Sistemas trifásicos

Ana Fernández-Guillamón

- 1 Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- 6 Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

- Generación, transporte y distribución de energía eléctrica
- Sistema polifásico de orden $n \equiv n$ fuentes desfasadas 360/n
- Instalaciones monofásicas alimentadas por una fase de sistema trifásico
- Ventajas:
 - La potencia instantánea es constante, mientras que en uno monofásico es pulsante
 - La masa de conductor necesaria en un sistema trifásico es un 25% inferior que en un monofásico para transportar la misma potencia

Ondas trifásicas

$$u_1(t) = \sqrt{2} U \sin(\omega t) \to \overline{U}_1 = U/0$$

$$u_2(t) = \sqrt{2} U \sin(\omega t + 2\pi/3) \to \overline{U}_2 = U/120$$

$$u_3(t) = \sqrt{2} U \sin(\omega t - 2\pi/3) \to \overline{U}_3 = U/-120$$

Sistemas equilibrados y desequilibrados

Sistema equilibrado

- ► Igual módulo y
- ► Igual desfase

Sistema desequilibrado

- ▶ Diferente módulo y/o
- Diferente desfase

Sistemas equilibrados y desequilibrados

Sistema equilibrado

- Igual módulo y
- ▶ Igual desfase

Sistema desequilibrado

- ► Diferente módulo y/o
- Diferente desfase

Sistemas equilibrados y desequilibrados

Sistema equilibrado

- ► Igual módulo y
- ► Igual desfase

Sistema desequilibrado

- ► Diferente módulo y/o
- Diferente desfase

- Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- 6 Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

Generadores trifásicos

Sistema equilibrado

$$u_1(t) = \sqrt{2} U \sin(\omega t) \rightarrow \overline{U}_1 = U/0$$

$$u_2(t) = \sqrt{2} U \sin(\omega t + 2\pi/3) \rightarrow \overline{U}_2 = U/120$$

$$u_3(t) = \sqrt{2} U \sin(\omega t - 2\pi/3) \rightarrow \overline{U}_3 = U/-120$$

Generadores trifásicos

Equilibrados

$$u_1(t) + u_2(t) + u_3(t) = 0$$

- Introducción
- 2 Generadores trifásicos
 - Tensión de fase y de línea
 - Secuencia de fases
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- **5** Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

Tensión de fase y de línea

Sistema equilibrado

Tensiones de **fase**: entre fase-neutro (generador), en la impedancia (receptor)

$$ightharpoonup \overline{U_A}, \overline{U_B}, \overline{U_C} \equiv U_F$$

Tensiones de línea: entre conductores de la línea

$$ightharpoonup \overline{U_{AB}}, \overline{U_{BC}}, \overline{U_{CA}} \equiv U_L$$

$$\overline{U}_{AB} = \overline{U}_A - \overline{U}_B$$

$$\overline{U}_{BC} = \overline{U}_B - \overline{U}_C$$

$$\overline{U}_{CA} = \overline{U}_C - \overline{U}_A$$

$$\overline{U}_{AB} + \overline{U}_{BC} + \overline{U}_{CA} = 0$$

- 1 Introducción
- ② Generadores trifásicos
 - Tensión de fase y de línea
 - Secuencia de fases
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- **5** Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

Secuencia de fases

- ▶ Orden en que suceden las tensiones de cada fase (p. ej., valor máximo)
- ► Secuencia de Fases Directa (SFD): ABC

Secuencia de Fases Inversa (SFI): ACB

Secuencia de fases

Secuencia de fases directa (SFD)

$$\overline{U}_A = U_F / 90^{\circ}$$

$$\overline{U}_B = U_F / -30^{\circ}$$

$$\overline{U}_C = U_F / -150^{\circ}$$

$$\overline{U}_A = U_F / 90^{\circ}$$

$$\overline{U}_B = U_F / -30^{\circ}$$

$$\overline{U}_C = U_F / -150^{\circ}$$

$$\overline{U}_{AB} = \sqrt{3} U_F / 120^{\circ}$$

$$\overline{U}_{BC} = \sqrt{3} U_F / 0^{\circ}$$

$$\overline{U}_{CA} = \sqrt{3} U_F / -120^{\circ}$$

$$\overline{U_{AB}} = \overline{U_A} - \overline{U_B} =$$

$$= (0 + j U_F) - \left(\frac{\sqrt{3} U_F}{2} - j \frac{U_F}{2}\right) =$$

$$= -\frac{\sqrt{3} \cdot U_F}{2} + j \frac{3 U_F}{2} = \sqrt{3} U_F / 120^\circ$$

Relación tensión fase-línea SFD

$$U_L = \sqrt{3} \cdot U_F$$

$$\theta_L = \theta_F + 30^\circ$$

Secuencia de fases

Secuencia de fases inversa (SFI)

$$\overline{U}_A = U_F / -90^{\circ}$$

$$\overline{U}_B = U_F / 30^{\circ}$$

$$\overline{U}_C = U_F / 150^{\circ}$$

$$\overline{U}_A = U_F / -90^{\circ}$$

$$\overline{U}_B = U_F / 30^{\circ}$$

$$\overline{U}_C = U_F / 150^{\circ}$$

$$\overline{U}_{AB} = \sqrt{3} U_F / -120^{\circ}$$

$$\overline{U}_{BC} = \sqrt{3} U_F / 0^{\circ}$$

$$\overline{U}_{CA} = \sqrt{3} U_F / 120^{\circ}$$

$$\overline{U_{AB}} = \overline{U_A} - \overline{U_B} =$$

$$= (0 - j U_F) - \left(\frac{\sqrt{3} U_F}{2} + j \frac{U_F}{2}\right) =$$

$$= -\frac{\sqrt{3} \cdot U_F}{2} - j \frac{3 U_F}{2} = \sqrt{3} U_F / -120^{\circ}$$

Relación tensión fase-línea SFI

$$U_L = \sqrt{3} \cdot U_F$$

$$\theta_L = \theta_F - 30^\circ$$

- Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- 6 Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

- 1 Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
 - Conexión en estrella
 - Conexión en triángulo
- 4 Potencia en sistemas trifásicos
- 6 Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

Conexión en estrella

Estrella

Se unen los terminales A', B' y C' en un punto común (**neutro**, N), quedando libres los terminales A, B y C:

- ► Sistema a cuatro hilos
- ► Sistema a tres hilos

Receptor en estrella equilibrado

$$ar{I}_A = rac{\overline{U}_A}{\overline{Z}} = rac{U_F}{Z} / \pm 90^\circ - heta$$
 $ar{I}_B = rac{\overline{U}_B}{\overline{Z}} = rac{U_F}{Z} / \mp 30^\circ - heta$
 $ar{I}_C = rac{\overline{U}_C}{\overline{Z}} = rac{U_F}{Z} / \mp 150^\circ - heta$

$$\bar{I}_A + \bar{I}_B + \bar{I}_C + \bar{I}_N = 0 \rightarrow \boxed{\bar{I}_N = 0}$$

Corriente de Fase (igual a la de línea):

$$I_F = I_A = I_B = I_C = \frac{U_F}{Z}$$

Receptor en estrella equilibrado — Ejemplo

Un sistema a cuatro hilos y SFI alimenta tres impedancias $\overline{Z} = 10/\underline{60^{\circ}}$ Ω , conectadas en estrella a la tensión $200\sqrt{3}$ V. Determinar las corrientes de línea y el diagrama fasorial.

- 1 Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
 - Conexión en estrella
 - Conexión en triángulo
- 4 Potencia en sistemas trifásicos
- **6** Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

Conexión en triángulo

Triángulo

Se conecta el terminal de polaridad negativa de una fase, con el de referencia positiva de otra fase (A' con B, B' con C y C' con A):

Sistema a tres hilos

Receptor en triángulo equilibrado

$$\bar{I}_{AB} = \frac{\overline{U}_{AB}}{\overline{Z}} = \frac{U_F}{Z} / \pm 120^\circ - \theta$$

$$\bar{I}_{BC} = \frac{\overline{U}_{BC}}{\overline{Z}} = \frac{U_F}{Z} / 0 - \theta$$

$$\bar{I}_{CA} = \frac{\overline{U}_{CA}}{\overline{Z}} = \frac{U_F}{Z} / \mp 120^\circ - \theta$$

$$\bar{I}_{AB} + \bar{I}_{BC} + \bar{I}_{CA} = 0$$

Corriente de Fase:

$$I_F = I_{AB} = I_{BC} = I_{CA} = \frac{U_F}{Z}$$

Receptor en triángulo equilibrado

$$\bar{I}_A = \bar{I}_{AB} - \bar{I}_{CA} = \sqrt{3} \cdot \frac{U}{Z} / \pm 90^\circ - \theta$$

$$\bar{I}_B = \bar{I}_{BC} - \bar{I}_{AB} = \sqrt{3} \cdot \frac{U}{Z} / \mp 30^\circ - \theta$$

$$\bar{I}_C = \bar{I}_{CA} - \bar{I}_{BC} = \sqrt{3} \cdot \frac{U}{Z} / \mp 150^\circ - \theta$$

Corriente de Línea:

$$I_L = I_A = I_B = I_C = \sqrt{3} \cdot \frac{U_F}{Z}$$

$$I = \sqrt{3} \cdot I_F$$

Receptor en triángulo equilibrado — Ejemplo

Un sistema trifásico de secuencia directa y tensión 200 V alimenta tres impedancias iguales $\overline{Z}=10/30^\circ$ Ω conectadas en triángulo. Determinar las corrientes de fase y línea y dibujar el diagrama fasorial.

- Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- 6 Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

Potencia instantánea

Supongamos un receptor equilibrado en estrella con SFD:

$$u_{A}(t) = \sqrt{2}U_{F}\cos(\omega t + 90^{\circ})$$

$$u_{B}(t) = \sqrt{2}U_{F}\cos(\omega t - 30^{\circ})$$

$$u_{C}(t) = \sqrt{2}U_{F}\cos(\omega t - 150^{\circ})$$

$$p_{A}(t) = u_{A}(t) \cdot i_{A}(t)$$

$$p_{B}(t) = u_{C}(t) \cdot i_{B}(t)$$

$$p_{C}(t) = u_{C}(t) \cdot i_{C}(t)$$

$$i_{A}(t) = \sqrt{2}I_{F}\cos(\omega t + 90^{\circ} - \theta)$$

$$i_{B}(t) = \sqrt{2}I_{F}\cos(\omega t - 30^{\circ} - \theta)$$

$$p(t) = p_{A}(t) + p_{B}(t) + p_{C}(t)$$

$$p(t) = p_{A}(t) + p_{B}(t) + p_{C}(t)$$

Potencia instantánea

$$p(t) = \sqrt{2}U_F \cos(\omega t + 90^\circ) \cdot \sqrt{2}I_F \cos(\omega t + 90^\circ - \theta) +$$

$$+ \sqrt{2}U_F \cos(\omega t - 30^\circ) \cdot \sqrt{2}I_F \cos(\omega t - 30^\circ - \theta) +$$

$$+ \sqrt{2}U_F \cos(\omega t - 150^\circ) \cdot \sqrt{2}I_F \cos(\omega t - 150^\circ - \theta)$$

$$\cos(\alpha) \cdot \cos(\beta) = \frac{1}{2} \cdot (\cos(\alpha + \beta) + \cos(\alpha - \beta))$$

$$p(t) = U_F I_F [\cos(2\omega t + 180^\circ - \theta) + \cos(\theta)] +$$

$$+ U_F I_F [\cos(2\omega t - 60^\circ - \theta) + \cos(\theta)] +$$

$$+ U_F I_F [\cos(2\omega t - 300^\circ - \theta) + \cos(\theta)]$$

$$p(t) = 3 \cdot U_F \cdot I_F \cdot \cos(\theta)$$

Receptor en estrella equilibrado

$$P_F = U_F \cdot I_F \cdot \cos(\theta)$$

$$P_T = 3 \cdot P_F = 3 \cdot U_F \cdot I_F \cdot \cos(\theta)$$

$$I_F = I_L$$

$$U_F = \frac{U_L}{\sqrt{3}}$$

$$P_T = 3 \cdot U_F \cdot I_F \cos(\theta) = \sqrt{3} \cdot U_L \cdot I_L \cdot \cos(\theta)$$

$$Q_T = 3 \cdot U_F \cdot I_F \sin(\theta) = \sqrt{3} \cdot U_L \cdot I_L \cdot \sin(\theta)$$

$$S_T = \sqrt{P_T^2 + Q_T^2} = 3 \cdot U_F \cdot I_F = \sqrt{3} \cdot U_L \cdot I_L$$

Receptor en triángulo equilibrado

$$P_F = U_F \cdot I_F \cdot \cos(\theta)$$

$$P_T = 3 \cdot P_F = 3 \cdot U_F \cdot I_F \cdot \cos(\theta)$$

$$I_F = rac{I_L}{\sqrt{3}} \ U_F = U_L$$

$$P_T = 3 \cdot U_F \cdot I_F \cos(\theta) = \sqrt{3} \cdot U_L \cdot I_L \cdot \cos(\theta)$$

$$Q_T = 3 \cdot U_F \cdot I_F \sin(\theta) = \sqrt{3} \cdot U_L \cdot I_L \cdot \sin(\theta)$$

$$S_T = \sqrt{P_T^2 + Q_T^2} = 3 \cdot U_F \cdot I_F = \sqrt{3} \cdot U_L \cdot I_L$$

Ejemplo

Una red trifásica de 20 kV de tensión de línea alimenta a una instalación que dispone de dos cargas:

- ► Carga 1: conexión triángulo, potencia nominal aparente de 300 kVA y fdp 0.85 inductivo
- ► Carga 2: conexión estrella, potencia nominal aparente de 100 kVA y fdp 0.95 capacitivo

Se pide calcular las potencias totales P, Q y S, el módulo de la corriente de línea absorbida y el factor de potencia del conjunto.

- 1 Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- **5** Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

Medida de potencia en sistemas trifásicos

Recordatorio: vatímetro

Vatímetro: equipo de medida de 4 terminales (1 par para tensión, 1 par para corriente):

$$W = \overline{I_{1,2}} \circ \overline{U_{3,4}} = I_{1,2} \cdot U_{3,4} \cdot (\widehat{I_{1,2}, U_{3,4}})$$

- Introducción
- ② Generadores trifásicos
- Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- **6** Medida de potencia en sistemas trifásicos
- Sistemas a cuatro hilos
 - Sistemas a tres hilos
 - Método de los dos vatímetros
 - Medida de potencia reactiva con un vatímetro
- 6 Mejora del factor de potencia

Medida de potencia en sistemas trifásicos

Sistema a cuatro hilos — caso general

$$W_1 = \Re(\overline{U}_A \cdot \overline{I}_A^*) = P_A$$

$$W_2 = \Re(\overline{U}_B \cdot \overline{I}_B^*) = P_B$$

$$W_3 = \Re(\overline{U}_C \cdot \overline{I}_C^*) = P_C$$

$$P = W_1 + W_2 + W_3$$

Sistema a cuatro hilos equilibrado

$$P_A = P_B = P_C$$

$$P = 3 \cdot W_1$$

- Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- Potencia en sistemas trifásicos
- **6** Medida de potencia en sistemas trifásicos
 - Sistemas a cuatro hilo
 - Sistemas a tres hilos
 - Método de los dos vatímetros
 - Medida de potencia reactiva con un vatímetro
- 6 Mejora del factor de potencia

Sistema a tres hilos — Estrella

$$P_T = P_A + P_B + P_C$$

Teniendo en cuenta que debe cumplirse la 1LK en *N*:

$$\overline{I_A} + \overline{I_B} + \overline{I_C} \Rightarrow \overline{I_C} = -(\overline{I_A} + \overline{I_B})$$

y, sustituyendo en la potencia total:

$$P_{T} = P_{A} + P_{B} + P_{C} = \overline{U_{A}} \circ \overline{I_{A}} + \overline{U_{B}} \circ \overline{I_{B}} + \overline{U_{C}} \circ \overline{I_{C}} =$$

$$= \overline{U_{A}} \circ \overline{I_{A}} + \overline{U_{B}} \circ \overline{I_{B}} + \overline{U_{C}} \circ \left(-(\overline{I_{A}} + \overline{I_{B}})\right) =$$

$$= (\overline{U_{A}} - \overline{U_{C}}) \circ \overline{I_{A}} + (\overline{U_{B}} - \overline{U_{C}}) \circ \overline{I_{B}} \Rightarrow$$

$$\Rightarrow \boxed{P_{T} = \overline{U_{AC}} \circ \overline{I_{A}} + \overline{U_{BC}} \circ \overline{I_{B}}}$$

Sistema a tres hilos — Triángulo

$$P_{AB} = U_{AB} \cdot I_{AB} \cdot \cos(\theta_{AB});$$
 $P_{BC} = U_{BC} \cdot I_{BC} \cdot \cos(\theta_{BC});$ $P_{CA} = U_{CA} \cdot I_{CA} \cdot \cos(\theta_{CA})$ $P_{T} = P_{AB} + P_{BC} + P_{CA}$

Teniendo en cuenta que debe cumplirse la 1LK en los nudos *A* y *B*:

$$\overline{I_A} = \overline{I_{AB}} - \overline{I_{CA}} \Rightarrow \overline{I_{CA}} = \overline{I_{AB}} - \overline{I_A}$$
$$\overline{I_B} = \overline{I_{BC}} - \overline{I_{AB}} \Rightarrow \overline{I_{BC}} = \overline{I_B} + \overline{I_{AB}}$$

y, sustituyendo en la potencia total:

$$P_{T} = P_{AB} + P_{BC} + P_{CA} = \overline{U_{AB}} \circ \overline{I_{AB}} + \overline{U_{BC}} \circ \left(\overline{I_{B}} + \overline{I_{AB}}\right) + \overline{U_{CA}} \circ \left(\overline{I_{AB}} - \overline{I_{A}}\right) =$$

$$= \underbrace{\left(\overline{U_{AB}} + \overline{U_{BC}} + \overline{U_{CA}}\right)}_{0} \circ \overline{I_{AB}} + \overline{U_{BC}} \circ \overline{I_{B}} \underbrace{-\overline{U_{CA}}}_{\overline{U_{AC}}} \circ \overline{I_{A}} \Rightarrow \boxed{P_{T} = \overline{U_{AC}} \circ \overline{I_{A}} + \overline{U_{BC}} \circ \overline{I_{B}}}$$

- Introducción
- @ Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- Potencia en sistemas trifásicos
- **5** Medida de potencia en sistemas trifásicos
 - Sistemas a cuatro hilos
 - Sistemas a tres hilos
 - Método de los dos vatímetros
 - Medida de potencia reactiva con un vatímetro
- **6** Mejora del factor de potencia

Método de los dos vatímetros

Se eligen **dos líneas cualesquiera** a las que se conectan las **bobinas de intensidad** del vatímetro. Las **entradas de las bobinas de tensión** se conectan a las **mismas líneas** que las de intensidad y, las **salidas**, a la **línea no usada**. Si alguno de los vatímetros da una lectura negativa, en la suma se considerará con el signo —.

$$P_T = W_1 + W_2$$

Método de los dos vatímetros — SFD

Supóngase un receptor en estrella de carácter inductivo con vatímetros en *A* y *B*:

$$W_1 = \overline{U_{AC}} \circ \overline{I_A}$$

$$W_2 = \overline{U_{BC}} \circ \overline{I_B}$$

Método de los dos vatímetros — SFD

Supóngase un receptor en estrella de carácter inductivo con vatímetros en *A* y *B*:

$$W_1 = \overline{U_{AC}} \circ \overline{I_A}$$

$$W_2 = \overline{U_{BC}} \circ \overline{I_B}$$

Se sabe que:

$$\overline{U_{AC}} = -\overline{U_{CA}} =$$

$$= U_L / -120^\circ - 180^\circ =$$

$$= U_L / 60^\circ$$

$$\overline{U_{BC}} = U_L / 0^\circ$$

$$\overline{I_A} = I_L / 90^\circ - \theta$$

$$\overline{I_B} = I_L / -30^\circ - \theta$$

Método de los dos vatímetros — SFD

Supóngase un receptor en estrella de carácter inductivo con vatímetros en *A* y *B*:

$$W_1 = \overline{U_{AC}} \circ \overline{I_A}$$

$$W_2 = \overline{U_{BC}} \circ \overline{I_B}$$

Se sabe que:

$$\overline{U_{AC}} = -\overline{U_{CA}} =$$

$$= U_L / -120^\circ - 180^\circ =$$

$$= U_L / 60^\circ$$

$$\overline{U_{BC}} = U_L / 0^\circ$$

$$\overline{I_A} = I_L / 90^\circ - \theta$$

$$\overline{I_B} = I_L / -30^\circ - \theta$$

Por tanto:

$$W_1 = U_L I_L \cos (\theta - 30^\circ)$$

 $W_2 = U_L I_L \cos (\theta + 30^\circ)$

Método de los dos vatímetros — SFD

$$W_1 = \overline{U_{AC}} \circ \overline{I_A}$$

$$W_2 = \overline{U_{BC}} \circ \overline{I_B}$$

Desarrollando los cosenos:

$$\cos(\theta - 30^{\circ}) = \cos(\theta) \cos(30^{\circ}) + \sin(\theta) \sin(30^{\circ})$$
$$\cos(\theta + 30^{\circ}) = \cos(\theta) \cos(30^{\circ}) - \sin(\theta) \sin(30^{\circ})$$

Si se suman las medidas de los dos vatímetros:

$$W_1 + W_2 = \sqrt{3} U_L I_L \cos(\theta) = P_T$$

Si se restan las medidas de los dos vatímetros:

$$W_1 - W_2 = U_L I_L \sin(\theta) = \frac{Q_T}{\sqrt{3}}$$

Método de los dos vatímetros — SFD — Otras conexiones

$$(ABC): A \triangleright B \triangleright C \Longrightarrow \{AB, BC, CA\}$$

$$P = W_1 + W_2$$
 $Q = \sqrt{3}(W_1 - W_2)$

 $W_1 : AC \notin SFD$ $W_2 : BC \in SFD$ $W_1: BA \notin SFD$ $W_2: CA \in SFD$ $W_1: CB \notin SFD$

 $W_2: \mathit{AB} \in \mathit{SFD}$

Método de los dos vatímetros — SFI

Supóngase un receptor en estrella de carácter inductivo con vatímetros en *B* y *A*:

$$W_1 = \overline{U_{BC}} \circ \overline{I_B}$$

$$W_2 = \overline{U_{AC}} \circ \overline{I_A}$$

Método de los dos vatímetros — SFI

Supóngase un receptor en estrella de carácter inductivo con vatímetros en *B* y *A*:

$$W_1 = \overline{U_{BC}} \circ \overline{I_B}$$

$$W_2 = \overline{U_{AC}} \circ \overline{I_A}$$

Se sabe que:

$$\overline{U_{BC}} = U_L / 0^{\circ}$$

$$\overline{U_{AC}} = -\overline{U_{CA}} =$$

$$= U_L / 120^{\circ} + 180^{\circ} =$$

$$= U_L / -60^{\circ}$$

$$\overline{I_B} = I_L / 30^{\circ} - \theta$$

$$\overline{I_A} = I_L / -90^{\circ} - \theta$$

Método de los dos vatímetros — SFI

Supóngase un receptor en estrella de carácter inductivo con vatímetros en *B* y *A*:

$$W_1 = \overline{U_{BC}} \circ \overline{I_B}$$

$$W_2 = \overline{U_{AC}} \circ \overline{I_A}$$

Se sabe que:

$$\overline{U_{BC}} = U_L/0^{\circ}$$

$$\overline{U_{AC}} = -\overline{U_{CA}} =$$

$$= U_L/120^{\circ} + 180^{\circ} =$$

$$= U_L/-60^{\circ}$$

$$\overline{I_B} = I_L/30^{\circ} - \theta$$

 $\overline{I_A} = I_I / -90^\circ - \theta$

Por tanto:

$$W_1 = U_L I_L \cos (\theta - 30^\circ)$$

 $W_2 = U_L I_L \cos (\theta + 30^\circ)$

Idénticos a SFD

Método de los dos vatímetros — SFI

$$W_1 = \overline{U_{BC}} \circ \overline{I_B}$$

$$W_2 = \overline{U_{AC}} \circ \overline{I_A}$$

Desarrollando los cosenos:

$$\cos(\theta - 30^{\circ}) = \cos(\theta) \cos(30^{\circ}) + \sin(\theta) \sin(30^{\circ})$$
$$\cos(\theta + 30^{\circ}) = \cos(\theta) \cos(30^{\circ}) - \sin(\theta) \sin(30^{\circ})$$

Si se suman las medidas de los dos vatímetros:

$$W_1 + W_2 = \sqrt{3} U_L I_L \cos(\theta) = P_T$$

Si se restan las medidas de los dos vatímetros:

$$W_1 - W_2 = U_L I_L \sin(\theta) = \frac{Q_T}{\sqrt{3}}$$

Método de los dos vatímetros — SFI — Otras conexiones

$$(ACB): A \triangleright C \triangleright B \Longrightarrow \{AC, CB, BA\}$$

$$P = W_1 + W_2$$
 $Q = \sqrt{3}(W_1 - W_2)$

 $W_1 : BC \notin SFI$ $W_2 : AC \in SFI$ $W_1 : CA \notin SFI$ $W_2 : BA \in SFI$ $W_1: AB \notin SFI$ $W_2: CB \in SFI$

Método de los dos vatímetros — Ejemplo

Hallar la indicación del voltímetro en el sistema trifásico equilibrado de SFD de la figura, sabiendo que: $W_1=700$ W; $W_2=400$ W; $\overline{Z_L}=1+\mathrm{j}2\Omega$; $\overline{Z_1}=100\Omega$; $\overline{Z_2}=47/37^\circ\Omega$.

- Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- Potencia en sistemas trifásicos
- **5** Medida de potencia en sistemas trifásicos
 - Sistemas a cuatro hilo
 - Sistemas a tres hilos
 - Método de los dos vatímetros
 - Medida de potencia reactiva con un vatímetro
- **6** Mejora del factor de potencia

Medida de reactiva con un vatímetro

Supóngase un receptor en estrella de carácter inductivo y SFD:

$$W = \overline{U_{BC}} \, \circ \, \overline{I_A}$$

Medida de reactiva con un vatímetro

Supóngase un receptor en estrella de carácter inductivo y SFD:

$$W = \overline{U_{BC}} \, \circ \, \overline{I_A}$$

Se sabe que:

$$\overline{U}_{BC} = U_L \underline{/0}$$

$$\overline{I}_A = I_L \underline{/90^\circ - \theta}$$

Por tanto:

$$W = U_L \cdot I_L \cdot \cos(\theta - 90^\circ) =$$

$$= U_L \cdot I_L \cdot \sin(\theta) \Rightarrow$$

$$\Rightarrow W = \frac{Q_T}{\sqrt{3}}$$

Medida de reactiva con un vatímetro

Supóngase un receptor en estrella de carácter inductivo y SFD:

$$W = \overline{U_{BC}} \, \circ \, \overline{I_A}$$

Se sabe que:

$$\overline{U}_{BC} = U_L \underline{/0}$$

$$\overline{I}_A = I_L \underline{/90^\circ - \theta}$$

Por tanto:

$$W = U_L \cdot I_L \cdot \cos(\theta - 90^\circ) =$$

$$= U_L \cdot I_L \cdot \sin(\theta) \Rightarrow$$

$$\Rightarrow W = \frac{Q_T}{\sqrt{3}}$$

Medida de reactiva con un vatímetro — Otras conexiones

$$BC \in SFD$$

 $BC \notin SFI$

$$CA \in SFD$$

 $CA \notin SFI$

$$AB \in SFD$$

 $AB \notin SFI$

$$SFD \to \boxed{W = \frac{Q_T}{\sqrt{3}}}$$
$$SFI \to \boxed{W = -\frac{Q_T}{\sqrt{3}}}$$

Medida de reactiva con un vatímetro — Otras conexiones

$$CB \notin SFD$$

 $CB \in SFI$

$$AC \notin SFD$$

 $AC \in SFI$

$$BA \notin SFD$$

 $BA \in SFI$

$$SFD \rightarrow W = -\frac{Q_T}{\sqrt{3}}$$

$$SFI \rightarrow W = \frac{Q_T}{\sqrt{3}}$$

Medida de reactiva con un vatímetro

El sistema trifásico de la figura es de 380 V, 50 Hz. Sabiendo que la carga es equilibrada y consume 24 kW con un factor de potencia de 0,8 (inductivo), que las tensiones de línea son equilibradas y que se tiene una SFD, se pide calcular:

- ▶ Valor de las intensidades de línea en forma fasorial
- Lectura de los vatímetros

- Introducción
- ② Generadores trifásicos
- 3 Conexiones en estrella y triángulo
- 4 Potencia en sistemas trifásicos
- **5** Medida de potencia en sistemas trifásicos
- 6 Mejora del factor de potencia

- ► En trifásica existen dos posibilidades:
 - ightharpoonup Conexión en triángulo (C_D)
 - ightharpoonup Conexión en estrella (C_Y)

Conexión en triángulo

- En trifásica existen dos posibilidades:
 - ightharpoonup Conexión en triángulo (C_D)

$$Q = P \tan \theta$$

$$Q' = P \tan \theta' = Q - Q_c$$

$$Q_c = 3 \cdot \omega C_D \cdot U_L^2$$

$$C_D = \frac{P(\tan \theta - \tan \theta')}{3\omega U_L^2}$$

ightharpoonup Conexión en estrella (C_Y)

Conexión en estrella

- En trifásica existen dos posibilidades:
 - ightharpoonup Conexión en triángulo (C_D)
 - ightharpoonup Conexión en estrella (C_V)

$$Q = P \tan \theta$$

$$Q' = P \tan \theta' = Q - Q_c$$

$$Q' = P \tan \theta' = Q - Q_0$$

$$C_Y = \frac{P(\tan \theta - \tan \theta')}{\omega U_r^2}$$

Comparación Estrella-Triángulo

$$C_D = \frac{P(\tan \theta - \tan \theta')}{3\omega U^2}$$

$$C_Y = \frac{P(\tan \theta - \tan \theta')}{\omega U^2}$$

Dado que $C_Y = 3 \cdot C_D$ la **configuración recomendada** es **triángulo**

Mejora del factor de potencia Ejemplo

Una red trifásica de 380 V, 50 Hz y secuencia SFD alimenta a dos cargas equilibradas: (i) 30 kW y factor de potencia 0.7 inductivo; (ii) 24 kW y factor de potencia 0.6 inductivo. Determinar la capacidad de cada uno de los condensadores a conectar a la red para que el factor de potencia global mejore hasta 0.95.