

Rec'd ACT/PTO 16 JAN 2002

09/744097 C Binf #5

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT: Shafer, David

§ ART UNIT:

FILED: January 16, 2001

THE BOSTONIAN SOCIETY

SERIAL NO.: 09/744,097

8

FOR: Methods for Detecting and Mapping Genes, Mutations and Variant Polynucleotide Sequences

§
§
§ **DOCKET:**
 D 6429

The Honorable Commissioner of Patents

- BOX PGT -

Washington, D.C. 20231

**COMPLIANCE OF REQUIREMENTS FOR PATENT APPLICATIONS
CONTAINING NUCLEOTIDE AND/OR AMINO ACID SEQUENCE
DISCLOSURES**

Dear Sir:

Applicant provides a computer readable form of the Sequence Listing on the enclosed 3.5 inch disk and a paper copy thereof for the above-referenced application. The disk is a 1.44 Mb Dos-formatted disk. The file is stored as D6429SEQ in text format. I hereby state that the content of the paper copy of the Sequence Listing filed as part of the above-captioned application and the enclosed computer readable copy of the Sequence Listing are the same.

Respectfully submitted,

Date: Oct 30, 2001
ADLER & ASSOCIATES
8011 Candle Lane
Houston, Texas 77071
(713) 270-5391
BADLER1@houston.rr.com

Benjamin Aaron Adler, Ph.D., J.D.
Counsel for Applicant
Registration No. 35,423

SEQUENCE LISTING

<110> Shafer Ph.D., David A.

<120> Methods for Detecting and Mapping Genes, Mutations and Variant Polynucleotide Sequences

<130> EMU143PCT E2690/191363

<140> PCT/US99/00000

<141> 1999-07-16

<150> US 60/093,219

<151> 1998-07-17

<160> 147

<170> PatentIn Ver. 2.0 - beta

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> First probe target

<400> 1

accacaagac atgcatccg

20

<210> 2

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer

<400> 2

ccagggttt cccagtacg ac

22

<210> 3

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer

WO 00/04192

PCT/US99/16242

<400> 3

gagcggataa caattcaca cagg

24

<210> 4

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse probe generic linker

<400> 4

gagcctggct caccctaggt ccag

24

<210> 5

<211> 23

<212> DNA

<213> Artificial Sequence

~~<220>~~

<223> Reverse probe target

<400> 5

cccacacccgc taaagcgctt tcc

23

<210> 6

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse linker oligomer

<400> 6

ctggacctag ggtgagccag gctc

24

<210> 7

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse linker forward primer

<400> 7

ccagggttt cccagtacg ac

22

<210> 8

<211> 63

<212> DNA

<213> Artificial Sequence

<220>

<223> Target specific oligomer

<400> 8

gtagccttagc taccctagg tctagttac cacaagacat gcatcccggttgtagatagg
tag

60

63

<210> 9

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Overlap oligomer

<400> 9

gtagccttagc taccctagg tctagctacc tatctac

37

<210> 10

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal linker

<400> 10

tagacctagg ggttagctagg ctac

24

<210> 11

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer

<400> 11

gagcgatcaa caattcaca cagg

24

<210> 12

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Distal linker

<400> 12

gttagccttagc tacccctagg tctag

25

<210> 13

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer

<400> 13

ccagggtttt cccagtcacg ac

22

<210> 14

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal linker

<400> 14

tagacctagg ggttagctagg ctac

24

<210> 15

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer

<400> 15

gagcggataa caatttcaca cagg

24

<210> 16

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward primer

<400> 16

ccagggtttt cccagtcacg ac

22

<210> 17

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Terminator

<400> 17

tagacctagg ggttagctagg ctac

24

<210> 18

<211> 63

<212> DNA

<213> Artificial Sequence

<220>

<223> Target oligomer

<400> 18

gtagcctagc taccctagg tctagttac cacaagacat gcatccgtt tgttagatagg
tag

60

63

<210> 19

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> Overlap linker

<400> 19

gtagcctagc taccctagg tctagctacc tatctac

37

<210> 20

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal subunit

<400> 20

ctagacctag gggtagctag gctacatacg atactagggc ataacatagg cttacca

57

<210> 21

<211> 57

<212> DNA

<213> Artificial Sequence

<220>
<223> Distal subunit

<400> 21
gttagccttagc tacccttagg tctagctagt atcgtatggc ataacatagg cttacca 57

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Label subunit

<400> 22
tggtaaggcct atgttatgcc 20

<210> 23
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Terminator

<400> 23
ctagacac tag ggtagctag gctac 25

<210> 24
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> First probe subunit

<400> 24
ggtcctatcc ggtattagat ttctagggtt accata 36

<210> 25
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse probe subunit

<400> 25

gctacttagc atactttacc acaagacatg catcccgat	38
<210> 26	
<211> 40	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Forward ring subunit one	
<400> 26	
tagacctagg ggttagctagg ctactttata agtacgttagc	40
<210> 27	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Forward ring subunit two	
<400> 27	
tatggtaacc ctag	14
<210> 28	
<211> 40	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Reverse ring subunit one	
<400> 28	
tagacctagg ggttagctagg ctactttgct acgtactttat	40
<210> 29	
<211> 14	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Reverse ring subunit two	
<400> 29	
cgtacttact agca	14
<210> 30	
<211> 28	
<212> DNA	

<213> Artificial Sequence

<220>

<223> Reverse oligonucleotide

<400> 30

gtatgctaag tagctgctag taagtacg

28

<210> 31

<211> 67

<212> DNA

<213> Artificial Sequence

<220>

<223> Target specific oligomer

<400> 31

ggttagtagct agcacctagg caccttattt accacaagac atgcatcccg tttctagggt
taccata

60

67

<210> 32

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Reporter linker

<400> 32

tagacctagg ggttagctagg ctactttata agtacgtac

40

<210> 33

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Second linker

<400> 33

tatggtaacc ctag

14

<210> 34

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Second reporter linker

<400> 34
tagacctagg ggttagctagg ctactttgct acgtactttat 40

<210> 35
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Overlap linker

<400> 35
cgttacgcta acctgtatc taccact 27

<210> 36
<211> 54
<212> DNA
- - - - - <213> Artificial Sequence

<220>
<223> Overlap oligomer

<400> 36
taagggtgcct aggtgctagc tactaccagt ggttagatgc aggttagcgt aacg 54

<210> 37
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Upstream target subunit region

<400> 37
ggtcctatcc ggtattagat ttcttaggggtt accata 36

<210> 38
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Downstream target subunit

<400> 38
gctacttagc atactttacc acaagacatg catcccg 38

<210> 39

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward ring subunit A

<400> 39

tagacctagg ggttagctagg ctacttata agtacgtagg

40

<210> 40

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward subunit B

-----<400> 40-----

tatggtaacc ctag

14

<210> 41

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse ring subunit A

<400> 41

tagacctagg ggttagctagg ctacttgct acgtactttat

40

<210> 42

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse subunit B

<400> 42

cgtacttact agca

14

<210> 43

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Reversing oligonucleotide

<400> 43

gtatgctaa tagctgctag taagtacg

28

<210> 44

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Downstream target subunit

<400> 44

acgggatgca tgtcttggg ttttctaggg ttaccata

38

<210> 45

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Upstream target subunit

<400> 45

gctacttagc atactttct aataccggat aggacc

36

<210> 46

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward ring subunit A

<400> 46

gataccgtac ctacgcgtac tacgtttata agtacgtac

40

<210> 47

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Forward subunit B

<400> 47

tatggtaacc ctag

14

<210> 48
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse ring subunit A

<400> 48
gataccgtac ctacgcgtac tacgtttgct acgtactttat

40

<210> 49
<211> 14
<212> DNA
<213> Artificial Sequence

<220>
<223> Reverse subunit B

<400> 49
cgtacttact agca

14

<210> 50
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Reversing oligonucleotide

<400> 50
gtatgctaag tagctgctag taagtacg

28

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> First probe oligomer

<400> 51
accacaagac atgcaccccg

20

<210> 52
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Forward primerr

<400> 52

ccagggttt cccagtcacg ac

22

<210> 53

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Reverse primer

<400> 53

gagcgatcaa caattcaca cagg

24

<210> 54

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Capture probe subunit

<400> 54

gttcctatcc ggtattagat ttctagggtt accata

36

<210> 55

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Reporter probe subunit

<400> 55

gtagccttagc taccctagg tctagttac cacaagacat gcatccgt

49

<210> 56

<211> 14

<212> DNA

<213> Artificial Sequence

<220>

<223> Capture subunit

<400> 56

tatggtaacc ctag

14

<210> 57
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Proximal subunit

<400> 57
ctagacctag gggtagctag gctacatacg atactaggc ataacatagg cttacca

57

<210> 58
<211> 57
<212> DNA
<213> Artificial Sequence

<220>
<223> Distal subunit

<400> 58
gtagccctacccctagg ttagctagt atcgtatggc ataacatagg cttacca

57

<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Label subunit

<400> 59
tggtaaggct atgttatgcc

20

<210> 60
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Terminator

<400> 60
ctagacctag gggtagctag gctac

25

<210> 61
<211> 52
<212> DNA
<213> Artificial Sequence

<220>

<223> ABR target oligomers

<400> 61

ctagcgtaca cctatttcaa tcccttgaag cctgagattt gtagataggt ag

52

<210> 62

<211> 59

<212> DNA

<213> Artificial Sequence

<220>

<223> 15-LO-1 target oligomer

<400> 62

ctagcgtaca cctatttccag acaacaggga ggcagcggct tttatttgtt gataggtag

59

-----<210> 63-----

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> Market oligomer

<400> 63

ctagcgtaca cctatttaca gtatgttttta gtgaatgaat agatcttgtt agataggtag

60

<210> 64

<211> 62

<212> DNA

<213> Artificial Sequence

-----<220>

<223> Chromosome 12 oligomer

<400> 64

ctagcgtaca cctatttaaa gtgattgaaa tctccaactg gaaactgttt gtagataggt

60

ag 62

<210> 65

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Reversing linker

<400> 65

taggttacg ctagtagat aggtag

26

<210> 66

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Overlap oligomer

<400> 66

ctagttgcc tacgttagata ggttag

25

<210> 67

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> RED reporter acceptor

<400> 67

gtaggctaac cctatctacg atacgatagg gcctaagagt agcgactacc tatctac

57

<210> 68

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> Green reporter acceptor

<400> 68

gtaggctaac cctatgeeta gacetaagggg tagctaggct accgactacc tatctac

57

<210> 69

<211> 57

<212> DNA

<213> Artificial Sequence

<220>

<223> blue reporter acceptor

<400> 69

gtaggctaac cctatcgtag acctagcacg ctacgtacta ggcgactacc tatctac

57

<210> 70

<211> 15

<212> DNA

<213> Artificial Sequence

<220>

<223> Terminator

<400> 70

atagggttag cctac

15

<210> 71

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer A

<400> 71

ctactcttag gcccatacgt atcgtag

27

<210> 72

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer B

<400> 72

ccagggtttt cccagtcacg ac

22

<210> 73

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Distal spacer oligomer A

<400> 73

ctacgatacg atagggccta agatgtag

27

<210> 74

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Distal spacer oligomer B

<400> 74
gagcggtataa caatttcaca cagg 24

<210> 75
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Red terminator

<400> 75
ctactcttag gccctatcgt atcgtag 27

<210> 76
<211> 27
<212> DNA

<213> Artificial Sequence

<220>
<223> Proximal spacer oligomer A

<400> 76
gtagcctagc taccctagg tctaggc 27

<210> 77
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Proximal spacer oligomer B

<400> 77
ccagggttt cccagtcacg ac 22

<210> 78
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Distal spacer oligomer A

<400> 78
gcctagacct agggtagct aggctac 27

<210> 79

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Distal spacer oligomer B

<400> 79

gagcggataa caattcaca cagg

24

<210> 80

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Green terminator

<400> 80

gtagcctagc taccctagg tcttaggc

27

<210> 81

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer A

<400> 81

cctagtagt agcgtgctag gtctacg

27

<210> 82

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer B

<400> 82

ccagggttt cccagtacg ac

22

<210> 83

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Distal spacer oligomer A

<400> 83

cgttagaccta gcacgctacg tactagg

27

<210> 84

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Distal spacer oligomer B

<400> 84

gagcggataa caatttcaca cagg

24

<210> 85

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Blue terminator

<400> 85

ccttagtacgt agcgtgctag gtctacg

27

<210> 86

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer A

<400> 86

ctactcttag gcccttatcgt atcgtag

27

<210> 87

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer B

<400> 87

ccagggttt cccagtcacg ac

22

<210> 88
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Distal spacer oligomer A

<400> 88
gcctagacct a~~gggg~~tagct aggctac

27

<210> 89
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Distal spacer oligomer B

<400> 89
gagcggataa caatttcaca cagg

24

<210> 90
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Proximal spacer oligomer A

<400> 90
gtagcctagc tacccttagg tctaggc

27

<210> 91
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Proximal spacer oligomer B

<400> 91
ccagggttt cccagtcacg ac

22

<210> 92
<211> 27
<212> DNA
<213> Artificial Sequence

<220>

<223> Distal spacer oligomer A

<400> 92

ctacgatacg atagggccta agagtag

27

<210> 93

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Distal spacer oligomer B

<400> 93

gagcgatataa caatttcaca cagg

24

<210> 94

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer A

<400> 94

ctactcttag gccctatcgt atcgtag

27

<210> 95

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Proximal spacer oligomer B

<400> 95

ccagggtttt cccagtcacg ac

22

<210> 96

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Double distal spacer oligomer A

<400> 96

gcctagacct agggtagct aggctac

27

<210> 97
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Double distal spacer oligomer B

<400> 97
gcctagacct aggggtagct aggtac

27

<210> 98
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Double distal spacer oligomer C-----

<400> 98
gagcggataa caattcaca cagg

24

<210> 99
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Proximal spacer oligomer A

<400> 99
gtagcctagc taccctagg tctaggc

27

<210> 100
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Proximal spacer oligomer B

<400> 100
ccagggttt cccagtcacg ac

22

<210> 101
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Double distal spacer oligomer A

<400> 101
ctacgatacg atagggccta agagtag

27

<210> 102
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Double distal spacer oligomer B

<400> 102
ctacgatacg atagggccta agagtag

27

<210> 103
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Double distal spacer oligomer C

<400> 103
gagcggataa caatttcaca cagg

24

<210> 104
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> One to four multi-linker A

<400> 104
ctactcttag gcccttatcgatcgtatcgtag

27

<210> 105
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> One to four multi-linker B

<400> 105

gtaatagcgt ac

12

<210> 106

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> One to four multi-linker C

<400> 106

gtaatagcgt ac

12

<210> 107

<211> 12

<212> DNA

<213> Artificial Sequence

-----<220>

<223> One to four multi-linker D

<400> 107

gtaatagcgt ac

12

<210> 108

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> One to four multi-linker E

<400> 108

gtaatagcgt ac

12

<210> 109

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> One to two multi-linker A

<400> 109

gcctagacct aggggtagct aggctac

27

<210> 110

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> One to two multi-linker B

<400> 110

gcctagacct agggtagct aggtac

27

<210> 111

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> One to two multi-linker C

<400> 111

gtacgcttatt ac

12

<210> 112

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set first linker A

<400> 112

ctactcttag gccctatcgat atcgttag

27

<210> 113

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set first linker B

<400> 113

gtaatagcgt ac

12

<210> 114

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set four linker C

<400> 114

gtaatagcgt ac

12

<210> 115

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set four linker D

<400> 115

gtaatagcgt ac

12

<210> 116

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set four linker E

<400> 116

gtaatagcgt ac

12

<210> 117

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set second linker A

<400> 117

ctaggttagct ag

12

<210> 118

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set second linker B

<400> 118

ctaggttagct ag

12

<210> 119

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set second linker C

<400> 119

ctaggttagct ag

12

<210> 120

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set second linker D

<400> 120

ctaggttagct ag

12

<210> 121

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set second linker E

<400> 121

gtacgctatt ac

12

<210> 122

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set third linker A

<400> 122

ctagctacct ag

12

<210> 123

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Red set third linker B

<400> 123
gtacgtaact ag

12

<210> 124
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Red set third linker C

<400> 124
gtacgtaact ag

12

<210> 125
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Red set third linker D

<400> 125
gtacgtaact ag

12

<210> 126
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Red set third linker E

<400> 126
gtacgtaact ag

12

<210> 127
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Red set oligo-TAG

<400> 127
ctagttacgt ac

12

<210> 128

<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Green set first linker A

<400> 128
gcctagacct agggtagct aggtac

27

<210> 129
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Green set first linker B

<400> 129
ctacctatct ac

12

<210> 130
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Green set first linker C

<400> 130
ctacctatct ac

12

<210> 131
<211> 12

<212> DNA
<213> Artificial Sequence

<220>
<223> Green set first linker D

<400> 131
ctacctatct ac

12

<210> 132
<211> 12
<212> DNA
<213> Artificial Sequence

<220>

<223> Green set first linker E

<400> 132

ctacctatct ac

12

<210> 133

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Green set second linker A

<400> 133

ctaggttagct ag

12

<210> 134

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Green set second linker B

<400> 134

ctaggttagct ag

12

<210> 135

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Green set second linker C

<400> 135

ctaggttagct ag

12

<210> 136

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Green set second linker D

<400> 136

ctaggttagct ag

12

<210> 137
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Green set second linker E

<400> 137
gtacgctatt ac

12

<210> 138
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Green set third linker A

<400> 138
ctagctacct ag

12

<210> 139
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Green set third linker B

<400> 139
ctatctagta cg

12

<210> 140
<211> 12
<212> DNA
<213> Artificial Sequence

<220>
<223> Green set third linker C

<400> 140
ctatctagta cg

12

<210> 141
<211> 12
<212> DNA
<213> Artificial Sequence

<220>

<223> Green set third linker D

<400> 141

ctatctagta cg

12

<210> 142

<211> 12

<212> DNA

<213> Artificial Sequence

<220>

<223> Green set third linker E

<400> 142

ctatctagta cg

12

<210> 143

<211> 71

<212> DNA

<213> Artificial Sequence

<220>

<223> Sense target oligomer

<400> 143

ctacgatacg atagggtaa gagtagttc agacaacagg gaggcagcgg ctttatttg
tagatagta g

60

71

<210> 144

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Sense overlap oligomer

<400> 144

ctacgatacg atagggtaa gagtagttc tacctatcta c

41

<210> 145

<211> 72

<212> DNA

<213> Artificial Sequence

<220>

<223> Anti-sense target oligomer

<400> 145

gcctagacct agggtagct aggctacttt taaaagccgc tgcctccctg ttgtctgttt	60
gtagataggt ag	72
<210> 146	
<211> 42	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Anti-sense overlap oligomer	
<400> 146	
gcctagacct agggtagct aggctacttt ctacctatct ac	42
<210> 147	
<211> 12	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Green set	
oligo-TAG	
<400> 147	
cgtactagat ag	12