PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09-50810

(43) Date of publication of application: 18.02.1997

(51)Int.CI. H01M 4/58 H01M 4/02 H01M 10/40

(21)Application number: 07-202286 (71)Applicant: MITSUI TOATSU

(22)Date of filing: 08.08.1995 (72)Inventor: TATSUHIRO KURASAWA

TAKAO TANAKA AKIO YOSIKAWA

CLAIMS

[Claim(s)]

[Claim 1] The electrode active material of the nonaqueous battery using lithium-nickel multiple oxide ($Li_xNi_yN_zO_2$, N is elements except Li, Ni and O, 0.8 < x < 1.2, 0.8 < y + z < 1.2, and 0 < = z < 0.2) coated with lithium-transition-metals M multiple oxide (M is at least one sort of Co, Mn, and Fe, and including a small amount of Ni).

[Claim 2] The manufacturing method;

- 1. The compound of transition metals M (M is one or more sorts of Co, Mn, and Fe, and including a small amount of Ni) and lithium compound are dissolved or suspended in a solvent.
- 2. Lithium-nickel multiple oxide expressed by the general formula $\text{Li}_x \text{Ni}_y \text{N}_z \text{O}_2$ (N is other than Li, Ni, O, 0.8<x<1.2, 0.8<y+z<1.2, and 0<=z<0.2) is added into above solvent.
- 3. The slurry is dried and calcinated.

[Claim 3] The nonaqueous electrolyte battery using the electrode active material according to claim 1 for the positive electrode or the negative electrode.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[The propose of this Invention]

To improve the cycleability of a battery.

[Example 1]

- 1. Lithium-hydroxide monohydrates 83.9g + Nickel hydroxide 185.4g (atomic-ratio Li/Ni(mole ratio) =1.0)
- 2. Mill and mix it with ball mill.
- 3. Dry at 150 degree C for 12 h.
- 4. The mixture was calcinated at 750 degree C for 5 h in oxygen ambient atmosphere.
- 5. Mill it for 1 h with ball mill in nitrogen ambient atmosphere.

 The average particle size of lithium nickel multiple oxide is 7 um.
- 6. Ethanol 300g + Lithium nitrate 3.4g + Cobalt nitrate hexahydrate 14.6g (atomic-ratio Li/Co(mole ratio) =1.0)
- 7. The mixture + Lithium nickel multiple oxide 92.7g (atomic-ratio Co/Ni(mole ratio) =0.05)
- 8. Dry the dispersion with Spray dryer which the temperature of the spray exit is 100 degree C.
- 9. Calcinate it at 700 degree C for 1 h in oxygen ambient atmosphere.

[Example 2]

- 1. Lithium-nitrate 137.9g + Nickel hydroxide 185.4g (atomic-ratio Li/Ni(mole ratio) =1.0)
- 2. Mill and mix it with ball mill.
- 3. Dry at 150 degree C for 12 h.
- 4. The mixture was calcinated at 700degree C for 10 in oxygen ambient atmosphere.
- Mill it for 1 h with ball mill in nitrogen ambient atmosphere.
 The average particle size of lithium nickel multiple oxide is 12 um.
- 6. Ethanol 300g + Lithium hydroxide monohydrate 2.1g + Cobalt nitrate hexahydrate 14.6g (atomic ratio Li/Co(mole ratio) =1.0)
- 7. The mixture + Lithium nickel multiple oxide 92.7g (atomic ratio Co/Ni(mole ratio) =0.05)

- 8. Dry the dispersion with Spray dryer which the temperature of the spray exit is 100 degree C.
- 9. Calcinate it at 700 degree C for 1 h in oxygen ambient atmosphere.

[Example 3]

- 1. Lithium hydroxide monohydrate 83.9g + Nickel hydroxide 166.9g + Aluminum hydroxide 15.6g (atomic-ratio Li/Ni/Al(mole ratio) =1.0/0.9/0.1)
- 2. Mill and mix it with ball mill.
- 3. Dry at 150 degree C for 12 h.
- 4. The mixture was calcinated at 750 degree C for 5 h in oxygen ambient atmosphere.
- 5. Mill it for 1 h with ball mill in nitrogen ambient atmosphere.
- 6. Ethanol 300g + Lithium hydroxide monohydrate 2.1g + Cobalt nitrate hexahydrate 14.6g (atomic ratio Li/Co(mole ratio) =1.0)
- 7. The mixture + Lithium nickel multiple oxide 92.7g (atomic-ratio Co/Ni(mole ratio) =0.05)
- 8. Dry the dispersion with Spray dryer which the temperature of the spray exit is 100 degree C.
- 9. Calcinate it at 700 degree C for 1 h in oxygen ambient atmosphere.

[Example 4]

- Lithium hydroxide monohydrate 83.9g + Nickel hydroxide 166.9g + Cobalt carbonate 137.0g (atomic ratio Li/Ni/Co(mole ratio) =1.0/0.9/0.1)
- 2. Mill and mix it with ball mill.
- 3. Dry at 150 degree C for 12 h.
- 4. The mixture was calcinated at 750 degree C for 5 h in oxygen ambient atmosphere.
- 5. Mill it for 1 h with ball mill in nitrogen ambient atmosphere.

- 6. Ethanol 300g + Lithium hydroxide monohydrate 2.1g + Cobalt nitrate hexahydrate 14.6g (atomic ratio Li/Co(mole ratio) =1.0)
- 7. The mixture + Lithium nickel multiple oxide 92.7g (atomic ratio Co/Ni(mole ratio) =0.05)
- 8. Dry the dispersion with Spray dryer which the temperature of the spray exit is 100 degree C.
- 9. Calcinate it at 700 degree C for 1 h in oxygen ambient atmosphere.

[Example 5]

- 1. Lithium-hydroxide monohydrates 83.9g + Nickel hydroxide 185.4g (atomic-ratio Li/Ni(mole ratio) =1.0)
- 2. Mill and mix it with ball mill.
- 3. Dry at 150 degree C for 12 h.
- 4. The mixture was calcinated at 750 degree C for 5 h in oxygen ambient atmosphere.
- 5. Mill it for 1 h with ball mill in nitrogen ambient atmosphere.
- 6. Ethanol 300g + Lithium nitrate 3.4g + Cobalt nitrate hexahydrate 14.6g (atomic ratio Li/Co(mole ratio) =1.0)
- 7. The mixture + Lithium nickel multiple oxide 92.7g (atomic ratio Co/Ni(mole ratio) =0.05)
- 8. Dry the dispersion with Spray dryer which the temperature of the spray exit is 100 degree C.
- 9. Calcinate it at 700 degree C for 1 h in oxygen ambient atmosphere.

Initial capacity

Capacity at 50 cycles

	初期放電容量 (mAh/g)	充放電 5 () サイクル後の 放電容量 (mAh/g)
実施例1	1 6 8	1 5 2
実施例2	171	1 5 2
実施例3	160	1 4 9
実施例4	1 5 8	1 5 0
実施例5	155	1 4 2
比較例1	1 4 2	1 2 1
比較例2	1 3 8	1 2 1
比較例3	1 1 5	106
比較例4	1.33	117

The examples of comparison Non-coated sample