Shortest Path

BFS and Dijkstra

What is path?

Today we discuss directed graphs!

• Length: the number of arcs in the path.

Vertices Distance

- How to define distance?
- d(u, v): the length of shortest path from u to v.

Vertices Distance

- How to define distance?
- d(u, v): the length of shortest path from u to v.
- d(1,4) = 2

Single-Source Shortest Path Problems

- **Input:** A directed graph G(V,E), represented by an Adjacent List, and a source vertex s.
- Output: Distance d(s, v), for all $v \in V$.

Single-Source Shortest Path Problems

• **Input:** A directed graph G(V,E), represented by an Adjacent List, and a source vertex s.

Key Idea

- **Input:** A directed graph G(V,E), represented by an Adjacent Matrix, and a source vertex s.
- Output: Distance d(s, v), for all $v \in V$.
- Idea
 - Walk from s
 - Keep walking
 - Walk 1 step: Arrive distance 1 vertices
 - Walk 2 steps: Arrive distance 2 vertices
 - Walk 3 steps; Arrive distance 3 vertices

_

Can DFS help us?

- DFS after 4 explorations.
- Problems:
 - Vertex 5 not visited (only distance 1)
 - Arrive vertex 4 with length 3

How to Implement the Idea?

- V_k : the set of vertices v with d(s, v) = k.
- $V_0 = \{s\}$
- Design algorithm Analytically
 - Can we know V_{k+1} , if we know $V_1, V_2, ..., V_k$?
 - Yes!
 - $v \in V_{k+1}$ if and only if
 - $u \in V_k$ and (u, v) exists
 - $v \notin V_l$, $\forall l \leq k$.

- A water frontier.
 - Explore s

- A water frontier.
 - Explore s
 - Explore V_1

- A water frontier.
 - Explore s
 - Explore V_1
 - Explore V_2

- A water frontier.
 - Explore s
 - Explore V_1
 - Explore V_2

_

BFS Tree

- A water frontier.
 - Explore s
 - Explore V_1
 - Explore V_2
 - ...
- The layer of the vertex
- = The distance from s

How to program?

```
Breadth First Search
                                                                             Running Time?
                                                                             O(|V| + |E|)
                            Function bfs(G, s)
                                for each v \in V marked[v] \leftarrow [0]
                                i \leftarrow 0 (layer counter)
                                V_0 \leftarrow \{s\}
                                while V_i is not empty
                                    for each u \in V_i
                                                                     Charge to edges from V_i.
Charge to marked vertices.
                                         for each (u, v) \in E
                                              \int if marked[v] = false
                                                  marked[v] \leftarrow true
              Charge to edges from V_i.
                                                  Add v into V_{i+1}
                                                                             Charge to unmarked vertices.
                                    i \leftarrow i + 1
```

Output Path?

- What if we want to output the shortest path?
- Solution
 - Maintain an array pre[v] means to record the vertex that explores v.

Breadth First Search

```
Function bfs(G, s)
    for each v \in V \ marked[v] \leftarrow [0]
    i \leftarrow 0 (layer counter)
    V_0 \leftarrow \{s\}
    while V_i is not empty
         for each u \in V_i
               for each (u, v) \in E
                    if marked[v] = false
                        marked[v] \leftarrow true
                        Add v into V_{i+1}
                        pre[v] \leftarrow u
         i \leftarrow i + 1
```

Usage of pre[v]

• pre[6] = 3, pre[3] = 2, pre[2] = s.

DFS vs BFS

	DFS	BFS
Detecting Cycles	YES	NO
Topological Ordering	YES	NO
Finding CCs	YES	YES
Finding SCCs	YES	NO
Shortest Path	NO	YES

- Hard to distinguish cross edge and back edges in BFS
- Finish time is meaningless in BFS
- *We are discussing the pure DFS and BFS order.

What if edges have length?

Dijkstra Algorithm

New Input!

- Weight/Distance: $w(u, v) \ge 0$ for each edge (u, v)

- The number of edges in the path?
- The **sum** of edges' length in the path!
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

New Input!

- Weight/Distance: $w(u, v) \ge 0$ for each edge (u, v)

- The number of edges in the path?
- The **sum** of edges' length in the path!
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

New Input!

- Weight/Distance: $w(u, v) \ge 0$ for each edge (u, v)

- The number of edges in the path?
- The **sum** of edges' length in the path!
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

New Input!

- Weight/Distance: $w(u, v) \ge 0$ for each edge (u, v)

- The number of edges in the path?
- The **sum** of edges' length in the path!
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

New Input!

- Weight/Distance: $w(u, v) \ge 0$ for each edge (u, v)

- The number of edges in the path?
- The **sum** of edges' length in the path!
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

New Input!

- Weight/Distance: $w(u, v) \ge 0$ for each edge (u, v)

- The number of edges in the path?
- The **sum** of edges' length in the path!
- Length $s \rightarrow e \rightarrow c = 9$
- Length $s \rightarrow a \rightarrow b \rightarrow c = 5$

Rough Observation

- The union of shortest paths forms a tree
 - Shortest Path Tree.

What if we have more than one indegree?

Prove it forms a shortest path tree!

Prove it by an construction!

- Question:
 - Does it exist a Shortest Path Tree?
 - Prove it by an inductive construction!
- Shortest Path Tree (SPT)
 - $v \in T$, $s \to v$ path in T is the shortest path in G.
- Start point
 - $\{s\}$ is a SPT.
- Next
 - Can we always explore current SPT to a larger one until all vertices are included?

Key Task

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT

Key Task: Vertex Exploring

• Can we explore v into T?

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT

Key Task: Vertex Exploring

- Property of the current T
 - True distance: dist(u)
 - Tree distance: $dist_T(u)$ only allows to go through T.
 - Basic property: $dist_T(u) = dist(u)$ if $u \in T$
- We want to join v into T!
- Where should we put v?

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore v into T?

Key Task

- Property of the current T
 - True distance: dist(u)
 - Tree distance: $dist_T(u)$ only allows to go through T.
 - Basic property: $dist_T(u) = dist(u)$ if $u \in T$
- We want to join v into T!
- Where should we put v?
- $\bullet \ dist_T(v) = \min_{u \in T} \{ dist_T(u) + d(u, v) \}$
 - $s \rightarrow a \rightarrow v = 9$
 - $s \rightarrow b \rightarrow v = 8$
 - $dist_T(v) = 8$

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore v into T?

Key Task

- Try to explore v into T
- Naturally, we should connect it to $\underset{u \in T}{\operatorname{argmin}} dist_T(u) + d(u, v)$
- Is that still an SPT?
 - Need to keep: Shortest T-path is the shortest in G.
 - All the other vertices except v is ok
 - Tree distance of v: $dist_T(v)$
 - **Key challenge**: Does $dist_T(v) = dist(v)$?

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore v into T?

Prove $dist_T(v) \leq dist(v)$

- Assume $dist_T(v) > dist(v)$
- Is that possible?
- Sorry, the answer is YES.
- $s \rightarrow x \rightarrow v = 7, x \notin T$.

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT

a

• Can we explore v into T?

How to handle it?

- Recall BFS idea
- Each time, we explore a closest vertex.
- What happens now?
- x is a closer vertex than v.
- Why not explore x?
- Formalize: Choose the vertex v with **smallest** $dist_T(v)$!

Prove $dist_T(v) \leq dist(v)$ AGAIN!

- Try to explore v with smallest $dist_T(v)$ into T
- We should connect it to $\underset{u \in T}{\operatorname{argmin}} dist_T(u) + d(u, v)$
- Assume $dist_T(v) > dist(v)$
- $x \notin T$, $s \to x \to v < dist_T(v)$
- $dist_T(x)$ is a part of $s \to x \to v$
- $dist_T(x) < dist_T(v)$
- Contradiction!

Yah! Success

- Given: a small SPT (not contains all the vertices)
- Want: a larger SPT
- Can we explore v into T?
- Yes!
- We can find $v = \underset{v \in T}{\operatorname{argmin}} \operatorname{dist}_{T}(v)$ to explore!
- Finally, we can get SPT that contains all vertices!
 - Assume s can arrive all vertices

So, we also have a construction for SPT.

We also have an algorithm!

Dijkstra Algorithm

$$Dijkstra(G = (V, E), s)$$

1. Initialize

- $\overline{T} = \{s\},$
- tdist[s] = 0, $tdist[v] \leftarrow \infty$ for all v other than s.
- $tdist[v] \leftarrow w(s, v)$ for all $(s, v) \in E$.

2. Explore

- Find $v \notin T$ with smallest tdist[v].
- $-T \leftarrow T + \{v\}$

3. Update tdist[u]

- $tdist[u] = min\{tdist[u], tdist[v] + w(v, u)\}$ for all $(v, u) \in E$

Output a path?

$$Dijkstra(G = (V, E), s)$$

1. Initialize

- $-T \leftarrow \{s\}$
- $tdist[v] \leftarrow w(s, v), \ pre[v] \leftarrow s \text{ for all } (s, v) \in E.$

2. Explore

- Find $v \notin T$ with smallest tdist[v].
- $T \leftarrow T + \{v\}$

3. Update tdist[u]

- $tdist[u] = min\{tdist[u], tdist[v] + w(v, u)\}$ for all $(v, u) \in E$.
- If tdist[u] is updated, then $pre[u] \leftarrow v$.

Time Complexity

$$Dijkstra(G = (V, E), s)$$

1. Initialize

- $T \leftarrow \{s\}$
- $tdist[v] \leftarrow w(s, v), \ pre[v] \leftarrow s \text{ for all } (s, v) \in E.$

2. Explore

- Find $v \notin T$ with smallest tdist[v].
- $-T \leftarrow T + \{v\}$

|V| rounds

|E| rounds

3. Update tdist[u]

- $tdist[u] = min\{tdist[u], tdist[v] + w(v, u)\}$ for all $(v, u) \in E$.
- If tdist[u] is updated, then $pre[u] \leftarrow v$.

|E| rounds

Time Complexity: Conclusion

- Find Min
 - |V| rounds
- Update
 - |E| rounds
- If we use simple array, then
 - First round find min: |V| 1
 - Second round find min: |V| 2
 - ...
 - Find min totally: $O(|V|^2)$
 - Each update: 0(1)
 - Update totally: O(|E|)
 - Algorithm totally: $O(|V|^2 + |E|)$

Improve Dijkstra by Heap!

- Find Min
 - |V| rounds
- Update
 - |E| rounds
- What about heap?

/ Pop Min \	Insert	Update Key	Merge
$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
$O(d\log_d n)$	$O(\log_d n)$	$O(\log_d n)$	O(n)
$O(\log n)$	0(1)	$O(\log n)$	$O(\log n)$
$O(\log n)$	0(1)	0(1)	0(1)
	$O(\log n)$ $O(d\log_d n)$ $O(\log n)$	$O(\log n)$ $O(\log n)$ $O(\log_d n)$ $O(\log_d n)$ $O(\log n)$	$egin{array}{c cccc} O(\log n) & O(\log n) & O(\log n) & O(\log n) \\ O(d\log_d n) & O(\log_d n) & O(\log_d n) \\ O(\log n) & O(1) & O(\log n) \\ \hline \end{array}$

Only Decreasing

Improve Dijkstra by Heap!

Find Min: |V| rounds Update: |E| rounds

Array: $O(|V|^2 + |E|)$

Binary Heap

- Find Min: $O(|V| \log |V|)$
- Update: $O(|E| \log |V|)$
- Totally: $O((|V| + |E|) \log |V|)$

Fibonacci Heap

- Find Min: $O(|V| \log |V|)$
- Update: O(|E|)
- Totally: $O(|E| + |V| \log |V|)$

d-nary Heap

- Find Min: $O(|V|d \log_d |V|)$
- Update: $O(|E| \log_d |V|)$
- Set d = |E|/|V|
- Totally: $O(|E| \log_{|E|/|V|} |V|)$

	Pop Min	Insert	Update Key	Merge
Binary Heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
d-nary Heap	$O(d\log_d n)$	$O(\log_d n)$	$O(\log_d n)$	O(n)
Binomial Heap	$O(\log n)$	0(1)	$O(\log n)$	$O(\log n)$
Fibonacci	$O(\log n)$	0(1)	0(1)	0(1)

Let us only discuss POPMIN and Update

Why the two operations are good?

It keep the tree balanced!

	Pop Min	Insert	Update Key	Merge
Binary Heap	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(n)
d-nary Heap	$O(d\log_d n)$	$O(\log_d n)$	$O(\log_d n)$	O(n)
Binomial Heap	$O(\log n)$	0(1)	$O(\log n)$	$O(\log n)$
Fibonacci	$O(\log n)$	0(1)	0(1)	0(1)

A magic Idea of UPDATE!

Quick Review (or Preview?): Fibonacci Heap

Quick Review (or Preview?): Fibonacci Heap

Quick Review (or Preview?): Fibonacci Heap

Still many problems!

- Update seems good: 0(1)
- Pop Min need to compare all the roots?
- Running Time of POPMIN
 - t^- : the root number before POPMIN.
 - D: The max degree of all root.
 - It needs $O(t^- + D)$.
- It can be very bad: $\Omega(n)$!

Two Tasks

- Task 1: Bound D: max degree.
- Task 2: Bound t^- .
- Property we want to maintain:
- Each degree at most has one root!
 - 1 root with degree 0, 1 root with degree 1.....
 - Bound Largest degree → Bound the number of roots!

Is it enough?

Degree k root is size k+1, number of roots = largest degree = \sqrt{n} .

How to make a degree k tree large?

- We want the degree property recursively holds!
- The children of every vertex have the degree property
 - Each degree at most has one root!

How to bound max degree?

- Make the tree heavy!
- We want a claim: a degree k root has at least 2^k descendants.

Build a Good Tree (Recall Binomial Heap)

What is the result now?

- Assume all trees are good in the Fibonacci Heap.
- A degree k good tree has d(k) nodes

Build a Good Tree (Recall Binomial Heap)

$$d(0) = 1$$

$$d(1) = 2$$

$$d(k) = \sum_{i=0}^{k-1} d(i) + 1 = 2^{k}$$

Build a Good Tree (Recall Binomial Heap)

$$d(0) = 1$$

$$d(1) = 2$$

$$d(k) = \sum_{i=0}^{k-1} d(i) + 1 = 2^{k}$$

$$d(D) = 2^D \le n$$
$$\to D \le \log n!$$

But what is the problem?

Cut may break the property.

The good tree may be broken!

UPDATE

Solution!

• We do not want it to be broken too much!

Build a Good Tree (Recall Binomial Heap)

We only allow each non-root node to lose one child.

Maximum Broken tree

We only allow each non-root node to lose one child.

Maximum Broken tree

We only allow each non-root node to lose one child.

Degree o subtree: 1 nodes Degree 1 subtree: 1 nodes Degree 2 subtree: 2 nodes Degree 3 subtree: 3 nodes Degree 4 subtree: 5 nodes

0

0

A New Good Tree

- Each vertex in the tree with original degree k.
 - Has at least k-1 children, only lose one from k.
 - Children's degree 1,2,3...k-1, only lose one of them.

Conclusion

- Suppose the tree is good.
- Degree k root contains
 - A subtree of original degree 0.
 - A subtree of original degree 1.
 -
 - A subtree of original degree k-1.
- At least F(k) nodes
- $F(k) = \sum_{i=1}^{k} fib[i] = O(C^{k})$
- Max degree D is at most $O(\log n)$.

How to maintain this property?

Cascading Cut

First Time Update

Second Time Update

Every tree keep the property!

But what is the problem now?

The problem

- We create so many roots on the green line!
- Yes, we have bounded D.
- However, we have not bounded the root number t.
- Let's check a merge subroutine to bound t.
- Try to make the property:
 - Each degree at most has one root.

Before move the MIN pointer: Merge

Is the merged tree good?

Conclusion

- After merging
- We have the degree property!
 - Each degree has at most one root!
 - $-D \leq \log n$
- We can finally safely move the MIN pointer in *D* times.

Still many problems...

But!

- How long we pay for the cascading cut?
- How long we pay for the root merging?
- They may be very large at one time
- Cost of merging: $O(t^- + D t^+)$
 - t^- : the number of roots before POPMIN.
 - t^+ : the number of roots after Merge.
- Merge cost $\Omega(n)$ when $t^- = \Omega(n)$.
- But we can use amortized analysis.

True time of operations.

Time Complexity: Update

- Original cut: 1
- Cascading cut: < #marked nodes it go though (m')
 - We will unmark them.
- Time: *O*(*m*′)

Time Complexity: POPMIN

- Delete Min
 - Time = O(D)

Quick Review (or Preview?): Fibonacci Heap

Quick Review (or Preview?): Fibonacci Heap

Time Complexity: POPMIN

- Delete Min
 - Time = O(D)
- Merge
 - #roots(before merging) → #roots(after merging)
 - Merge rounds: $t^- + D t^+$
 - Time = $O(t^- + D t^+)$
- Pointer move to new Min
 - Time = $O(t^+)$
- Totally: $O(t^- + 2D)$
- Bad thing: t^- can be n!

Amortized Analysis

What is amortized analysis?

- We want consider the total cost of k arbitrary operations.
 - $p_1, p_2, p_3 \dots$
- We do not mean k random operations.
- $C(p_i)$: The real cost of Operation p_i .
- Total cost $C(p_1) + C(p_2) + C(p_3) + \cdots + C(p_k)$
- Assume we have two type P_1 , P_2 .
- $\hat{C}(P)$: Amortized cost of a type P cost.
- $C(p_1) + C(p_2) + C(p_3) + \dots + C(p_k) \le k_1 \hat{C}(P_1) + k_2 \hat{C}(P_2)$

Consider the example of Stack.

Amortized Analysis: Potential Function

- Some operation may have small C make later operation bad.
- Define Φ to represent the state of the problem, $\Phi_0 = 0$.
- Let it pay something for the future, so we let $\hat{C} = C + \delta \cdot \Delta \Phi$.
- Φ is a function to evaluate current state.
- $\sum \hat{C} \geq \sum C$ if $\Phi \geq 0$.

A chosen constant.

A chosen constant.

Amortized Analysis: Stack

- Operations
 - Pop all elements one by one.
 - Push one element.
- Potential Function
 - $-\Phi = \#elemnts$
- Push
 - C = 0(1)
 - $\hat{C} = O(1) + \delta \cdot 1 = \mathbf{0}(1)$
- Pop
 - C = O(k)
 - $-\hat{C} = O(k) + \delta \cdot (-k) = \mathbf{O}(1)$

Amortized Analysis: Fibonacci Heap

- **Update:** *O*(*m*)
- **Pop Min:** $O(t^- + 2D)$
- What is bad?
 - #marked nodes
 - #roots
- Potential Function: $\Phi = t + 2m$
- Why we need 2m?
- m has two bad things
 - One more cascading cut!
 - One potential root at merging!

How we pay for the future

How we pay for the future

Let us analyze the amortized cost!

Fibonacci Heap: Cascading Cut

Fibonacci Heap: Cascading Cut

Amortized Analysis: Fibonacci Heap

- **Update:** *O*(*m*′)
- Pop Min: $O(t^- + D)$
- Potential Function: $\Phi = t + 2m$
- Update
 - #CC cascading cuts, remove #CC mark, add #CC roots.
 - one basic cut, one more mark, add one root.
 - -C = O(#CC + 1)
 - $-\Delta t = \#CC + 1$
 - $-\Delta m = -\#CC + 1$
 - $\hat{C} = O(\#CC + 1) + \delta \cdot \Delta \Phi = O(\#CC + 1) + \delta \cdot (-\#CC + 3) = \mathbf{0}(\mathbf{1})$

Time Complexity: POPMIN

- Delete Min
 - Time = O(D)
- Merge
 - #roots(before merging) → #roots(after merging)
 - Merge rounds: $t^- + D t^+$
 - Time = $O(t^- + D t^+)$
- Pointer move to new Min
 - Time = $O(t^+)$
- Totally: $O(t^- + 2D)$

Amortized Analysis: Fibonacci Heap

- **Update**: *O*(*m*)
- Pop Min: $O(t^- + D)$
- Potential Function: $\Phi = t + 2m$
- Update
 - $-\hat{C}=O(1)$
- Pop Min
 - $-C = O(t^- + D)$
 - $\hat{C} = O(t^{-} + D) + \delta \cdot \Delta t \le O(t^{-} + 2D) + \delta \cdot (D t^{-}) = O(D) = O(\log n)$
 - Recall
 - We have $t^- + D$ roots before merging, and at most D roots after merging.

Understanding Merging

- We have need to use $O(t^- + D)$ time to move MIN.
- Why not do some good thing in $O(t^-)$ for the future?
 - Make $t^{+} = O(D)$.
- Question: Why not merge to 1 tree?
 - It seems better for the future?
 - But is not necessary, because next time we at least need O(D).
 - On the other hand, we can not make the tree good.
 - We can not control $D \leq \log n$.

Conclusion

Dijkstra + Fibonacci Heap = $O(|E| + |V| \log |V|)$

Today's goal

- Learn Dijkstra
 - Why it is correct?
 - How to design algorithm if you are Dijkstra?
 - How to use **Heap** to improve Dijkstra?
 - How to use **Data Structures** to improve **Algorithms**?
- Learn Amortized Analysis