Conduction is the transfer of heat between substances that are in direct contact with each other. The better the conductor, the more rapidly heat will be transferred.

Consider steady-state heat transfer through the wall with thickness Δx where the wall inside is at higher temperature (Th) compared with the outside wall (Tc). Heat transfer, Q'(W), is in the direction of x and perpendicular to the plane of temperature difference.

L= 0.4 m, A= 20 m2, DeltaT= 25, and k=0.78 W/m K

$$\dot{Q} = kA \frac{\Delta T}{L} = 0.78 * 20 * \frac{25}{0.4} = 975 W$$

$$R_{wall} = \frac{L}{kA} = \frac{0.4}{0.78 * 20} = 0.0256 \, K/W$$

$$\dot{Q} = \frac{\Delta T}{R_{Wall}} = \frac{25}{0.0256} = 976 W$$