Binomial Model

Liming Feng

Dept. of Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Readings: Hull Chapter 11

©Liming Feng. Do not distribute without permission of the author

Introduction

- Derivatives discussed: forwards, futures, options
- Arbitrage arguments (model independent)
 - forward price/rate, valuation of forward contracts
 - arbitrage relationships for options
- Valuation and risk management of options
- Need to model the dynamics of the underlying asset
 - Binomial model
 - Black-Scholes-Merton model
- First consider European contracts on assets with no income

One-step binomial model

- Risky asset: e.g., a stock
 - Stock price process over the period $[0,\delta]$: $S=(S_0,S_\delta)$

$$S_{\delta} = \left\{ egin{array}{ll} uS_0, & ext{with prob } p \ dS_0, & ext{with prob } 1-p \end{array}
ight.$$

where $p \in (0,1)$, 0 < d < u (a Bernoulli trial)

- Risk free investment:
 - r : risk free interest rate per year (continuous compounding)
 - \$1 today worths $e^{r\delta}$ at time δ

ullet One-step binomial model over time period $[0,\delta]$

- To avoid arbitrage, $d < e^{r\delta} < u$ (no arbitrage condition)
 - If $d < u \le e^{r\delta}$, short stock and deposit at rate r
 - If $u > d \ge e^{r\delta}$, borrow at rate r and buy stock
- Simple model, deep results!
 - Relation b/w no arbitrage pricing and risk neutral pricing
 - Tractable approximation to continuous time models

No arbitrage pricing

- \bullet Pricing a long forward contract with delivery price K and maturity δ
- Method used before: decompose the payoff of the long forward contract

$$S_{\delta} - K = S_{\delta} - F_0 + F_0 - K$$

Value of the long forward contract at time 0

$$V_0 = e^{-r\delta}(F_0 - K) = e^{-r\delta}(S_0e^{r\delta} - K) = S_0 - Ke^{-r\delta}$$

Replicating portfolio

- Alternatively: replicate the long forward contract by trading the underlying stock and risk free investing
 - Buy 1 share, borrow $Ke^{-r\delta}$ at rate r (cost $S_0 Ke^{-r\delta}$)
 - Payoff is also $S_{\delta} K$
 - Same cost at time 0: $V_0 = S_0 Ke^{-r\delta}$
- No arbitrage pricing
 - Find a **replicating portfolio** for the contract (how many shares to buy, how much to borrow)
 - No arbitrage ⇒ value of the replicating portfolio = value of the contract
 - Extension to calls with payoff $(S_{\delta} K)^+$, puts with payoff $(K S_{\delta})^+$

• Consider a derivative with payoff $f(S_\delta)$: $f_u = f(uS_0)$, $f_d = f(dS_0)$

• For calls, $f_u = (uS_0 - K)^+$, $f_d = (dS_0 - K)^+$

- Replicating portfolio: buy Δ shares and borrow Ψ
 - Value at time δ : $\Delta S_{\delta} \Psi e^{r\delta}$
 - ullet Δ and Ψ solve

$$\Delta \cdot uS_0 - \Psi e^{r\delta} = f_u,$$

$$\Delta \cdot dS_0 - \Psi e^{r\delta} = f_d$$

Unique solution:

$$\Delta = \frac{f_u - f_d}{S_0(u - d)}, \quad \Psi = \frac{df_u - uf_d}{e^{r\delta}(u - d)}$$

No arbitrage ⇒ value of the derivative at time 0 should be

$$f_0 = \Delta S_0 - \Psi = \frac{f_u - f_d}{u - d} - \frac{df_u - uf_d}{e^{r\delta}(u - d)}$$

Example (pricing a call)

Suppose the current stock price is 20. p=0.6, u=2, d=0.5, $\delta=1$. The risk free interest rate is $r=\ln(1.25)$ with continuous compounding. What is the price of a call with strike price 25?

- Call payoff: $f_u = 15, f_d = 0$
- Replicating portfolio: buy Δ shares, borrow Ψ

$$40\Delta-1.25\Psi=15$$

$$10\Delta-1.25\Psi=0$$

$$\Delta=1/2, \Psi=4$$

• Call price = $\Delta S_0 - \Psi = 6$

Risk neutral pricing

• No arbitrage pricing leads to

$$f_0 = \frac{f_u - f_d}{u - d} - \frac{df_u - uf_d}{e^{r\delta}(u - d)}$$

$$= e^{-r\delta} \left(\frac{e^{r\delta} - d}{u - d} f_u + \frac{u - e^{r\delta}}{u - d} f_d \right)$$

$$= e^{-r\delta} (p^* f_u + (1 - p^*) f_d)$$

where

$$p^* = \frac{e^{r\delta} - d}{u - d} = \frac{1.25 - 0.5}{2 - 0.5} = 0.5$$
 in the example

• By the no arbitrage condition $d < e^{r\delta} < u$, p^* is a well defined **probability**

$$0 < p^* < 1$$

p* is called the risk neutral probability

$$S_0 = e^{-r\delta} \mathbb{E}^*[S_\delta] = e^{-r\delta} (p^* \cdot uS_0 + (1-p^*) \cdot dS_0)$$

$$f_0 = e^{-r\delta} \mathbb{E}^*[f(S_\delta)] = e^{-r\delta}(p^*f_u + (1-p^*)f_d)$$

In the "risk neutral world", risky investments earn risk free interest rate

 Risk neutral pricing: Derivative price = risk neutral expectation of the payoff discounted at the risk free rate • In the "physical world" where the actual probability *p* is used, stock earns more than the risk free interest rate,

$$\mathbb{E}[S_{\delta}] = puS_0 + (1-p)dS_0 = 0.6 \times 40 + 0.4 \times 10 = 28 = S_0 e^{\mu\delta} \rightarrow \mu = \ln(1.4) > \ln(1.25)$$

call earns more than the risk free interest rate

$$\mathbb{E}[f(S_{\delta})] = pf_u + (1-p)f_d = 0.6 \times 15 + 0.4 \times 0 = 9 = f_0 e^{\mu \delta} \to \mu = \ln(1.5) > \ln(1.25)$$

- For derivatives pricing, one should not discount the expected payoff in the physical world at the risk free rate
- From CAPM, different risk adjusted discount rates should be used for different risky investments

- Actual probability p doesn't matter in pricing derivatives: the info has been contained in S_0 already
- Summary

Physical world	Risk neutral world
Where we live	Where we price derivatives
Stock price goes up with prob p	Stock price goes up with prob p^*
Stock earns risk adjusted rate	Stock earns risk free rate

 Risk neutral pricing procedure: (1). find risk neutral probability; (2). compute risk neutral expected payoff; (3). discount at the risk free rate

Example (risk neutral pricing)

Suppose the current stock price is 20. p=0.6, u=2, d=0.5, $\delta=1$. The risk free interest rate is $r=\ln(1.25)$ with continuous compounding. What is the price of a call option with strike price 25? What is the price of a put option with strike price 25?

Compute the risk neutral probability:

$$p^* = \frac{e^{r\delta} - d}{u - d} = \frac{1.25 - 0.5}{2 - 0.5} = 0.5$$

By **risk neutral pricing**, call price at time 0:

$$f_0 = e^{-r\delta}(p^*f_u + (1-p^*)f_d)$$

= $(0.5 \times 15 + 0.5 \times 0)/1.25 = 6$

• Put payoff: $f_u = 0, f_d = 15$ **Replicating portfolio**: buy Δ shares, borrow Ψ

$$40\Delta-1.25\Psi=0$$

$$10\Delta - 1.25\Psi = 15$$

with solution $\Delta=-0.5, \Psi=-16$ (short sell 0.5 share, deposit \$16). Therefore, put price $=\Delta S_0 - \Psi=6$

• Risk neutral pricing:

$$f_0 = e^{-r\delta}(p^*f_u + (1-p^*)f_d) = (0.5 \times 0 + 0.5 \times 15)/1.25 = 6$$

• European put call parity: call price + $Ke^{-r\delta}$ = put price + S_0

Delta hedging

- Risk management is important to derivative traders
 - How to hedge a short position in a derivative contract
 - Derivative contracts can be replicated by trading the underlying asset and risk free investment
 - ullet The replicating portfolio contains Δ shares

$$\Delta = \frac{f_u - f_d}{S_0(u - d)}$$

ullet Sell a derivative and buy Δ shares to cancel the risk

- Consider a **hedged position**: short a derivative, long Δ shares
- ullet Value of the hedged position at time δ
 - Stock price goes up

$$-f_u + \Delta \cdot uS_0 = \frac{df_u - uf_d}{u - d}$$

Stock price goes down

$$-f_d + \Delta \cdot dS_0 = \frac{df_u - uf_d}{u - d}$$

- The hedged position is risk free
- **Delta hedging**: sell a derivative, long Δ shares

Example (delta hedging)

The current stock price is 20. u=2, d=0.5, $\delta=1$. The risk free interest rate is $r=\ln(1.25)$ with continuous compounding. Consider a call option with strike price 25. Compare writing a covered call with the Delta hedging.

- Write the call and earn \$6
- **Delta hedging**: buy $\Delta = 1/2$ share, initial investment \$4 \underline{Up} : buy extra 1/2 share, sell 1 share at strike, receive \$5 \underline{Down} : sell 1/2 share at market price, receive \$5
- Rate of return (annualized, continuous compounding)

$$5 = 4e^{R\delta} \implies R = \ln(1.25) = 22.3\% = r$$

Covered call: buy one share, initial investment \$14
 Up: sell 1 share at strike, receive \$25

$$25 = 14e^{R\delta} \quad \Rightarrow \quad R = \ln(25/14) = 58.0\%$$

<u>Down</u>: sell 1 share at market price, receive \$10

$$10 = 14e^{R\delta} \quad \Rightarrow \quad R = \ln(10/14) = -33.6\%$$

Two-step binomial model

• Two-step binomial model over time period $[0, 2\delta]$

- Stock price process: $S = (S_0, S_\delta, S_{2\delta})$
- Risk free investment: $1 \Rightarrow e^{r\delta} \Rightarrow e^{2r\delta}$

- No arbitrage pricing of a European derivative: construct a replicating portfolio
 - To replicate a call option, buy stocks
 - Determine # shares to buy, amount to borrow at time 0
 - At time δ , need to adjust # of shares

```
<u>Stock price goes down:</u> reduce # of shares 
<u>Stock price goes up:</u> increase # of shares
```

ullet Need to determine how many shares to hold at time δ

• European derivative with payoff $f(S_{2\delta})$ at time 2δ :

$$f_{uu} = f(u^2S_0), f_{ud} = f(udS_0), f_{dd} = f(d^2S_0)$$

derivative stock

- Price the derivative
 - 1 No arbitrage pricing: construct a replicating portfolio
 - Risk neutral pricing: simplify calculations
- Replicating portfolio
 - Time 0: long Δ_0 shares, borrow Ψ_0 (cost f_0)
 - $S_{\delta} = uS_0$ at time δ : long Δ_u , borrow Ψ_u
 - $S_{\delta} = dS_0$ at time δ : long Δ_d , borrow Ψ_d
- Select Δ's, Ψ's
 - Time 2δ : value of the replicating portfolio = derivative payoff
- **Derivative price** = f_0 to avoid arbitrage

Replicating portfolio

• Stock price goes up at time δ :

derivative payoff = portfolio payoff
$$f_{uu} = \Delta_u \cdot u^2 S_0 - \Psi_u e^{r\delta}$$

$$f_{ud} = \Delta_u \cdot u dS_0 - \Psi_u e^{r\delta}$$

$$\Delta_u = \frac{f_{uu} - f_{ud}}{uS_0(u - d)}, \quad \Psi_u = \frac{df_{uu} - uf_{ud}}{e^{r\delta}(u - d)}$$

Portfolio value at δ (when stock price goes up at δ , amount needed to replicate derivative payoff)

$$f_u = \Delta_u \cdot uS_0 - \Psi_u = e^{-r\delta} \left[p^* f_{uu} + (1-p^*) f_{ud} \right]$$

$$p^* = \frac{e^{r\delta} - d}{u - d}$$

• Stock price goes down at time δ :

derivative payoff = portfolio payoff
$$f_{ud} = \Delta_d \cdot udS_0 - \Psi_d e^{r\delta}$$

$$f_{dd} = \Delta_d \cdot d^2S_0 - \Psi_d e^{r\delta}$$

$$\Delta_d = \frac{f_{ud} - f_{dd}}{dS_0(u - d)}, \quad \Psi_d = \frac{df_{ud} - uf_{dd}}{e^{r\delta}(u - d)}$$

Portfolio value at δ (when stock price goes down at δ , amount needed to replicate derivative payoff)

$$f_d = \Delta_d \cdot dS_0 - \Psi_d = e^{-r\delta} [p^* f_{ud} + (1 - p^*) f_{dd}]$$

• At time 0:

amount needed at
$$\delta$$
 = portfolio payoff
$$f_u = \Delta_0 \cdot uS_0 - \Psi_0 e^{r\delta}$$

$$f_d = \Delta_0 \cdot dS_0 - \Psi_0 e^{r\delta}$$

$$\Delta_0 = \frac{f_u - f_d}{S_0(u - d)}, \quad \Psi_0 = \frac{df_u - uf_d}{e^{r\delta}(u - d)}$$

Portfolio value at 0 (amount needed at time 0 to replicate required amounts at δ)

$$f_0 = \Delta_0 S_0 - \Psi_0 = e^{-r\delta} \left[p^* f_u + (1 - p^*) f_d \right]$$

Example (price and hedge a call in 2-step binomial model)

Suppose current stock price is 20. u=2, d=0.5, $\delta=1$. The risk free interest rate is $r=\ln(1.25)$ with continuous compounding. Price a European call with strike 15 and maturity 2 years

Possible call payoffs

$$f_{uu} = (80 - 15)^+ = 65, f_{ud} = (20 - 15)^+ = 5, f_{dd} = (5 - 15)^+ = 0$$

If stock price goes to 40 at δ ,

$$\Delta_u = 1, \Psi_u = 12, \text{ cost } 40 - 12 = 28 = f_u$$

If stock price goes to 10 at δ ,

$$\Delta_d = 1/3, \Psi_d = 4/3, \text{ cost } 10/3 - 4/3 = 2 = f_d$$

To replicate amount needed at δ (either 28 or 2),

$$\Delta_0 = 13/15, \Psi_0 = 16/3, \text{ cost } 13 \cdot 20/15 - 16/3 = 12 = f_0 = \text{call price}$$

Backward induction

Starting from derivative payoff

$$f_{uu},f_{ud},f_{dd}$$
 \Rightarrow f_u,f_d \Rightarrow f_0 where, with $p^*=rac{e^{r\delta}-d}{u-d},$ $f_u=e^{-r\delta}(p^*f_{uu}+(1-p^*)f_{ud})$ $f_d=e^{-r\delta}(p^*f_{ud}+(1-p^*)f_{dd})$ $f_0=e^{-r\delta}(p^*f_u+(1-p^*)f_d)$

• In the example, $p^* = 0.5$, $f_u = (0.5 \cdot 65 + 0.5 \cdot 5)/1.25 = 28$, $f_d = (0.5 \cdot 5 + 0.5 \cdot 0)/1.25 = 2$, $f_0 = (0.5 \cdot 28 + 0.5 \cdot 2)/1.25 = 12$

Risk neutral pricing

 p* is the risk neutral probability. In the risk neutral world, stock earns risk free interest rate

$$(p^*)^2 = {
m prob}({
m stock \ price \ goes \ to} \ u^2S_0) = 1/4$$
 $2p^*(1-p^*) = {
m prob}({
m stock \ price \ goes \ to} \ udS_0) = 1/2$ $(1-p^*)^2 = {
m prob}({
m stock \ price \ goes \ to} \ d^2S_0) = 1/4$ $\mathbb{E}^*[S_{2\delta}] = (p^*)^2u^2S_0 + 2p^*(1-p^*)udS_0 + (1-p^*)^2d^2S_0 = e^{2r\delta}S_0 = 31.25$

 Derivative price = risk neutral expected payoff discounted at the risk free rate

$$f_0 = e^{-2r\delta} \left((p^*)^2 f_{uu} + 2p^* (1 - p^*) f_{ud} + (1 - p^*)^2 f_{dd} \right)$$

= $e^{-2r\delta} \mathbb{E}^* [f(S_{2\delta})] = 12$

Dynamic delta hedging

- Hedge a short position in a derivative contract
- ullet Sell a derivative, hold Δ_t shares, $t=0,\delta$
 - At time 0,

$$\Delta_0 = \frac{f_u - f_d}{S_0(u - d)} = 13/15$$

ullet Stock price goes up at time δ

$$\Delta_u = \frac{f_{uu} - f_{ud}}{uS_0(u - d)} = 1$$

ullet Stock price goes down at time δ

$$\Delta_d = \frac{f_{ud} - f_{dd}}{dS_0(u - d)} = 1/3$$

• The hedged position is risk free

Example (price and hedge a call in 2-step binomial model)

$$\Delta_0 = 13/15, \Delta_u = 1, \Delta_d = 1/3$$

- Write a call to get 12, long $\frac{13}{15}$ shares, cost $\frac{13}{15} \cdot 20 12 = \frac{16}{3}$
- $S_{\delta}=40$: value of the portfolio $\frac{13}{15}\cdot 40-28=\frac{20}{3}$; borrow $\frac{2}{15}\cdot 40$ and buy extra $\frac{2}{15}$ shares; at maturity, sell 1 share for 15 and repay the loan, get $15-\frac{80}{15}\cdot 1.25=\frac{25}{3}$
- $S_{\delta}=10$: value of the portfolio $\frac{13}{15}\cdot 10-2=\frac{20}{3}$; sell $\frac{8}{15}$ shares and deposit $\frac{80}{15}$; at maturity, **either** buy $\frac{2}{3}$ shares at 20 and sell 1 share at strike 15 and get $\frac{80}{15}\cdot 1.25-\frac{2}{3}\cdot 20+15=\frac{25}{3}$, **or** sell $\frac{1}{3}$ shares and get $\frac{80}{15}\cdot 1.25+\frac{5}{3}=\frac{25}{3}$
- In any case, end up with $\frac{25}{3}$; earn risk free rate: $\frac{16}{3} = \frac{25}{3}e^{-2r\delta}$

Multi-step binomial model

• Multi-step binomial model over time period $[0, N\delta = T]$

- Node (n, j): time $n\delta$, j is the number of up moves in the stock price
- Stock price at node (n,j): $S_{n,j} = u^j d^{n-j} S_0$

• Price a derivative with payoff $f(S_T)$ at time $T = N\delta$

$$f_{N,j} = f(S_{N,j}), \quad 0 \le j \le N$$

Risk neutral pricing formula

$$f_0 = e^{-rT} \mathbb{E}^*[f(S_T)] = e^{-rT} \sum_{j=0}^N \binom{N}{j} (p^*)^j (1-p^*)^{N-j} f_{N,j}$$

where p^* is the risk neutral probability

$$p^* = \frac{e^{r\delta} - d}{u - d}$$

and the number of paths leading to node (N, j) is

$$\left(\begin{array}{c}N\\j\end{array}\right)=\frac{N!}{j!(N-j)!}$$

Backward induction

Start with

$$f_{N,j}, \quad j=0,1,\cdots,N$$

• For $n = N - 1, N - 2, \dots, 0$

$$f_{n,j} = e^{-r\delta}(p^*f_{n+1,j+1} + (1-p^*)f_{n+1,j}), \quad j = 0, 1, \dots, n$$

• Hedge a short position:

$$\Delta_{n,j} = \frac{f_{n+1,j+1} - f_{n+1,j}}{S_{n,j}(u-d)}, \quad S_{n,j} = u^j d^{n-j} S_0$$

sell a derivative and hold $\Delta_{n,j}$ shares if stock price arrives at node (n,j)

Assets with continuous yield

- Derivatives on assets with continuous yield: currencies, stock indices
- ullet 1 unit of the asset grows to $e^{q\delta}$ units over $[0,\delta]$
- Derivative payoff: $f_u = f(uS_0)$, $f_d = f(dS_0)$
- Replicating portfolio: buy Δ units, borrow Ψ

$$e^{q\delta} \Delta u S_0 - \Psi e^{r\delta} = f_u$$

$$e^{q\delta} \Delta d S_0 - \Psi e^{r\delta} = f_d$$

$$\Delta = \frac{f_u - f_d}{e^{q\delta} S_0(u - d)}, \Psi = \frac{df_u - uf_d}{e^{r\delta}(u - d)}$$

Risk neutral pricing formula:

$$f_0 = \Delta S_0 - \Psi$$

= $e^{-r\delta} (p^* f_u + (1 - p^*) f_d)$

where the risk neutral probability

$$p^* = \frac{e^{(r-q)\delta} - d}{u - d}$$

In the risk neutral world,

$$\mathbb{E}^*\left[\mathrm{e}^{q\delta}S_\delta
ight]=\mathrm{e}^{q\delta}\left(p^*uS_0+(1-p^*)dS_0
ight)=\mathrm{e}^{r\delta}S_0$$

Generalized to multi-step binomial models similarly

Example (currency options in binomial models)

The current exchange rate is 1.5 USD/EUR. u=1.2, d=0.8, $\delta=1$. Risk free interest rates for USD and EUR are r=5% and q=4%, respectively (continuous compounding, assume flat term structures). Price a 2-year ATM European call.

- Possible payoffs: $f_{uu} = (2.16 1.5)^+ = 0.66, f_{ud} = (1.44 1.5)^+ = 0, f_{dd} = (0.96 1.5)^+ = 0$
- Risk neutral probability

$$p^* = \frac{e^{(r-q)\delta} - d}{u - d} = \frac{e^{0.01} - 0.8}{1.2 - 0.8} = 0.5251$$

Backward induction

$$f_u = e^{-0.05} \cdot 0.66 \cdot p^* = 0.3297, \ f_d = 0, \ f_0 = e^{-0.05} \cdot 0.3297 \cdot p^* = 0.1647$$

CRR binomial model

- Given option maturity T. Divide [0, T] into N equal intervals: $\delta = T/N$
- Variability of the stock price
 - Binomial model: *u* and *d*
 - Black-Scholes-Merton model: volatility σ
- Select u and d in the binomial model as follows (Cox-Ross-Rubinstein binomial model)

$$u = e^{\sigma\sqrt{\delta}}, \quad d = e^{-\sigma\sqrt{\delta}}$$

 The CRR model converges to the Black-Scholes-Merton model as N gets large

Black-Scholes formula

European call price

$$c = S_0 e^{-qT} N(d_1) - K e^{-rT} N(d_2)$$

European put price

$$p = -S_0 e^{-qT} N(-d_1) + K e^{-rT} N(-d_2)$$

where N(x) is the cdf of N(0,1),

$$d_1 = rac{\ln(S_0/K) + (r-q+rac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}, \quad d_2 = d_1 - \sigma\sqrt{T}$$

Example (Black-Scholes formula)

The current exchange rate is 1.5 USD/EUR. Risk free interest rates for USD and EUR are r=5% and q=4%, respectively (continuous compounding). Price a 1-year ATM European put in the Black-Scholes-Merton model when $\sigma=20\%$.

•
$$S_0 = K = 1.5, r = 0.05, q = 0.04, T = 1, \sigma = 0.2$$

 $d_1 = 0.15, d_2 = -0.05, N(-d_1) = 0.4404, N(-d_2) = 0.5199$
 $p = -S_0 e^{-qT} N(-d_1) + K e^{-rT} N(-d_2) = 0.1072$

American options

ullet Consider an **American option**, payoff when exercised at $n\delta$

put:
$$(K - S_{n,j})^+$$
, call: $(S_{n,j} - K)^+$

- Backward induction for American put options pricing:
 - start with

$$f_{N,j} = (K - S_{N,j})^+, \quad j = 0, 1, \cdots, N$$

• for $n = N - 1, \dots, 0$,

$$f_{n,j} = \max((K - S_{n,j})^+, e^{-r\delta}(p^* f_{n+1,j+1} + (1 - p^*) f_{n+1,j}))$$

Example (pricing an American put)

Consider a two-step binomial model with $S_0 = 4$, u = 2, d = 1/2, $\delta = 1$, $r = \ln(1.25)$. Price a 2-year American put with strike 5.

- Payoff at maturity: $f_{uu} = 0$, $f_{ud} = 1$, $f_{dd} = 4$; risk neutral probability $p^* = (e^{r\delta} d)/(u d) = 0.5$
- At time δ ,

$$f_u = \max(0, e^{-r\delta}(p^*f_{uu} + (1-p^*)f_{ud}) = 0.4$$

$$f_d = \max(3, e^{-r\delta}(p^*f_{ud} + (1-p^*)f_{dd})) = \max(3, 2) = 3$$
, early exercise!

At time 0,

$$f_0 = \max(1, e^{-r\delta}(p^*f_u + (1-p^*)f_d)) = \max(1, 1.36) = 1.36$$

Path dependent derivatives

 Derivative payoff depends on the whole path of the asset price process

$$f(S_0, S_\delta, \cdots, S_{n\delta})$$

- Lookback options: payoff depends on maximum/minimum asset price
- Asian options: payoff depends on average asset price
- No arbitrage pricing still works: construct replicating portfolio correspondingly; backward induction
- Risk neutral pricing still works, but need to differentiate different paths

$$f_0 = \mathbb{E}^*[e^{-rT}f(S_0,\cdots,S_{n\delta})] \neq e^{-rT}\sum_{j=0}^N \binom{N}{j}(p^*)^j(1-p^*)^{N-j}f_{N,j}$$

Implementing binomial models

- C/C++: always use **double** (instead of **float**)
- Start with payoff at maturity, use backward induction
- Not efficient to keep the whole tree
- Enough to use a N+1 vector
- Project: pricing and analyzing European/American options in the CRR model, note the due dates for the draft and the final report, no extension possible