SISTEMAS OPERATIVOS Medición de MIPS

El propósito de la presente práctica es medir la cantidad de MIPS (véase significado en Wikipedia, siguiente página) que puede ejecutar su CPU. Para ello será necesario utilizar el comando time (véase con man), así como saber de antemano el numero de instrucciones en código máquina que se están ejecutando.

El lenguaje de programación de más bajo nivel es el lenguaje ensamblador. Y cada instrucción de lenguaje ensamblador se traduce en una instrucción en lenguaje máquina. Por ejemplo la instrucción en lenguaje ensamblador:

```
addl $1, -4(%ebp)
```

Se transforma a una instrucción en lenguaje máquina como la siguiente:

```
001010010001010
```

Esta instrucción la entiende el CPU y se ejecuta en un ciclo. Por otra parte, una instrucción en lenguaje C se transforma en una o más instrucciones en lenguaje máquina.

Para saber el número de instrucciones en lenguaje máquina de un programa en C, utilizaremos la opción -S de compilación. Por ejemplo suponiendo el programa más pequeño posible guardado como "minimo.c":

```
int main(void){
}
```

Lo pasamos a lenguaje ensamblador mediante: gcc -s minimo.c . El código en ensamblador quedará en el archivo "minimo.s"

Al finalizar esta práctica deberá escribir el número de MIPS calculados, así como la velocidad de su CPU en MHz y los bogomips. (Véase con: cat /proc/cpuinfo)

Recomendaciones:

- Aunque no sabe ensamblador podrá inferir las instrucciones en ensamblador que corresponden a las instrucciones en C, mediante la adición paulatina de instrucciones dentro del main anterior.
- Utilice las instrucciones en C más sencillas posibles en un ciclo o en varios ciclos anidados.
- Verifique con el Monitor del Sistema que se hace uso máximo del CPU, y descuente el porcentaje de CPU que usa el sistema operativo para otras actividades. Elimine cualquier otro programa en ejecución que pueda alterar el resultado de su medición.

Millones de Instrucciones Por Segundo (MIPS)

Este artículo trata sobre el acrónimo de "millones de instrucciones por segundo". Para otros usos de este término, véase MIPS (procesador).

MIPS es la abreviación de las palabras "M"illones de "I"nstrucciones "P"or "S"egundo". Es una forma de medir la potencia de los procesadores. Sin embargo, esta medida sólo es útil para comparar procesadores con el mismo juego de instrucciones y usando benchmarks que fueron compilados por el mismo compilador y con el mismo nivel de optimización. Esto es debido a que la misma tarea puede necesitar un número de instrucciones diferentes si los juegos de instrucciones también lo son; y por motivos similares en las otras dos situaciones descritas. En las comparativas, usualmente se representan los valores de pico, por lo que la medida no es del todo realista. La forma en que funciona la memoria que usa el procesador también es un factor clave para la potencia de un procesador, algo que no suele considerarse en los cálculos con MIPS. Debido a estos problemas, los investigadores han creado pruebas estandardizadas tales como SpecInt para medir el funcionamiento real, y las MIPS han caído en desuso.

En el mundo de GNU/Linux se suelen referir a los MIPS como 'BogoMips'.

El equivalente en la aritmética de punto flotante de los MIPS es el flops.

Muchos microprocesadores de 8 y 16 bits han sido medidos con **KIPS** (kiloinstrucciones por segundo), que equivale a 0'001 MIPS. El primer microprocesador de propósito general, el Intel 8080 ejecutaba 640 KIPS. El Intel 8086 (16 bits), el primer microprocesador usado en PC, 800 KIPS. El Pentium 4 llega aproximadamente a 1'700 MIPS.

English Esperanto Suomi Français Gaeilge עברית Magyar Bahasa Indonesia 日本語 한국어 Lietuvių Bahasa Melayu Nederlands Norsk hokmål Polski Português Русский Slovenčina Српски / srpski Svenska Türkce Українська 中文

Evolución en el tiempo de las instrucciones por segundo

Procesador	IPS	Reloj	Año
Intel 8080	640 KIPS	2 MHz	1974
Intel 8086	800 KIPS	4'77 MHz	1974
Motorola 68000	1 MIPS	8 MHz	1979
Intel 486DX	54 MIPS	66 MHz	1992
Intel Pentium	100 MIPS	60 MHz	1993
PowerPC 600s (G2)	35 MIPS	33 MHz	1994
ARM 7500FE	35'9 MIPS	40 MHz	1996
PowerPC G3	525 MIPS	233 MHz	1997
ARM10	400 MIPS	300 MHz	1998
Zilog eZ80	80 MIPS	50 MHz	1999
Sony "Allegrex"(de la PSP)	32 MIPS	333MHZ	2002
Pentium 4 Extreme Edition	9.726 MIPS	3'2 GHz	2003
ARM Cortex A8	2.000 MIPS	1 GHz	2005
Xbox360 IBM "Xenon" Single Core	6.400 MIPS	3'2 GHz	2005
AMD Athlon 64	8.400 MIPS	2'8 GHz	2005
AMD Athlon FX-57	12.000 MIPS	2'8 GHz	2005
AMD Athlon 64 Dual Core	18.500 MIPS	2'2 GHz	2005
AMD Athlon 64 3800+ X2 (Dual Core)	18.900 MIPS	2'2 GHz	2005
Overclocked AMD Athlon 64 3800+ X2 (Dual Core)	25.150 MIPS	2'8 GHz	2005
Cell (cada PPE)	6.400 MIPS	3'2 GHz	2006
Procesador Cell de la PlayStation 3	21.800 MIPS	3'2 GHz	2006
AMD Athlon FX-60 (Dual Core)	22.150 MIPS	2'6 GHz	2006
Overclocked AMD Athlon FX-60 (Dual Core)	24.300 MIPS	2'8 GHz	2006
Overclocked AMD Athlon FX-60 (Dual Core)	27.100 MIPS	3'0 GHz	2006