UD2.- Introducció a JAVA (II)

"Sempre codifica com si el tipus que acaba mantenint el teu codi fora un psicòpata violent que sap on vius"

Rick Osborne

Programació 1r DAW 1 /10

8.- Literals.

A l'hora de tractar amb valors dels tipus de dades simples (i Strings) s'utilitza el que es denomina "literals".

Els literals són elements que serveixen per a representar un valor en el codi font del programa, es a dir, els valors que podem assignar a les variables.

A Java existeixen literals per als següents tipus de dades:

- Lògics (boolean).
- Caràcter (char).
- Enters (byte, short, int i long).
- Reals (double i float).
- Cadenes de caràcters (String).

Literals lògics

Són únicament dos, les paraules reservades true i false. Exemple:

boolean activitat = false;

Literals enters

Els literals de tipus enter: **byte**, **short**, **int i long** poden expressar-se en decimal (base 10), octal (base 8) o hexadecimal (base 16).

A més, pot afegir-se al final del mateix la lletra **L** per a indicar que l'enter és considerat com **long** (64bits).

En Java, el compilador identifica un **enter** decimal (base 10) en trobar un número el primer dígit del qual és qualsevol símboldecimal excepte el zero (de l'1 al 9). A continuació poden aparèixer dígits del 0 al 9.

La lletra L al final d'un literal de tipus enter pot aplicar-se a qualsevol sistema de numeració i indica que el nombre decimalsiga tractat com un enter llarg (de 64 bits).

Aquesta lletra **L pot ser majúscula o minúscula**, encara que és aconsellable utilitzar la majúscula ja que en cas contrari potconfondre's amb el dígit un (1) en els llistats.

Exemple:

long max1 = 9223372036854775807L; //valor maxim per a un enter llarg

Literals reals

Els literals de tipus real serveixen per a indicar valors **float** o **double**. A diferència dels literals de tipus enter, no podenexpressar-se en octal o hexadecimal.

Existeixen **dos formats** de representació: mitjançant la seua part sencera, el punt decimal (.) i la part fraccionària; omitjançant **notació exponencial o científica**:

Programació 1r DAW 2 /10

Exemples equivalents per a representar el número 3,1415

3.1415 0.31415e1 .31415e1 0.031415E+2 .031415e2 314.15e-2 31415E-4

Al igual que els literals que representen enters, es pot posar una lletra com a sufix. Aquesta lletra pot ser una **F** o una **D** (majúscula o minúscula indistintament).

- **F** -> Tracta el literal com si fora de tipus **float**.
- **D** -> Tracta el literal com si fora de tipus **double**.

Exemple:

3.1415**F** .031415**d**

Literals caràcter

Els literals de tipus caràcter es representen sempre entre **cometes simples (')**. Entre les cometes simples pot aparèixer:

• **Un símbol** (lletra) sempre que el caràcter estiga associat a un codi Unicode.

Exemples: 'a', 'B', '{', 'ñ', 'á'.

 Una "seqüència de fuita o escapada". Les seqüències de fuita o escapada (de "escape") són combinacions del símbol contrabarra \ seguit d'una lletra, i serveixen per a representar caràcters que no tenen una equivalència en forma de símbol.

Les possibles següències d'escapada són:

```
\n → Nova Línia.
\t → Tabulador.
\r → Retorn de Carro. (Enter)
\f → Començament de Pàgina.
\b → Esborrat a l'Esquerra.
\\ → El caràcter barra inversa (\).
\' → El caràcter prima simple (').
\" → El caràcter prima doble o bi-prima (").
```

Per exemple:

Per a imprimir una **diagonal inversa** s'utilitza: $\$ Per a imprimir **cometes dobles** en un String s'utilitza: $\$ "

Literals cadenes

Els **Strings o cadenes de caràcters** no formen part dels tipus de dades elementals a Java, sinó que són instanciats a partir de la classe java.lang.String, però accepten la seua inicialització a partir de literals d'aquest tipus, per la qual cosa es tracten en aquest punt.

Un literal de tipus string va tancat entre cometes dobles (") i ha d'estar inclòs completament en una sola línia del programa font (no pot dividir-se en diverses línies).

Entre les cometes dobles pot incloure's **qualsevol caràcter del codi Unicode** (o el seu codi precedit del caràcter \) <u>a més de les seqüències de fuita vistes anteriorment en els literals de tipus caràcter</u>.

Així, per exemple, per a incloure un canvi de línia dins d'un literal de tipus string haurà de fer-se mitjançant lasequència de fuita \n:

Exemple:

```
System.out.println("Primera línia\nSegona línia de la
cadena\n");System.out.println("Hola");
```

La visualització del **string** anterior mitjançant **println()** produiria la següent eixida per pantalla:

Primera línia Segona línia de la cadena Hola

La manera d'incloure els caràcters: cometes dobles (") i contrabarra (\setminus) és mitjançant les seqüències d'escapament \setminus " i \setminus respectivament (o mitjançant el seu codi Unicode precedit de \setminus).

Si **l'String** és massa llarg i ha de dividir-se en diverses línies en el fitxer font, pot utilitzar-se **l'operador de concatenació d'Strings (+)** de la següent forma:

```
"Aquest String és massa llarg per a estar en una línia del " + "fitxer font i s'ha dividit en dues."
```

Exemple.- Programa que mostra per pantalla diversos literals de cadena combinats amb següencies d'escapada

```
public class SequenciesEscapada {
   public static void main(String[] args) {
                                                                                      Lorena
                                                                                     Verònica
   // Per imprimir una línia utilitzem: \n
                                                                                     Débora
         System.out.println("Lorena\nVerònica\nDébora\nPasqual\nJaume");
                                                                                     Pasqual
         System.out.print("\n");
                                                                                      Jaume
         System.out.println();
  // Per enviar un retorn de carro (ENTER): \r
         System.out.println("Dilluns\rDimarts, Dimecres\rDijous, Divendres");
                                                                                 Dilluns
         System.out.print("\n");
                                                                                 Dimarts, Dimecres
         System.out.println();
                                                                                 Dijous, Divendres
  // Per esborrar un caràcter a l'esquerra s'utilitza: \b
  // (SOLS EN MODE ADMINISTRADOR)
                                                                        DillunDimarts
         System.out.println("Dilluns\bDimarts");
         System.out.print("\n");
         System.out.println();
  // Per a tabular s'utiliza: \t
         System.out.println("\tLunes\tMartes\tMiércoles");
         System.out.println("\tDilluns\tDimarts\tDimecres");
         System.out.println("\tMonday\tTuesday\tWednesday");
         System.out.print("\n");
         System.out.println();
                                                                       Lunes
                                                                              Martes Miércoles
                                                                       Dilluns Dimarts Dimecres
                                                                       Monday Tuesday Wednesday
  * Per imprimir comilles dobles (") en un String s'utiliza: \"
  * i per cometes (') simples: \'
  */
         System.out.println("\"Dilluns\",\"Dimarts\",\'Dimecres\'");
         System.out.print("\n");
         System.out.println();
                                                              "Dilluns", "Dimarts", 'Dimecres'
 //Per imprimir una diagonal inversa (\) s'utiliza:
         System.out.println("Pagina:\\ http://iesbenigaslo.es \\");
    } //Del main()
                                                    Pagina: \ http://iesbenigaslo.es \
}//De la classe
```

9.- Eixida i Entrada estàndard.

Eixida estàndard

Ja hem vist l'ús de **System.out** per a mostrar informació per pantalla:.

- print("...");// imprimeix text per pantalla
- println("...");// imprimeix text per pantalla i introdueix un salt de línia.

La utilització de **System.err** seria totalment anàloga per a enviar **els missatges produïts per errors** en l'execució (és el canal que usa també el compilador per a notificar els errors trobats).

Per exemple, per a presentar el missatge de salutació habitual per pantalla, i després un missatge d'error, tindríem la següent classe (encara que en realitat tota la informació va a la consola de comandos on estem executant el programa):

```
public static void main(String[] args) {
    System.out.print("Bon Dia ");
    System.out.println("Benigasló");
    System.err.println("Açò seria un missatge de error");
}

L'eixidα serà:

L'eixidα serà:

Bon Dia Benigasló
    Açò seria un missatge de error
```

També podem imprimir per pantalla variables de qualsevol tipus, així com combinacions de text ivariables concatenades amb l'operador +

```
public static void main(String[] args) {
    String nom = "Jaume Aragó";
    int edat = 65;

    System.out.println(nom);
    System.out.println(edat);
    System.out.println(nom + " té "+ edat + "anys");
}

L'eixida serà:

L'eixida
```

Programació 1r DAW 6 /10

Entrada estàndard

La entrada estàndard (llegir informació del teclat, escrita per l'usuari) és un poc més complexa. Hi ha diverses maneres de fer-ho però la més senzilla és utilitzar la classe **Scanner**.

Per a poder utilitzar la classe Scanner és necessari importar-la des del paquet java.util de Java.

```
import java.util.Scanner;
```

Sempre que vullgam llegir informació del teclat primer haurem de **declarar un objecte Scanner** que llegisca de l'entradaestandar **System.in** així:

```
Scanner elMeuObjecteScanner = new Scanner(System.in);
```

NOTA: En aquest exemple hem creat un objecte Scanner anomenat elMeuObjecteScanner però podríemposar-li qualsevol nom.

Ara podrem utilitzar elMeuObjecteScanner tantes vegades com vulguem per a llegir informació del teclat. Per exemple:

```
String introduccioText = elMeuObjecteScanner.nextLine();
int variableEntera = elMeuObjecteScanner.nextInt();
```

El mètode reader.nextLine() recollirà el text que l'usuari escriga per teclat (fins a pressionar la tecla Intro) i ho guardarà enintroduccioText (de tipus String).

Existeixen molt altres mètodes segons el tipus de dada que es vullga llegir:

- nextByte(): obté un nombre enter tipus byte.
- nextShort(): obté un nombre enter tipus short.
- nextInt(): obté un nombre enter tipus int.
- nextLong(): obté un nombre enter tipus long.
- nextFloat(): obté un nombre real float.
- nextDouble(): obté un nombre real double.
- next(): obté el següent token (text fins a un espai).
- **nextLine():** obté el text introduït per teclat dins que es pressione **INTRO**.

No existeixen mètodes de la classe Scanner per a obtindre directament booleans ni per a obtindre un sol caràcter.

Programació 1r DAW 7 /10

Exemple 1.- Llegim una cadena de text i la mostrem per consola:

```
import java.util.Scanner;

public class ExempleScanner {

   public static void main(String[] args) {

        String nom;
        Scanner teclat = new Scanner(System.in);

        System.out.print("Introdueix el teu nom: ");
        nom = teclat.nextLine();
        System.out.print("Bon dia "+ nom);

    } //Del main
} // De la classe
```

Exemple 2: Llegim un valor tipus double. El programa demana a l'usuari que introduïsca el radid'un cercle, després calcula la seua àrea i circumferència, finalment el mostra per pantalla.

```
import java.util.Scanner;
public class ExempleScanner2 {
    public static void main(String[] args) {
      double radi, area, longitud;
      Scanner entrada = new Scanner(System.in);
        System.out.print("Introdueix el el radi de la circumferència: ");
        radi = entrada.nextDouble();
                                               // area = 3.14 * radi * radi
        area= Math.PI * Math.pow(radi, 2);
        longitud = 2 * Math.PI * radi;
        System.out.println("\nL'àrea de la circumferència és: "+ area);
        System.out.println("");
        System.out.println("La longitud de la circumferència és: "+ longitud);
    } //Del main
                          ■ Console 器
} // De la classe
                          <terminated> ExempleScanner [Java Application] C:\Program Files\Java\jdk-
                          Introdueix el el radi de la circumferència: 5
                          L'àrea de la circumferència és: 78.53981633974483
                          La longitud de la circumferència és: 31.41592653589793
```

NOTA: A l'anterior exemple s'utilitzen constats i mètodes de la classe Math.

10.- Classe MATH.

Es troben a faltar operadors matemàtics més potents a Java. Per això s'ha inclòs una classe especial anomenada **Math** dins delpaquet **java.lang**.

```
import java.lang.Math;
```

Aquesta classe conté molts mètodes interessants per a realitzar càlculs matemàtics complexos com a càlcul de potències, arrelsquadrades, valors absoluts, si, cosinus, etc.

NOTA: Per poder invocar qualsevol constant o funció de la classe Math s'ha de posar el nom de la classe seguit d'un punt i el nom del mètode o constant a usar.

Per exemple:

```
double x = Math.pow(3,3);  // Potència 3 ^ 3
double i = Math.sqrt(9);  // Arrel quadrada de 9
```

També posseeix constants com:

```
double PI // El número Π (3,14159265…)
double E // El número e (2, 7182818245...)
```

Les funcions que més usarem de la classe Math són:

Funció Matemàtica	Significat	Exemple	Resultat
abs	Valor absolut	int $x = Math.abs(2.3);$	x = 2;
pow	Potència	double $x = Math.pow(2.3)$;	x = 8.0;
sqrt	Arrel quadrada	double x= Math.sqrt(9)	x= 3.0;
round	Redondeig	double x = Math.round(2.5);	x = 3;
random	Número aleatori	double x = Math.ramdom();	x = 0.20614522323378;
floor	Redondeig l'enter menor	double $x = Math.floor(2.5);$	x = 2.0;
ceil	Redondeig l'enter major	double x = Math.ceil(2.5);	x = 3.0;
max	Retorna el major de 2 números	int x = Math.max(5,4)	x=5
min	Retorna el major de 2 números	int x = Math.min(5,4)	x=4

Amb més detall:

CONSTANTS

Constant	Descripció
Е	Retorna el valor més aproximat del número e
PI	Retorna el valor mes aproximat del número pi .

• MÈTODES

Mètode	Descripció
abs(double a)	Retorna el valor absolut d'un valor double introduït com a paràmetre.
abs(float a)	Retorna el valor absolut d'un valor float introduït com a paràmetre.
abs(int a)	Retorna el valor absolut d'un valor enter introduït com a paràmetre.
abs(long a)	Retorna el valor absolut d'un valor long introduït com a paràmetre.
acos(double a)	Retorna l'arc-cosinus d'un valor introduït com a paràmetre.
addExact(int x, int y)	Retorna la suma dels seus arguments, llançant una excepció si el resultat desborda unint.
addExact(long x, long y)	Retorna la suma dels seus arguments, llançant una excepció si el resultat es desborda along .
asin(double a)	Retorna l'arc-sinus d'un valor introduït.
atan(double a)	Retorna l'arc-tangent d'un valor introduït.
cbrt(double a)	Retorna l'arrel cúbica d'un valor .
cos(double a)	Retorna el cosinus trigonomètric d'un angle.
exp(double a)	Retorna el número e de Euler elevat a la potència d'un valor de tipus double.
log(double a)	Retorna el logaritme natural (base e) d'un valor de tipus double.
log10(double a)	Retorna el logaritme de base 10 d'un d'un valor de tipus double. .
max(double a, double b)	Retorna el major de dos valors de tipus double.
max(float a, float b)	Retorna el major de dos valors de tipus float.
max(int a, int b)	Retorna el major de dos valors Enters .
max(long a, long b)	Retorna el major de dos valors long .
min(double a, double b)	Retorna el menor de dos valors double .
min(float a, float b)	Retorna el menor de dos valors float .
min(int a, int b)	Retorna el menor de dos valors enters .
min(long a, long b)	Retorna el menor de dos valors long .
multiplyExact(int x, int y)	Retorna el producte dels arguments, llançant una excepció si el resultat desborda un int .
multiplyExact(long x, long y)	Retorna el producte dels arguments, llançant una excepció si el resultat desborda un long .
pow(double a, double b)	Retorna el valor del primer argument elevat a la potència del segon argument.
random()	Retorna un valor de tipus double amb un signe positiu, major o igual que 0.0 i menorque 1.0.
round(double a)	Retorna el long arredonit més pròxim al tipus double
round(float a)	Retorna el int mes pròxim i arredonit al float introduït.
sin(double a)	Retorna el sinus trigonomètric d'un angle.
sqrt(double a)	Retorna l'arrel quadrada positiva correctament arredonida d'un valor double
tan(double a)	Retorna la tangent trigonomètrica d'un angle.

API DE JAVA ORACLE

https://docs.oracle.com/javase/8/docs/api/ https://docs.oracle.com/en/java/javase/21/docs/api/index.html

Programació 1r DAW 10