

BITSPilani

CS F111: Computer
Programming Semester 2021-22)

Lect 5: Flowchart & Algorithm

Dr. Nikumani Choudhury
Asst. Prof., Dept. of Computer Sc. & Information
Systems nikumani@hyderabad.bits-pilani.ac.in

Hyderabad Campus

Algorithm: Stepwise solution to the given problem

- Each step should be precise & unambiguous
- Each step should terminate

Flowchart: pictorial representation of algorithm

Flow Chart Symbols

Example 1: Adding three numbers

- 1. START
- 2. Read A, B, C
- 3. S = A + B + C
- 4. Print S
- 5. STOP

Ex2 - Compute the sum, product and average of 2 numbers

- Problem: Design an algorithm to find the sum, product and average of 2 numbers
- Input
 - 2 numbers
- Output
 - Sum, product and average of the numbers

and

innovate

achieve

lead

average of 2 numbers

- 1. START
- 2. Read n1,n2
- 3. sum = n1 + n2
- 4. product = n1 * n2;
- **5.** average = sum / 2;
- 6. Print sum, product and average
- 7. STOP

Example 4: Larger of two numbers

- 1. START
- 2. Read X,Y
- 3. if X > Y
- 3.1 Print X
- 4. else
 - 4.1 Print Y
- 5. STOP

Start

- Problem: Design an algorithm to find the minimum and maximum of 2 numbers
- Input
 - 2 numbers
- Output
 - Minimum and maximum of the numbers

CS F111

Ex 5 - Compute the minimum and maximum of 2 numbers

- 1. START
- 2. Read n1, n2
- 3. if n1 < n2
- 3.1 min = n1
- 3.2 max = n2
- 4. else
- 4.1 min = n2
- 4.2 max = n1
- 5. Print min and max
- 6. STOP

Ex6 - Compute the minimum of 3 numbers

- Problem: Design an algorithm to find the minimum of 3 numbers
- Input
 - 3 numbers
- Output
 - Minimum of the numbers

Ex6 - Compute the minimum of 3 numbers


```
1. START
```

- 2. Read n1, n2, n3 // consider n1, n2, n3 to be distinct
- 3. if n1 < n2
- 3.1 if n1 < n3
- 3.1.1 min = n1
- 3.2 else
- $3.2.1 \quad min = n3$
- 4. else
- 4.1 if n2 < n3
- $4.1.1 \quad min = n2$
- 4.2 else
- 4.2.1 min = n3
- 5. Print min
- 6. STOP

Ex6- flowchart for compute the minimum of 3

numbers

ovate achieve

- 1. START
- 2. Read n1, n2, n3
- 3. $\min = n1$ // (assume that n1 is min)
- 4. if n2 < min
- 4.1 $\min = n2$
- 5. if n3 < min
- 5.1 min = n3
- 6. Print min
- 7. STOP

innovate

Can you tell the output?

Consider the flowchart shown. Give the value of BONUS under the following conditions:

(a)
$$X = 20$$
, $Y = 10$

(b)
$$X = 10$$
, $Y = 20$

- (a) BONUS = 600
- (b) BONUS = 500

Try: Example Algorithm

Exchanging/ Swapping the values of two variables

a b	a b
45 73	73 45
(Before Exchange)	(After Exchange)
a b 73 73 a=b b=a	a b 45 45 b=a

- ✓ Let us try the solution using a third variable.
- Can you solve it <u>without using</u> any additional variable?

```
1 #include<stdio.h>
 2 int main()
4 int a=10, b=20;
5 printf("Before swap a=%d b=%d",a,b);
6 a=a+b;//a=30 (10+20)
7 b=a-b;//b=10 (30-20)
8 a=a-b;//a=20 (30-10)
9 printf("\nAfter swap a=%d b=%d",a,b);
10 return 0;
11 }
```

```
1 #include<stdio.h>
2 int main()
4 int a=10, b=20;
   printf("Before swap a=%d b=%d",a,b);
6 a=a*b;//a=200 (10*20)
   b=a/b;//b=10 (200/20)
8 a=a/b;//a=20 (200/10)
   printf("\nAfter swap a=%d b=%d",a,b);
10 return 0;
11 }
```

Y / 3

Before swap a=10 b=20 After swap a=20 b=10

...Program finished with exit code 0
Press ENTER to exit console.

Before swap a=10 b=20 After swap a=20 b=10

...Program finished with exit code 0
Press ENTER to exit console.

Draw a flowchart for printing values 1, 2, 3...,5

- Initialization
- The Loop Variable
- Loop Exit Test

Algorithm

- 1. START
- 2. for A = 1 to 5
- 2.1 Print A
- 3. STOP

CS F111

CS F111

CS F111

CS F111

Figure-1

CS F111

lead

Figure-1

lead

Figure-1

40

8/10/2018

42

CS F111

BITS Pilani, Hyderabad Campus

lead

Figure-1

8/10/2018

lead

Loops: Repetitive operations

Loops: Repetitive operations

Sum 1 + 2 + 3 ... + N

- 1. START
- 2. Read N
- 3. sum = 0
- 4. for i = 1 to N
- $4.1 \quad \text{sum} = \text{sum} + i$
- 5. print sum
- 6. STOP

CS F111

50

Sum of Odd numbers till N

- 1. START
- 2. Read N
- 3. sum = 0
- 4. for i = 1 to N step +2
- $4.1 \quad \text{sum} = \text{sum} + i$
- 5. print sum
- 6. STOP

Even numbers 20, 18, 16 ... 0

- 1. START
- 2. for i = 20 to 0 step -2
- 2.1 print i
- 3. STOP