ESQUEMA-RESUMEN CAPITULO 1: INTRODUCCION

Nota: " n" es el nº de elementos distintos que pueden aparecer en una posición de la tupla y " h" el tamaño de la tupla.

^{*}Esquema de la materia vista en las clases de teoría.

^{**}Cada punto de este esquema se ha desarrollado en las clases de teoría.

ESQUEMA-RESUMEN CAPITULO 2: SUCESOS ALEATORIOS

- EXPERIMENTOS Y SUCESOS
 - ESPACIO MUESTRAL (Ω)
 - o SUCESO.
 - REPRESENTACION GRAFICA ⇒ DIAGRAMAS DE VENN
 - SUCESO SEGURO (Ω)
 - SUCESO IMPOSIBLE (Ø)
 - o REGLA DE LAPLACE:

$$PROBABILIDAD = \frac{CASOS\ FAVORABLES}{CASOS\ POSIBLES}$$

- OPERACIONES CON SUCESOS:
 - \circ UNION (A \cup B). PROPIEDADES.
 - \circ INTERSECCION (A \cap B). PROPIEDADES.
 - SUCESO CONTRARIO (A).PROPIEDADES.
 - SUCESO DIFERENCIA (A \ B)
- SUCESOS INCOMPATIBLES \Rightarrow A \cap B = Ø; P(A \cap B) = 0
- LEYES DE DE MORGAN: $A \cup B = A \cap B$; $A \cap B = A \cup B$
- DESCOMPOSICION DE SUCESOS EN LA UNION DE SUCESOS INCOMPATIBLES

$$\mathbf{A} = (A \setminus B) \cup (A \cap B)$$
 y $\mathbf{A} \cup \mathbf{B} = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$

- DEFINICION DE PROBABILIDAD. PROPIEDADES.
 - PROBABILIDAD DE LA UNION DE SUCESOS: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- PROBABILIDAD CONDICIONAL: $P(A/B) = \frac{P(A \cap B)}{P(B)}$
- SUCESOS INDEPENDIENTES $\Rightarrow P(A \cap B) = P(A) \cdot P(B)$
- PROBABILIDAD TOTAL Y TEOREMA DE BAYES
 - o SISTEMA COMPLETO DE SUCESOS O PARTICION DEL ESPACIO MUESTRAL
 - TEOREMA DE LA PROBABILIDAD TOTAL:

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B/A_i)$$

TEOREMA DE BAYES:

$$P(A_k/B) = \frac{P(A_k) \cdot P(B/A_k)}{\sum_{i=1}^{n} P(A_i) \cdot P(B/A_i)}$$

^{*}Esquema de la materia vista en las clases de teoría.

^{**}Cada punto de este esquema se ha desarrollado en las clases de teoría.

ESQUEMA-RESUMEN CAPITULO 3: VARIABLES ALEATORIAS

ESQUEMA-RESUMEN CAPITULO 3: VARIABLES ALEATORIAS	
VARIABLES ALEATORIAS UNIDIMENSIONALES: $X: \Omega \to \Re$	
V.A. DISCRETAS El espacio muestral Ω es discreto (finito o infinito numerable).	$f V.A.$ CONTINUAS El espacio muestral Ω NO es discreto.
FUNCION DE CUANTIA: $f(x)$	FUNCION DE DENSIDAD: $f(x)$
$f: \Re \to \Re$; tal que $f(x) = P(X = x)$	$f(x) > 0$; tal que $P(x \in I) = \int_{I} f(x) dx$
DISTRIBUCION UNIFORME:	
$f(x) = \begin{cases} k; & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases} \Rightarrow k = \frac{1}{b - a}$	
FUNCION DE DISTRIBUCION: $F: \Re \to \Re$; tal que $F(x) = P(X \le x)$	
CASO DISCRETO:	CASO CONTINUO:
$F(x) = \sum_{x_i \le x} f(x_i)$	$F(x) = \int_{-\infty}^{x} f(t)dt$
VARIABLES ALEATORIAS BIDIMENSIONALES: $(X,Y):\Omega \to \Re \times \Re$	
V.A. DISCRETAS	V.A. CONTINUAS
El espacio muestral Ω es discreto (finito o infinito numerable).	El espacio muestral Ω NO es discreto.
FUNCION DE CUANTIA CONJUNTA:	FUNCION DE DENSIDAD CONJUNTA:
$f(x,y)$; $f: \Re \times \Re \to \Re$; tal que	f(x,y); f(x,y) > 0; tal que
$f(x,y) = P((X=x) \cap (Y=y))$	$P((x,y) \in A) = \iint_A f(x,y) dx dy$
DISTRIBUCION UNIFORME:	
$f(x,y) = \begin{cases} k; & (x,y) \in A \\ 0, & (x,y) \notin A \end{cases} \Rightarrow k = \frac{1}{Area(A)}$	
$[0, (x,y) \notin A \qquad Area(A)$	
FUNCION DE DISTRIBUCION CONJUNTA: $F: \Re \times \Re \to \Re$; tal que $F(x, y) = P((X \le x) \cap (Y \le y))$	
CASO DISCRETO:	$(X, y) = Y((X \subseteq X) \cap (Y \subseteq Y))$ CASO CONTINUO:
$F(x,y) = \sum f(x_i, y_j)$	$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t) ds dt$
$x_i \le x \\ y_j \le y$	$F(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(s,t) ds dt$
DISTRIBUCIONES MARGINALES:	
CASO DISCRETO: $f_1(x) = \sum f(x, y) \left f_2(y) = \sum f(x, y) \right $	CASO CONTINUO: $f_1(x) = \int_{-\infty}^{+\infty} f(x, y) dy f_2(y) = \int_{-\infty}^{+\infty} f(x, y) dx$
INDEPENDENCIA DE VARIABLES:	
Dada (X,Y), X e Y son INDEPENDIENTES \iff $f(x,y) = f_1(x) \cdot f_2(y)$; para todo x,y	
DISTRIBUCIONES CONDICIONALES:	
CASO DISCRETO:	$g_1(x/Y = y) = \frac{f(x,y)}{f_2(y)}; \text{con } f_2(y) > 0$
CASO CONTINUO:	$g_2(y/X = x) = \frac{f(x, y)}{f_1(x)}; \text{con } f_1(x) > 0$

^{*}Esquema de la materia vista en las clases de teoría.

^{**}Cada punto de este esquema se ha desarrollado en las clases de teoría.

ESQUEMA-RESUMEN CAPITULO 4: ESPERANZA Y MOMENTOS

ESPERANZA DE UNA V.A.: Punto de equilibrio de la distribución.

CASO DISCRETO: $E(x) = \sum x_i \cdot f(x_i)$ CASO CONTINUO: $E(x) = \int_{-\infty}^{+\infty} x \cdot f(x) dx$

ESPERANZA DE UNA FUNCION DE UNA V.A.: h(x) [Para h(x,y) se hace de la misma forma]

CASO DISCRETO: $E(h(x)) = \sum h(x_i) \cdot f(x_i)$

CASO CONTINUO: $E(h(x)) = \int_{-\infty}^{+\infty} h(x) \cdot f(x) dx$

PROPIEDADES DE LA ESPERANZA:

- E(ax+b) = aE(x)+b
- $\{X_i\}_{i=1}^n$ V.A. $\Longrightarrow E(X_1 + X_2 + ... + X_n) = E(X_1) + E(X_2) + ... + E(X_n)$
- $\{X_i\}_{i=1}^n$ V.A.INDEPENDIENTES $\Longrightarrow E(X_1 \cdot X_2 \cdot ... \cdot X_n) = E(X_1) \cdot E(X_2) \cdot ... \cdot E(X_n)$

ESPERANZA DE LA DISTRIBUCION UNIFORME: $E(x) = \frac{a+b}{2}$

VARIANZA DE UNA V.A. (Medida de dispersión): $Var(x) = E(x^2) - E(x)^2$

PROPIEDADES DE LA VARIANZA:

• $Var(ax + b) = a^2 Var(x)$

• $\{X_i\}_{i=1}^n$ V.A. INDEPENDIENTES: $\begin{cases} - Var(X_1 + X_2 + ... + X_n) = Var(X_1) + Var(X_2) + ... + Var(X_n) \\ - Var\left(b + \sum_{i=1}^n a_i X_i\right) = \sum_{i=1}^n a_i^2 \cdot Var(X_i) \end{cases}$

VARIANZA DE LA DISTRIBUCION UNIFORME: $Var(x) = \frac{(a-b)^2}{a^2}$

MOMENTOS: Parámetros de la distribución.

MOMENTO RESPECTO AL ORIGEN DE

MOMENTO CENTRAL DE ORDEN k: $E((X-\mu)^K)$

ORDEN k: $|E(X^K)|$

FUNCION GENERATRIZ DE MOMENTOS:

$$\overline{\psi(t)} = E(e^{tX}) \Longrightarrow \psi^{(k)}(0) = E(X^k)$$

COVARIANZA DE (X,Y): Grado de dependencia de X e Y.

$$Cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

CORRELACION:
$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \cdot \sigma_Y} \in [-1,1]$$

ESPERANZA CONDICIONAL:

CASO DISCRETO:

CASO CONTINUO: $\boxed{E\left(\frac{X}{y}\right) = \sum_{x} x \cdot g_1\left(\frac{x}{y}\right)} \boxed{E\left(\frac{Y}{x}\right) = \sum_{x} y \cdot g_2\left(\frac{y}{x}\right)} \qquad \boxed{E\left(\frac{X}{y}\right) = \int_{-\infty}^{+\infty} x \cdot g_1\left(\frac{x}{y}\right) dx} \boxed{E\left(\frac{Y}{x}\right) = \int_{-\infty}^{+\infty} y \cdot g_2\left(\frac{y}{x}\right) dy}$

MEDIA MUESTRAL: $\overline{X_n} = \frac{X_1 + X_2 + ... + X_n}{\Rightarrow} E(\overline{X_n}) = \mu; Var(\overline{X_n}) = \frac{\sigma^2}{\sigma^2}$

^{*}Esquema de la materia vista en las clases de teoría.

^{**}Cada punto de este esquema se ha desarrollado en las clases de teoría.

^{*}Esquema de la materia vista en las clases de teoría. **Cada punto de este esquema se ha desarrollado en las clases de teoría.

ESQUEMA-RESUMEN CAPITULO 5: DISTRIBUCIONES ESPECIALES

DISTRIBUCIONES DISCRETAS DISTRIBUCION DE BERNOULLI $A \Rightarrow \text{EXITO} \rightarrow P(A) = p$ Función Cuantía $\overline{A} \Rightarrow \text{FRACASO} \rightarrow P(\overline{A}) = 1 - p = q$ $\omega \notin A$

$$E(x) = \sum_{x} x \cdot f(x) = p \left[Var(x) = E(x^{2}) - E(x)^{2} = p \cdot q \right] \left[\psi(t) = E(e^{tX}) = p \cdot e^{t} + q; -\infty < t < +\infty \right]$$

DISTRIBUCION BINOMIAL: $X \sim B(n, p)$

Función de Cuantía: $p^x \cdot q^{n-x}, \quad x \in \{0,1,2,\dots,n\}$ Importante:

PARAMETROS DE LA DISTRIBUCION:

$$\overline{E(x) = n \cdot p} | Var(x) = n \cdot p \cdot q | \psi(t) = (p \cdot e^t + q)^n; -\infty < t < +\infty$$

Teorema:

$$\overline{X_i \sim B(n_i, p)}$$
 INDEPENDIENTES y $X = X_1 + X_2 + \ldots + X_k \Longrightarrow \overline{X \sim B(n_1 + n_2 + \ldots + n_k, p)}$

DISTRIBUCION DE POISSON: $X \sim P(\lambda)$

 $f(x) = \begin{cases} e^{-\lambda} \cdot \frac{\lambda^x}{x!}, & x \in \{0,1,2,\ldots\} \end{cases}$ Función de Cuantía:

PARAMETROS DE LA DISTRIBUCION:

$$E(x) = \lambda$$
 $Var(x) = \lambda$ $\psi(t) = e^{\lambda(e^t - 1)}; -\infty < t < +\infty$

Teorema:

$$X_i \sim P(\lambda_i)$$
 INDEPENDIENTES y $X = X_1 + X_2 + \ldots + X_k \Longrightarrow X \sim P(\lambda_1 + \lambda_2 + \ldots + \lambda_k)$

Aproximación de la Binomial por la Poisson: $|B(n, p) \approx P(n \cdot p)$

DISTRIBUCIONES CONTINUAS

DISTRIBUCION NORMAL: $X \sim N(\mu, \sigma)$

Función de Densidad:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}; -\infty < x < +\infty$$

• Importante:

Cuando μ =0 y σ =1 \Longrightarrow **NORMAL TIPIFICADA**

TIPIFICAR A
$$N(0,1)$$
:
$$Y = \frac{X - \mu}{\sigma} \sim N(0,1)$$

$$E(x) = \mu Var(x) = \sigma^{2} \psi(t) = e^{\frac{\mu t + \frac{1}{2}\sigma^{2}t^{2}}{2}}; -\infty t$$

$$E(x) = \mu | Var(x) = \sigma^2 | \psi(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}; -\infty < t < +\infty$$

Teorema: $X_i \sim N(\mu_i, \sigma_i)$ **INDEPENDIENTES** y $X = a_1 X_1 + a_2 X_2 + ... + a_k X_k + b \Rightarrow$ $X \sim \text{Normalcon } E(X) = a_1 \mu_1 + a_1 \mu_1 + ... + a_k \mu_k + b \text{ y } Var(X) = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + ... + a_k^2 \sigma_k^2$

^{*}Esquema de la materia vista en las clases de teoría.

^{**}Cada punto de este esquema se ha desarrollado en las clases de teoría.

Teorema Central del Límite: Aproximar mediante la Normal $\Longrightarrow \overline{Y = \frac{X - E(X)}{+ \sqrt{Var(X)}}} \sim N(0,1)$

BINOMIAL: $X \sim B(n, p) \Longrightarrow \boxed{Y = \frac{X - n \cdot p}{+\sqrt{n \cdot p \cdot q}} \sim N(0, 1)}$ poisson: $X \sim P(\lambda) \Longrightarrow \boxed{Y = \frac{X - \lambda}{+\sqrt{\lambda}} \sim N(0, 1)}$

^{*}Esquema de la materia vista en las clases de teoría.

^{**}Cada punto de este esquema se ha desarrollado en las clases de teoría.