A geometric realisation of affine 0-Schur algebras.

Tom Crawley

June 5, 2020

Contents

1	Intr	roduction	3
2	Bac	kground: The double flag variety approach to q-Schur algebras	4
3	The	cyclic flags approach to affine q-Schur algebras	5
	3.1	Cyclic flags	6
		3.1.1 A product of orbits	7
		3.1.2 Triple products	8
	3.2	Convolution algebras	8
	3.3	Affine q-Schur algebras	9
4	\mathbf{Pre}	senting affine q-Schur algebras	10
	4.1	Basic results and notation	10
		4.1.1 Elementary basis elements	10
		4.1.2 Transpose involution	11
		4.1.3 Fundamental multiplication rules	12
		4.1.4 Shifting	12
	4.2	Relations	14
	4.3	quivers with relations	15
		4.3.1 Exceptional case n=2	16
		4.3.2 Typical case	16
5	A g	eneric affine algebra	17
	5.1	Introduction	17
	5.2	A combinatorial partial order	18
	5.3	Grassmannians and related varieties	20
	5.4	Geometry of affine flag varieties	22
		5.4.1 Action through an algebraic group	23
		5.4.2 Incidence in affine flag varieties	25
	5.5	Geometry of orbits	26
	5.6	Geometry of orbit products	27
	5.7	Degenerations of orbits and the combinatorial partial order	28
	5.8	Associativity of the generic product	29
	5.9	The generic affine algebra	33
		5.9.1 A categorical perspective	34

6	A r	realisation of affine zero Schur algebras	35
	6.1	Preliminary results on the generic affine algebra	35
		6.1.1 Elementary basis elements	35
		6.1.2 Transpose involution	37
		6.1.3 Shifting and periodicity	38
	6.2	Multiplicative bases in affine zero Schur algebras: motivating example	40
	6.3	Aperiodicity in the generic affine algebra	41
	6.4	Presentation of the generic affine algebra	44
		6.4.1 Relations	45
		6.4.2 The period 2 case	45
7	Fur	ther directions	46
	7.1	Further results on affine zero Schur algebras	46
	7.2	Deformed group algebras of symmetric groups	46
	7.3	back matter	

Introduction

Background: The double flag variety approach to q-Schur algebras

The cyclic flags approach to affine q-Schur algebras

Fix natural numbers n and r.

Definition 3.0.1 (compositions). A composition of r into n parts is an n-tuple $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ of non-negative integers whose sum equals r. Denote the set of compositions of r into n parts by Λ_0 .

A composition $\lambda \in \Lambda_0$ is said to be sincere if $\lambda_i > 0$ for each $i \in \{1, ..., n\}$ and otherwise λ is said to be insincere.

Definition 3.0.2 (infinite periodic matrices). Let Λ_1 be the set of matrices $A = (a_{i,j})_{i,j \in \mathbb{Z}}$ with integer entries $a_{i,j}$ satisfying the following conditions:

- $a_{i,j} \geq 0$ for each $i, j \in \mathbb{Z}$;
- each row or column has only finitely many non-zero entries;
- the sum of the entries in any n consecutive rows or columns equals r;
- $a_{i-n,j-n} = a_{i,j}$ for each $i, j \in \mathbb{Z}$.

These matrices are referred to as infinite periodic matrices.

Definition 3.0.3 (source and target). Given $A \in \Lambda_1$, let ro(A) and ro(A) be the compositions of r into n parts given by

$$\operatorname{ro}(A) = \left(\sum_{j \in \mathbb{Z}} a_{1,j}, \dots, \sum_{j \in \mathbb{Z}} a_{n,j}\right)$$

and

$$co(A) = \left(\sum_{i \in \mathbb{Z}} a_{i,1}, \dots, \sum_{i \in \mathbb{Z}} a_{i,n}\right).$$

The source is co(A) and the target is ro(A).

These sums are finite since each row and column of A contains only finitely many nonzero entries, by definition of the set Λ_1 .

Definition 3.0.4 (diagonal matrices). Given $\lambda \in \Lambda_0$, let $D_{\lambda} \in \Lambda_1$ be the matrix given by $(D_{\lambda})_{i,j} = 0$ for $i, j \in \mathbb{Z}$ with $i \neq j$ and $(D_{\lambda})_{i,i} = \lambda_i$ for $i \in \mathbb{Z}$; where the indices are taken modulo n.

3.1 Cyclic flags

Fix $n, r \in \mathbb{N}$ and let \mathbf{k} be a field. Let \mathcal{S} be the \mathbf{k} -algebra $\mathbf{k}[\varepsilon, \varepsilon^{-1}]$ and let \mathcal{R} be the subalgebra generated by ε , so $\mathcal{R} = \mathbf{k}[\varepsilon]$. Let V be a free \mathcal{S} -module of rank r. Let G be the automorphism group of the \mathcal{S} -module V, so G is isomorphic to $\mathrm{GL}_r(\mathcal{S})$. A lattice in V is a \mathcal{R} -submodule L of V with $\mathcal{S} \otimes_{\mathcal{R}} L = V$. In particular, a lattice is an \mathcal{R} -submodule of V which is a free \mathcal{R} -module of rank r.

Lemma 3.1.1. Let L be a lattice in V. $L/\varepsilon L$ is a torsion \mathcal{R} -module, where ε acts as zero. $L/\varepsilon L$ is a free $\mathcal{R}/\langle \varepsilon \rangle$ -module of rank r; that is, $L/\varepsilon L$ is an r-dimensional \mathbf{k} -vector space.

Proof. L is a free \mathcal{R} -module of rank r, with $L \subset V$. Given an \mathcal{R} -basis $\{x_1, \ldots, x_r\}$ of L, $\{\varepsilon x_1, \ldots, \varepsilon x_r\}$ is an \mathcal{R} -basis of εL . Finally, the cosets $\{x_1 + \varepsilon L, \ldots, x_r + \varepsilon L\}$ give a basis for $L/\varepsilon L$ over $\mathcal{R}/\langle \varepsilon \rangle \cong \mathbf{k}$.

Let $\mathcal{F} = \mathcal{F}_{\mathbf{k}}(n,r)$ be the set of collections $(L_i)_{i\in\mathbb{Z}}$ of lattices in V with $L_i \subset L_{i+1}$ and $\varepsilon L_i = L_{i-n}$ for each $i \in \mathbb{Z}$. These collections of lattices in V are referred to as cyclic flags in V.

G acts on \mathcal{F} by $(g \cdot L)_i = g(L_i)$ for each $i \in \mathbb{Z}$, $g \in G$ and $L \in \mathcal{F}$. The G-orbits in \mathcal{F} are indexed by the set Λ_0 of compositions of r into n parts. In particular, the G-orbit in \mathcal{F} corresponding to $\lambda \in \Lambda_0$ is

$$\mathcal{F}_{\lambda} = \left\{ L \in \mathcal{F} : \dim \left(\frac{L_i}{L_{i-1}} \right) = \lambda_i \text{ for each } i \in \mathbb{Z} \right\}$$

Definition 3.1.1. The periodic characteristic matrix of a pair of cyclic flags $(L, L') \in \mathcal{F} \times \mathcal{F}$ is the matrix $A(L, L') = (a_{i,j})_{i,j \in \mathbb{Z}}$ with entries

$$a_{i,j} = \dim_{\mathbf{k}} \left(\frac{L_i \cap L'_j}{L_i \cap L'_{j-1} + L_{i-1} \cap L'_j} \right)$$

for each $i, j \in \mathbb{Z}$.

The diagonal action of G on $\mathcal{F} \times \mathcal{F}$ has orbits indexed by the set Λ_1 of infinite periodic matrices (see definition 3.0.2). The G-orbit corresponding to $A \in \Lambda_1$ is denoted \mathcal{O}_A and consists of those pairs $(L, L') \in \mathcal{F} \times \mathcal{F}$ with periodic characteristic matrix A(L, L') equal to A.

Lemma 3.1.2 (alternative expression for characteristic matrix). Alternatively,

$$a_{i,j} = \dim_{\mathbf{k}} \left(\frac{L_{i-1} + L_i \cap L'_j}{L_{i-1} + L_i \cap L'_{j-1}} \right)$$

for each $i, j \in \mathbb{Z}$.

Proof. Set $U = L_i \cap L'_j$ and $U' = L_{i-1} + L_i \cap L'_{j-1}$. Then $U + U' = L_{i-1} + L_i \cap L'_j$ and $U \cap U' = L_i \cap L'_j \cap L_{i-1} + L_i \cap L'_{j-1}$. Applying the isomorphism theorems, U + U'/U' is naturally isomorphic to $U/U \cap U'$ as a vector space. In particular,

$$\frac{L_{i-1} + L_i \cap L'_j}{L_{i-1} + L_i \cap L'_{j-1}} = \frac{L_i \cap L'_j}{L_{i-1} \cap L'_j + L_i \cap L'_{j-1}}$$

and thus the dimensions of these spaces are both equal to $a_{i,j}$.

Lemma 3.1.3 (transposing characteristic matrix). Given a pair of flags $(L, L') \in \mathcal{F}^2$, the matrices A(L, L') and A(L', L) are related by the transpose. In particular, $A(L, L')_{i,j} = A(L', L)_{j,i}$ for each $i, j \in \mathbb{Z}$.

Proof. By swapping the roles of i and j and swapping L and L' it is clear that $A(L, L')_{i,j}$ and $A(L', L)_{j,i}$ are both given by the dimension of the **k**-vector space

$$\frac{L_i \cap L_j'}{L_{i-1} \cap L_j' + L_i \cap L_{j-1}'},$$

for each $i, j \in \mathbb{Z}$.

Lemma 3.1.4 (a codimension formula). Given $(L, L') \in \mathcal{F}^2$ and $i, j \in \mathbb{Z}$,

$$\dim_{\mathbf{k}} \left(\frac{L_i}{L_i \cap L'_j} \right) = \sum_{s \le i, t > j} a_{s,t},$$

where $A(L, L') = (a_{i,j})_{i,j \in \mathbb{Z}}$.

Proof. COMPLETE THIS PROOF

Lemma 3.1.5 (nested flags). Given $(L, L') \in \mathcal{F}^2$, $L' \subset L$ if and only if $A(L, L')_{i,j} = 0$ for $i, j \in \mathbb{Z}$ with i > j.

Proof. Suppose $L, L' \in \mathcal{F}$ with $L' \subset L$, meaning $L'_j \subset L_j$ for each $j \in \mathbb{Z}$. Then for i > j, $L_i \cap L'_j = L'_j$, $L_{i-1} \cap L'_j = L'_j$ and $L_i \cap L'_{j-1}$, which shows

$$A(L, L')_{i,j} = \dim_{\mathbf{k}} \left(\frac{L'_j}{L'_{j-1} + L'_j} \right) = 0$$

as required. Conversely, suppose A(L, L') is upper triangular, meaning $A(L, L')_{i,j} = 0$ when i > j. Using Lemma 3.1.4,

$$\dim_{\mathbf{k}} \left(\frac{L_i'}{L_i' \cap L_i} \right) = \sum_{s>i,t \le i} a_{s,t} = 0,$$

so $L_i \cap L_i' = L_i'$ and thus $L_i' \subset L_i$ for each $i \in \mathbb{Z}$, as required.

Corollary 3.1.6 (diagonal orbits). Given $L, L' \in \mathcal{F}$, L = L' if and only if $A(L, L')_{i,j} = 0$ whenever $i \neq j$. In particular,

$$\mathcal{O}_{D_{\lambda}} = \{(L, L) \in \mathcal{F}^2 : L \in \mathcal{F}_{\lambda}\},\$$

for each $\lambda \in \Lambda_0$.

3.1.1 A product of orbits

Given $A, B \in \Lambda_1$ with co(A) = ro(B), define

$$Y_{A,B} = \{(L, L', L'') \in \mathcal{F}^3 : (L, L') \in \mathcal{O}_A \text{ and } (L', L'') \in \mathcal{O}_B\},$$

$$X_{A,B} = \{(L,L'') \in \mathcal{F}^2 : \exists L' \in \mathcal{F} \text{ with } (L,L') \in \mathcal{O}_A \text{ and } (L',L'') \in \mathcal{O}_B\}.$$

If also $L \in \mathcal{F}_{ro(A)}$, define the L-slices of $Y_{A,B}$ and $X_{A,B}$ respectively as

$$Y_{A,B}^{L} = \{ (L', L'') \in \mathcal{F}^2 : (L, L', L'') \in Y_{A,B} \},$$
$$X_{A,B}^{L} = \{ L'' \in \mathcal{F} : (L, L'') \in X_{A,B} \}.$$

Observation 1. There are only finitely many G-orbits in $X_{A,B}$.

Lemma 3.1.7. Given
$$A \in \Lambda_1$$
, $X_{D_{\lambda},A} = \mathcal{O}_A$ if $\lambda = \operatorname{ro}(A)$ and $X_{A,D_{\lambda}} = \mathcal{O}_A$ if $\lambda = \operatorname{co}(A)$.

Proof. Let $A \in \Lambda_1$ and set $\lambda = \operatorname{ro}(A)$. $Y_{D_{\lambda},A}$ is the set of triples $(L,L',L'') \in \mathcal{F}^3$ with $(L,L') \in \mathcal{O}_{D_{\lambda}}$, thus L = L' by Corollary 3.1.6, and $(L',L'') \in \mathcal{O}_A$. $X_{D_{\lambda},A}$ is the projection of $Y_{D_{\lambda},A}$, which equals \mathcal{O}_A .

Similarly, if $\lambda = \operatorname{co}(A)$, $Y_{A,D_{\lambda}}$ is the set of triples $(L,L',L'') \in \mathcal{F}^3$ with $(L,L') \in \mathcal{O}_A$ and L'' = L', so $X_{A,D_{\lambda}}$ is exactly the orbit \mathcal{O}_B .

3.1.2 Triple products

Given $A, B, C \in \Lambda_1$ with co(A) = ro(B) and co(B) = ro(C) and $L \in \mathcal{F}_{ro(A)}$, there are spaces $X_{A,B,C}, Y_{A,B,C}$ and their respective L-slices, defined as follows:

$$Y_{A,B,C} = \{(L,L',L'',L''') \in \mathcal{F}^4 : (L,L') \in \mathcal{O}_A, (L',L'') \in \mathcal{O}_B \text{ and } (L'',L''') \in \mathcal{O}_C\},$$

$$X_{A,B,C} = \{(L,L''') \in \mathcal{F}^2 : \exists (L',L'') \in \mathcal{O}_B \text{ with } (L,L') \in \mathcal{O}_A \text{ and } (L'',L''') \in \mathcal{O}_C\},$$

$$Y_{A,B,C}^L = \{(L',L'',L''') \in \mathcal{F}^3 : (L,L',L'',L''') \in Y_{A,B,C}\},$$

$$X_{A,B,C}^L = \{L''' \in \mathcal{F} : (L,L''') \in X_{A,B,C}\}.$$

3.2 Convolution algebras

Suppose **k** is a finite field and let q denote the number of elements of **k**. Consider the set S of G-invariant functions $\mathcal{F} \times \mathcal{F} \to \mathbb{Z}$ with constructible support. S is a free \mathbb{Z} -module with a basis consisting of the indicator functions of the G-orbits in $\mathcal{F} \times \mathcal{F}$. Define an operation \star on S as follows: for each $f, g \in S$, $f \star g \in S$ is given by

$$(f \star g)(L, L'') = \sum_{L' \in \mathcal{F}} f(L, L')g(L', L''),$$

for $(L, L'') \in \mathcal{F} \times \mathcal{F}$.

 $f \star g$ is well defined since the supports of f and g consist of finitely many G-orbits, so there are only finitely many $L' \in \mathcal{F}$ such that $f(L, L')g(L', L'') \neq 0$, given $(L, L'') \in \mathcal{F} \times \mathcal{F}$. $f \star g$ is constant on G-orbits and is supported on finitely many G-orbits, so $f \star g \in S$.

Lemma 3.2.1. The set S together with the operation \star is an associative \mathbb{Z} -algebra with identity element ι given by $\iota(L,L)=1$ and $\iota(L,L')=0$ for $L'\neq L$.

Proof. Given $f, g, h \in S$ and $(L, L''') \in \mathcal{F} \times \mathcal{F}$,

$$\begin{split} ((f\star g)\star h)(L,L''') &= \sum_{L''} (f\star g)(L,L'') h(L'',L''') \\ &= \sum_{L''} \sum_{L'} f(L,L') g(L',L'') h(L'',L''') \\ &= (f\star (g\star h))(L,L'''), \end{split}$$

thus \star is associative. ι is the multiplicative identity since

$$(\iota\star f)(L,L'')=\sum_{L'}\iota(L,L')f(L',L'')=f(L,L'')$$

and

$$(f \star \iota)(L, L'') = \sum_{L'} f(L, L') \iota(L', L'') = f(L, L''),$$

for each $f \in S$ and $(L, L'') \in \mathcal{F} \times \mathcal{F}$.

Given $A \in \Lambda_1$, let $e_A \in S$ denote the indicator function of the orbit \mathcal{O}_A . S is a free \mathbb{Z} -module with basis $\{e_A : A \in \Lambda_1\}$. There exist $\gamma_{A,B,C;q} \in \mathbb{Z}$ for $A,B,C \in \Lambda_1$ such that

$$e_A \star e_B = \sum_{C \in \Lambda_1} \gamma_{A,B,C;q} e_C$$

for each $A, B \in \Lambda_1$. Then

$$\begin{split} \gamma_{A,B,C;\mathbf{q}} &= (e_A \star e_B)(L,L'') \\ &= \sum_{L'} e_A(L,L') e_B(L',L'') \\ &= \# \{ L' : (L,L') \in \mathcal{O}_A \text{ and } (L',L'') \in \mathcal{O}_B \}, \end{split}$$

for any $(L, L'') \in \mathcal{O}_C$.

3.3 Affine q-Schur algebras

There exist polynomials $\gamma_{A,B,C} \in \mathbb{Z}[q]$ for $A,B,C \in \Lambda_1$ such that $\gamma_{A,B,C}(q) = \gamma_{A,B,C;q}$ for any prime power q, following [32, section 4]. The affine q-Schur algebra $\hat{S}_q(n,r)$ is a $\mathbb{Z}[q]$ -algebra which is a free $\mathbb{Z}[q]$ -module with basis $\{e_A : A \in \Lambda_1\}$ and with multiplication given by

$$e_A e_B = \sum_C \gamma_{A,B,C} e_C.$$

Given the existence of these 'universal polynomials' $\gamma_{A,B,C} \in \mathbb{Z}[q]$, it follows from Lemma 3.2.1 that $\hat{S}_q(n,r)$ is an associative $\mathbb{Z}[q]$ -algebra with multiplicative identity given by

$$1 = \sum_{\lambda \in \Lambda_0} e_{D_{\lambda}}.$$

Presenting affine q-Schur algebras

4.1 Basic results and notation

4.1.1 Elementary basis elements

For each $i, j \in \mathbb{Z}$, let $\mathcal{E}_{i,j}$ be the $\mathbb{Z} \times \mathbb{Z}$ 'elementary periodic matrix' with entries given by

$$(\mathcal{E}_{i,j})_{s,t}=1$$

if (s,t) = (i+cn, j+cn) for some $c \in \mathbb{Z}$ and $(\mathcal{E}_{i,j})_{s,t} = 0$ otherwise. Clearly $\mathcal{E}_{i,j} = \mathcal{E}_{i+n,j+n}$ for each $i,j \in \mathbb{Z}$.

Recall from Definition 3.0.4 that the diagonal matrix associated to a composition $\lambda \in \Lambda_0$ is

$$D_{\lambda} = \lambda_1 \mathcal{E}_{1,1} + \dots + \lambda_n \mathcal{E}_{n,n}.$$

The corresponding basis elements $e_{D_{\lambda}}$, for $\lambda \in \Lambda_0$, are pairwise orthogonal idempotents in $\hat{S}_q(n,r)$ with

$$\sum_{\lambda \in \Lambda_0} e_{D_\lambda} = 1,$$

as a result of Lemma 3.1.7.

For each $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ with $\lambda_{i+1} > 0$, define

$$E_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i,i+1} - \mathcal{E}_{i+1,i+1}}$$

and define

$$E_i = \sum_{\lambda \in \Lambda_0: \lambda_{i+1} > 0} E_{i,\lambda}.$$

Also define, for each $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ with $\lambda_i > 0$,

$$F_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i+1,i} - \mathcal{E}_{i,i}}$$

and define

$$F_i = \sum_{\lambda \in \Lambda_0: \lambda_i > 0} F_{i,\lambda}.$$

For each $i \in \{1, ..., n\}$, let $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$. Then

$$co(E_{i,\lambda}) = co(F_{i,\lambda}) = \lambda,$$

$$ro(E_{i,\lambda}) = \lambda + \alpha_i$$

and

$$ro(F_{i,\lambda}) = \lambda - \alpha_i$$
.

4.1.2 Transpose involution

Let S be the $\mathbb{Z}[q]$ -module automorphism of $\hat{S}_q(n,r)$ given by

$$S(e_A) = e_{A^{\top}},$$

for each $A \in \Lambda_1$.

Lemma 4.1.1. The map S is a $\mathbb{Z}[q]$ -algebra antihomomorphism of order 2. In particular,

$$S(e_A e_B) = S(e_B)S(e_A)$$

for each $A, B \in \Lambda_1$.

Proof. Let $A, B, C \in \Lambda_1$ and let \mathbf{k} be a finite field with $\mathbf{q} = \# \mathbf{k}$ elements. If $(L, L'') \in \mathcal{O}_C$ then $(L'', L) \in \mathcal{O}_{C^{\top}}$ and

$$\begin{split} \gamma_{A,B,C;\mathbf{q}} &= \#\{L': (L,L') \in \mathcal{O}_A \text{ and } (L',L'') \in \mathcal{O}_B\} \\ &= \#\{L': (L'',L') \in \mathcal{O}_{B^\top} \text{ and } (L',L) \in \mathcal{O}_{A^\top}\} \\ &= \gamma_{B^\top,A^\top,C^\top;\mathbf{q}} \end{split}$$

It follows that

$$S(e_A e_B) = S(e_B)S(e_A),$$

for each $A, B \in \Lambda_1$ and therefore S is a $\mathbb{Z}[q]$ -algebra antihomomorphism. Moreover, $S \circ S$ is the identity map on $\hat{S}_q(n,r)$ since $(A^\top)^\top = A$.

The action of S on E_i , F_i and 1_{λ} is as follows:

$$S(1_{\lambda}) = 1_{\lambda}$$

for each $\lambda \in \Lambda_0$,

$$S(E_{i,\lambda}) = F_{i,\lambda+\alpha_i}$$

for each $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ with $\lambda_{i+1} > 0$, and

$$S(F_{i,\lambda}) = E_{i,\lambda-\alpha_i}$$

for each $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ with $\lambda_i > 0$. In particular,

$$S(E_i) = F_i$$

$$S(F_i) = E_i$$

$$S(1_{\lambda}) = 1_{\lambda}$$

for $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$.

4.1.3 Fundamental multiplication rules

Lemma 4.1.2. Given $A \in \Lambda_1$ and $i \in \{1, ..., n\}$ with $ro(A)_{i+1} > 0$,

$$E_i e_A = \sum_{p \in \mathbb{Z}: a_{i+1,p} > 0} q^{\sum_{j > p} a_{i,j}} [[a_{i,p} + 1]] e_{A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}}.$$

Given $A \in \Lambda_1$ and $i \in \{1, ..., n\}$ with $ro(A)_i > 0$,

$$F_i e_A = \sum_{p \in \mathbb{Z}: a_{i,p} > 0} q^{\sum_{j < p} a_{i+1,j}} [[a_{i+1,p} + 1]] e_{A + \mathcal{E}_{i+1,p} - \mathcal{E}_{i,p}}.$$

Note that these formulas are still valid in the cases $E_i e_A = 0$ and $F_i e_A = 0$. If the convention that $e_B = 0$ whenever B is not in Λ_1 is used, then the conditions on p in the above sums may be ignored.

Corollary 4.1.3. Given $A \in \Lambda_1$ and $j \in \{1, ..., n\}$ with $co(A)_{j+1} > 0$,

$$e_A F_j = \sum_{p \in \mathbb{Z}: a_{p,j+1} > 0} q^{\sum_{i > p} a_{i,j}} [[a_{p,j} + 1]] e_{A + \mathcal{E}_{p,j} - \mathcal{E}_{p,j+1}}.$$

Given $A \in \Lambda_1$ and $j \in \{1, ..., n\}$ with $co(A)_j > 0$,

$$e_A E_j = \sum_{p \in \mathbb{Z}: a_{p,j} > 0} q^{\sum_{i < p} a_{i,j+1}} [[a_{p,j+1} + 1]] e_{A+\mathcal{E}_{p,j+1} - \mathcal{E}_{p,j}}.$$

Proof.

$$\begin{split} e_{A}F_{j} &= S(E_{j}e_{A^{\top}}) \\ &= S\left(\sum_{p \in \mathbb{Z}: a_{p,j+1} > 0} q^{\sum_{i > p} a_{i,j}} [[a_{p,j} + 1]] e_{A^{\top} + \mathcal{E}_{j,p} - \mathcal{E}_{j+1,p}}\right) \\ &= \sum_{p \in \mathbb{Z}: a_{p,j+1} > 0} q^{\sum_{i > p} a_{i,j}} [[a_{p,j} + 1]] e_{A + \mathcal{E}_{p,j} - \mathcal{E}_{p,j+1}}, \end{split}$$

where the second equality comes from Lemma 4.1.2. Similarly,

$$\begin{split} e_A E_j &= S(F_j e_{A^\top}) \\ &= S\left(\sum_{p \in \mathbb{Z}: a_{p,j} > 0} q^{\sum_{i < p} a_{i,j+1}} [[a_{p,j+1} + 1]] e_{A^\top + \mathcal{E}_{j+1,p} - \mathcal{E}_{j,p}}\right) \\ &= \sum_{p \in \mathbb{Z}: a_{p,j} > 0} q^{\sum_{i < p} a_{i,j+1}} [[a_{p,j+1} + 1]] e_{A + \mathcal{E}_{p,j+1} - \mathcal{E}_{p,j}}. \end{split}$$

4.1.4 Shifting

In this subsection it is shown that the operations on Λ_1 given by shifting up by one row or to the right by one column may be described by the action, on the left or right respectively, of an invertible element R of $\hat{S}_q(n,r)$.

For each $A \in \Lambda_1$ and $m \in \mathbb{Z}$, the row shift of A by m is the element [m]A of Λ_1 given by

$$([m]A)_{i,j} = a_{i+m,j},$$

for each $i, j \in \mathbb{Z}$.

The column shift of A by m is the element A[m] given by

$$(A[m])_{i,j} = a_{i,j+m},$$

for each $i, j \in \mathbb{Z}$.

For each $\lambda \in \Lambda_0$, define

$$R_{\lambda} = e_{[1]D_{\lambda}}$$

$$= e_{\lambda_1} \mathcal{E}_{0,1} + \dots + \lambda_n} \mathcal{E}_{n-1,n}$$

and let

$$R = \sum_{\lambda \in \Lambda_0} R_{\lambda}.$$

Recall that

$$\mathcal{O}_{D_{\lambda}} = \{ (L, L) : L \in \mathcal{F}_{\lambda} \},$$

so

$$\mathcal{O}_{[m]D_{\lambda}} = \{([m]L, L) : L \in \mathcal{F}_{\lambda}\}$$

and

$$\mathcal{O}_{D_{\lambda}[m]} = \{(L, [m]L) : L \in \mathcal{F}_{\lambda}\}.$$

This leads to a simple rule for multiplication by R in terms of these shifts on matrices.

Lemma 4.1.4. *If* $A \in \Lambda_1$ *then*

$$Re_A = e_{[1]A}$$

and

$$e_A R = e_{A[-1]}.$$

Proof. TYPE THIS PROOF

As a visual cue, acting on a basis element e_A on the left by R corresponds to moving the matrix A up by the row, while acting on the right by R corresponds to moving the matrix to the right by one column. Then conjugating by R corresponds to the composition of a shift to the left by one and a shift up by one, which is a shift by one along the diagonal, so conjugating by R^n leaves e_A invariant. Thus conjugation by R gives a $\mathbb{Z}[q]$ -algebra automorphism of $\hat{S}_q(n,r)$ which has order n.

Lemma 4.1.5. The element R is invertible and

$$RS(R) = S(R)R = 1.$$

In particular,

$$R^{-1} = \sum_{\lambda \in \Lambda_0} e_{[-1]D_{\lambda}}.$$

Proof. TYPE THIS PROOF.

For $\lambda \in \Lambda_0$ and $m \in \mathbb{Z}$, let $[m]\lambda$ be the element in Λ_0 given by

$$([m]\lambda)_i = \lambda_{i+m},$$

for each $i \in \mathbb{Z}$, where the indices of λ are taken modulo n. For example, if $\lambda = (2, 1, 3)$, then $[1]\lambda = (1, 3, 2)$.

Lemma 4.1.6. For each $\lambda \in \Lambda_0$,

$$R1_{\lambda}S(R) = 1_{[1]\lambda}$$

and, for each $i \in \{1, \ldots, n\}$,

$$RE_iS(R) = E_{i-1}$$

and

$$RF_iS(R) = F_{i-1}.$$

Proof. TYPE THIS PROOF.

Although I can't be sure, I suspect that conjugation by R gives a realisation of the Auslander-Reiten translation on the nilpotent representations of a cyclic quiver determined by the upper triangular matrices in Λ_1 . This is at least plausible since the A.R translation τ sends the simple representation at vertex i to the simple representation at vertex i-1, which is consistent with the conjugation by R, which sends E_i to E_{i-1} .

4.2 Relations

Note that $E_i^{r+1} = F_i^{r+1} = 0$ while

$$E_i^r = [r]_! e_{r\mathcal{E}_{i,i+1}}$$

and

$$F_i^r = [r]_! e_{r\mathcal{E}_{i+1,i}}.$$

Lemma 4.2.1 (quantum Serre relations: $n \geq 3$). Suppose $n \geq 3$. The following relations hold in $\hat{S}_q(n,r)$:

$$E_i E_i - E_i E_i = 0$$

$$F_i F_i - F_i F_i = 0$$

unless $j = i \pm 1$;

$$E_i E_{i+1}^2 - (1+q)E_{i+1}E_i E_{i+1} + q E_{i+1}^2 E_i = 0$$

$$E_i^2 E_{i+1} - (1+q)E_i E_{i+1} E_i + q E_{i+1} E_i^2 = 0$$

and

$$F_{i+1}F_i^2 - (1+q)F_iF_{i+1}F_i + qF_i^2F_{i+1} = 0$$

$$F_{i+1}^2F_i - (1+q)F_{i+1}F_iF_{i+1} + qF_iF_{i+1}^2 = 0.$$

Proof. Here we introduce temporary notation for the basis elements: Write $[A] = e_A$. Take $\lambda \in \Lambda_0$.

$$E_i E_{i+1}^2 1_{\lambda} = [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+2}] + [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}]$$

$$E_{i+1}E_iE_{i+1}1_{\lambda} = [D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}] + [2][D_{\lambda} + 2X_{i+1,i+1} + X_{i,i+1}]$$

$$E_{i+1}^2 E_i 1_{\lambda} = [2][D_{\lambda} + 2X_{i+1,i+2} + X_{i,i+1}]$$

Then

$$(E_i E_{i+1}^2 - (1+q)E_{i+1}E_i E_{i+1} + q E_{i+1}^2 E_i)1_{\lambda} = 0,$$

for each $\lambda \in \Lambda_0$. The relation $E_i E_{i+1}^2 - (1+q) E_{i+1} E_i E_{i+1} + q E_{i+1}^2 E_i = 0$ then follows.

The relations between F_i and F_{i+1} may be obtained directly, as above, or by applying the transpose operator to the relations already derived: note that the two sets of relations are related by swapping E_i and F_i and reversing the order of multiplication.

Lemma 4.2.2 (quantum Serre relations: n = 2). In the case n = 2, the quantum Serre relations will be of total degree 4. Look at the presentation of quantum groups for candidate relations. If that fails, brute force won't be too hard.

Lemma 4.2.3. $[E_i, F_j] = 0$ unless j = i.

$$E_i F_i - F_i E_i = \sum_{\lambda \in \Lambda_0} ([\lambda_i] - [\lambda_{i+1}]) 1_{\lambda}.$$

4.3 quivers with relations

Denote by Λ_0 the set of compositions of r into n parts. That is, Λ_0 is the set of $\alpha \in \mathbb{Z}^n$ with non-negative entries which sum to r. Let $\varepsilon_i \in \mathbb{Z}^n$ be the ith elementary vector and write $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$ for each $i \in \{1, \ldots, n\}$. Then $\lambda + \alpha_i \in \Lambda_0$ if $\lambda_{i+1} > 0$ and $\lambda - \alpha_i \in \Lambda_0$ if $\lambda_i > 0$.

Let $\Gamma = \Gamma(n,r)$ be the quiver with set of vertices Λ_0 , with the following arrows:

For $\lambda \in \Lambda_0$ and $i \in \{1, ..., n\}$, there is an arrow $e_{i,\lambda} : \lambda \to \lambda + \alpha_i$ if $\lambda_{i+1} > 0$ and there is an arrow $f_{i,\lambda} : \lambda \to \lambda - \alpha_i$ if $\lambda_i > 0$.

Denote by $\mathbb{Z}[q]\Gamma$ the path $\mathbb{Z}[q]$ -algebra of Γ . Thus $\mathbb{Z}[q]\Gamma$ is a free $\mathbb{Z}[q]$ -module with a basis given by the set of paths in Γ , with multiplication given by the concatenation of paths. If p starts where q ends, the product pq is the path q followed by p. Write $e_{i,\lambda} = 0$ unless $\lambda, \lambda + \alpha_i \in \Lambda_0$ and write $f_{i,\lambda} = 0$ unless $\lambda, \lambda - \alpha_i \in \Lambda_0$.

By construction, there is a homomorphism of $\mathbb{Z}[q]$ -algebras

$$\phi \colon \mathbb{Z}[q]\Gamma \to \hat{S}_q(n,r)$$

given by

$$\phi(e_{i,\lambda}) = E_{i,\lambda}$$

$$\phi(f_{i,\lambda}) = F_{i,\lambda}$$

$$\phi(k_{\lambda}) = 1_{\lambda},$$

for $i \in \{1, \ldots, n\}$ and $\lambda \in \Lambda_0$.

The image of ϕ is the subalgebra of $\hat{S}_q(n,r)$ generated by E_i , F_i for $i \in \{1,\ldots,n\}$ and 1_{λ} for $\lambda \in \Lambda_0$, since $E_{i,\lambda} = E_i 1_{\lambda}$ and $F_{i,\lambda} = F_i 1_{\lambda}$, while $E_i = \sum_{\lambda} E_{i,\lambda}$ and $F_i = \sum_{\lambda} F_{i,\lambda}$. In general ϕ is not surjective, so this does not always lead to a presentation of $\hat{S}_q(n,r)$.

4.3.1 Exceptional case n=2.

Describe the quiver.

Define an ideal of relations in the path algebra.

Write down the homomorphism from the bound quiver algebra to the q-Schur algebra.

4.3.2 Typical case.

Suppose $n \geq 3$. Then $\Gamma = \Gamma(n, r)$ has vertex set Λ_0 .

Define $e_i, f_i \in \mathbb{Z}[q]\Gamma(n,r)$ by

$$e_i = \sum_{\lambda \in \Lambda_0} e_{i,\lambda}$$

and

$$f_i = \sum_{\lambda \in \Lambda_0} f_{i,\lambda},$$

with the convention $e_{i,\lambda} = 0$ unless $\lambda_{i+1} > 0$ and $f_{i,\lambda} = 0$ unless $\lambda_i > 0$. Let k_{λ} denote the constant path at vertex λ . $\{k_{\lambda} : \lambda \in \Lambda_0\}$ is a set of pairwise orthogonal idempotents in $\mathbb{Z}[q]\Gamma(n,r)$.

Let $I(n,r) \subset \mathbb{Z}[q]\Gamma(n,r)$ be the ideal generated by the expressions

$$e_{i}e_{i+1}^{2} - (1+q)e_{i+1}e_{i}e_{i+1} + qe_{i+1}^{2}e_{i}$$

$$e_{i}^{2}e_{i+1} - (1+q)e_{i}e_{i+1}e_{i} + qe_{i+1}e_{i}^{2}$$

$$f_{i+1}f_{i}^{2} - (1+q)f_{i}f_{i+1}f_{i} + qf_{i}^{2}f_{i+1}$$

$$f_{i+1}^{2}f_{i} - (1+q)f_{i+1}f_{i}f_{i+1} + qf_{i}f_{i+1}^{2}$$

$$e_{i}f_{j} - f_{j}e_{i} - \delta_{i,j} \sum_{\lambda \in \Lambda_{0}} ([\lambda_{i}] - [\lambda_{i+1}])k_{\lambda}$$

Recall that a relation is a $\mathbb{Z}[q]$ -linear combination of paths with common start and end vertices. The relations involving paths $\lambda \to \mu$ are given by $1_{\mu} \exp 1_{\lambda}$, for each of the above expressions.

Lemma 4.3.1. There is a homomorphism of $\mathbb{Z}[q]$ -algebras

$$\phi \colon \mathbb{Z}[q]\Gamma(n,r)/I(n,r) \to \hat{S}_q(n,r)$$

given by

$$\phi(e_{i,\lambda}) = E_{i,\lambda}$$

$$\phi(f_{i,\lambda}) = F_{i,\lambda}$$

$$\phi(k_{\lambda}) = 1_{\lambda}.$$

A generic affine algebra

5.1 Introduction

Assume $\mathbf{k} = \mathbb{C}$ and fix $n, r \geq 1$. Let \mathcal{S} be the \mathbf{k} -algebra $\mathbf{k}[\varepsilon, \varepsilon^{-1}]$ and let \mathcal{R} be the subalgebra generated by ε , namely $\mathcal{R} = \mathbf{k}[\varepsilon]$. Let V be a free \mathcal{S} -module of rank r and let $\mathcal{F} = \mathcal{F}_{\mathbf{k}}(n, r)$ be the set of n-periodic cyclic flags in V; so \mathcal{F} consists of collections $L = (L_i)_{i \in \mathbb{Z}}$ of \mathcal{R} -lattices in V with $L_i \subset L_{i+1}$ for $i \in \mathbb{Z}$ and $\varepsilon L_i = L_{i-n}$ for $i \in \mathbb{Z}$.

Let G be the group of S-module automorphisms of V. Thus G is isomorphic to $GL_r(S)$. G acts on F with orbits $\{\mathcal{F}_{\lambda} : \lambda \in \Lambda_0\}$, where Λ_0 is the set of compositions of r into n parts, as in Definition 3.0.1.

The diagonal action of G on $\mathcal{F} \times \mathcal{F}$ has orbits $\{\mathcal{O}_A : A \in \Lambda_1\}$, where \mathcal{O}_A consists of those pairs of flags with periodic characteristic matrix equal to A. Definitions of the periodic characteristic matrix and the set Λ_1 are given in Definition 3.1.1 and Definition 3.0.2 respectively.

Recall that the periodic characteristic matrix of a pair $(L, L') \in \mathcal{F} \times \mathcal{F}$ is the $\mathbb{Z} \times \mathbb{Z}$ matrix $A = (a_{i,j})_{i,j \in \mathbb{Z}}$, with

$$a_{i,j} = \dim \left(\frac{L_i \cap L'_j}{L_{i-1} \cap L'_j + L_i \cap L'_{j-1}} \right)$$

for each $i, j \in \mathbb{Z}$.

Recall that ro and co are the maps $\Lambda_1 \to \Lambda_0$ given by

$$\operatorname{ro}(A) = \left(\sum_{j \in \mathbb{Z}} a_{1,j}, \dots, \sum_{j \in \mathbb{Z}} a_{n,j}\right)$$

and

$$co(A) = \left(\sum_{i \in \mathbb{Z}} a_{i,1}, \dots, \sum_{i \in \mathbb{Z}} a_{i,n}\right)$$

for each $A \in \Lambda_1$. Given $A \in \Lambda_1$, write $A: co(A) \to ro(A)$.

The purpose of this chapter is to define an associative \mathbb{Z} -algebra with a multiplicative basis by defining a modified form of the product in the affine q-Schur algebra. In particular, given $A, B \in \Lambda_1$, the orbit product

$$X_{A,B} = \{(L, L'') \in \mathcal{F} \times \mathcal{F} : \exists L' \in \mathcal{F} \text{ with } (L, L') \in \mathcal{O}_A, (L', L'') \in \mathcal{O}_B\}$$

consists of finitely many G-orbits and it will be shown that there is a unique 'generic' orbit in $X_{A,B}$, denoted \mathcal{O}_{A*B} , with the property that

$$\dim\left(\frac{L_i}{L_i \cap L_j''}\right) \le \dim\left(\frac{N_i}{N_i \cap N_j''}\right)$$

and

$$\dim\left(\frac{L_j''}{L_i\cap L_j''}\right) \le \dim\left(\frac{N_j''}{N_i\cap N_j''}\right)$$

for all $i, j \in \mathbb{Z}$, $(N, N'') \in \mathcal{O}_{A*B}$ and $(L, L'') \in X_{A,B}$. It will be shown that the above 'generic product' of orbits is associative, so the free \mathbb{Z} -module on the set of G-orbits in $\mathcal{F} \times \mathcal{F}$ with \mathbb{Z} -bilinear multiplication given by

$$\mathcal{O}_A * \mathcal{O}_B = \mathcal{O}_{A*B},$$

for each $A, B \in \Lambda_1$ with co(A) = ro(B), and

$$\mathcal{O}_A * \mathcal{O}_B = 0$$

for $A, B \in \Lambda_1$ with $co(A) \neq ro(B)$, is an associative \mathbb{Z} -algebra with multiplicative identity given by

$$\sum_{\lambda \in \Lambda_0} \mathcal{O}_{D_{\lambda}},$$

where D_{λ} is the diagonal matrix with $co(D_{\lambda}) = \lambda$. The resulting \mathbb{Z} -algebra is called the *generic affine algebra* (of rank r and period n), denoted $\hat{G}(n,r)$.

5.2 A combinatorial partial order

For each $i, j \in \mathbb{Z}$, let $d_{i,j}$ and $\bar{d}_{i,j}$ be the maps from Λ_1 to Λ_0 given by

$$d_{i,j}(A) = \sum_{s \le i, t > j} a_{s,t}$$

and

$$\bar{d}_{i,j}(A) = \sum_{s>i,t\leq j} a_{s,t}$$

for each $A \in \Lambda_1$.

Lemma 5.2.1. For each $A \in \Lambda_1$ and $i, j \in \mathbb{Z}$, the following equations hold:

$$d_{i,j}(A) - d_{i-1,j}(A) = \sum_{t>j} a_{i,t}$$
$$d_{i,j}(A) - d_{i,j-1}(A) = -\sum_{s \le i} a_{s,j}$$

and

$$\bar{d}_{i,j}(A) - \bar{d}_{i,j-1}(A) = -\sum_{t \le j} a_{i,t}$$
$$\bar{d}_{i,j}(A) - \bar{d}_{i,j-1}(A) = \sum_{s > i} a_{s,j}$$

Proof. Let $i, j \in \mathbb{Z}$ and $A \in \Lambda_1$. Then

$$d_{i,j}(A) - d_{i-1,j}(A) = \sum_{s \le i, t > j} a_{s,t} - \sum_{s \le i-1, t > j} a_{s,t} = \sum_{t > j} a_{i,t}$$

and

$$d_{i,j}(A) - d_{i,j-1}(A) = \sum_{s \le i, t > j} a_{s,t} - \sum_{s \le i, t > j-1} a_{s,t} = -\sum_{s \le i} a_{s,j}.$$

Similarly,

$$\bar{d}_{i,j}(A) - \bar{d}_{i-1,j}(A) = \sum_{s>i,t \le j} a_{s,t} - \sum_{s>i-1,t \le j} a_{s,t} = -\sum_{t \le j} a_{i,t}$$

and

$$\bar{d}_{i,j}(A) - \bar{d}_{i,j-1}(A) = \sum_{s>i,t \le j} a_{s,t} - \sum_{s>i,t \le j-1} a_{s,t} = \sum_{s>i} a_{s,j}.$$

Lemma 5.2.2. For each $A \in \Lambda_1$ and $i, j \in \mathbb{Z}$,

$$a_{i,j} = d_{i,j-1}(A) - d_{i-1,j-1}(A) - d_{i,j}(A) + d_{i-1,j}(A)$$

and

$$a_{i,j} = \bar{d}_{i,j-1}(A) - \bar{d}_{i-1,j-1}(A) - \bar{d}_{i,j}(A) + \bar{d}_{i-1,j}(A).$$

Proof. As a result of Lemma 5.2.1,

$$d_{i,j-1}(A) - d_{i-1,j-1}(A) - d_{i,j}(A) + d_{i-1,j}(A) = \sum_{t>j-1} a_{i,t} - \sum_{t>j} a_{i,t}$$
$$= a_{i,j}$$

and

$$\bar{d}_{i,j-1}(A) - \bar{d}_{i-1,j-1}(A) - \bar{d}_{i,j}(A) + \bar{d}_{i-1,j}(A) = -\sum_{t \le j-1} a_{i,t} + \sum_{t \le j} a_{i,t}$$
$$= a_{i,j}.$$

Define a relation \leq on Λ_1 by $A \leq B$ if and only if the following conditions are satisfied:

- $\operatorname{ro}(A) = \operatorname{ro}(B)$ and $\operatorname{co}(A) = \operatorname{co}(B)$.
- For each $i, j \in \mathbb{Z}$, $d_{i,j}(A) \leq d_{i,j}(B)$.
- For each $i, j \in \mathbb{Z}$, $\bar{d}_{i,j}(A) \leq \bar{d}_{i,j}(B)$.

Lemma 5.2.3. The relation \leq defines a partial order on Λ_1 .

Proof. It is clear that \leq is reflexive and transitive.

Suppose $A, B \in \Lambda_1$ with $A \leq B$ and $B \leq A$. Then $d_{i,j}(A) = d_{i,j}(B)$ for each $i, j \in \mathbb{Z}$ with $i \leq j$, which shows $a_{s,t} = b_{s,t}$ whenever s < t, as a result of Lemma 5.2.2. Similarly, $\bar{d}_{i,j}(A) = \bar{d}_{i,j}(B)$ for each $i, j \in \mathbb{Z}$ with $i \geq j$, so $a_{s,t} = b_{s,t}$ whenever s > t. Moreover, $a_{i,i} = b_{i,i}$ for each $i \in \mathbb{Z}$, since co(A) = co(B). Thus A = B, which shows \leq is antisymmetric and therefore \leq is a partial order on Λ_1 .

Lemma 5.2.4. The transpose operation on Λ_1 is order preserving. In particular, $B \leq A$ if and only if $B^{\top} \leq A^{\top}$.

Proof. Suppose $A, B \in \Lambda_1$ with $B \leq A$. The condition co(A) = co(B) and ro(A) = ro(B) is preserved by the transpose operation.

For each $i, j \in \mathbb{Z}$,

$$d_{i,j}(A^{\top}) = \sum_{s \le i, t > j} a_{t,s} = \bar{d}_{j,i}(A)$$

and

$$\bar{d}_{i,j}(A^{\top}) = \sum_{s>i,t \le j} a_{t,s} = d_{j,i}(A).$$

It follows that $B^{\top} \leq A^{\top}$ and therefore the transpose is order preserving.

The partial order on Λ_1 induces a partial order on the set of G-orbits in $\mathcal{F} \times \mathcal{F}$, such that $\mathcal{O}_A \leq \mathcal{O}_B$ if and only if $A \leq B$. The following lemma is rephrased from Lemma 3.1.4 and gives some geometric significance to the partial order on Λ_1 .

Lemma 5.2.5. Let $A \in \Lambda_1$ and $(L, L') \in \mathcal{O}_A$. Then

$$\dim\left(\frac{L_i}{L_i\cap L_j'}\right) = d_{i,j}(A)$$

and

$$\dim\left(\frac{L'_j}{L_i\cap L'_j}\right) = \bar{d}_{i,j}(A),$$

for each $i, j \in \mathbb{Z}$.

Proof. This is a rephrasing of Lemma 3.1.4.

5.3 Grassmannians and related varieties

Here we collect a few elementary results on Grassmannians and some related varieties. In this section, let V be an n-dimensional \mathbf{k} -vector space and let $0 \le d \le n$ be an integer. There is a linear map

$$\phi^{(d)} \colon \Lambda^d(V) \to \operatorname{Hom}(V, \Lambda^{d+1}(V))$$

given by

$$\phi^{(d)}(\alpha)(v) = \alpha \wedge v$$

for $\alpha \in \Lambda^d(V)$ and $v \in V$. The kernel of $\phi^{(d)}(\alpha)$ is the space of divisors of α ,

$$D_{\alpha} = \{ v \in V : \alpha \wedge v = 0 \}.$$

An element $\alpha \in \Lambda^d(V)$ is said to be totally decomposable if $\alpha = \alpha_1 \wedge \cdots \wedge \alpha_d$, where $\alpha_1, \ldots, \alpha_d \in V$ are linearly independent. The dimension of D_α is at most d and $\dim(D_\alpha) = d$ precisely when α is totally decomposable. Consequently, the rank of $\phi^{(d)}(\alpha)$ is at least n-d and α is totally decomposable if and only if rank $\phi^{(d)}(\alpha) \leq n-d$, which holds if and only if the $(n-d+1)\times(n-d+1)$ -minors of a matrix of $\phi^{(d)}(\alpha)$ are all zero.

Lemma 5.3.1. $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) \geq a\}$ is a projective variety, for each $d_1, d_2, a \in \mathbb{N}$ with $d_1, d_2, a \leq n$.

Proof. As above, there is a linear map $\Psi \colon \Lambda^{d_1}V \oplus \Lambda^{d_2}V \to \operatorname{Hom}(V, \Lambda^{d_1+1}(V) \oplus \Lambda^{d_2+1}(V))$ given by $\Psi(\alpha, \beta)(v) = (\alpha \wedge v, \beta \wedge v)$. Given $\alpha \in \Lambda^{d_1}(V)$ and $\beta \in \Lambda^{d_2}(V)$, the kernel of $\Psi(\alpha, \beta)$ is $D_{\alpha} \cap D_{\beta}$ and so the rank of $\Psi(\alpha, \beta)$ is $n - \dim(D_{\alpha} \cap D_{\beta})$.

Let $U_i \in \operatorname{Gr}_{d_i}(V)$ and suppose $p_i(U_i) = [\alpha_i]$, where p_i is the Plücker embedding of $\operatorname{Gr}_{d_i}(V)$ in $\mathbb{P}(\Lambda^{d_i}(V))$, so $U_i = D_{\alpha_i} = \ker \phi^{(d_i)}(\alpha)$. Therefore the kernel of $\Psi(\alpha_1, \alpha_2)$ is $U_1 \cap U_2$, so the condition that $\dim(U_1 \cap U_2) \geq a$ is equivalent to the condition that $\Psi(\alpha_1, \alpha_2)$ has rank at most n-a. After fixing a basis of V, this condition is given by the vanishing of the $(n-a+1) \times (n-a+1)$ minors of the matrix of $\Psi(\alpha_1, \alpha_2)$ with respect to this basis. Therefore $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) \geq a\}$ is a closed subset of the product of Grassmannians $\operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V)$, so is a projective variety.

More precisely, the entries of a matrix of $\Psi(\alpha_1, \alpha_2)$ are homogeneous polynomials of degree 1 in the Plücker coordinates on $\operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V)$ since Ψ is linear and so the minors of $\Psi(\alpha_1, \alpha_2)$ are also homogeneous polynomials in the Plücker coordinates.

Lemma 5.3.2. Let V be an n-dimensional vector space over \mathbf{k} and let $d_1, d_2, a \in \mathbb{N}$ with $d_1, d_2, a \leq n$. The following hold:

- 1. $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) = a\}$ is a quasiprojective variety;
- 2. $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : U_1 \subset U_2\}$ is a projective variety;
- 3. Given $U_2 \in Gr_{d_2}(V)$, $\{U_1 \in Gr_{d_1}(V) : \dim(U_1 \cap U_2) \geq a\}$ is a projective variety;
- 4. Given $U_2 \in Gr_{d_2}(V)$, $\{U_1 \in Gr_{d_1}(V) : \dim(U_1 \cap U_2) = a\}$ is a quasiprojective variety;
- 5. Given $U_2 \in Gr_{d_2}(V)$, $\{U_1 \in Gr_{d_1}(V) : U_1 \subset U_2\}$ is a projective variety;
- 6. Given $U_2 \in Gr_{d_2}(V)$, $\{U_1 \in Gr_{d_1}(V) : U_2 \subset U_1\}$ is a projective variety.

Proof. Let X_i denote the space in statement i of the lemma. To emphasise the dependence of X_i on a, write $X_{i,a}$.

 X_1 is a quasiprojective variety since it is equal to the intersection of the projective variety $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) \geq a\}$ with the open set $\{(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap U_2) \leq a\}$.

Given $(U_1, U_2) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V)$, $U_1 \subset U_2$ if and only if $\dim(U_1 \cap U_2) \geq d_1$, so Lemma 5.3.1 shows X_2 is a projective variety.

Let π_i : $\operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) \to \operatorname{Gr}_{d_i}(V)$ be the projection map onto the *i*-th factor, for i = 1, 2. The completeness property of projective varieties ensures that π_i is a closed morphism. Observe that

$$X_3 = \{ U_1 \in \operatorname{Gr}_{d_1}(V) : \dim(U_1 \cap U_2) \ge a \}$$

= $\pi_1(\{(U_1, W) \in \operatorname{Gr}_{d_1}(V) \times \operatorname{Gr}_{d_2}(V) : \dim(U_1 \cap W) \ge a \} \cap \pi_2^{-1}\{U_2\}).$

The fibre of π_2 over U_2 is closed, so the intersection of the fibre with the variety from Lemma 5.3.1 is closed and then the image of this intersection under π_1 is closed. This shows X_3 is a projective variety.

 X_4 is a quasiprojective variety since it is the complement of the subvariety $X_{3,a+1}$ in $X_{3,a}$. Finally, 5-6 follow as special cases of 3 since $X_5 = X_{3,d_1}$ and $X_6 = X_{3,d_2}$.

5.4 Geometry of affine flag varieties

Given $L \in \mathcal{F}$, $N, a \in \mathbb{N}$ and $\lambda \in \Lambda_0$ define

$$\Pi_{N,\lambda}(L) = \{ L' \in \mathcal{F}_{\lambda} : \varepsilon^{N} L_{0} \subset L'_{0} \subset \varepsilon^{-N} L_{0} \}.$$

and

$$\Pi_{N,\lambda}^a(L) = \left\{ L' \in \mathcal{F}_{\lambda} : \varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0, \dim \left(\frac{\varepsilon^{-N} L_0}{L'_0} \right) = a \right\}.$$

Lemma 5.4.1. Given $L \in \mathcal{F}$, $N \in \mathbb{N}$ and $\lambda \in \Lambda_0$,

$$\Pi_{N,\lambda}(L) = \bigcup_{a:0 \le a \le 2Nr} \Pi_{N,\lambda}^a(L).$$

Proof. If $L' \in \Pi_{N,\lambda}(L)$ then $\varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0$ and the $\mathbf{k}[\varepsilon]$ -module $\varepsilon^{-N} L_0/L'_0$ is naturally isomorphic to $(\varepsilon^{-N} L_0/\varepsilon^N L_0)/(L'_0/\varepsilon^N L_0)$, so

$$\dim_{\mathbf{k}}\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right) \leq \dim_{\mathbf{k}}\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^{N}L_0}\right) = 2Nr.$$

Lemma 5.4.2. Given $L \in \mathcal{F}$, $N \in \mathbb{N}$, $\lambda \in \Lambda_0$ and $a \in \mathbb{N}$ with $0 \le a \le 2Nr$, $\Pi_{N,\lambda}^a(L)$ is a projective algebraic variety.

Proof. Let W be the $\mathbf{k}[\varepsilon]$ -module $\varepsilon^{-1-N}L_0/\varepsilon^N L_0$, which has dimension (2N+1)r over \mathbf{k} . Let $d_i = 2Nr - a + \lambda_1 + \cdots + \lambda_i$ for each $i = 1, \ldots, n$. The correspondence between submodules of $\varepsilon^{-1-N}L_0$ which contain $\varepsilon^N L_0$ and submodules of $\varepsilon^{-1-N}L_0/\varepsilon^N L_0$ determines a map

$$\rho \colon \Pi_{N,\lambda}^a(L) \to \operatorname{Gr}_{d_1}(W) \times \cdots \times \operatorname{Gr}_{d_n}(W),$$

with $\rho(L') = (L'_1/\varepsilon^N L_0, \dots, L'_n/\varepsilon^N L_0).$

Let \mathcal{X} be the space of $(U_1, \ldots, U_n) \in \operatorname{Gr}_{d_1}(W) \times \cdots \times \operatorname{Gr}_{d_n}(W)$ with $U_i \subset U_{i+1}$ for $i = 1, \ldots, n-1$ and $\varepsilon U_n \subset U_1$. Lemma 5.3.2 shows that each of these conditions is closed, so \mathcal{X} is a closed subset of $\operatorname{Gr}_{d_1}(W) \times \cdots \times \operatorname{Gr}_{d_n}(W)$, therefore \mathcal{X} is a projective algebraic variety.

The image of ρ is contained in \mathcal{X} since

$$\varepsilon L'_n/\varepsilon^N L_0 = L'_0/\varepsilon^N L_0 \subset L'_1/\varepsilon^N L_0 \subset \cdots \subset L'_n/\varepsilon^N L_0.$$

Suppose $(U_1, \ldots, U_n) \in \mathcal{X}$. Then U_i is a $\mathbf{k}[\varepsilon]$ -module, since $\varepsilon U_i \subset \varepsilon U_n \subset U_1 \subset U_i$, for each $i = 1, \ldots, n$, so U_i lifts uniquely to a $\mathbf{k}[\varepsilon]$ -module L'_i with $\varepsilon^N L_0 \subset L'_i \subset \varepsilon^{-1-N} L_0$. Therefore L'_1, \ldots, L'_n are $\mathbf{k}[\varepsilon]$ -lattices with $L_i \subset L_{i+1}$ for $i = 1, \ldots, n-1$ and $\varepsilon L'_n \subset L'_1$, with

$$\dim \left(\varepsilon^{-1-N} L_0 / L'_n \right) = \dim \left(W / W_n \right) = (2N+1)r - d_n = a$$

and

$$\dim (L'_i/L'_{i-1}) = \dim (W_i/W_{i-1}) = d_i - d_{i-1} = \lambda_i,$$

for each $i=2,\ldots,n$. Therefore there is a unique $L'\in\Pi^a_{N,\lambda}(L)$ such that $\rho(L')=(W_1,\ldots,W_n)$, where L' is given by $L'_{i+cn}=\varepsilon^{-c}L'_i$ for $i=1,\ldots,n$ and $c\in\mathbb{Z}$. It follows ρ is injective and $\mathrm{im}\,\rho=\mathcal{X}$, which is a projective variety, so $\Pi^a_{N,\lambda}(L)$ is a projective variety.

Lemma 5.4.3. Given $L \in \mathcal{F}$, $N \in \mathbb{N}$, $\lambda \in \Lambda_0$ and $a \in \mathbb{N}$ with $0 \le a \le 2Nr$, $\Pi_{N,\lambda}^a(L)$ is closed in $\Pi_{N+1,\lambda}^{a+r}(L)$.

Proof. If $L' \in \Pi_{N,\lambda}^a(L)$, then $\varepsilon^{N+1}L_0 \subset \varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N}L_0 \subset \varepsilon^{-(N+1)}L_0$ and

$$\dim\left(\frac{\varepsilon^{-(1+n)}L_0}{L_0'}\right) = \dim\left(\frac{L_0}{\varepsilon L_0}\right) + \dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right) = r + a,$$

which shows that $\Pi_{N,\lambda}^a(L) \subset \Pi_{N+1,\lambda}^{a+r}(L)$. For $L' \in \Pi_{N+1,\lambda}^{a+r}(L)$, if additionally $\varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0$, then

 $\dim\left(\frac{\varepsilon^{-(N+1)}L_0}{L_0'}\right) = r + \dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right),\,$

which shows $L' \in \Pi^a_{N,\lambda}(L)$. Therefore $\Pi^a_{N,\lambda}(L)$ is the subspace of $\Pi^{a+r}_{N+1,\lambda}(L)$ defined by the two closed conditions $\varepsilon^N L_0 \subset L'_0$ and $L'_0 \subset \varepsilon^{-N} L_0$, using Lemma 5.3.2.

Lemma 5.4.4. Let $\lambda \in \Lambda_0$, $M, N \in \mathbb{N}$, $L, \tilde{L} \in \mathcal{F}$, $0 \le a \le 2Nr$, $0 \le b \le 2Mr$. $\Pi_{N,\lambda}^a(L) \cap \Pi_{M,\lambda}^b(\tilde{L})$ is a closed set in $\Pi_{N,\lambda}^a(L)$. In particular, if the intersection is nonempty it is a projective algebraic variety.

Proof. Observe that $\Pi^a_{N,\lambda}(L) \cap \Pi^b_{M,\lambda}(\tilde{L})$ is the subset of $\Pi^a_{N,\lambda}(L)$ defined by the additional conditions that $\varepsilon^M \tilde{L}_0 \subset L'_0$ and $L'_0 \subset \varepsilon^{-M} \tilde{L}_0$, so is a closed subset of $\Pi^a_{N,\lambda}(L)$, using 5.3.2.

Lemma 5.4.5. Suppose $L \in \mathcal{F}$, $N, a \in \mathbb{N}$ and $\lambda \in \Lambda_0$ with $a \leq 2Nr$. For each $g \in G$, the natural map (restriction of the action map) $\Pi_{N,\lambda}^a(L) \to \Pi_{N,\lambda}^a(gL)$ is an isomorphism of projective varieties.

Proof. If $L' \in \Pi_{N,\lambda}^a(L)$, then $\varepsilon^N L_0 \subset L'_0 \subset \varepsilon^{-N} L_0$ and so $\varepsilon^N g(L_0) \subset g(L'_0) \subset \varepsilon^{-N} g(L_0)$, so $gL' \in \Pi_{N,\lambda}^a(L)$. Thus g and g^{-1} induce mutually inverse morphisms of varieties $g: \Pi_{N,\lambda}^a(L) \to \Pi_{N,\lambda}^a(gL)$ and $g^{-1}: \Pi_{N,\lambda}^a(gL) \to \Pi_{N,\lambda}^a(L)$.

5.4.1 Action through an algebraic group

Let W be the $\mathbb{C}[\varepsilon]$ -module $\varepsilon^{-(1+N)}L_0/\varepsilon^N L_0$. ε^{2N+1} acts as zero on W and $\mathbb{C}[\varepsilon]/\langle \varepsilon^{2N+1}\rangle \otimes_{\mathbb{C}[\varepsilon]} W$ is a free $\mathbb{C}[\varepsilon]/\langle \varepsilon^{2N+1}\rangle$ -module of rank r. In particular, W is a complex vector space of dimension (2N+1)r.

Each element $g \in G_L$ determines an endomorphism \overline{g} of W, given by

$$\overline{g}(x + \varepsilon^N L_0) = g(x) + \varepsilon^N L_0,$$

for each $x \in \varepsilon^{-1-N}L_0$. Given $g, h \in G_L$, $\overline{gh} = \overline{gh}$ and so \overline{g} is an automorphism of W with $\overline{g}^{-1} = \overline{g}^{-1}$. Therefore the map $\overline{g}: G_L \mapsto \operatorname{GL}(W)$ given by $g \mapsto \overline{g}$ is a group homomorphism with kernel

$$H_{N,L} := \{ g \in G_L : \overline{g} = 1 \},$$

which consists of those $g \in G_L$ such that

$$g(x) - x \in \varepsilon^N L_0$$

for each $x \in \varepsilon^{-1-N}L_0$. Thus $G_L/H_{N,L}$ may be identified with a subgroup of GL(W).

Lemma 5.4.6. $G_L/H_{N,L}$ is a connected algebraic group.

Proof. As a result of the first isomorphism theorem, $G_L/H_{N,L}$ is isomorphic to the image of G_L in GL(W), which will be described explicitly by equations in the coordinate functions on GL(W), with respect to a fixed basis of W.

Let $\{\tilde{x}_1,\ldots,\tilde{x}_r\}$ be a basis of L_n/L_0 over \mathbb{C} which is adapted to the flag

$$L_1/L_0 \subset \cdots \subset L_{n-1}/L_0 \subset L_n/L_0$$

so that

$$L_i/L_0 = \langle \tilde{x}_1, \dots, \tilde{x}_{\lambda_1 + \dots \lambda_i} \rangle$$

for each $i \in \{1, ..., n\}$. Fix $x_1, ..., x_r \in L_n$ such that $\tilde{x}_i = x_i + L_0$ for each i = 1, ..., r, then

$$L_i = L_0 + \langle x_1, \dots, x_{\lambda_1 + \dots + \lambda_i} \rangle$$

for i = 1, ..., r.

Then W has a C-basis $\{y_j : 1 \le j \le (2N+1)r\}$ given by

$$y_{i+cr} = \varepsilon^{-c+N} x_i$$

for each $i \in \{1, ..., r\}$ and $c \in \{0, ..., 2N\}$. Observe that $\varepsilon y_i = 0$ for $i \in \{1, ..., r\}$ and $\varepsilon y_i = y_{i-r}$ for $r < i \le (2N+1)r$.

The coordinate functions on GL(W) with respect to this choice of basis are the maps

$$\gamma_{i,j} \colon \operatorname{GL}(W) \to \mathbb{C}$$

for $i, j \in \mathbb{Z}$ with $1 \le i, j \le (2N+1)r$, given by

$$g(y_j) = \sum_{i} \gamma_{ij}(g) y_i,$$

for each j = 1, ..., (2N + 1)r.

The image of G_L in GL(W) is the subgroup defined by the conditions

$$\gamma_{i,j} = \gamma_{i-r,j-r}$$

for each $i, j \in \{r + 1, \dots, (2N + 1)r\}$ and

$$\gamma_{i,j} = 0$$

for each $i, j \in \{1, \ldots, (2N+1)r\}$ with $i > \lambda_1 + \cdots + \lambda_s$ and $j \leq \lambda_1 + \cdots + \lambda_s$ for some $s \in \{1, \ldots, r\}$. This shows that the image of G_L in GL(W) is a connected algebraic group and therefore $G_L/H_{N,L}$ is a connected algebraic group.

With respect to the basis $\{y_i : i \in \{1, \dots, (2N+1)r\}\}$, the image of G_L in GL(W) consists of matrices of the form

$$\begin{pmatrix} A_0 & A_1 & A_2 & \cdots & A_{2N} \\ 0 & A_0 & A_1 & \cdots & A_{2N-1} \\ 0 & 0 & A_0 & \cdots & A_{2N-2} \\ 0 & 0 & 0 & \cdots & A_0 \end{pmatrix}$$

where $A_0 \in \mathcal{P}_{\lambda}$ and $A_1, \ldots, A_{2N} \in M_r(\mathbb{C})$, where \mathcal{P}_{λ} is the parabolic subgroup of $GL_r(\mathbb{C})$ which is the stabiliser of the flag

$$L_1/L_0 \subset \cdots \subset L_{n-1}/L_0 \subset L_n/L_0$$
.

Given $g \in G$, the map $G_L \to G_{gL}$ sending h to ghg^{-1} is a group isomorphism which descends to an isomorphism of algebraic groups $G_L/H_{N,L} \to G_{gL}/H_{N,gL}$. Thus we have a commuting diagram of morphisms of varieties, where the vertical arrows are isomorphisms:

$$G_L/H_{N,L} \times \Pi_{N,\lambda}^a(L) \longrightarrow \Pi_{N,\lambda}^a(L)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G_{aL}/H_{N,aL} \times \Pi_{N,\lambda}^a(gL) \longrightarrow \Pi_{N,\lambda}^a(gL)$$

5.4.2 Incidence in affine flag varieties

Lemma 5.4.7. Given $N, a, b, c \in \mathbb{N}$, $\lambda, \mu \in \Lambda_0$, $L \in \mathcal{F}$ and $i, j \in \mathbb{Z}$,

$$\left\{ (L',L'') \in \Pi_{N,\lambda}^a(L) \times \Pi_{N,\mu}^b(L) : \dim \left(\frac{L_i'}{L_i' \cap L_j''} \right) \le c \right\}$$

is a closed set in the projective variety $\Pi_{N,\lambda}^a(L) \times \Pi_{N,\mu}^b(L)$.

Proof. There is $M \geq N$ so that $\varepsilon^M L_0 \subset L_i' \subset \varepsilon^{-M} L_0$ and $\varepsilon^M L_0 \subset L_j'' \subset \varepsilon^{-M} L_0$. Let a' = a + (M - N)r and b' = b + (M - N)r. Lemma 5.4.3 shows that $\Pi_{N,\lambda}^a(L)$ is a subvariety of $\Pi_{M,\lambda}^{a'}(L)$, so $\Pi_{N,\lambda}^a(L) \times \Pi_{N,\mu}^b(L)$ is a subvariety of $\Pi_{M,\lambda}^{a'}(L) \times \Pi_{M,\mu}^{b'}(L)$.

The fact that

$$\dim\left(\frac{L_i'}{L_i'\cap L_j''}\right) = \dim\left(\frac{L_i'/\varepsilon^M L_0}{L_i'/\varepsilon^M L_0\cap L_j''/\varepsilon^M L_0}\right),\,$$

together with Lemma 5.4.2 and Lemma 5.3.1, shows that

$$\left\{(L',L'')\in\Pi_{M,\lambda}^{a'}(L)\times\Pi_{M,\mu}^{b'}(L):\dim\left(\frac{L_i'}{L_i'\cap L_j''}\right)\leq c\right\}$$

is closed, so the intersection with $\Pi^a_{N,\lambda}(L) \times \Pi^b_{N,\mu}(L)$ is closed.

Lemma 5.4.8. Given $N, a, c \in \mathbb{N}$, $\lambda \in \Lambda_0$, $L \in \mathcal{F}$ and $i, j \in \mathbb{Z}$,

$$\left\{ L' \in \Pi_{N,\lambda}^a(L) : \dim \left(\frac{L_i}{L_i \cap L'_j} \right) \le c \right\}$$

and

$$\left\{ L' \in \Pi_{N,\lambda}^a(L) : \dim \left(\frac{L'_j}{L_i \cap L'_j} \right) \le c \right\}$$

are closed sets in $\Pi_{N,\lambda}^a(L)$.

Proof. This is a result of Lemma 5.3.2, since

$$\dim\left(\frac{L_i}{L_i \cap L'_j}\right) = \dim\left(\frac{L_i/\varepsilon^M L_0}{L_i/\varepsilon^M L_0 \cap L'_j/\varepsilon^M L_0}\right),\,$$

where $M \geq N$ is chosen so that $\varepsilon^M L_0 \subset L_i \subset \varepsilon^{-M} L_0$ and $\varepsilon^M L_0 \subset L'_j \subset \varepsilon^{-M} L_0$ for each $L' \in \Pi^a_{N,\lambda}(L)$.

5.5 Geometry of orbits

Let $A \in \Lambda_1$ and $L \in \mathcal{F}_{ro(A)}$ and write $\lambda = co(A)$. Recall that

$$X_A^L = \{ L' \in \mathcal{F}_\lambda : (L, L') \in \mathcal{O}_A \}.$$

Lemma 5.5.1. There is $N \in \mathbb{N}$ such that $X_A^L \subset \Pi_{N,\lambda}^a(L)$, where $a = d_{nN,0}A$.

Proof. There is $N \in \mathbb{N}$ so that $a_{i,j} = 0$ whenever |j - i| > nN. If $(L, L') \in \mathcal{O}_A$ then

$$\dim\left(\frac{L_0'}{L_0'\cap\varepsilon^{-N}L_0}\right) = \dim\left(\frac{L_0'}{L_0'\cap L_{nN}}\right) = \sum_{s>nN,t\leq 0} a_{s,t} = 0,$$

so it follows $L_0' \subset \varepsilon^{-N} L_0$. Similarly,

$$\dim\left(\frac{\varepsilon^N L_0}{\varepsilon^N L_0 \cap L_0'}\right) = \dim\left(\frac{L_{-nN}}{L_{-nN} \cap L_0'}\right) = \sum_{s < -nN, t > 0} a_{s,t} = 0,$$

which shows $\varepsilon^N L_0 \subset L_0'$. Moreover,

$$\dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right) = \dim\left(\frac{\varepsilon^{-N}L_0}{\varepsilon^{-N}L_0 \cap L_0'}\right) = \sum_{s \le nN, t > 0} a_{s,t} = d_{nN,0}(A),$$

as a result of Lemma 5.2.5.

Assume $N \in \mathbb{N}$ is chosen so that $X_A^L \subset \Pi_{N,\lambda}^a(L)$, where $a = d_{nN,0}A$, as in Lemma 5.5.1.

Lemma 5.5.2. X_A^L is a locally closed subset of $\Pi_{N,\lambda}^a(L)$. In particular, X_A^L is a quasiprojective variety.

Proof. If $L' \in \Pi_{N,\lambda}^a(L)$ then

$$L_{-Nn} = \varepsilon^N L_0 \subset L_0' \subset L_1' \subset L_n' \subset \varepsilon^{-1-N} L_0 = L_{(N+1)n}.$$

Therefore X_A^L is the subset of $\Pi_{N,\lambda}^a(L)$ defined by the conditions $\dim(L_i/L_i \cap L_j') = d_{i,j}A$ for $i: -Nn \le i < j$ and $\dim(L_j'/L_i \cap L_j') = \bar{d}_{i,j}A$ for $i: j < i \le (N+1)n$, for $j=1,\ldots,n$.

The set of $L' \in \Pi_{N,\lambda}^a(L)$ with $\dim(L_i/\bar{L}_i \cap L'_j) \leq d_{i,j}A$ for $j = 1, \ldots, n$ and $i : -Nn \leq i < j$ and $\dim(L'_j/L_i \cap L'_j) \leq \bar{d}_{i,j}A$ for $j = 1, \ldots, n$ and $i : j < i \leq (N+1)n$ is a closed subset of $\Pi_{N,\lambda}^a(L)$, as a result of Lemma 5.4.8.

On the other hand, the set of $L' \in \Pi^a_{N,\lambda}(L)$ satisfying the conditions $\dim(L_i/L_i \cap L'_j) \geq d_{i,j}A$ (for i < j) and $\dim(L'_j/L_i \cap L'_j) \geq \bar{d}_{i,j}A$ (for i > j) is open in $\Pi^a_{N,\lambda}(L)$ since the complement is closed, as a result of Lemma 5.4.8.

Therefore X_A^L is the intersection of an open set and a closed set in $\Pi_{N,\lambda}^a(L)$, so X_A^L is locally closed. It follows that X_A^L is an open subset of the projective variety $\overline{X_A^L}$, so is a quasiprojective variety as claimed.

Lemma 5.5.3. X_A^L is irreducible.

Proof. For any $L' \in X_A^L$, $X_A^L = G_L/H_{N,L} \cdot L'$. Lemma 5.4.6 shows that $G_L/H_{N,L}$ is a connected algebraic group which acts algebraically on $\Pi_{N,\lambda}^a(L)$. The image of $G_L/H_{N,L}$ under the morphism $g \mapsto gL'$ equals X_A^L , which shows X_A^L is irreducible since $G_L/H_{N,L}$ is irreducible.

Consequently, $\overline{X_A^L}$ is an irreducible projective variety and the action of $G_L/H_{N,L}$ on $\Pi_{N,\lambda}^a(L)$ restricts to an algebraic group action on $\overline{X_A^L}$ for which there are finitely many orbits. In particular, $\overline{X_A^L} \setminus X_A^L$ is a union of finitely many orbits which are so-called degenerations of the orbit X_A^L .

5.6 Geometry of orbit products

Let $A, B \in \Lambda_1$ with co(A) = ro(B) and write $\lambda = co(A)$ and $\mu = co(B)$. Fix $L \in \mathcal{F}_{ro(A)}$. Recall

$$Y_{A,B}^L = \{(L',L'') \in \mathcal{F}_{\lambda} \times \mathcal{F}_{\mu} : L' \in X_A^L, L'' \in X_B^{L'}\}$$

and

$$X_{A,B}^L = \{L'' \in \mathcal{F}_{\mu} : \exists L' \in X_A^L \text{ with } L'' \in X_B^{L'}\}$$

Lemma 5.6.1. There is $N \in \mathbb{N}$ such that

$$Y_{A,B}^L \subset \Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L),$$

where $a = d_{nN,0}(A)$ and $b = d_{nN,0}(B)$.

Proof. There is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$ and $\varepsilon^N L_0' \subset L_0'' \subset \varepsilon^{-N} L_0'$ for each $(L', L'') \in Y_{A,B}^L$, using Lemma 5.5.1. Set $a = d_{nN,0}(A)$ and $b = d_{nN,0}(B)$.

Then for any $(L', L'') \in Y_{A,B}^L$,

$$\varepsilon^{2N}L_0 \subset \varepsilon^N L_0' \subset L_0'' \subset \varepsilon^{-N}L_0' \subset \varepsilon^{-2N}L_0$$

and

$$\dim\left(\frac{\varepsilon^{-2N}L_0}{L_0''}\right) = \dim\left(\frac{\varepsilon^{-N}L_0'}{L_0''}\right) + \dim\left(\frac{\varepsilon^{-2N}L_0}{\varepsilon^{-N}L_0'}\right)$$
$$= \dim\left(\frac{\varepsilon^{-N}L_0'}{L_0''}\right) + \dim\left(\frac{\varepsilon^{-N}L_0}{L_0'}\right)$$
$$= a + b,$$

as a result of Lemma 5.2.5, so $(L', L'') \in \Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L)$ as required.

Now assume $N \in \mathbb{N}$ is chosen so that $Y_{A,B}^L \subset \Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L)$, where $a = d_{nN,0}(A)$ and $b = d_{nN,0}(B)$, using Lemma 5.6.1.

Lemma 5.6.2. $Y_{A,B}^L$ is a locally closed subset of $\Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L)$. In particular, $Y_{A,B}^L$ is a quasiprojective variety.

Proof. $Y_{A,B}^L$ is the subset of $\Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L)$ consisting of those (L',L'') satisfying the following conditions: $\dim(L_i/L_i\cap L_j')=d_{i,j}(A)$ for i< j, $\dim(L_j'/L_i\cap L_j')=\bar{d}_{i,j}(A)$ for i> j, $\dim(L_i'/L_i'\cap L_j'')=d_{i,j}(B)$ for i< j and $\dim(L_j''/L_i'\cap L_j'')=\bar{d}_{i,j}(B)$. Only finitely many conditions are required to define $Y_{A,B}^L$ since there are only finitely many nonzero entries in A and B modulo the (n,n)-periodicity.

The conditions $\dim(L_i/L_i \cap L'_j) \leq d_{i,j}(A)$, $\dim(L'_i/L'_i \cap L''_j) \leq d_{i,j}(B)$, $\dim(L'_j/L_i \cap L'_j) \leq \bar{d}_{i,j}(A)$ and $\dim(L''_j/L'_i \cap L''_j) \leq \bar{d}_{i,j}(B)$ define closed subsets of $\Pi^a_{N,\lambda}(L) \times \Pi^{a+b}_{2N,\mu}(L)$ for each $i,j \in \mathbb{Z}$, as a result of Lemma 5.4.7 and Lemma 5.4.8.

On the other hand, the conditions $\dim(L_i/L_i \cap L'_j) \geq d_{i,j}(A)$, $\dim(L'_i/L'_i \cap L''_j) \geq d_{i,j}(B)$, $\dim(L'_j/L_i \cap L'_j) \geq \bar{d}_{i,j}(A)$ and $\dim(L''_j/L'_i \cap L''_j) \geq \bar{d}_{i,j}(B)$ define open subsets of $\Pi^a_{N,\lambda}(L) \times \Pi^{a+b}_{2N,\mu}(L)$ for each $i, j \in \mathbb{Z}$, using Lemma 5.4.7 and Lemma 5.4.8.

Therefore $Y_{A,B}^L$ is the intersection of finitely many open sets and finitely many closed sets in $\Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L)$, so $Y_{A,B}^L$ is locally closed. In particular, $Y_{A,B}^L$ is a quasiprojective variety. \square

Lemma 5.6.3. For any $L' \in X_A^L$, $Y_{A,B}^L = G_L \cdot (\{L'\} \times X_B^{L'})$.

Proof. Let $L' \in X_A^L$, then $\{L'\} \times X_B^{L'}$ is contained in $Y_{A,B}^L$ and G_L acts on $Y_{A,B}^L$, so $G_L \cdot (\{L'\} \times X_B^{L'})$ is contained in $Y_{A,B}^L$. If $(N', N'') \in Y_{A,B}^L$, then $N' = \sigma L'$ for some $\sigma \in G_L$, since $N' \in X_A^L$. Then $(N', N'') = \sigma(L', \sigma^{-1}N'')$ and $\sigma^{-1}N'' \in X_B^{\sigma^{-1}N'} = X_B^{L'}$, so $(N', N'') \in \sigma \cdot (\{L'\} \times X_B^{L'})$. Therefore $Y_{A,B}^L = G_L \cdot (\{L'\} \times X_B^{L'})$ as claimed.

Proposition 5.6.4. Y_{AB}^{L} is irreducible.

Proof. Let $L' \in X_A^L$. $G_L/H_{2N,L}$ is a connected algebraic group acting algebraically on $\Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L)$ by Lemma 5.4.6. $X_B^{L'}$ is an irreducible locally closed subset of $\Pi_{2N,\mu}^{a+b}(L)$, so $\{L'\} \times X_B^{L'}$ is an irreducible locally closed set in $\Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L)$. $Y_{A,B}^L = G_L \cdot (\{L'\} \times X_B^{L'}) = G_L/H_{2N,L} \cdot (\{L'\} \times X_B^{L'})$, by Lemma 5.6.3, so it follows that $Y_{A,B}^L$ is irreducible.

Let p_2 be the projection onto the second factor $\Pi^a_{N,\lambda}(L) \times \Pi^{a+b}_{2N,\mu}(L) \to \Pi^{a+b}_{2N,\mu}(L)$. p_2 is a closed morphism since $\Pi^a_{N,\lambda}(L)$ is a projective variety and therefore complete, by Lemma 5.4.2. Therefore $p_2(\overline{Y^L_{A,B}}) = \overline{X^L_{A,B}}$, since $p_2(Y^L_{A,B}) = X^L_{A,B}$.

Lemma 5.6.5. $X_{A.B}^{L}$ is irreducible and constructible.

Proof. Proposition 5.6.4 shows that $Y_{A,B}^L$ is irreducible and locally closed, so it follows $X_{A,B}^L$ is irreducible and constructible, since $X_{A,B}^L = p_2(Y_{A,B}^L)$.

Proposition 5.6.6. There is a unique open G_L -orbit in $X_{A,B}^L$.

Proof. $X_{A,B}^L$ consists of finitely many G_L -orbits and is an irreducible topological space, by Lemma 5.6.5. Consequently, X_C^L is dense in $X_{A,B}^L$ for some $C \in \Lambda_1^{A,B}$. Lemma 5.5.2 shows that X_C^L is locally closed in $X_{A,B}^L$, so X_C^L is open in $X_C^L = X_{A,B}^L$. Irreducibility of $X_{A,B}^L$ shows that there is a unique open G_L -orbit, since two nonempty open sets in $X_{A,B}^L$ intersect nontrivially, thus any two open G_L orbits in $X_{A,B}^L$ coincide.

Let $A*B \in \Lambda_1$ be the matrix corresponding to the dense open G_L -orbit in $X_{A,B}^L$, so $\overline{X_{A*B}^L} = \overline{X_{A,B}^L}$.

5.7 Degenerations of orbits and the combinatorial partial order

Theorem 5.7.1. Let $A, B \in \Lambda_1$ with ro(A) = ro(B) and co(A) = co(B), then $B \leq A$ if and only if $X_B^L \subset \overline{X_A^L}$ for any $L \in \mathcal{F}_{ro(A)}$.

Proof. Let $\lambda = \operatorname{co}(A)$, $\mu = \operatorname{ro}(A)$ and fix $L \in \mathcal{F}_{\mu}$. Assume $N \in \mathbb{N}$ is chosen so that $X_A^L \subset \Pi_{N,\lambda}^a(L)$ and $X_B^L \subset \Pi_{N,\lambda}^b(L)$, where $a = d_{nN,0}(A)$ and $b = d_{nN,0}(B)$. Then X_A^L is an open subset of the projective variety consisting of those $L' \in \Pi_{N,\lambda}^a(L)$ such that

$$\dim\left(\frac{L_i}{L_i\cap L'_j}\right) \le d_{i,j}(A)$$

and

$$\dim\left(\frac{L_j'}{L_i\cap L_j'}\right) \le \bar{d}_{i,j}(A),$$

for all $i, j \in \mathbb{Z}$.

Assume $X_B^L \subset \overline{X_A^L}$, then

$$d_{i,j}(B) = \dim\left(\frac{L_i}{L_i \cap L'_j}\right) \le d_{i,j}(A)$$

and

$$\bar{d}_{i,j}(B) = \dim\left(\frac{L'_j}{L_i \cap L'_j}\right) \le \bar{d}_{i,j}(A),$$

for each $i,j\in\mathbb{Z},$ for any $L'\in X_B^L.$ So $B\leq A$ if $X_B^L\leq \overline{X_A^L}.$

Conversely, suppose $A \leq B$.

Corollary 5.7.2. The maximum in $\Lambda_1^{A,B}$ is A * B.

5.8 Associativity of the generic product

Let $A, B, C \in \Lambda_1$ with co(A) = ro(B) and co(B) = ro(C) and fix $L \in \mathcal{F}_{ro(A)}$. Write $\lambda = co(A)$, $\mu = co(B)$ and $\nu = co(C)$. Define

$$Y_{A,B,C}^{L} = \left\{ (L', L'', L''') \in \mathcal{F}^3 : L' \in X_A^L, L'' \in X_B^{L'}, L''' \in X_C^{L''} \right\}$$

and

$$X_{A,B,C}^{L} = \{L''' \in \mathcal{F} : \exists (L',L'') \in \mathcal{F}^2 \text{ with } (L',L'',L''') \in Y_{A,B,C}^{L} \}.$$

Lemma 5.8.1. There is $N \in \mathbb{N}$ such that $Y_{A,B,C}^L$ is contained in $\Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L) \times \Pi_{3N,\nu}^{a+b+c}(L)$, where $a = d_{nN,0}(A)$, $b = d_{nN,0}(B)$ and $c = d_{nN,0}(C)$.

Proof. Lemma 5.5.1 shows that there is $N \in \mathbb{N}$ such that $\varepsilon^N L_0 \subset L_0' \subset \varepsilon^{-N} L_0$, $\varepsilon^N L_0' \subset L_0'' \subset \varepsilon^{-N} L_0'$ and $\varepsilon^N L_0'' \subset L_0''' \subset \varepsilon^{-N} L_0''$ for each $(L', L'', L''') \in Y_{A,B,C}^L$. Using the proof of Lemma 5.6.1, it follows $L'' \in \Pi_{2N,\mu}^{a+b}(L)$ and $L''' \in \Pi_{2N,\nu}^{b+c}(L') \subset \Pi_{3N,\nu}^{a+b+c}(L)$.

Assume $N \in \mathbb{N}$ is chosen so that $Y_{A,B,C}^L \subset \Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L) \times \Pi_{3N,\nu}^{a+b+c}(L)$, where $a = d_{nN,0}(A)$, $b = d_{nN,0}(B)$ and $c = d_{nN,0}(C)$, as in Lemma 5.8.1.

Lemma 5.8.2. $Y_{A,B,C}^L$ is a locally closed subset of $\Pi_{N,\lambda}^a(L) \times \Pi_{2N,\mu}^{a+b}(L) \times \Pi_{3N,\nu}^{a+b+c}(L)$. In particular, $Y_{A,B,C}^L$ is a quasiprojective variety.

Proof. Write $\Pi = \Pi^a_{N,\lambda}(L) \times \Pi^{a+b}_{2N,\mu}(L) \times \Pi_{3N,\nu}(L)$. Then $Y^L_{A,B,C}$ consists of those $(L',L'',L''') \in \Pi$ satisfying the following conditions:

$$\dim\left(\frac{L_i}{L_i \cap L'_j}\right) = d_{i,j}(A),\tag{5.1}$$

$$\dim\left(\frac{L_i'}{L_i'\cap L_j''}\right) = d_{i,j}(B),\tag{5.2}$$

$$\dim\left(\frac{L_i''}{L_i''\cap L_j'''}\right) = d_{i,j}(C),\tag{5.3}$$

for $(i, j) \in \{1, ..., n\} \times \mathbb{Z}$ with i < j < (N+1)n, and

$$\dim\left(\frac{L'_j}{L_i \cap L'_j}\right) = \bar{d}_{i,j}(A),\tag{5.4}$$

$$\dim\left(\frac{L_j''}{L_i'\cap L_j''}\right) = \bar{d}_{i,j}(B),\tag{5.5}$$

$$\dim\left(\frac{L_j'''}{L_i''\cap L_j'''}\right) = \bar{d}_{i,j}(C),\tag{5.6}$$

for $(i, j) \in \{1, ..., n\} \times \mathbb{Z}$ with -Nn < j < i. For i < j, the conditions

$$\dim (L_i/L_i \cap L'_j) \le d_{i,j}(A),$$

$$\dim (L'_i/L'_i \cap L''_i) \le d_{i,j}(B)$$

and

$$\dim \left(L_i''/L_i'' \cap L_j''' \right) \le d_{i,j}(C)$$

define closed subsets of Π , by Lemma 5.4.7. For i > j, the conditions

$$\dim (L'_j/L_i \cap L'_j) \le \bar{d}_{i,j}(A),$$

$$\dim (L''_i/L'_i \cap L''_i) \le \bar{d}_{i,j}(B)$$

and

$$\dim \left(L_j'''/L_i'' \cap L_j''' \right) \le \bar{d}_{i,j}(C)$$

also define closed subsets of Π .

On the other hand, the conditions dim $\left(L_i/L_i \cap L_j'\right) \geq d_{i,j}(A)$, dim $\left(L_i'/L_i' \cap L_j''\right) \geq d_{i,j}(B)$ and dim $\left(L_i''/L_i'' \cap L_j'''\right) \geq d_{i,j}(C)$ for i < j define open subsets of Π . Similarly, the conditions dim $\left(L_j''/L_i \cap L_j''\right) \geq \bar{d}_{i,j}(A)$, dim $\left(L_j''/L_i' \cap L_j''\right) \geq \bar{d}_{i,j}(B)$ and dim $\left(L_j'''/L_i'' \cap L_j'''\right) \geq \bar{d}_{i,j}(C)$ for i > j define open subsets of Π .

Therefore $Y_{A,B,C}^L$ is the intersection of finitely many closed sets in Π with finitely many open subsets of Π , so $Y_{A,B,C}^L$ is locally closed. In particular, $Y_{A,B,C}^L$ is a quasiprojective variety.

Lemma 5.8.3. For any $(L', L'', L''') \in Y_{A.B.C}^{L}$,

$$Y_{A,B,C}^{L} = \left\{ \alpha \cdot (L', \beta L'', \beta \gamma L''') : \alpha \in G_L, \beta \in G_{L'}, \gamma \in G_{L''} \right\}.$$

In particular,

$$Y_{A,B,C}^{L} = G_L \cdot \left(\{ L' \} \times Y_{B,C}^{L'} \right)$$

for each $L' \in X_A^L$.

Proof. Let $(L', L'', L''') \in Y_{A,B,C}^L$. Given $\alpha \in G_L$, $\beta \in G_{L'}$ and $\gamma \in G_{L''}$, $(\alpha L', \alpha \beta L'', \alpha \beta \gamma L''')$ is in $Y_{A,B,C}^L$ since

$$(L, \alpha L') = \alpha(L, L') \in \mathcal{O}_A$$
$$(\alpha L', \alpha \beta L'') = \alpha \beta(L', L'') \in \mathcal{O}_B$$
$$(\alpha \beta L'', \alpha \beta \gamma L''') = \alpha \beta \gamma(L'', L''') \in \mathcal{O}_C$$

For each $(N', N'', N''')Y_{A,B,C}^L$ there exist $\sigma_1, \sigma_2, \sigma_3 \in G$ with

$$(L, N') = \sigma_1(L, L')$$

$$(N', N'') = \sigma_2(L', L'')$$

$$(N'', N''') = \sigma_3(L'', L''').$$

Let $\alpha = \sigma_1$, $\beta = \sigma_1^{-1}\sigma_2$ and $\gamma = \sigma_2^{-1}\sigma_3$, so $\sigma_2 = \alpha\beta$ and $\sigma_3 = \alpha\beta\gamma$. It follows that

$$(N', N'', N''') = (\alpha L', \alpha \beta L'', \alpha \beta \gamma L'''),$$

which proves the first claim. The second claim follows from the first since $(L'', L''') \in Y_{B,C}^{L'}$ and therefore

$$Y_{B,C}^{L'} = \{ (\beta L'', \beta \gamma L''') : \beta \in G_{L'}, \gamma \in G_{L''} \},$$

as required.

Proposition 5.8.4. $Y_{A,B,C}^{L}$ is irreducible.

Proof. Write

$$\Pi = \Pi^a_{N,\lambda}(L) \times \Pi^{a+b}_{2N,\mu}(L) \times \Pi^{a+b+c}_{3N,\nu}(L).$$

Lemma 5.4.2 shows that Π is a projective algebraic variety and Lemma 5.4.6 shows that $G_L/H_{3N,L}$ is a connected algebraic group acting algebraically on Π by the diagonal action.

Let $L' \in X_A^L$. As a result of Lemma 5.8.3

$$Y_{A,B,C}^{L} = G_{L} \cdot (\{L'\} \times Y_{B,C}^{L'})$$

= $G_{L}/H_{3N,L} \cdot (\{L'\} \times Y_{B,C}^{L'}).$

Proposition 5.6.4 shows that $Y_{B,C}^{L'}$ is irreducible, so $\{L'\} \times Y_{B,C}^{L'}$ is irreducible. The image of $\{L'\} \times Y_{B,C}^{L'}$ under the action of $G_L/H_{3N,L}$ is irreducible, since $G_L/H_{3N,L}$ is connected and therefore irreducible. Therefore $Y_{A,B,C}^{L}$ is irreducible.

Let p_3 be the projection of $\Pi^a_{N,\lambda}(L) \times \Pi^{a+b}_{2N,\mu}(L) \times \Pi^{a+b+c}_{3N,\nu}(L)$ onto the third factor. By the completeness property of projective varieties, p_3 is a closed morphism. The image of $Y^L_{A,B,C}$ under p_3 is $X^L_{A,B,C}$, so $p_3(\overline{Y^L_{A,B,C}}) = \overline{X^L_{A,B,C}}$.

Lemma 5.8.5. $X_{A,B,C}^{L}$ is irreducible and constructible.

Proof. Lemma 5.8.2 and Proposition 5.8.4 show that $Y_{A,B,C}^L$ is locally closed and irreducible. It follows $X_{A,B}^L$ is irreducible and constructible, since $X_{A,B,C}^L$ is the image of $Y_{A,B,C}^L$ under the morphism p_3 .

Lemma 5.8.6. There is a unique open and dense G_L -orbit in $X_{A,B,C}^L$.

Proof. There are only finitely many G_L -orbits in $X_{A,B,C}^L$. In particular,

$$X_{A,B,C}^L = \bigcup_{D \in \Lambda_1{}^{A,B}} X_{D,C}^L = \bigcup_{D \in \Lambda_1{}^{A,B}} \bigcup_{D' \in \Lambda_1{}^{D,C}} X_{D'}^L$$

and

$$\overline{X^L_{A,B,C}} = \bigcup_{D \in \Lambda_1{}^{A,B}} \bigcup_{D' \in \Lambda_1{}^{D,C}} \overline{X^L_{D'}}.$$

There is $D \in \Lambda_1$ such that $\overline{X_D^L} = \overline{X_{A,B,C}^L}$, since $X_{A,B,C}^L$ is irreducible, by Lemma 5.8.5. By Lemma 5.5.2, X_D^L is open in $\overline{X_D^L} = \overline{X_{A,B,C}^L}$, so X_D^L is open in $X_{A,B,C}^L$.

If X_D^L and $X_{D'}^L$ are open in $X_{A,B,C}^L$, then X_D^L and $X_{D'}^L$ have nonempty intersection since $X_{A,B,C}^L$ is irreducible, then $X_D^L = X_{D'}^L$.

Lemma 5.8.7. $p_3^{-1}(X_{A*B,C}^L)$ is open in $\overline{Y_{A,B,C}^L}$.

Proof. Projection onto the second component is a closed morphism of varieties $p_2 \colon \overline{Y_{A,B,C}^L} \to \overline{X_{A,B}^L}$ with $p_2(Y_{A,B,C}^L) = X_{A,B}^L$. It follows that $p_3^{-1}(X_{A*B,C}^L)$ is open in $\overline{Y_{A,B,C}^L}$ since $p_3^{-1}(X_{A*B,C}^L) = p_2^{-1}(X_{A*B}^L)$ and X_{A*B}^L is open in $\overline{X_{A,B}^L}$.

Lemma 5.8.8. $p_3^{-1}(X_{A,B*C}^L)$ is open in $\overline{Y_{A,B,C}^L}$.

Proof. $p_3^{-1}(X_{A,B*C}^L)$ consists of those $(L',L'',L''') \in \overline{Y_{A,B,C}^L}$ such that $\dim\left(L'_i/L'_i\cap L'''_j\right) \geq d_{i,j}(B*C)$ for i < j and $\dim\left(L'''_j/L'_i\cap L'''_j\right) \geq \bar{d}_{i,j}(B*C)$ for i > j. Each of these conditions defines an open subset of $\overline{Y_{A,B,C}^L}$ as a result of Lemma 5.4.7 and only finitely many conditions are required to determine $p_3^{-1}(X_{A,B*C}^L)$, as before. Therefore $p_3^{-1}(X_{A,B*C}^L)$ is the intersection of finitely many open sets in $\overline{Y_{A,B,C}^L}$, so is open as claimed.

Proposition 5.8.9. $X_{A*(B*C)}^{L} = X_{(A*B)*C}^{L}$

Proof. The unique open G_L -orbit in $X_{A*B,C}^L$ is $X_{(A*B)*C}^L$, so $p_3^{-1}(X_{(A*B)*C}^L)$ is open in $p_3^{-1}(X_{A*B,C}^L)$. Lemma 5.8.7 shows that $p_3^{-1}(X_{A*B,C}^L)$ is open in $\overline{Y_{A,B,C}^L}$, so $p_3^{-1}(X_{(A*B)*C}^L)$ is open in $\overline{Y_{A,B,C}^L}$.

Similarly, $X_{A*(B*C)}^{L}$ is open in $X_{A,B*C}^{L}$, so $p_{3}^{-1}(X_{A*(B*C)}^{L})$ is open in $p_{3}^{-1}(X_{A,B*C}^{L})$. Lemma 5.8.8 shows that $p_{3}^{-1}(X_{A,B*C}^{L})$ is open in $\overline{Y_{A,B,C}^{L}}$, so it follows $p_{3}^{-1}(X_{A*(B*C)}^{L})$ is open in $\overline{Y_{A,B,C}^{L}}$.

Therefore $f^{-1}(X_{A*(B*C)}^L)$ has nonempty intersection with $f^{-1}(X_{(A*B)*C}^L)$, since $Y_{A,B,C}^L$ is irreducible by Proposition 5.8.4. It follows that the G_L -orbits $X_{A*(B*C)}^L$ and $X_{(A*B)*C}^L$ have nonempty intersection and therefore $X_{A*(B*C)}^L$ equals $X_{(A*B)*C}^L$.

5.9 The generic affine algebra

The generic affine algebra of rank r and period n, denoted by $\hat{G}(n,r)$, is a free \mathbb{Z} -module with basis $\{e_A : A \in \Lambda_1\}$ and \mathbb{Z} -bilinear multiplication given by

$$e_A * e_B = e_{A*B}$$

for $A, B \in \Lambda_1$ with co(A) = ro(B), and

$$e_A * e_B = 0$$

for $A, B \in \Lambda_1$ with $co(A) \neq ro(B)$.

Proposition 5.9.1. The generic algebra $\hat{G}(n,r)$ is an associative \mathbb{Z} -algebra with 1, with

$$1 = \sum_{\lambda \in \Lambda_0} 1_{\lambda}$$

where

$$1_{\lambda} = e_{D_{\lambda}},$$

for each $\lambda \in \Lambda_0$.

Proof. Let $A, B, C \in \Lambda_1$. If $co(A) \neq ro(B)$ or $co(B) \neq ro(C)$, then

$$(e_A * e_B) * e_C = 0 = e_A * (e_B * e_C),$$

so we may now suppose co(A) = ro(B) and co(B) = ro(C).

As a result of Proposition 5.8.9,

$$(e_A * e_B) * e_C = e_{(A*B)*C}$$

= $e_{A*(B*C)}$
= $e_A * (e_B * e_C)$,

so it follows $\hat{G}(n,r)$ is an associative \mathbb{Z} -algebra.

The expression for the multiplicative identity follows from Lemma 3.1.7, since

$$e_A * \left(\sum_{\lambda \in \Lambda_0} 1_{\lambda}\right) = e_A * 1_{\operatorname{co}(A)} = e_A$$

and

$$\left(\sum_{\lambda \in \Lambda_0} 1_{\lambda}\right) * e_A = 1_{\text{ro}(A)} * e_A = e_A,$$

for each $A \in \Lambda_1$.

5.9.1 A categorical perspective

Proposition 5.9.2. The following constitutes a small category: the set of objects is Λ_0 and the set of morphisms is Λ_1 . Given compositions $\lambda, \mu \in \Lambda_0$, the morphisms with source μ and target λ are those matrices $A \in \Lambda_1$ with $co(A) = \mu$ and $ro(A) = \lambda$. Given $\lambda, \mu, \nu \in \Lambda_0$ and $A, B \in \Lambda_1$ with $co(B) = \nu$, $ro(B) = \mu = co(A)$ and $ro(A) = \lambda$, their composition is A * B, with source $co(A * B) = co(B) = \nu$ and target $ro(A * B) = ro(A) = \lambda$.

Proof. Proposition 5.8.9 shows that the generic product * is associative. For each object $\lambda \in \Lambda_0$, the identity morphism $\lambda \to \lambda$ is the diagonal matrix D_{λ} .

Then the generic affine algebra $\hat{G}(n,r)$ may be realised as the \mathbb{Z} -algebra of this category. Observe that there are only finitely many objects in this category and distinct objects are non-isomorphic, so the isomorphism classes in this category are in one to one correspondence with Λ_0 . The \mathbb{Z} -algebra of this category is the free \mathbb{Z} -module on Λ_1 with \mathbb{Z} -bilinear multiplication given by the generic product *.

A realisation of affine zero Schur algebras

The purpose of this chapter is to study the link between the generic affine algebra $\hat{G}(n,r)$ to the affine 0-Schur algebra $\hat{S}_0(n,r)$.

The main result is the construction of an isomorphism of \mathbb{Z} -algebras from $\hat{G}(n,r)$ to $\hat{S}_0(n,r)$ such that $E_i \mapsto E_i$, $F_j \mapsto F_j$ and $1_{\lambda} \mapsto 1_{\lambda}$, in the case that $n,r \geq 1$ with r < n.

6.1 Preliminary results on the generic affine algebra

Recall that the generic affine algebra $\hat{G}(n,r)$ is an associative \mathbb{Z} -algebra with a multiplicative basis $\{e_A : A \in \Lambda_1\}$ over \mathbb{Z} , where

$$e_A * e_B = e_{A*B}$$

for $A, B \in \Lambda_1$ with co(A) = ro(B), and

$$e_A * e_B = 0$$

for $A, B \in \Lambda_1$ with $co(A) \neq ro(B)$.

6.1.1 Elementary basis elements

For $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ such that $\lambda_{i+1} > 0$, define

$$E_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i,i+1} - \mathcal{E}_{i+1,i+1}}$$

and let

$$E_i = \sum_{\lambda \in \Lambda_0: \lambda_{i+1} > 0} E_{i,\lambda}$$

for each $i \in \{1, \ldots, n\}$

For $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ such that $\lambda_i > 0$, define

$$F_{i,\lambda} = e_{D_{\lambda} + \mathcal{E}_{i+1,i} - \mathcal{E}_{i,i}}$$

and let

$$F_i = \sum_{\lambda \in \Lambda_0: \lambda_i > 0} F_{i,\lambda}$$

for each $i \in \{1, \ldots, n\}$.

Lemma 6.1.1. Let $i \in \{1, ..., n\}$ and $A \in \Lambda_1$ and write $\mu = ro(A)$. If $\mu_{i+1} = 0$ then $E_i * e_A = 0$. If $\mu_{i+1} > 0$, then

$$E_i * e_A = e_{A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}},$$

where

$$p = \max\{j \in \mathbb{Z} : a_{i+1,j} > 0\}.$$

If $\mu_i = 0$ then $F_i e_A = 0$. If $\mu_i > 0$ then

$$F_i * e_A = e_{A + \mathcal{E}_{i+1,q} - \mathcal{E}_{i,q}},$$

where

$$q = \min\{j \in \mathbb{Z} : a_{i,j} > 0\}.$$

Proof. Suppose $\mu_{i+1} > 0$. Recall that the corresponding product in the affine q-Schur algebra $\hat{S}_q(n,r)$ is

$$E_i \cdot e_A = \sum_{j \in \mathbb{Z}: a_{i+1,j} > 0} q^{\sum_{t>j} a_{i,t}} [[a_{i,j} + 1]] e_{A+\mathcal{E}_{i,j} - \mathcal{E}_{i+1,j}},$$

by Lemma 4.1.2.

Suppose $B \in \Lambda_1$ with $B = A + \mathcal{E}_{i,j} - \mathcal{E}_{i+1,j}$ for some $j \in \mathbb{Z}$. For $s \in \{1, ..., n\}$ and $t \in \mathbb{Z}$,

$$d_{s,t}(B) = \begin{cases} d_{s,t}(A) + 1 & : s = i \text{ and } t < j, \\ d_{s,t}(A) & : \text{ otherwise,} \end{cases}$$

and

$$\bar{d}_{s,t}(B) = \begin{cases} \bar{d}_{s,t}(A) - 1 & : s = i \text{ and } t \ge j, \\ \bar{d}_{s,t}(A) & : \text{ otherwise.} \end{cases}$$

It follows that if j' < j, then

$$A + \mathcal{E}_{i,j'} - \mathcal{E}_{i+1,j'} < A + \mathcal{E}_{i,j} - \mathcal{E}_{i+1,j}.$$

Therefore, the product in $\hat{G}(n,r)$ is given by

$$E_i * e_A = e_{A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}},$$

where

$$p = \max\{j \in \mathbb{Z} : a_{i+1,j} > 0\}.$$

The argument for the action of F_i is similar, but there is a pleasing symmetry in the two proofs.

Now suppose $\mu_i > 0$. Using Lemma 4.1.2,

$$F_i \cdot e_A = \sum_{j \in \mathbb{Z}: a_{i,j} > 0} q^{\sum_{t < j} a_{i+1,t}} [[a_{i+1,j} + 1]] e_{A+\mathcal{E}_{i+1,j} - \mathcal{E}_{i,j}},$$

in $\hat{S}_q(n,r)$.

Suppose $B \in \Lambda_1$ with $B = A + \mathcal{E}_{i+1,j} - \mathcal{E}_{i,j}$, for some $j \in \mathbb{Z}$. Then for $i \in \{1, ..., n\}$ and $j \in \mathbb{Z}$,

$$d_{s,t}(B) = \begin{cases} d_{s,t}(A) - 1 & : s = i \text{ and } t < j, \\ d_{s,t}(A) & : \text{ otherwise,} \end{cases}$$

and

$$\bar{d}_{s,t}(B) = \begin{cases} \bar{d}_{s,t}(A) + 1 & : s = i \text{ and } t \ge j, \\ \bar{d}_{s,t}(A) & : \text{ otherwise.} \end{cases}$$

Then if j' < j it follows

$$A + \mathcal{E}_{i+1,j'} - \mathcal{E}_{i,j'} > A + \mathcal{E}_{i+1,j} - \mathcal{E}_{i,j},$$

so the terms with nonzero coefficients in the product $F_i \cdot e_A$ are totally ordered, with maximal element

$$F_i * e_A = e_{A + \mathcal{E}_{i+1,q} - \mathcal{E}_{i,q}},$$

where $q = \min\{j \in \mathbb{Z} : a_{i,j} > 0\}.$

6.1.2 Transpose involution

Let S be the \mathbb{Z} -module automorphism of $\hat{G}(n,r)$ given by

$$S(e_A) = e_{A^{\top}}$$

for each $A \in \Lambda_1$.

Lemma 6.1.2. The map S is a \mathbb{Z} -algebra antihomomorphism. In particular,

$$e_{A^{\top}} * e_{B^{\top}} = e_B * e_A,$$

for each $A, B \in \Lambda_1$.

Proof. Lemma 5.2.4 show that the transpose preserves the partial order on Λ_1 and so

$$(B*A)^{\top} = A^{\top}*B^{\top},$$

using Lemma 4.1.1.

For any $A \in \Lambda_1$,

$$S(S(e_A)) = e_{(A^\top)^\top} = e_A,$$

so $S \circ S$ is the identity map on $\hat{S}_q(n,r)$.

For each $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ with $\lambda_{i+1} > 0$,

$$S(E_{i,\lambda}) = F_{i,\lambda+\alpha_i},$$

for each $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ with $\lambda_i > 0$,

$$S(F_{i,\lambda}) = E_{i,\lambda-\alpha_i}$$
, and

and

$$S(1_{\lambda}) = 1_{\lambda},$$

for each $\lambda \in \Lambda_0$.

Lemma 6.1.3. Let $i \in \{1, ..., n\}$ and $A \in \Lambda_1$ and write $\lambda = co(A)$. If $\lambda_j = 0$ then $e_A * E_j = 0$. If $\lambda_j > 0$ then

$$e_A * E_j = e_{A + \mathcal{E}_{p,j+1} - \mathcal{E}_{p,j}},$$

where

$$p = \min\{i \in \mathbb{Z} : a_{i,i} > 0\}.$$

If
$$\lambda_{j+1} = 0$$
 then $e_A * F_j = 0$. If $\lambda_{j+1} > 0$ then

$$e_A * F_j = e_{A + \mathcal{E}_{q,j} - \mathcal{E}_{q,j+1}},$$

where

$$q = \max\{i \in \mathbb{Z} : a_{i,j+1} > 0\}.$$

Proof. This follows immediately on applying the transpose involution to the formulas for the action of E_i and F_i on the left given in Lemma 6.1.1.

Equally, this result can be proven directly using the formulas for the action of E_i and F_i on the right in Lemma 4.1.3, as in the proof of Lemma 6.1.1.

6.1.3 Shifting and periodicity

For each $\lambda \in \Lambda_0$, define

$$R_{\lambda} = e_{[1]D_{\lambda}} = e_{\lambda_1 \mathcal{E}_{0,1} + \dots + \lambda_n \mathcal{E}_{n-1,n}}$$

and set

$$R = \sum_{\lambda \in \Lambda_0} R_{\lambda}.$$

Lemma 6.1.4. For each $A \in \Lambda_1$,

$$R * e_A = e_{[1]A}$$

and

$$e_A * R = e_{A[-1]}.$$

Proof. Lemma 4.1.4 shows that the same formulas hold in $\hat{S}_q(n,r)$, then the result follows for the generic multiplication *, since each product $R * e_A$ and $e_A * R$ is supported on one orbit, so the generic multiplication and the product on $\hat{S}_q(n,r)$ are the same in this instance.

Observe that

$$S(R_{\lambda}) = e_{\lambda_1 \mathcal{E}_{1,0} + \dots + \lambda_n \mathcal{E}_{n,n-1}}$$
$$= e_{[-1]D_{[1]\lambda}}$$

so

$$S(R) = \sum_{\lambda \in \Lambda_0} e_{[-1]D_{\lambda}}.$$

Lemma 6.1.5. The element R of $\hat{G}(n,r)$ is invertible, with

$$R * S(R) = 1 = S(R) * R.$$

Proof. Lemma 6.1.4 shows that

$$R * S(R)1_{\lambda} = Re_{[-1]D_{[1]\lambda}}$$
$$= e_{D_{[1]\lambda}}$$
$$= 1_{[1]\lambda}$$

for each $\lambda \in \Lambda_0$, so

$$R * S(R) = 1.$$

Similarly,

$$\begin{split} S(R)*R &= \sum_{\lambda \in \Lambda_0} e_{D_{\lambda}[1]} * R \\ &= \sum_{\lambda \in \Lambda_0} e_{D_{\lambda}} \\ &= 1. \end{split}$$

Let τ be the \mathbb{Z} -algebra automorphism of $\hat{G}(n,r)$ given by conjugation by R, so

$$\tau(e_A) = R * e_A * S(R)$$
$$= R * e_A * R^{-1}.$$

for each $A \in \Lambda_1$.

Then τ has order n, since

$$\tau^n(e_A) = e_{[n]A[n]} = e_A,$$

by the *n*-periodicity condition on Λ_1 .

As in Lemma 4.1.6, it follows from Lemma 6.1.4 that

$$\tau(E_{i,\lambda}) = E_{i-1,\lceil 1\rceil\lambda}$$

for $i \in \{1, ..., r\}$ and $\lambda \in \Lambda_0$ with $\lambda_{i+1} > 0$,

$$\tau(F_{i,\lambda}) = F_{i-1,\lceil 1\rceil\lambda}$$

for $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$ with $\lambda_i > 0$, and

$$\tau(1_{\lambda}) = 1_{[1]\lambda}$$

for $\lambda \in \Lambda_0$.

In particular,

$$\tau(E_i) = E_{i-1}$$
$$\tau(F_i) = F_{i-1}$$

for $i \in \{1, ..., r\}$.

As earlier, I can not be sure but I think this map τ is related to the Auslander-Reiten translation on the isomorphism classes of nilpotent representations of the cyclic quiver on n vertices. The result that $\tau(E_i) = E_{i-1}$ is consistent with the fact the A.R translation sends the simple representation at vertex i to the simple representation at vertex i-1.

6.2 Multiplicative bases in affine zero Schur algebras: motivating example

Recall that the affine 0-Schur algebra $\hat{S}_0(n,r)$ is an associative \mathbb{Z} -algebra with a \mathbb{Z} -basis

$$\{e_A:A\in\Lambda_1\}$$

and with \mathbb{Z} -bilinear product given by

$$e_A e_B = \sum_{C \in \Lambda_1} \gamma_{A,B,C}(0) e_C,$$

with multiplicative identity

$$\sum_{\lambda \in \Lambda_0} 1_{\lambda}.$$

The result of the shifting lemma, Lemma 4.1.4, also holds in $\hat{S}_0(n,r)$. In particular,

$$Re_A = e_{[1]A}$$

and

$$e_A R = e_{A[-1]},$$

for each $A \in \Lambda_1$.

Now assume r = 1, so

$$\Lambda_1(n,1) = \{ \mathcal{E}_{i,j} : (i,j) \in \mathbb{Z} \times \{1,\ldots,n\} \}$$

and

$$\Lambda_0(n,1) = \{\varepsilon_n, \dots, \varepsilon_1\}.$$

Lemma 6.2.1. The distinguished basis $\{e_A : A \in \Lambda_1(n,1)\}$ is a multiplicative basis of $\hat{S}_0(n,1)$. More precisely,

$$e_{\mathcal{E}_{i,j}}e_{\mathcal{E}_{j,k}}=e_{\mathcal{E}_{i,k}}$$

for $i, j, k \in \mathbb{Z}$, and

$$e_{\mathcal{E}_{i,i}}e_{\mathcal{E}_{k,l}}=0$$

for $i, j, k, l \in \mathbb{Z}$ with $j \neq k$ modulo n.

Proof. Let $i, j \in \mathbb{Z}$. Lemma 4.1.4 shows that

$$e_{\mathcal{E}_{i,j}} = R^{j-i} 1_{\varepsilon_j},$$

where the subscript of ε_j is taken modulo n.

If $i, j, k, l \in \mathbb{Z}$ with $j \neq k$ modulo n, then

$$co(\mathcal{E}_{i,j}) = \varepsilon_j \neq \varepsilon_k = ro(\mathcal{E}_{k,l}),$$

so

$$e_{\mathcal{E}_{i,j}}e_{\mathcal{E}_{k,l}}=0.$$

Finally, let $i, j, k \in \mathbb{Z}$. Then

$$\begin{split} e_{\mathcal{E}_{i,j}} e_{\mathcal{E}_{j,k}} &= R^{j-i} 1_{\varepsilon_j} R^{k-j} 1_{\varepsilon_k} \\ &= R^{j-i} R^{k-j} 1_{\varepsilon_k} \\ &= R^{k-i} 1_{\varepsilon_k} \\ &= e_{\mathcal{E}_{i,k}}. \end{split}$$

This proves that the basis $\{e_A : A \in \Lambda_1(n,1)\}$ of $\hat{S}_0(n,1)$ is a multiplicative basis.

This result also shows that the product in $\hat{S}_0(n,1)$ is the same as the generic product, since

$$e_A e_B = e_{A*B}$$

if co(A) = ro(B), and

$$e_A e_B = 0$$

if $co(A) \neq ro(B)$, for $A, B \in \Lambda_1(n, 1)$.

Corollary 6.2.2. For each integer $n \geq 1$,

$$\hat{S}_0(n,1) = \hat{G}(n,1).$$

Proof. This is a consequence of Lemma 6.2.1 and the comment which follows the proof. \Box

6.3 Aperiodicity in the generic affine algebra

Definition 6.3.1. An element $A \in \Lambda_1$ is aperiodic if for each $l \in \mathbb{Z} \setminus \{0\}$ there exists $i \in \mathbb{Z}$ such that $a_{i,i+l} = 0$.

An element of $\hat{G}(n,r)$ is said to be aperiodic if it is a \mathbb{Z} -linear combination of basis elements e_A corresponding to the aperiodic elements in Λ_1 .

For example, the diagonal matrix D_{λ} is aperiodic so 1_{λ} is aperiodic, for any $\lambda \in \Lambda_0$. The elementary basis elements $E_{i,\lambda}$ and $F_{i,\lambda}$ introduced earlier are also aperiodic.

When r < n, any element $A \in \Lambda_1$ is aperiodic since co(A) is insincere and therefore A has a zero column.

Lemma 6.3.1. Suppose $A \in \Lambda_1$ is aperiodic and write $\mu = \text{ro}(A)$. If $\mu_{i+1} > 0$, then $E_i * e_A$ is aperiodic. If $\mu_i > 0$, then $F_i * e_A$ is aperiodic.

Proof. Let $A \in \Lambda_1$ be aperiodic and let $\mu = ro(A)$.

Suppose $\mu_{i+1} > 0$. There is $p \in \mathbb{Z}$ such that $a_{i+1,p} > 0$ and $a_{i+1,p'} = 0$ whenever p' > p. Lemma 4.1.2 shows that $E_i * e_A = e_B$, where $B = A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}$. Let $l \in \mathbb{Z} \setminus \{0\}$. If $l \notin \{p-i, p-i-1\}$, then $b_{s,s+l} = a_{s,s+l}$ for each $s \in \mathbb{Z}$, so there is $s \in \mathbb{Z}$ such that $b_{s,s+l} = a_{s,s+l} = 0$, since A is aperiodic. If l = p - i, then $b_{i+1,i+1+l} = b_{i+1,p+1} = a_{i+1,p+1} = 0$, by maximality of p. If l = p - i - 1, there is $s \neq i+1$ such that $a_{s,s+l} = 0$, since A is aperiodic and $a_{i+1,i+1+l} = a_{i+1,p} > 0$, so $b_{s,s+l} = a_{s,s+l} = 0$. Therefore, $B = A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}$ is aperiodic.

Suppose $\mu_i > 0$. Lemma 4.1.2 shows that $F_i * e_A = e_C$ where $C = A + \mathcal{E}_{i+1,p} - \mathcal{E}_{i,p}$ and $p = \min\{p' \in \mathbb{Z} : a_{i,p'} > 0\}$. Let $l \in \mathbb{Z} \setminus \{0\}$. If $l \notin \{p-i, p-i-1\}$ then $c_{s,s+l} = a_{s,s+l}$ for each $s \in \mathbb{Z}$, so there is $s \in \mathbb{Z}$ such that $c_{s,s+p} = a_{s,s+p} = 0$, by aperiodicity of A. If l = p - i, then $a_{i,i+l} = a_{i,p} > 0$, so there is $s \neq i$ such that $a_{s,s+l} = 0$. Then $c_{s,s+l} = a_{s,s+l} = 0$. Finally, if l = p - i - 1, then $c_{i,i+l} = a_{i,p-1} = 0$ by minimality of p. Thus C is aperiodic as required. \square

Suppose $\lambda \in \Lambda_0$ and

$$\omega = \omega_1 \cdots \omega_m$$

where

$$\omega_1,\ldots,\omega_m\in\{E_1,\ldots,E_n\}\cup\{F_1,\ldots,F_n\}.$$

Either $\omega * 1_{\lambda} = 0$ or $\omega * 1_{\lambda} = e_A$ for some $A \in \Lambda_1$, where A is aperiodic, as a result of Lemma 6.3.1.

The next step is to prove a converse of this result. It will be shown that each of the aperiodic basis elements e_A in $\hat{G}(n,r)$ can be expressed in the form $\omega 1_{\lambda}$, where ω is a word in $E_1, \ldots E_n$ and F_1, \ldots, F_n and $\lambda = \operatorname{co}(A)$. This will be proven by induction on the 'weight' of a matrix by showing how any aperiodic basis element can be written as the product of some E_i or F_i with an aperiodic basis element of strictly smaller weight.

Definition 6.3.2. For each $A \in \Lambda_1$, define the weight of A to be the non negative integer $\operatorname{wt}(A)$ given by

$$\operatorname{wt}(A) = \sum_{i \in \{1, \dots, n\}, j \in \mathbb{Z}} |j - i| a_{i,j}.$$

Observe that

$$wt(A) = \sum_{[i,j]:i < j} (j-i)a_{i,j} + \sum_{[i,j]:i > j} (i-j)a_{i,j}.$$

Also write $\operatorname{wt}(e_A) = \operatorname{wt}(A)$. Then 1_{λ} has weight 0, and $E_{i,\lambda}$ and $F_{i,\lambda}$ have weight 1. In fact, the converses also hold in that $\operatorname{wt}(e_A) = 0$ implies $e_A = 1_{\lambda}$ for some λ , and $\operatorname{wt}(e_A) = 1$ implies e_A is $E_{i,\lambda}$ or $F_{i,\lambda}$ for some i and λ .

Lemma 6.3.2. Let $A \in \Lambda_1$ and write $\mu = ro(A)$. Suppose $\mu_{i+1} > 0$ and set

$$p = \max\{p' \in \mathbb{Z} : a_{i+1,p'} > 0\}.$$

If p > i then

$$\operatorname{wt}(E_i * e_A) = 1 + \operatorname{wt}(e_A)$$

and if $p \leq i$ then

$$\operatorname{wt}(E_i * e_A) = -1 + \operatorname{wt}(e_A).$$

Proof. Lemma 6.1.1 shows that

$$E_i * e_A = e_{A + \mathcal{E}_{i,p} - \mathcal{E}_{i+1,p}}$$

SO

$$\operatorname{wt}(E_i * e_A) - \operatorname{wt}(e_A) = |p - i| - |p - i - 1|,$$

which equals 1 if p > i and equals -1 if $p \le i$.

Lemma 6.3.3. Let $A \in \Lambda_1$ and $\mu = \text{ro}(A)$. Suppose $i \in \{1, ..., n\}$ is such that $\mu_i > 0$ and let

$$q = \min\{q' \in \mathbb{Z} : a_{i,q'} > 0\}.$$

If $q \leq i$ then

$$\operatorname{wt}(F_i * e_A) = \operatorname{wt}(e_A) + 1$$

and if q > i then

$$\operatorname{wt}(F_i * e_A) = \operatorname{wt}(e_A) - 1.$$

Proof. Again using Lemma 6.1.1,

$$F_i * e_A = e_{A + \mathcal{E}_{i+1,q} - \mathcal{E}_{i,q}},$$

so

$$\operatorname{wt}(F_i * e_A) - \operatorname{wt}(e_A) = |q - i - 1| - |q - i|,$$

which equals -1 if q > i and equals 1 if $q \le i$.

Lemma 6.3.4. If $A \in \Lambda_1$ is aperiodic, then

$$e_A = \omega_1 \cdots \omega_m 1_{\lambda}$$

for some

$$\omega_1,\ldots,\omega_m\in\{E_1,\ldots,E_n\}\cup\{F_1,\ldots,F_n\},$$

where $\lambda = co(A)$.

Proof. The proof uses induction on the weight of A.

If wt(A) = 0 then $A = D_{\lambda}$, where $\lambda = co(A)$, so

$$e_A = 1_{\lambda}$$
.

Assume wt(A) > 0. Then A has at least one nonzero entry which is not on the diagonal. Suppose the upper part of A is nonzero and set

$$h^+ = \max\{j - i : a_{i,j} \neq 0\}.$$

There is $i \in \{1, ..., n\}$ such that $a_{i,i+h^+} > 0$ and $a_{i+1,i+1+h^+} = 0$, using the aperiodicity property of A. Let p be the smallest integer such that p > i, $a_{i,p} > 0$ and $a_{i+1,j} = 0$ for j > p.

Then

$$e_A = E_i * e_B$$

where $B = A + \mathcal{E}_{i+1,p} - \mathcal{E}_{i,p}$. Moreover, B is aperiodic and

$$\operatorname{wt}(B) = \operatorname{wt}(A) - 1,$$

using Lemma 6.3.2.

Next suppose the lower part of A is nonzero and set

$$h^- = \max\{i - j : a_{i,j} > 0\}.$$

There is $i \in \{1, ..., n\}$ such that $a_{i,i-h^{-1}} = 0$ and $a_{i+1,i+1-h^{-}} > 0$, by the aperiodicity property of A. Let q be the largest integer such that q < i + 1, $a_{i+1,q} > 0$ and $a_{i,j} = 0$ for j < q. Then $q \ge i - h^{-}$ and

$$e_A = F_i e_B$$

where

$$B = A + \mathcal{E}_{i,a} - \mathcal{E}_{i+1,a}.$$

Observe B is aperiodic and

$$\operatorname{wt}(B) = \operatorname{wt}(A) - 1,$$

by Lemma 6.3.3.

Therefore, if $\operatorname{wt}(A) > 0$ there exists an aperiodic element $B \in \Lambda_1$ with

$$\operatorname{wt}(B) = \operatorname{wt}(A) - 1$$

and such that

$$e_A = \omega e_B$$

for some $\omega \in \{E_1, \ldots, E_n\} \cup \{F_1, \ldots, F_n\}$.

It follows that any aperiodic basis element e_A is the product of a word of length $\operatorname{wt}(A)$ in E_1, \ldots, E_n and F_1, \ldots, F_n with the idempotent 1_{λ} , where $\lambda = \operatorname{co}(A)$.

Proposition 6.3.5. The subalgebra of $\hat{G}(n,r)$ generated by E_i and F_i for $i \in \{1,\ldots,n\}$ and 1_{λ} for $\lambda \in \Lambda_0$ has \mathbb{Z} -basis

$$\{e_A: A \in \Lambda_1 \text{ is aperiodic.}\}.$$

Proof. By definition, this subalgebra is spanned by the nonzero products in E_i and F_i for $i \in \{1, ..., n\}$ and $\lambda \in \Lambda_0$, which are exactly the aperiodic basis elements, by Lemma 6.3.1 and Lemma 6.3.4.

Lemma 6.3.6. In the case r < n, $\hat{G}(n,r)$ is generated by E_i and F_i for $i \in \{1,\ldots,n\}$ and 1_{λ} for $\lambda \in \Lambda_0$.

Proof. When r < n, any $A \in \Lambda_1$ is aperiodic since co(A) has a zero entry, so A has a column of zero entries. Therefore each of the basis elements e_A in $\hat{G}(n,r)$ may be written as a product of the E_i , F_i and 1_{λ} , using Proposition 6.3.5.

6.4 Presentation of the generic affine algebra.

generators should be a subset of a basis.

define the quiver here

write down the algebra homomorphism from the path algebra to the generic algebra.

using results of the previous section, when r < n, this map is surjective.

for general r and n, the image is spanned by the aperiodic basis elements.

an ideal of relations for the case $n \geq 3$. Prove the relations hold and give notation for the ideal they generate in the path algebra.

prove this ideal is the kernel of the presentation.

conclude the main theorem: isomorphism between $\hat{G}(n,r)$ and $\hat{S}_0(n,r)$ when r < n. consequence: multiplicative basis in $\hat{S}_0(n,r)$.

Recall that Λ_0 denotes the set of compositions of r into n parts. That is, Λ_0 is the set of tuples $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$ with each λ_i non-negative and $\lambda_1 + \cdots + \lambda_n = r$. Given $i \in \{1, \ldots, n\}$, let $\varepsilon_i = (0, \ldots, 1, \ldots, 0) \in \mathbb{Z}^n$ be the i-th elementary vector and let $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$. Then given $\lambda \in \Lambda_0$, we have $\lambda + \alpha_i \in \Lambda_0$ provided $\lambda_{i+1} > 0$ and $\lambda - \alpha_i \in \Lambda_0$ provided $\lambda_i > 0$.

Let $\Gamma = \Gamma(n, r)$ be the quiver with set of vertices Λ_0 with arrows $e_{i,\lambda} : \lambda \to \lambda + \alpha_i$ (if $\lambda_{i+1} > 0$) and $f_{i,\lambda} : \lambda \to \lambda - \alpha_i$ (if $\lambda_i > 0$). Thus there are no arrows between λ and μ unless $\lambda = \mu \pm \alpha_i$ for some $i \in \{1, \ldots, n\}$.

If $n \geq 3$ then neighbouring vertices are connected by two arrows, one of each direction. In the case n = 2, neighbouring vertices are joined by four arrows, two of each direction. The $\mathbb{Z}\Gamma$ denote the path \mathbb{Z} algebra of Γ . By construction of Γ , there is a \mathbb{Z} -algebra homomorphism $\mathbb{Z}\Gamma \to \hat{G}(n,r)$ with $e_{i,\lambda} \mapsto E_{i,\lambda}$, $f_{i,\lambda} \mapsto F_{i,\lambda}$ and $k_{\lambda} = 1_{\lambda}$. We aim to describe the image and kernel of the morphism to give a presentation of the generic algebra by a quiver with relations, when possible.

In general, we should obtain a presentation of a subalgebra of the generic algebra consisting of the so-called aperiodic elements (c.f. [32]).

6.4.1 Relations

Suppose $n \geq 3$.

Lemma 6.4.1. The following relations hold in $\hat{G}(n,r)$:

$$E_i E_i - E_i E_i = 0$$

$$F_i F_i - F_i F_i = 0$$

unless |j - i| = 1.

$$E_i E_{i+1}^2 - E_{i+1} E_i E_{i+1} = 0$$

$$E_i^2 E_{i+1} - E_i E_{i+1} E_i = 0$$

$$F_{i+1} F_i^2 - F_i F_{i+1} F_i = 0$$

$$F_{i+1}^2 F_i - F_{i+1} F_i F_{i+1} = 0$$

$$E_i F_j - F_j E_i = 0$$

unless j = i.

$$E_i Fi - F_i E_i + \sum_{\lambda: \lambda_i = 0, \lambda_{i+1} > 0} 1_{\lambda} - \sum_{\lambda: \lambda_i > 0, \lambda_{i+1} = 0} 1_{\lambda} = 0.$$

6.4.2 The period 2 case

In this case, the quiver $\Gamma(2,r)$ has vertices $\Lambda_0(2,r) = \{(0,r), (1,r-1), \ldots, (r,0)\}$; adjacent vertices are connected by two pairs of arrows with opposite orientation: (e_1, f_1) and (e_2, f_2) . The relations arising from $\hat{G}(2,r)$ are of a more complicated form - in particular, the serre relations of total degree 3 will not hold in this case - so this case will be treated separately and at a later date.

However, the presentation of the subalgebra of $\hat{G}(2,r)$ spanned by the aperiodic distinguished basis elements by a quiver with relations is not strictly needed for our study here, since we are considering the case where r < n, and we have already seen concretely why $\hat{G}(2,1)$ and $\hat{S}_0(2,1)$ are the same.

Chapter 7

Further directions

7.1 Further results on affine zero Schur algebras

[1] Investigate link between this generic product and the generic extension of representations. Shifting to the non-negative subalgebra to do computations purely in terms of generic extensions of quiver representations.

7.2 Deformed group algebras of symmetric groups

[2] Degenerate group algebras of symmetric groups: write down a presentation of the degenerate group algebras, with generators given by the transpositions, or 2-cycles. Type up the computations done for degenerate group algebras for S_3 and S_4 . Formulate propositions for the general case: the transpositions generate the degenerate group algebra; lemma: 'these' relations hold; these generators and relations give a presentation of the degenerate group algebras.

Terminology: deformed group algebra.

7.3 back matter

[1] $Y_{A,B}^L$ is the image of $G_L \times G_{L'}$ under the action map $(\alpha, \beta) \mapsto \alpha\beta \cdot (L', L'')$, for any $(L', L'') \in Y_{A,B}^L$. Lemma 5.4.6 shows that $G_L/H_{N,L}$ is a connected algebraic group. Moreover, $G_{L'}/H_{2N,L}$ is an irreducible affine variety, so $G_L/H_{N,L} \times G_{L'}/H_{2N,L}$ is an irreducible affine variety. It follows that $Y_{A,B}^L$ is irreducible and constructible.

Bibliography

- [1] Deng. B and J. Du. *Hall algebras of cyclic quivers and q-deformed Fock spaces*. 2015. eprint: arXiv:1507.03064.
- [2] A. A. Beilinson, G. Lusztig, R. MacPherson, et al. "A geometric setting for the quantum deformation of GLn." In: *Duke Mathematical Journal* 61.2 (1990), pp. 655–677.
- [3] K. Bongartz. "On degenerations and extensions of finite dimensional modules". In: Advances in Mathematics 121.2 (1996), pp. 245–287.
- [4] T. Bridgeland. "Quantum groups via Hall algebras of complexes". In: Annals of Mathematics (2013), pp. 739–759.
- [5] X. Chen and H. Krause. "Introduction to coherent sheaves on weighted projective lines". In: arXiv preprint arXiv:0911.4473 (2009).
- [6] W. Crawley-Boevey and J. Sauter. "On quiver Grassmannians and orbit closures for representation-finite algebras". In: *Mathematische Zeitschrift* 285.1-2 (2017), pp. 367–395.
- [7] B. Deng, J. Du, and Q. Fu. A double Hall algebra approach to affine quantum Schur-Weyl theory. Vol. 401. Cambridge University Press, 2012.
- [8] B. Deng, J. Du, and A. Mah. "Generic extensions and composition monoids of cyclic quivers". In: *Contem. Math* 602 (2013), pp. 99–114.
- [9] B. Deng, J. Du, and B. Parshall. Finite dimensional algebras and quantum groups. 150. American Mathematical Soc., 2008.
- [10] B. Deng and G. Yang. "On 0-Schur algebras". In: Journal of Pure and Applied Algebra 216.6 (2012), pp. 1253–1267.
- [11] Bangming Deng and Shiquan Ruan. Hall polynomials for tame type. 2015. eprint: arXiv: 1512.03504.
- [12] Ivan Dimitrov and Ivan Penkov. Ind-varieties of generalized flags as homogeneous spaces for classical ind-groups. 2004. arXiv: math/0403471 [math.AG].
- [13] R. Dipper and G. James. "q-tensor space and q-Weyl modules". In: *Transactions of the American Mathematical Society* 327.1 (1991), pp. 251–282.
- [14] R. Dipper and G. James. "The q-Schur Algebra". In: *Proceedings of the London Mathematical Society* 3.1 (1989), pp. 23–50.
- [15] S. Doty and A. Giaquinto. "Presenting Schur algebras". In: *International Mathematics Research Notices* 2002.36 (2002), pp. 1907–1944.
- [16] S. R. Doty and R. M. Green. "Presenting affine q-Schur algebras". In: Mathematische Zeitschrift 256.2 (2007), pp. 311–345.

- [17] R Dou, Yong Jiang, and Jie Xiao. Hall algebra approach to Drinfeld's presentation of quantum loop algebras. 2010. eprint: arXiv:1002.1316.
- [18] Zhaobing Fan et al. Affine flag varieties and quantum symmetric pairs. 2016. arXiv: 1602. 04383 [math.RT].
- [19] S. Geng and L. Peng. "An embedding from the Ringel-Hall algebra to the Bridgeland's Ringel-Hall algebra associated to an algebra with global dimension at most two". In: arXiv preprint arXiv:1309.0998 (2013).
- [20] V. Ginzburg and E. Vasserot. "Langlands reciprocity for affine quantum groups of type A n". In: *International Mathematics Research Notices* 1993.3 (1993), pp. 67–85.
- [21] R. M. Green. "q-Schur algebras as quotients of quantized enveloping algebras". In: *Journal of algebra* 185.3 (1996), pp. 660–687.
- [22] Joe Harris. Algebraic geometry: a first course. Vol. 133. Springer Science & Business Media, 2013.
- [23] Andrew Hubery. Hall polynomials for affine quivers. 2007. eprint: arXiv:math/0703178.
- [24] Andrew Hubery. "The composition algebra of an affine quiver". In: $arXiv\ preprint\ math/0403206\ (2004)$.
- [25] D. A. Hudec. "The Grassmanian as a Projective Variety". In: (2007).
- [26] J. Humphreys. *Linear Algebraic Groups*. Springer-Verlag, 1981.
- [27] B. T. Jensen and X. Su. "A geometric realisation of 0-Schur and 0-Hecke algebras". In: Journal of Pure and Applied Algebra 219.2 (2015), pp. 277–307.
- [28] B. T. Jensen, X. Su, and G. Yang. "Degenerate 0-Schur algebras and Nil-Temperley-Lieb algebras". In: arXiv preprint arXiv:1705.06084 (2017).
- [29] Bernt Tore Jensen and Xiuping Su. A geometric realisation of 0-Schur and 0-Hecke algebras. 2012. eprint: arXiv:1207.6769.
- [30] Bernt Tore Jensen, Xiuping Su, and Guiyu Yang. *Projective modules of 0-Schur algebras*. 2013. eprint: arXiv:1312.5487.
- [31] G. Lusztig. "Introduction to quantized enveloping algebras". In: New developments in Lie theory and their applications. Springer, 1992, pp. 49–65.
- [32] George Lusztig. "Aperiodicity in quantum affine gln". In: Asian Journal of Mathematics 3.1 (1999), pp. 147–178.
- [33] Patrick J Morandi. "Algebraic Groups, Grassmannians, and Flag Varieties". In: (1998).
- [34] M. Reineke. "Generic extensions and multiplicative bases of quantum groups at q = 0". In: Represent. Theory 5 (2001), pp. 147–163.
- [35] M. Reineke. "Quivers, desingularizations and canonical bases". In: Studies in memory of I. Schur. Springer, 2003, pp. 325–344.
- [36] M. Reineke. "The monoid of families of quiver representations". In: *Proceedings of the London Mathematical Society* 84.3 (2002), pp. 663–685.
- [37] M. Reineke. "The quantic monoid and degenerate quantized enveloping algebras". In: arXiv preprint math/0206095 (2002).
- [38] M. Reineke. "The use of geometric and quantum group techniques for wild quivers". In: Representations of finite dimensional algebras and related topics in Lie theory and geometry 40 (2004), pp. 365–390.

- [39] C. M. Ringel. "Hall algebras". In: Banach Center Publications 26.1 (1990), pp. 433–447.
- [40] C. M. Ringel. The Hall algebra approach to quantum groups. Sonderforschungsbereich 343, 1993.
- [41] X. Su. "A generic multiplication in quantized Schur algebras". In: Quarterly journal of mathematics 61.4~(2010), pp. 497-510.