Tutorial: Complexity

- 1. Discuss with the aid of examples, the factors that can have an effect on the performance of an algorithm.
- 2. The following algorithms examined have revealed what their operation count is. Using this as a starting point what is the order (big-O) for each of the algorithms below:

a) algorithm A: n^4+2n+1

b) algorithm B: $3n^2+4n+20$ algorithm C: 2^n+n^2

c) algorithm D: n+nlogn

Which is the most and least efficient of the algorithms above when

i) n=10

ii) n=10000000

3. The table below gives a description of some sorting algorithms.

Name of sort	worst case	memory
bubble	$O(n^2)$	0(1)
selection	$O(n^2)$	0(1)
insertion	$O(n^2)$	0(1)
shell	$O(n \log^2 n)$	0(1)
binary tree	O(n logn)	O(n)
merge	O(n logn)	O(n)
heap	O(n logn)	0(1)
quick	$O(n^2)$	O(n logn)

- a) for a list of n elements that need to be sorted, comment of the efficiency of the algorithms. Which is the best, worst and which would you recommend in that case (give reasons).
 - i) n = 10
 - ii) n = 10000000
- 4. A square matrix has the same number of rows and columns and its size is defined by the variable **n**. The code fragment below performs the multiplication of two square matrices **A** and **B** and stores the result in matrix **C**.

a) Using the code given, step through the statements (as though you were debugging the code) and compute the matrix **C** given that

$$A = \begin{pmatrix} 3 & 5 & 2 \\ 4 & 6 & 1 \\ 1 & -3 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 & 1 \\ 5 & 6 & -3 \\ 3 & 4 & 1 \end{pmatrix}$$

- b) What is the computational count *in terms of* n for the code. Do this for the case when
 - i) you do **not** include the cost of the loop process
 - ii) you do include the cost of the loop process
- c) Two CPUs CPU1 and CPU2 are being considered to process the matrix multiplication above. Below are the costs of performing standard computational operations:

operation	CPU1 cost	CPU2 cost
	(microseconds)	(microseconds)
add	1	3
subtract	1	3
multiply	4	1
divide	4	1
assign	2	1
compare	1	2

Comparing both CPUs, what is the approximate time needed to compute the triple nested loop for a matrix of size

- (i) 3
- (ii) 1000

Which CPU is better suited to matrix multiplication?