Total	l No	. of Qu	estions: 8]	SEAT No.:	
PC2816			[6352]-40	[Total No. of Pages :4	
S.E	. ((_	outer Engineering /Artificial Intellig puter Science & Design Engg./Com DISCRETE MATHEMATION	nputer Science)	
			(2019 Pattern) (Semester- III) (2		
		/2 Hour ons to		[Max. Marks : 70	
	1)	Ans	wer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or	Q.8 .	
	<i>2</i>)	Nea	diagrams must be drawn wherever necessary.		
	<i>3</i>)	Figi	wes to the right indicate full marks.	\$	
	4)		ume suitable data, if necessary.		
<i>Q1</i>)	a)	Sur	pose repetitions are not possible.	[6]	
			How many three digitnumbers can be for 2, 3, 4,5,7,9?	ormed by using the digits	
		ii)	How many of these numbers are less t even?	han 400? How many are	
	b)	Fine	d eighth term in the expansion of $(x+y)^{13}$	[6]	
	c)		persons are made to sit around a table. Find sit such that 2 specific persons are not to		
			OR		
Q2)	a)	A s	tudent has to answer 10 out of 13 question	ns in an exam: [6]	
		i)	How many choices have he, if he must a question but not both?	answer the first or second	
		ii)	How many choices have he, if he must a first five questions?	nswer exactly three out of	
	b)	digi	pose that repetitions are not permitted thumbers can be formed from the digits 1 h numbers are less than 4000?		
	c)		d the number of ways of arranging the letters at a time? Find if the first two letters must		
			8.	P.T.O.	

Q3) a) Explain the following:

[5]

- Bipartite graph i)
- ii) Planar graph
- iii) Eulerian graph
- Whether the following pairs of graphs are isomorphic or not? b)

Explain the following in brief with example: c)

- Adjacency matrix
- Incidency matrix

Use Dijkstra's algorithm to find the shortest path from vertex a to f [6] **Q4**) a)

- Spanning tree i)
- Colouring of graph ii)
- Bipartite graph iii)
- Prove that, If G is connected planar graph with N vertices, E edges and R regions then $N-E+R=\mathfrak{I}$ c) R regions then N - E + R = 2**[5]**

[6352]-40

[6]

- i) Binary tree
- ii) Ordered tree
- iii) Eccentricity of vertex
- b) Suppose data items A, B, C, D, E, F, G occur in the following frequencies respectively 8, 22, 9, 91, 13, 10, 15. Construct Huffman code for the data.
- c) Create a binary search tree generated by inserting integer in order 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24. [6]

OR

Q6) a) Use Prims algorithm to construct a minimal spanning tree starting at vertex (a. [6]

b) Determine the maximum flow in the transport network given below. Determine the corresponding min cut. [6]

c) Explain the following:

[6]

- i) Regular m-ary tree with example.
- ii) Find the preorder, postorder and inorder of the following binarytree

Q7)	a)	plain the following terms giving suitable example: [6]			
		i) Monoid			
		ii) Group			
		iii) Cyclic group			
	b)	Let $(Q,*)$ is an algebraic system. * is a binary operation on Q defined $a*b=a+b$ for every $a,b\in Q$. Determine whether $(Q,*)$ is group?			
	c)	Show that $S = \{a + b\sqrt{2}; a, b \in Z\}$ for the operations + and * is an integr	how that $S = \{a + b\sqrt{2}; a, b \in Z\}$ for the operations + and * is an integral		
		domain.	5]		
		OR			
Q8)	a)	Explain the following terms giving suitable example: [0	6]		
		i) Homomorphism of groups			
		ii) Integral domain			
	1	Abelian group			
	b)	Let Z_n denotes the set of integers $\{0, 1, 2,, n-1\}$. Let * be a binar operation on Z such that , $a * b =$ the remainder of ab divided by n [0]			
		i) Construct the table for $n = 4$			
		ii) Show that $(Zn, *)$ is semigroup for any n .	~		
	c)	ii) Show that (Zn, *) is semigroup for any n. What is Hamming distance? Find minimum distance generated by paritymatrix H = 110 011 101 100010001 How many errors can it be detect or correct? [5]))		
		How many errors can it be detect or correct?	5]		
[635	[2]-	40			