Proficiency in Mathematics

Nischal Chandur

1) UE18MA101: Engineering Mathematics - I:

- Differential
 Calculus
- Cauchy's Mean value theorem
- Taylors and Maclaurin's series expansion for one variable.
- Introduction to polar coordinates.
- Polar curves
- Angle between radius vector and tangent
- angle between two curves
- Pedal equations
- Radius of curvature and its different forms.
- 2. Partial Differentiation
- Introduction to partial differentiation
- geometrical interpretation
- total derivative
- chain rule
- partial differentiation of composite and implicit functions
- Homogeneous functions and Euler's theorem (no proof).
- Taylor's and Maclaurin's series for two variables Maxima and Minima for function of two variables. Errors and approximations.
- Integral Calculus
- Tracing of Cartesian and polar curves.
- Double Integrals
- change of order of integration
- change of variables (polar, spherical and cylindrical coordinates)
- Triple integrals
- Application of multiple integrals- Center of mass and Moment of inertia.
- 4. Ordinary
 Differential
 Equations
- Introduction to Differential equations
- Linear and Reducible to Linear (Bernoulli as a particular case)
- Exact differential equations
- Reducible to exact differential equations
- Orthogonal trajectories (Cartesian and polar forms).
- Solution of first order non-linear differential equationsequations solvable for p, y, x
- Application problems on differential equations.
- 5. Higher order differential equations
- Introduction to higher order differential equations
- Complementary function and particular integrals of standard functions.

- Cauchy's and Legendre's differential equations, variation of parameters.
- Application problems on differential equations.

2) UE18MA151: Engineering Mathematics - II

Vector Calculus

- Introduction to vectors and vector differentiation.
- Gradient of a scalar function
- Directional derivative, angle between the surfaces.
- Divergence, Curl, related properties.
- Vector Integration -Line, Surface and Volume Integrals.
- Green's theorem, Stokes' theorem and Gauss divergence theorem (without proof).

2. Special Functions

- Beta-Gamma functions Definition, properties and graphs.
- Relation between Beta Gamma functions and Duplication formula.
- Bessel's differential equation and its general solution.
- Recurrence relations for Jn(x), Generating function for Jn(x), Jacobi series and Bessel's Integral formula.
- Orthogonality of Bessel functions.

3. Laplace Transform

- Introduction to integral transforms
- Definition, Laplace transforms of standard functions.
- Properties of Laplace Transform-Linearity, First Shifting, change of scale property, Multiplication by t^n and division by t.
- Laplace transforms of derivatives and integrals.
- Laplace transforms of periodic functions.
- Unit- step function, unit-impulse function and related properties.

4. Inverse Laplace Transform

- Inverse Laplace transforms of standard functions
- Various methods of finding inverse Laplace transforms, Convolution theorem. Applications of Laplace transforms To solve differential equations.

5. Fourier Series

- Introduction to Fourier series
- Dirichlet's conditions
- Euler's formulae.
- Fourier Series of Even and odd functions, half –range Fourier series.
- Complex form of Fourier series. Parseval's identity, Practical Harmonic Analysis. Application Problems.

3) UE18MA202: Engineering Mathematics - III

- 1. Complex Function Theory
- Introduction to Complex Functions
- Continuity and Derivative of complex functions
- Cauchy-Riemann equations, Analytic Functions, Milne-Thompson Method
- Conformal Transformation and Mapping
- 2. Complex Integration
- Line integral of a complex function
- Cauchy's theorem and Cauchy's Integral Formula
- Taylor's and Laurent's series of complex functions
- 3. Probability and Discrete Random Variable
- Independent events, combined events, axioms of probability, compound law of probability, Bernoulli trials
- Baye's Theorem and Formula
- Random variable, discrete random variable, discrete probability distribution.
- Binomial distribution, Poisson distribution, Uniform distribution
- 4. Continuous Random Variables
- Continuous and cumulative distribution function
- Gaussian Random Variable and distribution
- Expectation, expectation value of a random variable
- Transformation of random variable, conditional density, and distribution function
- Rayleigh's Random Variable
- 5. Partial Differential Equations
- Formation of PDEs by separation of variables
- Linear PDE of first order
- Solution of homogeneous linear PDE
- Non-homogeneous linear PDE

4) UE18MA251: Linear Algebra and its Applications

Matrices and Gaussian Elimination	 The Geometry of Linear Equations Gaussian Elimination Singular cases Elimination Matrices Triangular factors and Row Exchanges Inverses and Transposes Inverse by Gauss -Jordan method.
2. Vector Spaces	 Vector Spaces and Subspaces Linear Independence Basis and Dimensions The Four Fundamental Subspaces.
3. Linear Transformations	 Linear Transformations Orthogonal Vectors and Subspaces Cosines and Projections onto Lines, Projections and Least Squares.
Orthogonalization, Eigen Values and Eigen Vectors	 Orthogonal Bases The Gram- Schmidt Orthogonalization Introduction to Eigen values and Eigen vectors Properties of Eigen values and Eigen vectors Power Method to find the Largest Eigen Value Diagonalization of a Matrix.
5. Singular Value Decomposition	 Tests for positive definiteness Positive Definite Matrices and Least Squares Semidefinite Matrices Singular Value Decomposition Applications of the SVD.

5) UE18EC400L: Matrix Theory

- Matrix as a Linear Transformation
- Vector spaces
- linear transformation, matrix multiplication
- linear independence basis
- fundamental theorem of linear algebra
- rank-nullity theorem, Gaussian elimination
- LU decomposition, inner products
- Cauchy-Schwarz inequality
- orthogonality, Gram-Schmidt and QR decomposition
- determinants and properties.
- 2. Matrix Norms
- Norms and inner products
- equivalence of matrix norms
- dual norm, matrix norms, induced norms, spectral norm and spectral radius,
- properties, equivalence of matrix norms
- error analysis.
- 3. Similar Matrices
- Eigenvalues and eigenvectors
- similarity, diagonalizability, eigenspace, algebraic and geometric multiplicities
- unitary equivalence, related problems.
- 4. Matrix Decomposition
- Schur's triangularization
- Cayley-Hamilton theorem
- quadratic form
- nilpotent matrices, index of a matrix
- normal matrices, unitary diagonalizability
- Jordan canonical form, SVD
- 5. Use Cases and Theorems
- Least-squares
- Cholesky decomposition
- PCA
- Hermitian matrices
- PD matrices
- Rayleigh-Ritz theorem
- Courant-Fisher theorem