Введение в теорию Галуа - семинар 1

8 сентября 2025

(1) Пусть $r \in \mathbb{Q}$ — это корень многочлена

$$a_m X^m + a_{m-1} X^{m-1} + \dots + a_0, \quad a_i \in \mathbb{Z}$$

и пусть $r = c/d, c, d \in \mathbb{Z}, \gcd(c, d) = 1$. Тогда $c \mid a_0$ и $d \mid a_m$.

- (2) (Лемма Гаусса). Пусть $f(X) \in \mathbb{Z}[X]$. Если f(X) нетривиально разложим в $\mathbb{Q}[X]$, то он нетривиально разложим в $\mathbb{Z}[X]$.
- (3) Если $f \in \mathbb{Z}[X]$ приведен, то любой приведенный множитель f в $\mathbb{Q}[X]$ лежит в $\mathbb{Z}[X]$.
- (4) (Критерий Эйзенштейна). Пусть

$$f = a_m X^m + a_{m-1} X^{m-1} + \dots + a_0, \quad a_i \in \mathbb{Z},$$

предположим, существует простое число p, для которого верно:

- p не делит a_m ,
- p делит $a_{m-1}, \dots, a_0,$ p^2 не делит $a_0.$

Тогда f неприводим $\mathbb{Q}[X]$.

- (5) Множество алгебраических чисел над Q счетно.
- (6) Пусть $E = \mathbb{Q}[\alpha]$, где $\alpha^3 \alpha^2 + \alpha + 2 = 0$. Выразите $(\alpha^2 + \alpha + 1)(\alpha^2 \alpha)$ и $(\alpha 1)^{-1}$ в виде $a\alpha^2 + b\alpha + c$, где $a, b, c \in \mathbb{Q}$.
- (7) Посчитайте $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}].$
- (8) Пусть F это поле и пусть $f(X) \in F[X]$.
 - (a) Для любого $a \in F$, покажите, что существует $q(X) \in F[X]$, для которого верно

$$f(X) = q(X)(X - a) + f(a)$$

1

- (b) Покажите, что f(a) = 0 тогда и только тогда $(X a) \mid f(X)$.
- (c) Покажите, что f(X) имеет не более $\deg f$ корней.
- (d) Пусть G это конечная абелева группа. Если G имеет не более m элементов порядка, делящего m для каждого m, делящего порядок |G|. Докажите, что Gциклическая.
- (e) Покажите, что любая конечная подгруппа (F^{\times}, \cdot) , где F это поле, является циклической.
- (9) (*) Число $\alpha = \sum \frac{1}{2^{n!}}$ трансцендентно.