ব্যবহারিক ক্লাশ-২

তারিখঃ

Presented By: A.M.ATIQULLAH, INSTRUCTOR(Tech) RAC DHAKA POLYTECHNIC INSTITUTE, Dhaka-1208

गुवशिक जश्भ PRACTICAL

শিক্ষক পরিচিতি

আবু মোহাম্মদ আতিকুল্যা ইম্ট্রাক্টর(টেক্) আর এসি ঢাকা পলিটেকনিক ইন্সটিটিউট, তেজগাঁও শি/এ, ঢাকা- ১২০৮ atiqullahrac@gmail.com

বিষয় কোড- ৬৭২৪৩

কুলিং অ্যান্ড হিটিং লোড ক্যালকুলেশন Cooling And Heating Load Calculation

৪র্থ পর্ব

রেফ্রিজারেশন অ্যান্ড এয়ার কন্ডিশনিং টেকনোলজি REFRIGERATION AND AIR CONDITIONING TECHNOLOGY

সেশন শেষে আমরা যা শিখবো

- ১। ব্যবহারিক/Practical সম্পর্কে ধারণা
- ২। জব শীট তৈরীকরণ প্রণালী সম্পর্কে ধারণা
- ৩। ব্যবহারিক/জবের তালিকা সমূহ ইত্যাদি

(ব্যবহারিক) PRACTICAL

জব নং- ২	তারিখঃ- ০৯ - ০৬ — ২০২১
জবের নামঃ	2. Study the co-efficient of heat transfer (U factor) for the structure with different wind velocity of outside.

বাইরের বাতাসের বিভিন্ন গতিবেগে কাঠামোর ভিতর দিয়ে তাপ বিনিময়ের কো-ইফিসিয়েন্ট (U-ফ্যাক্টর) পর্যবেক্ষণ করণ।

১। জবের উদ্দেশ্যঃ (Objective)

- (১) বিভিন্ন পদার্থের মাধ্যমে তাপ সঞ্চালনের সার্বিক গুণাজ্ঞ সম্পর্কে জানা।
- (২) সাধারণ হিমাগার,আবাসিক ও বাণিজ্যিক শীতাতপ নিযন্ত্রিত স্থানের দেওয়ালের ইনসুলেশন ও বাতাসের বিভিন্ন গতিবেগে তাপের প্রবাহ সম্পর্কে জানতে পারবে।
- (৩) U-ফ্যাক্টরজনিত সমস্যাগুলোর সমাধান করতেপারবে

২। কার্যপ্রণালী/কাজের ধাপ (Working procedure):

তাপ পরিবাহিতাজ্ঞ বা "C" ফ্যাক্টর সমসত্ব ও অসমসত্ব উভয্ ধরনের পদার্থের ক্ষেত্রেই পাওয়া যায় এবং এর মানের একক ওয়ার্ট/কামিটার কেলভিন দ্বারা প্রকাশ করা হয। তবে এ মান পদার্থের নির্দিষ্ট কোন পুরুত্বের ক্ষেত্রে প্রযোজ্য। কোন দেওয়ালের এক পার্শ্বের বাতাস থেকে অন্য পার্শ্বের বাতাসে উক্ত দেওয়ালের মাধ্যমে তাপ সঞ্চালনের সর্বাধিক তাপীয় রোধ নিরূপণ

করার জন্য দেওয়ালের উভয় পার্শ্বের বাতাসের রোধ বিবেচনা করা হয়। যখন কোন একটি দেওয়াল ভিন্ন উপকরণের অনেকগুলো স্তর দ্বারা নির্মিত হয়, তখন ঐ দেওয়ালের সার্বিক তাপীয় রোধের পরিমাণ স্বতন্ত্রভাবে নিরূপিত দেওয়ালটির প্রত্যেকটি উপকরণের রোধের এবং বাতাসের পাতলা আবরণের রোধের সমষ্টির সমান হবে। অৰ্থাৎ

তাপ পরিবহন গুণাজ্ঞ বা "K" ফ্যাক্টরঃ

তাপ পরিবাহতাণাজ্ঞ বা "C" ফ্যাক্টরঃ

৩। সারণী-১.১:

সারণী-১.২:

সারণী-১.৩:

৪। সতর্কতা (Pecautions): (5) (২) (O) ৫। মন্তব্য (Remarks):

(ব্যবহারিক)PRACTICAL:

1. Study the thermal conductivity and thermal conductance chart/ table. চার্ট বা টেবিলের সাহায্যে তাপ পরিবহন গুণাজ্ঞ এবং তাপ পরিবাহিতাজ্ঞ পর্যবেক্ষণকরণ

1.1 Find out the value of K of common brick, wood, cellular glass, corkboard, glass, Expanded polyurethane, mineral wool etc from the chart

1.2 Find out the C value of sand aggregate, cinder aggregate, tiles, plywood, and glass of different thickness. 1.3 Solve problems relating to conductance.

উদ্দেশ্যঃ (Objectives)

১। বিভিন্ন মাধ্যমে যেমন- কমন ব্রিক, কাঠ, সেলুলার গ্লাস ইত্যাদিতে K ফ্যাক্টরের পরিবাহিতা সম্পর্কে অবগত হওয়া। ২। টাইলস, পলিউড এবং গ্লাসের মধ্য দিয়ে С ফ্যাক্টরের পরিবাহকত্ব সম্পর্কে জানা।

কাৰ্যপ্ৰণালী (Working Procedure)

তাপ পরিবহন গুণাজ্ঞ বা "K" ফ্যাক্টরঃ এক মিটার পুরু ও এক মিটার প্রস্থচ্ছেদ ক্ষেত্রফল বিশিষ্ট একটি মাত্র উপকরণ দ্বারা নির্মিত কোনো বস্তুর দুই তলের তাপমাত্রার পার্থক্য এক ডিগ্রী কেলভিন হলে তার ভিতর দিয়ে ওয়ার্ট এককে

যে হারে তাপ পরিবাহিত হয়, তাকে তাপ পরিবহন গুণাজ্ঞ বা "K" ফ্যাক্টর বলে। SI পদ্ধতিতে "K" ফ্যাক্টরের একক ওয়াট/মিটার কেলভিন (W/mK) তাপ পরিবহন গুণাজ্ঞ বা "K" ফ্যাক্টর কেবলমাত্র সমসত্ব (Homogeneous) পদার্থের ক্ষেত্রেই পাওয়া যায়(যেমন-ইট,সিমেন্ট,প্লাম্টার,কাঠ ইত্যাদি)

কাৰ্যপ্ৰণালী (Working Procedure) C - ফ্যাক্টর (C-factor)/ তাপীয় পরিবাহিত (Thermal Conductance C): নির্দিষ্ট্য বেধের (Thickness) এক বা একাধিক উপকরণের সমন্বয়ে প্রস্তুত প্রতি বর্গমিটার (\mathbf{m}^2) কোন কাঠামোর মধ্য দিয়ে তাপ পরিবাহিতার গুণাজ্ঞকে "C- Factor" ফ্যাক্টর বলে।

S.I পদ্ধতিতে এর একক হলো W/m^2K .অন্যভাবে বলা যেতে পারে, তাপ পরিবাহিতাংক (Thermal conductance or 'C'ফ্যাক্টর সমসত্ত্ব এবং অসমসত্ত্ব এই উভয় ধরনের পদার্থের ক্ষেত্রেই পাওয়া যায় এবং এর মান ওয়াট/বর্গমিটার কেলভিন (W/m²k) দ্বারা প্রকাশ করা হয়। তবে এর মান পদার্থের নির্দিষ্ট কোন পরত্বের ক্ষেত্রে প্রযোজ্য। 18

যে কোন সমসত্ত্ব (Homogeneous) পদার্থের ক্ষেত্রে পদার্থের যেকোন পূরুত্বের জন্য এর 'K' ফ্যাক্টরকে পূরুত্ব দারা ভাগ (÷) করে তাপ পরিবাহিতাংক 'C' ফ্যাক্টর নিরূপণ করা যায়।

সুতারাং,
$$\mathbf{r} = \frac{1}{K}$$
 বা $\frac{1}{C}$ বা $\frac{X}{K}$

$$\therefore \mathbf{C} = \frac{X}{K}$$
, যাখন \mathbf{X} মিটার এককে একটি স্বতন্ত্র

Presented By: A.M.ATIQULLAH, INSTRUCTOR(Tech) RAC DHAKA POLYTECHNIC INSTITUTE, Dhaka-1208

উপকরণের বেধ। সুতরাং বিভিন্ন উপকরণের স্তর দারা প্রস্তুত কোন বস্তুর মধ্য দিয়ে তাপ পরিবহনের পরিমাণ

$$C = \frac{1}{r_1} = \frac{1}{\frac{x_1}{k_1} + \frac{x_2}{k_2} + \frac{x_n}{k_n} + \dots} W/m^2K$$

ইন্দুটাক্টর(আর এসি) ঢাকা পলিটেকনিক ইন্সটিটিউট, তেজগাঁও, ঢাকা-১২০৮। আবু মোহাম্মদ আতিকুল্যা, টপস্থাপনায়

সারণি-১১ a Thermal Conductivity of Materials Used in Cold storage

Material	Description	Thermal	Thermal		
		Conductivity (K)	Conductance (C)		
		W/mK	W/m ² K		
Masonry	Brick. common	0.72			
	Brick face	1.30			
	Concrete mortar or plaster	0.72			
	Concrete sand aggregate	1.73			
	Concrete block				
	Sand aggregate 100 mm		7.95		
	Sand aggregate 200 mm		5.11		
	Sand aggregate 300 mm		4.43		
	Cinder aggregate 100 mm		5.11		
	Cinder aggregate 200 mm		3.29		
	Cinder aggregate 300 mm		3.01		
	Gypsum plaster 13 mm		17.72		
	Tile, hollow clay 100 mm		5.11		
	Tile, hollow clay 200 mm		3.75		
	Tile, hollow clay 300 mm		3.07		
Woods	Maple, oak, similar hardwoods	0.16			
	Fir, pine, similar hardwoods	0.12			
	Plywood 13 mm		9.09		
	Plywood 19 mm		6.08		

ইন্দুটাক্টর(আর এসি) <mark>टिक्रगी७, जिका-ऽ२०४।</mark> উপস্থাপনায়ঃ আবু মোহাম্মদ আতিকুল্যা, ঢাকা পলিটেকনিক ইন্সটিটিউট,

২৮০ কুলিং অ্যান্ড হিটিং লোড ক্যালকুলেশন

Material	Description	Thermal Conductivity (K) W/mK	Thermal Conductance (C) W/m ² K	
Rooting	Asphalt for rooting		36.91	
	Built-up rooting 9mm		17.03	
Insulating	Blanket or batt, mineral or glass fiber	0.039		
Materials	Board or slab			
	Cellular glass	0.058		
	Corkboard	0.043		
	Glass fiber	0.036		
	Expanded polystyrene (smooth)	0.029		
	Expanded polystyrene (cut cell)	0.036		
	Expanded polyurethane	0.025		
	Loose fill			
	Milled paper or wood pulp	0.039		
	Sawdust or shavings	0.065		
	Mineral wool (rock, glass, slag)	0.037		
	Wood fiber (soft, woods)	0.043		
Surface	Still		9.37	
Conductance	Moving air (3.35 m/s or 12 km/h)		22.70	
(Convection	Moving air (6.7 m/s or 24 km/h)		34.10	
Coefficient)				
Glass	Single pane		6.42	
	Two pane		2.61	
	Three pane		1.65	
	Four pane		1.19	

Adapted from ASHRAE Data Book, Fundamentals Volume, 1972 Edition, by permission of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (Dossat, J.K 1987).

টপস্থাপনায়ঃ আবু মোহাম্মদ আতিকুল্যা , ইন্ট্রাক্টর(আর এসি) <u>ঢাকা পলিটেকনিক ইপটিটিউট, তেজগীও, ঢাকা-১২০৮।</u> সারণি-১.২ 8 Thermophysical Properties of Selected Building and Insulating Materials.

Material	Description and	Specific Heat	Density	Thermal Conductivity	Conductance	
	Temperature in °C	kJ/kgk	kg/m³	W/mK	W/m ² K	
Asphalt				0.74-0.76		
Bricks	Common	0.84	1600	0.77		
	Face brick	0.84	1600	1.32		
	Diatomaceous (fired)			0.24		
	Firebrick (500 to 1100)	0.96	2000	1.04 to 1.09		
	Magnesite (200 to 1200)	1.13				
Woods	Play	_	544	0.1		
	Hard	2.39	720	0.158		
	Soft	2.72	512	0.1		
Masonary	Concrete	0.88	1920	1.73		
Materials	Planter, Cement	0.796	1885	8.65		
	Hollow clay					
	tiles, 10 cm	-	-	-	5.23	
	20 cm	-	-	-	3.14	
	30 cm	-	-	-	2.33	
	Hollow concrete					
	blocks, 10 cm	-	-	-	8.14	
	20 cm	-	-	-	5.23	
	30 cm	-	-	-	4.54	

Material	Description and	Specific Heat	Density	Thermal Conductivity	Conductance	
	Temperature	kJ/kgk	kg/m³	W/mK	W/m ² K	
	in °C					
Glass	Window	0.84	2700	0.78		
	Corosilicate		2200	1.09		
Insulating	Mineral or					
Materials	glass wool	0.67	24-64	0.038		
	Rock wool	-	64	0.067		
	Fibreglass board	0.7	64-144	0.038		
	Cork board	1.884	104-128	0.038		
	Cork					
	Granulated	1.88	45-120	0.045		
	Expanded					
	Polysterene	-	30	0.037		
	Diatomaceous					
	earth	-	320	0.061		
	Felt	-	330	0.052		
	Insulex, dry	-	-	0.064		
	Kapok	-	-	0.035		
	Magnesia	-	270	0.067		
	Asbestos	0.816	470-570	0.154		

সারণি-১.৩

	পরিবাহিতা	ইট	সিমেন্ট কংক্রিট	সিমেন্ট পাস্টার	कार्र	কৰ্ক বোৰ্ড	পলিফোম	কাচ	গাস উল
	"K" ফান্টির	0.72	1.73	0.72	0.17	0.043	0.025	6.82	0.043
-	W/mK	অচল	ছি র	24 km/hrs	12 km/hrs				
		বাতাস	বাতাস	বাতাস	বাতাস				
	"C" ফার্ট্রর	6.2	9.37	34.1	22.7				
	W/m ² -K								

সুতরাং, তাপ পরিবাহিতাঙ্ক, e = -এখানে, x = পদার্থের পূরুত্ব মিটারে (m)আবার, কোনো একটি স্বতন্ত্র উপকরণের তাপ রোধের পরিমাণ এর তাপ পরিবহন গুণাঙ্কের ব্যস্তানুপাতিক বা তাপ পরিবাহিতাংকের ব্যস্তানুপাতিক এবং তা r দারা সুতরাং $r = \frac{1}{X}$ বা $\frac{1}{C}$ বা $\frac{X}{K}$ ∴ $\mathbf{C} = \frac{\mathbf{K}}{\mathbf{K}}$ [একটি স্বতন্ত্র উপকরণের পূরু $\mathbf{v} = \mathbf{x} \ \mathbf{m}$] অতএব, বিভিন্ন উপকরণের স্তর দ্বারা নির্মিত কোনো বস্তর তাপ পরিবাহিতাজ্ঞ বা C ফ্যাক্টর

$$\frac{C = \frac{1}{R} = \frac{1}{\frac{X_1}{K_1} + \frac{X_2}{K_2} + \frac{X_3}{K_3} + \frac{1}{\frac{X_1}{K_1}} + \frac{X_n}{K_n}}{\frac{X_n}{K_n}} W/m^2K$$
(i) চার্ট থেকে মান নেজ্যার সময় সতর্কতার সাথে নিতে হবে

(ii) মনোযোগের সাথে কাজগুলো করতে হবে।

(iii) শ্রেণি শিক্ষকের পরামর্শ বা সহায়তা নিতে হবে

মন্তব্যঃ ইট, কাঠ, সেলুলার গ্লাস ও বিভিন্ন বস্তুতে **K** ফ্যাক্টরের পরিবাহিতা এবং **C** ফ্যাক্টরের পরিবাহিতা সম্পর্কে জানতে পারবে।

সুতরাং, তাপ পরিবাহিতাঙ্ক, $e = \frac{K}{x}$

এখানে, x = পদার্থের পুর'ত মিটারে (m)।

আবার, কোনো একটি স্বতন্ত্র উপকরণের তাপ রোধের পরিমাণ এর তাপ পরিবহন গুণাঙ্কের ব্যস্পনুপাতিক বা তাপ পরিবাহিতাংকের ব্যস্পনুপাতিক এবং তা r দ্বারা সূচিত করা হয়।

সুতরাং
$$r = \frac{1}{x}$$
 বা $\frac{1}{C}$ বা $\frac{x}{K}$

$$\therefore$$
 $C = \frac{K}{r}$. [একটি স্বতন্ত্র উপকরণের পুর'ত্ব $= xm$]

অতএব, বিভিন্ন উপকরণের স্ব দ্বারা নির্মিত কোনো বস্তুর তাপ পরিবাহিতাঙ্ক বা C ফ্যাক্টর

$$C = \frac{1}{R} = \frac{1}{\frac{x_1}{K_1} + \frac{x_2}{K_2} + \frac{x_3}{K_3} + \dots + \frac{x_n}{K_n}} W/m^2 K$$

সতর্কতা ঃ

- (i) চার্ট থেকে মান নেওয়ার সময় সতর্কতার সাথে নিতে হবে।
- (ii) মনোযোগের সাথে কাজগুলো করতে হবে।
- (iii) শ্রেণি শিক্ষকের পরামর্শ বা সহায়তা নিতে হবে।

মন্ব্য ঃ ইট, কাঠ, সেলুলার গাস ও বিভিন্ন বস্তুতে K ফ্যাক্টরের পরিবাহিতা এবং C ফ্যাক্টরের পরিবাহিতা সম্পর্কে জানতে পারবে।

THANKS!

Any questions?
You can find me at atiqullahrac@gmail.com

উপস্থাপনায়ঃ আবু মোহাম্মদ আতিকুল্যা , ইকট্রাক্টর(আর এসি) ঢাকা পলিটেকনিক ইন্সটিটিউট, তেজগাঁও, ঢাকা-১২০৮

