SVEUČILIŠTE U ZAGREBUFAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVOD ZA TELEKOMUNIKACIJE

željko*i*lić

LABORATORIJSKA VJEŽBA

Teorija informacije

ANALIZA SIGNALA UPORABOM PROGRAMSKOG PAKETA

MATLAB®

ZADACI za rad u laboratoriju

Na slici (Slika 1) su dani svi potrebni blokovi za realizaciju ove vježbe (http://www.fer.hr/predmet/teoinf_a). **Napomena:** Vrijednosti parametara u pojedinim blokovima mijenjati samo kada je to u zadatku navedeno.

Slika 1 Model za vježbu

1. Koliko iznosi frekvencija (f), amplituda (A) i omjer τ/T za dani pravokutni periodički signal (PPS)?

2. Promatrajte i nacrtajte signal u vremenskoj i frekvencijskoj domeni (blokovi "Scope" i "Spectrum Scope").

- 3. Promatrajte i nacrtajte signal u vremenskoj i frekvencijskoj domeni (blokovi "Scope" i "Spectrum Scope") za slučaj kada se:
 - σ smanjuje uz T=konst.=0,2 sec (uzeti: τ =10%, 20% i 25% perioda T);

Napomena: T i τ se mijenjaju u bloku "Pulse Generator" i to u opcijama: Period (secs) i Duty cycle (% of period).

 $\tau/T = 1/5 \ (\tau = 20\% \text{ od } T)$

 $\tau/T = 1/4 \ (\tau = 25\% \text{ od } T)$

Što se događa sa spektrom slijeda pravokutnih impulsa kada mu mijenjamo omjer τ / T (Ukratko obrazložite!)?

Napomena: Uključite blok "Analog Filter Design" klikom na blok "Manual Switch1". Također, u bloku "Pulse Generator" postavite $\tau/T=1/2$.

4. Odredite vrijednost polja "Stopband edge frequency (rads/sec)" u bloku "Analog Filter Design" (gornja granična frekvencija NPF-a) tako da na izlazu iz sustava dobijemo signal čiji spektar ima komponente na 0 i 5 Hz.

Stopband	edge frequency=	[Hz
----------	-----------------	-----

Nacrtajte dobiveni signal u vremenskoj (blok "Scope") i frekvencijskoj domeni (blok "Spectrum Scope").

5. Nacrtajte dobiveni signal u vremenskoj (blok "Scope") i frekvencijskoj domeni (blok "Spectrum Scope") za slučaj kad se gornja granična frekvencija NP filtra postavi na f_g =30 Hz.

Usporedite rezultate dobivene u zadacima 4 i 5 (Ukratko obrazložite!).

Napomena: Uključite blok "Product" klikom na blok "Manual Switch2".

6. Nacrtajte dobiveni signal u vremenskoj (blok "Scope") i frekvencijskoj domeni (blok "Spectrum Scope")!

7. Skicirajte <u>spektar</u> signala za slučaj kada se na ulaz sustava dovede sinusni signal frekvencije 5 Hz i amplitude 1 V.

8. Riješite dani zadatak! Na ulaz sklopa za množenje dolazi signal: s(t)=U+Acos(2*500 πt)+Bcos(2*2000 πt). Množilo ima prijenosnu frekvenciju f_p =8 kHz. Skicirajte frekvencijski spektar signala na izlazu iz množila.

9. Za niže predočeni model nacrtajte oblik signala u vremenskoj (blok "Scope") i frekvencijskoj domeni (blok "Spectrum Scope")!

Napomena: Uključite blok "Analog Filter Design" klikom na blok "Manual Switch1".

Ukratko obrazložite razlike između rezultata dobivenih u zadacima 5 i 9?

U kojim slučajevima postoji istosmjerna komponenta u spektru signala?

DODATAK I Fourierov transformat nekih funkcija

$$h(t) = \begin{cases} A & |t| < T_0 \\ \frac{A}{2} & t = T_0 \\ 0 & |t| > T_0 \end{cases}$$

$$H(f) = 2AT_0 \frac{\sin(2\pi T_0 f)}{2\pi T_0 f}$$

$$h(t) = A\sin(2\pi f_0 t)$$

$$H(f) = -j\frac{A}{2}\delta(f - f_0) + j\frac{A}{2}\delta(f + f_0)$$

$$h(t) = A\cos(2\pi f_0 t)$$

$$H(f) = \frac{A}{2}\delta(f - f_0) + \frac{A}{2}\delta(f + f_0)$$

ZABILJEŠKE