Лабораторная работа 5

Модель эпидемии (SIR)

Извекова Мария Петровна

Содержание

Цель работы	
Задание	6
Выполнение лабораторной работы	7
Реализация модели в xcos	7
Реализация модели с помощью блока Modelica в xcos	12
Упражнение	15
Задание для самостоятельного выполнения	15
Выводы	21

Список иллюстраций

1	Фиксирование переменных	8
2	Готовая модель	9
3	Конечное время интегрирования	11
4	Результат моделирования	12
5	Фиксированные переменные	13
6	Функция generic	14
7	Результат моделирования	14
8	Время симмуляции	15
9	Результат моделирования	15
10	Готовая модель	16
11	Результат моделирования	17
12	Модель с блоком	18
13	Результат моделирования при µ=0.1	19
14	Результат моделирования при µ=0.9	20
15	Результат моделирования при µ=0.1	20
16	Результат моделирования при μ=0.9	20

Список таблиц

Цель работы

Построить модель SIR в xcos и OpenModelica.

Задание

- 1. Реализовать модель SIR в в хсоз;
- 2. Реализовать модель SIR с помощью блока Modelica в в xcos;
- 3. Реализовать модель SIR в OpenModelica;
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение лабораторной работы

Задача о распространении эпидемии описывается системой дифференциальных уравнений:

$$\begin{cases} \dot{s}(t) = -\beta s(t)i(t), \\ \dot{i}(t) = \beta s(t)i(t) - \nu i(t), \\ \dot{r}(t) = \nu i(t) \end{cases}$$

где β - скорость распространения, ν - скорость выздоравления

Реализация модели в хсоѕ

Зафиксируем начальные данные: β = 1 ν = .3 s(0)=0.999, r(0)=0, i(0)=0.001 В меню Моделирование, Установить контекст зададим значения переменных β и ν (рис. [-@fig:001]).

Рис. 1: Фиксирование переменных

Для реализации модели (рис. [-@fig:002]) потребуются следующие блоки хсоз: $CLOCK_c$ — запуск часов модельного времени; CSCOPE — регистрирующее устройство для построения графика; $TEXT_f$ — задаёт текст примечаний; MUX — мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых; $INTEGRAL_m$ — блок интегрирования; $GAINBLK_f$ — в данном случае позволяет задать значения коэффициентов β и ν ; SUMMATION — блок суммирования; $PROD_f$ — поэлементное произведение двух векторов на входе блока.

Рис. 2: Готовая модель

В параметрах верхнего и среднего блока интегрирования необходимо задать начальные значения s(0)=0,999 и i(0)=0,001 (рис. [-@fig:003],[-@fig:004]).

В параметре нижнего блока интегрирования оставляем начально значение r(0)=0 (рис. [-@fig:005]).

В параметре суммы задаем следующие значения (рис. [-@fig:006]).

В меню Моделирование, Установка зададим конечное время интегрирования, равным времени моделирования, в данном случае 30 (рис. [-@fig:007]).

Рис. 3: Конечное время интегрирования

Результат моделирования представлен на рис. [-@fig:008], где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия определяет r(t) — динамику численности выздоровевших особей, наконец, зеленая линия определяет i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 4: Результат моделирования

Реализация модели с помощью блока Modelica в xcos

Готовая модель SIR представлена на рис. [-@fig:009].

Для реализации модели SIR с помощью языка Modelica помимо блоков CLOCK_c, CSCOPE, TEXT_f и MUX требуются блоки CONST_m — задаёт константу; MBLOCK (Modelica generic) — блок реализации кода на языке Modelica. Задаём значения переменных β и ν (puc. [-@fig:001]).

Параметры блока Modelica представлены на рис. [-@fig:010],[-@fig:011]. Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

Рис. 5: Фиксированные переменные

Рис. 6: Функция generic

В результате получаем график (рис. [-@fig:012]), построенный с помощью блока Modelica идентичный графику (рис. [-@fig:008]), построенному без них.

Рис. 7: Результат моделирования

Упражнение

В качестве упражнения нам надо построить модель SIR на OpenModelica. Синтаксис почти такой же как и на Modelica. Нужно задать параметры, начальные значения и систему дифференциальных уравнений.

Теперь выполним симуляции, задав конечное время 30 с (рис. [-@fig:013]).

Рис. 8: Время симмуляции

В результате получаем следующий график (рис. [-@fig:014]). Он идентичен предыдущим графикам выполненным в хсоз.

Рис. 9: Результат моделирования

Задание для самостоятельного выполнения

Предположим, что в модели SIR учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождае-

мость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

$$\begin{cases} \dot{s}(t) = -\beta s(t)i(t) + \mu (N - s(t)), \\ \dot{i}(t) = \beta s(t)i(t) - \nu i(t) - \mu i(t), \\ \dot{r}(t) = \nu i(t) - \mu r(t) \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости. Реализуем эту модель в хсоs. Тут нам понадобятся три блока суммирования и 4 блока констант (добавляется константа ν).

Рис. 10: Готовая модель

Задаем параметры

```
You may enter here scilab instructions to define symbolic parar definitions using Scilab instructions.

These instructions are evaluated once confirmed (i.e. you click diagram is run.

beta = 1, nu=.3, mu=.1
```

В результате получаем следующий график (рис. [-@fig:016]).

Рис. 11: Результат моделирования

Теперь реализуем модель SIR с учетом демографических процессов в хсоз с помощью блоков Modelica (рис. [-@fig:017]).

Рис. 12: Модель с блоком

Параметры блока Modelica представлены на рис. [-@fig:016],[-@fig:017]. Переменные на входе ("beta", "nu", "mu") и выходе ("s", "i", "r") блока заданы как внешние ("E").

В результате получаем следующий график (рис. [-@fig:021]).

Рис. 13: Результат моделирования при μ=0.1

Рис. 14: Результат моделирования при μ=0.9

Реализуем модель SIR с учетом демографических процессов на OpenModelica.

Рис. 15: Результат моделирования при μ=0.1

Рис. 16: Результат моделирования при μ=0.9

Исходя из анализа графиков, можно сделать вывод, что чем выше значение любого из параметров, тем быстрее система достигает стационарного состояния. При высоком коэффициенте заражения β система быстро проходит через пик развития эпидемии и достигает стационарного состояния.

Выводы

В процессе выполнения данной лабораторной работы была построена модель SIR в xcos и OpenModelica