First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

Cenerale Collection Print

L21: Entry 40 of 51 File: USPT Sep 18, 2001

US-PAT-NO: 6292787

DOCUMENT-IDENTIFIER: US 6292787 B1

TITLE: Enhancing utility and diversifying model risk in a portfolio optimization

framework

DATE-ISSUED: September 18, 2001

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Scott; Jason S. Menlo Park CA
Jones; Christopher L. Redwood Shores CA
Shearer; James W. Palo Alto CA
Watson; John G. Menlo Park CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Financial Engines, Inc. Palo Alto CA 02

APPL-NO: 09/ 151715 [PALM]
DATE FILED: September 11, 1998

INT-CL: [07] G06 F 17/60

US-CL-ISSUED: <u>705/36</u> US-CL-CURRENT: <u>705/36</u>

FIELD-OF-SEARCH: 705/36, 705/35, 705/38, 705/30, 705/37, 707/4, 707/10

Search Selected

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search ALL

Clear

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3634669	January 1972	Soumas et al.	705/4
3697693	October 1972	Deschenes et al.	705/38
4007355	February 1977	Moreno	235/379
4334270	June 1982	Towers	705/36
4346442	August 1982	Musmanno	<u>705/36</u>
4376978	March 1983	Musmanno	705/36

t ^e			
<u>4597046</u>	June 1986	Musmanno et al.	705/36
4642767	February 1987	Lerner	705/30
4648037	March 1987	Valentino	364/408
4722055	January 1988	Roberts	705/36
4742457	May 1988	Leon et al.	705/35
4752877	June 1988	Roberts et al.	705/35
4774663	September 1988	Musmanno et al.	705/36
4868376	September 1989	Lessin et al.	235/492
<u>4876648</u>	October 1989	Lloyd	705/38
<u>4885685</u>	December 1989	Wolfberg et al.	705/14
<u>4910676</u>	March 1990	Alldredge	364/408
4933842	June 1990	Durbin et al.	705/30
4953085	August 1990	Atkins	705/36
4989141	January 1991	Lyons et al.	705/36
5025138	June 1991	Cuervo	705/38
5101353	March 1992	Lupien et al.	705/37
5126936	June 1992	Champion et al.	705/36
<u>5132899</u>	July 1992	Fox	705/36
5148365	September 1992	Dembo	705/36
5220500	June 1993	Baird et al.	705/36
5222019	June 1993	Yoshino et al.	705/36
5227967	July 1993	Bailey	705/35
5237500	August 1993	Perg et al.	705/35
5454104	September 1995	Steidlmayer et al.	705/4
<u>5471575</u>	November 1995	Giansante	707/503
<u>5523942</u>	June 1996	Tyler et al.	705/4
<u>5563783</u>	October 1996	Stolfo et al.	705/8
5590037	December 1996	Ryan et al.	705/4
<u>5592379</u>	January 1997	Finfrock et al.	705/39
5644727	July 1997	Atkins	395/240
5692233	November 1997	Garman	705/36
<u>5784696</u>	July 1998	Melnikoff	705/36
5806049	September 1998	Petruzzi	705/36
<u>5812987</u>	September 1998	Luskin et al.	705/36
<u>5819238</u>	October 1998	Fernholz	705/36
5839804	November 1998	Но	312/223.2
<u>5864827</u>	January 1999	Wilson	705/35

r			
5864828	January 1999	Atkins	705/36
5875437	February 1999	Atkins	705/40
5884283	March 1999	Manos	705/30
5884285	March 1999	Atkins	705/36
<u>5884287</u>	March 1999	Edesess	<u>705/36</u>
<u>5911135</u>	June 1999	Atkins	<u>705/36</u>
5911136	June 1999	Atkins	705/36
5913202	June 1999	Motoyama	705/35
5918217	June 1999	Maggioncalda et al.	705/36
5930774	July 1999	Chennault	705/36
5930775	July 1999	McCauley et al.	705/38
<u>5933815</u>	August 1999	Golden	705/35
5978778	November 1999	O'Shaughnessy	705/36
<u>5987433</u>	November 1999	Crapo	705/36
<u>5987434</u>	November 1999	Libman	705/36
5991744	November 1999	DiCresce	705/36
6003018	December 1999	Michaud et al.	705/36
6012042	January 2000	Black et al.	<u>705/36</u>
6012043	January 2000	Albright et al.	705/36
6018722	January 2000	Ray et al.	<u>705/36</u>
6021397	February 2000	Jones et al.	<u>705/36</u>

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0 572 281 A1	December 1993	EP	
WO 91/02326	February 1991	WO	
WO 96/06402	February 1996	WO	
WO 98/13776	April 1998	WO	
WO 98/44444	October 1998	WO	
WO 98/54666	December 1998	WO	
WO 99/05625	February 1999	WO	
WO 99/15985	April 1999	WO	
WO 99/22323	May 1999	WO	

OTHER PUBLICATIONS

Science & Technology "A Financial Planner with Nerves of Silicon", Business Week, Oct. 7, 1985, 3 pages.

W.F. Sharpe, "Asset allocation: Management style and performance measurement", The Journal of Portfolio Management, Winter 1992, 14 pages.

Donald R. Woodwell, "Automating Your Financial Portfolio", Second Edition, Dow Jones Irwin, 1983 and 1986.

BARRA, Inc. "BARRA Provides Combined Style Analysis and Asset Allocation Capabilities", BARRA Portfolio, 1996, 9 pages.

Henry Fersko-Weiss, "Dialing For Profits", Personal Computing, May, 1986, 3 pages. "EnCorr", Ibbotson Associates, 1998, 48 pages.

Software Update, "Funds Allocation System", IBM Corporation, 9 pages.

W.F. Sharpe, G.J. Alexander & J.V. Bailey, "Investments", Fifth Edition, Prentice Hall, 1995, 107 pages.

"Net Results", Investment Strategies Network, Inc., 1995, 1996, 1997, 97 pages. Lichtman, "Software: The Professional Plan", Lotus, Nov., 1986, 4 pages.

IFPS/Optimum, "The Extended Analysis Language for All Users", Execucom Systems Corporation, 1986, 4 pages.

"Asset allocation--one step at a time", Global Investor, Mar., 1997, 8 pages.

International Search Report; PCT/US 98/19920.

International Search Report; PCT/US 98/19951.

International Search Report; PCT/US 98/19952.

International Search Report; PCT/US 98/20709.

Nikolopoulos and Fellrath, "A Hybrid Expert System for Investment Advising", IEEE, 1994, pp. 1818-1820.

Eggenschwiler and Gamma, "ET++SwapsManager: Using Object Technology in the Financial Engineering Domain", OOPSLA, 1992, pp. 166-177.

Jensen and King, "Frontier: A graphical interface for portfolio optimization in a piecewise linear-quadratic risk framework", IBM Systems Journal, vol. 31, No. 1, 1992, pp. 62-70.

Schmerken, "Making Risk Analysis Easy As Alpha, Beta", Wall Street Computer Review, 1988, vol. 5 #4, pp. 8,10,12.

Malliaris and Salchenberger, "Beating the Best: A Neural Network Challenges the Black-Scholes Formula", IEEE, 1993, pp. 445-449.

"1990 Buyer's Guide", Wall Street Computer Review, 1990, 23 pages.

Pantazopoulos et al, "A Knowledge Based System for Evaluation of Option Pricing Algorithms", Computer Science Dept., Purdue University, 1998, pp. 123-140.

Tanaka et al., "Possibility Portfolio Selection", IEEE, 1995, pp. 813-818.

Bellity, "Optimisation Floue Appliquee Au Choix De Portefeuilles", CCF Recherche & Innovation, 1994, 8 pages.

King, "Asymmetric risk measures and tracking models for portfolio optimization under uncertainty", J.C. Baltzer AG, 1993, pp. 165-177.

"InterFace Institutional Software+Data", Ibbotson Associates, Wall Street Computer Review, 1998, 4 pages.

Edessess, Michael et al. "Scenario forecasting: Necessity, not choice." Journal of Portfolio Management, vol. 6 No. 3, pp. 10-15, Sprg 1980.

"Keeping up with technology: the 1991 software update" Trusts & Estates, pp. 34-67, Jun. 1991.

Keyes, Jessica. "Expert Allocator: Tools for portfolio optimization." Pension Management, pp. 44-46, May 1996.

Paroush, Jacob. "Risk and wealth effects on efficient portfolio." Metroeconomics, vol. 26, No. 1-3, pp. 86-96, 1974.

Voros, J. "Portfolio analysis--an analytic derivation of the efficient portfolio frontier." European Journal of Operations Research, vol. 23, No. 3, pp. 294-300, Mar. 1986.

"Software Packages for Investors", Fortune Investors Guide, 6 pages, 1987.

ART-UNIT: 211

PRIMARY-EXAMINER: Trammell; James P.

ASSISTANT-EXAMINER: Dixon; Thomas A.

ATTY-AGENT-FIRM: Blakely, Sokoloff, Taylor & Zafman LLP

ABSTRACT:

A portfolio optimization process that diversifies model risk by favoring a more diversified portfolio over other portfolios with similar characteristics is provided. According to one aspect of the present invention, a more diverse portfolio may be selected over an initial portfolio in order to diversify model risk with reference to a predetermined diversity budget, defined in terms of expected return, risk, and/or utility. An initial portfolio of financial products is determined from an available set of financial products. One or more dimensions of an error space are searched for an alternate portfolio that is more diverse than the initial portfolio. A cost associated with the alternate portfolio is then calculated by comparing the difference between a characteristic of the initial portfolio and a corresponding characteristic of the alternate portfolio. Finally, the alternate portfolio is selected as the recommended portfolio if the cost is less than or equal to the predetermined diversity budget. According to another aspect of the present invention an intelligent search is performed for a diverse portfolio that meets a predetermined diversity budget. An initial portfolio is determined based upon an available set of financial products. The cost associated with more diversified portfolios compared to the initial portfolio is considered and one of the more diversified portfolios is selected that has an associated cost that is less than or equal to the predetermined diversity budget.

41 Claims, 12 Drawing figures

Previous Doc Next Doc Go to Doc#

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L21: Entry 40 of 51

File: USPT

Sep 18, 2001

DOCUMENT-IDENTIFIER: US 6292787 B1

TITLE: Enhancing utility and diversifying model risk in a portfolio optimization

framework

Detailed Description Text (30):

E(W) is the expected <u>value</u> of wealth

Detailed Description Text (62):

In addition to defining boundaries of the diversification problem in terms of various combinations of stopping conditions, another goal of diversification processing (step 520) is to efficiently search the bounded area (e.g., the error space). FIG. 8 is a flow diagram illustrating the generation of a more diverse portfolio (e.g., steps 624 and 724) according to one embodiment of the present invention. According to the embodiment depicted, diversification is achieved by evaluating additional alternative optimal portfolios, using Equation #1 and #2, for example, under various constraints. At step 810, a maximum exposure is selected. The maximum exposure (e.g., UB from above) defines the maximum percentage of the portfolio's value that may be held in any particular financial product for a particular diversification iteration. Importantly, any of a number of approaches may be employed to select the maximum exposure values for iterations of the diversification processing. In one embodiment, the relationship between cost and maximum exposures is assumed to be monotonic. For example, it may be assumed the cost of implementing an efficient portfolio constrained to a maximum exposure of 80% is greater than the cost of implementing an efficient portfolio constrained to a maximum exposure of 90%. In this manner, a search approach that iteratively lowers the ceiling (as defined by the maximum exposure) to search for a more diverse portfolio may stop once a candidate portfolio exceeds the diversity budget. Similarly, a binary search algorithm may be employed that makes use of the monotonic relationship to select the maximum exposure for the current iteration.

<u>Detailed Description Text</u> (65):

In portfolio 950, financial product 910 represents approximately 90% of the portfolio's total value and financial product 920 represents the remaining 10%. According to this example, in a subsequent iteration illustrated by FIG. 9B, a maximum exposure constraint 941 of 75% is imposed upon the optimization process to arrive at a more diverse portfolio 951. The cost of implementing portfolio 951 as opposed to portfolio 950 is determined to be within the allocated diversity budget; therefore, another iteration may be performed. FIG. 9C represents a more diverse portfolio 952 that results from an even more biting maximum exposure constraint 942. However, the cost, in terms of expected return, risk, and/or utility, of implementing portfolio 952 rather than portfolio 950 is greater than the diversity budget. Therefore, in this example, the recommended portfolio would be portfolio 951 (the most diverse candidate portfolio that stayed within the diversity budget).

Detailed Description Text (66):

FIG. 10 conceptually illustrates an approach for quickly finding a diversified portfolio employing a binary search approach according to one embodiment of the present invention. A maximum exposure 1010 for the first iteration is selected. In this example, the maximum exposure 1010 for the first iteration is 55%

(approximately half way between 100% and a floor 1040 of 10%). If the diversity budget is exceeded in the first iteration, then in the next iteration the maximum exposure value is selected to be between 100% and 55% where the cost is known to be lower. In the example of FIG. 10, the cost of implementing the candidate portfolio identified by the first iteration is less than the diversity budget; therefore, the maximum exposure value for the second iteration 1020 is selected to be approximately half way between the current exposure and the floor 1040. Subsequent iterations continue in this manner by recursively splitting a remaining portion of the maximum exposure range known to meet the budget constraint until one or more stopping conditions are achieved.

<u>Issued US Original Classification</u> (1): 705/36

<u>Current US Original Classification</u> (1): 705/36

Field of Search Class/SubClass
705/36 (1):

<u>US Reference US Original Classification</u> (4): 705/36

<u>US Reference US Original Classification</u> (5): 705/36

US Reference US Original Classification (6): 705/36

 $\frac{\text{US Reference US Original Classification}}{705/36}$ (7):

<u>US Reference US Original Classification</u> (10): 705/36

<u>US Reference US Original Classification</u> (13): 705/36

<u>US Reference US Original Classification</u> (19): 705/36

<u>US Reference US Original Classification</u> (20): 705/36

<u>US Reference US Original Classification</u> (23): 705/36

<u>US Reference US Original Classification</u> (24): 705/36

<u>US Reference US Original Classification</u> (25): 705/36

<u>US Reference US Original Classification</u> (26): 705/36

<u>US Reference US Original Classification</u> (27): 705/36

US Reference US Original Classification (37):

7	0.5	/	3	6
---	-----	---	---	---

- US Reference US Original Classification (38):
 705/36
- US Reference US Original Classification (39):
 705/36
- <u>US Reference US Original Classification</u> (40): 705/36
- <u>US Reference US Original Classification</u> (41): 705/36
- <u>US Reference US Original Classification</u> (44): 705/36
- $\underline{\text{US Reference US Original Classification}}$ (47): 705/36
- $\underline{\text{US Reference US Original Classification}}$ (48):
- $\underline{\text{US Reference US Original Classification}}$ (49):
- US Reference US Original Classification (50):`
 705/36
- US Reference US Original Classification (52):
 705/36
- <u>US Reference US Original Classification</u> (53): 705/36
- $\underline{\text{US Reference US Original Classification}}$ (56): 705/36
- $\underline{\text{US Reference US Original Classification}}_{705/36}$ (57):
- <u>US Reference US Original Classification</u> (58): 705/36
- <u>US Reference US Original Classification</u> (59): 705/36
- US Reference US Original Classification (60):
 705/36
- US Reference US Original Classification (61):
 705/36
- <u>US Reference US Original Classification</u> (62): 705/36
- $\underline{\text{US Reference US Original Classification}}$ (63): $\underline{705/36}$
- US Reference US Original Classification (64):

705/36

<u>US Reference Group</u> (4): 4334270 19820600 Towers 705/36

<u>US Reference Group</u> (5): 4346442 19820800 Musmanno 705/36

<u>US Reference Group</u> (6): 4376978 19830300 Musmanno 705/36

<u>US_Reference Group</u> (7): 4597046 19860600 Musmanno et al._705/36

<u>US Reference Group</u> (10): 4722055 19880100 Roberts 705/36

<u>US Reference Group</u> (13): 4774663 19880900 Musmanno et al. 705/36

<u>US Reference Group</u> (19): 4953085 19900800 Atkins 705/36

<u>US Reference Group</u> (20): 4989141 19910100 Lyons et al. <u>705/36</u>

<u>US Reference Group</u> (23): 5126936 19920600 Champion et al. 705/36

<u>US Reference Group</u> (24): 5132899 19920700 Fox 705/36

<u>US Reference Group</u> (25): 5148365 19920900 Dembo 705/36

<u>US Reference Group</u> (26): 5220500 19930600 Baird et al. 705/36

<u>US Reference Group</u> (27): 5222019 19930600 Yoshino et al. 705/36

<u>US Reference Group</u> (37): 5692233 19971100 Garman 705/36

<u>US Reference Group</u> (38): 5784696 19980700 Melnikoff 705/36

<u>US Reference Group</u> (39): 5806049 19980900 Petruzzi 705/36

<u>US Reference Group</u> (40): 5812987 19980900 Luskin et al. <u>705/36</u>

<u>US Reference Group</u> (41): 5819238 19981000 Fernholz 705/36

<u>US Reference Group</u> (44): 5864828 19990100 Atkins 705/36

US Reference Group (47):

5884285 19990300 Atkins <u>705/36</u>

<u>US Reference Group</u> (48):
5884287 19990300 Edesess <u>705/36</u>

<u>US Reference Group</u> (49): 5911135 19990600 Atkins 705/36

<u>US Reference Group</u> (50): 5911136 19990600 Atkins 705/36

<u>US Reference Group</u> (52): 5918217 19990600 Maggioncalda et al. 705/36

<u>US Reference Group</u> (53): 5930774 19990700 Chennault <u>705/36</u>

<u>US Reference Group</u> (56): 5978778 19991100 O'Shaughnessy 705/36

<u>US Reference Group</u> (57): 5987433 19991100 Crapo 705/36

<u>US Reference Group</u> (58): 5987434 19991100 Libman 705/36

<u>US Reference Group</u> (59): 5991744 19991100 DiCresce 705/36

<u>US Reference Group</u> (60): 6003018 19991200 Michaud et al. 705/36

<u>US Reference Group</u> (61): 6012042 20000100 Black et al. 705/36

<u>US Reference Group</u> (62): 6012043 20000100 Albright et al. 705/36

<u>US Reference Group</u> (63): 6018722 20000100 Ray et al. 705/36

<u>US Reference Group</u> (64): 6021397 20000200 Jones et al. 705/36

Other Reference Publication (28):

Edessess, Michael et al. "Scenario forecasting: Necessity, not choice." Journal of Portfolio Management, vol. 6 No. 3, pp. 10-15, Sprg 1980.

CLAIMS:

8. The method of claim 7, wherein the step of generating a more diverse portfolio than the initial portfolio comprises the steps of:

setting a maximum exposure for any individual financial product of the available set of financial products to a $\underline{\text{value}}$ that is lower than 100%; and

performing a portfolio optimization routine while constraining the holdings in individual financial products of the available set of financial products to the maximum exposure, allowing the first characteristic of the initial portfolio to vary, and holding one or more other characteristics of the initial portfolio

constant.

13. The method of claim 8, wherein the step of modifying the maximum exposure comprises the steps of:

selecting a new maximum exposure <u>value</u> according to a binary search algorithm; and setting the maximum exposure to the new maximum exposure value.

- 14. The method of claim 13, wherein a monotonic relationship is assumed between the cost and the maximum exposure, and wherein the step of selecting a new maximum exposure $\underline{\text{value}}$ is based upon both the binary search algorithm and the monotonic relationship.
- 17. The method of claim 16, wherein the step of generating a more diverse portfolio than the initial portfolio comprises the steps of:

setting a maximum exposure for any individual mutual fund product of the available set of mutual fund products to a value that is lower than 100%; and

performing a portfolio optimization routine while constraining the holdings in individual mutual fund products of the available set of mutual fund products to the maximum exposure, allowing the expected return to vary, and holding a measure of risk associated with the initial portfolio constant.

23. The method of claim 19, wherein the step of modifying the maximum exposure comprises the steps of:

selecting a new maximum exposure $\underline{\text{value}}$ according to a binary search algorithm; and setting the maximum exposure to the new maximum exposure $\underline{\text{value}}$.

- 24. The method of claim 23, wherein a monotonic relationship is assumed between the cost and the maximum exposure, and wherein the step of selecting a new maximum exposure <u>value</u> is based upon both the binary search algorithm and the monotonic relationship.
- 37. A computer system comprising:
- a storage device having stored therein a <u>portfolio</u> optimization routine for simulating <u>portfolio</u> return <u>scenarios</u> for one or more <u>portfolios</u> including combinations of financial products from an available set of financial products;
- a processor coupled to the storage device for executing the portfolio optimization routine to select between an initial portfolio and a more diverse portfolio and evaluate a cost associated with implementing the more diverse portfolio rather than the initial portfolio, where:

the initial portfolio is determined with a first maximum exposure constraint;

the more diverse portfolio is determined by imposing a second maximum exposure constraint that limits holdings in any individual financial product of the available set of financial products to a lesser percentage than the first maximum exposure constraint;

the cost reflects the difference between a first expected return associated with the initial portfolio and a second expected return associated with the more diverse portfolio; and

the more diverse portfolio is selected over the initial portfolio if the cost is

less than or equal to a predetermined diversity budget.

Previous Doc

Next Doc

Go to Doc#