Mr. 1. 1 . 12

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-349167

(43)Date of publication of application: 09.12.2004

(51)Int.CI.

H01B 1/00 CO1B 13/14 CO1G 23/047 CO8K 9/02 C08L101/00 9/08 GO3G H₀1B 1/20 HO1B 5/00

(21)Application number : 2003-146505

(71)Applicant: TITAN KOGYO KK

(22)Date of filing: 23.05.2003 (72)Inventor: HARADA HIDEFUMI

INOUE YASUO

MORISHITA MASAYASU

(54) WHITE CONDUCTIVE POWDER AND ITS APPLICATION

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a white conductive powder which is excellent in longterm stability and has good conductivity while it does not contain antimony questionable about safety and which has high whiteness and is of low cost without using an expensive indium. SOLUTION: The white conductive powder comprises white inorganic pigment particles each having on its primary surface a coating layer comprising tin dioxide containing at least one kind of element selected from tungsten, niobium, tantalum, antimony, fluorine, and phosphorus. The white conductive powder is safe and inexpensive, and exhibits high conductivity and long-term stability. It can be blended with a white conductive resin composition and can be used for, e.g. an external additive for an electrophotographic toner.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-349167 (P2004-349167A)

(43) 公開日 平成16年12月9日(2004.12.9)

			(43) 公開日	平麻16年12月9日(2004.12.9)
(51) Int.C1. ⁷	FI			テーマコード(参考)
HO1B 1/00	HO1B	1/00	D	2H005
CO1B 13/14	COIB	13/14	Α	4G042
CO1G 23/047	COIG	23/047		4G047
CO8K 9/02	CO8K	9/02		4J002
CO8L 101/00	C08L	101/00		5G3O1
	審査請求 未	語求 請求項	頁の数 4 OL	(全 16 頁) 最終頁に続く
(21) 出願番号	特願2003-146505 (P2003-146505)	(71) 出願人	000109255	
(22) 出願日	平成15年5月23日 (2003.5.23)		チタン工業株	式会社
()	,		山口県宇部市	大字小串1978番地の25
		(74) 代理人	100089705	
			弁理士 社本	一夫
		(74) 代理人	100076691	
			弁理士 増井	忠弐
		(74) 代理人	100075270	
			弁理士 小林	泰
		(74) 代理人	100080137	
			弁理士 千葉	昭男
		(74) 代理人	100096013	
			弁理士 富田	博行
		(74) 代理人	100114650	
			弁理士 中村	義哉
		1		最終頁に続く

(54) 【発明の名称】白色導電性粉末及びその応用

(57)【要約】

【課題】安全性に疑問のあるアンチモンを含有せずに良好な導電性能を有しながら経時安定性に優れ、かつ高価なインジウムを使用せずに白度が高く安価な白色導電性粉末を提供する。

【解決手段】本発明の白色導電性粉末は、白色無機顔料の個々の一次粒子の表面に、タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの被覆層を有することを特徴とする白色導電性粉末である。本発明の白色導電性粉末は安全且つ安価であり高導電性能及び良好な経時安定性を有し、白色導電性樹脂組成物に配合したり電子写真用トナーの外添剤などに応用可能である。

【選択図】 なし

【特許請求の範囲】

【請求項1】

白色無機顔料の個々の一次粒子の表面にタングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの被覆層を有することを特徴とする白色導電性粉末。

【請求項2】

粉体として初期の体積固有抵抗値が200Ω・cm以下、該体積固有抵抗値の経時変化幅が50℃、10日間の条件下で100Ω・cm以下であることを特徴とする請求項1に記載の白色導電性粉末。

【請求項3】

1成物。

請求項1または2に記載の白色導電性粉末を樹脂に配合してなる白色導電性樹脂組成物。 【請求項4】

請求項1または2に記載の白色導電性粉末を外添剤として用いた電子写真用トナー。

【発明の詳細な説明】

[0 0 0 1]

【発明の属する技術分野】

本発明は、安全性に疑問のあるアンチモンや高価なインジウムを使用せずに高導電性能で、かつ白色度の高い白色導電性粉末及びその応用に関する。

[0002]

【従来の技術】

20

10

現在知られている導電性粉末は、カーボンブラック、金属粉、アンチモンを含有した酸化スズ(ATO)粉末、スズを含有した酸化インジウム(ITO)粉末等のように均一構造からなる単一粒子型、また、選択された無機粉末を基体粒子とし、その表面に導電層を被覆した導電層被覆型とに分けられる。特に後者の導電層被覆型の導電性粉末は単一粒子型導電性粉末に比べて、基体粒子の選択により、比重の軽量化による添加量の低減化、板状形・針状型粒子の形状を利用した導電性能の効率化が図れ、また、基体粒子の屈折率あるいは粒子サイズを適宜選択することにより、透明性あるいは高隠蔽性を有する導電性粉末を製造することが出来るという利点がある。この導電層被覆型の導電性粉末は、帯電防止あるいは物質の抵抗値を調整する等の目的で、塗料、プラスチック、繊維等に配合されており、その使用量も年々増加傾向にある。また、その中でも特に高導電性能が要求される30用途においては、アンチモンを含有した酸化スズ系のものが主流である。

[0003]

しかしながら、近年アンチモンの毒性問題が取り沙汰されており、アンチモンを含有しない導電性粉末の開発が必要となってきた。このため、リンを含有する酸化スズを被覆した導電性粉末が考えられ、特開平6-207118号公報(特許文献1)が開示されたが、これは導電性能の経時安定性の点においてアンチモンを含有した酸化スズ系に劣るものであった。また、酸化スズを含む酸化インジウムを被覆した導電性粉末が、例えば特開平6-338213号公報(特許文献2)あるいは特開平8-231883号公報(特許文献3)等に開示されている。これらの粉末は非常に良好な導電性能及び経時安定性を有しており、アンチモンレス導電性粉末としては申し分ないものであるが、原料となるインジウムの価格が非常に高いことから、コストの面で使用用途が限定されるという欠点があった

40

【特許文献1】

特開平6-207118号公報

【特許文献2】

特開平6-338213号公報

【特許文献3】

特開平8-231883号公報

【特許文献4】

特開2002-179948号公報

40

50

【特許文献5】

特開平6-299086号公報

[0004]

【発明が解決しようとする課題】

本発明者らは、上記の従来の問題点を解決するため、鋭意研究を重ね、安全性に疑問のあるアンチモンを含有せずに、且つ良好な導電性能を有しながら経時安定性に優れ、なお且つ高価なインジウムを使用せずに、安価で白色度の高い白色導電性粉末を既に特願 2000-381638 (特開 2002-179948 号公報;特許文献 4) として出願した。当該白色導電性粉末は、白色無機顔料粒子の表面に、タングステン元素を含む二酸化スズの被覆層を有することを特徴とする白色導電性粉末であり、粉体として初期の体積固有抵抗値が 5000 に m以下、該体積固有抵抗値の経時変化幅が 500 に 10日間の条件下で 1000 に m以下であることを特徴とし、導電性能において優れたものである。

しかしながら、当該白色導電性粉末は、その製造過程で白色無機顔料粒子の表面にタングステン元素を含む二酸化スズを被覆する際、pHを2~5あるいは6~9に維持していたため、例えば白色無機顔料粒子が二酸化チタンの場合は凝集してしまい、粒子表面の被覆層が不均一で付着強度も不十分となる恐れがあった。その場合、得られた白色導電性粉末を樹脂組成物や電子写真トナー用に使用する際に粉砕処理した場合は、当該被覆がなされていない粒子表面が現れたり、被覆層が剥離し、その結果粉体の体積固有抵抗値が大きくなり、導電性能が低下するのみならず、不均一な被覆層の光の乱反射により、白度も大き20く劣るという問題があった。

[0006]

[0005]

また、特開平6-299086号公報(特許文献5)には、白色無機顔料である硫酸バリウムからなる粒状芯材と、その表面を被覆しているニオブ又はタンタルがドープされた酸化錫からなる被膜とからなる導電性硫酸バリウムフィラーが開示されている。当該被覆方法は、硫酸バリウム粒子のスラリーと、スズ酸ナトリウムを含む溶液とを混合してpH11~14の混合液を調製し、該混合液にニオブ化合物又はタンタル化合物を含有する酸溶液を所定量添加して添加後の液のpHを1~5に調節して導電層を生成させるものである。しかしながら、pH11~14では、スズ酸ナトリウムと、ニオブ又はタンタル化合物は完全に溶解しており、pHを1~5までに低下させる過程で沈殿物が急激に硫酸バリウム粒子表面に析出するため、この被膜は均一なものとは言えない。従って、導電性能や白度に関しては、未だ改善の余地があるものである。

[0007]

本発明は、特開2002-179948号公報や特開平6-299086号公報の白色導電性粉末よりも、更に導電性能及び白度に優れる白色導電性粉末を提供することを目的とする。本発明はまた、この様な白色導電性粉末を樹脂に配合してなる白色導電性樹脂組成物を提供することを目的とする。本発明は更に、この様な白色導電性粉末を外添剤として用いた電子写真用トナーを提供することを目的とする。

[0008]

【課題を解決するための手段】

本発明者等は、特開2002-179948号公報や特開平6-299086号公報の白色導電性粉末以上の特性を持つ白色導電性粉末を得るべく鋭意研究を更に重ねた結果、白色無機顔料粒子の表面に導電層としてタングステン元素を含む二酸化スズを被覆する際に、特定のpH領域で被覆したタングステン元素を含む二酸化スズの被覆層を有する白色導電性粉末は、従来の白色導電性粉末よりも優れた導電性能及び白度を有することを見出し、本発明を完成した。

[0009]

すなわち本発明の白色導電性粉末は、白色無機顔料の個々の一次粒子の表面に、タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの被覆層を有することを特徴とする。

当該粉末は、個々の一次粒子の表面にタングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの被覆層が均一に設けられているが、これは後述する本発明の粉末の製造方法に起因するものである。本発明の白色導電性粉末は、下記のような他の追加的特徴及び利点を有し得る。

[0010]

上記白色導電性粉末は、Na2 O含有量が100ppm以下であることが好ましく、それにより所望の導電性を有することができる。

[0011]

また、前記二酸化スズの被覆層は、タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を、SnO2に対しそれぞれW、Nb、Ta、Sb、F及びPとして0.1~30重量%含むことが好ましい。0.1重量%を下回ると所望の導電性が得られず、30重量%を超えると着色による白色度の低下、及び体積固有抵抗値の経時安定性が悪くなるという問題が生じる。

[0012]

本発明の好ましい態様の白色導電性粉末は、粉体の体積固有抵抗値が200Ω・cm以下、好ましくは100Ω・cm以下である優れた導電性能を有するとともに、実用材料として重要な経時安定性、すなわち、粉体の体積固有抵抗値の経時変化幅が50℃、10日間の条件において100Ω・cm以下、好ましくは50Ω・cm以下であり、良好な導電性能を保持する。

[0013]

上述の通り本発明の白色導電性粉末は、白色無機顔料の凝集体に導電層を被覆したもの(比較例1と図2参照)とは異なり、当該粉末を構成する個々の一次粒子の表面全体が均一 かつ緻密に被覆されている(実施例1と図1参照)。この被覆層の均一性及び緻密性の程 度は、擂潰機、振動ボールミル、サンドミル等の圧密粉砕機を使用した15~60分間の 粉砕を行っても、その前後の粉体の体積固有抵抗値の変化幅が1000·cm以内にとど まるほどである。これは、強力な分散を行っても上述の均一かつ緻密な被覆層が基体に強 固に付着して剥離し難いために、体積固有抵抗値の上昇幅が小さいことを意味し、この意 味でも優れた導電性能を有する。

上記の見地から、本発明は、製造工程のスラリー中で凝集性が強く、これに起因して十分な被覆が困難であった基体から調製される白色導電性粉末の導電性改善に有効であるとい 30 える。

[0014]

更に、本発明は、前記いずれかの白色導電性粉末を樹脂に配合してなる白色導電性樹脂組成物又は前記白色導電性粉末を外添剤として用いた電子写真用トナーを提供する。

[0015]

【発明の実施の形態】

本発明にかかる白色導電性粉末は、前記白色無機顔料粒子の表面に、導電層としてタングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を0.1~30重量%含む二酸化スズの水和物を、pH9~11において基体顔料に対しSnO2として3~150重量%被覆させ、pHを1~4まで低下させた後に非酸化性雰囲気または酸化性雰囲気にて400~900℃で加熱処理することにより得られる。

[0016]

また、前記のようにして得られた白色導電性粉末にカップリング剤や多価アルコールを用いて表面処理することで、更に良好な経時安定性及び分散性が得られる。白色導電性粉末の表面処理に用いるカップリング剤の種類は、導電粉末の使用目的に応じて適宜選択することが出来るが、シラン系、チタネート系、ジルコネート系、アルミネート系及びジルコアルミネート系からなる群から選択された一種以上のものを使用することが出来る。また、多価アルコールもカップリング剤と同様に適宜選択することが出来るが、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、マンニトール及びソルビトールから選択された一種以上のものを使用することが出来る。

10

[0017]

本発明の白色導電性粉末の基体は、白色無機顔料粒子なら、市販の二酸化チタン、二酸化ケイ素、硫酸バリウム、酸化ジルコニウム、チタン酸アルカリ金属塩あるいは白雲母のいずれも使用出来る。二酸化チタンを例にとり、より詳細に説明すると、粒子の大きさには制限がないが、樹脂組成物や電子写真用トナーとして使用する場合は、その平均一次粒子径が10 nm~500 nmの範囲のものが好ましい。また、球状、針状、板状等どの様な形状のものでも、更には結晶形として、アナターゼ型、ルチル型及び非晶質のものも使用することが出来る。なお、本願では白色の場合を重要視した関係から、後述の実施例を含め白色導電性粉末を中心に説明するが、例えば酸化鉄など種々の有色顔料にも同様に応用出来る。

[0018]

また、本発明の白色導電性粉末を樹脂に配合して導電性制御に有利で且つ安価な白色導電性樹脂組成物を製造することが出来る。本発明において使用される樹脂成分としては、導電性を付与したい市販の合成繊維、プラスチック及び塗料等であればいずれも使用することが出来る。特に合成繊維に使用する場合、導電層が基体に強固に付着しているため、従来の導電性酸化チタンで生じていた延伸工程時の導電層の切断という問題は起こらない。具体的な樹脂としては、ポリエチレン等のポリアルキル樹脂、塩化ビニル等のポリビニル樹脂、ポリエステル樹脂、ナイロン樹脂、アクリル樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、エポキシ樹脂、アルキッド樹脂、メラミン樹脂等の種々の樹脂を使用出来、熱可塑性、熱硬化性の別なく、またこれらの混合物、ハロゲン置換された樹脂等にも使用出来る。

[0019]

また、本発明の白色導電性粉末を外添剤として用いることで帯電性制御に有利で且つ安価なトナーを製造することが出来る。トナーとしては磁性一成分、非磁性一成分、二成分等のいずれの電子写真用トナーにも使用出来、トナーの構成成分に関しては公知のものを任意に使用することが出来る。またトナー関係のものでは、外添剤以外にも感光体や導電性プラスチックベルトにも適用が可能である。

[0020]

以下、本発明の白色無機顔料粒子を用いた白色導電性粉末の製造方法を詳細に説明する。 前記の二酸化チタン等の白色無機顔料の個々の一次粒子表面に、タングステン、ニオブ、 タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの水和物 をpH9~11にて被覆させる方法としては、種々の方法を用いることが出来る。

[0021]

例えば白色無機顔料粒子の水懸濁液をアルカリ等でpH9~11に調整してからスズ塩の溶液と、タングステン化合物、ニオブ化合物、アンチモン化合物、フッ素化合物及びリン化合物のいずれか一種及びアルカリを別々に並行して添加したり、スズ酸塩の溶液中にタングステン化合物、ニオブ化合物、アンチモン化合物、フッ素化合物及びリン化合物のいずれか一種を溶解してアルカリ性混合液とし、当該混合液と酸を別々に並行して添加し、pH9~11に維持する方法が好ましい。

[0022]

前記の白色無機顔料の個々の一次粒子表面に酸化スズのタングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの水和物を均一に被覆処理するには、前記並行添加の方法がより適しており、処理中は水懸濁液を50~100℃に加温保持することがより好ましい。本発明で重要なことは、被覆処理中の粒子の分散を良好な状態に維持すると共にスズが溶解度を有するpH領域で白色無機顔料粒子の表面に導電物質を徐々に析出させることである。即ちタングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの水和物を被覆処理する際のpHを9~11とすることである。pHが9より低いと、当該二酸化スズの水和物が急激に析出し、白色無機顔料粒子の表面に不均一に沈着してしまうとともに白色無機顔料粒子の表面以外の場所でも析出するので好ましくない。同時に基体となる白色無機顔50

料が例えば酸化チタンの場合は、凝集系となるため、この意味でも個々の一次粒子表面上に前記導電物質を均一に被覆することはできないので好ましくない。また、pHが11より高いとスズの溶解度が高くなるため被覆がほとんど行われないので好ましくなく、更にpHが12を超えると基体が酸化チタンの場合は、再び凝集してくるので、pHが9より低い場合と同様に好ましくない。前記のpH領域を維持することで、タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの加水分解生成物を、良好に分散された白色無機顔料の粒子表面上に均一かつ緻密に被覆させることが出来る。

[0023]

被覆処理後、スラリーを凝集させるため、pHを酸により $1\sim6$ まで低下させるが、残存 10 ナトリウム分が導電性能を劣化させるので、最終pHを $1\sim4$ とし、 $30分\sim4$ 時間保持してナトリウム分を除去する。その結果、残存ナトリウム分が Na_2 Oとして100ppm以下となり、導電性能を向上させる。

[0024]

本発明の白色導電性粉末の優れた分散性と均一かつ緻密な導電被覆層は、数値的には基体と導電性粉末の平均二次粒子径の差で、また、目視的には透過型及び走査型電子顕微鏡観察により確認できる。

[0025]

即ち得られた白色導電性粉末の平均二次粒子径は、基体となる白色無機顔料の平均二次粒子径とほぼ同等である。この白色導電性粉末を透過型及び走査型電子顕微鏡により観察す 20 ると、凝集体はなく、個々の一次粒子の表面上に前記被覆層が均一かつ緻密に設けられていることが認められる(実施例1と図1、及び実施例8と図3を参照されたい)。

[0026]

一方、p Hが前記領域から外れた条件で製造された白色導電性粉末の平均二次粒子径は、基体となる白色無機顔料の平均二次粒子径の10~50%ほど大きくなっている。この白色導電性粉末を透過型及び走査型電子顕微鏡により観察すると、塊状の凝集体が多いのと同時に、被覆層が局所的に偏在したり、単独で形成していることが認められる(比較例1と図2、及び比較例5と図4を参照されたい)。

[0027]

本発明の白色導電性粉末の被覆層は基体となる白色無機顔料に対して十分な付着力を有す 30 るため、前述したように擂潰機、振動ボールミル、サンドミル等の粉砕機を使用して、粉砕を行ってもその前後の粉体の体積固有抵抗値の変化幅は、100Ω・cm以内という優れた導電性能を有する。

[0028]

二酸化スズの水和物を被覆する際のスズ塩としては、例えば塩化スズ、硫酸スズ、硝酸スズ等を使用することが出来、スズ酸塩としては、例えばスズ酸ナトリウム、スズ酸カリウム、スズ酸リチウム等のスズ酸アルカリ金属塩を使用することが出来るが、 p H 9 ~ 1 1 で被覆処理することを考えると溶液がアルカリ性となるスズ酸アルカリ金属塩が好ましく、スズ酸ナトリウムが特に好ましい。

[0029]

タングステン化合物としては、例えばタングステン酸アンモニウム、タングステン酸カリウム、タングステン酸ナトリウム、メタタングステン酸アンモニウム、メタタングステン酸カリウム、メタタングステン酸ナトリウム、パラタングステン酸アンモニウム、パラタングステン酸カリウム、パラタングステン酸ナトリウム、オキシ塩化タングステン等を使用することが出来る。

[0030]

ニオブ化合物としては、例えばニオブ酸カリウム、ニオブ酸ナトリウム、五塩化ニオブ、 ヘプタフルオロニオブ酸及びその塩等を使用することが出来る。

[0 0 3 1]

タンタル化合物としては、例えばタンタル酸カリウム、タンタル酸ナトリウム、五塩化タ 50

ンタル、ヘプタフルオロタンタル酸及びその塩等を使用することが出来る。

[0032]

アンチモン化合物としては、例えば亜アンチモン酸、亜アンチモン酸カリウム、亜アンチ モン酸ナトリウム、三塩化アンチモン等を使用することが出来る。

[0033]

フッ素化合物としては、例えばフッ化アンモニウム、フッ化水素酸アンモニウム、フッ化 スズ等が使用できる。

[0034]

リン化合物としては、例えばオルトリン酸、メタリン酸、ピロリン酸、トリポリリン酸、 亜リン酸、次亜リン酸およびこれらのアンモニウム塩、ナトリウム塩、カリウム塩等を使 10 用することが出来る。

[0035]

使用するアルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、アンモニア水、アンモニアガス等、酸としては、例えば塩酸、硫酸、硝酸、酢酸等を使用することが出来る。

[0036]

白色無機顔料の個々の一次粒子表面の、タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの水和物の被覆量は、基体顔料に対しSnO₂として好ましくは3~150重量%、さらに好ましくは10~120重量%である。タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素を含む二酸化スズの水和物の被覆量が少なすぎると所望の導電性が得られず、多すぎると白色度の低下あるいは被覆が不均一になり、顔料としての一般的特性が低下すること、更にコストの上昇につながるために好ましくない。また、タングステン、ニオブ、タンタル、アンチモン、フッ素及びリンのいずれか一種の元素添加量は、前記SnO₂に対しWとして好ましくは0.1~30重量%、さらに好ましくは0.5~15重量%である。少なすぎると所望の導電性が得られず、多すぎると着色による白度の低下及び経時安定性の劣化、更にコストの上昇につながるために好ましくない。

[0037]

前記スラリーを、ろ過、乾燥させた後、加熱処理を行う。加熱処理を行う際には、例えば 導電層にタングステン、ニオブ、タンタル及びリンの元素のいずれか一種を含有させる場合は400~900℃で非酸化性雰囲気にて行うことが好ましく、空気中で加熱処理したものと比べると粉体の体積固有抵抗値を4~5桁低くすることが出来る。また、非酸化性雰囲気とするためには、不活性ガスを使用することが出来る。不活性ガスとしては、例えば、窒素、ヘリウム、アルゴン、炭酸ガス等を使用することが出来る。工業的には、窒素ガスを吹き込みながら加熱処理を行うことがコスト的に有利であり、特性の安定したものが得られる。加熱する際の温度は、好ましくは400~900℃、さらに好ましくは450~850℃である。この範囲よりも低い場合にも高い場合にも所望の導電性が得難い。また、加熱時間は短すぎる場合には加熱効果がなく、長すぎてもそれ以上の効果が望めないことから、15分~4時間程度が適当であり、好ましくは30分~2時間程度である。

[0038]

また、導電層にアンチモン及びフッ素のいずれか一種を含有させる場合は、加熱処理を酸化性雰囲気、好ましくは空気中にする以外は上記と同じ条件で行えば、所望の導電性粉が得られる。

[0039]

また、前記加熱処理した白色導電性粉末をカップリング剤や多価アルコールで表面処理することにより、更に良好な経時安定性及び分散性を向上させた白色導電性粉末を得ることが出来る。表面処理に用いるカップリング剤の種類は、導電粉末の使用目的に応じて適宜選択することが出来るが、シラン系、チタネート系、ジルコネート系、アルミネート系及びジルコアルミネート系からなる群から選択された一種以上のものを使用することが出来る。カップリング剤の処理量は、好ましくは0.05~10重量%、さらに好ましくは0

. 1~8重量%である。少なすぎると経時安定性及び分散性を改善する効果が得られず、多すぎると逆にカップリング剤処理層が絶縁層となって導電性能の低下を引き起こすこと、更にコストの上昇につながるため、好ましくない。また、表面処理に用いる多価アルコールもカップリング剤と同様に適宜選択することが出来るが、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、マンニトール及びソルビトールから選択された一種以上を選択することが出来る。多価アルコールの処理量は、好ましくは0.05~10重量%、さらに好ましくは0.1~8重量%であり、当該範囲を外れるとカップリング剤と同様の理由で好ましくない。

[0040]

カップリング剤の表面処理方法としては、種々の方法があるが、例えばヘンシェルミキサ 10 -等の高速撹拌混合機中で乾式処理を行う方法、あるいは白色導電性粉末を有機溶媒や水に分散させて懸濁液とし、その溶液中にカップリング剤を添加して処理を行う方法等がある。カップリング剤を表面に均一に処理する場合には後者の溶液中での処理が適しているが、有機溶媒系の場合には蒸留操作、粉砕等、水系の場合には固液分離、乾燥及び粉砕等の工程が必要となり、製造の容易さ、コストの点ではヘンシェルミキサー等の高速撹拌混合機を用いた方法が好ましい。

[0041]

前記白色導電性粉末を樹脂に配合し、さらに分散特性等の良い白色導電性樹脂組成物を製造することも出来る。白色導電性樹脂組成物は、樹脂成分と白色導電性粉末とを二軸混練機や熱ローラー等により練り込んで製造しても良く、また、サンドグラインダー等を用い 20 て白色導電性粉末を含有した樹脂塗料として作製し、導電性あるいは制電性を付与したい基材上に塗布し、薄膜として使用することも出来る。また、白度が高いので有色顔料や染料を添加すると、鮮明な導電性有色樹脂組成物が得られる。

[0042]

導電性あるいは制電性繊維として用いる場合にはその製造工程上、あるいは物性上の理由で、樹脂に練り込んで製造した組成物を使用する方法が好ましい。一方、フィルム、樹脂製容器、壁材、電子写真用部品等の帯電防止、あるいは表面抵抗値の調整を目的とする場合には、樹脂塗料として塗布する製造方法が容易であり、しかもコストが安く好ましい。

[0043]

配合する白色導電性粉末の量は、導電性樹脂組成物の製造方法により、また、目的とする 導電率により異なるため、使用用途に応じて調整する必要がある。その例示として例えば 帯電防止として使用するためには、 10^{10} $\Omega \cdot cm$ 以下の体積固有抵抗が必要であるため、白色導電性粉末を好ましくは $20 \sim 80$ 重量%、さらに好ましくは $30 \sim 75$ 重量% 配合する必要がある。配合する白色導電性粉末の量が少なすぎると所望する体積固有抵抗が得られず、多すぎると配合樹脂の強度が低下し、更にコストの上昇につながるために好ましくない。

[0044]

また、前記白色導電性粉末を外添剤として用い、さらに帯電特性等に優れた電子写真用トナーを製造することが出来る。トナーとしては磁性一成分、非磁性一成分、二成分等のいずれの電子写真用トナーにも使用出来、トナーの構成成分に関しては公知のものを任意に 40 使用することが出来る。

[0045]

前記白色導電性粉末のトナーに対する外添量は、得られるトナーが所望する特性となるような量であれば良く、特に制限はされないが、通常 0.05~5重量%、好ましくは 0.1~4 重量%であり、公知の方法でトナーに添加出来る。0.05 重量%未満の場合には、トナーの流動性や帯電調整に対する改善効果が認められず好ましくない。また、5 重量%を越える場合には、白色導電性粉末がトナー表面から離脱し、単独で挙動する粒子が増加するため感光体やキャリアの汚染原因となり、画像特性に悪影響を及ぼすため好ましくない。

[0046]

また、トナーを製造する際に、本発明の白色導電性粉末は単独で使用されるものとは限られず、必要に応じて本発明に属する白色導電性粉末を二種以上組み合わせたり、酸化チタン、アルミナ等の酸化物微粒子や、テフロン(登録商標)、ステアリン酸亜鉛、ポリフッ化ビニリデン等の滑剤、あるいはポリエチレン、ポリプロピレン等の定着助剤等の他の添加剤を併用することも出来る。

[0047]

以下に実施例及び比較例を挙げて本発明をさらに詳細に説明する。ただし、これらは単に例示のために記すものであり、これらによって本発明の範囲が制限されるものではない。

[0048]

【実施例1】

ルチル型二酸化チタン(チタン工業製 K R -310、平均二次粒子径 0.35μ m)を基体粉末として用い、この基体粉末 200g を純水に分散させ、2Lの水懸濁液とし、70 でに加温した。スズ酸ナトリウム(N a_2 S n O。 $3H_2$ O) 141.6g 及びタングステン酸ナトリウム(N a_2 W O。 $2H_2$ O) 4.3g を 500 m L の純水に溶解させたアルカリ溶液 A 20 と 20 に 20 と 20 と

[0049]

【実施例2】

ルチル型二酸化チタン(チタン工業製KR-310、平均二次粒子径0.35 μ m)を基体粉末として用い、この基体粉末200gを純水に分散させ、2Lの水懸濁液とし、70℃に加温した。塩化第二スズ(SnCl $_4$ ・5H $_2$ O)186gを1N塩酸500mLに溶解させたスズ酸液Aとタングステン酸ナトリウム(Na $_2$ WO $_4$ ・2H $_2$ O)4.3gを5N水酸化ナトリウム溶液500mLに溶解させたアルカリ溶液Bとを用いること以外は、実施例1と同様に処理して、目的とする白色導電性粉末を得た。

[0050]

【実施例3】

アナターゼ型超微粒子二酸化チタン(チタン工業製STT-65C、平均二次粒子径 0.30μm)を基体粉末として用い、この基体粉末 200gを純水に分散させ、4 Lの水懸濁液とし、70℃に加温した。スズ酸ナトリウム(Na2 SnO3・3 H2O)283.2g及びタングステン酸ナトリウム(Na2 WO4・2 H2O)8.6gを1 Lの純水に溶解させたアルカリ溶液Aと2 N塩酸とを懸濁液のp Hが10~11となるように同時に滴下(並行添加)した。以下の操作は実施例1と同様に処理して、目的とする白色導電性粉末を得た。

[0051]

【実施例4】

実施例1のタングステン酸ナトリウム(Na2WO4・2H2O)4.3gの代わりにニオブ酸ナトリウム(NaNbO3)4.2gを用いたほかは、同様に処理して、目的とする白色導電性粉末を得た。

[0052]

【実施例5】

実施例2のタングステン酸ナトリウム(NazWO。・2H20)4.3gの代わりに五 50

塩化ニオブ(N b C l。)7.0gを用いたほかは、同様に処理して、目的とする白色導電性粉末を得た。

[0053]

【実施例6】

実施例 2 のタングステン酸ナトリウム(N a_2 W O_4 · 2 H_2 O) 4 · 3 g の代わりに五塩化タンタル(T a C I_5) 4 · 8 g を用いたほかは、同様に処理して、目的とする白色導電性粉末を得た。

[0054]

【実施例7】

実施例 2 のタングステン酸ナトリウム(N a_2 W O_4 \cdot 2 H_2 O) 4 \cdot 3 g の代わりにフ 10 y 化アンモニウム(N H_4 F) 4 \cdot 7 g を用い、加熱処理における窒素ガスを空気に変えたほかは、同様に処理して、目的とする白色導電性粉末を得た。

[0055]

【実施例8】

実施例1のスズ酸ナトリウム($Na_2SnO_3\cdot 3H_2O$)141.6gを70.8gとし、タングステン酸ナトリウム($Na_2WO_4\cdot 2H_2O$)4.3gの代わりに亜アンチモン酸ナトリウム($NaSbO_2$)5.8gを用い、加熱処理における窒素ガスを空気に変えたほかは、同様に処理して、目的とする白色導電性粉末を得た。図3は、その粉末の透過型電子顕微鏡写真を示す。

[0056]

【実施例9】

[0057]

【実施例10】

実施例2の塩化第二スズ($SnCl_4$ ・ $5H_2O$) 186gを93gとし、タングステン酸ナトリウム(Na_2WO_4 ・ $2H_2O$) 4.3gの代わりにオルトリン酸(H_3PO_4) 0.57gを用いたほかは、同様に処理して、目的とする白色導電性粉末を得た。

[0058]

【実施例11】

実施例1で得た白色導電性粉末2000gを、60~80℃に加温したヘンシェルミキサーに入れ、低速撹拌しながらシラン系カップリング剤のビニルトリエトキシシラン60gを約10分間かけて添加した。添加終了後は高速で15分間撹拌し、100℃にて加熱処理を行い、目的とする白色導電性粉末を得た。

[0059]

【実施例12】

実施例1で得た白色導電性粉末2000gを、60~80℃に加温したヘンシェルミキサーに入れ、低速撹拌しながらシラン系カップリング剤のビニルトリエトキシシラン40g 40 とn-ヘキシルトリメトキシシラン15gを約15分間かけて添加した。以下の操作は実施例4と同様に処理して、目的とする白色導電性粉末を得た。

[0060]

【実施例13】

実施例11において、実施例1の白色導電性粉末の代わりに実施例3で得た白色導電性粉末を用い、ビニルトリエトキシシラン60gを150gとしたほかは、同様に処理して、目的とする白色導電性粉末を得た。

[0061]

【実施例14】

実施例1で得た白色導電性粉末2000gをヘンシェルミキサーに入れ、低速撹拌しなが 50

20

30

らトリメチロールエタン60gの水溶液を約10分間かけて添加した。添加終了後は高速 で15分間撹拌し、100℃にて加熱処理を行い、目的とする白色導電性粉末を得た。

[0062]

【実施例15】

実施例1で得た白色導電性粉末と高密度ポリエチレン(昭和電工製ショウレックスSS55008)とを二本ローラー(関西ロール製)を用い、170℃で2分間混練し、目的とする白色導電性樹脂組成物を得た。この際、白色導電性粉末の濃度が30重量%、50重量%及び70重量%となるように配合量を変化させた。得られた白色導電性樹脂組成物は180℃に加温した加圧成形機を用い、約0.6mm厚のシートに加工した。

[0063]

【実施例16】

実施例15において、実施例1で得た白色導電性粉末の代わりに、実施例4で得た白色導電性粉末を使用することのほかは、同様に処理して、目的とする白色導電性樹脂組成物を得た。

[0064]

【実施例17】

実施例15において、実施例1で得た白色導電性粉末の代わりに、実施例14で得た白色 導電性粉末を使用することのほかは、同様に処理して、目的とする白色導電性樹脂組成物 を得た。

[0065]

【実施例18】

ポリエステル樹脂、カーボンブラック、オフセット防止剤、帯電調整剤をブレンダーで混合した後、KRCニーダー(栗本鉄工所製)にて溶融混練した。得られた混練物を冷却し、粗粉砕機にて粗粉砕した後、エアジェット方式による微粉砕機にて微粉砕し、更に風力分級機で分級して着色樹脂粉体を得た。この粉体100部に対して、実施例3で得た白色導電性粉末を1.0部外添し、平均粒径8μmの黒色トナーを製造した。

[0066]

【実施例19】

実施例18において、実施例3で得た白色導電性粉末の代わりに、実施例13で得た白色 導電性粉末を使用することのほかは、同様に処理して、黒色トナーを製造した。

[0067]

【比較例1】

[0068]

【比較例2】

実施例2において、懸濁液にスズ酸液Aとアルカリ溶液Bを並行添加する際のpHを2~ 3に変更することのほかは、同様に処理して、白色導電性粉末を得た。

[0069]

【比較例3】

実施例3において、懸濁液にアルカリ溶液Aと2N塩酸を並行添加する際のpHを2~3に変更することのほかは、同様に処理して、白色導電性粉末を得た。

[0070]

50

10

20

【比較例4】

実施例1において、懸濁液にアルカリ溶液Aと2N塩酸を並行添加する際のpHを12~ 13に変更することのほかは、同様に処理して、白色導電性粉末を得た。

[0071]

【比較例5】

実施例8において、懸濁液にアルカリ溶液Aと2N塩酸を並行添加する際のpHを2~3に変更することのほかは、同様に処理して、白色導電性粉末を得た。この粉末を透過型電子顕微鏡で観察したところ、導電層は個々の二酸化チタン粒子表面に均一に被覆されておらず、なおかつ若干の遊離物も観察された。図4はそのときの透過型電子顕微鏡写真を示す。

10

[0072]

【比較例6】

実施例15において、実施例1で得た白色導電性粉末の代わりに、比較例1で得た白色導電性粉末を使用することのほかは、同様に処理して、白色導電性樹脂組成物を得た。

[0073]

【比較例7】

実施例15において、実施例1で得た白色導電性粉末の代わりに、市販のSnO2-Sb系白色導電性粉末(市販品A)を使用することのほかは、同様に処理して、白色導電性樹脂組成物を得た。

[0074]

【比較例8】

実施例15において、実施例1で得た白色導電性粉末の代わりに、市販のSnO₂-Sb系白色導電性粉末(市販品B)を使用することのほかは、同様に処理して、白色導電性樹脂組成物を得た。

[0075]

【比較例9】

実施例18において、実施例3で得た白色導電性粉末の代わりに、実施例3で基体粉末として用いたアナターゼ型超微粒子二酸化チタン(チタン工業製STT-65C)を使用することのほかは、同様に処理して、黒色トナーを製造した。

[0076]

以上、実施例1~19及び比較例1~9の試料の測定結果を表1に示す。なお、表1の諸 特性は、後記の要領で測定した。

【表1】

20

1 1	7	(4 L/8)			!!		1												-20	-33 3					!	-	-		0													
7.4.4性	日本書館	18/1:N	-	1	-	-		1		1	1	i		ľ	1						ļ			1		!	-															
	1.1. 将電台	(# (/ 8)					1		1		l l								-23	9E-			!			i	1	1	-19													
**	新脂組成物の体積固有低抗値 (O・cm)	0.10										1		!		3 52+04	9. 8E+03	1. 0E+04		1			1			6.95+04	8. 26+04	7, 05+04														
白色專館性樹脂組成物特性	5体複固有個	50年度3														7 3F+05	2. 8R+05	3. 0E+05			1		1	li		4. ZE+06	7. 5E+06	6. IE+06	1													
自色導質性核	新脂組成物の	30.83%		:	1		!		ļ			1	!	1	!!	5 5E+D0	60+39 T	1E+09	1		-	1				6.45+09	7. 85+09	6. 9E+09														
	3, 13	発展性が来る。35	0.36	0.32	0.35	0.36	0.36	0.36	0.35		0 36	0 35	0.35	0 3.7	35		1	!!	1	1	0.53	0.47	0.36	0 49	0.43		0.49	0.33	1													
	粒子径 (4	*	d	l	d	Ö		Ö	٥	٦	֓֡	L		1				1	1	-	0 33		L	L			1															
l f	-+	(ppm)		L	L	85 40			86 35				30	63	L	L	 - ,	 -			7K 130	L	190	78 60	L	L	84 44	82 46	L													
	を来のし倍	200	48	205	48	43	20	46				 	42	35	1						L		. 85	0=	9		24	6														
	- 1-	圧能かの変化															1	-	-		150								1													
	(M (O cm)	F 配料中次	7. 80E+01	1, 70E-02	8 00E+0	8. 30E-01	8. 50E-01	7.508-01	4 30F-00	9 OOF-00	7 405+01	5 50F±01	6 40F-01	1 505-02	4 80F-01					1	1 RIE-02	- 50F-02	2 68F-07	1 61F-09	2. 40F-01		2. 80E-01	2, 50E-01														
		事配所 5.2 5.2	36	9	3.1	35	ຂ	Ē	-	7	٦	9			2 -			ļ				24	55	Q.	202	1	!	1														
未特性	分末の体積量	(中国) 5 30F+01	5. 60E+01	1. 506+02	6, 308.4011	7. 50E+01	6, 30E+01	5.00E+01	2 10F+011	4 405+00	1 035+09	2 60E+01	2 BOF 401	1 186103	1. 13E 10E	. 000.0					6 00F+01	101209	1 75F+02	8 20F+01	3 :00:+01	1000	i	1														
白色導電性粉末特性	白色導電性粉末の体積固有抵抗	和 和 W XON: +UI	3,005+01	1. 20E+02	3.205+01	4. 00E+01	3, 505+01	2 90F+01	3 205+00	S KOE+UU	3 305+01	3 005401	2 20E+01	1 0:5103	9 105101	10,000					3 105101	9 90F+01	1 30F+07	1 305 101	5. 40E+00	20.57	*3 70E+00	*6. 20F+00		學												
		14 KG (28)	おおび · 田節成 2	粉落底3	护程座4	研究をい	実施例6	研究医7	投稿を な	子を見る	大师的	# CC (2011)	光信列19	4 to 50119	A SEPTION	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·	人名 500 100 100 100 100 100 100 100 100 100	· 拉森原二8	日本 日本 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日		子 40 後 7	- 数章3	H 45 00 1	大き様に	子交替氏	比較例7	1.65年18	五百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百百	#開入直後の値												

[0077]

[粉末の体積固有抵抗値]

試料粉末を 230 k g / c m^2 の圧力の加圧成形した状態(直径25.4 mm、厚さ3.3 mm)での電気抵抗値を横河ーヒューレット・パッカード社製デジタルL C R メーター 50

4261Aにて測定し、算出した。

[0078]

「樹脂組成物の体積固有抵抗値]

樹脂シートを1cm角に切断し、上下面に導電性銀ペーストを塗布し24時間乾燥した。 LCRメーター4261Aあるいはハイレジストメーター(いずれも横河ーヒューレット ・パッカード社製)にて、電気抵抗値を測定し、下記式により樹脂組成物の体積固有抵抗 値を算出した。なお、樹脂シートの厚さは電子式マイクロメーター(新光電子製MH-1 00)にて測定した。

【0079】 【数1】

10

電気抵抗値(Ω)

樹脂組成物の体積固有抵抗値(Ω・cm)=

樹脂シートの厚さ(cm)

[0800]

[経時変化]

試料粉末を50℃に設定した乾燥機に入れ、10日間経過後の粉末の体積固有抵抗値を測定した。経時後の粉末の体積固有抵抗値から経時前の粉末の体積固有抵抗値を差し引いた値を経時変化幅とした。

20

[0081]

[圧密粉砕]

試料粉末8gを石川式擂潰機で30分間粉砕した。

[0082]

[粉体の二次粒子径]

堀場製作所製 超遠心式自動粒度分布測定装置CAPA-700形を使用して測定した。 【0083】

[带電安定性評価方法]

硬質ポリエチレン製ネジ付き広口瓶(容量100mL)に鉄粉キャリア(TEFV200/300、パウダーテック社製)とトナーを重量比で96:4となるように採取し、低温 30低湿環境下(LL、15℃/20%RH)及び高温高湿下(HH、35℃/90%RH)に開封したまま24時間放置した。放置終了した広口瓶を密封し、腕振り型振とう混合機にて2分間振とう後、ブローオフ帯電量測定装置(TB-200型、東芝ケミカル社製)を用いて各環境下のトナー帯電量を測定した。結果は表1に併記した。なお、LL及びHHの環境における帯電量の差が小さいほど、帯電安定性が良好である。

【図面の簡単な説明】

- 【図1】実施例1で得られた白色導電性粉末の10万倍の透過型電子顕微鏡写真である。
- 【図2】比較例1で得られた白色導電性粉末の10万倍の透過型電子顕微鏡写真である。
- 【図3】実施例8で得られた白色導電性粉末の15万倍の透過型電子顕微鏡写真である。
- 【図4】比較例5で得られた白色導電性粉末の15万倍の透過型電子顕微鏡写真であ

フロントページの続き

(51)Int.C7.'

FΙ

テーマコード (参考)

G 0 3 G 9/08

G O 3 G 9/08

374

Z

D

H 0 1 B 1/20

H 0 1 B 1/20

5G307

H 0 1 B 5/00

HO1B 5/00

(72)発明者 原田 秀文

山口県宇部市大字小串1978番地の25 チタン工業株式会社内

(72)発明者 井上 保雄

山口県宇部市大字小串1978番地の25 チタン工業株式会社内

(72)発明者 森下 正育

山口県宇部市大字小串1978番地の25 チタン工業株式会社内

Fターム(参考) 2H005 AA08 CB07

4G042 DA02 DB27 DC01 DE06

4G047 CA02 CA05 CB05 CB09 CC03 CD03

4J002 AA001 BB001 BD031 BC001 BN151 CC041 CC181 CD001 CF001 CL001

DE096 FD116 GP00 GQ00 GS00

5G301 DA13 DA14 DA23 DA29 DD01 DD02 DD03

5G307 AA08