

74AC573

OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT NON INVERTING

- HIGH SPEED: $t_{PD} = 4.5 \text{ ns}$ (TYP.) at $V_{CC} = 5V$
- LOW POWER DISSIPATION:
 I_{CC} = 8 μA (MAX.) at T_A = 25 °C
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28% V_{CC} (MIN.)
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: |IOH| = IOL = 24 mA (MIN)
- BALANCED PROPAGATION DELAYS:
 tplh ≅ tphl
- OPERATING VOLTAGE RANGE:
 V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 573
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The AC573 is an advanced high-speed CMOS OCTAL D-TYPE LATCH with 3 STATE OUTPUT NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring $\rm C^2MOS$ technology. It is ideal for low power applications mantaining high speed operation similar to equivalent Bipolar Schottky TTL.

These 8 bit D-Type latches are controlled by a

latch enable input (LE) and an output enable input (OE).

While the LE input is held at a high level, the Q outputs will follow the data input precisely.

When the LE is taken low, the Q outputs will be latched precisely at the logic level of D input data. While the (OE) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high

impedance state.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

April 1997 1/10

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	ŌE	3 State Output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q0 to Q7	3 State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	Vcc	Positive Supply Voltage

TRUTH TABLE

	OUTPUTS		
ŌĒ	LE	D	Q
Н	X	X	Z
L	L	X	NO CHANGE *
L	Н	L	L
L	Н	Н	Н

X: Don't care

LOGIC DIAGRAM

Z: High impedance
* Q output are latched at the time when the LE inputs taken low logic level.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
V_{I}	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to Vcc + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 20	mA
lo	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 400	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	2 to 6	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature:	-40 to +85	°C
dt/dv	Input Rise and Fall Time V _{CC} = 3.0, 4.5 or 5.5 V(note 1)	8	ns/V

¹⁾ V_{IN} from 30% to 70% of V_{CC}

DC SPECIFICATIONS

Symbol	Parameter	Te	st Condi	itions	Value					Unit
		Vcc			T,	A = 25 °	,C	-40 to	85 °C	
		(V)			Min.	Тур.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	3.0		0.1 V or	2.1	1.5		2.1		
		4.5	Vco	c - 0.1 V	3.15	2.25		3.15		V
		5.5			3.85	2.75		3.85		
V_{IL}	Low Level Input Voltage	3.0		0.1 V or		1.5	0.9		0.9	
		4.5	Vco	_C - 0.1 V		2.25	1.35		1.35	V
		5.5				2.75	1.65		1.65	
V_{OH}	High Level Output	3.0		Ιο=-50 μΑ	2.9	2.99		2.9		
	Voltage	4.5	V _I (*) =	Ιο=-50 μΑ	4.4	4.49		4.4		
		5.5 V _{IH} or	Ιο=-50 μΑ	5.4	5.49		5.4		V	
		3.0	VIL	l _O =-12 mA	2.56			2.46		
		4.5		I _O =-24 mA	3.86			3.76		
		5.5		I _O =-24 mA	4.86			4.76		
V_{OL}	Low Level Output	3.0		I _O =50 μA		0.002	0.1		0.1	
	Voltage	4.5	V _I ^(*) =	Ιο=50 μΑ		0.001	0.1		0.1	
		5.5	V _{IH} or	I _O =50 μA		0.001	0.1		0.1	V
		3.0	VIL	I _O =12 mA			0.36		0.44	
		4.5		l ₀ =24 mA			0.36		0.44	
		5.5		l ₀ =24 mA			0.36		0.44	
lı	Input Leakage Current	5.5	Vı = V	cc or GND			±0.1		±1	μΑ
l _{OZ}	3-State Output Off-state Current	5.5	$V_I = V_{CC}$ or GND $V_O = V_{CC}$ or GND $V_{I(OE)} = V_{IH}$				±0.5		±5	μА
Icc	Quiescent Supply Current	5.5	,	cc or GND			8		80	μА
I _{OLD}	Dynamic Output Current	5.5	V _{OLD} =	1.65 V max					75	mA
I _{OHD}	(note 1, 2)		V _{OHD} =	3.85 V min					-75	mA

¹⁾ Maximum test duration 2ms, one output loaded at time 2) Incident wave switching is guaranteed on transmission lines with impedances as low as $50\,\Omega$. (*) All outputs loaded.

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}, R_L = 500 \Omega$, Input $t_r = t_f = 3 \text{ ns}$)

Symbol	Parameter	Te	st Condition		Value				Unit
		Vcc		T,	A = 25 °	C.	-40 to 85 °C		
		(V)		Min.	Тур.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay Time	3.3 ^(*)			6	10		12	ns
t _{PHL}	LE to Q	5.0 ^(**)			4.5	8		9	115
t _{PLH}	Propagation Delay Time	3.3 ^(*)			5.5	10		12	20
t _{PHL}	D to Q	5.0 ^(**)			4.5	8		9	ns
t _{PZL}	Output EnableTime	3.3 ^(*)			6.5	11		13	20
t _{PZH}		5.0 ^(**)			5	9		10	ns
t _{PLZ}	Output Disable Time	3.3 ^(*)			7	12		14	ns
t _{PHZ}		5.0 ^(**)			6	10		11	115
t _w	Clock Pulse Width HIGH	3.3 ^(*)			1.5	4		4.5	nc
	or LOW	5.0 ^(**)			1.5	3.5		4	ns
ts	Setup Time Q to CK	3.3 ^(*)			0.5	3		3.5	20
	HIGH or LOW	5.0 ^(**)			0	2.5		3	ns
th	Hold Time Q to CK	3.3 ^(*)			-0.5	3		3.5	20
	HIGH or LOW	5.0(**)			0	2.5		3	ns

^(*) Voltage range is 3.3V ± 0.3V (**) Voltage range is 5V ± 0.5V

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions Value			Unit				
		Vcc		T _A = 25 °C		-40 to 85 °C			
		(V)		Min.	Тур.	Max.	Min.	Max.	
C _{OUT}	Output Capacitance	5.0			8				pF
C _{IN}	Input Capacitance	5.0			4				pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0			20				pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/n$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
tplh, tphl	Open
t _{PZL} , t _{PLZ}	2V _{CC}
tpzH, tpHZ	Open

C_L = 50 pF or equivalent (includes jig and probe capacitance)

 $R_L = R_1 = 500 \Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

WAVEFORM 1: LE TO Qn PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn TO LE SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 3: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

Plastic DIP20 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.45			0.018		
b1		0.25			0.010		
D			25.4			1.000	
E		8.5			0.335		
е		2.54			0.100		
e3		22.86			0.900		
F			7.1			0.280	
I			3.93			0.155	
L		3.3			0.130		
Z			1.34			0.053	

SO20 MECHANICAL DATA

DIM.	mm			inch			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			2.65			0.104	
a1	0.10		0.20	0.004		0.007	
a2			2.45			0.096	
b	0.35		0.49	0.013		0.019	
b1	0.23		0.32	0.009		0.012	
С		0.50			0.020		
c1			45°	(typ.)			
D	12.60		13.00	0.496		0.512	
Е	10.00		10.65	0.393		0.419	
е		1.27			0.050		
e3		11.43			0.450		
F	7.40		7.60	0.291		0.299	
L	0.50		1.27	0.19		0.050	
М			0.75			0.029	
S			8° (r	nax.)			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication superseds and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.