Online Learning/Optimization 算法实现与理论分析

poetniu 2015.9.21

goal

outline

- 背景
- Online Optimization 算法实现
 - Online Optimization
 - Truncated Gradient
 - FOBOS
 - RDA
 - FTPRL
- Online Optimization理论分析
 - Preliminary
 - Algorithms
 - FTRL-style & Implicit and Composite Updates
 - Experiments
- 总结
- References

背景

- Batch Learning (offline approach)
 - Get all the data and train the algorithm in one go
- Disadvantages when data is big
 - Requires all data to be loaded into memory
 - Periodic retraining is necessary
 - Very time consuming with big data!
- Example: Real Time Bidding
 - RTB algorithms are usually based on logistic regression
 - Whether or not to bid on a user is determined by the probability that the user will click on an add
 - Each day billions of bids are processed
 - Each bid has to be processed within 80 milliseconds

背景

Example: Fraud Detection

Detecting Fraudulent Credit Card Transactions

- The probability that a transaction is using a stolen credit card is typically estimated with logistic regression
- Billions of transactions are analyzed each day

Online Learning

- Pass each data point sequentially through the algorithm
- Only requires one data point at a time in memory
- Allows for on-the-fly training of the algorithm

Online Learning

- When we have a continuous stream of data
- When It is important to update the algorithm in real time – can hit a moving target
- When training speed is important
- Parameters are "jumpy" around the optimal values

Batch

- When it is very important to get the exact optimal values
- When data can fit in memory
- When training time is not of the essence

outline

- 背景
- Online Optimization 算法实现
 - Online Optimization
 - Truncated Gradient
 - FOBOS
 - RDA
 - FTPRL
- Online Optimization理论分析
 - Preliminary
 - Algorithms
 - FTRL-style & Implicit and Composite Updates
 - Experiments
- 总结
- References

Online Optimization

Batch Gradient Descent

Algorithm 1. Batch Gradient Descent

```
Repeat until convergence { W^{(t+1)} = W^{(t)} - \eta^{(t)} \nabla_{\!W} \ell \big( W^{(t)}, Z \big) }
```

Stochastic Gradient Descent (SGD)

Algorithm 2. Stochastic Gradient Descent

```
Loop { for j=1 \ to \ M \ \{ \\ W^{(t+1)} = W^{(t)} - \eta^{(t)} \nabla_W \ell \big( W^{(t)}, Z_j \big) \\ \} }
```

Online Gradient Descent (OGD)

Online Optimization

- Regularization
 - trade-off: overfitting & underfitting

$$L1 - Regularization: \quad \psi(W) = ||W||_1 = \sum_{i=1}^{N} |w_i|$$

 $L2-Regularization: \quad \psi(W) = ||W||_2^2 = \sum_{i=1}^{N} w_i^2 = W^T W$

- L1 & L2
 - 凸函数
 - L1在0处不可导,采用subgradients
- Sparsity
 - Batch下L1更容易产生稀疏解, global
 - Online下很难产生稀疏解, local
 - 稀疏性

Truncated Gradient

- L1正则化法
 - sgn(v)为符号函数

$$W^{(t+1)} = W^{(t)} - \eta^{(t)}G^{(t)} - \eta^{(t)}\lambda sgn(W^{(t)})$$

- 简单截断法
 - k为窗口, t/k为整数时截断
 - θ是一个正数

$$W^{(t+1)} = T_0(W(t) - \eta^{(t)}G^{(t)}, \theta)$$
$$T_0(v_i, \theta) = \begin{cases} 0 & \text{if } |v_i| \leq \theta \\ v_i & \text{otherwise} \end{cases}$$

- 截断梯度法(TG)
 - t/k不为整 λ =0
 - t/k为整 λ (t)=k λ
 - λ,θ越大,稀疏性越强

$$W^{(t+1)} = T_1(W^{(t)} - \eta^{(t)}G^{(t)}, \eta^{(t)}\lambda^{(t)}, \theta)$$

$$T_1(V, \alpha, \theta) = \begin{cases} max(0, v_i - \alpha) & \text{if } v_i \in [0, \theta] \\ min(0, v_i - \alpha) & \text{if } v_i \in [-\theta, 0] \\ v_i & \text{otherwise} \end{cases}$$

Truncated Gradient

• TG与简单截断关系

TG

Algorithm 3. Truncated Gradient

- 1 input θ
- 2 initial $W \in \mathbb{R}^N$
- 3 for t = 1,2,3... do
- $G = \nabla_W \ell \left(W, X^{(t)}, y^{(t)} \right)$
- 5 refresh W according to

$$w_i = \begin{cases} \max(0, w_i - \eta^{(t)}g_i - \eta^{(t)}\lambda^{(t)}) & \text{if } \left(w_i - \eta^{(t)}g_i\right) \in [0, \theta] \\ \min(0, w_i - \eta^{(t)}g_i + \eta^{(t)}\lambda^{(t)}) & \text{if } \left(w_i - \eta^{(t)}g_i\right) \in [-\theta, 0] \\ w_i - \eta^{(t)}g_i & \text{otherwise} \end{cases}$$

- 6 end
- 7 return W

Forward-Backward Splitting

- FOBOS, 2009
 - 梯度下降
 - 梯度下降结果微调
 - 微调在梯度下降附近, 处理正则稀疏性
- L1-FOBOS

• L1-FOBOS是TG在特定 条件下的特殊形式

$$\begin{split} W^{(t+\frac{1}{2})} &= W^{(t)} - \eta^{(t)} G^{(t)} \\ W^{(t+1)} &= \arg \min_{W} \left\{ \frac{1}{2} \left\| W - W^{(t+\frac{1}{2})} \right\|^2 + \eta^{(t+\frac{1}{2})} \Psi(W) \right\} \end{split}$$

$$w_i^{(t+1)} = sgn(v_i)max(0, |v_i| - \tilde{\lambda})$$

$$= sgn(w_i^{(t)} - \eta^{(t)}g_i^{(t)})max(0, |w_i^{(t)} - \eta^{(t)}g_i^{(t)}| - \eta^{(t+\frac{1}{2})}\lambda$$

Algorithm 4. Forward-Backward Splitting with L1 Regularization

- 1 input λ
- 2 initial $W \in \mathbb{R}^N$
- 3 for t = 1, 2, 3... do
- $G = \nabla_W \ell(W, X^{(t)}, y^{(t)})$
- 5 refresh W according to

$$w_{i} = sgn(w_{i} - \eta^{(t)}g_{i})max\{0, |w_{i} - \eta^{(t)}g_{i}| - \eta^{(t+\frac{1}{2})}\lambda\}$$

- 6 end
- 7 return W

Regularized Dual Averaging

- RDA, 2009
- L1-RDA

- L1-RDA依据常数λ 截断
- L1-FOBOS截断 λη随t增加减小
- L1-RDA更容易产 生稀疏解

$$W^{(t+1)} = \arg\min_{W} \left\{ \frac{1}{2} \sum_{r=1}^{t} \left\langle G^{(t)}, W \right\rangle + \Psi(W) + \frac{\beta^{(t)}}{t} h(W) \right\}$$

$$w_i^{(t+1)} = \begin{cases} 0 & if \left| \bar{g}_i^{(t)} \right| < \lambda \\ -\frac{\sqrt{\lambda}}{\gamma} \left(\bar{g}_i^{(t)} - \lambda sgn(\bar{g}_i^{(t)}) \right) & otherwise \end{cases}$$

Algorithm 5. Regularized Dual Averaging with L1 Regularization

- 1 input γ , λ
- 2 initialize $W \in \mathbb{R}^N$, $G = 0 \in \mathbb{R}^N$
- 3 for t = 1,2,3... do
- $G = \frac{t-1}{t}G + \frac{1}{t}\nabla_W \ell(W, X^{(t)}, y^{(t)})$
- 5 refresh W according to

$$w_i^{(t+1)} = \begin{cases} 0 & \text{if } |g_i| < \lambda \\ -\frac{\sqrt{t}}{\gamma} (g_i - \lambda sgn(g_i)) & \text{otherwise} \end{cases}$$

- 6 end
- 7 return W

Follow the Regularized Leader

- FTRL, 2010
 - L1-FOBOS基于梯度下降准确性较好
 - L1-RDA稀疏性更好
- L1-FOBOS与L1-RDA形式统一

$$- \text{ L1-FOBOS } W^{(t+1)} = arg \min_{W} \left\{ \underline{G^{(t)} \cdot W} + t\lambda \, \|W\|_1 + \frac{1}{2\eta^{(t)}} \, \left\| W - W^{(t)} \right\|_2^2 \right\}$$

- L1-RDA $W^{(t+1)} = arg \min_{W} \left\{ G^{(1:t)} \cdot W + t\lambda \|W\|_{1} + \frac{1}{2\eta^{(t)}} \|W - 0\|_{2}^{2} \right\}$

FTRL-Proximal

$$W^{(t+1)} = \arg\min_{W} \left\{ G^{(1:t)} \cdot W + \lambda_{1} \|W\|_{1} + \lambda_{2} \|W\|_{2}^{2} + \frac{1}{2} \sum_{s=1}^{t} \sigma^{(s)} \|W - W^{(s)}\|_{2}^{2} \right\}$$

Follow the Regularized Leader

FTRL-Proximal

$$w_i^{(t+1)} = \begin{cases} 0 & if \left| z_i^{(t)} \right| < \lambda_1 \\ -\left(\lambda_2 + \sum_t^{s=1} \sigma^{(s)}\right)^{-1} \left(z_i^{(t)} - \lambda_1 sgn\left(z_i^{(t)} \right) \right) & otherwise \end{cases}$$

Per-Coordinate Learning Rates

$$\eta_i^{(t)} = \frac{\alpha}{\beta + \sqrt{\sum_{s=1}^t \left(g_i^{(s)}\right)^2}}$$

```
Algorithm 6. FTRL-Proximal with L1 & L2 Regularization
                                                       1 input \alpha, \beta, \lambda_1, \lambda_2
                                                          initialize W \in \mathbb{R}^N, Z = 0 \in \mathbb{R}^N, O = 0 \in \mathbb{R}^N
                                                       3 for t = 1, 2, 3... do
                                                          G = \nabla_W \ell(W, X^{(t)}, y^{(t)}) # gradient of loss function
w_i = \begin{cases} 0 & \text{if } \left| z_i^{(t)} \right| < \lambda_1 \\ -\left(\lambda_2 + \frac{\beta + \sqrt{q_i}}{\sigma}\right)^{-1} (z_i - \lambda_1 sgn(z_i)) & \text{otherwise} \end{cases}
                                                       10 end
                                                       11 return W
```

Online Optimization 算法实现

- Gradient Descent: 准确性
 - 简单截断法
 - TG
 - FOBOS
- Dual Averaging: 稀疏性
 - RDA
- FTRL-Proximal: 稀疏性+准确性
 - FOBOS+RDA
- 目前最好
 - RDA, FTRL-Proximal

outline

- 背景
- Online Optimization 算法实现
 - Online Optimization
 - Truncated Gradient
 - FOBOS
 - RDA
 - FTPRL
- Online Optimization理论分析
 - Preliminary
 - Algorithms
 - FTRL-style & Implicit and Composite Updates
 - Experiments
- 总结
- References

Preliminary(1)

Follow-the-Leader

Follow-The-Leader (FTL)
$$\forall t, \quad \mathbf{w}_t = \operatorname*{argmin}_{\mathbf{w} \in S} \sum_{i=1}^{t-1} f_i(\mathbf{w})$$

- Failure of FTL
 - w shifts drastically from round to round
 - predictions are not stable!
- Follow-the-Regularized-Leader
 - adding regularization

Follow-the-Regularized-Leader (FoReL)
$$\forall t, \quad \mathbf{w}_t = \operatorname*{argmin}_{\mathbf{w} \in S} \sum_{i=1}^{t-1} f_i(\mathbf{w}) + R(\mathbf{w})$$

Preliminary(2)

- Mirror Descent
 - projected gradient descent

$$x_{k+1} = \pi_C(x_k - lpha_k
abla f(x_k)). \quad x_{k+1} = rg \min_{x \in C} \quad \left\{ \langle x,
abla f(x_k)
angle + rac{1}{lpha_k} rac{\|x - x_k\|_2^2}{2}
ight\}.$$

genderalized PGD

$$x_{k+1} \ = rg \min_{x \in C} \quad \left\{ \langle x,
abla f(x_k)
angle + rac{1}{lpha_k} d(x, x_k)
ight\} \quad ext{with} \quad lpha_k > 0.$$

 $R(\mathbf{w})$ $= D_R(\mathbf{w} \| \mathbf{u})$ $\mathbf{u} \quad \mathbf{w}$

Bregman divergences and MDA

$$B_{\psi}(x,y) := \psi(x) - \psi(y) - \langle x - y, \psi'(y) \rangle$$
, with $\psi'(y) \in \partial \psi(y)$,

$$x_{k+1} =
abla \phi^\star(
abla arphi(x_k) - lpha_k
abla f(x_k)), \qquad ext{where } \phi^\star(y) := \max_{z \in C} \left[\langle z, y
angle - arphi(z)
ight].$$

- The simplest is gradient $\varphi = \frac{1}{2} \mathbf{X}^2$ $\chi_{k+1} = \chi_k - \alpha_k \nabla f(\chi_k)$ descent

Preliminary(3)

- Gradient descent / forward Euler
 - gradient descent iteration (with step size c):

$$\mathbf{x}^{k+1} = \mathbf{x}^k - c \, \nabla f(\mathbf{x}^k)$$

• \mathbf{x}^{k+1} minimizes the following local quadratic approximation of f:

$$f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{1}{2c} \|\mathbf{x} - \mathbf{x}^k\|_2^2$$

· compare with forward Euler iteration, a.k.a. the explicit update:

$$\mathbf{x}(t+1) = \mathbf{x}(t) - \Delta t \cdot \nabla f(\mathbf{x}(t))$$

- Backward Euler / implicit gradient descent
 - backward Euler iteration, also known as the implicit update:

$$\mathbf{x}(t+1) \stackrel{\text{solve}}{\leftarrow} \mathbf{x}(t+1) = \mathbf{x}(t) - \Delta t \cdot \nabla f(\mathbf{x}(t+1)).$$

· equivalent to:

1.
$$\mathbf{u}(t+1) \stackrel{\text{solve}}{\leftarrow} \mathbf{u} = \nabla f(\mathbf{x}(t) - \Delta t \cdot \mathbf{u})$$
,

2.
$$\mathbf{x}(t+1) = \mathbf{x}(t) - \Delta t \cdot \mathbf{u}(t+1)$$
.

Preliminary(4)

sub-gradients

Lemma 2.5. Let S be a convex set. A function $f: S \to \mathbb{R}$ is convex iff for all $\mathbf{w} \in S$ there exists \mathbf{z} such that

$$\forall \mathbf{u} \in S, \quad f(\mathbf{u}) \ge f(\mathbf{w}) + \langle \mathbf{u} - \mathbf{w}, \mathbf{z} \rangle.$$
 (2.3)

Definition 2.3 (sub-gradients). A vector \mathbf{z} that satisfies Equation (2.3) is called a *sub-gradient* of f at \mathbf{w} . The set of sub-gradients of f at \mathbf{w} is denoted $\partial f(\mathbf{w})$. Furthermore, if f is differentiable at \mathbf{w} then $\partial f(\mathbf{w})$ contains a single element — the gradient of f at \mathbf{w} , $\nabla f(\mathbf{w})$.

An illustration of sub-gradients is given in Figure 2.1.

Getting back to online convex optimization, for each round t, there exists z_t such that for all u,

$$f_t(\mathbf{w}_t) - f_t(\mathbf{u}) \le \langle \mathbf{w}_t - \mathbf{u}, \mathbf{z}_t \rangle.$$

Fig. 2.1 Left: The right-hand side of Equation (2.3) is the tangent of f at w. For a convex function, the tangent lower bounds f. Right: Illustration of several sub-gradients of a nondifferentiable convex function.

Do What?

- Follow-the-Regularized-Leader: RDA
- Mirror Descent: FOBOS
- Follow-the-Proximally-Regularized-Leader(FTRL-Proximal)
- A unified analysis
 - Extend to implicit updates
 - Handle composite objectives
 - Formulation as instances of follow-the-regularized-leader
- Application
 - Sparse Model via L1 Regularization
 - RDA introduces more sparsity than FOBOS
 - Quadratic stabilizing regularization
 - Experimental comparison: FOBOS, RDA, FTRL-Proximal

Algorithms

FOBOS

$$x_{t+1} = \arg\min_{x} g_t \cdot x + \lambda ||x||_1 + \frac{1}{2} ||Q_{1:t}^{\frac{1}{2}}(x - x_t)||_2^2.$$

RDA

$$x_{t+1} = \arg\min_{x} g_{1:t} \cdot x + t\lambda ||x||_{1} + \frac{1}{2} \sum_{s=1}^{t} ||Q_{s}^{\frac{1}{2}}(x-0)||_{2}^{2}.$$

FTRL-Proximal

$$x_{t+1} = \arg\min_{x} g_{1:t} \cdot x + t\lambda ||x||_{1} + \frac{1}{2} \sum_{s=1}^{t} ||Q_{s}^{\frac{1}{2}}(x - x_{s})||_{2}^{2}.$$

Algorithms

- Three components
 - (A) An approximation to the sum of previous loss functions
 - (B) Terms for the non-smooth composite terms
 - (C) Stabilizing regularization for low regret

$$(A) \qquad (B) \qquad (C)$$
 COMID $\arg\min_x \ g'_{1:t-1} \cdot x + f_t(x) \ + \ \phi_{1:t-1} \cdot x + \alpha_t \Psi(x) \qquad + \frac{1}{2} \sum_{s=1}^t \|Q_s^{\frac{1}{2}}(x - x_s)\|^2$ RDA $\arg\min_x \ g'_{1:t-1} \cdot x + f_t(x) \ + \ \alpha_{1:t} \Psi(x) \qquad + \frac{1}{2} \sum_{s=1}^t \|Q_s^{\frac{1}{2}}(x - 0)\|^2$ FTPRL $\arg\min_x \ g'_{1:t-1} \cdot x + f_t(x) \ + \ \alpha_{1:t} \Psi(x) \qquad + \frac{1}{2} \sum_{s=1}^t \|Q_s^{\frac{1}{2}}(x - x_s)\|^2$ AOGD $\arg\min_x \ g'_{1:t-1} \cdot x + f_t(x) \ + \ \phi_{1:t-1} \cdot x + \Psi(x) \qquad + \frac{1}{2} \sum_{s=1}^t \|Q_s^{\frac{1}{2}}(x - 0)\|^2$

outline

- 背景
- Online Optimization 算法实现
 - Online Optimization
 - Truncated Gradient
 - FOBOS
 - RDA
 - FTPRL
- Online Optimization理论分析
 - Preliminary
 - Algorithms
 - FTRL-style & Implicit and Composite Updates
 - Experiments
- 总结
- References

Implicit and Composite Updates for FTRL

Standard subgradient FTRL

$$x_{t+1} = \arg\min_{x} \left(\sum_{s=1}^{t} \nabla f_s(x_s) \right) \cdot x + R_{1:t}(x).$$

Implicit update for FTRL

$$x_{t+1} = \underset{x}{\operatorname{arg\,min}} \left(\sum_{s=1}^{t-1} \nabla f_s(x_{s+1}) \right) \cdot x + f_t(x) + R_{1:t}(x).$$

When f is not differentiable

$$x_{t+1} = \arg\min_{x} g'_{1:t-1} \cdot x + f_t(x) + R_{1:t}(x),$$

 Introducing a fixed convex function(L1 for sparsity) & giving the composite objective update

$$x_{t+1} = \underset{x}{\operatorname{arg\,min}} \left(\sum_{s=1}^{t} \nabla f_s(x_s) \right) \cdot x + \alpha_{1:t} \Psi(x) + R_{1:t}(x),$$

Finally, implicit update with a composite objective

$$x_{t+1} = \arg\min_{x} g'_{1:t-1} \cdot x + f_t(x) + \alpha_{1:t} \Psi(x) + R_{1:t}(x),$$

Motivation for Implicit Updates and Composite Objectives

- Empirically, implicit updates outperform linearized updates, more robustness
- Examples
 - Importance weights

$$f_{t}(x) = \frac{1}{2}(x-3)^{2}$$
 and $\chi_{t} = 2$

L1-regularization

$$f_{t}(x) = g \cdot x + ||x||$$

Composite updates

For Now

- FTRL-style: done!
- Next: mirror descent

$$(A) \qquad (B) \qquad (C)$$

$$(C)$$

$$(RDA) \quad \arg\min_{x} \quad g'_{1:t-1} \cdot x + f_{t}(x) \quad + \quad \phi_{1:t-1} \cdot x + \alpha_{t} \Psi(x) \qquad + \frac{1}{2} \sum_{s=1}^{t} \|Q_{s}^{\frac{1}{2}}(x - x_{s})\|^{2}$$

$$(RDA) \quad \arg\min_{x} \quad g'_{1:t-1} \cdot x + f_{t}(x) \quad + \quad \alpha_{1:t} \Psi(x) \qquad + \frac{1}{2} \sum_{s=1}^{t} \|Q_{s}^{\frac{1}{2}}(x - 0)\|^{2}$$

$$(C) \quad + \frac{1}{2} \sum_{s=1}^{t} \|Q_{s}^{\frac{1}{2}}(x - x_{s})\|^{2}$$

$$(C)$$

Mirror Descent Follows The Leader

• Let
$$f_t(x) = g_t \cdot x + \psi(x)$$

FTRL

$$x_{t+1} = \arg\min_{x} g_{1:t} \cdot x + R_{1:t}(x).$$

- Mirror Descent: on each round
 - The simplest is gradient descent

$$x_{t+1} = x_t - \eta g_t = -\eta g_{1:t}$$

Re-written

$$\begin{aligned} x_{t+1} &= x_t - \eta g_t = - \eta g_{1:t}. \\ x_{t+1} &= \operatorname*{arg\,min}_x g_t \cdot x + \frac{1}{2\eta_t} \|x - x_t\|_2^2. \end{aligned}$$

Bregman divergences

$$x_{t+1} = \arg\min_{x} g_t \cdot x + \mathcal{B}_{1:t}(x, x_t)$$

Composite-objective mirror descent (COMID)

$$x_{t+1} = \arg\min_{x} g_t \cdot x + \Psi(x) + \mathcal{B}_{1:t}(x, x_t),$$

An Equivalence Theorem for Proximal Regularization

For COMID (FOBOS)

Theorem 4. Let R_t be a sequence of differentiable origin-centered convex functions ($\nabla R_t(0) = 0$), with R_1 strongly convex, and let Ψ be an arbitrary convex function. Let $x_1 = \hat{x}_1 = 0$. For a sequence of loss functions $f_t(x) + \Psi(x)$, let the sequence of points played by the implicit-update composite-objective mirror descent algorithm be

$$\hat{x}_{t+1} = \underset{x}{\operatorname{arg\,min}} \ f_t(x) + \alpha_t \Psi(x) + \tilde{\mathcal{B}}_{1:t}(x, \hat{x}_t), \tag{12}$$

where $\tilde{R}_t(x) = R_t(x - \hat{x}_t)$, and $\tilde{\mathcal{B}}_t = \mathcal{B}_{\tilde{R}_t}$, so $\tilde{\mathcal{B}}_{1:t}$ is the Bregman divergence with respect to $\tilde{R}_1 + \cdots + \tilde{R}_t$. Consider the alternative sequence of points x_t played by a proximal FTRL algorithm, applied to these same f_t , defined by

for some $g'_t \in \partial f_t(x_{t+1})$ and $\phi_t \in \partial(\alpha_t \Psi)(x_{t+1})$. Then, these algorithms are equivalent, in that $x_t = \hat{x}_t$ for all t > 0.

An Equivalence Theorem for Proximal Regularization

For FOBOS

For COMID

Corollary 5. Let $f_t(x) = g_t \cdot x$. Then, the following algorithms play identical points:

Gradient descent with positive semi-definite learning rates Q_t, defined by:

$$x_{t+1} = x_t - Q_{1:t}^{-1} g_t.$$

• FTRL-Proximal with regularization functions $\tilde{R}_t(x) = \frac{1}{2} \|Q_t^{\frac{1}{2}}(x-x_t)\|_2^2$, which plays

$$X_{t+1} = \arg\min_{x} g_{1:t} \cdot x + \tilde{R}_{1:t}(x).$$

Bregman divergence is

 $B_R(x, y) = R(x) - (R(y) + \nabla R(y) \cdot (x - y))$

where $r = \nabla R$. Letting $R(x) = \frac{1}{2} ||x||_2^2$ so that $B_R(x, x_t) = \frac{1}{2} ||x - x_t||_2^2$ recovers the algorithm

for any $x, y \in \mathbb{R}^n$. We then have the update

$$\sum_{x} x_{t+1} = \arg \min_{x} g_t \cdot x + \frac{1}{\eta_t} \mathcal{B}_R(x, x_t), \quad (8)$$

or explicitly (by setting the gradient of (8) to zero),

$$x_{t+1} = r^{-1}(r(x_t) - \eta_t g_t)$$
 (

Expendicates as we done have specially lives taken the special as

Corollary 6. Consider Implicit-Update Composite-Objective Mirror Descent, which plays

$$\hat{x}_{t+1} = \arg\min f_t(x) + \underline{\alpha_t \Psi(x)} + \frac{1}{2} \|Q_{1:t}^{\frac{1}{2}}(x - \hat{x}_t)\|^2.$$
 (14)

Then an equivalent FTPRL update is

for some $g'_t \in \partial f_t(x_{t+1})$ and $\phi_t \in \partial (\alpha_t \Psi)(x_{t+1})$.

For Now

COMID (FOBOS) = FTRL-Proximal: done!

For the moment, suppose $\Psi(x) = 0$. So far, we have shown conditions under which gradient descent on $f_t(x) = g_t \cdot x$ with an adaptive step size is equivalent to follow-the-proximally-regularized-leader.

Next: AOGD = RDA

In this section, we show that mirror descent on the <u>regularized</u> functions $f_t^R(x) = g_t \cdot x + R_t(x)$, with a certain natural step-size, is equivalent to a follow-the-regularized-leader algorithm with origin-centered regularization.

An Equivalence Theorem for Origin-Centered Regularization

For AOGD

Theorem 7. Let $f_t(x) = g_t \cdot x$, and let $f_t^R(x) = g_t \cdot x + R_t(x)$, where R_t is a differentiable convex function. Let Ψ be an arbitrary convex function. Consider the composite-objective mirror-descent algorithm which plays

$$\hat{x}_{t+1} = \underset{x}{\operatorname{arg\,min}} \nabla f_t^R(\hat{x}_t) \cdot x + \Psi(x) + \mathcal{B}_{1:t}(x, \hat{x}_t), \tag{20}$$

and the FTRL algorithm which plays

$$x_{t+1} = \arg\min_{x} f_{1:t}^{R}(x) + \phi_{1:t-1} \cdot x + \Psi(x), \tag{21}$$

for $\phi_t \in \partial \Psi(x_{t+1})$ such that $g_{1:t} + \nabla R_{1:t}(x_{t+1}) + \phi_{1:t-1} + \phi_t = 0$. If both algorithms play $\hat{x}_1 = x_1 = 0$, then they are equivalent, in that $x_t = \hat{x}_t$ for all t > 0.

Corollary 8. Let $f_t(x) = g_t \cdot x$ and $f_t^R(x) = g_t \cdot x + \frac{\sigma_t}{2} ||x||_2^2$. Then the following algorithms play identical points:

- FTRL, which plays $x_{t+1} = \arg\min_{x} f_{1:t}^{R}(x)$.
- Gradient descent on the functions f^R using the step size $\eta_t = \frac{1}{\sigma_{1:t}}$, which plays

$$x_{t+1} = x_t - \eta_t \nabla f_t^R(x_t)$$

• Revisionist constant-step size gradient descent with $\eta_t = \frac{1}{\sigma_{1:t}}$, which plays

$$x_{t+1} = -\eta_t g_{1:t}.$$

For Now

- Algorithms
 - FOBOS
 - RDA
 - FTRL-Proximal
- FTRL-style & Implicit and Composite Updates
 - FTRL: RDA & FTRL-Proximal
 - COMID & FOBOS = FTRL-Proximal
 - -AOGD = FTRL (RDA)
- Regret Analysis is omitted

Experiments

• AUC

Table 2: AUC (area under the ROC curve) for online predictions and sparsity in parentheses. The best value for each dataset is shown in bold. For these experiments, λ was fixed at 0.05/T.

Data	FTRL-PROXIMAL	RDA	FOBOS
BOOKS	0.874 (0.081)	0.878 (0.079)	0.877 (0.382)
DVD	0.884 (0.078)	0.886 (0.075)	0.887 (0.354)
ELECTRONICS	0.916 (0.114)	0.919 (0.113)	0.918 (0.399)
KITCHEN	0.931 (0.129)	0.934 (0.130)	0.933 (0.414)
NEWS	0.989 (0.052)	0.991 (0.054)	0.990 (0.194)
RCV1	0.991 (0.319)	0.991 (0.360)	0.991 (0.488)
WEB SEARCH ADS	0.832 (0.615)	0.831 (0.632)	0.832 (0.849)

Experiments

- Sparisty & AUC
 - FTRL-Proximal & RDA

outline

- 背景
- Online Optimization 算法实现
 - Online Optimization
 - Truncated Gradient
 - FOBOS
 - RDA
 - FTPRL
- Online Optimization理论分析
 - Preliminary
 - Algorithms
 - FTRL-style & Implicit and Composite Updates
 - Experiments
- 总结
- References

总结

- Online Optimization 算法实现
 - Batch -> Online
 - 简单截断、梯度截断、FOBOS
 - RDA、FTRL-Proximal
- Online Optimization理论分析
 - Algorithms
 - FTRL-style & Implicit and Composite Updates
 - Experiments

References

- FOBOS: Efficient learning using forward-backward splitting
- RDA: Dual averaging methods for regularized stochastic learning and online optimization
- FTRL: A unified view of regularized dual averaging and mirror descent with implicit updates
- http://www.wbrecom.com/?p=264
- http://www.seas.ucla.edu/~vandenbe/236C/lectures/qnewton.pdf
- http://www.slideshare.net/VolhaBanadyseva/thomas-jensen-machine-learning
- Mirror Descent: http://www.stats.ox.ac.uk/~lienart/blog_opti_mda.html
- explicit & implicit update: http://www.math.ucla.edu/~wotaoyin/summer2013/slides/Lec05_ProximalOperatorDu al.pdf