Teoria do Risco Aula 1

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/index. html

Desde as antigas civilizações o ser humano sempre se preocupou com as incertezas do futuro...

O homem teve a necessidade de criar formas de proteção contra os perigos para a sua família e para o seu patrimônio

Os comerciantes mesopotâmicos e fenícios:

Os hebreus:

- ➤ Por volta de 1347, na cidade de Gênova as atividades de seguros começam a se popularizar...
 - ≽"A apolizza" "A promessa"
 - >Seguro de transporte marítimo.
 - Primeiros estudos da matemática atuarial.

- ➤ No século XVI o sistema de seguros europeu faliu,
 - Técnicas de gestão de risco intuitivas.
 - >Técnicas pouco elaboradas.

➤ Século XVII, Fermat e Pascal idealizaram a teoria de probabilidades.

Edmond Halley cria primeira tábua de mortalidade sobre princípios científicos concretos (1693).

- > Século XX surge a teoria do risco coletivo.
 - ➤ Modelo de Crámer –Lundberg.
 - Ramo vida e ramo não vida...
- > A matemática atuarial é o ramo da Matemática intimamente ligada ao segmento de seguros...
 - > Avaliar riscos
 - > Avaliar sistemas de investimentos.
 - Estabelecer politicas de investimentos.
 - Estabelecer valor de prêmios
 - Seguro ligados a vida (Cálculo atuarial-Sinistros só ocorrem uma vez)
 - >Seguro ligado a danos (Teoria do risco Sinistros podem ocorrer várias vezes)

"Pelo fato do atuário lidar com conceitos técnicos diversos, como conceitos estatísticos, econômicos e financeiros passou-se a usar o termo geral **Ciências** atuariais para o ramo do conhecimento relacionado a analise de risco e expectativas financeiras."

BRITO, Irene; GONÇALVES, Patrícia; RAMOS, Pedro Lima. O risco e a ruína na atividade seguradora. **Boletim da SPM**, v. 75, p. 1-29, 2017.

Teoria do risco

>...reside em estabelecer um modelo de tarifação eficiente frente aos sinistros que chegam ao segurador.

>...tem como objetivo principal estabelecer para o "bem" sob análise um prêmio justo para um dado futuro mensurável,...

Modelos de Risco

I) Qual é a melhor estimativa do valor total das indenizações a serem pagas?

II) Qual o prêmio que a seguradora deve emitir para cobrir os sinistros com uma da margem de segurança?

Dois padrões a serem seguidos!!

Conceitos Estatísticos

A teoria do risco é inerente à teoria estatística, portanto a compreensão de determinados termos e conceitos estatísticos assim como algumas propriedades, se faz necessária ou até mesmo fundamental.

Conceitos Estatísticos

- > Conceitos Estatísticos
 - ➤ Variável Aleatória e função de distribuição
 - ➤ Variável aleatória Discreta
 - >Importantes modelos discretos
 - ► Variável aleatória Contínua
 - >Importantes modelos de contínuos
 - > Variável aleatória multidimensional
 - Esperança e Variância de variáveis aleatórias.
 - Esperança sujeito a valor limite.
 - > Covariância e Correlação entre variáveis aleatórias.
 - Desigualdade de Jensen
 - > Momentos ordinários e função Geradora de Momentos

> MODELOS DE RISCO

- > Modelo de risco individual anual
 - >...
- > Modelo de risco coletivo anual
 - >...

> CÁLCULO DE PRÊMIOS

- > Seguro e utilidade
- > Princípios de cálculos de prêmios
- > Propriedades desejáveis ao prêmio
- > Medida de Risco
- Processo Estocástico para frequência de sinistros e sinistralidade
 - >...
- Processo de ruína
 - >...

Variável Aleatória

A variável aleatória pode ser entendida como uma função X() que associa a cada evento pertencente a uma partição do espaço amostral Ω um número real.

$$X:\Omega\to\mathbb{R}$$

EXEMPLO 1: Suponha o lançamento de 3 moedas, com probabilidade de sair coroa igual a q (sucesso) e 1-q (fracasso). A variável aleatória "Número de coroas" pode ser caracterizada por:

Resp.

$$R = \{0,1,2,3\}, R \subset \mathbb{R}$$

R é a imagem de $X(\cdot)$

Moed a 1	Moeda 2	Moeda 3	N° de coroas	Probabilidades	
Cara	Cara	Cara	0	$q^0(1-q)^3$	$q^0(1-q)^3$
Coroa	Cara	Cara		$q^1(1-q)^2$	
Cara	Coroa	Cara	1	$q^1(1-q)^2$	$3q^1(1-q)^2$
Cara	Cara	Coroa		$q^1(1-q)^2$	
Coroa	Coroa	Cara		$q^2(1-q)^1$	
Coroa	Cara	Coroa	2	$q^2(1-q)^1$	$3q^2(1-q)^1$
Cara	Coroa	Coroa		$q^2(1-q)^1$	
Coroa	Coroa	Coroa	3	$q^3(1-q)^0$	q^3

X (n° de coroas)	P(X)
0	$(1-q)^3$
1	$3q^1(1-q)^2$
2	$3q^2(1-q)^1$
3	q^3

Variáveis aleatórias Discretas

Assume somente um número enumerável de valores (finito ou infinito).

$$P(X = x)$$

Função de probabilidade (fp)

$$0 \le P(X = x_i) \le 1$$

para todo i.

$$\sum_{i=1}^{\infty} P(X = x_i) = 1$$

Variáveis aleatórias Contínuas

Corresponderem aos dados de medida, pertencentes a $\mathbb{R},...$

Função de densidade (f.d.p)

$$f(x) \ge 0$$

para qualquer valor de x

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

EXEMPLO 2: Um apólice de seguro cobre uma perda aleatória X, com um valor de franquia d, onde 0 < d < 1. A perda é modelada como um variável aleatória contínua com densidade $f_X(x) = 2x$ para 0 < x < 1. Sabe-se que a probabilidade da seguradora pagar uma indenização menor que 0,5 é 64%. Calcule o valor da franquia.

Solução

$$Y = X - d$$

$$P(Y \le 0.5) = P(X \le 0.5 + d) = 0.64 = \int_0^{0.5 + d} 2x dx$$

$$(0.5 + d)^2 = 0.64$$

$$0.25 + d + d^2 = 0.64$$

$$d = 0.3$$

- \triangleright No **exemplo 2** foi feita uma modificação na variável aleatória X de forma a se obter a variável aleatória $Y = Max(0; X d) = (X d)_+$ em que d corresponde ao valor da franquia.
- \triangleright A variável aleatória Y corresponde ao valor de excesso de dano acima da franquia para todas as severidades ocorridas X.
- ➤ Situação teórica em que os segurados informariam ao segurador todos os sinistros ocorridos, mesmo aqueles cujo valor ficou abaixo da franquia dedutível (esses considerados pela seguradora como de valor 0).
- > O segurador trata os sinistros avisados com severidade abaixo da franquia como sendo sinistros de valor 0.

Função de distribuição acumulada

Função de distribuição de probabilidade, simplesmente função de distribuição.

$$F_X(x_k) = P(X \le x_k) = \begin{cases} \int_{-\infty}^{x_k} f_X(z) dz \\ \sum_{k=0}^{k} P(X = x_i) \end{cases}$$

 $\Phi(x)$

Função de distribuição acumulada

• $\lim_{x\to-\infty} F_X(x) = 0;$

•
$$\lim_{x\to\infty} F_X(x) = 1$$
;

• Se $x_1 \le x_2$, então $F_X(x_1) \le F_X(x_2)$, $F_X(x)$ é uma função crescente de x;

•
$$P_X(x_1 \le X \le x_2) = F_X(x_2) - F_X(x_1)$$
;

Função de distribuição acumulada

➤O conhecimento da função permite obter diversas informações sobre a variável.

A composição das funções de probabilidade faz parte da modelagem teórica das realizações das variáveis aleatórias...

Função Sobrevivência/ Excesso de Danos

$$\bar{F}_X(x) = P(X > x) = 1 - F_X(x) = S_X(x)$$

- $\lim_{x \to -\infty} \overline{F}_X(x) = 1;$
- $\lim_{x\to\infty} \bar{F}_X(x) = 0;$
- Se $x_1 > x_2$, então $\overline{F}_X(x_1) > \overline{F}_X(x_2)$, é uma função decrescente de x;

EXEMPLO 3 Entregar!!!

Considere a função de sobrevivência dada por:

$$\bar{F}_X(x) = 115^{-\frac{1}{3}}(115 - x)^{\frac{1}{3}}; \quad 0 \le x \le 115.$$

Calcule f(x).

Sempre que duas ou mais variáveis aleatórias são levadas em conta, três tipos de distribuição de probabilidade são definidas.

A distribuição conjunta, descreve o comportamento de todas elas simultaneamente.

A distribuição marginal, descreve o comportamento de uma delas isoladamente, desconsiderando as demais.

A distribuição condicional, descreve o comportamento de uma variável aleatória isoladamente dado que as outras assumem determinado valor.

Probabilidade condicional

Sejam X_1 e X_2 duas variáveis aleatórias discretas definidas no mesmo espaço de probabilidades. Definimos a função de probabilidade condicional de X_1 dado X_2 , por:

$$P_{X_1|X_2}(x_1|x_2) = \frac{P_{X_1,X_2}(x_1,x_2)}{P_{X_2}(x_2)}$$

onde $P_{X_1,X_2}(x_1,x_2)$ é a função de probabilidade conjunta de X_1 e X_2 .

Probabilidade condicional

Sejam X_1 e X_2 duas variáveis aleatórias contínuas definidas no mesmo espaço de probabilidades. Definimos a função de densidade condicional de X_1 dado X_2 , por:

$$f_{X_1|X_2}(x_1|x_2) = \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)}$$

Em que $f_{X_1,X_2}(x_1,x_2)$ é a função densidade conjunta de X_1 e X_2 e $f_{X_2}(x_2)$ é função densidade marginal de X_2 .

Independência de variáveis aleatórias

A independência é um requisito importante que permite resolver, com rigor matemático e sem aproximações, muitos problemas de interesse prático.

Definição: Duas variáveis aleatórias, X e Y definidas no mesmo espaço de probabilidade, são independentes se a informação sobre uma delas não altera a probabilidade de ocorrência da outra.

Independência de variáveis aleatórias

Para variáveis aleatórias discretas:

$$X,Y \text{ independentes } \Leftrightarrow P_{X,Y}(x,y) \equiv P_X(x)P_Y(y), \ \ \forall (x,y) \in \mathbb{R}^2.$$

Para variáveis aleatórias contínuas:

$$X, Y \text{ independentes } \Leftrightarrow f_{X,Y}(x,y) \equiv f_X(x)f_Y(y), \ \ \forall (x,y) \in \mathbb{R}^2.$$

EXEMPLO 4: Suponha que X e Y tenham distribuição conjunta dada por a e b. Determine as distribuições marginais e diga se X e Y são independentes.

a)
$$f_{X,Y}(x,y) = 0.0008e^{(-0.02x-0.04y)}I_{(0,\infty)}(x)I_{(0,\infty)}(y)$$

b)

$\overline{X \setminus Y}$	0	1	2
0	1/8	0	0
1	0	3/8	0
2	0	0	3/8
3	1/8	0	0

EXEMPLO 4: Suponha que X e Y tenham distribuição conjunta dada por a e b. Determine as distribuições marginais e diga se X e Y são independentes.

a)
$$f_{X,Y}(x,y) = 0.0008e^{(-0.02x-0.04y)}I_{(0,\infty)}(x)I_{(0,\infty)}(y)$$

$$\int_0^\infty f_{X,Y}(x,y)dx = f_Y(y) = 0.04e^{-0.04y}$$
$$\int_0^\infty f_{X,Y}(x,y)dy = f_X(x) = 0.02e^{-0.02x}$$

$$X \setminus Y$$
 0
 1
 2
 $P(X = x)$

 0
 1/8
 0
 0
 1/8

 1
 0
 3/8
 0
 3/8

 2
 0
 0
 3/8
 3/8

 3
 1/8
 0
 0
 1/8

 $P(Y = y)$
 2/8
 3/8
 3/8

Suponha que X e Y tenham distribuição conjunta dada por a e b. Determine as distribuições marginais e diga se X e Y são independentes.

 $P_{X,Y}(2,2) \neq P_X(2)P_Y(2)$

a)
$$f_{X,Y}(x,y) = 0.0008e^{(-0.02x-0.04y)}I_{(0,\infty)}(x)I_{(0,\infty)}(y)$$

$$\int_{0}^{\infty} f_{X,Y}(x,y)dx = f_{Y}(y) = 0.04e^{-0.04x}$$

$$\int_{0}^{\infty} f_{X,Y}(x,y)dy = f_{X}(x) = 0.02e^{-0.02x}$$

$$f_{X,Y}(x,y) = f_{Y}(y)f_{X}(x)$$

$$f_{Y_1}(y_1) = \int_0^{10} 0.004 \left(10 - y_1 - y_2 + \frac{y_1 y_2}{10}\right) dy_2$$

$$f_{Y_1}(y_1) = 0.004 \left(10y_2 - y_1y_2 - \frac{y_2^2}{2} + \frac{y_1y_2^2}{20} \right) \Big|_0^{10}$$

$$f_{Y_1}(y_1) = 0.004(50 - 5y_1)$$

$$f_{Y_2}(y_2) = \int_0^{10} 0.004 \left(10 - y_1 - y_2 + \frac{y_1 y_2}{10}\right) dy_1$$

$$f_{Y_2}(y_2) = 0.004 \left(10y_1 - \frac{y_1^2}{2} - y_1y_2 + \frac{y_2y_1^2}{20} \right) \Big|_{0}^{10}$$

$$f_{Y_2}(y_2) = 0.004(50 - 5y_1)$$

$$F_{Y_1}(y_1) = \int_0^{y_1} f_{Y_1}(u) du = \int_0^{y_1} 0,004(50 - 5u) du$$

$$F_{Y_1}(y_1) = 0.004 \left(50u - \frac{5u^2}{2}\right)\Big|_{0}^{y_1} = 0.2 \left(y_1 - \frac{y_1^2}{20}\right)$$

$$F_{Y_1}(y_1) = \begin{cases} 0 & y_1 \le 0\\ 0.2\left(y_1 - \frac{y_1^2}{20}\right) & 0 < y_1 \le 10\\ 1 & y_1 > 10 \end{cases}$$

$$F_{Y_2}(y_1) = \int_0^{y_2} f_{Y_2}(u) du = \int_0^{y_2} 0,004(50 - 5u) du$$

$$F_{Y_2}(y_2) = \begin{cases} 0 & y_2 \le 0\\ 0.2\left(y_2 - \frac{y_2^2}{20}\right) & 0 < y_2 \le 10\\ 1 & y_2 > 10 \end{cases}$$

$$F_{Y_1,Y_2}(y_1,y_2) = \int_0^{y_2} \int_0^{y_1} 0.004 \left(10 - u - v + \frac{uv}{10}\right) du dv$$

$$\int_0^{y_1} 0.004 \left(10 - u - v + \frac{uv}{10} \right) du = 0.004 \left(10u - \frac{u^2}{2} - uv + \frac{u^2v}{20} \right) \Big|_{u=0}^{u=y_1} = 0.004 \left(10y_1 - \frac{y_1^2}{2} - y_1v + \frac{y_1^2v}{20} \right) = 0.004 \left(10y_1 - \frac{y_1^2}{2} - y_1v + \frac{y_1^2v}{20} \right) = 0.004 \left(10y_1 - \frac{y_1^2}{2} - y_1v + \frac{y_1^2v}{20} \right)$$

$$F_{Y_1,Y_2}(y_1,y_2) = \int_0^{y_2} 0,004 \left(10y_1 - \frac{y_1^2}{2} - y_1v + \frac{y_1^2v}{20} \right) dv$$

$$F_{Y_1,Y_2}(y_1,y_2) = 0.004 \left(10y_1v - \frac{y_1^2}{2}v - \frac{y_1v^2}{2} + \frac{y_1^2v^2}{40} \right) \Big|_{v=0}^{v=y_2}$$

$$F_{Y_1,Y_2}(y_1,y_2) = 0.004 \left(10y_1y_2 - \frac{y_1^2y_2}{2} - \frac{y_1y_2^2}{2} + \frac{y_1^2y_2^2}{40} \right)$$

$$F_{Y_1,Y_2}\left(y_1,y_2\right) = \begin{cases} 0 & y_1 \leq 0, y_2 \leq 0 \\ 0,004 \left(10y_1y_2 - \frac{y_1^2y_2}{2} - \frac{y_1y_2^2}{2} + \frac{y_1^2y_2^2}{40}\right) & 0 < y_1 \leq 10, 0 < y_2 \leq 10 \\ 0,2 \left(y_1 - \frac{y_1^2}{20}\right) & 0 < y_1 \leq 10, y_2 > 10 \\ 0,2 \left(y_2 - \frac{y_2^2}{20}\right) & 0 < y_2 \leq 10, y_1 > 10 \\ 1 & y_1 > 10, y_2 > 10 \end{cases}$$

EXEMPLO 5: Uma apólice de seguro cobre uma perda aleatória X, com um valor de franquia d, onde a seguradora somente é notificada pelo segurado quando a severidade do sinistro supera a franquia dedutível, ou seja, o valor das severidades conhecidas pela seguradora é definida por Y, tal que:

$$Y = (X - d)|(X > d)$$

Considerando que a perda é modelada como um variável aleatória contínua com densidade $f_X(x) = 2x$ para 0 < x < 1 e que d = 0,3, obtenha $f_Y(y)$.

Solução

EXEMPLO 5-Solução

$$Y = (X - d)|(X > d)$$

Partimos do modelo de distribuição $F_{Y}(y)$. Assim:

$$F_Y(y) = P(Y \le y) = P(X - d \le y | X > d)$$

$$P(X \le y + d | X > d) = \frac{P(X \le y + d, X > d)}{P(X > d)} = \frac{P(y + d > X > d)}{P(X > d)}$$

$$F_Y(y) = \frac{F_X(y+d) - F_X(d)}{\overline{F}_X(d)}$$

Consequentemente

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{1}{\overline{F}_X(d)} \left[\frac{dF_X(y+d)}{dy} - \frac{dF_X(d)}{dy} \right] = \frac{f_X(y+d)}{\overline{F}_X(d)}$$

EXEMPLO 5-Solução

$$f_Y(y) = \frac{f_X(y+d)}{\overline{F}_X(d)} = \frac{2(y+d)}{\int_d^1 2x dx} = \frac{2(y+d)}{1-d^2}$$

Logo

$$f_Y(y) = \frac{2y + 0.6}{0.91}, 0 < y < 0.7$$

- \triangleright No **exemplo 5** foi feita uma modificação na variável aleatória X de forma a se obter a variável aleatória Y=(X-d)|(X>d) em que d corresponde ao valor da franquia.
- \triangleright A variável aleatória Y corresponde ao valor de excesso de danos ocorridos somente para os sinistros acima da franquia.
- \triangleright A seguradora somente é notificada pelo segurado sobre os sinistros que superam a franquia (d),
- ➤ Y é uma variável **aleatória truncada**, pois é obtida mediante a operação de restringir o domínio da variável aleatória original e redimensionar adequadamente a probabilidade sobre o novo domínio.
 - ➤ Uma distribuição truncada pode ser considerada como uma distribuição condicionada a uma restrição intervalar no suporte da distribuição.

➤ Os **exemplos 2 e 5** são exemplos de modificações na variável aleatória da severidade de sinistros no sentido de introduzir o conceito de franquias dedutíveis,

$$Y = Max(0; X - d) = (X - d)_{+}$$

$$Y = (X - d)|(X > d)$$

> ...O segurador transfere ao segurado uma parte do risco ao estipular que somente arcará com as indenizações que excede um determinado patamar de franquia.

Referências

Magalhães, M. N. Lima, A. C. P. **Noções de Probabilidade e Estatística**, Editora USP: São Paulo, 2001.

JAMES,B. R.; Probabilidade: **Um Curso em nível intermediário**, IMPA, Rio de Janeiro, 3 ed., 2004.

PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES,R. **Teoria do risco atuarial: Fundamentos e conceitos.** Curitiba, CRV 2020.