ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКО	Й			
ПРЕПОДАВАТЕЛЬ				
доцент, канд. техн.			А.В. Агранс	эвский
должность, уч. степень,	звание	подпись, дата	инициалы, фа	имилия
	ОТЧЕТ О ЛА	АБОРАТОРНОЙ І	РАБОТЕ №5	
	Сетевые и	сточники постоян	ного тока	
	по курсу	у: Электроника и схе	мотехника	
РАБОТУ ВЫПОЛНИЛ				
СТУДЕНТ гр. №	4321	подпись, дата	<u>Г.В. Бу</u> инициалы,	

СОДЕРЖАНИЕ

1 Цель работы	. 2
2 Схема экспериментальной установки	. 3
3 Таблицы с результатами исследований	. 5
4 Графики зависимостей уровня пульсаций напряжения	. 7

1 Цель работы

Целью данной лабораторной работы является изучение и практическое исследование работы сетевых источников тока.

2 Схема экспериментальной установки

С помощью приложения MICROCAP были созданы следующие схемы. На рисунке 1 представлена схема экспериментальной установки источника питания с однополупериодным выпрямителем, на рисунке 2 представлена схема источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой, а на 3 рисунке схема источника питания с двухполупериодным выпрямителем на основе диодного моста.

Рисунок 1 — Схема экспериментальной установки источника питания с однополупериодным выпрямителем

Рисунок 2 — Схема источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой

Рисунок 3 — Схема источника питания с двухполупериодным выпрямителем на основе диодного моста

3 Таблицы с результатами исследований

В результате практических исследований составлены шесть таблиц. На таблицах 1, 2 представлены данные источника питания с однополупериодным выпрямителем. На таблицах 3, 4 представлены данные источника с двухполупериодным выпрямителем на базе трансформатора со средней точкой. На таблицах 5, 6 представлены данные источника питания с двухполупериодным выпрямителем на основе диодного моста.

Таблица 1 — Данные исследования уровня пульсаций выходного напряжения источника питания в зависимости от величины сопротивления нагрузки (C = 100 мкФ)

R _н , Ом	100	300	500	700	1000	1500	2000	5000
Uп, В	2.8	1.6	1.3	1.0	0.6	0.5	0.3	0.1

Таблица 2 — Данные исследования уровня пульсаций выходного напряжения источника питания в зависимости от величины емкости конденсатора С (R_{H} = 100 Om)

С, мкФ	10	50	100	500	750	1500	2000	5000
Uп, В	3.7	3.5	2.8	1.3	0.8	0.4	0.5	0.1

Таблица 3 — Данные исследования уровня пульсаций выходного напряжения источника питания в зависимости от величины сопротивления нагрузки (C = $100 \text{ мк}\Phi$)

R _H , O _M	100	300	500	700	1000	1500	2000	5000
Un, B	2.1	0.8	0.5	0.4	0.3	0.2	0.2	0.1

Таблица 4 — Данные исследования уровня пульсаций выходного напряжения источника питания в зависимости от величины емкости конденсатора С ($R_{\text{\tiny H}}$ = 100~Om)

С, мкФ	10	50	100	500	750	1500	2000	5000
U _{II} , B	3.7	2.7	2.0	0.5	0.3	0.3	0.1	0.1

Таблица 5 — Данные исследования уровня пульсаций выходного напряжения источника питания в зависимости от величины сопротивления нагрузки ($C = 100 \text{ мк}\Phi$)

R _н , Ом	100	300	500	700	1000	1500	2000	5000
Uп, В	1.4	0.6	0.4	0.3	0.2	0.2	0.1	0.1

Таблица 6 — Данные исследования уровня пульсаций выходного напряжения источника питания в зависимости от величины емкости конденсатора С (R_{H} = 100 Om)

С, мкФ	10	50	100	500	750	1500	2000	5000
Uп, В	3.1	2.5	1.5	0.4	0.3	0.2	0.2	0.1

4 Графики зависимостей уровня пульсаций напряжения

В данном разделе построим графики зависимости уровня пульсаций напряжения на выходе источника питания от параметров схемы, ориентируясь на таблицы 1-6. На рисунке 4-9 представлены графики зависимостей уровня пульсаций на основе практических данных.

Рисунок 4 – График зависимости уровня пульсации напряжения к таблице 1.

Рисунок 5 – График зависимости уровня пульсации напряжения к таблице 2.

Зависимость Un от RH (C = 100 мкФ) Двухполупериодный (средняя точка) 2.0 1.5 0.5 0.0 RH. Ом

Рисунок 6 – График зависимости уровня пульсации напряжения к таблице 3.

Рисунок 7 – График зависимости уровня пульсации напряжения к таблице 4.

Зависимость Uп от RH (С = 100 мкФ) Двухполупериодный мост 1.4 1.2 1.0 0.8 0.6 0.4 0.2 3000 2000 4000 0 1000 5000 Rн, Ом

Рисунок 8 — График зависимости уровня пульсации напряжения к таблице 5.

Рисунок 9 — График зависимости уровня пульсации напряжения к таблице 6.