

Convolutional Neural Network (CNN) Limitations of Dense Layer

Convolutional Layer

Convolutional Neural Network (CNN)

Image Processing & Augmentation

ImageNet role in Computer Vision

CNN Architectures

Transfer Learning

Revisiting Dense Layers

Also called Fully connected Layers

Number of Weights

200 Neurons * (784+1) = 157,000

Number of Weights

Initial Layer

How many weights for each Neuron?

$$2,352 + 1$$

200 Neurons * (2352+1) = 470,600

Number of Weights

300x300x3

Network becomes unmanageable: (

Spatial Information

Humans

32	27	33	12	18	29	37	27
29	18	28	16	27	18	29	30
2	33	66	155	160	23	32	28
32	27	99	180	192	86	199	100
47	90	180	190	170	30	21	39
13	100	143	195	37	29	22	26
33	142	16	28	28	26	28	30
149	27	26	17	29	30	29	27

How Machine sees picture

32	27	33	12	18	29	37	27
29	18	28	16	27	18	29	30
2	33	66	155	160	23	32	28
32	27	99	180	192	86	199	100
47	90	180	190	170	30	21	39
13	100	143	195	37	29	22	26
33	142	16	28	28	26	28	30
149	27	26	17	29	30	29	27

Neighbours of '180'?

32	27	33	12	18	29	37	27
29	18	28	16	27	18	29	30
2	33	66	155	160	23	32	28
32	27	99	180	192	86	199	100
47	90	180	190	170	30	21	39
13	100	143	195	37	29	22	26
33	142	16	28	28	26	28	30
149	27	26	17	29	30	29	27

FC Layer

FC Layer can work only with Vectors as input

When reshaping the input for FC layer, Spatial information is lost

Input Shape

No need to flatten the image *i.e.* keep Spatial info

Neuron Input Size

Neuron does not get whole image to look at unlike FC Layer

Neuron

28×28×3

Using Filter

Image

Neuron Output

Image

32	27	33	12	18	29	37	27
29	18	28	16	27	18	29	30
2	33	66	155	160	23	32	28
32	27	99	180	192	86	199	100
47	90	180	190	170	30	21	39
13	100	143	195	37	29	22	26
33	142	16	28	28	26	28	30
149	27	26	17	29	30	29	27

filter

1	0	12
2	15	1
1	10	0

3x3x1

Neuron Output

Image

32	27		12	18	29	37	27
29	18	28	16	27	18	29	30
2			155	160	23	32	28
32	27	99	180	192	86	199	100
47	90	180	190	170	30	21	39
13	100	143	195	37	29	22	26
33	142	16	28	28	26	28	30
149	27	26	17	29	30	29	27

filter

1	0	12
2	15	1
1	10	0

3x3x1

Output is a dot product

8x8x1

= (32*1) + (27*0) + (33*12) + (29*2) +(18*15) + (28*1) + (2*1) + (33*10) + (66*0)

= 1116

Next Neuron Output

Image

32	27		12	18	29	37	27
29	18	28	16	27	18	29	30
2			155	160	23	32	28
32	27	99	180	192	86	199	100
47	90	180	190	170	30	21	39
13	100	143	195	37	29	22	26
33	142	16	28	28	26	28	30
149	27	26	17	29	30	29	27

filter

1	0	12
2	15	1
1	10	0

Filter weight remain same for different parts of the images

3x3x1

dot product

8x8x1

= (27*1) + (33*0) + (12*12) + (18*2) + (28*15) + (16*1) + (33*1) + (66*10) + (155*0)

= 1336

Image

Output (Activation Map) Input Image 'Slide' Filter over entire image 5x5x3 Size? 24x24 28×28×3

Who decides on number of Neurons?

Weights for each Neuron?

Build a good filter which identifies a feature in the input

What is the goal of Convolutional Layer?

Visualizing a filter

0	0	0	50	0
0	0	50	0	0
0	0	50	0	0
0	0	50	0	0
0	0	0	0	0

5x5 filter

Filter visual

Input Image

Let's apply filter on this image

0	0	0	30	30
0	0	30	0	0
0	0	30	0	0
0	0	30	0	0
0	0	0	0	0

 \mathbf{X}

0	0	0	50	0
0	0	50	0	0
0	0	50	0	0
0	0	50	0	0
0	0	0	0	0

filter

Image Part as numbers

=(30*50)+(30*50)+(30*50)+(30*50)

6000

30	0	0	0	0
0	30	0	0	0
0	0	30	0	0
0	0	0	30	0
0	0	0	0	30

Part of Image

0	0	0	50	0
0	0	50	0	0
0	0	50	0	0
0	0	50	0	0
0	0	0	0	0

filter

=(30*50)

 \mathbf{X}

1500

Presence of the 'feature' represented by the filter

What does large output signify?

Building Multiple filters

Input Image

28x28x3

5 Filters 5x5x3

Filter Stride

7x7 Image

Filter - 3x3 Stride = 1

Output: 5x5

Indicates how many step(s) to move when sliding filter

Filter - 3x3Stride = 2

Output: 3x3

7x7 Image

Stride = 5

	F		
F			

Ν

Output: (N - F)/S + 1

N = 7, F = 3

S = 1 then Output is 5x5

S = 2 then Output is 3x3

Ν

$$(7-3)/3 + 1 = 2.33$$

7x7 Image

How to solve this problem?

Padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

How much padding to add?

$$(N - F + 2P)/S = Whole Number$$

Output Size with Padding

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

New Output formula
$$(N + 2P - F)/S + 1$$

Recap - Conv Layer

- > Uses Spatial Information
- ➤ Builds filters
- > Shares filters among Neurons
- > Hyperparameters
 - o Filter Size
 - Stride
 - Padding

Using Convolution Layer

Convolutional Neural Network (CNN)

CNNs usually have multiple Conv Layers

Too many parameters?

Pooling Layer (Down Sampling)

- Reduces size
- Works with each Activation Map

Max Pooling

2	1	7	9
5	6	1	3
17	9	7	11
6	3	12	4

2x2 filter

Stride = 2

6	9
17	12

Output 2x2

Conv Output 4x4

Average Pooling

2	1	7	9
5	6	1	3
17	9	7	11
6	3	12	4

3.5	5
8.75	8.5

Output 2x2

Conv Output 4x4

In CNNs, usually depth keeps increasing and ...

Lots of convolutions and Pooling layers

What does the output represent?

CNN

Input

MNIST Classification

Exercise: CIFAR-10 Classification

https://www.cs.toronto.edu/~kriz/cifar.html

CNN and Biological Connection

- > Takes inspiration from the Visual cortex.
- ➤ Individual neuronal cells in the brain responded (or fired) only in the presence of edges of a certain orientation.
- For example, some neurons fired when exposed to vertical edges and some when shown horizontal or diagonal edges.

Fully Connected

Convolutional

Works with Vector or flattened data

Can work with Multi-dimensional Data

Does not use Spatial information to learn features

Uses Spatial information using filters

Model Size is bigger

Reduced Model Size

Less Computation

More Computation

How many Weights? How many calculations?

Image Size	NxNxd
Filter Size	FxFxd
Number of Filters	M
Padding	Р
Stride	S
Output size (0 x 0)	O = (N - F + 2P)/S + 1
Number of Weights in One Filter	F x F x d
Number of Weights for all Filters in a Conv Layer	MxFxFxd
Number of Calculations per Filter (exc. Activation)	O x O x (FxFxd Mult + FxFxd Add) = O x O x 2 x F x F x d
Number of Calculations per Conv Layer	M x O x O x 2 x F x F x d