A PROOF OF THE CARTAN-DIEUDONNÉ THEOREM

Jules Jacobs

December 3, 2021

The Cartan-Dieudonné theorem is fundamental theorem about the geometry of n-dimensional space: any orthogonal transformation A can be written as a sequence of at most n reflections. The proofs that I could find go by induction on n and hence have to relate maps on n-1 dimensional spaces to maps on n dimensional spaces. This leads to technicalities or handwaving. We'll see a slightly modified proof that stays in n dimensions by doing induction on dim ker(A-I).

1 THE CARTAN-DIEUDONNÉ THEOREM

The theorem we want to prove is:

Theorem 1.1 (Cartan-Dieudonné). An orthogonal transformation $A : \mathbb{R}^n \to \mathbb{R}^n$ can be written as a sequence of $k \le n$ reflections in vectors $v_1, v_2, \dots, v_k \in \mathbb{R}^n$:

$$A = R_{\nu_1} R_{\nu_2} \cdots R_{\nu_k}$$

where $k = n - \dim \ker(A - I)$.

The space $\ker(A - I) = \{v \in \mathbb{R}^n \mid Av = v\}$ is the subspace where the transformation A is the identity. So the Cartan-Dieudonné theorem usually decomposes an orthogonal tranformation into n reflections, but we save one reflection per direction where A is the identity. We shall see that this is the minimum number: it cannot be done with even fewer reflections.

The idea of the proof is that if we have a vector u such that $Au \neq u$, then we can compose A with the refection $R_{(Au-u)}$, which sends Au back to u, in order to make A also the identity in that direction. This reflection does not disturb any of the directions where A was already the identity. We prove the Cartan-Dieudonné theorem by iterating this processes until A is the identity in all directions. We shall now investigate this in more detail.

2 THE GEOMETRY OF ORTHOGONAL TRANFORMATIONS

A linear map $A : \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal transformation if one of the following equivalent conditions holds:

- 1. $A^TA = I$ (or equivalently, $A^T = A^{-1}$).
- 2. $\langle Av, Aw \rangle = \langle v, w \rangle$ for all v, w.
- 3. ||Av|| = ||v|| for all v.

Examples of orthogonal transformations are rotations and reflections.

The reflection $R_{\nu}: \mathbb{R}^n \to \mathbb{R}^n$ in a vector ν is defined as follows:

Definition 2.1.
$$R_{\nu} \triangleq I - 2 \frac{\nu \nu^T}{|\nu|^2}$$

On \mathbb{R}^3 for instance, $R_{(1,0,0)}(x,y,z) = (-x,y,z)$.

A reflection R_{ν} is the identity on a subspace of dimension n-1 (namely the plane orthogonal to ν), and really does something on a subspace of dimension 1. Similarly, a rotation is the identity

on a subspace of dimension n-2 and really does something on a subspace of dimension 2. Note that the phrase "really does something" must be interpreted with care: a rotation moves almost all points of \mathbb{R}^3 ; only the axis of rotation is left fixed. But still, because these are linear maps, the action can be decomposed into a plane of rotation, and the identity on the subspace orthogonal to the plane.

The subspace on which A is the identity is $ker(A - I) = \{u \mid Au = u\}$. The subspace orthogonal to ker(A - I) on which A really does something can be characterized in two equivalent ways:

Lemma 2.1. If A is an orthogonal transformation, then $ker(A - I)^{\perp} = im(A - I)$.

Proof.
$$\ker(A - I)^{\perp} = \operatorname{im}((A - I)^{\mathsf{T}}) = \operatorname{im}(A^{\mathsf{T}} - I) = \operatorname{im}(A^{-1} - I) = \operatorname{im}(A - I).$$

This space is important because its dimension determines how many reflections we need when decomposing A: for directions in which A already is the identity we don't need any reflections.

The idea behind the proof of the Cartan-Dieudonné theorem is that we can make A be the identity in more directions by composing it with reflections, and repeat this until it is the identity in all directions. This is given in the following lemma:

Lemma 2.2. If A is an orthogonal tranformation that is the identity in k directions, then $R_{\nu}A$ is the identity in k+1 directions, where ν is **any** nonzero vector $\nu \in \text{im}(A-I) \setminus \{0\}$ (i.e., in the subspace where A really does something).

Proof. Let $v \in \text{im}(A - I) \setminus \{0\}$, so there is u such that $v = Au - u \neq 0$. Then (1) R_vA is still the identity everywhere A is the identity (i.e., on ker(A - I)), and (2) additionally R_vA is also the identity on $u \notin \text{ker}(A - I)$.

To show (1), note that R_{ν} is the identity on all directions orthogonal to ν , which by Lemma 2.1 includes everything in ker(A – I).

To show (2), we can do an explicit calculation to show $R_{(Au-u)}Au = u$, but a picture is more instructive.

To prove Theorem 1.1, we can repeatedly apply this lemma until A is the identity in all directions, so that we have $R_{\nu_k} \cdots R_{\nu_2} R_{\nu_1} A = I$, which gives $A = R_{\nu_1} R_{\nu_2} \cdots R_{\nu_k}$.

This is also the minimum number of reflections: if A can be written as $k \le n$ reflections, then there are at least n-k directions where A is the identity (e.g. if A can be written as one reflection, then it is the identity in n-1 directions). The only directions in which $R_{\nu_1}R_{\nu_2}\cdots R_{\nu_k}$ is potentially not the identity is $\text{span}\{\nu_1,\nu_2,\cdots,\nu_k\}$.