Univariate linear regression

Size in feet ² (x)	Price (\$) in 1000's (y)	← output
7 2104 one 1416 features 1534 852 	400 232 315 178 	- \

features	(inputs)
----------	----------

i=2

outputs

= 1416

					1	
	Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's	
	* ،	*2	*3	× ч	·	j = 1
_	2104	5	1	45	460	-
	1416	3	2	40	232	4.0
	1534	3	2	30	315	7
	852	2	1	36	178	X ⁽²⁾
	Ja					المان.

$$x_i = j^{th}$$
 feature
 $n = number$ of features ($n = 4$ here)
 $\overrightarrow{x}^{(i)} = \text{features}$ of i^{th} training example

Previously, the model was:-
$$f_{w,b}(x) = wx + b$$
only one variable

(wountly,

$$f_{\vec{w},b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$

w and x ove vectors

e

$$f_{w,b}(x) = 0.1 \times 1 + 4 \times 2 + 10 \times 3 - 2 \times 4 + 80$$

Size no.

of bedrooms

- 1. size For every increase in some size of the house, the price will also increase.
- 2. no. of bedrooms The more the no. of bedrooms the more the price of the house.
- 3. no. of floors The more the no. of floors the more the price.

4. no. of years - The older the house, the lesser the price.

$$f_{\overrightarrow{w}_1b}(\overrightarrow{x}) = w_1 \times_1 + w_2 \times_2 + w_3 \times_3 + \dots + w_n \times_n$$

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \ ... \ w_n]$$
b is a number (in above context, parameters $980 \, \text{K}$ is the base, $\Rightarrow \text{all houses are above}$

$$\overrightarrow{x} = \begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_n \end{bmatrix}$$

$$\overrightarrow{dot} \text{ product} \rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = \sum_{i=1}^{n} a_i b_i$$

$$\overrightarrow{f}_{w,b}(x) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots$$

$$\overrightarrow{f}_{w,b}(x) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots$$

$$+ \omega_n \times_n + b$$

F The above tube of linear regression isn't called

The above type of linear regression isn't called multivariate regression because that refers to a different type of regression. We'll refer to this type of algorithm to simply as multiple linear regression.