Leçon 150 : Exemples d'actions de groupes sur les espaces de matrices.

Développements :

Nb d'automorphismes diagonalisables sur un corps fini ne marche pas : ce n'est pas une action SUR un espace de matrices

Réduction des endomorphismes normaux, Invariants de similitude

Bibliographie:

 $\rm H2G2$ Nouvelles histoires hédonistes de groupes et de géométries Tome 1, Gourdon Algèbre, $\rm OA$

Plan

ATTENTION : adapter les notations pour écrire des actions à gauche!!

1 Action par translation

Motivation : Résoudre AX = Y

1.1 Invariant

Définition 1 (H2G2 p.203). Action par multiplication à gauche

Remarque 2. Action par multiplication à droite est le dual de ce problème Remarque 3 (H2G2 p.202). C'est ce que fait le pivot de Gauss

Théorème 4 (H2G2 p.209). invariant total : le noyau

Remarque 5. Pour le trouver, on utilise un pivot de Gauss

Exemple 6.

1.2 Forme normale

 $\bf D\acute{e}finition~7~(H2G2~p.204).$ Pivot, matrice échelonnée en lignes, réduite

Exemple 8 (H2G2 p.204).

Définition 9 (H2G2 p.204). Type

Exemple 10 (H2G2 p.204).

Théorème 11 (H2G2 p.209). Forme normale : matrice échelonnée réduite en lignes

Remarque 12. Pour la trouver, on utilise un pivot de Gauss

Exemple 13.

1.3 Action de O_n et de U_n

Théorème 14 (H2G2 p.348). Décomposition polaire avec O_n

Corollaire 15. Racine carrée dans S_n^{++}

Exemple 16.

Application 17 (H2G2 p. 351). Rayon spectral

Application 18 (H2G2 p.351). Maximalité du groupe orthogonal

Théorème 19 (H2G2 p.348). Décomposition polaire avec U_n

Application 20. ??

2 Action par équivalence

2.1 Orbites et rang

Définition 21 (H2G2 p.5). Action par équivalence

 $Remarque\ 22\ (H2G2\ p.3).$ Signification : changement de base pour un endomorphisme

Théorème 23 (H2G2 p.6). Invariant : le rang

Forme normale: $J_{m,n,r}$

Remarque 24. On utilise le pivot de Gauss

Application 25 (OA p.155). $Rg(A) = rg({}^{t}A)$

Application 26 (OA p.156). Deux matrices equivalentes dans un corps le sont dans tout sous corps

2.2 Topologie

Proposition 27 (OA p.155). Densité de GL

Proposition 28 (H2G2 p11). Adhérence de l'orbite de rang r

Corollaire 29 (H2G2 p.12). orbite fermée, ouverte

Corollaire 30 (H2G2 p.12). Rang et cv de matrices

3 Action par conjugaison

3.1 Généralités

Définition 31 (H2G2 p.122). Action par conjugaison

Définition 32 (H2G2 p.122). Classe de similitude

Remarque 33. Lien avec la réduction

Proposition 34 (H2G2 p.147). Deux matrices sont semblables sur \mathbb{C} ssi elles le sont sur \mathbb{R} .

Corollaire 35 (H2G2 p.147). Orbite d'une matrice relle sur \mathbb{R} en fonction de l'orbite sur \mathbb{C}

3.2 Action sur $D_n(\mathbb{C})$

Théorème 36 (H2G2 p.122). bijection avec le spectre de la matrice

Corollaire 37 (H2G2 p.123-142). invariants : spectre ou polynôme caractéristique, forme normale

Exemple 38.

Contre-exemple 39 (H2G2 p.123). Pas vrai avec le polynôme minimal

Proposition 40 (H2G2 p.124). Pour \mathbb{C} , A est diagonalisable ssi son orbite est fermée

3.3 Invariants de similitude

Proposition 41 (H2G2 p.148). Polynôme minimal associé à u et x

Proposition 42 (H2G2 p.149). Il existe x tel que $\pi_u = \pi_{u,x}$

Proposition 43 (H2G2 p.151). Equivalences avec "être cyclique"

Théorème 44 (H2G2 p.152). Invariants de similitude

Corollaire 45 (H2G2 p.154). Frobenius

 ${\bf Corollaire~46~(H2G2~p.155)}.~invariant: les~invariants~de~similitude$

Corollaire 47 (H2G2 p.155). Semblables sur un corps alors semblables sur un sous corps

Algo : calcul des invariants (voir la feuille de Gregory Vial)

Exemple 48.

Corollaire 49. Jordan

Application 50 (H2G2 p.181). A est nilpotente ssi A est semblable à 2A

3.4 Action de O_n et U_n

Théorème 51 (Gou p.260). Réduction des endomorphismes normaux cas réel et complexe

Théorème 52 (Gou p.244). Thm spectral

Application 53 (Gou p.245). Racine carrée d'une matrice symétrique/hermitienne positive

Proposition 54 (Gou p. 257). Réduction des endomorphismes unitaires dans une b.o.n

Proposition 55 (Gou p.261). Réduction des matrices antisymétriques

4 Action par congruence

Définition 56 (H2G2 p. 250). Action par congruence

Remarque 57 (H2G2 p. 250). Matrices d'une même forme quadratique dans 2 bases différentes

Théorème 58 (H2G2 p. 251). Existence d'une base orthogonale

Contre-exemple 59 (H2G2 p. 253). pas unicité de la matrice diagonale

Théorème 60 (H2G2 p. 254). Invariants sur \mathbb{C} , \mathbb{R} , \mathbb{F}_q

Exemple 61.