01 LOGIC

01_04 De Morgan's Laws and Their Applications

Augustus De Morgan

De Morgan's Laws

$$\sim (p \land q) \Leftrightarrow \sim p \lor \sim q,$$

$$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q.$$

They can be proved respectively by the truth tables below.

p	q	$p \wedge q$	\sim (p \land q)	~p	~q	~p \left ~q	$ \begin{array}{c} \sim (p \land q) \Leftrightarrow \\ \sim p \lor \sim q \end{array} $
Т	T	Т	F	F	F	F	T
T	F	F	T	F	Т	T	Т
F	T	F	T	T	F	T	T
F	F	F	T	T	T	T	T

p	q	$p \lor q$	~(p \le q)	~p	~q	$\sim p \land \sim q$	$\sim (p \lor q) \Leftrightarrow$ $\sim p \land \sim q$
							~p ^ ~q
T	T	T	F	F	F	F	T
T	F	T	F	F	T	F	T
F	T	T	F	T	F	F	T
F	F	F	T	Т	Т	Т	T

One application of De Morgan's Laws

Find the negation of the following propositions.

- (1) Today is Sunday and 2 + 3 = 5.
- (2) It is raining or 6 > 8.

[Solution of (1)]

p: Today is Sunday,

$$q: 2 + 3 = 5.$$

By De Morgan's laws,

 \sim (Today is Sunday and 2 + 3 = 5) = \sim ($p \land q$) \Leftrightarrow

 $\sim p \lor \sim q = \text{Today is not Sunday or } 2 + 3 != 5.$

[Solution of (2)]

p: It is raining,

$$q: 6 > 8$$
.

By De Morgan's laws,

 \sim (It is raining or 6 > 8) = \sim (p \vee q) \Leftrightarrow

 $\sim p \land \sim q = \text{It is not raining and } 6 \le 8.$

One application of De Morgan's Laws

Show that $\sim (p \to q)$ and $p \land \sim q$ are logically equivalent.

[Proof] Recall $p \rightarrow q \Leftrightarrow \neg p \lor q$. Thus, by De Morgan's

Laws,
$$\sim (p \to q) \Leftrightarrow \sim (\sim p \lor q) \Leftrightarrow \sim (\sim p) \land \sim q \Leftrightarrow p \land \sim q$$
.

One application of De Morgan's Laws

Show that $(p \land q) \rightarrow p$ is a tautology.

[Proof] Recall $r \rightarrow s \Leftrightarrow \sim r \lor s$. Thus, by De Morgan's

Laws,
$$(p \land q) \rightarrow p \Leftrightarrow \neg (p \land q) \lor p \Leftrightarrow (\neg p \lor \neg q) \lor p$$

$$\Leftrightarrow \sim p \vee (\sim q \vee p) \Leftrightarrow \sim p \vee (p \vee \sim q) \Leftrightarrow (\sim p \vee p) \vee \sim q$$
$$\Leftrightarrow T \vee \sim q \Leftrightarrow T.$$

Similarly, we can show that $(p \land q) \rightarrow q$ is a tautology.

One application of De Morgan's Laws

Show that $p \rightarrow p \lor q$ is a tautology.

[Proof] Recall
$$r \to s \Leftrightarrow \neg r \lor s$$
. Thus, by De Morgan's Laws, $p \to p \lor q \Leftrightarrow \neg p \lor (p \lor q) \Leftrightarrow (\neg p \lor p) \lor q$ $\Leftrightarrow T \lor q \Leftrightarrow T$.

Similarly, we can show that $q \rightarrow p \lor q$ is a tautology.

More information on Augustus De Morgan can be found at https://en.wikipedia.org/wiki/Augustus De Morgan