Classification and Clustering Methods to Predict Pollster Accuracy in US Elections

Vijay Ravuri Nikki Hassell

Problem Statement

We will investigate polling accuracy across different methodologies, partisan status, and type of race. Our goal is to predict if a poll will make the right call based on polling features or discover similar trends in accurate or inaccurate polls based on clustering methods.

The Data

- Started in 2008 as a blog
- Namesake 538 electors in US electoral college
- 2013 acquired by ESPN
- 2018 transferred to ABC
- Broad spectrum of subjects now focusing on elections, politics, and American society

Picture Source: <u>CNN</u>
Picture Source: <u>Nieman Lab</u>

Using SpaCy Models for Comment Detail

comment			
for New York Daily No	ews W	ABC-TV(I	New York)
for unspecified Demo	ocratic s	ponsor	
for New York Daily No	ews W	ABC-TV (I	New York)
for Charles E. Schum	er		
for Richard Stallings			
for Richard Stallings			
sample size unavaila	ble; esti	mated at	600 as a default
for Tom Vilsack			
for Richard A. Hill			
for Robert C. Hayes			

Flags for organization, person, poll for a $unspecified \ D/R$ sponsor

Regex to flag: among registered voters, average of multiple versions/turnout models listed, and imputed sample size

EN_CORE_WEB_TRF

Sources: TRF image

SpaCy

for CNN | Time

Exploratory Data Analysis

EDA on Pollster Grades

Context on 538 Grading: 538

EDA on Pollster Grades

Number of Polls - Spike in Polls in 2008

Increase in polls in 1998-2008

Access to online and text capabilities

Most polling done on **Presidential Election**

Types of Methodologies

Live Phone, IVR, and Online polls were by far the most common methodologies.

Understanding Bias vs. Error

- Positive Bias Score favorable to a Democratic candidate compared to actual score
- Negative Bias Score favorable to Republican
 candidate compared to actual
 score
- Error Absolute Value of Bias

	Wrong Call	No Call	Right Call
Democratic (D)	121	36	294
Republican (R)	98	19	244

Poll Error as Election Approaches

Poll Error as Election Approaches by Party

Poll Error as Election Approaches - No Party Label

Prediction Methods

Modeling and Analysis:

Target - if a Poll made the Right call

- 1. Logistic Regression with Numeric Features (using StandardScaler and MinMaxScaler)
- 2. Logistic Regression + Categorical Features (using StandardScaler)
- 3. Simple Decision Tree (Cat + Num features)(using StandardScaler and MinMaxScaler) Best Model
- 4. Grid Search Decision Tree (Numeric and Categorical) (StandardScaler)
- 5. Random Forest Model (Numeric and Categorical) (StandardScaler)
- 6. Random Forest with Interaction Features using PolynomialFeatures
- 7. Analyzing our best model (RF) Performance by Partisan group

Logistic Regression - Numeric Features

With StandardScaler

- Numeric features 'year', 'samplesize', 'cand1_pct', 'cand2_pct', 'days_bt_polldate_election'
- **Target Mapped Right Call** 0 or 1 0.5 (dead heat imputed to 0)

Baseline	0.7835
Train Score	0.7827
Test Score	0.7829
Recall	0.9994
Precision	0.7833
f1 score	0.8782

Logistic Regression - Numeric and Categorical **Features**

With StandardScaler

- Numeric features
- Categorical features 'org', 'person', 'anon', 'registered_voters', 'averaged', 'imputed 600', 'Text', 'Live Phone', 'Mail',' Face-to-Face', 'IVR', 'Online', '538 Grade'
- Target Mapped Right Call 0 or 1 0.5 (dead heat imputed to 0)

Baseline	0.7835
Train Score	0.7810
Test Score	0.7838
Recall	0.9953
Precision	0.7858
f1 score	0.8782

Decision Trees

- StandardScaler preformed pretty much the same MinMaxScaler
- Grid Search did not make much improvement compared to default

Baseline	0.7835
Train Score	0.8133
Test Score	0.8229
Recall	0.8760
Precision	0.8956
f1 score	0.8857

Random Forest Model

- Numeric and Categorical features
- **Target Mapped Right Call** 0 or 1 0.5 (dead heat imputed to 0)

Baseline	0.7835
Train Score	0.8332
Test Score	0.8387
Recall	0.9472
Precision	0.8608
f1 score	0.9019

Random Forest with Interaction Features

Used **PolynomialFeatures** on

- Three most popular methodologies (Live Phone, IVR, Online)
- Imputed 600 and sample size

Baseline	0.7835
Train Score	0.8269
Test Score	0.8280
Recall	0.9418
Precision	0.8537
f1 score	0.8956

Analyzing our Best Model by Party - Random Forest

Analyzing our Best Model by Party - Random Forest

Clustering Methods

Process

- Three clustering algorithms attempted:
 - o K-Means
 - DBSCAN
 - Hierarchical DBSCAN
- Compared results between Standard Scaler and Min-Max Scaler
 - Min-Max Scaler separates categorical features much more than Standard Scaler
 - Which scaling method was better depended on the clustering algorithm
- Applied Principle Component Analysis (PCA)
 - Used 85% of the variance as our cutoff
 - Did not change the results by much but did improve our clustering slightly
- Used Silhouette Score as our performance metric
 - Compares within cluster similarity with outside of cluster similarity(range: [-1,1], higher is better)
 - Not an appropriate measure for density-based clustering!

K-Means

- Min-Max Models:
 - Separated primarily on methodology
 - 2-means model split Live Phone polls into a cluster and the rest into the second
 - 3-mean model made separate clusters for Live Phone, Online, and IVR
- Standard Scaled Model:
 - □ Isolated some partisan polls that were a bit less accurate on average (~10% lower)
- Generally, K-Means did not show particularly interesting clusters

K	Scaler	Score
2	Min-Max	0.634
3	Min-Max	0.598
2	Standard	0.675

DBSCAN

- Standard Scaler gave very poor results
 - Standard Scaler best silhouette score: 0.095
 - Unable to find any meaning in the clusters
- Min-Max gave mixed but very interesting results
 - Best silhouette score: 0.423
 - Only created 1 cluster and identified 28 outliers
- The Outliers:
 - Very inaccurate polls (26.79% accuracy)
 - All partisan (15 Democratic, 13 Republican)
 - Ranged from 2012-2020
 - Almost all were done for unspecified donors

Hierarchical DBSCAN (HDBSCAN)

- Extension of DBSCAN that can detect clusters of varying densities
 - No more tuning epsilon!
- Identical best silhouette score for Min-Max and Standard scaler (0.383)
 - Completely different clusters however
 - Standard Scaler found clusters that did not seem meaningful
- Min-Max Scaler on the other hand:
 - Found 24 clusters + outliers
 - 8 of those clusters had 0 correct calls between them
 - 1070 incorrect calls (10% of our data)
 - 4 no-calls
 - All were nonpartisan polls
 - None were online polls
 - Likely coincidental

Conclusion

Conclusions

- Predicting poll accuracy through this approach is not easy
 - We were only able to improve our baseline by 5%
 - Polls are generally accurate and what causes them to be wrong is not easy to measure
 - Polls are trying to predict the future so there will always be some meaningful error present
- Clustering has some merit
 - Saw some interesting and meaningful clusters from all 3 approaches
 - Hard to tell whether clusters are valuable until we look at them very closely
- We did not find strong evidence of trends between partisan or methodological differences with error

Next Steps

Next Steps

- Using geopandas to create a heat map to visualize EDA by state
 - Methodology, Error, Bias, number of polls conducted
- Extend the clustering approach to find better separated clusters
 - Train a model to classify into those clusters to predict whether a poll is accurate by proxy
 - Implement a more effective measure of cluster quality
 - Density-Based Clustering Validation (DBCV)

Any Questions?