In [1]: 1 #import all the libraries

- 2 **import** numpy as np
- 3 import pandas as pd
- 4 import seaborn as sns
- 5 import matplotlib.pyplot as plt
- 6 **from** sklearn **import** preprocessing,svm
- 7 from sklearn.model_selection import train_test_split
- 8 **from** sklearn.linear_model **import** LinearRegression

In [2]:

- 1 #Reading the files
 - 2 df=pd.read_csv(r"C:\Users\HP\Downloads\bottle.csv.zip")
 - 3 **df**

C:\Users\HP\AppData\Local\Temp\ipykernel_20064\1808516658.py:2: DtypeWarning: Columns (47,73) have mixed types. Spec ify dtype option on import or set low_memory=False.

df=pd.read_csv(r"C:\Users\HP\Downloads\bottle.csv.zip")

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O2Sat	 R_PHAEO	R_PRES	R_SAMP	DIC1	DIC
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	NaN	 NaN	0	NaN	NaN	Nal
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	NaN	 NaN	8	NaN	NaN	Nat
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	NaN	 NaN	10	NaN	NaN	Nat
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	NaN	 NaN	19	NaN	NaN	Nat
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	NaN	 NaN	20	NaN	NaN	Nat
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.74	 0.18	0	NaN	NaN	Nat
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.74	 0.18	2	4.0	NaN	NaN
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.46	 0.18	5	3.0	NaN	Nal
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.74	 0.31	10	2.0	NaN	NaN
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297	105.66	 0.61	15	1.0	NaN	Nan

 $864863 \text{ rows} \times 74 \text{ columns}$

localhost:8888/notebooks/Linear Regression-project-1.ipynb

```
In [3]:
          1 df=df[['Salnty','T_degC']]
          2 df.columns=['Sal','Temp']
          1 df.head(10)
In [4]:
Out[4]:
              Sal Temp
         0 33.440 10.50
         1 33.440 10.46
         2 33.437 10.46
         3 33.420 10.45
         4 33.421 10.45
         5 33.431 10.45
         6 33.440 10.45
         7 33.424 10.24
         8 33.420 10.06
         9 33.494
                   9.86
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x2875f78e260>

In [6]: 1 df.describe()

Out[6]:		Sal	Temp
	count	817509.000000	853900.000000
	mean	33.840350	10.799677
	std	0.461843	4.243825
	min	28.431000	1.440000
	25%	33.488000	7.680000
	50%	33.863000	10.060000
	75%	34.196900	13.880000
	max	37.034000	31.140000

```
Linear Regression-project-1 - Jupyter Notebook
 In [7]:
           1 df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 864863 entries, 0 to 864862
         Data columns (total 2 columns):
             Column Non-Null Count Dtype
              Sal
                      817509 non-null float64
                      853900 non-null float64
              Temp
         dtypes: float64(2)
         memory usage: 13.2 MB
 In [8]:
           1 #data cleaning eliminating Nan or misssing input numbers
           2 | df.fillna(method='ffill',inplace=True)
         C:\Users\HP\AppData\Local\Temp\ipykernel_20064\3955359400.py:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returnin
         g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versu
         s-a-copy)
           df.fillna(method='ffill',inplace=True)
 In [9]:
           1 | x=np.array(df['Sal']).reshape(-1,1)
           2 y=np.array(df['Temp']).reshape(-1,1)
In [10]:
           1 | df.dropna(inplace=True)
         C:\Users\HP\AppData\Local\Temp\ipykernel_20064\1379821321.py:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returnin
         g-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versu
         s-a-copy)
           df.dropna(inplace=True)
In [11]:
           1 | x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
           2 regr = LinearRegression()
           3 regr.fit(x_train,y_train)
           4 print(regr.score(x_test,y_test))
         0.20231303641684095
```


Out[13]: <seaborn.axisgrid.FacetGrid at 0x28760a982b0>

Regression: 0.873118880343903

R2_Score: 0.873118880343903

Conclusion:-

Dataset we have taken is poor for linear Model but with smaller data works well with linear model

In []: 1