

Programy użytkowe - ćwiczenia 2

1 Formuły matematyczne w TeXu

Przetrenuj używanie w TeXu matematycznych formuł i symboli z rozdziału 1 po czym wykonaj polecenie z rozdziały 2.

1.1 Zapis Matematyczny

1.1.1 Tryb matematyczny

Tryb matematyczny 'inline' - wzory pisane w lini tekstu wstawiamy przy pomocy \$ wzór \$ (wzór wpisujemy w pojedyncze dolary

```
Ułamek w tekście \frac{1}{x}  \\ Oto równanie c^{2}=a^{2}+b^{2}
```

Ułamek w tekście $\frac{1}{x}$

Oto równanie $c^2 = a^2 + b^2$

Tryb matematyczny z zastosowaniem podwójnych dolarów \$\$ wzór \$\$

```
Ułamek $$ \frac{1}{x} $$ \\ Oto równanie $$c^{2}=a^{2}+b^{2}$$
```

Ułamek

 $\frac{1}{x}$

Oto równanie

$$c^2 = a^2 + b^2$$

Tryb matematyczny z użyciem struktury 'equation'

```
Ulamek
\begin{equation}
\frac{1}{x}
\label{eq:rownanie1}
\end{equation}

Oto równanie
\begin{equation}
$$c^{2}=a^{2}+b^{2}$$
\label{eq:rownanie2}
\end{equation}
```

Ułamek

$$\frac{1}{x} \tag{1}$$

Oto równanie

$$c^2 = a^2 + b^2 \tag{2}$$

Można odnieść się do powyższych wzorów wykorzystująć polecenie 'eqref{etykieta}'. Ułamek ma numer (1) a równanie ma numer (2)

Zad.1.

Przestudiuj trzy powyższe przypadki, zwórć uwagę na różnice w wyświetlaniu i możliwości późniejszego odwołania się do równania. Przepisz je do latex'a i spróbuj odnieść się do równania zdefiniowanych przy pomocy 'equation'

1.1.2 Indeks górny i dolny

Do utworzenia indeksu górnego używamy operatorów ^ oraz podkreślenia _ Kod TeXa przed kompilacją

Indeks górny
$$\x^{y} \ e^{x} \ 2^{e} \ A^{2 \times 2} \$$
 Indeks dolny $\ x_y \ a_{ij} \$

Wynik po kompilacji Indeks górny

$$x^y e^x 2^e A^{2\times 2}$$

Indeks dolny

$$x_y \ a_{ij} \ x_i$$

Zad 2. Przepisz powyższe przykłady zwróć uwagę na odstępy pomiędzy wyrażeniami. Napisz formuły tworzące poniższe przykłady:

$$\frac{2^k}{2^{k+2}}$$

$$2^{\frac{x^2}{(x+2)(x-2)^3}}$$

$$\vec{x} = [x_1, x_2, \dots x_N]$$

1.1.3 Duże operatory matematyczne

Kod TeXa przed kompilacją

1.1.4 pdf po kompilacji

$$\sum_{i=1}^{10} x_i \prod_{i=1}^{10} \int \oint \cap \bigcup \bigcup \bigvee \wedge \odot \otimes \bigoplus \bigcup$$

1.1.5 Kod TeXa przed kompilacją

1.1.6 pdf po kompilacji

$$\hat{a} \ \check{b} \ \breve{c} \ \acute{d} \ \grave{e} \ \tilde{f} \ \bar{g} \ \vec{h} \ \dot{m} \ \ddot{n}$$

1.1.7 Kod TeXa przed kompilacją

```
$\widetilde{aaa} \ \widehat{bbb} \ \overleftarrow{ccc} \ \overrightarrow{ddd} \ \
    overline{eee} \ \overbrace{fff} \ \underbrace{ggg} \ \underline{hhh} \ \sqrt{
    iii} \ \sqrt[n]{jjj} \ \frac{kkkk}{}$$$
```

1.1.8 pdf po kompilacji

$$\widetilde{aaa} \ \widehat{bbb} \ \overleftarrow{ccc} \ \overrightarrow{ddd} \ \overline{eee} \ \widehat{fff} \ \underline{ggg} \ \underline{hhh} \ \sqrt{iii} \ \sqrt[n]{jjj} \ \underline{kkkk}$$

- 1.2 Alfabet Grecki
- 1.2.1 Kod TeXa przed kompilacją

```
\ \Gamma \ \Delta \ \Theta \ \Xi \ \Pi \ \Sigma \ \Upsilon \ \Phi \ \Psi \ \Omega$$
```

1.2.2 pdf po kompilacji

1.2.3 Kod TeXa przed kompilacją

```
$$\alpha \ \beta \ \gamma \ \delta \ \epsilon \ \varepsilon \ \zeta \ \eta \ \theta
\ \vartheta \ \iota \ \kappa \ \lambda \ \mu \ \nu \ \xi \ o \ \pi \ \varpi \
\rho \ \varrho \ \sigma \ \varsigma \ \tau \ \upsilon \ \phi \ \chi \
\psi \ \omega \ \digamma \ \beth \ \gimel \ \daleth$$$
```

1.2.4 pdf po kompilacji

1.3 Symbole

1.3.1 Kod TeXa przed kompilacją

```
$$\aleph \ \hbar \ \imath \ \jmath \ \ell \ \wp \ \Re \ \Im \ \prime \ \emptyset \
   \angle \ \infty \ \partial \ \nabla \ \triangle \ \forall \ \exists \ \neg \ \
   surd \ \top \ \bot \ \backslash$$$
```

1.3.2 pdf po kompilacji

$$\aleph \hbar i j \ell \wp \Re \Im i \emptyset \angle \infty \partial \nabla \triangle \forall \exists \neg \sqrt{\top} \bot \backslash$$

1.3.3 Kod TeXa przed kompilacją

```
$$\flat \ \natural \ \sharp \ \| \ \clubsuit \ \diamondsuit \ \heartsuit \ \
    spadesuit \ \dag \ \ddag \ \S \ \P \ \copyright \ \pounds \ \checkmark \ \
    maltese \ \circledR \ \yen \ \ulcorner \ \urcorner \ \llcorner \ \ldots \ \ddots\$$
```

1.3.4 pdf po kompilacji

```
\flat \ \natural \ \sharp \ \| \clubsuit \diamondsuit \heartsuit \spadesuit \dagger \ddagger \S \P \textcircled{0} \ \pounds \checkmark \maltese \textcircled{R} \maltese \sqcap \sqcap \sqcup \Rightarrow \mho \square \cdot \ldots \cdots \vdots \cdots
```

1.4 Formatowanie

1.4.1 Kod TeXa przed kompilacją

```
$$\emph{Przykładowa fraza} \ \textrm{Przykładowa fraza} \ \textbf{Przykładowa fraza}
}$$
$$\textsf{Przykładowa fraza} \ \texttt{Przykładowa fraza} \ \textmd{Przykładowa
fraza}$$
$$\textit{Przykładowa fraza} \ \textsc{Przykładowa fraza} \ \textsl{Przykładowa
fraza}$$
$$\verb"Przykładowa fraza"$$
```

1.4.2 pdf po kompilacji

Przykładowa fraza Przykładowa fraza Przykładowa fraza

Przykładowa fraza Przykładowa fraza Przykładowa fraza

Przykładowa fraza Przykładowa fraza

Przykładowa fraza

1.5 Nawiasy

1.5.1 Kod TeXa przed kompilacją

1.5.2 pdf po kompilacji

```
( [\{ | [\langle / | )] \} | ] \rangle \setminus | \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow
```

1.6 Znaki

1.6.1 Kod TeXa przed kompilacją

```
$$< \ \leq \ \prec \ \preceq \ \ll \ \subset \ \subseteq \ \sqsubseteq \ \in \ \ vdash \ > \ \geq \ \succ \ \succeq \ \gg \ \supset \ \supseteq \ \sqsupseteq \ \ni \ \dashv $$$
```

1.6.2 pdf po kompilacji

$$<$$
 \leq \prec \leq \leq \subseteq \subseteq \in \vdash $>$ \geqslant \succ \succeq \gg \supset \supseteq \supseteq \ni \dashv

1.6.3 Kod TeXa przed kompilacją

```
$$\equiv \ \sim \ \simeq \ \asymp \ \approx \ \cong \ \neq \ \doteq \ \models \ \
    perp \ \mid \ \parallel \ \smile \ \frown \ \propto \ \bowtie \ \lhd \ \rhd \ \
    unlhd \ \unrhd $$$
```

1.6.4 pdf po kompilacji

$$\equiv \sim \simeq \times \approx \cong \neq \doteq \models \perp \mid \parallel \smile \frown \propto \bowtie \vartriangleleft \rhd \unlhd \trianglerighteq$$

1.7 Inne symbole

1.7.1 Kod TeXa przed kompilacją

```
\ \pm \ \mp \ \times \ \div \ \star \ \circ \ \bullet \ \cdot \ \cap \ \cup \ \uplus \ \sqcap \ \vee \ \wedge $$
```

1.7.2 pdf po kompilacji

$$\pm \mp \times \div * * \circ \bullet \cdot \cap \cup \uplus \sqcap \sqcup \vee \wedge$$

1.7.3 Kod TeXa przed kompilacją

```
$$\setminus \ \wr \ \diamond \ \bigtriangleup \ \bigtriangledown \ \triangleleft \ \triangleright \ \oplus \ \ominus \ \otimes \ \oslash \ \odot \ \bigcirc \ \ dagger \ \ddagger \ \amalg \ \nearrow \ \searrow \ \nwarrow \ \\longrightarrow \ \longleftarrow \ \longleftrightarrow \ \longleftarrow \ \Longleftrightarrow \ \Longleftrightarrow \ \\Longleftrightarrow \ \longleftrightarrow \ \\longleftrightarrow \ \\lo
```

1.7.4 pdf po kompilacji

```
\backslash \wr \diamond \triangle \bigtriangledown \triangleleft \triangleright \oplus \ominus \otimes \oslash \odot \bigcirc \uparrow \ddagger \coprod \nearrow \diagdown \swarrow / \longrightarrow \longleftarrow \longleftrightarrow \longrightarrow \Longrightarrow \Longleftrightarrow \Longrightarrow
```

1.7.5 Kod TeXa przed kompilacją

1.7.6 pdf po kompilacji

```
\leftarrow\leftarrow\rightarrow\rightarrow\leftrightarrow\leftrightarrow\leftrightarrow\leftarrow\leftarrow\leftarrow\rightarrow\rightarrow\uparrow\uparrow\downarrow\downarrow\downarrow\uparrow\uparrow\uparrow
```

1.7.7 Kod TeXa przed kompilacją

```
$$\twoheadleftarrow \ \twoheadrightarrow \ \leftarrowtail \ \rightarrowtail \ \looparrowleft \ \looparrowright \ \circlearrowright \ \circlearrowright \ \dashleftarrow \ \dashrightarrow \ \Lsh \ \Rsh \ \upuparrows \ \downdownarrows \ \upharpoonleft \ \upharpoonright \ \downharpoonright \ \rightsquigarrow \ \leftrightsquigarrow \ \multimap \ \nleftarrow \ \nrightarrow \ \nLeftarrow \ \nRightarrow \ \nleftrightarrow \ \nleftright
```

1.7.8 pdf po kompilacji

1.8 Użycie struktury array

1.8.1 Kod TeXa przed kompilacją

```
$$54) e'_{ij}=
\left\{
\begin{array}{c}
e_{ij}\ {\rm gdy}\ d(x_i) \neq d(x_j) \\
\phi\ {\rm gdy}\ d(x_i)=d(x_j). \\
\end{array}
\right.$$
```

1.8.2 pdf po kompilacji

$$54)e'_{ij} = \begin{cases} e_{ij} \text{ gdy } d(x_i) \neq d(x_j) \\ \phi \text{ gdy } d(x_i) = d(x_j). \end{cases}$$

1.9 Użycie środowiska algorythmic

1.9.1 Kod TeXa przed kompilacją

```
\begin { algorithmic }
\STATE{22} Procedure}
\STATE{Input data}
\STATE{$A' \leftarrow \emptyset$}
\STATE{ $iter \leftarrow 0$}
\item{\$iter \leftarrow \tag{\tensor} \\
\IF{\$iter = fixed\ number\ of\ the\ best\ genes\}}
\item {BREAK}
\ENDIF
\ENDIF
ENDFOR
\IF{\$iter = fixed\ number\ of\ the\ best\ genes\}
\item {BREAK}
\ENDIF
\ENDFOR
\RETURN{$A'$}
\end{algorithmic}
```

1.9.2 pdf po kompilacji

```
22)Procedure

Input data
A' \leftarrow \emptyset

iter \leftarrow 0

for i=1,2,...,card\{A\} do

for j=1,2,...,k do

S^{c_j}(a) = S_i^{c_j}(a)

if a \notin A' then

A' \leftarrow a

iter \leftarrow iter + 1

if iter = fixed number of the best genes then

BREAK

end if

end if
```

```
end for  \begin{aligned} &\text{if } iter = fixed \ number \ of \ the \ best \ genes \ \textbf{then} \\ &\text{BREAK} \\ &\text{end if} \end{aligned}  end for  \begin{aligned} &\text{return} \quad A' \end{aligned}
```

1.10 Użycie środowiska equation

1.10.1 Kod TeXa przed kompilacją

1.10.2 pdf po kompilacji

$$Inf_A(x) = \{(a = a(x)) : a \in A\},$$
 (3)

2 Polecenie do wykonania

Zapytaj wykładowcę o wskazanie numerów wzorów matematycznych do przedstawienia w formacie TeX.

$$(a_1 = a_1(x)) \land (a_2 = a_2(x)) \land \dots \land (a_k = a_k(x)) \Rightarrow (d = d(u))$$
 (4)

$$[x]_A = \{ y \in U : a(x) = a(y), \forall a \in A \}, \text{ where the central object } x \in U$$
 (5)

$$g(u,r) = \{v \in U : \frac{card\{IND(u,v)\}}{card\{A\}|} \geqslant r\}$$
(6)

where,
$$IND(u, v) = \{a \in A : a(u) = a(v)\}$$
 (7)

$$T:[0,1]\times[0,1]\to[0,1],$$
 (8)

$$x \Rightarrow_T y \geqslant r$$
 if and only if $T(x,r) \leqslant y$ (9)

$$x \Rightarrow_T y = \max\{r : T(x, r) \leqslant y\} \tag{10}$$

$$\mu_T(x, y, r)$$
 if and only if $x \Rightarrow_T y \geqslant r$ (11)

$$dis_{\varepsilon}(u,v) = \frac{|\{a \in A : ||a(u) - a(v)|| \geqslant \varepsilon\}|}{|A|}$$
(12)

$$ind_{\varepsilon}(u,v) = \frac{|\{a \in A : ||a(u) - a(v)|| < \varepsilon\}|}{|A|}$$

$$(13)$$

$$Param(v_d) = \sum_{\{v \in U_{trn}: d(v) = v_d\}} w(v, u, \varepsilon)$$
(14)

$$Param(v_d) = \sum_{\{v_p \in U_{trn}: d(v_p) = v_d\}} w(u_q, v_p),$$
(15)

$$S^{c_i}(a) = \frac{(\overline{C}_i^a - \hat{C}_i^a)^2}{Z_{\overline{C}_i^a}^2 + Z_{\hat{C}_i^a}^2}, a \in A.$$
 (16)

$$C_i^a = \{a(u) : u \in U \text{ and } d(u) = c_i\}.$$
 (17)

$$F_{c_i}(a) = \frac{MSTR_{c_i}(a)}{MSE_{c_i}(a)} \tag{18}$$

$$C_i^a = \{a(u) : u \in U \text{ and } d(u) = c_i\}$$
 (19)

$$MSTR_{c_i}(a) = card\{C_i^a\} * (\bar{C}_i^a - \hat{C}_i^a)^2$$
 (20)

$$A_{c_i}(a) = C_i^a \wedge_{\varepsilon} \{U \backslash C_i^a\}$$
(21)

$$\frac{\operatorname{card}\{a(u) \in C_i^a : \frac{|a(u) - \hat{C}_i^a|}{\operatorname{train}_a} > \varepsilon\}}{\operatorname{card}\{C_i^a\}}$$
 (22)

$$Balanced.acc = \frac{acc_{c_1} + acc_{c_2} + \dots + acc_{c_k}}{k}$$
 (23)

$$Param(v_d) = \sum_{\{v \in U_{trn}: d(v) = v_d\}} w(v, u, \varepsilon)$$
(24)

$$\frac{card\{a(u) \in C_i^a: \frac{|a(u) - \hat{C}_i^a|}{train_a} > \varepsilon\}}{card\{C_i^a\}}$$
 (25)

$$MSE_{c_i}(a) = \frac{\sum_{j=1}^{card\{C_i^a\}} (a(u_j) - \bar{C}_i^a)^2}{card\{C_i^a\}}, \text{ where } u_j \in C_i^a, i = 1, 2, ..., card\{C_i^a\}$$
 (26)

$$C_i^a = \{a(u) : u \in U \text{ and } d(u) = c_i\}, \hat{C}_i^a = \frac{\{a(v) : v \in U \text{ and } d(v) \neq c_i\}}{card\{U\} - card\{C_i^a\}}.$$
 (27)

$$C_{i}^{a} \wedge_{\varepsilon} \{U \backslash C_{i}^{a}\} = \frac{card\{a(u) \in C_{i}^{a} : \exists a(v) \in \{U \backslash C_{i}^{a}\}; \frac{|a(u) - a(v)|}{train_{a}} \leqslant \varepsilon\} + card\{a(v) \in \{U \backslash C_{i}^{a}\}: \exists a(u) \in C_{i}^{a}; \frac{|a(u) - a(v)|}{train_{a}} \leqslant \varepsilon\}}{card\{U\}}$$

$$(28)$$

$$c_{ij} = \begin{cases} 1, & \text{if } \frac{card\{IND(u_i, u_j)\}}{card\{A\}} \geqslant r_{gran} \\ 0, & \text{otherwise} \end{cases}$$
 (29)

$$C_i^a \wedge_{\varepsilon} C_j^a = \frac{\operatorname{card}\{a(u) \in C_i^a : \exists a(v) \in C_j^a; \frac{|a(u) - a(v)|}{\operatorname{train}_{C_i^a, C_j^a}} \leqslant \varepsilon\} + \operatorname{card}\{a(v) \in C_j^a; \frac{|a(v) - a(u)|}{\operatorname{train}_{C_i^a, C_j^a}} \leqslant \varepsilon\}}{\operatorname{card}\{C_i^a\}}$$

$$(30)$$

$$\frac{card\{a(u) \in C_i^a : \frac{|a(u) - \overline{C}_j^a|}{train_{C_i^a, C_j^a}} \leqslant \varepsilon\} + card\{a(v) \in C_j^a : \frac{|a(v) - \overline{C}_i^a|}{train_{C_i^a, C_j^a}} \leqslant \varepsilon\}}{card\{C_i^a\} + card\{C_i^a\}}$$
(31)

$$C_i^a = \{a(u) : u \in U \text{ and } d(u) = c_i\}, \hat{C}_i^a = \frac{\{a(v) : v \in U \text{ and } d(v) \neq c_i\}}{card\{U\} - card\{C_i^a\}}.$$
 (32)

$$C_i^a \wedge_{\varepsilon} \{U \backslash C_i^a\} = \frac{\operatorname{card}\{a(u) \in C_i^a : \exists a(v) \in \{U \backslash C_i^a\}; \frac{|a(u) - a(v)|}{\operatorname{train}_a} \leqslant \varepsilon\} + \operatorname{card}\{a(v) \in \{U \backslash C_i^a\} : \exists a(u) \in C_i^a; \frac{|a(u) - a(v)|}{\operatorname{train}_a} \leqslant \varepsilon\}}{\operatorname{card}\{U\}}$$

$$(33)$$

$$\overline{C}_{i}^{a} = \frac{\{\sum a(u) : u \in U \text{ and } d(u) = c_{i}\}}{card\{C_{i}^{a}\}}, \hat{C}_{i}^{a} = \frac{\{\sum a(v) : v \in U \text{ and } d(v) \neq c_{i}\}}{card\{U\} - card\{C_{i}^{a}\}}.$$
(34)

$$Z_{\overline{C}_{i}^{a^{2}}} = \frac{\sum_{a(u) \in C_{i}^{a}} (a(u) - \overline{C}_{i}^{a})^{2}}{card\{C_{i}^{a}\}}, Z_{\hat{C}_{i}^{a^{2}}} = \frac{\sum_{a(v) \in U \setminus C_{i}^{a}} (a(v) - \hat{C}_{i}^{a})^{2}}{card\{U\} - card\{C_{i}^{a}\}}$$
(35)

$$w(u_q, v_p) = w(u_q, v_p) + \frac{|a(u_q) - a(v_p)|}{(max_attr_a - min_attr_a) * (\varepsilon + \frac{|a(u_q) - a(v_p)|}{max_attr_a - min_attr_a})} \text{ i. e.,}$$
(36)

$$w(u_q, v_p) = w(u_q, v_p) + \frac{|a(u_q) - a(v_p)|}{(max_attr_a - min_attr_a) * \varepsilon + |a(u_q) - a(v_p)|}$$
(37)

$$w(u_q, v_p) = w(u_q, v_p) + \frac{|a(u_q) - a(v_p)|}{(max_attr_a - min_attr_a) * \varepsilon}$$
(38)

$$c'_{ij} = \begin{cases} c_{ij} \text{ gdy } d(x_i) \neq d(x_j) \\ \phi \text{ gdy } d(x_i) = d(x_j). \end{cases}$$
(39)

Procedure

Input data

$$A' \leftarrow \emptyset$$

 $iter \leftarrow 0$

for $i=1,2,...,card\{A\}$ do

```
for j=1,2,...,k do F^{c_j}(a) = F_i^{c_j}(a) if a \notin A' then A' \leftarrow a iter \leftarrow iter + 1 if iter = fixed \ number \ of \ the \ best \ genes \ then BREAK end if end for if iter = fixed \ number \ of \ the \ best \ genes \ then BREAK end if end for return A'
```

$$S_1^{c_1}(a) > S_2^{c_1}(a) > \dots > S_{card\{A\}}^{c_1}(a)$$

$$S_1^{c_2}(a) > S_2^{c_2}(a) > \dots > S_{card\{A\}}^{c_2}(a)$$

:

$$S_1^{c_k}(a) > S_2^{c_k}(a) > \dots > S_{card\{A\}}^{c_k}(a)$$

W przypadku, gdy materiały wprowadzające nie są wystarczające, przejrzyj kurs online,

http://www.latex-kurs.x25.pl/