EXERCISE – II MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

1. x - 2y + 4 = 0 is a common tangent to $y^2 = 4x & \frac{x^2}{4} + \frac{y^2}{b^2} = 1$. Then the value of b and the other common tangent are given by

(A)
$$b = \sqrt{3}$$
; $x + 2y + 4 = 0$ (B) $b = 3$; $x + 2y + 4 = 0$

(C)
$$b = \sqrt{3}$$
; $x + 2y - 4 = 0$ (D) $b = \sqrt{3}$; $x - 2y - 4 = 0$

2. The tangent at any point P on a standard ellipse with foci as S & S' meets the tangents at the vertcies A & A' in the points V & V', then

(A)
$$\ell(AV).\ell(A'V') = b^2$$
 (B) $\ell(AV).\ell(A'V') = a^2$

(C)
$$\angle$$
V'SV = 90° (D) VS' VS is a cyclic quadrilateral **Sol.**

- 3. The area of the rectangle formed by the perpendiculars from the centre of the standard ellipse to the tangent and normal at its point whose eccentric angle is $\pi/4$ is
- (A) $\frac{(a^2-b^2)ab}{a^2+b^2}$ (B) $\frac{(a^2+b^2)ab}{a^2-b^2}$
- (C) $\frac{(a^2-b^2)}{ab(a^2+b^2)}$ (D) $\frac{(a^2+b^2)}{(a^2-b^2)ab}$

Sol.

- **5.** The line, lx + my + n = 0 will cut the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in points whose eccentric angles differ by $\pi/2$ if
- (A) $x^2 l^2 + b^2 n^2 = 2m^2$ (B) $a^2 m^2 + b^2 l = 2n^2$
- (C) $a^2 l^2 + b^2 m^2 = 2n^2$ (D) $a^2 n^2 + b^2 m^2 = 2l$

Sol.

- 4. An ellipse is such that the length of the latus rectum is equal to the sum of the lengths of its semi principal axes. Then
- (A) Ellipse becomes a circle
- (B) Ellipse becomes a line segment between the two foci
- (C) Ellipse becomes a parabola (D) none of these Sol.
- **6.** A circle has the same centre as an ellipse & passes through the foci $F_1 \& F_2$ of the ellipse, such that the two curves intersect in 4 points. Let 'P' be any one of their point of intersection. If the major axis of the ellipse is 17 & the area of the triangle PF_1F_2 is 30, then the distance between the foci is
- (A) 11
- (B) 12
- (C) 13
- (D) none

Sol.

- 8. The length of the normal (terminated by the major axis) at a point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
- (A) $\frac{b}{a}(r + r_1)$ (B) $\frac{b}{a} | r r_1 |$
- (C) $\frac{b}{a}\sqrt{rr_1}$
- (D) independent of r, r_1

where \boldsymbol{r} and \boldsymbol{r}_1 are the focal distance of the point.

- 7. The normal at a variable point P on an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ of eccentricity e meets the axes of the ellipse in Q and R then the locus of the mid-point of QR is a conic with an eccentricity e' such that (A) e' is independent of e (B) e' = 1
- (C) e' = e
- (D) e' = 1/e

Sol.

- 9. Point 'O' is the centre of the ellipse with major axis AB and minor axis CD. Point F is one focus of the ellipse. If OF = 6 and the diameter of the inscribed circle of triangle OCF is 2, then the product (AB)(CD) is equal to
- (A)65
- (B) 52
- (C) 78
- (D) none

Sol.

- **11.** If the chord through the points whose eccentric angles are θ & ϕ on the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ passes through the focus, then the value of tan $(\theta/2)$ tan $(\phi/2)$
- (A) $\frac{e+1}{e-1}$ (B) $\frac{e-1}{e+1}$ (C) $\frac{1+e}{1-e}$ (D) $\frac{1-e}{1+e}$ Sol.

- **10.** If P is a point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, whose focii are S and S'. Let $\angle PSS' = \alpha$ and $\angle PS'S = \beta$,
- (A) SP + PS' = 2a, if a > b
- (B) PS + PS' = 2b, if a < b
- (C) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{1-e}{1+e}$
- (D) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{\sqrt{a^2 b^2}}{h^2} [a \sqrt{a^2 b^2}]$ when a > b

Sol.