Exercici 20.

Demostreu que no existeix cap polinomi no constant $f(x) \in Z[x]$ tal que f(a) sigui primer per a tot $a \in \mathbb{Z}$.

Solució 20.

Sigui $f(x) = A_0 + A_1 x + A_2 x^2 + \dots + A_n x^n$ on $n \in \mathbb{N}$ i $A_i \in \mathbb{Z} \ \forall i \ 1 \le i \le n$ una funció no constant, és a dir, $1 \le n$ i $A_n \ne 0$

Si A_0 no és primer, s'observa clàrament què $f(0) = A_0 \Rightarrow$ existeix un a = 0 enter tal què f(a) no és primer.

Si A_0 és primer:

Tenim què
$$f(A_0) = A_0 + A_1 A_0 + A_2 (A_0)^2 + \dots + A_n (A_0)^n$$

= $A_0 (1 + A_1 + A_2 (A_0)^1 + \dots + A_n (A_0)^{n-1})$
Observem què $A_0 | f(A_0)$. Per tant, si $f(A_0)$ és primer, solament és possible si $f(A_0) = A_0$

Aplicant aquest raonament també podem deduir què si $f(A_0z)$, per a qualsevol z tal què $z \in \mathbb{Z}$, sigui primer, implicaria què $f(A_0z) = A_0$, ja què podriem extraure factor comú d' A_0

Tenim què
$$f(zA_0) = A_0 + zA_1A_0 + A_2(zA_0)^2 + \dots + A_n(zA_0)^n$$

= $A_0(1 + zA_1 + zA_2(A_0)^1z^2 + \dots + zA_n(A_0)^{n-1}z^n)$

Com s'observa $A_0|f(zA_0)$. Per tant, si $f(zA_0)$ és primer, solament és possible si $f(zA_0) = A_0, \forall z \in \mathbb{Z}$.

Observem què f(x) ha de ser una funció constant, si volem que es cumplisca que f(x) sigui primer per a tot $x \in \mathbb{Z}$. Tenint en compte què $gr(f(x)) = gr(f(zA_0) - A_0)$ com $f(zA_0) - A_0$ té infinits arrels, això implica que és una funció polinòmica constant, ja què una funció polinòmica de grau n té com a màxim n arrels.

Amb els dos casos hem demostrat que no existeix cap polinomi no constant $f(x) \in Z[x]$ tal que f(a) sigui primer per a tot $a \in \mathbb{Z}$.