

Overview

- •Lending Club: A consumer finance marketplace connecting borrowers with investors.
- •Loan Approval: Decisions based on applicant profiles.
- •Credit Loss: Biggest risk from "risky" borrowers who default, leading to financial loss.
- **Key Challenge**: Minimize credit loss by:
 - Avoiding rejection of reliable applicants (business loss).
 - Preventing approval of risky loans (financial loss).

Dataset Analysis Overview

Key Attribute: Loan Status

• Fully-Paid: Loan repaid

Charged-Off: Loan defaulted

• **Current**: In-progress (ignored)

Important Features

• Customer Demographics: Income, Home Ownership, Employment Length, Debt to Income, State

• Loan Attributes: Loan Amount, Grade, Term, Purpose, Interest Rate, Installment, Public Records

Ignored Data: Post-loan behavior and overly granular data.

Data Cleaning

1.Rows to Drop

- 1. Rows where *loan_status = Current* will be dropped.
- 2. Duplicate rows will be removed.

2.Columns to Drop

- 1. Columns with only NA values.
- Columns with constant or zero values.
- 3. Columns where more than 65% of data is missing.
- 4. Redundant columns like id, member_id, emp_title, desc, title, url.
- 5. Customer behavior columns that don't contribute to loan approval prediction.

3. Data Type Conversion

1. Convert columns like *loan_amnt*, *funded_amnt*, *int_rate* to the appropriate data types.

4. New Columns Added

- 1. *verification_status_n* based on verification hierarchy.
- 2. issue_y and issue_m extracted from issue_d.

Approach

- **Data Reduction**
 - Drop rows/columns
- **Data Transformation**
 - Convert Data Types
- Missing Values
 - o Identify & Impute
- **Outlier Treatment**
 - Detect & Handle Outliers

columns based manipulation.

with missing

Analysis of the cleaned dataset. bivariate, and

Outlier treatment.

Quantitative Variable Analysis

Majority of the loan_amount is in the range of 5K to 14K

funded_amnt

Majority of the funded_amnt is in the range of 5K to 13K

int_rate

Majority of the interest rate is in the range of 5% to 16% going at the max to 22%

Unordered Categorical Variable Analysis

$funded_amnt_b$

```
loan['funded_amnt_b'].value_counts().plot.bar()
 <Axes: xlabel='funded_amnt_b'>
12000
10000
 8000
 6000
 4000
 2000
     0
                                   0 - 5K
                                                     10K - 15K
                                                                        15K - above
                5K - 10K
                                    funded_amnt_b
```

Highest funded amount applications fall in the range of 5k to 10k

Bivariate Analysis

- •The volume of loans are in the category of term = 36
- •The overall percentage of Charge Off's is slightly higher in term = 36 (8%) as compared to term=60 (6%)
- •If we calculate the ratio of Charge Off's within a category
 - •Charge Offs ratio is for the term=60 is 25% which is much higher than term=36 (10%)
 - •term=60 is the loan applications which require more scrutiny

Inferences

•Most of the applicants with term=60 potentially will have high Charge Offs

4

The ratio of Charge Offs within the category total
ratio_wise_plot(loan, 'grade')

- •The Majority of *loan volume is in grade=B*
- Highest percentage of overall Charge Offs are in grade B (3.7%) and C(3.6%)
- •If we analyse the Charge Off Ratio within a category
 - •The highest percentage of **Charge Off**s are in the *grade=G*
 - Highest cluster of **Charge Off**s are in the grades G,F (> 30%)
 - •The volume of Grade G is extremely low 158 thus it does not contribute to overall risk significantly

- Highest risk of charge off's are in the grades of B and C
- •Grade "F" and "G" have very high chances of charged off. The columes are low
- •Grade "A" has very less chances of charged off.
- Probablity of charged off is increasing from "A" to "G"

- •Highest Charge Offs are in the employee length category of 10 Years and above
- •Charge Off ratio within the categories itself are similar and inconclusive

- Highest Charge Offs are in the employee length of 10 Years and above
- High probablity of Charge Off's whose income range is less than 1 years
- Ratio within the ranges are pretty much same (in conclusive)

```
Pyth
```

plot.figure(figsize=(16,6))
sea.boxplot(y=loan.loan_amnt,x=loan.purpose)
plot.show()

- •Highest risk of Charge Offs are the category of debt_consolidation
- •Highest probablity of Charge Offs within a category are small_business but the volume is extremely low
- •Highest loan amount ranges are in small business, debt consolidation and house

- Highest risk of Charge Off's are the purpose of debt consolidation
- Small Business applicants have high chances of getting charged off.
- renewable energy has lowest risk of Charge Off's in volume

Outcome

Customer Demographics

- •Majority of the loan applicants are in the range of 0 40K annual income
- •Majority of the debt to income is in the range of 0 to 20 going at the max to 30
- Majority of the home owner status are in status of RENT and MORTGAGE
- Highest loan applications are in the category of debt_consolidation
- •CA (California) state has the maximum amount of loan applications
- •Majority of the loan applicants are in the category of not having an public record of bankruptcies
- •Majority of the employment length of the customers are 10+ years and then in the range of 0-2 years

Loan Demographics

- •Highest loan amount applications fall in the range of 5k to 10k
- •Majority of the interest rate is in the range of 5% to 16% going at the max to 22%
- •Majority of the installment amount is in the range of 20to400
- •Majority of the loan applications counts are in the term of 36 months
- Majority of loan application counts fall under the catogory of Grade B

Time Based Analysis

- •Loan application counts are increasing year over year
- •Highest loan application volume in Quarter 4 of every year
- Lowest loan applications are in Q1
 - Possibly because by year ends people face the financial challenges
 - Possibly because of festive seasons
 - Possibly because they are consolidating debt by year end

- •The customer demographic data shows which segment of customers to target for highest volume of loan
- •Indicates more analysis is needed why other categories are not as high as other few
- •Indicates the LendingClub to be prepared with volume in Q4
- •Indicates the LendingClub to target customers in other quarters to increase sales