lys Leu Lys
 2290 2295 2300
 Met Lys Pro Arg Pro Ile Ala Ile Leu Gln Gly Leu Ser Asp Gln Lys
 2305 2310 2315 2320
 Val Cys Glu Gly Asp Ile Val Gln Leu Glu Val Lys Val Ser Leu Glu
 2325 2330 2335
 Ser Val Glu Gly Val Trp Met Lys Asp Gly Gln Glu Val Gln Pro Ser
 2340 2345 2350
 Asp Arg Val His Ile Val Ile Asp Lys Gln Ser His Met Leu Leu Ile
 2355 2360 2365
 Glu Asp Met Thr Lys Glu Asp Ala Gly Asn Tyr Ser Phe Thr Ile Pro
 2370 2375 2380
 Ala Leu Gly Leu Ser Thr Ser Gly Arg Val Ser Val Tyr Ser Val Asp
 2385 2390 2395 2400
 Val Ile Thr Pro Leu Lys Asp Val Asn Val Ile Glu Gly Thr Lys Ala
 2405 2410 2415
 Val Leu Glu Cys Lys Val Ser Val Pro Asp Val Thr Ser Val Lys Trp
 2420 2425 2430
 Tyr Leu Asn Asp Glu Gln Ile Lys Pro Asp Asp Arg Val Gln Ala Ile
 2435 2440 2445
 Val Lys Gly Thr Lys Gln Arg Leu Val Ile Asn Arg Thr His Ala Ser
 2450 2455 2460
 Asp Glu Gly Pro Tyr Lys Leu Ile Val Gly Arg Val Glu Thr Asn Cys
 2465 2470 2475 2480
 Asn Leu Ser Val Glu Lys Ile Lys Ile Arg Gly Leu Arg Asp Leu
 2485 2490 2495
 Thr Cys Thr Glu Thr Gln Asn Val Val Phe Glu Val Glu Leu Ser His
 2500 2505 2510
 Ser Gly Ile Asp Val Leu Trp Asn Phe Lys Asp Lys Glu Ile Lys Pro
 2515 2520 2525
 Ser Ser Lys Tyr Lys Ile Glu Ala His Gly Lys Ile Tyr Lys Leu Thr
 2530 2535 2540
 Val Leu Asn Met Met Lys Asp Asp Glu Gly Lys Tyr Thr Phe Tyr Ala
 2545 2550 2555 2560
 Gly Glu Asn Met Thr Ser Gly Lys Leu Thr Val Ala Gly Ala Ile
 2565 2570 2575
 Ser Lys Pro Leu Thr Asp Gln Thr Val Ala Glu Ser Gln Glu Ala Val
 2580 2585 2590
 Phe Glu Cys Glu Val Ala Asn Pro Asp Ser Lys Gly Glu Trp Leu Arg
 2595 2600 2605
 Asp Gly Lys His Leu Pro Leu Thr Asn Asn Ile Arg Ser Glu Ser Asp
 2610 2615 2620
 Gly His Lys Arg Arg Leu Ile Ile Ala Ala Thr Lys Leu Asp Asp Ile
 2625 2630 2635 2640
 Gly Glu Tyr Thr Tyr Lys Val Ala Thr Ser Lys Thr Ser Ala Lys Leu
 2645 2650 2655
 Lys Val Glu Ala Val Lys Ile Lys Lys Thr Leu Lys Asn Leu Thr Val
 2660 2665 2670
 Thr Glu Thr Gln Asp Ala Val Phe Thr Val Glu Leu Thr His Pro Asn
 2675 2680 2685
 Val Lys Gly Val Gln Trp Ile Lys Asn Gly Val Val Leu Glu Ser Asn
 2690 2695 2700

Glu Lys Tyr Ala Ile Ser Val Lys Gly Thr Ile Tyr Ser Leu Arg Ile
 2705 2710 2715 2720
 Lys Asn Cys Ala Ile Val Asp Glu Ser Val Tyr Gly Phe Arg Leu Gly
 2725 2730 2735
 Arg Leu Gly Ala Ser Ala Arg Leu His Val Glu Thr Val Lys Ile Ile
 2740 2745 2750
 Lys Lys Pro Lys Asp Val Thr Ala Leu Glu Asn Ala Thr Val Ala Phe
 2755 2760 2765
 Glu Val Ser Val Ser His Asp Thr Val Pro Val Lys Trp Phe His Lys
 2770 2775 2780
 Ser Val Glu Ile Lys Pro Ser Asp Lys His Arg Leu Val Ser Glu Arg
 2785 2790 2795 2800
 Lys Val His Lys Leu Met Leu Gln Asn Ile Ser Pro Ser Asp Ala Gly
 2805 2810 2815
 Glu Tyr Thr Ala Val Val Gly Gln Leu Glu Cys Lys Ala Lys Leu Phe
 2820 2825 2830
 Val Glu Thr Leu His Ile Thr Lys Thr Met Lys Asn Ile Glu Val Pro
 2835 2840 2845
 Glu Thr Lys Thr Ala Ser Phe Glu Cys Glu Val Ser His Phe Asn Val
 2850 2855 2860
 Pro Ser Met Trp Leu Lys Asn Gly Val Glu Ile Glu Met Ser Glu Lys
 2865 2870 2875 2880
 Phe Lys Ile Val Val Gln Gly Lys Leu His Gln Leu Ile Ile Met Asn
 2885 2890 2895
 Thr Ser Thr Glu Asp Ser Ala Glu Tyr Thr Phe Val Cys Gly Asn Asp
 2900 2905 2910
 Gln Val Ser Ala Thr Leu Thr Val Thr Pro Ile Met Ile Thr Ser Met
 2915 2920 2925
 Leu Lys Asp Ile Asn Ala Glu Glu Lys Asp Thr Ile Thr Phe Glu Val
 2930 2935 2940
 Thr Val Asn Tyr Glu Gly Ile Ser Tyr Lys Trp Leu Lys Asn Gly Val
 2945 2950 2955 2960
 Glu Ile Lys Ser Thr Asp Lys Cys Gln Met Arg Thr Lys Lys Leu Thr
 2965 2970 2975
 His Ser Leu Asn Ile Arg Asn Val His Phe Gly Asp Ala Ala Asp Tyr
 2980 2985 2990
 Thr Phe Val Ala Gly Lys Ala Thr Ser Thr Ala Thr Leu Tyr Val Glu
 2995 3000 3005
 Ala Arg His Ile Glu Phe Arg Lys His Ile Lys Asp Ile Lys Val Leu
 3010 3015 3020
 Glu Lys Lys Arg Ala Met Phe Glu Cys Glu Val Ser Glu Pro Asp Ile
 3025 3030 3035 3040
 Thr Val Gln Trp Met Lys Asp Asp Gln Glu Leu Gln Ile Thr Asp Arg
 3045 3050 3055
 Ile Lys Ile Gln Lys Glu Lys Tyr Val His Arg Leu Leu Ile Pro Ser
 3060 3065 3070
 Thr Arg Met Ser Asp Ala Gly Lys Tyr Thr Val Val Ala Gly Gly Asn
 3075 3080 3085
 Val Ser Thr Ala Lys Leu Phe Val Glu Gly Arg Asp Val Arg Ile Arg
 3090 3095 3100
 Ser Ile Lys Lys Glu Val Gln Val Ile Glu Lys Gln Arg Ala Val Val
 3105 3110 3115 3120
 Glu Phe Glu Val Asn Glu Asp Asp Val Asp Ala His Trp Tyr Lys Asp
 3125 3130 3135
 Gly Ile Glu Ile Asn Phe Gln Val Gln Glu Arg His Lys Tyr Val Val
 3140 3145 3150
 Glu Arg Arg Ile His Arg Met Phe Ile Ser Glu Thr Arg Gln Ser Asp
 3155 3160 3165
 Ala Gly Glu Tyr Thr Phe Val Ala Gly Arg Asn Arg Ser Ser Val Thr
 3170 3175 3180
 Leu Tyr Val Asn Ala Pro Glu Pro Pro Gln Val Leu Gln Glu Leu Gln
 3185 3190 3195 3200

Pro Val Thr Val Gln Ser Gly Lys Pro Ala Arg Phe Cys Ala Met Ile
 3205 3210 3215
 Ser Gly Arg Pro Gln Pro Lys Ile Ser Trp Tyr Lys Glu Glu Gln Leu
 3220 3225 3230
 Leu Ser Thr Gly Phe Lys Cys Lys Phe Leu His Asp Gly Gln Glu Tyr
 3235 3240 3245
 Thr Leu Leu Leu Ile Glu Ala Phe Pro Glu Asp Ala Ala Val Tyr Thr
 3250 3255 3260
 Cys Glu Ala Lys Asn Asp Tyr Gly Val Ala Thr Thr Ser Ala Ser Leu
 3265 3270 3275 3280
 Ser Val Glu Val Pro Glu Val Val Ser Pro Asp Gln Glu Met Pro Val
 3285 3290 3295
 Tyr Pro Pro Ala Ile Ile Thr Pro Leu Gln Asp Thr Val Thr Ser Glu
 3300 3305 3310
 Gly Gln Pro Ala Arg Phe Gln Cys Arg Val Ser Gly Thr Asp Leu Lys
 3315 3320 3325
 Val Ser Trp Tyr Ser Lys Asp Lys Lys Ile Lys Pro Ser Arg Phe Phe
 3330 3335 3340
 Arg Met Thr Gln Phe Glu Asp Thr Tyr Gln Leu Glu Ile Ala Glu Ala
 3345 3350 3355 3360
 Tyr Pro Glu Asp Glu Gly Thr Tyr Thr Phe Val Ala Asn Asn Ala Val
 3365 3370 3375
 Gly Gln Val Ser Ser Thr Ala Asn Leu Ser Leu Glu Ala Pro Glu Ser
 3380 3385 3390
 Ile Leu His Glu Arg Ile Glu Gln Glu Ile Glu Met Glu Met Lys Glu
 3395 3400 3405
 Phe Ser Ser Ser Phe Leu Ser Ala Glu Glu Glu Gly Leu His Ser Ala
 3410 3415 3420
 Glu Leu Gln Leu Ser Lys Ile Asn Glu Thr Leu Glu Leu Leu Ser Glu
 3425 3430 3435 3440
 Ser Pro Val Tyr Pro Thr Lys Phe Asp Ser Glu Lys Glu Gly Thr Gly
 3445 3450 3455
 Pro Ile Phe Ile Lys Glu Val Ser Asn Ala Asp Ile Ser Met Gly Asp
 3460 3465 3470
 Val Ala Thr Leu Ser Val Thr Val Ile Gly Ile Pro Lys Pro Lys Ile
 3475 3480 3485
 Gln Trp Phe Phe Asn Gly Val Leu Leu Thr Pro Ser Ala Asp Tyr Lys
 3490 3495 3500
 Phe Val Phe Asp Gly Asp Asp His Ser Leu Ile Ile Leu Phe Thr Lys
 3505 3510 3515 3520
 Leu Glu Asp Glu Gly Glu Tyr Thr Cys Met Ala Ser Asn Asp Tyr Gly
 3525 3530 3535
 Lys Thr Ile Cys Ser Ala Tyr Leu Lys Ile Asn Ser Lys Gly Glu Gly
 3540 3545 3550
 His Lys Asp Thr Glu Thr Glu Ser Ala Val Ala Lys Ser Leu Glu Lys
 3555 3560 3565
 Leu Gly Gly Pro Cys Pro Pro His Phe Leu Lys Glu Leu Lys Pro Ile
 3570 3575 3580
 Arg Cys Ala Gln Gly Leu Pro Ala Ile Phe Glu Tyr Thr Val Val Gly
 3585 3590 3595 3600
 Glu Pro Ala Pro Thr Val Thr Trp Phe Lys Glu Asn Lys Gln Leu Cys
 3605 3610 3615
 Thr Ser Val Tyr Tyr Thr Ile Ile His Asn Pro Asn Gly Ser Gly Thr
 3620 3625 3630
 Phe Ile Val Asn Asp Pro Gln Arg Glu Asp Ser Gly Leu Tyr Ile Cys
 3635 3640 3645
 Lys Ala Glu Asn Met Leu Gly Glu Ser Thr Cys Ala Ala Glu Leu Leu
 3650 3655 3660
 Val Leu Leu Glu Asp Thr Asp Met Thr Asp Thr Pro Cys Lys Ala Lys
 3665 3670 3675 3680
 Ser Thr Pro Glu Ala Pro Glu Asp Phe Pro Gln Thr Pro Leu Lys Gly
 3685 3690 3695

Pro Ala Val Glu Ala Leu Asp Ser Glu Gln Glu Ile Ala Thr Phe Val
 3700 3705 3710
 Lys Asp Thr Ile Leu Lys Ala Ala Leu Ile Thr Glu Glu Asn Gln Gln
 3715 3720 3725
 Leu Ser Tyr Glu His Ile Ala Lys Ala Asn Glu Leu Ser Ser Gln Leu
 3730 3735 3740
 Pro Leu Gly Ala Gln Glu Leu Gln Ser Ile Leu Glu Gln Asp Lys Leu
 3745 3750 3755 3760
 Thr Pro Glu Ser Thr Arg Glu Phe Leu Cys Ile Asn Gly Ser Ile His
 3765 3770 3775
 Phe Gln Pro Leu Lys Glu Pro Ser Pro Asn Leu Gln Leu Gln Ile Val
 3780 3785 3790
 Gln Ser Gln Lys Thr Phe Ser Lys Glu Gly Ile Leu Met Pro Glu Glu
 3795 3800 3805
 Pro Glu Thr Gln Ala Val Leu Ser Asp Thr Glu Lys Ile Phe Pro Ser
 3810 3815 3820
 Ala Met Ser Ile Glu Gln Ile Asn Ser Leu Thr Val Glu Pro Leu Lys
 3825 3830 3835 3840
 Thr Leu Leu Ala Glu Pro Glu Gly Asn Tyr Pro Gln Ser Ser Ile Glu
 3845 3850 3855
 Pro Pro Met His Ser Tyr Leu Thr Ser Val Ala Glu Glu Val Leu Ser
 3860 3865 3870
 Leu Lys Glu Lys Thr Val Ser Asp Thr Asn Arg Glu Gln Arg Val Thr
 3875 3880 3885
 Leu Gln Lys Gln Glu Ala Gln Ser Ala Leu Ile Leu Ser Gln Ser Leu
 3890 3895 3900
 Ala Glu Gly His Val Glu Ser Leu Gln Ser Pro Asp Val Met Ile Ser
 3905 3910 3915 3920
 Gln Val Asn Tyr Glu Pro Leu Val Pro Ser Glu His Ser Cys Thr Glu
 3925 3930 3935
 Gly Gly Lys Ile Leu Ile Glu Ser Ala Asn Pro Leu Glu Asn Ala Gly
 3940 3945 3950
 Gln Asp Ser Ala Val Arg Ile Glu Glu Gly Lys Ser Leu Arg Phe Pro
 3955 3960 3965
 Leu Ala Leu Glu Glu Lys Gln Val Leu Leu Lys Glu Glu His Ser Asp
 3970 3975 3980
 Asn Val Val Met Pro Pro Asp Gln Ile Ile Glu Ser Lys Arg Glu Pro
 3985 3990 3995 4000
 Val Ala Ile Lys Lys Val Gln Glu Val Gln Gly Arg Asp Leu Leu Ser
 4005 4010 4015
 Lys Glu Ser Leu Leu Ser Gly Ile Pro Glu Glu Gln Arg Leu Asn Leu
 4020 4025 4030
 Lys Ile Gln Ile Cys Arg Ala Leu Gln Ala Ala Val Ala Ser Glu Gln
 4035 4040 4045
 Pro Gly Leu Phe Ser Glu Trp Leu Arg Asn Ile Glu Lys Val Glu Val
 4050 4055 4060
 Glu Ala Val Asn Ile Thr Gln Glu Pro Arg His Ile Met Cys Met Tyr
 4065 4070 4075 4080
 Leu Val Thr Ser Ala Lys Ser Val Thr Glu Glu Val Thr Ile Ile Ile
 4085 4090 4095
 Glu Asp Val Asp Pro Gln Met Ala Asn Leu Lys Met Glu Leu Arg Asp
 4100 4105 4110
 Ala Leu Cys Ala Ile Ile Tyr Glu Glu Ile Asp Ile Leu Thr Ala Glu
 4115 4120 4125
 Gly Pro Arg Ile Gln Gln Gly Ala Lys Thr Ser Leu Gln Glu Glu Met
 4130 4135 4140
 Asp Ser Phe Ser Gly Ser Gln Lys Val Glu Pro Ile Thr Glu Pro Glu
 4145 4150 4155 4160
 Val Glu Ser Lys Tyr Leu Ile Ser Thr Glu Glu Val Ser Tyr Phe Asn
 4165 4170 4175
 Val Gln Ser Arg Val Lys Tyr Leu Asp Ala Thr Pro Val Thr Lys Gly
 4180 4185 4190

Val Ala Ser Ala Val Val Ser Asp Glu Lys Gln Asp Glu Ser Leu Lys
 4195 4200 4205
 Pro Ser Glu Glu Lys Glu Glu Ser Ser Ser Glu Ser Gly Thr Glu Glu
 4210 4215 4220
 Val Ala Thr Val Lys Ile Gln Glu Ala Glu Gly Gly Leu Ile Lys Glu
 4225 4230 4235 4240
 Asp Gly Pro Met Ile His Thr Pro Leu Val Asp Thr Val Ser Glu Glu
 4245 4250 4255
 Gly Asp Ile Val His Leu Thr Thr Ser Ile Thr Asn Ala Lys Glu Val
 4260 4265 4270
 Asn Trp Tyr Phe Glu Asn Lys Leu Val Pro Ser Asp Glu Lys Phe Lys
 4275 4280 4285
 Cys Leu Gln Asp Gln Asn Thr Tyr Thr Leu Val Ile Asp Lys Val Asn
 4290 4295 4300
 Thr Glu Asp His Gln Gly Glu Tyr Val Cys Glu Ala Leu Asn Asp Ser
 4305 4310 4315 4320
 Gly Lys Thr Ala Thr Ser Ala Lys Leu Thr Val Val Lys Arg Ala Ala
 4325 4330 4335
 Pro Val Ile Lys Arg Lys Ile Glu Pro Leu Glu Val Ala Leu Gly His
 4340 4345 4350
 Leu Ala Lys Phe Thr Cys Glu Ile Gln Ser Ala Pro Asn Val Arg Phe
 4355 4360 4365
 Gln Trp Phe Lys Ala Gly Arg Glu Ile Tyr Glu Ser Asp Lys Cys Ser
 4370 4375 4380
 Ile Arg Ser Ser Lys Tyr Ile Ser Ser Leu Glu Ile Leu Arg Thr Gln
 4385 4390 4395 4400
 Val Val Asp Cys Gly Glu Tyr Thr Cys Lys Ala Ser Asn Glu Tyr Gly
 4405 4410 4415
 Ser Val Ser Cys Thr Ala Thr Leu Thr Val Thr Val Pro Gly Gly Glu
 4420 4425 4430
 Lys Lys Val Arg Lys Leu Leu Pro Glu Arg Lys Pro Glu Pro Lys Glu
 4435 4440 4445
 Glu Val Val Leu Lys Ser Val Leu Arg Lys Arg Pro Glu Glu Glu
 4450 4455 4460
 Pro Lys Val Glu Pro Lys Lys Leu Glu Lys Val Lys Lys Pro Ala Val
 4465 4470 4475 4480
 Pro Glu Pro Pro Pro Lys Pro Val Glu Glu Val Glu Val Pro Thr
 4485 4490 4495
 Val Thr Lys Arg Glu Arg Lys Ile Pro Glu Pro Thr Lys Val Pro Glu
 4500 4505 4510
 Ile Lys Pro Ala Ile Pro Leu Pro Ala Pro Glu Pro Lys Pro Lys Pro
 4515 4520 4525
 Glu Ala Glu Val Lys Thr Ile Lys Pro Pro Pro Val Glu Pro Glu Pro
 4530 4535 4540
 Thr Pro Ile Ala Ala Pro Val Thr Val Pro Val Val Gly Lys Lys Ala
 4545 4550 4555 4560
 Glu Ala Lys Ala Pro Lys Glu Glu Ala Ala Lys Pro Lys Gly Pro Ile
 4565 4570 4575
 Lys Gly Val Pro Lys Lys Thr Pro Ser Pro Ile Glu Ala Glu Arg Arg
 4580 4585 4590
 Lys Leu Arg Pro Gly Ser Gly Glu Lys Pro Pro Asp Glu Ala Pro
 4595 4600 4605
 Phe Thr Tyr Gln Leu Lys Ala Val Pro Leu Lys Phe Val Lys Glu Ile
 4610 4615 4620
 Lys Asp Ile Ile Leu Thr Glu Ser Glu Phe Val Gly Ser Ser Ala Ile
 4625 4630 4635 4640
 Phe Glu Cys Leu Val Ser Pro Ser Thr Ala Ile Thr Thr Trp Met Lys
 4645 4650 4655
 Asp Gly Ser Asn Ile Arg Glu Ser Pro Lys His Arg Phe Ile Ala Asp
 4660 4665 4670
 Gly Lys Asp Arg Lys Leu His Ile Ile Asp Val Gln Leu Ser Asp Ala
 4675 4680 4685

Gly Glu Tyr Thr Cys Val Leu Arg Leu Gly Asn Lys Glu Lys Thr Ser
 4690 4695 4700
 Thr Ala Lys Leu Val Val Glu Glu Leu Pro Val Arg Phe Val Lys Thr
 4705 4710 4715 4720
 Leu Glu Glu Glu Val Thr Val Val Lys Gly Gln Pro Leu Tyr Leu Ser
 4725 4730 4735
 Cys Glu Leu Asn Lys Glu Arg Asp Val Val Trp Arg Lys Asp Gly Lys
 4740 4745 4750
 Ile Val Val Glu Lys Pro Gly Arg Ile Val Pro Gly Val Ile Gly Leu
 4755 4760 4765
 Met Arg Ala Leu Thr Ile Asn Asp Ala Asp Asp Thr Asp Ala Gly Thr
 4770 4775 4780
 Tyr Thr Val Thr Val Glu Asn Ala Asn Asn Leu Glu Cys Ser Ser Cys
 4785 4790 4795 4800
 Val Lys Val Val Glu Val Ile Arg Asp Trp Leu Val Lys Pro Ile Arg
 4805 4810 4815
 Asp Gln His Val Lys Pro Lys Gly Thr Ala Ile Phe Ala Cys Asp Ile
 4820 4825 4830
 Ala Lys Asp Thr Pro Asn Ile Lys Trp Phe Lys Gly Tyr Asp Glu Ile
 4835 4840 4845
 Pro Ala Glu Pro Asn Asp Lys Thr Glu Ile Leu Arg Asp Gly Asn His
 4850 4855 4860
 Leu Tyr Leu Lys Ile Lys Asn Ala Met Pro Glu Asp Ile Ala Glu Tyr
 4865 4870 4875 4880
 Ala Val Glu Ile Glu Gly Lys Arg Tyr Pro Ala Lys Leu Thr Leu Gly
 4885 4890 4895
 Glu Arg Glu Val Glu Leu Leu Lys Pro Ile Glu Asp Val Thr Ile Tyr
 4900 4905 4910
 Glu Lys Glu Ser Ala Ser Phe Asp Ala Glu Ile Ser Glu Ala Asp Ile
 4915 4920 4925
 Pro Gly Gln Trp Lys Leu Lys Gly Glu Leu Leu Arg Pro Ser Pro Thr
 4930 4935 4940
 Cys Glu Ile Lys Ala Glu Gly Lys Arg Phe Leu Thr Leu His Lys
 4945 4950 4955 4960
 Val Lys Leu Asp Gln Ala Gly Glu Val Leu Tyr Gln Ala Leu Asn Ala
 4965 4970 4975
 Ile Thr Thr Ala Ile Leu Thr Val Lys Glu Ile Glu Leu Asp Phe Ala
 4980 4985 4990
 Val Pro Leu Lys Asp Val Thr Val Pro Glu Arg Arg Gln Ala Arg Phe
 4995 5000 5005
 Glu Cys Val Leu Thr Arg Glu Ala Asn Val Ile Trp Ser Lys Gly Pro
 5010 5015 5020
 Asp Ile Ile Lys Ser Ser Asp Lys Phe Asp Ile Ile Ala Asp Gly Lys
 5025 5030 5035 5040
 Lys His Ile Leu Val Ile Asn Asp Ser Gln Phe Asp Asp Glu Gly Val
 5045 5050 5055
 Tyr Thr Ala Glu Val Glu Gly Lys Lys Thr Ser Ala Arg Leu Phe Val
 5060 5065 5070
 Thr Gly Ile Arg Leu Lys Phe Met Ser Pro Leu Glu Asp Gln Thr Val
 5075 5080 5085
 Lys Glu Gly Glu Thr Ala Thr Phe Val Cys Glu Leu Ser His Glu Lys
 5090 5095 5100
 Met His Val Val Trp Phe Lys Asn Asp Ala Lys Leu His Thr Ser Arg
 5105 5110 5115 5120
 Thr Val Leu Ile Ser Ser Glu Gly Lys Thr His Lys Leu Glu Met Lys
 5125 5130 5135
 Glu Val Thr Leu Asp Asp Ile Ser Gln Ile Lys Ala Gln Val Lys Glu
 5140 5145 5150
 Leu Ser Ser Thr Ala Gln Leu Lys Val Leu Glu Ala Asp Pro Tyr Phe
 5155 5160 5165
 Thr Val Lys Leu His Asp Lys Thr Ala Val Glu Lys Asp Glu Ile Thr
 5170 5175 5180

Leu Lys Cys Glu Val Ser Lys Asp Val Pro Val Lys Trp Phe Lys Asp
 5185 5190 5195 5200
 Gly Glu Glu Ile Val Pro Ser Pro Lys Tyr Ser Ile Lys Ala Asp Gly
 5205 5210 5215
 Leu Arg Arg Ile Leu Lys Ile Lys Ala Asp Leu Lys Asp Lys Gly
 5220 5225 5230
 Glu Tyr Val Cys Asp Cys Gly Thr Asp Lys Thr Lys Ala Asn Val Thr
 5235 5240 5245
 Val Glu Ala Arg Leu Ile Glu Val Glu Lys Pro Leu Tyr Gly Val Glu
 5250 5255 5260
 Val Phe Val Gly Glu Thr Ala His Phe Glu Ile Glu Leu Ser Glu Pro
 5265 5270 5275 5280
 Asp Val His Gly Gln Trp Lys Leu Lys Gly Gln Pro Leu Thr Ala Ser
 5285 5290 5295
 Pro Asp Cys Glu Ile Ile Glu Asp Gly Lys Lys His Ile Leu Ile Leu
 5300 5305 5310
 His Asn Cys Gln Leu Gly Met Thr Gly Glu Val Ser Phe Gln Ala Ala
 5315 5320 5325
 Asn Ala Lys Ser Ala Ala Asn Leu Lys Val Lys Glu Leu Pro Leu Ile
 5330 5335 5340
 Phe Ile Thr Pro Leu Ser Asp Val Lys Val Phe Glu Lys Asp Glu Ala
 5345 5350 5355 5360
 Lys Phe Glu Cys Glu Val Ser Arg Glu Pro Lys Thr Phe Arg Trp Leu
 5365 5370 5375
 Lys Gly Thr Gln Glu Ile Thr Gly Asp Asp Arg Phe Glu Leu Ile Lys
 5380 5385 5390
 Asp Gly Thr Lys His Ser Met Val Ile Lys Ser Ala Ala Phe Glu Asp
 5395 5400 5405
 Glu Ala Lys Tyr Met Phe Glu Ala Glu Asp Lys His Thr Ser Gly Lys
 5410 5415 5420
 Leu Ile Ile Glu Gly Ile Arg Leu Lys Phe Leu Thr Pro Leu Lys Asp
 5425 5430 5435 5440
 Val Thr Ala Lys Glu Lys Glu Ser Ala Val Phe Thr Val Glu Leu Ser
 5445 5450 5455
 His Asp Asn Ile Arg Val Lys Trp Phe Lys Asn Asp Gln Arg Leu His
 5460 5465 5470
 Thr Thr Arg Ser Val Ser Met Gln Asp Glu Gly Lys Thr His Ser Ile
 5475 5480 5485
 Thr Phe Lys Asp Leu Ser Ile Asp Asp Thr Ser Gln Ile Arg Val Glu
 5490 5495 5500
 Ala Met Gly Met Ser Ser Glu Ala Lys Leu Thr Val Leu Glu Gly Asp
 5505 5510 5515 5520
 Pro Tyr Phe Thr Gly Lys Leu Gln Asp Tyr Thr Gly Val Glu Lys Asp
 5525 5530 5535
 Glu Val Ile Leu Gln Cys Glu Ile Ser Lys Ala Asp Ala Pro Val Lys
 5540 5545 5550
 Trp Phe Lys Asp Gly Lys Glu Ile Lys Pro Ser Lys Asn Ala Val Ile
 5555 5560 5565
 Lys Thr Asp Gly Lys Lys Arg Met Leu Ile Leu Lys Lys Ala Leu Lys
 5570 5575 5580
 Ser Asp Ile Gly Gln Tyr Thr Cys Asp Cys Gly Thr Asp Lys Thr Ser
 5585 5590 5595 5600
 Gly Lys Leu Asp Ile Glu Asp Arg Glu Ile Lys Leu Val Arg Pro Leu
 5605 5610 5615
 His Ser Val Glu Val Met Glu Thr Glu Thr Ala Arg Phe Glu Thr Glu
 5620 5625 5630
 Ile Ser Glu Asp Asp Ile His Ala Asn Trp Lys Leu Lys Gly Glu Ala
 5635 5640 5645
 Leu Leu Gln Thr Pro Asp Cys Glu Ile Lys Glu Glu Gly Lys Ile His
 5650 5655 5660
 Ser Leu Val Leu His Asn Cys Arg Leu Asp Gln Thr Gly Gly Val Asp
 5665 5670 5675 5680

Phe Gln Ala Ala Asn Val Lys Ser Ser Ala His Leu Arg Val Lys Pro
 5685 5690 5695
 Arg Val Ile Gly Leu Leu Arg Pro Leu Lys Asp Val Thr Val Thr Ala
 5700 5705 5710
 Gly Glu Thr Ala Thr Phe Asp Cys Glu Leu Ser Tyr Glu Asp Ile Pro
 5715 5720 5725
 Val Glu Trp Tyr Leu Lys Gly Lys Lys Leu Glu Pro Ser Asp Lys Val
 5730 5735 5740
 Val Pro Arg Ser Glu Gly Lys Val His Thr Leu Thr Leu Arg Asp Val
 5745 5750 5755 5760
 Lys Leu Glu Asp Ala Gly Glu Val Gln Leu Thr Ala Lys Asp Phe Lys
 5765 5770 5775
 Thr His Ala Asn Leu Phe Val Lys Glu Pro Pro Val Glu Phe Thr Lys
 5780 5785 5790
 Pro Leu Glu Asp Gln Thr Val Glu Glu Gly Ala Thr Ala Val Leu Glu
 5795 5800 5805
 Cys Glu Val Ser Arg Glu Asn Ala Lys Val Lys Trp Phe Lys Asn Gly
 5810 5815 5820
 Thr Glu Ile Leu Lys Ser Lys Lys Tyr Glu Ile Val Ala Asp Gly Arg
 5825 5830 5835 5840
 Val Arg Lys Leu Val Ile His Asp Cys Thr Pro Glu Asp Ile Lys Thr
 5845 5850 5855
 Tyr Thr Cys Asp Ala Lys Asp Phe Lys Thr Ser Cys Asn Leu Asn Val
 5860 5865 5870
 Val Pro Pro His Val Glu Phe Leu Arg Pro Leu Thr Asp Leu Gln Val
 5875 5880 5885
 Arg Glu Lys Glu Met Ala Arg Phe Glu Cys Glu Leu Ser Arg Glu Asn
 5890 5895 5900
 Ala Lys Val Lys Trp Phe Lys Asp Gly Ala Glu Ile Lys Lys Gly Lys
 5905 5910 5915 5920
 Lys Tyr Asp Ile Ile Ser Lys Gly Ala Val Arg Ile Leu Val Ile Asn
 5925 5930 5935
 Lys Cys Leu Leu Asp Asp Glu Ala Glu Tyr Ser Cys Glu Val Arg Thr
 5940 5945 5950
 Ala Arg Thr Ser Gly Met Leu Thr Val Leu Glu Glu Ala Val Phe
 5955 5960 5965
 Thr Lys Asn Leu Ala Asn Ile Glu Val Ser Glu Thr Asp Thr Ile Lys
 5970 5975 5980
 Leu Val Cys Glu Val Ser Lys Pro Gly Ala Glu Val Ile Trp Tyr Lys
 5985 5990 5995 6000
 Gly Asp Glu Glu Ile Ile Glu Thr Gly Arg Tyr Glu Ile Leu Thr Glu
 6005 6010 6015
 Gly Arg Lys Arg Ile Leu Val Ile Gln Asn Ala His Leu Glu Asp Ala
 6020 6025 6030
 Gly Asn Tyr Asn Cys Arg Leu Pro Ser Ser Arg Thr Asp Gly Lys Val
 6035 6040 6045
 Lys Val His Glu Leu Ala Ala Glu Phe Ile Ser Lys Pro Gln Asn Leu
 6050 6055 6060
 Glu Ile Leu Glu Gly Glu Lys Ala Glu Phe Val Cys Ser Ile Ser Lys
 6065 6070 6075 6080
 Glu Ser Phe Pro Val Gln Trp Lys Arg Asp Asp Lys Thr Leu Glu Ser
 6085 6090 6095
 Gly Asp Lys Tyr Asp Val Ile Ala Asp Gly Lys Lys Arg Val Leu Val
 6100 6105 6110
 Val Lys Asp Ala Thr Leu Gln Asp Met Gly Thr Tyr Val Val Met Val
 6115 6120 6125
 Gly Ala Ala Arg Ala Ala His Leu Thr Val Ile Glu Lys Leu Arg
 6130 6135 6140
 Ile Val Val Pro Leu Lys Asp Thr Arg Val Lys Glu Gln Gln Glu Val
 6145 6150 6155 6160
 Val Phe Asn Cys Glu Val Asn Thr Glu Gly Ala Lys Ala Lys Trp Phe
 6165 6170 6175

Arg Asn Glu Glu Ala Ile Phe Asp Ser Ser Lys Tyr Ile Ile Leu Gln
 6180 6185 6190
 Lys Asp Leu Val Tyr Thr Leu Arg Ile Arg Asp Ala His Leu Asp Asp
 6195 6200 6205
 Gln Ala Asn Tyr Asn Val Ser Leu Thr Asn His Arg Gly Glu Asn Val
 6210 6215 6220
 Lys Ser Ala Ala Asn Leu Ile Val Glu Glu Asp Leu Arg Ile Val
 6225 6230 6235 6240
 Glu Pro Leu Lys Asp Ile Glu Thr Met Glu Lys Lys Ser Val Thr Phe
 6245 6250 6255
 Trp Cys Lys Val Asn Arg Leu Asn Val Thr Leu Lys Trp Thr Lys Asn
 6260 6265 6270
 Gly Glu Val Pro Phe Asp Asn Arg Val Ser Tyr Arg Val Asp Lys
 6275 6280 6285
 Tyr Lys His Met Leu Thr Ile Lys Asp Cys Gly Phe Pro Asp Glu Gly
 6290 6295 6300
 Glu Tyr Ile Val Thr Ala Gly Gln Asp Lys Ser Val Ala Glu Leu Leu
 6305 6310 6315 6320
 Ile Ile Glu Ala Pro Thr Glu Phe Val Glu His Leu Glu Asp Gln Thr
 6325 6330 6335
 Val Thr Glu Phe Asp Asp Ala Val Phe Ser Cys Gln Leu Ser Arg Glu
 6340 6345 6350
 Lys Ala Asn Val Lys Trp Tyr Arg Asn Gly Arg Glu Ile Lys Glu Gly
 6355 6360 6365
 Lys Lys Tyr Lys Phe Glu Lys Asp Gly Ser Ile His Arg Leu Ile Ile
 6370 6375 6380
 Lys Asp Cys Arg Leu Asp Asp Glu Cys Glu Tyr Ala Cys Gly Val Glu
 6385 6390 6395 6400
 Asp Arg Lys Ser Arg Ala Arg Leu Phe Val Glu Glu Ile Pro Val Glu
 6405 6410 6415
 Ile Ile Arg Pro Pro Gln Asp Ile Leu Glu Ala Pro Gly Ala Asp Val
 6420 6425 6430
 Val Phe Leu Ala Glu Leu Asn Lys Asp Lys Val Glu Val Gln Trp Leu
 6435 6440 6445
 Arg Asn Asn Met Val Val Gln Gly Asp Lys His Gln Met Met Ser
 6450 6455 6460
 Glu Gly Lys Ile His Arg Leu Gln Ile Cys Asp Ile Lys Pro Arg Asp
 6465 6470 6475 6480
 Gln Gly Glu Tyr Arg Phe Ile Ala Lys Asp Lys Glu Ala Arg Ala Lys
 6485 6490 6495
 Leu Glu Leu Ala Ala Pro Lys Ile Lys Thr Ala Asp Gln Asp Leu
 6500 6505 6510
 Val Val Asp Val Gly Lys Pro Leu Thr Met Val Val Pro Tyr Asp Ala
 6515 6520 6525
 Tyr Pro Lys Ala Glu Ala Glu Trp Phe Lys Glu Asn Glu Pro Leu Ser
 6530 6535 6540
 Thr Lys Thr Ile Asp Thr Thr Ala Glu Gln Thr Ser Phe Arg Ile Leu
 6545 6550 6555 6560
 Glu Ala Lys Lys Gly Asp Lys Gly Arg Tyr Lys Ile Val Leu Gln Asn
 6565 6570 6575
 Lys His Gly Lys Ala Glu Gly Phe Ile Asn Leu Lys Val Ile Asp Val
 6580 6585 6590
 Pro Gly Pro Val Arg Asn Leu Glu Val Thr Glu Thr Phe Asp Gly Glu
 6595 6600 6605
 Val Ser Leu Ala Trp Glu Glu Pro Leu Thr Asp Gly Gly Ser Lys Ile
 6610 6615 6620
 Ile Gly Tyr Val Val Glu Arg Arg Asp Ile Lys Arg Lys Thr Trp Val
 6625 6630 6635 6640
 Leu Ala Thr Asp Arg Ala Glu Ser Cys Glu Phe Thr Val Thr Gly Leu
 6645 6650 6655
 Gln Lys Gly Gly Val Glu Tyr Leu Phe Arg Val Ser Ala Arg Asn Arg
 6660 6665 6670

Val Gly Thr Gly Glu Pro Val Glu Thr Asp Asn Pro Val Glu Ala Arg
 6675 6680 6685
 Ser Lys Tyr Asp Val Pro Gly Pro Pro Leu Asn Val Thr Ile Thr Asp
 6690 6695 6700
 Val Asn Arg Phe Gly Val Ser Leu Thr Trp Glu Pro Pro Glu Tyr Asp
 6705 6710 6715 6720
 Gly Gly Ala Glu Ile Thr Asn Tyr Val Ile Glu Leu Arg Asp Lys Thr
 6725 6730 6735
 Ser Ile Arg Trp Asp Thr Ala Met Thr Val Arg Ala Glu Asp Leu Ser
 6740 6745 6750
 Ala Thr Val Thr Asp Val Val Glu Gly Gln Glu Tyr Ser Phe Arg Val
 6755 6760 6765
 Arg Ala Gln Asn Arg Ile Gly Val Gly Lys Pro Ser Ala Ala Thr Pro
 6770 6775 6780
 Phe Val Lys Val Ala Asp Pro Ile Glu Arg Pro Ser Pro Pro Val Asn
 6785 6790 6795 6800
 Leu Thr Ser Ser Asp Gln Thr Gln Ser Ser Val Gln Leu Lys Trp Glu
 6805 6810 6815
 Pro Pro Leu Lys Asp Gly Gly Ser Pro Ile Leu Gly Tyr Ile Ile Glu
 6820 6825 6830
 Arg Cys Glu Glu Gly Lys Asp Asn Trp Ile Arg Cys Asn Met Lys Leu
 6835 6840 6845
 Val Pro Glu Leu Thr Tyr Lys Val Thr Gly Leu Glu Lys Gly Asn Lys
 6850 6855 6860
 Tyr Leu Tyr Arg Val Ser Ala Glu Asn Lys Ala Gly Val Ser Asp Pro
 6865 6870 6875 6880
 Ser Glu Ile Leu Gly Pro Leu Thr Ala Asp Asp Ala Phe Val Glu Pro
 6885 6890 6895
 Thr Met Asp Leu Ser Ala Phe Lys Asp Gly Leu Glu Val Ile Val Pro
 6900 6905 6910
 Asn Pro Ile Thr Ile Leu Val Pro Ser Thr Gly Tyr Pro Arg Pro Thr
 6915 6920 6925
 Ala Thr Trp Cys Phe Gly Asp Lys Val Leu Glu Thr Gly Asp Arg Val
 6930 6935 6940
 Lys Met Lys Thr Leu Ser Ala Tyr Ala Glu Leu Val Ile Ser Pro Ser
 6945 6950 6955 6960
 Glu Arg Ser Asp Lys Gly Ile Tyr Thr Leu Lys Leu Glu Asn Arg Val
 6965 6970 6975
 Lys Thr Ile Ser Gly Glu Ile Asp Val Asn Val Ile Ala Arg Pro Ser
 6980 6985 6990
 Ala Pro Lys Glu Leu Lys Phe Gly Asp Ile Thr Lys Asp Ser Val His
 6995 7000 7005
 Leu Thr Trp Glu Pro Pro Asp Asp Asp Gly Ser Pro Leu Thr Gly
 7010 7015 7020
 Tyr Val Val Glu Lys Arg Glu Val Ser Arg Lys Thr Trp Thr Lys Val
 7025 7030 7035 7040
 Met Asp Phe Val Thr Asp Leu Glu Phe Thr Val Pro Asp Leu Val Gln
 7045 7050 7055
 Gly Lys Glu Tyr Leu Phe Lys Val Cys Ala Arg Asn Lys Cys Gly Pro
 7060 7065 7070
 Gly Glu Pro Ala Tyr Val Asp Glu Pro Val Asn Met Ser Thr Pro Ala
 7075 7080 7085
 Thr Val Pro Asp Pro Pro Glu Asn Val Lys Trp Arg Asp Arg Thr Ala
 7090 7095 7100
 Asn Ser Ile Phe Leu Thr Trp Asp Pro Pro Lys Asn Asp Gly Gly Ser
 7105 7110 7115 7120
 Arg Ile Lys Gly Tyr Ile Val Glu Arg Cys Pro Arg Gly Ser Asp Lys
 7125 7130 7135
 Trp Val Ala Cys Gly Glu Pro Val Ala Glu Thr Lys Met Glu Val Thr
 7140 7145 7150
 Gly Leu Glu Glu Gly Lys Trp Tyr Ala Tyr Arg Val Lys Thr Leu Asn
 7155 7160 7165

Arg Gln Gly Ala Ser Lys Pro Ser Arg Pro Thr Glu Glu Ile Gln Ala
 7170 7175 7180
 Val Asp Thr Gln Glu Ala Pro Glu Ile Phe Leu Asp Val Lys Leu Leu
 7185 7190 7195 7200
 Ala Gly Leu Thr Val Lys Ala Gly Thr Lys Ile Glu Leu Pro Ala Thr
 7205 7210 7215
 Val Thr Gly Lys Pro Glu Pro Lys Ile Thr Trp Thr Lys Ala Asp Met
 7220 7225 7230
 Ile Leu Lys Gln Asp Lys Arg Ile Thr Ile Glu Asn Val Pro Lys Lys
 7235 7240 7245
 Ser Thr Val Thr Ile Val Asp Ser Lys Arg Ser Asp Thr Gly Thr Tyr
 7250 7255 7260
 Ile Ile Glu Ala Val Asn Val Cys Gly Arg Ala Thr Ala Val Val Glu
 7265 7270 7275 7280
 Val Asn Val Leu Asp Lys Pro Gly Pro Pro Ala Ala Phe Asp Ile Thr
 7285 7290 7295
 Asp Val Thr Asn Glu Ser Cys Leu Leu Thr Trp Asn Pro Pro Arg Asp
 7300 7305 7310
 Asp Gly Gly Ser Lys Ile Thr Asn Tyr Val Val Glu Arg Arg Ala Thr
 7315 7320 7325
 Asp Ser Glu Val Trp His Lys Leu Ser Ser Thr Val Lys Asp Thr Asn
 7330 7335 7340
 Phe Lys Ala Thr Lys Leu Ile Pro Asn Lys Glu Tyr Ile Phe Arg Val
 7345 7350 7355 7360
 Ala Ala Glu Asn Met Tyr Gly Ala Gly Glu Pro Val Gln Ala Ser Pro
 7365 7370 7375
 Ile Thr Ala Lys Tyr Gln Phe Asp Pro Pro Gly Pro Pro Thr Arg Leu
 7380 7385 7390
 Glu Pro Ser Asp Ile Thr Lys Asp Ala Val Thr Leu Thr Trp Cys Glu
 7395 7400 7405
 Pro Asp Asp Asp Gly Gly Ser Pro Ile Thr Gly Tyr Trp Val Glu Arg
 7410 7415 7420
 Leu Asp Pro Asp Thr Asp Lys Trp Val Arg Cys Asn Lys Met Pro Val
 7425 7430 7435 7440
 Lys Asp Thr Thr Tyr Arg Val Lys Gly Leu Thr Asn Lys Lys Tyr
 7445 7450 7455
 Arg Phe Arg Val Leu Ala Glu Asn Leu Ala Gly Pro Gly Lys Pro Ser
 7460 7465 7470
 Lys Ser Thr Glu Pro Ile Leu Ile Lys Asp Pro Ile Asp Pro Pro Trp
 7475 7480 7485
 Pro Pro Gly Lys Pro Thr Val Lys Asp Val Gly Lys Thr Ser Val Arg
 7490 7495 7500
 Leu Asn Trp Thr Lys Pro Glu His Asp Gly Ala Lys Ile Glu Ser
 7505 7510 7515 7520
 Tyr Val Ile Glu Met Leu Lys Thr Gly Thr Asp Glu Trp Val Arg Val
 7525 7530 7535
 Ala Glu Gly Val Pro Thr Thr Gln His Leu Leu Pro Gly Leu Met Glu
 7540 7545 7550
 Gly Gln Glu Tyr Ser Phe Arg Val Arg Ala Val Asn Lys Ala Gly Glu
 7555 7560 7565
 Ser Glu Pro Ser Glu Pro Ser Asp Pro Val Leu Cys Arg Glu Lys Leu
 7570 7575 7580
 Tyr Pro Pro Ser Pro Pro Arg Trp Leu Glu Val Ile Asn Ile Thr Lys
 7585 7590 7595 7600
 Asn Thr Ala Asp Leu Lys Trp Thr Val Pro Glu Lys Asp Gly Gly Ser
 7605 7610 7615
 Pro Ile Thr Asn Tyr Ile Val Glu Lys Arg Asp Val Arg Arg Lys Gly
 7620 7625 7630
 Trp Gln Thr Val Asp Thr Thr Val Lys Asp Thr Lys Cys Thr Val Thr
 7635 7640 7645
 Pro Leu Thr Glu Gly Ser Leu Tyr Val Phe Arg Val Ala Ala Glu Asn
 7650 7655 7660

Ala Ile Gly Gln Ser Asp Tyr Thr Glu Ile Glu Asp Ser Val Leu Ala
 7665 7670 7675 7680
 Lys Asp Thr Phe Thr Thr Pro Gly Pro Pro Tyr Ala Leu Ala Val Val
 7685 7690 7695
 Asp Val Thr Lys Arg His Val Asp Leu Lys Trp Glu Pro Pro Lys Asn
 7700 7705 7710
 Asp Gly Gly Arg Pro Ile Gln Arg Tyr Val Ile Glu Lys Lys Glu Arg
 7715 7720 7725
 Leu Gly Thr Arg Trp Val Lys Ala Gly Lys Thr Ala Gly Pro Asp Cys
 7730 7735 7740
 Asn Phe Arg Val Thr Asp Val Ile Glu Gly Thr Glu Val Gln Phe Gln
 7745 7750 7755 7760
 Val Arg Ala Glu Asn Glu Ala Gly Val Gly His Pro Ser Glu Pro Thr
 7765 7770 7775
 Glu Ile Leu Ser Ile Glu Asp Pro Thr Ser Pro Pro Ser Pro Pro Leu
 7780 7785 7790
 Asp Leu His Val Thr Asp Ala Gly Arg Lys His Ile Ala Ile Ala Trp
 7795 7800 7805
 Lys Pro Pro Glu Lys Asn Gly Gly Ser Pro Ile Ile Gly Tyr His Val
 7810 7815 7820
 Glu Met Cys Pro Val Gly Thr Glu Lys Trp Met Arg Val Asn Ser Arg
 7825 7830 7835 7840
 Pro Ile Lys Asp Leu Lys Phe Lys Val Glu Glu Gly Val Val Pro Asp
 7845 7850 7855
 Lys Glu Tyr Val Leu Arg Val Arg Ala Val Asn Ala Ile Gly Val Ser
 7860 7865 7870
 Glu Pro Ser Glu Ile Ser Glu Asn Val Val Ala Lys Asp Pro Asp Cys
 7875 7880 7885
 Lys Pro Thr Ile Asp Leu Glu Thr His Asp Ile Ile Val Ile Glu Gly
 7890 7895 7900
 Glu Lys Leu Ser Ile Pro Val Pro Phe Arg Ala Val Pro Val Pro Thr
 7905 7910 7915 7920
 Val Ser Trp His Lys Asp Gly Lys Glu Val Lys Ala Ser Asp Arg Leu
 7925 7930 7935
 Thr Met Lys Asn Asp His Ile Ser Ala His Leu Glu Val Pro Lys Ser
 7940 7945 7950
 Val Arg Ala Asp Ala Gly Ile Tyr Thr Ile Thr Leu Glu Asn Lys Leu
 7955 7960 7965
 Gly Ser Ala Thr Ala Ser Ile Asn Val Lys Val Ile Gly Leu Pro Gly
 7970 7975 7980
 Pro Cys Lys Asp Ile Lys Ala Ser Asp Ile Thr Lys Ser Ser Cys Lys
 7985 7990 7995 8000
 Leu Thr Trp Glu Pro Pro Glu Phe Asp Gly Gly Thr Pro Ile Leu His
 8005 8010 8015
 Tyr Val Leu Glu Arg Arg Glu Ala Gly Arg Arg Thr Tyr Ile Pro Val
 8020 8025 8030
 Met Ser Gly Glu Asn Lys Leu Ser Trp Thr Val Lys Asp Leu Ile Pro
 8035 8040 8045
 Asn Gly Glu Tyr Phe Phe Arg Val Lys Ala Val Asn Lys Val Gly Gly
 8050 8055 8060
 Gly Glu Tyr Ile Glu Leu Lys Asn Pro Val Ile Ala Gln Asp Pro Lys
 8065 8070 8075 8080
 Gln Pro Pro Asp Pro Pro Val Asp Val Glu Val His Asn Pro Thr Ala
 8085 8090 8095
 Glu Ala Met Thr Ile Thr Trp Lys Pro Pro Leu Tyr Asp Gly Gly Ser
 8100 8105 8110
 Lys Ile Met Gly Tyr Ile Ile Glu Lys Ile Ala Lys Gly Glu Glu Arg
 8115 8120 8125
 Trp Lys Arg Cys Asn Glu His Leu Val Pro Ile Leu Thr Tyr Thr Ala
 8130 8135 8140
 Lys Gly Leu Glu Glu Gly Lys Glu Tyr Gln Phe Arg Val Arg Ala Glu
 8145 8150 8155 8160

Asn Ala Ala Gly Ile Ser Glu Pro Ser Arg Ala Thr Pro Pro Thr Lys
 8165 8170 8175
 Ala Val Asp Pro Ile Asp Ala Pro Lys Val Ile Leu Arg Thr Ser Leu
 8180 8185 8190
 Glu Val Lys Arg Gly Asp Glu Ile Ala Leu Asp Ala Ser Ile Ser Gly
 8195 8200 8205
 Ser Pro Tyr Pro Thr Ile Thr Trp Ile Lys Asp Glu Asn Val Ile Val
 8210 8215 8220
 Pro Glu Glu Ile Lys Lys Arg Ala Ala Pro Leu Val Arg Arg Arg Lys
 8225 8230 8235 8240
 Gly Glu Val Gln Glu Glu Glu Pro Phe Val Leu Pro Leu Thr Gln Arg
 8245 8250 8255
 Leu Ser Ile Asp Asn Ser Lys Lys Gly Glu Ser Gln Leu Arg Val Arg
 8260 8265 8270
 Asp Ser Leu Arg Pro Asp His Gly Leu Tyr Met Ile Lys Val Glu Asn
 8275 8280 8285
 Asp His Gly Ile Ala Lys Ala Pro Cys Thr Val Ser Val Leu Asp Thr
 8290 8295 8300
 Pro Gly Pro Pro Ile Asn Phe Val Phe Glu Asp Ile Arg Lys Thr Ser
 8305 8310 8315 8320
 Val Leu Cys Lys Trp Glu Pro Pro Leu Asp Asp Gly Gly Ser Glu Ile
 8325 8330 8335
 Ile Asn Tyr Thr Leu Glu Lys Lys Asp Lys Thr Lys Pro Asp Ser Glu
 8340 8345 8350
 Trp Ile Val Val Thr Ser Thr Leu Arg His Cys Lys Tyr Ser Val Thr
 8355 8360 8365
 Lys Leu Ile Glu Gly Lys Glu Tyr Leu Phe Arg Val Arg Ala Glu Asn
 8370 8375 8380
 Arg Phe Gly Pro Gly Pro Pro Cys Val Ser Lys Pro Leu Val Ala Lys
 8385 8390 8395 8400
 Asp Pro Phe Gly Pro Pro Asp Ala Pro Asp Lys Pro Ile Val Glu Asp
 8405 8410 8415
 Val Thr Ser Asn Ser Met Leu Val Lys Trp Asn Glu Pro Lys Asp Asn
 8420 8425 8430
 Gly Ser Pro Ile Leu Gly Tyr Trp Leu Glu Lys Arg Glu Val Asn Ser
 8435 8440 8445
 Thr His Trp Ser Arg Val Asn Lys Ser Leu Leu Asn Ala Leu Lys Ala
 8450 8455 8460
 Asn Val Asp Gly Leu Leu Glu Gly Leu Thr Tyr Val Phe Arg Val Cys
 8465 8470 8475 8480
 Ala Glu Asn Ala Ala Gly Pro Gly Lys Phe Ser Pro Pro Ser Asp Pro
 8485 8490 8495
 Lys Thr Ala His Asp Pro Ile Ser Pro Pro Gly Pro Pro Ile Pro Arg
 8500 8505 8510
 Val Thr Asp Thr Ser Ser Thr Ile Glu Leu Glu Trp Glu Pro Pro
 8515 8520 8525
 Ala Phe Asn Gly Gly Glu Ile Val Gly Tyr Phe Val Asp Lys Gln
 8530 8535 8540
 Leu Val Gly Thr Asn Lys Trp Ser Arg Cys Thr Glu Lys Met Ile Lys
 8545 8550 8555 8560
 Val Arg Gln Tyr Thr Val Lys Glu Ile Arg Glu Gly Ala Asp Tyr Lys
 8565 8570 8575
 Leu Arg Val Ser Ala Val Asn Ala Ala Gly Glu Gly Pro Pro Gly Glu
 8580 8585 8590
 Thr Gln Pro Val Thr Val Ala Glu Pro Gln Glu Pro Pro Ala Val Glu
 8595 8600 8605
 Leu Asp Val Ser Val Lys Gly Gly Ile Gln Ile Met Ala Gly Lys Thr
 8610 8615 8620
 Leu Arg Ile Pro Ala Val Val Thr Gly Arg Pro Val Pro Thr Lys Val
 8625 8630 8635 8640
 Trp Thr Lys Glu Glu Gly Glu Leu Asp Lys Asp Arg Val Val Ile Asp
 8645 8650 8655

Asn Val Gly Thr Lys Ser Glu Leu Ile Ile Lys Asp Ala Leu Arg Lys		
8660	8665	8670
Asp His Gly Arg Tyr Val Ile Thr Ala Thr Asn Ser Cys Gly Ser Lys		
8675	8680	8685
Phe Ala Ala Ala Arg Val Glu Val Phe Asp Val Pro Gly Pro Val Leu		
8690	8695	8700
Asp Leu Lys Pro Val Val Thr Asn Arg Lys Met Cys Leu Leu Asn Trp		
8705	8710	8715
Ser Asp Pro Glu Asp Asp Gly Gly Ser Glu Ile Thr Gly Phe Ile Ile		
8725	8730	8735
Glu Arg Lys Asp Ala Lys Met His Thr Trp Arg Gln Pro Ile Glu Thr		
8740	8745	8750
Glu Arg Ser Lys Cys Asp Ile Thr Gly Leu Leu Glu Gly Gln Glu Tyr		
8755	8760	8765
Lys Phe Arg Val Ile Ala Lys Asn Lys Phe Gly Cys Gly Pro Pro Val		
8770	8775	8780
Glu Ile Gly Pro Ile Leu Ala Val Asp Pro Leu Gly Pro Pro Thr Ser		
8785	8790	8795
Pro Glu Arg Leu Thr Tyr Thr Glu Arg Gln Arg Ser Thr Ile Thr Leu		
8805	8810	8815
Asp Trp Lys Glu Pro Arg Ser Asn Gly Ser Pro Ile Gln Gly Tyr		
8820	8825	8830
Ile Ile Glu Lys Arg Arg His Asp Lys Pro Asp Phe Glu Arg Val Asn		
8835	8840	8845
Lys Arg Leu Cys Pro Thr Thr Ser Phe Leu Val Glu Asn Leu Asp Glu		
8850	8855	8860
His Gln Met Tyr Glu Phe Arg Val Lys Ala Val Asn Glu Ile Gly Glu		
8865	8870	8875
Ser Glu Pro Ser Leu Pro Leu Asn Val Val Ile Gln Asp Asp Glu Val		
8885	8890	8895
Pro Pro Thr Ile Lys Leu Arg Leu Ser Val Arg Gly Asp Thr Ile Lys		
8900	8905	8910
Val Lys Ala Gly Glu Pro Val His Ile Pro Ala Asp Val Thr Gly Leu		
8915	8920	8925
Pro Met Pro Lys Ile Glu Trp Ser Lys Asn Glu Thr Val Ile Glu Lys		
8930	8935	8940
Pro Thr Asp Ala Leu Gln Ile Thr Lys Glu Glu Val Ser Arg Ser Glu		
8945	8950	8955
Ala Lys Thr Glu Leu Ser Ile Pro Lys Ala Val Arg Glu Asp Lys Gly		
8965	8970	8975
Thr Tyr Thr Val Thr Ala Ser Asn Arg Leu Gly Ser Val Phe Arg Asn		
8980	8985	8990
Val His Val Glu Val Tyr Asp Arg Pro Ser Pro Pro Arg Asn Leu Ala		
8995	9000	9005
Val Thr Asp Ile Lys Ala Glu Ser Cys Tyr Leu Thr Trp Asp Ala Pro		
9010	9015	9020
Leu Asp Asn Gly Gly Ser Glu Ile Thr His Tyr Val Ile Asp Lys Arg		
9025	9030	9035
Asp Ala Ser Arg Lys Lys Ala Glu Trp Glu Glu Val Thr Asn Thr Ala		
9045	9050	9055
Val Glu Lys Arg Tyr Gly Ile Trp Lys Leu Ile Pro Asn Gly Gln Tyr		
9060	9065	9070
Glu Phe Arg Val Arg Ala Val Asn Lys Tyr Gly Ile Ser Asp Glu Cys		
9075	9080	9085
Lys Ser Asp Lys Val Val Ile Gln Asp Pro Tyr Arg Leu Pro Gly Pro		
9090	9095	9100
Pro Gly Lys Pro Lys Val Leu Ala Arg Thr Lys Gly Ser Met Leu Val		
9105	9110	9115
Ser Trp Thr Pro Pro Leu Asp Asn Gly Gly Ser Pro Ile Thr Gly Tyr		
9125	9130	9135
Trp Leu Glu Lys Arg Glu Glu Gly Ser Pro Tyr Trp Ser Arg Val Ser.		
9140	9145	9150

Arg Ala Pro Ile Thr Lys Val Gly Leu Lys Gly Val Glu Phe Asn Val
 9155 9160 9165
 Pro Arg Leu Leu Glu Gly Val Lys Tyr Gln Phe Arg Ala Met Ala Ile
 9170 9175 9180
 Asn Ala Ala Gly Ile Gly Pro Pro Ser Glu Pro Ser Asp Pro Glu Val
 9185 9190 9195 9200
 Ala Gly Asp Pro Ile Phe Pro Pro Gly Pro Pro Ser Cys Pro Glu Val
 9205 9210 9215
 Lys Asp Lys Thr Lys Ser Ser Ile Ser Leu Gly Trp Lys Pro Pro Ala
 9220 9225 9230
 Lys Asp Gly Gly Ser Pro Ile Lys Gly Tyr Ile Val Glu Met Gln Glu
 9235 9240 9245
 Glu Gly Thr Thr Asp Trp Lys Arg Val Asn Glu Pro Asp Lys Leu Ile
 9250 9255 9260
 Thr Thr Cys Glu Cys Val Val Pro Asn Leu Lys Glu Leu Arg Lys Tyr
 9265 9270 9275 9280
 Arg Phe Arg Val Lys Ala Val Asn Glu Ala Gly Glu Ser Glu Pro Ser
 9285 9290 9295
 Asp Thr Thr Gly Glu Ile Pro Ala Thr Asp Ile Gln Glu Glu Pro Glu
 9300 9305 9310
 Val Phe Ile Asp Ile Gly Ala Gln Asp Cys Leu Val Cys Lys Ala Gly
 9315 9320 9325
 Ser Gln Ile Arg Ile Pro Ala Val Ile Lys Gly Arg Pro Thr Pro Lys
 9330 9335 9340
 Ser Ser Trp Glu Phe Asp Gly Lys Ala Lys Lys Ala Met Lys Asp Gly
 9345 9350 9355 9360
 Val His Asp Ile Pro Glu Asp Ala Gln Leu Glu Thr Ala Glu Asn Ser
 9365 9370 9375
 Ser Val Ile Ile Ile Pro Glu Cys Lys Arg Ser His Thr Gly Lys Tyr
 9380 9385 9390
 Ser Ile Thr Ala Lys Asn Lys Ala Gly Gln Lys Thr Ala Asn Cys Arg
 9395 9400 9405
 Val Lys Val Met Asp Val Pro Gly Pro Pro Lys Asp Leu Lys Val Ser
 9410 9415 9420
 Asp Ile Thr Arg Gly Ser Cys Arg Leu Ser Trp Lys Met Pro Asp Asp
 9425 9430 9435 9440
 Asp Gly Gly Asp Arg Ile Lys Gly Tyr Val Ile Glu Lys Arg Thr Ile
 9445 9450 9455
 Asp Gly Lys Ala Trp Thr Lys Val Asn Pro Asp Cys Gly Ser Thr Thr
 9460 9465 9470
 Phe Val Val Pro Asp Leu Leu Ser Glu Gln Gln Tyr Phe Phe Arg Val
 9475 9480 9485
 Arg Ala Glu Asn Arg Phe Gly Ile Gly Pro Pro Val Glu Thr Ile Gln
 9490 9495 9500
 Arg Thr Thr Ala Arg Asp Pro Ile Tyr Pro Pro Asp Pro Pro Ile Lys
 9505 9510 9515 9520
 Leu Lys Ile Gly Leu Ile Thr Lys Asn Thr Val His Leu Ser Trp Lys
 9525 9530 9535
 Pro Pro Lys Asn Asp Gly Gly Ser Pro Val Thr His Tyr Ile Val Glu
 9540 9545 9550
 Cys Leu Ala Trp Asp Pro Thr Gly Thr Lys Lys Glu Ala Trp Arg Gln
 9555 9560 9565
 Cys Asn Lys Arg Asp Val Glu Glu Leu Gln Phe Thr Val Glu Asp Leu
 9570 9575 9580
 Val Glu Gly Gly Glu Tyr Glu Phe Arg Val Lys Ala Val Asn Ala Ala
 9585 9590 9595 9600
 Gly Val Ser Lys Pro Ser Ala Thr Val Gly Pro Cys Asp Cys Gln Arg
 9605 9610 9615
 Pro Asp Met Pro Pro Ser Ile Asp Leu Lys Glu Phe Met Glu Val Glu
 9620 9625 9630
 Glu Gly Thr Asn Val Asn Ile Val Ala Lys Ile Lys Gly Val Pro Phe
 9635 9640 9645

Pro Thr Leu Thr Trp Phe Lys Ala Pro Pro Lys Lys Pro Asp Asn Lys
 9650 9655 9660
 Glu Pro Val Leu Tyr Asp Thr His Val Asn Lys Leu Val Val Asp Asp
 9665 9670 9675 9680
 Thr Cys Thr Leu Val Ile Pro Gln Ser Arg Arg Ser Asp Thr Gly Leu
 9685 9690 9695
 Tyr Thr Ile Thr Ala Val Asn Asn Leu Gly Thr Ala Ser Lys Glu Met
 9700 9705 9710
 Arg Leu Asn Val Leu Gly Arg Pro Gly Pro Pro Val Gly Pro Ile Lys
 9715 9720 9725
 Phe Glu Ser Val Ser Ala Asp Gln Met Thr Leu Ser Trp Phe Pro Pro
 9730 9735 9740
 Lys Asp Asp Gly Gly Ser Lys Ile Thr Asn Tyr Val Ile Glu Lys Arg
 9745 9750 9755 9760
 Glu Ala Asn Arg Lys Thr Trp Val His Val Ser Ser Glu Pro Lys Glu
 9765 9770 9775
 Cys Thr Tyr Thr Ile Pro Lys Leu Leu Glu Gly His Glu Tyr Val Phe
 9780 9785 9790
 Arg Ile Met Ala Gln Asn Lys Tyr Gly Ile Gly Glu Pro Leu Asp Ser
 9795 9800 9805
 Glu Pro Glu Thr Ala Arg Asn Leu Phe Ser Val Pro Gly Ala Pro Asp
 9810 9815 9820
 Lys Pro Thr Val Ser Ser Val Thr Arg Asn Ser Met Thr Val Asn Trp
 9825 9830 9835 9840
 Glu Glu Pro Glu Tyr Asp Gly Gly Ser Pro Val Thr Gly Tyr Trp Leu
 9845 9850 9855
 Glu Met Lys Asp Thr Thr Ser Lys Arg Trp Lys Arg Val Asn Arg Asp
 9860 9865 9870
 Pro Ile Lys Ala Met Thr Leu Gly Val Ser Tyr Lys Val Thr Gly Leu
 9875 9880 9885
 Ile Glu Gly Ser Asp Tyr Gln Phe Arg Val Tyr Ala Ile Asn Ala Ala
 9890 9895 9900
 Gly Val Gly Pro Ala Ser Leu Pro Ser Asp Pro Ala Thr Ala Arg Asp
 9905 9910 9915 9920
 Pro Ile Ala Pro Pro Gly Pro Pro Phe Pro Lys Val Thr Asp Trp Thr
 9925 9930 9935
 Lys Ser Ser Ala Asp Leu Glu Trp Ser Pro Pro Leu Lys Asp Gly Gly
 9940 9945 9950
 Ser Lys Val Thr Gly Tyr Ile Val Glu Tyr Lys Glu Glu Gly Lys Glu
 9955 9960 9965
 Glu Trp Glu Lys Gly Lys Asp Lys Glu Val Arg Gly Thr Lys Leu Val
 9970 9975 9980
 Val Thr Gly Leu Lys Glu Gly Ala Phe Tyr Lys Phe Arg Val Ser Ala
 9985 9990 9995 10000
 Val Asn Ile Ala Gly Ile Gly Glu Pro Gly Glu Val Thr Asp Val Ile
 10005 10010 10015
 Glu Met Lys Asp Arg Leu Val Ser Pro Asp Leu Gln Leu Asp Ala Ser
 10020 10025 10030
 Val Arg Asp Arg Ile Val Val His Ala Gly Gly Val Ile Arg Ile Ile
 10035 10040 10045
 Ala Tyr Val Ser Gly Lys Pro Pro Pro Thr Val Thr Trp Asn Met Asn
 10050 10055 10060 1
 Glu Arg Thr Leu Pro Gln Glu Ala Thr Ile Glu Thr Thr Ala Ile Ser
 0065 10070 10075 10080
 Ser Ser Met Val Ile Lys Asn Cys Gln Arg Ser His Gln Gly Val Tyr
 10085 10090 10095
 Ser Leu Leu Ala Lys Asn Glu Ala Gly Glu Arg Lys Lys Thr Ile Ile
 10100 10105 10110
 Val Asp Val Leu Asp Val Pro Gly Pro Val Gly Thr Pro Phe Leu Ala
 10115 10120 10125
 His Asn Leu Thr Asn Glu Ser Cys Lys Leu Thr Trp Phe Ser Pro Glu
 10130 10135 10140 1

Asp Asp Gly Gly Ser Pro Ile Thr Asn Tyr Val Ile Glu Lys Arg Glu
 0145 10150 10155 10160
 Ser Asp Arg Arg Ala Trp Thr Pro Val Thr Tyr Thr Val Thr Arg Gln
 10165 10170 10175
 Asn Ala Thr Val Gln Gly Leu Ile Gln Gly Lys Ala Tyr Phe Phe Arg
 10180 10185 10190
 Ile Ala Ala Glu Asn Ser Ile Gly Met Gly Pro Phe Val Glu Thr Ser
 10195 10200 10205
 Glu Ala Leu Val Ile Arg Glu Pro Ile Thr Val Pro Glu Arg Pro Glu
 10210 10215 10220 1
 Asp Leu Glu Val Lys Glu Val Thr Lys Asn Thr Val Thr Leu Thr Trp
 0225 10230 10235 10240
 Asn Pro Pro Lys Tyr Asp Gly Gly Ser Glu Ile Ile Asn Tyr Val Leu
 10245 10250 10255
 Glu Ser Arg Leu Ile Gly Thr Glu Lys Phe His Lys Val Thr Asn Asp
 10260 10265 10270
 Asn Leu Leu Ser Arg Lys Tyr Thr Val Lys Gly Leu Lys Glu Gly Asp
 10275 10280 10285
 Thr Tyr Glu Tyr Arg Val Ser Ala Val Asn Ile Val Gly Gln Gly Lys
 10290 10295 10300 1
 Pro Ser Phe Cys Thr Lys Pro Ile Thr Cys Lys Asp Glu Leu Ala Pro
 0305 10310 10315 10320
 Pro Thr Leu His Leu Asp Phe Arg Asp Lys Leu Thr Ile Arg Val Gly
 10325 10330 10335
 Glu Ala Phe Ala Leu Thr Gly Arg Tyr Ser Gly Lys Pro Lys Pro Lys
 10340 10345 10350
 Val Ser Trp Phe Lys Asp Glu Ala Asp Val Leu Glu Asp Asp Arg Thr
 10355 10360 10365
 His Ile Lys Thr Thr Pro Ala Thr Leu Ala Leu Glu Lys Ile Lys Ala
 10370 10375 10380 1
 Lys Arg Ser Asp Ser Gly Lys Tyr Cys Val Val Val Glu Asn Ser Thr
 0385 10390 10395 10400
 Gly Ser Arg Lys Gly Phe Cys Gln Val Asn Val Val Asp His Pro Gly
 10405 10410 10415
 Pro Pro Val Gly Pro Val Ser Phe Asp Glu Val Thr Lys Asp Tyr Met
 10420 10425 10430
 Val Ile Ser Trp Lys Pro Pro Leu Asp Asp Gly Ser Lys Ile Thr
 10435 10440 10445
 Asn Tyr Ile Ile Glu Lys Glu Val Gly Lys Asp Val Trp Met Pro
 10450 10455 10460 1
 Val Thr Ser Ala Ser Ala Lys Thr Thr Cys Lys Val Ser Lys Leu Leu
 0465 10470 10475 10480
 Glu Gly Lys Asp Tyr Ile Phe Arg Ile His Ala Glu Asn Leu Tyr Gly
 10485 10490 10495
 Ile Ser Asp Pro Leu Val Ser Asp Ser Met Lys Ala Lys Asp Arg Phe
 10500 10505 10510
 Arg Val Pro Asp Ala Pro Asp Gln Pro Ile Val Thr Glu Val Thr Lys
 10515 10520 10525
 Asp Ser Ala Leu Val Thr Trp Asn Lys Pro His Asp Gly Gly Lys Pro
 10530 10535 10540 1
 Ile Thr Asn Tyr Ile Leu Glu Lys Arg Glu Thr Met Ser Lys Arg Trp
 0545 10550 10555 10560
 Ala Arg Val Thr Lys Asp Pro Ile His Pro Tyr Thr Lys Phe Arg Val
 10565 10570 10575
 Pro Asp Leu Leu Glu Gly Cys Gln Tyr Glu Phe Arg Val Ser Ala Glu
 10580 10585 10590
 Asn Glu Ile Gly Ile Gly Asp Pro Ser Pro Pro Ser Lys Pro Val Phe
 10595 10600 10605
 Ala Lys Asp Pro Ile Ala Lys Pro Ser Pro Pro Val Asn Pro Glu Ala
 10610 10615 10620 1
 Ile Asp Thr Thr Cys Asn Ser Val Asp Leu Thr Trp Gln Pro Pro Arg
 0625 10630 10635 10640

His Asp Gly Gly Ser Lys Ile Leu Gly Tyr Ile Val Glu Tyr Gln Lys
 10645 10650 10655
 Val Gly Asp Glu Glu Trp Arg Arg Ala Asn His Thr Pro Glu Ser Cys
 10660 10665 10670
 Pro Glu Thr Lys Tyr Lys Val Thr Gly Leu Arg Asp Gly Gln Thr Tyr
 10675 10680 10685
 Lys Phe Arg Val Leu Ala Val Asn Ala Ala Gly Glu Ser Asp Pro Ala
 10690 10695 10700 1
 His Val Pro Glu Pro Val Leu Val Lys Asp Arg Leu Glu Pro Pro Glu
 0705 10710 10715 10720
 Leu Ile Leu Asp Ala Asn Met Ala Arg Glu Gln His Ile Lys Val Gly
 10725 10730 10735
 Asp Thr Leu Arg Leu Ser Ala Ile Ile Lys Gly Val Pro Phe Pro Lys
 10740 10745 10750
 Val Thr Trp Lys Lys Glu Asp Arg Asp Ala Pro Thr Lys Ala Arg Ile
 10755 10760 10765
 Asp Val Thr Pro Val Gly Ser Lys Leu Glu Ile Arg Asn Ala Ala His
 10770 10775 10780 1
 Glu Asp Gly Gly Ile Tyr Ser Leu Thr Val Glu Asn Pro Ala Gly Ser
 0785 10790 10795 10800
 Lys Thr Val Ser Val Lys Val Leu Val Leu Asp Lys Pro Gly Pro Pro
 10805 10810 10815
 Arg Asp Leu Glu Val Ser Glu Ile Arg Lys Asp Ser Cys Tyr Leu Thr
 10820 10825 10830
 Trp Lys Glu Pro Leu Asp Asp Gly Ser Val Ile Thr Asn Tyr Val
 10835 10840 10845
 Val Glu Arg Arg Asp Val Ala Ser Ala Gln Trp Ser Pro Leu Ser Ala
 10850 10855 10860 1
 Thr Ser Lys Lys Ser His Phe Ala Lys His Leu Asn Glu Gly Asn
 0865 10870 10875 10880
 Gln Tyr Leu Phe Arg Val Ala Ala Glu Asn Gln Tyr Gly Arg Gly Pro
 10885 10890 10895
 Phe Val Glu Thr Pro Lys Pro Ile Lys Ala Leu Asp Pro Leu His Pro
 10900 10905 10910
 Pro Gly Pro Pro Lys Asp Leu His His Val Asp Val Asp Lys Thr Glu
 10915 10920 10925
 Val Ser Leu Val Trp Asn Lys Pro Asp Arg Asp Gly Gly Ser Pro Ile
 10930 10935 10940 1
 Thr Gly Tyr Leu Val Glu Tyr Gln Glu Glu Gly Thr Gln Asp Trp Ile
 0945 10950 10955 10960
 Lys Phe Lys Thr Val Thr Asn Leu Glu Cys Val Val Thr Gly Leu Gln
 10965 10970 10975
 Gln Gly Lys Thr Tyr Arg Phe Arg Val Lys Ala Glu Asn Ile Val Gly
 10980 10985 10990
 Leu Gly Leu Pro Asp Thr Thr Ile Pro Ile Glu Cys Gln Glu Lys Leu
 10995 11000 11005
 Val Pro Pro Ser Val Glu Leu Asp Val Lys Leu Ile Glu Gly Leu Val
 11010 11015 11020 1
 Val Lys Ala Gly Thr Thr Val Arg Phe Pro Ala Ile Ile Arg Gly Val
 1025 11030 11035 11040
 Pro Val Pro Thr Ala Lys Trp Thr Thr Asp Gly Ser Glu Ile Lys Thr
 11045 11050 11055
 Asp Glu His Tyr Thr Val Glu Thr Asp Asn Phe Ser Ser Val Leu Thr
 11060 11065 11070
 Ile Lys Asn Cys Leu Arg Arg Asp Thr Gly Glu Tyr Gln Ile Thr Val
 11075 11080 11085
 Ser Asn Ala Ala Gly Ser Lys Thr Val Ala Val His Leu Thr Val Leu
 11090 11095 11100 1
 Asp Val Pro Gly Pro Pro Thr Gly Pro Ile Asn Ile Leu Asp Val Thr
 11105 11110 11115 11120
 Pro Glu His Met Thr Ile Ser Trp Gln Pro Pro Lys Asp Asp Gly Gly
 11125 11130 11135

Ser Pro Val Ile Asn Tyr Ile Val Glu Lys Gln Asp Thr Arg Lys Asp
 11140 11145 11150
 Thr Trp Gly Val Val Ser Ser Gly Ser Ser Lys Thr Lys Leu Lys Ile
 11155 11160 11165
 Pro His Leu Gln Lys Gly Cys Glu Tyr Val Phe Arg Val Arg Ala Glu
 11170 11175 11180 1
 Asn Lys Ile Gly Val Gly Pro Pro Leu Asp Ser Thr Pro Thr Val Ala
 11185 11190 11195 11200
 Lys His Lys Phe Ser Pro Pro Ser Pro Pro Gly Lys Pro Val Val Thr
 11205 11210 11215
 Asp Ile Thr Glu Asn Ala Ala Thr Val Ser Trp Thr Leu Pro Lys Ser
 11220 11225 11230
 Asp Gly Gly Ser Pro Ile Thr Gly Tyr Tyr Met Glu Arg Arg Glu Val
 11235 11240 11245
 Thr Gly Lys Trp Val Arg Val Asn Lys Thr Pro Ile Ala Asp Leu Lys
 11250 11255 11260 1
 Phe Arg Val Thr Gly Leu Tyr Glu Gly Asn Thr Tyr Glu Phe Arg Val
 11265 11270 11275 11280
 Phe Ala Glu Asn Leu Ala Gly Leu Ser Lys Pro Ser Pro Ser Asp
 11285 11290 11295
 Pro Ile Lys Ala Cys Arg Pro Ile Lys Pro Pro Gly Pro Pro Ile Asn
 11300 11305 11310
 Pro Lys Leu Lys Asp Lys Ser Arg Glu Thr Ala Asp Leu Val Trp Thr
 11315 11320 11325
 Lys Pro Leu Ser Asp Gly Gly Ser Pro Ile Leu Gly Tyr Val Val Glu
 11330 11335 11340 1
 Cys Gln Lys Pro Gly Thr Ala Gln Trp Asn Arg Ile Asn Lys Asp Glu
 11345 11350 11355 11360
 Leu Ile Arg Gln Cys Ala Phe Arg Val Pro Gly Leu Ile Glu Gly Asn
 11365 11370 11375
 Glu Tyr Arg Phe Arg Ile Lys Ala Ala Asn Ile Val Gly Glu Gly Glu
 11380 11385 11390
 Pro Arg Glu Leu Ala Glu Ser Val Ile Ala Lys Asp Ile Leu His Pro
 11395 11400 11405
 Pro Glu Val Glu Leu Asp Val Thr Cys Arg Asp Val Ile Thr Val Arg
 11410 11415 11420 1
 Val Gly Gln Thr Ile Arg Ile Leu Ala Arg Val Lys Gly Arg Pro Glu
 11425 11430 11435 11440
 Pro Asp Ile Thr Trp Thr Lys Glu Gly Lys Val Leu Val Arg Glu Lys
 11445 11450 11455
 Arg Val Asp Leu Ile Gln Asp Leu Pro Arg Val Glu Leu Gln Ile Lys
 11460 11465 11470
 Glu Ala Val Arg Ala Asp His Gly Lys Tyr Ile Ile Ser Ala Lys Asn
 11475 11480 11485
 Ser Ser Gly His Ala Gln Gly Ser Ala Ile Val Asn Val Leu Asp Arg
 11490 11495 11500 1
 Pro Gly Pro Cys Gln Asn Leu Lys Val Thr Asn Val Thr Lys Glu Asn
 11505 11510 11515 11520
 Cys Thr Ile Ser Trp Glu Asn Pro Leu Asp Asn Gly Gly Ser Glu Ile
 11525 11530 11535
 Thr Asn Phe Ile Val Glu Tyr Arg Lys Pro Asn Gln Lys Gly Trp Ser
 11540 11545 11550
 Ile Val Ala Ser Asp Val Thr Lys Arg Leu Ile Lys Ala Asn Leu Leu
 11555 11560 11565
 Ala Asn Asn Glu Tyr Tyr Phe Arg Val Cys Ala Glu Asn Lys Val Gly
 11570 11575 11580 1
 Val Gly Pro Thr Ile Glu Thr Lys Thr Pro Ile Leu Ala Ile Asn Pro
 11585 11590 11595 11600
 Ile Asp Arg Pro Gly Glu Pro Glu Asn Leu His Ile Ala Asp Lys Gly
 11605 11610 11615
 Lys Thr Phe Val Tyr Leu Lys Trp Arg Arg Pro Asp Tyr Asp Gly Gly
 11620 11625 11630

Ser Pro Asn Leu Ser Tyr His Val Glu Arg Arg Leu Lys Gly Ser Asp
 11635 11640 11645
 Asp Trp Glu Arg Val His Lys Gly Ser Ile Lys Glu Thr His Tyr Met
 11650 11655 11660 1
 Val Asp Arg Cys Val Glu Asn Gln Ile Tyr Glu Phe Arg Val Gln Thr
 1665 11670 11675 11680
 Lys Asn Glu Gly Gly Glu Ser Asp Trp Val Lys Thr Glu Glu Val Val
 11685 11690 11695
 Val Lys Glu Asp Leu Gln Lys Pro Val Leu Asp Leu Lys Leu Ser Gly
 11700 11705 11710
 Val Leu Thr Val Lys Ala Gly Asp Thr Ile Arg Leu Glu Ala Gly Val
 11715 11720 11725
 Arg Gly Lys Pro Phe Pro Glu Val Ala Trp Thr Lys Asp Lys Asp Ala
 11730 11735 11740 1
 Thr Asp Leu Thr Arg Ser Pro Arg Val Lys Ile Asp Thr Arg Ala Asp
 1745 11750 11755 11760
 Ser Ser Lys Phe Ser Leu Thr Lys Ala Lys Arg Ser Asp Gly Gly Lys
 11765 11770 11775
 Tyr Val Val Thr Ala Thr Asn Thr Ala Gly Ser Phe Val Ala Tyr Ala
 11780 11785 11790
 Thr Val Asn Val Leu Asp Lys Pro Gly Pro Val Arg Asn Leu Lys Ile
 11795 11800 11805
 Val Asp Val Ser Ser Asp Arg Cys Thr Val Cys Trp Asp Pro Pro Glu
 11810 11815 11820 1
 Asp Asp Gly Gly Cys Glu Ile Gln Asn Tyr Ile Leu Glu Lys Cys Glu
 1825 11830 11835 11840
 Thr Lys Arg Met Val Trp Ser Thr Tyr Ser Ala Thr Val Leu Thr Pro
 11845 11850 11855
 Gly Thr Thr Val Thr Arg Leu Ile Glu Gly Asn Glu Tyr Ile Phe Arg
 11860 11865 11870
 Val Arg Ala Glu Asn Lys Ile Gly Thr Gly Pro Pro Thr Glu Ser Lys
 11875 11880 11885
 Pro Val Ile Ala Lys Thr Lys Tyr Asp Lys Pro Gly Arg Pro Asp Pro
 11890 11895 11900 1
 Pro Glu Val Thr Lys Val Ser Lys Glu Glu Met Thr Val Val Trp Asn
 1905 11910 11915 11920
 Pro Pro Glu Tyr Asp Gly Gly Lys Ser Ile Thr Gly Tyr Phe Leu Glu
 11925 11930 11935
 Lys Lys Glu Lys His Ser Thr Arg Trp Val Pro Val Asn Lys Ser Ala
 11940 11945 11950
 Ile Pro Glu Arg Arg Met Lys Val Gln Asn Leu Leu Pro Asp His Glu
 11955 11960 11965
 Tyr Gln Phe Arg Val Lys Ala Glu Asn Glu Ile Gly Ile Gly Glu Pro
 11970 11975 11980 1
 Ser Leu Pro Ser Arg Pro Val Val Ala Lys Asp Pro Ile Glu Pro Pro
 1985 11990 11995 12000
 Gly Pro Pro Thr Asn Phe Arg Val Val Asp Thr Thr Lys His Ser Ile
 12005 12010 12015
 Thr Leu Gly Trp Gly Lys Pro Val Tyr Asp Gly Gly Ala Pro Ile Ile
 12020 12025 12030
 Gly Tyr Val Val Glu Met Arg Pro Lys Ile Ala Asp Ala Ser Pro Asp
 12035 12040 12045
 Glu Gly Trp Lys Arg Cys Asn Ala Ala Ala Gln Leu Val Arg Lys Glu
 12050 12055 12060 1
 Phe Thr Val Thr Ser Leu Asp Glu Asn Gln Glu Tyr Glu Phe Arg Val
 2065 12070 12075 12080
 Cys Ala Gln Asn Gln Val Gly Ile Gly Arg Pro Ala Glu Leu Lys Glu
 12085 12090 12095
 Ala Ile Lys Pro Lys Glu Ile Leu Glu Pro Pro Glu Ile Asp Leu Asp
 12100 12105 12110
 Ala Ser Met Arg Lys Leu Val Ile Val Arg Ala Gly Cys Pro Ile Arg
 12115 12120 12125

Leu Phe Ala Ile Val Arg Gly Arg Pro Ala Pro Lys Val Thr Trp Arg
 12130 12135 12140 1
 Lys Val Gly Ile Asp Asn Val Val Arg Lys Gly Gln Val Asp Leu Val
 2145 12150 12155 12160
 Asp Thr Met Ala Phe Leu Val Ile Pro Asn Ser Thr Arg Asp Asp Ser
 12165 12170 12175
 Gly Lys Tyr Ser Leu Thr Leu Val Asn Pro Ala Gly Glu Lys Ala Val
 12180 12185 12190
 Phe Val Asn Val Arg Val Leu Asp Thr Pro Gly Pro Val Ser Asp Leu
 12195 12200 12205
 Lys Val Ser Asp Val Thr Lys Thr Ser Cys His Val Ser Trp Ala Pro
 12210 12215 12220 1
 Pro Glu Asn Asp Gly Gly Ser Gln Val Thr His Tyr Ile Val Glu Lys
 2225 12230 12235 12240
 Arg Glu Ala Asp Arg Lys Thr Trp Ser Thr Val Thr Pro Glu Val Lys
 12245 12250 12255
 Lys Thr Ser Phe His Val Thr Asn Leu Val Pro Gly Asn Glu Tyr Tyr
 12260 12265 12270
 Phe Arg Val Thr Ala Val Asn Glu Tyr Gly Pro Gly Val Pro Thr Asp
 12275 12280 12285
 Val Pro Lys Pro Val Leu Ala Ser Asp Pro Leu Ser Glu Pro Asp Pro
 12290 12295 12300 1
 Pro Arg Lys Leu Glu Ala Thr Glu Met Thr Lys Asn Ser Ala Thr Leu
 2305 12310 12315 12320
 Ala Trp Leu Pro Pro Leu Arg Asp Gly Gly Ala Lys Ile Asp Gly Tyr
 12325 12330 12335
 Ile Ile Ser Tyr Arg Glu Glu Gln Pro Ala Asp Arg Trp Thr Glu
 12340 12345 12350
 Tyr Ser Val Val Lys Asp Leu Ser Leu Val Val Thr Gly Leu Lys Glu
 12355 12360 12365
 Gly Lys Lys Tyr Lys Phe Arg Val Ala Ala Arg Asn Ala Val Gly Val
 12370 12375 12380 1
 Ser Leu Pro Arg Glu Ala Glu Gly Val Tyr Glu Ala Lys Glu Gln Leu
 2385 12390 12395 12400
 Leu Pro Pro Lys Ile Leu Met Pro Glu Gln Ile Thr Ile Lys Ala Gly
 12405 12410 12415
 Lys Lys Leu Arg Ile Glu Ala His Val Tyr Gly Lys Pro His Pro Thr
 12420 12425 12430
 Cys Lys Trp Lys Lys Gly Glu Asp Glu Val Val Thr Ser Ser His Leu
 12435 12440 12445
 Ala Val His Lys Ala Asp Ser Ser Ile Leu Ile Ile Lys Asp Val
 12450 12455 12460 1
 Thr Arg Lys Asp Ser Gly Tyr Tyr Ser Leu Thr Ala Glu Asn Ser Ser
 2465 12470 12475 12480
 Gly Thr Asp Thr Gln Lys Ile Lys Val Val Val Met Asp Ala Pro Gly
 12485 12490 12495
 Pro Pro Gln Pro Pro Phe Asp Ile Ser Asp Ile Asp Ala Asp Ala Cys
 12500 12505 12510
 Ser Leu Ser Trp His Ile Pro Leu Glu Asp Gly Gly Ser Asn Ile Thr
 12515 12520 12525
 Asn Tyr Ile Val Glu Lys Cys Asp Val Ser Arg Gly Asp Trp Val Thr
 12530 12535 12540 1
 Ala Leu Ala Ser Val Thr Lys Thr Ser Cys Arg Val Gly Lys Leu Ile
 2545 12550 12555 12560
 Pro Gly Gln Glu Tyr Ile Phe Arg Val Arg Ala Glu Asn Arg Phe Gly
 12565 12570 12575
 Ile Ser Glu Pro Leu Thr Ser Pro Lys Met Val Ala Gln Phe Pro Phe
 12580 12585 12590
 Gly Val Pro Ser Glu Pro Lys Asn Ala Arg Val Thr Lys Val Asn Lys
 12595 12600 12605
 Asp Cys Ile Phe Val Ala Trp Asp Arg Pro Asp Ser Asp Gly Gly Ser
 12610 12615 12620 1

Pro Ile Ile Gly Tyr Leu Ile Glu Arg Lys Glu Arg Asn Ser Leu Leu
 2625 12630 12635 12640
 Trp Val Lys Ala Asn Asp Thr Leu Val Arg Ser Thr Glu Tyr Pro Cys
 12645 12650 12655
 Ala Gly Leu Val Glu Gly Leu Glu Tyr Ser Phe Arg Ile Tyr Ala Leu
 12660 12665 12670
 Asn Lys Ala Gly Ser Ser Pro Pro Ser Lys Pro Thr Glu Tyr Val Thr
 12675 12680 12685
 Ala Arg Met Pro Val Asp Pro Pro Gly Lys Pro Glu Val Ile Asp Val
 12690 12695 12700 1
 Thr Lys Ser Thr Val Ser Leu Ile Trp Ala Arg Pro Lys His Asp Gly
 2705 12710 12715 12720
 Gly Ser Lys Ile Ile Gly Tyr Phe Val Glu Ala Cys Lys Leu Pro Gly
 12725 12730 12735
 Asp Lys Trp Val Arg Cys Asn Thr Ala Pro His Gln Ile Pro Gln Glu
 12740 12745 12750
 Glu Tyr Thr Ala Thr Gly Leu Glu Glu Lys Ala Gln Tyr Gln Phe Arg
 12755 12760 12765
 Ala Ile Ala Arg Thr Ala Val Asn Ile Ser Pro Pro Ser Glu Pro Ser
 12770 12775 12780 1
 Asp Pro Val Thr Ile Leu Ala Glu Asn Val Pro Pro Arg Ile Asp Leu
 2785 12790 12795 12800
 Ser Val Ala Met Lys Ser Leu Leu Thr Val Lys Ala Gly Thr Asn Val
 12805 12810 12815
 Cys Leu Asp Ala Thr Val Phe Gly Lys Pro Met Pro Thr Val Ser Trp
 12820 12825 12830
 Lys Lys Asp Gly Thr Leu Leu Lys Pro Ala Glu Gly Ile Lys Met Ala
 12835 12840 12845
 Met Gln Arg Asn Leu Cys Thr Leu Glu Leu Phe Ser Val Asn Arg Lys
 12850 12855 12860 1
 Asp Ser Gly Asp Tyr Thr Ile Thr Ala Glu Asn Ser Ser Gly Ser Lys
 2865 12870 12875 12880
 Ser Ala Thr Ile Lys Leu Lys Val Leu Asp Lys Pro Gly Pro Pro Ala
 12885 12890 12895
 Ser Val Lys Ile Asn Lys Met Tyr Ser Asp Arg Ala Met Leu Ser Trp
 12900 12905 12910
 Glu Pro Pro Leu Glu Asp Gly Ser Glu Ile Thr Asn Tyr Ile Val
 12915 12920 12925
 Asp Lys Arg Glu Thr Ser Arg Pro Asn Trp Ala Gln Val Ser Ala Thr
 12930 12935 12940 1
 Val Pro Ile Thr Ser Cys Ser Val Glu Lys Leu Ile Glu Gly His Glu
 2945 12950 12955 12960
 Tyr Gln Phe Arg Ile Cys Ala Glu Asn Lys Tyr Gly Val Gly Asp Pro
 12965 12970 12975
 Val Phe Thr Glu Pro Ala Ile Ala Lys Asn Pro Tyr Asp Pro Pro Gly
 12980 12985 12990
 Arg Cys Asp Pro Pro Val Ile Ser Asn Ile Thr Lys Asp His Met Thr
 12995 13000 13005
 Val Ser Trp Lys Pro Pro Ala Asp Asp Gly Ser Pro Ile Thr Gly
 13010 13015 13020 1
 Tyr Leu Leu Glu Lys Arg Glu Thr Gln Ala Val Asn Trp Thr Lys Val
 3025 13030 13035 13040
 Asn Arg Lys Pro Ile Ile Glu Arg Thr Leu Lys Ala Thr Gly Leu Gln
 13045 13050 13055
 Glu Gly Thr Glu Tyr Glu Phe Arg Val Thr Ala Ile Asn Lys Ala Gly
 13060 13065 13070
 Pro Gly Lys Pro Ser Asp Ala Ser Lys Ala Ala Tyr Ala Arg Asp Pro
 13075 13080 13085
 Gln Tyr Pro Pro Ala Pro Pro Ala Phe Pro Lys Val Tyr Asp Thr Thr
 13090 13095 13100 1
 Arg Ser Ser Val Ser Leu Ser Trp Gly Lys Pro Ala Tyr Asp Gly Gly
 3105 13110 13115 13120

Ser Pro Ile Ile Gly Tyr Leu Val Glu Val Lys Arg Ala Asp Ser Asp
 13125 13130 13135
 Asn Trp Val Arg Cys Asn Leu Pro Gln Asn Leu Gln Lys Thr Arg Phe
 13140 13145 13150
 Glu Val Thr Gly Leu Met Glu Asp Thr Gln Tyr Gln Phe Arg Val Tyr
 13155 13160 13165
 Ala Val Asn Lys Ile Gly Tyr Ser Asp Pro Ser Asp Val Pro Asp Lys
 13170 13175 13180 1
 His Tyr Pro Lys Asp Ile Leu Ile Pro Pro Glu Gly Glu His Asp Ala
 3185 13190 13195 13200
 Asp Leu Arg Lys Thr Leu Ile Leu Arg Ala Gly Val Thr Met Arg Leu
 13205 13210 13215
 Tyr Val Pro Val Lys Gly Arg Pro Pro Pro Lys Ile Thr Trp Ser Lys
 13220 13225 13230
 Pro Asn Val Asn Leu Arg Asp Arg Ile Gly Leu Asp Ile Lys Ser Thr
 13235 13240 13245
 Asp Phe Asp Thr Phe Leu Arg Cys Glu Asn Val Asn Lys Tyr Asp Ala
 13250 13255 13260 1
 Gly Lys Tyr Ile Leu Thr Leu Glu Asn Ser Cys Gly Lys Lys Glu Tyr
 3265 13270 13275 13280
 Thr Ile Val Val Lys Val Leu Asp Thr Pro Gly Pro Pro Ile Asn Val
 13285 13290 13295
 Thr Val Lys Glu Ile Ser Lys Asp Ser Ala Tyr Val Thr Trp Glu Pro
 13300 13305 13310
 Pro Ile Ile Asp Gly Gly Ser Pro Ile Ile Asn Tyr Val Val Gln Lys
 13315 13320 13325
 Arg Asp Ala Glu Arg Lys Ser Trp Ser Thr Val Thr Thr Glu Cys Ser
 13330 13335 13340 1
 Lys Thr Ser Phe Arg Val Pro Asn Leu Glu Glu Gly Lys Ser Tyr Phe
 3345 13350 13355 13360
 Phe Arg Val Phe Ala Glu Asn Glu Tyr Gly Ile Gly Asp Pro Gly Glu
 13365 13370 13375
 Thr Arg Asp Ala Val Lys Ala Ser Gln Thr Pro Gly Pro Val Val Asp
 13380 13385 13390
 Leu Lys Val Arg Ser Val Ser Lys Ser Ser Cys Ser Ile Gly Trp Lys
 13395 13400 13405
 Lys Pro His Ser Asp Gly Gly Ser Arg Ile Ile Gly Tyr Val Val Asp
 13410 13415 13420 1
 Phe Leu Thr Glu Glu Asn Lys Trp Gln Arg Val Met Lys Ser Leu Ser
 3425 13430 13435 13440
 Leu Gln Tyr Ser Ala Lys Asp Leu Thr Glu Gly Lys Glu Tyr Thr Phe
 13445 13450 13455
 Arg Val Ser Ala Glu Asn Glu Asn Gly Glu Gly Thr Pro Ser Glu Ile
 13460 13465 13470
 Thr Val Val Ala Arg Asp Asp Val Val Ala Pro Asp Leu Asp Leu Lys
 13475 13480 13485
 Gly Leu Pro Asp Leu Cys Tyr Leu Ala Lys Glu Asn Ser Asn Phe Arg
 13490 13495 13500 1
 Leu Lys Ile Pro Ile Lys Gly Lys Pro Ala Pro Ser Val Ser Trp Lys
 3505 13510 13515 13520
 Lys Gly Glu Asp Pro Leu Ala Thr Asp Thr Arg Val Ser Val Glu Ser
 13525 13530 13535
 Ser Ala Val Asn Thr Thr Leu Ile Val Tyr Asp Cys Gln Lys Ser Asp
 13540 13545 13550
 Ala Gly Lys Tyr Thr Ile Thr Leu Lys Asn Val Ala Gly Thr Lys Glu
 13555 13560 13565
 Gly Thr Ile Ser Ile Lys Val Val Gly Lys Pro Gly Ile Pro Thr Gly
 13570 13575 13580 1
 Pro Ile Lys Phe Asp Glu Val Thr Ala Glu Ala Met Thr Leu Lys Trp
 3585 13590 13595 13600
 Ala Pro Pro Lys Asp Asp Gly Gly Ser Glu Ile Thr Asn Tyr Ile Leu
 13605 13610 13615

Glu Lys Arg Asp Ser Val Asn Asn Lys Trp Val Thr Cys Ala Ser Ala
 13620 13625 13630
 Val Gln Lys Thr Thr Phe Arg Val Thr Arg Leu His Glu Gly Met Glu
 13635 13640 13645
 Tyr Thr Phe Arg Val Ser Ala Glu Asn Lys Tyr Gly Val Gly Glu Gly
 13650 13655 13660 1
 Leu Lys Ser Glu Pro Ile Val Ala Arg His Pro Phe Asp Val Pro Asp
 3665 13670 13675 13680
 Ala Pro Pro Pro Asn Ile Val Asp Val Arg His Asp Ser Val Ser
 13685 13690 13695
 Leu Thr Trp Thr Asp Pro Lys Lys Thr Gly Gly Ser Pro Ile Thr Gly
 13700 13705 13710
 Tyr His Leu Glu Phe Lys Glu Arg Asn Ser Leu Leu Trp Lys Arg Ala
 13715 13720 13725
 Asn Lys Thr Pro Ile Arg Met Arg Asp Phe Lys Val Thr Gly Leu Thr
 13730 13735 13740 1
 Glu Gly Leu Glu Tyr Glu Phe Arg Val Met Ala Ile Asn Leu Ala Gly
 3745 13750 13755 13760
 Val Gly Lys Pro Ser Leu Pro Ser Glu Pro Val Val Ala Leu Asp Pro
 13765 13770 13775
 Ile Asp Pro Pro Gly Lys Pro Glu Val Ile Asn Ile Thr Arg Asn Ser
 13780 13785 13790
 Val Thr Leu Ile Trp Thr Glu Pro Lys Tyr Asp Gly Gly His Lys Leu
 13795 13800 13805
 Thr Gly Tyr Ile Val Glu Lys Arg Asp Leu Pro Ser Lys Ser Trp Met
 13810 13815 13820 1
 Lys Ala Asn His Val Asn Val Pro Glu Cys Ala Phe Thr Val Thr Asp
 3825 13830 13835 13840
 Leu Val Glu Gly Gly Lys Tyr Glu Phe Arg Ile Arg Ala Lys Asn Thr
 13845 13850 13855
 Ala Gly Ala Ile Ser Ala Pro Ser Glu Ser Thr Glu Thr Ile Ile Cys
 13860 13865 13870
 Lys Asp Glu Tyr Glu Ala Pro Thr Ile Val Leu Asp Pro Thr Ile Lys
 13875 13880 13885
 Asp Gly Leu Thr Ile Lys Ala Gly Asp Thr Ile Val Leu Asn Ala Ile
 13890 13895 13900 1
 Ser Ile Leu Gly Lys Pro Leu Pro Lys Ser Ser Trp Ser Lys Ala Gly
 3905 13910 13915 13920
 Lys Asp Ile Arg Pro Ser Asp Ile Thr Gln Ile Thr Ser Thr Pro Thr
 13925 13930 13935
 Ser Ser Met Leu Thr Ile Lys Tyr Ala Thr Arg Lys Asp Ala Gly Glu
 13940 13945 13950
 Tyr Thr Ile Thr Ala Thr Asn Pro Phe Gly Thr Lys Val Glu His Val
 13955 13960 13965
 Lys Val Thr Val Leu Asp Val Pro Gly Pro Pro Gly Pro Val Glu Ile
 13970 13975 13980 1
 Ser Asn Val Ser Ala Glu Lys Ala Thr Leu Thr Trp Thr Pro Pro Leu
 3985 13990 13995 14000
 Glu Asp Gly Gly Ser Pro Ile Lys Ser Tyr Ile Leu Glu Lys Arg Glu
 14005 14010 14015
 Thr Ser Arg Leu Leu Trp Thr Val Val Ser Glu Asp Ile Gln Ser Cys
 14020 14025 14030
 Arg His Val Ala Thr Lys Leu Ile Gln Gly Asn Glu Tyr Ile Phe Arg
 14035 14040 14045
 Val Ser Ala Val Asn His Tyr Gly Lys Gly Glu Pro Val Gln Ser Glu
 14050 14055 14060 1
 Pro Val Lys Met Val Asp Arg Phe Gly Pro Pro Gly Pro Pro Glu Lys
 4065 14070 14075 14080
 Pro Glu Val Ser Asn Val Thr Lys Asn Thr Ala Thr Val Ser Trp Lys
 14085 14090 14095
 Arg Pro Val Asp Asp Gly Gly Ser Glu Ile Thr Gly Tyr His Val Glu
 14100 14105 14110

Arg Arg Glu Lys Lys Ser Leu Arg Trp Val Arg Ala Ile Lys Thr Pro
 14115 14120 14125
 Val Ser Asp Leu Arg Cys Lys Val Thr Gly Leu Gln Glu Gly Ser Thr
 14130 14135 14140 1
 Tyr Glu Phe Arg Val Ser Ala Glu Asn Arg Ala Gly Ile Gly Pro Pro
 4145 14150 14155 14160
 Ser Glu Ala Ser Asp Ser Val Leu Met Lys Asp Ala Ala Tyr Pro Pro
 14165 14170 14175
 Gly Pro Pro Ser Asn Pro His Val Thr Asp Thr Thr Lys Lys Ser Ala
 14180 14185 14190
 Ser Leu Ala Trp Gly Lys Pro His Tyr Asp Gly Gly Leu Glu Ile Thr
 14195 14200 14205
 Gly Tyr Val Val Glu His Gln Lys Val Gly Asp Glu Ala Trp Ile Lys
 14210 14215 14220 1
 Asp Thr Thr Gly Thr Ala Leu Arg Ile Thr Gln Phe Val Val Pro Asp
 4225 14230 14235 14240
 Leu Gln Thr Lys Glu Lys Tyr Asn Phe Arg Ile Ser Ala Ile Asn Asp
 14245 14250 14255
 Ala Gly Val Gly Glu Pro Ala Val Ile Pro Asp Val Glu Ile Val Glu
 14260 14265 14270
 Arg Glu Met Ala Pro Asp Phe Glu Leu Asp Ala Glu Leu Arg Arg Thr
 14275 14280 14285
 Leu Val Val Arg Ala Gly Leu Ser Ile Arg Ile Phe Val Pro Ile Lys
 14290 14295 14300 1
 Gly Arg Pro Ala Pro Glu Val Thr Trp Thr Lys Asp Asn Ile Asn Leu
 4305 14310 14315 14320
 Lys Asn Arg Ala Asn Ile Glu Asn Thr Glu Ser Phe Thr Leu Leu Ile
 14325 14330 14335
 Ile Pro Glu Cys Asn Arg Tyr Asp Thr Gly Lys Phe Val Met Thr Ile
 14340 14345 14350
 Glu Asn Pro Ala Gly Lys Lys Ser Gly Phe Val Asn Val Arg Val Leu
 14355 14360 14365
 Asp Thr Pro Gly Pro Val Leu Asn Leu Arg Pro Thr Asp Ile Thr Lys
 14370 14375 14380 1
 Asp Ser Val Thr Leu His Trp Asp Leu Pro Leu Ile Asp Gly Gly Ser
 4385 14390 14395 14400
 Arg Ile Thr Asn Tyr Ile Val Glu Lys Arg Glu Ala Thr Arg Lys Ser
 14405 14410 14415
 Tyr Ser Thr Ala Thr Thr Lys Cys His Lys Cys Thr Tyr Lys Val Thr
 14420 14425 14430
 Gly Leu Ser Glu Gly Cys Glu Tyr Phe Phe Arg Val Met Ala Glu Asn
 14435 14440 14445
 Glu Tyr Gly Ile Gly Glu Pro Thr Glu Thr Thr Glu Pro Val Lys Ala
 14450 14455 14460 1
 Ser Glu Ala Pro Ser Pro Pro Asp Ser Leu Asn Ile Met Asp Ile Thr
 4465 14470 14475 14480
 Lys Ser Thr Val Ser Leu Ala Trp Pro Lys Pro Lys His Asp Gly Gly
 14485 14490 14495
 Ser Lys Ile Thr Gly Tyr Val Ile Glu Ala Gln Arg Lys Gly Ser Asp
 14500 14505 14510
 Gln Trp Thr His Ile Thr Thr Val Lys Gly Leu Glu Cys Val Val Arg
 14515 14520 14525
 Asn Leu Thr Glu Gly Glu Glu Tyr Thr Phe Gln Val Met Ala Val Asn
 14530 14535 14540 1
 Ser Ala Gly Arg Ser Ala Pro Arg Glu Ser Arg Pro Val Ile Val Lys
 4545 14550 14555 14560
 Glu Gln Thr Met Leu Pro Glu Leu Asp Leu Arg Gly Ile Tyr Gln Lys
 14565 14570 14575
 Leu Val Ile Ala Lys Ala Gly Asp Asn Ile Lys Val Glu Ile Pro Val
 14580 14585 14590
 Leu Gly Arg Pro Lys Pro Thr Val Thr Trp Lys Lys Gly Asp Gln Ile
 14595 14600 14605

Leu Lys Gln Thr Gln Arg Val Asn Phe Glu Thr Thr Ala Thr Ser Thr
 14610 14615 14620 1
 Ile Leu Asn Ile Asn Glu Cys Val Arg Ser Asp Ser Gly Pro Tyr Pro
 4625 14630 14635 14640
 Leu Thr Ala Arg Asn Ile Val Gly Glu Val Gly Asp Val Ile Thr Ile
 14645 14650 14655
 Gln Val His Asp Ile Pro Gly Pro Pro Thr Gly Pro Ile Lys Phe Asp
 14660 14665 14670
 Glu Val Ser Ser Asp Phe Val Thr Phe Ser Trp Asp Pro Pro Glu Asn
 14675 14680 14685
 Asp Gly Gly Val Pro Ile Ser Asn Tyr Val Val Glu Met Arg Gln Thr
 14690 14695 14700 1
 Asp Ser Thr Thr Trp Val Glu Leu Ala Thr Thr Val Ile Arg Thr Thr
 4705 14710 14715 14720
 Tyr Lys Ala Thr Arg Leu Thr Thr Gly Leu Glu Tyr Gln Phe Arg Val
 14725 14730 14735
 Lys Ala Gln Asn Arg Tyr Gly Val Gly Pro Gly Ile Thr Ser Ala Trp
 14740 14745 14750
 Ile Val Ala Asn Tyr Pro Phe Lys Val Pro Gly Pro Pro Gly Thr Pro
 14755 14760 14765
 Gln Val Thr Ala Val Thr Lys Asp Ser Met Thr Ile Ser Trp His Glu
 14770 14775 14780 1
 Pro Leu Ser Asp Gly Gly Ser Pro Ile Leu Gly Tyr His Val Glu Arg
 4785 14790 14795 14800
 Lys Glu Arg Asn Gly Ile Leu Trp Gln Thr Val Ser Lys Ala Leu Val
 14805 14810 14815
 Pro Gly Asn Ile Phe Lys Ser Ser Gly Leu Thr Asp Gly Ile Ala Tyr
 14820 14825 14830
 Glu Phe Arg Val Ile Ala Glu Asn Met Ala Gly Lys Ser Lys Pro Ser
 14835 14840 14845
 Lys Pro Ser Glu Pro Met Leu Ala Leu Asp Pro Ile Asp Pro Pro Gly
 14850 14855 14860 1
 Lys Pro Val Pro Leu Asn Ile Thr Arg His Thr Val Thr Leu Lys Trp
 4865 14870 14875 14880
 Ala Lys Pro Glu Tyr Thr Gly Gly Phe Lys Ile Thr Ser Tyr Ile Val
 14885 14890 14895
 Glu Lys Arg Asp Leu Pro Asn Gly Arg Trp Leu Lys Ala Asn Phe Ser
 14900 14905 14910
 Asn Ile Leu Glu Asn Glu Phe Thr Val Ser Gly Leu Thr Glu Asp Ala
 14915 14920 14925
 Ala Tyr Glu Phe Arg Val Ile Ala Lys Asn Ala Ala Gly Ala Ile Ser
 14930 14935 14940 1
 Pro Pro Ser Glu Pro Ser Asp Ala Ile Thr Cys Arg Asp Asp Val Glu
 4945 14950 14955 14960
 Ala Pro Lys Ile Lys Val Asp Val Lys Phe Lys Asp Thr Val Ile Leu
 14965 14970 14975
 Lys Ala Gly Glu Ala Phe Arg Leu Glu Ala Asp Val Ser Gly Arg Pro
 14980 14985 14990
 Pro Pro Thr Met Glu Trp Ser Lys Asp Gly Lys Glu Leu Glu Gly Thr
 14995 15000 15005
 Ala Lys Leu Glu Ile Lys Ile Ala Asp Phe Ser Thr Asn Leu Val Asn
 15010 15015 15020 1
 Lys Asp Ser Thr Arg Arg Asp Ser Gly Ala Tyr Thr Leu Thr Ala Thr
 5025 15030 15035 15040
 Asn Pro Gly Gly Phe Ala Lys His Ile Phe Asn Val Lys Val Leu Asp
 15045 15050 15055
 Arg Pro Gly Pro Pro Glu Gly Pro Leu Ala Val Thr Glu Val Thr Ser
 15060 15065 15070
 Glu Lys Cys Val Leu Ser Trp Phe Pro Pro Leu Asp Asp Gly Gly Ala
 15075 15080 15085
 Lys Ile Asp His Tyr Ile Val Gln Lys Arg Glu Thr Ser Arg Leu Ala
 15090 15095 15100 1

Trp Thr Asn Val Ala Ser Glu Val Gln Val Thr Lys Leu Lys Val Thr
 5105 15110 15115 15120
 Lys Leu Leu Lys Gly Asn Glu Tyr Ile Phe Arg Val Met Ala Val Asn
 15125 15130 15135
 Lys Tyr Gly Val Gly Glu Pro Leu Glu Ser Glu Pro Val Leu Ala Val
 15140 15145 15150
 Asn Pro Tyr Gly Pro Pro Asp Pro Pro Lys Asn Pro Glu Val Thr Thr
 15155 15160 15165
 Ile Thr Lys Asp Ser Met Val Val Cys Trp Gly His Pro Asp Ser Asp
 15170 15175 15180 1
 Gly Gly Ser Glu Ile Ile Asn Tyr Ile Val Glu Arg Arg Asp Lys Ala
 5185 15190 15195 15200
 Gly Gln Arg Trp Ile Lys Cys Asn Lys Lys Thr Leu Thr Asp Leu Arg
 15205 15210 15215
 Tyr Lys Val Ser Gly Leu Thr Glu Gly His Glu Tyr Glu Phe Arg Ile
 15220 15225 15230
 Met Ala Glu Asn Ala Ala Gly Ile Ser Ala Pro Ser Pro Thr Ser Pro
 15235 15240 15245
 Phe Tyr Lys Ala Cys Asp Thr Val Phe Lys Pro Gly Pro Pro Gly Asn
 15250 15255 15260 1
 Pro Arg Val Leu Asp Thr Ser Arg Ser Ser Ile Ser Ala Trp Asn
 5265 15270 15275 15280
 Lys Pro Ile Tyr Asp Gly Gly Ser Glu Ile Thr Gly Tyr Met Val Glu
 15285 15290 15295
 Ile Ala Leu Pro Glu Glu Asp Glu Trp Gln Ile Val Thr Pro Pro Ala
 15300 15305 15310
 Gly Leu Lys Ala Thr Ser Tyr Thr Ile Thr Gly Leu Thr Glu Asn Gln
 15315 15320 15325
 Glu Tyr Lys Ile Arg Ile Tyr Ala Met Asn Ser Glu Gly Leu Gly Glu
 15330 15335 15340 1
 Pro Ala Leu Val Pro Gly Thr Pro Lys Ala Glu Asp Arg Met Leu Pro
 5345 15350 15355 15360
 Pro Glu Ile Glu Leu Asp Ala Asp Leu Arg Lys Val Val Thr Ile Arg
 15365 15370 15375
 Ala Cys Cys Thr Leu Arg Leu Phe Val Pro Ile Lys Gly Arg Pro Asp
 15380 15385 15390
 Pro Glu Val Lys Trp Ala Arg Asp His Gly Glu Ser Leu Asp Lys Ala
 15395 15400 15405
 Ser Ile Glu Ser Ala Ser Ser Tyr Thr Leu Leu Ile Val Gly Asn Val
 15410 15415 15420 1
 Asn Arg Phe Asp Ser Gly Lys Tyr Ile Leu Thr Val Glu Asn Ser Ser
 5425 15430 15435 15440
 Gly Ser Lys Ser Ala Phe Val Asn Val Arg Val Leu Asp Thr Pro Gly
 15445 15450 15455
 Pro Pro Gln Asp Leu Lys Val Lys Glu Val Thr Lys Thr Ser Val Thr
 15460 15465 15470
 Leu Thr Trp Asp Pro Pro Leu Leu Asp Gly Gly Ser Lys Ile Lys Asn
 15475 15480 15485
 Tyr Ile Val Glu Lys Arg Glu Ser Thr Arg Lys Ala Tyr Ser Thr Val
 15490 15495 15500 1
 Ala Thr Asn Cys His Lys Thr Ser Trp Lys Val Asp Gln Leu Gln Glu
 5505 15510 15515 15520
 Gly Cys Ser Tyr Tyr Phe Arg Val Leu Ala Glu Asn Glu Tyr Gly Ile
 15525 15530 15535
 Gly Leu Pro Ala Glu Thr Ala Glu Ser Val Lys Ala Ser Glu Arg Pro
 15540 15545 15550
 Leu Pro Pro Gly Lys Ile Thr Leu Met Asp Val Thr Arg Asn Ser Val
 15555 15560 15565
 Ser Leu Ser Trp Glu Lys Pro Glu His Asp Gly Gly Ser Arg Ile Leu
 15570 15575 15580 1
 Gly Tyr Ile Val Glu Met Gln Thr Lys Gly Ser Asp Lys Trp Ala Thr
 5585 15590 15595 15600

Cys Ala Thr Val Lys Val Thr Glu Ala Thr Ile Thr Gly Leu Ile Gln
 15605 15610 15615
 Gly Glu Glu Tyr Ser Phe Arg Val Ser Ala Gln Asn Glu Lys Gly Ile
 15620 15625 15630
 Ser Asp Pro Arg Gln Leu Ser Val Pro Val Ile Ala Lys Asp Leu Val
 15635 15640 15645
 Ile Pro Pro Ala Phe Lys Leu Leu Phe Asn Thr Phe Thr Val Leu Ala
 15650 15655 15660 1
 Gly Glu Asp Leu Lys Val Asp Val Pro Phe Ile Gly Arg Pro Thr Pro
 5665 15670 15675 15680
 Ala Val Thr Trp His Lys Asp Asn Val Pro Leu Lys Gln Thr Thr Arg
 15685 15690 15695
 Val Asn Ala Glu Ser Thr Glu Asn Asn Ser Leu Leu Thr Ile Lys Asp
 15700 15705 15710
 Ala Cys Arg Glu Asp Val Gly His Tyr Val Val Lys Leu Thr Asn Ser
 15715 15720 15725
 Ala Gly Glu Ala Ile Glu Thr Leu Asn Val Ile Val Leu Asp Lys Pro
 15730 15735 15740 1
 Gly Pro Pro Thr Gly Pro Val Lys Met Asp Glu Val Thr Ala Asp Ser
 5745 15750 15755 15760
 Ile Thr Leu Ser Trp Gly Pro Pro Lys Tyr Asp Gly Gly Ser Ser Ile
 15765 15770 15775
 Asn Asn Tyr Ile Val Glu Lys Arg Asp Thr Ser Thr Thr Trp Gln
 15780 15785 15790
 Ile Val Ser Ala Thr Val Ala Arg Thr Thr Ile Lys Ala Cys Arg Leu
 15795 15800 15805
 Lys Thr Gly Cys Glu Tyr Gln Phe Arg Ile Ala Ala Glu Asn Arg Tyr
 15810 15815 15820 1
 Gly Lys Ser Thr Tyr Leu Asn Ser Glu Pro Thr Val Ala Gln Tyr Pro
 5825 15830 15835 15840
 Phe Lys Val Pro Gly Pro Pro Gly Thr Pro Val Val Thr Leu Ser Ser
 15845 15850 15855
 Arg Asp Ser Met Glu Val Gln Trp Asn Glu Pro Ile Ser Asp Gly Gly
 15860 15865 15870
 Ser Arg Val Ile Gly Tyr His Leu Glu Arg Lys Glu Arg Asn Ser Ile
 15875 15880 15885
 Leu Trp Val Lys Leu Asn Lys Thr Pro Ile Pro Gln Thr Lys Phe Lys
 15890 15895 15900 1
 Thr Thr Gly Leu Glu Glu Gly Val Glu Tyr Glu Phe Arg Val Ser Ala
 5905 15910 15915 15920
 Glu Asn Ile Val Gly Ile Gly Lys Pro Ser Lys Val Ser Glu Cys Tyr
 15925 15930 15935
 Val Ala Arg Asp Pro Cys Asp Pro Pro Gly Arg Pro Glu Ala Ile Ile
 15940 15945 15950
 Val Thr Arg Asn Ser Val Thr Leu Gln Trp Lys Lys Pro Thr Tyr Asp
 15955 15960 15965
 Gly Gly Ser Lys Ile Thr Gly Tyr Ile Val Glu Lys Lys Glu Leu Pro
 15970 15975 15980 1
 Glu Gly Arg Trp Met Lys Ala Ser Phe Thr Asn Ile Ile Asp Thr His
 5985 15990 15995 16000
 Phe Glu Val Thr Gly Leu Val Glu Asp His Arg Tyr Glu Phe Arg Val
 16005 16010 16015
 Ile Ala Arg Asn Ala Ala Gly Val Phe Ser Glu Pro Ser Glu Ser Thr
 16020 16025 16030
 Gly Ala Ile Thr Ala Arg Asp Glu Val Asp Pro Pro Arg Ile Ser Met
 16035 16040 16045
 Asp Pro Lys Tyr Lys Asp Thr Ile Val Val His Ala Gly Glu Ser Phe
 16050 16055 16060 1
 Lys Val Asp Ala Asp Ile Tyr Gly Lys Pro Ile Pro Thr Ile Gln Trp
 6065 16070 16075 16080
 Ile Lys Gly Asp Gln Glu Leu Ser Asn Thr Ala Arg Leu Glu Ile Lys
 16085 16090 16095

Ser Thr Asp Phe Ala Thr Ser Leu Ser Val Lys Asp Ala Val Arg Val
 16100 16105 16110
 Asp Ser Gly Asn Tyr Ile Leu Lys Ala Lys Asn Val Ala Gly Glu Arg
 16115 16120 16125
 Ser Val Thr Val Asn Val Lys Val Leu Asp Arg Pro Gly Pro Pro Glu
 16130 16135 16140 1
 Gly Pro Val Val Ile Ser Gly Val Thr Ala Glu Lys Cys Thr Leu Ala
 6145 16150 16155 16160
 Trp Lys Pro Pro Leu Gln Asp Gly Gly Ser Asp Ile Ile Asn Tyr Ile
 16165 16170 16175
 Val Glu Arg Arg Glu Thr Ser Arg Leu Val Trp Thr Val Val Asp Ala
 16180 16185 16190
 Asn Val Gln Thr Leu Ser Cys Lys Val Thr Lys Leu Leu Glu Gly Asn
 16195 16200 16205
 Glu Tyr Thr Phe Arg Ile Met Ala Val Asn Lys Tyr Gly Val Gly Glu
 16210 16215 16220 1
 Pro Leu Glu Ser Glu Pro Val Val Ala Lys Asn Pro Phe Val Val Pro
 6225 16230 16235 16240
 Asp Ala Pro Lys Ala Pro Glu Val Thr Thr Val Thr Lys Asp Ser Met
 16245 16250 16255
 Ile Val Val Trp Glu Arg Pro Ala Ser Asp Gly Gly Ser Glu Ile Leu
 16260 16265 16270
 Gly Tyr Val Leu Glu Lys Arg Asp Lys Glu Gly Ile Arg Trp Thr Arg
 16275 16280 16285
 Cys His Lys Arg Leu Ile Gly Glu Leu Arg Leu Arg Val Thr Gly Leu
 16290 16295 16300 1
 Ile Glu Asn His Asp Tyr Glu Phe Arg Val Ser Ala Glu Asn Ala Ala
 6305 16310 16315 16320
 Gly Leu Ser Glu Pro Ser Pro Ser Ala Tyr Gln Lys Ala Cys Asp
 16325 16330 16335
 Pro Ile Tyr Lys Pro Gly Pro Pro Asn Asn Pro Lys Val Ile Asp Ile
 16340 16345 16350
 Thr Arg Ser Ser Val Phe Leu Ser Trp Ser Lys Pro Ile Tyr Asp Gly
 16355 16360 16365
 Gly Cys Glu Ile Gln Gly Tyr Ile Val Glu Lys Cys Asp Val Asn Val
 16370 16375 16380 1
 Gly Glu Trp Thr Met Cys Thr Pro Pro Thr Gly Ile Asn Lys Thr Asn
 6385 16390 16395 16400
 Ile Glu Val Glu Lys Leu Leu Glu Lys His Glu Tyr Asn Phe Arg Ile
 16405 16410 16415
 Cys Ala Ile Asn Lys Ala Gly Val Gly Glu His Ala Asp Val Pro Gly
 16420 16425 16430
 Pro Ile Ile Val Glu Glu Lys Leu Glu Ala Pro Asp Ile Asp Leu Asp
 16435 16440 16445
 Leu Glu Leu Arg Lys Ile Ile Asn Ile Arg Ala Gly Gly Ser Leu Arg
 16450 16455 16460 1
 Leu Phe Val Pro Ile Lys Gly Arg Pro Thr Pro Glu Val Lys Trp Gly
 6465 16470 16475 16480
 Lys Val Asp Gly Glu Ile Arg Asp Ala Ala Ile Ile Asp Val Thr Ser
 16485 16490 16495
 Ser Phe Thr Ser Leu Val Leu Asp Asn Val Asn Arg Tyr Asp Ser Gly
 16500 16505 16510
 Lys Tyr Thr Leu Thr Leu Glu Asn Ser Ser Gly Thr Lys Ser Ala Phe
 16515 16520 16525
 Val Thr Val Arg Val Leu Asp Thr Pro Ser Pro Pro Val Asn Leu Lys
 16530 16535 16540 1
 Val Thr Glu Ile Thr Lys Asp Ser Val Ser Ile Thr Trp Glu Pro Pro
 6545 16550 16555 16560
 Leu Leu Asp Gly Gly Ser Lys Ile Lys Asn Tyr Ile Val Glu Lys Arg
 16565 16570 16575
 Glu Ala Thr Arg Lys Ser Tyr Ala Ala Val Val Thr Asn Cys His Lys
 16580 16585 16590

Asn Ser Trp Lys Ile Asp Gln Leu Glu Gly Cys Ser Tyr Tyr Phe
 16595 16600 16605
 Arg Val Thr Ala Glu Asn Glu Tyr Gly Ile Gly Leu Pro Ala Gln Thr
 16610 16615 16620 1
 Ala Asp Pro Ile Lys Val Ala Glu Val Pro Gln Pro Pro Gly Lys Ile
 6625 16630 16635 16640
 Thr Val Asp Asp Val Thr Arg Asn Ser Val Ser Leu Ser Trp Thr Lys
 16645 16650 16655
 Pro Glu His Asp Gly Gly Ser Lys Ile Ile Gln Tyr Ile Val Glu Met
 16660 16665 16670
 Gln Ala Lys His Ser Glu Lys Trp Ser Glu Cys Ala Arg Val Lys Ser
 16675 16680 16685
 Leu Gln Ala Val Ile Thr Asn Leu Thr Gln Gly Glu Glu Tyr Leu Phe
 16690 16695 16700 1
 Arg Val Val Ala Val Asn Glu Lys Gly Arg Ser Asp Pro Arg Ser Leu
 6705 16710 16715 16720
 Ala Val Pro Ile Val Ala Lys Asp Leu Val Ile Glu Pro Asp Val Lys
 16725 16730 16735
 Pro Ala Phe Ser Ser Tyr Ser Val Gln Val Gly Gln Asp Leu Lys Ile
 16740 16745 16750
 Glu Val Pro Ile Ser Gly Arg Pro Lys Pro Thr Ile Thr Trp Thr Lys
 16755 16760 16765
 Asp Gly Leu Pro Leu Lys Gln Thr Thr Arg Ile Asn Val Thr Asp Ser
 16770 16775 16780 1
 Leu Asp Leu Thr Thr Leu Ser Ile Lys Glu Thr His Lys Asp Asp Gly
 6785 16790 16795 16800
 Gly Gln Tyr Gly Ile Thr Val Ala Asn Val Val Gly Gln Lys Thr Ala
 16805 16810 16815
 Ser Ile Glu Ile Val Thr Leu Asp Lys Pro Asp Pro Pro Lys Gly Pro
 16820 16825 16830
 Val Lys Phe Asp Asp Val Ser Ala Glu Ser Ile Thr Leu Ser Trp Asn
 16835 16840 16845
 Pro Pro Leu Tyr Thr Gly Gly Cys Gln Ile Thr Asn Tyr Ile Val Gln
 16850 16855 16860 1
 Lys Arg Asp Thr Thr Thr Val Trp Asp Val Val Ser Ala Thr Val
 6865 16870 16875 16880
 Ala Arg Thr Thr Leu Lys Val Thr Lys Leu Lys Thr Gly Thr Glu Tyr
 16885 16890 16895
 Gln Phe Arg Ile Phe Ala Glu Asn Arg Tyr Gly Gln Ser Phe Ala Leu
 16900 16905 16910
 Glu Ser Asp Pro Ile Val Ala Gln Tyr Pro Tyr Lys Glu Pro Gly Pro
 16915 16920 16925
 Pro Gly Thr Pro Phe Ala Thr Ala Ile Ser Lys Asp Ser Met Val Ile
 16930 16935 16940 1
 Gln Trp His Glu Pro Val Asn Asn Gly Gly Ser Pro Val Ile Gly Tyr
 6945 16950 16955 16960
 His Leu Glu Arg Lys Glu Arg Asn Ser Ile Leu Trp Thr Lys Val Asn
 16965 16970 16975
 Lys Thr Ile Ile His Asp Thr Gln Phe Lys Ala Gln Asn Leu Glu Glu
 16980 16985 16990
 Gly Ile Glu Tyr Glu Phe Arg Val Tyr Ala Glu Asn Ile Val Gly Val
 16995 17000 17005
 Gly Lys Ala Ser Lys Asn Ser Glu Cys Tyr Val Ala Arg Asp Pro Cys
 17010 17015 17020 1
 Asp Pro Pro Gly Thr Pro Glu Pro Ile Met Val Lys Arg Asn Glu Ile
 7025 17030 17035 17040
 Thr Leu Gln Trp Thr Lys Pro Val Tyr Asp Gly Gly Ser Met Ile Thr
 17045 17050 17055
 Gly Tyr Ile Val Glu Lys Arg Asp Leu Pro Asp Gly Arg Trp Met Lys
 17060 17065 17070
 Ala Ser Phe Thr Asn Val Ile Glu Thr Gln Phe Thr Val Ser Gly Leu
 17075 17080 17085

Thr Glu Asp Gln Arg Tyr Glu Phe Arg Val Ile Ala Lys Asn Ala Ala
 17090 17095 17100 1
 Gly Ala Ile Ser Lys Pro Ser Asp Ser Thr Gly Pro Ile Thr Ala Lys
 7105 17110 17115 17120
 Asp Glu Val Glu Leu Pro Arg Ile Ser Met Asp Pro Lys Phe Arg Asp
 17125 17130 17135
 Thr Ile Val Val Asn Ala Gly Glu Thr Phe Arg Leu Glu Ala Asp Val
 17140 17145 17150
 His Gly Lys Pro Leu Pro Thr Ile Glu Trp Leu Arg Gly Asp Lys Glu
 17155 17160 17165
 Ile Glu Glu Ser Ala Arg Cys Glu Ile Lys Asn Thr Asp Phe Lys Ala
 17170 17175 17180 1
 Leu Leu Ile Val Lys Asp Ala Ile Arg Ile Asp Gly Gly Gln Tyr Ile
 7185 17190 17195 17200
 Leu Arg Ala Ser Asn Val Ala Gly Ser Lys Ser Phe Pro Val Asn Val
 17205 17210 17215
 Lys Val Leu Asp Arg Pro Gly Pro Pro Glu Gly Pro Val Gln Val Thr
 17220 17225 17230
 Gly Val Thr Ser Glu Lys Cys Ser Leu Thr Trp Ser Pro Pro Leu Gln
 17235 17240 17245
 Asp Gly Gly Ser Asp Ile Ser His Tyr Val Val Glu Lys Arg Glu Thr
 17250 17255 17260 1
 Ser Arg Leu Ala Trp Thr Val Val Ala Ser Glu Val Val Thr Asn Ser
 7265 17270 17275 17280
 Leu Lys Val Thr Lys Leu Leu Glu Gly Asn Glu Tyr Val Phe Arg Ile
 17285 17290 17295
 Met Ala Val Asn Lys Tyr Gly Val Gly Glu Pro Leu Glu Ser Ala Pro
 17300 17305 17310
 Val Leu Met Lys Asn Pro Phe Val Leu Pro Gly Pro Pro Lys Ser Leu
 17315 17320 17325
 Glu Val Thr Asn Ile Ala Lys Asp Ser Met Thr Val Cys Trp Asn Arg
 17330 17335 17340 1
 Pro Asp Ser Asp Gly Gly Ser Glu Ile Ile Gly Tyr Ile Val Glu Lys
 7345 17350 17355 17360
 Arg Asp Arg Ser Gly Ile Arg Trp Ile Lys Cys Asn Lys Arg Arg Ile
 17365 17370 17375
 Thr Asp Leu Arg Leu Arg Val Thr Gly Leu Thr Glu Asp His Glu Tyr
 17380 17385 17390
 Glu Phe Arg Val Ser Ala Glu Asn Ala Ala Gly Val Gly Glu Pro Ser
 17395 17400 17405
 Pro Ala Thr Val Tyr Tyr Lys Ala Cys Asp Pro Val Phe Lys Pro Gly
 17410 17415 17420 1
 Pro Pro Thr Asn Ala His Ile Val Asp Thr Thr Lys Asn Ser Ile Thr
 7425 17430 17435 17440
 Leu Ala Trp Gly Lys Pro Ile Tyr Asp Gly Gly Ser Glu Ile Leu Gly
 17445 17450 17455
 Tyr Val Val Glu Ile Cys Lys Ala Asp Glu Glu Glu Trp Gln Ile Val
 17460 17465 17470
 Thr Pro Gln Thr Gly Leu Arg Val Thr Arg Phe Glu Ile Ser Lys Leu
 17475 17480 17485
 Thr Glu His Gln Glu Tyr Lys Ile Arg Val Cys Ala Leu Asn Lys Val
 17490 17495 17500 1
 Gly Leu Gly Glu Ala Thr Ser Val Pro Gly Thr Val Lys Pro Glu Asp
 7505 17510 17515 17520
 Lys Leu Glu Ala Pro Glu Leu Asp Leu Asp Ser Glu Leu Arg Lys Gly
 17525 17530 17535
 Ile Val Val Arg Ala Gly Gly Ser Ala Arg Ile His Ile Pro Phe Lys
 17540 17545 17550
 Gly Arg Pro Met Pro Glu Ile Thr Trp Ser Arg Glu Glu Gly Glu Phe
 17555 17560 17565
 Thr Asp Lys Val Gln Ile Glu Lys Gly Val Asn Tyr Thr Gln Leu Ser
 17570 17575 17580 1

Ile Asp Asn Cys Asp Arg Asn Asp Ala Gly Lys Tyr Ile Leu Lys Leu
 7585 17590 17595 17600
 Glu Asn Ser Ser Gly Ser Lys Ser Ala Phe Val Thr Val Lys Val Leu
 17605 17610 17615
 Asp Thr Pro Gly Pro Pro Gln Asn Leu Ala Val Lys Glu Val Arg Lys
 17620 17625 17630
 Asp Ser Ala Phe Leu Val Trp Glu Pro Pro Ile Ile Asp Gly Gly Ala
 17635 17640 17645
 Lys Val Lys Asn Tyr Val Ile Asp Lys Arg Glu Ser Thr Arg Lys Ala
 17650 17655 17660 1
 Tyr Ala Asn Val Ser Ser Lys Cys Ser Lys Thr Ser Phe Lys Val Glu
 7665 17670 17675 17680
 Asn Leu Thr Glu Gly Ala Ile Tyr Tyr Phe Arg Val Met Ala Glu Asn
 17685 17690 17695
 Glu Phe Gly Val Gly Val Pro Val Glu Thr Val Asp Ala Val Lys Ala
 17700 17705 17710
 Ala Glu Pro Pro Ser Pro Pro Gly Lys Val Thr Leu Thr Asp Val Ser
 17715 17720 17725
 Gln Thr Ser Ala Ser Leu Met Trp Glu Lys Pro Glu His Asp Gly Gly
 17730 17735 17740 1
 Ser Arg Val Leu Gly Tyr Val Val Glu Met Gln Pro Lys Gly Thr Glu
 7745 17750 17755 17760
 Lys Trp Ser Ile Val Ala Glu Ser Lys Val Cys Asn Ala Val Val Thr
 17765 17770 17775
 Gly Leu Ser Ser Gly Gln Glu Tyr Gln Phe Arg Val Lys Ala Tyr Asn
 17780 17785 17790
 Glu Lys Gly Lys Ser Asp Pro Arg Val Leu Gly Val Pro Val Ile Ala
 17795 17800 17805
 Lys Asp Leu Thr Ile Gln Pro Ser Leu Lys Leu Pro Phe Asn Thr Tyr
 17810 17815 17820 1
 Ser Ile Gln Ala Gly Glu Asp Leu Lys Ile Glu Ile Pro Val Ile Gly
 7825 17830 17835 17840
 Arg Pro Arg Pro Asn Ile Ser Trp Val Lys Asp Gly Glu Pro Leu Lys
 17845 17850 17855
 Gln Thr Thr Arg Val Asn Val Glu Glu Thr Ala Thr Ser Thr Val Leu
 17860 17865 17870
 His Ile Lys Glu Gly Asn Lys Asp Asp Phe Gly Lys Tyr Thr Val Thr
 17875 17880 17885
 Ala Thr Asn Ser Ala Gly Thr Ala Thr Glu Asn Leu Ser Val Ile Val
 17890 17895 17900 1
 Leu Glu Lys Pro Gly Pro Pro Val Gly Pro Val Arg Phe Asp Glu Val
 7905 17910 17915 17920
 Ser Ala Asp Phe Val Val Ile Ser Trp Glu Pro Pro Ala Tyr Thr Gly
 17925 17930 17935
 Gly Cys Gln Ile Ser Asn Tyr Ile Val Glu Lys Arg Asp Thr Thr Thr
 17940 17945 17950
 Thr Thr Trp His Met Val Ser Ala Thr Val Ala Arg Thr Thr Ile Lys
 17955 17960 17965
 Ile Thr Lys Leu Lys Thr Gly Thr Glu Tyr Gln Phe Arg Ile Phe Ala
 17970 17975 17980 1
 Glu Asn Arg Tyr Gly Lys Ser Ala Pro Leu Asp Ser Lys Ala Val Ile
 7985 17990 17995 18000
 Val Gln Tyr Pro Phe Lys Glu Pro Gly Pro Pro Gly Thr Pro Phe Val
 18005 18010 18015
 Thr Ser Ile Ser Lys Asp Gln Met Leu Val Gln Trp His Glu Pro Val
 18020 18025 18030
 Asn Asp Gly Gly Thr Lys Ile Ile Gly Tyr His Leu Glu Gln Lys Glu
 18035 18040 18045
 Lys Asn Ser Ile Leu Trp Val Lys Leu Asn Lys Thr Pro Ile Gln Asp
 18050 18055 18060 1
 Thr Lys Phe Lys Thr Thr Gly Leu Asp Glu Gly Leu Glu Tyr Glu Phe
 8065 18070 18075 18080

Lys Val Ser Ala Glu Asn Ile Val Gly Ile Gly Lys Pro Ser Lys Val
 18085 18090 18095
 Ser Glu Cys Phe Val Ala Arg Asp Pro Cys Asp Pro Pro Gly Arg Pro
 18100 18105 18110
 Glu Ala Ile Val Ile Thr Arg Asn Asn Val Thr Leu Lys Trp Lys Lys
 18115 18120 18125
 Pro Ala Tyr Asp Gly Gly Ser Lys Ile Thr Gly Tyr Ile Val Glu Lys
 18130 18135 18140 1
 Lys Asp Leu Pro Asp Gly Arg Trp Met Lys Ala Ser Phe Thr Asn Val
 8145 18150 18155 18160
 Leu Glu Thr Glu Phe Thr Val Ser Gly Leu Val Glu Asp Gln Arg Tyr
 18165 18170 18175
 Glu Phe Arg Val Ile Ala Arg Asn Ala Ala Gly Asn Phe Ser Glu Pro
 18180 18185 18190
 Ser Asp Ser Ser Gly Ala Ile Thr Ala Arg Asp Glu Ile Asp Ala Pro
 18195 18200 18205
 Asn Ala Ser Leu Asp Pro Lys Tyr Lys Asp Val Ile Val Val His Ala
 18210 18215 18220 1
 Gly Glu Thr Phe Val Leu Glu Ala Asp Ile Arg Gly Lys Pro Ile Pro
 8225 18230 18235 18240
 Asp Val Val Trp Ser Lys Asp Gly Lys Glu Leu Glu Glu Thr Ala Ala
 18245 18250 18255
 Arg Met Glu Ile Lys Ser Thr Ile Gln Lys Thr Thr Leu Val Val Lys
 18260 18265 18270
 Asp Cys Ile Arg Thr Asp Gly Gly Tyr Ile Leu Lys Leu Ser Asn
 18275 18280 18285
 Val Gly Gly Thr Lys Ser Ile Pro Ile Thr Val Lys Val Leu Asp Arg
 18290 18295 18300 1
 Pro Gly Ser Pro Glu Gly Pro Leu Lys Val Thr Gly Val Thr Ala Glu
 8305 18310 18315 18320
 Lys Cys Tyr Leu Ala Trp Asn Pro Pro Leu Gln Asp Gly Gly Ala Asn
 18325 18330 18335
 Ile Ser His Tyr Ile Ile Glu Lys Arg Glu Thr Ser Arg Leu Ser Trp
 18340 18345 18350
 Thr Gln Val Ser Thr Glu Val Gln Ala Leu Asn Tyr Lys Val Thr Lys
 18355 18360 18365
 Leu Leu Pro Gly Asn Glu Tyr Ile Phe Arg Val Met Ala Val Asn Lys
 18370 18375 18380 1
 Tyr Gly Ile Gly Glu Pro Leu Glu Ser Gly Pro Val Thr Ala Cys Asn
 8385 18390 18395 18400
 Pro Tyr Lys Pro Pro Gly Pro Pro Ser Thr Pro Glu Val Ser Ala Ile
 18405 18410 18415
 Thr Lys Asp Ser Met Val Val Thr Trp Ala Arg Pro Val Asp Asp Gly
 18420 18425 18430
 Gly Thr Glu Ile Glu Gly Tyr Ile Leu Glu Lys Arg Asp Lys Glu Gly
 18435 18440 18445
 Val Arg Trp Thr Lys Cys Asn Lys Lys Thr Leu Thr Asp Leu Arg Leu
 18450 18455 18460 1
 Arg Val Thr Gly Leu Thr Glu Gly His Ser Tyr Glu Phe Arg Val Ala
 8465 18470 18475 18480
 Ala Glu Asn Ala Ala Gly Val Gly Glu Pro Ser Glu Pro Ser Val Phe
 18485 18490 18495
 Tyr Arg Ala Cys Asp Ala Leu Tyr Pro Pro Gly Pro Pro Ser Asn Pro
 18500 18505 18510
 Lys Val Thr Asp Thr Ser Arg Ser Ser Val Ser Leu Ala Trp Ser Lys
 18515 18520 18525
 Pro Ile Tyr Asp Gly Gly Ala Pro Val Lys Gly Tyr Val Val Glu Val
 18530 18535 18540 1
 Lys Glu Ala Ala Ala Asp Glu Trp Thr Thr Cys Thr Pro Pro Thr Gly
 8545 18550 18555 18560
 Leu Gln Gly Lys Gln Phe Thr Val Thr Lys Leu Lys Glu Asn Thr Glu
 18565 18570 18575

Tyr Asn Phe Arg Ile Cys Ala Ile Asn Ser Glu Gly Val Gly Glu Pro
 18580 18585 18590
 Ala Thr Leu Pro Gly Ser Val Val Ala Gln Glu Arg Ile Glu Pro Pro
 18595 18600 18605
 Glu Ile Glu Leu Asp Ala Asp Leu Arg Lys Val Val Leu Arg Ala
 18610 18615 18620 1
 Ser Ala Thr Leu Arg Leu Phe Val Thr Ile Lys Gly Arg Pro Glu Pro
 18625 18630 18635 18640
 Glu Val Lys Trp Glu Lys Ala Glu Gly Ile Leu Thr Asp Arg Ala Gln
 18645 18650 18655
 Ile Glu Val Thr Ser Ser Phe Thr Met Leu Val Ile Asp Asn Val Thr
 18660 18665 18670
 Arg Phe Asp Ser Gly Arg Tyr Asn Leu Thr Leu Glu Asn Asn Ser Gly
 18675 18680 18685
 Ser Lys Thr Ala Phe Val Asn Val Arg Val Leu Asp Ser Pro Ser Ala
 18690 18695 18700 1
 Pro Val Asn Leu Thr Ile Arg Glu Val Lys Lys Asp Ser Val Thr Leu
 18705 18710 18715 18720
 Ser Trp Glu Pro Pro Leu Ile Asp Gly Gly Ala Lys Ile Thr Asn Tyr
 18725 18730 18735
 Ile Val Glu Lys Arg Glu Thr Thr Arg Lys Ala Tyr Ala Thr Ile Thr
 18740 18745 18750
 Asn Asn Cys Thr Lys Thr Phe Arg Ile Glu Asn Leu Gln Glu Gly
 18755 18760 18765
 Cys Ser Tyr Tyr Phe Arg Val Leu Ala Ser Asn Glu Tyr Gly Ile Gly
 18770 18775 18780 1
 Leu Pro Ala Glu Thr Thr Glu Pro Val Lys Val Ser Glu Pro Pro Leu
 18785 18790 18795 18800
 Pro Pro Gly Arg Val Thr Leu Val Asp Val Thr Arg Asn Thr Ala Thr
 18805 18810 18815
 Ile Lys Trp Glu Lys Pro Glu Ser Asp Gly Gly Ser Lys Ile Thr Gly
 18820 18825 18830
 Tyr Val Val Glu Met Gln Thr Lys Gly Ser Glu Lys Trp Ser Thr Cys
 18835 18840 18845
 Thr Gln Val Lys Thr Leu Glu Ala Thr Ile Ser Gly Leu Thr Ala Gly
 18850 18855 18860 1
 Glu Glu Tyr Val Phe Arg Val Ala Ala Val Asn Glu Lys Gly Arg Ser
 18865 18870 18875 18880
 Asp Pro Arg Gln Leu Gly Val Pro Val Ile Ala Arg Asp Ile Glu Ile
 18885 18890 18895
 Lys Pro Ser Val Glu Leu Pro Phe His Thr Phe Asn Val Lys Ala Arg
 18900 18905 18910
 Glu Gln Leu Lys Ile Asp Val Pro Phe Lys Gly Arg Pro Gln Ala Thr
 18915 18920 18925
 Val Asn Trp Arg Lys Asp Gly Gln Thr Leu Lys Glu Thr Thr Arg Val
 18930 18935 18940 1
 Asn Val Ser Ser Ser Lys Thr Val Thr Ser Leu Ser Ile Lys Glu Ala
 18945 18950 18955 18960
 Ser Lys Glu Asp Val Gly Thr Tyr Glu Leu Cys Val Ser Asn Ser Ala
 18965 18970 18975
 Gly Ser Ile Thr Val Pro Ile Thr Ile Ile Val Leu Asp Arg Pro Gly
 18980 18985 18990
 Pro Pro Gly Pro Ile Arg Ile Asp Glu Val Ser Cys Asp Ser Ile Thr
 18995 19000 19005
 Ile Ser Trp Asn Pro Pro Glu Tyr Asp Gly Gly Cys Gln Ile Ser Asn
 19010 19015 19020 1
 Tyr Ile Val Glu Lys Lys Glu Thr Thr Ser Thr Trp His Ile Val
 19025 19030 19035 19040
 Ser Gln Ala Val Ala Arg Thr Ser Ile Lys Ile Val Arg Leu Thr Thr
 19045 19050 19055
 Gly Ser Glu Tyr Gln Phe Arg Val Cys Ala Glu Asn Arg Tyr Gly Lys
 19060 19065 19070

Ser Ser Tyr Ser Glu Ser Ser Ala Val Val Ala Glu Tyr Pro Phe Ser
 19075 19080 19085
 Pro Pro Gly Pro Pro Gly Thr Pro Lys Val Val His Ala Thr Lys Ser
 19090 19095 19100 1
 Thr Met Leu Val Thr Trp Gln Val Pro Val Asn Asp Gly Gly Ser Arg
 9105 19110 19115 19120
 Val Ile Gly Tyr His Leu Glu Tyr Lys Glu Arg Ser Ser Ile Leu Trp
 19125 19130 19135
 Ser Lys Ala Asn Lys Ile Leu Ile Ala Asp Thr Gln Val Lys Val Ser
 19140 19145 19150
 Gly Leu Asp Glu Gly Leu Met Tyr Glu Tyr Arg Val Tyr Ala Glu Asn
 19155 19160 19165
 Ile Ala Gly Ile Gly Lys Cys Ser Lys Ser Cys Glu Pro Val Pro Ala
 19170 19175 19180 1
 Arg Asp Pro Cys Asp Pro Pro Gly Gln Pro Glu Val Thr Asn Ile Thr
 9185 19190 19195 19200
 Arg Lys Ser Val Ser Leu Lys Trp Ser Lys Pro His Tyr Asp Gly Gly
 19205 19210 19215
 Ala Lys Ile Thr Gly Tyr Ile Val Glu Arg Arg Glu Leu Pro Asp Gly
 19220 19225 19230
 Arg Trp Leu Lys Cys Asn Tyr Thr Asn Ile Gln Glu Thr Tyr Phe Glu
 19235 19240 19245
 Val Thr Glu Leu Thr Glu Asp Gln Arg Tyr Glu Phe Arg Val Phe Ala
 19250 19255 19260 1
 Arg Asn Ala Ala Asp Ser Val Ser Glu Pro Ser Glu Ser Thr Gly Pro
 9265 19270 19275 19280
 Ile Ile Val Lys Asp Asp Val Glu Pro Pro Arg Val Met Met Asp Val
 19285 19290 19295
 Lys Phe Arg Asp Val Ile Val Val Lys Ala Gly Glu Val Leu Lys Ile
 19300 19305 19310
 Asn Ala Asp Ile Ala Gly Arg Pro Leu Pro Val Ile Ser Trp Ala Lys
 19315 19320 19325
 Asp Gly Ile Glu Ile Glu Glu Arg Ala Arg Thr Glu Ile Ile Ser Thr
 19330 19335 19340 1
 Asp Asn His Thr Leu Leu Thr Val Lys Asp Cys Ile Arg Arg Asp Thr
 9345 19350 19355 19360
 Gly Gln Tyr Val Leu Thr Leu Lys Asn Val Ala Gly Thr Arg Ser Val
 19365 19370 19375
 Ala Val Asn Cys Lys Val Leu Asp Lys Pro Gly Pro Pro Ala Gly Pro
 19380 19385 19390
 Leu Glu Ile Asn Gly Leu Thr Ala Glu Lys Cys Ser Leu Ser Trp Gly
 19395 19400 19405
 Arg Pro Gln Glu Asp Gly Gly Ala Asp Ile Asp Tyr Tyr His Arg Lys
 19410 19415 19420 1
 Lys Arg Glu Thr Ser His Leu Ala Trp Thr Ile Cys Glu Gly Glu Leu
 9425 19430 19435 19440
 Gln Met Thr Ser Cys Lys Val Thr Lys Leu Leu Lys Gly Asn Glu Tyr
 19445 19450 19455
 Ile Phe Arg Val Thr Gly Val Asn Lys Tyr Gly Val Gly Glu Pro Leu
 19460 19465 19470
 Glu Ser Val Ala Ile Lys Ala Leu Asp Pro Phe Thr Val Pro Ser Pro
 19475 19480 19485
 Pro Thr Ser Leu Glu Ile Thr Ser Val Thr Lys Glu Ser Met Thr Leu
 19490 19495 19500 1
 Cys Trp Ser Arg Pro Glu Ser Asp Gly Gly Ser Glu Ile Ser Gly Tyr
 9505 19510 19515 19520
 Ile Ile Glu Arg Arg Glu Lys Asn Ser Leu Arg Trp Val Arg Val Asn
 19525 19530 19535
 Lys Lys Pro Val Tyr Asp Leu Arg Val Lys Ser Thr Gly Leu Arg Glu
 19540 19545 19550
 Gly Cys Glu Tyr Glu Tyr Arg Val Tyr Ala Glu Asn Ala Ala Gly Leu
 19555 19560 19565

Ser Leu Pro Ser Glu Thr Ser Pro Leu Ile Arg Ala Glu Asp Pro Val
 19570 19575 19580 1
 Phe Leu Pro Ser Pro Pro Ser Lys Pro Lys Ile Val Asp Ser Gly Lys
 9585 19590 19595 19600
 Thr Thr Ile Thr Ile Ala Trp Val Lys Pro Leu Phe Asp Gly Gly Ala
 19605 19610 19615
 Pro Ile Thr Gly Tyr Thr Val Glu Tyr Lys Ser Asp Asp Thr Asp
 19620 19625 19630
 Trp Lys Thr Ser Ile Gln Ser Leu Arg Gly Thr Glu Tyr Thr Ile Ser
 19635 19640 19645
 Gly Leu Thr Thr Gly Ala Glu Tyr Val Phe Arg Val Lys Ser Val Asn
 19650 19655 19660 1
 Lys Val Gly Ala Ser Asp Pro Ser Asp Ser Asp Pro Gln Ile Ala
 9665 19670 19675 19680
 Lys Glu Arg Glu Glu Pro Leu Phe Asp Ile Asp Ser Glu Met Arg
 19685 19690 19695
 Lys Thr Leu Ile Val Lys Ala Gly Ala Ser Phe Thr Met Thr Val Pro
 19700 19705 19710
 Phe Arg Gly Arg Pro Val Pro Asn Val Leu Trp Ser Lys Pro Asp Thr
 19715 19720 19725
 Asp Leu Arg Thr Arg Ala Tyr Val Asp Thr Thr Asp Ser Arg Thr Ser
 19730 19735 19740 1
 Leu Thr Ile Glu Asn Ala Asn Arg Asn Asp Ser Gly Lys Tyr Thr Leu
 9745 19750 19755 19760
 Thr Ile Gln Asn Val Leu Ser Ala Ala Ser Leu Thr Leu Val Val Lys
 19765 19770 19775
 Val Leu Asp Thr Pro Gly Pro Pro Thr Asn Ile Thr Val Gln Asp Val
 19780 19785 19790
 Thr Lys Glu Ser Ala Val Leu Ser Trp Asp Val Pro Glu Asn Asp Gly
 19795 19800 19805
 Gly Ala Pro Val Lys Asn Tyr His Ile Glu Lys Arg Glu Ala Ser Lys
 19810 19815 19820 1
 Lys Ala Trp Val Ser Val Thr Asn Asn Cys Asn Arg Leu Ser Tyr Lys
 9825 19830 19835 19840
 Val Thr Asn Leu Gln Glu Gly Ala Ile Tyr Tyr Phe Arg Val Ser Gly
 19845 19850 19855
 Glu Asn Glu Phe Gly Val Gly Ile Pro Ala Glu Thr Lys Glu Gly Val
 19860 19865 19870
 Lys Ile Thr Glu Lys Pro Ser Pro Pro Glu Lys Leu Gly Val Thr Ser
 19875 19880 19885
 Ile Ser Lys Asp Ser Val Ser Leu Thr Trp Leu Lys Pro Glu His Asp
 19890 19895 19900 1
 Gly Gly Ser Arg Ile Val His Tyr Val Val Glu Ala Leu Glu Lys Gly
 9905 19910 19915 19920
 Gln Lys Asn Trp Val Lys Cys Ala Val Ala Lys Ser Thr His His Val
 19925 19930 19935
 Val Ser Gly Leu Arg Glu Asn Ser Glu Tyr Phe Arg Val Phe Ala
 19940 19945 19950
 Glu Asn Gln Ala Gly Leu Ser Asp Pro Arg Glu Leu Leu Pro Val
 19955 19960 19965
 Leu Ile Lys Glu Gln Leu Glu Pro Pro Glu Ile Asp Met Lys Asn Phe
 19970 19975 19980 1
 Pro Ser His Thr Val Tyr Val Arg Ala Gly Ser Asn Leu Lys Val Asp
 9985 19990 19995 20000
 Ile Pro Ile Ser Gly Lys Pro Leu Pro Lys Val Thr Leu Ser Arg Asp
 20005 20010 20015
 Gly Val Pro Leu Lys Ala Thr Met Arg Phe Asn Thr Glu Ile Thr Ala
 20020 20025 20030
 Glu Asn Leu Thr Ile Asn Leu Lys Glu Ser Val Thr Ala Asp Ala Gly
 20035 20040 20045
 Arg Tyr Glu Ile Thr Ala Ala Asn Ser Ser Gly Thr Thr Lys Ala Phe
 20050 20055 20060 2

Ile Asn Ile Val Val Leu Asp Arg Pro Pro Gly Pro Thr Gly Pro Val
 0065 20070 20075 20080
 Val Ile Ser Asp Ile Thr Glu Glu Ser Val Thr Leu Lys Trp Glu Pro
 20085 20090 20095
 Pro Lys Tyr Asp Gly Gly Ser Gln Val Thr Asn Tyr Ile Leu Leu Lys
 20100 20105 20110
 Arg Glu Thr Ser Thr Ala Val Trp Thr Glu Val Ser Ala Thr Val Ala
 20115 20120 20125
 Arg Thr Met Met Lys Val Met Lys Leu Thr Thr Gly Glu Glu Tyr Gln
 20130 20135 20140 2
 Phe Arg Ile Lys Ala Glu Asn Arg Phe Gly Ile Ser Asp His Ile Asp
 0145 20150 20155 20160
 Ser Ala Cys Val Thr Val Lys Leu Pro Tyr Thr Pro Gly Pro Pro
 20165 20170 20175
 Ser Thr Pro Trp Val Thr Asn Val Thr Arg Glu Ser Ile Thr Val Gly
 20180 20185 20190
 Trp His Glu Pro Val Ser Asn Gly Gly Ser Ala Val Val Gly Tyr His
 20195 20200 20205
 Leu Glu Met Lys Asp Arg Asn Ser Ile Leu Trp Gln Lys Ala Asn Lys
 20210 20215 20220 2
 Leu Val Ile Arg Thr Thr His Phe Lys Val Thr Thr Ile Ser Ala Gly
 0225 20230 20235 20240
 Leu Ile Tyr Glu Phe Arg Val Tyr Ala Glu Asn Ala Ala Gly Val Gly
 20245 20250 20255
 Lys Pro Ser His Pro Ser Glu Pro Val Leu Ala Ile Asp Ala Cys Glu
 20260 20265 20270
 Pro Pro Arg Asn Val Arg Ile Thr Asp Ile Ser Lys Asn Ser Val Ser
 20275 20280 20285
 Leu Ser Trp Gln Gln Pro Ala Phe Asp Gly Gly Ser Lys Ile Thr Gly
 20290 20295 20300 2
 Tyr Ile Val Glu Arg Arg Asp Leu Pro Asp Gly Arg Trp Thr Lys Ala
 0305 20310 20315 20320
 Ser Phe Thr Asn Val Thr Glu Thr Gln Phe Thr Ile Ser Gly Leu Thr
 20325 20330 20335
 Gln Asn Ser Gln Tyr Glu Phe Arg Val Phe Ala Arg Asn Ala Val Gly
 20340 20345 20350
 Ser Ile Ser Asn Pro Ser Glu Val Val Gly Pro Ile Thr Cys Ile Asp
 20355 20360 20365
 Ser Tyr Gly Gly Pro Val Ile Asp Leu Pro Leu Glu Tyr Thr Glu Val
 20370 20375 20380 2
 Val Lys Tyr Arg Ala Gly Thr Ser Val Lys Leu Arg Ala Gly Ile Ser
 0385 20390 20395 20400
 Gly Lys Pro Ala Pro Thr Ile Glu Trp Tyr Lys Asp Asp Lys Glu Leu
 20405 20410 20415
 Gln Thr Asn Ala Leu Val Cys Val Glu Asn Thr Thr Asp Leu Ala Ser
 20420 20425 20430
 Ile Leu Ile Lys Asp Ala Asp Arg Leu Asn Ser Gly Cys Tyr Glu Leu
 20435 20440 20445
 Lys Leu Arg Asn Ala Met Ala Ser Ala Ser Ala Thr Ile Arg Val Gln
 20450 20455 20460 2
 Ile Leu Asp Lys Pro Gly Pro Pro Gly Gly Pro Ile Glu Phe Lys Thr
 0465 20470 20475 20480
 Val Thr Ala Glu Lys Ile Thr Leu Leu Trp Arg Pro Pro Ala Asp Asp
 20485 20490 20495
 Gly Gly Ala Lys Ile Thr His Tyr Ile Val Glu Lys Arg Glu Thr Ser
 20500 20505 20510
 Arg Val Val Trp Ser Met Val Ser Glu His Leu Glu Glu Cys Ile Ile
 20515 20520 20525
 Thr Thr Thr Lys Ile Ile Lys Gly Asn Glu Tyr Ile Phe Arg Val Arg
 20530 20535 20540 2
 Ala Val Asn Lys Tyr Gly Ile Gly Glu Pro Leu Glu Ser Asp Ser Val
 0545 20550 20555 20560

Val Ala Lys Asn Ala Phe Val Thr Pro Gly Pro Pro Gly Ile Pro Glu
 20565 20570 20575
 Val Thr Lys Ile Thr Lys Asn Ser Met Thr Val Val Trp Ser Arg Pro
 20580 20585 20590
 Ile Ala Asp Gly Gly Ser Asp Ile Ser Gly Tyr Phe Leu Glu Lys Arg
 20595 20600 20605
 Asp Lys Lys Ser Leu Gly Trp Phe Lys Val Leu Lys Glu Thr Ile Arg
 20610 20615 20620 2
 Asp Thr Arg Gln Lys Val Thr Gly Leu Thr Glu Asn Ser Asp Tyr Gln
 0625 20630 20635 20640
 Tyr Arg Val Cys Ala Val Asn Ala Ala Gly Gln Gly Pro Phe Ser Glu
 20645 20650 20655
 Pro Ser Glu Phe Tyr Lys Ala Ala Asp Pro Ile Asp Pro Pro Gly Pro
 20660 20665 20670
 Pro Ala Lys Ile Arg Ile Ala Asp Ser Thr Lys Ser Ser Ile Thr Leu
 20675 20680 20685
 Gly Trp Ser Lys Pro Val Tyr Asp Gly Gly Ser Ala Val Thr Gly Tyr
 20690 20695 20700 2
 Val Val Glu Ile Arg Gln Gly Glu Glu Glu Trp Thr Thr Val Ser
 0705 20710 20715 20720
 Thr Lys Gly Glu Val Arg Thr Thr Glu Tyr Val Val Ser Asn Leu Lys
 20725 20730 20735
 Pro Gly Val Asn Tyr Tyr Phe Arg Val Ser Ala Val Asn Cys Ala Gly
 20740 20745 20750
 Gln Gly Glu Pro Ile Glu Met Asn Glu Pro Val Gln Ala Lys Asp Ile
 20755 20760 20765
 Leu Glu Ala Pro Glu Ile Asp Leu Asp Val Ala Leu Arg Thr Ser Val
 20770 20775 20780 2
 Ile Ala Lys Ala Gly Glu Asp Val Gln Val Leu Ile Pro Phe Lys Gly
 0785 20790 20795 20800
 Arg Pro Pro Pro Thr Val Thr Trp Arg Lys Asp Glu Lys Asn Leu Gly
 20805 20810 20815
 Ser Asp Ala Arg Tyr Ser Ile Glu Asn Thr Asp Ser Ser Ser Leu Leu
 20820 20825 20830
 Thr Ile Pro Gln Val Thr Arg Asn Asp Thr Gly Lys Tyr Ile Leu Thr
 20835 20840 20845
 Ile Glu Asn Gly Val Gly Glu Pro Lys Ser Ser Thr Val Ser Val Lys
 20850 20855 20860 2
 Val Leu Asp Thr Pro Ala Ala Cys Gln Lys Leu Gln Val Lys His Val
 0865 20870 20875 20880
 Ser Arg Gly Thr Val Thr Leu Leu Trp Asp Pro Pro Leu Ile Asp Gly
 20885 20890 20895
 Gly Ser Pro Ile Ile Asn Tyr Val Ile Glu Lys Arg Asp Ala Thr Lys
 20900 20905 20910
 Arg Thr Trp Ser Val Val Ser His Lys Cys Ser Ser Thr Ser Phe Lys
 20915 20920 20925
 Leu Ile Asp Leu Ser Glu Lys Thr Pro Phe Phe Arg Val Leu Ala
 20930 20935 20940 2
 Glu Asn Glu Ile Gly Ile Gly Glu Pro Cys Glu Thr Thr Glu Pro Val
 0945 20950 20955 20960
 Lys Ala Ala Glu Val Pro Ala Pro Ile Arg Asp Leu Ser Met Lys Asp
 20965 20970 20975
 Ser Thr Lys Thr Ser Val Ile Leu Ser Trp Thr Lys Pro Asp Phe Asp
 20980 20985 20990
 Gly Gly Ser Val Ile Thr Glu Tyr Val Val Glu Arg Lys Gly Lys Gly
 20995 21000 21005
 Glu Gln Thr Trp Ser His Ala Gly Ile Ser Lys Thr Cys Glu Ile Glu
 21010 21015 21020 2
 Val Ser Gln Leu Lys Glu Gln Ser Val Leu Glu Phe Arg Val Phe Ala
 1025 21030 21035 21040
 Lys Asn Glu Lys Gly Leu Ser Asp Pro Val Thr Ile Gly Pro Ile Thr
 21045 21050 21055

Val Lys Glu Leu Ile Ile Thr Pro Glu Val Asp Leu Ser Asp Ile Pro
 21060 21065 21070
 Gly Ala Gln Val Thr Val Arg Ile Gly His Asn Val His Leu Glu Leu
 21075 21080 21085
 Pro Tyr Lys Gly Lys Pro Lys Pro Ser Ile Ser Trp Leu Lys Asp Gly
 21090 21095 21100 2
 Leu Pro Leu Lys Glu Ser Glu Phe Val Arg Phe Ser Lys Thr Glu Asn
 21105 21110 21115 21120
 Lys Ile Thr Leu Ser Ile Lys Asn Ala Lys Lys Glu His Gly Gly Lys
 21125 21130 21135
 Tyr Thr Val Ile Leu Asp Asn Ala Val Cys Arg Ile Ala Val Pro Ile
 21140 21145 21150
 Thr Val Ile Thr Leu Gly Pro Pro Ser Lys Pro Lys Gly Pro Ile Arg
 21155 21160 21165
 Phe Asp Glu Ile Lys Ala Asp Ser Val Ile Leu Ser Trp Asp Val Pro
 21170 21175 21180 2
 Glu Asp Asn Gly Gly Glu Ile Thr Cys Tyr Ser Ile Glu Lys Arg
 21185 21190 21195 21200
 Glu Thr Ser Gln Thr Asn Trp Lys Met Val Cys Ser Ser Val Ala Arg
 21205 21210 21215
 Thr Thr Phe Lys Val Pro Asn Leu Val Lys Asp Ala Glu Tyr Gln Phe
 21220 21225 21230
 Arg Val Arg Ala Glu Asn Arg Tyr Gly Val Ser Gln Pro Leu Val Ser
 21235 21240 21245
 Ser Ile Ile Val Ala Lys His Gln Phe Arg Ile Pro Gly Pro Pro Gly
 21250 21255 21260 2
 Lys Pro Val Ile Tyr Asn Val Thr Ser Asp Gly Met Ser Leu Thr Trp
 21265 21270 21275 21280
 Asp Ala Pro Val Tyr Asp Gly Gly Ser Glu Val Thr Gly Phe His Val
 21285 21290 21295
 Glu Lys Lys Glu Arg Asn Ser Ile Leu Trp Gln Lys Val Asn Thr Ser
 21300 21305 21310
 Pro Ile Ser Gly Arg Glu Tyr Arg Ala Thr Gly Leu Val Glu Gly Leu
 21315 21320 21325
 Asp Tyr Gln Phe Arg Val Tyr Ala Glu Asn Ser Ala Gly Leu Ser Ser
 21330 21335 21340 2
 Pro Ser Asp Pro Ser Lys Phe Thr Leu Ala Val Ser Pro Val Asp Pro
 21345 21350 21355 21360
 Pro Gly Thr Pro Asp Tyr Ile Asp Val Thr Arg Glu Thr Ile Thr Leu
 21365 21370 21375
 Lys Trp Asn Pro Pro Leu Arg Asp Gly Gly Ser Lys Ile Val Gly Tyr
 21380 21385 21390
 Ser Ile Glu Lys Arg Gln Gly Asn Glu Arg Trp Val Arg Cys Asn Phe
 21395 21400 21405
 Thr Asp Val Ser Glu Cys Gln Tyr Thr Val Thr Gly Leu Ser Pro Gly
 21410 21415 21420 2
 Asp Arg Tyr Glu Phe Arg Ile Ile Ala Arg Asn Ala Val Gly Thr Ile
 21425 21430 21435 21440
 Ser Pro Pro Ser Gln Ser Ser Gly Ile Ile Met Thr Arg Asp Glu Asn
 21445 21450 21455
 Val Pro Pro Ile Val Glu Phe Gly Pro Glu Tyr Phe Asp Gly Leu Ile
 21460 21465 21470
 Ile Lys Ser Gly Glu Ser Leu Arg Ile Lys Ala Leu Val Gln Gly Arg
 21475 21480 21485
 Pro Val Pro Arg Val Thr Trp Phe Lys Asp Gly Val Glu Ile Glu Lys
 21490 21495 21500 2
 Arg Met Asn Met Glu Ile Thr Asn Val Leu Gly Ser Thr Ser Leu Phe
 21505 21510 21515 21520
 Val Arg Asp Ala Thr Arg Asp His Arg Gly Val Tyr Thr Val Glu Ala
 21525 21530 21535
 Lys Asn Ala Ser Gly Ser Ala Lys Ala Glu Ile Lys Val Lys Val Gln
 21540 21545 21550

Asp Thr Pro Gly Lys Val Val Gly Pro Ile Arg Phe Thr Asn Ile Thr
 21555 21560 21565
 Gly Glu Lys Met Thr Leu Trp Trp Asp Ala Pro Leu Asn Asp Gly Cys
 21570 21575 21580 2
 Ala Pro Ile Thr His Tyr Ile Ile Glu Lys Arg Glu Thr Ser Arg Leu
 1585 21590 21595 21600
 Ala Trp Ala Leu Ile Glu Asp Lys Cys Glu Ala Gln Ser Tyr Thr Ala
 21605 21610 21615
 Ile Lys Leu Ile Asn Gly Asn Glu Tyr Gln Phe Arg Val Ser Ala Val
 21620 21625 21630
 Asn Lys Phe Gly Val Gly Arg Pro Leu Asp Ser Asp Pro Val Val Ala
 21635 21640 21645
 Gln Ile Gln Tyr Thr Val Pro Asp Ala Pro Gly Ile Pro Glu Pro Ser
 21650 21655 21660 2
 Asn Ile Thr Gly Asn Ser Ile Thr Leu Thr Trp Ala Arg Pro Glu Ser
 1665 21670 21675 21680
 Asp Gly Gly Ser Glu Ile Gln Gln Tyr Ile Leu Glu Arg Arg Glu Lys
 21685 21690 21695
 Lys Ser Thr Arg Trp Val Lys Val Ile Ser Lys Arg Pro Ile Ser Glu
 21700 21705 21710
 Thr Arg Phe Lys Val Thr Gly Leu Thr Glu Gly Asn Glu Tyr Glu Phe
 21715 21720 21725
 His Val Met Ala Glu Asn Ala Ala Gly Val Gly Pro Ala Ser Gly Ile
 21730 21735 21740 2
 Ser Arg Leu Ile Lys Cys Arg Glu Pro Val Asn Pro Pro Gly Pro Pro
 1745 21750 21755 21760
 Thr Val Val Lys Val Thr Asp Thr Ser Lys Thr Thr Val Ser Leu Glu
 21765 21770 21775
 Trp Ser Lys Pro Val Phe Asp Gly Gly Met Glu Ile Ile Gly Tyr Ile
 21780 21785 21790
 Ile Glu Met Cys Lys Thr Asp Leu Gly Asp Trp His Lys Val Asn Ala
 21795 21800 21805
 Glu Ala Cys Val Lys Thr Arg Tyr Thr Val Thr Asp Leu Gln Ala Gly
 21810 21815 21820 2
 Glu Glu Tyr Lys Phe Arg Val Ser Ala Ile Asn Gly Ala Gly Lys Gly
 1825 21830 21835 21840
 Asp Ser Cys Glu Val Thr Gly Thr Ile Lys Ala Val Asp Arg Leu Thr
 21845 21850 21855
 Ala Pro Glu Leu Asp Ile Asp Ala Asn Phe Lys Gln Thr His Val Val
 21860 21865 21870
 Arg Ala Gly Ala Ser Ile Arg Leu Phe Ile Ala Tyr Gln Gly Arg Pro
 21875 21880 21885
 Thr Pro Thr Ala Val Trp Ser Lys Pro Asp Ser Asn Leu Ser Leu Arg
 21890 21895 21900 2
 Ala Asp Ile His Thr Thr Asp Ser Phe Ser Thr Leu Thr Val Glu Asn
 1905 21910 21915 21920
 Cys Asn Arg Asn Asp Ala Gly Lys Tyr Thr Leu Thr Val Glu Asn Asn
 21925 21930 21935
 Ser Gly Ser Lys Ser Ile Thr Phe Thr Val Lys Val Leu Asp Thr Pro
 21940 21945 21950
 Gly Pro Pro Gly Pro Ile Thr Phe Lys Asp Val Thr Arg Gly Ser Ala
 21955 21960 21965
 Thr Leu Met Trp Asp Ala Pro Leu Leu Asp Gly Ala Arg Ile His
 21970 21975 21980 2
 His Tyr Val Val Glu Lys Arg Glu Ala Ser Arg Arg Ser Trp Gln Val
 1985 21990 21995 22000
 Ile Ser Glu Lys Cys Thr Arg Gln Ile Phe Lys Val Asn Asp Leu Ala
 22005 22010 22015
 Glu Gly Val Pro Tyr Tyr Phe Arg Val Ser Ala Val Asn Glu Tyr Gly
 22020 22025 22030
 Val Gly Glu Pro Tyr Glu Met Pro Glu Pro Ile Val Ala Thr Glu Gln
 22035 22040 22045

Pro Ala Pro Pro Arg Arg Leu Asp Val Val Asp Thr Ser Lys Ser Ser			
22050	22055	22060	2
Ala Val Leu Ala Trp Leu Lys Pro Asp His Asp Gly Gly Ser Arg Ile			
2065	22070	22075	22080
Thr Gly Tyr Leu Leu Glu Met Arg Gln Lys Gly Ser Asp Leu Trp Val			
22085	22090	22095	
Glu Ala Gly His Thr Lys Gln Leu Thr Phe Thr Val Glu Arg Leu Val			
22100	22105	22110	
Glu Lys Thr Glu Tyr Glu Phe Arg Val Lys Ala Lys Asn Asp Ala Gly			
22115	22120	22125	
Tyr Ser Glu Pro Arg Glu Ala Phe Ser Ser Val Ile Ile Lys Glu Pro			
22130	22135	22140	2
Gln Ile Glu Pro Thr Ala Asp Leu Thr Gly Ile Thr Asn Gln Leu Ile			
2145	22150	22155	22160
Thr Cys Lys Ala Gly Ser Pro Phe Thr Ile Asp Val Pro Ile Ser Gly			
22165	22170	22175	
Arg Pro Ala Pro Lys Val Thr Trp Lys Leu Glu Glu Met Arg Leu Lys			
22180	22185	22190	
Glu Thr Asp Arg Val Ser Ile Thr Thr Lys Asp Arg Thr Thr Leu			
22195	22200	22205	
Thr Val Lys Asp Ser Met Arg Gly Asp Ser Gly Arg Tyr Phe Leu Thr			
22210	22215	22220	2
Leu Glu Asn Thr Ala Gly Val Lys Thr Phe Ser Val Thr Val Val Val			
22225	22230	22235	22240
Ile Gly Arg Pro Gly Pro Val Thr Gly Pro Ile Glu Val Ser Ser Val			
22245	22250	22255	
Ser Ala Glu Ser Cys Val Leu Ser Trp Gly Glu Pro Lys Asp Gly Gly			
22260	22265	22270	
Gly Thr Glu Ile Thr Asn Tyr Ile Val Glu Lys Arg Glu Ser Gly Thr			
22275	22280	22285	
Thr Ala Trp Gln Leu Val Asn Ser Ser Val Lys Arg Thr Gln Ile Lys			
22290	22295	22300	2
Val Thr His Leu Thr Lys Tyr Met Glu Tyr Ser Phe Arg Val Ser Ser			
2305	22310	22315	22320
Glu Asn Arg Phe Gly Val Ser Lys Pro Leu Glu Ser Ala Pro Ile Ile			
22325	22330	22335	
Ala Glu His Pro Phe Val Pro Pro Ser Ala Pro Thr Arg Pro Glu Val			
22340	22345	22350	
Tyr His Val Ser Ala Asn Ala Met Ser Ile Arg Trp Glu Glu Pro Tyr			
22355	22360	22365	
His Asp Gly Gly Ser Lys Ile Ile Gly Tyr Trp Val Glu Lys Lys Glu			
22370	22375	22380	2
Arg Asn Thr Ile Leu Trp Val Lys Glu Asn Lys Val Pro Cys Leu Glu			
2385	22390	22395	22400
Cys Asn Tyr Lys Val Thr Gly Leu Val Glu Gly Leu Glu Tyr Gln Phe			
22405	22410	22415	
Arg Thr Tyr Ala Leu Asn Ala Ala Gly Val Ser Lys Ala Ser Glu Ala			
22420	22425	22430	
Ser Arg Pro Ile Met Ala Gln Asn Pro Val Asp Ala Pro Gly Arg Pro			
22435	22440	22445	
Glu Val Thr Asp Val Thr Arg Ser Thr Val Ser Leu Ile Trp Ser Ala			
22450	22455	22460	2
Pro Ala Tyr Asp Gly Gly Ser Lys Val Val Gly Tyr Ile Ile Glu Arg			
2465	22470	22475	22480
Lys Pro Val Ser Glu Val Gly Asp Gly Arg Trp Leu Lys Cys Asn Tyr			
22485	22490	22495	
Thr Ile Val Ser Asp Asn Phe Phe Thr Val Thr Ala Leu Ser Glu Gly			
22500	22505	22510	
Asp Thr Tyr Glu Phe Arg Val Leu Ala Lys Asn Ala Ala Gly Val Ile			
22515	22520	22525	
Ser Lys Gly Ser Glu Ser Thr Gly Pro Val Thr Cys Arg Asp Glu Tyr			
22530	22535	22540	2

Ala Pro Pro Lys Ala Glu Leu Asp Ala Arg Leu His Gly Asp Leu Val
 2545 22550 22555 22560
 Thr Ile Arg Ala Gly Ser Asp Leu Val Leu Asp Ala Ala Val Gly Gly
 22565 22570 22575
 Lys Pro Glu Pro Lys Ile Ile Trp Thr Lys Gly Asp Lys Glu Leu Asp
 22580 22585 22590
 Leu Cys Glu Lys Val Ser Leu Gln Tyr Thr Gly Lys Arg Ala Thr Ala
 22595 22600 22605
 Val Ile Lys Phe Cys Asp Arg Ser Asp Ser Gly Lys Tyr Thr Leu Thr
 22610 22615 22620 2
 Val Lys Asn Ala Ser Gly Thr Lys Ala Val Ser Val Met Val Lys Val
 22625 22630 22635 22640
 Leu Asp Ser Pro Gly Pro Cys Gly Lys Leu Thr Val Ser Arg Val Thr
 22645 22650 22655
 Gln Glu Lys Cys Thr Leu Ala Trp Ser Leu Pro Gln Glu Asp Gly Gly
 22660 22665 22670
 Ala Glu Ile Thr His Tyr Ile Val Glu Arg Arg Glu Thr Ser Arg Leu
 22675 22680 22685
 Asn Trp Val Ile Val Glu Gly Glu Cys Pro Thr Leu Ser Tyr Val Val
 22690 22695 22700 2
 Thr Arg Leu Ile Lys Asn Asn Glu Tyr Ile Phe Arg Val Arg Ala Val
 22705 22710 22715 22720
 Asn Lys Tyr Gly Pro Gly Val Pro Val Glu Ser Glu Pro Ile Val Ala
 22725 22730 22735
 Arg Asn Ser Phe Thr Ile Pro Ser Pro Pro Gly Ile Pro Glu Glu Val
 22740 22745 22750
 Gly Thr Gly Lys Glu His Ile Ile Gln Trp Thr Lys Pro Glu Ser
 22755 22760 22765
 Asp Gly Gly Asn Glu Ile Ser Asn Tyr Leu Val Asp Lys Arg Glu Lys
 22770 22775 22780 2
 Glu Ser Leu Arg Trp Thr Arg Val Asn Lys Asp Tyr Val Val Tyr Asp
 22785 22790 22795 22800
 Thr Arg Leu Lys Val Thr Ser Leu Met Glu Gly Cys Asp Tyr Gln Phe
 22805 22810 22815
 Arg Val Thr Ala Val Asn Ala Ala Gly Asn Ser Glu Pro Ser Glu Arg
 22820 22825 22830
 Ser Asn Phe Ile Ser Cys Arg Glu Pro Ser Tyr Thr Pro Gly Pro Pro
 22835 22840 22845
 Ser Ala Pro Arg Val Val Asp Thr Thr Lys His Ser Ile Ser Leu Ala
 22850 22855 22860 2
 Trp Thr Lys Pro Met Tyr Asp Gly Gly Thr Asp Ile Val Gly Tyr Val
 22865 22870 22875 22880
 Leu Glu Met Gln Glu Lys Asp Thr Asp Gln Trp Tyr Arg Val His Thr
 22885 22890 22895
 Asn Ala Thr Ile Arg Asn Thr Glu Phe Thr Val Pro Asp Leu Lys Met
 22900 22905 22910
 Gly Gln Lys Tyr Ser Phe Arg Val Ala Ala Val Asn Val Lys Gly Met
 22915 22920 22925
 Ser Glu Tyr Ser Glu Ser Ile Ala Glu Ile Glu Pro Val Glu Arg Ile
 22930 22935 22940 2
 Glu Ile Pro Asp Leu Glu Leu Ala Asp Asp Leu Lys Lys Thr Val Thr
 22945 22950 22955 22960
 Ile Arg Ala Gly Ala Ser Leu Arg Leu Met Val Ser Val Ser Gly Arg
 22965 22970 22975
 Pro Pro Pro Val Ile Thr Trp Ser Lys Gln Gly Ile Asp Leu Ala Ser
 22980 22985 22990
 Arg Ala Ile Ile Asp Thr Thr Glu Ser Tyr Ser Leu Leu Ile Val Asp
 22995 23000 23005
 Lys Val Asn Arg Tyr Asp Ala Gly Lys Tyr Thr Ile Glu Ala Glu Asn
 23010 23015 23020 2
 Gln Ser Gly Lys Lys Ser Ala Thr Val Leu Val Lys Val Tyr Asp Thr
 23025 23030 23035 23040

Pro Gly Pro Cys Pro Ser Val Lys Val Lys Glu Val Ser Arg Asp Ser
 23045 23050 23055
 Val Thr Ile Thr Trp Glu Ile Pro Thr Ile Asp Gly Gly Ala Pro Ile
 23060 23065 23070
 Asn Asn Tyr Ile Val Glu Lys Arg Glu Ala Ala Met Arg Ala Phe Lys
 23075 23080 23085
 Thr Val Thr Thr Lys Cys Ser Lys Thr Leu Tyr Arg Ile Ser Gly Leu
 23090 23095 23100 2
 Val Glu Gly Thr Met His Tyr Phe Arg Val Leu Pro Glu Asn Ile Tyr
 23105 23110 23115 23120
 Gly Ile Gly Glu Pro Cys Glu Thr Ser Asp Ala Val Leu Val Ser Glu
 23125 23130 23135
 Val Pro Leu Val Pro Ala Lys Leu Glu Val Val Asp Val Thr Lys Ser
 23140 23145 23150
 Thr Val Thr Leu Ala Trp Glu Lys Pro Leu Tyr Asp Gly Gly Ser Arg
 23155 23160 23165
 Leu Thr Gly Tyr Val Leu Glu Ala Cys Lys Ala Gly Thr Glu Arg Trp
 23170 23175 23180 2
 Met Lys Val Val Thr Leu Lys Pro Thr Val Leu Glu His Thr Val Thr
 23185 23190 23195 23200
 Ser Leu Asn Glu Gly Glu Gln Tyr Leu Phe Arg Ile Arg Ala Gln Asn
 23205 23210 23215
 Glu Lys Gly Val Ser Glu Pro Arg Glu Thr Val Thr Ala Val Thr Val
 23220 23225 23230
 Gln Asp Leu Arg Val Leu Pro Thr Ile Asp Leu Ser Thr Met Pro Gln
 23235 23240 23245
 Lys Thr Ile His Val Pro Ala Gly Arg Pro Val Glu Leu Val Ile Pro
 23250 23255 23260 2
 Ile Ala Gly Arg Pro Pro Ala Ala Ser Trp Phe Phe Ala Gly Ser
 23265 23270 23275 23280
 Lys Leu Arg Glu Ser Glu Arg Val Thr Val Glu Thr His Thr Lys Val
 23285 23290 23295
 Ala Lys Leu Thr Ile Arg Glu Thr Thr Ile Arg Asp Thr Gly Glu Tyr
 23300 23305 23310
 Thr Leu Glu Leu Lys Asn Val Thr Gly Thr Thr Ser Glu Thr Ile Lys
 23315 23320 23325
 Val Ile Ile Leu Asp Lys Pro Gly Pro Pro Thr Gly Pro Ile Lys Ile
 23330 23335 23340 2
 Asp Glu Ile Asp Ala Thr Ser Ile Thr Ile Ser Trp Glu Pro Pro Glu
 23345 23350 23355 23360
 Leu Asp Gly Gly Ala Pro Leu Ser Gly Tyr Val Val Glu Gln Arg Asp
 23365 23370 23375
 Ala His Arg Pro Gly Trp Leu Pro Val Ser Glu Ser Val Thr Arg Ser
 23380 23385 23390
 Thr Phe Lys Phe Thr Arg Leu Thr Glu Gly Asn Glu Tyr Val Phe Arg
 23395 23400 23405
 Val Ala Ala Thr Asn Arg Phe Gly Ile Gly Ser Tyr Leu Gln Ser Glu
 23410 23415 23420 2
 Val Ile Glu Cys Arg Ser Ser Ile Arg Ile Pro Gly Pro Pro Glu Thr
 23425 23430 23435 23440
 Leu Gln Ile Phe Asp Val Ser Arg Asp Gly Met Thr Leu Thr Trp Tyr
 23445 23450 23455
 Pro Pro Glu Asp Asp Gly Gly Ser Gln Val Thr Gly Tyr Ile Val Glu
 23460 23465 23470
 Arg Lys Glu Val Arg Ala Asp Arg Trp Val Arg Val Asn Lys Val Pro
 23475 23480 23485
 Val Thr Met Thr Arg Tyr Arg Ser Thr Gly Leu Thr Glu Gly Leu Glu
 23490 23495 23500 2
 Tyr Glu His Arg Val Thr Ala Ile Asn Ala Arg Gly Ser Gly Lys Pro
 23505 23510 23515 23520
 Ser Arg Pro Ser Lys Pro Ile Val Ala Met Asp Pro Ile Ala Pro Pro
 23525 23530 23535

Gly Lys Pro Gln Asn Pro Arg Val Thr Asp Thr Thr Arg Thr Ser Val
 23540 23545 23550
 Ser Leu Ala Trp Ser Val Pro Glu Asp Glu Gly Gly Ser Lys Val Thr
 23555 23560 23565
 Gly Tyr Leu Ile Glu Met Gln Lys Val Asp Gln His Glu Trp Thr Lys
 23570 23575 23580 2
 Cys Asn Thr Thr Pro Thr Lys Ile Arg Glu Tyr Thr Leu Thr His Leu
 3585 23590 23595 23600
 Pro Gln Gly Ala Glu Tyr Arg Phe Arg Val Leu Ala Cys Asn Ala Gly
 23605 23610 23615
 Gly Pro Gly Glu Pro Ala Glu Val Pro Gly Thr Val Lys Val Thr Glu
 23620 23625 23630
 Met Leu Glu Tyr Pro Asp Tyr Glu Leu Asp Glu Arg Tyr Gln Glu Gly
 23635 23640 23645
 Ile Phe Val Arg Gln Gly Gly Val Ile Arg Leu Thr Ile Pro Ile Lys
 23650 23655 23660 2
 Gly Lys Pro Phe Pro Ile Cys Lys Trp Thr Lys Glu Gly Gln Asp Ile
 3665 23670 23675 23680
 Ser Lys Arg Ala Met Ile Ala Thr Ser Glu Thr His Thr Glu Leu Val
 23685 23690 23695
 Ile Lys Glu Ala Asp Arg Gly Asp Ser Gly Thr Tyr Asp Leu Val Leu
 23700 23705 23710
 Glu Asn Lys Cys Gly Lys Lys Ala Val Tyr Ile Lys Val Arg Val Ile
 23715 23720 23725
 Gly Ser Pro Asn Ser Pro Glu Gly Pro Leu Glu Tyr Asp Asp Ile Gln
 23730 23735 23740 2
 Val Arg Ser Val Arg Val Ser Trp Arg Pro Pro Ala Asp Asp Gly Gly
 3745 23750 23755 23760
 Ala Asp Ile Leu Gly Tyr Ile Leu Glu Arg Arg Glu Val Pro Lys Ala
 23765 23770 23775
 Ala Trp Tyr Thr Ile Asp Ser Arg Val Arg Gly Thr Ser Leu Val Val
 23780 23785 23790
 Lys Gly Leu Lys Glu Asn Val Glu Tyr His Phe Arg Val Ser Ala Glu
 23795 23800 23805
 Asn Gln Phe Gly Ile Ser Lys Pro Leu Lys Ser Glu Glu Pro Val Thr
 23810 23815 23820 2
 Pro Lys Thr Pro Leu Asn Pro Pro Glu Pro Pro Ser Asn Pro Pro Glu
 3825 23830 23835 23840
 Val Leu Asp Val Thr Lys Ser Ser Val Ser Leu Ser Trp Ser Arg Pro
 23845 23850 23855
 Lys Asp Asp Gly Gly Ser Arg Val Thr Gly Tyr Tyr Ile Glu Arg Lys
 23860 23865 23870
 Glu Thr Ser Thr Asp Lys Trp Val Arg His Asn Lys Thr Gln Ile Thr
 23875 23880 23885
 Thr Thr Met Tyr Thr Val Thr Gly Leu Val Pro Asp Ala Glu Tyr Gln
 23890 23895 23900 2
 Phe Arg Ile Ile Ala Gln Asn Asp Val Gly Leu Ser Glu Thr Ser Pro
 3905 23910 23915 23920
 Ala Ser Glu Pro Val Val Cys Lys Asp Pro Phe Asp Lys Pro Ser Gln
 23925 23930 23935
 Pro Gly Glu Leu Glu Ile Leu Ser Ile Ser Lys Asp Ser Val Thr Leu
 23940 23945 23950
 Gln Trp Glu Lys Pro Glu Cys Asp Gly Gly Lys Glu Ile Leu Gly Tyr
 23955 23960 23965
 Trp Val Glu Tyr Arg Gln Ser Gly Asp Ser Ala Trp Lys Lys Ser Asn
 23970 23975 23980 2
 Lys Glu Arg Ile Lys Asp Lys Gln Phe Thr Ile Gly Gly Leu Leu Glu
 3985 23990 23995 24000
 Ala Thr Glu Tyr Glu Phe Arg Val Phe Ala Glu Asn Glu Thr Gly Leu
 24005 24010 24015
 Ser Arg Pro Arg Arg Thr Ala Met Ser Ile Lys Thr Lys Leu Thr Ser
 24020 24025 24030

Gly Glu Ala Pro Gly Ile Arg Lys Glu Met Lys Asp Val Thr Thr Lys
 24035 24040 24045
 Leu Gly Glu Ala Ala Gln Leu Ser Cys Gln Ile Val Gly Arg Pro Leu
 24050 24055 24060 2
 Pro Asp Ile Lys Trp Tyr Arg Phe Gly Lys Glu Leu Ile Gln Ser Arg
 4065 24070 24075 24080
 Lys Tyr Lys Met Ser Ser Asp Gly Arg Thr His Thr Leu Thr Val Met
 24085 24090 24095
 Thr Glu Glu Gln Glu Asp Glu Gly Val Tyr Thr Cys Ile Ala Thr Asn
 24100 24105 24110
 Glu Val Gly Glu Val Glu Thr Ser Ser Lys Leu Leu Gln Ala Thr
 24115 24120 24125
 Pro Gln Phe His Pro Gly Tyr Pro Leu Lys Glu Lys Tyr Tyr Gly Ala
 24130 24135 24140 2
 Val Gly Ser Thr Leu Arg Leu His Val Met Tyr Ile Gly Arg Pro Val
 4145 24150 24155 24160
 Pro Ala Met Thr Trp Phe His Gly Gln Lys Leu Leu Gln Asn Ser Glu
 24165 24170 24175
 Asn Ile Thr Ile Glu Asn Thr Glu His Tyr Thr His Leu Val Met Lys
 24180 24185 24190
 Asn Val Gln Arg Lys Thr His Ala Gly Lys Tyr Lys Val Gln Leu Ser
 24195 24200 24205
 Asn Val Phe Gly Thr Val Asp Ala Ile Leu Asp Val Glu Ile Gln Asp
 24210 24215 24220 2
 Lys Pro Asp Lys Pro Thr Gly Pro Ile Val Ile Glu Ala Leu Leu Lys
 4225 24230 24235 24240
 Asn Ser Ala Val Ile Ser Trp Lys Pro Pro Ala Asp Asp Gly Gly Ser
 24245 24250 24255
 Trp Ile Thr Asn Tyr Val Val Glu Lys Cys Glu Ala Lys Glu Gly Ala
 24260 24265 24270
 Glu Trp Gln Leu Val Ser Ser Ala Ile Ser Val Thr Thr Cys Arg Ile
 24275 24280 24285
 Val Asn Leu Thr Glu Asn Ala Gly Tyr Tyr Phe Arg Val Ser Ala Gln
 24290 24295 24300 2
 Asn Thr Phe Gly Ile Ser Asp Pro Leu Glu Val Ser Ser Val Val Ile
 4305 24310 24315 24320
 Ile Lys Ser Pro Phe Glu Lys Pro Gly Ala Pro Gly Lys Pro Thr Ile
 24325 24330 24335
 Thr Ala Val Thr Lys Asp Ser Cys Val Val Ala Trp Lys Pro Pro Ala
 24340 24345 24350
 Ser Asp Gly Gly Ala Lys Ile Arg Asn Tyr Tyr Leu Glu Lys Arg Glu
 24355 24360 24365
 Lys Lys Gln Asn Lys Trp Ile Ser Val Thr Thr Glu Glu Ile Arg Glu
 24370 24375 24380 2
 Thr Val Phe Ser Val Lys Asn Leu Ile Glu Gly Leu Glu Tyr Glu Phe
 4385 24390 24395 24400
 Arg Val Lys Cys Glu Asn Leu Gly Gly Glu Ser Glu Trp Ser Glu Ile
 24405 24410 24415
 Ser Glu Pro Ile Thr Pro Lys Ser Asp Val Pro Ile Gln Ala Pro His
 24420 24425 24430
 Phe Lys Glu Glu Leu Arg Asn Leu Asn Val Arg Tyr Gln Ser Asn Ala
 24435 24440 24445
 Thr Leu Val Cys Lys Val Thr Gly His Pro Lys Pro Ile Val Lys Trp
 24450 24455 24460 2
 Tyr Arg Gln Gly Lys Glu Ile Ile Ala Asp Gly Leu Lys Tyr Arg Ile
 4465 24470 24475 24480
 Gln Glu Phe Lys Gly Gly Tyr His Gln Leu Ile Ile Ala Ser Val Thr
 24485 24490 24495
 Asp Asp Asp Ala Thr Val Tyr Gln Val Arg Ala Thr Asn Gln Gly Gly
 24500 24505 24510
 Ser Val Ser Gly Thr Ala Ser Leu Glu Val Glu Val Pro Ala Lys Ile
 24515 24520 24525

His Leu Pro Lys Thr Leu Glu Gly Met Gly Ala Val His Ala Leu Arg			
24530	24535	24540	2
Gly Glu Val Val Ser Ile Lys Ile Pro Phe Ser Gly Lys Pro Asp Pro			
4545	24550	24555	24560
Val Ile Thr Trp Gln Lys Gly Gln Asp Leu Ile Asp Asn Asn Gly His			
24565	24570	24575	
Tyr Gln Val Ile Val Thr Arg Ser Phe Thr Ser Leu Val Phe Pro Asn			
24580	24585	24590	
Gly Val Glu Arg Lys Asp Ala Gly Phe Tyr Val Val Cys Ala Lys Asn			
24595	24600	24605	
Arg Phe Gly Ile Asp Gln Lys Thr Val Glu Leu Asp Val Ala Asp Val			
24610	24615	24620	2
Pro Asp Pro Pro Arg Gly Val Lys Val Ser Asp Ala Ser Arg Asp Ser			
4625	24630	24635	24640
Val Asn Leu Thr Trp Thr Glu Pro Ala Ser Asp Gly Gly Ser Lys Ile			
24645	24650	24655	
Thr Asn Tyr Ile Val Glu Lys Cys Ala Thr Ala Glu Arg Trp Leu			
24660	24665	24670	
Arg Val Gly Gln Ala Arg Glu Thr Arg Tyr Thr Val Ile Asn Leu Phe			
24675	24680	24685	
Gly Lys Thr Ser Tyr Gln Phe Arg Val Ile Ala Glu Asn Lys Phe Gly			
24690	24695	24700	2
Leu Ser Lys Pro Ser Glu Pro Ser Glu Pro Thr Ile Thr Lys Glu Asp			
4705	24710	24715	24720
Lys Thr Arg Ala Met Asn Tyr Asp Glu Glu Val Asp Glu Thr Arg Glu			
24725	24730	24735	
Val Ser Met Thr Lys Ala Ser His Ser Ser Thr Lys Glu Leu Tyr Glu			
24740	24745	24750	
Lys Tyr Met Ile Ala Glu Asp Leu Gly Arg Gly Glu Phe Gly Ile Val			
24755	24760	24765	
His Arg Cys Val Glu Thr Ser Ser Lys Lys Thr Tyr Met Ala Lys Phe			
24770	24775	24780	2
Val Lys Val Lys Gly Thr Asp Gln Val Leu Val Lys Lys Glu Ile Ser			
4785	24790	24795	24800
Ile Leu Asn Ile Ala Arg His Arg Asn Ile Leu His Leu His Glu Ser			
24805	24810	24815	
Phe Glu Ser Met Glu Glu Leu Val Met Ile Phe Glu Phe Ile Ser Gly			
24820	24825	24830	
Leu Asp Ile Phe Glu Arg Ile Asn Thr Ser Ala Phe Glu Leu Asn Glu			
24835	24840	24845	
Arg Glu Ile Val Ser Tyr Val His Gln Val Cys Glu Ala Leu Gln Phe			
24850	24855	24860	2
Leu His Ser His Asn Ile Gly His Phe Asp Ile Arg Pro Glu Asn Ile			
4865	24870	24875	24880
Ile Tyr Gln Thr Arg Arg Ser Ser Thr Ile Lys Ile Ile Glu Phe Gly			
24885	24890	24895	
Gln Ala Arg Gln Leu Lys Pro Gly Asp Asn Phe Arg Leu Leu Phe Thr			
24900	24905	24910	
Ala Pro Glu Tyr Tyr Ala Pro Glu Val His Gln His Asp Val Val Ser			
24915	24920	24925	
Thr Ala Thr Asp Met Trp Ser Leu Gly Thr Leu Val Tyr Val Leu Leu			
24930	24935	24940	2
Ser Gly Ile Asn Pro Phe Leu Ala Glu Thr Asn Gln Gln Ile Ile Glu			
4945	24950	24955	24960
Asn Ile Met Asn Ala Glu Tyr Thr Phe Asp Glu Glu Ala Phe Lys Glu			
24965	24970	24975	
Ile Ser Ile Glu Ala Met Asp Phe Val Asp Arg Leu Leu Val Lys Glu			
24980	24985	24990	
Arg Lys Ser Arg Met Thr Ala Ser Glu Ala Leu Gln His Pro Trp Leu			
24995	25000	25005	
Lys Gln Lys Ile Glu Arg Val Ser Thr Lys Val Ile Arg Thr Leu Lys			
25010	25015	25020	2

His Arg Arg Tyr Tyr His Thr Leu Ile Lys Lys Asp Leu Asn Met Val
 5025 25030 25035 25040
 Val Ser Ala Ala Arg Ile Ser Cys Gly Gly Ala Ile Arg Ser Gln Lys
 25045 25050 25055
 Gly Val Ser Val Ala Lys Val Lys Val Ala Ser Ile Glu Ile Gly Pro
 25060 25065 25070
 Val Ser Gly Gln Ile Met His Ala Val Gly Glu Gly Gly His Val
 25075 25080 25085
 Lys Tyr Val Cys Lys Ile Glu Asn Tyr Asp Gln Ser Thr Gln Val Thr
 25090 25095 25100 2
 Trp Tyr Phe Gly Val Arg Gln Leu Glu Asn Ser Glu Lys Tyr Glu Ile
 5105 25110 25115 25120
 Thr Tyr Glu Asp Gly Val Ala Ile Leu Tyr Val Lys Asp Ile Thr Lys
 25125 25130 25135
 Leu Asp Asp Gly Thr Tyr Arg Cys Lys Val Val Asn Asp Tyr Gly Glu
 25140 25145 25150
 Asp Ser Ser Tyr Ala Glu Leu Phe Val Lys Gly Val Arg Glu Val Tyr
 25155 25160 25165
 Asp Tyr Tyr Cys Arg Arg Thr Met Lys Lys Ile Lys Arg Arg Thr Asp
 25170 25175 25180 2
 Thr Met Arg Leu Leu Glu Arg Pro Pro Glu Phe Thr Leu Pro Leu Tyr
 5185 25190 25195 25200
 Asn Lys Thr Ala Tyr Val Gly Glu Asn Val Arg Phe Gly Val Thr Ile
 25205 25210 25215
 Thr Val His Pro Glu Pro His Val Thr Trp Tyr Lys Ser Gly Gln Lys
 25220 25225 25230
 Ile Lys Pro Gly Asp Asn Asp Lys Lys Tyr Thr Phe Glu Ser Asp Lys
 25235 25240 25245
 Gly Leu Tyr Gln Leu Thr Ile Asn Ser Val Thr Thr Asp Asp Asp Ala
 25250 25255 25260 2
 Glu Tyr Thr Val Val Ala Arg Asn Lys Tyr Gly Glu Asp Ser Cys Lys
 5265 25270 25275 25280
 Ala Lys Leu Thr Val Thr Leu His Pro Pro Pro Thr Asp Ser Thr Leu
 25285 25290 25295
 Arg Pro Met Phe Lys Arg Leu Leu Ala Asn Ala Glu Cys Gln Glu Gly
 25300 25305 25310
 Gln Ser Val Cys Phe Glu Ile Arg Val Ser Gly Ile Pro Pro Pro Thr
 25315 25320 25325
 Leu Lys Trp Glu Lys Asp Gly Gln Pro Leu Ser Leu Gly Pro Asn Ile
 25330 25335 25340 2
 Glu Ile Ile His Glu Gly Leu Asp Tyr Tyr Ala Leu His Ile Arg Asp
 5345 25350 25355 25360
 Thr Leu Pro Glu Asp Thr Gly Tyr Tyr Arg Val Thr Ala Thr Asn Thr
 25365 25370 25375
 Ala Gly Ser Thr Ser Cys Gln Ala His Leu Gln Val Glu Arg Leu Arg
 25380 25385 25390
 Tyr Lys Lys Gln Glu Phe Lys Ser Lys Glu Glu His Glu Arg His Val
 25395 25400 25405
 Gln Lys Gln Ile Asp Lys Thr Leu Arg Met Ala Glu Ile Leu Ser Gly
 25410 25415 25420 2
 Thr Glu Ser Val Pro Leu Thr Gln Val Ala Lys Glu Ala Leu Arg Glu
 5425 25430 25435 25440
 Ala Ala Val Leu Tyr Lys Pro Ala Val Ser Thr Lys Thr Val Lys Gly
 25445 25450 25455
 Glu Phe Arg Leu Glu Ile Glu Glu Lys Lys Glu Glu Arg Lys Leu Arg
 25460 25465 25470
 Met Pro Tyr Asp Val Pro Glu Pro Arg Lys Tyr Lys Gln Thr Thr Ile
 25475 25480 25485
 Glu Glu Asp Gln Arg Ile Lys Gln Phe Val Pro Met Ser Asp Met Lys
 25490 25495 25500 2
 Trp Tyr Lys Lys Ile Arg Asp Gln Tyr Glu Met Pro Gly Lys Leu Asp
 5505 25510 25515 25520

Arg Val Val Gln Lys Arg Pro Lys Arg Ile Arg Leu Ser Arg Trp Glu
 25525 25530 25535
 Gln Phe Tyr Val Met Pro Leu Pro Arg Ile Thr Asp Gln Tyr Arg Pro
 25540 25545 25550
 Lys Trp Arg Ile Pro Lys Leu Ser Gln Asp Asp Leu Glu Ile Val Arg
 25555 25560 25565
 Pro Ala Arg Arg Arg Thr Pro Ser Pro Asp Tyr Asp Phe Tyr Tyr Arg
 25570 25575 25580 2
 Pro Arg Arg Arg Ser Leu Gly Asp Ile Ser Asp Glu Glu Leu Leu
 5585 25590 25595 25600
 Pro Ile Asp Asp Tyr Leu Ala Met Lys Arg Thr Glu Glu Glu Arg Leu
 25605 25610 25615
 Arg Leu Glu Glu Leu Glu Leu Gly Phe Ser Ala Ser Pro Pro Ser
 25620 25625 25630
 Arg Ser Pro Pro His Phe Glu Leu Ser Ser Leu Arg Tyr Ser Ser Pro
 25635 25640 25645
 Gln Ala His Val Lys Val Glu Glu Thr Arg Lys Asn Phe Arg Tyr Ser
 25650 25655 25660 2
 Thr Tyr His Ile Pro Thr Lys Ala Glu Ala Ser Thr Ser Tyr Ala Glu
 5665 25670 25675 25680
 Leu Arg Glu Arg His Ala Gln Ala Ala Tyr Arg Gln Pro Lys Gln Arg
 25685 25690 25695
 Gln Arg Ile Met Ala Glu Arg Glu Asp Glu Glu Leu Leu Arg Pro Val
 25700 25705 25710
 Thr Thr Thr Gln His Leu Ser Glu Tyr Lys Ser Glu Leu Asp Phe Met
 25715 25720 25725
 Ser Lys Glu Glu Lys Ser Arg Lys Lys Ser Arg Arg Gln Arg Glu Val
 25730 25735 25740 2
 Thr Glu Ile Thr Glu Ile Glu Glu Tyr Glu Ile Ser Lys His Ala
 5745 25750 25755 25760
 Gln Arg Glu Ser Ser Ser Ala Ser Arg Leu Leu Arg Arg Arg Arg
 25765 25770 25775
 Ser Leu Ser Pro Thr Tyr Ile Glu Leu Met Arg Pro Val Ser Glu Leu
 25780 25785 25790
 Ile Arg Ser Arg Pro Gln Pro Ala Glu Glu Tyr Glu Asp Asp Thr Glu
 25795 25800 25805
 Arg Arg Ser Pro Thr Pro Glu Arg Thr Arg Pro Arg Ser Pro Ser Pro
 25810 25815 25820 2
 Val Ser Ser Glu Arg Ser Leu Ser Arg Phe Glu Arg Ser Ala Arg Phe
 5825 25830 25835 25840
 Asp Ile Phe Ser Arg Tyr Glu Ser Met Lys Ala Ala Leu Lys Thr Gln
 25845 25850 25855
 Lys Thr Ser Glu Arg Lys Tyr Glu Val Leu Ser Gln Gln Pro Phe Thr
 25860 25865 25870
 Leu Asp His Ala Pro Arg Ile Thr Leu Arg Met Arg Ser His Arg Val
 25875 25880 25885
 Pro Cys Gly Gln Asn Thr Arg Phe Ile Leu Asn Val Gln Ser Lys Pro
 25890 25895 25900 2
 Thr Ala Glu Val Lys Trp Tyr His Asn Gly Val Glu Leu Gln Glu Ser
 5905 25910 25915 25920
 Ser Lys Ile His Tyr Thr Asn Thr Ser Gly Val Leu Thr Leu Glu Ile
 25925 25930 25935
 Leu Asp Cys His Thr Asp Asp Ser Gly Thr Tyr Arg Ala Val Cys Thr
 25940 25945 25950
 Asn Tyr Lys Gly Glu Ala Ser Asp Tyr Ala Thr Leu Asp Val Thr Gly
 25955 25960 25965
 Gly Asp Tyr Thr Tyr Ala Ser Gln Arg Arg Asp Glu Glu Val Pro
 25970 25975 25980 2
 Arg Ser Val Phe Pro Glu Leu Thr Arg Thr Glu Ala Tyr Ala Val Pro
 5985 25990 25995 26000
 Ser Phe Lys Lys Thr Ser Glu Met Glu Ala Ser Ser Ser Val Arg Glu
 26005 26010 26015

Val Lys Ser Gln Met Thr Glu Thr Arg Glu Ser Leu Ser Ser Tyr Glu
 26020 26025 26030
 His Ser Ala Ser Ala Glu Met Lys Ser Ala Ala Leu Glu Glu Lys Ser
 26035 26040 26045
 Leu Glu Glu Lys Ser Thr Thr Arg Lys Ile Lys Thr Thr Leu Ala Ala
 26050 26055 26060 2
 Arg Ile Leu Thr Lys Pro Arg Ser Met Thr Val Tyr Glu Gly Glu Ser
 6065 26070 26075 26080
 Ala Arg Phe Ser Cys Asp Thr Asp Gly Glu Pro Val Pro Thr Val Thr
 26085 26090 26095
 Trp Leu Arg Lys Gly Gln Val Leu Ser Thr Ser Ala Arg His Gln Val
 26100 26105 26110
 Thr Thr Thr Lys Tyr Lys Ser Thr Phe Glu Ile Ser Ser Val Gln Ala
 26115 26120 26125
 Ser Asp Glu Gly Asn Tyr Ser Val Val Glu Asn Ser Glu Gly Lys
 26130 26135 26140 2
 Gln Glu Ala Glu Phe Thr Leu Thr Ile Gln Lys Ala Arg Val Thr Glu
 6145 26150 26155 26160
 Lys Ala Val Thr Ser Pro Pro Arg Val Lys Ser Pro Glu Pro Arg Val
 26165 26170 26175
 Lys Ser Pro Glu Ala Val Lys Ser Pro Lys Arg Val Lys Ser Pro Glu
 26180 26185 26190
 Pro Ser His Pro Lys Ala Val Ser Pro Thr Glu Thr Lys Pro Thr Pro
 26195 26200 26205
 Arg Glu Lys Val Gln His Leu Pro Val Ser Ala Pro Pro Lys Ile Thr
 26210 26215 26220 2
 Gln Phe Leu Lys Ala Glu Ala Ser Lys Glu Ile Ala Lys Leu Thr Cys
 6225 26230 26235 26240
 Val Val Glu Ser Ser Val Leu Arg Ala Lys Glu Val Thr Trp Tyr Lys
 26245 26250 26255
 Asp Gly Lys Leu Lys Glu Asn Gly His Phe Gln Phe His Tyr Ser
 26260 26265 26270
 Ala Asp Gly Thr Tyr Glu Leu Lys Ile Asn Asn Leu Thr Glu Ser Asp
 26275 26280 26285
 Gln Gly Glu Tyr Val Cys Glu Ile Ser Gly Glu Gly Thr Ser Lys
 26290 26295 26300 2
 Thr Asn Leu Gln Phe Met Gly Gln Ala Phe Lys Ser Ile His Glu Lys
 6305 26310 26315 26320
 Val Ser Lys Ile Ser Glu Thr Lys Lys Ser Asp Gln Lys Thr Thr Glu
 26325 26330 26335
 Ser Thr Val Thr Arg Lys Thr Glu Pro Lys Ala Pro Glu Pro Ile Ser
 26340 26345 26350
 Ser Lys Pro Val Ile Val Thr Gly Leu Gln Asp Thr Thr Val Ser Ser
 26355 26360 26365
 Asp Ser Val Ala Lys Phe Ala Val Lys Ala Thr Gly Glu Pro Arg Pro
 26370 26375 26380 2
 Thr Ala Ile Trp Thr Lys Asp Gly Lys Ala Ile Thr Gln Gly Lys
 6385 26390 26395 26400
 Tyr Lys Leu Ser Glu Asp Lys Gly Gly Phe Phe Leu Glu Ile His Lys
 26405 26410 26415
 Thr Asp Thr Ser Asp Ser Gly Leu Tyr Thr Cys Thr Val Lys Asn Ser
 26420 26425 26430
 Ala Gly Ser Val Ser Ser Ser Cys Lys Leu Thr Ile Lys Ala Ile Lys
 26435 26440 26445
 Asp Thr Glu Ala Gln Lys Val Ser Thr Gln Lys Thr Ser Glu Ile Thr
 26450 26455 26460 2
 Pro Gln Lys Lys Ala Val Val Gln Glu Glu Ile Ser Gln Lys Ala Leu
 6465 26470 26475 26480
 Arg Ser Glu Glu Ile Lys Met Ser Glu Ala Lys Ser Gln Glu Lys Leu
 26485 26490 26495
 Ala Leu Lys Glu Glu Ala Ser Lys Val Leu Ile Ser Glu Glu Val Lys
 26500 26505 26510

Lys Ser Ala Ala Thr Ser Leu Glu Lys Ser Ile Val His Glu Glu Ile
 26515 26520 26525
 Thr Lys Thr Ser Gln Ala Ser Glu Glu Val Arg Thr His Ala Glu Ile
 26530 26535 26540 2
 Lys Ala Phe Ser Thr Gln Met Ser Ile Asn Glu Gly Gln Arg Leu Val
 6545 26550 26555 26560
 Leu Lys Ala Asn Ile Ala Gly Ala Thr Asp Val Lys Trp Val Leu Asn
 26565 26570 26575
 Gly Val Glu Leu Thr Asn Ser Glu Glu Tyr Arg Tyr Gly Val Ser Gly
 26580 26585 26590
 Ser Asp Gln Thr Leu Thr Ile Lys Gln Ala Ser His Arg Asp Glu Gly
 26595 26600 26605
 Ile Leu Thr Cys Ile Ser Lys Thr Lys Glu Gly Ile Val Lys Cys Gln
 26610 26615 26620 2
 Tyr Asp Leu Thr Leu Ser Lys Glu Leu Ser Asp Ala Pro Ala Phe Ile
 6625 26630 26635 26640
 Ser Gln Pro Arg Ser Gln Asn Ile Asn Glu Gly Gln Asn Val Leu Phe
 26645 26650 26655
 Thr Cys Glu Ile Ser Gly Glu Pro Ser Pro Glu Ile Glu Trp Phe Lys
 26660 26665 26670
 Asn Asn Leu Pro Ile Ser Ile Ser Ser Asn Val Ser Ile Ser Arg Ser
 26675 26680 26685
 Arg Asn Val Tyr Ser Leu Glu Ile Arg Asn Ala Ser Val Ser Asp Ser
 26690 26695 26700 2
 Gly Lys Tyr Thr Ile Lys Ala Lys Asn Phe Arg Gly Gln Cys Ser Ala
 6705 26710 26715 26720
 Thr Ala Ser Leu Met Val Leu Pro Leu Val Glu Pro Ser Arg Glu
 26725 26730 26735
 Val Val Leu Arg Thr Ser Gly Asp Thr Ser Leu Gln Gly Ser Phe Ser
 26740 26745 26750
 Ser Gln Ser Val Gln Met Ser Ala Ser Lys Gln Glu Ala Ser Phe Ser
 26755 26760 26765
 Ser Phe Ser Ser Ser Ala Ser Ser Met Thr Glu Met Lys Phe Ala
 26770 26775 26780 2
 Ser Met Ser Ala Gln Ser Met Ser Ser Met Gln Glu Ser Phe Val Glu
 6785 26790 26795 26800
 Met Ser Ser Ser Phe Met Gly Ile Ser Asn Met Thr Gln Leu Glu
 26805 26810 26815
 Ser Ser Thr Ser Lys Met Leu Lys Ala Gly Ile Arg Gly Ile Pro Pro
 26820 26825 26830
 Lys Ile Glu Ala Leu Pro Ser Asp Ile Ser Ile Asp Glu Gly Lys Val
 26835 26840 26845
 Leu Thr Val Ala Cys Ala Phe Thr Gly Glu Pro Thr Pro Glu Val Thr
 26850 26855 26860 2
 Trp Ser Cys Gly Gly Arg Lys Ile His Ser Gln Glu Gln Gly Arg Phe
 6865 26870 26875 26880
 His Ile Glu Asn Thr Asp Asp Leu Thr Thr Leu Ile Ile Met Asp Val
 26885 26890 26895
 Gln Lys Gln Asp Gly Gly Leu Tyr Thr Leu Ser Leu Gly Asn Glu Phe
 26900 26905 26910
 Gly Ser Asp Ser Ala Thr Val Asn Ile His Ile Arg Ser Ile
 26915 26920 26925

<210> 3
 <211> 21
 <212> DNA
 <213> Danio rerio

<400> 3

agggacactc agagaccata g	21
<210> 4	
<211> 40	
<212> DNA	
<213> Danio rerio	
<400> 4	
taatacgact cactataggg gtctgaggat actcgcccttc	40
<210> 5	
<211> 27	
<212> DNA	
<213> Danio rerio	
<400> 5	
tttgaaccac ttgaaggtca caccagg	27
<210> 6	
<211> 30	
<212> DNA	
<213> Danio rerio	
<400> 6	
gctaagaatg actatggagt tgccacaaggc	30
<210> 7	
<211> 27	
<212> DNA	
<213> Danio rerio	
<400> 7	
tgaaccacctt gaagggtcaca ccaggag	27
<210> 8	
<211> 41	
<212> DNA	
<213> Danio rerio	
<400> 8	
taatacgact cactataggg agggacactc agagaccata g	41
<210> 9	
<211> 40	
<212> DNA	
<213> Danio rerio	
<400> 9	
taatacgact cactataggg gtctgaggat actcgcccttc	40
<210> 10	
<211> 21	
<212> DNA	
<213> Danio rerio	
<400> 10	
agggacactc agagaccata g	21
<210> 11	
<211> 22	
<212> DNA	
<213> Danio rerio	

<400> 11
ggcaatgtta ctctctgttg ag

22

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US01/01212

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :C12Q 1/68; A61K 48/00; C12N 15/00
US CL :435/6; 514/44; 800/21

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6; 514/44; 800/21

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN, caplus, medline, uspatful
search terms: titin gene, mutation, pickwick, heart disease, cardiac, cardio?, zebrafish

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X ----	SATOH. M. Structural Analysis of the Titin Gene in Hypertrophic Cardiomyopathy: Identification of a Novel Disease Gene. Biochemical and Biophysical Research Communications. August 1999. Vol 262. pages 411-417, especially abstract, page 412, Fig.3, page 414.	1-6 -----
A	SIU. B.L. Familial Dilated Cardiomyopathy Locus Maps to Chromosome 2q31. Circulation. 02 March 1999. Vol 99. pages 1022-1026, especially abstract, Fig. 3.	7-19
A		1-19

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"		document defining the general state of the art which is not considered to be of particular relevance
"E"	"X"	earlier document published on or after the international filing date
"L"		document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	"Y"	document referring to an oral disclosure, use, exhibition or other means
"P"	"&"	document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 26 FEBRUARY 2001	Date of mailing of the international search report 16 MAY 2001
---	---

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer TERRY J. DEY JEHANNE SOUAYA PARALEGAL SPECIALIST TECHNOLOGY CENTER 1600 Telephone No. (703) 308-1233
---	--