Introduction to Scientific Programming in Python

WhoAml?

Ayse Bilge Gunduz

PhDc, Comp Eng @ YTU
Women Developers of Turkey
Women Hackerz
Woment Tech Network
Application Security and Data
Science Enthusiast
Muay Thai

- @abilgegunduz
- M @aysebilgegunduz

Python

Why Python3

Python 2.7 is end of life, and will not be maintained past January 1, 2020.

Working with Python 2.7 is a risk that you won't find sufficient support sooner or later.

```
1 import numpy as np #importing let us use the lib
```

```
1 x=7
2
3 print(np.exp(x)) #1096.6331584284585
4 print(np.abs(x)) #7
5 print(np.pi) #3.141592653589793
6 print(np.e) #2.718281828459045
```

Output

```
1096.6331584284585
7
3.141592653589793
2.718281828459045
```

Input

```
1 A = np.array([0, 1, 2, 3], dtype=np.float) #create array
2 print(A)
3
4 print(A.ndim) # number of dimensions, in Matlab `ndims(a)`
5 print(A.shape) # shape, in Matlab `size(a)`
6 print(A.dtype) # the data type of the array
```

Output

```
[0. 1. 2. 3.]
1
(4,)
float64
```

Input

Output

NumPy - Vector


```
1 d1 = np.diag([1,2,3]) # a diagonal matrix
2 d2 = np.diag([1,2,3], k=1) #diagonal with offset from the main diagonal
3
4 m1 = np.zeros((5,4))
5 m2 = np.ones((2,3))
6
7 print("m1 : \n", m1)
8 print("-----")
9 print("m2 : \n", m2)
```

```
1 d1 = np.diag([1,2,3]) # a diagonal matrix
2 d2 = np.diag([1,2,3], k=1) #diagonal with offset from the main diagonal
3
4 m1 = np.zeros((5,4))
5 m2 = np.ones((2,3))
6
7 print("m1 : \n", m1)
8 print("-----")
9 print("m2 : \n", m2)
```



```
1 d1 = np.diag([1,2,3]) # a diagonal matrix
2 d2 = np.diag([1,2,3], k=1) #diagonal with offset from the main diagonal
3
4 m1 = np.zeros((5,4))
5 m2 = np.ones((2,3))
6
7 print("m1 : \n", m1)
8 print("-----")
9 print("m2 : \n", m2)
```

```
d1 :
  [[1 0 0]
  [0 2 0]
  [0 0 3]]
  d2 :
  [[0 1 0 0]
  [0 0 2 0]
  [0 0 0 0]]
```

```
1 d1 = np.diag([1,2,3])  # a diagonal matrix
2 d2 = np.diag([1,2,3], k=1)  #diagonal with offset from the main diagonal
3
4 m1 = np.zeros((5,4))
5 m2 = np.ones((2,3))
6
7 print("m1 : \n", m1)
8 print("------")
9 print("m2 : \n", m2)
```

```
d1:
  [[1 0 0]
  [0 2 0]
  [0 0 3]]
d2:
  [[0 1 0 0]
  [0 0 2 0]
  [0 0 0 0]]
```

```
m1 :
  [[0. 0. 0. 0.]
  [0. 0. 0. 0.]
  [0. 0. 0. 0.]
  [0. 0. 0. 0.]
  [0. 0. 0. 0.]]
  -----
m2 :
  [[1. 1. 1.]
  [1. 1. 1.]]
```



```
The Matrix A:

[[ 0  1  2  3  4]

[ 2  3  4  5  6]

[ 4  5  6  7  8]

[ 6  7  8  9  10]

[ 8  9  10  11  12]]

Selected rows of A:

[[ 2  3  4  5  6]

[ 4  5  6  7  8]

[ 6  7  8  9  10]]

Selected indices of A: [ 3  6  10]

numpy choose(): [ 5 -2  4  3  9]
```

```
The Matrix A:

[[ 0  1  2  3  4]

[ 2  3  4  5  6]

[ 4  5  6  7  8]

[ 6  7  8  9  10]

[ 8  9  10  11  12]]

Selected rows of A:

[[ 2  3  4  5  6]

[ 4  5  6  7  8]

[ 6  7  8  9  10]]

Selected indices of A: [ 3  6  10]

numpy choose(): [ 5 -2  4  3  9]
```

```
1 A = np.array([[n+m*10 for n in range(3)] for m in range(3)])
2 print("2-d Array\n A:\n",A)
3
4 v1 = np.arange(0, 3)
5 print("Vector:\n", v1)
6 print("-"*25)
7 print("Matrix Multiplication:")
8 print("A*A: \n",np.dot(A, A)) #matrix multiplication using array
9 print("A*V:\n",np.dot(A, v1)) #matrix multiplication using array and vector
```

NumPy - Matrix Manipulation

```
1 A = np.array([[n+m*10 for n in range(5)] for m in range(5)])
2 # #
3 n, m = A.shape
4 print("Shape of the Array:\n{0}x{1}".format(n,m))
5 #
6 print("N-dimensional Array A:\n",A)
7 #flattenning
8 C = A.flatten()
9 print("Flatten to a Vector: \n", C)
```

```
Shape of the Array:

5x5

N-dimensional Array A:

[[ 0  1  2  3  4]

[10  11  12  13  14]

[20  21  22  23  24]

[30  31  32  33  34]

[40  41  42  43  44]]

Flatten to a Vector:

[ 0  1  2  3  4  10  11  12  13  14  20  21  22  23  24  30  31  32  33  34  40  41  42  43  44]
```

Matplotlib

```
import matplotlib.pyplot as plt

x = np.linspace(0, 5, 10) #Returns num evenly spaced samples

y = x ** 2

plt.figure()

plt.plot(x, y, 'r') #plot(coord_x, coord_y, color)

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('title')

plt.show()
```



```
1 import seaborn as sns
2 sns.set()
3
4 iris = sns.load_dataset("iris")
5
6 sns.relplot(x="species", y="sepal_width", data=iris);
```

```
1 import seaborn as sns
2 sns.set()
3
4 iris = sns.load_dataset("iris")
5
6 sns.relplot(x="species", y="sepal_width", data=iris);
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
					•••
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica
[150	rows x 5 colu	mns]			

```
import seaborn as sns
sns.set()

iris = sns.load_dataset("iris")

sns.relplot(x="species", y="sepal_width", data=iris);
```



```
1 sns.set()
2
3 iris = sns.load_dataset("iris")
4
5 sns.violinplot(x="species", y="sepal_width", data=iris);
```



```
1 #Iris Dataset
2 data = sns.load_dataset("iris")
3 f, (ax1, ax2) = plt.subplots (1, 2, figsize=(10,5))
4 #histogram for sepal_widht colored as blue
5 ax1.hist(data["sepal_width"], label="sepal_width",bins=10, color='b')
6 #histogram for sepal_widht colored as red
7 ax2.hist(data["petal_length"], label="petal_length",bins=7, color='r')
8 plt.show()
```


Kaggle - Gotta train'em all

```
1 import pandas as pd
2
3 df = pd.read_csv("pokemon.csv", encoding = "latin-1")
4 df.head(10)
```

Kaggle - Gotta train'em all

```
1 import pandas as pd
2
3 df = pd.read_csv("pokemon.csv", encoding = "latin-1")
4 df.head(10)
```

	#	Name	Туре 1	Type 2	Total	нР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	False
1	2	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1	False
2	3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	False
3	3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	False
4	4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	False
5	5	Charmeleon	Fire	NaN	405	58	64	58	80	65	80	1	False
6	6	Charizard	Fire	Flying	534	78	84	78	109	85	100	1	False
7	6	CharizardMega Charizard X	Fire	Dragon	634	78	130	111	130	85	100	1	False
8	6	CharizardMega Charizard Y	Fire	Flying	634	78	104	78	159	115	100	1	False
9	7	Squirtle	Water	NaN	314	44	48	65	50	64	43	1	False

```
1 import pandas as pd
2
3 df.tail()
4 #transposed version of dataframe
5 df.tail().T
```

```
1 import pandas as pd
2
3 df.tail()
4 #transposed version of dataframe
5 df.tail().T
```

	#	Name	Туре 1	Type 2	Total	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
794	718	Zygarde50% Forme	Dragon	Ground	600	108	100	121	81	95	95	6	True
795	719	Diancie	Rock	Fairy	600	50	100	150	100	150	50	6	True
796	719	DiancieMega Diancie	Rock	Fairy	700	50	160	110	160	110	110	6	True
797	720	HoopaHoopa Confined	Psychic	Ghost	600	80	110	60	150	130	70	6	True
798	720	HoopaHoopa Unbound	Psychic	Dark	680	80	160	60	170	130	80	6	True
799	721	Volcanion	Fire	Water	600	80	110	120	130	90	70	6	True

```
1 import pandas as pd
2
3 df.tail()
4 #transposed version of dataframe
5 df.tail().T
```

	794	795	796	797	798	799
#	718	719	719	720	720	721
Name	Zygarde50% Forme	Diancie	DiancieMega Diancie	HoopaHoopa Confined	HoopaHoopa Unbound	Volcanion
Type 1	Dragon	Rock	Rock	Psychic	Psychic	Fire
Type 2	Ground	Fairy	Fairy	Ghost	Dark	Water
, Total	600	600	700	600	680	600
7 HP	108	50	50	80	80	80
Attack	100	100	160	110	160	110
Defense	121	150	110	60	60	120
Sp. Atk	81	100	160	150	170	130
Sp. Def	95	150	110	130	130	90
Speed	95	50	110	70	80	70
Generation	6	6	6	6	6	6
Legendary	True	True	True	True	True	True

```
1 import pandas as pd
2
3 #the information located in 117
4 df.loc[117]
```

```
109
              Koffing
Name
               Poison
Type 1
Type 2
                   NaN
Total
                   340
ΗP
                    40
Attack
                    65
Defense
                    95
Sp. Atk
                    60
Sp. Def
                    45
Speed
                    35
Generation
Legendary
                False
Name: 117, dtype: object
```

Scikit-Learn

Demo

Gotta Train'em All!

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

matplotlib inline #to render the figure in notebook

pokemon = pd.read_csv("pokemon.csv", index_col=0)

pokemon.head()
```

	Name	Туре 1	Type 2	Total	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
#												
1	Bulbasaur	Grass	Poison	318	45	49	49	65	65	45	1	False
2	lvysaur	Grass	Poison	405	60	62	63	80	80	60	1	False
3	Venusaur	Grass	Poison	525	80	82	83	100	100	80	1	False
3	VenusaurMega Venusaur	Grass	Poison	625	80	100	123	122	120	80	1	False
4	Charmander	Fire	NaN	309	39	52	43	60	50	65	1	False

Gotta Train'em All!

1 pokemon.groupby(['Type 1', 'Type 2'])[['Speed']].mean()

Gotta Train'em All!

```
1 #Number of pokemon has Null value in feature value
2 pokemon.isnull().sum()
```

Name	0
Type 1	0
Type 2	386
Total	0
HP	0
Attack	0
Defense	0
Sp. Atk	0
Sp. Def	0
Speed	0
Generation	0
Legendary	0
dtype: int64	

```
1 sns.set_style('darkgrid')
2 sns.set_color_codes("pastel")
3 plt.figure(figsize=(13,10))
4
5 #Number of pokemon according to their Type 1
6 pokemon['Type 1'].value_counts().plot.barh(width=.8).set_title('Pokemon Types (Type 1)', fontsize
7
8 plt.xlabel('type')
9 plt.ylabel('#of Pokemon');
```



```
1 #How many legendary pokemon exists in this list?
2 pokemon['Legendary'].value_counts()
```

```
1 #How many legendary pokemon exists in this list?
2 pokemon['Legendary'].value_counts()
```

```
False 735
True 65
Name: Legendary, dtype: int64
```

```
1 #How many legendary pokemon exists in this list?
2 pokemon['Legendary'].value_counts()
```

```
False 735
True 65
Name: Legendary, dtype: int64
```

```
1 #What is the type of Legendary Pokemons according to their Type 1 value?
2 pokemon[pokemon['Legendary']==True]['Type 1'].value_counts()
```

```
1 #How many legendary pokemon exists in this list?
2 pokemon['Legendary'].value_counts()
```

```
False 735
True 65
Name: Legendary, dtype: int64
```

```
1 #What is the type of Legendary Pokemons according to their Type 1 value?
2 pokemon[pokemon['Legendary']==True]['Type 1'].value_counts()
```

```
Psychic
            14
            12
Dragon
Fire
Electric
Ground
Rock
Water
Steel
Grass
Flying
Ghost
Normal
Ice
Dark
Fairy
Name: Type 1, dtype: int64
```

```
1 #Clean the data
2 #Since we don't need Type 2, Name and Total we'll drop them
3 pokemon_cln = pokemon.copy()
4 pokemon_cln.drop(['Name', 'Type 2', 'Total'], axis=1, inplace=True)
5 pokemon_cln.head(10)
```

```
1 #Clean the data
2 #Since we don't need Type 2, Name and Total we'll drop them
3 pokemon_cln = pokemon.copy()
4 pokemon_cln.drop(['Name', 'Type 2', 'Total'], axis=1, inplace=True)
5 pokemon_cln.head(10)
```

	Туре 1	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
#									
1	Grass	45	49	49	65	65	45	1	False
2	Grass	60	62	63	80	80	60	1	False
3	Grass	80	82	83	100	100	80	1	False
3	Grass	80	100	123	122	120	80	1	False
4	Fire	39	52	43	60	50	65	1	False
5	Fire	58	64	58	80	65	80	1	False
6	Fire	78	84	78	109	85	100	1	False
6	Fire	78	130	111	130	85	100	1	False
6	Fire	78	104	78	159	115	100	1	False
7	Water	44	48	65	50	64	43	1	False

```
1 pokemon_cln.dtypes
2 # Type 1 is object
3 # Legendary is bool
```



```
1 pokemon_cln.dtypes
2 # Type 1 is object
3 # Legendary is bool
```

```
object
Type 1
               int64
HΡ
Attack
               int64
               int64
Defense
Sp. Atk
               int64
               int64
Sp. Def
Speed
               int64
Generation
               int64
Legendary
                bool
dtype: object
```



```
1 #Standardize data for Legendary
2 pokemon_cln['Legendary'] = pokemon_cln['Legendary'].astype(int)
3 #check the data types again
4 pokemon_cln.dtypes
```

Type 1	object
HP	int64
Attack	int64
Defense	int64
Sp. Atk	int64
Sp. Def	int64
Speed	int64
Generation	int64
Legendary	bool
dtype: object	


```
1 #Standardize data for Legendary
2 pokemon_cln['Legendary'] = pokemon_cln['Legendary'].astype(int)
3 #check the data types again
4 pokemon_cln.dtypes
```

Type 1	object	
HP	int64	
Attack	int64	
Defense	int64	
Sp. Atk	int64	
Sp. Def	int64	
Speed	int64	
Generation	int64	
Legendary	int64	
dtype: object		


```
1 # Standardize data for Type 1
2 from sklearn.preprocessing import LabelEncoder
3 lb_make = LabelEncoder()
4 pokemon_cln['Type 1'] = lb_make.fit_transform(pokemon_cln['Type 1'])
```

```
1 # Standardize data for Type 1
2 from sklearn.preprocessing import LabelEncoder
3 lb_make = LabelEncoder()
4 pokemon_cln['Type 1'] = lb_make.fit_transform(pokemon_cln['Type 1'])
```

```
int64
Type 1
            int64
HP
            int64
Attack
Defense
           int64
Sp. Atk int64
Sp. Def int64
Speed
       int64
Generation int64
Legendary
           int64
dtype: object
```

```
1 # Standardize data for Type 1
2 from sklearn.preprocessing import LabelEncoder
3 lb_make = LabelEncoder()
4 pokemon_cln['Type 1'] = lb_make.fit_transform(pokemon_cln['Type 1'])
```

```
Type 1
              int64
              int64
HP
              int64
Attack
Defense
              int64
Sp. Atk
             int64
Sp. Def
             int64
Speed
             int64
Generation
             int64
Legendary
              int64
dtype: object
```



```
#Min-Max Normalization is applied
#but we'll exclude Legendary since it'll be our class value

from sklearn.preprocessing import MinMaxScaler

min_max_scaler = MinMaxScaler()

X_minmax = min_max_scaler.fit_transform(pokemon_cln.drop('Legendary', axis=1))

X = pd.DataFrame(X_minmax, columns=pokemon_cln.columns[:-1])

y = pokemon_cln['Legendary']

print(X,y)
```

```
#Min-Max Normalization is applied
#but we'll exclude Legendary since it'll be our class value
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler()

X_minmax = min_max_scaler.fit_transform(pokemon_cln.drop('Legendary', axis=1))
X = pd.DataFrame(X_minmax, columns=pokemon_cln.columns[:-1])
y = pokemon_cln['Legendary']
print(X,y)
```



```
1 #Min-Max Normalization is applied
2 #but we'll exclude Legendary since it'll be our class value
3 from sklearn.preprocessing import MinMaxScaler
 min max scaler = MinMaxScaler()
 X minmay - min may goalor fit transform(nokomon aln dron('Togondary' avis-1))
                                           Sp. Def
                                                      Speed Generation
          Type 1
                              Attack
6 X =
                                          0.214286 0.228571
7 v = 0
         0.529412 0.173228 0.237838 ...
                                                                    0.0
         0.529412 0.232283 0.308108 ...
                                          0.285714 0.314286
                                                                    0.0
8 prin 1
         0.529412 0.311024 0.416216 ...
                                          0.380952 0.428571
                                                                   0.0
         0.529412 0.311024 0.513514 ...
                                          0.476190 0.428571
                                                                    0.0
          0.352941 0.149606 0.254054 ...
                                          0.142857 0.342857
                                                                    0.0
                                                                    . . .
      795
         0.882353 0.192913 0.513514 ...
                                          0.619048 0.257143
                                                                   1.0
      796 0.882353 0.192913 0.837838 ...
                                          0.428571 0.600000
                                                                   1.0
     797 0.823529 0.311024 0.567568 ...
                                          0.523810 0.371429
                                                                   1.0
      798 0.823529 0.311024 0.837838 ... 0.523810 0.428571
                                                                   1.0
      799 0.352941 0.311024 0.567568 ... 0.333333 0.371429
                                                                   1.0
      [800 rows x 8 columns] #
            0
            0
      719
            1
      719
      720
      720
            1
      721
     Name: Legendary, Length: 800, dtype: int64
```

```
1 from sklearn.model_selection import train_test_split
2 #Divide the dataset into train and test
3 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3, random_state=90)
4 #print out the length of arrays in order
5 print("X train: {0}, y train: {1}, X test: {2}, y test: {3}".format(len(X train), len(y train), len(y train), len(y train), len(y train), len(y train)
```

X_train: 560, y_train: 560, X_test: 240, y_test: 240

womentech n e t w o r k

Thanks for listening...

