CMPT 409/981: Optimization for Machine Learning

Lecture 14

Sharan Vaswani

October 29, 2024

Recap

- For *G*-Lipschitz functions, for all $x, y \in \mathcal{D}$, $|f(y) f(x)| \le G ||x y||$. Equivalently, $\|\nabla f(w)\| \le G$. Example: Hinge loss: $f(w) = \max\{0, 1 y\langle w, x\rangle\}$ is $\|y x\|$ -Lipschitz.
- Subgradient: For a convex function f, the subgradient of f at $x \in \mathcal{D}$ is a vector g that satisfies the inequality for all y, $f(y) \ge f(x) + \langle g, y x \rangle$. Example: For f(w) = |w| at w = 0, vectors with slope in [-1, 1] and passing through the origin are subgradients.
- Subdifferential: The set of subgradients of f at $w \in \mathcal{D}$ is referred to as the subdifferential and denoted by $\partial f(w)$. Formally, $\partial f(w) = \{g | \forall y \in \mathcal{D}; f(y) \geq f(w) + \langle g, y w \rangle \}$.
- For unconstrained minimization of convex, non-smooth functions, w^* is the minimizer of f iff $0 \in \partial f(w^*)$ (this is analogous to the smooth case).
- For Lipschitz functions, we cannot relate the subgradient norm to the suboptimality in the function values. Example: For f(w) = |w|, for all w > 0 (including $w = 0^+$), ||g|| = 1.
- Projected Subgradient Descent: $w_{k+1} = \Pi_{\mathcal{D}}[w_k \eta_k g_k]$, where $g_k \in \partial f(w_k)$.
- Since the sub-gradient norm does not necessarily decrease closer to the solution, to converge to the minimizer, we need to explicitly decrease the step-size.

1

For simplicity, let us assume that $\mathcal{D}=\mathbb{R}^d$ and analyze the convergence of subgradient descent.

Claim: For *G*-Lipschitz, convex functions, for $\eta > 0$, T iterations of subgradient descent with $\eta_k = \eta/\sqrt{k}$ converges as follows, where $\bar{w}_T = \sum_{k=0}^{T-1} w_k/T$,

$$f(\bar{w}_T) - f(w^*) \leq rac{1}{\sqrt{T}} \left\lceil rac{\left\lVert w_0 - w^*
ight
Vert^2}{2\eta} + rac{G^2 \eta \left[1 + \log(T)
ight]}{2}
ight
ceil.$$

Proof: Similar to the previous proofs, using the update $w_{k+1} = w_k - \eta_k g_k$ where $g_k \in \partial f(w_k)$,

$$\begin{aligned} \|w_{k+1} - w^*\|^2 &= \|w_k - w^*\|^2 - 2\eta_k \langle g_k, w_k - w^* \rangle + \eta_k^2 \|g_k\|^2 \\ &\leq \|w_k - w^*\|^2 - 2\eta_k [f(w_k) - f(w^*)] + \eta_k^2 \|g_k\|^2 \\ &\qquad \qquad \text{(Definition of subgradient with } x = w_k, \ y = w^*) \\ &\leq \|w_k - w^*\|^2 - 2\eta_k [f(w_k) - f(w^*)] + \eta_k^2 \ G^2 \\ &\qquad \qquad \text{(Since } f \text{ is } G\text{-Lipschitz)} \\ \implies \eta_k [f(w_k) - f(w^*)] &\leq \frac{\|w_k - w^*\|^2 - \|w_{k+1} - w^*\|^2}{2} + \frac{\eta_k^2 \ G^2}{2} \end{aligned}$$

2

Recall that
$$\eta_{k}[f(w_{k}) - f(w^{*})] \leq \frac{\|w_{k} - w^{*}\|^{2} - \|w_{k+1} - w^{*}\|^{2}}{2} + \frac{\eta_{k}^{2} G^{2}}{2},$$

$$\Rightarrow \eta_{\min} \sum_{k=0}^{T-1} [f(w_{k}) - f(w^{*})] \leq \sum_{k=0}^{T-1} \left[\frac{\|w_{k} - w^{*}\|^{2} - \|w_{k+1} - w^{*}\|^{2}}{2} \right] + \frac{G^{2}}{2} \sum_{k=0}^{T-1} \eta_{k}^{2}$$

$$\leq \frac{\|w_{0} - w^{*}\|^{2}}{2} + \frac{G^{2}}{2} \sum_{k=0}^{T-1} \eta_{k}^{2}$$

$$\Rightarrow \frac{\eta}{\sqrt{T}} \sum_{k=0}^{T-1} [f(w_{k}) - f(w^{*})] \leq \frac{\|w_{0} - w^{*}\|^{2}}{2} + \frac{G^{2} \eta^{2}}{2} \sum_{k=0}^{T-1} \frac{1}{k} \qquad \text{(Since } \eta_{k} = \eta/\sqrt{k}\text{)}$$

$$\Rightarrow \frac{\sum_{k=0}^{T-1} [f(w_{k}) - f(w^{*})]}{T} \leq \frac{1}{\sqrt{T}} \left[\frac{\|w_{0} - w^{*}\|^{2}}{2\eta} + \frac{G^{2} \eta [1 + \log(T)]}{2} \right]$$

$$\Rightarrow f(\bar{w}_{T}) - f(w^{*}) \leq \frac{1}{\sqrt{T}} \left[\frac{\|w_{0} - w^{*}\|^{2}}{2\eta} + \frac{G^{2} \eta [1 + \log(T)]}{2} \right]$$
(Using Jensen's inequality on the LHS, and by definition of \bar{w}_{T} .)

Recall that $f(\bar{w}_T) - f(w^*) \leq \frac{1}{\sqrt{T}} \left[\frac{\|w_0 - w^*\|^2}{2\eta} + \frac{G^2 \eta \left[1 + \log(T)\right]}{2} \right]$. The above proof works for any value of η and we can modify the proof to set the "best" value of η .

For this, let us use a constant step-size $\eta_k = \eta$. Following the same proof as before,

$$\eta_{\min} \sum_{k=0}^{T-1} [f(w_k) - f(w^*)] \le \frac{\|w_0 - w^*\|^2}{2} + \frac{G^2}{2} \sum_{k=0}^{T-1} \eta_k^2$$

$$\implies \sum_{k=0}^{T-1} [f(w_k) - f(w^*)] \le \frac{\|w_0 - w^*\|^2}{2\eta} + \frac{G^2 T \eta}{2} \qquad (\text{Since } \eta_k = \eta)$$

Setting $\eta = \frac{\|\mathbf{w_0} - \mathbf{w}^*\|}{G\sqrt{T}}$, dividing by T and using Jensen's inequality on the LHS,

$$f(\bar{w}_T) - f(w^*) \leq \frac{G \|w_0 - w^*\|}{\sqrt{T}}$$

For Lipschitz, convex functions, the above $O(1/\epsilon^2)$ rate is optimal, but we require knowledge of G, $||w_0 - w^*||$, T to set the step-size.

Recall that for smooth, convex functions, we could use Nesterov acceleration to obtain a faster $O(1/\sqrt{\epsilon})$ rate. On the other hand, for Lipschitz, convex functions, subgradient descent is optimal.

In order to get the $\frac{G\|w_0-w^*\|}{\sqrt{T}}$ rate, we needed knowledge of G and $\|w_0-w^*\|$ to set the step-size. There are various techniques to set the step-size in an adaptive manner.

- AdaGrad [DHS11] is adaptive to G, but still requires knowing a quantity related $||w_0 w^*||$ to select the "best" step-size. This influences the practical performance of AdaGrad.
- Polyak step-size [HK19] attains the desired rate without knowledge of G or $||w_0 w^*||$, but requires knowing f^* .
- Coin-Betting [OP16] does not require knowledge of $||w_0 w^*||$. It only requires an estimate of G and is robust to its misspecification in theory (but not quite in practice).

For Lipschitz, strongly-convex functions, subgradient descent attains an $\Theta\left(\frac{1}{\epsilon}\right)$ rate. For this, the step-size depends on μ and the proof is similar to the one in (Slide 6, Lecture 10).

Subgradient descent is also optimal for Lipschitz, strongly-convex functions.

For Lipschitz functions, the convergence rates for SGD are the same as GD (with similar proofs).

Function class	<i>L</i> -smooth	$\it L$ -smooth	G-Lipschitz	G-Lipschitz
	+ convex	$+~\mu$ -strongly convex	+ convex	$+$ μ -strongly convex
GD	$O\left(1/\epsilon ight)$	$O\left(\kappa\log\left(1/\epsilon ight) ight)$	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$
SGD	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$	$\Theta\left(1/\epsilon^2\right)$	$\Theta\left(1/\epsilon ight)$

Table 1: Number of iterations required for obtaining an ϵ -sub-optimality.

Online Optimization

Online Optimization

- 1: Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set \mathcal{C})
- 2: **for** k = 1, ..., T **do**
- 3: Algorithm \mathcal{A} chooses point (decision) $w_k \in \mathcal{C}$
- 4: Environment chooses and reveals the (potentially adversarial) loss function $f_k:\mathcal{C}\to\mathbb{R}$
- 5: Algorithm suffers a cost $f_k(w_k)$

6: end for

Application: **Prediction from Expert Advice**: Given *n* experts,

$$\mathcal{C} = \Delta_n = \{w_i | w_i \geq 0 \; ; \; \sum_{i=1}^n w_i = 1\}$$
 and $f_k(w_k) = \langle c_k, w_k \rangle$ where $c_k \in \mathbb{R}^n$ is the loss vector.

Application: **Imitation Learning**: Given access to an expert that knows what action $a \in [A]$ to take in each state $s \in [S]$, learn a policy $\pi : [S] \to [A]$ that imitates the expert, i.e. we want that $\pi(a|s) \approx \pi_{\text{expert}}(a|s)$. Here, $w = \pi$ and $\mathcal{C} = \Delta_A \times \Delta_A \dots \Delta_A$ (simplex for each state) and f_k is a measure of discrepancy between π_k and π_{expert} .

Online Optimization

- Recall that the sequence of losses $\{f_k\}_{k=1}^T$ is potentially adversarial and can also depend on w_k .
- **Objective**: Do well against the *best fixed decision in hindsight*, i.e. if we knew the entire sequence of losses beforehand, we would choose $w^* := \arg\min_{w \in \mathcal{C}} \sum_{k=1}^T f_k(w)$.
- **Regret**: For any fixed decision $u \in C$,

$$R_T(u) := \sum_{k=1}^T [f_k(w_k) - f_k(u)]$$

When comparing against the best decision in hindsight,

$$R_T := \sum_{k=1}^{T} [f_k(w_k)] - \min_{w \in C} \sum_{k=1}^{T} f_k(w).$$

• We want to design algorithms that achieve a *sublinear regret* (that grows as o(T)). A sublinear regret implies that the performance of our sequence of decisions is approaching that of w^* .

Online Convex Optimization

- Online Convex Optimization (OCO): When the losses f_k are (strongly) convex loss functions.
- *Example 1*: In prediction with expert advice, $f_k(w) = \langle c_k, w \rangle$ is a linear function.
- Example 2: In imitation learning, $f_k(\pi) = \mathbb{E}_{s \sim d^{\pi_k}}[\mathsf{KL}(\pi(\cdot|s) || \pi_{\mathsf{expert}}(\cdot|s)])$ where d^{π_k} is a distribution over the states induced by running policy π_k .
- Example 3: In online control such as LQR (linear quadratic regulator) with unknown costs/perturbations, f_k is quadratic.
- In Examples 2-3, the loss at iteration k+1 depends on the *learner*'s decision at iteration k.

Online Convex Optimization

• Online-to-Batch conversion: If the sequence of loss functions is i.i.d from some fixed distribution, we can convert the regret guarantees into the traditional convergence guarantees for the resulting algorithm.

Formally, if f_k are convex and $R(T) = O(\sqrt{T})$, then taking the expectation w.r.t the distribution generating the losses,

$$\mathbb{E}\left[\frac{R_T}{T}\right] = \mathbb{E}\left[\frac{\sum_{k=1}^T [f_k(w_k)] - \sum_{k=1}^T f_k(w^*)}{T}\right] \ge \sum_{k=1}^T [f(\bar{w}_T) - f(w^*)] = O\left(\frac{1}{\sqrt{T}}\right)$$

where $f(w) := \mathbb{E}[f_k(w)]$ (since the losses are i.i.d) and $\bar{w}_T := \frac{\sum_{k=1}^T w_k}{T}$ (since the losses are convex, we used Jensen's inequality).

- If the distribution generating the losses is a uniform discrete distribution on n fixed data-points, then $f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$ and we are back in the finite-sum minimization setting.
- Hence, algorithms that attain $R(T) = O(\sqrt{T})$ can result in an $O\left(\frac{1}{\sqrt{T}}\right)$ convergence (in terms of the function values) for convex losses.

Online Gradient Descent

The simplest algorithm that results in sublinear regret for OCO is Online Gradient Descent.

Online Gradient Descent (OGD): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, OGD suffers a cost $f_k(w_k)$ and uses the function to compute

$$w_{k+1} = \Pi_C[w_k - \eta_k \nabla f_k(w_k)]$$

where $\Pi_C[x] = \arg\min_{y \in C} \frac{1}{2} \|y - x\|^2$.

Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|\leq D$, for an arbitrary sequence losses such that each f_k is convex and differentiable, OGD with a non-increasing sequence of step-sizes i.e. $\eta_k\leq \eta_{k-1}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$

Online Gradient Descent - Convex functions

Proof: Using the update $w_{k+1} = \prod_{\mathcal{C}} [w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\|w_{k+1} - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - u\|^2 = \|\Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)] - \Pi_{\mathcal{C}}[u]\|^2$$

Since projections are non-expansive i.e. for all x,y, $\|\Pi_{\mathcal{C}}[y] - \Pi_{\mathcal{C}}[x]\| \le \|y - x\|$,

$$\leq \|w_{k} - \eta_{k} \nabla f_{k}(w_{k}) - u\|^{2}$$

$$= \|w_{k} - u\|^{2} - 2\eta_{k} \langle \nabla f_{k}(w_{k}), w_{k} - u \rangle + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\leq \|w_{k} - u\|^{2} - 2\eta_{k} [f_{k}(w_{k}) - f_{k}(u)] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$
(Since f_{k} is convex)

$$\Rightarrow 2\eta_{k}[f_{k}(w_{k}) - f_{k}(u)] \leq [\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}] + \eta_{k}^{2} \|\nabla f_{k}(w_{k})\|^{2}$$

$$\Rightarrow R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} - \|w_{k+1} - u\|^{2}}{2\eta_{k}} \right] + \sum_{k=1}^{T} \frac{\eta_{k}}{2} \|\nabla f_{k}(w_{k})\|^{2}$$

Online Gradient Descent - Convex functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2$$
.

$$\sum_{k=1}^{T} \left[\frac{\|w_k - u\|^2 - \|w_{k+1} - u\|^2}{2\eta_k} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \cdot \left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} \right) + \frac{\|w_1 - u\|^2}{2\eta_1} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \right]$$

$$\leq D^2 \sum_{k=2}^{T} \left[\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} \right] + \frac{D^2}{2\eta_1} = D^2 \cdot \left[\frac{1}{2\eta_T} - \frac{1}{2\eta_1} \right] + \frac{D^2}{2\eta_1} = \frac{D^2}{2\eta_T}$$
(Since $\|x - y\| \leq D$ for all $x, y \in \mathcal{C}$)

Putting everything together,

$$R_T(u) \leq \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \left\| \nabla f_k(w_k) \right\|^2$$

Online Gradient Descent - Convex, Lipschitz functions

Claim: If the convex set \mathcal{C} has a diameter D i.e. for all $x, y \in \mathcal{C}$, $||x - y|| \leq D$, for an arbitrary sequence losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k = \frac{\eta}{\sqrt{k}}$ and $w_1 \in \mathcal{C}$ has the following regret for all $u \in \mathcal{C}$,

$$R_T(u) \leq \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T} \eta$$

Proof: Since the step-size is decreasing, we can use the general result from the previous slide,

$$R_T(u) \le \frac{D^2}{2\eta_T} + \sum_{k=1}^T \frac{\eta_k}{2} \|\nabla f_k(w_k)\|^2 \le \frac{D^2}{2\eta_T} + \frac{G^2}{2} \sum_{k=1}^T \eta_k$$
 (Since f_k is G -Lipschitz)

$$\implies R_T(u) \le \frac{D^2 \sqrt{T}}{2\eta} + \frac{G^2 \eta}{2} \sum_{k=1}^{T} \frac{1}{\sqrt{k}} \le \frac{D^2 \sqrt{T}}{2\eta} + G^2 \sqrt{T} \eta \qquad \text{(Since } \sum_{k=1}^{T} \frac{1}{\sqrt{k}} \le 2\sqrt{T}\text{)}$$

In order to find the "best" η , set it such that $D^2/2\eta=G^2\eta$, implying that $\eta=D/\sqrt{2}G$ and $R_T(u)\leq \sqrt{2}\,DG\,\sqrt{T}$. Hence, OGD with a decreasing step-size attains sublinear $\Theta(\sqrt{T})$ regret for convex, Lipschitz functions.

Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D, for an arbitrary sequence losses such that each f_k is μ_k strongly-convex (s.t. $\mu:=\min_{k\in[T]}\mu_k>0$), G-Lipschitz and differentiable, then OGD with $\eta_k=\frac{1}{\sum_{i=1}^k\mu_i}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_{\mathcal{T}}(u) \leq rac{G^2}{2\mu} \left(1 + \log(\mathcal{T})\right)$$

Proof: Similar to the convex proof, use the update $w_{k+1} = \Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2 \eta_{k}} \right] + \frac{G^{2}}{2} \sum_{k=1}^{T} \eta_{k}$$
(Since f_{k} is G -Lipschitz)

Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \frac{G^2}{2} \sum_{k=1}^T \eta_k$$
.

$$\sum_{k=1}^{T} \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \underbrace{\left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} - \frac{\mu_k}{2}\right)}_{=0} \right] + \|w_1 - u\|^2 \underbrace{\left[\frac{1}{2\eta_1} - \frac{\mu_1}{2}\right]}_{=0} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \le 0$$
(Since $\eta_k = \frac{1}{\sum_{k=1}^k \mu_i}$)

Putting everything together,
$$R_T(u) \leq \frac{G^2}{2} \sum_{i=1}^T \frac{1}{uk} \leq \frac{G^2}{2u} \ (1 + \log(T))$$

(Since
$$\mu := \min_{k \in [T]} \mu_k$$
 and $\sum_{k=1}^T 1/k \le 1 + \log(T)$)

Lower Bound: There is an $\Omega(\log(T))$ lower-bound on the regret for strongly-convex, Lipschitz functions and hence OGD is optimal in this setting!

References i

- John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for online learning and stochastic optimization., Journal of machine learning research 12 (2011), no. 7.
- Elad Hazan and Sham Kakade, *Revisiting the polyak step size*, arXiv preprint arXiv:1905.00313 (2019).
- Francesco Orabona and Dávid Pál, *Coin betting and parameter-free online learning*, Advances in Neural Information Processing Systems **29** (2016).