Введение

Основная цель данного исследования — изучить возможности метода Logit Lens при интерпретации больших языковых моделей (Large Language Models, LLM), в том числе мультимодальных вариаций (Vision-Language Models, VLM). В частности, в работе уделяется внимание тому, как изменяется распределение логитов по слоям нейросетевой архитектуры при обработке текстовых и визуальных данных. Актуальность темы обусловлена быстро растущей популярностью интерпретируемых решений в сфере генеративных моделей и необходимостью более глубокого понимания того, как именно крупные модели «думают» при формировании ответов.

Целями исследования являются:

- 1. Изучить работу метода Logit Lens на примере нескольких открытых мультимодальных моделей.
- 2. Выявить особенности формирования промежуточных логитов на разных слоях и проанализировать интерпретируемость этих состояний.
- 3. Сравнить результаты с уже опубликованными исследованиями в данной области и предложить улучшения для метода Logit Lens, повышающие качество интерпретации.

Теоретическая часть

Метод **Logit Lens** является одним из первых подходов, предложенных для интерпретации больших языковых моделей семейства GPT-2/3. Его ключевая идея — возможность «подсмотреть» распределение вероятностей (логиты), которое формируется внутри сети на промежуточных слоях.

В классической схеме генерации следующего токена в трансформерных моделях финальное распределение по словарю получается путём применения к последнему скрытому состоянию линейной проекции (обычно через блок Feed-Forward, состоящий из двух линейных слоёв), приводящей внутреннюю размерность к размеру словаря. Далее из этого распределения выбирается следующий токен (например, с помощью softmax и различных техник семплинга).

Logit Lens предлагает аналогичным образом смотреть на выход каждого промежуточного слоя, используя **ту же самую** обученную линейную «голову» (Im_head), которая обычно применяется лишь на финальном слое. Это позволяет в любой момент «развернуть» текущее скрытое состояние в пространство вероятностного распределения по словарю и увидеть, какие токены модель считает наиболее вероятными на данном этапе.

Таким образом, можно не только анализировать итоговые ответы модели, но и отслеживать её «мысли» на разных стадиях обработки входных данных. Например, при вопросе о столице России модель на ранних слоях может выдавать нерелевантные, но очень близкие по смыслу варианты вроде «Владимир», «Кремль» и т.п. Однако по мере продвижения к последним слоям распределение сдвигается к правильному ответу «Москва» (с учётом особенностей разбивки на токены).

Преимущества метода Logit Lens:

- Прозрачность процесса генерации. Можно наглядно увидеть, как модель формирует гипотезы.
- Простота реализации. Не требуется дополнительное обучение; используется уже обученная линейная голова.
- Универсальность. Метод можно адаптировать к различным архитектурам и сценариям применения.

Однако у метода есть ограничение: поскольку линейная голова обучалась под последние скрытые состояния, ранние слои могут содержать «сырой» сигнал, не предназначенный напрямую для финального декодирования. Из-за этого топ-токены с ранних слоёв зачастую выглядят неинтерпретируемыми.

Методология

В ходе исследования рассматривались следующие модели:

- 1. Ilava-hf-7B
- 2. Ilama-3.2-11B-vision

Все эксперименты проводились на A40 48gb.

В качестве датасета для экспериментов взяты 5 изображений из набора COCO-val2017. Картинки подбирались так, чтобы они отличались формами, цветами и присутствующими на них объектами.

Для интеграции Logit Lens в каждую модель потребовалось учесть особенности их работы с визуальными токенами:

- Llava использует механизм, при котором в последовательность добавляются специальные токены <image_pad_id>, число которых зависит от того, как изображение делится на патчи. Эти токены позднее заменяются на скрытые состояния из модуля vision_encoder.
- Ilama-3.2-11B-vision использует иной подход: для изображения у неё предусмотрен единственный токен, а связи с визуальным модулем обеспечиваются через механизм cross_attention_states, так как архитектурно Llama разделяет текстовую и визуальную часть, используя между ними кросс-аттеншен.

После учёта нюансов мультимодальной части во всех моделях к скрытым состояниям промежуточных слоёв последовательно применялся уже обученный слой $1m_head$ (при необходимости вместе с norm). Это и позволило получить распределения логитов на каждом слое и оценить, какие токены модель «предпочитает» в каждый момент времени.

Экспериментальная часть

Для начала экспериментов был проведён стандартный инференс на модели Llama. Цель — проследить, как меняется топ-k вероятных токенов в зависимости от глубины слоя. Рассматривался последний токен последовательности, для которого и предсказывались вероятности следующих токенов.

(рисунок 1)

В качестве примера брался следующий промпт к изображению (рис. 1): "What are they doing? Answer with one word."

Layer 1 -	illo	abil	otron	incer	aching
Layer 3 -	ovenant	.Keyword	locals	ivery	KUR
Layer 5 -	nackte	nackt	00	noch	ismatch
Layer 7 -	IRMWARE	0)	'gc	erap	.Areas
Layer 9 -	alars	.twitch	Disappear	Sharper	omor
Layer 11 -	efon	ernes	Sharper	edback	reopen
Layer 13 -	¹gc	/***/	Sharper	urette	есп
Layer 15 -	τεί	oundation	ocoder	ОМВ	immel
Layer 17 -	entr	ocoder	edir	iken	"()
Layer 19 -	*	ystate	sembl	vecs	entr
Layer 21 -	isphere	trav	collectively	none	екси
Layer 23 -	uci	nour	noun	LAY	emm
Layer 25 -	collectively	traction	hitch	ollipop	ajo
Layer 27 -	vro	they	wildly	collectively	They
Layer 29 -	they	they	They	They	Họ
Layer 31 -	they	they	They	photograph	snow
Layer 33 -	cross	they	skiing	photograph	They
Layer 35 -	skiing	ski	Ski	cross	
Layer 37 -		Ski	ski	ski	cross
Layer 39 -	ski	cross	sk	skiing	
Layer 41 -	5	ski	Cross	Sk	
	rop.)	"OBJ	*083	40P A	to 5

(график 1)

На выходе получено распределение токенов по слоям (график 1). Как видно из графика, разумные словоформы начинают появляться ближе к 25-му слою, а ожидаемый по смыслу токен (или его вариации) — примерно на 33-м. При этом на 31-м слое в топ-5 входит слово «снег», что может свидетельствовать о том, что модель ещё не полностью «сфокусировалась» на правильном контексте.

Далее был воспроизведён эксперимент, аналогичный описанному в [1] (см. arxiv:2410.07149v1). В input_ids дополнительно добавляются токены для каждого патча, что упрощает анализ: мы можем проследить, «о чём думает» модель для каждого кусочка изображения.

Код эксперимента практически не отличается от предыдущего, за исключением того, что теперь рассматривается предсказание токена для **каждого** элемента входной последовательности, включая визуальные патчи. Для удобства визуализации использовался скрипт авторов статьи, позволяющий сопоставлять фрагмент изображения и предсказываемые моделью токены в HTML-формате (пример: vis/llava-1.5-7b-hf_3_logit_lens.html).

Результаты показывают, что на самых ранних слоях модель генерирует малоинформативные или не связанные с изображением токены. На средних слоях (около 14–16) уже появляются более осмысленные слова: для жирафа встречаются «animal», «pattern», «hair», «neck». В окрестности патча с травой могут появляться токены «background», «field», «green» и т.д.

В ходе эксперимента также отмечено, что некоторые ранние паттерны исчезают и заменяются другими. Так, части жирафа, относящиеся к шее, сначала были ассоциированы с токенами «animal» и «pattern», но позднее модель начала чаще использовать «neck». Интересный момент — появление немецких токенов, таких как «Augen» («глаза») на 16-м слое, в то время как английский вариант «eyes» появляется лишь ближе к 22-му слою.

Анализ проблем и предложенные решения

1. Проблема неинтерпретируемых токенов на ранних слоях

Все протестированные модели в ранних слоях выдают набор слов, который либо кажется «мусором», либо содержит лексемы на разных языках, никак не связанных с изображением (или будущим контекстом). Это объясняется тем, что линейная голова (1m_head) обучена под последние скрытые состояния, а не под промежуточные.

Предложенное решение:

- Ввести небольшой обучаемый адаптер для каждого (или нескольких) скрытых слоев, чтобы приводить выходные вектора к пространству, более близкому к финальным скрытым состояниям.
- Обучать этот адаптер на задаче предсказания следующего токена с помощью кросс-энтропии (или минимизации КL-дивергенции между распределением на текущем слое и итоговым распределением).

2. Плюсы:

- Увеличение интерпретируемости, так как адаптер «подгоняет» ранние слои под пространство финального предсказания.
- Если адаптер может восстановить финальное распределение, значит, ранние слои уже содержат значимую информацию о будущем ответе.

3. Минусы:

- Возможна «переподгонка» к итоговому распределению, искажающая реальное содержимое скрытых состояний.
- Увеличение вычислительной нагрузки из-за обучения адаптеров для каждого слоя.

4. Метод TunedLens

В работе [2] (arxiv:2303.08112) авторы развивают идеи Logit Lens и предлагают так называемый TunedLens — аффинное преобразование скрытых состояний на каждом слое (обучаемая матрица и bias), помогающее «сместить» пространственные различия между ранними и поздними слоями. Они мотивируют введение обучаемого смещения (bias) тем, что остаточные соединения (residual connections) могут существенно сдвигать вектора по мере прохождения слоя, и компенсировать этот сдвиг нужно явно.

Заключение

В ходе исследования было продемонстрировано, как метод Logit Lens может быть интегрирован в различные мультимодальные LLM (Llava-hf-7B, llama-3.2-11B-vision). Анализ полученных логитов на промежуточных слоях позволил сделать вывод о том, что:

- 1. На ранних слоях модели генерируют шумовые и малозначимые токены, связанные с тем, что линейная голова не обучалась на этих представлениях.
- 2. На средних и последних слоях появляются более интерпретируемые токены, отражающие контекст и фактическое содержание изображения.
- 3. Добавление обучаемых адаптеров или использование подхода TunedLens способно повысить интерпретируемость промежуточных логитов и приблизить их к финальному распределению, сохранив при этом причинную достоверность (causal fidelity) интерпретации.

Приложения

1. Код реализации

Исходный код с примерами интеграции Logit Lens в различные модели, а также скрипты для визуализации можно найти в репозитории: github.com/ponik7/multimodal-test-task

2. Дополнительные графики и таблицы

(График 2. Промпт: "Какой город является столицей России")

[1] Neo, C., Ong, L., Torr, P., Geva, M., Krueger, D., & Barez, F. (2025). **Towards Interpreting Visual Information Processing in Vision-Language Models**. *Nanyang Technological University, University of Oxford, Tel Aviv University, MILA, Tangentic*. Work conducted during ERA-Krueger Al Safety Lab internship. // arXiv:2410.07149v1 [2] Belrose, N., Ostrovsky, I., McKinney, L., Furman, Z., Smith, L., Halawi, D., Biderman, S., & Steinhardt, J. (2025). **Eliciting Latent Predictions from Transformers with the Tuned Lens**. // arXiv:2303.08112