Quant2D

Marina Orta Terré

May 6, 2019

1 2D time-dependent Schrödinger equation

$$\hat{H}\psi(x,y,t) = i\hbar\partial_t\psi(x,y,t) \tag{1}$$

In this problem the potential is only function of x and y coordinates, then: $\hat{H} = \frac{\hbar^2}{2m}(\partial_x \psi + \partial_y \psi) + V(x,y)$, and the equation will result as:

$$\frac{\hbar^2}{2m}(\partial_x \psi + \partial_y \psi) + V(x, y) = i\hbar \partial_t \psi(x, y, t)$$
 (2)

2 Implicit method

Using a 2-point formula for the first time derivative and a 3-point formula for the second space derivatives:

$$\partial_t \psi = \frac{\psi(t + \Delta t) - \psi(t)}{\Delta t}$$

$$\partial_x \psi = \frac{\psi(x + \Delta x) - 2\psi(x) + \psi(x - \Delta x)}{(\Delta x)^2}$$
(3)

Now evolving the partial time derivative forward and backward half a step of time for $\psi(t)$ and $\psi(t+\Delta t)$ respectively and equalizing the $\psi(t+\frac{\Delta t}{2})$ terms:

$$(1 + \frac{\Delta t}{2\hbar}i\hat{H})\psi_{i,j}^{k+1} = (1 - \frac{\Delta t}{2\hbar}i\hat{H})\psi_{i,j}^{k}$$
(4)

Where $\psi_{i,j}^k = \psi(x_i, y_j, t_k)$.

Other way to express it might be:

$$\hat{A}\psi_{i,j}^{k+1} = \hat{B}\psi_{i,j}^{k} = \overline{\psi}_{i,j}^{k} \tag{5}$$

Where \hat{A} and \hat{B} are two tridiagonal matrices and being $\psi_{i,j}^k$ the wave function at the current time and $\psi_{i,j}^{k+1}$ the wave function after one step of time.

As \hat{A} and \hat{B} are tridiagonal they can be defined using their three diagonals:

$$\hat{A} = \begin{cases} A_{sup} = r \\ A_{diag} = 1 - 4r + \frac{idt}{2\hbar}V(x, y) \\ A_{inf} = r \end{cases}$$

$$\hat{B} = \begin{cases} B_{sup} = -r \\ B_{diag} = 1 + 4r - \frac{idt}{2\hbar}V(x, y) \\ B_{inf} = -r \end{cases}$$

Both deduced from (3) and (4). The solution $\psi_{i,j}^{k+1}$ is found using the tridiagonal matrix algorithm or Thomas algorithm. As this algorithm was made to solve a tridiagonal system of equations and in this specific problem $\overline{\psi}$ is matrix-shaped, first will evolve for x and then for y.

3 Some results for now

Evolution of different wave functions (plotted the density of probability) for an harmonic oscillator potential: $V(x) = \frac{1}{2}kr^2$.

Representation of the potential map along with the norm value each time step and the initial and final probability after 100 steps of time.

3.1**Eigenstates**

3.1.1 k = 1

Figure 1: Evolution of the ground or (0,0) state for $V(x) = \frac{1}{2}r^2$

Figure 2: Evolution of the (1,1) state for $V(x) = \frac{1}{2}r^2$

3.1.2 k = 50

Figure 3: Evolution of the ground or (0,0) state for $V(x)=\frac{1}{2}50r^2$

Figure 4: Evolution of the (1,1) state for $V(x) = \frac{1}{2}50r^2$