1.

资源	Max			Allocation			Need		
进程	Α	В	С	Α	В	С	Α	В	С
P1	5	5	9	2	1	2	3	4	7
P2	5	3	6	4	0	2	1	3	4
Р3	4	0	11	4	0	5	0	0	6
P4	4	2	5	2	0	4	2	2	1
P5	4	2	4	3	1	4	1	1	0

A,B,C 的 Available 为 2, 3, 3

T0 时刻处于安全状态,安全序列为: P4, P2, P3, P5, P1。

2.

Request2(0,3,4)<=Need2(1,3,4) Request2(0,3,4)>Available(2,3,3) 让 P2 等待 所以,不能分配。

3.

Request4(2,0,1)<=Need4(2,2,1) Request4(2,0,1)<=Available(2,3,3) 系统暂时假定给 P4 分配资源:

资源	Max				Allocation	1	Need		
进程	Α	В	С	Α	В	С	Α	В	С
P1	5	5	9	2	1	2	3	4	7
P2	5	3	6	4	0	2	1	3	4
Р3	4	0	11	4	0	5	0	0	6
P4	4	2	5	4	0	5	0	2	0
P5	4	2	4	3	1	4	1	1	0

A,B,C 的 Available 为 0, 3, 2

给出一个安全序列: P4, P5, P1, P2, P3。

此时处于安全状态, 所以能够实施资源分配

4.

Request1(0,2,0)<=Need1(3,4,7) Request1(0,2,0)<=Available(0,3,2)

系统暂时假定给 P1 分配资源:

资源	Max			Allocation			Need		
进程	Α	В	С	Α	В	С	Α	В	С
P1	5	5	9	2	3	2	3	2	7
P2	5	3	6	4	0	2	1	3	4
P3	4	0	11	4	0	5	0	0	6
P4	4	2	5	4	0	5	0	2	0
P5	4	2	4	3	1	4	1	1	0

A,B,C 的 Available 为 0, 1, 2

此时不存在安全序列,所以不能实施资源分配