CLAIMS

. 1 -

l	in a wye-connected electrical system for supplying power from an AC
2	source to at least one nonlinear load connected to a phase line therein, a device for
3	substantially eliminating currents in the neutral wire generated by the nonlinear
4	load, said device comprising:
5	an electrical circuit comprising
6	a first passive electrical component connected in series
7	between the AC source and the nonlinear load,
8	a second passive electrical component connected in parallel to
9	said first passive electrical component,
10	a third passive electrical component connected in parallel to
11	said first and said second passive electrical components; and
12	wherein said first, said second, and said third passive electrical components
13	of said circuit are tuned to a harmonic frequency of a fundamental frequency of the
14	AC source so as to substantially eliminate a harmonic current drawn by the
15	nonlinear load.

-2-

A device as recited in claim 1, wherein:
said first, said second, and said third passive electrical components are tuned
to a third harmonic frequency of the AC source.

-3-

A device as recited in claim 1, wherein:

said first passive electrical component comprises a capacitor;

said second passive electrical component comprises a reactor; and

said third passive electrical component comprises a resistor.

1

2

3

1	A device as recited in claim 2, wherein:
2	said first passive electrical component comprises a capacitor;
3	said second passive electrical component comprises a reactor; and
4	said third passive electrical component comprises a resistor.
	-5-
1	A harmonic current eliminating device as recited in claim 1, wherein:
2	each phase line in the electrical system-is-connected to at least one nonlinear
3	load;
4	said device comprises a plurality of said electrical circuits, each of said
5	electrical circuits being connected along a separate phase line therein and in series
6	with at least one nonlinear load so as to substantially eliminate a harmonic current
7	drawn thereby; and
8	wherein each of said electrical circuits is tuned to an identical harmonic
9	frequency of the AC source.
	-6-
1	A harmonic current eliminating device as recited in claim 2, wherein:
2	each phase line in the electrical system is connected to at least one nonlinear
3	load;
4	said device comprises a plurality of said electrical circuits, each of said
5	electrical circuits being connected along a separate phase line therein and in series
6	with at least one nonlinear load so as to substantially eliminate a harmonic current
7	drawn thereby; and

wherein each of said electrical circuits is tuned to a third harmonic of the AC

8

9

source.

	-7-
1	A device for substantially eliminating a harmonic current generated by a
2	nonlinear load in an electrical distribution system, the distribution system
3	distributing power from an AC source, said device consisting of:
4	a first passive electrical component connected in series with the nonlinear
5	load;
6	a second passive electrical component connected in parallel to said first
7	passive electrical component;
8	a third passive electrical component connected in parallel to said first and
9	said second passive electrical components; and
10	wherein said first, said second, and said third passive electrical components
11	are tuned to a harmonic frequency of the AC source so as to change the current
12	drawn by the nonlinear load.
	-8-
1	A device as recited in claim 7, wherein:
2	said device is tuned to a third harmonic frequency of the AC source.
	-9-
1	A device as recited in claim 7, wherein:
2	said first passive electrical component is a resistor;
3	said second passive electrical component is a reactor; and
4	said third passive electrical component is a capacitor.
	-10-
1	A device as recited in claim 8, wherein:
2	said first passive electrical component is a resistor;

said second passive electrical component is a reactor; and

said third passive electrical component is a capacitor.

3

4

1	A device for substantially eliminating harmonic currents in an electrica
2	system having a nonlinear load and an AC source, and increasing the operational
3	range of the nonlinear load, comprising:
4	a first passive electrical component connected in series with the nonlinear
5	load;
6	a second passive electrical component connected in parallel to said first
7	passive electrical component;
8	a third passive electrical component connected in parallel to said first and
9	said second passive electrical component;
10	wherein said first, said second, and said third passive electrical components
11	are tuned to a third harmonic frequency of the AC source so as to substantially
12	alter current drawn by the nonlinear load.
	-12-
1	A device as recited in claim 11, including:
2	a housing for said first, said second, and said third passive electrical
3	components; and
4	an equipment rack panel member connected to said housing so as to mount
5	said housing in an equipment rack, storing the nonlinear load; and

to allow airflow to pass therethrough.

6

7

wherein said equipment rack panel member is substantially perforated so as

1	A device as recited in claim 11, including:
2	an electrical housing member;
3	at least one electrical socket for connecting to the nonlinear load, said socket
4	being disposed along a first surface of said housing member; and
5	at least one bracket member for mounting said device along a substantially
6	planar surface so that said socket and said first surface of said housing member are
7	substantially aligned with said planar surface, said device substantially replacing a
8	conventional wall outlet.
	-14-
1	A device as recited in claim 11, wherein:
2	the nonlinear load comprises a computer having a monitor connected
3	thereto; and
4	said device further includes at least one monitor saver board, said monitor
5	saver board deactivates said monitor during periods of nonuse, and a housing
6	member having electrical connectors for connection to said monitor and to said
7	computer.
	-15-
1	A device as recited in claim 11, further including:
2	an isolation transformer;
3	a housing member having electrical connectors extending therefrom for
4	providing connection to the nonlinear load; and
5	at least one bracket member for attaching said housing member to a utility

6

cart.

A device as recited in claim 15, wherein:

1

2

3

4

5

1 2

3

4

5

6

7

1

2

3

1

2

3

4

said isolation transformer is a hospital grade isolation transformer; and the nonlinear load comprises electronic hospital equipment and said bracket member attaches said housing member to a hospital utility cart, said cart holding said electronic hospital equipment.

-17-

A device as recited in claim 11, including:
means, connected in series with said parallel combination of said first, said second, and said third passive electrical components, for clamping current levels drawn by the nonlinear load, comprising a current clamping circuit, a sensor for detecting a rapid rise in current drawn by the nonlinear load and means for automatically deactivating said clamping circuit based upon signal levels detected by said sensor.

-18-

A device as recited in claim 17, wherein:

said first, said second, and said third device are tuned to a third harmonic frequency of the AC source.

-19-

A device as recited in claim 18, wherein:

said current level clamping circuit maintains a maximum current level drawn by the nonlinear load to between approximately 6 and 8 amps; and

the nonlinear load includes a heating unit.