République Islamique de Mauritanie Ministère de l'Enseignement Secondaire et de la Formation Technique et Professionnelle Commission Nationale des Compétitions de Sciences

2ème tour

Olympiades Nationales de Mathématiques 2020 Niveau 7C

23 février 2020 Durée 3 h

L'épreuve est notée sur 100 points. Elle est composée de cinq exercices indépendants ; Toute réponse doit être justifiée et les solutions partielles seront examinées ;

Calculatrice non autorisée

Exercice 1

Pour tout $k \in \mathbb{N}^*$ et $n \in \mathbb{N}$, on pose $I_{n,k} = \int_0^1 \frac{dx}{\left(1 + x^k\right)^n}$

- 1.a) Calculer $I_{0,k}$; $I_{n,1}$ et $I_{1,2}$.
- b) Déterminer les réels a, b et c tels que, pour tout $x \in [0,1]$, on ait : $\frac{1}{1+x^3} = \frac{a}{1+x} + \frac{bx+c}{x^2-x+1}$ puis en déduire la valeur de $I_{1,3}$.
- 2) Pour $k \ge 2$ et $n \in \mathbb{N}^*$, on pose $J_{n,k} = \int_0^1 \frac{x^k}{\left(1 + x^k\right)^n} dx$.
- a) Etablir une relation entre $J_{n,k}$; $I_{n,k}$ et $I_{n-1,k}$.
- b) A l'aide d'une intégration par parties, montrer que $J_{n,k} = \frac{1}{k(n-1)2^{n-1}} + \frac{1}{k(n-k)}I_{n-1,k}$
- c) En déduire une relation entre $I_{n,k}$ et $I_{n-1,k}$ pour tout $n \ge 2$.
- d) En déduire $I_{3,2}$.

Exercice 2

Dans le plan, on donne n points $A_1, A_2, ..., A_n$. On se propose d'étudier l'existence de n points $M_1, M_2, ..., M_n$ tels que A_1 soit le milieu de $[M_1, M_2], A_2$ soit le milieu de $[M_2, M_3]..., A_{n-1}$ soit le milieu de $[M_{n-1}, M_n]$ et A_n soit le milieu de $[M_n, M_1]$. On note z_k , a_k les l'affixes respectives des points M_k et A_k .

- 1) On suppose l'existence d'une solution du problème.
- a) Justifier que: $\forall k \in \{1, 2, ..., n-1\}, z_k + z_{k+1} = 2a_k \text{ et } z_n + z_1 = 2a_n$
- b) Montrer que: $(1-(-1)^n)z_1 = 2a_n 2a_{n-1} + 2a_{n-2} 2a_{n-3} + ... + 2(-1)^{n-1}a_1$
- 2) Discuter selon la parité de n l'existence d'une solution du problème.

Exercice 3

Soit $A(z) = (z+1)^{2n} - 1$, où $z \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

- 1. a) Montrer qu'il existe un polynôme B tel que $A(z) = z \times B(z)$.
- b) Soit $B(z) = b_{2n-1}z^{2n-1} + b_{2n-2}z^{2n-2} + ... + b_1z + b_0$, quelle est la valeur de b_0 ?
- c) Déterminer, sous forme trigonométrique, les racines de A dans $\mathbb C$. On posera $z_0, z_1, z_2, ..., z_{2n-1}$ avec $z_0 = 0$.
- 2.a) On pose $P_n = \prod_{k=1}^{n-1} \sin \frac{k\pi}{2n}$. Montrer à l'aide d'un changement d'indice, que $P_n = \prod_{k=n+1}^{2n-1} \sin \frac{k\pi}{2n}$.
- b) En déduire que, si $Q_n = \prod_{k=1}^{2n-1} \sin \frac{k\pi}{2n}$, alors $P_n = \sqrt{Q_n}$.
- c) Calculer de deux façons $\prod_{k=1}^{2n-1} z_k$. Puis en déduire Q_n et enfin P_n .

Exercice 4

Soient a, b et c des réels. On considère la matrice $M = \begin{pmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 & (a+c)^2 & c^2 \\ a^2 & b^2 & (a+b)^2 \end{pmatrix}$

- 1) Montrer que $\det M = 2abc(a+b+c)^3$
- 2) Discuter suivant a, b et c les solutions du système :

$$\begin{cases} (b+c)^2 x + b^2 y + c^2 z = 1 \\ a^2 x + (c+a)^2 y + c^2 z = 1 \\ a^2 x + b^2 y + (a+b)^2 z = 1 \end{cases}$$

Exercice 5

On se propose de déterminer une fonction de $\mathbb{N} \to \mathbb{N}$ qui vérifie les deux conditions : f(1) = 1 et pour tous les entiers naturels m et, $f(m+n) = f(n) \times f(m) + f(n) + f(m)$.

- 1) On suppose qu'une telle fonction f existe.
- a) Calculer f(0) (on pourra poser n = 0 et m = 1).
- b) Calculer f(2), f(3) et f(6).
- 2) Montrer que, pour tout entier naturel n, f(n+1) = 2f(n) + 1.
- 3) On pose pour tout entier naturel n, g(n) = f(n) + 1.

Montrer que, pour tous entiers naturels m et n, $g(n+m) = g(n) \times g(m)$.

4) Donner une fonction f qui répond au problème.

