Atividade 5

Leonardo Santos - GRR20196154

Primeiramente foram encontrados os parametros g seguindo como referência a tabela da Figura 1.

N	\mathbf{g}_1	g ₂	g 3	24	25	g ₆	g ₇	<i>g</i> 8	& 9	g 10	g_{11}
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7939	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

Figura 1: Tabela com os coeficientes do filtro Chebyshev para 0,5 dB em função da sua ordem (N = 1 a 10).

Portanto tem-se os seguintes valores de g para o filtro de terceira ordem:

Em seguida foram calculados os parâmetro $k_{\rm nm}$:

$$k_{01} = \sqrt{\frac{\pi}{2}} \frac{\text{BW}}{\omega_0} \frac{1}{g_0 g_1}$$

$$k_{01} = 0, 4436$$

$$k_{12} = \frac{\pi}{2} \frac{\text{BW}}{\omega_0} \frac{1}{\sqrt{g_0 g_1}}$$

$$k_{12} = 0, 2486$$

$$k_{01} = \sqrt{\frac{\pi}{2}} \frac{\text{BW}}{\omega_0} \frac{1}{g_0 g_1}$$

$$k_{23} = k_{12} = 0, 2486$$

$$k_{34} = k_{01} = 0, 4436$$

Com os valores do parametros k calculados foram então calculados as impedancias da linha acoplados.

$$\begin{split} Z_{01\mathrm{o}} &= Z_0 * \left(1 - k_{01} + k_{01}^2\right) \\ Z_{01\mathrm{o}} &= 37,66\Omega \end{split}$$

$$Z_{01\mathrm{e}} &= Z_0 * \left(1 + k_{01} + k_{01}^2\right) \\ Z_{01\mathrm{e}} &= 82,022\Omega \end{split}$$

$$Z_{12\mathrm{o}} &= Z_0 * \left(1 - k_{12} + k_{12}^2\right) \\ Z_{12\mathrm{o}} &= 40,66\Omega \end{split}$$

$$\begin{split} Z_{12\mathrm{e}} &= Z_0*(1+1-k_{12}+1-k_{12}**2)\\ Z_{12\mathrm{e}} &= 65,52\Omega \end{split}$$

$$Z_{23\mathrm{e}} &= Z_{12\mathrm{o}} = 40,66\Omega\\ Z_{23\mathrm{e}} &= Z_{12\mathrm{e}} = 65,52\Omega\\ Z_{34\mathrm{o}} &= Z_{01\mathrm{o}} = 37,66\Omega \end{split}$$

Com isso é possivel calcular as dimensões fisicas da linha de transmissão utilizando a calculado do QUCS conforme mostrado pelas Figura 2 e Figura 3 a seguir:

Figura 2: Parâmetros físicos das linhas da extremidade.

Figura 3: Parâmetros físicos das linhas intermediária.

Com isso tem-se os seguintes valores de largura e comprimento:

$$\begin{split} W_{01} &= W_{34} = 1.01381 \text{ mm} \\ W_{12} &= W_{23} = 1.30247 \text{ mm} \\ S_{01} &= S_{34} = 0.1147 \text{ mm} \\ S_{12} &= S_{23} = 0.3459 \text{ mm} \\ L_{01} &= L_{34} = 17.869 \text{ mm} \\ L_{12} &= S_{23} = 17.249 \text{ mm} \end{split}$$

Com esses valores ja é possivel desenvolver o esquematico no QUCS, conforme ilustrado pela Figura 4 a seguir:

Figura 4: Esquematico do circuito no QUCS.

E o resultado obtido esta ilustrado pela Figura 5 a seguir:

Figura 5: Resultado da Simulação.