Relations de comparaisons sur les suites

Aperçu

- 1. Les relations de comparaisons
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

- 1. Les relations de comparaisons
- 1.1 Définitions
- 1.2 Caractérisations des relations de comparaisons
- 1.3 Comparaison des suites de référence
- 1.4 Calculs avec la notation de Landau
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

1. Les relations de comparaisons

1.1 Définitions

- 1.2 Caractérisations des relations de comparaisons
- 1.3 Comparaison des suites de référence
- 1.4 Calculs avec la notation de Landau
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

- **D** 1 Soient $u = (u_n)$ et $v = (v_n)$ deux suites numériques.
 - On dit que la suite (u_n) est **dominé** par la suite (v_n) lorsqu'il existe un entier n_0 et un réel k tel que

$$\forall n \in \mathbb{N}, n \ge n_0 \implies |u_n| \le k|v_n|.$$

On écrit $u_n = \mathcal{O}(v_n)$, qui se lit « u_n est un grand O de v_n ».

On dit que la suite (u_n) est **négligeable** devant la suite (v_n) lorsque

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies |u_n| \le \varepsilon |v_n|.$$

On écrit $u_n = o(v_n)$, qui se lit « u_n est un petit O de v_n ».

On dit que la suite (u_n) est **équivalente** à la suite (v_n) lorsque

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies \left| u_n - v_n \right| \le \varepsilon \left| v_n \right|.$$

On écrit $u_n \sim v_n$, qui se lit « u_n est équivalente à v_n ».

Deux suites (u_n) et (v_n) sont **équivalentes** si, et seulement si

$$u_n - v_n = o(v_n).$$

On peut aussi écrire $u_n = v_n + o(v_n)$.

On note $\mathcal{O}(v)$ ou $\mathcal{O}(v_n)$ l'ensemble des suites dominées par la suite (v_n) . Cette notation est celle de Landau. Pour exprimer cette relation, on devrait écrire $u \in \mathcal{O}(v)$. En fait, l'usage est d'écrire abusivement $u = \mathcal{O}(v)$ ou $u_n = \mathcal{O}(v_n)$. On doit lire « u_n est grand \mathcal{O} de v_n » et non « u_n égale grand \mathcal{O} de v_n ».

Ν

Ces notations traduisent une appartenance et non une égalité. Par exemple $n^2 = \mathcal{O}(n^3)$ et $n^2 + 1 = \mathcal{O}(n^3)$ mais $n^2 \neq n^2 + 1$.

On note o(v) ou $o(v_n)$ l'ensemble des suites négligeables devant la suite (v_n) . Cette notation est encore une notation de Landau. Là encore, au lieu d'écrire $u \in o(v)$, on écrit abusivement u = o(v) ou $u_n = o(v_n)$. On doit lire « u_n est petit o de v_n ».

E 3

1. La suite $(2n^2 - 3n + 4)$ est dominée par la suite (n^2) car pour $n \ge 1$,

$$\left|2n^2 - 3n + 4\right| \le 2\left|n^2\right| + 3|n| + 4 \le 9n^2.$$

- 2. Si à partir d'un certain rang on a $|u_n| \le |v_n|$, alors $u_n = \mathcal{O}(v_n)$.
 La réciproque est fausse comme le montre l'exemple précédent.
- 3. La relation $u_n = \mathcal{O}(1)$ signifie que la suite (u_n) est bornée. Plus généralement, si $u_n = \mathcal{O}(v_n)$ et si la suite (v_n) est bornée, alors (u_n) est bornée.
- 4. Pour toute suite (u_n) et tout scalaire $\lambda \neq 0$, on a $u_n = \mathcal{O}(\lambda u_n)$.
- 5. Si $u_n = \mathcal{O}(v_n)$ et (v_n) converge vers 0, alors (u_n) converge vers 0.

E 4

- 1. La relation $u_n = o(1)$ signifie que (u_n) tend vers 0. Plus généralement, si $u_n = o(v_n)$ et si la suite (v_n) est bornée, alors (u_n) converge vers 0.
- 2. Si (ω_n) est une suite qui tend vers 0, alors $(\omega_n u_n) = o(u_n)$.
- 3. Pour toutes suites $(u_n), (v_n)$ et tout scalaire $\lambda \neq 0$, la relation $u_n = o(\lambda v_n)$ est équivalente à $u_n = o(v_n)$.

On notera que la relation $u_n \sim v_n$ ne signifie nullement que la différence $u_n - v_n$ tende vers 0; cette différence peut même être non bornée, comme le montre l'exemple $n^2 + n \sim n^2$.

- 1. Les relations de comparaisons
- 1.1 Définitions
- 1.2 Caractérisations des relations de comparaisons
- 1.3 Comparaison des suites de référence
- 1.4 Calculs avec la notation de Landau
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

Caractérisation de la relation \mathcal{O}

On a $u_n = \mathcal{O}(v_n)$ si et seulement si il existe une suite (μ_n) et un rang n_0 tels que

$$\forall n \geq n_0, u_n = \mu_n v_n$$
 et (μ_n) est bornée.

Caractérisation de la relation o

On a $u_n = o(v_n)$ si, et seulement si il existe une suite (μ_n) et un rang n_0 tels que

$$\forall n \geq n_0, u_n = \mu_n v_n$$

$$\lim_{n\to+\infty}\mu_n=0.$$

Caractérisation de la relation ~

On a $u_n \sim v_n$ si et seulement si il existe une suite (μ_n) et un rang n_0 tels que

$$\forall n \geq n_0, u_n = v_n \mu_n$$

et

$$\lim_{n\to+\infty}\mu_n=1.$$

Lorsque (v_n) ne s'annule pas (à partir d'un certain rang), la comparaison se lit sur le rapport u_n/v_n .

- **T 8** Soient (u_n) et (v_n) deux suites numériques qui ne s'annulent pas. On a alors les équivalences suivantes.
 - 1. On a $u_n = \mathcal{O}(v_n)$ si, et seulement si la suite (u_n/v_n) est bornée.
 - 2. On a $u_n = o(v_n)$ si, et seulement si la suite (u_n/v_n) tend vers 0.
 - 3. On a $u_n \sim v_n$ si, et seulement si la suite (u_n/v_n) tend vers 1.

- 1. Les relations de comparaisons
- 1.1 Définitions
- 1.2 Caractérisations des relations de comparaisons
- 1.3 Comparaison des suites de référence
- 1.4 Calculs avec la notation de Landau
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

Si la suite (v_n) tend vers $\pm \infty$ et si la suite (u_n) est bornée, alors $u_n = o(v_n)$.

P 10 Soit $a, b \in \mathbb{R}$, alors

$$a^n = o(b^n) \iff |a| < |b| \text{ ou } a = b = 0;$$

 $n^a = o(n^b) \iff a < b;$
 $(\ln n)^a = o((\ln n)^b) \iff a < b.$

P 11 *Soit* $\alpha > 0$, $\beta > 0$ *et* a > 1.

- 1. $(\ln n)^{\alpha} = o(n^{\beta})$.
- 2. $n^{\beta} = o(a^n)$. En particulier $n^{\beta} = o(e^{\alpha n})$.
- 3. $a^n = o(n!)$.
- 4. $n! = o(n^n)$.

- 1. Les relations de comparaisons
- 1.1 Définitions
- 1.2 Caractérisations des relations de comparaisons
- 1.3 Comparaison des suites de référence
- 1.4 Calculs avec la notation de Landau
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

D 12 Soit $(u_n), (v_n), (w_n)$ trois suites. L'écriture

$$u_n = v_n + \mathcal{O}(w_n)$$

signifie $u_n - v_n = \mathcal{O}(w_n)$.

E 13 Avec $u_n = n^3 + n$ et $v_n = n^3$, on obtient

$$n^3 + n = n^3 + \mathcal{O}(n^2),$$

 $\operatorname{car} u_n - v_n = n = \mathcal{O}(n^2).$

D 14 Soit $(u_n), (v_n), (w_n)$ trois suites. L'écriture

$$u_n = v_n + o(w_n)$$

signifie $u_n - v_n = o(w_n)$.

E 15 Avec $u_n = n^3 + n$ et $v_n = n^3$, on obtient

$$n^3 + n = n^3 + o(n^2),$$

car $u_n - v_n = n = o(n^2)$.

- Les relations de comparaisons
- 2. Calculs avec les relations de comparaisons
- 2.1 Propriétés des relations de comparaisons
- 2.2 Propriétés conservées par la relation d'équivalence
- 2.3 Opérations sur les équivalents
- 2.4 Suites extraites et relations de comparaisons
- 2.5 Équivalence par encadrement
- 2.6 Quelques équivalents classiques
- Cours sous forme d'exercices
- 4. Un peu d'informatique

Les relations de comparaisons

- 2. Calculs avec les relations de comparaisons
- 2.1 Propriétés des relations de comparaisons
- 2.2 Propriétés conservées par la relation d'équivalence
- 2.3 Opérations sur les équivalents
- 2.4 Suites extraites et relations de comparaisons
- 2.5 Équivalence par encadrement
- 2.6 Quelques équivalents classiques
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

1. La relation O est réflexive.

$$u_n = \mathcal{O}\left(u_n\right).$$

2. La relation O est transitive.

$$\left. \begin{array}{l} u_n = \mathcal{O}(v_n) \\ v_n = \mathcal{O}(w_n) \end{array} \right\} \implies u_n = \mathcal{O}(w_n).$$

- P 17 Soient (u_n) , (v_n) , (a_n) , (b_n) quatre suites.
 - 1. Si $u_n = \mathcal{O}(a_n)$ et $v_n = \mathcal{O}(a_n)$ alors $u_n + v_n = \mathcal{O}(a_n)$.
 - 2. Si $u_n = \mathcal{O}(a_n)$ et $v_n = \mathcal{O}(b_n)$ alors $u_n v_n = \mathcal{O}(a_n b_n)$.
 - 3. Si $u_n = \mathcal{O}(a_n)$ alors pour tout $\lambda \in \mathbb{R}$, $\lambda u_n = \mathcal{O}(a_n)$.
- R On peut résumer les résultats sous la forme

$$\mathcal{O}(a_n) + \mathcal{O}(a_n) = \mathcal{O}(a_n), \qquad \qquad \mathcal{O}(a_n)\mathcal{O}(b_n) = \mathcal{O}(a_nb_n), \qquad \qquad \lambda\mathcal{O}(a_n) = \mathcal{O}(a_n).$$

P 18 Soient (u_n) , (v_n) , (a_n) , (b_n) quatre suites.

- 1. Si $u_n = o(a_n)$ et $v_n = o(a_n)$ alors $u_n + v_n = o(a_n)$.
- 2. Si $u_n = o(a_n)$ et $v_n = o(b_n)$ alors $u_n v_n = o(a_n b_n)$.
- 3. Si $u_n = o(a_n)$ alors pour tout $\lambda \in \mathbb{R}$, $\lambda u_n = o(a_n)$.

On peut résumer les résultats sous la forme

$$o(a_n) + o(a_n) = o(a_n),$$
 $o(a_n)o(b_n) = o(a_nb_n),$ $\lambda o(a_n) = o(a_n).$

19 Soient $a_0, a_1, \ldots, a_{k-1}, a_k$ des réels tels que $a_k \neq 0$. Alors

$$a_0 + a_1 n + \dots + a_{k-1} n^{k-1} + a_k n^k \sim a_k n^k.$$

En effet,

$$1 = o(n^k),$$
 $n = o(n^k),$... $n^{k-1} = o(n^k)$

donc
$$a_0 + a_1 n + \dots + a_{k-1} n^{k-1} = o(a_k n^k)$$
.
Par exemple $2n + 1 \sim 2n$ ou $8n^3 - 200n^2 + 9n - 3 \sim 8n^3$

Par exemple $2n + 1 \sim 2n$ ou $8n^3 - 200n^2 + 9n - 3 \sim 8n^3$.

20 Soient b_1, b_2, \dots, b_k des réels tels que $0 < b_1 < b_2 < \dots < b_k$. Alors

$$b_1^n+b_2^n+\cdots+b_k^n\sim b_k^n.$$

En effet,

$$b_1^n = o(b_k^n),$$
 $b_2^n = o(b_k^n),$... $b_{k-1}^n = o(b_k^n)$

donc
$$b_1^n + b_2^n + \dots + b_{k-1}^n = o(b_k^n)$$
.
Par exemple $2^n + 5^n \sim 5^n$.

4□ → 4□ → 4 □ → □ ● 900

Soient $\alpha_1, \alpha_2, \dots, \alpha_k$ des réels tels que $0 < \alpha_1 < \alpha_2 < \dots < \alpha_k$. Alors

$$\frac{1}{n^{\alpha_1}}+\frac{1}{n^{\alpha_2}}+\cdots+\frac{1}{n^{\alpha_k}}\sim\frac{1}{n^{\alpha_1}}.$$

En effet, pour tout $\alpha > \alpha_1$, $\frac{1}{n^{\alpha}} = o\left(\frac{1}{n^{\alpha_1}}\right)$, donc $\frac{1}{n^{\alpha_2}} + \cdots + \frac{1}{n^{\alpha_k}} = o\left(\frac{1}{n^{\alpha_1}}\right)$.

Par exemple $\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^{25}} \sim \frac{1}{n}$.

E 22 Si
$$u_n \to +\infty$$
 et si (v_n) est bornée, alors $u_n + v_n \sim u_n$.

- 1. Si $u_n = o(v_n)$ alors $u_n = \mathcal{O}(v_n)$.
- 2. Si $u_n = o(v_n)$ et $v_n = \mathcal{O}(w_n)$ alors $u_n = o(w_n)$.
- 3. Si $u_n = \mathcal{O}(v_n)$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$.
- 4. Si $u_n = o(v_n)$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$. Autrement dit, la relation o est transitive.
- 5. Si $u_n = o(a_n)$ et $v_n = \mathcal{O}(b_n)$ alors $u_n v_n = o(a_n b_n)$.
- 6. Soit $\lambda \in \mathbb{R}$, $\lambda \neq 0$.

$$Si \; u_n = \mathcal{O}(a_n) \; \text{alors} \; u_n = \mathcal{O}(\lambda a_n) \; \text{et} \; \lambda u_n = \mathcal{O}(a_n).$$

Si
$$u_n = o(a_n)$$
 alors $u_n = o(\lambda a_n)$ et $\lambda u_n = o(a_n)$.

T 24 Dans l'ensemble des suites réelles, la relation ~ est une relation d'équivalence.

1. La relation ~ est réflexive

$$u_n \sim u_n$$
.

2. La relation ~ est symétrique

$$u_n \sim v_n \implies v_n \sim u_n.$$

3. La relation \sim est transitive

$$u_n \sim v_n$$
 et $v_n \sim w_n \implies u_n \sim w_n$.

- 1. Si $u_n \sim v_n$, alors $u_n = \mathcal{O}(v_n)$.
- 2. Si $u_n \sim v_n$ et $v_n = \mathcal{O}(w_n)$ alors $u_n = \mathcal{O}(w_n)$.
- 3. Si $u_n \sim v_n$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$.
- 4. Si $u_n = \mathcal{O}(v_n)$ et $v_n \sim w_n$ alors $u_n = \mathcal{O}(w_n)$.
- 5. Si $u_n = o(v_n)$ et $v_n \sim w_n$ alors $u_n = o(w_n)$.

Les relations de comparaisons

- 2. Calculs avec les relations de comparaisons
- 2.1 Propriétés des relations de comparaisons
- 2.2 Propriétés conservées par la relation d'équivalence
- 2.3 Opérations sur les équivalents
- 2.4 Suites extraites et relations de comparaisons
- 2.5 Équivalence par encadrement
- 2.6 Quelques équivalents classiques
- Cours sous forme d'exercices
- 4. Un peu d'informatique

T 26 Soient (u_n) et (v_n) deux suites. On suppose que $u_n \sim v_n$, alors u_n et v_n sont de même signe à partir d'un certain rang, c'est-à-dire

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \operatorname{sgn}(u_n) = \operatorname{sgn}(v_n).$$

T 27 Soient (u_n) et (v_n) deux suites. On suppose que $u_n \sim v_n$, et que (v_n) admet une limite $\ell \in \mathbb{R} \cup \{\pm \infty\}$, alors (u_n) tend aussi vers ℓ .

La réciproque est (heureusement) fausse comme le montre l'exemple $\lim_{n\to\infty} n^2 = \lim_{n\to\infty} n^3$.

T 27 Soient (u_n) et (v_n) deux suites. On suppose que $u_n \sim v_n$, et que (v_n) admet une limite $\ell \in \mathbb{R} \cup \{\pm \infty\}$, alors (u_n) tend aussi vers ℓ .

La réciproque est (heureusement) fausse comme le montre l'exemple $\lim n^2 = \lim n^3$.

Soient (u_n) une suite réelle et $\ell \in \mathbb{R}$, $\ell \neq 0$. Alors

$$u_n \sim \ell \iff \lim_{n \to +\infty} u_n = \ell.$$

Ce résultat bien sûr totalement est faux avec $\ell=0$. En effet, $u_n\sim 0$ signifie que la suite (u_n) est nulle à partir d'un certain rang.

Les relations de comparaisons

2. Calculs avec les relations de comparaisons

- 2.1 Propriétés des relations de comparaisons
- 2.2 Propriétés conservées par la relation d'équivalence
- 2.3 Opérations sur les équivalents
- 2.4 Suites extraites et relations de comparaisons
- 2.5 Équivalence par encadrement
- 2.6 Quelques équivalents classiques
- Cours sous forme d'exercices
- 4. Un peu d'informatique

T 28 Règles de calcul

Soient $(u_n), (v_n), (a_n), (b_n)$ quatre suites réelles. On suppose $u_n \sim v_n$ et $a_n \sim b_n$, alors

- 1. $u_n a_n \sim v_n b_n$,
- 2. $Si(b_n)$ est non nulle à partir d'un certain rang, alors (a_n) également et

$$\frac{u_n}{a_n} \sim \frac{v_n}{b_n}.$$

3. Soit $\alpha \in \mathbb{R}$. Si (u_n) est à valeurs > 0 à partir d'un certain rang, alors (v_n) également et

$$u_n^{\alpha} \sim v_n^{\alpha}$$
.

Par contre les relations $u_n \sim v_n$ et $a_n \sim b_n$ n'entraînent pas $u_n + a_n \sim v_n + b_n$ comme le montre l'exemple,

$$u_n = 1$$
 $v_n = 1$ $a_n = -1 + \frac{1}{n}$ $b_n = -1 + \frac{1}{n^2}$ $\frac{1}{n} \approx \frac{1}{n^2}$.

La propriété

$$u_n \sim v_n \implies u_n^{\alpha} \sim v_n^{\alpha}$$

Revient à composer (à gauche) chaque membre par l'application $x \mapsto x^{\alpha}$.

Ce résultat a un caractère exceptionnel car la relation d'équivalence n'est en général pas compatible avec la composition. Par exemple, on a

$$2n\pi + \frac{\pi}{2} \sim 2n\pi$$

mais les suites de termes généraux

$$\sin\left(2n\pi + \frac{\pi}{2}\right) = 1 \quad et \quad \sin\left(2n\pi\right) = 0$$

ne sont pas équivalentes.

1. Les relations de comparaisons

2. Calculs avec les relations de comparaisons

- 2.1 Propriétés des relations de comparaisons
- 2.2 Propriétés conservées par la relation d'équivalence
- 2.3 Opérations sur les équivalents

2.4 Suites extraites et relations de comparaisons

- 2.5 Équivalence par encadrement
- 2.6 Quelques équivalents classiques

Cours sous forme d'exercices

4. Un peu d'informatique

P 29 Soient (u_n) et (v_n) deux suites et $\varphi : \mathbb{N} \to \mathbb{N}$ une application strictement croissante.

- 1. Si $u_n \sim v_n$, alors $u_{\varphi(n)} \sim v_{\varphi(n)}$.
- 2. Si $u_n = \mathcal{O}(v_n)$, alors $u_{\omega(n)} = \mathcal{O}(v_{\omega(n)})$.
- 3. Si $u_n = o(v_n)$, alors $u_{\varphi(n)} = o(v_{\varphi(n)})$.

En particulier, si $u_n \sim v_n$, alors $u_{n+1} \sim v_{n+1}$.

1. Les relations de comparaisons

- 2. Calculs avec les relations de comparaisons
- 2.1 Propriétés des relations de comparaisons
- 2.2 Propriétés conservées par la relation d'équivalence
- 2.3 Opérations sur les équivalents
- 2.4 Suites extraites et relations de comparaisons
- 2.5 Équivalence par encadrement
- 2.6 Quelques équivalents classiques
- Cours sous forme d'exercices
- 4. Un peu d'informatique

P 30 Équivalence par encadrement

Soient (a_n) , (b_n) , (u_n) trois suites à valeurs réelles. On suppose que $a_n \sim b_n$ et qu'à partir d'un certain rang

$$a_n \le u_n \le b_n$$
.

Alors ces trois suites sont équivalentes:

$$u_n \sim a_n$$
 et $u_n \sim b_n$.

1. Les relations de comparaisons

- 2. Calculs avec les relations de comparaisons
- 2.1 Propriétés des relations de comparaisons
- 2.2 Propriétés conservées par la relation d'équivalence
- 2.3 Opérations sur les équivalents
- 2.4 Suites extraites et relations de comparaisons
- 2.5 Équivalence par encadrement
- 2.6 Quelques équivalents classiques
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

- 1. $\sin(u_n) \sim u_n$
- 2. $\cos(u_n) 1 \sim -\frac{u_n^2}{2}$,
- 3. $tan(u_n) \sim u_n$
- 4. $\ln(1+u_n) \sim u_n$
- 5. $e^{u_n} 1 \sim u_n$
- 6. $\sqrt{1+u_n}-1\sim \frac{1}{2}u_n$.

^a Ces équivalents sont généralement faux sans l'hypothèse $u_n \to 0$.

P 32 Formule de Stirling

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

$$a_n = \frac{(n^3 + 9)\sin\left(\frac{1}{n} + \frac{1}{n^2}\right)}{\sqrt{n} - 5n^2 + \cos\left(\frac{n}{3}\pi\right)}.$$

E 34 Trouver un équivalent simple de

$$a_n = (-1)^n \frac{\ln(1+1/n^2)}{\sqrt{\sin(1/n)}} (n+42).$$

- 1. Les relations de comparaisons
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique

- 1. On a $u_n = \mathcal{O}(v_n)$ si, et seulement si la suite (u_n/v_n) est bornée.
- 2. On a $u_n = o(v_n)$ si, et seulement si la suite (u_n/v_n) tend vers 0.
- 3. On a $u_n \sim v_n$ si, et seulement si la suite (u_n/v_n) tend vers 1.

- 1. Montrer que $3n^2 5n + 6 = o(5n^3)$.
- 2. Montrer que $2n^2 3n + 4 = O(n^2)$.

négligeable devant les suivantes.

- 3. Montrer que $4n^3 5n^2 + 8n 9 \sim 4n^3 + n^2 2$.
- 4. Montrer que $3^n + n^2 2^n \sim 3^n$.
- 5. Montrer

$$\sqrt{4n^2+1} = \mathcal{O}(n), \qquad \sqrt{4n^2+1} = o(n^2), \qquad \sqrt{4n^2+1} \sim 2n.$$

- 6. La relation \mathcal{O} est elle réflexive? Est elle symétrique? Est elle transitive?
- 7. La relation o est elle réflexive? Est elle symétrique? Est elle transitive?
 8. La relation ~ est elle réflexive? Est elle symétrique? Est elle transitive?
- 9. Montrer que si $u_n = o(v_n)$, alors $u_n = O(v_n)$. La réciproque est-elle vraie?
- 10. Montrer que si $u_n \sim v_n$, alors $u_n = O(v_n)$. La réciproque est-elle vraie?
- 11. Montrer que si $u_n = \mathcal{O}(a_n)$ et $v_n = \mathcal{O}(a_n)$ alors $u_n + v_n = \mathcal{O}(a_n)$.
- 12. Montrer que si $u_n = o(a_n)$ et $v_n = o(a_n)$ alors $u_n + v_n = o(a_n)$.
- 13. Montrer que si $u_n = \mathcal{O}(a_n)$ et $v_n = o(b_n)$ alors $u_n v_n = o(a_n)$.
- 14. Classer les suites suivantes de manière à ce que chacune d'entre elles soit

$$\frac{1}{n^2}$$
 n^n \sqrt{n} $n!$ 0.5^n $8n^2$ $23n\ln(n)$

- 1. Les relations de comparaisons
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique
- 4.1 Les relations Ω et Θ

- 1. Les relations de comparaisons
- 2. Calculs avec les relations de comparaisons
- 3. Cours sous forme d'exercices
- 4. Un peu d'informatique
- 4.1 Les relations Ω et Θ

Les relations Ω et Θ ne sont pas au programme de mathématiques.

Elle sont toutefois utilisées en informatique. Dans ce cas, on utilise plutôt la notation fonctionnelle pour les suites $\big(U(n)$ au lieu de $u_n\big)$ et les suites sont le plus souvent à valeurs strictement positives.

D 36 Étant données deux fonctions $f, g : \mathbb{N} \to]0, +\infty[$, la relation

$$f(n) = \Theta\left(g(n)\right)$$

signifie qu'il existe deux constantes $c_1 > 0$ et $c_2 > 0$ et $n_0 \in \mathbb{N}$ tels que

$$\forall n \in \mathbb{N}, n \geq n_0 \implies 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n).$$

On dit que g(n) est une borne asymptotiquement approchée de f(n) ou que g(n) et f(n) sont semblables.

Cette relation est parfois notée $f(n) \approx g(n)$.

- **E 37** 1. $4n^3 2n^2 + 3 = \Theta(n^3)$.
 - 2. $3n^2 2n \ln n = \Theta(n^2)$.
 - 3. $\frac{1}{8}n\ln n + 4n = \Theta(n\ln n).$

P 38 Les assertions suivantes sont équivalentes

- 1. $f(n) = \Theta(g(n))$.
- 2. $g(n) = \Theta(f(n))$.
- 3. $f(n) = \mathcal{O}(g(n))$ et $g(n) = \mathcal{O}(f(n))$.

D 39 Étant données deux fonctions $f, g : \mathbb{N} \to]0, +\infty[$, la relation

$$f(n) = \Omega\left(g(n)\right)$$

signifie qu'il existe une constante c > 0 et $n_0 \in \mathbb{N}$ tels que

$$\forall n \in \mathbb{N}, n \geq n_0 \implies 0 \leq cg(n) \leq f(n).$$

On dit que g(n) est un minorant asymptotique de f(n).

Cela revient à dire que $f(n) = \mathcal{O}(g(n))$.