12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation

Frequency

- Polyphase decomposition
- Downsampled Polyphase

Filter

- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

12: Polyphase Filters

Heavy Lowpass filtering

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

Filter Specification:

Sample Rate: 20 kHz

Passband edge: $100~{\rm Hz}~(\omega_1=0.03)$

Stopband edge: $300 \text{ Hz} \ (\omega_2 = 0.09)$

Passband ripple: ± 0.05 dB ($\delta = 0.006$)

Stopband Gain: $-80 \text{ dB} \ (\epsilon = 0.0001)$

This is an extreme filter because the cutoff frequency is only 1% of the Nyquist frequency.

Symmetric FIR Filter:

Design with Remez-exchange algorithm

Order = 360

Maximum Decimation Frequency

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

If a filter passband occupies only <u>a small fraction of $[0, \pi]$ </u>, we can downsample then upsample without losing information.

 $\frac{x[n]}{H(z)} - \underbrace{4:1} - \underbrace{1:4} \underbrace{y[n]}$

Downsample: aliased components at offsets of

 $rac{2\pi}{K}$ are almost zero because of H(z)

Upsample: Images spaced at $\frac{2\pi}{K}$ can be removed using another low pass filter

To avoid aliasing in the passband, we need

$$\frac{2\pi}{K} - \omega_2 \ge \omega_1 \quad \Rightarrow \quad \left(K \le \frac{2\pi}{\omega_1 + \omega_2}\right)$$

 $\omega = 2\pi /4$

accumulated moise

Centre of transition band must be \leq intermediate Nyquist freq, $\frac{\pi}{K}$

We must add a lowpass filter to remove the images:

-H(z) 7:1 1:7 LPF

Passband noise = noise floor at output of H(z) plus $10 \log_{10} (K-1) dB$.

Polyphase decomposition

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase
 Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

For our filter: original Nyquist frequency = $10 \, \mathrm{kHz}$ and transition band centre is at $200 \, \mathrm{Hz}$ so we can use K = 50.

We will split H(z) into K filters each of order R-1. For convenience, assume M+1 is a multiple of K (else zero-pad h[n]).

Example:
$$M = 399, K = 50 \Rightarrow R = \frac{M+1}{K} = 8$$

$$\begin{split} H(z) &= \sum_{m=0}^{M} h[m] z^{-m} \\ &= \sum_{m=0}^{K-1} h[m] z^{-m} + \sum_{m=0}^{K-1} h[m+K] z^{-(m+K)} + \cdots \\ &= \sum_{r=0}^{R-1} \sum_{m=0}^{K-1} h[m+Kr] z^{-m-Kr} \\ &= \sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{R-1} h_m[r] z^{-Kr} \\ &= \sum_{m=0}^{K-1} z^{-m} H_m\left(z^K\right) \text{ Same filter.} \\ &= \sum_{m=0}^{K-1} z^{-m} H_m\left(z^K\right) \text{ Same filter.}$$

This is a polyphase implementation of the filter $H(\boldsymbol{z})$

Downsampled Polyphase Filter

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

H(z) is low pass so we downsample its output by K without aliasing.

The number of multiplications per input sample is M+1=400.

Using the Noble identities, we can move the resampling back through the adders and filters. $H_m(z^K)$ turns into $H_m(z)$ at a lower sample rate.

We still perform 400 multiplications but now only once for every K input samples.

Multiplications per input sample = 8 (down by a factor of $50 \odot$) but v[n] has the wrong sample rate (\odot).

Polyphase Upsampler

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

To restore sample rate: upsample and then lowpass filter to remove images

We can use the same lowpass filter, H(z), in polyphase form:

$$\sum_{m=0}^{K-1} z^{-m} \sum_{r=0}^{K-1} h_m[r] z^{-Kr}$$

This time we put the delay z^{-m} after the filters.

Multiplications per output sample = 400

Using the Noble identities, we can move the resampling forwards through the filters. $H_m(z^K)$ turns into $H_m(z)$ at a lower sample rate.

Multiplications per output sample = 8 (down by a factor of $50 \odot$). (8 + 8)

Complete Filter

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

dosired filter images x[n] H(z) K:1 v[i] 1:K H(z) K

The overall system implements:

Need an extra gain of K to compensate for the downsampling energy loss.

Filtering at downsampled rate requires 16 multiplications per input sample (8 for each filter). Reduced by $\frac{K}{2}$ from the original 400.

 $H(e^{j\omega})$ reaches -10 dB at the downsampler Nyquist frequency of $\frac{\pi}{K}$.

Spectral components $> \frac{\pi}{K}$ will be aliased down in frequency in $V(e^{j\omega})$.

For $V(e^{j\omega})$, passband gain (blue curve) follows the same curve as $X(e^{j\omega})$.

Noise arises from K aliased spectral intervals. Unit white noise in $X(e^{j\omega})$ gives passband noise floor at -69 dB (red curve) even though stop band ripple is below -83 dB (due to K-1 aliased stopband copies).

polyphase: higher noise floor

Upsampler Implementation

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

We can represent the upsampler compactly using a commutator. Sample y[n] comes from $H_k(z)$ where $k=n \mod K$.

["@f" indicates the sample rate]

 $H_0(z)$ comprises a sequence of 7 delays, 7 adders and 8 gains.

We can share the delays between all 50 filters.

We can also share the gains and adders between all 50 filters and use commutators to switch the coefficients.

We now need 7 delays, 7 adders and 8 gains for the entire filter.

Downsampler Implementation

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum DecimationFrequency
- Polyphase decomposition
- Downsampled Polyphase Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- Downsampler Implementation
- Summary

We can again use a commutator. The outputs from all 50 filters are added together to form v[i].

We use the transposed form of $H_m(z)$ because this will allow us to share components.

We can sum the outputs of the gain elements using an accumulator which sums blocks of K samples.

Now we can share all the components and use commutators to switch the gain coefficients.

We need 7 delays, 7 adders, 8 gains and 8 accumulators in total.

Summary

12: Polyphase Filters

- Heavy Lowpass filtering
- Maximum Decimation
 Frequency
- Polyphase decomposition
- Downsampled Polyphase
 Filter
- Polyphase Upsampler
- Complete Filter
- Upsampler Implementation
- DownsamplerImplementation
- Summary

- Complexity ~ fs

 Filtering should be performed at the lowest possible sample rate
 - \circ reduce filter computation by K
 - \circ actual saving is only $rac{K}{2}$ because you need a second filter
 - o downsampled Nyquist frequency $\geq \max (\omega_{\mathsf{passband}}) + \frac{\Delta\omega}{2}$
- Polyphase decomposition: split H(z) as $\sum_{m=0}^{K-1} z^{-m} H_m(z^K)$
 - each $H_m(z^K)$ can operate on subsampled data $\mathcal{H}(z) \to \mathcal{H}_m(z^K)$
 - combine the filtering and down/up sampling
- ullet Noise floor is higher because it arises from K spectral intervals that are aliased together by the downsampling.
- Share components between the K filters
 - multiplier gain coefficients switch at the original sampling rate
 - o need a new component: accumulator/downsampler ($K:\Sigma$)

For further details see Harris 5.