

MAGUS:

Machine learning And Graph theory assisted Universal structure Searcher

高豪, 王俊杰, 韩瑜, Dc, 孙建

使用手册

Version 1.0.2, 2021 年 6 月 4 日.

https://git.nju.edu.cn/gaaooh/magus

目录 MAGUS 1.0.2

目录

1	安装		3
	1.1	依赖	3
	1.2	准备	3
		1.2.1 设置 ase 的 vasp 接口	3
		1.2.2 机器学习包安装	4
	1.3	pip 安装	4
	1.4	source 安装	5
		1.4.1 代码下载	5
		1.4.2 编译 GenerateNew 模块	5
		1.4.3 编译 lrpot 模块	6
		1.4.4 设置入口	6
		1.4.5 设置环境变量	6
	1.5	检查安装	7
	1.6	设置自动补全(可选)	7
2	输人	文件	8
	2.1	input.yaml 参数	8
		2.1.1 基本参数	8
		2.1.2 种群相关	8
		2.1.3 结构产生	9
		2.1.4 结构演化	9
		2.1.5 煮计算器	9
		2.1.6 代理计算器	10
	2.2	inputFold	1
		2.2.1 Vasp	.1

	2.2.2	Gı	ulp) .															•			•										•			12
	2.2.3 I	La	m	mj	ps																														13
	2.2.4	AS	SE	系	系列	IJ (ΕN	ЛΤ	T, I	ĹJ,	, X	Т	В.)																					15
	2.2.5 I	M	ΤF)				•															•												15
2.3	Seeds .							•							•		•						•					•			•				17
程序	指令																																		18
3.1	search							•															•												18
3.2	summar	ry																																	18
3.3	calc .							•			•				•								•	•								•			20
输出	文件																																	•	21
4.1	calcFold	d													•								•												21
4.2	mlFold														•								•												22
4.3	results				•																										•				22
例子	_																																		2 4
5.1	NH_4NC	O_3	分	子	二晶	旨体	文产	生							•																				24
5.2	MTP 大	大扎	比量		尤什	上阪	直杉	焊	吉核	J.					•																				25
5.3	TiO ₂ 定	巨组	1分	子结	吉核	勾搜	皇索	÷																											28
5.4	$Zn_x(OE$	H)	$y^{\frac{7}{2}}$	变:	组?	分约	结构	勾挂	更复	索																									30
5.5	$MgSiO_3$	O_3	机:	器	学.	习	结	钩扣	搜到	索																									33
5.6	CH ₄ 分	子	晶	ⅰ体	複	索									•		•						•								•				34
常见	问题																																		37
	程序 3.1 3.2 3.3 输 4.1 4.2 4.3 例 5.1 5.4 5.5 5.6	2.2.4 2.2.5 2.3 Seeds . 程序指令 3.1 search 3.2 summa 3.3 calc . 输出文件 4.1 calcFol 4.2 mlFold 4.3 results 例子 5.1 NH ₄ N 5.2 MTP 5 5.3 TiO ₂ 5 5.4 Zn _x (O 5.5 MgSiO	2.2.4 AS 2.2.5 M 2.3 Seeds 程序指令 3.1 search . 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold . 4.3 results . 例子 5.1 NH ₄ NO ₃ 5.2 MTP 大排 5.3 TiO ₂ 定组 5.4 Zn _x (OH) 5.5 MgSiO ₃ 3 5.6 CH ₄ 分子	2.2.4 ASE 2.2.5 MTF 2.3 Seeds	2.2.4 ASE 系 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列(2.2.5 MTP	2.2.4 ASE 系列 (EM 2.2.5 MTP	2.2.4 ASE 系列 (EMT 2.2.5 MTP	2.2.4 ASE 系列 (EMT, I 2.2.5 MTP	2.2.4 ASE 系列 (EMT, LJ) 2.2.5 MTP	2.2.4 ASE 系列 (EMT, LJ, X 2.2.5 MTP	2.2.4 ASE 系列 (EMT, LJ, XT 2.2.5 MTP	2.2.4 ASE 系列 (EMT, LJ, XTB. 2.2.5 MTP	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) . 2.2.5 MTP	2.2.4 ASE 系列 (EMT, LJ, XTB)	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.3 results 例子 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.2 mlFold 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.2 mlFold 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.2 mlFold 4.3 results 例子 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.3 results 例子 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.2 mlFold 4.3 results 例子 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.3 results 例子 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索	2.2.4 ASE 系列 (EMT, LJ, XTB) 2.2.5 MTP 2.3 Seeds 程序指令 3.1 search 3.2 summary 3.3 calc 输出文件 4.1 calcFold 4.2 mlFold 4.3 results 例子 5.1 NH ₄ NO ₃ 分子晶体产生 5.2 MTP 大批量优化随机结构 5.3 TiO ₂ 定组分结构搜索 5.4 Zn _x (OH) _y 变组分结构搜索 5.5 MgSiO ₃ 机器学习结构搜索 5.6 CH ₄ 分子晶体搜索

1 安装

1.1 依赖

Python >= 3.6

NumPy

SciPy

Scikit-learn

PyYAML

Ase > = 3.19

Networkx = 2.1

Spglib

Pandas

可选项:

Pytest >= 3.6.1: unittest

Xtb == 6.3: XTBCalculator

Mlip: MTPCalculator

1.2 准备

1.2.1 设置 ase 的 vasp 接口

1) 新建一个 run_vasp.py:

```
import subprocess
exitcode = subprocess.call("mpiexec.hydra
/your/path/to/vasp", shell=True)
```

2) 建立 mypps 目录存放 vasp 赝势,可以用软连接:

mypps/

```
potpaw
potpaw_GGA
potpaw_PBE
```

```
$ ln -s /your/path/PBE-5.4 mypps/potpaw_PBE
```

三个子目录分别对应 LDA, PW91, PBE 也可以加入其他赝势库。

3) 设置环境变量:

```
$ export VASP_SCRIPT=/your/path/run_vasp.py
$ export VASP_PP_PATH=/your/path/mypps
```

更多信息见:https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp. html#module-ase.calculators.vasp

注意: run_vasp.py 和 mypps 不要放在 magus 目录下

1.2.2 机器学习包安装

TwoShareMTPCalculator 使用了修改过的 mtp 代码, 官方版本不支持此功能. 如需使用可进入 magus/mtp-api 目录, 按其中教程安装。详见:https://git.nju.edu.cn/bigd4/mtp-api

1.3 pip 安装

magus 安装需要 boost_python,boost_numpy. 若所使用的 python 环境 (如 anaconda-3/5.0.1) 的 lib 中有会自动探测路径, 否则需要在环境变量中给出相应路径 (无需写入bashrc)

```
$ export MAGUS_INCLUDE_PATH=your_path_to_include_dir:
your_path_to_py_include_dir
$ export MAGUS_LD_LIBRARY_PATH=your_ld_library_path
```

配置好后执行:

```
$ pip install -i
https://repo.nju.edu.cn/repository/pypi-nju/simple
magus-test --upgrade
```

若直接在集群安装需加入--user参数

1.4 source 安装

1.4.1 代码下载

克隆库到本地并初始化子项目:

```
$ git clone git@git.nju.edu.cn:gaaooh/magus.git
$ git submodule init
$ git submodule update
```

或直接下载压缩包.

1.4.2 编译 GenerateNew 模块

进入 magus/generatenew 中, 编译 generatenew.so 文件, 并将其放入 magus/magus 文件夹下. 如使用集群 anaconda/3-5.0.1, 命令为:

```
$ g++ -std=c++11 -I/fs00/software/anaconda/3-5.0.1/include
-I/fs00/software/anaconda/3-5.0.1/include/python3.6m
-L/fs00/software/anaconda/3-5.0.1/lib -lboost_python
-lboost_numpy -lpython3.6m main.cpp -o GenerateNew.so
-shared -fPIC
```

具体可见: https://git.nju.edu.cn/HanYu/generatenew

1.4.3 编译 lrpot 模块

进入 magus/lrpot 中,编译 lrpot.so 文件,并将其放入 magus/magus 文件夹下. 如使用集群 anaconda/3-5.0.1, 命令为:

```
$ g++ -std=c++11 -I/fs00/software/anaconda/3-5.0.1/include
-I/fs00/software/anaconda/3-5.0.1/include/python3.6m
-L/fs00/software/anaconda/3-5.0.1/lib -lboost_python
-lboost_numpy -lpython3.6m lrpot.cpp -o lrpot.so -shared
-fPIC
```

具体可见: https://git.nju.edu.cn/bigd4/lrpot

1.4.4 设置入口

新建 magus 文件:

```
import re
import sys
from magus.entrypoints.main import main
if __name__ == '__main__':
    sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '',
    sys.argv[0])
    sys.exit(main())
```

保存后执行 chmod +x magus 设置为可执行文件。

1.4.5 设置环境变量

在 bashrc 中加入

```
$ export PYTHONPATH=$PYTHONPATH:/your/path/magus
$ export PATH=$PATH:/your/path/magus
```

1.5 检查安装

```
$ magus -v
1.0.2
```

1.6 设置自动补全(可选)

在 bashrc 中加入

\$ source your_path_to_magus/auto_complete.sh

2 输入文件

- 一个典型的结构搜索任务一般包含以下文件:
- input.yaml, 给出任务的主要参数. 详见 2.1
- inputFold, 补充 input.yaml 中定义的 Calculator 所需要的一些额外的信息, 如 Vasp 的 INCAR, Lammps 的 in.lammps 等. 详见 2.2
- Seeds, 给出种子结构, 可指定在哪一代加入. 详见 2.3

2.1 input.yaml 参数

2.1.1 基本参数

- calcType: 计算类型,可用值: fix (定组分),var (变组分)
- pressure: 压强 (GPa)
- DFTRelax: 用于 ML 搜索中,是否将结果用 DFT 优化
- molMode: 是否打开分子晶体模式
- symprec: 默认值: 0.1, 判断空间群时容忍误差

2.1.2 种群相关

• initSize: 初代种群大小

• popSize: 种群大小

• numGen: 迭代次数

• saveGood: 聚类后保留结构数

2.1.3 结构产生

• spacegroup: 随机结构的空间群,例: [1,2,20-30]

• minAt: 最小原子数

• maxAt: 最大原子数

• symbols: 元素类型例: ['Ti', 'O'], 外层是方括号, 每个元素用引号括起来

• formula: 元素比例例: [1, 2] (定组分),[[1,0],[0,1]] (变组分)

• fullEles: 若值为 True, 则产生的结构含有'symbols' 中所有元素

• eleSize: 变组分搜索时,初代每种单质随机产生的结构数

• volRatio: 随机产生结构时的体积参数

• dRatio: 判断原子距离是否过近的标准

• addSym: 产生结构之前是否为父代加入对称性

2.1.4 结构演化

• randFrac: 随机结构比例

• molDetector: 结构演化时判断分子片段的方法可用值: 0(不判断分子局域结构, 默认值) 1(自动判断分子局域结构) 2(使用 Girvan-Newman 算法划分局域结构)

• cutNum: cutNum

• permNum: permNum

• rotNum: rotNum...

2.1.5 煮计算器

主计算器定义了 Magus 搜索时使用的 MainCalculator, 以下所有参数都定义于 MainCalculator 条目下, 需要缩进:

• jobPrefix: 计算器所需附属文件在 inputFold 文件夹中的名称, 如 EMT, OvO 等 如需使用多个计算器串接则给出对应列表,如: ['Gulp', 'Vasp1', 'Vasp2']

- calculator: 程序种类,如未给出则按照 jobPrefix 文件名判断,可用值: vasp, gulp, lammps, emt, xtb, lj, quip
- mode: 运行方式,可用值: serial (串行), parallel (并行)
- xc: (VASP) 交换关联类型,可用值: PBE, LDA, PW-91
- ppLabel: (VASP) VASP 赝势的后缀,与 symbols 顺序一致,若无后缀则填入",如: ['_sv', "]。
- exeCmd: (gulp, lammps) 运行结构优化程序的命令,如 gulp < input > output, mpirun -np 4 lmp_mpi -in in.lammps

以下选项为并行模式下的队列控制选项,同样适用于代理计算器

- numParallel: 并行优化结构的数目
- numCore: 结构优化使用的核数
- queueName: 结构优化任务的队列
- verbose: log 中是否显示详细队列信息
- waitTime: 检查任务的时间间隔 (s)
- killTime: 杀死任务的时间间隔 (s)
- Preprocessing: 提交脚本时的预处理

2.1.6 代理计算器

代理计算器定义了 MLMagus 搜索时使用的 MLCalculator, 以下所有参数都定义于 MLCalculator 条目下, 需要缩进:

• jobPrefix: 同2.1.5

• calculator: 程序种类,如未给出则按照 jobPrefix 文件名判断,可用值: mtp, mtp-lammps

• connect: 多个 mtp 的连接方式,可用值: [naive, share-trainset]

• force_tolerance: 结构优化力收敛判据,默认值: 0.05

• stress_tolerance: 结构优化应力收敛判据, 默认值: 1.

• weights: 训练时能量、力、应力权重, 默认值: [1., 0.01, 0.001]

• scaled_by_force: 训练时给予较小力的额外权重, 默认值: 0.

• min_dist: 优化时最小距离, 默认值: 0.5

• n_epoch: 训练代数, 默认值: 200

• init_times: 初始化力场次数,如果已有训练过的力场可设为 0. 默认值: 2

2.2 inputFold

inputFold 中为不同 calculator 所需要的补充文件,放在对应的 jobPrefix 文件夹中。以下为各 calculator 所需文件的示例,内容可根据需要修改(名字不行):

2.2.1 Vasp

INCAR 就是 INCAR PREC = Accurate EDIFF = 1e-4 EDIFFG = 1e-3 IBRION = 2 ISIF = 3 NSW = 40 ISMEAR = 0 SIGMA = 0.050 POTIM = 0.250

```
ISTART = 0

LCHARG = FALSE

LWAVE = FALSE

KSPACING = 0.314

NCORE= 4
```

注意: INCAR 中不需要给出 pstress

2.2.2 Gulp

```
goption.relax
gulp 优化参数配置

opti conjugate nosymmetry conp
```

```
goption.scf
gulp 自洽参数配置
nosymmetry conp gradients
```

```
goption.scf
gulp 势函数文件

space
1
species
Mg 2.0
Al 3.0
O -2.0
lennard 12 6
Mg O 1.50 0.00 0.00 6.0
Al O 1.50 0.00 0.00 6.0
O O 1.50 0.00 0.00 6.0
```

```
Mg Mg 1.50 0.00 0.00 6.0

Mg Al 1.50 0.00 0.00 6.0

Al Al 1.50 0.00 0.00 6.0

buck

Mg 0 1428.5 0.2945 0.0 0.0 7.0

Al 0 1114.9 0.3118 0.0 0.0 7.0

O 0 2023.8 0.2674 0.0 0.0 7.0

maxcyc 850

switch rfo 0.010

time 60
```

2.2.3 Lammps

```
in.relax
lammps 优化参数配置,可替换为分子动力学等等
clear
atom_style atomic
units metal
boundary p p p
                 # 此行不可更改
read_data data
### interactions
pair_style lj/cut 2.5
pair_coeff * * 1 1
mass 1 35.450000
mass 2 22.989769
### run
fix fix_nve all nvt temp 300.0 300.0 100
dump dump_all all custom 1 out.dump id type x y z vx vy vz
fx fy fz
# 最终输出必须为 out.dump
```

```
thermo_style custom step temp press pxx pyy pzz pxy pxz pyz ke pe etotal
# 需要 pxx pyy pzz pxy pxz pyz
thermo 1
run 10
```

```
in.scf
lammps 自洽计算参数配置
clear
atom_style atomic
units metal
boundary p p p
read_data data
### interactions
pair_style lj/cut 2.5
pair_coeff * * 1 1
mass 1 35.450000
mass 2 22.989769
### run
fix fix nve all nve
dump dump_all all custom 1 out.dump id type x y z vx vy vz
fx fy fz
```

thermo_style custom step temp press pxx pyy pzz pxy pxz

pyz ke pe etotal

thermo 1

run 10

2.2.4 ASE 系列 (EMT, LJ, XTB...)

```
EMT, LJ, XTB...

建个文件夹就完事了,除非如 XTB 需要相关配置文件

xtb.yaml

下次一定
```

2.2.5 MTP

mlip.ini										
active learning 控制参数,详见 https://git.nju.edu.cn/bigd4/mtp-api/ -/blob/master/doc/manual/manual.pdf										
mtp-filename pot.mtp										
# 改不得										
select	TRUE									
select:site-en-weight	1.0									
select:energy-weight	0.0									
select:force-weight	0.0									
select:stress-weight	0.0									
select:threshold	1.5									
select:threshold-break	7.0									
select:save-selected	B-preselected.cfg									
# 改不得										
select:load-state	A-state.als									
# 改不得										

pot.mtp

mtp 使用势场,可从 untrained_mtps 中拷贝,仅可改变标注了作用的参数。

MTP

version = 1.1.0

```
potential_name = MTP1m

species_count = 1 #原子种类数量

potential_tag =

radial_basis_type = RBChebyshev

min_dist = 2 #原子最小间距

max_dist = 5 #原子环境最大考虑半径

radial_basis_size = 8 #基函数个数

radial_funcs_count = 3

alpha_moments_count = 84

alpha_index_basic_count = 46
```

train.cfg 训练集, 若不存在, 将自动生成空训练集 BEGIN_CFG Size 4 Supercell 2.457244 0.0 0.0 0.0 - 2.457244 0.0 $0.0 \ 0.0 \ -2.457244$ AtomData: id type cartes_x cartes_y cartes_z fx fy fz 1 0 0.0 0.0 0.0 0.0 -0.0 0.0 2 0 0.0 -1.228622 -1.228622 0.0 -0.0 -0.0 3 0 1.228622 -1.228622 0.0 -0.0 0.0 0.0 4 0 1.228622 0.0 -1.228622 0.0 -0.0 -0.0 Energy -15.79300182 EnergyWeight 0.02195049074783156 PlusStress: xx yy zz yz xz xy

26.253439887628005 26.253439887628005 26.253439887628005 -0.0 0.0 0.0 END_CFG

2.3 Seeds

POSCARS_i 为第 i 代加入的种子文件,如有 POSCAR_1~POSCAR_9 希望在第一代加入,POSCAR_10~POSCAR_19 希望第二代加入,执行 cat POSCAR_{1..9} > POSCARS_1 ; cat POSCAR_{10..19} > POSCARS_2 后将 POSCARS_1 与 POSCARS_2 放入 Seeds 中即可。

3 程序指令 MAGUS 1.0.2

3 程序指令

magus 文件为程序运行的入口,通过运行 magus 可以得到所有的指令与介绍,通过 magus [commond] -h 可获得其帮助。

指令	用途
search 3.1	结构搜索
summary 3.2	事后总结
clean	事后清理
prepare	事前准备
calc 3.3	批量计算
gen	批量产生

3.1 search

结构搜索模块,使用时直接提交命令 magus search 即可。可选择参数如下:

- -h -help 展示帮助文档
- -i INPUTFILE, -input-file INPUTFILE 指定输入参数文件, 默认为 input.yaml
- -1 LEVEL, -log-level LEVEL 指定 log.txt 文件 logging 等级,可选项: DEBUG,INFO,WARNING,ERROR。默 认为 INFO
- -m, -use-ml
 是否使用机器学习模块
- -r, -restart 是否为继续上次任务,使用此选项目录内应保留上次作业的 results 与 log.txt

3.2 summary

用于总结一条或多条 ase traj 格式的轨迹,参数如下:

3 程序指令 MAGUS 1.0.2

- -h -help展示帮助文档
- -p PREC, -prec PREC
 判断空间群的精度, 默认值为 0.1
- -r, -reverse
 是否倒着输出,默认正着输出
- -s, -save 是否将此轨迹中所有结构输出为 POSCAR, 默认不输出, 以防文件夹很乱
- -o OUTDIR, -outdir OUTDIR POSCAR 输出的目录
- -n SHOW_NUMBER, -show-number SHOW_NUMBER 展示条目数量, 默认为 20
- -sb SORTED_BY, -sorted-by SORTED_BY
 用哪个关键字排序, 默认为 enthalpy
- -rm REMOVE_FEATURES [REMOVE_FEATURES ...], -remove-features REMOVE_FEATURES [REMOVE_FEATURES ...] 需要移除展示的信息
- -a ADD_FEATURES [ADD_FEATURES ...], -add-features ADD_FEATURES [ADD_FEATURES ...] 需要附加展示的其他信息

一个例子如下:

```
$ magus summary good.traj ref.traj -a volume -rm priSym
parentE -n 10

symmetry enthalpy origin fullSym volume source

1 I-43d (220) 0.412 random Li16 123.164 ref

2 Cmc2_1 (36) 0.416 seed Li88 647.965 good
```

3 程序指令 MAGUS 1.0.2

3	Aea2 (41)	0.419	None	Li40	301.519	ref
4	Ama2 (40)	0.419	random	Li88	645.352	good
5	P3c1 (158)	0.422	Rattle	Li88	644.677	good
6	Cc (9)	0.423	Rattle	Li88	646.661	good
7	Cm (8)	0.427	Lattice	Li88	649.852	good
8	P1 (1)	0.427	Slip	Li88	647.470	good
9	Aea2 (41)	0.429	random	Li88	647.528	good
10	Aea2 (41)	0.429	Rattle	Li88	647.652	good

3.3 calc

根据 input.yaml 中定义的 calculator, 计算给出的 traj, 结果会输出于 out.traj, 可用 magus summary out.traj 命令查看。

- -h -help展示帮助文档
- -m MODE, -mode MODE
 计算类型,可用值: scf, relax. 默认为 relax
- -i INPUTFILE, -input-file INPUTFILE
 指定参数所在文件, 默认为 input.yaml
- -p PRESSURE, -pressure PRESSURE 指定压强,若不给出则使用 INPUTFILE 中给出的压强

如若需对 in.traj 中的结构在 10GPa 下优化,运行命令为:

```
$ magus calc in.traj -p 10
```

此命令与 MtpCalculator 或 MTPLammpsCalculator 结合,可以 on the fly 的得到机器学习的训练集。

4 输出文件

结构搜索过程中,将会产生 log.txt,calcFold 与 results,如果搜索时加入-m 选项,会额外产生 MLFold。

4.1 calcFold

calcFold 中为 input.yaml 定义的计算器计算过程中所产生的文件。一个典型的结构搜索任务将产生如下结构的 calcFold:

如果并行模式计算过程中发生错误,报错信息将在对应的文件夹中出现。此外,并行模式中计算器文件夹下会产生 job_controller 文件,可通过修改其中内容改变作业提交的参数。如:

```
old_job_controller

kill_time: 1000000
num_core: 48
pre_processing: ''
queue_name: 9242opa!
verbose: false
```

```
new_job_controller

kill_time: 100000
num_core: 64
pre_processing: ''
queue_name: 7702ib
verbose: false
```

这些改变将被记录在 log.txt 中:

log.txt

Be careful, the following settings are changed

num_core: 48 -> 64

queue_name: 9242opa! -> 7702ib

4.2 mlFold

mlFold 中为 input.yaml 中定义的机器学习模块执行挑选、训练的部分。如果提交任务时此文件夹不存在,将会使用 inputFold 中对应的文件。训练或挑选中发生错误报错信息将在对应文件夹中出现,此外,可在 train-out 中查看训练集上的误差。

若已经进行过一次 MLMagus 搜索并得到了一个不错的势,可以不用删除 mlFold 以在以后的搜索中使用;或者复制 pot.mtp 与 train.cfg 到其他 inputFold 中反复使用。此时可将 init times 设为 0,代表不再在初始化时训练力场。

4.3 results

results 中记录了各代生成的各种结构,可根据需要使用 summary 命令查看。

- good.traj
 目前最优的 popSize 个结构
- good{i}.traj第 i 代最优的 popSize 个结构
- best.traj

历代最优的结构,使用 summary 查看时注意需添加-sb None 或-sorted_by None 选项,否则会默认按焓值排序显示而不是代数的顺序

keep{i}.traj第i代经过聚类后保留的 goodSize 个结构

init{i}.traj

第i代产生的初始结构

• raw{i}.traj

第 i 代的初始结构经过第一性结构优化后的结构,可用于 debug

• gen{i}.traj

第 i 代种群,一般为 raw{i}.traj 或 mlraw{i}.traj 经过 check 后的结果若机器学习 搜索使用第一性验证,则为 mlraw{i}.traj 中低能结构第一性优化后额结果。第一性验证则为

mlraw{i}.traj

第 i 代的初始结构经过机器学习结构优化后的结构,可用于 debug

• mlgen{i}.traj

mlraw{i}.traj 经过 check 的结果

5 例子

5.1 NH_4NO_3 分子晶体产生

目标: 产生 $10 \uparrow Pccn$ 的 NH_4NO_3 分子晶体。

准备: input.yaml, NH4.xyz, NO3.xyz

```
input.yaml
结构产生控制文件
                                # 最小原子数
   minAt: 72
                               # 最大原子数
   maxAt: 72
   symbols: ['H', 'N', 'O']
                               # 待产生结构所含元素
                               # 分子晶体模式
   molMode: True
   molFile: ['NH4.xyz', 'NO3.xyz'] # 所含分子结构
                               # 分子组分
   molFormula: [1, 1]
   molType: 'fix'
                               # 指定 56 号空间群 Pccn
   spacegroup: [56]
   dRatio: 0.8
                               # 原子间最小距离比
   threshold_mol: 1.5
                               # 分子间最小距离比
   volRatio: 8
                                # 体积比
```

```
NH4.xyz
   5
   NH4
   Н
        4.511281
                  4.375470
                               3.210227
   Н
        3.584655
                  4.486488
                               1.796710
       4.670180
                               2.019142
   Н
                   3.191076
   Н
        3.246077 3.272899
                               2.937012
        4.000271
   Ν
                    3.837356
                               2.488938
```

NO3.xyz				
4				
N03				
N	2.012707	2.014563	4.870574	
0	1.714319	0.953807	5.478185	
0	2.311095	3.075319	5.478185	
0	2.012707	2.014563	3.582428	

运行: magus gen -n 10 结果:目标结构 gen.traj

5.2 MTP 大批量优化随机结构

目标: 使用 MTP 力场优化 1000 个 B₁₂ 随机结构

准备: 待优化结构 gen.traj, inputFold, input.yaml, 其中, inputFold 结构为:

input.yaml 定义主计算器与机器学习计算器 #main calculator settings MainCalculator: jobPrefix: Vasp # 标准能量由 Vasp 给出 #vasp settings

```
xc: PBE
   ppLabel: ['']
   #parallel settings
    numParallel: 20
    numCore: 24
    queueName: 9242opa!
    waitTime: 30
MLCalculator:
   jobPrefix: MTP
    calculator: mtp
                           # MTPrelax 最小距离
    min_dist: 1.2
    queueName: 9242opa!
    numCore: 48
    waitTime: 10
    force_tolerance: 0.001
    stress_tolerance: 0.01
```

INCAR

不会有人不会写 INCAR 把

```
PREC = Accurate
EDIFF = 1e-4
IBRION = 2
ISIF = 3
NSW = 40
ISMEAR = 0
SIGMA = 0.050
POTIM = 0.250
ISTART = 0
LCHARG = FALSE
LWAVE = FALSE
```

```
#Crude optimisation
EDIFFG = 1e-3
KSPACING = 0.314
NCORE = 4
```

```
pot.mtp
MTP 势函数文件,这里只给出表头
   MTP
   version = 1.1.0
   potential_name = MTP1m
   scaling = 1.497018669914417e-02
                                        # 只有 B 原子一种
   species_count = 1
   potential_tag =
    radial_basis_type = RBChebyshev
       min_dist = 1.277113860000000e+00
       # 最小距离 1.27, 由于 train 中设置了--update, 此项不必特
       别设置,会自动更新
       max_dist = 6.00000000000000000e+00
       radial_basis_size = 12
       radial_funcs_count = 5
```

mlip.ini active 控制文件 mtp-filename pot.mtp select **TRUE** select:site-en-weight 1.0 select:energy-weight 0.0 select:force-weight 0.0 select:stress-weight 0.0 select:threshold 1.5

select:threshold-break 7.0

select:save-selected B-preselected.cfg

select:load-state A-state.als

运行: 提交 magus calc gen.traj 命令到队列

结果: MTP 优化后的结构 out.traj, 势文件 mlFold/MTP/pot.mtp

5.3 TiO₂ 定组分结构搜索

目标:搜索 12 个原子 TiO₂ 的结构

准备: input.yaml, inputFold

由于初始结构往往杂乱无章,因此往往使用多个 INCAR 分步优化,据说合适的做法是固定体积优化原子位置与晶格形状 (ISIF=4),然后放开体积限制优化原子位置与晶格 (ISIF=3),最后进行高精度的单点能自治运算 (NSW=0)

input.yaml

给出搜索所需参数

calcType: fix # 定组分搜索

pressure: 0 # OGPa

numGen: 10 # 搜索 10 代

saveGood: 3 # 每代保存 3 个结构

#structure parameters

minAt: 12
maxAt: 12

symbols: ['Ti', '0']

formula: [1, 2]

```
dRatio: 0.6
                         # 最小半径比
                          # 最小体积比
volRatio: 3
addSym: False
                           # 不在父代中加入对称性
#main calculator settings
MainCalculator:
   jobPrefix: ['q', 'w', 'e' ,'r']
   # 这里只是为了说明只要给出 calculator, jobPrefix 可以随
   意命名,实际建议用更清晰的方式命名。
   calculator: vasp
   mode: parallel
   #vasp settings
   xc: PBE
   ppLabel: ['', '_s']
   #parallel settings
   numParallel: 5
   queueName: 7702ib
   waitTime: 30
```

q/INCAR

```
PREC = Normal

EDIFF = 1e-3

IBRION = 2

ISIF = 4

NSW = 85

ISMEAR = 0

SIGMA = 0.06

POTIM = 0.20

LCHARG = FALSE

LWAVE = FALSE

#Crude optimisation
```

w/INCAR

```
PREC = Normal
EDIFF = 1e-3
IBRION = 2
ISIF = 3
NSW = 100
ISMEAR = 0
SIGMA = 0.060
POTIM = 0.020
LCHARG = FALSE
LWAVE = FALSE
#Crude optimisation
```

EDIFFG = 1e-2

KSPACING = 1.256

LREAL = A

ALGO = Fast

EDIFFG = 1e-2

KSPACING = 0.942

LREAL = A

ALGO = Fast

e/INCAR

PREC = Normal

EDIFF = 1e-4

IBRION = 2

ISIF = 3

NSW = 70

ISMEAR = 0

SIGMA = 0.060

POTIM = 0.250

ISTART = 0

LCHARG = FALSE

LWAVE = FALSE

#Crude optimisation

EDIFFG = 1e-3

KSPACING = 0.618

#ALGO = Fast

r/INCAR

PREC = Normal

EDIFF = 1e-4

IBRION = 2

ISIF = 2

NSW = 0

ISMEAR = 0

SIGMA = 0.060

POTIM = 0.250

ISTART = 0

LCHARG = FALSE

LWAVE = FALSE

#Crude optimisation

EDIFFG = 1e-3

KSPACING = 0.618

#ALGO = Fast

运行: 提交 magus search 到队列

结果: 搜索结果 results/good.traj

5.4 $Zn_x(OH)_y$ 变组分结构搜索

目标: 搜索 8-16 个原子 $Zn_x(OH)_y$ 的结构

准备: input.yaml, inputFold

使用 Gulp 经验势优化,因此种群数目与代数可以大大增加。

input.yaml 给出搜索所需参数 calcType: var # 变组分搜索 pressure: 0 initSize: 150 popSize: 150 numGen: 60 saveGood: 8 #structure parameters minAt: 8 maxAt: 16 symbols: ['Zn','0','H'] formula: [[1,0,0],[0,1,1]] # Zn : (OH) = 1 : 1fullEles: True eleSize: 5 dRatio: 0.5 volRatio: 10 addSym: False #main calculator settings MainCalculator: jobPrefix: ['Gulp1', 'Gulp2'] # 若 jobPrefix 给出计算器名称, 可不指定 calculator mode: parallel #gulp settings exeCmd: gulp < input > output #parallel settings numParallel: 5 numCore: 4 queueName: e52692v2ib! waitTime: 30

Gulp1/gpot

定义 gulp 所使用的势,其中 ReaxFF.lib 是相应的反应力场文件

```
time 240
space
1
maxcyc 300
library ./ReaxFF.lib
lennard epsilon
Zn Zn 0.0150 1.00 0.0 8.0
Zn
   0 0.0150 1.00 0.0 8.0
       0.0150 0.80 0.0 8.0
Zn H
H H
       0.0150 0.60 0.0 8.0
 0
0
       0.0150 0.80 0.0 8.0
       0.0150 0.80 0.0 8.0
H 0
```

Gulp1/goption.relax

relax 所使用命令, conv 代表第一代粗优固定晶格优化

opti spatial conj nosymmetry conv

类似的:

Gulp2/gpot

```
time 240
space
1
maxcyc 300
library ./ReaxFF.lib
```

Gulp1/goption.relax

opti spatial conj nosymmetry conv

运行: 提交 magus search 到队列

结果: 搜索结果 results/good.traj

5.5 MgSiO₃ 机器学习结构搜索

目标: 使用 MTP 加速搜索 10-20 个原子 MgSiO3 的结构

准备: input.yaml, inputFold

与5.2类似,准备好相应的 pot.mtp, mlip.ini,不同的是需要把 pot.mtp 中的原子种类改为 3 种

input.yaml

搜索所需参数, 计算器部分与5.2类似, 不再赘述

calcType: fix

poolSize: 2000 # 预训练生成的代挑选随机结构,可以设的很大

initSize: 400
popSize: 400
numGen: 60
saveGood: 3

#structure parameters

DFTRelax: False # 不使用 DFT 验证能量

minAt: 10
maxAt: 20

symbols: ['Mg','Si','0']

formula: [1, 1, 3]

molDetector: 2 # 2 号分子探测算法

dRatio: 0.8
volRatio: 1.3
randFrac: 0.4
pressure: 150
addSym: True

softNum: 0

MTP/pot.mtp

MTP

表头部分,主要区别为分子种类被替换成了3

version = 1.1.0
potential_name = MTP1m
scaling = 7.002314814814817e-01
species_count = 3
potential_tag =
radial_basis_type = RBChebyshev

运行: 提交 magus search -m 到队列

结果: 搜索结果 results/good.traj

5.6 CH₄ 分子晶体搜索

目标: 甲烷晶体结构搜索准备: input.yaml, inputFold, CH4.xyz input.yaml 可参照5.1与5.3中的设置:

MTP/pot.mtp

calcType: fix
initSize: 20
popSize: 20
numGen: 40
saveGood: 3

```
pressure: 50
minAt: 20
maxAt: 20
symbols: ['C', 'H']
## mol crystal
molMode: True
molFile: ['CH4.xyz']
molFormula: [4]
molType: 'fix'
chkMol: True
addSym: True
dRatio: 0.8
volRatio: 5
randFrac: 0.4
molDetector: 2
#main calculator settings
MainCalculator:
    jobPrefix: ['Vasp1', 'Vasp2']
    mode: parallel
    #vasp settings
    xc: PBE
    ppLabel: ['','']
    #parallel settings
    numParallel: 4
    numCore: 24
    queueName: 9242opa!
```

MTP/po	t.mtp			
5				
С	Н			
С	2.260984	1.227715	2.255654	
Н	2.597307	0.217093	2.238728	
Н	1.194544	1.227505	2.236584	
Н	2.611534	1.725297	1.379429	
н	2.590593	1.698611	3.156207	

运行: 提交 magus search 到队列

结果: 搜索结果 results/good.traj

6 常见问题 MAGUS 1.0.2

6 常见问题

使用时遇到疑问或 bug 可在https://git.nju.edu.cn/gaaooh/magus中提出 issue.

1. **为啥** pip **安装时报错**"ModuleNotFoundError: No module named 'yaml'"? 那你装一个啊

\$ pip install pyyaml