Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Final den 29 november 1964

- 1. Av en triangel är ytan T och en vinkel v givna. Bestäm triangelns sidor så att den sida som står mot v blir så kort som möjligt.
- 2. Summan av ett visst antal på varandra följande naturliga tal $n, n+1, \ldots, n+m$, är 1000. Bestäm alla möjliga sådana talföljder.
- 3. Bestäm ett polynom med heltalskoefficienter som har
 - a) talet $\sqrt{2} + \sqrt{3}$ bland sina nollställen;
 - b) både talet $\sqrt{2} + \sqrt{3}$ och $\sqrt{2} + \sqrt[3]{3}$ bland sina nollställen.
- 4. n personer har sina bostäder B_1, B_2, \ldots, B_n så belägna att avståndet från B_i till B_j , för alla i och j är högst 1 km. De söker en mötesplats M så att det längsta avståndet från B_i till M blir så kort som möjligt. Oberoende av läget på bostäderna B_i kan man uppskatta detta kortaste längsta avstånd L.
 - a) Ange den bästa uppskattningen av L om n = 3.
 - b) Ge uppskattningar av L (ej nödvändigtvis den bästa, men uppgiften bedöms med hänsyn till hur god uppskattningen är) för n=4.
- 5. En funktion

$$f(x) = 1 + a_1 \cos x + a_2 \cos 2x + \dots + a_n \cos nx$$

där a_1, a_2, \ldots, a_n är konstanter, är ≥ 0 för alla x. Vi söker uppskattningar av koefficienten a_1 .

- a) Om n=2 bestäm de största och minsta värden som a_1 kan ha för sådana funktioner f(x).
- b) Behandla motsvarande uppgift för andra värden på n. Den tävlande lämnas här frihet att behandla uppgiften efter eget val, tex. att ge uppskattningar på a_1 för n=3 eller 4, att ge uppskattningar som gäller för alla n, att konstruera exempel, som visar värden som kan antas. Uppgiften 5b bör behandlas sist.