世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 209/12, 209/20, 209/22, 401/04, 403/06, 409/06, 409/14, 417/06, A61K 31/40, 31/41, 31/415, 31/44, 31/535

(11) 国際公開番号

WO99/50245

(43) 国際公開日

1999年10月7日(07.10.99)

(21) 国際出願番号

PCT/JP99/01547

A1

(22) 国際出願日

1999年3月26日(26.03.99)

(30) 優先権データ

特願平10/78203

1998年3月26日(26.03.98) JF

(71) 出願人 (米国を除くすべての指定国について) 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP] 〒541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

藤下利夫(FUJISHITA, Toshio)[JP/JP]

〒572-0803 大阪府寝屋川市梅が丘1-11-6-302 Osaka, (JP)

吉永智一(YOSHINAGA, Tomokazu)[JP/JP]

〒569-0078 大阪府高槻市大手町3-19-301 Osaka, (JP)

(74) 代理人

介理士 山内秀晃(YAMAUCHI, Hideaki)

〒553-0002 大阪府大阪市福島区鷺洲5丁目12番4号

塩野義製薬株式会社 特許部 Osaka, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54) Title: INDOLE DERIVATIVES WITH ANTIVIRAL ACTIVITY

(54)発明の名称 抗ウイルス作用を有するインドール誘導体

$$R^5$$
 R^4
 R^3
 R^5
 R^6
 R^1
 R^2
(I)

(57) Abstract

Compounds represented by formula (I), wherein R¹ represents hydrogen, lower alkyl, optionally substituted arylsulfonyl, etc.; R² represents hydrogen, lower alkyl, optionally substituted aralkyl, etc.; R³, R⁴, R⁵, and R⁶ each independently represents hydrogen, halogeno, lower trihaloalkyl, etc.; X represents hydroxy or optionally substituted amino; and Y represents COOR (R is hydrogen or an ester residue), optionally substituted aryl, or optionally substituted heteroaryl. They have an integrase inhibitory activity and are useful as an anti-HIV agent.

: 注

$$R^5$$
 R^6
 R^3
 R^2
 R^3
 R^3

(式中、

 R^1 は水素、低級アルキル、置換基を有していてもよいアリールスルホニル等; R^2 は水素、低級アルキル、置換基を有していてもよいアラルキル等;

 R^3 、 R^4 、 R^5 及び R^6 はそれぞれ独立して、水素、ハロゲン、トリハロゲン 化低級アルキル等;

Xはヒドロキシ又は置換基を有していてもよいアミノ;

YはCOOR(Rは水素またはエステル残基)、置換基を有していてもよいアリール、又は置換基を有していてもよいヘテロアリールである。)で示される化合物は、インテグラーゼ阻害作用を有し、抗HIV薬として有用である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AEL F T T T T T T T T T T T T T T T T T T T	DEEFFGGGGGGGHHILLITKKKK MESIRABDEHMNWRRUDELNSTPEGPR ドスペーラボ国レルーンニニリロンンイスンイタ本ニル朝国 ドスペーラボ国レルーンニニリロンンイスンイタ本ニル朝国 ドスペーラボ国レルーンニニリロン・アンドルラドスリアンが ザアーシンル シア ス ザアーシンル シア ス ザアーシンル シア ス ザアーシンル シア ス サア ア・・チリネラエ ラア ス ザアーシンル シア ス サア ア・・アド ド ン	K L L L L L L L L L L L L L L L L L L L	RDEGIKLNZDGJZMRTAGSSSSSKLNZDGJZMRTAGSKJNZ レススシススシセスチトタケトトトウウ米ウヴュ南ジースシススシセスチトタケトトトウウ米ウヴュ南ジーゴキザクコニラン ベェゴフバースコメーター クー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー
--	---	---	--

明細書

抗ウイルス作用を有するインドール誘導体

技術分野

5 本発明は、抗ウイルス作用を有する新規化合物、更に詳しくは、ウイルスのインテグラーゼ阻害作用を有するインドール誘導体及びそれを含有する医薬、特に 抗HIV薬に関する。

背景技術

10 ウイルスのなかでも、レトロウイルスの一種であるヒト免疫不全ウイルス(HIV)は、後天性免疫不全症候群(エイズ)の原因となることが知られている。そのエイズの治療薬としては、これまでのところ逆転写酵素阻害剤(AZT、3TC等)とプロテアーゼ阻害剤(インディナビル等)が主流であるが、腎臓障害等の副作用や耐性ウイルスの出現等の問題が判明しており、それらとは異なる作用メカニズムを有する抗HIV薬の開発が期待されている。

このような状況下、最近、ウイルスDNAの動物細胞染色体への部位特異的組換え反応に関与する酵素であるインテグラーゼが注目されており、該酵素阻害作用に基づく抗HIV薬の研究も行われている [(1) Proc. Natl. Acad. Sci. USA 61 (3). 1013-1020 (1968), KOURILSKY Pet al.: (2) J. VIROL. METHODS (NETHERLANDS).

- 2017/1-2(55-61) (1987), F Barin et al.: (3) Proc. Natl. Acad. Sci. USA 90: 2399(1993), Fesen. MR (1993); (4) CDC AIDS Weekly Pagination: P2 (1990), DeNoon,DJ]。また最近報告されたインテグラーゼ阻害剤としては、例えば、USP 5、578,573に記載のペプチド誘導体、GB2306476Aに記載のテトラヒドロナフチル誘導体、WO97/38999に記載のアクリドン誘導体等がある。
- 25 なお、文献 (Khim. Geterotsikl. Soedin. 1973、(11)、1519) には、ある種のインドール誘導体が記載されているがその薬効については何ら記載されていない。また USP 5,475、109 には、ジオキソブタン酸が置換した非縮合タイプのヘテロ環式化合物が抗インフルエンザウイルス薬として有用である旨記載されているが、

その作用メカニズムはキャップ依存性エンドヌクレアーゼ (cap-dependent endonuclease) 阻害である。

発明の開示

5 上記の状況下、新規なインテグラーゼ阻害剤の開発が要望されていた。本発明 者らは鋭意検討した結果、新規インドール誘導体がインテグラーゼの阻害作用を 有し、抗ウイルス薬、特に抗HIV薬として有用であることを見出し、以下に示 す本発明を完成した。

(1)式:

(式中、

10

15

20

R¹は水素、低級アルキル、シクロアルキル低級アルキル、低級アルキルスルホニル、低級アルキルカルボニル、置換基を有していてもよいアリール、置換基を有していてもよいアリールスルホニル、置換基を有していてもよいアリールカルボニル、置換基を有していてもよいへテロアリール、置換基を有していてもよいへテロアリール、置換基を有していてもよいへテロアラルキル、置換基を有していてもよいへテロアリールスルホニル、低級アルコキシカルボニル、置換基を有していてもよいスルファモイル、又は置換基を有していてもよいカルバモイル;

R²は水素、低級アルキル、低級アルキルカルボニル、置換基を有していてもよいアリール、置換基を有していてもよいアラルキル、置換基を有していてもよいアリールカルボニル、置換基を有していてもよいヘテロアリール、置換基を有していてもよいへテロアラルキル、置換基を有していてもよいアリールチオ、置換基を有していてもよいアリールスルフィニル、置換基を有していてもよいアリ

ールスルホニル、置換基を有していてもよいヘテロサイクリル低級アルキルまた は置換基を有してもよいヘテロサイクリルスルホニル;

R³、R⁴、R⁵及びR⁶はそれぞれ独立して、水素、ハロゲン、トリハロゲン 化低級アルキル、ヒドロキシ、低級アルコキシ、ニトロ、アミノ、エステル化さ れていてもよいカルボキシル、置換基を有していてもよいアラルキルオキシ、又 は置換基を有していてもよいアリールスルホニルオキシ;

Xはヒドロキシ又は置換基を有していてもよいアミノ;

YはCOOR(Rは水素またはエステル残基)、置換基を有していてもよいアリール、又は置換基を有していてもよいヘテロアリールである。

- 10 但し、 R^1 、 R^2 、 R^3 、 R^5 及び R^6 が水素; R^4 が水素、メトキシ又はクロル; Xがヒドロキシ;かつYが $COOC_2H_5$ である場合を除く。) で示される化合物(以下、化合物(I)という)もしくはその互変異性体、又は それらの製薬的に許容される塩もしくは水和物。
- (2) YがCOOR (式中、Rは前記と同意義である) の場合、R¹及びR²が同 15 時に水素ではない、上記(1)記載の化合物。
 - (3) XがヒドロキシかつYがC O O R (式中、R は前記と同意義である) の場合、 R^1 及び R^2 が同時に水素ではない、上記(1)記載の化合物。
 - (4) R¹が水素又は置換基を有していてもよいアリールスルホニルである、上記 (1) ~ (3) のいずれかに記載の化合物。
- 20 (5) R^2 が水素、置換基を有していてもよいアリール、又は置換基を有していてもよいアラルキルである、上記(1) \sim (3) のいずれかに記載の化合物。
 - (6) R^3 、 R^4 、 R^5 及び R^6 がそれぞれ独立して水素又はハロゲンである、上記 (1) ~ (3) のいずれかに記載の化合物。
 - (7) R³、R⁵及びR⁶がすべて水素である、上記(6)記載の化合物。
- 25 (8) Xがヒドロキシである、上記(1) \sim (3) のいずれかに記載の化合物。
 - (9) Yが置換基を有していてもよいヘテロアリールである、上記(1)記載の 化合物。
 - (10) 該へテロアリールが、環内に少なくとも1個のN原子を有する5又は6

員環である、上記 (9) 記載の化合物。

15

(11) 該ヘテロアリールが、テトラゾリル、トリアゾリル又はイミダゾリルである、上記(10)記載の化合物。

 $(1\ 2)\ R^1$ が水素又は置換基を有していてもよいアリールスルホニル; R^2 が水素、置換基を有していてもよいアリール又は置換基を有していてもよいアラルキル; R^3 、 R^4 、 R^5 及び R^6 がそれぞれ独立して水素又はハロゲン; Xがヒドロキシである、上記(1)~(3)のいずれかに記載の化合物。

(13) R¹が水素又は置換基を有していてもよいアリールスルホニル; R²が水素、置換基を有していてもよいアリール又は置換基を有していてもよいアラルキル; R³、R⁴、R⁵及びR⁶がそれぞれ独立して水素又はハロゲン; Xがヒドロキシ; Yが置換基を有していてもよいヘテロアリールである、上記(1)記載の化合物。

(14) R^1 が水素又はハロゲンにより置換されていてもよいフェニルスルホニル; R^2 が水素、ハロゲンにより置換されていてもよいフェニル又はハロゲンにより置換されていてもよいフェニルメチルである; R^4 がハロゲン; R^3 、 R^5 及び R^6 が共に水素; Xがヒドロキシ; Yがテトラゾリルである、上記(13)記載の化合物。

(15) - C(O) CH = C(X) Y (式中、X及びYは前記と同意義である。)で 示される基をその3位に有することを特徴とするインドール誘導体を、有効成分 として含有する医薬組成物。

(16)上記(1)~(14)のいずれかに記載の化合物を有効成分として含有する医薬組成物。

(17)上記(1)~(14)のいずれかに記載の化合物を含有するインテグラーゼ阻害剤。

25 (18) 上記 (1) ~ (14) のいずれかに記載の化合物を含有する抗ウイルス 薬。

(19)上記(1)~(14)のいずれかに記載の化合物を含有する抗HIV薬。

(20)上記(17)記載のインテグラーゼ阻害剤に、逆転写酵素阻害剤及び/

又はプロテアーゼ阻害剤を組み合わせてなる、抗HIV用合剤。

10

15

本発明化合物(I)の構造上の特徴の一つは、インドール環の3位に"-C(O) CH=CXY"で示される基を有する点である。

5 本明細書中で用いる用語を以下に説明する。各用語は特に断りのない限り、単 独または他の用語との併用のいずれの場合も共通の意味を有する。

「低級アルキル」は、例えば炭素数 $1 \sim 6$ 個の直鎖状又は分岐状のアルキル基であり、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソプチル、sec-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ペンチル、イソペンチル、スオペンチル、t-ペンチル、t-ペンチル、t-ペンチル、t-ペンチル、t-ペンチル、t-プロピル、t-プロピル、t-プロピル、t-プチル等である。

「低級アルコキシ」は、例えば炭素数 $1 \sim 6$ 個の直鎖状又は分岐状のアルコキシ基であり、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、t-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、n-ペキシルオキシ、イソペキシルオキシ等を包含する。好ましくは、炭素数 $1 \sim 4$ 個のアルコキシ基であり、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソプトキシ、t-ブトキシ等である。

「シクロアルキル低級アルキル」は、例えば炭素数3~6の環状アルキルが置換した上記低級アルキルであり、シクロプロピルメチル、2ーシクロプロピルエチル、4ーシクロプロピルブチル、シクロペンチルメチル、3ーシクロペンチルプロピル、シクロペキシルメチル、2ーシクロヘキシルエチル等を包含する。好ましくは、シクロプロピルが置換した炭素数1~4個のアルキルであり、シクロプロピルメチル、2ーシクロプロピルエチル、4ーシクロプロピルブチルである。

25 「低級アルキルスルホニル」は、例えば上記低級アルキルが結合したスルホニル 基であり、メチルスルホニル、エチルスルホニル、nープロピルスルホニル、イ ソプロピルスルホニル、nーブチルスルホニル、イソブチルスルホニル、secーブ チルスルホニル、tーブチルスルホニル、nーペンチルスルホニル、イソペンチル

スルホニル、ネオペンチルスルホニル、1-ペンチルスルホニル、<math>n-へキシルスルホニル、イソヘキシルスルホニル等を包含する。好ましくは、炭素数 $1\sim 4$ 個のアルキルが結合したスルホニル基であり、例えば、メチルスルホニル、エチルスルホニル、n-プロピルスルホニル、イソプロピルスルホニル、n-プチルスルホニル、イソプチルスルホニル、sec-プチルスルホニル、1-プチルスルホニル、ルである。

「低級アルキルカルボニル」は、例えば上記低級アルキルが結合したカルボニル 基であり、メチルカルボニル、エチルカルボニル、n - プロピルカルボニル、イソプロピルカルボニル、n - ブチルカルボニル、イソブチルカルボニル、sec - ブチルカルボニル、(- ブチルカルボニル、n - ペンチルカルボニル、イソペンチルカルボニル、ネオペンチルカルボニル、t - ペンチルカルボニル、n - ヘキシルカルボニル、イソヘキシルカルボニルをを包含する。好ましくは、炭素数1~4個のアルキルが結合したカルボニル基であり、例えば、メチルカルボニル、エチルカルボニル、n - プロピルカルボニル、イソプロピルカルボニル、n - ブチルカルボニル、イソプチルカルボニル、sec - ブチルカルボニル、t - ブチルカルボニル・ルである。

10

15

「低級アルコキシカルボニル」は、例えば上記低級アルコキシが結合したカルボニル基であり、メトキシカルボニル、エトキシカルボニル、 n ー プロポキシカルボニル、イソプロボキシカルボニル、 n ー プトキシカルボニル、イソブトキシカルボニル、 s ー ブトキシカルボニル、 n ー ペンチルオキシカルボニル、イソペンチルオキシカルボニル、 n ー へキシルオキシカルボニル、 1 ー へキシルオキシカルボニル、 1 ー へキシルオキシカルボニル、 2 を包含する。 好ましくは、炭素数 1 ~ 4個のアルコキシが結合したカルボニル基であり、メトキシカルボニル、エトキシカルボニル、 n ー プロボキシカルボニル、 イソプロポキシカルボニル、 n ー ブトキシカルボニル、 イソプトキシカルボニル、 s ー ブトキシカルボニル、 t ー ブトキシカルボニル、 イソプトキシカルボニル、 s ー ブトキシカルボニル、 t ー ブトキシカルボニルである。

「アリール」は、例えばフェニル、ナフチル又は多環芳香族炭化水素基 (フェナンスリル等)等である。好ましくは、フェニル、ナフチルである。

「アラルキル」は、例えば上記アリールが置換した上記低級アルキル基であり、 ベンジル、2-フェネチル、1-ナフチルメチル、2-(2-ナフチル)エチル 等を包含する。好ましくは、ベンジルである。

「アラルキルオキシ」は、例えば上記アラルキルが結合したオキシ基であり、 ベンジルオキシ、2-フェネチルオキシ、1-ナフチルメチルオキシ、2-(2

- ナフチル)エチルオキシ等を包含する。

5

「アリールカルボニル」は、例えば上記アリールが結合したカルボニル基であ り、ベンゾイル、ナフチルカルボニル等を包含する。

「アリールチオ」は、例えば上記アリールが結合したチオ基であり、フェニル 10 チオ、ナフチルチオ等を包含する。

「アリールスルフィニル」は、例えば上記アリールが結合したスルフィニル基 であり、フェニルスルフィニル、ナフチルスルフィニル等を包含する。

「アリールスルホニル」は、例えば上記アリールが結合したスルホニル基であ り、フェニルスルホニル、ナフチルスルホニル等を包含する。

15 「アリールスルホニルオキシ」は、例えば上記アリールが結合したスルホニルオキシ基であり、フェニルスルホニルオキシ、ナフチルスルホニルオキシ等を包含する。

「ヘテロアリール」は、例えばN、O及びSからなる群から選択される同一又は異なるヘテロ原子を1~4個含む5~6員の芳香環基であり、フリル、チエニル、ピロリル、オキサゾリル、チアゾリル、イミダゾリル、ピラゾリル、トリアソリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアジニル、テトラゾリル、チアゾリル等を包含する。

「ヘテロアリールスルホニル」は、例えば上記ヘテロアリールが結合したスルホニル基であり、フリルスルホニル、チエニルスルホニル、ピロリルスルホニル、 オキサゾリルスルホニル、チアゾリルスルホニル、イミダゾリルスルホニル、ピラゾリルスルホニル、トリアゾリルスルホニル、ピリジルスルホニル、ピリダジニルスルホニル、ピリミジニルスルホニル、ピラジニルスルホニル、トリアジニルスルホニル、テトラゾリルスルホニル等を包含する。

「ヘテロアラルキル」は、例えば上記ヘテロアリールが置換した上記低級アルキル基であり、フリルメチル、チエニルメチル、2ーチエニルエチル、ピロリルメチル、2ーピロリルエチル、オキサゾリルメチル、3ーチアゾリルプロピル、4ーイミダゾリルブチル、ピラゾリルメチル、2ートリアゾリルエチル、ピリジルメチル、2ーピリジニルエチル、3ーピリダジニルプロピル、ピリミジニルメチル、2ーピラジニルエチル、3ートリアジニルプロピル、4ーテトラゾリルブチル等を包含する。

「ヘテロサイクリル」とは、同一又は異なる1~3個のヘテロ原子(N、O、S)を含む5~7員の非芳香族環基を意味し、例えばモルホリニル、チオモルホリニル、ピペラジニル、ジオキサニル、ピペリジニル、ピロリジニル、チアゾリジニル、オキサゾリジニル、イミダゾリジニル、チアゾリニル、オキサゾリニル、イミダゾリニル等を包含する。

「ヘテロサイクリル低級アルキル」は、上記「ヘテロサイクリル」が置換した 上記低級アルキルを意味し、好ましくはモルホリノメチル等である。

上記の「アリール」、「アリールカルボニル」、「アリールスルホニル」、「ア 15 リールスルホニルオキシ」、「アラルキル」、「アラルキルオキシ」、「ヘテロ アリール」、「ヘテロアリールスルホニル」、「ヘテロアラルキル」、「アリー ルチオ」、「アリールスルフィニル」、「アリールスルホニル」、「ヘテロサイ クリル低級アルキル」、及び「ヘテロサイクリルスルホニル」が置換基を有する 場合、それぞれ同一又は異なる1~4個の置換基で任意の位置(オルト、メタ及 20 び/又はパラ)が置換されていてもよく、該置換基としては、例えば、ヒドロキ シ、カルボキシ、ハロゲン (例: F、C1、Br等)、トリハロゲン化低級アル キル (例: CF₃、CH₂CF₃等)、低級アルキル (例:メチル、エチル、イソ プロピル、t-ブチル等)、低級アルコキシ(例:メトキシ、エトキシ、プロポ 25 キシ、ブトキシ等)、低級アルコキシカルボニル(例:メトキシカルボニル、エ トキシカルボニル、t-ブトキシカルボニル等)、ニトロ、アミノ、低級アルキ ル置換アミノ (例:メチルアミノ、エチルアミノ、ジメチルアミノ等)、アジド、 アリール (例:フェニル等)、アラルキル (例:ベンジル等)、アミノ保護基(例:

トリチル等)等が例示される。

15

「ハロゲン」としては、F、Cl、Br、Iが例示される。

「トリハロゲン化低級アルキル」としては、トリフルオロメチル、トリクロロメチル、トリブロモメチル、トリフルオロエチル等が例示される。

5 R¹の定義における「置換基を有していてもよいスルファモイル」及び「置換基を有していてもよいカルバモイル」の置換基しては、置換されていてもよいフェニル、低級アルキル(メチル、エチル、イソプロピル、 t - ブチル等)が例示される。

Xにおける「置換基を有していてもよいアミノ」の置換基としては、低級アル 10 キル (メチル、エチル等)、低級アルコキシアルキル (エトキシメチル、エトキ シエチル等)、アラルキル (ベンジル等)等が例示される。

YにおけるRで示されるエステル残基、又はR 3 、R 4 、R 5 、R 6 における「エステル化されていてもよいカルボキシル」のエステル残基としては、低級アルキル(メチル、エチル、t ープチル等)、アラルキル(ベンジル、ジフェニルメチル等)等が例示される。

化合物(I)の各基の好ましい例を以下に示す。

R¹として好ましくは、水素、メチル、n-ブチル、シクロプロピルメチル、ジメチルスルファモイル、ジメチルカルバモイル、イソプロピルスルホニル、モルホリノスルホニル、t-ブトキシカルボニル、置換基を有していてもよいフェニルカルバモイル(置換基:ハロゲン等)、置換基を有していてもよいフェニルスルホニル(置換基:トリフルオロメチル、メチル、イソプロピル、ベンジル、ハロゲン、メトキシ、カルボキシ、メトキシカルボニル等)、置換基を有していてもよいベンジル(置換基:アジド、ハロゲン、フェニル、カルボキシ、メトキシカルボニル、ニトロ、アミノ等)、2-フェネチル、1-ナフチルメチル、ピリジルメチル、置換基を有していてもよいチエニル(置換基:カルボキシ、メトキシカルボニル等)等が例示される。より好ましくは、水素又は置換基を有していてもよいフェニルスルホニルである。

R²として好ましくは、水素、n-ブチル、置換基を有していてもよいフェニル(置換基:ハロゲン、メトキシ、ジメチルアミノ等)、置換基を有していてもよいベンジル又はフェニルプロピル(置換基:ハロゲン、メトキシ、カルボキシ、メトキシカルボニル等)、フェニルカルボニル、置換基を有していてもよいフェニルチオ(置換基:ハロゲン、メトキシ等)、置換基を有していてもよいフェニルスルフィニル(置換基:ハロゲン等)、置換基を有していてもよいフェニルスルホニル(置換基:ハロゲン、メトキシ等)、モルホリノメチル等が例示されるが、より好ましくは、水素、置換基を有していてもよいフェニル、置換基を有していてもよいベンジルである。

10 R^3 、 R^4 、 R^5 、 R^6 の好ましい例としては、すべてが水素であるか又は R^4 が ハロゲン (特に塩素) でその他すべてが水素の場合である。

Xとして好ましくは、ヒドロキシである。

15

20

Yとして好ましくは、COOR (Rは水素又はエステル残基)又は置換基を有していてもよいヘテロアリールである。Rは、抗ウイルス活性の面からは水素が好ましい。又Rがエステル残基である化合物は合成中間体としても有用である。 Yのヘテロアリールとして好ましくは、その環内に少なくとも1個のN原子を有する5又は6員環であり、より好ましくは、テトラゾリル、トリアゾリル、イミダゾリル、チアゾリルであり、特にテトラゾリルが好ましい。

化合物(I)は、通常、溶液中等で以下に示す化学平衡を取り得る。

 R^{5} R^{5}

(式中、R⁷は水素又はイミノ基上の置換基を示す。)

上記の化学平衡において、化合物 (1', 但し、Z=O) は化合物 (1, 但し、

X=OH)のジケトン体であり、また化合物(I")と化合物(I)は、3位側鎖オレフィン部分において互いに、シス・トランスの関係にある。これらの化合物を含めて化合物(I)の理論上可能なすべての互変異性体は、本発明の範囲内である。以下、本明細書においては、化合物(I)およびそのすべての互変異性体を総称して、単に化合物(I)ということもある。なお、後述の実施例におけるNMRデータの大部分は、測定条件に依存して上記(I)型に対応する。

化合物(I)の製薬的に許容される塩としては、塩基性塩として例えば、ナト リウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等の アルカリ土類金属塩;アンモニウム塩;トリメチルアミン塩、トリエチルアミン 塩、ジシクロヘキシルアミン塩、エタノールアミン塩、ジズタノールアミン塩、 10 トリエタノールアミン塩、ブロカイン塩等の脂肪族アミン塩;N,N-ジベンジ ルエチレンジアミン等のアラルキルアミン塩;ピリジン塩、ピコリン塩、キノリ ン塩、イソキノリン塩等の複素環芳香族アミン塩;テトラメチルアンモニウム塩、 テトラエチルアモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリ エチルアンモニウム塩、ベンジルトリプチルアンモニウム塩、メチルトリオクチ 15 ルアンモニウム塩、テトラブチルアンモニウム塩等の第4級アンモニウム塩;ア ルギニン塩、リジン塩等の塩基性アミノ酸塩等が挙げられる。酸性塩としては、 例えば塩酸塩、硫酸塩、硝酸塩、りん酸塩、炭酸塩、炭酸水素塩、過塩素酸塩等 の無機酸塩;酢酸塩、プロピオン酸塩、乳酸塩、マレイン酸塩、フマール酸塩、 酒石酸塩、リンゴ酸塩、クエン酸塩、アスコルビン酸塩等の有機酸塩:メタンス 20 ルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸 塩等のスルホン酸塩;アスパラギン酸塩、グルタミン酸塩等の酸性アミノ酸等が 挙げられる。

また化合物(I)の水和物、各種溶媒和物も本発明の範囲内である。

25

化合物(I)の製造法を以下に説明する。

化合物 (I) は新規インドール誘導体であるが、インドールを基本骨格とする公知化合物は既に多数報告されている(Hetrocyclic Compounds, Indoles Part 1-3.

(Wiley Interscience)、The chemistry of Indoles (Academic Press)等)。よって当業者であれば、例えばそれら公知化合物を原料にして周知の化学反応を適用することにより、化合物 (I) を容易に合成し得る。化合物 (I) の代表的な一般的製法を以下に示す。

5 (1) 3位側鎖部分の形成(基本合成ルート)

(A) X=OHの場合

10

15

例えば、文献(Tetrahedron $\underline{48}$. 10645(1992))等に記載の方法で得られる種々の 3-アセチルインドール誘導体(II)に、上記化合物(III)(式中、Lは脱離基を示し、例えば、ハロゲンまたはOR 8 (R 8 は低級アルキル等)等である)を、好ましくは塩基存在下で反応させることにより、化合物(I a)を得る。

反応溶媒としては、テトラヒドロフラン(THF)、ジオキサン等が例示される。塩基としては、ナトリウムエトキシド、カリウム t-プトキシド、リチウムビストリメチルシリルアミド (LHMDS) 等が例示される。反応温度は、約-100~100 $\mathbb C$ 、好ましくは-70~60 $\mathbb C$ である。

化合物 (III) としては、例えば、シュウ酸ジメチル (ジエチル)、メチル (エチル) オキザリルクロリド、2-トリチル-2H-テトラゾール-5-カルボン酸 エチルエステル、1-トリチル-1H-1、2、4-トリアゾール-3-カルボン酸 エチルエステル、

1-トリチルイミダゾール-2-カルボン酸 エチルエステル、無水フタル酸、オルトメトキシベンゾイルクロリド等が例示される。

(B) X=NHR⁷の場合

上記化合物(Ia)に、上記化合物(IV)(R⁷は水素又はアミノ基上の置換基) 5 またはその酸付加塩を反応させることにより、化合物(Ib)を得る。

反応溶媒としては、メタノール、エタノール等が例示される。反応温度は約-10~100℃、好ましくは室温-100℃である。

(2) 1位置換基 (R¹) の導入

10

20

例えば上記(1)の方法等によって得られる上記化合物 (V)に、所望により塩基存在下、化合物 (VI) (式中、Lは脱離基)又は、 R^1 として導入され得るイソシアネート類等を反応させて化合物 (I) を得る。

塩基としては、 N_AH 、 K_2CO_3 等が例示される。溶媒としては、THF、ジ 15 オキサン等が例示される。

化合物 (VI) としては、各種スルホニルクロリド (例: (置換) ベンゼンスルホニルクロリド、2-チオフェンスルホニルクロリド、(置換) アミノスルホニルクロリド、アルキルスルホニルクロリド等)、ハロゲン化アルキル (例: ヨードメチル、臭化ブチル、臭化シクロプロピル等)、ハロゲン化アラルキル (例: .(置換) ベンジル、ピコリル、ナフチル、ピフェニルメチル等)、カルバモイルクロリド (例: ジメチルカルバモイルクロリド等)、ハロゲン化アシル (例:パラフルオロベンゾイルクロリド等) などが例示される。

イソシアネート類としては、(置換)アリールイソシアネート(例:フェニル

イソシアネート等)等が例示される。

20

反応温度は、約-100~100 $\mathbb C$ 、好ましくは-20 $\mathbb C$ ~60 $\mathbb C$ である。なお本反応は、X=OHの場合に好適である。

上記(1)又は(2)のいずれかの反応前には、所望により当業者に周知の方法に従い官能基に対して保護反応を行い、また反応後、所望により、エステルの加水分解や脱保護等の反応を行えばよい。

次に本発明化合物の使用方法について説明する。

化合物(I)は、例えば抗ウイルス薬等の医薬として有用である。化合物(I)は、ウイルスのインテグラーゼに対して顕著な阻害作用を有する。よって化合物(I)は、動物細胞内で感染時に少なくともインテグラーゼを産出して増殖するウイルスに起因する各種疾患に対して、予防または治療効果が期待でき、例えば、レトロウイルス(例、HIV-1等)に対するインテグラーゼ阻害剤として有用であり、抗HIV薬等として有用である。

15 また、化合物 (I) は、逆転写酵素阻害剤及び/又はプロテアーゼ阻害剤等の 異なる作用メカニズムを有する抗HIV薬と組み合わせて併用療法に用いること もできる。

化合物(I)は、経口的又は非経口的に投与することができる。経口投与による場合、本発明化合物は通常の製剤、例えば、錠剤、散剤、顆粒剤、カプセル剤等の固形剤;水剤;油性懸濁剤;又はシロップ剤もしくはエリキシル剤等の液剤のいずれかの剤形としても用いることができる。非経口投与による場合、本発明化合物は、水性又は油性懸濁注射剤、点鼻液として用いることができる。その調製に際しては、慣用の賦形剤、結合剤、滑沢剤、水性溶剤、油性溶剤、乳化剤、懸濁化剤、保存剤、安定剤等を任意に用いることができる。

25 本発明化合物の投与量は、投与方法、患者の年齢、体重、状態及び疾患の種類によっても異なるが、通常、経口投与の場合、成人1日あたり約0.05mg~3000mg、好ましくは、約0.1mg~1000mgを、要すれば分割して投与すればよい。また、非経口投与の場合、成人1日あたり約0.01mg~1

000mg、好ましくは、約0.05mg~500mgを投与する。

さらに、-C(O)CH=C(X)Y(式中、X及びYは前記と同意義である。)で示される基をその3位に有することを特徴とする各種のインドール誘導体は、化合物(I)と同様に抗ウイルス薬等の医薬としての利用が期待される。該インドール誘導体においては、3位以外の部分構造としては、所望の薬理活性に悪影響を及ぼさない限りにおいて、種々の置換基が広範囲に選択され得る。またその合成法は、上記化合物(I)の合成法に準じればよい。

化合物 (I) は、また医薬の合成中間体、合成原料等としても有用である。例えば、化合物 (I) において、Yの定義におけるRがエステル残基である化合物 等は、脱保護することにより容易に、Rが水素である化合物に誘導することが可能である。

発明を実施するための最良の形態

以下に本発明の実施例を示す。反応は通常、窒素気流中で行ない、また反応浴 15 媒には、モレキュラーシーブス等で乾燥したものを用いた。抽出液の乾燥は、硫酸ナトリウム又は硫酸マグネシウム等で行なった。

(略号)

参考例1

WO 99/50245

3-アセチル-2-ベンジルインドール

ジメチルアセトアミド (29.5 g, 39 mmol) に氷冷下、オキシ塩化リン(7.00 g, 76.9 mmol) を 滴 下 し 、 室 温 で 30 分 間 撹 拌 し た 。 次 い で 文 献 (Khim. Geterotsikl. Soedin. 1994, p133) に従い得られた 2-ベンジルインドール (8.00 g, 38.6 mmol)を加え、100℃で 2 時間撹拌した。反応液を氷水に加え、2N NaOH で中和後、酢酸エチルで抽出し、水洗、乾燥した。溶媒を留去し、得られた結晶を n-ヘキサンで洗浄することにより 5.1 g(収率:52%)の標題化合物を得た。

10 NMR(CDCl₃) δ :2.72(3H, s), 4.60(2H, s), 7.10-7.48(8H, m), 7.94-8.20(1H, m), 8.20(1H, brs).

参考例 2

3-アセチル-1-ベンゼンスルホニルインドール-5-カルボン酸 ジフェニルメチ 15 ルエステル

- (1) インドール-5-カルボン酸(4.8 g, 29.8 mmol)のエーテル(200 ml)溶液にジアゾメタンのエーテル溶液をジアゾメタンの黄色が消失しなくなるまで、徐々に滴下した。溶媒を留去し、得られた残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルで溶出する画分を濃縮し、4.5 g(収率:86%)のインドールー5-カルボン酸 メチルエステルを得た。NMR(CDCl₃) δ : 3.93(3H, s). 6.65(1H, m), 7.27(1H, m), 7.40(1H, d, J=8.4Hz), 7.91(1H, d, J=8.4Hz, 1.2Hz), 8.40(1H, brm), 8.42(1H, m).
- (2)上記化合物(5.3 g, 30 mmol)を THF(150 ml)に溶解し、粉末 NaOH(6.05 g, 150 mmol)とテトラ n-ブチルアンモニウムプロミド(0.51 g)を加えた。この懸濁液に 水冷下、ベンゼンスルホニルクロリド(6.41 g, 36 mmol)の THF(10 ml)溶液を滴 下した。同温度で 30 分間撹拌後、無機物を濾別し、THF を減圧下に留去した。得られた結晶を酢酸エチルで洗浄し、7.24 gの 1-ベンゼンスルホニルインドール-5-カルボン酸 メチルエステルを得た。さらに洗浄した酢酸エチル溶液をアンモニア水で洗浄し、水洗、乾燥した。溶媒を留去し、残留物をエーテルで結晶化し、エーテル洗浄により、2.0 gの上記化合物を得た。合計収率:97%。

NMR (CDC1₃) δ : 3. 92 (3H, s), 6. 73 (1H, d, J=3. 8Hz), 7. 45-8. 03 (8H, m), 8. 26 (1H, m).

(3)塩化アルミニウム(10.7 g, 80 mmol)のジクロロエタン(80 ml)懸濁液に無水酢酸(4.83 g, 40 mmol)を滴下し、室温下、15分間撹拌した。上記の1-ベンゼンスルホニルインドール-5-カルボン酸 メチルエステル(6.31 g, 20 mmol)のジクロロエタン(60 ml)溶液を滴下した。反応液を室温下、2時間撹拌した。さらに塩化アルミニウム(5.33 g, 40 mmol)と無水酢酸(2.04 g, 20 mmol)を加えた。30分間撹拌後、氷水に注入した。酢酸エチルで抽出し、2回水洗し、さらに重曹水で洗浄乾燥した。溶媒を留去し、得られた結晶をイソプロピルエーテルで洗浄して、6.82g(収率:96%)の3-アセチル-1-ベンゼンスルホニルインドール-5-カルボン酸 メチルエステルを得た。

10 NMR (CDC1₃) δ : 2. 60 (3H, s), 3. 93 (3H, s), 7. 48-7. 68 (3H, m), 7. 94-8. 00 (2H, m), 8. 09 (1H, dd, J=8. 8Hz, 1. 6Hz), 8. 26 (1H, s), 9. 00 (1H, d, J=1. 6Hz).

(4)上記化合物(0.18 g, 0.5 mmol)をジクロロメタン(2 ml)に溶解し、-35 - -40℃に冷却し、次いで1モル濃度のボロントリプロミド-ジクロロメタン溶液(1.5 ml)を滴下した。次いで反応液を室温に戻し、さらに15分間還流した。反応液に氷水を加え、酢酸エチルで抽出し、水洗、乾燥した。溶媒を留去し、得られた結晶をエーテルで洗浄すると0.1 g(収率:60%)の3-アセチル-1-ベンゼンスルホニルインドール-5-カルボン酸を得た。

NMR (d₆-DMSO) δ: 2.62 (3H, s), 7.62-8.23 (7H, m), 8.81 (1H, m), 8.93 (1H, s). (5) 上記化合物 (750 mg, 2.2 mmol)を THF (25 ml) に溶解し、ジフェニルジアゾ メタン (510 mg, 2.64 mmol)を加え 60℃で 16 時間加熱した。反応液を減圧下に濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-トルエン (1:4 v/v) で溶出する画分を濃縮し 530 mg (収率:48%)の標題化合物を油状物として得た。

NMR (CDC1₃) δ : 2. 60 (3H, s), 7. 14-7. 66 (14H, m), 7. 93-8. 01 (3H, m), 8. 16 (1H, d), J=8. 0, 1. 4Hz), 8. 26 (1H, s), 9. 13 (1H, d, J=1. 4 Hz).

参考例3

15

3-アセチル-5-クロロー1-フェネチルインドール

(1) 3-アセチル-5-クロロインドール (0.58 g, 3 mmol)、トリフェニルホスフィン(1.42 g, 5.4 mmol)、フェネチルアルコール (0.66 g, 5.4 mmol)からなる THF (12 ml)溶液に、氷冷下、ジイソプロピルアゾジカルボキシレート (1.09 g, 5.4 mmol)を加え、室温下、3 時間撹拌した。反応液を減圧下に濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィーに付し、精製した。酢酸エチル-トルエン(1:1 v/v)で溶出する画分から 0.58 g(収率:65%)の標題化合物を油状物として得た。

NMR (CDC1₃) δ : 2. 38 (1H, s), 3. 12 (2H, t, J=7. 2Hz). 4. 36 (2H, t, J=7. 2Hz), 10 6. 97-7. 01 (2H, m), 7. 20-7. 30 (5H, m), 7. 38 (1H, s), 8. 38 (1H, d, J=1. 8Hz).

参考例 4

10

3-アセチル-6-ペンゼンスルホニルオキシ-1-ベンジルインドール

(1)塩化アルミニウム(9.5 g, 72 mmol)のジクロロエタン(47.5 ml)懸濁液に無水酢酸(3.64 g, 36 mmol)を滴下し、室温下、15分間撹拌した。次に文献(SYNTHESIS. p1018, 1994)に従い得られる 6-クロロアセトキシ-1-ピバロイルインドール (3.3 g, 11 mmol)のジクロロエタン(33 ml)溶液を滴下した。反応液を室温下、1時間撹拌後、氷水に注入した。酢酸エチルで抽出し、2回水洗し、さらに重曹水で洗浄乾燥した。溶媒を留去し、得られた残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルで溶出する画分から 1.23 g(収率:36%)の 3-アセチル-6-クロロアセトキシ-1-ピバロイルインドールを油状物として得た。

NMR (CDC1₃) δ : 1. 56 (9H, s), 2. 59 (3H, s), 4. 33 (2H, s), 7. 17 (1H, dd, J=8. 8Hz, 2. 1Hz), 8. 28 (1H, d, J=2. 1Hz), 8. 34 (1H, s), 8. 35 (1H, d, J=8. 8Hz).

(2)上記化合物(0.278 g, 1 mmol)の THF(5 ml)溶液に 1N 水酸化リチウム(2.5 ml) を加え、室温で 30 分間撹拌した。反応液へ 1N 塩酸(2.6 ml)を加え、減圧下に濃縮した。得られた結晶を酢酸エチルに溶解し、重曹水で洗浄、次いで飽和食塩水で洗浄、乾燥した。溶媒を留去すると 0.145 g(収率:83%)の 3-アセチル-6-ヒドロ

キシインドールを結晶として得た。融点:135-140℃

NMR (d_6 -DMSO) δ : 2.39(3H, s), 6.66(1H, dd, J=8.6Hz, 2.2Hz), 6.79(1H, d, J=2.2Hz), 7.91(1H, d, J=8.6Hz), 8.08(1H, d, J=2.4Hz), 11.6(1H, s).

(3)上記化合物に、ベンゼンスルホニルクロリドを参考例 2 に準じて反応させることにより 3-アセチル-6-ベンゼンスルホニルオキシインドールを得た。
NMR(CDCI₃) δ: 2.52(3H, s), 6.67(1H, dd, J=8.6Hz, 1.8Hz), 7.30(1H, d, J=1.8Hz), 7.47-7.83(5H, m), 7.87(1H, d, J=3.0Hz), 8.21(1H, d, J=8.6Hz), 9.0(1H, brm).

(4) 上記化合物(0.63 g, 2 mmol)のアセトニトリル(8 ml)溶液にベンジルブロミド(0.41 g, 2.4 mmol)と炭酸カリウム(0.55 g, 4 mmol)を加え、30分間還流下に加熱撹拌した。反応液を氷水に加え、酢酸エチルで抽出、水洗、乾燥した。溶媒を留去し得られた残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルートルエン(1:2 v/v)で溶出する画分から 0.72 g(収率:89%)の標題化合物を油状物として得た。

15 NMR (CDC1₃) δ : 2. 48(3H, s), 5. 27(2H, s), 6. 73(1H, dd, J=8. 6Hz, 2. 0Hz), 7. 08-7. 78(12H, m), 8. 23(1H, d, J=8. 6Hz).

参考例 5

20

3-アセチル-1-t-ブトキシカルボニル-5-メトキシメチルオキシインドール

(1)5-ベンジルオキシインドールから参考例 1 に準じて3-アセチル-5-ベンジ

ルオキシインドールを得た。

15

NMR (CDCl₃) δ: 2.53 (3H, s), 5.14 (2H, s). 7.01 (1H, dd, J=8.8Hz, 2.4Hz), 7.26-7.52 (6H, m), 7.80 (1H, d, J=3.2Hz), 8.01 (1H, d, J=2.4Hz), 8.65 (1H, brm). (2) 上記化合物 (2.0 g, 7.54 mmol)と 4-ジメチルアミノピリジン (0.05 g, 0.4 mmol)の THF (20 ml)溶液に、室温下、ジーtープチルジーカーボネート (1.97 g, 9.05 mmol)の THF (5 ml)溶液を滴下し、30 分間撹拌した。反応液を減圧下に濃縮し、得られた結晶をイソプロピルエーテルで洗浄すると 2.58 g (収率:94%)の 3-アセチル-5-ベンジルオキシー1-tープトキシカルボニルインドールを得た。融点:114-116℃。

- 10 NMR(CDC1₃) δ : 1. 70(9H, s), 2. 55(3H, s), 5. 15(2H, s), 7. 06(1H, dd, J=9. 2Hz, 2. 6Hz), 7. 30-7. 51(5H, m), 7. 98(1H, d, J=9. 2Hz), 7. 99(1H, d, J=2. 6Hz), 8. 19(1H, s).
 - (3) 上記化合物(2.58 g, 7.06 mmol)を酢酸エチル(51 ml)に溶解し、酸化パラジウム(0.13 g)を加え、常圧室温下、水素添加した。20 分間で 196 ml の水素が吸収された。触媒を瀘別し、酢酸エチルを留去した。得られた結晶をイソプロピルエーテルで洗浄すると1.7 g(収率:88%)の3-アセチル-1-t-ブトキシカルボニル-5-ヒドロキシインドールを得た
- (4) 上記化合物(1.8 g, 6.54 mmol)のジクロロメタン(18 ml)溶液に 50%NaOH 水溶液(2 ml)とテトラ n-ヘキシルアンモニウムブロミド(0.28 g, 10%モル)を加 え、さらに室温下、1 モル濃度のメトキシメチルクロリド-ジクロロメタン溶液(8 ml)を滴下し、撹拌した。原料消失を確認後、反応液に氷水を加え、ジクロロメタン層を水洗、飽和食塩水で洗浄、乾燥した。溶媒を留去し、得られた結晶を冷却した n-ヘキサンで洗浄することにより、1.98 g(収率:95%)の標題化合物を得た。

参考例 6

15

3-アセチル-5-クロロ-2-(4-フルオロフェネチル)-インドール

5 (1) 文献 (J. Org. Chem., 47, 757(1982)) 記載の方法に準じて得られる 1-ペンゼンスルホニル-5-クロロ-2-メチルインドールを参考例 2(3)と同様の反応に処し、3-アセチル-1-ペンゼンスルホニル-5-クロロ-2-メチルインドールを得た。収率:86%。

NMR (CDC1₃) δ : 2.61 (3H, s), 2.89 (3H, s), 7.32 (1H, dd, J=9.0Hz, 2.1Hz), 7.46-7.65 (3H, m), 7.79-7.83 (2H, m), 7.91 (1H, d, J=2.1Hz), 8.23 (1H, d, J=9.0Hz).

(2) 上記化合物 (1.40 g, 4 mmol)を四塩化炭素 (50 ml) に溶解し、N-ブロモスクシンイミド (0.71 g)、過酸化ベンゾイル (10 mg)を加え、還流下、3.5 時間撹拌した。反応液を冷却後、析出結晶を濾別し、濾液を濃縮、放置する。得られた結晶を少量の酢酸エチルで洗浄すると 1.51 g (収率:88%)の 3-アセチル-1-ベンゼンスルホニル-2-ブロモメチル-5-クロロインドールを得た。融点:155℃。

NMR (CDC1₃) δ : 2.73(3H, s), 5.40(2H, s), 7.37(1H, dd, J=9.0Hz, 2.1Hz), 7.47-7.66(3H, m), 7.93(1H, d, J=2.1Hz), 7.95-7.99(2H, m), 8.11(1H, d,

J=9.0Hz).

10

15

151℃。

- (3) 上記化合物 (1.42 g, 3.35 mmol)のベンゼン (50 ml) に溶解し、エチレングリコール (1.04 g)、ピリジニウムパラトルエンスルホナート (0.06 g) を加え、18 時間、共沸脱水した。反応液を冷却後、重曹水に注入した。酢酸エチルで抽出し、
- 5 水洗、乾燥した。溶媒を留去し、残留物をエーテルで洗浄すると 1.45 g(収率:92%) の 1-ベンゼンスルホニル-2-ブロモメチル-5-クロロ-3-(2-メチル-[1,3]ジオキ ソラン-2-イル)-インドールを得た。融点:145-146℃。

NMR (CDC1₃) δ : 1. 73 (3H, s), 3. 78 (2H, brs), 4. 06 (2H, brs), 5. 35 (2H, brs), 7. 27-7. 60 (4H, m), 7. 85-7. 89 (2H, m), 7. 94 (1H, d, J=2. 1Hz), 8. 02 (1H, d, J=9. 0Hz).

- (4) 上記化合物 (0.85 g, 1.8 mmol)とトリエチルホスファイト (0.36 g, 2.2 mmol) の混合物を 145-150℃で 1.5 時間、加熱撹拌した。冷却後、反応液にエーテル-n-ヘキサン (1:1, v/v)を加え、析出する結晶 (0.91 g, 収率:96%)として [1-ベンゼンスルホニル-5-クロロ-3-(2-メチル-[1,3]ジオキソラン-2-イル)-インドール-2-イルメチル]-ホスホン酸 ジエチルエステルを得た。融点:126-127℃。
- NMR (CDCl₃) δ : 1.31(6H, t, J=7.2Hz), 1.79(3H, s), 3.93-4.25(10H, m), 7.20-7.58(6H, m), 7.76(1H, d, J=2.1Hz), 7.98(1H, d, J=9.0Hz).
- (5) 上記化合物(1.43 g, 2.71 mmol)と 4-フルオロベンズアルデヒド(0.40 g, 3.25 mmol)を THF(27 ml)に溶解し、氷冷下、水素化ナトリウム(60%、ミネラルオイル) を 0.22 g(5.5 mmol)を加えた。室温下 18 時間撹拌後、DMF(2 ml)と 4-フルオロベンズアルデヒド(0.11 g)を加え、3 時間撹拌した。反応液へ塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、水洗、飽和食塩水で洗浄、乾燥した。溶媒を留去し、残留物を酢酸エチル-n-ヘキサン(1:4, v/v)で結晶化させると、1.02 g(収率:76%)の 1-ベンゼンスルホニル-5-クロロ-2-[2-(4-フルオロフェニル)-ビニル]-3-(2-メチル-[1,3]ジオキソラン-2-イル)-インドールを得た。融点:149-

NMR (CDC1₃) δ : 1. 63 (3H, s), 3. 45-3. 50 (2H, m), 3. 91-3. 96 (2H, m), 6. 87 (1H, d, J=16. 5Hz), 7. 10 (2H, t, J=9. 0Hz), 7. 26-7. 36 (4H, m), 7. 46-7. 55 (5H, m), 7. 82 (1H,

d, J=2.4Hz), 8.18(1H, d, J=9.0Hz).

- (6) 上記化合物(0.82 g, 1.64 mmol)を酢酸エチル(10 ml)とエタノール(20 ml) に溶解し、10% Pd-C(82 mg)を加え、常圧室温下、18 時間水素添加した。溶媒を濾別、濃縮し、エタノールから結晶化すると 0.41 g(収率:51%)の1-ベンゼンスルホニル-5-クロロ-2-[2-(4-フルオロフェネチルニル)]-3-(2-メチル-[1.3]ジオキソラン-2-イル)-インドールを得た。融点:175-177℃。次いでこの化合物(0.244 g)をジオキサン(6 ml)に溶解し、1N 塩酸(2 ml)を加え、80-85℃で、30 分間加熱した。減圧化に溶媒を留去し、残留物を酢酸エチルで抽出、乾燥すると 3-アセチル-1-ベンゼンスルホニル-5-クロロ-2-[2-(4-フルオロフェネチルニル)]-インドールを定量的に得た。
 - (7) 上記化合物 (0.24 g) のジオキサン (5 ml) 溶液に 1N 水酸化リチウム (1.2 ml) を加え、1 時間加熱、還流した。反応液を酢酸エチルで抽出、水洗、乾燥した。溶媒を留去し、残渣をエーテルで洗浄すると、0.135 g (収率:88%) の標題化合物を得た。融点:170-172℃。
- 15 NMR(CDC1₃) δ : 2.68(3H, s), 3.02(2H, t, J=7.8Hz), 3.39(2H, t, J=7.8Hz), 6.95(2H, t, J=8.4Hz), 7.09-7.22(4H, m), 7.93(1H, d, J=1.8Hz), 8.25(1H, brs).

参考例7

3-アセチル-5-クロロ-2-(モルホリン-4-イル)メチル-インドール

20

25

5

10

(1) 参考例 6(3)で得られた 1-ベンゼンスルホニル-2-ブロモメチル-5-クロロ-3-(2-メチル-[1,3]ジオキソラン-2-イル)-インドール (0.236 g, 0.5 mmol)を THF (4 ml) に溶解し、モルホリン (0.11 g, 1.25 mmol)を加え、室温下、2 時間撹拌した。溶媒を留去し、残渣をエーテルに溶解し、水洗、乾燥した。エーテルを留去し得られる結晶を濾取、少量のエーテルで洗浄すると 0.214 g(収率:90%)の

1-ベンゼンスルホニル-5-クロロ-3-(2-メチル-[1, 3] ジオキソラン-2-イル)-2-(モルホリン-4-イル)メチル-インドールを得た。融点:195-198℃。

NMR (CDC1₃) δ : 1. 74 (3H, s), 2. 35-2. 40 (4H, m), 3. 17-3. 25 (4H, m), 3. 70-3. 78 (2H, m), 4. 01-4. 07 (2H, m), 4. 11 (2H, s), 7. 24-7. 60 (4H, m), 7. 85-7. 90 (2H, m),

5 7. 96 (1H, d, J=2. 1Hz), 8. 06 (1H, d, J=9. 0Hz).

(2) エタンチオール (0.186 g, 3 mmol)の DMF (2 ml)溶液に水素化ナトリウム (0.12 g, 3 mmol, 60%, ミネラルオイル)を加えた。この溶液に上記化合物 (0.475 g. 1 mmol)を加え、80℃で 30 分間加熱した。減圧下に DMF を留去し、残留物を酢酸エチルに溶解し、水洗、乾燥した。溶媒を留去し、ジイソプロピルエーテル処理すると 0.296 g の結晶を得た。本化合物をジオキサン (8 ml) に溶解し、1N 塩酸 (3 ml)を加え、室温で 30 分間撹拌することにより標題化合物として 0.23 g(収率:81%)を得た。融点:120-121℃。

NMR (CDCl₃) δ : 2. 60-2. 64 (4H, m), 2. 65 (3H, s), 3. 77-3. 82 (4H, m), 4. 12 (2H, s), 7. 21 (1H, dd, J=8. 7Hz, 2. 1Hz), 7. 34 (1H, d, J=8. 7Hz), 7. 93 (1H, d, J=2. 1Hz), 9. 50 (1H, brs).

参考例8

10

15

3-アセチル-5-クロロ-2-(3,5-ジクロロフェニルチオ)-インドール

20 (1) 参考例 6(1) に記した文献に準じ、1-ベンゼンスルホニル-5-クロロインドールに 3,5-ジクロロフェニルジスルフィドを反応させることにより、1-ベンゼンスルホニル-5-クロロ-2-(3,5-ジクロロフェニルチオ)-インドールを得た。収率:71%。融点:121-122℃。

NMR (CDC1₃) δ : 6. 68 (1H, s), 6. 97 (2H, d, J=1. 2Hz), 7. 19 (1H, t, J=1. 2Hz), 7. 35-7. 57 (4H, m), 7. 85-7. 88 (2H, m), 8. 26 (2H, d, J=9. 0Hz).

(2) 上記化合物を参考例 2(3)と同様の反応に処し、次いで水酸化リチウムで脱保 護することにより標題化合物を得た。収率:27%。 融点:180-185℃。

NMR (CDC1₃) δ : 2. 69 (3H, s), 7. 20-7. 22 (2H, m), 7. 41 (1H, d, J=1. 8Hz), 7. 45 (1H, J=1. 8Hz), 8. 01 (1H, brs), 8. 10 (1H, brs).

5 参考例 9

3-アセチル-5-クロロ-2-ベンゼンスルホニル-インドール

(1) 参考例 8(1)に記した方法に準じて、1-ベンゼンスルホニル-5-クロロ-2-フェ 10 ニルチオ-インドールを得た。収率:92%。

NMR (CDC1₃) δ : 6.14(1H, s), 7.22-7.60(10H, m), 7.93-7.98(2H, m), 8.15(1H, d, J=8.8Hz).

- (2) 上記化合物 (3.65 g, 9.12 mmol)をジクロロメタン (50 ml)に溶解し、メタクロロ過安息香酸 (5.19 g, 27.4 mmol)を氷冷下、加え、室温で 18 時間撹拌した。
- 15 反応液に酢酸エチルを加え、重曹水で洗浄、水洗、乾燥した。溶媒を留去し、得られる結晶をジイソプロピルエーテルで洗浄すると 1-ベンゼンスルホニル-5-クロロ-2-フェニルスルホニル-インドールを得た。次いで水酸化リチウムで脱保護することにより 5-クロロ-2-フェニルスルホニル-インドールを得た。収率:86%。 融点:137-138℃。
- 20 NMR (CDCl₃) δ : 7. 12 (1H, d. J=3. 3Hz), 7. 26-7. 65 (6H, m), 7. 98-8. 03 (2H, m), 9. 23 (1H, brs).
 - (3) 上記化合物(0.87 g, 3 mmol)のジクロロメタン(7 ml)溶液を塩化アルミニウム(2.0 g, 15 mmol)とアセチルクロリド(1.18 g, 15 mmol)の二硫化炭素(21 ml)の懸濁液に室温下に滴下、1.5時間撹拌した。参考例 2(3)と同様の後処理をして
- 25 標題化合物を得た。収率:85%。

NMR (CDC1₃) δ : 2. 64 (3H, s), 7. 40 (1H, dd, J=8. 7Hz. 1. 8Hz), 7. 48-7. 67 (4H, m), 7. 99 (1H, d, J=1. 8Hz), 8. 06-8. 10 (2H, m), 10. 1 (1H, brs).

実施例1~22の化合物は、以下の反応ルートにより合成した。

実施例 1

5

10

$$\begin{array}{c} \text{CI} \\ \text{O} \\ \text{O} \\ \text{CO}_2\text{Et} \\ \text{O} \\$$

(1) 4-(5-クロロインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-プテン酸 エ チルエステル

ナトリウム (2.99 g, 126 mmol)を EtOH (100 ml)に加え、加熱溶解した。減圧下に EtOH を留去し、残渣に THF (200 ml)を加え、再度留去した。次に THF (124 ml)、シュウ酸ジエチル (18.1 g, 124 mmol)を加え懸濁液とした。この懸濁液に室温下、3-アセチル-5-クロロインドール (12 g, 62 mmol)を加え、3 時間撹拌した。さらに 50℃で 16 時間、加熱撹拌した。溶媒を減圧下留去し、得られた残渣をエーテ

ルで洗浄し、1N 塩酸(120 ml)に加えた。析出結晶を瀘取し、水洗、酢酸エチルで洗浄した。次にジオキサンから再結晶し、80℃で減圧下乾燥して、14.7 g(収率:81 %)の標題化合物を得た。

融点:219-225℃ (分解)。

5 NMR (d_6 -DMS0) δ :1.32(3H, t, J=7.2 Hz), 4.31(2H, q, J=7.2Hz), 7.03(1H, s), 7.30(1H, dd, J=8.4Hz, 2.1Hz), 7.54(1H, d, J=8.4Hz), 8.21(1H, d, J=2.1Hz), 8.83(1H, s), 12.6(1H, s).

元素分析: C14H12C1NO4として

計算値(%):C, 57. 25; H, 4. 12; N, 4. 77; Cl, 12. 07.

10 実測値(%):C, 57. 14; H, 4. 20; N, 4. 97; Cl, 12. 01.

率:80 %)の標題化合物を黄色結晶として得た。

(2) 4-(5-クロロインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸 上記 (1) で得たエステル(300 mg, 1.02 mmol)をジオキサン(30⁻ml)に懸濁し、 IN 塩酸(3 ml)を加え、4 時間加熱還流した。溶媒を減圧下に留去し、残渣に水を 加え析出結晶を瀘取後、水、ジオキサンで洗浄し、乾燥することにより、230 mg(収

融点:220-225℃ (分解)。

15

NMR (d_6 -DMSO) δ : 7.00 (1H, s), 7.29 (1H, dd, J=8.7Hz, 2.4Hz), 7.53 (1H, d, J=8.7Hz), 8.21 (1H, d, J=2.4Hz), 8.77 (1H, d, J=3.6Hz), 12.5 (1H, brm), 13.6 (1H, brs).

20 元素分析: C14H12C1NO4として

計算值(%):C, 57. 25; H, 4. 12; N, 4. 77; Cl, 12. 07.

実測値(%):C, 57. 14; H, 4. 20; N, 4. 97; Cl, 12. 01.

実施例 2 ~ 2 2

25 実施例1の(1)と同様にして、その他のエステル体(Ic)を合成した。さらにそれらの対応カルボン酸(Id)を、上記(2)と同様にして合成した。各化合物の構造および物性を表1に示す。

実施例23~59の化合物は、以下の反応ルートにより合成した。

実施例23

5

10

(1) 4-(I-ベンゼンスルホニル-5-クロロインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸 エチルエステル

水素化ナトリウム(0.88 g, 22 mmol. 60 %ミネラルオイル)を THF(50 ml)に懸濁し、氷冷下、実施例 1 (1) で得た 4-(5-クロロインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸 エチルエステル(2.94 g, 10 mmol)を加えた。次い

で室温で 15 分間撹拌後、ベンゼンスルホニルクロリド (2.12 g, 12 mmol)の THF (20 ml)溶液を滴下した。室温で 2 時間撹拌後、DMF (8 ml)を加え、さらに 30 分間撹拌した。次に反応液を 1N 塩酸を含む氷水中に注ぎ、酢酸エチルで抽出した。有機層を水洗し、飽和食塩水で洗浄後、乾燥した。酢酸エチルを留去し、得られた残留物をエーテルから結晶化させて粗結晶を得た。それをさらにエーテルで洗浄して、3.75 g (収率:87%)の標題化合物を得た。本品を酢酸エチルから再結晶し、融点 156-157℃の結晶を得た。

NMR (d_6 -DMSO) δ : 1. 45 (3H, t, J=7. 4Hz), 4. 44 (2H, q, J=7. 4Hz), 6. 89 (1H, s), 7. 38 (1H, dd, J=9. 0Hz, 2. 4Hz), 7. 50-7. 70 (3H, m), 7. 88-7. 99 (3H, m), 8. 35 (1H,

10 s), 8.36(1H, d, J=2.4Hz), 14.7(1H, brs).

元素分析: C20H16CINO6S 0.2H20として

計算值(%):C,54.91; H,3.78; N,3.20; Cl,8.10, S,7.33.

実測値(%):C,54.83; H,3.78; N,3.16; C1,8.13. S,7.42.

(2) 4-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-2-ヒドロキシ-4-

15 オキソ-2-ブテン酸

20

上記 (1) で得たエステル(0.8 g, 1.97 mmol)をジオキサン(40 ml)に懸濁し、1N 塩酸(8 ml)を加え、4 時間加熱還流した。溶媒を減圧下に留去し、残渣に水を加え酢酸エチルで抽出した。有機層を水洗し、飽和食塩水で洗浄後、乾燥した。酢酸エチルを留去し、得られた結晶を酢酸エチルから再結晶して、0.6 g(収率:80 %)の標題化合物を得た。

融点:210-218℃ (分解)。

NMR (d₆-DMSO) δ:7.29(1H, s), 7.51(1H, dd, J=8.7Hz, 2.4Hz), 7.65-7.82(3H, m), 8.03(1H, d, J=8.7Hz), 8.20-8.25(3H, m), 9.33(1H, s), 12.0-14.0(1H, brs). 元素分析: C₁₈H₁₂C1NO₆S として

25 計算値(%):C, 53. 28; H, 2. 98; N, 3. 45; C1, 8. 74, S, 7. 90. 実測値(%):C, 53. 33; H, 3. 06; N, 3. 40; C1, 8. 56. S, 7. 85.

実施例24~59

実施例 2 3 の (1) と同様にして、その他のエステル体(I c)を合成した。 さらにそれらの対応カルボン酸(I d)を、上記(2)と同様にして合成した。 各化合物の置換基および物性を表 $2\sim3$ に示す。また前記化合物のN M R 値 を表 4 に、元素分析結果を表 5 に示す。

											.												
H ₂ CO2 ^H ([b])																							
	;	(I d)	202-209	185-187	202-204	236-237	240-245	203-205	209-211	211-212	95-100	194-195	230-232	201-210	193-196	201-203	180-182	109-110	195-197	187-190	172-174	150-155	167-168
R	國点 (C)		E10Ac	E10Ac	E10Ac	dioxane	MEK	MeCN	E10Ac	E10Ac	E10H	Et0Ac	Et0H-H20	Et0Ac	E10Ac	Et0Ac	E10Ac-Hex	E10Ac-Hex	E10Ac-llex	E10Ac-Hex	E10Ac-Hex	E10Ac-Hex	E10Ac-Hex
<u>س</u> ا	結晶溶媒人		>300	粉末	202-204	238-246	185-190	190-191	202-206	粉末	214-217	204-206	208-215	210-211	125-128	186-187	198-202	202-204	202-204	220-222	203-205	162-165	151-152
SH SH	<u> </u>	(I c)	MeOH-Hex		MEK	Et0H	Et0Ac	Et0Ac	Et0Ac		E10Ac	Et0Ac	Et0Ac	MEK	E10Ac-Et20	Et0Ac	Et0Ac-Hex	Et0Ac-Hex	E10Ac-Hex	E10Ac-Hex	Et0Ac-Hex	Et0Ac-Hex	Et0Ac-Hex
R ⁵ √ H	~		茁	Me	Me	豆	Me	We	Me	豆	Me	We	Me	Me	Me	Me	Me	Me	Me	æ	Me	Me	Me
	£		Н	Ħ	Н	Н	н	C	H	Н	×	H	H	H	Ħ	Н	Æ	Ξ	Ħ	H	ж	H	Н
	R5		Н	Ħ	H	H	C	н	H	H	H	Ħ	ж	н	-0 (CH ₂) ₂ Ph	-0SO,Ph	Н	H	=	H	×	ıı.	H
	R4		E	Н	[±.,	Br	H	Ħ	OMe	OB _m	ವ	Ħ	ວ	NO ₂	Ħ	Ħ	H	H	Ħ	H	H	н	=
	82		H	ວ	H	H	Ħ	H	×	Ħ	Ħ	Ħ	Ħ	H	H	Ħ	H	H	≖	Η	Ξ	Ħ	H
	R2		H	H	н	Н	Н	Ħ	H	н	нн	Н	H 1	Н	==	Н	Ph (2-C1)	Ph (3-C1)	Ph (4-F)	Ph (4-Cl)	Ph (4-0Me)	Ph (3-NMe ₂)	Ph (3-C1)
	A RI		H	H	H	H	H	Ħ	H	=	- (CH ₂) ,Pi	-Ph (4-F)	4- k ° 11))	찚	Bu	短	Ħ	Н	=	н	Н	H	Me
	実施列	番号	2	ಣ	4	rc	9	2	∞	6						15			8				

矮1

CO2H	(pI)
	, Z, E
R ₂ OO_M	(Ic)
	r S - R
	R2002

実施列	RI	R2	2	R4	82	R6	~		再結晶溶媒 /	/ 融点 (°C)	
番号								(Ic)		(PI)	Į.
24	-S0.Ph	=	H	124	E	H	Me		粉末	E10Ac	186-196
25	-SO,Ph	=	=	Br	Ħ	H	Me	E10Ac	212-213	Et0Ac	212-217
36	-SO.Ph	=	=	н	IJ	Н	Me	E1,0	176-178	E10Ac	222-226
27	-SO.Ph	: =	=	OBn	Ħ	H	Et	•	油状物	E10Ac	210-214
. %	-SO.Ph (4-F)	=	=	IJ	=	H	표	E10Ac	169-170	E10H-E10Ac	229-230
20	-SO.Ph (?-F)	===	==	IJ	H	Ξ	Et	E10Ac-E120	134-135	Et0Ac	231-232
£ 65	-S0.Ph (2. 4-F)	H	H	こ	Ξ	Ħ	豆	E10Ac-E120	179-181	E10H-E10Ac	228-229
S ==	-S0,Ph (4-C1)	=	H	IJ	=	Ħ	댎	E10Ac	169-170	E10H-E10Ac	214
33	-S0,Ph (2, 5-C1)	=	=	ວ	H	H	豆	E10Ac-E1,0	179-180	EtOH	243-244
3 8	-S0,Ph (2-Br)	=	=	5	H	H	Et	•	粉末	EtOH-Et0Ac	222-223
34	-S0,Ph (3-N0,)	H	Н	IJ	Ħ	Ħ	Et	E10Ac	185-186	EtOH-EtOAc	257-258
35 (Ic)		H	H	CI	H	H	Ξŧ	E10H	125-126		
_		Ħ	Η	IJ	H	н				E10H-E10Ac	>300
36		=	H	IJ	H	Н	迢	E10H-E10Ac	120-121	E10H-E10Ac	169-170
37	-S0.Ph (4-0Me)	Ħ	H	ر د	H	H		Et,0		E10Ac-E120	194-195
38	-S0,Ph (2-C0,Me)	H	==	IJ	Ħ	н		E10Ac-E1,0		E120	184-185
39	-S0,Ph (2, 4, 6-Me)	Ħ	Ħ	ວ	H	H	既	Et0Ac-Et20	105-106	Et_20	264-267

R2 R3 R4 R5 R6 R Fittel Right Right											
R2 R3 R4 R5 R6 R R6 R R6 R R6 R R							,	à Z	OH CO ₂ R		OH CO2H
R2 R3 R4 R5 R6 R							0		(Ic)	-	(Id)
(IC)	RI	R2	R3	R4	22	R6	R		再結晶溶媒、	ව	
H H CI H H E1 E10Ac 162-163 H H CI H H E1 E10Ac 202-205 H H H H E1 E10Ac 202-205 H H H H H H Me 87年 H H CI H H Me 10Ac 176-177 H H Br H BI H Me 110Ac 176-177 H H CI H H E1 E10Ac 143-145 H H CI H H E1 E10Ac 143-145 H H CI H H E1 E10Ac 177-179 H H CI H H E1 E10Ac 177-179 H H CI H H E1 E10Ac 177-179 H H CI H H E1 E10Ac-E120 179-180 H H CI H H E1 E10Ac-E120 166-167 H H CI H H E1 E10Ac-E120 166-167 H H CI H H H H E1 E10Ac-E120 166-167 H H CI H H H H H H H H H H H H H H H H H								(Ic)		(PI)	
H H CI H H EI EtOAC 162-163 H H CI H H EI EtOAC 202-205 H H H H H EI EtOAC 202-205 H H H CI H H Me EtOAC 176-177 H H CI H H Me EtOAC 176-177 H H CI H H EI EtOAC 176-177 H H CI H H EI EtOAC 176-177 H H CI H H EI EtOAC 173-145 H H CI H H EI EtOAC 173-145 H H CI H H EI ETOAC 173-145 H H CI H H EI ETOAC-Et₂O 179-180 H H CI H H EI ETOAC-Et₂O 169-170 Ph(2-CI) H H H Me ETOAC-HCX 169-170 Ph(4-F) H H H Me ETOAC-HCX 195-177 Ph(4-F) H H H Me ETOAC-HCX 195-177	-S0,iPr	H	F	ວ	H	H	豆		油火物	E10Ac-E120	183-184
H H CI H H EI EIOAC 202-205 H H H H EI EIOAC 205-205 H H H CI H H Me EIOAC 155-157 H H Br H Me EIOAC 176-177 H H CI H H EI EIOAC 176-177 H H CI H H EI EIOAC 143-145 H H CI H H EI EIOAC 177-179 H H CI H H EI EIOAC 177-179 H H CI H H EI EIOAC-EI ₂ O 179-180 H H CI H H EI EIOAC-EI ₂ O 179-180 H H CI H H EI EIOAC-EI ₂ O 166-167 H H CI H H EI EIOAC-EI ₂ O 166-167 H H CI H H EI EIOAC-EI ₂ O 166-167 H H CI H H EI EIOAC-EI ₂ O 166-167 H H CI H H Me EIOAC-EI ₂ O 166-167 H H H H H H H H H H H H H H H H H H H	-SO,NWe,	н	Ħ	כ	H	Н	旣	Et0Ac	162-163	Et0Ac-Et20	209-210
H H H H E E	N-+1(\pi) / 2(\pi)	Ħ	#	Ü	Ħ	Н	豆	Et0Ac	202-205	E10Ac	205-208
H CI H H Me	Me	=	=	H	H	Ħ	豆		粉末	ELOH	180-185
H	₽	=	ご	=	H	H	Me		粉末	Et0Ac	176-178
H H Br H Me E10Ac 155-157 H H Br H Me E10Ac 176-177 H H Br H Me 1176-177 H H C1 H H E1 E10Ac 183-184 H H C1 H H E1 E10Ac 145-150 H H C1 H H E1 E10Ac 143-145 H H C1 H H E1 E10Ac-E120 179-180 H H C1 H H E1 E10Ac-E120 179-180 H H C1 H H E1 E10Ac-E120 169-167 H H C1 H H E1 E10Ac-E120 169-170 Ph(2-C1) H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me E10Ac-Hex 193-195 Ph(4-F) H H H Me 11 Me 110Ac-Hex 195-177	We .	: =	H	C	Ħ	Ħ	Me		粉末	E10H	178-183
H H Cl H H Et EtOAC 176-177	2 2	==	=	Br	н	H	Me	E10Ac	155-157	E10Ac	168-173
H H Br H Me E10Ac 183-184 H H C1 H H E1 E10Ac 145-150 H H C1 H H E1 E10Ac 145-150 H H C1 H H E1 E10Ac 177-179 H H C1 H H E1 E10Ac-E120 179-180 H H C1 H H E1 E10Ac-E120 166-167 H H C1 H H E1 E10Ac-E120 166-167 H H C1 H H E1 E10Ac-E120 166-167 Ph(2-C1) H H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me E10Ac-Hex 195-127	-CH.Ph	Ħ	н	ವ	H	ж	표	E10Ac	176-177	Et0Ac	183-185
H H CI H H E1 E10Ac 183-184 H H CI H H E1 E10Ac 145-150 H H CI H H Me E10Ac 143-145 H H CI H H E1 E10Ac-E120 179-180 H H CI H H E1 E10Ac-E120 166-167 H H CI H H E1 E10Ac-E120 166-167 H H CI H H E1 E10Ac-E120 166-167 Ph(2-CI) H H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me E10Ac-Hex 195-127	-CH,Ph (4-N,)	н	H	Br	H	H	Me		油状物	E10Ac	185-195
H H Cl H H Et E10Ac 145-150 H H Cl H H Me E10Ac 143-145 H H Cl H H E1 E10H-E10Ac 177-179 H H Cl H H E1 E10Ac-E120 179-180 H H Cl H H E1 E10Ac-E120 166-167 H H Cl H H E1 E10Ac-E120 166-167 H H Cl H H E1 E10Ac-E120 166-167 Ph(2-Cl) H H H H Me E10Ac-Hex 169-170 Ph(4-F) H H H Me T10Ac-Hex 155-177 THY MA T10Ac-Hex 175-177	2-+7511/4511	Ħ	H	IJ	H	H	亞	E10Ac	183-184	E10Ac	203-209
H H Cl H H Me EtOAc 143-145 H H Cl H H Et EtOAc-Et ₂ O 179-180 H H Cl H H Et EtOAc-Et ₂ O 179-180 H H Cl H H Et EtOAc-Et ₂ O 166-167 H H Cl H H Et EtOAc-Et ₂ O 166-167 H H Cl H H Et EtOAc-Et ₂ O 166-167 Ph(2-Cl) H H H Me EtOAc-Hex 169-170 Ph(4-F) H H H Me EtOAc-Hex 193-195 Curr. H H H Me EtOAc-Hex 169-170	-CH,Ph (4-Ph)	H	H	ວ	Н	H	Εt	E10Ac	145-150	E10Ac	190-195
H H CI H H EI EIOAC—E120 179—180 H H CI H H EI EIOAC—E120 179—180 H H CI H H EI EIOAC—E120 160—187 H H CI H H EI EIOAC—E120 166—167 H H EI E120 193—195 H H H H Me EIOAC—Hex 169—170 H H H H Me EIOAC—Hex 169—170 H H H Me EIOAC—Hex 169—170 H H H H Me EIOAC—Hex 169—170 H H H H Me EIOAC—Hex 195—197	-CH,Ph (2-Ph)	H	Ħ	\Box	H	H	æ	E10Ac	143-145	E10Ac	190-195
H H CI H H Et E10Ac—E1,0 179–180 B H CI H H Et E10Ac—E1,0 179–180 E E1/4 H H CI H H Et E10Ac—E1,0 166–167 E E Ph(2—CI) H H H H Me E10Ac—Hex 169–170 E Ph(4—F) H H H Me E10Ac—Hex 195–197 I MAX/49	3,707° 02° 11,4511	×	Н	C	×	H	El	E10H-E10Ac	177-179	E10Ac-E120	194-195
H H Cl H H Et	-CH,Ph (3-CO,Me)	H	Ħ	ವ	Н	Ħ	豆	$E10Ac-Et_20$	179-180	E1,0	196-197
b	-CH,Ph (4-C0,Me)	Н	H	\Box	Н	H	Et		粉末	Et0Ac	199-200
H H C1 H H Et E1 ₂ 0 193-195 Ph(2-C1) H H H Me E10Ac-Hex 169-170 E Ph(4-F) H H H Me A10Ac-Hex 135-197	2-メトキンカルボ ニリー5ーチエニリ	/大小 H	H	\Box	H	Ħ	豆	E10Ac-E120	166-167	$E10Ac-E1_20$	178-179
Ph(2-Cl) H H H Me Bt0Ac-Hex 169-170 E Ph(4-F) H H H Me Rt0Ac-Hey 195-197	-CONHPh	=	×	IJ	H	H	亞	E1,0	193-195	E10Ac	203-205
Ph(4-F) H H H Me TIOAC-Hev 195-197	-(H,Ph	Ph (2-C1)	H	Ħ	Ξ	н	We	Et0Ac-Hex	169-170	Et0Ac-Hex	185-188
City, u u u u Mo RiObe-Hov 195-197		Ph (4-F)	H	Ħ	H	H	₩		油状物	E10Ac-Hex	180-185
171 071 VOIL TURN II	-CH,Ph	-CH-L	Н	Н	×	Н	We	E10Ac-Hex	125-127	Et0Ac-Hex	175-180
59		R1 -S0 ₂ iPr -S0 ₂ iPr -S0 ₂ iMe ₂ N-Eh/s1)/Xh4~J/b Me Me Me Me Me Me Me CH ₂ Ph (4-N ₃) 2-75/k/5/l -CH ₂ Ph (3-CO ₂ Me) -CH ₂ Ph (4-CO ₂ Me)) 출 '	R2 R2 H H H H H H H H H H H H H H H Ph(2-C1) Ph(4-F) -CH,Ph	R2 R3 H H H H H H H H H H H H H H H H H H H	R2 R3 R4 R5 H H C1 H H C1	R2 R3 R4 R5 R6 H H C1 H H H C1 H H C1 H H H C1 H H H H H C1 H H C1	No. No.	R2 R3 R4 R5 R6 R (IC) H H C1 H H E1 E10Ac H H C1 H H H E1 E10Ac H H C1 H H H E1 E10Ac H H C1 H H H H H H H H H H H H H H H H H	R2 R3 R4 R5 R6 R (IC) H H C1 H H E1 E10Ac H H C1 H H H H E1 E10Ac H H H C1 H H H E1 E10Ac H H H C1 H H H H H H H H H H H H H H H H	R2 R3 R4 R5 R6 R (IC)

校4 -1		1 4 7 7 7 1 1
过廊	エステル体 (1 c)	カラキン数 (1 d)
2		$(d_6-DMSO) \delta$: 7. 03(1H, s), 7. 10-7. 70(3H, m), 8. 10-8. 50(2H, m), 8. 10(1H, d, J=3. 0Hz).
3	(CDCL ₂) δ : 3. 93 (3H, s), 7. 00 (1H, s), 7. 19-7. 39 (3H, m), 7. 95 (1H, d, 1=9, 4H ₇) q 99 (1H, brs)	$(d_6-DMSO) \delta$: 7. 00 (1H, s), 7. 25-7. 28 (2H, m), 7. 42-7. 52 (1H, m), 8. 62 (1H, d, J=3. 0Hz).
	7 7 00 /111	13 May 7 19 (11 dt 1=8 847 9 842) 7 59 (11 dd
	$(d_6-DMSO) \delta$: 3.95(3H s), 7.03(1H s), 7.14(1H dd, J=8.8Hz,	(Q6-LMSU) 0 : (. UU()II, S/, (. 10\III, UI, J-6. 0112. 2. 0116/, (. 0112.)
☜	2. 8Hz), 7. 53(1H, dd, J=9. 0Hz, 4. 4Hz), 7. 89(1H, dd, J=10Hz, 2. 6Hz),	J=8. 7Hz, 4. 8Hz), 7. 89(IH, dd, J=9. 6Hz, 2. 4Hz), 8. (8(IH, S), 12. 5(IH, S).
	8.81(IH, s), 12.4(IH, brs).	113, 61
	(d _x -DMS0) 5 : 1.30 (3H t, 1=5.9Hz), 4.28 (2H q, 1=5.9Hz), 6.90 (1H,	(d ₆ -DMSO) S : 7.01(1H, s), 7.41(1H, dd, J=8.8Hz, 2.1Hz), 7.49(1H, d.
ഹ		J=8. 8Hz), 8. 37(111, d, J=2. 1Hz), 8. 77(1H, d, J=2. 7Hz), 12. 6(1H, brs),
		13.5(III, brs).
	(d _k -DMS0) δ : 3, 85 (3H, s), 7, 05 (1H, s), 7, 29 (1H, dd, 1=8, 7Hz,	(d ₆ -DMSO) 6 : 7.01(1H s), 7.28(1H, dd, J=8.6Hz, 1.8Hz), 7.55(1H, d,
9	1. 8Hz), 7. 56 (1H, d, J=1. 8Hz), 8. 21 (1H, d, J=8. 7Hz), 8. 81 (1H, s),	J=1, 8Hz), 8, 21 (III, d, J=8, 6Hz), 8, 76 (III, d, J=3, 2Hz), 12, 5 (III, brs).
	(CDCL,) 8 :3.95(3H s), 6.90(1H s), 7.25-7.35(2H m), 8.04(1H d.	(d ₆ -DMSO) & :7.09(1H, s), 7.22-7.39(2H, m), 8.21(1H, d, J=7.8Hz),
<u>. </u>	J=3. 0Hz), 8. 29 (1H, dd, J=7. 4Hz, 1. 6Hz), 8. 95 (1H, brs).	8.80(1H, dd, J=3.2Hz), 12.8(1H, s), 13.9(1H, brs).
	1	(d ₆ -DMS0) & :3.81(3H, s), 6.90(1H, dd, J=8.6Hz, 2.2Hz), 6.99(1H, s),
∞	- 11	7, 40(1H, d, J=8, 6Hz), 7, 73(1H, d, J=2, 2Hz), 8, 64(1H, d, J=3, 6Hz).
•		12. 3(III brs).
	(dDNSO) & 1, 32 (311 1, 1=7, 412), 4, 31 (21, q, 1=7, 412), 5, 14 (21,	(d ₆ -DMS0) 6 :5.14(2H, s), 6.98(1H, s), 6.99(1H, dd, J=9.0Hz, 2.4Hz),
0	s), 6.98(111, dd, 1=9.01z, 2.41z), 7.00(111, s), 7.30-7.54(611, m).	7.30-7.52(611 m), 7.84(1H, d, J=2.411z), 8.63(1H, d, J=3.01tz), 12.9(1H,
*		d, J=3.0Hz), 13.7(IH brs).
	(d _e -DMSO) S :3 16(2H 1, J=7.8Hz), 3.86(3H s), 4.53(2H t,	$(d_6-\text{LMSO})$ 6 :3.16(2H t, J=7.4Hz), 4.52(2H t, J=7.4Hz), 6.91(1H s),
01	Ξ	7. 18-7. 36 (6H m). 7. 72 (1H d, 1=8. 6Hz). 8. 21 (1H, d, 1=2. 1Hz). 8. 79 (1H,
		s), 13.8(IH brs).
:		(d ₆ -DMSO) 6 :7.16(1H, s), 7.36-7.39(2H, m), 7.46-7.52(3H, m), 7.76-
=	m). 8.33-8.38(1H m), 9.09	7.81(2H, m), 8.35-8.39(1H, m), 9.04(1H, s), 13.8(1H, brs).
	5:3.69(3H. s), 5.56	(d_6-DMSO) 6 :5.83(2H, S), 6.97(1H, S), 7.35(1H, dd, J=8.7Hz, 2.1Hz).
12	7. 45 (IH d, J=8. 8Hz), 8. 33 (IH d. J=2. 2Hz), 8. 37 (IH, s), 8. 48-	7. 61-7. 66(3H m), 8. 26(1H, d, J=2. 1Hz), 8. 77(2H, d, J=6. 0Hz), 9. 05(1H,
	8.52(2H m).	8).

次4—2		[11] 00 E \ 114 00 0 10 E \ 117 00 E \ 117
		(d ₆ -DMSO) 6 :5.62(2H, S), 7.06(1H, S), 7.25-8.20(3H, M), 7.83(1H, U, I)
53	m), 9. 10(1H, d, J=2. 2Hz). 9. 25(1H, s).	J=9. 0Hz), 8. 17 (IH, dd, J=9. 0Hz, 2. 4Hz), 9. II (IH, d. J=2. 4Hz), 9. 25 (IH, s), 14. 0 (IH, brs).
	(CDCL,) 8:3.09(2H, 1, 1=6.9Hz), 3.92(3H, s), 4.18(2H, 1, 1=6.9Hz),	(d ₆ -DMSO) δ :3 04(2H t, 1=6.6Hz), 4.20(2H t, 1=6.6Hz), 5.50(2H s).
	5. 29 (211 s), 6. 76 (111 d, J=1. 8Hz), 6. 79 (111, s), 6. 98 (111 dd,	6. 90(11H, dd, J=9. 0Hz, 2. 1Hz), 6. 95(11H, s), 7. 19(11H, d, J=2. 1Hz),
	, 7.79 (1ң	7. 21-7. 36(1014 m), 8. 08(114 d, J=9. 0Hz), 8. 83(114 s).
	(CDCL.) 8 :3.92(3H s), 5.29(2H s), 6.78(1H s), 6.78(1H dd.	(d _e -DMSO) & :5.43(2H, s), 6.95(1H, dd, J=9.0Hz, 2.4Hz), 6.98(1H, s),
15	J=9. 0Hz, 2. 1Hz), 7. 10-7. 80 (11H, m), 7. 90 (1H, s), 8. 24 (1H, d. J=9. 0Hz).	7. 22-7. 80(11H m), 8. 16(1H d, J=9. 0Hz), 9. 04(1H s), 13. 8(1H brs).
٠	(d ₆ -DMSO) S :3.66(3H, s), 6.02(1H, s), 7.26-7.40(2H, m), 7.48-	(d ₆ -DMSO) 6 :6.05(11(s), 7.22-7.40(2H m), 7.42-7.78(5H m), 8.22-
<u>e</u>	m), 8.23-8.38(IH, m), 12.7(IH,	12. 6(1H, s), 13. 4(1H, brs).
1.7) 6 :3.70(3H s), 6.28(1H s).	(d ₆ -DMSO) 5 :5.95(1H, s), 7.32-7.46(2H, m), 7.52-7.58(1H, m), 7.62-
_	12 (JH	8. 30-8. 38(114 m). 13. 4(114 brs).
01	(d ₆ -DMSO) δ :3.69(3H, s), 6.21(1H, s), 7.24-7.38(2H, m), 7.39-	(d ₆ -DMSO) S :6.23(1H, s), 7.20-7.38(2H, m), 7.38-7.58(3H, m), 7.70-
<u>o</u>	=	
0	(d ₆ -DMSO) S :3.70(3H s), 6.24(1H s), 7.20-7.40(2H m), 7.42-	(CDCL ₂) S :6.64(1H s), 7.33-7.60(7H m), 8.24-8.30(1H m), 8.75(1H
<u>.</u>	7. 60(1H, m), 7. 62-7. 80(5H, m), 8. 20-8. 30(1H, m).	
		(d ₆ -DMS0) δ :3.85(3H, s), 6.32(1H, ·s), 7.14(2H, d, J=7.8Hz), 7.20-
20	===	7. 32 (2H m), 7. 42-7. 50 (1H m), 7. 61 (2H, d, J=7. 8Hz), 8. 22 (1H, dd,
		J=7. 8Hz, 1. 2Hz), 12.4(IH, s), 13.4(IH, brs).
	(CDCL ₂) δ : 3. 02 (6H S), 3. 78 (3H S), 6. 54 (1H S), 6. 90-7. 06 (3H	(d ₆ -DMSO) & CHCI free):3.20(6H, S), 6.60(IH, S), 7.13(IH, d, J=7.8Hz),
21	brm), 7.30-7.48(4H m), 8.32-8.44(1H m), 8.76(1H brs).	1, J=8. 1Hz),
	s). 5. 90(1H	
22	m), 7.56(1H, dt, J=11.1Hz, 1.6Hz), 7.62-7.82(3H, m), 8.30-8.40(1H,	(.41(.111, .101, .1.2.112, .1.3112), .1.30(.111, .01, .1.2.1112, .1.312), .1.312), .1.312), .1.314(.111, .1.31
	(CDCL.) 3 3 75 (3H s) 6 75 (1H s) 7 38-8 00 (8H m) 8 26 (1H s).	δ :7.30(IH
24		brd).
95	(CDCL ₃) 6 :3.98(3H s), 6.89(1H s), 7.50-7.68(4H m), 7.85(1H d,	(d ₆ -DMSO) & :7. 29 (1H, s), 7. 60-7. 83 (4H, m), 7. 98 (1H, d, J=9. 0Hz),
7.0	J=9. 0Hz), 7. 94-7. 98 (2H, m), 8. 32 (1H, s), 8. 51 (1H, t, J=1. 8Hz).	8 19-8 23(2H, m), 8.40(1H, d, J=2.1Hz), 9.31(1H, S), 13.8(1H, DrS).

26 7.53-7.70(311 m). 7.96-8.00(314 m). 8.25(111 dd, 1=8.112). 8.31(111 s). 27 1.31-7.70(311 m). 7.96-8.00(311 m). 8.25(111 dd, 1=8.112). 8.31(111 s). 28 1.4.7(114 brs). 29 1.4.7(114 brs). 20 1.34(311 ii). 9.23(111 s). 20 1.34(311 ii). 9.23(111 s). 21 2.7.13-8.20(1411 m). 9.23(111 s). 22 2.7.45-7.60(311 m). 8.04(111 d, 1=9.012). 8.25(111 d, 1=3.012). 23 2.7.45-7.60(311 m). 7.80-7.95(211 m). 8.25(111 d, 1=3.012). 24 3.7.40-7.60(311 m). 7.80-7.95(211 m). 8.2-8.35(211 m). 8.26(211 d, 1=1.812). 25 3.7.740-7.60(311 m). 7.80-7.95(211 m). 8.2-8.35(211 m). 8.26(211 d, 1=1.812). 26 4.1.812). 9.36(114 s). 27 4.0-7.60(311 m). 7.80-7.95(211 m). 8.2-8.35(211 m). 8.26(211 d, 1=1.812). 28 2.7.40-7.60(311 m). 7.80-7.95(211 m). 8.2-8.35(211 m). 8.26(211 d, 1=1.812). 29 2.7.40-7.60(311 m). 7.80-7.95(211 m). 8.2-8.35(211 m). 8.26(211 d, 1=1.812). 20 3.7.72(111 dd, 1=9.012, 2.412). 7.88(111 d, 1=8.412). 7.36(111 d, 1=2.112). 21 112. 8.40(111 m). 9.34(111 s). 22 412. 7.30(111 d, 1=6.912). 4.34(211 d, 1=2.112). 3.34(11 s). 23 1.52(111 d, 1=9.012). 2.412). 7.86(11 d, 1=2.112). 3.34(11 s). 24 1.52(111 d, 1=9.012). 2.412). 7.88(11 d, 1=2.112). 7.36(11 d, 1=2.112). 25 1.43(11 d, 1=9.012). 2.412). 7.56(11 d, 1=2.112). 7.56(11 d, 1=2.112). 26 1.122 1122. 8.26(11 d, 1=8.112). 4.34(211 d, 1=2.112). 7.36(11 d, 1=3.112). 8.3(111 d, 1=3.112). 8.3(111 d, 1=3.112). 7.36(11 d, 1=3.112). 8.3(111 d, 1=3.112). 8	表4一3		
7, 53-7, 70 (311 m), 7, 96-8, 00 (311 m), 8, 25 (111 d, 1=8, 1112), 8, 31 (114 brs). 8), 14, 7 (114 brs). (d ₆ -DMS0) \(\delta: 1, 35 (311 t, 1=7, 412), 4, 35 (211 q, 1=7, 412), 5, 14 (214 s), 7, 13-6 (311 m), 9, 23 (114 s). 8, 7, 7, 13-8, 20 (1411 m), 9, 23 (114 s). 8, 32 (214 d, 1=12, 0142, 7, 2142), 9, 34 (114 s). 8, 32 (214 dd, 1=12, 0142, 7, 2142), 9, 34 (114 s). 8, 32 (214 dd, 1=12, 0142, 7, 2142), 9, 34 (114 s). (d ₆ -DMS0) \(\delta: 1, 34 (314 t, 1=6, 912), 4, 34 (214 q, 1=6, 912), 7, 35 (114 d), 1=9, 012, 2, 412), 7, 51 (114 dd, 1=8, 0142), 7, 35 (114 d), 1=2, 0142, 2, 412), 7, 51 (114 dd, 1=8, 0142), 8, 26 (214 d), 1=2, 0142, 2, 412), 7, 51 (114 dd, 1=8, 0142), 8, 24 (114 d), 1=9, 0142, 2, 412), 7, 51 (114 d, 1=9, 0142), 8, 29 (114 d), 1=0, 0142, 1, 4, 34 (214 d, 1=9, 0142), 8, 29 (114 d), 1=0, 0142, 1, 1=6, 9142), 4, 34 (214 d, 1=9, 0142), 8, 29 (114 d), 1=9, 0142, 1, 1=6, 9142), 4, 34 (214 d, 1=8, 0142), 7, 35 (114 d), 1=9, 0142, 8, 27 (214 d, 1=8, 1142), 7, 36 (114 d), 1=8, 1142), 8, 37 (114 d), 1=9, 0142, 1142), 4, 36 (214 d), 1=8, 1142), 8, 10 (114 d), 1=9, 0142, 1142), 4, 36 (214 d), 1=8, 1142), 8, 10 (114 d), 1=9, 0142, 1142), 4, 36 (214 d), 1=8, 1142), 8, 10 (114 d), 1=9, 0142, 1142), 4, 36 (214 d), 1=8, 1142), 8, 10 (114 d), 1=9, 0142, 1142), 4, 36 (214 d), 1=8, 1142), 8, 10 (114 d), 1=9, 0142, 1142), 4, 36 (214 d), 1=8, 1142), 8, 10 (114 d), 1=9, 0.2, 1142), 4, 36 (214 d), 1=8, 1142), 8, 10 (114 d), 1=8, 1142), 8, 10 (114 d), 1=9, 0.2, 1142), 1, 37 (114 d), 1=1, 1142), 8, 37 (114 d), 1=2, 1142), 8, 37 (114 d		s), 6. 90 (1H, s), 7. 36 (1H, dd, J=8. 7Hz, 1. 8Hz),	$(d_6-DMSO) \delta : 7. 29(1H, s)$, 7. 49(1H, dd, J=8. 4Hz, 2. 1Hz), 7. 56-7. (2.4H)
8. 14. (UH 1915). (d ₆ -DMS0) \(\phi: 1.35\) (31(1, 1=7.4Hz), 4.35\) (21(1, q) 1=7.4Hz), 5.14\) (21(1, q) 1.35\) (31(1, 1) 1.34\) (31(1, 1) 1.34\) (31(1, 1) 1.39\) (31(1, q) 1	56	7. 96-8. 00 (3H, m), 8. 25 (111, d, J=8. 1Hz), 8. 31 (1H,	m), 8. U (111, d, J=Z, 1112), 8. 20 (211, d, J=3. (112), 3. 31 (111, 3), 13. 0 (11.), 15. 0 (11.
8), 7, 13–8, 20 (1411 m). 9, 23 (114 s). (d ₆ -DMSO) \(\phi\): 1.34 (314 t, 1=9.0 Hz), 4, 36 (214 q, 1=9.0 Hz), 7, 30 (114 s). 8, 32 (214 dd, 1=12.0 Hz, 7, 2 Hz), 9, 34 (114 s). 8, 32 (214 dd, 1=12.0 Hz, 7, 2 Hz), 9, 34 (114 s). (d ₆ -DMSO) \(\phi\): 1.34 (314 t, 1=6.9 Hz), 4, 34 (214 q, 1=6.9 Hz), 7, 35 (114 s), 7, 70 (114 dd, 1=9.0 Hz), 7, 2 (114 dd, 1=9.0 Hz), 7, 34 (214 dd, 1=9.0 Hz), 7, 34 (114 dd, 1=9.0 Hz), 7, 51 (114 dd, 1=8.1 Hz), 7, 64 (114 dd, 1=9.0 Hz), 7, 2 (114 dd, 1=9.0 Hz), 7, 2 (114 dd, 1=9.0 Hz), 7, 34 (114 s), 7, 64 (114 dd, 1=9.0 Hz), 7, 78 (114 dd, 1=9.0 Hz), 7, 36 (114 d), 1=9.0 Hz), 8, 25 (114 d), 1=9.0 (2.4 Hz), 7, 75 (114 dd, 1=9.0 Hz), 8, 25 (114 d), 1=9.0 (2.4 Hz), 7, 75 (114 d), 1=9.0 (2.4 Hz), 7, 75 (114 d), 1=9.0 (2.4 Hz), 7, 75 (114 d), 1=0.0 Hz), 8, 25 (114 d), 1=9.0 Hz), 8, 25 (114 d), 1=9.0 Hz), 8, 25 (114 d), 1=8.7 Hz, 2, 4 Hz), 7, 75 (114 d), 1=8.7 Hz, 2, 4 Hz), 7, 75 (114 d), 1=8.7 Hz, 2, 4 Hz), 7, 76 (114 d), 1=2.7 Hz), 7, 36 (114 s), 7, 45 (114 d), 1=9.0 Hz, 7, 76 (114 d), 1=9.0 Hz), 7, 76 (114 d), 1		.1.35(311 t. J=7.4Hz),	(d ₆ -DMSO) & :5, 14 (2H s), 7, 15 (1H dd, J=9, 0Hz, 2, 4Hz), 7, 27 (1H s).
(d ₀ -DMSO) \$\tilde{c}\$: 1.34(3H \text{ t}, 1=9.0Hz)\$, \$4.36(2H \text{ q}, 1=9.0Hz)\$, \$7.30(1H \text{ s})\$. 7.45-7.60(3H \text{ m})\$, \$8.94(1H \text{ d}, 1=9.0Hz)\$, \$8.25(1H \text{ d}, 1=3.0Hz)\$, \$8.32(2H \text{ dd}, 1=12.0Hz, 7.2Hz)\$, \$9.34(1H \text{ s})\$. (d ₀ -DMSO) \$\tilde{c}\$: 1.34(3H \text{ t}, 1=6.9Hz)\$, \$4.34(2H \text{ q}, 1=6.9Hz)\$, \$7.35(1H \text{ s})\$, \$7.40-7.60(3H \text{ m})\$, \$8.26(2H \text{ m})\$, \$8.26(2H \text{ m})\$, \$8.26(2H \text{ g}, 1=6.9Hz)\$, \$7.35(1H \text{ d}, 1=1.8Hz)\$, \$9.36(1H \text{ s})\$, \$7.40-7.60(3H \text{ m})\$, \$7.80-7.95(2H \text{ m})\$, \$8.26(2H \text{ m})\$, \$8.26(2H \text{ g})\$, \$7.34(1H \text{ dd}, 1=9.0Hz)\$, \$7.34(1H \text{ dd}, 1=6.9Hz)\$, \$7.34(1H \text{ dd}, 1=6.9Hz)\$, \$7.31(1H \text{ dd}, 1=8.7Hz)\$, \$7.34(1H \text{ dd}, 1=8.7Hz)\$, \$7.34(1H \text{ dd}, 1=8.7Hz)\$, \$7.34(1H \text{ dd}, 1=8.7Hz)\$, \$7.36(1H \text{ dd}, 1=8.7Hz)\$, \$7.36(1H \text{ dd}, 1=8.7Hz)\$, \$7.36(1H \text{ dd}, 1=8.9Hz)\$, \$7.36(1H \text{ dd}, 1=8.7Hz)\$, \$7.36(1H \text{ dd}, 1=9.0Hz)\$, \$7.36(1H \text{ dd}, 1=6.9Hz)\$, \$7.36(1H \text{ dd}, 1=9.0Hz)\$, \$7.36(1H \text{ dd}, 1=6.9Hz)\$, \$7.36(1H \text{ dd}, 1=6.9Hz)\$, \$7.36(1H \text{ dd}, 1=6.9Hz)\$, \$7.36(1H \text{ s})\$, \$7.49(1H \text{ dd}, 1=9.0Hz)\$, \$8.26(1H \text{ dd}, 1=8.7Hz)\$, \$7.36(1H \text{ s})\$, \$7.49(1H \text{ dd}, 1=8.7Hz)\$, \$7.36(1H \text{ dd}, 1=2.9Hz)\$, \$7.36(1H \text{ s})\$, \$7.49(1H \text{ dd}, 1=8.7Hz)\$, \$7.40(1H \text{ dd}, 1=2.7Hz)\$, \$7.40(1H \text{ s})\$, \$7.45(1H \text{ dd}, 1=8.7Hz)\$, \$7.40(1H \text{ s})\$, \$7.45(1H \text{ dd}, 1=9.0Hz)\$, \$7.46(1H \text{ dd}, 1=7.8Hz)\$, \$7.36(1H \text{ s})\$, \$7.45(1H \text{ dd}, 1=9.0Hz\$, \$7.36(1H \text{ s})\$, \$7.45(1H \text{ dd}, 1=9.0Hz\$, \$7.36(1H \text{ s})\$, \$7.45(1H \text{ dd}, 1=9.0Hz\$, \$7.97(1H \text{ t}, 1=8.4Hz)\$, \$8.41(1H \text{ dd}, 1=9.0 2.1Hz)\$, \$7.97(1H \text{ t}, 1=8.4Hz)\$, \$8.60(1H \text{ d}, 1=2.1Hz)\$, \$8.77(1H \text{ td}, 1=8.4Hz)\$, \$8.41(1H \text{ d}, 1=8.4Hz)\$, \$8.61(1H \	7.7		7. 30-7. 80 (811 m). 7. 85 (1H d. J=2. 4Hz), 7. 91 (1H d. J=9. 0Hz), 8. 16-
(d ₆ -DMSO) δ :1.34(3H t, 1=9.0Hz), 4.36(2H q, 1=9.0Hz), 7.30(1H s), 8.32(2H dd 1=12.0Hz), 9.34(1H s). 8.25(1H d, 1=3.0Hz), 8.32(2H dd 1=12.0Hz, 7.2Hz), 9.34(1H s). 8.2(2H dd 1=12.0Hz), 7.35(1H s). 8.32(2H dd 1=12.0Hz), 7.36(1H s). 8.2(2H dd, 1=9.0Hz), 7.36(1H s). 8.2(2H dd, 1=9.0Hz), 7.34(2H d, 1=6.9Hz), 7.34(2H d, 1=9.0Hz), 7.34(1H dd, 1=8.7Hz), 7.51(1H dd, 1=8.7Hz), 7.34(1H dd, 1=9.0Hz, 2.4Hz), 7.51(1H dd, 1=8.7Hz), 7.34(1H dd, 1=9.0Hz, 2.4Hz), 7.88(1H d, 1=8.4Hz), 8.29(1H dd, 1=9.0Hz, 2.4Hz), 7.88(1H d, 1=9.0Hz), 8.29(1H dd, 1=9.0Hz), 8.25(1H d, 1=9.0Hz), 8.25(1H d, 1=9.0Hz), 8.25(1H d, 1=9.0Hz), 8.25(1H d, 1=9.0Hz), 8.35(1H d, 1=9.0Hz), 7.35(1H d, 1=8.7Hz), 7.92(1H dd, 1=8.7Hz), 7.45(1H dd, 1=9.0Hz), 9.38(1H s), 7.45(1H dd, 1=9.0Hz), 2.1Hz), 9.38(1H s), 7.45(1H dd, 1=7.8Hz), 9.38(1H s), 8.41(1H dd, 1=7.8Hz), 9.38(1H s), 8.41(1H dd, 1=7.8Hz), 9.38(1H s), 7.54(1H dd, 1=9.0Hz), 1.34(3H t, 1=7.2Hz), 9.38(1H s), 8.41(1H dd, 1=9.0 2.1Hz), 8.31(1H d, 1=1.8Hz), 8.31(1H d, 1=1.8Hz), 8.31(1H d, 1=1.8Hz), 8.31(1H d, 1=1.8Hz), 8.31(1H d, 1=8.4Hz), 8.10(1H d, 1=8.4Hz), 8.41(1H dd, 1=8.4Hz), 8.51(1H dd, 1=8.4Hz), 8.51(1H dd, 1=8.4Hz), 8.41(1H dd, 1=8.4Hz), 8.51(1H dd, 1=8.4Hz), 8.45(1H dd, 1=8.4Hz), 8.54(1H dd, 1=8.4Hz), 8.36(1H d, 1=8.1Hz), 8.36(1H d, 1=8	i		8. 22 (2H m), 9. 20 (111 s), 13. 8 (1H brs)
8, 32 (2H, d ₄ , J=12, OHz, 7, 2Hz), 9, 34 (1H, 8). 8, 32 (2H, d ₄ , J=12, OHz, 7, 2Hz), 9, 34 (1H, 8). (d ₆ -DMSO) δ : 1. 34 (3H, 1, J=6, 9Hz), 4, 34 (2H, q, J=6, 9Hz), 7, 35 (1H, 8), 7, 74 0-7, 60 (3H, m), 7, 80-7, 95 (2H, m), 8, 2-8, 35 (2H, m), 8, 26 (2H, 4), 1-18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19		ô :1. 34 (3H t, J=9. 0Hz), 4. 36 (2H	(d_6-DMSO) δ :7. 27 (1H, s), 7. 52 (2H, d, J=8. THz), 7. 55 (1H, d, J=8. THz),
8 32 (2H dd J=12 0Hz, 7. 2Hz), 9. 34 (1H s). (d ₆ -DMSO) \(\delta: 1. 34 (3H t, J=6. 9Hz), 4. 34 (2H q, J=6. 9Hz), 7. 35 (1H s), 7. 36 (1H s), 8. 7. 76 (3H m), 7. 80-7. 95 (2H m), 8. 2-8. 35 (2H m), 8. 26 (2H d, J=1. 8Hz), 9. 36 (1H s). (d ₆ -DMSO) \(\delta: 1. 34 (3H t, J=6. 9Hz), 7. 51 (1H dd, J=8. 7Hz, 2. 1Hz), 7. 64 (1H, dt, J=9. 0Hz, 2. 4Hz), 7. 88 (1H, d, J=8. 4Hz), 8. 29 (1H, d, J=2. 1Hz), 8. 40 (1H, m), 9. 34 (1H, s). (d ₆ -DMSO) \(\delta: 1. 34 (3H t, J=6. 9Hz), 4. 36 (2H, d, J=6. 9Hz), 7. 30 (1H, d), 7. 52 (1H dd, J=9. 0Hz), 8. 25 (1H, d, J=2. 1Hz), 9. 34 (1H, s). (d ₆ -DMSO) \(\delta: 1. 33 (3H, t, J=6. 9Hz), 4. 36 (2H, d, J=6. 9Hz), 7. 35 (1H, s), 7. 49 (1H, dd, J=8. 7Hz, 2. 7Hz), 8. 30 (1H, d, J=2. 4Hz), 7. 85 (1H, d, J=2. 7Hz), 9. 40 (1H, s) (d ₆ -DMSO) \(\delta: 1. 33 (3H, t, J=6. 9Hz), 4. 34 (2H, d, J=6. 9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, J=2. 7Hz), 9. 40 (1H, s) (d ₆ -DMSO) \(\delta: 1. 33 (3H, t, J=6. 9Hz), 4. 34 (2H, d, J=6. 9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, J=9. 0Hz, 2. 1Hz), 7. 66 (1H, d, J=9. 0Hz), 7. 36 (1H, d, J=1. 8Hz), 7. 31 (1H, dd, J=7. 8Hz), 7. 36 (1H, d), 1=8. 7Hz, 7. 91 (1H, dd, J=7. 8Hz), 1. 8Hz), 9. 38 (1H, s). (d ₆ -DMSO) \(\delta: 1. 34 (3H, t, J=8. 4Hz), 8. 10 (1H, d), 1=8. 4Hz), 8. 41 (1H, dd, J=7. 8Hz), 4. 36 (2H, d, J=9. 0Hz), 7. 36 (1H, d), 1=8. 4Hz), 8. 41 (1H, dd, J=7. 8Hz), 9. 38 (1H, t, J=8. 4Hz), 8. 41 (1H, dd, J=9. 0.2. 1Hz), 8. 57 (1H, dd, J=9. 0.2. 1Hz), 9. 45 (1H, dd, J=9. 0.2. 1Hz), 9. 45 (1H, dd, J=9. 0.2. 1Hz), 9. 45 (1H, dd, J=8. 4Hz), 8. 66 (1H, d, J=9. 112), 9. 45 (1H, d, J=9. 112), 9. 36 (1H, d, J=9. 112), 9. 45 (1H, d, J=9. 112), 9. 36 (1H, d, J=9. 112), 9. 45 (1H, d, J=	28	Ď,	8. 05(1H, d, J=9. 0Hz), 8. 25(1H, d, J=2. 1Hz), 8. 33(2H, q, J=4. 5Hz),
(d ₆ -DMSO) δ :1.34(3H 1, 1=6, 9Hz), 4, 34(2H q, 1=6, 9Hz), 7, 35(1H s), d, 1=1, 8Hz), 9, 36(1H s). (d ₆ -DMSO) δ :1.34(3H 1, 1=6, 9Hz), 4, 34(2H q, 1=6, 9Hz), 7, 34(1H s), 7, 72(1H dd, 1=9, 0Hz, 2, 4Hz), 7, 51(1H dd, 1=8, Hz), 8, 29(1H d, 1=2, 1Hz), 8, 7, 72(1H dd, 1=9, 0Hz, 2, 4Hz), 7, 51(1H dd, 1=8, Hz), 8, 29(1H d, 1=2, 1Hz), 1=2, 1Hz), 8, 40(1H m), 9, 34(1H s), (d ₆ -DMSO) δ :1.34(3H 1, 1=6, 9Hz), 4, 36(2H q, 1=6, 9Hz), 7, 30(1H d, 1=9, 0Hz), 8, 23(2H d, 1=9, 0Hz), 8, 25(1H d, 1=9, 0Hz), 8, 25(1H d, 1=9, 0Hz), 8, 25(1H d, 1=8, 1Hz), 9, 34(1H s), (d ₆ -DMSO) δ :1.33(3H 1, 1=6, 9Hz), 4, 34(2H q, 1=6, 9Hz), 7, 35(1H d, 1=8, 7Hz), 7, 45(1H dd, 1=8, 7Hz), 7, 75(1H d, 1=8, 7Hz), 7, 85(1H d, 1=8, 7Hz), 7, 56(1H d, 1=2, 0Hz), 8, 52(1H d, 1=8, 7Hz), 9, 40(1H s) (d ₆ -DMSO) δ :1.33(3H 1, 1=6, 9Hz), 4, 34(2H q, 1=6, 9Hz), 7, 35(1H s), 7, 45(1H dd, 1=9, 0Hz, 2, 1Hz), 7, 66(1H d, 1=9, 0Hz), 7, 35(1H s), 7, 45(1H dd, 1=9, 0Hz, 2, 1Hz), 7, 66(1H d, 1=9, 0Hz), 7, 36(1H d, 1=8, 7Hz), 7, 91(1H dd, 1=7, 8Hz), 1, 81(2H d, 1=1, 8Hz), 8, 10(1H d, 1=8, 7Hz), 7, 34(1H d, 1=2, 1Hz), 8, 31(1H d, 1=2, 1Hz), 8, 31(1H d, 1=3, 2, 1Hz), 8, 41(1H dd, 1=9, 0+2, 11Hz), 8, 31(1H d, 1=8, 4Hz), 8, 10(1H d, 1=8, 4Hz), 8, 26(1H d, 1=8, 4Hz), 8, 10(1H d, 1=8, 4Hz), 8, 41(1H dd, 1=8, 4Hz), 8, 57(1H dd, 1=8, 4Hz), 8, 41(1H dd, 1=8, 4Hz), 8, 97(1H dd, 1=8, 4Hz), 9, 97(1H dd, 1=8, 211Hz), 9, 97(1H dd, 1=8, 211Hz), 9, 97(1H dd, 1=2, 1Hz), 9, 97(1H dd, 1=2, 1Hz),		9.34	9.31(1H, s), 14.0(1H, brs).
s). 7. 40-7. 60 (3H m), 7. 80-7. 95 (2H m), 8. 2-8. 35 (2H m), 8. 26 (2H d, J=1. 8Hz), 9. 36 (1H s). (d ₆ -DMSO) 6. 1. 34 (3H t, J=6. 9Hz), 4. 34 (2H q, J=6. 9Hz), 7. 34 (1H s), 7. 72 (1H dd, J=9. 0Hz, 2. 4Hz), 7. 88 (1H d, J=8. Hz, 2. 1Hz), 7. 64 (1H dt, J=9. 0Hz, 2. 4Hz), 7. 88 (1H d, J=8. 0Hz), 8. 29 (1H d, J=2. 1Hz), 8. 40 (1H m), 9. 34 (1H s). (d ₆ -DMSO) 6. 1. 34 (3H t, J=6. 9Hz), 4. 36 (2H q, J=6. 9Hz), 7. 30 (1H s), 7. 52 (1H dd, J=9. 0Hz), 8. 25 (1H d, J=9. 0Hz), 8. 03 (1H d, J=9. 0Hz), 8. 25 (1H d, J=6. 9Hz), 7. 36 (1H s), 7. 49 (1H dd, J=8. 7Hz), 7. 43 (2H d, J=8. 7Hz), 7. 75 (1H d, J=8. 7Hz), 7. 85 (1H d, J=8. 7Hz), 9. 40 (1H s) 8. 52 (1H d, J=2. 7Hz), 9. 40 (1H s) 8. 52 (1H d, J=2. 7Hz), 9. 40 (1H s) 8. 52 (1H d, J=2. 7Hz), 9. 40 (1H s) 8. 52 (1H d, J=2. 7Hz), 9. 40 (1H s) 8. 41 (1H dd, J=2. 7Hz), 9. 38 (1H s), 7. 35 (1H d), 1=8. 7Hz), 7. 35 (1H d), 1=8. 7Hz), 7. 31 (1H d), 1=7. 8Hz, 1. 8Hz), 8. 31 (1H d), 1=7. 8Hz), 8. 41 (1H dd, J=7. 8Hz), 1. 34 (3H t, J=7. 2Hz), 4. 36 (2H d, J=8. 4Hz), 8. 10 (1H d), 1=8. 41 (2H dd, J=9. 0.2. 1Hz), 7. 97 (1H t, J=8. 4Hz), 8. 10 (1H d), 1=8. 41 (2H dd, J=9. 0.2. 1Hz), 9. 45 (1H dd, J=8. 4Hz), 9. 45 (1H dd, J=8. 4Hz), 9. 45 (1H dd, J=8. 4Hz), 9. 45 (1H d), 1=8. 4Hz), 9. 45 (1Hz), 42 (2Hz), 42		t, J=6. 9Hz),	(d ₆ -DMSO) S:7.32(1H, s), 7.44-7.60(3H, m), 7.80-7.95(1H, m), 7.87(1H,
d, J=1, 8Hz), 9, 36 (JH, s). (d ₆ -DMSO) \(\triangle : 1.34(3H, t, J=6, 9Hz), 7.51 (JH, dd, J=8, 7Hz, 2. JHz), 7, 72 (JH, dd, J=9, 0Hz, 2. 4Hz), 7, 51 (JH, dd, J=8, 7Hz, 2. JHz), 7, 64 (JH, dt, J=9, 0Jz, 2. 4Hz), 7, 88 (JH, d, J=8, 4Hz), 8, 29 (JH, d, J=2, JHz), 8, 40 (JH, m), 9, 34 (JH, s). (d ₆ -DMSO) \(\triangle : 1.34(3H, t, J=6, 9Hz), 7.76 (ZH, d, J=9, 0Hz), 8, 03 (JH, d), 1=9, 0Hz), 8, 23 (ZH, d, J=9, 0Hz), 8, 25 (JH, d, J=2, JHz), 9, 34 (JH, s), 1=9, 0Hz), 8, 23 (ZH, d, J=9, 0Hz), 8, 25 (JH, d, J=6, 9Hz), 7, 35 (JH, s), 1=9, 0Hz), 8, 23 (ZH, d, J=9, 0Hz), 7, 76 (JH, d, J=8, THz), 7, 75 (JH, d, J=2, 4Hz), 7, 75 (JH, d, J=2, Hz), 7, 75 (JH, d, J=2, Hz), 7, 75 (JH, d, J=2, Hz), 7, 66 (JH, d, J=9, 0Hz), 7, 74 (ZH, brt, J=8, THz), 7, 91 (JH, dd, J=7, 2Hz), 7, 66 (JH, d, J=9, 0Hz), 7, 74 (JH, dd, J=7, 3Hz), 7, 93 (JH, s), 7, 45 (JH, dd, J=7, 3Hz), 9, 38 (JH, s), 7, 45 (JH, dd, J=7, 3Hz), 9, 38 (JH, s), 7, 45 (JH, dd, J=7, 3Hz), 9, 38 (JH, s), 7, 45 (JH, dd, J=9, 0Hz), 8, 37 (JH, d, J=8, 4Hz), 8, 10 (JH, d, J=8, 4Hz), 8, 10 (JH, d, J=8, 4Hz), 8, 57 (JH, dd, J=8, 4Hz), 8, 96 (JH, d, J=8, 4Hz), 9, 96 (JH, d, J=8, 1Hz), 9, 95 (JH, d, J=2, 1Hz), 9, 96 (JH, d, J=2, 1Hz), 9, 96 (JH, d, J=2, 1Hz), 9, 96 (JH	29	7. 80-7. 95 (2Ң	J=9. 3Hz), 9. 32 (IH d, J=1. 8Hz).
(d ₆ -DMSO) δ :1.34(3H t, J=6.9Hz), 4.34(2H q, J=6.9Hz), 7.34(1H, S), 7.72(1H dd, J=9.0Hz, 2.4Hz), 7.51(1H dd, J=8.7Hz, 2.1Hz), 7.64(1H dt, J=9.0Hz, 2.4Hz), 7.88(1H d, J=8.4Hz), 8.29(1H d, J=2.1Hz), 8.40(1H m), 9.34(1H s). (d ₆ -DMSO) δ :1.34(3H t, J=6.9Hz), 4.36(2H q, J=6.9Hz), 7.30(1H d, J=9.0Hz), 8.25(1H d, J=2.1Hz), 9.34(1H s). (d ₆ -DMSO) δ :1.33(3H t, J=6.9Hz), 4.34(2H q, J=6.9Hz), 7.35(1H s), 7.49(1H dd, J=8.7Hz, 2.4Hz), 7.75(1H d, J=8.7Hz), 7.35(1H d, J=8.7Hz), 7.92(1H dd, J=8.7Hz), 7.75(1H d, J=8.7Hz), 7.35(1H d, J=2.7Hz), 9.40(1H s) (d ₆ -DMSO) δ :1.33(3H t, J=6.9Hz), 4.34(2H q, J=6.9Hz), 7.35(1H s), 7.45(1H dd, J=2.7Hz), 9.40(1H s) (d ₆ -DMSO) δ :1.33(3H t, J=6.9Hz), 4.34(2H q, J=6.9Hz), 7.35(1H s), 7.45(1H dd, J=9.0Hz, 2.1Hz), 7.66(1H d, J=9.0Hz), 7.36(1H d, J=9.0Hz), 7.36(1H d, J=8.7Hz), 7.91(1H dd, J=7.2Hz), 4.36(2H q, J=7.2Hz), 7.30(1H d, J=8.7Hz), 8.21(1H dd, J=9.0Hz), 7.36(1H t, J=8.4Hz), 8.10(1H d, J=8.7Hz), 8.21(1H dd, J=9.0Hz), 7.97(1H t, J=8.4Hz), 8.10(1H d, J=8.4Hz), 8.10(1H d, J=8.4Hz), 8.21(1H dd, J=8.4Hz), 8.21(1H dd, J=8.4Hz), 8.36(1H s), 8.66(1H d, J=8.4Hz), 8.36(1H d, J=8.4Hz), 8.36(1H s).		9. 36 (1H	***
s). 7.72(IH, dd, J=9, 0Hz, 2. 4Hz), 7.51(IH, dd, J=8, 7Hz, 2. IHz), 7.64(IH, dt, J=9, 0Hz, 2. 4Hz), 7.88(IH, d, J=8, 4Hz), 8.29(IH, d, J=2, IHz), 8.40(IH, m). 9.34(IH, s). (d ₆ -DMSO) δ :1.34(3H, t, J=6, 9Hz), 4.36(2H, d, J=6, 9Hz), 7.30(IH, s), 7.52(IH, dd, J=9, 0, 2. 4Hz), 7.76(2H, d, J=9, 0Hz), 8.03(IH, d, J=9, 0Hz), 8.25(IH, d, J=2, IHz), 9.34(IH, s), (d ₆ -DMSO) δ :1.33(3H, t, J=6, 9Hz), 4.34(2H, q, J=6, 9Hz), 7.35(IH, s), 7.49(IH, dd, J=8, 7Hz, 2. 4Hz), 7.75(IH, d, J=8, 7Hz), 7.85(IH, d, J=8, 7Hz), 7.92(IH, dd, J=8, 7Hz, 2. 7Hz), 8.30(IH, d, J=2, 4Hz), 8.52(IH, d, J=2, 7Hz), 9.40(IH, s) (d ₆ -DMSO) δ :1.33(3H, t, J=6, 9Hz), 4.34(2H, q, J=6, 9Hz), 7.35(IH, s), 7.45(IH, dd, J=9, 0Hz, 2. IHz), 7.66(IH, d, J=9, 0Hz), 7.74(2H, brt, J=8, 7Hz), 7.91(IH, dd, J=7, 2Hz), 8.31(IH, d, J=1, 8Hz), 8.41(IH, dd, J=7, 3Hz), 1.34(3H, t, J=7, 2Hz), 4.36(2H, q, J=7, 2Hz), 7.30(IH, d, J=8, 4Hz), 8.15(IH, dd, J=8, 4Hz), 8.10(IH, d, J=8, 4Hz), 8.26(IH, d, J=8, 4Hz), 8.96(IH, d, J=8, 4Hz), 9.45(IH, s).		:1.34(3H, 1, J=6.9Hz), 4.34(2H, q,	(d ₆ -DMS0) 8:7.30(1H, s), 7.45(1H, d, J=9.0Hz), 7.51(1H, dd, J=9.0Hz.
7. 64 (1H, dt, 1=9.0Hz, 2.4Hz), 7. 88 (1H, d, 1=8.4Hz), 8. 29 (1H, d, 1=2, 1Hz), 8. 40 (1H, m), 9. 34 (1H, s). (d ₆ -DMSO) δ :1. 34 (3H, t, 1=6.9Hz), 4. 36 (2H, d, 1=6.9Hz), 7. 30 (1H, d, 1=9.0Hz), 8. 23 (2H, d, 1=9.0Hz), 8. 25 (1H, d, 1=2.1Hz), 9. 34 (1H, s). (d ₆ -DMSO) δ :1. 33 (3H, t, 1=6.9Hz), 4. 34 (2H, q, 1=6.9Hz), 7. 35 (1H, s), 7. 49 (1H, dd, 1=8.7Hz), 2. 4Hz), 7. 75 (1H, d, 1=8.7Hz), 7. 35 (1H, d, 1=8.7Hz), 9. 40 (1H, s) 8. 52 (1H, d, 1=2.7Hz), 9. 40 (1H, s) (d ₆ -DMSO) δ :1. 33 (3H, t, 1=6.9Hz), 4. 34 (2H, q, 1=6.9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, 1=9.0Hz), 2. 1Hz), 7. 66 (1H, d, 1=9.0Hz), 7. 74 (2H, brt, 1=8.7Hz), 7. 91 (1H, dd, 1=7.8Hz), 9. 38 (1H, s). 8. 41 (1H, dd, 1=7.8Hz), 9. 38 (1H, s). (d ₆ -DMSO) δ :1. 34 (3H, t, 1=7.2Hz), 4. 36 (2H, q, 1=7.2Hz), 7. 30 (1H, d, 1=8.4Hz), 8. 10 (1H, d, 1=8.4Hz), 8. 10 (1H, d, 1=8.4Hz), 8. 21 (1H, dd, 1=8.4Hz), 8. 21 (1H, dd, 1=8.4Hz), 8. 44 (1H, dd, 1=8.4Hz), 8. 91 (1H, dd, 1=8.4Hz), 8. 46 (1H, d, 1=8.4Hz), 8. 89 (1H, d, 1=2.1Hz), 9. 45 (1H, s).	;	7. 51 (1H. dd,	2. 4Hz), 7. 64(IH, m), 7. 89(IH, d, J=9. 0Hz), 8. 29(IH, d. J=2. IHz).
1=2. [Hz), 8. 40 (1H, m). 9. 34 (1H, s). (d ₆ -DMSO) δ :1. 34 (3H 1, 1=6. 9Hz), 4. 36 (2H α, 1=6. 9Hz), 7. 30 (1H, s), 7. 52 (1H dd, 1=9. 0, 2. 4Hz), 7. 76 (2H d, 1=9. 0Hz), 8. 03 (1H d, 1=9. 0Hz), 8. 25 (1H d, 1=2. 1Hz), 9. 34 (1H ds). (d ₆ -DMSO) δ :1. 33 (3H t, 1=6. 9Hz), 4. 34 (2H q, 1=6. 9Hz), 7. 35 (1H s), 7. 49 (1H, dd, 1=8. 7Hz, 2. 4Hz), 7. 75 (1H d, 1=8. 7Hz), 7. 85 (1H d, 1=2. 7Hz), 9. 40 (1H, s) 8. 52 (1H, d, 1=2. 7Hz), 9. 40 (1H, s) (d ₆ -DMSO) δ :1. 33 (3H t, 1=6. 9Hz), 4. 34 (2H q, 1=6. 9Hz), 7. 35 (1H brt, 1=8. 7Hz), 7. 91 (1H dd, 1=9. 0Hz, 2. 1Hz), 7. 66 (1H d, 1=9. 0Hz), 7. 74 (2H brt, 1=8. 7Hz), 9. 38 (1H, s). (d ₆ -DMSO) δ :1. 34 (3H t, 1=7. 2Hz), 4. 36 (2H q, 1=7. 2Hz), 7. 30 (1H s), 7. 54 (1H dd, 1=9. 0, 2. 1Hz), 7. 97 (1H, t, 1=8. 4Hz), 8. 10 (1H, d, 1=8. 4Hz), 8. 10 (1H, d, 1=8. 4Hz), 8. 10 (1H, d, 1=8. 4Hz), 8. 44 (1H, d, 1=8. 4Hz), 8. 91 (1H, d, 1=8. 4Hz), 9. 45 (1H, s). 8. 66 (1H, d, 1=8. 4Hz), 8. 89 (1H, d, 1=2. 1Hz), 9. 45 (1H, s).	<u>e</u>	7. 64(IH, dt, 1=9.0Hz, 2.4Hz), 7. 88(IH, d, 1=8.4Hz), 8. 29(IH, d,	8. 40(1H m), 9.31(1H, s), 13.6(1H, brs)
(d ₆ -DMSO) δ :1. 34 (3H 1, J=6. 9Hz). 4. 36 (2H d, J=6. 9Hz). 7. 30 (1H, s), 7. 52 (1H dd, J=9. 0, 2. 4Hz). 7. 76 (2H d, J=9. 0Hz). 8. 03 (1H dd, J=9. 0Hz), 8. 25 (1H, dd, J=9. 0Hz), 8. 25 (1H, d, J=2. 1Hz). 9. 34 (1H, s). (d ₆ -DMSO) δ :1. 33 (3H, t, J=6. 9Hz), 4. 34 (2H, d, J=6. 9Hz), 7. 35 (1H, s), 7. 49 (1H, dd, J=8. 7Hz, 2. 4Hz), 7. 75 (1H, d, J=8. 7Hz), 7. 83 (1H, d, J=2. 4Hz), 8. 52 (1H, d, J=2. 7Hz), 9. 40 (1H, s) (d ₆ -DMSO) δ :1. 33 (3H, t, J=6. 9Hz), 4. 34 (2H, d, J=6. 9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, J=9. 0Hz, 2. 1Hz), 7. 66 (1H, d, J=9. 0Hz), 7. 74 (2H, brt, J=8. 7Hz), 7. 91 (1H, dd, J=7. 9Hz), 9. 38 (1H, s), 8. 41 (1H, dd, J=7. 8Hz), 9. 38 (1H, s), 8. 41 (1H, dd, J=9. 0, 2. 1Hz), 7. 97 (1H, t, J=8. 4Hz), 8. 10 (1H, d, J=8. 4Hz), 8. 10 (1H, d, J=8. 4Hz), 8. 10 (1H, d, J=8. 4Hz), 8. 26 (1H, d, J=8. 4Hz), 8. 94 (1H, d, J=8. 4Hz), 9. 45 (1H, s).		∞:	
s), 7, 52 (1H dd, 1=9, 0, 2, 4Hz), 7, 76 (2H d, 1=9, 0Hz), 8, 03 (1H d, 1=9, 0Hz), 8, 25 (1H, d, 1=2, 1Hz), 9, 34 (1H, s). (d ₀ -DMSO) δ :1, 33 (3H, t, 1=6, 9Hz), 4, 34 (2H, q, 1=6, 9Hz), 7, 35 (1H, s), 7, 49 (1H, dd, 1=8, 7Hz, 2, 4Hz), 7, 75 (1H, d, 1=8, 7Hz), 7, 85 (1H, d, 1=8, 7Hz), 9, 40 (1H, s) 8, 52 (1H, d, 1=2, 7Hz), 9, 40 (1H, s) (d ₀ -DMSO) δ :1, 33 (3H, t, 1=6, 9Hz), 4, 34 (2H, q, 1=6, 9Hz), 7, 35 (1H, s), 7, 45 (1H, dd, 1=9, 0Hz, 2, 1Hz), 7, 66 (1H, d, 1=9, 0Hz), 7, 74 (2H, brt, 1=8, 7Hz), 7, 91 (1H, dd, 1=7, 8Hz), 8, 31 (1H, d, 1=1, 8Hz), 8, 41 (1H, dd, 1=7, 8Hz), 9, 38 (1H, s). (d ₀ -DMSO) δ :1, 34 (3H, t, 1=7, 2Hz), 4, 36 (2H, q, 1=7, 2Hz), 7, 30 (1H, d, 1=8, 4Hz), 8, 10 (1H, d, 1=8, 4Hz), 8, 10 (1H, d, 1=8, 4Hz), 8, 10 (1H, d, 1=8, 4Hz), 8, 25 (1H, d, 1=8, 4Hz), 8, 94 (1H, s). 8, 66 (1H, d, 1=8, 4Hz), 8, 89 (1H, d, 1=2, 1Hz), 9, 45 (1H, s).		δ :1. 34 (3H 1, J=6. 9Hz).	(d ₆ -DMSO) 6:7.27(114 s), 7.52(114 dd, J=9.0, 2.1112), 7.76(214 d.
1=9. 0Hz), 8. 23 (2H, d, 1=9. 0Hz), 8. 25 (1H, d, 1=2, 1Hz), 9. 34 (1H, s). (d ₀ -DMS0) δ: 1. 33 (3H, t, 1=6. 9Hz), 4. 34 (2H, q, 1=6. 9Hz), 7. 35 (1H, d, 1=8. 7Hz), 7. 42 (1H, d, 1=8. 7Hz), 7. 75 (1H, d, 1=8. 7Hz), 7. 85 (1H, d, 1=8. 7Hz), 9. 40 (1H, s) 8. 52 (1H, d, 1=2. 7Hz), 9. 40 (1H, s) (d ₀ -DMS0) δ: 1. 33 (3H, t, 1=6. 9Hz), 4. 34 (2H, q, 1=6. 9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, 1=9. 0Hz), 7. 66 (1H, d, 1=9. 0Hz), 7. 74 (2H, brt, 1=8. 7Hz), 7. 91 (1H, dd, 1=7. 8Hz), 9. 38 (1H, s). 8. 41 (1H, dd, 1=7. 8Hz), 9. 38 (1H, s). (d ₀ -DMS0) δ: 1. 34 (3H, t, 1=7. 2Hz), 4. 36 (2H, q, 1=7. 2Hz), 7. 30 (1H, s), 7. 54 (1H, dd, 1=9. 0. 2. 1Hz), 7. 97 (1H, t, 1=8. 4Hz), 8. 10 (1H, d, 1=8. 4Hz), 8. 25 (1H, d, 1=8. 4Hz), 8. 37 (1H, d, 1=8. 4Hz), 8. 44 (1H, s). 8. 66 (1H, d, 1=8. 4Hz), 8. 89 (1H, d, 1=2. 1Hz), 9. 45 (1H, s).	3	2. 4Hz). 7. 7	J=9. 0Hz), 8. 03(1H, d, J=9. 0Hz), 8. 24(2H, d, J=9. 0Hz), 8. 25(1H, d,
(d ₆ -DMSO) 5 :1.33(3H, t. J=6.9Hz), 4.34(2H, q. J=6.9Hz), 7.35(IH, d. J=8.7Hz), 7.49(IH, dd, J=8.7Hz, 2.4Hz), 7.75(IH, d, J=8.7Hz), 7.85(IH, d. J=8.7Hz), 8.30(IH, d. J=2.4Hz), 8.52(IH, d. J=2.7Hz), 9.40(IH, s) (d ₆ -DMSO) 5 :1.33(3H, t. J=6.9Hz), 4.34(2H, d. J=6.9Hz), 7.35(IH, s), 7.45(IH, dd, J=9.0Hz, 2.1Hz), 7.66(IH, d. J=9.0Hz), 7.74(2H, brt, J=8.7Hz), 7.91(IH, dd, J=7.8Hz), 8.31(IH, d, J=1.8Hz), 8.41(IH, dd, J=7.8Hz), 9.38(IH, s), 1.34(3H, t. J=7.2Hz), 4.36(2H, q. J=7.2Hz), 7.30(IH, d. J=8.4Hz), 8.10(IH, d. J=8.4Hz), 8.10(IH, d. J=8.4Hz), 8.25(IH, d. J=8.4Hz), 8.10(IH, d. J=8.4Hz), 8.26(IH, d. J=8.4Hz), 9.36(IH, s), 8.66(IH, d. J=8.4Hz), 8.39(IH, d. J=2.1Hz), 9.45(IH, s).	; 	9. 0Hz), 8.	J=2. IHz), 9. 31 (IH s), 14. 0 (IH s).
s), 7. 49 (1H, dd, J=8. THz, 2. 4Hz), 7. 75 (1H, d, J=8. THz), 7. 85 (1H, d, J=8. THz), 7. 92 (1H, dd, J=8. THz, 2. THz), 8. 30 (1H, d, J=2. 4Hz), 8. 52 (1H, d, J=2. THz), 9. 40 (1H, s) (d ₆ -DMSO) \(\delta\) :1. 33 (3H, t. J=6. 9Hz), 4. 34 (2H, q. J=6. 9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, J=9. 0Hz, 2. 1Hz), 7. 66 (1H, d, J=9. 0Hz), 7. 74 (2H, brt, J=8. THz), 7. 91 (1H, dd, J=7. 8Hz), 8. 31 (1H, d, J=1. 8Hz), 8. 41 (1H, dd, J=7. 8Hz), 9. 38 (1H, s), 8. 41 (1H, dd, J=7. 8Hz), 1. 37 (3H, t. J=7. 2Hz), 4. 36 (2H, q. J=7. 2Hz), 7. 30 (1H, s), 7. 54 (1H, dd, J=9. 0. 2. 1Hz), 7. 97 (1H, t. J=8. 4Hz), 8. 10 (1H, d, J=8. 4Hz), 8. 25 (1H, d, J=8. 1Hz), 8. 57 (1H, dd, J=8. 4Hz), 2. 1Hz), 8. 66 (1H, d, J=8. 4Hz), 8. 89 (1H, d, J=2. 1Hz), 9. 45 (1H, s).		Hz).	(d_6-DMSO) δ :7.30(1H d, J=10 Hz), 7.49(1H dd, J=9.0Hz, 1.6Hz),
1=8. 7Hz), 7. 92 (1H, dd, J=8. 7Hz, 2. 7Hz), 8. 30 (1H, d, J=2. 4Hz). 8. 52 (1H, d, J=2. 7Hz), 9. 40 (1H, s) (d ₆ -DNSO) δ :1. 33 (3H, t, J=6. 9Hz), 4. 34 (2H, q, J=6. 9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, J=9. 0Hz, 2. 1Hz), 7. 66 (1H, d, J=9. 0Hz), 7. 74 (2H, brt, J=8. 7Hz), 7. 91 (1H, dd, J=7. 8Hz), 9. 38 (1H, s). 8. 41 (1H, dd, J=7. 8Hz, 1. 8Hz), 9. 38 (1H, s). (d ₆ -DNSO) δ :1. 34 (3H, t, J=7. 2Hz), 4. 36 (2H, q, J=7. 2Hz), 7. 30 (1H, s), 7. 54 (1H, dd, J=9. 0. 2. 1Hz), 7. 97 (1H, t, J=8. 4Hz), 8. 10 (1H, d, J=8. 4Hz), 8. 25 (1H, d, J=8. 1Hz), 8. 57 (1H, dd, J=8. 4Hz), 2. 1Hz), 8. 66 (1H, d, J=8. 4Hz), 8. 89 (1H, d, J=2. 1Hz), 9. 45 (1H, s).		-	7. 75(1H d, J=8. 4Hz), 7. 85(1H, d, J=9. 0Hz), 7. 92(1H, dd, J=8. 4Hz,
8 52 (1H, d, J=2, THz), 9.40 (1H, s) (d ₆ -DMS0) \(\phi\): 1. 33 (3H, 1, J=6, 9Hz), 4. 34 (2H, q, J=6, 9Hz), 7. 35 (1H, s), 7. 45 (1H, dd, J=9, 0Hz, 2, 1Hz), 7. 66 (1H, d, J=9, 0Hz), 7. 74 (2H, brt, J=8, THz), 7. 91 (1H, dd, J=7, 8Hz), 8. 31 (1H, d, J=1, 8Hz), 8. 41 (1H, dd, J=7, 8Hz), 9. 38 (1H, s), (d ₆ -DMS0) \(\phi\): 1. 34 (3H, t, J=7, ZHz), 4. 36 (2H, q, J=7, ZHz), 7. 30 (1H, s), 7. 54 (1H, dd, J=9, 0, 2, 1Hz), 7. 97 (1H, t, J=8, 4Hz), 8. 10 (1H, d, J=8, 4Hz), 8. 25 (1H, d, J=8, 4Hz), 8. 57 (1H, dd, J=8, 4Hz), 8. 46 (1H, d, J=8, 4Hz), 8. 89 (1H, d, J=2, 1Hz), 9. 45 (1H, s).	35	2	2. 7Hz), 8. 30(1H, d. 1=2. 1Hz), 8. 52(1H, d. 1=2. 7Hz), 9. 36(1H, d. J=10Hz).
(d ₆ -DMSO) δ :1. 33(3H t. J=6.9Hz), 4. 34(2H q. J=6.9Hz), 7. 35(1H, S), 7. 45(1H, dd, J=9.0Hz, 2. 1Hz), 7. 66(1H, d, J=9.0Hz), 7. 74(2H, brt. J=8.7Hz), 7. 91(1H, dd, J=7.8Hz), 8. 31(1H, d, J=1.8Hz), 8. 41(1H, dd, J=7.8Hz), 9. 38(1H, s). (d ₆ -DMSO) δ :1. 34(3H, t. J=7.2Hz), 4. 36(2H, q. J=7.2Hz), 7. 30(1H, s), 7. 54(1H, dd, J=9.0, 2. 1Hz), 7. 97(1H, t. J=8.4Hz), 8. 10(1H, d, J=8.4Hz), 8. 25(1H, d, J=8.4Hz), 8. 10(1H, d, J=8.4Hz), 8. 44Hz), 8. 66(1H, d, J=8.4Hz), 8. 89(1H, d, J=2.1Hz), 9. 45(1H, s).		S	
s). 7. 45 (1H, dd, 1=9. 0Hz, 2. 1Hz), 7. 66 (1H, d, 1=9. 0Hz), 7. 74 (2H, br1, 1=8. 7Hz), 7. 91 (1H, dd, 1=7. 8Hz, 1. 8Hz), 8. 31 (1H, d, 1=1. 8Hz), 8. 41 (1H, dd, 1=7. 8Hz, 1. 8Hz), 9. 38 (1H, s). (d _a -DMSO) δ :1. 34 (3H, 1, 1=7. 2Hz), 4. 36 (2H, q, 1=7. 2Hz), 7. 30 (1H, s), 7. 54 (1H, dd, 1=9. 0. 2. 1Hz), 7. 97 (1H, t, 1=8. 4Hz), 8. 10 (1H, d, 1=8. 4Hz), 8. 25 (1H, d, 1=2. 1Hz), 8. 57 (1H, dd, 1=8. 4Hz), 2. 1Hz), 8. 66 (1H, d, 1=8. 4Hz), 8. 89 (1H, d, 1=2. 1Hz), 9. 45 (1H, s).		ô :1. 33 (3H t, J=6. 9Hz), 4. 34 (2H	(d ₆ -DMSO) S :7.31(1H s), 7.44(1H, dd, J=9.0Hz, 2.1Hz), 7.65(1H, d,
bri, j=8, 7Hz), 7, 91 (III, dd, j=7, 8Hz, i, 8Hz), 8, 31 (IH, d, j=1, 8Hz), 8, 41 (III, dd, j=7, 8Hz, i, 8Hz), 9, 38 (IH, s). (d ₆ -DMSO) δ :1, 34 (3H, i, j=7, 2Hz), 4, 36 (2H, q, j=7, 2Hz), 7, 30 (IH, s), 7, 54 (IH, dd, j=9, 0, 2, IHz), 7, 97 (IH, i, j=8, 4Hz), 8, 10 (IH, d, j=8, 4Hz), 8, 57 (IH, dd, j=8, 4Hz), 8, 10 (IH, d, j=8, 4Hz), 8, 89 (IH, d, j=2, IHz), 9, 45 (IH, s).		7. 66 (IH	J=9. 0Hz), 7. 73 (2H, td, J=8. 7Hz, 2. 1Hz). 7. 90 (1H, dd, J=7. 8Hz, 1. 8Hz).
8. 41 (1H. dd. J=7. 8Hz, 1. 8Hz), 9. 38 (1H. s). (d ₆ -DMS0) \(\beta \) :1. 34 (3H. t, J=7. 2Hz), 4. 36 (2H. q, J=7. 2Hz), 7. 30 (1H. s), (s), 7. 54 (1H. dd, J=9. 0. 2. 1Hz), 7. 97 (1H. t, J=8. 4Hz), 8. 10 (1H. d, J=8. 4Hz), 8. 57 (1H. dd, J=8. 4Hz), 8. 57 (1H. dd, J=8. 4Hz, 2. 1Hz), (8. 66 (1H. d. J=8. 4Hz), 8. 89 (1H. d. J=2. 1Hz), 9. 45 (1H. s).	33	tz, 1.8Hz),	8. 31 (III, d, J=2, IIIz), 8. 42 (III, dd, J=7, 8IIz, 2, IIIz), 9. 33 (IH, s),
(d ₀ -DMSO) δ :1.34(3H 1, J=7,2Hz), 4.36(2H, q, J=7,2Hz), 7.30(1H, s), 7.54(1H, dd, J=9.0, 2, 1Hz), 7.97(1H, t, J=8.4Hz), 8.10(1H, d, J=8.4Hz), 8.25(1H, d, J=2.1Hz), 8.57(1H, dd, J=8.4Hz, 2, 1Hz), 8.66(1H, d, J=8.4Hz), 8.89(1H, d, J=2.1Hz), 9.45(1H, s).		dd,	14. 0(111, brs).
s), 7.54(1H dd, 1=9.0. 2.1Hz), 7.97(1H, t, 1=8.4Hz), 8.10(1H, d, 1=8.4Hz), 8.25(1H, d, 1=2.1Hz), 8.57(1H, dd, 1=8.4Hz, 2.1Hz), 8.66(1H, d, 1=8.4Hz), 8.89(1H, d, 1=2.1Hz), 9.45(1H, s).		δ :1. 34 (3H, 1, J=7. 2Hz)	(d ₆ -DMSO) S :7.28(1H s), 7.54(1H, dd, 1=9.0, 2.1Hz), 7.96(1H, 1,
J=8. 4liz). 8. 25(11k, d, J=2. 1liz), 8. 57(1lk, dd, J=8. 4liz, 2. 1liz), 8. 66(1lk, d, J=8. 4liz), 8. 89(1lk, d, J=2. 1liz), 9. 45(1lk, s).	č	2. 1Hz), 7. 97(1H, t, J=8. 4Hz), 8. 10(1H,	J=7.8Hz), 8.11(III, d, J=9.0Hz), 8.25(III, d, J=2.1Hz), 8.31(III, dd,
d, J=8.4Hz), 8.89(IH, d, J=2.1Hz), 9.45(IH, s).	34	∞.	J=7, 8Hz, 2, 1Hz), 8, 66 (1H, dd, J=7, 8Hz, 2, 1Hz), 8, 91 (1H, q, J=2, 1Hz),
		d, J=8.4Hz), 8.89(IH, d, J=2.1Hz), 9.45(IH	9, 42(1H s), 13, 8(1H brs).

35	(d ₆ -DMSO) δ :1. 35 (31, 1, 1=6. 9Hz), 2. 06 (31, s), 4. 36 (2H, q,	(d_6-DMSO) δ :6. 61 (211, d, 1=8. 7Hz), 7. 26 (2H, s), 7. 49 (111, dd, 1=8. 7,
35		[111/ LO C 111/ C
36	J=6. 9Hz). 7. 30 (1H s), 7. 50 (1H dd, J=8. 7. 2. 1Hz), 7. 81 (2H d,	2. 1Hz), 7. 79(2H d, J=8. 7Hz), 7. 98(1H d, J=8. (Hz), 8. 25(1H, 0.
36	J=8 7Hz), 8.00(1H, d, J=8.7Hz), 8.13(2H, d, J=8.7Hz), 8.25(1H, d, J=9.1Hz), 9.05(1H, d, J=0.1Hz), 9.05(1H, d, J=0.1Hz)	J=2. 1Hz), 9. 19(1H, s), 13. 6(1H, s).
36		HI) 8 (H H2) 8 -4 01 (91 c) 7 10-7 30 (64 m) 7 45-7 55 (34 m) 8 09 (14
38	(d _e -LMS()) 6 :1.34(3H 1, J=b.9Hz), 4.02(2H S), 4.55(2H q.	(III) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	J=6. 9Hz), 7. 10-7. 38(6H, m), 7. 45-7. 55(3H, m), 8. 01(1H, d, J=8. 4Hz),	d, J=8, 4H2), 8, 14(ZH, Q, J=8, 4HZ), 8, 24(II, Q, J=2, In2/, 3, 23(II, 3),
	8. 13 (2H, d, J=8. 4Hz), 8. 24 (IH, d, J=2. IIIz), 9. 32 (IH, s).	13.6(1H, brs), 14.0(1H, brs).
	(d ₆ -DMS0) & :1, 35 (3H, 1, 1=6, 9Hz), 3, 82 (3H, s), 4, 35 (2H, q,	(d _e -DMSO) 8 :3.82(3H s), 7.16(2H d, J=9.0Hz), 7.28(1H s), 7.50(1H
ģ	J=6.942), 7.16(2H, d. J=9.0Hz), 7.30(1H, s), 7.50(1H, dd, J=9.0Hz,	dd, 1=9. 0Hz, 2. 4Hz), 8. 03(1H, d. 1=9. 3Hz), 8. 15(2H, d. 1=9. 3Hz),
); (*)	2. 4Hz). 8. 03(1H, d, J=9. 0Hz), 8. 15(2H, d, J=9. 0Hz), 8. 25(1H, d,	8. 25(1H. d. 1=2. 4Hz), 9. 30(1H. s). 13. 6(1H. brs).
	J=2. 4Hz), 9.33(1H, s).	
	(d ₆ -DMS0) & :1.34(3H 1, 1=8.7Hz), 3.94(3H s), 4.34(2H q,	(d_6-DMSO) 6 :3.95(3H, s), 7.27(1H, s), 7.49(1H, dd, J=9.0Hz, 2.4Hz),
38	J=8, 7Hz), 7, 31 (1H s), 7, 50 (1H dd, J=9, 0Hz, 2, 1Hz), 7, 76-7, 94 (4H	7. 74-7. 94 (4H, m), 8. 17 (1H, d, J=7. 5Hz), 8. 31 (1H, d, J=2. 4Hz), 9. 13 (1H,
	m), 8.15(1H, d, J=8.1Hz), 8.29(1H, d, J=2.1Hz), 9.11(1H, s).	s),
	(d ₆ -DMS0) & :1, 33 (3H, 1, 1=6, 9Hz), 2, 29 (3H, s), 2, 47 (6H, s),	
39	4. 34 (2H, q, 1=6. 9Hz). 7. 20 (2H, s), 7. 25-7. 50 (3H, m). 8. 31 (1H, d,	
	J=1. 5Hz), 9. 38(1H, s).	J=2. IHz), 9. 33(IH, s), 13. 8(IH, brs)
	(d ₆ -DMS0) & :1. 20-1. 35 (9H, m). 4. 05 (1H, sept. 1=6. 3Hz), 4. 34 (2H,	
40	q. J=7. 2Hz), 7. 29(1H s), 7. 55(1H, dd, J=8.7Hz, 2. 1Hz), 7. 95(1H, d,	
	J=8. 7Hz), 8. 34 (1H, d, J=2. 1Hz), 9. 13 (1H, s).	
	2. 91 (6H, s), 4. 34 (2H, q,	(d ₆ -DMSO) 5 :7.29(1H, s), 7.51(1H, dd, J=9.0Hz, 2.1Hz), 7.97(1H, d,
4	J=7. 2Hz), 7. 32 (1H, s), 7. 51 (1H, dd, J=8. 7Hz, 2. 4Hz), 7. 98 (1H, d,	J=9. 0Hz), 8. 34(1H, dd, J=9. 0Hz, 2. 1Hz), 9. 14(1H, s), 13. 4(1H, brs).
	J=8, 7Hz), 8, 33 (1H, d, J=2, 4Hz), 9, 17 (1H, s).	
	(CDCL ₂) δ :1. 44 (3H, t, 1=7. 2Hz), 3. 24 (4H, t, 1=5. 1Hz), 3. 71 (4H, t,	(d ₆ -DMSO) S :3 25-3 29 (4H, m), 3 56-3 58 (4H, m), 7 27 (1H, s), 7 51 (1H,
42	J=5. IHz), 4. 30 (2H q, J=7. 2Hz), 6. 86 (1H, s). 7. 39 (1H, dd, J=9. 0Hz.	dd, J=8.7Hz, 2.1Hz), 7.95(1H, d, J=8.7Hz), 8.35(1H, d. J=2.1Hz),
	2. 1Hz), 7. 83(1H, d, J=9. 0Hz), 8. 17(1H, s), 8. 44(1H, d, J=2. 1Hz).	
67		(CDCL ₃) 6:3.92(3H s); 6.94(1H s), 7.38-7.42(3H m), 7.96(1H s),
7	6. 85 (1H s), 7. 35-7. 40 (311 m). 7. 87 (1H s), 8. 36-8. 41 (1H m).	1
44	40	(CDCL ₃) δ :3.88(31(_s), 7.01(11(_s), 7.26-7.35(31(_m), 7.87(11(_s)).
	7. 82 (IH s).	

茨4—5		
	Ą	(d ₆ -DMS0) 5 :3.90(3H, s), 6.93(1H, s), 7.38(1H, dd, J=9.0Hz, 2.0Hz).
45	2. 011z). 7. 66 (111 d, J=8. 6	7. 66 (III, d. 1=9. 0Hz), 8. 21 (III, d. 1=2. 0Hz), 8. 82 (III, s), 13. 6 (III, brs).
	8.85(IH, s)	
	(d ₆ -DMSO) S :0.90(3H, t, J=7.2Hz), I.19-1.30(2H m), I.70-1.84(2H	_
,	m), 3.86(3H s), 4.25(2H t, 1=7.2Hz), 7.01(1H s), 7.47(1H dd,	dd, J=7. 6Hz,
40	J=9. 0Hz, 2. 0Hz), 7. 69 (IH, s), 8. 38 (IH, d, J=2. 0Hz).	7. 47(114, dd, J=9. 0Hz, 2. 1Hz), 7. 68(114, d, J=9. 0Hz), 8. 38(1H, d,
		1
	(CDCL,) 8:1.41 (3H, 1, 1=7.2Hz), 4.39 (2H, q, 1=7.2Hz), 5.36 (2H, s),	(d _e -DMSO) 8 :5.54(2H s), 7.01(1H s), 7.25-7.40(6H m), 7.66(1H d,
24	89(1H s), 8 42(1H s).	J=8, 4Hz), 7, 89(IH, s), 8, 22(IH, d, J=2, OHz), 9, 08(IH, s), 13, 9(IH, s).
	(d ₆ -DMSO) \(\delta\) :3.86(3H \(\sigma\)), \(\delta\) :2.22(2H \(\sigma\)), \(\tau\).01(1H \(\sigma\)), \(\tau\).10(2H \(\delta\)	(d_6-DMSO) δ :5.51(2H s), 6.99(1H s), 7.10(2H d, J=8.4Hz), 7.41(2H
48	J=7, 8Hz), 7, 41 (2H, d, J=7, 8Hz), 7, 44 (1H, dd, J=9, 0Hz, 1, 8Hz),	d, J=8, 411z), 7, 44 (1H, dd, J=9, 0Hz, 1, 811z), 7, 62 (1H, d, J=9, 0Hz).
	7. 62 (114, d, J=9, 0Hz), 8. 37 (114, d, J=1. 8Hz), 9. 07 (114, s).	- 1
9	4. 37 (2H	(d ₆ -DMSO) 6 :5.71(2H s), 7.03(1H s), 7.27-7.94(9H m), 8.23(1H, d.
48	<u>~</u>	9. 15(11t s).
ç	4	(d ₆ -DMSO) & :5.58(2H s), 7.02(1H s), 7.30-7.75(11H m), 8.24(1H d,
2	6.80(1H, s), 7.20-7.61(11H, m), 7.93(1H, s), 8.44(1H, d, J=1.5Hz).	J=2.0Hz), 9.11(IH, s).
ī	(CDCL ₃) δ :3.95(3H s), 5.29(2H s), 6.62(1H s), 6.98-7.45(11H m),	(d ₆ -DMSO) & :5.52(2H s), 6.79(1H s), 7.03-7.53(11H m), 8.18(1H s).
	8.18(1H, s), 8.38(1H, d, J=1.6Hz).	8. 38 (1H, d, J=1, 6Hz).
	(d ₆ -DMSO) \(\delta\) :0.30-0.60(4H, \(\maxrm{m}\)), 1.20-1.40(1H, \(\maxrm{m}\)), 1.32(3H, \(\elta\),	
i		
7c	7.7	8. 23(11f. d, J=2. 1Hz), 8. 89(1H. s).
	J=2.1Hz), 8.90(1H. s).	
	(d_6-DMSO) δ :1, 32 (3H, 1, 1=7. 2Hz), 3, 83 (3H, s), 4, 32 (2H, q,	(d ₆ -DMS0) & :3.83(3H, s), 5.63(2H, s), 7.00(1H, s), 7.33(1H, dd,
	5. 65 (2H s), 7. 00 (1H s)	J=8. 7Hz, 2. 1Hz), 7. 51 (1H, 1, J=7. 5Hz), 7. 59 (1H, brt, J=7. 2Hz), 7. 67 (1H
53	7. 59 (IH d, J=7. 5Hz).	d, J=8, 7Hz), 7, 84-8, 00(2H, m), 8, 23(1H, d, J=2, 1Hz), 9, 10(1H, s),
	7. 89(1H d. 1=7. 5Hz). 7. 97(1H, s), 8. 23(1H d. 1=2. 1Hz), 9. 11(1H,	13.0(IH, brs).
	3).	
		(de-DNSO) \(\hat{o}\) :3. 83 (3H \(\sigma\), \(\frac{5}{3}\) :6. 99 (1H \(\sigma\), \(\frac{7}{3}\) :7. 32 (1H \(\text{dd}\)
Ţ,	5. 66 (2H s), 7. 00 (1H s)	J=9. (Hz), 1. Stiz), (. 44 (zH, q, J=8. 111z), (. 02 (111, q, J=9. 010z), (. 30 (zH, J, T, S, Hz), (. 30 (zH, J, T, S, Hz), (. 02 (zH, S, J, S, Hz), (. 30 (zH, S, J, S, Hz), (. 30 (zH, S, S, Hz), (. 30 (zH, S, S, Hz), (. 30 (zH, S,
- -	7. 43 (2H, d, J=8, IHz), 7. 60 (IH, d, J=9, OHz). 7. 93 (2H, d, J=8, IHz), 9. 93 (11, J=1, IHz), 0. 08 (11, S)	d, J=8, IHZ), 8, 23(IH, U, J=1, 5HZ), 9, U(VIR, 5).
	U, J-2. 1112/, 5. 00/114	

っずと		1 227 00 4 1 1 1 1 1 1 1
	(d _e -DMSO) 6 :1.33(3H 1, J=7, 2Hz), 3.76(3H s), 4.32(2H q,	(d_6-DMSO) 6 :3.77(3H, s), 5.81(2H, s), 6.97(1H, s). 7.29(1H, d,
;) (IH,	J=3. 9Hz), 7. 33(1H, dd, J=8. 7Hz, 2. 1Hz), 7. 68(1H, d. J=3. 9Hz), 7. 79(1H,
55	7. 79 (1H, d, J=8. 7Hz), 8. 23 (1H,	d, J=8, 7H2), 8, 23(1H, d, J=2, 1H2), 9, 05(1H, s), 13, 9(1H, brs).
	s), 9.06(1H, s).	
	(d_e-DMSO) δ :1.33(3H t, J=6.9liz), 4.35(2H q, J=6.9liz), 7.12(IH (d_e-DMSO) δ :7.12(IH s), 7.17–7.72(6H m), 8.25(IH d. J=8.6Hz),	(d_6-DMSO) δ :7. 12 (114 s), 7. 17-7. 72 (611 m), 8. 25 (114 d. J=8. 6Hz).
99	s), 7. 18-7. 70 (6H m), 8. 21 (1H d, J=8. 7Hz). 8. 29 (1H d, J=2. 4Hz).	8.31(1H, d. J=2.0Hz), 9.36(1H, s), 13.5(1H, brs).
	9. 34 (IH, s)	
	(d,-DMSO) & :3, 66 (3H, s), 5, 34 (2H, s), 5, 89 (1H, s), 6, 94 (2H, d)	(d ₆ -DMS0) & :5.35(2H, s), 5.94(1H, s), 6.92(2H, d, J=7.8Hz), 7.23(1H,
į		s), 7.24(1H, d, J=7.8Hz), 7.30-7.40(2H, m), 7.44-7.78(6H, m), 8.38-
53		8. 40(1H, m), 13. 5(1H, brs).
	J=7. 8Hz), 8. 34-8. 42(1H, m).	
		(d _r -DMS0) 6 :5.64(IH s), 7.35(2H t, 1=8.7Hz), 7.45(1H t, 1=7.8Hz),
98		7. 50-7. 65 (7H m), 7. 68-7. 78 (1H m), 8. 17 (1H, d, J=7. 8Hz), 8. 23 (1H, d,
		J=8. 7Hz), 13. 2(1H, brs).
	(de-DMS0) & :3. 83 (3H. s), 4. 64 (2H. s), 5. 51 (2H. s), 6. 93-7. 00 (3H.	(d_6-DMSO) 5 :4. 64 (2H s), 5. 48 (2H, s), 6. 88-6. 98 (3H, m), 7. 12-
59	m) 7.05-7.40(10H m) 7.51(1H d, 1=7.8Hz), 8.03(1H d, 1=7.8Hz). 7.38(10H m), 7.48(1H d, 1=7.8Hz), 8.00(1H d, 1=7.8Hz)	7. 38(10H m), 7. 48(1H, d, 1=7. 8Hz), 8. 00(1H, d, 1=7. 8Hz)

(表5-1)

(表 5 -		
実施例	エステル体 (Ic)	カルボン酸 (Id)
		C ₁₂ H ₉ NO ₄ として
2		計算(%):C, 62.34; H, 3.92; N. 6.06.
		実測(%):C, 62. 02; H. 4. 13; N. 5. 73.
		C ₁₂ H ₈ C1NO ₄ ・ 0. 2H ₂ O として
		計算(%):C, 53. 53; H, 3. 14; N, 5. 20;
		C1, 13, 17.
3		C1, 13, 17, 実測 (%):C, 53, 42; H, 3, 27; N, 5, 43;
1		1
		C1, 13, 10.
	C ₁₃ H ₁₀ FNO4として	C ₁₂ H ₈ FNO ₄ として
ļ	計算(%):C, 59. 32; H, 3. 89;	計算(%):C, 57. 84; H, 3. 24; N, 5. 62;
4	N, 5. 32; F, 7. 22.	F, 7. 62.
	実測(%):C,59.13; H,3.99;	実測(%):C, 57. 94; H, 3. 37; N, 5. 76;
	N, 5. 34; F, 6. 94.	F, 7. 63.
	C14H12BrNO4として	C12H8BrNO4 として
	計算(%):C, 49. 72; H, 3. 58;	計算(%):C, 46. 48; H, 2. 60; N, 4. 52;
5	N. 4. 14; Br. 23. 63.	Br. 25. 77.
	(3, 4, 14, 15, 25, 65, 25, 65, 25, 65, 25, 65, 65, 65, 65, 65, 65, 65, 65, 65, 6	実測(%):C, 46. 33; H, 2. 68; N. 4. 62;
Ì		Br, 25. 46.
	N. 4. 11: Br, 23. 55.	C ₁₂ H ₈ CINO ₄ として
	C ₁₃ H ₁₀ CINO ₄ として	計算(%):C, 54. 26; H, 3. 04; N, 5. 29;
	計算(%):C, 55. 83; H, 3. 60;	
6	N, 5. 01; C1, 12. 68.	C1, 13, 35.
1	実測(%):C, 55. 65; H, 3. 73;	実測(%):C, 54. 13; H, 3. 17; N, 5. 55;
	N, 5. 02; C1, 12. 39.	C1, 13. 49.
	C13H10CINO4として	C ₁₂ H ₈ CINO ₄ EUT
	計算(%):C, 55. 83; H, 3. 60;	計算(%):C, 54. 26; H, 3. 04; N, 5. 29;
7	N, 5. 01; C1, 12. 68.	C1, 13, 35.
İ	実測(%):C, 55. 54; H, 3. 75;	実測(%):C, 54.01; H, 3.23; N, 5.51;
	N, 5. 00; C1, 12. 55.	C1, 13. 20.
	C ₁₄ H ₁₃ NO ₅ ・0. 1H ₂ 0 として	C ₁₃ H ₁₁ NO ₅ として
8	計算(%):C, 60, 69; H, 4, 80;	計算(%):C, 59. 77; H, 4. 24; N, 5. 36.
	N, 5. 09.	
	実測(%):C, 60. 64; H, 4. 88;	実測(%):C, 59. 97; H, 4. 42; N, 5. 34.
1	N. 5. 22.	
1	1	C ₁₉ H ₁₅ NO ₅ として
9		計算(%):C, 67. 65; H, 4. 48; N, 4. 15.
		実測(%):C, 67. 44; H, 4. 57; N, 4. 10.
 	C U CINO LI T	C ₂₀ H ₁₆ C1NO ₄ ・C ₂ H ₅ OH として
	C ₂₁ H ₁₈ CINO ₄ として	計算(%):C, 63. 54; H, 5. 33; N, 3. 37;
	計算(%):C, 65. 71; H, 4. 73;	
1 0	N, 3. 65; C1, 9. 24.	C1, 8, 53.
	実測(%):C, 65. 83; H, 4. 73;	実測(%):C, 63. 70; H, 5. 46; N, 3. 61;
	N. 3. 88; C1, 9. 11.	C1, 8. 50.
	C ₁₉ H ₁₄ FNO ₄ として	C ₁₈ H ₁₂ FNO ₄ として
1 1	計算(%):C, 67. 25; H, 4. 16;	計算(%):C, 66. 46; H, 3. 72; N, 4. 31;
	N, 4. 13; F, 5. 60.	F, 5. 84.
	実測(%):C, 67. 28; H, 4. 21;	実測(%):C, 66. 43; H, 3. 79; N, 4. 32;
	N. 4. 13; F. 5. 59.	F. 5. 79.

(表5-2)

(表 5 -		
実施例	エステル体 (Ic)	カルボン酸(Id)
	C ₁₉ H ₁₅ ClN ₂ O ₄ ・0.6H ₂ Oとして	C18H13C1N2O4・0. 2H2Oとして
	計算(%):C, 59.80; H, 4.28;	計算(%):C, 59. 99; H, 3. 75; N, 7. 77;
1 2	N, 7. 34; Cl, 9. 29.	C1, 9. 84.
	実測(%):C, 59.70; H, 3.94;	実測(%):C, 59. 85; H, 4. 03; N, 7. 78;
	N, 7. 70; Cl, 9. 19.	C1, 9. 71.
	C ₂₀ H ₁₆ N ₂ O ₆ ・0. 1H ₂ O として	C ₁₉ H ₁₄ N ₂ O ₆ として
1 3	計算(%):C, 62. 86; H, 4. 27;	計算(%):C, 62. 30; H, 3. 85; N, 7. 65.
	N, 7. 33.	
	実測(%):C, 62. 73; H, 4. 45;	実測(%):C, 62. 02; H, 4. 03; N, 7. 61.
	N. 7. 48.	
	C ₂₈ H ₂₅ NO ₅ ・0.5H ₂ 0として	C ₂₇ H ₂₃ NO ₅ として
14	計算(%):C, 72. 40; H, 5. 64;	計算(%):C, 72. 57; H, 5. 32; N, 3. 13.
	N, 3. 05.	
	実測(%):C, 72. 27; H, 5. 72;	実測(%):C, 72. 50; H, 5. 47; N, 3. 36.
	N, 3. 39.	
	C ₂₆ H ₂₁ NO ₇ S として	C ₂₅ H ₁₉ NO ₇ S として
1 5	計算(%):C, 63. 53; H, 4. 31;	計算(%):C, 62. 89; H, 4. 01; N, 2. 93;
1.0	N, 2. 85; S, 6. 52.	S, 6. 72.
ļ	実測(%):C, 63. 58; H, 4. 42;	実測(%):C, 62. 86; H, 4. 05; N, 2. 97;
	N. 3. 03; S. 6. 56.	S. 6. 43.
	C19H14C1NO4として	C ₁₈ H ₁ ,C1NO ₄ 0.1H ₂ 0 として
16	計算(%):C, 64. 14; H, 3. 97;	計算(%):C, 62. 93; H, 3. 58; N, 4. 08;
	N, 3. 94; C1, 9. 96.	C1, 10. 32.
	実測(%):C, 64. 03; H, 4. 01;	実測(%):C, 62. 88; H, 3. 64; N, 4. 03;
	N, 3. 93; C1, 9. 76.	C1, 10. 18.
	C19H14C1NO4として	C ₁₈ H ₁₂ C1NO ₄ ・0.4C ₄ H ₈ O ₂ として
-	計算(%):C, 64.14; H, 3.97;	計算(%):C, 62. 44; H, 4. 06; N, 3. 72;
17	N. 3. 94.	C1, 9. 40.
	実測(%):C, 64. 20; H, 4. 08;	実測(%):C, 62. 57; H, 4. 26; N, 3. 68;
	N. 3. 97.	C1, 9. 26.
	C19H14FNO4 ELT	C ₁₈ H ₁₂ FNO ₄ ・0.1C ₄ H ₈ O ₂ として
	計算(%):C, 67. 25; H, 4. 16;	計算(%):C, 66. 15; H, 3. 86; N, 4. 19;
18	N, 4. 13; F, 5. 60.	F, 5. 69.
	実測(%):C, 67. 28; H. 4. 35;	実測(%):C, 65. 93; H, 4. 00; N, 4. 38;
	N, 4. 22; F, 5. 55.	F, 5. 73.
	C19H14CINO4として	C ₁₈ H ₁₂ C1NO ₄ ・C ₄ H ₈ O ₂ として
	計算(%):C, 64.14; H, 3.97;	計算(%):C, 61. 47; H, 4. 69; N, 3. 26;
19	N. 3. 94; Cl. 9. 96.	C1, 8. 25.
	実測(%):C, 64.10; H, 4.15;	実測(%):C, 61. 52; H, 4. 69; N, 3. 37;
	N, 3. 94; C1, 9. 63.	C1, 8. 18.
	C20H17NO5として	C ₁₉ H ₁₅ NO ₅ として
20	計算(%):C, 68.37; H, 4.88;	計算(%):C, 67. 65; H, 4. 48; N, 4. 15.
	N. 3. 99.	
-	実測(%):C, 68.13; H, 4.97;	実測(%):C, 67. 49; H, 4. 61; N, 4. 10.
	N. 3. 91.	00
		-A

(表5-3)

(衣5-		1 11 11 11 11
実施例	エステル体(Ic)	カルボン酸 (Id)
	C21H20N2O4・0.2H20として	C20H18N2O4 HC1として
2 1	計算(%):C, 68. 54; H, 5. 59;	計算(%):C, 62. 10; H, 4. 95; N, 7. 24.
	N, 7. 61.	
	実測(%):C, 68. 47; H, 5. 38;	実測(%):C. 62. 02; H. 4. 68; N. 7. 26.
	N. 7. 54.	
	C ₂₀ H ₁₆ C1NO ₄ ・0.1C ₄ H ₈ O ₂ として	C19H14CINO4 として
	計算(%):C, 64. 72; H, 4. 47;	計算(%):C, 64. 14; H, 3. 97; N, 3. 94;
0.0		C1, 9. 40.
2 2	N. 3. 70; C1, 9. 36.	実測 (%): C, 62. 57; H, 4. 13; N, 3. 91;
	実測(%):C, 64. 68; H, 4. 63;	
	N, 3. 70; Cl, 9. 19.	C1, 9, 70.
ļ		C ₁₈ H ₁₂ FNO ₆ S として
1		計算(%):C, 55. 53; H, 3. 11; N, 3. 60;
2 4		F, 4. 88; S. 8. 24.
		実測(%):C, 55. 35; H, 3. 21; N, 3. 69;
		F, 4. 86; S, 8. 26.
	C19H14BrNO6S として	C ₁₈ H ₁₂ BrNO ₆ S として
	計算(%):C, 49. 15; H, 3. 04;	計算(%):C, 48. 02; H, 2. 69; N, 3. 11;
2 5	N. 3. 02; Br. 17. 21; S. 6. 91.	Br, 17. 75; S, 7. 12.
•	実測(%):C, 49. 07; H, 3. 05;	実測(%):C, 48. 06; H, 2. 82; N, 3. 23;
	N, 2. 94; Br, 17. 06; S. 6. 91.	Br, 17. 62; S, 7. 12.
	C19H14CINO6Sとして	C18H12CINO6Sとして
	計算(%):C, 54. 36; H, 3. 36;	計算(%):C, 53. 28; H, 2. 98; N, 3. 45;
26	N, 3. 34; Cl, 8. 44; S, 7. 64.	C1, 8. 74; S, 7. 90.
20	実測(%):C, 54. 28; H, 3. 48;	実測(%):C, 53. 34; H, 3. 08; N, 3. 88;
Ì	N, 3. 39; C1, 8. 33; S, 7. 52.	C1, 8. 48; S, 7. 80.
	N, 3. 39, C1, 8. 33, 3, 1. 32.	C ₂₅ H ₁₉ NO ₇ S として
		計算(%):C, 62. 89; H, 4. 01; N, 2. 93;
0.7		
2 7		S, 6. 72.
		実測(%):C, 62. 72; H, 4. 09; N, 3. 01;
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S, 6. 66.
	C ₂₀ H ₁₅ C1FNO ₆ S・0. 25H ₂ 0 として	C ₁₈ H ₁₁ C1FNO ₆ S として
	計算(%):C, 52. 64; H, 3. 42;	計算(%):C, 51. 01; H, 2. 62; N, 3. 30;
2 8	N, 3. 07; Cl, 7. 77; F, 4. 16;	C1, 8. 37; F, 4. 48; S, 6. 72.
	S, 7. 03.	
1	実測(%):C, 52. 59; H, 2. 33;	実測(%):C,51.21; H,2.73; N,3.30;
	N, 3. 12; C1, 7. 80; F, 4. 00,	C1, 8. 21; F, 4. 51, S, 7. 59.
	S. 7. 11.	
	C ₂₀ H ₁₅ ClFNO ₆ S・0.25H ₂ 0として	C ₁₈ H ₁₁ C1FNO ₆ S・0.25H ₂ 0 として
	計算(%):C,52.64; H,3.42;	計算(%):C, 50. 48; H, 2. 71; N, 3. 27;
2 9	N, 3. 07; CI, 7. 77; F, 4. 16;	C1, 8. 28; F, 4. 44; S, 7. 49.
	S. 7. 03.	
	実測(%):C, 52. 55; H, 3. 50;	実測(%):C, 50. 29; H, 3. 06; N, 3. 11;
	N, 3. 09; C1, 7. 80; F, 4. 31,	C1, 8. 08; F, 4. 85, S, 7. 62.
	S, 7. 23.	, , , , , , , , , , , , , , , , , , , ,
L	0, 1. 20.	<u></u>

(表5-3')

実施例	エステル体 (Ic)	カルボン酸(Id)
	C ₂₀ H ₁₄ C1F ₂ NO ₆ S・0. 25H ₂ 0 として	$C_{18}H_{10}C1F_2NO_6S \cdot 0.1C_4H_{10}O$ として
[計算(%):C,50.64; H,3.08;	計算(%)C, 49. 20; H, 2. 47; N, 3. 12;
3 0	N, 2. 95; C1, 7. 47; F, 8. 01;	C1, 7, 89; F, 8, 46; S, 7, 14.
	S, 6. 76.	
	実測(%):C, 50. 59; H, 3. 20;	実測(%):C, 48.94; H, 2.69; N, 3.03;
	N, 3. 00; C1, 7. 47; F, 8. 11,	C1, 7. 67; F, 8. 07, S, 6. 98.
	S, 6. 82.	
	C ₂₀ H ₁₅ C ₁₂ NO ₆ S・0. 25H ₂ 0 として	C ₁₈ H ₁₁ C1 ₂ NO ₆ S・0.5H ₂ 0として
	計算(%):C, 50. 81; H, 3. 30;	計算(%):C, 48.12; H, 2.69; N, 3.12;
3 1	N, 2. 96; C1, 15. 00; S, 6. 78.	C1, 15, 78; S, 7, 14.
	実測(%):C, 50. 73; H, 3. 41;	実測(%):C, 48. 28; H, 2. 81; N, 2. 98;
	N, 3. 03; C1, 15. 15; S, 6. 89.	C1, 15. 31; S, 7. 10.
	C ₂₀ H ₁₄ Cl ₃ NO ₆ S・0. 5H ₂ 0 として	C ₁₈ H ₁₀ Cl ₃ NO ₆ S・C ₂ H ₅ OH として
ļ	計算(%):C, 46. 93; H, 2. 95;	計算(%):C, 46.13; H, 3.10; N, 2.69;
3 2	N. 2. 72; C1, 20. 78; S, 6. 27.	C1, 20. 42; S, 6. 16.
	実測(%):C, 46. 50; H, 2. 86;	実測(%):C, 46. 30; H, 2. 91; N, 2. 63;
	N, 2. 72; C1, 21. 52; S, 6. 57.	C1, 20. 26; S, 6. 02.

(表5-4)

(表 5 一		
実施例	エステル体 (Іс)	カルボン酸 (I d)
		$C_{18}H_{11}BrC1NO_6S \cdot 0.2C_4H_{10}O$ として
		計算(%):C, 45. 20; H, 2. 62; N, 2. 80;
3 3		Br, 16. 10; Cl, 7. 10; S, 6. 42.
0.0		実測(%):C, 45.08; H, 2.85; N, 2.69;
		Br, 16. 12; C1, 7. 02; S. 6. 46.
	C H CINCE A FILA L.	C ₁₈ H ₁₁ C1N ₂ O ₈ S として
	C ₂₀ H ₁₅ CIN ₂ O ₈ S・0. 5H ₂ O として	計算(%):C, 47. 96; H, 2. 46; N, 6. 21;
	計算(%):C, 49. 24; H, 3. 31;	
3 4	N, 5. 74; C1, 7. 27; S, 6. 57.	C1, 7. 86; S, 7. 11.
	実測(%):C, 49.04; H, 2.23;	実測(%):C, 48. 21; H, 2. 64; N, 6. 14;
	N, 5. 82; C1, 7. 52; S, 7. 31.	C1, 7. 89; S, 7. 23.
	C ₂₂ H ₁₉ C1N ₂ O ₇ S・0. 5H ₂ O として	C ₁₈ H ₁₃ CIN ₂ O ₆ S· H ₂ O として
	計算(%):C,52.85; H,4.03;	計算(%):C, 50. 18; H, 3. 51; N, 6. 50;
3 5	N, 5. 60.	C1, 8. 23; S, 7. 44.
	実測(%):C,52.69; H,3.93;	実測(%):C, 49. 92; H, 3. 43; N, 6. 47;
	N, 5. 61.	C1, 8. 58; S. 7. 58.
	C27H22CINO6Sとして	C ₂₅ H ₁₈ C1NO ₆ S・0.25H ₂ O として
	計算(%):C, 61. 89; H, 4. 23;	計算(%C, 60. 00; H, 3. 73; N, 2. 80;
3 6	N, 2. 67; C1, 6. 77; S, 6. 12.	C1, 7. 08; S, 6. 41.
30	実測(%):C, 61. 78; H, 4. 40;	実測(%) C, 60. 13; H, 4. 25; N, 2. 70;
	N, 2. 65; C1, 6. 61; S, 6. 29.	C1, 6. 48; S, 6. 09.
	C ₂₁ H ₁₈ C1NO ₇ S・0.5H ₂ O として	C19H14C1NO7S・0. 5H20 として
		計算(%) C, 51. 30; H, 3. 40; N, 3. 15;
0.7	計算(%):C, 53. 34; H, 4. 05;	C1, 7, 97; S, 7, 21.
3 7	N, 2. 96; C1, 7. 50; S, 6. 78.	実測(%)C, 51. 46; H, 3. 59; N, 2. 98;
	実測(%):C, 53. 51; H, 4. 03;	C1 , 7. 68; S, 7. 48.
	N. 2. 82; C1, 7. 82; S, 7. 28.	C ₂₀ H ₁₄ ClNO ₈ S 0.5C ₄ H ₁₀ 0 として
	C ₂₂ H ₁₈ C1NO ₈ S・0.5C ₄ H ₁₀ 0 として	1 (%) C, 52. 75; H, 3. 82; N, 2. 80;
	計算(%):C, 53. 72; H, 3. 69;	
3 8	N. 2. 85; C1, 7. 21; S, 6. 52.	C1, 7. 08; S, 6. 40.
1	実測(%):C, 53. 56; H, 3. 91;	実測(%)C, 52. 30; H, 4. 31; N, 2. 76;
	N, 3. 01; C1, 7. 53; S, 6. 15.	C1, 6, 85; S, 6, 15.
	C23H22CINO6S として	$C_{21}H_{18}C1NO_6S \cdot 0.25H_2O \succeq UT$
	計算(%):C, 58.04; H, 4.66;	計算(%):C, 55. 75; H, 4. 12; N. 3. 10;
3 9	N. 2. 94; Cl. 7. 45; S. 6. 74.	C1, 7. 84; S, 7. 09.
	実測(%):C, 57. 76; H, 4. 71;	実測(%):C, 55. 86; H, 4. 14; N, 2. 94;
	N, 2. 84; C1, 7, 62; S, 7, 13.	C1, 7. 71; S, 6. 69.
4 0		(Mass: m/z=372 (M ⁺))
	C ₁₆ H ₁₇ C1N ₂ O ₆ S・0.5H ₂ O として	C14H13CIN2O6Sとして
1	計算(%):C, 46. 89; H, 4. 43;	計算(%):C, 45.11; H, 3.51; N, 7.51;
4 1	N. 6. 84; C1, 8. 65; S, 7. 82.	C1, 9. 51; S, 8. 60.
1	実測(%):C, 47. 02; H, 4. 32;	実測(%):C, 45. 53; H, 3. 71; N. 6. 99;
	N. 6. 74; C1, 8. 55; S, 7. 85.	C1, 9, 21; S, 8, 69.
-	C ₁₈ H ₁₉ CIN ₂ O ₇ S として	C16H15C1N2O2S・0.4H2Oとして
	計算(%):C, 48.82; H, 4.32;	計算(%):C, 45. 54; H, 3. 77; N, 6. 64;
4.2	所异 (8) . C. 48. 82, n. 4. 32, N. 6. 33; Cl, 8. 00; S, 7. 24.	C1, 8, 40; S, 7, 60.
4 2		実測(%):C, 45. 57; H, 3. 94; N, 6. 67;
	実測(%):C, 48. 76; H, 4. 40;	i i
<u> </u>	N. 6. 60; C1, 8. 01; S, 7. 19.	Cl. 8. 22; S, 8. 04.

(表5-5)

(表 5 -		1 1 1 1 2 2 7 7 7 1 1
実施例	エステル体(Ic)	カルボン酸 (Id)
4.9		C ₁₃ H ₁₁ NO ₄ として 計算(%):C, 63. 67; H, 4. 52; N, 5. 71.
4 3		実測(%):C, 63. 54; H, 4. 52; N, 5. 77.
		C ₁₃ H ₁₀ CINO ₄ として
		計算(%):C, 55. 83; H, 3. 60; N, 5. 00;
4 4		Cl, 12.68. 実測(%):C, 55.58; H, 3.90; N, 5.22;
		C1, 12, 40.
		C ₁₃ H ₁₀ C1NO ₄ ・ 0.2C ₂ H ₅ OH 0.1H ₂ 0として
		計算(%):C, 55. 37; H, 3. 95; N, 4. 82;
4 5		C1, 12. 20. 実測(%):C, 55. 61; H, 4. 00; N, 5. 00;
		C1, 11. 86.
	C ₁₇ H ₁₈ BrNO ₄ として	C ₁₆ H ₁₆ BrNO ₄ として
	計算(%):C, 53. 70; H, 4. 77;	計算(%):C, 52. 48; H, 4. 40; N, 3. 83;
4 6	N. 3. 68; Br. 21. 01.	Br, 21. 82.
	実測(%):C,53.71; H,4.81;	実測(%):C, 52. 43; H, 4. 33; N, 3. 84;
	N, 3, 72; C1, 20, 98.	C1, 21. 86.
	C21H18CINO4・0.1H20として	C ₁₉ H ₁₄ ClNO ₄ ・ 0.1H ₂ 0として
	計算(%):C, 65. 71; H, 4. 73;	計算(%):C, 63. 82; H, 4. 00; N, 3. 92;
4 7	N, 3. 65; C1, 9. 24.	C1, 9. 91.
	実測(%):C, 65. 73; H, 4. 83;	実測(%):C, 63. 68; H, 4. 08; N, 4. 03;
	N, 3. 70; C1, 9. 17.	C1, 9. 88.
		C ₁₉ H ₁₃ BrN ₄ O ₄
		計算(%):C, 51. 71; H, 2. 90; N, 12. 70;
4 8		Br, 18. 11.
		実測(%):C, 51. 46; H, 2. 96; N, 12. 74;
	C H OCINO 5-1 7	Br, 18. 22. C ₂₃ H ₁₆ C1NO ₄ として
	C ₂₅ H ₂ OC1NO ₄ として 計算(%):C, 69.21; H, 4.65;	t ₂₃ H ₁₆ UNO ₄ こして 計算(%):C, 68.07; H, 3.97; N, 3.45;
4 9	N, 3. 23; C1, 8. 17.	C1, 8. 74.
	実測(%):C, 69. 31; H, 4. 77;	実測(%):C, 68. 44; H, 3. 99; N, 3. 51;
	N, 3. 11; C1, 8. 01.	C1, 8, 22.
	C ₂₇ H ₂₂ C1NO ₄ ・0.7H ₂ 0として	C ₂₅ H ₁₈ C1NO ₄ として 社質(8)・C 60 52・H 4 20・N 2 24・
	計算(%):C, 68. 63; H, 4. 99;	計算(%):C, 69. 53; H, 4. 20; N, 3. 24;
5 0	N, 2. 96; Cl, 7. 50.	C1, 8. 21. 実測(%):C, 69. 54; H, 4. 28; N, 3. 48;
	実測(%):C, 68.77; H, 5.18; N, 3.13; Cl, 6.92.	<i>类例(8)</i> . 0, 09. 54, ft, 4. 20, ft, 5. 40, Cl, 8. 12.
	C26H2OCINO4 & UT	C25H18CINO4として
	計算(%):C, 70. 04; H, 4. 52;	計算(%):C, 69. 53; H, 4. 20; N, 3. 24;
5 1	N. 3. 14; Cl. 7. 95.	C1, 8, 21.
	実測(%):C. 69. 93; H. 4. 65;	実測(%):C, 69.51; H, 4.32; N, 3.54;
	N. 3. 32; Cl. 7. 66.	C1, 8. 03.

(表5-6)

(表5-		ナリナンmt (I d)
実施例	エステル体 (1 c)	カルボン酸 (Id)
5 2	C ₁₈ H ₁₈ C1NO ₄ ・0.5H ₂ 0 として 計算(%):C,61.36; H,5.29; N,3.98; C1,10.06. 実測(%):C,61.41; H,5.30; N,4.09; C1, 9.89.	C ₁₆ H ₁₄ C1NO ₄ として 計算(%):C, 60. 10; H, 4. 41; N, 4. 38; C1, 11. 29. 実測(%):C, 59. 95; H, 4. 57; N, 4. 35; C1, 10. 90.
5 3	C ₂₃ H ₂ OC1NO ₆ : 0.25H ₂ 0 とし 計算(%):C, 61.88; H, 4.63; N, 3.14; C1, 7.94. 実測(%):C, 61.70; H, 4.69; N, 3.26; C1, 7.67.	C ₂₁ H ₁₆ C1NO ₆ ・0.5H ₂ O として 計算(%):C,59.15; H,4.05; N,3.31; C1,8.38. 実測(%):C.59.42; H,4.09; N,3.54; C1,8.71.
5 4		C ₂₁ H ₁₆ C1NO ₆ ・H ₂ O として 計算(%):C, 58. 41; H, 4. 20; N, 3. 24; C1, 8. 21. 実測(%):C, 58. 75; H, 4. 09; N, 3. 30; C1, 8. 31.
5 5	C ₂₁ H ₁₈ C1NO ₆ S・0.25H ₂ 0 とし 計算(%):C, 55.75; H. 4.12; N, 3.10; C1, 7.84; S, 7.09. 実測(%):C, 55.79; H, 4.18; N, 3.12; C1, 7.64; S, 7.12.	C ₁₉ H ₁₄ C1NO ₆ S・0.5H ₂ O として 計算(%):C, 53.21; H, 3.53; N, 3.29; C1, 8.27; S, 7.48. 実測(%):C, 53.59; H, 3.70; N, 3.19; C1, 8.05; S, 7.42.
5 6	C ₂₁ H ₁₇ C1N ₂ O ₅ として 計算(%):C, 61.10; H, 4.15; N, 6.79; C1, 8.59. 実測(%):C, 60.97; H, 4.31; N, 6.64; C1, 8.38.	C ₁₉ H ₁₃ C1N ₂ O ₅ ・0.5C ₄ H ₈ O2 として 計算(%):C,58.82; H,4.00; N,6.53; C1,8.27. 実測(%):C,58.78; H,4.10; N,6.70; C1,8.11.
5 7	C ₂₆ H ₂ OC1NO ₄ として 計算(%):C, 70.03; H, 4.52; N, 3.14; C1, 7.95. 実測(%):C, 69.82; H, 4.65; N, 3.10; C1, 8.20.	C ₂₅ H ₁₈ C1NO ₄ ・0.3H ₂ O として 計算(%):C, 68.67; H, 4.29; N, 3.20; C1, 8.11. 実測(%):C, 68.90; H, 4.37; N, 3.28; C1, 8.31.
5 8		C ₂₄ H ₁₆ FNO ₆ S として 計算(%):C, 61. 93; H, 3. 46; N, 3. 01; F, 4. 08; S, 6. 89. 実測(%):C, 62. 00; H, 3. 66; N, 3. 26; F, 3. 98, S, 6. 61.
5 9	C ₂₇ H ₂₃ NO ₄ として 計算(%):C, 76. 22; H, 5. 45; N, 3. 29. 実測(%):C, 76. 15; H, 5. 52; N, 3. 32.	C ₂₆ H ₂₁ NO ₄ として 計算(%):C, 75. 90; H, 5. 14; N, 3. 44. 実測(%):C, 75. 85; H, 5. 30; N, 3. 32.

実施例 60

4-[1-(4-カルボキシベンジル)-5-クロロインドール-3-イル]-2-ヒドロキシ-4-オキソ-2-ブテン酸

$$CI$$
 O OH CO_2H CO_2H CO_2H

実施例 2 3 と同様の方法 によって得られた 4-[5-クロロ-1-(4-メトキシカルボニルベンジル)インドール-3-イル]-2-ヒドロキシ-4-オキソ-2-ブテン酸(82 mg. 0.2 mmol)の 75% MeOH(3 ml)溶液に、LiOH(42 mg, 1.0 mmol)を加え、5 時間室温で撹拌した。溶媒を減圧下に留去し、残渣に IN 塩酸を加え酸性とし、酢酸エチルで抽出した。有機層を水洗し、飽和食塩水で洗浄後、乾燥した。酢酸エチルを留去し、得られた結晶を酢酸エチル-エーテルから再結晶して、63 mg(収率:79%)の標題化合物を得た。

融点:245℃(分解)。

NMR (d_6 -DMS0) δ : 5. 63 (2H, s), 7. 00 (1H, s), 7. 32 (1H, dd, J=8. 7Hz, 2. 1Hz), 7. 42 (2H, d, J=8. 1Hz), 7. 63 (1H, d, J=8. 7Hz), 7. 91 (2H, d, J=8. 1Hz), 8. 23 (1H, d, J=2. 1Hz), 9. 07 (1H, s).

元素分析:C20H14C1NO6 0.25C4H8O2として

計算值(%):C. 59. 80: H. 3. 82; N. 3. 32; Cl, 8. 40.

実測値(%):C, 59.85; H, 4.10; N, 3.30; Cl, 8.16.

実施例60と同様にして、実施例61~62の化合物を合成した。

実施例61

4-[1-(3-カルボキシベンジル)-5-クロロインドール-3-イル]-2-ヒドロキシ-4-オキソ-2-ブテン酸

NMR (d_6 -DMSO) δ :5.62 (2H, s), 7.00 (1H, s), 7.33 (1H, dd, J=8.7Hz, 2.1Hz), 7.48 (1H, t, J=8.1Hz), 7.59 (1H, d, J=7.5Hz), 7.67 (1H, d, J=8.7Hz), 7.87-8.20 (2H, m), 8.23 (1H, d, J=2.1Hz), 9.10 (1H, s), 13.0 (2H, brs).

元素分析:C20H14C1NO6として

計算値(%):C,60.09; H,3.53; N.3.50; Cl,8.87.

実測値(%):C, 60.16; H, 3.94; N, 3.49; Cl, 8.66.

実施例 6 2

4-[1-(5-カルボキシチオフェン-2-イルメチル)-5-クロロインドール-3-イル]-2-ヒドロキシ-4-オキソ-2-プテン酸

NMR (d_6 -DMS0) δ :5. 78 (2H, s), 6. 97 (1H, s), 7. 25 (1H, d, J=3. 9Hz), 7. 38 (1H, dd, J=8. 7Hz, 2. 1Hz), 7. 59 (1H, d, J=3. 9Hz), 7. 79 (1H, d, J=8. 7Hz), 8. 23 (1H, d, J=2. 1Hz), 9. 04 (1H, s), 13. 0 (1H, brs).

元素分析:C18H12C1NO6S 0.25C4H80, 0.5H20として

計算值(%):C,52.24; H,3.46; N,3.21; Cl,8.11; S,7.34.

実測値(%):C, 52. 56; H, 3. 46; N, 3. 34; Cl, 8. 09; S, 7. 47.

実施例63~66の化合物は、以下の反応ルートにより合成した。

$$R^{5}$$
 R^{6}
 R^{7}
 R^{1}
 R^{2}
 R^{7}
 R^{1}
 R^{2}
 R^{5}
 R^{6}
 R^{7}
 R^{2}
 R^{5}
 R^{6}
 R^{7}
 R^{2}
 R^{5}
 R^{6}
 R^{7}
 R^{7

実施例63

(1) 4-(5-クロロインドール-3-イル)-2-メチルアミノ-4-オキソ-2-プテン酸 エチルエステル

実施例 1 (1)で得た 4-(5-クロロインドール-3-イル)-2-ヒドロギシ-4-オキソ-2-ブテン酸 エチルエステル(0.59 g, 2.0 mmol)の 95%EtOH(10 ml) 溶液にメチルアミン酢酸塩(0.55 g, 6.0 mmol)を加え、2.5 時間加熱還流した。反応液を濃縮後、残渣を酢酸エチルに溶解し、水洗、乾燥した。溶媒を留去後、得られる

残留物をシリカゲルカラムクロマトグラフィーに付して精製した。酢酸エチルで 溶出する画分を濃縮し、油状物として標題化合物 0.23 g(収率:38%)を得た。

(2) 4-(5-クロロインドール-3-イル)-2-メチルアミノ-4-オキソ-2-プテン酸

上記(1)で得られたエステル 0.22g のジオキサン(2.2 ml)溶液に 1N NaOH(0.9 ml)を加え、室温で 2 時間撹拌した。 次に 1N 塩酸(0.9 ml) を加え、減圧下に溶媒を留去した。残渣に水を加え、得られた結晶を瀘取後、水洗、95%E1OH で洗浄して、0.15 g(収率:80%)の標題化合物を得た。融点:228-229℃(分解)

元素分析: C,3H,1C1N,03として

計算值(%):C, 56.04; H, 3.98; N, 10.05; C1, 12.72.

実測値(%):C, 56.06; H, 4.05; N, 10.32; Cl, 12.62.

実施例64~66においては、実施例63と同様にして、その他のエステル体(Ie)および対応カルボン酸(If)を合成した。

実施例64

(1)4-(1-ベンジル-5-クロロインドール-3-イル)-2-メチルアミノ-4-オキソ-2-ブテン酸 エチルエステル

融点:131-132℃(95%E10Hから再結晶)

NMR (CDC1₃) δ :1.40(3H, t, J=7.0Hz), 3.10(3H, d, J=5.2Hz), 4.36(2H, q, J=7.0Hz), 5.32(2H, s), 5.99(1H, s), 7.08-7.35(7H, m), 7.71(1H, s), 8.44(1H, t, J=1.2Hz).

元素分析: C22H21CIN2O3として

計算值(%):C, 66.58; H, 5.33; N, 7.06; C1, 8.93.

実測値(%):C. 66. 53; H. 5. 39; N. 8. 77; Cl. 7. 11.

(2)4-(1-ベンジル-5-クロロインドール-3-イル)-2-メチルアミノ-4-オキソ-2-ブテン酸

融点:205-210℃(分解)(95%EtOHから再結晶)

NMR (d_6 -DMSO) δ : 3. 02 (3H. d, J=5. 4Hz), 5. 56 (2H. s), 6. 03 (1H. s). 7. 25-7. 38 (6H. m). 7. 62 (1H. d. J=9. 0Hz). 8. 20 (1H. d. J=2. 1Hz), 8. 72 (1H. brq, J=5. 4Hz), 8. 90 (1H. s).

元素分析:C20H17C1N2O3として

計算值(%):C, 65. 13; H, 4. 65; N, 7. 60; C1, 9. 61.

実測値(%):C,65.04; H,4.60; N,7.77; Cl,9.36.

実施例65

(1) 4-(1-ベンジル-5-クロロインドール-3-イル)-2-(2-エトキシエチルアミノ)-4-オキソ-2-プテン酸 エチルエステル

融点:73-74℃(i-Pr₂0から再結晶)

NMR(CDC1₃) δ :1. 22(3H, t, J=7. 2Hz), 1. 37(3H, t, J=7. 2Hz), 3. 46-3. 67(6H, m), 4. 34(2H, q, J=7. 2Hz), 5. 32(2H, s), 6. 01(1H, s), 7. 08-7. 36(7H, m), 7. 72(1H, s), 8. 44(1H, t, J=1. 2Hz).

元素分析: C,,,H,,,CIN,O,として

計算值(%):C, 66.00; H, 5.98; N, 6.16; C1, 7.79.

実測値(%):C, 66. 10; H, 6. 26; N, 6. 18; C1, 7. 66.

(2) 4-(1-ベンジル-5-クロロインドール-3-イル)-2-(2-エトキシエチルアミノ)-4-オキソ-2-プテン酸

融点:184-186℃(分解)(95%EtOHから再結晶)

NMR (d_6 -DMSO) δ :1.10 and 1.15 (3H, t, J=7.0Hz), 3.40-3.70 (6H, m), 5.47 and 5.56 (2H, s), 6.01 and 6.03 (1H, s), 7.18-7.64 (7H, m), 8.20 and 8.29 (1H, d, J=2.1Hz), 8.54 and 8.96 (1H, s), 8.26 and 10.2 (1H, brs).

元素分析:C23H23C1N2O4 0.2H20として

計算值(%):C,64.17; H,5.48; N,6.51; C1,8.24.

実測値(%):C, 64. 27; H, 5. 71; N, 6. 71; C1, 8. 13.

実施例66

(1) 2-アミノ-4-(インドール-3-イル)-4-オキソ-2-ブテン酸 エチルエステル 融点:200-205℃(酢酸エチルから再結晶)

NMR (CDCl₃) δ :1. 41 (3H, t, J=7. 0Hz), 4. 38 (2H, q, J=7. 0Hz), 6. 51 (1H, s), 7. 25-7. 45 (4H, m), 7. 89 (1H, d, J=3. 0Hz), 8. 42-8. 60 (2H, brm).

元素分析: C14H14N2O3 として

計算值(%):C,65.11; H,5.46; N,10.85.

実測値(%):C. 65. 08; H, 5. 54; N, 10. 66.

(2) 上記エチルエステルのジオキサン溶液を、当量の IN NaOH を用い室温下、3 時間処理し、減圧乾固することにより 2-アミノ-4-(インドール-3-イル)-4-オキソ-2-プテン酸 ナトリウム塩を得た。

NMR (d_6 -DMSO) δ :6. 29 (1H, s), 6. 73 (1H, d, J=7. 8Hz), 7. 01-7. 20 (2H, m), 7. 36-7. 48 (1H, m), 7. 95 (1H, s), 8. 22-8. 35 (1H, m), 9. 22 (1H, d, J=7. 8Hz), 11. 6 (1H, brs).

元素分析:C₁₂H₉N₂O₃Na 0.6H₂0として

計算值(%):C,54.80; H,3.91; N,10.65.

実測値(%):C,54.71; H,3.92; N,10.62.

実施例67~71の化合物は、以下の反応ルートにより合成した。

$$R^{5}$$
 R^{4}
 R^{3}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{5}
 R^{6}
 R^{4}
 R^{3}
 R^{2}
 R^{6}
 R^{4}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

実施例 6 7

(1) 1-(5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2-トリチル-2H-テトラソール-5-イル)-プロペノン

3-アセチル-5-クロロインドール (0.58 g, 3.0 mmol)の THF (9 ml)溶液に、-65℃下、LHMDS-THF 溶液 (9 ml, 9 mmol)を徐々に滴下した。次に混合液を-20℃に加温し、同温度で 1 時間撹拌した。再度、混合液を-65℃に冷却し、2-トリチル-2H-テトラゾール-5-カルボン酸 エチルエステル (1.73 g, 4.5 mmol)の THF (3 ml)溶液を徐々に加えた。反応液を徐々に室温に戻し、更に 2 時間撹拌した。反応液を 過剰の飽和塩化アンモニウム水溶液に注入した。生じる析出物を瀘取し、THF (100 ml)に溶解し、乾燥した。更に水層を酢酸エチル (50 ml)で 2 回抽出し、水洗、乾

燥した。両者を濃縮し、得られた残渣を酢酸エチルで洗浄することにより、黄色の粉末として標題化合物 1.40 g (収率:88%) を得た。

NMR (d_6 -DMSO) δ : 6. 66 (1H, s), 7. 05-7. 08 (5H, m), 7. 14 (1H, dd, J=8. 4Hz, 2. 1Hz). 7. 39-7. 44 (11H, m), 8. 01 (1H, s), 8. 29 (1H, d, J=2. 1Hz), 11. 7 (1H, brs).

(2) 1-(5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2H-テトラゾール-5-イル)-プロペノン

上記 (1) で得られた化合物 (0.64 g, 1.2 mmol)をジオキサン (9 ml) に懸濁し、1N 塩酸 (7 ml)を加え、1時間還流した。冷却後、析出した結晶を瀘取し、酢酸エチルで洗浄、水洗、乾燥することにより、黄色結晶の標題化合物 0.26 g(収率:75%)を得た。

融点:250℃ (分解)

元素分析: C12H8C1N5O2として

計算值(%):C, 49.76; H, 2.78; N, 24.18; C1, 12.24.

実測値(%):C, 49. 43; H, 3. 08; N, 23. 83; C1, 11. 93.

実施例68~71

実施例 6 7 と同様にして、Yがヘテロアリールである化合物 (Ih) を合成した。各化合物の構造と物性を以下に示す。

(表6-1)

$$R^{5}$$
 R^{6}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{1}
 R^{2}
 R^{1}

実施例	Het	R 1	R 2	R3	R4	R5	R	6 再結晶	
									(\mathcal{C})
6 8	Tet	Н	Ph (2-C1)	H	Н	H	H	i -P r 20	209-210
6 9	Tet	H	Bn (4-F)	H	Cl	H	H	Et ₂ 0	138
7 0	Tet	H	Bn (4-C1)	Н	Cl	H	H	E t 20	200
7 1	Tri	H	H	H	Cl	H	H	EtOAc	277-279

(注) 実施例 70 化合物: 1/2Et₂0 含有

Tet: 2H-7+7'-1-5-1h; Tri: 1H-[1, 2, 4]-+177'-1-3-1h

(表 6 - 2)

実施例	NMR値
6 8	(d_6-DMSO) δ :6. 37 (1H, s), 7. 32-7. 37 (2H, m), 7. 51-7. 59 (2H, m), 7. 65-7. 77 (3H, m), 8. 25-8. 28 (1H, m), 12. 7 (1H, s).
6 9	(d ₆ -DMSO) δ :7.01-7.55(8H, m), 8.01(1H, s), 12.5(1H, s), 15.2(1H, br).
7 0	(d_6-DMSO) δ :4.54(2H, s), 6.99(1H, s), 7.27-7.42(5H, m), 7.53(1H, d, J=8.6Hz), 8.01(1H, d, J=1.6Hz), 12.6(1H, s).
7 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(表 6 - 3)

実施例	元素分析
	C ₁₈ H ₁₂ ClN ₅ O ₂ 0.075CHCl ₃ として
6 8	計算(%):C, 57.93; H, 3.25; N, 18.69; Cl, 11.59.
	実測(%):C, 57. 90; H, 3. 46; N, 18. 42; Cl, 11. 47.
	$C_{19}H_{13}C1FN_5O_2$ 0. $4C_4H_{10}O \ge U \subset$
6 9	計算(%):C, 57. 88; H, 4. 01; N, 16. 35; Cl, 8. 29; F, 4. 44.
	実測(%):C, 57. 50; H, 4. 12; N, 16. 21; C1, 8. 01; F, 4. 33.
	$C_{19}H_{13}Cl_{2}N_{5}O_{2}$ 0. $5C_{4}H_{10}O \geq U $.
7 0	計算(%):C, 55. 89; H, 4. 02; N. 15. 52; Cl, 15. 71.
	実測(%):C, 55. 75; H, 4. 07; N, 15. 62; C1, 15. 50.
	$C_{13}H_9C1N_4O_2$ 0. $2H_2O$ 0. $1C_4H_8O_2 \succeq U \subset$
7 1	計算(%):C, 53. 45; H, 3. 41; N, 18. 61; Cl, 11. 77.
	実測(%):C, 53. 64; H, 3. 42; N, 18. 52; Cl, 11. 74.

実施例75~84の化合物は、以下の反応ルートにより合成した。

$$R^{4}$$
 R^{3}
 R^{5}
 R^{6}
 R^{6}
 R^{7}
 R^{2}
 R^{4}
 R^{3}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{4}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5

実施例75

(1) 1-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2-トリチル-2H-テトラゾール-5-イル)-プロペノン

水素化ナトリウム (0.19 g, 4.8 mmol, 60 %ミネラルオイル)を THF (16 ml) に懸濁し、実施例 6 7 で得た 1-(5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2-ト

リチル-2H-テトラゾール-5-イル)-プロペノン(0.85 g.1.6 mmol)を加えた。次ぎに混合液を室温で 15 分撹拌後、氷冷下、ベンゼンスルホニルクロリド(0.62 g.3.5 mmol)を加えた。反応液を室温で1時間撹拌後、過剰の飽和塩化アンモニウム水溶液に注入した。酢酸エチル(50 ml)で抽出し、水洗、乾燥した。溶媒を留去し、残渣を $n-\Lambda$ +サンで洗浄、エーテルで結晶化すると、白色粉末として標題化合物 0.73 g (収率:68%)を得た。

NMR (d_6 -DMSO) δ : 7.09-7.12(5H, m), 7.42-7.46(10H, m), 7.53(1H, dd, J=9.0Hz, 2.4Hz), 7.55(1H, s), 7.67(2H, m), 7.79(1H, m), 8.05(1H, d, J=9.0Hz), 8.26(1H, d, J=2.4Hz), 9.38(1H, s).

(2) 1-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2H-テトラゾール-5-イル)-プロペノン

上記 (1) で得られた化合物 (0.67 g, 1.0 mmol) のジオキサン(5 ml)溶液に IN 塩酸(5 ml)を加え、1時間還流した。冷却後、析出した結晶を瀘取し、酢酸エチルで洗浄、水洗、乾燥することにより標題化合物 0.32 g(収率:74%)を得た。

融点:240℃ (分解)

NMR(d_6 -DMSO) δ :7.52(1H, dd, J=9.0Hz, 2.1Hz), 7.58(1H, s), 7.66-7.71(2H, m), 7.77-7.82(1H, m), 8.06(1H, d, J=9.0Hz), 8.22-8.25(3H, m), 9.39(1H, s).

元素分析: C18H12C1N5O4S 0.4H20として

計算值(%):C, 49. 47; H, 2. 95; N, 16. 02; Cl, 8. 11, S, 7. 34.

実測值(%):C, 49.56; H, 3.14; N, 15.97; C1.7.96. S.7.46.

実施例76~84

実施例 7 5 と同様にして、Yがヘテロアリールである化合物 (Ih) を合成した。各化合物の構造と物性を以下に示す。

(表 7 - 1)

$$R^5$$
 R^6
 R^7
実施例	Het	R1	R2	R3	R4	R5	R6	再結晶	融点
7,357.								溶媒	(℃)
7 6	Tet	-SO,Ph	Н	Н	CF ₃	Н	Н	EtOAc-Et20	>250
7 7	Tet	$-S0.Ph(3-CF_3)$	H	H	Cl	Н	H	E t OAc	256
7 8	Tet	$-50.Ph(3.5-CF_3)$	H	H	Cl	H	H	E t O A c	>250
7 9	Tet	-SO,Ph(2, 4, 6-iPr)	H	H	Cl	H	H_{\perp}	Et ₂ 0-Hex	211
8 0	Tet	-SO,-2-FIIN	H	H	Cl	H	Н	EtOAc-i-Pr	0 243
8 1	Tet	-CH,Ph	H	H	Cl	H	H	ag. dioxane	>240
8 2	Tet	$-CH_2Ph(4-N_3)$	H	Н	Cl	H	H	aq. dioxane	>210
8 3	Tri	-S0,Ph	Н	H	Cl	Н	Н	aq. dioxane	282-284
8 4	I m i	-SO ₂ Ph	Н	H	Cl	Н	H	aq. dioxane	252-254

(注) 実施例 8 4 化合物: 0. 9HCl 含有塩; Imi: 2 ーイミダゾリル

(表7-2)

実施例	NMR値
7 6	(d_6-DMSO) δ :7. 63-7. 85(5H, m), 8. 29(3H, m), 8. 60(1H, s), 9. 52(1H, s).
7 7	(d ₆ -DMSO) δ :7.53-7.55(2H, m), 7.90-7.97(1H, m), 8.08-8.26(3H, m), 8.51-8.59(2H, m), 9.44(1H, s).
7 8	$\begin{array}{llllllllllllllllllllllllllllllllllll$
7 9	(CDC1 ₃) δ :1.13(12H, d, J=7.0Hz), 1.26(6H, J=6.8Hz), 2.94(1H, sept, J=6.8Hz), 4.08(2H, sept, J=7.0Hz), 7.23(5H, m), 8.32(1H, s), 8.43(1H, s), 12.5(2H, brs).
8 0	(d ₆ -DMSO) δ :7. 26-7. 30(1H, m), 7. 55-7. 60(2H, m), 8. 00-8. 28(4H, m), 9. 34(1H, s).
8 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

(表7-3)

実施例	化合物 (I h)
7 6	C ₁₉ H ₁₂ F ₃ N ₅ O ₄ S 0. 2H ₂ O として 計算(%):C, 48. 87; H, 2. 68; N, 15. 00; F, 12. 20; S, 6. 87. 実測(%):C, 48. 78; H, 2. 87; N, 15. 00; F, 11. 83; S, 6. 82.
7 7	C ₁₉ H ₁₁ ClF ₃ N ₅ O ₄ S として 計算(%):C, 45, 84; H, 2, 23; N, 14, 07; Cl, 7, 12; F, 11, 45; S, 6, 44, 実測(%):C, 45, 76; H, 2, 51; N, 14, 02; Cl, 7, 29; F, 11, 45; S, 6, 46.
7 8	C ₂₀ H ₁₀ ClF ₆ N ₅ O ₄ S として 計算(%):C, 42. 45; H, 1. 78; N, 12. 38; Cl, 6. 27; F, 20. 15; S, 5. 67. 実測(%):C, 44. 40; H, 1. 88; N, 12. 26; Cl, 6. 27; F, 20. 37; S, 5. 71.
7 9	C27H30C1N5O4S として 計算(%):C,58.32; H,5.44; N,12.59; C1,6.38; S,5.77. 実測(%):C,58.37; H,5.45; N,12.30; C1,6.43; S,5.66.
8 0	C ₁₆ H ₁₀ ClN ₅ O ₄ S2 0.25C ₄ H ₈ O ₂ として 計算(%):C,44.59; H,2.64; N,15.29; Cl,7.74; S,14.01. 実測(%):C,44.55; H,2.85; N,15.04; Cl,7.98; S,14.06.
8 1	C ₁₉ H ₁₄ ClN ₅ O ₂ として 計算(%):C,60.09; H,3.72; N,18.44; Cl,9.33. 実測(%):C,60.06; H,3.89; N,18.42; Cl,9.13.
8 2	C ₁₉ H ₁₃ C1N ₈ O ₂ として 計算(%):C,54.23; H,3.11; N,26.63; Cl,8.42. 実測(%):C,54.56; H,3.37; N,26.59; Cl,7.94.
8 3	C ₁₉ H ₁₃ C1N ₄ O ₄ S として 計算(%):C,53.21; H,3.06; N,13.06; Cl,8.27; S,7.48. 実測(%):C,53.43; H,3.36; N,12.85; Cl,8.17; S,7.40.
8 4	C ₂₀ H ₁₄ ClN ₃ O ₄ S

実施例85

(1) 4-(2-ベンジルインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸メチルエステル

(a) 参考例 1 の 3-アセチル 2-ベンジルインドール (2.70 g, 10.8 mmol)の THF (20 ml)溶液に氷冷下、4-ジメチルアミノピリジン (122 mg, 1 mmol)を加え、次にジーt-ブチルジカーボネート (2.8 g, 13 mmo)の THF (5 ml)溶液を滴下した。室温で1時間撹拌後、反応液を氷水へ加え、酢酸エチルで抽出した。抽出液を水洗、乾燥後、濃縮することにより 3-アセチル-1-t-ブトキシカルボニル-2-ベンジルインドール (1.8 g, 収率:48%)を結晶として得た。

NMR (d_6 -DMS0) δ :1. 40 (9H, s), 2. 63 (3H, s), 4. 81 (2H, s), 7. 01 (2H, d, J=7. 0Hz), 7. 10-7. 46 (5H, m), 7. 98-8. 10 (2H, m).

(b) 上記 (a) で得られた化合物 (1.75 g. 5.0 mmol)の THF (50 ml)溶液に、-70℃下、LHMDS-THF 溶液 (6 ml, 6 mmol)を徐々に滴下した。次ぎに混合液を 0℃に加温し、同温度で 1 時間撹拌した。再度、混合液を-70℃に冷却し、シュウ酸ジメチル (709 mg, 6.0 mmol)の THF (6 ml)溶液を徐々に加えた。反応液を徐々に加温し、-30℃で 1 時間撹拌した。反応液を過剰の飽和塩化アンモニウム水溶液に注入した。酢酸エチルで抽出し、水洗、乾燥した。溶媒を留去すると、4-(2-ベンジル-1-t-ブトキシカルボニル-インドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸

メチルエステルを油状物として得た。。

NMR (CDC1₃) δ :1. 45 (9H, s), 3. 90 (3H, s), 4. 83 (2H, s), 6. 85 (1H, s), 7. 00-7. 10 (2H, m), 7. 15-7. 32 (3H, m), 7. 34-7. 46 (2H, m), 7. 90-8. 02 (1H, m).

(c) 上記(b) で得られた化合物(2.1 g, 4.8 mmol)にトリフルオロ酢酸(2 ml)を加え、室温下、2 時間撹拌した。反応液を減圧下に濃縮後、氷水に加え酢酸エチルで抽出した。抽出液を重曹で洗浄、水洗、乾燥した。溶媒を留去し得られた黄色粉末を酢酸エチル-n-ヘキサンから再結晶することにより、標題化合物 0.96 g(収率:60%)を得た。融点:197-199 $\mathbb C$ (分解).

NMR(d₆-DMSO) δ:3.83(3H, s), 4.51(2H, s), 6.86(1H, s), 7.05-7.40(7H, m), 7.44-7.56(1H, m), 7.90-8.04(1H, m), 12.5(1H, brs).

元素分析:C₂₀H₁₇NO₄として

計算值(%):C,71.63; H,5.11; N,4.18.

実測値(%):C. 71. 62; H. 5. 23; N. 4. 22.

(2) 4-(2-ベンジルインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸

上記 (1) のメチルエステル (0.51 g, 1.5 mmol) のジオキサン (20 ml) 溶液に IN 塩酸 (15 ml) を加え、1 時間加熱還流し、冷却後生じた結晶を瀘取し、水洗した。次に飽和重曹水に溶解し、酢酸エチルで洗浄した。水層を IN 塩酸で pH=4 に 調整し、酢酸エチルで抽出した。抽出液を水洗、乾燥後、濃縮することにより黄色粉末を得た。これを酢酸エチル-n-ヘキサンから再結晶すると 0.31 g (収率:64%) の標題化合物を得た。融点:165-167℃

NMR (d_6 -DMS0) δ : 4.52(2H, s), 6.90(1H, s), 7.18-7.38(7H, m), 7.44-7.52(1H. m), 7.90-8.00(1H, m), 12.4(1H, brs), 13.8(1H, brs).

元素分析:C19H15NO4として

計算值(%):C.71.02; H.4.70; N.4.36.

実測値(%):C, 70.97; H, 4.72; N, 4.43.

実施例86~90

実施例85と同様にして、その他のエステル体(Ic, R=Me)および対応

カルボン酸(R=H)を合成した。各化合物の構造と物性を以下に示す

(表 8 - 1)

$$R^{5}$$
 R^{6}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{5}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{5}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{5}
 R^{5}
 R^{6}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

実施例	R1	R2	R3	R4	R 5	R6	再結晶溶媒	/融点(℃)
, , , , ,							エステル体	カルボン酸
							(Ic, R=Me)	(Id)
8 6	Н	-CH ₂ Ph (4-F)	Н	Н	H	H	EtOAc-Hex	EtOAc-Hex
		•					187-190	168-170
8 7	Н	Ph (2-C1)	Н	Cl	H	Н	EtOAc-Hex	EtOAc-Hex
							224-226	230-235
8 8	Н	Ph (2-F)	Н	Cl	Н	Н	EtOAc-Hex	EtOAc-Hex
							225-227	203-208
8 9	Н	-COPh	H	Cl	Н	Н	EtOAc-Hex	CHC 1 ₃
							207-210	190-193
9 0	Н	Bu	Н	Н	Н	Н	油状物	トルエン
								172-173

(表 8 - 2)

実施	Ιc	I d
例		
8 6	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(d_6-DMSO) δ :4.50(2H, s). 6.89(1H, s), 7.14(2H, t, J=7.5Hz), 7.20-7.30(2H, m), 7.30-7.38(2H, m), 7.44-7.52(1H, m), 7.86-7.98(1H, m), 12.4(1H, s), 13.9(1H, brs). (d_6-DMSO) δ :5.98(1H, s), 7.35(1H, dd, J=10.2Hz, 1.6Hz), 13.46.7.80(5H, m), 8.29(1H, s)
8 7	J=8.6Hz, 2.0Hz), 7.50- 7.80(5H, m), 8.30(1H, d, J=2.0Hz), 12.9(1H, brs).	7. 46-7. 80 (5H, m), 8. 29 (1H, s), 12. 8 (1H, s), 13. 4 (1H, brs).
8 8	(d ₆ -DMSO) δ :3.67(3H, s), 6.15(1H, s), 7.35(1H, dd, J=7.0Hz, 1.6Hz), 7.40- 7.60(3H, m), 7.62-7.82(2H, m), 8.27(1H, d, J=1.6Hz), 12.9(1H, brs).	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8 9	(d ₆ -DMSO) δ :3.77(3H, s), 6.47(1H, s), 7.45(1H, dd, J=8.0Hz, 1.2Hz), 7.50- 7.96(6H, m), 8.14(1H, s), 13.2(1H, brs)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

(表8-3)

実施例	Ιc	I d
8 6	C ₂₀ H ₁₆ FNO ₄ 0. 2H ₂ 0 として 計算(%):C, 67. 30; H, 4. 63; N, 3. 92; F, 5. 32. 実測(%):C, 67. 07; H, 4. 63; N, 3. 81; F, 5. 24.	C ₁₉ H ₁₄ FNO ₄ 0.1H ₂ 0 として 計算(%):C, 66, 90; H, 4, 20; N, 4, 11; F, 5, 57, 実測(%):C, 66, 91; H, 4, 21; N, 4, 15; F, 5, 57.
8 7	C ₁₉ H ₁₃ Cl ₂ NO ₄ 0.1C ₄ H ₈ O ₂ として計算(%):C,58.39: H,3.49: N,3.51: Cl,17.77. 実測(%):C,58.08: H,3.47: N,3.45: Cl,17.73.	C ₁₈ H ₁₁ Cl ₂ NO ₄ として 計算(%):C,57.47; H,2.95; N,3.72; Cl.18.85. 実測(%):C,57.38; H,3.02; N,3.65; Cl.18.56.
8 8	C ₁₉ H ₁₃ C1FNO ₄ として 計算(%):C, 61.06; H, 3.51; N, 3.75; C1, 9.49; F, 5.08. 実測(%):C, 61.10; H, 3.59; N, 3.73; C1, 9.26; F, 5.06.	C ₁₈ H ₁₁ C1FNO ₄ として 計算(%):C, 60. 10; H, 3. 08; N, 3. 82; Cl, 9. 86; F, 5. 28. 実測(%):C, 59. 66; H, 3. 24; N, 3. 84; Cl, 9. 66; F, 5. 12.
8 9	C ₂₀ H ₁₄ C1NO ₅ として 計算(%):C, 62.59; H, 3.68; N, 3.65; C1, 9.24. 実測(%):C, 62.51; H, 3.74; N, 3.69; C1, 9.15.	C ₁₉ H ₁₂ C1NO ₅ 0.1CHCl ₃ として 計算(%):C.60.10; H.3.20; N.3.67. 実測(%):C,60.23; H.3.42; N,3.71.
9 0		C ₁₆ H ₁₇ NO ₄ として 計算(%):C,66.89; H,5.96; N,4.88. 実測(%):C,66.88; H,5.98; N,4.92.

実施例 91

4-(5-クロロインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸 ジフェ ニルメチルエステル

実施例 1 の 4-(5-クロロインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸 (0.69 g, 2.6 mmol)を THF (14 ml) に溶解し、ジフェニルジアゾメタン (0.76 g, 3.9 mmol)を加え、室温下、30 分間撹拌した。さらにジフェニルジアゾメタン (0.25 g, 1.3 mmol)を追加し、室温で 1 時間、次いで 30 分間加熱還流した。溶媒を留去し、得られた結晶をジイソプロプロピルエーテルで洗浄すると 標題化合物 0.93

g(収率:82%)を得た。

融点:165-168℃(分解)。

NMR (d_6 -DMSO) δ : 7.02(1H, s), 7.12(1H, s), 7.28-7.59(12H, m), 8.21(1H, d, J=1.8Hz), 8.87(1H, s), 12.8(1H, brm).

元素分析:C25H18CIN2O4として

計算值(%):C, 69.53; H, 4.20; N, 3.24; C1, 8.21.

実測値(%):C, 69. 60; H, 4. 18; N, 3. 28; Cl, 8. 17.

実施例 92

(1)4-[1-(N, N-ジメチルカルバモイル)-5-クロロインドール-3-イル]-2-ヒドロ キシ-4-オキソ-2-ブテン酸 ジフェニルメチルエステル

実施例 9 1 のジフェニルメチルエステル (0.432 g, 1 mmol)の THF (5 ml)溶液に 水冷下、水素化ナトリウム (60%、ミネラルオイル)を 88 mg (2.2 mmol)を加え、室 温で 30 分間撹拌した。次にジメチルカルバモイルクロリド (110 μ l, 1.2 mmol)を水冷下加え、室温で 1 時間撹拌した。反応液を塩化アンモニウム水溶液に加え、酢酸エチルで抽出、水洗、飽和食塩水で洗浄、乾燥した。溶媒を留去し、得られた残留物をエーテルで結晶化し、瀘取、エーテルで洗浄すると 0.39 g (収率:77%)の標題化合物を得た。

融点:178-183(分解)。

NMR (d_6 -DMSO) δ : 3.11(6H, s), 6.88(1H, s), 7.06(1H, s), 7.30-7.52(12H, m), 8.05(1H, s), 8.39(1H, d, J=1.8Hz).

元素分析: C28H23CIN2O5 0.4H20として

計算值(%):C,65.92; H,4.70; N,5.49; Cl,6.95.

実測値(%):C. 65. 90; H. 4. 80; N. 5. 83; C1, 6. 92.

(2)4-[1-(N, N-ジメチルカルバモイル)-5-クロロインドール-3-イル]-2-ヒドロ キシ-4-オキソ-2-プテン酸

上記(1)のエステル体(356 mg, 0.7 mmol)のジクロロメタン(3.6 ml)溶液に 水冷下、トリフルオロ酢酸(0.5 ml)を加え、氷冷下 30分間撹拌した。減圧下に反 応液を濃縮し、得られた残留物を酢酸エチルに溶解し、水洗、飽和食塩水で洗浄、 乾燥した。溶媒を留去し、得られた残留物をエーテルで結晶化した。さらに 95% エタノールから再結晶すると 0.16 g(収率:67%)の標題化合物を得た。

融点:200-206℃ (分解)。

 $\begin{aligned} &\text{NMR} \left(\text{d}_6 - \text{DMSO} \right) \quad \delta : \quad 3. \; 06 \, (6\text{H}, \; \; \text{s}) \,, \quad 7. \; 12 \, (1\text{H}, \; \; \text{brs}) \,, \quad 7. \; 42 \, (1\text{H}, \; \; \text{dd}, \; \; \text{J=9.0Hz}, \; 2. \; 1\text{Hz}) \,, \\ &7. \; 66 \, (1\text{H}, \; \; \text{d}, \; \; \text{J=9.0Hz}) \,, \quad 8. \; 28 \, (1\text{H}, \; \; \text{d}, \; \; \text{J=2.1Hz}) \,, \quad 9. \; 06 \, (1\text{H}, \; \; \text{s}) \quad 13. \; 8 \, (1\text{H}, \; \; \text{brs}) \,. \end{aligned}$

元素分析:C15H13C1N2O5 として

計算值(%):C,53.50; H,3.89; N,8.32; C1,10.53.

実測値(%):C,53.28; H,3.92; N,8.25; C1,10.34.

実施例 9 3

実施例92に準じた方法で以下の化合物を合成した。

(1)4-[5-クロロ-1-(4-フルオロベンゾイル)-インドール-3-イル]-2-ヒドロキシ-4-オキソ-2-ブテン酸 ジフェニルメチルエステル

融点:198-200℃(エーテルから再結晶)

NMR (CDCl₃) δ :6. 77 (1H, s), 7. 00 (1H, s), 7. 26-7. 46 (13H, m), 7. 77-7. 82 (2H, m), 7. 98 (1H, s), 8. 21 (1H, d, J=8. 7Hz), 8. 39 (1H, d, J=2. 1Hz).

元素分析:C₃₂H₂₁CIFNO₅として

計算值(%):C, 69.38; H, 3.82; N, 2.53; Cl, 6.40; F, 3.43.

実測値(%):C, 69. 22; H, 3. 91; N, 2. 79; Cl, 6. 47; F. 3. 66.

(2) 4-[5-クロロ-1-(4-フルオロベンゾイル)-インドール-3-イル]-2-ヒドロキシ-4-オキソ-2-プテン酸

融点:213-218℃(酢酸エチルから再結晶)

NMR (d_6 -DMSO) δ :7.11 (1H, s), 7.50 (2H, t, J=8.7Hz), 7.55 (1H, dd. J=8.7Hz, 2.4Hz), 7.94-7.99 (2H, m), 8.23 (1H, d, J=8.7Hz), 8.34 (1H, d, J=2.4Hz), 8.86 (1H, s).

元素分析:CigHitClFN0sとして

計算值(%):C,58.72: H,2.88; N,3.60; Cl,9.12; F,4.89.

実測値(%):C, 58. 97; H, 3. 10; N, 3. 75; Cl, 8. 84; F, 5. 15.

を得た。

実施例94

(1) 4-(!-t-ブトキシカルボニル-5-メトキシメチルオキシインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸 メチルエステル

参考例 5 の 3-アセチル-1-t-ブトキシカルボニル-5-メトキシメチルオキシインドールを用い、実施例 8 5 の方法に準じて標題化合物を得た(収率 76%)。

NMR (CDC1₃) δ : 1. 72 (9H, s), 3. 53 (3H, s), 3. 95 (3H, s), 5. 27 (2H, s), 6. 91 (1H, s), 7. 12 (1H, dd, J=9. 0Hz. 2. 6Hz), 8. 02-8. 07 (2H, m), 8. 32 (1H, s).

(2) 4-(1-t-ブトキシカルボニル-5-メトキシメチルオキシインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸

上記 (1) のエステル体(0.345 g, 0.85 mmol)をジオキサン(7 ml)に溶解し、

1N 水酸化リチウム(1.7 ml)を加え、室温で 1.5 時間撹拌した。減圧下、室温でジオキサンを留去し、得られた残渣を水に溶解した。酢酸エチルで 2 回洗浄し、水層に 1N 塩酸(1.7 ml)を加え、酢酸エチルで抽出した。有機層を水洗、飽和食塩水で洗浄、乾燥した。溶媒を留去し、得られた結晶を酢酸エチルで洗浄し、0.28 g(収率:84%)の標題化合物を得た。融点:165-170℃(分解)

NMR (d_6 -DMSO) δ : 1. 67 (9H, s), 3. 42 (3H, s), 5. 25 (2H, s), 7. 15 (1H, s), 7. 20 (1H, dd. J=9. 0Hz, 2. 6Hz), 7. 95 (1H, d, J=2. 6Hz), 8. 04 (1H, d, J=9. 0Hz), 8. 86 (1H, s).

(3)4-(1-t-プトキシカルボニル-5-ヒドロキシインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-プテン酸

上記 (2) のカルボン酸 (0.25 g, 0.64 mmol)の THF (3 ml)とイソプロピルアルコール (1.5 ml)溶液に濃塩酸 (0.25 ml)を加え、室温下、16 時間撹拌した。反応液を減圧下に濃縮し、得られた残留物を酢酸エチルに溶解し、飽和食塩水で洗浄、乾燥した。溶媒を留去し、得られた結晶を酢酸エチルから再結晶することにより標題化合物 0.12 g (収率:43%)を得た。融点:210-214 $^{\circ}$ (分解)。

NMR (d_6 -DMSO) δ : 1.18(3H, t, J=7.2Hz), 1.66(9H, s), 1.99(3H, s), 4.02(2H, q, J=7.2Hz), 6.89(1H, dd, J=9.0Hz, 2.6Hz), 7.10(1H, s), 7.69(1H, d, J=2.6Hz), 7.92(1H, d, J=9.0Hz), 8.76(1H, s), 9.50(1H, s).

元素分析: C₁₇H₁₇NO₇ C₄H₈O₂として

計算值(%):C,57.93; H,5.79; N,3.22.

実測値(%):C, 57. 86; H, 5. 76; N, 3. 45.

(4) 2-ヒドロキシ-4-(5-ヒドロキシインドール-3-イル)-4-オキソ-2-ブテン酸上記(3)の 4-(1-1-プトキシカルボニル-5-ヒドロキシインドール-3-イル)-2-ヒドロキシ-4-オキソ-2-ブテン酸(0.2g, 0.45 mmol)をトリフルオロ酢酸(4 ml)に加え、室温下、3.5 時間撹拌した。減圧下に反応液を濃縮し、得られた残渣を重曹水に溶解した。水層を酢酸エチルで2回洗浄後、塩酸でpH=3に調整し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、乾燥した。溶媒を留去し、得られた結晶をエタノールで再結晶することにより70 mg(収率:49%)の標題化合物を

得た。融点:220-225℃(分解)。

NMR (d_6 -DMS0) δ : 6.75(1H, dd, J=8.8Hz, 2.4Hz), 6.95(1H, s), 7.20(1H, d, J=2.4Hz), 7.29(1H, d, J=8.8Hz), 8.56(1H, d, J=3.2Hz), 9.15(1H, brm), 12.2(1H, s).

元素分析: C12H9NO5として

計算值(%):C. 58. 30; H, 3. 67; N, 5. 67.

実測値(%):C. 58. 20; H, 3. 85; N, 5. 84.

実施例95

(1)4-(1-ベンゼンスルホニル-5-カルボキシインドール-3-イル)-2-ヒドロキシ -4-オキソ-2-プテン酸 メチルエステル

(a) 参考例 2 の 3-アセチル-1-ベンゼンスルホニルインドール-5-カルボン酸 ジフェニルメチルエステルを用い、実施例 8 5 に準じた方法で 4-(1-ベンゼンス ルホニル-5-ジフェニルメチルオキシカルボニルインドール-3-イル)-2-ヒドロキ シ-4-オキソ-2-ブテン酸 メチルエステルを得た。

NMR (CDCl₃) δ : 3. 97 (3H, s), 6. 93 (1H, s), 7. 15 (1H, s), 7. 26-7. 67 (13H, m), 7. 96-7. 99 (2H, m), 8. 04 (1H, d, J=8. 0Hz), 8. 20 (1H, dd, J=8. 0Hz, 1. 8Hz), 8. 39 (1H, s), 9. 13 (1H, d, J=1. 8Hz).

(b) 上記化合物(237 mg, 0.4 mmol)とアニソール(86 mg, 0.8 mmol)のジクロロ

WO 99/50245 PCT/JP99/01547

メタン(2.4 ml)溶液に、氷冷下、トリフルオロ酢酸(0.3 ml)を加え、次いで室温で1時間撹拌した。減圧下に反応液を濃縮し、残渣をエーテルで洗浄して125 mg(収率:73%)の標題化合物 (1) を得た。融点:222-232℃ (分解)。

NMR (d_6 -DMSO) δ : 3.89(3H, s), 7.38(1H, s), 7.63-8.28(7H, m), 8.90(1H, d, J=1.4Hz), 9.42(1H, s).

元素分析: C₂₀H₁₅NO₈S として

計算值(%):C,55.94; H,3.52; N,3.26; S,7.47.

実測値(%):C, 55.97; H, 3.74; N, 3.37; S, 7.32.

(2)4-(1-ベンゼンスルホニル-5-カルボキシインドール-3-イル)-2-ヒドロキシ -4-オキソ-2-プテン酸

上記 (1) のエステル体から、実施例 2 3 に準じた方法で標題化合物を得た。 融点:224-228℃ (分解)。

NMR (d_6 -DMSO) δ : 7. 31 (1H, s), 7. 65-7. 82 (4H, m), 8. 03 (1H, dd, J=9. 0Hz, 1. 8Hz), 8. 13 (1H, d, J=9. 0Hz), 8. 23 (1H, d, J=7. 6Hz), 8. 89 (1H, d, J=1. 8Hz), 9. 35 (1H, s).

元素分析: C19H13NO8S 0.15H20として

計算值(%):C, 54. 59; H, 3. 21; N, 3. 35; S, 7. 67.

実測値(%):C. 54. 85; H. 3. 53; N. 3. 45; S. 7. 53.

実施例96~101の化合物は、以下の反応ルートにより合成した。

$$R^{5}$$
 R^{6} R^{2} R^{6} R^{7} R^{2} R^{6} R^{7} R^{7

1-(1-t-ブトキシカルボニルインドール-3-イル)-3-(1-カルボキシフェニル)-3-ヒドロキシ-プロペン-1-オン

3-アセチル-1-t-ブトキシカルボニルインドール (777 mg, 3 mmol)を THF (10 ml) に溶解し、-78℃に冷却した。次いで LHMDS-THF 溶液 (3.6 ml, 3.6 mmol)を加えた。徐々に室温に戻し、再度-78℃に冷却し、無水フタル酸 (525 mg, 3.6 mmol)を加えた。反応液を室温に戻し、氷水を加えた。1N 塩酸で酸性にし、酢酸エチルで抽出し、水洗、乾燥した。溶媒を留去し、得られた残留物を酢酸エチル- n-ヘキサンで結晶化させると 362 mg (収率:30%)の標題化合物を得た。

NMR (CDC1₃) δ : 1.68(9H, s), 6.99(1H, s), 7.20-7.50(2H, m), 7.50-7.88(4H, m), 7.94-8.38(2H, m), 8.60-8.80(1H, m), 13.2(1H, brs).

融点:138-141℃。

NMR (d_6 -DMSO) δ :7.11(1H, s), 7.51-7.87(7H, m), 8.05-8.21(5H, m). 8.94(1H, s), 10.3(1H, brs).

WO 99/50245 PCT/JP99/01547

元素分析: C23H21NO6 0.3H20として

計算值(%):C,66.92; H,5.27; N,3.39.

実測値(%):C, 66.81; H, 5.31; N, 3.43.

実施例97

実施例 9 6 に準じて、1-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-3-(1-カルボキシフェニル)-3-ヒドロキシ-プロペン-1-オンを得た。

NMR (d_6 -DMS0) δ :7.10(1H, s), 7.49-8.25(11H, m), 9.02(1H, s), 9.23(1H, s), 13.2(1H, brs).

元素分析:C26H16C1N06S として

計算值(%):C. 59. 82: H. 3. 35; N. 2. 91; Cl. 7. 36; S. 6. 65.

実測値(%):C,59.89; H,3.51; N,2.88; C1,7.22; S,6.73.

実施例98

1-(インドール-3-イル)-3-(1-カルボキシキシフェニル)-3-ヒドロキシ-プロペン-1-オン

実施例 9 6 の 1-(1-t-プトキシカルボニルインドール-3-イル)-3-(1-カルボキシフェニル)-3-ヒドロキシ-プロペン-1-オンを塩酸で加水分解することにより、

融点:175-177℃(分解)

標題化合物を得た。

NMR (d_6 -DMSO) δ : 6. 73 (1H, s), 7. 16-7. 32 (2H, m), 7. 40-7. 86 (5H, m), 7. 88-8. 28 (1H, m), 8. 34-8. 60 (1H, m), 11. 8-12. 3 (1H, brs), 12. 5 (1H, brs).

元素分析: C, sH, 3NO, として

計算值(%):C,70.35; H,4.26; N,4.56.

実測値(%):C, 70.21; H, 4.43; N, 4.58.

(1) 1-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-3-(2-メトキシフェニル)-プロパン-1,3-ジオン

3-アセチル-1-ベンゼンスルホニル-5-クロロインドール (500 mg, 1.5 mmol)を THF (5 ml) に溶解し、-78℃ に冷却した。次いで LHMDS-THF 溶液 (1.8 ml, 1.8 mmol)を加えた。徐々に 0℃に昇温し、再度-78℃ に冷却し、2-メトキシベンゾイルクロリド (310 mg, 1.8 mmol)を加えた。反応液を室温に戻し、30 分後に氷水を加え、6N 塩酸で酸性にした。酢酸エチルで抽出し、水洗、乾燥した。溶媒を留去し、得られた残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-n-ヘキサン (1:2 v/v) で溶出した。目的物の画分を濃縮すると 160 mg (収率: 23%) の泡末状の標題化合物を得た。

NMR (CDC1₃) δ : 4. 04 (3H, s), 4. 55 (2H, s), 7. 02 (13H, m).

(2) 1-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2-ヒドロキシフェニル)-プロペン-1-オン

上記(1)化合物 (0.1 g, 0.2 mnol)をクロロホルム (3 ml) にヨードトリメチルシラン (1 ml, 7 mnol) を加え、40 で 4 時間撹拌した。冷却後、チオ硫酸ナトリウム水溶液を加え、さらに重曹水で中和し、酢酸エチルで抽出した。抽出液を水洗、乾燥後留去した。得られた結晶を瀘取し、次いで酢酸エチル-イソプロピルエーテルで洗浄し、THF から再結晶すると 23 mg (収率: 24%) の標題化合物を得た。融点: 241-244 ℃。

NMR (d_6 -DMSO) δ :7.11(1H, s), 7.51-7.87(7H, m), 8.05-8.21(5H, m), 8.94(1H, s), 10.3(1H, brs).

元素分析: C,3H,6CINO5S 0.5C4H80として

計算值(%):C, 61, 29; H, 4, 11; N, 2, 86; C1, 7, 23; S, 6, 54.

WO 99/50245 PCT/JP99/01547

実測値(%):C, 61.48; H, 3.94; N, 3.20; C1, 7.42; S, 6.77.

実施例100

1-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-3-(3-カルボキシフェニル)-3-ヒドロキシ-プロペン-1-オン

実施例 9 9 に準じて、 3-アセチル-1-ベンゼンスルホニル-5-クロロインドールに 3-メトキシカルボニルベンゾイルクロリドを反応させた後、塩酸で加水分解することにより、標題化合物を得た。

融点:245-255℃(分解)

NMR(d₆-DMSO) δ :6.80(1H, brs), 7.40-7.80(6H, m), 8.00-8.60(6H, m), 9.60(1H, brs).

元素分析: C,4H,6CINO6S H2O 0.5C4H8O2として

計算值(%):C,57.51; H,3.90; N,2.58; C1.6.53; S,5.90.

実測値(%):C, 57. 36; H, 3. 56; N, 2. 70; Cl, 6. 32; S, 5. 74.

実施例101

1-(5-クロロインドール-3-イル)-3-(3-カルボキシフェニル)-3-ヒドロキシ-プロペン-1-オン

実施例 $1 \ 0 \ 0$ のカルボン酸をエステル化して得られる 1-(1-ベンゼンスルホニル-5-クロロインドール-3-イル)-3-(3-メトキシカルボニルフェニル)-3-ヒドロキシ-プロペン-<math>1-オンをメタノール中、水酸化リチウムで加水分解して標題化合物を得た。

融点: >270℃(分解)

NMR (d_6 -DMSO) δ :6. 60 (1H, brs), 7. 00-7. 60 (4H, m), 8. 10-8. 70 (5H, m), 11. 9 (1H. brs).

元素分析: C18H1, C1NO4 3. 3H20 として

計算值(%):C,53.88; H.4.67; N,3.49; C1,8.84.

実測値(%):C, 53.96; H, 4.09; N. 3.44; Cl. 7.68.

1-(5-)000インドール-3-イル)-3-ヒドロキシ-2-(3、5-ジクロロフェニルスルフェニル)-3-(2H-テトラゾール-5-イル)-プロペノン

1-(5-クロロインドール-3-イル)-3-ヒドロキシ-2-(3,5-ジクロロフェニルチオ)-3-(2H-テトラゾール-5-イル)-プロペノン(0.03 g, 0.064 mmol)のメタノール(6 ml)溶液に、オゾン(0.068 g)の水(0.2 ml)溶液を滴下した。室温で18時間撹拌後、減圧下に溶媒を留去し、残留物を酢酸エチルに溶解し、水洗、乾燥した。溶媒を留去し、残留物をエーテルで結晶化させ、酢酸エチルから再結晶すると標題化合物が得られた。

融点:200-204℃ (分解) 再結晶溶媒:EtOAc

元素分析:C18H10C13N5O3S H2O として

計算值(%):C, 43.17; H, 2.42; N, 13.99; Cl, 21.24; S, 6.40.

実測値(%):C. 43. 04; H. 2. 66; N. 13. 85; Cl. 20. 74; S. 6. 36.

NMR (d_6 -DMS0) δ :7.13(1H. s), 7.45(1H. dd, J=9.0Hz, 2.1Hz), 7.67(1H. d, J=9.0Hz), 7.84(1H. t, J=1.8Hz), 7.97(2H. d, 1.8Hz), 7.99(1H. d, J=2.1Hz), 13.5(1H. s).

実施例 103

2-ベンゼンスルホニル-1-(5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2H-テトラゾール-5-イル)-プロペノン

(1) 2H-テトラゾール-5-カルボン酸 エチルエステル(1.15 g)をジクロロメタン (12 ml)に溶解し、ジヒドロピラン(1.02 g)とピリジニウムパラトルエンスルホナート(0.1 g)を加え、室温下、2 時間撹拌した。反応液を重曹水に加え、酢酸エチルで抽出し、飽和食塩水で洗浄、乾燥した。溶媒を留去し、油状物として1-テトラピラニル-1H-テトラゾール-5-カルボン酸 エチルエステルと 2-テトラピラニル-2H-テトラゾール-5-カルボン酸 エチルエステルの混合物を得た。

(2) 参考例 9 で得られた 3-アセチル-5-クロロ-2-ベンゼンスルホニル-インドール (0.167 g, 0.5 mmol)と上記 (1) で得られた混合物 (0.25 g, 0.65 mmol)を実施例 67 の方法に準じて反応させ、標題化合物を得た。

融点:219-222℃ (分解) 再結晶溶媒:EtOAc

元素分析: C18H1, C1N5O4S 0. 3C4H8O, として

計算值(%):C,50.54; H,3.18; N,15.35; C1,7.77; S,7.03.

実測値(%):C,50.64; H,3.49; N,15.11; C1,7.56; S,6.81.

NMR (d_6 -DMSO) δ : 7. 29 (1H, s), 7. 47-7. 78 (5H, m), 8. 04 (1H, d. J=2. 0Hz),

8. 08-8. 14 (2H. m). 13. 7 (1H. s).

実施例 104

1-(5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2H-テトラゾール-5-イル)-プロペノン マグネシウム塩

実施例 67(2) で得られた 1-(5-クロロインドール-3-イル)-3-ヒドロキシ-3-(2H-テトラゾール-5-イル)-プロペノンを 2 当量の 1N-水酸化ナトリウムで処理 すると水溶液が得られる。これに過剰の塩化マグネシウム水溶液を加え、得られた沈殿物を濾取し、エタノールから再結晶すると標題化合物が得られた。

元素分析:C12H6C1MgN502 2H20 として

計算值(%):C. 41. 42; H, 2. 90; N, 20. 12; C1, 10. 19; Mg, 6. 98.

実測値(%):C. 42. 88; H, 2. 97; N, 20. 74; Cl, 10. 37; Mg, 6. 87.

上記実施例に準じて、実施例105~136の化合物を合成した。構造と物性を以下に示す。

実施例105

融点:235-238℃ 再結晶溶媒:EtOAc-THF

元素分析:C20H15C1FNO4 として

計算值(%):C, 61. 95; H, 3. 90; N, 3. 61; Cl, 9. 14, F; 4. 90.

実測値(%):C. 61. 57; H. 3. 95; N. 3. 61; Cl. 8. 90, F:4. 70.

 $NMR (d_6 - DMSO) \quad \delta \quad : 3.84 (3H, s), 4.49 (2H, S), 6.74 (1H, s), 7.16 (2H, t, J=8.7Hz),$

7. 25-7. 34(3H. m), 7. 51(1H, d, J=8. 7Hz), 7. 99(1H, d, J=2. 1Hz), 12. 6(1H. s).

融点:185-190℃ 再結晶溶媒:EtOAc-THF

元素分析:C19H13C1FNO4 0.2C4H8O2 0.2C4H8O として

計算值(%):C, 60.70; H, 4.24; N, 3.31; Cl, 8.37, F; 4.49.

実測値(%):C, 60. 68; H, 4. 34; N, 3. 28; C1, 8. 16, F; 4. 37.

NMR (d_6 -DMSO) δ : 4. 49 (2H, S), 6. 78 (1H, S), 7. 15 (2H, t, J=8. 7Hz), 7. 24-

7. 36 (3H, m), 7. 50 (1H, d, J=8. 7Hz), 7. 96 (1H, d, J=2. 1Hz), 13. 5-14. 0 (1H, brs).

実施例107

融点:>250℃ 再結晶溶媒:EtOAc-Et₂0

元素分析:C12H18C1N5O2 0.25C4H8O2 として

計算值(%):C, 50.03; H, 3.15; N, 22.79; C1, 11.54.

実測値(%):C,50.00; H,3.20; N,23.07; C1,11.23.

NMR (d_6 -DMSO) δ : 7. 24-7. 41 (3H, m), 8. 20 (1H, d, J=7. 8Hz), 8. 86 (1H, d,

J=3.2Hz), 12.8(1H, s).

融点:237-239 再結晶溶媒:THF-CHC13

元素分析: C19H14C1N5O2 0.075CHCl3 として

計算值(%):C, 58. 93; H, 3. 65; N, 18. 01; CI, 11. 17.

実測値(%):C, 58. 58; H, 3. 76; N, 17. 93; Cl, 11. 25.

NMR (d_6 -DMSO) δ : 4.54(2H, s), 7.02(1H, s), 7.21-7.33(6H, m), 7.52(1H, d,

J=8.4Hz), 8.02(1H, d, J=1.8Hz), 12.6(1H, s).

実施例109

融点:216-218 再結晶溶媒:CHC13

元素分析:C19H14FN502 0.01CHC13 0.25H20 として

計算值(%):C, 61. 87; H. 3. 96; N. 18. 98; F, 5. 15.

実測値(%):C, 61.88; H, 3.89; N, 19.05; F, 5.00.

NMR (d_6 -DMSO) δ : 4.54 (2H, s), 7.11 (1H, s), 7.12-7.18 (2H, m), 7.25-7.31 (2H,

m). 7.33-7.39(2H, m), 7.49-7.52(1H, m), 7.98-8.01(1H, m), 12.4(1H, s).

融点:205-207℃ 再結晶溶媒:Et₂0

元素分析:C20H15CIFN5O2 0.2C4H10O 0.2H2O として

計算值(%):C, 58.07; H, 4.08; N, 16.28; C1, 8.24; F, 4.42.

実測値(%):C. 58. 00; H. 4. 25; N. 16. 22; Cl. 8. 08; F. 4. 28.

NMR (d_6 -DMS0) δ :3.03-3.10(2H, m), 3.37-3.44(2H, m), 7.01(1H, s), 7.11(2H, t, J=8.7Hz), 7.28(1H, dd, J=8.6Hz, 2.1Hz), 7.30-7.36(2H, m), 7.51(1H, d, J=8.6Hz), 8.00(1H, d, J=2.1Hz), 12.5(1H, s).

実施例111

融点:181-182℃ (分解) 再結晶溶媒:MeOH-Et₂0

元素分析: C,,H₁₇C1FN₅O, 0.4CH₄O として

計算值(%):C, 58, 59; H, 4, 27; N, 15, 97; C1, 8, 08; F, 4, 33.

実測値(%):C. 58. 39; H. 4. 29; N. 16. 15; Cl. 8. 36; F. 4. 31.

NMR (d_6 -DMSO) δ :2.07(2H, m), 2.75(2H, t, J=7.2Hz), 3.18(2H, t, J=7.0Hz), 6.98(1H, s), 7.04-7.33(5H, m), 7.49(1H, d, J=8.6Hz), 8.00(1H, s), 12.5(1H, s).

融点:245℃ (分解) 再結晶溶媒:E10Ac-E120

元素分析:C20H16C1N5O3 として

計算值(%):C, 58. 61; H, 3. 93; N, 17. 09; C1, 8. 65.

実測値(%):C, 58.36; H, 4.30; N, 16.75; Cl, 8.15.

NMR (d_6 -DMSO) δ :3.86(3H, s), 4.47(2H, s), 6.83-6.93(3H, m), 7.06(1H, d,

J=8.4Hz), 7.23-7.31(2H, m), 7.51(1H, d, J=8.6Hz), 8.07(1H, s), 12.3(1H, s).

実施例113

融点:225-227℃ (分解) 再結晶溶媒:E10Ac

元素分析:C18H10C13N5O2S 0.2C4H8O2 として

計算值(%):C, 46. 62; H, 2. 41; N, 14. 46; C1, 21. 96; S, 6. 62.

実測値(%):C, 46. 36; H, 2. 66; N, 14. 52; C1, 21. 64; S, 6. 56.

 $NMR (d_6 - DMSO) \quad \delta \quad : 7. \ 06 - 7. \ 10 \ (1H, \ m) \,, \quad 7. \ 32 - 7. \ 70 \ (6H, \ m) \,, \quad 8. \ 15 \ (1H, \ d, \ J = 1. \ 8Hz) \,,$

12.7(1H, s).

融点:250-255℃ (分解) 再結晶溶媒:EtOAc

元素分析:C17H17C1N6O3 0.2H2O として

計算值(%):C, 52. 03; H, 4. 47; N, 21. 42; Cl, 9. 03.

実測値(%):C, 52.07; H, 4.56; N, 21.27; Cl, 8.98.

 $NMR \, (d_6 - DMSO) \quad \delta \quad : 2. \, 69 \, (2H, \quad brm) \, , \quad 3. \, 69 \, (2H, \quad brm) \, , \quad 4. \, 15 \, (2H, \quad s) \, , \quad 7. \, 30 \, (1H, \quad dd, \quad brm) \, , \quad 4. \, 15 \, (2H, \quad s) \, , \quad 7. \, 30 \, (1H, \quad dd, \quad brm) \, , \quad 1. \, 10 \, (2H, \quad brm)$

J=8.7Hz, 2.1Hz), 7.38(1H, brs), 7.56(1H, d, J=8.7Hz), 8.08(1H, d, J=2.1Hz),

12.6(1H, brs).

実施例115

融点:166-169 再結晶溶媒:EtOAc-Et20

元素分析: C19H13C1N4O2 0.5C4H10O 0.2H2O として

計算值(%):C, 62. 21; H, 4. 57; N, 13. 82; Cl, 8. 74.

実測値(%):C, 62. 28; H, 4. 52; N, 13. 80; Cl. 8. 79.

NMR (d_6 -DMSO) δ :: 6. 37 (1H, s), 7. 29-7. 31 (2H, m), 7. 48-7. 73 (5H, m), 8. 22-

8.26(1H, m), 8.48(1H, brs), 12.5(1H, brs), 14.6(1H, brs).

融点:134-138 再結晶溶媒:EtOAc-Hex

元素分析:C20H14ClFN4O2 0.25C4H8O2 0.25H2O として

計算值(%):C, 59.58; H, 3.93; N, 13.23; Cl, 8.37; F, 4.49.

実測値(%):C, 59. 72; H, 3. 83; N, 13. 23; Cl, 8. 43; F, 4. 48.

NMR (d_6 -DMS0) δ :4.51(2H, s). 7.00(1H, s), 7.12-7.18(2H, m), 7.26(1H, dd,

 $J=8.\ 7Hz,\ 1.\ 8Hz)\ ,\ 7.\ 35-7.\ 40\ (2H,\ m)\ ,\ 7.\ 50\ (1H,\ d,\ J=8.\ 7Hz)\ ,\ 7.\ 95\ (1H,\ d,\ J=1.\ 8Hz)\ ,$

8.76(1H, brs), 12.4(1H, brs), 14.7(1H, brs).

実施例117

融点:185-187℃ (分解) 再結晶溶媒:EtOAc

元素分析:C19H13C1N4O4S 0.2H2O として

計算值(%):C, 52. 77; H, 3. 12; N. 12. 96; Cl, 8. 20; S, 7. 41.

実測値(%):C, 52. 81; H, 3. 32; N. 12. 86; C1, 7. 99; S, 7. 33.

NMR (d_6 -DMS0) δ : 7. 22(1H, s). 7. 48(1H, dd, J=8. 7Hz, 2. 1Hz), 7. 60-7. 77(4H,

m), 7.99(1H, d, J=2.1Hz), 8.08-8.14(2H, m), 8.82(1H, brs), 13.6(1H, brs).

融点:272-276 再結晶溶媒:E10Ac

元素分析:C14H10CIN3O2 として

計算值(%):C, 58. 45; H, 3. 50; N. 14. 61; Cl, 12. 32.

実測値(%):C, 58. 40; H, 3. 50; N, 14. 44; Cl, 12. 11.

NMR (d_6 -DMSO) δ : 7.02-7.47 (4H, m), 7.54 (1H, s), 8.14 (1H, d, J=1.8Hz),

8.58(1H, s), 12.3(1H, brs), 13.2(1H, brs).

実施例119

融点:226-227 再結晶溶媒:MeOH

元素分析:C14H9C1N2O2S として

計算值(%):C, 55. 18; H, 2. 98; N, 9. 19; C1, 11. 63; S, 10. 52.

実測値(%):C, 55.07; H, 3.02; N, 9.09; Cl, 11.39; S, 10.64.

 $NMR \, (d_6 - DMSO) \quad \delta \quad : 7. \, 18 \, (1 \, H, \quad s) \, , \quad 7. \, 29 \, (1 \, H, \quad dd. \quad J = 8. \, 7 \, Hz \, , \quad 2. \, 1 \, Hz) \, , \quad 7. \, 54 \, (1 \, H, \quad d. \, Hz) \, , \quad 7. \, 18 \, (1 \, H, \quad d. \, Hz) \, , \quad 10 \, Hz \, , \quad 10$

J=8.7Hz), 8.13(2H, m), 8.17(1H, d, J=2.1Hz), 8.76(1H, s), 12.3(1H, brs).

融点:239℃(分解) 再結晶溶媒:MeOH

元素分析: C19H14C1N5O5S 0.4CH4O 0.5H2O として

計算值(%):C, 48. 37; H, 3. 47; N, 14. 54; Cl, 7. 36; S, 6. 66.

実測値(%):C, 48. 15; H, 3. 26; N, 14. 74; C1, 7. 42; S, 6. 92.

NMR (d_6 -DMS0) δ :3.73(3H, m), 7.20-7.49(3H, m), 7.63(1H, s), 7.69-7.81(2H,

m), 8.15-8.28(2H, m), 9.27(1H, s).

実施例121

融点:256℃ (分解) 再結晶溶媒:EtOAc

元素分析:C20H16CIN5O3 0.3H2O として

計算值(%):C, 57. 85; H, 4. 03; N, 16. 87; C1, 8. 54.

実測値(%):C, 57. 85; H, 4. 16; N, 17. 02; Cl, 8. 25.

NMR (d_6 -DMS0) δ :3.85(3H, s), 5.49(2H, s), 6.87-7.36(6H, m), 7.69(1H, d.

J=8.8Hz), 8.21(1H, d, J=2.0Hz), 8.95(1H, s).

融点:252℃ (分解) 再結晶溶媒:E10Ac

元素分析:C19H14C1N5O2 0.1C4H8O2 として

計算值(%):C, 59.96; H, 3.84; N, 18.02; Cl, 9.12.

実測値(%):C,59.64; H,3.75; N,18.07; C1,8.99.

NMR (d_6 -DMSO) δ :5.89(2H, s), 7.09-7.35(7H, m), 8.29-8.33(1H, m), 9.12(1H, s).

実施例123

融点:244-245℃ 再結晶溶媒:EtOAc

元素分析:C21H16CIN5O4 として

計算值(%):C, 57.61; H, 3.68; N, 16.00; Cl, 8.10.

実測値(%):C, 57. 34; H, 3. 71; N, 15. 80; Cl, 7. 94.

NMR (d_6 -DMSO) δ :3.83(3H, s), 5.67(2H, S), 7.24(1H, s), 7.34(1H, dd, J=8.7Hz.

2. 1Hz), 7. 46(2H, d, J=8. 1Hz), 7. 65(1H, d, J=8. 7Hz), 7. 94(2H, d, J=8. 1Hz).

8. 23 (1H, d, J=2. 1Hz), 9. 12 (1H, s).

融点:282-284℃ 再結晶溶媒:E10Ac

元素分析:C20H14CIN5O4 0.3C4H8O2 0.3H2O として

計算值(%):C, 55. 87; H, 3. 81; N, 15. 22; Cl, 7. 71.

実測値(%):C, 55.87; H, 3.56; N, 14.89; Cl, 8.09.

NMR (d_6 -DMS0) δ :5.60(2H, S), 7.25(1H, dd, J=9.3Hz, 2.1Hz), 7.36(2H, d,

J=8.4Hz), 7.54(1H, d, J=8.7Hz), 7.90(2H, d, J=8.4Hz), 7.86-7.92(1H, m),

8.64(1H, s).

実施例125

融点:290-295℃ (分解) 再結晶溶媒:EtOAc

元素分析:C19H13BrN4O4S として

計算值(%):C. 48. 22: H. 2. 77; N. 11. 96; Br. 16. 88; S. 6. 77.

実測值(%):C, 48. 39; H, 3. 04; N, 11. 96; Br, 16. 75; S. 6. 84.

NMR (d_s -DMSO) δ : 7. 35(1H, s), 7. 60-7. 83(4H, m), 7. 99(1H, d, J=9. 0Hz),

8. 22-8. 25 (2H, m), 8. 42 (1H, d, J=2. 1Hz), 8. 75 (1H, brs), 9. 20 (1H, s).

融点:265-270℃ 再結晶溶媒:EtOAc-THF

元素分析:C19H13C1N4O4S として

計算值(%):C,53.21; H,3.06; N,13.06; Cl,8.27; S.7.48.

実測値(%):C, 53. 25; H, 3. 24; N. 13. 07; Cl, 8. 07; S, 7. 43.

NMR (d₆-DMSO) δ :7.35(1H, s), 7.46-8.29(8H, m), 8.80(1H, brs), 9.19(1H, s).

融点:266-270℃ 再結晶溶媒:EtOAc

元素分析:C19H12BrFN4O4S として

計算值(%):C, 46. 45; H, 2. 46; N, 11. 40; Br, 16. 26; F, 3. 87; S, 6. 53.

実測値(%):C, 46. 36; H, 2. 59; N, 11. 50; Br, 16. 45; F, 3. 86; S, 6. 55:

NMR (d_6 -DMSO) δ :7. 34 (1H, s), 7. 49-7. 65 (3H, m), 8. 01 (1H, d, J=9. 2Hz),

8. 32-8. 44 (3H, m), 8. 55 (1H, brs), 9. 19 (1H, s).

実施例128

融点:293-298 (分解) ℃ 再結晶溶媒:THF

元素分析:CioHioCIFN404S として

計算值(%):C, 51. 07; H, 2. 71; N, 12. 54; C1, 7. 93; F, 4. 25; S, 7. 18.

実測値(%):C, 51.03; H, 2.82; N, 12.67; C1, 7.81; F, 4.30; S, 7.11.

NMR (d_6 -DMSO) δ :7.34(1H, s), 7.47-7.57(3H, m), 8.04(1H, d, J=1.5Hz),

8. 27(1H, d, J=8. 4Hz), 8. 38-8. 43(2H, m), 8. 74(1H, brs), 9. 18(1H, s).

融点:262-263 再結晶溶媒:EtOAc

元素分析:C19H12C1FN4O4S 0.4H20として

計算值(%):C, 50. 26; H, 2, 84; N, 12. 34; C1, 7. 81; F, 4. 18; S, 7. 06.

実測値(%):C, 49. 98; H, 2. 65; N, 12. 07; C1, 8. 04; F, 4. 12; S, 7. 38.

 $NMR(d_6-DMSO) \quad \delta \quad :7.\ 35\,(1H,\quad s)\,,\quad 7.\ 50-7.\ 56\,(3H,\quad m)\,,\quad 8.\ 06\,(1H,\quad d,\quad J=9.\ 0Hz)\,.$

8. 27-8. 38(3H, m), 8. 83(1H, s), 9. 20(1H, s), 14. 7(1H, s)

実施例130

融点:301-302 再結晶溶媒:EtOAc

元素分析:C19H11C13N4O4S として

計算值(%):C, 45. 85; H, 2. 23; N, 11. 26; C1, 21. 37; S, 6. 44.

実測値(%):C, 46. 05; H, 2. 30; N, 11. 13; Cl, 21. 06; S, 6. 41.

 $NMR (d_6 - DMSO) \quad \delta \quad :7. \ 31 \ (1H, \ brs), \quad 7. \ 45 - 7. \ 50 \ (1H, \ m), \quad 7. \ 75 \ (1H, \ d, \ J=8. \ 7Hz),$

7.80-7.95(2H, m), 8.32(1H, d, J=2.4Hz), 8.52(1H, d, J=2.4Hz), 9.12(1H, s).

9.21(1H, brs).

融点:264-265 再結晶溶媒:EtOAc

元素分析:C20H15CIN4O2 として

計算值(%):C, 63.41; H, 3.99; N, 14.79; Cl. 9.36.

実測値(%):C. 63. 52; H. 4. 17; N. 14. 48; Cl. 9. 15.

 $NMR \, (d_6 - DMSO) \quad \delta \quad :5. \, 55 \, (2H, \quad s) \, , \quad 7. \, \, 09 \, (1H, \quad s) \, , \quad 7. \, \, 26 - 7. \, \, 36 \, (6H, \quad m) \, , \quad 7. \, \, 65 \, (1H, \quad d, \quad m) \, , \quad 7. \, \, 65$

J=8.7Hz), 8.23(1H, d, J=2.1Hz), 8.63(1H, brs), 8.98(1H, s)

実施例132

融点:265-268℃ 再結晶溶媒:EtOAc

元素分析: C,oH, BrFN,0, 2. 3H20として

計算值(%):C, 49.77; H, 3.88; N, 11.61; Br, 16.55; F, 3.94.

実測値(%):C, 49.64; H, 3.76; N, 11.70; Br, 16.73; F, 4.02.

NMR (d_6 -DMSO) δ :5.54 (2H, s), 7.09 (1H, s), 7.18 (2H, t, J=9.0Hz), 7.40-7.47 (3H, m), 7.64 (1H, d, J=8.7Hz), 8.39 (1H, d, J=2.1Hz), 8.64 (1H, s), 8.97 (1H, s).

融点:260-263℃ 再結晶溶媒:EtOAc-dioxane

元素分析:C₂₀H₁₄CIFN₄O₂ として

計算值(%):C, 60.54; H, 3.56; N, 14.12; C1, 8.93; F, 4.79.

実測値(%):C, 60. 39; H, 3. 61; N, 14. 25; Cl, 8. 87; F, 4. 80.

NMR (d_6 -DMSO) δ :5.54(2H, s), 7.10(1H, s), 7.16-7.26(2H, m), 7.30(1H, dd,

 $\label{eq:J=8.7Hz, 1.8Hz} J=8.\ 7Hz,\ 1.\ 8Hz)\,,\ 7.\ 43-7.\ 50\,(2H,\ m)\,,\ 7.\ 82\,(1H,\ d,\ J=1.\ 8Hz)\,,\ 8.\ 22\,(1H,\ d,\ J=8.\ 7Hz)\,,$

8.64(1H, s), 8.95(1H, s).

実施例134

融点:236-239 再結晶溶媒:EtOAc

元素分析:C19H13C1N4O4S 0.25C4H8O2 として

計算值(%):C,53.28; H,3.35; N,12.43; Cl,7.86; S,7.11.

実測値(%):C, 53. 43; H, 3. 43; N, 12. 23; C1, 8. 00; S, 7. 38.

NMR (d_6 -DMSO) δ :7. 33(1H, s), 7. 51(1H, dd, J=9. 0Hz, 2. 4Hz), 7. 65-7. 71(2H, m), 7. 76-7. 81(1H, m), 8. 04(1H, d, J=9. 0Hz), 8. 18-8. 21(2H, m), 8. 25(1H, d, J=2. 4Hz), 8. 66(1H, brs), 9. 19(1H, s).

融点:219-212 再結晶溶媒:EtOAc-Et₂0

元素分析:C20H14C1N3O4S 0.2C4H8O2 0.2H2O として

計算值(%):C. 55. 63; H. 3. 59; N. 9. 36; C1, 7. 89; S. 7. 14.

実測値(%):C, 55. 62; H, 3. 37; N, 9. 25; C1, 7. 88; S, 7. 22.

NMR (d_6 -DMS0) δ : 6.95(1H, s), 7.22(1H, s), 7.49(1H, dd, J=9.0Hz, 2.1Hz).

7. 65-7. 70 (2H, m), 7. 76-7. 82 (1H, m), 7. 93-8. 05 (2H, m), 8. 12-8. 25 (3H, m),

9.13(1H, s), 13.6(1H, brs).

実施例136

融点:191-194 再結晶溶媒:MeOH

元素分析:C₂₀H₁₃C1N₂O₄S₂として

計算值(%):C, 53. 99; H, 2. 95; N, 6. 30; C1, 7. 97; S, 14. 41.

実測値(%):C, 50. 89; H, 2. 80; N, 6. 39; Cl, 7. 51; S, 14. 24.

NMR (d_6 -DMSO) δ : 7.15(1H, s), 7.40(1H, dd, J=8.7Hz, 2.1Hz), 7.51-7.56(2H,

m), 7.63-7.68(1H, m), 7.86(1H, d, J=3.3Hz), 7.95(1H, d, J=8.7Hz), 8.00-

8. 04(2H, m), 8. 25(1H, d, J=3.3Hz), 8. 29(1H, d, J=2.1Hz), 8. 51(1H, s).

WO 99/50245 PCT/JP99/01547

試験例

本発明化合物のインテグラーゼ阻害作用を以下に示すアッセイ法に基づき調べた。

(1) DNA溶液の調製

アマシャムファルマシア社により合成された以下の各DNAを、KTE バッファー液(組成:100mM KCl, 1mM EDTA, 10mM Tris-塩酸 (pH 7.6)) に溶解させることにより、基質 DNA 溶液 (2pmol/ml) およびターゲット DNA 溶液 (5pmol/ml)を調製した。各溶液は、一旦煮沸後、ゆるやかに温度を下げて相補鎖同士をアニーリングさせてから用いた。

(基質 DNA 配列)

- 5'- Biotin-ACC CTT TTA GTC AGT GTG GAA AAT CTC TAG CAG T-3'
- 3'- GAA AAT CAG TCA CAC CTT TTA GAG ATC GTC A-5'

(ターゲット DNA 配列)

- 5'- TGA CCA AGG GCT AAT TCA CT-Dig-3'
- 3'-Dig-ACT GGT TCC CGA TTA AGT GA -5'

(2) 阻害率(IC50値)の測定

Streptavidin (Vector Laboratories 社製) を 0.1M 炭酸バッファー液(組成:90mM Na₂CO₃, 10mM NaHCO₃) に溶かし、濃度を 40 μ g/ml にした。この溶液、各 50 μ l をイムノプレート (NUNC 社製) のウエルに加え、4℃で一夜静置、吸着させる。次に各ウエルを燐酸バッファー (組成: 13.7mM NaCl, 0.27mM KCl, 0.43mM Na₂HPO₄, 0.14mM KH₂PO₄) で 2 回洗浄後、1% スキムミルクを含む燐酸バッファー 300 μ l を加え、3 0 分間ブロッキングした。さらに各ウエルを燐酸バッファーで 2 回洗浄後、基質 DNA 溶液(2pmol/ml) 50 μ l を加え、振盪下、室温で 30 分間吸着させた後、燐酸バッファーで 2 回、次いで蒸留水で 1 回洗浄した。

次に上記方法で調製した各ウエルに、バッファー(組成:150mM MOPS (pH7. 2). 75mM MnCl₂、50mM 2-mercaptoethanol、25% glycerol、500 μ g/ml bovine serum albumin -fraction V) 12 μ l、ターゲット DNA(5pmol/ml)1 μ l および蒸留水 32 μ から調製した反応溶液 4 5 μ l を加えた。さらに各ウエルに被検化合物の

WO 99/50245 PCT/JP99/01547

DMSO 溶液 6 μ 1 を加え、ポジティブコントロール (PC) としてのウエルには、DMSO 6 μ 1 を加える。次にインテグラーゼ溶液(30 pmol) 9 μ 1 を加え、良く混合した。ネガティブコントロール (NC) としてのウエルには、希釈液(組成: 20mM MOPS (pH7. 2)、400mM potassium glutamete、1mM EDTA、0.1% NP-40、20% glycerol、1mM DTT、4M urea) 9 μ 1 を加えた。

各プレートを 30 ℃で1時間インキュベート後、反応液を捨て、燐酸パッファーで2回洗浄した。次にアルカリフォスファターゼ標識した抗ジゴキシゲニン抗体(ヒツジFab フラグメント:ベーリンガー社製)を 100 μ 1 加え、 30 ℃で1時間結合させた後、0.05 % Tween20 を含む燐酸パッファーで2回、燐酸パッファーで1回、順次洗浄した。次に、アルカリフォスファターゼ呈色パッファー (組成:10mMパラニトロフェニルホスフェート (Vector Laboratories 社製). 5mM MgCl、100mM NaCl、100mM Tris-塩酸 (pH 9.5))を 150 μ 1 加えて 30 ℃で2時間反応させ、1 N NaOH 溶液 50 μ 1 を加え反応を止めた後、各ウエルの吸光度(0D405nm)を測定し、以下の計算式に従い阻害率を求めた。

阻害率 (%) =100[1-{(C abs. - NC abs.) / (PC abs. - NC abs.)}]

Cabs.: 化合物のウエルの吸光度

NC abs.: NC の吸光度

PC abs.: PC の吸光度

阻害率50%に相当する化合物濃度(IC50)を以下に示す。

(表9)

実施例番号	IC50(μ g/ml)
1(2)	0.31
23(2)	0.13
67(2)	0.55
7 1	1. 49
7 2	0.48
8 0	3. 30
8 1	3.60

(注) 実施例番号欄において、例えば"1(2)"は、実施例1の工程(2)で得られた化合物を意味する。

請求の範囲

1. 式:

$$R^5$$
 R^6
 R^1
 R^2
 R^3
 R^2
 R^3
 (式中、

R¹は水素、低級アルキル、シクロアルキル低級アルキル、低級アルキルスルホニル、低級アルキルカルボニル、置換基を有していてもよいアリール、置換基を有していてもよいアリールスルホニル、置換基を有していてもよいアリールスルホニル、置換基を有していてもよいヘテロアリール、置換基を有していてもよいヘテロアリール、置換基を有していてもよいヘテロアリールスルホニル、低級アルコキシカルボニル、置換基を有していてもよいスルファモイル、又は置換基を有していてもよいカルバモイル;

R²は水素、低級アルキル、低級アルキルカルボニル、置換基を有していてもよいアリール、置換基を有していてもよいアラルキル、置換基を有していてもよいへテロアリール、置換基を有していてもよいへテロアリール、置換基を有していてもよいアリールチオ、置換基を有していてもよいアリールチオ、置換基を有していてもよいアリールスルフィニル、置換基を有していてもよいアリールスルホニル、置換基を有していてもよいへテロサイクリル低級アルキルまたは置換基を有していてもよいへテロサイクリルスルホニル;

R³、R⁴、R⁵及びR⁶はそれぞれ独立して、水素、ハロゲン、トリハロゲン 化低級アルキル、ヒドロキシ、低級アルコキシ、ニトロ、アミノ、エステル化さ れていてもよいカルボキシル、置換基を有していてもよいアラルキルオキシ、又 は置換基を有していてもよいアリールスルホニルオキシ; Xはヒドロキシ又は置換基を有していてもよいアミノ;

YはCOOR (Rは水素またはエステル残基)、置換基を有していてもよいアリール、又は置換基を有していてもよいヘテロアリールである。

但し、R¹、R²、R³、R⁵及びR⁶が水素;R⁴が水素、メトキシ又はクロル; Xがヒドロキシ;かつYがCOOC₂H₅である場合を除く。)

で示される化合物もしくはその互変異性体、又はそれらの製薬的に許容される塩もしくは水和物。

- 2. YがCOOR (式中、Rは前記と同意義である)の場合、R¹及びR²が同時に水素ではない、請求項1記載の化合物。
- 3. XがヒドロキシかつYがCOOR(式中、Rは前記と同意義である)の場合、 R^1 及び R^2 が同時に水素ではない、請求項1記載の化合物。
- 4. R¹が水素又は置換基を有していてもよいアリールスルホニルである請求 項1~3のいずれかに記載の化合物。
- 5. R^2 が水素、置換基を有していてもよいアリール、又は置換基を有していてもよいアラルキルである請求項 $1\sim3$ のいずれかに記載の化合物。
- 6. R^3 、 R^4 、 R^5 及び R^6 がそれぞれ独立して水素又はハロゲンである、請求項 $1\sim3$ のいずれかに記載の化合物。
- 7. R³、R⁵及びR⁶がすべて水素である、請求項 6記載の化合物。
- 8. Xがヒドロキシである、請求項1~3のいずれかに記載の化合物。
- 9. Yが置換基を有していてもよいヘテロアリールである、請求項1記載の化合物。
- 10. 該ヘテロアリールが、環内に少なくとも1個のN原子を有する5又は6員環である、請求項9記載の化合物。
- 11. 該ヘテロアリールが、テトラゾリル、トリアゾリル又はイミダゾリルである、請求項10記載の化合物。
- 12. R¹が水素又は置換基を有していてもよいアリールスルホニル; R²が水素、 置換基を有していてもよいアリール又は置換基を有していてもよいアラルキル; R³、R⁴、R⁵及びR⁶がそれぞれ独立して水素又はハロゲン; Xがヒドロキシ

WO 99/50245 PCT/JP99/01547

である、請求項1~3のいずれかに記載の化合物。

13. R¹が水素又は置換基を有していてもよいアリールスルホニル; R²が水素、置換基を有していてもよいアリール又は置換基を有していてもよいアラルキル; R³、R⁴、R⁵及びR⁶がそれぞれ独立して水素又はハロゲン; Xがヒドロキシ; Yが置換基を有していてもよいヘテロアリールである、請求項1記載の化合物。 14. R¹が水素又はハロゲンにより置換されていてもよいフェニルスルホニル; R²が水素、ハロゲンにより置換されていてもよいフェニル又はハロゲンにより置換されていてもよいフェニル又はハロゲンにより置換されていてもよいフェニルメチル; R⁴がハロゲン; R³、R⁶及びR⁶が共に水素; Xがヒドロキシ; Yがテトラゾリルである、請求項13記載の化合物。

- 15. C(O)CH = C(X)Y(式中、X及びYは前記と同意義である。)で示される基をその3位に有することを特徴とするインドール誘導体を、有効成分として含有する医薬組成物。
- 16. 請求項1~14のいずれかに記載の化合物を有効成分として含有する医薬組成物。
- 17. 請求項1~14のいずれかに記載の化合物を含有するインテグラーゼ阻害剤。
- 18. 請求項1~14のいずれかに記載の化合物を含有する抗ウイルス薬。
- 19. 請求項1~14のいずれかに記載の化合物を含有する抗HIV薬。
- 20.請求項17記載のインテグラーゼ阻害剤に、逆転写酵素阻害剤及び/又は プロテアーゼ阻害剤を組み合わせてなる、抗HIV用合剤。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP99/01547

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D209/12, 20, 22, 401/04 A61K31/40, 41, 415, 44, 53!	5				
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07D209/12, 20, 22, 401/04, 403/06, 409/06, 14, 417/06, A61K31/40, 41, 415, 44, 535					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CA, REGISTRY (STN)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category* Citation of document, with indication, where app					
A JP, 5-208910, A (Merck & Co. 20 August, 1993 (20. 08. 93), Claims & EP, 530907, A1 & WO, 93/05020, A1 & AU, 92 & CA, 2077283, A & ZA, 9206 & NZ, 244131, A	222162, A				
Further documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family Date of mailing of the international search report 11 May, 1999 (11.05.99)				
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer				
Dapanese racent Office	Telephone No.				

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁶ C07D209/12, 20, 22, 401/04, A61K31/40, 41, 415, 44, 535	403/06, 409/06, 14, 417/06,				
B. 調査を行った分野					
調査を行った最小限資料(国際特許分類(IPC))					
Int.Cl ⁶ C07D209/12, 20, 22, 401/04, 403/06, 409/06, 14, 417/06, A61K31/40, 41, 415, 44, 535					
最小限資料以外の資料で調査を行った分野に含まれるもの					
国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CA, REGISTRY (STN)					
C. 関連すると認められる文献					
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連すると	関連する きは、その関連する箇所の表示 請求の範囲の番号				
A JP, 5-208910, A (メルクコーポレーテッド), 20. 8月. 13), 請求の範囲&EP, 53090 WO, 93/05020, A1&AUCA, 2077283, A&ZA, SNZ, 244131, A	1993 (20. 08. 9)7, A1& J, 9222162, A&				
C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。				
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献				
国際調査を完了した日 22.04.99	国際調査報告の発送日 11.05.99				
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 4P 9159 冨永 保 電話番号 03-3581-1101 内線 6606				