

Short refreshment on the topic of UNITS

How to prevent making (mostly silly) errors when solving quantitative problems

• Units play an important role when solving quantitative problems.

- Units play an important role when solving quantitative problems.
- In this course, units will be practically 'everywhere'.

- Units play an important role when solving quantitative problems.
- In this course, units will be practically 'everywhere'. For example,
 - we will often need to convert between different units when setting up models or defining model parameters

- Units play an important role when solving quantitative problems.
- In this course, units will be practically 'everywhere'. For example,
 - we will often need to convert between different units when setting up models or defining model parameters
 - the first quality check of our models will very often include a check of units; in most cases, it will also be the most effective one.

- Units play an important role when solving quantitative problems.
- In this course, units will be practically 'everywhere'. For example,
 - we will often need to convert between different units when setting up models or defining model parameters
 - the first quality check of our models will very often include a check of units; in most cases, it will also be the most effective one.
 - Our basic rationale is: 'if the units are wrong, the model cannot be right'.

Our experience:

When solving quantitative problems, **most frequent mistakes** made by students occur **during units conversions**.

Our experience:

When solving quantitative problems, **most frequent mistakes** made by students occur **during units conversions**.

Our aim here:

To give you tips on **how to avoid** making such mistakes.

Recommended steps:

Step 1:

Convert all prefixes to the form 10^n , where n is an integer number.

Recommended steps:

Step 1:

Convert all prefixes to the form 10^n , where n is an integer number.

Step 2:

Convert all units to base SI units.

Recommended steps:

Step 1:

Convert all prefixes to the form $\mathbf{10}^n$, where \mathbf{n} is an integer number.

Step 2:

Convert all units to base SI units.

Step 3:

Simplify the expression with units using basic mathematical rules.

Convert all prefixes to the form **10**ⁿ, where n is an **integer** number.

Rules like these are good to know, but ...

Convert all prefixes to the form **10**ⁿ, where n is an **integer** number.

Rules like these are good to know, but ...

• they are only helpful in simple problems.

Convert all prefixes to the form **10**ⁿ, where n is an **integer** number.

Rules like these are good to know, but ...

- they are only helpful in simple problems.
- In more complex problems, and more often than not, **they lead to confusion** and, ultimately, those **errors** that you want to avoid.

Convert all prefixes to the form **10**ⁿ, where n is an **integer** number.

Rules like these are good to know, but ...

- they are only helpful in simple problems.
- In more complex problems, and more often than not, **they lead to confusion** and, ultimately, those **errors** that you want to avoid.
- Your calculation **will be much less prone to errors** if you first convert all prefixes to the form **10**ⁿ.

Convert all prefixes to the form **10**ⁿ, where n is an **integer** number.

The most common prefixes¹ and their meaning are summarized in this table:

Prefix name	Prefix symbol	10 ⁿ	Example
nano	n	10-9	nm = 10 ⁻⁹ m
micro	μ	10-6	μs = 10 ⁻⁶ s
milli	m	10-3	ms = 10 ⁻³ s
centi	С	10-2	cm = 10 ⁻² m
deci	d	10-1	dm = 10 ⁻¹ m
hecto	h	10 ²	hPa = 10 ² Pa
kilo	k	10 ³	km = 10 ³ m
mega	M	10 ⁶	MPa = 10 ⁶ Pa

¹More prefixes can be found here: https://en.wikipedia.org/wiki/Metric_prefix

Convert all prefixes to the form **10**ⁿ, where n is an **integer** number.

The most common prefixes¹ and their meaning are summarized in this table:

Prefix name	Prefix symbol		10 ⁿ	Example
nano		n	10-9	nm = 10 ⁻⁹ m
micro		μ	10-6	μs = 10 ⁻⁶ s
milli		m	10-3	ms = 10 ⁻³ s
centi		С	10-2	cm = 10 ⁻² m
deci		d	10-1	dm = 10 ⁻¹ m
hecto		h	10 ²	hPa = 10 ² Pa
kilo		k	10 ³	$km = 10^3 m$
mega		М	10 ⁶	MPa = 10 ⁶ Pa

¹More prefixes can be found here: https://en.wikipedia.org/wiki/Metric_prefix

Convert all units to base SI units.

Remember that these are the base SI units:

Unit	Name	Quantity	
m	meter	length	
S	second	time	
kg	kilogram	mass	
mol	mole	amount of substance	
K	Kelvin	temperature	
cd	candela	light	
А	ampere	electric current	

Convert all units to base SI units.

Somewhat oddly, **kg** is the base SI unit of mass, **not gram** (g)!!!

Remember that these are the base SI units:

Unit	Name	Quantity
m	meter	length
S	second	time
kg	kilogram	mass
mol	mole	amount of substance
K	Kelvin	temperature
cd	candela	light
А	ampere	electric current

Convert all units to base SI units.

Every other unit is either

derived

examples: $N = Newton = kg m s^{-2}$

 $J = Joule = N m = kg m^2 s^{-2}$

Pa = Pascal = N m^{-2} = kg m^{-1} s⁻²

Convert all units to base SI units.

```
Every other unit is either
```

derived

```
examples: N = Newton = kg m s^{-2}
```

 $J = Joule = N m = kg m^2 s^{-2}$

Pa = Pascal = N m^{-2} = kg m^{-1} s⁻²

• or introduced for **convenience** or "historical reasons"

examples: $L = liter = 1 dm^3$

min = minute = 60 s

Atm = atmosphere = 101325 Pa

 $M = molar = 1 mol L^{-1}$

Convert all units to base SI units.

We will, however, make **one exception**:

Convert all units to base SI units.

We will, however, make one exception:

We will often be interested in results on **longer time scales** than seconds, for example over days or years.

Thus, we will often use days (d) or years (yr) as an acceptable unit of time.

Simplify the expression with units using basic mathematical rules:

Simplify the expression with units using basic mathematical rules:

• First evaluate the **powers**

Simplify the expression with units using basic mathematical rules:

- First evaluate the powers
- Then continue with **multiplication** or **division** of units in the expression

Simplify the expression with units using basic mathematical rules:

- First evaluate the powers
- Then continue with **multiplication** or **division** of units in the expression
- Only add or subtract quantities if they have the same unit.

Convert the concentration of 200 μM to mol m⁻³.

Convert the concentration of 200 µM to mol m⁻³.

1. First, we find a relationship between L and m³: $m^3 = 1000 L = 10^3 L$ Therefore: $1L = 10^{-3} m^3$

Convert the concentration of 200 μM to mol m⁻³.

- 1. First, we find a relationship between L and m³: $m^3 = 1000L = 10^3L$ Therefore: $1L = 10^{-3}m^3$
- 2. Then, we perform the final conversion. Note the substitution of the prefix μ by 10⁻⁶, the substitution of M (molar) by mol L⁻¹, ...

$$200 \,\mu\,M = 200 \times 10^{-6} \,mol \,L^{-1} = 200 \times 10^{-6} \,\frac{mol}{L}$$

Convert the concentration of 200 µM to mol m⁻³.

- 1. First, we find a relationship between L and m³: $m^3 = 1000 L = 10^3 L$ Therefore: $1L = 10^{-3} m^3$
- 2. Then, we perform the final conversion. Note the substitution of the prefix μ by 10⁻⁶, the substitution of M (molar) by mol L⁻¹, and the steps where the denominator is moved to numerator by changing the exponent n to -n, and vice versa:

$$200 \,\mu\,M = 200 \times 10^{-6} \,mol \,L^{-1} = 200 \times 10^{-6} \,\frac{mol}{L} = 200 \times 10^{-6} \,\frac{mol}{10^{-3} \,m^3} = 200 \times 10^{-6} \times 10^{3} \times \frac{mol}{m^3} = 200 \times 10^{-3} \,mol \,m^{-3} = 0.2 \,mol \,m^{-3}$$

Convert the value of the diffusion coefficient 2 x 10⁻⁵ cm² s⁻¹ to m² yr⁻¹.

1. Find a relationship between cm² and m²: $cm^2 = (cm)^2 = (10^{-2}m)^2 = (10^{-2})^2 m^2 = 10^{-4}m^2$

- 1. Find a relationship between cm² and m²: $cm^2 = (cm)^2 = (10^{-2}m)^2 = (10^{-2})^2 m^2 = 10^{-4}m^2$
- 2. Find a relationship between yr and s: $yr = 365 d = 365 \times 24 \times 60 \times 60 s = 31,536,000 s = 31.536 \times 10^6 s$

- 1. Find a relationship between cm² and m²: $cm^2 = (cm)^2 = (10^{-2}m)^2 = (10^{-2})^2 m^2 = 10^{-4}m^2$
- 2. Find a relationship between yr and s: $yr = 365 d = 365 \times 24 \times 60 \times 60 s = 31,536,000 s = 31.536 \times 10^6 s$
- 3. Divide by the large number on the right to solve for s: $s = \frac{1}{31.536 \times 10^6}$

- 1. Find a relationship between cm² and m²: $cm^2 = (cm)^2 = (10^{-2}m)^2 = (10^{-2})^2 m^2 = 10^{-4}m^2$
- 2. Find a relationship between yr and s: $yr = 365 d = 365 \times 24 \times 60 \times 60 s = 31,536,000 s = 31.536 \times 10^6 s$
- 3. Divide by the large number on the right to solve for s: $s = \frac{1}{31.536 \times 10^6} yr$
- 4. Perform the final conversion using the relationships 1 and 3.

$$2 \times 10^{-5} \text{cm}^2 \text{s}^{-1} = 2 \times 10^{-5} \times \frac{\text{cm}^2}{\text{s}} = 2 \times 10^{-5} \times \frac{10^{-4} \text{m}^2}{\frac{1}{31.536 \times 10^6} \text{yr}}$$

- 1. Find a relationship between cm² and m²: $cm^2 = (cm)^2 = (10^{-2}m)^2 = (10^{-2})^2 m^2 = 10^{-4}m^2$
- 2. Find a relationship between yr and s: $yr = 365 d = 365 \times 24 \times 60 \times 60 s = 31,536,000 s = 31.536 \times 10^6 s$
- 3. Divide by the large number on the right to solve for s: $s = \frac{1}{31.536 \times 10^6} yr$
- 4. Perform the final conversion using the relationships 1 and 3. Note the steps where the denominator is moved to numerator by changing the exponent n to -n, and vice versa:

$$2\times10^{-5} \text{cm}^2 \text{s}^{-1} = 2\times10^{-5} \times \frac{\text{cm}^2}{\text{s}} = 2\times10^{-5} \times \frac{10^{-4} \text{m}^2}{\frac{1}{31.536\times10^6} \text{yr}} = 2\times31.536\times10^6 \times 10^{-5} \times 10^{-4} \frac{\text{m}^2}{\text{yr}} \approx 63\times10^{-3} \text{m}^2 \text{yr}^{-1}$$

Consider N = 100 spherical amorphous silica particles suspended in a well-mixed water volume of V = 1L. Initially, the concentration of the dissolved silica (silicic acid) in the water is $Si_{ini} = 1$ mM and the radius of the particles is $r_{ini} = 0.1$ mm (the same for all particles). Assume the rate constant for silica dissolution of $k_d = 1.6$ mol m^{-2} yr⁻¹ and for silica precipitation of $k_p = 0.8$ m yr⁻¹.

The net rate of dissolution of silica particles is calculated according to $\frac{dSi}{dt} = -k_p \times \frac{A}{V} \times (Si - Si_{eq})$

where $A=N\times 4\pi r^2$ is the total surface area of the particles and $Si_{eq}=\frac{k_d}{k_p}$ is the equilibrium concentration.

Consider N = 100 spherical amorphous silica particles suspended in a well-mixed water volume of V = 1L. Initially, the concentration of the dissolved silica (silicic acid) in the water is $Si_{ini} = 1$ mM and the radius of the particles is $r_{ini} = 0.1$ mm (the same for all particles). Assume the rate constant for silica dissolution of $k_d = 1.6$ mol m^{-2} yr⁻¹ and for silica precipitation of $k_p = 0.8$ m yr⁻¹.

The net rate of dissolution of silica particles is calculated according to $\frac{dSi}{dt} = -k_p \times \frac{A}{V} \times (Si - Si_{eq})$

where $A=N\times 4\pi r^2$ is the total surface area of the particles and $Si_{eq}=\frac{k_d}{k_p}$ is the equilibrium concentration.

What is the **initial rate** of increase in the concentration of silicic acid due to the dissolution of the silica particles?

Consider N = 100 spherical amorphous silica particles suspended in a well-mixed water volume of V = 1L. Initially, the concentration of the dissolved silica (silicic acid) in the water is $Si_{ini} = 1$ mM and the radius of the particles is $r_{ini} = 0.1$ mm (the same for all particles). Assume the rate constant for silica dissolution of $k_d = 1.6$ mol m^{-2} yr⁻¹ and for silica precipitation of $k_p = 0.8$ m yr⁻¹.

The net rate of dissolution of silica particles is calculated according to $\frac{dSi}{dt} = -k_p \times \frac{A}{V} \times (Si - Si_{eq})$ where $A = N \times 4\pi r^2$ is the total surface area of the particles and $Si_{eq} = \frac{k_d}{k_p}$ is the equilibrium concentration.

What is the **initial rate** of increase in the concentration of silicic acid due to the dissolution of the silica particles?

1. First, we evaluate the equilibrium and initial concentrations in SI units:

$$Si_{eq} = \frac{1.6 \, mol \, m^{-2} \, yr^{-1}}{0.8 \, m \, vr^{-1}} = 2 \, \frac{mol \, m^{-2}}{m} = 2 \, mol \, m^{-3}$$

$$Si_{ini} = 1 \, m \, M = 1 \times 10^{-3} \, \frac{mol}{L} = 1 \times 10^{-3} \, \frac{mol}{10^{-3} \, m^3} = 1 \, mol \, m^{-3}$$

$$\left(\frac{dSi}{dt}\right)_{ini} = -0.8 \frac{m}{yr} \times \frac{100 \times 4\pi \times (0.1 \, \text{mm})^2}{1 \, \text{L}} \times \left(1 \, \text{mol m}^{-3} - 2 \, \text{mol m}^{-3}\right)$$

$$\left(\frac{dSi}{dt}\right)_{ini} = -0.8 \frac{m}{yr} \times \frac{100 \times 4 \pi \times (0.1 \text{ mm})^2}{1 \text{ L}} \times \left(1 \text{ mol m}^{-3} - 2 \text{ mol m}^{-3}\right)$$

$$= -0.8 \frac{m}{yr} \times \frac{400 \pi \times (0.1)^2 \times (10^{-3} \text{ m})^2}{10^{-3} \text{ m}^3} \times (-1) \text{ mol m}^{-3}$$

$$\left(\frac{dSi}{dt}\right)_{ini} = -0.8 \frac{m}{yr} \times \frac{100 \times 4 \pi \times (0.1 \text{ mm})^2}{1 L} \times \left(1 \text{ mol } m^{-3} - 2 \text{ mol } m^{-3}\right)$$

$$= -0.8 \frac{m}{yr} \times \frac{400 \pi \times (0.1)^2 \times (10^{-3} \text{ m})^2}{10^{-3} \text{ m}^3} \times (-1) \text{ mol } m^{-3}$$

$$= -0.8 \times 400 \pi \frac{m}{yr} \times \frac{10^{-2} \times 10^{-6} \text{ m}^2}{10^{-3} \text{ m}^3} \times (-1) \text{ mol } m^{-3}$$

$$\left(\frac{dSi}{dt}\right)_{ini} = -0.8 \frac{m}{yr} \times \frac{100 \times 4 \pi \times (0.1 \, mm)^2}{1 \, L} \times \left(1 \, mol \, m^{-3} - 2 \, mol \, m^{-3}\right)$$

$$= -0.8 \frac{m}{yr} \times \frac{400 \pi \times (0.1)^2 \times (10^{-3} \, m)^2}{10^{-3} \, m^3} \times (-1) \, mol \, m^{-3}$$

$$= -0.8 \times 400 \pi \frac{m}{yr} \times \frac{10^{-2} \times 10^{-6} \, m^2}{10^{-3} \, m^3} \times (-1) \, mol \, m^{-3}$$

$$\approx 1000 \frac{m}{yr} \times \frac{10^{-5}}{m} \, mol \, m^{-3}$$

$$\left(\frac{dSi}{dt}\right)_{ini} = -0.8 \frac{m}{yr} \times \frac{100 \times 4 \pi \times (0.1 \text{ mm})^2}{1 \text{ L}} \times \left(1 \text{ mol } m^{-3} - 2 \text{ mol } m^{-3}\right)$$

$$= -0.8 \frac{m}{yr} \times \frac{400 \pi \times (0.1)^2 \times (10^{-3} \text{ m})^2}{10^{-3} \text{ m}^3} \times (-1) \text{ mol } m^{-3}$$

$$= -0.8 \times 400 \pi \frac{m}{yr} \times \frac{10^{-2} \times 10^{-6} \text{ m}^2}{10^{-3} \text{ m}^3} \times (-1) \text{ mol } m^{-3}$$

$$\approx 1000 \frac{m}{yr} \times \frac{10^{-5}}{m} \text{ mol } m^{-3}$$

$$= 0.01 \text{ mol } m^{-3} \text{ yr}^{-1}$$