Задача 1. Пусть **B** – гильбертово пространство со скалярным произведением (x,y), где $(x,y) \in \mathbf{B}$. Тогда пространство **B** является строго нормированным относительно нормы $||x|| = \sqrt{(x,x)}$.

Задача 2. Пусть $\mathbf{B} = L_p(D,\mu)$, где $D \subset \mathbb{R}^n$ открыто, а μ мера Лебега в \mathbb{R}^n . Элементами пространства \mathbf{B} являются классы эквивалентных, измеримых по Лебегу функций $f:D \to \mathbb{R}$, для которых функция f^p является μ -суммируемой по D, а две функции эквивалентны, если их разность равна нулю почти всюду в D. Норма в \mathbf{B} задается равенством:

$$||f|| = \left(\int\limits_{D} |f|^p \, d\mu\right)^{\frac{1}{p}}.$$

Тогда пространство **В** является строго нормированным относительно введенной нормы. Это утверждение следует из неравенства Минковского и условий при которых оно превращается в равенство.

Задача 3. Доказать, что банахово пространство строго нормировано тогда и только тогда, когда для любых различных элементов $x \neq y$ единичной сферы и $0 < \alpha < 1$ выполнено неравенство

$$\|\alpha x + (1 - \alpha)y\| < 1.$$

Задача 4. Доказать, что банахово пространство $\mathbf{B} = C[0,1]$ с нормой $\|f\| = \max_{x \in [0,1]} |f(x)|$ не является строго нормированным.

Задача 5. Доказать, что банахово пространство классов интегрируемых по Лебегу функций $\mathcal{L}_1[0,1]$ с нормой $\|f\|=\int\limits_0^1|f(x)|\,d\mu$ не является строго нормированным.

Задача 6. Пусть **H** — гильбертово пространство и **H** $_n$ — его n-мерное подпространство. Пусть отображение $\pi=\pi_n: \mathbf{H}\to \mathbf{H}$ сопоставляет элементу $x\in \mathbf{H}$ наименее уклоняющийся элемент из \mathbf{H}_n . Доказать, что

$$\pi(x) = \sum_{k=1}^{n} (x, e_k) e_k$$

И

$$\varepsilon(x, \mathbf{H}_n) = \left(\|x\|^2 - \sum_{k=1}^n (x, e_k)^2 \right)^{\frac{1}{2}},$$

где $e_1, \ldots e_n$ — произвольный ортонормированный базис.

Задача 7. Пусть $M \subset \mathbf{B}$ и $\lambda \in \mathbf{R}$ и $x, \ \lambda x \in P_M$. Доказать, что тогда выполнено равенство $\pi(\lambda x) = \lambda \pi(x)$.

 ${\bf 3agaua~8.}~{
m B}~C[{f S}^1]$ не существует четномерных Чебышевских подпространств.

Задача 9. Не существует чебышевских подпространств размерности большей 1 на множестве, являющемся объединением трех отрезков с общим концом.

Задача 10. Чебышевское подпространство размерности большей 1 определено на связном компактном множестве тогда и только тогда, когда это множество гомеоморфно отрезку или окружности.

Задача 11. Докажите теорему Чебышева для произвольного чебышевского подпространства в случае $D={\bf S}^1.$

Задача 12. Пусть $a_k>0$ — такие вещественные положительные числа, что ряд $\sum\limits_{k=0}^{\infty}a_k$ сходится. Рассмотрим 2π -периодическую функцию

$$f(x) = \sum_{k=0}^{\infty} a_k \cos 3^k x$$

и для целого m > 0 положим

$$T(x) = \sum_{k=0}^{m} a_k \cos 3^k x.$$

Доказать, что тригонометрический многочлен T(x) наименее уклоняется от f(x) в $\mathcal{T}_{2\cdot 3^m+1}$ и $\varepsilon(f,\mathcal{T}_{2\cdot 3^m+1})=\sum\limits_{k=0}^\infty a_k$.

Задача 13. Пусть $f \in C[D]$ и для некоторого p из чебышевского подпространства L размерности n найдутся точки $a \le x_1 < x_2 < \ldots < x_{n+1} \le b$, в которых разность r = f - p принимает ненулевые значения с чередующимися знаками (в силу задачи 2 это множество упорядочено, для \mathbf{S}^1 этот порядок задает направление обхода по окружности.) Тогда

$$\varepsilon(f, L) \ge \min_{1 \le k \le n+1} |r(x_k)|.$$

Задача 14. Пусть $f \in C[\mathbf{S}^1]$ — четная функция. Тогда наименее уклоняющийся многочлен Чебышева также является четной функцией.

Задача 15. Пусть $a_k>0$ — такие вещественные положительные числа, что ряд $\sum\limits_{k=0}^{\infty}a_k$ сходится, а $1\leq n_1< n_2<\ldots< n_k<\ldots$ — такие натуральные числа, для которых все отношения n_{k+1}/n_k суть целые нечетные числа. Определим функцию с помощью формулы

$$f(x) = \sum_{k=0}^{\infty} a_k \cos n_k x,$$

и для целого $m \geq 0$ положим

$$T(x) = \sum_{k=0}^{m} a_k \cos n_k x.$$

Доказать, что тригонометрический многочлен T(x) наименее уклоняется от f(x) в $\mathcal{T}_{2 \cdot n_m + 1}$ и $\varepsilon(f, \mathcal{T}_{2 \cdot n_m + 1}) = \sum_{k=0}^{\infty} a_k$.

Задача 16. Докажите, что последовательность функций

$$J_n(x) = \frac{3n^3}{2\pi(2n^2+1)} \left(\frac{\sin nx/2}{n\sin x/2}\right)^4 = \frac{6\pi n}{2n^2+1} \Phi_n^2(x)$$

определяет положительное ядро.

Задача 17. Докажите, что для четной функции существует четный тригонометрический многочлен, удовлетворяющий неравенству из теоремы Джексона.

Задача 18. Пусть $f \in W^r(M,[a,b])$. Тогда для любого $n \geq r$ справедливо неравенство

$$\varepsilon(f, \mathcal{P}_n) < \left(\frac{b-a}{2}\right)^r \frac{A_r M}{n^r}, \quad n \ge r,$$

где константа A_r не зависит от $M,\ n,\ f$ и равна $A_r=(Cr)^r/r!$ (C — константа из теоремы Джексона). Указание: сначала сведите доказательство к случаю функций f на отрезке [-1,1], затем перейдите к функциям вида $h(t)=f(\cos t)$.

Задача 19. Доказать, что для произвольных $arphi_1,\ \dots,arphi_n\in\mathbb{R}$:

$$(a) \left| \begin{array}{cccc} 1 & \cos \varphi_1 & \cdots & \cos (n-1)\varphi_1 \\ 1 & \cos \varphi_2 & \cdots & \cos (n-1)\varphi_2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \cos \varphi_n & \cdots & \cos (n-1)\varphi_n \end{array} \right| =$$

$$2^{(n-1)^2} \prod_{1 \le i \le k \le n} \sin \frac{\varphi_i + \varphi_k}{2} \cdot \sin \frac{\varphi_i - \varphi_k}{2},$$

при n > 1.

$$() \left| \begin{array}{cccc} \sin \varphi_1 & \sin 2\varphi_1 & \cdots & \sin n\varphi_1 \\ \sin \varphi_2 & \sin 2\varphi_2 & \cdots & \sin n\varphi_2 \\ \vdots & \vdots & \ddots & \vdots \\ \sin \varphi_n & \sin 2\varphi_n & \cdots & \sin n\varphi_n \end{array} \right| = \\ 2^{n(n-1)} \prod_{k=1}^n \sin \varphi_k \prod_{1 \leq i < k \leq n} \sin \frac{\varphi_i + \varphi_k}{2} \cdot \sin \frac{\varphi_i - \varphi_k}{2}.$$

$$2^{n(n-1)} \prod_{k=1}^{n} \sin \varphi_k \prod_{1 \le i \le k \le n} \sin \frac{\varphi_i + \varphi_k}{2} \cdot \sin \frac{\varphi_i - \varphi_k}{2}$$

(Указание. Воспользуйтесь тем, что $\cos nx$ и $\sin (n+1)x/\sin x$ — многочлены степени n относительно переменной соз x. Найдите их старшие коэффициенты. Используйте определитель Вандермонда.)

Задача 20. 1) Пусть $t_0, \ldots, t_{n-1} \in (0,\pi)$ — попарно различные точки и $b_0, \ldots, b_{n-1} \in \mathbb{R}$ — произвольные числа. Тогда существует единственный четный тригонометрический многочлен T(t) = $\sum\limits_{k=0}^{n-1} lpha_k \cos kt, \; lpha_k \in \mathbb{R}$, для которого $T(t_j) = b_j$ при $0 \leq j \leq n-1$.
2) Пусть $au_1, \; \dots, au_{n-1} \in (0,\pi)$ — попарно различные точки и $d_1, \; \dots, d_{n-1} \in \mathbb{R}$ — роизвольные числа.

Тогда существует единственный нечетный тригонометрический многочлен $T(t)=\sum\limits_{k=1}^{n-1}\beta_k\sin kt,\; \beta_k\in$ \mathbb{R} , для которого $T(au_j)=d_j$ при $1\leq j\leq n-1$. Воспользуйтесь результатом предыдущего упражнения для вывода этих утверждений.

Задача 21. Докажите, что разность $\Delta(t) = \Delta_{nr}(t) = B_r(t) - T_{nr}(t)$ обращается в нуль на интервале $(0,\pi)$ при $n\geq 1$ и четном r только в точках t_i , а при нечетном r только в точках τ_k . При n=1 и нечетном r корней на $(0,\pi)$ нет. Все корни являются простыми. Указание: рассмотрите процедуру дифференцирования функций $\Delta_{nr}(t) = B_r(t) - T_{nr}(t)$. Сколько раз можно дифференцировать эту функцию? Докажите, что при дифференцировании число нулей не изменится. Воспользуйтесь периодичностью функций. Рассмотрите отдельно случай четного r и случай нечетного r.

Задача 22. Для произвольной функции $f \in C^n[a,b]$ и системы узлов $\mathbf{x} = (x_1, \dots, x_n)$ и любого $x \in [a, b]$

$$f(x) = \pi_n(\mathbf{x}, f)(x) + \frac{f^{(n)}(\xi)}{n!} \prod_{k=1}^n (x - x_k),$$

где $y_1 < \xi < y_2$, а $y_1 = \min{\{x, x_1, \dots, x_n\}}$ и $y_1 = \max{\{x, x_1, \dots, x_n\}}$. Задача 23. Пусть $n \geq 1$, $f \in C^n[a, b]$, $\mathbf{x}^* = (x_1^*, \dots, x_n^*)$ — чебышевские интерполяционные узлы на [a, b], $x_k^* = \frac{b-a}{2} \cos{\frac{2k-1}{2n}\pi} + \frac{a+b}{2}$, $1 \leq k \leq n$. Докажите, что при a = -1, b = 1

$$||f - \pi_n(\mathbf{x}^*, f)|| \le \frac{1}{2^{n-1}n!} \sup_{x \in [-1, 1]} |f^{(n)}(x)|.$$

Задача 24. Пусть $f \in C[a,b]$ — ограничение целой функции. Тогда для произвольного q>0 найдется A>0, что для любой системы узлов $\mathbf{x}=(x_1,\ \dots,x_n)$ на отрезке [a,b] выполняется неравенство $||f - \pi_n(\mathbf{x}, f)|| \le Aq^n$. Вывести из этого, что интерполяционный процесс, отвечающий произвольной интерполяционной матрице **X** на отрезке [a, b] равномерно сходится к функции f.

Задача 25. Пусть $f\in C^\infty[a,b]$ и $\sup_{x\in[a,b]}|f^{(n)}(x)|\leq BA^n$ для всех $n\geq 1$ и некоторых констант A>0 и

B > 0. Докажите, что

- а) интерполяционный процесс, отвечающий произвольной матрице интерполяционных узлов на [a,b] равномерно на [a,b] сходится к f ,
 - б) функция f аналитична на [a, b].

Рассмотрите примеры $f(x) = \sin kx$, $k \in \mathbb{R}$, $f(x) = e^{\alpha x}$, $\alpha \in \mathbb{R}$.

Упражнение 26. Докажите неравенство Лебега

$$||f - l_r(\mathbf{x}, f)|| \le (1 + ||l_r||)\varepsilon(f, \mathcal{L}_r^{(n)}),$$

где $f \in C[a, b]$, $2 \le r \le n$.

Задача 27. Проверьте, что сложение функций коммутативно и ассоциативно, а функция $f_0: R \to \mathbb{R}$ является единственным нулевым элементом. Однако, если $D_f \neq \emptyset$, то элемент f не обратим.

Задача 28. Пусть $L_n=\mathcal{L}_{2n+1}$ и $S_n:C[S^1]\to L_n$ — оператор, сопоставляющий непрерывной функции n-ю частичную сумму ее ряда Фурье. Доказать, что выполняется равенство $\|S_n\|=\frac{1}{\pi}\int\limits_{-\infty}^{\pi}|D_n(t)|dt$.

Задача 29. Пусть $B=C[I_0]$, $I_0=[-1,1]$, $L_n=\mathcal{P}_{n+1}$, $n\geq 1$, а $c_n:C[I_0]\to L_n$ — оператор, сопоставляющий функции $f\in C[I_0]$ ее частичную сумму Фурье-Чебышева. Тогда выполняется равенство

$$||c_n|| = \frac{2}{\pi} \int_{0}^{\pi} |D_n(t)| dt.$$

Задача 30. Доказать равенство

$$\int_{0}^{\pi} \frac{\sin^{2}(nt/2)}{t} dt = \frac{1}{2} \ln n + O(1).$$