Course Logistics

Optimization and Computational Linear Algebra for Data Science

The teaching team Website

Lecturer: Marylou Gabrié – mgabrie at nyu.edu
 Office Hours: Mondays 3-4pm (Zoom) + by appointment

Sections leaders:

Colin Wan	Ying Wang	Zahra Kadkhodaie
Tuesdays 8am	Tuesdays 9am	Tuesdays 4pm
O.H.: Wednesday 2-3pm	O.H.: Tuesdays 10-11am	O.H.: Tuesdays 5-6pm

Website marylou-gabrie.github.io/linalg-for-ds.html

Course components

Three main components:

1. Lectures

Introduces the concepts

2. Recitations

Practice!

3. Homeworks

Helps you master concepts and methods

Course components

Three main components:

Lectures

Introduces the concepts

2. Recitations

Practice!

3. Homeworks

Helps you master concepts and methods

- Feedback, remarks about the lectures / recitations / homeworks ... :
 - email me!
 - link for anonymous feedback on the course's website.

Course components

Three main components:

Lectures

Introduces the concepts

2. Recitations

Practice!

3. Homeworks

Helps you master concepts and methods

- Feedback, remarks about the lectures / recitations / homeworks ... :
 - email me!
 - link for anonymous feedback on the course's website.

Grades:

- 1. Weekly homeworks (40%)
- 2. Exams: Midterm (25%) + Final (35%)

Weekly timeline

Homeworks

Homeworks questions are available on the course's webpage and have to be submitted on Gradescope.

Homeworks

Homeworks questions are available on the course's webpage and have to be submitted on Gradescope.

- We will not accept late homeworks.
- I encourage you to type your homeworks using LaTeX. Some instructions and template available on the course's webpage.
- Otherwise, you can scan your handwritten work. It has to be legible!!!

Midterm and Final

- **Midterm** (\sim mid-October) and **Final** will be «in-person exams» (unless something changes).
- Limited time and open book (notes are ok / search the web is not ok)

Check out the syllabus on the course webpage!

Questions on logistics?

Contents

- Linear algebra
 About 2/3 of the lectures
- 2. Convex optimization
 About 1/3 of the lectures
- 3. Overview of the lectures
 A quick look at the menu

Linear algebra

Linear algebra 1/1

Why linear algebra?

« Linear algebra \simeq geometry in arbitrary dimension »

Why do we need to do geometry?

- In many case, our data is a collection of « data points » that are points (x_1, \ldots, x_n)
- To understand the structure of our data, we have to investigate the geometry of our data points: are they divided into clusters? are they «aligned»?
- When n=1,2,3, one can easily plot our data, but what about n=10000?

Linear algebra 2/

Applications

You will learn linear algebra, while studying applications for data science such as:

- Data compression
- Principal component analysis

Find directions along which the variance of the data is maximal

- Dimensionality reduction Reduce the dimension of a dataset while preserving its structure
- Linear regression
- Google's Page Rank and Markov chains

Ranking any objects that can be compared!

Linear algebra 3

Optimization

Optimization 4/

Optimization

In machine learning, we often have to minimize functions

$$f(\theta) = \operatorname{Loss}(\operatorname{data}, \operatorname{model}_{\theta})$$
 with respect to $\theta \in \mathbb{R}^n$.

- For n = 1, 2, one could plot f to find the minimizer.
- This is intractable for larger dimension.

We will

- focus on convex cost functions f.
- study gradient descent algorithms to minimize *f*.

Optimization 5,

Overview of the lectures

Overview of the lectures 6/

Outline

- Vectors and vector spaces
- 2. Linear transformations and matrices
- 3. The rank
- 4. Norm and inner product
- 5. Eigenvalues, eigenvectors and Markov chains
- 6. The spectral theorem and PCA
- 7. Graphs and Linear Algebra
- 8. Convex functions
- Linear regression
- 10. Optimality conditions
- 11. Gradient descent

Overview of the lectures 7/1