Treating tumor necrosis factor mediated inflammatory disease, e.g. arteriosclerosis, using new or known beta-carboline derivatives

Publication number: DE19807993 (A1) Publication date:

1999-09-02

Inventor(s):

NIELSCH ULRICH [DE]; SPERZEL MICHAEL [DE]; BETHE BARBARA [DE]; JUNGE

BODO [DE]; LIEB FOLKER [DE]; VELTEN ROBERT [DE]

Applicant(s):

BAYER AG [DE]

Classification:

- international:

C07D471/04; C07D471/00; (IPC1-7): C07D471/04; A61K31/645; C07D209/00;

C07D221/00; C07D471/04

- European: C07D471/04

Application number: DE19981007993 19980226 Priority number(s): DE19981007993 19980226

Abstract of DE 19807993 (A1)

Diseases mediated by tumor necrosis factor- alpha (TNF- alpha) are treated using beta -carboline Diseases mediated by tumor necrosis factor- alpha (TNF- alpha) are treated using beta -carboline derivatives (I), i.e. harmine or its derivatives. Some compounds (I) are new, beta -carboline derivatives of formula (I) or their salts are used for the preparation of medicaments for treating diseases mediated by TNF- alpha; R1 = H, alkyl or CH2R6; R6 = cycloalkyl (optionally substituted phenyl) alkoxycarbonyl or optionally alkyl-substituted alkyleneaminocarbonyl (cyclic aminocarbonyl), in which the alkylene chain is optionally interrupted by O, S or N; R2 = H, alkyl, CH2R7, optionally substituted benzoyl or S(O)nR8; R7 = CN, dialkoxymethyl, optionally substituted phenyl alkoxy, alkynyloxy, alkoxycarbonyl, dialkylaminocarbonyl or N-alkyl-N-alkoxycarbonylamino; R8 = alkyl or optionally substituted phenyl; n = 1 or 2; R3 = H, halo, OH, alkyl, optionally substituted benzoylcarbonyl or CH2R9; R9 = 1-hydroxycycloalkyl (optionally substituted by methyl); cycloalkylmethyl; or benzyl or alpha -hydroxybenzyl (both optionally ring-substituted); R4 = H, halo or NO2; and R5 = H, halo, NO2 or alkylcarbonyl.; An Independent claim is included for (I) and their salts as new compounds, where n, R4, R5 and R8 are as above and: (A) R1 = alkyl or CH2R6; R6 = as above; R2 = CH2R7, optionally R5 and R8 are as above and: (A) R1 = alkyl or CH2R6; R6 = as above; R2 = CH2R7, optionally substituted benzoyl or S(O)nR8; R7 = as above except that optionally substituted phenyl is replaced by phenyl substituted by one or more of halo, CN, 1-4C alkyl or 1-4C alkoxy (both optionally substituted by F or Cl), NO2, NH2 or mono- or di-(1-4C)alkylamino; R3, R9 = as above; (B) R1 = CH2R6; R6 = as above but not unsubstituted phenyl; R2 = H, alkyl or benzyl; R3, R9 = as above; or C) R1 = alkyl or benzyl; R2 = H, alkyl or benzyl; R3 = halo, optionally substituted benzoylcarbonyl or CH2R9; and R9 = cycloalkylmethyl, ring-substituted benzyl or optionally substituted alpha -hydroxybenzyl.

Data supplied from the esp@cenet database -- Worldwide

(B) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

[®] Offenlegungsschrift[®] DE 198 07 993 A 1

② Aktenzeichen:

198 07 993.1

2 Anmeldetag:

26. 2.98

43 Offenlegungstag: 2

2. 9.99

(5) Int. Cl. 6: C 07 D 471/04

A 61 K 31/645 // (C07D 471/04, 221:00,209:00)

① Anmelder:

Bayer AG, 51373 Leverkusen, DE

② Erfinder:

Nielsch, Ulrich, Dr., 42113 Wuppertal, DE; Sperzel, Michael, Dr., 42275 Wuppertal, DE; Bethe, Barbara, Dr., 51065 Köln, DE; Junge, Bodo, Dr., 42399 Wuppertal, DE; Lieb, Folker, Dr., 51375 Leverkusen, DE; Velten, Robert, Dr., 50667 Köln, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Werwendung von β-Carbolinderivaten zur Bekämpfung von TNF-α-abhängigen Krankheiten
- Die Erfindung betrifft die Verwendung teilweise bekannter β-Carbolinderivate zur Herstellung von Arzneimitteln für die Bekämpfung von TNF-α (Tumor Necrosis Factor α) abhängigen Krankheiten, insbesondere Arterioskle
 1000.

Beschreibung

Die Erfindung betrifft die Verwendung teilweise bekannter β -Carbolinderivate zur Herstellung von Arzneimitteln für die Bekämpfung von TNF-α (Tumor Necrosis Factor α) abhängigen Krankheiten, insbesondere Arteriosklerose

Das Alkuloid Harmin (7-Methoxy-1-methyl-4,9-dihydro-3H-β-curbolin oder 7-Methoxy-1-methyl-9H-pyrido[3,4b]indol) wurde bereits 1847 von Fritsche [(Liebigs Ann. Chem. 64 360 (1848)] aus den Samon der Steppenraute Perganum harmala isoliert. Ungefähr 80 Jahre später wurden die ersten Totalsynthesen publiziert [J. Chem. Soc. 1927, 13; Chem. Ber. 63, 120 (1930)]. Seitdem wurde Harmin in vielen anderen Pflanzen gefunden.

Die pharmakologische Wirkung der β-Carbolin-Alkaloide ist gerade in jüngerer Zeit Gegenstand zahlreieher Untersuchungen gewesen. Beispielsweise seien die Wirkung auf das Zentralnervensystem in Zusammenhang mit Drogen- und Alkoholabhangigkeit [vgl. z. B. US-P 5,591,738; Alcohol Alcohol 31, 175 (1996)] und die Antitumorwirkung genannt [vgl. z. B. Shenyang Yaoxueyuan Xuehao 10, 136 (1993)]. Über die Wirkung gegen TNF-α ist hisher nichts bekannt geworden,

In einem TNF-α-screening wurde ein Extrakt aus Perganum harmala erfindungsgemäß als aktiv identifiziert. Als aktive Substanz wurde überraschend Harmin isoliert.

Es wurde nun gefunden, daß die \(\beta\)-Carbolinderivate der Formel (I)

in welcher

25

R1 für Wasserstoff, Alkyl oder -CH2-R6 steht, wobei

R⁶ für Cycloalkyl, gegebenenfalls substituiertes Phenyl, für Alkoxycarbonyl oder gegebenenfalls durch Alkyl substituiiertes Alkylenaminocarbonyl (=eyclisches Aminocarbonyl), dessen Alkylenkette durch ein Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann, steht,

R2 fiir Wasserstoff, Alkyl, -CH2-R7, gegebenenfalls substitutertes Benzoyl oder für -S(O), R8 steht, webei R⁷ für Cyano, Dialkoxymethyl, gegebenenfalls substituiertes Phenyl oder Phenylalkyl, für Alkoxy, Alkinyloxy, Alkoxycarbonyl, Dialkylaminoearbonyl oder N-Alkyl-N-alkoxycarbonylamino steht,

R8 für Alkyl oder gegebenenfalls substituiertes Phenyl steht und

n für 1 oder 2 steht,

R³ für Wasserstoff, Halogen, Hydroxy, Alkyl, gegebenenfalls substitutertes Benzoylearbonyl oder für -CH₂-R⁹ steht, wo-

R⁹ für gegebenenfalls durch Methyl substituiertes 1-Hydroxycycloalkyl, für Cycloalkylmethyl, gegebenenfalls im Kem substituiertes Benzyl oder a-Hydroxybenzyl steht,

R4 für Wasserstoff, Halogen oder Nitro steht und

R5 für Wasserstoff, Halogen, Nitro oder Alkylcarbonyl steht,

seln gut geeignet sind zur Herstellung von Arzneimitteln für die Bekämpfung von TNF-α (Tumor Necrosis Factor α) abhängigen Krankheiten, insbesondere Arteriosklerose.

Die erfindungsgemäß verwendbaren Verbindungen sind durch die Formel (I) allgemein definiert.

Bevorzugte Substituenten bezichungsweise Bereiche der in den oben und nachstehend erwähnten Formeln aufgeführten Reste werden im folgenden erläutert.

R¹ steht bevorzugt für Wasserstoff, C₁-C₂₀-Alkyl oder -CH₂-R⁶.

R² steht bevorzugt für Wasserstoff, C₁-C₃-Alkyl, -CH₂-R⁷, gegebenenfalls einfach oder mehrfach durch Halogen, Cvano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkyl oder C₁-C₄-Alkyl C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoyl oder für -S(O)_nR⁸,

R³ steht bevorzugt für Wasserstoff, Halogen, Hydroxy, Ct-C6-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voncinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C1-C4-alkyl)-amino substituiertes Benzovlearbonyl oder für -CH2-R9

R4 steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod oder Nitro.

R⁵ steht bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Iod, Nitro oder C₁-C₄-Alkylearbonyl.

R6 steht bevorzugt für C3-C7-Cycloalkyl, gegebenenfalls einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)-amino substituiertes Phenyl, für C1-C4-Alkoxycarbonyl oder gegebenenfalls durch C1-C4-Alkyl substituiertes Alkylenaminocarbonyl (= cyclisches Anunocarbonyl) mit 2 bis 7 Ringgliedern, dessen Alkylenkette durch ein Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann.

R⁷ steht hevorzugt für Cyano, Di-(C₁-C₄-alkoxy)-methyl, gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C_1 - C_4 -Alkyl oder C_1 - C_4 -Alkoxy, durch Nitro, Amino, C_1 - C_4 -Alkylamino oder Di- $(C_1$ - C_4 -alkyl)-amino substituiertes Phenyl oder Phenyl- C_1 - C_4 -alkyl, für C_1 - C_6 -Alkoxy, C_2 -C6-Alkinyloxy, C1-C4-Alkoxycarbonyl, Di-(C1 C4-alkyl)-aminocarbonyl oder N-C1-C4-Alkyl-N-C1-C4-alkoxycarbonylamino.

 \mathbb{R}^8 steht bevorzugt für \mathbb{C}_1 - \mathbb{C}_4 -Alkyl oder gegebenenfalls einfach oder zweifach durch Fluor, Chlor, \mathbb{C}_1 - \mathbb{C}_4 -Alkyl oder Nitro substituientes Phenyl.

R9 steht hevorzugt für gegebenenfalls durch Methyl substituiertes 1-Hydroxy-C3-C8-cycloalkyl, für C3-C8-Cycloal-

kylmethyl, gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)amino substituiertes Benzyl oder a-Hydroxybenzyl.

n steht bevorzugt für 1 oder 2.

 \mathbb{R}^1 steht besonders bevorzugt für Wasserstoff- $\mathrm{C_{1^-}C_{12^-}Alkyl}$ oder - $\mathrm{CH_{2^-}R^6}$.

R2 steht besonders bevorzugt für Wasserstoff C1-C6-Alkyl, -CH2-R7, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brotn, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes Ct-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)-amino substituiertes Benzoyl oder für -S(O), R8.

R3 steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Broin, Iod, Hydroxy, C1-C4-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C1-C4-al-

kyl)-amino substituiertes Benzoylcarbonyl oder fiir -CH2-R9.

R4 steht besonders bevorzugt für Wasserstoff; Fluor, Chlor, Brom oder Nitro.

R⁵ steht besonders bevorzugt für Wasserstoff, Fluor, Chlor, Brom, Nitro oder C₁-C₄-Alkylcarbonyl.

R6 steht besonders bevorzugt für Cyclopropyl, Cyclopentyl, Cyclohexyl, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2,2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluormethoxy, durch Nitro, Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, Dibutylamino substiluiertes Phenyl, für Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, 1-Aziridinylcarbonyl, 1-Pyrrolidinylcarbonyl, 1-Piperidinylcarbouyl, Hexahydro-1-picolinylcarbonyl (alle drei Isomere), 1-Piperazinylcarbonyl, 4-Mcthyl-1-pipcrazinylcarbonyl, 4-Morpholinocarbonyl oder Tetrahydro-1,4-thiazin-4-ylcarbonyl.

R7 steht besonders bevorzugt für Cyano, Di-(C1-C4-alkoxy)-methyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Broin, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)-amino substituiertes Phenyl oder Phenyl-C1-C2-alkyl, für C1-C4-Alkoxy, C3-C5-Alkinyloxy, C1-C4-Alkoxycarbonyl, Di-(C1-C4-alkyl)-aminocarbonyl oder N-C1-C2-Alkyl-N-C1-

C2-alkoxycarbonylamino.

 R^8 sucht besonders bevorzugt für C_1 - C_4 -Alkyl oder gegebenenfalls einlach oder zweifach durch Fluor, Chlor, C_1 - C_4 -

Alkyl oder Nitro substituiertes Phenyl.

R9 steht besonders hevorzugt für gegebenenfalls einfach oder zweifach durch Methyl substituiertes 1-Hydroxy-C3-C3cycloalkyl, für C3-C6-Cycloalkylmethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebunenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di- $(C_1$ - C_4 -alkyl)-amino substituiertes Benzyl oder α -Hydroxybenzyl,

n sicht besonders bevorzugt für 1 oder 2.

R1 steht ganz besonders bevorzugt für Wasserstoff oder Methyl.

R2 steht ganz besonders bevorzigt für Wasserstoff; Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isohutyl, sec.-Butyl, tert.-Butyl, -CH2-R7, gegebenenfalls einfach his zweifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro, Dimethylamino oder Diethylamino substituiertes Benzoyl, für -S(O)R8 oder -S(O)2R8.

R³ steht ganz besonders bevorzugt für Wasserstoff; Fluor, Chlor, Brom, Hydrdoxy, Methyl, Lithyl, n-Propyl, Benzoyl-

40

carbonyl oder für -CH2-R9.

R4 steht ganz besonders bevorzugt für Wasserstoff.

R5 steht ganz hesonders bevorzugt für Wasserstoff.

R7 steht ganz besonders bevorzugt für Cyano, Di-(ntethoxy)-methyl, Di-(ethoxy)-methyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, Methyl, Bthyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2,2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, see,-Butoxy, tert.-Butoxy, Trifluormethoxy, durch Nitru, Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, Dibutylamino substituiertes Phenyl oder Benzyl, für Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Propargyloxy, 3-Methyl-1-butin-3-yl, Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, Dimethylaminocarbonyl, Diethylaminocarbonyl, Dipropylaminocarbonyl, Dibutylaminocarbonyl, Dipropylaminocarbonyl, Dibutylaminocarbonyl, Dipropylaminocarbonyl, Dipropylaminocarb nocarbonyl, N-Ethyl-N-methoxycarbonylamino, N-Ethyl-N-ethoxycarbonylamino.

R8 steht ganz besonders hevorzugt für Methyl, Ethyl, n-Propyl, Isopropyl, 11-Butyl, Isohutyl, sec.-Butyl, tert.-Butyl,

Phonyl, p-Tolyl, p-Chlorphenyl, 2.4-Dmitrophenyl oder p-Nitrophenyl.

R9 steht ganz besonders bevorzugt für gegebenenfalls einfach oder zweifach durch Methyl substituiertes 1-Hydroxycyclopropyl, 1-Hydroxycyclopentyl, 1-Hydroxycyclohexyl, 1-Hydroxy-2-methylcyclohexyl, 1-Hydroxy-2,6-dimethylcyclohexyl, für Cyclopropylniethyl, Cyclopentylmethyl, Cyclohexylniethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Tricblormethyl, 1,1,2,2-Tetrafluorethyl, 1,1,2-Trifluor-2chlorethyl, Methoxy, Bthoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, lert.-Butoxy, Trifluormethoxy, durch Nitro, Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, Dibutylamino substimiertes Benzyl oder α-Hydroxybenzyl.

Die oben aufgeführten allgemeinen oder in Vorzugsbereicben aufgeführten Restedefinitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwiscbenprodukte entsprechend.

Fründungsgemäß bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Komhination

der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Gesättigte oder ungesättigte Kohlenwasserstoffieste wie Alkyl oder Alkenyl können, auch in Verhindung mit Heteroalomen, wie z. B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

Von mehreren möglichen tautomeren Formen (z. B. Keto- oder Enol-Form für R³ = OH) sind immer alle möglichen gemeint, auch wenn der Einfachheit halber nur eine Form dargestellt wird.

Die Verbindungen der Formel (I) sind teilweise bekannt.

Neu sind β-Carbolinderivate der Formel (I-a)

 R^1 (I-a),

in welcher

LO

15

20

25

30

[A] R¹⁻¹ für Alkyl oder -CH₂-R⁶⁻¹ steht, wobei R⁶⁻¹ für ('veloathyl man')

für Cycloalkyl, gegebenenfalls substituiertes Phenyl, für Alkoxycarbonyl oder gegebenenfalls durch Alkyl substituicrtes Alkylenaminocarbonyl (=cyclisches Aminocarbonyl), dessen Alkylenkette durch ein Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann, steht,

R²⁻¹ für -CH₂-R⁷⁻¹, gegeberænfalls substituiertes Benzoyl oder für -S(O)_nR⁸ steht, wobei R⁷⁻¹ für Cyano, Dialkoxymethyl, einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)-amino substituiertes Phenyl, für gegebenenfalls substituiertes Phenylalkyl, für Alkoxy, Alkinyloxy, Alkoxycarbonyl, Dialkylaminocarbonyl oder N-Alkyl-N-alkoxycarbonylamino steht,

R8 für Alkyl oder gegebenenfalls substituiertes Phenyl steht und n für 1 oder 2 steht. R³⁻¹ für Wasserstoff; Halogen, Hydroxy, Alkyl, gegebenenfalls substitutertes Benzoylearbonyl oder für -CH₂-R⁹⁻¹

R⁹⁻¹ für gegebenenfalls durch Methyl substituiertes 1-Hydroxycycloalkyl, für Cycloalkylmethyl, gegebenenfalls im Kern substituiertes Benzyl oder α-Hydroxybenzyl steht,

35 R4-1 für Wasserstoff; Halogen oder Nitro steht und

R5-1 für Wasserstoff; Halogen oder Alkylearhonyl steht, oder in welcher

[B] R¹⁻¹ für -CH₂-R⁶⁻¹ steht, wobei R⁶⁻¹ für Cycloalkyl, substituiertes Phenyl, für Alkoxycarbonyl oder gegebenenfalls durch Alkyl substituiertes Alkylenaminocarbonyl (=cyclisches Aminocarbonyl), dessen Alkylenkette durch ein Saucrstoff-, Schwefel- oder 40 Stickstoffatom unterbrochen sein kann, steht,

R2-1 für Wasserstuff; Alkyl oder Benzyl steht,

R³⁻¹ für Wasserstoff; Halogen, Hydroxy, Alkyl, gegebeneufalls substituiertes Benzoylearbonyl oder für -CH₂-R⁹⁻¹ steht, wobei

45 \mathbb{R}^{9-1} für gegebenenfalls durch Methyl substituiertes 1-Hydroxycycloalkyl, für Cycloalkylmethyl gegebenenfalls im Kern substituiertes Benzyl oder α-Hydroxybenzyl steht,

R4-1 für Wasserstoff; Halogen oder Nitro steht und

R⁵⁻¹ für Wasserstoff; Halogen oder Alkylcarbonyl steht,

oder in welcher [C] R¹⁻¹ für Alkyl oder Benzyl steht,

R2.1 für Wasserstoff; Alkyl oder Benzyl steht.

R³⁻¹ für Halogen, gegebenenfalls substituiertes Benzoylearbonyl oder für -CH₂-R⁹⁻¹ steht, wobei

R9-1 für Cycloalkylmethyl, im Kern substituieries Benzyl oder gegebenenfalls substituiertes α-Hydroxybenzyl

R4-1 für Wasserstoff; Halogen oder Nitro steht und 55

R5-1 für Wasserstoff; Halogen oder Alkylcarhonyl steht.

Weiterhin wurde gefunden, daß sich die Verbindungen der Formel (I-a) uach einem der im folgenden beschriebenen Verfahren herstellen lassen.

A) β-Carbolinderivate der Formel (I-b)

65

60

$$R^{1-1}$$
 R^{5-1}
 R^{2-2}
 R^{3-1}
 R^{3-1}
 R^{3-1}
 R^{3-1}

in welcher R^{1-1} , R^{3-1} , R^{4-1} und R^{5-1} die oben angegebenen Bedeutungen haben und R^{2-2} mit Ausnahme von Wasserstoff für dieselben Reste wie R^{2-1} (in Kombination mit R^{1-1} , R^{3-1} , R^{4-1} und R^{5-1}) steht, lassen sich herstellen, indem man β -Carbolinderivate der Formel (I-c)

in welcher R^{1-1} , R^{3-1} die oben angegebenen Bedeutungen (ohne die Einschräukungen für $R^2 = H$) haben, zunächst in Gegenwart eines geeigneten Verdünnungsmittels mit einer geeigneten Base in das korrespondierende Amid-Anion überführt und anschließend mit Halogeniden der Formel (II)

30

65

$$R^{2-2}-X$$
 (II),

in welcher

R²⁻² die oben angegebene Bedeutung hat und

X für Chlor, Brom oder Iod steht,
umsetzt.

B) β-Carbolinderivate der Formel (I-d)

$$R^{4-2}$$
 R^{1-1}
 R^{5-2}
 R^{2-1}
 R^{3-1}
 R^{3-1}
 R^{3-1}
 R^{3-1}

in welcher R^{1-1} , R^{2-1} und R^{3-1} die oben angegebenen Bedeutungen haben und R^{4-2} und R^{5-2} mit der Einschränkung, daß einer dieser Reste von Wasserstoff verschieden ist, jeweils für dieselben Reste wie R^{4-1} und R^{5-1} stehen, lassen sich herstellen, indem man Q-Carbolinderivate der Formel (I-e)

$$R^{4-3}$$
 (I-e), R^{5-3} R^{3-1} (Solution 1)

in welcher

R¹⁻¹, R²⁻¹ und R³⁻¹ die oben angegebenen Bedeutungen haben und

R⁴⁻³ und R⁵⁻³ mit der Einschränkung, daß mindestens einer dieser Reste Wasserstoff ist, jeweils für dieselben Reste wie R⁴⁻¹ und R⁵⁻¹ stehen,
gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators mit einem entsprechendem elektrophilen Reagenz umsetzt.

C) β-Carbolinderivate der Formel (I-f)

$$R^{1-1}$$
 R^{5-1}
 R^{2-1}
 R^{3-2}
(I-f),

in welcher

R¹⁻¹, R²⁻¹, R⁴⁻¹ und R⁵⁻¹ die oben angegebenen Bedeutungen haben und

R³⁻² mit Ausnahme von Wasserstoff; Halogen, Hydroxy und Methyl für diesselben wie Reste R³⁻¹ (in Kombination mit R¹⁻¹, R²⁻¹, R⁴⁻¹ und R⁵⁻¹) steht, 10 lassen sich herstellen, indem man β-Carbolinderivate der Formel (I-g)

(I-g),

in welcher R^{1-1} , R^{2-1} , R^{4-1} und R^{3-1} die oben angegebenen Bedeutungen haben, 25 zunächst in Gegenwart eines Verdünnungsmittels metalliert und darauf mit Elektrophilen wie Halogeniden der For-

R10-X' (III),

5

15

20

30

35

40

45

in welcher R^{10} für Alkyl, Cycloalkylmethyl und gegebenenfalls im Kern substituiertes Benzyl steht und X' für Chlor, Broin oder Iod steht,

oder gegebenenfalls durch Methyl substituierten Cycloalkanonen oder gegebenenfalls substituierten Benzaldehyden oder Benzamiden umsetzt, wobei im letzten Fall die zunächst gebildeten Benzoylmethyl-Substituenten (R³⁻²) durch Luftzutritt bei der Aufarbeitung zu den entsprechenden Benzoylearbonyl-Substituenten oxidiert werden. D) β-Carbolinderivate der Formel (I-h)

in welcher $R^{1\cdot 1}$, $R^{2\cdot 1}$, $R^{4\cdot 1}$ und $R^{5\cdot 1}$ die oben angegebenen Bedeutungen haben (entspricht $R^{3\cdot 1}$ = OH in der Formel (I-a) der erfindungsgemäßen Verbindungen),

lassen sich herstellen, indem man Tetrahydro-β-carbolinderivate der Formel (IV) 50

(IV),

in welcher R¹⁻¹, R²⁻¹, R⁴⁻¹ und R⁵⁻¹ die ohen angegebenen Bedeutungen haben, in Gegenwart eines Katalysators und in Gegenwart eines Verdünnungsmittels dehydriert. E) β-Carbolinderivate der Formel (I-i)

65

60

$$R^{1-1}$$
 R^{3-1}
 R^{3-1}
 R^{3-2}
 R^{3-3}
(I-i),

in welcher

R¹⁻¹, R²⁻¹, R⁴⁻¹ und R⁵⁻¹ die oben angegebenen Bedeutungen haben und

R³⁻³ für Halogen steht,

10

lassen sich herstellen, indem man β -Carbolinderivate der Formel (I-h)

$$R^{1-1}$$
 R^{5-1}
 R^{5-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}

in welcher R¹⁻¹, R²⁻¹, Ind R⁵⁻¹ die oben angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Reaktionshilfsmit- 25 tels mit einem geeigneten Halogenierungsreagenz umsetzt. F) β-Carbolinderivate der Formel (I-j)

$$R^{1-1}$$
 R^{5-1}
 R^{2-1}
 R^{2-1}
 R^{2-1}
 R^{30}

in welcher $R^{1-1}, R^{2-1}, R^{4-1}$ und R^{5-1} die oben angegebenen Bedeuungen haben, lassen sich herstellen, indem man β-Carbolinderivate der Formel (I-i-a)

$$R^{4-1}$$
 R^{5-1}
 R^{5-1}
 R^{3-3a}
 R^{3-3a}
(I-i-a),
 R^{5-1}
 R^{3-3a}

in welcher R^{1-1} , R^{2-1} , R^{4-1} und R^{5-1} die oben angegebenen Bedeutungen haben und R^{3-34} für Chlor, Brom oder Iod steht, 50 G) β-Carbolinderivate der Formel (I-a)

$$R^{1-1}$$
 R^{5-1}
 R^{2-2}
 R^{3-1}
 R^{3-1}
 R^{3-1}
 R^{3-1}
 R^{3-1}
 R^{3-1}
 R^{3-1}

in welcher \mathbb{R}^{1-1} bis \mathbb{R}^{5-1} die oben angegebenen Bedeutungen haben, lassen sich herstellen, indem man β -Carbolinderivate der Formel (I-k) 65

in welcher

R²⁻¹ bis R⁵⁻¹ die oben angegebenen Bedeutungen haben,
zunächst in Gegenwart eines geeigneten Verdünnungsmittels mit einer geeigneten Base in das korrespondierende
Phenolat-Anion überführt und anschließend mit Elektrophilen der Formel (V)

15 R¹⁻¹-X" (V),

20

65

in welcher R¹⁻¹ die oben angegebene Bedeutung hat und X" für eine geeignete Abgangsgruppe steht, umsetzt,

Die neuen β-Carbolinderivate sind durch die Formel (I-a) allgemein desiniert. Bevorzugt sind Verbindungen der Formel (I-a), in welcher

LAJ R¹⁻¹ für C₁-C₂₀-Alkyl oder -CH₂-R⁶⁻¹ steht, wobei R⁶⁻¹ für C₃-C₇-Cycloalkyl, gegebenenfalls einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro. Amino, C₁-C₄-Alkylamino oder Distituiertes Alkylenaminocarbonyl (=cyclisches Aminocarbonyl oder gegebenenfalls durch C₁-C₄-Alkyl subdurch ein Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann, steht,
 R²⁻¹ für -CH₂-R⁷⁻¹, gegebenenfalls einfach bis dreifsch durch Eluc (CH₂-D₃-C₄-Alkylamino oder Distriction unterbrochen sein kann, steht,

R²⁻¹ für -CH₂-R⁷⁻¹, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Clilor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoy, durch Nitro, Ammo, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-unino substituiertes Benzoyl oder für -S(O)_uR⁸ steht, wobei R⁷⁻¹ für Cyano, Di-(C₁-C₄-alkoyy)-methyl. Phenyl-C₁-C₄-alkyl, im Kern einfach oder mehrfach durch Halogen,

Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylatnino oder Di-(C₁-C₄-alkyl)-amino substituiertes Phenyl oder Phenyl-C₁-C₄-Alkoxy, durch Nitro, Amino, C₂-C₆-Alkinyloxy, C₁-C₄-Alkoxyearbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder N-C₁-C₄-Alkyl-N-C₁-C₄-Alkoxyearbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder N-C₁-C₄-Alkyl-N-C₁-C₄-alkoxyearbonyl

R⁸ für C₁-(A-Alkyl oder gegebenenfalls einfach oder zweifach durch Fluor, Chlor, C₁-C₄-Alkyl oder Nitro substituiertes Fhenyl steht und n für 1 oder 2 steht.

R³⁻¹ für Wasserstoff; Halogen, Hydroxy, C₁-C₆-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoylcarbonyl oder für -CH₂-R⁹⁻¹ stelu, wobei

45 R⁹⁻¹ für gegebenenfalls durch Methyl substituiertes 1-Ilydroxy-C₂-C₈-cycloalkyl, für C₃-C₈-Cycloalkylmethyl, gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzyl oder α-Hydroxybenzyl steht,

R⁴⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod oder Nitro steht und
R⁵⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod oder C₁-C₄-Alkylcarbonyl steht,
oder in welcher

[B] R¹⁻¹ für -CH₂-R⁶⁻¹ steht, wobei

R^{6.1} für C₃-C₇-Cycloalkyl, einfach oder nichtfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substitutiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substitutiertes Phenyl, für C₁-C₄-Alkoxycarbonyl oder gegebenenfalls durch C₁-C₄-Alkyl substitutiertes Alkylenaminocarhonyl (=cyclisches Aminocarbonyl) mit 2 bis 7 Ringgliedern, dessen Alkylenkette durch ein Sauer-R²⁻¹ für Wasserstoff; C₁-C₈-Alkyl oder Benzyl steht,

R³⁻¹ für Wasserstoff, Halogen, Hydroxy, C₁-C₅-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoylearbonyl oder für -(CH₂-R³-1 steht, wohei

 R^{4-1} für Wasserstoff; Fluor, Chlor, Brom, Iod oder Nitro steht und R^{5-1} für Wasserstoff; Fluor, Chlor, Brom, Iod oder C_1 - C_4 -Alkylcarbonyl steht, oder in welcher

[C] R¹⁻¹ für C₁-C₂₀-Alkyl oder Benzyl steht, für Wasserstoff; C1-C8-Alkyl oder Benzyl steht, R³⁻¹ für Halogen, gegebenenfalls einfach bis dreifach unabhängig voneinauder durch Fluor, Chlor, Brom, Methyl, Ethyl, Trisluorincihyl, Nitro oder Di-(C1-C4-alkyl)-amino substituiertes Benzoylearbonyl oder für -CH2-R9 1 steht, R⁹⁻¹ für C₃-C₈-Cydoalkylmethyl, α-Hydroxybenzyl, im Kern einfach oder mehrfach durch Halogen, Cyano, gegehenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(Ci-Ca-alkyl)-amino substituiertes Benzyl oder α-Hydroxybenzyl steht, R4-1 für Wasserstoff; Fluor, Chlor, Brom, Iod oder Nitro steht und \mathbb{R}^{5-1} für Wasserstoff; Fluor, Chlor, Brom, Iod oder $\mathbb{C}_1\text{-}\mathbb{C}_4\text{-}$ Alkylcarbonyl sieht. 10 Besonders bevorzugt sind Verbindungen der Formel (I-a), in welcher [A] R^{1-1} für C_1 - C_{12} -Alkyl oder - CH_2 - R^{6-1} steht, wobei R^{6-1} für Cyclopropyl, Cyclopentyl, Cyclohexyl, gegebenenfalls einfach bis dreifach durch Fluur, Chlor, Brom, Cyano, Mcthyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2,2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluormethoxy, durch Nitro. Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Dietbylamino, Dipropylamino, Dibutylamino substituiertes Phenyl, für Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, 1-Aziridinylcarbonyl, 1-Pyrrolidinylcarbonyl, 1-Piperidinylcarbonyl, Hexahydro-1-picolinylcarbonyl (alle drei Isomere), 1-Piperazinylcarbonyl. 4-Methyl-1-piperazinylcarbonyl, 4-Morpholinocarbonyl oder Tetrahydro 1,4-thiazin-4-ykcarbonyl steht, R²⁻¹ für -CH₂-R⁷⁻¹, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituientes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C₁-C₄-alkyl)-anino substituiertes Benzoyl oder für -S(O)_nR⁸ steht, wobei R⁷⁻¹ Für Cyano, Di-(C₁-C₄-alkoxy)-methyl, Phenyl-C₁-C₂-alkyl, im Kern einfach bis dreifach durch Fluor, Chlor, Ch Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)-amino substituiertes Phenyl oder Phenyl-C1-C2-alkyl, für C1-C4-Alkoxy, C3-C5-Alkinyloxy, C1-C4-Alkoxycarbonyl, Di-(C1-C4-alkyl)-aminocarbonyl oder N-C1-C2-Alkyl-N-C1-C2-alkoxycarbouylamino steht, R8 für C1-C4-Alkyl oder gegebenenfalls einfach oder zweifach durch Fluor, Chlor, C1-C4-Alkyl oder Nitro substituiertes Phenyl steht und n für 1 oder 2 steht, R³⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod, Hydroxy, C₁-C₄-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voncinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoylearbonyl oder für -CH₂-R⁹⁻¹ steht, wobei R9-1 für gegebenenfalls einfach oder zweifach durch Methyl substimiertes 1-Hydroxy-C3-C6-cycloalkyl, für C3-C6-Cycloalkylmethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C_1 - C_4 -all(yl)-aruino substituiertes Benzyl oder α -Hydroxybenzyl steht, \mathbb{R}^{4-1} für Wasserstoff; Fluor, Chlor, Brom oder Nitro steht und R5-1 für Wasserstoff, Fluor, Chlor, Brom oder C1-C4-Alkylcarbonyl steht, oder in welcher [B] R¹⁻¹ für -CH₂-R⁶⁻¹ steht, wobei R⁶⁻¹ für Cyclopropyl, Cyclopenyl, Cyclohexyl, einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, Methyl, 45 Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2,2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluormethoxy, durch Nitro, Amino, Methylarnino, Ethylamino, Isopropylamino, Dittethylamino, Diethylamino, Dipropylamino, Dibutylamino substituiertes Phenyl, für Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, 1-Aziridinylcarbonyl, 1-Pyrrolidinylcarbonyl, 1-Piperidinylcarbonyl, Hexahydro-1-picolinylcarbonyl (alle drei Isomere), 1-Piperazinylcarbonyl, 4-Methyl-1-piperazinylearbonyl, 4-Morpholinocarbonyl oder Tetrahydro-1,4-thiazin-4-ylearbonyl steht, für Wasserstoff; C:-C6-Alkyl oder Benzyl steht. R³⁻¹ für Wasserstoff, Fluor, Chlor, Brom, Iod, Hydroxy, C₁-C₄-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C1-C4-alkyl-amino substituiertes Benzoylearbonyl oder für -CH2-R9-1 steht, wobei R⁹⁻¹ für gegehenenfalls einfach oder zweifach durch Methyl substituiertes 1-Hydroxy-C₈-C₆-cycloalkyl, für C₃-C₆-Cycloalkylmethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlur, Broin, Cyano, gegebenenfalls durch Flnor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(Ci-C₄-alkyl)-amino substituiertes Benzyl oder α-Hydroxybenzyl steht, R⁴⁻¹ für Wasserstoff: Huor Chlor Brom oder Nitro etabt und für Wasserstoff; Fluor, Chlor, Brom oder Nitro steht und R^{5-1} für Wasserstoff; Fluor, Chlor, Brom oder C_1 - C_4 -Alkylcarbonyl steht, oder in welcher [C] \mathbb{R}^{1-1} für \mathbb{C}_1 - \mathbb{C}_{12} -Alkyl oder Benzyl steht, 65

R³⁻¹ für Fluor, Chlor, Brom, Iod, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoylcarbonyl oder für

R2-1 für Wasserstoff; C1-C6-Alkyl oder Benzyl steht,

-CH₂-R⁹⁻¹ steht, wobei

R9-1 C3-C6-Cycloalkylmethyl, α-Hydroxybenzyl, im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Phonyl oder Phonyl-C₁-C₂-alkyl, für C₁-C₄-Alkoxy, C₃-C₅-Alkinyloxy, C1-C4-Alkoxycarbonyl, Di-(C1-C4-alkyl)-aminocarbonyl oder N-C1-C2-Alkyl-N-C1-C2-alkoxycarbonylamino, Benzyl oder α-Hydroxybenzyl steht, R⁴⁻¹ für Wasserstoff; Fluor, Chlor, Brom oder Nitro steht und

R5-1 für Wasserstoif; Fluor, Chlor, Brom oder C1-C4-Alkylcarbonyl steht.

ιo Ganz besonders bevorzagt sind Verbindungen der Formel (I-a), in welcher

[A] R1-1 für Methyl steht.

R²⁻¹ für -CH₂-R⁷⁻¹, gegebenenfalls einfach bis zweifach unabbängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro, Dimethylamino oder Diethylamino substituiertes Benzoyl, für -S(O)R8 oder -S(O)2R8 steht, wobei

R7-1 für Cyano, Di-(methoxy)-methyl, Di-(ethoxy)-methyl, Benzyl, im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2.2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluormethoxy, durch Nitro, Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, Dibutylamino substituiertes Phenyl oder Benzyl, für Methoxy, Bthoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Propargyloxy, 3-Methyl-1-butin-3-yl, Methoxycarbonyl, Pthoxycarbonyl, Prop-

oxycarbonyl, Isopropoxycarbonyl, Dimethylaminocarbonyl, Diethylaminocarbonyl, Dipropylaminocarbonyl, Dibutylaminocarbonyl, N-Ethyl-N-methoxycarbonylamino, N-Ethyl-N-ethoxycarbonylamino steht und

R8 für Methyl, Ethyl, 11-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Phenyl, p-Tolyl, p-Chlorphenyl, 2,4-Dinitrophenyl oder p-Nitrophenyl steht,

R3.1 für Wasserstoff, Fluor, Chlor, Broin, Hydroxy, Methyl, Ethyl, n-Propyl, Benzoylcarbonyl oder für -CH2-R9-1 steht, wobci

15

20

25

30

R⁹⁻¹ für gegebenenfalls einfach oder zweifach durch Methyl substituiertes 1-Hydroxycyclopropyl, 1-Hydroxycyclopentyl, 1-Hydroxycyclohexyl, 1-Hydroxy-2-methylcyclohexyl, 1-Hydroxy-2,6-dimethylcyclohexyl, für Cyclopropylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2,7-Tetrafluorethyl, 1,1,2, Trifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluormethoxy,

durch Nitro, Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, 35 Dihutylamino substituiertes Benzyl oder a-Hydroxybenzyl steht,

R4-1 für Wasserstoff steht und R⁵⁻¹ für Wasserstoff steht,

oder in welcher

[C] R1-1 für Methyl steht, 40

R²⁻¹ für Wasserstoff, Methyl, Ethyl, n-Propyl, Isopropyl, n-Buryl, Isohutyl, sec.-Butyl, tert.-Buryl oder Benzyl

R^{3.1} für Fluor, Chlor, Brom, Benzoylcarbonyl oder für -CH₂-R^{9.1} stebt, wobei

R⁹⁻¹ für Cyclopropylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, α-Hydroxybenzyl, im Kern einfach bis dreifach durch Fluor, Chlor, Broin, Cyano, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Tridlormethyl, 1,1,2,2-Tetrallourethyl, 1,1,2-45 'Irifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluormethoxy, durch Nitro, Amino, Methylamino, Ethylamino, Isopropylamino, Dinethylamino, Dicthylamino, Dipropylamino, Dibutylamino substituiertes Benzyl oder α -Hydroxybenzyl steht, \mathbb{R}^{4-1} für Wasserstoff steht und 50

R⁵⁻¹ für Wasserstoff steht.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen könnon untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z. B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können einsach oder mehrfach substituiert sein, wohei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

Von mehreren möglichen tautomeren Formen (z. B. Keto- oder Enol-Form für R³⁻¹ = OH) sind immer alle möglichen gemeint, auch wenn der Einfachheit halber nur eine Form dargestellt wird.

Verwendet man beispielsweise 6,8-Dichlor-7-ethoxy-1-methyl-9H-pyrido[3,4-b]indol und n-Chlorbutan als Ausgangsstoffe, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (A) durch das folgende Formelschema wiedergegeben werden:

Verwendet man beispielsweise 7-Methoxy-1-isopropyl-9H-pyrido[3,4-b]indol als Ausgangsstoff und Nitriersäure als Reagenz, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (B) durch das folgende Formelschema wiedergegeben werden:

$$H_3C$$
 O_2N
 H_3C
 O_2N
 O_2N

Verwendet man beispielsweise 1-Methyl-7-phenoxy-9H-pyrido[3,4-b]indol und 2,4-Dichlorbenzylchlorid als Ausgangsstoffe, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (C) durch das folgende Formelschema wiedergegeben werden:

Verwendet man beispielsweise 7-Methoxycarbonylmethoxy-9-methyl-1-oxo-1,2,3,4- tetrahydro-9H-pyrido[3,4-b]in-dol Ausgangsstoff und Palladium auf Kohle als Katalysator, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (D) durch das folgende Formelschema wiedergegeben werden:

Verwendet man beispielsweise 7-Methoxycathonylmethoxy-9-methyl-1-oxo-1,2-dihydro-9H-pyrido[3,4-b]indol und Schwefeltetrafluorid als Ausgangsstoffe, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (B) durch das folgende Formelschema wiedergegeben werden:

Verwendet man beispielsweise 1-Brom-7-cyclopropylmethoxy-9-ethyl-9II-pyrido-[3,4-b]indol als Ausgangsstoff und Nitriersäure als Reagenz, so kann der Reaktionsahlauf des erfindungsgemäßen Verfahrens (F) durch das folgende Formelschema wiedergegeben werden:

$$H_2/Kat.$$
 H_3 C
 H_3 C
 H_3 C

Verwendet man beispielsweise 6,8-Dibrom-7-hydroxy-1-methyl-9H-pyrido[3,4-b]indol und Methyltosylat als Ausgangsstoffe, so kann der Reaktionsablauf des erfindungsgemäßen Verfahrens (G) durch das folgende Formelschema wiedergegeben werden:

20

Die zur Durchführung des erfindungsgemäßen Verfahrens (A) benötigten β-Carbolinderivate der Formel (I-c) sind eine Teilmenge der erfindungsgemäß verwendbaren Verbindungen der allgemeinen Formel (I). Als solche sind diese teilweise bekannt und nach bekannten Methoden oder nach den Verfahren (A) bis (G) oder analog zu diesen herstellbar.

Die weiter zur Durchführung des erfindungsgemäßen Verfahrens (A) benötigten Halogenide sind durch die Formel (II) allgemein definiert. In dieser Formel hat R²⁻² vorzugsweise die Bedeutung, die mit Ausnahme von Wasserstoff für R²⁻¹ im Zusammenhang mit der Beschreibung der β-Carbolinderivate der Formel (I-a) als bevorzugt genannt wurden. X steht vorzugsweise für Chlor oder Broin.

Die Halogenide der Formel (II) sind teilweise kommerzielt erhältlich, bekannt oder nach bekannten Methoden der Organischen Chemie darstellbar.

Die zur Durchführung des erfindungsgemäßen Verfahrens (B) benötigten β-Carbolinderivate der Formel (I-e) sind eine Teilmenge der erfindungsgemaßen Verhindungen der allgemeinen Formel (I-a) und lassen sich beispielsweise nach den Verfahren (A) bis (G) herstellen.

Die zur Durchführung des erfindungsgemäßen Verfahrens (C) benötigten β-Carbolinderivate der Formel (I-g) sind eine Teilmenge der erfindungsgemäß verwendbaren Verbindungen der allgemeinen Formel (I). Als solche sind diese teilweise bekannt und nach bekannten Methoden oder nach den Verfahren (A), (B) oder (G) oder analog zu diesen herstellbar.

Die gegebenenfalls zur Durchführung des erfindungsgemaßen Verfahrens (C) benötigten Halogenide sind durch die Formel (III) allgeniein definiert. In dieser Formel steht R¹⁰ vorzugsweise für C₁-C₃-Alkyl, C₃-C₈-Cycloalkylmethyl oder gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkyl, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzyl, X' steht vorzugsweise für Chlor oder Brom. Alternativ werden als Elektrophil vorzugsweise gegebenenfalls durch Methyl substituierte C₃-C₈-Cycloalkanone oder gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituierte Benzaldehyde oder gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituierte Benzamide eingesetzt.

Die Halogenide der Formel (III), sowie o.a. Cycloalkanone, Benzaldehyde und Benzamide sind teilweise kommerziell erhältlich, bekannt oder nach bekannten Methoden der Organischen Chemie darstellbar.

Die zur Durchführung des erfindungsgemäßen Verfahrens (D) benötigten Tetrahydro-β-carbolinderivate sind durch die Formel (IV) allgemein definiert. In dieser Formel haben R¹⁻¹, R²⁻¹, R⁴⁻¹ und R⁵⁻¹ vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der β-Carbolinderivate der Formel (I-a) als bevorzugt genannt wurden. Die Tetrahydro-β-carbolinderivate der Formel (IV) sind neu.

Tetrahydro-β-Carbolinderivate der Formel (IV) sind teilweise bekannt (GB-P 88413 zitiert in C.A. 64: 15890d; Heterocycles 27, 140 (1988); Chein. Heterocycl. Cnmpd (Engl. Transl.) 5, 749 (1969); DE-OS 23 57 320 zitiert in C.A. 81: 91954; US-P 4,088,647; DE-OS 23 53 996 zitiert in C.A. 83: 97251) oder lassen sich nach bekannten Methoden insbesondere analog zu 1-Oxo-7-methoxy-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indol [vgl. Z. Naturforsch., Teil B 37 762 (1982)] aus bekannten Verhindungen herstellen.

Die zur Durchführung des erfindungsgemäßen Verfahrens (E) benötigten β-Carbolinderivate der Formel (I-lı) sind eine Teilmenge der erfindungsgemäßen Verhindungen der allgemeinen Formel (I-a) und lassen sich beispielsweise nach dem Verfahren (D) herstellen.

Die zur Durchführung des erfindungsgemäßen Verfahrens (F) benötigten β-Carbolinderivate der Formel (I-i-a) sind eine Teiltnenge der erfindungsgemäßen Verbindungen der allgemeinen Formel (I-a) und lassen sich beispielsweise nach dem Verfahren (E) herstellen.

Die zur Durchführung des erfindungsgemäßen Verfahrens (G) benötigten β-Carbolinderivate der Formel (I-k) sind

cine Teilmenge der erfindungsgemäß verwendbaren Verbindungen der allgemeinen Formel (I). Als solche sind diese teil-

weise hekannt und nach bekannten Methoden oder analog den Verfahren (A) bis (F) herstellbar.

Die weiter zur Durchführung des erfindungsgemäßen Verfahrens (G) benötigten Elektrophile sind durch die Formel (V) allgemein defimert. In dieser Formel hat R¹⁻¹ vorzugsweise die Bedeutung, die im Zusammenhang mit der Beschreibung der β-Carbolinderivate der Formel (I-a) als bevorzugt genannt wurden. Die Abgangsgruppe X" stellt beispielsweise für Chlor, Brom, Iod, oder Sulfonsäureester wie z. B. Methansulfonyloxy, Toluolsulfonyloxy, vorzugsweise für Chlor, Brom oder Iod. Weiterhin steht Formel (V) auch für Schwefelsäureester wie Dimethyl- oder Diethylsulfat.

Die Verbindungen der Formel (V) sind teilweise kommerziell erhältlich, bekannt oder nach bekannten Methoden der Organischen Chemie darstellbar.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (A) kommen bestimmte organische Lösungsmittel und Mischungen davon in Betracht, Beispielhaft seien genannt: aliphatische, alieyelische oder aromatische Kohlenwasserstoffe, wie heispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methyleyclohexan, Benzol, Toluol, Xylol oder Decalin; Ether, wie Diethyl-, Diisopropyl-, Methylt-butyl-, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan, Diethylenglykoldimethylether oder Anisol; Amide, wie Formamid, N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäurctriamid; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan; Alkohole, wie Methanol, Ethanol, n- oder i-Propanol, n-, iso-, sek- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolinonomethylether, Diethylenglykolmonoethylether.

Als Base zur Durchführung des erfindungsgemäßen Verfahrens (A) kommen stärkere anorganische oder organische Basen in Frage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -amide, -alkoholate, wie beispielsweise Natriumhydrid, Natriumainid, Lithiumdiisopropylamid, Natrium-methylat, Natriumethylat, Kalium-tert.-

Die Reaktionstemperatur kann bei dem erfindungsgemäßen Verfahren (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, bevorzugt zwischen 0°C und

Bei der Durchführung des erfindnngsgemäßen Verfahrens (A) setzt man im allgemeinen das β-Carbolinderivat der Formel (I-c), die Base und das Halogenid der Formel (II) in ungefähr äquimolaren Mengen ein.

Das erfindungsgemäße Verfahren (B) bedient sich der allgemein bekannten elektrophilen aromatische Substitution. Die zur Durchführung des Verfahrens (B)benötigten elektrophilen Reagenzien generieren die jeweils benötigten Elektrophile, Für die Einführung von Halogen (Halogenierung) geeignet sind beispielsweise die Elemente selber oder Interhalugenverbindungen wie z. B. Bromehlorid. Für die Einführung einer Alkylearbonylgruppe (Friedel-Crafts-Acylicrung) geeignet sind beispielsweise die entsprechenden Carbonsäurehalogenide oder -anhydride. Für die Einführung einer Nitrogruppe (Nitricrung) geeignet sind beispielsweise Salpetersäure gegebenenfalls in Mischung mit Schwefelsäure (Nitriersäure)

Das erfindungsgemäße Verfaliren (B) wird gegebenenfalls Gegenwart eines Verdünnungsmittel durchgeführt. Für die Halogenierung oder Aeylierung kommen organische Lösungsmittel und beliebige Mischungen davon in Betracht. Beispielhast seien genannt: aliphatische oder alicyclische Kohlenwasserstosse, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan oder Methylcyclohexan; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Methylenehlorid, Chloroform, Tetrachlormethan, Dichlor-, Trichlorethan oder Tetrachlorethylen; Ether, wie Dieihyl-, Diisopropyl-, Methyl-t-butyl-, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan, Diethylenglykoldimethylether oder Anisol; Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitrii; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfolan. Für die Halogenierung auch geeignet sind Alkohole wie beispielsweise Methanol oder Ethanol oder niedere aliphatische Carbonsäuren wie beispielsweise Ameisensäure oder Essigsaure, Für die Fluorierung besonders geeignet sind Wasser, Trifluoressigsäure oder Fluorchlorkohlenwasserstoffe wie beispielsweise Fluortrichlormethan. Für die Nitrierung geeignet und auch bevorzugt sind Wasser, die Nitriersäure selber, niedere Carbonsäuren wie z. B. Essigsäure und Acetanhydrid.

Für die Halogenierung oder Acylierung setzt man vorzugsweise einen Katalysator (Friedel-Crafts-Katalysator) ein. Als soleher geeignet sind Lewissäuren oder Stoffe die unter den Reaktionsbedingungen eine solehe freisetzt. Belspielsweise seien genannt: Aluminiumchlorid, -bromid, Zinkchlorid, -bromid, Eisen(III)-chlorid, -bromid, Zinn(IV)-chlorid, Bortrichlorid, -fluorid, Eisen, Zink.

Die Reaktionstemperatur kann bei dem erfindungsgemäßen Verfahren (B) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, bevorzugt zwischen 0°C und 100°C. Bei einer Elementarsluorierung arbeitet man abweichend hiervon im allgemeinen bei -100°C bis 0°C. Bei der Nitrierung steuert wan, wo möglich, mit der Reaktionstemperatur (neben der Säurekonzentration) auf bekannte Weise das Verhähnis Mono- zur Dinitrierung.

Bei der Durchführung der Halogenierung setzt man im allgemeinen pro Molβ-Carbolinderivat der Formel (I-e) ungefähr ein oder zwei Mol Halogen (Mono- oder Dihalogenierung) und 0,01 bis 0,5 Mol, vorzugsweise 0,02 bis 0,2 Mol Katalysator ein. Im Falle einer Flementarfluorierung verdünnt man das Fluorgas vorzugsweise mit einem inerten Gas wie z. B. Stickstoff oder Helium auf eine Konzentration von 0,1% bis 50%. Bei der Durchführung der Acylierung setzt man int allgemeinen pro Mol β-Carboliderivat ungefähr 1 Mol Carbonsäurehalogenid oder -anhydrid und 1,0 bis 2 Mol, vorzugsweise 1,0 his 1,5 Mol Katalysator ein. Bei der Durchführung der Nitrierung setzt man vorzugsweise soviel Nitriersäure ein, daß die Reaktionswischung rührbar bleibt. Bevorzugt verwendet man ein Mischung aus conc. Salpetersäure (68%ig) und cone. Schwefelsäure (96%-ig) im Volumenverhältnis von 0,5:1 bis 1:2.

Als Metallierungsreagenz zur Durchführung des erfindungsgemäßen Verfahrens (C) verwendet man beispielsweise Methyllithium, Butytlithium, Lithiumhydrid, Natriumhydrid.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (C) kommen inerte organische Lösungsmittel und Mischungen davon in Betracht. Beispielhaft seien genannt: aliphatische, alicyclische oder aromatische Kohlenwassorstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol

oder Decalin; Ether, wie Diethyl-, Diisopropyl-, Methylt-butyl-, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Diethoxyethan, 1,2-Diethoxyethan, Diethylenglykoldimethylether oder Anisol.

Die Reaktionstemperatur kann bei dem erfindungsgemäßen Verfahren (C) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -78°C und +100°C, bevorzugt zwischen -20°C und 50°C.

Bei der Durchführung der Halogenierung setzt man im allgemeinen pro Mol β -Carbolinderivat der Formel (I-g) ungefahr ein Mol, wenn $R^{2-1} = H$ ist, ein zusätzliches Mol Metallierungsreagenz und ungefahr ein Mol Elektrophil ein.

Als Katalysatoren für die Dehydrierung nach Verfahren (D) werden beispielsweise für Hydrierungen und Dehydrierungen geeignete allgemein bekannte heterogene Metallkatalysatoren wie beispielsweise Rancy-Nickel, Palladium auf Kohle oder Platinoxid eingesetzt.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (D) kommen Wasser, organische Lösungsmittel und belichige Mischungen davon in Betracht. Beispielhaft seien genannt: aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; Ether, wie Methyl-t-butyl-, Methyl-t-amylether, Dioxan, Tetrahydrofran, 1,2-Dirnethoxyethan, 1,2-Diethoxyethan, Diethylenglykoldimethylether oder Anisol; Ester wie Methyl-, Ethyl- oder Butylacetat; Sulfoxide, wie Dirnethylsnlfoxid; Alkohole, wie Methanol, Ethanol, n- oder i-Propanol, n-, iso-, sek- oder tert.-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonocthylether: Wasser.

Bei der Durchführung des ersindungsgemäßen Verfahrens (D) werden im allgemeinen pro 1 Mol Tetrahydro-β-carholinderivat 0,001 bis 0,2 Mol. vorzugsweise 0,01 bis 0, 1 Mol Katalysator eingesetzt,

Die Reaktionsteinperatur kann bei dem erfindungsgenäßen Verfahren (D) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen +50°C und +200°C, bevorzugt bei +80°C bis +150°C. Als Halogenierungsreagenzien zur Durchführung des erfindungsgemäßen Verfahrens (E) kommen in Betracht: Nichtmetallhalogenide wie beispielsweise Phosphortrichlorid, -bromid, -lodid oder Thionylchlorid; Nichtmetalloxyhalogenide wie beispielsweise Phosphoroxychlorid oder -bromid; Fluorierungsreagenzien wie beispielsweise Schwefeltetrafluorid, Dimethylaminoschwefeltrifluorid oder N,N-Diethyl-1,1,2,3,3,3-lexafluor-1-propanamin (Ishikawa Reagenz).

Das erlindungsgemäße Verfahren (B) wird gegebenenfalls Gegenwart eines Verdümungsmittel durchgeführt, Hierfür kommen gegebenenfalls das jeweilige Nichtmetall(oxy)halogenid-Reagenz selber, organische Lösungsmittel und beliebige Mischungen davon in Betracht. Beispiclhaft seien genannt: aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methyleyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Methylenchlorid, Chloroform, Tetrachlorenthan, Dichlor-, Trichlorethan oder Tetrachlorethylen; Ether, wie Diethyl-, Diisopropyl-, Methyl-t-butyl-, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan, Diethylenglykoldimethylether oder Anisol; Nitrile, wie Acetonitril, Propionitril, noder i-Butyronitril oder Benzonitril; tertiäre Amide, wie N,N-Dimethylformannid, N,N-Dimethylacetannid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid; Sulfoxide, wie Dimethylsulfoxid; Sulfone, wie Sulfoxide,

Das erlindungsgemäße Verfahren (E) wird gegebenenfalls Gegenwart eines Reaktionshilfsmittels durchgeführt. Hierzu gehören tertiäre Amine wie beispielsweise N,N-Dimethylanilin oder 4-Dimethylaminopyridin.

Die Reaktionstemperatur kann bei dem erfindungsgemäßen Verfahren (E) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen +20°C und +150°C, bevorzugt bei +30°C bis +100°C. Bei der Durchführung des erfindungsgemäßen Verfahrens (Γ) setzt man im allgemeinen pro Mol β-Carbolinderivat der Formel (I-h) mindestens 1 Mol, vorzugsweise 1 bis 5 Mol Reagenz und gegebenenfalls 0,01 bis 0,5 Mol, vorzugsweise 0,02 bis 0,2 Mol Reaktionshilfsmittel ein.

Die Hydrierung nach Verfahren (F) kann nach allgemein bekannten Verfahren entweder mit Alkalimetallen wie beispielsweise Natrium in flüssigem Ammoniak oder nit Wasserstoffgas in Gegenwart eines heterogenen Metalikatalysators wie beispielsweise Raney-Nickel, Palladium auf Kohle oder Platindioxid oder eines homogenen Katalysators wie beispielsweise Tris-(triphenylphosphonium)-rhodium(I)-chlorid oder mit komplexen Metalihydriden wie beispielsweise Natriumboranat, Natriumcyanoboranat oder Lithiumaluminiumhydrid durebgeführt werden. Die Wahl der Methode richtet sich nach der Selektivtät, die auch von den übrigen Resten der β-Carbolinderivate der Formel (I-i-a) abhängt.

Das Verfahren (F) wird vorzugsweise in Gegenwart eines Verdünnungsmittels durcbgeführt. Als solches kommen (Alkalimetall-Reduktion ausgenommen) Wasser, organische Lösungsmittel und heliehige Mischungen davon in Betracht. Beispielhaft seien genannt: aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie heispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; Ether, wie Diethyl-, Diisnpropyl-, Methyl-1-butyl-, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan, Diethylenglykoldimethylether oder Anisol; Ester wie Methyl-, Ethyl- oder Butylacetat; Sulfoxide, wie Dimethylsulfoxid; Alkohole, wie Methanol, Ethanol, n- oder i-Propanol, n-, iso-, sek- oder tert-Butanol, Ethandiol, Propan-1,2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoetlylether; Wasser.

Bei der Durchführung des erfindungsgemäßen Verfahrens (F) werden entweder pro Mol β-Carbolinderivat, gegebenenfalls nach Vorhydrierung des Katalysators, 1,0 bis 1,1 Mol Wasserstoffgas oder 1,0 bis 3,0 Wasserstoffäquivalent komplexes Metallhydrid eingesetzt.

Die Reaktionstemperatur kann bei dem erfindungsgemäßen Verfahren (F) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen (Alkalimetall-Reduktion ausgenommen) arbeitet man bei Temperaturen zwischen -20°C und +100°C, bevorzugt bei 0°C bis 80°C.

Als Verdümnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (G) kommen die bei Verfahren (A) aufgelisteten Lösungsmittel in Betracht.

Als Base zur Durchführung des erfindungsgemäßen Verfahrens ((i) kommen die bei Verfahren (A) aufgelisteten Basen in Betracht.

Die Reuktionstemperatur kann bei dem erfindungsgemäßen Verfahren (Λ) innerhalb eines größeren Bereiches variiert.

werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, bevorzugt zwischen 0°C und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (G) setzt man im allgemeinen das β -Carbolinderivat der Formel (I-k), die Base und das Halogenid der Formel (IV) in ungefähr äquimolaren Mengen ein. Spezielle α -Carbolinderivate der Formel (I-a), in denen R^{1-1} und R^{1-2} für den gleichen Rest (Alkyl oder gegebenenfalls substituiertes Benzyl) steht, lassen sich vorteilhaft darstellen, indem man Verfahren (A) und (G) kombiniert und in einem Schritt ausführt. Man geht dazu von 1 Mol einer speziellen Verbindungen der Formel (I-k) (R^{1-1} ist hier bereits als Wasserstoff definiert) aus, in der R^{2-1} unabhängig von R^{3-1} für Wasserstoff steht, setzt diese mit ungefähr 2 Mol Base zum Dianion um und alkyliert darauf mit ungefähr 2 Mol betreffenden Elektrophiles der Formel (V).

Die Umsetzungen der erfindungsgemäßen Verfahren können bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet.

Die Aufarbeitung geschieht nach üblichen Methoden der Organischen Chemie. Die Endprodukte werden vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch Entfernung der flüchtigen Bestandteile gegebenenfalls im Vakuum gereinigt.

Die Wirkung von Testsubstanzen auf die TNFa-Genexpression wurde an einer Maus-Makrophagenzellinie (RAW264.7) überprüft, die das Luziferase-Reportergen unter der Kontrolle der genetischen Kontrollelemente des TNFa-Gens exprimiert.

Luziferase-Reportergenkonstrukt zur Bestimmung der TNF-Genexpression

TNF-PRO

Luziferase

TNF-J'LITR

20

25

30

35

45

55

Der humane TNF-Promotor (-1201 bis +172) wurde vor die Luziferase im pGL2-Basic-Vektor (Promega) kloniert. Die Down-Stream-Elemente (6071-7070) wurden hinter das Stop-Kodon der Luziferase kloniert. (Die Numerierung der genomischen Sequenz basiert auf Nedospasov 1986, Cold Spring Harb. Quant. Biol. 51, 611-624).

Außerdein wurde die Wirkung von Testsubstanzen auf die TNFα-Freisetzung aus humanen Blut-Monozyten untersucht.

Reportergen-Analyse

RAW 264.7-Zellen, die das Luziferase-Gen unter der Kontrolle der regulatorischen Sequenzen aus dem TNF-Gen exprimieren (siehe oben) wurden in DMEM mit 25 mM HBPES, 10% foetalem Kälberserum, Penicillin und Streptomycin in 5% CO₂ bei 37°C kultiviert. 20 000 Zellen/Vertiefung wurden in eine 96-Lochplatte ausgesät und 3 Tage kultiviert. Zu 100 µl Kulturmedium wurden 50 µl Testsubstanz und 50 µl LPS (400 ng/ml) zugegeben, und 3 Stunden später wurde die Luziferaseaktivität bestinmt: Die 200 µl Kulturmedium/ Vertiefung wurden abgesaugt und die Zellen wurden durch Zugabe von 25 µl Puffer lysiert (25 mM Tris-Phosphat (pH 7.8), 2 mM DTT, 10% Glycerol und 1% Triton-X100). Nach Zugabe von 50 µl Substrat-Puffer (2,5 mM ATP, 0,1 mM CoA, 10 mM Tricine, 14 mM MgSO₄ und 15 mM DTT, pH 7.8) wurde die Luziferaseaktivität in einem Luminometer gemessen.

Isolierung von humanen Blut-Monozyten

20 ml Heparin-Blut wurden mit 20 ml PBS, verdünnt und für 20 min zentrifugiert (220 × g), Der Überstand wurde verworfen. Die abzentrifugierten Zellen wurden mit PBS auf ein Endvolumen von 30 ml verdünnt. 17 ml Ficoll Paque (d = 1.077 g/ml, Pharmacia) wurden in ein 50 ml-Zentrifugenröhrchen pipettiert, und die Zellen wurden auf diesen Gradienten geschichtet. Die Proben wurden für 20 min bei 800 × g zentrifugiert. Die Monozyten-reiche Fraktion wurde an der Grenzschicht abgenommen, mit 3 Volumen PBS verdünnt und für 5 min bei 300 × g zentrifugiert. Der Überstand wurde verworfen. Die Zellen wurden in 10 ml Versen-Lösung (GIBCO) resuspendiert und für 5 min bei 300 × g zentrifugiert. Anschließend wurden die Zellen in Kulturmedium resuspendiert (RPMI 1649 (GIBCO), 10% FCS, 25 mM HEPES, 50 W Penicillin und 50 μg/ml Streptomycin). Die Zellen wurden in 96-Lochplatten ausgesät (250 000 Zellen/Vertiefung). Nach 2 Stunden wurden die Zellen, die nicht adhärent waren, abgesaugt. 100 μl Kulturmedium, 50 μl Testsubstanz und 50 μl LPS (400 ng/ml) wurden pro Vertiefung hinzupipettiert. Die Zellen wurden über Nacht bei 37°C bei 5% CO₂ kultiviert. Der Überstand wurde abgenommen, und die TNFα-Konzentration wurde mit einem kommerziellen ELISA-Kit bestinntt.

Ergebnisse

Inhibition der TNF-Genexpression durch Harmin und seine Deriyate im Luziferase-Reportergentest

5	Verbindung	IC ₅₀ (µM)
	Harmin	5
	Beispiel 4	9
10	Beispiel 5	15
	Beispiel 7	5
	Beispiel 8	15
	Beispiel 9	48
	Beispiel 10	16
	Beispiel 13	18
	Beispiel 15	13
15	Beispiel 30	15

Inhibition der TNF-Freisetzung aus humanen Monozyten durch Harmin

20 IC₅₀ (μM) Harmin 11

Die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) bzw. (I-a) bis (I-k) weisen anti-TNF-α-Wirkung auf.

Sie eignen sich daher zur Behandlung von TNF-α-abhängigen Krankheiten oder Symptomen, und zwar sowohl in der Human- als auch in der Tiermedizin. Als mögliche Indikationen können entzündliche Erkränkungen, insbesondere Arteriosklerose, rheumatische Arthritis, Restenose, Herzinsuffizienz, Herzinfarkt, Leberfibrose und Sepsis, genannt werden.

Zur vorliegenden Erfindung gehören pharmazeutische Zubereitungen, die neben nichttoxischen, inerten pharmazeutisch geeigneten Trägerstoffen eine oder mehrere erfindungsgemäße Verbindungen enthalten oder die aus einem oder mehreren erfindungsgemäßen Wirkstoffen bestehen, sowie Verfahren zur Herstellung dieser Zubereitungen.

Der oder die Wirkstoffe können gegebenenfalls in einem oder mehreren der oben angegebenen Trägerstoffe auch in mikroverkapselter Form vorliegen.

Die therapeutisch wirksamen Verbindungen sollen in den oben aufgeführten pharmazeutischen Zubereitungen vorzugsweise in einer Konzentration von etwa 0,1 bis 99,5, vorzugsweise von etwa 0,5 bis 95 Gew.-%, der Gesamtmischung vorhanden sein.

Die oben aufgeführten pharmazeutischen Zubereitungen können außer den erfindungsgemäßen Verhindungen auch weitere pharmazeutische Wirkstoffe enthalten.

Im allgemeinen hat es sich sowohl in der Human- als auch in der Veterinärmedizin als vorteilhaft erwiesen, den oder die erfindungsgemäßen Wirkstoffe in Gesamtmengen von etwa 0,5 bis etwa 500, vorzugsweise 5 bis 100 mg/kg Körpergewicht je 24 Stunden, gegebenenfalls in Form mehrerer Einzelgaben, zur Erzielung der gewünschten Exgebnisse zu verabreichen. Eine Einzelgabe enthält den oder die erfindungsgemäßen Wirkstoffe vorzugsweise in Meugen von etwa 1 bis etwa 80, insbesondere 3 bis 30 mg/kg Körpergewicht.

Die erfindungsgemäßen Verbindungen können zum Zweck der Erweiterung des Wirkungsspektrums und um eine Wirkungssteigerung zu erreichen auch mit geeigneten anderen Wirkstoffen kombiniert werden.

Die Herstellung und die Anwendung der erfindungsgemäßen Wirkstoffe gehen aus den nachfolgenden Beispielen hervor,

Herstellungsbeispiele
Beispiel 1

50

60

(Hier und im weiteren verwendete Abkürzungen: Me = Methyl; Ph = Phenyl).

Unter Stickstoff legt man 212 mg (1 mmol) 7-Methoxy-1-methyl-9H-pyrido[3,4-b]-indol (Harmin) in 6 ml abs. DMF vor. Dazu gibt man portionsweise bei 20°C 30 mg 80%iges Natriumhydrid zu, rührt bei 40°C bis zum Ende der Wasserstoffentwicklung und tropft dann 126 mg (1 mmol) Benzylchlorid in 2 ml abs. DMF zu. Anschließend wird 12 h bei 40°C nachgerührt. Die Reaktionslösung wird eingedampft und der Rückstand zwischen Wasser und Essigsäurecthylester verteilt. Abtrennung der organischen Phase. Man trocknet über Natriumslfat, dampft im Vakuum ein und erhält 314 mg Rohprodukt. Durch Chromatographie an 30 g Kieselgel mit Toluol: Aceton (10:1) als Laufinittel erhält man 242 mg (80% der Theorie) N-Benzyl-7-methoxy-1-methyl-pyrido[3,4-b]indol (lit.-bekannt).

Fp.: 137-139 °C
¹H-WR (CDCl₃) δ [ppm]: 8,30 (d, 1H); 8,00 (d, 1H); 7,78 (d, 1H); 6,90 (d, d, 1H); 6,77 (d, 1H); 5,75 (s, 2H); 3,87 (s, 3H); 2,88 (s, 3H). Beispiele 2 bis 19 Analog Beispiel 1 und den allgemeinen Angaben zur Herstellung wurden die in der nachfolgenden Tabelle 1 aufgeführten Verbindungen der Formel I-1 erhalten.

Tabelle 1

10

15	Bsp. Nr.	R ²	physikalische Daten: Fp. o. ¹ H-NMR (CDCl ₃): δ [ppm]	neu
20	2	-CH ₂ -CI	146 - 149°C	x
30	3	-CH ₂ CI	140 - 142°C	x
35	4	-cH ₂ —NO ₂	264 - 266°C	x
40	5	-CH ₂	213 - 215°C	x
50	6	-CH ₂ -CH ₂ -OCH ₃	115°C	x
SS	7	CH ₂ CH ₂ Ph	107 - 109°C	x
	8	CH ₃	152 - 154°C	-
60	9	C ₂ H ₅	102 - 104°C	
	10	CH ₂ CN	156 - 159°C	x

Bsp. Nr.	\mathbb{R}^2	physikalische Daten: Fp. o. ¹ H-NMR (CDCl ₃): δ [ppm]	neu
11	SO ₂ CH ₃	176 - 178°C	х
12	CO-Ph	8,47 (d, 1H); 7,91 (d, 1H); 7,83 (d, 2H); 7,73 (m, 2H) 7,52 (t, 2H); 6,95 (d d, 1H); 6,82 (d, 1H); 3,71 (s, 3H); 2,38 (s, 3H)	x
13	CH ₂ OC ₂ H ₅	103 - 105°C	х
14	CH ₂ N(C ₂ H ₅)CO ₂ CH ₃	138 ~ 140°C	x
15	CH(CH ₃) ₂	141 - 143°C	
16	CH ₂ OCH ₂ C CH	151 - 152°C	х
17	CH ₂ CO ₂ C ₂ H ₅	136 - 138°C	x
18	CH ₂ CH(OC ₂ H ₅) ₂	8,09 (d, 1H); 8,00 (d, 1H); 7,82 (d, 1H); 7,07 (d, 1H); 6,89 (d, d, 1H); 4,65 (t, 2H) 3,94 (s, 3H); 3,64 (m, 4H) 3,01 (s, 3H); 0,96 (t, 6H) [CD ₃ OD]	x
19 .	CH ₂ CON(CH ₃) ₂	205°C	х

Beispiel 20

Unter Feuchtigkeitsausschluß legt man 212 mg 7-Methoxy-1-methyl-9H-pyrido[3,4-b]indol in 4 ml abs. Tetrachlorkohlenstoff vor. Dazu werden bei 0°C 10 mg Eisenspäne und 320 mg (2 mmol) Brom in 4 ml abs. Tetrachlorkohlenstoff zugetropft. Anschließend wird 20 h bei 50°C nachgerührt. Man neutralisiert bei 20°C mit 1 N Natronlauge und dampft im Vakuum ein. Der Rückstand wird in 20 ml Methylenchlorid aufgenommen, der Niederschlag abgesaugt (Harmin), die organische Phase mit halbkonzentrierter Kochsalzlösung gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Man erhält 87 mg Rohprodukt. Durch Chromatographie an 30 g Kieselgel mit Toluol: BtOH (5:1) als Laufmittel erhält man 53 mg (13% der Theorie) 6,8-Dibrom-7-methoxy-1-methyl-9H-pyrido[3,4-b]indol als Öl. ¹H-NMR (CDCl₃) δ[ppm]: 8,66 (d, 1H); 7,63 (d,1H); 4,00 (s, 3H); 2,85 (s, 3H).

Beispiel 21

Unter Feuchtigkeitsausschluß legt man 160 mg (1,2 mmol) Aluminiumchlorid in 4 inl abs. 1,2-Dichlorethan vor. Dazu werden bei 20°C 78,5 mg (1 mmol) Acetylchlorid in 1 ml abs 1,2-Dichlorethan zugetropft und 212 mg (1 mmol) 7-Methoxy-1-methyl-9H-pyrido[3,4-b]indol zugegeben. Anschließend wird bei 20°C 2 h nachgerührt, über Nacht stehengelassen. Man gießt das Reaktionsgemisch auf 3 ml Eiswasser und stellt den pH mit Natriumhydrogencarbonat auf 8 ein. Die wäßrige Phase wird mit Ether extrahiert. Die organische Phase wird anschließend mit halbkonzentrierter Kochsalz-lösung gewaschen, über Natriumsulfat getrockuet und im Vakuum eingedampft. Man erhält 180 mg Rohprodukt. Durch Chromatographie an 30 g Kieselgel mit Toluol EtOH (5:1) als Laufmittel erhält man 41 mg (16% der Theorie) 8-Acetyl-7-methoxy-1-methyl-9H-pyrido[3,4-b]indol als Öl.

HI-NMR (DMSO-d_c) δ[ppm]: 8,47 (d, 1H); 8,20 (d, 1H); 7,87 (d, 1H); 7,13 (d, 1H); 4,04 (s, 3H); 2,77 (s, 3H); 2,70 (s, 3H).

Beispiel 22

30

35

45

55

60

65

Unter Feuchtigkeitsausschluß legt man 212 mg (1 mmol) 7-Methoxy-1-methyl-9H-pyrido[3,4-b]indol vor. Dazu tropft man bei 5°C 0,5 ml Nitriersäure [68%ige HNO₃/cone. H₂SO₄ (1:1,2)]. Anschließend wird bei 5°C 2 h nachgerührt. Man gießt das Reaktionsgemisch auf 3 ml Fiswasser, saugt den Niederschlag ab, wäscht mit Wasser und trocknet im Vakuum. Man erhält 160 mg (62% der Theorie) 7-Methoxy-1-methyl-6-nitro-9II-pyrido[3,4-b]indol als Öl. ¹H-NMR (CDCl₃) [ppm]: 8,97 (s, 1H); 8,27 (d, 1H); 8,10 (d, 1H); 7,20 (s, 1H); 4,03 (s, 3H); 2,80 (s, 3H).

Beispiel 23

Zu einer Lösung von 106 mg (0,5 mmol) 7-Methoxy-1-methyl-9H-pyrido[3,4-b]indol in 3 ml abs. Tetrahydrofuran gibt man unter Inertgas bei 25° C 650 μ l (1 mmol) Buthyllithiumlösung (1,6 M in Hexan). Man rührt 30 min und versetzt mit einer Lösung von 68 mg (0,5 mmol) 3-Methoxybenzaldehyd in 2,5 ml abs. Tetrahydrofuran. Wenn die Reaktion vollständig ist (DC-Kontrolle, 3 h), wird die Reaktionsnischung mit 0,2 ml Wasser in 2 ml Tetrahydrofuran verrührt, filtriert nud im Vakuum eingedampft. Säulenchromatographie des Rückstands an Kieselgel (Eluent: Essigsäureethylester) liefert 150 mg (86% d.Th.) [2-Hydroxy-2-(3-methoxyphenyl)-ethyl]-7-methoxy-1-9H-pyrido[3,4-b]indol, 1 H-NMR (CDCl₃) 1 Cppm]: 3.38 (d, 2H); 3.78 (s, 3H); 3.91 (s, 3H); 5.34 (t, 1H); 6.82 (dd, 1H); 6.91 (in, 2H); 7.05 (in, 2H); 7.27 (t, 1H); 7.76 (d, 1H); 7.96 (d, 1H); 8.33 (d, 1H); 8.43 (s, 1H).

Beispiele 24 bis 28

Analog Beispiel 23 und den allgemeinen Angaben zur Herstellung wurden die in der nachfolgenden Tabelle 2 aufgeführten Verbindungen der Formel I-2 erhalten.

Tabelle 2

$$H_3C$$
 N R^3 $(I-2)$

Bsp. Nr.	R ³	physikalische Daten: Fp. o. ¹ H-NMR (CDCl ₃): [ppm]	Aus- beute [%]	neu
24	CH ₂ CH ₂ CH ₃	1,04 (t, 3H); 1,94 (sext., 2H); 3,07 (t, 2H); 3,92 (s, 3H); 6,90 (dd, 1H); 6,97 (d, 1H); 7,71 (d, 1H); 7,97 (d, 1H); 8,29 (s, 1H); 8,36 (d, 1H)	58	
25	С(О)С(О)Рh	3,90 (s, 3H); 6,99 (dd, 1H); 7,34 (d, 1H); 7,62 (t, 2H); 7,77 (t, 1H); 7,92 (d, 2H); 8,24 (d, 1H); 8,39 (s, 2H); 12,20 (s, 1H) [DMSO-d ₆]	77	x
26	CH ₂ CH ₂ Ph	3,22 (t, 2H); 3,38 (t, 2H); 3,90 (s, 3H); 6,80 (d, 1H); 6,88 (dd, 1H); 7,25 (m, 5H); 7,62 (s, 1H); 7,72 (d, 1H); 7,94 (d, 1H); 8,39 (d, 1H)	84	-
27	-CH ₂ -CH ₂	1,00 (m, 2H); 1,22 (m, 3H); 1,39 (m, 1H); 1,75 (m, 7H); 3,07 (m, 2H); 3,92 (s, 3H); 6,90 (dd, 1H); 6,98 (d, 1H); 7,70 (d, 1H); 7,96 (d, 1H); 8,16 (s, 1H); 8,35 (d, 1H)	70	х
28	-CH ₂	1,35 (m, 2H); 1,57 (m, 8H); 3,26 (s, 2H); 3,90 (s, 3H); 6,89 (dd, 1H); 6,96 (d, 1H); 7,73 (d, 1H); 7,96 (d, 1H); 8,32 (d, 1H); 9,11 (s, 1H)	77	_

Beispiel 29

211 mg (0,98 mmol) 1-Oxo-7-methoxy-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indol [vgl. z. B. Z. Naturforsch., Teil B 37, 762 (1982)] werden unter Erhitzen in 10 ml Xylol gelöst. Man gibt zu der heißen Lösung 62 mg Pd/Aktivkohle (10%) und erhitzt das Gemisch 1 h unter Rückfluß. Beim Abkühlen schlägt sich das Produkt auf dem Katalysator nieder. Man dekantiert das Lösungsmittel und extrahiert den Rückstand mehrmals mit siedendem Ethanol. Die vereinigten Ethanolextrakte werden im Vakuum eingedampft; Ausbeute: 194 mg (93% d.Th.) 1-Oxo-7-methoxy-1,2-dihydro-9H-pyrido[3,4-b]indol (lit,-bekannt).

pyrido[3,4-b]indol (lit.-bekannt).

H-NMR (DMSO-d₆) δ[ppin]: 3,83 (s, 3H); 6,80 (dd, 1H); 6,90 (d, 1H); 6,94 (d, 1H); 7,05 (dd, 1H); 7,88 (d, 1H); 11,28 (s, 1H); 11,79 (s, 1H).

Beispiel 30

119 mg (0,56 mmol) 1-Oxo-7-methoxy-1,2-dihydro-9H-pyrido[3,4-b]indol werden in 3 ml Phosphoroxychlorid suspendiert und mit 10 mg (0,08 mmol) N,N-Dimethylanilin versetzt. Der Ansatz wird 24 h unter Rückfluß erhitzt. Dann wird die Lösung auf Eis gegossen und mit Natriumcarbonat neutralisiert. Man extrahiert mit Essigsäureethylester, trocknet die vereinigten organischen Phasen mit Natriumsulfat und dampft im Vakuum ein. Säulenchromatographic des Rückstands an Kieselgel (Eluent: Cyclohexan/Essigsäureethylester 1: 2) liefert 96 mg (75% d.Th.) 1-Chlor-7-methoxy-9H-pyrido[3,4-b]indol.

[†]H-NMR (DMSO-d₆) δ[ppm]: 3,89 (s, 3H); 6,92 (dd, 1H); 7,07 (d, 1H); 8,04 (d, 1H); 8,10 (d, 1H); 8,14 (d, 1H); 11,83 (s, 1H).

Beispiel 31

45

55

74 mg (0,32 mmol) 1-Chlor-7-methoxy-9H-pyrido[3,4-b]indol werden in 30 ml Ethanol und 30 µl (0,22 mmol) Triethylamin über 18 mg Pd/Aktivkohle (10%) bei 3 bar und 25°C hydriert. Nach 4 h wird filtriert und der Filterrückstand mehrmals mit Ethanol extrahiert. Die vereinigten organische Phasen werden im Vakuum eingedampft und der Rückstand säulenchromatographisch an Kieselgel (Eluent: Dichlormethan/Methanol 95:5) gereinigt: Ausbeute: 22 mg (35% d.Th.) 7-Methoxy-9H-pyrido[3,4-b]indol (Norharmin, lit.-bekannt).

¹H-NMR (CDCl₃) δ[ppm]: 3,92 (s, 3H); 6,92 (dd, 1H); 6,97 (d, 1H); 7,86 (d, 1H); 7,99 (d, 1H); 8,40 (s, 1H); 8,42 (d, 1H); 8,85 (s, 1H).

Beispicle 32 bis 39

Allgemeine Vorschrift für die O-Alkylierung von Harmol

Man legt 102 mg (3,4 mmol) Natriumhydrid (80%-ig in Öl) in 3 ml DMF ver, rührt 20 min bei Raumtemperatur und gibt hierzu 4,00 g (1,7 mmol) 7-Hydroxy-1-methyl-9H-pyrido[3,4-bjindol-Hydrochlorid, das zuvor aus dem Dihydrat durch Trocknung im Hochvakuum bei 130°C gewonnen wurde. Es wird 20 min bei 40 bis 50°C gerührt und darauf werden 1,7 mmol Alkylhalogenid (R¹-X") hinzugegehen 1,5 h bei 50°C reagieren gelassen. Zur Aufarbeitung verrührt man mit Wasser und extrahiert dreinial mit Tertiärbutylmethylether (MTBE). Die vereinigten organischen Phasen werden mit Wasser gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Der Rückstand wurde durch säulenchromatographisch an Kieselgel (Eluent: Diehlormethan/Methanol 95: 5) gereinigt. Dabei konnte in manchen Fällen auch das O- und N-Bisalkylierungsprodukt erhalten werden (Bsp. 33/34, 36/37) isoliert werden.

Die auf diese Weise hergestellten Verbindungen der Formel (I-3) sind in der nachfolgenden Tabelle 3 aufgeführt.

Tabelle 3

Bsp.			X"	physikalische	
Nr.	R ¹	R ²		Daten: MS: m/z	neu
32	CH(CH ₃) ₂	H	I	240, 198	-
33	CH ₂ Ph	H	Br	288	-
34	CH ₂ Ph	CH ₂ Ph	Br	378	х
35	-CH ₂	Н	Br	284, 198	х
36	CH ₂ COOC ₂ H ₅	H	Br	284, 197	х
37	CH ₂ COOC ₂ H ₅	CH ₂ COOC ₂ H ₅	Br	370, 297	х
38	−CH ₂ N	Н	CI	309	х
39	ON-CH ₃	Н	CI	338	х

Patentansprüche

1. Verwendung von β -Carbolinderivaten der Formel (I)

(I),

in welcher

in welcher R¹ für Wasserstoff; Alkyl oder -CH₂-R⁶ steht, wobei R⁶ für Cycloalkyl, gegebenenfalls substituiertes Phenyl, für Alkoxycarbonyl oder gegebenenfalls durch Alkyl substituiertes Alkylenaminocarbonyl (=cyclisches Aminocarbonyl), dessen Alkylenkette durch ein Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann, steht, R² für Wasserstoff; Alkyl, -CH₂-R², gegebenenfalls substituiertes Benzoyl oder für -S(O)_nR⁸ steht, wobei R² für Cyano, Dialkoxymethyl, gegebenenfalls substituiertes Phenyl oder Phenylalkyl, für Alkoxy, Alkinyloxy, Alkoxycarbonyl, Dialkylaminocarbonyl oder N-Alkyl-N-alkoxycarbonylamino steht,

- \mathbb{R}^8 für Alkyl oder gegebenenfalls substituiertes Phenyl steht und n für 1 oder 2 steht,
- R³ für Wasserstoff, Halogen, Hydroxy, Alkyl, gegebenenfalls substituiertes Benzoylearbonyl oder für -CH2-R³ steht, wobei
- R⁹ für gegebenenfalls durch Methyl substituiertes 1-Hydroxycycloalkyl, für Cycloalkylmethyl, gegebenenfalls im Kern substituiertes Benzyl oder α-Hydroxybenzyl steht, R⁴ für Wasserstoff; Halogen oder Nitro steht und

R5 für Wasserstoff; Halogen, Nitro oder Alkylcarbonyl steht,

sowie von deren Salzen zur Herstellung von Arzneimitteln zur Behandlung von TNF-α (Tumor Necrosis Factor α)
abhängigen Krankheiten.

2. Verwendung von β -Carbolinderivaten der Formel (I) gemäß Anspruch 1, in welcher R^1 für Wasserstoff; C_1 - C_{20} -Alkyl oder -CH₂- R^6 steht,

- R² für Wasserstoff; C₁-C₃-Alkyl, -CH₂-R⁷, gegebenenfalls einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoyl oder für -S(O)₁₁R³ steht,
- R³ für Wasserstoff; Halogen, Hydroxy, C₁-C₆-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoylcarbonyl oder für -CH₂-R⁹ steht,

R4 für Wasserstoff; Fluor, Chlor, Brom, Iod oder Nitro steht,

15

35

45

- R⁵ für Wasserstoff, Fluor, Chlor, Brom, Iod, Nitro oder C₁-C₄-Alkylcarbonyl steht,
 R⁶ für C₃-C₇-Cydoalkyl, gegebenenfalls einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₃-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Phenyl, für C₁-C₄-Alkoxycarbonyl oder gegebenenfalls durch C₁-C₄-Alkyl substituiertes Alkylenaminocarbonyl (=cyclisches Aminocarbonyl) mit 2 bis 7 Ringgliedern, ilessen Alkylenkette durch ein
- Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann, steht,

 R⁷ für Cyano, Di-(C₁-C₄-alkoxy)-methyl, gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Huor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Phenyl oder Phenyl-C₁-C₄-alkyl, für C₁-C₆-Alkoxy, C₂-C₆-Alkinyloxy, C₁-C₄-Alkoxycarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder N-C₁-C₄-Alkyl-N-C₁-C₄-alkoxycarbonyl amino steht.

R⁸ für C_I-C₄-Alkyl oder gegebenenfalls einfach oder zweifach durch Fluor, Chlor, C₁-C₄-Alkyl oder Nitro substituiertes Phenyl steht,

- R⁹ für gegebenenfalls durch Methyl substituiertes 1-Hydroxy-C₃-C₈-cycloalkyl, für C₃-C₈-Cycloalkylmethyl, gegebenenfalls im Kern einfach oder mehrfach ilurch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzyl oder -Hydroxybenzyl steht und n für 1 oder 2 steht.
 - 3. Verwendung von β -Carbolinderivaten der Formel (I) gemäß Anspruch 1, in welcher R^1 für Wasserstoff; C_1 - C_{12} -Alkyl oder - C_1 - R^2 -steht,
- R² für Wasserstoff; C₁-C₆-Alkyl, -CH₂-R⁷, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoyl oder für S(O)₁/R⁸ steht,

 R³ für Wasserstoff Elhor Chlor Brow, Icd Hydroxy, C. C. Alkyl, gegebenenfalls single the highest des the helf of the Nitro.

R³ für Wasserstoff; Fluor, Chlor, Brom, Iod, Hydroxy, C₁-C₄-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Bthyl, Trilluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoylcarbonyl oder für -CH₂-R⁹ stehl,

R4 für Wasserstoff; Fluor, Chlor, Brom oder Nitro stehl,

R5 für Wasserstoff; Fluor, Chlor, Brom, Nitro oder C1-C4-Alkylcarbonyl sieht

- R⁶ für Cyclopropyl, Cyclopentyl, Cyclohexyl, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Broin, Cyano, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Methoxy, Pthoxy, n-Propoxy, Isopropoxy, 11-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluormethoxy, durch Nitro, Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, Dibutylamino substituiertes Phenyl, für Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Isopropoxycarbonyl, 1-Aziridinyl-carbonyl, 1-Pyrrolidinylcarbonyl, 1-Piperidinylcarbonyl, Hexalydro-1-picolinylcarbonyl (alle drei Isomere), 1-Piperazinylcarbonyl, 4-Methyl-1-piperazinylcarbonyl, 4-Morpholinocarbonyl oder Tetraliydro-1,4-thiazin-4-ylcarbonyl steht.
 - R⁷ für Cyano, Di-(C₁-C₄-alkoxy)-methyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Bron, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylauino oder Di-(C₁-C₄-alkyl)-amino substituiertes Phenyl oder Phenyl-C₁-C₂-alkyl, für C₁-C₄-Alkoxy, C₃-C₅-Alkinyloxy, C₁-C₄-Alkoxycarbonyl, Di-(C₁-C₄-alkyl)-aminocarbonyl oder N-C₁-C₂-Alkyl-N-C₁-C₂-alkoxy-

carbonylamino steht.

R⁸ für C₁-C₄-Alkyl oder gegebenenfalls einfach oder zweifach durch Fluor, Chlor, C₁-C₄-Alkyl oder Nitro substituiertes Phenyl steht,

R⁹ steht für gegebenenfalls einfach oder zweifach durch Methyl substituiertes 1-Hydroxy-C₂-C₆-cycloalkyl, für C₃-C₅-Cycloalkylmethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzyl oder o-Hydroxybenzyl steht, und n für 1 oder 2 steht.

4. β-Carbolinderivate der Formel (I-a)

```
(I-a)
                                                                                                                                                                                                                   10
 in welcher
          [A] R<sup>1-1</sup> für Alkyl oder -CH<sub>2</sub>-R<sup>6-1</sup> steht, wobei R<sup>6-1</sup> für Cycloalkyl, gegebenenfalls substituiertes Phenyl, für Alkoxycarbonyl oder gegebenenfalls durch Al-
          kyl substituiertes Alkylenaminocarbonyl (=cyclisches Aminocarbonyl), dessen Alkylenkette durch ein Sauer-
          stolf-, Schwefel- oder Stickstoffatom unterbrochen sein kann, steht,
          \mathbb{R}^{2 \cdot 1} für -CH<sub>2</sub>-\mathbb{R}^{7 \cdot 1}, gegebenenfalls substituiertes Benzoyl oder für -S(O)<sub>n</sub>\mathbb{R}^8 steht, wobei
          R<sup>7-1</sup> für Cyano, Dialkoxymethyl, einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor
          oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-
          (C1-C4-alkyl)-amino substituiertes Phenyl, für gegebenenfalls substituiertes Phenylalkyl, für Alkoxy, Alkiny-
          loxy, Alkoxycarbonyl, Dialkylaminocarbonyl oder N-Alkyl-N-alkoxycarbonylamino steht,
                                                                                                                                                                                                                  2.0
          R<sup>8</sup> für Alkyl oder gegebenenfalls substituiertes Phenyl steht und
          n für I oder 2 steht,
         R<sup>3-1</sup> für Wasserstoff; Halogen, Hydroxy, Alkyl, gegebencufalls substitutertes Benzoylcarbonyl oder für -CH<sub>2</sub>-
          R<sup>9-1</sup> steht, wohei
         R<sup>9-1</sup> für gegebenenfalls durch Methyl substituiertes 1-Hydroxycycloalkyl, für Cycloalkylmethyl, gegebenen- 25
          falls im Kern substituiertes Benzyl oder a-Hydroxybenzyl steht,
          R4-1 für Wasserstoff; Halogen oder Nitro steht und
          R<sup>5-1</sup> für Wasserstoff; Halogen oder Alkylcarbonyl steht,
          oder in welcher
          [B] R1-1 für -CH2-R6-1 steht, wobei
         R<sup>6-1</sup> für Cycloalkyl, substituiertes Phenyl, für Alkoxycarbonyl oder gegebenenfalls durch Alkyl substituiertes
          Alkylenaminocarbonyl (=cyclisches Aminocarbonyl), dessen Alkylenkette durch ein Sauerstoff-, Schwefel-
          oder Stickstoffatom unterbrochen sein kann, steht,
         \mathbb{R}^{2-1} für Wasserstoff; Alkyl oder Benzyl steht,
         \mathbb{R}^{3-1} für Wasserstoff; Halogen, Hydroxy, Alkyl, gegebenenfalls substitutiertes Benzoylcarbonyl oder für -\mathrm{CH}_2-
         R9-1 steht, wohei
        R<sup>9-1</sup> für gegebenenfalls durch Methyl substituiertes 1-Hydroxycycloalkyl, für Cycloalkylmethyl gegebenen-
         falls im Kern substituiertes Benzyl oder a-Hydroxybenzyl steht,
         R<sup>4-1</sup> für Wasserstoff; Halogen oder Nitro steht und
         R<sup>5-1</sup> für Wasserstoff; Halogen oder Alkylcarbonyl steht,
                                                                                                                                                                                                                  40
        oder in welcher
[C] R<sup>1-1</sup> für Alkyl oder Benzyl steht,
               1 für Wasserstoff; Alkyl oder Benzyl steht,
        R3-1 für Halogen, gegebenenfalls substituiertes Benzoylearbonyl oder für -CH2-R9-1 steht, wobei
        R<sup>9-1</sup> für Cycloalkylmethyl, im Kern substituiertes Benzyl oder gegebenenfalls substituiertes \alpha-Hydroxybenzyl 45
        R<sup>4-1</sup> für Wasserstoff; Halogen oder Nitro stellt und
        R<sup>5-1</sup> für Wasserstoff; Halogen oder Alkylcarbonyl sieht
        und deren Satze.
5. β-Carbolinderivate der Formel (I-a) gemäß Anspruch 4, in welcher
                                                                                                                                                                                                                 50
        [A] R1-1 für C1-C20-Alkyl oder -CH2-R6-1 steht, wobei
        R<sup>6-1</sup> für C<sub>3</sub>-C<sub>7</sub>-Cydoalkyl, gegebenenfalls einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch
        Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder
        Di-(C1-C4-alkyl)-amino substituiertes Phenyl, für C1-C4-Alkoxycarbonyl oder gegebenenfalls durch C1-C4-
        Alkyl substituiertes Alkylenaminocarbonyl (=cyclisches Aminocarbonyl) mit 2 bis 7 Ringgliedem, dessen Al-
        kylenkette durch ein Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann, steht,
       R<sup>2-1</sup> für -CH<sub>2</sub>-R<sup>7-1</sup>, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C<sub>1</sub>-C<sub>4</sub>-Alkyl oder C<sub>1</sub>-C<sub>4</sub>-Alkoxy, durch Nitro, Amino, C<sub>1</sub>-C<sub>4</sub>-Alkylamino oder Di-(C<sub>1</sub>-C<sub>4</sub>-alkyl)-amino substituiertes Benzoyl oder für S(O)<sub>n</sub>R<sup>8</sup> steht, wobei
        R<sup>7-1</sup> für Cyano, Di-(C<sub>1</sub>-C<sub>4</sub>-alkoxy)-methyl, Phenyl-C<sub>1</sub>-C<sub>4</sub>-alkyl, im Kern einfach oder mehrfach durch Halo-
        gen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Ni-
        tro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)-amino substituiertes Phenyl oder Phenyl-C1-C4-alkyl,
       \label{eq:control_control_control} \text{für } C_1\text{-}C_6\text{-}Alkoxy, C_2\text{-}C_6\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkoxy, \\ C_1\text{-}C_4\text{-}Alkoxy, C_2\text{-}C_6\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkoxy, \\ C_1\text{-}C_4\text{-}Alkoxy, \\ C_2\text{-}C_6\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkoxy, \\ C_2\text{-}C_4\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkinyloxy, } C_2\text{-}C_6\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkinyloxy, } C_2\text{-}C_6\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkinyloxy, } C_2\text{-}C_6\text{-}Alkinyloxy, } C_1\text{-}C_4\text{-}Alkinyloxy, } C_2\text{-}C_6\text{-}Alkinyloxy, } C_2\text{-}C_6\text{-
        Alkyl-N-C1-C4-alkoxycarbonylamino steht,
       R8 für C1-C4-Alkyl oder gegebenenfalls einfach oder zweifach durch Fluor, Chlor, C1-C4-Alkyl oder Nitro 65
       substituiertes Phenyl steht und
       n für 1 oder 2 steht
       R<sup>3-1</sup> für Wasserstoff; Halogen, Hydroxy, C:-C6-Alkyl, gegebenenfalls einfach bis dreifach unabhängig vonein-
```

ander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C_1 - C_4 -alkyl)-amino substituiertes Benzoylearbonyl oder für - CH_2 - R^{9-1} steht, wohei R⁹⁻¹ für gegebenenfalls durch Methyl substituiertes 1-Hydroxy-C₃-C₈-cycloalkyl, für C₃-C₈-Cycloalkylmethyl, gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, durch Nitro, Annino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-5 alkyl)-amino substituiertes Benzyl oder a-Hydroxybenzyl steht, für Wasserstoff, Fluor, Chlor, Brom, Iod oder Nitro steht und R⁵⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod oder C₁-C₄-Alkylcarbonyl steht, oder in welcher BB R¹⁻¹ für -CH₂-R⁶⁻¹ steht, wobei R⁶⁻¹ für C₃-C₇-Cycloalkyl, einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder to Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4alkyl)-amino substituiertes Phenyl, für C_1 - C_4 -Alkoxycarbonyl oder gegebenenfalls durch C_1 - C_4 -Alkyl substituiertes Phenyl, für C_1 - C_4 - C_4 -Alkyl substituiertes Phenyl, für C_1 - C_4 tuieures Alkylenauninocarbonyl (=cyclisches Aminocarbonyl) mit 2 bis 7 Ringgliedern, dessen Alkylenkette durch ein Sauerstoff-, Schwefel- oder Stickstoffatom unterbrochen sein kann, stehl, 15 R^{2-1} für Wasserstoff, C_1 - C_8 -Alkyl oder Benzyl steht, R³⁻¹ filr Wasserstoff; Halogen, Hydroxy, C₁-C₆-Alkyl, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Clilor, Brom, Methyl, Ethyl, Triffuormethyl, Nitro oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzoylcarbonyl oder für -CH₂-R⁹⁻¹ steht, wohei \mathbb{R}^{9-1} für gegebenenfalls durch Methyl substituiertes 1-Hydroxy- \mathbb{C}_3 - \mathbb{C}_8 -cycloalkyl, für \mathbb{C}_3 - \mathbb{C}_8 -Cycloalkylme-20 thyl, gegebenenfalls im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylainino oder Di-(C1-C4-Alkylainino oder Di-(C1alkyl)-amino substituiertes Benzyl oder α -Hydroxybenzyl steht, R^{4-1} für Wasserstoff; Fluor, Chlor, Brom, Iod oder Nitro steht und R⁵⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod oder C₁-C₄-Alkylcarbonyl steht, 25 oder in welcher [C] \mathbb{R}^{1-1} für C_1 - C_{20} -Alkyl oder Benzyl steht, R²⁻¹ für Wasserstoff; C₁-C₈-Alkyl oder Benzyl steht, R³⁻¹ für Halogen, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C1-C4-alkyl)-amino substituiertes Benzoylearbonyl oder für -CH2-30 ¹ stcht, wobei R9-1 für C3-C8-Cycloaikylmethyl, o-Hydroxybenzyl, im Kern einfach oder mehrfach durch Halogen, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C₁-C₄-Alkylamino oder Di-(C₁-C₄-alkyl)-amino substituiertes Benzyl oder α-Hydroxybenzyl stcht, R⁴⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod oder Nitro steht und 35 R⁵⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod oder C₁-C₄-Alkylcarbonyl steht. und deren Salze. β-Carbolinderivate der Formel (I-a) gemäß Anspruch 4, in welcher
 [A] R¹⁻¹ für C₁-C₁₂-Alkyl oder -CH₂-R⁶⁻¹ steht, wobei
 R⁶⁻¹ für Cyclopropyl, Cyclopentyl, Cyclohcxyl, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, 40 Cyano, Methyl, Bthyl, u-Propyl, Isopropyl, n-Buryl, Isobutyl, sec.-Buryl, tert.-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2,2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, sec.-Butoxy, tert.-Butoxy, Trifluorinethoxy, durch Nitro, Amino, Methylamino, Bihylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, Dibutylamino substituiertes Phenyl, für Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, 45 Isopropoxycarbonyl, 1-Aziridinylcarhonyl, 1-Pyrrolidinylcarbonyl, 1-Piperidinylcarbonyl, Hexahydro-1-picolinyluarbonyl (alle drei Isomere), 1-Piperazinylcarbonyl, 4-Methyl-I-piperazinylcarbonyl, 4-Morpholinocarbonyl oder 'l'etrahydro-1,4-thiazin-4-ylcarbonyl steht, R²⁻¹ für -CH₂-R⁷⁻¹, gegebenenfalls einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino 50 oder Di-(C1-C4-alkyl)-amino substituiertes Benzoyl oder für -S(O), R8 steht, wobei R^{7-1.} für Cyano, Di-(C₁-C₄-alkoxy)-metliyl, Phenyl-C₁-C₂-alkyl, im Kern einfach bis dreifach durch Fluor, Chlor, Brotu, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-C4-Alkylamino oder Di-(C1-C4-alkyl)-amino substituiertes Phenyl oder Phenyl-C1-C2-alkyl, für C1-C4-Alkoxy, C3-C-Alkinyloxy, C1-C4-Alkoxycarbonyl, Di-(C1-C4-alkyl)-aminocarbonyl oder 55 N-C1-C2-Alkyl-N-C1-C2-alkoxycarbonylamino steht, R^k für C1-C4-Alkyl oder gegebenenfalls einfach oder zweifach durch Fluor, Chlor, C1-C4-Alkyl oder Nitro substituiertes Phenyl steht und n für 1 oder 2 steht, R³⁻¹ für Wasscrstoff; Fluor, Chlor, Brom, Iod, Hydroxy, C_I-C₄-Alkyl, gegebenenfalls einfach bis dreifach un-60 ahhängig voneinander durch Fluor, Chlor, Brom, Methyl, Bthyl, Trifluormethyl, Nitro oder Di-(C₁-C₄-alkyl)-arnino substituiertes Benzoylcarbonyl oder für -CH₂-R³⁻¹ steht, wobei R⁹⁻¹ für gegebenenfalls einfach oder zweifach durch Methyl substitutiertes 1-Hydroxy-C₃-C₆-cycloalkyl, für C₃-C₆-Cycloalkylmethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C1-C4-Alkyl oder C1-C4-Alkoxy, durch Nitro, Amino, C1-65 C_4 -Alkylamino oder Di- $(C_1$ - C_4 -alkyl)-amino substituiertes Benzyl oder α -Hydroxybenzyl stelit, R^{4-1} für Wasserstoff, Fluor, Chlor, Brom oder Nitro steht und R⁵⁻¹ für Wasserstoff; Fluor, Chlor, Brom oder C₁-C₄-Alkylcarbonyl steht,

oder in welcher [B] R ¹⁻¹ für -CH ₂ -R ⁶⁻¹ steht, wobei R ⁶⁻¹ für Cyclopropyl, Cyclopentyl, Cyclohexyl, einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, Me Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, secButyl, tertButyl, Difluormethyl, Dichlormethyl, Trifl inethyl, Chlordifluormethyl, Trichlormethyl, 1,1,2,2-Tetrafluorethyl, 1,1,2-Trifluor-2-chlorethyl, Meth Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, secButoxy, tertButoxy, Trifluormethoxy, durch N Amino, Methylamino, Ethylamino, Isopropylamino, Dimethylamino, Diethylamino, Dipropylamino, Dib lamino substituiertes Phenyl, für Methoxycarbonyl, Bthoxycarbonyl, Propoxycarbonyl, Isopropoxycarbon-1-Aziridinylcarbonyl, 1-Pyrrolidinylcarbonyl, 1-Piperidinylcarbonyl, Hexahydro-1-picolinylcarbonyl drei Isomere). 1-Piperazinylcarbonyl, 4-Methyl-1-piperazinylcarbonyl, 4-Morpholinocarbouyl oder Tetra für Wasserstoff; C ₁ -C ₅ -Alkyl oder Benzyl steht, R ²⁻¹ für Wasserstoff; Fluor, Chlor, Brom, Iod, Hydroxy, C ₁ -C ₄ -Alkyl, gegebenenfalls einfach bis dreifach amino substituiertes Benzoylcarbonyl oder für -CH ₂ -R ⁹⁻¹ steht, wobei R ⁹⁻¹ für gegebenenfalls einfach oder zweifach durch Methyl substituiertes 1-Hydroxy-C ₃ -C ₅ -cycloalkyl, G ₃ -C ₅ -Cycloalkylmethyl, gegebenenfalls im Kern einfach bis dreifach durch Fluor, Chlor, Brom, Cyano, gebenenfalls durch Fluor oder Chlor substituiertes C ₁ -C ₄ -Alkyl oder C ₁ -C ₄ -Alkoxy, durch Nitro. Amino, C ₄ -Alkylamino oder Di-(C ₁ -C ₄ -alkyl)-amino substituiertes Benzyl oder α-Hydroxybenzyl steht,	inor- ioxy, iitro, outy- onyl, (alle ahy- un- iyl)- für
	20
R ⁵⁻¹ für Wasserstoff; Fluor, Chlor, Brom oder C ₁ -C ₄ -Alkylcarbonyl steht, oder in welcher [C] R ¹⁻¹ für C ₁ -C ₁₂ -Alkyl oder Benzyl steht, R ²⁻¹ für Wasserstoff; C ₁ -C ₆ -Alkyl oder Benzyl steht, R ³⁻¹ für Fluor, Clulor, Brom, Iod, gegebenenfalls einfach bis dreifach unabhängig voneinander durch Flu Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Nitro oder Di-(C ₁ -C ₄ -alkyl)-amino substituiertes Benzoylearl	10r, 25 bo-
R ⁹⁻¹ C ₃ -C ₆ -Cyclo alkylmethyl, α-Hydroxybenzyl, im Kern einfach bis dreifach durch Fluor, Chlor, Bro Cyano, gegebenenfalls durch Fluor oder Chlor substituiertes C ₁ -C ₄ -Alkyl oder C ₁ -C ₄ -Alkoxy, durch Nit Amino, C ₁ -C ₄ -Alkylamino oder Di-(C ₁ -C ₄ -alkyl)-amino substituiertes Phenyl oder Phenyl-C ₁ -C ₂ -alkyl, I C ₁ -C ₄ -Alkoxy, C ₃ -C -Alkinyloxy, C ₁ -C ₄ -Alkoxycarbonyl, Di-(C ₁ -C ₄ -alkyl)-aminocarbonyl oder N-C ₁ -C ₂ -alkyl-N-C ₁ -C ₂ -alkoxycarbonylamino, Benzyl oder α-Hydroxybenzyl steht, R ⁹⁻¹ für Wasserstoff; Fluor, Chlor, Brom oder Nitro steht und R ⁵⁻¹ für Wasserstoff; Fluor, Chlor, Brom oder C ₁ -C ₄ -Alkylcarbonyl steht und deren Salze.	ro,
 Arzneimittel enthaltend ein oder mehrere β-Carbolinderivate gemäß Anspruch 4. 	35
, John Market Golding Phophocal 4.	40
	40
	45
	50
	5 5
	60
	66

- Leerseite -