Assignment 1

Chayapon Thunsetkul 6280742

September 21, 2022

- **Question 1.** 1. There are 5 available elements that an element can be mapped to. Hence, there are total of 5^5 possible mappings for the set S.
 - 2. Since an element can only be mapped to a unique element. The total number of bijections from S to itself is equal to the number of the permutations of the elements in S, which is 5!.
- **Question 2.** 1. Suppose f and g is injective then for all $a \in A$ we must have a unique $b \in B$ such that f(a) = b. Similarly, for all $b \in B$, we have a unique $c \in C$ such that g(b) = c. Then, it follows that for all $a \in A$ we have a unique element $c \in C$ such that c = g(b) = g(f(a)).
 - 2. Suppose $g \circ f$ is surjective, then for every $c \in C$ there must exist at least one element $a \in A$ such that $g \circ f(a) = c$. Now, suppose g is injective, then for all $b \in B$ there must exist a unique element $c \in C$ such that g(b) = c. However, since $g \circ f$ is onto, every elements $b \in B$ must have at least an element $a \in A$ such that f(a) = b. Hence, f must be surjective.
- **Question 3.** The relation is not an equivalence relation since it doesn't satisfy the transitive property. For example, by definition of the relation, $1 \sim 2$ and $2 \sim 3$ but $1 \not\sim 3$.
- **Question 4.** Suppose $a, b \in S$ and $b \in [a]$. Then, for all $b_i \in [b]$, $b_i \sim b$ and by transitive property, $b_i \sim a$. Hence, all b_i must be elements of [a]. Similarly, by transitive property, all $a_i \in a$ are elements of [b]. We have $[b] \subset [a]$ and $[a] \subset [b]$. Hence, [b] = [a].
- **Question 5.** For all $a \in S$ we have $f(a) = f(a) \implies a \sim a$. This satisfies the reflexive property. Next, for all $a, b \in S$ that satisfies f(a) = f(b), we must also have f(b) = f(a), hence, $a \sim b$ and $b \sim a$. This satisfies the symmetric property. Now, for all $a, b, c \in S$ that satisfy f(a) = f(b) and f(b) = f(c). We must also have f(a) = f(c). Hence, we have $a \sim b$, $b \sim c$, and $a \sim c$. This satisfies the transitive property. We conclude that the relation \sim is an equivalence relation.
- **Question 6.** The relation \sim is not an equivalence relation since it does not satisfies the transitive property. A counter-example is $1 \sim 3$ and $3 \sim 6$ but $1 \not\sim 6$.
- Question 7. Assume that $\forall a, b \in \mathbb{N}, p | ab$ and further assume that p does not divide one of a or b. Without the loss of generality, let's assume that p doesn't divide a. It follows that a and p are co-primes and hence for some intergers r, s, we must have ar + ps = 1. Then, we have

$$b = b(ar + ps)$$
$$b = abr + ps$$

Since, p divides ab, there exist an integer k such that

$$b = pkr + ps$$
$$b = p(kr + s)$$

Hence, p must divides b.

Question 8. Example: $3 \times 5 = 3 \times 0$ but $5 \neq 0$. For an equivalence classes \mathbb{Z}_p where p is a prime. Then, for all $a \in \mathbb{Z}_p$, we have $ar + ps = \gcd(a, p) = 1$. It follows that ar = 1 modulo p and ra = 1 modulo p. Hence, r is an inverse of a. Thus, for any $b, c \in \mathbb{Z}_4$, if ab = ac, we have b = c.

1

- Question 9. For all $n \in \mathbb{Z}$, we have 7(5n+3)-5(7n+4)=1. It follows that the gcd(5n+3,7n+4)=1 and thus, 5n+3 and 7n+4 are relatively prime.
- **Question 10.** 1. Let n = 8 then both n and n + 1 are composite.
 - 2. Let n=5!. We have n is composite. Also, $n+1=11^2$ is composite. Futhermore, it follows that $n+i, i\in\{2,3,4,5\}$ are divisible by i.