Question 1.

α	β
В	С
В	D
D	В
D	С
D	Ε
Ε	С
Ε	D
BE	С
BE	D

Question 2 (a).

- 1. $a \rightarrow b$ (given)
- 2. ac→bc (agumentation of (1) with c)
- 3. $bc \rightarrow d$ (given)
- 4. $ac \rightarrow d$ (transitivity of (2) and (3))

Question 2 (b).

- 1. a→b (given)
- 2. c→d (given)
- 3. $ac \rightarrow bc$ (augmentation of (1) with c)
- 4. bc→bd (augmentation of (2) with b)
- 5. $ac \rightarrow bd$ (transitivity of (2) and (3))

Question 3 (a).

- 1. ABC→E (given)
- 2. BD→A (given)
- 3. $CG \rightarrow B$ (given)
- 4. $CDG \rightarrow BD$ (augmentation of (3) with D)
- 5. $CDG \rightarrow A$ (transitivity with (4), (3))
- 6. CDG→CG (reflexivity)
- 7. $CDG \rightarrow B$ (transitivity with (6), (3))
- 8. $CDG \rightarrow BCDG$ (augmentation of (7) with CDG)
- 9. $BCDG \rightarrow AB$ (augmentation of (5) with B)
- 10. CDG→AB (transitivity with (8), (9))
- 11. CDG→ABC (augmentation of (10) with C)
- 12. $CDG \rightarrow E$ (transitivity with (1), (11))

Question 3 (b).

 $\{CDG\}+=\{CDGBAE\}$

Question 3 (c).

Observe that C, D, and G do not appear in the right hand side of any FD. Therefore, every key of R must contain CDG. Meanwhile, {CDG}+ = {ABCDEG}, which indicates that CDG is the only key.

Question 4.

Observe that A does not appear in the right hand side of any FD. Therefore, every key of R must contain A. Let's consider attribute sets that contain A

- {A}+ = {A}, and hence, A is not a key
- {AB}+ = {ABCDE}, and hence, AB is a key, and any proper superset of AB is not a key.
- {AC}+ = {ACBDE}, and hence, AC is a key, and any proper superset of AC is not a key.
- {AD}+ = {AD}, and hence, AD is not a key.
- {AE}+ = {AE}, and hence, AE is not a key.
- {ADE}+ = {ADE}, and hence, ADE is not a key.
- All other supersets of {A} cannot be keys since they are proper supersets of either AB or AC.

Therefore, there are only two keys: AB and AC.