Predicting the Weather by Watching Airplanes

Matt Evans
University of Exeter
College of Engineering, Mathematics and Physical Sciences
BSc Physics

Outline

• The importance of measuring humidity distributions in the lower atmosphere (troposphere).

• Insights of how ADSB radio wave transmissions could be used to achieve this by using refractive techniques and radio wave interferometry.

• Discussion of initial relative humidity refraction tests.

Further work and ideas.

Humidity

- Humidity is an indicator of how much water vapour is present within the air.
- Relative Humidity (RH) is a measure, in %, of how close the air is to being fully saturated:

• It is an important indicator to weather forecasting e.g. a higher RH means more likelihood of rain.

ADSB

Image adapted from: https://www.sigidwiki.com/images/1/15/ADS-B for Dummies.pdf

- 1090MHz radio wave \rightarrow oscillates at 10⁻⁹s!
- Characteristic 8.0µs preamble (for synchronisation) & 56 or 112µs data block
 - 1 Bit per μs
 - Pulse transmitted in 1st or 2nd half of bit

Radio Interferometry

- Two radio interferometers are located on floors four and seven of the Physics building.
 - The baseline gap, b ~ 10m
- ADSB signals from a source is received and the conjugate product $V_1 V_2^*$ is taken to obtain;
- the time average voltage: $\frac{V^2}{2}$
- the phase: $\phi = \omega \Delta t = 2\pi \frac{b}{\lambda} \cos z$

Refraction

• The more refracted the ray, the smaller its path distance for each increment in θ .

• Due to Snell's law, one would expected more refraction as the observed angle ϕ_0 becomes smaller.

Single Slit Diffraction

1.0mm Aperture, a = 0.02mm

1.0mm Aperture, a = 0.04mm

Experimental Value: $\lambda = 674 \pm 1 \text{ nm}$

Experimental Value: $\lambda = 662 \pm 1 \text{ nm}$

Double Slit Diffraction

1.0mm Aperture, a = 0.04mm and d = 0.25mm

1.0mm Aperture, a = 0.04mm and d = 0.5mm

Experimental Value: $\lambda = 698 \pm 2 \text{ nm}$

Experimental Value: $\lambda = 617 \pm 1 \text{ nm}$

Known Value³: $\lambda = 650 \pm 10 \text{ nm}$

Interference of Mechanical & EM Waves

Single Slit Interference

Summary

• Water waves nicely demonstrate various properties of (mechanical) waves and water wave speed has been shown to vary with depth.

• Using diffraction and interference of EM waves has been shown to determine the wavelength of a light source.

• Mechanical and Electromagnetic interference patterns show strong similarities.

References

- ¹ Barber N.F, Water Waves, 1st Edition, Chapter 3, pages 36 55, 1969.
- ²College of Engineering, Mathematics and Physical Sciences, University of Exeter, PHY2026, *Diffraction and Interference Worksheet* (Accessed 8th February 2019).
- ³ Red Diode Laser Basic Optics OS-8525A https://www.pasco.com/prodCatalog/OS/OS-8525_red-diode-laserbasicoptics/index.cfm?fbclid=IwAR3gzuNSAoumEZpwYZQO6tX3j1nLh TtLYklX5U6V6HHw5xyHKdszO1ID00I (Accessed 15th March 2019).

ADSB - Extended

- Characteristic 8.0μ s preamble = 8 bits
 - Data Block construction:
- ➤ 5 bit Downlink Format e.g. 17 ADSB
- ➤ 3 bits Capability (additional identifier)
- ➤ 24 bit ICAO (International Civil Aviation Organization) address unique ID & registration of aircraft
 - ≥56 bit ADSB data
- ➤ 24 bit parity check (to check if message has been received without error)
 - Total of 120 μ s

Image adapted from: https://www.sigidwiki.com/images/1/15/ADS-B for Dummies.pdf