Fys 4150 Project 4 Figures and stuff

Peter Killingstad and Karl Jacobsen

https://github.com/kaaja/fys4150

November 5, 2017

4b

mcs	Eavg	${\rm absMavg}$	Cv	chi
100	-2.000000	1.000000	0.000000	0.000000
1000	-1.972000	0.991500	0.220864	0.022711
10000	-1.991000	0.996950	0.071676	0.009263
100000	-1.995180	0.998475	0.038467	0.004321
1000000	-1.995904	0.998634	0.032701	0.004093
10000000	-1.995942	0.998643	0.032401	0.004074

Table 1: Estimated quantitites

•

mcs	Eavg	absMavg	Cv	chi
100	0.201300	0.134106	-100.000000	-100.000000
1000	-1.201518	-0.717034	588.428762	466.254675
10000	-0.249606	-0.171303	123.412688	130.949678
100000	-0.040185	-0.018598	19.901104	7.728200
1000000	-0.003912	-0.002677	1.928037	2.039441
10000000	-0.002028	-0.001736	0.994274	1.573251

Table 2: Percentage deviations from analytical results

1 4c

Figure 1: Expected Energy divided by L^2 . T=1.0. Equilibrium reached after 2^{20} Monte Carlo cycles.

Temperature = 2.40

Figure 2: Expected Energy divided by L^2 . T = 2.4. Equilibrium reached at same point as for T = 1.

Figure 3: Expected absolute magnetic momentum divided by L^2 . T=1.0.

 $Equilibrium\ reached\ at\ same\ point\ as\ for\ the\ energy.$

Figure 4: Expected absolute magnetic momentum divided by L^2 . T=2.4.

Equilibrium reached at same point as for the others.

Figure 5: Accepted moved divided by L^2 .

2 4d

$\log_2 MCs$	Т	μ_E/L^2	$< E > /L^2$	$\left(\frac{\mu_E/L^2}{< E > /L^2} - 1\right) \cdot 100$	σ_E^2/L^2	$\tfrac{<\!E^2\!>-<\!E\!>^2}{L^2}$	$\left(\frac{\sigma_E/L^2}{1/L^2(<\!E^2>-<\!E>^2)}-1\right)\cdot 100$	$< M >/L^2$	$\frac{<\! M ^2\!>\!/L^2\!-\!<\! M \!>^2}{L^2}$	Cv/L^2	χ/L^2
20.0	1.0	-1.997172	-1.997172	-8.152091e-07	0.023281	0.023281	0.000001	0.999279	0.00156	0.023281	0.00156
20.0	2.4	-1.236940	-1.997172	-3.806541e + 01	8.185407	0.023281	35059.065111	0.999279	0.00156	0.023281	0.00156

Table 3: Statistics. Fixed initial config.

•

$\log_2 MCs$	Т	μ_E/L^2	$< E > /L^2$	$\left(\frac{\mu_E/L^2}{\langle E \rangle/L^2} - 1\right) \cdot 100$	σ_E^2/L^2	$\frac{<\!E^2\!>\!-<\!E\!>^2}{L^2}$	$\left(\frac{\sigma_E/L^2}{1/L^2(\langle E^2 \rangle - \langle E \rangle^2)} - 1\right) \cdot 100$	$< M >/L^2$	$\frac{<\! M ^2\!>\!/L^2\!-\!<\! M \!>^2}{L^2}$	Cv/L^2	χ/L^2
20.0 20.0	$\frac{1.0}{2.4}$	-1.997043 -1.236953	-1.997043 -1.997043	4.680687e-07 -3.806078e+01	$\begin{array}{c} 0.039074 \\ 8.094424 \end{array}$	0.039074 0.039074	-3.837571e-07 2.061573e+04	0.99904 0.99904	0.065137 0.065137	$\begin{array}{c} 0.039074 \\ 0.039074 \end{array}$	$\begin{array}{c} 0.065137 \\ 0.065137 \end{array}$

Table 4: Statistics. Random initial config.

.

Figure 6: Probability distribution. Fixed intital T=1.

Figure 7: Probability distribution. Fixed intital T = 2.4.

.

Figure 8: Probability distribution. Random intital T=1.

Figure 9: Probability distribution. Random intital T=2.4.

3 4e

Figure 10: Expected value energy.

Figure 11: Expected value magnetic moment.

Figure 12: Susceptibility

Figure 13: Specific heat capacity

Spin combos	$T_c^{Estimate}(L=\infty)$	$\left(\frac{T_c^{Estimate}(L=\infty)}{T_{c,exact}} - 1\right) \cdot 100$
[40, 60]	2.2875	0.80710401536
[40, 60, 100]	2.27916666667	0.439865020769
[40, 60, 100, 140]	2.277083333333	0.348055272121

Table 5: Estimated T_C .

•