Lagrangian Duality. Definitions and classical results

<u>Definition of a Saddle Point</u>: given a function $L(x,u), L: S \times U \to \mathbb{R}$, defined on two groups of variables: $x \in S \subseteq \mathbb{R}^n$, $u \in U \subseteq \mathbb{R}^n$; then, $(\bar{x}, \bar{u}) \in S \times U$ is referred to as a <u>Saddle Point</u> if

$$L(\bar{x}, u) \le L(\bar{x}, \bar{u}) \le L(x, \bar{u})$$

Consider now an optimization problem:

$$(P) \qquad F \quad \begin{cases} h(x) = 0 \\ g(x) \ge 0 \\ x \in X \end{cases} \qquad \qquad \stackrel{\lambda}{\mu} \leftarrow \text{L.M.} \qquad \qquad h: \mathbb{R}^n \to \mathbb{R}^p \\ g: \mathbb{R}^n \to \mathbb{R}^q \end{cases}$$

where no regularity conditions (or constraint qualifications) are assumed a priori and where X may be any type of set:

ullet For problem (P) the lagrangian function is defined as:

$$L(x, \lambda, \mu) \stackrel{\triangle}{=} f(x) - \lambda^{\top} h(x) - \mu^{\top} g(x)$$

• and the dual lagrangian function $w(\lambda, \mu)$ for problem (P) by

$$w(\lambda,\mu) \stackrel{\triangle}{=} Inf_{x \in X} L(x,\lambda,\mu)$$

The domain of definition for w is defined as the points (λ, μ) where w is finite.

$$D \stackrel{\triangle}{=} \{ (\lambda, \mu) \in \mathbb{R}^p \times \mathbb{R}^q_+ \mid w(\lambda, \mu) > -\infty \}$$

• The dual lagrangian problem (LD) for problem (P) is defined as:

$$(LD) \quad \begin{array}{cc} Max & w(\lambda, \mu) \\ & (\lambda, \mu) \in D \end{array}$$

(remark: the choice of which constraints are dualized may depend on the application or on the convenience of the modeler)

The solution set of the problem defining the dual lagrangian function $w(\cdot,\cdot)$ at a point (λ,μ) will be denoted by $S_D^*(\lambda,\mu)$. The solution set of the dual lagrangian problem (LD) will be denote by S_{DL}^*

Duality and Saddle-Point theorems

Weak Duality theorem

Let x be a feasible point of problem (P), $(h(x) = 0, g(x) \ge 0, x \in X)$. Let (λ, μ) also feasible of (LD), $(\mu \ge 0)$. Then $f(x) \ge w(\lambda, \mu)$.

The difference $g(x,\lambda,\overline{\mu})=f(x)-w(\lambda,\mu) \ (\geq 0)$ is usually called duality gap for problem (P) at (x,λ,μ) .

Proof:

$$\overline{w(\lambda, \mu)} = Inf\{ L(x, \lambda, \mu) \mid x \in X \} \le f(x) - \lambda^{\top} h(x) - \mu^{\top} g(x) \le f(x)$$
 $(\mu \ge 0, g(x) \ge 0)$

(Notice that if x^* solves (P) and (λ, μ) , $\mu \geq 0$, solves (LD) and there holds that $\mu^{\top} g(x^*) = 0 \Rightarrow w(\lambda, \mu) = f(x^*)$)

Corollary 1 $f^* = Inf\{ f(x) \mid x \in F \} \ge Sup\{ w(\lambda, \mu) \mid \mu \ge 0 \} = w^*$. Duality gap of $(P) \stackrel{\triangle}{=} f^* - w^*$.

Corollary 2 If $f^* = w^*$ then x^* and (λ^*, μ^*) solve (P) and (LD) respectively.

Corollary 3 If $f^* = -\infty \implies w(\lambda, \mu) = -\infty \ \forall (\lambda, \mu), \ \mu \ge 0$

Corollary 4 If $w^* = \infty \Rightarrow (P)$ is infeasible $(F = \emptyset)$

The saddle point theorem

A necessary and sufficient condition for problem (P) to have a lagrangian function $L(x, \lambda, \mu)$ with a saddle point $(\bar{x}, \bar{\lambda}, \bar{\mu})$ is:

- a) $f^* = f(\bar{x}) = w(\bar{\lambda}, \bar{\mu}) = w^*$ (duality gap=0)
- b) $g(\bar{x}) \ge 0 \ h(\bar{x}) = 0 \ (\bar{x} \in F)$
- c) $\bar{\mu}^{\top} g(\bar{x}) = 0$ (complementarity)

Another Theorem. Saddle points verify Kuhn Tucker conditions

Let $\bar{x} \in F$ a point satisfying K-T for problem (P)

$$\nabla f(\bar{x}) = \left(\frac{\partial g}{\partial x}\right)^{\top} \bar{\mu} + \left(\frac{\partial h}{\partial x}\right)^{\top} \bar{\lambda}, \quad \bar{\mu}^{\top} g(\bar{x}) = 0 \quad , \ \bar{\mu} \ge 0.$$

Let now: $I(x) = \{ 1 \le i \le g \mid g(x) = 0 \}$ and assume that problem (P) verifies :

- a) f convex.
- b) g_i locally convex at $\bar{x}, i \in I(\bar{x})$
- c) If $\bar{\lambda}_{\ell} \neq 0 \Rightarrow h_{\ell}(\bar{x})$ affine

llavors $(\bar{x}, \bar{\lambda}, \bar{\mu})$ és punt de sella de L per (P).

In particular convex problems have saddle points, which are precisely those who verify K-T conditions

Strong duality theorem (Karlin) (Teo. 6.2.4)

Let X be a convex and non-empty set f, g convex and h affine.

Constraint qualifications.

- a) $\exists \tilde{x} \in X$ so that $g(\tilde{x}) > 0$ i $h(\tilde{x}) = 0$
- b) $0 \in int \ h(X); \ h(X) = \{ \ h(x) \mid x \in X \}$

If previous conditions are verified then:

- 1) $f^* = w^*$ (null duality gap)
- 2) If $f^* < +\infty$ then the maximum of the dual lagrangian function w^* is attained at a point (λ^*, μ^*) , $w^* = w^*(\lambda^*, \mu^*)$. Moreover, $\mu^* \ge 0$.

3) If $f^* < +\infty$ for x^* , $f^* = f(x^*)$, there holds complementarity, i.e.: $g(x^*)^\top \mu^* = 0$

Previous conditions are <u>sufficient</u> for the existence of a saddle point. (remark: what happens if there are no equality constraints?)

Duality gaps and solutions of the Dual Lagrangian Problem. Basic relationships

(Minoux-Vajda p.212)

Let $(\bar{\lambda}, \bar{\mu})$ a solution of the Dual Lagrangian Problem.

- If a saddle point exists for problem (P), then there must exist a solution x^* of problem (P) so that $(x^*, \bar{\lambda}, \bar{\mu})$ is a saddle point.
- If a saddle point exists for problem (P) and if x^* is a unique minimum of $L(x, \bar{\lambda}, \bar{\mu})$, then $(x^*, \bar{\lambda}, \bar{\mu})$ is a saddle point and moreover, x^* is an optimal solution of (P).
- If $w(\lambda, \mu)$ is differentiable at $(\bar{\lambda}, \bar{\mu})$ and, additionally, x^* is the unique minimum of $L(x, \bar{\lambda}, \bar{\mu})$, then (P) has a saddle point and $(x^*, \bar{\lambda}, \bar{\mu})$ it is this saddle-point.

(Remark: if there are no saddle points then $w(\cdot,\cdot)$ must be non-differentiable.)

Duality gaps and optimality conditions of the Dual Lagrangian Problem.

Consider the first order optimality conditions of the Dual Lagrangian Problem at an optimal point (λ^*, μ^*) :

(1stOOC)
$$\partial w(\lambda^*, \mu^*) \in \mathsf{N}_{\mathbb{R}^p \times \mathbb{R}^q} (\lambda^*, \mu^*)$$

or equivalently:

$$\exists r^* = \left(\begin{array}{c} r_\lambda^* \\ r_\mu^* \end{array}\right) \in \partial w(\lambda^*, \mu^*), \text{ so that } r_\lambda^* = 0, \ r_\mu^* \leq 0 \text{ and } \lambda^{*\top} r_\lambda^* + \mu^{*\top} r_\mu^* = 0$$

Then, if such an r^* verifying 1st order conditions (1stOOC), is so that:

$$r^* = \left(\begin{array}{c} r_{\lambda}^* \\ r_{\mu}^* \end{array}\right) = \left(\begin{array}{c} -h(x^*) \\ -g(x^*) \end{array}\right)$$

for a solution $x^* \in X$ of the problem defining the dual lagrangian function, i.e.: $x^* \in S_D^*(\lambda^*, \mu^*)$, then problem (P) has a null duality gap.

As a consequence, the following sufficient conditions ensure a null duality gap for problem (P):

$$(\Box) \qquad \text{ The set } \left\{ \left(\begin{array}{c} -h(x^*) \\ -g^*(x^*) \end{array} \right) \ \mid \ x^* \in S^*_D(\lambda^*,\mu^*) \right\} \text{ is convex }$$

Remark: if, in problem (P), f is pseudoconvex, h and g are affine and X is a closed set the previous condition (\square) is satisfied automatically. Also if X is a discret set, then (\square) will never hold.