<u>Overview</u>

Data Science projects since 2014: Pharma, Utility, Predictive Maintenance, Services 10 years US onsite: business process, ERP/BPM, management

Calculated output:

Silhouette score, # of

clusters, ticket-clusters,

cluster keywords

Assign new ticket

right cluster,

cosine distance

Cluster plot,

matplotlib

keywords per

embeddings

clustering,

DBSCAN

Ticket description

to text

embedding, TF &

matpl tlib

Pharma helpdesk left shift:

50% SME effort reduction

20 % improveme nt in FLR

Whitepaper

Survey Sentiment Analysis Dashboard for the Period 3/29/2019-6/27/2019 Top 3 Questions on Negative Sentiment Response Distribution from FLM's Ranking How likely is your customer to refer Cognizant services to others (1 being low and 10 being sure to refer)? Positive: 33.50% Vs Org 32.08% Is there any resource who is facing Health / Personal issues which you are not Neutral: 31.88% Vs Org 54.06% Negative: 34.62% Vs Org 13.86% Was your team stressed / stretched over extended period during the month? FLM Survey Responses 1. Vertical 2. Account 3. Project Name 4.Region 5. Location 6. Cluster FLM_Name Most Commonly used expression by FLM's VOYA VOYA RL CCC APAC Manila Technology ESGUERRA, D., Absence process working AIG AIG Collections BPO APAC Manila People Gary Oliver Ti... back next Associates missed high issue letters ESIS INC ESIS INC CASE TRIAGE APAC Manila Customer Jessica Jovelia. previous informational volumes cases critical ESIS INC ESIS INC CASE TRIAGE APAC Manila People Jessica Jovelia. dueclient ESIS INC ESIS INC CASE TRIAGE APAC Manila People Jessica Jovella. ESIS INC APAC Manila Jessica Jovella. ESIS INC APAC Manila People Jessica Jovella. ESIS INC People Jessica Jovella. ESIS INC ESIS INC CASE TRIAGE APAC Manila People Jessica Jovella. Q INS ESIS INC Search ESIS INC CASE TRIAGE APAC Manila People Jessica Jovella. **Date Range Selector:** below chart represents the trend of average positive & Negative scores across period range sentiment_by("reverse transition") element_id word_count sd ave_sentiment customSentimentBy("reverse transition") Apr 07 Apr 21 Apr 28 May 05 element_id word_count sd ave_sentiment -0.70710682 NA

BPO: project health measure tor \$17Bn projects

Azure helpdesk chatbot:

Employee experience

Time to roll out

IBM: Edge device failure prediction To an applied to the state of the

These are	the failu	res for mo	del WDC WD3	3200BEKT:	
	removed	observed	censored	entrance	at_risk
event_at					
0.0	0	0	0	2	2
8.0	1	1	0	0	2
20.0	1	0	1	0	1

$$\hat{S} = \prod_{t_i < t} \frac{n_i - d_i}{n_i}$$

Day	Number of devices at risk	Number of devices that failed	Survival probability (product of terms)
0	2	0	(2-0)/2 = 1
8	2	1	$\{(2-0)/2\}x\{(2-1)/2\} = 0.5$
20	1	0	${(2-0)/2}x{(2-1)/2}x{(1-0)/1} = 0.5$

t_0	-1			
null_distribution chi s	quared			
degrees_of_freedom	1			
test_name logra	nk_test			
		test_statistic	P	-log2(p)
Hitachi HDS5C4040ALE630	ST4000DM000	5.41	0.02	5.64
	WDC WD10EADS	18.72	<0.005	16.01
	WDC WD3200BEKT	751.37	<0.005	547.10
	WDC WD800AAJS	799.60	<0.005	581.94
	WDC WD800BB	262.02	<0.005	193.36
ST4000DM000	WDC WD10EADS	24.96	<0.005	20.70
	WDC WD3200BEKT	389.80	<0.005	285.82
	WDC WD800AAJS	621.79	<0.005	453.49
	WDC WD800BB	90.00	<0.005	68.51
WDC WD10EADS	WDC WD3200BEKT	13.30	<0.005	11.88
	WDC WD800AAJS	0.22	0.64	0.65
	WDC WD800BB	0.05	0.83	0.27
WDC WD3200BEKT	WDC WD800AAJS	14.00	<0.005	12.42
	WDC WD800BB	3.00	80.0	3.59
WDC WD800AAJS	WDC WD800BB	0.47	0.49	1.02

Statistical methods for automated generation of service engagement staffing plans

J. Hu B. K. Ray M. Singh

IBM, project staffing optimization:

Benchmark similar + well run projects

ARIMA time series analysis, restaurant employees data


```
HOME DATA DISCUSSION SCRIPTS SUBMISSION LEADERBOARD

28. Bala Kesavan 0.96127
```

```
#definining a bi-directional LSTM
inp = Input(shape=(maxlen,))
x = Embedding(max_features, embed_size, weights=[embedding_matrix])(inp)
x = Bidirectional(LSTM(50, return_sequences=True, dropout=0.05, recurrent_dropout=0.05))(x)
x = Bidirectional(LSTM(50, return_sequences=True, dropout=0.05, recurrent_dropout=0.05))(x)
x = GlobalMaxPoollD()(x)
x = Dense(50, activation="relu")(x)
x = Dropout(0.1)(x)
x = Dropout(0.1)(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```

label	precision	recall	fscore	support
0	0.94	0.91	0.93	598
1	0.78	0.80	0.79	99
2	0.93	0.93	0.93	395
3	0.96	0.96	0.96	196
4	0.92	0.93	0.92	492
5	0.83	0.89	0.86	482
6	0.87	0.86	0.87	118
7	0.78	0.73	0.75	162
8	0.92	0.73	0.81	151
9	0.75	0.86	0.80	154
	0 1 2 3 4 5 6 7	0 0.94 1 0.78 2 0.93 3 0.96 4 0.92 5 0.83 6 0.87 7 0.78 8 0.92	0 0.94 0.91 1 0.78 0.80 2 0.93 0.93 3 0.96 0.96 4 0.92 0.93 5 0.83 0.89 6 0.87 0.86 7 0.78 0.73 8 0.92 0.73	0 0.94 0.91 0.93 1 0.78 0.80 0.79 2 0.93 0.93 0.93 3 0.96 0.96 0.96 4 0.92 0.93 0.92 5 0.83 0.89 0.86 6 0.87 0.86 0.87 7 0.78 0.73 0.75 8 0.92 0.73 0.81

Obligations extraction from contracts:

Prevent revenue leakage

Proxy data, hackathon entry

Text classifier: BERT + TF2.0, LSTM + Keras

StandardScaler / Read_Data_Rate / Multivariate

Train_Actual
Train_Predicted

Layer (type)	Output	Shape	Param #
convld_3 (ConvlD)	(None,	24, 64)	30784
dropout_4 (Dropout)	(None,	24, 64)	0
convld_4 (ConvlD)	(None,	12, 32)	12320
dropout_5 (Dropout)	(None,	12, 32)	0
convld_5 (ConvlD)	(None,	6, 16)	3088
convld_transpose_4 (ConvlDTr	(None,	12, 16)	1552
dropout_6 (Dropout)	(None,	12, 16)	0
convld_transpose_5 (ConvlDTr	(None,	24, 32)	3104
dropout_7 (Dropout)	(None,	24, 32)	0
convld_transpose_6 (ConvlDTr	(None,	48, 64)	12352
convld_transpose_7 (ConvlDTr	(None,	48, 80)	30800
Total params: 94,000			
Trainable params: 94,000			
Non-trainable params: 0			

IBM edge device, anomaly detection:

Impending failure

Device security