plsRglm: Algorithmic insights and applications

Bertrand, F., Magnanensi, J., Meyer, N. and Maumy-Bertrand, M.

Edited: June 2014; Compiled: July 17, 2014

Contents

1	Mot	ivation		2							
2	The	orv		3							
_			egression	3							
				3							
	2.2	_	eneralized linear regression	_							
		2.2.1	PLSGLR algorithm	4							
		2.2.2	Stopping criterion in the construction of components	5							
	2.3		rap	5							
		2.3.1	Bootstrap in PLSR	5							
			Bootstrap (y, X) in PLSR	5							
			Bootstrap (y, T) in PLSR	6							
		2.3.2	Bootstrap in PLSGLR	6							
		2.5.2	Bootstrap (y, X) in PLSGLR	6							
			Bootstrap (y, T) in PLSGLR	7							
			DOOLSTrap (y, 1) III PL3GLR	1							
3	\ nn	lication		7							
J				-							
				7 8							
	3.2										
			Cross-validation	8							
				13							
			Bootstrap (\mathbf{y},\mathbf{T})	13							
	3.3	PLS bi	nary logistic regression: Microsatellites	21							
		3.3.1	Method and Results: original dataset	21							
				21							
				 29							
				29 29							
		2 2 2		_							
		3.3.2		34							
				34							
		3.3.3	· · · · · · · · · · · · · · · · · · ·	43							
				43							
			Bootstrap (\mathbf{y}, \mathbf{X})	49							
			Bootstrap (\mathbf{y}, \mathbf{T})	49							
	3.4	PLS regression bis: Pine caterpillar									
				56							
				50 50							
				52							
	2.5	DLC									
	3.5	PLS or		58							
				58							
				72							
			Bootstrap (v. T)	74							

		Bootstrap (y, X)									
	2.7	Bootstrap (y, T)									
	3.7	PLS Poisson regression: Rock									
		Cross-validation									
		Bootstrap (y, X)									
		Bootstrap (\mathbf{y},\mathbf{T})	102								
4	Crea	ating simulated datasets	106								
	4.1	Simulating PLSR datasets	106								
	4.2	Simulating logistic binary PLSGLR datasets	111								
		4.2.1 Continuous covariables									
		4.2.2 Dichotomous only covariables	114								
5	Disc	eussion	115								
	5.1	New classes	115								
	5.2	New generics	115								
	5.3	Validation of the results of the package	116								
		Comparing the PLSR results with SIMCA results in Tenenhaus's book (Tenenhaus, 1998)	116								
		Comparing the ordinal logistic PLSR results with Tenenhaus (2005) and Bastien et al. (2005)	126								
	5.4	Main features of the package									
6	Exp	Export results to LATEX									

Abstract

The aim of the plsRglm package is to deal with incomplete, as well as complete, data sets through several new techniques which had not been implemented R before. It features several bootstrap techniques -including (Y,X) and (Y,T) resampling-, leave-one-out and -doubly- repeated k-fold cross-validation on complete or incomplete datasets and, to boot, the extension of the Partial Least Squares (PLS) Regression, denoted by PLSR, to the generalized linear regression (GLR) models including binary or ordinal logistic PLSR. This package also provides formula support, several new classes and their generics, custom GLR models and graphics to assess the bootstrap based significance of the predictors.

Availability: plsRglm is freely available from the R archive CRAN. The software is distributed under the GNU General Public License (version 3 or later) and is accompanied by vignettes, demos and example datasets.

Contact: fbertran@math.unistra.fr

1 Motivation

The analysis of data sets with a large number of variables is firmly increasing, especially in medicine or in biology. However, major issues, including a strong linear correlation between the predictors -or even worse more predictors than subjects- or missing data, require the use of more involved statistical methods rather than, for instance, the ordinary least squares estimation of the linear regression. One of these methods is the Partial Least Square (PLS) Regression, denoted by PLSR, which was first introduced by Wold et al. (1983) and Wold et al. (1984). This method was already implemented on R, for instance in pls or in plsdepot, but we provide useful additions to the several existing packages including missing data, GLR or bootstrap support.

None of them can deal with incomplete data sets and they don't offer many other selection criteria for the number of components than cross-validation. Furthermore, the existing packages do not provide bootstrap techniques to assess the significance of the predictors neither operate with PLS generalizes linear regression models (PLSGLR). Finally, we provide support for weighted PLS.

The aim of this package is to fill these gaps and to enable R users:

- to fit PLSR or PLSGLR regression models (Bastien et al. (2005)) to complete or incomplete datasets,
- to implement weighted PLSR or PLSGLR (Haaland and Howland (1998)),

- to carry out -doubly- cross-validation using various criteria,
- to apply bootstrap techniques (Lazraq et al. (2003) and Bastien et al. (2005)) in order to obtain confidence intervals on the original predictors, not only in PLSR models but also in PLSGLR models, and assess thier significance.

The authors applied these models to some datasets and several of them are available in this package including a study to predict the quality of some Bordeaux wines (Tenenhaus, 1998) -ordinal logistic PLSGLR model- or an allelotyping dataset (Meyer et al., 2010) -binomial logistic PLSGLR model- with success.

2 Theory

2.1 PLS Regression

For a more detailed description of the PLS Regression see Höskuldsson (1988) and Wold et al. (2001). There are several algorithms to fit PLSR models. One of the more commonly used one is based on the NIPALS (Nonlinear estimation by Iterative PArtial Least Squares) algorithm which was first introduced by Wold et al. (1966). This algorithm was initially developed to analyse incomplete data sets through a PCA (Principal Component Analysis) and boils down to repeatively fit univariate linear regressions.

Consider y the response variable and X the matrix of predictors $x_1, \ldots, x_j, \ldots, x_p$. All these variables are supposed to be centered and scaled.

As for many other models, it is sometimes convenient to use a vector of 'prior weights' in the fitting process. Suach as weighted version of the PLS Regression was introduced by Haaland and Howland (1998).

Remark 1. As in PCA, scaling variables is quite frequent to balance the effects of each variable. However, PLSR could be performed as well on unscaled variables as soon as they are centered (Bastien et al., 2005).

The PLS Regression is a non-linear method that designs new orthogonal components, denoted by $\mathbf{t}_1, \dots, \mathbf{t}_H$. These are linear combinations of the predictors \mathbf{x}_j whose construction is carried out in order to maximize their covariance with \mathbf{y} . Let \mathbf{T} be the matrix formed by these components $\mathbf{t}_1, \dots, \mathbf{t}_H$. The model is then:

$$\mathbf{y} = \mathbf{T}^t \mathbf{c} + \epsilon, \tag{1}$$

where ϵ represent the residual vector and ${}^t\mathbf{c}$ the vector formed by the regression coefficients of the components \mathbf{t}_h , representing the transpose.

Then, let $\mathbf{T} = \mathbf{X}\mathbf{W}^*$, where \mathbf{W}^* is the matrix of the coefficients of the predictors for each component \mathbf{t}_h , $1 \leq h \leq H$. Thus (1) can be rewritten as:

$$\mathbf{y} = \mathbf{X}\mathbf{W}^{*t}c + \epsilon. \tag{2}$$

By developing the right member of the equation (2), we derive for each component y_i of y the following expression:

$$y_i = \sum_{h=1}^{H} \left(c_h w_{1h}^* x_{i1} + \ldots + c_h w_{ph}^* x_{ip} \right) + \epsilon_i, \tag{3}$$

H being the number of components in the final model with $H \leq \operatorname{rk}(\mathbf{X})$. The coefficients $c_h w_{jh}^*$, where $1 \leq j \leq p$ and $1 \leq h \leq H$, with the notation * from Wold et al. (2001), represents the relationship between \mathbf{y} and the variables \mathbf{x}_j through the components \mathbf{t}_h .

2.2 PLS generalized linear regression

The extension of the PLS to the generalized linear regression model (PLSGLR) is one of the most attractive feature of this new package. This method is well described by Bastien et al. (2005) and allows to take account of missing data. The PLSGLR regression of the response \mathbf{y} on the centered variables $\mathbf{x}_1, \dots, \mathbf{x}_j, \dots, \mathbf{x}_p$ with H components $\mathbf{t}_h = w_{1h}^* \mathbf{x}_1 + \dots + w_{ph}^* \mathbf{x}_p$ is written as follows:

$$g(\theta)_i = \sum_{h=1}^H \left(c_h \sum_{j=1}^p w_{jh}^* x_{ij} \right), \tag{4}$$

with θ :

- a conditional expectation of the variable y if its distribution is continuous,
- a probability vector if the distribution of y a discrete law with a finite support.

The components \mathbf{t}_h are built to be orthogonal and the link function g is chosen according to the distribution of \mathbf{y} to best fit the model to the data.

Remark 2.

- 1. Like in classical PLSR, the main idea is to build orthogonal components \mathbf{t}_h . However, because of the GLR structure, it is impossible, for each step of the algorithm -that adds a new component- to use the residuals ϵ_{h-1} of the multiple regression of \mathbf{y} on $\mathbf{t}_1,\dots,\mathbf{t}_{h-1}$. So, the algorithm includes at the h-step the previously computed components $\mathbf{t}_1,\dots,\mathbf{t}_{h-1}$ as covariables when fitting the GLR of \mathbf{y} on each of the predictor \mathbf{x}_j .
- 2. However, in order to ensure orthogonality between the different components, it is necessary to express each supplementary component in terms of residuals obtained by the Ordinary Least Squares (OLS) linear regression of the \mathbf{x}_j on the previously found \mathbf{t}_h components, noted $\tilde{\mathbf{x}}_{hj}$, that is:

$$t_{h+1} = \frac{1}{\sum_{j=1}^{p} a_{h+1,j}^2} \sum_{j=1}^{p} a_{h+1,j} \tilde{\mathbf{x}}_{hj}$$
 (5)

where $a_{h+1,j}$ is the regression coefficient of $\tilde{\mathbf{x}}_{hj}$ in the GLR of \mathbf{y} on $\mathbf{t}_1,\ldots,\mathbf{t}_h$ and $\tilde{\mathbf{x}}_{hj}$. Indeed, by proceeding to a GLR of the variables \mathbf{x}_j on the components \mathbf{t}_h already build in order to extract the residuals, these ones would not necessarily be orthogonal to the components \mathbf{t}_h since the parameter estimation is done by Maximum Likelihood (ML) and not by OLS.

3. Note that to compute $a_{h+1,j}$, one must be able to carry out the regression of \mathbf{y} on $\mathbf{t}_1,\ldots,\mathbf{t}_h$ and \mathbf{x}_j . Let p_{hj} be the regression coefficients of \mathbf{t}_h in the multiple linear regression by OLS of \mathbf{x}_j on \mathbf{t}_h , then:

$$\mathbf{y} = c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2 + \dots + c_h \mathbf{t}_h + a_{h+1,j} \mathbf{x}_j$$

= $c_1 \mathbf{t}_1 + \dots + c_h \mathbf{t}_h + a_{h+1,j} (p_{1j} \mathbf{t}_1 + \dots + p_{hj} \mathbf{t}_h + \tilde{\mathbf{x}}_{hj})$
= $(c_1 + a_{h+1,j} p_{1j}) \mathbf{t}_1 + \dots + a_{h+1,j} \tilde{\mathbf{x}}_{hj}$

4. We propose an enhanced version of PLSGLR so that a vector of 'prior weights' can be used in the fitting process, as Haaland and Howland (1998) did it for classical PLSR.

2.2.1 PLSGLR algorithm

These remarks being done, here is the algorithm implemented in this new package allowing to determine the PLS components \mathbf{t}_h of a PLSGLR model.

- The variables \mathbf{x}_i are centered and scaled.
- Determination of the first component \mathbf{t}_1 :
 - 1. Compute the coefficients a_{1j} of \mathbf{x}_j in the generalized linear regression of \mathbf{y} on \mathbf{x}_j , $j=1,\ldots,p$.
 - 2. Normalize the vector $\mathbf{a}_1 = (a_{1j})_{j=1,\dots,p}$:

$$\mathbf{w}_1 = \mathbf{a}_1 / \|\mathbf{a}_1\|_2$$
.

3. Determine the component t_1 :

$$\mathbf{t}_1 = \mathbf{X}\mathbf{w}_1/^t\mathbf{w}_1\mathbf{w}_1.$$

- ullet Determination of the second component ${f t}_2$:
 - 1. Compute the coefficients a_{2j} of \mathbf{x}_j in the generalized linear regression of \mathbf{y} on \mathbf{t}_1 and \mathbf{x}_j , $j=1,\ldots,p$.
 - 2. Normalize the vector $\mathbf{a}_2 = (a_{2j})_{j=1,\dots,p}$:

$$\mathbf{w}_2 = \mathbf{a}_2 / \|\mathbf{a}_2\|_2.$$

- 3. Find the residual matrix X_1 of the linear regression by OLS of X on t_1 .
- 4. Determine the component \mathbf{t}_2 :

$$\mathbf{t}_2 = \mathbf{X}_1 \mathbf{w}_2 / {}^t \mathbf{w}_2 \mathbf{w}_2.$$

- 5. Express \mathbf{t}_2 in terms of \mathbf{X} : $\mathbf{t}_2 = \mathbf{X}\mathbf{w}^*_2$.
- Determination of the h^{th} component \mathbf{t}_h :

During the previous steps, the components $\mathbf{t}_1, \dots, \mathbf{t}_{h-1}$ have been obtained. The component \mathbf{t}_h is obtained by repeating the steps done for \mathbf{t}_2 .

- 1. Compute the coefficients a_{hj} of \mathbf{x}_j in the GLR regression of \mathbf{y} on $\mathbf{t}_1, \dots, \mathbf{t}_{h-1}$ and \mathbf{x}_j , $j = 1, \dots, p$.
- 2. Normalize the vector $\mathbf{a}_h = (a_{hj})_{j=1,\dots,p}$:

$$\mathbf{w}_h = \mathbf{a}_h / \|\mathbf{a}_h\|_2.$$

3. Find the residual matrix X_{h-1} of the linear regression by OLS of X on t_1, \ldots, t_{h-1} .

4. Determine the component t_h :

$$\mathbf{t}_h = \mathbf{X}_{h-1} \mathbf{w}_h / {}^t \mathbf{w}_h \mathbf{w}_h.$$

5. Express \mathbf{t}_h in terms of \mathbf{X} : $\mathbf{t}_h = \mathbf{X}\mathbf{w}^*_h$.

Remark 3. The algorithm shown above works even with incomplete data sets. Indeed, each coordinate t_{hi} can be expressed as $t_{hi} = {}^t \mathbf{x}_{h-1,i} \mathbf{w}_h / {}^t \mathbf{w}_h \mathbf{w}_h$ where $\mathbf{x}_{h-1,i}$ is the vector obtained as the transpose of the i^{th} line of \mathbf{X}_{h-1} . As a result, a component \mathbf{t}_h can be seen as the slope of the fitted line of the univariate OLS linear regression without intercept of $\mathbf{x}_{h-1,i}$ on \mathbf{w}_h . Such a slope can be derived even when there are missing values in the dataset.

. Likewise, the denominator ${}^t\mathbf{w}_h\mathbf{w}_h$ will be calculate only on the available data.

2.2.2 Stopping criterion in the construction of components

It is one of the attractive features of our package. Indeed, it contains several criterion in order to determine the optimal number of components to build, some of them that did not already exist in other R packages. So, the user will obtain different criterion like the AIC, BIC, Q^2 by cross-validation, the number of miss-classified if the data are binary or ordinal discrete or the stop of significance of a component when no coefficient a_{h+1} is significant anymore (Bastien et al., 2005). The AIC and BIC obtained are, in case of a PLSR without missing data, those calculated with the corrected degrees of freedom (Krämer and Sugiyama, 2011). They are noted AIC.dof and BIC.dof when AIC.naive and BIC.naive are those calculated by treating each component as a classical variable, that is to say corresponding to one degree of freedom. In all the other cases, only the naive AIC and BIC are available.

2.3 Bootstrap

Another greatly attractive feature of this package consists in the implementation of several bootstrap techniques to compute confidence intervals and hence carry out significance tests of the predictors \mathbf{x}_j , $j=1,\ldots,p$ of either a PLSR or a PLSGLR model.

We propose two kinds of bootstrap in the plsRglm package for either the PLSR models or the PLSGLR models:

- sample (y, X),
- sample (y, T).

The (y, X) bootstrap was introduced by (Lazraq et al., 2003) for PLSR models whereas the (y, T) was proposed by Bastien et al. (2005) for the PLSGLR setting.

The implementation is based on the boot function of the *boot* package Canty and Ripley (2014); Davison and Hinkley (1997) and designed, except for permutation bootstrap, to push forward any bootstrap option to the underlying the boot function. For instance, the sim option can be used to produce ordinary (the default), parametric, balanced, permutation, or antithetic bootstrap. Parallel computing options, including parallel, ncpus or cl, can also be used with a proper setting. The strata option is used in Bordeaux Wine Quality example.

2.3.1 Bootstrap in PLSR

Bootstrap (y, X) in PLSR

(Lazraq et al., 2003) proposed the following algorithm to perform the (y, X) bootstrap in PLSR. First, here are some notations:

- ullet Let L be the number of bootstrap samples:
- We note $\mathbf{w}_l^b: (\mathbf{y}_l^b, \mathbf{X}_l^b) = \{(y_{\alpha}^b x_{1,\alpha}^b \dots x_{p,\alpha}^b), \alpha = 1, \dots, n\}$ the l^{th} bootstrap sample of size n got by sampling with replacement, $l = 1, \dots, L$, with $\mathbf{y}_l^b \in M_{n \times 1}, \mathbf{X}_l^b \in M_{n \times p}$ and $\mathbf{w}_l^b \in M_{n \times (p+1)}$.
- For each of these bootstrap sample l, we do a PLS regression of \mathbf{y}_l^b on \mathbf{X}_l^b , giving us the components $\mathbf{t}_{h,l}$, $h=1,\ldots,H_l$ from which we obtain as a result, noted \mathbf{B}_l^b , the coefficient vector for the original variables, $\mathbf{B}_l^b=(b_{1l}^b,\ldots,b_{pl}^b)$.

The algorithm

- 1. Repeat for $l = 1, \ldots, L$:
 - Get a sample with replacement of size n: $\mathbf{w}_l^b = (\mathbf{y}_l^b, \mathbf{X}_l^b)$.
 - Calculate \mathbf{B}_l^b the result of the PLSR of \mathbf{y}_l^b on \mathbf{X}_l^b .
- 2. Repeat for $k = 1, \ldots, p$:
 - Let E_k be the vector $(b_{k1}^b, b_{k2}^b, \dots, b_{kL}^b) \in M_{1 \times L}$, where E_k is a bootstrap sample of size L of b_k , the coefficient of \mathbf{x}_k in the PLS regression of \mathbf{y} on \mathbf{X} .
 - Get a confidence interval I_k^b for b_k .
 - If $0 \in I_k^b$, remove the variable \mathbf{x}_k
- 3. Send back the list of significant predictors.

Remark 4.

- 1. The intervals obtained by the previous bootstrap techniques are designed to carry out pairwise or multiple comparisons and must be interpreted separately.
- 2. Several methods for the obtaining of confidence intervals are available in our package, we also can found the following construction: normal, basic, percentiles or BC_a (Efron and Tibshirani, 1993). Lazraq et al. (2003) use the method based on an asymptotic normal distribution with unknown parameters and also add a mean calculation of the b_{kl}^b and of the variances, in order to build a confidence interval with the help of normal quantiles.

Bootstrap (y, T) in PLSR

We propose the following algorithm to perform the (y, T) bootstrap in PLSR following what Bastien et al. (2005) introduced for the PLSGLR setting.

We suppose that the correct number m of components was retained for a PLSR model of \mathbf{y} on $\mathbf{x}_1,\ldots,\mathbf{x}_p$. Let $\widehat{F}_{(\mathbf{T}|\mathbf{y})}$ the empirical cumulative distribution function given the matrix \mathbf{T} formed by the m PLS components and the response \mathbf{y} .

The algorithm

- 1. Get B samples of $\widehat{F}_{(\mathbf{T}|\mathbf{y})}$.
- 2. For all $b = 1, \ldots, B$, calculate:

$$\mathbf{c}^b = \left(^t \mathbf{T}^b \mathbf{T}^b\right)^{-1t} \mathbf{T}^b \mathbf{y}^b \text{ et } \mathbf{b}^b = \mathbf{W}^* \mathbf{c}^b,$$

where $[\mathbf{T}^b, \mathbf{y}^b]$ is the b^{th} bootstrap sample, c^b the vector of coefficients of the components and \mathbf{b}^b is the vector of coefficient of the p original predictors for this sample. Finally, given the fact that sampling is carried out with replacement on \mathbf{y} and \mathbf{T} , the matrix \mathbf{W}^* remains fixed during all the bootstrap re-sampling and represent also the weights of the predictors in the original model having m components.

3. For each $j=1,\ldots,p$, denote by Φ_{b_j} the Monte-Carlo approximation of the cumulative distribution function of the bootstrap of b_i .

For each b_j , boxplots and confidence intervals can be derived using the percentiles of Φ_{b_j} . The confidence interval is also defined as $I_j\left(\alpha\right) = \left[\Phi_{b_j}^{-1}\left(\alpha\right), \Phi_{b_j}^{-1}\left(1-\alpha\right)\right]$ where $\Phi_{b_j}^{-1}\left(\alpha\right)$ and $\Phi_{b_j}^{-1}\left(1-\alpha\right)$ are the obtained values from the bootstrap cumulative distribution function so that a nominal level of confidence $100\left(1-2\alpha\right)$ is reached.

However, in order to improve the quality of the confidence interval in terms of coverage, that is to say the capacity of $I_j(\alpha)$ to give some precise coverage, it is possible to use many other construction techniques: normal, basic or BC_a (Efron and Tibshirani, 1993).

2.3.2 Bootstrap in PLSGLR

Bootstrap (y, X) in PLSGLR

We propose, following what (Lazraq et al., 2003) did for the PLSR models, the following algorithm to perform the (y, X) bootstrap in PLSGLR.

First, here are some notations:

- ullet Let L be the number of bootstrap samples:
- We note $\mathbf{w}_l^b: \left(\mathbf{y}_l^b, \mathbf{X}_l^b\right) = \left\{\left(y_{\alpha}^b x_{1,\alpha}^b \dots x_{p,\alpha}^b\right), \alpha = 1, \dots, n\right\}$ the l^{th} bootstrap sample of size n got by sampling with replacement, $l = 1, \dots, L$, with $\mathbf{y}_l^b \in M_{n \times 1}, \mathbf{X}_l^b \in M_{n \times p}$ and $\mathbf{w}_l^b \in M_{n \times (p+1)}$.
- For each of these bootstrap sample l, we do a PLS regression of \mathbf{y}_l^b on \mathbf{X}_l^b , giving us the components $\mathbf{t}_{h,l},\ h=1,\ldots,H_l$ from which we obtain as a result, noted \mathbf{B}_l^b , the coefficient vector for the original variables, $\mathbf{B}_l^b=(b_{1l}^b,\ldots,b_{pl}^b)$.

The algorithm

- 1. Repeat for $l = 1, \ldots, L$:
 - Get a sample with replacement of size n: $\mathbf{w}_l^b = (\mathbf{y}_l^b, \mathbf{X}_l^b)$.
 - Calculate \mathbf{B}_l^b the result of the PLSR of \mathbf{y}_l^b on \mathbf{X}_l^b .
- 2. Repeat for $k = 1, \ldots, p$:
 - Let E_k be the vector $(b_{k1}^b, b_{k2}^b, \dots, b_{kL}^b) \in M_{1 \times L}$, where E_k is a bootstrap sample of size L of b_k , the coefficient of \mathbf{x}_k in the PLS regression of \mathbf{y} on \mathbf{X} .

- Get a confidence interval I_k^b for b_k .
- If $0 \in I_k^b$, remove the variable \mathbf{x}_k
- 3. Send back the list of significant predictors.

Bootstrap (y, T) in PLSGLR

Bastien et al. (2005) proposed a bootstrap (y, T) based algorithm to compute confidence intervals as well as carry out tests of significance for the predictors x_j , j = 1, ..., p in the PLSGLR setting.

We suppose that the correct number m of components was retained for a PLSGLR model of \mathbf{y} on $\mathbf{x}_1, \dots, \mathbf{x}_p$. Let $\widehat{F}_{(\mathbf{T}|\mathbf{y})}$ the empirical cumulative distribution function given the matrix \mathbf{T} formed by the m PLS components and the response \mathbf{y} .

The algorithm

- 1. Get B samples of $\widehat{F}_{(\mathbf{T}|\mathbf{y})}$.
- 2. For all $b = 1, \ldots, B$, calculate:

$$\mathbf{c}^b = \left(^t \mathbf{T}^b \mathbf{T}^b\right)^{-1t} \mathbf{T}^b \mathbf{y}^b$$
 et $\mathbf{b}^b = \mathbf{W}^* \mathbf{c}^b$,

where $[\mathbf{T}^b, \mathbf{y}^b]$ is the b^{th} bootstrap sample, c^b the vector of coefficients of the components and \mathbf{b}^b is the vector of coefficient of the p original predictors for this sample. Finally, given the fact that the sampling is carried out with replacement on \mathbf{y} and \mathbf{T} , the matrix \mathbf{W}^* remains fixed during all the bootstrap re-sampling and represent also the weights of the predictors in the original model having m components.

3. For each $j=1,\ldots,p$, denote by Φ_{b_j} the Monte-Carlo approximation of the cumulative distribution function of the bootstrap of b_j .

For each b_j , boxplots and confidence intervals can be derived using the percentiles of Φ_{b_j} . The confidence interval is also defined as $I_j\left(\alpha\right) = \left[\Phi_{b_j}^{-1}\left(\alpha\right), \Phi_{b_j}^{-1}\left(1-\alpha\right)\right]$ where $\Phi_{b_j}^{-1}\left(\alpha\right)$ and $\Phi_{b_j}^{-1}\left(1-\alpha\right)$ are the obtained values from the bootstrap cumulative distribution function so that a nominal level of confidence $100\left(1-2\alpha\right)$ is reached.

However, in order to improve the quality of the confidence interval in terms of coverage, that is to say the capacity of $I_j(\alpha)$ to give some precise coverage, it is possible to use many other construction techniques: normal, basic or BC_a (Efron and Tibshirani, 1993).

Remark 5.

- 1. The intervals obtained by the previous bootstrap techniques are designed to carry out pairwise or multiple comparisons and must be interpreted separately.
- 2. This algorithm has the benefit of being fast in terms of execution time since the re-sampling is done on the \mathbf{t}_h and not on the \mathbf{x}_j . Furthermore, the estimation of \mathbf{c}^b is done via the resolution of the normal equations, equations which give estimations in the PLS framework and not in the PLSGLR one (except in the case of the Gaussian distribution) in which the estimations are done by the maximum likelihood technique via an iterative method. It also seems clear that this algorithm is interesting because of its execution speedas well as its reduced sensitivity to the re-sampling. Indeed, some extreme replications can lead to a non-convergence of the algorithm during the maximization likelihood or more often a divergence of the estimates of the parameters leading to very important variability and hence to the potential non-significance of some variables. Some others methods have been developed in order to deal with these issues, for instance Moulton and Zeger (1991) have developed a bootstrap estimation method in the GLR framework consisting in only doing one step in the Newton-Raphson algorithm avoiding in this way these problems.

3 Applications

3.1 Data

The plsRglm package contains some interesting datasets including:

- the Cornell dataset (Kettaneh-Wold, 1992),
- a study on the pine processionary caterpillars (Tomassone et al., 1992),
- an allelotyping study on cancer cells dataset with missing values (Meyer et al., 2010),
- a Bordeaux wines quality study (Tenenhaus, 1998).

The package was also applied to the Phenyl and Hyptis datasets from the *chemometrics* and the colonCA dataset from the *colonCA* package.

3.2 PLS regression: Cornell

Cross-validation

In this example, we will use formula specification of the PLS model.

```
rm(list = ls())
library(plsRglm)
data(Cornell)
```

We use k=6 balanced groups of 2 subjects to perform repeated k-fold cross validation. We set to 10, thanks to the option nt=6, the maximal number of components for the cross-validation function -cv.plsR- since the rank of the design matrix is equal to 6. The grouplist option enables the user to provide custom splits of the datasets on which cross validation will be carried out. As a consequence, one can use the *caret* (from Jed Wing et al., 2014) package to find balanced splits of the dataset into folds with respect to the response values.

```
cv.modpls<-cv.plsR(Y~.,data=Cornell,nt=6,K=6)</pre>
```

The verbose=FALSE option can silence messages from the cv.plsR function. We sum up the results in a single table using the summary.

```
res.cv.modpls<-cvtable(summary(cv.modpls))</pre>
  ____**********************************
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component___ 5 ____
## ____ Component____ 6 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
##
##
## NK: 1
##
##
## CV Q2 criterion:
## 0 1
## 0 1
##
## CV Press criterion:
## 1 2 3 4
## 0 0 0 1
```

You can perform leave one out cross validation similar to the one that existed in previous versions of SIMCA by setting TypeVC="standard". Two other options, TypeVC="missing" or TypeVC="standard", exists to handle incomplete datasets. Indeed, of cross validation is required is that case, one needs to selects the way of predicting the response for left out observations. For complete rows, without any missing value, there are two different ways of computing these predictions. As a consequence, for mixed datasets, with complete and incomplete rows, there are two ways of computing prediction: either predicts any row as if there were missing values in it (missingdata) or selects the prediction method accordingly to the completeness of the row (adaptative).

```
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
colSums(res6$pvalstep)
## [1] 0 0 3 0 0 0
res6$InfCrit
## AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y ## Nb_Comp_0 82.01 NA NA NA NA NA 467.797 NA
## Nb_Comp_1 53.15  0.8967  0.0975  0.89666  48.344  35.742  0.9236
## Nb_Comp_2 41.08 0.9175 0.0975 0.20211 28.519 11.067 0.9763
## Nb_Comp_3 32.06 0.9400 0.0975 0.27196 8.057 4.418 0.9906
## Nb_Comp_4 33.76 0.9197 0.0975 -0.33760 5.910 4.309 0.9908
## Nb_Comp_5 33.34 0.9281 0.0975 0.10506 3.857 3.522 0.9925
## Nb_Comp_6 35.26 0.9233 0.0975 -0.06792 3.761 3.496 0.9925
## R2_residY RSS_residY PRESS_residY Q2_residY LimQ2
## Nb_Comp_0 NA 11.00000 NA NA NA
                                               1.13679 0.89666 0.0975
## Nb_Comp_1 0.9236 0.84047
## Nb_Comp_2 0.9763 0.26023 0.67060 0.20211 0.0975
## Nb_Comp_3 0.9906 0.10389 0.18945 0.27196 0.0975
## Nb_Comp_5 0.9908 0.10133 0.13896 -0.33760 0.0975
## Nb_Comp_5 0.9925 0.08282 0.09068 0.10506 0.0975
## Nb_Comp_6 0.9925 0.08221 0.08844 -0.06792 0.0975
## Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof
## Nb_Comp_0 NA 37.010 1.000 6.5213 46.0709 47.7894
## Nb_Comp_1 0.8967 8.150 2.741 1.8665 4.5700 4.9558 ## Nb_Comp_3 0.9400 -12.938 5.121 0.7488 0.8468 0.9628 ## Nb_Comp_4 0.9197 -11.237 5.103 0.7387 0.8233 0.9358 ## Nb_Comp_5 0.9281 -11.658 6.006 0.7096 0.7976 0.9198 ## Nb_Comp_6 0.9233 -9.746 7.000 0.7633 0.9711 1.1360
## GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
## Nb_Comp_0 27.59 1 6.5213 46.0709 47.7894
## Nb_Comp_1 21.34 2 1.8906 4.1700 4.4588
## Nb_Comp_2 27.40 3 1.1089 1.5370 1.6861
## Nb_Comp_3 24.41 4 0.7431 0.7363 0.8256
## Nb_Comp_4 24.23 5 0.7846 0.8721 0.9965
## Nb_Comp_5 28.21 6 0.7662 0.8805 1.0228
## Nb_Comp_6 33.18 7 0.8362 1.1071 1.3049
## GMDL.naive
## Nb_Comp_0 27.59
## Nb_Comp_1
                     18.38
## Nb_Comp_2
                     17.71
## Nb_Comp_3
                     19.01
## Nb_Comp_4
                     24.17
## Nb_Comp_5
                     28.64
## Nb_Comp_6
                       33.64
```

The number of significant predictors per components, which is a criteria of significance for Bastien et al. (2005), can be obtained via the following code:

```
## ____Component____ 6 ___

## ____Predicting X without NA neither in X nor in Y____

## ****____****

colSums(res6$pvalstep)

## [1] 0 0 3 0 0 0
```

The verbose=FALSE option can silence messages from the plsR function. The number of significant predictors within each component tell us to only build 3 components when the AIC criteria gives us 5 components and the BIC concludes to 5 components. The cross-validated Q^2_{cum} criterion advocates for retaining 3 components either for leave one out and 1 for 6-fold CV. The 6-fold CV cross-validation was run 100 times by randomly creating groups. Here are the command lines:

```
set.seed(123)
cv.modpls<-cv.plsR(Y~.,data=Cornell,nt=6,K=6,NK=100,random=TRUE)</pre>
```

```
res.cv.modpls=cvtable(summary(cv.modpls))
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____Component____ 6 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19,
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29,
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
##
##
## CV Q2 criterion:
## 0 1 2
## 0 89 11
##
## CV Press criterion:
## 1 2 3 4 5
## 0 0 33 55 12
```

The verbose=FALSE option can silence messages from the cvtable function. The results, based on the use of the Q^2 criterion, (Fig. 1) confirm those of the first 6-fold CV cross validation: we decide to retain 1 components. Even in the linear case, cross validation should be repeated to select the number of components in a PLSR model.

```
plot(res.cv.modpls)
```


Figure 1: Nb components, 6-CV, n=100

Now, the PLSGLR regression is done in order to obtain these coefficients c_h and the intercept.

```
res<-plsR(Y~.,data=Cornell,nt=1,pvals.expli=TRUE)</pre>
## ____Component____ 1 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
res
## Number of required components:
## Number of successfully computed components:
## [1] 1
## Coefficients:
               [,1]
##
## Intercept 92.4322
## X1
      -14.8846
## X2
            -0.5942
## X3
           -25.5424
## X4
           -5.1075
          14.1877
## X5
## X6
            5.5177
         -44.9000
## X7
## Information criteria and Fit statistics:
           AIC RSS_Y R2_Y R2_residY RSS_residY AIC.std DoF.dof
## Nb_Comp_0 82.01 467.80 NA NA 11.0000 37.01 1.000
## Nb_Comp_1 53.15 35.74 0.9236 0.9236 0.8405 8.15
                                                       2.741
## sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive
## Nb_Comp_0 6.521 46.07 47.789 27.59
## Nb_Comp_1 1.867 4.57 4.956 21.34
## sigmahat.naive AIC.naive BIC.naive GMDL.naive
## Nb_Comp_0 6.521 46.07 47.789 27.59
## Nb_Comp_1 1.891 4.17 4.459 18.38
```


Figure 2: Biplot of the observations and the variables

It is also possible to obtain the matrix \mathbf{W}^{\ast} with the following command line:

```
res$wwetoile
##
      Coord_Comp_1
## X1
          -0.43700
          -0.03696
## X2
## X3
          -0.43734
## X4
          -0.36884
           0.25772
## X5
## X6
           0.51412
          -0.38680
## X7
```

It is also possible to display the biplot of the observations and the predictors (Figure 2).

```
par(mar = c(3, 3, 1, 1) + 0.1)
par(mgp = c(2, 1, 0))
biplot(res6$tt,res6$pp)
```

```
par(mar = c(5, 4, 4, 2) + 0.1)

par(mgp = c(3, 1, 0))
```

Hard thresholding PLS regression and automatic selection of the number of components (Bastien et al. (2005)) is also available:

```
modpls2 <- plsR(Y~.,data=Cornell,6,sparse=TRUE)
modpls3 <- plsR(Y~.,data=Cornell,6,sparse=TRUE,sparseStop=FALSE)</pre>
```

Bootstrap (y, X)

Graphical results of the bootstrap on the (Y, X): distributions of the estimators (see Figure 3) and CI (see Figure 4).

```
set.seed(123)
Cornell.bootYX1=bootpls(res,R=1000)
```

The verbose=FALSE option can silence messages from the bootpls function. We do not bootstrap the intercept since the boostrap is done with the centered and scaled response and predictors. As a consequence we should exclude it from the boxplots using the option indice=2:8 and must exclude it from the CI computations, if we request BC_a ones, again with the option indice=2:8.

```
boxplots.bootpls(Cornell.bootYX1,indice=2:8)
```

Bootstrap is performed using the *boot* package. It allows the user to apply the functions, including jack.after.boot or plot.boot (Figure 4), of this package to the bootstrapped PLSR or PLSGLR models.

```
plot(Cornell.bootYX1,index=2,jack=TRUE)
```

Using the dataEllipse of the *car* you can plot confidence ellipses for two parameters of the PLSR or PLSGLR models (Figure 6).

Bootstrap (y, T)

Re-sampling on the couple (Y,T) (Bastien et al., 2005) is more stable and faster than the first one. We set at 1000 the number of re-sampling. Cls for each of the predictors (see Figure 8) and boxplots as well (see Figure 7).

```
set.seed(123)
Cornell.bootYT1=bootpls(res,typeboot="fmodel_np",R=1000)
```

```
boxplots.bootpls(Cornell.bootYT1,indices=2:8)
```

We do not bootstrap the intercept since the boostrap is done with the centered and scaled response and predictors. As a consequence we should exclude it from the boxplots using the option indice=2:8 and must exclude it from the CI computations, if we request BC_a ones, again with the option indice=2:8.

Figure 3: Bootstrap (y, X) distribution of the coefficients of the predictors

Since after cross validation we an empirical distribution of the retained number of components, it makes sense to perform (y, T) bootstrap for any of these numbers of components and compare the resulting significance of the predictors at a 5% level. The signpred function can be used to plot a summary of this selection (Figure 9).

In addition, one can compute an empirical measure of significance π_e by computing the weighted -with respect to the empirical distribution of components- average of the significance indicatrices. In that case, all the predictors are significant for the 1 and 2 components model and hence the empirical mesure of significance is equal to 1 for all of them.

```
res2<-plsR(Y~.,data=Cornell,nt=2)
Cornell.bootYT2=bootpls(res2,typeboot="fmodel_np",R=1000)
temp.ci2<-confints.bootpls(Cornell.bootYT2,indices=2:8)
ind.BCa.CornellYT1 <- (temp.ci[,7]<0&temp.ci[,8]<0)|(temp.ci[,7]>0&temp.ci[,8]>0)
ind.BCa.CornellYT2 <- (temp.ci2[,7]<0&temp.ci2[,8]<0)|(temp.ci2[,7]>0&temp.ci2[,8]>0)

(matind=(rbind(YT1=ind.BCa.CornellYT1,YT2=ind.BCa.CornellYT2)))
## X1 X2 X3 X4 X5 X6 X7
## YT1 TRUE TRUE TRUE TRUE TRUE TRUE TRUE
```


Figure 4: CI of the coefficients of the predictors, bootstrap (\mathbf{y}, \mathbf{X}) , R=1000

```
## YT2 TRUE TRUE TRUE TRUE FALSE TRUE TRUE
pi.e=prop.table(res.cv.modpls$CVQ2)[-1]%*%matind
pi.e

## X1 X2 X3 X4 X5 X6 X7

## [1,] 1 1 1 1 0.89 1 1

signpred(t(matind),labsize=.5, plotsize = 12)
text(1:(ncol(matind))-.5,-.5,pi.e,cex=1.4)
mtext(expression(pi[e]),side=2,las=1,line=2,at=-.5,cex=1.4)
```


Figure 5: plot.boot, bootstrap (\mathbf{y}, \mathbf{X}) , R=1000

Figure 6: Confidence ellipse of the coefficients of the first two predictors, bootstrap (\mathbf{y},\mathbf{X}) , R=1000

Figure 7: Bootstrap (\mathbf{y},\mathbf{T}) distribution of the coefficients of the predictors

Figure 8: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

Figure 9: Significance of the predictors vs nbr of components, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

3.3 PLS binary logistic regression: Microsatellites

In this section, we are going to deal with the allelotyping study dataset. This database, which is made with data collected on patients carrying a colon adenocarcinoma, has 104 observations on 33 binary qualitative explanatory variables representing the cancer stage according to the to Astler-Coller classification (Astler and Coller, 1954). This dataset, called aze, has some missing data due to technical limits. Finally, the variable aze[1, 1] represent the Astler-Coller score and so will be our dependant variable in this analysis.

We first use the original one with missing values then an imputed dataset. We show some discrepancy in the estimates of the coefficients as well as in the significance testing procedure.

3.3.1 Method and Results: original dataset

Cross-validation

We decided to apply a binary logistic PLS regression with a logit link-function on these data.

```
rm(list = 1s())
library(plsRglm)
data(aze)
Xaze<-aze[,2:34]
yaze<-aze$y</pre>
```

First of all, a repeated k-fold cross validation is necessary to obtain the number of components to build. We decided to use k=8 balanced groups of 13 subjects. We then chose to set to 10, thanks to the option nt=10, the maximal number of components for the cross-validation that the cv.plsRglm function would try to compute. According to field experts, this number of components should be greater to the real number of components featured in the dataset. The cross-validation step is performed by running the following command line.

```
cv.modpls<-cv.plsRglm(dataY=yaze,dataX=Xaze,nt=10,modele="pls-glm-logistic",K=8)</pre>
```

The verbose=FALSE option can silence messages from the cv.plsRglm function. For PLS-GLR models, the cross-validation results can be summed up in a single table using the summary¹. Results are obtained by the following command line.

```
res.cv.modpls=cvtable(summary(cv.modpls, MClassed = TRUE))
## Only naive DoF can be used with missing data
##
## Family: binomial
## Link function: logit
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component___ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____ Component____ 7 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____ Component____ 8 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____Component____ 9 ____
```

¹ for PLSR models the cross-validation results can be summed up in a single table using the function summary.

```
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____Component____ 10 ____
## ____Predicting X with NA in X and not in Y____
## ****<u>____</u>****
##
## NK: 1
## CV MissClassed criterion:
## 1 2 3 4 5
## 0 0 0 0 1
##
## CV Q2Chi2 criterion:
## 0
## 1
##
## CV PreChi2 criterion:
## 1
## 1
```

The number of significant predictors per components can be obtained via the following code:

```
res10<-plsRglm(yaze, Xaze, nt=10, modele="pls-glm-logistic", pvals.expli=TRUE)
## Only naive DoF can be used with missing data
## Family: binomial
## Link function: logit
##
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____ Component____ 7 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____Component____ 8 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____Component____ 9 ____
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____Component____ 10 ____
## ____Predicting X with NA in X and not in Y____
## ****_____****
colSums(res10$pvalstep)
## temppvalstep temppvalstep temppvalstep temppvalstep
## 1 3 0 0
## temppvalstep temppvalstep temppvalstep temppvalstep
## 0 0 0 0
```

The verbose=FALSE option can silence messages from the plsRglm function. The number of significant predictors within each component, which is a criteria of significance for Bastien et al. (2005), is implemented in the package with the options sparse=TRUE and sparseStop=TRUE.

The number of significant predictors within each component tells us to only build 2 components while the AIC criteria gives us 6 components and the BIC concludes to 4 components. But for this study, the most important criteria was to minimize the miss classification rate after cross-validation, criteria which let us know to build 4 components, in agreement with BIC criteria. In order to confirm the choice of retaining 4 components, the cross-validation was run 100 times by randomly creating groups. Here are the command lines:

```
set.seed(123)
cv.modpls.logit<-cv.plsRglm(dataY=yaze,dataX=Xaze,nt=10,modele="pls-glm-logistic",K=8,NK=100)</pre>
```

```
res.cv.modpls.logit=cvtable(summary(cv.modpls.logit, MClassed = TRUE))
## Only naive DoF can be used with missing data
##
## Family: binomial
## Link function: logit
##
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component___ 3 ____
## ____Component____ 4 ____
## ____ Component___ 5 ____
## ____ Component____ 6 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____ Component____ 7 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____ Component____ 8 ____
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## ____Component____ 9 ____
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
```

```
## ____Component____ 10 ____
## ____Predicting X with NA in X and not in Y____
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59,
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV MissClassed criterion:
## 1 2 3 4 5 6 7 8
## 1 0 35 38 14 6 4 2
##
## CV Q2Chi2 criterion:
## 0
## 100
##
## CV PreChi2 criterion:
## 1 2
## 94 6
```

The results (Fig. 10) confirm the results obtained during the original cross-validation and that's the reason why we decided to build 4 components. Here is also the model we will work with:

$$\mathbb{P}(y=1) = \frac{\exp\left(\mu + \sum_{h=1}^{4} c_h t_h\right)}{1 + \exp\left(\mu + \sum_{h=1}^{4} c_h t_h\right)}$$
(6)

where t_h is the h^{th} component, c_h the coefficients of the logistic regression of the response variable y on the components t_h and μ the intercept.

```
plot(res.cv.modpls.logit)
```


Figure 10: Nb components, 8-CV, n=100

Now, the PLSGLR regression is done in order to obtain these coefficients c_h and the intercept.

```
res<-plsRglm(yaze, Xaze, nt = 4, modele = "pls-glm-logistic", pvals.expli=TRUE)</pre>
## Only naive DoF can be used with missing data
## Family: binomial
## Link function: logit
##
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X with NA in X and not in Y____
## ****_____****
res
## Number of required components:
## Number of successfully computed components:
## [1] 4
## Coefficients:
##
               [,1]
## Intercept -3.29706
## D2S138
         -0.84808
## D18S61
           2.66109
## D16S422
          -0.75013
## D17S794
          1.19845
## D6S264
          -0.84513
## D14S65
          0.42024
## D18S53
         -0.19435
## D17S790 -0.94635
```

```
## D1S225 -0.18233
## D3S1282 0.30162
## D9S179 0.64299
## D5S430 -2.08075
## D8S283 0.08824
## D11S916 1.15044
## D2S159
           0.60088
## D16S408 0.81723
## D5S346
             1.82473
           -0.50814
## D10S191
## D13S173 1.27486
## D6S275
            -1.35727
## D15S127 -0.48758
## D1S305 1.56507
## D4S394 -1.10655
## D20S107 -0.88827
## D1S197 -0.59979
## D1S207 0.23937
## D10S192 1.18776
## D3S1283 -0.05031
## D4S414 0.88055
## D8S264 0.90852
## D22S928 -0.20802
          -1.36478
## TP53
## D9S171
## Information criteria and Fit statistics:
## AIC BIC Missclassed Chi2_Pearson_Y RSS_Y R2_Y R2_residY
## Nb_Comp_0 145.8 148.5 49 104.0 25.91 NA NA
                                30
                                            101.7 19.54 0.2461 -6.017
## Nb_Comp_1 119.1 124.3 30 101.7 19.54 0.2461 -6.017

## Nb_Comp_2 106.0 113.9 20 111.0 16.17 0.3761 -11.620

## Nb_Comp_3 100.3 110.9 18 102.5 14.85 0.4269 -14.115

## Nb_Comp_4 96.2 109.4 20 122.8 13.74 0.4699 -19.633
## Nb_Comp_1 119.1 124.3
## RSS_residY
## Nb_Comp_0 25.91
               181.84
## Nb_Comp_1
             327.02
391.69
534.68
## Nb_Comp_2
## Nb_Comp_3
## Nb_Comp_4
## Model with all the required components:
##
## Call: glm(formula = YwotNA ~ ., family = family, data = tttrain)
##
## Coefficients:
                                  tt.2
## (Intercept)
                     tt.1
                                               tt.3
                                                            tt.4
       -0.297
                    1.427
                                   0.510
                                               0.690
                                                             0.793
##
## Degrees of Freedom: 103 Total (i.e. Null); 99 Residual
## Null Deviance: 144
## Residual Deviance: 86.2 AIC: 96.2
```

It is also possible to obtain the matrix \mathbf{W}^* with the following command line:

```
## D6S264 -0.103643 -0.214465 -0.135336 -0.088290
## D14S65 0.102355 0.078851 0.024787 0.006052
## D18S53
          0.014590 -0.250126 -0.171388 0.164904
## D17S790 -0.168555 -0.261288 0.041658 -0.159789
## D1S225
          0.034272 -0.093162 0.009514 -0.123996
## D3S1282 -0.071682 -0.164201
                              0.241973 0.215595
                             0.187466 -0.078107
## D9S179
          0.136638 0.100540
          -0.151642
                              -0.414466 -0.338288
## D5S430
                    -0.534737
          0.191726 -0.027383
                             -0.142431
## D8S283
                                         -0.148326
                              0.197944
## D11S916
           0.326263 0.162340
                                        -0.145698
## D2S159
          -0.003301 -0.081425
                               0.305683
                                         0.164072
## D16S408 0.099858 0.086526 0.103035 0.173948
## D5S346 0.400051 0.227688 -0.105805 0.370344
## D10S191 0.018664 -0.212931 -0.025305 -0.181209
## D6S275 -0.228091 -0.432388 -0.146102 0.011989
## D15S127 0.040485 -0.103365 -0.061795 -0.262021
## D1S305 0.253458 0.141652 0.293982 0.186037
          -0.076095 -0.332878 -0.087742 -0.232867
## D4S394
## D20S107 -0.228181 -0.391943 0.059582 0.065595
## D1S197 -0.008654 -0.292466
## D1S207 0.048839 -0.106744
                             -0.266137 0.057814
                                       0.165028
                             -0.045262
         0.265045 0.218465
-0.130765 -0.335018
                             0.196497 -0.037039
0.215132 0.231507
## D10S192
                                        0.231507
## D3S1283
                    -0.335018
        0.070732 0.007376
## D4S414
                              0.183889 0.242836
## D8S264
          ## D22S928 0.151029 -0.030607
                             -0.120889 -0.278420
## TP53
          -0.297981
                    -0.601905
                             -0.147448
                                       0.293278
## D9S171 0.072332
                  -0.083747
                             0.220187
                                       0.202930
```

It is also possible to display the biplot of the observations and the predictors (Figure 11).

```
biplot(res$tt,res$pp)
```

Then, in order to have results which are interpretable in practice, let run the following command line and so obtain the coefficients β_j of the predictors \mathbf{x}_j , $1 \leqslant j \leqslant 33$ of the final model.

```
res$Std.Coeffs
##
               [,1]
## Intercept -0.29676
## D2S138 -0.42228
## D18S61
            1.09847
## D16S422 -0.37014
## D17S794 0.59868
## D6S264 -0.42067
## D14S65 0.20819
## D18S53 -0.09420
## D17S790 -0.47171
## D1S225 -0.09032
## D3S1282 0.15200
           0.31375
## D9S179
## D5S430
           -1.04334
## D8S283
           0.04376
           0.56954
## D11S916
## D2S159
            0.29492
          0.39570
## D16S408
## D5S346 0.90770
## D10S191 -0.24304
## D13S173 0.62932
## D6S275 -0.63728
```


Figure 11: Biplot of the observations and the variables

```
## D15S127
             -0.24533
## D1S305
              0.78444
## D4S394
             -0.52349
## D20S107
             -0.43230
             -0.29928
## D1S197
  D1S207
              0.11493
  D10S192
              0.59593
             -0.02530
## D3S1283
              0.42423
## D4S414
## D8S264
              0.41788
## D22S928
             -0.10426
## TP53
             -0.60130
## D9S171
              0.37348
```

The options sparse and sparseStop allows enabling, or not, separately hard thresholding PLS regression or automatic selection of the number of components (Bastien et al. (2005)).

Bootstrap (y, X)

However, what is really important is to know which of them are significantly different from zero. We can also answer to this question with the bootstrap techniques we insert in this package.

Let us begin with the bootstrap on the (Y,X). This method, which seems to be natural, has some trouble in this case. Indeed, with the help of the boxplot, we decided to only focus on the BC_a CI, because of the fact of the clearly non symmetrical distributions of the estimators (see Figure 22). And when we choose 3 components, some of the CI become disproportionate (see Figure 23), depriving us of any graphical interpretation. So, an easy way to see if any predictors is significantly different from 0, is to use the function confints.bootpls, which will allow to see the values of the CI for the four different type of CI. Thanks to this function, we can see that only one predictor is significantly different from 0, namely D18S61.

```
set.seed(123)
aze.bootYX4=bootplsglm(res,typeboot="plsmodel",R=1000)
```

The verbose=FALSE option can silence messages from the bootplsglm function. By default with PLSGLR models the option typeboot is set to typeboot="fmodel_np" -Bootstrap (y, T)-, we change this setting using the option typeboot="plsmodel" -Bootstrap (y, X)-.

Since the object res contained the results of the function plsRglm(yaze,Xaze,nt=4,modele= "pls-glm-logistic"), the statement aze.bootYX4=bootplsglm(res,typeboot="plsmodel",R=1000) is equivalent to the instruction aze.bootYX4=bootplsglm(plsRglm(yaze,Xaze,nt=4,modele="pls-glm-logistic"), typeboot="plsmodel", R=1000).

```
boxplots.bootpls(aze.bootYX4,las=2,mar=c(5,2,1,1)+0.1)
```

Bootstrap (y, T)

However, due to the problems of the previous results, we decided to choose the second type of bootstrap, that is to say the one which do re-sampling on the couple (Y,T) (Bastien et al., 2005). Indeed, it is more stable and faster than the first one. We set at 1000 the number of re-sampling. So we obtain a graphic representing the confidence intervals (CI) for each of the predictors (see Figure 14) and a boxplot as well (see Figure 14). These graphics were obtained by starting these command lines:

```
set.seed(123)
aze.bootYT4=bootplsglm(res,R=1000)
```

By default with PLSGLR models the option typeboot is set to typeboot="fmodel_np" -Bootstrap (y, T)-. Since res=plsRglm(yaze, Xaze, nt=4, modele="pls-glm-logistic"), the statement aze.bootYX4=bootplsglm(res,R=1000) is equivalent to the instruction aze.bootYX4=bootplsglm(plsRglm(yaze, Xaze, nt=4, modele="pls-glm-logistic"),R=1000).

```
boxplots.bootpls(aze.bootYT4,las=2,mar=c(5,2,1,1)+0.1)
```

Remark 6. In this paper, we decided to only focus on the BCa CI. But, with this package, it is naturally possible to obtain CI with percentile, normal or basic bootstrap as well.

Figure 12: Bootstrap (y, X) distribution of the coefficients of the predictors, R=1000

With the help of Figure 15, we can see that only 9 predictors are not significantly different from 0. But, it could be interesting to display, through the model with 1 to 8 components, which of the predictors are significantly different from zero so that we could know if there is a stability of significant predictors or not (see Figure 16). A function is available in our package, called signpred, to do this kind of graphic.

Since after cross validation we an empirical distribution of the retained number of components, it makes sense to perform (y, T) bootstrap for any of these numbers of components and compare the resulting significance of the predictors at a 5% level. The signpred function can be used to plot a summary of this selection (Figure 16).

As we can see on the figure 16, there is few differences between the model with 3 and 4 components. Indeed, only 1 predictor, significant in the 3 components model, become non-significant in the 4 components model. Furthermore, only one predictor, non-significant in the 3 components model, become significant in the 4 components model.

In addition, one can compute an empirical measure of significance π_e by computing the weighted -with respect to the empirical distribution of components- average of the significance indicatrices. In that case, all the predictors are significant for the 1 and 2 components model and hence the empirical mesure of significance is equal to 1 for all of them.

The bootstrap technique used in this study, which is clearly faster and more stable than the other one, but the results between the two techniques are really different and so it could be interesting to confront them with the help of some simulations.

Figure 13: CI of the coefficients of the predictors, bootstrap (y, X), R=1000

```
res1<-plsRglm(yaze, Xaze, nt = 1, modele = "pls-glm-logistic")
res2<-plsRglm(yaze, Xaze, nt = 2, modele = "pls-glm-logistic")
res3<-plsRglm(yaze, Xaze, nt = 3, modele = "pls-glm-logistic")</pre>
res5<-plsRglm(yaze, Xaze, nt = 5, modele = "pls-glm-logistic")</pre>
res6<-plsRglm(yaze, Xaze, nt = 6, modele = "pls-glm-logistic")</pre>
res7<-plsRglm(yaze, Xaze, nt = 7, modele = "pls-glm-logistic")</pre>
res8<-plsRglm(yaze, Xaze, nt = 8, modele = "pls-glm-logistic")</pre>
aze.bootYT1=bootplsglm(res1,R=1000)
aze.bootYT2=bootplsglm(res2,R=1000)
aze.bootYT3=bootplsglm(res3,R=1000)
aze.bootYT5=bootplsglm(res5,R=1000)
aze.bootYT6=bootplsglm(res6,R=1000)
aze.bootYT7=bootplsglm(res7,R=1000)
aze.bootYT8=bootplsglm(res8,R=1000)
temp.ci1<-confints.bootpls(aze.bootYT1)</pre>
temp.ci2<-confints.bootpls(aze.bootYT2)</pre>
```


Figure 14: Bootstrap (y, T) distribution of the coefficients of the predictors, R=1000

D2S138 D18S61 D16S422 D17S794 D6S264 D14S65 D18S53 D17S790 D1S225

Figure 15: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

##	YT1	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
##	YT2	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE
##	YT3	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE
##	YT4	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE
##	YT5	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
##	YT6	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE
##	YT7	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE
##	YT8	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE
##		D3S1282	D9S179	D5S430	D8S283 I	011S916	D2S159	D16S408	D5S346	D10S191
##	YT1	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
##	YT2	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE
##	YT3	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE
##	YT4	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE
##	YT5	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE
##	YT6	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE
##	YT7	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE
##	YT8	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE
##		D13S173	D6S275	D15S127	D1S305	D4S394	D20S107	D1S197	D1S207	D10S192

Figure 16: Significance of the predictors vs nbr of components, bootstrap (y, T), R=1000

```
## YT1
        TRUE
              TRUE
                     TRUE
                           TRUE
                                 TRUE
                                        TRUE
                                              TRUE
                                                    TRUE
                                                            TRUE
                          TRUE
                                                            TRUE
## YT2
        TRUE.
              TRUE
                    FALSE
                                 TRUE
                                        TRUE
                                              TRUE FALSE
              TRUE FALSE TRUE TRUE
                                        TRUE TRUE FALSE
## YT3
        TRUE
                                                            TRUE
## YT4
        TRUE
              TRUE FALSE TRUE TRUE
                                        TRUE TRUE FALSE
                                                            TRUE
## YT5
        TRUE
              TRUE TRUE TRUE TRUE
                                        TRUE TRUE FALSE
                                                            TRUE
## YT6
        TRUE
              TRUE
                   TRUE TRUE
                                TRUE
                                        TRUE TRUE
                                                   TRUE
                                                            TRUE
## YT7
        TRUE
              TRUE
                     TRUE
                           TRUE
                                 TRUE
                                        TRUE
                                              TRUE
                                                    TRUE
                                                            TRUE
## YT8
        TRUE
              TRUE
                     TRUE
                           TRUE
                                 TRUE
                                        FALSE
                                              TRUE TRUE
                                                            TRUE
     D3S1283 D4S414 D8S264 D22S928
                                 TP53 D9S171
##
## YT1
        TRUE TRUE TRUE
                           TRUE
                                 TRUE
                                       TRUE
## YT2
        TRUE
              TRUE
                    TRUE
                           TRUE
                                 TRUE FALSE
## YT3
       FALSE
              TRUE
                    TRUE
                         FALSE
                                 TRUE
## YT4
       FALSE
              TRUE
                    TRUE
                          FALSE
                                 TRUE
             TRUE
## YT5
       FALSE
                    TRUE
                          FALSE TRUE
                    TRUE
                          TRUE FALSE FALSE
## YT6
       FALSE TRUE
## YT7
       FALSE TRUE
                   TRUE FALSE FALSE FALSE
## YT8
      FALSE TRUE FALSE
                          TRUE FALSE FALSE
pi.e=prop.table(res.cv.modpls.logit$CVMC)%*%matind
pi.e
##
       D2S138 D18S61 D16S422 D17S794 D6S264 D14S65 D18S53 D17S790 D1S225
## [1.]
       1 1 1 1 0.74 0.88 0.62 1 0.27
     D3S1282 D9S179 D5S430 D8S283 D11S916 D2S159 D16S408 D5S346 D10S191
## [1,] 0.01 0.94 1 0.01 1 0.65 0.88 1 0.98
      D13S173 D6S275 D15S127 D1S305 D4S394 D2OS107 D1S197 D1S207 D1OS192
       1 1 0.27 1 1 0.98
       D3S1283 D4S414 D8S264 D22S928 TP53 D9S171
         0.01
                    0.98
                           0.09 0.88
## [1,]
                1
signpred(t(matind),labsize=2, plotsize = 12)
text(1:(ncol(matind))-.5,-1,pi.e,cex=.5)
mtext(expression(pi[e]),side=2,las=1,line=2,at=-1)
```

3.3.2 Specifying families, links or custom GLRs

Using family and link options

The option modele="pls-glm-logistic" allows us to to fit a binary logistic with logit link GLR. It is a shortcut for

setting these two options modele="pls-glm-family" and family=binomial(link=logit).

To replace the logit link with another, use family=binomial(link=probit), family=binomial(link=cauchit), family=binomial(link=cloglog).

For each of these other links, one should restart number of components selection using crossvalidation.

family=binomial(link=cloglog),,K=8,NK=100)

```
res.cv.modpls.probit=cvtable(summary(cv.modpls.probit, MClassed = TRUE))
     __***************
## Only naive DoF can be used with missing data
##
## Family: binomial
## Link function: probit
##
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X with NA in X and not in Y____
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, ## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29,
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39,
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
```

```
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV MissClassed criterion:
## 1 2 3 4 5 6 7 8 9
## 2 0 33 46 10 4 1 3 1
##
## CV Q2Chi2 criterion:
## 100
##
## CV PreChi2 criterion:
## 1 2
## 94 6
```

```
res.cv.modpls.cauchit=cvtable(summary(cv.modpls.cauchit, MClassed = TRUE))
## Only naive DoF can be used with missing data
##
## Family: binomial
## Link function: cauchit
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## Warning : reciprocal condition number of t(cbind(res$pp,temppp)[XXNA[3,],,drop=FALSE])%*%cbind(res$pp,temppp)
## Warning only 8 components could thus be extracted
## ____Predicting X with NA in X and not in Y____
## ****_____****
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV MissClassed criterion:
## 1 2 3 4 5 6 7 8
## 29 2 27 16 7 12 2 5
## CV Q2Chi2 criterion:
## 0
## 100
## CV PreChi2 criterion:
```

```
## 100

#res.cv.modpls.cloglog=cvtable(summary(cv.modpls.cloglog, MClassed = TRUE))

layout(matrix(1:4,nrow=2))
plot(res.cv.modpls.logit)
plot(res.cv.modpls.probit)
plot(res.cv.modpls.cauchit)
#plot(res.cv.modpls.cloglog)
layout(1)
```


Figure 17: Nb components for logit, probit, cauchit and cloglog links, 8-CV, n=100

Since we are comparing glms with different link function a direct comparison of the estimates of the model, such as the one provided below, is not relevant. Instead we compare BC_a Bootstrap (\mathbf{y}, \mathbf{T}) based significance of the variables and plot the results using the signpred function.

```
data.frame(logit=modpls2$Std.Coeffs,probit=modpls3$Std.Coeffs,
          cauchit=modpls4$Std.Coeffs,cloglog=modpls5$Std.Coeffs)
##
               logit
                        probit cauchit
                                         cloglog
## Intercept -0.28153 -0.3118285 -2.68062 -0.754038
## D2S138 -1.24513 -0.7573422 -2.43563 -0.838584
           1.91630 1.2102996 5.92632 1.226347
## D18S61
## D16S422 -0.13835 -0.4156485 -0.34574 -0.502377
## D17S794
           1.75798 1.2475210 4.67314 0.455824
## D6S264
            -0.04176  0.5459001  -2.87545  0.105627
           -0.09021 0.0007938 2.23711 0.094785
## D14S65
## D18S53
           0.23184 -0.3068814 -0.40407 -0.060258
## D17S790 -1.60461 -1.3850280 -3.08423 -0.070063
## D1S225 -0.07654 -0.3266758 0.19084 -0.346550
## D3S1282 0.07130 0.2660855 0.08213 -0.006113
## D9S179 1.25291 0.6626852 0.26260 0.440091
## D5S430 -0.39566 -1.0168237 -5.80080 -0.370428
```

```
## D8S283 -0.11684 -0.3377915 0.81736 -0.066913
## D2S159 0.64625 0.6522306 4.30848 0.666585
## D16S408 -0.77149 -0.0858054 3.68491 0.399375
## D5S346 1.83010 1.2062642 4.21555 0.864934
## D10S191 0.21089 0.2002734 -2.00996 -0.197892
## D6S275
          -0.65335 -0.4995541 -3.77352 -0.571409
## D15S127 -0.63920 -0.4790719 -3.13018 -0.515623
## D1S305
           1.31361 0.8739911 5.37317 0.898312
## D4S394
          -2.43322 -0.9472823 -5.02391 -0.815028
## D20S107 0.01186 0.0007201 -3.86012 -0.979947
## D1S197 -1.11056 -0.5256046 -3.65892 -0.468815
## D1S207
          1.21068 0.6104127 0.66750 0.309633
## D10S192    1.01538    0.7229599    4.47329    0.635891
## D3S1283 0.69431 0.1497382 -0.53379 -0.199955
## D4S414 1.11589 0.5535850 3.22387 0.509255
## D8S264 -0.47945 0.3727693 5.00007 0.182964
## D22S928 -0.86121 -0.5062403 -0.46118 -0.425737
## TP53 -1.16590 -0.3591004 -2.97188 -0.361731
## D9S171 0.02704 -0.1287678 2.49295 0.405163
temp.ci.logit<-confints.bootpls(aze.bootYT4)</pre>
aze.bootYT4.probit=bootplsglm(modpls3,R=1000)
temp.ci.probit<-confints.bootpls(aze.bootYT4.probit)</pre>
aze.bootYT4.cauchit=bootplsglm(modpls4,R=1000)
temp.ci.cauchit<-confints.bootpls(aze.bootYT4.cauchit)</pre>
aze.bootYT4.cloglog=bootplsglm(modpls5,R=1000)
temp.ci.cloglog<-confints.bootpls(aze.bootYT4.cloglog)
ind.BCa.logit <- (temp.ci.logit[,7]<0&temp.ci.logit[,8]<0)|
                (temp.ci.logit[,7]>0&temp.ci.logit[,8]>0)
ind.BCa.probit <- (temp.ci.probit[,7] <0&temp.ci.probit[,8] <0)|
                 (temp.ci.probit[,7]>0&temp.ci.probit[,8]>0)
ind.BCa.cauchit <- (temp.ci.cauchit[,7]<0&temp.ci.cauchit[,8]<0)|
                 (temp.ci.cauchit[,7]>0&temp.ci.cauchit[,8]>0)
ind.BCa.cloglog <- (temp.ci.cloglog[,7]<0&temp.ci.cloglog[,8]<0)|
                 (temp.ci.cloglog[,7]>0&temp.ci.cloglog[,8]>0)
(matind=(rbind(logit=ind.BCa.logit,probit=ind.BCa.probit,cauchit=ind.BCa.cauchit,
             cloglog=ind.BCa.cloglog)))
         D2S138 D18S61 D16S422 D17S794 D6S264 D14S65 D18S53 D17S790
          TRUE TRUE TRUE TRUE TRUE FALSE TRUE
## logit
## probit TRUE TRUE TRUE TRUE FALSE FALSE
## cauchit TRUE TRUE FALSE TRUE TRUE TRUE FALSE
                                                         TRUE
                                                         TRUE
## cloglog TRUE TRUE FALSE FALSE FALSE FALSE FALSE
##
    D1S225 D3S1282 D9S179 D5S430 D8S283 D11S916 D2S159 D16S408
## logit FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE
## probit TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
## cauchit FALSE FALSE TRUE FALSE TRUE FALSE FALSE
## cloglog TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE
##
        D5S346 D10S191 D13S173 D6S275 D15S127 D1S305 D4S394 D2OS107
## logit
         TRUE TRUE TRUE TRUE FALSE TRUE TRUE
## probit TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
## cauchit TRUE FALSE FALSE TRUE FALSE TRUE TRUE
                                                        FALSE
## cloglog TRUE FALSE TRUE TRUE TRUE TRUE TRUE
                                                         TRUE
##
        D1S197 D1S207 D10S192 D3S1283 D4S414 D8S264 D22S928 TP53
## logit TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE
## probit TRUE TRUE TRUE FALSE FALSE TRUE FALSE
```



```
D2S138
D18S61
D16S422
D17S794
D6S264
D14S65
D18S53
D18S53
D17S790
D1S225
D3S1282
D1S225
D3S1283
D1S3173
D6S408
D1S2408
D1S2408
D1S346
D10S197
D1SS1283
D1SS1
```

Figure 18: Significance of the predictors vs link, bootstrap (y, T), R=1000

```
## cauchit TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
## cloglog TRUE TRUE TRUE FALSE FALSE TRUE FALSE
## D9S171
## logit TRUE
## probit FALSE
## cauchit TRUE
## cloglog FALSE
signpred(t(matind),labsize=2, plotsize = 12)
```

Any of the GLM family implemented in R, and even user specified links, can be used by using the option modele="pls-glm-family" and setting family to the desired value. We reproduce the example given in the help of the glm of an user-specified link, a logit model for pdays, see Shaffer (2004).

```
logexp <- function(exposure = 1)</pre>
    linkfun <- function(mu) qlogis(mu^(1/exposure))</pre>
    linkinv <- function(eta) plogis(eta)^exposure</pre>
    mu.eta <- function(eta) exposure * plogis(eta)^(exposure-1) *</pre>
      .Call(stats:::C_logit_mu_eta, eta, PACKAGE = "stats")
    valideta <- function(eta) TRUE</pre>
    link <- paste("logexp(", deparse(substitute(exposure)), ")",</pre>
                    sep="")
    structure(list(linkfun = linkfun, linkinv = linkinv,
                   mu.eta = mu.eta, valideta = valideta,
                   name = link),
               class = "link-glm")
binomial(logexp(3))
##
## Family: binomial
## Link function: logexp(3)
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]</pre>
yaze_compl<-aze_compl$y</pre>
modplscustom <- plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls-glm-family",</pre>
family=binomial(link=logexp(3)),MClassed=TRUE,pvals.expli=TRUE)
```

```
## Family: binomial
## Link function: logexp(3)
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modplscustom
## Number of required components:
## [1] 10
## Number of successfully computed components:
## [1] 10
## Coefficients:
##
              [,1]
## Intercept -0.17337
## D2S138 -0.89999
## D18S61 2.39045
## D16S422 -1.28883
## D17S794 1.63611
## D6S264 0.42436
## D14S65 -0.15137
## D18S53 -0.16509
## D17S790 -1.10990
## D1S225 0.24969
## D3S1282 -0.52479
## D9S179 0.44527
## D5S430 -0.67561
## D8S283 0.63264
## D11S916 0.45407
           0.36409
## D2S159
## D16S408 0.48960
## D5S346
           1.18813
## D10S191 -0.01616
## D13S173 0.45029
## D6S275 -0.65743
## D15S127 0.33754
## D1S305 1.04005
## D4S394 -0.86576
## D20S107 -1.01708
## D1S197 -1.45460
## D1S207 1.25697
## D10S192 1.14235
## D3S1283 -0.38086
## D4S414 0.21858
## D8S264 0.83803
## D22S928 -0.23684
## TP53 -2.09116
## D9S171 0.12095
## Information criteria and Fit statistics:
## AIC BIC Missclassed Chi2_Pearson_Y RSS_Y R2_Y
```

```
## Nb_Comp_0 145.8 148.5 49 104.00 25.91 NA
## Nb_Comp_1 117.2 122.5 27 100.25 19.16 0.2605
## Nb_Comp_2 110.2 118.2 27 97.06 17.48 0.3255
## Nb_Comp_3 105.3 115.9 25 97.99 16.15 0.3769
## Nb_Comp_4 104.7 118.0 23 94.91 15.72 0.3933
## Nb_Comp_5 105.5 121.3 23 88.51 15.63 0.3970
## Nb_Comp_6 106.7 125.2 23 87.56 15.50 0.4020
## Nb_Comp_7 108.2 129.4 20 89.47 15.34 0.4080
## Nb_Comp_8 110.0 133.8 21 87.20 15.39 0.4062
## Nb_Comp_9 111.9 138.4 21 88.34 15.34 0.4082
## Nb_Comp_10 113.9 143.0 22 88.29 15.32 0.4086
## R2_residY RSS_residY
## R2_residY RSS_residY
## Nb_Comp_0 NA 25.91
## Nb_Comp_1 -4.698 147.66
## Nb_Comp_2 -6.576 196.33
## Nb_Comp_3 -7.429 218.43
## Nb_Comp_4 -8.714 251.72
## Nb_Comp_5 -9.176 263.69
## Nb_Comp_6 -9.344 268.05
## Nb_Comp_7 -9.561 273.66
## Nb_Comp_8 -9.945 283.62
                               285.31
## Nb_Comp_9 -10.010
## Nb_Comp_10 -10.041 286.12
## Model with all the required components:
##
## Call: glm(formula = YwotNA ~ ., family = family, data = tttrain)
##
## Coefficients:
## (Intercept) tt.1 tt.2 tt.3
## 1.2522 1.1494 0.3483 0.7214
## tt.5 tt.6 tt.7 tt.8
## 0.2635 0.2321 0.1859 0.1184
                                                        tt.3
                                                                          tt.4
                                                                        0.3567
                                                         tt.8
                                                                         tt.9
                                                                      0.0845
         tt.10
##
        0.0570
##
##
## Degrees of Freedom: 103 Total (i.e. Null); 93 Residual
## Null Deviance: 144
## Residual Deviance: 91.9 AIC: 114
set.seed(123)
cv.modplscustom<-cv.plsRglm(yaze_compl,Xaze_compl,nt=10,modele="pls-glm-family",
                                   family=binomial(link=logexp(3)), K=8, NK=100)
res.cv.modplscustom=cvtable(summary(cv.modplscustom,MClassed=TRUE))
##
## Family: binomial
## Link function: logexp(3)
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
```

```
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19,
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29,
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39,
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49,
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59,
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
                                             70
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV MissClassed criterion:
## 1 2 3 4 5 6 7 8 9 10
## 31 13 33 3 3 1 5 2 5 4
##
## CV Q2Chi2 criterion:
## 0
## 100
##
## CV PreChi2 criterion:
##
   1
## 100
```

plot(res.cv.modplscustom)

Figure 19: Nb components, 8-CV, n=100

3.3.3 Method and Results: imputed dataset

Cross-validation

We imputed a complete dataset aze_ compl from the raw dataset aze using the *mice* package van Buuren and Groothuis-Oudshoorn (2011) in order to copare the results of the PLSGLR algorithm on these two datasets.

```
rm(list = ls())
library(plsRglm)
data(aze_compl)
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y</pre>
```

Again we use a repeated k-fold cross validation to find the number of components to retain with k=8 balanced groups of 13 subjects. We then again chose to set to 10, thanks to the option nt=10, the maximal number of components for the cross-validation that the cv.plsRglm function would try to compute. According to field experts, this number of components should be greater to the real number of components featured in the dataset. The cross-validation step is performed by running the following command line.

For PLSGLR models, the cross-validation results can be summed up in a single table using the summary². Results are obtained by the following command line.

```
res.cv.modpls_compl<-cvtable(summary(cv.modpls_compl, MClassed=TRUE))</pre>
##
## Family: binomial
## Link function: logit
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ___
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
##
##
## NK: 1
## CV MissClassed criterion:
## 1 2
## 0 1
##
## CV Q2Chi2 criterion:
## 0
## 1
##
## CV PreChi2 criterion:
## 1
## 1
```

The number of significant predictors per components can be obtained via the following code:

² for PLSR models the cross-validation results can be summed up in a single table using the function summary.

```
res10_compl<-plsRglm(yaze_compl, Xaze_compl, nt=10, modele="pls-glm-logistic",
         pvals.expli=TRUE)
##
## Family: binomial
## Link function: logit
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____ Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
colSums(res10_compl$pvalstep)
## temppvalstep temppvalstep temppvalstep temppvalstep
  2 1 0 0 0
## temppvalstep temppvalstep temppvalstep temppvalstep
  0 0 0 0 0
```

The number of significant predictors within each component, which is a criteria of significance for Bastien et al. (2005), is implemented in the package with the options sparse=TRUE and sparseStop=TRUE.

The number of significant predictors within each component tells us to only build 2 components when the AIC criteria gives us 4 components and the BIC concludes to 3 components. But for this study, the most important criteria was to minimize the miss classification rate after cross-validation, criteria which let us know to build 3 -in agreement with BIC criteria-, 4 -in agreement with AIC criteria-, 8 or 10 components. In order to confirm the choice of retaining 3 components, the cross-validation was run 100 times by randomly creating groups. Here are the command lines:

```
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component___ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18,
                                          19,
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29,
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39,
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49,
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59,
                                               60
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
                                               70
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV MissClassed criterion:
## 1 2 3 4 5 6 7 8 9 10
## 29 8 37 2 2 4 5 6 3 4
##
## CV Q2Chi2 criterion:
## 0
## 100
##
## CV PreChi2 criterion:
##
   1
## 100
```

The results (Fig. 20) confirm the results obtained during the original cross-validation and that's the reason why we decided to retain a 3 components model. Please note that rather surprisingly, a 1 component model is favored in about 3 out of 10 crossvalidations whereas it was put forward by any of the other criteria. The binary logistic PLSGLR model is:

$$\mathbb{P}(y=1) = \frac{\exp(\mu + \sum_{h=1}^{3} c_h t_h)}{1 + \exp(\mu + \sum_{h=1}^{3} c_h t_h)}$$
(7)

where t_h is the h^{th} component, c_h the coefficients of the logistic regression of the response variable y on the components t_h and μ the intercept.

```
plot(res.cv.modpls_compl)
```


Figure 20: Nb components, 8-CV, n=100

Now, the PLSGLR regression is done in order to obtain these coefficients c_h and the intercept.

```
res_compl<-plsRglm(yaze_compl, Xaze_compl, nt = 3, modele = "pls-glm-logistic",</pre>
                  pvals.expli=TRUE)
##
   ___**********************************
##
## Family: binomial
## Link function: logit
##
  ____Component____ 1 ____
  ____Component____ 2 ____
## ____Component____ 3 ____
## ____Predicting X without NA neither in X nor in Y____
res_compl$FinalModel
##
## Call: glm(formula = YwotNA ~ ., family = family, data = tttrain)
## Coefficients:
## (Intercept)
                      tt.1
                                   tt.2
                                                tt.3
##
                     1.360
                                  0.451
                                               0.735
       -0.230
##
## Degrees of Freedom: 103 Total (i.e. Null); 100 Residual
## Null Deviance:
                     144
## Residual Deviance: 97.2 AIC: 105
```

It is also possible to obtain the matrix \mathbf{W}^* with the following command line:

```
## D16S422
           -0.013421 -0.15720 -0.166544
## D17S794 0.131059 0.19708 0.217451
                               0.287207
## D6S264
           -0.101889 -0.07257
## D14S65
          -0.173631 -0.14560
                               0.054495
## D18S53
           0.051354 -0.07572
                               0.072797
                               -0.008700
## D17S790 -0.128149 -0.22194
                               0.042804
## D1S225
           0.064117 -0.10483
                    -0.25572
           -0.129699
                                -0.031888
## D3S1282
                    -0.10657
## D9S179
           0.054226
                                -0.072031
                    -0.24247
                               -0.167629
## D5S430
           0.013506
           0.233736
                      0.02401
## D8S283
                                 0.028430
                               -0.123851
                      0.07599
## D11S916 0.430456
## D2S159
           0.097213 -0.02646 0.179212
## D16S408 0.046090 -0.02248 -0.107424
          0.324886 0.07382 -0.002599
## D5S346
## D10S191 -0.005398 -0.15839 0.232896
## D13S173 0.109983 0.13870 0.126744
## D6S275
           -0.245769 -0.32646 0.160458
## D15S127 0.118649 -0.05855 -0.046058
## D1S305
           0.207923 -0.05727
                               0.131704
           -0.053537 -0.30268
## D4S394
                               -0.164555
                    -0.31572
         -0.125769
                               -0.259423
## D20S107
         -0.089950 -0.43873
0.113068 0.01189
0.173157 0.11215
                               -0.514108
## D1S197
## D1S207
                               0.169432
                               0.203668
                      0.11215
## D10S192
## D3S1283 -0.235752
                      -0.40593 0.007044
         -0.119512 -0.20543 0.251344
## D4S414
## D8S264
           0.286067
                      0.09273
                               0.010267
## D22S928
         0.129148
                      -0.03919
                               0.042384
## TP53
           -0.281527
                       -0.56362
                                 -0.385875
## D9S171 -0.033558
                    -0.16804
                               0.129786
```

It is also possible to display the biplot of the observations and the predictors (Figure 21).

```
biplot(res_compl$tt,res_compl$pp)
```

Then, in order to have results which are interpretable in practice, let run the following command line and so obtain the coefficients β_j of the predictors \mathbf{x}_j , $1 \leqslant j \leqslant 33$ of the final model.

```
res_compl$Std.Coeffs
##
                \lceil , 1 \rceil
## Intercept -0.22969
## D2S138 -0.24396
## D18S61
            0.88279
## D16S422 -0.21165
## D17S794 0.42711
## D6S264 0.03977
## D14S65 -0.26187
## D18S53 0.08920
## D17S790 -0.28091
           0.07137
## D1S225
## D3S1282 -0.31532
## D9S179
            -0.02729
## D5S430
            -0.21431
## D8S283
           0.34971
           0.52884
## D11S916
## D2S159
           0.25205
## D16S408 -0.02642
## D5S346 0.47338
## D10S191 0.09237
```


Figure 21: Biplot of the observations and the variables

```
## D13S173
              0.30541
## D6S275
             -0.36374
## D15S127
              0.10112
## D1S305
              0.35383
  D4S394
             -0.33043
## D20S107
             -0.50433
## D1S197
             -0.69835
  D1S207
              0.28374
## D10S192
              0.43591
## D3S1283
             -0.49877
## D4S414
             -0.07054
## D8S264
              0.43857
## D22S928
              0.18916
## TP53
             -0.92108
## D9S171
             -0.02609
```

Hard thresholding PLS regression and automatic selection of the number of components (Bastien et al. (2005)) is also available:

Bootstrap (y, X)

However, what is really important is to know which of them are significantly different from zero. We can also answer to this question with the bootstrap techniques we insert in this package.

Let us begin with the bootstrap on the (Y,X). This method, which seems to be natural, has some trouble in this case. Indeed, with the help of the boxplot, we decided to only focus on the BC_a CI, because of the fact of the clearly non symmetrical distributions of the estimators (see Figure 22). And when we choose 3 components, some of the CI become disproportionate (see Figure 23), depriving us of any graphical interpretation. So, the only way to see if any predictors is significantly different from 0, is to use the function confints.bootpls, which will allow to see the values of the CI for the four different type of CI. Thanks to this function, we can see that only one predictor is significantly different from 0, TP53.

```
set.seed(123)
aze_compl.bootYX3=bootplsglm(res_compl,typeboot="plsmodel",R=1000)
```

By default with PLSGLR models the option typeboot is set to typeboot="fmodel_np" -Bootstrap (y, T)-, we change this setting using the option typeboot="plsmodel" -Bootstrap (y, X)-.

```
boxplots.bootpls(aze_compl.bootYX3,las=2,mar=c(5,2,1,1)+0.1)
```

Bootstrap (y, T)

However, due to the problems of the previous results, we decided to choose the second type of bootstrap, that is to say the one which do re-sampling on the couple (Y,T) (Bastien et al., 2005). Indeed, it is more stable and faster than the first one. We set at 1000 the number of re-sampling. So we obtain a graphic representing the confidence intervals (CI) for each of the predictors (see Figure 25) and a boxplot as well (see Figure 24). These graphics were obtained by starting these command lines:

```
set.seed(123)
aze_compl.bootYT3=bootplsglm(res_compl,R=1000)
```

By default with PLSGLR models the option typeboot is set to typeboot="fmodel_np" -Bootstrap (y, T)-.

```
boxplots.bootpls(aze_compl.bootYT3,las=2,mar=c(5,2,1,1)+0.1)
```

Remark 7. In this paper, we decided to only focus on the BCa CI. But, with this package, it is naturally possible to obtain CI with percentile, normal or basic bootstrap as well.

With the help of Figure 25, we can see that only 6 predictors is significantly different from 0. But, it could be interesting to display, through the models with 1 to 10 components, which of the predictors are significantly different from zero so that we could know if there is a stability of significant predictors or not (see Figure 26). A function is available in our package, called signpred, to do this kind of graphic.

Figure 22: Bootstrap (y, X) distribution of the coefficients of the predictors, R=1000

As we can see on the figure 26, there are several differences between the model with 1 and 3 components. Indeed, 6 predictors, significant in the 1 component model, become non-significant in the 3 components model. During the cross-validation, 29 percents of results give 1 component and 37 percents give 4 components, representing than 66 percents of the results obtained during the 100 cross-validation made at the beginning.

The bootstrap technique used in this study, which is clearly faster and more stable than the other one, but the results between the two techniques are really different and so it could be interesting to confront them with the help of some simulations.

```
res_compl1<-plsRglm(yaze_compl, Xaze_compl, nt = 1, modele = "pls-glm-logistic")
res_compl2<-plsRglm(yaze_compl, Xaze_compl, nt = 2, modele = "pls-glm-logistic")
res_compl4<-plsRglm(yaze_compl, Xaze_compl, nt = 4, modele = "pls-glm-logistic")
res_compl5<-plsRglm(yaze_compl, Xaze_compl, nt = 5, modele = "pls-glm-logistic")
res_compl6<-plsRglm(yaze_compl, Xaze_compl, nt = 6, modele = "pls-glm-logistic")
res_compl7<-plsRglm(yaze_compl, Xaze_compl, nt = 7, modele = "pls-glm-logistic")
res_compl8<-plsRglm(yaze_compl, Xaze_compl, nt = 8, modele = "pls-glm-logistic")
res_compl9<-plsRglm(yaze_compl, Xaze_compl, nt = 9, modele = "pls-glm-logistic")
res_compl10<-plsRglm(yaze_compl, Xaze_compl, nt = 10, modele = "pls-glm-logistic")
aze_compl.bootYT1=bootplsglm(res_compl1,R=1000)</pre>
```


Figure 23: CI of the coefficients of the predictors, bootstrap (y, X), R=1000

```
aze_compl.bootYT2=bootplsglm(res_compl2,R=1000)
aze_compl.bootYT4=bootplsglm(res_compl4,R=1000)
aze_compl.bootYT5=bootplsglm(res_compl5,R=1000)
aze_compl.bootYT6=bootplsglm(res_compl6,R=1000)
aze_compl.bootYT7=bootplsglm(res_compl7,R=1000)
aze_compl.bootYT8=bootplsglm(res_compl8,R=1000)
aze_compl.bootYT9=bootplsglm(res_compl9,R=1000)
aze_compl.bootYT10=bootplsglm(res_compl10,R=1000)
temp.ci1<-confints.bootpls(aze_compl.bootYT1)</pre>
temp.ci2<-confints.bootpls(aze_compl.bootYT2)</pre>
temp.ci4<-confints.bootpls(aze_compl.bootYT4)</pre>
temp.ci5<-confints.bootpls(aze_compl.bootYT5)</pre>
temp.ci6<-confints.bootpls(aze_compl.bootYT6)</pre>
temp.ci7<-confints.bootpls(aze_compl.bootYT7)</pre>
temp.ci8<-confints.bootpls(aze_compl.bootYT8)</pre>
temp.ci9<-confints.bootpls(aze_compl.bootYT9)</pre>
temp.ci10<-confints.bootpls(aze_compl.bootYT10)</pre>
```


Figure 24: Bootstrap (y, T) distribution of the coefficients of the predictors, R=1000

TRUE TRUE TRUE TRUE TRUE TRUE

Figure 25: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

##	YT2	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE
##	YT3	TRUE	TRUE	TRUE	TRUE	E FALSE	TRUE	TRUE	TRUE	TRUE
##	YT4	TRUE	TRUE	FALSE	TRUE	E FALSE	TRUE	TRUE	TRUE	TRUE
##	YT5	TRUE	TRUE	TRUE	TRUE	E FALSE	TRUE	FALSE	TRUE	FALSE
##	YT6	TRUE	TRUE	TRUE	TRUE	E FALSE	FALSE	FALSE	TRUE	FALSE
##	YT7	TRUE	TRUE	FALSE	TRUE	E FALSE	FALSE	FALSE	TRUE	FALSE
##	8TY	TRUE	TRUE	FALSE	FALSE	E FALSE	FALSE	FALSE	TRUE	FALSE
##	YT9	TRUE	TRUE	FALSE	FALSE	E FALSE	FALSE	FALSE	FALSE	FALSE
##	YT10	TRUE	TRUE	FALSE	FALSE	E FALSE	FALSE	FALSE	FALSE	FALSE
##		D3S1282	D9S179	D5S430	D8S283	D11S916	D2S159	D16S408	D5S346	D10S191
##	YT1	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
##	YT2	TRUE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
##	YT3	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE
##	YT4	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE
##	YT5	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE
##	YT6	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE
##	YT7	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	FALSE	TRUE	FALSE
##	8TY	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE

```
## YT9 FALSE FALSE FALSE FALSE FALSE FALSE TRUE
                                                            FALSE
## YT10 FALSE FALSE FALSE FALSE
                                FALSE FALSE
                                             FALSE
                                                     TRUE
                                                            FALSE
      D13S173 D6S275 D15S127 D1S305 D4S394 D2OS107 D1S197 D1S207 D1OS192
## YT1
         TRUE
              TRUE
                      TRUE
                            TRUE
                                 TRUE
                                         TRUE
                                               TRUE.
## YT2
         TRUE
              TRUE
                      TRUE
                            TRUE
                                 TRUE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
## YT3
        TRUE
              TRUE
                      TRUE TRUE TRUE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
## YT4
         TRUE
              TRUE
                    FALSE TRUE TRUE TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
                    FALSE
                                  TRUE
                                                     TRUE
## YT5
         TRUE
              TRUE
                            TRUE
                                         TRUE
                                               TRUE
                                                            TRUE
                    FALSE
## YT6
        FALSE
               TRUE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
## YT7
        FALSE
               TRUE
                     FALSE
                            TRUE
                                  TRUE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
## YT8
        FALSE
               TRUE
                     FALSE
                            TRUE
                                 TRUE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
## YT9
        FALSE
              TRUE
                     FALSE TRUE FALSE
                                         TRUE
                                               TRUE
                                                     TRUE
                                                            TRUE
## YT10 FALSE FALSE
                     FALSE TRUE FALSE
                                       TRUE
                                               TRUE TRUE FALSE
##
  D3S1283 D4S414 D8S264 D22S928 TP53 D9S171
## YT1
      TRUE TRUE TRUE TRUE TRUE
                                     TRUE
## YT2
         TRUE TRUE
                    TRUE
                          TRUE TRUE
                                      TRUE
## YT3
        TRUE FALSE TRUE TRUE TRUE FALSE
        TRUE FALSE TRUE FALSE TRUE FALSE
## YT4
## YT5
        TRUE FALSE TRUE FALSE TRUE FALSE
      FALSE FALSE TRUE FALSE TRUE FALSE
## YT6
      FALSE FALSE
                          FALSE TRUE FALSE
## YT7
                     TRUE
        FALSE FALSE
                          FALSE TRUE FALSE
## YT8
                     TRUE
## YT9
        FALSE FALSE
                     TRUE
                           FALSE TRUE FALSE
## YT10 FALSE FALSE TRUE FALSE TRUE FALSE
pi.e=prop.table(res.cv.modpls_compl$CVMC)%*%matind
pi.e
##
      D2S138 D18S61 D16S422 D17S794 D6S264 D14S65 D18S53 D17S790 D1S225
## [1,] 0.92 1 0.8 0.87 0.37 0.78 0.68 0.93 0.68
##
      D3S1282 D9S179 D5S430 D8S283 D11S916 D2S159 D16S408 D5S346 D10S191
## [1,] 0.93 0.29 0.79 0.87 0.78 0.78
                                             0.37 1
     D13S173 D6S275 D15S127 D1S305 D4S394 D2OS107 D1S197 D1S207 D1OS192
## [1,] 0.78 0.96 0.74 1 0.93
                                       1 1 1 0.96
##
    D3S1283 D4S414 D8S264 D22S928 TP53 D9S171
## [1,] 0.78 0.37
                    1 0.74 1 0.37
signpred(t(matind),labsize=2, plotsize = 12)
text(1:(ncol(matind))-.5,-1,pi.e,cex=.5)
mtext(expression(pi[e]),side=2,las=1,line=2,at=-1)
```


Figure 26: Significance of the predictors vs nbr of components, bootstrap (y, T), R=1000

3.4 PLS regression bis: Pine caterpillar

Cross-validation

```
rm(list = ls())
library(plsRglm)
data(pine)
Xpine<-pine[,1:10]
ypine<-pine[,11]</pre>
```

We use k=5 unbalanced groups of 5 to 6 subjects to perform repeated k-fold cross validation. We set to 10, thanks to the option nt=10, the maximal number of components for the cross-validation function -cv.plsR- since the rank of the design matrix is equal to 10.

```
cv.modpls<-cv.plsR(ypine,Xpine,nt=10)</pre>
```

We sum up the results in a single table using the summary.

```
res.cv.modpls<-cvtable(summary(cv.modpls))</pre>
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
## Loading required package: plsdof
## Loading required package: MASS
## ****_____****
##
##
## NK: 1
## CV Q2 criterion:
## 0 1
## 0 1
##
## CV Press criterion:
## 1 2 3 4 5 6 7
## 0 0 0 0 0 0 1
```

You can perform leave one out cross validation similar to the one that existed in previous versions of SIMCA by setting TypeVC="standard" as well the number of significant predictors per components Bastien et al. (2005).

```
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
colSums(res1$pvalstep)
## [1] 0 0 0 0 0 0 0 0 0
res1$InfCrit
## AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y ## Nb_Comp_0 82.42 NA NA NA NA NA 20.800 NA
## Nb_Comp_1 63.62 0.38249 0.0975 0.38249 12.844 11.075 0.4676
## Nb_Comp_2 58.48 0.34836 0.0975 -0.05526 11.687 8.919 0.5712
## Nb_Comp_3 56.55 0.23688 0.0975 -0.17108 10.445 7.920 0.6192
## Nb_Comp_4 54.35 0.07000 0.0975 -0.21869 9.652 6.973 0.6648
## Nb_Comp_5 56.00 -0.07691 0.0975 -0.15796 8.074 6.899 0.6683
## Nb_Comp_6 57.70 -0.19969 0.0975 -0.11401 7.685 6.836 0.6714
## Nb_Comp_7 59.38 -0.27722 0.0975 -0.06463 7.277 6.770 0.6745
## Nb_Comp_8 61.21 -0.30603 0.0975 -0.02255 6.923 6.736 0.6762
## Nb_Comp_9 63.18 -0.39920 0.0975 -0.07134 7.217 6.730 0.6764
## Nb_Comp_10 65.16 -0.43744 0.0975 -0.02733 6.914 6.725 0.6767
## R2_residY RSS_residY PRESS_residY Q2_residY LimQ2
## Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof
## GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
## Nb_Comp_0 -3.605 1 0.8062 0.6697 0.6992
## Nb_Comp_0 -3.605 1 0.8062 0.6697 0.6992
## Nb_Comp_1 -9.875 2 0.5977 0.3789 0.4113
## Nb_Comp_2 -6.986 3 0.5453 0.3243 0.3648
## Nb_Comp_3 -6.261 4 0.5226 0.3062 0.3557
## Nb_Comp_4 -8.153 5 0.4990 0.2867 0.3432
## Nb_Comp_5 -7.112 6 0.5055 0.3020 0.3715
## Nb_Comp_6 -7.233 7 0.5127 0.3187 0.4021
## Nb_Comp_7 -6.742 8 0.5204 0.3365 0.4347
## Nb_Comp_8 -6.038 9 0.5298 0.3572 0.4718
## Nb_Comp_9 -5.600 10 0.5410 0.3813 0.5140
## Nb_Comp_10 -5.288 11 0.5529 0.4076 0.5601
## GMDL.naive
## GMDL.naive
## Nb_Comp_0 -3.605
```

```
## Nb_Comp_1 -11.451
## Nb_Comp_2
                -12.823
## Nb_Comp_3
                -12.757
## Nb_Comp_4
                -12.812
## Nb_Comp_5
                -11.330
## Nb_Comp_6
                 -9.919
## Nb_Comp_7
                 -8.593
## Nb_Comp_8
                 -7.288
## Nb_Comp_9
                 -6.009
## Nb_Comp_10
                 -4.799
```

The number of significant predictors within each component tell us to only build 0 components when the AIC criteria gives us 4 components and the BIC concludes to 4 components. The cross-validated Q^2_{cum} criterion advocates for retaining 1 components either for leave one out and 1 for 5-fold CV. The 5-fold CV cross-validation was run 100 times by randomly creating groups. Here are the command lines:

```
set.seed(123)
cv.modpls<-cv.plsR(x11~.,data=pine,nt=10,NK=100)</pre>
```

```
res.cv.modpls=cvtable(summary(cv.modpls))
## ____*****************************
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19,
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59,
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
## NK: 71, 72, 73, 74, 75, 76, 77, 78,
                                        79,
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
##
##
## CV Q2 criterion:
  0 1
##
   0 100
##
## CV Press criterion:
## 1 2 3 4 5 6 7 8 9
## 17 5 9 24 17 11 15 1 1
```

The results, based on the use of the Q^2 criterion, (Fig. 27) confirm those of the first 5-fold CV cross validation: we decide to retain 1 components. Even in the linear case, cross validation should be repeated to select the number of components in a PLSR model.

plot(res.cv.modpls)

Figure 27: Nb components, 5-CV, n=100

Selected PLSR model for pine dataset.

```
res<-plsR(x11~.,data=pine,nt=1,pvals.expli=TRUE)
## ____Component____ 1 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
res
## Number of required components:
## [1] 1
## Number of successfully computed components:
## [1] 1
## Coefficients:
##
               [,1]
## Intercept 4.1382957
## x1 -0.0007545
## x2
         -0.0114507
         -0.0108577
## x3
         -0.0631435
## x4
## x5
         -0.0067332
## x6
         -0.1459628
## x7
         -0.2077726
## x8
         -0.0430294
## x9
         -0.2061096
## x10 -0.0887273
## Information criteria and Fit statistics:
## AIC RSS_Y R2_Y R2_residY RSS_residY AIC.std DoF.dof
## Nb_Comp_0 82.42 20.80 NA NA 32.00 96.63 1.000
## Nb_Comp_1 63.62 11.07 0.4676 0.4676 17.04 77.83 3.176
```


Figure 28: Biplot of the observations and the variables

```
##
             sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive
                   0.8062 0.6697
                                   0.6992
                                             -3.605
## Nb_Comp_0
                                                            1
                   0.5994 0.4048
                                   0.4565
                                             -9.875
## Nb_Comp_1
##
             sigmahat.naive AIC.naive BIC.naive GMDL.naive
                     0.8062
                                                     -3.605
## Nb_Comp_0
                                0.6697
                                          0.6992
## Nb_Comp_1
                     0.5977
                               0.3789
                                          0.4113
                                                    -11.451
```

It is also possible to display the biplot of the observations and the predictors (Figure 28).

```
biplot(res1$tt,res1$pp)
```

Bootstrap (y, X)

Graphical results of the bootstrap on the (Y, X): distributions of the estimators (see Figure 29) and CI (see Figure 30).

```
set.seed(123)
Pine.bootyX1=bootpls(res,R=1000)
```


Figure 29: Bootstrap (y, X) distribution of the coefficients of the predictors, R=1000

We do not bootstrap the intercept since the boostrap is done with the centered and scaled response and predictors. As a consequence we should exclude it from the boxplots using the option indice=2:8 and must exclude it from the CI computations, if we request BC_a ones, again with the option indice=2:8.

Bootstrap is performed using the *boot* package. It allows the user to apply the functions, including jack.after.boot or plot.boot (Figure 30), of this package to the bootstrapped PLSR or PLSGLR models.

```
plot(Pine.bootYX1,index=2,jack=TRUE)
```

Using the dataEllipse of the *car* you can plot confidence ellipses for two parameters of the PLSR or PLSGLR models (Figure 32).

Figure 30: CI of the coefficients of the predictors, bootstrap (\mathbf{y}, \mathbf{X}) , R=1000

Bootstrap (\mathbf{y}, \mathbf{T})

Re-sampling on the couple (Y,T) (Bastien et al., 2005) is more stable and faster than the first one. We set at 1000 the number of re-sampling. Cls for each of the predictors (see Figure 34) and boxplots as well (see Figure 33).

```
set.seed(123)
Pine.bootYT1=bootpls(res,typeboot="fmodel_np",R=1000)
```

```
boxplots.bootpls(Pine.bootYT1,indices=2:11)
```

We do not bootstrap the intercept since the boostrap is done with the centered and scaled response and predictors. As a consequence we should exclude it from the boxplots using the option indice=2:8 and must exclude it from the CI computations, if we request BC_a ones, again with the option indice=2:8.

Figure 31: plot.boot, bootstrap (y, X), R=1000

```
ind.BCa.pineYT1 <- (temp.ci[,7]<0&temp.ci[,8]<0)|(temp.ci[,7]>0&temp.ci[,8]>0)
```

We display the significance of predictors using the signpred function.

```
(matind=(rbind(YT1=ind.BCa.pineYT1)))
       x1
           x2
               xЗ
                   x4
                       x5
                            x6
                                    x8
                                         x9 x10
                                x7
pi.e=prop.table(res.cv.modpls$CVQ2)[-1]%*%matind
pi.e
##
      x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
## [1,] 1 1 1 1 1 1 1 1 1
signpred(t(matind),labsize=.5, plotsize = 12)
text(1:(ncol(matind))-.5,-1,pi.e,cex=.75)
mtext(expression(pi[e]),side=2,las=1,line=2,at=-1)
```


Figure 32: Confidence ellipse of the coefficients of the first two predictors, bootstrap (\mathbf{y}, \mathbf{X}) , R=1000

Figure 33: Bootstrap (\mathbf{y}, \mathbf{T}) distribution of the coefficients of the predictors, R=1000

Figure 34: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

Figure 35: Significance of the predictors vs nbr of components, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

3.5 PLS ordinal logistic regression: Bordeaux wine quality

Cross-validation

```
set.seed(12345)
data(bordeaux)
bordeaux$Quality<-factor(bordeaux$Quality,ordered=TRUE)</pre>
modpls1 <- plsRglm(Quality~.,data=bordeaux,4,modele="pls-glm-polr",pvals.expli=TRUE)</pre>
## ___*****************************
##
## Model: pls-glm-polr
## Method: logistic
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X without NA neither in X or Y____
## ****_____****
modpls1
## Number of required components:
## [1] 4
## Number of successfully computed components:
## [1] 4
## Coefficients:
## [,1]
## 1|2 -85.50956
## 2|3 -80.55156
## Temperature 0.02427
## Sunshine 0.01379
## Heat -0.08876
## Rain -0.02590
## Information criteria and Fit statistics:
      AIC BIC Missclassed Chi2_Pearson_Y
## Nb_Comp_0 78.65 81.70 22 62.333
## Nb_Comp_1 36.50 41.08 6
## Nb_Comp_2 35.58 41.69 6
## Nb_Comp_3 36.27 43.90 7
                                          9.357
                                           8.569
                                           8.281
## Nb_Comp_4 38.16 47.32
                                7
                                           8.322
```

```
Xbordeaux<-bordeaux[,1:4]</pre>
ybordeaux<-bordeaux$Quality
modpls2 <- plsRglm(ybordeaux, Xbordeaux, 4, modele="pls-glm-polr", pvals.expli=TRUE)</pre>
## ____******************************
##
## Model: pls-glm-polr
## Method: logistic
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls2
## Number of required components:
```

```
## [1] 4
## Number of successfully computed components:
## [1] 4
## Coefficients:
##
               [,1]
          -85.50956
## 1|2
## 2|3 -80.55156
## Temperature 0.02427
## Sunshine 0.01379
## Heat
## Rain
            -0.08876
            -0.02590
## Rain
## Information criteria and Fit statistics:
## AIC BIC Missclassed Chi2_Pearson_Y
## Nb_Comp_0 78.65 81.70 22 62.333
## Nb_Comp_1 36.50 41.08 6
## Nb_Comp_2 35.58 41.69 6
                                    9.357
                                     8.569
## Nb_Comp_3 36.27 43.90
                           7
                                     8.281
## Nb_Comp_4 38.16 47.32 7
                                     8.322
all(modpls1$InfCrit==modpls2$InfCrit)
## [1] TRUE
colSums(modpls2$pvalstep)
## temppvalstep temppvalstep temppvalstep
## 4 0 0 0
```

No discrepancy between formula specification (formula and data) and datasets (dataY and dataX) ones. Number of components to be retained:

- \bullet AIC \rightarrow 2.
- $\bullet \ \mathsf{BIC} \to 1.$
- ullet Non cross validated missclassed ightarrow 1.
- Non significant predictor criterion $\rightarrow 1$.

```
set.seed(123)
cv.modpls<-cv.plsRglm(ybordeaux, Xbordeaux, nt=4, modele="pls-glm-polr", NK=100)</pre>
```

```
res.cv.modpls=cvtable(summary(cv.modpls, MClassed = TRUE))
##
## Model: pls-glm-polr
## Method: logistic
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component___ 3 ____
## ____Component____ 4 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49,
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59,
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
```

```
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV MissClassed criterion:
## 1 2 3 4
## 84 7 7 2
##
## CV Q2Chi2 criterion:
## 0 1
## 98 2
##
## CV PreChi2 criterion:
## 1 2 3
## 24 73 3
```

According to the results of the cross validation procedure (Fig. 36), we retain a single component, which was also, by chance on this dataset, the BIC and raw cross-validation choices.

```
plot(res.cv.modpls)
```


Figure 36: Nb components, 5-CV, n=100

Retained model according to cross validated missclassed criterion.

It is also possible to display the biplot of the observations and the predictors (Figure 37).

Figure 37: Biplot of the observations and the variables

```
biplot(modpls1$tt,modpls1$pp)
```

Application of the PLSGLR ordinal regression to an incomplete dataset.

```
## ____Predicting X with NA in X and not in Y____
## ****_____****
modplsNA
## Number of required components:
## [1] 4
## Number of successfully computed components:
## [1] 3
## Coefficients:
##
                 [,1]
## 1|2 -89.16630
## 2|3 -84.11693
## Temperature 0.02461
## Sunshine 0.01535
## Heat -0.09543
## Rain -0.02399
## Information criteria and Fit statistics:
     AIC BIC Missclassed Chi2_Pearson_Y
## Nb_Comp_0 78.65 81.70 22 62.333
## Nb_Comp_1 36.21 40.79 6
## Nb_Comp_2 35.30 41.40 5
## Nb_Comp_3 35.82 43.45 7
                                       9.454
                                        8.235
                                        7.803
data.frame(formula=modpls1$Coeffs,datasets=modpls2$Coeffs,datasetsNA=modplsNA$Coeffs)
              formula datasets datasetsNA
## 1|2
             -85.50956 -85.50956 -89.16630
## Temperature 0.02427 0.02427 0.02461
## Sunshine 0.01379 0.01379 0.01535
## Heat
             -0.08876 -0.08876 -0.09543
## Rain -0.02590 -0.02590 -0.02399
```

Bootstrap (y, X)

boxplots.bootpls(bordeaux.bootYX1)

Cls for each of the predictors (see Figure 39) and boxplots as well (see Figure 38) for ordinary balanced bootstrap.

```
bordeaux.bootYX1<- bootplsglm(res, typeboot = "plsmodel", sim="balanced", R=1000)
```

The strata option is an integer vector or factor specifying the strata for multi-sample problems. It ensures that, for a nonparametric bootstrap, the resampling are done within each of the specified strata. In our case it improves the results of the bootstrap as can been seen on the CIs for each of the predictors (see Figure 39) and boxplots as well (see Figure 38).

```
boxplots.bootpls(bordeaux.bootYX1strata)
```


Figure 38: Bootstrap (\mathbf{y}, \mathbf{T}) distribution of the coefficients of the predictors, R=1000

```
## Temperature -0.8713 3.2450 -1.3148 2.061 0.9988 4.3751 0.9127
## Sunshine -0.2018 3.0132 -0.3663 2.313 1.0806 3.7602 0.9906
## Heat
              -0.7934 2.4686 -0.9826 1.602 0.5770 3.1618 0.5106
## Rain
              -1.9133 0.3824 -1.3915 0.674 -2.4934 -0.4279 -2.2640
##
## 1|2
              -1.3808
## 2|3
               4.7353
## Temperature 3.0436
## Sunshine
               3.0642
## Heat
               2.5470
              -0.3995
## Rain
## attr(,"typeBCa")
## [1] TRUE
plots.confints.bootpls(temp.ci,typeIC="BCa",colIC=c("blue","blue","blue","blue"),
                      legendpos ="topright")
```


Figure 39: CI of the coefficients of the predictors, bootstrap (y, T), R=1000

Bootstrap (y, T)

Cls for each of the predictors (see Figure 43) and boxplots as well (see Figure 42) for ordinary balanced bootstrap.

```
bordeaux.bootYT1<- bootplsglm(res,sim="balanced", R=1000)
```

boxplots.bootpls(bordeaux.bootYT1)

Again the strata option improves the results of the bootstrap as can been seen on the CIs for each of the predictors (see Figure 45) and boxplots as well (see Figure 44).

Figure 40: Bootstrap (y, T) distribution of the coefficients of the predictors, R=1000

```
boxplots.bootpls(bordeaux.bootYT1strata)
```

It could be interesting to display, through the models with 1 to 4 components, which of the predictors are significantly different from zero so that we could know if there is a stability of significant predictors or not. A function is available in our package, called signpred, to do this kind of graphic.

As we can see on Figures 46 and 47, there is a single difference between stratified bootstrap and regular one. Indeed, 1 predictor significant for stratified bootstrap of the 2 component model turn out to be non-significant for regular bootstrap in the 2 components model. During the cross-validation, 84 percents of results give 1 component and 7 percents give 2 components, representing than 91 percents of the results obtained during the 100 cross-validation made at the beginning.

The bootstrap technique used in this study, which is clearly faster and more stable than the other one, but the results between the (y, X) and (y, T) bootstrap techniques are really different and so it could be interesting to confront them with the help of some simulations.

Figure 41: CI of the coefficients of the predictors, bootstrap (y, T), R=1000

```
res2<-plsRglm(ybordeaux,Xbordeaux,2,modele="pls-glm-polr")
res3<-plsRglm(ybordeaux,Xbordeaux,3,modele="pls-glm-polr")
res4<-plsRglm(ybordeaux,Xbordeaux,4,modele="pls-glm-polr")

bordeaux.bootYT2=bootplsglm(res2,sim="balanced", R=1000)
bordeaux.bootYT4=bootplsglm(res3,sim="balanced", R=1000)
bordeaux.bootYT2s=bootplsglm(res4,sim="balanced", R=1000)
bordeaux.bootYT2s=bootplsglm(res2,sim="balanced", R=1000,strata=unclass(ybordeaux))
bordeaux.bootYT3s=bootplsglm(res3,sim="balanced", R=1000,strata=unclass(ybordeaux))
bordeaux.bootYT4s=bootplsglm(res4,sim="balanced", R=1000,strata=unclass(ybordeaux))

temp.ci2<-confints.bootpls(bordeaux.bootYT2)
temp.ci3<-confints.bootpls(bordeaux.bootYT3)
temp.ci3<-confints.bootpls(bordeaux.bootYT4)
temp.cis2<-confints.bootpls(bordeaux.bootYT2s)
temp.cis3<-confints.bootpls(bordeaux.bootYT2s)
temp.cis3<-confints.bootpls(bordeaux.bootYT3s)
temp.cis4<-confints.bootpls(bordeaux.bootYT4s)</pre>
```


Figure 42: Bootstrap (y, T) distribution of the coefficients of the predictors, R=1000

```
ind.BCa.bordeauxYT1 <- (temp.ci[,7]<0&temp.ci[,8]<0)|(temp.ci[,7]>0&temp.ci[,8]>0)
ind.BCa.bordeauxYT2 <- (temp.ci2[,7]<0&temp.ci2[,8]<0)|(temp.ci2[,7]>0&temp.ci2[,8]>0)
ind.BCa.bordeauxYT3 <- (temp.ci3[,7]<0&temp.ci3[,8]<0)|(temp.ci3[,7]>0&temp.ci3[,8]>0)
ind.BCa.bordeauxYT4 <- (temp.ci4[,7]<0&temp.ci4[,8]<0)|(temp.ci4[,7]>0&temp.ci4[,8]>0)
ind.BCa.bordeauxYT1s <- (temp.cis[,7]<0&temp.cis[,8]<0)|(temp.cis[,7]>0&temp.cis[,8]>0)
ind.BCa.bordeauxYT2s <- (temp.cis2[,7]<0&temp.cis2[,8]<0)|(temp.cis2[,7]>0&temp.cis2[,8]>0)
ind.BCa.bordeauxYT3s <- (temp.cis3[,7]<0&temp.cis3[,8]<0)|(temp.cis3[,7]>0&temp.cis3[,8]>0)
ind.BCa.bordeauxYT4s <- (temp.cis4[,7]<0&temp.cis4[,8]<0)|(temp.cis4[,7]>0&temp.cis4[,8]>0)
```

```
(matind=(rbind(YT1=ind.BCa.bordeauxYT1,YT2=ind.BCa.bordeauxYT2,
               YT3=ind.BCa.bordeauxYT3,YT4=ind.BCa.bordeauxYT4)))
##
       Temperature Sunshine Heat Rain
## YT1
                      TRUE TRUE TRUE
              TRUE
## YT2
             FALSE
                      FALSE FALSE FALSE
## YT3
             FALSE
                      FALSE FALSE FALSE
             FALSE
                      FALSE FALSE FALSE
## YT4
pi.e=prop.table(res.cv.modpls$CVMC)%*%matind
```


Figure 43: CI of the coefficients of the predictors, bootstrap (y, T), R=1000

```
pi.e
##
        Temperature Sunshine Heat Rain
                       0.84 0.84 0.84
## [1,]
              0.84
signpred(t(matind),labsize=.5, plotsize = 12)
mtext(expression(pi[e]),side=2,las=1,line=2,at=-1,cex=2)
text(1:(ncol(matind))-.5,-1,pi.e,cex=2)
text(1:(ncol(matind))-.5,-.5,c("Temp","Sun","Heat","Rain"),cex=2)
(matinds=(rbind(YT1=ind.BCa.bordeauxYT1s,YT2=ind.BCa.bordeauxYT2s,
              YT3=ind.BCa.bordeauxYT3s,YT4=ind.BCa.bordeauxYT4s)))
##
       Temperature Sunshine Heat Rain
## YT1
             TRUE TRUE TRUE TRUE
## YT2
             TRUE
                     FALSE FALSE FALSE
## YT3
            FALSE
                     FALSE FALSE FALSE
            FALSE
                     FALSE FALSE FALSE
pi.es=prop.table(res.cv.modpls$CVMC)%*%matinds
pi.es
```


Figure 44: Bootstrap (\mathbf{y}, \mathbf{T}) distribution of the coefficients of the predictors, R=1000

```
## Temperature Sunshine Heat Rain
## [1,] 0.91 0.84 0.84 0.84

signpred(t(matinds),pred.lablength=10,labsize=.5, plotsize = 12)
mtext(expression(pi[e]),side=2,las=1,line=2,at=-1,cex=2)
text(1:(ncol(matinds))-.5,-1,pi.es,cex=2)
text(1:(ncol(matinds))-.5,-.5,c("Temp","Sun","Heat","Rain"),cex=2)
```


Figure 45: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

Figure 46: Significance of the predictors vs nbr of components, bootstrap (\mathbf{y}, \mathbf{T}) , R=1000

Figure 47: Significance of the predictors vs nbr of components, bootstrap (\mathbf{y}, \mathbf{T}) , R=1000

3.6 PLS ordinal logistic regression: Hyptis

Cross-validation

```
rm(list = ls())
library(plsRglm)
data(hyptis,package="chemometrics")
vhyptis <- factor(hyptis$Group,ordered=TRUE)</pre>
Xhyptis <- as.data.frame(hyptis[,c(1:6)])</pre>
modpls <- plsRglm(yhyptis,Xhyptis,6,modele="pls-glm-polr",pvals.expli=TRUE)</pre>
## Model: pls-glm-polr
## Method: logistic
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Component____ 5 ____
## ____ Component____ 6 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls
## Number of required components:
## [1] 6
## Number of successfully computed components:
## [1] 6
## Coefficients:
## [,1]
## 1|2 8.96983
## 2|3 10.56293
## 3|4 12.25418
## Sabinene 0.18643
## Pinene -3.00094
## Cineole 0.14989
## Terpinene -0.05132
## Fenchone -0.11987
## Terpinolene -0.18647
## Information criteria and Fit statistics:
## AIC BIC Missclassed Chi2_Pearson_Y
## Nb_Comp_0 86.87 91.08 20 60.00
## Nb_Comp_1 72.73 78.34 13 30.47

## Nb_Comp_2 71.10 78.11 12 27.69

## Nb_Comp_3 66.57 74.98 11 24.52

## Nb_Comp_4 67.29 77.10 10 24.43

## Nb_Comp_5 68.78 79.99 10 24.44

## Nb_Comp_6 70.70 83.31 10 24.63
colSums(modpls$pvalstep)
## temppvalstep temppvalstep temppvalstep temppvalstep
## temppvalstep
```

No discrepancy between formula specification (formula and data) and datasets (dataY and dataX) ones. Number of components to be retained:

- AIC \rightarrow 3.
- BIC → 3.

- ullet Non cross validated missclassed ightarrow 4.
- Non significant predictor criterion → 3.

One could have used the grouplist and the *caret* (from Jed Wing et al., 2014) package to provide custom balanced splits of the dataset into folds with respect to the response values.

```
set.seed(123)
cv.modpls<-cv.plsRglm(dataY=yhyptis,dataX=Xhyptis,nt=4,K=5,NK=100,modele="pls-glm-polr")</pre>
```

```
res.cv.modpls=cvtable(summary(cv.modpls,MClassed=TRUE))
##
## Model: pls-glm-polr
## Method: logistic
##
## ____Component____ 1 ____
## ____Component___ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X without NA neither in X nor in Y____
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19,
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39,
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
                                            70
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV MissClassed criterion:
## 1 2 3 4
## 20 27 39 14
##
## CV Q2Chi2 criterion:
## 0
## 100
##
## CV PreChi2 criterion:
## 1 2 3 4
## 66 0 7 27
```

The results (Fig. 48) confirm the results obtained during the original cross-validation to retain 3 components.

```
plot(res.cv.modpls)
```


Figure 48: Nb components, 5-CV, n=100

```
modpls2 <- plsRglm(yhyptis, Xhyptis, 3, modele="pls-glm-polr")</pre>
## Model: pls-glm-polr
## Method: logistic
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls2
## Number of required components:
## [1] 3
## Number of successfully computed components:
## [1] 3
## Coefficients:
##
              [,1]
         8.37257
## 1|2
## 2|3
           9.92503
## 3|4
          11.53479
## Sabinene 0.07356
## Pinene
          -2.21204
## Cineole 0.06178
## Terpinene 0.00870
          -0.10557
## Fenchone
## Terpinolene -0.20680
## Information criteria and Fit statistics:
## AIC BIC Missclassed Chi2_Pearson_Y
## Nb_Comp_0 86.87 91.08
                     20 60.00
## Nb_Comp_1 72.73 78.34
                      13
                                     30.47
```


Figure 49: Biplot of the observations and the variables

```
## Nb_Comp_2 71.10 78.11
                                   12
                                                27.69
## Nb_Comp_3 66.57 74.98
                                   11
                                                24.52
table(yhyptis,predict(modpls2$FinalModel,type="class"))
##
## yhyptis 1 2 3 4
         1 9 0 1 0
##
##
         2 3 1 2 0
##
         3 2 0 1 2
##
         4 0 1 0 8
```

It is also possible to display the biplot of the observations and the predictors (Figure 49).

```
biplot(modpls2$tt,modpls2$pp)
```

Example of use of the dataPredictY option to predict the response values for a new dataset using the PLSGLR model.

```
## ____****************************
##
## Model: pls-glm-polr
## Method: logistic
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
   ____Predicting X without NA neither in X nor in Y____
modpls3$ValsPredictY
           1
                  2
                            3
## 1 0.467585 0.36368 0.138012 0.0307262
## 11 0.326600 0.40462 0.214491 0.0542862
## 17 0.973745 0.02147 0.004034 0.0007501
## 22 0.009474 0.04144 0.204781 0.7443013
```

Compare with predicted categories to observed ones.

```
cbind(modpls3$ValsPredictYCat,yhyptis[c(1,11,17,22)])
## [,1] [,2]
## [1,] 1 1
## [2,] 2 2
## [3,] 1 3
## [4,] 4 4
```

Bootstrap (y, X)

In this example, we use permutation resampling and plot three types of bootstrap CI (normal, basic and percentile) by not specifying the type option and excluding BC_a CI computation with the typeBCa=FALSE option of the confints.bootpls function. We display CIs for each of the predictors (see Figure 51) and boxplots (see Figure 50).

```
boxplots.bootpls(hyptis.bootYX3,xaxisticks=FALSE,ranget0=TRUE)
```

Since we use permutation resampling, we have to spot the estimated values that do not lie within the bootstrap CI's limits. This procedure is much alike a significance test at the 5% level, since the conficence level of the CI is 95%.

Bootstrap (y, T)

Same specifications as for those used above for Bootstrap (y, X). We display CIs for each of the predictors (see Figure 53) and boxplots (see Figure 52).

Figure 50: Bootstrap (y, T) distribution of the coefficients of the predictors, R=1000

```
boxplots.bootpls(hyptis.bootYT3,xaxisticks=FALSE,ranget0=TRUE)
```

Since we use permutation resampling, we have to spot the estimated values that do not lie within the bootstrap CI's limits. This procedure is much alike a significance test at the 5% level, since the conficence level of the CI is 95%.

Figure 51: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

Figure 52: Bootstrap (\mathbf{y}, \mathbf{T}) distribution of the coefficients of the predictors, R=1000

Figure 53: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

3.7 PLS Poisson regression: Rock

Measurements on 48 rock samples from a petroleum reservoir. Twelve core samples from petroleum reservoirs were sampled by 4 cross-sections. Each core sample was measured for permeability, and each cross-section has total area of pores, total perimeter of pores, and shape. See ?rock for more details.

Cross-validation

```
rm(list = ls())
library(plsRglm)
data(rock)
modpls <- plsRglm(area ~ ., data = rock,6,modele="pls-glm-family",family="poisson",</pre>
               pvals.expli=TRUE)
##
## Family: poisson
## Link function: log
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____ Component____ 3 ____
## Warning : 1 2 3 < 10^{-12}
## Warning only 3 components could thus be extracted
## ____Predicting X without NA neither in X or Y____
## ****____****
modpls
## Number of required components:
## [1] 6
## Number of successfully computed components:
## [1] 3
## Coefficients:
##
                 [,1]
## Intercept 7.6882295
## peri 0.0003431
## shape
          -0.0344598
## perm
           0.0005299
## Information criteria and Fit statistics:
            AIC BIC Chi2_Pearson_Y RSS_Y R2_Y R2_residY
## Nb_Comp_0 54058 54060 47100 338543101 NA NA ## Nb_Comp_1 30974 30978 28213 173018641 0.4889 -7.307
                              15194 79812992 0.7642 -7.307
## Nb_Comp_2 16196 16201
                              14805 80131766 0.7633 -7.307
## Nb_Comp_3 15863 15871
          RSS_residY
## Nb_Comp_0 3.385e+08
## Nb_Comp_1 2.812e+09
## Nb_Comp_2 2.812e+09
## Nb_Comp_3 2.812e+09
## Model with all the required components:
## Call: glm(formula = YwotNA ~ ., family = structure(list(family = "poisson",
##
     link = "log", linkfun = function (mu)
      log(mu), linkinv = function (eta)
##
      pmax(exp(eta), .Machine$double.eps), variance = function (mu)
##
##
      mu, dev.resids = function (y, mu, wt)
##
##
       r <- mu * wt
##
      p \leftarrow which(y > 0)
```

```
##
           r[p] \leftarrow (wt * (y * log(y/mu) - (y - mu)))[p]
##
           2 * r
##
       }, aic = function (y, n, mu, wt, dev)
       -2 * sum(dpois(y, mu, log = TRUE) * wt), mu.eta = function (eta)
##
       pmax(exp(eta), .Machine$double.eps), initialize = expression(
##
##
           {
##
               if (any(y < 0))
                   stop("negative values not allowed for the 'Poisson' family")
##
##
               n <- rep.int(1, nobs)</pre>
##
               mustart <- y + 0.1
##
           }), validmu = function (mu)
##
       all(is.finite(mu)) && all(mu > 0), valideta = function (eta)
##
      TRUE, simulate = function (object, nsim)
##
           wts <- object$prior.weights
##
##
           if (any(wts != 1))
               warning("ignoring prior weights")
##
           ftd <- fitted(object)</pre>
##
##
           rpois(nsim * length(ftd), ftd)
##
       }), .Names = c("family", "link", "linkfun", "linkinv", "variance",
## "dev.resids", "aic", "mu.eta", "initialize", "validmu", "valideta",
## "simulate"), class = "family"), data = structure(list(YwotNA = c(4990,
## 7002, 7558, 7352, 7943, 7979, 9333, 8209, 8393, 6425, 9364, 8624,
## 10651, 8868, 9417, 8874, 10962, 10743, 11878, 9867, 7838, 11876,
## 12212, 8233, 6360, 4193, 7416, 5246, 6509, 4895, 6775, 7894,
## 5980, 5318, 7392, 7894, 3469, 1468, 3524, 5267, 5048, 1016, 5605,
## 8793, 3475, 1651, 5514, 9718), tt.1 = c(0.780917208973395, 1.31628162567013,
## 1.25733473255635, 1.37685044684142, 1.40178986152356, 1.33369468759116,
## 1.48546879701717, 1.54536473907293, 0.943797704062212, 0.684614548016699,
## 1.55708156570345, 1.26154812044631, 1.13835622017351, 0.813891041348348,
## 1.24843216435484, 1.06707939674712, 1.56991647562089, 1.54095247422576,
## 1.73636047478215, 1.63188598759725, 0.978585290944047, 1.12423503501407,
## 1.45584001614919, 0.919654725426246, -0.906041393288676, -1.03154401191994,
## -0.732273781868988, -0.795512414771367, -1.00190749080515, -1.65126727435043,
## -1.28211600650803, -1.36108547021135, -1.25655828260807, -1.8293565897517,
## -1.20003533642413, -1.42133841866358, -0.384574137981601, -1.55603948879456,
## -0.467426254084444, -0.402630642425575, -2.21547743486887, -2.36912106672574,
## -2.41173526216677, -1.61384132437327, -1.04693074796276, -1.54634696628036,
## -0.831145438953197, -0.855628104069664), tt.2 = c(-0.810324943234362,
## -0.145745001768119, -0.052105922019788, -0.225382043607907, -0.15953323279508,
## -0.0328810351937208, 0.180198446788208, 0.124512823665787, 0.0321166647102502,
## -0.342534665485853, 0.308558738228635, 0.0608990556964554, 0.206924099741436,
## -0.040205541992077, 0.0675764284642719, -0.154868039799349, 0.400143439303565,
## 0.614019949650515, 0.516001376437726, 0.208228386578939, -0.252975716162375,
## 0.582440189331114, 0.64080766740926, -0.105260238577268, 0.257069610319131,
## -0.254872926283339, 0.0345029527187617, -0.254333280144128, 0.290385618365295,
## 0.242163693317762, 0.417084866638178, 0.20936424562948, 0.109298426683102,
## 0.174729248329808, -0.0218704538536954, 0.295542008801672, -1.18077496618469,
## -1.05526115135254, -1.30132384778801, -0.88330950088822, 0.657873326526871,
## 0.135085715602058, 1.05074086826238, 1.5115553530292, -0.539056555734109,
## -0.687138511892081, -0.440754488825967, -0.387311136647196),
       tt.3 = c(0.0824307010502463, 0.0186666594555753, -0.0301625335456955,
##
       0.0632888139586293, 0.0597345525997243, -0.00286016189976393,
      -0.0291977764763363, 0.0072058013880108, -0.0355232043302926,
      0.0130616759170939, 0.0537672437441116, 0.0490564311828598,
      -0.073969282528354, -0.0874360998500556, 0.00532365589440289,
      0.0260263534521784, -0.0351538352425509, -0.115348931275098,
##
       -0.024591396729242, 0.0474749082789075, 0.093875625343324,
```

```
##
      -0.142639441767272, -0.0638570344212428, 0.0269462103521066,
##
      -0.0212287544999234, 0.112959543545675, 0.104811546989891,
      0.182764563282465, 0.0933233701629197, -0.0830732542227469,
      -0.0321807946782985, 0.0139499403715498, 0.140098543629951,
      -0.0516483871977959, 0.200774187761041, 0.028884274511621,
      -0.04283939218548, -0.4322131081358, -0.027045460099051,
##
      -0.147786330912943, 0.0317445224418696, 0.161219720659487,
##
      -0.157981984290508, -0.0756816841264136, 0.0391362102318692,
##
      -0.0593670031981543, 0.0702066316501666, 0.0450541637573421
##
      )), .Names = c("YwotNA", "tt.1", "tt.2", "tt.3"), row.names = c("1",
## "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
## "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24",
## "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35",
## "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46",
## "47", "48"), class = "data.frame"), na.action = function (object,
## ...)
## UseMethod("na.exclude"), model = TRUE, method = "glm.fit")
## Coefficients:
                  tt.1
0.196
## (Intercept)
                               tt.2
                                            tt.3
      8.821
                              0.442
                                          0.368
##
##
## Degrees of Freedom: 47 Total (i.e. Null); 44 Residual
## Null Deviance: 53500
## Residual Deviance: 15300 AIC: 15900
colSums(modpls$pvalstep)
## temppvalstep temppvalstep temppvalstep
## 3 3 3
modpls2 <- plsRglm(area ~ .^2, data = rock,nt=6,modele="pls-glm-family",family="poisson",</pre>
                pvals.expli=TRUE)
## Family: poisson
## Link function: log
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Component____ 5 ____
## ____ Component____ 6 ____
## ____Predicting X without NA neither in X or Y____
modpls2
## Number of required components:
## [1] 6
## Number of successfully computed components:
## [1] 6
## Coefficients:
##
                 [,1]
## Intercept 7.959e+00
           2.233e-04
## peri
            -6.074e-01
## shape
## perm 2.128e-04
## peri.shape 3.371e-04
## peri.perm 3.035e-07
## shape.perm -7.110e-04
```

```
## Information criteria and Fit statistics:
## AIC BIC Chi2_Pearson_Y RSS_Y R2_Y R2_residY
## Nb_Comp_0 54058 54060 47100 338543101 NA NA ## Nb_Comp_1 26001 26005 23549 133178719 0.6066 -7.307

    14395
    76726600
    0.7734
    -7.307

    11836
    63448705
    0.8126
    -7.307

    11755
    63173614
    0.8134
    -7.307

    11793
    63832561
    0.8114
    -7.307

    11789
    63892436
    0.8113
    -7.307

## Nb_Comp_2 15311 15316
## Nb_Comp_3 12435 12442
## Nb_Comp_4 12352 12362
## Nb_Comp_5 12335 12346
## Nb_Comp_6 12336 12349
## RSS_residY
## Nb_Comp_0 3.385e+08
## Nb_Comp_1 2.812e+09
## Nb_Comp_2 2.812e+09
## Nb_Comp_3 2.812e+09
## Nb_Comp_4 2.812e+09
## Nb_Comp_5 2.812e+09
## Nb_Comp_6 2.812e+09
## Model with all the required components:
## Call: glm(formula = YwotNA ~ ., family = structure(list(family = "poisson",
       link = "log", linkfun = function (mu)
       log(mu), linkinv = function (eta)
##
       pmax(exp(eta), .Machine$double.eps), variance = function (mu)
##
##
       mu, dev.resids = function (y, mu, wt)
##
       {
##
           r <- mu * wt
##
           p \leftarrow which(y > 0)
##
           r[p] \leftarrow (wt * (y * log(y/mu) - (y - mu)))[p]
##
           2 * r
       }, aic = function (y, n, mu, wt, dev)
       -2 * sum(dpois(y, mu, log = TRUE) * wt), mu.eta = function (eta)
##
       pmax(exp(eta), .Machine$double.eps), initialize = expression(
##
           {
##
                if (any(y < 0))
                    stop("negative values not allowed for the 'Poisson' family")
##
##
                n <- rep.int(1, nobs)</pre>
##
                mustart \leftarrow y + 0.1
           }), validmu = function (mu)
##
       all(is.finite(mu)) && all(mu > 0), valideta = function (eta)
##
       TRUE, simulate = function (object, nsim)
##
            wts <- object$prior.weights
##
           if (any(wts != 1))
                warning("ignoring prior weights")
           ftd <- fitted(object)</pre>
           rpois(nsim * length(ftd), ftd)
       }), .Names = c("family", "link", "linkfun", "linkinv", "variance",
## "dev.resids", "aic", "mu.eta", "initialize", "validmu", "valideta",
## "simulate"), class = "family"), data = structure(list(YwotNA = c(4990,
## 7002, 7558, 7352, 7943, 7979, 9333, 8209, 8393, 6425, 9364, 8624,
## 10651, 8868, 9417, 8874, 10962, 10743, 11878, 9867, 7838, 11876,
## 12212, 8233, 6360, 4193, 7416, 5246, 6509, 4895, 6775, 7894,
## 5980, 5318, 7392, 7894, 3469, 1468, 3524, 5267, 5048, 1016, 5605,
## 8793, 3475, 1651, 5514, 9718), tt.1 = c(0.247812968144745, 1.31948245416588,
## 1.5660211902098, 1.10785096746952, 1.18417310234941, 1.51405861648906,
## 1.94390541309809, 1.76192086761077, 1.32481879895635, 0.636427700772978,
## 1.64209266934092, 1.2474833976862, 1.84175496629625, 1.37793333027851,
## 1.45621432954102, 1.05099400008355, 2.22162803252415, 2.84167905126443,
```

```
## 2.41141106771852, 1.67414182422787, 0.625745132343545, 2.48003469386001,
## 2.45513792723314, 0.935589228468705, -0.862834636247188, -1.42607338406595,
## -0.993022101807249, -1.26810622644613, -1.21552362104258, -1.85338390420457,
## -1.3133048924232, -1.57873675280058, -1.64474933068624, -2.19508646593659,
## -1.67313194731169, -1.65952781489026, -0.68576872359812, -1.68269236146371,
## -0.845313712523005, -0.358250701992002, -2.74647316489006, -3.06948544175051,
## -2.77843782961596, -1.27660100296348, -1.41315621926431, -1.99891481226837,
## -1.17850706281615, -1.15122961912554), tt.2 = c(-1.29246199258762,
## -0.441950695983101, -0.279909971492392, -0.581087791646522, -0.477688832053013,
## -0.258839609528562, 0.0483899599051332, -0.062857113475549, 0.0188387098006091,
## -0.539848932218849, 0.333457745721046, -0.0055814702777909, 0.244055171103785,
## -0.107731898163712, -0.0181557740546154, -0.337807004795206,
## 0.441227657498504, 0.838470293713883, 0.592450729285436, 0.0856267472870207,
## -0.436520984099486, 0.97560161725499, 0.995971757130343, -0.187182372783293,
## 0.695031580368585, -0.312531219179379, 0.269634831458982, -0.284516967533427,
## 0.711027952261481, 0.486386373495288, 0.940046675590924, 0.486319607923975,
## 0.267472090332844, 0.27345872065071, 0.0066543083365021, 0.63015918213636,
## -1.7010680042703, -1.86913545996363, -1.85621329444357, -1.32668290101343,
## 1.00902218351377, -0.259659086546611, 1.91817718088627, 3.35671623970287,
## -0.777451626576309, -1.14189659537463, -0.577858043704092, -0.489559673594226
##), tt.3 = c(0.156529683350293, -0.0220865739843232, -0.259998367419295,
## 0.193666246534475, 0.209294977375201, -0.0987144859240145, -0.227063788126593,
## -0.0347888365954247, -0.0699115537870728, 0.104747534430973,
## 0.484937304861931, 0.396715970233717, -0.322698252937108, -0.396822190842004,
## 0.0879272550821946, 0.15850516599295, -0.157702093055386, -0.617636132850047,
## -0.0934821947185934, 0.295436850669696, 0.582923225109595, -0.582623079145618,
## -0.125986948904914, 0.268466128326307, 0.195888542820914, 0.581658286109338,
## 0.841479109839368, 1.05285481396931, 0.793647131528871, -0.509095756743188,
## 0.0133457559456633, 0.122169658449661, 0.784930213956892, -0.515412052925032,
## 1.06355867566627, 0.190564320803158, -0.346876836753519, -1.38480165368885,
## -0.323873689448953, -0.662392883224411, -0.374899721208408, -0.162215556255466,
## -1.40538374629324, -0.102696184184279, 0.106509848941297, -0.525552634326535,
## 0.368761098961588, 0.268197414382606), tt.4 = c(-0.423303552099416,
## -0.389935676309095, -0.207143121730113, -0.55730106044946, -0.52071127068616,
## -0.288393656553581, -0.223453477849056, -0.3703132042046, 0.154172979523637,
## 0.0156111821436785, -0.191065142029551, -0.149444062098099, 0.180222086752166,
## 0.241837936979652, -0.109300552919792, -0.155505624153573, -0.0724904469765964,
## 0.248983484994521, -0.130901246092597, -0.393587020926238, -0.199478180673511,
## 0.616351874324904, 0.340685537696661, 0.0117241770086005, 0.513173641847726,
## 0.136440460017053, 0.402558427099044, 0.205476518730575, 0.405918766128427,
## -0.0212401105634606, 0.333074814090876, 0.147952070980011, 0.122464720189116,
## -0.267199463083008, 0.0905346046641824, 0.116318322757945, 0.245479388503825,
## 1.02738206682214, 0.224625385160862, 0.480614534842434, -0.73742594020348,
## -1.16201018392752, -0.801563475488853, 0.610286290202808, 0.119826929928938,
## -0.0413328651163217, 0.194536649305572, 0.226846483438719), tt.5 = c(0.394502641654165,
## 0.0943694160330658, -0.0272348527263425, 0.203029847045477, 0.179066743645063,
## 0.0228314188525609, -0.0948978622164532, -0.00603113857523316,
## -0.0109252573644852, 0.148485377629984, 0.0812034852608167, 0.124122211560798,
## -0.141449903068604, -0.0923048620372805, 0.0352031056185367,
## 0.125748623314793, -0.145359701879434, -0.367249988949129, -0.159449662962322,
## 0.0683473822674748, 0.255696546052337, -0.311084066090505, -0.192630928858462,
## 0.123730379289237, 0.0362810285028479, -0.107223449750508, -0.0116993599650508,
## -0.0987375662735392, -0.0333888310818363, -0.00945991836048268,
## 0.0401949961805602, -0.0527232280027028, -0.185806164539218,
## -0.078183965271524, -0.271334031882573, -0.0597655389081256,
## 0.257952817083929, -0.131291270731274, 0.301431129758836, 0.0663031833982023,
## -0.119648990822969, -0.668977978599679, 0.37018771214068, 0.584026963140004,
## -0.038137893766655, -0.0800600018806026, -0.00957746130148813,
```

```
## -0.00808113256288684), tt.6 = c(0.107707049102867, -0.0265400823184502,
## 0.0217013926597069, -0.0692614209080914, -0.0807568328688751,
## -0.01693377363569, -0.00309864857548361, -0.0564263648621988,
## 0.0139815305326116, 0.0249206035878958, -0.164925157238094, -0.104624035552277,
## 0.0546870837954885, 0.0712924518570272, -0.0422941824611796,
## -0.0293989849679257, -0.00871994505030567, 0.142044297388914,
## -0.0348834220652955, -0.14095673019534, -0.0783959476776941,
## 0.162454873888663, 0.0384818061346711, -0.0365780015691075, -0.0290866171229789,
## 0.0471845803061495, -0.0386932293978416, 0.0280004365904804,
## -0.0601601091200545, -0.0464997160105712, -0.0336304755104258,
## -0.0247460391340078, -0.0155290463372893, -0.0396405302741342,
## 0.00798671328218103, -0.029860545558012, 0.207159891541222, -0.461138870160792,
## 0.25104552525793, 0.0787315423720673, -0.0196953054389839, 0.0992034848587048,
## -0.0150456743042856, 0.0887801726707807, 0.0918147817415529,
## 0.0421179726924038, 0.0726750780060747, 0.0555484200479957)), .Names = c("YwotNA",
## "tt.1", "tt.2", "tt.3", "tt.4", "tt.5", "tt.6"), row.names = c("1",
## "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
## "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24",
## "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35",
## "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46",
## "47", "48"), class = "data.frame"), na.action = function (object,
## UseMethod("na.exclude"), model = TRUE, method = "glm.fit")
##
## Coefficients:
## (Intercept)
                   tt.1
                             0.2100
                                tt.2
                                            tt.3
                                                         tt.4
## 8.8155
                  0.1799
                                          0.2018
                                                       0.0468
##
       tt.5
                   tt.6
     0.0393
                 0.0221
##
##
## Degrees of Freedom: 47 Total (i.e. Null); 41 Residual
## Null Deviance: 53500
## Residual Deviance: 11800 AIC: 12300
colSums(modpls2$pvalstep)
## temppvalstep temppvalstep temppvalstep temppvalstep
                6 6
## temppvalstep
##
```

According to IC criteria values, the quadratic model is worth its increase in complexity, so we keep it. Number of components to be retained:

- $\bullet \ \ \mathsf{AIC} \to 5.$
- BIC \rightarrow 5.
- ullet Non significant predictor criterion o 5.

```
set.seed(123)
cv.modpls2<-cv.plsRglm(area~.^2,data=rock,nt=6,modele="pls-glm-poisson",K=8,NK=100)</pre>
```

```
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____Predicting X without NA neither in X or Y____
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18,
                                         19,
## NK: 21, 22, 23, 24, 25, 26, 27, 28,
                                         29,
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39,
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49,
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59,
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79,
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89,
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV Q2Chi2 criterion:
##
  0 1 2
  0 1 99
##
##
## CV PreChi2 criterion:
## 1 2 3
  0 7 93
##
```

This time we use the $PRE\chi^2$ as a cross validation criterion. It is the analoguous to the PRESS in this Poisson regression setting. According to the results, we chose to retain 3 components. It is known that, in PLSGLR logistic binary setting, the AIC and BIC tend to select too many components.

```
plot(res.cv.modpls2,type="CVPreChi2")
```


Figure 54: Nb components, 8-CV, n=100

The PLSGLR Poisson model with 3 components.

```
modpls3 <- plsRglm(area~.^2,data=rock,nt=3,modele="pls-glm-poisson")</pre>
## Family: poisson
## Link function: log
##
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Predicting X without NA neither in X or Y____
## ****____****
modpls3
## Number of required components:
## [1] 3
## Number of successfully computed components:
## [1] 3
## Coefficients:
##
                 [,1]
## Intercept 7.884e+00
## peri 2.509e-04
## shape
            -5.635e-01
## perm 3.351e-04
## peri.shape 2.884e-04
## peri.perm 2.510e-07
## shape.perm -7.008e-04
## Information criteria and Fit statistics:
## AIC BIC Chi2_Pearson_Y RSS_Y R2_Y R2_residY
## Nb_Comp_0 54058 54060 47100 338543101 NA NA
## Nb_Comp_1 26001 26005
                              23549 133178719 0.6066
                                                       -7.307
                            14395 76726600 0.7734 -7.307
11836 63448705 0.8126 -7.307
## Nb_Comp_2 15311 15316
## Nb_Comp_3 12435 12442
## RSS_residY
## Nb_Comp_0 3.385e+08
## Nb_Comp_1 2.812e+09
## Nb_Comp_2 2.812e+09
## Nb_Comp_3 2.812e+09
## Model with all the required components:
##
## Call: glm(formula = YwotNA ~ ., family = structure(list(family = "poisson",
##
      link = "log", linkfun = function (mu)
##
      log(mu), linkinv = function (eta)
      pmax(exp(eta), .Machine$double.eps), variance = function (mu)
##
##
      mu, dev.resids = function (y, mu, wt)
##
##
        r <- mu * wt
##
         p \leftarrow which(y > 0)
##
         r[p] \leftarrow (wt * (y * log(y/mu) - (y - mu)))[p]
          2 * r
##
      }, aic = function (y, n, mu, wt, dev)
      -2 * sum(dpois(y, mu, log = TRUE) * wt), mu.eta = function (eta)
##
      pmax(exp(eta), .Machine$double.eps), initialize = expression(
##
##
##
             if (any(y < 0))
##
                 stop("negative values not allowed for the 'Poisson' family")
##
             n <- rep.int(1, nobs)</pre>
##
             mustart <- y + 0.1
##
          }), validmu = function (mu)
      all(is.finite(mu)) && all(mu > 0), valideta = function (eta)
```

```
##
      TRUE, simulate = function (object, nsim)
##
##
           wts <- object$prior.weights
          if (any(wts != 1))
##
              warning("ignoring prior weights")
##
           ftd <- fitted(object)
##
##
           rpois(nsim * length(ftd), ftd)
      }), .Names = c("family", "link", "linkfun", "linkinv", "variance",
## "dev.resids", "aic", "mu.eta", "initialize", "validmu", "valideta",
## "simulate"), class = "family"), data = structure(list(YwotNA = c(4990,
## 7002, 7558, 7352, 7943, 7979, 9333, 8209, 8393, 6425, 9364, 8624,
## 10651, 8868, 9417, 8874, 10962, 10743, 11878, 9867, 7838, 11876,
## 12212, 8233, 6360, 4193, 7416, 5246, 6509, 4895, 6775, 7894,
## 5980, 5318, 7392, 7894, 3469, 1468, 3524, 5267, 5048, 1016, 5605,
## 8793, 3475, 1651, 5514, 9718), tt.1 = c(0.247812968144745, 1.31948245416588,
## 1.5660211902098, 1.10785096746952, 1.18417310234941, 1.51405861648906,
## 1.94390541309809, 1.76192086761077, 1.32481879895635, 0.636427700772978,
## 1.64209266934092, 1.2474833976862, 1.84175496629625, 1.37793333027851,
## 1.45621432954102, 1.05099400008355, 2.22162803252415, 2.84167905126443,
## 2.41141106771852, 1.67414182422787, 0.625745132343545, 2.48003469386001,
## 2.45513792723314, 0.935589228468705, -0.862834636247188, -1.42607338406595,
## -0.993022101807249, -1.26810622644613, -1.21552362104258, -1.85338390420457,
## -1.3133048924232, -1.57873675280058, -1.64474933068624, -2.19508646593659,
## -1.67313194731169, -1.65952781489026, -0.68576872359812, -1.68269236146371,
## -0.845313712523005, -0.358250701992002, -2.74647316489006, -3.06948544175051,
## -2.77843782961596, -1.27660100296348, -1.41315621926431, -1.99891481226837,
## -1.17850706281615, -1.15122961912554), tt.2 = c(-1.29246199258762,
## -0.441950695983101, -0.279909971492392, -0.581087791646522, -0.477688832053013,
## -0.258839609528562, 0.0483899599051332, -0.062857113475549, 0.0188387098006091,
## -0.539848932218849, 0.333457745721046, -0.0055814702777909, 0.244055171103785,
## -0.107731898163712, -0.0181557740546154, -0.337807004795206,
## 0.441227657498504, 0.838470293713883, 0.592450729285436, 0.0856267472870207,
## -0.436520984099486, 0.97560161725499, 0.995971757130343, -0.187182372783293,
## 0.695031580368585, -0.312531219179379, 0.269634831458982, -0.284516967533427,
## 0.711027952261481, 0.486386373495288, 0.940046675590924, 0.486319607923975,
## 0.267472090332844, 0.27345872065071, 0.0066543083365021, 0.63015918213636,
## -1.7010680042703, -1.86913545996363, -1.85621329444357, -1.32668290101343,
## 1.00902218351377, -0.259659086546611, 1.91817718088627, 3.35671623970287,
## -0.777451626576309, -1.14189659537463, -0.577858043704092, -0.489559673594226
## ), tt.3 = c(0.156529683350293, -0.0220865739843232, -0.259998367419295,
## 0.193666246534475, 0.209294977375201, -0.0987144859240145, -0.227063788126593,
## -0.0347888365954247, -0.0699115537870728, 0.104747534430973,
## 0.484937304861931, 0.396715970233717, -0.322698252937108, -0.396822190842004,
## 0.0879272550821946, 0.15850516599295, -0.157702093055386, -0.617636132850047,
## -0.0934821947185934, 0.295436850669696, 0.582923225109595, -0.582623079145618,
## -0.125986948904914, 0.268466128326307, 0.195888542820914, 0.581658286109338,
## 0.841479109839368, 1.05285481396931, 0.793647131528871, -0.509095756743188,
## 0.0133457559456633, 0.122169658449661, 0.784930213956892, -0.515412052925032,
## 1.06355867566627, 0.190564320803158, -0.346876836753519, -1.38480165368885,
## -0.323873689448953, -0.662392883224411, -0.374899721208408, -0.162215556255466,
## -1.40538374629324, -0.102696184184279, 0.106509848941297, -0.525552634326535,
## 0.368761098961588, 0.268197414382606)), .Names = c("YwotNA",
## "tt.1", "tt.2", "tt.3"), row.names = c("1", "2", "3", "4", "5",
## "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16",
## "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27",
## "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38",
## "39", "40", "41", "42", "43", "44", "45", "46", "47", "48"), class = "data.frame"),
     na.action = function (object, ...)
```


Figure 55: Biplot of the observations and the variables

```
##
       UseMethod("na.exclude"), model = TRUE, method = "glm.fit")
##
## Coefficients:
##
  (Intercept)
                       tt.1
                                                  tt.3
##
                      0.178
                                    0.216
                                                 0.202
##
## Degrees of Freedom: 47 Total (i.e. Null); 44 Residual
## Null Deviance:
                      53500
## Residual Deviance: 11900 AIC: 12400
```

It is also possible to display the biplot of the observations and the predictors (Figure 55).

```
biplot(modpls3$tt,modpls3$pp)
```

Bootstrap (y, X)

In this example, we use antithetic resampling and plot the four types of bootstrap CI by not specifying the type option. We display CIs for each of the predictors (see Figure 57) and boxplots (see Figure 56).

Figure 56: Bootstrap (y, T) distribution of the coefficients of the predictors, R=1000

Bootstrap (y, T)

Same specifications as for those used above for Bootstrap (y, X). We display CIs for each of the predictors (see Figure 59) and boxplots (see Figure 58). The stabvalue prevents the use of divergent estimates of models coefficients by discarding the bootstrap sample that led to such an instability in ML estimation.

Figure 57: CI of the coefficients of the predictors, bootstrap (\mathbf{y}, \mathbf{T}) , R=1000

Figure 58: Bootstrap (\mathbf{y}, \mathbf{T}) distribution of the coefficients of the predictors, R=1000

Figure 59: CI of the coefficients of the predictors, bootstrap (\mathbf{y},\mathbf{T}) , R=1000

4 Creating simulated datasets

To simulate PLSR datasets we implemented the results of Naes and Martens (1985) and Li et al. (2002) in the function simul_data_YX -multivariate response and predictors. We then adapted it to get an univariate reponse and multivariate predictors in the function simul_data_uniYX. We derived logistic binary PLSGLR datasets by dichotomizing the PLSR ones.

4.1 Simulating PLSR datasets

Simulating, fitting and retrieving information criteria and leave one out cross validation results in two cases: 6 predictors (dimX <- 6) with 4 components (Astar <- 4) and 24 predictors (dimX <- 6) and 2 components (Astar <- 2).

```
rm(list = ls())
dimX < -6
Astar <- 4
simul_data_UniYX(dimX,Astar)
        Y X1
                                        X2 X3
                                                                   X4 X5
## 1.497 -4.331 -5.761 3.512 -6.811 -8.246 1.027
dataAstar <- as.data.frame(t(replicate(250,simul_data_UniYX(dimX,Astar))))</pre>
modpls <- plsR(Y~.,data=dataAstar,10,typeVC="standard")</pre>
## ____TypeVC____ standard ____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component___ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ___
## Warning : 1 2 3 4 5 6 < 10^{-12}
## Warning only 6 components could thus be extracted
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls
## Number of required components:
## [1] 10
## Number of successfully computed components:
## [1] 6
## Coefficients:
                                     [,1]
## Intercept -0.002685
## X1 -0.591035
## X2
                         0.857294
## X3
                          0.954034
## X4
                          0.212147
## X5
                         -0.237734
## X6 0.031945
## Leave one out cross validated PRESS, Information criteria and Fit statistics:
                              AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y
## Nb_Comp_0 1701.8 NA NA
                                                                                 NA NA 13028.241
## Nb_Comp_1 1221.3 0.8502 0.0975 0.850162 1952.128 1890.609 0.8549
## Nb_Comp_2 848.4 0.9658 0.0975 0.771734 431.562 422.053 0.9676
## Nb_Comp_3 375.1 0.9948 0.0975 0.847321 64.439
                                                                                                                       63.059 0.9952
## Nb_Comp_4 -258.9 0.9996 0.0975 0.920706 5.000
                                                                                                                         4.953 0.9996
## Nb_Comp_6 -256.2 0.9996 0.0975 -0.007381 4.965 4.928 0.9996
## R2 residy PSS recity P
## R2_residY RSS_residY PRESS_residY Q2_residY LimQ2
```

```
## Nb_Comp_0 NA 249.00000 NA NA NA
## Nb_Comp_1 0.8549 36.13393 37.30970 0.850162 0.0975
## Nb_Comp_2 0.9676 8.06641 8.24815 0.771734 0.0975
## Nb_Comp_3 0.9952 1.20520 1.23158 0.847321 0.0975
## Nb_Comp_4 0.9996 0.09467 0.09556 0.920706 0.0975
## Nb_Comp_5 0.9996 0.09420 0.09574 -0.011338 0.0975
## Nb_Comp_6 0.9996 0.09419 0.09489 -0.007381 0.0975
## Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof
## GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
## Nb_Comp_0 497.13 1 7.2334 52.53154 53.26854
## Nb_Comp_1 268.00 2 2.7611 7.68441 7.89917
## Nb_Comp_2 86.43 3 1.3072 1.72922 1.80143
## Nb_Comp_3 -144.74 4 0.5063 0.26044 0.27488
## Nb_Comp_4 -455.97 5 0.1422 0.02062 0.02205
## Nb_Comp_5 -444.99 6 0.1421 0.02068 0.02239
## Nb_Comp_6 -445.00 7 0.1424 0.02085 0.02285
## GMDL.naive
## GMDL.naive
## Nb_Comp_0 497.13
## Nb_Comp_1 263.26
## Nb_Comp_2
                       81.44
## Nb_Comp_3 -148.50
## Nb_Comp_4 -455.47
## Nb_Comp_5 -450.24
## Nb_Comp_6 -444.50
```

```
set.seed(123)
cv.modpls<-cv.plsR(Y~.,data=dataAstar,nt=10,K=100)</pre>
```

The results, based on the use of the Q^2 criterion, (Fig. 60) retain 4 components as we aimed to simulate.

```
res.cv.modpls=cvtable(summary(cv.modpls))
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component___ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____6 ___
## Warning : 1 2 3 4 5 6 < 10^{-12}
## Warning only 6 components could thus be extracted
## ____Predicting X without NA neither in X nor in Y____
## ****____****
##
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29,
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39,
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49,
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
```

```
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
##
## CV Q2 criterion:
## 0 1 2 3 4
## 0 0 0 0 100
##
## CV Press criterion:
## 1 2 3 4
## 0 0 0 100
plot(res.cv.modpls)
```


Figure 60: Nb components, 10-CV, n=100

```
rm(list = ls())
dimX <- 24
Astar <- 2
simul_data_UniYX(dimX,Astar)
## Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
## 5.208 2.208 2.224 1.774 2.196 2.215 1.775 2.196 2.189 1.770 2.201 2.212
## X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
## 1.770 2.225 2.224 1.775 2.201 2.194 1.764 2.196 2.217 1.763 2.211 2.214
## X24
## 1.780
dataAstar2 <- as.data.frame(t(replicate(250,simul_data_UniYX(dimX,Astar))))</pre>
modpls2 <- plsR(Y~.,data=dataAstar2,10,typeVC="standard")</pre>
## ____TypeVC____ standard ____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
```

```
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls2
## Number of required components:
## [1] 10
## Number of successfully computed components:
## [1] 10
## Coefficients:
## [,1]
## Intercept 0.01210
## X1 0.17939
           0.39590
## X2
## X3
           0.41792
           0.52390
## X15
## X16
          -0.23655
## X17
           1.61505
## X18
          -1.25339
## X19
          -2.45084
          0.64388
## X20
## X21
           0.37566
## X22
          -0.76251
## X23 0.46069
## X24 0.06193
## Leave one out cross validated PRESS, Information criteria and Fit statistics:
## AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y ## Nb_Comp_0 1699.4 NA NA NA NA NA 12900.449 NA
## Nb_Comp_1 1223.6 0.8477 0.0975 0.84774 1964.197 1908.309 0.8521
## Nb_Comp_2 -187.3 0.9995 0.0975 0.99646 6.764 6.701 0.9995
## Nb_Comp_3 -203.9 0.9994 0.0975 -0.07508 7.204 6.220 0.9995
## Nb_Comp_4 -203.5 0.9993 0.0975 -0.15684 7.196 6.182 0.9995
## Nb_Comp_5 -201.7 0.9992 0.0975 -0.17010 7.233 6.176 0.9995
## Nb_Comp_6 -199.8 0.9991 0.0975 -0.15470 7.131 6.175 0.9995
## Nb_Comp_7 -197.8 0.9990 0.0975 -0.14537 7.073 6.175 0.9995
## Nb_Comp_8 -195.8 0.9988 0.0975 -0.13746 7.024 6.175 0.9995
## Nb_Comp_9 -193.8 0.9987 0.0975 -0.13014 6.979 6.175 0.9995
## Nb_Comp_10 -191.8 0.9985 0.0975 -0.12363 6.939 6.175 0.9995
## R2_residY RSS_residY PRESS_residY Q2_residY LimQ2
## Nb_Comp_0 NA 249.0000 NA NA NA NA WH# Nb_Comp_1 0.8521 36.8335 37.9122 0.84774 0.0975 0.9995 0.1293 0.1305 0.99646 0.0975
## Nb_Comp_3 0.9995 0.1201 0.1391 -0.07508 0.0975
```

```
## Nb_Comp_4 0.9995 0.1193 0.1389 -0.15684 0.0975
 ## Nb_Comp_5 0.9995 0.1192 0.1396 -0.17010 0.0975
## Nb_Comp_6 0.9995 0.1192 0.1376 -0.15470 0.0975
## Nb_Comp_7 0.9995 0.1192 0.1365 -0.14537 0.0975
 ## Nb_Comp_8 0.9995 0.1192
                                                                                           0.1356 -0.13746 0.0975
 ## Nb_Comp_9 0.9995 0.1192 0.1347 -0.13014 0.0975
## Nb_Comp_10 0.9995 0.1192 0.1339 -0.12363 0.0975
## Nb_Comp_0 NA 712.5 1.000 7.1978 52.01627 52.74604
## Nb_Comp_1 0.8477 236.7 2.731 2.7724 7.80119 8.09692
## Nb_Comp_2 0.9995 -1174.2 3.000 0.1644 0.02745 0.02860
## Nb_Comp_3 0.9994 -1190.8 22.356 0.1649 0.02975 0.03832
## Nb_Comp_4 0.9993 -1190.4 23.557 0.1649 0.02975 0.03887
## Nb_Comp_5 0.9992 -1188.6 23.407 0.1647 0.02979 0.03873
## Nb_Comp_6 0.9991 -1186.6 23.659 0.1648 0.02984 0.03889
## Nb_Comp_7 0.9990 -1184.7 23.726 0.1648 0.02986 0.03894
## Nb_Comp_8 0.9988 -1182.7 23.749 0.1648 0.02986 0.03895
## Nb_Comp_9 0.9987 -1180.7 23.793 0.1649 0.02987 0.03898
## Nb_Comp_1 0.9985 -1178.7 23.597 0.1648 0.02983 0.03885
## Nb_Comp_1 0.9985 -1178.7 23.597 0.1648 0.02983 0.03885
 ## Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof
 ## GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
## Mb_Comp_0 495.4 1 7.1978 52.01627 52.74604
## Nb_Comp_1 266.2 2 2.7739 7.75635 7.97313
## Nb_Comp_2 -430.7 3 0.1647 0.02746 0.02860
## Nb_Comp_3 -336.4 4 0.1590 0.02569 0.02712
## Nb_Comp_4 -331.2 5 0.1588 0.02574 0.02751
## Nb_Comp_5 -332.0 6 0.1591 0.02592 0.02806
## Nb_Comp_6 -330.8 7 0.1594 0.02612 0.02863
## Nb_Comp_7 -330.4 8 0.1597 0.02633 0.02921
## Nb_Comp_8 -330.3 9 0.1601 0.02655 0.02979
## Nb_Comp_9 -330.1 10 0.1604 0.02676 0.03038
## Nb_Comp_10 -331.1 11 0.1607 0.02697 0.03098
 ## GMDL.naive
 ## Nb_Comp_0 495.4
                                         264.4
 ## Nb_Comp_1
 ## Nb_Comp_2
                                       -430.2
 ## Nb_Comp_3
                                         -433.4
 ## Nb_Comp_4
                                          -428.4
 ## Nb_Comp_5
                                         -422.8
 ## Nb_Comp_6
                                         -417.1
 ## Nb_Comp_7
                                        -411.6
                                       -406.1
 ## Nb_Comp_8
                                      -400.6
 ## Nb_Comp_9
 ## Nb_Comp_10
                                          -395.3
```

```
set.seed(123)
cv.modpls2<-cv.plsR(Y~.,data=dataAstar2,nt=10,K=10,NK=100)</pre>
```

The results, based on the use of the Q^2 criterion, (Fig. 61) retain 2 components as we aimed to simulate.

```
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
##
## NK: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
## NK: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
## NK: 21, 22, 23, 24, 25, 26, 27, 28, 29,
## NK: 31, 32, 33, 34, 35, 36, 37, 38, 39,
## NK: 41, 42, 43, 44, 45, 46, 47, 48, 49,
## NK: 51, 52, 53, 54, 55, 56, 57, 58, 59,
## NK: 61, 62, 63, 64, 65, 66, 67, 68, 69,
## NK: 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
## NK: 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
## NK: 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
## CV Q2 criterion:
   0 1 2
##
    0 0 100
##
##
## CV Press criterion:
## 1 2
   0 100
plot(res.cv.modpls2)
```


Figure 61: Nb components, 10-CV, n=100

4.2 Simulating logistic binary PLSGLR datasets

4.2.1 Continuous covariables

Simulating, fitting and retrieving information criteria and leave one out cross validation results.

```
ydataAstar2 <- dataAstar2[,1]</pre>
XdataAstar2 <- dataAstar2[,2:(dimX+1)]</pre>
ysimbin1 <- dicho(ydataAstar2)</pre>
res <- plsR(ysimbin1, XdataAstar2, 10, typeVC="standard", MClassed=TRUE)</pre>
## ___******************************
## ____TypeVC____ standard ____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____ Component____ 7 ____
## ____Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
res$MissClassed
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
## [1,] 117 33 5 10 9 9 9 9 9
## Number of required components:
## [1] 10
## Number of successfully computed components:
## [1] 10
## Coefficients:
## [,1]
## Intercept 0.47499
## X1 0.77223
## X2
           -1.16091
## X3
          2.97062
## X4
          2.83936
## X5
          0.03827
         -0.52026
## X6
## X7
           0.91260
          -3.56136
## X8
## X9
          -1.60262
## X10
          -0.19633
           1.88400
## X11
          -1.05388
## X12
## X13
           -0.29320
          -1.17259
## X14
           0.92728
## X15
## X16
          -0.39698
## X17
           0.51021
## X18
          -2.52240
## X19
         1.07467
0.90634
## X20
          2.88766
## X21
          -2.19775
## X22
           0.08008
## X23
## X24 -0.96551
## Leave one out cross validated PRESS, Information criteria and Fit statistics:
## AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y ## Nb_Comp_0 365.9 NA NA NA NA 62.24 NA
## Nb_Comp_1 178.8 0.52526 0.0975 0.5253 29.55 29.22 0.5305
```

```
## Nb_Comp_2 126.6 0.61435 0.0975 0.1877 23.74 23.53 0.6220
 ## Nb_Comp_3 114.0 0.57504 0.0975 -0.1020 25.93 22.18 0.6436
 ## Nb_Comp_4 114.4 0.49648 0.0975 -0.1848 26.29 22.05 0.6457
 ## Nb_Comp_5 116.3 0.42135 0.0975 -0.1492 25.34 22.03 0.6460
 ## Nb_Comp_6 118.2 0.33345 0.0975 -0.1519 25.38 22.03 0.6460
 ## Nb_Comp_7 120.2 0.23723 0.0975 -0.1444 25.21 22.03 0.6460
 ## Nb_Comp_8 122.2 0.13444 0.0975 -0.1348 25.00 22.03 0.6460
 ## Nb_Comp_9 124.2 0.02481 0.0975 -0.1267 24.82 22.03 0.6460
 ## Nb_Comp_10 126.2 -0.09037 0.0975 -0.1181 24.64 22.03 0.6460
 ## MissClassed R2_residY RSS_residY PRESS_residY Q2_residY
## MissClassed R2_residY RSS_residY PRESS_residY Q2_residY
## Nb_Comp_0 117 NA 249.00 NA NA
## Nb_Comp_1 33 0.5305 116.90 118.21 0.5253
## Nb_Comp_2 5 0.6220 94.12 94.96 0.1877
## Nb_Comp_3 10 0.6436 88.75 103.72 -0.1020
## Nb_Comp_4 9 0.6457 88.21 105.15 -0.1848
## Nb_Comp_5 9 0.6460 88.15 101.37 -0.1492
## Nb_Comp_6 9 0.6460 88.14 101.54 -0.1519
## Nb_Comp_7 9 0.6460 88.14 100.87 -0.1444
## Nb_Comp_8 9 0.6460 88.14 100.02 -0.1348
## Nb_Comp_9 9 0.6460 88.14 99.31 -0.1267
## Nb_Comp_10 9 0.6460 88.14 99.55 -0.1181
## LimQ2 Q2cum residY AIC.std DoF.dof sigmahat.dof AIC.dof
## LimQ2 Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof
## Nb_Comp_0 NA NA 712.5 1.000 0.5000 0.25098
## Nb_Comp_1 0.0975 0.52526 525.4 2.666 0.3430 0.11939
## Nb_Comp_2 0.0975 0.61435 473.2 3.000 0.3080 0.09639
## Nb_Comp_3 0.0975 0.57504 460.6 23.642 0.3124 0.10720
## Nb_Comp_4 0.0975 0.49648 461.0 22.705 0.3108 0.10575
## Nb_Comp_5 0.0975 0.42135 462.9 22.771 0.3107 0.10572
## Nb_Comp_6 0.0975 0.33345 464.8 22.831 0.3108 0.10577
## Nb_Comp_7 0.0975 0.23723 466.8 22.914 0.3108 0.10577
## Nb_Comp_8 0.0975 0.13444 468.8 22.991 0.3109 0.10591
## Nb_Comp_9 0.0975 0.02481 470.8 23.119 0.3109 0.10602
## Nb_Comp_10 0.0975 -0.09037 472.8 23.207 0.3110 0.10609
## BIC.dof GMDL.dof DoF.naive sigmahat.naive AIC.naive
 ## LimQ2 Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof
 ## BIC.dof GMDL.dof DoF.naive sigmahat.naive AIC.naive
## BIC.dof GMDL.dof DoF.naive sigmahat.naive AIC.naive
## Nb_Comp_0 0.2545 -167.8 1 0.5000 0.25098
## Nb_Comp_1 0.1238 -257.2 2 0.3433 0.11877
## Nb_Comp_2 0.1004 -283.0 3 0.3086 0.09640
## Nb_Comp_3 0.1397 -244.2 4 0.3003 0.09163
## Nb_Comp_4 0.1366 -246.6 5 0.3000 0.09180
## Nb_Comp_5 0.1367 -246.6 6 0.3005 0.09247
## Nb_Comp_6 0.1368 -246.5 7 0.3011 0.09321
## Nb_Comp_7 0.1370 -246.3 8 0.3017 0.09396
## Nb_Comp_8 0.1372 -246.2 9 0.3024 0.09472
## Nb_Comp_9 0.1375 -245.9 10 0.3030 0.09548
## Nb_Comp_10 0.1377 -245.8 11 0.3036 0.09625
##
 ## BIC.naive GMDL.naive
 ## Nb_Comp_0 0.25450 -167.8
 ## Nb_Comp_1 0.12209 -258.6
 ## Nb_Comp_2 0.10042 -282.5
## Nb_Comp_3 0.09671 -286.8
## Nb_Comp_4 0.09814 -284.9
 ## Nb_Comp_5 0.10010 -282.3
 ## Nb_Comp_6 0.10215 -279.8
 ## Nb_Comp_7 0.10422 -277.3
 ## Nb_Comp_8 0.10631 -274.9
 ## Nb_Comp_9 0.10841 -272.6
 ## Nb_Comp_10 0.11053
                                                     -270.3
```

Raw (non-constrained to lay between 0 and 1) estimations of probabilities are available in the res\$Probs object.

Truncated to [0;1] estimations are available in the res\$Probs.trc object.

```
res$Probs
res$Probs.trc
```

4.2.2 Dichotomous only covariables

For set the same frame as for the allelotyping study aze (Meyer et al., 2010), just dichotomize the predictors. Fitting and retrieving information criteria and leave one out cross validation results.

```
bindataAstar2 <- as.data.frame(dicho(dataAstar2))</pre>
resdicho <- plsR(Y~.,data=bindataAstar2,10,typeVC="standard",MClassed=TRUE)
## ____*****************************
## ____TypeVC____ standard ____
## ____Component____ 1 ____
## ____Component____ 2 ____
## Warning : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 < 10^{-12}
## Warning only 2 components could thus be extracted
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
resdicho$MissClassed
   [,1] [,2] [,3]
## [1,] 117 13 13
resdicho
## Number of required components:
## [1] 10
## Number of successfully computed components:
## [1] 2
## Coefficients:
##
               [,1]
## Intercept 0.011185
## X1 0.007899
## X2
          0.007899
          0.109405
## X3
## X4
          0.007899
## X5
          0.007899
          0.109405
## X6
          0.007899
## X7
## X8
           0.007899
## X9
           0.109405
## X10
           0.007899
## X11
           0.007899
## X12
          0.109405
## X13
          0.007899
## X14
          0.007899
## X15
          0.109405
## X16
          0.007899
## X17
          0.007899
## X18
          0.109405
## X19
          0.007899
## X20
          0.007899
## X21
           0.109405
## X22
           0.007899
## X23
           0.007899
## X24
           0.109405
## Leave one out cross validated PRESS, Information criteria and Fit statistics:
       AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y
```

Raw (non-constrained to lay between 0 and 1) estimations of probabilities are available in the resdicho\$Probs object. Truncated to [0;1] estimations are available in the resdicho\$Probs.trc object.

```
resdicho$Probs
resdicho$Probs.trc
```

5 Discussion

5.1 New classes

- "plsRmodel": a PLSR model fitted with the plsR function.
- "plsRglmmodel": a PLSR model fitted with the plsRglm function.
- "coef.plsRmodel": coefficients of a PLSR model (of class "plsRmodel") extracted with the coef function.
- "coef.plsRglmmodel": coefficients of a PLSGLR model (of class "plsRglmmodel") extracted with the coeffunction
- "summary.plsRmodel": summary of a PLSR model (of class "plsRmodel") derived using the summary function.
- "summary.plsRglmmodel": summary of a PLSGLR model (of class "plsRglmmodel") derived using the summary function.
- "cv.plsRmodel": crossvalidated PLSR model derived using the cv.plsR function.
- "cv.plsRglmmodel": crossvalidated PLSGLR model derived using the cv.plsRglm function.
- "summary.cv.plsRmodel": summary of a crossvalidated PLSR model (of class "cv.plsRmodel") derived using the summary function.
- "summary.cv.plsRglmmodel": summary of a crossvalidated PLSGLR model (of class "cv.plsRglmmodel") derived using the summary function.
- "table.summary.cv.plsRmodel": contingency table of the summary of a crossvalidated PLSR model (of class "summary.cv.plsRmodel") derived using the cvtable function.
- "table.summary.cv.plsRglmmodel": contingency table of the summary of a crossvalidated PLSGLR model (of class "summary.cv.plsRglmmodel") derived using the cvtable function.

5.2 New generics

- S3method("coef", "plsRmodel")
- S3method("coef", "plsRglmmodel")
- S3method("plot", "table.summary.cv.plsRglmmodel")
- S3method("plot", "table.summary.cv.plsRmodel")
- S3method("print", "coef.plsRmodel")
- S3method("print", "coef.plsRglmmodel")
- S3method("print", "cv.plsRmodel")

```
S3method("print", "cv.plsRglmmodel")
S3method("summary", "cv.plsRmodel")
S3method("summary", "cv.plsRglmmodel")
S3method("predict", "plsRmodel")
S3method("predict", "plsRglmmodel")
S3method("print", "plsRglmmodel")
S3method("print", "plsRglmmodel")
S3method("summary", "plsRmodel")
S3method("summary", "plsRglmmodel")
S3method("print", "summary.plsRmodel")
S3method("print", "summary.plsRglmmodel")
```

5.3 Validation of the results of the package

The package was tested in order to validate its results. The following lines of code generate outputs that can be checked against the relevant reference.

Comparing the PLSR results with SIMCA results in Tenenhaus's book (Tenenhaus, 1998)

```
rm(list = ls())
data(Cornell)
XCornell<-Cornell[,1:7]</pre>
yCornell<-Cornell[,8]
modpls<-plsk(yCornell,XCornell,3)</pre>
## ____****************************
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____**
modpls
## Number of required components:
## [1] 3
## Number of successfully computed components:
## [1] 3
## Coefficients:
   [,1]
## Intercept 92.676
## X1 -9.828
           -6.960
## X2
          -16.666
## X3
## X4
            -8.422
## X5
            -4.389
           10.161
## X6
## X7 -34.529
## Information criteria and Fit statistics:
## AIC RSS_Y R2_Y R2_residY RSS_residY AIC.std DoF.dof
## Nb_Comp_0 82.01 467.797 NA NA 11.0000 37.010 1.000
## Nb_Comp_1 53.15 35.742 0.9236 0.9236 0.8405 8.150 2.741
## Nb_Comp_2 41.08 11.067 0.9763 0.9763 0.2602 -3.919 5.086
## Nb_Comp_3 32.06 4.418 0.9906 0.9906 0.1039 -12.938 5.121
## sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive
## Nb_Comp_0 6.5213 46.0709 47.7894 27.59 1
## Nb_Comp_1 1.8665 4.5700 4.9558 21.34 2
## Nb_Comp_2 1.1825 2.1075 2.3949 27.40
## Nb_Comp_3 0.7488 0.8468 0.9628 24.41
## sigmahat.naive AIC.naive BIC.naive GMDL.naive
```

```
## Nb_Comp_0 6.5213 46.0709 47.7894 27.59
## Nb_Comp_1
## Nb_Comp_2
## Nb_Comp_3
               1.8906 4.1700 4.4588 18.38
                1.1089 1.5370 1.6861
                                           17.71
                0.7431 0.7363 0.8256 19.01
modpls$uscores
##
     [,1]
            [,2] [,3]
## 1 3.2183 2.05967 3.2801
## 2 2.9320 0.80716 0.4196
## 3 2.5502 0.38681 -1.4306
## 4 1.0869 -1.67717 -0.2158
## 5 -0.6309 -0.99337 -2.0551
## 6 0.8324 -1.37916 0.1155
## 7 -2.1261 0.13796 0.8375
## 8 -1.7443 0.43983 0.8989
## 9 -1.9670 0.21280 0.1701
## 10 -1.7125 0.35871 0.1068
## 11 -2.2851 -0.36863 0.2438
## 12 -0.1538 0.01538 -2.3710
modpls$pp
##
     Comp_1 Comp_2 Comp_3
## X1 -0.45356 -0.04251 0.2730
## X2 0.03169 -1.00323 0.4493
## X3 -0.45436 -0.03900 0.2707
## X4 -0.35605 0.27807 -0.5332
## X5 0.29431 -0.04544 -0.4953
## X6 0.46197 0.43955 0.1054
## X7 -0.41254 0.47679 -0.3389
modpls$Coeffs
## [,1]
## Intercept 92.676
## X1 -9.828
## X2
          -6.960
## X3
         -16.666
## X4
          -8.422
          -4.389
## X5
     10.161
-34.529
## X6
## X7
modpls2<-plsR(yCornell, XCornell, 4, typeVC="standard")</pre>
## ____TypeVC____ standard ____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X without NA neither in X nor in Y____
## ****____****
modpls2
## Number of required components:
## [1] 4
## Number of successfully computed components:
## [1] 4
## Coefficients:
## [,1]
## Intercept 92.480
## X1 -9.405
```

```
## X2 -6.941
             -15.797
## X3
## X4
              -8.769
## X5
              -2.670
## X6
              10.206
            -32.368
## X7
## Leave one out cross validated PRESS, Information criteria and Fit statistics:
## AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y
## Nb_Comp_0 82.01 NA NA
                                            NA NA 467.797
## Nb_Comp_1 53.15  0.8967  0.0975  0.8967  48.344  35.742  0.9236
## Nb_Comp_2 41.08 0.9175 0.0975 0.2021 28.519 11.067 0.9763
## Nb_Comp_3 32.06 0.9400 0.0975 0.2720 8.057 4.418 0.9906
## Nb_Comp_4 33.76 0.9197 0.0975 -0.3376 5.910 4.309 0.9908
## R2_residY RSS_residY PRESS_residY Q2_residY LimQ2
## Nb_Comp_0 NA 11.0000 NA NA NA
## Nb_Comp_1 0.9236 0.8405 1.1368 0.8967 0.0975
## Nb_Comp_2 0.9763 0.2602 0.6706 0.2021 0.0975
## Nb_Comp_3 0.9906 0.1039 0.1895 0.2720 0.0975
## Nb_Comp_4 0.9908 0.1013 0.1390 -0.3376 0.0975
## Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof
## Nb_Comp_0 NA 37.010 1.000 6.5213 46.0709 47.7894
## Nb_Comp_1 0.8967 8.150 2.741 1.8665 4.5700 4.9558
## Nb_Comp_2 0.9175 -3.919 5.086 1.1825 2.1075 2.3949
## Nb_Comp_3 0.9400 -12.938 5.121 0.7488 0.8468 0.9628
## Nb_Comp_4 0.9197 -11.237 5.103 0.7387 0.8233 0.9358
## GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
## Nb_Comp_0 27.59 1 6.5213 46.0709 47.7894

## Nb_Comp_1 21.34 2 1.8906 4.1700 4.4588

## Nb_Comp_2 27.40 3 1.1089 1.5370 1.6861

## Nb_Comp_3 24.41 4 0.7431 0.7363 0.8256

## Nb_Comp_4 24.23 5 0.7846 0.8721 0.9965
## GMDL.naive
## Nb_Comp_0 27.59
                18.38
17.71
## Nb_Comp_1
## Nb_Comp_2
## Nb_Comp_3
## Nb_Comp_4
                     24.17
modpls2$press.ind
            [,1]
                     [,2]
                                   [,3]
## 1 0.5138445 2.765e-01 5.116e-02 0.0417100
## 2 0.0980315 4.634e-03 1.187e-03 0.0001432
## 3 0.0409695 2.452e-02 1.876e-02 0.0253325
## 4 0.2070668 2.516e-04 8.691e-04 0.0003176
## 5 0.1064217 1.681e-01 5.298e-02 0.0094285
## 6 0.1041921 1.059e-01 8.668e-03 0.0025259
## 7
      0.0014598 7.563e-03 3.869e-03 0.0036997
## 8 0.0170245 8.904e-03 6.584e-03 0.0055489
## 9 0.0040074 3.409e-04 3.675e-04 0.0004262
## 10 0.0105422 1.559e-04 8.417e-05 0.0002713
## 11 0.0332006 4.808e-05 7.562e-03 0.0082795
## 12 0.0000273 7.365e-02 3.736e-02 0.0412779
modpls2$press.tot
## [1] 1.1368 0.6706 0.1895 0.1390
data(pine)
Xpine<-pine[,1:10]</pre>
ypine<-pine[,11]</pre>
modpls3<-plsR(ypine, Xpine, 4)</pre>
```

```
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls3
## Number of required components:
## [1] 4
## Number of successfully computed components:
## [1] 4
## Coefficients:
## [,1]
## Intercept 8.350614
## x1 -0.002762
## x2
            -0.037978
## x3
           0.022306
-0.228437
## x4
## x9 -0.724570
## x10 -0.383506
## Information criteria and Fit statistics:
## AIC RSS_Y R2_Y R2_residY RSS_residY AIC.std DoF.dof
## Nb_Comp_0 82.42 20.800 NA NA 32.00 96.63 1.000
## Nb_Comp_1 63.62 11.075 0.4676 0.4676 17.04 77.83 3.176
## Nb_Comp_2 58.48 8.919 0.5712 0.5712 13.72 72.69 7.134
## Nb_Comp_3 56.55 7.920 0.6192 0.6192 12.18 70.77 8.778
## Nb_Comp_4 54.35 6.973 0.6648 0.6648 10.73 68.57 8.428
## sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive
## Nb_Comp_0 0.8062 0.6697 0.6992 -3.605 1
## Nb_Comp_1 0.5994 0.4048 0.4565 -9.875 2
## Nb_Comp_2 0.5762 0.4138 0.5212 -6.986 3
## Nb_Comp_3 0.5604 0.4071 0.5321 -6.261 4
## Nb_Comp_4 0.5222 0.3506 0.4548 -8.153 5
## sigmahat.naive AIC.naive BIC.naive GMDL.naive
## Nb_Comp_0 0.8062 0.6697 0.6992 -3.605
## Nb_Comp_1 0.5977 0.3789 0.4113 -11.451
## Nb_Comp_2 0.5453 0.3243 0.3648 -12.823
## Nb_Comp_3 0.5226 0.3062 0.3557 -12.757
## Nb_Comp_4 0.4990 0.2867 0.3432 -12.812
modpls3$Std.Coeffs
## Intercept 0.0000
## x1 -0.4420
            -0.3440
## x2
             0.2638
## x3
            -0.2949
## x4
           0.3932
## x5
## x6
             0.2228
## x7 -0.1176
## x8 -0.2582
## x9 -0.5091
## x10 -0.1219
```

```
modpls3$Coeffs
## [,1]
## Intercept 8.350614
## x1 -0.002762
          -0.037978
## x2
modpls4<-plsR(ypine, Xpine, 1)</pre>
## ____Component____ 1 ____
## ____Predicting X without NA neither in X nor in Y____
## ****____****
modpls4
## Number of required components:
## [1] 1
## Number of successfully computed components:
## [1] 1
## Coefficients:
## Intercept 4.1382957
## x1 -0.0007545
## x2
          -0.0114507
         -0.0108577
## x3
         -0.0631435
## x4
         -0.0067332
## x5
## x6
           -0.1459628
## x7
           -0.2077726
          -0.0430294
## x8
## x9
          -0.2061096
## x10 -0.0887273
## Information criteria and Fit statistics:
## AIC RSS_Y R2_residY RSS_residY AIC.std DoF.dof
## Nb_Comp_0 82.42 20.80 NA NA 32.00 96.63 1.000 ## Nb_Comp_1 63.62 11.07 0.4676 0.4676 17.04 77.83 3.176
## sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive
## Nb_Comp_0 0.8062 0.6697 0.6992 -3.605 1
## Nb_Comp_1 0.5994 0.4048 0.4565 -9.875 2
## sigmahat.naive AIC.naive BIC.naive GMDL.naive
## Nb_Comp_0 0.8062 0.6697 0.6992 -3.605
## Nb_Comp_1 0.5977 0.3789 0.4113 -11.451
modpls4$Std.Coeffs
## Intercept 0.00000
## x1 -0.12076
## x2
           -0.10373
## x7 -0.04823
```

```
## x8 -0.12552
## x9
            -0.14482
             -0.02821
## x10
modpls4$Coeffs
##
                   [,1]
## Intercept 4.1382957
## x1 -0.0007545
## x2
            -0.0114507
            -0.0108577
## x3
            -0.0631435
## x4
             -0.0067332
## x5
## x6
             -0.1459628
## x7
              -0.2077726
plsR(ypine, Xpine, 10, typeVC="standard")$InfCrit
## ____TypeVC____ standard ____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component___ 3 ____
## ____Component____ 4 ____
## ____ Component____ 5 ____
## ____ Component____ 6 ____
## ____Component____ 7 ____
## ____ Component____ 8 ____
## ____Component____ 9 ____
## ____Component____ 10 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
## AIC Q2cum_Y LimQ2_Y Q2_Y PRESS_Y RSS_Y R2_Y ## Nb_Comp_0 82.42 NA NA NA NA NA 20.800 NA
## Nb_Comp_1 63.62 0.38249 0.0975 0.38249 12.844 11.075 0.4676
## Nb_Comp_2 58.48 0.34836 0.0975 -0.05526 11.687 8.919 0.5712
## Nb_Comp_3 56.55 0.23688 0.0975 -0.17108 10.445 7.920 0.6192
## Nb_Comp_4 54.35 0.07000 0.0975 -0.21869 9.652 6.973 0.6648
## Nb_Comp_5 56.00 -0.07691 0.0975 -0.15796 8.074 6.899 0.6683
## Nb_Comp_6 57.70 -0.19969 0.0975 -0.11401 7.685 6.836 0.6714
## Nb_Comp_7 59.38 -0.27722 0.0975 -0.06463 7.277 6.770 0.6745
## Nb_Comp_8 61.21 -0.30603 0.0975 -0.02255 6.923 6.736 0.6762
## Nb_Comp_9 63.18 -0.39920 0.0975 -0.07134 7.217 6.730 0.6764
## Nb_Comp_10 65.16 -0.43744 0.0975 -0.02733 6.914 6.725 0.6767
## R2_residY RSS_residY PRESS_residY Q2_residY LimQ2
## Nb_Comp_0 NA 32.00 NA NA NA
## Nb_Comp_0 NA 32.00 NA NA NA NA
## Nb_Comp_1 0.4676 17.04 19.76 0.38249 0.0975
## Nb_Comp_2 0.5712 13.72 17.98 -0.05526 0.0975
## Nb_Comp_3 0.6192 12.18 16.07 -0.17108 0.0975
## Nb_Comp_4 0.6648 10.73 14.85 -0.21869 0.0975
## Nb_Comp_5 0.6683 10.61 12.42 -0.15796 0.0975
## Nb_Comp_6 0.6714 10.52 11.82 -0.11401 0.0975
## Nb_Comp_7 0.6745 10.42 11.20 -0.06463 0.0975
## Nb_Comp_8 0.6762 10.36 10.65 -0.02255 0.0975
## Nb_Comp_9 0.6764 10.35 11.10 -0.07134 0.0975
## Nb_Comp_10 0.6767 10.35 10.64 -0.02733 0.0975
## Q2cum_residY AIC.std DoF.dof sigmahat.dof AIC.dof BIC.dof
## Nb_Comp_0 NA 96.63 1.000 0.8062 0.6697 0.6992
```

```
## Nb_Comp_1 0.38249 77.83 3.176 0.5994 0.4048 0.4565
## GMDL.dof DoF.naive sigmahat.naive AIC.naive BIC.naive
## Mb_Comp_0 -3.605 1 0.8062 0.6697 0.6992
## Nb_Comp_1 -9.875 2 0.5977 0.3789 0.4113
## Nb_Comp_2 -6.986 3 0.5453 0.3243 0.3648
## Nb_Comp_3 -6.261 4 0.5226 0.3062 0.3557
## Nb_Comp_4 -8.153 5 0.4990 0.2867 0.3432
## Nb_Comp_5 -7.112 6 0.5055 0.3020 0.3715
## Nb_Comp_6 -7.233 7 0.5127 0.3187 0.4021
## Nb_Comp_7 -6.742 8 0.5204 0.3365 0.4347
## Nb_Comp_8 -6.038 9 0.5298 0.3572 0.4718
## Nb_Comp_9 -5.600 10 0.5410 0.3813 0.5140
## Nb_Comp_10 -5.288 11 0.5529 0.4076 0.5601
## GMDL.naive
## GMDL.naive
## Nb_Comp_0 -3.605
## Nb_Comp_1
                    -11.451
## Nb_Comp_2
                    -12.823
## Nb_Comp_3
                    -12.757
## Nb_Comp_4
                    -12.812
## Nb_Comp_5 -11.330
## Nb_Comp_6 -9.919
## Nb_Comp_7
                     -8.593
## Nb_Comp_8
                     -7.288
## Nb_Comp_9
                     -6.009
## Nb_Comp_10
                     -4.799
data(pine_full)
Xpine_full<-pine_full[,1:10]</pre>
ypine_full<-pine_full[,11]</pre>
modpls5<-plsR(log(ypine_full), Xpine_full, 1)</pre>
## ___******************************
## ____Component____ 1 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls5
## Number of required components:
## Number of successfully computed components:
## [1] 1
## Coefficients:
##
## Intercept 4.929e+00
## x1 -1.720e-03
## x2
               -1.328e-02
## x3 -1.015e-02
## x4 -5.912e-02
## x4 -5.912e-02
## x5 -7.839e-05
## x6 -1.404e-01
## x7 -2.032e-01
```

```
## x8 -7.828e-02
## x9 -3.298e-01
## x10 -4.233e-01
## Information criteria and Fit statistics:
## AIC RSS_Y R2_residY RSS_residY AIC.std DoF.dof
## Nb_Comp_0 204.2 107.23 NA NA 57.00 167.6 1.000 ## Nb_Comp_1 187.7 77.87 0.2738 0.2738 41.39 151.0 3.678
## sigmahat.dof AIC.dof BIC.dof GMDL.dof DoF.naive
## Nb_Comp_0 1.372 1.914 1.981 21.53 1
## Nb_Comp_1 1.186 1.521 1.705 16.08 2
## sigmahat.naive AIC.naive BIC.naive GMDL.naive
## Nb_Comp_0 1.372 1.914 1.981 21.53
## Nb_Comp_1 1.179 1.439 1.537 14.46
modpls5$Std.Coeffs
               [,1]
## Intercept 0.0000000
## x1 -0.1566583
## x2
          -0.0752549
## x3
          -0.0709127
## x4
          -0.0478586
## x5
          -0.0003216
## x6
          -0.0729950
## x7
          -0.0337170
         -0.1217004
## x8
## x9
         -0.1355664
## x10 -0.0848364
modpls5$Coeffs
## Intercept 4.929e+00
## x1 -1.720e-03
## x2
          -1.328e-02
## x3
         -1.015e-02
## x4
         -5.912e-02
## x5
         -7.839e-05
## x6
         -1.404e-01
## x7
         -2.032e-01
## x8
         -7.828e-02
## x9
         -3.298e-01
## x10
         -4.233e-01
cor(cbind(Xpine,ypine))
##
           x1 x2 x3 x4 x5 x6 x7
## x1 1.00000 0.1205 0.5376 0.3211 0.28377 0.5147 0.26849
## x2 0.12052 1.0000 0.3219 0.1367 0.11342 0.3007 -0.15222
## x5 0.28377 0.1134 0.2949 0.9047 1.00000 0.3062 -0.07871
     0.51467 0.3007 0.9796 0.4393 0.30623 1.0000 0.15068
## x6
      0.26849 -0.1522 0.1285 0.0581 -0.07871 0.1507 1.00000
## x7
       0.36015 0.2619 0.7590 0.7719 0.59620 0.8102 0.06001
## x8
      0.36372 0.3257 0.8768 0.4596 0.26746 0.9085 0.06325
## x9
## x10 -0.09993 0.1293 0.2062 -0.0454 -0.02458 0.1301 0.13820
## ypine -0.53022 -0.4555 -0.5639 -0.3579 -0.15777 -0.5702 -0.21175
## x8 x9 x10 ypine
## x1 0.36015 0.36372 -0.09993 -0.5302
## x2 0.26191 0.32567 0.12934 -0.4555
## x3 0.75896 0.87679 0.20618 -0.5639
## x4 0.77193 0.45959 -0.04540 -0.3579
```

```
## x5 0.59620 0.26746 -0.02458 -0.1578
## x6 0.81022 0.90853 0.13009 -0.5702
## x7 0.06001 0.06325 0.13820 -0.2117
## x8 1.00000 0.85364 0.05355 -0.5511
## x9 0.85364 1.00000 0.17452 -0.6359
## x10 0.05355 0.17452 1.00000 -0.1239
## ypine -0.55113 -0.63587 -0.12386 1.0000
XpineNAX21 <- Xpine</pre>
XpineNAX21[1,2] <- NA</pre>
modpls6<-plsR(ypine,XpineNAX21,4)</pre>
## Only naive DoF can be used with missing data
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X with NA in X and not in Y____
## ****____****
modpls6
## Number of required components:
## Number of successfully computed components:
## [1] 4
## Coefficients:
## [,1]
## Intercept 8.26449
## x1 -0.00280
## x2
           -0.03772
## x9
           -0.73079
## x10 -0.36353
## Information criteria and Fit statistics:
## AIC RSS_Y R2_Y R2_residY RSS_residY AIC.std
## Nb_Comp_0 82.42 20.800 NA NA 32.00 96.63

## Nb_Comp_1 63.69 11.099 0.4664 0.4664 17.08 77.91

## Nb_Comp_2 58.35 8.886 0.5728 0.5728 13.67 72.57

## Nb_Comp_3 56.37 7.875 0.6214 0.6214 12.11 70.58

## Nb_Comp_4 54.02 6.904 0.6681 0.6681 10.62 68.24
modpls6$Std.Coeffs
## [,1]
## Intercept 0.0000
## x1 -0.4482
## x2 -0.3419
            0.2640
## x3
## x10 -0.1156
```

```
modpls6$YChapeau[1,]
##
     1
## 2.063
modpls3$YChapeau[1,]
## 2.019
modpls6$CoeffC
## Coeff_Comp_Reg1 Coeff_Comp_Reg2 Coeff_Comp_Reg3 Coeff_Comp_Reg4
          0.3259
                       0.3206
                                    0.2795
plsR(ypine, XpineNAX21, 2, dataPredictY=XpineNAX21[1,])$ValsPredictY
## Only naive DoF can be used with missing data
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Predicting X with NA in X and not in Y____
             _____****
##
      [,1]
## [1,] 2.116
modpls7<-plsR(ypine,XpineNAX21,4,EstimXNA=TRUE)</pre>
## Only naive DoF can be used with missing data
## ____There are some NAs in X but not in Y____
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X with NA in X and not in Y____
## ****_____****
modpls7$XChapeau
##
                  x3
                                   x6 x7 x8 x9 x10
      x1 x2
                       x4
                              x5
## 1 1135 17.71 -1.55495 4.618 17.306 0.8486 1.479 6.106 1.327 1.648
## 2 1289 28.04 7.90830 4.624 17.149 1.5220 1.603 6.882 1.661 1.629
## 3 1250 28.27 4.04605 2.767 9.770 1.1703 1.692 3.758 1.285 1.725
## 4 1303 27.63 17.52126 3.253 10.847 2.1871 1.737 6.421 2.063 1.892
## 5 1348 34.86 5.39130 3.930 12.914 1.3214 1.704 5.987 1.653 1.682
## 6 1266 28.96 0.65947 4.266 15.814 0.9760 1.594 5.455 1.287 1.567
## 7 1433 36.99 23.67253 3.129 8.218 2.6460 1.876 7.545 2.575 2.006
## 8 1405 37.58 5.32566 5.728 20.723 1.3677 1.611 8.157 1.715 1.468
## 9 1181 21.81 2.88849 3.335 11.169 1.1333 1.620 5.083 1.505 1.813
## 10 1276 27.24 9.65604 3.772 11.989 1.6470 1.682 6.686 1.941 1.849
## 11 1260 20.95 16.48623 5.668 18.533 2.2445 1.575 10.893 2.672 1.926
## 12 1395 27.99 31.86798 5.563 21.665 3.2947 1.651 10.645 2.660 1.738
## 15 1247 26.43 3.58144 4.147 15.176 1.1926 1.599 5.794 1.451 1.647
## 16 1502 38.07 29.19896 5.557 18.393 3.1295 1.764 11.388 2.985 1.830
## 17 1451 35.95 22.31620 5.619 20.183 2.6096 1.688 10.076 2.463 1.670
## 18 1253 25.63 5.23193 4.606 14.948 1.3638 1.607 7.598 1.921 1.790
## 19 1328 32.78 9.61238 3.044 9.807 1.5946 1.753 5.100 1.686 1.784
## 20 1430 36.32 18.92696 4.739 15.290 2.3502 1.747 9.031 2.447 1.800
## 21 1378 27.82 29.36000 5.108 18.668 3.1133 1.682 10.240 2.700 1.836
## 22 1318 28.05 16.03323 4.365 14.743 2.1271 1.678 8.066 2.207 1.829
## 23 1326 31.51 5.58479 4.967 17.261 1.3774 1.618 7.530 1.773 1.632
## 24 1383 31.25 21.66718 4.793 16.261 2.5509 1.707 9.287 2.495 1.828
```

```
## 25 1463 42.03 10.45350 4.878 16.759 1.7108 1.726 7.618 1.893 1.571
## 26 1302 29.44 6.08841 4.752 15.708 1.4213 1.628 7.677 1.907 1.729
## 27 1390 30.08 19.80133 6.653 23.023 2.4960 1.594 12.073 2.740 1.734
## 29 1196 23.15 3.03239 3.307 10.802 1.1441 1.636 5.121 1.537 1.819
## 30 1265 24.41 14.03965 3.978 11.111 2.0070 1.696 8.365 2.462 2.036
## 31 1293 28.00 7.51088 5.069 19.458 1.5012 1.567 7.234 1.604 1.554
## 32 1250 22.53 10.77971 5.291 16.423 1.8201 1.591 9.906 2.473 1.924
## 33 1407 33.66 19.58236 5.059 16.211 2.4208 1.717 9.829 2.595 1.841
modpls7$XChapeauNA
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## 1
      0 17.71
             0
                   0
                       0
                           0
                                   0
## 2
       0 0.00
               0
                   0
                        0
                           0
                               0
                                    0
                                       0
                                            0
## 3
       0.00
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                            0
## 4
       0 0.00
               0
                   0
                        0
                           0
                               0
                                   0
                                       0
                                            0
## 5
       0 0.00
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
## 6
       0 0.00
               0
                   0
                       0
                           0
                                   0
## 7
       0 0.00
               0
                   0
                       0
                           0
                               0
                                   0
                                            0
## 8
      0 0.00 0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                            0
      0 0.00 0
                                      0
## 9
                   0 0
                                   Ω
                           Ω
                               0
                                            0
     0 0.00 0 0 0
                                      0
## 10
                           0
                               0
                                   0
                                            0
     0 0.00 0 0 0
                                      0
## 11
                           0
                                   0
                                            0
## 12
     0 0.00 0 0 0
                           0
                                   0 0
## 13
     0 0.00 0 0 0
                           0
                                   0 0
## 14
     0 0.00 0 0 0
                           0
                              0
                                   0 0
                                            0
     0 0.00 0 0 0
## 15
                           0
                              0
                                   0 0
                                            0
     0 0.00 0 0 0
## 16
                                      0
                           0
                               0
                                   0
                                            0
     0 0.00
               0 0
                                      0
## 17
                                   0
                       0
                           0
                               0
                                            0
## 18
      0.00
               0
                   0
                        0
                           0
                               0
                                   0
                                       0
                                            0
## 19
      0 0.00
               0
                   0
                        0
                           0
                                   0
## 20
      0.00
               0
                   0
                       0
                           0
                                   0
                                            0
## 21
      0.00
               0
                   0
                       0
                           0
                               0
                                   0
                                            0
## 22
                                      0
     0 0.00 0
                   0
                                   Ω
                       Ω
                           Ω
                               0
                                            \cap
## 23
     0 0.00 0 0 0
                              0
                           0
                                   0 0
                                            \cap
## 24
     0 0.00 0 0 0
                                  0 0
                           0
## 25
     0 0.00 0 0 0
                           0 0
                                  0 0
## 26
     0 0.00 0
                                   0
## 27
     0 0.00 0
                   0 0
                           0 0
                                   0 0
## 28
     0 0.00 0
                   0 0
                              0
                           0
                                   0
                                       0
## 29
     0 0.00 0
                   0 0
                              0
                           0
                                   0
                                       0
                                            0
      0 0.00
                      0
## 30
                   0
                           0
                                   0
               0
                               0
                                       0
                                            0
## 31
      0 0.00
               0
                   0
                       0
                           0
                               0
                                   0
                                       0
                                            0
## 32
         0.00
                0
                   0
                        0
                           0
                               0
                                   0
                                       0
                                            0
       0
       0.00
```

```
plsR(ypine,Xpine,10,typeVC="none")$InfCrit
plsR(ypine,Xpine,10,typeVC="standard")$InfCrit
plsR(ypine,Xpine,10,typeVC="adaptative")$InfCrit
plsR(ypine,Xpine,10,typeVC="missingdata")$InfCrit
plsR(ypine,XpineNAX21,10,typeVC="none")$InfCrit
plsR(ypine,XpineNAX21,10,typeVC="standard")$InfCrit
plsR(ypine,XpineNAX21,10,typeVC="adaptative")$InfCrit
plsR(ypine,XpineNAX21,10,typeVC="adaptative")$InfCrit
plsR(ypine,XpineNAX21,10,typeVC="missingdata")$InfCrit
```

Comparing the ordinal logistic PLSR results with Tenenhaus (2005) and Bastien et al. (2005)

____There are some NAs in X but not in Y____

Warning only 3 components could thus be extracted
____Predicting X with NA in X and not in Y____

___Component___ 1 ___ ## ___Component___ 2 ___ ## ___Component___ 3 ___

Number of required components:

modplsNA

set.seed(12345)

```
data(bordeaux)
Xbordeaux<-bordeaux[,1:4]</pre>
ybordeaux<-factor(bordeaux$Quality,ordered=TRUE)</pre>
modpls <- plsRglm(ybordeaux, Xbordeaux, 4, modele="pls-glm-polr")</pre>
## ___********************************
## Model: pls-glm-polr
## Method: logistic
## ____Component____ 1 ____
## ____Component____ 2 ____
## ____Component____ 3 ____
## ____Component____ 4 ____
## ____Predicting X without NA neither in X nor in Y____
## ****_____****
modpls
## Number of required components:
## [1] 4
## Number of successfully computed components:
## [1] 4
## Coefficients:
                [,1]
##
## 1|2 -85.50956
## 2|3 -80.55156
## Temperature 0.02427
## Sunshine 0.01379
## Heat -0.08870
## Rain -0.02590
## Information criteria and Fit statistics:
## AIC BIC Missclassed Chi2_Pearson_Y
## Nb_Comp_0 78.65 81.70 22 62.333
                          6
                                       9.357
## Nb_Comp_1 36.50 41.08
                                        8.569
## Nb_Comp_2 35.58 41.69
                             7
## Nb_Comp_3 36.27 43.90
                                        8.281
## Nb_Comp_4 38.16 47.32
                                         8.322
XbordeauxNA<-Xbordeaux
XbordeauxNA[1,1] <- NA</pre>
modplsNA <- plsRglm(ybordeaux, XbordeauxNA, 10, modele="pls-glm-polr")</pre>
## Only naive DoF can be used with missing data
## Model: pls-glm-polr
## Method: logistic
##
```

Warning : reciprocal condition number of t(cbind(res\$pp,temppp)[XXNA[1,],,drop=FALSE])%*%cbind(res\$pp,temppp)

```
## [1] 10
## Number of successfully computed components:
## [1] 3
## Coefficients:
##
                   [,1]
             -89.16630
## 1|2
## 2|3
            -84.11693
## Temperature 0.02461
## Sunshine
              0.01535
## Heat
              -0.09543
## Rain
              -0.02399
## Information criteria and Fit statistics:
##
            AIC BIC Missclassed Chi2_Pearson_Y
## Nb_Comp_0 78.65 81.70
                          22
                                         62.333
## Nb_Comp_1 36.21 40.79
                               6
                                           9.454
## Nb_Comp_2 35.30 41.40
                                 5
                                           8.235
## Nb_Comp_3 35.82 43.45
                                 7
                                            7.803
```

5.4 Main features of the package

The usefulness of this new package on R is certain as complexity of the datasets is going to increase with the technological progress. Medicine, biology and chemistry are domains which will be most confronted to difficulties like strongly correlated predictors and often in number higher than the number of subjects. Indeed, these kinds of problems are inevitable during the establishment of a mixing model, spectrum analysis or genomic data analysis.

This package enable to analyze these databases in a much more comprehensive way, as we see in section Application, than what was already proposed with other *R* PLS packages. However, it's essential for the user to understand that methods and different criteria include in this package, like these to choose the best number of components or the bootstraps techniques, are quite approximate. Nevertheless, some of them seem to be quite good indicators.

The future aim is to develop some new criteria and methods to select a relevant number of components and assess significance of predictors more reliably, despite the high level of complexity of the dataset that statisticians will have to deal with in the near future.

6 Export results to LATEX

Using the xtable package, the tables of results can easily and automatically be exported to LATEX. This is interesting for those who strive to produce reproductible research studies. We provide here an example for the crossvalidation results.

```
library(xtable)
resCVtab1 < -print(xtable(CVresults1[[1]][,c(1:6)],digits=c(0,1,1,0,0,-1,4),
                        caption="Cross-validation results, $k=8$, part one"))
## % latex table generated in R 3.1.0 by xtable 1.7-3 package
## % Thu Jul 17 14:40:54 2014
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrrrr}
##
    \hline
## & AIC & BIC & MissClassed & CV\_MissClassed & Q2Chisqcum\_Y & limQ2 \\
## Nb\_Comp\_0 & 145.8 & 148.5 & 49 & & \\
    Nb\_Comp\_1 & 119.1 & 124.3 & 30 & 50 & -2.8E+00 & 0.0975 \\
##
    Nb\_Comp\_2 & 106.0 & 113.9 & 20 & 64 & -1.7E+01 & 0.0975 \\
##
##
     Nb\_Comp\_3 & 100.3 & 110.9 & 18 & 48 & -1.9E+02 & 0.0975 \\
     Nb\_Comp\_4 & 96.2 & 109.4 & 20 & 49 & -1.5E+04 & 0.0975 \\
##
     Nb\_Comp\_5 & 94.2 & 110.0 & 18 & 47 & -2.5E+07 & 0.0975 \\
##
##
     Nb\_Comp\_6 & 93.0 & 111.5 & 16 & 51 & -9.1E+10 & 0.0975 \\
##
    Nb\_Comp\_7 & 94.1 & 115.3 & 17 & 47 & -1.2E+15 & 0.0975 \\
```

```
##
    Nb\_Comp\_8 & 94.1 & 117.9 & 17 & 41 & -4.4E+21 & 0.0975 \\
    Nb\_Comp\_9 & 93.4 & 119.9 & 16 & 43 & -4.2E+31 & 0.0975 \\
##
    Nb\_Comp\_10 & 95.3 & 124.4 & 17 & 47 & -5.2E+45 & 0.0975 \\
     \hline
##
## \end{tabular}
## \caption{Cross-validation results, $k=8$, part one}
## \end{table}
resCVtab2 < -print(xtable(CVresults1[[1]][,c(7:11)],digits=c(0,-1,-1,1,1,3),\\
                        caption="Cross-validation results, $k=8$, part two"))
## \% latex table generated in R 3.1.0 by xtable 1.7-3 package
## % Thu Jul 17 14:40:54 2014
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrrrr}
    \hline
## & Q2Chisq\_Y & PREChi2\_Pearson\_Y & Chi2\_Pearson\_Y & RSS\_Y & R2\_Y \\
##
    \hline
## Nb\_Comp\_0 & & & 104.0 & 25.9 & \\
## Nb\_Comp\_1 & -2.8E+00 & 3.9E+02 & 101.7 & 19.5 & 0.246 \\
## Nb\_Comp\_2 & -3.9E+00 & 5.0E+02 & 111.0 & 16.2 & 0.376 \\
## Nb\_Comp\_3 & -9.4E+00 & 1.2E+03 & 102.5 & 14.9 & 0.427 \\
   Nb\_Comp\_4 & -7.6E+01 & 7.9E+03 & 122.8 & 13.7 & 0.470 \\
   Nb\_Comp\_5 & -1.7E+03 & 2.1E+05 & 148.7 & 13.0 & 0.497 \\
    Nb\_Comp\_6 & -3.7E+03 & 5.4E+05 & 141.1 & 12.4 & 0.520 \\
##
    Nb\_Comp\_7 & -1.4E+04 & 1.9E+06 & 149.1 & 12.2 & 0.531 \\
##
    Nb\_Comp\_8 & -3.6E+06 & 5.3E+08 & 79.8 & 12.4 & 0.522 \\
##
    Nb\_Comp\_9 & -9.5E+09 & 7.6E+11 & 73.3 & 12.1 & 0.532 \\
##
    Nb\_Comp\_10 & -1.2E+14 & 9.0E+15 & 74.4 & 12.0 & 0.535 \\
     \hline
## \end{tabular}
## \caption{Cross-validation results, $k=8$, part two}
## \end{table}
```

You can then either copy-paste this code into a LaTeXfile or apply the \Sexpr function to the two R objects resCVtab1 and resCVtab2 if you are using a knitr .Rnw file.

	AIC	BIC	MissClassed	$CV_{-}MissClassed$	Q2Chisqcum_Y	limQ2
Nb_Comp_0	145.8	148.5	49			
Nb_Comp_1	119.1	124.3	30	50	-2.8E+00	0.0975
Nb_Comp_2	106.0	113.9	20	64	-1.7E + 01	0.0975
Nb_Comp_3	100.3	110.9	18	48	-1.9E+02	0.0975
Nb_Comp_4	96.2	109.4	20	49	-1.5E+04	0.0975
Nb_Comp_5	94.2	110.0	18	47	-2.5E+07	0.0975
Nb_Comp_6	93.0	111.5	16	51	-9.1E+10	0.0975
$Nb_{-}Comp_{-}7$	94.1	115.3	17	47	-1.2E + 15	0.0975
Nb_Comp_8	94.1	117.9	17	41	-4.4E+21	0.0975
Nb_Comp_9	93.4	119.9	16	43	-4.2E+31	0.0975
Nb_Comp_10	95.3	124.4	17	47	-5.2E+45	0.0975

Table 1: Cross-validation results, k = 8, part one

7 Session Information

-	Q2Chisq_Y	PREChi2_Pearson_Y	Chi2_Pearson_Y	RSS_Y	R2_Y
Nb_Comp_0			104.0	25.9	
Nb_Comp_1	-2.8E+00	3.9E+02	101.7	19.5	0.246
Nb_Comp_2	-3.9E+00	5.0E+02	111.0	16.2	0.376
Nb_Comp_3	-9.4E+00	1.2E + 03	102.5	14.9	0.427
Nb_Comp_4	-7.6E + 01	7.9E + 03	122.8	13.7	0.470
Nb_Comp_5	-1.7E + 03	2.1E+05	148.7	13.0	0.497
Nb_Comp_6	-3.7E + 03	5.4E+05	141.1	12.4	0.520
Nb_Comp_7	-1.4E+04	1.9E + 06	149.1	12.2	0.531
Nb_Comp_8	-3.6E + 06	5.3E+08	79.8	12.4	0.522
Nb_Comp_9	-9.5E+09	7.6E + 11	73.3	12.1	0.532
Nb_Comp_10	-1.2E+14	9.0E+15	74.4	12.0	0.535

Table 2: Cross-validation results, k = 8, part two

```
## R version 3.1.0 (2014-04-10)
## Platform: x86_64-apple-darwin13.1.0 (64-bit)
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats
                graphics grDevices utils
                                                   datasets methods
## [7] base
##
## other attached packages:
## [1] xtable_1.7-3 plsdof_0.2-6 MASS_7.3-33 plsRglm_1.1.0
## [5] knitr_1.6
##
## loaded via a namespace (and not attached):
## [1] BiocStyle_1.2.0 bipartite_2.04 boot_1.3-11
## [4] car_2.0-20 digest_0.6.4 evaluate_0.5.5
## [7] fields_7.1 formatR_0.10 grid_3.1.0
## [10] highr_0.3 igraph_0.7.0 lattice_0.20-29
## [13] maps_2.3-7 mvtnorm_0.9-99992 nnet_7.3-8
                                                lattice_0.20-29
## [13] maps_2.3-7
## [16] permute_0.8-3
                            sna_2.3-2
                                                 spam_0.41-0
## [19] stringr_0.6.2 tools_3.1.0
                                               vegan_2.0-10
```

References

- V. B. Astler and F. A. Coller. The prognostic significance of direct extension of carcinoma of the colon and rectum. Annals of surgery, 139(6):846, 1954.
- P. Bastien, V. Esposito-Vinzi, and M. Tenenhaus. PLS generalised linear regression. *Computational Statistics & Data Analysis*, 48(1):17–46, 2005.
- A. Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions, 2014. R package version 1.3-11.
- A. C. Davison and D. V. Hinkley. *Bootstrap Methods and Their Applications*. Cambridge University Press, Cambridge, 1997.
- B. Efron and R. J. Tibshirani. An introduction to the bootstrap, volume 57. Chapman & Hall/CRC, 1993.
- Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, and the R Core Team. caret: Classification and Regression Training, 2014. URL http://CRAN.R-project.org/package=caret. R package version 6.0-30.

- D. M. Haaland and J. D. T. Howland. Weighted partial least squares method to improve calibration precision for spectroscopic noise-limited data. In *The eleventh international conference on fourier transform spectroscopy*, volume 430 of *AIP Conference Proceedings*, pages 253–256. 1998.
- A. Höskuldsson. PLS regression methods. Journal of Chemometrics, 2(3):211-228, 1988.
- N. Kettaneh-Wold. Analysis of mixture data with partial least squares. *Chemometrics and Intelligent Laboratory Systems*, 14(1):57–69, 1992.
- N. Krämer and M. Sugiyama. The degrees of freedom of partial least squares regression. *Journal of the American Statistical Association*, 106(494), 2011.
- A. Lazraq, R. Cleroux, and J.-P. Gauchi. Selecting both latent and explanatory variables in the PLS1 regression model. *Chemometrics and Intelligent Laboratory Systems*, 66(2):117–126, 2003.
- B. Li, J. Morris, and E. B. Martin. Model selection for partial least squares regression. *Chemometrics and Intelligent Laboratory Systems*, 64(1):79–89, 2002.
- N. Meyer, M. Maumy-Bertrand, and F. Bertrand. Comparaison de variantes de régressions logistiques pls et de régression pls sur variables qualitatives: application aux données d'allélotypage. Journal de la Société Française de Statistique, 151(2):1–18, 2010.
- L. H. Moulton and S. L. Zeger. Bootstrapping generalized linear models. *Computational Statistics & Data Analysis*, 11(1):53–63, 1991.
- T. Naes and H. Martens. Comparison of prediction methods for multicollinear data. *Communications in Statistics Simulation and Computation*, 14(3):545–576, 1985.
- T. L. Shaffer. A unified approach to analyzing nest success. Auk, 121:526—-540, 2004.
- M. Tenenhaus. La régression PLS, Théorie et pratique. Éditions Technip, Paris, 1998.
- M. Tenenhaus. La régression logistique PLS. In J.-J. Droesbeke, M. Lejeune, and G. Saporta, editors, *Modèles statistiques pour données qualitatives*. Éditions Technip, Paris, 2005.
- R. Tomassone, S. Audrain, E. Lesquoy-de Turckeim, and C. Millier. *La régression, nouveaux regards sur une ancienne méthode statistique.* Actualités scientifiques et agronomiques. Masson, Paris, 1992.
- S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate Imputation by Chained Equations in R. *Journal of Statistical Software*, 45(3):1-67, 2011. URL http://www.jstatsoft.org/v45/i03/.
- H. Wold et al. Estimation of principal components and related models by iterative least squares. In P. R. Krishnaiaah, editor, *Multivariate analysis*, pages 391–420. Academic Press, New York, 1966.
- S. Wold, H. Martens, and H. Wold. The multivariate calibration problem in chemistry solved by the PLS method. *Matrix pencils*, pages 286–293, 1983.
- S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, III. The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 5(3):735–743, 1984.
- S. Wold, M. Sjöström, and L. Eriksson. PLS-regression: a basic tool of chemometrics. Chemometrics and intelligent laboratory systems, 58(2):109–130, 2001.