SBML Model Report

Model name: "Wodarz2003 Immunological Memory"

May 17, 2018

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Matthew Grant Roberts¹ and Catherine Lloyd² at June 25th 2010 at 1:23 p. m. and last time modified at March eighth 2018 at 4:30 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	28	unit definitions	3
rules	15	initial assignments	0

Model Notes

This a model from the article:

Evolution of immunological memory and the regulation of competition between pathogens. Wodarz D. $\underline{\text{Curr Biol}}\ 2003\ \text{Sep}\ 16;13(18):1648-52\ 13678598$,

Abstract:

¹EMBL-EBI, mroberts@embl.ac.uk

 $^{^2} University \ of \ Auckland, \ {\tt c.lloyd@auckland.ac.nz}$

Memory is a central characteristic of immune responses. It is defined as anelevated number of specific immune cells that remain after resolution ofinfection and can protect the host against reinfection. The evolution ofimmunological memory is subject to debate. The advantages of memory discussed sofar include protection from reinfection, control of chronic infection, and thetransfer of immune function to the next generation. Mathematical models are used to identify a new force that can drive the evolution of immunological memory:the duration of memory can regulate the degree of competition between different pathogens. While a long duration of memory provides lasting protection againstreinfection, it may also allow an inferior pathogen species to persist. This canbe detrimental for the host if the inferior pathogen is more virulent. On theother hand, a shorter duration of memory ensures that an inferior pathogenspecies is excluded. This can be beneficial for the host if the inferior pathogen is more virulent. Thus, while in the absence of pathogen diversitymemory is always expected to evolve to a long duration, under specific circumstances, memory can evolve toward shorter durations in the presence of pathogen diversity.

This model was taken from the CellML repository and automatically converted to SBML.

The original model was: Wodarz D. (2003) - version=1.0

The original CellML model was created by:

Catherine Lloyd

c.lloyd@auckland.ac.nz The University of Auckland

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of seven unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit day

Name day

Definition 86400 s

2.2 Unit first_order_rate_constant

Name first_order_rate_constant

Definition $(86400 \text{ s})^{-1}$

2.3 Unit time

Name time

Definition 86400 s

2.4 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.5 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.6 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.7 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
COMpartment	population		3	1		Ø	

3.1 Compartment COMpartment

This is a three dimensional compartment with a constant size of one litre.

Name population

4 Parameters

This model contains 28 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO Value U	Unit Constant
S	S	100.00	
r	r	0.50	
epsilon	epsilon	0.10	
H	Н	100.00	
P	P	0.20	
$I_{-}1$	$I_{-}1$	0.00	
$I_{-}2$	I_2	0.00	
$I_{-}12$	I_12	0.00	
I_21	I_21	0.00	
$R_{-}1$	$R_{-}1$	0.00	
$R_{-}2$	$R_{-}2$	0.00	
$R_{-}12$	$R_{-}12$	0.00	\boxminus
$P_{-}1$	$P_{-}1$	0.10	\boxminus
$k_{-}1$	$k_{-}1$	0.10	
log_P1	log_P1	-1.00	\boxminus
P_2	P_2	0.10	\boxminus
k_2	k_2	0.10	
log_P2	log_P2	-1.00	\boxminus
G	G	100.00	\boxminus
g	g	0.01	
beta_1	beta_1	1.00	
${\tt alpha_1}$	alpha_1	0.10	

Id	Name	SBO Value Unit	Constant
beta_2	beta_2	1.00	
alpha_2	alpha_2	0.10	
$a_{-}1$	$a_{-}1$	0.03	\square
$a_{-}2$	$a_{-}2$	1.00	
d	d	0.01	
u	u	0.50	\square

5 Rules

This is an overview of 15 rules.

5.1 Rule H

Rule H is an assignment rule for parameter H:

$$H = S + I_{-1} + R_{-1} + I_{-2} + R_{-2} + I_{-12} + I_{-21} + R_{-12}$$
(1)

5.2 Rule P

Rule P is an assignment rule for parameter P:

$$P = P_{-}1 + P_{-}2 \tag{2}$$

5.3 Rule log_P2

Rule log_P2 is an assignment rule for parameter log_P2:

$$\log_{P2} = \frac{\log_{10} P_{-2}}{\log_{10} 10} \tag{3}$$

Derived unit dimensionless

5.4 Rule G

Rule G is an assignment rule for parameter G:

$$G = \frac{1}{g} \tag{4}$$

5.5 Rule log_P1

Rule log_P1 is an assignment rule for parameter log_P1:

$$log_P1 = \frac{log_{10}P_1}{log_{10}10}$$
 (5)

Derived unit dimensionless

5.6 Rule S

Rule S is a rate rule for parameter S:

$$\frac{d}{dt}S = \frac{r \cdot H}{epsilon \cdot H + 1} - d \cdot S - beta_{-}1 \cdot S \cdot P_{-}1 - beta_{-}2 \cdot S \cdot P_{-}2 + g \cdot (R_{-}1 + R_{-}2 + R_{-}12)$$
 (6)

5.7 Rule I_1

Rule I_1 is a rate rule for parameter I_1:

$$\frac{d}{dt}I_{-1} = beta_{-1} \cdot S \cdot P_{-1} - a_{-1} \cdot I_{-1} - alpha_{-1} \cdot I_{-1}$$
(7)

5.8 Rule I_2

Rule I_2 is a rate rule for parameter I_2:

$$\frac{d}{dt}I_{.2} = beta_{.2} \cdot S \cdot P_{.2} - a_{.2} \cdot I_{.2} - alpha_{.2} \cdot I_{.2}$$
 (8)

5.9 Rule I_12

Rule I_12 is a rate rule for parameter I_12:

$$\frac{d}{dt}I_{-}12 = beta_{-}2 \cdot R_{-}1 \cdot P_{-}2 - a_{-}2 \cdot I_{-}12 - alpha_{-}2 \cdot I_{-}12$$
(9)

5.10 Rule I_21

Rule I_21 is a rate rule for parameter I_21:

$$\frac{d}{dt}I_{-}21 = beta_{-}1 \cdot R_{-}2 \cdot P_{-}1 - a_{-}1 \cdot I_{-}21 - alpha_{-}1 \cdot I_{-}21$$
(10)

5.11 Rule R_1

Rule R₋₁ is a rate rule for parameter R₋₁:

$$\frac{d}{dt}R_{-1} = alpha_{-1} \cdot I_{-1} - d \cdot R_{-1} - g \cdot R_{-1} - beta_{-2} \cdot R_{-1} \cdot P_{-2}$$
(11)

5.12 Rule R_2

Rule R_2 is a rate rule for parameter R_2:

$$\frac{d}{dt}R_{-2} = alpha_{-2} \cdot I_{-2} - d \cdot R_{-2} - g \cdot R_{-2} - beta_{-1} \cdot R_{-2} \cdot P_{-1}$$
(12)

5.13 Rule R_12

Rule R_12 is a rate rule for parameter R_12:

$$\frac{d}{dt}R_{-}12 = alpha_{-}2 \cdot I_{-}12 + alpha_{-}1 \cdot I_{-}21 - d \cdot R_{-}12 - g \cdot R_{-}12$$
(13)

5.14 Rule P_1

Rule P₋₁ is a rate rule for parameter P₋₁:

$$\frac{d}{dt}P_{-1} = k_{-1} \cdot (I_{-1} + I_{-21}) - u \cdot P_{-1}$$
(14)

5.15 Rule P_2

Rule P_2 is a rate rule for parameter P_2:

$$\frac{d}{dt}P_{-2} = k_{-2} \cdot (I_{-2} + I_{-1}12) - u \cdot P_{-2}$$
(15)

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

 $[^]d$ EML Research gGmbH, Heidelberg, Germany