Correction du QCM THL — Théorie des Langages

EPITA - Promo 2008

Juillet 2006

Il y a toujours exactement une seule réponse valable. Lorsque plusieurs réponses sont possibles, prendre la plus restrictive.

Le langage a^n est

- × fini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

Le langage $a^n b^n$ pour $n < 42^{51} - 1$ est

- × infini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

Le langage $(ab)^n$ est

- × fini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

Le langage $a^n b^m$, où n, m parcourent les entiers naturel, est

- × fini
- \rightarrow rationnel
- × non reconnaissable par automate fini
- × vide

L'expression rationnelle étendue [a - zA - Z][a - zA - Z0 - 9] * n'engendre pas :

- \rightarrow __STDC__
- × main
- × eval_expr
- \times exit_42

Un automate fini déterministe...

- × n'est pas nondéterministe
- × n'est pas à transitions spontanées
- → n'a pas plusieurs états initiaux
- × n'a pas plusieurs états finaux

Le langage $a^n b^n$ est

- × fini
- × rationnel
- → non reconnaissable par automate fini
- × vide

Quelle est la classe de la grammaire suivante?

$$P \rightarrow P inst ';'$$
 $P \rightarrow inst';'$

- → Rationnelle (Type 3)
- × Hors contexte (Type 2)
- × Sensible au contexte (Type 1)
- × Monotone (Type 1)

Quelle est la classe de la grammaire suivante?

$$\begin{array}{ccc} A & \rightarrow & aABC \\ A & \rightarrow & abC \\ CB & \rightarrow & BC \\ bB & \rightarrow & bb \\ bC & \rightarrow & bc \\ cC & \rightarrow & cc \\ \end{array}$$

- × Rationnelle (Type 3)
- × Hors contexte (Type 2)
- × Sensible au contexte (Type 1)
- \rightarrow Monotone (Type 1)

Quelle propriété de cette grammaire est vraie?

$$S \rightarrow aSc$$

$$S \rightarrow c$$

- × Linéaire à gauche
- × Linéaire à droite
- → Hors contexte
- × Ambiguë

Quelle propriété de cette grammaire est vraie?

$$S \rightarrow SpS$$

$$S \rightarrow n$$

- × Linéaire à gauche
- × Linéaire à droite
- × Rationnelle
- → Ambiguë

Un langage quelconque est

- → toujours inclus dans un langage rationnel
- × toujours inclus dans un langage hors-contexte
- $\, imes\,$ toujours inclus dans un langage sensible au contexte
- × peut ne pas être inclus dans un langage défini par une grammaire

Soit L_r est un langage rationnel. Si $L \subset L_r$, alors

- \times L est rationnel
- \times L est hors-contexte
- \times L est sensible au contexte
- $\,\rightarrow\,\,L$ peut ne pas être définissable par une grammaire

LL(k) signifie

- \times lecture en deux passes de gauche à droite, avec k symboles de regard avant
- \times lecture en deux passes de gauche à droite, avec une pile limitée à k symboles
- \rightarrow lecture en une passe de gauche à droite, avec k symboles de regard avant
- \times lecture en une passe de gauche à droite, avec une pile limitée à k symboles

Si une grammaire est LL(1), alors

- × elle n'est pas rationnelle
- \times elle est rationnelle
- → elle n'est pas ambiguë
- × elle est ambiguë

Si un parseur LALR(1) a des conflits, alors sa grammaire

- × est ambiguë
- \times n'est pas LR(1)
- \rightarrow n'est pas LR(0)
- × n'est pas déterministe

Si une grammaire hors contexte est non ambiguë

- \times elle est LL(1)
- \times elle est LL(k)
- → elle n'est pas nécessairement LL
- × elle produit nécessairement des conflits dans un parseur LL

Quelle forme de l'arithmétique est LL(1)?

×

$$S \rightarrow S + S \mid S * S \mid n$$

×

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

 $F \rightarrow n$

 \rightarrow

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid T$$

 $T \rightarrow FT'$

 $T' \rightarrow *FT' \mid F$

 $F \rightarrow 1$

× LL(1) ne permet pas de traiter l'arithmétique

Lex/Flex sont des

- → générateurs de scanners
- × générateurs de parsers
- × parseurs
- × scanners

Yacc repose sur l'algorithme

- \times LL(k)
- \times YACC(1)
- \times LR(k)
- \rightarrow LALR(1)