Proof:

Since sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$

We have $(\nabla \epsilon > 0)(\exists n \in N)(\nabla m \ge n)[|a_m - L| < \epsilon]$

For any fixed number M>0

 $\mathbf{M}|a_m - \mathbf{L}| < \mathbf{M}\epsilon \text{ holds for } (\nabla \mathbf{M}\epsilon > 0)(\exists \mathbf{n} \in \mathbf{N})(\nabla \mathbf{m} \geq \mathbf{n})$

So, the sequence $\{Ma_n\}_{n=1}^\infty$ tends to the limit ML as $n \to \infty$

The statement has been proved.