```
!ls '/content/Mall_Customers.csv'
/content/Mall_Customers.csv
```

Installing the Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing the Dataset

```
%time data = pd.read_csv('/content/Mall_Customers.csv')
print(data.shape)

CPU times: user 5.52 ms, sys: 55 μs, total: 5.58 ms
    Wall time: 5.48 ms
    (200, 5)
```

data.head()

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0 1	Male	19	15	39
	1 2	Male	21	15	81
	2 3	Female	20	16	6
	3 4	Female	23	16	77
	4 5	Female	31	17	40
Savir	ng			×	
data.	tail()				

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Genre	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

data.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

data.isnull().any()

```
Age False
Annual Income (k$) False
Spending Score (1-100) False
dtype: bool

sns.set(style = 'whitegrid')
sns.distplot(data['Annual Income (k$)'])
plt.title('Distribution of Annual Income', fontsize = 20)
plt.xlabel('Range of Annual Income')
plt.ylabel('Count')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `diwarnings.warn(msg, FutureWarning)


```
sns.set(style = 'dark')
sns.distplot(data['Age'])
plt.title('Distribution of Age', fontsize = 20)
plt.xlabel('Range of Age')
plt.ylabel('Count')
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `diwarnings.warn(msg, FutureWarning)

data['Genre'].value_counts()

Female 112 Male 88

Name: Genre, dtype: int64

```
labels = ['Female', 'Male']
size = [112, 88]
colors = ['lightgreen', 'orange']
explode = [0, 0.1]
plt.rcParams['figure.figsize'] = (7, 7)
plt.pie(size, colors = colors, explode = explode, labels = labels, shadow = True, autopct = '
plt.title('A pie chart Representing the Gender')
plt.axis('off')
plt.legend()
plt.show()
```

A pie chart Representing the Gender

data['Age'].value_counts().plot.bar(figsize = (9, 9))

Saving... X

<matplotlib.axes._subplots.AxesSubplot at 0x7fcd37f51cd0>

data['Annual Income (k\$)'].value_counts().plot.bar(figsize = (13, 6))

<matplotlib.axes._subplots.AxesSubplot at 0x7fcd37d7d850>

data['Spending Score (1-100)'].value_counts().plot.bar(figsize = (15, 5))

<matplotlib.axes._subplots.AxesSubplot at 0x7fcd37eab890>

```
8
7
6
5
```

```
x = data['CustomerID']
y = data['Annual Income (k$)']
plt.plot(x, y)
```

[<matplotlib.lines.Line2D at 0x7fcd32310150>]

[<matplotlib.lines.Line2D at 0x7fcd32272b90>]

x = data.iloc[:, [3, 4]].values
print(x.shape)

(200, 2)

Saving... ×

Colab paid products - Cancel contracts here

×