WHAT IS CLAIMED IS:

1. Resolution filter (4) for a spectrum analyser (1), wherein the resolution filter (4) has the following complex, discrete impulse response $h_{used}(k)$:

$$h_{used}(k) = C_1 \cdot \left[e^{-C_2 T_a^2 \cdot k^2} * h_{allp}(t) \right] \cdot e^{-jC_3(k-k_0)^2 \cdot T_a^2}$$

wherein C_1 , C_2 and C_3 are constants, k is the sampling index and T_a is the sampling period, wherein $h_{allp}(t)$ is the Fourier retransform of $e^{j\phi(f)}$, in which $\phi(f)$ is a randomly-specified phase response dependent upon the frequency of the transmission function of the resolution filter, wherein k_0 is a free variation parameter and wherein the variation parameter k_0 is set in such a manner that the frequency overshoot determined by the group delay of the resolution filter (4) is compensated.

2. Resolution filter according to claim 1, characterised in that

the variation parameter k_0 is set in such a manner that the middle of the frequency response $H_{used}(f)$ of the resolution filter is disposed at the frequency origin at the frequency f=0.

 Resolution filter according to any one of claims 1 or 2,

characterised in that

 $\phi(\text{f})$ and therefore also $h_{\text{allp}}(\text{t})$ are selected in such a manner that a minimal-phase resolution filter is formed.

4. Resolution filter (4) according to any one of claims 1 to 3,

characterised in that

the value of the constant C_1 is:

$$c_1 = \sqrt{\frac{\pi}{2\ln(2)}} \cdot B_{res} \cdot T_a$$

wherein B_{res} is the bandwidth of the resolution filter (4).

 Resolution filter (4) according to any one of claims 1 to 4,

characterised in that

the value of the constant C_2 is

$$c_2 = \frac{\pi^2}{2\ln(2)} \cdot \frac{1}{T_{res}^2} ,$$

wherein $T_{res} = 1/B_{res}$ is the reciprocal bandwidth B_{res} of the resolution filter (4).

6. Resolution filter (4) according to any one of claims 1 to 5,

characterised in that

the value of the constant C_3 is

$$C_3 = \frac{\pi}{K} \cdot B_{res}^2,$$

wherein B_{res} is the bandwidth of the resolution filter (4) and K is the K-factor of the resolution filter (4), wherein the K-factor is defined via the equation:

$$f(t) = \frac{1}{K} \cdot B_{res}^{2} \cdot t$$

and f(t) is a frequency variable with time t in a linear manner, which is supplied to a mixer (3) of the spectrum analyser (1) connected upstream of the resolution filter (4).

7. Spectrum analyser for analysing the spectrum of an input signal with a resolution filter (4) specifying the frequency resolution, wherein the resolution filter (4) has the following complex, discrete impulse response h_{used}(k):

$$h_{used}(k) = C_1 \cdot \left[e^{-C_2 T_a^2 \cdot k^2} * h_{allp}(t) \right] \cdot e^{-jC_3(k-k_0)^2 \cdot T_a^2}$$

wherein C_1 , C_2 and C_3 are constants, k is the sampling index and T_a is the sampling period, wherein $h_{allp}(t)$ is the Fourier retransform of $e^{j\phi(f)}$, in which $\phi(f)$ is a randomly-specified phase response dependent upon the frequency of the transmission function of the resolution filter, wherein k_0 is a free variation parameter and

wherein the variation parameter k_0 is set in such a manner that the frequency overshoot determined by the group delay of the resolution filter (4) is compensated.

8. Spectrum analyser according to claim 7, characterised in that

the variation parameter k_0 is set in such a manner that the middle of the frequency response $H_{used}(f)$ of the resolution filter is disposed at the frequency origin at the frequency f=0.

 Spectrum analyser according to any one of claims 7 or 8,

characterised in that

 $\phi(\text{f})$ and therefore also $h_{\text{allp}}(t)$ are selected in such a manner that a minimal-phase resolution filter is formed.