Rozwiązywanie równań i układów równań nad skończonymi strukturami algebraicznymi z wykorzystaniem SAT-solvera.

Patryk Popek

Praca Licencjacka

Uniwersytet Marie Curie Skłodowskiej w Lublinie Instytut Informatyki 2023

Spis treści

1	Wstęp	2
2	Opis Teoretyczny Problemu	3
	2.1 Pojęcia Matematyczne	3
	2.2 Pojęcia Logiczne	4

1 Wstęp

2 Opis Teoretyczny Problemu

Poniżej przedstawione są pojęcia związanie z pracą.

2.1 Pojęcia Matematyczne

- 1. **Struktura algebraiczna**: Jest to trójka $(A, a_1...a_n, f_1...f_m)$, gdzie A jest dziedziną algebry, a_n to elementy wyróżnione a f_m to zbiór funkcji określonych na zbiorze.
- 2. **Grupa:** Jest to zbiór G posiadający działanie o , które posiada następujące własności:
 - a) Wewnętrzność: Dla dowolnych $a, b \in G$ działanie $a \circ b \in G$.
 - b) Łączność: Dla dowolnych $a, b, c \in G$ zachodzi $(a \circ b) \circ c = a \circ (b \circ c)$.
 - c) Element neutralny: Istnieje $e \in G$ takie, że dla każdego $a \in G$ $a \circ e = a$.
 - d) Odwracalność: Dla każdego $a \in G$ Istnieje $x \in G$ takie, że $a \circ x = e$.
 - e) Jeżeli dla dowolnego $a,b\in G$ zachodzi $a\circ b=b\circ a$ wtedy grupa jest grupa abelowa.

Przykładową grupą abelową zgodną z powyższą definicją jest grupa G(2,+)czyli XOR.

- 3. Funkcja: Jest to operacja przekształcająca zbiór X w zbiór Y. Innymi słowami, każdemu elementowi $x \in X$ przypisuje dokładnie jeden element $y \in Y$. Zbiór X nazywamy dziedziną funkcji, a zbiór Y przeciwdziedziną. Najpopularniejszą formą przedstawienia funkcji jest podanie jej wzoru przyporządkowującego argumentom x wartość y.
- 4. **Arność:** Jest to liczba argumentów przyjmowana przez funkcję. Jeżeli arność wynosi 0 wtedy funkcją jest funkcją stałą
- 5. **Liczność(eng. Cardinality):** Jest to liczba elementów znajdujących się w zbiorze. Na potrzeby tej pracy określa dziedzinę wczytanej do aplikacji struktury .
- 6. **Punkt przecięcia funkcji:** Mamy dwie funkcje F_1 oraz F_2 . Punkt przecięcia oznacza miejsce, w którym $F_1 = F_2$. Posiadając wzory powyższych funkcji możemy ułożyć równanie, za pomocą którego umiemy wyliczyć wartość powyższego punktu.

- 7. **Równanie:** Jest to wyrażenie postaci $t_1 = t_2$, gdzie t_1, t_2 są dowolnymi wyrażeniami algebraicznymi, zgodnymi z używaną algebrą. Zmienne równania nazywamy niewiadomymi. Równania dzielimy na 3 typy:
 - a) Sprzeczne: Równanie nie posiada rozwiązania, czyli za niewiadomą równania nie da się podstawić żadnej wartości z dziedziny algebry.
 - b) Oznaczone: Równanie posiada rozwiązania, czyli za niewiadomą równania da się podstawić co najmniej jedną wartość z dziedziny algebry.
 - c) Tożsame: Równanie jest zawsze rozwiązywalne bez względu na to jaką wartość z dziedziny algebry podstawimy za niewiadomą równania.

2.2 Pojęcia Logiczne