Discussion 1 Disc103 Probability/Pandas

SCAN ME

Attendance form

Password: rube

1. Course/Discussion Logistics

Announcements

Due Dates

Homework 1 - June 27

Lab 1 - June 27

Lab 2 - June 27

Other

Monday/Thursday OH most crowded

Contact: mko357@berkeley.edu

DISCUSSION

200m- Tues/Thurs 1-2pm

non password form each week

3 drops

Attendance => (0° of exam

3

2. Introductions

Major 14tar something you're excited tor this summer

Name

3. Worksheet

a distribution

Binomial Formula example

multiple answers Choose CAN

- 1. Consider a sample of size n where n is a positive integer drawn at random with replacement from a population in which a proportion p of the individuals are called successes.
 - (a) For an integer k such that $0 \le k \le n$, which of the following are equal to the chance of getting exactly k successes in the sample? $\binom{n}{k} = \binom{n-k}{n-k} = \frac{n!}{k!(n-k)!}$

(i)
$$p^k(1-p)^{n-k}$$

$$\binom{n}{k} p^k (1-p)^{n-k}$$

$$(i) \binom{n}{k} p^k (1-p)^{n-k}$$

$$(ii) \binom{n}{n-k} p^k (1-p)^{n-k}$$

$$(iv) \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$

$$\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$

(b) Which of the following are equal to the chance of getting at least one success in the sample?

(i)
$$np(1-p)^{n-1}$$

(ii)
$$\sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k}$$

(ii)
$$\sum_{k=2}^{n} \binom{n}{k} p^k (1-p)^{n-k}$$

 $\sum_{k=1}^{n} \binom{n}{k} p^k (1-p)^{n-k}$
(iv) $1-p^n$

(iv)
$$1 - p^n$$

$$(v)$$
 1 - $(1-p)^n$

Important Pandas commands/operations "index"/ iloc vs. loc: iloc = "integer" location

loc selects rows and columns with specific labels. iloc selects rows and columns at specific integer positions

Select with a:	(label)	(position) iloc		
Value	df.loc['zero']	df.iloc[0]		
List	df.loc[[ˈzeroˈ, ˈtwoˈ]]	df.iloc[[0, 2]]		
Slicing	df.loc['zero':'two'] fincluded	df.iloc[0:2] / Included Excluded		

Important Pandas commands/operations

groupby:

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

	species	sepal_length	sepal_width	petal_length	petal_width	
0	setosa	5.1	3.5	1.4	0.2	
1	setosa	4.9	3.0	1.4	0.2	SUM
2	setosa	4.7	3.2	1.3	0.2	SOW
3	setosa	4.6	3.1	1.5	0.2	
4	setosa	5.0	3.6	1.4	0.2	sepal_length sepal_width petal_length petal_width
50	versicolor	7.0	3.2	4.7	1.4	
51	versicolor	6.4	3.2	4.5	1.5	setosa 24.3 16.4 7.0 1.0
52	versicolor	6.9	3.1	4.9	1.5	versicolor 32.3 14.6 22.7 7.2
53	versicolor	5.5	2.3	4.0	1.3	
54	versicolor	6.5	2.8	4.6	1.5	
100	virginica	6.3	3.3	6.0	2.5	SUM
101	virginica	5.8	2.7	5.1	1.9	
102	virginica	7.1	3.0	5.9	2.1	
103	virginica	6.3	2.9	5.6	1.8	SUM
104	virginica	6.5	3.0	5.8	2.2	

Pandas Practice

Below are the first few rows of the elections DataFrame from lecture.

	Year	Candidate	Party	Popular vote	Result	%
0	1824	Andrew Jackson	Democratic-Republican	151271	loss	57.210122
1	1824	John Quincy Adams	Democratic-Republican	113142	win	42.789878
2	1828	Andrew Jackson	Democratic	642806	win	56.203927
3	1828	John Quincy Adams	National Republican	500897	loss	43.796073
4	1832	Andrew Jackson	Democratic	702735	win	54.574789

- 5. We want to select the "Popular vote" column as a pd.Series. Which of the following lines of code will error?
 - A) elections['Popular vote']
 - elections.iloc['Popular vote'] X
 - C) elections.loc['Popular vote']
 - D) elections.loc[:, 'Popular vote']
 - elections.iloc[:, 'Popular vote'] 👗

Write one line of Pandas code that returns a pd.DataFrame that only contains election results from the 1900s.

elections [(elections ('Year') 7=1900) & lelections ['Year'] (2000)]

Write one line of Pandas code that returns a pd.Series, where the index is the Party, and the values are how many times that party won an election.

Hint: use value_counts().

created a table of win.

8. Anirudhan is writing a grading script to compute grades for students in Data 101. Recall that many factors go into computing a student's final grade, including homework, discussion, exams, and labs. In this question, we will help Anirudhan compute the homework grades for all students using a DataFrame, hw_grades, provided by Gradescope.

The Pandas DataFrame hw.grades contains homework grades for all students for all homework assignments, with one row for each combination of student and homework assignment. Any assignments that are incomplete are denoted by NaN (missing) values, and any late assignments are denoted by a True boolean value in the Late column. You may assume that the names of students are unique. Below is a sample of hw.grades.

	Name	Assignment	Grade	Late
16	Ash	Homework 7	97.734029	False
14	Ash	Homework 5	68.715955	True
9	Meg	Homework 10	88.405920	False
3	Meg	Homework 4	74.420033	True
13	Ash	Homework 4	64.538548	False

(a) Find the total number of late homework submissions.

(b) Find Meg's average homework grade. Assume there are no late penalties.