САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ФАКУЛЬТЕТ ИНФОКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

Отчет по лабораторной работе №0 по курсу «Алгоритмы и структуры данных»

Выполнила:

Пожидаева Е.Р.

Санкт-Петербург 2024 г.

Задание № 1. Ввод-вывод.

Текст задачи

Вам необходимо выполнить 4 следующих задачи:

- 1. Задача a+b. В данной задаче требуется вычислить сумму двух заданных чисел. Вход: одна строка, которая содержит два целых числа a и b. Для этих чисел выполняются условия $-10^9 \le a, b \le 10^9$. Выход: единственное целое число результат сложения a+b.
- 2. Задача $a+b^2$. В данной задаче требуется вычислить значение $a+b^2$. Вход: одна строка, которая содержит два целых числа a и b. Для этих чисел выполняются условия $-10^9 \le a, b \le 10^9$. Выход: единственное целое число результат сложения $a+b^2$.
- 3. Выполните задачу a + b с использованием файлов.
 - Имя входного файла: input.txt
 - Имя выходного файла: output.txt
 - Формат входного файла. Входной файл состоит из одной строки, которая содержит два целых числа a и b. Для этих чисел выполняются условия $-10^9 \le a, b \le 10^9$.
 - Формат выходного файла. Выходной файл единственное целое число — результат сложения a + b.

Примеры.

input.txt	12 25	130 61
output.txt	37	191

 Выполните задачу a +b² с использованием файлов аналогично предыдущему пункту.

Листинг кода.

```
a, b = map(int, input().split())
print(a+b)
```

```
a, b = map(int, input().split())
print(a + b**2)
```

```
f = open('input.txt', 'r')
s = f.read()
a, b = map(int, s.split())
summa = str(a + b)

f = open('output.txt', 'w')
f.write(summa)
f.close()

print(end)
```

```
f = open('input.txt', 'r')
s = f.read()
a, b = map(int, s.split())
summa = str(a + b**2)

f = open('output.txt', 'w')
f.write(summa)
f.close()
print(end)
```

Результат работы кода на примерах из текста задачи:

```
PS C:\Users\user\Desktop\Academ_zadol\7\4_zad> & C:/Users/user/AppData/Local/Microso ft/WindowsApps/python3.11.exe c:/Users/user/Desktop/Academ_zadol/0/zadaniye1.py 12 25 37
```

```
PS C:\Users\user\Desktop\Academ_zadol\7\4_zad> & C:/Users/user/AppData/Local/Microso ft/WindowsApps/python3.11.exe c:/Users/user/Desktop/Academ_zadol/0/zadan1.2.py 12 25 637
```


Вывод по задаче: научилась писать программу, которая способна взаимодействовать с пользователем

Задание № 2. Число Фибоначчи.

Текст задания.

Определение последовательности Фибоначчи:

$$F_0 = 0$$
 (1)
 $F_1 = 1$
 $F_i = F_{i-1} + F_{i-2}$ and $i \ge 2$.

Таким образом, каждое число Фибоначчи представляет собой сумму двух предыдущих, что дает последовательность

```
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
```

Ваша цель – разработать эффективный алгоритм для подсчета чисел Фибоначчи. Вам предлагается начальный код на Python, который содержит наивный рекурсивный алгоритм:

```
def calc_fib(n):
    if (n <= 1):
        return n

    return calc_fib(n - 1) + calc_fib(n - 2)

n = int(input())
print(calc_fib(n))</pre>
```

- Имя входного файла: input.txt
- Имя выходного файла: output.txt
- Формат входного файла. Целое число $n.~0 \le n \le 45$.
- Формат выходного файла. Число F_n .
- Пример.

input.txt	10
output.txt	55

Листинг

```
import time
import psutil
mem = psutil.Process().memory_info().rss
start = time.time()

f = open('input.txt')
n = int(f.readline())
a = [0, 1]
for i in range(n):
    a.append(a[i] + a[i + 1])
```

```
f = open('output1.txt', 'w')
f.write(str(a[n]))
f.close()

end = time.time() - start
print('{}'.format(mem))
print(end)
```

Результат работы кода на примерах из текста задачи:

	Время выполнения (сек)	Затраты памяти (Мб)
Пример из задачи	0.004347085952758789	22474752

Вывод по задаче: разработала эффективный алгоритм для подсчета чисел Фибоначчи и протестировала время выполнения алгоритма

Задание № 3. Еще про числа Фибоначчи.

Текст задачи

Определение последней цифры большого числа Фибоначчи. Числа Фибоначчи растут экспоненциально. Например,

```
F_{200} = 280571172992510140037611932413038677189525
```

Хранить такие суммы в массиве, и при этом подсчитывать сумму, будет достаточно долго. Найти последнюю цифру любого числа достаточно просто: F mod 10.

- Имя входного файла: input.txt
- Имя выходного файла: output.txt
- Формат входного файла. Целое число n. 0 ≤ n ≤ 10⁷.
- Формат выходного файла. Одна последняя цифра числа F_n.
- Пример 1.

input.txt	331
output.txt	9

 $F_{331} = 668996615388005031531000081241745415306766517246774551964595292186469.$

Пример 2.

input.txt	327305
output.txt	5

Это число не влезет в страницу, но оканчивается действительно на 5.

- Ограничение по времени: 5сек.
- Ограничение по памяти: 512 мб.

Листинг

```
import time
import psutil
mem = psutil.Process().memory_info().rss
start = time.time()

f = open('input.txt')
n = int(f.readline())
a = [0, 1]
for i in range(n - 1):
    a.append((a[i] + a[i + 1]) % 10)
f = open('output.txt', 'w')
f.write(str(a[n]))
f.close()
```

```
end = time.time() - start
print('{}'.format(mem))
```

Результат работы кода на примерах из текста задачи:

	Время выполнения (сек)	Затраты памяти (Мб)
Пример из задачи	0.004905939102172851 6	22159360

Вывод по задаче: научилась определять последнюю цифру большого числа Фибоначчи и протестировала время выполнения алгоритма.