数

## 数 学

| ^ | ~~~ | 注 意                                                           |
|---|-----|---------------------------------------------------------------|
|   | 1   | 問題は 1 から 5 までで、5ページにわたって印刷してあります。                             |
|   |     | また、解答用紙は両面に印刷してあります。                                          |
|   | 2   | 検査時間は 50 分で、終わりは午前 11 時 10 分です。                               |
|   | 3   | 声を出して読んではいけません。                                               |
|   | 4   | 計算が必要なときは、この問題用紙の余白を利用しなさい。                                   |
|   | 5   | 答えは全て解答用紙に <b>HB又はBの鉛筆(シャープペンシルも可)</b> を使って                   |
|   | 則   | 月確に記入し, <b>解答用紙だけを提出しなさい</b> 。                                |
|   | 6   | 答えに分数が含まれるときは、それ以上約分できない形で表しなさい。                              |
|   |     | 例えば、 $\frac{6}{8}$ と答えるのではなく、 $\frac{3}{4}$ と答えます。            |
|   | 7   | 答えに根号が含まれるときは、根号の中を最も小さい自然数にしなさい。                             |
|   |     | 例えば、 $3\sqrt{8}$ と答えるのではなく、 $6\sqrt{2}$ と答えます。                |
|   | 8   | 答えを選択する問題については、 <b>特別の指示</b> のあるもののほかは、各問の                    |
|   | 7   | マ・イ・ウ・エのうちから、最も適切なものをそれぞれ 1 つずつ選んで、その                         |
|   | i   | 已号の                                                           |
|   | 9   | の中の数字を答える問題については,「 <b>あ, い, う</b> , …」に当てはまる                  |
|   | 娄   | 女字を、下の $[\emptyset]$ のように、 $0$ から $9$ までの数字のうちから、それぞれ $1$ つずつ |
|   | 逞   | ®んで、そ <b>の数字の ◯ の中を正確に塗りつぶしなさい</b> 。                          |
|   | 10  | 答えを記述する問題(答えを選択する問題, の中の数字を答える問題                              |
|   | L   | J外のもの) については、解答用紙の決められた欄から <b>はみ出さないように</b>                   |
|   | 킡   | <b>書きなさい</b> 。                                                |
|   | 11  | 答えを直すときは、きれいに消してから、消しくずを残さないようにして、                            |
|   | 親   | fしい答えを書きなさい。                                                  |
|   | 12  | 受検番号を解答用紙の表面と裏面の決められた欄に書き、表面については、                            |
|   | 7   | その数字の ◯ の中を正確に塗りつぶしなさい。                                       |
|   | 13  | 解答用紙は、汚したり、折り曲げたりしてはいけません。                                    |

## 〔例〕 **あい** に12と答えるとき

| あ  | 0 • 2 3 4 5 6 7 8 9 |
|----|---------------------|
| () | 0 1 • 3 4 5 6 7 8 9 |

問題は1ページからです。

1 次の各問に答えよ。

〔問1〕 
$$7+6\times\left(-\frac{2}{3}\right)$$
 を計算せよ。

〔問2〕 
$$\frac{9a-1}{8} - \frac{a-5}{4}$$
 を計算せよ。

〔問3〕 
$$(\sqrt{6}-3)(\sqrt{6}+2)$$
 を計算せよ。

〔問4〕 一次方程式 
$$8x-7=4x+1$$
 を解け。

〔問5〕 連立方程式 
$$\begin{cases} 2x + y = 9 \\ x + 3y = 7 \end{cases}$$
 を解け。

[問6] 二次方程式 
$$x^2 + 14x + 45 = 0$$
 を解け。

[問7] 次の ① と② に当てはまる数を、下のア~クのうちからそれぞれ選び、 記号で答えよ。

関数  $y=-\frac{1}{3}x^2$  について、x の変域が  $-3 \le x \le 1$  のときの y の変域は、

$$\boxed{1} \leq y \leq \boxed{2}$$

である。

〔問8〕 次の の中の「**あ**」「い」「**う**」に当てはまる数字をそれぞれ答えよ。

右の図1のように、1、2、3、4、5の物でな1のずの書いな5枚のカードがまて

この5枚のカードから同時に2枚のカードを

取り出すとき、取り出した2枚のカードに

書いてある数の大きい数から小さい数をひいた差が3以上になる確率は、

ただし、どのカードが取り出されることも同様に確からしいものとする。

[問9] 右の図2で、△ABCは、∠ACBが鈍角の 三角形である。

> 解答欄に示した図をもとにして、△ABCの 内部にあり、辺ABと辺BCまでの距離が等しく、 BC=BPとなる点Pを、定規とコンパスを用いて 作図によって求め、点Pの位置を示す文字Pも書け。 ただし、作図に用いた線は消さないでおくこと。



図 1

**2** Sさんのクラスでは、先生が示した問題をみんなで考えた。 次の各間に答えよ。

[先生が示した問題]

aを正の数とする。

右の図1で、四角形ABCDは、

1辺の長さがa cm の正方形である。

また、右の図2は、点〇を中心とし、

直径がacmの円である。

四角形ABCDの面積から、円Oの面積をひいた面積をaを用いて表しなさい。



[問1] 次の に当てはまるものを、下のア~エのうちから選び、記号で答えよ。 ただし、円周率は $\pi$ とする。

[先生が示した問題]で、四角形ABCDの面積から、円〇の面積をひいた面積は、

cm<sup>2</sup>である。

Sさんのグループは、[先生が示した問題]をもとにして、次の問題を考えた。

[Sさんのグループが作った問題] —

a, hを正の数とする。

右の図3に示した立体は、図1の四角形ABCDを、 四角形ABCDと垂直な方向に h cm 平行に動かして できた直方体である。

また、右の図4に示した立体は、図2の円0を、 円Oと垂直な方向に h cm 平行に動かしてできた 円柱である。



この2つの立体について、直方体の表面積をPcm²、

円柱の表面積をQcm $^2$ とするとき, $Q = \frac{\pi}{4}$ Pとなることを確かめてみよう。

[問2] [Sさんのグループが作った問題]で、P, Qをそれぞれa, hを用いた式で表し、  $Q = \frac{\pi}{4} P$ となることを証明せよ。 ただし、円周率はπとする。

- **3** 右の図1で、点Oは原点、点Aの座標は (0,-1)であり、直線ℓは
  - 一次関数 y = x + 2 のグラフを表している。 直線  $\ell$  と x 軸との交点を B,

直線 $\ell$ とy軸との交点をCとする。

直線 $\ell$ 上にある点をPとし、2点A、Pを通る直線をmとする。

次の各問に答えよ。



ア 7

**1** 3

ウ -3

 $\mathbf{I} - 7$ 

〔問2〕 右の**図2**は, **図1**において,

点Pのx座標が2より

大きい数であるとき,直線ℓ上にあり,

PC=CQとなる点のうち, 点Pと

異なる点をQとした場合を表している。

次の①, ②に答えよ。





① 次の に当てはまる数を,

下のア〜エのうちから選び,

記号で答えよ。

点Qのx座標が-3のとき,直線mの式は,

である。

ア 3

**1** 2

ウ  $\frac{4}{2}$ 

 $\mathtt{r} \quad \frac{1}{2}$ 

② **図2**において、点Qを通りy軸に平行な直線を引き、x軸との交点をRとした場合を考える。

 $\triangle APC$ の面積が  $\triangle BRQ$ の面積の 3 倍になるとき、 点POx 座標を求めよ。

**4** 右の図1で、点0は長さ10cmの

線分ABを直径とする半円の中心である。

点Cは、 $\widehat{AB}$ 上にある点で、 $\widehat{AC} = \widehat{CB}$ である。

AC上にあり、点A、点Cのいずれにも 一致しない点をPとする。

点Oと点Pを結び、線分OPの中点を Dとする。



点Dを中心とし、線分OPを直径とする円と線分ABとの交点のうち、点Oと異なる点を Qとする。

次の各間に答えよ。

[問1] **図1**において、 $\angle AOP = a^{\circ}$ とするとき、 $\triangle O$ を含まないPQの長さを表す式を、 次のア〜エのうちから選び、記号で答えよ。

図 2

ただし、円周率は $\pi$ とする。

$$\mathcal{F} = \frac{5\pi a}{9}$$
 cm

$$\mathcal{F} = \frac{5\pi a}{9} \text{ cm}$$
  $\mathcal{T} = \frac{5\pi a}{36} \text{ cm}$   $\mathcal{T} = \frac{\pi a}{18} \text{ cm}$   $\mathcal{I} = \frac{\pi a}{36} \text{ cm}$ 

ウ 
$$\frac{\pi a}{18}$$
 cm

$$\frac{\pi a}{36}$$
 cm

〔問2〕 右の**図2**は、**図1**において、

点Aと点P, 点Bと点P.

点Pと点Qをそれぞれ結んだ場合を 表している。

次の①, ②に答えよ。



- ①  $\triangle ABP \propto \triangle APQ$  であることを証明せよ。
- ② 次の の中の 「**え**」 「**お**」 「**か**」 に当てはまる数字をそれぞれ答えよ。 図2において、点Cと点Oを結び、線分BPと線分COとの交点をRとした場合を 考える。

AQ:PQ=1:2のとき,四角形ORPQの面積は,

**5** 右の**図1**に示した立体A-BCDEは、

底面BCDEが1辺の長さ8cmの正方形で、

AB=AC=AD=AE=8 cm の正四角すいである。 点 P は,辺 A D 上 にある点で,頂点 A,頂点 D の いずれにも一致しない。

辺BC上にある点をQとし、点Pと点Qを結ぶ。 次の各間に答えよ。



〔問1〕 次の の中の 「**き**」 「**く**」 に当てはまる数字をそれぞれ答えよ。

 $AP=4\,\mathrm{cm},$  点Qが頂点Bに一致するとき、線分PQの長さは、 **き**  $\sqrt{$  **く**  $\mathrm{cm}$  cm である。

[問2] 次の の中の「け」「こ」「さ」に当てはまる数字をそれぞれ答えよ。

右の**図2**は、**図1**において、頂点Aと点Q、

図 2

頂点Eと点P, 頂点Eと点Qを それぞれ結んだ場合を表している。

AP = 6 cm, BQ = 4 cm のとき,

立体Q-AEPの体積は,

けこ  $\sqrt{\phantom{a}}$  cm<sup>3</sup> である。

