Machine Learning Outline: Neural Network and Digit Recognition

Yantao Wu

Syracuse University ywu206@syr.edu

Wednesday 17th April, 2019

Overview

- Feasibility of Learning
- One-layer Models on Data
 - Linear Classification
 - Linear and Logistic Regression
- Multi-layer Models
 - Multi-layer Perceptron
 - Neural Network Architecture
 - Back Propagation
- 4 Application on Digit Recognition
 - Solving Over-fitting

1. Feasibility of Learning: Outline of Machine Learning

1. Feasibility of Learning: How approximate it can be?

Theorem (from Hoeffding Inequality)

$$\mathbf{P}[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2e^{-2\epsilon^2 N}$$

Theorem (VC generalization bound)

$$E_{out}(g) \leq E_{in}(g) + \sqrt{rac{8}{N} \ln rac{4m_H(2N)}{\delta}}$$

Conclusion: More data means more certainty on test examples.

Note1: Learning is only feasible in probabilistic sense.

Note2: Decreasing training examples error is the remaining work.

2.1. Linear Classification

2.2 Linear and Logistic Regression

Linear Regression

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2}$$

$$\nabla E_{in}(\mathbf{w}) = \frac{2}{N} (\mathbf{X}^{T} \mathbf{X} \mathbf{w} - \mathbf{X}^{T} \mathbf{y})$$

$$\mathbf{w} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

Logistic Regression

$$\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \frac{1}{N} \sum_{n=1}^{N} \theta(\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})$$

$$\theta(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}}$$

$$\nabla E_{in}(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_{n} \mathbf{x}_{n}}{1 + e^{y_{n} \mathbf{w}^{T}(t) \mathbf{x}_{n}}}$$

2. Summary of One-layer Models

3.1 Multi-layer Perceptron

$$f = XOR(h_1, h_2) = h_1 \bar{h_2} + \bar{h_1} h_2$$

$$OR(x, y) = sign(x + y + 1.5)$$

$$AND(x, y) = sign(x + y - 1.5)$$

Step1 :
$$h_1 = \operatorname{sign}(\mathbf{w}_1^{\mathrm{T}}\mathbf{x})$$

 $h_2 = \operatorname{sign}(\mathbf{w}_2^{\mathrm{T}}\mathbf{x})$

Step2:
$$h_1 \bar{h}_2 = \text{AND}(h_1, -h_2)$$

= $\text{sign}(h_1 - h_2 - 1.5)$
 $\bar{h}_1 h_2 = \text{AND}(-h_1, h_2)$
= $\text{sign}(-h_1 + h_2 - 1.5)$

 $| \text{Step3}: f = OR(h_1\bar{h_2}, \bar{h_1}h_2)$

3.2 Neural Network Architecture

3.2 Neural Network Architecture

Forward Propagation to compute h(x):

1: $\mathbf{x}^{(0)} \leftarrow \mathbf{x}$

[Initialization]

2: **for** l = 1 to L **do**

[Forward Propagation]

3: $\mathbf{s}^{(l)} \leftarrow (\mathbf{W}^{(l)})^{\mathrm{T}} \mathbf{x}^{(l-1)}$

4:
$$\mathbf{x}^{(l)} \leftarrow \begin{bmatrix} 1 \\ \theta(\mathbf{s}^{(l)}) \end{bmatrix}$$

5: $h(\mathbf{x}) = \mathbf{x}^{(L)}$

[Output]

3.3 Back Propagation

4.1 Solving Over-fitting

- • E_{in} is small, and E_{out} is great.
- $\bullet \frac{\partial E}{\partial d_{\mathrm{VC}}} > 0$, where VC-dimension d_{VC} measures complexity of model.
- •Regularization: $E_{\mathrm{aug}}(\mathbf{w}) = E_{\mathrm{in}}(\mathbf{w} + \lambda \mathbf{w}^{\mathrm{T}} \mathbf{w})$

Product: Digit Recognition

personal website: https://williamwuyantao.github.io

Wednesday 17th April, 2019

References

Yaser S. Abu-Mostafa (2012)

Learning From Data

AMLBook Ch. 1,3,4,7.

The End