REAL ANALYSIS SOLUTIONS TO ROSS §10

PAUL L. BAILEY

Exercise 1 (10.6.(a)). Let (s_n) be a sequence such that

$$|s_{n+1} - s_n| < \frac{1}{2^n}$$
 for all $n \in \mathbb{N}$.

Show that (s_n) is a Cauchy sequence.

Lemma 1. Let $m, n \in \mathbb{N}$ with 2 < m < n. Then

$$\sum_{i=m+1}^{n} \frac{1}{2^i} < \frac{1}{2^m} < \frac{1}{m}.$$

Proof of Lemma. We prove the first inequality by induction on k = n - m. If k = 1, then our statement reads $\frac{1}{2^{m+1}} < \frac{1}{2^m}$, which is true.

Suppose that our proposition is true for differences of size k-1. Then

$$\sum_{i=m+2}^{n} \frac{1}{2^i} < \frac{1}{2^{m+1}}.$$

Adding $\frac{1}{2^{m+1}}$ to both sides gives

$$\sum_{i=m+1}^{n} \frac{1}{2^i} < \frac{2}{2^{m+1}} = \frac{1}{2^m}.$$

For the second inequality, it suffices to show that for m>2 we have $m<2^m$. For m=3, we have 3<4. By induction, $m-1<2^{m-1}$. Then $m<2^{m-1}+1<2^{m-1}+2^{m-1}=2^m$. \square

Proof of Exercise. Let $\epsilon > 0$ and let $N \in \mathbb{N}$ be so large that $\frac{1}{\epsilon} < N$. Let m, n > N; assume that n > m. Then

$$|s_n - s_m| = |s_n - s_{n-1} + s_{n-1} - s_{n-2} + \dots + s_{m+1} - s_m|$$

$$\leq |s_n - s_{n-1}| + \dots + |s_{m+1} - s_m|$$

$$< \frac{1}{2^{n-1}} + \dots + \frac{1}{2^m}$$

$$< \frac{1}{2^{m-1}}$$

$$< \frac{1}{m-1} \leq \frac{1}{N} < \epsilon.$$

This shows that (s_n) is a Cauchy sequence.

Date: January 24, 2019.

1

Exercise 2 (10.6.(b)). Show that there exists a sequence (s_n) such that $|s_{n+1} - s_n| < \frac{1}{n}$ for all $n \in \mathbb{N}$, and yet (s_n) is not a Cauchy sequence.

Proof. Let $s_n = \sum_{i=1}^n \frac{1}{2n}$. Then for $n \in \mathbb{N}$ we have $|s_{n+1} - s_n| = \frac{1}{2n+2} < \frac{1}{n}$. However, this sequence is unbounded, so it cannot be a Cauchy sequence.

Let $M \in \mathbb{R}$, and let N be so large that N > 2M. We claim that $s_{2^N} > 1 + \frac{N}{2} > M$; this is because

$$\sum_{i=1}^{2^{N}} \frac{1}{i} = 1 + \sum_{j=1}^{N} \sum_{i=2^{j-1}+1}^{2^{j}} \frac{1}{i}$$

$$> 1 + \sum_{j=1}^{N} \sum_{i=2^{j-1}+1}^{2^{j}} \frac{1}{2^{j}}$$

$$= 1 + N(2^{j} - 2^{j-1}) \frac{1}{2^{j}}$$

$$= 1 + \frac{N}{2}.$$

Exercise 3 (10.7). Let S be a bounded nonempty subset of \mathbb{R} and suppose that $\sup S \notin S$. Show that there is a nondecreasing sequence (s_n) of points in S such that $\lim s_n = \sup S$.

Proof. Since $\sup S$ is the least upper bound for S, the set $(\sup S - \frac{1}{n}, \sup S) \cap S$ is nonempty, for otherwise $\sup S - \frac{1}{n}$ would be an upper bound for S. For every $n \in \mathbb{N}$, let $s_n \in (\sup S - \frac{1}{n}, \sup S) \cap S$; that is, $s_n \in S$ with $|s_n - \sup S| < \frac{1}{n}$. Then (s_n) is a sequence in S which clearly converges to $\sup S$.

Exercise 4 (10.8). Let (s_n) be a nondecreasing sequence of positive numbers and define $\sigma_n = \frac{1}{n} \sum_{i=1}^n s_i$. Show that (σ_n) is a nondecreasing sequence.

Remark. Note that if (σ_n) converges, we would be well-advised to view its limit as the average of the infinite number of numbers s_n .

Proof. We show that $\sigma_n \leq \sigma_{n+1}$, i.e., $\sigma_{n+1} - \sigma_n \geq 0$. Since s_n is nondecreasing, an easy induction shows that

$$ns_{n+1} \ge \sum_{i=1}^{n} s_i.$$

Thus

$$\sigma_{n+1} - \sigma_n = \frac{\sum_{i=1}^{n+1} s_i}{n+1} - \frac{\sum_{i=1}^{n} s_i}{n}$$

$$= \frac{n \sum_{i=1}^{n+1} s_i - (n+1) \sum_{i=1}^{n} s_i}{n(n+1)}$$

$$= \frac{n s_{n+1} - \sum_{i=1}^{n} s_i}{n(n+1)}$$

$$\geq 0.$$

Exercise 5 (10.10). Let $s_1 = 1$ and $s_{n+1} = \frac{(s_{n+1})}{3}$. Show that (s_n) converges and find the limit.

Proof. If s_n is positive, then so is s_{n+1} ; since s_1 is positive, $s_n > 0$ for all $n \in \mathbb{N}$ by induction.

Next we show that $s_n \geq \frac{1}{2}$ for all $n \in \mathbb{N}$. Proceed by induction; $s_1 \geq \frac{1}{2}$, and assume that $s_n \ge \frac{1}{2}$. Then $s_{n+1} = \frac{s_n+1}{3} \ge \frac{3/2}{3} = \frac{1}{2}$. Next we show that $s_{n+1} < s_n$. Since $s_n \ge \frac{1}{2}$, we have $1 \le 2s_n$. Thus $\sigma_{n+1} = \frac{1}{2}$.

 $\frac{s_n+1}{3} \le \frac{s_n+2s_n}{3} = s_n.$

Since (s_n) is nonincreasing, we see that $s_n \in [\frac{1}{2}, 1]$ for all $n \in \mathbb{N}$. So (s_n) is a bounded monotone sequence, so its limit exists. Let $s = \lim s_n$. We know that $\lim s_{n+1} = \lim s_n$, so $s = \lim s_{n+1} = \lim \frac{s_n+1}{3} = \frac{s+1}{2}$. Solving this for s gives $s = \frac{1}{2}$.

Exercise 6 (10.12). Let $t_1 = 1$ and $t_{n+1} = [1 - \frac{1}{(n+1)^2}]t_n$ for $n \ge 1$. Show that (t_n) converges, and find the limit.

Proof. Let $a_n = 1 - \frac{1}{(n+1)^2}$. Since $a_n > 0$ for all $n \in \mathbb{N}$ and $t_1 > 0$, we can see that $t_n > 0$ for all $n \in \mathbb{N}$. Since $a_n < 1$ for all $n \in \mathbb{N}$, we see that (t_n) is nonincreasing. Thus t_n is a bounded monotone sequence, so its limit exists; say $t = \lim t_n$. Then

$$t = \lim t_{n+1} = \lim a_n t_n = \lim a_n \lim t_n = t.$$

That was not helpful.

Claim: $t_n = \frac{n+1}{2n}$.

True for n=1. By induction, $t_{n-1}=\frac{n}{2(n-1)}$. Then

$$t_n = a_{n-1}t_{n-1}$$

$$= (1 - \frac{1}{n^2})(\frac{n}{2(n-1)})$$

$$= \frac{n}{2(n-1)} - \frac{1}{2n(n-1)}$$

$$= \frac{n^2 - 1}{2n(n-1)}$$

$$= \frac{n+1}{2n}.$$

Now we see that $t_n \to \frac{1}{2}$ as $n \to \infty$.

Definition 1. Let $A \subset \mathbb{R}$ be an open interval. A function $f: A \to \mathbb{R}$ is called a contraction if there exists $M \in \mathbb{R}$ such that $|f(a) - f(b)| \leq M|a - b|$ for any $a, b \in U$.

Example 1. The following are contractions:

- f(x) = mx + b, where $m, b \in \mathbb{R}$; $U = \mathbb{R}$ and M = |m|;
- $f(x) = \sin(x)$ and $\cos(x)$; $U = \mathbb{R}$ and M = 1;
- $f(x) = \log(x); U = (a, \infty)$ where a > 0 and $M = \frac{1}{a}$. $f(x) = \sqrt{x}; U = (a, \infty)$ where a > 0 and $M = \frac{1}{2\sqrt{a}};$
- f(x) is differentiable with bounded derivative on an open interval U; M = $\sup\{|f'(a)|: a \in U\}.$

Problem 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a contraction. Let (a_n) be a sequence of real numbers which converges to $L \in \mathbb{R}$. Show that $\lim f(a_n) = f(L)$.

Proof. Let $\epsilon > 0$. Since f is a contraction, there exists $M \in \mathbb{R}$ such that |f(a)||f(b)| < M|a-b| for all $a, b \in \mathbb{R}$.

Since (a_n) converges to L, there exists $N \in \mathbb{N}$ such that $|a_n - L| < \frac{\epsilon}{M}$ for all n > N. Since f is a contraction,

$$|f(a_n - f(L))| < M|a_n - L| < M\frac{\epsilon}{M} = \epsilon$$

for all n > N. Thus $f(a_n) \to f(L)$.

Problem 2. For each $i \in \mathbb{N}$, let A_i be a set of real numbers which is bounded above by $M \in \mathbb{R}$. Let $B_n = \bigcup_{i=1}^n A_i$, and let $B_\infty = \bigcup_{i=1}^\infty A_i$. Let $b_n = \sup B_n$. Show that $\lim b_n = \sup B_{\infty}$.

Proof. For every $a \in B_{\infty}$, we have $a \leq M$; that is, B_{∞} is bounded above and its supremum exists as a real number. Let $b = \sup B_{\infty}$.

Let $n \in \mathbb{N}$. Then $B_n \subset B_{\infty}$; by Exercise 4.7.(a), we have $b_n = \sup B_n \leq$ $\sup B_{\infty} = b$. By Exercise 8.9.(b), $\lim b_n \leq b$.

Suppose that $\lim b_n < b$. Since $b = \sup B_\infty$, there exists $c \in B_\infty$ such that $\lim b_n < c < b$ (otherwise, $\frac{\lim b_n + b}{2}$ is a lower bound for B_∞ , contradicting our definition of b). Then $c \in A_N$ for some $i \in \mathbb{N}$, so $c \in B_N$. Since $c \in B_N$, then $c \in B_n$ for all n > N. This says that $c \leq \sup B_n = b_n$ for all n > N. By Exercise 8.9.(a), we have $\lim b_n \geq c$, contradicting our choice of c. This shows that $\lim b_n \ge b.$

DEPARTMENT OF MATHEMATICS & CSCI, BASIS SCOTTSDALE Email address: paul.bailey@basised.com