Estimating Statistical Bounds

$$e'(N,e,\alpha) = \frac{e + \frac{z_{\alpha/2}^2}{2N} + z_{\alpha/2} \sqrt{\frac{e(1-e)}{N} + \frac{z_{\alpha/2}^2}{4N^2}}}{1 + \frac{z_{\alpha/2}^2}{N}}$$
 Basically a CI derived using the normal approximation to the Binomial

Before splitting:
$$e = 2/7$$
, $e'(7, 2/7, 0.25) = 0.503$

$$e'(T) = 7 \times 0.503 = 3.521$$

After splitting:

$$e(T_L) = 1/4$$
, $e'(4, 1/4, 0.25) = 0.537$

$$e(T_R) = 1/3$$
, $e'(3, 1/3, 0.25) = 0.650$

$$e'(T) = 4 \times 0.537 + 3 \times 0.650 = 4.098$$

Therefore, do not split

Model Selection for Decision Trees

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
 - Stop if estimated generalization error falls below certain threshold

Model Selection for Decision Trees

Post-pruning

- Grow decision tree to its entirety
- Subtree replacement
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree
- Subtree raising
 - Replace subtree with most frequently used branch