CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

I. Etude d'un exemple

1. Soit $A \in \mathcal{M}_2(\mathbb{R})$. On sait que le polynôme caractéristique de A est $\chi_A = X^2 - \operatorname{tr}(A)X + \operatorname{det}(A)$. Le théorème de Cayley-Hamilton permet alors d'affirmer que $\chi_A(A) = 0$. Ainsi

$$\forall A\in \mathcal{M}_2(\mathbb{R}),\; A^2-\mathrm{tr}(A)A+\det(A)I_2=0.$$

2. Puisque A n'est pas une matrice scalaire, la famille (I_2, A) est libre et $A = \text{Vect}(I_2, A)$ est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ de dimension 2.

Soit alors $(a, b, a', b') \in \mathbb{R}^4$. D'après 1.,

$$(aI_2 + bA)(a'I_2 + b'A) = aa'I_2 + (ab' + a'b)A + bb'A^2 = aa'I_2 + (ab' + a'b)A + bb'(tr(A)A - det(A)I_2)$$
$$= (aa' - bb'det(A))I_2 + (ab' + a'b + bb'tr(A))A \in A.$$

Ainsi, \mathbb{A} est stable pour \times et, puisque d'autre part \mathbb{A} contient $I_2 = 1.I_2 + 0.A$,

$$\mathbb{A}$$
 est une sous-algèbre de $\mathcal{M}_2(\mathbb{R})$ de dimension 2.

3. Soient $(a,b) \in \mathbb{R}^2$ et $M = aI_2 + bA$. D'après 2.,

$$M^2 = (a^2 - b^2 \det(A))I_2 + (2ab + b^2 \operatorname{tr}(A))A.$$

Par suite, puisque la famille (I_2, A) est libre,

$$\begin{split} M^2 = -I_2 &\Leftrightarrow \left\{ \begin{array}{l} \alpha^2 - b^2 \mathrm{det}(A) = -1 \\ b(2\alpha + b\mathrm{tr}(A)) = 0 \end{array} \right. \\ &\Leftrightarrow \left\{ \begin{array}{l} b = 0 \\ \alpha^2 = -1 \end{array} \right. \\ &\text{ou} \\ \left\{ \begin{array}{l} \alpha = -\frac{b}{2}\mathrm{tr}(A) \\ b^2 \left(\frac{(\mathrm{tr}(A))^2}{4} - \mathrm{det}(A)\right) = -1 \end{array} \right. \\ \\ &\Leftrightarrow \left\{ \begin{array}{l} \alpha = -\frac{b}{2}\mathrm{Tr}(A) \\ b^2 \left(\frac{(\mathrm{tr}(A))^2}{4} - \mathrm{det}(A)\right) = -1 \end{array} \right. \end{split}$$

Ce dernier système a des solutions dans \mathbb{R}^2 si et seulement si $(trA)^2 < 4$ det A et donc

$$\exists M \in \mathbb{A}/\ M^2 = -I_2 \Leftrightarrow \mathrm{tr} A)^2 < 4 \ \mathrm{det} A.$$

4. Pour $\lambda \in \mathbb{R}$, $\lambda^2 \neq -1$ et donc, $(\lambda I_2)^2 \neq -I_2$. Donc, B n'est pas une matrice scalaire et la famille (I_2,B) est une famille libre de \mathbb{A} . De plus, $\operatorname{card}(I_2,B)=2=\dim \mathbb{A}$ et la famille (I_2,B) est une base de \mathbb{A} . Toute matrice de \mathbb{A} s'écrit donc de manière unique sous la forme xI_2+yB où $(x,y)\in \mathbb{R}^2$.

Soit alors $\varphi: \mathbb{C} \to \mathbb{A}$. Puisque (I_2,B) est une base de \mathbb{A}, φ est bijective et est clairement linéaire. $x+yi \mapsto xI_2+yB$

Ensuite, puisque $B^2 = -I_2$, pour $(x, y, x', y') \in \mathbb{R}^4$,

$$\varphi((x+iy)(x'+iy')) = \varphi((xx'-yy') + (xy'+yx')i) = (xx'-yy')I_2 + (xy'+yx')B = (xI_2+yB)(x'I_2+y'B)$$
$$= \varphi(x+iy)\varphi(x'+iy').$$

 ϕ est donc un morphisme pour \times , et finalement, en tenant compte de $\phi(1) = I_2$, ϕ est un isomorphisme d'algèbres. En particulier, comme $(\mathbb{C}, +, \times)$ est un corps

$$(\mathbb{A}, +, \times)$$
 est un corps.

5. Si $(trA)^2 = 4detA$, pour $(b) \in \mathbb{R}^2$, on a

$$(aI_2 + bA)^2 = (a^2 - \frac{b^2}{4}tr(A))I_2 + (2ab + b^2tr(A))A.$$

Par suite,

$$(aI_2 + bA)^2 = 0 \Leftrightarrow \left\{ \begin{array}{l} a^2 - \frac{1}{4}b^2\mathrm{tr}(A) = 0 \\ 2ab + b^2\mathrm{tr}(A) = 0 \end{array} \right. \Leftrightarrow a = b = 0 \text{ ou } a = -\frac{b}{2}\mathrm{tr}(A) \Leftrightarrow a = -\frac{b}{2}\mathrm{tr}(A).$$

 $\text{Les matrices } M=\alpha I_2+bA \text{ telles que } M^2=0 \text{ sont les } b(-\frac{\operatorname{tr}(A)}{2}I_2+A), \ b\in \mathbb{R}.$

En particulier, l'équation $M^2 = 0$ admet au moins une solution non nulle dans \mathbb{A} (par exemple la matrice $-\frac{1}{2} \operatorname{tr}(A) I_2 + A$ qui est non nulle puisque A n'est pas une matrice scalaire). Ainsi, \mathbb{A} n'est pas intègre et donc pas un corps.

Si
$$(trA)^2 = 4detA$$
, $(A, +, \times)$ n'est pas un corps.

 $\textbf{6.} \quad \text{Il existe } P \in \mathcal{GL}_2(\mathbb{R}) \text{ telle que } B = P^{-1}AP. \text{ Mais alors, pour } (\mathfrak{a},b) \in \mathbb{R}^2,$

$$P^{-1}(aI_2 + bA)P = aI_2 + bP^{-1}AP = aI_2 + bB$$
 et de même $P(aI_2 + bB)P^{-1} = aI_2 + bA$.

Posons alors $\psi: \mathbb{A} \to \mathbb{B}$. Ce qui précède montre que ψ est une bijection de \mathbb{A} sur \mathbb{B} , de réciproque $M \mapsto M \mapsto P^{-1}MP$

 $P^{-1}MP$. ψ est clairement linéaire. Enfin, pour $(M, N) \in \mathbb{A}^2$, on a

$$\psi(MN) = P^{-1}MNP = (P^{-1}MP)(P^{-1}NP) = \psi(M)\psi(N),$$

Comme de plus $\psi(I_2)=I_2, \psi$ est un isomorphisme de l'algèbre $\mathbb A$ sur l'algèbre $\mathbb B.$

7. On a $\chi_A = X^2 - \operatorname{tr}(A)X + \det(A)$. Son discriminant vaut $(\operatorname{tr}(A))^2 - 4\det(A) > 0$. χ_A admet donc deux racines réelles distinctes et A est ainsi diagonalisable (dans $\mathbb R$). Il existe une matrice diagonale D, non scalaire puisque les valeurs propres de A sont distinctes, telle que A est semblable à D. D'après 6., l'algèbre $\mathbb A$ est isomorphe à l'algèbre engendrée par I_2 et D.

Maintenant, $\operatorname{Vect}(I_2, D) \subset \mathcal{D}_2(\mathbb{R})$ et $\dim(\operatorname{Vect}(I_2, D)) = 2 = \dim(\mathcal{D}_2(\mathbb{R}))$. Donc, $\operatorname{Vect}(I_2, D) = \mathcal{D}_2(\mathbb{R})$. Ainsi, l'algèbre \mathbb{A} est isomorphe à l'algèbre $\mathcal{D}_2(\mathbb{R})$.

 $\mathcal{D}_2(\mathbb{R})$ n'est pas intégre car $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Par suite, $\mathcal{D}_2(\mathbb{R})$ n'est pas un corps et il en est de même de \mathbb{A} .

II. Quelques résultats généraux

1. Puisque $\mathbb D$ est stable pour la multiplication, Φ_{α} est bien une application de $\mathbb D$ dans lui-même. Soient alors $(\lambda,\mu)\in\mathbb R^2$ et $(x,y)\in\mathbb D^2$.

$$\Phi_{\alpha}(\lambda x + \mu y) = \alpha(\lambda x + \mu y) = \lambda \cdot \alpha x + \mu \cdot \alpha y = \lambda \Phi_{\alpha}(x) + \mu \Phi_{\alpha}(y).$$

 $\Phi_{\mathfrak{a}}$ est bien un endomorphisme de l'espace vectoriel \mathbb{D} .

$$\Phi_{\alpha}\in\mathcal{L}(\mathbb{D}).$$

2. Soit $(\alpha, \alpha') \in \mathbb{D}^2$ et $(\lambda, \lambda') \in \mathbb{R}^2$. Pour x dans E,

$$(\lambda \Phi_{\alpha} + \lambda' \Phi_{\alpha'}) x = \lambda \alpha x + \lambda' \alpha' x = (\lambda \alpha + \lambda' \alpha') x = \Phi_{\lambda \alpha + \lambda' \alpha'} (x),$$

puis

$$\Phi_{\alpha} \circ \Phi_{\alpha'}(x) = \Phi_{\alpha}(\alpha'x) = \alpha\alpha'x = \Phi_{\alpha\alpha'}(x),$$

et enfin

$$\Phi_{1_A}(x) = 1_A x = x = \mathrm{Id}_{\mathbb{D}}(x).$$

Pour $(\alpha, \alpha') \in \mathbb{D}^2$ et $(\lambda, \lambda') \in \mathbb{R}^2$, on a donc

$$\Phi_{\lambda\alpha+\lambda'\alpha'}=\lambda\Phi_\alpha+\lambda'\Phi_{\alpha'},\;\Phi_\alpha\circ\Phi_{\alpha'}=\Phi_{\alpha\alpha'}\;\mathrm{et}\;\Phi_{1_A}=Id_\mathbb{D}.$$

L'application $\mathfrak{a} \mapsto \Phi_{\mathfrak{a}}$ est donc un morphisme d'algèbres, de l'algèbre \mathbb{D} vers l'algèbre $\mathcal{L}(\mathbb{D})$. Comme il est d'autre part connu que l'application $\Phi \mapsto \operatorname{Mat}_{\mathcal{B}}\Phi$ est un morphisme d'algèbre de l'algèbre $\mathcal{L}(\mathbb{D})$ vers l'algèbre $\mathcal{M}_{\mathfrak{n}}(\mathbb{R})$, Ψ est un morphisme d'algèbres en tant que composée de morphismes d'algèbres.

Soit $a \in \mathbb{D}$.

$$a \in \text{Ker} \Psi \Leftrightarrow \Psi(a) = 0, \Leftrightarrow \forall x \in \mathbb{D}, \ ax = 0 \Rightarrow a \times 1, 0 \Rightarrow a = 0.$$

Ψ est donc injectif.

Par suite, $\Psi(\mathbb{D})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ en tant qu'image d'une algèbre par un morphisme d'algèbres. Psi étant injectif, réalise un isomorphisme d'algèbres de \mathbb{D} sur l'algèbre $\Psi(\mathbb{D})$.

3. Soit $z \in \mathbb{C}$. Posons z = a + ib où $(a, b) \in \mathbb{R}^2$. Puisque

$$\Phi_z(1) = a + ib \text{ et que } \Phi_z(i) = -b + ia,$$

on a

$$\operatorname{Mat}_{\mathcal{B}}(\Phi_z) = \left(egin{array}{cc} \operatorname{Re}(z) & -\operatorname{Im}(z) \\ \operatorname{Im}(z) & \operatorname{Re}(z) \end{array}
ight).$$

- 4. (a) La matrice $B = A \lambda I_n$ est un élément de \mathbb{A} , non nul (car A n'est pas scalaire) et n'est pas inversible (dans $\mathcal{M}_n(\mathbb{R})$) car λ est valeur propre de A. Cette matrice n'est pas plus inversible dans \mathbb{A} car l'élément neutre I_n de $\mathcal{M}_n(\mathbb{R})$ est dans \mathbb{A} . \mathbb{A} contient donc une matrice non nulle et non inversible dans \mathbb{A} , et \mathbb{A} n'est pas un corps.
- (b) Une matrice diagonalisable ou trigonalisable non scalaire est en particulier une matrice non scalaire admettant au moins une valeur propre réelle. D'après (a), si A contient une telle matrice, A n'est pas un corps.
- (c) Soit A un élément non nul de \mathbb{A} . On sait déjà que Φ_A est un endomorphisme de \mathbb{A} . Puisque \mathbb{A} est intègre, on en déduit que le noyau de Φ_A est nul et donc que Φ_A est injectif. Puisque \mathbb{A} est de dimension finie, φ_A est un automorphisme de l'espace vectoriel \mathbb{A} . En particulier, l'élément I_n de \mathbb{A} admet un antécédent par Φ_A . Donc, il existe $A' \in \mathbb{A}$ telle que $AA' = I_n$. La matrice A est donc inversible à droite dans $\mathcal{M}_n(\mathbb{R})$ et donc inversible dans $\mathcal{M}_n(\mathbb{R})$. De plus, son inverse A' est dans \mathbb{A} et A est inversible dans \mathbb{A} .

On a montré que tout élément non nul de $\mathbb A$ admet un inverse dans $\mathbb A$ et donc $\mathbb A$ est un corps.

III. L'algèbre des quaternions

- 1. $A^2 = -I_n \Rightarrow (\det(A))^2 = (-1)^n \Rightarrow (-1)^n \in \mathbb{R}^+ \Rightarrow n$ pair.
- 2. $\mathbb{H} = \text{Vect}(I_n, A, B, AB)$ est déjà un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ contenant I_n . De plus,

$$A^2=-I_n,\ B^2=-I_n,\ A\times AB=-B,\ AB\times B=-A,\ B\times AB=-BBA=A,\ AB\times A=A(-AB)=B,\ AB\times AB=-A^2B^2=-I_n.$$

Ainsi, tout produit de deux éléments d'une famille génératrice de $\mathbb H$ est encore dans $\mathbb H$, et, par linéarité, $\mathbb H$ est stable pour \times . Donc

 \mathbb{H} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$.

3. Soit $(x, y, z, t) \in \mathbb{R}^4$. D'après les règles de calcul trouvées en 2., on a

$$(tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = (t^2 + x^2 + y^2 + z^2)I_n.$$

4. (a) Soit $(t, x, y, z) \in \mathbb{R}^4$.

$$\begin{split} tI_n + xA + yB + zAB &= 0 \Rightarrow (tI_n + xA + yB + zAB)(tI_n - xA - yB - zAB) = 0 \Rightarrow (x^2 + y^2 + z^2 + t^2)I_n = 0 \\ &\Rightarrow x^2 + y^2 + z^2 + t^2 = 0 \Rightarrow t = x = y = z = 0. \end{split}$$

La famille (I_n, A, B, AB) est donc une famille libre de \mathbb{H} . Etant génératrice de \mathbb{H} , cette famille est une base de \mathbb{H} .

\mathbb{H} est un \mathbb{R} -espace vectoriel de dimension 4.

(b) D'après ce qui précède,

$$\forall (x, y, z, t) \in \mathbb{R}^4, \ tI_n + xA + yB + zAB = 0 \Leftrightarrow t = x = y = z = 0.$$

Soit alors $(x, y, z, t) \in \mathbb{R}^4 \setminus \{(0, 0, 0, 0)\}$. $t^2 + x^2 + y^2 + z^2$ n'est pas nul et

$$(tI_n + xA + yB + zAB)\frac{1}{t^2 + x^2 + y^2 + z^2}(tI_n - xA - yB - zAB) = I_n.$$

Ainsi, tout élément non nul de H est inversible dans H et donc,

$$\mathbb{H}$$
 est un corps.

5. (a) On a $J^2=-I_2$ et un calcul par blocs fournit immédiatement

$$A^2=-I_4,\;B^2=-I_4\;\mathrm{et}\;AB=-BA=\left(\begin{array}{cc}0&-J\\-J&0\end{array}\right).$$

(b) Notons tout d'abord que ${}^tJ = -J$. Par suite, pour $(t, x, y, z) \in \mathbb{R}^4$, on a immédiatement

$${}^{t}(tI_{n}+xA+yB+zC)=tI_{n}-xA-yB-zC\in\mathbb{H}.$$

De plus, pour $M = tI_n + xA + yB + zC \in \mathbb{H} \setminus \{0\},\$

$${}^{t}M = (x^2 + y^2 + z^2 + t^2)M^{-1}.$$

IV. Les automorphismes de l'algèbre des quaternions

 $\textbf{1.} \quad \mathrm{Soit} \ (t,x,y,z) \in \mathbb{R}^4 \ \mathrm{et} \ M = t I_n + x A + y B + z C \in \mathbb{H}. \ \mathrm{Puisque} \ (I_n,A,B,C) \ \mathrm{est \ libre, \ on \ a \ d'après \ III.5.,}$

$${}^{t}M = -M \Leftrightarrow tI_{n} - xA - yB - zC = -(tI_{n} + xA + yB + zC) \Leftrightarrow t = 0.$$

Ainsi, $\mathbb{L} = \text{Vect}(A, B, C)$ est un \mathbb{R} -espace vectoriel de dimension 3, de base $\mathcal{C} = (A, B, C)$.

 $A^2 = -I_4$ n'est pas un quaternion pur et \mathbb{L} n'est pas stable pour \times et donc pas une algèbre.

2. Soient $(x, y, z, x', y', z') \in \mathbb{R}^6$ puis M = xA + yB + zC et N = x'A + y'B + z'C. Puisque la base (A, B, C) est orthonormée, on a

$$(M|N) = xx' + uu' + zz'.$$

puis

$$MN = (xA + yB + zC)(x'A + y'B + z'C) = -(xx' + yy' + zz')I_4 + (yz' - y'z)A + (zx' - xz')B + (xy' - yx')C,$$

et en échangeant les rôles de M et N,

$$NM = -(xx' + yy' + zz')I_4 - (yz' - y'z)A - (zx' - xz')B - (xy' - yx')C.$$

Par suite,

$$\frac{1}{2}(MN + NM) = -(xx' + yy' + zz')I_4 = -(M|N)I_4.$$

$$\forall (M,N) \in \mathbb{L}^2, \ \frac{1}{2}(MN+NM) = -(M|N)I_4.$$

3. Soit M un quaternion pur. D'après 2.,

$$M^2 = -||M||^2 I_4$$
.

 M^2 est donc de la forme λI_4 où λ est un réel négatif.

Réciproquement, supposons que $M = tI_4 + xA + yB + zC$ est un quaternion tel que M^2 est de la forme λI_4 où λ est un réel négatif.

- si M = 0, M est un quaternion pur.
- Sinon, d'après III.3.

$$\lambda^4 = \det(M^2) = (\det M)^2 = (\det M)(\det^t M) = \det((x^2 + y^2 + z^2 + t^2)I_4) = (x^2 + y^2 + z^2 + t^2)^4,$$

et puisque $\lambda \leq 0$,

$$\lambda = -(x^2 + y^2 + z^2 + t^2) < 0.$$

Maintenant, l'égalité $M^2 = \lambda I_2$ s'écrit encore $M^{-1} = \frac{1}{\lambda} M$ et d'après III.5.b),

$${}^{\mathrm{t}}M = -\lambda M^{-1} = -\lambda \frac{1}{\lambda}M = -M,$$

et M est un quaternion pur.

$$\forall M \in \mathbb{H}, \ (M \in \mathbb{L} \Leftrightarrow \exists \lambda \in \mathbb{R}^- / \ M^2 = \lambda I_4).$$

4. Soit M un quaternion pur. Il existe un réel négatif λ tel que $M^2=-\lambda I_4$. Puisque Φ est un morphisme d'algèbres,

$$(\Phi(M))^2 = \Phi(M^2) = \Phi(\lambda I_4) = \lambda \Phi(I_4) = \lambda I_4.$$

 $\Phi(M)$ est donc un quaternion pur. Ensuite, d'après 2., $-\|M\|I_4 = M^2$ et

$$-\|\Phi(M)\|^2 I_4 = (\Phi(M))^2 = \Phi(M^2) = \Phi(-\|M\|^2 I_4) = -\|M\|^2 I_4.$$

Donc, $\|\Phi(M)\| = \|M\|$.

Ainsi, la restriction de Φ à \mathbb{L} transforme un élément de \mathbb{L} en un élément de \mathbb{L} et est donc un endomorphisme de \mathbb{L} . D'autre part, cette restriction conserve la norme et est donc un automorphique orthogonal de \mathbb{L} .

5. (a) Soient M et N deux quaternions purs colinéaires et de mêmes normes.

Puisque M et N sont colinéaires et de même norme, $N = \pm M$.

- Si N = M, $P = I_4$ convient.
- \bullet Si N = -M, soit P un quaternion pur non nul orthogonal à M. Alors, d'après IV.2., MP = -PM puis

$$P^{-1}NP = -P^{-1}MP = P^{-1}PM = M.$$

Finalement, si M et N sont deux quaternions purs colinéaires et de même norme, $\exists P \in \mathbb{H} \setminus \{0\} / N = P^{-1}MP$.

(b) Soient M et N deux quaternions purs de même norme. D'après IV.2., $M^2 = -||M||^2 I_4$ et $N^2 = -||N||^2 I_4 = -||M||^2 I_4$. Donc,

$$M(MN)-(MN)N=M^2N-MN^2=-\|M\|^2N+\|M\|^2M=\|M\|^2(M-N).$$

Par suite,

$$M(MN - ||M||^2 I_4) = (MN - ||M||^2 I_4)N.$$

Soit $P = MN - ||M||^2 I_4$. P est bien un élément de \mathbb{H} , car \mathbb{H} est une algèbre et vérifie MP = PN. De plus $P \neq 0$. En effet,

$$\begin{split} P = 0 &\Rightarrow MN - \|M\|^2 I_4 = 0 \Rightarrow MN + M^2 = 0 \; (\mathrm{puisque} \; M \; \mathrm{est} \; \mathrm{un} \; \mathrm{quaternion} \; \mathrm{pur}) \\ &\Rightarrow M(M+N) = 0 \\ &\Rightarrow M+N = 0 \; (\mathrm{puisque} \; M \neq 0 \; \mathrm{et} \; \mathrm{que} \; \mathbb{H} \; \mathrm{est} \; \mathrm{un} \; \mathrm{corps.}) \\ &\Rightarrow M \; \mathrm{colin\acute{e}aire} \; \grave{a} \; N \end{split}$$

ce qui n'est pas.

6. (Remarque. La question posée sous cette forme est fausse. Par exemple, considérons le cas où M et N ne sont pas colinéaires et posons P = M + N. P est un élément non nul de \mathbb{H} car M et N ne sont pas colinéaires. De plus,

$$MP = M^2 + MN = -||M||^2I_4 + MN = -||N||^2I_4 + MN = N^2 + MN = (M+N)N = PN.$$

Pour cette matrice P, on a $\alpha = 0$ et Q = P = M + N. Mais $M|Q = M|M + M|N = ||M|| \times ||N|| + M|N \neq 0$ puisque (M, N) est libre (cas d'égalité de l'inégalité de CAUCHY-SCHWARZ).)

- Si M = N, on a choisit P = I et donc Q = 0. Dans ce cas, Q est orthogonal à M et N.
- \bullet Si M=-N, on a pris pour P un quaternion pur orthogonal à M (et N). Dans ce cas, $\alpha=0$ et Q=P. Q est encore orthogonal à M et N
- \bullet Si (M,N) est libre, on a pris $P=MN-\|M\|^2I_4$ et on veut écrire P sous la forme αI_4+Q où Q est un quaternion pur. Mais par définition donnée en 1., un quaternion pur est une matrice antisymétrique. Comme αI_4 et $-\|M\|^2I_4$ sont symétriques, on en déduit que Q est la partie antisymétrique de MN à savoir

$$Q = \frac{1}{2}(MN - {}^{t}(MN)) = \frac{1}{2}(MN - NM).$$

Mais alors

$$-(Q|M)I_4 = \frac{1}{4}(M(MN-NM) + (MN-NM)M) = \frac{1}{4}(M^2N-NM^2) = \frac{-||M||^2}{4}(N-N) = 0.$$

Q est bien orthogonale à M puis à N par symétrie des rôles de M et N.

7. Tout d'abord, si P est un élément non nul de \mathbb{H} , l'application $\Phi_P: M \mapsto P^{-1}MP$ est une application de \mathbb{H} dans lui-même, linéaire, bijective de réciproque $M \mapsto PMP^{-1}$, vérifiant de plus $\Phi_P(I)$ et pour $(M,M') \in \mathbb{H}^2$,

$$\Phi_{P}(M)\Phi_{P}(M') = P^{-1}MPP^{-1}M'P = P^{-1}MM'P = \Phi_{P}(MM').$$

 Φ_P est donc un automorphisme de l'algèbre \mathbb{H} .

Réciproquement, soit Φ un automorphisme de l'algèbre \mathbb{H} . Φ est entièrement déterminé par les images de A et B car, pour $(t, x, y, z) \in \mathbb{R}^4$,

$$\Phi(tI_4+xA+yB+zAB)=tI_4+x\Phi(A)+y\Phi(B)+z\Phi(A)\Phi(B).$$

D'après 4., Φ transforme le quaternion pur A en un quaternion pur de même norme. D'après 5., il existe un quaternion non nul P' tel que $\Phi(A) = P'^{-1}AP'$. L'application $\Phi' = (\Phi_{P'})^{-1} \circ \Phi = \Phi_{P'^{-1}} \circ \Phi$ est alors un automorphisme de l'algèbre \mathbb{H} vérifiant de plus $\Phi'(A) = A$. Cherchons alors un quaternion non nul P'' tel que $P''^{-1}AP'' = A$ (c'est à dire commutant avec A) et $\Phi'(B) = P''^{-1}BP''$.

A et B sont des quaternions purs de norme 1 et orthogonaux. $\Phi'(B)$ est d'après 4. un quaternion pur de norme 1, orthogonal à A. Donc, il existe un réel θ tel que $\Phi'(B) = \cos\theta B + \sin\theta C$. La question 6. nous invite à chercher P'' sous la forme $P'' = \alpha I_4 + \beta A$. Une telle matrice commute avec A car est un polynôme en A. La condition $\Phi'(B) = P''^{-1}BP''$ s'écrit

$$B(\alpha I_4 + \beta A) = (\alpha I_4 + \beta A)(\cos \theta B + \sin \theta C),$$

ou encore

$$\alpha B - \beta C = (\alpha \cos \theta - \beta \sin \theta)B + (\alpha \sin \theta + \beta \cos \theta)C.$$

Puisque (B, C) est une famille libre, on obtient le système :

$$\left\{ \begin{array}{l} \alpha(1-\cos\theta)+\beta\sin\theta=0 \\ \alpha\sin\theta+\beta(1+\cos\theta)=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2\sin\frac{\theta}{2}\left(\alpha\sin\frac{\theta}{2}+\beta\cos\frac{\theta}{2}\right)=0 \\ 2\cos\frac{\theta}{2}\left(\alpha\sin\frac{\theta}{2}+\beta\cos\frac{\theta}{2}\right)=0 \end{array} \right. \Leftrightarrow \alpha\sin\frac{\theta}{2}+\beta\cos\frac{\theta}{2}=0$$

 $\cos\frac{\theta}{2} \text{ et } \sin\frac{\theta}{2} \text{ ne peuvent être simultanément nul. Mais alors } \alpha = \cos\frac{\theta}{2}, \ \beta = -\sin\frac{\theta}{2} \text{ et donc } P'' = \cos\frac{\theta}{2}I_4 - \sin\frac{\theta}{2}A$ conviennent.

Pour ce choix de $P'' \neq 0$, on a $\Phi'(A) = P''^{-1}AP''$ et $\Phi'(B) = P''^{-1}BP''$. Mais alors Φ' coïncide avec $\Phi_{P''}$ en A et B et donc, d'après une remarque faite plus haut, $\Phi' = \Phi_{P''}$. Ainsi, $\Phi = \Phi_{P'} \circ \Phi_{P''} = \Phi_{P'P''}$. En posant P = P'P'', on a trouvé un quaternion pur non nul P tel que pour tout quaternion M, $\Phi(M) = P^{-1}MP$. Nous avons ainsi démontré que

tout automorphisme de l'algèbre $\mathbb H$ est un automorphisme intérieur.