Обработка больших данных и распределенные вычисления Лабораторная работа 4. Применение методов и готовых алгоритмов многомерного анализа данных для решения предсказательных задач

Цель: изучить способы применения методов многомерного анализа данных из заданного набора, а также известных алгоритмов на их основе, для решения предсказательных задач, в том числе за счет построения и использования моделей.

Задачи:

- 1. Сформулировать задачу для анализа данных из данного набора и решить ее методом многомерной линейной регрессии.
- 2. Сформулировать задачу для анализа данных из данного набора и решить ее методом выявления аномалий.
- 3. Сформулировать задачу для анализа данных из данного набора и решить ее методом иерархической кластеризации.
- 4. Сформулировать задачу для анализа данных из данного набора и решить ее с помощью наивного байесовского классификатора.

Список рекомендуемых источников:

- 1. Нисчал Н. Руthon это просто. Пошаговое руководство по программированию и анализу данных: Пер. с англ. СПб.: БХВ-Петербург, 2022
- 2. Погружение в аналитику данных. Маунт Джордж: Пер. с англ. СПб.: БХВ-Петербург, 2023
- 3. Пример решения задачи множественной регрессии с помощью Python (URL: https://habr.com/ru/articles/206306/)
- 4. Агломеративная кластеризация и дендрограмма в Python (URL: https://teletype.in/@dt_analytic/LtpSsL_xO2)
- 5. Истина где-то рядом ищем аномалии с Python. Часть 1: теория (URL: https://www.reg.ru/blog/ishchem-anomalii-s-python-chast-1/)
- 6. Наивный байесовский классификатор. Основная идея, модификации и реализация с нуля на Python (URL: https://habr.com/ru/articles/802435/)

Методические указания:

Описание набора данных и постановка задачи

Дан набор данных, котором описаны следующие атрибуты помещения:

Поле	Описание	Тип
x1	Относительная компактность	FLOAT
x 2	Площадь	FLOAT
х3	Площадь стены	FLOAT
X4	Площадь потолка	FLOAT
X 5	Общая высота	FLOAT
х6	Ориентация	INT
x 7	Площадь остекления	FLOAT
x 8	Распределенная площадь остекления	INT
y 1	Нагрузка при обогреве	FLOAT
y2	Нагрузка при охлаждении	FLOAT

В нем X1...X8 — характеристики помещения, на основании которых будет проводиться анализ, а y1,y2 — значения нагрузки, которые надо спрогнозировать.

Предварительный анализ данных

Для начала загрузим наши данные и посмотрим на них:

```
from pandas import read_csv, DataFrame
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.cross_validation import train_test_split

dataset = read_csv('EnergyEfficiency/ENB2012_data.csv',';')
dataset.head()
```

	X1	X2	х3	X4	x 5	Х6	x 7	X8	Y1	¥2
0	0.98	514.5	294.0	110.25	7	2	0	0	15.55	21.33
1	0.98	514.5	294.0	110.25	7	3	0	0	15.55	21.33
2	0.98	514.5	294.0	110.25	7	4	0	0	15.55	21.33
3	0.98	514.5	294.0	110.25	7	5	0	0	15.55	21.33
4	0.90	563.5	318.5	122.50	7	2	0	0	20.84	28.28

Теперь давайте посмотрим не связаны ли между собой какие-либо атрибуты. Сделать это можно, рассчитав коэффициенты корреляции для всех столбцов.

data	set.corr	()								
	X1	x 2	хз	x4	х5	х6	х7	х8	Y1	¥2
х 1	1.000 000e+ 00	- 9.919 015e- 01	- 2.037 817e- 01	- 8.688 234e- 01	8.277 473e- 01	0.0 000 00	1.283 986e- 17	620e-	0.6 222 72	0.6 343 39
Х 2	- 9.919 015e- 01	1.000 000e+ 00	016e-	8.807 195e- 01		0.0 000 00	1.318 356e- 16	- 3.558 613e- 16	- 0.6 581 20	- 0.6 729 99
Х 3	- 2.037 817e- 01		1.000 000e+ 00	- 2.923 165e- 01		0.0 000 00	- 7.969 726e- 19	0.000 000e+ 00		0.4 271 17
X 4	- 8.688 234e- 01	8.807 195e- 01	- 2.923 165e- 01	1.000 000e+ 00	9.725	0.0 000 00		- 1.079 129e- 16	- 0.8 618 28	- 0.8 625 47
X 5	8.277 473e- 01	- 8.581 477e- 01	2.809 757e- 01	- 9.725 122e- 01	1.000 000e+ 00	0.0 000 00		0.000 000e+ 00	0.8 894 31	0.8 957 85
Х 6	0.000 000e+ 00	0.000 000e+ 00		0.000 000e+ 00		1.0 000 00	000e+	0.000 000e+ 00	- 0.0 025 87	0.0 142 90
X 7	1.283 986e- 17	1.318 356e- 16	- 7.969 726e- 19	- 1.381 805e- 16	1.861 418e- 18	0.0 000 00	1.000 000e+ 00	2.129 642e- 01	0.2 698 41	0.2 075 05
8 8	1.764 620e- 17	- 3.558 613e- 16	0.000 000e+ 00	- 1.079 129e- 16	0.000 000e+ 00	0.0 000 00	2.129 642e- 01	1.000 000e+ 00	0.0 873 68	0.0 505 25
Y 1	6.222 722e- 01	- 6.581 202e- 01	4.556 712e- 01	- 8.618 283e- 01	8.894 307e- 01	- 0.0 025 87	2.698 410e- 01	8.736 759e- 02	1.0 000 00	0.9 758 62

```
Y 6.343
             4.271
                          8.957 0.0 2.075 5.052
                                                 0.9
                                                     1.0
2 391e- 6.729 170e- 8.625
                          852e- 142 050e- 512e-
                                                 758
                                                     000
        989e- 01
                               90
                   466e-
                                    01
   01
                          01
                                           02
                                                62
                                                     00
         01
                    01
```

Как можно заметить из нашей матрицы, коррелируют между собой следующие столбы (Значение коэффициента корреляции больше 95%):

- y1 --> y2
- x1 --> x2
- x4 --> x5

Теперь давайте выберем, какие столбцы их наших пар мы можем убрать из нашей выборки. Для этого, в каждой паре, выберем столбцы, которые в большей степени оказывают влияние на прогнозные значения Y1 и Y2 и оставим их, а остальные удалим.

Как можно заметить и матрицы с коэффициентами корреляции на *у1,у2* больше значения оказывают *X2* и *X5*, нежели X1 и X4, таким образом мы можем последние столбцы мы можем удалить.

```
dataset = dataset.drop(['X1','X4'], axis=1)
dataset.head()
```

Помимо этого, можно заметить, что поля *Y1* и *Y2* очень тесно коррелируют между собой. Но, т. к. нам надо спрогнозировать оба значения мы их оставляем «как есть».

Выбор модели

Отделим от нашей выборки прогнозные значения:

```
trg = dataset[['Y1','Y2']]
trn = dataset.drop(['Y1','Y2'], axis=1)
```

Давайте поместим все наши модели в один список для удобства дальнейшего анализа:

```
models = [LinearRegression(), # метод наименьших квадратов
RandomForestRegressor(n_estimators=100, max_features ='sqrt'),
# случайный лес

KNeighborsRegressor(n neighbors=6), # метод ближайших соседей
```

```
SVR(kernel='linear'), # метод опорных векторов с линейным ядром LogisticRegression() # логистическая регрессия
```

Итак модели готовы, теперь мы разобьем наши исходные данные на 2 подвыборки: *тестовую* и *обучающую*. Кто читал мои предыдущие статьи знает, что сделать это можно с помощью функции train_test_split() из пакета scikit-learn:

```
Xtrn, Xtest, Ytrn, Ytest = train_test_split(trn, trg, test_size=0.4)
```

Теперь, т. к. нам надо спрогнозировать 2 параметра y^1,y^2 , надо построить регрессию для каждого из них. Кроме этого, для дальнейшего анализа, можно записать полученные результаты во временный *DataFrame*. Сделать это можно так:

```
#создаем временные структуры
        TestModels = DataFrame()
        tmp = \{\}
        #для каждой модели из списка
        for model in models:
            #получаем имя модели
           m = str(model)
           tmp['Model'] = m[:m.index('('))]
            #для каждого столбцам результирующего набора
            for i in xrange(Ytrn.shape[1]):
                #обучаем модель
                model.fit(Xtrn, Ytrn[:,i])
                #вычисляем коэффициент детерминации
                tmp['R2 Y%s'%str(i+1)] = r2 score(Ytest[:,0],
model.predict(Xtest))
            #записываем данные и итоговый DataFrame
            TestModels = TestModels.append([tmp])
        #делаем индекс по названию модели
       TestModels.set index('Model', inplace=True)
```

Как можно заметить из кода выше, для расчета коэффициента R^2 используется функция r2_score().

Итак, данные для анализа получены. Давайте теперь построим графики и посмотрим какая модель показала лучший результат:

```
fig, axes = plt.subplots(ncols=2, figsize=(10,4))
TestModels.R2_Y1.plot(ax=axes[0], kind='bar', title='R2_Y1')
TestModels.R2_Y2.plot(ax=axes[1], kind='bar', color='green', title='R2_Y2')
```


Анализ результатов и выводы

Из графиков, приведенных выше, можно сделать вывод, что лучше других с задачей справился метод RandomForest (случайный лес). Его коэффициенты детерминации выше остальных по обоим переменным: $R_{y1}^2 \approx 99\%$, $R_{y2}^2 \approx 90\%$ ля дальнейшего анализа давайте заново обучим нашу модель:

```
model = models[1]
model.fit(Xtrn, Ytrn)
```

При внимательном рассмотрении, может возникнуть вопрос, почему в предыдущий раз и делили зависимую выборку *Ytrn* на переменные(по столбцам), а теперь мы этого не делаем.

Дело в том, что некоторые методы, такие как RandomForestRegressor, может работать с несколькими прогнозируемыми переменными, а другие (например SVR) могут работать только с одной переменной. Поэтому на при предыдущем обучении мы использовали разбиение по столбцам, чтобы избежать ошибки в процессе построения некоторых моделей. Выбрать модель это, конечно же, хорошо, но еще неплохо бы обладать

информацией, как каждый фактор влиет на прогнозное значение. Для этого у модели есть свойство feature_importances_.

С помощью него, можно посмотреть вес каждого фактора в итоговой моделей:

model.feature importances

array([0.40717901, 0.11394948, 0.34984766, 0.00751686, 0.09158358, 0.02992342])

В нашем случае видно, что больше всего на нагрузку при обогреве и охлаждении влияют общая высота и площадь. Их общий вклад в прогнозной модели около 72%.

Также необходимо отметить, что по вышеуказанной схеме можно посмотреть влияние каждого фактора отдельно на обогрев и отдельно на охлаждение, но т. к. эти факторы у нас очень тесно коррелируют между собой ($r=97\,\%$), мы сделали общий вывод по ним обоим который и был написан выше.

Наивный байесовский классификатор

Наивный байесовский классификатор (Naive Bayes classifier) — вероятностный классификатор на основе формулы Байеса со строгим (наивным) предположением о независимости признаков между собой при заданном классе, что сильно упрощает задачу классификации из-за оценки одномерных вероятностных плотностей вместо одной многомерной.

В данном случае, одномерная вероятностная плотность — это оценка вероятности каждого признака отдельно при условии их независимости, а многомерная — оценка вероятности комбинации всех признаков, что вытекает из случая их зависимости. Именно по этой причине данный классификатор называется наивным, поскольку позволяет сильно упростить вычисления и повысить эффективность алгоритма. Однако такое предположение не всегда является верным на практике и в ряде случаев может привести к значительному ухудшению качества прогнозов.

Наивный байесовский классификатор - специальный частный случай байесовского классификатора, основанный на дополнительном предположении, что объекты $x \in X$ описываются n статистически независимыми признаками:

$$x \equiv (\xi_1, \dots, \xi_n) \equiv (f_1(x), \dots, f_n(x))$$

Предположение о независимости означает, что функции правдоподобия классов представимы в виде

 $p_y(x) = p_{y1}(\xi_1) \cdot \dots \cdot p_{yn}(\xi_n)$

где $p_{yj}(\xi_j)$ — плотность распределения значений j-го признака для класса y .

Предположение о независимости существенно упрощает задачу, так как оценить n одномерных плотностей гораздо легче, чем одну n -мерную плотность. К сожалению, оно крайне редко выполняется на практике, отсюда и название метода.

Наивный байесовский классификатор может быть как параметрическим, так и непараметрическим, в зависимости от того, каким методом восстанавливаются одномерные плотности.

Основные преимущества наивного байесовского классификатора — простота реализации и низкие вычислительные затраты при обучении и классификации. В тех редких случаях, когда признаки действительно независимы (или почти независимы), наивный байесовский классификатор (почти) оптимален.

Основной его недостаток — относительно низкое качество классификации в большинстве реальных задач.

Чаще всего он используется либо как примитивный эталон для сравнения различных моделей алгоритмов, либо как элементарный строительный блок в алгоритмических композициях.

Наивный Байес в задачах фильтрации спама

В контексте фильтрации спама наивный байесовский классификатор основан на частоте появления слов в сообщениях для спама и не спама, и максимизации произведения их вероятностей. Наивность в данном случае будет заключаться в предположении о независимости слов в сообщении от порядка и контекста. Тогда формула Байеса приобретает следующий вид:

$$P(C|M) \propto P(C) \prod_{i=1}^{n} P(w_i|C), \ w_i \in M$$

где:

- С класс спам или не спам;
- M сообщение;
- wi i-е слово в сообщении M;
- \propto знак пропорциональности.

Для лучшего понимания рассмотрим следующий пример. Предположим, мы хотим классифицировать сообщение "Hi, you won a discount and you can get the prize this evening." и у нас есть обучающая выборка, состоящая из следующих сообшений:

Message Class

Hi, how are you? Not spam

Congratulations, you won a prize! Spam

Buy the product now and get a discount! Spam

Let's walk this evening Not spam

Первым делом необходимо рассчитать частоту появления всех уникальных слов и их общее количество в сообщениях для спама и не спама. Затем производится расчёт вероятностей встретить каждое слово в спам и не спам сообщениях на основе этих частот. Когда в сообщении есть слова, которые раньше не встречались в обучающей выборке, используется сглаживание. Существует много различных видов сглаживаний, но суть самого простого из них заключается в добавлении 1 при подсчёте частот слов в сообщениях. Такой приём позволяет избежать проблему нулевой вероятности. Ниже приведена таблица с расчётом вероятностей для всех слов.

Word	Frequency in Not Spam	Frequency in Spam	Probability in Not Spam	Probability in Spam
Hi	1+1=2	0 + 1 = 1	2 / 28 = 0.0714	1 / 33 = 0.03
how	1 + 1 = 2	0 + 1 = 1	2 / 28 = 0.0714	1 / 33 = 0.03
are	1 + 1 = 2	0+1=1	2 / 28 = 0.0714	1 / 33 = 0.03
you	1 + 1 = 2	1 + 1 = 2	2 / 28 = 0.0714	2 / 33 = 0.06
Congratulations	0 + 1 = 1	1+1=2	1 / 28 = 0.0357	2 / 33 = 0.06
won	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
a	0 + 1 = 1	2+1=3	1 / 28 = 0.0357	3 / 33 = 0.09
prize	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
Buy	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
the	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
product	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
now	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
and	0 + 1 = 1	1+1=2	1 / 28 = 0.0357	2 / 33 = 0.06
get	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
discount	0 + 1 = 1	1 + 1 = 2	1 / 28 = 0.0357	2 / 33 = 0.06
Let's	1 + 1 = 2	0+1=1	2 / 28 = 0.0714	1 / 33 = 0.03
walk	1 + 1 = 2	0 + 1 = 1	2 / 28 = 0.0714	1 / 33 = 0.03
this	1 + 1 = 2	0 + 1 = 1	2 / 28 = 0.0714	1 / 33 = 0.03
evening	1 + 1 = 2	0 + 1 = 1	2 / 28 = 0.0714	1 / 33 = 0.03
can	0 + 1 = 1	0 + 1 = 1	1 / 28 = 0.0357	1 / 33 = 0.03
Total amount of words	28	33		

В конце рассчитываются вероятности сообщения быть спамом или не спамом, а итоговым прогнозом будет класс с максимальной вероятностью.

$$P(C|M) = P(C) \cdot P('Hi'|C) \cdot P('you'|C) \cdot P('won'|C) \cdot P('a'|C) \cdot P('a'|C) \cdot P('discount'|C) \cdot P('and'|C) \cdot P('you'|C) \cdot P('can'|C) \cdot P('get'|C) \cdot P('the'|C) \cdot P('prize'|C) \cdot P('this'|C) \cdot P('evening'|C)$$

Где:

• $C \in (Spam, Not Spam)_{;}$

$$P(Spam) = P(Not \; Spam) = rac{2}{4} = 0.5$$

Вероятность сообщения быть спамом:

$$P(Spam|M) = 0.5 \cdot 0.03 \cdot 0.06 \cdot 0.06 \cdot 0.09 \cdot 0.06 \cdot 0.06 \cdot 0.06 \cdot 0.03 \cdot 0.06 \cdot 0.06 \cdot 0.06 \cdot 0.03 \cdot 0.03 \approx 6.12 \cdot 10^{-18}$$

Вероятность того, что сообщение не является спамом:

```
P(Not \ Spam|M) = 0.5 \cdot 0.0714 \cdot 0.0714 \cdot 0.0357 \cdot 0.03
```

Поскольку $P(Spam|M) > P(Not Spam|M) \rightarrow {}_{COOOMEHUE ЯВЛЯЕТСЯ СПАМОМ}$. Стоит добавить, что на практике для удобства расчётов зачастую используется логарифм вероятности вместо самой вероятности.

Импорт необходимых библиотек

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from mlxtend.plotting import plot_decision_regions
```

Реализация на Python с нуля

```
class GaussianNaiveBayes:
   def fit(self, X, y):
        classes, cls counts = np.unique(y, return counts=True)
        n classes = len(classes)
        self.priors = cls counts / len(y)
        # calculate the mean and standard deviations of features by classes
        self.X cls mean = np.array([np.mean(X[y == c], axis=\frac{0}{1}) for c in
range(n classes)])
        self.X stds = np.array([np.std(X[y == c], axis=0)) for c in
range(n classes)])
    # calculate the probability density of the feature according to the Gaussian
distribution
    def pdf(self, x, mean, std):
       return (1 / (np.sqrt(2 * np.pi) * std)) * np.exp(-0.5 * ((x - mean) /
std) ** 2)
   def predict(self, X):
       pdfs = np.array([self.pdf(x, self.X cls mean, self.X stds) for x in X])
        posteriors = self.priors * np.prod(pdfs, axis=2) # shorten Bayes
formula
        return np.argmax(posteriors, axis=1)
```

```
Koд для отрисовка графика

def decision_boundary_plot(X, y, X_train, y_train, clf, feature_indexes,
title=None):
    feature1_name, feature2_name = X.columns[feature_indexes]
    X_feature_columns = X.values[:, feature_indexes]
    X_train_feature_columns = X_train[:, feature_indexes]
    clf.fit(X_train_feature_columns, y_train)

    plot_decision_regions(X=X_feature_columns, y=y.values, clf=clf)
    plt.xlabel(feature1_name)
    plt.ylabel(feature2_name)
    plt.title(title)
```

Загрузка датасета

```
X1, y1 = load iris(return X y=True, as frame=True)
X1 train, X1 test, y1 train, y1 test = train test split(X1.values, y1.values,
random state=0)
print(X1, y1, sep='\n')
    sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0
                 5.1
                                  3.5
                                                    1.4
                 4.9
                                  3.0
                                                                      0.2
1
                                                    1.4
2
                 4.7
                                  3.2
                                                    1.3
3
                 4.6
                                  3.1
4
                 5.0
                                  3.6
                                                    1.4
                                                                     0.2
                                  . . .
                                                    . . .
                 . . .
                                                                     . . .
145
                 6.7
                                  3.0
                                                    5.2
                                                                     2.3
                                  2.5
                                                    5.0
146
                 6.3
                                                                     1.9
                 6.5
                                  3.0
147
                                                    5.2
                                                                     2.0
                                  3.4
                                                    5.4
148
                 6.2
                                 3.0
149
                 5.9
                                                    5.1
                                                                     1.8
[150 rows x 4 columns]
1
      0
3
4
     0
145
146
147
148
Name: target, Length: 150, dtype: int64
```

Обучение моделей и оценка полученных результатов

Не смотря на свою простоту, в данном случае алгоритм показал отличный результат, классифицировав правильно абсолютно все образцы, что возможно

благодаря построению гибкой решающей границы с высокой обобщающей способностью. Из этого можно сделать интересный вывод, что в некоторых ситуациях более простые модели могут работать гораздо лучше, чем сложные, что можно будет заметить в дальнейшем на примере других алгоритмов.

```
nb_clf = GaussianNaiveBayes()
nb_clf.fit(X1_train, y1_train)
nb_clf_pred_res = nb_clf.predict(X1_test)
nb_clf_accuracy = accuracy_score(y1_test, nb_clf_pred_res)

print(f'Naive Bayes classifier accucacy: {nb_clf_accuracy}')
print(nb_clf_pred_res)
Naive Bayes classifier accucacy: 1.0
[2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0 1]
```

Naive Bayes (scikit-learn)

Naive Bayes

```
sk_nb_clf = GaussianNB()
sk_nb_clf.fit(X1_train, y1_train)
sk_nb_clf_pred_res = sk_nb_clf.predict(X1_test)
sk_nb_clf_accuracy = accuracy_score(y1_test, sk_nb_clf_pred_res)

print(f'sk Naive Bayes classifier accucacy: {sk_nb_clf_accuracy}')
print(sk_nb_clf_pred_res)

feature_indexes = [2, 3]
title1 = 'GaussianNB surface'
decision_boundary_plot(X1, y1, X1_train, y1_train, sk_nb_clf, feature_indexes,
title1)

sk Naive Bayes classifier accucacy: 1.0
[2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0
1]
```


Преимущества и недостатки наивного байесовского классификатора

Преимущества:

- простота в реализации и интерпретации;
- практически не требуется настройка параметров;
- высокая скорость работы и точность прогнозов во многих ситуациях;
- имеет относительно хорошую устойчивость к шуму и выбросам, поскольку основан на вероятностных распределениях и наивном предположении о независимости признаков.

Недостатки:

- в случае нарушения предположения о независимости признаков, точность прогнозов может значительно снизиться;
- может отдавать предпочтение к классам с бОльшим количеством образцов в случае несбалансированных данных.