Hands-on materials, Lecture 02

A note about Math fonts: If you're viewing this material on the course wiki, the mathematics in this document is rendered using MathJax. You'll need an up-to-date web browser (IE 8+, Firefox 3.0+, Chrome) to properly render the math. If the math looks funny in your browser, you should install the STIX Fonts. The STIX fonts are high-quality, royalty free fonts for scientific and engineering documents. After downloading the STIX fonts, unzip the file. On OS X use the FontBooks program to install the fonts (choose File > Add Fonts and then choose the Fonts subdirectory) and then restart Firefox. Here's a Microsoft help page on installing fonts in Windows. My experience is that of the three major browsers Chrome does the best job of rendering MathJax math.

Vector Operations in R

As you saw last week R vectors support basic arithmetic operations that correspond to the same operations on geometric vectors. For example:

R also has an operator for the dot product, denoted **%*%**. This operator also designates matrix multiplication, which we will discuss next week. By default this operator returns an object of the R matrix class. If you want a scalar (or the R equivalent of a scalar, i.e. a vector of length 1) you need to use the drop() function.

```
> z <- x %*% x
> class(z)  # note use of class() function
[1] "matrix"
> z
      [,1]
[1,] 1240
> drop(z)
[1] 1240
```

Assignment 1: In R, use the dot product operator and the acos() function to calculate the angle (in radians) between the vectors x = [-3, -3, -1, -1, 0, 0, 1, 2, 2, 3] and y = [-8, -5, -3, 0, -1, 0, 5, 1, 6, 5].

Vector Operations in Python

The Python equivalent of the R code above is:

```
>>> import numpy
>>> x = numpy.arange(start=1, stop=16, step=1)
>>> y = numpy.arange(10,25) # default step = 1
>>> x
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
>>> y
array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24])
>>> x+y
array([11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39])
```

Note the use of the numpy.arange() function. numpy.arange() works like R's sequence() function and it returns a Numpy array. However, notice that the values go up to but don't include the specified stop value. Use help() to lookup the documentation for numpy.arange(). Python also includes a range() function that generates a regular sequence as a Python list object. The range() function has start, stop, and step arguments but these can only be integers. Here are some additional examples of the use of arange() and range():

```
>>> z = numpy.arange(1,5,0.5)
>>> z
array([ 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5])
>>> range(1,20,2)
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
>>> range(1,5,0.5)
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
TypeError: range() integer step argument expected, got float.
```

Writing Functions in R

So far we've been using R's built in functions. However the power of a true programming language is the ability to write your own functions.

The general form of an R function is as follows:

```
funcname <- function(arg1, arg2) {
  # one or more expressions
  # last expression is the object returned
}</pre>
```

To make this concrete, here's an example where we define a function in the interpreter and then put it to use:

If you type a function name without parentheses R shows you the function's definition. This works for built-in functions as well (thought sometimes these functions are defined in C code in which case R will tell you that the function is a '.Primitive').

Putting R functions in Scripts

When you define a function at the interactive prompt and then close the interpreter your function definition will be lost. The simple way around this is to define your R functions in a script that you can than access at any time.

Choose File > New Script (or New Document in OS X) in the R GUI (File > New > R Script in RStudio). This will bring up a blank editor window. Enter your function into the editor and save the source file in your R working directory with a name like vecgeom. R.

```
# functions defined in vecgeom.R

veclength <- function(x) {
    # Given a numeric vector, returns length of that vector
    sqrt(drop(x %*% x))
}

unitvector <- function(x) {
    # Given a numeric vector, returns a unit vector in the same direction
    x/veclength(x)
}</pre>
```

There are two functions defined above, one of which calls the other. Both take single vector arguments. At this point there is no error checking to insure that the argument is reasonable but R's built in error handling will do just fine for now.

Once your functions are in a script file you can make them accessible by using the source() function (See also the File > Source R code... menu item (R GUI); Edit > Source File.. in RStudio):

```
> source("vecgeom.R")
> x <- c(-3,-3,-1,-1,0,0,1,2,2,3)
> veclength(x)
[1] 6.164414
> ux <- unitvector(x)
> ux
[1] -0.4866643 -0.4866643 -0.1622214 -0.1622214  0.0000000  0.0000000
[7] 0.1622214  0.3244428  0.3244428  0.4866643
> veclength(ux)
[1] 1
```

Assignment 2: Write a function in R that takes two vectors, \vec{x} and \vec{y} , and returns a list containing the projection of \vec{y} on \vec{x} and the component of \vec{y} in \vec{x} :

$$P_{\vec{x}}(\vec{y}) = \left(\frac{\vec{x} \cdot \vec{y}}{|\vec{x}|}\right) \frac{\vec{x}}{|\vec{x}|}$$

and

$$C_{\vec{x}}(\vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}|}$$

Writing Functions in Python

The general form of a Python function is as follows:

```
def funcname(arg1,arg2):
    # one or more expressions
    return someresult # arbitrary python object (could even be another function)
```

An important thing to remember when writing functions is that Python is white space sensitive. In Python code indentation indicates scoping rather than braces. Therefore you need to maintain consistent indendation. This may surprise those of you who have extensive programming experience in another language. However, white space sensitivity contributes significantly to the readability of Python code. Use a Python aware programmer's editor and it will become second nature to you after a short while. I recommend you set your editor to substitute spaces for tabs (4 spaces per tab), as this is the default convention within the python community.

Here's an example of defining and using a function in the Python interpreter:

```
>>> def mypyfunc(x,y):
...
       return x**2 + y**2 + 3*x*y
. . .
>>> mypyfunc(10,12)
604
>>> a = numpy.arange(1,5,0.5)
>>> b = numpy.arange(2,6,0.5)
>>> mypyfunc(a,b)
array([ 11. , 19.75, 31. , 44.75, 61. , 79.75, 101. ,
       124.751)
>>> a = range(1,5)
>>> b = range(1,5)
>>> mypyfunc(a,b)
Traceback (most recent call last):
 File "<pyshell#52>", line 1, in -toplevel-
   mypyfunc(a,b)
 File "<pyshell#45>", line 2, in mypyfunc
    return x**2 + y**2 + 3*x*y
TypeError: unsupported operand type(s) for ** or pow(): 'list' and 'int'
```

Note that this function works for numeric types (ints and floats) as well as numpy.arrays but not for simple Python lists. If you wanted to make this function work for lists as well you could define the function as follows:

Putting Python functions in Modules

As with R, you can define your own Python modules that contain user defined functions. Using a programmer's text editor, write your function(s) and save it to a file with a .py extension in a directory in your PYTHONPATH (see [[Setting Paths | setting-paths]].

```
# functions defined in vecgeom.py
import numpy

def veclength(x):
    """Given a numeric vector, returns length of that vector"""
    x = numpy.array(x)
```

```
return numpy.sqrt(numpy.dot(x,x))

def unitvector(x):
    """Given a numeric vector, returns a unit vector in the same direction"""
    x = numpy.array(x)
    return x/veclength(x)
```

To access your function use an import statement:

Assignment 3: Write Python code for the vector projection and component functions as described in Assignment 2. In your Pweave document illustrate the use of these functions with several examples. Remember that your module will need to have access to the numpy module so include an appropriate import statement.

Dealing with Data Subsets in R

Manipulating or analyzing subsets of data is one of the most common tasks in R. The subset() function comes in handy for such operations. Consider the data set turtles.txt:

```
> turtles <- read.table('turtles.txt', header=T)</pre>
> turtles
  sex length width height
   f 98 81 38
2 f 103 84 38
  f 103 86
                   42
 # output truncated
> names(turtles)
[1] "sex" "length" "width" "height"
> # Now we'll apply the subset() function
> turt.sub <- subset(turtles, select = -sex)</pre>
> names(turt.sub)
[1] "length" "width" "height"
> turt.sub
  length width height
     98 81 38
1
2
    103 84
                 38
   103 86
# output truncated
```

In the example above we create a subset of the original data set by excluding the variable indicating the sex of each individual using the argument select = -sex. We can also explicit include only certain variables, like this:

subset() allows you to do more than just select variables to include. You can use the second positional argument to specify matching criteria. For example:

```
# gives only female turtles, all variables except sex
> female.turts <- subset(turtles, sex == "f", select = -sex)
> dim(female.turts)
[1] 24 3

# same for male turtles
> male.turts <- subset(turtles, sex == "m", select = -sex)
> dim(male.turts)
[1] 24 3

# gives only females with length > 125, all variables
> big.females <- subset(turtles, sex == "f" & length > 125)
```

The subset function is especially useful when combined with the function sapply() which allows you to apply a function of interest to each variable. For example:

```
> min(turtles)
Error in Summary.data.frame(..., na.rm = na.rm) :
       only defined on a data frame with all numeric or complex variables
> min(turt.sub) # unexpected result
[1] 35
> sapply(turt.sub, min) # here's what we were shooting for
length width height
   93
          74
> sapply(female.turts, min) # for females
length width height
   98
        81 38
> sapply(male.turts, min) # for males
length width height
          74
```

Notice how the min() function chokes on the complete data set because the function is not defined for factor variables. In the second example min(turt.sub) returns a valid result, but also not exactly what we wanted. In this case it looked for the minimum value across all the objects passed to it. In the third case we use the sapply() function and get the minimum on a variable-by-variable basis. Please take a moment to look at the documentation for the sapply() function and cook up some examples of your own.

Anderson's (Fisher's) iris data set Anderson's (or Fisher's) iris data set consists of four morphometric measurements for specimens from three different iris species. Use the R help to read about the iris data set (?iris). We'll be using this data set repeatedly in future weeks so familiarize yourself with it.

Assignment 4: Calculate a summary table as well as correlation and covariance matrices for each of the species in the iris data set. Use help.search() and apropos() to lookup any necessary function names.

Exploring Univariate Distributions in R

Histograms

One of the most common ways to examine a the distribution of observations for a single variable is to use a histogram. The hist() function creates simple histograms in R.

```
> hist(turtles$length) # create histogram with fxn defaults
> ?hist # check out the documentation on hist
```

Note that by default the hist() function plots the frequencies in each bin. If you want the probability densities instead set the argument freq=FALSE.

```
> hist(turtles$length,freq=F) # y-axis gives probability density
```

Here's some other ways to fine tune a histogram in R.

```
> hist(turtles$length, breaks=12) # use 12 bins
> mybreaks = seq(85,185,8)
> hist(turtles$length, breaks=mybreaks) # specify bin boundaries
> hist(turtles$length, breaks=mybreaks, col='red') # fill the bins with red
```

Density Plots

One of the problems with histograms is that they can be very sensitive to the size of the bins and the break points used. This is due to the discretization inherent in a histogram. A 'density plot' or 'density trace' is a continuous estimate of a probability distribution from a set of observations. Because it is continuous it doesn't suffer from the same sensitivity to bin sizes and break points. One way to think about a density plot is as the histogram you'd get if you averaged many individual histograms each with slightly different breakpoints.

```
> d <- density(turtles$length)
> plot(d)
```

A density plot isn't entirely parameter free – the parameter you should be most aware of is the 'smoothing bandwidth'.

```
> d <- density(turtles$length) # let R pick the bandwidth
> plot(d,ylim=c(0,0.020)) # gives ourselves some extra headroom on y-axis
> d2 <- density(turtles$length, bw=5) # specify bandwidth
> lines(d2, col='red') # use lines to draw over previous plot
```

The bandwidth determines the standard deviation of the 'kernel' that is used to calculate the density plot. There are a number of different types of kernels you can use; a Gaussian kernel is the R default and is the most common choice. See the documentation for more info.

The lattice package is an R library that makes it easier to create graphics that show conditional distributions. Here's how to create a simple density plot using the lattice package.

```
> library(lattice)
> densityplot(turtles$length) # densityplot defined in lattice
```

Notice how by default the lattice package also drew points representing the observations along the x-axis. These points have been 'jittered' meaning they've been randomly shifted by a small amount so that overlapping points don't completely hide each other. We could have produced a similar plot, without the lattice package, as so:

```
> d <- density(turtles$length)
> plot(d)
> nobs <- length(turtles$length)
> points(jitter(turtles$length), rep(0,nobs))
```

Notice that in our version we only jittered the points along the x-axis. You can also combine a histogram and density trace, like so:

```
> hist(turtles$length, 10, xlab='Carapace Length (mm)',freq=F)
> d <- density(turtles$length)
> lines(d, col='red', lwd=2) # red lines, with pixel width 2
```

Notice the use of the freq=F argument to scale the histogram bars in terms of probability density.

Finally, let's some of the features of lattice to produce density plots for the 'length' variable of the turtle data set, conditional on sex of the specimen.

```
> densityplot(~length | sex, data = turtles)
```

There are a number of new concepts here. The first is that we used what is called a 'formula' to specify what to plot. In this case the formula can be read as 'length conditional on sex'. We'll be using formulas in several other contexts and we discuss them at greater length below. The data argument allows us to specify a data frame or list so that we don't always have to write arguments like turtles\$length or turtles\$sex which can get a bit tedious.

Box Plots

Another common tool for depicting a univariate distribution is a 'box plot' (sometimes called a box-and-whisker plot). A standard box plot depicts five useful features of a set of observations: the median (center most line), the upper and lower quartiles (top and bottom of the box), and the minimum and maximum observations (ends of the whiskers).

Figure 1: A box plot represents a five number summary of a set of observations.

There are many variants on box plots, particularly with respect to the 'whiskers'. It's always a good idea to be explicit about what a box plot you've created depicts.

Here's how to create box plots using the standard R functions as well as the lattice package:

```
> boxplot(turtles$length)
> boxplot(turtles$length, col='darkred', horizontal=T) # horizontal version
> title(main = 'Box plot: Carapace Length', ylab = 'Carapace length (mm)')
> bwplot(~length,data=turtles) # using the bwplot function from lattice
```

Note how we used the title() function to change the axis labels and add a plot title.

Historical note – The box plot is one of many inventions of the statistician John W. Tukey. Tukey made many contributions to the field of statistics and computer science, particularly in the areas of graphical representations of data and exploratory data analysis.

Bean Plots

My personal favorite way to depict univariate distributions is called a 'beanplot'. Beanplots combine features of density plots and boxplots and provide information rich graphical summaries of single variables. The standard features in a beanplot include the individual observations (depicted as lines), the density trace estimated from the observations, the mean of the observations, and in the case of multiple beanplots an overall mean.

Figure 2: Beanplots combine features of density and box plots.

The beanplot package is not installed by default. To download it and install it use the R package installer under the Packages &Data menu (standard R GUI) or in Tools > Install Packages... in RStudio (see also the Packages tab in the lower-right window in RStudio). If this is the first time you use the package installer you'll have to choose a CRAN repository from which to download package info (I recommend you pick one in the US). Once you've done so you can search for 'beanplot' from the Package Installer window. You should also check the 'install dependencies' check box.

Once the beauplot package has been installed check out the examples to see some of the capabilities:

```
> library(beanplot)
> example(beanplot)
```

If you ran the examples in RStudio, use the Clear All option in the Plots tab after running the examples in order to reset parameters that the examples changed.

Note the use of the library() function to make the functions in the beanplot library available for use. Here's some examples of using the beanplot function with the turtle data set:

```
> beanplot(turtles$length) # note the message about log='y'
> beanplot(turtles$length, log='') # DON'T do the automatic log transform
> beanplot(turtles$length, log='', col=c('white','blue','red'))
```

In the final version we specified colors for the parts of the beanplot. See the explanation of the col argument int he beanplot function for details.

We can also compare the carapace length variable for male and female turtles.

```
> beanplot(length ~ sex, data = turtles, col=list(c('red'),c('black')),
names = c('females','males'),xlab='Sex', ylab='Caparace length (mm)')
```

Note the use of the formula notation to compare the carapace length variable for males and females. There is also a asymmetrical version of the beanplot which can be used to more directly compare distributions between two groups. We explore this below. Note too the use of the list argument to col, and the use of vectors within the list to specify the colors for female and male beanplots.

We can also create a beauplot with multiple variables in the same plot if the variables are measured on the same scale.

```
> beanplot(turtles$length, turtles$width, turtles$height, log='',
names=c('length','width','height'), ylab='carapace dimensions (mm)')
```

Simple t-tests in R

Student's t-tests can be carried out in R using the function t.test(). The t.test() function can perform one and two-sample t-tests (i.e. comparing a sample of interest against a hypothesized mean, or comparing the means of two samples). The t.test() function also supports a 'formula' interface for two-sample t-tests similar to the lm() function.

```
> t.test(width ~ sex, data=turtles)

Welch Two Sample t-test

data: width by sex
t = 4.7015, df = 35.355, p-value = 3.862e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    8.122699 20.460634
sample estimates:
mean in group f mean in group m
    102.58333    88.29167
```

The asymmetric version of the boxplot is very useful for comparing distributions of the same variable between two groups. To generate such plots use the argument side='both' as an argument to beanplot.

```
> beanplot(width ~ sex, data = turtles, side='both', col=list(c('red'),c('black')))
```

As you can see this splits the beanplot in half for each group and puts them back to back to facilitate comparison. The difference in the mean of the two groups is visually obvious from the beanplot.

Assignment 5:

- Prepare beamplots showing samples grouped by Species for each of the quantitative variables in the iris data set. Label the x- and y-axes of your boxplots and give each plot a title.
 - Tip: since there are three species, you can't use the side='both' argument, and you'll need
 to extend the col=list argument to add a third color.
- Carry out two-sample t-tests contrasting versicolor and virginica for each of the four morphometric variables in the iris data set.
 - Tip: use the subset() function to create a subset of the iris data containing just these two species.
- Write a brief paragraph interpreting the results of the t-tests you conducted.

Exploring Bivariate Distributions in R

Scatterplots

When dealing with pairs of continuous variables a scatter plot is the obvious choice. The standard plot function can be used:

```
> plot(turtles$length, turtles$width)
> plot(turtles$length ~ turtles$width)
```

Did you notice what is different between the two versions above? You can also use the data argument with plot, like so:

```
> plot(length ~ width, data=turtles)
```

The xyplot() function from the lattice package does pretty much the same thing:

```
> xyplot(length ~ width, data = turtles)
```

Regression in R

R has very flexible built in functions for fitting linear models. Bivariate regression is the simplest case of a linear model.

```
> turtles <- read.table('turtles.txt',header=T)</pre>
> names(turtles)
[1] "sex" "length" "width" "height"
> regr <- lm(turtles$width ~ turtles$length)</pre>
> class(regr)
[1] "lm"
> names(regr)
 [1] "coefficients" "residuals"
                                 "effects" "rank"
                                                                   "fitted.values"
[6] "assign" "qr"
[11] "terms" "model"
                                   "df.residual" "xlevels"
                                                                   "call"
                    "model"
[11] "terms"
> summary(regr)
lm(formula = turtles$width ~ turtles$length)
Residuals:
            10 Median
                                30
                                        Max
-5.57976 -1.66578 -0.04471 1.73752 5.97104
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
```

```
(Intercept) 19.9434 2.3877 8.353 8.99e-11 ***
turtles$length 0.6055 0.0189 32.033 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.654 on 46 degrees of freedom
Multiple R-Squared: 0.9571, Adjusted R-squared: 0.9562
F-statistic: 1026 on 1 and 46 DF, p-value: < 2.2e-16

> plot(turtles$width ~ turtles$length) # scatter plot with turtles$length on x axis
> abline(regr) # plot the regression line
```

Note the use of the function abline() to plot the regression line. Calling plot() with an object of class lm shows a series of diagnostic plots. Try this.

Assignment 6: Write your own regression function (i.e. your code shouldn't refer to the built in regression functions) for mean centered vectors in R. The function will take as it's input two vectors, \vec{x} and \vec{y} . The function should return:

- 1. a list containing the mean-centered versions of these vectors
- 2. the regression coefficient b in the mean centered regression equation $\hat{y} = b\vec{x}$
- 3. the coefficient of determination, \mathbb{R}^2

Demonstrate your regression function by using it to carry out regressions of Sepal.Length on Sepal.Width separately for the 'setosa' and 'virginica' specimens from the iris data set (again, subset() is your friend). Include plots in which you use the plot() and abline() functions to illustrate your calculated regression line.