Statistical Theory: Exercise Sheet 3

October !!! 16 !!!, 2018; 8:15-10:00 in MA 12.

Tomáš Rubín, tomas.rubin@epfl.ch

Remark. When we say that X_1, \ldots, X_n is a sample from the distribution F it means that X_1, \ldots, X_n are iid with the distribution F.

Exercise 1. Let X_1, \ldots, X_n be a sample from the uniform distribution on $(0, \theta)$ $(\theta > 0)$.

- (a) Show that $S = X_{(n)}$ is a complete sufficient statistic for θ .
- (b) Show that $T = X_{(1)}/X_{(n)}$ is ancillary for θ .
- (c) Use Basu's theorem to show that S and T are independent.

Exercise 2. Let X_1, \ldots, X_n be a sample from the uniform distribution on $(-\theta, \theta)$ $(\theta > 0)$.

- (a) Show that $S = (X_{(1)}, X_{(n)})^{\mathsf{T}}$ is a sufficient statistic for θ .
- (b) Show that S is not a complete statistics.
- (c) Suggest a different statistics that is complete.

Exercise 3. Let X_1, \ldots, X_n be a sample from the distribution with density $f(x; \mu) = e^{-(x-\mu)} 1_{(\mu,\infty)}(x)$ with a parameter $\mu \in \mathbb{R}$.

- (a) Show that $X_{(1)}$ is a complete sufficient statistic for μ .
- (b) Use Basu's theorem to show that $X_{(1)}$ and $\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$ are independent.

Exercise 4. Let Y_1, \ldots, Y_n follow the normal linear regression model, that is, they are independent with distribution $N(\beta_0 + \beta_1 x_i, \sigma^2)$, where $\sigma > 0$ is known and x_i are some fixed known constants.

Find a minimal sufficient statistic for the parameter $(\beta_0, \beta_1)^T$ (find a sufficient statistic using the factorization lemma and then prove its minimality).

Exercise 5. Let X_1, \ldots, X_n be a sample from the exponential distribution with intensity $\lambda > 0$. Show that $T = \sum_{i=1}^n X_i$ is a complete and sufficient statistic for λ . Show that $R = X_1/(\sum_{i=1}^n X_i)$ is ancillary for λ . Conclude (using Basu's theorem) that T and R are independent. (Useful fact: If $X_1 \sim \Gamma(a, p_1)$, $X_2 \sim \Gamma(a, p_2)$ are independent, then $X_1 + X_2 \sim \Gamma(a, p_1 + p_2)$.)

Exercise 6. Suppose that X_1, \ldots, X_n are independent random variables, each uniformly distributed on $(0, \theta)$, where $\theta > 0$ is a parameter. For each of the variables T_1, \ldots, T_6 below, decide whether it is a sufficient statistic or not.

$$T_{1} = (X_{1}, ..., X_{n}),$$

$$T_{2} = (X_{(1)}, ..., X_{(n)}),$$

$$T_{3} = (X_{(1)}, X_{(n)}),$$

$$T_{4} = X_{(1)}$$

$$T_{5} = X_{(n)}$$

$$T_{6} = \frac{n+1}{n} \times X_{(n)}$$

Is any of them minimal sufficient? If so, is it also complete? (Notice the dimensions.)

Exercise 7. Suppose that X_1, \ldots, X_n are independent random variables, each with normal distribution $N(\mu, \sigma^2)$, where σ^2 is a known constant and μ is an unknown parameter. Decide whether any of the variables T_1, \ldots, T_4 below is an ancillary statistic.

$$T_{1} = (X_{1}, \dots, X_{n}),$$

$$T_{2} = (X_{1} - X_{2}, X_{2} - X_{3}, \dots, X_{n-1} - X_{n}),$$

$$T_{3} = \frac{1/n \sum_{i=1}^{n} X_{i} - \mu}{\sigma/\sqrt{n}}.$$

$$T_{4} = \frac{1/n \sum_{i=1}^{n-1} (X_{i} - X_{i+1})^{2}}{\operatorname{var} \left(1/n \sum_{i=1}^{n-1} (X_{i} - X_{i+1})^{2}\right)}.$$