Documents autorisés: cours, TD, notes manuscrites, calculatrice. Barème indicatif sur 30: 4+7+5+5+2+7 Durée: 1h 30.

Les résultats sont présentés avec trois chiffres significatifs, sauf indication particulière.

Exercice 1

Calcul intégral

On note f la fonction définie sur \mathbb{R} par $f(x) = xe^{-x}$ sur $[0, +\infty[$ et f(x) = 0 sinon.

f est une densité de probabilité. On note X une variable aléatoire absolument continue de densité f.

On souhaite calculer $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$.

1. En utilisant une intégration par parties, exprimer $F(x) = \int_0^x t^2 e^{-t} dt$ en fonction de

$$\int_0^x te^{-t} dt.$$

Indication: on pourra écrire $t^2e^{-t} = t^2(-e^{-t})' = (t^2(-e^{-t}))' - t^{2'}(-e^{-t})$.

2. En déduire $\int_0^{+\infty} x^2 e^{-x} dx$ puis E(X).

Indications

(a)
$$\lim_{x \to +\infty} x^2 e^{-x} = 0$$
,

(b)
$$\int_{0}^{+\infty} xe^{-x} dx = 1.$$

Exercice 2

Loi binomiale

Une compagnie aérienne assure une ligne régulière avec un avion d'une capacité de 70 passagers. Les clients réservent gratuitement par Internet, sans obligation d'achat et sans pénalité en cas de non présentation.

La compagnie propose n places à la réservation ($n \geq 70$) et on suppose que les n places sont réservées. Mais seuls 95 % des voyageurs se présentent alors à l'embarquement et achètent effectivement leur billet. Le prix du billet s'élève à $100 \in$.

Du point de vue de la compagnie, la présence ou non d'un client à l'embarquement est une épreuve de Bernoulli et les clients représentent des répétitions identiques et indépendantes de cette épreuve.

X est la variable aléatoire qui donne le nombre de passagers achetant effectivement leur billet parmi les n ayant réservé.

1. Sans surbooking

On suppose dans cette partie que n = 70 et $X \sim \mathcal{B}(70; 0, 95)$.

- (a) Calculer la probabilité qu'il y ait au moins une place libre dans l'avion.
- (b) Déterminer l'espérance E(X).

(c) En déduire la recette moyenne R du vol.

2. Avec surbooking

On suppose dans cette partie que n=80 et $X\sim\mathcal{B}\left(80;0,95\right)$ (la capacité restant de 70 passagers). Si un voyageur ayant réservé arrive pour embarquer alors que l'avion est déjà complet, la compagnie lui verse un dédommagement de 40 €.

- (a) Calculer la probabilité qu'il y ait au moins une place libre dans l'avion.
- (b) Calculer la probabilité qu'il y ait au moins un voyageur ayant réservé et ne pouvant pas embarquer.
- (c) Déterminer l'espérance E(X).
- (d) Calculer la recette moyenne R du vol.

Annexe: Loi binomiale $\mathcal{B}(n, p)$

$$F(i) = P(X \le i) = \sum_{k=0}^{i} C_n^k p^k (1-p)^{n-k} = \sum_{k=0}^{i} \binom{n}{k} p^k (1-p)^{n-k}$$

$$n = 70; p = 0,95$$

L	$\iota = \iota$	\mathbf{o} ; $\mathbf{p} = \mathbf{o}$, \mathbf{g}
	i	$P(X \le i)$
	50	0.0000
	51	0.0000
	52	0.0000
	53	0.0000
	54	0.0000
	55	0.0000
	56	0.0000
	57	0.0000
	58	0.0002
	59	0.0007
	60	0.0025
	61	0.008
	62	0.0234
	63	0.0604
	64	0.1372
	65	0.2721
	66	0.4661
	67	0.6863
	68	0.8708
	69	0.9724
	70	1.0000

$$n = 70$$
; $p = 0.95$ $n = 80$; $p = 0.95$

ı — o	
i	$P(X \le i)$
60	0.0000
61	0.0000
62	0.0000
63	0.0000
64	0.0000
65	0.0000
66	0.0000
67	0.0002
68	0.0006
69	0.0021
70	0.0065
71	0.0184
72	0.0466
73	0.1053
74	0.2108
75	0.3711
76	0.5716
77	0.7694
78	0.9139
79	0.9835
80	1.0000

Exercice 3

Loi conjointe

Dans cet exercice, les résultats seront donnés sous la forme de fractions.

Une urne contient trois jetons indiscernables numérotés 1, 2 et 3. On tire à deux reprises et avec remise un jeton au hasard dans cette urne. X est le premier numéro lu, Y le deuxième et M le plus grand des deux.

1. Construire la loi conjointe de X et Y, en précisant les lois marginales de X et de Y. Reproduire et compléter le tableau suivant.

$X \setminus Y$	1	2	3	P(X=i)
1				
2				
3				
P(Y=j)				

2. Faire de même pour le couple (X, M).

$X\backslash M$	1	2	3	P(X=i)
1				
2				
3				
P(M=j)				

3. En déduire la loi de probabilité de M.

M	1	2	3
P(M=i)			

4. Calculer E(M) et V(M).

Exercice 4

Intervalle de fluctuation et loi binomiale

Dans un pays donné, le gouvernement affirme que 50 % des électeurs sont satisfaits de son travail. n=18 électeurs sont interrogées à l'occasion d'un sondage. 6 électeurs se déclarent satisfaits du travail du gouvernement. Pour savoir si l'affirmation du gouvernement doit être remise en question, on va déterminer l'intervalle de fluctuation à droite au seuil de risque $\alpha=5$ % (ou de niveau $1-\alpha=95$ %) du nombre d'électeurs satisfaits.

On note X_i ($1 \le i \le 18$) la variable aléatoire prenant la valeur 1 pour un électeur satisfait et la valeur 0 pour électeur non satisfait. On suppose $X_i \sim \mathcal{B}(1; 0, 50)$ et que les X_i sont indépendantes ($1 \le i \le 18$).

On pose $X = \sum_{i=1}^{18} X_i$ (nombre d'électeurs satisfaits). X suit la loi binomiale $\mathcal{B}(18; 0, 50)$: $X \sim \mathcal{B}(18; 0, 50)$.

1. Déterminer l'intervalle de fluctuation à droite $[n_1, n]$ au seuil de risque $\alpha = 0,05$ (ou de niveau $1 - \alpha$) qui est le plus petit intervalle $[n_1, n]$ tel que $P(X < n_1) \le \alpha$.

 $Indications: % \begin{center} \beg$

- (a) n_1 est l'entier vérifiant $P(X \le n_1 1) \le \alpha$ et $P(X \le n_1) > \alpha$.
- (b) Utiliser une table de probabilités.
- 2. Est-ce que $6 \in [n_1, n]$?
- 3. Est-ce qu'on doit remettre en question l'affirmation du gourvernement?
- 4. Préciser
 - (a) $P(X < n_1)$
 - (b) $P(n_1 \le X \le n)$

Reproduire et compléter le tableau suivant.

$P\left(X < n_1\right)$	
$P\left(n_1 \le X \le n\right)$	

Loi de probabilité de $\mathcal{B}\left(18;\,0,50\right)$

Exercice 5

Intervalle de confiance et loi de Student

Une société d'intéresse au nombre quotidien de connexions sur son site Internet. Sur une période de 9 jours, les nombres suivants ont été observés : 750, 755, 756, 761, 765, 770, 752, 760, 762. Soit X_i le nombre de connexions lors du i-ème jour $(1 \le i \le 9)$.

On suppose les X_i indépendantes et de loi normale $\mathcal{N}(\mu, \sigma)$, μ et σ étant inconnus. Les estimateurs de l'espérance μ et de la variance σ^2 du nombre quotidien de connexions sont respectivement

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ et } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \text{ avec } n = 9.$$

On obtient une moyenne empirique de $\overline{x} = 759,00$ et une variance empirique de $s^2 = 40,75$. Donner un intervalle de confiance I pour le nombre moyen de connexions μ de niveau de confiance 95 %. Expliquer.

Indications:

- 1. $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim \mathcal{T}_{n-1}$, loi de Student à n-1=8 degrés de liberté.
- 2. L'intervalle de confiance pour le nombre moyen de connexions μ de niveau de confiance $1 - \alpha = 0,95$ est défini par $P\left(\left|\frac{\overline{X} - \mu}{S/\sqrt{n}}\right| \le t_{n-1;1-\alpha/2}\right) = 1 - \alpha.$

Densité de probabilité f d'une variable suivant la loi de Student à 8 degrés de liberté \mathcal{T}_8

Exercice 6

Test du χ^2

On veut tester si un dé est truqué. Pour cela, on lance n=60 fois le dé et on note le chiffre obtenu sur la face supérieure à chaque reprise. On obtient les résultats suivants :

Chiffre i	1	2	3	4	5	6	Total n
Effectif observé n_i	15	7	4	11	6	17	60

On associe les effectifs théoriques associés à une loi uniforme de paramètre $\pi = \frac{1}{6}$:

Chiffre i	1	2	3	4	5	6	Total n
Effectif observé n_i	15	7	4	11	6	17	60
Effectif théorique $nq_i = n\pi$	10	10	10	10	10	10	60

On teste $H_0 = le$ chiffre obtenu suit la loi uniforme de paramètre $\frac{1}{6}$, contre $H_1 = le$ chiffre obtenu ne suit pas la loi uniforme de paramètre $\frac{1}{6}$, au niveau 5 % en utilisant un test du χ^2 .

Les conditions du tests sont vérifiées : $n \ge 30$ et $nq_i = n\pi = 60 \times \frac{1}{6} = 10 \ge 5$ pour tout $i \le i \le 6$.

La statistique de test (dite du χ^2) utilisée est $D = \sum_{i=1}^{6} \frac{(N_i - n\pi)^2}{n\pi}$.

Sous H_0 , la variable D suit une loi du χ^2 à $\nu = 6 - 1 = 5$ de degrés de libertés.

- 1. Préciser $\delta = x_{5;0,95}$ tel que $P(D \le \delta) = 0,95$.
- 2. En déduire la région de rejet $\mathcal R$ au niveau 5 %.
- 3. Calculer $d = \sum_{i=1}^{6} \frac{(n_i n\pi)^2}{n\pi} = \frac{(15 10)^2}{10} + \dots$
- 4. Peut-on rejeter l'hypothèse H_0 au niveau 5 % ?
- 5. Préciser un encadrement de la p-value $P_c(d) = P_{H_0}(D \ge d)$. Indication : utiliser une table de probabilité.
- 6. Si le test est significatif, en déduire le degré de signification du test (test significatif, très significatif, hautement significatif).
- 7. Peut-on rejeter l'hypothèse H_0 au niveau 1 % ? Expliquer.

