

Examen 4 de abril 2013, preguntas y respuestas

Informació i Seguretat (Universitat Autònoma de Barcelona)

INFORMACIÓ I SEGURETAT 4 d'abril de 2013

Nom	i cognoms:	 Grup: _	
140111	i cognoms.	Grup	

- Cal que justifiqueu convenientment totes les respostes
- \bullet Valoració dels exercicis: 1) 1+1+0,5 punts; 2) 0,5+1+1 punts; 3) 1,25+1,25 punts; 4) 1+1+0,5 punts
- $\log 3 = 1.58$, $\log 5 = 2.32$, $\log 7 = 2.8$
- 1. Tenim dues urnes, amb tres boles cadascuna, que contenen diferents premis. Les boles de la primera urna contenen els premis {0€, 10€,20€} i les de la segona els premis {10€, 20€, 30€}. Llancem una moneda perfecta. Si surt cara prenem una bola de la primera urna i si surt creu prenem una bola de la segona urna.
 - (a) Justifiqueu fent servir teoria de la informació si obtenim més informació sobre el resultat del llançament de la moneda quan el premi final és 20€, o quan el premi és 30€. Calculeu la informació en cada cas.
 - (b) Quina és la informació obtinguda sobre el resultat del llançament de la moneda si coneixem el premi obtingut?
 - (c) Quina és la informació obtinguda sobre el resultat del llançament de la moneda segons el premi obtingut?

Solució: Definim $X = \{x_1, x_2\} = \{c, +\}$ i $Y = \{y_1, y_2, y_3, y_4\} = \{0 \in, 10 \in, 20 \in, 30 \in\}$. Calculem les probabilitats condicionades $p(x_i|y_j)$, les probabilitats conjuntes $p(x_i, y_j)$ i les probabilitats condicionades $p(y_j|x_i)$, tenint en compte que $p(x_i) = \frac{1}{2}, \forall i$.

(a) Quan el premi obtingut és 30€, sabem que el resultat del llançament de la moneda ha estat per força creu. Per tant, no hi ha informació; en aquest cas la informació és 0. Si el premi obtingut és 20€, aleshores el resultat del llançament de la moneda podria haver estat tant cara com creu i, per tant, la informació en aquest cas és superior. Fent servir els valors obtinguts a les taules anteriors, tenim:

$$H(X|Y=20) = p(c|20)\log\frac{1}{p(c|20)} + p(+|20)\log\frac{1}{p(+|20)} = \frac{1}{2}\log 2 + \frac{1}{2}\log 2 = 1$$
 bit.

$$H(X|Y=30) = p(c|30)\log\frac{1}{p(c|30)} + p(+|30)\log\frac{1}{p(+|30)} = 1\log 1 + 0\log 0 = 0$$
 bits.

- (b) $H(X|Y) = \sum_{i=1}^{2} \sum_{j=1}^{4} p(x_i, y_j) \log \frac{1}{p(x_i|y_j)} = 2\frac{1}{6} \log 1 + 4\frac{1}{6} \log 2 = \frac{4}{6}$ bits.
- (c) Volem calcular I(X,Y)=H(X)-H(X|Y). Com els resultats del llançament de la moneda són equiprobables, tenim que H(X)=1 bit. Per tant, $I(X,Y)=1-\frac{4}{6}=\frac{2}{6}$ bits.

- 2. Considereu una font $S = \{a_1, a_2, a_3, a_4, a_5\}$ amb probabilitats $\{\frac{3}{10}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{10}\}$ i el $\operatorname{codi} C = \{00, 10, 01, 000, 001\}.$
 - (a) És C un codi de descodificació única? Per què?
 - (b) Determineu si l'eficiència de C és igual o és menor que 1.
 - (c) És un codi òptim? Per què?

Solució:

- (a) Tenim que C no és de descodificació única ja que, per exemple la seqüència 000000podria ser tant $a_1a_1a_1$ com a_4a_4 .
- (b) Sabem que $\eta = \frac{H(S)}{\overline{L} \log D}$, on D = 2.

Tenim que $H(S) = \frac{3}{10} \log \frac{10}{3} + \frac{3}{5} \log 5 + \frac{1}{10} \log 10 = \frac{3}{10} (\log 2 + \log 5 - \log 3) + \frac{3}{5} \log 5 + \frac{1}{10} (\log 2 + \log 5) = \frac{4}{10} \log 2 + \log 5 - \frac{3}{10} \log 3 = 0.4 + 2.3219 - \frac{3}{10} 1.5850 = 2.2464$ bits. Per una altra banda, $\bar{L} = \frac{6}{10} + 2\frac{2}{5} + \frac{3}{5} + \frac{3}{10} = \frac{23}{10} = 2.3$. Aplicant la fòrmula anterior tenim que $\eta = \frac{2.2464}{2.3}$ és menor que 1.

- (c) Per saber si el codi és òptim, busquem un codi de Huffman. Aplicant l'algorisme obtenim $H = \{10, 00, 01, 110, 111\}$ que té longitud mitjana $L_H = 2.3$. El codi anterior té la mateixa longitud mitjana que el codi de Huffman. Tot i això, com el codi no és de descodificació única no és un codi òptim.
- 3. Compressió de texts.
 - (a) Comprimiu el següent mapa de bits fent servir la tècnica més addient i digueu quina és la taxa de compressió.

(b) Quin mètode dóna una millor taxa de compressió de la cadena "THIS IS THE HOUSE OF THE MOUSE.", l'algorisme LZ77 o LZ78? Doneu tots el passos, considereu |D| = 13, |B| = 4 i que cada enter ocupa 4 bits i cada caràcter 8 bits.

Solució:

(a) En aquest cas, aplicarem l'algorisme RLE. Considerem que tenim una matriu 11×17 de bits. La longitud de cada fila es pot emmegatzemar en 5 bits. La mida de la imatge seria $11 \times 17 + 5 = 192$ bits.

La codificaició RLE seria,

Fi	la	Codificació	Fila	Codificació
1		0 17	7	6 5 6
2		0 16 1	8	557
3		10 5 2	9	4 5 8
4		9 5 3	10	3 5 9
5		8 5 4	11	2 5 10
6		7 5 5		

Si cada valor s'emmagatzema en 5 bits, necessitarem $32 \times 5 + 5 = 165$ bits. Per tant, $R = \frac{165}{100}$ bpb.

(b) Fent servir LZ77 tenim la següent compressió: $(0,0,T), (0,0,H), (0,0,I), (0,0,S), (0,0, \square), (3,3,T)(8,1,E), (4,1,H), (0,0,O), (0,0,U), (9,1,E), (6,1,O), (0,0,F), (13,4, \dots), (0,0,M), (13,4,\dots).$

La taula obtinguda amb l'algorisme LZ78 és:

	Dicc	Codi		Dicc	Codi
0	null				
1	Τ	(0,T)	11	U	(0,U)
2	Η	(0,H)	12	SE	(4,E)
3	I	(0,I)	13	^{-}O	(5,O)
4	\mathbf{S}	(0,S)	14	F	(0,F)
5	_	(0,)	15	$_{ m L}TH$	(7,H)
6	$_{\rm IS}$	(3,S)	16	\mathbf{E}	(0,E)
7	$_{\text{LT}}$	(5,T)	17	$_{ extsf{L}}$ M	(5,M)
8	HE	(2,E)	18	OU	(10,U)
9	_H	(5,H)	19	SE.	(12,.)
10	O	(0,0)			

Si considerem que codifiquem cada caràcter amb 8 bits i cada índex enter amb 4 bits, aleshores el text original ocupa 31*8=248 bits. La taxa de compressió fent servir LZ77 és $R=\frac{16(4+4+8)}{248}=\frac{256}{248}$. En el cas de LZ78, tenim una taxa de compressió de $\frac{19(4+8)}{248}=\frac{228}{248}$ i per tant, la taxa de compressió és menor en aquest cas.

4. Considereu el canal determinat per la matriu de transicions:

$$\Pi = \begin{pmatrix} 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ \frac{1}{4} & 0 & \frac{3}{4} & 0 \\ \frac{3}{4} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{3}{4} & 0 & \frac{1}{4} \end{pmatrix}.$$

- (a) Doneu la informació mútua de la entrada i la sortida, si la distribució inicial de probabilitats és $(\frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3})$.
- (b) És possible tenir una informació mútua de 1.9 bits? En cas positiu digueu per a quina distribució inicial tenim aquesta informació mútua i en cas negatiu raoneu per què no podem.
- (c) Si la distribució de probabilitats inicial és $(\frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3})$, calculeu la regla MPE i digueu quina és la probabilitat mitjana d'error.

Solució:

(a)
$$I(A, B) = H(A) - H(A|B)$$
.

$p(b_i, a_j)$	b_1	b_2	b_3	b_4	$p(a_j b_i)$	b_1	b_2	b_3	b_4
a_1	0	$\frac{1}{12}$	0	$\frac{1}{4}$	a_1	0	$\frac{1}{4}$	0	$\frac{3}{4}$
a_2	$\frac{1}{12}$	0	$\frac{1}{4}$	Ō	a_2	1	0	1	0
a_3	0	0	0	0	a_3	0	0	0	0
a_4	0	$\frac{1}{4}$	0	$\frac{1}{12}$	a_4	0	$\frac{3}{4}$	0	$\frac{1}{4}$

Tenim que $H(A) = H(\frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}) = \log 3 = 1.58$. D'altra banda, $H(A|B) = 2\frac{1}{12}\log 4 + 2\frac{1}{4}\log \frac{4}{3} = \frac{1}{3} + \frac{1}{2}(\log 4 - \log 3) = \frac{1}{3} + \frac{1}{2}(0.42) = 0.33 + 0.21 = 0.54$. Finalment, I(A, B) = 1.58 - 0.54 = 1.04 bits.

- (b) En aquest canal, tenim $C=\log 4-H$, on $H=H(0,\frac{1}{4},0,\frac{3}{4})=\frac{1}{4}\log 4+\frac{3}{4}\log \frac{4}{3}=\frac{1}{2}+\frac{3}{4}(2-1.58)=0.35+0.31=0.81$. Per tant, C=2-0.81=1,19 bits. Així, la informació màxima del canal és 1.19 i no pot haver-hi cap distribució inicial que faci que la informació mútua sigui 1.9.
- (c) La Regla MPE és aquella que assigna a cada b_j el valor a_i tal que $p(a_i|b_j)$ sigui màxima. Mirant les taules de l'apartat a) tenim $f(b_1)=a_2, f(b_2)=a_4, f(b_3)=a_2, f(b_4)=a_1$. Aleshores la probabilitat mitjana d'error és $1-(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{12})=1-\frac{10}{12}=\frac{1}{6}$.