Project Final Presentation

SHIP TYPE CLASSIFICATION USING CNN

Abdülkerim Mustafa DEMİR 514191028

Problem Statement

- The types and characteristic structures of the ships are different in terms of their intended use.
- Countries must be aware of maritime traffic in order to follow the research in the exclusive economic zone and to protect their maritime relevance and interests.
- With this project, it is purposed to create a model that determines ship types using our data set consisting of ships.

WHAT HAD BEEN DONE?

DATASET

DATA AUGMENTATON

- Rotation
- Flipping
- Mirroring
- Blurring
- Unsharp Masking

MODEL ARCHITECTURE

Baseline Model

Model:	"sequential"

riodei. Sequenciai		
Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 128, 128, 64)	1792
conv2d_1 (Conv2D)	(None, 128, 128, 64)	36928
max_pooling2d (MaxPooling2D)	(None, 64, 64, 64)	0
conv2d_2 (Conv2D)	(None, 64, 64, 128)	73856
conv2d_3 (Conv2D)	(None, 64, 64, 128)	147584
max_pooling2d_1 (MaxPooling2	(None, 32, 32, 128)	0
conv2d_4 (Conv2D)	(None, 32, 32, 256)	295168
conv2d_5 (Conv2D)	(None, 32, 32, 256)	590080
conv2d_6 (Conv2D)	(None, 32, 32, 256)	590080
max_pooling2d_2 (MaxPooling2	(None, 16, 16, 256)	0
conv2d_7 (Conv2D)	(None, 16, 16, 512)	1180160
conv2d_8 (Conv2D)	(None, 16, 16, 512)	2359808
conv2d_9 (Conv2D)	(None, 16, 16, 512)	2359808
max_pooling2d_3 (MaxPooling2	(None, 8, 8, 512)	0
conv2d_10 (Conv2D)	(None, 8, 8, 512)	2359808
conv2d_11 (Conv2D)	(None, 8, 8, 512)	2359808
conv2d_12 (Conv2D)	(None, 8, 8, 512)	2359808
max_pooling2d_4 (MaxPooling2	(None, 4, 4, 512)	0
flatten (Flatten)	(None, 8192)	0
dense (Dense)	(None, 4096)	33558528
dense_1 (Dense)	(None, 4096)	16781312
dense_2 (Dense)	(None, 5)	20485
 Total params: 65,075,013		

Total params: 65,075,013 Trainable params: 65,075,013 Non-trainable params: 0 Batch Size : 32

E-pochs : 25

Activation : ReLU

Optimizer : Adam

• **Learning Rate** : 0.00001

Training Accuracy: 98.79%

• Validation Accuracy : 83.99%

1. INITIALIZER

> He Initialization

• Batch Size : 32

• **E-pochs** : 25

• Activation : ReLU

• Optimizer : Adam

• **Learning Rate** : 0.00001

• Training Accuracy : 99.69%

• Validation Accuracy : 85.32%

2. OPTIMIZER

- One of the most commonly used optimizers to train models in deep learning is Adam. In this project, we used Adam as an optimizer while compiling our
- In order to compare Adam's success, I compiled the model that we created last by choosing SGD as the optimizer models.

• Training Accuracy : 75.65%

• Validation Accuracy : 70.57%

• We got very low accuracy compared to Adam optimizer

3. REGULARIATION

• A. Dropout

	Dranaut	Training	Validation	
	Dropout	_		
	(Fully Connected Layers)	Accuracy	Accuracy	
Trial 1	0.5	98.17%	86.25%	
Trial 2	0.4	98.87%	85.77%	
Trial 3	0.2	99.01%	89.87%	

• B. L2 Regularizaiton

	L2 Regulazition (Fully Connected Layers)	Training Accuracy	Validation Accuracy
Trial 1	0.001	98.99%	90.10%
Trial 2	0.0001	99.39%	90.89%
Trial 3	0.00001	99.01%	90.00%

Training & Validation Accuracy – Training & Validation Loss after L2 Regularization (According to 0.0001)

4. NUMBER OF EPOCHS

	Number of Epochs	Training Accuracy	Validation Accuracy
Trial 1	25	99.39%	90.89%
Trial 2	50	99.67%	90.72%
Trial 3	100	100%	91.60%

OTHER TRIALS

- Many trials have been made to further increase the success of the model.
- Additional layers was added to fully connected layers.
- Average Pooling was applied before passing from convolutional layers to fully connected layers.
- Then, batch normalization was applied to convolutional layers and fully connected layers after activation function.

• Training Accuracy : 99.92%

• Validation Accuracy : 92.97%

EVALUATION OF THE MODEL

- In the model we developed starting from the baseline, we reached 92.97% validation accuracy.
- We can see the prediction distribution of the classes in the confusion matrix of this model.

PRE-TRAINED MODELS

Models	Pool	Е	LR	Training	Validation
2.20 0.020		_		Accuracy	Accuracy
ResNet50	max	50	0.000001	99.77%	86.47%
ResNet101	avg	25	0.000001	99.34%	92.57%
ResNet101	max	50	0.000001	99.89%	88.55%
ResNet50	avg	50	0.000001	99.88%	93.62%
NCC16		50	0.000001	1000/	02.100/
VGG16	avg	50	0.000001	100%	93.19%
Xception	max	25	0.0001	99.80%	96.35%
Accellon	шал	23	0.0001	JJ.0070	70.3370
Xception	avg	25	0.0001	99.88%	97.00%
······································					

CONCLUSIONS

- In this project, we built a classification model that classifies the ships in the dataset according to 5 different classes.
- Correctly tuning of the hyperparameters increase the success of the model.
- The deep networks learn more discriminative features as the layers go deeper.
- As our model gets deeper, we can increase the number of epocs.
- Creating a CNN model from scratch is a tiring and long process. Therefore, we can do improvements according to our dataset by using pre-trained models.

Thank you for listening.