(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-78106 (P2000-78106A)

(43)公開日 平成12年3月14日(2000.3.14)

(51) Int.Cl.7

l

+

識別記号

FΙ

テーマコート*(参考)

H 0 4 J 13/00

H O 4 J 13/00

Α

審査請求 有 請求項の数10 OL (全 24 頁)

(21)出願番号

特願平10-248574

(22)出願日

平成10年9月2日(1998.9.2)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 早田 利浩

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100084250

弁理士 丸山 隆夫

(54) 【発明の名称】 CDMA信号受信装置

(57)【要約】

【課題】 CDMA信号の受信特性を向上させたCDM A信号受信装置を提供する。

【解決手段】 ディレイプロファイルを生成するディレイプロフィアイル生成部6と、相関値の大きい受信タイミングを所定の数選択するフィンガ候補選択部7と、フィンガ候補の受信タミングとタイミングの近接した使用中のフィンガ回路を検出する関連付け部8と、同じフィンガ候補に関連付けられた使用中のフィンガ回路に対し、保護を行うかられた使用中のフィンガ回路に対し、保護を行うからに関連付けられていないフィンガ候補の受信タイミングを見ではいるアインガー路に割り当てるフィンガーとを有することにより、相関値の大きい受信タイミングを見つけ出してフィンガー路に割り当てることができる。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

フェージングベクトルの大きさの比、または角度の差が 所定の閾値よりも大きいCDMA信号を、伝送経路の異 なるCDMA信号であると判断することを特徴とするC DMA信号受信装置。

【請求項2】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

復調手段の受信タイミングが所定の期間近接し続けたCDMA信号を、同一の伝送経路のCDMA信号であると判断することを特徴とするCDMA信号受信装置。

【請求項3】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

複数の復調手段の受信タイミングが近接しても、所定の 期間までは前記複数の復調手段にそのままの受信タイミ ングの前記CDMA信号を受信させることを特徴とする CDMA信号受信装置。

【請求項4】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

復調手段のCDMA信号の受信タイミングが、他の復調 手段のCDMA信号の受信タイミングと近接した場合 に、

前記復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルと、前記他の復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルとの大きさの比と角度の差を所定の閾値と比較し、

前記フェージングベクトルの大きさの比と角度の差のいずれもが前記所定の閾値よりも小さい場合、

前記復調手段と前記他の復調手段のいずれか一方の前記 CDMA信号の受信タイミングを変更させ、

前記フェージングベクトルの大きさの比、または角度の 差が前記所定の閾値よりも大きい場合、

前記復調手段及び前記他の復調手段に、そのままの受信 タイミングの前記CDMA信号を受信させる近接保護手 段を有することを特徴とするCDMA信号受信装置。

【請求項5】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

復調手段のCDMA信号の受信タイミングと、他の復調 手段のCDMA信号の受信タイミングとが近接した場合 に、

前記復調手段及び前記他の復調手段にそのままの受信タイミングの前記CDMA信号を所定の期間割り当てて復調し、

前記所定の時間を経過しても、前記復調手段の前記CD MA信号の受信タイミングと、前記他の復調手段の前記 CDMA信号の受信タイミングとが近接し続けた場合 に、

2

前記復調手段と前記他の復調手段のいずれか一方の前記 CDMA信号の受信タイミングを変更する近接保護手段 を有することを特徴とするCDMA信号受信装置。

【請求項6】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

復調手段のCDMA信号の受信タイミングが、他の復調 手段のCDMA信号の受信タイミングと近接し、

前記復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルと、前記他の復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルとの大きさの差、または角度の比が所定の関値よりも大きい場合に、

前記復調手段及び前記他の復調手段にそのままの受信タイミングの前記CDMA信号を所定の期間割り当てて復調し、

前記復調手段の前記CDMA信号の受信タイミングと、 前記他の復調手段の前記CDMA信号の受信タイミング とが、所定の時間を経過しても近接し続けている場合 に

前記復調手段と前記他の復調手段のいずれか一方の前記 CDMA信号の受信タイミングを変更する近接保護手段 を有することを特徴とするCDMA信号受信装置。

【請求項7】 入力したCDMA信号を用いてディレイプロファイルを生成するディレイプロファイル生成手段

前記ディレイプロファイル生成手段により生成された前記ディレイプロファイルを用いてフィンガ候補と称する 相関値の大きい受信タイミングを所定の数選択するフィンガ候補選択手段と、

前記フィンガ候補選択手段により選択された前記フィン ガ候補の受信タイミングに近接した受信タイミングの使 用中の復調手段を検出する関連付け手段と、

前記関連付け手段により各使用中の復調手段に関連付けられたフィンガ候補の受信タイミングを比較し、同じフィンガ候補に関連付けられた使用中の復調手段を検出して前記近接保護手段に出力するタイミング比較手段と、前記近接保護手段の出力結果に従って、使用中の復調手段に関連付けられていないフィンガ候補の受信タイミングを不使用の復調手段に割り当てるフィンガ割り当て手段とを有することを特徴とする請求項4から6のいずれかに記載のCDMA信号受信装置。

【請求項8】 前記近接保護手段は、

処理対象の復調手段が、前記タイミング比較手段により 同じフィンガ候補に関連付けられた復調手段が検出され 50 た復調手段であるか否かを検出する関連付け検査手段

20

20

30

40

10

と、

前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に関連付けられた復調手段が検出された復調手段であることが検出されると、前記処理対象の復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルと、処理対象の復調手段と同じフィンガ候補に関連付けられた復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルの大きさの比、及び角度の差を検出して、それらが所定の関値を越えているか否かを検出するフェージングベクトル比較手段と、

前記フェージングベクトル比較部の比較結果に基づいて、前記処理対象の復調手段または前記処理対象の復調 手段と同じフィンガ候補に関連付けられた復調手段のいずれかを不使用に設定するフィンガ割り当て手段と、

を有することを特徴とする請求項4または7記載のCD MA信号受信装置。

【請求項9】 前記近接保護手段は、

復調手段毎に設けられた初期状態では-1に設定されて いる計数手段と、

処理対象の復調手段が、前記タイミング比較手段により 同じフィンガ候補に関連付けられた復調手段が検出され た復調手段であるか否かを検出する関連付け検査手段

前記復調手段毎に設けられた計数手段の計数値を確認する計数値確認手段と、

前記復調手段毎に設けられた計数手段の計数値を変更する計数値変更手段と、

前記計数値確認手段の計数値確認結果に基づいて、前記 処理対象の復調手段または前記処理対象の復調手段と同 じフィンガ候補に関連付けられた復調手段のいずれかを 不使用に設定するフィンガ割り当て手段とを有し、

前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に 関連付けられた復調手段が検出された復調手段であることが検出された場合、

前記計数値確認手段により、前記処理対象の復調手段に 対応する計数手段の計数値を検索し、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値が初期状態の-1に設定されていることを検出した場合、前記計数値変更手段により前記処理対象の復調手段に対応する計数手段の計数値を所定の正の値に変更し、

前記計数値確認手段により前記計数手段の計数値が0より大きいことを検出した場合、前記処理対象の復調手段に対応する計数手段の計数値を1減算した後に再度前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値を確認し、

減算後の前記処理対象の復調手段に対応する計数手段の 計数値が0より大きい場合は、前記処理対象の復調手段 50 にそのままの受信タイミングを割り当てて、次の復調手 段に処理を移行し、

減算後の前記処理対象の復調手段に対応する計数手段の 計数値が0である場合には、前記フィンガ割り当て手段 により前記処理対象の復調手段と該処理対象の復調手段 と同じフィンガ候補に関連付けられた復調手段のいずれ か一方を残して、他の復調手段を不使用とし、

前記関連付け手段により、前記処理対処の復調手段に同 じフィンガ候補に関連付けられた復調手段が検出されな 10 かった場合、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値を確認し、

前記処理対象の復調手段に対応する計数手段の計数値が 初期状態の-1であった場合、次の復調手段に処理を移 行し、

前記処理対象の復調手段に対応する計数手段の計数値が Oより大きい場合、前記計数値変更手段により前記処理 対象の復調手段に対応する計数手段の計数値を初期状態 の-1に設定することを特徴とする請求項5または7記 20 載のCDMA信号受信装置。

【請求項10】 前記近接保護手段は、

復調手段毎に設けられた初期状態では-1に設定されて いる計数手段と、

処理対象の復調手段が、前記タイミング比較手段により 同じフィンガ候補に関連付けられた復調手段が検出され た復調手段であるか否かを検出する関連付け検査手段 と

前記復調手段毎に設けられた計数手段の計数値を確認する計数値確認手段と、

- 前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に関連付けられた復調手段が検出された復調手段であることが検出されると、前記処理対象の復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルと、前記処理対象の復調手段と同じフィンガ候補に関連付けられた復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルの大きさの比、及び角度の差を検出して、それらが所定の閾値を越えているか否かを検出するフェージングベクトル比較手段と、
- 40 前記復調手段毎に設けられた計数手段の計数値を変更する計数値変更手段と、

前記フェージングベクトル比較部の比較結果に基づいて、前記処理対象の復調手段または前記処理対象の復調 手段と同じフィンガ候補に関連付けられた復調手段のいずれかを不使用に設定するフィンガ割り当て手段とを有し、

前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に 関連付けられた復調手段が検出された復調手段であることが検出された場合、

前記計数値確認手段により前記処理対象の復調手段に対 応する計数手段の設定値を検索し、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の設定値が初期状態の-1に設定されていることを検出した場合、

前記フェージングベクトル比較手段が、前記処理対象の 復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルと、前記処理対象の復調手段と同じ フィンガ候補に関連付けられた復調手段の受信したCD MA信号を用いて生成されたフェージングベクトルとの 大きさの比、及び角度の差を求めて所定の閾値と比較 し、

前記フェージングベクトル比較手段による比較結果が、 前記フェージングベクトルの大きさの比と角度の差のいずれもが前記所定の閾値よりも小さい場合に、前記フィ ンガ割り当て手段により前記処理対象の復調手段と該処 理対象の復調手段と同じフィンガ候補に関連付けられた 復調手段のいずれか一方を残して、他の復調手段を不使 用とし、

前記フェージングベクトル比較手段による比較結果が、 前記フェージングベクトルの大きさの比、または角度の 差が所定の閾値よりも大きい場合に、前記計数値変更手 段により前記処理対象の復調手段に対応する計数手段の 計数値を所定の正の値に設定して、前記処理対象の復調 手段にそのままの受信タイミングを割り当て、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の設定値が0よりも大きいことを検出した場合、

前記処理対象の復調手段に対応する計数手段の計数値を 1減算した後に再度前記計数値確認手段により前記処理 対象の復調手段に対応する計数手段の計数値を確認し、 減算後の前記処理対象の復調手段に対応する計数手段の 計数値が0より大きい場合は、前記処理対象の復調手段 にそのままの受信タイミングを割り当てて、次の復調手 段に処理を移行し、

減算後の前記処理対象の復調手段に対応する計数手段の 計数値が 0 である場合には、前記フィンガ割り当て手段 により前記処理対象の復調手段と該処理対象の復調手段 と同じフィンガ候補に関連付けられた復調手段のいずれ か一方を残して、他の復調手段を不使用とし、

前記関連付け手段により、前記処理対処の復調手段に同 じフィンガ候補に関連付けられた復調手段が検出されな かった場合、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値を確認し、

前記処理対象の復調手段に対応する計数手段の計数値が 初期状態の-1であった場合、次の復調手段に処理を移 行し、

前記処理対象の復調手段に対応する計数手段の計数値が 0より大きい場合、前記計数値変更手段により前記処理 対象の復調手段に対応する計数手段の計数値を初期状態 の-1に設定することを特徴とする請求項6または7記 載のCDMA信号受信装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はCDMA信号受信装置に関し、特に複数のフィンガ回路の受信タイミングが近接した際の近接保護を行うことのできるCDMA信号受信装置に関する。

10 [0002]

30

【従来の技術】近年、移動通信システムに適用する通信 方式の一つとして、干渉や妨害に強いスペクトラム拡散 通信方式が注目されている。スペクトラム拡散通信方式 を使用した無線通信システムは、例えば送信側の装置に おいて、ディジタル化された音声データや画像データに 対しPSKまたはFSK変調方式等のディジタル変調方 式により変調を行ったのち、この変調された送信データ を疑似雑音符号(PNコード:Pseudorandom Noise cod e)などの拡散符号を用いて広帯域のベースバンド信号 に変換し、しかるのち無線周波数の信号に変換して送信 する。一方、受信側の装置においては、受信された無線 周波数信号に対し、送信側の装置で使用した拡散符号と 同じ符号を用いて逆拡散を行い、しかるのちPSKまた はFSK復調方式によりディジタル復調を行って受信データを再生するように構成されている。

【0003】ところで、この種のシステムでは、マルチパス対策の一つとしてレイク受信方式が採用されている。すなわち、無線通信システムでは、送信側の装置から送信された無線波が、受信側の装置に直接届く場合もあればビルや山で反射して届く場合もある。このように1つの無線波が複数のパスを経て受信装置に到達すると、受信装置のアンテナ端では上記複数のパスを経て受信装置に到達すると、受信装置のアンテナ端では上記複数のパスを経した無線波がベクトル合成されて受信レベルの低下が生じる。この現象をマルチパスと呼んでいる。マルチパスが発生すると、例えば無線チャネルの帯域幅が30kHz程度の狭いシステムでは、場合により無線信号が受信装置で全く受信できなくなるが、スペクトル拡散通信号は一部が欠損しながらも必ず受信される。

40 【0004】そこで、スペクトル拡散通信装置では、1 つのアンテナで受信されたマルチパス受信被信号を1拡 散符号長(1チップ)単位で分離して複数の独立した復 調器に入力し、これらの復調器においてそれぞれパスに 対応する拡散符号で逆拡散を行って受信信号を復調し、 この復調された複数のパスの受信信号をシンボル合成し て受信データを再生する受信方式が採用されている。こ の受信方式を受信信号を熊手のように集めて合成するこ とからレイク受信方式と呼んでいる。レイク受信方式を 用いると時間ダイバーシチが行われることになり、マル チパスが発生している場合の受信品質を大幅の高めるこ

とが可能となる。

【0005】図13を用いてCDMA(Code Division Multiple Access)通信方式における従来のCDMA信号受信装置について説明する。図13に示されるように、CDMA信号受信装置は、入力端21、サーチャ部22、フィンガ部23、レイク部24、出力端25とにより構成されている。また、サーチャ部22は、ディレイプロファイル生成部26、フィンガ候補選択部27、関連付け部28、タイミング比較部29、フィンガ割り当て部30などを有している。また、フィンガ部23は、受信部31、フェージングベクトル生成部32、検波部33などを有している。

【0006】入力端より入力された信号は、ディレイプ ロファイル生成部26に入力され、ここで入力された信 号を用いてディレイプロファイルが生成される。生成さ れたディレイプロファイルはフィンガ候補選択部27に 送られ、ここでフィンガ候補が選択される。関連付け部 28にはフィンガ候補選択部で選択されたフィンガ候補 と、フィンガ割り当て部30で選択されたフィンガ回路 に割り当てられた受信タイミングとが入力され、各フィ ンガ回路に対してフィンガ候補選択部で選択されたフィ ンガ候補の関連付けを行う。そして、タイミング比較部 29では使用中の各フィンガ回路に関連づけられたフィ ンガ候補の受信タイミングを比較し、同一のフィンガ候 補に関連づけられたフィンガ回路を選出する。そして、 この同一のフィンガ候補に対して関連付けられた複数の フィンガ回路があった場合には、1つのフィンガ回路を 除いて強制的に不使用となるようにフィンガ割り当て部 が受信タイミングを選択する。受信部はフィンガ割り当 て部で選択された受信タイミングを各々のフィンガ回路 に割り当てることにより信号を受信しCDMA通信方式 の特徴である逆拡散を行う。

[0007]

【発明が解決しようとする課題】しかしながら、上記従来のCDMA信号受信装置においては、タイミング比較部で同一のフィンガ候補に対して、関連付けられている複数のフィンガ回路があった時に、それら複数のフィンガ回路は強制的に1つを除いて、後は全て不使用のフィンガ回路となるため、受信タイミングが偶然ほとんど同じであったが、異なるパスに割り当てられているフィンガ回路があったとしても、それらを1つを除いて全て不使用にしてしまうため、捕らえているパスの数が減ることになり、レイク受信を行った際の受信特性の劣化を招くことになる。

【0008】本発明は上記問題点に鑑みてなされたものであり、複数のフィンガ回路の受信タイミングが近接した際にパスとして異なるものであるか否かを判断し、異なるものであった場合に保護を可能とするCDMA信号受信装置を提供することを目的とする。

[0009]

8

【課題を解決するための手段】かかる目的を達成するために、本発明のCDMA信号受信装置は、CDMA信号を複数の復調手段により復調し、復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置であって、フェージングベクトルの大きさの比、または角度の差が所定の閾値よりも大きいCDMA信号を、伝送経路の異なるCDMA信号であると判断することを特徴とする。

【0010】本発明のCDMA信号受信装置は、CDM

10 A信号を複数の復調手段により復調し、復調されたCD MA信号に所定の処理を施してレイク合成を行うCDM A信号受信装置であって、復調手段の受信タイミングが 所定の期間近接し続けたCDMA信号を、同一の伝送経路のCDMA信号であると判断することを特徴とする。 【0011】本発明のCDMA信号受信装置は、CDM A信号を複数の復調手段により復調し、復調されたCD MA信号に所定の処理を施してレイク合成を行うCDM A信号受信装置であって、複数の復調手段の受信タイミングが近接しても、所定の期間までは複数の復調手段に 20 そのままの受信タイミングのCDMA信号を受信させることを特徴とする。

【0012】本発明のCDMA信号受信装置は、CDM A信号を複数の復調手段により復調し、復調されたCD MA信号に所定の処理を施してレイク合成を行うCDM A信号受信装置であって、復調手段のCDMA信号の受 信タイミングが、他の復調手段のCDMA信号の受信タ イミングと近接した場合に、復調手段の受信したCDM A信号を用いて生成されたフェージングベクトルと、他 の復調手段の受信したCDMA信号を用いて生成された フェージングベクトルとの大きさの比と角度の差を所定 の閾値と比較し、フェージングベクトルの大きさの比と 角度の差のいずれもが所定の閾値よりも小さい場合、復 調手段と他の復調手段のいずれか一方のCDMA信号の 受信タイミングを変更させ、フェージングベクトルの大 きさの比、または角度の差が所定の閾値よりも大きい場 合、復調手段及び他の復調手段に、そのままの受信タイ ミングのCDMA信号を受信させる近接保護手段を有す ることを特徴とする。

【0013】本発明のCDMA信号受信装置は、CDM 40 A信号を複数の復調手段により復調し、復調されたCD MA信号に所定の処理を施してレイク合成を行うCDM A信号受信装置であって、復調手段のCDMA信号の受信タイミングと、他の復調手段のCDMA信号の受信タイミングとが近接した場合に、復調手段及び他の復調手段にそのままの受信タイミングのCDMA信号を所定の期間割り当てて復調し、所定の時間を経過しても、復調手段のCDMA信号の受信タイミングとが近接し続けた場合に、復調手段と他の復調手段のいずれか一方のCDMA 6号の受信タイミングを変更する近接保護手段を有する

50

ことを特徴とする。

【0014】本発明のCDMA信号受信装置は、CDM A信号を複数の復調手段により復調し、復調されたCD MA信号に所定の処理を施してレイク合成を行うCDM A信号受信装置であって、復調手段のCDMA信号の受 信タイミングが、他の復調手段のCDMA信号の受信タ イミングと近接し、復調手段の受信したCDMA信号を 用いて生成されたフェージングベクトルと、他の復調手 段の受信したCDMA信号を用いて生成されたフェージ ングベクトルとの大きさの差、または角度の比が所定の 閾値よりも大きい場合に、復調手段及び他の復調手段に そのままの受信タイミングのCDMA信号を所定の期間 割り当てて復調し、復調手段のCDMA信号の受信タイ ミングと、他の復調手段のCDMA信号の受信タイミン グとが、所定の時間を経過しても近接し続けている場合 に、復調手段と他の復調手段のいずれか一方のCDMA 信号の受信タイミングを変更する近接保護手段を有する ことを特徴とする。

9

【0015】上記のCDMA信号受信装置は、入力した CDMA信号を用いてディレイプロファイルを生成する ディレイプロファイル生成手段と、ディレイプロファイ ル生成手段により生成されたディレイプロファイルを用 いてフィンガ候補と称する相関値の大きい受信タイミン グを所定の数選択するフィンガ候補選択手段と、フィン ガ候補選択手段により選択されたフィンガ候補の受信タ イミングに近接した受信タイミングの使用中の復調手段 を検出する関連付け手段と、関連付け手段により各使用 中の復調手段に関連付けられたフィンガ候補の受信タイ ミングを比較し、同じフィンガ候補に関連付けられた使 用中の復調手段を検出して近接保護手段に出力するタイ ミング比較手段と、近接保護手段の出力結果に従って、 使用中の復調手段に関連付けられていないフィンガ候補 の受信タイミングを不使用の復調手段に割り当てるフィ ンガ割り当て手段とを有するとよい。

【0016】上記の近接保護手段は、処理対象の復調手 段が、タイミング比較手段により同じフィンガ候補に関 連付けられた復調手段が検出された復調手段であるか否 かを検出する関連付け検査手段と、関連付け検査手段に より、処理対象の復調手段が、タイミング比較手段によ り同じフィンガ候補に関連付けられた復調手段が検出さ れた復調手段であることが検出されると、処理対象の復 調手段の受信したCDMA信号を用いて生成されたフェ ージングベクトルと、処理対象の復調手段と同じフィン ガ候補に関連付けられた復調手段の受信したCDMA信 号を用いて生成されたフェージングベクトルの大きさの 比、及び角度の差を検出して、それらが所定の閾値を越 えているか否かを検出するフェージングベクトル比較手 段と、フェージングベクトル比較部の比較結果に基づい て、処理対象の復調手段または処理対象の復調手段と同 じフィンガ候補に関連付けられた復調手段のいずれかを 不使用に設定するフィンガ割り当て手段と、を有すると よい.

【0017】上記の近接保護手段は、復調手段毎に設け られた初期状態では-1に設定されている計数手段と、 処理対象の復調手段が、タイミング比較手段により同じ フィンガ候補に関連付けられた復調手段が検出された復 調手段であるか否かを検出する関連付け検査手段と、復 調手段毎に設けられた計数手段の計数値を確認する計数 値確認手段と、復調手段毎に設けられた計数手段の計数 値を変更する計数値変更手段と、計数値確認手段の計数 値確認結果に基づいて、処理対象の復調手段または処理 対象の復調手段と同じフィンガ候補に関連付けられた復 調手段のいずれかを不使用に設定するフィンガ割り当て 手段とを有し、関連付け検査手段により、処理対象の復 調手段が、タイミング比較手段により同じフィンガ候補 に関連付けられた復調手段が検出された復調手段である ことが検出された場合、計数値確認手段により、処理対 象の復調手段に対応する計数手段の計数値を検索し、計 数値確認手段により処理対象の復調手段に対応する計数 20 手段の計数値が初期状態の-1に設定されていることを 検出した場合、計数値変更手段により処理対象の復調手 段に対応する計数手段の計数値を所定の正の値に変更 し、計数値確認手段により計数手段の計数値が0より大 きいことを検出した場合、処理対象の復調手段に対応す る計数手段の計数値を1減算した後に再度計数値確認手 段により処理対象の復調手段に対応する計数手段の計数 値を確認し、減算後の処理対象の復調手段に対応する計 数手段の計数値が0より大きい場合は、処理対象の復調 手段にそのままの受信タイミングを割り当てて、次の復 調手段に処理を移行し、減算後の処理対象の復調手段に 対応する計数手段の計数値が0である場合には、フィン ガ割り当て手段により処理対象の復調手段と処理対象の 復調手段と同じフィンガ候補に関連付けられた復調手段 のいずれか一方を残して、他の復調手段を不使用とし、 関連付け手段により、処理対処の復調手段に同じフィン ガ候補に関連付けられた復調手段が検出されなかった場 合、計数値確認手段により処理対象の復調手段に対応す る計数手段の計数値を確認し、処理対象の復調手段に対 応する計数手段の計数値が初期状態の-1であった場 40 合、次の復調手段に処理を移行し、処理対象の復調手段 に対応する計数手段の計数値が0より大きい場合、計数 値変更手段により処理対象の復調手段に対応する計数手 段の計数値を初期状態の-1に設定するとよい。

【0018】上記の近接保護手段は、復調手段毎に設け られた初期状態では-1に設定されている計数手段と、 処理対象の復調手段が、タイミング比較手段により同じ フィンガ候補に関連付けられた復調手段が検出された復 調手段であるか否かを検出する関連付け検査手段と、復 調手段毎に設けられた計数手段の計数値を確認する計数 値確認手段と、関連付け検査手段により、処理対象の復 調手段が、タイミング比較手段により同じフィンガ候補 に関連付けられた復調手段が検出された復調手段である ことが検出されると、処理対象の復調手段の受信したC DMA信号を用いて生成されたフェージングベクトル と、処理対象の復調手段と同じフィンガ候補に関連付け られた復調手段の受信したCDMA信号を用いて生成さ れたフェージングベクトルの大きさの比、及び角度の差 を検出して、それらが所定の閾値を越えているか否かを 検出するフェージングベクトル比較手段と、復調手段毎 に設けられた計数手段の計数値を変更する計数値変更手 段と、フェージングベクトル比較部の比較結果に基づい て、処理対象の復調手段または処理対象の復調手段と同 じフィンガ候補に関連付けられた復調手段のいずれかを 不使用に設定するフィンガ割り当て手段とを有し、関連 付け検査手段により、処理対象の復調手段が、タイミン グ比較手段により同じフィンガ候補に関連付けられた復 調手段が検出された復調手段であることが検出された場 合、計数値確認手段により処理対象の復調手段に対応す る計数手段の設定値を検索し、計数値確認手段により処 理対象の復調手段に対応する計数手段の設定値が初期状 態の-1に設定されていることを検出した場合、フェー ジングベクトル比較手段が、処理対象の復調手段の受信 したCDMA信号を用いて生成されたフェージングベク トルと、処理対象の復調手段と同じフィンガ候補に関連 付けられた復調手段の受信したCDMA信号を用いて生 成されたフェージングベクトルとの大きさの比、及び角 度の差を求めて所定の閾値と比較し、フェージングベク トル比較手段による比較結果が、フェージングベクトル の大きさの比と角度の差のいずれもが所定の閾値よりも 小さい場合に、フィンガ割り当て手段により処理対象の 復調手段と処理対象の復調手段と同じフィンガ候補に関 連付けられた復調手段のいずれか一方を残して、他の復 調手段を不使用とし、フェージングベクトル比較手段に よる比較結果が、フェージングベクトルの大きさの比、 または角度の差が所定の閾値よりも大きい場合に、計数 値変更手段により処理対象の復調手段に対応する計数手 段の計数値を所定の正の値に設定して、処理対象の復調 手段にそのままの受信タイミングを割り当て、計数値確 認手段により処理対象の復調手段に対応する計数手段の 設定値が0よりも大きいことを検出した場合、処理対象 の復調手段に対応する計数手段の計数値を1減算した後 に再度計数値確認手段により処理対象の復調手段に対応 する計数手段の計数値を確認し、減算後の処理対象の復 調手段に対応する計数手段の計数値が0より大きい場合 は、処理対象の復調手段にそのままの受信タイミングを 割り当てて、次の復調手段に処理を移行し、減算後の処 理対象の復調手段に対応する計数手段の計数値が0であ る場合には、フィンガ割り当て手段により処理対象の復 調手段と処理対象の復調手段と同じフィンガ候補に関連 付けられた復調手段のいずれか一方を残して、他の復調

手段を不使用とし、関連付け手段により、処理対処の復調手段に同じフィンガ候補に関連付けられた復調手段が検出されなかった場合、計数値確認手段により処理対象の復調手段に対応する計数手段の計数値を確認し、処理対象の復調手段に対応する計数手段の計数値が初期状態の一1であった場合、次の復調手段に処理を移行し、処理対象の復調手段に対応する計数手段の計数値が0より大きい場合、計数値変更手段により処理対象の復調手段に対応する計数手段の計数値を初期状態の一1に設定するとよい。

[0019]

【発明の実施の形態】次に添付図面を参照して本発明の CDMA信号受信装置の実施の形態を詳細に説明する。 図1~図12を参照すると本発明のCDMA信号受信装 置の好適な実施の形態が示されている。

【0020】図1に示された第1の実施形態は、入力端1、サーチャ部2、フィンガ部3、レイク部4、出力端5により構成される。入力端は、送信側から送られたCDMA信号を入力する。サーチャ部2は、入力端1より20入力したCDMA信号を基に、相関値の大きいCDMA信号の受信タイミングを見つけ出し、フィンガ部3に割り当てる。フィンガ部3は、サーチャ部により割り当てられたそれぞれ異なる受信タイミングのCDMA信号を各フィンガ回路にて受信し、以下で説明する逆拡散、フェージングベクトル生成、検波などの処理を行う。レイク部4は、フィンガ部3より入力される検波信号に対し、重みを付けて加算することでレイク合成を行う。出力端5は、レイク部4によりレイク合成された信号を出力する。

30 【0021】次に上述した各部の詳細な構成と、その各部を構成する各装置の機能を説明する。

【0022】サーチャ部2は、ディレイプロファイル生成部6、フィンガ候補選択部7、関連付け部8、タイミング比較部9、近接保護部10、フィンガ割り当で部11により構成される。

【0023】ディレイプロファイル生成部6は、入力端 1より入力した信号に逆拡散を施し、ディレイプロファ イルを生成する。ディレイプロファイルとは、信号の受 信タイミングと、その受信タイミングで信号を受信して 40 逆拡散を施した時の相関値の関係を表したものである。 図2に、このディレイプロファイルの一例を示す。

【0024】フィンガ候補選択部7は、ディレイプロファイル生成部6にて生成されたディレイプロファイルを用いて相関値の大きい受信タイミングを予め決められた数(例えばM個)選択してフィンガ候補とする。

【0025】関連付け部8は、フィンガ候補選択部7に て選択されたフィンガ候補と、以下に述べるフィンガ割 り当て部11にて選択されたフィンガ回路に割り当てら れた受信タイミングとを入力し、フィンガ回路の受信タ イミングと受信タイミングが近接したフィンガ候補を探

し、フィンガ回路とフィンガ候補を関連付ける。

【0026】タイミング比較部9は、各フィンガ回路に 関連付けられたフィンガ候補の受信タイミングを比較 し、関連付けられたフィンガ候補の受信タイミングが等 しいフィンガ回路を検出する。

【0027】近接保護部10は、タイミング比較部9に て検出された、同じフィンガ候補に関連付けられたフィ ンガ回路の受信タイミングに対し、フェージングベクト ル生成部で生成されたフェージングベクトルを基に保護 を行うか否かを決定する。

【0028】フィンガ割り当て部11は、近接保護部10からの保護する受信タイミング情報を基にフィンガ部のフィンガ回路に割り当てる受信タイミングを選択する。選択された受信タイミングはフィンガ部の受信部12および関連付け部8に送られる。

【0029】フィンガ部3は、受信部12、フェージングベクトル生成部13、検波部14により構成される複数(例えば、N個)のフィンガ回路により構成される。

【0030】受信部(12A~12N)は、フィンガ割り当て部11から送られた受信タイミングのCDMA信号を受信し、CDMA通信方式の特徴である逆拡散を行う。

【0031】フェージングベクトル生成部(13A~13N)は、受信部12にて逆拡散された信号から、伝送路推定を行い、IQ軸の傾き、及び伝送された信号の大きさ(=パスの確度:大きい程、信頼性のあるパスであると判断することができる)を表すフェージングベクトルを求める。ここで求められたフェージングベクトルは近接保護部10及び検波部14に送られる。

【0032】検波部(14A~14N)は、逆拡散された信号、及びフェージングベクトルを用いて検波を行う。各フィンガ回路で検出された信号はレイク部に出力される。

【0033】レイク部4にはレイク合成部が含まれ、レイク合成部15は、フィンガ部3の検波部より出力される検波信号に対して重みを付けて加算することにより、レイク合成を行う。

【0034】上記構成のCDMA信号受信装置は、複数のフィンガ回路の受信タイミングが近接したときに、パスとして異なるものであるか否かを判断し、パスとして異なるものであると判断したときには、その受信タイミングのCDMA信号に対するフィンガ回路の割り当てを外さないように保護することにより、受信タイミングの近接した異なるパスが時間の経過と共に分かれた時に、フィンガ回路に再び割り当てし直すことがないようにすることを目的としている。なお、パスとは送信側から受信側までの信号伝送経路である。

【0035】上記目的を達成するために第1の実施形態では、受信タイミングの近接したフィンガ回路があるか否かをディレイプロファイル生成部6、フィンガ候補選

択部7、関連付け部8、タイミング比較部9により検出する。そして、これら各部により受信タイミングの近接したフィンガ回路を検出した場合には、近接保護部10がそれらのフィンガ回路のフェージングベクトルをフェージングベクトル生成部より取得し、取得したフェージングベクトル生成部より取得し、取得したフェージングベクトルの大きさの比や角度の差を検出して所定の関値と比較する。そして、フェージングベクトルの大きさの比が予め定められた関値よりも大きければ、本来別のパスであると判断し、そのパスに対するフィンガ回路の割り当てを外さない。一方フェージングベクトルの大きさの比や角度の差のいずれもが関値よりも小さければ、本来同一のパスであると判断し、1つのフィンガ回路のみ残して他のフィンガ回路は割り当てを外し、不使用とする。このようにして複数のフィンガ回路の受信タイミングが近接した際の保護を可能とす

14

【0036】次に、上述したディレイプロファイル生成部6、フィンガ候補選択部7、関連付け部8、タイミング比較部9による受信タイミングの近接したパスの検出20 方法、及び近接保護部10による上記各部により検出した受信タイミングの近接した信号がパスとして異なるものであるか否かの判断方法を説明する。

【0037】まず、受信タイミングの近接したフィンガ 回路の検出方法について説明する。入力端1より入力し た信号に、まずディレイプロファイル生成部にて逆拡散 を施してディレイプロファイルを生成する。なお、ディレイプロファイルとは、信号の受信タイミングと、その 受信タイミングで信号を受信して、逆拡散を施した時の 相関値の関係を表すものである。また、相関値とは、そ 30 の受信タイミングで信号を受信したときの信号の電力量 を表すものである。

【0038】ここで、パスと受信タイミングの関係について言及しておく。同一のパスであれば当然受信タイミングも等しくなるが、受信タイミングが等しいからといってパスが等しいとは限らない。即ち、ディレイプロファイルとは、飽くまで受信タイミングと相関値の関係を厳密に表している訳ではない。一般に、相関値が大きい程、その受信タイミングで受信した際の受信状態が良いと言える。

【0039】次に、生成されたディレイプロファイルを用いてフィンガ候補を選択する。フィンガ候補選択部7によるフィンガ候補の選択方法を図2に示されたディレイプロファイルを用いて説明する。ディレイプロファイル生成部は、ディレイプロファイルから相関値の大きい受信タイミングを予め決められた数(例えば、M個)選択してフィンガ候補とする。例えば、図2に示されたディレイプロファイルでは、相関値が極大を示すF1及びF2がフィンガ候補として選択される。

【0040】フィンガ侯補選択部7にて選択されたフィ 50 ンガ侯補と、以下に示すフィンガ割り当て部11にて選

択されたフィンガ回路に割り当てられた受信タイミング が関連付け部に入力される。 【0041】次に関連付け部の処理について説明するために以下の変数を定義する。

16

M:フィンガ候補の数

Ts(i): i番目のフィンガ候補の受信タイミング($i=0\sim M-1$)

Cs(i): i番目のフィンガ候補の相関値($i=0 \sim M-1$)

N:フィンガの数

Tf(j): j番目のフィンガ回路の受信タイミング $(j=0 \sim N-1)$

Tth:関連付けタイミング範囲

 $|Ts(i)-Tf(j)| \leq Tth$

但し、複数のフィンガ候補の受信タイミングが $\pm T t h$ の範囲内にある時は、その中で相関値C s (i)の最も大きいフィンガ候補を1つ選択する。なお、 $\pm T t h$ の範囲内にあるフィンガ候補が見つけられなかったフィンガ回路は、関連付けられなかったフィンガ回路ということになる。

【0043】このようにして、仮に j 番目のフィンガ回路に対し、i 番目のフィンガ候補が選択されたときは、

「j番目のフィンガ回路とi番目のフィンガ候補はお互いに関連付けられている」といい、「j番目のフィンガ 回路はi番目のフィンガ候補に関連付けられたフィンガ 回路である」とか、「i番目のフィンガ候補は、j番目のフィンガ回路に関連付けられたフィンガ候補である」と称す。

【0044】そして、フィンガ候補の情報と、フィンガ 回路の受信タイミングの情報と、関連付けの情報がタイ ミング比較部9に送られる。

【0045】タイミング比較部6では、使用中のフィンガ回路に関連付けられたフィンガ候補の受信タイミング同士を比較し、関連付けられたフィンガ候補同士の受信タイミングが等しいフィンガ回路を探す。以下、関連付けられたフィンガ候補の受信タイミングが等しいフィンガ回路同士を、「近接しているフィンガ回路」と称する。

【0046】これまでの処理を図2に示されたディレイプロファイルの一例を参照しながらより具体的に説明する。フィンガ候補選択部7は、ディレイプロファイル生成部にて生成されたディレイプロファイルにより、相関値の大きいF1及びF2をフィンガ候補として選択する。関連付け部8は、各フィンガ回路の受信タイミングと変比較し、フィンガ候補の受信タイミングに対して、受信タイミングが生Tthの範囲にあるフィンガ回路を検出する。図2に示された例では、フィンガ候補F1に対して、フィンガ回路Aとフィンガ回路Bの受信タイミングが所定の範囲内にあるフィンガ回路であることが検出さ

れる。次にタイミング比較部にて、各フィンガ回路に関 10 連付けられたフィンガ候補同士を比較し、同じフィンガ 候補に関連付けられたフィンガ回路を検出する。図 2 で は、フィンガ回路 A とフィンガ回路 B とが同じフィンガ 候補 F 1 に関連付けられたフィンガ回路であるから、タイミング比較部はフィンガ回路 A とフィンガ回路 B とを 受信タイミングが近接したフィンガ回路として検出する。

【0047】上述した処理により受信タイミングの近接 したフィンガ回路を検出することが可能となる。

【0048】つぎに、近接保護部10による受信タイミ 20 ングの近接したフィンガ回路同士の受信した信号がパス として異なるものであるか否かの判断方法について説明 する。

【0049】近接保護部10は、タイミング比較部から送られたすべての使用中のフィンガ回路の受信タイミングに関する情報と、受信タイミングが近接しているフィンガ回路に関する情報と、フェージングベクトル生成部13より送られたフェージングベクトルに関する情報とを入力して、保護を行うか否かを判断する。

【0050】まず、フェージングベクトル生成部にて生 30 成されるフェージングベクトルについて説明する。送信 側から送られる信号は、伝搬経路での反射、回折、減衰 等により、受信側ではそのままでは正常に検波すること ができなくなる。受信側において、受信信号の検波

(0.1) を正常に行うためには、受信信号を検波するための I Q軸を送信側の I Q軸に合わせる必要がある。この I Q軸の I 軸方向を表すものをフェージングベクトルと呼ぶ。また、受信した信号の電力値、即ち受信信号の信頼度はフェージングベクトルの大きさによって表される。

40 【0051】フェージングベクトル生成部は、受信部で逆拡散された信号から伝送路推定を行い、IQ軸の傾き、及び伝送された信号の大きさ(パスの確度:大きい程、信頼性のあるパスであると言える)を表すフェージングベクトルを生成する。

【0052】以下に、フェージングベクトルの算出式を示す。但し、PL[i] ($i=0\sim N-1$) は既知のパイロットシンボル、D[i] ($i=0\sim N-1$) は受信したパイロットシンボル、Nはパイロットシンボルの数、 X^* は複素数Xの共役複素数を表しており、PL[i] 及VD[i]は 50 複素数とする。

【0053】 【数1】

$$F = \left(\sum_{i=0}^{N-1} D[i] \times PL[i]^*\right) / N$$

【0054】 I Q軸、すなわちフェージングベクトルは 移動機と基地局との間の伝送経路での反射、回折、減衰 等により、その向き、及び大きさが異なる。すなわち、 フェージングベクトルの大きさや向きが異なる2つの信 号は、例え受信タイミングが近接していても、別の経路 を経由して伝送された可能性が高いと言える。

【0055】近接保護部10は、タイミング比較部にて 受信タイミングが近接している信号であると判断された フィンガ回路のフェージングベクトルをフェージングベ クトル生成部13より収集し、それらのフェージングベ クトルの大きさの比、及び角度の差を検出して、パスと して異なるものであるか否かの判断を行う。

【0056】図3を用いて近接保護部10による処理動 作について説明する。図3aに示されるように、フィン ガ回路Aのフェージングベクトルとフィンガ回路Bのフ ェージングベクトルの大きさの比と角度の差が共に閾値 よりも小さい場合には、近接保護部は、フィンガ回路A 及びフィンガ回路Bは共に同じパスに割り当てられたも のであると判断してフィンガ回路 Aまたはフィンガ回路 Bのいずれか一方を不使用にする。また、フィンガ回路 A及びフィンガ回路B共に近接保護が行われておらず、 図3bに示されるようにフィンガ回路A及びフィンガ回 路Bが受信した信号のフェージングベクトルの大きさの 比、または角度の差が閾値よりも大きい場合には、フィ ンガ回路A及びフィンガ回路Bはそれぞれ別々のパスに 割り当てられおり、たまたま受信タイミングが近接して しまったものであると判断し、両方のフィンガ回路の保 護カウンタを正の値に設定する。これにより、フィンガ 回路Aおよびフィンガ回路Bは近接保護されたことにな り、いずれのフィンガ回路も使用されることになる。

【0057】図4には上記処理を行う近接保護部10の構成が示されている。近接保護部10は、タイミングの比較部9より送られたすべての使用中のフィンガ回路の受信タイミングに関する情報と、受信タイミングが近遅対でいるフィンガ回路に関する情報とを入力し、処理対象のフィンガ回路と同じフィンガ候補に関連付けられたフィンガ回路が存在するかを検査する関連付けられたフィンガ候補が存在することが検出されたフィンガ回路の保護カウンタの値が0以上であるかを検査する保護カウンタ検査部17と、保護カウンタを検査する保護カウンタの値が0以下であることがを出されたフィンガ回路のフェージングベクトル及び同じフィンガ候補に関連付けられたフィンガ回路のフェージングベクトルをフェージングベクトル生成部13より取

得し、それらのフェージングベクトルの大きさの比と、 角度の差を比較するフェージングベクトル比較部18 と、保護カウンタ検査部17の検査結果、またはフェー ジングベクトル比較部18の比較結果に従って保護カウ ンタの値を変更する保護カウンタ更新部19と、保護カ ウンタ更新部19による保護カウンタの更新結果に従っ て不使用とするフィンガ回路の設定を出力するフィンガ 割り当て変更部20とを有して構成される。

18

【0058】上記構成の近接保護部10は、タイミング 比較部9より送られたすべての使用中のフィンガ回路の 受信タイミングに関する情報と、同じフィンガ候補に関 連付けられているフィンガ回路に関する情報とを基に、 関連付け検査部16が使用中フィンガ回路毎に受信タイ ミングが近接したフィンガ回路が存在するか否かを検査 する。もし受信タイミングが近接したフィンガ回路が存 在する場合、フェージングベクトル比較手段が、それら のフィンガ回路のフェージングンベクトルを用いてパス として異なるものであるか否かを検出する。そして、パ スとして同じものであることを検出すると、フィンガ割 20 り当て変更部20が1つのフィンガ回路のみを残して、 残りのフィンガ回路を不使用とする。また、パスとして 異なるものであることを検出すると、保護カウンタを所 定の正の値に設定してそれらのフィンガ回路の受信タイ ミングが離れるか否かを所定の期間見守る。そして、所 定の期間を経過しても受信タイミングが離れることがな かった場合、いずれか1つのフィンガ回路のみを残し て、その他のフィンガ回路をその受信タイミングでの受 信を取り止めるように設定する。

【0059】次に、同じフィンガ候補に関連付けられたフィンガ回路のフェージングベクトルの大きさの比、または角度の差を検出した結果、パスとして異なるものであると判断された場合に、それらの受信タイミングを所定の期間保護して、受信タイミングが離れるか否かを判断するための保護カウンタの設定方法について説明す

【0060】保護処理されていないフィンガ回路の保護カウンタの値は、一1に設定されている。タイミング比較部により受信タイミングの近接したフィンガ回路であると認定され、フェージングベクトル比較部によるフェージングベクトルの比較結果が、大きさの比、角度のいずれかが関値を越えていると判定された場合、それらの信号は、パスとして異なるものであると判断し、今後カウンタを正の値(例えば10)に設定し、今後のおりかりを正の値が1減ぜられる。そして、好護カウンタの値が1減ぜられる。そして、好護カウンタの値が1減ぜられる。そして、保護カウンタの値が0よりも小さくなると、相関値の大きい方の受信タイミングの信号のみを残し、もう一方の信号を不使用とする。また、タイミング比較部により同じフィンガ候補に関連付けられたフィグに対象の値により同じフィンガ候補に関連付けられたフィ

ンガ回路がないと判断されると、保護カウンタの値を初期値の-1に戻し、近接保護を取り止める。

【0061】このようにして、近接保護部により使用、不使用の設定を受けた使用中のフィンガ回路の受信タイミングの情報がフィンガ割り当て部に送られ、ここで、不使用のフィンガ回路にどのフィンガ回路にも割り当てられていないフィンガ候補の受信タイミングを割り当てることにより、受信部12が相関値の高い受信タイミングの信号を受信することが可能となり、CDMA信号の受信特性を向上させることができる。

【0062】次に図5に示されたフローチャートを用いてサーチャ部の処理フローを説明する。

【0063】まず、CDMA信号を入力端1より入力すると、ディレイプロファイル生成部6にて入力された信号を用いてディレイプロファイルを生成する(ステップS1)。生成されたディレイプロファイルはフィンガ候補選択部7に送られる。フィンガ候補選択部は、フィンガ候補選択部にて生成されたディレイプロファイルを用いて相関値の大きい受信タイミングをM個選択してフィンガ候補を選出する(ステップS2)。

【0064】そして、関連付け部 8 において、フィンガ 候補の受信タイミングと、使用中のフィンガ回路に割り 当てられている受信タイミングとを比較し、フィンガ候 補とフィンガ回路の関連付けを行う(ステップ S3)。 関連付け部は N 個のフィンガ回路に入力されたパスの受信タイミング $Tf(j)(j=0\sim N-1)$ に対して、 $\pm Tth$ の範囲内にあるフィンガ候補の受信タイミング $Ts(i)(i=0\sim M-1)$ を探し出す。但し、複数 のフィンガ候補の受信タイミングが $\pm Tth$ の範囲内にある時は、その中で相関値 Cs(i) の最も大きいフィンガ候補を 1 つ選択する。

【0065】関連付け部にて生成された関連付けの情報と、フィンガ候補の情報と、フィンガ回路の受信タイミングの情報とがタイミング比較部9に入力される。

【0066】そして、タイミング比較部9により同じフィンガ候補に関連付けられている使用中のフィンガ回路を検出する(ステップS4)。検出された同じフィンガ候補に関連付けられたフィンガ回路に関する情報と、フィンガ回路の情報と、フィンガ候補に関する情報とが近接保護部に入力される。

【0067】近接保護部内の関連付け検査部により、処理対象のフィンガ回路に、同じフィンガ候補に関連付けられたフィンガ回路が存在することを検出すると(ステップS6)、保護カウンタ検査部により、処理対象のフィンガ回路の保護カウンタの値を検査し、近接保護に設定されているか否かを判断する(ステップS7)。

【0068】近接保護部は、保護カウンタの値が0より大きい場合、すなわち近接保護中の場合(ステップS7/YES)、処理対象のフィンガ回路の有している保護カウンタの値を1減算して(ステップS8)、再度、保

護カウンタが0より大きいか否かを検出する(ステップ S9)。そして、保護カウンタの値が0、すなわち近接 保護から外れた場合(ステップS9/NO)、いずれか 一つのフィンガ回路のみ残して後のフィンガを不使用とし(ステップS10)、次のフィンガに移行する(ステップS5)。また、保護カウンタの値が0より大きければ(ステップS9/YES)、そのフィンガ回路に対しては、これ以上の処理を行わずに次のフィンガに対する 処理に移行する(ステップS5)。

20

10 【0069】また、ステップS7にて保護カウンタがー
1、すなわち近接保護中ではないことを検出すると、処理対象のフィンガ回路の受信したCDMA信号を用いて
生成されたフェージングベクトル、及びそのフィンガ回路の
受信したCDMA信号を用いて生成されたフェージング
ベクトルをフェージングベクトル生成部より取得する
(ステップS11)。そして、それらのフェージングベクトルの大きさの比と角度の差を求める(ステップS1
2)。

20 【0070】図3bに示されるように、フェージングベクトルの大きさの比と角度の差のいずれかが関値以上であれば(ステップS13/YES)、それらのフィンガ回路は別々のパスに割り当てられていたものがたまたま受信タイミングが一致したものと判断し、各フィンガに対して近接保護用の保護カウンタに予め定められた正の値を設定した後(ステップS10)、次のフィンガ回路に移行する。

【0071】また、図3aに示されるように、フェージングベクトルの大きさの比と角度の差のいずれもが閾値 30 以下であれば、それらのフィンガ回路は同一のパスに割り当てられていたものであると判断し、いずれか一つのフィンガ回路のみを使用中、残りのフィンガ回路を不使用とし(ステップS10)、次のフィンガ回路に移行する。

【0072】また、ステップS6において、同じフィンガ候補に関連付けられた使用中フィンガ回路がなかった場合、まず、そのフィンガ回路が近接保護中であるか否かが検出される(ステップS15)。もし、保護カウンタの値が0より大きい場合、すなわち近接保護中である40場合(ステップS15/YES)、そのフィンガ回路の保護カウンタの値を一1とし、そのフィンガ回路に対する近接保護を停止する(ステップS16)。ステップS15にて、保護カウンタの値が一1、すなわち保護中でなければ(ステップS15/NO)、次のフィンガ回路に移行する。

【0073】ステップS5において、全ての使用中フィンガに対する処理が終了すると(ステップS5/YES)、フィンガ割り当て部において、フィンガ回路の割り当てを行う。すなわち、不使用フィンガに対し、関連50付けられていないフィンガ候補の受信タイミングを割り

当て、そのフィンガ回路を使用中とする (ステップS17)。

【0074】次に図6に示されたフローチャートを用いてフィンガ部3の一連の処理動作を説明する。

【0075】まず、サーチャ部のフィンガ割り当て部にて割り当てられたフィンガ回路を用いて受信し、逆拡散を行う(ステップS21)。そして逆拡散後の信号を用いてフェージングベクトル生成部において、フェージングベクトルを算出する(ステップS22)。フェージングベクトル生成部で生成されたフェージングベクトルはサーチャ部の近接保護部に送られる(ステップS23)と共に検波部12に入力され、検波処理が行われる(ステップS24)。検波処理された信号はレイク部4のレイク合成部15によりレイク合成され(ステップS25)、レイク合成された信号が出力端5から出力される。

【0076】上述した実施形態はフィンガ回路の受信タイミングが近接した場合に、それらのフィンガ回路の受信したCDMA信号を用いて生成されたフェージングベクトルの大きさの比と角度の差を所定の閾値と比較し、大きさの比と角度の差のいずれもが所定の閾値よりも小さかった場合に、それらのフィンガ回路の受信したCDMA信号は、パスとして同一のものであると判断して、いずれか一方のフィンガ回路の受信タイミングを変更することにより、CDMA信号の受信特性を向上させることができる。

【0077】また、フェージングベクトルの大きさの比、または角度の差が所定の関値よりも大きい場合、フィンガ回路の受信したCDMA信号は、パスとして異なるものであると判断して、それらのフィンガ回路にそのままの受信タイミングのCDMA信号を受信させることにより、CDMA信号の受信特性を向上させることができる。

【0078】また、所定の時間を経過してもフィンガ回路の受信タイミングが近接したままである場合に、何れか一方のフィンガ回路の受信タイミングを変更することにより、受信タイミングが近接しているがパスとしては異なるCDMA信号の受信タイミングが再び離れた時に、フィンガ回路を再度割り当る必要がなくなる。

【0079】次に本発明のCDMA信号受信装置の第2の実施形態を図7及び図8を参照しながら説明する。図7及び図8には第2の実施形態の構成が示されている。

【0080】図7に示された第2の実施形態は、上述した第1の実施形態とは近接保護部の構成のみが異なる。第2の実施形態の近接保護部は、図8に示されるように第1の実施形態に設けられていた保護カウンタ検査部17、保護カウンタ更新部19が設けられていない。従って、近接保護部のフェージングベクトル比較部によりパスとして異なるものであると判断された信号は、パスとして異なるものであると断定して、保護カウンタによる

保護を行わない。

【0081】第2の実施形態は、フィンガ回路の受信タイミングが近接したCDMA信号を検出した場合、それらの信号のフェージングベクトルの大きさの比、及び角度の差をそれぞれの閾値と比較し、その何れもが閾値を越えていなかった場合、同一のパスの信号であると判断して、いずれかの受信タイミングのCDMA信号をフィンガ回路の割り当てから外し、他の受信タイミングのCDMA信号を不使用のフィンガ回路に割り当てることにより、受信特性を向上させることを目的とする。

22

【0082】この目的を達成するために第2の実施形態 の近接保護部は、処理対象のフィンガ回路がタイミング 比較部により同じフィンガ候補に関連付けられたフィン ガ回路を検出したフィンガ回路であった場合、処理対象 のフィンガ回路の受信したCDMA信号を用いて生成さ れたフェージングベクトルと、処理対象のフィンガ回路 と同じフィンガ候補に関連付けられたフィンガ回路の受 信したCDMA信号を用いて生成されたフェージングベ クトルとの大きさの比、及び角度の差を検出し、それら 20 を閾値と比較する。フェージングベクトルの大きさの 比、または角度の差が閾値を越えていた場合、処理対象 のフィンガ回路の受信しているCDMA信号と、そのフ ィンガ回路と同じフィンガ候補に関連付けられたフィン ガ回路の受信しているCDMA信号は、パスとして異な るものであるとして、フィンガ回路への割り当てを外さ ない。また、フェージングベクトルの大きさの比及び角 度の差が閾値を越えていない場合、処理対象のフィンガ 回路の受信しているCDMA信号と、そのフィンガ回路 と同じフィンガ候補に関連付けられたフィンガ回路の受 信しているCDMA信号は、同一のパスであるとして、 いずれか一方の受信タイミングのCDMA信号のみをフ ィンガ回路に割り当てる。

【0083】次に図9に示されたフローチャートを用いて第2の実施形態のサーチャ部の処理フローを説明する

【0084】まず、CDMA信号を入力端1より入力すると、入力されたCDMA信号に対し、ディレイプロファイル生成部6にてディレイプロファイルを生成する(ステップS31)。生成されたディレイプロファイル はフィンガ候補選択部に送られる。フィンガ候補選択部は、送られたディレイプロファイルを用いて相関値の大きい受信タイミングをM個選択してフィンガ候補を選出する(ステップS32)。

【0085】そして、関連付け部8において、フィンガ 候補の受信タイミングと、使用中のフィンガ回路に割り 当てられているCDMA信号の受信タイミングとを比較 し、フィンガ候補とフィンガ回路の関連付けを行う(ステップS33)。関連付け部はN個のフィンガ回路に入力されたパスの受信タイミングTf(j)(j=0~N50~1)に対して、Tthossmallの範囲にあるフィンガ候補の

受信タイミングTs(i)(i = $0 \sim M - 1$)を探し出す。但し、複数のフィンガ候補の受信タイミングが $\pm T$ thの範囲内にある時は、その中で相関値Cs(i)の最も大きいフィンガ候補を1つ選択する。

【0086】関連付け部にて検出された関連付けの情報と、フィンガ候補の受信タイミングの情報と、すべての使用中フィンガ回路の受信タイミングに関する情報とがタイミング比較部9に入力される。

【0087】タイミング比較部9では同じフィンガ候補に関連付けられている使用中のフィンガ回路を検出する(ステップS34)。タイミング比較部9により検出された同じフィンガ候補に関連付けられたフィンガ回路に関する情報と、すべての使用中フィンガ回路の受信タイミングに関する情報とが近接保護部に入力される。

【0088】近接保護部内の関連付け検査部16は、処 理対象のフィンガ回路と同じフィンガ候補に関連付けら れたフィンガ回路が存在するか否かを検査する(ステッ プS36)。関連付け検査部16により処理対象のフィ ンガ回路が、同じフィンガ候補に関連付けられたフィン ガ回路が存在するフィンガ回路であることが検出される と (ステップS36/YES)、フェージングベクトル 比較部18が処理対象のフィンガ回路の受信したCDM A信号を用いて生成されたフェージングベクトルと、処 理対象のフィンガ回路と同じフィンガ候補に関連付けら れたフィンガ回路の受信したCDMA信号を用いて生成 されたフェージングベクトルとをフェージングベクトル 生成部より取得する(ステップS37)。そして、それ らのフェージングベクトルの大きさの比と角度の差を求 める(ステップS38)。フェージングベクトルの大き さの比と角度の差のいずれもが閾値よりも小さい場合 (ステップS39/NO)、フィンガ割り当て変更部2 0が1つの受信タイミングのCDMA信号のみを残し、 他の受信タイミングのCDMA信号はフィンガ回路の割 り当てから外す(ステップS40)。

【0089】フィンガ割り当て部は、どの使用中のフィンガ回路にも割り当てられていないフィンガ候補の受信タイミングを不使用フィンガ回路に割り当て、そのフィンガ回路を使用中とする。

【0090】上述した実施形態はフィンガ回路の受信タイミングが近接した場合に、それらのフィンガ回路の受信したCDMA信号を用いて生成されたフェージングベクトルの大きさの比と角度の差を所定の閾値と比較し、大きさの比と角度の差のいずれもが所定の閾値よりも小さかった場合に、それらのフィンガ回路の受信したCDMA信号は、同一のパスであると判断して、いずれか一方のフィンガ回路の受信タイミングを変更することにより、CDMA信号の受信特性を向上させることができる。

【0091】また、フェージングベクトルの大きさの 比、または角度の差が所定の閾値よりも大きい場合、フ ィンガ回路の受信したCDMA信号は、パスとして異なるものであると判断して、それらのフィンガ回路にそのままの受信タイミングのCDMA信号を受信させることにより、CDMA信号の受信特性を向上させることができる。

24

【0092】次に図10及び図11を参照して本発明の CDMA信号受信装置及びCDMAマルチパスサーチ方 法の第3の実施形態を説明する。図10には本発明の第 3の実施形態の全体構成が示されている。また、図11 には第3の実施形態の近接保護部の構成が示されている。

【0093】図10に示された第3の実施形態は、上述した第1及び第2の実施形態のようにフェージングベクトルを用いたパスとして異なる信号であるか否かの判断を行わない。従って、フェージングベクトル生成部により生成されたフェージングベクトルが近接保護部10に送られることはない。また、図11に示されるように近接保護部には、第1及び第2の実施形態に設けられているフェージングベクトル比較部が設けられていない。

【0094】第3の実施形態は、受信タイミングが近接したフィンガ回路を検出した場合、所定の期間それらの受信タイミングのCDMA信号を受信し続け、所定の期間内にそれらのCDMA信号の受信タイミングが離れることがなかった場合、それらのCDMA信号は同一のパスの信号であると判断して、何れか一方のCDMA信号をフィンガ回路の割り当てから外すことにより、受信特性を向上させることを目的とする。

【0095】この目的を達成するために第3の実施形態の近接保護部は、処理対象のフィンガ回路が、タイミング比較部により同じフィンガ候補に関連付けられたフィンガ回路を検出したフィンガ回路であった場合、その処理対象のフィンガ回路が受信するCDMA信号を所定の期間受信し続ける。そして、所定の期間を経過しても処理対象のフィンガ回路に、同じフィンガ候補に関連付けられたフィンガ回路が検出される場合に、処理対象のフィンガ回路の受信しているタイミングのCDMA信号、または同じフィンガ候補の関連付けられたフィンガ回路の受信しているタイミングのCDMA信号のいずれか一方をフィンガ回路の割り当てを外す。

10 【0096】次に図12に示されたフローチャートを用いて第3の実施形態のサーチャ部の処理フローを説明する。

【0097】まず、CDMA信号を入力端1より入力すると、入力されたCDMA信号に対し、ディレイプロファイル生成部6にてディレイプロファイルを生成する (ステップS51)。生成されたディレイプロファイルはフィンガ候補選択部に送られる。フィンガ候補選択部は、送られたディレイプロファイルを用いて相関値の大きい受信タイミングをM個選択してフィンガ候補を選出 50 する (ステップS52)。

【0098】そして、関連付け部8において、フィンガ 候補の受信タイミングと、使用中のフィンガ回路に割り 当てられているCDMA信号の受信タイミングとを比較 し、フィンガ候補とフィンガ回路の関連付けを行う(ス テップS53)。関連付け部はN個のフィンガ回路に入 力されたパスの受信タイミングTf(j)(j=0~N-1) に対して、±Tthの範囲にあるフィンガ侯補の 受信タイミングTs(i)(i=0~M-1)を探し出 す。但し、複数のフィンガ候補の受信タイミングが±T thの範囲内にある時は、その中で相関値Cs(i)の 最も大きいフィンガ候補を1つ選択する。

【0099】関連付け部にて検出された関連付けの情報 と、フィンガ候補の受信タイミングの情報と、すべての 使用中フィンガ回路の受信タイミングに関する情報とが タイミング比較部9に入力される。

【0100】タイミング比較部9では同じフィンガ候補 に関連付けられている使用中のフィンガ回路を検出する (ステップS54)。タイミング比較部9により検出さ れた同じフィンガ候補に関連付けられたフィンガ回路に 関する情報と、すべての使用中フィンガ回路の受信タイ ミングに関する情報とが近接保護部に入力される。

【0101】近接保護部内の関連付け検査部16は、処 理対象のフィンガ回路と同じフィンガ候補に関連付けら れたフィンガ回路が存在するか否かを検査する(ステッ プS56)。関連付け検査部16により、処理対象のフ ィンガ回路が同じフィンガ候補に関連付けられたフィン ガ回路が存在するフィンガ回路であることが検出される と(ステップS56/YES)、処理対象のフィンガ回 路の保護カウンタの値が0より大きいか否かを検査し て、近接保護を行うか否かを判断する(ステップS5 7)。

【0102】近接保護部は、保護カウンタの値が0より 大きい場合、すなわち近接保護中の場合(ステップS5 7/YES)、処理対象の保護カウンタの値を1減算し (ステップS58)、保護カウンタの値が0より大きい か否かを判断する (ステップS59)。保護カウンタの 値が0、すなわち近接保護から外された場合(ステップ S59/NO)、フィンガ割り当て変更部によりいずれ か一つのフィンガのみ残して後のフィンガを不使用とし (ステップS60)、次のフィンガに移行する (ステッ プS55)。また、保護カウンタの値が0より大きけれ ば(ステップS59/YES)、そのフィンガ回路に対 しては、これ以上の処理を行わずに次のフィンガ回路に 対する処理に移行する(ステップS55)。

【0103】また、ステップS57において、保護カウ ンタの値が-1、すなわち近接保護中ではないと判断す ると、各々のフィンガ回路に対して、保護カウンタを所 定の正の値に設定して(ステップS61)、このフィン ガ回路に対する処理を終了し、次のフィンガ回路に対す る処理に移行する。またステップS56において、関連 付け検査部が処理対象のフィンガ回路と同じフィンガ候 補に関連付けられたフィンガ回路がないと判断すると、 その処理対象のフィンガ回路の保護カウンタの値が0よ り大きいか否かを判断し(ステップS62)、保護カウ ンタの値が 0 より大きい場合、保護カウンタの値を-1 に設定してそのフィンガ回路に対する近接保護を取り止 める (ステップS63)。

【0104】フィンガ割り当て部は、どの使用中のフィ ンガ回路にも割り当てられていないフィンガ候補の受信 10 タイミングを不使用フィンガ回路に割り当て、そのフィ ンガ回路を使用中とする。

【0105】上述した実施形態は、所定の時間を経過し てもフィンガ回路の受信タイミングが近接したままであ る場合に、何れか一方のフィンガ回路の受信タイミング を変更することにより、受信タイミングが近接している がパスとしては異なるCDMA信号の受信タイミングが 再び離れた時に、フィンガ回路を再度割り当る必要がな くなる。

[0106]

20

【発明の効果】以上の説明より明らかなように本発明の CDMA信号受信装置は、復調手段のCDMA信号の受 信タイミングが、他の復調手段のCDMA信号の受信タ イミングと近接した場合に、復調手段の受信したCDM A信号を用いて生成されたフェージングベクトルと、他 の復調手段の受信したCDMA信号を用いて生成された フェージングベクトルとの大きさの比と角度の差を所定 の閾値と比較し、フェージングベクトルの大きさの比と 角度の差のいずれもが所定の閾値よりも小さい場合に、 復調手段の受信したCDMA信号と他の復調手段の受信 30 したCDMA信号は、パスとして同一のものであると判 断して、復調手段と他の復調手段のいずれか一方をCD MA信号の受信タイミングを変更することにより、CD MA信号の受信特性を向上させることができる。

【0107】また、フェージングベクトルの大きさの 比、または角度の差が所定の閾値よりも大きい場合、復 調手段の受信したCDMA信号と他の復調手段の受信し たCDMA信号は、パスとして異なるものであると判断 して、復調手段及び他の復調手段に、そのままの受信タ イミングのCDMA信号を受信させることにより、CD 40 MA信号の受信特性を向上させることができる。

【0108】また、所定の時間を経過しても復調手段の CDMA信号の受信タイミングと、他の復調手段のCD MA信号の受信タイミングとが近接した場合に、復調手 段と他の復調手段のいずれか一方のCDMA信号の受信 タイミングを変更することにより、受信タイミングが近 接しているがパスとしては異なるCDMA信号の受信タ イミングが再び離れた時に、復調手段を再度割り当てし 治す必要がなくなる。

【0109】また、本発明のCDMA信号受信装置は、 50 受信したCDMA信号を用いてディレイプロファイルを

【図6】

生成し、生成されたディレイプロファイルを用いて相関値の大きい復調手段の受信タイミングを所定の数選択し、選択されたフィンガ候補の受信タイミングと受信タイミングの近接した使用中の復調手段を検出し、使用中の復調手段毎に関連付けられたフィンガ候補に関連付けられた使用中の復調手段を検出して、同じフィンガ候補に関連付けられた使用中の復調手段に対し、フェージングベクトルを基に保護を行うか否かを決定し、使用中の復調手段に関連付けられていないフィンガ候補の受信タイミングを不使用の復調手段に割り当てることにより、相関値の大きい受信タイミングを見つけ出し、復調手段に割り当てることができる。

27

【図面の簡単な説明】

【図1】本発明のCDMA信号受信装置の第1の実施形態の構成を表すブロック図である。

【図2】ディレイプロファイル生成部にて生成されるディレイプロファイルの一例を表す図である。

【図3】各フィンガ回路が受信した信号のフェージングベクトルの大きさ、及び角度の比較方法を示す図である。

【図4】近接保護部の構成を表すブロック図である。

【図5】サーチャ部の処理フローを表すフローチャート である。

【図 6 】フィンガ部の処理フローを表すフローチャート である。

【図1】本発明のCDMA信号受信装置の第2の実施形

態の構成を表すブロック図である。

【図8】近接保護部の構成を表すプロック図である。

【図9】サーチャ部の処理フローを表すフローチャート である。

【図10】本発明のCDMA信号受信装置の第3の実施 形態の構成を表すブロック図である。

【図11】近接保護部の構成を表すブロック図である。

【図12】サーチャ部の処理フローを表すフローチャートである。

10 【図13】従来のCDMA信号受信装置の構成を表すブロック構成図である。

【符号の説明】

- 1 入力端
- 2 サーチャ部
- 3 フィンガ部
- 4 レイク部
- 5 出力端
- 6 ディレイプロファイル生成部
- 7 フィンガ侯補選択部
- 20 8 関連付け部
 - 9 タイミング比較部
 - 10 近接保護部
 - 11 フィンガ割り当て部
 - 12 受信部
 - 13 フェージングベクトル生成部
 - 14 検波部
 - 15 レイク合成部

[図1]

52 S20ر 始め サーチャ部 _<10 9, 8 11ء ∠S21 入力端 フィンガ サーチャ部より割り当てられたフィンガよりデータを取得する ディレイ 関連 タイミング 近接 フィンガ 候補 選択部 付け部 比較部 保護部 割り当て部 ,S22 得られたデータから フェージングベクトルを求める フィンガ部 レイク部 フェージングベクトルを サーチャ部へ通知する フィンガロ比A ~12A フェージング 受信部 検波部 生成部 13A <u> 148~'</u> 検波処理を行う ~ S24 ~12B フィンガ回常B フェージング ベクトル 1110 検波部 受信部 合成部 生成部 出力盛 14B~ 13B² 525ر 各フィンガからの検波データを レイク合成する J12N フィンガ目格N フェージング ペクトル 生成部 受信部 | 検波部 ~S26 14N/ 215 終り 13N

【図5】

【図10】

【図9】

【図12】

【図13】

【手続補正書】

【提出日】平成11年11月1日(1999.11. 1)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

前記復調手段による復調後のCDMA信号を用いて生成され、受信したCDMA信号を検波するためのIQ軸の傾き、及び伝送された信号の大きさを表すフェージングベクトルの大きさの比、または角度の差が所定の閾値よりも大きいCDMA信号を、伝送経路の異なるCDMA信号であると判断し、

前記復調手段に、その受信タイミングでCDMA信号を 受信させることを特徴とするCDMA信号受信装置。

【請求項2】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

復調手段の受信タイミングが所定の期間近接し続けたCDMA信号を、同一の伝送経路のCDMA信号であると 判断し、

前記復調手段に、何れかのCDMA信号を残して他のCDMA信号の受信を取り止めさせることを特徴とするCDMA信号受信装置。

【請求項3】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を程してレイク合成を行うCDMA信号受信装置において、

複数の復調手段が受信タイミングの近接したCDMA信号を受信した時から所定の期間までは、前記複数の復調手段にそのままの受信タイミングの前記CDMA信号を受信させることを特徴とするCDMA信号受信装置。

【請求項4】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

復調手段のCDMA信号の受信タイミングが、他の復調 手段のCDMA信号の受信タイミングと近接した場合

前記復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルと、前記他の復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルとの大きさの比と角度の差を所定の閾値と比較し、

前記フェージングベクトルの大きさの比と角度の差のいずれもが前記所定の閾値よりも小さい場合、

前記復調手段と前記他の復調手段のいずれか一方の前記 CDMA信号の受信タイミングを変更させ、

前記フェージングベクトルの大きさの比、または角度の 差が前記所定の閾値よりも大きい場合、

前記復調手段及び前記他の復調手段に、そのままの受信 タイミングの前記CDMA信号を受信させる近接保護手 段を有することを特徴とするCDMA信号受信装置。

【請求項5】 CDMA信号を複数の復調手段により復

調し、該復調されたCDMA信号に所定の処理を施して レイク合成を行うCDMA信号受信装置において、

復調手段のCDMA信号の受信タイミングと、他の復調 手段のCDMA信号の受信タイミングとが近接した場合 に、

前記復調手段及び前記他の復調手段にそのままの受信タイミングの前記CDMA信号を所定の期間割り当てて復調し、

前記所定の時間を経過しても、前記復調手段の前記CD MA信号の受信タイミングと、前記他の復調手段の前記 CDMA信号の受信タイミングとが近接し続けた場合 に、

前記復調手段と前記他の復調手段のいずれか一方の前記 CDMA信号の受信タイミングを変更する近接保護手段 を有することを特徴とするCDMA信号受信装置。

【請求項6】 CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置において、

復調手段のCDMA信号の受信タイミングが、他の復調 手段のCDMA信号の受信タイミングと近接し、

前記復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルと、前記他の復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルとの大きさの差、または角度の比が所定の関値よりも大きい場合に、

前記復調手段及び前記他の復調手段にそのままの受信タイミングの前記CDMA信号を所定の期間割り当てて復調し、

前記復調手段の前記CDMA信号の受信タイミングと、 前記他の復調手段の前記CDMA信号の受信タイミング とが、所定の時間を経過しても近接し続けている場合 に

前記復調手段と前記他の復調手段のいずれか一方の前記 CDMA信号の受信タイミングを変更する近接保護手段 を有することを特徴とするCDMA信号受信装置。

【請求項7】 入力したCDMA信号を用いてディレイプロファイルを生成するディレイプロファイル生成手段と、

前記ディレイプロファイル生成手段により生成された前 記ディレイプロファイルを用いてフィンガ候補と称する 相関値の大きい受信タイミングを所定の数選択するフィ ンガ候補選択手段と、

前記フィンガ候補選択手段により選択された前記フィンガ候補の受信タイミングに近接した受信タイミングの使用中の復調手段を検出する関連付け手段と、

前記関連付け手段により各使用中の復調手段に関連付けられたフィンガ候補の受信タイミングを比較し、同じフィンガ候補に関連付けられた使用中の復調手段を検出して前記近接保護手段に出力するタイミング比較手段と、前記近接保護手段の出力結果に従って、使用中の復調手

段に関連付けられていないフィンガ候補の受信タイミングを不使用の復調手段に割り当てるフィンガ割り当て手段とを有することを特徴とする請求項4から6のいずれかに記載のCDMA信号受信装置。

【請求項8】 前記近接保護手段は、

処理対象の復調手段が、前記タイミング比較手段により 同じフィンガ候補に関連付けられた復調手段が検出され た復調手段であるか否かを検出する関連付け検査手段 と、

前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に関連付けられた復調手段が検出された復調手段であることが検出されると、前記処理対象の復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルと、処理対象の復調手段と同じフィンガ候補に関連付けられた復調手段の受信した前記CDMA信号を用いて生成されたフェージングベクトルの大きさの比、及び角度の差を検出して、それらが所定の閾値を越えているか否かを検出するフェージングベクトル比較手段と、

前記フェージングベクトル比較部の比較結果に基づいて、前記処理対象の復調手段または前記処理対象の復調 手段と同じフィンガ候補に関連付けられた復調手段のいずれかを不使用に設定するフィンガ割り当て手段と、 を有することを特徴とする請求項4または7記載のCD MA信号受信装置。

【請求項9】 前記近接保護手段は、

復調手段毎に設けられた初期状態では-1に設定されている計数手段と、

処理対象の復調手段が、前記タイミング比較手段により 同じフィンガ候補に関連付けられた復調手段が検出され た復調手段であるか否かを検出する関連付け検査手段 と

前記復調手段毎に設けられた計数手段の計数値を確認する計数値確認手段と、

前記復調手段毎に設けられた計数手段の計数値を変更する計数値変更手段と、

前記計数値確認手段の計数値確認結果に基づいて、前記 処理対象の復調手段または前記処理対象の復調手段と同 じフィンガ候補に関連付けられた復調手段のいずれかを 不使用に設定するフィンガ割り当て手段とを有し、

前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に 関連付けられた復調手段が検出された復調手段であることが検出された場合、

前記計数値確認手段により、前記処理対象の復調手段に 対応する計数手段の計数値を検索し、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値が初期状態の-1に設定されていることを検出した場合、前記計数値変更手段により前記処理対象の復調手段に対応する計数手段の計数値を所

定の正の値に変更し、

前記計数値確認手段により前記計数手段の計数値が0より大きいことを検出した場合、前記処理対象の復調手段に対応する計数手段の計数値を1減算した後に再度前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値を確認し、

滅算後の前記処理対象の復調手段に対応する計数手段の 計数値が0より大きい場合は、前記処理対象の復調手段 にそのままの受信タイミングを割り当てて、次の復調手 段に処理を移行し、

滅算後の前記処理対象の復調手段に対応する計数手段の 計数値が0である場合には、前記フィンガ割り当て手段 により前記処理対象の復調手段と該処理対象の復調手段 と同じフィンガ候補に関連付けられた復調手段のいずれ か一方を残して、他の復調手段を不使用とし、

前記関連付け手段により、前記処理対処の復調手段に同 じフィンガ候補に関連付けられた復調手段が検出されな かった場合、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値を確認し、

前記処理対象の復調手段に対応する計数手段の計数値が 初期状態の-1であった場合、次の復調手段に処理を移 行し、

前記処理対象の復調手段に対応する計数手段の計数値が 0より大きい場合、前記計数値変更手段により前記処理 対象の復調手段に対応する計数手段の計数値を初期状態 の-1に設定することを特徴とする請求項5または7記 載のCDMA信号受信装置。

【請求項10】 前記近接保護手段は、

復調手段毎に設けられた初期状態では-1に設定されて いる計数手段と、

処理対象の復調手段が、前記タイミング比較手段により 同じフィンガ候補に関連付けられた復調手段が検出され た復調手段であるか否かを検出する関連付け検査手段 と、

前記復調手段毎に設けられた計数手段の計数値を確認する計数値確認手段と、

前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に関連付けられた復調手段が検出された復調手段であることが検出されると、前記処理対象の復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルと、前記処理対象の復調手段と同じフィンガ候補に関連付けられた復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルの大きさの比、及び角度の差を検出して、それらが所定の関値を越えているか否かを検出するフェージングベクトル比較手段と、

前記復調手段毎に設けられた計数手段の計数値を変更する計数値変更手段と、

前記フェージングベクトル比較部の比較結果に基づい

て、前記処理対象の復調手段または前記処理対象の復調 手段と同じフィンガ候補に関連付けられた復調手段のいずれかを不使用に設定するフィンガ割り当て手段とを有 1.

前記関連付け検査手段により、前記処理対象の復調手段が、前記タイミング比較手段により同じフィンガ候補に 関連付けられた復調手段が検出された復調手段であることが検出された場合、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の設定値を検索し、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の設定値が初期状態の-1に設定されていることを検出した場合、

前記フェージングベクトル比較手段が、前記処理対象の 復調手段の受信したCDMA信号を用いて生成されたフェージングベクトルと、前記処理対象の復調手段と同じ フィンガ候補に関連付けられた復調手段の受信したCD MA信号を用いて生成されたフェージングベクトルとの 大きさの比、及び角度の差を求めて所定の関値と比較 し、

前記フェージングベクトル比較手段による比較結果が、 前記フェージングベクトルの大きさの比と角度の差のい ずれもが前記所定の閾値よりも小さい場合に、前記フィ ンガ割り当て手段により前記処理対象の復調手段と該処 理対象の復調手段と同じフィンガ候補に関連付けられた 復調手段のいずれか一方を残して、他の復調手段を不使 用とし、

前記フェージングベクトル比較手段による比較結果が、 前記フェージングベクトルの大きさの比、または角度の 差が所定の閾値よりも大きい場合に、前記計数値変更手 段により前記処理対象の復調手段に対応する計数手段の 計数値を所定の正の値に設定して、前記処理対象の復調 手段にそのままの受信タイミングを割り当て、

前記計数値確認手段により前記処理対象の復調手段に対 応する計数手段の設定値が0よりも大きいことを検出し た場合、

前記処理対象の復調手段に対応する計数手段の計数値を 1減算した後に再度前記計数値確認手段により前記処理 対象の復調手段に対応する計数手段の計数値を確認し、 減算後の前記処理対象の復調手段に対応する計数手段の 計数値が0より大きい場合は、前記処理対象の復調手段 にそのままの受信タイミングを割り当てて、次の復調手 段に処理を移行し、

減算後の前記処理対象の復調手段に対応する計数手段の 計数値が0である場合には、前記フィンガ割り当て手段 により前記処理対象の復調手段と該処理対象の復調手段 と同じフィンガ候補に関連付けられた復調手段のいずれ か一方を残して、他の復調手段を不使用とし、

前記関連付け手段により、前記処理対処の復調手段に同じフィンガ候補に関連付けられた復調手段が検出されな

かった場合、

前記計数値確認手段により前記処理対象の復調手段に対応する計数手段の計数値を確認し、

前記処理対象の復調手段に対応する計数手段の計数値が 初期状態の-1であった場合、次の復調手段に処理を移 行し、

前記処理対象の復調手段に対応する計数手段の計数値が 0より大きい場合、前記計数値変更手段により前記処理 対象の復調手段に対応する計数手段の計数値を初期状態 の-1に設定することを特徴とする請求項6または7記 載のCDMA信号受信装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0009

【補正方法】変更

【補正内容】

[0009]

【課題を解決するための手段】かかる目的を達成するために、本発明のCDMA信号受信装置は、CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号を開いて生成され、受信したCDMA信号を検波するためのIQ軸の傾き、及び伝送された信号の大きさを表すフェージングベクトルの大きさの比、または角度の異が所定の関値よりも大きいCDMA信号を、伝送経路の異なるCDMA信号であると判断し、復調手段に、その受信タイミングでCDMA信号を受信させることを特

徴とする。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 0

【補正方法】変更

【補正内容】

【0010】本発明のCDMA信号受信装置は、CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を施してレイク合成を行うCDMA信号受信装置であって、復調手段の受信タイミングが所定の期間近接し続けたCDMA信号を、同一の伝送経路のCDMA信号であると判断し、記復調手段に、何れかのCDMA信号を残して他のCDMA信号の受信を取り止めさせることを特徴とする。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】 0 0 1 1

【補正方法】変更

【補正内容】

【0011】本発明のCDMA信号受信装置は、CDMA信号を複数の復調手段により復調し、該復調されたCDMA信号に所定の処理を程してレイク合成を行うCDMA信号受信装置であって、複数の復調手段が受信タイミングの近接したCDMA信号を受信した時から所定の期間までは、前記複数の復調手段にそのままの受信タイミングの前記CDMA信号を受信させることを特徴とする。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.