## Universidade do Estado de Santa Catarina

### Aguçamento de imagens

Tarefa 3

Draylon Vieira Victor Bernardes

# Sumário

| Parte A   | 1 |
|-----------|---|
| Parte B   | 2 |
| Parte C.1 | 3 |
| Parte C.2 | 4 |

|                                                                                        | Resumo                      |                           |                    |
|----------------------------------------------------------------------------------------|-----------------------------|---------------------------|--------------------|
| Neste trabalho será abordado tecnicas par<br>dados da imagem e aplicar os diversos fil | ra obtenção de gradientes e | magnitudes bem como forma | as de varrer esses |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |
|                                                                                        |                             |                           |                    |

#### Parte A:

Para calcularmos as coordenadas da Figura 1 realizamos primeiratamente uma conversão para tons de cinza usando uma função propria da biblioteca opency.

```
cv.cvtColor(image, cv.COLOR_BGR2GRAY)
```

Depois implementamos a função janela onde recebe os parametros: a imagem, x, y e n. Onde x,y são a dimensão da imagem e n o valor da janela que nos queremos usar, no caso será n = 3.



Figura 1: Imagem utilizada.

```
Grayscale da imagem
Janela 3 x 3 em 460 : 200
[[120, 125, 131], [126, 132, 142], [134, 144, 152]]
```

Figura 2: Saida do algoritmo após realizar o procedimento.

### Parte B:

Usando a função de janela que foi implementado na parte A e sendo N=3 o tamanho da matriz de convolução (janela deslizante), para fazer o filtro de média basta calcular a média da janela com n=3 iterando pelo imagem e aplicar na região. Como podemos observar na Figura 3, a imagem da direita está com uma nitidez maior em relação a imagem da esquerda ao qual foi aplicado o filtro de média. Portanto o filtro de média ofusca os ruidos da imagem.



Figura 3: Saida do algoritmo após realizar o procedimento.

#### Parte C.1:

Após aplicar o gradiente proposto pela questão podemos observar o resultado na Figura 4. A primeira imagem é a original, a próxima está com sobel em x aplicado e a imagem ao lado está com sobel em y aplicado.

Nas imagens abaixo foram aplicados o gradiente proposto, sendo k=0 a primeira imagem, k=1 a imagem ao lado e k=2 a ultima imagem.

Portanto, podemos observar que quanto maior o valor de k, menor será o threshold portanto maior será a detecção da intensidade pelo filtro gradiente em questão.



Figura 4: Saida do algoritmo após realizar o procedimento.

#### Parte C.2:

Nessa questão utilizaremos a Figura 1 para aplicar o histograma de gradientes. A região em questão onde o HOG foi aplicado é [456 : 192], sendo que os pixels foram divididos em celulas de dimensão igual a 8x8. podemos observar que os angulos mais frequentes estão entre  $0^{\circ}$  e  $80^{\circ}$ 



Figura 5: Região delimitada para estudo do HOG.



Figura 6: Saida do algoritmo após realizar o procedimento.

## Referências Bibliográficas

MALLICK, S. *Histogram of Oriented Gradients explained using OpenCV*. Disponível em: <a href="https://learnopencv.com/histogram-of-oriented-gradients/">https://learnopencv.com/histogram-of-oriented-gradients/</a>>.

SOLOMON, C.; BRECKON, T. *Fundamentos de Processamento Digital de Imagens*: Uma abordagem pratica com exemplos em matlab. Ltc. São Paulo: [s.n.], 2013.

WENG, L. *Object Detection for Dummies Part 1: Gradient Vector, HOG, and SS.* Disponível em: <a href="https://lilianweng.github.io/lil-log/2017/10/29/object-recognition-for-dummies-part-1.html">https://lilianweng.github.io/lil-log/2017/10/29/object-recognition-for-dummies-part-1.html</a>.