

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, P_g =	30.00 psf	
Sloped Roof Snow Load, $P_s =$	14.43 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 30.77$ psf Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Ct+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 (Pressure) 2.000	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.200	applica analy nom are carract.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.06	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>83.49</u>	6623.60	k
Compressive Load =	<u>2601.18</u>	4904.02	k
Lateral Load =	<u>332.11</u>	4632.49	k
Moment (Weak Axis) =	0.62	<u>0.18</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 162682.4 in-lbs Resisting Force Required = 2464.89 lbs A minimum 132in long x 32in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4108.14 lbs to resist overturning. Minimum Width = Weight Provided = 6380.00 lbs Sliding Force = 1068.71 lbs Use a 132in long x 32in wide x 18in tall Friction = 0.4 Weight Required = 2671.78 lbs ballast foundation to resist sliding. Resisting Weight = 6380.00 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1068.71 lbs Cohesion = 130 psf Use a 132in long x 32in wide x 18in tall 29.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3190.00 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

 $f'_c =$ Length =

 Bearing Pressure

 Ballast Width

 32 in
 33 in
 34 in
 35 in

 Pftg = (145 pcf)(11 ft)(1.5 ft)(2.67 ft) =
 6380 lbs
 6579 lbs
 6779 lbs
 6978 lbs

ASD LC		1.0D -	+ 1.0S			1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W				
Width	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in
FA	891 lbs	891 lbs	891 lbs	891 lbs	1020 lbs	1020 lbs	1020 lbs	1020 lbs	1322 lbs	1322 lbs	1322 lbs	1322 lbs	63 lbs	63 lbs	63 lbs	63 lbs
FB	793 lbs	793 lbs	793 lbs	793 lbs	2139 lbs	2139 lbs	2139 lbs	2139 lbs	2100 lbs	2100 lbs	2100 lbs	2100 lbs	-3050 lbs	-3050 lbs	-3050 lbs	-3050 lbs
F_V	134 lbs	134 lbs	134 lbs	134 lbs	1940 lbs	1940 lbs	1940 lbs	1940 lbs	1540 lbs	1540 lbs	1540 lbs	1540 lbs	-2137 lbs	-2137 lbs	-2137 lbs	-2137 lbs
P _{total}	8064 lbs	8263 lbs	8462 lbs	8662 lbs	9539 lbs	9739 lbs	9938 lbs	10137 lbs	9802 lbs	10002 lbs	10201 lbs	10400 lbs	840 lbs	960 lbs	1080 lbs	1199 lbs
M	2654 lbs-ft	2654 lbs-ft	2654 lbs-ft	2654 lbs-ft	2820 lbs-ft	2820 lbs-ft	2820 lbs-ft	2820 lbs-ft	3777 lbs-ft	3777 lbs-ft	3777 lbs-ft	3777 lbs-ft	4269 lbs-ft	4269 lbs-ft	4269 lbs-ft	4269 lbs-ft
е	0.33 ft	0.32 ft	0.31 ft	0.31 ft	0.30 ft	0.29 ft	0.28 ft	0.28 ft	0.39 ft	0.38 ft	0.37 ft	0.36 ft	5.08 ft	4.45 ft	3.95 ft	3.56 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft								
f _{min}	225.5 psf	225.3 psf	225.1 psf	224.8 psf	272.8 psf	271.1 psf	269.5 psf	268.0 psf	263.9 psf	262.5 psf	261.2 psf	260.0 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	324.3 psf	321.0 psf	318.0 psf	315.1 psf	377.6 psf	372.8 psf	368.2 psf	363.9 psf	404.4 psf	398.7 psf	393.4 psf	388.4 psf	500.7 psf	221.1 psf	164.4 psf	141.3 psf

Maximum Bearing Pressure = 501 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_0 = 1423.2 \text{ ft-lbs}$

Resisting Force Required = 1067.43 lbs S.F. = 1.67

Weight Required = 1779.05 lbs Minimum Width = 32 in in Weight Provided = 6380.00 lbs A minimum 132in long x 32in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		32 in			32 in			32 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	280 lbs	519 lbs	160 lbs	597 lbs	1443 lbs	506 lbs	124 lbs	152 lbs	5 lbs		
F _V	181 lbs	177 lbs	184 lbs	133 lbs	132 lbs	142 lbs	182 lbs	178 lbs	183 lbs		
P _{total}	8178 lbs	8418 lbs	8059 lbs	8116 lbs	8962 lbs	8025 lbs	2433 lbs	2461 lbs	2314 lbs		
М	674 lbs-ft	664 lbs-ft	685 lbs-ft	501 lbs-ft	500 lbs-ft	529 lbs-ft	674 lbs-ft	664 lbs-ft	679 lbs-ft		
е	0.08 ft	0.08 ft	0.08 ft	0.06 ft	0.06 ft	0.07 ft	0.28 ft	0.27 ft	0.29 ft		
L/6	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft		
f _{min}	227.1 psf	236.0 psf	222.2 psf	238.3 psf	267.1 psf	233.0 psf	31.2 psf	33.0 psf	26.9 psf		
f _{max}	330.5 psf	337.9 psf	327.2 psf	315.1 psf	343.9 psf	314.2 psf	134.7 psf	134.8 psf	130.9 psf		

Maximum Bearing Pressure = 344 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 32in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	2.001 k 12.808 k 7.421 k 27%	Rear Strut Maximum Axial Load = 4.371 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 59%
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	2.910 k 12.808 k 7.421 k <u>39%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
		Struts under compression are shown to demor transfer from the girder. Single M12 bolts are end of the strut and are subjected to double sh

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 53.78 in Allowable Story Drift for All Other Structures, Δ = { $0.020h_{sx}$ 1.076 in Max Drift, Δ_{MAX} = 0.534 in $0.534 \le 1.076$, OK.

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 99 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 273.88 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\varphi}\mathsf{F_L} = & \mathsf{\varphi}\mathsf{b}[\mathsf{Bc-1.6Dc^*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 99 \\ \mathsf{J} &= 0.432 \\ &= 174.171 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \varphi \mathsf{F_L} &= \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_I} &= 29.1 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 28.0 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_1 = 1.17 \phi y Fcy$$

38.9 ksi

φF_L= 3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

 $lx = 897074 \text{ mm}^4$

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

h/t = 37.0588

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 446476 \text{ mm}^4$$

$$V = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

 $M_{max}St =$

Sx =

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi c k 2^* \sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 =$ 29.2

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$
$$S1 = 1.1$$
$$S2 = C_t$$
$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

 $\phi F_L =$

3.4.16.1 N/A for Weak Direction

16.2

 $\frac{\theta_y}{\theta_b} 1.3 Fcy$

3.4.18

h/t =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

43.2 ksi

 $lx = 984962 \text{ mm}^4$

29.4 ksi

2.366 in⁴

1.375 in³

3.363 k-ft

43.717 mm

$$\begin{array}{rcl} S1 = & 36.9 \\ m = & 0.65 \\ C_0 = & 40 \\ Cc = & 40 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 33.3 \text{ ksi} \\ y = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{\text{max}} Wk = & 3.904 \text{ k-ft} \\ \end{array}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_L =$

 $\phi F_L St =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²
1.88 in²

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_I = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$
 0.672 in^4
 $V = 27.5 \text{ mm}$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

$$M_{max}St = 1.460 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 27.5 \\ Cc = & 27.5 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ \\ M_{max}Wk = & 1.460 \text{ k-ft} \\ \end{array}$$

24.5

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

Weak Axis:

$$L_b = 78.03$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Bc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{b_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(Bt - 1.17 \frac{\theta_y}{\theta_h} Fcy\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F cy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ lx = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ y = & 27.5 \text{ mm} \\ Sx = & 0.621 \text{ in}^3 \\ M_{max} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ l y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ S y = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.80509 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83271 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.94465 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{b}/\textbf{t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phi}\textbf{F}_{L} = & \textbf{\phi}\textbf{c}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi}\textbf{F}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b}/\textbf{t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phi}\textbf{F}_{L} = & \textbf{\phi}\textbf{c}[\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phi}\textbf{F}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{\phiF}_L &= & \text{\phiyFcy} \\ \text{\phiF}_L &= & 33.25 \text{ ksi} \\ \text{\phiF}_L &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ &= & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV Model Name

: Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeSurfa	ace(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Y	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-102.983	-102.983	0	0
2	M14	V	-102.983	-102.983	0	0
3	M15	V	-171.639	-171.639	0	0
4	M16	V	-171.639	-171.639	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	231.713	231.713	0	0
2	M14	٧	180.221	180.221	0	0
3	M15	V	102.983	102.983	0	0
4	M16	У	102.983	102.983	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Z	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Z	6.693	6.693	0	0
5	M13	Z	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations

	Description		P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65.				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												1

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	964.362	2	1188.5	2	.433	1	.001	1	0	1	0	1
2		min	-1142.316	3	-1589.91	3	-20.298	5	135	4	0	1	0	1
3	N7	max	.033	3	801.409	1	644	12	001	12	0	1	0	1
4		min	191	2	-64.223	5	-255.472	4	476	4	0	1	0	1
5	N15	max	.205	3	2000.905	1	0	1	0	12	0	1	0	1
6		min	-1.893	2	80	15	-243.871	4	46	4	0	1	0	1
7	N16	max	3271.603	2	3772.326	2	0	11	0	12	0	1	0	1
8		min	-3563.452	3	-5095.074	3	-20.462	5	136	4	0	1	0	1
9	N23	max	.033	3	801.409	1	7.994	1	.015	1	0	1	0	1
10		min	191	2	62.666	12	-248.857	5	465	4	0	1	0	1
11	N24	max	964.362	2	1188.5	2	041	12	0	12	0	1	0	1
12		min	-1142.316	3	-1589.91	3	-20.868	5	136	4	0	1	0	1
13	Totals:	max	5198.051	2	9441.736	2	0	12						
14		min	-5847.813	3	-7886.548	3	-806.138	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	71.335	1	383.145	2	-9.522	12	0	3	.17	1	0	4
2			min	6.339	12	-704.36	3	-145.284	1	013	2	.015	12	0	3
3		2	max	71.335	1	267.472	2	-7.644	12	0	3	.105	4	.55	3
4			min	6.339	12	-495.98	3	-111.32	1	013	2	.005	10	298	2
5		3	max	71.335	1	151.799	2	-5.766	12	0	3	.06	5	.909	3
6			min	6.339	12	-287.6	3	-77.357	1	013	2	034	1	49	2
7		4	max	71.335	1	36.126	2	-3.887	12	0	3	.032	5	1.077	3
8			min	6.339	12	-79.22	3	-43.394	1	013	2	089	1	576	2
9		5	max	71.335	1	129.16	3	478	10	0	3	.006	5	1.055	3
10			min	6.339	12	-79.547	2	-29.068	4	013	2	114	1	557	2
11		6	max	71.335	1	337.539	3	24.533	1	0	3	007	12	.841	3
12			min	1.341	15	-195.22	2	-23.272	5	013	2	107	1	431	2
13		7	max	71.335	1	545.919	3	58.496	1	0	3	006	12	.436	3
14			min	-7.177	5	-310.894	2	-20.366	5	013	2	069	1	199	2
15		8	max	71.335	1	754.299	3	92.459	1	0	3	.004	2	.139	2
16			min	-16.587	5	-426.567	2	-17.46	5	013	2	055	4	16	3
17		9	max	71.335	1	962.679	3	126.423	1	0	3	.101	1	.583	2
18			min	-25.997	5	-542.24	2	-14.554	5	013	2	068	5	947	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

20	LC
11	2
12	3
23	2
24	3
25	2
Min G.339 12 -545.919 3 -58.496 1 0 3 069 1 199 1 27 14 max 71.335 1 195.22 2 4.33 3 3 0.13 2 001 15 8.41 1 1 1 1 1 1 1 1 1	3
14 max	3
28	2
15 max 71.335 1 79.547 2 9.431 1 .013 2 .006 12 1.055 30 min .317 15 .129.16 3 .24.407 5 0 3 .114 1 .557 31 32 min .8.733 5 .36.126 2 .21.501 5 0 3 .089 1 .576 33 34 min .8.733 5 .36.126 2 .21.501 5 0 3 .089 1 .576 33 34 min .18.142 5 .151.799 2 .18.595 5 0 3 .074 4 .49 35 36 371.335 1 .495.98 3 111.32 1 .013 2 .002 3 .909 34 min .27.552 5 .267.472 2 .15.689 5 0 3 .074 4 .49 .35 36 min .27.552 5 .267.472 2 .15.689 5 0 3 .081 5 .298 37 38 min .36.962 5 .383.145 2 .12.783 5 0 3 .081 5 .298 39 M14 1 max 42.57 4 425.459 2 .9.814 12 .01 3 .236 4 0 .40 min 2.862 12 .572.517 3 .150.547 1 .011 2 .017 12 0 .41 2 max 37.317 1 .309.786 2 .7.936 12 .01 3 .052 5 .754 .44 .2862 12 .250.16 3 .82.62 1 .011 2 .009 10 .337 .337 43 3 max 37.317 1 .194.113 2 .6.058 12 .01 3 .092 5 .754 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .45 .45 .44 .45 .45 .44 .45 .45 .44 .45 .45 .45 .44 .45 .45 .44 .45 .45 .44 .45	3
Min Min	2
31	3 2
Min	3
33 17 max 71.335 1 287.6 3 77.357 1 .013 2 .002 3 .909 3 34 min -18.142 5 -151.799 2 -18.595 5 0 3 074 4 49 3 35 18 max 71.335 1 495.98 3 111.32 1 .013 2 .052 1 .55 36 36 min -27.552 5 -267.472 2 -15.689 5 0 3 081 5 298 3 37 19 max 71.335 1 704.36 3 145.284 1 .013 2 .17 1 0 2 38 min -36.962 5 -383.145 2 -12.783 5 0 3 094 5 0 39 M14 1 max 425.74 4 <td>2</td>	2
34 min -18.142 5 -151.799 2 -18.595 5 0 3 074 4 49 2 35 18 max 71.335 1 495.98 3 111.32 1 .013 2 .052 1 .55 36 36 min -27.552 5 -267.472 2 -15.689 5 0 3 081 5 298 3 37 19 max 71.335 1 704.36 3 145.284 1 .013 2 .17 1 0 . 38 min -36.962 5 -383.145 2 -12.783 5 0 3 094 5 0 39 M14 1 max 42.57 4 425.459 2 -9.814 12 .01 3 .236 4 0 41 2 max 37.317 1 309.786<	3
35	2
36 min -27.552 5 -267.472 2 -15.689 5 0 3 081 5 298 2 37 19 max 71.335 1 704.36 3 145.284 1 .013 2 .17 1 0 2 38 min -36.962 5 -383.145 2 -12.783 5 0 3 094 5 0 3 39 M14 1 max 42.57 4 425.459 2 -9.814 12 .01 3 .236 4 0 4 40 min 2.862 12 -572.517 3 -150.547 1 011 2 .017 12 0 3 41 2 max 37.317 1 309.786 2 -7.936 12 .01 3 .158 4 .451 .4451 .4451 .4451 .4451 .4451	3
37 19 max 71.335 1 704.36 3 145.284 1 .013 2 .17 1 0 2 38 min -36.962 5 -383.145 2 -12.783 5 0 3094 5 0 39 M14 1 max 42.57 4 425.459 2 -9.814 12 .01 3 .236 4 0 40 min 2.862 12 -572.517 3 -150.547 1011 2 .017 12 0 41 2 max 37.317 1 309.786 2 -7.936 12 .01 3 .158 4 .451 42 min 2.862 12 -411.338 3 -116.583 1011 2 .009 10337 43 3 max 37.317 1 194.113 2 -6.058 12 .01 3 .092 5 .754 44 min 2.862 12 -250.16 3 -82.62 1011 2015 1568 45 4 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 46 min 2.862 12 -88.981 3 -57.013 4 .011 2075 1693 47 5 max 37.317 1 233.	2
38 min -36.962 5 -383.145 2 -12.783 5 0 3 094 5 0 39 M14 1 max 42.57 4 425.459 2 -9.814 12 .01 3 .236 4 0 4 40 min 2.862 12 -572.517 3 -150.547 1 011 2 .017 12 0 3 41 2 max 37.317 1 309.786 2 -7.936 12 .01 3 .158 4 .451 3 42 min 2.862 12 -411.338 3 -116.583 1 011 2 .009 10 337 3 43 3 max 37.317 1 194.113 2 -6.058 12 .01 3 .092 5 .754 3 45 4 max 37.317	2
39 M14 1 max 42.57 4 425.459 2 -9.814 12 .01 3 .236 4 0 4 40 min 2.862 12 -572.517 3 -150.547 1 -011 2 .017 12 0 3 41 2 max 37.317 1 309.786 2 -7.936 12 .01 3 .158 4 .451 3 42 min 2.862 12 -411.338 3 -116.583 1 011 2 .009 10 337 3 43 3 max 37.317 1 194.113 2 -6.058 12 .01 3 .092 5 .754 3 44 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 3 45 4 max 37.317<	3
40 min 2.862 12 -572.517 3 -150.547 1 011 2 .017 12 0 3 41 2 max 37.317 1 309.786 2 -7.936 12 .01 3 .158 4 .451 3 42 min 2.862 12 -411.338 3 -116.583 1 011 2 .009 10 337 3 43 3 max 37.317 1 194.113 2 -6.058 12 .01 3 .092 5 .754 3 44 min 2.862 12 -250.16 3 -82.62 1 011 2 015 1 568 3 45 4 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 3 46 min 2.862 12	4
41 2 max 37.317 1 309.786 2 -7.936 12 .01 3 .158 4 .451 ; 42 min 2.862 12 -411.338 3 -116.583 1 011 2 .009 10 337 ; 43 3 max 37.317 1 194.113 2 -6.058 12 .01 3 .092 5 .754 ; 44 min 2.862 12 -250.16 3 -82.62 1 011 2 015 1 568 ; 45 4 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 ; 46 min 2.862 12 -88.981 3 -57.013 4 011 2 075 1 693 ; 47 5 max 37.317 1 72.198 3 -1.25 10 .01 3 .011 5	3
42 min 2.862 12 -411.338 3 -116.583 1 011 2 .009 10 337 1 43 3 max 37.317 1 194.113 2 -6.058 12 .01 3 .092 5 .754 1 44 min 2.862 12 -250.16 3 -82.62 1 011 2 015 1 568 1 45 4 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 3 46 min 2.862 12 -88.981 3 -57.013 4 011 2 075 1 693 3 47 5 max 37.317 1 72.198 3 -1.25 10 .01 3 .011 5 .917 3 48 min -4.527 5	3
43 3 max 37.317 1 194.113 2 -6.058 12 .01 3 .092 5 .754 3 44 min 2.862 12 -250.16 3 -82.62 1 011 2 015 1 568 3 45 4 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 3 46 min 2.862 12 -88.981 3 -57.013 4 011 2 075 1 693 3 47 5 max 37.317 1 72.198 3 -1.25 10 .01 3 .011 5 .917 3 48 min -4.527 5 -37.234 2 -45.555 4 011 2 104 1 712 3 49 6 max 37.317 1 233.377 3 19.27 1 .01 3 006 12 .7	2
44 min 2.862 12 -250.16 3 -82.62 1 011 2 015 1 568 2 45 4 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 3 46 min 2.862 12 -88.981 3 -57.013 4 011 2 075 1 693 3 47 5 max 37.317 1 72.198 3 -1.25 10 .01 3 .011 5 .917 3 48 min -4.527 5 -37.234 2 -45.555 4 011 2 104 1 712 3 49 6 max 37.317 1 233.377 3 19.27 1 .01 3 006 12 .777 3 50 min -13.937 5 <	3
45 4 max 37.317 1 78.439 2 -4.179 12 .01 3 .05 5 .91 3 46 min 2.862 12 -88.981 3 -57.013 4 011 2 075 1 693 3 47 5 max 37.317 1 72.198 3 -1.25 10 .01 3 .011 5 .917 3 48 min -4.527 5 -37.234 2 -45.555 4 011 2 104 1 712 3 49 6 max 37.317 1 233.377 3 19.27 1 .01 3 006 12 .777 3 50 min -13.937 5 -152.907 2 -38.246 5 011 2 102 1 625 3 51 7 max 37.317 1 394.556 3 53.233 1 .01 3 006 12 <t< td=""><td>2</td></t<>	2
47 5 max 37.317 1 72.198 3 -1.25 10 .01 3 .011 5 .917 3 48 min -4.527 5 -37.234 2 -45.555 4 011 2 104 1 712 3 49 6 max 37.317 1 233.377 3 19.27 1 .01 3 006 12 .777 3 50 min -13.937 5 -152.907 2 -38.246 5 011 2 102 1 625 3 51 7 max 37.317 1 394.556 3 53.233 1 .01 3 006 12 .489 3 52 min -23.347 5 -268.58 2 -35.339 5 011 2 077 4 431 3	3
48 min -4.527 5 -37.234 2 -45.555 4 011 2 104 1 712 3 49 6 max 37.317 1 233.377 3 19.27 1 .01 3 006 12 .777 3 50 min -13.937 5 -152.907 2 -38.246 5 011 2 102 1 625 3 51 7 max 37.317 1 394.556 3 53.233 1 .01 3 006 12 .489 3 52 min -23.347 5 -268.58 2 -35.339 5 011 2 077 4 431 3	2
49 6 max 37.317 1 233.377 3 19.27 1 .01 3 006 12 .777 3 50 min -13.937 5 -152.907 2 -38.246 5 011 2 102 1 625 3 51 7 max 37.317 1 394.556 3 53.233 1 .01 3 006 12 .489 3 52 min -23.347 5 -268.58 2 -35.339 5 011 2 077 4 431 3	3
50 min -13.937 5 -152.907 2 -38.246 5 011 2 102 1 625 2 51 7 max 37.317 1 394.556 3 53.233 1 .01 3 006 12 .489 3 52 min -23.347 5 -268.58 2 -35.339 5 011 2 077 4 431 3	2
51 7 max 37.317 1 394.556 3 53.233 1 .01 3 006 12 .489 3 52 min -23.347 5 -268.58 2 -35.339 5 011 2 077 4 431 3	3
52 min -23.347 5 -268.58 2 -35.339 5011 2077 4431 2	2
	3
	2
	3
	2
	2
	3
	2
	3 2
	3
	3
	2
	3
	2
	3
	2
	3
	2
	3
	2
	3
	2
	3
74 min -17.602 5 -309.786 2 -29.757 501 3123 5337 2	2
75 19 max 37.317 1 572.517 3 150.547 1 .011 2 .199 1 0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
76			min	-27.012	5	-425.459	2	-26.851	5	01	3	148	5	0	3
77	M15	1	max	73.2	5	637.897	2	-9.695	12	.012	2	.285	4	0	2
78			min	-38.737	1	-333.795	3	-150.553	1	009	3	.017	12	0	3
79		2	max	63.79	5	459.289	2	-7.817	12	.012	2	.196	4	.265	3
80			min	-38.737	1	-243.417	3	-116.59	1	009	3	.009	12	503	2
81		3	max	54.38	5	280.682	2	-5.938	12	.012	2	.119	5	.446	3
82			min	-38.737	1	-153.04	3	-82.627	1	009	3	015	1	842	2
83		4	max	44.971	5	102.074	2	-4.06	12	.012	2	.067	5	.545	3
84			min	-38.737	1	-62.663	3	-68.609	4	009	3	075	1	-1.017	2
85		5	max	35.561	5	27.715	3	-1.307	10	.012	2	.017	5	.561	3
86			min	-38.737	1	-76.534	2	-57.15	4	009	3	104	1	-1.029	2
87		6	max	26.151	5	118.092	3	19.263	1	.012	2	006	12	.494	3
88			min	-38.737	1	-255.142	2	-49.798	5	009	3	102	1	877	2
89		7	max	16.741	5	208.469	3	53.226	1	.012	2	006	12	.345	3
90			min	-38.737	1	-433.75	2	-46.892	5	009	3	093	4	561	2
91		8	max	7.332	5	298.846	3	87.189	1	.012	2	.002	10	.112	3
92			min	-38.737	1	-612.357	2	-43.986	5	009	3	119	4	082	2
93		9	max	-1.28	15	389.224	3	121.153	1	.012	2	.091	1	.561	2
94			min	-38.737	1	-790.965	2	-41.08	5	009	3	155	5	203	3
95		10	max	-3.563	12	969.573	2	-7.21	12	.012	2	.284	4	1.368	2
96			min	-38.737	1	-479.601	3	-155.116		009	3	.006	12	601	3
97		11	max	-3.348	15	790.965	2	-5.332	12	.009	3	.194	4	.561	2
98			min	-38.737	1	-389.224	3	-121.153	1	012	2	0	3	203	3
99		12	max	-3.563	12	612.357	2	-3.453	12	.009	3	.115	5	.112	3
100			min	-38.737	1	-298.846	3	-87.189	1	012	2	006	3	082	2
101		13	max	-3.563	12	433.75	2	-1.575	12	.009	3	.062	5	.345	3
102			min	-38.737	1	-208.469	3	-69.542	4	012	2	069	1	561	2
103		14	max	-3.563	12	255.142	2	.673	3	.009	3	.012	5	.494	3
104			min	-43.839	4	-118.092	3	-58.083	4	012	2	102	1	877	2
105		15	max	-3.563	12	76.534	2	14.7	1	.009	3	005	12	.561	3
106		10	min	-53.249	4	-27.715	3	-50.034	5	012	2	104	1	-1.029	2
107		16	max	-3.563	12	62.663	3	48.664	1	.009	3	002	12	.545	3
108		10	min	-62.659	4	-102.074	2	-47.127	5	012	2	099	4	-1.017	2
109		17	max	-3.563	12	153.04	3	82.627	1	.009	3	.004	3	.446	3
110		- ' '	min	-72.069	4	-280.682	2	-44.221	5	012	2	126	4	842	2
111		18	max	-3.563	12	243.417	3	116.59	1	.009	3	.076	1	.265	3
112		10	min	-81.478	4	-459.289	2	-41.315	5	012	2	16	5	503	2
113		19	max	-3.563	12	333.795	3	150.553	1	.009	3	.199	1	0	2
114		13	min	-90.888	4	-637.897	2	-38.409	5	012	2	197	5	0	5
115	M16	1	max	71.253	5	597.441	2	-9.126	12	.009	2	.223	4	0	2
116	IVITO					-297.874				012	3		12		3
117		2	max		5	418.833	2	-7.247	12	.009	2	.148	4	.232	3
118			min		1	-207.497	3	-111.661	1	012	3	.006	10	466	2
119		3	max		5	240.225	2	-5.369	12	.009	2	.09	5	.38	3
120			min	-77.475	1	-117.119	3	-77.698	1	012	3	033	1	768	2
121		4	max	43.024	5	61.617	2	-3.491	12	.009	2	.051	5	.446	3
122		4	min	-77.475	1	-26.742	3	-53.177	4	012	3	089	1	906	2
123		5			5	63.635	3	723	10	.009	2	.014	5	.429	3
		- O	max			-116.991							1		2
124 125		G	min	-77.475	1 5	154.013	2	-41.718 24.192	4	012 .009	3	113 007	12	881 .33	
126		6	max	24.205 -77.475	<u>5</u>	-295.598	3	-35.776	5	012	3	107	1	692	2
127		7	min				2						_		
		/	max		5	244.39	3	58.155	1	.009	2	005	12	.147	3
128		0	min		1	-474.206		-32.87	5	012	3	07	4	339	2
129		8	max	5.385	5	334.767	3	92.119	1	.009	2	.003	2	.178	2
130		0	min	-77.475	1 1 5	-652.814	2	-29.964	5	012	3	082	4	118 959	3
131		9	max	-2.555 77.47F	15	425.144	3	126.082	1	.009	2	.1	1	.858	2
132			min	-77.475	1	-831.422	2	-27.058	5	012	3	106	5	467	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
133		10	max	-6.242	12	1010.03	2	-7.779	12	.009	2	.231	1	1.702	2
134			min	-77.475	1	-515.522	3	-160.045	1	012	3	.008	12	898	3
135		11	max	-6.235	15	831.422	2	-5.901	12	.012	3	.149	4	.858	2
136			min	-77.475	1	-425.144	3	-126.082	1	009	2	.002	12	467	3
137		12	max	-6.242	12	652.814	2	-4.023	12	.012	3	.08	4	.178	2
138			min	-77.475	1	-334.767	3	-92.119	1	009	2	004	3	118	3
139		13	max	-6.242	12	474.206	2	-2.144	12	.012	3	.039	5	.147	3
140			min	-77.475	1	-244.39	3	-58.155	1	009	2	069	1	339	2
141		14	max	-6.242	12	295.598	2	229	3	.012	3	.002	5	.33	3
142		17	min	-77.475	1	-154.013	3	-46.09	4	009	2	107	1	692	2
143		15	max	-6.242	12	116.991	2	9.771	1	.012	3	006	12	.429	3
144		13	min	-77.475	1	-63.635	3	-36.888	5	009	2	113	1	881	2
145		16								.012	3	004	12		3
		10	max	-6.242	12	26.742	3	43.734	1		2			.446	
146		47	min	-77.475	1	-61.617	2	-33.982	5	009		089	1	906	2
147		17	max	-6.242	12	117.119	3	77.698	1	.012	3	0	3	.38	3
148		4.0	min	-86.417	4	-240.225	2	-31.076	5	009	2	105	4	768	2
149		18	max	-6.242	12	207.497	3	111.661	1_	.012	3	.054	1_	.232	3
150			min	-95.827	4	-418.833	2	-28.17	5	009	2	123	5	466	2
151		19	max	-6.242	12	297.874	3	145.624	1	.012	3	.172	1	0	2
152			min	-105.237	4	-597.441	2	-25.264	5	009	2	147	5	0	5
153	M2	1	max		2	2.042	4	.241	1	0	3	0	3	0	1
154			min	-1362.655	3	.491	15	-18.409	4	0	4	0	2	0	1
155		2	max	959.916	2	1.923	4	.241	1	0	3	0	1	0	15
156			min	-1362.265	3	.463	15	-18.868	4	0	4	007	4	0	4
157		3	max	960.437	2	1.805	4	.241	1	0	3	0	1	0	15
158			min	-1361.874	3	.435	15	-19.326	4	0	4	013	4	001	4
159		4	max		2	1.686	4	.241	1	0	3	0	1	0	15
160			min	-1361.484	3	.407	15	-19.784	4	0	4	02	4	002	4
161		5	max		2	1.567	4	.241	1	0	3	0	1	0	15
162		ľ	min	-1361.093	3	.379	15	-20.243	4	0	4	028	4	003	4
163		6	max	961.999	2	1.448	4	.241	1	0	3	0	1	0	15
164			min	-1360.703	3	.351	15	-20.701	4	0	4	035	4	003	4
165		7	max	962.52	2	1.329	4	.241	1	0	3	0	1	0	15
166		'	min	-1360.312	3	.323	15	-21.159	4	0	4	042	4	004	4
167		8		963.04	2	1.21	4	.241	1	0	3	0	1	0	15
168		0	max	-1359.922	3	.295	15	-21.618	4	0	4	05	4	004	4
			min								_				
169		9	max		2	1.091	4	.241	1	0	3	0	1	001	15
170		40	min	-1359.531	3	.252	12	-22.076	4	0	4	058	4	004	4
171		10	max	964.082	2	.973	4	.241	1	0	3	0	1	001	15
172		4.4	min	-1359.141	3	.205	12	-22.534	4	0	4	066	4	005	4
173		11		964.602	2	.854	4	.241	1	0	3	0	1	001	15
174				-1358.75	3	.159	12		4	0	4	074	4	005	4
175		12		965.123	2	.755	2	.241	1_	0	3	0	1	001	15
176					3	.113	12	-23.451	4	0	4	082	4	005	4
177		13	max		2	.662	2	.241	1	0	3	.001	1_	001	15
178			min	-1357.969	3	.066	12	-23.909	4	0	4	091	4	006	4
179		14	max	966.164	2	.569	2	.241	1	0	3	.001	1	001	15
180			min	-1357.579	3	.002	3	-24.368	4	0	4	099	4	006	4
181		15	max	966.685	2	.477	2	.241	1	0	3	.001	1	001	15
182			min		3	067	3	-24.826	4	0	4	108	4	006	4
183		16		967.206	2	.384	2	.241	1	0	3	.001	1	001	12
184			min		3	136	3	-25.284	4	0	4	117	4	006	4
185		17		967.726	2	.291	2	.241	1	0	3	.001	1	001	12
186			min	-1356.407	3	206	3	-25.743	4	0	4	126	4	006	4
187		18		968.247	2	.199	2	.241	1	0	3	.001	1	001	12
188		10	min	-1356.016	3	275	3	-26.201	4	0	4	135	4	006	4
189		10		968.768	2	.106	2	.241	1	0	3	.002	1	001	12
109		l 19	шах	300.700		.100		.241		U	_ ວ_	.002		001	14

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
190			min	-1355.626	3	345	3	-26.66	4	0	4	145	4	006	4
191	M3	1	max	828.633	2	7.682	4	5.879	4	0	3	0	1	.006	4
192			min	-939.647	3	1.815	15	.019	12	0	4	026	4	.001	12
193		2	max	828.462	2	6.922	4	6.414	4	0	3	0	1	.004	2
194			min	-939.775	3	1.636	15	.019	12	0	4	024	4	0	3
195		3	max	828.292	2	6.161	4	6.949	4	0	3	0	1	.001	2
196			min	-939.903	3	1.457	15	.019	12	0	4	021	4	001	3
197		4	max	828.122	2	5.4	4	7.483	4	0	3	0	1	0	15
198			min	-940.031	3	1.278	15	.019	12	0	4	018	5	003	3
199		5	max	827.951	2	4.639	4	8.018	4	0	3	0	1	0	15
200			min	-940.158	3	1.099	15	.019	12	0	4	015	5	004	6
201		6	max	827.781	2	3.878	4	8.553	4	0	3	0	1	001	15
202			min	-940.286	3	.92	15	.019	12	0	4	011	5	006	6
203		7	max	827.611	2	3.117	4	9.087	4	0	3	0	1	002	15
204			min	-940.414	3	.742	15	.019	12	0	4	008	5	007	6
205		8	max	827.44	2	2.356	4	9.622	4	0	3	0	1	002	15
206			min	-940.542	3	.563	15	.019	12	0	4	004	5	008	6
207		9	max	827.27	2	1.595	4	10.157	4	0	3	.001	1	002	15
208			min	-940.669	3	.384	15	.019	12	0	4	0	15	009	6
209		10	max	827.1	2	.834	4	10.692	4	0	3	.005	4	002	15
210			min	-940.797	3	.176	12	.019	12	0	4	0	12	01	6
211		11	max		2	.213	2	11.226	4	0	3	.009	4	002	15
212			min	-940.925	3	204	3	.019	12	0	4	0	12	01	6
213		12	max	826.759	2	153	15	11.761	4	0	3	.014	4	002	15
214		<u> </u>	min	-941.053	3	689	6	.019	12	0	4	0	12	01	6
215		13	max	826.589	2	332	15	12.296	4	0	3	.019	4	002	15
216		1	min	-941.18	3	-1.45	6	.019	12	0	4	0	12	009	6
217		14	max		2	511	15	12.83	4	0	3	.024	4	002	15
218			min	-941.308	3	-2.211	6	.019	12	0	4	0	12	009	6
219		15	max	826.248	2	689	15	13.365	4	0	3	.03	4	002	15
220		'0	min	-941.436	3	-2.972	6	.019	12	0	4	0	12	007	6
221		16	max		2	868	15	13.9	4	0	3	.035	4	001	15
222		'	min	-941.564	3	-3.733	6	.019	12	0	4	0	12	006	6
223		17	max	825.907	2	-1.047	15	14.434	4	0	3	.041	4	001	15
224		1 '	min	-941.691	3	-4.494	6	.019	12	0	4	0	12	004	6
225		18	max		2	-1.226	15	14.969	4	0	3	.047	4	0	15
226		'	min	-941.819	3	-5.255	6	.019	12	0	4	0	12	002	6
227		19	max		2	-1.405	15	15.504	4	0	3	.054	4	0	1
228		'	min	-941.947	3	-6.016	6	.019	12	0	4	0	12	0	1
229	M4	1	max	798.343	1	0.010	1	645	12	0	1	.051	4	0	1
230		•		-65.654		0		-253.482		0	1	0	12	0	1
231		2		798.513	1	0	1	645	12	0	1	.022	4	0	1
232			min	-65.575	5	0	1	-253.63	4	0	1	0	12	0	1
233		3		798.684	1	0	1	645	12	0	1	0	1	0	1
234			min	-65.495	5	0	1	-253.777	4	0	1	007	4	0	1
235		4		798.854	1	0	1	645	12	0	1	0	12	0	1
236			min	-65.416	5	0	1	-253.925		0	1	036	4	0	1
237		5	max		1	0	1	645	12	0	1	0	12	0	1
238			min	-65.336	5	0	1	-254.073		0	1	066	4	0	1
239		6	max	799.195	1	0	1	645	12	0	1	0	12	0	1
240			min	-65.257	5	0	1	-254.22	4	0	1	095	4	0	1
241		7		799.365	1	0	1	645	12	0	1	0	12	0	1
242			min	-65.177	5	0	1	-254.368		0	1	124	4	0	1
243		8		799.536	_ <u>5_</u> 1	0	1	645	12	0	1	0	12	0	1
244		0	min	-65.098	5	0	1	-254.515		0	1	153	4	0	1
245		9	max		<u> </u>	0	1	645	12	0	1	133 0	12	0	1
246		3	min	-65.018	5	0	1	-254.663		0	1	182	4	0	1
240			1111111	300.010	J	U		-204.003	+	U		102	4	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
247		10	max	799.876	1_	0	1	645	12	0	1	0	12	0	1
248			min	-64.939	5	0	1	-254.811	4	0	1	212	4	0	1
249		11	max	800.047	1_	0	1	645	12	0	1	0	12	0	1
250			min	-64.859	5	0	1	-254.958	4	0	1	241	4	0	1
251		12	max	800.217	1	0	1	645	12	0	1	0	12	0	1
252			min	-64.78	5	0	1	-255.106	4	0	1	27	4	0	1
253		13	max	800.387	1	0	1	645	12	0	1	0	12	0	1
254			min	-64.7	5	0	1	-255.254	4	0	1	3	4	0	1
255		14	max	800.558	1	0	1	645	12	0	1	0	12	0	1
256			min	-64.621	5	0	1	-255.401	4	0	1	329	4	0	1
257		15	max		1	0	1	645	12	0	1	0	12	0	1
258			min	-64.541	5	0	1	-255.549	4	0	1	358	4	0	1
259		16	max		1	0	1	645	12	0	1	0	12	0	1
260			min	-64.462	5	0	1	-255.696	4	0	1	388	4	0	1
261		17	max		1	0	1	645	12	0	1	001	12	0	1
262		17	min	-64.382	5	0	1	-255.844	4	0	1	417	4	0	1
263		18			1	0	1	645	12	0	1	001	12	0	1
264		10	max min	-64.303	5	0	1	-255.992	4	0	1	446	4	0	1
		10					1				1				
265		19	max		1_	0	-	645	12	0		001	12	0	1
266	MC	4	min	-64.223	5	0	1	-256.139	4	0	1	476	4	0	1
267	M6	1	max	3014.73	2	2.243	2	0	1	0	1	0	4	0	1
268			min	-4371.254	3_	.269	12	-18.607	4	0	4	0	1	0	1
269		2	max		2	2.15	2	0	1	0	1	0	1	0	12
270			min	-4370.864	3	.222	12	-19.065	4	0	4	007	4	0	2
271		3	max	3015.771	2	2.057	2	0	1	0	_1_	0	1_	0	12
272			min	-4370.473	3	.176	12	-19.524	4	0	4	014	4	002	2
273		4	max	3016.292	2	1.965	2	0	1	0	1	0	1	0	12
274			min	-4370.083	3	.108	3	-19.982	4	0	4	021	4	002	2
275		5	max	3016.813	2	1.872	2	0	1	0	1	0	1	0	12
276			min	-4369.692	3	.038	3	-20.44	4	0	4	028	4	003	2
277		6	max	3017.333	2	1.78	2	0	1	0	1	0	1	0	3
278			min	-4369.302	3	031	3	-20.899	4	0	4	035	4	004	2
279		7	max	3017.854	2	1.687	2	0	1	0	1	0	1	0	3
280			min	-4368.911	3	101	3	-21.357	4	0	4	043	4	004	2
281		8		3018.375	2	1.594	2	0	1	0	1	0	1	0	3
282			min	-4368.521	3	17	3	-21.815	4	0	4	05	4	005	2
283		9		3018.895	2	1.502	2	0	1	0	1	0	1	0	3
284			min	-4368.13	3	24	3	-22.274	4	0	4	058	4	005	2
285		10		3019.416	2	1.409	2	0	1	0	1	0	1	0	3
286			min	-4367.74	3	309	3	-22.732	4	0	4	066	4	006	2
287		11		3019.937	2	1.317	2	0	1	0	1	0	1	0	3
288			min		3	378	3	-23.19	4	0	4	074	4	006	2
289		12		3020.457	2	1.224	2	0	1	0	1	0	1	0	3
290		14	min		3	448	3	-23.649	4	0	4	083	4	007	2
291		13		3020.978	2	1.131	2	0	1	0	1	063	1	007 0	3
		13													2
292		1.4	min		3	517 1.020	3	-24.107	4	0	4	091	4	007	
293		14		3021.499	2	1.039	2	0	1	0	1	0	1	0	3
294		4.5	min		3_	587	3	-24.565	4	0	4	1	4	008	2
295		15		3022.019	2	.946	2	0	1	0	1	0	1	0	3
296		4.0	min		3	656	3	-25.024	4	0	4	109	4	008	2
297		16		3022.54	2	.853	2	0	1	0	1	0	1	.001	3
298			min		3_	726	3	-25.482	4	0	4	118	4	008	2
299		17		3023.061	2	.761	2	0	1	0	1	0	1_	.001	3
300			min		3	795	3	-25.941	4	0	4	127	4	009	2
301		18	max	3023.582	2	.668	2	0	1	0	1	0	1	.002	3
302			min	-4364.616	3	865	3	-26.399	4	0	4	136	4	009	2
303		19	max	3024.102	2	.576	2	0	1	0	1	0	1	.002	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	LC
304			min	-4364.225	3_	934	3	-26.857	4	0	4_	146	4_	009	2
305	M7	1		2855.605	2	7.685	6	5.534	4	0	_1_	0	_1_	.009	2
306			min	-2907.44	3_	1.805	15	0	1	0	4_	027	4_	002	3
307		2		2855.435	2	6.924	6	6.068	4	0	_1_	0	_1_	.006	2
308			min	-2907.568	3_	1.626	15	0	1	0	4_	024	4_	003	3
309		3		2855.265	2	6.163	6	6.603	4	0	_1_	0	_1_	.004	2
310			min	-2907.696	3	1.447	15	0	1	0	4_	022	4_	005	3
311		4		2855.094	2	5.402	6	7.138	4	0	1	0	1	.002	2
312			min	-2907.823	3	1.268	15	0	1	0	4	019	4	006	3
313		5		2854.924	2	4.641	6	7.673	4	0	1	0	1	0	2
314			min	-2907.951	3	1.09	15	0	1	0	4_	016	4_	007	3
315		6		2854.754	_2_	3.88	6	8.207	4	0	_1_	0	_1_	001	15
316			min	-2908.079	3_	.911	15	0	1	0	4_	012	4_	007	3
317		7		2854.583	2	3.119	6	8.742	4	0	_1_	0	_1_	002	15
318			min	-2908.207	3	.732	15	0	1	0	4	009	4	008	3
319		8		2854.413	_2_	2.394	2	9.277	4	0	_1_	0	_1_	002	15
320			min	-2908.335	3	.466	12	0	1	0	4	005	5	008	4
321		9		2854.243	2	1.801	2	9.811	4	0	_1_	0	_1_	002	15
322			min	-2908.462	3	.169	12	0	1	0	4	001	5	009	4
323		10	max	2854.072	2	1.208	2	10.346	4	0	_1_	.003	4_	002	15
324			min	-2908.59	3_	265	3	0	1	0	4	0	_1_	01	4
325		11	max	2853.902	2	.615	2	10.881	4	0	_1_	.008	4	002	15
326			min	-2908.718	3	71	3	0	1	0	4	0	1_	01	4
327		12	max	2853.731	2	.022	2	11.415	4	0	_1_	.012	4	002	15
328			min	-2908.846	3	-1.154	3	0	1	0	4	0	1	01	4
329		13	max	2853.561	2	341	15	11.95	4	0	1_	.017	4	002	15
330			min	-2908.973	3	-1.599	3	0	1	0	4	0	1	009	4
331		14	max	2853.391	2	52	15	12.485	4	0	_1_	.022	4	002	15
332			min	-2909.101	3	-2.208	4	0	1	0	4	0	1	009	4
333		15	max	2853.22	2	699	15	13.019	4	0	1_	.027	4	002	15
334			min	-2909.229	3	-2.969	4	0	1	0	4	0	1	007	4
335		16	max	2853.05	2	878	15	13.554	4	0	1_	.033	4	001	15
336			min	-2909.357	3	-3.73	4	0	1	0	4	0	1	006	4
337		17	max	2852.88	2	-1.057	15	14.089	4	0	_1_	.039	4	001	15
338			min	-2909.484	3	-4.491	4	0	1	0	4	0	1	004	4
339		18	max	2852.709	2	-1.236	15	14.623	4	0	1_	.045	4	0	15
340			min	-2909.612	3	-5.252	4	0	1	0	4	0	1	002	4
341		19	max	2852.539	2	-1.415	15	15.158	4	0	1_	.051	4	0	1
342			min	-2909.74	3	-6.013	4	0	1	0	4	0	1	0	1
343	M8	1	max	1997.838	_1_	0	1	0	1	0	_1_	.048	4	0	1
344			min		15	0	1	-244.35	4	0	1	0	1	0	1
345		2	max	1998.009	_1_	0	1	0	1	0	_1_	.02	4	0	1
346			min	79.127	15	0	1	-244.497	4	0	1	0	1	0	1
347		3	max	1998.179	_1_	0	1	0	1	0	_1_	0	_1_	0	1
348			min	79.178	15	0	1	-244.645	4	0	1	008	4	0	1
349		4	max	1998.349	1	0	1	0	1	0	1_	0	1_	0	1
350			min	79.23	15	0	1	-244.793	4	0	1	036	4	0	1
351		5	max	1998.52	1	0	1	0	1	0	1	0	1	0	1
352			min	79.281	15	0	1	-244.94	4	0	1	064	4	0	1
353		6	max	1998.69	1	0	1	0	1	0	1	0	1	0	1
354			min	79.332	15	0	1	-245.088	4	0	1	092	4	0	1
355		7	max	1998.86	1	0	1	0	1	0	1	0	1	0	1
356			min	79.384	15	0	1	-245.236	4	0	1	12	4	0	1
357		8		1999.031	1	0	1	0	1	0	1	0	1	0	1
358			min	79.435	15	0	1	-245.383	4	0	1	149	4	0	1
359		9		1999.201	1	0	1	0	1	0	1	0	1	0	1
360			min	79.486	15	0	1	-245.531	4	0	1	177	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	1999.371	1	0	1	0	1	0	1	0	1	0	1
362			min	79.538	15	0	1	-245.679	4	0	1	205	4	0	1
363		11	max	1999.542	1	0	1	0	1	0	1	0	1	0	1
364			min	79.589	15	0	1	-245.826	4	0	1	233	4	0	1
365		12	max	1999.712	1	0	1	0	1	0	1	0	1	0	1
366			min	79.641	15	0	1	-245.974	4	0	1	261	4	0	1
367		13	max	1999.883	1	0	1	0	1	0	1	0	1	0	1
368			min	79.692	15	0	1	-246.121	4	0	1	29	4	0	1
369		14	max	2000.053	1	0	1	0	1	0	1	0	1	0	1
370			min	79.743	15	0	1	-246.269	4	0	1	318	4	0	1
371		15		2000.223	1	0	1	0	1	0	1	0	1	0	1
372			min	79.795	15	0	1	-246.417	4	0	1	346	4	0	1
373		16		2000.394	1	0	1	0	1	0	1	0	1	0	1
374		1.0	min	79.846	15	0	1	-246.564	4	0	1	374	4	0	1
375		17		2000.564	1	0	1	0	1	0	1	0	1	0	1
376		 ''	min	79.898	15	0	1	-246.712	4	0	1	403	4	0	1
377		18		2000.734	1	0	1	0	1	0	1	0	1	0	1
378		10	min	79.949	15	0	1	-246.86	4	0	1	431	4	0	1
379		19	_	2000.905	1	0	1	0	1	0	1	0	1	0	1
380		19	min	80	15	0	1	-247.007	4	0	1	46	4	0	1
381	M10	1	max		2	1.996	6	019	12	0	1	0	4	0	1
382	IVITO	-	min	-1362.655		.459	15	-18.575	4	0	5	0	3	0	1
		2			3	1.877			12		1	0			15
383			max	959.916 -1362.265	2		6	019		0			10	0	
384			min		3	.431	15	-19.033	4	0	5	007	4	0	6
385		3	max		2	1.758	6	019	12	0	1	0	10	0	15
386		1	min	-1361.874	3	.403	15	-19.492	4	0	5	014	4	001	6
387		4	max	960.957	2	1.639	6	019	12	0	1	0	10	0	15
388		-	min	-1361.484	3	.375	15	-19.95	4	0	5	021	4	002	6
389		5	max		2	1.52	6	019	12	0	1	0	12	0	15
390			min	-1361.093	3	.347	15	-20.408	4	0	5	028	4	003	6
391		6	max	961.999	2	1.401	6	019	12	0	1	0	12	0	15
392		<u> </u>	min	-1360.703	3	.319	15	-20.867	4	0	5	035	4	003	6
393		7	max	962.52	2	1.283	6	019	12	0	1_	0	12	0	15
394		_	min	-1360.312	3	.291	15	-21.325	4	0	5	043	4	004	6
395		8	max	963.04	2	1.164	6	019	12	0	1	0	12	0	15
396			min	-1359.922	3	.263	15	-21.783	4	0	5	05	4	004	6
397		9	max	963.561	_2_	1.045	6	019	12	0	1	0	12	0	15
398			min	-1359.531	3	.235	15	-22.242	4	0	5	058	4	004	6
399		10	max		2	.94	2	019	12	0	1	0	12	001	15
400			min	-1359.141	3	.205	12	-22.7	4	0	5	066	4	005	6
401		11	max	964.602	2	.847	2	019	12	0	_1_	0	12	001	15
402			min		3	.159	12	-23.158	4	0	5	074	4	005	6
403		12	max		2	.755	2	019	12	0	1	0	12	001	15
404			min	-1358.36	3	.113	12	-23.617	4	0	5	083	4	005	6
405		13	max	965.644	2	.662	2	019	12	0	1	0	12	001	15
406			min	-1357.969	3	.066	12	-24.075	4	0	5	091	4	005	6
407		14	max	966.164	2	.569	2	019	12	0	1	0	12	001	15
408			min	-1357.579	3	.002	3	-24.534	4	0	5	1	4	006	6
409		15	max	966.685	2	.477	2	019	12	0	1	0	12	001	15
410			min	-1357.188	3	067	3	-24.992	4	0	5	109	4	006	6
411		16	max		2	.384	2	019	12	0	1	0	12	001	15
412			min	-1356.798	3	136	3	-25.45	4	0	5	118	4	006	6
413		17	max		2	.291	2	019	12	0	1	0	12	001	15
414			min		3	206	3	-25.909	4	0	5	127	4	006	6
415		18			2	.199	2	019	12	0	1	0	12	001	15
416		10	min	-1356.016	3	275	3	-26.367	4	0	5	136	4	006	2
417		19		968.768	2	.106	2	019	12	0	1	0	12	001	12
417		13	πιαλ	300.700		.100		018	14	U		U	14	UU I	14

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC		LC	z-z Mome	
418			min	-1355.626	3	345	3	-26.825	4	0	5	146	4	006	2
419	M11	1	max	828.633	2	7.643	6	5.72	4	0	1	0	12	.006	2
420			min	-939.647	3	1.788	15	232	1	0	4	027	4	.001	12
421		2	max	828.462	2	6.882	6	6.255	4	0	1	0	12	.004	2
422			min	-939.775	3	1.609	15	232	1	0	4	024	4	0	3
423		3	max		2	6.121	6	6.79	4	0	1	0	12	.001	2
424			min	-939.903	3	1.43	15	232	1	0	4	021	4	001	3
425		4	max		2	5.36	6	7.324	4	0	1	0	12	0	2
426			min	-940.031	3	1.251	15	232	1	0	4	018	4	003	3
427		5	max		2	4.599	6	7.859	4	0	1	0	12	001	15
428		1 5		-940.158	3	1.072	15	232	1	0	4	015	4	004	4
		_	min						-						
429		6	max		2	3.838	6	8.394	4	0	1_	0	12	001	15
430			min	-940.286	3	.893	15	232	1	0	4_	012	4	006	4
431		7	max	827.611	2	3.077	6	8.928	4	0	1	0	12	002	15
432			min	-940.414	3	.714	15	232	1	0	4	008	4	007	4
433		8	max	827.44	2	2.316	6	9.463	4	0	_1_	0	12	002	15
434			min	-940.542	3	.536	15	232	1	0	4_	004	4	009	4
435		9	max	827.27	2	1.555	6	9.998	4	0	1	0	12	002	15
436			min	-940.669	3	.357	15	232	1	0	4	001	1	009	4
437		10	max	827.1	2	.806	2	10.532	4	0	1	.004	5	002	15
438			min	-940.797	3	.176	12	232	1	0	4	001	1	01	4
439		11	max		2	.213	2	11.067	4	0	1	.009	5	002	15
440			min	-940.925	3	204	3	232	1	0	4	001	1	01	4
441		12	max	826.759	2	18	15	11.602	4	0	1	.013	5	002	15
442		12	min	-941.053	3	729	4	232	1	0	4	001	1	01	4
443		13			2	359	15	12.137	4	0	1	.018	5	002	15
		13	max												
444		4.4	min	-941.18	3	-1.49	4	232	1	0	4_	001	1	009	4
445		14	max		2	538	15	12.671	4	0	1	.023	5	002	15
446		4.5	min	-941.308	3	-2.251	4	232	1	0	4	002	1	009	4
447		15	max	826.248	2	717	15	13.206	4	0	_1_	.029	5	002	15
448			min	-941.436	3	-3.012	4	232	1	0	4	002	1	008	4
449		16	max		2	895	15	13.741	4	0	_1_	.034	5	001	15
450			min	-941.564	3	-3.773	4	232	1	0	4	002	1	006	4
451		17	max	825.907	2	-1.074	15	14.275	4	0	1	.04	5	001	15
452			min	-941.691	3	-4.534	4	232	1	0	4	002	1	004	4
453		18	max	825.737	2	-1.253	15	14.81	4	0	1	.046	5	0	15
454			min	-941.819	3	-5.295	4	232	1	0	4	002	1	002	4
455		19	max		2	-1.432	15	15.345	4	0	1	.052	5	0	1
456			min	-941.947	3	-6.056	4	232	1	0	4	002	1	0	1
457	M12	1	max	798.343	1	0	1	8.165	1	0	1	.05	5	0	1
458	IVITZ	<u> </u>		61.133	12	0		-247.875		0	1	002	1	0	1
459		2		798.513	1	0	1	8.165	1	0	1	.021	5	0	1
460			min	61.218	12	0	1	-248.022	4	0	1	0	1	0	1
461		3		798.684	1		1		1		1	0	10	0	1
462		3	max			0	1	8.165		0	1				1
		1	min	61.303	12	0	_	-248.17	4	0	_	007	4	0	-
463		4	max		1	0	1	8.165	1	0	1	0	1	0	1
464		<u> </u>	min	61.388	12	0	1	-248.318		0	_1_	036	4	0	1
465		5	max	799.025	1	0	1_	8.165	1	0	_1_	.002	1	0	1
466			min	61.473	12	0	1	-248.465		0	1_	064	4	0	1
467		6	max	799.195	1	0	1	8.165	1	0	_1_	.003	1	0	1
468			min	61.558	12	0	1	-248.613	4	0	1	093	4	0	1
469		7	max	799.365	1	0	1	8.165	1	0	1	.004	1	0	1
470			min	61.644	12	0	1	-248.761	4	0	1	121	4	0	1
471		8	max	799.536	1	0	1	8.165	1	0	1	.005	1	0	1
472			min	61.729	12	0	1	-248.908	4	0	1	15	4	0	1
473		9	max	799.706	1	0	1	8.165	1	0	<u> </u>	.006	1	0	1
474		<u> </u>	min	61.814	12	0	1	-249.056		0	1	179	4	0	1
7/7			1111111	01.014	14	U		Z-70.000		U		.173		U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	799.876	1	0	1	8.165	1	0	1	.007	1_	0	1
476			min	61.899	12	0	1	-249.204	4	0	1	207	4	0	1
477		11	max	800.047	1	0	1	8.165	1	0	1	.007	1	0	1
478			min	61.984	12	0	1	-249.351	4	0	1	236	4	0	1
479		12	max	800.217	1	0	1	8.165	1	0	1	.008	1	0	1
480			min	62.07	12	0	1	-249.499	4	0	1	264	4	0	1
481		13	max	800.387	1	0	1	8.165	1	0	1	.009	1	0	1
482			min	62.155	12	0	1	-249.646	4	0	1	293	4	0	1
483		14	max	800.558	1	0	1	8.165	1	0	1	.01	1	0	1
484			min	62.24	12	0	1	-249.794	4	0	1	322	4	0	1
485		15	max		1	0	1	8.165	1	0	1	.011	1	0	1
486		1.0	min	62.325	12	0	1	-249.942	4	0	1	35	4	0	1
487		16	max	800.898	1	0	1	8.165	1	0	1	.012	1	0	1
488		1.0	min	62.41	12	0	1	-250.089	4	0	1	379	4	0	1
489		17	max	801.069	1	0	1	8.165	1	0	1	.013	1	0	1
490		 ''	min	62.495	12	0	1	-250.237	4	0	1	408	4	0	1
491		18	max	801.239	1	0	1	8.165	1	0	1	.014	1	0	1
492		10	min	62.581	12	0	1	-250.385	4	0	1	437	4	0	1
493		19		801.409	1	0	1	8.165	1	0	1	.015	1	0	1
		19	max		12	0	1	-250.532			1				1
494	N / 4	1	min	62.666					4	0	•	465	4_	0	_
495	<u>M1</u>	1	max	145.289	1	704.309	3	36.93	5	0	2	.17	1_	0	3
496			min	-12.783	5	-382.585	2	-71.264	1	0	3	094	5_	013	2
497		2	max	146.111	1	703.429	3	38.172	5	0	2	.132	1_	.189	2
498			min	-12.399	5	-383.759	2	-71.264	1	0	3	074	5	371	3
499		3	max	590.35	3	482.024	2	21.386	5	0	3	.095	_1_	.381	2
500			min	-338.733	2	-537.024	3	-71.12	1	0	2	054	5	727	3
501		4	max	590.966	3	480.851	2	22.628	5	0	3	.057	_1_	.127	2
502			min	-337.911	2	-537.904	3	-71.12	1	0	2	042	5	443	3
503		5	max	591.582	3	479.678	2	23.869	5	0	3	.02	_1_	003	15
504			min	-337.089	2	-538.784	3	-71.12	1	0	2	03	5	159	3
505		6	max	592.198	3	478.504	2	25.111	5	0	3	001	12	.125	3
506			min	-336.268	2	-539.664	3	-71.12	1	0	2	022	4	379	2
507		7	max	592.815	3	477.331	2	26.352	5	0	3	002	15	.41	3
508			min	-335.446	2	-540.544	3	-71.12	1	0	2	055	1	631	2
509		8	max	593.431	3	476.158	2	27.594	5	0	3	.011	5	.696	3
510			min	-334.625	2	-541.425	3	-71.12	1	0	2	093	1	883	2
511		9	max	609.004	3	52.881	2	55.738	5	0	9	.057	1	.809	3
512			min	-269.264	2	.355	15	-108.468	1	0	3	114	5	-1.011	2
513		10	max	609.62	3	51.708	2	56.979	5	0	9	0	10	.791	3
514			min	-268.443	2	0	5	-108.468	1	0	3	085	4	-1.039	2
515		11		610.237	3	50.535	2	58.221	5	0	9	005	12		3
516			min	-267.621	2	-1.466	4	-108.468	1	0	3	069	4	-1.066	2
517		12		625.614	3	369.96	3	139.734	5	0	2	.092	1	.677	3
518		12		-202.178		-586.667	2	-69.752	1	0	3	203	5	946	2
519		13		626.23	3	369.08	3	140.976	5	0	2	.055	1	.482	3
520		13		-201.356	2	-587.84	2	-69.752	1	0	3	129	5	636	2
521		14		626.846	3	368.2	3	142.217	5	0	2	.018	1	.287	3
522		14	min	-200.535	2	-589.013	2	-69.752	1	0	3	054	5	326	2
		15								_					
523		10		627.463	3	367.32	3	143.459	5	0	2	.021	5	.093	3
524		10			2	-590.187	2	<u>-69.752</u>	1	0	3	019	1_	03	1
525		16		628.079	3	366.44	3	144.7	5	0	2	.097	5	.297	2
526		4-			2	-591.36	2	-69.752	1	0	3	055	1_	101	3
527		17		628.695	3	365.56	3	145.942	5	0	2	.174	5_	.609	2
528			min		2	-592.534	2	-69.752	1	0	3	092	<u>1</u>	294	3
529		18	max	24.88	5	599.09	2	-6.242	12	0	5	.193	5	.307	2
530				-146.441	1	-297.084	3	-106.528		0	2	131	1_	145	3
531		19	max	25.263	5	597.917	2	-6.242	12	0	5	.147	5	.012	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-145.62	1	-297.964	3	-105.286	4	0	2	172	1	009	2
533	M5	1	max	320.761	1	2342.006	3	83.196	5	0	1	0	_1_	.027	2
534			min	14.767	12	-1312.855	2	0	1	0	4	202	4	0	3
535		2	max	321.582	1	2341.126	3	84.437	5	0	1	0	_1_	.72	2
536			min	15.178	12	-1314.028	2	0	1	0	4	158	4	-1.236	3
537		3	max	1862.111	3	1389.43	2	69.391	4	0	4	0	1	1.381	2
538			min	-1123.983	2	-1658.841	3	0	1	0	1	113	4	-2.423	3
539		4	max	1862.727	3	1388.256	2	70.633	4	0	4	0	1_	.648	2
540			min	-1123.162	2	-1659.721	3	0	1	0	1	076	4	-1.548	3
541		5	max	1863.343	3	1387.083	2	71.874	4	0	4	0	1_	.01	9
542			min	-1122.34	2	-1660.601	3	0	1	0	1	039	4	672	3
543		6	max	1863.96	3	1385.91	2	73.116	4	0	4	0	1	.205	3
544			min	-1121.518	2	-1661.481	3	0	1	0	1	0	5	816	2
545		7	max	1864.576	3	1384.736	2	74.357	4	0	4	.039	4	1.082	3
546			min	-1120.697	2	-1662.361	3	0	1	0	1	0	1	-1.547	2
547		8	max	1865.192	3	1383.563	2	75.599	4	0	4	.078	4	1.959	3
548			min	-1119.875	2	-1663.241	3	0	1	0	1	0	1	-2.277	2
549		9	max	1886.609	3	178.147	2	186.655	4	0	1	0	1	2.249	3
550			min	-980.023	2	.352	15	0	1	0	1	176	4	-2.602	2
551		10	max	1887.225	3	176.974	2	187.896	4	0	1	0	1	2.183	3
552			min	-979.202	2	002	15	0	1	0	1	077	4	-2.696	2
553		11	max	1887.841	3	175.801	2	189.138	4	0	1	.022	4	2.118	3
554			min	-978.38	2	-1.382	6	0	1	0	1	0	1	-2.789	2
555		12	max		3	1119.317	3	205.909	4	0	1	0	1	1.862	3
556			min	-838.694	2	-1743.934	2	0	1	0	4	297	4	-2.501	2
557		13		1910.266	3	1118.437	3	207.15	4	0	1	0	1	1.271	3
558			min	-837.872	2	-1745.108	2	0	1	0	4	188	4	-1.581	2
559		14		1910.883	3	1117.557	3	208.392	4	0	1	0	1	.681	3
560			min	-837.051	2	-1746.281	2	0	1	0	4	079	4	66	2
561		15		1911.499	3	1116.677	3	209.633	4	0	1	.031	4	.262	2
562		'	min	-836.229	2	-1747.455	2	0	1	Ö	4	0	1	002	13
563		16		1912.115	3	1115.797	3	210.875	4	0	1	.142	4	1.184	2
564		1.0	min	-835.408	2	-1748.628	2	0	1	0	4	0	1	497	3
565		17		1912.731	3	1114.917	3	212.116	4	0	1	.254	4	2.107	2
566			min	-834.586	2	-1749.801	2	0	1	0	4	0	1	-1.086	3
567		18	max		12	2023.526	2	0	1	0	4	.309	4	1.085	2
568		'	min	-320.921	1	-1030.573	3	-14.574	5	0	1	0	1	568	3
569		19	max	-15.557	12	2022.352	2	0	1	0	4	.302	4	.017	2
570			min	-320.1	1	-1031.453	3	-13.333	5	0	1	0	1	024	3
571	M9	1	max		1	704.309	3	71.264	1	0	3	015	12	0	3
572	1010		min	0 =00	12	-382.585		6.339	12	0	4	17	1	013	2
573		2	max		1	703.429	3	71.264	1	0	3	012	12	.189	2
574		_	min	9.932	12	-383.759		6.339	12	0	4	132	4	371	3
575		3		590.35	3	482.024	2	71.12	1	0	2	009	12	.381	2
576			min		2	-537.024	3	6.32	12	0	3	096	4	727	3
577		4		590.966	3	480.851	2	71.12	1	0	2	005	12	.127	2
578		7	min		2	-537.904	3	6.32	12	0	3	068	4	443	3
579		5		591.582	3	479.678	2	71.12	1	0	2	002	12	003	15
580				-337.089	2	-538.784	3	6.32	12	0	3	039	4	159	3
581		6		592.198	3	478.504	2	71.12	1	0	2	.018	1	.125	3
582		U		-336.268	2	-539.664	3	6.32	12	0	3	014	5	379	2
583		7		592.815	3	477.331	2	71.12	1	0	2	.055	1	.41	3
584			min		2	-540.544	3	6.32	12	0	3	.004	15	631	2
585		8		593.431		476.158		71.12	1	0	2	.004	<u>15</u> 1	.696	3
		0			2	-541.425	3	6.32	12	0	3	.093	12	883	2
586 587		9	min	609.004		52.881	2	108.468	1		3	005	12		3
		9			3					0				.809	
588			min	-269.264	2	.363	15	9.176	12	0	9	14	4	-1.011	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	609.62	3	51.708	2	108.468	1	0	3	0	1	.791	3
590			min	-268.443	2	.009	15	9.176	12	0	9	085	4	-1.039	2
591		11	max	610.237	3	50.535	2	108.468	1	0	3	.058	1	.774	3
592			min	-267.621	2	-1.417	6	9.176	12	0	9	044	5	-1.066	2
593		12	max	625.614	3	369.96	3	171.146	4	0	3	008	12	.677	3
594			min	-202.178	2	-586.667	2	5.619	12	0	2	245	4	946	2
595		13	max	626.23	3	369.08	3	172.388	4	0	3	005	12	.482	3
596			min	-201.356	2	-587.84	2	5.619	12	0	2	154	4	636	2
597		14	max	626.846	3	368.2	3	173.629	4	0	3	002	12	.287	3
598			min	-200.535	2	-589.013	2	5.619	12	0	2	063	4	326	2
599		15	max	627.463	3	367.32	3	174.87	4	0	3	.029	4	.093	3
600			min	-199.713	2	-590.187	2	5.619	12	0	2	.001	12	03	1
601		16	max	628.079	3	366.44	3	176.112	4	0	3	.122	4	.297	2
602			min	-198.891	2	-591.36	2	5.619	12	0	2	.004	12	101	3
603		17	max	628.695	3	365.56	3	177.353	4	0	3	.215	4	.609	2
604			min	-198.07	2	-592.534	2	5.619	12	0	2	.007	12	294	3
605		18	max	-9.537	12	599.09	2	77.545	1	0	2	.251	4	.307	2
606			min	-146.441	1	-297.084	3	-72.688	5	0	3	.01	12	145	3
607		19	max	-9.126	12	597.917	2	77.545	1	0	2	.223	4	.012	3
608			min	-145.62	1	-297.964	3	-71.447	5	0	3	.014	12	009	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.107	2	.01	3	9.07e-3	2	NC	1	NC	1
2			min	555	4	025	3	006	2	-2.578e-3	3	NC	1	NC	1
3		2	max	0	1	.164	3	.019	1	1.015e-2	2	NC	4	NC	1
4			min	555	4	0	9	013	5	-2.61e-3	3	1048.076	3	NC	1
5		3	max	0	1	.317	3	.046	1	1.124e-2	2	NC	5	NC	2
6			min	555	4	047	1	017	5	-2.643e-3	3	578.587	3	4286.147	1
7		4	max	0	1	.411	3	.068	1	1.232e-2	2	NC	5	NC	3
8			min	555	4	079	2	012	5	-2.675e-3	3	454.193	3	2879.641	1
9		5	max	0	1	.434	3	.079	1	1.341e-2	2	NC	5	NC	3
10			min	555	4	075	2	003	5	-2.708e-3	3	431.483	3	2484.682	1
11		6	max	0	1	.388	3	.075	1	1.449e-2	2	NC	5	NC	3
12			min	555	4	042	1	.003	10	-2.74e-3	3	479.915	3	2614.185	1
13		7	max	0	1	.286	3	.057	1	1.558e-2	2	NC	4	NC	2
14			min	555	4	003	9	001	10	-2.773e-3	3	636.098	3	3423.058	1
15		8	max	0	1	.157	3	.031	3	1.666e-2	2	NC	1	NC	2
16			min	555	4	.002	15	007	10	-2.805e-3	3	1088.027	3	6367.77	1
17		9	max	0	1	.186	2	.031	3	1.774e-2	2	NC	4	NC	1
18			min	555	4	.004	15	016	2	-2.838e-3	3	2509.847	2	9416.512	3
19		10	max	0	1	.217	2	.031	3	1.883e-2	2	NC	3	NC	1
20			min	555	4	014	3	022	2	-2.87e-3	3	1790.42	2	9581.602	3
21		11	max	0	12	.186	2	.031	3	1.774e-2	2	NC	4	NC	1
22			min	555	4	.004	15	016	2	-2.838e-3	3	2509.847	2	9416.512	3
23		12	max	0	12	.157	3	.031	3	1.666e-2	2	NC	1	NC	2
24			min	555	4	.002	15	011	5	-2.805e-3	3	1088.027	3	6367.77	1
25		13	max	0	12	.286	3	.057	1	1.558e-2	2	NC	4	NC	2
26			min	555	4	003	9	003	5	-2.773e-3	3	636.098	3	3423.058	1
27		14	max	0	12	.388	3	.075	1	1.449e-2	2	NC	5	NC	3
28			min	555	4	042	1	.003	10	-2.74e-3	3	479.915	3	2614.185	1
29		15	max	0	12	.434	3	.079	1	1.341e-2	2	NC	5	NC	3
30			min	555	4	075	2	.004	10	-2.708e-3	3	431.483	3	2484.682	1
31		16	max	0	12	.411	3	.068	1	1.232e-2	2	NC	5	NC	3
32			min	555	4	079	2	.004	10	-2.675e-3	3	454.193	3	2879.641	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
33		17	max	0	12	.317	3	.046	1	1.124e-2	2	NC	5_	NC	2
34			min	555	4	047	1	.002	10	-2.643e-3	3	578.587	3	4286.147	1
35		18	max	0	12	164	3	.024	4	1.015e-2	2	NC	4	NC	1
36			min	555	4	0	9	001	10	-2.61e-3	3	1048.076	3	8319.672	4
37		19	max	0	12	.107	2	.01	3	9.07e-3	2	NC	1_	NC	1
38		-	min	<u>555</u>	4	025	3	006	2	-2.578e-3	3	NC	1_	NC	1
39	M14	1_	max	0	1	.25	3	.009	3	5.11e-3	2	NC	1_	NC NC	1
40			min	417	4	343	2	005	2	-4.233e-3	3	NC NC	<u>1</u>	NC NC	1
41		2	max	0	1	.464	3	.012	1	6.013e-3	2	NC 000 440	5	NC 0774 044	1
42		-	min	417	4	<u>533</u>	2	021	5	-5.058e-3	3	923.112	3	8774.041	5
43		3	max	0	1	.65	3	.036	1	6.916e-3	2	NC 405,000	5	NC FF00 000	2
44		1	min	417	4	701	2	025	5	-5.883e-3	3	495.326	3_	5508.028	1
45		4	max	0	1	.786	3	.057	1	7.819e-3	2	NC	5_	NC	3
46		_	min	417	4	832	2	018	5	-6.708e-3	3	369.735	3_	3439.797	1
47		5	max	0	1	.861	3	.069	1	8.722e-3	2	NC 000,000	5_	NC	3
48			min	417	4	917	2	003	5	-7.534e-3	3	323.809	3_	2850.425	
49		6	max	0	1	<u>.877</u>	3	.067	1	9.625e-3	2	NC	5	NC	3
50		-	min	<u>417</u>	4	<u>956</u>	2	.002		-8.359e-3	3	315.747	3_	2921.963	
51		7	max	0	1	.842	3	.052	1	1.053e-2	2	NC	_5_	NC	2
52		_	min	<u>417</u>	4	<u>953</u>	2	<u>001</u>	10	-9.184e-3	3	324.946	2	3754.225	1
53		8	max	0	1	<u>.774</u>	3	.041	4	1.143e-2	2	NC	5_	NC 5045.044	2
54		_	min	<u>417</u>	4	922	2	006	10	-1.001e-2	3	342.343	2	5045.944	4
55		9	max	0	1	<u>.705</u>	3	.028	3	1.233e-2	2	NC	5_	NC 7550,000	1
56		10	min	417	4	883	2	014	2	-1.083e-2	3	367.225	2	7558.903	
57		10	max	0	1	<u>.671</u>	3	.027	3	1.324e-2	2	NC	5_	NC	1
58		1	min	417	4	862	2	02	2	-1.166e-2	3	381.661	2	NC	1
59		11	max	0	12	<u>.705</u>	3	.028	3	1.233e-2	2	NC	5	NC	1
60			min	417	4	883	2	021	5	-1.083e-2	3	367.225	2	9449.456	
61		12	max	0	12	774	3	.029	1_	1.143e-2	2	NC	5	NC	2
62		10	min	<u>417</u>	4	922	2	024	5	-1.001e-2	3	342.343	2	6863.236	1
63		13	max	0	12	.842	3	.052	1	1.053e-2	2	NC	5_	NC 0754 005	2
64		1	min	<u>417</u>	4	<u>953</u>	2	015	5	-9.184e-3	3	324.946	2	3754.225	
65		14	max	0	12	<u>.877</u>	3	.067	1	9.625e-3	2	NC	5	NC	3
66			min	417	4	956	2	0		-8.359e-3	3	315.747	3_	2921.963	
67		15	max	0	12	.861	3	.069	1	8.722e-3	2	NC	_5_	NC	3
68		1.0	min	<u>417</u>	4	<u>917</u>	2	.004		-7.534e-3	3	323.809	3_	2850.425	
69		16	max	0	12	.786	3	.057	1	7.819e-3	2	NC	5	NC	3
70			min	417	4	832	2	.003	10	-6.708e-3	3	369.735	3	3439.797	1
71		17	max	0	12	.65	3	.043	4	6.916e-3	2	NC	5	NC	2
72		1.0	min	417	4	701	2	0	10	-5.883e-3	3	495.326	3_	4623.9	4
73		18	max	0	12	.464	3	.028		6.013e-3		NC	5		1
74		1.0	min	<u>417</u>	4	<u>533</u>	2	002	10	-5.058e-3		923.112	3	6991.144	
75		19		0	12	.25	3	.009	3	5.11e-3	2	NC	_1_	NC NC	1
<u>76</u>	244-		min	417	4	343	2	005	2	-4.233e-3	3	NC	1_	NC	1
77	M15	1_	max	0	12	.254	3	.008	3	3.76e-3	3	NC	_1_	NC	1
78			min	341	4	342	2	005	2	-5.379e-3	2	NC	1_	NC	1
79		2	max	0	12	<u>.406</u>	3	.013	1	4.497e-3	3	NC	5	NC	1
80		_	min	<u>341</u>	4	<u>589</u>	2	028	5	-6.336e-3	2	804.056	2_	6689.826	
81		3	max	0	12	54	3	.036	1	5.235e-3	3	NC	_5_	NC	2
82			min	<u>341</u>	4	802	2	034	5	-7.293e-3	2	430.546	2	5486.7	1
83		4	max	0	12	<u>.645</u>	3	.058	1	5.972e-3	3_	NC	5_	NC 0.407.044	3
84		+-	min	<u>341</u>	4	<u>961</u>	2	025	5	-8.25e-3	2	320.246	2	3427.841	1
85		5	max	0	12	.715	3	.069	1	6.709e-3	3_	NC	5_	NC 22.40.000	3
86			min	341	4	<u>-1.052</u>	2	006	5	-9.208e-3	2	278.978	2_	2840.009	
87		6	max	0	12	.747	3	.068	1	7.447e-3	3	NC	_5_	NC	3
88			min	<u>341</u>	4	<u>-1.076</u>	2	.003		-1.016e-2	2	269.946	2	2909.047	
89		7	max	0	12	.747	3	.053	1_	8.184e-3	3	NC	5	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

92	C
92	1
93	2
95	4
95	1_
96	<u>4</u> 1
98	1
98	1
12 max	5
100	2
101	5
102	2
103	1
104	3
105	1
106	3
107	1
108	3
109	1
110 min 341 4 802 2 .001 10 -7.293e-3 2 430.546 2 3813.812 111 18 max 0 1 .406 3 .035 4 4.497e-3 3 NC 5 NC 112 min 341 4 589 2 002 10 -6.336e-3 2 804.056 2 5589.637 113 19 max 0 1 .254 3 .008 3 3.76e-3 3 NC 1 NC 114 min 341 4 342 2 005 2 -5.379e-3 2 NC 1 NC 115 M16 1 max 0 12 .094 2 .007 3 6.751e-3 3 NC 1 NC 116 min 12 4 083 3 005 2 -7.388e-3	2
112 min 341 4 589 2 002 10 -6.336e-3 2 804.056 2 5589.637 113 19 max 0 1 .254 3 .008 3 3.76e-3 3 NC 1 NC 114 min 341 4 342 2 005 2 -5.379e-3 2 NC 1 NC 115 M16 1 max 0 12 .094 2 .007 3 6.751e-3 3 NC 1 NC 116 min 12 4 083 3 005 2 -7.388e-3 2 NC 1 NC 117 2 max 0 12 .003 4 .019 1 7.713e-3 3 NC 4 NC 118 min 12 4 053 2 022 5 -8.085e-3 2	4
113 19 max 0 1 .254 3 .008 3 3.76e-3 3 NC 1 NC 114 min 341 4 342 2 005 2 -5.379e-3 2 NC 1 NC 115 M16 1 max 0 12 .094 2 .007 3 6.751e-3 3 NC 1 NC 116 min 12 4 083 3 005 2 -7.388e-3 2 NC 1 NC 117 2 max 0 12 .003 4 .019 1 7.713e-3 3 NC 4 NC 118 min 12 4 053 2 022 5 -8.085e-3 2 1352.283 2 8433.981 119 3 max 0 12 .028 3 .046 1 8.676e-3	1
114 min 341 4 342 2 005 2 -5.379e-3 2 NC 1 NC 115 M16 1 max 0 12 .094 2 .007 3 6.751e-3 3 NC 1 NC 116 min 12 4 083 3 005 2 -7.388e-3 2 NC 1 NC 117 2 max 0 12 .003 4 .019 1 7.713e-3 3 NC 4 NC 118 min 12 4 053 2 022 5 -8.085e-3 2 1352.283 2 8433.981 119 3 max 0 12 .028 3 .046 1 8.676e-3 3 NC 5 NC 120 min 12 4 169 2 028 5 -8.781e-3 2	4
115 M16 1 max 0 12 .094 2 .007 3 6.751e-3 3 NC 1 NC 116 min 12 4 083 3 005 2 -7.388e-3 2 NC 1 NC 117 2 max 0 12 .003 4 .019 1 7.713e-3 3 NC 4 NC 118 min 12 4 053 2 022 5 -8.085e-3 2 1352.283 2 8433.981 119 3 max 0 12 .028 3 .046 1 8.676e-3 3 NC 5 NC 120 min 12 4 169 2 028 5 -8.781e-3 2 753.742 2 4287.109 121 4 max 0 12 .052 3 .069 1 9.638e-3<	1
116 min 12 4 083 3 005 2 -7.388e-3 2 NC 1 NC 117 2 max 0 12 .003 4 .019 1 7.713e-3 3 NC 4 NC 118 min 12 4 053 2 022 5 -8.085e-3 2 1352.283 2 8433.981 119 3 max 0 12 .028 3 .046 1 8.676e-3 3 NC 5 NC 120 min 12 4 169 2 028 5 -8.781e-3 2 753.742 2 4287.109 121 4 max 0 12 .052 3 .069 1 9.638e-3 3 NC 5 NC 122 min 12 4 235 2 022 5 -9.478e-3 2 <td< td=""><td>1</td></td<>	1
117 2 max 0 12 .003 4 .019 1 7.713e-3 3 NC 4 NC 118 min 12 4 053 2 022 5 -8.085e-3 2 1352.283 2 8433.981 119 3 max 0 12 .028 3 .046 1 8.676e-3 3 NC 5 NC 120 min 12 4 169 2 028 5 -8.781e-3 2 753.742 2 4287.109 121 4 max 0 12 .052 3 .069 1 9.638e-3 3 NC 5 NC 122 min 12 4 235 2 022 5 -9.478e-3 2 602.43 2 2871.562 123 5 max 0 12 .046 3 .08 1 1.06e-2	1
118 min 12 4 053 2 022 5 -8.085e-3 2 1352.283 2 8433.981 119 3 max 0 12 .028 3 .046 1 8.676e-3 3 NC 5 NC 120 min 12 4 169 2 028 5 -8.781e-3 2 753.742 2 4287.109 121 4 max 0 12 .052 3 .069 1 9.638e-3 3 NC 5 NC 122 min 12 4 235 2 022 5 -9.478e-3 2 602.43 2 2871.562 123 5 max 0 12 .046 3 .08 1 1.06e-2 3 NC 5 NC 124 min 12 4 241 2 008 5 -1.017e-2 2	1
119 3 max 0 12 .028 3 .046 1 8.676e-3 3 NC 5 NC 120 min 12 4 169 2 028 5 -8.781e-3 2 753.742 2 4287.109 121 4 max 0 12 .052 3 .069 1 9.638e-3 3 NC 5 NC 122 min 12 4 235 2 022 5 -9.478e-3 2 602.43 2 2871.562 123 5 max 0 12 .046 3 .08 1 1.06e-2 3 NC 5 NC 124 min 12 4 241 2 008 5 -1.017e-2 2 590.811 2 2469.78 125 6 max 0 12 .011 3 .076 1 1.156e-2 3 NC 5 NC 126 min 12 4 19 <td>1</td>	1
120 min 12 4 169 2 028 5 -8.781e-3 2 753.742 2 4287.109 121 4 max 0 12 .052 3 .069 1 9.638e-3 3 NC 5 NC 122 min 12 4 235 2 022 5 -9.478e-3 2 602.43 2 2871.562 123 5 max 0 12 .046 3 .08 1 1.06e-2 3 NC 5 NC 124 min 12 4 241 2 008 5 -1.017e-2 2 590.811 2 2469.78 125 6 max 0 12 .011 3 .076 1 1.156e-2 3 NC 5 NC 126 min 12 4 19 2 .004 15 -1.087e-2 2	5
121 4 max 0 12 .052 3 .069 1 9.638e-3 3 NC 5 NC 122 min 12 4 235 2 022 5 -9.478e-3 2 602.43 2 2871.562 123 5 max 0 12 .046 3 .08 1 1.06e-2 3 NC 5 NC 124 min 12 4 241 2 008 5 -1.017e-2 2 590.811 2 2469.78 125 6 max 0 12 .011 3 .076 1 1.156e-2 3 NC 5 NC 126 min 12 4 19 2 .004 15 -1.087e-2 2 697.74 2 2586.528 127 7 max 0 12 .003 4 .059 1 1.252e-2 3 NC 4 NC 128 min 12 4 093	2
122 min 12 4 235 2 022 5 -9.478e-3 2 602.43 2 2871.562 123 5 max 0 12 .046 3 .08 1 1.06e-2 3 NC 5 NC 124 min 12 4 241 2 008 5 -1.017e-2 2 590.811 2 2469.78 125 6 max 0 12 .011 3 .076 1 1.156e-2 3 NC 5 NC 126 min 12 4 19 2 .004 15 -1.087e-2 2 697.74 2 2586.528 127 7 max 0 12 .003 4 .059 1 1.252e-2 3 NC 4 NC 128 min 12 4 093 2 0 10 -1.157e-2 2 <t< td=""><td>1</td></t<>	1
123 5 max 0 12 .046 3 .08 1 1.06e-2 3 NC 5 NC 124 min 12 4 241 2 008 5 -1.017e-2 2 590.811 2 2469.78 125 6 max 0 12 .011 3 .076 1 1.156e-2 3 NC 5 NC 126 min 12 4 19 2 .004 15 -1.087e-2 2 697.74 2 2586.528 127 7 max 0 12 .003 4 .059 1 1.252e-2 3 NC 4 NC 128 min 12 4 093 2 0 10 -1.157e-2 2 1057.69 2 3356.966	3
124 min 12 4 241 2 008 5 -1.017e-2 2 590.811 2 2469.78 125 6 max 0 12 .011 3 .076 1 1.156e-2 3 NC 5 NC 126 min 12 4 19 2 .004 15 -1.087e-2 2 697.74 2 2586.528 127 7 max 0 12 .003 4 .059 1 1.252e-2 3 NC 4 NC 128 min 12 4 093 2 0 10 -1.157e-2 2 1057.69 2 3356.966	1
125 6 max 0 12 .011 3 .076 1 1.156e-2 3 NC 5 NC 126 min 12 4 19 2 .004 15 -1.087e-2 2 697.74 2 2586.528 127 7 max 0 12 .003 4 .059 1 1.252e-2 3 NC 4 NC 128 min 12 4 093 2 0 10 -1.157e-2 2 1057.69 2 3356.966	3
126 min 12 4 19 2 .004 15 -1.087e-2 2 697.74 2 2586.528 127 7 max 0 12 .003 4 .059 1 1.252e-2 3 NC 4 NC 128 min 12 4 093 2 0 10 -1.157e-2 2 1057.69 2 3356.966	1
127 7 max 0 12 .003 4 .059 1 1.252e-2 3 NC 4 NC 128 min12 4093 2 0 10 -1.157e-2 2 1057.69 2 3356.966	3
128 min12 4093 2 0 10 -1.157e-2 2 1057.69 2 3356.966	<u>1 </u>
	4
	<u>1 </u>
129 8 max 0 12 .041 1 .035 4 1.349e-2 3 NC 4 NC 130 min12 4109 3004 10 -1.226e-2 2 2872.06 2 5819.22	
	1
	4
	1
	1
	1
	1
	2
138 min12 4109 3018 5 -1.226e-2 2 2872.06 2 6088.582	1
	2
140 min12 4093 2008 5 -1.157e-2 2 1057.69 2 3356.966	1
	3
	1
	3
144 min12 4241 2 .006 10 -1.017e-2 2 590.811 2 2469.78	1
	3
	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.028	3	.049	4	8.676e-3	3	NC	5_	NC	2
148			min	12	4	169	2	.003	10	-8.781e-3	2	753.742	2	4004.13	4
149		18	max	0	1	.002	6	.032	4	7.713e-3	3_	NC	_4_	NC	1
150			min	12	4	053	2	0	10	-8.085e-3	2	1352.283	2	6177.925	
151		19	max	0	1	.094	2	.007	3	6.751e-3	3_	NC	_1_	NC	1
152			min	12	4	083	3	005	2	-7.388e-3	2	NC	1_	NC	1
153	<u>M2</u>	1	max	.007	2	.01	2	.006	1	1.457e-3	5	NC	1_	NC	1
154			min	<u>01</u>	3	<u>016</u>	3	<u>521</u>	4	-1.546e-4	_1_	7720.862	2	147.686	4
155		2	max	.007	2	.009	2	.005	1	1.507e-3	_5_	NC	_1_	NC	1
156			min	<u>01</u>	3	01 <u>5</u>	3	48	4	-1.465e-4	_1_	8979.835	2	160.53	4
157		3	max	.006	2	.007	2	.005	1	1.558e-3	5	NC	_1_	NC	1
158			min	009	3	015	3	438	4	-1.385e-4	_1_	NC	1_	175.735	4
159		4	max	.006	2	.006	2	.004	1	1.608e-3	_5_	NC	1_	NC	1
160			min	008	3	014	3	397	4	-1.304e-4	1_	NC	1_	193.909	4
161		5	max	.006	2	.005	2	.004	1	1.658e-3	5_	NC	_1_	NC	1
162			min	008	3	014	3	357	4	-1.223e-4	<u>1</u>	NC	1_	215.873	4
163		6	max	.005	2	.003	2	.003	1	1.709e-3	5	NC	_1_	NC	1
164			min	007	3	013	3	<u>317</u>	4	-1.142e-4	_1_	NC	1_	242.761	4
165		7	max	.005	2	.002	2	.003	1	1.759e-3	_5_	NC	1_	NC	1
166			min	007	3	012	3	279	4	-1.061e-4	1_	NC	1_	276.175	4
167		8	max	.004	2	.001	2	.003	1	1.809e-3	5_	NC	1_	NC	1
168			min	006	3	012	3	242	4	-9.806e-5	1_	NC	1_	318.437	4
169		9	max	.004	2	0	2	.002	1	1.86e-3	_5_	NC	1_	NC	1
170			min	006	3	011	3	206	4	-8.998e-5	1_	NC	1_	373.017	4
171		10	max	.004	2	0	2	.002	1	1.91e-3	5_	NC	_1_	NC	1
172			min	005	3	01	3	173	4	-8.19e-5	1_	NC	1_	445.3	4
173		11	max	.003	2	001	15	.001	1	1.96e-3	5_	NC	1_	NC	1
174			min	004	3	009	3	142	4	-7.381e-5	_1_	NC	<u>1</u>	544.01	4
175		12	max	.003	2	001	15	.001	1	2.011e-3	_5_	NC	_1_	NC	1
176			min	004	3	008	3	113	4	-6.573e-5	_1_	NC	_1_	684.074	4
177		13	max	.002	2	001	15	0	1	2.063e-3	_4_	NC	_1_	NC	1
178			min	003	3	007	3	086	4	-5.765e-5	_1_	NC	1_	892.812	4
179		14	max	.002	2	0	15	0	1	2.116e-3	_4_	NC	_1_	NC	1
180			min	003	3	006	3	063	4	-4.957e-5	_1_	NC	1_	1224.835	
181		15	max	.002	2	0	15	0	1	2.169e-3	_4_	NC	_1_	NC	1
182			min	002	3	005	3	043	4	-4.149e-5	_1_	NC	1_	1803.11	4
183		16	max	.001	2	0	15	0	1	2.222e-3	4_	NC	_1_	NC	1
184			min	002	3	004	3	026	4	-3.341e-5	_1_	NC	1_	2956.523	4
185		17	max	0	2	0	15	0	1	2.275e-3	_4_	NC	_1_	NC	1
186		1.0	min	001	3	003	3	013	4	-2.533e-5	1_	NC	1_	5844.045	
187		18	max	0	2	0	15	0	1	2.328e-3		NC	1_	NC	1
188		10	min	0	3	<u>001</u>	6	004	4	-1.724e-5	1_	NC	1_	NC NC	1
189		19	max	0	1	0	1	0	1	2.381e-3	4_	NC		NC NC	1
190	1.10		min	0	1	0	1	0	1	-9.163e-6	1_	NC	1_	NC	1
191	<u>M3</u>	1_	max	0	1	0	1	0	1	1.982e-6	1_	NC	1_	NC	1
192			min	0	1	0	1	0	1	-6.125e-4	4_	NC	1_	NC	1
193		2	max	0	3	0	15	.011	4	1.61e-5	_1_	NC	1_	NC	1
194			min	0	2	002	6	0	1	-8.866e-5	_5_	NC	_1_	8051.628	4
195		3	max	0	3	0	15	.021	4	4.437e-4	4	NC	1_	NC	1
196			min	0	2	004	6	0	1	2.402e-6	12	NC NC	1_	4224.592	4
197		4	max	.001	3	001	15	.03	4	9.718e-4	4	NC	1	NC	1
198		-	min	001	2	006	6	0	1	3.482e-6	12	NC	1_	2950.736	
199		5	max	.002	3	002	15	.039	4	1.5e-3	4	NC	1_	NC	1
200			min	002	2	008	6	0	1	4.563e-6	12	NC	1_	2313.521	4
201		6	max	.002	3	002	15	.047	4	2.028e-3	4	NC	1_	NC 1000 000	1
202			min	002	2	01	6	0	3	5.644e-6		9369.267	6	1929.298	
203		7	max	.003	3	002	15	.054	4	2.556e-3	4	NC	_1_	NC	_1_

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
204			min	002	2	011	6	0	3	6.725e-6	12	8094.711	6	1669.901	4
205		8	max	.003	3	003	15	.061	4	3.084e-3	4_	NC	2	NC	1
206			min	003	2	012	6	0	12	7.806e-6	12	7310.038	6	1480.19	4
207		9	max	.004	3	003	15	.067	4	3.612e-3	4	NC	5	NC	1
208			min	003	2	013	6	0	12	8.886e-6	12	6851.436	6	1332.465	4
209		10	max	.004	3	003	15	.074	4	4.14e-3	4	NC	5	NC	1
210			min	004	2	014	6	0	12	9.967e-6	12	6639.947	6	1211.299	4
211		11	max	.005	3	003	15	.081	4	4.668e-3	4	NC	5	NC	1
212			min	004	2	014	6	0	12	1.105e-5	12	6644.673	6	1107.5	4
213		12	max	.005	3	003	15	.088	4	5.197e-3	4	NC	5	NC	1
214			min	004	2	013	6	0	12	1.213e-5	12	6870.919	6	1015.382	4
215		13	max	.005	3	003	15	.096	4	5.725e-3	4	NC	2	NC	1
216			min	005	2	012	6	0	12	1.321e-5	12	7363.769	6	931.391	4
217		14	max	.006	3	002	15	.105	4	6.253e-3	4	NC	1	NC	1
218			min	005	2	011	6	0	12	1.429e-5	12	8230.965	6	853.369	4
219		15	max	.006	3	002	15	.115	4	6.781e-3	4	NC	1	NC	1
220			min	006	2	009	6	0	12	1.537e-5	12	9709.451	6	780.085	4
221		16	max	.007	3	001	15	.126	4	7.309e-3	4	NC	1	NC	1
222			min	006	2	007	6	0	12	1.645e-5	12	NC	1	710.936	4
223		17	max	.007	3	0	15	.139	4	7.837e-3	4	NC	1	NC	1
224			min	006	2	006	3	0	12	1.753e-5	12	NC	1	645.715	4
225		18	max	.008	3	0	15	.154	4	8.365e-3	4	NC	1	NC	1
226			min	007	2	004	3	0	12	1.861e-5	12	NC	1	584.444	4
227		19	max	.008	3	0	5	.17	4	8.893e-3	4	NC	1	NC	1
228			min	007	2	003	3	0	12	1.969e-5	12	NC	1	527.239	4
229	M4	1	max	.002	1	.007	2	0	12	9.781e-4	4	NC	1	NC	2
230			min	0	5	009	3	17	4	8.001e-6	12	NC	1	145.576	4
231		2	max	.002	1	.007	2	0	12	9.781e-4	4	NC	1	NC	2
232			min	0	5	008	3	157	4	8.001e-6	12	NC	1	157.899	4
233		3	max	.002	1	.006	2	0	12	9.781e-4	4	NC	1	NC	2
234			min	0	5	008	3	144	4	8.001e-6	12	NC	1	172.589	4
235		4	max	.002	1	.006	2	0	12	9.781e-4	4	NC	1	NC	2
236			min	0	5	007	3	13	4	8.001e-6	12	NC	1	190.257	4
237		5	max	.001	1	.005	2	0	12	9.781e-4	4	NC	1	NC	2
238			min	0	5	007	3	117	4	8.001e-6	12	NC	1	211.733	4
239		6	max	.001	1	.005	2	0	12	9.781e-4	4	NC	1	NC	2
240			min	0	5	006	3	104	4	8.001e-6	12	NC	1	238.169	4
241		7	max	.001	1	.005	2	0	12	9.781e-4	4	NC	1	NC	2
242			min	0	5	006	3	091	4	8.001e-6	12	NC	1	271.197	4
243		8	max	.001	1	.004	2	0	12	9.781e-4	4	NC	1	NC	2
244			min	0	5	005	3	079		8.001e-6		NC	1	313.202	4
245		9	max	.001	1	.004	2	0	12		4	NC	1	NC	1
246			min	0	5	005	3	067	4	8.001e-6	12	NC	1	367.767	4
247		10	max	0	1	.003	2	0	12	9.781e-4	4	NC	1	NC	1
248		1.0	min	0	5	004	3	056	4	8.001e-6	12	NC	1	440.498	4
249		11	max	0	1	.003	2	0	12	9.781e-4	4	NC	<u> </u>	NC	1
250			min	0	5	004	3	046	4	8.001e-6	12	NC	1	540.559	4
251		12	max	0	1	.003	2	0	12	9.781e-4	4	NC	1	NC	1
252			min	0	5	003	3	036	4	8.001e-6	12	NC	1	683.794	4
253		13	max	0	1	.002	2	<u>030</u>	12	9.781e-4	4	NC	1	NC	1
254		10	min	0	5	003	3	028	4	8.001e-6	12	NC	1	899.598	4
255		14	max	0	1	.002	2	<u>028</u> 0	12	9.781e-4	4	NC	1	NC	1
256		14	min	0	5	002	3	02	4	8.001e-6	12	NC	1	1247.739	4
257		15		0	1	.002	2	<u>02</u> 0	12	9.781e-4	4	NC NC	1	NC	1
258		10	max min	0	5	002	3	013	4	8.001e-6	12	NC NC	1	1865.896	
259		16		0	1	002 .001	2	013 0	12	9.781e-4	4	NC NC	1	NC	1
		10	max		5								1		
260			min	0	5	001	3	008	4	8.001e-6	12	NC		3134.329	4

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
261		17	max	0	1	0	2	0	12	9.781e-4	4	NC	1_	NC	1
262			min	0	5	0	3	004	4	8.001e-6	12	NC	1	6461.174	4
263		18	max	0	1	0	2	0	12	9.781e-4	4	NC	1	NC	1
264			min	0	5	0	3	001	4	8.001e-6	12	NC	1	NC	1
265		19	max	0	1	0	1	0	1	9.781e-4	4	NC	1	NC	1
266		10	min	0	1	0	1	0	1	8.001e-6	12	NC	1	NC	1
267	M6	1	max	.022	2	.035	2	0	1	1.531e-3	4	NC	4	NC	1
268	IVIO		min	032	3	049	3	526	4	0	1	1577.976	3	146.333	4
		2							1		_	NC			1
269			max	.021	2	.031	2	0	_	1.579e-3	4		4	NC 450,000	
270			min	<u>031</u>	3	<u>046</u>	3	484	4	0	1_	1670.737	3	159.062	4
271		3	max	.02	2	.028	2	0	1	1.628e-3	4	NC	4	NC	1
272			min	029	3	043	3	442	4	0	1_	1775.215	3	174.13	4
273		4	max	.019	2	.025	2	0	1	1.676e-3	4	NC	4	NC	1
274			min	027	3	041	3	401	4	0	1	1893.895	3	192.14	4
275		5	max	.017	2	.023	2	0	1	1.725e-3	4	NC	4	NC	1
276			min	025	3	038	3	36	4	0	1	2029.971	3	213.906	4
277		6	max	.016	2	.02	2	0	1	1.774e-3	4	NC	4	NC	1
278			min	023	3	035	3	32	4	0	1	2187.619	3	240.553	4
279		7	max	.015	2	.017	2	0	1	1.822e-3	4	NC	1	NC	1
280			min	022	3	032	3	281	4	0	1	2372.414	3	273.667	4
281		8		.014	2	.014	2	<u>201</u> 0	1	1.871e-3	4	NC	<u> </u>	NC	1
		0	max							_					
282			min	02	3	03	3	244	4	0	1_	2591.956	3_	315.549	4
283		9	max	.012	2	.012	2	0	1	1.919e-3	4	NC	_1_	NC	1
284			min	018	3	027	3	208	4	0	1_	2856.894	3	369.64	4
285		10	max	.011	2	.01	2	0	1	1.968e-3	4	NC	1_	NC	1
286			min	016	3	024	3	175	4	0	1	3182.619	3	441.274	4
287		11	max	.01	2	.008	2	0	1	2.017e-3	4	NC	1	NC	1
288			min	014	3	021	3	143	4	0	1	3592.228	3	539.098	4
289		12	max	.009	2	.006	2	0	1	2.065e-3	4	NC	1	NC	1
290			min	013	3	019	3	114	4	0	1	4122.036	3	677.903	4
291		13	max	.007	2	.004	2	0	1	2.114e-3	4	NC	1	NC	1
292		10	min	011	3	016	3	087	4	0	1	4832.598	3	884.762	4
		11							1	-			_		4
293		14	max	.006	2	.003	2	0		2.162e-3	4_	NC F000 0F4	1_	NC 4040.70	1
294			min	009	3	<u>013</u>	3	063	4	0	1_	5832.954	3	1213.79	4
295		15	max	.005	2	.002	2	0	1	2.211e-3	4_	NC	1_	NC	1
296			min	007	3	01	3	043	4	0	1_	7341.252	3	1786.827	4
297		16	max	.004	2	0	2	0	1	2.259e-3	4_	NC	_1_	NC	1
298			min	005	3	008	3	026	4	0	1	9866.608	3	2929.728	4
299		17	max	.002	2	0	2	0	1	2.308e-3	4	NC	1	NC	1
300			min	004	3	005	3	013	4	0	1	NC	1	5790.65	4
301		18	max	.001	2	0	2	0	1	2.357e-3	4	NC	1	NC	1
302			min	002	3	003	3	004	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.405e-3	4	NC	1	NC	1
304		1.0	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
	IVI <i>T</i>	1		0	1	0	1	0	1	-6.189e-4	4	NC	1		1
306			min				-		•				•	NC NC	
307		2	max	.001	3	0	2	.011	4	0	1	NC	1_	NC	1
308			min	001	2	003	3	0	1	-1.046e-4	4_	NC	1_	7969.637	4
309		3	max	.003	3	0	2	.021	4	4.098e-4	4	NC	_1_	NC	1
310			min	003	2	006	3	0	1	0	1	NC	1	4182.69	4
311		4	max	.004	3	001	15	.031	4	9.241e-4	4	NC	1_	NC	1
312			min	004	2	008	3	0	1	0	1	NC	1	2923.049	4
313		5	max	.006	3	002	15	.039	4	1.438e-3	4	NC	1	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1	2293.762	4
315		6	max	.007	3	002	15	.047	4	1.953e-3	4	NC	1	NC	1
316			min	007	2	012	3	0	1	0	1	8772.711	3	1915.107	
		7			3				-	-					
317		7	max	.008	<u>J</u>	003	15	.054	4	2.467e-3	4	NC	<u>1</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_		(n) L/y Ratio			
318			min	008	2	014	3	0	1	0	1_	7841.574	3	1660.222	
319		8	max	.01	3	003	15	.061	4	2.981e-3	4	NC	1_	NC	1
320			min	01	2	01 <u>5</u>	3	0	1	0	_1_	7291.548	3	1474.507	4
321		9	max	.011	3	003	15	.068	4	3.496e-3	_4_	NC	_1_	NC	1
322		40	min	011	2	<u>016</u>	3	0	1	0	_1_	6863.315	4_	1330.499	4
323		10	max	.013	3	003	15	.074	4	4.01e-3	4	NC	1_	NC 4040,000	1
324		44	min	012	2	017	3	0	1	0	1_	6650.838	4	1212.863	4
325		11	max	.014	3	003	15	.081	4	4.524e-3	4	NC	1	NC 4440-444	1
326		40	min	014	2	017	3	0	1	0	1_	6655.046	4	1112.414	4
327		12	max	.015	3	003	15	.088	4	5.039e-3	4	NC	1_	NC	1
328		40	min	015	2	017	3	0	1	0	1_	6881.183	4	1023.416	
329		13	max	.017	3	003	15	.095	4	5.553e-3	4	NC 7074 054	1_	NC 040,040	1
330		4.4	min	016	2	016	3	0	1	0	1_	7374.351	4_	942.243	4
331		14	max	.018	3	003	15	.104	4	6.067e-3	4	NC 0040 404	1_	NC 000.050	1
332		4.5	min	018	2	01 <u>5</u>	3	0	1	0	1_	8242.404	4_	866.652	4
333		15	max	.02	3	002	15	.113	4	6.582e-3	4	NC 0700 FCC	1_	NC 705.04	1
334		4.0	min	019	2	014	3	0	1	7 000 - 0	1_	9722.566	4_	795.34	4
335		16	max	.021	3	002	15	.123	4	7.096e-3	4	NC	1	NC 707.054	1
336		47	min	021	2	013	3	0	1	0	1_1	NC NC	1_	727.654	4
337		17	max	.022	3	0	2	.135	4	7.61e-3	4	NC NC	1	NC CC2 272	1
338		40	min	022	2	011	3	0	1	0 405 - 0	1_	NC NC	1_	663.372	4
339		18	max	.024	3	0	2	.149	4	8.125e-3	4	NC NC	1_	NC COO FOA	1
340		40	min	023	2	01	3	0	1	0 000 - 0	1_	NC NC	1_	602.534	4
341		19	max	.025	3	.002	2	.165	4	8.639e-3	4	NC	1_	NC 545,000	1
342	MO	1	min	025	2	008	3	0	1	0 2020 4	1_1	NC NC	1_	545.303	4
343	<u>M8</u>	1	max	.005	1	.024	2	0	1	8.382e-4	4_	NC NC	1_	NC 450.504	1
344			min	0	15	026	3	1 <u>65</u>	4	0 000- 4	1_1	NC NC	1_	150.564	4
345		2	max	.005	1	.023	2	0	1	8.382e-4	4_	NC NC	1_	NC 400,000	1
346			min	0	15	025	3	152	4	0	1_1	NC NC	1_	163.323	4
347		3	max	.004	1 15	.022 023	2	0 139	4	8.382e-4	<u>4</u> 1	NC NC	<u>1</u> 1	NC	4
348		1	min	0	1	<u>023</u> .02	3			0 2020 4	_		1	178.532 NC	1
349		4	max	.004	15	022	3	0	4	8.382e-4	4	NC NC	_	196.824	
350		-	min		1			126	1	0 2020 4	1_1	NC NC	<u>1</u> 1		1
351		5	max	.004		.019	2	0		8.382e-4	4		1	NC 240.050	
352 353		6	min	.003	15	02	2	<u>113</u>	1	8.382e-4	1_1	NC NC	1	219.058	1
		6	max	0	15	.018 019	3	0 101			<u>4</u> 1	NC NC	1	NC	4
354		7	min				2		1	8.382e-4	•	NC NC	1	246.425 NC	1
355			max	.003	1 15	.016	3	0	4	0.3620-4	4		1		
356		0	min	0		018		088		•		NC NC	1	280.616	4
357 358		8	max min	.003 0	1 15	.015 016	3	0 077	4	8.382e-4 0	<u>4</u> 1	NC NC	<u>1</u> 1	NC 324.099	4
359		9	max	.003	1	.014	2	<u>077</u> 0	1	8.382e-4	4	NC NC	1	NC	1
360		3	min	.003	15	015	3	065	4	0.3626-4	1	NC NC	1	380.586	4
361		10	max	.002	1	.012	2	<u>005</u> 0	1	8.382e-4	4	NC	1	NC	1
362		10	min	0	15	013	3	054	4	0.3026-4	1	NC	1	455.878	4
363		11	max	.002	1	.011	2	_ 034 0	1	8.382e-4	4	NC	1	NC	1
364			min	0	15	012	3	044	4	0.3026-4	1	NC	1	559.461	4
365		12	max	.002	1	.009	2	0	1	8.382e-4	4	NC	1	NC	1
366		14	min	0	15	01	3	035	4	0.3626-4	1	NC NC	1	707.741	4
367		13	max	.002	1	.008	2	035 0	1	8.382e-4	4	NC NC	1	NC	1
368		13	min	.002	15	009	3	027	4	0.3626-4	1	NC NC	1	931.149	4
369		14	max	.001	1	.007	2	<u>021</u> 0	1	8.382e-4	4	NC	1	NC	1
370		14	min	0	15	007	3	019	4	0.3626-4	1	NC NC	1	1291.564	
371		15	max	.001	1	.005	2	<u>019</u> 0	1	8.382e-4	4	NC	1	NC	1
372		13	min	0	15	006	3	013	4	0.3626-4	1	NC	1	1931.529	4
373		16	max	0	1	.004	2	<u>013</u> 0	1	8.382e-4	4	NC NC	1	NC	1
374		10	min	0	15	004	3	008	4	0.3626-4	1	NC	1	3244.747	_
314			THILL	U	IJ	004	J	000	4	U		INC		JZ44.747	_+

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		1
375		17	max	0	1	.003	2	0	1	8.382e-4	4	NC	1_	NC	1
376			min	0	15	003	3	004	4	0	_1_	NC	1_	6689.195	
377		18	max	0	1	.001	2	0	1	8.382e-4	_4_	NC	_1_	NC	1
378		40	min	0	15	001	3	001	4	0	1_	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	8.382e-4	4_	NC NC	1_	NC NC	1
380	N440	4	min	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
381	M10	1	max	.007	3	.01	2	0	12	1.535e-3	4	NC	1_	NC	1
382		2	min	01	_	016	2	<u>525</u>	4	1.484e-5 1.582e-3		7720.862	2	146.607	1
383		2	max	.007	3	.009		0	12		4	NC	<u>1</u> 2	NC 150.26	
384 385		3	min	01 .006	2	015 .007	2	<u>483</u> 0	12	1.407e-5 1.63e-3	<u>12</u> 4	8979.835 NC	1	159.36 NC	1
386		3	max	009	3	015	3	441	4	1.03e-3 1.331e-5	12	NC NC	1	174.458	4
387		4	max	.006	2	.006	2	0	12	1.677e-3	4	NC	1	NC	1
388		4	min	008	3	014	3	4	4	1.254e-5	12	NC	1	192.504	4
389		5		.006	2	.005	2	0	12	1.724e-3	4	NC	1	NC	1
390		5	max	008	3	014	3	359	4	1.724e-3	12	NC NC	1	214.315	4
391		6	max	.005	2	.003	2	<u>.555</u>	12	1.772e-3	4	NC	1	NC	1
392			min	007	3	013	3	32	4	1.101e-5	12	NC	1	241.016	4
393		7	max	.005	2	.002	2	0	12	1.819e-3	4	NC	1	NC	1
394		<u> </u>	min	007	3	012	3	281	4	1.024e-5	12	NC	1	274.2	4
395		8	max	.004	2	.001	2	0	12	1.866e-3	4	NC	<u> </u>	NC	1
396			min	006	3	012	3	244	4	9.474e-6	12	NC	1	316.171	4
397		9	max	.004	2	0	2	0	12	1.914e-3	4	NC	1	NC	1
398			min	006	3	011	3	208	4	8.707e-6	12	NC	1	370.379	4
399		10	max	.004	2	0	2	0	12	1.961e-3	4	NC	1	NC	1
400			min	005	3	01	3	174	4	7.94e-6	12	NC	1	442.172	4
401		11	max	.003	2	001	2	0	12	2.008e-3	4	NC	1	NC	1
402			min	004	3	009	3	143	4	7.173e-6	12	NC	1	540.22	4
403		12	max	.003	2	002	2	0	12	2.056e-3	4	NC	1	NC	1
404			min	004	3	008	3	113	4	6.407e-6	12	NC	1	679.354	4
405		13	max	.002	2	002	15	0	12	2.103e-3	4	NC	_1_	NC	1
406			min	003	3	007	3	087	4	5.64e-6	12	NC	1_	886.726	4
407		14	max	.002	2	001	15	00	12	2.15e-3	4_	NC	_1_	NC	1
408			min	003	3	006	3	063	4	4.873e-6	12	NC	1_	1216.614	4
409		15	max	.002	2	001	15	0	12	2.198e-3	4_	NC	_1_	NC	1
410			min	002	3	005	3	043	4	4.106e-6	12	NC	1_	1791.26	4
411		16	max	.001	2	001	15	0	12	2.245e-3	4	NC	1_	NC	1
412		-	min	002	3	<u>004</u>	4	026	4	3.339e-6	12	NC	1_	2937.69	4
413		17	max	0	2	0	15	0	12	2.292e-3	4_	NC	1_	NC	1
414		40	min	001	3	003	4	013	4	2.572e-6	12	NC NC	1_	5808.738	4
415		18	max	0	2	0	15	0		2.34e-3	4	NC NC	1_	NC NC	1
416		10	min	0	3	002	4	004	4	1.806e-6	<u>12</u>	NC NC	1	NC NC	1
417		19	max	0	1	0	1	0	1	2.387e-3	4	NC NC	1	NC NC	1
418	M11	1	min	<u> </u>	1	<u> </u>	1	<u> </u>	1	1.039e-6 -2.365e-7	12	NC NC	1	NC NC	1
420	IVI I I		max min	0	1	0	1	0	1	-6.139e-4	<u>10</u> 4	NC NC	1	NC NC	1
421		2	max	0	3	0	15	.011	4	-1.321e-6	12	NC	1	NC	1
422			min	0	2	002	4	0	12	-9.546e-5	4	NC	1	8032.111	4
423		3	max	0	3	002 001	15	.021	4	4.253e-4	5	NC	1	NC	1
424		-	min	0	2	004	4	0	10	-3.021e-5	1	NC	1	4216.113	
425		4	max	.001	3	004	15	.03	4	9.421e-4	5	NC	1	NC	1
426		+-	min	001	2	002	4	<u>.03</u>	10	-4.433e-5	1	NC	1	2946.474	4
427		5	max	.002	3	000 002	15	.039	4	1.46e-3	4	NC	1	NC	1
428			min	002	2	002	4	0	10	-5.844e-5	1	NC	1	2311.854	_
429		6	max	.002	3	003	15	.047	4	1.978e-3	4	NC	1	NC	1
430			min	002	2	00 <u>5</u> 01	4	0	1	-7.256e-5	1	9134.448	4	1929.639	-
431		7	max	.003	3	003	15	.054	4	2.497e-3	4	NC	1	NC	1
			max	.000		.000		.00-		10700		.,,			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
432			min	002	2	012	4	0	1	-8.667e-5	1_	7906.472	4	1672.003	
433		8	max	.003	3	003	15	.061	4	3.015e-3	4	NC	2	NC	1
434			min	003	2	013	4	0	1	-1.008e-4	1_	7151.092	4_	1483.934	
435		9	max	.004	3	003	15	.067	4	3.533e-3	4_	NC	5_	NC	1
436		40	min	003	2	014	4	074	1	-1.149e-4	1_1	6711.187	4_	1337.774	4
437		10	max	.004	3	004	15	.074	4	4.052e-3	4	NC 6511 107	5	NC	4
438 439		11	min	004 .005	3	014 004	15	<u> </u>	4	-1.29e-4	<u>1</u> 4	6511.197 NC	<u>4</u> 5	1218.097 NC	1
440		+	max	004	2	004 015	4	0	1	4.57e-3 -1.431e-4	<u>4</u> 1	6521.933	4	1115.686	
441		12	max	.005	3	015 004	15	.088	4	5.089e-3	4	NC	5	NC	1
442		12	min	004	2	004 014	4	001	1	-1.572e-4	1	6749.362	4	1024.811	4
443		13	max	.005	3	003	15	.095	4	5.607e-3	4	NC	2	NC	1
444		13	min	005	2	013	4	002	1	-1.714e-4	1	7238.352	4	941.877	4
445		14	max	.006	3	003	15	.104	4	6.125e-3	4	NC	1	NC	1
446		17	min	005	2	012	4	002	1	-1.855e-4	1	8095.323	4	864.679	4
447		15	max	.006	3	003	15	.113	4	6.644e-3	4	NC	1	NC	1
448			min	006	2	01	4	003	1	-1.996e-4	1	9553.835	4	791.96	4
449		16	max	.007	3	002	15	.124	4	7.162e-3	4	NC	1	NC	1
450			min	006	2	009	4	003	1	-2.137e-4	1	NC	1	723.101	4
451		17	max	.007	3	002	15	.137	4	7.681e-3	4	NC	1	NC	1
452			min	006	2	006	4	004	1	-2.278e-4	1	NC	1	657.904	4
453		18	max	.008	3	001	15	.151	4	8.199e-3	4	NC	1	NC	1
454			min	007	2	004	3	004	1	-2.419e-4	1	NC	1	596.412	4
455		19	max	.008	3	0	10	.167	4	8.717e-3	4	NC	1	NC	1
456			min	007	2	003	3	005	1	-2.561e-4	1	NC	1	538.779	4
457	M12	1	max	.002	1	.007	2	.005	1	9.242e-4	5	NC	1_	NC	2
458			min	0	12	009	3	167	4	-9.64e-5	1	NC	1_	148.762	4
459		2	max	.002	1	.007	2	.005	1	9.242e-4	5	NC	1_	NC	2
460			min	0	12	008	3	154	4	-9.64e-5	1	NC	1_	161.358	4
461		3	max	.002	1	.006	2	.004	1	9.242e-4	_5_	NC	_1_	NC	2
462			min	0	12	008	3	<u>141</u>	4	-9.64e-5	1_	NC	1_	176.373	4
463		4	max	.002	1	.006	2	.004	1	9.242e-4	5	NC	1_	NC	2
464		-	min	0	12	007	3	128	4	-9.64e-5	<u>1</u>	NC NC	1_	194.432	4
465		5	max	.001	1	.005	2	.004	1	9.242e-4	5_	NC	1_	NC	2
466			min	0	12	007	3	11 <u>5</u>	4	-9.64e-5	1_	NC NC	1_	216.382	4
467 468		6	max	.001 0	1 12	.005 006	3	.003 102	1 4	9.242e-4 -9.64e-5	<u>5</u> 1	NC NC	1	NC 243.402	2
469		7	min		1	.005	2	.003	1	9.242e-4	5	NC NC	1	NC	2
470			max min	.001 0	12	005 006	3	089	4	-9.64e-5	1	NC NC	1	277.159	4
471		8	max	.001	1	.004	2	.002	1	9.242e-4	5	NC	1	NC	2
472		-	min		12	005	3	077	4	-9.64e-5		NC	1	320.091	4
473		9	max	.001	1	.004	2	.002	1	9.242e-4	5	NC	1	NC	1
474		Ť	min	0	12	005	3	066	4	-9.64e-5	1	NC	1	375.862	4
475		10	max	0	1	.003	2	.002	1	9.242e-4	5	NC	1	NC	1
476			min	0	12	004	3	055	4	-9.64e-5	1	NC	1	450.198	4
477		11	max	0	1	.003	2	.001	1	9.242e-4	5	NC	1	NC	1
478			min	0	12	004	3	045	4	-9.64e-5	1	NC	1	552.468	4
479		12	max	0	1	.003	2	.001	1	9.242e-4	5	NC	1	NC	1
480			min	0	12	003	3	035	4	-9.64e-5	1	NC	1	698.865	4
481		13	max	0	1	.002	2	0	1	9.242e-4	5	NC	1	NC	1
482			min	0	12	003	3	027	4	-9.64e-5	1	NC	1	919.435	4
483		14	max	0	1	.002	2	0	1	9.242e-4	5	NC	1	NC	1
484			min	0	12	002	3	019	4	-9.64e-5	1	NC	1	1275.265	4
485		15	max	0	1	.002	2	0	1	9.242e-4	5	NC	1	NC	1
486			min	0	12	002	3	013	4	-9.64e-5	1	NC	1	1907.078	4
487		16	max	0	1	.001	2	0	1	9.242e-4	5	NC	1_	NC	1
488			min	0	12	001	3	008	4	-9.64e-5	1	NC	1	3203.538	4

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
489		17	max	0	1	0	2	0	1	9.242e-4	5	NC	1_	NC	1
490			min	0	12	0	3	004	4	-9.64e-5	1	NC	1	6603.922	4
491		18	max	0	1	0	2	0	1	9.242e-4	5	NC	1	NC	1
492			min	0	12	0	3	001	4	-9.64e-5	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	9.242e-4	5	NC	1	NC	1
494			min	0	1	0	1	0	1	-9.64e-5	1	NC	1	NC	1
495	M1	1	max	.01	3	.107	2	.555	4	8.13e-3	2	NC	1	NC	1
496			min	006	2	025	3	0	12	-1.783e-2	3	NC	1	NC	1
497		2	max	.01	3	.049	2	.538	4	5.376e-3	4	NC	4	NC	1
498			min	006	2	008	3	004	1	-8.823e-3	3	2002.705	2	NC	1
499		3		.01	3	.016	3	<u>004</u> .521	4	9.418e-3	4	NC	5	NC	1
		3	max												
500		-	min	006	2	012	2	006	1	-1.083e-4	3	969.074	2	7255.588	5
501		4	max	.01	3	.054	3	.503	4	8.096e-3	4_	NC	5	NC NC	1
502		_	min	006	2	081	2	005	1	-3.797e-3	3	615.255	2	5278.248	
503		5_	max	.01	3	.101	3	.484	4	6.773e-3	_4_	NC	_5_	NC	1
504			min	006	2	1 <u>5</u> 1	2	004	1	-7.486e-3	3	446.215	2	4289.374	5
505		6	max	.009	3	.151	3	.465	4	9.813e-3	2	NC	<u>15</u>	NC	1
506			min	006	2	22	2	002	1	-1.117e-2	3	352.775	2	3687.618	5
507		7	max	.009	3	.199	3	.445	4	1.308e-2	2	NC	15	NC	1
508			min	006	2	281	2	0	3	-1.486e-2	3	297.457	2	3249.598	4
509		8	max	.009	3	.238	3	.425	4	1.635e-2	2	NC	15	NC	1
510			min	005	2	329	2	0	12	-1.855e-2	3	264.666	2	2912.837	4
511		9	max	.009	3	.263	3	.404	4	1.865e-2	2	NC	15	NC	1
512		Ť	min	005	2	359	2	0	1	-1.891e-2	3	247.567	2	2680.024	
513		10	max	.009	3	.272	3	.381	4	2.031e-2	2	NC	15	NC	1
514		10	min	005	2	369	2	0	12	-1.706e-2	3	242.585	2	2594.45	4
		11			3		3					NC	15		4
515		11	max	.008		.265		.357	4	2.197e-2	2			NC OCAO OAO	1
516		40	min	005	2	359	2	0	12	-1.521e-2	3	248.559	2	2619.912	
517		12	max	.008	3	.243	3	.33	4	2.129e-2	2	NC	15	NC	1
518		10	min	005	2	327	2	0	1	-1.306e-2	3	267.658	2	2758.736	
519		13	max	.008	3	.207	3	.301	4	1.708e-2	2	NC	<u>15</u>	NC	1
520			min	005	2	276	2	0	1	-1.045e-2	3	304.687	2	3184.268	4
521		14	max	.008	3	<u>.161</u>	3	.268	4	1.286e-2	2	NC	15	NC	1
522			min	005	2	212	2	0	12	-7.846e-3	3	368.126	2	4102.807	4
523		15	max	.008	3	.11	3	.235	4	8.647e-3	2	NC	5	NC	1
524			min	005	2	142	2	0	12	-5.239e-3	3	477.612	2	6097.817	4
525		16	max	.007	3	.057	3	.202	4	7.22e-3	4	NC	5	NC	1
526			min	005	2	071	2	0	12	-2.631e-3	3	680.995	2	NC	1
527		17	max	.007	3	.006	3	.171	4	8.345e-3	4	NC	5	NC	1
528			min	005	2	007	2	0	12	-2.347e-5	3	1117.06	2	NC	1
529		18	max	.007	3	.047	2	.144	4	6.915e-3	2	NC	4	NC	1
530		10	min	005	2	04	3	0	12		3	2377.787	2	NC	1
531		19	max	.007	3	.094	2	.12	4	1.387e-2	2	NC	1	NC	1
532		19	min	005	2	083	3	0	1	-6.018e-3	3	NC	1	NC	1
	N/E	4								0			•		
533	<u>M5</u>	1	max	.031	3	.217	2	.555	4		1_1	NC NC	1	NC NC	1
534			min	022	2	014	3	<u> </u>	1	-8.007e-6	4	NC NC	1_	NC NC	1
535		2	max	.031	3	.097	2	.542	4	4.838e-3	4_	NC	5	NC NC	1
536			min	022	2	.002	15	0	1	0	1_	962.385	2	NC	1
537		3	max	.031	3	.051	3	.526	4	9.534e-3	_4_	NC	5	NC	1
538			min	022	2	038	2	0	1	0	1_	453.533	2	5927.213	
539		4	max	.03	3	.142	3	.507	4	7.767e-3	4	NC	15	NC	1
540			min	021	2	199	2	0	1	0	1	278.223	2	4612.955	4
541		5	max	.029	3	.263	3	.487	4	6.e-3	4	9585.131	15	NC	1
542			min	021	2	372	2	0	1	0	1	196.184	2	3991.955	4
543		6	max	.029	3	.398	3	.466	4	4.233e-3	4	7368.563	15	NC	1
544			min	021	2	544	2	0	1	0	1	151.848	2	3610.353	_
545		7	max	.028	3	.528	3	.445	4	2.466e-3	4	6090.733	15	NC	1
UTU			παλ	.020	J	.020				<u></u>		0000.700	10	110	<u> </u>

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio			
546			min	02	2	7	2	0	1	0	1_	126.089	2	3295.857	
547		8	max	.028	3	.637	3	.424	4	6.994e-4	4	5348.719	<u>15</u>	NC	1
548			min	02	2	824	2	0	1	0	1_	111.047	2	2966.259	
549		9	max	.027	3	.707	3	.404	4	0	1_	4968.583	15	NC 0070 040	1
550		40	min	02	2	903	2	0	1	-5.979e-6	5	103.308	2	2672.216	
551		10	max	.026	3	.731	3	.381	4	0	1	4854.152 101.058	<u>15</u>	NC 2611.601	4
552		11	min	019 .026	3	<u>93</u> .712	3	<u> </u>	4	-5.814e-6	<u>5</u> 1	4968.904	<u>2</u> 15	NC	1
553 554			max	019	2	903	2	<u></u> 0	1	-5.648e-6	5	103.752	2	2651.869	
555		12	max	.025	3	- <u>.903</u> .65	3	.331	4	5.871e-4	4	5349.462	15	NC	1
556		12	min	019	2	82	2	0	1	0	1	112.511	2	2709.306	-
557		13	max	.024	3	.55	3	.301	4	2.071e-3	4	6092.199	15	NC	1
558		10	min	018	2	686	2	0	1	0	1	129.908	2	3129.996	
559		14	max	.024	3	.426	3	.268	4	3.555e-3	4	7371.356	15	NC	1
560			min	018	2	521	2	0	1	0.0000	1	160.503	2	4266.364	
561		15	max	.023	3	.288	3	.232	4	5.039e-3	4	9590.552	15	NC	1
562			min	018	2	343	2	0	1	0	1	215.171	2	7437.126	4
563		16	max	.022	3	.148	3	.197	4	6.523e-3	4	NC	15	NC	1
564			min	018	2	17	2	0	1	0	1	321.505	2	NC	1
565		17	max	.022	3	.017	3	.165	4	8.007e-3	4	NC	5	NC	1
566			min	017	2	021	2	0	1	0	1	561.485	2	NC	1
567		18	max	.022	3	.089	2	.139	4	4.064e-3	4	NC	5	NC	1
568			min	017	2	093	3	0	1	0	1	1257.789	2	NC	1
569		19	max	.022	3	.178	2	.12	4	0	1	NC	1	NC	1
570			min	017	2	191	3	0	1	-4.948e-6	4	NC	1	NC	1
571	M9	1	max	.01	3	.107	2	.555	4	1.783e-2	3	NC	_1_	NC	1
572			min	006	2	025	3	0	1	-8.13e-3	2	NC	1_	NC	1
573		2	max	.01	3	.049	2	.541	4	8.823e-3	3_	NC	4_	NC	1
574			min	006	2	008	3	0	12	-3.985e-3	2	2002.705	2	NC	1
575		3	max	.01	3	.016	3	.525	4	9.511e-3	4	NC	_5_	NC	1
576			min	006	2	012	2	0	12	-2.102e-5	<u>10</u>	969.074	2	6182.747	4
577		4	max	.01	3	.054	3	.506	4	7.532e-3	5_	NC 045.055	5_	NC 4740,000	1
578		-	min	006	2	081	2	0	12	-3.277e-3	2	615.255	2	4718.233	
579		5	max	.01	3	.101	3	.487	4	7.486e-3	3	NC 446.045	5_	NC	1
580		6	min	006	2	151	2	0	12	-6.545e-3	2	446.215 NC	<u>2</u> 15	4009.575 NC	
581 582		6	max	.009 006	3	.151 22	2	466 0	12	1.117e-2 -9.813e-3	2	352.775	2	3577.051	4
583		7	min	.009	3	<u>22</u> .199	3	.445	4	1.486e-2	3	NC	15	NC	1
584			max	006	2	281	2	<u>.445</u>	1	-1.308e-2	2	297.457	2	3247.201	4
585		8	max	.009	3	.238	3	.424	4	1.855e-2	3	NC	15	NC	1
586		0	min		2	329	2	0		-1.635e-2		264.666	2		
587		9	max	.009	3	.263	3	.404	4	1.891e-2	3	NC	15	NC	1
588			min	005	2	359	2	0	12	-1.865e-2	2	247.567	2	2672.489	_
589		10	max	.009	3	.272	3	.381	4	1.706e-2	3	NC	15	NC	1
590			min	005	2	369	2	0	1	-2.031e-2	2	242.585	2	2595.679	4
591		11	max	.008	3	.265	3	.357	4	1.521e-2	3	NC	15	NC	1
592			min	005	2	359	2	0	1	-2.197e-2	2	248.559	2	2629.113	4
593		12	max	.008	3	.243	3	.331	4	1.306e-2	3	NC	15	NC	1
594			min	005	2	327	2	0	12	-2.129e-2	2	267.658	2	2736.091	4
595		13	max	.008	3	.207	3	.301	4	1.045e-2	3	NC	15	NC	1
596			min	005	2	276	2	0	10	-1.708e-2	2	304.687	2	3182.945	4
597		14	max	.008	3	.161	3	.267	4	7.846e-3	3	NC	15	NC	1
598			min	005	2	212	2	001	1	-1.286e-2	2	368.126	2	4233.115	5
599		15	max	.008	3	.11	3	.233	4	5.239e-3	3	NC	5	NC	1
600			min	005	2	142	2	003	1	-8.647e-3	2	477.612	2	6694.944	5
601		16	max	.007	3	.057	3	.199	4	6.509e-3	5	NC	5	NC	1
602			min	005	2	071	2	005	1	-4.433e-3	2	680.995	2	NC	1

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
603		17	max	.007	3	.006	3	.167	4	8.124e-3	4	NC	5	NC	1
604			min	005	2	007	2	005	1	-3.656e-4	1	1117.06	2	NC	1
605		18	max	.007	3	.047	2	.141	4	3.975e-3	5	NC	4	NC	1
606			min	005	2	04	3	004	1	-6.915e-3	2	2377.787	2	NC	1
607		19	max	.007	3	.094	2	.12	4	6.018e-3	3	NC	1	NC	1
608			min	005	2	083	3	0	12	-1.387e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)		
4855	1.0	0.65	3156		

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status	
Steel	2559	6071	0.42	Pass	
Concrete breakout	5118	10231	0.50	Pass	
Adhesive 5118		8093	0.63	Pass (Governs)	
Shear Factored Load, V _{ua} (lb)		Design Strength, øVn (lb)	Ratio	Status	
Steel	1784	3156	0.57	Pass (Governs)	
T Concrete breakout x+	3567	8641	0.41	Pass	
Concrete breakout y-	1784	22862	0.08	Pass	
Pryout	3567	20601	0.17	Pass	
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status	

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.