Side Notes for Hidden Markov Chains C Douglas Howard

General setting:

Parameters: μ_0 , σ_0^2 , and σ^2 are known

Prior: $\mu \sim \text{Normal}(\mu_0, \sigma_0^2)$

Data: $X \sim \text{Normal}(\mu, \sigma^2)$

Posterior: $X = x \implies \mu \sim \text{Normal}\left(\frac{\sigma^2 \mu_0 + \sigma_0^2 x}{\sigma^2 + \sigma_0^2}, \frac{\sigma^2 \sigma_0^2}{\sigma^2 + \sigma_0^2}\right)$

Constant beta application (model is $R_t = \beta m_t + \epsilon_t$):

Prior: $\beta \sim \text{Normal}(\mu, \sigma^2)$, as updated through time t-1

Data: $X_t = \frac{R_t}{m_t} = \frac{\beta m_t + \epsilon_t}{m_t} = \beta + \frac{\epsilon_t}{m_t} \sim \text{Normal } (\beta, \sigma_{\epsilon}^2/m_t^2)$

Posterior:
$$R_t = r_t \implies X_t = \frac{r_t}{m_t} \implies$$

$$\beta \sim \text{Normal}\left(\frac{(\sigma_{\epsilon}^2/m_t^2)\mu + \sigma^2(r_t/m_t)}{(\sigma_{\epsilon}^2/m_t^2) + \sigma^2}, \frac{(\sigma_{\epsilon}^2/m_t^2)\sigma^2}{(\sigma_{\epsilon}^2/m_t^2) + \sigma^2}\right)$$

$$\sim \text{Normal}\left(\frac{\sigma_{\epsilon}^2\mu + \sigma^2r_tm_t}{\sigma_{\epsilon}^2 + m_t^2\sigma^2}, \frac{\sigma_{\epsilon}^2\sigma^2}{\sigma_{\epsilon}^2 + m_t^2\sigma^2}\right)$$

Full model $(R_t = \beta_t m_t + \epsilon_t)$ with known σ_{δ}^2 and σ_{ϵ}^2 :

Prior: $\beta_{t-1} \sim \text{Normal}(\mu, \sigma^2)$, so $\beta_t = \beta_{t-1} + \delta_t \sim \text{Normal}(\mu, \sigma^2 + \sigma_{\delta}^2)$

Data: $X_t = \frac{R_t}{m_t} = \frac{\beta_t m_t + \epsilon_t}{m_t} = \beta_t + \frac{\epsilon_t}{m_t} \sim \text{Normal } (\beta_t, \sigma_\epsilon^2/m_t^2)$

Posterior: $R_t = r_t \implies X_t = \frac{r_t}{m_t} \implies$ $\beta_t \sim \text{Normal}\left(\frac{\sigma_{\epsilon}^2 \mu + (\sigma^2 + \sigma_{\delta}^2) r_t m_t}{\sigma_{\epsilon}^2 + m_t^2 (\sigma^2 + \sigma_{\delta}^2)}, \frac{\sigma_{\epsilon}^2 (\sigma^2 + \sigma_{\delta}^2)}{\sigma_{\epsilon}^2 + m_t^2 (\sigma^2 + \sigma_{\delta}^2)}\right)$

Estimating σ_{δ} and σ_{ϵ} via Maximum Likelihood:

• We seek to find the value of these parameters that maximizes the likelihood function evaluated at the observed data:

$$L(\sigma_{\epsilon}, \sigma_{\delta}) = f(r_1, \dots, r_{1258}),$$

where $f(\cdot)$ is the joint density function of (R_1, \ldots, R_{1258}) with the values σ_{ϵ} and σ_{δ} .

• We do this by writing $L(\cdot)$ as the product of conditional density functions:

$$L(\sigma_{\epsilon}, \sigma_{\delta}) = \prod_{t=1}^{1258} f_t(r_t),$$

where $f_t(\cdot)$ is the conditional density function of R_t given $D_{t-1} = \{R_1 = r_1, \dots, R_{t-1} = r_{t-1}\}.$

• With a trial choice of the two parameters in hand suppose at time t-1 we deduce that:

$$\beta_{t-1} \sim \text{Normal}(\mu, \sigma^2); \text{ so}$$

$$\beta_t = \beta_{t-1} + \delta_t \sim \text{Normal}(\mu, \sigma^2 + \sigma_\delta^2); \text{ and}$$

$$\beta_t m_t \sim \text{Normal}(\mu m_t, (\sigma^2 + \sigma_\delta^2) m_t^2).$$

• Recalling that the independent $\epsilon_t \sim \text{Normal}(0, \sigma_{\epsilon}^2)$ we see that

$$R_t = \beta_t m_t + \epsilon_t \sim \text{Normal } (\mu m_t, (\sigma^2 + \sigma_\delta^2) m_t^2 + \sigma_\epsilon^2) \sim \text{Normal } (\mu m_t, v),$$

where $v = (\sigma^2 + \sigma_\delta^2) m_t^2 + \sigma_\epsilon^2.$

ullet Conditioned on the data through day t-1, the density function for R_t is therefore

$$f_t(r) = \frac{1}{\sqrt{2\pi v}} \exp\left[-(r - \mu m_t)^2/2v\right].$$

• We repeat this exercise over a grid of values for $(\sigma_{\delta}, \sigma_{\epsilon})$ and observe that L is maximized at $\sigma_{\delta} = 0.015$ and $\sigma_{\epsilon} = 0.968$.