Problem

Show that NL is closed under the operations union, concatenation, and star.

Step-by-step solution

Step 1 of 4

Class NL(Non-deterministic Logarithmic space):

NL is the class of languages that are decidable in logarithmic space on a non deterministic Turing machine. i.e., $NL = NSPACE (\log n)$

let $L_{\rm I}$ and $L_{\rm 2}$ be the languages that are decided by NL - machines $M_{\rm I}$ and $M_{\rm 2}$.

Now we want to show that

- There is a nondeterministic decides $~M_{\cup}~{\rm such~that}~L\!\left(M_{\cup}\right)\!=\!L_{\!\!1}\cup L_{\!\!2}$
- There is a nondeterministic decider M_{\cap} such that $L(M_{\cap}) = L_{\mid} \cap L_{\mid}$
- There is a nondeterministic decider M^* such that $L(M_*) = L_1^*$

Now these 3 machines $M_{\odot}, M_{\odot}, M_{\ast}$ are for 3 different operations.

Comment

Step 2 of 4

(i)

$$M_{\odot} =$$
 "on input w :

- 1. Run M_1 on W, If M_1 accepted then accept
- 2. Else run M_2 on w, if M_2 accepted then accept
- 3. Else reject'

The machine M_{\odot} will accept the input w if either M_{1} or M_{2} accept w.

If both M_1 and M_2 reject the input w then M_0 will reject w.

Comment

Step 3 of 4

(ii) Intersection:

$$M_{\cap} =$$
 "on input w:

- 1. Run M_1 on w , if M_1 rejected then reject.
- 2. Else run M_2 on w, if M_2 rejected then reject.
- 3. Else accept

The machine M_{\cap} will accept the input w if both M_1 and M_2 reject w then M_{\cap} will reject w. If any one of M_1 and M_2 reject w then M_{\cap} will reject w.

Comment

(iii) Star

Machine $\,^{M_{\ast}}$ has more complex algorithm as follows.

$$M_* = \text{"on input } w$$
:

- 1. $\frac{P_1}{P_2}$ and $\frac{P_2}{P_3}$ be two input positions. $\frac{P_1}{P_3}$ is initialized to 0 and $\frac{P_2}{P_3}$ is initialized to the position immediately preceding the first input symbol.
- 2. If there is no input symbol after P_2 then accept w.
- 3. Move P_2 forward to a non-deterministically selected input position.
- 4. Simulate M_1 non-deterministically on the substring of w from position following P_1 to the position P_2 .
- 5. If M_1 is entered into accept state then copy P_2 to P_1 and go to stage 2
- So M_* will decide $L_{\rm I}^*$,

In this way NL is closed under union intersection and star.

Comment