Architecture de la matière 1 —

Le modèle quantique

Les interactions radiation électromagnétique - matière

Radiation électromagnétique : forme de déplacement d'énergie dans l'espace.

Aspect ondulatoire: onde caractérisé par : sa vitesse c, sa fréquence ν , sa longueur d'onde λ , son amplitude...

Aspect corpusculaire : photon associé à une radiation de longueur d'onde ν , tel que $E=h.\nu$

1. Mise en oeuvre de la spectroscopie

Pour l'émission, on a dans l'ordre : source à analyser, fente, achromat (lentille convergente), prisme, achromat, écran. On peut avoir : un spectre continu (ex. lumière visible), ou un spectre de raies (ex. vapeur métallique excitée).

(Avec $n' \leq n$, car descend du niveau $n \grave{a} n'$), Formule de Ritz-Balmer ou de Rydberg:

$$\frac{1}{\lambda} = R_x Z^2 \left(\frac{1}{n'^2} - \frac{1}{n^2} \right)$$

n'=2: Balmer n' = 1: Lyman

n'=4: Brackett n'=3: Paschen

Pour l'absorption, on place une source de lumière blanche, puis on place la cuve de la substance absorbante avant le prisme. On a alors un spectre discontinu.

(Part toujours de l'état fondamental, monte jusqu'au niveau n)

$$\frac{1}{\lambda} = R_x Z^2 \left(1 - \frac{1}{n^2} \right)$$

Pour les hydrogénoïdes, on utilise Z (numéro athomique) et $R_x \approx R_H$.

Raie de tête : du niveau $n' + 1 \rightarrow n'$ Raie limite : du niveau $\infty \rightarrow n'$

Interprétation théorique : le modèle de Bohr pour l'atome d'hydrogène

Trois hypothèses:

- L'électron gravite autour du noyau sur une orbite circulaire de rayon r, à vitesse v.
- Le rayon de Bohr r est quantifié (seuls certaines valeurs possibles).
- Si r est constant, l'élection ne rayonne pas d'énergie (état stationnaire).

Limites:

- Raie = ensemble de sous raies très fines.
- Spectre d'émission modifié dans un champ magnétique ou électrique intense.
- Ne fonctionne pas pour les atomes polyélectroniques.

Présentation des résultats : diagramme d'énergie de Grotrian

L'énergie d'un niveau s'exprime à partir de celle du niveau 1 : $E_n = -\frac{R_H}{n^2}$

L'énergie d'ionisation correspond à la transition $1 \to \infty$.

On a donc $E_{incident} = E_{ionisation} + E_c$

- Architecture de la matière 2 -

Le modèle ondulatoire de l'atome

Édification de la mécanique quantique

Modèles de l'atome non viables \rightarrow mécanique quantique, propre aux atomes et molécules (tout système influençé par un quantum $h.\nu$).

Particule ou onde? Relation de Bröglie

Dualité onde-corpuscule (onde, caractérisé par ν , λ , c; corpuscule, caractérisé par $E=h.\nu=\frac{h.c}{\lambda}$).

Relation de Bröglie :
$$\lambda = \frac{h}{m.v} = \frac{h}{p}$$

Pour les photons (masse nulle), on utilise ka quantité de mouvement p.

De la notion d'orbite à la notion d'orbitale

Principe d'indétermination d'Heisenberg : dans la théorie quantique, la position et la vitesse ne sont pas déterminés, on parle donc de densité électronique (probabilité de présence). La densité électronique définie une orbitale.

L'équation de Schrödinger lie l'énergie d'un électron et sa probabilité de présence en différents points, avec la fonction d'onde $\Psi(x,y,z)$.

- La probabilité de présence ne peut prendre qu'une seule valeur par point de l'espace.
- La probabilité de présence ne peut pas présenter de discontinuité.
- En explorant tout l'espace, la probabilité de présence doit être égale à 1 (évènement certain).

Nombres quantiques:

Symbole	Nom	Représentation	Valeurs possibles	
n	principal	Taille de l'orbitale	$n \ge 1$	
l	secondaire (ou azimutal)	Type d'orbitale	$0 \le l \le n - 1$	
$m_l \text{ (ou } m)$	magnétique ou orbital	Orientation de l'orbitale	$-l \le m_l \le l$	
$s ext{ (ou } m_s)$	spin	Rotation de l' e^- sur lui même	+1/2 ou $-1/2$	

Différentes orbitales:

l	Nom	Origine	Forme
0	s	sharp	Sphérique
1	p	principal	Deux ellipsoïdes, ou haltères
2	d	diffuse	
3	f	fundamental	

Architecture de la matière 3 -

Atomes polyélectroniques, configuration électronique

Approximation monoélectronique. Charge nucléaire effective

Pour les atomes à plusieurs électrons, les spectres d'absorption et d'émission sont nettement plus complexes, et l'équation de Schrödinger est trop complexe pour être résolue.

On fait donc une approximation monoélectronique en remplaçant l'ensemble noyau + autres électrons par un noyau fictif de **charge nucléaire effective** Z^* .

Les autres électrons exercent sur un électron particulier, un **effet d'écran** représenté par la constante d'écran σ : $Z^* = Z - \sigma$.

Orbitales atomiques

Pour les atomes polyélectroniques, les énergies dépendent de n, de l et de Z^* .

Organisation du nuage électronique

Couche électronique (ou période):

n	1	2	3	4	5	6	7
Symbole	K	L	Μ	N	O	Р	Q
Valeurs de m_l	1	4	9	14	14	9	4
Électrons	2	8	8	18	18	32	32

Dans une période n, il y a n^2 valeurs de m_l possibles, soit $2n^2$ électrons, mais l'ordre de remplissage modifie le nombre d'électrons dans chaque période

Sous-couches:

n	0	1	2	3	4	5
Symbole	s	p	d	f	g	h
Valeurs de m_l	1	3	5	7		
Électrons	2	6	10	14		

Dans une sous-couche l, il y a 2l+1 valeurs de m_l possibles, soit 2(2l+1) électrons.

Principe de Pauli: un atome ne peut pas avoir deux électrons avec les quatre mêmes nombres quantiques (trivial).

1. Règle de Klechkowski

Le remplissage se fait à (n+l) croissant, et à n croissant en cas d'égalité :

Ordre de remplissage des couches :

Couche	n	S l=0	ous-c	ouche 2	3	Remplissage			
K	1	1s				1s			
${ m L}$	2	2s	2p			2s			2p
${ m M}$	3	3s	3p	3d		3s			3p
N	4	4s	4p	4d	4f	4s		3d	4p
O	5	5s	5p	5d	5f	5s		4d	5p
P	6	6s	6p	6d		6s	4f	5d	6p
Q	7	7s	7p			7s	5f	6d	7p

2. Règle de Hund

Toutes les orbitales d'une sous-couche doivent être occupées chacune par un électron célibataire avant que l'une d'elles puisse être occupé par deux électrons appariés (on remplis d'abord toutes les cases quantiques de la sous-couche avant d'apparier les électrons de spin opposé).

3. Exceptions aux règles de remplissage

La sous-couche d est particulièrement stable lorsqu'elle est pleine ou remplie à moitié (5 ou 10 électrons)

- Le chrome (Cr) a 5 électrons 3d et seulement unn électron 4s
- Le cuivre (Cu) a dix électrons 3d et seulement un électron 4s

La Classification Périodique des Éléments

Présentation

Classement des éléments par numéro atomique Z croissant. Un peu plus de 100 éléments dont 90 existent naturellement.

Construction et description

- Période ou couche : ligne horizontale, correspond au nombre quantique n
- Groupe ou famille : colonne verticale (propriétés chimiques semblables).
- Bloc : correspond au nombre quantique l (bloc s, p, d, et f)

Une couche est pseudo-saturée si la couche est bel et bien pleine, mais qu'il reste la sous-couche d ou f à remplir. La couche n=3 est pseudo-saturée si s et p sont remplies, mais pas d.

Familles principales

Famille	Position	Structure	Couleur
Alcalins Alcalino-terreux Halogènes Gaz rares ou nobles Lanthanides (terres rares) Actinides (terres rares)	groupe 1 groupe 2 groupe 17 groupe 18 bloc f , période 6 bloc f , période 7	ns^{1} ns^{2} ns^{2} np^{5} ns^{2} np^{6} $6s^{2}$ $4f^{x}$ $7s^{2}$ $5f^{x}$	Bleu Violet foncé Jaune Vert Rouge Rouge

1. Métaux de transition

Ce sont les éléments du groupe 3 à 11 (bloc d, dernière colonne exclue).

Les métaux de transition interne sont les lanthanides et les actinides (terres rares, bloc f, deux dernières colonnes exclues).

Les éléments sont métalliques jusqu'à la couche 12. Le bloc d se divise ensuite en diagonale selon la **règle de** Sanderson :

L'élément sera métallique si le nombre d'électrons N_e sur sa couche de n le plus élevé $(ns^a np^b$ avec $N_e = a + b)$ est inférieur ou égal au numéro de la période.

Les éléments métalliques ont tendance à former des ions positifs (pour avoir la configuration électronique du gaz inerte qui les précède).

Architecture de la matière 5

Propriétés physiques des éléments

Charge nucléaire effective

Règles de slater (empiriques) permettent de calculer la constante d'écran σ_i et la charge nucléaire effective $Z^* = Z - \sigma_i$ agissant sur le $i^{\text{ème}}$ électron.

— On écrit la configuration électronique de l'élément sous forme de groupe :

$$(1s)(2s,2p)(3s,3p)(3d)(4s,4p)(4d)(4f)(5s,5p)(5d)$$

- Les électrons du même groupe apportent une contribution de 0,35 et 0,30 pour la couche 1s.
- Les électrons des groupes de gauche apportent chacun une contribution dépendant des groupes et périodes relatives.

Rayon atomique

C'est la moitié de la distance séparant deux atomes engagés dans une liaison simple.

- Dans une période donnée (ligne, n fixé), le rayon atomique est **décroissant** (Diminue quand Z augmente).
- Dans un groupe donné (colonne), le rayon atomique est **croissant** (Augmente avec Z).

En effet, plus Z est grand, plus il y a de protons qui attirent les électrons.

Mais quand n augmente, une nouvelle orbite plus large est ajoutée : le rayon atomique augmente d'un coup.

Énergie d'ionisation

Énergie correspondant à la réaction $A_{(gaz)} \longrightarrow A_{(gaz)}^+ e^-$

- Dans une période donnée (ligne, n fixé), l'énergie d'ionisation est **croissante** (Augmente avec Z).
- Dans un groupe donné (colonne), l'énergie d'ionisation est **décroissante** (Diminue quand Z augmente).
- Pour les élément de transition, l'énergie d'ionisation augmente moins vite.

Évolue dans le sens inverse du rayon atomique : plus Z est grand, plus l'atome se rétrécit, donc il est plus difficile de lui retirer un électron.

Mais quand n augmente, une nouvelle orbite plus large est ajoutée, avec des électrons plus facile à retirer.

Électronégativité

On utilise l'échelle de Pauling : l'électronégativité s'exprime en fonction des propriétés des molécules diatomiques.

- Pour les groupes 1, 2, 13 à 18 (bloc s et p), l'électronégativité augmente d'un groupe à l'autre (de gauche à droite), et décroit d'une période à l'autre (de haut en bas).
- L'électronégativité varie peu dans les éléments de transition (groupe 3 à 12, bloc d), mais sera maximale en bas à droite, et minimale en bas à gauche.

Le sens de variation est le même que pour l'énergie d'ionisation, excepté pour le bloc d.