Выберите функцию плотности вероятностей f(x), задающую **показательное** распределения непрерывной случайной величины ξ .

$$f(x)=egin{cases} \lambda e^{-\lambda x} & ext{при} & x\geqslant 0, \ 0 & ext{при} & x<0, \end{cases}$$
 где $\lambda>0.$

$$f(x) = \left\{egin{array}{ll} C & ext{при} & x \in [a;b], \ 0 & ext{при} & x
otin [a;b]. \end{array}
ight.$$

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}\,e^{-rac{(x-a)^2}{2\sigma^2}}$$
 .

Правильный ответ:

$$f(x) = \left\{ egin{array}{ll} \lambda e^{-\lambda x} & ext{при} & x \geqslant 0, \ 0 & ext{при} & x < 0, \end{array}
ight.$$
 где $\lambda > 0.$

Производится ряд независимых испытаний («попыток») для достижения некоторого результата (события A), и при каждой попытке событие A может появиться с вероятностью $p.\ q=1-p,\ \lambda=n\cdot p.$

ξ	0	1	2	 m	
p	$e^{-\lambda}$	$\lambda e^{-\lambda}$	$\frac{\lambda^2}{2!}e^{-\lambda}$	 $\frac{\lambda^m}{m!}e^{-\lambda}$	

Распределение Пуассона 💠

Геометрическое распределение \$

ξ	0	1	2	 k	 n
p	q^n	npq^{n-1}	$C_n^2 p^2 q^{n-2}$	 $C_n^k p^k q^{n-k}$	 p^k

Биномиальное распределение \$

Выберите **правильные** утверждения, определяющие функцию распределения двумерной случайной величины (ξ ; η):

- $^{\circ}$ Функцией распределения двумерной случайной величины $(\xi;\ \eta)$ называют $F(x;y)=P(\xi>x)\cdot P(\eta>y).$
- \circ Функцией распределения двумерной случайной величины $(\xi; \, \eta)$ называют $F(x;y) = P(\xi < x) \cdot P(\eta < y).$
- $^{\circ}$ Функцией распределения двумерной случайной величины $(\xi;\ \eta)$ называют $F(x;y)=P(\xi>x;\ \eta>y).$
- \circ Функцией распределения двумерной случайной величины $(\xi; \eta)$ называют $F(x;y) = P(\xi = x; \eta = y).$
- $^{ ext{@}}$ Функцией распределения двумерной случайной величины $(\xi;\ \eta)$ называют $^{\checkmark}$ $F(x;y) = P(\xi < x;\ \eta < y).$

Правильный ответ:

Функцией распределения двумерной случайной величины $(\xi; \, \eta)$ называют $F(x;y) = P(\xi < x; \, \eta < y).$

Выберите функцию плотности вероятностей f(x), задающую равномерное распределения непрерывной случайной

$$f(x) = egin{cases} \lambda e^{-\lambda x} & ext{при} & x \geqslant 0, \ 0 & ext{при} & x < 0, \end{cases}$$
 где $\lambda > 0.$

$$f(x) = \left\{egin{array}{ll} C & ext{при} & x \in [a;b], \ 0 & ext{при} & x
otin [a;b]. \end{array}
ight.$$

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}\,e^{-rac{(x-a)^2}{2\sigma^2}}$$
 .

Правильный ответ:

$$f(x) = \left\{egin{array}{ll} C & ext{при} & x \in [a;b], \ 0 & ext{при} & x
otin [a;b]. \end{array}
ight.$$

Производится ряд независимых испытаний («попыток») для достижения некоторого результата (события A), и при каждой попытке событие A может появиться с вероятностью $p.\ q=1-p,\ \lambda=n\cdot p.$ Поставьте в соответствие формулам для $M(\xi)$ и $D(\xi)$ тип распределения, для которого справедливы предложенные формулы.

$$M(\xi)=D(\xi)=\lambda$$

$$M(\xi)=rac{1}{p}, \quad D(\xi)=rac{q}{p^2}$$
 Геометрическое распределение \diamond

$$M(\xi)=np,\quad D(\xi)=npq$$
 Биномиальное распределение 💠 🗸

Правильный ответ:

$$M(\xi) = D(\xi) = \lambda$$
 $ightarrow$ Распределение Пуассона,

$$M(\xi)=rac{1}{p}, \quad D(\xi)=rac{q}{p^2}
ightarrow ext{Геометрическое распределение,}$$

$$M(\xi) = np, \quad D(\xi) = npq$$
 $ightarrow$ Биномиальное распределение

Выберите верные формулы определяющие и математическое ожидание $M(\xi)$ и дисперсию $D(\xi)$, для **показательного** распределения непрерывной случайная величина ξ.

$$M(\xi)=rac{1}{\lambda}; \quad D(\xi)=rac{1}{\lambda^2}.$$

$$M(\xi)=\lambda^2;\quad D(\xi)=\lambda.$$

$$^{\circ}$$
 $M(\xi) = \lambda;$ $D(\xi) = \lambda^2.$

$$M(\xi)=rac{1}{\lambda^2};\quad D(\xi)=rac{1}{\lambda}.$$

Выберите функцию плотности вероятностей f(x), задающую **нормальное** распределения непрерывной случайной величины \mathcal{E} .

$$f(x) = \left\{egin{array}{ll} C & ext{при} & x \in [a;b], \ 0 & ext{при} & x
otin [a;b]. \end{array}
ight.$$

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}\,e^{-rac{(x-a)^2}{2\sigma^2}}\,.$$

$$f(x) = \left\{egin{array}{ll} \lambda e^{-\lambda x} & ext{при} & x \geqslant 0, \ 0 & ext{при} & x < 0, \end{array}
ight.$$
 где $\lambda > 0.$

Правильный ответ:

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}\,e^{-rac{(x-a)^2}{2\sigma^2}}\,.$$

Задание 6. Задан закон распределения дискретной случайной величины ξ . Выберите правильную формулу, по которой вычисляется дисперсия $\mathrm{D}(\xi)$.

1)
$$D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi^2))^2 p_i$$
; 2) $D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi^2)) p_i$; 3) $D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi))^2 p_i$.

Дисперсией случайной величины называется математическое ожидание квадрата её отклонения от математического ожидания: $D(\xi) = M(\xi - M(\xi))^2$.

Для дискретной случайной величины дисперсия вычисляется по формуле:

$$D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi))^2 \cdot p_i.$$

Следовательно, правильный ответ 3).

Ответ: 3).

Плотностью распределения f(x) (или дифференциальной функцией распределения) непрерывной случайной величины ξ называют:

- $^{ ext{O}}$ $^{ ext{O}}$ определенный несобственный интеграл: $f(x)=\int\limits_{-\infty}^{x}F(t)dt.$
- предел отношения приращения функции распределения к приращению её аргумента при стремлении последнего к нулю: $\lim_{\Delta x \to 0} \frac{F(x + \Delta x) F(x)}{\Delta x}$.
- \odot \square определенный интеграл: $f(x)=\int\limits_0^x F(t)dt$.

Свойства дисперсии 1) $D(\xi) \ge 0$. 2) D(C) = 0. 3) $D(C \cdot \xi) = C^2 \cdot D(\xi)$. 4) Для независимых случайных величин ξ и η : $D(\xi \pm \eta) = D(\xi) + D(\eta)$. В задании не указано, что дискретные случайные величины ξ и η независимы, поэтому в ответ включаем только 3) и 4) свойства. 3) и 4). Ответ: каждом выстреле постоянна и равна р=0,8. Найдите всроятнос попадёт 3 раза. 6. Дискретная случайная величина ξ задана законом распределения, представленным таблицей, где x_i — значения которые принимает ξ , а p_i — вероятности того, что она принимает эти значения. Выберите правильные формулы, по которой вычисляется 1) $D(\xi) = M(\xi^2) - (M(\xi))^2$; 2) $D(\xi) = \sum_{i=1}^n (x_i - M(\xi)) p_i$; 3) $D(\xi) = \sum_{i=1}^{n} (x_i - M(\xi))^2 p_i$. испорченных изделия. 5 6. Укажите номер функции, которая задает плотность распределения случайной величины ξ имеющей нормальное распределение, и найдите ее дисперсию $f(x) = \frac{1}{2\sqrt{2\pi}} e^{\frac{(x-3)^2}{8}}; 2) (x) = \begin{cases} 2e^{-2x} \text{при } x \ge 0, \\ 0 \text{ при } x < 0 \end{cases}$ 3) $f(x) = \begin{cases} \frac{1}{6} & \text{при } x \in [-1; 5], \\ 0 & \text{при } x \notin [-1; 5] \end{cases}$ семестр оолезнью А заболеют 4 студента. 6. Если вероятность наступления события А в каждом испытании независима и равна 0,3, то для нахождения вероятности того, что событие А наступит от 250 до 310 раз в 1000 испытаниях, необходимо использовать: (1) интегральную теорему Муавра-Лапласа; 2) локальную теорему Муавра-Лапласа; 3) формулу Пуассона. Укажите номер верной формулы. 0,4. Найдите вероятность 3 попаданий при 8 бросках. 6. Выберите все формулы, по которой определяется наивероятнейшее число та наступления события в п независимых испытаниях, в каждом из которых вероятность появления события равна p (q = 1 - p): 1) $1 \le m_0 \le np + 1 - p$; 2) $np - q \le m_0 \le np + p$; 3) $p(n+1) - 1 \le m_0 \le p(n+1)$. пен не около перерасхода электроэнергии, 6. Укажите номер формулы, которая называется формулой полной вероятности: $\bigcap P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i);$ 2) $P(S_n = k) = C_n^k p^k q^{n-k}$. 3) $P(H_{\ell}|A) = \frac{P(A|H_{\ell})P(H_{\ell})}{P(A)}$ 6. Пусть вероятность наступления события А в каждом независимом испытании равна 0,25. Выберите вариант формулы, с помощью которого вычисляется вероятность того, что среди 1000 независимых испытаний событие А наступит от 250 до 300 раз: 1) формула из локальной теоремы Муавра-Лапласа; 🔾 формула из интегральной теоремы Муавра-Лапласа; 3) формула Пуассона.

Задание 6. Отметьте *верные* свойства дисперсии, где ξ и η – произвольные дискретные

1) $D(\xi + \eta) = D(\xi) + D(\eta)$; 2) D(C) = C; 3) $D(C\xi) = C^2D(\xi)$; 4) $D(\xi) \ge 0$.

случайные величины, а С – константа.

магазан прибудут целыми.

 Укажите вариант функции, которая задает плотность распределения случай величины ξ, имеющей нормальное распределение.

1)
$$f(x) = \begin{cases} \frac{1}{b-a} & \text{при } x \in [a;b], \\ 0 & \text{при } x \notin [a;b], \end{cases}$$
2) $f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{при } x \geq 0, \\ 0, & \text{при } x < 0 \end{cases}$
3) $f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-a)^2}{2\sigma^2}};$

Задана нормально распределенная случайной величины $\pmb{\xi}$. Выберите **правильные** формулы:

$$^{\circ}~~P(|\xi-a|$$

$$P(|\xi-a|$$

$$^{\circ} \;\; P(|\xi-a|$$

$$^{\circ}\;P(|\xi-a|$$