Úvod do softwarového inženýrství IUS 2024/2025

3. přednáška

Ing. Radek Kočí, Ph.D.
Ing. Bohuslav Křena, Ph.D.
doc. Ing. Jaroslav Zendulka, CSc.

30. září a 4. října 2024

Téma přednášky

- Strukturovaná analýza a návrh
- Entity Relationship Diagrams (ERD)

Přístupy k analýze a návrhu

Základní přístupy k analýze a návrhu:

- **Strukturovaný**Systém je chápán jako kolekce funkcí (procesů) operujících nad daty.
- Objektově orientovaný
 Systém je chápán jako kolekce vzájemně komunikujících objektů.

Strukturovaný přístup k analýze a návrhu

Konceptuální model

- vyjadřuje podstatu systému
- říká, co má systém dělat
- obsahuje sémantický model dat
- vymezuje, co budeme sledovat, ne jak to budeme realizovat

Logický model

- definuje, jak bude konceptuální struktura dat implementována
- modely: lineární, síťový, relační, objektově orientovaný, . . .

Fyzický model

model fyzického uspořádání dat (soubory, . . .)

Základní konceptuální modely

Funkční (procesní) modelování

- základní model strukturované analýzy
- ukazuje funkce systému, toky dat mezi systémem a okolím a mezi funkcemi, data ukládaná v systému
- diagram datových toků (Data Flow Diagram DFD)

Minispecifikace

popis funkcí (procesů) – co dělají

Datové modelování

- ukazuje entity aplikační domény zpracovávané systémem a statické vztahy mezi nimi (typicky perzistentní data ukládaná v databázi)
- důležitý model datově intenzivních aplikací
- zásadní význam pro návrh databáze
- diagram entit a vztahů (Entity Relationship Diagram ERD)

Základní konceptuální modely

Datový slovník

- obsahuje specifikace prvků modelů
- notace pro specifikaci informačního obsahu prvků DFD a ERD

Stavový diagram (State-Transition Diagram - STD)

- Modeluje dynamické chování systému nebo jeho části.
 - stavy zachycují určitou situaci (počáteční, koncové)
 - přechody změny stavů
 - podmínky externí události ovlivňující proveditelnost přechodů
 - akce události jako komunikace, výpočet, . . .

0

- Teoretický koncept: konečný automat
- UML: stavový diagram

Stavový diagram

. . .

Data Flow Diagram (DFD)

Data Flow Diagram

- je technika používaná při strukturované analýze a návrhu pro specifikaci chování systému,
- je hierarchický model, který ukazuje funkce systému, toky dat mezi systémem a okolím a toky dat mezi funkcemi a datovými sklady,
- je tedy blíže návrhu,
- je doplněn minispecifikacemi.

Příklad pro DFD – systém správy účtů

Provádíme analýzu systému správy účtů banky. Každý účet má jednoznačné číslo, dále je potřeba znát jméno a adresu majitele účtu. Kromě majitele mohou s účtem disponovat i další jím určené osoby. O těch je třeba znát stejné údaje jako o majiteli. Každá z disponujících osob může mít stanoven limit pro výběr z daného účtu. S účty manipuluje úředník banky na základě příkazu osoby oprávněné s účtem disponovat.

Na účet lze provádět vklad, z účtu lze provádět výběr a lze převádět částky na jiné účty v téže nebo jiné bance. Musí být k dispozici informace, kdo příkaz zadal a který úředník ho provedl. Systém musí poskytovat prostředky pro správu informací o klientech banky, musí umožňovat vytvářet a rušit účty, zadávat příkazy, importovat příkazy pro převody z jiných bank a naopak exportovat příkazy pro převody na účty v jiných bankách. Systém musí být schopen tisknout měsíční výpisy z účtů a řadu dalších tiskových sestav.

Příklad DFD (1/3)

Příklad DFD (2/3)

Příklad DFD (3/3)

Datové modelování

Cíle návrhu datově intenzivních systémů

- mít v systému všechna potřebná data
- nemít v systému žádná nepotřebná data
- vyjádřit vztahy mezi daty
- popsat transformaci dat v systému

Datové modelování – ER model

Slouží k modelování dat aplikační domény a jejich vztahů "v klidu".

- Která data potřebujeme v systému uchovávat?
- Jaké jsou mezi nimi vztahy?

Datové modelování – základní pojmy

- Entita "věc" reálného světa (objekt) rozlišitelný od jiných objektů.
 Např. klient banky s identifikačním číslem K999, účet číslo U100
- Entitní množina množina entit téhož typu, které sdílí tytéž vlastnosti (atributy).
 Např. Klient, Účet
- Atribut vlastnost entity, která nás v kontextu daného problému zajímá.
 Např. Klient: čísloKlienta, jméno, příjmení, adresa, . . .
- Vztah asociace mezi několika entitami.
 Např. klient s číslem klienta K999 vlastní účet s číslem účtu U100.
- Vztahová množina množina vztahů téhož typu, které sdílí tytéž vlastnosti.
 - Např. Klient vlastní Účet pro vztah mezi entitami typu Klient a Účet

Tvorba ER diagramu

Typy atributů

• jednoduché (simple) a složené (composite) atributy

Typy atributů

- jednohodnotové (single-valued) a vícehodnotové (double-valued) atributy
 - např. telefon může být více čísel
 - Ize omezit minimální a maximální počet hodnot
- prázdné (NULL) atributy
 - mohou nabývat speciální hodnoty NULL
 - může zastupovat chybějící hodnotu existuje, ale neznáme ji
 - může zastupovat neznámou hodnotu nevíme, zda existuje
- odvozené atributy
 - hodnotu lze odvodit od jiných atributů nebo entit
 - o např. datumNarození ⇒ věk

Parametry vztahů

Jméno vztahové množiny i jméno role vyjadřuje význam vztahu.

Stupeň

Kardinalita

Kardinalita (cardinality) je maximální počet vztahů daného typu (vztahové množiny), ve kterých může participovat jedna entita.

Typické hodnoty: 1, M, případně přesněji

Členství / účast

Členství (membership) / účast (participation) je minimální počet vztahů daného typu (vztahové množiny), ve kterých musí participovat jedna entita.

Typické hodnoty: 0 – volitelné, 1 – povinné

Atributy vztahu

- Použijeme tehdy, když atribut nelze přiřadit ani jedné z entit.
- Jedná se o vztah povýšený na entitu.

Alternativní notace ERD

Pravidla návrhu ERD

- zobrazujeme pouze data a jejich vztahy, žádné procesy
- každý atribut zobrazujeme pouze jednou
- seskupujeme data pro účely databáze, ne výstupních sestav
- zobrazujeme pouze perzistentní datové objekty
- zobrazujeme pouze nezbytně nutné vztahy
 - Ucitel učí Predmet, který má zapsaný Student
 - Ucitel učí Student ⇒ redundantní

Pozor na entity

- bez atributů
- mající pouze identifikátor
- mající pouze jeden výskyt
- obsahující atributy patřící jiným entitám (cizí atributy)

Doporučení pro tvorbu ERD (1.)

- Jména
 - Musí být srozumitelná a musí vyjadřovat význam entitních a vztahových množin.
 - o entitní množiny: podstatná jména
 - vztahové množiny: slovesa, předložky
 - Je-li jméno vztahové množiny jasné ze jmen entitních množin, není nutné uvádět.
- Mezi stejnými entitními množinami může být několik vztahových množin.

Doporučení pro tvorbu ERD (2.)

- Identifikátor (klíč, primární klíč)
 - Entity a vztahy musí být identifikovatelné.
 - Hodnota identifikátoru musí být unikátní (a minimální).
 - Identifikátorem je jednoduchý nebo složený atribut.
 - Unikátnost hodnoty jen v rámci vyvíjeného systému (ne celého vesmíru).
- Celkový systém by neměl být zahrnut do ERD.

Doporučení pro tvorbu ERD (3.)

Použít entitní množinu nebo atribut?

Pravidlo: Je-li hodnota atributu důležitá, i když neexistuje žádná entita s touto hodnotou jako vlastností, pak bychom ji měli modelovat jako entitu.

Doporučení pro tvorbu ERD (4.)

Kardinalita a umístění atributů

Bude záležet na tom, zda budeme chtít uchovávat i historii registrací.

Doporučení pro tvorbu ERD (5.)

Náhrada vztahů M:M vazební entitní množinou

Slabé (weak) entitní množiny

- Silná (strong) entitní množina má identifikátor tvořený vlastními atributy.
- Slabá entitní množina nemá identifikátor tvořený vlastními atributy.

Identifikace slabé entitní množiny

- Rysy slabé entitní množiny:
 - identifikátor = identifikátor_dominantní + diskriminátor
 - existenční závislost slabé na identifikující
- Slabá nebo silná entitní množina?
 - Jako slabou modelovat tehdy, kdy entita kompletně zmizí při odstranění odpovídající identifikující entity.
 Příklad: Objednávka - PoložkaObjednávky
 - 2. Cokoliv s atributem, který je jednoznačný, by nemělo být modelováno jako slabá entitní množina.
 - 3. Jsme-li na pochybách, modelujeme jako silnou entitní množinu.

Rozšíření ER modelu

Enhanced Entity-Relationship (EER) Modeling

- Zobecnění množin (generalizace/specializace), vztah is-a
- kategorie (typ UNION)
- dědičnost atributů a vztahů

Zobecnění (generalizace/specializace)

Zobecnění/Specializace entit

- entity mající stejný základ (atributy) lišící se v některých atributech
- Př.: entity *Spořitelní účet* a *Běžný účet* jsou speciální variantou *Účet*

Zobecnění (generalizace/specializace)

Zobecnění/Specializace entitních množin

- dědičnost atributů a účasti ve vztahových množinách
- hierarchie generalizace (podobně v OO přístupu)
 Př.: Spořitelní je (is a) Účet
- identifikátor entitních množin nižší úrovně je stejný jako vyšší

Zobecnění (generalizace/specializace)

Omezení generalizace/specializace

- příslušnost příslušnost entity do jedné nebo do více specializovaných entitních množin (EM)
 - disjunktní entita může být součástí nejvýše jedné specializované EM (účet může být buď spořitelní nebo běžný)
 - překrývající se entita může být součástí více specializovaných EM (účet je spořitelní i běžný)
- úplnost zda každá entita z vyšší úrovně musí nebo nemusí patřit do jedné z EM na nižší úrovni
 - úplná specializace (obvyklá) každá entita z obecné EM je součástí
 EM na nižší úrovni (každý účet je vždy spořitelní nebo běžný)
 - částečná specializace entita z obecné EM nemusí patřit do žádné EM na nižší úrovni (účet, spořitelní účet, běžný účet)

Převod na relace (tabulky)

• závisí na požadovaných vlastnostech a omezeních (1/2/3 relace)

Postup při návrhu ERD

Základní kroky

- 1. zvolte jednu entitu ze specifikace požadavků
- 2. určete atributy entity, označte kandidátní klíče
- 3. prověřte atributy, zda je potřeba zaznamenat informace o některém z atributů v samostatné entitě
- 4. další entita \Rightarrow krok 1
- 5. vytvořte vztahy mezi entitami
- 6. určete, zda některé atributy potřebují být identifikovány pomocí více entit ⇒ atribut přiřaď te vztahu, který spojuje příslušné entity
- 7. identifikujte a odstraňte redundantní vztahy

Poznámka

- 1. entita se modeluje jako entitní množina
- 2. vztah se modeluje jako vztahová množina

Příklad pro ERD – systém správy účtů

Provádíme analýzu systému správy účtů banky. Každý účet má jednoznačné číslo, dále je potřeba znát jméno a adresu majitele účtu. Kromě majitele mohou s účtem disponovat i další jím určené osoby. O těch je třeba znát stejné údaje jako o majiteli. Každá z disponujících osob může mít stanoven limit pro výběr z daného účtu. S účty manipuluje úředník banky na základě příkazu osoby oprávněné s účtem disponovat.

Na účet lze provádět vklad, z účtu lze provádět výběr a lze převádět částky na jiné účty v téže nebo jiné bance. Musí být k dispozici informace, kdo příkaz zadal a který úředník ho provedl. Systém musí poskytovat prostředky pro správu informací o klientech banky, musí umožňovat vytvářet a rušit účty, zadávat příkazy, importovat příkazy pro převody z jiných bank a naopak exportovat příkazy pro převody na účty v jiných bankách. Systém musí být schopen tisknout měsíční výpisy z účtů a řadu dalších tiskových sestav.

Příklad pro ERD – systém správy účtů

ERD – elektronická evidence diamantů (1/2)

Zadání použité na zkoušce dne 12. ledna 2016 ve 14:00:

Toto zadání bylo inspirováno článkem PRAŠTĚNÁ POHÁDKA: Elektronická Evidence Trpaslíků, který Martin Jurica publikoval dne 31. 12. 2015 na Neviditelném psu. Sněhurka Vás požádala o vytvoření informačního systému pro elektronickou evidenci diamantů (EED), které vytěží trpaslíci. O každém trpaslíkovi EED eviduje jeho jméno (předpokládejte, že se žádní dva trpaslíci nejmenují stejně), datum narození, výšku a váhu, na které směny a na jaké pozici nastoupil (v rámci určité směny má trpaslík právě jednu pracovní pozici) a jaké pracovní nástroje má či v minulosti měl přiděleny. Každý pracovní nástroj má své unikátní číslo a v EED je veden jeho typ, hmotnost, datum nákupu, nákupní cena, aktuální stav nástroje případně datum vyřazení pro jeho nepoužitelnost. Pro jednoduchost předpokládejte, že jeden nástroj nebude stejnému trpaslíkovi přidělen opakovaně.

ERD – elektronická evidence diamantů (2/2)

Směna je určena datem a časem svého začátku (dvě směny nemohou začít ve stejném okamžiku) a v EED je evidována její délka, důl a patro, ve kterém probíhala. Směny a jejich místa (směna nikdy nebude zasahovat na více pater či dolů) jsou plánovány dopředu a trpaslíci a jejich pozice až v okamžiku nastoupení na směnu. Dále jsou evidovány všechny diamanty, které byly v rámci směny vytěženy, aby trpaslíci nemohli odnášet a prodávat diamanty bez vědomí Sněhurky. Každému vytěženému diamantu EED přidělí unikátní evidenční číslo a poté je zaznamenána jeho hmotnost, barva, čistota, tvar, odhad ceny i to, který trpaslík diamant vytěžil. EED bude dále uchovávat informace o prodejích diamantů, přičemž každý prodej bude mít své číslo a dále bude v EED uloženo datum prodeje, kupec (stačí jeho jméno), které diamanty koupil a za jakou cenu (celková cena nestačí, je třeba evidovat prodejní cenu každého diamantu), a který trpaslík za prodej odpovídal (aby Sněhurka mohla zkontrolovat, zda některý trpaslík neprodal diamanty nápadně nevýhodně).

Zadání a (komentovaná) vzorová řešení ER diagramů ze zkoušek z let 2011/12, 2015/16 a 2017/18 najdete v Moodlu – Studijní materiály.

ERD – elektronická evidence diamantů

Studijní koutek – Tituly a oslovení

Akademické tituly

- Bc. **bakalář** (angl. *bachelor*, lat. *baccalaureus* = vavřínem ověnčený) BcA. – bakalář umění (lat. baccalaureus artis)
- Ing. inženýr (angl. engineer = strojník) Ing. arch. – inženýr architekt Mgr. – magistr (doslovně učitel) MgA. – magistr umění
- RNDr. doktor přírodních věd (*rerum naturalium doctor*) MUDr. – doktor všeobecného lékařství (medicinae universae doctor) JUDr. – doktor práv (juris utriusque doctor) MDDr., MVDr., PhDr., PaedDr., PharmDr., ThDr., ThLic., RSDr., RTDr., . . .
 - ⇒ asistent, lektor
- MBA (angl. *Master of Business Administration*) navazující studium zaměřené na management
- LL.M. (angl. Master of Law, lat. Legum Magister)

Studijní koutek – Tituly a oslovení

Vědecké hodnosti

- Ph.D. doktor (lat. philosophiae doctor)
 Th.D. (lat. theologiae doctor)
 Dr. doktor = učený
 CSc. kandidát věd (candidatus scientiarum)
 ⇒ odborný asistent
- DrSc. / DSc. doktor věd (lat. doctor scientiarum)
- akad. akademik, tj. řádný člen ČSAV

Vědecko-pedagogické hodnosti

- doc. docent
- prof. profesor
 Učitelům na střední škole se říká profesor, přestože titul prof. nemají.

Čestná hodnost

dr. h. c. – doctor honoris causa

Studijní koutek – Tituly a oslovení

Oslovení při běžných příležitostech

- Nejvyšším dosaženým titulem nebo významnou funkcí
- rektore, prorektore, děkane, proděkane, řediteli, . . .
- profesore, docente, doktore, inženýre, magistře, bakaláři, . . .

Oslovení při akademických obřadech

- rektor Vaše Magnificence (vznešenosti)
- děkan Spectabilis (slovutný), množné číslo Spectabiles
- prorektor, proděkan, promotor Honorabilis (ctihodný), množné číslo Honorabiles
- Prorektor zastupující rektora je oslovován jako rektor.
- Proděkan zastupující děkana je oslovován jako děkan.