PCA

1)

Eigenvalues of X^TX as calculated from the code are:

[2.81035710e+02 -5.49536140e-15 9.64290269e-01 2.43463565e-15

-6.88454893e-16 -4.43466032e-15]

```
C:\Users\user\Desktop\MS\Fall_2019\FML\ass3>python hw03.py
Eigen values of X.T@X are:
[ 2.81035710e+02 -5.49536140e-15    9.64290269e-01    2.43463565e-15
-6.88454893e-16 -4.43466032e-15]
```

$$X = \begin{bmatrix} 2 & 3 & 3 & 4 & 5 & 7 \\ 2 & 4 & 5 & 5 & 6 & 8 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 2 & 3 & 3 & 4 & 5 & 7 \\ 2 & 4 & 5 & 5 & 6 & 8 \end{bmatrix} \begin{bmatrix} 2 & 2 & 7 \\ 3 & 4 & 7 & 7 \\ 3 & 5 & 6 & 7 & 9 \end{bmatrix}$$

$$= \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$= \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 137 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 177 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170 \\ 177 & 170 \end{bmatrix}$$

$$XXT = \begin{bmatrix} 137 & 170$$

$$det \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 0$$

$$det \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = 0$$

$$det \begin{bmatrix} 112 - \lambda & 137 \\ 137 & 170 - \lambda \end{bmatrix} = 0$$

$$\Rightarrow det \begin{bmatrix} 112 - \lambda & 137 \\ 137 & 170 - \lambda \end{bmatrix} = 0$$

$$\Rightarrow (112 - \lambda) (170 - \lambda) - 18769 = 0$$

$$\Rightarrow (19040 - 2022 + 271 = 0)$$

$$\Rightarrow \lambda^{2} - 232\lambda + 271 = 0$$

For a quadratic equation of the form

$$a_{2}^{2} + b_{1} + c = 0$$
 the solutions are,

 $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

Here we have,

 $a = 1$, $b = -282$ and $c = 271$

Hence the 2 possible values of λ are:

$$\lambda = \frac{-(-282) + \sqrt{(-292)^{2} - 4x \times 271}}{2 \times 1}$$

= $141 + \sqrt{19610}$

and,

 $a_{1} = \frac{-(-232) - \sqrt{(-232)^{2} - 4x \times 271}}{2 \times 1}$

= $141 - \sqrt{19610}$

= 0.96429

111.03571
$$V_1 + 137V_2 = 0$$

137 $V_1 + 169.03571V_2 = 0$

Let $V_1 = X$.

potting $V_1 = X$ in ① we get,

111.03571 $X + 137V_2 = 0$

111.0

Using
$$\lambda = 281.0357$$
 we get,
$$\begin{pmatrix}
112 & 137 \\
137 & 170
\end{pmatrix} - \begin{bmatrix}
281.0357 & 0 \\
0 & 281.05557
\end{bmatrix} \lor = \begin{bmatrix}0\\
0\end{bmatrix}$$
Let $V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ then,
$$\begin{bmatrix}
-169.0357 & 137 \\
137 & -111.0357
\end{bmatrix} \begin{bmatrix}
V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix}0\\
0\end{bmatrix}$$

$$137V_1 & -111.0357V_2 = 0$$

$$137V_1 & -111.0357V_2 = 0$$
Puting $V_1 = \lambda$ in 0 we get,
$$Puting V_1 = \lambda & \text{in } 0 & \text{we get,} \\
Puting V_1 = \lambda & \text{in } 0 & \text{we get,} \\
26(0.0357 \times 137) \times 137 \times$$

$$||V|| = \sqrt{\chi^2 + (1.23384)^2 \chi^2}$$

$$= \chi \sqrt{1 + (1.23384)^2}$$

$$= \chi \sqrt{2.52236}$$
Hence a normalized eigentector would be
$$= \sqrt{\chi} \sqrt{2.52236}$$

$$= \sqrt{1.23384 \chi} \sqrt{\chi} \sqrt{2.52236}$$

$$= \sqrt{1.23394} \sqrt{2.52236}$$

$$= \sqrt{0.62964}$$

$$= \sqrt{77688}$$

Results from code:

```
Eigenvalues of X@X.T are:
[ 0.96429027 281.03570973]

Eigenvectors of X@X.T are:
[[-0.7768816 -0.62964671]
[ 0.62964671 -0.7768816 ]]
```

On verifying the solution with the results from code, we see that the ratio (v_1/v_2) for both the eigenvectors found is same as the ratio (v_1/v_2) found from the code. Also, the eigenvalues found match with the results from code.

Thus, we can conclude that the solution is correct.

3)

Yes, the eigenvalues of XX^T :

 $\lambda = 0.96429027$ and

 $\lambda = 281.03570973$

are also eigenvalues of X^TX .

The eigenvalues are same because,

for the non-zero eigenvalues λ and eigenvector v ($v \neq 0$) of XX^T we will have,

$$XX^Tv = \lambda v$$
,

then,

$$X^T X u = X^T X (X^T v) = \lambda X^T v = \lambda u.$$

Thus, we can say $u = X^T v \neq 0$, otherwise $XX^T v = 0$ as well, and hence λ is an eigenvalue of $X^T X$ also.

Dota
$$X = \begin{bmatrix} 2 & 3 & 3 & 4 & 5 & 7 \\ 2 & 4 & 5 & 5 & 6 & 8 \end{bmatrix}$$

mean $(X) = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$

Subtracting the mean from the Dota we get,
$$X = \begin{bmatrix} -2 & -1 & -1 & 0 & 1 & 3 \\ -3 & -1 & 0 & 0 & 1 & 3 \end{bmatrix}$$

Standard deviation
$$(X) = \begin{bmatrix} 1.633 \\ 1.826 \end{bmatrix}$$

Dividing the sesuttant matrix after Standard Subtracting the mean, by the Standard datas, deviation (X), we get normalized datas,

The Cavariance Matrin & for the normalized data

[1.2 1.14]

1.3 M = [1.14 1.2]

Let eigenvalue of M be I and eigenvector V.

$$MV = \lambda V$$

$$= M - \lambda I) V = 0$$

Hence, for a non-zero
$$\vee$$
, $det(M-\lambda T)=0$
Now, $M-\lambda T$
=\[\frac{1\cdot 2}{1\cdot 1\cdot 1} -\lambda \begin{bmatrix} 1 & 0 & 0 \\ 1\cdot 1 & 1\cdot 2 & \end{bmatrix} \\ \frac{1\cdot 2}{1\cdot 1} & \frac{1\cdot 1}{1\cdot 2} -\lambda \begin{bmatrix} 1 & 1\cdot 2 & \end{bmatrix} \\ \frac{1\cdot 2}{1\cdot 1} & \frac{1\cdot 1}{1\cdot 2} & \frac{1\cdot 1}{1\cdot 2} & \frac{1\cdot 1}{1\cdot 2} \\ \frac{1\cdot 2}{1\cdot 1} & \frac{1\cdot 1}{1\cdot 2} & \frac{1\cdot 1}{1\cdot 2} & \frac{1\cdot 2}{1\cdot 2} &

Using quadratic formula with

$$\alpha = 1$$

$$b = -2.4 \text{ and}$$

$$C = 0.141 \text{ we get}$$

$$\lambda = \frac{-(-2.4) \pm \sqrt{(-2.4)^2 - 4(1)(0.141)}}{2(1)}$$

$$= \frac{2.4 \pm \sqrt{5.176}}{2}$$

$$= \frac{2.4 \pm \sqrt{5.176}}{2}$$

$$\Rightarrow \lambda = 0.06$$
Or, $\lambda = 6.06$
Or, $\lambda = 6.06$
Now, let us find the eigenveltor corresponding to the larger eigenvalue $\lambda = 2.34$.

We have,

$$(M - \lambda I) \lor = 0$$

$$\Rightarrow \begin{pmatrix} 1.2 & 1.14 \\ 1.14 & 1.2 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{pmatrix} 1.14 & 1.14 \\ 1.14 & 1.12 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ 0 \end{pmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1.14 & 1.14 \\ 1.14 & 1.12 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1.14 & 1.14 \\ 1.14 & 1.12 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 1.14 \\ 1.14 \end{pmatrix} + \begin{pmatrix} 1.14 \\ 1.14 \\ 1.14 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1.14 & 1.14 \\ 1.14 & 1.12 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0$$

$$\frac{3}{2} \left[-1.14 \, \text{V}_1 + 1.14 \, \text{V}_2 \right] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$1.14 \, \text{V}_1 + (-1.14 \, \text{V}_2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$1.14 \, \text{V}_1 + 1.14 \, \text{V}_2 = 0 \quad -0$$

$$1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0$$

$$1.14 \, \text{V}_1 = 1.14 \, \text{V}_2$$

$$= \begin{cases} 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = 1.14 \, \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = 1.14 \, \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = 1.14 \, \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = 1.14 \, \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = 1.14 \, \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1 = 1.14 \, \text{V}_2 = 0 \end{cases}$$

$$= \begin{cases} 1.14 \, \text{V}_1 = 1.14 \, \text{V}_2 = 0 \\ \text{V}_1$$

:. The reduced 1-dimension data will be, ((Normalized Data) V) 1.643 2.461 = -2.028 -0.820 -0.433 0 0.820 2-461 The solution is same as the result from code. Thus we can say that the Solution is crosect. Results from the code:

Shape of transformed data:

(1, 6)

Transformed data after dimension reduction:

[[-2.02792041 -0.82031104 -0.4330127 0. 0.82031104 2.46093311]]

```
Question 4

Shape of transformed data:
    (1, 6)

Transformed data after dimension reduction:
    [[-2.02792041 -0.82031104 -0.4330127 0. 0.82031104 2.46093311]]
```

On verifying the solution with the results from code, we see that the results match. Thus, we can say that the solution is correct.

EM

2.1)

No, Eq.3 can not be solved directly. The data has unobserved (hidden) latent variables. We need to use the latent data and EM algorithm to solve the equation.

2.2)

$$\theta^{(0)} = (\pi^{(0)}, p^{(0)}, q^{(0)}) = (0.5, 0.5, 0.5)$$
For $y_j = 0$,
Putting $j = 0$ and using the $\theta^{(0)}$ values in (4) (we get),
$$H^{(1)} = \frac{(0.5)(0.5)^0 (1 - 0.5)^{1 - 0}}{(0.5)(0.5)^0 (1 - 0.5)^{1 - 0}}$$

$$= \frac{(0.5)(0.5)}{(0.5)(0.5)} + (0.5)(0.5)$$

$$= \frac{(0.5)(0.5)}{0.25}$$

$$= \frac{0.25}{0.25}$$

$$= \frac{0.25}{0.50}$$

= 0.5

For
$$y_{i} = 1$$
,

putting $i = 0$ and $\mathcal{E}^{(0)}$ using the $\theta^{(0)}$ values in (4) we get,

$$\mathcal{L}^{(1)} = \frac{(0.5)(0.5)^{1}(1-0.5)^{1-1}}{(0.5)(0.5)^{1}(1-0.5)^{1-1}} + \frac{(1-0.5)(0.5)^{1}(1-0.5)^{1-1}}{(0.5)(0.5)(0.5)^{0}} + \frac{(0.5)(0.5)(0.5)^{0}}{(0.5)(0.5)(0.5)^{0}} + \frac{0.25}{0.25 + 0.25}$$

$$= \frac{0.25}{0.50}$$

$$= 0.5$$

$$= 0.5$$

$$= 0.5$$

$$= 0.5 \text{ Me mean } \mathcal{L}^{(0)}$$
 Value for other of the $0.5 \times 6 + 0.5 \times 4$ Figure have 6

:. The mean
$$M^{(1)}$$
 value for the 10 Samples = $\frac{0.5\times6+0.5\times4}{10}$ [:: we have 6 securances of $y_j=1$ and 4 occurances $y_j=0$]

$$\theta^{(0)} = (\pi^{(0)}, \beta^{(0)}, q^{(0)}) = (0.5, 0.5, 0.5)$$

$$\mathcal{M}^{(1)} = 0.5 \quad (\text{calculated in question } 2.2, \text{ sto both}$$

$$\mathcal{J}_{j} = 0 \text{ and } \mathcal{J}_{j} = 1)$$

$$\therefore \text{ Padting } i = 0 \text{ and susing the } \mathcal{H}^{(1)} \text{ Values in } (5)$$

$$\text{the get},$$

$$\pi^{(1)} = \frac{1}{10} \sum_{j=1}^{10} \mathcal{M}_{j}^{(1)}$$

$$= \frac{1}{10} (10 \times 0.5) \left[:: \mathcal{M}_{ij}^{(1)} = 0.5 \text{ fs all Values} \right]$$

$$= \frac{1}{10} (5) = 0.5$$

$$\text{Similarly, putting } i = 0 \text{ and susing the } \mathcal{H}^{(1)} \text{ Values in } (6),$$

$$p^{(1)} = \frac{\sum_{j=1}^{10} \mathcal{M}_{j}^{(1)} \mathcal{Y}_{j}}{\sum_{j=1}^{10} \mathcal{M}_{j}^{(1)}}$$

$$= \frac{0.5(6)}{10 \times 0.5} \left[:: \mathcal{M}_{j}^{(1)} = 0.5 \text{ fm all Values} \right]$$

$$= 0.6$$

and putting
$$i=0$$
 and using the $H^{(i)}$ values in (7) we get,

$$q^{(i)} = \frac{\sum_{j=1}^{10} (1 - H_j^{(i)}) y_j}{\sum_{j=1}^{10} (1 - H_j^{(i)})}$$

$$= \frac{(1 - 0.5) \sum_{j=1}^{10} y_j}{(1 - 0.5) \times 10} \qquad \text{all values if } j$$

$$= \frac{0.5 \times 6}{0.5 \times 10}$$

$$= 0.6$$

$$\therefore \theta^{(i)} = (\pi^{(i)}, p^{(i)}, q^{(i)})$$

$$= (0.5, 0.6, 0.6)$$

2.4) For all
$$y_{j} = 0$$
 and when $i=1$, we will have,
$$\mathcal{L}^{(2)} = \frac{\pi^{(1)}(p^{(1)})^{0}(1-p^{(1)})^{1-0}}{\pi^{(1)}(p^{(1)})^{0}(1-p^{(1)})^{1-0} + (1-\pi^{(1)})(2^{(1)})^{0}(1-2^{(1)})^{1-0}}$$

$$= \frac{(0.5)(0.4)}{(0.5)(0.4) + (0.5)(0.4)} \begin{bmatrix} \text{Using } \theta^{(1)} \text{ Values} \\ \text{calculated in } 2.3 \end{bmatrix} \\
= 0.5$$

For all
$$y = 1$$
 and when $i = 1$, we will have
$$\mathcal{U}^{(2)} = \frac{\pi^{(1)}(p^{(1)})^{1}(1-p^{(1)})^{1-1}}{\pi^{(1)}(p^{(1)})^{1}(1-p^{(1)})^{1-1} + (1-\pi^{(1)})(2^{(1)})^{1}(1-2^{(1)})^{1-1}}$$

$$= \underbrace{(0.5)(0.6)}_{(0.5)(0.6)} = \underbrace{\begin{bmatrix} using \theta^{(1)} \ Volues \\ Gelculated in 2.3 \\ and Geograes \\ \theta^{(6)} \ Volue \end{bmatrix}}_{0.5}$$

$$= \underbrace{0.5}$$

:. The mean $\mu^{(2)}$ value of the 10 samples

= $0.5 \times 6 + 0.5 \times 4$ [: we have 6

occurances of $y_{j=1}$ and $y_{j=0}$]

= 0.5

2.5)

2.5)
$$\theta^{(0)} = (\pi^{(0)}, p^{(0)}, q^{(0)}) = (0.5, 0.5, 0.5)$$
 $\mathcal{M}^{(2)} = 0.5$ (calculated in question (2.4), for both $y_j = 0$ and $y_j = 1$)

i. Butting $i = 1$ and using $\mathcal{M}^{(2)}$ Values in (5) are get,

 $\pi^{(2)} = \frac{1}{10} \sum_{j=1}^{10} \mathcal{M}_{j}^{(2)}$
 $= \frac{1}{10} \times 10 \times 0.5$ [: $\mathcal{M}_{j}^{(2)} = 0.5$ for all values θ_{j}]

 $= 0.5$

Similarly, putting $i = 1$ and using $\mathcal{M}^{(2)}$ Values in (6) are get,

 $p^{(2)} = \frac{\sum_{j=1}^{10} \mathcal{M}_{j}^{(2)} y_{j}}{\sum_{j=1}^{10} \mathcal{M}_{j}^{(2)}}$
 $= \frac{0.5 \times 6}{0.5 \times 10}$ [: $\mathcal{M}_{j}^{(2)} = 0.5$ for all $y_{j} = 0$

2-6) If
$$\theta^{(0)} = (0.4, 0.6, 0.7)$$
, for $i = 0$ and

all $J_{j} = 0$ we get from (4) ,

$$\mathcal{M}^{(1)} = \frac{\pi^{(0)}(p^{(0)})^{0}(1-p^{(0)})^{1-0}}{\pi^{(0)}(p^{(0)})^{0}(1-p^{(0)})^{1-0} + (1-\pi^{(0)})(2^{(0)})^{0}(1-2^{(0)})^{1-0}}$$

$$= \frac{(0.4)(1-0.6)}{(0.4)(1-0.6) + (0.6)(0.3)}$$

$$= \frac{0.471}{0.16 + 0.18}$$

$$= 0.471$$

$$\mathcal{M}^{(1)} = \frac{\pi^{(0)}(p^{(0)})^{1}(1-p^{(0)})^{1-1}}{\pi^{(0)}(p^{(0)})^{1}(1-p^{(0)})^{1-1} + (1-\pi^{(0)})(2^{(0)})^{1}(1-2^{(0)})^{1-1}}$$

$$= \frac{(0.4)(0.6)}{(0.4)(0.6) + (0.6)(0.7)} \qquad \begin{bmatrix} using \\ 0.24 + 0.42 \end{bmatrix}$$

$$= 0.364$$

Now, putting
$$i = 0$$
 and using $\mathcal{U}^{(i)}$ Values alculated above in (5) we get,

$$\pi'' = \frac{1}{10} \sum_{j=1}^{10} \mu_{j}''' \\
= \frac{1}{10} \left(6 \times 0.364 + 4 \times 0.471 \right) \\
= \frac{1}{10} \left(2.184 + 1.884 \right) \\
= 0.407$$

Similarly, from (6) we get,
$$p^{(1)} = \frac{\sum_{j=1}^{10} \mathcal{M}_{j}^{(1)} y_{j}}{\sum_{j=1}^{10} \mathcal{M}_{j}^{(1)}}$$

$$= \frac{6 \times 0.364}{6 \times 0.364 + 4 \times 0.471}$$

$$= \frac{2.184}{4 \times 0.367}$$

and from (7) we get,
$$2^{(1)} = \frac{\sum_{j=1}^{10} (1 - M_j^{(1)})^{2j}}{\sum_{j=1}^{10} (1 - M_j^{(1)})^{2j}}$$

$$= \frac{6 \times (1 - 0.364)}{6 \times (1 - 0.364)} + 4(1 - 0.471)$$

$$= \frac{3.8/6}{5.932}$$

$$= 0.643$$

$$\therefore \theta^{(1)} = (0.407, 0.537, 0.643)$$

$$\therefore \theta^{(2)} = (0.407, 0.537, 0.643)$$

$$\text{for } J_j = 0, \quad i = 1 \text{ and using the } \theta^{(1)} \text{ Values in } (4)$$

$$\text{for } J_j = 0, \quad i = 1 \text{ and using the } \theta^{(1)} \text{ Values in } (4)$$

$$M^{(2)} = \frac{\pi^{(1)} (p^{(1)})^0 (1 - p^{(1)})^{1-0}}{\pi^{(0)} (p^{(1)})^0 (1 - 0.537)} + (1 - 0.407) (1 - 0.643)}$$

$$= \frac{0.183}{0.163 + 0.212} = 0.47$$

When
$$y_{j} = 1$$
,

$$\mathcal{M}^{(2)} = \frac{\pi^{(7)}(p^{(7)})^{1}(1-p^{(7)})^{1-1}}{\pi^{(9)}(p^{(7)})^{1}(1-p^{(7)})^{1-1}} + (1-\pi^{(7)})(2^{(9)})^{1}(1-2^{(9)})^{1-1}}$$

$$= \frac{(6\cdot407)(0\cdot537)(1-0\cdot537)^{0}}{(0\cdot407)(0\cdot537)}$$

$$= \frac{0\cdot219}{0\cdot219+0\cdot321}$$

$$= 0\cdot365$$
Now, putting $i=1$ and using the $\mu^{(2)}$ Values

Alculated above in (5) we get;

$$\alpha \text{ calculated above in } (5) \text{ we get;}$$

$$\pi^{(2)} = \frac{1}{10} \int_{j=1}^{10} \mu_{j}^{(2)}$$

$$= \frac{1}{10} (2\cdot19 + 1\cdot33)$$

$$= 0\cdot407$$

Similarly, from (6) we get,
$$p^{(2)} = \frac{\sum_{j=1}^{10} \mathcal{U}_{j}^{(2)} \mathcal{Y}_{j}}{\sum_{j=1}^{10} \mathcal{U}_{j}^{(2)}}$$

$$= \frac{6 \times 0.365}{6 \times 0.365 + 4 \times 0.470}$$

$$= \frac{2.19}{4.07} = 0.538$$
and from (7) we get,
$$p^{(2)} = \frac{\sum_{j=1}^{10} (1 - \mathcal{U}_{j}^{(2)}) \mathcal{Y}_{j}}{\sum_{j=1}^{10} (1 - \mathcal{U}_{j}^{(2)})}$$

$$= \frac{(6) \times (1 - 0.365)}{6(1 - 0.365) + 4(1 - 0.470)}$$

$$= \frac{3.81}{3.81 + 2.12} = 0.643$$

$$\therefore \theta^{(2)} = (0.407, 0.538, 0.643)$$
Thuse, we see that $\theta^{(2)}$ is NOT the same as that in Questin 2.5

2.7)

No, the results of parameters estimation are different with different initialization.

Here are the results from the code implementation of the EM algorithm:

```
*****EM******
```

Theta(0) values are:

Pie(0) = 0.4

p(0) = 0.6

q(0) = 0.7

For all values of observable data = 0:

mu(1)= 0.47058823529411764

For all values of observable data = 1:

mu(1)= 0.36363636363636365

Mean mu(1)= 0.40641711229946526

Iteration number: 1

Pie(1)=0.40641711229946526

p(1)=0.5368421052631579

q(1)=0.6432432432432431

For all values of observable data = 0:

mu(2)=0.47058823529411764

For all values of observable data = 1:

mu(2)=0.36363636363636376

Mean mu(2)= 0.40641711229946537

Iteration number: 2

Pie(2)=0.40641711229946537

p(2)=0.5368421052631579

q(2)=0.6432432432432431

For all values of observable data = 0:

mu(3)=0.47058823529411764

For all values of observable data = 1:

mu(3)=0.36363636363638

Mean mu(3)= 0.40641711229946537

Iteration number: 3

Pie(3)=0.40641711229946537

p(3)=0.536842105263158

q(3)=0.6432432432431

For all values of observable data = 0:

mu(4)=0.47058823529411764

For all values of observable data = 1:

mu(4)=0.36363636363638

Mean mu(4)= 0.40641711229946537

Iteration number: 4

Pie(4)=0.40641711229946537

p(4)=0.536842105263158

q(4)=0.6432432432432431

For all values of observable data = 0:

mu(5)=0.47058823529411764

For all values of observable data = 1:

mu(5)=0.36363636363638

Mean mu(5)= 0.40641711229946537

Iteration number: 5

Pie(5)=0.40641711229946537

p(5)=0.536842105263158

q(5)=0.6432432432431

For all values of observable data = 0:

mu(6)=0.47058823529411764

For all values of observable data = 1:

mu(6)=0.36363636363638

Mean mu(6)= 0.40641711229946537

Iteration number: 6

Pie(6)= 0.40641711229946537

p(6)=0.536842105263158

q(6)=0.6432432432432431

For all values of observable data = 0:

mu(7)=0.47058823529411764

For all values of observable data = 1:

mu(7)=0.36363636363638

Mean mu(7)= 0.40641711229946537

Iteration number: 7

Pie(7)=0.40641711229946537

p(7)=0.536842105263158

q(7)=0.6432432432431

For all values of observable data = 0:

mu(8)=0.47058823529411764

For all values of observable data = 1:

mu(8)=0.36363636363638

Mean mu(8)= 0.40641711229946537

Iteration number: 8

Pie(8)=0.40641711229946537

p(8)=0.536842105263158

q(8)=0.6432432432431

For all values of observable data = 0:

mu(9)=0.47058823529411764

For all values of observable data = 1:

mu(9)=0.36363636363638

Mean mu(9)= 0.40641711229946537

Iteration number: 9

Pie(9)=0.40641711229946537

p(9)=0.536842105263158

q(9)=0.6432432432431

For all values of observable data = 0:

mu(10)=0.47058823529411764

For all values of observable data = 1:

mu(10)= 0.36363636363638

Mean mu(10)= 0.40641711229946537

Iteration number: 10

Pie(10)= 0.40641711229946537

p(10)= 0.536842105263158

q(10)= 0.6432432432432431

For all values of observable data = 0:

mu(11)= 0.47058823529411764

For all values of observable data = 1:

mu(11)=0.36363636363638

Mean mu(11)= 0.40641711229946537

Iteration number: 11

Pie(11)=0.40641711229946537

p(11)= 0.536842105263158

q(11)=0.6432432432432431

For all values of observable data = 0:

mu(12)= 0.47058823529411764

For all values of observable data = 1:

mu(12)=0.36363636363638

Mean mu(12)= 0.40641711229946537

Iteration number: 12

Pie(12)= 0.40641711229946537

p(12)= 0.536842105263158

q(12)=0.6432432432432431

For all values of observable data = 0:

mu(13)=0.47058823529411764

For all values of observable data = 1:

mu(13)=0.36363636363638

Mean mu(13)= 0.40641711229946537

Iteration number: 13

Pie(13)= 0.40641711229946537

p(13)= 0.536842105263158

q(13)=0.6432432432432431

For all values of observable data = 0:

mu(14)= 0.47058823529411764

For all values of observable data = 1:

mu(14)=0.36363636363638

Mean mu(14)= 0.40641711229946537

Iteration number: 14

Pie(14)= 0.40641711229946537

p(14)=0.536842105263158

q(14)= 0.6432432432432431

For all values of observable data = 0:

mu(15)=0.47058823529411764

For all values of observable data = 1:

mu(15)=0.36363636363638

Mean mu(15)= 0.40641711229946537

Iteration number: 15

Pie(15)=0.40641711229946537

p(15)= 0.536842105263158

q(15)=0.6432432432432431

For all values of observable data = 0:

mu(16)=0.47058823529411764

For all values of observable data = 1:

mu(16)=0.36363636363638

Mean mu(16)= 0.40641711229946537

Iteration number: 16

Pie(16)=0.40641711229946537

p(16)= 0.536842105263158

q(16)=0.6432432432432431

For all values of observable data = 0:

mu(17)= 0.47058823529411764

For all values of observable data = 1:

mu(17)=0.36363636363638

Mean mu(17)= 0.40641711229946537

Iteration number: 17

Pie(17)= 0.40641711229946537

p(17)=0.536842105263158

q(17)=0.6432432432431

For all values of observable data = 0:

mu(18)= 0.47058823529411764

For all values of observable data = 1:

mu(18)= 0.3636363636363638

Mean mu(18)= 0.40641711229946537

Iteration number: 18

Pie(18)= 0.40641711229946537

p(18)= 0.536842105263158

q(18)=0.6432432432431

For all values of observable data = 0:

mu(19)= 0.47058823529411764

For all values of observable data = 1:

mu(19)=0.36363636363638

Mean mu(19)= 0.40641711229946537

Iteration number: 19

Pie(19)= 0.40641711229946537

p(19)=0.536842105263158

q(19)=0.6432432432432431

For all values of observable data = 0:

mu(20)= 0.47058823529411764

For all values of observable data = 1:

mu(20)=0.36363636363638

Mean mu(20)= 0.40641711229946537

Iteration number: 20

Pie(20)=0.40641711229946537

p(20)=0.536842105263158

q(20)=0.6432432432431

For all values of observable data = 0: mu(21)= 0.47058823529411764 For all values of observable data = 1: mu(21)= 0.36363636363638 Mean mu(21)=0.40641711229946537 Theta(0) values are: Pie(0) = 0.5p(0) = 0.5q(0) = 0.5For all values of observable data = 0: mu(1) = 0.5For all values of observable data = 1: mu(1) = 0.5Mean mu(1)= 0.5 Iteration number: 1

$$q(1) = 0.6$$

For all values of observable data = 1:

Mean mu(2)= 0.5

Iteration number: 2

$$p(2) = 0.6$$

For all values of observable data = 0:

$$mu(3) = 0.5$$

For all values of observable data = 1:

$$mu(3) = 0.5$$

Mean mu(3)= 0.5

$$p(3) = 0.6$$

$$mu(4) = 0.5$$

For all values of observable data = 1:

Mean mu(4)= 0.5

Iteration number: 4

$$p(4) = 0.6$$

$$q(4) = 0.6$$

For all values of observable data = 0:

$$mu(5) = 0.5$$

For all values of observable data = 1:

$$mu(5) = 0.5$$

Mean mu(5)= 0.5

$$q(5) = 0.6$$

For all values of observable data = 1:

$$mu(6) = 0.5$$

Mean mu(6)= 0.5

Iteration number: 6

$$q(6) = 0.6$$

For all values of observable data = 0:

$$mu(7) = 0.5$$

For all values of observable data = 1:

$$mu(7) = 0.5$$

Mean mu(7)= 0.5

$$mu(8) = 0.5$$

For all values of observable data = 1:

Mean mu(8)= 0.5

Iteration number: 8

$$p(8) = 0.6$$

$$q(8) = 0.6$$

For all values of observable data = 0:

For all values of observable data = 1:

$$mu(9) = 0.5$$

Mean mu(9)= 0.5

$$p(9) = 0.6$$

For all values of observable data = 1:

Mean mu(10)= 0.5

Iteration number: 10

For all values of observable data = 0:

For all values of observable data = 1:

Mean mu(11)= 0.5

Iteration number: 11

$$q(11) = 0.6$$

For all values of observable data = 0:

Mean mu(12)= 0.5

Iteration number: 12

For all values of observable data = 0:

For all values of observable data = 1:

Mean mu(13)= 0.5

Iteration number: 13

For all values of observable data = 0:

Mean mu(14)= 0.5

Iteration number: 14

For all values of observable data = 0:

For all values of observable data = 1:

Mean mu(15)= 0.5

Iteration number: 15

For all values of observable data = 0:

For all values of observable data = 1:

Mean mu(16)= 0.5

Iteration number: 16

$$q(16) = 0.6$$

For all values of observable data = 0:

For all values of observable data = 1:

Mean mu(17)= 0.5

Iteration number: 17

$$q(17) = 0.6$$

For all values of observable data = 0:

For all values of observable data = 1:

Mean mu(18)= 0.5

Iteration number: 18

Pie(18)= 0.5

p(18) = 0.6

q(18) = 0.6

For all values of observable data = 0:

mu(19)= 0.5

For all values of observable data = 1:

mu(19)= 0.5

Mean mu(19)= 0.5

Iteration number: 19

Pie(19)= 0.5

p(19)= 0.6

q(19)= 0.6

For all values of observable data = 0:

mu(20)= 0.5

For all values of observable data = 1:

mu(20)= 0.5

Mean mu(20)= 0.5

Iteration number: 20

Pie(20)= 0.5

p(20)= 0.6

q(20)= 0.6

For all values of observable data = 0:

mu(21)= 0.5

For all values of observable data = 1:

mu(21)= 0.5

Mean mu(21)= 0.5