СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН

Цель:

моделирование случайных величин с заданным законом распределения; сравнительный анализ теоретических и экспериментальных зависимостей.

Задачи:

получить гистограмму для закона распределения, сравнить полученную гистограмму с соответствующим графиком плотности вероятности f(x) в соответствии с заданием, найти выборочные характеристики положения и рассеивания сравнить с генеральными.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Моделированием случайной величины (СВ) называют процесс получения на ЭВМ последовательности ее выборочных значений. СВ обычно моделируют с помощью преобразований одного или нескольких независимых значений СВ, равномерно распределенных в интервале (0; 1). Обозначим независимые СВ, равномерно распределенные в (0; 1), через а с различными индексами: $\alpha_1, \alpha_2, \ldots, \alpha_k$. . В системе математического обеспечения практически любой ЭВМ имеется стандартная подпрограмма программа моделирования α — «датчик» реализации псевдослучайной величины с равномерным распределением на интервале (0; 1).

Стандартным методом моделирования непрерывной СВ ξ с функцией распределения F(x), когда существует обратная к ней $F^{-1}(x)$, является использование алгоритма вида (метод обратных функций):

$$\xi = F^{-1}(\alpha)$$
.

Этот алгоритм можно использовать в тех случаях, когда существует аналитическое выражение для $F^{-1}(x)$ либо в математическом обеспечении имеется стандартная процедура, вычисляющая эту функцию.

Для дискретной СВ ξ с законом распределения $p_k = P\{\xi = x_k\}$, $\kappa = 0,1,2,...$, универсальный алгоритм реализует «метод вычитания». Реализация этого алгоритма предполагает наличие в памяти ЭВМ всего набора чисел p_{κ} , k = 0,1,2,...

Ниже приведены алгоритмы моделирования наиболее распространенных непрерывных распределений.

Нормальное распределение

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, x \in (-\infty, +\infty).$$

Алгоритм А1.

- 1) зарезервирована константа $c = 2\pi$;
- 2) $R = \sqrt{-2ln\alpha_1}$;
- 3) $\varphi = \alpha_2$;
- 4) $U_1 = R \cos \varphi$; $U_2 = R \sin \varphi$;

Алгоритм А2.

- 1) $V_1 = 2\alpha_1 1$, $V_2 = 2\alpha_2 1$;
- 2) $s = V_1^2 + V_2^2$;
- 3) если $s \ge 1$, вернуться к п. 1;

4)
$$R = \sqrt{-(2lns)/s}$$
;

5)
$$U_1 = V_1 R$$
; $U_2 = V_2 R$.

Для моделирования нормального распределения с параметрами m и σ преобразуем U_i : $U_i'=m+\sigma U_i$.

Логнормальное распределение

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} exp\left\{-\frac{(lnx-m)^2}{2\sigma^2}\right\}, x > 0, m > 0, \sigma > 0.$$

Алгоритм В1.

- 1) сгенерировать стандартное (m = 0, $\sigma = 1$) нормальное число x = u;
- 2) $V = m \exp(\sigma x)$.

Экспоненциальное (показательное) распределение

$$f(x) = \lambda e^{-\lambda x}, \lambda > 0, x > 0.$$

Алгоритм С1.

1)
$$\xi = -(\ln \alpha)/\lambda$$
;

Алгоритм С2.

- 1) получить независимые CB α_1 , α_2 , α_3 .
- 2) $s = ln(\alpha_1\alpha_2)$;
- 3) $V_1 = -\alpha_3 s$, $V_1 = (\alpha_3 1)s$.

Алгоритм С3.

- 1) получить независимые СВ α_1 , α_2 , α_3 , α_4 , α_5 ;
- 2) отсортировать $(\alpha_4, \alpha_5) \rightarrow (\alpha'_4, \alpha'_5)$, причем $\alpha'_4 < \alpha'_5$;
- 3) $s = -\ln(\alpha_1\alpha_2\alpha_3);$
- 4) $x_1 = \alpha'_4, x_2 = \alpha'_5 \alpha'_4, x_3 = 1 \alpha'_5;$
- 5) $V_1 = x_1 s$, $V_2 = x_2 s$; $V_3 = x_3 s$.

Равномерное распределение

$$f(x) = \frac{1}{b-a}, x \in (a,b).$$

Алгоритм D1.

1)
$$\xi = a + (b-a)\alpha$$
.

Распределение хи-квадрат

$$f(x) = \frac{x^{(v-2)/2}}{\frac{v}{2^2}\Gamma(v/2)\sigma^v} exp\left(-\frac{x}{2\sigma^2}\right), x \ge 0,$$

где v — положительное целое «число степеней свободы».

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}, \Gamma(1) = 1, \Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2}, \Gamma(2) = 1, \Gamma\left(\frac{5}{2}\right) = \frac{3\sqrt{\pi}}{4}.$$

Алгоритм E1 ($\sigma = 1$)

Для четных v:

1) сгенерировать $\alpha_1, ..., \alpha_{(\nu/2)-1};$

2)
$$V = -2ln\left(\prod_{i=0}^{\left(\frac{v}{2}\right)-1}\alpha_i\right).$$

Для нечетных v:

1) сгенерировать $\alpha_1, ..., \alpha_{(\nu-1)/2}$;

2)
$$V = -2ln\left(\prod_{i=0}^{\left(\frac{\nu-1}{2}\right)}\alpha_i\right) + u^2$$
, где u – стандартное (m=0, σ =1) нормальное число.

Алгоритм Е2.

1) сгенерировать нормальные числа $x_1, x_2, ..., x_v$ с параметрами $(0, \sigma^2)$;

2)
$$s = \sum_{k=1}^{v} x_k^2$$
.

Гамма-распределение

$$f(x) = \left(\frac{x}{b}\right)^{c-1} \frac{exp(-x/b)}{b\Gamma(c)}, x \ge 0.$$

где b — параметр масштаба (b>0); с — параметр формы (c > 0).

Алгоритм F1.

Задать константу $\varepsilon > 0$ (малое машиннозависимое число, для которого обязательно $1,0-\varepsilon < 1,0$)

1) v = [c] (целая часть — в MATLAB оператор 'floor'), $c_1 = c - v$, $V_1 = 0$, $V_2 = 0$.

2) если $c_1 < \epsilon$, то перейти к п. 8; если $1-c1 < \epsilon$, то v = v+1 и перейти к п. 8;

3) получить α_{v+1} , α_{v+2} ;

4) $s_1 = \alpha_{v+1}^{1/c_1}, s_2 = \alpha_{v+2}^{1/(1-c_1)};$

5) $s = s_1 + s_2$;

6) если $s_1>1$, то перейти к п. 3;

7) $V_2 = -s_1(1n \alpha_{v+3})/s$;

8) получить $\alpha_1, ..., \alpha_{\nu}$;

9) $V_1 = -ln(\prod_{i=1}^{v} \alpha_i);$

10) $V = b(V_1 + V_2)$.

Бета-распределение

$$f(x) = \frac{x^{\nu-1}(1-x)^{\mu-1}}{B(\nu,\mu)}, x \in [0,1], \nu > 0, \mu > 0,$$

$$B(v,\mu) = \frac{\Gamma(v)\Gamma(\mu)}{\Gamma(v+\mu)} = \int_0^1 t^{v-1} (1-t)^{\mu-1} dt$$
 — бета — функция.

Алгоритм G1.

1) с помощью алгоритма F1 получить V_1 с параметрами b = 1, c = v;

2) с помощью алгоритма F1 получить V_2 с параметрами b = 1, $c = \mu$;

3) $\beta = V_1/(V_1+V_2)$.

Распределение Вейбулла

$$f(x) = \frac{cx^{c-1}}{b^c} exp\left[-\left(\frac{x}{b}\right)^c\right], c > 0, b > 0, x \ge 0.$$

Алгоритм Н1.

$$1) W_I = b(-ln\alpha)^{1/c}.$$

Распределение Накагами

$$f(x) = \frac{2}{\Gamma(m)} \left(\frac{m}{\sigma^2}\right)^m x^{2m-1} exp\left(-\frac{m}{\sigma^2}x^2\right)$$
, $x>0$, $m-$ параметр формы, $\sigma-$ параметр масштаба.

Алгоритм Q1.

2) с помощью алгоритма F1 получить V с параметрами c = m, b = 1;

3)
$$W = \sigma \sqrt{V/m}$$

Распределение Райса

$$f(x) = \frac{x}{\sigma^2} exp\left(-\frac{x^2 + a^2}{2\sigma^2}\right) I_0\left(\frac{ax}{\sigma^2}\right), x > 0.$$

где a — параметр «нецентральности» (a > 0); σ — параметр масштаба; $I_0(x)$ — модифицированная функция Бесселя нулевого порядка (в среде MATLAB обозначается besseli(0,x)).

Алгоритм R1.

- 1) используя алгоритм A2, получить U_1, U_2 ;
- 2) $R = \sqrt{(\alpha + \sigma U_1)^2 + (\sigma U_2)^2}$.

Треугольное распределение (Симпсона)

$$f(x) = \begin{cases} 4\frac{x-a}{(b-a)^2}, x \in (a, \frac{a+b}{2}) \\ 4\frac{b-x}{(b-a)^2}, x \in (\frac{a+b}{2}, b) \\ 0, x \ni (a, b) \end{cases}$$

Алгоритм S1.

- 1) получить α_1, α_2 .
- 2) $z_1 = \frac{a}{2} + \frac{\alpha_1(b-a)}{2}, z_2 = \frac{a}{2} + \frac{\alpha_2(b-a)}{2}.$
- 3) $s = z_1 + z_2$

Распределение по закону арксинуса

$$f(x) = \frac{1}{\pi\sqrt{b^2 - (x - a)^2}}, a - b < x < a + b, a > 0, b > 0$$

Алгоритм L1.

- 1) получить α_1 ;
- 2) $s = b \sin(\pi(\alpha_1 0.5)) + a$.

Распределение Коши

$$f(x) = \frac{1}{\pi(b^2 + (x - a)^2)}.$$

Алгоритм К1.

- 1) получить α_1 ;
- 2) $s = b tg (\pi(\alpha_1 0.5)) + a$.

Ниже приведены алгоритмы моделирования наиболее распространенных дискретных распределений.

Распределение Бернулли

$$P\{\xi = k\} = kp+(1-k)q, k=0,1;q=1-p.$$

Алгоритм X1.

- 1) получить α_k ;
- 2) если $\alpha_k < p$, то $\xi = 1$; иначе $\xi = 0$.

Биномиальное распределение

$$P\{\xi = k\} = C_n^k p^k q^{n-k}, k = 0,1,2,...,n.$$

Алгоритм Ү1.

- 1) получить $V_i = \alpha_i, k = 0, P_1 = q^n;$
- 2) $V_i = V_i P_1$;
- 3) если V_i < 0, перейти к п.6;
- 4) $P_1 = \frac{P_1(n-k)p}{(k+1)q}$
- 5) k = k + 1, перейти к п. 2;
- 6) $\xi = k$.

Алгоритм Ү2.

- 1) s = 0, k = 1;
- 2) получить α_k ;
- 3) если $\alpha_k < p$, то s = s + 1;
- 4) k = k+1;
- 5) если к≤ п, перейти к п. 2;
- 6) $\xi = s$.

Алгоритм ҮЗ (для малых р).

- 1) L = 0, k = 0;
- 2) получить α_k ;
- 3) $L = L + \left(\frac{\ln \alpha_k}{\ln q} + 1\right), k = k + 1;$
- 4) если L≤n, перейти к п. 2;
- 5) $\xi = k-1$.

Дискретное равномерное распределение

$$P\{\xi = k\} = 1/n, k=1, 2, ..., n.$$

Алгоритм Z1.

- 1) получить α_i ;
- 2) $\xi_i = [1 + \alpha_i n]$, где [...] целая часть числа.

Распределение Пуассона

$$P\{\xi = k\} = \frac{\lambda^k}{k!}e^{-\lambda}, k = 0, 1, 2, ...$$

Алгоритм V1 (для малых λ).

- 1) получить α_k ;
- 2) $p = e^{-\lambda}, k = -1, s = 0;$
- 3) $k = k+1, s = s \alpha_k$
- 4) если s > p, перейти к п.2;
- 5) $\xi = k$.

Алгоритм V2 (приближенный для $\lambda >>1$).

- 1) получить U_i, используя алгоритм А2;
- 2) $\xi_i = [U_i \sqrt{\lambda} + \lambda]$, где [...] целая часть;

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Выполнить статистическое моделирование случайной величины с заданным законом распределения (табл. 1) путем генерации отсчетов α_{1i} , $i=1,\ldots,N$ случайных величин с

- равномерным распределением в интервале [0, 1] (или, при необходимости нескольких CB (α_1 , α_2 , ..., α_k); N=10000. Сформировать соответствующий script-файл в среде MATLAB.
- 2. Получить гистограмму для закона распределения в соответствии с вариантом задания. Гистограмма может быть получена в среде MATLAB с помощью оператора hist(X1,N), X1 анализируемая случайная величина, N число интервалов на гистограмме, которое должно составлять от 100 до 500. Сравнить полученную гистограмму с соответствующим графиком плотности вероятности f(x) в соответствии с заданием.

3. Вычислить:

- выборочное среднее значение,
- медиану,
- нижний и верхний квартиль,
- выборочную дисперсию и СКО,

смоделированной случайной величины и сравнить их с теоретическими значениями (мат. ожиданием и дисперсией, медианой, нижним и верхним квартилем).

4. Сделать выводы.

№ вар	Закон распределения (алгоритм)	Параметры
1	2	3
1	Логнормальный (В1)	$m = 0.5, \ \sigma = 1$
2	Вейбулла (Н1)	b = 2, c = 3
3	Хи-квадрат (Е1)	$v=4, \sigma=1$
4	Гамма (F1)	b = 1, c = 2
5	Бета (G1)	$v = 3, \ \mu = 1.5$
6	Накагами (Q1)	$m = 0.5, \ \sigma = 1$
7	Райса (R1)	$a = 0.5, \ \sigma = 1$
8	Треугольное (Симпсона) (S1)	$a = 2, \ b = 5$
9	Закон арксинуса (L1)	$a = 3, \ b = 2$
10	Коши (К1)	a = 1, b = 0.5
11	Хи-квадрат (Е2)	$v=3, \ \sigma=2$
12	Равномерный (D1)	a = 1, b = 2
13	Экспоненциальный (С2)	$\lambda = 1$
14	Экспоненциальный (С3)	$\lambda = 1$
15	Экспоненциальный (С1)	$\lambda = 3$

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Титульный лист.
- 2. Цель работы. Необходимые теоретические сведения.
- 3. Гистограмма распределения, полученная экспериментальным путем.
- 4. Теоретический график плотности распределения вероятностей f(x) в соответствии с вариантом задания.
- 5. Теоретические и экспериментальные значения средних значений и дисперсий.
- 6. Выводы по работе.