Contents

1	Intr	oduction	1
Pai	rt I T	raffic Data	
2	Tra	jectory and Floating-Car Data	7
	2.1	Data Collection Methods	7
	2.2	Time-Space Diagrams	9
	Prob	olems	10
3	Cro	ss-Sectional Data	13
	3.1	Microscopic Measurement: Single-Vehicle Data	13
	3.2	Aggregated Data	15
	3.3	Estimating Spatial Quantities from Cross-Sectional Data	17
		3.3.1 Traffic Density	17
		3.3.2 Space Mean Speed	21
	3.4	Determining Speed from Single-Loop Detectors	22
	Prob	olems	23
4	Rep	resentation of Cross-Sectional Data	25
	4.1	Time Series of Macroscopic Quantities	25
	4.2	Speed-Density Relation	27
	4.3	Distribution of Time Gaps	30
	4.4	Flow-Density Diagram	31
	4.5	Speed-Flow Diagram	35
	Prob	olems	36
5	Spa	tiotemporal Reconstruction of the Traffic State	37
	5.1	Spatiotemporal Interpolation	37
	5.2	Adaptive Smoothing Method	
		5.2.1 Characteristic Propagation Velocities	
		5.2.2 Nonlinear Adaptive Speed Filter	
		5.2.3 Parameters	43

		5.2.4 Testing the Predictive Power: Validation	43
		5.2.5 Testing the Robustness: Sensitivity Analysis	44
	5.3	Data Fusion	45
		5.3.1 Model-Based Validation of a Data Fusion Procedure	46
		5.3.2 Weighting the Data Sources	49
	Prob	lems	
_			
Par	t II T	Craffic Flow Modeling	
6	Gen	eral Aspects	
	6.1	History and Scope of Traffic Flow Theory	55
	6.2	Model Classification	56
		6.2.1 Aggregation Level	57
		6.2.2 Mathematical Structure	59
		6.2.3 Other Criteria	61
	6.3	Non-Motorized Traffic	63
	Prob	lems	65
7	Con	tinuity Equation	67
	7.1	Traffic Density and Hydrodynamic Flow-Density Relation	67
	7.2	Continuity Equations for several Road Profiles	69
		7.2.1 Homogeneous Road Section	69
		7.2.2 Sections with On- and Off-Ramps	71
		7.2.3 Changes in the Number of Lanes	72
		7.2.4 Discussion	74
	7.3	Continuity Equation from the Driver's Perspective	75
	7.4	Lagrangian Description	77
		lems	79
	1100		17
8	The	Lighthill-Whitham-Richards Model	81
	8.1	Model Equations	81
	8.2	Propagation of Density Variations	83
	8.3	Shock Waves	84
		8.3.1 Formation	84
		8.3.2 Derivation of the Propagation Velocity	86
		8.3.3 Vehicle Speed versus Propagation Velocities	88
	8.4	Numerical Solution	
	8.5	LWR Models with Triangular Fundamental Diagram	91
	0.5	8.5.1 Model Parameters	93
		8.5.2 Characteristic Properties	
		8.5.3 Model Formulation with Measurable Quantities	97
		8.5.4 Relation to Car-Following Models	98
		8.5.5 Definition of Road Sections	
		8.5.6 Modeling Bottlenecks	
		8.5.7 Numerical Solution of the Cell-Transmission Model	
		8 5 8 Solving the Section-Based Model	109

Contents ix

		8.5.9 Examples		114
	8.6	Diffusion and Burgers' Equation		
	Prob	olems		
9	Mac	roscopic Models with Dynamic Velocity		127
	9.1	Macroscopic Acceleration Function		
	9.2	Properties of the Acceleration Function		
		9.2.1 Steady-State Flow		
		9.2.2 Plausibility Conditions		130
	9.3	General Form of the Model Equations		131
		9.3.1 Local Speed Adaptation		132
		9.3.2 Nonlocal Anticipation		132
		9.3.3 Limiting Case of Zero Adaptation Time		134
		9.3.4 Pressure Term		134
		9.3.5 Diffusion Terms		136
		9.3.6 On- and Off-Ramp Terms		137
	9.4	Overview of Second-Order Models		138
		9.4.1 Payne's Model		138
		9.4.2 Kerner-Konhäuser Model		
		9.4.3 Gas-Kinetic Based Traffic Model		142
	9.5	Numerical Solution		144
		9.5.1 Overview		
		9.5.2 Upwind and McCormack Scheme		147
		9.5.3 Approximating Nonlocalities		
		9.5.4 Criteria for Selecting a Numerical Integra	ation Scheme	148
		9.5.5 Numerical Instabilities		149
		9.5.6 Numerical Diffusion		152
	Prob	lems		153
10		nentary Car-Following Models		
		General Remarks		
		Mathematical Description		
		Steady State Equilibrium and the Fundamental I		
		Heterogeneous Traffic		
	10.5	Fact Sheet of Dynamical Model Characteristics		
		10.5.1 Highway Scenario		
		10.5.2 City scenario		
		Optimal Velocity Model		
		Full Velocity Difference Model		
		Newell's Car-Following Model		
	Proh	lems		177

x Contents

11	Car-Following Models based on Driving Strategies	
	11.1 Model Criteria	181
	11.2 Gipps' Model	183
	11.2.1 Safe Speed	
	11.2.2 Model Equation	184
	11.2.3 Steady-State Equilibrium	184
	11.2.4 Model Characteristics	185
	11.3 Intelligent Driver Model	187
	11.3.1 Required Model Properties	187
	11.3.2 Mathematical Description	188
	11.3.3 Parameters	
	11.3.4 Intelligent Braking Strategy	190
	11.3.5 Dynamical Properties	
	11.3.6 Steady-State Equilibrium	
	11.3.7 Improved Acceleration Function	
	11.3.8 Model for Adaptive Cruise Control	
	Problems	
12	Modeling Human Aspects of Driving Behavior	
	12.1 Man vs. Machine	
	12.2 Reaction Times	
	12.3 Estimation Errors and Imperfect Driving Capabilities	
	12.3.1 Modeling Estimation Errors	
	12.3.2 Modeling Imperfect Driving	
	12.4 Temporal Anticipation	
	12.5 Multi-Vehicle Anticipation	
	12.6 Brake Lights and Further Exogenous Factors	218
	12.7 Local Traffic Context	
	12.8 Action Points	
	12.9 The Wiedemann Car-Following Model	
	Problems	224
13	Cellular Automata	227
13		
	13.1 General Remarks	
	13.2 Nagel-Schreckenberg Model	
	13.3 Refined Models	
	13.3.1 Barlovic Model	
	13.3.2 KKW Model	
	13.4 Comparison of Cellular Automata and Car-Following Models	
	Problems	239
14	Lane-Changing and other Discrete-Choice Situations	241
- •	14.1 Overview	
	14.2 General Decision Model	
	14.3 Lane Changes	

Contents xi

	14.3.1 Safety Criterion	244
	14.3.2 Incentive Criterion for Egoistic Drivers	
	14.3.3 Lane Changes with Courtesy: MOBIL Model	
	14.3.4 Application to Car-Following Models	
	14.4 Approaching a Traffic Light	
	14.5 Entering a Priority Road	
	Problems	
15	Stability Analysis	259
	15.1 Formation of Stop-and-Go Waves	259
	15.2 Mathematical Classification of Traffic Flow Instabilities	261
	15.3 Local Instability	269
	15.4 String Instability	
	15.4.1 String Instability Conditions for Car-Following Models	
	15.4.2 Flow Stability of Macroscopic Models	
	15.4.3 Application to Specific Models	
	15.5 Convective Instability and Signal Velocities	
	15.6 Nonlinear Instability and the Stability Diagram	
	15.7 Stability Classes	
	15.8 Short-Wavelength Collective Instabilities	
	Problems	
16	Calibration and Validation	305
	16.1 General Aspects	306
	16.1.1 Mathematical Principles	306
	16.1.2 Nonlinear Optimization	309
	16.1.3 Assessing Models	
	16.1.4 Implementing and Running a Calibration	315
	16.2 Calibration to Microscopic Observations	
	16.2.1 Data Preparation	
	16.2.2 Global Approach	
	16.2.3 Local Approach	323
	16.3 Calibration to Macroscopic Observations	
	16.3.1 Fitting Local Properties of Traffic Flow	
	16.3.2 Calibration to Global Properties	
	16.4 Validation	
	Problems	
17	The Phase Diagram of Congested Traffic States	
	17.1 From Ring Roads to Open Systems	
	17.2 Analysis of Traffic Patterns: Dynamic Phase Diagram	
	17.2.1 Stability Class 1	
	17.2.2 Stability Class 2	347
	17.2.3 Stability Class 3	348
	17.3 Simulating Congested Traffic Patterns and the Phase Diagram	

	xii				Conten	ts
--	-----	--	--	--	--------	----

	17.4 Reality Check: Observed Patterns of Traffic Jams 352 Problems 353
Part	III Applications of Traffic Flow Theory
18	Traffic Flow Breakdown and Traffic-State Recognition35718.1 Traffic Flow Breakdown: Three Ingredients to Make a Traffic Jam. 35718.2 Do Phantom Traffic Jams exist?36218.3 Stylized Facts of Congested Traffic36418.4 Empirical Reality: Complex Patterns36518.5 Fundamentals of Traffic State Estimation366Problems368
19	Travel Time Estimation 369 19.1 Definitions of Travel Time 369 19.2 The Method of Trajectories 370 19.3 The Method of Accumulated Vehicle Counts 371 19.4 A Hybrid Method 373 19.5 Virtual Stationary Detectors 375 19.6 Virtual Trajectories 375 19.7 Instantaneous Travel Time 377 Problems 378
20	Fuel Consumption and Emissions 381 20.1 Overview 381 20.1.1 Macroscopic Models 382 20.1.2 Microscopic Models 384 20.1.3 Relation Between Fuel Consumption and CO2 Emissions 385 20.2 Speed-Profile Emission Models 385 20.3 Modal Emission Models 387 20.3.1 General Remarks 387 20.3.2 Phenomenological Models 388 20.3.3 Load-Based Models 389 20.4 Physics-Based Modal Consumption Model 390 20.4.1 Driving Resistance 390 20.4.2 Engine Power 392 20.4.3 Consumption Rate 393 20.4.4 Characteristic Map for Engine Efficiency 394 20.4.5 Output Quantities 395 20.4.6 Aggregation to a Macroscopic Modal Consumption Model 398 Problems 399

21	Model-Based Traffic Flow Optimization
	21.1 Basic Principles
	21.2 Speed Limits
	21.3 Ramp Metering
	21.4 Dynamic Routing
	21.5 Efficient Driving Behavior and Adaptive Cruise Control 414
	21.6 Further Local Traffic Regulations
	21.7 Objective Functions for Traffic Flow Optimization
	21.7.1 Setting up the Frame
	21.7.2 Constraining Conditions 420
	21.7.3 Examples
Sol	utions to the Problems
Ind	ex