## An Alternative Method for Characterization and Comparison of Plant Root Shapes

A thesis submitted to the

College of Graduate and Postdoctoral Studies

in partial pulfillment of the requirements

for the degree of Master of Science

in the Department of School of Environment and Sustainability

University of Saskatchewan

Saskatoon

Ву

Yujie Pei

©Yujie Pei, Month/Year. All rights reserved.

### CONTENTS

| 1            | Exis  | sting Morphological Descriptors for Root Systems                                                                                  | 3    |
|--------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|------|
| 2            | An    | Alternative Mathematical Method for Shape Description                                                                             | 4    |
| 3            | LRV   | Vs in Artificial Images                                                                                                           | 5    |
|              | 3.1   | Circle and Rectangle                                                                                                              | 6    |
|              |       | 3.1.1 Image Description                                                                                                           | . 6  |
|              |       | 3.1.2 Output Analysis                                                                                                             | . 6  |
|              |       | 3.1.3 Conclusion                                                                                                                  | . 6  |
|              | 3.2   | Complicated Branching Structures                                                                                                  | . 8  |
|              |       | 3.2.1 Image Description                                                                                                           | . 8  |
|              |       | 3.2.2 Output Analysis                                                                                                             | . 8  |
|              |       | $3.2.2.1  S(n) \dots \dots$ | . 8  |
|              |       | $3.2.2.2  S(d) \dots \dots$ | . 8  |
|              |       | 3.2.2.3 $S(R)$                                                                                                                    | . 8  |
|              |       | 3.2.3 Conclusion                                                                                                                  | . 8  |
| 4            | LRV   | Vs in Real Root Images                                                                                                            | 12   |
| 5            | Con   | clusion                                                                                                                           | 13   |
| 6            | Fut   | ure Work                                                                                                                          | 14   |
| $\mathbf{A}$ | ppen  | dix A Numerical Methods for Solving Parabolic Partial Differential Equations                                                      | 15   |
|              | A.1   | Introduction                                                                                                                      | . 16 |
|              | A.2   | Summary of Commonly Used Numerical Techniques                                                                                     | . 16 |
|              | A.3   | Limitation in Practice                                                                                                            | . 16 |
| $\mathbf{A}$ | ppen  | dix B Method Validation in Annulus                                                                                                | 17   |
|              | B.1   | Analytical Results                                                                                                                | . 18 |
|              | B.2   | Numerical Approximation                                                                                                           | . 18 |
|              | В.3   | Comparison of Numerical and Analytical Results                                                                                    | . 18 |
|              | B.4   | Conclusion                                                                                                                        | . 18 |
| $\mathbf{R}$ | efere | nces                                                                                                                              | 19   |

## Existing Morphological Descriptors for Root Systems

# An Alternative Mathematical Method for Shape Description

## LRWs in Artificial Images

### 3.1 Circle and Rectangle

#### 3.1.1 Image Description

 $\bullet$  Image size:  $1200\times1000$  pixels

• Surface area of shapes: 90000 pixels

• The centroid of the shape is located at the center of the image

#### 3.1.2 Output Analysis



Figure 3.1

#### 3.1.3 Conclusion

Given two distinct convex geometries

|                    | test_statistic | р   |
|--------------------|----------------|-----|
| Peto               | 137.23         | 0.0 |
| Logrank            | 137.23         | 0.0 |
| Tarone-Ware        | 134.31         | 0.0 |
| Gehan-Breslow      | 123.83         | 0.0 |
| Fleming-Harrington | 123.83         | 0.0 |

Table 3.1

- the behaviours of the survival function of LRWs are consistent with the theoretical results.
- $\bullet\,$  survival curves can be used to describe and distinguish them.

#### 3.2 Complicated Branching Structures

#### 3.2.1 Image Description

• Image size:  $1200 \times 1000$  pixels

• Surface area of shapes: 90000 pixels

• Iterate the template 3, 4, 5, 6 times to produce the targeted branching geometries labelled as  $L_3, L_4, L_5, L_6$ .

• Two groups of images labelled as  $G_1, G_2$ 

-  $G_1$ : the target object  $G_1L_i$  (i=3,4,5,6) is equidistant to the edges of an image.

-  $G_2$ : the template of  $G_2L_i$  (i = 3, 4, 5, 6) is distinct from  $G_1$  (thickness and aspect ratio).

#### 3.2.2 Output Analysis

#### **3.2.2.1** S(n)





Figure 3.2

**3.2.2.2** S(d)

**3.2.2.3** S(R)

#### 3.2.3 Conclusion

- In a short time, the survival function of rectangle decays faster than the circle, which conforms to the analytical results.
- The differences of estimated survival functions between circle and rectangle are statistically significant, which coincides with the real shape dissimilarities.

|           |           |         | p      |        |        |
|-----------|-----------|---------|--------|--------|--------|
|           |           | Logrank | TW     | GB     | FH     |
| $G_1 L_3$ | $G_1 L_4$ | 0.4393  | 0.0285 | 0.0005 | 0.0005 |
|           | $G_1 L_5$ | 0.0     | 0.0    | 0.0    | 0.0    |
|           | $G_1 L_6$ | 0.0     | 0.0    | 0.0    | 0.0    |
| $G_1 L_4$ | $G_1 L_5$ | 0.0007  | 0.0    | 0.0    | 0.0    |
|           | $G_1 L_6$ | 0.0002  | 0.0    | 0.0    | 0.0    |
| $G_1 L_5$ | $G_1 L_6$ | 0.7223  | 0.0    | 0.0    | 0.0    |

**Table 3.2** 

|           |           |         | р   |     |     |
|-----------|-----------|---------|-----|-----|-----|
|           |           | Logrank | TW  | GB  | FH  |
| $G_2 L_3$ | $G_2 L_4$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_2 L_5$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_2 L_6$ | 0.0     | 0.0 | 0.0 | 0.0 |
| $G_2 L_4$ | $G_2 L_5$ | 0.0016  | 0.0 | 0.0 | 0.0 |
|           | $G_2 L_6$ | 0.0004  | 0.0 | 0.0 | 0.0 |
| $G_2 L_5$ | $G_2 L_6$ | 0.7199  | 0.0 | 0.0 | 0.0 |

Table 3.3

- Within a same group, when t is small, the more branching the object is, the faster the survival function decays.
- Within a same group, the pairwise survival functions are statistically different.
- The corresponding target structures in  $G_1$  and  $G_3$  are invariant shapes under translation since their survival function are not statistically different. In other words, periodic boundary conditions of the image can eliminate the effect of the locations.
- LRWs can describe and classify the geometries, their spatial configurations, and the unoccupied area in the image.





Figure 3.3

|           |           |         | p   |     |     |
|-----------|-----------|---------|-----|-----|-----|
|           |           | Logrank | TW  | GB  | FH  |
| $G_1 L_3$ | $G_1 L_4$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_1 L_5$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_1 L_6$ | 0.0     | 0.0 | 0.0 | 0.0 |
| $G_1 L_4$ | $G_1 L_5$ | 0.0072  | 0.0 | 0.0 | 0.0 |
|           | $G_1 L_6$ | 0.0003  | 0.0 | 0.0 | 0.0 |
| $G_1 L_5$ | $G_1 L_6$ | 0.2883  | 0.0 | 0.0 | 0.0 |

Table 3.4

|           |           |         | р   |     |     |
|-----------|-----------|---------|-----|-----|-----|
|           |           | Logrank | TW  | GB  | FH  |
| $G_2 L_3$ | $G_2 L_4$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_2 L_5$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_2 L_6$ | 0.0     | 0.0 | 0.0 | 0.0 |
| $G_2 L_4$ | $G_2 L_5$ | 0.0001  | 0.0 | 0.0 | 0.0 |
|           | $G_2 L_6$ | 0.0015  | 0.0 | 0.0 | 0.0 |
| $G_2 L_5$ | $G_2 L_6$ | 0.7019  | 0.0 | 0.0 | 0.0 |

Table 3.5





Figure 3.4

|           |           |         | р   |     |     |
|-----------|-----------|---------|-----|-----|-----|
|           |           | Logrank | TW  | GB  | FH  |
| $G_1 L_3$ | $G_1 L_4$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_1 L_5$ | 0.0     | 0.0 | 0.0 | 0.0 |
|           | $G_1 L_6$ | 0.0     | 0.0 | 0.0 | 0.0 |
| $G_1 L_4$ | $G_1 L_5$ | 0.1773  | 0.0 | 0.0 | 0.0 |
|           | $G_1 L_6$ | 0.0     | 0.0 | 0.0 | 0.0 |
| $G_1 L_5$ | $G_1 L_6$ | 0.0     | 0.0 | 0.0 | 0.0 |

**Table 3.6** 

|           |           |         | р   |        |        |
|-----------|-----------|---------|-----|--------|--------|
|           |           | Logrank | TW  | GB     | FH     |
| $G_2 L_3$ | $G_2 L_4$ | 0.0     | 0.0 | 0.0    | 0.0    |
|           | $G_2 L_5$ | 0.0     | 0.0 | 0.0    | 0.0    |
|           | $G_2 L_6$ | 0.0     | 0.0 | 0.0    | 0.0    |
| $G_2 L_4$ | $G_2 L_5$ | 0.0     | 0.0 | 0.0    | 0.0    |
|           | $G_2 L_6$ | 0.0     | 0.0 | 0.0    | 0.0    |
| $G_2 L_5$ | $G_2 L_6$ | 0.0     | 0.0 | 0.0253 | 0.0253 |

Table 3.7

## LRWs in Real Root Images

### CONCLUSION

## FUTURE WORK

### Appendix A

# Numerical Methods for Solving Parabolic Partial Differential Equations

- A.1 Introduction
- A.2 Summary of Commonly Used Numerical Techniques
- A.3 Limitation in Practice

## APPENDIX B METHOD VALIDATION IN ANNULUS

- **B.1** Analytical Results
- **B.2** Numerical Approximation
- **B.3** Comparison of Numerical and Analytical Results
- B.4 Conclusion

### REFERENCES