实验十八三相交流电路电压、电流的测量

一、预习思考题

- 1. 三相负载根据什么条件作星形或三角形连接?
- **负载平衡**:如果三相负载平衡,即每相的阻抗相同,那么可以选择星形或三角形连接。如果负载不平衡,通常选择三角形连接以避免相电压和相电流的不平衡。
- **电压要求**:星形连接可以提供两种不同的电压水平:线电压(V_L)和相电压(V_P)。线电压是相电压的 $\sqrt{3}$ 倍。如果负载需要较低的电压,可以选择星形连接。
- **电流要求**:三角形连接允许每相负载直接连接到线电压,因此每相负载可以承受较高的电流。如果 负载需要较高的电流,三角形连接可能是更好的选择。
- **功率因数**:如果负载的功率因数较低,可能需要并联电容器来提高功率因数。在星形连接中,电容器可以并联在每相或中性点上。
- **安全性**:星形连接提供了一个中性点,可以接地,从而提高安全性。三角形连接没有中性点,因此不适用于需要接地的应用。
- **谐波含量**:如果负载产生谐波,星形连接可能更有利于减少谐波的影响,因为谐波可以被中性点吸收。
- **启动特性**:对于电机等感性负载,星形连接在启动时可以减少启动电流,因为启动电流与线电压成正比。
- **维护和灵活性**:星形连接允许更容易地接入或断开单相负载,而不影响其他两相。
- 2. 复习三相交流电路有关内容,试分析三相星形联接不对称负载在无中线情况下,当某相负载开路或短路时会出现什么情况?如果接上中线,情况又如何?

无中线的情况:

- 某相负载开路:
 - 如果三相星形联接中的某一相负载开路,那么这一相将没有电流流过,而其他两相的电流将重新分配。由于没有中性线来平衡电压,开路相的电压将升高,可能导致其他两相的电压降低,这会影响电路的稳定性和设备的正常运行。
- 某相负载短路:

如果某一相负载短路,那么这一相的阻抗将急剧降低,导致大量电流流过短路相。这可能会引起电路中的电流急剧增加,可能导致过载和设备损坏。同时,短路相的电压将降低,而其他两相的电压可能会升高。

接上中线的情况:

• 某相负载开路:

。 当三相星形联接中有中线时,如果某一相负载开路,中性点的电压将保持稳定,因为中线提供了一个路径来平衡电压。其他两相的电压和电流不会受到太大影响,从而保证了电路的稳定性。

• 某相负载短路:

如果某一相负载短路,中线将允许电流通过,从而限制短路电流的增加。这有助于保护电路中的其他设备免受过大电流的损害。然而,短路仍然需要被迅速检测并处理,以避免设备损坏和潜在的安全风险。

在三相星形联接中,中线的存在对于维持电路的稳定性和保护设备至关重要。没有中线时,不对 称负载可能导致电压不平衡和设备损坏。而有中线时,可以更好地平衡电压,限制短路电流,从而提 高电路的可靠性和安全性。

- 3. 本次实验中为什么要通过三相调压器将 380V 的市电线电压降为 220V 的线电压使用?
- **设备兼容性**:实验设备设计工作在220V电压下。通过调压器将电压降至220V,可以确保这些设备在实验中正常工作,避免因电压过高而损坏。
- **实验需求**:实验可能需要在不同的电压水平下进行,以观察和分析电路在不同条件下的行为。三相调压器提供了一种方便的方法来调整电压,以满足实验的具体要求。
- **节能和效率**:在某些情况下,降低电压可以减少能量损耗,提高能源使用效率。三相调压器通过调节电压,有助于实现节能降耗。
- **电压稳定性**:三相调压器可以提供稳定的输出电压,这对于精密实验和设备至关重要。稳定的电压可以减少电压波动对实验结果的影响。

二、实验报告

1. 用实验测得的数据验证对称三相电路中的 $\sqrt{3}$ 关系。

负载星形联接(三相四线制供电)

	IA	IB	IC	UAB	UBC	UCA	UA0	UB0	UC0	10
Y0接平 衡负载	264.9	260.6	257.2	217	216	218	126	124	125	11.74

Y0接不 平衡负 载	264.8	260.6	171.8	217	216	218	126	124	126	91.66

$ar{IL} = ar{IP}$	260.9			
$ar{UL}$	217			
$ar{UP}$	125			

负载三角形联接(三相三线制供电)

	UAB	UBC	UCA	IA	IB	IC	IAB	IBC	ICA
三相平衡	215	214	216	589.1	588.4	584.2	342.1	338.2	337.0
三相不平衡	215	214	216	495.9	587.9	490.1	342.2	338.2	224.5

$ar{IL}$	587.2333
ĪΡ	339.1
$ar{UL} = ar{UP}$	215

2. 用实验数据和观察到的现象,总结三相四线供电系统中中线的作用。

实验数据中我们发现C相少开一盏灯,星形联接变为不对称电路时,中线电流I0从11.74A变为了91.66A,C相灯泡总体相比对称电路变暗了一点,但是AB相的灯泡亮度几乎没有变化。

• 中线的作用:

提供中性参考点:中线为系统提供了一个中性参考点,有助于稳定电压。

允许星形连接:中线使得三相负载可以以星形方式连接,从而允许单相设备接入三相系统。

减少电压不平衡:中线有助于在负载不平衡时减少各相之间的电压差异。

提高安全性:中线通常接地,为系统提供额外的安全保护,减少触电风险。

3. 不对称三角形联接的负载,能否正常工作?实验是否能证明这一点?

不对称三角形联接的负载在理论上是可以正常工作的,但在实际应用中可能会遇到一些问题。

- 1. **电压不平衡**:在三角形联接中,每个负载直接跨接在两条相线之间。如果负载不对称,即各相的阻抗不同,那么各相的电压降也会不同,导致电压不平衡。
- 2. **电流不平衡**:由于电压不平衡,通过各相的电流也会不平衡。这可能导致某些相的电流过大,从而增加能耗和设备过热的风险。
- 3. **实验验证**:通过实验可以测量和记录各相的电压和电流,然后分析它们是否平衡。如果测量结果显示各相的电压和电流值相近,那么可以认为负载在三角形联接中能够正常工作。如果测量结果显示明显的不平衡,那么可以得出结论,不对称负载在三角形联接中不能正常工作。
- 4. **中线的作用**:在三角形联接中没有中线,因此无法通过中线来平衡各相的电压和电流。这与星形联接不同,在星形联接中,中线可以用来平衡电压和电流,提高系统的稳定性。

实验中我们发现,当三角形联接的电路不平衡时,系统中所有灯泡亮度都有明显的下降,并且照明系统出现了明显的不稳定,即灯泡出现了忽明忽暗的现象。因此我们认为,不对称负载在三角形联接中不能正常工作。

4. 根据不对称负载三角形联接时的相电流值作相量图,并求出线电流值, 然后与实验测得的线电流作比较,分析之。

5. 心得体会及其它。

通过参与三相供电系统的实验,我深刻体会到了理论知识与实践操作的紧密结合,这不仅加深了 我对系统工作原理的理解,也显著提升了我的安全意识和问题解决能力。在实验过程中,我学会了如 何使用调压器调整电压,确保设备在适宜的电压下运行,同时也锻炼了我的观察力和对细节的关注。 此外,与同伴的合作让我认识到了团队协作的重要性,而面对实验中的挑战则激发了我的创新思维和 进一步学习的动力。这次实验不仅提高了我的实验技能,也让我意识到了所学知识在实际应用中的价值,为我未来的学习和工作打下了坚实的基础。