Data Structures

Binomial Heaps Fibonacci Heaps

Haim Kaplan & Uri Zwick December 2013

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	<u>—</u>	$O(\log n)$	O(1)	O(1)

Worst case

Amortized

Delete can be implemented using Decrease-key + Delete-min Decrease-key in O(1) time important for Dijkstra and Prim

Binomial Heaps [Vuillemin (1978)]

 B_k contains 2^k nodes and its depth is k $\binom{k}{i}$ of the nodes of B_k are at level iThe root of B_k has k children

$$\sum_{i=0}^{k} {k \choose i} = 2^k \qquad {k \choose i} = {k-1 \choose i} + {k-1 \choose i-1}$$

Min-heap Ordered Binomial Trees

Tournaments \Leftrightarrow Binomial Trees

The children of x are the items that lost matches with x, in the order in which the matches took place.

Binomial Heap

A list of binomial trees, at most one of each rank Pointer to root with minimal key

Each number *n* can be written in a unique way as a sum of powers of 2

$$11 = (1011)_2 = 8 + 2 + 1$$

Ordered forest \rightarrow Binary tree

2 pointers per node

next – next "sibling"

Forest → Binary tree

Linking binomial trees

O(1) time

Linking binomial trees

Function link(x, y)

Linking in first representation

Linking in second representation

Melding binomial heaps

Link trees of same degree

Melding binomial heaps

Link trees of same degree

Like adding binary numbers

Maintain a pointer to the minimum

 $O(\log n)$ time

Insert

New item is a one tree binomial heap Meld it to the original heap $O(\log n)$ time

Delete-min

When we delete the minimum, we get a binomial heap

Delete-min

When we delete the minimum, we get a binomial heap

Meld it to the original heap $O(\log n)$ time

(Need to reverse list of roots in first representation)

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	_	$O(\log n)$	O(1)	O(1)

Amortized

Lazy Binomial Heaps

Binomial Heaps

A list of binomial trees, at most one of each rank, sorted by rank (at most O(log n) trees)

Pointer to root with minimal key

Lazy Binomial Heaps

An arbitrary list of binomial trees (possibly *n* trees of size 1)

Pointer to root with minimal key

Lazy Binomial Heaps

An arbitrary list of binomial trees Pointer to root with minimal key

Lazy Meld

Concatenate the two lists of trees
Update the pointer to root with minimal key

O(1) worst case time

Lazy Insert

Add the new item to the list of roots

Update the pointer to root with minimal key

O(1) worst case time

Lazy Delete-min?

Remove the minimum root and meld?

May need $\Omega(n)$ time to find the new minimum

Consolidating / Successive Linking

Consolidating / Successive Linking

At the end of the process, we obtain a non-lazy binomial heap containing at most log(n+1) trees, at most one of each rank

At the end of the process, we obtain a non-lazy binomial heap containing at most log *n* trees, at most one of each degree

Worst case cost - O(n)

Amortized cost - O(log n)

Potential = Number of Trees

Cost of Consolidating

 T_0 – Number of trees before

 T_1 – Number of trees after

L – Number of links

 $T_1 = T_0 - L$ (Each link reduces the number of tree by 1)

Total number of trees processed $-T_0+L$ (Each link creates a new tree)

Putting trees into buckets or finding trees to link with

Linking

Handling the buckets

Total cost = O(
$$(T_0 + L) + L + \lceil \log_2 n \rceil$$
)
= O($T_0 + \lceil \log_2 n \rceil$) As $L \le T_0$

Amortized Cost of Consolidating

(Scaled) actual
$$\cos t = T_0 + \lceil \log_2 n \rceil$$

Change in potential $= \Delta \Phi = T_1 - T_0$
Amortized $\cos t = (T_0 + \lceil \log_2 n \rceil) + (T_1 - T_0)$
 $= T_1 + \lceil \log_2 n \rceil$
 $\leq 2 \lceil \log_2 n \rceil$ As $T_1 \leq \lceil \log_2 n \rceil$

Another view: A link decreases the potential by 1. This can pay for handling all the trees involved in the link. The only "unaccounted" trees are those that were not the input nor the output of a link operation.

Lazy Binomial Heaps

	Actual cost	Change in potential	Amortized cost
Insert	O(1)	1	O(1)
Find-min	O(1)	0	O(1)
Delete-min	$O(k+T_0+\log n)$	$k-1+T_1-T_0$	$O(\log n)$
Decrease-key	$O(\log n)$	0	$O(\log n)$
Meld	O(1)	0	O(1)

Rank of deleted root

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	_	$O(\log n)$	O(1)	O(1)

One-pass successive linking

A tree produced by a link is immediately put in the output list and not linked again

Worst case cost - O(n)

Amortized cost - O(log n)

Potential = Number of Trees

Exercise: Prove it!

One-pass successive Linking

One-pass successive Linking

One-pass successive Linking

Fibonacci Heaps [Fredman-Tarjan (1987)]

Fibonacci Heaps

A list of heap-ordered trees Pointer to root with minimal key

Not all trees may appear in Fibonacci heaps

4 pointers + rank + mark bit per node

4 pointers + rank + mark bit per node

Are simple cuts enough?

A binomial tree of rank k contains at least 2^k

We may get trees of rank k containing only k+1 nodes

Ranks not necessarily $O(\log n)$

Analysis breaks down

Invariant: Each node looses at most one child after becoming a child itself

To maintain the invariant, use a mark bit

Each node is initially unmarked.

When a non-root node looses its first child, it becomes marked

When a marked node looses a second child, it is cut from its parent

Invariant: Each node looses at most one child after becoming a child itself

When $x \rightarrow y$ is cut:

x becomes unmarked

If y is unmarked, it becomes marked If y is marked, it is cut from its parent

Our convention: Roots are unmarked

Function $\operatorname{cut}(x,y)$ $x.parent \leftarrow null$ $x.mark \leftarrow 0$ $y.rank \leftarrow y.rank - 1$ if x.next = x then $| y.child \leftarrow null$ else $| y.child \leftarrow x.next$ $x.prev.next \leftarrow x.next$ $x.next.prev \leftarrow x.prev$

Cut x from its parent y

```
Function cascading-cut(x, y)

cut(x, y)

if y.parent \neq null then

if y.mark = 0 then

y.mark \leftarrow 1

else

cascading-cut(y, y.parent)
```

Perform a cascading-cut process starting at *x*

Cascading cuts

Cascading cuts

Cascading cuts

Number of cuts

A decrease-key operation may trigger many cuts

Lemma 1: The first *d* decrease-key operations trigger at most 2*d* cuts

Proof in a nutshell:

Number of times a second child is lost is at most the number of times a first child is lost

Potential = Number of marked nodes

Number of cuts

Potential = Number of marked nodes

Amortized number of cuts

$$\leq c + (1-(c-1)) = 2$$

Lemma 2: Let x be a node of rank k and let $y_1, y_2, ..., y_k$ be the current children of x, in the order in which they were linked to x. Then, the rank of y_i is at least i-2.

Proof: When y_i was linked to x, y_1, \dots, y_{i-1} were already children of x. At that time, the rank of x and y_i was at least i-1. As y_i is still a child of x, it lost at most one child.

Lemma 3: A node of rank k in a Fibonacci Heap has at least $F_{k+2} \ge \phi^k$ descendants, including itself.

$$F_0 = 0$$
 $F_1 = 1$ $\phi = \frac{1+\sqrt{5}}{2} \simeq 1.618$ $F_k = F_{k-1} + F_{k-2}, k > 2$

$$F_{k+2} = 2 + \sum_{i=2}^{k} F_i, \ k \ge 2$$

n	0	1	2	3	4	5	6	7	8	9
F_n	0	1	1	2	3	5	8	13	21	34

Lemma 3: A node of rank k in a Fibonacci Heap has at least $F_{k+2} \ge \phi^k$ descendants, including itself.

Let S_k be the minimum number of descendants of a node of rank at least k

$$S_0 = 1$$
 $S_1 = 2$ $S_k \ge 2 + \sum_{i=0}^{k-2} S_i$, $k \ge 2$

$$S_k \geq 2 + \sum_{i=0}^{k-2} S_i \geq 2 + \sum_{i=0}^{k-2} F_{i+2} = 2 + \sum_{i=2}^{k} F_i = F_{k+2}$$

Lemma 3: A node of rank k in a Fibonacci Heap has at least $F_{k+2} \ge \phi^k$ descendants, including itself.

Corollary: In a Fibonacci heap containing n items, all ranks are at most $\log_{\phi} n \le 1.4404 \log_2 n$

Ranks are again $O(\log n)$

Are we done?

Putting it all together

Are we done?

A cut increases the number of trees...

We need a potential function that gives good amortized bounds on both successive linking and cascading cuts

Potential = #trees + 2 #marked

Cost of Consolidating

 T_0 – Number of trees before

 T_1 – Number of trees after

L – Number of links

 $T_1 = T_0 - L$ (Each link reduces the number of tree by 1)

Total number of trees processed $-T_0+L$ (Each link creates a new tree)

Putting trees into buckets or finding trees to link with

Linking

Handling the buckets

Total cost = O(
$$(T_0 + L) + L + \lceil \log_{\phi} n \rceil$$
)
= O($T_0 + \lceil \log_{\phi} n \rceil$) As $L \le T_0$

Cost of Consolidating

 T_0 – Number of trees before

 T_1 – Number of trees after

L – Number of links

 $T_1 = T_0 - L$ (Each link reduces the number of tree by 1)

Total number of trees processed $-T_0+L$ (Each link creates a new tree)

Only change: $\log_{\phi} n$ instead of $\log_2 n$

Total cost = O(
$$(T_0 + L) + L + \lceil \log_{\phi} n \rceil$$
)
= O($T_0 + \lceil \log_{\phi} n \rceil$) As $L \le T_0$

Fibonacci heaps

	Actual cost	Δ Trees	Δ Marks	Amortized cost	
Insert	O(1)	1	0	O(1)	
Find-min	O(1)	0	0	O(1)	
Delete-min	$O(k+T_0+\log n)$	$k-1+T_1-T_0$	\leq 0	$O(\log n)$	
Decrease- key	O(c)	C	≤ 2- <i>c</i>	O(1)	
Meld	O(1)	0 Rank of	0 Number of	O(1)	

Rank of deleted root

Number of cuts performed

Heaps / Priority queues

	Binary Heaps	Binomial Heaps	Lazy Binomial Heaps	Fibonacci Heaps
Insert	$O(\log n)$	$O(\log n)$	O(1)	O(1)
Find-min	O(1)	O(1)	O(1)	O(1)
Delete-min	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
Decrease-key	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)
Meld	_	$O(\log n)$	O(1)	O(1)

Consolidating / Successive linking

Function consolidate(x)

to-buckets(x) return from-buckets()


```
Function from-buckets()
 x \leftarrow null
 for i \leftarrow 0 to \log_{\phi} n do
      if B[i] \neq null then
          if x = null then
               x \leftarrow B[i]
               x.next \leftarrow x
              x.prev \leftarrow x
          else
               insert-after(x, B[i])
               if B[i].key < x.key then
               x \leftarrow B[i]
  return x
```