- 1. Rispondere alle domande seguenti, motivando la risposta:
 - i. Quanti sono gli autospazi di un endomorfismo di \mathbb{R}^3 che ha per polinomio caratteristico $-\lambda^3 + 3\lambda + 1$?
 - ii. Quante sono le righe non nulle di una matrice 201×201 di rango 8?
 - iii. Quante sono le matrici diagonali 2×2 con traccia e determinante entrambi pari a 1?
 - iv. Quante sono le matrici diagonali simili a $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} ?$
 - v. Quante sono le classi di equivalenza in cui la relazione di congruenza divide l'insieme delle matrici simmetriche di ordine 3?
- **2.** Si consideri il prodotto interno $\varphi_k : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ canonicamente associato alla seguente matrice di Gram:

$$\left(\begin{array}{ccc}
1 & 1 & 2 \\
1 & k & 0 \\
2 & 0 & 5
\end{array}\right)$$

al variare del parametro reale k.

- i. Determinare i valori di k per cui φ_k è un prodotto scalare.
- ii. Posto k=6, determinare una base ortonormale rispetto a φ_6 del sottospazio di eqazione x+3y+z=0.
- iii. Posto k=5, determinare una base B del radicale di φ_5 . In seguito, completare B in una base di \mathbb{R}^3
- iv. Per quali valori di k il vettore (1,1,0) è isotropo per φ_k ?
- 3. Nello spazio euclideo tridimensionale, si considerino i punti P(1,2,3) e Q(0,1,2) e il piano π_k di equazione x+y+kz=2, al variare del parametro reale k.
 - i. Si determini l'eqazione della retta r passante per P e per Q.
 - ii. Si discuta la posizione reciproca di r e π_k al variare del parametro k.
 - iii. Posto k=1, si scriva l'eqazione della retta passante per P e perpendicolare a $\pi_1.$