Mathematik I: Theoretische Grundlagen der Informatik

Prof. Dr.-Ing. Sebastian Schlesinger

30. Oktober 2022

Lernziele dieser Vorlesung

- Verständnis erlangen für die grundlegende mathematische Notation
- Prinzipien der Aussagenlogik verstehen
- Grundsetzliches Vorgehen beim Führen mathematischer Beweise verstehen

Aussagen

Unter einer **Aussage** versteht man einen sprachlichen Ausdruck, dem man eindeutig einen der beiden Wahrheitswerte w ("wahr") bzw. f ("falsch") zuordnen kann.

Aussagen werden mit Großbuchstaben bezeichnet,

A: Beschreibung

und können mit logischen Operationen verknüpft werden. Grundlegende mathematische Aussagen, die nicht aus anderen Aussagen abgeleitet werden können, nennt man **Axiome**.

Beispiele von Aussagen

- Wahre Aussage A: Jede natürliche Zahl ist ein Produkt von Primzahlen.
- Falsche Aussage B: Jede Primzahl ist ungerade
- Unbewiesene Vermutung (wahr oder falsch, d.h. eine Aussage, bei der der Wahrheitswert noch nicht entschieden werden konnte)
 C: Es gibt unendlich viele Primzahlzwillinge.
- Keine Aussage (Feststellung ohne Wahrheitswert) D: Freitag der dreizehnte ist ein Unglückstag.

Logische Operationen

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Bezeichnung	Schreibweise	(Sprechweise)	wahr, gdw	
Negation	$\neg A$	(nicht A)	A falsch ist	
Konjunktion	$A \wedge B$	(A und B)	A und B wahr sind	
Disjunktion	$A \lor B$	(A oder B)	A oder B wahr ist	
Implikation	$A \Rightarrow B$	(wenn A dann B)	A falsch oder B wahr	
Äquivalenz	$A \Leftrightarrow B$	(A äquivalent B)	A und B äquivalent	

Bindungsstärke

Um in logischen Ausdrücken Klammern zu sparen, wird festgelegt, dass \neg stärker bindet als \land sowie \lor und diese wiederum stärker als \Rightarrow , \Leftrightarrow .

Wahrheitstabelle

In der folgenden Tabelle sind die Wahrheitswerte der vorgestellten Verknüpfungen angegeben. Dabei steht w für wahr und f für falsch.

A			$A \wedge B$		$A \Rightarrow B$	$A \Leftrightarrow B$
W	W	f	W	W	W	W
W	f	f	f	w	f	f
f	w	W	f	w	W	f
f	f	w	f	f	W	W

Gesetze für logische Operationen

Für logische Operationen gelten die folgenden Identitäten.

Assoziativgesetze:

$$(A \wedge B) \wedge C = A \wedge (B \wedge C)$$

$$(A \vee B) \vee C = A \vee (B \vee C)$$

Kommutativgesetze:

$$A \wedge B = B \wedge A$$

$$A \lor B = B \lor A$$

Distributivgesetze:

$$A \wedge (B \vee C) = (A \vee C) \wedge (B \vee C)$$

$$A \lor (B \land C) = (A \land C) \lor (B \land C)$$

Gesetze für logische Operationen

Für logische Operationen gelten die folgenden Identitäten.

• De Morgansche Regeln:

$$\neg(A \land B) = (\neg A) \lor (\neg B)$$

$$\neg (A \lor B) = (\neg A) \land (\neg B)$$

Idempotenz:

$$\neg(\neg A) = A$$

$$A \lor A = A$$

$$A \wedge A = A$$