# How to import GDS with ITF Technology File

2022-08-01



# **/** About ITF

Synopsys' Interconnect Technology Format (ITF) provides detailed modeling of
interconnect parasitic effects that enables designers to perform accurate parasitic
extraction for timing, signal integrity, power and reliability signoff analysis. ITF offers
a flexible and innovative format to accurately model the effects of increased process
variation at advanced process technologies. ITF has been evolving for more than 10
years and is the semiconductor industry's most widely used interconnect modeling
format. It is supported by leading semiconductor foundries and integrated device
manufacturers and is proven on thousands of production designs.

https://news.synopsys.com/2016-09-06-Synopsys-Announces-Standards-Board-Ratification-of-Its-New-Parasitic-Models-for-Latest-FinFET-Process-Nodes



#### About GDS Import Wizard



GDS Import Wizard is a free tool, which is used to easily import GDS into ANSYS HFSS 3D layout for high-precision full wave analysis.

The latest tools is released at GitHub.

https://github.com/YongshengGuo/ GDSImportWizard/releases/latest



#### GDS Import Workflow for ITF Technology File





#### Step1. Translate ITF to CSV Tech





### About CSVTech

| NO | LayerName   | Туре | LayerMap   | TextLayerMap | Thickness | Height  | LowerLayer | UpperLayer | DK   | DF | Cond     | TC1      | TC2       | Tref  |  |
|----|-------------|------|------------|--------------|-----------|---------|------------|------------|------|----|----------|----------|-----------|-------|--|
| 1  | UF1         | D    |            |              | 35        | 107.64  |            |            | 3.7  |    |          |          |           |       |  |
| 19 | IMD1a       | D    |            |              | 0.05      | 100.75  |            |            | 8.1  |    |          |          |           |       |  |
| 20 | ILD         | D    |            |              | 0.75      | 100     |            |            | 4    |    |          |          |           |       |  |
| 21 | substrate   | D    |            |              | 100       | 0       |            |            | 11.9 |    | 10       |          |           |       |  |
| 22 | PASSB1      | D    |            |              | 0.8       | -0.8    |            |            | 6.7  |    |          |          |           |       |  |
| 23 | PASSB2b     | D    |            |              | 2         | -2.8    |            |            | 6.7  |    |          |          |           |       |  |
| 24 | PASSB2a     | D    |            |              | 0.4       | -3.2    |            |            | 6.7  |    |          |          |           |       |  |
| 25 | underFill_C | D    |            |              | 0.001     | -3.201  |            |            | 6.7  |    |          |          |           |       |  |
| 26 | ubump       | С    | 170;0 74;0 | 125;0        | 0.001     | 142.639 |            |            |      |    | 5.80E+07 | 0.00E+00 | 0.00E+00  | 25.00 |  |
| 27 | metal4      | С    | 74;0       |              | 1.45      | 105.19  |            |            |      |    | 5.80E+07 | 3.89E-03 | -1.50E-07 | 25.00 |  |
| 28 | metal3      | С    | 33;40      |              | 0.85      | 103.565 |            |            |      |    | 5.80E+07 | 3.63E-03 | -1.39E-06 | 25.00 |  |
| 29 | metal2      | С    | 32;40      |              | 0.85      | 102.12  |            |            |      |    | 5.80E+07 | 3.63E-03 | -1.39E-06 | 25.00 |  |
| 30 | ctm         | С    |            |              | 0.08      | 101.793 |            |            |      |    | 5.80E+07 | 0.00E+00 | 0.00E+00  | 25.00 |  |
| 31 | cbm         | С    |            |              | 0.2       | 101.575 |            |            |      |    | 5.80E+07 | 0.00E+00 | 0.00E+00  | 25.00 |  |
| 32 | metal1      | С    | 31;40      |              | 0.85      | 100.675 |            |            |      |    | 5.80E+07 | 3.63E-03 | -1.39E-06 | 25.00 |  |
| 33 | mb1         | С    | 31;100     |              | 0.001     | -0.801  |            |            |      |    | 5.80E+07 | 0.00E+00 | 0.00E+00  | 25.00 |  |
| 34 | ubmb        | С    | 170;100    | 125;100      | 0.001     | -3.201  |            |            |      |    | 5.80E+07 | 0.00E+00 | 0.00E+00  | 25.00 |  |
| 36 | via4        | V    | 86;0       |              |           |         | metal4     | ubump      |      |    | 5.80E+07 |          |           |       |  |
| 37 | via3        | V    | 85;0       |              |           |         | metal3     | metal4     |      |    | 5.80E+07 |          |           |       |  |
| 38 | via2        | V    | 52;40      |              |           |         | metal2     | metal3     |      |    | 5.80E+07 | 3.63E-03 | -1.39E-06 |       |  |
| 39 | ctm via     | V    |            |              |           |         | ctm        | metal2     |      |    | 5.80E+07 | 0.00E+00 | 0.00E+00  |       |  |
| 40 | cbm via     | V    |            |              |           |         | cbm        | metal2     |      |    | 5.80E+07 | 0.00E+00 | 0.00E+00  |       |  |
| 41 | via1        | V    | 51;40      |              |           |         | metal1     | metal2     |      |    | 5.80E+07 |          |           |       |  |
| 42 | tsv         | V    | 251;086;0  |              |           |         | mb1        | metal1     |      |    | 5.80E+07 |          |           |       |  |
| 43 | pmb         | V    | 5;100      |              |           |         | ubmb       | mb1        |      |    | 5.80E+07 |          |           |       |  |
| 44 | tsv         | I    |            |              | 0.15      |         |            |            | 4    |    |          |          |           |       |  |

CSVTech\_overlapping\_template.csv is in the folder of the toolkit.



#### Column Definition - CSV Tech overlapping template

- 1. LayerName is the names will be uesd in 3D Layout stackup, should be present.
- **2. Type**, C : Conductor/Metal layer, V : Via layer, D : Dielectric layer, I : Insulating layer
  - Via Group and SnapViaGroups will be implemented on all Via layers.
  - Insulating layer is designed to define TSV insulation thickness, it must have a LayerName that have defined in Via Layers, or will be ignore
- 3. LayerMap indicates the layer mapping in GDS file.
  - Conductor/Metal and Via layer must have LayerMap value or will be ignore.
  - Multiple layermap Mapping could set to one layer separated with space, e.g. 86;0 85;0
- 4. TextLayerMap indicates which layer used to extract net list in GDS,
  - the layermap in GDS should have net information.
- 5. Thickness is set for Dielectrics/ Metals/Vias layer thickness, the default unit is um.
- 6. Height indicates position of the layer in stackup
  - All Height define in the lower of the layer, dielectrics Layers or Metal/Vias layers will be reordered by Height value, respectively.
  - If dielectrics Height not give, the height will be obtained by accumulating the thickness of dielectrics layer (invert order)
  - If Metal and Vias Height not give, the height will be obtained by accumulating the thickness of Metal and Vias layer (invert order)
  - The last dielectric layer is the origin, all height (D/C/V) value refer to this value, negative value is accepted.



#### Column Definition - CSV Tech overlapping template

- 7. LowerLayer, UpperLayer defined the start and end layer of via layer
  - If LowerLayer, UpperLayer not give, the adjacent layers will set to LowerLayer, UpperLayer
  - LowerLayer, UpperLayer determines the thickness of the via layer, which have higher priority the via Thickness property
- **8. DK**, **DF**, **Cond** is used to set Material properties of the layers
- **9. TC1, TC2, Tref** is the temperature coefficient of conductivity, use for corner analysis
  - temperature-dependent material (conductivity) will be used if check UseTemperatureDependMaterial option in GUI
  - The formular is Cond/(1+(TC1\*(\$Temp-Tref))+(TC2\*(\$Temp-Tref)\*\*2))
  - Tref is the base temperature, which defines the current conductivity



## Step2: Add LayerMap

| $\square$ | Α  | В        | С    | D        | Е         | F             | G        | Н        | 1         | J        | K       | L        | М        | N         | 0        |
|-----------|----|----------|------|----------|-----------|---------------|----------|----------|-----------|----------|---------|----------|----------|-----------|----------|
| 1         | NO | LayerNam | Туре | LayerMap | TextLayer | Mar Thickness | Height   | LowerLa  | y UpperLa | y DK     | DF      | Cond     | TC1      | TC2       | Tref     |
| 29        | 28 | ILDb     | D    |          |           | 4.02E-01      | 0.34     |          | ·         | 4        |         |          |          |           | '        |
| 30        | 29 | ILDa     | D    |          |           | 7.00E-02      | 0.27     |          |           | 7        |         |          |          |           |          |
| 31        | 30 | tox      | D    |          |           | 2.48E-03      | 0.267525 |          |           | 4.2      |         |          |          |           |          |
| 32        | 31 | FOXB     | D    |          |           | 6.75E-02      | 0.2      |          |           | 4        |         |          |          |           |          |
| 33        | 32 | FOXA     | D    |          |           | 2.00E-01      | 0        |          |           | 4        |         |          |          |           |          |
| 34        | 33 | alpa     | С    |          |           | 2.80E+00      | 12.67253 |          |           |          |         | 22841063 | 3.78E-03 | -1.33E-07 | 25       |
| 35        | 34 | metal5   | С    | 170;0    | 125;0     | 3.30E+00      | 8.572525 |          |           |          |         | 49143768 | 3.85E-03 | 8.58E-07  | 25       |
| 36        | 35 | metal4   | С    | 74;0     |           | A al al II a  |          | fort     |           |          | a. i    | u-t      |          |           |          |
| 37        | 36 | MIM      | С    |          |           | Add Lay       |          |          |           |          |         |          |          |           |          |
| 38        | 37 | MIM_P2   | С    |          |           | 1) Layer      | map or   | nly ad   | ded fo    | r Cond   | ducto   | r and V  | 'ia Lay  | er.       |          |
| 39        | 38 | metal3   | С    | 33;40    |           | 2) Layer      | s With   | out lav  | /erma     | n will n | ot im   | port to  | 3D Í a   | avout     |          |
| 40        | 39 | metal2   | С    | 32;40    |           | 2) Toyth      | overno   |          | d +0.00   | tract r  | oct in  | format   | ion      | ayout     |          |
| 11        | 40 | metal1   | С    |          |           | 3) TextL      |          |          |           |          |         |          |          |           |          |
| 12        | 41 | npoly    | С    |          |           | 4) Make       | sure ir  | mport    | ed via    | layer l  | ower/   | 'upper   | layerl   | nave va   | alid lay |
| 43        | 42 | ppoly    | С    |          |           | 1.20E-01      | 0.27     | -        |           |          |         | 1192606  | 2.47E-03 | -9.28E-08 | 25       |
| 14        | 43 | ndiff    | С    |          |           | 7.50E-02      | 0.2      |          |           |          |         | 136962.8 | 2.00E-03 | -3.43E-08 | 25       |
| 15        | 44 | pdiff    | С    |          |           | 7.50E-02      | 0.2      |          |           |          |         | 136892.5 | 3.49E-03 | -7.60E-08 | 25       |
| 16        | 45 | viapa    | V    |          |           |               | r        | metal5   | alpa      |          |         | 3703704  |          |           |          |
| 47        | 46 | via4     | V    | 86;0     |           |               | r        | metal4   | metal5    |          |         | 8585165  |          |           |          |
| 18        | 47 | via3b    | V    |          |           |               | 1        | MIM_P2   | metal4    |          |         | 8585165  |          |           |          |
| 19        | 48 | via3a    | V    |          |           |               | ľ        | MIM      | metal4    |          |         | 8585165  |          |           |          |
| 50        | 49 | via3     | V    | 85;0     |           |               | r        | metal3   | metal4    |          |         | 8585165  |          |           |          |
| 51        | 50 | via2     | V    | 52;40    |           |               | r        | metal2   | metal3    |          |         | 68854875 |          |           |          |
| 52        | 51 | via1     | V    |          |           |               | r        | metal1   | metal2    |          |         | 71362306 |          |           |          |
| 53        | 52 | psubCont | V    |          |           |               | 5        | SUBSTRAT | odiff     |          |         |          |          |           |          |
| 54        | 53 | nsubCont | V    |          |           |               | 5        | SUBSTRAT | ndiff     |          |         |          |          |           |          |
| 55        | 54 | pdfCont  | V    |          |           |               | F        | odiff    | metal1    |          |         | 5611672  |          |           |          |
| 56        | 55 | ndfCont  | V    |          |           |               | r        | ndiff    | metal1    |          |         | 5367687  |          |           |          |
|           | 56 | ppolyCon | V    |          |           |               |          |          | motal1    |          |         | 6497726  |          |           |          |
| 57        |    |          |      |          |           |               |          |          |           |          |         |          |          |           |          |
| 7<br>3    |    | npolyCon | V    | Re       | fer to G  | DS Import W   | izard m  | nanual   | for m     | ore de   | tail (a | attache  | ed with  | i the to  | olkit    |



#### Step2: Import GDS





#### Next: please enjoy to setting solver option and analysis







# End

