

Quantifying cooperativity: Hill function and Hill coefficient

Hill equation:  $\mathbf{resp}_{d+L}^{[L]^n} = \frac{[L]^n}{(K_A)^n + [L]^n}$ Wichaelis-Menten

("Hyperbolic Sensitivity")

10%

Ligand Concentration

1-1



1-2



# Apparent vs. real cooperatively

Actual (positive) Cooperativity — molecular function enhanced by binding at a molecular level.

e.g., subsequent ligand binding is enhanced by previous ligand binding.

Apparent (positive) cooperativity — no enhancement at the molecular level, but an apparent enhancement observed at the level of populations of molecules.

$$e.g., T <=> R <=> R1 <=> R2$$

2

### Implications of hemoglobin cooperativity Tissues Myoglobin 1.0 Hemoglobin Y (fractional saturation) No 0.6 cooperativity (hypothetical) 0 20 50 100 150 200 pO<sub>2</sub> (torr)

Example: Real cooperativity - hemaglobin

- \* four subunits, two alpha and two beta
- \* each subunit binds O2
- \* sequential binding model (below) vs. concerted binding model



3

Physiological roles of (actual/apparent) cooperativity

titration of binding creating thresholds for function regulatory switches











10-1





10-2







12

Futile Cycles of Phosphorylation in MAP kinase cascade Futile cycles are MAPKK manifested in many ways G protein cycling Phosphorylation State of the system is Mpp described by the substrate Energy is consumed – careful with V.  $v_3$ microscopic reversibility MKP

What are the quantitative implications of a futile cycle 'design'?

# Covalent modification systems — Koshland-Goldbeter Switch

Model:



Goldbeter, A. and Koshland, D. (1981) PNAS 78(11), 6840-6844.

16-1

### Covalent modification systems — Koshland-Goldbeter Switch

Model:

Mass-action kinetics. For example...



$$W + E_1 \stackrel{k_{c1}}{\rightleftharpoons} U_1 \stackrel{k_{a1}}{\rightarrow} W^* + E_1$$

$$W^* + E_2 \xrightarrow[k_{02}]{k_{02}} U_2 \xrightarrow[]{k_{a2}} W + E_2$$

Goldbeter, A. and Koshland, D. (1981) PNAS 78(11), 6840-6844

### Covalent modification systems — Koshland-Goldbeter Switch

Model:



$$W + E_1 \stackrel{k_{c1}}{\longleftrightarrow} U_1 \stackrel{k_{a1}}{\to} W^* + E$$

$$W^* + E_2 \xrightarrow[k_{u2}]{k_{u2}} U_2 \xrightarrow[]{k_{a2}} W + E_2$$

Goldbeter, A. and Koshland, D. (1981) PNAS 78(11), 6840-6844.

16-2

### Covalent modification systems — Koshland-Goldbeter Switch

Model:

Mass-action kinetics. For example...



$$\frac{\mathrm{d}W}{\mathrm{d}t} = -k_{c1}WE_1 + k_{u1}U_1 + k_{a2}U_2$$

$$E_{1T} = [E_{2T}]$$

$$E_{2T} = [E_{2T}]$$

$$W^* + E_2 \stackrel{k_{c2}}{\longleftrightarrow} U_2 \stackrel{k_{a2}}{\to} W + E_2$$

$$W_T = [W] + [W^*] + [WE_1] + [W^*E_2]$$

Goldbeter, A. and Koshland, D. (1981) PNAS 78(11), 6840-6844.

### Covalent modification systems — Koshland-Goldbeter Switch

Steady-state solution:

$$W^* = \frac{\left(\frac{V_1}{V_2} - 1\right) - \kappa_2\left(\frac{K_1}{K_2} + \frac{V_1}{V_2}\right) + \left(\left[\frac{V_1}{V_2} - 1 - \kappa_2\left(\frac{K_1}{K_2} + \frac{V_1}{V_2}\right)\right]^2 + 4\kappa_2\left(\frac{V_2}{V_2} - 1\right)\left(\frac{V_1}{V_2}\right)^{1/2}}{2\left(\frac{V_1}{V_2} - 1\right)}$$

(in implicit form...)

$$\frac{V_1}{V_2} = \frac{w^*(1 - w^* + K_{M1})}{(1 - w^*)(w^* + K_{M2})}$$

$$V_1 = k_1 E_{1T}, V_2 = k_2 E_{2T}, K_1 = \frac{d_1 + k_1}{a_1 W_T} = K_{m1} / W_T,$$
  
and  $K_2 = \frac{d_2 + k_2}{a_1 W_T} = K_{m2} / W_T$ 

$$W + E_1 \underset{d_1}{\overset{a_1}{\rightleftharpoons}} WE_1 \xrightarrow{k_1} W^* + E_1$$

$$W^* + E_2 \underset{d_2}{\rightleftharpoons} W^* E_2 \xrightarrow{k_2} W + E_2$$

Goldbeter, A. and Koshland, D. (1981) PNAS 78(11), 6840-6844.

17-1

# Ultrasensitivity — a switch-like response

Ultrasensitivity refers to the notion of a steep doseresponse curve

Goldbeter-Koshland switch exhibits zero-order ultra sensitivity

Study questions: under what condition does G-K switch occur? is this apparent or real cooperativity?



# Steady-state solution: $W^* = \frac{\left(\frac{V_1}{V_2} - 1\right) - \kappa_2 \left(\frac{K_1}{K_2} + \frac{V_1}{V_2}\right) + \left(\left[\frac{V_1}{V_2} - 1 - \kappa_2 \left(\frac{K_1}{K_2} + \frac{V_1}{V_2}\right)\right]^2 + 4\kappa_2 \left(\frac{V_2}{V_2} - 1\right) \left(\frac{V_1}{V_2}\right)^{1/2}}{2\left(\frac{V_1}{V_2} - 1\right)}$ (in implicit form...) $V_1 = k_1 E_{1T}, \ V_2 = k_2 E_{2T}, \ K_1 = \frac{d_1 + k_1}{a_1 W_T} = K_{m1} / W_T,$ $W + E_1 \rightleftharpoons W^* + E_2 \rightleftharpoons W^* E_2 \rightarrow W + E_2$ $W^* + E_2 \rightleftharpoons W^* E_2 \rightarrow W + E_2$ $W^* = \frac{k_1}{k_2} \frac{1.0}{0.6}$ $W^* = \frac{k_1}{k_1} \frac{1.0}{0.6}$ $W^* = \frac{k_1}{k_2} \frac{1.0}{0.6}$ $W^* = \frac{k_1}{k_1} \frac{1.0}{0.6}$ $W^* = \frac$













20-2



Futile cycles in sequence compound overall sensitivity





### Each stage of cascade may involve 2 futile cycles



Huang, C and Ferrell, J. (1996) PNAS 93, 10078-10083.

22-3

Futile cycles in sequence compound overall ultrasensitivity

Model predicts that the two-step, double hit mechanism produces more ultrasensitive response

Huang, C and Ferrell, J. (1996) PNAS 93, 10078-10083.

### Futile cycles in sequence compound overall ultrasensitivity

Table 3. Predicted Hill coefficients for MAPK cascade components assuming one-step (processive) or two-step (distributive) models for the phosphorylation of MAPK and MAPKK

| Model                                          | Effective Hill coefficient (nH) predicted for: |       |      |
|------------------------------------------------|------------------------------------------------|-------|------|
|                                                | MAPKKK                                         | MAPKK | MAPK |
| One-step phosphorylation for MAPKK activation; |                                                |       |      |
| One-step phosphorylation for MAPK activation   | 1.0                                            | 1.3   | 1.5  |
| One-step phosphorylation for MAPKK activation; |                                                |       |      |
| Two-step phosphorylation for MAPK activation   | 1.0                                            | 1.3   | 2.0  |
| Two-step phosphorylation for MAPKK activation; |                                                |       |      |
| One-step phosphorylation for MAPK activation   | 1.0                                            | 1.7   | 3.7  |
| Two-step phosphorylation for MAPKK activation; |                                                |       |      |
| Two-step phosphorylation for MAPK activation   | 1.0                                            | 1.7   | 4.9  |

Model predicts that the two-step, double hit mechanism produces more ultrasensitive response

Huang, C and Ferrell, J. (1996) PNAS 93, 10078-10083.

23-1

# Futile cycles in sequence compound overall ultrasensitivity



Huang, C and Ferrell, J. (1996) PNAS 93, 10078-10083.



From in vitro to in vivo (i.e., in cells)

Is the MAPK cascade a switch inside cells?

Background on Xenopus oocytes

*Xenopus* oocyte maturation:

Fully grown oocytes are arrested in G<sub>2</sub> Progesterone initiates oocyte maturation: first

Progesterone initiates oocyte maturation: first meiotic division and arrest in metaphase of meiosis II

MAPK activation is necessary for maturation

*Xenopus* oocyte maturation is an all-ornone process, a discrete transformation Maturation is an irreversible process



Single-cell vs. Population view

25



Consider two extremes...

*Graded response* vs *switch-like response* to graded stimulus, progesterone

How does individual cell proceed from  $G_2 \rightarrow M$ ?

Ferrell, J. and Machleder, E. (1998) Science 280, 895-898.