

OSG65R099HZ_Datasheet

Enhancement Mode N-Channel Power MOSFET

Features

- Ultra-fast and robust body diode
- ◆ Low R_{DS(on)} & FOM
- ◆ Excellent low switching loss
- ◆ Excellent stability and uniformity
- ◆ Easy to drive

Applications

- ◆ PC power
- ◆ Server power supply
- ◆ Telecom
- ◆ Solar invertor
- ◆ Super charger for automobiles

General Description

OSG65R099HZ use advanced GreenMOS™ technology to provide low R_{DS(ON)}, low gate charge, fast switching and excellent avalanche characteristics. This device offers extremely fast and robust body diode, and is suitable for telecom and super charger applications.

♦	V _{DS} , min@Tjmax	700 V
•	$I_{D,\;pulse}$	120 A
•	R _{DS(ON), max @ VGS=10 V}	99 mΩ
♦	Q_g	42.6 nC

■ Schematic and Package Information

■ **Absolute Maximum Ratings** at T_j=25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain source voltage	V _{DS}	650	V
Gate source voltage	V_{GS}	±30	V
Continuous drain current ¹⁾	T	40	Δ.
Continuous drain current ¹⁾ T _j =100 °C	$\overline{}$ I_{D}	25	A
Pulsed drain current ²⁾	$I_{D,\;pulse}$	120	А
Power dissipation ³⁾	P _D	278	W
Single pulsed avalanche energy ⁵⁾	E _{AS}	1000	mJ
MOSFET dv/dt ruggedness, V _{DS} =0480 V	dv/dt	50	V/ns
Reverse diode dv/dt, V _{DS} =0480 V, I _{SD} ≤I _D	dv/dt	15	V/ns
Operation and storage temperature	T_{stg} , T_j	-55 to 150	°C

■ Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal resistance, junction-case	$R_{ heta$ JC	0.45	°C/W
Thermal resistance, junction-ambient ⁴⁾	R _{0JA}	62	°C/W

■ **Electrical Characteristics** at T_j =25 $^{\circ}$ C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition
		650				V _{GS} =0 V, I _D =1 mA
Drain-source breakdown voltage	BV _{DSS}	700	770		V	V_{GS} =0 V, I_D =1 mA T_j =150 °C
Gate threshold voltage	$V_{GS(th)}$	3		4.5	V	V _{DS} =V _{GS} , I _D =2 mA
			0.088	0.099		V _{GS} =10 V, I _D =20 A
Drain-source on-state resistance	$R_{DS(ON)}$		0.23		Ω	V _{GS} =10 V, I _D =20 A, T _j =150 °C
Cata course leakens surrent	I _{GSS}			100	Λ	V _{GS} =30 V
Gate-source leakage current				-100	nA	V _{GS} =-30 V
Drain-source leakage current	I _{DSS}			10	μΑ	V _{DS} =650 V, V _{GS} =0 V

■ Dynamic Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition
Input capacitance	C _{iss}		3073		pF	V _{GS} =0 V,
Output capacitance	C _{oss}		448.8		pF	V _{DS} =50 V,
Reverse transfer capacitance	C _{rss}		7.3		pF	f=1 MHz
Turn-on delay time	t _{d(on)}		70.8		ns	V _{GS} =10 V,
Rise time	t _r		58.8		ns	V _{DS} =400 V,
Turn-off delay time	t _{d(off)}		104.7		ns	$R_G=25 \Omega$,
Fall time	t _f		70.2		ns	I _D =20 A

■ Gate Charge Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition
Total gate charge	Qg		42.5		nC	I _D =20 A, V _{DS} =400 V, V _{GS} =10 V
Gate-source charge	Q_{gs}		14		nC	
Gate-drain charge	Q_{gd}		12.2		nC	
Gate plateau voltage	$V_{plateau}$		6.0		V	

■ Body Diode Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition	
Diode forward current	I_S			40	Α	V W	
Pulsed source current	I_{SP}			120	A	V_{GS} < V_{th}	
Diode forward voltage	V _{SD}			1.4	V	I _S =40 A, V _{GS} =0 V	
Reverse recovery time	t _{rr}		162		ns		
Reverse recovery charge	Qrr		1.12		μC	I _S =20 A, di/dt=100 A/μs	
Peak reverse recovery current	I _{rrm}		13		Α	αι/αι=100 / γ μ3	

■ Note

- 1) Calculated continuous current based on maximum allowable junction temperature.
- 2) Repetitive rating; pulse width limited by max. junction temperature.
- 3) Pd is based on max. junction temperature, using junction-case thermal resistance.
- 4) The value of $R_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_a =25 °C.
- 5) V_{DD} =100 V, R_G =25 Ω , L=80 mH, starting T_j =25 °C.

10

10°

C, Capacitance(pF)

Electrical Characteristics Diagrams

Figure 1, Typ. output characteristics Figure 2, Typ. transfer characteristics Gate-source voltage(V) Ciss Coss C Q_g, Gate charge(nC) V_{DS}, Drain-source voltage (V)

Figure 5, Drain-source breakdown voltage

Figure 6, Drain-source on-state resistance

Figure 7, Forward characteristic of body diode

Figure 8, Drain-source on-state resistance

Figure 9, Drain current

Figure 10, Safe operation area T_C=25 °C

■ Test circuits and waveforms

Figure 1, Gate charge test circuit & waveform

Figure 2, Switching time test circuit & waveforms

Figure 3, Unclamped inductive switching (UIS) test circuit & waveforms

Figure 4, Diode reverse recovery test circuit & waveforms

■ Package Information

TO247 package outline dimension

3.40

3.60

6.15BSC

L1

ΦР

ФР1

4.30

3.80 7.30

Ordering Information

Package	Units/Tube	Tubes/Inner Box	Units/Inner Box	Inner Box/Carton Box	Units/Carton Box
TO247	30	11	330	6	1980

■ Product Information

Product	Package	Pb Free	RoHS	Halogen Free
OSG65R099HZ	TO247	yes	yes	no
OSG65R099HZF	TO247	yes	yes	yes