Introduktion til rekursive definitioner og funktioner

$$S(n) = 1 + 2 + \ldots + n$$

Mikkel Abrahamsen

Definér S(n) = 1 + 2 + ... + n.

Mål: Udregn S(n) når n er givet.

Definér S(n) = 1 + 2 + ... + n.

Mål: Udregn S(n) når n er givet.

Observér, når $n \geq 2$:

$$S(n) = 1 + 2 + \dots + (n-1) + n.$$

= $S(n-1)$

Definér S(n) = 1 + 2 + ... + n.

Mål: Udregn S(n) når n er givet.

Observér, når $n \geq 2$:

$$S(n) = 1 + 2 + \dots + (n-1) + n.$$

= $S(n-1)$

Alternativ def.:

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Definér S(n) = 1 + 2 + ... + n.

Mål: Udregn S(n) når n er givet.

Observér, når $n \geq 2$:

$$S(n) = 1 + 2 + \dots + (n-1) + n.$$

= $S(n-1)$

Alternativ def.:

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Rekursiv def.: Definere noget ved at referere til sig selv (i et simplere tilfælde).

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

Rekursiv definition: den kalder sig selv.

Sr(4)

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

Rekursiv definition: den kalder sig selv.

Sr(4) return Sr(3)+4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ return $Sr(3)+4$ return $Sr(2)+3$

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

$\mathsf{Sr}(n)$

1: if n == 1

2: return 1

3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ $Sr(1)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ $Sr(1)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$ return $Sr(1)$

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ $Sr(1)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$ return $Sr(1)$

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

Sr(4)
$$Sr(3)$$
 $Sr(2)$ $Sr(1)$ return $Sr(3)$ $Sr(1)$ $Sr(1)$

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

$\mathsf{Sr}(n)$

1: if n == 1

2: return 1

3: return Sr(n-1)+n

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

Sr(4)

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

Sr(4) return Sr(3)+4

Line 3, n=4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

$\mathsf{Sr}(n)$

- 1: if n == 1
- 2: return 1
- 3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ return $Sr(3)+4$ return $Sr(2)+3$

Line 3, n=3Line 3, n=4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

- 1: if n == 1
- 2: return 1
- 3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$

Line 3, n = 2Line 3, n = 3Line 3, n = 4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

- 1: if n == 1
- 2: return 1
- 3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ $Sr(1)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$

Line 3, n = 2Line 3, n = 3Line 3, n = 4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ $Sr(1)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$ return $Sr(1)$

Line 3, n = 2Line 3, n = 3Line 3, n = 4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

2: return 1

3: return Sr(n-1)+n

$$Sr(4)$$
 $Sr(3)$ $Sr(2)$ $Sr(1)$ return $Sr(3)+4$ return $Sr(2)+3$ return $Sr(1)+2$ return $Sr(1)+3$

Line 3, n = 2Line 3, n = 3Line 3, n = 4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

Line 3, n = 2Line 3, n = 3Line 3, n = 4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

Line 3, n=2Line 3, n=3Line 3, n=4

$$S(1) = 1$$

 $S(n) = S(n-1) + n, \quad n \ge 2$

Sr(n)

1: if n == 1

 $2: \qquad \mathsf{return} \ 1$

3: return Sr(n-1)+n

ine 3, n = 2ine 3, n = 3ine 3, n = 4

Hvad gi'r det så?

Definér S(n) = 1 + 2 + ... + n.

S(n) = areal af blå kvadrater

Hvad gi'r det så?

Definér S(n) = 1 + 2 + ... + n.

 $S(n)={\it areal}$ af blå kvadrater

Hvad gi'r det så?

Definér $S(n) = 1 + 2 + \ldots + n$.

areal af blå og orange = $n \cdot (n+1) = 2 \cdot S(n) \Longrightarrow S(n) = \frac{n \cdot (n+1)}{2}$

S(n) = areal af blå kvadrater