ES

11) Número de publicación:

2 160 486

21 Número de solicitud: 009900896

(51) Int. Cl.7: A01N 1/02

(12)

PATENTE DE INVENCION

B1

- 22 Fecha de presentación: 30.04.1999
- 43 Fecha de publicación de la solicitud: 01.11.2001

Fecha de concesión: 17.04.2002

- 45 Fecha de anuncio de la concesión: 16.05.2002
- Fecha de publicación del folleto de patente: 16.05.2002
- (3) Titular/es: Consejo Superior de Investigaciones Científicas C/ Serrano, 117 28006 Madrid, ES
- (72) Inventor/es: Sanz Martínez, Pedro Dimas; Carrasco Manzano, Juan Atanasio y Guerra García, Juan Mario
- (74) Agente: No consta
- Título: Dispositivo y procedimiento para la conservación de materiales biológicos destinados a transplantes.

67 Resumen:

Dispositivo y procedimiento para la conservación de materiales biológicos destinados a transplantes. El dispositivo consta de una célula exterior, conectada a un sistema de alta presión y a un sistema de termostatización, soportando presiones de hasta 250 Mpa y temperaturas entre los +30 y los -30°C y que contiene un fluido de compresión y el contenedor de la muestra, que está inmersa en un fluido tipo fisiológico.

También se describe un procedimiento de aplicaciones del dispositivo por mantener las muestras de material biológico durante largos periodos de tiempo por debajo de 0° sin congelar y a altas presiones.

Aviso: Se

Se puede realizar consulta prevista por el art. 37.3.8 LP.

DESCRIPCION

Dispositivo y procedimiento para la conservación de materiales biológicos destinados a transplantes.

Sector de la Técnica

Primer sector: Medicina y Cirugía

Segundo sector: Transplantes.

10 Estado de la Técnica

La conservación de materiales biológicos para su posterior transplante se lleva a cabo, actualmente, por criocongelación o por vitrificación.

En el primer caso, se somete a la muestra a un proceso de congelación rápido: Este método tiene el inconveniente de que, en las muestras voluminosas, la velocidad de congelación (M.N. Martino, L. Otero, P.D. Sanz and N.E. Zaritzky. "Size and location of ice crystals in pork frozen by high pressure assisted freezing as compared to classical methods". Meat Science, 50/3, 303;313, 1998) se hace muy baja (aún con la congelación criogénica), provocando, por ejemplo en carne, la aparición de grandes cristales de hielo intracelular y extracelular, que destruyen la estructura de las células, provocando pérdidas del líquido intracelular tras la descongelación, etc.

En los procesos de vitrificación (Fahy, G.M., Levy, D.I. and All, S.E., "Some Emerging Principies Underlying the Physical Properties, Biological Actions and Utility of Vitrification Solutions", Cryobiology, 24, 196-213, 1987), se busca el estado vítreo de las muestras y, por tanto, se hace crítica la velocidad de enfriamiento.

En ambos procesos, para volver al estado "en fresco" del producto, es muy importante también el control de la velocidad de calentamiento; para evitar recristalizaciones, caso de la criocongelación, y para evitar la pérdida del estado vítreo (posible paso al estado de cristalización) en el caso de la vitrificación.

Para favorecer ambos procesos, se puede añadir un fluido criopreservador (Bijan, S. K. And Fahy, G. M., "Cryopreservation of the Mammalian Kidney. I. Transplantation of Rabit Kidneys Perfused with EC and RPS-2 at 2-4°C". Cryobiology, 31,10-25, 1994), haciéndolo penetrar en el interior del producto o aplicándolo en su superficie.

La alta presión se ha indicado como un tratamiento favorecedor del aumento de la temperatura de transición vítrea en el proceso de vitrificación (Fahy, G.M., MacFarlane, D.R., Angell, C.A. and Meryman, "Vitrificaction as an approach to Cryopreservation", Cryobiology, 21,407-426, 1984).

Descripción de la Invención

Los problemas más importantes que aparecen a la hora de transplantar muestras biológicas provenientes de la criocongelación o la vitrificación, son; el deterioro que sufren, debido al proceso previo de congelación, y/o el rechazo del receptor a los criopreservadores empleados.

Es sabido que el agua puede permanecer en estado líquido a temperaturas por debajo de 0° C, sin congelar, si se establecen las debidas condiciones de presión (Wagner, W., Saul, A., Pru β , A., "Internacional Equations for Pressure along the Melting and along the Sublimation Curve of Ordinary Water Substance", J. Phys. Chem. Ref. Data, 23/3, 515-525, 1994), y que los productos de origen biológico poseen un elevado contenido en agua.

La invención consiste en un dispositivo y un proceso, mediante los cuales, se mantiene la muestra durante largos periodos de tiempo (meses) a temperaturas por debajo de 0°C sin congelar, y a altas presiones.

En algunos casos, la muestra puede ser impregnada de fluidos, que comporten ventajas adicionales al tratamiento y/o al proceso descrito.

El proceso se puede llevar a cabo en el laboratorio o en el lugar donde se vaya a producir la obtención de las muestras para el posterior transplante, empleando para ello instalaciones móviles.

El tiempo de almacenamiento puede ser tan prolongado como se desee. Y un mismo circuito de alta presión, puede servir para mantener distintas células de alta presión, conteniendo, cada una de ellas, diferentes materiales a conservar.

Por otra parte, la alta presión hidrostática, empleada debidamente, no comporta riesgos para los manipuladores. Baste para ello, tener en cuenta que, actualmente, está siendo empleada en la Industria Alimentaria.

Las ventajas y diferencias que se desprenden de esta invención respecto a las técnicas existentes son; que la muestra no ha de ser congelada, ni descongelada, ni vitrificada, ni desvitrificada, ni ha de ser impregnada de fluidos criopreservantes. Por tanto, no se tienen porqué producir roturas de células debidas a la congelación o descongelación, ni pérdida de fluidos intracelulares, ni existe peligro de paso del estado vítreo al congelado, ni de toxicidad o de rechazo de sustancias criopreservadoras.

Las novedades de esta invención se pueden resumir, pues, en que se consigue el mantenimiento del estado original de la muestra, a temperaturas por debajo de los 0°C, sin congelar, durante largos periodos de tiempo, sin que se produzcan contaminaciones o desperfectos importantes en las muestras.

Descripción detallada de la invención

El objetivo de la invención es, como se ha dicho, el conseguir el mantenimiento del estado original de la muestra, a temperaturas por debajo de los 0°C, sin congelar, durante largos periodos de tiempo, sin que se produzcan contaminaciones o desperfectos importantes en las muestras. Para ello se emplea el siguiente dispositivo y se lleva acabo el siguiente proceso:

El dispositivo consta de una célula exterior conectada a un sistema de alta presión y a un sistema de termostatización. Esta célula, que ha de soportar presiones de hasta 250 MPa y temperaturas de entre los +30 y los -30°C, contiene un fluido de compresión, como por ejemplo, agua, y el contenedor de la muestra. En este contenedor se encuentra, como se ha dicho, la muestra, la cual está inmersa en un fluido tipo fisiológico, como el "Eurocolling" o similar.

El dispositivo se complementa con sondas de medida de temperatura en el interior de la célula, en el exterior, etc., con sondas de presión en el circuito correspondiente, y con un sistema de recogida de datos termodinámicos.

El proceso consiste en:

35

40

55

- 1°) El dispositivo, que contiene el fluido de compresión, se mantiene a temperaturas positivas, próximas a 0°C. También se mantienen a esas temperaturas el recipiente que ha de contener la muestra y el fluido tipo fisiológico como el "Eurocolling" o similar.
- 2°) La muestra se recoge y almacena, durante el menor tiempo posible, a temperaturas positivas próximas a 0°C.
- 3°) De forma estéril, se introducen en el contenedor, la muestra y el fluido tipo fisiológico, como el "Eurocolling" o similar, hasta rebosar, y se cierra herméticamente.
 - 4°) Se introduce este contenedor en la célula exterior, haciendo rebosar al fluido de compresión, por ejemplo, agua.
- 5°) Se cierra la célula y se aplica un proceso de presurización y de descenso de temperatura.
 - 6°) Este proceso de aumento de presión y de descenso de temperatura será tal que no se pueda producir, jamás, la congelación de la muestra ni la de los fluidos de la célula. Para ello, el proceso ha de conseguir que se permanezca en todo momento, en la región de líquido del diagrama termodinámico del agua.

Para conocer qué valores de presión y de temperatura han de verificarse en cada momento, se puede seguir lo establecido en (Wagner, W., Saul, A., $Pru\beta$, A., "Internacional Equations for Pressure along the Melting and along the Sublimation Curve of Ordinary Water Substance", J. Phys. Chem. Ref. Data, 23/3, 515-525, 1994), o emplear el siguiente programa de cálculo (escrito en lenguaje de "Matlab") que establece los límites entre el agua líquida y los diferentes tipos de hielo que la limitan en el correspondiente diagrama termodinámico:

3

Calcula los valores de la presión a partir de la temperatura a lo largo de la curva de fusión del agua en sus distintos intervalos

```
Intervalos de presión (MPa) y temperatura (K)
   p:0.000611657 - 209.9; t: 273.16 - 251.165
                                                  Hielo I...r = 1
                            t: 251.165 - 256.164 Hielo III...r = 2
   p:209.9 - 350.1;
                                                  Hielo V...r = 3
   p: 350.1 - 632.4;
                            t: 256.164 - 273.31
                                                  Hielo VI...r = 4
   p: 632.4 - 2216;
                            t: 273.31 - 355
                                                  Hielo VII...r = 5
   p: 355 - 715;
                            t: 355 - 715
   Nuestros valores:
   t = input ("Cual es la temperatura (K)?");
   r = input ("'Cual es el intervalo?');
   if r == 1
       if 251.165 <=t & t<=273.16
20
       a=(1/273.16)*t;
       p=0.000611657*(1-0.626000e6*(1-a.(-3))+0.197135e6*(1-a.(21.2)))
       elseif t>273.16
       error ('la temperatura indicada no pertenece al intervalo 1')
25
       error ('la temperatura indicada no pertenece al intervalo 1')
       end
    elseif r == 2
       if 251.165<=t & t<=256.164
       a=(1/251.165)*t;
35
       p=209.9*(1-0.295252*(1-a^60))
       elseif t>256.164
       error ('la temperatura indicada no pertenece al intervalo 2')
40
       error ('la temperatura indicada no pertenece al intervalo 2')
       end
   elseif r ==3
       if 256.164 \le t & t \le 273.31
       a=(1/256.164)*t
       p=350.1*(1-1.18721*(1-a^{3}))
       elseif t>273.31
       error ('la temperatura indicada no pertenece al intervalo 3')
55
       error ('la temperatura indicada no pertenece al intervalo 3')
       end
    elseif r ==4
       if 273.31 <=t & t <= 355
       a=(1/273.31)*t;
```

```
p=632.4*(1-1.07476*(1-a^{4.6}))
       elseif t>355
       error ('la temperatura indicada no pertenece al intervalo 4')
       error ('la temperatura indicada no pertenece al intervalo 4')
10 elseif r == 5
       if 355<=t & t<=715
       a=(1/355)*t;
       Ind = 0.173683e1*(1-a^{(-1)}-0.544606e-1*(1-a^{5})+... 0.806106e-7*(1-a^{2}2));
15
       d=\exp(Ind);
       p=2216*d
       elseif t>715
20
       error ('la temperatura indicada no pertenece al intervalo 5')
       error ('la temperatura indicada no pertenece al intervalo 5')
25
    end
```

- 7°) Antes de retirar la muestra del dispositivo de tratamiento por alta presión, se procede a un calentamiento del sistema hasta alcanzar temperaturas positivas, próximas a 0°C.
- 8°) A partir de ese estado, se lleva a cabo el proceso de despresurización. Para ello se controla la temperatura y la presión, en cada momento (cada segundo o menos), para que no se puedan producir congelaciones. Este proceso finaliza al alcanzar la presión atmosférica.
- 9°) Se abre la célula de alta presión y se retira el contenedor de la muestra, permaneciendo, en todo momento, a temperaturas positivas, próximas a los 0°C, hasta su empleo en transplantes. El tiempo de permanencia en estas condiciones ha de ser el menor posible.

Descripción detallada de los dibujos

30

50

La Figura 1 muestra el dispositivo experimental. En él se observa un circuito productor de alta presión, conectado a un circuito de aire a baja presión, del orden de 0.7 MPa (marcado como aire 7 bar), en verde, y el circuito del fluido de compresión a alta presión, y el de drenaje, en negro. La presión hidrostática puede estar producida por una o por varias bombas, dos en la figura (nombradas por BHP 2000 y BHP 7000). Se completa el sistema de presurización con las correspondientes tuberías, válvulas, automatismos, sistemas de medida, etc.

En el caso de la figura, se han conectado dos células contenedoras de muestras (nombradas por 2000 bar y 5000 bar). Dentro de ellas existen termopares de medida.

El sistema de termostatización se aplica a cualquiera de las células. Además, la termostatización puede conseguirse ubicando las células en un recinto termostatizado, mediante la aplicación de un sistema frigorífico solidario a la célula, etc.

55 Ejemplo de realización de la invención

Se tomará de ejemplo, el almacenamiento de una arteria humana, para su posterior transplante:

- 1°) El dispositivo, conteniendo agua como fluido de compresión, se mantiene a 1°C.
- 2°) Una vez extraída del donante, y de forma estéril, se ubica la arteria en un contenedor apropiado para el tratamiento a altas presiones, conteniendo, a su vez, un fluido tipo fisiológico como el "Eurocolling" o similar, previamente almacenado a temperaturas de 1°C.

- 3°) Se introduce este contenedor en la célula exterior, haciendo rebosar al fluido de compresión.
- 4°) Se cierra la célula y se aplica un proceso de presurización de 25 MPa/s hasta llegar a los 90 MPa, y de descenso de temperatura lo más rápido posible hasta llegar a los -7°C.
- ⁵ 5°) Se mantienen constantes esos parámetros termodinámicos hasta el final del proceso.
 - 6°) Llegado el momento del transplante, se termostatiza el sistema a +3°C, manteniendo la presión constante.
- 10 7°) Se procede a una reducción lenta de la presión, del orden de 1 MPa/s o menor, controlando la temperatura, para que no descienda nunca mas de 1°C, hasta llegar a la presión atmosférica.
 - 9°) Rápidamente, se abre la célula de alta presión, se recupera, de forma estéril, la arteria y se procede a su transplante.

REIVINDICACIONES

- 1. Dispositivo para la conservación de materiales biológicos destinados a transplantes caracterizado porque consta de una célula exterior, conectada a un sistema de alta presión y a un sistema de termostatización, soportando presiones de hasta 250 Mpa y temperaturas entre los +30 y los -30°C y que contiene un fluido de compresión y el contenedor de la muestra, que está inmersa en un fluido tipo fisiológico.
- 2. Dispositivo según reivindicación 1 caracterizado porque se le añaden sondas de medida de temperatura en el interior o exterior de la célula, sondas de presión en el circuito correspondiente y un sistema de recogida de datos termodinámicos.
 - 3. Procedimiento para la conservación de materiales biológicos destinados a transplantes mediante dispositivo según reivindicaciones 1 y 2 caracterizado por las siguientes etapas:
- 1°) El dispositivo, que contiene el fluido de compresión, se mantiene a temperaturas positivas, próximas a 0°C. También se mantienen a esas temperaturas el recipiente que ha de contener la muestra y el fluido tipo fisiológico como el "Eurocolling" o similar.
 - 2°) La muestra se recoge y almacena, durante el menor tiempo posible, a temperaturas positivas próximas a 0°C.
 - 3°) De forma estéril, se introducen en el contenedor, la muestra y el fluido tipo fisiológico, como el "Eurocolling" o similar, hasta rebosar, y se cierra herméticamente.
- 4°) Se introduce este contenedor en la célula exterior, haciendo rebosar al fluido de compresión, por ejemplo, agua.
 - 5°) Se cierra la célula y se aplica un proceso de presurización y de descenso de temperatura.
- 6°) Este proceso de aumento de presión y de descenso de temperatura será tal que no se pueda producir, jamás, la congelación de la muestra ni la de los fluidos de la célula. Para ello, el proceso ha de conseguir que se permanezca, en todo momento, en la región de líquido del diagrama termodinámico del agua, empleando un programa de cálculo que establezca los límites entre el agua líquida y los diferentes tipos de hielo.
- 7°) Antes de retirar la muestra del dispositivo de tratamiento por alta presión, se procede a un calentamiento del sistema hasta alcanzar temperaturas positivas, próximas a 0°C.
 - 8°) A partir de ese estado, se lleva a cabo el proceso de despresurización. Para ello se controla la temperatura y la presión, en cada momento (cada segundo o menos), para que no se puedan producir congelaciones. Este proceso finaliza al alcanzar la presión atmosférica.
 - 9°) Se abre la célula de alta presión y se retira el contenedor de la muestra, permaneciendo, en todo momento, a temperaturas positivas, próximas a los 0°C, hasta su empleo en transplantes. El tiempo de permanencia en estas condiciones ha de ser el menor posible.

45

40

20

50

55

60

Figura 1

① ES 2 160 486

②1 N.° solicitud: 009900896

22) Fecha de presentación de la solicitud: 30.04.1999

32) Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

(51) Int. Cl. ⁷ :	A01N 1/02			-		 		

DOCUMENTOS RELEVANTES

Categoría		Reivindicacione afectadas	
Α	US 5701746 A (DESGRANDC) todo el documento.	HAMPS, F. et al.) 30.12.1997,	1-3
Α	US 5786136 A (MAYER, B.) 2	8.07.1998, todo el documento.	1-3
Α	US 4008754 A (KRAUSHAAR, todo el documento.	1-3	
Α	EP 0125847 A (RENEAU, INC	.) 21.11.1984, todo el documento.	1-3
		·	
		·	
X: de	egoría de los documentos citac e particular relevancia e particular relevancia combinado co	O: referido a divulgación no escri	
m	i. Sisma categoría Ifleja el estado de la técnica	de la solicitud E: documento anterior, pero pub de presentación de la solicitud	
	resente informe ha sido realiza para todas las reivindicaciones	do para las reivindicaciones	n°:
Fecha c	le realización del informe	Examinador	Página