7.	8														
0															
1.		Slowe			Slow				0.	a	T	e)	7		
		Slowe			fast					b)			Ŧ		
		Slowe			Sla					c)			7		
	1)	Clower		h)	Sau	ne Ca	te			4)	T	h)	T		
		+ × .													
	X->=	X	 Κ	X	(k) (1)=	1	-= /								
								75	nne rat	;L					
	χ-> α	× 7 × 7 × 7		x'-x3 (\$	= -	 =									
					1										
21.	a)	l~ √->00	1 NX	_ F	X Lxt	= N	- =	0 8	lower	-					
					•										
23,		n l													
		1-200	× 100	321 3/2	10g21	= -	hn 12.11/h								
			11												
						1/1	N-200	- 5 - 5 5	Į.						
						= 2	N-700	1	= 0						
		0_	a la	an											
	Y	محح	411	ogra)		logze	7								
				logre					2						
			, , , ,	wyn	6) 1	Wo	(1 (mu!	Xot -						

16. S(x2-2x+1) e2x dx
$\frac{1}{1+x^2-x+1}\frac{1}{2^{2x}}\left(\left(x^2-x+1\right)\right)\frac{1}{2^{2x}}$
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$
$\frac{1}{\sqrt{1+e^{2x}}}$
12. Sin'y dy
U= Sin-19 dv=1
$dv = \sqrt{\frac{1}{5}} V = g \qquad \int \sin^{-1} y dy = y \sin^{-1} y - \int \frac{y}{5 + y^{2}}$
= ysh-1 y + Vl-y2 + C
24. Je-2 Sin 2x dx = A
$U = \sin 2x$ $dv = e^{-2x}$ $dv = 2\cos 2x$ $V = -\frac{1}{2}e^{-2x}$
Je-24 Sin 2x dx= -1 e-2x Sin 2x - J-e-2x cos 2x dx
$U = \cos 2x \qquad dv = -e^{2x}$ $du = -2\sin 2x \qquad V = \frac{1}{2}e^{-2x}$

		30	Lisin	1x-	(=	-2x	Cos	1X-	(-e	2×	Sini	×	(x)		
									_				17		
-	-	i	2× ()'Al	× -	12	* (c	×52×	- A						
2	<u>}</u> =	-1	É	ZX S.	inly	1-	Si	1x C	05 W	4					
5	2A -	- 5	[-[rei	x Siv	7 DX	- [e-29	6	s 24)				
U		1					l								
	A =	-	e-2	* C) <i>u</i>	_	g-7	X (a.	7. 1						
		4	~	* Sin	LY	4	~	COG	\(\mathcal{X}\)	+					
7															
20.	/5	(In	2)	de											
	U = (b	7)2		dı	1=2	dz									
	du=	2.6	2) -	ν	1=12	ı									
			3		2										
	(21	(,,,)	¹ _	21	2	- (ر ،	-							
) = ((114)	- 7	i2 ¹ (ln7)		(m2)	t							
			- 7	z2((n 2)	- J	える	}							
						.7		7							
			=	12	(la-	z) -	- 4	7.	f C						

31. Jx sec x2 dx		
Let U = x2	x: \ X Secu du TX	
dx = du	= 7 Seco du	
74	- Seco + tenut sector Lano + secor	du
	2 Long trace	
	let v = fan v + se c v	
	du = du Secutsecut(mu	
	Secut secut (nu	
	- Sect for 150	Q\U
	U	Secuts collino
	= 1 (a o	
	= h tonx 2 f secx2	1+6
	L	
43. (x ln x dx		
U= ux		
C - X V - 3K		
$\int \int x ux dx = \frac{3}{3}x^{2} _{nx} - \frac{3}{$	$\int \frac{2}{7} x^{2} dx$	
- 2 3/2	19 1/2 2 32 1	3h
X Inx -	15x"= 5x mx - 5v	

95	-	(0)	(X	dх													
						^											
		- 9				Jos	U 2	25× .	du								
	du Jx	= 1	x-12		7	-											
			F 0		L	Ju) Cos	u d	U								
		2	07 0	2 0	2	(u -	8:10	+ Co	(0 2								
								(x +		s (x	+c						
						V 1.	0,,										
66	, (Clas)^ 1	V	((m	- الم	-2	(ln x	n –1	1/							
۲)	<u> </u>	y a) - ,	x (w	r)	,) (21							
	U L	lnx)			dv	= dx											
	du=	₹ (I	(XX)		٧	= X											
		^															
X	(1/x)	^ - S	n (10	14)41	.xd	X											
	×(1	x) -1	n f (h	x)^-I	dx												
69.	\int_{0}^{∞}	2	x f(t) at	dx			-	* (' b	((() dt	b _	P	- x£	(x) 1	2	
					d								^				
						v = X		2	b	flt	;) dt	- 0	So t	(t)	dt t	Sal	(Cr)dx
	Λu	= - {	(x) d	*		V -X		7	0-	(p	a f(x)) dx	+ ("	, ,	f(x)	dx.	
											a) f(x			, ,	(, ,)		
									Ja	(X-a	a) fly	dx					

83			
3. Jus x sin x dx	8. J. S.	5 X	
U = Cas ×			N= (05 \frac{7}{2}
du= -sm x dx		$\left(\cos^2\frac{x}{z}\right)^2$ $\sin\frac{x}{z}$	
50 ³ do	, , , , , , , , , , , , , , , , , , ,	1- v2)2 du	When x= 10, V=0
= -1 0 ⁴ + C		- 20 ² + 0 du	
= - 4 (05 × + C		, v 3 + 5 v 2	
	= 7(1-		
	= 2 (<u>Is-</u>		
	= 2(===================================	5)	
	= 16		
20. 5th 8 sin 4 y cas 2 y dy			
= \int_0 \left\{ \left(\frac{1}{2} \right)^2 \left\{ \left\{ \frac{1}{2} \cdot \cos 1_3} \right\}) dy		
$= \int_{0}^{\pi} (1-(\cos 2y)^{2})^{2} (1+(\cos 2y)) dy$			
= \int \(\text{1} + \text{105 } \text{2y} - \text{cos}^2 \text{2y} - \text{cos}^2 \text{2y}			
= y+ 2 sin 2y 1 - 50 (cos2 ?	4 + (oz, s2)	dy	

TE CAS 2		17	
J' cos 2y dy = Jth	\frac{1}{2}(1+(os 4y)dy =	2 y + 8 sin 4y 6	= 10
5" COS 24 dy = ("	(L(22))	1 (1)	
50 cos 7y dy = 50	(Fain Ly) Cos Ly d	y = 1 (1-51,72)	y)(8m ly)
		= Sin 2y - 3	Sin 3 29 10 2 = 0
= 50 8 819 4 (05)	y dy = yt 1 Sin 7	y 10 - to 2	
= 10 - 10			
- 10/2			
Tu a 4 v	<u> </u>		
20. Ste/6 Cos 4x	$dx = \frac{4}{5} \left(\frac{3}{2}\right)^{n}$	2 (3) Th 10 7 35	
34. See x tan2x	d		
Jecx (Jec3	x -1)		
Sec3x - Secx			
= Secx tonx +	2 (Sec x dx		
Secy dx			
= In (Fant rex) = re	(X tan x - In (tan x ts	<u>(x)</u> +C	

37 Sec2x tenx dx	30. Sec4 x tan2 x dx
lat v= tanx	Jsecx tanx (tanxt1) dx
dx = Sicx du	U=tan2x
	$dx = \frac{1}{Sizx} dv$
Scot U du sodx	Sizx
= 5 02 20	= Sv2(v2+1) du
= 1 03 -0 -3 tan3x + C	= Suntur do
	= 5 v + 2 v - 5 ten x + 3 ten x Hank
44. Sect X dx	52. Sin 2x cos 3x dx
(2 (2) 2	= 1 fr sinzx cos3x dx
Sec × (bony+1)2 dx	
U= fanx	= ZSin 5x-Sinx
dx = 1 Secx do	= 1 - 1 (05 Sx - C 05X
•	= -1 cos 5x -1 cosx te
$=\int \left(\sqrt{3} + 1 \right)^2 dv$	64. S 80 X dx
- (, 4 , 2 , 1)	
- Ju4 + 7 2 + 1	Sec2 X-1 Sec x ton X
= 1	$ \begin{array}{cccc} $
= \frac{1}{3} \tan\tan\tan\tan\tan\tan\tan\tan\tan\tan	3 3 5 6 6 4 4 6
	3 (ct x - 0 ct x 1 c

8. y		
2. \(\frac{3 dx}{(1+9x^1)}	$4 \cdot \int_0^2 \frac{dx}{8t}$	7x2
3x = tan 0	= 1/2 5	
3dx = Sei & do	= 1	ten 1 × 10
= Such do		(TU -0)
= ln sec0 + 6mb +C = ln \(\frac{1+9x^2}{2} + 3x + C		
6. Shari		
	2x= 8in0 2/x= cos 0 d 0	9. Jan 1, x>2
$=\int \frac{\cos \theta}{\cos \theta}$ $= \theta$		2x=7secθ dx= = z sicθ tanθdθ
= Sin-1 2x 12h		= = zsco tab do
4		7 Lamb - 2 Sec d0
		= 2 ln Seco + tand tc
		2 11 4 + 7 + 1

12, (42.25	
12 July 23 dy 1 475	
y=5 sect	
dy= 5 saco ben 0 do	
Stand Socoting do	
· · · · · · · · · · · · · · · · · · ·	
= 5 Sin D dD	
$= \frac{1}{10} \int (1 - \cos 2\theta) d\theta$	
$=\frac{1}{10}\theta-\frac{1}{20}\sin 2\theta+C$	
(6)	
$= \frac{1}{10} \theta - \frac{1}{10} \sin \theta \cos \theta + c$	
- To Sec D - [5 \(\frac{5\tau^2}{y^2}\) + C	
-(14) (12.25	
$= \frac{1}{10} \int_{C} \frac{1}{(5)} - \frac{1}{(5)^2 - 25} + C$	
57. J x3 V 1-x2 dx	
a) $U = x^{2}$ $dv = x\sqrt{1+x^{2}} dx$ $dv = 2x$ $V = -\frac{1}{3}(1+x^{2})^{3/2}$	
$du = 2x$ $V = -\frac{1}{2}(1-x^2)^{\frac{3}{2}}$	
$=-\frac{1}{3} x^2 (-x^2)^{3/2} + \frac{1}{3} \int 2x (-x^2)^{5/2} dx$	
$= -\frac{1}{3}x^{2}(1-x^{2})^{\frac{3}{2}} - \frac{2}{15}(1-x^{2})^{\frac{5}{2}} + C$	
3	

b) $\int X^2 \cdot x \sqrt{1-x^2} dx$	C) $X = SIN \theta$ $dx = (0S\theta d\theta) \sqrt{1-x^2} = \cos \theta$
$U = 1 + \chi^2$ $du = -2x dx$	= Spin3 & cord de
= -1 (1-v) \(\text{d} \text{v}	= S(1-cos2) cos2f sind do
$= -\frac{1}{2} \int u^{1} u^{1} du$ $= -\frac{1}{2} \int u^{1} u^{1} du$	SLOST BILLED DO - SLOST B SOUT DE
= -1 3h + 5 vsh +c 3 (+x2)3h + 5 (1-x2)5h +c	$= -\frac{1}{3} \cos^3 \theta + \frac{1}{5} \cos^5 \theta + C$
3 (1) 1 5 (1) 10	$= -\frac{1}{3} \left(1 - x^2 \right)^{\frac{3}{2}} + \frac{1}{5} \left(1 + x^2 \right)^{\frac{5}{2}} + C$
58. a) AB2= (00 x2	b) f(x) = - (100-x2
AB= Stoox	X = 10 cos B
ten $\theta = AB$ Ac	$dx = -10 \text{ om } d\theta$ $\left(-\left(\frac{10 \cos \theta}{10 \cos \theta}\right)^{2}\right) = 10$
$= \sqrt{\log - \chi^2}$	10 (ost) - (o sindl)
$f'(x) = \operatorname{tr}(x-0)$	(050) Sin 20
Since tan II = 0	S to sm D dD
A-text	Slo(Hos2b) do
X	5= to lat see 0 + bord 1-losin 0 to