Exploratory modeling

Me:

I am good in C language.

Interviewer:

Then write "Hello World" using C.

Me:

Session outline

- 1. Short recap on Python
- 2. Exploratory modeling concept
- 3. EMA Workbench
- 4. Live coding and hands-on

Part 1 Short recap on Python

Short recap

- Anaconda?
- Python?
- Jupyter Notebook?
- Modules and Package?

Anaconda distribution

 Anaconda is a distribution of the Python language for data science and machine learning related applications that aims to simplify package management and deployment.

Python Programming Language

• **Python** is an interpreted high-level **programming language** for general-purpose programming.

u/Skizm·2mo
if(goingToCrashIntoEachOther)
{ dont(); }

Jupyter Notebook

The Jupyter Notebook is an open-source web application that allows you
to create and share documents that contain live code, equations,
 visualizations and narrative text.

Python Modules and Packages

Module is a **piece of software** that has a specific functionality. For example, if you want to have a module that will draw lines, then run following:

from matplotlib import pyplot

Packages are namespaces which contain multiple packages and modules themselves. If you want to have instruments to work with data frames, then run following:

import pandas

How to install packages?

- Globally
 - a. Find and run Anaconda Prompt
 - b. Type conda install <package_name>
 - For example, conda install geopandas
 - c. Click enter
- Locally
 - a. Find and run command line
 - b. Type cd anaconda3
 - c. Type python -m pip install <package_name>
 - For example, python -m pip install geopandas

Where to look for help?

- https://stackoverflow.com/
- https://github.com
- Just Google It!

Let's practice!

Try to install following package: ema_workbench

"Answer"

- Find and open command line
- Type cd anaconda3
- Type python -m pip install ema_workbench

Now you know!

- What is Anaconda
- What is Python
- What modules and packages
- How to install packages

Part 2 Exploratory modeling

Problem 1

- Imagine you are a flood risk manager. You need to decide on an investment in dikes for the coming ten years. You have been given the following information
 - Chance of a severe flood is 1 in 6
 - Damage in case of a flood is 1 million
 - Costs of investment in dikes is 1.3 million.
 - If dikes are built, chance of flood falls below 1 in 50
- Will you invest in the dikes?

Problem 2

- Imagine you are a flood risk manager. You need to decide on an investment in dikes for the coming ten years. You have been given the following information
 - According to a first group of experts, the chance of a severe flood is 1 in 6
 - According to a second group of experts, the chance of a severe flood is 1 in 10
 - Damage in case of a flood is 1 million
 - Costs of investment in dikes is 1.3 million
 - o If dikes are built, chance of flood falls below 1 in 50
- Will you invest in the dikes?

Problem 3

- The two groups of experts worked together on making a model of the occurrence of floods. They came back with a cone. If it lands on its base, there is no flood, if it lands on the small side there is a flood, and they don't know whether it can land on its side.
- Will you invest in the dikes?

Deep uncertainty

- Implication: set of plausible models of the system, set of outcomes of interest without a priori weighting, and sets of scenarios
- Decision makers and stakeholders do not know or cannot agree on the outcomes of interest, the system under study, or future developments

XLRM Framework

Decision-making under deep uncertainty

Key ideas:

- 1. **Exploratory modeling** systems are complex and their context is deeply uncertain, human reasoning alone is incapable of handling this. We need computer assisted reasoning.
- 2. **Adaptive planning** plans should be designed from the outset to be adapted over time in response to how the future is actually unfolding
- 3. **Supporting decision-making** the aim of decision advice is to facilitate learning about a problem and potential courses of action, not to dictate the right solution. This entails a shift from a priori to a posteriori decision analysis.

Exploratory modeling

More formally **Exploratory Modeling** is a **research method** that uses computational experimentation for analyzing complex and uncertain systems (Bankes, 1993; Bankes et al., 2013).

Exploratory modeling approach

- Agnostic about modeling paradigm: SD, agent-based, etc.
- EMA is not merely a post-processing step after a model has already been build
 - o in *conceptualization*, identify key uncertainties;
 - in specification, design model to explore over uncertainties;
 - o in *verification* and *validation* assess comprehensiveness of exploratory character;
 - o etc.
- The iterative analysis of results is the most time consuming phase
 - Risk of information overload.

Now you know!

- What is exploratory modeling?
- How the model is represented in exploratory modeling concept?
- What is deep uncertainty?

Part 3 EMA Workbench

EMA Workbench

- EMA Workbench is a Python package that provide you with an opportunity to use exploratory modeling techniques, for instance:
 - Open exploration (sampling)
 - Sensitivity analysis (Sobol indices, Feature Scoring, etc.)
 - Scenario discovery (PRIM)
 - Multi-objective robust optimization
- Was developed by TU Delft associate professor Jan Kwakkel
- It allows you to "connect" a Vensim model to Python

What is EMA Workbench?

- Model: Python, Vensim and Excel
- Inputs (levers) what kind of means you will use to influence your model?
- Outputs (outcomes) what are the outcomes of interest?
- Uncertainties about what you're not sure?

How to use EMA Workbench?

- 1. Step 1 Import the packages: ema_workbnech
- 2. Step 2 Load a model: Python, Vensim, Excel or even discrete-event
- 3. Step 3 Specify levers, outcomes and uncertainties: What are your policies (combination of levers)?
- 4. Step 4 Perform experiments
- 5. Step 5 Run the method
- 6. Step 6 Visualize the results

Where to look for help?

https://emaworkbench.readthedocs.io/en/latest/

Part 4 Live coding and hands-on

What to should we do?

- 1. Together, we reprogram the scripts step-by-step;
- 2. You will check the "basic" scripts to understand how to do it;
- 3. You might do "exercises" by yourself;
- 4. Finally, you check "advanced" scripts.

What files to use?

- 1. If option 1 is chosen, then:
 - a. lake_model_open_exploration_draft.ipynb
 - b. lake_model_scenario_discovery_draft.ipynb
 - c. lake_model_sensitivity_analysis_draft.ipynb
- 2. If option 2 is chosen, then:
 - a. lake_model_open_exploration.ipynb
 - b. lake_model_scenario_discovery.ipynb
 - c. lake_model_sensitivity_analysis.ipynb

What files to use?

- 1. If option 3 is chosen, then:
 - a. lake_model_open_exploration_exercise.ipynb
 - b. lake_model_open_exploration_answer.ipynb
- 2. If option 4 is chosen, then:
 - a. dike model open exploration demo.ipynb
 - b. dike_model_sensitivity_analysis_demo.ipynb
 - c. dike_model_directed_search_worst_case_demo.ipynb

Download the scripts

Go to https://github.com/kgb101/sd_summer_school and click the green button called "Clone or download", "Download ZIP"

The case - "Lake problem"

- The lake problem is a stylized and hypothetical decision problem where the population of a city has to decide on the amount of annual pollution it will put into a lake.
- If the pollution in the lake passes a threshold, it will suffer irreversible eutrophication.

Uncertainties

δ: discount rate

Deep uncertainty is presented by uncertainty about the:

•	 mean μ and standard deviation σ of the lognormal distribution characterizing the natural inflow b: lake's natural recycling rate 	μ	0.01 – 0.05	0.02
•		σ	0.001 - 0.005	0.0017
		b	0.1 - 0.45	0.42
 q: rate of recycling phosphor from the sediment 	recycling phosphor from the	q	2 – 4.5	2
- δ· discount rate		δ	0.93 - 0.99	0.98

Parameter

Range

Default value

Outcomes

The outcome of interest is:

- average concentration of phosphor in the lake
- economic benefit derived from polluting the lake
- year over year change in the anthropogenic pollution rate
- fraction of years where the pollution in the lake is below the critical threshold

The lever/decision variable is the rate of anthropogenic pollution which is somewhere between 0 and 0.1. The decision maker in our model decide on them at every time step (100).

Lake model (XLRM - Framework)

Method 1 Open Exploration

Open exploration

Design of experiments

- Factorial methods
- Monte Carlo sampling
- Latin Hypercube sampling
- o Etc.

Used for

- Identification of bandwidth outcomes
- Identification of types of behavior

Subsequent analysis

- Global sensitivity analysis
- Subspace partitioning

Sampling techniques

Method 2 Scenario Discovery

Subspace partitioning 2d

Subspace partitioning 3d

Subspace partitioning

 Problem: find an (orthogonal) subspace in the model input space, which has a high concentration of cases of interest

Rule induction problem

Regression vs. (binary) classification

Rule induction algorithms

Classification and Regression Trees (CART)

Patient Rule Induction Algorithm (PRIM)

Various other more specialized possibilities

PRIM

PRIM

- Lenient hill climbing optimization algorithm
- Each step in the optimization is stored → peeling trajectory
- Coverage: fraction of cases of interest within the box
- **Density**: fraction of cases in the box which is of interest
- Interpretability: number of restricted uncertainties
- Quasi p-values: one sided binomial test, proxy for statistical significance of each restricted uncertainty in isolation

Demand elasticity (1.2e-16)	-0.8		-0.42	-0.2
Biomass backstop price (3.5e-11)	90		1.5e+02	- 2e+02
Total biomass (4.7e-06)	4.5e+02		7.6e+02	1e+03
Cellulosic cost (0.16)	67	73		-1.3e+02

0.753

0.77

coverage

density

Method 3 Sensitivity Analysis

Sensitivity analysis and scenario discovery

UA/SA: What impact do my uncertain inputs have on output?

$$f(x) = Y$$

SD: What are the uncertain inputs that cause an output (region) of interest?

- In practice: complementary
- SA and scenario discovery are usually both iterative

Sensitivity analysis in the modelling cycle

A for model analysis and evaluation

- Which uncertain inputs are the most influential on output?
- How much of the uncertainty is epistemic; how much is irreducible?
- Which uncertain inputs should be a priority for research?
- Can some inputs be left out to simplify the model?

SA for policy design

 Can I intervene in the system, starting from the parameters to which the model is most sensitive?

Techniques for global sensitivity analysis

An ideal SA technique would be:

- Fast
- User-friendly

Sobol indices

Random forests / Extra-Trees

Usually: pick two...

Interpretation of Sobol indices

 Based on variance decomposition – tells us the fraction of total variance added by each variable

•First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{X \sim x1}(Y|x1)] / V(Y)$$

V = variance

E = mean

 $X \sim x_i$ = Set of inputs except x_i

Interpretation of Sobol indices

 Based on variance decomposition – tells us the fraction of total variance added by each variable

First-order effect (S1): e.g. how much does x1 add to the variance of Y on its own?

$$S1_{x1} = V_{x1} [E_{x \sim x1}(Y|x1)] / V(Y)$$

 Total effect (ST): e.g. how much does x1 add to the variance of Y, including all its interactions?

$$ST_{x1} = E_{X \sim x1} [V_{x1}(Y|X \sim x1)] / V(Y)$$

 Second-order effects (S2): e.g. how much specific interactions between x1 and x2 add to variance of Y

$$S2_{x1,x2} = E_{X\sim x1,x2}[V_{x1,x2}(Y|X\sim x1,x2)] / V(Y)$$

- $S1_{x1} - S1_{x2}$

Random forests/Extra-Trees

- Common machine learning method for non-linear regression –
 based on ensembles ("forests") of classification and regression trees
- Can be used to estimate variable importances (≈ Sobol ST)

 Extra-Trees (ET): variant with additional randomization of the trees

Estimation of relative variable importances

Estimation of relative variable importances

Summary: Sensitivity analysis techniques

Good job!

