

२५

०८

Sujal Patel (8121564132)
(9574234622)

ECE

PM 1 - B

ACE Academy

Electronic Devices & Circuits

Sir: Satish Kumar

satishkumar_1968@rediffmail.com

Ph# 9849628630

* Standard Values:

$$\Rightarrow n_i = 1.5 \times 10^{10} \text{ cm}^{-3} \rightarrow s_i] \quad \text{AT} \\ = 2.5 \times 10^{13} \text{ cm}^{-3} \rightarrow c_{re}] \quad 300^\circ K.$$

$E_{cr}(\text{eV})$

$$c_{re} : \frac{0.7K}{0.785} \quad \frac{300K}{0.72} \\ s_i : 1.21 \quad 1.1$$

$$\Rightarrow I_n = 3800 \text{ cm}^2 / \text{v-sec}] \quad c_{re} \\ I_p = 1800 "] \quad s_i \\ I_n = 1300 "] \quad s_i \\ I_p = 500 "] \quad s_i \quad \text{AT} \\ 300^\circ K$$

$$\Rightarrow q = 1.6 \times 10^{-19} C.$$

$$c = 3 \times 10^8 \text{ m/sec.}$$

$$k = 8.62 \times 10^{-5} \text{ ev} / {}^\circ K.$$

$$T = 27^\circ C (\text{OR}) 300^\circ K (\text{default}).$$

* Reference Text-Books:

① Integrated Electronics by Millman and Halkinhs.

② Solid State Devices by Streetman.

* Law of Preparation:

⇒ "All technical and Non-technical (Maths, English, General ability, Numerical ability) are to be prepared for Gate examination if required vary preparation time depending on complexity of subject."

* Topics:

(I) : Semiconductors.

(II) : Diodes.

(III) : Transistors & Opto electronics

(IV) : VLSI.

Intrinsic (OR)

Pure

Semiconductors:

→ Most of the electronic devices are made up of either silicon (Si) (OR) Germanium (Ge) with the following Configuration:

⇒ If two silicon atoms 1 & 2 are brought very close to each other then Atom-1 expects valence shell $4e^-$ of Atom-2 to be given atom-1. so that incoming $4e^-$ and existing $4e^-$ make atom-1 to have $8e^-$ in valence shell thus gets saturation and stability.

→ If Sodium and chlorine atom are brought close to each other then Sodium will give away $3s^1$ electron to chlorine become $+ve$ ion and gets stability with $8e^-$ in valence shell

(2nd orbit). Chlorine by accepting 1 electron becomes -ve ion and gets stability with 8e⁻ in valence shell (3rd orbit).

These two ions attract each other and ionic bond forms.

→ Chlorine gets stability by losing 1e⁻ (or) by gaining 7e⁻. Hence, losing versus gaining ratio is 1:7.

→ Silicon atom can get stability by losing 4e⁻ (or) by gaining 4e⁻. Hence losing versus gaining ratio is 4:4 (or) 1:1. In the case of sodium and chlorine since ratio is non-uniform exchange will occur. In the case of silicon since ratio is uniform sharing of electron will occur. After sharing gets completed a 3-D crystal lattice gets created.

⇒ Fig. (1) Shows a 2-D view of crystal lattice of silicon.

Fig-① Crystal lattice

⇒ Fig-② Shows normal atomic model of silicon atom.

Fig-② - Atomic model of silicon atom.

⇒ All atoms are electrically neutral.

(No. of Proton = no. of Electron).

⇒ If a charge carrier moves through a

Unit Cross sectional area then per unit it can produce current i.e.

$$I = \frac{dq}{dt}$$

⇒ All the -very charge electron bound to +very charge nucleus such bound are immobile electron can not support current.

⇒ If an external force is applied to electron more than electric force applied by nucleus then electron comes out of force of attraction of nucleus becomes free Such free electrons are mobile electron can support current.

⇒ As we move from the nucleus force of attraction decreases hence to comment on conductivity only valence shell electrons only to be considered as they can made free easily.

⇒ FIG - ③ Shows modified atomic model representation of silicon atom.

⇒

Fig - 3 - Modified atomic model of si.

→ Fig - ③ is valid representation to comment on conductivity of silicon (or) Germanium (or) any atom of group 4 of periodic table. Using this a set of 5 atoms (or) Superimpose as in fig - ④.

⇒

Fig - 4

* Energy Band Diagram:

⇒ Collection of closely spaced discrete energy level is called energy band diagram.

Fig- 5 - Energy Band diagram.

⇒ If all the atoms of a crystal are pulled separately and kept at larger distance from each other then all the atom's valence shell electrons will occupy the same energy level.

⇒ If atoms are brought very close to each other to form a crystal then so many electrons sitting at the same energy violates Pauli's exclusion principle which states that no two electrons belonging to the same interacting

System can have the same value for the quantum numbers n, l, m & s .

⇒ To satisfy Pauli's principle electron diverges and form valence band (V_B).

An electron in V_B (lower energy level) belongs to valence shell and it is bound hence can not support current.

⇒ If an external energy is applied to an e^- more than the energetic energy with which the nucleus pulls the electron, the electron becomes free and gets excited move to higher energy and found conduction band (C_B). An electrons in C_B (higher energy level) is of free type and can support the current.

⇒ E_c : Lowest Energy Level ($\ominus\infty$) Edged of Conduction band.

⇒ E_v : Highest Energy Level (∞) Edged of Valence band.

\Rightarrow Between E_c & E_v , energy level exist but in them electrons do not exist and it is called forbidden band (or) Energy band gap. i.e. E_g

$$\Rightarrow E_{g(\text{ev})} = E_c - E_v.$$

\Rightarrow As E_g increases material becomes insulator, As E_g decreases material becomes conductor.

\Rightarrow E_g approximately zero for conductor.

\Rightarrow At 0 K, all valence shell electrons are bound in covalent bond (i.e. bound to parent nuclei). Hence, material acts as insulator.

\Rightarrow Covalent bonds are force existing but not visible. Hence shown by dotted line.

\Rightarrow At 300 K, an electron breaks a covalent bond (i.e. comes out of force of attraction of nucleus) becomes free and can be drifted to produce electron drift current in and make material conductor.

* e^- Current (I_n)

- ① A free electron is moving.
- ② An electron is moving in conduction band.
- ③ An electron is moving at higher energy level.
- ④ An electron is moving through interatomic gap.

Hole current (I_p)

- ① An electron is moving from one bound state to other.
- ② An electron is moving in valence band.
- ③ An electron is moving at ~~higher~~ lower energy level.
- ④ An electron is moving from one covalent bond to other.

\Rightarrow Non-existence of electron in a covalent bond is defined as space.

\Rightarrow To understand, the current given by space a set of 8 atoms (or) superimpose as shown in fig-6.

\Rightarrow Using atomic model representation of fig-③, ABCDE are covalent bonds. Each dots is a valence shell electrons sitting in a covalent bond.

\Rightarrow Fig-⑥ is atomic model representation of crystal lattice at 0K.

⇒

Fig - 6

⇒ At 300 K an electron breaks a covalent bond becomes free and creates space as shown in fig-7.

⇒

Fig - 7

→ An electron is drifting from E to A (Right to left) through EDcba path. from EDcba and producing current to right side as in fig-8.

⇒

Fig - 8

⇒ The electron transition shown in atomic model of fig - 8 are transfer to energy diagram as in fig - 9.

⇒

Fig - 9

⇒ Space motion from A to E through ABCDE path is producing current to right side. Hence space is defined by a very charged mobile particle called Hole.

⇒ If one electron goes to conduction band it leaves one hole in valence band hence called electron-hole pair (EHP) generation.

⇒ In n-intrinsic conduction,

⇒ Free electron concentration n = hole concentration p

⇒ But electron current $I_n > I_p$ because mobility of electron μ_n is greater than mobility of hole μ_p (i.e. $\mu_n > \mu_p$) and net current is sum of electron and hole currents.

$$\text{i.e. } I = I_n + I_p$$

⇒ Drift current,

$$I = \underbrace{nq\mu_n EA}_{I_n} + \underbrace{p\mu_p EA}_{I_p}$$

$$\therefore I = I_n + I_p$$

$$I = nqEA[\mu_n + \mu_p]$$

\Rightarrow Electrons and holes are moving in opposite direction but current given by them will be in the same direction.

Note:

\rightarrow For IES exam (or) Engineering college teaching don't use fig - ③, ④, ⑥, ⑧.

★ Extrinsic (or) Impure Semiconductors:

$$\Rightarrow T = nq_{el} + p q_{hp}.$$

$$R = \left[\frac{L}{\sigma A} \right].$$

$$I = V/R.$$

$\Rightarrow \propto I_{NT}$: 1mA (300°K) \longrightarrow 10mA (400°K) 127°C.

$\checkmark I_{NT}$: Impurities \longrightarrow Ext.

1mA: $\longleftarrow 300^{\circ}\text{K} : \longrightarrow 10\text{mA}$.

\Rightarrow Without extrinsic semiconductor it is not possible to produce required current at room temp. and it is not possible to design an electronic device.

* Extrinsic Negative Type (or)

Extrinsic N-Type Semiconductor

⇒ Pentavalent impurities (Fig-2) like Phosphorus, Arsenic, Antimony (or) Bismuth are added to an intrinsic semiconductor.

⇒ When a pentavalent atom replaces a tetravalent silicon (Si) Germanium atom then out of five valence electron four electrons are supplied to four covalent bonds and one electron is excess as in crystal lattice (Fig-1).

⇒ All such excess electron occupy a new energy level E_d at 0°K slightly below conduction band at 0.01eV for Germanium and 0.05eV for silicon as in energy diagram (Fig-3).

⇒ Fig-1

Fig-

\Rightarrow

FIG - 2

FIG - 3

\Rightarrow At 0°K all intrinsic and extrinsic Semiconductors act as insulators.

\Rightarrow At 0°K from Fig-3, $n=0$ & $p=0$ hence $T=0$, $R=\infty$ & $I=0$. i.e. Insulator.

\Rightarrow

FIG - 4

\Rightarrow At 50°K for Ge and 100°K for silicon Pentavalent impurities loose excess electrons

becomes +ve ion called impurity ionization
 (I.I). Hence $n > 0$ and $\frac{P}{P_{\infty}} > 0$. Hence,
 $\sigma > 0$, $R < \infty$ and $I > 0$ i.e conductor.
 \Rightarrow Pentavalent atom is giving $\pm e^-$ for
 support of current hence called donor
 atom.

$\Rightarrow E_d$: donor energy level.

\Rightarrow At $300^\circ K$ electron hole pair (EHP)
 generation (OR) Band to Band (B.B)
 transition occurs. hence, n increases
 and P increases. Hence, σ increases,
 R decreases and I increases. i.e. more
 current is possible in extrinsic than
 intrinsic due to I.I. (Impurity Ionization)

$$I = I_n(I.I) + I_n(B.B) + I_p(B.B) = I_n + I_p$$

$\rightarrow I_n(I.I)$: Current due to I^+ electrons given
 by I.I.

$\rightarrow I_n(B.B)$: Current due to electrons given
 by B.B

$\rightarrow I_p(B.B)$: Current due to holes given by
 B.B

\Rightarrow Lightly bond electron becoming free
can not create hole. A hole is created when electron breaks a covalent bonds.

\Rightarrow To comment on the type of semiconductor
never compare currents always compare concentration i.e.

$n = p$	\rightarrow INT.
$n \neq p$	\rightarrow EXT.
$n > p$	\rightarrow N-TYPE.
$n < p$	\rightarrow P-TYPE

\Rightarrow All intrinsic and extrinsic semiconductors
✓ are electrically neutral.

\Rightarrow Charge carriers which are more in no.
or are called majority carriers and
current given by them is called
majority current i.e.

Majority carriers	$\rightarrow e^-$
minority carriers	\rightarrow Hole
Majority currents	$\rightarrow I_n$
Minority currents	$\rightarrow I_p$

⇒ Negatively charged electrons are majority carriers. Hence, called "extrinsic" negative type Semiconductor.

* Extrinsic Positive type (or) Extrinsic P-type (or) P-type Semiconductor

⇒ Trivalent impurities (Fig- ⑥) like

Boron, Aluminium, Gallium (or) Indium are added to an intrinsic semiconductor.

⇒ When a trivalent atom replaces a tetravalent silicon (or) Ge atom then to four covalent bond only 3 valence e⁻ are supplied hence one excess hole created as in crystal lattice (fig-5). All such excess holes occupy a new energy level E_A at 0 K above valence band at 0.01 ev for Ge and 0.05 ev for Si. as shown in Energy diagram (Fig-7).

⇒

FIG - 5

FIG - 6

⇒ At 0°K from fig-7 $n=0$ & $p=0$. Hence $T=0$, $R=\infty$ & $I=0$. i.e. Insulator.

⇒ At 50°K for Ge (O_2) 100°K for Si electrons gain energy and move to holes at EA lever than all the

\Rightarrow

FIG-⑧

holes at E_A level disappears and equal no. of holes get created in valence Band. Hence, $n=0$ & $p>0$. Hence $\tau>0$ $R<\infty$ & $I>0$. i.e. Conductor.

\Rightarrow Trivalent impurity by accepting electron becomes negative ion called impurity ionization (I.I). Trivalent atom by accepting e^- creates hole and supports current hence called acceptor atom.

$\rightarrow E_A$: Acceptor Energy Level.

\Rightarrow At 300K EHP Generation (or) Band to Band (B.B) transition occurs. Hence n increases and p increases hence τ increases R decreases and I increases.

\Rightarrow

Majority	Ccarriers	\longrightarrow	HOLE
minority	Ccarriers	\longrightarrow	e^-
majority	currents	\longrightarrow	I_p
minority	currents	\longrightarrow	I_n .

Note:

- \rightarrow At very high temp. all extrinsic
 \checkmark Semiconductors become intrinsic because
 $\cancel{\star}$ band to band transition dominates
 $\underline{(ob)}$ over through impurities ionization
 And at this temp. usefulness of all
 electronic devices will get terminated.

\Rightarrow n-Type:

	e^- (I.I)	e^- (B.B)	hole (B.B)	
300 K:	10^2	10^2	10^2	: $n \neq p \Rightarrow$ Ext.
400 K:	10^2	10^3	10^3	: $n \neq p \Rightarrow$ Ext.
700 K:	10^2	10^5	10^5	: $n \approx p \Rightarrow$ Int.

300 K: FB: + - : $w \downarrow \rightarrow I \uparrow$: on
 R_B : - + : $w \uparrow \rightarrow I \downarrow$: off.

\Rightarrow Jook

FB: + - : \rightarrow IA

RB: - + : \leftarrow IA

~~Switch~~

\Rightarrow Jook: n p n : Amplifier.

Jook: I I I : Attenuator.

* Mass Action Law:

\Rightarrow The Product of free electron and hole concentration in an intrinsic (o) Extrinsic Semiconductor at a given temp. is a constant given by

$$n_p = n_i^2 \quad \text{--- (1)}$$

Where; n_i : intrinsic concentration given

by

$$n_i^2 = A_0 T^3 e^{-E_{A0}/kT} \quad \text{--- (2)}$$

Where A_0 is a constant dependent on

Semiconductors are independent on temp.

T : Temp in $^{\circ}\text{K}$.

E_{go} : Energy Band gap at 0°K .

k : Boltzmann Constant in ev/ $^{\circ}\text{K}$.

$$\Rightarrow \boxed{300^{\circ}\text{K}} : \text{INT} : n_p = n_i^2$$

$$\downarrow \\ \text{N-type} : (n\uparrow) (p\downarrow) = n_i^2$$

\Rightarrow Consider an intrinsic Semiconductor at 300°K with $n \cdot p = n_i^2$ say it is

Converted to N-type without changing temperature then n_i^2 is constant.

Due to donors e⁻ concentration n increases hence prob. of hole recombines with electron increases. Increase to n and decrease to p counter make $n \cdot p = n_i^2$ constant.

$$\Rightarrow \boxed{\text{INT}} : 300^{\circ}\text{K} : n_1 p_1 = n_i^2$$

$$400^{\circ}\text{K} : n_2 p_2 = n_i^2.$$

\Rightarrow Consider an intrinsic semiconductor at 300°K with $n_i \cdot p_i = n_i^2$ say temp.

increases to 400°K and $n_{i_1}^2$ to $n_{i_2}^2$.

Due to increase in temp. EHP generation increases hence n_1, P_1 increases to n_2, P_2 such that $n_2 \cdot P_2 = n_{i_2}^2$.

$\rightarrow n \cdot P = n_i^2$ is valid at a given temp.

if temp changes again valid for different volume i.e. $n_1 \cdot P_1 \neq n_2 \cdot P_2$
 $\Rightarrow n_{i_1}^2 \neq n_{i_2}^2$

\Rightarrow Based on electrical neutrality

$$N_D + P = N_A + n \quad \text{--- (3)}$$

\Rightarrow LHS gives total +ve ~~charges~~ per cubic volume given by donor ions and holes.

\Rightarrow RHS gives total -ve charges per cubic volume given by acceptor ions and electrons.

* Case-II :- Intrinsic ($N_D = N_A = 0$).

$$\underset{0}{N_D} + \underset{0}{P} = \underset{0}{N_A} + n.$$

$$\Rightarrow n = P \quad \checkmark \quad \text{--- (4)}$$

From $\text{eqn } ① \text{ & } ④$

$$n = p = n_i \quad \text{--- } ⑤$$

Case - II: N - Type ($N_D > 0, N_A = 0$).

\Rightarrow From $\text{eqn } - ③$

$$N_D + \cancel{P_n} = \cancel{N_A} + n_n.$$

Neglect

When, P_n, n_n is hole, free electron

Concentration in N-Type.

~~$n_n \approx N_D$~~

$$\boxed{n_n \approx N_D} \quad \text{--- } ⑥$$

Note: $n \cdot p = n_i^2$ is valid for only one semiconductor which can be intrinsic (or) n-type (or) p-type. It is not applicable across multiple semiconductors.

$$\rightarrow n_n P_n = n_i^2$$

$$\rightarrow P_n = \frac{n_i^2}{n_n} \approx \frac{n_i^2}{N_D} \quad \text{--- } ⑦$$

Case- III: P-Type ($N_D = 0, N_A > 0$).

$$\Rightarrow \cancel{N_D}^0 + P_p = N_A + \cancel{n_p}^0 \\ \text{neglect.}$$

$$\Rightarrow P_p \leq N_A \quad \text{--- (8)}$$

$$\rightarrow n_p P_p = n_i^2$$

$$\therefore n_p = \frac{n_i^2}{P_p} = \frac{n_i^2}{N_A} \quad \text{--- (9)}$$

* Diffusion.

Fig - 1

\Rightarrow Consider a p-type Semiconductor as in Fig-1. Due to difference in Concentration, holes diffuse from higher to lower (left to right). Concentrated area until uniform carrier concentration ($\frac{dP}{dx} = 0$) is achieved and produced hole diffusion current I_p where hole diffusion

Current density $J_p(x)$ is given by

$$J_p(x) = \frac{I_p}{A} = -qD_p \frac{dp}{dx}.$$

\Rightarrow

Fig - 2

\Rightarrow Consider an n-type Semiconductor (fig-2) with a non-zero value of Concentration gradient ($\frac{dn}{dx} \neq 0$). Due to difference in concentration electrons holes diffuse from higher to lower (Left to right) Concentrated area until uniform Concentration ($\frac{dn}{dx} = 0$) is achieved. and produced electron diffused current. where electron diffusion current density. $J_n(x)$ is given by.

$$J_n(x) = \frac{I_n}{A} = +qD_n \frac{dn}{dx}.$$

\Rightarrow If a Charge Carrier moves due to difference in concentration it is said to be diffusing whereas if a charge carrier moves due to attraction (or) repulsion of a voltage it is said to be drifting. Diffusion current is proportional to concentration gradient of charge carriers whereas drift current is proportional to concentration of charge carriers and electric field whereas drift current density J is given by

$$\Rightarrow J = \frac{I}{A} = \sigma E = (nq\mu_n + p\mu_p) E.$$

$\Rightarrow D_p, D_n$: Diffusion Constants for hole, electron given by

$$\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = V_T = KT = \frac{KT}{q} = \frac{T^{\circ}K}{11,600} = 0.026V$$

(AT 300K)

Einstein's Relationship

$$K = eV/T$$

$$E = T/k$$

$\rightarrow V_T$: thermal Voltage

k : Boltzmann's constant in eV/K .

$K = \text{Boltzmann Constant in J/K}$.

T : temp. in $^{\circ}\text{K}$.

* Hall Effect:

⇒ If a Semiconductor carrying a current I_x is placed in transverse magnetic field B_z then an electric field E_y gets induced in a direction perpendicular to I_x & B_z .

⇒

S_1, S_2 : Surface-1, Surface-2.

→ If a semiconductor carrying a current I_x is placed in a transverse magnetic field B_z then according a motor

When a current gets induced in a direction perpendicular to I_x & B_z in the direction of forward motion of a right handed screw wound from I_x to B_z .

$$V_H = \frac{B_z \cdot I_x}{e w_2} (V)$$

e = charge density

\Rightarrow

\Rightarrow Due to the induced force on the charge carriers are pulled towards a surface. hence that surface becomes negatively (or) positively charged w.r.t. other surface. Hence, the potential difference (or) Voltage called Hall Voltage V_H gets induced along Y-dimension of sample. Hence an electric field E_y gets induced along Y-direction. It was proved in 1879 by Edwin Hall.

* Applications:

- ⇒ ① It can be used to find the type of semiconductor. (N or P type). by looking at V_H polarities.
- ⇒ ② It can be used to find charge density and hence carrier concentration (electron (or) hole concentration).

$$\checkmark V_H = \frac{\checkmark B_z \cdot I_x}{\checkmark e \cdot w_z} \rightarrow \rho = \checkmark$$

$$N\text{-Type: } \checkmark e_n = \checkmark n^2 \rightarrow n = \checkmark$$

$$P\text{-Type: } \checkmark e_p = \checkmark p^2 \rightarrow p = \checkmark$$

- ⇒ ③ Given mobility, conductivity can be calculate (or) viceversa.

- ⇒ Hall Constant (or) Hall Coefficient

$$\boxed{R_H = \frac{1}{e} = \frac{V_H \cdot w_z}{B_z \cdot I_x} \text{ m}^3/\text{C}} \rightarrow R_H = \checkmark$$

$$\rightarrow \tau = \beta \mu \longrightarrow \mu = \frac{\tau}{\beta}$$

τ : conductivity

ρ : charge density

μ : mobility.

$$\Rightarrow \boxed{\rho = \tau R_H}$$

(4)

=> It can be used to multiply two signals. (Hall effect multipliers).

(a) Calculate μ_p for a p-type Germanium bar connected as in figure - 1 and is exhibiting Hall effect given

$$B_z = 0.1 \text{ Wb/m}^2$$

$$dY = w_z = 3 \text{ mm.}$$

$$V_H = 50 \text{ mV.}$$

$$I_x = 10 \text{ mA.}$$

$$\rho = 200,000 \Omega\text{-cm.}$$

Solⁿ:

$$R_H = \frac{V_H \cdot w_z}{B_z \cdot I_x}$$

$$\therefore R_H = \frac{50 \times 10^{-3} \times 3 \times 10^{-3}}{0.1 \times 10 \times 10^{-6}}$$

$$\therefore R_H = 150 \text{ } \cancel{\Omega} \cdot \cancel{\text{cm}^2} \cdot \text{m}^3/\text{C.}$$

$$\therefore \mu = \sigma \cdot R_H.$$

$$\therefore \mu = \frac{1}{\rho} \cdot R_H.$$

→ Resistivity.

$$\therefore \mu = \frac{1}{2 \times 10^3} \times 150.$$

$$\therefore \boxed{\mu = 75 \times 10^{-3} \text{ m}^2/\text{V-s.}}$$

Note: In $R_H = \frac{1}{\rho} e a^n$ ρ is charge density where as ρ given in problem statement is Resistivity.

(Q) Find the magnitude of Hall Voltage V_H in an N-type A-e bus connected as in fig-① and is exhibiting Hall effect given.

$$N_0 = 10^{17} \text{ cm}^{-3}$$

$$B_z = 0.1 \text{ Wb/m}^2$$

$$d_y = 3 \text{ mm}$$

$$E_x = 5 \text{ V/cm.}$$

$$\mu_n = 3800 \text{ cm}^2/\text{V-sec.}$$

Soln:

$$V_H = \frac{B_z \cdot I_x}{e \cdot w_z}$$

Note: E_x, V_x, I_x, B_z are applied quantities
 F_y, V_H & E_y are induced quantities.

$$J_x = \frac{I_x}{A}$$

Note in drift and diffusion current densities ($J = I/A$) cross sectional area A is defined by perpendicular area for current.

$$\rightarrow J_x = \frac{I_x}{w_z \cdot dy} = \rho v. = \rho \mu_n E_x \quad \checkmark$$

ρ = charge density.

v = drift velocity.

$\rightarrow \mu$: mobility

E : electric field.

$$\frac{I_x}{w_z} = \rho \mu_n E_x dy \quad \checkmark \quad \textcircled{2}.$$

Sub. eq \textcircled{2} into \textcircled{1}.

$$V_H = \frac{B_z}{\rho} \cdot \rho \mu_n E_x dy.$$

$$\therefore V_H = B_z \cdot \mu_n \cdot E_x \cdot dy. \quad \checkmark$$

$$\therefore V_H = 0.1 \times 3800 \times 10^{-4} \times 5 \times 10^2 \\ \times 3 \times 10^{-3}.$$

$$\therefore V_H = 5700 \times 10^{-5}$$

$$\therefore V_H = 57 \text{ mV.}$$

Q A p-type silicon specimen is exhibiting Hall effect and is connected as in fig-① calculate induced voltage given

$$B_z = 0.1 \text{ wb/m}^2.$$

$$E_y = 750 \text{ V/m.}$$

$$dy = 0.009 \text{ m.}$$

Soln:

$$V_H = E_y \cdot dY$$

$$= 750 \times 0.009$$

$$\therefore V_H = 6.75V$$

 P-N Junction Diode:

* Open circuited P-N Diode:

P-N Junction Diode:

(A) Without Barrier.

(B)

DR | SCR | TR (I.I)

(C) With Barrier.

n_{p0}, n_{n0} : Initial thermally generated minority carrier concentration.

(+) : Donor atom with excess electron (neutral).

(+) : Donor Ion (+ve charge).

(-) : Excess Electron.

(-) : Acceptor atom with excess hole. (neutral).

(-) : Acceptor Ion (-ve charge).

(O) : Excess Hole.

\Rightarrow Fig- A Shows internal structure of an open circuited P-N diode, which is just then created.

* First explanation for formation of barrier.

\Rightarrow In fig - A due to difference in concentration diffusion of charge carriers start. Hence EHP recombination occurs hence +ve & -ve ions get created at centre hence fig - A becomes B. In fig - B Past diffusion

Opposites present. diffusion Indirectly.

Though opposition exist since concentration gradient of charge carrier is large

with difficulty diffusion may continue. Hence again recombination occurs and again Ions get created. Hence fig - (B) becomes (C). As diffusion continues opposition to further diffusion increases. Hence after some time diffusion comes to halt. (fig - (D)).

→ The central +ve & -ve immobile ions (I.I) oppose diffusion hence called barrier. The size of barrier (1mm) is very small compare to size of diode (width 0.5cm). Barrier is not having charge carriers. & hence called depletion region (D.R). Barrier is the only region having Ions hence called space charge region (SCR). Barrier is separating two Nodal areas hence called Transition region (T.R).

→ W : width of depletion region

x_{no}, x_{po} : Penetration of depletion region into n, p sides.

→ From fig - (C)

$$W = x_{no} - (-x_{po}) = x_{no} + x_{po} \quad \text{--- (1)}$$

⇒

* Application:

① Switch.

② Voltage Variable Capacitor.

→ Barrier opposes the flow of majority carriers but supports the flow of minority carriers

*

Direction of Flow of Charge Carriers.

Type of Current

Direction of current.

⇒

e^- diffusion

⇒

Hole diffusion

⇒

e^- DRIFT

⇒

Hole DRIFT

⇒ Majority carriers gives diffusion current (solid line).

⇒ Minority carriers give drift current (dotted line).

$\rightarrow X$: Net diffusion current ($e^- + hole$ diffusion).

$\rightarrow Y$: Net drift current ($e^- + hole$ drift).

$\rightarrow Z$: Net current = $X - Y$.

* Second explanation for formation of Barrier:

\Rightarrow Drift current opposes diffusion current.

But if drift less than diffusion, diffusion continuous. If diffusion continuous then EHP recombination occurs and ions get created at centre which attract minority carrier and increases drift current. As long as drift is less than diffusion, diffusion continuous. As long as diffusion continuous, drift goes on increases. At some time drift and diffusion become equal in magnitude but since opposite in direction net current becomes zero. i.e. diffusion comes to a halt. (big O).

→ Across +ve and -ve ions existing inside depletion region internally electric flux lines get developed which induced a voltage V_0 (or) electric field E_0 which are responsible for drift current.

→ Open circuited Contact Potential,

$$V_0 = kT \ln \left(\frac{N_D N_A}{n_i^2} \right) \quad (v) \quad (2)$$

→ Open circuited electric field intensity,

$$E_0 = -\frac{q N_D x_{n0}}{\epsilon} = -\frac{q N_A \cdot x_{p0}}{\epsilon} \quad (V/m) \quad (3)$$

⇒ Total -ve charges lost in the depletion region of n-side is equal to total +ve charges lost in the depletion region of p-side.

$$N_D x_{n0} / \lambda = N_A x_{p0} / \lambda$$

$$\Rightarrow N_D x_{n0} = N_A \cdot x_{p0} \quad (4)$$

$$\Rightarrow x_{n0} = \frac{N_A}{N_D + N_A} \quad (5)$$

$$x_{p0} = \frac{N_D}{N_D + N_A}$$

\Rightarrow

$$\omega = \sqrt{\frac{2\epsilon V_B}{q}} \left[\frac{1}{N_D} + \frac{1}{N_A} \right]$$

- (7)

\Rightarrow Penetration of depletion region into n-side is proportional to doping of p-side. and vice-versa.

Note - ①:

\Rightarrow Depletion region penetrates equally into n & p-sides for equal dopings & it penetrates unequally for unequal dopings.

$$N_D = N_A \rightarrow x_{n0} = x_{p0}$$

$$N_D \neq N_A \rightarrow x_{n0} \neq x_{p0}$$

Note - ②:

\Rightarrow Depletion region penetrates more into lightly doped side.

$$N_D > N_A \rightarrow x_{p0} > x_{n0}$$

Note - ③

\Rightarrow Penetration of depletion region into heavily doped side of a single sided (or) one sided diode can

$$V_B = V_0 - V$$

+ve \rightarrow F.B.
-ve \rightarrow R.S.

V_0 : Built-in Potential (or)
Barrier (or) contact Pot.
 V : applied Voltage

be neglected.

→ In one sided diode, one side is heavily dopped compared to other side hence most of the current is given by only one side i.e. heavily dopped side.

$$x_{po} = \frac{w N_D}{N_D + N_A} \approx w$$

$$N_D \gg N_A$$

$$w = x_{no} + x_{po}$$

$$x_{no} \approx 0$$

→ A circuit symbol should identify the no. of terminals and number of terminals.

→ Vertical line represents N, triangular piece represent P. The direction of arrow shows the direction of current when the diode is forward biased.

* Forward Biased:

\Rightarrow

\Rightarrow If the Voltage given to p-side is more positive than n-side then diode is said to be forward biased.

\Rightarrow Due to polarities of forward biased charge carriers get depleted and enter into open circuited depletion region due to which immobile ions get buck their lost charge carriers become neutral and move to undepleted

region hence width of depletion region decreases (w') compared to open circuit (w). Due to decrease in ion V_0 (v) and E_0 (ev) decrease by V_f .

⇒ Cut-in Voltage (V_{f}) offset voltage (V_{f}) breakdown point voltage (V_b) threshold voltage (V_t) fixing point voltage V_r is defined as minimum forward bias to be given across a P-N junction for current to exist.

⇒ Majority carrier diffusion supports flow of currents. Hence magnitude of current is large is (mA (μ A)) and the direction is from P to N.

⇒ To the left, and right drift current exist. To the centre diffusion current exist. But diffusion is important. Using which central barrier can be crossed which was opposing current in open circuit case.

* Reverse

Biased:

\Rightarrow Due to polarities of reverse biased natural atoms adjusted to open circuit V_R ~~dep~~ region loose charge carriers become immobile ions and move to depletion region hence width of depletion region increases (w') compared to open circuit (w).

\Rightarrow Due to increase in Ion V_o (Volts) and E_o (eV) increase by V_R .

→ Minority carrier drift support flow of current hence less current, NA for cre and NA for si flows. Direction is N to P.

→ Increase in reverse bias increases width of depletion region but thermally generated minority carriers are constant. Hence, reverse current is independent of reverse Voltage called Reverse Saturation Current I_o . i.e.

$$\frac{dI_o}{dv} = 0.$$

→ I_o physically flows from N-to-P but shown P-N hence negative.

⇒ Increase in temp. increases EHP generation and minority concentration hence I_o increases. i.e.

$$\frac{dI_o}{dT} > 0$$

* Volt - Ampere (V-I) Characteristics:

- $\Rightarrow I$ is defined as current flowing through the diode from P-to-N.
- $\Rightarrow V$ is defined as Voltage across terminals of diode with positive at P side.
- \Rightarrow Peak-Inverse Voltage (P_{IV}) is defined as maximum reverse bias that can be safely applied across a P-N diode.
- \Rightarrow Dotted line in the graph is non-operable region.

$$\Rightarrow I = I_0 (e^{\frac{V}{nV_T}} - 1)$$

$n = 1$ Ge.
 $= 2$ Si.

FB : $V = +ve$: If $e^{\frac{V}{nV_T}} \gg 1$ Then $I = I_0 e^{\frac{V}{nV_T}}$

RB : $V = -ve$: if $e^{\frac{V}{nV_T}} \ll 1$ then $I = -I_0$.

c Given V-I Characteristics of P-N Diode
Comment on whether it is Si or Ge Diode?

Soln: Current in diode is modified to a ratio

$$\frac{I_2}{I} = \frac{I_0 (e^{\frac{V_2}{nV_T}} - 1)}{I_0 (e^{\frac{V_1}{nV_T}} - 1)}$$

$$\therefore \frac{10}{0.01} = \frac{e^{\frac{V_2 - V_1}{n k T}}}{e^{\frac{V_1}{n k T}}} \quad (\because \text{neglect } -1)$$

$$\therefore 1000 = e^{\frac{(V_2 - V_1)}{n T}}$$

$$\therefore 1000 = e^{\frac{0.35}{n \times V_T}}$$

$$\therefore 6.9 = 0.35 \times \frac{1}{n \times 0.026}$$

$$n = \frac{13.46}{6.9}$$

$\therefore n = 1.95 \approx 2$. is matches for silicon.

So, Diode is made up of silicon.

Note:

\rightarrow For Practical application is preferred

Si diode is preferred than Ge diode due to following reason.

① I_o of Ge (mA) $>$ I_o of Si (mA)

\rightarrow Hence si diode act as better switch.

② E_a of Ge $<$ Si.

\rightarrow Hence, si diode gives better operable switch

Thermal damage.

Ge Si

300 K: ✓ ✓

400 K: X ✓

500 K: - X - X

③ PIV of Ge < silicon.
→ Hence, Si diode gives better operating range.

④ For Si diode abundant saw material available.

- Reasons ①, ② & ③ are called primary reason and ④ is secondary reason.
- The above explanation is valid for any electronic device as specially high power devices like SCR, DIAC, TRIAC etc. will be made up of Si since Si can withstand higher temp.

* Diode Resistances:

→ DC (Ω) Static Resistance,

$$R_{DC} = \frac{V}{I}$$

→ AC (Ω) Dynamic Resistance,

$$\rightarrow R_{AC} = \frac{dV}{dI} = \frac{1}{TAN \phi} = \frac{1}{f \tan \phi}$$

$$\rightarrow R_{AC} = \left(nV_T / I \right) \quad \text{For F.B. only.}$$

$$R_{AC} = \frac{nV_T}{I_0} \cdot e^{-V / nV_T} \quad \begin{array}{l} \text{(For F.B. \&} \\ \text{R.B.)} \\ \text{V = +ve} \\ \text{V = -ve} \end{array}$$

(a) A ce diode has $I_0 = 30 \mu A$ at $125^\circ C$.

Find dynamic resistance under . ~~Pxx~~

(i) Forward biased at 0.2 V.

(ii) Reverse biased at 0.2 V.

Sol'n:

$$R_{AC} = \frac{nV_T}{I_0} \cdot e^{-V / nV_T}$$

$n = 1$, ~~V_{AF} = 0.026 V~~, $I_0 = 30 \mu A$

Note: $V_T = 0.026 V$ is valid only

at $27^\circ C$. At $125^\circ C$ $V_T = \frac{T^2 k}{11,000}$

$$\therefore V_T = \frac{273 + 125}{11,600}.$$

$$V_T = 0.0343 \text{ V}$$

$$(i) V = +0.2 \text{ V}$$

$$R_{acf} = \frac{n V_T}{I_0} \cdot e^{-\frac{V}{n V_T}}$$

$$= \frac{1 \times 0.0343}{30 \times 10^{-6}} \cdot e^{-\frac{0.2}{1 \times 0.0343}}$$

$$R_{acf} = 3.356 \Omega$$

$$(ii) V = -0.2 \text{ V}$$

Remember

$$\therefore R_{acf} = \frac{1 \times 0.0343}{30 \times 10^{-6}} \cdot e^{\frac{0.2}{1 \times 0.0343}}$$

$$R_{acf} = 3.89 \times 10^5 \Omega$$

$$\therefore R_{acf} = 389.5 \text{ k}\Omega$$

(Q) The reverse biased saturation current of a silicon P-N diode is 1mA. determine its a.c. resistance if 0.4 V of forward bias is applied.

Soln:

$$R_{ac} = \frac{n V_T}{I}$$

$$\Rightarrow R_{ac} = \frac{nV_T}{I_0(e^{\frac{V}{nV_T}} - 1)}$$

$$= \frac{2 \times 0.026}{10^{-6} \times (e^{\frac{0.4}{2 \times 0.026}} - 1)}$$

$$\therefore R_{ac} = 23.74 \Omega$$

* Equivalent circuit:

\Rightarrow

$\Rightarrow R_{NET}, V_{NET}$: Resistance, Voltage of a N.C.W.

\Rightarrow

Name	Characteristics	Equivalent	Ckt
① Piecewise Linear model			$R_{NET} \gg R_f$
② Simplified piecewise linear model			$R_{NET} \gg R_f$
③ Ideal Model			$R_{NET} \gg R_f$ $V_{NET} \gg V_y$

=> In the above equivalent Ckt +ve of V_y should match with P-side of diode.

=> The above eqn Ckt are valid only for forward biased diode for a reverse bias diode eqn Ckt in all the three model is open Ckt.

a) Determine Q-point in the given CKT.

Assume ideal diode.

Soln:

Note:

→ Q-point is defined as intersection of load line with V-I chara.

By KVL,

$$\therefore 10 = V_D + 1000 I_D.$$

$$\rightarrow V_D = 0$$

$$\text{So, } 10 = 0 + 1000 I_D$$

$$I_D = 10 \text{ mA} \quad (:\textcircled{A})$$

$$\rightarrow I_D = 0.$$

$$\text{So, } V_D = 10 \text{ V} \quad (:\textcircled{B})$$

⇒ Slope of AB line is controlled by load R_L . hence called load line.

$$\text{Q-point} = (V_{DQ}, I_{DQ}) = (0, 10 \text{ mA}).$$

Q) A diode whose V-I characteristics as shown in Fig-a is connected as in Fig-b calculate I' .

Fig-a

Soln: $V_r = 0.7 \text{ V}$

$$r_f = \frac{(0.9 - 0.7) \text{ V}}{(0.2 - 0) \text{ A}} = \frac{0.2}{0.2} = 1 \Omega.$$

earⁿ Ckt:

$$I' = 0.1 \text{ A}$$

By KVL, $1.0 - 0.7 = I' (1 + g_2)$.

$$\therefore I' = \frac{0.3}{g_2} = 0.1 \text{ A}$$

* Fermi level:

⇒ Existing electron in conduction band and non-existing electron in valence band both can support current. Hence to comment on conductivity of a semiconductor we should be able to know the existence (or) non-existence of electron at a given energy level. To comment on this, Fermi distribution probability distribution is define as.

$$f(E) = \frac{1}{1 + e^{(E - E_F)/kT}} \quad \text{--- (1)}$$

⇒ $f(E)$ Probability of existence of electron at an allowed energy level E ($0 \leq f(E) \leq 1$).

→ E_F : Fermi energy level (imaginary).

Comments on so-1. occupancy.

→ K : Boltzmann constant in eV/K .

T : Temp. in $^{\circ}\text{K}$.

* Fermi level in Intrinsic semiconductor

$$\Rightarrow T = 0^{\circ}\text{K}$$

$$E > E_F \rightarrow f(E) = \frac{1}{1 + e^{+\infty}} = 0.$$

$$E < E_F \rightarrow f(E) = \frac{1}{1 + e^{-\infty}} = 1.$$

$$\Rightarrow T \neq 0^{\circ}\text{K}$$

$$E = E_F \rightarrow f(E) = \frac{1}{1 + e^0} = \frac{1}{2} (\text{OR}) 50\%$$

→ At 300 K EHP generation occurs and electron goes to conduction band leaving a hole in valence band as in Fig-②

Fig-②

→ By integrating $f(E)$ from along with other term with $E > E_c$ we get free electron concentration

$$n = N_c e^{-\frac{(E_c - E_F)}{kT}} \quad \text{--- (2)}$$

where

$$\begin{aligned} N_c &= 2 \left(2\pi m_n kT / h^2 \right)^{3/2} \\ &= 4.8 \times 10^{15} \left(m_n T / m \right)^{3/2} \text{ cm}^{-3} \end{aligned} \quad \text{--- (3)}$$

→ $1 - f(E)$ is Prob. of non existence of electron at an energy level E in conduction band (~~or~~) valence band. It is also Prob. of existence of hole at an energy level E in valence band only.

⇒ By integrating $1 - f(E) b^n$ along with some other terms with $E \leq E_v$ we get hole concentration P,

$$P = N_v \cdot e^{- (E_F - E_v) / kT} \quad \text{--- (4)}$$

$$\begin{aligned} \rightarrow N_v &= 2 (2\pi m_p kT / h^2)^{3/2} \\ &= 4.82 \times 10^{15} (m_p T / m)^{3/2} \text{ cm}^{-3} \end{aligned} \quad \text{--- (5)}$$

← N_c, N_v : Densities of Energy States at Conduction, Valence Band. They are constants dependent on temp. and independent of doping.

→ m_n, m_p : effective mass of electron, hole.

→ m : mass of electron.

→ k : Boltzmann constant in eV/K .

→ K : Boltzmann constant in J/K .

→ T : Temp. in $^{\circ}\text{K}$.

→ h : Planck's Constant.

⇒ For intrinsic Semiconductor $n = p$. Substitute in ② & ④ we get,

$$E_{fi} = \left(\frac{E_c + E_v}{2} \right) - \frac{KT}{2} \ln \left(\frac{N_c}{N_v} \right) \quad \text{--- } ⑥$$

⇒ If $m_n = m_p$, then

$$E_{fi} = \left(\frac{E_c + E_v}{2} \right) \quad \text{--- } ⑦$$

i.e. intrinsic fermi level lies at the centre of forbidden band if $\underline{m_n = m_p}$.

→ If it lies above ($\underline{0}$) below the centre if $m_n \neq m_p$.

→ Substituting ② & ⑦ in + ⑥, to $n \cdot p = n_i^2$ we get.

$$\rightarrow E_F = kT \ln \left(\frac{N_c \cdot N_v}{n_i^2} \right) \quad - \textcircled{8}$$

* Fermi level in Extrinsic Semiconductor

→ At room temp. Probability of existence of electron in conduction band of n-type semiconductor is more than prob. of existence of electron in conduction band of intrinsic semiconductor. Hence, fermi level moves closer to conduction band in n-type than intrinsic.

⇒ For n-type semiconductor $n_n \approx N_D$.
from eqⁿ - ②

$$E_{Fn} = E_c - kT \ln \left(\frac{N_c}{N_D} \right) \quad - \textcircled{9}$$

⇒ For p-type semiconductor $P_p \leq N_A$.
from eqⁿ - ④

$$E_{Fp} = E_V + kT \ln \left(\frac{N_v}{N_A} \right) \quad - \textcircled{10}$$

→ As doping concentration increases in n-type silicon (p-type), Fermi level moves closer and closer to conduction band (valence band) and may coincide with edge of conduction band (E_c) or valence band (E_v) and may even penetrate into conduction band (valence band).

⇒ N-Type:

(300 K)

$$E_{Fn} = E_c - kT \ln \left(\frac{N_c}{N_D} \right).$$

$$N_D : N_D < N_c \rightarrow E_{Fn} < E_c$$

$$N_D \uparrow : N_D = N_c \rightarrow E_{Fn} = E_c$$

$$N_D \uparrow\uparrow : N_D > N_c \rightarrow E_{Fn} > E_c.$$

→ As Temp. increases Fermi level moves closer to centre of forbidden band in both n- & p-type semi conductors.

$$\rightarrow \boxed{E_{Fn} - E_{Fi} = kT \ln \left(N_D / n_i \right)} \quad - (11)$$

$$\boxed{E_{Fi} - E_{FP} = kT \ln \left(N_A / n_i \right).} \quad - (12)$$

Q In a P-type Semiconductor Fermi level lies 0.04 eV above valence band. Find New location of fermi level if acceptor concentration is doubled.

Sol: Equating p_p to N_A in eqn - ② we get.

$$-(E_F - E_V) / kT$$

$$N_A = N_V \cdot e^{-(E_F - E_V) / kT}$$

$$\therefore \frac{N_{A1}}{N_{A2}} = \frac{e^{-(E_{FP_1} - E_V) / kT}}{e^{-(E_{FP_2} - E_V) / kT}}$$

$$N_{A2} = 2N_{A1}$$

$$2 = e^{-\frac{(E_{FP_2} - E_V)}{kT}} + \left(\frac{\downarrow 0.04 \text{ eV}}{\downarrow \frac{(E_{FP_1} - E_V)}{kT}} \right).$$

$$e^{\frac{-0.04 \text{ eV}}{0.026}} \times 2 = e^{-\frac{(E_{FP_2} - E_V)}{kT}}$$

$$\therefore e^{-\frac{(E_{FP_2} - E_V)}{kT}} = 2 \times 0.2145$$

$$\therefore 2.33 = e^{\frac{(E_{FP2} - E_V)}{kT}}.$$

$$\boxed{E_{FP2} - E_V = 0.022 \text{ eV.}}$$

Ans: New fermi level lies 0.022 eV above E_V .

Q In n-type semiconductor Fermi level lies 0.3 eV below E_C at 30°K . find new location of fermi level at 330°K . assume N_c to be constant.

Solⁿ: $E_C - E_{Fn} = 0.3 \text{ eV.}$

from eqn- ⑨

$$E_C - E_{Fn} = kT \ln \left(\frac{N_c}{N_D} \right).$$

$$\therefore \frac{E_C - E_{Fn2}}{E_C - E_{Fn1}} = \frac{kT_2 \ln \left(\frac{N_c}{N_D} \right)}{kT_1 \ln \left(\frac{N_c}{N_D} \right)}$$

$$\therefore \frac{E_C - E_{Fn2}}{0.3 \text{ eV}} = \frac{330}{300}$$

$$\boxed{E_C - E_{Fn2} = 0.33 \text{ eV.}}$$

Ans: New fermi level lies 0.33 eV below E_C .

Fermi Level in open circuited

P-N Diode:

⇒ Fermi level is constant throughout the length of open circuited P-N diode.

⇒ Fermi level constant for an open circuited P-N Diode is valid at any P-N junction of any electronic device it is not constant for Forward biased (or) Reverse biased.

⇒ E_0 (electron Volts) (ev). is defined as shift between edges of conduction band and valence band of P & N sides.

⇒ V_0 (v) & E_0 (ev) (or) Numerically equivalent

$$E_0 \text{ (ev)} = E_1 + E_2 = kT \ln \left(\frac{N_{D,A}}{n_i^2} \right).$$

$$= E_{cp} - E_{cn} = E_{vp} - E_{vn}.$$

\Rightarrow Using eqn - ⑪ & ⑫ at fermi level discussion.

$$E_1 = kT \ln(N_A/n_i)$$

$$E_2 = kT \ln(N_D/n_i).$$

[c] For a germanium diode calculate fermi-level position in p-region. w.r.t. intrinsic fermi level. given,

$$N_D = 10^{16} \text{ cm}^{-3}$$

Ex/F/18/18

$$N_A = 3 \times 10^{18} \text{ cm}^{-3}.$$

$$n_i = 2.5 \times 10^{13} \text{ cm}^{-3}.$$

Soln:

$$E_i = kT \ln(N_A n_i).$$

$$\therefore E_i = 0.026 \ln \left(\frac{3 \times 10^{18}}{2.5 \times 10^{13}} \right).$$

$$E_i = 0.304 \text{ eV}.$$

[a] In a P-N diode width of depletion region under open ckt cond'n is 0.334 mm
Calculate penetration of depletion region into P-side and E_0 & electric field intensity given

$$N_D = 10^{16} \text{ cm}^{-3}.$$

$$N_A = 4 \times 10^{18} \text{ cm}^{-3}.$$

$$\epsilon = 104.93 \times 10^{-14} \text{ Fm.}$$

Soln:

$$x_{p0} = \frac{w \cdot N_D}{N_D + N_A}.$$

$$\therefore x_{p0} = \frac{0.334 \times 10^{-6} \times 100 \times 10^{16}}{10^{16} + 400 \times 10^{16}}$$

$$x_{p0} = 0.0833 \times 10^{-6}$$

$$\therefore x_{p0} = 0.0833 \times 10^{-6}$$

$$x_{p0} = 8.33 \times 10^{-8} \text{ cm.}$$

$$\Rightarrow E_0 = -\frac{q \cdot N_A \cdot x_{p0}}{\epsilon}$$

$$= -1.6 \times 10^{-19} \times 4 \times 10^{18} \times 8.33 \times 10^{-8}$$

$$104.93 \times 10^{-14}$$

$$\therefore E_0 = -0.5 \times 10^5 \text{ eV/km.}$$

$$\therefore E_0 = -50 \text{ kV/cm.}$$

* Generation and Recombination of Charge Carriers:

\Rightarrow

- \Rightarrow During EHP generation a bound e^- becomes free and a hole is created both of them support current.
- \Rightarrow During EHP recombination one free e^- becomes bound and one hole disappears hence current decreases.
- \Rightarrow Life-time for e^- , hole τ_n, τ_p is defined by duration of time during which an e^- , hole support current

\Rightarrow Diffusion length for e^- , hole L_n, L_p
 is defined as distance travelled by
 an e^- , hole during their corresponding
 life times given by $L_n =$

$$L_n = \sqrt{D_n T_n}$$

$$L_p = \sqrt{D_p T_p}$$

* Variation of minority carrier concentration.

$\Rightarrow P_{n0}$: Initial thermally generated minority carrier concentration.

$\Rightarrow P_n(t), P_n(x)$: excess hole concentration at any time t , distance x generated due to illumination. (light rays).

$\Rightarrow P_n(t), P_n(x)$: total hole concentration at any time t , distance x .

\Rightarrow In fig-Ⓐ & Ⓑ, an n-type semiconductor is considered in which due to zoom

temp. EHP generation has occurred and
P_{no} holes are generated.

⇒ Fig-A :- with time:

→ ON to a n-type semiconductor having P_{no} holes. Some illumination is allowed to fall uniformly starting from a time of $-T'$ due to which again EHP

generation occurs and again holes are generated which get added to P_{n0} . Hence hole concentration increases.

→ At a time of 0 sec, illumination is switched off. A hole recombine after T_p sec. Hence hole concentration decreases.

→ A hole generated due to illumination once recombine can not regenerate because illumination is switched off. Whereas a hole generated due to room temp. after recombination regenerates since temp. is in on condition. Hence decreases in concentration stops at P_{n0} .

$$P_n(t) = P_{n0} + P_n'(0) e^{-\frac{t}{T_p}}$$

$$t=0 : P_n(0) = P_{n0} + P_n'(0) \cdot e^0 = P_{n0} + P_n'(0).$$

$$t=\infty : P_n(\infty) = P_{n0} + P_n'(0) \cdot e^{-\infty} = P_{n0}.$$

→ % increase in minority carrier concentration due to illumination is very much greater than % increase in majority carrier

Concentration.

N-Type:

\Rightarrow Fig-B with distance:

\Rightarrow ON to an n-type semiconductor having Pno holes some illumination is allow to fall only at left side. Counteracted at distance zero. and matches with origin. Due to which again EHP generation occurs and again holes are generated which get added to Pno. Hence hole concentration increases to left side, due to difference in concentration hole diffuse from higher to lower concentrated area. after travelling Lp distance a hole recombines hence hole concentration decreases.

(I).

(II)

- a** An N-type silicon bar is illuminated at one end ($x=0$). The minority carrier concentration variation is as shown given $n_i = 1.5 \times 10^{10} \text{ cm}^{-3}$. calculate

A e^- concentration.

B Diffusion length for holes.

Sol'n: ① $n_{n0} = n_i^2 / p_{n0}$.

$$= \frac{(1.5 \times 10^{10})^2}{1 \times 10^8}$$

$$\boxed{n_{n0} = 2.25 \times 10^{12} \text{ cm}^{-3}}$$

② $L_p = ?$

$$-x/L_p$$

$$p_n(x) = p_n(0) e^{-x/L_p}$$

assume $x = 0.2 \text{ mm}$: $\frac{1}{e} \times 10^8 = (2 \times 10^8 - 1 \times 10^8) e^{-0.2 \text{ mm}/L_p}$

$$\Rightarrow \boxed{L_p = 0.2 \text{ mm.}}$$

③ What function drift current is due to electrons in pure germanium given

$$I_{dn} = 3800 \text{ cm}^2/\text{v-sec}$$

$$I_p = 1800 \text{ "}$$

Sol'n: drift current $I = nqI_{dn}EA + PqI_pEA$.

- ②

→ Pure germanium \Rightarrow Intrinsic

hence, $n = p = n_i$.

$$\rightarrow \frac{I_n}{I_n + I_p} \times 100 = ①$$

→ Substitute I_n and I_p from Eqn- ② into

④.

$$\begin{aligned}\frac{I_n \times 100}{I_n + I_p} &= \frac{n_i \cdot q \cdot A_n EA \times 100}{n_i e n_i EA + n_i q N_p EA} \\ &= \frac{A_n \times 100}{A_n + A_p} \\ &= \frac{3800}{3800 + 1800} \times 100 \\ &= \boxed{67.85 \%}\end{aligned}$$

Note:

→ For practical application N-type devices like n-p-n transistor, n-channel JFET, induced n-channel MOSFET etc are preferred over corresponding p-type devices since n-type devices work-out cheaper.

$$\Rightarrow I = nq \ln FA + Pq \mu_p EA.$$

Cost ↑

$$I_{E(NPN)} > I_{E(PNP)}.$$

Q Calculate change in contact potential if doping on n-side is increased by a factor of 1000 and doping on p-side is unaffected.

Soln:

$$V_0 = KT \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right)$$

$$V_0 = 0.026 \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right).$$

$$\rightarrow V_{02} - V_{01} = KT \ln \left(\frac{N_{A2} \cdot N_{D2}}{n_i^2} \right) - KT \ln \left(\frac{N_{A1} \cdot N_{D1}}{n_i^2} \right).$$

$$= KT \left[\ln \left(N_{D2} \cdot N_{A2} / n_i^2 \right) - \ln \left(N_{D1} \cdot N_{A1} / n_i^2 \right) \right].$$

$$\therefore V_{o2} - V_{o1} = kT \ln \left(\frac{\frac{N_{o2} \cdot N_{A2}}{n^2} \times \frac{n^2}{N_{o1} \cdot N_{A1}}}{N_{o1}} \right).$$

$$\therefore V_{o2} - V_{o1} = kT \ln \left(\frac{1000 N_{o1}}{N_{o1}} \right). \quad (\because N_{o1} = N_{A2}).$$

$$\therefore V_{o2} - V_{o1} = 0.179 \text{ V.}$$

Q Calculate a Voltage across a Si diode if go-t. reverse saturation current is flowing in forward bias.

Soln:

$$I = I_0 (e^{\frac{V}{nV_T}} - 1).$$

$$\therefore 0.9 I_0 = I_0 (e^{\frac{V}{2 \times 0.026}} - 1).$$

$$0.9 = e^{\frac{V}{0.052}}$$

$$1.9 = e^{\frac{V}{0.052}}$$

$$\therefore V = 0.03337 \text{ V}$$

$$\Rightarrow V = 33.37 \text{ mV}$$

Q find Voltage at which reverse current in a diode will reach go-t. of its saturation value.

Soln:

$$\therefore I = I_0 (e^{\frac{V}{nV_T}} - 1).$$

$$\therefore -0.9 \cancel{I_0} = \cancel{I_0} (e^{\frac{V}{nV_T}} - 1).$$

$$V = -59.86 \text{ mV}$$

Note: while substituting a value for an entity , substitute along with sign while calculating the value of an entity dont disturb the existing sign.

ZENER DIODE:

→ V_z : knee (or) breakdown Voltage.

$I_{z(min)}$: knee (or) minimum current.

R_z : dynamic reverse breakdown Resistance.

NBO: Non breakdown.

→ Zener diode is named after its inventor C. Zener. In the ckt symbol,

z differentiates zener diode from PN diode. The direction of arrow shows the direction of flow of current when the diode is forward bias. PN, Zener and Tunnel diodes are two terminal devices, Identical in construction with only difference in doping concentration.

→ In PN $1 \text{ IN } 10^8$, In Zener $1 \text{ IN } 10^5$ and In Tunnel $1 \text{ IN } 10^3$. the forward and Reverse char. of Zener diode are identical to forward and reverse char. of PN diode except that zener diode can be operated in Reverse BD whereas P-N diode should not be operated in Reverse BD.

\Rightarrow

\Rightarrow

Practical

$$r_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

Ideal

$$r_Z = 0.$$

\Rightarrow

Equivalent circuits.

\Rightarrow Zener Breakdown:

\rightarrow Due to applied reverse biased a large electric field gets developed across Zener diode which pulls out charge carriers by breaking covalent bonds and making atoms ions. Called field ionization. Voluminous charge carriers thus generated are responsible for large current. This breakdown occurs in relatively more doped step junction diodes at $V_z < 6\text{ V}$ with $\frac{dV_z}{dt} = -0.1\%/\text{o}_c$

\Rightarrow Avalanche Break down:

\rightarrow I_{av}

$$\Rightarrow 1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow \dots$$

Carrier multiplication

Avalanche multiplication.

\rightarrow Impact

Ionization.

→ A thermally generated charge carrier gets attracted towards opposite polarities of applied reverse biased gain kinetic energy and collides with an atom on the way and transfer its kinetic energy to a valence shell electron of the atom and push that electron to conduction band and makes it free thus one free carrier becomes two. The process repeats further and due to carrier (or) avalanche multiplication voluminous carriers are generated which are responsible for large current. Due to collision an atom becomes ion called Impact Ionization. This breakdown occurs in relatively less doped linear junction diodes at $V_Z > 6V$. with $\frac{dV_Z}{dT} = +0.1 \text{ V}/\text{C}$.

OL
⇒ In the above equivalent ckt, +ve of X_Z should matched with n-side of diode.

⇒ The above equivalent ckt are valid only for reversed biased zener

diode, for a forward bias zener diode
use any of the three forward
biased eqⁿ CKT of P-N Diode.

* Voltage Regulator:

⇒ A Voltage regulator should maintain
fair constant voltage across terminals
of load irrespective of fluctuation in
load (or) Supply.

⇒ A Zener diode can act as
Voltage regulator if it is operated
in reverse breakdown for which
the following condition to be satisfied.

(i) Current through zener diode should
be greater than (or) equal to
 $I_{Z\min}$.

(ii) Voltage across terminals of
zener diode should be V_Z , BD Voltage.

⇒ Fixed Input Variable Load:

$$R_L : I_{S(fix)} = I_2 + I_L : V_L = I_L \cdot R_L$$

$$R_L : I_{S(fix)} = I_2 \uparrow + I_L \downarrow : V_L = (I_{S(fix)}) \cdot (R_L)$$

$$R_L :$$

$$\Rightarrow R_L : I_{S(\text{fix})} = I_Z + I_L : V_L = I_L \cdot R_L$$

$$R_L \uparrow : I_{S(\text{fix})} = I_Z \uparrow + I_L \downarrow : V_L = (I_L \downarrow) (R_L \uparrow) \\ : \underline{I_Z < I_{Z(\text{max})}}$$

$$R_L \downarrow : I_{S(\text{fix})} = I_Z \downarrow + I_L \uparrow : V_L = (I_L \uparrow) (R_L \downarrow) \\ : \underline{I_Z > I_{Z(\text{min})}}$$

\Rightarrow Vin is fixed, R_L can vary hence

I_S is fixed.

\rightarrow For a given R_L , $I_{L(\text{fix})} = I_Z + I_L$
 with $V_L = I_L \cdot R_L$. say R_L increases
 then I_L decreases. hence I_Z increases
 by equal amount since I_S is fixed.

\rightarrow Though I_L increases, voltage across
 ideal zener in breakdown, V_Z is
 constant hence $V_L = V_Z$ is constant
 (or) increased R_L and decreased I_L
 counter each other to make $V_L = I_L \cdot R_L$
constant.

\Rightarrow Variable input fixed load:

$\rightarrow V_{in}: I_s = I_2 + I_L(\text{fix}) \quad V_L = I_L \cdot R_L$

$V_{in} \uparrow: I \uparrow = I_2 \uparrow + I_L(\text{fix}): V_L = I_L \cdot R_L$
: $I_2 < I_{2(\max)}$.

$V_{in} \downarrow: I_s \downarrow = I_2 \downarrow + I_L(\text{fix}): V_L = I_L \cdot R_L$
: $I_2 \geq I_{2(\min)}$.

$\Rightarrow V_{in}$ can vary & R_L is fixed, hence I_L is fixed.

\rightarrow for a given R_L , $I_s = I_2 + I_L(\text{fix})$
with $V_L = I_L \cdot R_L$. say V_{in} increases
then I_s increases hence I_2 increases
by equal amount making I_L fixed.
Current always prefers least resistive
path and resistance or ideal Zener
in BD is zero.

\rightarrow Though I_2 increases voltage across
ideal zener in breakdown V_Z is
constant. Hence $V_L = V_Z$ is constant
(as) since I_L & R_L are fixed,
 $V_L = I_L \cdot R_L$ is constant.

* Procedure to Solve Numericals: ✓ Imp.

- (i) Identify whether Zener diode is ideal (or) Practical.
- (ii) If the diode is FB replace by any of the three FB equivalent Ckt of P-N Diode.
- (iii) If the diode is reverse biased Verify BD status and replace by appropriate equivalent Ckt.
- (iv) Apply KCL (or) KVL.
- (a) A 50 V, 5 to 40 mA zener diode is used as shown in a regulator Ckt
- (A) Calculate R_s . to allow Voltage regulation from $I_L = 0$ to I_{max} . also calculate I_{max} .
- (B) If R_s is set as found in part - A and I_L is fixed at 25mA find the permissible range of V_{in} for zener diode to act as regulator safely.

Soln: given data:

$$\rightarrow V_z = 50V.$$

$$I_{z(\min)} = 5mA.$$

$$I_{z(\max)} = 40mA.$$

$$\text{if } R_z = 0 \Omega$$

Ideal.

(A) Fixed input Variable load.

\rightarrow zener diode is in BD. deduce with
by its eqn kT . (voltage source V_z).

$$\begin{aligned} \rightarrow I_{S(\text{fix})} &= I_{z(\max)} + I_{z(\min)} \\ &= 40 + 0 = 40mA. \end{aligned}$$

$$\text{By KVL, } 200 = I_S \cdot R_s + 50$$

$$V_{in} = I_{S(\text{fix})} \cdot R_s + V_z.$$

$$\Rightarrow R_s = \frac{(200 - 50)}{40 \text{ mA}} = 3.75 \text{ k}\Omega$$

$$R_s = 3.75 \text{ k}\Omega$$

$$\Rightarrow I_{S(\text{fix})} = I_{Z(\text{min})} + I_{Z(\text{max})}.$$

$$\therefore 40 = 5 + I_{Z(\text{max})}$$

$$\Rightarrow I_{Z(\text{max})} = 35 \text{ mA}$$

(B) Variable input fixed load:

$$\Rightarrow I_{S(\text{min})} = I_{Z(\text{min})} + I_{Z(\text{fix})}$$

$$= 5 \text{ mA} + 25 \text{ mA} = 30 \text{ mA}.$$

$$\Rightarrow I_{S(\text{max})} = I_{Z(\text{max})} + I_{Z(\text{fix})}$$

$$= 40 + 25 = 65 \text{ mA}.$$

$$\therefore V_{in(\text{min})} = I_{S(\text{min})} \cdot R_s + V_Z.$$

$$V_{in(\text{min})} = (30 \times 3.75) + 50$$

$$V_{in(\text{min})} = 162.5 \text{ V}$$

$$\therefore V_{in(max)} = (65 \times 3.35) + 50.$$

$$V_{in(max)} = 293.35 \text{ V}$$

So, Range of V_{in} is 162.5 V to 293.35 V.

Q For the given zener diode ckt.

Calculate V_L given

(A) $R_L = 1.2 \text{ k}\Omega$

(B) $R_L = 3 \text{ k}\Omega$

Soln:

$$I_{z(min)} = 0, R_z = 0$$

$$V_z = 10 \text{ V}$$

for a zener diode to go into BD the following two conditions are to be satisfied.

- ① Current through zener diode should be greater than (or) equal to $I_{z(min)}$ which is already satisfied

since $I_{Z(\min)} = 0$.

- ② Voltage across terminals of Zener diode
Should be V_Z , BD voltage - To
Verify this physically remove Zener
diode from CKT and measure V_{AB} .
as shown.

$$V_{AB} = \frac{R_L \times 16}{R_L + R_s}$$

$$\therefore V_{AB} = \frac{16 \times R_L}{1.2 + R_L}$$

Ⓐ $R_L = 1.2 \text{ k}$

$$V_{AB} = 8.73 \text{ V.}$$

→ Zener diode is not in BD despite it
by its equivalent, o.c.

$$V_L = V_{AB} = 8.73 \text{ V}$$

$$\textcircled{B} \quad R_L = 3k$$

$$\rightarrow V_{AB} = 12V$$

\rightarrow Zener diode is in BD. Replace it by its equivalent, Voltage source V_Z

* Transition region (or) Space charge region (or) Depletion region Burrier.

Capacitance C_T :

\Rightarrow Change in reverse bias changes in depletion width and ions of depletion region. Hence a non-zero value of $\frac{dQ}{dt}$ is exhibited by depletion region which is by definition Capacitance. Called depletion region Capacitance.

$$\Rightarrow C_T = \epsilon A / w.$$

⇒

⇒ ω is proportional to $V_j^{k_2}$

⇒ $\omega \propto V_j^{k_2}$ for Step (or) abrupt jⁿ.

⇒ $\omega \propto V_j^{k_3}$ for linear (or) Graded jⁿ.

where, jⁿ voltage . $V_j = V_o - V_d$.

where , V_o : open circuited Contact potential.

& V_d : Voltage across diode.

(V_d is -ve for RB).

$$C_T = \sqrt{\frac{q \epsilon A^2}{2 \left(\frac{1}{N_D} + \frac{1}{N_A} \right) (V_o - V_d)}}$$

→ Transition Capacitance at Zero bias,

$$C_{T_0} = C_T |_{V_d=0}$$

$$\rightarrow C_T = \frac{C_{T0}}{\left(1 - \frac{V_d}{V_0}\right)^{m_T}}$$

~~m_T~~ m_T = 0.5 for Step junction.
= 0.33 for linear "

⇒ Change in reverse bias changes width of depletion region and capacitance. Hence it can be used as voltage variable capacitor (or) Varicap. (or) Varactor diode:

= * Diffusion Capacitance:

⇒ Change in forward bias changes magnitude of diffusing charges and current. Hence, a non-zero value of $\frac{dI}{dV}$ is exhibited by diffusing charges which is by definition capacitance called Diffusion Capacitance.

$$C_D = \frac{\gamma I}{n V_T}$$

where,

$$\gamma = \gamma_p + \gamma_n$$

\Rightarrow

$$\frac{da}{dx} \neq 0.$$

$$C_D = \frac{\gamma I}{nV_T}$$

Where, $\gamma = \gamma_p + \gamma_n$.

(Q)

A silicon diode has a diffusion Capacitance of $1 \mu F$ when carrying a Current of 1 mA . Assuming $N_A \gg N_D$. Calculate γ_p .

Soln:

$N_A \gg N_D$, hence C_D eqn gets modified

to

$$C_{DP} = \frac{\gamma_p \cdot I}{nV_T}$$

$$\gamma_p = \frac{1 \times 10^{-6} \times 2 \times 0.026}{1 \times 10^{-3}}$$

$$\gamma_p = 52 \mu S$$

(Q) A Step junction si diode with $V_0 = 0.637 \text{ V}$ has transition Capacitance at zero bias as 0.5 PF . Calculate C_f at the reverse

of 5V.

Soln: Here, $C_{T0} = 0.5 \text{ PF}$

$$C_T = \frac{C_{T0}}{\left(1 - \frac{V_a}{V_0}\right)^{m_T}}$$

$$= \frac{0.5 \times 10^{-12}}{\left(1 - \frac{(-5V)}{0.637}\right)^{0.5}}$$

$$\therefore C_T = 0.168 \text{ PF}$$

* Q A reverse biased diode is having a junction Voltage of 8V and junction Capacitance 15PF. If junction Voltage is increase to 12V Capacitance drops to 13.5PF find whether it is abrupt (or) graded junction.

Soln: Assumption: Abrupt junction.

$\omega \propto V_j^{r_2}$, ϵ & A are constant

hence $C_T \propto \frac{1}{V_j^{r_2}}$.

$$\therefore \frac{C_{T_2}}{C_{T_1}} = \left(\frac{V_{J1}}{V_{J2}} \right)^{1/2}$$

$$\therefore \frac{C_{T_2}}{C_{T_1}} = \left(\frac{8}{12} \right)^{1/2} =$$

$$\therefore C_{T_2} = 0.82 \times C_{T_1}$$

$$C_{T_2} = 12.25 \text{ PF.}$$

$\rightarrow C_{T_2}$ is not equal to 13.5 PF, hence it is not abrupt i.e. it is graded junction.

* Effect of Temperature on Reverse Saturation Current I_o .

\Rightarrow Increase in temp. increases EHP generation and minority concentration hence I_o increases i.e. $\frac{dI_o}{dt} > 0$.

$$I_o = \frac{A_2 D_p n_{p0}}{L_p} + \frac{A_2 D_n n_{p0}}{L_n}$$

\Rightarrow From the above eqn after analysis we get,

\Rightarrow

$$\frac{1}{I_0} \cdot \frac{dI_0}{dt} = \frac{m}{T} + \frac{E_{a0}}{n\tau V_T}.$$

Where, $m = 1.5$ for Si
 $= 2$ for Ge.

$$\frac{1}{I_0} \cdot \frac{dI_0}{dt} = \begin{cases} 8 \%/\text{°C} & \text{for Si} \\ 11 \%/\text{°C} & \text{for Ge} \end{cases}$$

At 300 K.

\Rightarrow Practically for both diodes rise is found to be 7%/ $^{\circ}\text{C}$.

$\Rightarrow I_0$ gets doubled for every 10°C rise temp. i.e.

$$I_{02} = I_{01} \cdot 2$$

$$I_{02} = I_{01} \cdot 2^{(T_2 - T_1)/10^{\circ}\text{C}}$$

* Effect Temp. on Voltage:

\Rightarrow For 1°C rise in temp. to maintain constant current through diode decrease voltage across diode by

2.5 mV i.e.

$$\frac{dV}{dT} = -2.5 \text{ mV}/{}^{\circ}\text{C}.$$

\Rightarrow

$$I = I_0 (e^{\frac{V}{nV_T}} - 1)$$

\Rightarrow From Current equation of diode after analysis we get,

$$\frac{dV}{dT} = \frac{V - (E_{g0} + mnV_T)}{T}$$

$$= -2.1 \text{ mV/}^\circ\text{C} \rightarrow \text{Ge} \quad] \quad \text{At } 300^\circ\text{K.}$$

$$= -2.3 \text{ mV/}^\circ\text{C} \rightarrow \text{Si} \quad]$$

Note:

\Rightarrow The above value of $\frac{dV}{dT}$ is valid only for forward bias.

- (a) The current I of circuit was found to be increasing by $7.1\%/\text{C}$ rise in temp. Calculate I_0 assuming Ge diodes reverse sat. currents temp co-efficient is $33.1\%/\text{C}$.

\Rightarrow

Soln:
given data,

$$\frac{1}{I} \cdot \frac{dI}{dt} = 7\%/\text{c}$$

$$\frac{1}{I_o} \cdot \frac{dI_o}{dt} = 11\%/\text{c}$$

By, KCL $I = I_o + I_R$.

$$\frac{dI}{dt} = \frac{dI_o}{dt} + \cancel{\frac{dI_R}{dt}}^0 \quad (\because R = \text{const}^n \Rightarrow I_R = \text{const}).$$

$$\therefore I \left(\frac{1}{I} \cdot \frac{dI}{dt} \right) = I_o \left(\frac{1}{I_o} \cdot \frac{dI_o}{dt} \right).$$

↑ ↓
 5mA 0.07 0.11

$$\therefore I_o = \frac{5 \times 0.07}{0.11}$$

$I_o = 3.18 \mu\text{A}$

(c) Two Cr diode connected as shown.

Calculate

$$V_1, V_2 \text{ & } I'$$

Soln:

$$\text{Q2: } I = I_0 (e^{\frac{V}{nV_T}} - 1).$$

$$\therefore I_0 = I_0 (e^{\frac{V}{nV_T}} - 1).$$

$$\therefore 2 = e^{\frac{V}{nV_T}}$$

$$V = \boxed{18 \text{ mV.} = V_2.}$$

$$\text{By kvl, } S = V_1 + V_2.$$

$$\therefore V_1 = S - V_2$$

$$\therefore \boxed{V_1 = +4.982}$$

Note: → While giving answer for a Voltage
Consider the polarities given in problem
Statement.

→ While giving answer for a current
Consider the direction shown in prob.
Statement.

→

$$I' = -I_0$$

(a) The reverse saturation current density of a Ge diode is 1 mA/m^2 . Find the voltage to be applied across it in forward bias to get a current density of 10^5 mA/m^2 .

Soln: divide $I = I_0(e^{V/nV_T} - 1)$ by cross-

Sectional area A,

$$\therefore \frac{I}{A} = \frac{I_0}{A} (e^{\frac{V}{nV_T}} - 1).$$

$$\Rightarrow J = J_0 (e^{\frac{V}{nV_T}} - 1).$$

$$\therefore 10^5 = 1 (e^{\frac{V}{1 \times 0.026}} - 1).$$

$$\therefore V = 0.3 \text{ V.}$$

(a)

Calculate I_o & V_o in the given Ckt.

Soln:

$$I_o = \frac{10 - 0.6}{2k + 10} = 4.67 \text{ mA.}$$

$$\therefore \boxed{I_o = 4.67 \text{ mA.}}$$

$$\begin{aligned}\therefore V_o &= V_r + I_o R_f \\ &= 0.6 + (4.67 \times 10^3 \times 10)\end{aligned}$$

$$\therefore \boxed{V_o = 0.646 \text{ V}}$$

\star Tunnel (Esaki) Diode:

$$\rightarrow E_{Fn} = E_c - kT \ln \left(\frac{N_c}{N_d} \right).$$

$$E_{FP} = E_v + kT \ln \left(\frac{N_v}{N_A} \right).$$

$$E_{cr} = kT \ln \left(\frac{N_c \cdot N_v}{n_i^2} \right).$$

$$E_o = kT \ln \left(\frac{N_d \cdot N_A}{n_i^2} \right).$$

\Rightarrow Heavy Doping:

(Tunnel)

$$E_{Fn} > E_c$$

$$E_{FP} < E_v$$

$$E_o > E_{cr}$$

Normal Doping:

(PN)

$$E_{Fn} < E_c$$

$$E_{FP} > E_v$$

$$E_o > E_{cr}$$

Fig - A : Open circuit.

⇒ Due to heavy doping of the order of $1:10^3$ (or) $1:10^{20} \text{ cm}^{-3}$ width of depletion region decreases to as small as 100 \AA at such narrow depletion region according to quantum mechanics a special effect called tunneling is observed based on it the diode is design. It was proposed by Esaki.

→ → Empty State. (Electron - doesn't exist).

→ → Filled State (electron exists).

\Rightarrow

\rightarrow Filled States parallel to
Empty States.

\rightarrow (ii) Width of depletion region Should be
Very narrow (100 \AA) ✓

\rightarrow (iii) At one side of diode filled states
Should exists. at the other side at
the same energy empty state should
exists.

\rightarrow If the above two conditions are
Satisfy then electrons tunnels from
filled to empty state.

* Open circuit:

\Rightarrow From fig- A it can be observed that
Second condition of tunneling is not
Satisfied hence tunnelling is not possible.
Hence current is zero.

\Rightarrow V & I are zero. hence fig- A matches
with point A of fig- I.

* Reverse bias:

\Rightarrow Due to Reverse bias width of depletion

Region and ions of depletion region increases hence V_0 (Volts) and E_0 (eV) increase by applied reverse bias.

$E_0 = E_{cp} - E_{cn}$ is increasing implies N-side levels shift down hence fig- A becomes B.

→ In fig-B top filled states of Valence band of P-side become parallel to bottom empty state of Conduction band of N-side. hence e^- tunnel from P to N and produce current from N-to P.

$V \propto I$ are -ve hence fig-B matches with point-B. as reverse bias increases N-side levels shift down more and more hence volume of tunneling and reverse current increases. i.e. excellent conduction (E.C) is possible.

Fig- B

Note:

→ In a P-N diode $E_C > E_0$ hence energy of e^- is more than energy of hill. hence to go from one side to other side of diode electron climbs down (diffusion), energy hill.

→ In a Tunnel diode $E_0 > E_C$ hence energy of e^- is less than energy of hill hence to go from one side to other side electron penetrates (Tunnels) through barrier.

\Rightarrow Due to forward bias width of depletion region and ions of depletion region decreases hence $V_0(V)$ and $E_0(eV)$ decrease by applied forward bias.

$E_0 = E_{Cp} - E_{Fn}$ is decreasing implies n-sides levels move up. Hence fig-A becomes ①.

\Rightarrow In fig-① Top filled state of conduction band of n become parallel to bottom empty states of p hence second condition of tunnelling is satisfied hence electrons tunnel from n to p and produce current from p to n.

\Rightarrow V & I are +ve hence fig-① matches with point ①. as forward bias increases forward current starts from 0 (point -④), increases (point -③) later on reaches a maximum (I_F), decreases (point - ②) and finally becomes zero (point - ⑤).

FIG-④ $F_B \uparrow \uparrow$

↗

FIG-⑤

F.B.

Fig- E - FB ↑↑↑

→ Due to forward bias E_0 decreases and $E_{cr} > E_0$ occurs (fig- E) which valid for a p-n diode hence from now onwards whatever current is possible in forward biased p-n diode will also be possible in forward biased tunnel diode hence forward char. of p-n diode (dash and dots) is superimpose onto forward char. of tunnel diode.

→ In FB tunnel diode I_{tunnel} flows from P → N. In FB p-n diode $I_{diffusion}$

istor R' is placed parallel to a n^- nent
nnel diode which has $\left| \frac{dI_0}{dv} \right|_{\max} = \frac{1}{R'}$ -turning
e value of R' such that the increases
tion doesn't exhibit -ve region in
- μ) decreases
Charg.?

-ve region means as voltage
increases current decreases. -ve
region should not be exhibited.

$$\text{ence } \frac{dI}{dv} \geq 0.$$

$$I = I_0 + I_R.$$

$$I = I_0 + \frac{V}{R'}.$$

$$\therefore \frac{dI}{dv} = \frac{dI_0}{dv} + \frac{1}{R'}.$$

$$\frac{dI}{dv} \geq 0.$$

$$\frac{1}{R'} \geq \left| \frac{dI_0}{dv} \right|_{\max} \rightarrow R' \leq \text{const.}$$

increases,
sistance

(c) Consider a tunnel diode under open circuit condition. Calculate width of depletion region given.

$$N_D = N_A = 4.41 \times 10^{19} \text{ cm}^{-3}$$

$$V_0 = 0.75 \text{ V}$$

$$\epsilon = 141.6 \times 10^{-14} \text{ F/cm}$$

Soln:

$$\omega = \sqrt{\frac{2\epsilon V_0}{q}} \left[\frac{1}{N_D} + \frac{1}{N_A} \right]$$

$$= \sqrt{\frac{2 \times 141.6 \times 10^{-14} \times 0.75}{1.6 \times 10^{-19}}} \times \frac{2}{4.41 \times 10^{19}}$$

$$\boxed{\omega = 77.7 \text{ A}^\circ}$$

Note:

Given for P-N diode for ω , x_{N_D} , x_{P_D} , V_0 , E etc can be used at any P-N junction of any electronic device.

Bipolar Junction

Junction

Transistor :-

⇒ BJT is a 3-terminal device found in 1947 at Bell laboratories by Bardeen, Brattain and Shockley.

⇒ In the CKT symbol, perpendicular line represents base, out of the two angular line one with arrow represents emitter. The other without arrow represents collector. The direction of arrow shows the direction of flow of current when emitter junction is FB.

⇒

$$\Rightarrow \underline{\text{KCL}}: I_E + I_B + I_C = 0.$$

KVL:

$$V_{CB} = V_{CE} + V_{EB}.$$

→ It has application like, switch, phase shifter, amplifier & oscillator.

⇒ A device is said to be giving amplification service if the following two conditions are satisfied.

① Output should be an exact replica of input.

② Output energy should be greater than input energy.

* Current Components in Common base

Configuration:

$$\textcircled{1} \quad I_E = I_{PE} + I_{nE} \leq I_{PE}.$$

$$\textcircled{2} \quad -I_{Co} = I_{CB0} = I_{pco} + I_{nco}.$$

$$\textcircled{3} \quad I_c = |-I_{pc1}| + I_{CB0}.$$

$$\textcircled{4} \quad I_c = |-\alpha I_E| + I_{CB0}.$$

$$\textcircled{5} \quad \alpha = -\frac{(I_c - I_{CB0})}{(I_E - 0)} = \frac{I_{pc1}}{I_E}.$$

$$\textcircled{6} \quad \chi_{dc} = -\left(\frac{I_c}{I_E}\right).$$

$$\textcircled{7} \quad \gamma^* = \left(\frac{I_{PE}}{I_E}\right) \leq 1.$$

$$\textcircled{8} \quad \beta^* = \left(\frac{I_{pc1}}{I_{PE}}\right) \leq 1.$$

$$\textcircled{9} \quad \alpha = \beta^* \cdot \gamma^* = \left(\frac{I_{pc1}}{I_E}\right) \leq 1.$$

\Rightarrow

	E	B	C
Doping	Heavy	Less	Moderate
Width	Moderate	Thin	Large

$$\begin{aligned} \textcircled{1} \quad W_B(1\mu m) &<< l_p(100\mu m) \\ \textcircled{2} \quad N_D \downarrow \downarrow \end{aligned} \quad \rightarrow \quad I_{pc1} \approx I_{PE}$$

J_E	J_C	R_{00} (Region of operation)	App.
FB	FB	Saturation	ON switch
RB	RB	Cut-off	OFF switch
FB	RB	Normal Active	Amplifier
RB	FB	Inverse Active	Attenuator

$\Rightarrow J_E$ is forward biased hence I_{PE} &
 I_{nE} flow from P to N.

$\rightarrow I_{PE}$ is made up of holes out of
which few holes recombine in base
and go out-of base ($I_{PE} - I_{PC_1}$).
Rest of them reach collector (I_{PC_1}).

$\Rightarrow J_C$ is Reverse biased hence I_{PC_0} &
 I_{nC_0} flow from n to P.

$\rightarrow I_{CO}, I_o$ at J_C flows from N to P
but shown P to N hence -ve.

$$I_{CB0} = I_{CO} + I_{SL} + I_{AM}$$

$\rightarrow I_{CO}$: current due to thermally
generated minority carriers.

I_{SL} : Current due to surface leakage.

I_{AM} : Current due to avalanche
multiplication.

\rightarrow By applying KCL at points ①, ② & ③
we get eqns ①, ② & ③.

→ For the device to act as amplifier load current I_C to be large hence I_{PC_1} to be large. Hence I_E to be large.

Hence I_E to be large

→ As input current I_E increases I_{PE} , I_{PC_1} and output current I_C increases hence it is current controlled device.

→ To make I_{PC_1} approximately I_{PE} recombination of holes in base to be decreased for which two conditions are proposed:

① W_B made very much less than L_P .

→ A hole travels L_P distance before recombination by then it crosses base and enters collector.

② Doping of base is decrease. Hence availability of e^- in base decreases hence hole recombining probability decreases hence hole reaching collector probability increases.

→ A hole in collector is majority carrier hence recombination prob. is less and it being +ve charge gets attracted by -ve supply of collector hence passes through load.

⇒ I_E is made of I_{pE} and I_{nE} . out of which only I_{pE} flows through load hence to make $I_{pE} \gg I_{nE}$ emitter doping heavily dopped.

⇒ Base Current I_B is made up of the following Components.

- ① electron enters into base through base terminal for recombination.
- ② electrons enter into base through base terminal to give I_{nE} component.
- ③ electrons leave the base through base terminal to give I_{pC} component

⇒ I_{pC} is approximately I_{pE} and I_{pE} approximately I_E hence $I_{pC} \approx I_E$. Hence I_{pC} replaced by αI_E where

$\alpha < 1$ and closed to 1
Hence eqn- ③ becomes ④.

$$\alpha = 0.95 \text{ to } 0.995$$

→ From- ③ & ④ we get ⑤ where
 α is common base forward current
transfer ratio (CB) CB current gain.

→ In eqn- ⑤ neglecting I_{EB0} we get ⑥.

⇒ γ^* : emitter efficiency ($\underline{\underline{\alpha}}$) emitter
injection efficiency.

β^* : Transport factor ($\underline{\underline{\alpha}}$) base
Transport factor.

⇒

⇒

$$P_c (I_c^2 R_C) > P_E (I_E^2 \cdot R_E)$$

$$P_c \downarrow = (I_c \downarrow)^2 \cdot R_C$$

$$\left(\frac{P_c}{(\text{Area})} \right) \downarrow$$

\Rightarrow over at collector junction P_c is large.
 hence collector junction T_{jc} increases. hence
 I_{cbo} increases. hence I_c increases. hence
 P_c increases. which an iterative process
 due to which at some time excessive
 power (or) Temp. occurs at collector junction
 and transistor burns away called
 thermal run-away.

\Rightarrow To safeguard the Transistor, collector
 made large in size & hence power
 per unit area decreases as J_c decreases.

\Rightarrow Base thin implies thinner than L_p
 followed by thinner than emitter
 and collector

$$\Rightarrow A_{Vz} = \frac{V_o}{V_i} = \frac{r_{\pi} \cdot \frac{I_c \cdot r_{\pi}}{I_E \cdot r_{\pi}}}{1} > 1 \quad (r_{\pi} = m \cdot r_{\pi} \text{ or } r_{\pi} = \infty)$$

$$\therefore A_I = \frac{I_c}{I_E} < 1.$$

$\underline{A_V}$	$\underline{\underline{A_I}}$
$CB \rightarrow \checkmark$	X
$CE \rightarrow \checkmark$	\checkmark
$CC \rightarrow X$	\checkmark

* Two P-N Diode connected buck to back Series can not act as Transistor (Amplifier):

⇒ By making base thin in size and less doped recombination of holes in base is not allowed hence large current I_E is forcedly transferred from low resistance (J_E, R_B) to high resistance (J_C, R_L). Hence, Transfer Resistor Property is exhibited.

⇒ Two polarities of charge carriers are crossing junctions to give current in device which is exhibiting transfer

resistor property.

→ hence called Bipolar Junction Transistor.
(BJT).

⇒

* Easily Effect (or) Base width Modulation:

(or) Base narrowing:

⇒

W_B : Physical (or) Metastigical Base width.

W'_B : Effective (or) undepleted Base width.

W_d : Width of depletion region.

⇒

J_E is FB hence width of depletion region & ions of depletion region decreases. hence V_o decreases by V_{EB} .

The applied forward bias J_c is reversed bias hence width of depletion region and ions of depletion region increases hence V_o increases by V_{CB} ,

the applied reverse biased.

⇒

Fig - ①

⇒

Fig - ②

⇒

Fig - ③

\Rightarrow Early effect No. ①:

\Rightarrow As reverse bias to J_c increases width of depletion region at J_c and penetration of depletion region into base increases. Hence undepleted width W_B' decreases hence charge carriers which were sitting in a width of W_B carrier will now get confined to a smaller width of W_B' hence concentration gradient increases. J_E is forward bias hence majority carrier diffusion supports currents where diffusion is proportional to concentration gradient which is increasing hence I_E increases.

$$\Rightarrow I = \left[-q D_p \left(\frac{dP}{dx} \right) \uparrow \right] \uparrow$$

\Rightarrow Early effect No. ②:

\Rightarrow As reverse Bias J_c increases more & more width of depletion region & penetration of depletion region increases more and more. Hence W_B' decreases more and more with a width

if $W_B < L_p$ available for recombination, recombination was less. Now with a width of W_B' very much less than L_p available for recombination, recombination further decreases. Hence, I_B decreases, I_C increases and hence α increases.

\Rightarrow Eary effect No. - ③:

\Rightarrow At large reverse bias to J_c width of depletion region increases and completely fills the base hence undepleted width W_B' and I_B become zero hence transistor can not act as amplifier i.e. usefulness of Transistor as amplifier is terminated. Easier depletion region was confined to J_c now it is has reached J_E hence called punch through (or) reach through.

\Rightarrow The above three effects were observed by J.M. Eary. Hence called Eary effect.

→ Out of W_B only W_B' is useful for recombination hence called effective base width.

→ Change in V_{CB} changes W_B' hence called base width modulation as V_{CB} increases W_B' decreases hence called base narrowing.

⇒

⇒

$$R_o = \frac{|V_A|}{I_c}$$

$$I_c = \alpha I_o \cdot e^{\frac{V_{BE}}{nV_T} \left(1 + \frac{V_{CE}}{V_A} \right)}.$$

R_o : Output resistance.

V_A : Early voltage.

* Avalanche Breakdown:

⇒ As reverse biased to J_c increases more and more, at a particular Voltage J_c undergoes avalanche BD hence avalanche multiplication starts hence Charge carriers and I_c increases uncontrollably hence again usefulness gets terminated this time due to avalanche BD and easier due to punch through.

⇒ CB :

$$M = \frac{1}{\left[1 - \left(\frac{V_{CB}}{BV_{CBO}} \right)^n \right]} \quad n=2 \text{ to } 10$$

CE : $BV_{CEO} = BV_{CBO} \left(\frac{1}{\beta} \right)^{\frac{1}{n}}$.

$$\text{Max-Rating} = \text{MIN} (BV_{PT}, BV_{AB})$$

⇒ M : Multiplication factor due to avalanche multiplication.

BV_{CBO} : Break down Voltage in CB. with

emitter open is defined as reverse bias at J_c in CB at which avalanche BD occurs.

→ BV_{CEO} : Break Down Voltage in CE with Base open is defined as RB at J_c in CE at which avalanche BD occurs.

→ BV_{PT} : Break Down Voltage at which Punch through occurs. It is independent of configuration.

→ BV_{AB} : Break Down Voltage at which Avalanche Break Down occurs.

→ Max-Rating :- maximum rating is defined as maximum reverse bias that can be safely applied across J_c .

(e) A zener diode has a r_m resistance of $20\ \Omega$ in BO given Voltage across zener diode is $5.2V$ at $I_z = 1mA$. Determine Voltage across diode at $I_z = 10mA$.

Soln:

$$V_z' = V_z + I_2 \cdot R_z.$$

$$5.2 = V_z + (1\text{mA})(20)$$

$$V_z = 5.18\text{V}.$$

at $I_2 = 10\text{mA}$

$$\therefore V_z' = 5.18 + (10\text{mA})(20)$$

$$\therefore \boxed{V_z' = 5.38\text{V}}$$

Note:

⇒ If current through zener diode changes
Voltage across zener diode changes due
to change in drop across R_z . But V_z
and R_z are constant.

The maximum rating of zener diode shown in ckt is 260 mW it maintains a constant voltage if current through zener diode doesn't fall below go.1. of max. permissible current find the range of I_2 for zener diode to act as regulator. safely.

$$\underline{\text{Soln:}} \quad 260 \text{ mW} = P_{z(\text{max})} = V_z \times I_{z(\text{max})}$$

$$\boxed{I_{z(\text{max})} = 50\text{mA}}$$

$$g_{o-j.} \text{ or } I_{Z(\max)} = 45 \text{ mA} = I_{Z(\min)}.$$

↓
50mA

Q In the given CKT temp. coefficient of D_1 is $-1.7 \text{ mV/}^{\circ}\text{C}$. The series combination is used to construct a zero temp. coefficient voltage reference (ZTCVR) find in $\%/\text{ }^{\circ}\text{C}$ the required temp. coefficient of D_2 .

Soln:

Note: A ZTCVR should maintain constant voltage irrespective of fluctuation in temperature.

$$D_2: +1.7 \times 10^{-3} \frac{\text{V}}{\text{ }^{\circ}\text{C}} \times \frac{100}{15} = +0.01133 \%/\text{ }^{\circ}\text{C}.$$

Q For a BJT $\beta = 100$ collector junction BD voltage in common base width Emitter open $= 120 \text{ V}$. Assuming empirical constant as 3, calculate collector jn

BD Voltage in CE in with base open.

Soln:

$$BV_{CEO} = BV_{CBO} \left(\frac{1}{\beta} \right)^{\frac{1}{m}}$$

↓ ↓
120V 100

$$BV_{CEO} = 120 \times \left(\frac{1}{100} \right)^{\frac{1}{3}}.$$

$BV_{CEO} = 25.85 \text{ V}$

Imp:

- (c) for BJT $I_c = 1 \text{ mA}$ at $V_{CE} = 1 \text{ V}$, given
 Early voltage as 75V. Calculate I_c
 at $V_{CE} = 10 \text{ V}$. Assume α as constant.

Soln:

$$I_c = \alpha I_0 \cdot e^{\frac{V_{BE}}{nV_T}} \left(1 + \frac{V_{CE}}{V_A} \right)$$

↓
x

$$\therefore \frac{I_c'}{1 \text{ mA}} = \frac{\alpha \left(1 + \frac{10}{75} \right)}{\alpha \left(1 + \frac{1}{75} \right)}$$

$$\therefore I_c' = \frac{85}{76} \text{ mA.}$$

$I_c' = 1.118 \text{ mA.}$

- (a) Find o/p R of BJT given Early
 Voltage as 150V and collector current
 0.1 mA.

Soln:

$$R_o = \frac{|V_A|}{I_c} = 1.5 \text{ M}\Omega$$

A Ge PNP transistor is biased in active region given diffusion current at Emitter junction as 0.298mA. Calculate dynamic emitter resistance.

Soln:

$$r_E = \frac{nV_T}{I_E}$$

$$= \frac{1 \times 0.026}{0.298 \times 10^{-3}}$$

$$\therefore r_E = 87.24 \Omega$$

$$\therefore r_E = 87.24 \Omega$$

* Input and output characteristic of CB (ex) grounded base configuration:

⇒

I.V. → I_E, V_{CB}

D.V. → V_{EB}, I_C .

\Rightarrow

I/P

\Rightarrow

O/P

\Rightarrow I.V. : Independent Variable.

D.V. : Dependent Variable.

* Input characteristics:

\Rightarrow I/P chara. of CB configuration concept
wise looks similar to Forward char. of
p-n diode since V_{EB} and I_E are

are Voltage across and current through forward biased emitter junction diode. the shape doesn't match since x-axis and y-axis are interchanged.

\Rightarrow As Reverse bias to J_c increases according to early effect ① I_E increases hence input current shift down.

* Output Characteristics:

\Rightarrow Active Region:

$$\rightarrow I_c = -\alpha I_E + I_{cB0}.$$

\rightarrow Say $I_E = 0$, then $I_c = I_{cB0}$ is constant irrespective of V_{CB} .

\rightarrow Say $I_E = 40mA$, then I_{cB0} gets reverse biased to J_c . increases according to early effect ② α increases, $\alpha < 1$ and closed to 1.

If it increases, finally it becomes one hence I_c starts from less than I_E and closed to I_E , increases and finally becomes I_E . hence Curves are almost straight line i.e. not much slope is existing.

$$\Rightarrow I_C = -\alpha I_E + I_{CBO}$$

$\alpha < 1$ As RB To $I_C \uparrow$ $\alpha = 1$
 $|I_C| < |I_E|$ EE ② $\rightarrow \alpha \uparrow$ $|I_C| = |I_E|$.

\Rightarrow Saturation:

$$V_{EB} = \text{Constant}$$

V_{CB}	I_E	I_C'	Net Current	I_C
+0.5	40	10	→ 30	-30
+1.5	40	40	0	0
+2.0	40	50	← 10	+10

\Rightarrow As V_{CB} Forward biased to J_C increases
 I_C changes from -ve to zero to +ve

\Rightarrow For different values of I_E , all the curves are touching the bottom at x-axis hence bottoming is said to have occurred.

\Rightarrow Input and output Characteristic of CE (or) Grounded Emitter Configuration:

\Rightarrow

I.V. : $\rightarrow V_{CE}, I_B$

D.V. : $\rightarrow V_{BE}, I_C$

\Rightarrow

I/P

\Rightarrow

$$I_c = (1 + \beta) I_{cbo} + \beta I_b .$$

$$\beta = \frac{I_c - I_{cbo}}{I_b + I_{cbo}} = \frac{\alpha}{1 - \alpha} .$$

$$\beta_{dc} = \frac{I_c}{I_b} = \frac{\alpha_{dc}}{1 - \alpha_{dc}} .$$

* Input Characteristics:

\Rightarrow Input char. of CE configuration concept wise look similar to forward char. of P-N diode since V_{BE} and I_B (proportional to αI_E) are voltage across and current through forward biased emitter junction diode.

the shape doesn't match since x-axis & y+ axis are interchanged.

\Rightarrow As reverse biased biased to J_c increases
early effect - ② says α increases hence
 I_c increases hence I_B decreases. i.e. input
currents move up.

$$\Rightarrow I_B \propto I_E$$

$$I_E = I_B + I_C$$

$$(mA): 1mA \uparrow = 0.01mA \uparrow + 0.99mA \uparrow$$

As R_B to $J_c \uparrow \rightarrow E-E$ ② $\rightarrow \alpha \uparrow \rightarrow \alpha \uparrow = \frac{I_c \uparrow}{I_E}$

$$\rightarrow \boxed{I_E} = I_B \downarrow + I_C \uparrow$$

$\Rightarrow C_E$ Saturation Resistance ($R_{CE(sat)}$):

$$\boxed{R_{CE(sat)} = \frac{V_{CE(sat)}}{I_C}}$$

$\rightarrow I_{CBO}$: Collector current with collector junction
RB. in CB with emitter open.

$\rightarrow I_{CEO}$: Collector current with collector junction
RB in CE with base open.

→ β : Common emitter forward current transfer ratio. (or) CE current gain.

* Proof of Current gain:

① Mathematically:

⇒ α is a number < 1 and closed to 1.

Hence $\beta = \left(\frac{I_c}{I_B} \right) > 1$ i.e. output current

I_c greater than input current I_B .

② Logically:

⇒ For a small change in input current I_B there is a large change in output current I_c hence current gain exists.

$$I_E = I_B + I_c$$

$$(\text{mA}): 1\text{mA} = 0.01\text{mA} \uparrow + 0.99\text{mA} \uparrow$$

③ Graphically:

⇒ In o/p char. a slope is existing hence current gain possible.

④

Practically:

⇒ In CE Amplifier experiment existence of current gain can be observed.

* Input and Output characteristics
in CC (or) grounded Collector Contri^g

⇒

⇒

$$\Rightarrow \gamma = (-I_E / I_B)$$

$$1 + \beta = 1 + \frac{I_C}{I_B} = \frac{I_B + I_C}{I_B} = -\frac{I_E}{I_B} = \gamma$$

$$\begin{matrix} \alpha & \ll \beta & < \gamma \\ \text{A}_T : & \text{CB} & \text{CE} & \text{CC} \\ & (0.98) & (49) & (50) \end{matrix}$$

$\Rightarrow \gamma$: Common Collector forward current transfer ratio (or) CC current gain.

* Input Characteristics:

\Rightarrow With V_{EC} kept constant if V_{BC} is increased then V_{EB} , Forward Biased to I_E decreases hence I_E & I_B decreases.

\Rightarrow If V_{BC} further increases then V_{EB} further decreases and becomes less than V_r , cut-in voltage. hence I_E and I_B become '0'. i.e. I_B starts from a value decreases and finally becomes '0'. hence input current moves up.

$$\Rightarrow V_{EC} = V_{EB} + V_{BC} \rightarrow V_{EB} \downarrow = \boxed{V_{EC}} - V_{BC} \uparrow$$

$$V_{EB} \downarrow \rightarrow F_B \text{ TO } J_E \downarrow \rightarrow I_E \downarrow \rightarrow F_B \downarrow$$

$$V_{EB} < V_r \rightarrow J_E \text{ not } F_B \rightarrow I_E = 0 \rightarrow I_B = 0$$

* Output Characteristics:

\Rightarrow Variable parameter in OIP or CE is same as CC but X-axis in OIP or CE is same as that of CC except for change in polarity.

\Rightarrow Y-axis in OIP or CE is same as that of CC except for slight increase in magnitude hence output of CC and CE look similar except that in CE slope is slightly greater than CE hence

Current gain in cc is (γ) slightly greater than (β).

Q A typical BJT has a β of 100. If collector current is 1mA. Assuming active region find base and emitter currents.

Soln:

$$\beta = 100, I_C = 1\text{mA}$$

$$\therefore \beta = \frac{I_C}{I_B}$$

$$I_B = \frac{I_C}{\beta} = \frac{1\text{mA}}{100}$$

$$\therefore I_B = 10\mu\text{A}$$

$$\therefore I_E = I_C + I_B$$

$$I_E = 1.01\text{mA}$$

$$\Rightarrow I_E = 1.01\text{mA}$$

Q for the BJT given in ckt determine Q-point.

Soln:

$$I_{CE\alpha} = 1.2 \text{ mA}$$

$$\therefore V_{CE\alpha} = V_C - V_E$$

$$\text{but } V_E = 0.$$

$$\therefore V_{CE\alpha} = V_C = V_{CC} - I_{CA} \cdot R_C$$

$$\begin{aligned}V_{CE\alpha} &= 12 - (5 \times 1.2) \\&= 12 - 6\end{aligned}$$

$$\therefore V_{CE\alpha} = 6 \text{ V}$$

Q- Point : $(V_{CE\alpha}, I_{\alpha}) = (6, 1.2 \text{ mA})$.

Q In grounded base configuration

Voltage drop across a load resistor of $4 \text{ k}\Omega$ is 3 V . determine base current given $\alpha = 0.96$.

Soln:

$$I_C = \frac{3}{4} = 0.75 \text{ mA.}$$

$$\beta = \frac{\alpha}{1-\alpha}$$

$$I_B = \frac{I_C}{\beta}$$

$$\alpha = \frac{I_C}{I_E}$$

$$I_B = \frac{0.75}{24}$$

$$\alpha = \frac{I_C}{I_B + I_C}$$

$$\therefore \beta = \frac{\alpha}{1-\alpha}$$

$$\frac{1}{\alpha} = 1 + \frac{I_B}{I_C}$$

$$\beta = \frac{0.96}{0.04} = 24$$

$$\frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

$$\Rightarrow I_B = 31.25 \text{ mA.}$$

$$I_E = I_C / \alpha = 0.381 \text{ mA}$$

Q In a CB Configuration emitter current is 1.6 mA, collector current with emitter open is 10 mA. Calculate collector current? given gain is 0.95.

Soln:

$$I_C = [-\alpha I_E] + I_{CBO}.$$

$$\therefore I_C = (0.95 \times 1.6) + 10 \text{ mA.}$$

$$\Rightarrow I_C = 1.53 \text{ mA}$$

Q For CE mode BJT base current is 10 mA current gain β . $I_{CBO} = 1 \text{ mA}$. Calculate collector current.

Soln: $I_B = 10 \text{ mA.}$

$$\therefore I_C = \beta I_B + I_{CBO} \cdot (1 + \beta)$$

$$= (99 \times 10) + 1 \text{ mA (100).}$$

$$I_C = 1000 \text{ mA}$$

$$\therefore I_C = 1.09 \text{ mA}$$

For a BJT Collector Current is
~~For~~ 0.9mA, Base current is 20mA.
 Calculate α .

Soln: $I_C = 0.9mA$

$$I_B = 20 \mu A$$

$$\therefore \beta = \frac{\alpha}{1-\alpha}$$

$$\beta = \frac{I_C}{I_B}$$

$$\beta(1-\alpha) = \alpha$$

$$\beta =$$

$$\beta = (1+\beta) \alpha$$

$$\alpha = \beta / (1 + \beta)$$

$$\alpha = \frac{I_C}{I_E}$$

$$\alpha = \frac{0.9m}{0.9m + 20 \mu}$$

$$\therefore \boxed{\alpha = 0.978}$$

Given common base current gain
~~Given~~ 0.98, calculate CE current gain.

Ans: $\alpha = 0.98$

$$\beta = \frac{\alpha}{1-\alpha}$$

$$\therefore \beta = \frac{0.98}{0.02}$$

$$\boxed{\beta = 49}$$

★ Opto Electronic Devices:

⇒ LED & LASER Convert electric energy to light energy and are used as optical sources.

⇒ PIN & APD Convert light energy to electric energy and are used as optical detectors in fiber optic communications.

⇒

⇒ In certain semiconductors EHP Recombination occurs in two steps called Indirect transition (or) Indirect Recombination and E_F gets converted to heat. Such (dissipation) Semiconductors are called Indirect band gap Semiconductors - e.g. Ge (or) Si.

⇒ In some other semiconductor EHP recombination occurs in single step called direct transition (or) direct recombination and E_{h-p} gets converted to light (radiation) such semiconductors are called direct band gap semiconductors.
e.g. Gallium (Ga) Arsenide (As).

⇒ If a P-N junction is design using indirect band gap semiconductors and operated in F.B. then during recombination heat comes out called P-N diode.

⇒ If the same P-N junction is design using direct band gap semiconductors then during recombination light comes out called LED. The colour (or) wavelength emitted depends on E_{h-p} , to produce required coloured as O.P. Two (or) more semiconductors are mixed to form a compound such that compound energy band gap is equal to required E_{h-p} .

⇒ Compound:

→ Binary : Cr_xAs.

→ Ternary : Cr_xAs_yP_z

→ Quaternary : In_xCr_yAs_zP_w.

* Light Emitting Diode (LED).

- ⇒ A P-N junction is designed using direct band gap semiconductor and operated in FB condition then during EHP recombination E_h gets converted to light.
- ⇒ A two terminal device is emitting light hence called Light emitting Diode.

- ⇒ Applied electric field is responsible for light emission called electroluminescence.
- ⇒ Injected charge carriers during recombination give out light called injection luminescence.
- ⇒ During recombination light comes out called radiative recombination.
- ⇒ In p-n diode during recombination heat comes out called dissipative recombination.

⇒ In LED Spontaneous Emission occurs.

* Advantages:

- ⇒ Small size ✓
- ⇒ Less weight. ✓
- ⇒ Low cost. ✓
- ⇒ Long life. ✓
- ⇒ Low power consumption.
- ⇒ Rugged construction!
- ⇒ Temp. dependence is less.

* Disadvantages:

- ⇒ Not highly directional.
- ⇒ Not highly cosmetic.

* Light Emission of Radiation. by Stimulated Radiation. (LASER).

⇒ If EHP recombination occurs after completion of life time and E_{cr} gets converted to light then it is called spontaneous emission which occurs in LED.

⇒ If recombination occurs before life time completion due to external disturbance and light comes out it is called stimulated emission which occurs LASER.

⇒ LASERS are produced in Cavity. In a cavity say population inversion is achieved and an injected photon disturbs an e^- and comes out as such the disturbed e^- during recombination generates another photon hence one photon becomes two. The process repeats and due to light amplification voluminous photons are generated. Light is coming out due to

due to stimulated emission with light amplification hence called LASER.

* Advantages:

- ⇒ Highly directional.
- ⇒ Highly Chromatic.

* Disadvantages:

- ⇒ (Invert the advantages of LED).

⇒

⇒ Spontaneous
Emission

Stimulated emission

* PIN

Photodiode:

⇒

⇒

$$\Rightarrow E_\lambda \geq E_{cr}$$

$$E_\lambda = hf = \frac{hc}{\lambda} \rightarrow \lambda_{max} = \frac{1.24}{E_{cr}(\text{eV})}.$$

⇒ Quantum efficiency $\eta = \frac{\text{No. of Electrons Generated}}{\text{No. of Photons Incident}}$

$$\boxed{\eta = \frac{I_p/q}{P_0/hf}}$$

⇒ Responsivity

$$\boxed{R = \frac{I_p}{P_0} = \frac{nq}{hf}} \text{ Amp/WATT.}$$

⇒ λ : Wavelength of incident photon.

f : freq. of incident photon.

P_0 : Incident optical power.

n : Planck's constant.

→ c: Speed of light

I_p : Photo current generated in PIN diode.

⇒ If a Photon having an energy greater than or equal to E_{cr} of a Semiconductor falls on the same semiconductor then by absorbing energy of photon photo carriers are generated which get attracted towards opposite polarity of applied reverse biased and produced photo current I_p .

⇒ Light energy is converted to electric energy hence called photodiode. In the absence of light thermally generated charge carriers support reverse saturation current I_0 called dark current.

⇒ The range of wavelength over which photo diode gives output is called spectral response.

⇒ Minimum optical power to be incident

On a photo diode to produce a usable output is called light sensitivity.

* Avalanche Photo diode (APD):

$$\Rightarrow M = \frac{I_m}{I_p} > 1.$$

$$R_{APD} = \frac{n^2}{h\nu} \cdot M,$$

$\Rightarrow M$: Multiplication factor due to avalanche multiplication.

I_m : Multiplied photo current generated in APD.

\Rightarrow due to incident photons photo carriers are generated which pass through n^+ p junction where a large reverse external electric field is applied. due to which avalanche BD occurs. Hence avalanche multiplication starts. hence charge carriers and current increases.

\Rightarrow For a power P_0 Incident on APD say I_M is the current generated and for the same power incidented on PIN diode say I_P is the current generated then

$$\frac{I_M}{I_P} > 1.$$

\Rightarrow Increase in charge carriers and current is called current amplification.

\Rightarrow Q A silicon APD has a quantum efficiency of 0.65 at a freq. of 0.33×10^{15} Hz. Suppose 0.5 mW of optical power produces a multiply photo current of 10 mA. calculate PIN multiplication factor m.

Soln:

$$I_M \propto \frac{n^2}{N_A} \cdot N_A$$

$$\Rightarrow M \neq \frac{I_M \cdot h\nu}{N_A}$$

$$M \neq k_0 / N_A \times 10^{-16} \times$$

\Rightarrow Applied n and P_0 to PIN diode
and calculate I_p .

$$\therefore I_p = \frac{n^2}{h\nu} \times P_0.$$

$$\therefore I_p = \frac{0.65 \times 1.6 \times 10^{-19}}{6.626 \times 10^{-34} \times 10^{15} \times 0.33} \times 0.5 \times 10^{-6}$$

$$I_p = 0.238 \text{ mA}$$

$$M = \frac{I_M}{I_p} = \frac{10 \text{ mA}}{0.238}$$

$$M = 42.05$$

$$\boxed{m \approx 42.}$$

- a) A PIN photodiode is constructed with GaAs which has a band gap of 1.43 eV find the longest wavelength that can generate current.

Soln:

$$\lambda_{\max} (\text{nm}) = \frac{1.24}{E_g (\text{eV})}$$

$$\Rightarrow \lambda_{\text{max}(\mu\text{m})} = \frac{1.24}{1.43}$$

$$\boxed{\lambda_{\text{max}} = 0.86 \mu\text{m}}$$

Q2 6×10^6 photons are incident on a PIN diode and 5.4×10^6 EHPs are generated. Calculate quantum efficiency.

Soln:

$$\text{Quantum efficiency } \eta = \frac{\text{No. of EHP's generated}}{\text{No. of incident photon}}$$

$$\eta = \frac{5.4 \times 10^6}{6 \times 10^6}$$

$$\boxed{\eta = 90\%}$$

Q3 Photons are incident on a PIN diode which has a responsivity of 0.65 A/Watt . If optical power level is $10 \mu\text{W}$. Calculate photo current generated

Soln:

$$I_p = R \cdot P_0 \cdot \frac{I_s/a}{P_0 k_B T}$$

$$R = \frac{I_p}{P_0}$$

$$\therefore I_p = R \cdot P_0 = 0.65 \times 10 \times 10^{-6}$$

$$\boxed{I_p = 6.5 \mu\text{A}}$$

(a) A LED is connected as shown it should glow when V_1 is at logic '0' state ($0.2V$). Calculate $|R'|$. Assume in active state

So in:
=

$\Rightarrow V_1$ is at Logic '0' $\Rightarrow \underline{V_1 = 0.2 = 0.2}$

By KVL,

$$5 - 1.7 - (15 + R') 15m = 0.$$

$$\frac{3.3}{15} = 15 + R'.$$

$$\therefore R' = \boxed{\frac{2/0.15}{15.67} \cdot \Omega}$$

Junction Field Effect Transistor (JFET):

=>

=>

=>

→

(A)

$$V_{DS} = 0$$

(B)

$$V_{DS} \uparrow (3V)$$

(C)

$$V_{DS} \uparrow\uparrow (6V)$$

(D)

$$V_{DS} \uparrow\uparrow\uparrow (10V)$$

(E)

(F)

(G)

$$V_{DS} \uparrow\uparrow (-6V)$$

- ⇒ Channel supports flow of only one charge carrier hence it is unipolar device.
- ⇒ The Voltage betⁿ drain and source V_{DS} is to be chosen such that charge carriers enter through source terminal into channel and leave the channel through drain terminal.
- ⇒ The Top and Bottom p+ gates along with n-channel form gate junction diodes.
- ⇒ The Voltage betⁿ gate and source V_{GS} is to be chosen such that gate junction diodes are reverse biased.
- ⇒ Interchanging drain and source terminals will not affect the operation hence circuit symbol doesn't differentiate betⁿ drain and source terminals.
- ⇒ The direction of arrow shows the direction flow of current when gate in diode is forward bias.

\Rightarrow Pinch-off:

	V_{DS}	V_{GS}	I_D
①	\uparrow	Const.	Const. ($I_D = 0$) (pinch off region).
②	Const.	\uparrow	0

\rightarrow In Fig - A, the top and bottom curves drawn for $V_{GS} = 0$ and $V_{DS} = 0$ correspond to penetration of depletion region into channel under open circuit condition of gate junction diode.

\rightarrow In N-channel, semiconductor bar acts like resistor across which a voltage V_{DS} is given through which a current I_D flows.

\rightarrow As V_{DS} increases I_D increases linearly as shown in ohmic region. (OR).

\rightarrow From left to right length (L) increases Resistance increases, voltage drop increases and reverse bias given to n-side progressively increases hence penetration

of depletion region into channel progressively increases hence depletion region takes a non-uniform shape called wedge shape.

→ To the left, to middle and right sides penetration of depletion region into channel will be more in $V_{DS} = 5V$ case than $V_{DS} = 3V$ case. since in $5V$ case reverse bias is more than corresponding $3V$ case but the shape is still non-uniform.

⇒ α_a : height of channel. (distance betⁿ gates)

a : half height of channel.

$l_b(x)$: Effective height of channel (distance betⁿ depletion region at a distance of x).

$b(x)$: Effective half height of channel.

h_1, h_2 : max, min effective height of channel.

→ minimum effective / e. height decides the magnitude of drain current.

⇒ w.r.t. Stability and retaining of current fig- ① is correct and fig - ② is wrong hence as V_{DS} increases from 6V to 10V fig- ③ moves to ④ hence I_D becomes constant as shown in CCR (constant current Region).

⇒ Beyond CCR as V_{DS} increases across top and bottom depletion regions a large electric field gets developed and avalanche BD occurs hence avalanche multiplication starts hence charge carriers and I_D increase un controllably as in BD region (BDR).

⇒ Maximum controllable current is possible in CCR hence called Saturation Region (SR). Hence OR (ohmic region) becomes Non saturation

Region (NSR).

→ ECR and VVR will occur at a lesser value of V_{DS} for $V_{GS} = -1V$ compare to $V_{GS} = 0V$ since in $V_{GS} = -1V$ case initial depletion region is deeper than $V_{GS} = 0V$ case. Device can be used as Voltage Variable Resistor (VVR) by varying V_{GS} in ohmic region.

→ Input Resistance

$$R_{GS} = \frac{V_{GS}}{I_G} \text{ is high.}$$

⇒ As V_{GS} increases (more -ve) reverse bias given to gate junction increases more and more hence penetration of depletion region into channel increases hence minimum effective height and drain current decreases more and more. at a particular voltage fig-⑤ occurs hence minimum effective height and I_D become zero. Thus, Transfer char. can be explained.

Note:

→ If V_{GS} increases and fig- E occurs then minimum effective height, drain current, current through Resistance, drop across Resistances and Voltage given to n side of diodes become zero hence the diodes are open circuited hence width of depletion region decreases hence fig- E jumps to A hence fig- E earlier was unstable.

→ If V_{GS} increases and fig- E occurs then even if voltage given to n-sides of diodes becomes '0' still the diode are reversed biased due to -ve supply given by V_{DS} to P^+ side.

→ In a Reverse bias diode a huge depletion region can survive hence this time fig- E is a stable state.

→ Pinch off voltage V_P is defined by Voltage betⁿ gate and source V_{GS} for $V_{GS} = 0$ at which channel closes.

V_{gp} is -ve for n-channel and +ve for p channel).

→ As input Voltage V_{gs} increases, input Current I_{dr} is constant but output Voltage Current I_o decreases hence it is Voltage ~~control~~ control device.

→ In fig- F, +ve means + very Charged donor ion existing in depletion region of n-channel, -ve means - very Charged Acceptor ion existing in depletion region of p+ - gate.

→ Across +ve and -ve ions existing in depletion region internally electric flux line get developed which control the operation hence called electric field effect.

⇒ Electric field developed across a junction is controlling the operation of a 3-terminal device hence called Junction Field Effect Transistor (JFET).

- * Suient points of JFET: (compare to BJT).
- ⇒ Voltage Controlled device.
 - ⇒ I/p Resistance is high.
 - ⇒ No offset Voltage.
 - ⇒ Unipolar device.
 - ⇒ Small in size.
 - ⇒ Better thermal stability.
 - ⇒ Easy to fabricate.
 - ⇒ Low power Consumption.

Note:

→ In a BJT in the path of flow of current a junction exist hence minimum offset voltage V_T to be applied for BJT to go to on state. No such junction (or) offset voltage for JFET.

* Application:

- ⇒ Voltage Variable resistor.
- ⇒ Buffer.
- ⇒ Digital Analog switch.

→ A digital pulse is controlling the operation of analog switch hence called digital analog switch.

$$\Rightarrow V_p = \left(-q n_0 \alpha^2 / 2\epsilon \right) \rightarrow N\text{-Channel.}$$

$$V_p = \left(+q n_A \alpha^2 / 2\epsilon \right) \rightarrow P\text{-Channel.}$$

$$I_{DS} = I_{DSs} \left(1 - \frac{V_{GS}}{V_p} \right)^2$$

$$\rightarrow V_{DS} + V_p = V_{GS}$$

$$\rightarrow V_{GS} = \left(1 - \frac{b}{a} \right)^2 V_p$$

$$\rightarrow I_D = \frac{2 \omega w q N_0 \alpha^2 n}{L} \left[1 - \left(\frac{V_{GS}}{V_p} \right)^{1/2} \right] V_{DS}$$

$$R_{D, on} = \frac{V_{DS}}{I_D} \Big|_{V_{GS}=0} = \frac{L}{2 \omega w q N_0 \alpha^2 n}$$

$\Rightarrow I_{DSs}$: Drain saturation current at $V_{GS}=0$

I_{DS} : Drain cutⁿ current when $V_{GS} \neq 0$.

$R_{D,ON}$: drain on Resistance.

= Induced P-Channel Enhancement
MOSFET (IGFET) (OR) PMOS.

\Rightarrow

\Rightarrow

\Rightarrow

\Rightarrow

$$V_{GS} = 0$$

$$V_{GS} = -V_e$$

\Rightarrow

$$R_L \text{ or } (m\Omega)$$

$$\Rightarrow V_{DS} = V_{DQ} + V_{GDS}$$

$$V_{DS} = -V_{GDS} + V_{GS}$$

$$V_{GDS} = \boxed{V_{GS}} - V_{DS} \uparrow$$

$$\Rightarrow R_{GDS} = \frac{V_{GS}}{\frac{I_D}{A}} = \infty$$

$$R = \frac{g_A}{A}$$

$$\uparrow V_{DS} = \uparrow I_{DR}$$

\Rightarrow Device supports flow of only one charge carrier hence it is unipolar device. The voltage betn D & S V_{DS} is to be chosen such that charge carriers enter through source terminal into device and leave the device through drain terminal.

\Rightarrow For $V_{GS} = 0$ diffused p+ region and n- substrate form diodes. For G given V_{DS} source diode is forward biased and drain diode is R.B. hence $I_D = I_0$, very small current flows.

\Rightarrow Even if V_{DS} increases $I_D = I_0$ will be

constant since n^- channel opposes the flow of charge carrier.

⇒ Say V_{DS} is made -ve then holes of substrate are pulled towards gate terminal but they can not reach gate due to insulating SiO_2 layer hence they get accumulated beneath SiO_2 layer betn the two p+ region called Induced p-channel which supports flow of charge carriers hence drain current increases.

⇒ For the same V_{DS} as earlier if V_{GS} becomes more and more -ve then channel becomes more and more p-type. hence I_D increases called Enhancement type.

⇒ For a given value of V_{GS} Induced channel and diiffused areas act like a resistor across which a voltage V_{DS} is given through which a current I_D flows as V_{DS} increases I_D increases linearly as shown in ohmic region, ~~Resistive~~ (OR)

→ Beyond a particular V_{DS} , if V_{DS} further increases pull exerted on the incoming holes to the drain side decreases hence holes get accumulated at source side hence height of induced channel at drain side becomes constant hence I_D becomes constant as in constant current region (CCR). Maximum current is possible in CCR hence called Saturation region (SR) and hence (OR) becomes non-saturation region (NSR).

⇒ Device can be used as Voltage Variable Resistor $\frac{V_{DS}}{I_D}$ in OR. by varying V_{DS} .

⇒ Input resistance $R_{IN} = \frac{V_{DS}}{I_D}$ ideally is infinity practically very high. since gate terminal is insulated by SiO_2 layer. As V_{DS} increases input voltage increases input current I_D is constant and output current I_O increases hence It is Voltage Controlled Device.

⇒ Electric field developed across metal oxide semiconductor (MOS) is controlling the operation of a 3-terminal device hence called Metal Oxide Semiconductor Field Effect Transistor (MOSFET).

⇒ Gate terminal is insulated hence called insulated gate field effect transistor (IGFET).

* Enhancement Cum Depiction

N-Channel

MOSFET:

\Rightarrow For $V_{GS} = 0$, diffused n-channel supports flow of charge carriers hence, a non-zero value of I_D is possible.

\Rightarrow Say V_{GS} is made -ve then e^- of channel are zipped to substrate and holes of substrate are attracted to channel hence channel becomes p-type and opposes flow of charge carriers hence I_D decreases called depletion mode.

\Rightarrow Say V_{GS} is made +ve then holes of channel are zipped to substrate and e^- of substrate attracted into channel hence channel becomes n-type hence I_D increases called Enhancement mode.

* Applications:

\Rightarrow Voltage Variable Resistor.

\Rightarrow Buffer.

\Rightarrow Memory Element.

Note: In PMOS there is no ~~saturation~~ premature on problem

=>

$$V_{GS} = +5V$$

$$V_{GS} = +4.9V$$

$$V_{GS} = -5V.$$

"Premature on"

=> During the preparation of SiO_2 layer certain free charge impurities will get developed which were seen to effect the operation.

=> In NMOS V_{GS} +ve will dipole the impurities hence they move the bottom surface of SiO_2 layer and attract charge carriers into channel and make the device to get switched on at a voltage prior to designed voltage called "premature on" problem.

\Rightarrow In PMOS V_{GS} -ve attracts impurities hence they move to top surface of SiO_2 layer. They can not affect incoming charge carriers hence device gets switched on at designed voltage.

(Q) An n-channel JFET has $I_{DSS} = 8mA$ $V_{GS(OFF)} = -5V$. Calculate minimum Voltage betn D & S for pinch off. And drain current given $V_{GS} = -2V$.

Soln:

$$I_D = I_{DSS} \left[1 - \frac{V_{GS}}{V_P} \right]^2$$

$$V_P = V_{GS(OFF)} = -5V$$

$$\therefore I_D = 8 \left[1 - \frac{(-2)}{(-5)} \right]^2$$

$$I_D = 2.88mA$$

$$V_{DS} + V_P = V_{GS}$$

$$V_{DS(\min)} = V_{GS} - V_P \\ = -2 - (-5)$$

$$V_{DS(\min)} = +3V$$

a) Gate current is 1mA when a reverse gate voltage of 12V is applied to a FET. R_{DS(on)} in mΩ is.

Soln:

$$R_{DS} = \frac{V_{GS}}{I_G} = \frac{12}{1 \times 10^{-3}} = 12 \times 10^3 \Omega$$

$$R_{DS} = 12 \times 10^3 \text{ m}\Omega.$$

b) For n-channel silicon FET given half channel height 3×10^{-4} cm. Calculate effective half channel height b given $V_{GS} = V_P/2$.

Soln:

$$V_{GS} = (1 - bla)^2 V_P$$

$$\therefore 2 \neq (1 - bla)^2 \quad \therefore \frac{1}{2} = (1 - bla)^2$$

$$bla = 1 - \sqrt{\frac{1}{2}}$$

$$bla \approx 1/2 V_P$$

$$bla = 1 - 0.707$$

$$b = 0.878 \times 10^{-4} \text{ cm.}$$

c) Pinch-off Voltage for n-channel FET given $a = 2 \times 10^{-4}$ cm

$$N_D = 125 \times 10^{13} \text{ cm}^{-3}$$

$$\epsilon = 106.188 \times 10^{-14} \text{ F/cm.}$$

$$\underline{\underline{S o l n:}} \quad V_o = - \frac{q N_0 a^2}{2F}$$

$$V_p = - \frac{1.6 \times 10^{-19} \times 125 \times 10^{13} \times 4 \times 10^{-8}}{2 \times 106.88 \times 10^{-14}}$$

$$\therefore \boxed{V_p = -3.74 V}$$

