

Mahindra University Hyderabad

École Centrale School of Engineering End-semester Regular Examination, June 2024 (2022 Batch)

Program: B. Tech.

Branch: CM

Year: II

Semester: Spring

Subject: Functional Analysis (MA2212)

Start Time: 10:00 AM

Max. Marks: 100

Date: 03/06/2024 Time Duration: 3 Hours

Instructions:

1) Each question carries 20 marks.

2) All questions are compulsory.

Q 1:

20 marks

(a) Define a convergent and a Cauchy sequence in a metric space (X,d). Let X=C[0,1] be the space of all continuous functions defined on [0,1] with the metric d_1 given by

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx$$
 for all $f,g \in C[0,1]$.

Show that the sequence $(f_n)_{n\geq 2}$ defined as

$$f_n(t) = \begin{cases} 0 & \text{if } 0 \le t \le \frac{1}{2} - \frac{1}{n}, \\ nt - \frac{n}{2} + 1 & \text{if } \frac{1}{2} - \frac{1}{n} < t \le \frac{1}{2}, \\ 1 & \text{if } \frac{1}{2} < t \le 1 \end{cases}$$

is Cauchy in C[0, 1].

[10 marks]

(b) Define a norm on a real vector space. For any $x=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$, define a function $\|\cdot\|_p$ by

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}$$

Show that $\|\cdot\|_p$ is a norm on \mathbb{R}^n . Also, write the metric induced by $\|\cdot\|_p$.

[10 marks]

Q 2:

20 marks

(2) Define equivalent norms. Prove that the following norms are equivalent on the space R²:

$$\|x\|_1 = |x_1| + |x_2|, \quad \|x\|_2 = (|x_1|^2 + |x_2|^2)^{1/2}, \quad \|x\|_{\infty} = \max\{|x_1|, |x_2|\}$$
 where $x = (x_1, x_2) \in \mathbb{R}^2$.

[10 marks]

(b) Show that a closed unit ball in an infinite-dimensional space is not necessarily compact. [10 marks] (OR)

(b) Let $(X, \|\cdot\|)$ be any normed linear space. Show that the convergence of $\|y_1\| + \|y_2\| + \|y_3\| + \dots$ may not imply the convergence of $y_1 + y_2 + y_3 + \dots$ in general. [10 marks]

Q 3:

20 marks

(a) Define a linear and bounded operator. Show that the left shift operator, $L: l^2 \to l^2$, defined as

$$L(a_1, a_2, a_3, \ldots) = (a_2, a_3, \ldots), (a_n)_{n \in \mathbb{N}} \in l^2$$

is linear and bounded with respect to the norm $||x||_2 = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{1/2}$. What is the operator norm [10 marks] of L?

(b) Show that the functional defined on C[a, b] by

$$f(x) = \int_a^b x(t)y_0(t) dt, \quad (y_0 \in C[a, b] \text{ is fixed})$$

is linear and bounded with respect to the norm $||x||_{\infty} = \max_{t \in [a,b]} |x(t)|$. What is the norm of f? [10 marks]

Q 4:

20 marks

- (a) Let X be a normed space. Write the difference between the algebraic dual (X^*) and the dual (X'). Find the dual basis $\{f_1, f_2, f_3\}$ of the basis $\{(2,5,3), (1,1,1), (4,-2,0)\}$ for \mathbb{R}^3 .
- (b) What do you mean by a Hilbert space? Show that the space l^p with $p \neq 2$ is not an inner product space, however, l^2 is an inner product space.

Q 5:

20 marks

(a) Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. Prove the Schwarz inequality

$$|\langle x,y\rangle| \le ||x|| ||y||$$
 for all $x,y \in X$

where the equality sign holds if and only if $\{x,y\}$ is a linearly dependent set.

[10 marks]

(b) Define an orthogonal and orthonormal set in an inner product space X. Let $X = C[0, 2\pi]$ be the inner product space of all real-valued continuous functions defined on $[0,2\pi]$ with the inner product defined by

$$\langle f,g\rangle = \int_0^{2\pi} f(t)g(t) dt$$
 for all $f,g \in C[0,2\pi]$.

Prove that the sequences $\left\{\frac{\cos nt}{\sqrt{\pi}}\right\}_{n=1}^{\infty}$ and $\left\{\frac{\sin nt}{\sqrt{\pi}}\right\}_{n=1}^{\infty}$ are orthonormal in $C[0,2\pi]$. [10 marks]