Homework 1 (CS209, Spring 2017)

Aravind Machiry

We will use symbols T and F to indicate truth values True and False respectively.

1. Let A, B be distinct sentence symbols in S. Determine if each of the following wffs is a tautology. If your answer is negative, find a truth assignment v that does not satisfy the wff and show the truth values of A, B under the assignment v.

(a)
$$(((A \rightarrow B) \rightarrow B) \rightarrow B)$$

(b)
$$(((A \rightarrow B) \rightarrow B) \rightarrow A)$$

Solution: We will use truth table to check if the above wffs are tautologies.

A	В	$(((A \to B) \to B) \to B)$	$(((A \to B) \to B) \to A)$
T	T	T	T
T	F	${f F}$	T
F	T	T	${f F}$
F	F	T	T

As we can clearly, see from the above table, there are truth assignments where the wffs evaluate to false. Specifically, the wff: $(((A \to B) \to B) \to B)$ is false when A = T and B = F, the wff: $(((A \to B) \to B) \to A)$ is false when A = F and B = T.

So none of the wffs are tautology.

2. Let A, B, C be distinct sentence symbols in S. Show that neither of the following two wffs tautologically implies the other:

$$\begin{array}{l} (A \leftrightarrow (B \leftrightarrow C)) \\ ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C)))) \end{array}$$

Note that you need to exhibit two truth assignments (i.e., not eight).

Solution: Lets denote $\alpha = (A \leftrightarrow (B \leftrightarrow C))$ and $\beta = ((A \land (B \land C)) \lor ((\neg A) \land ((\neg B) \land (\neg C)))).$

Consider the following truth assignment, A = T, B = F and C = F, with this assignment the wff α evaluates to T, however β evaluates to F. This proves that $\alpha \not\models \beta$.

Similarly, consider another truth assignment, A=F, B=F and C=F. However, with this assignment the wff α evaluates to F and β evaluates to T. This proves that $\beta \not\models \alpha$.

Thus $\alpha \not\models \beta$ and $\beta \not\models \alpha$.

3. Prove or disprove:

THEOREM: For each natural number $n \ge 2$, there is a set Σ_n with n wff's such that (1) Σ_n is not satisfiable, and (2) each (n-1)-element subset of Σ_n is satisfiable.

Solution: I will prove this by construction.

Consider A_1, A_2, A_3 ... be the countably infinite distinct sentence symbols in S.

Base case (n = 2): We can have $\Sigma_2 = \{A_1, \neg A_1\}$. All the possible subsets of size 1 (i.e. n-1) $\{A_1\}$ and $\{\neg A_1\}$ are satisfiable with truth assignments A = T and A = F respectively. However, $\{A_1, \neg A_1\}$ is not satisfiable.

Now for any n > 2, we can create $\Sigma_n = \{A_1, A_2, ..., A_{n-1}, \alpha\}$, where $\alpha = ((\neg A_1) \lor (\neg A_2) \lor (\neg A_3) \lor ... \lor (\neg A_{n-1}))$.

Consider all the subsets of size (n-1) of Σ_n , there are n subsets of size n-1, lets call them sub_1 , sub_2 , sub_3 , sub_4 ,..., sub_{n-1} , sub_n . Where sub_1 is a set of all elements of Σ_n except A_1 i.e., $\Sigma_n - A_1 = \{A_2, ..., A_{n-1}, \alpha\}$, similarly $sub_2 = \Sigma_n - A_2$ and so on, finally $sub_n = \Sigma_n - \alpha$. Each of the subsets are satisfiable with mappings $v_1, v_2, ..., v_n$ respectively.

where for $i \leq (n-1)$,

$$v_i(B) = \begin{cases} F & if \ B = A_i \\ T & otherwise \end{cases}$$
 (1)

and $v_n = T$ for all sentence symbols in S.

Now, for Σ_n to be satisfiable we should have *all* sentence symbols $A_1, A_2, ..., A_{n-1}$ (condition 1) should be T and also α should be T, however, for α to be T, we should have atleast one sentence symbol from $A_1, A_2, ..., A_{n-1}$ to be F, contradicting condition 1, thus Σ_n is not satisfiable but all subsets of size (n-1) are satisfiable. Hence the proof.

4. Let Σ be a (possibly infinite) set of wffs and α , β two wffs.

Prove: Σ ; $\alpha \models \beta$ if and only if $\Sigma \models (\alpha \rightarrow \beta)$

Note that the notation " Σ ; α " means $\Sigma \cup \{\alpha\}$.

Solution: Lets assume Σ ; $\alpha \models \beta$ (call this (1)), this means for all mappings \bar{v} such that, if $\bar{v}(\Sigma) = T$ and $\bar{v}(\{\alpha\}) = T$ then $\bar{v}(\{\beta\}) = T$. Consider all the mappings \bar{v}_1 such that $\bar{v}_1(\Sigma) = T$, and $\bar{v}_1(\{\alpha\}) = F$, any mapping satisfying Σ should be either \bar{v} or \bar{v}_1 , from (1), $\bar{v}(\{\beta\}) = T$, and $\bar{v}_1(\{\alpha\}) = F$ or $\bar{v}_1(\{\neg\alpha\}) = T$, Hence $\Sigma \models (\beta \lor \neg \alpha)$ i.e., $\Sigma \models (\alpha \to \beta)$ Consider, $\Sigma \models (\alpha \to \beta)$, this means all mappings \bar{v} , which evaluate $\bar{v}(\Sigma) = T$, if $\bar{v}(\{\alpha\}) = T$, then $\bar{v}(\{\beta\}) = T$. So, if $\bar{v}(\Sigma) = T$ and $\bar{v}(\{\alpha\}) = T$, then $\bar{v}(\{\beta\}) = T$,

- 5. Write a complete proof for Case 3 (i.e., $\alpha = (\alpha_1 \vee \alpha_2)$) of the induction step in proving Lemma 3 (page marked "15" in the April 6's lecture notes).
- 6. (Duality) Let α be a wff whose only connectives are \wedge , \vee , and \neg . Let α^* be the resulting wff after interchanging \wedge and \vee and replacing each sentence symbol (e.g., A) by its negation (i.e., $(\neg A)$).

THEOREM: α^* is tautologically equivalent to $(\neg \alpha)$, i.e., $\alpha^* \models (\neg \alpha)$ and $(\neg \alpha) \models \alpha^*$.

Give a proof using mathematical induction.

Solution:

Base case: Consider $\alpha = A$, So, $\alpha^* = \neg A$. Now, $\neg \alpha = \neg A$. As we can see α^* is same as $\neg \alpha$. So, $\alpha^* \models (\neg \alpha)$ and $(\neg \alpha) \models \alpha^*$

Induction: Consider, a wff α_1 Such that

$$\alpha_1^* \models (\neg \alpha_1)$$
 and $(\neg \alpha_1) \models \alpha_1^*$ (consider this 1)

Now, Consider
$$\alpha = \neg \alpha_1$$
, So, $\alpha^* = (\neg \alpha_1)*$. So, $\alpha^* = \neg \alpha_1*$.

Now, $\neg \alpha = \neg(\neg \alpha_1)$. From 1, we know $\neg \alpha_1$ and α_1^* are tautologically equivalent. So, $\neg \alpha = \neg \alpha_1^*$ Thus α^* and $\neg \alpha$ are equivalent.

Consider another wff α_2 , Such that

$$\alpha_2^* \models (\neg \alpha_2)$$
 and $(\neg \alpha_2) \models \alpha_2^*$ (consider this 2)

Now, Consider $\alpha = \alpha_1 \vee \alpha_2$, So, $\alpha^* = \alpha_1^* \wedge \alpha_2^*$. From (1) and (2) we have, $\alpha^* = (\neg \alpha_1) \wedge (\neg \alpha_2) = \neg (\alpha_1 \vee \alpha_2) = \neg \alpha$. Thus α^* and $\neg \alpha$ are equivalent.

Now, Consider $\alpha = \alpha_1 \wedge \alpha_2$, So, $\alpha^* = \alpha_1^* \vee \alpha_2^*$. From (1) and (2) we have, $\alpha^* = (\neg \alpha_1) \vee (\neg \alpha_2) = \neg (\alpha_1 \wedge \alpha_2) = \neg \alpha$. Thus α^* and $\neg \alpha$ are equivalent.