Se consideră un rucsac de capacitate (greutate) maximă G (număr <u>natural</u>) și n obiecte caracterizate prin:

- greutățile lor (numere naturale) g₁,...,g_n;
- câştigurile c₁,...,c_n obţinute la încărcarea lor în totalitate în rucsac.

Un obiect nu poate fi fracționat.

Se cere o modalitate de încărcare de obiecte în rucsac, astfel încât câștigul total să fie maxim.

Caz particular

Date n obiecte cu ponderile $w_1, w_2, ..., w_n$ și o limită W, să se selecteze o submulțime de obiecte cu suma ponderilor maximă, fără a depăși însă ponderea W

Caz particular

Date n obiecte cu ponderile $w_1, w_2, ..., w_n$ și o limită W, să se selecteze o submulțime de obiecte cu suma ponderilor maximă, fără a depăși însă ponderea W

Interpretări

- Submulţime de sumă maximă mai mică sau egală cu o valoare
 M dată (v. Greedy)
- n activități cu duratele w₁, w₂, ...,w_n necesită o resursă. Știind că timpul maxim de funcționare a resursei este W, să se selecteze o submulțime de activități care țin resursa ocupată un timp cât mai lung (maxim)

Exemplu:

```
G = 8

n = 4 obiecte

g: 3 4 4 6

c: 3 9 10 18
```

Exemplu:

```
G = 8
n = 4 objecte
g: 3  4  4  6
c: 3  9  10  18
```

Greedy - în ordinea descrescătoare a raportului c/g

- Alege întâi obiectul 4 de greutate 6
- Nu se mai poate pune nici un alt obiect întreg în rucsac
- Câştigul Greedy: 18

Exemplu:

```
G = 8

n = 4 obiecte

g: 3 4 4 6

c: 3 9 10 18
```

Greedy - în ordinea descrescătoare a raportului c/g

- Alege întâi obiectul 4 de greutate 6
- Nu se mai poate pune nici un alt obiect întreg în rucsac
- Câştigul Greedy: 18

Soluţia optimă:

- Alegem obiectele 2 şi 3
- Câştigul total 10 + 9 = 19

Principiu de optimalitate

Dacă **S** este soluție optimă pentru greutatea **g** și obiectele {1,2,...,n} care

conţine n,

• <u>nu</u> conţine n

Principiu de optimalitate

Dacă **S** este soluție optimă pentru greutatea **g** și obiectele {1,2,...,n} care

- conţine n atunci S {n} este soluție optimă pentru greutatea g – g_n și obiectele {1,2,..., n-1}
- nu conţine n atunci S este soluție optimă pentru greutatea g și obiectele {1,2,..., n-1}

Subproblemă:

```
s[i][g] = câștigul maxim pentru greutatea g și obiectele {1,...,i}
```

Soluție s[n][G]

Ştim direct

$$s[i][0] = 0, \forall i=0,...,n$$

 $s[0][g] = 0, \forall g=0,...,G$

Relație de recurență

$$s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$$

Ordinea de parcurgere

$$i = 1,...,n, g = 1,...,G$$

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6
c: 3 9 10 18 s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ \max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0								
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6 s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3					
0								
0								
0								

▶ Exemplu G = 8, n = 4 objecte

S:

g: 3 4 4 6 c: 3 9 10 18 $s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ \max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$

_	0	1	2	3	4	5	6	7	8
	0	0	0	0	0	0	0	0	0
	0	0	0	3	3	3	3	3	3
	0								
	0								
	0								

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6
$$s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$$

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9				
0								
0								

$$s[2][4] = soluția optimă pentru obiectele {1,2} și g=4$$

 $s[2][4] = max{c2 + s[1][0], s[1][4] } = max{9 +0, 3 } = 9$

▶ Exemplu G = 8, n = 4 objecte

S:

g: 3 4 4 6 $s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$

ı	0	1	2	3	4	5	6	7	8
	0	0	0	0	0	0	0	0	0
	0	0	0	3	3	3	3	3	3
	0	0	0	3	9	9	9	12	
	0								
	0								

▶ Exemplu G = 8, n = 4 objecte

```
g: 3 4 4 6 s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ \max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}
```

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10				
0								

▶ Exemplu G = 8, n = 4 objecte

S:

g: 3 4 4 6 $s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	?	
0								

▶ Exemplu G = 8, n = 4 objecte

S:

g: 3 4 4 6 $s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	13	
0								

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6
$$s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$$

câștig optim s[4][8]

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6 $s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$

Soluție:

0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0
0	0	0	3	3	3	3	3	3
0	0	0	3	9	9	9	12	12
0	0	0	3	10	10	10	13	19
0	0	0	3	10	10	18	18	19

▶ Exemplu G = 8, n = 4 objecte

g: 3 4 4 6 c: 3 9 10 18 $s[i][g] = \begin{cases} s[i-1][g], & \text{daca } g_i > g \\ \max\{c_i + s[i-1][g-g_i], s[i-1][g]\}, & \text{altfel} \end{cases}$

Soluție:

	0	1	2	3	4	5	6	7	8
	0	0	0	0	0	0	0	0	0
	0	0	0	3	3	3	3	3	3
S:	0	0	0	3	9	9	9	12	12
	0	0	0	3	10	10	10	13	19
	0	0	0	3	10	10	18	18	19

La pasul i obiectul i a fost luat \Leftrightarrow s[i][g] > s[i-1][g]

▶ O(nG)