תכנון מנגנונים אלגוריתמי Algorithmic Mechanism Design

אראל סגל-הלוי

מקורות:

:הקורס של טים, הרצאה 3 והלאה

http://theory.stanford.edu/~tim/f13/f13.html

מציאת מסלול זול ביותר

נתונה רשת. לכל קשת יש עלות-מעבר. צריך להעביר חבילה בין שתי נקודות ברשת (א -> ד), במסלול הזול ביותר.

- •אם העלות של כל קשת ידועה לכולם אלגוריתם.
- אם העלות של כל קשת ידועה רק לבעליה מנגנון.

מנגנון למסלול זול ביותר בשיטת ויקרי-קלארק-גרובס

צריך לפתור 6+1 בעיות מסלול-זול-ביותר.

- -5 כשכולם נמצאים: המסלול אבגד, הסכום
- •בלי **אב**: המסלול אגד, הסכום 6-. **תשלום 4-**.
- בלי **בג**: המסלול אגד, הסכום 6-. **תשלום 2-**.
- •בלי **גד**: המסלול אבד, הסכום 7-. **תשלום 3-**.
- **.0 בלי אג/אד/בד**: אין שינוי, הסכום 5-. **תשלום**
 - •עלות כוללת **9-**.

(knapsack) בעיית התרמיל

מכניסים אתכם לחדר מלא חפצים, נותנים לכם תרמיל שיכול להכיל עד 100 ק"ג, ואומרים לכם "כל מה שתצליחו להכניס לתרמיל – שלכם".

לכל חפץ יש **משקל אחר** ו**ערך אחר**.

איך תבחרו חפצים שסכום-ערכיהם גדול ביותר?

- הערך של כל חפץ ידוע לכולם אלגוריתם.
- הערך של כל חפץ ידועה רק לחפץ מנגנון.
 (דוגמה: יש 100 שניות המיועדות לפרסומות.
 לכל מפרסם יש פרסומת עם אורך אחר וערך
 אחר. איך לבחור איזה פרסומות לשים?)

מנגנון למילוי תרמיל בשיטת ויקרי-קלארק-גרובס

- כשיש m חפצים, צריך לפתור m+1 בעיות-תרמיל.
 - •הבעיה: בעיית התרמיל היא NP-קשה!
 - •מה יקרה אם נשתמש באלגוריתמי קירוב?

אלגוריתם חמדני א:

- •סדר את החפצים בסדר יורד של הערך.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.

דוגמה נגדית:

\$100/100k, \$20/2k, \$20/2k, \$20/2k ... הראשון יזכה וישלם \$1000 – יותר מהערך שלו!

מנגנון למילוי תרמיל בשיטת ויקרי-קלארק-גרובס

- כשיש m חפצים, צריך לפתור m+1 בעיות-תרמיל.
 - •הבעיה: בעיית התרמיל היא NP-קשה!
 - •מה יקרה אם נשתמש באלגוריתמי קירוב?

:אלגוריתם חמדני ב

- •סדר את החפצים בסדר יורד של **ערך/משקל**.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.

דוגמה נגדית:

\$20/2k, \$100/100k. ותר מהערך שלו! – \$100 יותר מהערך שלו!

מנגנון למילוי תרמיל בשיטת ויקרי-קלארק-גרובס

- אלגוריתם א+ב: הפעל את שני האלגוריתמים החמדניים. בחר את התוצאה עם הסכום הגבוה. משפט: אלגוריתם א+ב נותן קירוב 1/2.
- הוכחה: נניח שאלגוריתם ב נתקע אחרי k חפצים.
 - עם החפץ ה-k+1 הסכום הוא מקסימלי++.
- .k+1-הסכום של אלגוריתם א הוא לפחות החפץ
 - --> הסכום של אלגוריתמים א+ב מקסימלי++.
- *** ב הוא מקסימלי++ \ 2. -->
 - כאלגוריתם טוב, כמנגנון לא מוצלח. דוגמה:
- **\$54/52k**, \$52/51k, \$49/49k.
 - ותר מהערך שלו! 101 יותר מהערך שלו!

בניית מנגנונים בשיטת מיירסון (Myerson)

נתונים:

- •כלל-בחירה לבחירת תת-קבוצה של משתתפים.
 - •לכל משתתף יש ערך כספי **יחיד** ל"היבחרות".

דרוש: כלל-תשלומים שאיתו כלל-הבחירה אמיתי.

משפט מיירסון: קיים כלל-תשלומים אמיתי *אם ורק אם* כלל-הבחירה הוא פונקציה מונוטונית עולה של הערך. כלל-התשלומים הזה הוא *יחיד*.

הוכחת משפט מיירסון

סימונים:

כלל-הבחירה – c – פונקציה המקבלת כקלט את הערכים של כל המשתתפים, ומחזירה וקטור בינארי (c – "ברכות", נבחרת!"). c נתון וקבוע. c – פונקציה המקבלת כקלט את כלל התשלום – p – פונקציה המקבלת כקלט את הערכים של כל המשתתפים, ומחזירה וקטור מספרי של תשלומים.

:התועלת של משתתף עם ערך v, שאומר b, היא v*c(b)-p(b)

הוכחת משפט מיירסון - המשך

:התועלת של משתתף עם ערך v שאומר b היא:v*c(b)-p(b)

במנגנון אמיתי חייב להתקיים:

$$v*c(v) - p(v) >= v*c(b) - p(b)$$

:התועלת של משתתף עם ערך b שאומר ν היא

$$b*c(v) - p(v)$$

במנגנון אמיתי חייב להתקיים:

$$b*c(b) - p(b) >= b*c(v) - p(v)$$

מחברים את המשוואות ומקבלים:

$$v[c(v)-c(b)] >= p(v)-p(b) >= b[c(v)-c(b)]$$

הוכחת משפט מיירסון - המשך

.c נתון: כלל-בחירה

$$c(v)-c(b)$$
 רוש: כלל-תשלומים אמיתי $c(v)-c(b)$ רוש: כלל-תשלומים אמיתי $c(v)-c(b)$ $c(v)-c(b)$ $c(v)-c(b)$

(v-b) * (c(v)-c(b)) >= 0

.חייבת להיות מונוטונית c חייבת להיות מונוטונית

$$p(v)=p(b)$$
 או $c(v)=c(b)$ או $c(v)=c(b)$ או $c(v)>c(b)$ או $c(v)>c(b)$ או $c(v)>c(b)$ או $c(v)>c(b)$

c ערך שבו c מתחלפת מ-0

הוכחת משפט מיירסון - סיום

נתון: כלל-בחירה c. חייב להיות פונקציה מונוטונית. מצאנו: כלל-תשלומים p.

;0 שחקן שלא נבחר (c_i =0) משלם

שחקן שנבחר $(c_i = 1)$ משלם את ערך הסף שלו

- הערך הקטן ביותר שהוא צריך להגיד כדי להיבחר. שימו לב: לכל שחקן יכול להיות ערך סף אחר.
 - נשאר להוכיח: כלל התשלומים הזה הוא אמיתי.
- **הוכחה**: אם נבחרת ותכריז יותר כלום לא ישתנה.
 - אם נבחרת ותכריז פחות (אולי) כבר לא תיבחר.
 - אם לא נבחרת ותכריז יותר תשלם יותר מערכך.
- *** אם לא נבחרת ותכריז פחות כלום לא ישתנה.

מנגנון למילוי תרמיל בשיטת מיירסון

אלגוריתם חמדני א:

- •סדר את החפצים בסדר יורד של הערך.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.
- **\$100/100k**, \$20/2k, \$20/2k, \$20/2k ...
 - .\$20 הראשון זוכה ומשלם את ערך הסף שלו

:אלגוריתם חמדני ב

- •סדר את החפצים בסדר יורד של **ערך/משקל**.
- •בחר חפצים לפי הסדר עד שהתרמיל מתמלא.
- **\$20/2k**, \$100/100k.
 - .\$2 הראשון זוכה ומשלם את ערך הסף שלו

מנגנון למילוי תרמיל בשיטת מיירסון

אלגוריתם א+ב: הפעל את שני האלגוריתמים אלגוריתמים. בחר את התוצאה עם הסכום הגבוה. \$54/52k, \$52/51k, \$49/49k.

(52k/51k) * \$52 הראשון זוכה ומשלם: 52k/51k)

\$100/100k, \$20/2k, \$20/2k.

הראשון זוכה ומשלם \$40.

\$100/100k, \$60/2k, \$60/2k.

שני האחרונים זוכים, כ"א משלם \$40.

מיירסון לעומת ויקרי-קלארק-גרובס

מיירסון	וק"ג	
אחד	הרבה (למשל: בחירת מסעדה)	פרמטרים לכל שחקן
כל כלל <mark>מונוטוני</mark> (למשל: קירוב בעיית התרמיל, מיקסום רווח)	מיקסום סכום ערכים	כלל בחירה