TCS II

Formal Languages and Computability 2021/22 2nd Midterm (B)

10th June 2022

Solutions

Question (a) (TM for the given language)

TM for language L₁:

 $M = \langle Q, \Sigma, \Gamma, q_0, B, F, \delta \rangle$

 $Q = \{ q_S, q_0, q_1, q_2, q_3, q_4, q_F \} (1 point)$

 $\Sigma = \{0, 1, 2\} (1 \text{ point})$

 $\Gamma = \{0, 1, 2, \square\} (1 \text{ point})$

 $q_0 = q_S (1 point)$

 $B = \square (1 point)$

 $F = \{q_F\} (1 point)$

δ (graph): (14 points)

δ (transitions):

$$\delta(q_S, 0) = (q_0, \square, R)$$

$$\delta(q_0,0)=(q_1,\square,R)$$

$$\delta(q_0, \square) = (q_F, \square, R)$$

$$\delta(q_1, 0) = (q_1, 0, R)$$

$$\delta(q_1, 1) = (q_1, 1, R)$$

$$\delta(q_1, 2) = (q_1, 2, R)$$

$$\delta(q_1, \square) = (q_2, \square, L)$$

$$\delta(q_2, 2) = (q_3, \square, L)$$
$$\delta(q_3, 1) = (q_4, \square, L)$$

$$\delta(q_4, 0) = (q_4, 0, L)$$

$$\delta(q_4, 1) = (q_4, 1, L)$$

$$\delta(q_4, 2) = (q_4, 2, L)$$

$$\delta(q_4, \square) = (q_0, \square, R)$$

δ (transition table):

Q\Σ	0	1	2	
→ q s	(q₀, □, R)	/	/	/
q_0	(q₁, □, R)	/	/	(q _F , □, R)
q ₁	(q ₁ , 0, R)	(q ₁ , 1, R)	(q ₁ , 2, R)	(q₂, □, L)
q ₂	/	/	(q₃, □, L)	/
q ₃	/	(q₄, □, L)	/	/
q ₄	(q ₄ , 0, L)	(q ₄ , 1, L)	(q ₄ , 2, L)	(q₀, □, R)
* q _F	/	/	/	/

Question (b) (IDs)

 $0001212 \in L(M)$ with IDs (10 points)

 $q_{5}0001212 + q_{0}001212 + q_{1}01212 + 0q_{1}1212 + 01q_{1}212 + 012q_{1}12 + 0121q_{1}2 + 01212q_{1} + 01212q_{2} + 0121q_{2}2 + 0121q_{1}2 + 012q_{1}2 + 012q_{1}$

 $012q_31 + 01q_42 + 0q_412 + q_4012 + q_4\Box 012 + q_0012 + q_112 + 1q_12 + 12q_1 + 1q_22 + q_31 + q_4 + q_0 + q_6 + q_112 + q_$

Question (a) (turn the given CFG into CNF)

Given the CFG:

2. step – remove unit productions: (2 points)

1. step – remove ε-productions: (1 point) there are no such productions.

3. step – remove variables that don't produce strings of all terminals: (1 point) there are no such variables.

4. step – remove »unreachable« variables:

variable W is »unreachable« (2 points)

$$S \rightarrow XYZ \mid YZ$$

 $X \rightarrow yY \mid x$
 $Y \rightarrow y \mid yY \mid x$
 $Z \rightarrow z$

5. step - Chomsky Normal Form (CNF):

a) Terminals → Variables: (2 points)

$$S \rightarrow XYZ \mid YZ$$

$$X \rightarrow AY \mid x$$

$$Y \rightarrow y \mid AY \mid x$$

$$Z \rightarrow z$$

$$A \rightarrow y$$

b) »Shortening«: (2 points)

Question (b) (use the CYK algorithm)

Is xxyxz in the language of the given CFG? (15 points)

{}		No. The string xxyxz is not in the language of the given CFG.					
{ }	{S}						
{ }	{ }	{S,B}					
{ }	{ }	{X,Y}	{S,B}				
{X,Y}	{X,Y}	{A,Y}	{X,Y}	{ Z }			
×	x	У	x	Z			

Question (a) (reduction from MPCP to PCP)

MPCP to PCP reduction: (10 points)

idx _{MPCP}	MPCP	PCP	idx _{PCP}
1	(x,xy)	(x*,*x*y)	1
2	(xyz,z)	(x*y*z*,*z)	2
3	(zx,x)	(z*x*,*x)	3
4	(y,zx)	(y*,*z*x)	4
		(*x*,*x*y)	S1
		(\$,*\$)	F

Question (b) (solution to MPCP – and PCP)

The solution to the given MPCP is the index sequence 1, 4, 3, 1, 2 (shown below): (7 points)

Pair index	1	4	3	1	2	concatenated string
1 st element of pair	х	У	zx	х	xyz -	→ xyzxxxyz
2 nd element of pair	хy	zx	×	хy	z -	→ xyzxxxyz

The solution to the related PCP is the index sequence S1, 2, 3, 1, 4, F (shown below): (3 points)

Pair index	S1	4	3	1	2	F	concatenated string
1 st element of pair	*x*	У*	z*x*	x*	x*y*z*	\$ =	*x*y*z*x*x*y*z*\$
2 nd element of pair	*x*y	*z*x	*x	*x*y	*z	*\$ =	*x*y*z*x*x*x*y*z*\$

Question (a) (conversion to 3-CNF)

There are 3 Boolean variables, so direct conversion to 3-CNF is possible (using the truth table).

Truth table: (5 points)

Α	В	С	AB + C
Т	Т	Т	Т
Т	Т	F	Т
Т	F	T	T
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	Т
F	F	F	F

Falsifying variable assignments: (5 points)

$$(A = T, B = F, C = F),$$

$$(A = F, B = T, C = F),$$

$$(A = F, B = F, C = F).$$

Resulting expression in 3-CNF: (5 points)

$$(-A + B + C) (A + -B + C) (A + B + C)$$

Question (b) (reduction from 3-SAT to VC)

Graph form the 3-CNF expression (order of clauses changed to ease connecting variables with their negations): (5 points)

Select a truth assignment (**A** = F, **B** = F, **C** = T) and pick a true node in each column:

All the non-selected nodes form the node cover (green nodes) (5 points)

Budget = 6

