UNCLASSIFIED

UNCLASSITILD
AD NUMBER: AD0801577
LIMITATION CHANGES
TO:
Approved for public release; distribution is unlimited.
FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors;
Administrative/Operational Use; 29 Apr 1955. Other requests shall be
referred to Air Force Systems Command, Los Angeles, CA
ALITHODITY
AUTHORITY
SAMSO, USAF ltr dtd 28 Feb 1972

PUGION WELDS, VARIOUS CONFIGURATION IN
4130 STEEL SHEET AND BAR, THE MATERIAL
HEAT TREATED AFTER WELDING. - INVESTIGATION OF STRENGTHS.

REPORT NO. DATE MODEL NO.
MSD-1164 4-29-55 MX-883 & X-7A

SUBMITTED UNDER (CONTRACT, SPEC., ETC.)

AF 85 (600) - 28692

Form 375-2

4.

REPORT NO. NSD-1164 DATED_ADT11 29, 1955

LOCKHEED AIRCRAFT CORPORATION

MISSILE SYSTEMS DIVISION VAN NUYS, CALIFORNIA

TITLE

FUSION WELDS, VARIOUS CONFIGURATIONS IN 4130 STEEL SHEET AND BAR, THE MATERIAL HEAT TREATED AFTER WELDING. - INVESTIGATION OF STRENGTHS.

SUBMITTED UNDER

CONTRACT AF 33 (600) - 28692

£.	/	18	9	4	2
1	10	2	P	A.P.	9
,	6.4	2	20		1
	1		1	S	
E1	M-10	0/3	2	7	
	W/ AE	-	3		

MODEL MX-883 & X-7A REFERENCE

FORM MSD 402

Structures Test Group

CHECKED	BY	RX. Schmidt	APPROVED	BY 6 P Bund			
		R. R. Schmidt	NO PICTURES		Engineering		

NO. DRAWINGS....

REVISIONS

	REVISIONS								
DATE	REV. SY	REV. BY PAGES AFFECTED REMARKS							
	+								
-	+								
	1								

1.0 REFERENCES:

- 1.1 IDC, J. A. Johnson to C. R. Bumstead dated February 10, 1955.
- 1.2 ANVO, K. M. Pisher to R. R. Schmidt dated March 21, 1955.
- 1.3 Intereffice Hotebook pages 182830 through 182836 (issued to W. L. McLean)

2.0 INTRODUCTION:

2.1 The test program was requested by reference 1.1. The objectives of the program were to establish weld ultimate strength design factors for certain common weld configurations with an eye toward justifying an increase in the existing maximum weld strength design factor of 85% of the ultimate strength of the parent material. The specimens were manufactured in the configurations, heat-treats and quantities shown on Figure 1. The tasts were performed in th. Baldwin-Tate-Emery SR-1; Universal Testing Machine in the Engineering Test Department Laboratory on April 11, 15 and 18, 1955 under EWA 3-4880-1076 (Dept. 71-21; Service Number 121)

MISSILE SYSTEMS DIVISION

3.0 PROCEDURE

- 3.1 The three types of test specimens are shown on Figures 2, 3, and h. The specimens were set up in the SR-h Universal Testing Machine as shown in Figure 5. Serrated wedge-type grips were utilised to secure the coupons. Specially made, extra thick grips were used on one side of the croashead grip to accommodate the offset construction of the Type II and Type III specimens. The coupon was loaded in tension until failure and the maximum load recorded. All coupons had been Rockwell Hardness tested to determine heat-treat, but these values, especially those for the 7.020 material, were not considered to be sufficiently accurate. Consequently, for all specimens where weld failure occurred in the sheet, the remaining tab was re-tested to determine the true heat-treat.
- 3.2 Typically, the weld failures occurred in the fusion zone and/or the refined zone of the parent material. For Types II and III, this occurred in the thin sheet in almost every case although several failures occurred in the 0.250 plate and several other failures transgressed the weld. Typical weld failures for each of the three specimen Types are shown in Figures 6, 7, and 8. Failures of the parent sheet material were of a typical brittle material shear-tension type as illustrated on Figure 9.

Fig. 2 Type I Coupon
Figures indicate heat-treat
as determined by Rockwell
Hardness Test.

Fig. 3 Type II Coupon

Fig. 4 Type III Coupon

Fig. 5 Test Set-up of Type III Coupon in SR-4 Universal Testing Machine

Fig. 6 Typical Weld Failure
Type I Coupon

Fig. 7 Typical Weld Failure Type II Coupon

Fig. 8 Typical Weld Failure Type III Coupon

Fig. 9 Typical Failure of Parent Sheet Material

Prepared	W.L. McLean	4-29-55	LOCKHEED AIRCRAFT CORPORATION MISSILE SYSTEMS DIVISION	Page	TEMP	DA
Checked	R.R. Schmidt	1	FUSION WELDS, VARIOUS CONFIGURATIONS	Medo	iX-8	83 &
Approved			IN 4130 STEEL SHEET AND BAR.	Roper	n Neil	SD116

4.0 DATA:

4.1

0.020 Sage Coupons

	Coupon	Wlath	Gage	Parent M	sterial	We.	ld.		& Parent
Туре	No.	(in.)	(in.)	Ultimate		Ultimate	% Parent	Reasrics	Maierial (Group Average)
I	1	1.014	0.022	301,0	136	-	100		
	2	1.020	0.022	3380	151	3340	98.8	7	
	3	1.029	0.022	3320	11.7		2.00		3
	4	1.013	0.022	3200	144		100		
	3456	1.012	0,021	3400	160	3160	92.9	W	98.9
	6	1.031	0.019		-			4	
	7 8	0.969	0.019	2550	139	2520	98.8		
	8	1.041	0.020	2930	11.1		100		
	9	1.022	0.019		-				W
	10	1.011	0.019	2820	147	-	100	1. 1.	
II	1	1.011	0.020	3200	158	2hho	76.2	00	We - 10
	1 2	1.019	0,020			-	-	40 (1)	A 2
	345678	1.017	0.020			-			W
	14	1.022	0.020	3460	170	3100	98.2	200 200	0
	5	1.019	0.020	3480	171	3260	93.6		94.0
	6	1.031	0.020	3500	170	3450	98.6	5.	
	7	1.006	0.020	3320	165	9000	200	134	
	8	1.002	0.019	3280	172	3080	93.9		
•	9	1.003	0.019	3120	164	3020	96.7	-44	
III ·	1	0.995	0.019	2830	150	-	100	12	
	2	0.998	0.020	30.00	155 151	2830	90.6		
	23456	1.013	0.020	3150	151		3.00	200	13
	4	1.016	0.020	3080	152		100	· 43	State of
	5	1.012	0.020	-	****	-			95.7
	6	1.003	0.021	2900	138	2750	94,8	1	
	7 8	1.025	0.021	3120	145	3030	97.1		
	8	1.013	,0.020	3050	150 149	2730	89.8	1 1	
	9	1.008	0.020	3000	149	2850	95.0	ă	
	10	1.014	0.030	30h0	150	2830	93.0		

^{*} Failure in grip.

as Defective weld.

W.L. Melson	4-29-55	LOCKHEED AIRCRAFT CORPORATION MISSILE SYSTEMS DIVISION	Page	TEMP	PERM P.9
Charles R.R. Schmidt		FUSION WELDS, VARIOUS CONFIGURATIONS	Mode	MX-8	83 & 74
		IN 130 STEEL SHEET AND BAR.	Ropo	H.eff to	SD116

hat come (course)

1.2

0.060 dags Coupons

5	Campon	Mides	Gago	Parent M	storial	Well	d		\$ Parent
		(70%)	(4A.)	Ultimate Load(lb.)	Heat Treat(psi)	Ultimate Load(1b.)		Remarks	Material (Group Average
	o-contrast.	1,021, 1,009 1,012 1,020 1,038 1,018 1,023	0,056 0,055 0,056 0,055 0,056 0,056 0,055 0,057	9700 9600 9600	169 169 171	9600 9100 9200	98.9 97.9 95.8	* * * *	97.5
11	18 3 AWS 7 8 9 10 11	1.001 1.001 1.003 1.003 1.001 0.969 0.996 0.997 0.998 1.006 0.998	0.058 0.057 0.055 0.057 0.056 0.055 0.055 0.055 0.055 0.055	11000 11200 10900 11000 10900 9500 9500 9500 9100	189 197 198 192 191 175 173 173 175	10100 7800 8100 10700 9000 9300 8550 8500 8510	91.8 69.6 100 76.3 98.1 91.7 97.8 100 92.0	**	}87.2 }95.5
m	1274567890	1.001 1.013 1.007 1.003 0.991 0.991 0.999 1.011 0.991	0.056 0.056 0.056 0.055 0.055 0.051 0.053 0.051	10600 10600 10800 10800 11100 	189 187 192 192 204 	9500 9750 9700 8700 10200 8300 8200 8200 8700 8600	89.6 92.0 69.8 80.6 92.0	9-800 0-800 0-800	}88.9

[#] Warped compon.

^{**} Defective weld.

^{***} Failure in 0.250 plate.

MISSILE SYSTEMS DIVISION

5.0 CONCLUSIONS:

- 5.1 At the outset, it should be emphasized that a test progress of this type cannot be locked upon as conclusive in itself, but rather as only an indication of the results that might be expected from a more comprehensive progress. The quantity of test coupons of each type scheduled to be tested was two small to give quantitative results. However, the number of coupons actually satisfactorily tested was significantly less than scheduled because of warped specimens and specimens which failed in the grips.
- 5.2 The test results are tabulated on pages 8 and 9. Considering the 0.020 specimens, it is seen that, in many instances, the strength of the weld was greater than that of the parent material. Designating the relative strengths in these cases as 100%, the minimum sverage relative strength of weld to parent material is 91% for Type II specimens. This suggests that a higher design weld factor might be in order in this gage range. No correlation is possible between heat-treats and relative strengths due to the fact that heat-treats vary considerably and do not fall into the desired listic. Four-ently, normal heat-treating procedure is unsatisfactory is this thickness range. One possible improvement in this connection would be to heat-treat in an injert almosphere to reduce the effect of surface decarburization.
- generally satisfactory. For this gage, however, various difficulties prevent positive correlation of the heat-treats and specimen types with wald strengths. Of Type I specimens, only three specimens out of eight gave satisfactory results, the remaining five being badly warped (see below). In the 180-200,000 psi range of Type II, two specimens having defective welds (see below) brought down the average strength considerably. In Type III, 150-170,000 psi range, three of the five specimens failed through the and of 0.250 plate and therefore contributed no useful information. Only the Type II, 150-170,000 psi range tests consisted of a sufficient number of perfect coupons to give reliable results. The relative strength values of 95.5% and 88.9% respectively suggest two possibilities: (1) as inverse relationship exists between heat-treats and weld strengths or (2) the Type II weld is stronger than the Type III weld. Additional testing would be required to resolve the alternatives.
- 5.h Low weld strength factors in three cases [Type II 0.020 (1) and 0.060 (2)] were found to be due to blow-holes in the welds. Since all coupons of a particular type were cut from a single weld assembly, these defects were obviously not attributable

5.0 CONCLUBIOLS: (CONTO)

- to teolated faulty wilds, but rather to conditions which might crop up at any point in otherwise perfect weld. Consequently, in a comprehensive test program for purposes of establishing weld design factors, these coupons would have to be considered as representing the strengths to be expected in a certain percentage of normal welds. It is therefore suggested that improvement of our present welding techniques and quality controls is in order if higher weld design factors are to be realized.
- As mentioned above, two difficulties, warped coupons and breakage of the compone in the grips, were responsible for reduction of the number of unable specimens. Compons in both the 0.020 and 0.060 gages of the Type I (sheet-to-sheet) specimens were badly warped, apparently a combination result of both welding and heat-treating. Although this warpage had no apparent effect on the strength of the 0.020 specimens, the eccentric loading bending stresses introduced by this condition into the 0.060 specimens resulted in premature failures. Future compone will require holding fixtures for wolding and heat treatment plus adequate tempering to prevent warpage. Breakage of the coupons in the grips was restricted to the 0.020 gage coupons. The thin gage combined with the brittleness of the steel to magnify the stress concentration effect of the grip teeth, These effects could largely be offset by deeper insertion of the specimen into the grip, but the compons were so short that this could not be accomplished with any degree of certainty. To alleviate this problem in future tests, the use of longer specimens with flared ends is recommended.