

GTU COMPUTER ENGINEERING AGE PREDICTION FROM FACE USING DEEP LEARNING MODEL

CSE 495
SECOND PRESENTATION

Süleyman Gölbol

Project Supervisor: Dr. Burcu YILMAZ
December 2022

Contents

- Mobile App Schema
- Border Detection
- Azure Connection
- Model Details
- Success Criteria
- Timeline
- References

Mobile App Schema

Model Selector

How To Use?

After first meeting I've started to create a mobile application for the project using Flutter.

Mobile App Schema

 After clicking on Image Page button, it opens Image Picker page, and it allows us to take a photo or select image from gallery. (Just preview)

Face Border Detection

- To get the face border coordinates I used Haar cascade frontal face xml.
 It helps to detect face borders to draw rectangle on it.
- Haar cascade uses the cascading window, and it tries to compute features in every window and classify whether it could be a face.

Azure

To get the age results I need to connect the mobile app to model.

To deploy the model, I am using Microsoft Azure Machine Learning Studio and Github Actions. (Using Purebasic and Python)

After saving the model, I upload the model to the models section. Then I create a docker image for environment and connect with script.

Model Details

- For preprocessing, I converted images to pixel values. ☑
- Reshaping every image to become (48,48,1) size. ☑
- Cleansing datasets if it contains unnecessary data. ✓
- Splitting datasets into training and test data. ☑
- Finding suitable algorithms that detects the face features. ☑ 🖻
- Creating/updating model using different layers and activation functions.

 □□
- Training the faces with multiage pictures of people. ☑
- Sending model over the internet to camera device for prediction. X

GTU - Computer Engineering Department

- Detecting face and using photo as input in the model.
- Detecting the age of person using a mobile application for testing. X

First Model Results

- The standard MSE
 (Mean Squared Error)
 metric is the item that
 we check for a
 regression problem.
- I will decrease the errors for a better model until the next presentation.

Success Criteria

- 1. Accuracy value over 80% using model for a dataset over 15000 values.
- 2. Detection should be made at most 5 seconds.
- 3. Accuracy value over 75% using different model using transfer learning.

Timeline

1st Meeting (Preliminary Presentation)

- Gathering datasets, creating model.
- Starting to create mobile application.

2nd Meeting

- Training, model fixes on project.
- Connecting application to deployed model for testing.

Report Submission

Trailer Submission

3rd Meeting (Final Presentation)

Demo

October 26, 2022, Wednesday

December 07, 2022, Wednesday

January 15, 2023, Sunday

January 15, 2023, Sunday

January 18, 2023, Wednesday

January 19, 2023, Thursday

References

- 1. Sumit Mund, Microsoft Azure Machine Learning, 2015
- Sidra Mehtab, Jaydip Sen, Face Detection Using OpenCV and Haar Cascades Classifiers, March 2020
- 3. Jeff Heaton, "Applications of Deep Neural Networks with Keras", September 2020

