SZYBKA TRANSFORMACJA FOURIERA (FFT)

IIUWr. II rok informatyki

1 Reprezentacje wielomianów

Dwie reprezentacje wielomianu A stopnia n-1:

[Wsp] jako n-elementowy $wektor\ współczynników\ \langle a_0, a_1, \ldots, a_{n-1} \rangle$.

[War] jako zbiór wartości w n różnych punktach $\{(x_i, y_i) : i = 0, \dots, n-1 \text{ i } \forall_{0 \le i \ne j \le n-1} x_i \ne x_j \text{ i } y_i = A(x_i) \}.$

2 Podstawowe operacje na wielomianach

- \bullet dodawanie wykonalne w czasie O(n) przy obydwu reprezentacjach wielomianów,
- mnożenie łatwe przy reprezentacji [War] (w czasie O(n)); trudne przy reprezentacji [Wsp] (prosta implementacja wymaga czasu $\Omega(n^2)$.
- obliczanie wartości w punkcie łatwe przy reprezentacji [Wsp] (np. schemat Hornera w czasie O(n)); trudne przy reprezentacji [War]

3 Zmiana reprezentacji wielomianu stopnia n-1

 $[\texttt{Wsp}] \to [\texttt{War}]$

Reprezentacja [War] może być wybrana na wiele róznych sposobów. Korzystając ze schematu Hornera można ją obliczyć w czasie $\Theta(n^2)$.

 $[\mathtt{War}] \to [\mathtt{Wsp}]$

Twierdzenie 1 Dla każdego zbioru $\{\langle x_i, y_i \rangle \mid i = 0, \dots, n-1 \text{ oraz } \forall_{0 \leq i \neq j \leq n-1} x_i \neq x_j \}$ istnieje jednoznacznie wyznaczony wielomian A stopnia n-1 taki, że $\forall_{0 < i < n-1} y_i = A(x_i)$.

Współczynniki tego wielomianu można obliczyć w czasie $\Theta(n^2)$ ze wzoru Lagrange'a:

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}.$$

 $\text{Jak później pokażemy przejścia [Wsp]} \ \rightarrow [\text{War}] \ \text{i [War]} \ \rightarrow [\text{Wsp}] \ \text{można obliczyć w czasie} \ O(n \log n).$

4 Pomysł na szybkie mnożenie wielomianów w postaci [Wsp]

Niech A(x) i B(x) będą wielomianami stopnia $\leq n-1$.

- 1. Utworzyć reprezentacje [Wsp] wielomianów A i B jako wielomianów stopnia 2n-1 (przez dodanie n współczynników równych 0).
- 2. Stosując FFT obliczyć dla tych wielomianów reprezentacje [War] o długości 2n.
- 3. Obliczyć reprezentację [War] wielomianu $C(x) = A(x) \cdot B(x)$.
- 4. Stosując FFT obliczyć reprezentację [Wsp] wielomianu C(x).

Kroki 1 i 3 można wykonać w czasie O(n), a kroki 2 i 4 w czasie $O(n \log n)$.

5 Pierwiastki z jedności w ciele liczb zespolonych

Definicja 1 n-tym pierwiastkiem z jedności nazywamy liczbe ω taką, $\dot{z}e$ $\omega^n=1$.

Fakt 1 W ciele liczb zespolonych istnieje dokładnie n n-tych pierwiastków z jedności. Są nimi liczby $e^{2\pi i k/n}$ dla $k=0,\ldots,n-1$.

Definicja 2 n-ty pierwiastek z jedności, którego potęgi generują zbiór wszystkich n-tych pierwiastków nazywamy n-tym pierwiastkiem z jedności.

Fakt 2 Liczba $\omega_n = e^{2\pi i/n}$ jest n-tym pierwotnym pierwiastkiem z jedności.

Fakt 3 Zbiór $\{\omega_n^j \mid j=0,\ldots,n-1\}$ z mnożeniem tworzy grupę izomorficzną z grupą $(\mathcal{Z}_n,+_{mod\ n})$.

Lemat 1 (a) $\forall_{n\geq 0, k\geq 0, d>0}$ $\omega_{dn}^{dk} = \omega_n^k$.

- (b) $\forall_{parzystego\ n\ >\ 0}\ \omega_n^{n/2}=\omega_2=-1.$
- (c) $\forall_{parzystego\ n > 0} \{(\omega_n^j)^2 \mid j = 0, \dots, n-1\} = \{\omega_{n/2}^l \mid l = 0, \dots, \frac{n}{2} 1\}.$
- (d) $\forall_{n\geq 1, k\geq 0} \sum_{t=0}^{n} (\omega_n^k)^j = 0.$

6 Dyskretna Transformacja Fouriera (DFT).

Definicja 3 Niech $\mathbf{a} = a_0, \dots, a_{n-1}$. Wektor $\mathbf{y} = y_0, \dots, y_{n-1}$ taki, że $y_k = \sum_{j=0}^{n-1} a_j \omega_n^{kj}$ (dla $k = 0, \dots, n-1$) nazywamy Dyskretną Transformacją Fouriera wektora \mathbf{a} .

Jeśli **a** jest wektorem współczynników wielomianu A(x), to **y** jest wektorem wartości tego wielomianu w punktach $\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$.

7 FFT - szybki algorytm obliczania DFT

Idea algorytmu Niech

$$A^{[0]}(z) = a_0 + a_2 z + a_4 z^2 \dots + a_{n-2} z^{n/2-1} i$$

$$A^{[1]}(z) = a_1 + a_3 z + a_5 z^2 \dots + a_{n-1} z^{n/2-1}.$$

Wówczas $A(x) = A^{[0]}(x^2) + xA^{[0]}(x^2)$.

Tak więc problem obliczenia wartości wielomianu A stopnia n-1 w n punktach: $\omega_n^0, \omega_n^1, \ldots, \omega_n^{n-1}$, redukuje się do problemu obliczenia wartości dwóch wielomianów $A^{[0]}$ i $A^{[1]}$ stopnia $\frac{n}{2}-1$ w $\frac{n}{2}$ punktach: $\omega_{n/2}^0, \omega_{n/2}^1, \ldots, \omega_{n/2}^{(n/2)-1}$.

Pseudokod

$$\begin{array}{l} \mathbf{procedure} \ Recursive - FFT(\mathbf{a}) \\ n \leftarrow length(\mathbf{a}) \\ \mathbf{if} \ n = 1 \ \mathbf{then} \ \mathbf{return} \ (\mathbf{a}) \\ \omega_n \leftarrow e^{2\pi i/n} \\ \omega \leftarrow 1 \\ \mathbf{a}^{[0]} \leftarrow (a_0, a_2, \ldots, a_{n-2}) \\ \mathbf{a}^{[1]} \leftarrow (a_1, a_3, \ldots, a_{n-1}) \\ \mathbf{y}^{[0]} \leftarrow Recursive - FFT(\mathbf{a}^{[0]}) \\ \mathbf{y}^{[1]} \leftarrow Recursive - FFT(\mathbf{a}^{[1]}) \\ \mathbf{for} \ k \leftarrow 0 \ \mathbf{to} \ n/2 - 1 \ \mathbf{do} \\ y_k \leftarrow y_k^{[0]} + \omega y_k^{[1]} \\ y_{k+(n/2)} \leftarrow y_k^{[0]} - \omega y_k^{[1]} \\ \omega \leftarrow \omega \omega_n \\ \mathbf{return} \ y \end{array}$$

Złożoność algorytmu: $T(n) = 2T(\frac{n}{2}) + \Theta(n) = \Theta(n \log n)$.

Definicja 4 Splotem wektorów $\mathbf{a} = \langle a_0, \dots, a_{n-1} \rangle$ i $\mathbf{b} = \langle b_0, \dots, b_{n-1} \rangle$ nazywamy wektor $\mathbf{c} = \langle c_0, \dots, c_{2n-1} \rangle$ taki, że $\forall_{0 \leq i \leq 2n-1}$ $c_i = \sum_{j=0}^{i} a_j b_{i-j}$ i oznaczamy go $\mathbf{c} = \mathbf{a} \otimes \mathbf{b}$.

Tak więc splot $\mathbf{a}\otimes\mathbf{b}$ jest reprezentacją [Wsp] iloczynu wielomianów o reprezentacjach [Wsp] \mathbf{a} i \mathbf{b} .

8 Interpolacja w *n*-tych pierwiastkach z jedności

Jeśli $\mathbf{y} = DFT(\mathbf{a})$, to $\mathbf{y} = V_n \cdot \mathbf{a}$, gdzie V_n jest macierzą $n \times n$, której wyraz (j,k)-ty równa się ω_n^{jk} .

Fakt 4 Dla $j,k=0,\ldots,n-1$ wyraz (j,k)-ty macierzy V_n^{-1} równa się ω_n^{-jk}/n .

Powyższy fakt pozwala na obliczenie ${\bf a}$ z danego ${\bf y}$ przez zastosowanie FFT (należy ω_n zastąpić przez $\omega_n^{-1})$

Dalej nie czytać.

9 Efektywna implementacja FFT

```
\begin{array}{c} \mathbf{procedure} \ Iterative - FFT(\mathbf{a}) \\ Bit - Reverse - Copy(\mathbf{a}, A) \\ n \leftarrow length(\mathbf{a}) \\ \mathbf{for} \ s \leftarrow 1 \ \mathbf{to} \ \log n \ \mathbf{do} \\ m \leftarrow 2^s \\ \omega_m \leftarrow e^{2\pi i/m} \\ \omega \leftarrow 1 \\ \mathbf{for} \ j \leftarrow 0 \ \mathbf{to} \ m/2 - 1 \ \mathbf{do} \\ \mathbf{for} \ k \leftarrow j \ \mathbf{to} \ n - 1 \ \mathbf{step} \ m \ \mathbf{do} \\ t \leftarrow \omega A[k + m/2] \\ u \leftarrow A[k] \\ A[k] \leftarrow u + t \\ A[k + m/2] \leftarrow u - t \\ \omega \leftarrow \omega \omega_m \\ \mathbf{return} \ A \\ \\ \mathbf{procedure} \ Bit - Reverse - Copy(\mathbf{a}, A) \\ n \leftarrow length(\mathbf{a}) \\ \mathbf{for} \ k \leftarrow 0 \ \mathbf{to} \ n - 1 \ \mathbf{do} \ A[rev(k)] \leftarrow a_k \\ \end{array}
```

rev(k) oznacza tutaj n-bitową liczbę powstałą przez zapisanie n-bitowego rozwinięcia binarnego liczby k od prawej do lewej strony.

Definicja 5 (a) Splotem wektorów $\mathbf{a} = \langle a_0, \dots, a_{n-1} \rangle$ i $\mathbf{b} = \langle b_0, \dots, b_{n-1} \rangle$ nazywamy wektor $\mathbf{c} = \langle c_0, \dots, c_{2n-1} \rangle$ taki, że $\forall_{0 \leq i \leq 2n-1}$ $c_i = \sum_{j=0}^i a_j b_{i-j}$ i oznaczamy go $\mathbf{c} = \mathbf{a} \otimes \mathbf{b}$.

(b) Negatywnym splotem zwiniętym wektorów **a** i **b** nazywamy wektor $\mathbf{d} = \langle d_0, \dots, d_{n-1} \rangle$, taki że $d_i = \sum_{j=0}^i a_j b_{i-j} - \sum_{j=i+1}^{n-1} a_j b_{n+i-j}$.

Tak więc splot $\mathbf{a} \otimes \mathbf{b}$ jest reprezentacją [Wsp] iloczynu wielomianów o reprezentacjach [Wsp] \mathbf{a} i \mathbf{b} i, jak pokazaliśmy, może być obliczony przy użyciu transformacji Fouriera.

Fakt 5 Niech a, b i d jak w powyższej definicji. Niech ψ będzie pierwiastkiem z jedności stopnia 2n. Oznaczmy przez $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ i $\hat{\mathbf{d}}$ wektory $\langle a_0, \psi a_1, \dots, \psi^{n-1} a_{n-1} \rangle$, $\langle b_0, \psi b_1, \dots, \psi^{n-1} b_{n-1} \rangle$ i $\langle d_0, \psi d_1, \dots, \psi^{n-1} d_{n-1} \rangle$. Wówczas $DFT(\hat{\mathbf{d}}) = DFT(\hat{\mathbf{a}}) \cdot DFT(\hat{\mathbf{b}})$.

Aby uniknąć kłopotów związanych z niedokładną reprezentacją zespolonych pierwiastków z jedności, można transformację Fouriera wykonywać nad jakimś ciałem skończonym lub pierścieniem R_m liczb całkowitych modulo m posiadającym n-ty pierwotny pierwiastek z jedności, który spełnia Lemat 1 (w istocie chodzi nam o to, by spełniał własność (d) tego lematu, ponieważ pozostałe są w oczywisty sposób spełnione przez każdy, nie tylko zespolony, n-ty pierwotny pierwiastek z jedności).

Fakt 6 Niech n i ω będą potęgami liczby 2 (różnymi od 1) oraz niech $m = \omega^{n/2} + 1$. Wówczas n i ω są odwracalne w R_m oraz ω jest n-tym pierwotnym pierwiastkiem z jedności spełniającym Lemat 1.

Pewnym mankamentem jest to, że liczba m - modulo, którą wykonywane byłyby obliczenia jest duża (ma $\Omega(n)$ cyfr).

Fakt 7 Niech n będzie potęgą liczby 2, a k niech będzie najmniejszą liczbą taką, że p = kn+1 jest liczbą pierwszą. Wówczas FFT możemy obliczać modulo p przyjmując za pierwotny pierwiastek z jedności liczbę $w = g^k \mod p$, gdzie g jest generatorem \mathcal{Z}_* .