# Building a Robot Judge: Data Science for Decision-Making

10. Algorithms and Decisions II

# Weekly Q&A

https://bitly.com/BRJ\_Padlet10

See https://cs.stanford.edu/~jure/pubs/contraction-kdd17.pdf

▶ What is the selective labeling problem? ("raise hand" via zoom)

- What is the selective labeling problem? ("raise hand" via zoom)
- ► Take judge(s) with highest bail release rate (most lenient judges).
  - train recidivism prediction model with these judges.

- What is the selective labeling problem? ("raise hand" via zoom)
- ► Take judge(s) with highest bail release rate (most lenient judges).
  - train recidivism prediction model with these judges.
- ► For the rest of the judges, use model trained on lenient-judge dataset to make recidivism predictions for the jailed defendants.

- ▶ What is the selective labeling problem? ("raise hand" via zoom)
- ► Take judge(s) with highest bail release rate (most lenient judges).
  - train recidivism prediction model with these judges.
- ► For the rest of the judges, use model trained on lenient-judge dataset to make recidivism predictions for the jailed defendants.
  - Note: still cannot get unbiased recidivism predictions for defendants jailed by the lenient judges.

- What is the selective labeling problem? ("raise hand" via zoom)
- ► Take judge(s) with highest bail release rate (most lenient judges).
  - train recidivism prediction model with these judges.
- ► For the rest of the judges, use model trained on lenient-judge dataset to make recidivism predictions for the jailed defendants.
  - Note: still cannot get unbiased recidivism predictions for defendants jailed by the lenient judges.
- ▶ Why couldn't we do this in the homework assignment? ("raise hand" via zoom)

# Recap: Comparing Machine (Left Panel) to Human Judges (Right Panel)



FIGURE VI

Who Do Stricter Judges Jail and Who Would the Algorithm Jail? Comparing Predicted Risk Distributions across Leniency Quintiles

- ▶ black = even most lenient judges (bottom quintile) would jail this defendant.
- ▶ blue = additional jailed by the strictest judges (top quintile). left panel = algorithm, right panel = human judges.
- white = who is released by all judges

# Recap: Comparing Machine (Left Panel) to Human Judges (Right Panel)



FIGURE VI

Who Do Stricter Judges Jail and Who Would the Algorithm Jail? Comparing Predicted Risk Distributions across Leniency Quintiles

- black = even most lenient judges (bottom quintile) would jail this defendant.
- ▶ blue = additional jailed by the strictest judges (top quintile). left panel = algorithm, right panel = human judges.
- white = who is released by all judges
- What does this graph show? ("raise hand" via zoom)

### Outline

#### Effects of Algorithms on Decisions

#### ML for Anti-Corruption Policy

Corruption Audits as an Inspection Game Detecting Corruption with Machine Learning Empirical Applications Using Machine Learning to Guide Audit Policy

## Behavioral responses to decisions

- ▶ Judges and criminals will change their behavior in response to adopting machine decision supports.
  - ▶ Could have unintended consequences, or create a self-reinforcing feedback loop.

# Regression Discontinuity Design

▶ Revisit Week 3 and Week 7 slides.

# Zoom Poll: Comparing Research Designs

# Sloan et al: Fuzzy RD before/after discrete introduction of risk scoring



# Sloan et al: Risk scoring increases release rates and recidivism



▶ In response to risk scoring, judges release more poor defendants.

### Stevenson and Doleac: Method

▶ RD using a continuous risk score – above a discrete cutoff, defendant is labeled "risky".

#### Stevenson and Doleac: Method

- ▶ RD using a continuous risk score above a discrete cutoff, defendant is labeled "risky".
- ▶ Identification check: Other predetermined characteristics are flat around the cutoff (covariate balance):

Figure 2: Covariate balance across risk score cutoffs



#### Stevenson and Doleac: Result

▶ Judges respond to a "is-dangerous" risk score with longer sentences:





but when risk-scoring was introduced, there was no overall change in sentencing.

## Activity: Break-out rooms, Detention Algorithm

```
https://theintercept.com/2020/03/02/ice-algorithm-bias-detention-aclu-lawsuit/
```

- In your breakout group:
  - summarize the article
  - discuss what is wrong with the system.
  - write a padlet post identifying at least two problems and how they could be solved.

https://padlet.com/eash44/1wrxvs2srprvs0nd

### Outline

Effects of Algorithms on Decisions

#### ML for Anti-Corruption Policy

Corruption Audits as an Inspection Game Detecting Corruption with Machine Learning Empirical Applications Using Machine Learning to Guide Audit Policy

# Motivation (Ash, Galletta, Giommoni 2020)



Corruption Perceptions Index, 2018

Global costs of corruption were \$2.6 trillion in 2018, according to U.N. data. Firms and individuals spend more than \$1 trillion in bribes every year.

## This Paper's Goals

- ▶ **Objective 1:** Predict fiscal corruption based on public finance accounts.
  - ▶ In Brazilian municipalities, we have information on fiscal corruption from random audits.
  - We train a machine learning algorithm to detect corruption in held-out data using budget data.

## This Paper's Goals

- ▶ **Objective 1:** Predict fiscal corruption based on public finance accounts.
  - ▶ In Brazilian municipalities, we have information on fiscal corruption from random audits.
  - We train a machine learning algorithm to detect corruption in held-out data using budget data.
- ▶ **Objective 2:** Construct new measure of corruption for all municipalities and years (not just those that have been audited) and use for empirical analysis.
  - Effect of public transfers on corruption (IV).
  - Effect of audits on corruption (DD).

## This Paper's Goals

- Objective 1: Predict fiscal corruption based on public finance accounts.
  - In Brazilian municipalities, we have information on fiscal corruption from random audits.
  - We train a machine learning algorithm to detect corruption in held-out data using budget data.
- ▶ **Objective 2:** Construct new measure of corruption for all municipalities and years (not just those that have been audited) and use for empirical analysis.
  - Effect of public transfers on corruption (IV).
  - Effect of audits on corruption (DD).
- Objective 3: Use predictions to analyze counterfactual audit policies.
  - What can be accomplished by targeting audits to municipalities with high-risk budgets?

### Brazilian municipalities

- ▶ In Brazil, local municipalities (N = 5563) play a central role in government services:
  - e.g., primary education, healthcare, housing, transportation.

### Brazilian municipalities

- ▶ In Brazil, local municipalities (N = 5563) play a central role in government services:
  - e.g., primary education, healthcare, housing, transportation.
- ▶ In 2003, Brazilian government introduced innovative anti-corruption program:
  - ► Audit of public spending in randomly selected municipalities (through public lottery).
  - team of 10-15 auditors spend two weeks in municipal offices.
  - they write a report, send to authorities for criminal penalties and make it public.

### Outline

Effects of Algorithms on Decisions

## ML for Anti-Corruption Policy

Corruption Audits as an Inspection Game

Detecting Corruption with Machine Learning Empirical Applications Using Machine Learning to Guide Audit Policy

- ▶ Stage 1: Mayor decides whether to engage in corruption.
  - ightharpoonup if corrupt, mayor gets payoff B, society loses C (zero otherwise).

- ► Stage 1: Mayor decides whether to engage in corruption.
  - ightharpoonup if corrupt, mayor gets payoff B, society loses C (zero otherwise).
- ▶ Stage 2: Agency decides whether to audit municipality *i*.
  - ightharpoonup if audit, agency pays cost k, zero otherwise
  - if audit reveals corruption:
    - **>** society does not lose C; mayor pays penalty D > B

- ▶ Stage 1: Mayor decides whether to engage in corruption.
  - ightharpoonup if corrupt, mayor gets payoff B, society loses C (zero otherwise).
- ▶ Stage 2: Agency decides whether to audit municipality *i*.
  - if audit, agency pays cost k, zero otherwise
  - if audit reveals corruption:
    - ightharpoonup society does not lose C; mayor pays penalty D > B



In game theory, this is called an "inspection game".

► There is no pure-strategy Nash equilibrium (cycling).

- There is no pure-strategy Nash equilibrium (cycling).
- Assume mixed strategies:
  - ightharpoonup p probability of corruption, q probability of audit.
  - ▶ Mixed strategy equilibrium:  $(p^*, q^*)$  such that each player is indifferent between options.

- There is no pure-strategy Nash equilibrium (cycling).
- Assume mixed strategies:
  - $\triangleright$  p= probability of corruption, q= probability of audit.
  - ▶ **Mixed strategy equilibrium**:  $(p^*, q^*)$  such that each player is indifferent between options.
- Payoffs for mayor:
  - no corruption: 0

• corruption: 
$$\underbrace{q(B-D)}_{\text{audit}} + \underbrace{(1-q)B}_{\text{no audit}} = B - qD$$

- ► There is no pure-strategy Nash equilibrium (cycling).
- Assume mixed strategies:
  - ightharpoonup probability of corruption, q= probability of audit.
  - ▶ **Mixed strategy equilibrium**:  $(p^*, q^*)$  such that each player is indifferent between options.
- Payoffs for mayor:
  - no corruption: 0

• corruption: 
$$\underbrace{q(B-D)}_{\text{audit}} + \underbrace{(1-q)B}_{\text{no audit}} = B - qD$$

ightarrow equilibrium audit probability  $q^* = rac{D}{B}$ 

- ► There is no pure-strategy Nash equilibrium (cycling).
- ► Assume mixed strategies:
  - ightharpoonup probability of corruption, q= probability of audit.
  - ▶ **Mixed strategy equilibrium**:  $(p^*, q^*)$  such that each player is indifferent between options.
- Payoffs for mayor:
  - no corruption: 0

• corruption: 
$$\underbrace{q(B-D)}_{\text{audit}} + \underbrace{(1-q)B}_{\text{no audit}} = B - qD$$

- ightarrow equilibrium audit probability  $q^* = rac{D}{B}$
- Similarly, payoffs for agency:
  - audit: p(-k) + (1-p)(-k) = -k
  - ightharpoonup no audit: p(-C)

# Matrix Form (chalk board)

- There is no pure-strategy Nash equilibrium (cycling).
- ► Assume mixed strategies:
  - ightharpoonup probability of corruption, q= probability of audit.
  - ▶ **Mixed strategy equilibrium**:  $(p^*, q^*)$  such that each player is indifferent between options.
- Payoffs for mayor:
  - no corruption: 0

• corruption: 
$$\underbrace{q(B-D)}_{\text{audit}} + \underbrace{(1-q)B}_{\text{no audit}} = B - qD$$

- ightarrow equilibrium audit probability  $q^* = rac{D}{B}$
- Similarly, payoffs for agency:

• audit: 
$$p(-k) + (1-p)(-k) = -k$$

- ▶ no audit: p(-C)
- $\rightarrow$  equilibrium corruption probability  $p^* = \frac{k}{C}$

## Equilibrium Audit Policy

- ► Equilibrum of game:
  - **corruption probability**  $p^* = \frac{k}{C}$
  - **audit probability**  $q^* = \frac{D}{B}$
- $\rightarrow$  Randomly assigned audits to a fraction  $q^*$  of municipalities is the equilibrium audit policy.

## Equilibrium Audit Policy

- Equilibrum of game:
  - **corruption probability**  $p^* = \frac{k}{C}$
  - **audit probability**  $q^* = \frac{D}{B}$
- $\rightarrow$  Randomly assigned audits to a fraction  $q^*$  of municipalities is the equilibrium audit policy.
- ▶ Note that the observed corruption rate is

$$p^* = \frac{1}{N} \sum_{i=1}^{N} p_i$$

the average of  $p_i$ , the probability of corruption for municipality i.

▶ Below, we will consider how this changes if agency can guess  $\hat{p}(X_i)$  based on budget factors  $X_i$ .

### Outline

Effects of Algorithms on Decisions

#### ML for Anti-Corruption Policy

Corruption Audits as an Inspection Game

Detecting Corruption with Machine Learning

Empirical Applications

Using Machine Learning to Guide Audit Policy

### Corruption Audit Data

▶ Municipal audit reports are available from the agency web site:



▶ Brollo et al (2013) construct corruption labels from the reports for 1481 audited municipalities, 2003-2010. Their data is online.

### Local Budget Data

- ▶ The annual municipality budget is available from various web sites:
  - ▶ We collected/cleaned data for 2001 through 2012 and made them comparable across years.

### Local Budget Data

- The annual municipality budget is available from various web sites:
  - ▶ We collected/cleaned data for 2001 through 2012 and made them comparable across years.
- ▶ In total we have 797 budget variables:
  - ▶ Revenue 250, Expenditure 334, Active 100, Passive 79.

#### Gradient Boosted Classifier

- ▶ Gradient boosting classifier (GBC): ensemble of decision trees (Friedman, 2001; Hastie et al 2009).
  - ▶ same model used by Kleinberg et al (QJE 2018) to predict criminal recidivism.

#### Gradient Boosted Classifier

- ► Gradient boosting classifier (GBC): ensemble of decision trees (Friedman, 2001; Hastie et al 2009).
  - ▶ same model used by Kleinberg et al (QJE 2018) to predict criminal recidivism.
- ▶ We use XGBoost ("Extreme Gradient Boosting"), an optimized python implementation (Chen and Guestrin 2016).
  - ▶ Feurer et al (2018) find that XGBoost beats a sophisticated AutoML procedure with grid search over 15 classifiers and 18 data preprocessors.



## Complicated in theory, easy in practice

```
from xqboost import XGBClassifier
model = XGBClassifier()
model.fit(X train, y train,
          early stopping rounds=10,
          eval metric="logloss",
          eval set=[(X eval, y eval)]
y pred = model.predict(X test)
accuracy = accuracy score(y test, y pred)
```

## Model Training

- 1. Shuffle dataset into 80% training set and 20% test set
  - budget predictors standardized to mean zero and variance one in training set
- 2. Tuned hyperparameters in the training set using five-fold cross-validation (e.g., max depth of trees and learning rate)
  - Use early stopping to avoid over-fitting.
- 3. Take tuned model and get performance metrics in the test set

### Model Performance in Test Set

|                           | Guess<br>"Not Corrupt" | OLS   | XGBoost |
|---------------------------|------------------------|-------|---------|
| Accuracy<br>AUC-ROC<br>F1 | 0.58<br>0.5<br>0.0     | 0.594 | 0.750   |

ightharpoonup Test-set accuracy of  $\sim 75\%$  is much better than guessing (58%) or predictions from OLS (59%)

#### Model Performance in Test Set

|                     | Guess<br>"Not Corrupt" | OLS            | XGBoost               |
|---------------------|------------------------|----------------|-----------------------|
| Accuracy<br>AUC-ROC | 0.58<br>0.5            | 0.594<br>0.562 | 0.750<br><b>0.814</b> |
| F1                  | 0.0                    | 0.413          | 0.665                 |

- AUC-ROC ("Area under the receiver operating curve") is a standard metric, ranging from 0.5 (guessing) ato 1.0 (perfect accuracy).
  - Interpretation: probability that a randomly sampled corrupt municipality is ranked more highly by predicted probability of corruption than a randomly sampled non-corrupt municipality.
  - ► AUC≈.81 is better than Kleinberg et al (QJE 2018) who report AUC=0.707.

### Confidence Intervals on ML Metrics

ightharpoonup nested cross-validation with 5 folds ightharpoonup produce 5 sets of perfomance metrics.

#### Confidence Intervals on ML Metrics

ightharpoonup nested cross-validation with 5 folds ightharpoonup produce 5 sets of perfomance metrics.

| Metric      | Accuracy  | AUC       |
|-------------|-----------|-----------|
| Mean        | 0.74      | 0.81      |
| Median      | 0.74      | 0.82      |
| S.D. / S.E. | 0.01      | 0.02      |
| 95% CI's    | [.73 .75] | [.79 .83] |

Confidence intervals constructed as mean  $+/-2\times S.E.$ .

#### **Confusion Matrix for Test-Set Predictions**

|             | Prediction         |     |  |
|-------------|--------------------|-----|--|
| Truth       | Not Corrupt Corrup |     |  |
| Not Corrupt | 614                | 100 |  |
| Corrupt     | 185                | 313 |  |

#### **Confusion Matrix for Test-Set Predictions**

|             | Prediction  |         |  |
|-------------|-------------|---------|--|
| Truth       | Not Corrupt | Corrupt |  |
| Not Corrupt | 614         | 100     |  |
| Corrupt     | 185         | 313     |  |

### True Corrupt Rate vs Predicted Prob. Corruption



### Outline

#### Effects of Algorithms on Decisions

#### ML for Anti-Corruption Policy

Corruption Audits as an Inspection Game Detecting Corruption with Machine Learning

### **Empirical Applications**

Using Machine Learning to Guide Audit Policy

## Applying to Full Dataset



We regressed predicted corruption in pre-audit years on having an audit, and there was no difference in any specification (consistent with randomization of audits).

▶ Brollo et al (2013) find that a **windfall of public revenues** (federal transfers) leads to an increase in rent-seeking by the public administration (*i.e.* subsequent increase in corruption).

- ▶ Brollo et al (2013) find that a **windfall of public revenues** (federal transfers) leads to an increase in rent-seeking by the public administration (*i.e.* subsequent increase in corruption).
- Empirical Strategy: Fuzzy RDD
  - Exogenous variation in transfers due to discrete population thresholds.
  - imperfect takeup, so instrument actual transfers  $\tau_i$  with prescribed transfers  $z_i$

- ▶ Brollo et al (2013) find that a windfall of public revenues (federal transfers) leads to an increase in rent-seeking by the public administration (i.e. subsequent increase in corruption).
- Empirical Strategy: Fuzzy RDD
  - Exogenous variation in transfers due to discrete population thresholds.
  - imperfect takeup, so instrument actual transfers  $\tau_i$  with prescribed transfers  $z_i$





- ▶ Brollo et al (2013) find that a windfall of public revenues (federal transfers) leads to an increase in rent-seeking by the public administration (i.e. subsequent increase in corruption).
- Empirical Strategy: Fuzzy RDD
  - Exogenous variation in transfers due to discrete population thresholds.
  - imperfect takeup, so instrument actual transfers  $\tau_i$  with prescribed transfers  $z_i$





Our extension: Analyze universe of Brazilian municipalities (not only those being audited). *N* increases from 1115 to 5563.

# Fuzzy RD (IV) Estimating Equations

▶ First stage: impact of prescribed transfers  $(z_i)$  on actual transfers  $(\tau_i)$ 

$$\tau_i = g(P_i) + \gamma z_i + u_i \tag{1}$$

▶ Second stage: impact of instrumented actual transfers  $(\tau_i)$  on ML-predicted corruption  $(y_i)$ 

$$y_i = g(P_i) + \beta \tau_i + \epsilon_i \tag{2}$$

– polynomial  $g(\cdot)$  in population  $P_i$ 

## Activity: Exogeneity/Exclusion

https://padlet.com/eash44/cfsa9e4m4lycv33f

$$\tau_i = g(P_i) + \gamma z_i + u_i$$
  
$$y_i = g(P_i) + \beta \tau_i + \epsilon_i$$

- Last Name starts with A-M:
  - Articulate exogeneity assumption, and a potential violation.
- ► Last Name starts with N-Z:
  - Articulate exclusion restriction, and a potential violation.

# Brollo et al (2013) Replication: First Stage

|                      | Audited cities (1)  | All cities (2)      | Never Audited (3)   |
|----------------------|---------------------|---------------------|---------------------|
| Panel A. First Stage |                     |                     |                     |
| Prescribed transfers | 0.680***<br>(0.021) | 0.687***<br>(0.022) | 0.700***<br>(0.023) |

| Observations | 1115 | 5563 | 4693 |
|--------------|------|------|------|

Standard errors clustered at the municipal level are in parentheses: \*p<0.10, \*\*\* p<0.05, \*\*\*\* p<0.01. Prescribed transfers ( $z_i$ ), actual transfers ( $\tau_i$ ), predicted corruption ( $y_i$ ). First stage:  $\tau_i = g(P_i) + \alpha_\tau z_i + \delta_t + \gamma_s + u_i$ ; Second stage:  $y_i = g(P_i) + \beta_y \tau_i + \delta_t + \gamma_s + \epsilon_i$ ; polynomial  $g(\cdot)$  in population  $P_i$ , time fixed effects  $\delta_t$ , state fixed effects  $\gamma_s$  (as in Brollo et al. 2013).

# Brollo et al (2013) Replication: Audited Cities

|                       | Audited cities (1) | All cities<br>(2) | Never Audited (3) |
|-----------------------|--------------------|-------------------|-------------------|
| Panel A. First Stage  |                    |                   |                   |
| Prescribed transfers  | 0.680***           | 0.687***          | 0.700***          |
|                       | (0.021)            | (0.022)           | (0.023)           |
| Panel B. Reduced Form |                    |                   |                   |
| Prescribed transfers  | 0.00526**          |                   |                   |
|                       | (0.00264)          |                   |                   |
| Panel C. 2SLS         |                    |                   |                   |
| Actual transfers      | 0.00862**          |                   |                   |
|                       | (0.004)            |                   |                   |
| Observations          | 1115               | 5563              | 4693              |

Standard errors clustered at the municipal level are in parentheses: \*p<0.10, \*\*\* p<0.05, \*\*\*\* p<0.01. Prescribed transfers ( $z_i$ ), actual transfers ( $\tau_i$ ), predicted corruption ( $y_i$ ). First stage:  $\tau_i = g(P_i) + \alpha_\tau z_i + \delta_t + \gamma_s + u_i$ ; Second stage:  $y_i = g(P_i) + \beta_y \tau_i + \delta_t + \gamma_s + \epsilon_i$ ; polynomial  $g(\cdot)$  in population  $P_i$ , time fixed effects  $\delta_t$ , state fixed effects  $\gamma_s$  (as in Brollo et al. 2013).

# Brollo et al (2013) Replication: Never-Audited Cities

|                       | Audited cities (1) | All cities<br>(2) | Never Audited (3) |
|-----------------------|--------------------|-------------------|-------------------|
| Panel A. First Stage  |                    |                   |                   |
| Prescribed transfers  | 0.680***           | 0.687***          | 0.700***          |
|                       | (0.021)            | (0.022)           | (0.023)           |
| Panel B. Reduced Form |                    |                   |                   |
| Prescribed transfers  | 0.00526**          | 0.00370***        | 0.00294***        |
|                       | (0.00264)          | (0.001)           | (0.001)           |
| Panel C. 2SLS         |                    |                   |                   |
| Actual transfers      | 0.00862**          | 0.00731***        | 0.00660***        |
|                       | (0.004)            | (0.001)           | (0.001)           |
| Observations          | 1115               | 5563              | 4693              |

Standard errors clustered at the municipal level are in parentheses: \*p<0.10, \*\*\* p<0.05, \*\*\*\* p<0.01. Prescribed transfers ( $z_i$ ), actual transfers ( $\tau_i$ ), predicted corruption ( $y_i$ ). First stage:  $\tau_i = g(P_i) + \alpha_\tau z_i + \delta_t + \gamma_s + u_i$ ; Second stage:  $y_i = g(P_i) + \beta_y \tau_i + \delta_t + \gamma_s + \epsilon_i$ ; polynomial  $g(\cdot)$  in population  $P_i$ , time fixed effects  $\delta_t$ , state fixed effects  $\gamma_s$  (as in Brollo et al. 2013).

# Analysis 2: Effects of auditing on subsequent corruption

▶ ML-predicted corruption  $y_{it}$  in municipality i, year t:

$$y_{it} = D'_{it}\beta + \delta_i + \gamma_t + \epsilon_{it} \tag{3}$$

- D<sub>it</sub>, treatments variables for years after audit
- $ightharpoonup \delta_i$ , municipality FE
- $ightharpoonup \gamma_t$ , year FE

## Analysis 2: Effects of auditing on subsequent corruption

▶ ML-predicted corruption  $y_{it}$  in municipality i, year t:

$$y_{it} = D'_{it}\beta + \delta_i + \gamma_t + \epsilon_{it} \tag{3}$$

- D<sub>it</sub>, treatments variables for years after audit
- $ightharpoonup \delta_i$ , municipality FE
- $ightharpoonup \gamma_t$ , year FE
- Empirical approach is differences-in-differences
  - $\blacktriangleright$  What is the identification assumption for  $\beta$  to be consistently estimated?
  - Why is it satisfied in this case?

Event Study: Effect of Audits on Fiscal Corruption

# Event Study: Effect of Audits on Fiscal Corruption



 $Error \ spikes \ give \ 95\% \ (horizontal \ bars) \ and \ 90\% \ (bold \ lines) \ confidence \ intervals, \ with \ standard \ error \ clustered \ by \ state.$ 

 $\Rightarrow$  The audit has a **disciplining effect**, inducing a reduction in corruption.

Event Study: By Audit Outcome

## Event Study: By Audit Outcome



 $Error\ spikes\ give\ 95\%\ (horizontal\ bars)\ and\ 90\%\ (bold\ lines)\ confidence\ intervals,\ with\ standard\ error\ clustered\ by\ state.$ 

 $\Rightarrow$  When detected, fiscal corruption decreases by ~24 percentage points from a mean of 47% (approx 50 percent decrease).

Spillover Effects on Neighbors: Event Study Estimates

# Spillover Effects on Neighbors: Event Study Estimates



 $Error\ spikes\ give\ 95\%\ (horizontal\ bars)\ and\ 90\%\ (bold\ lines)\ confidence\ intervals,\ with\ standard\ error\ clustered\ by\ state.$ 

 $\Rightarrow$  Effect on neighbors can be interpreted as a **behavioural response**, as audit probability is unchanged.

#### Outline

Effects of Algorithms on Decisions

#### ML for Anti-Corruption Policy

Corruption Audits as an Inspection Game Detecting Corruption with Machine Learning Empirical Applications

Using Machine Learning to Guide Audit Policy

All Municipalities (N = 5563)

Municipalities With Corruption N ≈ 2598 (47%) Municipalities Without Corruption N ≈ 2965 (53%)

Municipalities With Corruption N ≈ 2598 (47%) Municipalities Without Corruption N ≈ 2965 (53%)

Audits:  $N \approx 178$  per year (2.9%)



Under random audits, and assuming perfect detection conditional on audit, detection rate (per corrupt municipality) is equal to the audit rate (2.9%).



#### Rank municipalities by corruption risk:

- lacktriangle Apply model to budget data for each municipality to produce  $\hat{y}_{it}$
- ▶ for each year t, get an ordinal ranking of the municipalities by predicted probability of corruption.



# Proposed policy: Replace random audits with audits targeted by predicted corruption risk.

Rather than sampling 178 municipalities uniformly from distribution, audit 178 with highest  $\hat{y}_{it}$ .

► ML-Targeted Auditing results in ~98% corruption detection rate.



### Comparing the Policies



- ▶ Holding number of audits constant, targeting increases detections by 120%.
- ▶ Detection probability per corrupt municipality more than doubles from 2.9% to 6.7%.

# Comparing the Policies



- ▶ Holding number of audits constant, targeting increases detections by 120%.
- ▶ Detection probability per corrupt municipality more than doubles from 2.9% to 6.7%.
- ► To achieve same number of detections as status quo (83 municipalities), only 84 targeted audits are needed.
  - ▶ Decrease of 94 audits per year (53%), a major reduction in audit resources.
- ▶ Why don't we need to use the contraction method a la Kleinberg et al 2018? ("raise hand" via zoom)



ightharpoonup in status quo, agency decisions are in same information set and equilibrium corruption rate is  $ho^*>0$ 

▶ as detection rate gets close to one, game converges to extensive form:



by backward induction, best response is no corruption.

Behavioral Al Policy: Exploiting Spillovers

# Behavioral Al Policy: Exploiting Spillovers



According to spillover analysis, audits cut corruption by neighboring municipalities by about 10 percent (from .47 to .43).

- Could be used to further improve policy effectiveness of targeted audits.
  - Adjust the risk ranking to target municipalities with high spillover potential.
  - ► For example, the policy could target the centroids of clusters of corrupt municipalities.

 $Breakout\ Groups:\ Open\ Issues\ /\ Limitations\ with\ Brazil\ Corruption\ Study$ 

https://bit.ly/BRJ-W10-A2