Design and Analysis of Algorithms (CS345A)

Practice-sheet: Divide and Conquer

1. Counting inversions

Given an array A storing n distinct numbers. A pair (i, j) where $0 \le i < j \le n - 1$, is said to be an inversion if A[i] > A[j]. Design an $O(n \log n)$ time algorithm to count all inversions in A.

2. Finding the missing element

Given an array that represents elements of arithmetic progression in order. One element is missing in the progression, find the missing number in $O(\log n)$.

3. Binary search in 2 arrays

There are 2 sorted arrays A and B of size n each. Design an algorithm to find the median of the array obtained after merging the above 2 arrays (i.e. array of length 2n). The time complexity of the algorithm should be $O(\log n)$

4. Finding Polynomial given all its zero's

Given a list of values z_0, \dots, z_{n-1} (possibly with repetitions), show how to find the coefficients of the polynomial P(x) of degree less than n that has zeros only at z_0, \dots, z_{n-1} (possibly with repetitions). Your procedure should run in time $O(n \log^2 n)$. (Hint: The polynomial P(x) has a zero at z_j if and only if P(x) is a multiple of $(x-z_j)$).

5. Toeplitz Matrix

A Toeplitz matrix is an $n \times n$ matrix $A = (a_{i,j})$ such that $a_{i,j} = a_{i-1,j-1}$ for $i = 2, 3, \ldots, n$ and $j = 2, 3, \ldots, n$.

- (a) Is the sum of two Toeplitz matrix necessarily Toeplitz ? What about the product
- (b) Describe how to represent a Toeplitz matrix so that two $n \times n$ matrices can be added in O(n) time.
- (c) Give an $O(n \log n)$ time algorithm for multiplying an $n \times n$ Toeplitz matrix by a vector of length n. Use your representation from part (b).
- (d) Give an efficient algorithm for multiplying two $n \times n$ Toeplitz matrices. Analyze its running time.

6. Local minima in a complete binary tree

Consider an n-node complete binary tree T, where $n = 2^d - 1$ for some d. Each node v of T is labeled with a real number x_v . You may assume that the real numbers labeling the nodes are all distinct. A node v of T is a local minimum if the label of x_v is less than the label x_w for all nodes w that are joined to v by an edge.

You are given such a complete binary tree T, but the labeling is only specified in the following implicit way: For each node v, you can determine the value x_v by probing

the node v. Show how to find a local minimum of T using only $O(\log n)$ probes to the nodes of T.

7. Share market

There is an array A[1..n] storing the prices of a share on n consecutive days. If we buy a share on ith day and sell it on jth day, we incur a profit of A[j] - A[i]. Note that it may be loss as well if A[j] < A[i]. Our aim is to compute the maximum possible profit we can obtain by buying a share on some day and selling it on some other (same/later) day. Note that we are allowed to buy on exactly one day and sell on exactly one day. The following is the pseudo-code of a **divide and conquer** algorithm to compute this maximum profit for a period [i,j] where $1 \le i \le j \le n$. Fill in the blanks suitably. You may use \min or \max operator according to your convenience. But you may not add any extra statement.

Algorithm 1: HighestProfit(A, i, j)

The time complexity of this algorithm is

1 Problems for fun only (not for exams)

1. Binary Search without division operation Design an algorithm that, given an array of n distinct numbers in ascending order, determines whether a given integer is in the array. You may use only additions and subtractions. You are allowed to use $O(\log n)$ extra space. The running time of your algorithm should be $O(\log n)$ in the worst case. (One can avoid using extra $O(\log n)$ space)

Hint: Try to get a better insight into the Binary search algorithm which you know. How crucial is the *division* operation there? Knowledge of Fibonacci numbers might be helpful.