Векторные пространства

Пусть V - векторное пространство, $S\subseteq V$ - система векторов, выберем $B\subseteq S$ - конечная система.

Опр: 1. Система векторов S называется максимальной линейно независимой подсистемой, если её нельзя увеличить с тем, чтобы свойство линейной независимости сохранилось.

Утв. 1. Следующие условия эквивалентны:

- (1) B максимальная линейно независимая подсистема в S;
- (2) B линейно независима, и $\forall v \in S$ линейно выражается через B;
- \square Обозначим векторы в системе $B = \{v_1, \dots, v_r\}.$
- $(1) \Rightarrow (2)$ Предположим, что $v \in B \Rightarrow v = v_i = 0 \cdot v_1 + \ldots + 1 \cdot v_i + \ldots + 0 \cdot v_r \Rightarrow$ мы получили, что вектор v линейно выражается через систему B. Пусть теперь $v \in S \setminus B \Rightarrow B \cup \{v\}$ линейно зависима \Rightarrow вектор v можно выразить единственным образом через векторы B (по утверждению 9 с прошлой лекции):
- $(2) \Rightarrow (1)$ Пусть $v \in S \setminus B \Rightarrow v$ линейно выражается через B по условию \Rightarrow система $B \cup \{v\}$ линейно зависима (по свойству 8 с прошлой лекции) $\Rightarrow B$ максимальная линейно независимая подсистема.

Опр: 2. Конечная подсистема $B \subseteq S$ удовлетворяющая любому из эквивалентных условий:

- (1) B максимальная линейно независимая подсистема в S;
- (2) B линейно независима, и $\forall v \in S$ линейно выражается через B;

называется базисом системы векторов S.

Примеры базисов

Будем считать S = V.

(1) $V = \{\text{геом. векторы на прямой}\}.$

Базис: $B = \{v\}, v \neq 0$ по условию (2), поскольку любой другой вектор имеет вид $\lambda \cdot v$.

Рис. 1: Базис пространства геометрических векторов на прямой.

- \square Очевидно по условию (2).
- (2) $V = \{$ геом. векторы на плоскости $\}$.

Базис: $B = \{v_1, v_2\}, v_1, v_2 \neq 0$ и не коллинеарны (не пропорциональны).

 \square Любой вектор на плоскости можно спроектировать на прямую на которой находится вектор v_1 параллелльно прямой на которой находится v_2 . Аналогично можно спроектировать v на прямую на которой находится вектор v_2 параллельно прямой на которой находится v_1 . Тогда вектор v будет суммой этих проекций: $\lambda_1 v_1 + \lambda_2 v_2$ и любой вектор на плоскости можно представить в виде линейной комбинации двух неколлинеарных векторов \Rightarrow по условию (2) это будет базис.

Рис. 2: Базис пространства геометрических векторов на плоскости.

(3) $V = \{\text{геом. векторы в пространстве}\}.$

Базис: $B = \{v_1, v_2, v_3\}, v_1, v_2, v_3 \neq 0$ и не лежат в одной плоскости.

Рис. 3: Базис пространства геометрических векторов в пространстве.

Спроектируем на плоскость, где лежат векторы $\{v_1, v_2\}$ вектор v параллельно прямой на которой лежит $v_3 \Rightarrow$ получим вектор в плоскости: $\lambda_1 v_1 + \lambda_2 v_2$. С другой стороны, спроектируем вектор v на прямую на которой лежит v_3 параллельно плоскости в которой лежат $\{v_1, v_2\} \Rightarrow$ проведем параллельную плоскость через конец вектора v и посмотрим, где она пересечёт прямую на которой лежит вектор v_3 .

Таким образом $v = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3$. Сами вектора не лежат в одной плоскости \Rightarrow линейно независимы по примеру из прошлой лекции (найдется вектор, который не лежит в плоскости с остальными двумя) \Rightarrow по пункту (2) это базис.

(4) $V = \mathbb{R}^n$ - арифметическое пространство.

Базис: стандартный базис $B = \{e_1, \dots, e_n\}$.

□ Докажем линейную независимость ⇒ возьмем произвольную линейную комбинацию:

$$\lambda_1 e_1 + \ldots + \lambda_i e_i + \ldots + \lambda_n e_n =$$

$$= (\lambda_1, \ldots, 0, 0, 0, \ldots, 0) + \ldots + (0, \ldots, 0, \lambda_i, 0, \ldots, 0) + \ldots + (0, \ldots, 0, 0, 0, \ldots, \lambda_n) =$$

$$= (\lambda_1, \ldots, \lambda_{i-1}, \lambda_i, \lambda_{i+1}, \ldots, \lambda_n) = 0 \Leftrightarrow \lambda_1 = \ldots = \lambda_i = \ldots = \lambda_n = 0$$

Проверим, что любой вектор $x \in \mathbb{R}^n$ выражается через эти вектора:

$$\forall x \in \mathbb{R}^n, \ x = (x_1, \dots, x_i, \dots, x_n) = x_1 e_1 + \dots + x_i e_i + \dots + x_n e_n$$

Следовательно, по (2) это базис.

Опр: 3. Стандартным базисом арифметического пространства \mathbb{R}^n называется следующая система векторов: $B = \{e_1, \dots, e_n\}$, где $e_i = (0, \dots, 0, 1, 0, \dots, 0)$.

Свойства базиса

Утв. 2. Пусть $B = \{v_1, \dots, v_r\}$ - базис системы векторов S, тогда $\forall v \in S$, $\exists !$ выражение этого вектора через базисные:

$$v = \lambda_1 v_1 + \ldots + \lambda_r v_r$$

Существование: следует сразу из условия (2) в определении базиса.

Единственность: пусть $v = \lambda_1 v_1 + \ldots + \lambda_r v_r = \mu_1 v_1 + \ldots + \mu_r v_r \Rightarrow$ вычтем одно из другого:

$$0 = (\lambda_1 - \mu_1)v_1 + \ldots + (\lambda_r - \mu_r)v_r \Rightarrow \lambda_1 - \mu_1 = \ldots = \lambda_r - \mu_r = 0$$

где последнее верно в силу линейной независимости базиса, тогда:

$$\lambda_i = \mu_i, \, \forall i = \overline{1,r}$$

Опр: 4. Пусть $B = \{v_1, \dots, v_r\}$ - базис системы векторов $S, \forall v \in S,$ скаляры $\lambda_1, \dots, \lambda_r$ в его разложении:

$$v = \lambda_1 v_1 + \ldots + \lambda_r v_r$$

называются координатами векотора v в базисе B.

Rm: 1. Каждый вектор задается своими координатами в каком-то базисе.

Пример: Координаты вектора $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ в стандартном базисе:

$$x = (x_1, \dots, x_n) = x_1 e_1 + \dots + x_n e_n$$

То есть, координаты это числа x_1, \ldots, x_n .

Возникает вопрос, а всякая ли система векторов в векторном пространстве имеет базис. Покажем, что это верно для систем векторов в арифметическом пространсте.

Утв. 3.

- 1) Любая система векторов $S\subseteq\mathbb{R}^n$ обладает базисом;
- 2) Во всех базисах системы S одинаковое количество векторов, причем $\leq n,$ если $S\subseteq \mathbb{R}^n;$

1) Построение базиса системы S:

Если $S=\varnothing$ или $S=\{0\}$, то базисных векторов вообще нет, поскольку нет линейно независимых подсистем, кроме пустого множества $\Rightarrow B=\varnothing$.

Если $S \neq \emptyset$, возьмем $v_1 \in S$, $v_1 \neq 0 \Rightarrow \{v_1\}$ - линейно независима и дальше возможны два случа: либо она не максимальна, либо максимальна и это базис. Если она не максимальна, то расширим её, добавив ещё один вектор, до линейно назвисимой системы $\{v_1, v_2\} \subseteq S$. И так далее.

Получим возрастающую цепочку линейно независимых подсистем:

$$\{v_1\} \subset \{v_1, v_2\} \subset \ldots \subset \{v_1, \ldots, v_k\} \subset \ldots \subseteq S \subseteq \mathbb{R}^n$$

Из последнего следует, что любая из этих систем $\{v_1,\ldots,v_k\}$ линейно выражается через $\{e_1,\ldots,e_n\}$, но поскольку система $\{v_1,\ldots,v_k\}$ линейно независима, то по основной лемме о линейной зависимости $k \leq n \Rightarrow$ цепочка вложений - конечна: $\exists \, r \leq n \colon B = \{v_1,\ldots,v_r\}$ - будет максимальной линейно независимой подсистемой в системе $S \Rightarrow B$ - базис по (1) определения.

2) Пусть у нас есть другой базис $B' = \{w_1, \dots, w_s\} \Rightarrow$ он линейно выражается через B, поскольку через B выражаются все векторы системы \Rightarrow по основной лемме о линейной зависимости $s \leq r$.

Аналогично, B выражается через B', потому что B' это тоже базис и по той же самой основной лемме о линейной зависимости будет верно: $r \leq s \Rightarrow s = r$.

Следствие 1. Любое линейно независимое подмножество v_1, \ldots, v_s в S можно дополнить до базиса.

Опр: 5. Ранг системы векторов S это количество векторов в любом её базисе.

Обозначение: $\operatorname{rk} S$.

Rm: 2. Другими словами ранг системы векторов равен максимальному количеству линейно независимых векторов, которые можно выбрать из этой системы.

В случае, когда S=V вместо ранга используют размерность (по сути это одно и то же).

Опр: 6. Размерность векторного пространства V это количество векторов в любом его базисе.

Обозначение: $\dim V$.

Опр: 7. Векторные пространства, обладающие конечным базисом называются конечномерными. В противном случае, они называются бесконечномерными.

Примеры размерности векторных пространства

- 1) $V=\{\text{геом. векторы на прямой}\}\Rightarrow B=\{v_1\}\Rightarrow \dim V=|B|=1;$
- 2) $V=\{\text{геом. векторы на плоскости}\}\Rightarrow B=\{v_1,v_2\}\Rightarrow \dim V=|B|=2;$
- 3) $V=\{\text{геом. векторы в пространстве}\} \Rightarrow B=\{v_1,v_2,v_3\} \Rightarrow \dim V=|B|=3;$
- 4) $V = \mathbb{R}^n \Rightarrow$ стандартный базис из n векторов: $B = \{e_1, \dots, e_n\} \Rightarrow \dim V = |B| = n;$

Утв. 4. Пусть V - конечномерное векторное пространство, $\dim V = n$ с базисом $\{v_1, \ldots, v_n\}$. Тогда возникает взаимнооднозначное соответствие: $V \leftrightarrow \mathbb{R}^n$, которое сопоставляет каждому вектору $v \in V$ строчку его координат $(\lambda_1, \ldots, \lambda_n)$.

□ По свойству базиса верно:

$$\forall v \in V, \exists! \lambda_1, \dots, \lambda_n \in \mathbb{R} : v = \lambda_1 v_1 + \dots + \lambda_n v_n$$

Предъявим соответствие: $\varphi: V \to \mathbb{R}^n$, $\varphi(v) = (\lambda_1, \dots, \lambda_n)$. Оно очевидно инъективно и сюръективно в силу существования и единственности разложения v по базису \Rightarrow оно взаимнооднозначное.

 \mathbf{Rm} : 3. Такое взаимнооднозначное соответствие позволяет отождествить $V \subset \mathbb{R}^n$.

Далее мы будем рассматривать в основном арифметические векторные пространства, но с помощью этого отождествления можно будет перенести всё что докажем дословно на любое конечномерное пространство без изменения.

Свойства ранга системы векторов

Утв. 5. Если $S \subseteq S'$, то $\operatorname{rk} S \le \operatorname{rk} S'$.

Утв. 6. Если система S линейно выражается через S' (то есть $\forall s \in S$ является линейной комбинацией векторов из S'), то $\operatorname{rk} S \leq \operatorname{rk} S'$.

 \square Пусть B - базис в S, B' - базис в S', тогда по условию B линейно выражается через S', которая выражается через $B' \Rightarrow B$ линейно выражается через $B' \Rightarrow$ поскольку B - линейно независимая система, то по ОЛЛЗ верно, что: $|B| \leq |B'| \Rightarrow \operatorname{rk} B \leq \operatorname{rk} B'$.

Опр: 8. Системы векторов S и S' называются <u>линейно эквивалентными</u>, если они линейно выражаются друг через друга.

Утв. 7. Пусть системы векторов S и S' линейно выражаются друг через друга, то есть линейно эквивалентны, тогда их ранги совпадают: $\operatorname{rk} S = \operatorname{rk} S'$.

 \square Из предыдущего утверждения, у нас будет два неравенства: $\operatorname{rk} B \leq \operatorname{rk} B'$ и $\operatorname{rk} B' \leq \operatorname{rk} B$.

Утв. 8. Элементарные преобразования не изменяют ранг системы векторов.

 \square Если v_1', \ldots, v_n' получены из v_1, \ldots, v_n цепочкой элементарных преобразований, то v_1', \ldots, v_n' это линейные комбинации v_1, \ldots, v_n . Применяя обратно $\Im \Pi$ выразим v_1, \ldots, v_n через $v_1', \ldots, v_n' \Rightarrow$ системы эквивалентных систем ранги совпадают

Ранг матрицы

Опр: 9. <u>Матрица порядка</u> $m \times n$ - это прямоугольная таблица, заполненная числами, состоящая из m строк и n столбцов.

Пусть A - матрица размера $m \times n$:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Обозначим её строки $A_1, A_2, \ldots, A_m \in \mathbb{R}^n$ и каждая из строчек это строка длины n, то есть это вектор из арифметического n-мерного пространства. Столбцы матрицы обозначим $A^{(1)}, \ldots, A^{(n)} \in \mathbb{R}^m$ - векторы из арифметического m-мерного пространства.

Опр: 10. Горизонтальным рангом матрицы A назовем ранг системы её строк: $\operatorname{rk}\{A_1,\ldots,A_m\}$. **Обозначение**: $r_h(A)$.

Опр: 11. Вертикальным рангом матрицы A назовем ранг системы её столбцов: $\operatorname{rk} \left\{ A^{(1)}, \dots, A^{(n)} \right\}$. **Обозначение**: $r_v(A)$.

Приведем матрицу A к ступенчатом виду $\Theta\Pi$ строк и получим матрицу A^* .

Опр: 12. Ступенчатым рангом матрицы A^* назовем количество её ненулевых строк. **Обозначение**: $r_e(A^*)$, где e - от echelon.

Опр: 13. Транспонированная матрица A^T это матрица, которая получается из исходной матрицы отражением всех элементов относительно диагонали идущей из верхнего левого угла вниз под 45° .

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

Транспонированная матрица будет иметь размер $n \times m$ и её элементы будут равны: $a_{ij}^T = a_{ji}$. Строки транспонированной матрицы это столбцы исходной матрицы: $A_i^T = A^{(i)}$, $i = \overline{1,n}$. Столбцы транспонированной матрицы это строки исходной матрицы: $\left(A^T\right)^{(j)} = A_j$, $j = \overline{1,m}$.

Утв. 9.
$$r_h(A^T) = r_v(A), r_v(A^T) = r_h(A).$$

□ Очевидно, поскольку:

$$r_h(A^T) = \text{rk}\{A_1^T, \dots, A_n^T\} = \text{rk}\{A^{(1)}, \dots, A^{(n)}\} = r_v(A)$$

 $r_v(A^T) = \text{rk}\{(A^T)^{(1)}, \dots, (A^T)^{(m)}\} = \text{rk}\{A_1, \dots, A_m\} = r_h(A)$

Теорема 1. $r_h(A) = r_v(A) = r_e(A^*)$.

- □ Докажем теорему в несколько шагов.
 - 1) Докажем, что $r_h(A)$ не меняется при ЭП строк матрицы A.

Пусть мы применили к A ЭП строк и получили матрицу A'. По устройству ЭП строк, получаемые строки являются линейными комбинациями строк исходной матрицы $\Rightarrow \{A'_1, \ldots, A'_m\}$ линейно выражается через $\{A_1, \ldots, A_m\}$ и наоборот, поскольку есть обратные ЭП строк, которые могут вернуть A' в первоначальный вид. То есть эти две системы строк эквивалентны \Rightarrow у линейно эквивалентных систем ранги совпадают $\Rightarrow r_h(A) = r_h(A')$ по утверждению 7;

2) Вертикальный ранг $r_v(A)$ не меняется при ЭП строк матрицы A.

Рассмотрим ОСЛУ следующего вида:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

Набор чисел $(\lambda_1, \dots, \lambda_n)$ является решением этой ОСЛУ \Leftrightarrow при подстановке в каждое из этих уравнений он даёт верное равенство:

$$\forall i = \overline{1, m}, \ a_{i1}\lambda_1 + \ldots + a_{in}\lambda_n = 0 \Leftrightarrow A^{(1)} \cdot \lambda_1 + \ldots + A^{(2)} \cdot \lambda_n = 0$$

Таким образом, ненулевые решение ОСЛУ это тоже самое, что и линейные зависимости между столбцами $A^{(1)}, \ldots, A^{(n)}$. При ЭП строк матрицы A мы получим матрицу A', но множество решений ОСЛУ не изменится (утверждение 1, лекция 1) \Rightarrow линейные зависимости между столбцами новой матрицы: $(A')^{(1)}, \ldots, (A')^{(n)}$ такие же, как между столбцами исходной матрицы $A^{(1)}, \ldots, A^{(n)}$.

В частности, если $\{A^{(j_1)}, \dots, A^{(j_r)}\}$ это базис системы столбцов A, то тогда $\{(A')^{(j_1)}, \dots, (A')^{(j_r)}\}$ это уже базис системы столбцов A'. Если исходная система была линейно независимой, то и новая будет (поскольку линейные зависимости сохранятся). Если исходная была максимальной, то и новая будет, а иначе можно добавить к новой ещё один вектор и сохранить линейную независимость \Rightarrow и к исходной можно будет добавить столбец \Rightarrow противоречие и максимальность сохраняется. Таким образом, $r_v(A) = r_v(A') = r$ - число элементов в базисе.

- 3) Горизонтальный и вертикальные ранги сохраняются и при ЭП столбцов A. ЭП столбцов $A \Leftrightarrow ЭП$ строк A^T , а мы знаем, что $r_h(A^T) = r_v(A)$, $r_v(A^T) = r_h(A)$.
- 4) Приведем матрицу A ЭП строк к улучшенному ступенчатому виду A^* . Обозначим столбцы с лидерами строк: j_1, \ldots, j_r .

Ступенчатый ранг матрицы: A^* : $r = r_e(A^*)$, поскольку у нас r ненулевых строк в A^* . Используя Θ П2 столбцов, переставим столбцы с лидерами строк в начало:

$$\begin{pmatrix}
1 & 0 & \dots & 0 & * & \dots & * \\
0 & 1 & \dots & 0 & * & \dots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 1 & * & \dots & * \\
\hline
0 & 0 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & \dots & 0 & * & \dots & * \\
0 & 0 & \dots & 1 & * & \dots & * \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & \dots & 0 & * & \dots & * \\
0 & 0 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{pmatrix}$$

Используя $\Im\Pi 2$ столбцов, будем вычитать первые r столбцов из остальных столбцов так, чтобы

обнулить всё что правее первых r столбцов. Получим матрицу вида:

$$A^{**} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ \hline 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} \begin{bmatrix} 1 \\ 2 \\ \vdots \\ r \\ r+1 \\ \vdots \\ m \end{bmatrix}$$

При ЭП строк и столбцов матрицы, горизонтальный ранг матрицы не меняется, поэтому:

$$r_h(A) = r_h(A^{**})$$

Базисом системы строк A^{**} являются первые r строк, поскольку:

$$\forall i = \overline{1, r}, A_i^{**} = e_i, \quad \forall i > r, A_i^{**} = 0 \Rightarrow \{A_1^{**}, \dots, A_r^{**}\} = \{e_1, \dots, e_r\}$$

Следовательно, горизонтальный ранг матрицы A^{**} равен r. Абсолютно аналогично:

$$r_v(A) = r_v(A^{**}) = r$$

Более того, $r_e(A^*) = r$, то есть получаем требуемое: $r_h(A) = r_v(A) = r_e(A^*) = r$.

Опр: 14. <u>Рангом матрицы</u> A называется число $\mathrm{rk}(A) = r_h(A) = r_v(A) = r_e(A^*).$

Свойства ранга матрицы

Утв. 10. $\operatorname{rk} A \leq \min \{m, n\}.$

 \square Горизонтальный ранг матрицы это ранг системы строк, то есть количество векторов в базисе системы строк, но всего строк m штук, а в базисе $\leq m \Rightarrow \operatorname{rk} A = r_h(A) \leq m$. Абсолютно аналогичный результат для столбцов: $\operatorname{rk} A = r_v(A) \leq n \Rightarrow \operatorname{rk} A \leq \min\{m,n\}$.

Утв. 11. $\operatorname{rk} A$ не меняется при $\operatorname{Э}\Pi$ строк и столбцов этой матрицы.

□ Видели при доказательстве теоремы 1.

Утв. 12. $\operatorname{rk} A$ не меняется при транспонировании: $\operatorname{rk} A = \operatorname{rk} A^T$.

$$\square \operatorname{rk} A = r_h(A) = r_v(A) = r_v(A^T) = \operatorname{rk} A^T.$$