Beispiele: Dualraum

Beispiel 1: $V = \mathbb{K}^n$

- Die Elemente von \mathbb{K}^n sind die *Spalten*vektoren mit n Einträgen aus \mathbb{K} .
- In Kapitel 10 lernen wir, dass jede lineare Abbildung $\Phi : \mathbb{K}^n \to \mathbb{K}^m$ durch eine *eindeutige* $m \times n$ -Matrix A ausgedrückt werden kann, so dass $\Phi(x) = Ax$ gilt.
- Speziel für den Dualraum V^* bedeutet das, dass jeder Linearform φ : $\mathbb{K}^n \to \mathbb{K} = \mathbb{K}^1$ durch eine $1 \times n$ -Matrix $A = (a_1 \dots a_n)$, also durch eine Zeilenvektor ausgedrückt werden kann:

$$\varphi(x) = Ax = (a_1 \dots a_n) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = a_1x_1 + \dots + a_nx_n.$$

Den Dualraum $(\mathbb{K}^n)^*$ können wir also mit dem "Raum der Zeilenvektoren" $\mathbb{K}^{1\times n}$ identifizieren.

• Dann haben wir einen Isomorphismus

$$\Psi: \mathbb{K}^n \to \mathbb{K}^{1 \times n}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto x^\top = (x_1 \dots x_n).$$

• Für die Standardbasis $\{e_1, \ldots, e_n\}$ wird die Dualbasis $\{e_1^{\star}, \ldots, e_n^{\star}\}$ gerade durch die Bilder $\Psi(e_1), \ldots, \Psi(e_n)$ dargestellt, denn es gilt:

$$e_i^{\star}(e_k) = \delta_{ik} = e_i^{\top} \cdot e_k = \Psi(e_i) \cdot e_k.$$

Beispiel 2: V = C([-1, 1])

- Die Elemente von $V = \mathcal{C}([-1,1])$ sind die stetigen Funktionen auf dem Intervall [-1,1].
- ullet V ist ein Vektorraum, da das Vielfache einer stetigen Funktion und die Summe von zwei stetigen Funktionen wieder stetig sind. Außerdem hat V (überabzählbar) unendliche Dimension.
- $\bullet\,$ Für jede Funktion $h\in V$ definieren wir eine Linearform φ_h durch

$$\varphi_h(f) = \int_{-1}^1 h(x)f(x) \, \mathrm{d}x.$$

 \bullet Analog zu der linearen Abbildung Ψ aus Beispiel 1 definieren wir

$$\Psi: V \to V^{\star}, \quad h \mapsto \varphi_h.$$

• Ψ ist injektiv: Falls $\Psi(h_1) = \Psi(h_2)$ für $h_1, h_2 \in V$, so gilt für alle $f \in V$:

$$\int_{-1}^{1} h_1(x)f(x) \, dx = \int_{-1}^{1} h_2(x)f(x) \, dx,$$

oder äquivalent

$$\int_{-1}^{1} (h_1(x) - h_2(x)) f(x) \, dx = 0.$$

Speziell für $f = h_1 - h_2$ also

$$\int_{-1}^{1} (h_1(x) - h_2(x))^2 dx = 0.$$

Da die Funktionen stetig sind, bedeutet dies $h_1 = h_2$.

- Also ist $V \cong \Psi(V) \subset V^*$. Die Frage ist nun, ob Ψ auch surjektiv ist, so dass bereits $\Psi(V) = V^*$ gilt?
- Dies ist jedoch nicht der Fall: Betrachte dazu die Linearform $\delta_0 \in V^*$, definiert durch

$$\delta_0(f) = f(0).$$

Wir werden sehen, dass $\delta_0 \notin \Psi(V)$.

• Nehmen wir dazu das Gegenteil an, also dass eine Funktion $\delta \in V$ existiert, so dass für alle $f \in V$ gilt

$$f(0) = \delta_0(f) = \Psi(\delta)(f) = \int_{-1}^1 \delta(x)f(x) dx.$$

• Für dieses δ gilt $\delta(t_0) = 0$ für alle $t_0 \neq 0$, denn wäre etwa $\delta(t_0) > 0$, so gäbe es wegen der Stetigkeit von δ ein offenes Intervall U um t_0 mit $0 \notin U$, so dass $\delta(t) > 0$ für alle $t \in U$. Nun kann man aber eine stetige Funktion f finden, die f(0) = 0 erfüllt, aber f(t) > 0 für alle $t \in U$ ("Hütchenfunktion über U und sonst 0"). Für dieses f müsste gelten

$$0 = \delta_0(f) \stackrel{!}{=} \int_{-1}^1 \delta(x) f(x) \, dx = \int_U \underbrace{\delta(x) f(x)}_{>0} \, dx > 0,$$

ein Widerspruch. Insgesamt muss also $\delta(t_0) = 0$ gelten für $t_0 \neq 0$.

• Da δ außerdem stetig sein soll, folgt aus dem vorigen Punkt, dass auch $\delta(0) = 0$ gilt. Also insgesamt $\delta = 0$. Dann wäre aber auch $\varphi_{\delta}(f) = 0$ für alle $f \in V$, also

$$0 = \varphi_{\delta} = \delta_0 \neq 0,$$

ein Widerspruch. Somit kann eine solche Funktion δ nicht in V existieren, d.h. Ψ ist nicht surjektiv.

- Man kann sogar zeigen, dass auch keine *unstetige* Funktion δ existieren kann, die $\varphi_{\delta} = \delta_0$ erfüllt.
- \bullet Das Beispiel zeigt, dass in unendlicher Dimension der Dualraum V^\star "größer" sein kann als $V.^{1)}$

Bemerkung: Die Linearform δ_0 heißt Dirac-Impuls (zum Zeitpunkt 0) und wird in der Signalverarbeitung verwendet, um Signale zu modellieren, die aus einem einzigen "unendlich starken" Impulsstoß zum Zeitpunkt 0 bestehen.

¹⁾Man beachte, dass dies im Allgemeinen aber noch nicht ausschließt, dass $V \cong V^*$ gilt!