

计算机组成原理

北京邮电大学 计算机学院 易秋萍 yiqiuping@bupt.edu.cn

课前调查1

- ■你现在使用什么设备进入课堂的
 - A 台式机
 - B笔记本
 - C平板电脑
 - D手机

课程计划

总学时	64 学时
课堂教学	48 学时
实 验	16 学时
作业	6-8次
考 试	期中考试+期末考试(闭卷)
成绩	硬件实验20%、期中考试10%、平时作业 10%、期末考试60%
答 疑	课间十课后

课程内容

- ■计算机概述
 - ◆性能指标、层次结构
- ■数据表示与运算器
 - ◆数据的表示、运算器
 - ◆浮点运算方法
- ■存储器
 - ◆存储器系统、存储器控制器
 - ◆Cache、虚拟存储器
- ■指令系统
 - ◆指令集架构、寻址方式
 - ◆典型指令

- ■中央处理器
- CPU模型机、指令执行过程、微程 序控制器
 - ◆硬布线控制器
- ■总线
 - ◆总线分类、总线仲裁
 - ◆总线定时
- ■外围设备
 - ◆磁盘、显示
- ■输入输出系统
 - ◆程序查询、中断、DMA
 - ◆通道方式

Principles of Computer Organization

实验内容

- 1. 运算器组成
- 2. 双端口存储器
- 3. 数据通路
- 4. 微程序控制器
- 5. CPU组成与机器指令的执行
- 6. 中断原理
- 实验设备: TEC-8

课程目的

- ■了解计算机的组成
 - ◆构成计算机的五大部件
- ■掌握计算机的运行机制
 - ◆计算机是如何执行程序的
- ■理解计算机中处理器、存储器、输入/输出设备等部件的工作原理
- ■建立软件与硬件之间的关联、层次化结构计算机系统的概念
- ■通过本课程的理论和实践学习,掌握单处理机系统的组成原理和实现方法,建立起完整的计算机系统概念,初步具备硬件的设计与调试能力
- ■成为计算机"大牛"

课程目的

- David A. Patterson@CS. UCB
 - ◆professor of computer science at the University of California, Berkeley since 1976
 - ◆noted for his pioneering contributions to RISC design, and by leading the Berkeley RISC project
 - ◆becoming a distinguished software engineer at Google, 2016

"软件系统性能取决于软件设计者对系统硬件的理解程度。操作系统设计者、更多的软件工程师需要有较强的计算机组织与设计的背景知识"

程序执行结果不仅取决于算法和程序设计,而且取决于其运行时环境和计算机体系结构!

学习方法

- ■课堂听课
- ■课前预习
- ■课后消化所学内容
- ■阅读参考资料
- ■完成习题
- ■完成实验及实验报告

专业课学习的本质是:理解原理,而不是刷题!

教材及参考书

教材

■《计算机组成原理》(第6版)白中英等编科学出版社

参考书

- ■《计算机组成与设计》(第5版)David A. Patterson、John L. Hennessy著,机械工业出版社
- ■《计算机组成原理》唐朔飞主编,高等教育出版社
- 《深入理解计算机系统》 (美) Randal E. Bryant 等 第2、3、4、6、9章

处理器内核高危漏洞^{2018年}

学习完本课程后,可以基本理解该漏洞的原理!

- ■Meltdown(熔断)、Spectre(幽灵)
- ■国家信息安全漏洞共享平台(CNVD)对其评级为"高危"
- 攻击者利用这两组漏洞,在一定条件下可绕过内存访问的安全隔 离机制获取密钥等隐私信息
- ■近20年的Intel、AMD、高通厂家和其它ARM处理器均受到影响, 影响面甚广
- ■攻击原理:
 - ◆现代处理器采用乱序执行(Out-of-Order Execution)和推测执行(Speculative Execution)加速程序执行,这两种执行在遇到异常或分支预测错误时,CPU会丢弃之前执行结果,将 CPU状态恢复到乱序执行或预测执行前的正确状态,然后选择对应正确的指令继续执行,但此时并没有恢复缓存的内容,黑客可通过旁道攻击(Side Channel Attack)获取到缓存的敏感内容

第1章 计算机概述

计算机在干啥?

计算机里都有啥?

处理器内部视图

Core i7 Mobile Processor Die Map

1.1 计算机的分类和应用

通用计算机分类

超级计算机、大型机、服务器、工作站、微型机、单片机

面向应用的分类

- ■通用计算机
 - 具有计算机的标准形态,通过安装不同的应用软件,以相似的外观呈现并应用在各行各业,例如:你的PC机
- ■专用计算机/嵌入式(Embedded)计算机 安装或嵌入到交通工具、仪器仪表、控制系统、通信设备和家电产品 等中的模块化计算机,例如:

e.g. Autonomous Drone With AI and CV

嵌入式系统: 4核64bit ARM 256核GPU 4GBRAM 64GB 12x cameras WiFi

. . .

课前调查

- ■课堂直播效果
 - A画面不卡顿、声音清晰
 - B画面卡顿
 - C 画面卡顿, 家里网络质量差
 - D效果差,只能用手机上网

计算机的应用领域

- ■科学计算:密码破译、天气预报、地质勘探、卫星轨道 计算
- ■信息处理:信息数据处理、搜索引擎、文字处理、事务 处理、信息管理
- ■实时控制:程控交换机、路由器、自动驾驶、测控系统
- ■人工智能: 自然语言处理、模式识别、机器学习
- ■计算机辅助设计: 电路设计、模拟仿真
- ■娱乐和游戏

1.2 计算机发展简史

计算机的演进

- 第0代 机械时代 (BC-1940)
- 第1代 电子管时代(1946-1957) 耗电高,体积大,定点计算,机器语言,汇编语言
- 第2代 晶体管时代(1958-1964) 变集中处理为分级处理,浮点运算、高级语言
- 第3代 集成电路时代(1965-1971) 存储容量大,运算速度快,几十至几百万次/秒
- ■第4代 超大规模集成电路时代(1972-现在)
- 第5代 量子计算机、光计算机、生物计算机?

世界上第一台计算机ENIAC

1946美国宾夕法尼亚大学

Mauchly 和Eckert 设计 美国国防部用它来进行弹道计算

- 18000多个电子管
- 耗电功率150千瓦
- 170平方米, 重30吨
- 5000次加法/秒
- ■使用十进制数

- 20个累加寄存器,每个存放10位有符号十进制数
- 通过设置6000个开关和拔插电缆来实现编程
- 采用手动编程,通过设置开关和插拔电缆实现。

IAS 计算机

- 1945 年冯·诺依曼 / 图灵同时提出"存储程序"思想,于 1946 年开始设计"存储程序"计算机,被称为 IAS 计算机。
- 也称为Von Neumann机。冯·诺依曼结构计算机
- 现代计算机体系结构的鼻祖: 五大功能部件, 是后来通用计算机的原型。
- 将程序和数据存储在同一个存储器中
- 采用二进制数据: 简化了存储器设计
- ■字长40位,存储器地址12位,指令长度20位
- 只实现整数运算: 任何有能力的数学家都能在头脑中记住小数点的位置

计算机技术飞速发展

- 1946年 → 2019年, 计算机处理速度:
 - ◆5000次加法/秒 → 14.86亿亿次/秒(超级计算机完成)
- 比尔盖茨曾在一个演讲中说到: 假如GM的技术能象计算机技术那样发展, 我们现在应该能用25美元买到一辆一加仑汽油跑1000英里的汽车
- GM反驳道: 如果GM发展的技术象微软那样,那么现在开的汽车会有以下特点:
 - ◆你的汽车可能毫无道理地每天抛锚两次
 - ◆每条公路上重新画线,你都得买辆新的汽车
 - ◆有时候你的车在高速公路上莫名其妙地熄火,你必需Accept,然后Restart
 - ◆安全气囊弹出前将询问"ARE YOU SURE?"要求您加以确认。
 - ◆有时候你的车在左转弯时突然熄火,而且无法Restart,所以你必需 Reinstall发动机

••••

对比

- 1976 Cray1
 - ♦250 M Ops/second
 - **♦~170,000** chips
 - ♦ 0.5B transistors
 - ♦5,000 kg, 115 KW
 - **♦**\$9M
 - ♦80 manufactured

- **2017 iPhone X**
 - ♦> 10 B Ops/second
 - ♦ 16 chips
 - **◆4.3B** transistors (CPU only)
 - ◆174 g, < 5 W
 - **\$999**
 - ♦~3 million sold in first 3 days

全球超级计算机排行(2021年11月最新榜单)

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
5	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE D0E/SC/LBNL/NERSC United States	761,856	70,870.0	93,750.0	2,589

Principles of Computer Organization 2

2021年11月Top500排名第4

- ■中国: 神威·太湖之光
- ■制造商: 国家并行计算机工程技术研究中心
- ■地点: 国家超级计算无锡中心
- 实测性能: 93,014.6 TFlop/s (9.3亿亿次/秒)
- 处理器: SW26010 260C 1.45GHz
- 处理器核数: 10,649,600
- ■内存容量: 1,310,720GB
- OS: Sunway RaiseOS
- 互联方式: Sunway
- ■功耗: 15371kW

IBM Blue Gene/L

(2 processors/chip) • (2 chips/compute card) • (16 compute cards/node board) • (32 node boards/tower) • (64 tower) = 128k = 131072 (0.7 GHz PowerPC 440) processors (64k nodes)

System **System Location: Lawrence Livermore National Laboratory** (64 cabinets, 64x32x32) **Networks:** Cabinet 3D Torus point-to-point network (32 Node boards, 8x8x16) Global tree 3D point-to-point network (both proprietary) Node Board (32 chips, 4x4x2) 16 Compute Cards Compute Card 180/360 TF/s (2 chips, 2x1x1) 16 TB DDR Chip (2 processors) 2.9/5.7 TF/s

90/180 GF/s

8 GB DDR

2.8 Gflops peak per processor core

2.8/5.6 GF/s 4 MB 5.6/11.2 GF/s 0.5 GB DDR

LINPACK Performance:

280,600 GFLOPS = 280.6 TeraFLOPS = 0.2806 Peta FLOP

Top Peak FP Performance:

Now about 367,000 GFLOPS = 367 TeraFLOPS = 0.367 Peta FLOP

Design Goals:

256 GB DDR

- High computational power efficiency
- High computational density per volume

硬件定律

TO TO STAND AND THE STAND AND

- ■信号传输速度赶不上光速
- ■内存赶不上CPU速度
- ■软件赶不上硬件
- Moore's Law

April 19, 1965

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

■ 摩尔定律:集成电路芯片中晶体管数量大体上每2年翻一番,或者价格下降一半

Principles of Computer Organization

Moore's Law: 50年

计算机的性能指标

容量

速度

计算机性能指标(容量)

计算机性能指标(容量)

■n个二进制位能表示多少种不同的状态?

1个二进制位	0, 1	2 ¹
2个二进制位	00, 01, 10, 11	2 ²
3个二进制位	000, 001, 010, 011, 100, 101, 110, 111	2^3
•••	•••	
n个二进制位		2 ⁿ

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	32768	65536

 2^{10} : K 2^{20} : M 2^{30} : G 2^{40} : T

计算机性能指标 (速度)

机器字长:指处理机运算器中一次能够完成二进制数运算的位数。 (一般等于内部寄存器的位数)

 $CPU时钟频率(主频) = \frac{1}{cPU}$ 时钟周期

CPU的工作节拍受主时钟控制,主时钟不断产生固定频率的时钟, 主时钟的频率称为CPU的主频。

CPI(Clock Cycles Per Instruction):每条指令执行所需要的时钟周期数,或每条指令执行所需的平均时钟周期数

指令耗时=CPI ★ CPU时钟周期

Principles of Computer Organization

计算机性能指标(速度)

机器字长: 指处理机运算器中一次能够完成二进制数运算的位数。

(一般等于内部寄存器的位数)

CPI (Clock Cycles Per Instruction): 每条期数,或每条指令执行所需的平均时钟周期

指令耗时=CPI X CPU时钟周期

假设每次只能处理一位,那完成8位运算,编程需要8条指令:

整个程序执行时间=指令1执行时间+… +指令8执行时间

- =(指令1的CPI+···+指令8的CPI) ★ CPU时钟周期
- = (平均指令CPI X 指令条数) X CPU时钟周期
- = (平均指令CPI X 指令条数) / CPU时钟频率

计算机性能指标 (速度)

- MIPS: 每秒百万指令数 MIPS=(指令总数÷程序执行时间) × 10⁻⁶
- ■MFLOPS:每秒百万次浮点操作次数 MFLOPS=(程序中浮点运算次数÷程序执行时间)×10⁻⁶
- ■GFLOPS:每秒十亿次浮点操作次数 GFLOPS=(程序中浮点运算次数÷程序执行时间)×10⁻⁹
- ■TFLOPS:每秒万亿次浮点操作次数 MFLOPS=(程序中浮点运算次数÷程序执行时间)×10⁻¹²

计算机性能指标 (速度)

- ■总线宽度:数据总线一次所能并行传送信息的位数
- ■存储器带宽:单位时间内从存储器读出的字节数,一般用字节数/秒表示。
- ■吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,单位是字节/秒(B/S)
- ■响应时间: 指从用户向计算机发送一个请求, 到系统对该请求作出响应并获得它所需要的结果的等待时间
 - ◆包括CPU时间与等待时间
- ■利用率:在给定的时间间隔内系统被实际使用的时间所占的 比率,用百分比表示

例 题

某计算机主频为1.2GHz,其指令分为A、B、C、D四类,对应的CPI依次为2、3、4、5,我们可通过运行一基准程序来测定该机的执行速度,已知在这段基准程序中A、B、C、D这四类指令所占比例依次为50%、20%、10%、20%,请问该机的MIPS数是多少?

解:设该基准程序为P,指令条数为n,其平均CPI为:

CPI= (0.5n × 2+0.2n × 3+0.1n × 4+0.2n × 5) /n=3 故该机的MIPS数为:

 $1.2 \times 10^9 / 3 \times 10^{-6} = 400 \text{ MIPS}$

1.2 计算机的硬件

计算机组成

- ■计算机由运算器、控制器、存储器、输入设备和输出设备五 大部件组成
 - ◆存储器:存放程序和数据
 - ◆控制器:根据取得的指令向其他部件发出控制信号,完成指令规定操作
 - ◆运算器:完成算术和逻辑运算操作,也称为数据通路
 - ◆输入/输出设备:完成人与计算机的相互通信
- ■在机器内部,指令和数据均以二进制码表示
 - ◆指令由操作码和地址码组成
- ■机器以运算器为中心,数据传送都经过运算器

■采用存储程序的方式,编制好的程序和数据存放在同一存储器中, 计算机自动完成逐条取出指令和执行指令的操作。故

称之为存储程序式计算机

基于总线的计算机

典型计算机的硬件组成

多处理器

计算机硬件层剖析

计算机系统 计算机结构 处理器 Active Area. Metal Metal Gate 电路(VLSI)设计 设备制 逻辑设 造 计

1.4 计算机的软件

计算机软件分类

- ■系统程序:管理整个操作系统,使系统资源得到合理调度
 - ◆操作系统
 - ◆调试程序、诊断程序
 - ◆汇编器、编译器、解释程序
 - ◆数据库管理系统
- ■应用程序:完成用户的特定任务,使用系统软件提供的资源接口
 - ◆EDA设计软件
 - ◆数据处理软件
 - ◆社交娱乐
 - ◆办公软件

计算机软件层剖析

C语言程序→汇编语言程序

sample.c

```
#include <stdio.h>
void sum(int x,int y,int* z) {
    *z=x+y;
}

int main(void) {
    int result;
    sum(100,200,&result);
    printf("100 + 200 = %d\n",result);
    return 0;
}
```

sample.s

```
64位汇编
sum:
        %edi, %esi
   addl
        %esi, (%rdx)
  movl
   ret
main:
   subq $24, %rsp
  movq %fs:40, %rax
  movq %rax, 8(%rsp)
  xorl %eax, %eax
   leaq 4(%rsp), %rdx
  movl $200, %esi
  movl $100, %edi
  call sum
  movl 4(%rsp), %edx
  movl $.LCO, %esi
  movl $1, %edi
  movl $0, %eax
   call printf chk
```

编译命令 gcc -Og -S sample.c

Principles of Computer Organization

机器码

00000000004005bb <main>:

000000000	100000 Allulliz		
4005bb:	48 83 ec 18	sub \$0x18,%rs	s p
4005bf:	64 48 8b 04 25 28 00	mov %fs:0x28,	%rax
4005c6:	00 00		
4005c8:	48 89 44 24 08	mov %rax,0x8((%rsp)
4005cd:	31 c0	xor %eax,%ea	X
4005cf:	48 8d 54 24 04	lea 0x4(%rsp)	,%rdx
4005d4:	be c8 00 00 00	mov \$0xc8,%es	si
4005d9:	bf 64 00 00 00	mov \$0x64,%e	di
4005de:	e8 d3 ff ff ff	callq 4005b6 <si< td=""><td>um></td></si<>	um>
4005e3:	8b 54 24 04	mov 0x4(%rsp)),%edx
4005e7:	be a4 06 40 00	mov \$0x4006a4	,%esi
4005ec:	bf 01 00 00 00	mov \$0x1,%edi	i
4005f1:	b8 00 00 00 00	mov \$0x0,%ear	X
4005f6:	e8 a5 fe ff ff	callq 4004a0 <_	_printf_chk@plt>
•••			
400610:	b8 00 00 00 00	mov \$0x0,%eax	X
400615:	48 83 c4 18	add \$0x18,%rs	p
400619:	c3 retq		

1.2 计算机系统的层次结构

计算机系统的层次结构

- 第1级为微程序(或硬布线)级。是一个实际机器层,由硬件直接执行微指令。
- 第2级为一般机器级。也称为机器语言级, 它由微程序解释机器指令系统。这一级也是 硬件级
- 第3级为操作系统级。用于对计算机系统的 软硬件资源进行管理和调度。也称为混合机
- 第4级为汇编语言级。通过汇编器将汇编程 序翻译成机器指令
- 第5级为高级语言级。用编译程序翻译成第4 级的汇编语言程序

n层计算机系统层次结构

第n层

虚拟机Mn,其机器语言为Ln▼

虚拟机M4, 其机器语言为L4 第4层

虚拟机M3, 其机器语言为L3 第3层

虚拟机M2, 其机器语言为L2 第2层

实际计算机M1,其机器语言为L1 第1层

用Ln编写的程序需经 运行在更低级别的机

上的解释器解释执 行,

或翻译成更低级别机

用店3编写的程序需经 运行在M2或M1上的 解释器解释执行. 或 翻译成L2或L1语言后 执行

用L2编写的程序需经 运行在M1上的解释器 解释执行或翻译成L1 语言后执行

用L1编写的程序可直 接由电子电路执行

软件与硬件的逻辑等价性

- ■硬件 能实现高速的算术逻辑运算功能,但难以实现较复杂的功能或实现的代价太高
- ■软件 易于实现各种复杂的算术逻辑运算功能,但是频繁的访存操作制约了处理速度
- ■从理论上讲,任何软件算法可以用软件实现,也可以用硬件实现,即:软件和硬件在逻辑上等价
- ■对于某一具体功能,采用硬件方案还是软件方案,取决于设计目标、技术水平、器件价格、速度、可靠性、易维护性和变更周期等因素

	器件价格	速度	易维护性	变更周期
硬件	高	快	低	K
软件	低	慢	高	短

发展趋势

- ■以前由软件实现的功能,现在更多地直接由硬件实现
- ■计算机系统的软、硬件界限已经变得模糊了
- ■众核处理器
- ■并行计算、分布式处理技术
- ■寻找硅之外的突破
 - ◆光计算机
 - ◆量子计算机Quantum Computer
 - □量子比特Qubit
 - □谷歌量子计算机Sycamore,54位量子比特
 - ◆生物计算机
 - □生化反应机理生物计算机的DNA计算模型
 - □天然高集成度

本章小结

- ■计算机分类
- ■冯诺依曼结构计算机
- ■计算机性能指标
- ■计算机组成
 - ◆软件
 - ◆硬件
- ■计算机系统层次结构
- ■软硬件逻辑等价性

