Auto Accompaniment System

Contents

- 1. Motivation
- 2. Goal
- 3. Issues
 - Time Synchronization
 - Repeating Process
- 4. Fundamental Concepts
 - Constant Q Transform
 - Chromagram
 - Autocorrelation
- 5. Systems and Settings
 - Devices

- Software
- 6. Procedure
 - Flowchart
 - Recording
 - Analyzing the Recorded Music
 - Comparing with a Reference Data
 - Playing an Accompaniment File
- 7. Demo
- 8. References

1. Motivation

Inconvenience of practicing musical instrument with an accompaniment file

2. Goal

- Automatic process for playing musical accompaniment.
 - Automatic position finding and playing
 - Easy repetition

3. Issues

Time Synchronization

Desired time cannot be searched automatically

Repeating Process

Repeating should be done in manual way by a player

4. Fundamental Concepts

- Constant Q Transform
- Chromagram
- Autocorrelation

Constant Q Transform (CQFT)

Fourier Transform

- Representing Frequency Domain
 - Geometrically Spaced

CQFT

- Representing Frequency Domain
 - <u>Discretely</u> spaced by <u>a bank of filters</u>

Constant Q Transform (CQFT)

$$f_k = f_0 \cdot 2^{\frac{k}{b}}$$

$$\Delta_k^{cq} = f_{k+1} - f_k = f_k (2^{\frac{1}{b}} - 1)$$

$$Q = \frac{f_k}{\Delta_k^{cq}} = (2^{\frac{1}{b}} - 1)^{-1}$$

b = 12

Chromagram

- Representation for music audio in which the entire spectrum is projected onto 12 bins representing the 12 distinct semitones (or chroma) of the musical octave.
- Independent to the tone of instrument

Autocorrelation

5. Systems and Settings

- Devices
 - Raspberry Pi 2

USB Soundcard

5. Systems and Settings

Software

PyAudio

6. Procedure

Recording

Analyzing the Recorded Music

Comparing with a Reference Data

Playing Accompaniment File

Recording

Sampling Rate: 44100Hz

Recording Time: 8 seconds

• CHUNK: 8192

There is a trade-off relationship between hard ware and algorithm's accuracy.

Analyzing

- Real-time processing is a hardware demanding process.
- Requires some solution to reduce the amount of calculations

STFT

Covers wide range of frequencies

Constant Q Transform Converts frequency to discrete blocks according to the filter banks

Chromagram

All notes are represented in one octave scale

Analyzing

Comparing

Original File

Accompaniment File

Playing

- Start music from matching point
- Time compensation for calculating

Demo

All Resources of codes are available at

https://github.com/jihoon1990/Senior_Project-Auto_Accompaniment_System

References

- 1. Judith C. Brown, <u>Calculation of a constant Q spectral transform</u>, *J. Acoust. Soc. Am.*, 89(1):425 434, 1991.
- 2. The Constant Q Transform, Benjamin Blankertz, (http://doc.ml.tu-berlin.de/bbci/material/publications/Bla_constQ.pdf)
- 3. Chroma Feature Analysis and Synthesis, http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/
- 4. http://web.media.mit.edu/~tristan/phd/dissertation/chapter3.html