GSERM - **Oslo 2019**Panel/TSCS Data + Unit Effects

January 7, 2019 (morning session)

Preliminaries

- Instructor: Prof. Christopher Zorn (zorn@psu.edu).
- Class: January 7-11, 2019, 9:30-3:00 CET, at the Norwegian Business School.
- The course outline / syllabus is here.
- More important: Slides, readings, code, etc. are on the course github repo

(https://github.com/PrisonRodeo/GSERM-Oslo-2019-git).

Software

R

- All examples, plots, etc.
- Current version is 3.5.2
- Packages you'll use (see the <u>econometrics</u> and <u>survival analysis</u> task views for more):
 - · plm
 - · lme4
 - · gee
 - survival (nearly everything you need)
 - · eha
 - · timereg

Stata

- Current version is 15.1.
- Mostly use the -xt- and -st- series of commands (for "cross-sectional time series" and "survival time")

Starting Points

- "Longitudinal" ≠ "Time Series"
- Terminology:
 - "Unit" / "Units" / "Units of observation" / "Panels" = Things we observe repeatedly
 - "Observations" = Each (one) measurement of a unit
 - "Time points" = When each observation on a unit is made
 - $i \in \{1...N\}$ indexes units
 - $t \in \{1...T\}$ or $\{1...T_i\}$ indexes observations / time points
 - If $T_i = T \ \forall i$ then we have "balanced" panels / units
 - NT = Total number of observations (if balanced)
- Averages:
 - \bullet Y_{it} indicates a variable that varies over both units and time,
 - $\bar{Y}_i = \frac{1}{T} \sum_{t=1}^{T} Y_{it}$ = the over-time mean of Y,
 - $\bar{Y}_t = \frac{1}{N} \sum_{i=1}^N Y_{it}$ = the across-unit mean of Y, and
 - $\bar{Y} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} Y_{it}$ = the grand mean of Y.

More Terminology

- $N >> T \rightarrow$ "panel" data
 - (American) National Election Study panel studies (N = 2000, T = 3)
 - (U.S.) Panel Study of Income Dynamics ($N = \text{large}, T \approx 12$)
- T >> N or $T \approx N \rightarrow$ "time-series cross-sectional" ("TSCS") data
- $N=1 \rightarrow$ "time series" data

${\sf Panel/TSCS}\ {\sf Data}\ {\sf Structure}$

id	t	Y	X_1	
1	1	250	3.4	
1	2	290	3.3	
:	:	:	:	
2	1	160	4.7	
2	2	150	4.9	
:	:	:	:	
	•	•	•	•••

Variation: A Tiny (Fake) Example

id	year	gender	pres	pid	approve
1	1998	female	clinton	dem	3
1	2000	female	clinton	dem	3
1	2002	female	bush	dem	5
1	2004	female	bush	dem	3
2 2 2 2 2	1998 2000 2002 2004	male male male male	clinton clinton bush bush	gop gop gop gop	2 1 4 3
3	1998	male	clinton	gop	2
3	2000	male	clinton	gop	2
3	2002	male	bush	gop	4
3	2004	male	bush	dem	1

Aggregation: Cross-Sectional

1 female ? dem 3.50 2 male ? gop 2.50 3 male ? ? 2.25	id	gender	pres	pid	approve
	_	male	?	gop	2.50

Aggregation: Temporal

1998 0.33 clinton 0.66(?) 2.33 2000 0.33 clinton 0.66(?) 2.00 2002 0.33 bush 0.66(?) 4.33 2004 0.33 bush 0.33(?) 2.33	year	female	pres	pid	approve
	2000 2002	0.33	clinton bush	0.66(?) 0.66(?)	2.00 4.33

The Point

Aggregation:

- Loses information
- Distorts relationships
- Forces arbitrary decisions

If you have variation in multiple dimensions, use it.

Within- and Between-Unit Variation

Define:

$$\bar{Y}_i = \frac{1}{T_i} \sum_{t=1}^{T_i} Y_{it}$$

Then:

$$Y_{it} = \bar{Y}_i + (Y_{it} - \bar{Y}_i).$$

- The total variation in Y_{it} can be decomposed into
- ullet The between-unit variation in the $ar{Y}_i$ s, and
- The within-unit variation around \bar{Y}_i (that is, $Y_{it} \bar{Y}_i$).

Variation (U.S. Supreme Court Tenure)

"Total" Variation:

```
> with(scotus, describe(service))
          n mean sd median trimmed mad min max range skew kurtosis
   1 1765 11.74 8.34
                        10 10.93 8.9 1 37 36 0.73 -0.28
   se
X1 0.2
"Between" Variation:
> scmeans <- ddply(scotus,.(justice),summarise,
                  service = mean(service))
> with(scmeans, describe(service))
  vars n mean sd median trimmed mad min max range skew kurtosis
    1 107 8.87 4.99 8.5 8.59 5.93 1.5 21 19.5 0.4
X1 0.48
"Within" Variation:
> scotus <- ddplv(scotus, .(justice), mutate,
                 servmean = mean(service))
> scotus$within <- with(scotus, service-servmean)
> with(scotus, describe(within))
          n mean sd median trimmed mad min max range skew kurtosis
   1 1765
               0 6.92
                          Ω
                                  0.6.67 -18 18
                                                 36
                                                              -0.36
    Se
X1 0 16
```

Regression!

Model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

assumes:

- All the usual OLS assumptions, plus
- $\beta_{0i} = \beta_0 \forall is$
- $\beta_{1i} = \beta_1 \ \forall \ is$

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

(same)

Variable Intercepts

$$Y_{it} = \beta_{0i} + \beta_1 X_{it} + u_{it}$$

$$Y_{it} = \beta_{0t} + \beta_1 X_{it} + u_{it}$$

$$Y_{it} = \beta_{0it} + \beta_1 X_{it} + u_{it}$$

Varying Intercepts

Varying Intercepts

Varying Slopes (+ Intercepts)

$$Y_{it} = \beta_0 + \beta_{1i} X_{it} + u_{it}$$

$$Y_{it} = \beta_{0i} + \beta_{1i} X_{it} + u_{it}$$

$$Y_{it} = \beta_{0t} + \beta_{1t} X_{it} + u_{it}$$

$$Y_{it} = \beta_{0it} + \beta_{1it}X_{it} + u_{it}$$

${\sf Varying\ Slopes}\,+\,{\sf Intercepts}$

The Error

$$u_{it} \sim \text{i.i.d.} N(0, \sigma^2) \ \forall \ i, t$$

$$Var(u_{it}) = Var(u_{jt}) \ \forall \ i \neq j \ (i.e., no cross-unit heteroscedasticity)$$

 $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s \ (i.e., no temporal heteroscedasticity)$
 $Cov(u_{it}, u_{is}) = 0 \ \forall \ i \neq j, \ \forall \ t \neq s \ (i.e., no auto- or spatial correlation)$

Pooling

- Adds data
- Generalizability

$$Y_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

Implies

- that the process governing the relationship between X and Y is exactly the same for each i,
- that the process governing the relationship between X and Y is the same for all t,
- that the process governing the us is the same $\forall i$ and t as well.

"Partial" Pooling (Bartels 1996)

Two regimes:

$$Y_A = \beta_A' \mathbf{X}_A + u_A$$

$$Y_B = \beta_B' \mathbf{X}_B + u_B$$

with $\sigma_A^2 = \sigma_B^2$, and $Cov(u_A, u_B) = 0$.

Estimators:

$$\hat{\beta}_{A,B} = (\mathbf{X}'_{A,B}\mathbf{X}_{A,B})^{-1}\mathbf{X}'_{A,B}Y_{A,B}$$

and

$$\widehat{\mathsf{Var}(eta_{A,B})} = \hat{\sigma}_{A,B}^2(\mathbf{X}_{A,B}'\mathbf{X}_{A,B})^{-1},$$

A Pooled Estimator

$$\hat{\beta}_{P} = (\mathbf{X}'_{A}\mathbf{X}_{A} + \mathbf{X}'_{B}\mathbf{X}_{B})^{-1}(\mathbf{X}'_{A}Y_{A} + \mathbf{X}'_{B}Y_{B})
= (\mathbf{X}'_{A}\mathbf{X}_{A} + \mathbf{X}'_{B}\mathbf{X}_{B})^{-1}[\beta_{A}(\mathbf{X}'_{A}\mathbf{X}_{A}) + \beta_{B}(\mathbf{X}'_{B}\mathbf{X}_{B})],$$

$$E(\hat{\beta}_P) = \beta_A + (\mathbf{X}_A'\mathbf{X}_A + \mathbf{X}_B'\mathbf{X}_B)^{-1}\mathbf{X}_B'\mathbf{X}_B(\beta_B - \beta_A)$$
$$= \beta_B + (\mathbf{X}_A'\mathbf{X}_A + \mathbf{X}_B'\mathbf{X}_B)^{-1}\mathbf{X}_A'\mathbf{X}_A(\beta_A - \beta_B)$$

Pooling: Tests

$$F = \frac{\frac{\hat{\mathbf{u}}_{P}'\hat{\mathbf{u}}_{P} - (\hat{\mathbf{u}}_{A}'\hat{\mathbf{u}}_{A} + \hat{\mathbf{u}}_{B}'\hat{\mathbf{u}}_{B})}{K}}{\frac{(\hat{\mathbf{u}}_{A}'\hat{\mathbf{u}}_{A} + \hat{\mathbf{u}}_{B}'\hat{\mathbf{u}}_{B})}{(N_{A} + N_{B} - 2K)}} \sim F_{[K,(N_{A} + N_{B} - 2K)]}$$

Fractional Pooling

$$\hat{\beta}_{\lambda} = (\lambda^2 \mathbf{X}_A' \mathbf{X}_A + \mathbf{X}_B' \mathbf{X}_B)^{-1} (\lambda^2 \mathbf{X}_A' Y_A + \mathbf{X}_B' Y_B)$$

with $\lambda \in [0,1]$:

- $\lambda=0$ ightarrow separate estimators for \hat{eta}_{A} and \hat{eta}_{B} ,
- $\lambda = 1 \rightarrow$ "fully pooled" estimator $\hat{\beta}_P$,
- $0 < \lambda < 1 \rightarrow$ a regression where data in regime A are given some "partial" weighting in their contribution towards an estimate of β .

Pooling, Summarized

"(R)oughly speaking, it makes sense to pool disparate observations if the underlying parameters governing those observations are sufficiently similar, but not otherwise."

- Bartels (1996)

"Unit Effects"

One- and Two-Way Unit Effects

Two-way variation:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \gamma V_i + \delta W_t + u_{it}$$

 \longrightarrow two-way effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

One-way effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$
 (time)

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$
 (units)

"Brute force" model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$

= $\mathbf{X}_{it}\boldsymbol{\beta} + \alpha_1 I(i=1)_i + \alpha_2 I(i=2)_i + ... + u_{it}$

Alternatively:

$$\bar{X}_i = \frac{\sum_{N_i} X_{it}}{N_i}$$

and

$$\tilde{X}_{it} = X_{it} - \bar{X}_i$$
.

Yields:

$$Y_{it} = \bar{\mathbf{X}}_i \beta_B + (\mathbf{X}_{it} - \bar{X}_i) \beta_W + \alpha_i + u_{it}$$

"Fixed" Effects

Means that:

$$Y_{it}^* = Y_{it} - \bar{Y}_i$$

 $\mathbf{X}_{it}^* = \mathbf{X}_{it} - \bar{\mathbf{X}}_i$

$$Y_{it}^* = \beta_{FE} \mathbf{X}_{it}^* + u_{it}.$$

≡ "Within-Effects" Model.

"Fixed" Effects: Test(s)

Standard F-test for

$$H_0: \alpha_i = \alpha_j \forall i \neq j$$

versus

$$H_A: \alpha_i \neq \alpha_j$$
 for some $i \neq j$

is
$$\sim F_{N-1,NT-(N-1)}$$
.

Data:

- 50 African countries \rightarrow (50 \times 49 =) 2450 directed dyads
- Ten years
- i indexes directed dyads, t indexes years

Model:

```
ln(\mathsf{Refugees})_{A \to Bt} = \beta_0 + \beta_1 \mathsf{Population} \; \mathsf{Difference}_{ABt} + \beta_2 \mathsf{Distance}_{AB} + \beta_3 \mathsf{POLITY} \; \mathsf{Difference}_{ABt} + \beta_4 \mathsf{War} \; \mathsf{Difference}_{ABt} + u_{ABt}
```

Data: Refugee Flows in Africa, 1992-2001

```
> summary(Refugees)
   dirdvadID
                                  ln ref flow
                                                      pop_diff
                       year
        :404411
                         :1992
                                        :-0.6931
                                                   Min.
                                                          :-0.117949
 1st Qu.:451461
                  1st Qu.:1994
                                 1st Qu.:-0.6931
                                                   1st Qu.:-0.008848
 Median :510520
                 Median:1996
                                Median :-0.6931
                                                   Median: 0.000000
       ·512160
                  Mean
                       :1996
                                Mean
                                        :-0.6011
                                                   Mean
                                                        : 0.000000
 Mean
 3rd Qu.:565553
                  3rd Qu.:1999
                                3rd Qu.:-0.6931
                                                   3rd Qu.: 0.008848
 May
        .651625
                 Max.
                         :2001
                                May
                                        :14.1343
                                                   Max
                                                          · 0 117949
    distance
                   regimedif
                                    wardiff
                                               pop_between
 Min.
        :0.000
                 Min.
                       :-1.00
                                Min.
                                       :-4
                                             Min.
                                                   :-0.109517
 1st Qu.:1.299
                1st Qu.:-0.25
                                1st Qu.: 0
                                             1st Qu.:-0.008833
 Median :2.169
                                             Median: 0.000000
                 Median: 0.00
                                Median: 0
 Mean
       :2.200
                 Mean
                       : 0.00
                                Mean
                                              Mean
                                                    : 0.000000
                                3rd Qu.: 0
 3rd Qu.:3.066
                 3rd Qu.: 0.25
                                              3rd Qu.: 0.008833
 Max.
        :5.652
                        : 1.00
                                Max.
                                       : 4
                                              Max.
                                                     : 0.109517
   pop_within
                      regime_between
                                      regime_within
                                                         war_between
 Min.
        :-0.0088492
                     Min. :-0.955
                                      Min.
                                              :-1.180
                                                        Min. :-2.3
 1st Qu.:-0.0004707
                      1st Qu.:-0.225
                                      1st Qu.:-0.085
                                                        1st Qu.:-0.4
 Median: 0.0000000
                      Median: 0.000
                                      Median: 0.000
                                                        Median: 0.0
 Mean
      : 0.0000000
                      Mean
                           : 0.000
                                      Mean
                                            : 0.000
                                                        Mean
                                                             : 0.0
 3rd Qu.: 0.0004707
                      3rd Qu.: 0.225
                                       3rd Qu.: 0.085
                                                        3rd Qu.: 0.4
 Max.
       : 0.0088492
                      Max.
                            : 0.955
                                      Max.
                                            : 1.180
                                                        Max.
                                                              : 2.3
   war_within
 Min.
      :-2.5
 1st Qu.:-0.3
 Median: 0.0
 Mean
      : 0.0
 3rd Qu.: 0.3
      : 2.5
 Max.
```

Pooled OLS:

```
> Ref0LS<-lm(ln_ref_flow~pop_diff+distance+regimedif+wardiff, data=Refugees)
> summary(Ref0LS)
```

Residuals:

```
Min 1Q Median 3Q Max -0.6114 -0.2109 -0.0857 0.0335 14.3756
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) -0.3224073 0.0119195 -27.049 <2e-16 *** pop_diff -0.1732934 0.2166658 -0.800 0.424 distance -0.1266528 0.0047016 -26.938 <2e-16 *** regimedif -0.0002476 0.0157962 -0.016 0.987 wardiff 0.0743220 0.0068169 10.903 <2e-16 *** --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 0.9097 on 23613 degrees of freedom Multiple R-squared: 0.03467,Adjusted R-squared: 0.03451 F-statistic: 212 on 4 and 23613 DF, p-value: < 2.2e-16

"Fixed" effects:

```
> library(plm)
> RefFE<-plm(ln_ref_flow~pop_diff+distance+regimedif+wardiff,
  data=Refugees, effect="individual", model="within")
> summary(RefFE)
Oneway (individual) effect Within Model
Unbalanced Panel: n=2450, T=1-10, N=23618
Residuals :
    Min. 1st Ou.
                      Median 3rd Qu.
-9.03e+00 -5.74e-03 -9.18e-06 5.72e-03 1.14e+01
Coefficients :
          Estimate Std. Error t-value Pr(>|t|)
pop diff 6.8642028 2.5516636 2.6901 0.007149 **
regimedif 0.0050497 0.0223160 0.2263 0.820984
wardiff 0.0104144 0.0073673 1.4136 0.157493
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
Residual Sum of Squares: 8146
R-Squared
             : 0.00043949
     Adj. R-Squared: 0.00039385
F-statistic: 3.102 on 3 and 21165 DF, p-value: 0.025509
```

Models of Refugees in Africa			
		Fixed	
Variable	OLS	Effects	
Constant	-0.32	-	
	(0.01)		
Population Difference	-0.17	6.86	
	(0.22)	(2.55)	
Distance	-0.13	(dropped)	
	(0.005)		
POLITY Difference	-0.0002	0.005	
	(0.016)	(0.022)	
War Difference	0.074	0.010	
	(0.007)	(0.007)	
ρ̂	-	0.61	
Note: $NT = 23618$ ($N = 2450$ $\bar{T} = 9.6$)			

Issues (?) with "Fixed" Effects

Pros:

- Specification Bias
- Intuitive
- Widely Used/Understood

Cons:

- Can't Estimate β_B
- Slowly-Changing Xs
- (In)Efficiency / Inconsistency ("Incidental Parameters")

"Between" Effects

From:

$$Y_{it} = \bar{\mathbf{X}}_i \beta_B + (\mathbf{X}_{it} - \bar{\mathbf{X}}_i) \beta_W + \alpha_i + u_{it}.$$

"Between" effects:

$$\bar{Y}_i = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + u_{it}$$

- Essentially cross-sectional
- Based on N observations

Refugee Flows in Africa, 1992-2001

"Between" effects:

```
> RefBE<-plm(ln_ref_flow~pop_diff+distance+regimedif+wardiff, data=Refugees,
 effect="individual", model="between")
> summary(RefBE)
Oneway (individual) effect Between Model
Unbalanced Panel: n=2450, T=1-10, N=23618
Residuals :
  Min. 1st Qu. Median 3rd Qu.
-0.5850 -0.2200 -0.0840 0.0534 9.6500
Coefficients .
            Estimate Std. Error t-value Pr(>|t|)
(Intercept) -0.299703    0.029741 -10.0771 < 2.2e-16 ***
pop_diff
          -0.246861 0.525232 -0.4700
                                         0.6384
distance -0.134874 0.011755 -11.4742 < 2.2e-16 ***
regimedif 0.010709 0.045117 0.2374
                                         0.8124
         wardiff
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                      1383.9
Residual Sum of Squares: 1296.7
R-Squared
            : 0.063042
     Adj. R-Squared: 0.062913
F-statistic: 41.1269 on 4 and 2445 DF, p-value: < 2.22e-16
```

Refugee Example Redux

		Fixed	Between
Variable	OLS	("Within") Effects	Effects
Constant	-0.32	-	-0.30
	(0.01)		(0.03)
Population Difference	-0.17	6.86	-0.25
	(0.22)	(2.55)	(0.53)
Distance	-0.13	(dropped)	-0.13
	(0.005)		(0.01)
POLITY Difference	-0.0002	0.005	0.01
	(0.016)	(0.022)	(0.05)
War Difference	0.074	0.010	0.12
	(0.007)	(0.007)	(0.02)
$\hat{ ho}$	<u> </u>	0.61	

Note: NT = 23618 (N = 2450, $\bar{T} = 9.6$).

Model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

with:

$$u_{it} = \alpha_i + \lambda_t + \eta_{it}$$

and

$$\begin{split} E(\alpha_i) &= E(\lambda_t) = E(\eta_{it}) &= 0, \\ E(\alpha_i \lambda_t) &= E(\alpha_i \eta_{it}) = E(\lambda_t \eta_{it}) &= 0, \\ E(\alpha_i \alpha_j) &= \sigma_\alpha^2 \text{ if } i = j, \ 0 \text{ otherwise}, \\ E(\lambda_t \lambda_s) &= \sigma_\lambda^2 \text{ if } t = s, \ 0 \text{ otherwise}, \\ E(\eta_{it} \eta_{js}) &= \sigma_\eta^2 \text{ if } i = j, \ t = s, \ 0 \text{ otherwise}, \\ E(\alpha_i \mathbf{X}_{it}) &= E(\lambda_t \mathbf{X}_{it}) = E(\eta_{it} \mathbf{X}_{it}) &= 0. \end{split}$$

"Random" Effects

"Variance Components":

$$Var(Y_{it}|\mathbf{X}_{it}) = \sigma_{\alpha}^2 + \sigma_{\lambda}^2 + \sigma_{\eta}^2$$

If we assume $\lambda_t = 0$, then we get a model like:

$$Y_{it} = \mathbf{X}_{it}\beta + \alpha_i + \eta_{it}$$

with total error variance:

$$\sigma_{\it u}^2 = \sigma_{\alpha}^2 + \sigma_{\eta}^2.$$

"Random" Effects: Estimation

$$\begin{split} E(\mathbf{u}_i \mathbf{u}_i') &\equiv \mathbf{\Sigma}_i &= \sigma_{\eta}^2 \mathbf{I}_T + \sigma_{\alpha}^2 \mathbf{i} \mathbf{i}' \\ &= \begin{pmatrix} \sigma_{\eta}^2 + \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \cdots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\eta}^2 + \sigma_{\alpha}^2 & \cdots & \sigma_{\alpha}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{\alpha}^2 & \sigma_{\alpha}^2 & \cdots & \sigma_{\eta}^2 + \sigma_{\alpha}^2 \end{pmatrix} \\ \text{Var}(\mathbf{u}) &\equiv \mathbf{\Omega} = \begin{pmatrix} \mathbf{\Sigma}_1 & 0 & \cdots & 0 \\ 0 & \mathbf{\Sigma}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{\Sigma}_N \end{pmatrix} \end{split}$$

"Random" Effects: Estimation

Can estimate:

$$oldsymbol{\Sigma}^{-1/2} = rac{1}{\sigma_{\eta}} \left[oldsymbol{I}_{\mathcal{T}} - \left(rac{ heta}{\mathcal{T}} oldsymbol{ii}'
ight)
ight]$$

where

$$heta = 1 - \sqrt{rac{\sigma_{\eta}^2}{T\sigma_{lpha}^2 + \sigma_{\eta}^2}}.$$

With $\hat{\theta}$, calculate:

$$Y_{it}^* = Y_{it} - \hat{\theta} \bar{Y}_i$$

$$X_{it}^* = X_{it} - \hat{\theta} \bar{X}_i,$$

estimate:

$$Y_{it}^* = (1 - \hat{ heta}) lpha + X_{it}^* eta_{RE} + [(1 - \hat{ heta}) lpha_i + (\eta_{it} - \hat{ heta} ar{\eta}_i)]$$

and iterate...

"Random" Effects: An Alternative View

Refugees Redux

```
> RefRE<-plm(ln_ref_flow~pop_diff+distance+regimedif+wardiff, data=Refugees,
  effect="individual", model="random")
> summary(RefRE)
Oneway (individual) effect Random Effect Model
  (Swamy-Arora's transformation)
Unbalanced Panel: n=2450, T=1-10, N=23618
Effects:
                var std.dev share
idiosyncratic 0.3849 0.6204 0.466
individual
           0.4416 0.6645 0.534
theta :
  Min. 1st Qu. Median Mean 3rd Qu.
0.3176 0.7168 0.7168 0.7141 0.7168 0.7168
Coefficients :
             Estimate Std. Error t-value Pr(>|t|)
(Intercept) -0.3063941 0.0285299 -10.7394 < 2.2e-16 ***
pop diff 0.0638665 0.4974613 0.1284 0.897845
distance -0.1324536 0.0112685 -11.7544 < 2.2e-16 ***
regimedif 0.0005633 0.0198580 0.0284 0.977370
wardiff
          0.0228523 0.0069775 3.2751 0.001058 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Total Sum of Squares:
                       9216.6
Residual Sum of Squares: 9158.9
R-Squared
              : 0.0062699
Adj. R-Squared: 0.0062686
F-statistic: 37.177 on 4 and 23613 DF, p-value: < 2.22e-16
```

Refugees Redux, Remix

```
> library(lme4)
> AltRefRE<-lmer(ln ref flow~pop diff+distance+regimedif+wardiff+(1|dirdvadID), data=Refugees)
> summarv(AltRefRE)
Linear mixed model fit by REML
Formula: ln_ref_flow ~ pop_diff + distance + regimedif + wardiff + (1 | dirdyadID)
  Data: Refugees
  AIC BIC logLik deviance REMLdev
 50733 50790 -25360
                     50692 50719
Random effects:
Groups
        Name
                     Variance Std.Dev.
dirdvadID (Intercept) 0.46653 0.68303
Residual
                     0.38592 0.62123
Number of obs: 23618, groups: dirdyadID, 2450
Fixed effects:
             Estimate Std. Error t value
(Intercept) -0.3061471 0.0291477 -10.503
pop_diff 0.0758989 0.5075942 0.150
distance -0.1325429 0.0115127 -11.513
regimedif 0.0007138 0.0199078 0.036
wardiff 0.0223476 0.0069779 3.203
Correlation of Fixed Effects:
         (Intr) pp_dff distnc regmdf
pop_diff 0.000
distance -0.869 0.000
regimedif 0.000 0.036 0.000
wardiff 0.000 -0.004 0.000 0.109
```

Refugees Redux

		Fixed	Between	Random
Variable	OLS	Effects	Effects	Effects
Constant	-0.32	-	-0.30	-0.31
	(0.01)		(0.03)	(0.03)
Population Difference	-0.17	6.86	-0.25	0.09
	(0.22)	(2.55)	(0.53)	(0.52)
Distance	-0.13	(dropped)	-0.13	-0.13
	(0.005)		(0.01)	(0.01)
POLITY Difference	-0.0002	0.005	0.01	0.0005
	(0.016)	(0.022)	(0.05)	(0.0199)
War Difference	0.074	0.010	0.12	0.023
	(0.007)	(0.007)	(0.02)	(0.007)
$\hat{ ho}$	-	0.61	-	0.56

Note: NT = 23618 (N = 2450, $\bar{T} = 9.6$).

"Random" Effects: Testing

Hausman test (FE vs. RE):

$$\hat{\mathcal{W}} = (\hat{\beta}_{\mathsf{FE}} - \hat{\beta}_{\mathsf{RE}})'(\hat{\mathbf{V}}_{\mathsf{FE}} - \hat{\mathbf{V}}_{\mathsf{RE}})^{-1}(\hat{\beta}_{\mathsf{FE}} - \hat{\beta}_{\mathsf{RE}})$$

$$W \sim \chi_k^2$$

Issues:

- Asymptotic
- No guarantee $(\hat{f V}_{\sf FE} \hat{f V}_{\sf RE})^{-1}$ is positive definite
- A general specification test...

Hausman Test

Hausman test (FE vs. RE):

> phtest(RefFE, AltRefRE)

Hausman Test

data: ln_ref_flow ~ pop_diff + distance + regimedif + wardiff
chisq = 34.712, df = 3, p-value = 0.0000001401
alternative hypothesis: one model is inconsistent

Practical "Fixed" vs. "Random" Effects

- "Panel" vs. "TSCS" Data
- Data-Generating Process
- Covariate Effects

Separating Within and Between Effects

$$Y_{it} = \mathbf{\bar{X}}_i \boldsymbol{eta}_B + (\mathbf{X}_{it} - \mathbf{\bar{X}}_i) \boldsymbol{eta}_W + u_{it}$$

- Simple...
- Easy interpretation
- Easty to test $\hat{oldsymbol{eta}}_B = \hat{oldsymbol{eta}}_W$

Again With The Refugees...

Variable	Estimate
Constant	-0.32
	(0.01)
Distance	-0.13
	(0.004)
Between (Mean) Population Difference	-0.22
, , ,	(0.22)
Within Population Difference	6.86
	(3.74)
Between (Mean) POLITY Difference	0.01
	(0.02)
Within POLITY Difference	0.005
	(0.032)
Between (Mean) War Difference	0.12
, ,	(0.01)
Within War Difference	0.01
	(0.01)

Note: $NT = 23618 \ (N = 2450, \ \overline{T} = 9.6).$

Unit Effects Models: Software

R:

- the lme4 package; command is lmer
- the plm package; plm command
- the nlme package; command lme

Stata: xtreg

- the re (the default) = random effects
- the fe = fixed (within) effects
- the be = between-effects