Reviewing 4-to-2 Adders for Multi-Operand Addition

Peter Kornerup

Dept. of Mathematics and Computer Science Odense, Denmark

Introduction:

4-to-2 adders:

- allow binary tree structured multipliers.
- usually used with redundant digit set $\{0, 1, 2\}$ or $\{-1, 0, 1\}$.
- recently digit set $\{0, 1, 2, 3\}$ was proposed by Ercegovac and Lang [EL97] using a 3-bit encoding.
- Phatak, Goff and Koren [PGK01] proposed various digit sets with encodings $d = \pm 2d^h \pm d^l$ and equal-weight grouping, or EWG.

It is shown that they all can be implemented with any standard 4-to-2 carry-save adder, using alternative wiring and possibly a few inverters.

4-to-2 Carry-Save Adder from Full-Adders:

A pair of bits can be interpreted as a digit in the set $\{0, 1, 2\}$, employing the *carry-save encoding*:

$$0 \sim 00$$

$$1 \sim 01 \text{ or } 10$$

$$2 \sim 11$$

4-to-2 Carry-Save Adder from Multiplexors:

From [OSYSSN95], using pass transistors and a dual-rail coding.

Addition as a Digit Set Conversion:

Carry-Save addition is equivalent to a digit-set conversion [Kor94] from the set $\{0,1,2\}+\{0,1,2\}=\{0,1,2,3,4\}$ into the set $\{0,1,2\}$:

Signal Weights:

Defining equation:

$$2(c'_{out} + c''_{out}) + (o_1 + o_2) = i_1 + i_2 + i_3 + i_4 + c'_{in} + c''_{in}.$$

Assume $o_2 = c''_{in}$, this allows c''_{in} to be added in at no cost. Hence:

$$o_{1} = (i_{1} + i_{2} + i_{3} + i_{4} + c'_{in}) \mod 2$$

$$o_{2} = c''_{in}$$

$$c'_{out} + c''_{out} = (i_{1} + i_{2} + i_{3} + i_{4} + c'_{in}) \operatorname{div} 2,$$

 (c'_{out}, c''_{out}) is a carry-save encoding of the combined carry in $\{0, 1, 2\}$.

Signed and Weighted Signals:

Theorem 1 Let a binary signal $b \in \{0,1\}$ have associated weight w, so that the value represented by the signal is v = wb. Inverting the signal into 1 - b, while at the same time negating the sign of the weight, changes its value into v' = v - w, i.e., the value is being biased by the amount -w.

Proof: Trivial since v' = (-w)(1-b) = wb - w = v - w.

Signed-Digit / Borrow-Save

Consider the base 2 digit-set $\{-1,0,1\}$ using the *signed-digit* encoding (also denoted *borrow-save*), where two bit strings are considered a string of digits:

obtained by pairing bits using the digit encoding:

$$-1 \sim 10$$
 $0 \sim 00 \text{ or } 11$
 $1 \sim 01,$

where the left-most bit has negative weight.

Signed-Digit Addition:

Addition of two signed-digit operands is a conversion of digit set $\{-1,0,1\} + \{-1,0,1\} = \{-2,-1,0,1,2\}$ into $\{-1,0,1\}$ with conversion diagram:

and defining equation:

$$2(-c'_{out} + c''_{out}) + (-o_1 + o_2) = -i_1 + i_2 - i_3 + i_4 - c'_{in} + c''_{in}$$

Signed-Digit Adder from Carry-Save Adder:

A signed-digit adder:

Observation 2 In a computational model where inversion is without cost in area and time, radix 2 signed-digit addition can be realized at exactly the same cost as carry-save addition.

Observation 3 Multi-operand addition of radix 2 signed-digit operands can be implemented by a tree of carry-save adders, by inverting all negatively weighted signals on input as well as on output external to the tree, but with no changes internally in the tree.

Codings of the Form $\pm 2d^h \pm d^l$:

Phatak, Goff and Koren [PGK01] suggested:

$$\mathcal{D}^{(SD)} = \{-1,0,1\}$$
 $\mathcal{D}^{(CS2)} = \{0,1,2\}$
 $\mathcal{D}^{(SD3^{(-)})} = \{-2,-1,0,1\}$ $\mathcal{D}^{(CS3)} = \{0,1,2,3\}$
 $\mathcal{D}^{(SD3^{(+)})} = \{-1,0,1,2\}.$

Since the encodings employ weights differing by a factor of 2, neighboring digits d_i and d_{i-1} in a radix representation overlap one another, i.e., d_i^l has the same weight as d_{i-1}^h ,

EWG: Equal-Weight Grouping:

With $\mathcal{D}^{(CS3)} = \{0, 1, 2, 3\}$ addition is conversion from $\mathcal{D}^{(CS3)} + \mathcal{D}^{(CS3)} = \{0, 1, 2, 3, 4, 5, 6\}$, to $\{0, 1, 2, 3\}$, but with EWG:

Thus with coding $d=2d^h+d^l$ for $\mathcal{D}^{(CS3)}$ EWG it is a conversion

EWG Design, $SD + SD \rightarrow SD$:

An alternative implementation:

EWG Design, $SD3^{(-)} + SD3^{(-)} \rightarrow SD3^{(-)}$:

An alternative design:

EWG Design, $CS2 + CS2 \rightarrow CS2$:

An alternative implementation:

EWG Design: $CS3 + CS3 \rightarrow CS3$:

But this is the same as:

EWG Timings:

In [PGK01] the following timings were found:

Adder Cell	Critical Path Delay (ns)				
SD	0.78750				
$SD3^{(-)}$	0.96025				
CS2	0.66100				
CS3	0.46580				

In [PGK01] it is claimed that:

"multipliers based on CS3 can be expected to outperform multipliers based on other redundant representations" and furthermore using arguments on digit-set cardinalities:

"Therefore, cells such as $[SD \ and \ CS2 \ above]$ are fundamentally more complex, hence, bigger and slower."

Another Example using $\{0, 1, 2, 3\}$:

Ercegovac and Lang [EL97] proposed this digit set using (d,e,f) encoding, $(e,f) \neq (1,0)$, with value v=d+e+f. Internally also using (t,w) with v=2t+w:

Value	0	1	_	2	1	2	_	3
d, e, f	000	001	010	011	100	101	110	111
t, w	00	01	_	10	01	10	_	11

Using conversion:

Binary Signals into (d, e, f)-Encoding:

Note the recoding taking place at the right to assure $(e, f) \neq (1, 0)$

Addition as Digit Set Conversion:

With digit set $\{0, 1, 2, 3\}$, addition is here a conversion from $\{0, 1, 2, 3\} + \{0, 1, 2, 3\} = \{0, 1, 2, 3, 4, 5, 6\}$ into $\{0, 1, 2, 3\}$:

Note that the carry set is $\{0,1,2\} + \{0,1\} = \{0,1,2,3\}$.

Reorganizing the 6-to-3 into 4-to-2 Adder:

Saves wiring in a multiplier tree, but has the same critical path.

The difference is only in interpreting where the boundaries between layers of the tree are located.

But this is just a Full-Adder

Hence using 6-to-3 adders in a multiplier tree is equivalent to using 4-to-2 adders!

Conclusions:

On multiplier and other multioperand addition trees:

- The difference between the 6-to-3 (d, e, f)-tree and the 4-to-2 (t, w)-tree, is only a question of interpreting where the boundaries between layers of the tree are positioned.
- The difference between the 4-to-2 (t, w)-tree and the standard carry-save (c, s)-tree, is only a question of interpreting which signal pairs constitute digit encodings.
- The difference between the standard 4-to-2 carry-save (c, s)-tree and the signed-digit (or borrow-save) tree, is only a question of placing inverters appropriately on input- and output-signals at the external boundary of the tree, but no differences internally in the tree.

All these trees can be implemented employing the same 4-to-2 carry-save adder as the fundamental building block.

References:

[EL97] M.D. Ercegovac and T. Lang. *Effective Coding for Fast Redundant Adders using* the Radix-2 Digit Set $\{0, 1, 2, 3\}$. In *Proc. 31st Asilomar Conf. Signals Systems and Computers*, pages 1163–1167, 1997.

[Kor94] P. Kornerup. *Digit-Set Conversions: Generalizations and Applications. IEEE Transactions on Computers*, C-43(6):622–629, May 1994.

[KNE87] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi. Design of High Speed MOS Multiplier and Divider Using Redundant Binary Representation. In Proc. 8th IEEE Symposium on Computer Arithmetic, pages 80–86. IEEE Computer Society, 1987.

[OSYSSN95] N. Ohkubo, M. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and Y. Nakagome. *A 4.4 ns CMOS 54* × *54-b Multiplier Using Pass Transistor Multiplexers. IEEE Journal of Solid State Circuits*, 30(3):251–257, 1995.

[PGK01] D.S. Phatak, T. Goff, and I. Koren. *Constant-Time Addition and Simultaneous Format Conversion Based on Redundant Binary Representations. IEEE Transactions on Computers*, 50(11):1267–1278, 2001.