

Report No.: FR3D1803C

FCC RF Test Report

APPLICANT : CT Asia

EQUIPMENT: Mobile Phone

BRAND NAME : BLU

MODEL NAME : Vivo 4.8 HD

FCC ID : HLBLUVIVO48HD

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Dec. 18, 2013 and testing was completed on Dec. 30, 2013. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown to be compliant with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 1 of 61
Report Issued Date : Jan. 13, 2014

Testing Laboratory 2353

Report Version : Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Feature of Equipment Under Test	
	1.4	Product Specification of Equipment Under Test	
	1.5	Modification of EUT	
	1.6	Testing Site	6
	1.7	Applied Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Pre-Scanned RF Power	8
	2.3	Test Mode	9
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	EUT Operation Test Setup	11
	2.7	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB Bandwidth Measurement	12
	3.2	Output Power Measurement	14
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	19
	3.5	Radiated Band Edges and Spurious Emission Measurement	32
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	59
4	LIST	OF MEASURING EQUIPMENT	60
5	UNC	ERTAINTY OF EVALUATION	61
AF	PEN	DIX A. SETUP PHOTOGRAPHS	

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 2 of 61
Report Issued Date : Jan. 13, 2014

Report No.: FR3D1803C

Report Version : Rev. 01

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3D1803C	Rev. 01	Initial issue of report	Jan. 13, 2014

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 3 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	4E 247/d)	Conducted Band Edges		Pass	-
3.4	15.247(d)	Conducted Spurious Emission	· ≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 4.14 dB at 2484.010 MHz
3.6	15.207	AC Conducted Emission	15.207(a) Pa		Under limit 11.60 dB at 0.520 MHz
3.6.5	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 4 of 61
Report Issued Date : Jan. 13, 2014

Report No.: FR3D1803C

Report Version : Rev. 01

1 General Description

1.1 Applicant

CT Asia

Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong, Kowloon, Hongkong

1.2 Manufacturer

Gionee Communication Equipment Co., Ltd.

21/F, Times Technology Building, No. 7028, Shennan Avenue, Futian District, Shenzhen, China

Report No.: FR3D1803C

1.3 Feature of Equipment Under Test

Product Feature						
Equipment	Mobile Phone					
Brand Name	BLU					
Model Name	Vivo 4.8 HD					
FCC ID	HLBLUVIVO48HD					
	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+/					
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n HT20/HT40/					
	Bluetooth v3.0 + EDR/Bluetooth v4.0 LE					
HW Version	VIVO 4.8 HD_Mainboard_P4					
EUT Stage	Identical Prototype					

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Product Specification	ication subjective to this standard
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz
	802.11b : 17.15 dBm (0.0519 W)
Maximum (Peak) Output Power to	802.11g : 20.56 dBm (0.1138 W)
Antenna	802.11n HT20 : 21.02 dBm (0.1265 W)
	802.11n HT40 : 20.35 dBm (0.1084 W)
Antenna Type	PIFA Antenna with gain 0.60 dBi
Type of Madulation	802.11b: DSSS (DBPSK / DQPSK / CCK)
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 5 of 61TEL: 86-755- 3320-2398Report Issued Date: Jan. 13, 2014FCC ID: HLBLUVIVO48HDReport Version: Rev. 01

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Site

Test Site		SPORTON INTERNATIONAL (SHENZHEN) INC.									
Test Location	Site	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C. TEL: +86-755- 3320-2398									
T4 0'4- N			Sporton Site No	0.	FCC Registration No.						
Test Site N	Ю.	TH01-SZ	03CH01-SZ	CO01-SZ	831040						

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- ANSI C63.4-2003

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

FCC ID: HLBLUVIVO48HD

Report Issued Date : Jan. 13, 2014 Report Version : Rev. 01

Page Number

: 6 of 61

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400-2483.5 MHz	3	2422	9	2452
2400-2403.5 IVITZ	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 7 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

		2.4GHz 802.11b RF Power (dBm) DSSS Data Rate							
Channel	Frequency								
		1 Mbps	2 Mbps	5.5 Mbps	11 Mbps				
CH 01	2412 MHz	16.94	16.80	16.70	16.69				
CH 06	2437 MHz	<mark>17.15</mark>	17.00	16.89	16.89				
CH 11	2462 MHz	16.91	16.77	16.67	16.66				

		2.4GHz 802.11g RF Power (dBm)								
Channel	Frequency				Data Rate					
	. ,	6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps	
CH 01	2412 MHz	20.56	20.53	20.49	20.48	20.51	20.47	20.47	20.49	
CH 06	2437 MHz	19.77	19.73	19.68	19.68	19.71	19.67	19.67	19.69	
CH 11	2462 MHz	19.39	19.39	19.35	19.34	19.37	19.33	19.33	19.35	

		2.4GHz 802.11n HT20 RF Power (dBm)								
Channel	Frequency	OFDM Data Rate								
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 01	2412 MHz	<mark>21.02</mark>	20.97	20.82	20.81	20.87	20.89	20.79	20.86	
CH 06	2437 MHz	20.26	20.21	20.06	20.05	20.11	20.13	20.03	20.10	
CH 11	2462 MHz	20.21	20.16	20.01	20.00	20.06	20.08	19.98	20.05	

			2	.4GHz 80	2.11n HT	40 RF Pc	wer (dBr	n)		
Channel	Frequency		OFDM Data Rate							
		MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 03	2422 MHz	<mark>20.35</mark>	19.96	19.97	19.95	19.91	19.82	19.87	19.97	
CH 06	2437 MHz	20.02	19.63	19.64	19.62	19.58	19.49	19.54	19.64	
CH 09	2452 MHz	19.90	19.51	19.50	19.53	19.46	19.37	19.42	19.52	

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 8 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

		Test Cases		
	Test Items	Mode	Data Rate	Test Channel
		802.11b	1 Mbps	1/6/11
	6dB BW	802.11g	6 Mbps	1/6/11
	Power Spectral	802.11n HT20	MCS0	1/6/11
	Density	802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/6/11
	Output Barrer	802.11g	6 Mbps	1/6/11
O and a stad	Output Power	802.11n HT20	MCS0	1/6/11
Conducted TCs		802.11n HT40	MCS0	3/6/9
ICS		802.11b	1 Mbps	1/11
	Conducted Band	802.11g	6 Mbps	1/11
	Edge	802.11n HT20	MCS0	1/11
		802.11n HT40	MCS0	3/9
		802.11b	1 Mbps	1/6/11
	Conducted Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/11
	Dedicted Bond Edge	802.11g	6 Mbps	1/11
	Radiated Band Edge	802.11n HT20	MCS0	1/11
Radiated		802.11n HT40	MCS0	3/9
TCs		802.11b	1 Mbps	1/6/11
	Radiated Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
AC				
Conducted	Mode 1 : GSM850 Idle -	+ Bluetooth Link + WLAN Link	x + Earphone + USB Cable (C	harging from Adapter)
Emission				

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 9 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Report No.: FR3D1803C

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 10 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Agilent	E5515C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-815	KA2DIR815A1	N/A	Unshielded, 1.8 m
	3. Notebook					AC I/P:
3.		DELL	Vostro 2420	FCC DoC	N/A	Unshielded, 1.2 m
3.	Notebook					DC O/P:
						Shielded, 1.8 m
4.	DC Power Supply	TOPWORD	3303DR	N/A	N/A	Unshielded, 1.8 m
5.	Bluetooth	Nokia	BH-108	PYAHS-107W	N/A	N/A
υ.	Earphone	INUKIA	рп-100	F 1 AH3-107 W	IV/A	IV/A

Report No.: FR3D1803C

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Page Number

Report Version

: 11 of 61

: Rev. 01

Report Issued Date: Jan. 13, 2014

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Offset (dB) = RF cable loss(dB) + attenuator factor(dB). = 7.5 + 10 = 17.5 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.
TEL: 86-755- 3320-2398

FCC ID: HLBLUVIVO48HD

Page Number : 12 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

Test Band :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Fly Liang	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	9.08	0.5	Pass
11b	1Mbps	1	6	2437	9.08	0.5	Pass
11b	1Mbps	1	11	2462	9.04	0.5	Pass
11g	6Mbps	1	1	2412	16.40	0.5	Pass
11g	6Mbps	1	6	2437	16.36	0.5	Pass
11g	6Mbps	1	11	2462	16.36	0.5	Pass
HT20	MCS0	1	1	2412	17.58	0.5	Pass
HT20	MCS0	1	6	2437	17.62	0.5	Pass
HT20	MCS0	1	11	2462	17.56	0.5	Pass
HT40	MCS0	1	3	2422	36.00	0.5	Pass
HT40	MCS0	1	6	2437	35.44	0.5	Pass
HT40	MCS0	1	9	2452	35.44	0.5	Pass

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 13 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Report No.: FR3D1803C

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r01.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 14 of 61
Report Issued Date : Jan. 13, 2014

Report Version : Rev. 01

FCC RF Test Report

3.2.5 Test Result of Peak Output Power

Test Mode :	2.4GHz	Temperature :	24~26℃
Test Engineer :	Fly Liang	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	RF Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	16.94	30	0.60	Pass
11b	1Mbps	1	6	2437	17.15	30	0.60	Pass
11b	1Mbps	1	11	2462	16.91	30	0.60	Pass
11g	6Mbps	1	1	2412	20.56	30	0.60	Pass
11g	6Mbps	1	6	2437	19.77	30	0.60	Pass
11g	6Mbps	1	11	2462	19.39	30	0.60	Pass
HT20	MCS0	1	1	2412	21.02	30	0.60	Pass
HT20	MCS0	1	6	2437	20.26	30	0.60	Pass
HT20	MCS0	1	11	2462	20.21	30	0.60	Pass
HT40	MCS0	1	3	2422	20.35	30	0.60	Pass
HT40	MCS0	1	6	2437	20.02	30	0.60	Pass
HT40	MCS0	1	9	2452	19.90	30	0.60	Pass

Note: Measured power (dBm) has offset with cable loss.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 15 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Fly Liang	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Duty Factor (dB)	Average Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	0.05	13.86	30	0.60	Pass
11b	1Mbps	1	6	2437	0.05	14.07	30	0.60	Pass
11b	1Mbps	1	11	2462	0.05	13.81	30	0.60	Pass
11g	6Mbps	1	1	2412	0.33	10.49	30	0.60	Pass
11g	6Mbps	1	6	2437	0.33	10.85	30	0.60	Pass
11g	6Mbps	1	11	2462	0.33	10.30	30	0.60	Pass
HT20	MCS0	1	1	2412	0.36	10.78	30	0.60	Pass
HT20	MCS0	1	6	2437	0.36	11.40	30	0.60	Pass
HT20	MCS0	1	11	2462	0.36	10.67	30	0.60	Pass
HT40	MCS0	1	3	2422	0.72	9.89	30	0.60	Pass
HT40	MCS0	1	6	2437	0.72	9.80	30	0.60	Pass
HT40	MCS0	1	9	2452	0.72	9.74	30	0.60	Pass

Note: Measured power (dBm) has offset with cable loss and duty factor.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 16 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR3D1803C

: 17 of 61

: Rev. 01

3.3.2 **Measuring Instruments**

The measuring equipment is listed in the section 4 of this test report.

3.3.3 **Test Procedures**

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set to the maximum power setting and enable the EUT transmit continuously. 3.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully 5. stabilize. Use the peak marker function to determine the maximum power level.
- Measure and record the results in the test report.

3.3.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number TEL: 86-755-3320-2398 Report Issued Date: Jan. 13, 2014 FCC ID: HLBLUVIVO48HD Report Version

3.3.5 Test Result of Power Spectral Density

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Fly Liang	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Peak Power Density (dBm/3kHz)	Max. Limits (dBm/3kHz)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	-8.62	8	0.60	Pass
11b	1Mbps	1	6	2437	-8.76	8	0.60	Pass
11b	1Mbps	1	11	2462	-9.19	8	0.60	Pass
11g	6Mbps	1	1	2412	-13.33	8	0.60	Pass
11g	6Mbps	1	6	2437	-13.22	8	0.60	Pass
11g	6Mbps	1	11	2462	-14.54	8	0.60	Pass
HT20	MCS0	1	1	2412	-13.16	8	0.60	Pass
HT20	MCS0	1	6	2437	-12.56	8	0.60	Pass
HT20	MCS0	1	11	2462	-13.46	8	0.60	Pass
HT40	MCS0	1	3	2422	-18.00	8	0.60	Pass
HT40	MCS0	1	6	2437	-18.37	8	0.60	Pass
HT40	MCS0	1	9	2452	-18.02	8	0.60	Pass

Note: Measured power density (dBm) has offset with cable loss.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 18 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: FR3D1803C

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.

2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).

5. Measure and record the results in the test report.

6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

FCC ID: HLBLUVIVO48HD

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

Page Number : 19 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Fly Liang

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 20 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Liang

Page Number : 21 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

 Test Mode :
 802.11b
 Temperature :
 24~26°C

 Test Band :
 2.4GHz High
 Relative Humidity :
 50~53%

 Test Channel :
 11
 Test Engineer :
 Fly Liang

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 22 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Fly Liang

Page Number : 23 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Liang

Page Number : 24 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Page Number : 25 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

 Test Mode :
 802.11n HT20
 Temperature :
 24~26℃

 Test Band :
 2.4GHz Low
 Relative Humidity :
 50~53%

 Test Channel :
 01
 Test Engineer :
 Fly Liang

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 26 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Liang

Page Number : 27 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Page Number : 28 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	03	Test Engineer :	Fly Liang

Page Number : 29 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Fly Liang

Page Number : 30 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	09	Test Engineer :	Fly Liang

Page Number : 31 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 32 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r01.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR3D1803C

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	98.89	-	-	10Hz
802.11g	92.77	1.39	0.72	1kHz
2.4GHz 802.11n HT20	92.01	1.29	0.78	1kHz
2.4GHz 802.11n HT40	84.64	0.65	1.54	3kHz

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 33 of 61TEL: 86-755- 3320-2398Report Issued Date: Jan. 13, 2014FCC ID: HLBLUVIVO48HDReport Version: Rev. 01

Report No.: FR3D1803C

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 34 of 61 Report Issued Date: Jan. 13, 2014

Report Version : Rev. 01

Ant. feed point Socm Metal Full Soldered Ground Plane

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 35 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Report No.: FR3D1803C

Spectrum Analyzer / Receiver

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Gavin Zhang

Report No.: FR3D1803C

	ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2389.92	50.79	-23.21	74	43.75	31.98	5.62	30.56	104	96	Peak	
2389.02	39.41	-14.59	54	32.43	31.98	5.59	30.59	104	96	Average	

	ANTENNA POLARITY: VERTICAL									
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2384.61	51.03	-22.97	74	44.13	31.9	5.59	30.59	117	297	Peak
2387.22	38.52	-15.48	54	31.54	31.98	5.59	30.59	117	297	Average

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2486.86	54.68	-19.32	74	47.03	32.41	5.71	30.47	135	260	Peak	
	1				1	ı				1	

ANTENNA POLARITY : VERTICAL										
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2484.34	51.66	-22.34	74	44.01	32.41	5.71	30.47	163	292	Peak
2483.5	39.77	-14.23	54	32.12	32.41	5.71	30.47	163	292	Average

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 36 of 61TEL: 86-755- 3320-2398Report Issued Date: Jan. 13, 2014FCC ID: HLBLUVIVO48HDReport Version: Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Gavin Zhang

Report No.: FR3D1803C

	ANTENNA POLARITY: HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2388.12	66.01	-7.99	74	59.03	31.98	5.59	30.59	159	254	Peak		
2389.83	45.41	-8.59	54	38.37	31.98	5.62	30.56	159	254	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.56	59.86	-14.14	74	52.88	31.98	5.59	30.59	189	283	Peak		
2389.83	40.31	-13.69	54	33.27	31.98	5.62	30.56	189	283	Average		

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.56	66.25	-7.75	74	58.6	32.41	5.71	30.47	185	278	Peak		
2483.68	49.7	-4.3	54	42.05	32.41	5.71	30.47	185	278			

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.68	61.29	-12.71	74	53.64	32.41	5.71	30.47	158	316	Peak		
2483.56	45.46	-8.54	54	37.81	32.41	5.71	30.47	158	316	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 37 of 61TEL: 86-755- 3320-2398Report Issued Date: Jan. 13, 2014FCC ID: HLBLUVIVO48HDReport Version: Rev. 01

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Gavin Zhang

Report No.: FR3D1803C

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2388.21	65.56	-8.44	74	58.58	31.98	5.59	30.59	130	97	Peak		
				00.00	000	0.00	00.00		0.			

	ANTENNA POLARITY: VERTICAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
2389.74	61.93	-12.07	74	54.95	31.98	5.59	30.59	100	293	Peak	
2389.74	42.97	-11.03	54	35.99	31.98	5.59	30.59	100	293	Average	

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2484.01	66.15	-7.85	74	58.5	32.41	5.71	30.47	129	262	Peak		
2484.01	49.86	-4.14	54	42.21	32.41	5.71	30.47	129	262	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2491.9	64.61	-9.39	74	56.81	32.5	5.74	30.44	157	316	Peak		
2483.5	46.42	-7.58	54	38.77	32.41	5.71	30.47	157	316	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 38 of 61TEL: 86-755- 3320-2398Report Issued Date: Jan. 13, 2014FCC ID: HLBLUVIVO48HDReport Version: Rev. 01

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	03	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL														
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark					
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos						
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)						
2388.48	62.93	-11.07	74	55.95	31.98	5.59	30.59	105	95	Peak					
2388.57	44.64	-9.36	54	37.66	31.98	5.59	30.59	105	95	Average					
2483.8	57.34	-16.66	74	49.69	32.41	5.71	30.47	105	95	Peak					
2485.69	41.15	-12.85	54	33.5	32.41	5.71	30.47	105	95	Average					

	ANTENNA POLARITY: VERTICAL													
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark				
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos					
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2389.47	58.02	-15.98	74	51.04	31.98	5.59	30.59	100	294	Peak				
2388.3	42.77	-11.23	54	35.79	31.98	5.59	30.59	100	294	Average				
2483.83	53.89	-20.11	74	46.24	32.41	5.71	30.47	100	294	Peak				
2487.94	40.26	-13.74	54	32.52	32.5	5.71	30.47	100	294	Average				

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

FCC ID : HLBLUVIVO48HD

Page Number : 39 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	09	Test Engineer :	Gavin Zhang

	ANTENNA POLARITY : HORIZONTAL														
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark					
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos						
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)						
2388.21	49.47	-24.53	74	42.49	31.98	5.59	30.59	100	92	Peak					
2385.87	39.22	-14.78	54	32.24	31.98	5.59	30.59	100	92	Average					
2486.35	64.67	-9.33	74	57.02	32.41	5.71	30.47	100	92	Peak					
2485.51	49.02	-4.98	54	41.37	32.41	5.71	30.47	100	92	Average					

	ANTENNA POLARITY: VERTICAL												
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark			
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2356.8	49.66	-24.34	74	42.91	31.81	5.56	30.62	100	293	Peak			
2387.49	39.24	-14.76	54	32.26	31.98	5.59	30.59	100	293	Average			
2486.32	58.48	-15.52	74	50.83	32.41	5.71	30.47	100	293	Peak			
2484.25	44.41	-9.59	54	36.76	32.41	5.71	30.47	100	293	Average			

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL : 86-755- 3320-2398 FCC ID : HLBLUVIVO48HD Page Number : 40 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	802.	.11b	Temperature :	23~25°C
Test Channel :	01		Relative Humidity :	48~52%
Test Engineer :	Gav	in Zhang	Polarization :	Horizontal
	1.	2412 MHz is fundamer	ntal signal which can b	e ignored.
Remark :	2.	Average measurement	t was not performed if	peak level went lower than the
		average limit.		

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	103.26	-	-	96.13	32.07	5.62	30.56	104	96	Peak
2412	101.13	-	-	94	32.07	5.62	30.56	104	96	Average
4824	47.99	-26.01	74	63.07	33.82	8.36	57.26	105	198	Peak

Test Mode :	802.11b	Temperature :	23~25°C		
Test Channel :	01	Relative Humidity :	48~52%		
Test Engineer :	Gavin Zhang	Polarization :	Vertical		
	1. 2412 MHz is fundamenta	al signal which can be	ignored.		
Remark :	2. Average measurement	. Average measurement was not performed if peak level went lower th			
	average limit.				

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	101.07	-	-	93.94	32.07	5.62	30.56	117	297	Peak
2412	99.05	-	-	91.92	32.07	5.62	30.56	117	297	Average
4824	45.26	-28.74	74	60.34	33.82	8.36	57.26	105	198	Peak

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 41 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	23~25°C
Test Channel :	06	Relative Humidity :	48~52%
Test Engineer :	Gavin Zhang	Polarization :	Horizontal
	1. 2437 MHz is fundament	al signal which can be	ignored.
Remark :	2. Average measurement	was not performed if	peak level went lower than the
	average limit.		

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	106.85	-	-	99.49	32.24	5.65	30.53	166	256	Peak
2437	104.65	-	-	97.29	32.24	5.65	30.53	166	256	Average
4874	45.87	-28.13	74	60.7	33.93	8.41	57.17	145	265	Peak
7311	36.81	-37.19	74	50.09	33.89	9.99	57.16	174	321	Peak

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundament	2437 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	100.08	-	-	92.72	32.24	5.65	30.53	100	292	Peak
2437	97.77	-	-	90.41	32.24	5.65	30.53	100	292	Average
4874	40.62	-33.38	74	55.45	33.93	8.41	57.17	145	265	Peak
7311	37.7	-36.3	74	50.98	33.89	9.99	57.16	174	321	Peak

Page Number : 42 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.63	-	-	100.12	32.33	5.68	30.5	135	260	Peak
2462	105.51	-	-	98	32.33	5.68	30.5	135	260	Average
4924	47.88	-26.12	74	62.45	34.05	8.46	57.08	146	347	Peak
7386	39.69	-34.31	74	52.78	33.94	10.02	57.05	145	274	Peak

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	100.14	-	-	92.63	32.33	5.68	30.5	163	292	Peak
2462	97.87	-	-	90.36	32.33	5.68	30.5	163	292	Average
4924	45.45	-28.55	74	60.02	34.05	8.46	57.08	146	347	Peak
7386	38.29	-35.71	74	51.38	33.94	10.02	57.05	145	274	Peak

Page Number : 43 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	2412 MHz is fundamental signal which can be ignored.							
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	($dB\mu V/m$)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	106.2	-	-	99.07	32.07	5.62	30.56	159	254	Peak
2412	98.12	-	-	90.99	32.07	5.62	30.56	159	254	Average
4824	42.25	-31.75	74	57.33	33.82	8.36	57.26	105	198	Peak

Test Mode :	802.11g		Temperature :	23~25°C				
Test Channel :	01		Relative Humidity :	48~52%				
Test Engineer :	Gavii	n Zhang	Polarization :	Vertical				
	1. 2	2412 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	100.34	-	-	93.21	32.07	5.62	30.56	189	283	Peak
2412	92.39	-	-	85.26	32.07	5.62	30.56	189	283	Average
4824	38.16	-35.84	74	53.24	33.82	8.36	57.26	105	198	Peak

Page Number : 44 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	106.9	-	-	99.54	32.24	5.65	30.53	156	261	Peak
2437	98.61	-	-	91.25	32.24	5.65	30.53	156	261	Average
4874	37.98	-36.02	74	52.81	33.93	8.41	57.17	145	265	Peak
7311	37.76	-36.24	74	51.04	33.89	9.99	57.16	174	321	Peak

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2437 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	($dB\mu V/m$)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	102.18	-	-	94.82	32.24	5.65	30.53	130	318	Peak
2437	94.06	-	-	86.7	32.24	5.65	30.53	130	318	Average
4874	36.12	-37.88	74	50.95	33.93	8.41	57.17	145	265	Peak
7311	36.9	-37.1	74	50.18	33.89	9.99	57.16	174	321	Peak

Page Number : 45 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.95	-	-	100.44	32.33	5.68	30.5	185	278	Peak
2462	99.45	-	-	91.94	32.33	5.68	30.5	185	278	Average
4924	35.82	-38.18	74	50.39	34.05	8.46	57.08	146	347	Peak
7386	36.09	-37.91	74	49.18	33.94	10.02	57.05	145	274	Peak

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	11	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2462 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	103.24	-	-	95.73	32.33	5.68	30.5	158	316	Peak
2462	94.6	-	-	87.09	32.33	5.68	30.5	158	316	Average
4924	36.4	-37.6	74	50.97	34.05	8.46	57.08	146	347	Peak
7386	36.45	-37.55	74	49.54	33.94	10.02	57.05	145	274	Peak

Page Number : 46 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Horizontal					
	1. 2412 MHz is fundament	al signal which can be	ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	104.71	-	-	97.58	32.07	5.62	30.56	130	97	Peak
2412	96.17	-	-	89.04	32.07	5.62	30.56	130	97	Average
4824	36.34	-37.66	74	51.42	33.82	8.36	57.26	105	198	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Gavin Zhang	Polarization :	Vertical					
	1. 2412 MHz is fundament	2412 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement	was not performed if	peak level went lower than the					
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	101.58	-	-	94.45	32.07	5.62	30.56	100	293	Peak
2412	92.38	-	-	85.25	32.07	5.62	30.56	100	293	Average
4824	36.17	-37.83	74	51.25	33.82	8.36	57.26	105	198	Peak

Page Number : 47 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	104.44	-	-	97.08	32.24	5.65	30.53	102	96	Peak
2437	95.99	-	-	88.63	32.24	5.65	30.53	102	96	Average
4874	37.98	-36.02	74	52.81	33.93	8.41	57.17	145	265	Peak
7311	37.76	-36.24	74	51.04	33.89	9.99	57.16	174	321	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	100.25	-	-	92.89	32.24	5.65	30.53	100	294	Peak
2437	91.23	-	-	83.87	32.24	5.65	30.53	100	294	Average
4874	36.12	-37.88	74	50.95	33.93	8.41	57.17	145	265	Peak
7311	36.9	-37.1	74	50.18	33.89	9.99	57.16	174	321	Peak

Page Number : 48 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
108.57	19.64	-23.86	43.5	37.05	11.92	1.31	30.64	-	-	Peak
307.42	22.6	-23.4	46	37.95	12.59	2.04	29.98	-	-	Peak
606.18	22.87	-23.13	46	30.7	18.59	2.77	29.19	-	-	Peak
761.38	25.87	-20.13	46	31.31	20.46	3.08	28.98	-	-	Peak
863.23	25.73	-20.27	46	30.77	20.51	3.3	28.85	-	-	Peak
924.34	26.23	-19.77	46	30.61	21	3.39	28.77	162	320	Peak
2462	106.39	-	-	98.88	32.33	5.68	30.5	129	262	Peak
2462	98.14	-	-	90.63	32.33	5.68	30.5	129	262	Average
4924	35.82	-38.18	74	50.39	34.05	8.46	57.08	146	347	Peak
7386	36.09	-37.91	74	49.18	33.94	10.02	57.05	145	274	Peak

Page Number : 49 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read	Antenna Factor	Cable	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	Level (dBµV)	(dB)	Loss (dB)	(dB)	(cm)	(deg)	
109.54	25.46	-18.04	43.5	42.77	12	1.32	30.63	185	245	Peak
315.18	16.9	-29.1	46	31.91	12.88	2.06	29.95	-	-	Peak
493.66	22.89	-23.11	46	32.86	16.87	2.51	29.35	-	-	Peak
739.07	25.7	-20.3	46	31.53	20.14	3.05	29.02	-	-	Peak
869.05	26.63	-19.37	46	31.63	20.55	3.29	28.84	-	-	Peak
908.82	25.66	-20.34	46	30.23	20.87	3.35	28.79	-	-	Peak
2462	103.05	-	-	95.54	32.33	5.68	30.5	157	316	Peak
2462	94.18	-	-	86.67	32.33	5.68	30.5	157	316	Average
4924	36.4	-37.6	74	50.97	34.05	8.46	57.08	146	347	Peak
7386	36.45	-37.55	74	49.54	33.94	10.02	57.05	145	274	Peak

Page Number : 50 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C				
Test Channel :	03	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2422 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2422	100.92	-	-	93.64	32.16	5.65	30.53	105	95	Peak
2422	92.69	-	-	85.41	32.16	5.65	30.53	105	95	Average
4844	36.59	-37.41	74	51.58	33.86	8.38	57.23	126	248	Peak
7266	35.67	-38.33	74	49.02	33.87	9.98	57.2	185	252	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C				
Test Channel :	03	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2422 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2422	96.66	-	-	89.38	32.16	5.65	30.53	100	294	Peak
2422	88.28	-	-	81	32.16	5.65	30.53	100	294	Average
4844	36.51	-37.49	74	51.5	33.86	8.38	57.23	126	248	Peak
7266	36.44	-37.56	74	49.79	33.87	9.98	57.2	185	252	Peak

Page Number : 51 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	101.65	-	-	94.29	32.24	5.65	30.53	100	92	Peak
2437	92.92	-	-	85.56	32.24	5.65	30.53	100	92	Average
4874	37.98	-36.02	74	52.81	33.93	8.41	57.17	132	224	Peak
7311	37.76	-36.24	74	51.04	33.89	9.99	57.16	119	347	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C			
Test Channel :	06	Relative Humidity :	48~52%			
Test Engineer :	Gavin Zhang	Polarization :	Vertical			
	1. 2437 MHz is fundament	al signal which can be	ignored.			
Remark :	2. Average measurement was not performed if peak level went lower than the					
	average limit.					

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	96.21	-	-	88.85	32.24	5.65	30.53	100	291	Peak
2437	87.72	-	-	80.36	32.24	5.65	30.53	100	291	Average
4874	36.12	-37.88	74	50.95	33.93	8.41	57.17	132	224	Peak
7311	36.81	-37.19	74	50.09	33.89	9.99	57.16	119	347	Peak

Page Number : 52 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C			
Test Channel :	09	Relative Humidity :	48~52%			
Test Engineer :	Gavin Zhang	Polarization :	Horizontal			
	1. 2452 MHz is fundament	al signal which can be	ignored.			
Remark :	2. Average measurement was not performed if peak level went lower than the					
	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	101.4	-	-	93.98	32.24	5.68	30.5	100	92	Peak
2452	92.81	-	-	85.39	32.24	5.68	30.5	100	92	Average
4904	36.07	-37.93	74	50.73	34.01	8.44	57.11	125	214	Peak
7356	36.67	-37.33	74	49.84	33.92	10.01	57.1	127	315	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C				
Test Channel :	09	Relative Humidity :	48~52%				
Test Engineer :	Gavin Zhang	Polarization :	Vertical				
	1. 2452 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the					
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	$(dB\mu V/m)$	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	96.36	-	-	88.94	32.24	5.68	30.5	100	293	Peak
2452	88.12	-	-	80.7	32.24	5.68	30.5	100	293	Average
4904	36.15	-37.85	74	50.81	34.01	8.44	57.11	125	214	Peak
7356	37.34	-36.66	74	50.51	33.92	10.01	57.1	127	315	Peak

Page Number : 53 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)					
(MHz)	Quasi-Peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 **Test Procedures**

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

FCC ID: HLBLUVIVO48HD

Report No.: FR3D1803C

Report Version : Rev. 01

Report No.: FR3D1803C

3.6.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 55 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

Relative Humidity 41~42%	est Mode :	Mode 1	Mode 1			peratur	е:	21~22	$2^{\circ}\mathbb{C}$		
### Cable (Chapter) Cable Cable Chapter Cable Chapter	est Engineer :	Henry Ch	en		Rela	tive Hu	midity:	41~42	2%		
Date: 2013-12-22 Time: 13:43:44	est Voltage :	120Vac /	120Vac / 60Hz			e:		Line			
Site COO1-SZ Condition: FCC 15C_QP LISN_L_20130328 LINE	unction Type :			Bluetooth	Link +	WLAN I	Link + E	arphone	e + USB	Cable	(Ch
90 80 80 80 80 80 80 80 80 80 80 80 80 80	100	Level (dBuV)					Da	ite: 2013-1	2-22 Time: 1	3:43:44	
Site CO01-SZ Condition: FCC 15C QP LISN_L 20130328 LINE											
Site CO01-SZ Condition: FCC 15C_QP LISN_L_20130328 LINE	90										
Fcc 15c QP	80										
Site CO01-SZ Condition: FCC 15C_QP LISN_L_20130328 LINE	70										
Site C001-SZ Condition: FCC 15C QP LISN_L_20130328 LINE	60	-							FCC 1	5C_QP	
Site CO01-SZ Condition: FCC 15C_QP LISN_L_20130328 LINE			7			+ +			FCC 15	C AVG	
30 20 10 0.15 .2 .5 1 2 Frequency (MHz) Site : CO01-SZ Condition: FCC 15C_QP LISN_L_20130328 LINE Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss Remark MHz dBuV dB dBuV dB dBuV dB dB 1 0.17 33.68 -21.04 54.72 23.30 0.07 10.31 Average 2 0.17 44.78 -19.94 64.72 34.40 0.07 10.31 QP 3 0.49 30.40 -15.74 46.14 20.10 0.14 10.16 Average 4 0.49 41.40 -14.74 56.14 31.10 0.14 10.16 QP 5 0.56 29.10 -16.90 46.00 18.80 0.15 10.15 Average 6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.03 56.00 27.50 0.20 10.15 QP 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	50			FL	,						
30 20 10 10 20 110 20 110 20 110 20 110 20 30 Site : CO01-SZ Condition: FCC 15C_QF LISN_L_20130328 LINE	40	# W/W/		h Managaller And	MANAGERIAL TOLL	AND THE PROPERTY	MIZ N.		assibilita de 19	March March	
Site C001-S2 Condition: FCC 15C_QF LISN_L_20130328 LINE	30	111 /111	4 . Allah	5' ''	7	Alfaha .	11 14/14/14	HAM MENT AND	A STATE OF THE PROPERTY OF THE PARTY OF THE	A	
Site : C001-SZ Condition: FCC 15C_QP LISN_L_20130328 LINE	20										
O.15 .2 .5 1 2 5 10 20 30 Site : CO01-SZ Condition: FCC 15C_QF LISN_L_20130328 LINE Freq	20	1									
Site C001-SZ Condition: FCC 15C_QF LISN_L_20130328 LINE Cable Freq Level Limit Line Level Factor Loss Remark Line Level Factor Loss Remark Line Level Level Level Line Level Level											
Site C001-SZ Condition: FCC 15C_QF LISN_L_20130328 LINE Cable Freq Level Limit Line Level Factor Loss Remark Line Level Loss Loss Remark Line Level Loss L	10										
Condition: FCC 15C_QP LISN_L_20130328 LINE Comparison	10		.5	1		2	5	10	1 2	0 30	
Freq Level Limit Line Level Factor Loss Remark MHz dBuV dB dBuV dB dB dB dB dB dB dB d	10		.5	1			_	10	2	0 30	
MHz dBuV dB dBuV dBuV dB dB dB 1 0.17 33.68 -21.04 54.72 23.30 0.07 10.31 Average 2 0.17 44.78 -19.94 64.72 34.40 0.07 10.31 QP 3 0.49 30.40 -15.74 46.14 20.10 0.14 10.16 Average 4 0.49 41.40 -14.74 56.14 31.10 0.14 10.16 QP 5 0.56 29.10 -16.90 46.00 18.80 0.15 10.15 Average 6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	(Site	.15 .2 : COO1-S	SZ.		Frequ	ency (MHz)	_	10	2	0 30	
1 0.17 33.68 -21.04 54.72 23.30 0.07 10.31 Average 2 0.17 44.78 -19.94 64.72 34.40 0.07 10.31 QP 3 0.49 30.40 -15.74 46.14 20.10 0.14 10.16 Average 4 0.49 41.40 -14.74 56.14 31.10 0.14 10.16 QP 5 0.56 29.10 -16.90 46.00 18.80 0.15 10.15 Average 6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average) Site	.15 .2 : COO1-S	SZ.	SN_L_2013	Frequ	ency (MHz) NE)		2	0 30	
1 0.17 33.68 -21.04 54.72 23.30 0.07 10.31 Average 2 0.17 44.78 -19.94 64.72 34.40 0.07 10.31 QP 3 0.49 30.40 -15.74 46.14 20.10 0.14 10.16 Average 4 0.49 41.40 -14.74 56.14 31.10 0.14 10.16 QP 5 0.56 29.10 -16.90 46.00 18.80 0.15 10.15 Average 6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average) Site	.15 .2 : CO01-5	SZ SC_QP LI:	SN_L_2013 Over	Frequ 30328 LII Limit	ency (MHz) NE Read	LISN	Cable		0 30	
2 0.17 44.78 -19.94 64.72 34.40 0.07 10.31 QP 3 0.49 30.40 -15.74 46.14 20.10 0.14 10.16 Average 4 0.49 41.40 -14.74 56.14 31.10 0.14 10.16 QP 5 0.56 29.10 -16.90 46.00 18.80 0.15 10.15 Average 6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average) Site	.15 .2 : CO01-S lon: FCC 1S	SZ SC_QP LI: Level	SN_L_2013 Over Limit	Frequ 30328 LII Limit Line	ency (MHz) NE Read Level	LISN Factor	Cable Loss		0 30	
3 0.49 30.40 -15.74 46.14 20.10 0.14 10.16 Average 4 0.49 41.40 -14.74 56.14 31.10 0.14 10.16 QP 5 0.56 29.10 -16.90 46.00 18.80 0.15 10.15 Average 6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	Site Conditi	.15 .2 : CO01-S lon: FCC 15 Freq	SZ SC_QP LI: Level ——dBuV	SN_L_2013 Over Limit dB	Frequence of Frequ	Read Level dBuV	LISN Factor	Cable Loss —	Remark		
4 0.49 41.40 -14.74 56.14 31.10 0.14 10.16 QP 5 0.56 29.10 -16.90 46.00 18.80 0.15 10.15 Average 6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	Site Conditi -	.15 .2 : COO1-S ion: FCC 15 Freq MHz	Level dBuV	Over Limit dB	Frequence State St	Read Level dBuV	LISN Factor dB	Cable Loss dB	Remark		
6 * 0.56 43.30 -12.70 56.00 33.00 0.15 10.15 QP 7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	Site Conditi	.15 .2 : COO1-S ion: FCC 15 Freq MHz 0.17 0.17	Level dBuV 33.68 44.78	Over Limit ———————————————————————————————————	Frequence South Frequence Sout	Read Level dBuV	LISN Factor dB 0.07 0.07	Cable Loss dB 10.31 10.31	Remark Average	_	
7 1.04 29.15 -16.85 46.00 18.80 0.20 10.15 Average 8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	Site Conditi	Freq MHz 0.17 0.49 0.49	Level dBuV 33.68 44.78 30.40 41.40	Over Limit dB -21.04 -19.94 -15.74 -14.74	Limit Line dBuV 54.72 64.72 46.14 56.14	Read Level dBuV 23.30 34.40 20.10 31.10	LISN Factor dB 0.07 0.07 0.14 0.14	Cable Loss dB 10.31 10.31 10.16 10.16	Remark Average QP Average QP		
8 1.04 37.85 -18.15 56.00 27.50 0.20 10.15 QP 9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	Site Conditi	### CO01-S ### CO	Level dBuV 33.68 44.78 30.40 41.40 29.10	Over Limit dB -21.04 -19.94 -15.74 -14.74 -16.90	Limit Line dBuV 54.72 64.72 46.14 56.14 46.00	Read Level dBuV 23.30 34.40 20.10 31.10 18.80	LISN Factor dB 0.07 0.07 0.14 0.14 0.15	Cable Loss dB 10.31 10.31 10.16 10.16	Remark Average QP Average QP Average		
9 1.30 27.57 -18.43 46.00 17.20 0.21 10.16 Average 10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	Site Conditi	.15 .2 : COO1-Sion: FCC 15 Freq MHz 0.17 0.17 0.49 0.49 0.56 0.56	Level dBuV 33.68 44.78 30.40 41.40 29.10 43.30	Over Limit dB -21.04 -19.94 -15.74 -14.74 -16.90 -12.70	Limit Line dBuV 54.72 64.72 46.14 56.14 46.00 56.00	Read Level dBuV 23.30 34.40 20.10 31.10 18.80 33.00	LISN Factor dB 0.07 0.07 0.14 0.14 0.15 0.15	Cable Loss dB 10.31 10.31 10.16 10.15 10.15	Remark Average QP Average QP Average QP		
10 1.30 37.97 -18.03 56.00 27.60 0.21 10.16 QP 11 3.72 27.50 -18.50 46.00 17.00 0.28 10.22 Average	Site Conditi 1 2 3 4 5 6 * 7	### CO01-S ### CO	Level dBuV 33.68 44.78 30.40 41.40 29.10 43.30 29.15	Over Limit dB -21.04 -19.94 -15.74 -14.74 -16.90 -12.70 -16.85	Limit Line dBuV 54.72 64.72 46.14 56.14 46.00 56.00 46.00	Read Level dBuV 23.30 34.40 20.10 31.10 18.80 33.00 18.80	LISN Factor dB 0.07 0.07 0.14 0.14 0.15 0.15 0.20	Cable Loss dB 10.31 10.16 10.15 10.15	Remark Average QP Average QP Average QP Average		
	Site Conditi 1 2 3 4 5 6 * 7	Freq MHz 0.17 0.49 0.49 0.56 0.56 1.04 1.04	Level dBuV 33.68 44.78 30.40 41.40 29.10 43.30 29.15 37.85	Over Limit ———————————————————————————————————	Limit Line dBuV 54.72 64.72 46.14 46.00 56.00 46.00 56.00	Read Level dBuV 23.30 34.40 20.10 31.10 18.80 33.00 18.80 27.50	LISN Factor dB 0.07 0.07 0.14 0.14 0.15 0.15 0.20 0.20	Cable Loss dB 10.31 10.16 10.15 10.15 10.15	Remark Average QP Average QP Average QP Average QP		
	Site Conditi 1 2 3 4 5 6 * 7 8 9	Freq MHz 0.17 0.49 0.49 0.56 0.56 1.04 1.04 1.30 1.30	Level dBuV 33.68 44.78 30.40 41.40 29.10 43.30 29.15 37.85 27.57 37.97	Over Limit ———————————————————————————————————	Limit Line dBuV 54.72 64.72 46.14 56.14 46.00 56.00 46.00 56.00 56.00	Read Level dBuV 23.30 34.40 20.10 31.10 18.80 33.00 18.80 27.50 17.20 27.60	LISN Factor dB 0.07 0.07 0.14 0.15 0.15 0.20 0.20 0.21 0.21	Cable Loss dB 10.31 10.16 10.15 10.15 10.15 10.15 10.16 10.16	Remark Average QP Average QP Average QP Average QP Average QP		

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 56 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

 Test Mode :
 Mode 1
 Temperature :
 21~22°C

 Test Engineer :
 Henry Chen
 Relative Humidity :
 41~42%

 Test Voltage :
 120Vac / 60Hz
 Phase :
 Neutral

 Function Type :
 GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging from Adapter)

Site : CO01-SZ

Condition: FCC 15C_QP LISN_N_20130328 NEUTRAL

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBu∀	dBu∇	dB	dB	
1	0.16	38.18	-17.20	55.38	27.80	0.04	10.34	Average
2	0.16	53.38	-12.00	65.38	43.00	0.04	10.34	QP
3	0.18	35.94	-18.48	54.42	25.60	0.04	10.30	Average
4	0.18	51.34	-13.08	64.42	41.00	0.04	10.30	QP
5	0.19	30.02	-23.87	53.89	19.70	0.04	10.28	Average
6	0.19	45.82	-18.07	63.89	35.50	0.04	10.28	QP
7	0.22	32.89	-20.12	53.01	22.60	0.04	10.25	Average
8	0.22	46.79	-16.22	63.01	36.50	0.04	10.25	QP
9	0.24	26.27	-25.95	52.22	16.00	0.04	10.23	Average
10	0.24	41.77	-20.45	62.22	31.50	0.04	10.23	QP
11	0.26	28.56	-22.86	51.42	18.30	0.04	10.22	Average
12	0.26	42.96	-18.46	61.42	32.70	0.04	10.22	QP
13	0.29	26.65	-23.98	50.63	16.40	0.04	10.21	Average
14	0.29	38.05	-22.58	60.63	27.80	0.04	10.21	QP
15	0.30	30.74	-19.41	50.15	20.50	0.04	10.20	Average
16	0.30	41.44	-18.71	60.15	31.20	0.04	10.20	QP
17	0.35	31.02	-17.98	49.00	20.80	0.04	10.18	Average
18	0.35	41.22	-17.78	59.00	31.00	0.04	10.18	QP
19	0.37	25.12	-23.44	48.56	14.90	0.04	10.18	Average
20	0.37	35.52	-23.04	58.56	25.30	0.04	10.18	QP

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 57 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

 Test Mode :
 Mode 1
 Temperature :
 21~22°C

 Test Engineer :
 Henry Chen
 Relative Humidity :
 41~42%

 Test Voltage :
 120Vac / 60Hz
 Phase :
 Neutral

 Function Type :
 GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging from Adapter)

100 Level (dBuV)

Date: 2013-12-22 Time: 13:30:59

80

70

60

20

FCC 15C_QP

FCC 15C_AVG

40

30

40

30

5

9 11 15 17 21 23 25 27 29 133 5

20

Frequency (MHz)

5

10

Site : CO01-SZ

Condition: FCC 15C_QP LISN_N_20130328 NEUTRAL

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBu∀	dBu∀	dB	dB	
21	0.47	31.80	-14.78	46.58	21.60	0.04	10.16	Average
22	0.47	41.80	-14.78	56.58	31.60	0.04	10.16	QP
23 *	0.52	34.40	-11.60	46.00	24.21	0.04	10.15	Average
24	0.52	42.69	-13.31	56.00	32.50	0.04	10.15	QP
25	0.62	31.79	-14.21	46.00	21.60	0.04	10.15	Average
26	0.62	41.89	-14.11	56.00	31.70	0.04	10.15	QP
27	0.78	31.29	-14.71	46.00	21.10	0.04	10.15	Average
28	0.78	43.29	-12.71	56.00	33.10	0.04	10.15	QP
29	0.95	30.29	-15.71	46.00	20.10	0.04	10.15	Average
30	0.95	42.59	-13.41	56.00	32.40	0.04	10.15	QP
31	1.03	28.99	-17.01	46.00	18.80	0.04	10.15	Average
32	1.03	40.29	-15.71	56.00	30.10	0.04	10.15	QP
33	1.17	29.20	-16.80	46.00	19.00	0.04	10.16	Average
34	1.17	40.70	-15.30	56.00	30.50	0.04	10.16	QP
35	1.26	26.81	-19.19	46.00	16.60	0.05	10.16	Average
36	1.26	39.01	-16.99	56.00	28.80	0.05	10.16	QP

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 58 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Report No.: FR3D1803C

20

30

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 59 of 61
Report Issued Date : Jan. 13, 2014

Report No.: FR3D1803C

Report Version : Rev. 01

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 28, 2013	Dec. 30, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	N/A	Mar. 28, 2013	Dec. 30, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Power Sensor	Anritsu	MA2411B	1207253	N/A	Mar. 28, 2013	Dec. 30, 2013	Mar. 27, 2014	Conducted (TH01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY522601 85	20Hz~26.5GHz	Apr. 04, 2013	Dec. 23, 2013	Apr. 03, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 26, 2013	Dec. 23, 2013	Oct. 25, 2014	Radiation (03CH01-SZ)
Bilog Antenna	SCHAFFNER	CBL6112B	2614	30MHz~2GHz	Dec. 26, 2012	Dec. 23, 2013	Dec. 25, 2013	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz-3000MHz GAIN 30db	Mar. 28, 2013	Dec. 23, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	Mar. 28, 2013	Dec. 23, 2013	Mar. 27, 2014	Radiation (03CH01-SZ)
SHF-EHF-Horn	Schwarzbeck	BBHA9170	BBHA9170 249	14GHz~40GHz	Nov. 22, 2013	Dec. 23, 2013	Nov. 21, 2014	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz-30MHz	May 29, 2013	Dec. 23, 2013	May 28, 2014	Radiation (03CH01-SZ)
Turn Table	EM Electronice	EM 1000	N/A	0 ~ 360 degree	N/A	Dec. 23, 2013	N/A	Radiation (03CH01-SZ)
Antenna Mast	EM Electronice	EM 1000	N/A	1 m - 4 m	N/A	Dec. 23, 2013	N/A	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	1142.8007.03	100724	9kHz~3GHz	Mar. 28, 2013	Dec. 22, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 28, 2013	Dec. 22, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 28, 2013	Dec. 22, 2013	Mar. 27, 2014	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	N/A	Nov. 19, 2013	Dec. 22, 2013	Nov. 18, 2014	Conduction (CO01-SZ)

 ${\it SPORTON\ INTERNATIONAL\ (SHENZHEN)\ INC.}$

TEL: 86-755- 3320-2398 FCC ID: HLBLUVIVO48HD Page Number : 60 of 61
Report Issued Date : Jan. 13, 2014
Report Version : Rev. 01

Uncertainty of Evaluation 5

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.26
---	------

Report No.: FR3D1803C

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	
Confidence of 95% (U = 2Uc(y))	3.90

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 61 of 61 TEL: 86-755-3320-2398 Report Issued Date: Jan. 13, 2014 Report Version : Rev. 01

FCC ID: HLBLUVIVO48HD