ECON 0150 | Economic Data Analysis

The economist's data analysis skillset.

Part 3.1 | Populations and Random Variables

From Data to Understanding We've spent Part 1 & 2 understanding our data... but what comes next?

- We've mastered visualizing data
- We've developed skills to summarize and transform data
- But sometimes we need something more precise and quantifiable
- And sometimes we want to say something about the **population**, not just our sample

Two Groups, One Question Which group sleeps longer?

Sleep Patterns

> the distributions overlap... how can we compare them precisely?

Measures of Location

Where is the "center" of each group?

Mean: The average value

$$\bar{x} = \frac{x_1 + x_2 + \dots x_N}{N}$$

Measures of Location

Where is the "center" of each group?

Mean: The average value

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

```
1 # Calculate means
2 mean_A = group_A.mean()
3 mean_B = group_B.mean()
```

Group A mean: 6.86 hours Group B mean: 6.81 hours

- > group A sleeps longer on average
- > but notice the spread!

Range: difference between the largest and smallest value in the data

• Simple but doesn't respond to changes near the middle of the distribution

Mean Deviation: difference between each value and the average

$$\sum \frac{x_i - \bar{x}}{n}$$

• Simple but the average of the difference is zero...

Mean Absolute Deviation: absolute value of the difference from the average

$$\sum \frac{|x_i - \bar{x}|}{n}$$

- The mean isn't zero
- A little more complex and isn't so nice mathematically

Variance: average squared difference from the mean

$$Var_X = \sum \frac{(x_i - \bar{x})^2}{n}$$

- Treats negatives appropriately
- The mean isn't zero
- Mathematically nice
- *Units are uninformative*

Standard Deviation: A measure of spread

$$S_X = \sqrt{\sum \frac{(x_i - \bar{x})^2}{n}}$$

- Treats negatives appropriately
- The mean isn't zero
- Mathematically nice
- Units are roughly average deviation from the mean

Standard Deviation: A measure of spread

$$S_X = \sqrt{\sum \frac{(x_i - \bar{x})^2}{n}}$$

```
1 # Calculate standard deviations
2 std A = group A.std()
3 std_B = group_B.std()
```

Group A std dev: 1.39 hours Group B std dev: 0.69 hours

> Group A has more variability - some sleep much less, some much more

Sample vs Population
What if I told you these groups are from different counties?

Old question: "Which **group** sleeps longer?" (about the **data**)

New question: "Which county sleeps longer?" (about the population)

Sample vs Population The data is a sample drawn from a population.

Sample vs Population What's the difference between our data and the population?

- **The Data**: 50 individuals we happened to sample from each county
- The Population: All people who could live in these counties
 - Even if we surveyed everyone today, tomorrow would bring new residents
 - The population is a theoretical concept an infinite pool of possibilities

> we observe **samples** but want to understand **populations**

Data is a Sample A random variable generates our data.

Random Variable: A function that assigns numbers to random outcomes

> data is a **sample** drawn from these a **random variable**

Known Distribution

What questions can we answer?

If we know County A:

$$x_i \sim N(\mu = 7.2, \sigma = 1.5)$$

- What proportion of the population sleeps less than 5 hours?
- What proportion of the population sleeps more than 9 hours?
- How much sleep does the middle 95% of the population get?

> with known distributions, we can answer **any** probability question!

Random Variables Come in Many Shapes Which distribution fits your data?

But What If We Don't Know the Distribution?

How do we move from sample to population?

What we observe:

- Sample size: n = 50
- *Sample mean:* $\bar{x} = 7.24$ *hours*
- Sample standard deviation: s = 1.48 hours

What we want to know:

- *Population mean:* $\mu = ?$
- *Population standard deviation:* $\sigma = ?$
- *Population distribution:* f(x) = ?
- > the sample statistics are **not** the same as population parameters!
- $> \bar{x} \neq \mu$, and $s \neq \sigma$

The Central Question

Can we say anything about the population when we only have a sample?

- The Central Limit Theorem our bridge to inference
- Confidence intervals quantifying uncertainty
- Hypothesis testing making decisions with data
- Moving from description to inference

> without seeing the population we can still answer questions about the population!