Package 'lrgpr'

August 21, 2014

Title lrgpr
Version 0.1.4
Date July 31, 2014
Author Gabriel E. Hoffman
Maintainer Gabriel E. Hoffman <gabriel.hoffman@mssm.edu></gabriel.hoffman@mssm.edu>
Description Fit a Low Rank Gaussian Process Regression (LRGPR) / Linear Mixed Model (LMM) for large datasets. These models are widely used in statistical genetics as a test of association while correcting for the confounding effects of kinship and population structure.
Depends R (>= 3.0.0), methods, Rcpp, RcppGSL, RcppProgress, MASS,formula.tools, BH, doParallel, bigmemory (>= 4.4.7),bigmemory.sri, aod
LinkingTo Rcpp, RcppGSL
<pre>URL http://lrgpr.r-forge.r-project.org/</pre>
License GPL (>= 2)
R topics documented:
AIC.lrgpr BIC.lrgpr coefficients.lrgpr convertToBinary cooks.distance.lrgpr criterion.lrgpr cv.lrgpr df.residual.lrgpr error.bar getAlleleFreq getAlleleVariance getMACHrsq

2 AIC.lrgpr

Index		27
	wald	26
	vcov.lrgpr	
	summary.lrgpr	
	set_missing_to_mean	
	rstandard.lrgpr	
	residuals.lrgpr	
	read.tfam	
	read.fam	
	QQ_plot	
	print.summary.lrgpr	
	print.lrgpr	
	predict.lrgpr	
	plot.lrgpr	
	plot.cv.lrgpr	
	plot.criterion.lrgpr	
	lrgprApply	
	lrgpr	
	loss.lrgpr	
	logLik.lrgpr	12
	lm.influence.lrgpr	
	leverage.lrgpr	
	influence.lrgpr	
	glmApply2	11
	glmApply	10
	getMissingCount	9

Description

AIC for model fit by lrgpr

Usage

```
AIC.lrgpr(object, ..., k = 2)
```

Arguments

object model fit with lrgpr
... other arguments

k for compotability, not used

BIC.lrgpr 3

BIC.lrgpr

Bayesian Information Criterion (BIC)

Description

```
BIC for model fit by lrgpr
```

Usage

```
## S3 method for class lrgpr
BIC(object, ...)
```

Arguments

```
object model fit with lrgpr
... other arguments
```

 ${\tt coefficients.lrgpr}$

Extract Model Coefficients

Description

Coefficients estimated with lrgpr

Usage

```
## S3 method for class lrgpr
coefficients(object, ...)
```

```
object model fit with lrgpr
... other arguments
```

4 convertToBinary

convertToBinary

Convert ASCII to binary file

Description

Converts TPED/DOSAGE/GEN files to binary format

Usage

Arguments

filename file to be converted

filenameOut name of binary file produced

format specify 'TPED', 'DOSAGE' or 'GEN'

nthreads number of threads to use

onlyCheckFormat

only check the format of the input file and don't perform conversion

rowNames Define custom rowNames

simpleAnnotation

write FILE_alleles with name, allele1, allele2. If FALSE, write chrom id genetic_position position allele1 allele2

Details

- TPED: plink file can be in either -recode or -recode12 format
- DOSAGE: file follows plink format: http://pngu.mgh.harvard.edu/~purcell/plink/dosage.shtml

Example:

SNP A1 A2 F1 I1 F2 I2 F3 I3

rs0001 A C 0.98 0.02 1.00 0.00 0.00 0.01

rs0002 G A 0.00 1.00 0.00 0.00 0.99 0.01

where the F* values correspond to the dosage values

• GEN: file follows OXFORD format

cooks.distance.lrgpr 5

```
cooks.distance.lrgpr Regression Deletion Diagnostics
```

Description

Basic quantities for regression deletion diagnostics from fit of lrgpr

Usage

```
## S3 method for class lrgpr
cooks.distance(model, infl = lm.influence(model, do.coef =
   FALSE), res = weighted.residuals(model),
   sd = sqrt(deviance(model)/df.residual(model)), hat = infl$hat, ...)
```

Arguments

model	model fit with 1rgpr
infl	influence structure as returned by lm.influence
res	residuals
sd	standard deviation to use
hat	hat values
	other arguments

criterion.lrgpr

Compute AIC/BIC/GCV for 1rgpr model as rank changes

Description

Evaluate information criteria to select an optimal rank for model fit by 1rgpr

Usage

```
criterion.lrgpr(formula, features, order, rank = c(seq(1, 10), seq(20, 100, by = 10), seq(200, 1000, by = 100))
```

formula	standard linear modeling syntax as used in 'lm'
features	matrix from which the SVD is performed
order	sorted indices of features. When rank is 10, decomp = $svd(X[,order[1:10]])$
rank	array with elements indicating the number of confounding covariates to be used in the random effect.

6 cv.lrgpr

See Also

plot.criterion.lrgpr, cv.lrgpr

Examples

```
n = 300
p = 5000
X = matrix(sample(0:2, n*p, replace=TRUE), nrow=n)

dcmp = svd(X)

# simulate response
h_sq = .8
eta = dcmp$u[,1:2] %*% rgamma(2, 2, 1)
error_var = (1-h_sq) / h_sq * var(eta)
y = eta + rnorm(n, sd=sqrt(error_var))

# Get ordering based on marginal correlation
i = order(cor(y, X)^2, decreasing=TRUE)

# Fit AIC / BIC / GCV based on degrees of freedom
fit = criterion.lrgpr( y ~ 1, features=X, order=i)
plot(fit)
```

cv.lrgpr

Cross-validation for lrgpr

Description

Fit cross-validation for multiple ranks of lrgpr

Usage

```
cv.lrgpr(formula, features, order, nfolds = 10, rank = c(seq(0, 10), seq(20, 100, by = 10), seq(200, 1000, by = 100)), nthreads = 1)
```

formula	standard linear modeling syntax as used in 'lm'
features	matrix from which the SVD is performed
order	sorted indices of features. When rank is 10, $decomp = svd(X[,order[1:10]])$
nfolds	number of training sets
rank	array with elements indicating the number of confounding covariates to be used in the random effect.
nthreads	number of threads to be used

df.residual.lrgpr 7

Examples

```
n = 300
p = 5000
X = matrix(sample(0:2, n*p, replace=TRUE), nrow=n)

dcmp = svd(X)

# simulate response
h_sq = .8
eta = dcmp$u[,1:2] %*% rgamma(2, 2, 1)
error_var = (1-h_sq) / h_sq * var(eta)
y = eta + rnorm(n, sd=sqrt(error_var))

# Get ordering based on marginal correlation
i = order(cor(y, X)^2, decreasing=TRUE)

# Fit cross-validation
fit = cv.lrgpr( y ~ 1, features=X, order=i)
plot(fit)
```

df.residual.lrgpr

Residual Degrees-of-Freedom

Description

Residual df from fit of lrgpr

Usage

```
df.residual.lrgpr(object, ...)
```

Arguments

object model fit with lrgpr
... other arguments

error.bar

Plot Error Bars

Description

Plot error bars for a confidence interval

Usage

```
error.bar(x, y, upper, lower = upper, length = 0.1, ...)
```

8 getAlleleVariance

Arguments

x x-axis positiony y-axis position

upper height of bar above y
lower height of bar below y

length horizontal length of the error bar

... arguments for arrows(...)

getAlleleFreq

Calculate allele frequency

Description

Calculate allele frequency

Usage

```
getAlleleFreq(X, nthreads = detectCores(logical = TRUE), progress = TRUE)
```

Arguments

X matrix where each column is a marker coded 0,1,2 or with dosage values in this

range

nthreads number of threads to use progress show progress bar

getAlleleVariance

Evaluate variance for each column

Description

Evaluate variance for each column

Usage

```
getAlleleVariance(X, nthreads = detectCores(logical = TRUE),
    progress = TRUE)
```

Arguments

X matrix where each column is a marker

nthreads number of threads to use progress show progress bar

getMACHrsq 9

getMACHrsq

Evaluate MACH r^2 information metric for each column

Description

Evaluate MACH r^2 information metric for each column

Usage

```
getMACHrsq(X, nthreads = detectCores(logical = TRUE), progress = TRUE)
```

Arguments

X matrix where each column is a marker

nthreads number of threads to use progress show progress bar

See definition in Supplementary information S3 for Marchini and Howie (2010): http://www.nature.com/nrg/journal/v11/n7/extref/nrg2796-s3.pdf.

#'

References

Marchini, J. and B. Howie. (2010) Genotype imputation for genome-wide association studies. _Nature Reviews Genetics_ 11, 499-511 '

getMissingCount

Count missing values

Description

Count missing values

Usage

```
getMissingCount(X, nthreads = detectCores(logical = TRUE), progress = TRUE)
```

Arguments

X matrix where each column is a marker

nthreads number of threads to use

progress show progress bar

10 glmApply

glmApply	Fit standard (i.e. fixed effects) linear or logistic model for many markers

Description

Analogous to lrgprApply, but fits standard (i.e. fixed effects) linear or logistic models for many markers

Usage

```
glmApply(formula, features, terms = NULL, family = gaussian(),
  useMean = TRUE, nthreads = detectCores(logical = TRUE), verbose = FALSE,
  progress = TRUE, cincl = c(), cexcl = c())
```

Arguments

formula	standard linear modeling syntax as used in 'lm'. SNP is a place holder for the each successive column of features
features	a matrix where the statistical model is evaluated with SNP if formula replace by each column successively
terms	indices of the coefficients to be tested. The indices corresponding to SNP are used if terms is not specified
family	gaussian() for a continuous response, and binomial() to fit a logit model for a binary response
useMean	if TRUE, replace missing entries with column mean. Otherwise, do not evaluate the model for that column
nthreads	number of to use for parallel execution
verbose	print additional information
progress	show progress bar
cincl	column indeces of features to include for analysis
cexcl	column indeces of features to exclude for analysis

Examples

```
# Generate data
n = 100
p = 500
X = matrix(sample(0:2, n*p, replace=TRUE), nrow=n)
y = rnorm(n)
sex = as.factor(sample(1:2, n, replace=TRUE))
# Fit model for all markers
pValues = glmApply( y ~ sex + sex:SNP, features=X, terms=c(3,4))
```

glmApply2

```
# Multivariate model
n = 100
p = 1000
m = 10

Y = matrix(rnorm(n*m), nrow=n, ncol=m)
X = matrix(rnorm(n*p), nrow=n, ncol=p)

res = glmApply( Y ~ SNP, features = X, terms=2)

# p-values for univariate hypothesis test of each feature against
# each response
res$pValues
```

glmApply2

(Experimental) faster version of glmApply

Description

Like glmApply, by linear instead of quadratic as a function of the number of covariates. This is still experimental

Usage

```
glmApply2(formula, features, terms = NULL, family = gaussian(),
  useMean = TRUE, nthreads = detectCores(logical = TRUE), verbose = FALSE,
  progress = TRUE, cincl = c(), cexcl = c())
```

influence.lrgpr

Regression Diagnostics

Description

Basic quantities for regression diagnostics from fit of lrgpr

Usage

```
## S3 method for class lrgpr
influence(model, ...)
```

```
model model fit with lrgpr
... other arguments
```

12 logLik.lrgpr

leverage.lrgpr

Regression Diagnostics

Description

Basic quantities for regression diagnostics from fit of lrgpr

Usage

```
leverage.lrgpr(object)
```

Arguments

object

model fit with 1rgpr

lm.influence.lrgpr

Regression Diagnostics

Description

Basic quantities for regression diagnostics from fit of lrgpr

Usage

```
lm.influence.lrgpr(object, ...)
```

Arguments

object model fit with lrgpr
... other arguments

logLik.lrgpr

Extract Log-Likelihood

Description

Log-Likelihood for model fit by 1rgpr

Usage

```
logLik.lrgpr(object, ...)
```

Arguments

object model fit with lrgpr
... other arguments

loss.lrgpr

Description

Compare observed and fitted response under some loss function

Usage

```
loss.lrgpr(y, yhat, family)
```

Arguments

У	observed response
yhat	fitted response

family "gaussian" or "binomial"

1rgpr Fit a Low Rank Gaussian Process Regression (LRGPR)/Linear Mixed Model (LMM)

Description

Fit LRGPR/LMM models that account for covariance in response values, but where the scale of the covariance is unknown. Standard linear modeling syntax is used for the model specification in addition to a covariance matrix or its eigen-decomposition.

Usage

```
lrgpr(formula, decomp, rank = max(ncol(decomp$u), ncol(decomp$vectors)),
  delta = NULL, nthreads = 4, W_til = NULL, scale = TRUE,
  diagnostic = FALSE)
```

formula	standard linear modeling syntax as used in 'lm'
decomp	eigen-decomposition produced from eigen(K), where K is the covariance matrix. Or singular value decomposition $svd(X[,1:100])$ based on a subset of markers
rank	decomposition is truncated to the first rank eigen-vectors
delta	ratio of variance components governing the fit of the model. This should be estimated from a previous evaluation of 'lm' on the same response and eigendecomposition
nthreads	number of threads to use for parallel execution

14 lrgpr

W_til markers used to construct decomp that should now be removed from costruction

of decomp. This is the proximal contamination term of Listgarten, et al. (2012)

scale should W_til be scaled and centered

diagnostic compute diagnostic statistics to be used with plot()

Value

coefficients regression coefficients for each covariate

p.values p-values from Wald test of each coefficient

sd standard deviation of each coefficient estimate

sigSq_e variance component

 σ_e^2

corresponding to the residual error

sigSq_a variance component

 σ_a^2

corresponding the scale of the covariance, K

delta ratio of variance components:

 σ_e^2/σ_a^2

rank the rank of the random effect
logLik log-likelihood of the model fit
fitted.values estimated response values: y_hat
alpha BLUP of the random effect

Sigma variance-covariate matrix of estimate of beta
hii diagonals of the matrix H such that y_hat = Hy

y responses x design matrix

df effective degrees of freedom: trace(H) based on Hoffman (2013)

residuals residuals of model fit: y - y_hat
AIC Akaike information criterion
BIC Bayesian information criterion
GCV generalized cross-validation
eigenVectors eigen-vectors in decomp
eigenValues eigen-values in decomp

df.residual n - ncol(X)

rank rank of decomposition used, where only non-negative eigen/singular values are

considered

lrgpr 15

Details

lrgpr fits the model:

$$y = X\beta + \alpha + \epsilon$$

$$\alpha \sim N(0, K\sigma_a^2)$$

$$\epsilon \sim N(0, \sigma_e^2)$$

where

$$\delta = \sigma_e^2/\sigma_a^2$$

In practice the eigen-decomposition of K, and not K itself is required. The rank can be set to use only eigen-vectors 1:rank in the model.

This package allows hypothesis tests of single coefficients using fit\$p.values which fits a Wald test. Composite hypothesis tests of multiple coefficients are performed with wald(fit, terms=1:3).

Note that likelihood ratio tests with linear mixed models do not perform well and the resulting p-values often do not follow a uniform distribution under the null (Pinheiro and Bates, 2000). We strongly advise against using it with this model.

1rgpr uses the algorithm of Lippert, et al. (2011).

See Hoffman (2013) for an interpretation of the linear mixed model.

References

Kang, H. M., et al. (2010) Variance component model to account for sample structure in genome-wide association studies. _Nature Genetics_ 42, 348-54

Lippert, C., et al. (2011) FaST linear mixed models for genome-wide association studies. _Nature Methods_ 9, 525-26

Listgarten, J., et al. (2012) Improved linear mixed models for genome-wide association studies. _Nature Methods_ 8, 833-5

Rasmussen, C. E. and Williams, C. K. I. (2006) Gaussian processes for machine learning. MIT Press

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-Effects Models in S and S-PLUS. Springer, New York

Hoffman, G. E. (2013) Correcting for Population Structure and Kinship Using the Linear Mixed Model: Theory and Extensions. _PLoS ONE_ 8(10):e75707

Note that degrees freedom and some diagnostic statistics are not currently calculated when W_til is specified.

See Also

wald, lrgprApply

16 lrgprApply

Examples

```
# Generate random data
set.seed(1)
n <- 200
y <- rnorm(n)
K <- crossprod( matrix(rnorm(n*1000), ncol=n) )</pre>
age <- rpois(n, 50)
sex <- as.factor(sample(1:2, n, replace=TRUE))</pre>
decomp <- eigen(K)</pre>
# Fit the model
fit <- lrgpr( y ~ sex + age, decomp, diagnostic=TRUE)</pre>
# Print results
fit
# Print more detailed results
summary(fit)
# P-values for each covariate
fit$p.values
# Visualize fit of the model like for lm
par(mfrow=c(2,2))
plot(fit)
# Composite hypothesis test using Walds test
# Joint test of coefficients 2:3
wald( fit, terms=2:3)
```

lrgprApply

Fit a Low Rank Gaussian Process Regression (LRGPR)/Linear Mixed Model (LMM) for many markers

Description

Fit LRGPR/LMM models that account for covariance in response values, but where the scale of the covariance is unknown. It returns p-values from a Wald test equivalent to the results of using lrgpr and wald, but is designed to analyze thousands of markers in a single function call.

Usage

```
lrgprApply(formula, features, decomp, terms = NULL,
  rank = max(ncol(decomp$u), ncol(decomp$vectors)), map = NULL,
  distance = NULL, dcmp_features = NULL, W_til = NULL, scale = TRUE,
  delta = NULL, reEstimateDelta = FALSE, nthreads = detectCores(logical =
  TRUE), verbose = FALSE, progress = TRUE, cincl = c(), cexcl = c())
```

lrgprApply 17

Arguments

formula standard linear modeling syntax as used in 'lm'. SNP is a place holder for the

each successive column of features

features a matrix where the statistical model is evaluated with SNP if formula replace by

each column successively

decomp eigen-decomposition produced from eigen(K), where K is the covariance ma-

trix. Or singular value decomposition svd(features[,1:100]) based on a subset of

markers

terms indices of the coefficients to be tested. The indices corresponding to SNP are

used if terms is not specified

rank decomposition is truncated to the first rank eigen-vectors

map p x 2 matrix where each entry corresponds to a marker in features. First column

is the marker names, second columns is the genetic or physical location

distance size of the proximal contamination window in units specifed by map.

dcmp_features the indices in features of the markers used to construct dcmp

W_til markers used to construct decomp that should now be removed from costruction

of decomp. This is the proximal contamination term of Listgarten, et al. (2012)

scale should W_til be scaled and centered

delta ratio of variance components governing the fit of the model. This should be

estimated from a previous evaluation of 'lm' on the same response and eigen-

decomposition

reEstimateDelta

should delta be re-estimated for every marker. Note: reEstimateDelta=TRUE is

much slower

nthreads number of to use for parallel execution

verbose print extra information progress show progress bar

cincl column indeces of features to include for analysis cexcl column indeces of features to exclude for analysis

Examples

```
# Generate data
n = 100
p = 500
X = matrix(sample(0:2, n*p, replace=TRUE), nrow=n)
y = rnorm(n)
sex = as.factor(sample(1:2, n, replace=TRUE))
K = tcrossprod(matrix(rnorm(n*n*3), nrow=n))
decomp = eigen(K, symmetric=TRUE)
# Fit null model
fit = lrgpr( y ~ sex, decomp)
```

18 plot.cv.lrgpr

```
# Fit model for all markers pValues = lrgprApply( y \sim sex + sex:SNP, features=X, decomp, terms=c(3,4), delta=fit$delta)
```

```
plot.criterion.lrgpr Plot AIC/BIC/GCV values for lrgpr() model as rank changes
```

Description

Plots the criteria metrics returned by criterion.lrgpr

Usage

```
## S3 method for class criterion.lrgpr
plot(x, col = rainbow(3), ...)
```

Arguments

```
x list returned by criterion.lrgpr
col array of 3 colors
... other arguments
```

See Also

```
criterion.lrgpr
```

plot.cv.lrgpr

Plot Results of Cross-validation

Description

Plot results of cv.lrgpr, which fits cross-validation for multiple ranks of the LRGPR

Usage

```
## S3 method for class cv.lrgpr
plot(x, ylim = c(min(x$cve - x$cvse), max(x$cve + x$cvse)),
    xlim = range(x$rank), pch = 20, col = "red",
    main = "Cross validation", xlab = "# of markers used",
    ylab = "Cross validation error", ...)
```

plot.lrgpr 19

Arguments

X	result of cv.lrgpr
ylim	limits of y-axis
xlim	limits of x-axis
pch	pch
col	col
main	main
xlab	xlab
ylab	ylab
	other parameters fed to plot()

plot.lrgpr

Plot Diagnostics for an 1rgpr Object

Description

Six plots (selectable by "which") are currently available: a plot of residuals against fitted values, a Scale-Location plot of sqrt(| residuals |) against fitted values, a Normal Q-Q plot, a plot of Cook's distances versus row labels, a plot of residuals against leverages, and a plot of Cook's distances against leverage/(1-leverage). By default, the first three and "5" are provided.

Usage

```
## S3 method for class lrgpr
plot(x, which = c(1L:3L, 5L),
    caption = list("Residuals vs Fitted", "Normal Q-Q", "Scale-Location",
    "Cooks distance", "Residuals vs Leverage",
    expression("Cooks dist vs Leverage " * h[ii]/(1 - h[ii]))), panel = if
    (add.smooth) panel.smooth else points, sub.caption = NULL, main = "",
    ask = prod(par("mfcol")) < length(which) && dev.interactive(), ...,
    id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
    qqline = TRUE, cook.levels = c(0.5, 1),
    add.smooth = getOption("add.smooth"), label.pos = c(4, 2),
    cex.caption = 1)</pre>
```

X	Irgpr object.
which	if a subset of the plots is required, specify a subset of the numbers "1:6".
caption	captions to appear above the plots; "character" vector or "list" of valid graphics annotations, see "as.graphicsAnnot". Can be set to "" or "NA" to suppress all captions.
panel	panel function. The useful alternative to "points", "panel.smooth" can be chosen by "add.smooth = TRUE".

20 predict.lrgpr

sub.caption	common title-above the figures if there are more than one; used as "sub" (s."title") otherwise. If "NULL", as by default, a possible abbreviated version of "deparse(x call)" is used.
main	title to each plot-in addition to "caption".
ask	logical; if "TRUE", the user is _ask_ed before each plot, see "par(ask=.)".
• • •	other parameters to be passed through to plotting functions.
id.n	number of points to be labelled in each plot, starting with the most extreme.
labels.id	vector of labels, from which the labels for extreme points will be chosen. "NULL" uses observation numbers.
cex.id	magnification of point labels.
qqline	logical indicating if a "qqline()" should be added to the normal Q-Q plot.
cook.levels	levels of Cook's distance at which to draw contours.
add.smooth	logical indicating if a smoother should be added to most plots; see also "panel" above.
label.pos	positioning of labels, for the left half and right half of the graph respectively, for plots 1-3.

See Also

plot.lm

cex.caption

Description

Predict response values after training with lrgpr. Leaving X_test and K_test as NULL returns the fitted values on the training set

Usage

```
predict.lrgpr(object, X_test = NULL, K_test = NULL, ...)
```

controls the size of "caption".

Arguments

object	model fit from lrgpr on training samples
X_test	design matrix of covariates for test samples
K_test	covariance matrix between samples in the test set and training set

... other arguments

print.lrgpr 21

print.lrgpr

Print Values

Description

Print details for fit from lrgpr

Usage

```
print.lrgpr(x, ...)
```

Arguments

x model fit from lrgpr

... other arguments

print.summary.lrgpr

Object Summaries

Description

Print summary for fit from lrgpr

Usage

```
print.summary.lrgpr(x, ...)
```

Arguments

```
x model fit from lrgpr
```

... other arguments

QQ_plot

Description

QQ plot and lambda_GC optimized for large datasets.

Usage

```
QQ_plot(p_values, col = rainbow(min(length(p_values), ncol(p_values))),
main = "", pch = 20, errors = TRUE, lambda = TRUE, p_thresh = 1e-06,
showNames = FALSE, ylim = NULL, xlim = NULL, plot = TRUE,
new = TRUE, box.lty = par("lty"), collapse = FALSE, ...)
```

Arguments

p_values	vector, matrix or list of p-values
col	colors corresponding to the number of columns in matrix, or entries in the list
main	title
pch	pch
errors	show 95% confidence interval
lambda	calculate and show genomic control lambda. Lambda_GC is calculated using the 'median' method on p-values $>$ p_thresh.
p_thresh	Lambda_GC is calcualted using the 'median' method on p-values > p_thresh.
showNames	show column names or list keys in the legend
ylim	ylim
xlim	xlim
plot	make a plot. If FALSE, returns lamda_GC values without making plot
new	make a new plot. If FALSE, overlays QQ over current plot
box.lty	box line type
collapse	combine entries in matrix or list into a single vector
•••	other arguments

Examples

```
p = runif(1e6)
QQ_plot(p)

# get lambda_GC values without making plot
lambda = QQ_plot(p, plot=FALSE)
```

read.fam 23

read.fam

Read plink FAM/TFAM files

Description

Read FAM/TFAM file into a dataframe. This function is the same as read.tfam

Usage

```
read.fam(file, checkFileExtension = TRUE)
```

Arguments

file location of FAM/TFAM file checkFileExtension

If TRUE, throw error if file doesn't end with fam/tfam

read.tfam

Read plink FAM/TFAM files

Description

Read FAM/TFAM file into a dataframe. This function is the same as read.fam

Usage

```
read.tfam(file, checkFileExtension = TRUE)
```

Arguments

file location of FAM/TFAM file

checkFileExtension

If TRUE, throw error if file doesn't end with fam/tfam

24 rstandard.lrgpr

residuals.lrgpr

Extract Model Residuals

Description

Residuals fitted with 1rgpr

Usage

```
residuals.lrgpr(object, type = "working", ...)
```

Arguments

object model fit with lrgpr

type the type of residual, but there is only one option here

... other arguments

rstandard.lrgpr

Regression Deletion Diagnostics

Description

Basic quantities for regression deletion diagnostics from fit of 1rgpr

Usage

```
## S3 method for class lrgpr
rstandard(model, ...)
```

Arguments

model model fit with lrgpr
... other arguments

set_missing_to_mean 25

set_missing_to_mean

Replace Missing Values with Mean

Description

For each column, replace NA values with the column mean

Usage

```
set_missing_to_mean(A)
```

Arguments

Α

matrix

summary.lrgpr

Summarizing LRGPR / Linear Mixed Model Fits

Description

Print summary for fit from lrgpr

Usage

```
summary.lrgpr(object, ...)
```

Arguments

object model fit from lrgpr
... other arguments

vcov.lrgpr

Calculate Variance-Covariance Matrix for a 1rgpr Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted model object

Usage

```
vcov.lrgpr(object, ...)
```

```
object model fit with lrgpr
... other arguments
```

26 wald

wald

Composite hypothesis test of multiple coefficients

Description

Performs a multi-dimensional Wald test against H0: beta_i...beta_j = 0 using the estimated coefficients and their variance-covariance matrix

Usage

```
wald(fit, terms)
```

Arguments

fit result of fitting with lrgpr

terms indices of the coefficients to be tested

Details

The Wald statistic is

$$\beta_h^T \Sigma_h^{-1} \beta_h \sim \chi_{|h|}^2$$

where

h

specifies the coefficients being tested and

|h|

is the number of entries

See Also

lrgpr

Index

```
AIC.lrgpr, 2
                                                 read.tfam, 23
                                                 residuals.lrgpr, 24
BIC.lrgpr, 3
                                                 rstandard.lrgpr, 24
coefficients.lrgpr, 3
                                                 set_missing_to_mean, 25
convertToBinary, 4
                                                 summary.lrgpr, 25
cooks.distance.lrgpr, 5
criterion.lrgpr, 5, 18
                                                 vcov.lrgpr, 25
cv.lrgpr, 6, 18
                                                 wald, 15, 16, 26
df.residual.lrgpr, 7
error.bar, 7
getAlleleFreq, 8
getAlleleVariance, 8
getMACHrsq, 9
getMissingCount, 9
glmApply, 10
glmApply2, 11
influence.lrgpr, 11
leverage.lrgpr, 12
lm.influence, 5
lm.influence.lrgpr, 12
logLik.lrgpr, 12
loss.lrgpr, 13
lrgpr, 2, 3, 5–7, 11, 12, 13, 15, 16, 19–21,
        24-26
lrgprApply, 10, 15, 16
plot.criterion.lrgpr, 18
plot.cv.lrgpr, 18
plot.lrgpr, 19
predict.lrgpr, 20
print.lrgpr, 21
print.summary.lrgpr, 21
QQ_plot, 22
read.fam, 23
```