Homework 1

Arvind Renganathan 5595189

renga016@umn.edu

October 1, 2019

1

1.1

$$g(x)=w_1x + w_0$$

$$\frac{\partial E}{\partial w_1} = \frac{-2}{N} \sum_{t=1}^{N} (r^t - (w_1 x^t + w_0)).x^t = 0$$

$$\sum_{t=1}^{N} w_0 x^t = \sum_{t=1}^{N} (r^t - w_1 x^t).x^t$$

$$w_0 = \frac{\sum_{t=1}^{N} (r^t - w_1 x^t)}{\sum_{t=1}^{N} x^t}$$
 (1.1)

Similarly partially differentiating for w₀

$$\frac{\partial E}{\partial w_0} = \frac{-2}{N} \sum_{t=1}^{N} (r^t - (w_1 x^t + w_0)).1 = 0$$

$$w_0 = \frac{1}{N} \sum_{t=1}^{N} (r^t - w_1 x^t)$$
 (1.2)

equation 1.1 and 1.2 for w_0

$$\frac{1}{N} \sum_{t=1}^{N} (r^t - w_1 x^t) = \frac{\sum_{t=1}^{N} (r^t - w_1 x^t)}{\sum_{t=1}^{N} x^t}$$

$$\tfrac{1}{N} \sum_{t=1}^{N} r^t \sum_{t=1}^{N} x^t - \tfrac{w_1}{N} (\sum_{t=1}^{N} x^t)^2 = \sum_{t=1}^{N} r^t x^t - w_1 \sum_{t=1}^{N} (x^t)^2$$

$$\sum_{t=1}^{N} r^{t} \sum_{t=1}^{N} x^{t} - w_{1} (\sum_{t=1}^{N} x^{t})^{2} = N \sum_{t=1}^{N} r^{t} x^{t} - N w_{1} \sum_{t=1}^{N} (x^{t})^{2}$$

$$\mathbf{w}_{1} = \frac{N\sum_{t=1}^{N} r^{t} x^{t} - \sum_{t=1}^{N} r^{t} \sum_{t=1}^{N} x^{t}}{N\sum_{t=1}^{N} (x^{t})^{2} - (\sum_{t=1}^{N} x^{t})^{2}}$$

Now for
$$w_0$$

 $w_0 = \frac{1}{N} (\sum_{t=1}^{N} r^t - w_1 \sum_{t=1}^{N} x^t)$

$$\begin{split} \mathbf{w}_0 &= \frac{1}{N} (\sum_{t=1}^N r^t - \sum_{t=1}^N x^t . (\frac{N \sum_{t=1}^N r^t x^t - \sum_{t=1}^N r^t \sum_{t=1}^N x^t}{N \sum_{t=1}^N (x^t)^2 - (\sum_{t=1}^N x^t)^2}) \\ w_0 &= \frac{1}{N} (\frac{N \sum_{t=1}^N r^t \sum_{t=1}^N (x^t)^2 - N \sum_{t=1}^N x^t \sum_{t=1}^N r^t x^t}{N \sum_{t=1}^N (x^t)^2 - (\sum_{t=1}^N x^t)^2} \end{split}$$

$$\mathbf{w}_0 = \frac{\sum_{t=1}^{N} r^t \sum_{t=1}^{N} (x^t)^2 - \sum_{t=1}^{N} x^t \sum_{t=1}^{N} r^t x^t}{N \sum_{t=1}^{N} (x^t)^2 - (\sum_{t=1}^{N} x^t)^2}$$

1.2

$$\begin{split} \mathbf{g}_{2}(x) &= v_{2}x^{2} + v_{1}x + v_{0} \\ given & E \quad is \\ E &= \frac{1}{N}\sum_{t=1}^{N}(r^{t} - (v_{2}(x^{t})^{2} + v_{1}x^{t} + v_{0}))^{2} \end{split}$$

Partial Differentiating w.r.t to v2

$$\frac{\partial E}{\partial v_2} = \frac{-2}{N} \sum_{t=1}^{N} (r^t - (v_2(x^t)^2 + v_1 x^t + v_0)).(x^t)^2 = 0$$

Partial Differentiating w.r.t to v_1

$$\frac{\partial E}{\partial \nu_1} = \frac{-2}{N} \sum_{t=1}^{N} (r^t - (\nu_2(x^t)^2 + \nu_1 x^t + \nu_0)).(x^t) = 0$$

Partial Differentiating w.r.t to v_0

$$\frac{\partial E}{\partial \nu_2} = \frac{-2}{N} \sum_{t=1}^{N} (r^t - (\nu_2(x^t)^2 + \nu_1 x^t + \nu_0)).1 = 0$$

$$\nu_2 \sum_{t=1}^{N} (x^t)^4 + \nu_1 \sum_{t=1}^{N} (x^t)^3 + \nu_0 \sum_{t=1}^{N} (x^t)^2 = \sum_{t=1}^{N} r^t (x^t)^2$$
 (1.3)

$$\nu_2 \sum_{t=1}^{N} (x^t)^3 + \nu_1 \sum_{t=1}^{N} (x^t)^2 + \nu_0 \sum_{t=1}^{N} (x^t) = \sum_{t=1}^{N} r^t x^t$$
(1.4)

$$\nu_2 \sum_{t=1}^{N} (x^t)^2 + \nu_1 \sum_{t=1}^{N} x^t + N\nu_0 = \sum_{t=1}^{N} r^t$$
 (1.5)

using 1.3, 1.4 and 1.5 we get

using 1.3, 1.4 and 1.5 we get
$$\begin{bmatrix} \sum_{t=1}^{N} (x^t)^4 & \sum_{t=1}^{N} (x^t)^3 & \sum_{t=1}^{N} (x^t)^2 \\ \sum_{t=1}^{N} (x^t)^3 & \sum_{t=1}^{N} (x^t)^2 & \sum_{t=1}^{N} x^t \\ \sum_{t=1}^{N} (x^t)^2 & \sum_{t=1}^{N} x^t & N \nu_0 \end{bmatrix} \begin{bmatrix} \nu_2 \\ \nu_1 \\ \nu_0 \end{bmatrix} = \begin{bmatrix} \sum_{t=1}^{N} r^t (x^t)^2 \\ \sum_{t=1}^{N} r^t x^t \\ \sum_{t=1}^{N} r^t \end{bmatrix}$$

which is in the form Ax = b, where in this case $x = [v2 \ v1 \ v0]^T$.

1.3

Yes his claim is correct, as we are comparing training error the one for the 3 variable will always fit the model more accurately than for the 2 variables thereby leading to lesser training error or empirical loss in the 3 variable case.

1.4

No his claim is incorrect, it is the case that for a points in a linear line the model for the second case will overfit the points leading to more emprical loss for the testing set whereby the 1st model will be more accurate.

2

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \\ 1 & 5 & 25 & 125 & 625 \end{bmatrix}$$

2.1

python Code for the answer

```
import numpy as np matrix1 = np.matrix('[1,1,1,1,1;1, 2, 4, 8, 16;1,3,9,27,81;1,4,16,64,256;1,5,25,125,625]') 
t1 = matrix1.trace() 
t2 = (matrix1.transpose()).trace() 
t3 = (np.matmul(matrix1.transpose(),matrix1)).trace() 
t4 = (np.matmul(matrix1,matrix1.transpose())).trace() 
t5 = np.dot(matrix1,matrix1.transpose()).trace() 
print(t1) 
print(t2) 
print(t3) 
print(t4) 
tr(A) = 701 
tr(A^TA) = 484533 
tr(AA^T) = 484533
```

2.2

From A geometric perspective a matrix represents a linear transformation, then the absolute value of the determinant represents the scaled "volume distortion" experienced by a region after being transformed. So the determinant will represent the scaled volume of the figure represented by the matrix which is basically just volume of the figure.

2.3

Without doing any computation we can clearly see that none of the rows are linear combination of the other rows in any form as they are in power series in each row thereby it implies their determinant which is |A| is not 0.

2.4

As we can see from the previous question as none of the rows are linear combination of the other rows in any form so the rank of the matrix is 5.

3

3.1 Summary of Results for K Fold

Error	rates F	or Line	ear SVC	with E	Soston	50						
F1	F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.35	0.35 0.16 0.27 0.43 0.06 0.23 0.14 0.19 0.21 0.48 0.25 0.13											

Error	rates F	or Line	ear SVC	with E	oston7	75						
F1	F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.29	0.31	0.17	0.14	0.53	0.35	0.16	0.04	0.24	0.14	0.24	0.13	

Error	rates F	or Line	ear SVC	with I	Digit							
F1	F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.08												

Error	rates F	or SVC	with B	oston5	50						
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.62	0.88	0.54	0.47	0.88	0.86	0.84	0.84	0.30	0.66	0.69	0.19

Error	rates F	or SVC	with B	oston7	'5							
F1	F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.04	0.04	0.15	0.19	0.64	0.45	0.6	0.04	0.26	0.18	0.26	0.21	

Error	rates F	or SVC	with D	Digits							
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.55	0.41	0.56	0.61	0.56	0.44	0.57	0.62	0.50	0.60	0.54	0.06

Error	rates F	or Log	istic Re	gressio	n with	Bostor	า50					
F1	F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.21	0.21 0.06 0.23 0.31 0.06 0.17 0.12 0.12 0.16 0.12 0.16 0.08											

Error	rates F	or Log	istic Re	gressio	n with	Bostor	175					
F1	1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.06	0.03	0.14	0.10	0.14	0.14	0.14	0.04	0.08	0.08	0.09	0.04	

Error	rates F	Error rates For Logistic Regression with Digits												
F1	F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD													
0.06	0.14	0.04	0.02	0.03	0.05	0.09	0.10	0.05	0.09	0.07	0.04			

${\bf 3.2\ Summary\ of\ Results\ for\ K\ Trainset}$

Error	rates F	or Line	ear SVC	with E	oston	50						
F1	F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.30	0.29	0.27	0.39	0.15	0.47	0.21	0.31	0.32	0.17	0.29	0.09	

Error	rates F	or Line	ear SVC	with E	oston7	⁷ 5						
F1	F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.37	0.37											

Error	rates F	or Line	ear SVC	with I	Digit						
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.04	0.02	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.01

Error	rates F	or SVC	with B	oston5	50						
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.16	0.22	0.22	0.17	0.18	0.23	0.13	0.20	0.17	0.15	0.19	0.03

Error	rates F	or SVC	with B	oston7	'5						
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.11	0.12	0.12	0.11	0.12	0.13	0.10	0.13	0.12	0.12	0.12	0.01

Error	rates F	or SVC	with I	Digits							
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.33	0.33	0.29	0.32	0.31	0.35	0.35	0.32	0.34	0.33	0.33	0.02

Error	rates F	or Logi	istic Re	gressio	n with	Bostor	า50					
F1	F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD											
0.12	0.12	0.13	0.12	0.13	0.13	0.13	0.13	0.13	0.12	0.13	0.01	

Error	rates F	or Log	istic Re	gressio	n with	Bostor	175				
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.09	0.09	0.08	80.0	0.08	0.08	0.09	0.08	0.09	0.12	0.09	0.01

Error	rates F	or Log	istic Re	gressio	n with	Digits					
F1	F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean SD										
0.02	0.03	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.01

4.1 Summary of results for $\hat{X}1$ (random projection) and $\hat{X}2$ (quadratic projection) with K-Folds

Error	rates F	or Line	ear SVC	with \hat{X}	[1						
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.11	0.08	0.07	0.09	0.07	0.06	0.07	0.07	0.06	0.06	0.07	0.01

Error	rates F	or Line	ear SVC	with \hat{X}	2						
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.01	0.01	0.01	0.01	0.00	0.00	0.01	0.02	0.03	0.00	0.01	0.01

F	Error	rates F	or SVC	with Â	1							
F	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
C).43	0.36	0.33	0.41	0.29	0.35	0.41	0.31	0.36	0.33	0.36	0.04

Error	rates F	or SVC	with Â	2							
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.46	0.38	0.34	0.32	0.38	0.36	0.32	0.32	0.34	0.33	0.36	0.04

Error	rates F	or Logi	istic Re	gressio	n with	Ŷ1					
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	Mean	SD
0.02	0.02	0.06	0.06	0.05	0.04	0.08	0.05	0.03	0.02	0.04	0.02

Error	Error rates For Logistic Regression with $\hat{X}2$												
F1													
0.01	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01												