$\textbf{Q. 1} \quad \text{Soit } q \in Q. \text{ Si } q \in F \text{, alors } \mathcal{L}_0(\mathcal{A}_q) = \{\varepsilon\}. \text{ Si } q \not \in F \text{, alors } \mathcal{L}_0(\mathcal{A}_q) = \varnothing.$

Q. 2 Soit $q \in Q$ et soit $n \in \mathbb{N}^*$. On a

$$\mathcal{L}_n(\mathcal{A}_q) = \overbrace{\bigcup_{\{(\ell,q')|(q,\ell,q') \in \delta\}}^{\bigcup_{\mathcal{G}}} \ell \cdot \mathcal{L}_{n-1}(\mathcal{A}_q)}^{\bigcup_{\mathcal{G}}}.$$

Montrons le par double inclusion.

" \subseteq " Soit $w \in \mathcal{L}_n(\mathcal{A}_q)$. Il existe donc

$$q \xrightarrow{w_1} q' \xrightarrow{w_2} q_2 \to \cdots \xrightarrow{w_n} q_n \in F$$

une exécution acceptante de \mathcal{A}_q . Alors

$$q' \xrightarrow{w_2} q_2 \to \cdots \xrightarrow{w_n} q_n \in F$$

est un exécution acceptante de $\mathbb{A}_{q'}$. D'où $w_2\dots w_n\in \mathcal{L}_{n-1}(\mathbb{A}_{q'})$. On en déduit que $w\in$

 $w_1 \cdot \mathcal{L}_{n-1}(\mathcal{A}_{q'}) \subset \cup_{\mathcal{L}}.$ $w_2 \cdot \mathcal{L}_{n-1}(\mathcal{A}_{q'}) \subset \cup_{\mathcal{L}}.$ $\text{Soit } (\ell, q') \in \{(\ell, q') \mid (q, \ell, q') \in \delta\}, \text{ et } w \in \ell \cdot \mathcal{L}_{n-1}(\mathcal{A}_{q'}). \text{ Donc } w_2 \dots w_n \in \mathcal{L}_{n-1}(\mathcal{A}_{q'}).$ Ainsi, il existe

$$q' \xrightarrow{w_2} q_2 \to \cdots \xrightarrow{w_n} q_n \in F$$

une exécution acceptante dans $\mathcal{A}_{q'}.$ Or, $(q,\ell,q')\in\delta$ et donc

$$q \xrightarrow{\ell=w_1} q' \xrightarrow{w_2} q_2 \to \cdots \xrightarrow{w_n} q_n \in F$$

est une exécution acceptante dans \mathcal{A}_q . On en déduit que $w \in \mathcal{L}_n(\mathcal{A}_q)$.

Q. 3

$$\mathcal{L}_n(\mathcal{A}) = \bigcup_{q \in I} \mathcal{L}_n(\mathcal{A}_q).$$

Q. 4

Q. 5 On a une majoration en $(n+1) \cdot M$.