%config InlineBackend.figure_format = 'retina' from ipywidgets import interact import numpy as np From matplotlib import pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM, Dropout, GRU, CuDNNLSTM, Flatten fwom sklearn.metrics import mean_squared_error from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Activation, Dense, Dropout, LSTM umport matplotlib.pyplot as plt import numpy as np import pandas as pd import numpy as np from numpy import pi class Particle_Tracking_Training_Data(tf.Module) def init (self, Nt, rings=True): self.Nt = int(Nt)self.d =ximg = [[[i, j] for i in np.arange(self.Ny)] for j in np.arange(self.Nx) self.ximg = np.float32(ximg x = np.arange(self.Nx) - self.Nx//y = np.arange(self.Ny) - self.Ny// if rings self. gen video = tf.function input signature= tf.TensorSpec shape=[self.Ny, self.Nx, self.Nt, None], dtype=tf.float32) tf.TensorSpec(shape=[self.Nt, None], dtype=tf.float32) tf.TensorSpec(shape=[], dtype=tf.float32) tf.TensorSpec(shape=[], dtype=tf.float32) tf.TensorSpec(shape=[], dtype=tf.float32),)) (self. gen video) self._gen_labels = tf.function input signature= tf.TensorSpec shape=[self.Ny, self.Nx, self.Nt, None], dtype=tf.float32),))(self. gen labels def __call__(self, kappa, a, IbackLevel, Nparticles, sigma_motion): xi = self._sample_motion(Nparticles, sigma_motion) XALL = (self.ximg[:, :, None, Mone, :] r = tf.math.sqrt(XALL[..., 0]**2 + XALL[..., 1]**2) I = self._gen_video(r, z, kappa, a, IbackLevel) labels = self. gen labels(r @staticmethod return tf.random.uniform([n], dtype=tf.float32 @tf.function input signature= tf.TensorSpec(shape=[], dtype=tf.int32) tf.TensorSpec(shape=[], dtype=tf.float32),)) def sample motion(self, Nparticles, sigma motion): b lower = tf.constant b upper = tf.constant(U = tf.random.uniform [1, Nparticles, self.d], dtype=tf.float32) X0 = b lower + (b upper - b lower)*U dX = tf.random.normal([self.Nt, Nparticles, self.d], stddev=sigma motion, dtype=tf.float32 X = X0 + tf.math.cumsum(dX, axis=0)X = -tf.math.abs(b_upper - X) + b_upper def _gen_video(self, r, z, kappa, a, IbackLevel): uw = (0.5 + self.rand(1))/2un = tf.floor(3*self.rand(1)) uampRing = 0.2 + 0.8*self.rand(1) ufade = 15 + 10*self.rand(1) ufadeMax = 0.85core = tf.exp(-(r**2/(8.*a))**2)ring = fade*(tf.exp(-(r - z)**4/(a)**4) + 0.5*uampRing*tf.cast(r<z, tf.float32)) I = tf.transpose I += IbackLevel*tf.sin(self.rand(1) *6*pi/512*tf.sqrt I += tf.random.normal(stddev=kappa, dtype=tf.float32 def _gen_labels(self, r): tf.cast(r[::2, ::2, :, :] < R_detect, tf.int32);</pre> axis=3) P = tf.transpose return labels Nt = 300 ## number of frames for each video kappa = 0.1 ## standard deviation of background noise added to image Nparticles = 3 ## the number of particles (more => slower) sigma_motion = 2 ## the standard deviation for particle brownian motion; should be in (0, 10) pt = Particle_Tracking_Training_Data(Nt) ## create object instance vid, labels, tracks = pt(kappa, a, IbackLevel, Nparticles, sigma_motion) **Generating the Data** @interact(t=(0, Nt-1, 1)) fig = figure (1, [14, 7])imshow(vid[t], origin='lower') **Detecting the Particles** @interact(t=(0, Nt-1 fig = figure(1, [14, 7]) plot(tracks[t, :, 0], tracks[t, :, 1], 'rx') ylim(-10, 265) **Tracking the Particles** In [9]: figure(1, [7, plot(tracks[..., 0], tracks[..., 1]) xlabel(r'\$x\$', fontsize=24) ylabel(r'\$y\$', fontsize=24); 200 175 150 125 100 75 50 25 50 100 150 200 250 X figure plot(tracks[:,1,0], tracks[:,1,2]) xlabel(r'\$x\$', fontsize= 30 25 20 15 10 5 0 -5 -10 X X scaled=(X-np.mean(X))/np.std(X) In [169... 🚅 get_data(data): a_train.append(data[i-10:i]) b_train.append(data[i] a_train, b_train = np.array(a_train), np.array(b_train) um (a_train, b_train) X_train, y_train=get_data(X_scaled[:250] X_test, y_test=get_data(X_scaled[250:]) Xy_train, yy_train=get_data(Y_scaled[:250]) Xy_test, yy_test=get_data(Y_scaled[250:]) In [247... X train = X_train_scaled=X_scaled[:250] for i in range(30,len(X_scaled)): X_train.append(X_scaled[i-30:i]) y_train.append(X_scaled[i] X_train, y_train = np.array(X_train), np.array(y_train) In [248... Xy_train = [] $yy_train = []$ Xy_train_scaled=Y_scaled[:250] In []: X_test = [for i in range(30,len(X_scaled)): X_train.append(X_scaled[i-30:i]) y_train.append(X_scaled[i] X_train, y_train = np.array(X_train), np.array(y_train) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1],1)) opt=tf.keras.optimizers.RMSprop learning rate=0.001 model = Sequential() model.add(CuDNNLSTM(units=32, return sequences=True, input shape=(X train.shape[1],1))) model.add(CuDNNLSTM(units=16, return sequences=true)) model.add(Dropout(0.2)) model.add(CuDNNLSTM(units=8, return sequences=Exue)) model.add(CuDNNLSTM(units=4, return sequences=#rue)) model.add(Flatten()) model.add(Dense(1)) model.compile(optimizer=opt,loss='mean squared error',metrics=["mae"]) model=Sequential(model.add(CuDNNLSTM(units=128, return sequences=Time, input_shape=(X_train.shape[1],1))) model.add(Dropout(0.2)) model.add(CuDNNLSTM(units=64, return sequences=True)) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(units=1)) model.compile(optimizer='rmsprop',loss='mean squared error') model.fit(Xy_train,yy_train,epochs=50,batch_size=16,validation_data=(Xy_test[:2], yy_test[:2])) y_pred = model.predict(Xy_test) plt.plot(y pred, color='red', label='Real plt.plot(yy test, color='blue', label='Predicted position'); plt.title('X values') plt.ylabel('X') plt.legend() plt.show() MSE1=mean_squared_error(y_pred, yy_test, squared=False) X values 0.5 Real position Predicted position 0.0 -0.5-1.0-1.510 15 0 5 20 25 40 30 35 In [174... model.fit(X train, y train, epochs=50, batch size=16, x pred = model.predict(X test plt.plot(x pred, color='red', label='Real position') plt.plot(y test, color='blue', label='Predicted position'); plt.title('Y values') plt.ylabel('X') plt.legend plt.show MSE1=mean_squared_error(x_pred, y_test, squared=False) MSE1 Y values 0.6 Real position Predicted position 0.4 0.2 0.0 -0.2-0.4-0.635 40 In [139.. x_pred Out[139... In [176... figure (1, [7, 7])plot(y_test,x_pred,'.') xlabel(r'\$x\$', ylabel(r'\$ 0.6 0.4 0.2 0.0 -0.2 -0.4-0.6-0.2 0.0 0.2 -0.6 -0.4 0.4 0.6 X In [178... figure (1, [7, plot(y_test,yy_test) plot(x_pred, y_pred) xlabel(r'\$x\$', ylabel(r 0.5 0.0 -0.5 -1.0-1.5-2.0-0.2 -0.6 -0.4 0.0 0.2 0.4 0.6

In [2]: %pylab inline

In [242 values[0][0] Out[242 array([[150.301 [151.606 [150.322 [149.270 [151.906 [153.698 [153.303 [152.886 [150.436 [149.566	24, 138.58437, 140.95016, 139 , 144.35042, 144.1716 , 147 1 , 151.54823, 152.08319, 147 07, 144.34917, 144.93454, 145 39, 144.39685, 147.15265, 147 14, 145.14705, 143.46056, 145 73, 144.29402, 147.31657, 150 05, 147.32089], dtype=float32 185], 66], 213], 074], 056], 639], 833], 086], 613], 084],	.20639, 142.53313, 142.882 .77264, 148.27075, 149.942 .50658, 150.85767, 148.426 .3479, 146.17107, 144.646 .89957, 146.23137, 146.451 .62779, 147.03528, 146.471	93, 15,	
[149.560 [149.604 [148.940 [148.673 [151.738 [150.842 [148.690 [150.134 [152.713 [152.823] In [243 y_test	084], 157], 038], 31], 359], 282], 049],	.89957, 146.23137, 146.451 .62779, 147.03528, 146.471 .4178 , 150.03902, 149.024	93, 15, 08,	