WHAT IS CLAIMED IS:

1. A compound, comprising: a targeting moiety and a chelator, wherein the targeting moiety is bound to the chelator, is a peptide or peptidomimetic, and binds to a receptor that is upregulated during angiogenesis and the compound has 0-1 linking groups between the targeting moiety and chelator.

10 2 A compound according to Claim 1, wherein the targeting moiety is a peptide or a mimetic thereof and the receptor is selected from the group: EGFR, FGFR, PDGFR, Flk-1/KDR, Flt-1, Tek, Tie, neuropilin-1, endoglin, endosialin, Axl, $\alpha_{\rm v}\beta_3$, $\alpha_{\rm v}\beta_5$, $\alpha_5\beta_1$, $\alpha_4\beta_1$, $\alpha_1\beta_1$, and $\alpha_2\beta_2$ and the linking group is present between the targeting moiety and chelator.

7 3. A compound according to Claim 2, the receptor is the ntegrin $\alpha_{\rm v}\beta_3$ and the compound is of the formula:

(Q)_d-L_n-C_h or (Q)_d-L_n-(C_h)_d\cdot

wherein, Q is a paptide independently selected from the group:

25

30

35

- K is an L-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine,
 - δ -N-2-imidazolinyloknithine,
 - δ -N-benzylcarbamoylornithine, and
 - β -2-benzimidazolylac $\$ tyl-1,2-diaminopropionic acid;
- K' is a D-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine,

25

30

 δ -N-2-imidazolinylornithine,

 δ -N-benzylcarbamoylornithine, and

 β -2-benzimidazolylacetyl-1,2-diaminopropionic acid;

5 L is independently selected at each occurrence from the group: glycine, L-alanine, and p-alanine;

M is L-aspartic acid;

10 M' is D-aspartic acid;

R¹ is an amino acid substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group: glycine, L-valine, D-valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminohexanoic acid, tyrosine, phenylalanine, thienylalanine, phenylglycine, cyclohexylalanine, homophenylalanine, 1-naphthylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, cysteine, penicillamine, and methionine;

R² is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminohexanoic acid, tyrosine, L-phenylalanine, D-phenylalanine, thienylalanine, phenylglycine, biphenylglycine, cyclohexylalanine, homophenylalanine, cyclohexylalanine, homophenylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, cysteine, penicillamine, methionine, and 2-aminothiazole-4-acetic acid;

R³ is an amino acid, substituted with 0-1 bonds to L_n,

independently selected at each occurrence from the group:
glycine, D-valine, D-alanine, D-leucine, D-isoleucine,
D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic
acid, D-tyrosine, D-phenylalanine, D-thienylalanine,

10

20

25

30

35

D-phenylglycine, D-cyclohexylalanine,
D-homophenylalanine, D-1-naphthylalanine, D-lysine,
D-serine, D-ornithine, D-1,2-diaminobutyric acid,
D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine,
and D-methionine;

R4 is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, D-methionine, and 2-aminothiazole-4-acetic acid;

R⁵ is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, L-valine, L-alanine, L-leucine, L-isoleucine, L-norleucine, L-2-aminobutyric acid, L-2-aminohexanoic acid, L-tyrosine, L-phenylalanine, L-thienylalanine, L-phenylglycine, L-cyclohexylalanine, L-homophenylalanine, L-1-naphthylalanine, L-lysine, L-serine, L-ornithine, L-1,2-diaminobutyric acid, L-1,2-diaminopropionic acid, L-cysteine, L-penicillamine, L-methionine, and 2-aminothiazole-4-acetic acid;

provided that one of R^1 , R^2 , R^3 , R^4 , and R^5 in each Q is substituted with a bond to L_n , further provided that when R^2 is 2-aminothiazole-4-acetic acid, K is N-methylarginine, further provided that when R^4 is 2-aminothiazole-4-acetic acid, K and K' are N-methylarginine and still further provided that when R^5 is 2-aminothiazole-4-acetic acid, K' is N-methylarginine;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9,and 10;

35

10

Ln is a linking group having the formula:

 $(CR^{6}R^{7})_{g} - (W)_{h} - (CR^{6a}R^{7a})_{g'} - (Z)_{k} - (W)_{h'} - (CR^{8}R^{9})_{g''} - (W)_{h''} - (CR^{8a}R^{9a})_{g''}$

5 provided that g+h+g'+k+h'+g"+h"+g"' is other than 0;

W is independently selected at each occurrence from the group: O, S, NH, NHC(=O), C(=O)NH, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂O)_s, (CH₂CH₂O)_s, (OCH₂CH₂O)_s, (OCH₂CH₂O)_t, and (aa)_t;

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R^{10} , C_{3-10} cycloalkyl substituted with 0-3 R^{10} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{10} ;

20 R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^{8a} , R^9 and R^{9a} are independently selected at each occurrence from the group: H, =0, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R^{10} , aryl substituted with 0-3 R^{10} , and C₁-C₅ alkoxy substituted with 0-3 R^{10} , NHC(=0) R^{11} , C(=0) R^{11} , NHC(=0) R^{11}

R¹⁰ is independently selected at each occurrence from the group: a bond to C_h, COOR¹¹, OH, NHR¹¹, SO₃H, PO₃H, aryl substituted with 0-3 R¹¹, C₁₋₅ alkyl substituted with 0-1 R¹², C₁₋₅ alkoxy substituted with 0-1 R¹², and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹¹;

R¹¹ is independently selected at each occurrence from the group: H, aryl substituted with 0-1 R¹², a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms

5

independently selected from N, S, and O and substituted with 0-1 R^{12} , C_{3-10} cycloalkyl substituted with 0-1 R^{12} , polyalkylene glycol substituted with 0-1 R^{12} , carbohydrate substituted with 0-1 R^{12} , cyclodextrin substituted with 0-1 R^{12} , amino acid substituted with 0-1 R^{12} , polycarboxyalkyl substituted with 0-1 R^{12} , polyazaalkyl substituted with 0-1 R^{12} , peptide substituted with 0-1 R^{12} , wherein the peptide is comprised of 2-10 amino acids, and a bond to C_h ;

 R^{12} is a bond to C_h ;

k is selected from 0, 1, and 2; In is selected from 0, 1, and 2;

15 h' is selected from 0, 1, 2, 3, 4, and 5;
h" is selected from 0, 1, 2, 3, 4, and 5;
g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
g" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
s' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;
t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

Ch is a metal bonding unit having a formula selected from the group:

A¹ E—A²

 A^1 , A^2 , A^3 , A^4 , A^5 , A^6 , A^7 , and A^8 are independently selected at each occurrence from the group N, NR^{13} , $NR^{13}R^{14}$, S, SH, S(Pg), O, OH, PR^{13} , $PR^{13}R^{14}$, $P(O)R^{15}R^{16}$, and a bond to L_n ;

a bond, CH, or a spacer group independently selected at each occurrence from the group: C_1 - C_{10} alkyl substituted with 0-3 R^{17} , aryl substituted with 0-3 R^{17} , C_{3-10} cycloalkyl substituted with 0-3 R^{17} , heterocyclo- C_{1-10} alkyl substituted with 0-3 R^{17} , wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C_{6-10} aryl- C_{1-10} alkyl substituted with 0-3 R^{17} , C_{1-10} alkyl- C_{6-10} aryl- substituted with 0-3 R^{17} , and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{17}

20 R¹³, and R¹⁴ are each independently selected from the group:
a bond to L_n, hydrogen, C₁-C₁₀ alkyl substituted with 0-3
R¹⁷, aryl substituted with 0-3 R¹⁷, C₁₋₁₀ cycloalkyl
substituted with 0-3 R¹⁷, heterocyclo-C₁₋₁₀ alkyl
substituted with 0-3 R¹⁷, wherein the heterocyclo group
is a 5-10 membered heterocyclic ring system containing
1-4 heteroatoms independently selected from N, S, and O,
C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R¹⁷, C₁₋₁₀
alkyl-C₆₋₁₀ aryl- substituted with 0-3 R¹⁷, a 5-10
membered heterocyclic ring system containing 1-4
heteroatoms independently selected from N, S, and O and

25

30

10

substituted with 0-3 R¹⁷, and an electron, provided that when one of R¹³ or R¹⁴ is an electron, then the other is also an electron;

5 alternatively, R^{13} and R^{14} combine to form $=C(R^{20})(R^{21})$;

R¹⁵ and R¹⁶ are each independently selected from the group: a bond to L_n, -OH, C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, C₁-C₁₀ alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁷, heterocyclo-C₁₋₁₀ alkyl substituted with 0-3 R¹⁷, wherein the heterocyclo group is a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O, C₆₋₁₀ aryl-C₁₋₁₀ alkyl substituted with 0-3 R¹⁷, C₁₋₁₀ alkyl-C₆₋₁₀ aryl-substituted with 0-3 R¹⁷, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;

Is independently selected at each occurrence from the group: a bond to L_n , =0, F, Cl, Br, I, -CF3, -CN, -C02R¹⁸, -C(=0)R¹⁸, -C(=0)N(R¹⁸)₂, -CH0, -CH₂OR¹⁸, -OC(=0)R¹⁸, -OC(=0)OR¹⁸a, -OR¹⁸, -OC(=0)N(R¹⁸)₂, -NR¹⁹C(=0)R¹⁸, -NR¹⁹C(=0)OR¹⁸a, -NR¹⁹C(=0)N(R¹⁸)₂, -NR¹⁹SO₂N(R¹⁸)₂, -NR¹⁹SO₂R¹⁸a, -SO₃H, -SO₂R¹⁸a, -SR¹⁸, -S(=0)R¹⁸a, -SO₂N(R¹⁸)₂, -N(R¹⁸)₂, -NHC(=S)NHR¹⁸, =NOR¹⁸, NO₂, -C(=0)NHOR¹⁸, -C(=0)NHNR¹⁸R¹⁸a, -OCH₂CO₂H, 2-(1-morpholino)ethoxy, C₁-C₅ alkyl, C₂-C₄ alkenyl, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkylmethyl, C₂-C₆ alkoxyalkyl, aryl substituted with 0-2 R¹⁸, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

35 R^{18} , R^{18a} , and R^{19} are independently selected at each occurrence from the group: a bond to L_n , H, C_1 - C_6 alkyl, phenyl, benzyl, C_1 - C_6 alkoxy, halide, nitro, cyano, and trifluoromethyl;

10

20

25

Pg is a thiol protecting group;

 R^{20} and R^{21} are independently selected from the group: H, C_1 - C_{10} alkyl, - C_1 , - C_2 , - C_1 , - C_2 , - C_1 , - C_2 , - C_1 , -C

alternatively, R^{20} and R^{21} , taken together with the divalent carbon radical to which they are attached form:

 R^{22} and R^{23} are independently selected from the group: H, R^{24} , C_1 - C_{10} alkyl substituted with 0-3 R^{24} , C_2 - C_{10} alkenyl substituted with 0-3 R^{24} , C_2 - C_{10} alkynyl substituted with 0-3 R^{24} , a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{24} , and C_3 -10 carbocycle substituted with 0-3 R^{24} ;

alternatively, R²², R²³ taken together form a fused aromatic or a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

30 **a** and **b** indicate the positions of optional double bonds and **n** is 0 or 1;

20

25

R²⁴ is independently selected at each occurrence from the group: =0, F, Cl, Br, I, $-CF_3$, -CN, $-CO_2R^{25}$, -C(=0) R^{25} , $-R^{26}$ C(=0) R^{25} , -C(=0) R^{25} , -C(=0) R^{25} , and 2-(1-morpholino)ethoxy; and,

10 R^{25} , R^{25a} , and R^{26} are each independently selected at each occurrence from the group: hydrogen and C1-C6 alkyl;

and a pharmaceutically acceptable salt thereof.

4. A compound according to Claim 3, the present invention provides a compound, wherein:

L is glycine;

 ${\sf R}^1$ is an amino acid, optionally substituted with a bond to ${\sf L}_n$, independently selected at each occurrence from the group: L-valine, D-valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, tyrosine, phenylalanine, phenylglycine, cyclohexylalanine, homophenylalanine, lysine, ornithine, 1,2-diaminobutyric acid, and 1,2-diaminopropionic acid;

R² is an amino acid, optionally substituted with a bond to L_n,
independently selected at each occurrence from the group:
valine, alanine, leucine, isoleucine, norleucine,
2-aminobutyric acid, tyrosine, L-phenylalanine,
D-phenylalanine, thienylalanine, phenylglycine,
biphenylglycine, cyclohexylalanine, homophenylalanine,
L-1-naphthylalanine, D-1-naphthylalanine, lysine,
ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic
acid, and 2-aminothiazole-4-acetic acid;

- 10 R⁴ is an amino acid, optionally substituted with a bond to L_n, independently selected at each occurrence from the group: D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, and 2-aminothiazole-4-acetic acid;
- 20 R⁵ is an amino acid, optionally substituted with a bond to L_n, independently selected at each occurrence from the group: L-valine, L-alanine, L-leucine, L-isoleucine, L-norleucine, L-2-aminobutyric acid, L-tyrosine, L-phenylalanine, L-thienylalanine, L-phenylglycine, L-cyclohexylalanine, L-homophenylalanine, L-1-naphthylalanine, L-lysine, L-ornithine,

and 2-aminothiazole-4-acetic acid;

- 30 d is selected from 1, 2, and 3;
 - W is independently selected at each occurrence from the group: O, NH, NHC(=O), C(=O)NH, C(=O), C(=O)O, OC(=O), NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂)_s, (CH₂CH₂O)_s, (OCH₂CH₂CH₂O)_t, and (CH₂CH₂CH₂O)_t,

L-1,2-diaminobutyric acid, L-1,2-diaminopropionic acid,

Z is selected from the group: aryl substituted with 0-1 $\rm R^{10},$ $\rm C_{3-10}$ cycloalkyl substituted with 0-1 $\rm R^{10},$ and a 5-10

- 5 R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹, and R^{9a} are independently selected at each occurrence from the group: H, =0, COOH, SO₃H, C₁-C₅ alkyl substituted with 0-1 R¹⁰, aryl substituted with 0-1 R¹⁰, benzyl substituted with 0-1 R¹⁰, and C₁-C₅ alkoxy substituted with 0-1 R¹⁰, NHC(=0)R¹¹, C(=0)NHR¹¹, NHC(=0)NHR¹¹, NHR¹¹, R¹¹, and a bond to C_h;
- R¹⁰ is independently selected at each occurrence from the group: COOR¹¹, OH, NHR¹¹, SO₃H, aryl substituted with 0-1 R¹¹, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹¹, C₁-C₅ alkyl substituted with 0-1 R¹², C₁-C₅ alkoxy substituted with 0-1 R¹², and a bond to C_h;
- R¹¹ is independently selected at each occurrence from the group: H, aryl substituted with 0-1 R¹², a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-1 R¹², polyalkylene glycol substituted with 0-1 R¹², carbohydrate substituted with 0-1 R¹², cyclodextrin substituted with 0-1 R¹², amino acid substituted with 0-1 R¹², and a bond to Ch;
- 30 k is 0 or 1;
 h is 0 or 1;
 h' is 0 or 1;
 s is selected from 0, 1, 2, 3, 4, and 5;
 s' is selected from 0, 1, 2, 3, 4, and 5;
 s" is selected from 0, 1, 2, 3, 4, and 5;
 t is selected from 0, 1, 2, 3, 4, and 5;

20

35

- ${\rm A}^1,~{\rm A}^2,~{\rm A}^3,~{\rm A}^4,~{\rm A}^5,~{\rm A}^6,~{\rm A}^7,~{\rm and}~{\rm A}^8$ are independently selected at each occurrence from the group: NR^{13}, NR^{13}R^{14}, S, SH, S(Pg), OH, and a bond to L_n;
- 5 E is a bond, CH, or a spacer group independently selected at each occurrence from the group: C1-C10 alkyl substituted with 0-3 R¹⁷, aryl substituted with 0-3 R¹⁷, C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁷, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁷;
 - ${\sf R}^{13}$, and ${\sf R}^{14}$ are each independently selected from the group: a bond to ${\sf L}_n$, hydrogen, ${\sf C}_1{\sf -C}_{10}$ alkyl substituted with 0-3 ${\sf R}^{17}$, aryl substituted with 0-3 ${\sf R}^{17}$, a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 ${\sf R}^{17}$, and an electron, provided that when one of ${\sf R}^{13}$ or ${\sf R}^{14}$ is an electron, then the other is also an electron;

alternatively, R^{13} and R^{14} combine to form $=C(R^{20})(R^{21})$;

- proup: a bond to L_n , =0, F, Cl, Br, I, -CF₃, -CN, -CO₂R¹⁸, -C(=0)R¹⁸, -C(=0)N(R¹⁸)₂, -CH₂OR¹⁸, -OC(=0)R¹⁸, -OC(=0)N(R¹⁸)₂, -NR¹⁹C(=0)R¹⁸, -OC(=0)N(R¹⁸)₂, -NR¹⁹C(=0)R¹⁸, -NR¹⁹C(=0)OR¹⁸a, -NR¹⁹C(=0)N(R¹⁸)₂, -NR¹⁹SO₂N(R¹⁸)₂, -NR¹⁹SO₂R¹⁸a, -SO₃H, -SO₂R¹⁸a, -S(=0)R¹⁸a, -SO₂N(R¹⁸)₂, -N(R¹⁸)₂, -N(R¹⁸)₂, -NHC(=S)NHR¹⁸, =NOR¹⁸, -C(=O)NHNR¹⁸R¹⁸a, -OCH₂CO₂H, and 2-(1-morpholino)ethoxy;
 - R^{18} , R^{18a} , and R^{19} are independently selected at each occurrence from the group: a bond to L_n , H, and C_1 - C_6 alkyl;
 - R^{20} and R^{21} are independently selected from the group: H, C_1-C_5 alkyl, $-C_02R^{25}$, C_2-C_5 1-alkene substituted with 0-3

 R^{23} , C_2 - C_5 1-alkyne substituted with 0-3 R^{23} , aryl substituted with 0-3 R^{23} , and unsaturated 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R^{23} ;

alternatively, R^{20} and R^{21} , taken together with the divalent carbon radical to which they are attached form:

10

5

 ${\bf R}^{22}$ and ${\bf R}^{23}$ are independently selected from the group: H, and ${\bf R}^{24};$

15

alternatively, R^{22} , R^{23} taken together form a fused aromatic or a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O;

 R^{24} is independently selected at each occurrence from the group: $-CO_2R^{25}$, $-C(=O)N(R^{25})_2$, $-CH_2OR^{25}$, $-OC(=O)R^{25}$, $-OR^{25}$, $-SO_3H$, $-N(R^{25})_2$, and $-OCH_2CO_2H$; and,

20

 R^{25} is independently selected at each occurrence from the group: H and C1-C3 alkyl.

25

5. A compound according to Claim 4, the present invention provides a compound, wherein:

30

Q is a peptide selected from the group:

10

20

- R^1 is L-valine, D-valine, D-lysine optionally substituted on the ϵ amino group with a bond to L_n or L-lysine optionally substituted on the ϵ amino group with a bond to L_n ;
- R^2 is L-phenylalanine, D-phenylalanine, D-1-naphthylalanine, 2-aminothiazole-4-acetic acid, L-lysine optionally substituted on the ϵ amino group with a bond to L_n or tyrosine, the tyrosine optionally substituted on the hydroxy group with a bond to L_n ;
- R^3 is D-valine, D-phenylalanine, or L-lysine optionally substituted on the ϵ amino group with a bond to L_n ;
 - ${\tt R}^4$ is D-phenylalanine, D-tyrosine substituted on the hydroxy group with a bond to ${\tt L}_n,$ or L-lysine optionally substituted on the ϵ amino group with a bond to ${\tt L}_n;$
 - provided that one of R^1 and R^2 in each Q is substituted with a bond to L_n , and further provided that when R^2 is 2-aminothiazole-4-acetic acid, K is N-methylarginine;
- 25 d is 1 or 2;
 - W is independently selected at each occurrence from the group: NHC(=0), C(=0)NH, C(=0), (CH₂CH₂O)_s, and (CH₂CH₂CH₂O)_t;
- 30 R^6 , R^{6a} , R^7 , R^{7a} , R^8 , R^{8a} , R^9 , and R^{9a} are independently selected at each occurrence from the group: H, NHC(=0) R^{11} , and a bond to C_h ;

k is 0;

```
h" is selected from 0, 1, 2, and 3;
g is selected from 0, 1, 2, 3, 4, and 5;
g' is selected from 0, 1, 2, 3, 4, and 5;
g" is selected from 0, 1, 2, 3, 4, and 5;
g"' is selected from 0, 1, 2, 3, 4, and 5;
s' is 1 or 2;
t is 1 or 2;
```

$$A^{1} = A^{2} = A^{4} = A^{6} = A^{7}$$
 $A^{1} = A^{3} = A^{5} = A^{8}$

20

 \mathtt{A}^1 is selected from the group: OH, and a bond to \mathtt{L}_n ;

 A^2 , A^4 , and A^6 are each N;

15 A^3 , A^5 , and A^8 are each OH;

 \mathtt{A}^7 is a bond to \mathtt{L}_n or NH-bond to $\mathtt{L}_n;$

E is a C_2 alkyl substituted with 0-1 R^{17} ;

 R^{17} is =0;

alternatively, C_h is A^{1} $\stackrel{E-A^2}{,}$

25 A^1 is NH₂ or N=C(R²⁰)(R²¹);

E is a bond;

 A^2 is NHR¹³;

30

R¹³ is a heterocycle substituted with R¹⁷, the heterocycle being selected from pyridine and pyrimidine;

 ${\it R}^{17}$ is selected from a bond to ${\it L}_{n}$, ${\it C(=0)NHR}^{18}$, and ${\it C(=0)R}^{18}$;

 R^{18} is a bond to L_n ;

 R^{24} is selected from the group: $-CO_2R^{25}$, $-OR^{25}$, $-SO_3H$, and $-N(R^{25})_{2};$

5

 ${\bf R}^{25}$ is independently selected at each occurrence from the group: hydrogen and methyl;

alternatively, Ch is

10

 A^1 , A^2 , A^3 , and A^4 are each N;

 A^5 , A^6 , and A^8 are each OH;

15

 A^7 is a bond to L_n ;

E is a C_2 alkyl substituted with 0-1 R^{17} ; and,

 R^{17} is =0.

- A compound according to Claim 3, the present invention provides a compound selected from the group:
- 25 (a) cyclo{Arg-Gly-Asp-D-Tyr(N-[2-[[[5-[carbonyl]-2pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-3aminopropyl) -Val};
- (b) cyclo{Arg-Gly-Asp-D-Tyr((N-[2-[[[5-[carbony1]-2-30 pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-18-

```
amino-14-aza-4,7,10-oxy-15-oxo-octadecoyl)-3-
aminopropyl)-Val};
```

- (c) [2-[[[5-[carbony1]-2-pyridiny1]hydrazono]methy1]5 benzenesulfonic acid]-Glu(cyclo{D-Tyr(3-aminopropy1)-Val-Arg-Gly-Asp})-cyclo{D-Tyr(3-aminopropy1)-Val-Arg-Gly-Asp};
- (d) cyclo(Arg-Gly-Asp-D-Tyr-Lys([2-[[[5-[carbony1]-210 pyridinyl]hydrazono]methyl]-benzenesulfonic acid]));
- (g) [2-[[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]20 benzenesulfonic acid]-Phe-Glu(cyclo{Lys-Arg-Gly-Asp-D-Phe})-cyclo{Lys-Arg-Gly-Asp-D-Phe};
 - (h) cyclo{Arg-Gly-Asp-D-Nal-Lys([2-[[[5-[carbony1]-2pyridinyl]hydrazono]methyl]-benzenesulfonic acid])};
 - (i) [2-[[[5-[carbonyl]-2-pyridinyl]-hydrazono]methyl] benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-D-Nal}) cyclo{Lys-Arg-Gly-Asp-D-Nal};
- (k) [2-[[[5-[carbony1]-2-pyridiny1]hydrazono]methy1]35 benzenesulfonic acid]-Glu(cyclo{Lys-D-Val-Arg-Gly-Asp})cyclo{Lys-D-Val-Arg-Gly-Asp};

```
(1) {cyclo(Arg-D-Val-D-Tyr(N-[2-[[[5-[carbonyl]-2-
          pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-3-
          aminopropyl) -D-Asp-Gly};
     (m) cyclo{D-Lys([2-[[[5-[carbony1]-2-
 5
          pyridinyl]hydrazono]methyl]-benzenesulfonic acid])-D-Phe-
          D-Asp-Gly-Arg);
     (n) [2-[[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]-
10
          benzenesulfonic acid]-Glu(cyclo{D-Lys-D-Phe-D-Asp-Gly-
          Arg})-cyclo{D-Lys-D-Phe-D-Asp-Gly-Arg};
     (o) cyclo{D-Phe-D-Lys([2-[[[5-[carbony1]-2-
          pyridinyl]hydrazono]methyl]-benzenesulfonic acid])-D-Asp-
15
          Gly-Arg};
     (p) cyclo{N-Me-Arg-Gly-Asp-ATA-D-Lys([2-[[[5-[carbonyl]-2-
         pyridinyl]hydrazono]methyl]-benzenesulfonic acid])};
20
     (q) cyclo{Cit-Gly-Asp-D-Phe-Lys([2-[[[5-[carbonyl]-2-
         pyridinyl]hydrazono]methyl]-benzenesulfonic acid])};
     (r) 2-(1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)-1-
         cyclododecyl)acetyl-Glu(cyclo{Lys-Arg-Gly-Asp-D-Phe})-
25
         cyclo{Lys-Arg-Gly-Asp-D-Phe};
     (s) cyclo{Arg-Gly-Asp-D-Phe-Lys(DTPA)};
     (t) cyclo{Arg-Gly-Asp-D-Phe-Lys}2(DTPA);
30
    (u) Cyclo (Arg-Gly-Asp-D-Tyr (N-DTPA-3-aminopropyl) -Val);
```

(v) cyclo{Orn(d-N-2-Imidazolinyl)-Gly-Asp-D-Tyr(N-[2-[[5-

acid]-3-aminopropyl)-Val};

[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic

- (y) cyclo{HomoLys-Gly-Asp-D-Tyr(N-[2-[[[5-[carbony1]-2pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-3aminopropyl)-Val};

 - (aa) cyclo{Dap(b-(2-benzimidazolylacetyl))-Gly-Asp-D-Tyr(N-[2-[[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-3-aminopropyl)-Val};
 - (bb) cyclo{Orn(d-N-2-Imidazolinyl)-Gly-Asp-D-Phe-Lys(N-[2-[[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid])};
- 25 (cc) cyclo{Orn(d-N-Benzylcarbamoyl)-Gly-Asp-D-Phe-Lys(N-[2-[[[5-[carbonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid])};
- (dd) cyclo{Lys-D-Val-D-Tyr(N-[2-[[[5-[carbonyl]-2pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-3aminopropyl)-D-Asp-Gly};

- 5 or a pharmaceutically acceptable salt form thereof.
- A kit comprising a compound of Claim 3, or a pharmaceutically acceptable salt form thereof and a 10 pharmaceutically acceptable carrier.
 - A kit according to Claim 7, wherein the kit further comprises one or more ancillary ligands and a reducing agent.
 - A kit according to Claim 8, wherein the ancillary ligands are tricine and TPPTS.
 - A kit according to Claim 9, wherein the reducing agent is tin(II).
- 25 11. A diagnostic or therapeutic metallopharmaceutical composition, comprising: a metal, a chelator capable of chelating the metal and a targeting moiety, wherein the targeting moiety is bound to the chelator, is a peptide or peptidomimetic and binds to a receptor that is upregulated 30 during angiogenesis and the compound has 0-1 linking groups between the targeting moiety and chelator.
- A composition according to Claim 11, wherein the metallopharmaceutical is a diagnostic radiopharmaceutical, the metal is a radioisotope selected from the group: 99 mTc, 95 Tc, $h_{\rm 111In}$, $_{
 m 62}$ Cu, $_{
 m 64}$ Cu, $_{
 m 67}$ Ga, and $_{
 m 68}$ Ga, the targeting moiety is a peptide or a mimetic thereof and the receptor is selected from

15

20

30

the group: EGFR, FGFR, PDGFR, Flk-1/KDR, Flt-1, Tek, Tie, neuropilin-1, endoglin, endosialin, Axl, $\alpha_{v}\beta_{3}$, $\alpha_{v}\beta_{5}$, $\alpha_{5}\beta_{1}$, $\alpha_{4}\beta_{1}$, $\alpha_{1}\beta_{1}$, and $\alpha_{2}\beta_{2}$ and the linking group is present between the targeting moiety and chelator.

- 13. A composition according to Claim 12, wherein the targeting molety is a cyclic pentapeptide and the receptor is $\alpha_v\beta_3$.
- 14. A composition according to Claim 13, wherein the radioisotope is $^{99\text{m}}\text{Tc}$ or ^{95}Tc , the radiopharmaceutical further comprises a first ancillary ligand and a second ancillary ligand capable of stabilizing the radiopharmaceutical.
- 15. A composition according to Claim 14, wherein the radioisotope is $^{99\text{m}}\text{Tc}$.
- 16. A composition according to Claim 15, wherein the radiopharmaceutical is selected from the group:
- 25 99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-D-Tyr(N-[[5-[carbonyl]-2-pyridinyl]diazenido]-3-aminopropyl)-Val));
 - 99mTc(tricine)(TPPMS)(cyclo(Arg-D-Val-D-Tyr(N-[[5-[carbonyl]2-pyridinyl]diazenido]-3-aminopropyl)-D-Asp-Gly));
 - 99mTc(tricine) (TPPDS) (cyclo(Arg-D-Val-D-Tyr(N-[[5-[carbonyl]2-pyridinyl]diazenido]-3-aminopropyl)-D-Asp-Gly));
- - 99mTc(tricine) (TPPTS) (cyclo(Arg-Gly-Asp-D-Phe-Lys(N-[[5[carbonyl]-2-pyridinyl]diazenido])));

```
99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-D-Tyr-Lys(N-[[5-
          [carbonyl]-2-pyridinyl]diazenido])));
 5
     <sup>99m</sup>Tc(tricine)(TPPTS)([2-[[[5-[carbony1]-2-
          pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Phe-
          Glu(cyclo{Lys-Arg-Gly-Asp-D-Phe})-cyclo{Lys-Arg-Gly-Asp-
          D-Phe});
10
     99mTc(tricine)(TPPTS)(cyclo{Arg-Gly-Asp-D-Nal-Lys([2-[[[5-
          [carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic
          acid])});
     99mTc(tricine)(TPPTS)([2-[[[5-[carbony1]-2-pyridiny1]-
15
          hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo{Lys-
          Arg-Gly-Asp-D-Nal})-cyclo{Lys-Arg-Gly-Asp-D-Nal});
     99mTc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-D-Tyr((N-[[5-
          [carbonyl]-2-pyridinyl]diazenido]-18-amino-14-aza-4,7,10-
20
          oxy-15-oxo-octadecoyl)-3-aminopropyl)-Val));
    99mTc(tricine)(TPPTS)(N-[[5-[carbonyl]-2-pyridinyl]diazenido]-
          Glu(O-cyclo(Lys-Arg-Gly-Asp-D-Phe))-O-cyclo(Lys-Arg-Gly-
          Asp-D-Phe));
25
    99mTc(tricine)(TPPTS)(N-[[5-[carbonyl]-2-pyridinyl]diazenido]-
          Glu(O-cyclo(D-Tyr(3-aminopropyl)-Val-Arg-Gly-Asp))-O-
          cyclo(D-Tyr(3-aminopropyl)-Val-Arg-Gly-Asp));
30
    <sup>99m</sup>Tc(tricine)(TPPTS)(cyclo(Arg-Gly-Asp-Lys(N-[[5-[carbonyl]-
          2-pyridinyl]diazenido])-D-Val));
    <sup>99m</sup>Tc(tricine)(TPPTS)(cyclo{D-Lys([2-[[[5-[carbony1]-2-
          pyridinyl]hydrazono]methyl]-benzenesulfonic acid])-D-Phe-
35
          D-Asp-Gly-Arg});
    <sup>99m</sup>Tc(tricine)(TPPTS)([2-[[[5-[carbonyl]-2-
         pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-
```

30

```
Glu(cyclo{D-Lys-D-Phe-D-Asp-Gly-Arg})-cyclo{D-Lys-D-Phe-D-Asp-Gly-Arg});
```

- 99mTc(tricine)(TPPTS)(cyclo{D-Phe-D-Lys([2-[[[5-[carbony1]-2pyridinyl]hydrazono]methyl]-benzenesulfonic acid])-D-AspGly-Arg});
 - 99mTc(tricine)(TPPTS)(cyclo(N-Me-Arg-Gly-Asp-ATA-D-Lys(N-[[5[carbonyl]-2-pyridinyl]diazenido])));
 - 99mTc(tricine)(TPPTS)(cyclo{Cit-Gly-Asp-D-Phe-Lys([2-[[[5[carbonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic
 acid]))); and,
- 15 9.9mTc(tricine) (1,2,4-triazole) (cyclo(Arg-Gly-Asp-D-Tyr(N-[[5-[carbonyl]-2-pyridinyl]diazenido]-3-aminopropyl)-Val)).
- $$17.\,$ A composition according to Claim 13, wherein the $20\,$ radioisotope is $^{111}{\rm In}\,.$
 - 18. A composition according to Claim 17, wherein the radiopharmaceutical is selected from the group:
 - (DOTA-111In)-Glu(cyclo{Lys-Arg-Gly-Asp-D-Phe})-cyclo{Lys-Arg-Gly-Asp-D-Phe};
 - $\verb|cyclo(Arg-Gly-Asp-D-Phe-Lys(DTPA-111In))|; and,$
- cyclo(Arg-Gly-Asp-D-Phe-Lys)2(DTPA-111In).
- 19. A composition according to Claim 11, wherein the metallopharmaceutical is a therapeutic radiopharmaceutical, the metal is a radioisotope selected from the group: 186Re, 188Re, 153Sm, 166Ho, 177Lu, 149Pm, 90Y, 212Bi, 103Pd, 109Pd, 159Gd, 140La, 198Au, 199Au, 169Yb, 175Yb, 165Dy, 166Dy, 67Cu,

30

 $^{105}\text{Rh},~^{111}\text{Ag},~\text{and}~^{192}\text{Ir},~\text{the targeting moiety is a peptide or a mimetic thereof and the receptor is selected from the group: EGFR, FGFR, PDGFR, Flk-1/KDR, Flt-1, Tek, Tie, neuropilin-1, endoglin, endosialin, Axl, <math display="inline">\alpha_v\beta_3,~\alpha_v\beta_5,~\alpha_5\beta_1,~\alpha_4\beta_1,~\alpha_1\beta_1,~\text{and}~\alpha_2\beta_2$ and the linking group is present between the targeting moiety and chelator.

- 20. A composition according to Claim 19, wherein the targeting moiety is a cyclic pentapeptide and the receptor is $\alpha_{\rm v}\beta_3$.
- 21. A composition according to Claim 20, wherein the 15 radioisotope is $^{153}\mathrm{Sm}$.
 - 22. A composition according to Claim 21, wherein the radiopharmaceutical is selected from the group:

cyclo(Arg-Gly-Asp-D-Phe-Lys(DTPA-153Sm));

cyclo(Arg-Gly-Asp-D-Phe-Lys)2(DTPA-153Sm); and,

- 25 cyclo(Arg-Gly-Asp-D-Tyr(N-DTPA(153Sm)-3-aminopropyl)-Val).
 - 23. A composition according to Claim 20, wherein the radioisotope is $^{177}\mathrm{Lu}$.
 - 24. A composition according to Claim 23, wherein the radiopharmaceutical is selected from the group:
- 35 cyclo(Arg-Gly-Asp-D-Phe-Lys(DTPA- 177 Lu));
 - (DOTA-177Lu)-Glu(cyclo(Lys-Arg-Gly-Asp-D-Phe))-cyclo(Lys-Arg-Gly-Asp-D-Phe);

cyclo(Arg-Gly-Asp-D-Phe-Lys)2(DTPA-177Lu); and,

cyclo(Arg-Gly-Asp-D-Tyr(N-DTPA(177Lu)-3-aminopropyl)-Val).

5

25. A composition according to Claim 20, wherein the radioisotope is $^{90}\mathrm{Y}.$

10

26. A composition according to Claim 25, wherein the radiopharmaceutical is:

15

(DOTA-90Y)-Glu(cyclo{Lys-Arg-Gly-Asp-D-Phe})-cyclo{Lys-Arg-Gly-Asp-D-Phe};

20

A composition according to Claim 11, wherein the metallopharmaceutical is a MRI contrast agent, the metal is a paramagnetic metal ion selected from the group: Gd(III), Dy(III), Fe(III), and Mn(II), the targeting moiety is a peptide or a mimetic thereof and the receptor is selected from the group: EGFR, FGFR, PDGFR, Flk-1/KDR, Flt-1, Tek, Tie, neuropilin-1, endoglin, endosialin, Axl, $\alpha_{\rm v}\beta_3$, $\alpha_{\rm v}\beta_5$, $\alpha_5\beta_1$, $\alpha_4\beta_1$, $\alpha_1\beta_1$, and $\alpha_2\beta_2$ and the linking group is present between the targeting moiety and chelator.

25

28. A composition according to Claim 27, wherein the targeting molety is a cyclic pentapeptide and the receptor is $\alpha_{\rm v}\beta_3$.

29. A composition according to Claim 28, wherein the 35 metal ion is Gd(III).

30. A composition according to Claim 29, wherein the contrast agent is:

 $\verb|cyclo(Arg-Gly-Asp-D-Tyr(N-DTPA(Gd(III))-3-aminopropyl)-Val)|.\\$

5

11. A composition according to Claim 11, wherein the metallopharmaceutical is a X-ray contrast agent, the metal is selected from the group: Re, Sm, Ho, Lu, Pm, Y, Bi, Pd, Gd, La, Au, Au, Yb, Dy, Cu, Rh, Ag, and Ir, the targeting moiety is a cyclic pentapeptide, the receptor is $\alpha_{\rm v}\beta_3$, and the linking group is present between the targeting moiety and chelator.

15

A method of treating rheumatoid arthritis in a patient comprising: administering a therapeutic radiopharmaceutical of Claim 11 capable of localizing in new angiogenic vasculature to a patient by injection or infusion.

20

33. A method of treating cancer in a patient comprising: administering to a patient in need thereof a therapeutic radiopharmaceutical of Claim 11 by injection or infusion.

25

30

34 A method of imaging formation of new blood vessels in a patient comprising: (1) administering a diagnostic radiopharmaceutical, a MRI contrast agent, or a X-ray contrast agent of of Claim 11 to a patient by injection or infusion; (2) imaging the area of the patient wherein the desired formation of new blood vessels is located.

35

35. A method of imaging cancer in a patient comprising:
(1) administering a diagnostic radiopharmaceutical of Claim 12
to a patient by injection or infusion; (2) imaging the patient

25

30

35

5

- A method of imaging cancer in a patient comprising: (1) administering a MRI contrast agent of Claim 27; and (2) imaging the patient using magnetic resonance imaging.
- 10 37. A method of imaging cancer in a patient comprising: (1) administering a X-ray contrast agent of Claim 31; and (2) imaging the patient using X-ray computed tomography.
- 15 38. A compound, comprising: a targeting moiety and a surfactant, wherein the targeting moiety is bound to the surfactant, is a peptide or peptidomimetic, and binds to a receptor that is upregulated during angiogenesis and the compound has 0-11-linking groups between the targeting moiety and surfactant.
 - A compound according to Claim 38, wherein the targeting moiety is a peptide or a mimetic thereof and the receptor is selected from the group: EGFR, FGFR, PDGFR, Flk-1/KDR, Flt-1, Tek, Tie, neuropilin-1, endoglin, endosialin, Ax1, $\alpha_v\beta_3$, $\alpha_{\overline{v}}\beta_5$, $\alpha_5\beta_1$, $\alpha_4\beta_1$, $\alpha_1\beta_1$, and $\alpha_2\beta_2$ and the linking group is present between the targeting moiety and surfactant.
 - A compound according to Claim 39, wherein the receptor is the integrih $\alpha_{\rm v}\beta_3$ and the compound is of the formula:

$$(Q)_{d}-L_{n}-S_{f}$$

wherein, Q is a cyclic pentapeptide independently selected from the group:

- K is an L-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine, $\delta\text{-N-2-imidazolinylornithine,}$ $\delta\text{-N-benzylcarbamoylornithine,}$ and
 - β -2-benzimidazolylacetyl-1,2-diaminopropionic acid;
- K' is a D-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine, δ-N-2-imidazolinylornithine, δ-N-benzylcarbamoylernithine, and β-2-benzimidazolylacetyl-1,2-diaminopropionic acid;
 - L is independently selected at each occurrence from the group: glycine, L-alarine, and D-alanine;
- 20 M is L-aspartic acid;
 - M' is D-aspartic acid;
- R¹ is an amino acid substituted with 0-1 bonds to L_n,

 independently selected at each occurrence from the group:
 glycine, L-valine, D-valine, alanine, leucine,
 isoleucine, norleucine, 2-aminobutyric acid,
 2-aminohexanoic acid, tyrosine, phenylalanine,
 thienylalanine, phenylglycine, cyclohexylalanine,
 homophenylalanine, 1-naphthylalanine, lysine, serine,
 ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic

acid, cysteine, penicillamine, and methionine;

- R² is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminohexanoic acid, tyrosine, L-phenylalanine, D-phenylalanine, thienylalanine, phenylglycine, biphenylglycine, cyclohexylalanine, homophenylalanine, cyclohexylalanine, bol-1-naphthylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, cysteine, penicillamine, methionine, and 2-aminothiazole-4-acetic acid;
 - R³ is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, and D-methionine
- R⁴ is an amino acid, substituted with 0-1 bonds to L_n,
 independently selected at each occurrence from the group:
 glycine, D-valine, D-alanine, D-leucine, D-isoleucine,
 D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic
 acid, D-tyrosine, D-phenylalanine, D-thienylalanine,
 D-phenylglycine, D-cyclohexylalanine,
 D-homophenylalanine, D-1-naphthylalanine, D-lysine,
 D-serine, D-ornithine, D-1,2-diaminobutyric acid,
 D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine,
 D-methionine, and 2-aminothiazole-4-acetic acid;
- 35 R^5 is an amino acid, substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group: glycine, L-valine, L-alanine, L-leucine, L-isoleucine, L-norleucine, L-2-aminobutyric acid, L-2-aminohexanoic

15

20

acid, L-tyrosine, I-phenylalanine, L-thienylalanine,
L-phenylglycine, L-cyclohexylalanine,
L-homophenylalanine, L-1-naphthylalanine, L-lysine,
L-serine, L-ornithine, L-1,2-diaminobutyric acid,
L-1,2-diaminopropionic acid, L-cysteine, L-penicillamine,
L-methionine, and 2-aminothiazole-4-acetic acid;

provided that one of R^1 , R^2 , R^3 , R^4 , and R^5 in each Q is substituted with a bond to L_n , further provided that when R^2 is 2-aminothiazole-4-acetic acid, K is N-methylarginine, further provided that when R^4 is 2-aminothiazole-4-acetic acid, K and K' are N-methylarginine, and still further provided that when R^5 is 2-aminothiazole-4-acetic acid, K' is N-methylarginine;

d is selected from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

 S_f is a surfactant which is a lipid or a compound of the

formula:

-0 . -

 A^9 is selected from the group: OH and OR^{27} ;

 A^{10} is OR^{27} ;

25 R^{27} is $C(=0)C_{1-20}$ alkyl;

 E^1 is C_{1-10} alkylene substituted with 1-3 R^{28} ;

- R²⁸ is independently selected at each occurrence from the group: R^{30} , $-PO_3H-R^{30}$ =0, $-CO_2R^{29}$, $-C(=O)R^{29}$, $-C(=O)N(R^{29})_2$, $-CH_2OR^{29}$, $-OR^{29}$, $-N(R^{29})_2$, C_1-C_5 alkyl, and C_2-C_4 alkenyl;
- R²⁹ is independently selected at each occurrence from the group: R³⁰, H, C₁-C₆ alkyl, phenyl, benzyl, and trifluoromethyl;

30

35

 R^{30} is a bond to L_n ;

 L_n is a linking group having the formula:

- 5 $(CR^{6}R^{7})_{g}-(W)_{h}-(CR^{6a}R^{7a})_{g'}-(Z)_{k}-(W)_{h'}-(CR^{8}R^{9})_{g''}-(W)_{h''}-(CR^{8a}R^{9a})_{g''}$
 - W is independently selected at each occurrence from the group:

 O, S, NH, NHC(=0), C(=0)NH, C(=0), C(=0)O, OC(=0),

 NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂)₂₀₋₂₀₀, (CH₂CH₂O)₂₀₋₂₀₀, (CH₂CH₂O)₂₀₋₂₀₀, and (aa)_t;
 - aa is independently at each occurrence an amino acid;
- Z is selected from the group: aryl substituted with 0-3 R¹⁰,

 C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁰, and a 5-10

 membered heterocyclic ring system containing 1-4

 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁰;
- 20 R⁶, R^{6a}, R⁷, R^{7a}, R⁸, R^{8a}, R⁹ and R^{9a} are independently selected at each occurrence from the group: H, =0, COOH, SO₃H, PO₃H, C₁-C₅ alkyl substituted with 0-3 R¹⁰, aryl substituted with 0-3 R¹⁰, benzyl substituted with 0-3 R¹⁰, and C₁-C₅ alkoxy substituted with 0-3 R¹⁰, NHC(=0)R¹¹, C(=0)NHR¹¹, NHC(=0)NHR¹¹, NHR¹¹, R¹¹, and a bond to S₁;
 - R^{10} is independently selected at each occurrence from the group: a bond to $S_{\rm f}$, ${\rm COOR^{11}}$, ${\rm OH}$, ${\rm NHR^{11}}$, ${\rm SO_3H}$, ${\rm PO_3H}$, aryl substituted with 0-3 ${\rm R^{12}}$, ${\rm C_{1-5}}$ alkoxy substituted with 0-1 ${\rm R^{12}}$, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 ${\rm R^{11}}$;
 - R¹¹ is independently selected at each occurrence from the group: H, aryl substituted with 0-1 R¹², a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms

independently selected from N, S, and O and substituted with 0-1 R^{12} , c_{3-10} cycloalkyl substituted with 0-1 R^{12} , amino acid substituted with 0-1 R^{12} , and a bond to S_f ;

 R^{12} is a bond to S_f ; 5

k is selected from 0, 1, and 2;

h is selected from 0, 1, and 2;

h' is selected from 0, 1, 2, 3, 4, and 5;

10 h" is selected from 0, 1, 2, 3, 4, and 5;

g is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

g' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

q" is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

g"' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;

t' is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10;15

and a pharmaceutically acceptable salt thereof.

20 41. A compound according to Claim 40, wherein the compound is of the formula:

wherein, Q is a cyclic pentapeptide independently selected from the group:

K is an L-amino acid independently selected at each occurrence 30 from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine,

 δ -N-2-imidazolinylornithine,

 δ -N-benzylcarbamoylornithine, and

 β -2-benzimidazolylacety $\frac{1}{4}$ -1,2-diaminopropionic acid;

35

- K' is a D-amino acid independently selected at each occurrence from the group: arginine, citrulline, N-methylarginine, lysine, homolysine, 2-aminoethylcysteine, $\delta\text{-N-2-imidazolinylornithine},$ $\delta\text{-N-benzylcarbamoylornithine}, \text{ and }$ $\beta\text{-2-benzimidazolylacetyl-1,2-diaminopropionic acid};$
- L is independently selected at each occurrence from the group: glycine, L-alanine, and D-alanine;
- M is L-aspartic acid;
 - M' is D-aspartic acid;
- 15 R¹ is an amino acid substituted with 0-1 bonds to L_n,
 independently selected at each occurrence from the group:
 glycine, L-valine, D-valine, alanine, leucine,
 isoleucine, norleucine, 2-aminobutyric acid,
 2-aminohexanoic acid, tyrosine, phenylalanine,
 thienylalanine, phenylglycine, cyclohexylalanine,
 homophenylalanine, 1-maphthylalanine, lysine, serine,
 ornithine, 1)2-diaminobutyric acid, 1,2-diaminopropionic
 acid, cysteine, penicillamine, and methionine;
- 25 R^2 is an amino acid, substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group: glycine, valine, alanine, leucine, isoleucine, norleucine, 2-aminobutyric acid, 2-aminohexanoic acid, tyrosine, L-phenylalanine, D-phenylalanine,
- thienylalanine, phenylglycine, biphenylglycine, cyclohexylalanine, homophenylalanine, L-1-naphthylalanine, D-1-naphthylalanine, lysine, serine, ornithine, 1,2-diaminobutyric acid, 1,2-diaminopropionic acid, cysteine, penicillamine, methionine, and 2-aminothiazole-4-acetic acid;
 - R^3 is an amino acid, substituted with 0-1 bonds to L_n , independently selected at each occurrence from the group:

25

30

35

5

glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-lysine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, and D-methionine;

10 R⁴ is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, D-valine, D-alanine, D-leucine, D-isoleucine, D-norleucine, D-2-aminobutyric acid, D-2-aminohexanoic acid, D-tyrosine, D-phenylalanine, D-thienylalanine, D-phenylglycine, D-cyclohexylalanine, D-homophenylalanine, D-1-naphthylalanine, D-lysine, D-serine, D-ornithine, D-1,2-diaminobutyric acid, D-1,2-diaminopropionic acid, D-cysteine, D-penicillamine, D-methionine, and 2-aminothiazole-4-acetic acid;

R⁵ is an amino acid, substituted with 0-1 bonds to L_n, independently selected at each occurrence from the group: glycine, L-valine, L-alanine, L-leucine, L-isoleucine, L-norleucine, L-2-aminobutyric acid, L-2-aminohexanoic acid, L-tyrosine, L-phenylalanine, L-thienylalanine, L-phenylglycine, L-cyclohexylalanine, L-homophenylalanine, L-1-naphthylalanine, L-lysine, L-serine, L-ornithine, L-1,2-diaminobutyric acid, L-1,2-diaminopropionic acid, L-cysteine, L-penicillamine, L-methionine, and 2-aminothiazole-4-acetic acid;

provided that one of R^1 , R^2 , R^3 , R^4 , and R^5 in each Q is substituted with a bond to L_n , further provided that when R^2 is 2-aminothiazole 4-acetic acid, K is N-methylarginine, further provided that when R^4 is 2-aminothiazole-4-acetic acid, K and K' are N-methylarginine, and still further provided that when R^5 is 2-aminothiazole-4-acetic acid, K' is N-methylarginine;

 S_f is a surfactant which is a lipid or a compound of the formula: A^9 ;

5 A^9 is OR^{27} ;

 A^{10} is OR^{27} ;

 R^{27} is $C(=0)C_{1-15}$ alkyl;

10 E^1 is C_{1-4} alkylene substituted with 1-3 R^{28} ;

 R^{28} is independently selected at each occurrence from the group: R^{30} , $-PO_3H-R^{30}$, =O, $-CO_2R^{29}$, -C(=O) R^{29} , $-CH_2OR^{29}$, $-OR^{29}$, and C_1-C_5 alkyl;

R²⁹ is independently selected at each occurrence from the group: R³⁰, H, C₁-C₆ alkyl, phenyl, and benzyl;

20 R^{30} is a bond to L_n ;

Ln is a linking group having the formula:

 $(CR^{6}R^{7})_{g} - (W)_{h} - (CR^{6a}R^{7a})_{g} - (Z)_{k} - (W)_{h'} - (CR^{8}R^{9})_{g''} - (W)_{h''} - (CR^{8a}R^{9a})_{g''}$

25

15

W is independently selected at each occurrence from the group: O, S, NH, NHC(=0), C(=0)NH, C(=0), C(=0)O, OC(=0), NHC(=S)NH, NHC(=O)NH, SO₂, (OCH₂CH₂)₂₀₋₂₀₀, (CH₂CH₂O)₂₀₋₂₀₀, (CH₂CH₂O)₂₀₋₂₀₀, and (aa)_t:

30

aa is independently at each occurrence an amino acid;

Z is selected from the group: aryl substituted with 0-3 R¹⁰, C₃₋₁₀ cycloalkyl substituted with 0-3 R¹⁰, and a 5-10 membered heterocyclic ring system containing 1-4 heteroatoms independently selected from N, S, and O and substituted with 0-3 R¹⁰;

```
R^6. R^{6a}. R^7. R^{7a}, R^8, R^{8a}, R^9 and R^{9a} are independently selected
           at each occurrence from the group: H, =0, C<sub>1</sub>-C<sub>5</sub> alkyl
           substituted with 0+3 R^{10}, and C_1-C_5 alkoxy substituted
           with 0-3 R^{10}, and a bond to S_f;
 5
     R<sup>10</sup> is independently selected at each occurrence from the
                    a bond to \$_f, COOR<sup>11</sup>, OH, NHR<sup>11</sup>, C<sub>1-5</sub> alkyl
           substituted with 0 \nmid 1 R^{12}, and C_{1-5} alkoxy substituted
           with 0-1 R^{12};
10
     R<sup>11</sup> is independently selected at each occurrence from the
           group: H, aryl substituted with 0-1 R<sup>12</sup>, C<sub>3-10</sub> cycloalkyl
           substituted with 0-1 R^{12}, amino acid substituted with 0-1
           R^{12}, and a bond to \S_f;
15
     R^{12} is a bond to S_{f};
     k is selected from 0,
20
     h is selected from 0
                                  and 2;
     h' is selected from 971
                                   2, 3, 4, and 5;
     h" is selected from 0, 1, 2, 3, 4, and 5;
     g is selected from 0, 1, 2, 3, 4, and 5;
     g' is selected from 0, 1, 2, 3, 4, and 5;
     g" is selected from 0, 2, 3, 4, and 5;
25
     g"' is selected from 0, 1, 2, 3, 4, and 5;
     s is selected from 0, 1 \mid 2, 3, 4, and 5;
     s' is selected from 0, 1, 2, 3, 4, and 5;
     s" is selected from 0, 1, 2, 3, 4, and 5;
     t is selected from 0, 1 \mid 2, 3, 4, and 5;
30
     t' is selected from 0, 1, 2, 3, 4, and 5;
     and a pharmaceutically acceptable salt thereof.
```

42. A compound according to Claim 41, wherein the present invention provides a compound selected from the group:

15

- 1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-12-(cyclo(Arg-Gly-Asp-D-Phe-Lys)-dodecane-1,12-dione;
- 1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-12-($(\omega$ -amino-PEG₃₄₀₀- α -carbonyl)-cyclo(Arg-Gly-Asp-D-Phe-Lys))-dodecane-1,12-dione; and,
 - 1-(1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamino)-12-($(\omega$ -amino-PEG₃₄₀₀- α -carbonyl)-Glu-(cyclo(Arg-Gly-Asp-D-Phe-Lys))₂)-Dodecane-1,12-dione.
 - 43. An ultrasound contrast agent composition, comprising:
 - (a) a compound of Claim 40, comprising: a cyclic pentapeptide that binds to the integrin $\alpha_v\beta_3$, a surfactant and a linking group between the cyclicpentapeptide and the surfactant;
 - (b) a parenterally acceptable carrier; and,
 - (c) an echogenic gas.
- 44 An ultrasound contrast agent composition, further comprising: 1,2-dipalmitoyl-sn-glycero-3-phosphotidic acid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine, and N- (methoxypolyethylene glycol 5000 carbamoyl)-1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine.
- 30 45. An ultrasound contrast agent composition, wherein, the echogenic gas is a C_{2-5} perfluorocarbon.
- 46. A method of imaging cancer in a patient comprising:
 35 (1) administering, by injection or infusion, a ultrasound
 contrast agent composition of Claim 40 to a patient; and (2)
 imaging the patient using somography.

25

- 47. A method of imaging formation of new blood vessels in a patient comprising: (1) administering, by injection or infusion, a patient; (2) imaging the area of the patient wherein the desired formation of new blood vessels is located.
- 48. A therapeutic radiopharmaceutical composition, 10 comprising:
 - (a) a therapeutic radiopharmaceutical of Claim 11; and,
 - (b) a parenterally acceptable carrier.
- 49. A diagnostic radiopharmaceutical composition, comprising:
 - (a) a diagnostic radiopharmaceutical, a MRI contrast agent, or a X-ray contrast agent of Claim 11; and,
 - (b) a parenterally acceptable carrier.
 - 50. A therapeutic radiopharmaceutical composition, comprising: a radiolabelled targeting moiety, wherein the targeting moiety is a compound Q of Claim 3 and the radiolabel is a therapeutic isotope selected from the group: ³⁵S, ³²P, ¹²⁵I, ¹³¹I, and ²¹¹At.
- 51. A therapeutic radiopharmaceutical composition,
 30 comprising: a radiopabelled targeting moiety, wherein the targeting moiety is a compound Q of Claim 5 and the radiolabel is a therapeutic isotope which is ¹³¹I.