Solving Problems by Searching

Dr. Steven Bethard

Computer and Information Sciences University of Alabama at Birmingham

14 Jan 2016

Outline

- Search Problems
 - Describing Search Problems
 - Search Trees and Search Nodes
- 2 Uninformed Search Strategies
 - Breadth-first Search
 - Uniform-cost Search
 - Depth-first Search
 - Iterative Deepening Search
- 3 Informed Search
 - Best-First Search
 - A* Search
 - Heuristic Functions

Outline

- Search Problems
 - Describing Search Problems
 - Search Trees and Search Nodes
- Uninformed Search Strategies
 - Breadth-first Search
 - Uniform-cost Search
 - Depth-first Search
 - Iterative Deepening Search
- 3 Informed Search
 - Best-First Search
 - A* Search
 - Heuristic Functions

- Fully or Partially Observable?
- Deterministic or Stochastic?
- Episodic or Sequential?
- Static or Dynamic?
- Discrete or Continuous?
- Single or Multi-Agent?

- Fully or Partially Observable?
- Deterministic or Stochastic?
- Episodic or Sequential?
- Static or Dynamic?
- Discrete or Continuous?
- Single or Multi-Agent?

- Fully or Partially Observable?
- Deterministic or Stochastic?
- Episodic or Sequential?
- Static or Dynamic?
- Discrete or Continuous?
- Single or Multi-Agent?

- Fully or Partially Observable?
- Deterministic or Stochastic?
- Episodic or Sequential?
- Static or Dynamic?
- Discrete or Continuous?
- Single or Multi-Agent?

- Fully or Partially Observable?
- Deterministic or Stochastic?
- Episodic or Sequential?
- Static or Dynamic?
- Discrete or Continuous?
- Single or Multi-Agent?

- Fully or Partially Observable?
- Deterministic or Stochastic?
- Episodic or Sequential?
- Static or Dynamic?
- Discrete or Continuous?
- Single or Multi-Agent?

- Fully or Partially Observable?
- Deterministic or Stochastic?
- Episodic or Sequential?
- Static or Dynamic?
- Discrete or Continuous?
- Single or Multi-Agent?

Problem

- Start in 1
- Left square actions: Suck or Right
- Right square actions: Suck or Left
- Success: 7 or 8
- Optimal: fewest actions

1 2 %

3 3

Solution

Problem

- Start in 1
- Left square actions: Suck or Right
- Right square actions: Suck or Left
- Success: 7 or 8
- Optimal: fewest actions

Solution

6/43

Problem

- Start in 1
- Left square actions: Suck or Right
- Right square actions: Suck or Left
- Success: 7 or 8
- Optimal: fewest actions

Solution

[Suck, Right, Suck]

Problem

- Start in 1
- Left square actions: Suck or Right
- Right square actions: Suck or Left
- Success: 7 or 8
- Optimal: fewest actions

Solution

[Suck, Right, Suck]

i.e., [1, 5, 6, 8]

Defining a Search Problem

Components

- Initial state
- Actions
- Goal test
- Path cost

Solution

Path from initial state to goal state

Optimal solution

Path with lowest cost

Defining the Vacuum Problem

Initial State

Actions

$$S(1) = \{(Right, 2), (Suck, 5)\}\$$

 $S(2) = \{(Left, 1), (Suck, 4)\}$

Goal Test

$$G(s) = s \in \{7, 8\}$$

Path Cost

1 per state

్ద్యక్రిక

Start State

Goal State

States Mappings of tile numbers to tile locations
Initial {1:9,2:2,3:8,4:3,5:4,6:6,7:1,8:7}
Actions Move blank left, right, up, down
Goal {1:1,2:2,3:3,4:4,5:5,6:6,7:7,8:8}
Cost 1 per move

Start State

Goal State

States Mappings of tile numbers to tile locations
Initial [1:9,2:2,3:8,4:3,5:4,6:6,7:1,8:7]
Actions Move blank left, right, up, down
Goal [1:1,2:2,3:3,4:4,5:5,6:6,7:7,8:8]
Cost 1 per move

Start State

Goal State

States Mappings of tile numbers to tile locations
Initial {1:9, 2:2, 3:8, 4:3, 5:4, 6:6, 7:1, 8:7}
Actions Move blank left, right, up, down
Goal {1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8}
Cost | per move

Start State

Goal State

States Mappings of tile numbers to tile locations
Initial {1:9,2:2,3:8,4:3,5:4,6:6,7:1,8:7}
Actions Move blank left, right, up, down
Goal [1:1,2:2,3:3,4:4,5:5,6:6,7:7,8:8]
Cost | per move

Start State

Goal State

States Mappings of tile numbers to tile locations
Initial {1:9, 2:2, 3:8, 4:3, 5:4, 6:6, 7:1, 8:7}
Actions Move blank left, right, up, down
Goal {1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8}
Cost | per move

Start State

Goal State

States Mappings of tile numbers to tile locations Initial {1:9, 2:2, 3:8, 4:3, 5:4, 6:6, 7:1, 8:7} Actions Move blank left, right, up, down Goal {1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8} Cost 1 per move

States real-valued joint angles, parts to assemble

Initial many possible

Actions real-valued adjustments to joint angles

Goal fully assembled part

States real-valued joint angles, parts to assemble

Initial many possible

Actions real-valued adjustments to joint angles

Goal fully assembled part

States real-valued joint angles, parts to assemble Initial many possible

Actions real-valued adjustments to joint angles

Goal fully assembled part

States real-valued joint angles, parts to assemble Initial many possible

Actions real-valued adjustments to joint angles

Goal fully assembled part

States real-valued joint angles, parts to assemble Initial many possible

Actions real-valued adjustments to joint angles Goal fully assembled part

States real-valued joint angles, parts to assemble
Initial many possible
Actions real-valued adjustments to joint angles
Goal fully assembled part
Cost total duration of all movements

Defining a Machine Translation Problem

Input Comí la manzana roja porque tenía hambre. Output I ate the red apple because I was hungry.

States

Initial

Actions

Goal

Cost

Tree Search

```
def tree_search(problem, strategy):
    strategy.add(...problem.initial_state...)
    for node in strategy:
        if problem.is_goal(node.state):
            return node.get_actions()
        items = problem.get_successors(node.state)
        for state, action, ... in items:
            strategy.add(...state...action...)
    return None
```

Birmingham

The Node Data Structure

Tree Search Revisited

```
def tree_search(problem, strategy):
    strategy.add(Node(problem.initial_state))
    for node in strategy:
        if problem.is_goal(node.state):
            return node.get_actions()
        succs = problem.get_successors(node.state)
        for state, action, cost in succs:
            strategy.add(Node(
                state=state,
                action=action,
                parent=node,
                cost=node.cost + cost.
                depth=node.depth + 1))
    return None
```

Outline

- Search Problems
 - Describing Search Problems
 - Search Trees and Search Nodes
- 2 Uninformed Search Strategies
 - Breadth-first Search
 - Uniform-cost Search
 - Depth-first Search
 - Iterative Deepening Search
- 3 Informed Search
 - Best-First Search
 - A* Search
 - Heuristic Functions

Completeness

If a solution exists, is it always found?

Optimality

Is the solution found always the lowest cost?

Time Complexity

How many search nodes will be generated?

Space Complexity

Completeness

If a solution exists, is it always found?

Optimality

Is the solution found always the lowest cost?

Time Complexity

How many search nodes will be generated?

Space Complexity

Completeness

If a solution exists, is it always found?

Optimality

Is the solution found always the lowest cost?

Time Complexity

How many search nodes will be generated?

Space Complexity

Completeness

If a solution exists, is it always found?

Optimality

Is the solution found always the lowest cost?

Time Complexity

How many search nodes will be generated?

Space Complexity

Strategy? • Example

First-in First-Out Queue

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Worst Case Space Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state c

Strategy? • Example

First-in First-Out Queue

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Worst Case Space Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state a

Strategy? • Example

First-in First-Out Queue

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Worst Case Space Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state a

Strategy? • Exar

First-in First-Out Queue

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Worst Case Space Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Strategy?

Example

First-in First-Out Queue

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Worst Case Space Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Strategy? • Example

First-in First-Out Queue

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Worst Case Space Complexity?

 $O(b^{d+1})$, branching factor b, depth of goal state d

Strategy? • Example

Lowest Cost First Priority Queue

Complete?

Yes, if number of branches is finite and steps are all positive

Optimal?

Yes

Worst Case Time Complexity?

 $O(b^{\lfloor C^*/\epsilon \rfloor + 1})$, optimal cost C^* , minimum step cost ϵ

Worst Case Space Complexity?

Strategy? → Example

Lowest Cost First Priority Queue

Complete?

Yes, if number of branches is finite and steps are all positive

Optimal?

Yes

Worst Case Time Complexity?

 $O(b^{\lfloor C^*/\epsilon \rfloor + 1})$, optimal cost C^* , minimum step cost ϵ

Worst Case Space Complexity?

Strategy? • Example

Lowest Cost First Priority Queue

Complete?

Yes, if number of branches is finite and steps are all positive

Optimal?

Yes

Worst Case Time Complexity?

 $O(b^{\lfloor C^*/\epsilon \rfloor + 1})$, optimal cost C^* , minimum step cost ϵ

Worst Case Space Complexity?

Strategy? DEXAMPLE

Lowest Cost First Priority Queue

Complete?

Yes, if number of branches is finite and steps are all positive

Optimal?

Yes

Worst Case Time Complexity?

 $O(b^{\lfloor C^*/\epsilon \rfloor + 1})$, optimal cost C^* , minimum step cost ϵ

Worst Case Space Complexity?

Strategy? ••

· Example

Lowest Cost First Priority Queue

Complete?

Yes, if number of branches is finite and steps are all positive

Optimal?

Yes

Worst Case Time Complexity?

 $O(b^{\lfloor C^*/\epsilon \rfloor + 1})$, optimal cost C^* , minimum step cost ϵ

Worst Case Space Complexity?

Strategy? • Example

Lowest Cost First Priority Queue

Complete?

Yes, if number of branches is finite and steps are all positive

Optimal?

Yes

Worst Case Time Complexity?

 $O(b^{\lfloor C^*/\epsilon \rfloor + 1})$, optimal cost C^* , minimum step cost ϵ

Worst Case Space Complexity?

Strategy? • Example

First-in Last-Out Stack

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No, lower goal states may be found first

Worst Case Time Complexity?

 $O(b^m)$, branching factor b, maximum depth m

Worst Case Space Complexity?

Strategy? → Example

First-in Last-Out Stack

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No, lower goal states may be found first

Worst Case Time Complexity?

 $O(b^m)$, branching factor b, maximum depth m

Worst Case Space Complexity?

Strategy?

First-in Last-Out Stack

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

Worst Case Time Complexity?

Worst Case Space Complexity?

Strategy?

Example

First-in Last-Out Stack

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No, lower goal states may be found first

Worst Case Time Complexity?

 $O(b^m)$, branching factor b, maximum depth m

Worst Case Space Complexity?

Strategy?

Example

First-in Last-Out Stack

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No, lower goal states may be found first

Worst Case Time Complexity?

 $O(b^m)$, branching factor b, maximum depth m

Worst Case Space Complexity?

Strategy?

First-in Last-Out Stack

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No, lower goal states may be found first

Worst Case Time Complexity?

 $O(b^m)$, branching factor b, maximum depth m

Worst Case Space Complexity?

Strategy? • Example

First-in Last-Out Stack with depth limit

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^d)$, branching factor b, depth of goal state d

Worst Case Space Complexity?

Strategy? • Example

First-in Last-Out Stack with depth limit

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^d)$, branching factor b, depth of goal state d

Worst Case Space Complexity?

Strategy? • Example

First-in Last-Out Stack with depth limit

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^d)$, branching factor b, depth of goal state d

Worst Case Space Complexity?

Strategy?

Example

First-in Last-Out Stack with depth limit

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^d)$, branching factor b, depth of goal state d

Worst Case Space Complexity?

Strategy?

Example

First-in Last-Out Stack with depth limit

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^d)$, branching factor b, depth of goal state d

Worst Case Space Complexity?

Strategy? • Example

First-in Last-Out Stack with depth limit

Complete?

Yes, if number of branches is finite

Optimal?

Yes, if step costs are all identical

Worst Case Time Complexity?

 $O(b^d)$, branching factor b, depth of goal state d

Worst Case Space Complexity?

Exponential Costs of Repeated States

Graph Search

```
def graph_search(problem, strategy):
    seen = set()
    strategy.add(Node(problem.initial_state))
    for node in strategy:
        if problem.is_goal(node.state):
            return node.get_actions()
        if node not in seen:
            seen.add(node)
            succs = problem.get_successors(node.state)
            for state, action, cost in succs:
                strategy.add(Node(
                    state=state.
                    action=action,
                    parent=node,
                    cost=node.cost + cost,
                    depth=node.depth + 1))
```

Outline

- Search Problems
 - Describing Search Problems
 - Search Trees and Search Nodes
- 2 Uninformed Search Strategies
 - Breadth-first Search
 - Uniform-cost Search
 - Depth-first Search
 - Iterative Deepening Search
- 3 Informed Search
 - Best-First Search
 - A* Search
 - Heuristic Functions

All States are not Equal

Arad h(n) = 366

Strategy?

Priority Queue, f(n) = h(n)

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No

Worst Case Time Complexity?

 $O(b^m)$, but better with good heuristic

Worst Case Space Complexity?

Strategy?

Priority Queue, f(n) = h(n)

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No

Worst Case Time Complexity?

 $O(b^m)$, but better with good heuristic

Worst Case Space Complexity?

Strategy?

Priority Queue, f(n) = h(n)

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No

Worst Case Time Complexity?

 $O(b^m)$, but better with good heuristic

Worst Case Space Complexity?

Strategy?

Priority Queue, f(n) = h(n)

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No

Worst Case Time Complexity?

 $O(b^m)$, but better with good heuristic

Worst Case Space Complexity?

Strategy?

Priority Queue, f(n) = h(n)

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No

Worst Case Time Complexity?

 $O(b^m)$, but better with good heuristic

Worst Case Space Complexity?

 $O(b^{\prime\prime\prime})$

Strategy?

Priority Queue, f(n) = h(n)

Complete?

Yes, if finite number of states and no cyclic paths

Optimal?

No

Worst Case Time Complexity?

 $O(b^m)$, but better with good heuristic

Worst Case Space Complexity?

Arad f(n) = 0 + 366 = 366

Strategy?

Priority Queue, f(n) = g(n) + h(n)

Complete?

Yes, if there are finite nodes with $f(n) < C^*$

Optimal?

Yes, if h is consistent

Worst Case Time Complexity?

All nodes with $f(n) < C^*$, exponential in len(path)

Worst Case Space Complexity?

All nodes with f(n) < C

Strategy?

Priority Queue, f(n) = g(n) + h(n)

Complete?

Yes, if there are finite nodes with $f(n) < C^*$

Optimal?

Yes, if h is consistent

Worst Case Time Complexity?

All nodes with $f(n) < C^*$, exponential in len(path)

Worst Case Space Complexity?

All nodes with f(n) < C

Strategy?

Priority Queue, f(n) = g(n) + h(n)

Complete?

Yes, if there are finite nodes with $f(n) < C^*$

Optimal?

Yes, if h is consistent

Worst Case Time Complexity?

All nodes with $f(n) < C^*$, exponential in len(path)

Worst Case Space Complexity?

All nodes with f(n) < C

Strategy?

Priority Queue, f(n) = g(n) + h(n)

Complete?

Yes, if there are finite nodes with $f(n) < C^*$

Optimal?

Yes, if *h* is consistent

Worst Case Time Complexity?

All nodes with $f(n) < C^*$, exponential in len(path)

Worst Case Space Complexity?

All nodes with $f(n) < C^*$

Strategy?

Priority Queue, f(n) = g(n) + h(n)

Complete?

Yes, if there are finite nodes with $f(n) < C^*$

Optimal?

Yes, if *h* is consistent

Worst Case Time Complexity?

All nodes with $f(n) < C^*$, exponential in len(path)

Worst Case Space Complexity?

All nodes with $f(n) < C^*$

Strategy?

Priority Queue, f(n) = g(n) + h(n)

Complete?

Yes, if there are finite nodes with $f(n) < C^*$

Optimal?

Yes, if *h* is consistent

Worst Case Time Complexity?

All nodes with $f(n) < C^*$, exponential in len(path)

Worst Case Space Complexity?

All nodes with $f(n) < C^*$

Suppose some suboptimal goal G₂ has been generated and is in the queue. Let *n* be an unexpanded node on a shortest path to an optimal goal G_1 .


```
f(G_2) = g(G_2) since h(G_2) = 0
> g(G_1) since G_2 is suboptima
\geq f(n) since h is consistent
```

Suppose some suboptimal goal G₂ has been generated and is in the queue. Let *n* be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptima
\geq $f(n)$ since h is consistent

Suppose some suboptimal goal G₂ has been generated and is in the queue. Let *n* be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is consistent

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is consistent

A* Contours

8-Puzzle Heuristics

Start State

Misplaced Tiles h(n) = 6

Manhattan Distance h(n) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1

8-Puzzle Heuristics

Start State

Goal State

Misplaced Tiles

h(n) = 6

Manhattan Distance h(n) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1

8-Puzzle Heuristics

1 2 3 4 5 6 7 8 Goal State

Misplaced Tiles

$$h(n) = 6$$

8-Puzzle Heuristics

5 **Goal State**

$$h(n) = 6$$

Misplaced Tiles

8-Puzzle Heuristics

 1
 2
 3

 4
 5
 6

 7
 8

Start State

Goal State

$$h(n) = 6$$

$$h(n) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1$$

Heuristic Quality

	Misplaced Tiles	Manhattan Distance
4 moves	13 nodes	12 nodes
8 moves	39 nodes	25 nodes
12 moves	227 nodes	73 nodes
16 moves	1301 nodes	211 nodes
20 moves	7276 nodes	676 nodes

Dominance

 h_1 dominates h_2 if for all n, $h_1(n) \ge h_2(n)$

Which one dominates?

- Misplaced Tiles
- Manhattan Distance

Dominance = Efficiency

A* with h_1 will never expand more nodes than A* with h_2

Dominance

 h_1 dominates h_2 if for all n, $h_1(n) \ge h_2(n)$

Which one dominates?

- Misplaced Tiles
- Manhattan Distance

Dominance = Efficiency

A* with h_1 will never expand more nodes than A* with h_2

Dominance

 h_1 dominates h_2 if for all n, $h_1(n) \ge h_2(n)$

Which one dominates?

- Misplaced Tiles
- Manhattan Distance

Dominance = Efficiency

A* with h_1 will never expand more nodes than A* with h_2

Why? Every node with $h(n) < C^* - g(n)$ is expanded

Dominance

 h_1 dominates h_2 if for all n, $h_1(n) \ge h_2(n)$

Which one dominates?

- Misplaced Tiles
- Manhattan Distance

Dominance = Efficiency

A* with h_1 will never expand more nodes than A* with h_2

Why? Every node with $h(n) < C^* - g(n)$ is expanded

The 8-Puzzle	
Problem	Heuristic
Tiles move anywhere	Misplaced Tiles

Generating heuristics

Exact solution to relaxed problem ⇒ consistent heuristic

Why?

39/43

The 8-Puzzle		
Problem	Heuristic	
Tiles move anywhere	Misplaced Tiles	

Generating heuristics

Exact solution to relaxed problem \Rightarrow consistent heuristic

The 8-Puzzle	
Problem	Heuristic
Tiles move anywhere	Misplaced Tiles

Generating heuristics

Exact solution to relaxed problem \Rightarrow consistent heuristic

The 8-Puzzle		
Problem	Heuristic	
Tiles move anywhere	Misplaced Tiles	
Tiles move to adjacent squares		

Generating heuristics

Exact solution to relaxed problem \Rightarrow consistent heuristic

The 8-Puzzle	
Problem	Heuristic
Tiles move anywhere	Misplaced Tiles
Tiles move to adjacent squares	Manhattan Distance

Generating heuristics

Exact solution to relaxed problem \Rightarrow consistent heuristic

The 8-Puzzle			
Problem	Heuristic		
Tiles move anywhere	Misplaced Tiles		
Tiles move to adjacent squares	Manhattan Distance		

Generating heuristics

Exact solution to relaxed problem ⇒ consistent heuristic

- Solution in original problem is also solution in relaxed
- \blacksquare Heuristic is exact cost in relaxed \Rightarrow triangle inequality

The 8-Puzzle			
Problem	Heuristic		
Tiles move anywhere	Misplaced Tiles		
Tiles move to adjacent squares	Manhattan Distance		

Generating heuristics

Exact solution to relaxed problem \Rightarrow consistent heuristic

- Solution in original problem is also solution in relaxed
- Heuristic is exact cost in relaxed ⇒ triangle inequality

Traveling Salesman Problem

Problem

Visit all cities exactly once, minimum distance

Heuristic

Minimum spanning tree Solvable in $O(n^2)$

Traveling Salesman Problem

Problem

Visit all cities exactly once, minimum distance

Heuristic

Minimum spanning tree Solvable in $O(n^2)$

Bag Generation

Order of a bag of words

Initial Full bag, empty sentence Actions Pop from bag, add to sentence Goal Empty bag, full sentence Cost $c(w_1, w_2) + c(w_2, w_3) + ... + c(w_{n-1}, w_n)$

c(v, w)

. . .

John broke 3.5 ... the the 25.1

Node

{lamp, the}
[John, broke]

Bag-Word Estimates

lamp the

John	lamp	7.6
broke	lamp	6.9
the	lamp	3.5
lamp	lamp	23.0
John	the	7.1
broke	the	3.2
the	the	25.1
lamp	the	6.2

Node

```
{lamp, the}
[John, broke]
```

Bag-Word Estimates

```
\min_{\substack{w \in \{\text{broke,the}\}\\ w \in \{\text{broke,lamp}\}}} s(w, \text{lamp})
```

John	lamp	7.6
broke	lamp	6.9
the	lamp	3.5
lamp	lamp	23.0
John	the	7.1
broke	the	3.2
the	the	25.1
lamp	the	6.2

Node

```
{lamp, the}
[John, broke]
```

Bag-Word Estimates

```
\min_{\substack{w \in \{\text{broke,the}\}\\ w \in \{\text{broke,lamp}\}}} s(w, \text{lamp}) \quad 3.5
```

John	lamp	7.6
broke	lamp	6.9
the	lamp	3.5
lamp	lamp	23.0
John	the	7.1
broke	the	3.2
the	the	25.1
lamp	the	6.2

Node

{lamp, the}
[John, broke]

Bag-Word Estimates

 $\min_{\substack{w \in \{\text{broke,the}\}\\ w \in \{\text{broke,lamp}\}}} s(w, \text{lamp}) \quad 3.5$

lamp	7.6
lamp	6.9
lamp	3.5
lamp	23.0
the	7.1
the	3.2
the	25.1
the	6.2
	lamp lamp lamp the the

Node

```
{lamp, the}
[John, broke]
```

Bag-Word Estimates

```
\min_{w \in \{\text{broke,the}\}} s(w, \text{lamp}) 3.5

\min_{w \in \{\text{broke,lamp}\}} s(w, \text{the}) 3.2
```

```
3.5 + 3.2 = 6.7
```

John	lamp	7.6
broke	lamp	6.9
the	lamp	3.5
lamp	lamp	23.0
John	the	7.1
broke	the	3.2
the	the	25.1
lamp	the	6.2

Key Points

Search Problems

■ Initial State, Actions, Goal Test, Path Cost

Search Strategies

- Breadth-first
- Uniform-cost
- Depth-first
- Iterative Deepening
- A* Search

Heuristics

Dominance, Relaxed Problems