HEART FAILURE PREDICTION IN PATIENTS:

A MACHINE LEARNING APPROACH

NINAD DIXIT
SPRINGBOARD DATA SCIENCE BOOTCAMP

BACKGROUND

 Cardiovascular diseases (CVDs) death toll – 17.9 million 2019 (32% of all global deaths)

 At least 75% deaths occurred in low- and middleincome countries

Patients may not have access to advanced care

HOW CAN WE RELIABLY PREDICT HEART FAILURE IN PATIENTS?

SOLUTION

USE MACHINE LEARNING ALGORITHMS

- SAVE LIVES
- SAVE HEALTHCARE EXPENSES

THE DATA

Obtained from Kaggle competition:

https://www.kaggle.com/fedesoriano/heart-failure-prediction

- Combination of 5 datasets:
 - Cleveland, Hungary, Switzerland, Long Beach VA, and Stalog (Heart) datasets

918 unique observations

DATA WRANGLING

Target feature: 'HeartDisease' (1: heart disease, 0: normal)

No missing values, but many entries with 'Cholesterol'
 = 0

 Dropped all observations with at least one feature with '0' value

DATA WRANGLING

• 'MaxHR': maximum heart rate achieved (numerical feature)

- 'MaxHR' converted to categorical variable:
 - MaxHR < avg max heart rate: '0'
 - MaxHR > avg max heart rate: '1'

Age	Target HR Zone 50-85%	Average Maximum Heart Rate, 100%	
20 years	100-170 beats per minute (bpm)	200 bpm	
30 years	95-162 bpm	190 bpm	
35 years	93-157 bpm	185 bpm	
40 years	90-153 bpm	180 bpm	
45 years	88-149 bpm	175 bpm	
50 years	85-145 bpm	170 bpm	
55 years	83-140 bpm	165 bpm	
60 years	80-136 bpm	160 bpm	
65 years	78-132 bpm	155 bpm	
70 years	75-128 bpm	150 bpm	

SOURCES:

https://en.wikipedia.org/wiki/ST_depression https://www.cvphysiology.com/CAD/CAD012

Up: Normal

Flat: heart disease

Down: heart disease

MODEL SELECTION & PERFORMANCE

Model	Accuracy		ROC-AUC
	Cross-validation	Test	
Logistic regression	0.85	0.87	-
K-nearest	0.84	0.87	-
neighbors	0.04	0.07	
Random forest	0.85	0.89	0.956
XGBoost	0.85	0.89	0.936

$$accuracy = \frac{(no.\ of\ true\ positives) + (no.\ of\ true\ negatives)}{(total\ no.\ of\ observations)}$$

Hyperparameter tuning using Grid Search Cross Validation

MODEL SELECTION & PERFORMANCE

True positive: is '1' and predicted '1'
False positive: is '0' and predicted '1'

FEATURE IMPORTANCE

ST slope: 0.376

Exercise angina: 0.110

Age: 0.082

Oldpeak: 0.146

Chest pain type: 0.101

CONCLUSIONS

- Random Forest classifier the best performer
- Most important features: ST slope, Oldpeak, Exercise angina

SCOPE FOR IMPROVEMENT

- Choose right metric precision, recall, f1-score
- Choose right threshold 0.5 as default
- Use other classifiers LightGBM

RECOMMENDATIONS FOR CLIENT

• Use the latest medical records for diagnosis

Seek expert opinion before informing patients

THANK YOU!

 UCI Machine Learning Repository for making the data available publicly

Ramkumar Hariharan for providing valuable advice

QUESTIONS?