Ensembles *Premier*Ensemble des ε-prod Ensembles *Suivant*Remplissage de la table d'analyse

Ensemble *Premier* - définition

On dit que $Premier(AB) = \{a, b\}$ et $Premier(Da) = \{d, e\}$.

Pour $\alpha \in (V_T \cup V_N)^+$, $Premier(\alpha)$ contient l'ensemble des terminaux de V_T susceptibles de commencer un mot de V_T^+ dérivé de α .

Si $\alpha = \epsilon$, cet ensemble est vide.

Definition

Soit une grammaire algébrique. On définit :

Premier :
$$(V_T \cup V_N)^* \rightarrow \mathcal{P}(V_T)$$

 $\alpha \mapsto \{ \mathbf{a} \in V_T \mid \alpha \Rightarrow^* \mathbf{a} \mathbf{u}, \mathbf{u} \in V_T^* \}$

Analyseur récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)
Analyseurs LL(k), LL(*)

Ensembles Premier

Ensemble des ϵ -prod Ensembles SuivantRemplissage de la table d'analyse

Les Premier sur les arbres syntaxiques

Ensembles PremierEnsemble des ϵ -prod Ensembles SuivantRemplissage de la table d'analyse

Calcul de Premier(X), $X \in V_N$

Si l'ensemble des productions de membre gauche S est :

$$S \rightarrow AB \mid Da$$

alors on a:

$$Premier(S) = Premier(AB) \cup Premier(Da)$$

Cas général : Si la grammaire contient les productions de membre gauche \boldsymbol{X} :

$$X \to \gamma_1 \mid \ldots \mid \gamma_n$$

$$alorsPremier(X) = \bigcup \{Premier(\gamma_i) \mid X \to \gamma_i \in P\}$$

46/119

Ensembles *Premier*Ensemble des ε-prod
Ensembles *Suivant*Remplissage de la table d'analyse

Calcul des *Premier*, $\alpha = X\beta$, $X \in V_N$

Deux cas selon que X peut « s'effacer » ou non :

$$X \Rightarrow^* \epsilon$$
?

Si $X \Rightarrow^* \epsilon$ on dit que X est ϵ -productif : $X \in \epsilon$ -Prod

Ensembles PremierEnsemble des ϵ -prod Ensembles SuivantRemplissage de la table d'analyse

Calcul des Premier

Soit
$$\alpha \in (V_N \cup V_T)^*$$
:

$$\alpha = \epsilon : \emptyset$$

$$\alpha = a, \ a \in V_T : \{a\}$$

$$\alpha = a\beta, \ a \in V_T, \ \beta \in (V_N \cup V_T)^* : \{a\}$$

$$\alpha = X, \ X \in V_N : \bigcup \{Premier(\gamma_i) \mid X \to \gamma_i \in P\}$$

$$\alpha = X\beta, \ X \in V_N \setminus \epsilon\text{-}Prod, \ \beta \in (V_N \cup V_T)^* : Premier(X)$$

$$\alpha = X\beta, \ X \in V_N \cap \epsilon\text{-}Prod, \ \beta \in (V_N \cup V_T)^* : Premier(X) \cup Premier(X)$$

fcas

51/119

Ensembles *Premier*Ensemble des ε-prod
Ensembles *Suivant*Remplissage de la table d'analyse

Calcul effectif des ensembles Premier

On procède en deux étapes :

- 1. on pose un système d'équations pour Premier;
- on calcule par itération de point fixe les plus petits ensembles qui satisfont ces équations.

Pour le moment on suppose donné ϵ -Prod, l'ensemble des ϵ -productifs.

52/119

Exemple : remplissage de la table

$$A \rightarrow aAb$$
 et $Premier(aAb) = \{a\}$
 $A \rightarrow \epsilon$ et $Premier(\epsilon) = \emptyset$

	S	Α	В	D
а	$S \rightarrow AB$	A o aAb	erreur	erreur
Ь	$S \rightarrow AB$	$A o \epsilon$	B o bB	erreur
d	S o Da	erreur	erreur	D o dD
e	S o Da	erreur	erreur	D o e
#	$S \rightarrow AB$	$A ightarrow \epsilon$	$B o \epsilon$	erreur