Ardrand: The feasibility of the Arduino as a random number generator

Benedikt Kristinsson Advisor: Ýmir Vigfússon

December 19, 2011

Cryptography Pseudo-Random Number Generator

Randomness

Hard on CPU

Cryptography Pseudo-Random Number Generator

- Hard on CPU
- External sources needed

- Hard on CPU
- External sources needed
 - Hard drives

- Hard on CPU
- External sources needed
 - Hard drives
 - Radioactive decay

- Hard on CPU
- External sources needed
 - Hard drives
 - Radioactive decay
 - Atmospheric noise (RANDOM ORG)

- Hard on CPU
- External sources needed
 - Hard drives
 - Radioactive decay
 - Atmospheric noise (RANDOM ORG)
 - Intel RNG

- Hard on CPU
- External sources needed
 - Hard drives
 - Radioactive decay
 - Atmospheric noise (RANDOM.ORG)
 - Intel RNG
- But why?

- Hard on CPU
- External sources needed
 - Hard drives
 - Radioactive decay
 - Atmospheric noise (RANDOM.ORG)
 - Intel RNG
- But why?

Auðkennislykilinn/RSA SecureID

Deterministic

- Deterministic
- Only as secure as its seed

- Deterministic
- Only as secure as its seed
- Unpredictable sequences

- Deterministic
- Only as secure as its seed
- Unpredictable sequences

 Bad seeding methods have resulted in breaking of cryptosystems

- Bad seeding methods have resulted in breaking of cryptosystems
 - Netscape browser

- Bad seeding methods have resulted in breaking of cryptosystems
 - Netscape browser
 - Enigma

- Bad seeding methods have resulted in breaking of cryptosystems
 - Netscape browser
 - Enigma
- Single-purpose devices

- Bad seeding methods have resulted in breaking of cryptosystems
 - Netscape browser
 - Enigma
- Single-purpose devices

Possible ways

External hardware

- External hardware
- Obtain keys from outside

- External hardware
- Obtain keys from outside
- Need

- External hardware
- Obtain keys from outside
- Need
 - Available hardware

- External hardware
- Obtain keys from outside
- Need
 - Available hardware
 - Cheap

- External hardware
- Obtain keys from outside
- Need
 - Available hardware
 - Cheap
 - Statistically sound

- External hardware
- Obtain keys from outside
- Need
 - Available hardware
 - Cheap
 - Statistically sound
 - Fast

- External hardware
- Obtain keys from outside
- Need
 - Available hardware
 - Cheap
 - Statistically sound
 - Fast

Today: Arduino

Available

- Available
- Cheap (\$30)

- Available
- Cheap (\$30)
- Analog noise from analogRead

- Available
- Cheap (\$30)
- Analog noise from analogRead
- Does it work?

- Available
- Cheap (\$30)
- Analog noise from analogRead
- Does it work?
- Is it fast enough?

- Available
- Cheap (\$30)
- Analog noise from analogRead
- Does it work ?
- Is it fast enough?
- Has it been tried before?

- Available
- Cheap (\$30)
- Analog noise from analogRead
- Does it work ?
- Is it fast enough?
- Has it been tried before?

If it is important for a sequence of [random] values generated to differ [...] initialize the random number generator with a fairly random input, such as analogRead() on an unconnected pin.

Hypothesis: Values returned from analogRead are random

Hypothesis: Values returned from analogRead are random

Need stats!

Hypothesis: Values returned from analogRead are random

- Need stats!
- Need an controlled environment (Iceland vs. Azerbaijan)

Hypothesis: Values returned from analogRead are random

- Need stats!
- Need an controlled environment (Iceland vs. Azerbaijan)

Analysis

Obtain sequences

Analysis

- Obtain sequences
- Algorithms used

Analysis

- Obtain sequences
- Algorithms used
- Statistical tests

Analysis

- Obtain sequences
- Algorithms used
- Statistical tests

Obtained numbers Questions Does the environment matter? Temperature is important

Obtained numbers

Questions

Does the environment matter?

Temperature is important

Obtained numbers

Questions

Does the environment matter?

Obtained numbers

Questions

Does the environment matter?

Temperature is important

Obtained numbers

Questions

Does the environment matter?

Temperature is important

Obtained numbers Questions Does the environment matter? Temperature is important

Questions

• Q: Does the environment matter?

Obtained numbers Questions Does the environment matter? Temperature is important

Questions

- Q: Does the environment matter?
- Q: How can we use the bits?

Obtained numbers Questions Does the environment matter? Temperature is important

Questions

- Q: Does the environment matter?
- Q: How can we use the bits?
- Q: How can we can for randomness?

Obtained numbers Questions Does the environment matter? Temperature is important

Questions

- Q: Does the environment matter?
- Q: How can we use the bits?
- Q: How can we can for randomness?

Obtained numbers Questions Does the environment matter? Temperature is important

Does the environment matter?

Q: Does the environment matter?

Does the environment matter?

Q: Does the environment matter?

Yes!

Obtained numbers Questions Does the environment matter? Temperature is important

Temperature is important

Obtained numbers Questions Does the environment matter? Temperature is important

Temperature is important

Obtained numbers Questions Does the environment matter? Temperature is important

Temperature is important

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleastsignrand

The von Neumann box

Used to remove bias from a generator

The von Neumann box Meanrand Updownrand Mix meanupdownrand Leastsignrand Twoleastsignrand

The von Neumann box

Used to remove bias from a generator

Idea

Input two bits and discard them if they are the same. A 1,0-pair becomes a 1-bit and 0,1 pair becomes a 0-bit.

The von Neumann box Meanrand Updownrand Mix meanupdownrand Leastsignrand Twoleastsignrand

The von Neumann box

Used to remove bias from a generator

Idea

Input two bits and discard them if they are the same. A 1,0-pair becomes a 1-bit and 0,1 pair becomes a 0-bit.

Math

Let p be the probability that the generator yields a 1-bit and q that it yields a 0-bit. This relies on the fact that 01 and 10 are equiprobable since $p \cdot q = q \cdot p$.

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleastsignrand

The von Neumann box

Used to remove bias from a generator

Idea

Input two bits and discard them if they are the same. A 1,0-pair becomes a 1-bit and 0,1 pair becomes a 0-bit.

Math

Let p be the probability that the generator yields a 1-bit and q that it yields a 0-bit. This relies on the fact that 01 and 10 are equiprobable since $p \cdot q = q \cdot p$.

Applied in all our algorithms.

The von Neumann box Meanrand Updownrand Mix meanupdownrand Leastsignrand Twoleastsignrand

Meanrand

Idea

Keep track of the mean of the values read, generate a 0 if below and a 1 otherwise.

• Observed bitrate: 25-85 bps

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleast signrand

Meanrand

Idea

Keep track of the mean of the values read, generate a 0 if below and a 1 otherwise.

- Observed bitrate: 25-85 bps
- Slow and not very random

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleast signrand

Meanrand

Idea

Keep track of the mean of the values read, generate a 0 if below and a 1 otherwise.

- Observed bitrate: 25-85 bps
- Slow and not very random

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleastsignrand

Updownrand

Idea

Read one value. Generate a 1 bit if the next value is higher and a 0 bit otherwise.

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleastsignrand

Updownrand

Idea

Read one value. Generate a 1 bit if the next value is higher and a 0 bit otherwise.

Observed bitrate: 4 bps

The von Neumann box Meanrand Updownrand Mix meanup downrand Leastsignrand Twoleastsignrand

Updownrand

Idea

Read one value. Generate a 1 bit if the next value is higher and a 0 bit otherwise.

Observed bitrate: 4 bps

• Rejected: too slow

The von Neumann box Meanrand Updownrand Mix meanup downrand Leastsignrand Twoleastsignrand

Updownrand

Idea

Read one value. Generate a 1 bit if the next value is higher and a 0 bit otherwise.

- Observed bitrate: 4 bps
- Rejected: too slow
- Not very random

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleastsignrand

Mixmeanupdownrand

Idea

See what happens if we mix Mean-RAND and Updown-RAND. Generate one bit from either and XOR them together.

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleastsignrand

Mixmeanupdownrand

Idea

See what happens if we mix Mean-RAND and Updown-RAND. Generate one bit from either and XOR them together.

Observed bitrate: 2 bps

The von Neumann box Meanrand Updownrand **Mixmeanupdownrand** Leastsignrand Twoleastsignrand

Mixmeanupdownrand

Idea

See what happens if we mix Mean-RAND and Updown-RAND. Generate one bit from either and XOR them together.

Observed bitrate: 2 bps

• Rejected: too slow

Randomness
How do we get entropy?
Today: Arduino
Analysis
Obtaining numbers
Algoritms
The statistical tests
Results

The von Neumann box Meanrand Updownrand **Mixmeanupdownrand** Leastsignrand Twoleastsignrand

Mixmeanupdownrand

Idea

See what happens if we mix Mean-RAND and Updown-RAND. Generate one bit from either and XOR them together.

- Observed bitrate: 2 bps
- Rejected: too slow
- Not very random either

Randomness
How do we get entropy?
Today: Arduino
Analysis
Obtaining numbers
Algoritms
The statistical tests
Results

The von Neumann box Meanrand Updownrand Mix meanupdownrand Leastsignrand Twoleast signrand

Leastsignrand

Idea

Return the least significant (rightmost) bit for each value from analogRead

Leastsignrand

ldea

Return the least significant (rightmost) bit for each value from analogRead

Math

Let $b = b_9, \dots, b_1, b_0$ be a 10-bit integer generated by analogRead. Return b_0 .

Leastsignrand

Idea

Return the least significant (rightmost) bit for each value from analogRead

Math

Let $b = b_9, \ldots, b_1, b_0$ be a 10-bit integer generated by analogRead. Return b_0 .

Observed bitrate: 290 bps

Leastsignrand

Idea

Return the least significant (rightmost) bit for each value from analogRead

Math

Let $b = b_9, \ldots, b_1, b_0$ be a 10-bit integer generated by analogRead. Return b_0 .

- Observed bitrate: 290 bps
- Fastest

Leastsignrand[']

Idea

Return the least significant (rightmost) bit for each value from analogRead

Math

Let $b = b_9, \dots, b_1, b_0$ be a 10-bit integer generated by analogRead. Return b_0 .

- Observed bitrate: 290 bps
- Fastest
- Passes most tests in some settings

Randomness
How do we get entropy?
Today: Arduino
Analysis
Obtaining numbers
Algoritms
The statistical tests
Results

The von Neumann box Meanrand Updownrand Mixmeanupdownrand Leastsignrand Twoleastsignrand

Twoleastsignrand

ldea

Return the XOR of the two least significant (rightmost) bits for each value from analogRead

Twoleastsignrand

Idea

Return the XOR of the two least significant (rightmost) bits for each value from analogRead

Math

Let $b=b_9,\ldots,b_1,b_0$ be a 10-bit integer generated by analogRead. Return $b_0\oplus b_1$.

Twoleastsignrand

Idea

Return the XOR of the two least significant (rightmost) bits for each value from analogRead

Math

Let $b=b_9,\ldots,b_1,b_0$ be a 10-bit integer generated by analogRead. Return $b_0\oplus b_1$.

ullet Observed bitrate: pprox 170 bps

Twoleastsignrand

Idea

Return the XOR of the two least significant (rightmost) bits for each value from analogRead

Math

Let $b=b_9,\ldots,b_1,b_0$ be a 10-bit integer generated by analogRead. Return $b_0\oplus b_1$.

- Observed bitrate: \approx 170 bps
- Second fastest, but not fast enough

Twoleastsignrand

Idea

Return the XOR of the two least significant (rightmost) bits for each value from analogRead

Math

Let $b=b_9,\ldots,b_1,b_0$ be a 10-bit integer generated by analogRead. Return $b_0\oplus b_1$.

- Observed bitrate: ≈ 170 bps
- Second fastest, but not fast enough
- Passes all tests in some settings

 Impossible to prove that a generator is random [AJM, PO, SA, 1996]

- Impossible to prove that a generator is random [AJM, PO, SA, 1996]
- Not rejected rather than accepted as random

- Impossible to prove that a generator is random [AJM, PO, SA, 1996]
- Not rejected rather than accepted as random
- FIPS boundaries

- Impossible to prove that a generator is random [AJM, PO, SA, 1996]
- Not rejected rather than accepted as random
- FIPS boundaries
- 20,000 bits

Monobit

Idea

A random sequences should contain roughly the same number of 1's and 0's. This gives a statistic on this ratio.

Monobit

Idea

A random sequences should contain roughly the same number of 1's and 0's. This gives a statistic on this ratio.

Math

Let n_0 denote the number of 0's and n_1 the number of 1's. We then find

$$X_1 = \frac{(n_0 - n_1)^2}{2}$$

Results

Passed

Mean-RAND on all our computers

Monobit test Poker test Runs test

Results

Results

Passed

- Mean-RAND on all our computers
- Leastsign-RAND on all our computers

Results

Passed

- Mean-RAND on all our computers
- Leastsign-RAND on all our computers
- Twoleastsign-RAND on all our computers

Results

Passed

- Mean-RAND on all our computers
- Leastsign-RAND on all our computers
- Twoleastsign-RAND on all our computers

Rejected

Updown

Results

Passed

- Mean-RAND on all our computers
- Leastsign-RAND on all our computers
- Twoleastsign-RAND on all our computers

- Updown
- MixMeanUpdown (inconsistently)

Results

Passed

- Mean-RAND on all our computers
- Leastsign-RAND on all our computers
- Twoleastsign-RAND on all our computers

- Updown
- MixMeanUpdown (inconsistently)

Poker test

Idea

Based on the idea of five-card hands in poker. In a random sequence we would expect each hand to show up about the same amount of time.

Poker test

Idea

Based on the idea of five-card hands in poker. In a random sequence we would expect each hand to show up about the same amount of time.

Math

Let m be the size of the poker hand and $k = \lfloor \frac{n}{m} \rfloor$, where n is the length of the sequence. Find

$$X_3 = \frac{2^m}{k} \left(\sum_{i=1}^{2^m} n_i^2 \right) - k$$

Results

Passed 6

• Leastsign-RAND on our laptops

Monobit test Poker test Runs test

Results

Results

Passed

- Leastsign-RAND on our laptops
- Twoleastsign-RAND on our laptops

Results

Passed

- Leastsign-RAND on our laptops
- Twoleastsign-RAND on our laptops

Rejected

Updown-RAND

Results

Passed

- Leastsign-RAND on our laptops
- Twoleastsign-RAND on our laptops

- Updown-RAND
- Mean-RAND

Results

Passed

- Leastsign-RAND on our laptops
- Twoleastsign-RAND on our laptops

- Updown-RAND
- Mean-RAND
- MixMeanUpdown-RAND

Results

Passed

- Leastsign-RAND on our laptops
- Twoleastsign-RAND on our laptops

- Updown-RAND
- Mean-RAND
- MixMeanUpdown-RAND
- All algoritms on desktop computer

Randomness
How do we get entropy?
Today: Arduino
Analysis
Obtaining numbers
Algoritms
The statistical tests
Results

Monobit test Poker test Runs test

Runs

Runs examples

Monobit test Poker test Runs test

Runs

Runs examples

100011

Has one run (gap) of length 3 (three zeroes)

Runs

Runs examples

- Has one run (gap) of length 3 (three zeroes)
- One run (block) of length 2

Runs

Runs examples

- Has one run (gap) of length 3 (three zeroes)
- One run (block) of length 2
- One run of length 1

Runs

Runs examples

- Has one run (gap) of length 3 (three zeroes)
- One run (block) of length 2
- One run of length 1

Runs

Runs examples

100011

- Has one run (gap) of length 3 (three zeroes)
- One run (block) of length 2
- One run of length 1

Idea

Find the number of runs of each length. The longer the run, the unlikelier it is. The FIPS publication has a nice table listing how many sequences of each length should appear.

Runs

Runs examples

100011

- Has one run (gap) of length 3 (three zeroes)
- One run (block) of length 2
- One run of length 1

Idea

Find the number of runs of each length. The longer the run, the unlikelier it is. The FIPS publication has a nice table listing how many sequences of each length should appear.

Math

Let G_i and B_i be the number of gaps and blocks of length i and e_i denote the expected number of blocks of length i. Find

$$X_4 = \sum_{i=1}^k \frac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^k \frac{(G_i - e_i)^2}{e_i}$$

Results

Results

Passed

- Leastsign-RAND sometimes on laptops
 - Twoleastsign-RAND always on one laptop
 - Twoleastsign-RAND sometimes on another laptop

Rejected

- Updown-RAND
- Mean-RAND
- MixMeanUpdown-RAND
- All algoritms on desktop computer

Algorithm	Monobit	Poker	Runs	Long runs	Bandwidth
Leastsign	ACC	ACC	(REJ)	ACC	290.55 bps

Algorithm	Monobit	Poker	Runs	Long runs	Bandwidth
Leastsign	ACC	ACC	(REJ)	ACC	290.55 bps
Twoleastsign	ACC	ACC	ACC	ACC	172.0 bps

Algorithm	Monobit	Poker	Runs	Long runs	Bandwidth
Leastsign	ACC	ACC	(REJ)	ACC	290.55 bps
Twoleastsign	ACC	ACC	ACC	ACC	172.0 bps
Mean	ACC	REJ	REJ	REJ	25.32 bps

Algorithm	Monobit	Poker	Runs	Long runs	Bandwidth
Leastsign	ACC	ACC	(REJ)	ACC	290.55 bps
Twoleastsign	ACC	ACC	ACC	ACC	172.0 bps
Mean	ACC	REJ	REJ	REJ	25.32 bps
Updown-RAND	REJ	REJ	REJ	REJ	4 bps

Algorithm	Monobit	Poker	Runs	Long runs	Bandwidth
Leastsign	ACC	ACC	(REJ)	ACC	290.55 bps
Twoleastsign	ACC	ACC	ACC	ACC	172.0 bps
Mean	ACC	REJ	REJ	REJ	25.32 bps
Updown-RAND	REJ	REJ	REJ	REJ	4 bps
MixMeanUpdown	ACC	REJ	REJ	REJ	2 bps

Algorithm	Monobit	Poker	Runs	Long runs	Bandwidth
Leastsign	ACC	ACC	(REJ)	ACC	290.55 bps
Twoleastsign	ACC	ACC	ACC	ACC	172.0 bps
Mean	ACC	REJ	REJ	REJ	25.32 bps
Updown-RAND	REJ	REJ	REJ	REJ	4 bps
MixMeanUpdown	ACC	REJ	REJ	REJ	2 bps

Results

Algorithm	Monobit	Poker	Runs	Long runs	Bandwidth
Leastsign	ACC	ACC	(REJ)	ACC	290.55 bps
Twoleastsign	ACC	ACC	ACC	ACC	172.0 bps
Mean	ACC	REJ	REJ	REJ	25.32 bps
Updown-RAND	REJ	REJ	REJ	REJ	4 bps
MixMeanUpdown	ACC	REJ	REJ	REJ	2 bps

Twoleastsign passes NIST tests as well when it passes our tests

Arduino not a feasible target using our methods

- Arduino not a feasible target using our methods
- We created a seed discovery program

- Arduino not a feasible target using our methods
- We created a seed discovery program
 - Runs quickly (Mean: 1.6 seconds)

- Arduino not a feasible target using our methods
- We created a seed discovery program
 - Runs quickly (Mean: 1.6 seconds)
 - Always finds seed in our experiments (5000 sequences)

- Arduino not a feasible target using our methods
- We created a seed discovery program
 - Runs quickly (Mean: 1.6 seconds)
 - Always finds seed in our experiments (5000 sequences)
 - Almost always finds the seed

- Arduino not a feasible target using our methods
- We created a seed discovery program
 - Runs quickly (Mean: 1.6 seconds)
 - Always finds seed in our experiments (5000 sequences)
 - Almost always finds the seed

Future work

Find out what factors cause it to pass tests

- Find out what factors cause it to pass tests
 - Stabilize if possible

- Find out what factors cause it to pass tests
 - Stabilize if possible
- Implement more algorithms to look for entropy

- Find out what factors cause it to pass tests
 - Stabilize if possible
- Implement more algorithms to look for entropy
- Cheap and simple modifications of Arduino

- Find out what factors cause it to pass tests
 - Stabilize if possible
- Implement more algorithms to look for entropy
- Cheap and simple modifications of Arduino
- Workshop

- Find out what factors cause it to pass tests
 - Stabilize if possible
- Implement more algorithms to look for entropy
- Cheap and simple modifications of Arduino
- Workshop

Thank you

Thank you. Questions?

