Guía 2 - Funciones S-computables

Solución de un alumno

Verano 2021

Ejercicio 1

```
V_i \leftarrow k
[A] V <- V - 1
        IF V != O GOTO A
         V <- V + 1
      ... (repetimos la instrucción k veces en total)
         V \leftarrow V + 1
V_i \leftarrow V_j + k
[A] Vi <- Vi - 1
        IF Vi != O GOTO A
         Vi <- Vi + 1
       ... (repetimos la instrucción k veces en total)
         Vi <- Vi + 1
         Z1 <- Vj
[B] IF Z1 == 0 GOTO E
        Vi <- Vi + 1
         Z1 <- Z1 - 1
         GOTO B
\cdot \ IF \ V_I = 0 \ GOTO \ L
         Z1 <- Vi
         IF Z1 != O GOTO A
         Z1 <- 1
         IF Z1 != 0 GOTO L
[A]
\cdot GOTO L
         Z1 <- 1
         IF Z1 != O GOTO L
```

Ejercicio 4

- a)
- S_1 no tiene $V \leftarrow V + 1$

No podemos computar la función f(x) = x + 1

Dem: Suponemos que si, entonces el programa va a tener $d_1, d_2, ..., d_m$ estados siendo el d_m el estado del calculo final, y siendo $d_m[Y] = X1 + 1$.

Como el lenguaje solo tiene dos instrucciones, observamos ambas:

Si la instrucción es $V \leftarrow V - 1$ o $IF\ V \neq V'\ GOTO\ L$ entonces:

$$d_{i+1}[Y] \ge d_i[Y]$$

Entonces:

$$d_1[Y] = 0 \ge d_2[Y] \ge \dots \ge d_m[Y]$$

Entonces necesariamente:

$$d_m[Y] = 0$$

Entonces demostramos que si el programa termina entonces va a calcular f(x) = 0

• S_2 no tiene $IF\ V \neq 0\ GOTO\ L$

No podemos computar el programa $f(x) \uparrow (\forall x)$:

Suponemos que si, entonces vamos a tener un programa de m instrucciones con $d_1, ..., d_m$ estados. Se comienza el programa con la descripción instantánea $(1, \sigma)$. Como solo tenemos las instrucciones de sumar o restar una variable entonces, en cada instrucción sucede:

$$(n, \sigma_1) \rightarrow (n+1, \sigma_2)$$

Entonces si se empieza en $(1, \sigma_1)$ luego de m pasos se termina en (m, σ_m) y el programa nunca se cuelga o indefine.

• S_3 no tiene $V \leftarrow V - 1$

No vamos a poder computar la función f(x,y) = (x == y)

TERMINAR

b) Para demostrarlo podemos simplemente ver que las instrucciones

$$V \leftarrow V'IF \ V \neq V' \ GOTO \ L$$

La podemos realizar en S. Y que la instrucción:

$$V \leftarrow V - 1$$

La podemos hacer en S'.

Veamos lo primero: La primera instrucción puede hacerse:

```
[R] V1 <- V1 - 1

IF V1 != 0 GOTO R

IF V' != 0 GOTO A

GOTO E

[A] V1 <- V1 + 1

V' <- V' - 1

IF V' != 0 GOTO A
```

Ahora veamos la segunda instrucción:

- [B] IF Z2 = 0 GOTO L GOTO E
- [C] IF Z1 = 0 GOTO L GOTO \mathbf{E}

[E]

Ahora veamos que podemos hacer $V \leftarrow V - 1$ en S':

No vemos el caso donde V sea 1 o 0, pero es solo agregar unas guardas.

Ejercicio 5

a)

- [F] $Y \leftarrow T$
 - b) La inversa de una función biyectiva existe y también es biyectiva. Podemos definir la inversa como:

$$f^{-1}(x) = min\{t : f(t) = x\}$$

Es total (es decir no se cuelga) porque para todo x existe t tal que f(t) = x.

Ejercicio 6

Nos tenemos que fijar que todas las instrucciones sean saltos condicionales y luego nos fijamos que la etiqueta a la que apunten no esté en ninguna instrucción anterior o sea de ella misma.

$$noApareceAntes(n, linea, etiqueta) = (\forall x)_{< linea} etiqueta \neq l((n+1)[x])$$

Que nos dice si la etiqueta no se uso ni antes ni en la misma instrucción.

$$inum(x,i) = l(r((x+1)[i]))$$

Nos devuelve el número de la instrucción i.

Entonces podemos escribir r(x) como:

$$r(x) = (\forall i)_{<|x+1|} inum(x,i) > 2 \Rightarrow \neg noApareceAntes(x,i,inum(x,i)-2)$$

Notar que:

$$\times_1 \Rightarrow \times_2 \equiv (\times_1 \land \times_2) \lor \neg \times_1$$

Ejercicio 7

damos un programa para cada caso.

 f_1)

$$X1 \leftarrow x$$
, $X2 \leftarrow y$

Otra forma:

$$f_1(x,y) = (\exists t)(STP(y,x,t) = 1)$$

$$f_2(x) = (\exists < y, t >)(STP(y, x, t) = 1)$$

$$f_3(x,v) = (\exists \langle v,t \rangle)(STP(v,x,t) = 1 \land r(SNAP(v,x,t))[0] = y)$$

$$f_4(x,y) = (\exists \langle t_1, t_2, v_1, v_2 \rangle)(STP(v_1, x, t_1) = 1 \land STP(v_2, y, t_2) = 1 \land r(SNAP(v_2, y, t_2))[0] = v_1)$$

Ejercicio 9

$$f(x) = (\exists \ < x_1,...,x_n,t> \in \mathbb{N})$$
 ($x = r(SNAP(x_1,...,x_n,x,t))[0]$)

La función f(x) es pr, entonces es computable.

Notar que podemos escribir $(\exists t_1)(\exists t_2)...(\exists t_n)(f(t_1,...,t_n))$ como $(\exists < t_1,...,t_n > \in \mathbb{N})(f(t_1,...,t_n))$

Notar que r(SNAP(...,t))[0] es el valor de Y luego de t pasos.