mrphn4b9i

June 19, 2024

[1]: import os, shutil

```
train_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/train'
     validation_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/validation'
     test_dir = 'C:/Users/flavi/Desktop/Projeto-20240530/test'
[2]: from keras.utils import image_dataset_from_directory
     IMG_SIZE = 150
     train_dataset = image_dataset_from_directory(
     train_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
     validation_dataset = image_dataset_from_directory(
     validation_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
     test_dataset = image_dataset_from_directory(
     test_dir,
     image_size=(IMG_SIZE, IMG_SIZE),
     batch_size=32)
    Found 40000 files belonging to 10 classes.
    Found 10000 files belonging to 10 classes.
    Found 10000 files belonging to 10 classes.
[3]: from tensorflow import keras
     from keras import layers
     from keras import models
     from keras.preprocessing import image
     data_augmentation = keras.Sequential(
         layers.RandomFlip("horizontal_and_vertical"),
         layers.RandomRotation(0.1),
         layers.RandomZoom(0.2),
     )
     inputs = keras.Input(shape=(IMG_SIZE, IMG_SIZE, 3))
```

```
x = data_augmentation(inputs)
     x = layers.Rescaling(1./255)(inputs)
     x = layers.Conv2D(filters=32, kernel_size=3, activation="relu",
      →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Conv2D(filters=64, kernel_size=3, activation="relu", __
      →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Conv2D(filters=128, kernel_size=3, activation="relu", __
      →padding='same')(x)
     x = layers.BatchNormalization()(x)
     x = layers.MaxPooling2D(pool_size=2)(x)
     x = layers.Flatten()(x)
     x = layers.Dropout(0.5)(x)
     x = layers.Dense(512, activation="relu")(x)
     outputs = layers.Dense(10, activation="softmax")(x)
     model = keras.Model(inputs=inputs, outputs=outputs)
[4]: model.compile(
         optimizer='sgd',
         loss='sparse_categorical_crossentropy',
         metrics=['accuracy']
     )
[5]: from keras.callbacks import ReduceLROnPlateau
     reduce_lr = ReduceLROnPlateau(
         monitor='val_loss',
         factor=0.2,
         patience=2,
         min_lr=0.001
[6]: from keras.callbacks import EarlyStopping
     early_stopping = EarlyStopping(
         monitor='val_loss',
         patience=5,
        restore_best_weights=True
     )
```

```
[7]: from keras.callbacks import ModelCheckpoint
     model_checkpoint = ModelCheckpoint(
         filepath='C:/Users/flavi/Desktop/projetoClassificaoDeImagens/
      -dl_project_2201707_2211044/ModelosS/ModelS_SGDOptimizerComData.keras',
         save_best_only=True,
         monitor='val_loss'
     )
[8]: callbacks = [reduce_lr, early_stopping, model_checkpoint]
     history = model.fit(
         train_dataset,
         epochs=30,
         validation_data=validation_dataset,
         callbacks=callbacks
     )
    Epoch 1/30
                          542s 433ms/step
    1250/1250
    - accuracy: 0.3991 - loss: 1.9175 - val_accuracy: 0.5346 - val_loss: 1.2933 -
    learning_rate: 0.0100
    Epoch 2/30
    1250/1250
                          535s 428ms/step
    - accuracy: 0.5934 - loss: 1.1395 - val_accuracy: 0.6101 - val_loss: 1.1168 -
    learning_rate: 0.0100
    Epoch 3/30
    1250/1250
                          534s 427ms/step
    - accuracy: 0.6758 - loss: 0.9134 - val_accuracy: 0.6366 - val_loss: 1.0462 -
    learning_rate: 0.0100
    Epoch 4/30
    1250/1250
                          532s 426ms/step
    - accuracy: 0.7444 - loss: 0.7164 - val_accuracy: 0.6434 - val_loss: 1.1034 -
    learning_rate: 0.0100
    Epoch 5/30
    1250/1250
                          536s 429ms/step
    - accuracy: 0.8133 - loss: 0.5312 - val_accuracy: 0.6679 - val_loss: 1.0957 -
    learning_rate: 0.0100
    Epoch 6/30
    1250/1250
                          861s 689ms/step
    - accuracy: 0.8834 - loss: 0.3384 - val_accuracy: 0.6990 - val_loss: 1.0021 -
    learning_rate: 0.0020
    Epoch 7/30
    1250/1250
                          1088s
    871ms/step - accuracy: 0.9125 - loss: 0.2605 - val_accuracy: 0.7015 - val_loss:
    0.9978 - learning_rate: 0.0020
    Epoch 8/30
    1250/1250
                          1094s
```

```
875ms/step - accuracy: 0.9282 - loss: 0.2191 - val_accuracy: 0.7024 - val_loss:
    1.0075 - learning_rate: 0.0020
    Epoch 9/30
    1250/1250
                          1131s
    905ms/step - accuracy: 0.9396 - loss: 0.1884 - val_accuracy: 0.6985 - val_loss:
    1.0431 - learning_rate: 0.0020
    Epoch 10/30
    1250/1250
                          1169s
    935ms/step - accuracy: 0.9502 - loss: 0.1643 - val_accuracy: 0.7055 - val_loss:
    1.0382 - learning_rate: 0.0010
    Epoch 11/30
    1250/1250
                          1160s
    928ms/step - accuracy: 0.9528 - loss: 0.1483 - val_accuracy: 0.7065 - val_loss:
    1.0444 - learning_rate: 0.0010
    Epoch 12/30
    1250/1250
                          1127s
    901ms/step - accuracy: 0.9586 - loss: 0.1372 - val_accuracy: 0.7086 - val_loss:
    1.0421 - learning_rate: 0.0010
[9]: import matplotlib.pyplot as plt
    plt.plot(history.history['accuracy'], 'bo', label='Training acc')
     plt.plot(history.history['val_accuracy'], 'b', label='Validation acc')
     plt.title('Training and validation accuracy')
     plt.xlabel('Epochs')
     plt.ylabel('Accuracy')
     plt.legend()
     plt.show()
     plt.plot(history.history['loss'], 'bo', label='Training loss')
     plt.plot(history.history['val_loss'], 'b', label='Validation loss')
     plt.title('Training and validation loss')
     plt.xlabel('Epochs')
     plt.ylabel('Loss')
     plt.legend()
     plt.show()
```



```
[10]: val_loss, val_acc = model.evaluate(validation_dataset)
      print('Validation Accuracy:', val_acc)
     313/313
                         54s 173ms/step -
     accuracy: 0.7053 - loss: 0.9751
     Validation Accuracy: 0.7014999985694885
[11]: loss, accuracy = model.evaluate(test_dataset)
      print(f"Loss: {loss}, Accuracy: {accuracy}")
     313/313
                         53s 170ms/step -
     accuracy: 0.6966 - loss: 0.9801
     Loss: 0.9928498864173889, Accuracy: 0.6980999708175659
[12]: import numpy as np
      from sklearn.metrics import confusion_matrix, classification_report
      import seaborn as sns
      import matplotlib.pyplot as plt
      # Function to evaluate the model and get true and predicted labels
```

```
def evaluate_model(model, dataset):
    all_labels = []
    all_predictions = []
    for images, labels in dataset:
        predictions = model.predict(images)
        predicted_labels = np.argmax(predictions, axis=1)
        true_labels = labels.numpy() # Convert to numpy array if not already
        all_labels.extend(true_labels)
        all predictions.extend(predicted labels)
    return np.array(all_labels), np.array(all_predictions)
# Get true and predicted labels for the test dataset
true_labels, predicted_labels = evaluate_model(model, test_dataset)
# Compute the confusion matrix
conf_matrix = confusion_matrix(true_labels, predicted_labels)
# Plot the confusion matrix
plt.figure(figsize=(10, 8))
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues",__
 →xticklabels=range(10), yticklabels=range(10))
plt.title('Matriz de Confusão')
plt.xlabel('Previsão')
plt.ylabel('Realidade')
plt.show()
# Print classification report
class_names = [str(i) for i in range(10)] # Define class names based on your
 \rightarrow dataset
print(classification_report(true_labels, predicted_labels,__
 ⇔target_names=class_names))
# Extract precision, recall, and F1-score for each class from classification □
\hookrightarrow report
report = classification_report(true_labels, predicted_labels,_
 starget_names=class_names, output_dict=True)
metrics = {'precision': [], 'recall': [], 'f1-score': []}
for cls in class_names:
    metrics['precision'].append(report[cls]['precision'])
    metrics['recall'].append(report[cls]['recall'])
    metrics['f1-score'].append(report[cls]['f1-score'])
# Plot precision, recall, and F1-score
```

```
plt.figure(figsize=(10, 6))
bar_width = 0.2
index = np.arange(len(class_names))
plt.bar(index, metrics['precision'], bar_width, label='Precision')
plt.bar(index + bar_width, metrics['recall'], bar_width, label='Recall')
plt.bar(index + 2*bar_width, metrics['f1-score'], bar_width, label='F1-score')
plt.xlabel('Class')
plt.ylabel('Scores')
plt.title('Precision, Recall e F1-score para cada classe')
plt.xticks(index + bar_width, class_names)
plt.legend()
plt.tight_layout()
plt.show()
1/1
                1s 834ms/step
1/1
                Os 308ms/step
1/1
                Os 226ms/step
1/1
                0s 328ms/step
1/1
                Os 218ms/step
1/1
                Os 240ms/step
1/1
                0s 258ms/step
1/1
                Os 287ms/step
1/1
                Os 220ms/step
1/1
                Os 243ms/step
1/1
                Os 264ms/step
1/1
                0s 324ms/step
1/1
                0s 396ms/step
1/1
                Os 253ms/step
1/1
                Os 296ms/step
1/1
                0s 248ms/step
1/1
                Os 180ms/step
1/1
                Os 229ms/step
1/1
                Os 333ms/step
1/1
                Os 395ms/step
1/1
                Os 331ms/step
1/1
                Os 263ms/step
1/1
                Os 271ms/step
1/1
                Os 210ms/step
1/1
                Os 272ms/step
1/1
                Os 278ms/step
1/1
                Os 243ms/step
1/1
                Os 231ms/step
1/1
                Os 220ms/step
1/1
                Os 259ms/step
```

1/1	0s	336ms/step
1/1	0s	332ms/step
1/1	0s	277ms/step
1/1	0s	261ms/step
1/1		225ms/step
1/1		291ms/step
1/1		304ms/step
1/1		257ms/step
1/1		321ms/step
1/1		293ms/step
1/1		296ms/step
1/1		247ms/step
1/1		228ms/step
1/1		292ms/step
1/1		296ms/step
1/1		344ms/step
1/1		290ms/step
1/1		279ms/step
1/1		247ms/step
1/1		_
		239ms/step
1/1		273ms/step
1/1		295ms/step
1/1		251ms/step
1/1		252ms/step
1/1		317ms/step
1/1		311ms/step
1/1		306ms/step
1/1		275ms/step
1/1		258ms/step
1/1		295ms/step
1/1		278ms/step
1/1		340ms/step
1/1		429ms/step
1/1	0s	274ms/step
1/1	0s	247ms/step
1/1	0s	251ms/step
1/1	0s	255ms/step
1/1	0s	424ms/step
1/1	0s	352ms/step
1/1	0s	250ms/step
1/1	0s	189ms/step
1/1	0s	287ms/step
1/1		259ms/step
1/1		348ms/step
1/1		268ms/step
1/1		207ms/step
1/1		245ms/step
1/1		247ms/step
= , =		

1/1	0s	267ms/step
1/1	0s	294ms/step
1/1	0s	283ms/step
1/1	0s	359ms/step
1/1	0s	330ms/step
1/1	0s	308ms/step
1/1	0s	252ms/step
1/1	0s	_
1/1	0s	320ms/step
1/1	0s	_
1/1	0s	_
1/1	0s	-
1/1	0s	
1/1		291ms/step
1/1		260ms/step
1/1	0s	_
1/1		291ms/step
1/1	0s	
1/1	0s	-
1/1	0s	_
1/1	0s	-
1/1		219ms/step
1/1	0s	-
1/1	0s	
1/1		346ms/step
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1		208ms/step
1/1		277ms/step
1/1	0s	-
1/1	0s	
1/1	0s	239ms/step
1/1	0s	215ms/step
1/1	0s	270ms/step
1/1	0s	342ms/step
1/1	0s	347ms/step
1/1	0s	343ms/step
1/1	0s	242ms/step
1/1	0s	260ms/step
1/1	0s	283ms/step
1/1	0s	291ms/step
1/1	0s	_
1/1	0s	
1/1		253ms/step
1/1	0s	-
1/1	0s	266ms/step
1/1	0s	
-, -	2.5	_с. шо, воор

1/1	0s	263ms/step
1/1	0s	341ms/step
1/1	0s	314ms/step
1/1	0s	267ms/step
1/1	0s	262ms/step
1/1	0s	194ms/step
1/1	0s	258ms/step
1/1	0s	342ms/step
1/1	0s	370ms/step
1/1	0s	305ms/step
1/1	0s	254ms/step
1/1	0s	240ms/step
1/1	0s	279ms/step
1/1	0s	260ms/step
1/1	0s	313ms/step
1/1	0s	238ms/step
1/1	0s	196ms/step
1/1		280ms/step
1/1	0s	_
1/1	0s	-
1/1	0s	222ms/step
1/1		200ms/step
1/1	0s	_
1/1		317ms/step
1/1		327ms/step
1/1	0s	-
1/1	0s	-
1/1		278ms/step
1/1		159ms/step
1/1		267ms/step
1/1	0s	_
1/1		397ms/step
1/1	0s	263ms/step
1/1	0s	217ms/step
1/1	0s	217ms/step
1/1	0s	-
1/1	0s	260ms/step
1/1	0s	256ms/step
1/1	0s	_
1/1	0s	308ms/step
1/1	0s	280ms/step
1/1	0s	249ms/step
	0s	-
1/1 1/1	0s 0s	
		265ms/step
1/1	0s	206ms/step
1/1	0s	265ms/step
1/1	0s	316ms/step
1/1	0s	268ms/step

1/1	0s	205ms/step
1/1	0s	267ms/step
1/1	0s	_
1/1	0s	327ms/step
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1		217ms/step
1/1	0s	-
1/1	0s	_
1/1	0s	_
	0s	-
1/1		-
1/1		234ms/step
1/1	0s	
1/1		321ms/step
1/1		315ms/step
1/1	0s	-
1/1	0ຮ	-
1/1	0s	
1/1	0s	263ms/step
1/1	0s	295ms/step
1/1	0s	257ms/step
1/1	0s	221ms/step
1/1	0s	170ms/step
1/1	0s	169ms/step
1/1	0s	266ms/step
1/1	0s	305ms/step
1/1	0s	254ms/step
1/1	0s	_
1/1	0s	_
1/1		228ms/step
1/1		223ms/step
1/1	0s	_
1/1	0s	227ms/step
1/1	0s	302ms/step
1/1	0s	-
1/1	0s	
1/1	0s 0s	-
		247ms/step
1/1	0s	217ms/step
1/1	0s	264ms/step
1/1	0s	295ms/step
1/1	0s	315ms/step
1/1	0s	239ms/step
1/1	0s	186ms/step
1/1	0ຮ	254ms/step
1/1	0s	304ms/step
1/1	0s	402ms/step
1/1	0s	237ms/step

1/1	0s	257ms/step
1/1	0s	250ms/step
1/1	0s	269ms/step
1/1	0s	322ms/step
1/1	0s	318ms/step
1/1	0s	239ms/step
1/1	0s	-
1/1	0s	_
1/1	0s	310ms/step
1/1	0s	_
1/1	0s	_
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1		249ms/step
1/1	0s	_
1/1	0s	
1/1	0s	
1/1	0s	-
1/1	0s	_
1/1	0s	-
1/1	0s	
1/1	0s	-
1/1	0s	-
1/1	0s	-
1/1	0s	312ms/step
1/1	0s	_
1/1	0s	
1/1	0s	352ms/step
1/1	0s	323ms/step
1/1	0s	253ms/step
1/1	0s	208ms/step
1/1	0s	200ms/step
1/1	0s	243ms/step
1/1	0s	340ms/step
1/1	0s	239ms/step
1/1	0s	220ms/step
1/1	0s	244ms/step
1/1	0s	232ms/step
1/1	0s	_
1/1		178ms/step
1/1	0s	
1/1	0s	-
1/1	0s	209ms/step
1/1	0s	_
-, -	2.5	, воор

1/1	0s	244ms/step
1/1		299ms/step
1/1	0s	242ms/step
1/1	0s	213ms/step
1/1		219ms/step
1/1		257ms/step
1/1		240ms/step
1/1		211ms/step
1/1		171ms/step
1/1	0s	239ms/step
1/1	0s	280ms/step
1/1	0s	228ms/step
1/1	0s	184ms/step
1/1	0s	267ms/step
1/1	0s	290ms/step
1/1	0s	257ms/step
1/1	0s	261ms/step
1/1	0s	176ms/step
1/1	0s	222ms/step
1/1	0s	291ms/step
1/1	0s	300ms/step
1/1	0s	218ms/step
1/1	0s	205ms/step
1/1	0s	255ms/step
1/1	0s	237ms/step
1/1	0s	259ms/step
1/1	0s	262ms/step
1/1	0s	183ms/step
1/1	0s	231ms/step
1/1	0s	228ms/step
1/1	0s	251ms/step
1/1	0s	240ms/step
1/1	0s	205ms/step
1/1	0s	217ms/step
1/1	0s	287ms/step
1/1	0s	394ms/step
1/1	0s	259ms/step
1/1	0s	188ms/step
1/1	0s	238ms/step
1/1		305ms/step
1/1	0s	336ms/step
1/1	0s	_
1/1	1s	509ms/step

Matriz de Confusão											
0 -	746	19	47	21	11	6	16	9	72	53	- 800
- 1	17	792	9	12	2	3	7	4	31	123	- 700
٦ -	65	11	538	67	108	73	72	36	16	14	- 600
m -	17	18	56	498	63	184	84	33	20	27	- 500
Realidade 5 4 -	30	5	68	58	641	34	66	86	8	4	- 400
Reali 5	16	3	51	185	43	596	37	52	10	7	400
9 -	11	7	39	42	47	28	803	6	7	10	- 300
7 -	16	4	35	44	47	59	11	770	1	13	- 200
ω -	72	39	13	15	5	8	9	4	801	34	- 100
ი -	36	92	5	17	4	6	5	13	26	796	
	0	i	2	3	4 Prev	5 risão	6	7	8	9	

	precision recall f1-sco		f1-score	support
0	0.73	0.75	0.74	1000
_				
1	0.80	0.79	0.80	1000
2	0.62	0.54	0.58	1000
3	0.52	0.50	0.51	1000
4	0.66	0.64	0.65	1000
5	0.60	0.60	0.60	1000
6	0.72	0.80	0.76	1000
7	0.76	0.77	0.77	1000
8	0.81	0.80	0.80	1000
9	0.74	0.80	0.77	1000
accuracy			0.70	10000
macro avg	0.70	0.70	0.70	10000
weighted avg	0.70	0.70	0.70	10000

