Id

Put the question number (including its sub-problem number, if any) for each problem on your answer sheet. Put a box around the final answer to a question.

For full credit you must *show your work*. You must have enough written work, including explanations when called for, to justify your answers. Incomplete solutions may receive partial credit if you have written down a reasonable partial solution.

1 [10P] Evaluate the indefinite integrals

a.
$$\int (x+3)^{5/2} dx$$
.

b.
$$\int \frac{x}{4-x^2} dx$$

c.
$$\int \frac{1+e^{2x}}{e^x} dx$$

d.
$$\int \csc x \cot x dx$$

2. Assume that $[x_{i-1}, x_i]$ denotes the i^{th} subinterval of a subdivision of [0, 2], which is divided into n subintervals having the same length $\Delta x = \frac{2}{n}$.

a [5P] Evaluate the Riemann sum
$$\sum_{i=1}^{n} (x_i - 0.5) \Delta x$$
.

b [5P] What is
$$\lim_{n\to\infty}\sum_{i=1}^n (x_i - 0.5) \Delta x$$
.

c [5P] Give an integral (but do not evaluate it) that is approximated by the Riemann sum in a.

3 [10P] Evaluate the definite integrals

a.
$$\int_{e}^{100} \frac{dx}{x \ln x}.$$

b.
$$\int_{-1/2}^{1/2} \frac{dt}{\sqrt{1-t^2}}.$$

4 [10P] Find the derivative. **a.** Use the Fundamental Theorem of Calculus to find:

$$\frac{d}{dx} \int_{17}^{x} e^{\sqrt{t+5}} dt =$$

b.

$$\frac{d}{dx} 7^{(\arctan x)^2} =$$

5 [10P] Evaluate the integrals a. $\int \tan x \sec^5 x dx$.

b.
$$\int x^2 \tan^{-1} x dx$$

c.
$$\int \frac{dx}{x(2+\ln x)^2}$$

d.
$$\int (\sec x + \tan x) dx$$

e.
$$\int_{0}^{1} \sin^{-1} x dx$$

6 [10P] Find the total area of the bounded region given by the x-axis and the graph of the function $f(x) = x^3 - x$ on [-1, 1].

7 [10P] Find the work done by the force $F(t) = \frac{12}{2t^2+1}$ in moving a particle along the t-axis from t = 0 to t = 1.5

8 [10P] Let R be the region enclosed by

$$y = \sqrt{x}$$
 and $x = 4$ and $x = 9$ and $y = 0$.

Let V be the volume of the solid obtained by revolving the region R about the y-axis.

a. Make a rough sketch of the region R, labeling the important points.

b. Using the cylindrical shell method, express the volume V as an integral (or maybe 2 integrals).

You do NOT have to evaluate the integral(s).

9 [5P] Let L be the arc length of the curve

$$x = \frac{y^4}{8} + \frac{y^{-2}}{4}$$
 from $y = 1$ to $y = 4$.

Express L as an integral. You do NOT have to evaluate the integral.

10 [10P] Let S be the area of the surface generated by revolving the curve below about the line y=-0.5

$$y = \frac{1}{x}, \qquad 2 \le x \le b,$$

where b is a constant greater than 2. Set up an integral for the surface area S=S(b) and find its value.