NUMERICAL ANALYSIS HOMEWORK 1 JAMES JOSHUA MSUYA

SOLUTIONS

2.0
$$x^4 - 3x^2 - 3 = 0$$
 on [1, 2] $p_0 = 1$.

$$x=(3x^2+3)^{1/4}$$
 converges on [1,2] for k such that $0 < k < 1$ | $g'(x) | < k$ for all $x \in (a, b)$.

Iterations for the function $x=(3x^2+3)^{1/4}$.

Iterations	\mathbf{P}_{n}	p_n - p_{n-1}
1	1.56508	0.565085
2	1.79357	0.228488
3	1.88594	0.0923709
4	1.92285	0.0369041
5	1.93751	0.0146597
6	1.94332	0.00580939

Theoretical value of n.

$$g'(x)=6x(3x^2+3)^{-3/4}/4$$

$$g(1)=0.391$$

$$|\stackrel{\smile}{p_n}-p|\leq \ k^n/1\text{-}k\leq |\stackrel{\smile}{p_1}-p_0\>|\ \ \text{for all}\ n\geq 1$$

k=0.391

 $e \le k^n/1-k, e=10e-5$

 $log(e * (1-k))/log k \le n$

 $5.4 \le n$

n=6,

Theoretical number of Iterations is 6.

3.0 Exercise 4

a. Secant Method

Iterations	$\mathbf{P}_{\mathbf{n}}$	p_n - p_{n-1}
1	-0.685073	0.685073
2	-1.25208	0.567003
3	-0.807206	0.444871
4	-0.847784	0.0405782
5	-0.866528	0.0187444
6	-0.865456	0.00107246

$$p_3 = -0.807206$$

NUMERICAL ANALYSIS HOMEWORK 1 JAMES JOSHUA MSUYA

b. Regular falsi Method

Iterations	\mathbf{P}_{n}	p_n - p_{n-1}
1	-0.685073	0.685073
2	-0.841355	0.156282
3	-0.862547	0.0211924
4	-0.865123	0.00257597
5	-0.865432	0.000308646

$$p_3 = -0.862547$$

Exercise 5

a.
$$x^3$$
- $2x^2$ - 5 = 0 , [1, 4]
 $p_n = p_{n-1} - f(p_{n-1})/f(p_{n-1})$
 $p_n = p_{n-1} - (x^3 - 2x^2 - 5)/(3x^2 - 4x)$ p_0 =3.

Iterations	p_n	$p_n\hbox{-} p_{n\hbox{-} 1}$
1	3.15625	0.84375
2	2.7786	0.377647
3	2.69466	0.0839438
4	2.69066	0.00400313
5	2.69065	8.89279e-06

root is 2.69065 for $p_0=3$.

$$\begin{split} b. \ x^3 + 3x^2 - 1 &= 0, & [-3, -2] \\ p_n &= p_{n\text{-}1} - f(p_{n\text{-}1}) / f(p_{n\text{-}1}) \\ p_n &= p_{n\text{-}1} - (x^3 - 3x^2 - 1) / (3x^2 + 6x) \ p_0 &= -2.5. \end{split}$$

Iterations	p_n	p_n - p_{n-1}
1	-3.06667	0.566667
2	-2.90088	0.165791
3	-2.87972	0.0211557
4	-2.87939	0.00033458

root is -2.87939 for $p_0 = -2.5$.

c.
$$x - \cos x = 0$$
, $[0, \pi/2]$
 $p_n = p_{n-1} - f(p_{n-1})/f(p_{n-1})$
 $p_n = p_{n-1} - (x - \cos x)/(1+\sin(x))$ $p_0=1$.

Iterations	\mathbf{p}_{n}	p_n - p_{n-1}
1	0.750364	0.249636
2	0.739113	0.011251
3	0.739085	2.77575e-05

NUMERICAL ANALYSIS HOMEWORK 1 JAMES JOSHUA MSUYA

root is 0.739085 for $p_{0=}=1$.

$$\begin{split} \text{d.} & \ x-0.8-0.2 \sin \, x=0, \, [0, \, \pi/2] \\ & \ p_n=p_{n\text{-}1} \, \text{-} \, f(p_{n\text{-}1})/f^{'}(p_{n\text{-}1}) \\ & \ p_n=p_{n\text{-}1} \, \text{-} \, (x-0.8 \, \text{-}0.2 \text{sin} \, (x) \,)/ \, (1 \, \text{-} \, 0.2 \text{cos}(x)) \, \, p_0\text{=}\Pi/2 \, \, . \end{split}$$

Iterations	p_n	p_n - p_{n-1}
1	0.999909	0.570091
2	0.964452	0.0354568
3	0.964334	0.000118471

root is 0.964334 for $p_{0}=\Pi/2$.