

Patent claims

1. A method for detecting the beginning of combustion in
an internal combustion engine (1) comprising several
5 cylinders (2, 3, 4, 5) by means of a rotation speed
signal determined for a shaft (6) of the internal
combustion engine (1), in which
 - at least one segment signal (SS), whose signal
length corresponds to an integral full rotation
10 of the shaft (6), is extracted from the rotation
speed signal, so that in the rotation angle range
represented by the signal length each cylinder
(2, 3, 4, 5) ignites one time,
 - a cylinder signal (ZS1, ZS2, ZS3, ZS4), which
15 substantially reproduces the operational state in
one of the cylinders (2, 3, 4, 5), is generated
from the segment signal (SS),
 - the cylinder signal (ZS1, ZS2, ZS3, ZS4) is
20 transformed into a cylinder frequency signal (FS
1, FS2, FS3, FS4) in an angle frequency range and
 - a signal information indicating the beginning of
25 combustion in the associated cylinder (2, 3, 4,
5) is extracted from the cylinder frequency
signal (FS 1, FS2, FS3, FS4) at at least one
predefined angle frequency.
2. A method according to claim 1, **characterized in that**
30 the cylinder signal (ZS1, ZS2, ZS3, ZS4) is generated
by means of extraction of a partial signal from the
segment signal (SS), the partial signal detecting the
rotation angle range, within which the concerned
cylinder (2, 3, 4, 5) ignites.
3. A method according to claim 1, **characterized in that**
35 the operational state in the cylinder (2), for which
the beginning of combustion is to be detected, is

the beginning of combustion is to be detected, is
adjusted and in that the segment signal (SS) resulting
from adjustment is used as a whole as the cylinder
signal (ZS1) which is significant for this cylinder
5 (2).

4. A method according to one of the claims 1 to 3,
10 **characterized in that** the cylinder frequency signal
(FS1, FS2, FS3, FS4) is generated by means of a
discrete Hartley-Transformation (DHT) or a discrete
Fourier-Transformation (DFT) or by means of digital
filtering.
- 15 5. A method according to one of the preceding claims,
characterized in that at least two successive segment
signals (SS) are determined arithmetically.
- 20 6. A method according to one of the preceding claims,
characterized in that for generating the rotation
speed signal a transmitter wheel (7) is used and that
the inaccuracies in the segment signal (SS) resulting
from transmitter wheel errors are at least largely
eliminated.
25
- 30 7. A method according to one of the preceding claims,
characterized in that by means of a digital signal
processing an improved segment signal (SS*), in
particular with a higher scanning rate, is generated.
- 35 8. A method according to claim 7, **characterized in that**
the segment signal (SS) is subject to an interpolation
method, in particular to a Lagrange- or a sinc-
interpolation.
9. A method according to claim 7, **characterized in that**
the segment signal (SS) is subject to a frequency

transformation, in particular to a discrete Hartley-
Transformation or a discrete Fourier-Transformation.

5 10. A method according to one of the preceding claims,
 characterized in that the signal information including
 the beginning of combustion is used for regulating the
 beginning of combustion.