

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນະຖາວອນ

-----000-----

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກົມມັດທະຍົມສຶກສາ

ຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູງນເກັ່ງ ຊັ້ນມັດທະຍົມສຶກສາຕອນຕົ້ນ ລະດັບຊາດ ປະຈຳສົກຮູງນ 2015-2016

ວິຊາ ຄະນິດສາດ

ເວລາ: 120 ນາທີ

- 1. ໃຫ້ສອງຈຳນວນຈິງ x ແລະ y ເຊິ່ງວ່າ: x+y=0 ແລະ $x\neq 0$ ຈົ່ງຊອກຫາຄ່າຂອງ $\frac{x^{2016}}{y^{2016}}+2017$
- 2. ຈົ່ງຄັດຈ້ອນສຳນວນ: $E = \frac{ab(x^2 y^2) + xy(a^2 b^2)}{ab(x^2 + y^2) xy(a^2 + b^2)}$
- 3. ຈົ່ງຄິດໄລ່: $A = \frac{1}{\sin 10^{\circ}} \frac{\sqrt{3}}{\cos 10^{\circ}}$. § ວ່າ: $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ ແລະ $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$
- 4. ຈົ່ງແກ້ສົມຜົນ: $\left(\frac{\sqrt{x}}{2} \frac{1}{2\sqrt{x}}\right)^2 \left(\frac{\sqrt{x}+1}{\sqrt{x}-1} \frac{\sqrt{x}-1}{\sqrt{x}+1}\right) = -3\left(\sqrt{x}+1\right)$
- 5. ຈົ່ງຂູງນ $A = -\frac{3,121212...}{2,121212...}$ ພາຍໃຕ້ຮູບຮ່າງຂອງເລກສ່ວນທີ່ບໍ່ສາມາດຄັດຈັອນໄດ້.
- 6. ໃຫ້ຮູບສີ່ແຈ ABCD, ມີເສັ້ນເນັ່ງຈອມ $AC \perp BD$ ແລະ $AB = 11\,\mathrm{cm}$, $BC = 9\,\mathrm{cm}$, $DA = 7\,\mathrm{cm}$ ຈົ່ງຄິດໄລ່ລວງຍາວຂອງຂ້າງ CD.
- 7. ໃຫ້ຂ້າງຂອງຮູບຈັດຕຸລັດ ABCD ມີລວງຍາວເທົ່າ 1 ຢູ່ເທິງບັນດາຂ້າງ AB,AD ເອົາບັນດາ ເມັດ P ແລະ Q ຕາມລຳດັບ ແລະ ຕອບສະໜອງໃຫ້ລວງຮອບຂອງຮູບສາມແຈ APQ ເທົ່າ 2 ຈົ່ງຄິດ ໄລ່ມຸມ \widehat{PCQ} .
- 8. ໃນມື້ທຳອິດຂອງບຸນທາດຫຼວງ, ເສື້ອໂຕໜຶ່ງມີລາຄາ 75000 ກີບ, ໃນມື້ທີສອງເສື້ອໂຕດັ່ງກ່າວໄດ້ ຫຼຸດລາຄາ 12% ແລະ ໃນມື້ສຸດທ້າຍຂອງບຸນທາດຫຼວງ ເສື້ອໂຕດັ່ງກ່າວໄດ້ຫຼຸດລາຄາລົງຕື່ມອີກ 15% ຂອງລາຄາໃນມື້ທີສອງ. ຖາມວ່າເສື້ອໂຕດັ່ງກ່າວໄດ້ຫຼຸດລາຄາທັງໝົດເທົ່າໃດສ່ວນຮ້ອຍ ?

ຄະນະກຳມະການອອກຫົວບົດ

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊົນລາວ

ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນາຖາວອນ

---==000==---

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກົມມັດທະຍົມສຶກສາ

ຂະໜານຕອບຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູນເກັ່ງ ຊັ້ນມັດທະຍົມສຶກສາຕອນຕົ້ນ ລະດັບຊາດ ປະຈຳສົກຮູນ 2015-2016

ວິຊາ ຄະນິດສາດ ເວລາ: 120 ນາທີ

ź	ເນື້ອໃນ	ຄະແນນ
1	ໃຫ້ສອງຈຳນວນຈິງ x ແລະ y ເຊິ່ງວ່າ: $\mathbf{x}+\mathbf{y}=0$ ແລະ $\mathbf{x}\neq0$. ຈິ່ງຊອກຫາຄ່າຂອງ $\frac{\mathbf{x}^{2016}}{\mathbf{y}^{2016}}+2017$	
	$x + y = 0 \Leftrightarrow y = -x$ $\Leftrightarrow \frac{y}{x} = -1 \Leftrightarrow \left(\frac{y}{x}\right)^{2016} = (-1)^{2016}$	0,5
	$\Leftrightarrow \left(\frac{y}{x}\right)^{2016} + 2017$ $= (-1)^{2016} + 2017 = 1 + 2017 = 2018$	0,5
2	ຈຶ່ງຄັດຈ້ອນສຳນວນ: $\mathbf{E} = \frac{\mathbf{a}\mathbf{b}\left(\mathbf{x}^2 - \mathbf{y}^2\right) + \mathbf{x}\mathbf{y}\left(\mathbf{a}^2 - \mathbf{b}^2\right)}{\mathbf{a}\mathbf{b}\left(\mathbf{x}^2 + \mathbf{y}^2\right) - \mathbf{x}\mathbf{y}\left(\mathbf{a}^2 + \mathbf{b}^2\right)}$	9
	$E = \frac{ab(x^2 - y^2) + xy(a^2 - b^2)}{ab(x^2 + y^2) - xy(a^2 + b^2)}$ $= \frac{abx^2 + a^2xy - aby^2 - b^2xy}{abx^2 - a^2xy + aby^2 - b^2xy}$	0,5
	$= \frac{ax(bx+ay)-by(ay+bx)}{ax(bx-ay)-by(bx+ay)}$ $= \frac{(bx+ay)(ax-by)}{(bx-ay)(ax-by)} = \frac{(bx+ay)}{(bx-ay)}$	0, 5
3	1. ຈຶ່ງຄິດໄລ່: $A = \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ}$. ຮຸ້ວ່າ: $\cos(a \mp b) = \cos a \cos b \pm \sin a \sin b$ ແລະ $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$	

9	$A = \frac{\cos 10^{\circ} - \sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}} = \frac{\frac{1}{2} \cos 10^{\circ} - \frac{\sqrt{3}}{2} \sin 10^{\circ}}{\frac{1}{2} \sin 10^{\circ} \cos 10^{\circ}}$	0,5
	$\frac{1}{2}\sin 10^{\circ}\cos 10^{\circ}$	5
3	$=\frac{\cos 60^{\circ} \cos 10^{\circ} - \sin 60^{\circ} \sin 10^{\circ}}{\frac{1}{2} \sin 10^{\circ} \cos 10^{\circ}} = \frac{\cos \left(60^{\circ} + 10^{\circ}\right)}{\frac{1}{4} \sin 20^{\circ}}$	
	$\frac{1}{2}\sin 10^{\circ}\cos 10^{\circ} \qquad \qquad \frac{1}{4}\sin 20^{\circ}$	
	$4 \times \frac{\cos 70^{\circ}}{\sin 20^{\circ}} = 4 \times \frac{\cos \left(90^{\circ} - 20^{\circ}\right)}{\sin 20^{\circ}} = 4 \times \frac{\sin 20^{\circ}}{\sin 20^{\circ}} = 4$	0,5
4	ຈົ່ງແກ້ສົມຜົນ: $\left(\frac{\sqrt{x}}{2} - \frac{1}{2\sqrt{x}}\right)^2 \left(\frac{\sqrt{x}+1}{\sqrt{x}-1} - \frac{\sqrt{x}-1}{\sqrt{x}+1}\right) = -3\left(\sqrt{x}+1\right)$	0,5
	ເງື່ອນໄຊ $\begin{cases} x>0 \\ \sqrt{x}-1 eq 0 \Leftrightarrow \begin{cases} x>0 \\ x \neq 1 \end{cases}$	
	$\left(\frac{\sqrt{x}}{2} - \frac{1}{2\sqrt{x}}\right)^2 \left(\frac{\sqrt{x}+1}{\sqrt{x}-1} - \frac{\sqrt{x}-1}{\sqrt{x}+1}\right) = -3\left(\sqrt{x}+1\right) \Leftrightarrow \frac{\left(x-1\right)^2}{4x} \times \frac{\left(\sqrt{x}+1\right)^2 - \left(\sqrt{x}-1\right)^2}{x-1} = -3\left(\sqrt{x}+1\right)$	0,5
	$\Leftrightarrow \frac{\left(x-1\right)^{2} \times 4\sqrt{x}}{4x\left(x-1\right)} = -3\left(\sqrt{x}+1\right) \Leftrightarrow \frac{x-1}{\sqrt{x}} = -3\left(\sqrt{x}+1\right) \Leftrightarrow 4x+3\sqrt{x}-1 = 0$	0,5
	$\Leftrightarrow \begin{bmatrix} \sqrt{x} = -1 \\ \sqrt{x} = \frac{1}{4} \Rightarrow x = \frac{1}{16} \end{bmatrix}$	0,25
5	ຈຶ່ງຂຽນ $\mathbf{A} = -\frac{3,121212}{2,121212}$ ພາຍໃຕ້ຮຸບຮ່າງຂອງເລກສ່ວນທີ່ບໍ່ສາມາດຄັດຈ້ອນໄດ້.	
	$A = -\frac{3,121212}{2,121212} = -\frac{3 + \frac{12}{99}}{2 + \frac{12}{99}}$	0,5
	$= -\frac{3 + \frac{4}{33}}{2 + \frac{4}{33}} = -\frac{\frac{103}{33}}{\frac{70}{33}} = -\frac{103}{70}$	0,5
6	ໃຫ້ຮຸບສີ່ແຈ $ABCD$, ທີ່ມີເສັ້ນເນັ່ງຈອມ $AC \perp BD$ ແລະ $AB = 11\mathrm{cm}$, $BC = 9\mathrm{cm}$, $DA = 7\mathrm{cm}$. ຈົ່ງ ຄິດໄລ່ລວງຍາວຂອງຂ້າງ CD ?	×

	ສົມມຸດ ໃຫ້ $AC \perp BD$ ແລະ $AB = 11cm$, $BC = 9cm$, $DA = 7cm$	0,2
	ສະຫຼຸບ ຊອກຫາຂ້າງ <i>CD</i> = ?	
	$A \longrightarrow D$	
	ຕາມຫຼັກເກນປີຕາກໍມີ:	0,5
1	$\mathbf{B}^2 = \mathbf{O}\mathbf{A}^2 + \mathbf{O}\mathbf{B}^2$ $\mathbf{C}^2 = \mathbf{O}\mathbf{B}^2 + \mathbf{O}\mathbf{C}^2$	
	$O^2 = OC^2 + OD^2$	
D	$A^2 = OA^2 + OD^2$	
จๆ	ກບັນດາສະເໝີຜົນຂ້າງເທິງໄດ້:	0,5
$AB^{2} + CD^{2} = OA^{2} + OB^{2} + OC^{2} + OD^{2} = OB^{2} + OC^{2} + OA^{2} + OD^{2} = BC^{2} + DA^{2}$		
(8)	$\text{PKS: } 11^2 + \text{CD}^2 = 9^2 + 7^2 \Leftrightarrow \text{CD}^2 = 81 + 49 - 121 = 130 - 121 = 9 \Rightarrow \text{CD} = 3$	0,2
ດັ່ງ	ນັ້ນ, CD = 3 cm	
7	ໃຫ້ຂ້າງຮຸບຈັດຕຸລັດ ABCD ມີລວງຍາວເທົ່າ 1. ຢູ່ເທິງບັນດາຂ້າງ AB, AD ເອົາບັນດາເມັດ P ແລະ C	2
	ຕາມລຳດັບ ແລະ ຕອບສະໜອງໃຫ້ລວງຮອບຂອງຮຸບສາມແຈ $ ext{APQ}$ ເທົ່າ $ ext{ 2. }$ ຈຶ່ງຄິດໄລ່ມຸມ $\widehat{ ext{PCQ}}$.	
-	E	0,2
	C	
	QM	
8	A P B	
ાં ફિ	$\mathbf{AP} + \mathbf{AQ} + \mathbf{PQ} = 2 = \mathbf{AQ} + \mathbf{QD} + \mathbf{AP} + \mathbf{PB}$	0,2
	$\Rightarrow PQ = PB + QD$	E.

8	ຢູ່ເທິງ ${ m PQ}$ ເອົາເມັດ ${ m M}$ ແລະຕອບສະໜອງ: ${ m DQ}={ m QM};$ ${ m MP}={ m PB}$	0,5
	ຢູ່ບ່ອນຂີດຕໍ່ ${f AD}$ ເອົາເມັດ ${f E}$ ແລະ ຕອບສະໜອງ ${f DE}={f PB}$	
	ເມື່ອນັ້ນເຮົາຈະຖອນໄດ້ $\Delta ext{CBP} = \Delta ext{CDE}$	
	$\Rightarrow PC = EC \Rightarrow \Delta CEQ = \Delta CQP (2,2,2)$	
	$\Rightarrow\widehat{ ext{CQD}}=\widehat{ ext{CQP}}\Rightarrow\Delta ext{CMQ}$ ແມ່ນຮູບສາມແຈສາກ, ສາກຢູ່ M.	0,25
	ເຮົາມີ: $\Delta ext{CDQ} = \Delta ext{CMQ}$ ແລະ $\Delta ext{CMP} = \Delta ext{CBP}$	
	$\Rightarrow \widehat{DCQ} = \widehat{QCM}$ ແລະ $\widehat{MCP} = \widehat{PCB} \Rightarrow \widehat{PCQ} = \frac{\widehat{C}}{2} = \frac{90^{\circ}}{2} = 45^{\circ}$	0,25
8	ໃນມື້ທຳອິດຂອງບຸນທາດຫຼວງ, ເສື້ອໂຕໜື່ງມີລາຄາ 75 000 ກີບ, ໃນມື້ທີ່ສອງ ເສື້ອໂຕດັ່ງກ່າວໄດ້ຫຼຸດລາຄາ 12%	
	ແລະ ໃນມື້ສຸດທ້າຍຂອງບຸນທາດຫຼວງ ເສື້ອໂຕດັ່ງກ່າວໄດ້ຫຼຸດລາຄາລິງຕື່ມອີກ 15% ຂອງລາຄາໃນມື້ທີສອງ. ຖາມວ່າ	
	ເສື້ອໂຕດັ່ງກ່າວໄດ້ຫຼຸດລາຄາທັງໝົດເທົ່າໃດສ່ວນຮ້ອຍ?	
	ລາຄາຂອງເສື້ອໃນມື້ທີສອງ: $75\ 000 \left(1-0.12\right) = 66\ 000\ ກິບ$	0,5
	ລາຄາຂອງເສື້ອໃນມື້ສຸດທ້າຍ: $66\ 000 \left(1-0.15\right) = 56\ 100\ ກິບ$	0,5
	ລາຄາຂອງເສື້ອທີ່ຫຼຸດທັງໝົດ: $75000-56100=18900$ ກິບ ກົງກັບ $25,20\%$	0,25