1

(a) What set (that we know) is
$$\bigcup_{x \in \mathbb{Z}} \{x, x+1, x+2\}$$
?

This is equal to the set of all integers, \mathbb{Z} .

This is because $\bigcup_{x \in \mathbb{Z}} \{x\} = \bigcup_{x \in \mathbb{Z}} \{x+1\} = \bigcup_{x \in \mathbb{Z}} \{x+2\} = \mathbb{Z}$. Redundancies are removed in sets.

(b) What set (that we know) is $\bigcup_{n \in (-n, n)}$?

This is equal to the set of all real numbers, \mathbb{R} .

(c) What set is $\bigcap_{n \in \{-n, n\}}$? Use formal set builder notation to describe it.

$${x \in \mathbb{R} \mid (x > -1) \land (x < 1)} = (-1, 1).$$

(d) What set is
$$\bigcup_{n=2}^{\infty} [0, 1-1/n)$$
 (\bigcup_{n = 2} ^\infty [0, 1 - 1/n))?

$${x \in \mathbb{R} \mid (x \ge 0) \land (x < 1)} = [0, 1).$$

(e) What set is $\bigcup_{x\in\mathbb{Z}} (\bigcup_{n=2}^{\infty} [x, x+1-1/n))$? Express your answer as simply as possible.

This is equal to \mathbb{R} .

The problem simplifies to $\bigcup\limits_{x\in\mathbb{Z}}\{[x,x+1)\}=(-\infty,\infty).$

2

For the sets in problem 1, find the complement of each set with respect to \mathbb{R} . (Recall that the complement of A with respect to B is every element in B that is not in A)

(a) \mathbb{Z}^C .

$$\{x \in \mathbb{R} \mid x \notin \mathbb{Z}\} = \bigcup_{x \in \mathbb{Z}} (x, x+1).$$

Question from student: of the two above, which method is better?

(b) \mathbb{R}^C

Ø.

(c)
$$(-1,1)^C$$

$$\{x\in\mathbb{R}\mid (x\leq -1)\vee (x\geq 1)\}=(-\infty,-1]\cup [1,\infty).$$

(d)
$$[0,1)^C$$
.

$${x \in \mathbb{R} \mid (x < 0) \lor (x \ge 1)} = (-\infty, 0) \cup [1, \infty).$$

(e) \mathbb{R}^C .

Ø.

3

(a) Prove that the cardinality of $|A \times B|$ is $|A| \cdot |B|$, assuming that A and B are finite. It does not have to be particularly rigorous.

The definition of the cartesian product is $A \times B = \{(a,b) \mid a \in A, b \in B\}$. We have |A| unique options for a, and for each of those a, we have |B| unique options for b. Therefore, there are $|A| \cdot |B|$ unique elements in $A \times B$ — in other words, $|A \times B| = |A| \cdot |B|$.

$$|\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing))))| = 16.$$

Recall that for an arbitrary finite set A, $|\mathcal{P}(A)| = 2^{(|A|)}$. If we were to apply the powerset function again, we'd get $|\mathcal{P}(\mathcal{P}(A))| = 2^{(|\mathcal{P}(A)|)} = 2^{(2^{(|A|)})}$. In our case, $A = \emptyset$, so |A| = 0, which makes $2^{(2^{(|A|)})} = 2$.

Generalizing this, applying the powerset function n times to the empty set yields a set with cardinality 2^{n+1} where 2 appears n-1 times (or in "tetration" notation, n-12).

This is clear by manually calculating each nested powerset:

- $\bullet \ |\varnothing| = 0,$
- $|\mathcal{P}(\varnothing)| = 2^0 = 1$,
- $|\mathcal{P}(\mathcal{P}(\emptyset))| = 2^{2^0} = 2$,
- $|\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing)))| = 2^{2^{2^0}} = 4$,
- $|\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing))))| = 2^{2^{2^{2^{0}}}} = 16.$

4

(a) Prove that $(A \setminus B) \subseteq A$.

By Definition 2.17, $A \setminus B := \{x \in A \mid x \notin B\}$. Thus it trivially follows that x is an element of A. Because an arbitrary element of $A \setminus B$ is necessarily an element of A, we can conclude $A \setminus B \subseteq A$.

(b) Prove the first DeMorgan's law for sets that I listed above:

$$(A \cup B)^C = A^C \cap B^C.$$

Let $x \in (A \cup B)^C$. Then $x \notin (A \cup B)$, $(x \notin A) \land (x \notin B)$, $(x \in A^C) \land (x \in B^C)$, $x \in (A^C \cap B^C)$. Therefore, $(A \cup B)^C \subseteq (A^C \cap B^C)$.

Let $y \in (A^C \cap B^C)$. Then $(y \in A^C) \wedge (y \in B^C)$, $(y \notin A) \wedge (y \notin B)$, $y \notin (A \cup B)$, $y \in (A \cup B)^C$. Therefore $(A^C \cap B^C) \subseteq (A \cup B)^C$.

 $(A \cup B)^C \subseteq (A^C \cap B^C)$ and $(A^C \cap B^C) \subseteq (A \cup B)^C$, so $(A \cup B)^C = A^C \cap B^C$.

5

Define the **symmetric difference** of two sets A, B as follows:

$$A\triangle B := (A \setminus B) \cup (B \setminus A).$$

Prove that $A \triangle B = (A \cup B) \setminus (A \cap B)$.

- We begin with the definition of the symmetric difference: $(A \setminus B) \cup (B \setminus A)$.
- By the definition of set minus: $(A \cap B^C) \cup (B \cap A^C)$.
- By distribution [of form $P \cup (Q \cap R)$, where $P = (A \cap B^C)$, Q = B, and $R = A^C$]: $((A \cap B^C) \cup B) \cap ((A \cap B^C) \cup A^C)$.
- By distribution [of form $(P \cap Q) \cup R$]: $((A \cup B) \cap (B^C \cup B)) \cap ((A \cup A^C) \cap (B^C \cup A^C)).$

- By law of excluded middle and definition of truth: $(A \cup B) \cap (B^C \cup A^C)$.
- By commutativity of union: $(A \cup B) \cap (A^C \cup B^C)$.
- By definition of set minus: $(A \cup B) \setminus (A^C \cup B^C)^C$.
- By DeMorgan's first law for sets: $(A \cup B) \setminus (A \cap B)$.

Therefore, we find that $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$.

6

We can perform unions and intersections without an indexing set, as well. For example, we can write

$$\bigcup_{X \in \mathcal{P}(A)} X = A.$$

(You can prove this to yourself if you'd like). Now let's define the following set:

$$\mathcal{T}_A := \{ X \subseteq A \mid |X| = 2 \}.$$

We say this set is parameterized by a set A. Now, for which A is the union

$$\bigcup_{X \in \mathcal{T}_A} X = A?$$

 $\bigcup_{X\in\mathcal{T}_A}X=A \text{ for all } A \text{ with a cardinality greater than or equal to } 2.$