

CTeSP

CURSOS TÉCNICOS SUPERIORES PROFISSIONAIS

Tecnologias e Programação de Sistemas de Informação

Vetores multidimensionais e estratégias de resolução de problemas

Arquitetura de Dispositivos | David Jardim

Cofinanciado por:

Da aula anterior...

• Manipulação de caracteres

• Relação entre os tipos char e int

• Tipos de valor vs. tipos de referência

Vetores multidimensionais

• Itens de vetor podem ser vectores

Possíveis vetores de mais do que uma dimensão

- Dimensões
 - 1D: int[] grades;
 - 2D: int[][] gradesPerCourse;
 - 3D: int[][] gradesPerCoursePerProgram;
 - Etc.

Exemplo regular: matriz identidade de 3 × 3

Exemplo irregular: factores primos de primeiros naturais

```
final int[][] primeFactors = {
    null,
    {},
    {2},
    {3},
    {2, 2},
    {5},
    {2, 3},
    {7},
    {2, 2, 2},
    {3, 3},
    {2, 5}
```

O vector primeFactors contém vectores com diferentes tamanhos. Para obter os factores primos de um dado natural $1 \le n \le 10$ usa-se primeFactors [n], que é um simples vector de inteiros. Como 0 (zero) não tem factores primos, o primeiro vector não existe. Isso representa-se usando uma referência nula.

Os fatores primos de um inteiro positivo são os números primos que dividem esse inteiro exatamente

};

UNIVERSIDADE da MADEIRA

Construção 1D

```
final double[] vector1 = \{1.0, 0.0, 0.0\};
final double[] vector1 =
    new double[] {1.0, 0.0, 0.0};
```


final double[] vector2 = new double[3];

Construção 2D: regular

Construção 2D: regular

Construção 2D: irregular

Indexação

Tamanhos

out.println(primeFactors.length); out.println(primeFactors[2].length); out.println(primeFactors[8].length); null 0 11 1 3 4 6 7 8 primeFactors 10

Exemplo: médias

```
int[][] gradesPerCourse = {
   {14, 16},
    {12, 18, 20}
};
int numberOfGrades = 0;
double sumOfGrades = 0.0;
for (int course = 0; course != gradesPerCourse.length; course++){
    for (int i = 0; i != gradesPerCourse[course].length; i++) {
        sumOfGrades += gradesPerCourse[course][i];
        numberOfGrades++;
double averageOfGrades = sumOfGrades / numberOfGrades;
```


Problema

Dados

- 1. um vector com números de alunas(os),
- 2. uma matriz com as siglas das UC e
- 3. uma matriz de notas (em que cada linha corresponde às notas que a(o) aluna(o) correspondente tem nas UC indicadas, uma por coluna), escrever código Java que
- 1. mostre as notas de cada aluna(o),
- 2. mostre a média das notas de cada aluna(o) e
- 3. mostre a média mais alta, identificando a quem pertence.

Resolução de problemas: etapas

Etapa	Descrição/notas
Compreender o problema!	Ser cuidadoso e preciso.
Planear	 (Escolher uma ou mais estratégias.) Partir a tarefa em pequenos passos. Descrever em pormenor cada passo.
Seguir o plano	Decidir qual o próximo passo.Executar o próximo passo.
Rever e estender	Analisar o processo de resolução.Aprender com os erros.

Resolução de problemas: estratégias

Estratégia	Descrição
Analogia	Conhecemos soluções para problemas semelhantes?
Generalização	O nosso problema é caso particular de outro de que conhecemos a solução?
Especialização	O nosso problema é um caso genérico de outro mais particular de que conhecemos a solução?
Indução	Compreendemos melhor o problema se estudarmos alguns dos seus casos particulares?
Alteração	Será que alterar o enunciado do problema o transforma noutro de que conhecemos a solução?

Resolução de problemas: estratégias

Estratégia	Descrição
Aproximações sucessivas	 Será que conseguimos encontrar uma forma de atingir um subobjectivo e ficar, assim, mais próximo da solução? Será que podemos repetir o processo até resolver o problema?
Decomposição ou dividir para conquistar	Será que podemos dividir o problema em subproblemas de mais simples solução e compor, assim, uma solução global?
Partir do objectivo	Será que olhar para o nosso destino nos dá boas pistas acerca do caminho a seguir?
Fazer um diagrama/desenho	Nem calcula o quanto ajuda

Mais informação

- Resolução de problemas
 - http://en.wikipedia.org/wiki/Problem_solving
 - http://en.wikipedia.org/wiki/How to Solve It

A reter

Vectores multidimensionais

• Estratégias de resolução de problemas

