Janne Kristian Lappalainen

_		
$-\sim$	uca	tion
	1111	
-u	uca	LIVII

since 10/2020	Doctoral Candidate , University of Tübingen and Max Planck Research School for Intelligent Systems, Advisor Prof. Jakob Macke, IMPRS-IS Committee: Prof. Macke, Prof. Martius, Prof. Bethge
10/2017 - 03/2020	M.Sc. Neuroengineering, High Distinction, TU Munich
10/2013 - 07/2017	B.Sc. Physics , Distinction, University of Göttingen and University of La Laguna (via Erasmus)

Research experience

since 10/2020	Doctoral Researcher, Machine Learning in Science, University of Tübingen , Prof. Macke, in collaboration with HHMI Janelia Research Campus, Dr. Turaga
04/2019 - 10/2020	Research Intern and Remote Research Collaborator, HHMI Janelia Research Campus, Dr. Turaga, includes M.Sc. Thesis work <i>Task-performance optimization of a connectome-based neural network model of the Drosophila visual system</i>
10/2018 - 02/2019	Research Project, TU Munich , <i>GANs for predicting distributions of multi-agent pedestrian trajectories</i> , Group of Prof. Leal-Taixé
09/2018 - 11/2018	Research Intern, TU Munich, Representational dissimilarity of stimuli in medial temporal lobe and deep neural networks, Group of Prof. Macke
02/2018 - 12/2018	Research Intern, Celonis SE, Munich, Data Science and Machine Learning
10/2017 - 02/2018	Research Project, TU Munich , <i>U-nets for nerve segmentation from ultrasound imaging</i> , Groups of Prof. Nießner and Prof Leal-Taixé
04/2017 - 07/2017	Research Project (B.Sc. Thesis), University Göttingen, Deriving the firing rate dependencies of a calcium-based and spike-timing-dependent model for synaptic plasticity, Group of Prof. Dr. Tetzlaff
08/2013	Research Intern, Federal Institute for Materials Research and Testing, Berlin, Prof. Kreutzbrück

Publications and talks

Tublications and tune	
Peer-reviewed journal articles	
Lappalainen J. K. , Tschopp F. D., Prakhya S., McGill M., Nern A., Shinomiya K., Takemura S., Gruntman E., Macke J. H., Turaga S. C., Connectome-constrained networks predict neural activity across the fly visual system., <i>Nature</i> 1–9 (2024). <i>Link</i> , <i>Code</i>	
Lappalainen J. K. , Herpich J., Tetzlaff C., A theoretical framework to derive simple, firing-rate-dependent mathematical models of synaptic plasticity. Frontiers in Computational Neuroscience, vol. 13, May 2019, p. 26., <i>Link</i> , <i>Code</i>	
Contributions to peer-reviewed conference articles or preprints	
Alphabetically ordered author list including Lappalainen J. K. and twenty others, A practical guide to sample-based statistical distances for evaluating generative models in science. Transactions on Machine Learning Research 2835-8856 (2024). <i>Contributions include concept, software, writing, visualization.</i> <u>Link, Code</u>	

2024	Deistler M., Kadhim K. L., Beck J., Pals M., Huang Z., Gloeckler M., Lappalainen J. K. , Schröder C., Berens P., Gonçalves P. J., Macke J. H., Differentiable simulation enables large-scale training of detailed biophysical models of neural dynamics. bioRxiv (2024), Contributions include software, investigation, reviewing and editing writing. Link, Code1, Code2
2024	Boelts J., Deistler M., Gloeckler M., Tejero-Cantero Á., Lueckmann JM., Moss G., Steinbach P., Moreau T., Muratore F., Linhart J., Durkan C., Vetter J., Miller B. K., Herold M., Ziaeemehr A., Pals M., Gruner T., Bischoff S., Krouglova N., Gao R., Lappalainen J. K., Mucsányi B., Pei F., Schulz A., Stefanidi Z., Rodrigues P., Schröder C., Abu Zaid F., Beck J., Kapoor J., Greenberg D. S., Gonçalves P. J., Macke J. H., sbi reloaded: a toolkit for simulation-based inference workflows. arXiv preprint arXiv:2411.17337 (2024). Software-contributions during hackathons including a RAGbased sbi-help-bot (unpublished).
	Invited workshop talks
2024	Connectome-constrained networks predict neural activity. Computation across scales in brain and beyond, Bernstein Conference Frankfurt 2024.
2024	Connectome and task-optimization predict neural activity. TNC Elevator Pitches 2024.
2021	Connectome and task-constrained neural networks. Machine Learning meets Neuroscience: from Spikes to Stimulation, Bernstein Conference Berlin 2021.
	Invited lab meeting talks
2024	Prof. Murthy and Prof. Seung, Princeton Neuroscience Institute, Princeton, USA.
2024	Prof. Gerstner lab, EPFL, Switzerland, Link
2023	Prof. Ramdya lab, EPFL, Switzerland.
2023	Prof. Gjorgjieva lab, Technical University of Munich, Germany.
2022	Reiserlab, HHMI Janelia, Virginia, USA.
	Selected talks
2021	Connectome-constrained simulations with task-optimization lead to accurate predictions of tuning properties in the fruit fly visual system. Dialogues on Neural and Machine Intelligence, Champalimaud Research Symposium 2021, Lisbon.
	Most recent posters
2024	Lappalainen J. K. , Tschopp F. D., Prakhya S., McGill M., Nern A., Shinomiya K., Takemura S., Gruntman E., Macke J. H., Turaga S. C., Connectome and task predict neural activity across the fly visual system, Bernstein Conference Frankfurt 2024
2024	Ulmer L., Lappalainen J. K. , Turaga S. C., Macke J. H., Integrating activity measure-

Ulmer L., **Lappalainen J. K.**, Turaga S. C., Macke J. H., Integrating activity measurements into connectome-constrained and task-optimized models, Bernstein Conference Frankfurt 2024

Pei F., **Lappalainen J. K.**, Turaga S. C., Macke J. H., Task choice influences single-neuron tuning predictions in connectome-constrained modeling, Bernstein Conference Frankfurt 2024

2024

2024

2024

2024

Stefanidi Z., **Lappalainen J. K.**, Turaga S. C., Macke J. H., Investigating the role of recurrent connectivity in connectome-constrained and task-optimized models of the fruit fly's motion pathway, Bernstein Conference Frankfurt 2024

Deistler M., Kadhim K. L., Beck J., Pals M., **Lappalainen J. K.**, Gloeckler M., Huang Z., Schroeder C., Berens P., Gonçalves P. J., Macke J. H., Bridging biophysics and computation with differentiable simulation, Bernstein Conference Frankfurt 2024

Lappalainen J. K., Tschopp F. D., Prakhya S., McGill M., Nern A., Shinomiya K., Takemura S., Gruntman E., Macke J. H., Connectome-constrained deep mechanistic networks enable hypothesis generation and refinement., Cosyne Abstracts 2024

Other poster presentations over the years

2020-2024 Connectomics Meeting Berlin 2024, Bernstein Conference Berlin 2022, SFN San Diego

2022, Connectomics Meeting Berlin 2022, Cosyne Abstracts 2020

Teaching assistance and tutoring

since 2020	Probabilistic machine learning; Computational connectomics seminar (lead lecturer) ; Data literacy; Machine learning seminar; Prof. Macke, University of Tübingen
2019	Statistics and probability theory, Large-scale modeling and large-scale data analysis; Prof. Macke, TU Munich
2016 – 2017	Classical mechanics, Prof. Volkert; Classical electrodynamics, Prof. Salditt; University of Göttingen

Community service & outreach

since 2023	Healthy Minds, Mental health in academia workshop and talk-series, Initiator and
	organizer with N. Effenberger, financially supported by the Excellence Cluster Machine
	Learning and the Tübingen AI Center, Link, Material

since 2022 KI Macht Schule, volunteer, Link

Professional development activities

2024	Leadership Training, Leadership Talent Academy, University of Tübingen, Link
2024	Mental Health First Aid Training, University of Tübingen, MHFA Ersthelfer Link
2023	Best Practices for Academic Teaching, Dr. Maria Wirzberger, IMPRS-IS
2021	Conflict Management for Scientists Training, Dr. Imke Lode, IMPRS-IS
2021	Stress Management Training, Suzanne Jones, IMPRS-IS
2021	Responsible Conduct in Research Training, Dr. Leila Masri, IMPRS-IS

Supervision	
2024	M.Sc. Artificial Intelligence for Science, Thesis and Research Internship: Contrastive Learning for Deep Mechanistic Networks, I. Omolayo, AIMS South Africa and University Tübingen
2023-2024	M.Sc. Machine Learning, Thesis: Integrating knowledge of neural tuning into connectome-constrained and task-optimized models, Linda Ulmer, University Tübingen.
2023	M.Sc. Machine Learning, Research Internship: Correlation and dimensionality analysis of a connectome-constrained network of the fruit fly visual system, Linda Ulmer, University Tübingen
2023-2024	Lab rotation: Task choice influences single-neuron tuning predictions in connectome-constrained modeling, Felix Pei, University Tübingen
2023	M.Sc. Machine Learning, Thesis: <i>Uncertainty estimation in connectome-constrained neural networks using Deep Ensembles</i> , P. von Bachmann, University Tübingen
2022	B.Sc. Medical Informatics Thesis: Decoding object movement from a neural circuit simulation of the Drosophila visual system, Tharanika Thevururasa, University Tübingen
2021	M.Sc. Machine Learning, Essay rotation: Actors and controversies around brain-computer interface development, D. Schultheiß, University Tübingen
2021	Mackelab meets datajoint: Data- and ML-experiment management with M. Pals and

Contributions to research grants

Contributor (Discussions, Review, Editing & Poster) CRC1233: ROBUST VISION - Inference Principles and Neural Mechanisms, Prof. Bethge, Prof. Macke, Prof. Franke,

T. Thevururasa, University Tübingen

accepted.

2022	Lead contributor . DeepCoMechTome: Using deep learning to understand computations in neural circuits with Connectome-constrained Mechanistic Models. ERC Grant, Prof. Macke, accepted.
2021	Lead author . Optical flow calculations with biologically realistic neural networks. Vector Stiftung Mint Innovationen, J. Lappalainen, Prof. Macke, shortlisted.
2020	Research and writing contributor. Dissociating neuronal representations along the ventral visual processing stream in the human temporal lobe. In DFG SFB "Synaptic microcircuits in health and disease", Prof. Macke (Co-PI), accepted.

Scholarships and awards

2024	Leadership Talent Academy scholarship, supported by the Karl Schlecht Stiftung (KSG)
2019	J-1 short-term scholarship, HHMI Janelia Research Campus
2017	Elite-Network of Bavaria Membership
2016	Erasmus+ EU Grant
2012	DPG Membership for an outstanding Abitur (university admission qualification)

Programming skills

- \circ Programming languages: Python (proficient), MATLAB, C++, SQL (intermediate)
- Examples: flyvis, datamate, cbsp, dnnvsbrain

Languages

German: native, English: C2 (TOEFL iBT 118/120), Spanish: B1, French: A1