COE 272 Digital Systems

Lecture 3: Boolean Algebra and Binary Logic (Part 2)

What are Karnaugh¹ maps?

- Karnaugh maps provide an alternative way of simplifying logic circuits.
- Instead of using Boolean algebra simplification techniques, you can transfer logic values from a Boolean statement or a truth table into a Karnaugh map.
- The arrangement of 0's and 1's within the map helps you to visualise the logic relationships between the variables and leads directly to a simplified Boolean statement.

¹Named after the American electrical engineer Maurice Karnaugh.

• Karnaugh maps, or K-maps, are often used to simplify logic problems with 2, 3 or 4 variables.

Cell = 2^n , where n is a number of variables

For the case of 2 variables, we form a map consisting of 2^2 =4 cells as shown in Figure

AB	0	1
0	00	10 2
1	01	11
l		

A	0	1
0	$\overline{A}\overline{B}$	$A\overline{B}$
1	$\overline{A}B$	AB

Maxterm

Minterm

• 3 variables Karnaugh map

Cell =
$$2^3$$
 = 8

\ AF	3			
c /	00	01	11	10
	0	2	6	4
0	$\overline{A}\overline{B}\overline{C}$	$\overline{A}B\overline{C}$	$AB\overline{C}$	$A\overline{B}\overline{C}$
1	$\overline{A}\overline{B}C$	\overline{ABC}^{3}	ABC 7	$A\overline{B}C$

• 4 variables Karnaugh map

CD AF	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

• The Karnaugh map is completed by entering a '1'(or '0') in each of the appropriate cells.

• Within the map, adjacent cells containing 1's (or 0's) are grouped together in twos, fours, or eights.

Example

2-variable Karnaugh maps are trivial but can be used to introduce the methods you need to learn. The map for a 2-input OR gate

looks like this:

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Example

Α	В	С	Υ
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$\overline{B} + A\overline{C}$$

- Let us use Karnaugh map to simplify the follow function.
 - 1. $F(A,B,C) = m_0 + m_2 + m_3 + m_4 + m_5 + m_6 + m_7$
 - 2. $Y = m_0 + m_1 + m_2 + m_5 + m_7$
- Answer (1)

$$F(A, B, C) = \mathbf{B} + \mathbf{A} + \overline{\mathbf{C}}$$

Given the truth table, find the simplified SOP and POS form.

Α	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

• Design two-level NAND-gate logic circuit from the follow timing diagram.

Don't care term

A	В	C	D	x	- - \AB				
0	0	0	0	0		00	01	11	10
0	0	0	1	0	CD \		UI .		
0	0	1	0	0				\ \ <u>\</u>	
0	0	1	1	0				X	
0	1	0	o	0	00				
0	1	0	1	0					
0	1	1	0	0				X	1
0	1	1	1	0	01				-
1	0	0	0	0					
1	0	0	1	1				1/	1/
1	0	1	0	x	11			X	X
1	0	1	1	x	11				
1	1	0	0	x	_			7	
1	1	0	1	x				/ X	V
1	1	1	0	x	10			/ ^	_ ^
1	1	1	1	x					
	-	-			- L		!		-

• Design logic circuit that convert a 4-bits binary code to Excess-3 code

Α	В	С	D	W	X	Υ	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	Х	Х	X	Х
1	1	1	0	x	X	X	X
1	1	1	1	Χ	Χ	Х	Х

Drawbacks of K-Map Technique

• Minimization is extremely complicated as the number of variables exceed 6

• It is a manual process and depends on the ability of the user

Characteristics of Quine-McCluskey

• It is able to handle large number of variables

• It does not depend on the ability of the user

• It gives us the minimized expression

Important Aspects

- Prime Implicant (PI)
 - It is a group of minterms which cannot be combined with any other minterm groups
- Essential Prime Implicant (EPI)
 - It's a prime implicant in which one or more minterms are unique i.e. it contains at least one minterm which is not contained in any other prime implicant

- The Quine-McCluskey technique consists of two parts:
 - First identify all the prime implicants by an exhaustive search
 - To identify the essential prime implicants and select from them the remaining prime implicants which can give the perfectly minimized expression

Example

- Simplify the following boolean expression using k-map and verify it using Quine-McCluskey method
 - Y(A, B, C, D) = $\sum m(0, 1, 3, 7, 8, 9, 11, 15)$

Solution using K-Map

Minimized Expression: $Y = \overline{B}\overline{C} + CD$

Solution using Quine-McCluskey

• First arrange all the minterms according to the number of 1's contained and form the group having no ones, one 1, two 1s, three 1s etc.

Group	minterm	A	В	C	D		
1	m0	0	0	0	0	$\sqrt{}$	Zero 1
2	m1	0	0	0	1	$\sqrt{}$	One 1
	m8	1	0	0	0	$\sqrt{}$	
3	m3	0	0	1	1	$\sqrt{}$	Two 1
	m9	1	0	0	1	$\sqrt{}$	
4	m7	0	1	1	1	$\sqrt{}$	Three
							1s
	m11	1	0	1	1	$\sqrt{}$	
5	m15	1	1	1	1	$\sqrt{}$	fourth

• We compare each minterm in group n in which each minterm in group (n + 1)

- We should put a √ on each matched pair. A matched pair is a pair of minterms which differ only in one variable
 - E.g. m0 and m1, m0 and m8

Combination of minterms into groups of two

Minterm Binary Representation					
(Matched pairs)	A	В	С	D	
m0 - m1	0	0	0	-	\checkmark
m0 - m8	-	0	0	0	\checkmark
m1 - m3	0	0	-	1	$\sqrt{}$
m1 – m9	-	0	0	1	$\sqrt{}$
m8 - m7	1	0	0	-	$\sqrt{}$
m3 - m7	0	-	1	1	$\sqrt{}$
m3 – m11	-	0	1	1	$\sqrt{}$
m9 – m11	1	0	-	1	$\sqrt{}$
m7 – m15	-	1	1	1	$\sqrt{}$
m11 – m15	1	-	1	1	$\sqrt{}$
	(Matched pairs) m0 - m1 m0 - m8 m1 - m3 m1 - m9 m8 - m7 m3 - m7 m3 - m11 m9 - m11 m7 - m15	(Matched pairs) A m0 - m1 0 m0 - m8 - m1 - m3 0 m1 - m9 - m8 - m7 1 m3 - m7 0 m3 - m11 - m9 - m11 1 m7 - m15 -	(Matched pairs) A B m0 - m1 0 0 m0 - m8 - 0 m1 - m3 0 0 m1 - m9 - 0 m8 - m7 1 0 m3 - m7 - - m9 - m11 1 0 m7 - m15 - 1	(Matched pairs) A B C m0 - m1 0 0 0 m0 - m8 - 0 0 m1 - m3 0 0 - m1 - m9 - 0 0 m8 - m7 1 0 0 m3 - m7 0 - 1 m9 - m11 1 0 - m7 - m15 - 1 1	(Matched pairs) A B C D m0 - m1 0 0 0 - m0 - m8 - 0 0 0 m1 - m3 0 0 - 1 m1 - m9 - 0 0 1 m8 - m7 1 0 0 - m3 - m7 0 - 1 1 m3 - m11 - 0 1 1 m9 - m11 1 0 - 1 m7 - m15 - 1 1 1

Matched pairs of minterms

New terms generated from the matched pairs of minterms

- Now, we compare all the pairs of minterms in previous table with those in the adjacent groups, to find if we can form groups of four minterms.
 - E.g. the pair (m0 m1) of group 0 is compared with each pair in group.
- Such matched pairs are ticked √ in the previous table

Group	Minterm	Binary Representation				
	(Matched pairs)	A	В	С	D	
0	m0 - m1 - m8 - m7	-	0	0	-	
	m0 - m8 - m1 - m9	-	0	0	-	$racksquare$ $ar{B}ar{C}$
1	m1 - m3 - m9 - m11	-	0	-	1	$-\bar{B}D$
	m1 - m9 - m3 - m11	-	0	-	1	
2	m3 - m7 - m11 - m15	-	-	1	1	
	m3 - m7 - m7 - m15	-	-	1	1	CD

Combination of minterms into groups of four

- Repeat the procedure for grouping. Hence it is seen that if the Quads of minterms in the adjacent groups of the previous table is grouped to obtain eight minterms.
- There are no such matchings in the previous table, hence the process of grouping will end here

- Collect all the nonchecked terms from all the tables derived. These are the prime implicants (PI) and they will be present in the simplified expression of Y.
- Therefore $Y = \overline{B}\overline{C} + \overline{B}D + CD$

PI	Decimal number	Binary Representation							
	corresponding to PI	0	1	3	7	8	9	11	15
B̄C̄	0, 1, 8, 9	X	X			X	X		
$\overline{\mathrm{B}}D$	1, 3, 9, 11		X	X			X	X	
CD	3, 7, 11, 15			X	X			X	\bigcirc

Coverage Table

 \bullet The Essential Prime Implicant (EPI) are $\overline{B}\overline{C}$ and CD

• The final minimized expression

$$Y = \overline{BC} + CD$$

Practice Question

- Minimize the following logic function using K-map and verify the answer using Quine-McCluskey method
 - Y(A, B, C, D) = $\sum m(0, 1, 2, 3, 5, 7, 8, 9, 11, 14)$