EE 160 SIST, ShanghaiTech

Feedback Control

Open-Loop Control

Feedback Control

Proportional Control

Boris Houska 3-1

Contents

Open-Loop Control

Feedback Control

Proportional Contro

Linear control system model

$$\dot{x}(t) = ax(t) + bu(t) \quad \text{and} \quad x(0) = x_0$$

Open-loop control

- \bullet First choose u(t) on the control horizon [0,T] (offline)
- ullet Send the input u to the system and use it "blindly".

Example

$$\dot{x}(t) = x(t) + u(t) \quad \text{and} \quad x(0) = 1$$

Open-loop control

 \bullet If we choose u(t)=-1 the system state satisfies

$$\dot{x}(t) = x(t) - 1$$
 with $x(0) = 1$,

i.e., we have x(t) = 1 for all $t \ge 0$.

Question: would this work in practice?

Problem:

$$\dot{x}(t) = x(t) - 1 \quad \text{and} \quad x(0) = 1 + \epsilon$$

ullet If there is a small error $\epsilon \neq 0$ in the initial value, we have

$$x(t) = 1 + \epsilon e^t ,$$

i.e., the error grows exponentially in t.

Similar problem occur if the dynamic model is not accurate

Problem:

$$\dot{x}(t) = x(t) - 1 \quad \text{and} \quad x(0) = 1 + \epsilon$$

ullet If there is a small error $\epsilon \neq 0$ in the initial value, we have

$$x(t) = 1 + \epsilon e^t ,$$

i.e., the error grows exponentially in t.

Similar problem occur if the dynamic model is not accurate.

Summary: disadvantages of open-loop control

- If we have small errors in the model (model-plant mismatch) or if we work with inaccurate initial values, the online implementation can be unstable / inaccurate.
- There may be external "disturbances", the control design might have to be adapted online rather than pre-computed offline.
- If we have a very long control horizon, we might not want to plan all our actions "in advance", but rather in dependence on the current "situation".

Summary: disadvantages of open-loop control

- If we have small errors in the model (model-plant mismatch) or if we work with inaccurate initial values, the online implementation can be unstable / inaccurate.
- There may be external "disturbances", the control design might have to be adapted online rather than pre-computed offline.
- If we have a very long control horizon, we might not want to plan all our actions "in advance", but rather in dependence on the current "situation".

Summary: disadvantages of open-loop control

- If we have small errors in the model (model-plant mismatch) or if we work with inaccurate initial values, the online implementation can be unstable / inaccurate.
- There may be external "disturbances", the control design might have to be adapted online rather than pre-computed offline.
- If we have a very long control horizon, we might not want to plan all our actions "in advance", but rather in dependence on the current "situation".

Contents

Open-Loop Control

Feedback Control

Proportional Contro

- 1. Receive measurement of $\boldsymbol{x}(t)$ from sensor
- 2. Compute u(t) in dependence on x(t)
- 3. Send u(t) to the actuator

- 1. Receive measurement of $\boldsymbol{x}(t)$ from sensor
- 2. Compute $\boldsymbol{u}(t)$ in dependence on $\boldsymbol{x}(t)$
- 3. Send u(t) to the actuator

- 1. Receive measurement of $\boldsymbol{x}(t)$ from sensor
- 2. Compute $\boldsymbol{u}(t)$ in dependence on $\boldsymbol{x}(t)$
- 3. Send u(t) to the actuator

Feedback law

• The map, μ , from the measurement x(t) to a control decision u(t), is called a control law:

$$u(t) = \mu(x(t)) .$$

Closed-loop system

If we substitute $u(t)=\mu(x(t))$, we obtain the closed-loop system dynamics:

$$\dot{x}(t) = ax(t) + b\mu(x(t))$$

- ullet If μ is an affine function, this is a linear system
- If μ is non-affine, we have to solve a so-called nonlinear differential equation for finding x(t).

Closed-loop system

If we substitute $u(t)=\mu(x(t))$, we obtain the closed-loop system dynamics:

$$\dot{x}(t) = ax(t) + b\mu(x(t))$$

- ullet If μ is an affine function, this is a linear system.
- If μ is non-affine, we have to solve a so-called nonlinear differential equation for finding x(t).

Closed-loop system

If we substitute $u(t)=\mu(x(t))$, we obtain the closed-loop system dynamics:

$$\dot{x}(t) = ax(t) + b\mu(x(t))$$

- ullet If μ is an affine function, this is a linear system.
- \bullet If μ is non-affine, we have to solve a so-called nonlinear differential equation for finding x(t).

Contents

Open-Loop Control

Feedback Control

Proportional Control

Proportional control is based on affine feedback laws,

$$\mu(y(t)) = u_s + k(y(t) - x_s) = u_s + k * e(t)$$

Here, y(t) = x(t) is called the sensor output.

- Constant $u_{\rm s} \in \mathbb{R}$ is a control offset
- Constant $x_s \in \mathbb{R}$ is called the set-point (sometimes denoted by y_{ref})
- ullet The function $e(t)=x(t)-x_{
 m s}$ is called error signal.
- The constant $k \in \mathbb{R}$ is called the *proportional gain*

Proportional control is based on affine feedback laws,

$$\mu(y(t)) = u_s + k(y(t) - x_s) = u_s + k * e(t)$$

Here, y(t) = x(t) is called the sensor output.

- ullet Constant $u_{
 m s} \in \mathbb{R}$ is a control offset
- ullet Constant $x_{\mathsf{s}} \in \mathbb{R}$ is called the set-point (sometimes denoted by y_{ref})
- ullet The function $e(t)=x(t)-x_{
 m s}$ is called error signal.
- The constant $k \in \mathbb{R}$ is called the *proportional gair*

Proportional control is based on affine feedback laws,

$$\mu(y(t)) = u_s + k(y(t) - x_s) = u_s + k * e(t)$$

Here, y(t) = x(t) is called the sensor output.

- ullet Constant $u_{
 m s} \in \mathbb{R}$ is a control offset
- ullet Constant $x_{\mathsf{s}} \in \mathbb{R}$ is called the set-point (sometimes denoted by y_{ref})
- The function $e(t) = x(t) x_s$ is called error signal.
- The constant $k \in \mathbb{R}$ is called the *proportional gain*

Proportional control is based on affine feedback laws,

$$\mu(y(t)) = u_s + k(y(t) - x_s) = u_s + k * e(t)$$

Here, y(t) = x(t) is called the sensor output.

- Constant $u_{\rm s} \in \mathbb{R}$ is a control offset
- ullet Constant $x_{\mathsf{s}} \in \mathbb{R}$ is called the set-point (sometimes denoted by y_{ref})
- The function $e(t) = x(t) x_s$ is called error signal.
- ullet The constant $k \in \mathbb{R}$ is called the *proportional gain*

Model-free P-control tuning: Step 1

If the system is stable:

- Play around with the open loop system.
- ullet Adjust $u(t)=u_{
 m s}$ such that open-loop system satisfies

$$x(T) \approx x_{\rm s}$$
 after (a possibly long) time T

Model-free P-control tuning: Step 1

If the system is stable:

- Play around with the open loop system.
- Adjust $u(t) = u_s$ such that open-loop system satisfies

 $x(T) \approx x_{\rm s}$ after (a possibly long) time T .

Model-free P-control tuning: Step 2

- \bullet Increase / decrease the control gain k and test the closed-loop behavior of the system
- ullet Fine-tuning of $u_{
 m s}$ and k if needed

Model-free P-control tuning: Step 2

- ullet Increase / decrease the control gain k and test the closed-loop behavior of the system
- ullet Fine-tuning of u_{s} and k if needed.

$$k = -0.25 \left[\frac{\text{V}}{^{\circ}\text{C}} \right]$$

$$k = -0.50 \left[\frac{\text{V}}{^{\circ}\text{C}}\right]$$

3-33

$$k = -2.00 \left[\frac{V}{^{\circ}C} \right]$$

$$k = -1.00 \left[\frac{\text{V}}{^{\circ}\text{C}} \right]$$

Model-based P-control tuning

If we have a system model of the form

$$\dot{x}(t) = ax(t) + bu(t)$$

the control design can be done more systematically, i.e., we can design $u_{\rm s}$ and k without "trial-and-error" real-world experiments.

Model-based P-control tuning: Step 1

Model

$$\dot{x}(t) = ax(t) + bu(t)$$

Set-point

- ullet Let us assume that the set point $x_{
 m s}$ is given.
- If $b \neq 0$, the associated steady-state control input can be found by solving

$$0 = ax_s + bu_s \qquad \Leftrightarrow \qquad u_s = -\frac{ax_s}{h}$$
.

Model-based P-control tuning: Step 2

Closed-loop model

$$\dot{x}(t) = ax(t) + b(k(x(t) - x_s) + u_s)
= a(x(t) - x_s) + ax_s + b(k(x(t) - x_s) + u_s)
= (a + bk)(x(t) - x_s) + \underbrace{ax_s + bu_s}_{-0}$$

Explicit solution

• The explicit solution for the closed-loop system state is given by

$$x(t) = x_s + (x(0) - x_s)e^{(a+bk)t}$$
.

Model-based P-control tuning: Step 2

Closed-loop system state:

$$x(t) = x_s + (x(0) - x_s)e^{(a+bk)t}$$
.

Choice of the proportional gain:

• Choose k such that a + bk < 0, i.e., such that

$$\lim_{t \to \infty} x(t) = x_{\rm s} .$$

• Choose |k| not too large, as the actual control input,

$$u(t) = k(x(t) - x_s) + u_s ,$$

may be large if $x(t) - x_s$ is large.

Example: The temperature T(t) inside an oven can be modelled as

$$\dot{T}(t) = \frac{u(t)}{C} - \frac{k_{\text{Wall}}}{C} (T(t) - T_{\text{room}}) .$$

Notation:

• Supplied power at the heating coil: $u(t) = P_{\rm coil}(t)$

ullet room temperature: $T_{
m room}$

ullet heat transition coefficient of the wall: k_{Wal}

heat capacity of the oven: C

Example: The temperature T(t) inside an oven can be modelled as

$$\dot{T}(t) = \frac{u(t)}{C} - \frac{k_{\text{Wall}}}{C} (T(t) - T_{\text{room}}) .$$

Notation:

ullet Supplied power at the heating coil: $u(t) = P_{
m coil}(t)$

ullet room temperature: $T_{
m room}$

ullet heat transition coefficient of the wall: k_{Wall}

ullet heat capacity of the oven: C

Set point: We want to bring the temperature to

$$T_{\rm s} = 200^{\circ}{\rm C}$$
.

Steady-state control input:

Solve the steady equation

$$0 = \frac{u_{\rm s}}{C} - \frac{k_{\rm Wall}}{C} (T_{\rm s} - T_{\rm room})$$

We find the explicit expression

$$u_{\rm s} = k_{\rm Wall}(T_{\rm s} - T_{\rm room})$$

Set point: We want to bring the temperature to

$$T_{\rm s}=200^{\circ}{\rm C}$$
 .

Steady-state control input:

Solve the steady equation

$$0 = \frac{u_{\rm s}}{C} - \frac{k_{\rm Wall}}{C} (T_{\rm s} - T_{\rm room}) ,$$

We find the explicit expression

$$u_{\rm s} = k_{\rm Wall}(T_{\rm s} - T_{\rm room})$$

Set point: We want to bring the temperature to

$$T_{\rm s}=200^{\circ}{\rm C}$$
 .

Steady-state control input:

Solve the steady equation

$$0 = \frac{u_{\rm s}}{C} - \frac{k_{\rm Wall}}{C} (T_{\rm s} - T_{\rm room}) ,$$

We find the explicit expression

$$u_{\rm s} = k_{\rm Wall}(T_{\rm s} - T_{\rm room})$$
.

3-43

Proportional controller:

$$u(t) = u_{\rm s} + k(T(t) - T_{\rm s}) .$$

Closed-loop system:

Closed-loop system has the form

$$\dot{T}(t) = \frac{k - k_{\text{Wall}}}{C} [T(t) - T_{\text{s}}]$$

• Temperature converges to the desired set-point $T_{
m s}$, if $k < k_{
m Wall}$,

$$T(t) = T_{\rm s} + (T(0) - T_{\rm s})e^{\frac{k - k_{\rm Wall}}{C}t}$$

Proportional controller:

$$u(t) = u_{\rm s} + k(T(t) - T_{\rm s}) .$$

Closed-loop system:

Closed-loop system has the form

$$\dot{T}(t) = \frac{k - k_{\text{Wall}}}{C} \left[T(t) - T_{\text{s}} \right] .$$

ullet Temperature converges to the desired set-point $T_{
m s}$, if $k < k_{
m Wall}$,

$$T(t) = T_{\rm s} + (T(0) - T_{\rm s})e^{\frac{k - k_{\rm Wall}}{C}t}$$
.

Proportional Control Circuit

• Replace "computer" by electrical circuit (e.g. for our oven):

(here
$$y(t)$$
, y_{ref} and $K(y(t) - y_{ref})$ are voltages)

Use summing amplifier (or modify above circuit) to add offset

Proportional Control Circuit

Replace "computer" by electrical circuit (e.g. for our oven):

(here y(t), y_{ref} and $K(y(t)-y_{\text{ref}})$ are voltages)

• Use summing amplifier (or modify above circuit) to add offset