IN THE CLAIMS:

1 1.	(Currently Amended)	A contactless IC card	l comprising:
------	---------------------	-----------------------	---------------

a demodulator circuit which receives a carrier wave that has been ASK-modulated

3 with digital data, and demodulates the ASK-modulated carrier wave to recover the digital data;

4 and

5

6

7

1

5

6

8

9

10

.11

suspending means which suspends the demodulation by the demodulator circuit during periods a period within each period corresponding to each bit of the digital data where there is no possibility of a change of a data value in the digital data.

2. (Original) The contactless IC card of Claim 1,

wherein the demodulator circuit includes:

a detector circuit which detects an envelope of the ASK-modulated carrier wave;

a reference voltage generator circuit which outputs a reference voltage;

a differential circuit which receives the envelope from the detector circuit, and

outputs differential components of the received envelope based on the reference voltage; and

7 a comparator circuit which includes a first input terminal for receiving the output

of the differential circuit, a second input terminal for receiving the output of the reference

voltage generator circuit, and an output terminal, compares a voltage at the first input terminal

and a voltage at the second input terminal, and inverts an output of the output terminal if a

difference between the two voltages exceeds a predetermined value.

1	3.	(Currently Amended) The contactless IC card of Claim 2, A contactless IC card
2	comprising:	
3		a demodulator circuit which receives a carrier wave that has been ASK-modulated
4	with digital o	lata, and demodulates the ASK-modulated carrier wave to recover the digital data;
5	and suspend	ing means which suspends the demodulation by the demodulator circuit during
6	periods when	e there is no possibility of a change of a data value in the digital data;
7		wherein the demodulator circuit includes: a detector circuit which detects an
8	envelope of	the ASK-modulated carrier wave; a reference voltage generator circuit which
9	outputs a re	ference voltage; a differential circuit which receives the envelope from the detector
10	circuit, and	outputs differential components of the received envelope based on the reference
X 1	voltage; and	a comparator circuit which includes a first input terminal for receiving the output of
12	the differen	tial circuit, a second input terminal for receiving the output of the reference voltage
13	generator c	ircuit, and an output terminal, compares a voltage at the first input terminal and a
14	voltage at t	he second input terminal, and inverts an output of the output terminal if a difference
15	between the	e two voltages exceeds a predetermined value; and
16		wherein the suspending means includes:
17		a short-circuit control circuit which short-circuits the first input terminal and the
18	second inp	ut terminal during the periods where there is no possibility of a change of a data value
19		al data; and
. 20		a short-circuit control signal output circuit which outputs a short-circuit contro
21	signal to	the short-circuit control circuit, to indicate the periods during which there is no
22		of a change of a data value in the digital data.
	•	

1	4.	(Currently Amended) The contactless IC card of Claim 3,
2		wherein the short-circuit control circuit is a transistor whose source and drain are
3	connected to	different terminals out of among the first and second input terminals of the
4	comparator c	ircuit, and whose gate receives the short-circuit control signal.
1	5.	(Original) The contactless IC card of Claim 4,
2		wherein the short-circuit control signal output circuit includes:
3		a clock generator circuit which generates a clock signal;
4		a counter which counts the number of edges of the clock signal; and
5		controlling means which exercises control so that the short-circuit control signal
6	is asserted w	hen the count in the counter reaches a predetermined number.
1	6.	(Original) The contactless IC card of Claim 5, further comprising
2		a memory which stores the recovered digital data under the control by the
3	controlling r	neans,
4		wherein the controlling means accesses the memory during periods where the
_	ah aut aireasiit	control signal stays asserted

1	7.	(Currently Amended) The contactless IC card of Claim 2, A contactless IC card
2	comprising:	
3		a demodulator circuit which receives a carrier wave that has been ASK-modulated
4	with digital c	data, and demodulates the ASK-modulated carrier wave to recover the digital data;
5	and suspend	ing means which suspends the demodulation by the demodulator circuit during
6	periods wher	e there is no possibility of a change of a data value in the digital data;
7		wherein the demodulator circuit includes: a detector circuit which detects an
8	envelope of	the ASK-modulated carrier wave; a reference voltage generator circuit which
2	outputs a ref	Gerence voltage; a differential circuit which receives the envelope from the detector
10	circuit, and	outputs differential components of the received envelope based on the reference
11	voltage; and	a comparator circuit which includes a first input terminal for receiving the output of
12	the different	ial circuit, a second input terminal for receiving the output of the reference voltage
13	generator ci	rcuit, and an output terminal, compares a voltage at the first input terminal and a
14	voltage at the	ne second input terminal, and inverts an output of the output terminal if a difference
15	between the	two voltages exceeds a predetermined value; and
16	•	wherein the differential circuit is a CR time constant circuit, and
17		wherein the suspending means includes:
18	·	a time constant increase circuit which sustains a time constant of the CR time
19	constant cir	cuit at a higher level during the periods where there is no possibility of a change of a
20	data value i	n the digital data; and

21	a time constant control signal output circuit which outputs a time constant co	ntrol				
22	signal to the time constant increase circuit, to indicate the periods during which there	is no				
23	possibility of a change of a data value in the digital data.					
1	8. (Original) The contactless IC card of Claim 7,					
2	wherein the time constant increase circuit includes:					
3	a first capacitor which is connected in parallel with a second capacitor include	led in				
4	the CR time constant circuit; and					
5	a switching element which is connected in series with the first capacito	, and				
/6 \	receives the time constant control signal from the time-constant control signal output circuit	•				
1	9. (Original) The contactless IC card of Claim 8,					
2	wherein the switching element is a transistor whose source or drain is com-	ected				
3	with the first capacitor, and whose gate receives the time constant control signal.					
1	10. (Original) The contactless IC card of Claim 7,					
2	wherein the time constant control signal output circuit includes:					
3	a clock generator circuit which generates a clock signal;					
4	a counter which counts the number of edges of the clock signal; and					
. 5	controlling means which exercises control so that the time constant control	signal				
6	is asserted when the count in the counter reaches a predetermined number.					

1	· 11.	(Original) The contactless IC card of Claim 10, further comprising
2		a memory which stores the recovered digital data under the control by the
3 .	controlling m	eans,
4		wherein the controlling means accesses the memory during periods where the
5	time constant	control signal stays asserted.
1	12.	(Currently Amended) The contactless IC card of Claim 2, A contactless IC card
2	comprising:	
3		a demodulator circuit which receives a carrier wave that has been ASK-modulated
4	with digital o	data, and demodulates the ASK-modulated carrier wave to recover the digital data;
X 5	and suspend	ing means which suspends the demodulation by the demodulator circuit during
6	periods wher	e there is no possibility of a change of a data value in the digital data;
7		wherein the demodulator circuit includes: a detector circuit which detects an
8	envelope of	the ASK-modulated carrier wave; a reference voltage generator circuit which
9	outputs a ref	ference voltage; a differential circuit which receives the envelope from the detector
10	circuit, and	outputs differential components of the received envelope based on the reference
11	voltage; and	a comparator circuit which includes a first input terminal for receiving the output of
12	the different	tial circuit, a second input terminal for receiving the output of the reference voltage
. 13	generator ci	rcuit, and an output terminal, compares a voltage at the first input terminal and a
14	voltage at th	ne second input terminal, and inverts an output of the output terminal if a difference
15	between the	two voltages exceeds a predetermined value; and
16		wherein the comparator circuit has a hysteresis between upper and lower
17	threshold va	alues with respect to the reference voltage, the upper threshold value being a sum of

18	the predetermined value and the reference voltage, and the lower threshold value being a					
19	difference of the predetermined value from the reference voltage,					
20	wherein the suspending means includes					
21	a hysteresis control signal output circuit which outputs a hysteresis control signal					
22	to the comparator circuit, to indicate the periods during which there is no possibility of a change					
23	of a data value in the digital data, and					
24	wherein the comparator circuit includes					
25	a hysteresis control circuit which sustains the predetermined value at a higher					
26	level to thereby sustain the width of the hysteresis at a greater level, during the periods where					
27	there is no possibility of a change of a data value in the digital data.					
1	13. (Original) The contactless IC card of Claim 12,					
2	wherein the hysteresis control signal output circuit includes:					
3	a clock generator circuit which generates a clock signal;					
4	a counter which counts the number of edges of the clock signal; and					
5	controlling means which exercises control so that the hysteresis control signal is					
6	asserted when the count in the counter reaches a predetermined number.					
1	14. (Original) The contactless IC .card of Claim 13, further comprising					
2	a memory which stores the recovered digital data under the control by the					
3	controlling means,					
4	wherein the controlling means accesses the memory during periods where the					
5	hysteresis control signal stays asserted.					

15.	New') A	contactless	IC	card	comi	orising:
15.	(1,10,11)	, ,,	COMMUNICOS	•	· · ·	~~	······································

a demodulator circuit which includes a comparator circuit having first and second input terminals, and which receives a carrier wave that has been ASK-modulated with digital data, and demodulates the ASK-modulated carrier wave to recover the digital data; and

a suspension unit which, in response to a short circuit control signal which indicates periods during which there is no possibility of a change of a data value in the digital data, short-circuits the first and second input terminals of the comparator circuit to suspend demodulation by the demodulator circuit including

a short-circuit control circuit which short-circuits the first input terminal and the second input terminal during the periods where there is no possibility of a change of a data value in the digital data and a short-circuit control signal output circuit which outputs a short-circuit control signal to the short-circuit control circuit, to indicate the periods during which there is no possibility of a change of a data value in the digital data.

16. (New) A contactless IC card comprising:

a demodulator circuit which receives a carrier wave that has been ASK-modulated with digital data, determines the times at which data changes occur, and demodulates the ASK-modulated carrier wave to recover the digital data; and

a suspension unit which suspends the demodulation by the demodulator circuit during inter-bit periods, wherein each inter-bit period begins after the time at which a data change occurs and ends prior to the time at which the immediately following data change occurs.

17. (New) The contactless IC card of Claim 16 wherein the demodulator circuit is powered by energy obtained from the ASK modulated carrier wave.

Agrica 3

1

18. (New) The contactless IC card of Claim 16 further comprising a clock generating circuit generating a clock signal by frequency-dividing the ASK modulated carrier wave; wherein the clock signal is used to determine the periods during which demodulation is suspended.