

X-ray tube and radiation

- Target and filament: often tungsten
- X-rays: photons generated by accelerated electrons
- Maximum photon energy: $hv_{max} = T_0 = eV$
- Power P=V x I; unit kW
- Radiation yield:

Energy emitted as X-ray radiation ~ 0.1% - 2%

Total electron kinetic energy

for 10 keV - 200 keV electrons (increasing with kinetic energy) in tungsten

UiO Department of Physics

X-rays – directional dependence

• The direction of brehmsstrahlung photons depend strongly on the electron energy

Brehmsstrahlung

- Assume cross section prop. to dA=2πbdb
- At $b=b_1 \rightarrow dA=2\pi b_1 db$
- At $b=2b_1 \rightarrow dA=4\pi b_1 db$
- Twice as many γ's at 2b₁
- ASSUME photon energy prop. to $1/b \rightarrow 2h\nu_2 = h\nu_1$
- Energy fluence: $\Psi = \Phi h \nu$ $\rightarrow \Psi_{h\nu} = constant$

(for a given e⁻ energy)

UiO Department of Physics
University of Oslo

Oslo University Hospital

Kramer's rule 1

• Unfiltered (energy fluence-) photon spectrum is obtained from Kramer's rule:

Oslo University Hospital

Kramer's rule 2

• Spectral distribution of bremsstrahlung: dependence on atomic number (left) and voltage (right)

$$\Psi_{hv} = KZ (h v_{max} - h v)$$

UiO Department of Physics
University of Oslo

Oslo University Hospital

Filtered X-rays

• Filtering modifies spectrum, both in intensity and characterization

- Each photon is attenuated with a probability $e^{-\mu x}$
- Low energetic ("soft") X-ray radiation most attenuated
- X-ray spectrum becomes more homogenous the harder the filtering

Spectrometry

- Measurement of radiation spectra
- Pulse- height analysis by:
- Scintillation counter, (NaI(Tl)):
 Light is emitted by irradiation intensity ("height") of light pulse proportional with quantum energy number of pulses at each pulse height gives intensity of the given energy interval
- Semiconductor (Ge(Li)):
 Short current trough p-n-junction at irradiation height of pulse proportional with quantum energy. Must be cooled with liquid N₂

UiO Department of Physics
University of Oslo

X-ray spectrum 1

- 100 kV, 2.0 mm Al filter
- Average energy ~ 45 keV

X-ray spectrum 2

- 100 kV, 4.0 mm Al + 0.5 mm Cu + 2 mm Sn filter
- Average energy ~ 90 keV

UiO Department of Physics

Fluorescence, Tungsten

Transition	Designation	Energy (keV)	Relative No of Photons
K-L _{III}	α_1	59.321	100
K – L_{11}	α_2	57.984	57.6
$K-M_{II}$	$oldsymbol{eta}_3$	66.950 \	10.8
$K-M_{III}$	$\boldsymbol{\beta}_1$	67.244 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20.8
$K-M_{IV}$	$oldsymbol{eta}_{5/1}$	67.654	$0.233 \left\{ \begin{array}{c} 32.7 \\ \end{array} \right.$
$K-M_{\rm V}$	$oldsymbol{eta}_{5/2}$	67.716 ⁾	0.293
$K-N_{II}$	$\boldsymbol{\beta}_{2/1}$	69.033	2.45 ∖
$K-N_{III}$	$oldsymbol{eta_{2/2}}$	69.101	4.77
$K-N_{IV}$	$\beta_{4/1}$	69.269 69.276 $\cong 69.1$	0.127 8.4
$K-N_V$	$oldsymbol{eta_{4/2}}$	69.283	0.127
$K-O_{11}$	$oldsymbol{eta_{2/3}}$	69.478 69.484	1.07
$K-O_{III}$	$oldsymbol{eta_{2/4}}$	69.489	1.07

X-ray quality

- X-ray spectra gives most detailed characterization
- But: spectrometry is expensive and time consuming
- Half value layer (HVL) is recommended:

• HVL: thickness of absorber which reduces the exposure (~absorbed dose to air) with 50 %

UiO Department of Physics
University of Oslo

Half value layer

• Exponential attenuation of monoenergetic photons:

$$N = N_0 e^{-\mu x}$$

$$N = \frac{N_0}{2} = N_0 e^{-\mu HVL}$$

$$\Rightarrow HVL = \frac{\ln 2}{\mu}$$

• X-ray quality often given as HVL in Cu or Al

Linear accelerator 1

 Acceleration of charged particles in strong microwave field:

UiO Department of Physics
University of Oslo

Linear accelerator 2

- Effective accelerating potential ~ MV
- Electrons have almost light speed after acceleration in one "cavity":

Acceleration tube Effective potential: 6 MV

• Electrons can hit a target (ex. Tungsten) – high energy bremsstrahlung generated

Linear accelerator 3

- Electrons "surf" on the electric field waves
- Wave amplitude decides the effective potential

Other principles: cyclotron

- Acceleration of charged particles which are kept in a circular motion.
- Two-part "D" structure
- Time dependent voltage between the two "D"s

- Two accelerations per cycle
 - period synchronized with time dependent voltage
- Not a good principle for acceleration of electrons and other light particles

UiO Department of Physics
University of Oslo

 $\odot \vec{B}$

Cyclotron 2

- Particle is kept in circular trajectory with B-field, and accelerated by time depending potential (kV/MHz)
- Potential V gives: $T = zV = \frac{1}{2}mv^2 \Rightarrow v^2 = \frac{2zZ}{m}$
- Combined with the Lorentz force: $(F = zv \times B)$

$$|F| = zvB = ma = \frac{mv^2}{r} \Rightarrow v^2 = \left(\frac{zBr}{m}\right)^2$$

$$\frac{2zV}{m} = \left(\frac{zBr}{m}\right)^2 \Rightarrow r^2 = \frac{2mV}{zB^2}$$

- Stronger magnetic field: implicitly higher acceleration

University of Oslo

Cyclotron 3

• The period Γ of a charged particle in circular motion is:

$$\Gamma = \frac{2\pi r}{v} \qquad \left(v = \frac{zBr}{m}\right)$$

$$\Rightarrow \Gamma = \frac{2\pi m}{\underline{zB}}$$

• m is relativistic mass:

$$m = \gamma m_0$$
, $\gamma = \frac{1}{\sqrt{1-\beta^2}}$, $\beta = v/c$

• When the speed increases, m increases and Γ thus increases

Cyclotron 4

• Energy considerations:

$$\begin{split} &T_{a} = T_{b} + zV \qquad \left(V = \int \overrightarrow{E} \cdot \overrightarrow{d1} , \ T = (\gamma - 1)m_{0}c^{2}\right) \\ &\Rightarrow (\gamma_{a} - 1)m_{0}c^{2} = (\gamma_{b} - 1)m_{0}c^{2} + zV \\ &\Rightarrow \gamma_{a} = \gamma_{b} + \frac{zV}{m_{0}c^{2}} \\ &\Rightarrow \Gamma = \frac{2\pi m}{zB} = \frac{2\pi \gamma_{a}m_{0}}{zB} = \frac{2\pi m_{0}}{zB} \left(\gamma_{b} + \frac{zV}{m_{0}c^{2}}\right) \end{split}$$

University of Oslo

Cyclotron 5

- Increase in period: $\sim zV/m_0c^2$
- Example: zV = 100 keV
- Proton: $zV/m_pc^2 \sim 0.01 \%$
- Electron: $zV/m_ec^2 \sim 20 \% \rightarrow close$ to 50 % rise in one round \rightarrow Time dependent E-field will have the wrong direction relative to velocity of electron
- The E-field frequency can be synchronized with the rise in period → synchrocyclotron / synchrotron

Betatron

• Charged particle (electron) accelerated in doughnut shaped unit:

• Time dependent magnetic (and electric) field to accelerate electrons in circular trajectory

UiO Department of Physics
University of Oslo

Microtron

 Acceleration in resonator – circular orbit with magnetic field; combination of linear accelerator and cyclotron

Correspondence between increasing radius and period

