

Elektrische Netzwerke und Mehrtore Übung

Wintersemester 2020

Protokoll Übung 5: Frequenzbereich

Gruppe: 04

Gruppenteilnehmer:

- 1. Matthias Fottner
- 2. David Keller
- 3. Moritz Woltron

Vortragende: Helena Grabner

Graz, am 26. November 2020

Inhaltsverzeichnis

1	Zeichnen der beiden maßstabsgetreuen Zeigerdiagramme 1.1 bei angenommener Spule 1.2 bei angenommenem Kondensator	3 4
2	Bestimmen der Übertragungsfunktion	5
3	Bestimmen aller Spannungen und Ströme	6
4	Mögliche Bauteilkombinationen als Lösung	8
5	Matlab-Plots 5.1 Zeigerdiagramm mit Kondensator als nun bekanntes Element	9 9
6	Matlab-Skripten6.1Skript zu Kondensator als unbekanntes Element6.2Skript zu Spule als unbekanntes Element6.3Skript zu Kondensator als nun bekanntes Element	10 10 11 12
7	PSpice-Simulation 7.1 Schaltbild	14 14 14

1 Zeichnen der beiden maßstabsgetreuen Zeigerdiagramme

Bei den Diagrammen 1 und 2 können bloß die absoluten Werte von $i_L = i_R, u_R, u_L$ und u_X mit deren jeweiligen Phasenbeziehungen bestimmt werden. Eine genaue Bestimmung des Betrags von $\underline{i_{X,L}}$ bzw. $\underline{i_{X,C}}$ ist ohne weitere Bedingung nicht möglich. Allerdings muss dieser Zeiger um $\pm 90^\circ$ von $\underline{u_X}$ verschoben sein.

1.1 bei angenommener Spule

Die Spannungen wurden wie in Kapitel 6.2, Zeile 52 ersichtlich, mit dem Faktor 1,7 skaliert. Dies gewährleistet die Darstellung von Strom und Spannung in einem Zeigerdiagramm.

Abbildung 1: Zeigerdiagramm mit Spule als angenommenes Element

1.2 bei angenommenem Kondensator

Die Spannungen wurden wie in Kapitel 6.1, Zeile 52 ersichtlich, mit dem Faktor 1,7 skaliert. Dies gewährleistet die Darstellung von Strom und Spannung in einem Zeigerdiagramm.

Abbildung 2: Zeigerdiagramm mit Kondensator als unbekanntes Element

2 Bestimmen der Übertragungsfunktion

Um die Bauteile so zu dimensionieren, dass ein Phasenwinkel von $\varphi_{\underline{u}_{\underline{X}}} = \varphi_{\underline{i}_{\underline{C}}} + 18,435^{\circ}$ zustande kommt, wird eine Übertragungsfunktion \underline{F} ermittelt.

$$u_x = \underline{F} \cdot i_C \tag{1}$$

Um \underline{F} zu erhalten, wird zuerst $\underline{u_X}$ mithilfe des ohm'schen Gesetzes ausgedrückt. Da $\underline{i_X}$ unbekannt ist, wird jener mittels eines Stromteilers von $\underline{i_C}$ ausgedrückt. Durch anschließendes Einsetzen und Umformen lässt sich nun $\underline{u_X}$ als Produkt von $\underline{i_C}$ mit bekannten Werten (= \underline{F}) darstellen.

$$\underbrace{u_X} = \underbrace{i_X} \cdot jX_X$$

$$\underbrace{i_X} = \underbrace{i_C} \cdot \frac{R + jX_L}{R + jX_L + jX_X}$$

$$\Longrightarrow \underbrace{u_X} = \underbrace{i_C} \cdot \frac{R + jX_L}{R + j(X_L + X_X)} \cdot jX_X$$

$$= \underbrace{i_C} \cdot \frac{-X_X \cdot X_L + j \cdot R \cdot X_X}{R + j(X_L + X_X)} \cdot \frac{R - j(X_L + X_X)}{R - j(X_L + X_X)}$$

$$= \underbrace{i_C} \cdot \frac{-X_X \cdot X_L \cdot R + j \cdot R^2 \cdot X_X + j \cdot X_X \cdot X_L(X_L + X_X) + R \cdot X_X(X_L + X_X)}{R^2 + (X_L + X_X)^2}$$

$$= \underbrace{i_C} \cdot \frac{-X_X \cdot X_L \cdot R + R \cdot X_X \cdot X_L + R \cdot X_X^2 + j (R^2 \cdot X_X + X_X \cdot X_L^2 + X_X^2 \cdot X_L)}{R^2 + (X_L + X_X)^2}$$

$$= \underbrace{i_C} \cdot \frac{R \cdot X_X^2}{R^2 + (X_L + X_X)^2} + j \cdot \underbrace{X_X(R^2 + X_L^2 + X_X \cdot X_L)}_{R^2 + (X_L + X_X)^2}$$

$$= \underbrace{i_C} \cdot \underbrace{R \cdot X_X^2}_{R^2 + (X_L + X_X)^2} + j \cdot \underbrace{X_X(R^2 + X_L^2 + X_X \cdot X_L)}_{R^2 + (X_L + X_X)^2}$$

$$= \underbrace{i_C} \cdot \underbrace{R \cdot X_X^2}_{R^2 + (X_L + X_X)^2} + j \cdot \underbrace{X_X(R^2 + X_L^2 + X_X \cdot X_L)}_{R^2 + (X_L + X_X)^2}$$

$$= \underbrace{i_C} \cdot \underbrace{R \cdot X_X^2}_{R^2 + (X_L + X_X)^2} + j \cdot \underbrace{X_X(R^2 + X_L^2 + X_X \cdot X_L)}_{R^2 + (X_L + X_X)^2}$$

$$= \underbrace{i_C} \cdot \underbrace{R \cdot X_X^2}_{R^2 + (X_L + X_X)^2} + j \cdot \underbrace{X_X(R^2 + X_L^2 + X_X \cdot X_L)}_{R^2 + (X_L + X_X)^2}$$

Da $\underline{i_C}$ mit der Übertragungsfunktion \underline{F} multipliziert wird, werden deren Winkel (in der Eulerform) addiert. Somit lässt sich die durch \underline{F} hervorgerufene Phasenverschiebung als arctan ($\frac{\mathrm{Im}}{\mathrm{Re}}$) ausdrücken. Diese soll dem vorausgesetzten Winkel von 18,435° entsprechen. Man kann diesen Ausdruck nun nach der gesuchten Größe X_X umformen und den Bauteilwert ermitteln.

$$18,435^{\circ} \stackrel{!}{=} \arctan\left(\frac{X_X(R^2 + X_L^2 + X_X \cdot X_L)}{R \cdot X_X^2}\right)$$

$$\tan(18, 435^{\circ}) = \frac{X_X(R^2 + X_L^2 + X_X \cdot X_L)}{R \cdot X_X^2}$$

$$\tan(18, 435^{\circ}) \cdot R \cdot X_X = R^2 + X_L^2 + X_X \cdot X_L$$

$$X_X \cdot (\tan(18, 435^{\circ})R - X_L) = R^2 + X_L^2$$

$$X_X = \frac{R^2 + X_L^2}{\tan(18, 435^{\circ})R - X_L}$$

$$= \frac{(4\Omega)^2 + (1000 \,\mathrm{s}^{-1} \cdot 8 \,\mathrm{mH})^2}{\tan(18, 435^{\circ})4\Omega - (1000 \,\mathrm{s}^{-1} \cdot 8 \,\mathrm{mH})}$$

$$= -12\Omega$$

$$\Longrightarrow X_X = -\frac{1}{\omega \cdot C_X}$$

$$C_X = -\frac{1}{X_X \cdot \omega} = \frac{1}{(-12\Omega) \cdot 1000 \,\mathrm{s}^{-1}} = 83, 33 \,\mu\mathrm{F}$$

Das negative Vorzeichen bei dem Ergebnis von X_X lässt auf einen Kondensator schließen, da dort $X=\frac{1}{\omega C}$.

3 Bestimmen aller Spannungen und Ströme

Mithilfe des Teststromes von $\underline{i_L} = 1$ A lassen sich sich die Werte aller Ströme und Spannungen der Schaltung folgendermaßen bestimmen:

$$\underline{Z_L} = j \cdot \omega \cdot L$$

$$\underline{Z_C} = \frac{1}{j \cdot \omega \cdot C}$$

$$\underline{Z_{C,X}} = \frac{1}{j \cdot \omega \cdot C_X}$$

$$\underline{u_L} = \underline{Z_L} \cdot \underline{i_L} = (8 \angle 90^\circ) \text{ V}$$

$$\underline{u_R} = R \cdot \underline{i_L} = (4 \angle 0^\circ) \text{ V}$$

$$\underline{u_X} = \underline{u_R} + \underline{u_L} = (8,94 \angle 63,435^\circ) \text{ V}$$

$$\underline{i_X} = \frac{\underline{u_X}}{Z_{C,X}} = (0,74 \angle 153,43^\circ) \text{ A}$$

$$i_C = i_X + i_L = (0, 47 \angle 45^\circ) \text{ A}$$

 $\underline{u_C} = i_C \cdot \underline{Z_C} = (9, 43 \angle -45^\circ) \text{ V}$
 $u_S = u_C + u_X = (10, 75 \angle 7, 13^\circ) \text{ V}$

Wie ersichtlich, entspricht der Betrag der Quellspannung $|\underline{u_S}|$ nicht den vorgegebenen 10 V. Um dies anzupassen, werden alle Beträge der komplexen Größen mit dem Skalierungsfaktor $\frac{10\,\mathrm{V}}{|u_S|}=0,9303$ multipliziert. Um $\underline{u_S}$ abschließend auf die reale Achse zu legen, können alle Werte außerdem um den Phasenwinkel von $\underline{u_S}$ im Uhrzeigersinn gedreht werden. Man erhält nun folgende Werte:

$$\underline{u_L} = ((8 \cdot 0, 9303) \angle (90^\circ - 7, 13^\circ)) \, V = (7, 44 \angle 82, 88^\circ) \, V$$

$$\underline{u_R} = ((4 \cdot 0, 9303) \angle (0^\circ - 7, 13^\circ)) \, V = (3, 72 \angle - 7, 13^\circ) \, V$$

$$\underline{u_X} = ((8, 94 \cdot 0, 9303) \angle (63, 435^\circ - 7, 13^\circ)) \, V = (8, 32 \angle 56, 31^\circ) \, V$$

$$\underline{i_X} = ((0, 74 \cdot 0, 9303) \angle (153, 43^\circ - 7, 13^\circ)) \, A = (0, 69 \angle 146, 31^\circ) \, V$$

$$\underline{i_C} = ((0, 47 \cdot 0, 9303) \angle (45^\circ - 7, 13^\circ)) \, A = (0, 44 \angle 37, 88^\circ) \, V$$

$$\underline{u_C} = ((9, 43 \cdot 0, 9303) \angle (-45^\circ - 7, 13^\circ)) \, V = (8, 77 \angle - 52, 13^\circ) \, V$$

$$\underline{u_S} = ((10, 75 \cdot 0, 9303) \angle (7, 13^\circ - 7, 13^\circ)) \, V = (10 \angle 0^\circ) \, V$$

Mit diesen Werten wurde der Plot in Abbildung 3 erstellt.

4 Mögliche Bauteilkombinationen als Lösung

Beim Bestimmen der Übertragungsfunktion \underline{F} kommt man auf folgenden Wert für X_X :

$$X_X = \frac{R^2 + X_L^2}{\tan(18,435^\circ) \cdot R - X_L} \tag{2}$$

Da der Nenner nicht Null werden darf, lässt sich folgendes Verhältnis von X_L zu R ausschließen:

$$\frac{X_L}{R} = \tan(18, 435^\circ)$$

Der Zähler des Bruchs in Formel 2 kann nicht negativ werden. Das Vorzeichen des Bruchs entscheidet jedoch, ob es sich um eine Spule (positiver Wert) oder einen Kondensator (negativer Wert) handelt. Somit gilt:

$$\tan(18, 435^{\circ}) \cdot R - X_L \begin{cases} < 0 & \Longrightarrow \text{Kondensator} \\ > 0 & \Longrightarrow \text{Spule} \end{cases}$$

5 Matlab-Plots

5.1 Zeigerdiagramm mit Kondensator als nun bekanntes Element

Die Spannungen wurden wie in Kapitel 6.3, Zeile 62 ersichtlich, mit dem Faktor 9 skaliert. Dies gewährleistet die Darstellung von Strom und Spannung in einem Zeigerdiagramm.

Abbildung 3: Zeigerdiagramm mit Kondensator als nun bekanntes Element

6 Matlab-Skripten

6.1 Skript zu Kondensator als unbekanntes Element

```
clc
1
     clear all
 2
    par = 0(a,b) a.*b./(a+b);
 5
    funcTurnR = 0(z,phi) abs(z) .* exp(1i.*(angle(z)-phi));
    % Gegebene Werte
8
    R = 4;
9
    C = 50*10^{(-6)};
10
11
     L = 8*10^(-3);
    <u>u_0</u> = 10;
12
13
    w = 1000;
14
    I_L = 1;
15
16
    %% Calculation
17
    Z_C = 1/(1i*w*C);
18
    Z_L = 1i*w*L;
19
    Z_X_L = -3i;
20
    U_R = R * I_L;
22
    U_L = Z_L * I_L;
^{23}
24
    U_X = U_R + U_L;
    I_X = U_X / Z_X_L;
25
26
     I_L = funcTurnR(I_L, angle(I_L))
27
    U_R = funcTurnR(U_R, angle(I_L))
28
    U_L = funcTurnR(U_L, angle(I_L))
    U_X = funcTurnR(U_X, angle(I_L))
I_X = funcTurnR(I_X, angle(I_L))
30
31
    angle = angle(U_X)
33
35
    U_S = (U_R + U_L + U_X)/2
    %%Plot
36
37
    psize = 1;
38
39
     figure1 = figure(1);
40
          clf
41
42
          s = axes();
43
          hold on
          grid on
44
          box on
          xlabel('Re')
46
          ylabel('Im')
47
          axis equal;
48
          xlim([-2.8 2.8])
49
50
          ylim([-0.3 4.9])
          scaling_factor = 1.7;
52
53
          vectorPlot(0, U_R/scaling_factor, '-b', '$\underline{u_R}$', psize);
vectorPlot(0, U_L/scaling_factor, '-b', '$\underline{u_L}$', psize);
vectorPlot(0, U_X/scaling_factor, '-b', '$\underline{u_X}$', psize);
drawAngle(1,atan(8/4),(atan(8/4)+pi/2),'$90^{\circ}$','-k')
54
55
57
```

```
vectorPlot(0, I_X, '--k', '$\underline{i_{X,C}}$', psize*0);
vectorPlot(0, I_L, '-r', '$\underline{i_L}$\underline{i_R}$', psize);
```

6.2 Skript zu Spule als unbekanntes Element

```
clc
1
 2
     clear all
     par = @(a,b) a.*b./(a+b);
 5
     funcTurnR = 0(z,phi) abs(z) .* exp(1i.*(angle(z)-phi));
 6
     % Gegebene Werte
8
9
    R = 4;
     C = 50*10^{(-6)};
     L = 8*10^{(-3)};
11
    U_0 = 10;
12
    w = 1000;
13
14
15
     I_L = 1;
16
     %% Calculation
17
18
     Z_C = 1/(1i*w*C);
     Z_L = 1i*w*L;
19
    Z_X_L = i*3;
20
21
     U_R = R * I_L;
^{22}
     U_L = Z_L * I_L;
^{23}
     U_X = U_R + U_L;
24
     I_X = U_X / Z_X_L;
25
     I_L = funcTurnR(I_L, angle(I_L))
U_R = funcTurnR(U_R, angle(I_L))
27
28
     U_L = funcTurnR(U_L, angle(I_L))
     U_X = funcTurnR(U_X, angle(I_L))
I_X = funcTurnR(I_X, angle(I_L))
30
31
32
33
     angle = angle(U_X)
     U_S = (U_R + U_L + U_X)/2
35
36
    %%Plot
37
     psize = 1.5;
38
39
     figure1 = figure(1);
40
          clf
41
42
           s = axes();
          hold on
43
          grid on
44
          box on
45
          xlabel('Re')
46
          ylabel('Im')
47
          axis equal;
48
          xlim([-0.3 2.8])
49
          ylim([-1.5 4.9])
50
51
          scaling_factor = 1.7;
52
53
          \label{lem:vectorPlot} $$ \operatorname{U_R/scaling_factor}, '-b', '\$\operatorname{underline\{u_R\}\$', psize\}}; $$ \operatorname{vectorPlot}(0, U_L/scaling_factor, '-b', '\$\operatorname{underline\{u_L\}\$', psize}); $$ $$ $$ \end{tabular} $$ $$ \end{tabular}
54
```

6.3 Skript zu Kondensator als nun bekanntes Element

```
clc
1
    clear all
2
3
    par = 0(a,b) a.*b./(a+b);
    funcTurnR = @(z,phi) abs(z) .* exp(1i.*(angle(z)-phi));
6
    % Gegebene Werte
9
    R = 4;
    C = 50*10^{(-6)};
10
    L = 8*10^{(-3)};
11
    U_0 = 10;
12
    w = 1000;
13
14
    I_L = 1;
15
16
    %% Calculation
17
18
    Z_C = 1/(1i*w*C);
19
    Z_L = 1i*w*L;
    X_CX = (R^2+(w*L)^2)/(tan(18.435/360 * 2 * pi)*R - w*L)
20
    Z_CX = 1i * X_CX
21
22
    C_X = 1/(w*X_CX)
23
    U_R = R * I_L;
25
    U_L = Z_L * I_L;
26
    U_X = U_R + U_L;
^{27}
    I_X = U_X / Z_CX;
28
    I_C = I_X + I_L;
29
    U_C = I_C * Z_C;
30
    U_S = U_C + U_X;
31
32
    %% Scaling to 10V Source Voltage
33
34
35
    U_S_scaling = 10/abs(U_S);
36
37
    I_L = funcTurnR(I_L, angle(U_S)) * U_S_scaling;
    U_R = funcTurnR(U_R, angle(U_S)) * U_S_scaling;
U_L = funcTurnR(U_L, angle(U_S)) * U_S_scaling;
38
39
    U_X = funcTurnR(U_X, angle(U_S)) * U_S_scaling;
40
    I_X = funcTurnR(I_X, angle(U_S)) * U_S_scaling;
I_C = funcTurnR(I_C, angle(U_S)) * U_S_scaling;
41
42
    U_C = funcTurnR(U_C, angle(U_S)) * U_S_scaling;
    U_S = funcTurnR(U_S, angle(U_S)) * U_S_scaling;
44
45
    %%Plot
46
47
48
    psize = 0.4;
49
    figure1 = figure(1);
50
51
        clf
        s = axes();
52
53
        hold on
```

```
grid on
54
             box on
55
56
             xlabel('Re')
             ylabel('Im')
57
             axis equal;
58
             xlim([-2.8 2.8])
59
             ylim([-0.3 4.9])
60
61
62
             scaling_factor = 9;
63
             vectorPlot(0, 2*I_X, '--k', '', psize*0);
vectorPlot(0, 2*I_C, '--k', '', psize*0);
vectorPlot(0, I_L, '-r', '$\underline{i_L}$$\underline{i_R}$$', psize);
64
65
66
             vectorPlot(0, U_R/scaling_factor, '-b', '$\underline{u_R}$', psize);
vectorPlot(0, U_L/scaling_factor, '-b', '$\underline{u_L}$', psize);
vectorPlot(0, U_X/scaling_factor, '-b', '$\underline{u_X}$', psize);
67
68
69
             vectorFlot(0, U_C/scaling_factor, '-b', '$\underline{u_C}$', psize);
vectorPlot(0, U_S/scaling_factor, '-b', '$\underline{u_S}$', psize);
vectorPlot(0, U_S/scaling_factor, '-b', '$\underline{u_S}$', psize);
vectorPlot(0, I_C, '-r', '$\underline{i_C}$', psize);
70
71
72
73
              \begin{tabular}{ll} vectorPlot(0, I_X, '-r', '\$\underline\{i_{X}\}\$', psize); \\ drawAngle(0.7, atan(imag(I_C)/real(I_C)), (atan(imag(I_C)/real(I_C)) + 18.435/360). \\ \end{tabular} 
74
75
                     * 2 * pi),'$18.435^{\circ}$','-k')
76
             ^{\circ}$','-k')
```

7 PSpice-Simulation

7.1 Schaltbild

Abbildung 4: Schaltbild der zu simulierenden Schaltung

7.2 Plot

Abbildung 5: Ausschnitt des Simulationsplots der beiden Größen $u_{C,X}$ und i_C

In Abbildung 5 lässt sich eine zeitliche Verschiebung von $\underline{i_C}$ zu $\underline{u_{C,X}}$ von $\Delta t = 325\,\mu s$ messen. Dies entspricht einem Winkel von $\varphi = \frac{\Delta t}{T} \cdot 360^\circ = 18,603^\circ$. Dem Unterschied von $0,168^\circ$ zum vorgegebenen Wert liegen Mess- und Rundungsfehler zugrunde.