Comparative Performance Evaluation of Multi-GPU MLFMM Implementation for 2-D VIE Problems

<u>Carl Pearson</u>, Mert Hidayetoglu, Wei Ren, Weng Cho Chew, Wen-Mei Hwu University of Illinois Urbana-Champaign

Outline

This work: compare MLFMM performance on two systems

Brief introduction to Multilevel Fast Multipole Method

Some Implementation Notes

- Matrix Representation of MLFMM Operations
- Kernels and Optimizations
- MPI Parallelization
- Overlapping Communications with Computations

Results

Blue Waters and IBM S822LC

MLFMM

- Solve large scale electromagnetic wave equations numerically
 - Electromagnetics
 - Acoustics
 - Geophysics
 - Radar Cross Section Calculations
 - Medical Imaging
 - Radar Imaging
 - Antenna Design

Algorithmic Speedup with MLFMM

- Direct Methods: $O(N^3)$
- Iterative Methods: $O(N^2)$
- Fast Multipole Method: $\mathcal{O}(N^{1.4}) \mathcal{O}(N^{1.5})$
- Multilevel Fast Multipole Algorithm: $O(N) O(N \log N)$

MLFMM has desirable time and memory scaling characteristics

From Approximate to Full-Wave

MLFMM Schematic

MLFMA Operation	Structure
Multipole & Local Expansions	Dense
Interpolations & Anterpolations	Band-Diagonal
Multipole & Local Shiftings	Diagonal
Translations	Diagonal
Near-Field Interactions	Sparse

Matrix Formulation of Interpolation

Kernels and Optimizations

Kernel	Mnemonic	MLFMM Operation	
P2M	Particle-to-multipole	Aggregation	
M2M	Multipole-to-multipole		
M2L	Multipole-to-local	Translation	
L2L	Local-to-local	Disaggragation	
L2P	Local-to-particle	Disaggregation	
P2P	Particle-to-particle	Nearfield	

Traditional GPU optimizations:
Shared-memory / register tiling
Thread coarsening

MLFMM Tree Parallelization

Aggregation / Disaggregation

No communication

Translation

Inter-rank communication

Execution Environments

Blue Waters, National Petascale Computing Facility, University of Illinois 22,500 XE CPU and 4,200 XK GPU nodes 1.5 PB RAM, 13.34 PF peak performance IBM S822LC "Minsky" system

	Blue Waters XK	Blue Waters XE	S822LC "Minsky"
CPU 0	Opteron 6276	Opteron 6276	Power8
CPU 1		Opteron 6276	Power8
GPU 0	NVIDIA K20X (Kepler, 6GB)		NVIDIA P100 (Pascal, 16 GB)
GPU 1			NVIDIA P100 (Pascal, 16 GB)
GPU 2			NVIDIA P100 (Pascal, 16 GB)
GPU 3			NVIDIA P100 (Pascal, 16 GB)
RAM	32 GB	64 GB	512 GB

MPI Rank Arrangement

Blue Waters

S822LC "Minsky"

Eliminating Communication Overhead

Multi-Rank MLFMM GPU Scaling

Execution Setup	MLFMM Time (ms)
Blue Waters (1 MPI Rank)	619
Blue Waters (4 MPI Rank)	156 (3.96x)
Blue Waters (16 MPI Rank)	40 (15.58x)
Minsky (1 MPI Rank)	118.92
Minsky (4 MPI Rank)	30.54 (3.89x)

Scalability limits not reached at 16 nodes for us...

...but in the future, fat nodes can reduce communication costs and improve scalability

Application Time in MLFMM

MLFMM is the majority of the execution time

MLFMM CPU/GPU Scaling

 $1T \rightarrow 32T$: 17x (16 fp units) $32T \rightarrow 1$ GPU: 3.1x

Minsky CPU Speedup over BW: 1.8x Minsky 4-GPU Speedup over BW: 5.3x Minsky Node Speedup over BW: 21x

 $160T \rightarrow 1 GPU: 9.5x$

TILLINOIS

MLFMM Kernel Breakdown

P2P is most of the execution time
L2L has largest speedup from K20x to P100

Kepler vs. Pascal

Feature	K20x Kepler(GK110)	P100 Pascal (GP100)
Core Clock	732 MHz	1328 MHz
Global Memory Bandwidth	250 GB/s	720 GB/s
Peak GFLOPs(single / double)	3935 /1312	9519 /4760
L2	1.5 MB	4 MB
# of SMs	14	56
Register File	256 KB	256 KB
L1	48 / 32 / 16 KB	0 KB
Shared Memory	16 / 32 / 48 KB	64 KB
"CUDACores"	192	64
Max Resident Blocks	16	32

Pascal: More registers and shared-memory per thread, more warps per SM.

Lessons from Nearfield Kernel

Longest-running kernel (60% of MLFMM time)

87% threads inactive in inner loop mod/div on 2x: immediate 1.3x speedup

Important to give the compiler information and understand profiling results

Lessons from Disaggregation Kernel

	BW	Minsky	Speedup
L2L Time(ms)	78.5	9.9	8.0
MLFMM Time (ms)	633	118.9	5.3

L2L Kernel	BW	Minsky
Theoretical Occupancy	43.8	56.2
Achieved Occupancy	30.7	42.1

Occupancy limited by shared memory in both cases
Relative performance improves due to increased shared memory size

Conclusion

- Low-effort port of GPU MLFMM to fat nodes yields good speedup
- Fat nodes will improve scalability for massively parallel MFLMM
- GPU architectures seem to be moving in a beneficial direction

Thank you pearson@illinois.edu

MLFMM GPU Performance Data

Kernel	BW 32T (ms)	BW K20x (ms)	BW Speedup (GPU /32T)	Minsky 160T (ms)	Minsky P100 (ms)	Minsky Speedup (GPU / 160T)	Speedup (P100 /K20x)
P2M	127.1	30.9	4.1	72.1	6.4	11.3	4.8
M2M	156.3	37.3	4.2	102.6	6.6	15.6	5.7
M2L	189.6	72.3	2.6	82.7	10.2	8.1	7.1
L2L	91.6	78.5	1.2	101.6	9.9	10.3	8.0
L2P	196.2	28.0	7.0	68.4	5.5	12.4	5.0
P2P	1117.4	361.9	3.1	590.5	72.5	8.1	5.0
Iteration Time	1962.1	633.0	3.1	1074.8	118.9	9.0	5.3

MLFMM CPU Performance Data

Step	Blue Waters XE 32T(ms)	Minsky 160T (ms)	Speedup BW 32T / 1T	Speedup Minsky 160T / 1T	Speedup Minsky / BW
P2M	127.1	72.1	17.9	25.2	1.8
M2M	156.3	102.6	20.2	24.5	1.5
M2L	189.6	82.7	12.5	19.2	2.3
L2L	91.6	101.6	34.6	28.4	0.9
L2P	196.2	68.4	11.4	26.6	2.9
P2P	1117.4	590.5	18.5	29.0	1.9
MLFMM	1962.1	1074.8	17.3	25.8	1.8

