WIKI-MACH

BALLOT VOTE 2020

INDEX

- 1. 분석 목적
- 2. 변수 소개
- 3. 변수 연구
- 4. 모델 소개
- 5. 堪至
- 6. 한계점

1. 분석 목적

1) 대회 설 명 ___

심리 성향 예측 AI 경진대회

▲ 상금 : 100만원+애플워치

U 2020.09.28 ~ 2020.11.16 17:59 (+ Google Calendar)

計 1,043팀 ☐ D-10

- 1. 주제 : 심리학 테스트 분석 알고리즘 개발
- 2. 대회설명
- 마키아벨리즘 심리테스트를 활용하여 테스트 참가자의 국가 선거 투표 여부 예측
- 주어진 데이터만을 활용 (외부 데이터셋 사용 불가)
- 3. 주최/주관 : DACON

2. 坦宁 红州

02. 변수 소개

1) 데이터 설 명

◆ 본 공모전에서 제공받은 데이터 셋은 <mark>총 76개의 변수</mark>로 구성되어 있습니다.

변수명	설명	범주
QaA ~ QtA	마키아벨리즘 테스트 문항	1~5 (리커트 척도)
QaE ~ QtE	테스트 문항별 상대적 소요 시간	숫자 (연속형)
tp01 ~ tp10	TIPI 테스트 문항	1~5 (리커트 척도)
wr_01 ~ 13	단어 테스트 문항 (존재 o)	0 또는 1 (명목척도)
wf_01 ~ 03	단어 테스트 문항 (존재 x)	0 또는 1 (명목척도)
age_group	연령	10s ~ 40s (명목척 도)
education	교육 수준	0~4 (순서형)
engnat	모국어가 영어	0, 1, 2 (명목척도)

변수명	설명	범주
familysize	형제자매 수	숫자 (연속형)
gender	성별	1, 2 (명목척도)
hand	필기하는 손	0~3 (명목척도)
married	혼인 상태	0~3 (명목척도)
race	인종	문자형 (명목척도)
religion	종교	문자형 (명목척도)
urban	유년기의 거주 구역	0~3 (명목척도)
voted	작년 국가 투표 여부	1 또는 2 (명목척도)

3. 변수 연구

1) 데이터 설 명 마키이베기즈

마키아벨리즘이? 사회심리학 등에서는 란 "개인적인 욕구

" 개인적인 욕구의 충족을 위해 남을 속이거나 조종하려는 욕구를 가리키는 용어" 리 사용되

	······· <mark>어</mark> ″ 로 사용됨 ···································					
	마키아벨리즘 테스트문항	전 혀x	약 간x	약 간o	매 우o	
secret						1
-	1. 당신이 어떤 일을 한 이유를 필요한 때를 제외하고는 누구에게도 절대 말하지 않는다.					
	2. 사람을 다루는 가장 좋은 방법은 그들이 듣기 원하는 말을 해주는 것이다					
	3. 도덕적으로 올바른 일 일때만, 그 행동을 해야 한다.					
	4. 대부분의 사람들은 기본적으로 선하며 착하다.					
+	5 모든 사람들에게는 악한 경향이 있고 기회만 주어진다면 그 성향이 표현되다고 가정하는 것이 가장 안					
secret	전하다.					
_	6. 모든 경우에 있어 정직이 최선이다.					
secret	7. 누군가에게 거짓말하는 것은 변명의 여지가 없다.					
-	8. 일반적으로 사람들을 강제하지 않는 한, 열심히 일하지 않는다.					
secret	9. 대체로 겸손하고 정직한 것이 중요하고 부정직한 것보다 난다.					
	10. 이탈의을 해달라고 두군가에게 요중일때. 내가 그 의을 원하는 식체 이유를 의견주는 것이 다 중요해.					
secret	보이는 듯한 이유를					
	알려주는 것보다 좋은 방법이다.					
+	11. 세상을 앞에서 이끌어가는 사람들은 깨끗하고 도덕적인 삶을 산다.					
secret	12. 누군가를 완전히 믿는 사람은 고생을 자치하는 것이다.					
+	13. 범죄자들과 다른 일반 사람들의 가장 큰 차이점은, 범죄자들이 잡힐만큼 멍청하다는 것이다.					
secret	· · · · · · · · · · · · · · · · · · ·					
Secret	15. 중요한 사람들에게 아첨하는 것이 현명하다.					
-	16. 모든면에서 좋은 것이 가능하다.					
secret	17. P.T Barnum이 '매 분마다 선천적으로 잘 속는 사람이 태어난다'라고 말한 것은 틀리다.					
	18. 요령이 없다면 앞으로 나아가기 힘들다					
	19. 불치병에 걸린 사람들에게 안락사를 선택할 권리를 갖게 해야 한다.					
	20 대보보이 사람들은 그들이 돼사은 일은 거비다 보다이 주으로 더 빠리 이느다.					

03. 변수 연구

```
In [22]: import seaborn as sns
        from IPython.display import Image
        correlations = df1[Q Ques].corr(method = 'spearman')
         sns.heatmap(correlations, cmap="coolwarm", square=True, center=0)
Out[22]: <AxesSubplot:>
          QaA -
QbA -
QcA -
                                         - 0.8
                                                          부호가 같은 문항끼리는 (QbA와 QcA)
          QdA
QeA
QfA
QfA
QhA
QiA
QiA
QkA
QlA
QmA
                                                                  상관관계 값이 양수이고,
                                         - 0.6
                                         - 0.4
                                         - 0.2
                                                          부호가 다른 문항끼리는 (QbA와 QeA)
          QnA
                                         - 0.0
                                                                  상관관계 값이 음수이다.
          QoA
QpA
QqA
QrA
                                         - -0.2
          QsA
QtA
```

```
In [25]: import seaborn as sns
          from IPython.display import Image
          flipping_columns = ["QeA", "QfA", "QkA", "QqA", "QrA"]
          for flip in flipping_columns:
               dfl[flip] = 6 - dfl[flip]
          correlations = df1[Q_Ques].corr(method = 'spearman')
          sns.heatmap(correlations, cmap="coolwarm", square=True, center=0)
Out[25]: <AxesSubplot:>
                                                                              이미 알고 있는 (-) 부호 문항을
                                                 - 0.8
           QdA
QeA
QfA
QhA
QhA
QhA
QhA
QnA
QnA
QnA
QnA
QpA
QrA
QrA
QrA
QrA
QtA
                                                                                         (+)로 reverse
                                                 - 0.6
                                                 - 0.4
                                                 - 0.2
                                                                                QaA, QdA, QgA, QiA,QnA는
(-)부호
                                                 - 0.0
                                                 - -0.2
                                                 - -0.4
```

```
In [26]: flipping secret columns = ["QaA", "QdA", "QgA", "QiA", "QnA"]
        for flip in flipping secret columns:
            dfl[flip] = 6 - dfl[flip]
        correlations = df1[Q Ques].corr(method = 'spearman')
        sns.heatmap(correlations, cmap="coolwarm", square=True, center=0)
Out[26]: <AxesSubplot:>
         - 0.9
                                      - 0.8
                                      - 0.7
                                                          (-) 부호인 secret 문항을 (+)로 rev
                                      - 0.6
                                                          erse => 모두 (+)로 변
                                      - 0.5
                                                                    경
                                      -0.4
                                      - 0.3
                                      - 0.2
```

```
In [27]: # 컬럼에 추가
        df1['Mach score'] = df1[Q Ques].sum(axis = 1)
        df2['Mach score'] = df2[Q Ques].sum(axis = 1)
In [28]: df1['Mach score']
Out[28]: index
               59.0
                                                           0~100 사이의 마키아벨리즘 스코어
               52.0
               38.0
               67.0
               60.0
               83.0
        45527
                                                       Mach_Score가 높을수록 계산적, 신중
        45528
               76.0
                                                       Mach_Score가 낮을수록 정직, 공감능력
        45529
               30.0
        45530
               58.0
                                                       높음
        45531
               68.0
        Name: Mach score, Length: 45532, dtype: float64
```

10문항 => 5요인으로 구성

- 1. ____ 나는 활발하고 열심히 하는 사람이다.
- 2. ____ 나는 따지기를 좋아하고 다투기를 좋아하는 사람이다.
- 3. ____ 나는 믿음직스럽고 자기관리가 가능한 사람이다.
- 4. 나는 불안하고 화를 잘 내는 사람이다.
- 5. ____ 나는 새로운 경험을 마다하지 않으며 여러 가지로 생각해보는 사람이다.
- 6. 나는 내향적이고 조용한 사람이다.
- 7. 나는 동정심이 많고 다정한 사람이다.
- 8. ____ 나는 계획적이지 않고 조심성 없는 사람이다.
- 9. ____ 나는 침착하고 기분이 안정된 사람이다.
- 10.____ 나는 변화를 싫어하며 창의적이지 않은 사람이다.

10문항 => 5요인으로 구성

- 1. ____ 나는 활발하고 열심히 하는 사람이다.
- 2. 나는 따지기를 좋아하고 다투기를 좋아하는 사람이다.
- 3. ____ 나는 믿음직스럽고 자기관리가 가능한 사람이다.
- 4. 나는 불안하고 화를 잘 내는 사람이다.
- 5. ____ 나는 새로운 경험을 마다하지 않으며 여러 가지로 생각해보는 사람이다
- 6. ____ 나는 내향적이고 조용한 사람이다.
- 7. 나는 동정심이 많고 다정한 사람이다.
- 8. 나는 계획적이지 않고 조심성 없는 사람이다.
- 9. ____ 나는 침착하고 기분이 안정된 사람이다.
- 10.____ 나는 변화를 싫어하며 창의적이지 않은 사람이다.

외향성 = (1번 + 6 번)/2

10문항 => 5요인으로 구성

- 1. ____ 나는 활발하고 열심히 하는 사람이다.
- 2. ____ 나는 따지기를 좋아하고 다투기를 좋아하는 사람이다.
- 3. ____ 나는 믿음직스럽고 자기관리가 가능한 사람이다.
- 4. ____ 나는 불안하고 화를 잘 내는 사람이다.
- 5. ____ 나는 새로운 경험을 마다하지 않으며 여러 가지로 생각해보는 사람이다.
- 6. ____ 나는 내향적이고 조용한 사람이다.
- 7. ____ 나는 동정심이 많고 다정한 사람이다.
- 8. 나는 계획적이지 않고 조심성 없는 사람이다.
- 9. 나는 침착하고 기분이 안정된 사람이다.
- 10.____ 나는 변화를 싫어하며 창의적이지 않은 사람이다.

친화성 = (7번 + 2번)/2

10문항 => 5요인으로 구성

- 1. ____ 나는 활발하고 열심히 하는 사람이다.
- 2. ____ 나는 따지기를 좋아하고 다투기를 좋아하는 사람이다.
- 3. ____ 나는 믿음직스럽고 자기관리가 가능한 사람이다.
- 4. 나는 불안하고 화를 잘 내는 사람이다.
- 5. ____ 나는 새로운 경험을 마다하지 않으며 여러 가지로 생각해보는 사람<mark>이다.</mark>
- 6. ____ 나는 내향적이고 조용한 사람이다.
- 7. 나는 동정심이 많고 다정한 사람이다.
- 8. 나는 계획적이지 않고 조심성 없는 사람이다.
- 9. ____ 나는 침착하고 기분이 안정된 사람이다.
- 10.____ 나는 변화를 싫어하며 창의적이지 않은 사람이다.

성실성 = (3번 + 8 번)/2

10문항 => 5요인으로 구성

- 1. ____ 나는 활발하고 열심히 하는 사람이다.
- 2. ____ 나는 따지기를 좋아하고 다투기를 좋아하는 사람이다.
- 3. ____ 나는 믿음직스럽고 자기관리가 가능한 사람이다.
- 4. ____ 나는 불안하고 화를 잘 내는 사람이다.
- 5. ____ 나는 새로운 경험을 마다하지 않으며 여러 가지로 생각해보는 사람이다.
- 6. 나는 내향적이고 조용한 사람이다.
- 7. 나는 동정심이 많고 다정한 사람이다.
- 8. 나는 계획적이지 않고 조심성 없는 사람이다.
- 9. ____ 나는 침착하고 기분이 안정된 사람이다.
- 10.____ 나는 변화를 싫어하며 창의적이지 않은 사람이다.

정서적 안정성 = (9번 + 4 번)/2

10문항 => 5요인으로 구성

- 1. ____ 나는 활발하고 열심히 하는 사람이다.
- 2. ____ 나는 따지기를 좋아하고 다투기를 좋아하는 사람이다.
- 3. ____ 나는 믿음직스럽고 자기관리가 가능한 사람이다.
- 4. ____ 나는 불안하고 화를 잘 내는 사람이다.
- 5. ____ 나는 새로운 경험을 마다하지 않으며 여러 가지로 생각해보는 사람이다.
- 6. ____ 나는 내향적이고 조용한 사람이다.
- 7. 나는 동정심이 많고 다정한 사람이다.
- 8. 나는 계획적이지 않고 조심성 없는 사람이다.
- 9. 나는 침착하고 기분이 안정된 사람이다.
- 10.____ 나는 변화를 싫어하며 창의적이지 않은 사람이다.

경험개방성 = (5번 + 10 번)/2 2) TIPI 점수

```
In [29]: fea2 = ['tp01','tp02','tp03','tp04','tp05','tp06','tp07','tp08','tp09','tp10']
         df1.loc[:,fea2] = df1.loc[:,fea2].applymap(lambda x: 7 - x)
         df2.loc[:,fea2] = df2.loc[:,fea2].applymap(lambda x: 7 - x)
         fea3 = ['tp02', 'tp04', 'tp06', 'tp08', 'tp10']
         df1.loc[:,fea3] = df1.loc[:,fea3].applymap(lambda x: 0 if x == 0 else 8 - x)
         df2.loc[:,fea3] = df2.loc[:,fea3].applymap(lambda x: 0 if x == 0 else 8 - x)
         df1['sung'] = (df1.tp03 + df1.tp08)/2
         df1['chin']= (df1.tp07 + df1.tp02)/2
         df1['jung'] = (df1.tp09 + df1.tp04)/2
         df1['kyung'] = (df1.tp05 + df1.tp10)/2
         df1['why'] = (df1.tp01 + df1.tp06)/2
         # 기존 tp변수 빼주기
         df1 = df1.drop(fea2,axis=1)
                                                                                              10개의 질문은 2개씩
         df2 = df2.drop(fea2,axis=1)
                                                                                                  총 5개의 요인
In [30]: df1['sung']
                                                                                                     으로 구성
Out[30]: index
                  5.0
                  6.0
                  6.5
                  5.0
                  6.5
                 . . .
         45527
                 1.0
         45528
                  5.0
                 4.0
         45529
         45530
                  5.0
         45531
                  5.0
         Name: sung, Length: 45532, dtype: float64
```

1) 데이터 설명: 변수그룹3. 기타 변수

□ boat	incoherent		itions you are sur robot
☐ audible	□ cuivocal	☐ paucity	epistemology
florted	decide	☐ pastiche	□ verdid
☐ abysmal	☐ lucid	☐ betray	☐ funny

1) 데이터 설명: 변수그룹3. 기타 변수

In the gri		ck all the words			ure you know.
	□ boat	☐ incoherent	□ pallid	□ robot	
		☐ cuivocal	☐ paucity	epistemolo	gy
	☐ florted	decide	☐ pastiche	☐ verdid	
	☐ abysmal	☐ lucid	☐ betray	☐ funny	
				=>	" 존재 하지 않는 " 단어
	⁶⁶ 설문조사의 했지만	시 신뢰도를 판단 특성중요도	난할 수도 있는 가 낮아 제거		분을 파악

4)<mark> 가설</mark> 설정

Socioeconomic factors are significantly associated with whether individuals develop the habit of voting. The most important socioeconomic factor affecting voter turnout is education. The more educated a person is, the more likely they are to vote, even controlling for other factors that are closely associated with education level, such as income and class.

-> 교육 수준이 투표율과 가장 큰 연관이 있

differences in turnout between such groups in many societies. Other demographic factors have an important influence: young people are far less likely to vote than the elderly. -> 젊은 사람들일수록 투표율이 떨어진다

마키아벨리즘

마키아벨리즘 성향 높음 마키아벨리즘 성향 높음 (이하 높은 성향) 분류의 사람들은 다른 사람들과 소통하는데 있어 보다 계산적이고 신중하게 접근하는 경향이 있다. 5가지 성격 특성 요소에서, 이 사람들은 친화성 수치가 낮고 성실성 수치가 높게 나오는 경향이 있다. -> Mach스코어가 높을수록 성실성이 높고, 친화성이 낮을 것

가 마키아벨리즘 테스트 결과와 투표여부의 상관관계가 있 / 설: 을 것이다 3) EDA

(1) 특성중요도

age_group, Mach_score, education 컬럼의 특성 중요도가 높다는 것을 알수 있다

3) EDA

(1) 특성중요도

▶ 10개의 TIPI 컬럼을 5가지로 점수화한 결과, 특성중요도가 높아진 것을 알수 있다.

- 3) EDA age_group
 - (2) 나이가 <mark>어릴수록 Mach_score</mark>가 높다는 것을 알 수 있다.

#age_group+ Mach_score 상관 관계

03. 변수 연구

WIKI-MACH

- 3) EDA age_group
 - Mach_score가 높아질수록, 투표율이 낮아지는 경향
 - # Mach_score와 voted 관계

- 3) EDA age_group
 - => 앞선 그래프들을 통해,나이가 <mark>어릴수록 투표율이 낮은</mark> 것을 알 수 있다. # age_group + voted 상관관계

- 3) EDA education
 - (3) 교육수준이 낮을수록, 투표율이 낮은 것을 알 수 있다.

3) EDA -

MachaScore 의 친화성은 뚜렷한 음(-)의 상관관계가 있는 것으로 보이나, 성실성에서는 뚜렷한 상관관계를 찾지 못함

Mach_score + tipi 히트맵

3) EDA - Mach Score 가 높을 수록 친화성이 낮다

Mach_score + 친화성 상관관계

3) EDA -

Mach_Score 가 높을수록 성실성이 높아진다는 기존의 논리와 맞지 않음

Mach_score + 성실성 상관관계

3) EDA

특성중요도

- W컬럼의 중요도가 낮게 나와 컬럼 제 외
- TIPI테스트를 점수화한 결과, 특성 중 요도가 높아짐

상관관계(2)

- 교육 수준이 낮을수록, 투표율이 낮다

상관관계(1)

- 나이가 어릴수록, Mach_Score가

높다

- Mach_Score가 높을수록, 투표율이 낮

다

=> 나이가 어릴수록, 투표율이 낮다

상관관계(3)

- Mach_Score성향과 TIPI테스트의 약한 상관관계 3) EDA

4. 모델 소개

1)PCA(통제변수)

- ◆ 본 모델은 마키아벨리즘 변수들의 가중치를 구하기 위해 사용한 모델로서 마키아벨리즘 변수들을 제외한 다른 변수들을 통제하여 유의미한 회귀계수를 구하기 위해 사용하였습니다.
 - 1. 모델 학습 : 통제변수

1)PCA(통제변수)

1. 모델 학습: 1) 변수통제 후 Q_Ques 컬럼만 뽑아 인공변수 생성 및 변수제거 후 RF (최적의 인공변수 개수 결정)

```
In [15]: # 3. PCA
         # 1) 인공변수 생성
         vscore = []
         for i in [0.7, 0.75, 0.8, 0.85, 0.9, 0.95]:
             from sklearn.decomposition import PCA
             m pca = PCA(n components = i)
             m pca.fit(x h control)
                                                            # 499개의 통제된 데이터의 Q Ques만 가지고 fitting
                                                            # 위 fitting을 전체 O Oues에 적용하여 인공변수 뽑아냄
             x pca = m pca.transform(x)
             df2 pca = m pca.transform(df2 1)
                                                            # df2에도 똑같이 적용
             # 2) 인공변수 대입
             # 인공변수만을 가지는 데이터프레임 d1, d2 생성
             s1 columns = np.arange(1, len(x pca[1]) + 1)
             d1 = DataFrame(x pca, columns = s1 columns)
             d2 = DataFrame(df2 pca, columns = s1 columns)
             # tpscore, human(engnat, familysize, hand 제외) 컬럼을 가지는 데이터프레임 coll, col2 생성
             col1 = df1.drop(['voted'], axis = 1).drop(Q Ques, axis = 1).drop('engnat', axis = 1)
             col2 = df2.drop(Q_Ques, axis = 1).drop('engnat', axis = 1)
             c1 = d1.columns.tolist()
             c2 = col1.columns.tolist()
             c3 = c1 + c2
             # d1, d2에 나머지 컬럼데이터 추가
             df1 new = DataFrame(np.hstack([d1, col1]), columns = c3)
             # df1 new['y'] = y => autom18
             df2 new = DataFrame(np.hstack([d2, col2]), columns = c3)
             # 4. RF 모델적용
             # 1) test, train split
             from sklearn.model selection import train test split
             train x, test x, train y, test y = train test split(df1 new,
                                                           train size = 0.7,
                                                           random state = 0)
             # 2) 모델링
             m rf = rf(random state = 0)
             m rf.fit(train x, train y)
             vscore.append(m rf.score(test x, test y)) # 0.6955 (i = 0.85, 13M NB)
```

13개 인공변수일 때 예측력이 가장 높음

1)PCA(통제변수)

1. 모델 학습: RF 매개변수 튜닝

```
# train test split
train_x, test_x, train_y, test_y = train_test_split(df1_new, y, random_state= 0)
v_score_te = [] ; v_score_tr = []
for i in range(1, 101) :
                                                                           n estimators가 98일
   m rf = rf(random state = 0, n estimators = i)
                                                                           때 가장 높은 예측력 보
   m rf.fit(train x, train y)
                                                     97
                                                           0.698059
   v_score_tr.append(m_rf.score(train_x, train_y))
                                                     99
                                                           0.697971
    v score te.append(m rf.score(test x, test y))
                                                     98
                                                          0.697619
                                                           0.696477
                                                     91
                                                     96
                                                           0.696038
max(v score te) # 0.698059
Series(v score te).sort values(ascending = False)
                                                           0.639989
                                                     4
                                                           0.632346
                                                     3
                                                           0.625494
                                                           0.607485
                                                           0.599578
                                                     Length: 100, dtype: float64
```

1)PCA(통제변수)

1. 모델 학습 제출 및 결과

```
In [37]: # RF
         m_rf = rf(random_state = 0, n_estimators = 98)
         m_rf.fit(df1_new, y)
         pred y = m_rf.predict(df2_new)
         submission['voted'] = pred y
In [38]: sum(submission['voted'] == 1)
Out[38]: 45
In [39]: sum(submission['voted'] == 2)
Out[39]: 11338
 In [ ]: submission.to_csv('sample_submission_PCA2.csv')
                                                           # 0.52
```

04. 모델 소개

1)PCA(전체,통제변수)

◆ 본 모델은 마키아벨리즘 변수들의 가중치를 구하기 위해 사용한 모델로서 마키아벨리즘 변수들을 제외한 다른 변수들을 통제하여 유의 미한

```
회귀계수를 구하기 위해 사용하였습니다.
1. 모델 학습: 같은 방식으로 통제변수 없이 전체 데이터셋으로
다시 시도
 In [28]: sum(submission['voted'] == 1)
 Out[28]: 6045
          sum(submission['voted'] == 2)
 In [29]:
 Out[29]: 5338
 In [30]: submission.to_csv('sample_submission_전체_PCA3.csv') # 0.6998
```

2) AUTO M

└◆ 본 모델은 머신 러닝을 실제 문제에 적용하는 프로세스를 자동화 하는 프로세스로서, 어떤 모델이 최적인지, 사용된 모델의 최적의 매개 변수 값을 찾아주는 과정을 자동화 해주는 모델

2) AUTO ML - 모델 학습 및 비교

◆ 분석을 위해 최종 선발된 모델로서 15개의 기본 모델을 학습하고 모델들의 성능을 비교 & 분석하여, 최적의 성능을 가지는 3개의 모델들을 앙상블을 통해 구현하는 방법을 사용하였습니다.

실험 환경 구축

- PyCaret 활용 시 모델 학습 전 실험환경을 구축 필요
- Setup 단계를 통해 자동으로 컬럼 형태 인식

```
pip install pycaret
     from pycaret.classification import *
     clf = setup(data = df1_new, target = 'voted')
     best_3 = compare_models(sort = 'AUC', n_select = 3)
     blended = blend_models(estimator_list = best_3, fold = 5, method = 'soft')
 8
10
     pred_holdout = predict_model(blended)
11
     final_model = finalize_model(blended)
12
13
     predictions = predict_model(final_model, data = df2_new)
14
15
     submission['voted'] = predictions['Score']
16
17
     submission.to_csv('auto_pca.csv', index = True)
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec
0	Gradient Boosting Classifier	0.6924	0.7642	0.6461	0.7560	0.6967	0.3886	0.3936	8.5047
1	Light Gradient Boosting Machine	0.6911	0.7619	0.6440	0.7552	0.6951	0.3860	0.3911	0.2375
2	CatBoost Classifier	0.6911	0.7614	0.6574	0.7474	0.6995	0.3845	0.3879	9.0749
3	Extra Trees Classifier	0.6866	0.7581	0.6606	0.7388	0.6974	0.3745	0.3771	0.5922
4	Ada Boost Classifier	0.6866	0.7577	0.6523	0.7431	0.6947	0.3755	0.3789	1.9552
5	Extreme Gradient Boosting	0.6769	0.7457	0.6595	0.7248	0.6906	0.3540	0.3558	0.9434
6	Linear Discriminant Analysis	0.6697	0.7436	0.7245	0.6881	0.7058	0.3299	0.3305	0.0969
7	Logistic Regression	0.6698	0.7434	0.7244	0.6883	0.7058	0.3301	0.3307	0.0447
8	Naive Bayes	0.4749	0.7258	0.0723	0.0690	0.0706	0.0333	0.0333	0.0219
9	Quadratic Discriminant Analysis	0.4708	0.7216	0.0429	0.5866	0.0572	0.0286	0.0329	0.0250
10	Random Forest Classifier	0.6624	0.7193	0.6109	0.7279	0.6642	0.3299	0.3351	0.1391
11	K Neighbors Classifier	0.6313	0.6673	0.6657	0.6619	0.6638	0.2557	0.2557	0.3714
12	Decision Tree Classifier	0.6137	0.6105	0.6447	0.6474	0.6460	0.2210	0.2210	0.4515
13	SVM - Linear Kernel	0.6604	0.0000	0.7273	0.6769	0.7005	0.3093	0.3113	0.1968
14	Ridge Classifier	0.6696	0.0000	0.7246	0.6879	0.7058	0.3296	0.3302	0.0234

2) AUTO ML - 모델 앙상블

◆ 분석을 위해 최종 선발된 모델로서 15개의 기본 모델을 학습하고 모델들의 성능을 비교 & 분석하여, 최적의 성능을 가지는 3개의 모델들을 앙상블을 통해 구현하는 방법을 사용하였습니다.

모델 선발

- AUC 기준 성능이 가장 좋은 3개의 모델 선발
- Score 최적화를 위해 soft vote ensemble 사용

```
pip install pycaret
     from pycaret.classification import *
     clf = setup(data = df1_new, target = 'voted')
     best_3 = compare_models(sort = 'AUC', n_select = 3)
     blended = blend models(estimator list = best 3, fold = 5, method = 'soft')
 8
 9
     pred_holdout = predict_model(blended)
10
11
     final_model = finalize_model(blended)
12
13
     predictions = predict_model(final_model, data = df2_new)
14
15
16
     submission['voted'] = predictions['Score']
17
     submission.to_csv('auto_pca.csv', index = True)
18
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	0.6965	0.7661	0.6535	0.7581	0.7019	0.3962	0.4007
1	0.6880	0.7577	0.6483	0.7476	0.6944	0.3790	0.3830
2	0.6963	0.7711	0.6480	0.7611	0.7000	0.3964	0.4017
3	0.6936	0.7619	0.6479	0.7567	0.6981	0.3908	0.3957
4	0.6944	0.7631	0.6496	0.7569	0.6992	0.3923	0.3970
Mean	0.6937	0.7640	0.6495	0.7561	0.6987	0.3909	0.3956
SD	0.0031	0.0045	0.0021	0.0045	0.0025	0.0064	0.0067

2) AUTO ML - 모델 예측

◆ 분석을 위해 최종 선발된 모델로서 15개의 기본 모델을 학습하고 모델들의 성능을 비교 & 분석하여, 최적의 성능을 가지는 3개의 모델들을 앙상불을 통해 구현하는 방법을 사용하였습니다.

제출

- Train dataset을 통해 예측률 확인
- 최적의 성능을 위해 전체 데이터 재학습 실시
- Test dataset을 통한 최종 확률 값 추출하여 제출

```
pip install pycaret
     from pycaret.classification import *
     clf = setup(data = df1_new, target = 'voted')
     best_3 = compare_models(sort = 'AUC', n_select = 3)
     blended = blend_models(estimator_list = best_3, fold = 5, method = 'soft')
     pred_holdout = predict_model(blended)
10
11
     final_model = finalize_model(blended)
12
13
     predictions = predict_model(final_model, data = df2_new)
14
15
     submission['voted'] = predictions['Score']
16
17
18
     submission.to_csv('auto_pca.csv', index = True)
```


	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	
0	Voting Classifier	0.6985	0.7684	0.6487	0.7644	0.7018	0.4011	0.4066	

5. 理圣

2) AUTO ML - 최종 제출

◆ 분석을 위해 최종 선발된 모델로서 15개의 기본 모델을 학습하고 모델들의 성능을 비교 & 분석하여, 최적의 성능을 가지는 3개의 모델들을 앙상불을 통해 구현하는 방법을 사용하였습니다.

1	1996	* £ £	0.78601	129	18시간 전
2	정재환		0.78348	99	12시간 전
3	harryjo97	3.3	0.78348	118	13시간 전
30	andys		0.78012	67	8일 전
31	zeorjin	ATTAC	0.78011	27	2일 전
32	okso6441		0.78008	77	10일 전
33	자카종신	&	0.78	11	12일 전
					-
34	룰루	22%	0.77996	51	19시간 전
34	툴루 schbd_lms	22 %	0.77996	51 15	19시간 전 하루 전
35	schbd_lms	2	0.77996	15	하루 전
35	schbd_lms 최정명	anin	0.77996 0.77992	15	하루 전
35 36 37	schbd_lms 최정명 Choi_0605	ann	0.77996 0.77992 0.7799	15 5 21	하루 전 한 달 전 하루 전
35 36 37 38	schbd_lms 최정명 Choi_0605 nunnunanna	E COUTO	0.77996 0.77992 0.7799 0.77989	15 5 21 25	하루 전 한 달 전 하루 전 7일 전

Auto ML을 활용한 최종 예측률 0.77996

- 1. 마키아벨리즘 심리테스트 척도의 신뢰도 문제점
 - 인구통계학적인 변인에 따라서 신뢰도의 차이가 심한 편 => 남자는 신뢰도가 0.7이지만, 여자는 0.4로 상당히 낮은 편
- 2. 외부 데이터 활용 제한
 - 외부 데이터 사용이 불가하여 마키아벨리즘 테스트만을 이용하여 예측을 하는데 무리가 있음 => 소득 분위와 같은 외부 자료를 사용할 수 있었다면 도움이 됐을 것

- 3. 주최사측의 데이터 임의 수정 및 삭제
 - 기존 설문지에는 전공선택 및 성적취향 문항도 있었으나 주최측에서 임의로 삭제함 => 위의 변수도 제공되었다면 예측력을 높이는 데 도움이 될 것

포털 사이트

- 위키피디아 https://en.wikipedia.org/wiki/Automated machine learning (머신러닝 정의)
- 지식백과 https://terms.naver.com/entry.nhn?docId=1091092&cid=40942&categoryId=31645 (미 키아밸리즘)
- 위키피디아 https://en.m.wikipedia.org/wiki/Voter turnout (voter turnout 문서)
- 브런치 https://brunch.co.kr/@a376100/45 (TIPI)
- https://gosling.psy.utexas.edu/scales-weve-developed/ten-item-personality-measure-tipi/(TIPI)

- 김희송, 홍현기, 현명호, 한국판 마키아벨리즘 척도(MPS)의 타당화 및 신뢰도 연구(국립과학수사연구원,2011),2
- 이내영,유권자 투표참여에 영향을 미치는 요인에 관한 연구(동아시아연구원),2010,12

질문 있나요?

WIKI-MACH

导亚 生叶?

标业性外?

