Bayes: Inferencia Probabilística

Introducción a Teoría de la Probabilidad

Fenómenos aleatorios

No se puede predecir el resultado (mecanismos aleatorios).

Introducción a Teoría de la Probabilidad

Fenómenos aleatorios

No se puede predecir el resultado (mecanismos aleatorios).

$$\Omega = \{ \}$$

Introducción a Teoría de la Probabilidad

Fenómenos aleatorios

No se puede predecir el resultado (mecanismos aleatorios).

$$\Omega = \{ \}$$

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

1. Definición clásica de probabilidad

Asume equiprobabilidad

1. Definición clásica de probabilidad

Asume equiprobabilidad

Definición 1.2 Sea A un subconjunto de un espacio muestral Ω de cardinalidad finita. Se define la probabilidad clásica del evento A como el cociente:

$$P(A) = \frac{\#A}{\#\Omega},$$

en donde el símbolo #A denota la cardinalidad o número de elementos del conjunto A.

1. Definición clásica de probabilidad

Asume equiprobabilidad

Definición 1.2 Sea A un subconjunto de un espacio muestral Ω de cardinalidad finita. Se define la probabilidad clásica del evento A como el cociente:

$$P(A) = \frac{\#A}{\#\Omega},$$

en donde el símbolo #A denota la cardinalidad o número de elementos del conjunto A.

$$P(A) = \frac{\#\{2,4,6\}}{\#\{1,2,3,4,5,6\}} = \frac{3}{6} = \frac{1}{2}.$$

2. Definición frecuentista de probabilidad

Núm.	Resultado	n_A/n
1	3	0/1
2	6	1/2
3	2	2/3
4	1	2/4
5	4	3/5
6	6	4/6
7	3	4/7
8	4	5/8
9	2	6/9
10	5	6/10

Núm.	Resultado	n_A/n
11	2	7/11
12	5	7/12
13	1	7/13
14	6	8/14
15	3	8/15
16	1	8/16
17	5	8/17
18	5	8/18
19	2	9/19
20	6	10/20

2. Definición frecuentista de probabilidad

Definición 1.4 Sea n_A el número de ocurrencias de un evento A en n realizaciones de un experimento aleatorio. La probabilidad frecuentista del evento A se define como el límite

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}.$$

Definición subjetiva de probabilidad

• Un número del 0 al 1 que representa la certidumbre que se tiene respecto de la ocurrencia de un evento.

Definición axiomática de probabilidad

Axiomas de la probabilidad

- 1. $P(A) \ge 0$.
- 2. $P(\Omega) = 1$.
- 3. $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$ cuando A_1, A_2, \dots son ajenos dos a dos.

- Determinar qué tan probable es que ocurra un evento X
 - Lidiar contra la incertidumbre
 - Resolver el problema de la Asignación de Crédito

- Determinar qué tan probable es que ocurra un evento X
 - Lidiar contra la incertidumbre
 - Resolver el problema de la Asignación de Crédito

- Determinar qué tan probable es que ocurra un evento X
 - Lidiar contra la incertidumbre
 - Resolver el problema de la Asignación de Crédito

¿Qué tan probable es...

... que un individuo X sea zurdo?

¿Qué tan probable es...?

Probabilidad Condicional

• La probabilidad de un evento A, a la luz de ciertos datos B

P(A|B)

p(El chico sea zurdo | Celular en mano izquierda)

p(El chico sea zurdo | Escribe con mano derecha)

Probabilidad Condicional

Eventos independientes

Evento A:

La probabilidad de que va a llover

Evento B:

Hoy es miércoles

$$p(A|B) = p(A)$$

Eventos <u>no</u> independientes

Evento A:

La probabilidad de que va a llover Evento B:

Está nublado

Probabilidad Condicional

Eventos independientes

Evento B:

Es miércoles

Evento A:

Lluvia

$$p(A|B) = p(A)$$

Eventos <u>no</u> independientes

Evento B:

Está Nublado.

Evento A:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Evento B:

Está Nublado.

Evento A:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Evento B:

Está Nublado.

Evento A:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Evento B:

Está Nublado.

Evento A:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

• La probabilidad de un evento A, dada la evidencia B.

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

 La probabilidad de que llueva dado que está nublado.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• La probabilidad de un evento A, dada la evidencia B.

- La probabilidad del evento A
 - La probabilidad de que llueva

• La probabilidad de un evento A, dada la evidencia B.

- La probabilidad del evento A
- La probabilidad de observar la evidencia B, cuando el evento A ocurre.
 - La probabilidad de que el cielo esté nublado, dado que está lloviendo

 La probabilidad de un evento A, dada la evidencia B.

La probabilidad del evento A

 La probabilidad de observar la evidencia B, cuando el evento A ocurre.

- La probabilidad de observar la evidencia.
 - La probabilidad de que esté nublado

¿Qué implica decir 'Bayesiano'?

Hay una actualización constante de la información que me permite reducir mi incertidumbre respecto a la probabilidad de ocurrencia de un evento X.

- Determinar qué tan probable es que ocurra un evento X
 - Lidiar contra la incertidumbre
 - Resolver el problema de la Asignación de Crédito

• Determinar qué tan probable es que ocurra un evento X

- Lidiar contra la incertidumbre
- Resolver el problema de la Asignación de Crédito

¿Es o no es?

- La SEÑAL coexiste con el ruido.
 - Los dos me producen evidencia parecida.
- Criterio
 - Consecuencias
 - Probabilidad

• La probabilidad de un evento A, dada la evidencia B.

La probabilidad del evento A

 La probabilidad de observar la evidencia B, cuando el evento A ocurre.

La probabilidad de observar la evidencia.

Ejemplo: Reclamo de equipaje

- •Tú y 99 personas más están esperando a recoger su equipaje.
- •Tu maleta es muy común: el 5% de los pasajeros tiene una igual.
- •¿Reconoces tu maleta?

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

- Determinar qué tan probable es que ocurra un evento X
 - Lidiar contra la incertidumbre
 - Resolver el problema de la Asignación de Crédito

- Determinar qué tan probable es que ocurra un evento X
 - Lidiar contra la incertidumbre
 - Resolver el problema de la Asignación de Crédito

Asignación de crédito

Formación de relaciones causales.

• ¿A qué de mi entorno le atribuyo la ocurrencia de cierto evento?

Ejemplos:

Mi novio está enojado -----> ¿Qué hice?

Me duele el estómago -----> ¿Qué me hizo daño?

La asignación de crédito como un cómputo de probabilidades condicionales.

• ¿De qué manera observar ciertos elementos en el ambiente alteran la probabilidad de observar ciertos eventos?

- Sesgos (Prior)
 - Si me duele el estómago Estímulo Auditivo vs Alimento ingerido
 - Si me dan un choque eléctrico Estímulo auditivo vs Alimento ingerido

Espacio de Contingencia

Espacio de Contingencia

• La probabilidad de un evento A, dada la evidencia B.

La probabilidad del evento A

 La probabilidad de observar la evidencia B, cuando el evento A ocurre.

La probabilidad de observar la evidencia.