ET720 – Sistemas de Energia Elétrica I

Prova 3

	Flova 3		
ı	RA: 1 S	Sem 2011	Nota:
Que	stão 1		/8,0
Con	sidere a seguinte linha de transmissão trifásica, 60 Hz, compo	osta por condutores ACSR Pheasant:	
ć	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$d=45~\mathrm{cm}$ $D=8~\mathrm{m}$ $\mathrm{RMG}=0,0466'$ Diâmetro externo $=1,382''$ Resistência desprezível Condutância desprezível Comprimento da linha $\ell=160~\mathrm{km}$	
(a)	(1,0) Calcule a reatância indutiva total por fase da linha.		
(b)	(1,0) Calcule a reatância capacitiva total por fase da linha.		
(c) (1,0) O que aconteceria com o valor da reatância capacitiva por fase do item (b) caso o efeito do solo tivesse sido considerado?			ilo
(d)	(1,0) Determine a impedância característica e a constante	de propagação da linha.	
(e)	(e) (1,0) Uma carga trifásica de 120 MVA, fator de potência unitário, é conectada ao final da linha e é alimentada em 220 kV. Calcule a potência aparente trifásica entregue no início da linha e o fator de potência visto do início da linha.		
(f)	(f) (1,0) Calcule a tensão no final da linha caso a carga seja desconectada e a tensão no início da linha seja mantida no valor obtido no item (e).		
(g)	(g) (1,0) Obtenha o modelo π -nominal (para linha média) da linha.		
(h)	(1,0) Considerando as tensões terminais da linha do item (e) e uma abertura angular máxima de 35°, estime o limite de estabilidade estática da linha. Sabendo que o limite térmico da linha é de 500 MW, determine o limite mais restritivo.		

(a) (0,5) Forneça os significados de D_{eq} (Distância média geométrica – DMG) e D_s (Raio médio geométrico - RMG) que aparecem na expressão da indutância de uma linha de transmissão.

(b) (0,5) A reatância indutiva de uma linha por unidade de comprimento pode ser dada por $X_L = X_a + X_d$, em que X_a é a reatância indutiva para espaçamento unitário e X_d é o fator de espaçamento da reatância indutiva. X_a e X_d são tabelados. Explique o que é o fator de espaçamento.

(c) (0,5) O que é uma linha de transmissão trifásica transposta?

(d) (0,5) A figura a seguir mostra a interligação entre as regiões Norte e Sul do Brasil, feita através de linhas de transmissão de 500 kV. Em particular, ressalta-se o trecho Gurupi-Miracema. Explique o papel dos reatores e capacitores que são conectados à linha de transmissão.

GO

Informações relevantes

Indutância por fase: $L = 2 \cdot 10^{-7} \ln \left(D_{eq} / D_s^b \right) \text{ H/m}$

Capacitância por fase: $C = (2\pi \cdot 8,85 \cdot 10^{-12}) / \ln (D_{eq}/D_{sC}^b)$ F/m

D_{eq} – espaçamento equilátero equivalente D_s^b e D_{sC}^b – RMG para condutores compostos

$$\left[\begin{array}{c} V_S \\ I_S \end{array}\right] = \left[\begin{array}{cc} \cosh \gamma \ell & Z_c \sinh \gamma \ell \\ \frac{1}{Z_c} \sinh \gamma \ell & \cosh \gamma \ell \end{array}\right] \cdot \left[\begin{array}{c} V_R \\ I_R \end{array}\right] \qquad S - \text{sending bus, } R - \text{receiving bus}$$

$$S$$
 – sending bus, R – receiving bus

$$\left[\begin{array}{c} V_R \\ I_R \end{array}\right] = \left[\begin{array}{cc} \cosh \gamma \ell & -Z_c \sinh \gamma \ell \\ -\frac{1}{Z_c} \sinh \gamma \ell & \cosh \gamma \ell \end{array}\right] \cdot \left[\begin{array}{c} V_S \\ I_S \end{array}\right]$$

$$S-$$
 sending bus, $R-$ receiving bus

$$\gamma = \sqrt{z y}$$
 $Z_c = \sqrt{z/y}$

y – admitância shunt por unidade de comprimento

z – impedância série por unidade de comprimento

 $\cosh(a+ib) = \cosh a \cos b + i \sinh a \sin b$ senh(a+jb) = senh a cos b + j cosh a sen b