Bank Marketing

Link al repositorio del proyecto.

Objetivo

Los datos están relacionados con campañas de marketing directo (llamadas telefónicas) de una institución bancaria portuguesa. El objetivo de la clasificación es predecir si el cliente suscribirá o no a un depósito a plazo (variable y).

Indice

- → Análisis exploratorio de datos: Visualización de datos e insights.
- Métricas de predicciones: Comparación de resultados entre modelos de clasificación.
- Próximos pasos:
 Siguientes posibles acciones para la mejora de las métricas..

Análisis exploratorio de datos

Obs:

Veremos las visualizaciones e insights **más destacados**, los cuales surgieron como resultado del EDA. ___

EDA

Datos continuos

Euribor3m

Hay ciertos meses que poseen un promedio de "euribor3m" menor a la media y otros donde el promedio es mayor a la media.

Cantidad suscripciones y promedio de euribor3m por mes

- Los meses que tienen un euribor mayor a la media tuvieron más cantidad de suscripciones.
 - Tiene sentido pensar que al haber una tasa mayor de interes haya más cantidad de suscripciones.

Cons price idx

Hay una diferencia en la media de dicha variable en clientes suscriptos vs clientes no-suscritos.

Cantidad de campañas discriminando según euribor3m

Los meses que más clientes suscriptos hubo se correlaciona con la cantidad de campañas que se hicieron.

Cons price idx discriminando por euribor3m

Cantidad de clientes suscriptos y consumer price index por mes

Relacion entre Cantidad de suscripciones a depositos y cons price idx

Los meses con más suscripciones tuvieron un valor más alto de con<mark>sumer price index, pareciera haber cierta relación lineal entre la cantidad de suscripciones y el valor de cons price idx.</mark>

Cons conf idx

Relacion entre Cantidad de suscripciones a depositos y cons conf idx

Se aprecia cierta relación negativa entre cons conf idx y la cantidad de clientes suscriptos.

Pdays

La probabilidad condicional de suscripción es mayor cuando el cliente tuvo un contacto recientemente. _

EDA

Datos categóricos

Job y porcentaje de no-subs/subs

Job y probabilidad condicional de suscripción

Pareciera ser que la probabilidad condicional de suscripción depende del trabajo del cliente.

Default (clientes moroso vs no-moroso)

Porcentaje de clientes suscriptos y no-suscriptos dependiendo si el cliente es moroso

Los clientes que presentan deudas no se suscriben a los depósitos.

Poutcome

La probabilidad condicional de suscripción es considerablemente mayor dependiendo si el cliente se suscribio a depósitos en campañas anteriores.

Emp var rate

Vemos una relación lineal negativa entre la cantidad de suscripciones y el valor promedio por mes de emp var rate.

Modelos de clasificación

Obs:

Veremos los distintos modelos de clasificación conjunto sus métricas. KNN.

4000

2000

1021

368

0.2

0.0 -0.0

0.2

0.4

False Positive Rate

ROC curve (area = 0.76)

0.6

0.8

1.0

Precisión (KNeighbors): 0.9000566480537348

Con random forest parece mejorar la métrica ROC AUC con respecto a KNN.

XGB.

Precisión (KNeighbors): 0.899166464352189

Sobre sampleo

Ninguno de los 3 modelos de clasificación logró predecir (con buenos resultados) los clientes suscriptos a depósitos.

Esto puede deberse a que hay considerablemente más clientes no-suscriptos (90%) vs 10% de clientes suscriptos, por ende nuestros modelos aprenden muy bien a predecir la clase mayoritaria.

Optamos por hacer un **sobre-sampleo en la clase minoritaria** y luego obtener nuevas métricas.

Precisión (KNeighbors): 0.8556283887675002

XGB.

Precisión (KNeighbors): 0.8509346928866229

Resumen

El modelo analizado **es eficaz para predecir clientes que no se suscriben a depósitos**, con una **precisión de 0.91 y un recall de 0.99**. Sin embargo, su **rendimiento disminuye** al predecir **clientes que sí se suscriben**, posiblemente debido a que solo el 10% de las observaciones corresponde a clientes suscriptos.

Para mejorar esto, se realizó un sobre-sampleo en la clase minoritaria (clientes

suscriptos), lo que aumenta el recall pero reduce la precisión.

Dependiendo de los objetivos de la empresa, el modelo puede ser ajustado:

- Para campañas de marketing dirigidas a clientes con baja probabilidad de suscripción, los modelos de Random Forest y XGBoost, sin sobre-sampleo, son muy efectivos.
- En cambio, para retener clientes con alta probabilidad de suscribirse, los mismos modelos con sobre-sampleo muestran resultados prometedores. Ajustar el umbral de decisión puede aumentar aún más el número de clientes suscriptos identificados (mejorando el recall) a costa de reducir la precisión.

Próximos pasos

Analizar FN

Analizar los clientes que fueron erróneamente predichos como falsos (no-sub) en busca de algun patron que lleve a entender el motivo de que nuestro modelo cometa dicho error.

Analizar FP

Similarmente, analizar los clientes que fueron erróneamente predichos como verdaderos (sub) en busca de algun patron que lleve a entender el motivo de que nuestro modelo cometa dicho error.

Incorporación de nuevos features.

Implementar más técnicas de ingeniería de características con el objetivo de generar nuevos features que aporten información de clientes suscriptos.