Math 302, Assignment 2

(1) In a small town, there are three bakeries. Each of the bakeries bakes twelve cakes per day. Bakery 1 has two different types of cake, bakery 2 three different types, and bakery 3 four different types. Every bakery bakes equal amounts of cakes of each type.

You randomly walk into one of the bakeries, and then randomly buy two cakes.

- (a) What is the probability that you will buy two cakes of the same type?
- (b) Suppose you have bought two different types of cake. Given this, what is the probability that you went to bakery 2?
- (2) An assembly line produces a large number of products, of which 1% are faulty in average. A quality control test correctly identifies 98% of the faulty products, and 95% of the flawless products. For every product that is identified as faulty, the test is run a second time, independently.
 - (a) Suppose that a product was identified as faulty in both tests. What is the probability that it is, indeed, faulty?
 - (b) What if the quality control test is only performed once?
- (3) Let M be an integer chosen uniformly from $\{1, \ldots, 100\}$. Decide whether the following events are independent:
 - (a) $E = \{M \text{ is even}\}\$ and $F = \{M \text{ is divisible by 5}\}\$
 - (b) $E = \{M \text{ is prime}\}\$ and $F = \{\text{at least one of the digits of } M \text{ is a 2}\}\$
 - (c) Can you replace the number 100 by a different number, in such a way that your answer to (a) changes? (E.g., if your answer was "dependent", try to change the number 100 in such a way your answer becomes "independent").
 - (d) Show that if M is selected uniformly from $\{1, 2, ..., N\}$ for N very large, and p, q are fixed prime numbers, then the events $\{p|M\}$ and $\{q|M\}$ are roughly independent, i.e.

$$\mathbb{P}(pq|M) \approx \mathbb{P}(p|M)\mathbb{P}(q|M),$$

where a|b means a divides b, and \approx means the two sides of the above equation differ by something tending to 0 as $N \to \infty$. Does this still hold if p,q are allowed to be any integers?

(4) Let X be a discrete random variable with values in $\mathbb{N} = \{1, 2, \ldots\}$. Prove that X is geometric with parameter $p = \mathbb{P}(X = 1)$, i.e.

$$\mathbb{P}(X=k) = p(1-p)^{k-1} \text{ for } k \in \mathbb{N},$$

if and only if the memoryless property

$$\mathbb{P}(X = n + m \mid X > n) = \mathbb{P}(X = m)$$

holds

Hint: Use $\mathbb{P}(X = k) = \mathbb{P}(X = k + 1 | X > 1)$ repeatedly.

(5) Let X take values $\{1, 2, 3, 4, 5\}$, and have p.m.f. given by

Table 1. The p.m.f. of X

k	1	2	3	4	5
$\mathbb{P}(X=k)$	1/7	1/14	3/14	2/7	2/7

- (a) Calculate $\mathbb{P}(X \leq 3)$
- (b) Calculate $\mathbb{P}(X < 3)$
- (c) Calculate $\mathbb{P}(X < 4.12 | X > 1.6)$
- (6) Consider the following lottery: There are a total of 10 tickets, of which 5 are "win" and 5 are "lose". You draw tickets until you draw the first "win". Drawing one ticket costs \$2, 2 tickets \$4, 3 tickets \$8, and so on. A winning ticket pays out \$8.
 - (a) Let X be the number of tickets you draw in the lottery (i.e. the number of tickets until the first win, including the winning ticket). Calculate the p.m.f. of X.
 - (b) Calculate the expectation $\mathbb{E} X$.
 - (c) Calculate the variance $\sigma^2(X)$.
 - (d) What are your expected winnings in this game?
- (7) In a town, there are on average 2.3 children in a family and a randomly chosen child has on average 1.6 siblings. Determine the variance of the number of children in a randomly chosen family.
- (8) Consider a random graph on $n \geq 3$ vertices labeled by $[n] := \{1, \ldots, n\}$ defined as follows: for each i, j draw an edge between i and j w.p. 1/2 so that the events $A_{i,j} = \{i \text{ and } j \text{ are connected by an edge}\}$ are (mutually) independent for all pairs $\{i,j\}$ with $i \neq j \in [n]$. Let X be the number of triangles in the graph. That is, the number of $\{i,j,k\} \subset [n]$ so that $i \neq j$, $j \neq k$ and $i \neq k$ and each of the three pairs $\{i,j\},\{i,k\}$ and $\{j,k\}$ has an edge between them.
 - (a) Calculate $\mathbb{E} X$
 - (b) Calculate $\sigma^2(X)$