Token Modelling Canvas - #Connect2Evolve

01. Problem / Needs

- Low or no access to electric energy
- The high cost of energy in rural areas (diesel \$\$\$)

- Electrical blackouts in critical facilities, e.g. hospitals
- Transparency to investors/donors
- Unused capacities of the solar container
- Low economic development
- Ownership and use of the collected money

02. Proposed Solution

- Provide electrical energy to the people in rural areas (households, priority and business users)

- Find optimal token economy (demand/supply)
- Ensure transparency for all stakeholders
- Prioritize the distribution of electrical energy (SC)
- Define revenue distribution and usage
- Maximize production of solar energy by incentivizing every stakeholder in the system

03. Token Use-Case

- Defining the price of electrical energy (supply/demand)

-<u>;</u>;;-

- The constructor and operator are being paid for their service
- Stakeholders govern how the rest of the money will be distributed

04. Participant Incentivisation

- Households
- Business users
- Priority users (Hospitals)
- Operators
- Contractors
- Local Government
- Operators
- Community (Donators)

05. User / Customer Segments

- Homeowners
- Business users
- Priority users

Token Modelling Canvas - #Connect2Evolve

	06. Desired Token Velocity	△ ○—□		07. Interaction Channels	* 	
08. Revenue Streams / Token Val	ue Growth		 - Cost of the	e / Necessary Resou e Solar container e Operator e Contractor	irces	