2. СИМВОЛЬНАЯ МОДЕЛЬ И ИНТЕРПРЕТАЦИЯ ЕЕ ЭЛЕМЕНТОВ В ТЕРМИНАХ ПОПУЛЯЦИОННОЙ ГЕНЕТИКИ

2.1. Представление допустимых решений экстремальной задачи в виде бинарных строк

Допустимое решение $\vec{x} \in D$ экстремальной задачи однокритериального выбора (1.3) является п-мерным вектором $\vec{x} = (x_1, \dots, x_n)$. В том случае, когда задача (1.3) принадлежит классу задач переборного типа, имеется конечное множество допустимых решений, в которых каждая компонента x_i , $i = \overline{1, n}$ вектора $\vec{x} \in D$ может быть закодирована с помощью целого неотрицательного числа:

$$\beta_i \in [0, \mathsf{K}_i], i = \overline{1, \mathsf{n}},\tag{2.1}$$

где (K_i+1) - число возможных дискретных значений i-ой управляемой переменной в области поиска D. Это позволяет поставить во взаимнооднозначное соответствие каждому вектору $\vec{x} \in D$ вектор $\vec{\beta}$ с целочисленными компонентами:

$$(x_1, ..., x_n) \leftrightarrow (\beta_1, ..., \beta_n),$$
 (2.2)

где для каждой компоненты $\beta_i, i = \overline{1,n}$ областью возможных значений являются целые числа от 0 до K_i .

Введем алфавит B_2 , содержащий только два символа 0 и 1: B_2 ={0,1}. Для того, чтобы представить целочисленный вектор $\vec{\beta}$ =(β_1 ,..., β_n) в алфавите B_2 необходимо определить максимальное число двоичных символов θ , которое достаточно для представления в двоичном коде любого значения β_i из области его допустимых значений [0,K_i]. Нетрудно видеть, что параметр символьной модели θ должен удовлетворять неравенству:

$$K<2^{\theta}$$
, (2.3)

 $_{\Gamma Дe} K = MAX(K_i).$

Запись произвольного целого неотрицательного числа $\beta_i = (0 \le \beta_i < 2^\theta)$ с помощью θ двоичных символов определяется соотношением :

$$\beta_{i} = \sum_{l=1}^{\theta} \alpha_{l} 2^{\theta-l}, \qquad (2.4)$$

где α_1 -двоичное число, равное 0 или 1;

 θ -длина двоичного слова, кодирующего целое число β_i .

Тогда символьная запись целочисленного кода β_i для фиксированного значения управляемой переменной x_i в обычном двоичном коде запишется в виде следующей бинарной комбинации:

где α_l , $i = \overline{1, \theta}$ - двоичные символы (0 или 1), полученные из соотношения (2.4).

Пример 2.1.

Пусть θ =5 и β_i =19. Тогда согласно соотношения (2.4) можем записать:

$$19 = 1 \times 2^{5-1} + 0 \times 2^{5-2} + 0 \times 2^{5-3} + 1 \times 2^{5-4} + 1 \times 2^{5-5} =$$

$$= 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Следовательно, бинарная комбинация $e_5(19)$ целого числа 19 в алфавите B_2 будет иметь следующий вид:

$$e_{5}(19)$$
: 1 0 0 1 1 1 5

Для представления допустимого решения $\vec{x} \in D$ экстремальной задачи (1.3) в алфавите B_2 объединим символьные записи $e_{\theta}(\beta_i)$, описывающие все п компонент вектора \vec{x} , в виде линейной последовательности из бинарных комбинаций (2.5):

$$\mathsf{E}(\vec{\mathsf{x}}) = (\mathsf{e}_{\scriptscriptstyle \theta}(\beta_1), \dots \mathsf{e}_{\scriptscriptstyle \theta}(\beta_n)). \tag{2.6}$$

Записи (2.6) соответствует ($n \times \theta$)-битовая строка из двоичных символов (0,1):

Таким образом, символьная модель экстремальной задачи переборного типа (1.3) может быть представлена в виде множества бинарных строк (2.7), которые описывают конечное множество допустимых решений $\vec{\mathbf{x}}$, принадлежащих области поиска \mathbf{D} .

Необходимо отметить, что выбор символьной модели исходной экстремальной задачи во многом определяет эффективность и качество применяемых генетических алгоритмов. Для каждого класса задач переборного типа должна строиться своя символьная модель, отражающая специфику и особенности решаемой задачи. В качестве примера приведем символьную модель для задачи (1.12) оптимального дихотомического разбиения графа G(X,V,W).

Представим дихотомическое разбиение (X_1, X_2) графа G(X, V, W) порядка n в виде бинарной строки $E(X_1, X_2)$, состоящей из n бит, расположенных в порядке возрастания их номеров. Каждому номеру бита поставим в взаимнооднозначное соответствие номер вершины графа (1-ый бит соответствует вершине x_1 , 2-ой бит - вершине x_2 , ..., n-ый бит - вершине x_n). Потребуем, чтобы бинарное значение α_1

1-ого бита указывало, какому подмножеству вершин $(X_1$ или $X_2)$ принадлежит вершина x_1 :

$$\begin{cases} 1, \text{ если 1-ая вершина } x_l \in X \text{ входит в состав} \\ \text{подмножества вершин } X_1; \\ \alpha_l = \\ 0, \text{ если 1-ая вершина } x_l \in X \text{ входит в состав} \\ \text{подмножества вершин } X_2 \ . \end{cases}$$

При этом каждая бинарная строка $E(X_1, X_2)$ должна удовлетворять дополнительному требованию, связанному с сутью дихотомического разбиения: "число битов, содержащих "1" в бинарной строке $E(X_1, X_2)$, должно равняться мощности подмножества вершин подграфа $G_1(X_1, V_1, W_1)$, равной порядку этого подграфа n_1 ".

Так, разбиения (X_1, X_2) и (X_1^*, X_2^*) , приведенные в Таблице 1.1., имеют следующие представления в виде бинарных строк:

$E(X_1, X_2)$:	1	0	0	0	0	0	1	1	0	1	1	0	
E(X ₁ *,X ₂ *):	0	1	1	1	1	1	0	0	0	0	0	0	
	1	2	3	4	5	6	7	8	9	10	11	12	-номер бита
	\mathbf{X}_1	\mathbf{X}_2	X ₃	X_4	X ₅	X ₆	X ₇	X_8	X 9	X ₁₀	X ₁₁	X ₁₂	-номер вершины

Сравнивая построенную символьную модель экстремальной задачи (1.12) с общей символьной моделью (2.7), видим, что допустимый вектор \vec{x} включает в качестве компонент все вершины графа G, каждой из которых соответствует целое число β_i , принимающее только два значения 0 или 1 (т.е. $K_i = 1$ для всех $i = \overline{1, n}$).

Это приводит к тому, что бинарная комбинация $e_{\theta}(\beta_i)$ состоит из единственного бита, т.к. неравенство (2.3) выполняется при θ =1. Однако, линейная последовательность (2.6) принимается в качестве бинарной строки $E(\vec{x})$, соответствующей допустимому разбиению (X_1, X_2), только в том случае, если число "1" в ней равно порядку n_1 графа G_1 .

2.2. Особи и их вариабиальные признаки

Наименьшей неделимой единицей биологического вида, подверженной действию факторов эволюции, является oco6b a_k^t (индекс k обозначает номер особи, а индекс t - некоторый момент времени эволюционного процесса). В качестве аналога особи a_k^t в экстремальной задаче однокритериального выбора (1.3) примем произвольное допустимое решение $\vec{x} \in D$, которому присвоено имя a_k^t . Действительно, вектор управляемых переменных $(x_1, ..., x_n)$ - это наименьшая неделимая единица, характеризующая в экстремальной задаче (1.3) внутренние параметры на каждом t-ом шаге поиска оптимального решения, которые изменяют свои значения в процессе минимизации критерия оптимальности $Q(\vec{x})$.

В задаче оптимального дихотомического разбиения (1.12) в качестве особи \mathbf{a}_k^t выступает конкретное дихотомическое разбиение (X_1, X_2) , удовлетворяющее условиям (1.8) - (1.9), что позволяет интерпретировать сам процесс решения экстремальной задачи (1.12) как эволюционный процесс, связанный с перераспределением вершин $\mathbf{x}_i \in \mathbf{X}$ графа G по двум подграфам \mathbf{G}_1 и \mathbf{G}_2 , соответственно, порядка \mathbf{n}_1 и \mathbf{n}_2 , с целью отыскания глобального минимума критерия оптимальности (1.11). В этом и заключается в данном случае цель эволюционного развития (эволюции) особей.

Для описания особей введем два типа *вариабельных признаков*, отражающих качественные и количественные различия между особями в степени их выраженности:

качественные признаки - признаки, которые позволяют однозначно разделять совокупность особей на четко различимые группы;

количественные признаки - признаки, проявляющие непрерывную изменчивость, в связи с чем степень их выраженности можно охарактеризовать числом.

Качественные признаки особи \mathbf{a}_k^t определяются из символьной модели экстремальной задачи (1.3) как соответствующая точке $\vec{\mathbf{x}}$ с именем \mathbf{a}_k^t бинарная строка $\mathbf{E}(\vec{\mathbf{x}})$ и составляющие ее бинарные комбинации $\mathbf{e}_{\theta}(\beta_1),...,\mathbf{e}_{\theta}(\beta_n)$.

Приведем интерпретацию этих признаков в терминах хромосомной теории наследственности [4].

В качестве *гена* - единицы наследственного материала, ответственного за формирование альтернативных признаков особи, примем бинарную комбинацию $e_{\theta}(\beta_i)$ из (2.5), которая определяет фиксированное значение целочисленного кода β_i управляемой переменной x_i в обычном двоичном коде. Одна особь a_k^t будет характеризоваться п генами, каждый из которых отвечает за формирование целочисленного кода соответствующей управляемой переменной. Тогда структуру бинарной строки $E(\vec{x})$ из (2.7) можно интерпретировать *хромосомой*, содержащей п сцепленных между собой генов, которые расположены в линейной последовательности "слева - направо". Согласно хромосомной теории наследственности передача качественных признаков $e_{\theta}(\beta_i)$, $i=\overline{1,n}$, закодированных в генах, будет осуществляться через хромосомы от "родителей" к "потомкам".

Местоположение определенного гена в хромосоме называется *локусом*, а альтернативные формы одного и того же гена, расположенные в одинаковых локусах хромосомы, называются *аллелями* (аллелеформами):

где $e_{\theta}(\beta_i)$ - аллель і-го гена, находящаяся в локусе і.

Хромосому (2.9), содержащую в своих локусах конкретные значения аллелей, будем называть *генотипом (генетическим кодом)* $E(a_k^t)$, который содержит всю наследственную генетическую информацию об особи a_k^t , получаемую от "предков" и передаваемую затем "потомкам" . Конечное множество всех допустимых генотипов образует *генофонд*. Для дихотомического разбиения мощность генофонда равна $C_n^{n_1}$.

При взаимодействии особи a_k^t с внешней средой ее генотип $E(a_k^t)$ порождает совокупность внешне наблюдаемых количественных признаков (характеристик ϕ_i),

включающих *степень приспособленности* $\mu(a_k^t)$ особи a_k^t к внешней среде и ее фенотип $\phi(a_k^t)$.

Приняв в качестве внешней среды критерий оптимальпости $Q(\vec{x})$, мы можем говорить, что степенью приспособленности $\mu(a_k^t)$ каждой особи a_k^t является численное значение функции $Q(\vec{x})$, вычисленное для допустимого решения $\vec{x} \in D$ с именем a_k^t . В общем случае степень приспособленности $\mu(a_k^t) \geq 0$ можно задать с помощью следующего выражения:

$$\mu(\mathbf{a}_{k}^{t}) = \begin{cases} Q^{2}(\mathbf{x}), \text{ если решается задача максимизации} \\ \phi \text{ункции } \mathbf{Q}(\vec{\mathbf{x}}); \\ \\ 1/(Q^{2}(\vec{\mathbf{x}}) + 1), \text{ если решается задача минимизации} \\ \phi \text{ункции } \mathbf{Q}(\vec{\mathbf{x}}); \end{cases}$$
 (2.10)

Из выражения (2.10) следует, что чем больше численное значение степени приспособленности $\mu(a_k^t)$, тем лучше особь a_k^t приспособлена к внешней среде. Следовательно, цель эволюции особей заключается в повышении их степени приспособленности.

Фенотипом $\phi(a_k^t)$ особи a_k^t в рамках экстремальной задачи (1.3) являются численные значения вектора управляемых переменных $\vec{x} \in D$ и соответствующих ему характеристик $\phi_i(\vec{x}), i = \overline{1,s}$.

Для задачи оптимального дихотомического разбиения графа G, сформулированной как экстремальная задача (1.18), в качестве особи \mathbf{a}_k^t выступает конкретное дихотомическое разбиение (X_1, X_2), удовлетворяющее условиям (1.8)- (1.9). В этом случае геном является бит в бинарной строке $E(X_1, X_2)$, который определяет, к какой части разбиения X_1 или X_2 принадлежит вершина графа G, соответствующая этому биту. Линейная последовательность всех п битов составляет хромосому, в которой каждый ген определяет принадлежность вершины, соответствующей этому гену, одной из частей X_1 или X_2 . Введенные гены обладают свойством *димофизма*, т.к. каждый ген может иметь только две различающиеся формы аллели: "1", если вершина \mathbf{x}_i принадлежит части X_1 и "0", если вершина \mathbf{x}_i принадлежит части X_2 .

Степень приспособленности $\mu(a_k^t)$ в данном случае просто совпадает с критерием оптимальности $F(X_1, X_2)$ - общей суммой весов ребер, входящих в подграфы G_1 и G_2 : $\mu(a_k^t)$ = $F(X_1, X_2)$.

В состав фенотипа $\phi(a_k^t)$ особи a_k^t , кроме разбиения (X_1, X_2) , входят следующие количественные признаки:

вес разреза $Q(X_1, X_2)$ из (1.11); коэффициент разбиения $K(X_1, X_2)$ из (1.13); сумма весов ребер подграфа G_1 $f_1(X_1)$ из (1.16); сумма весов ребер подграфа G_2 $f_2(X_2)$ из (1.17).

2.3. Популяции и поколения

В качестве *ареала* - области, в пределах которой только и могут встречаться особи, участвующие в эволюционном процессе, будем рассматривать область поиска D. В задаче дихотомического разбиения ареал полностью определяется структурой графа G(X,V,W), заданной множеством вершин X и множеством ребер V, а также порядком подграфа G_1 (или подграфа G_2).

Совокупность особей (a_1^t, \ldots, a_v^t) , принадлежащих ареалу, образует *популяцию* P^t . Число v, характеризующее число особей a_k^t , которые образуют популяцию, будем называть *численностью популяции*. В общем случае экстремальной задачи (1.3) популяция $P^t = (a_1^t, \ldots, a_v^t)$ соответствуют совокупности допустимых решений $\vec{x}^k \in D$, $k = \overline{1, v}$. Для задачи оптимального разбиения графа G популяция P^t представляет собой набор из v дихотомических разбиений (X_1^k, X_2^k) , $k = \overline{1, v}$, удовлетворяющих условиям (1.8) - (1.9).

Очевидно, что в популяции P^t может иметь место наличие нескольких различающихся форм того или иного вариабельного признака (так называемый *полиморфизм*), что позволяет проводить разделение популяции — на ряд *покальных популяций* $P_i^t \subset P^t$, $i=\overline{1,k}$, включающих в свой состав те особи, которые имеют одинаковые или "достаточно близкие" формы тех или иных качественных или/и количественных признаков.

Так, в задаче оптимального дихотомического разбиения (1.11) для дифференциации особей $\mathbf{a}_k^t \in \mathsf{P}^t$ по количественному признаку может быть выбрано, например, условие, что в локальную популяцию $\mathsf{P}_1^t \subset \mathsf{P}^t$ включаются только те особи, у которых значение веса разреза $\mathsf{Q}(X_1, X_2)$ не превосходит некоторой заданной величины Q^+ : $\mathsf{Q}(X_1, X_2) \leq \mathsf{Q}^+$. Тогда другую локальную популяцию $\mathsf{P}_2^t \subset \mathsf{P}^t$ составят все те особи a_k^t ,

которые не попали в P_1^t , т.е. особи, для которых вес разреза удовлетворяет условию: $\mathsf{Q}(X_1,\!X_2) > \mathsf{Q}^+$.

В том случае, когда для дифференциации особей $\mathbf{a}_k^t \in \mathsf{P}^t$ используется качественный признак, например, генотип $\mathrm{E}(\mathrm{X}_1,\mathrm{X}_2)$, в качестве меры "близости" особей \mathbf{a}_k^t и \mathbf{a}_1^t по этому признаку можно использовать *Хэммингово расстояние*, которое определяется как число несовпадающих по своим значениям битов в $\mathbf{n} \times \mathbf{\theta}$ -битовых бинарных строках $\mathrm{E}(\mathrm{X}_1^k,\mathrm{X}_2^k)$ и $\mathrm{E}(\mathrm{X}_1^l,\mathrm{X}_2^l)$:

$$d[E(X_{1}^{k}, X_{2}^{k}), E(X_{1}^{l}, X_{2}^{l})] = | | E(X_{1}^{k}, X_{2}^{k}) \oplus E(X_{1}^{l}, X_{2}^{l}) | |,$$
(2.11)

где \oplus - операция суммирования по mod.2 Тогда в локальную популяцию $\mathsf{P}_1^t \subset \mathsf{P}^t$ будем включать только те особи, у которых Хэммингово расстояние меньше заданного неотрицательного целого числа $\delta \geq 0$, а в локальную популяцию $\mathsf{P}_2^t \subset \mathsf{P}^t$ - те особи, для генотипов которых это условие не выполняется. При δ =0 в локальную популяцию P_1^t будут включены только те особи, генотипы которых совпадают между собой.

Будем считать, что во времени популяции P^t состоят из дискретных, неперекрывающихся между собой *поколений*, - групп особей, одинаково отдаленных в родственном отношении от общих предков, т.е. каждое последующее поколение P^{t+1} является совокупностью из ν особей, которые отбираются только из особей предыдущего t-го поколения. Будем отождествлять номер поколения (верхний индекс t в обозначениях особи a_k^t и популяции P^t) с моментом времени t=0,1,...,T, где T - жизненный иикл популяции, определяющий период ее эволюции.

В дальнейшем эволюцию популяции P^t будем понимать в ограниченном смысле как чередование поколений, в процессе которого особи изменяют свои вариабельные признаки таким образом, чтобы каждая следующая популяция проявляла лучшую степень приспособленности к внешней среде, например, в смысле обеспечения наибольшего значения средней степени приспособленности по популяции P^t :

$$\mu_{cp}(t) = \frac{1}{v} \sum_{i=1}^{v} \mu(a_i^t) . \qquad (2.12)$$

Совокупность из ν генотипов всех особей a_k^t , составляющих популяцию P^t , образует *хромосомный набор*, который полностью содержит в себе генетическую информацию о популяции P^t в целом. Наличие изменчивости хромосомного набора от

поколения к поколению является необходимым условием эволюции популяции P^t на генетическом уровне. Для оценки разнообразия генотипов популяции P^t введем в рассмотрение функцию диаллейного разнообразия по каждому биту хромосомного набора:

$$D_{i}=1-4\times\left[0.5-\frac{v_{i}}{v}\right]^{2}, i=\overline{1,n\times\theta}, \qquad (2.13)$$

где ν_i -число нулей в i-ом бите хромосомного набора популяции P^t ; ν - численность популяции P^t . Тогда *побитовое разнообразие* популяции P^t определим как среднее значение диаллельных разнообразий по всем ($n \times \theta$) битам хромосомного набора:

$$D_{E(t)} = \frac{1}{n \times \theta} \sum_{i=1}^{n \times \theta} D_i . \qquad (2.14)$$

При $D_{B(t)}$ =1 имеем максимальное разнообразие генотипов в популяции P^t ; при $D_{B(t)}$ =0 все генотипы в хромосомном наборе совпадают между собой.

Обобщением побитового разнообразия на общий случай экстремальной задачи (1.3) является генетическое разнообразие популяции P^t по всем n локусам:

$$D_{\lambda} = \frac{1}{n} \sum_{i=1}^{n} D_{\lambda}(i), \qquad (2.15)$$

где

$$D_{\lambda}(i) = 1 - \frac{v^{2}}{(1 - v)^{2}} \left(\frac{1}{v} - \max_{1 \le K \le m_{i}} P(\mathring{a}_{\theta}(k), i) \right)^{2}$$
 (2.16)

- функция аллельного разнообразия в і-ом локусе;

$$P(\mathring{a}_{\theta}(k),i) = \sqrt[V_i]{v}$$
 - частота аллельной формы $e_{\theta}(k)$ в i-ом локусе;

 ν_i - число генотипов в хромосомном наборе популяции P^t , в которых i-ый локус содержит аллельную форму $e_{\theta}(k)$;

 ν - численность популяции P^t ;

 m_i - число форм аллелей в i-м локусе ($1 \le m_i \le \nu$).

Когда все ν генотипов имеют в i-м локусе одну и ту же аллельную форму $\mathring{a}_{\theta}(k)(\nu_i=\nu)$ $D_{\lambda}(i)=0$; если аллельные формы в i-м локусе всех генотипов хромосомного набора отличаются друг от друга $(\nu_i=1)$, то $D_{\lambda}(i)=1$.

По хромосомному набору популяции P^t можно также определить *частоту* генотипа $P(E(\vec{\mathbf{x}}))$ как долю особей, имеющих одинаковую форму генотипа в рассматриваемой популяции P^t .