Теоретическая информатика - 1

Теория графов — Раскраски графов

Хроматическое число графа

Хроматическое число $\chi(G)$: наименьшее число цветов, в которые можно правильно покрасить вершины графа G.

Критерий раскрашиваемости в два цвета:

Теорема 1

Граф двудолен если и только если он не содержит нечетных циклов.

Доказательство: упражнение.

Лемма 1

Если граф H нельзя покрасить в k цветов, то он содержит индуцированный подграф, в котором степени вершин $\geq k$.

Лемма 1

Если граф H нельзя покрасить B k цветов, то он содержит индуцированный подграф, B котором степени вершин $\geq k$. Доказательство. Если $\deg v < k$, то граф $H \setminus v$ также нельзя покрасить B K цветов (иначе покрасим его, а потом докрасим V). Удалим вершину V и продолжим процесс, B итоге останется подграф, B котором все степени не меньше K.

Следствие 1

Пусть v_1, v_2, \ldots, v_n — все вершины графа G, и при всех $k=1,2,\ldots,n$ вершина v_k имеет не более чем d соседей среди вершин v_1,\ldots,v_{k-1} . Тогда $\chi(G)\leq d+1$.

Следствие 1

Пусть v_1, v_2, \ldots, v_n — все вершины графа G, и при всех $k=1,2,\ldots,n$ вершина v_k имеет не более чем d соседей среди вершин v_1,\ldots,v_{k-1} . Тогда $\chi(G)\leq d+1$.

Доказательство. Предположим противное, т.е. $\chi(G)>d+1.$

По лемме 1 в G найдется индуцированный подграф, степени всех вершин которого $\geq d+1$.

Но вершина этого подграфа с наибольшим номером имеет в нем степень не более d. Противоречие.

Следствие 1

Пусть v_1, v_2, \ldots, v_n — все вершины графа G, и при всех $k=1,2,\ldots,n$ вершина v_k имеет не более чем d соседей среди вершин v_1,\ldots,v_{k-1} . Тогда $\chi(G)\leq d+1$.

Доказательство. Предположим противное, т.е. $\chi(G)>d+1.$

По лемме 1 в G найдется индуцированный подграф, степени всех вершин которого $\geq d+1$.

Но вершина этого подграфа с наибольшим номером имеет в нем степень не более d. Противоречие.

Следствие 2

Если степени всех вершин графа G не превосходят d, то $\chi(G) \leq d+1$.

Следствие 1

Пусть v_1, v_2, \ldots, v_n — все вершины графа G, и при всех $k=1,2,\ldots,n$ вершина v_k имеет не более чем d соседей среди вершин v_1,\ldots,v_{k-1} . Тогда $\chi(G)\leq d+1$.

Доказательство. Предположим противное, т.е. $\chi(G)>d+1.$

По лемме 1 в G найдется индуцированный подграф, степени всех вершин которого $\geq d+1$.

Но вершина этого подграфа с наибольшим номером имеет в нем степень не более d. Противоречие.

Следствие 2

Если степени всех вершин графа G не превосходят d, то $\chi(G) \leq d+1$.

Теорема Брукса

Теорема 2 (Брукс, 1941)

Пусть в графе G степени всех вершин $\leq d$. Тогда если $d \geq 3$ и ни одна компонента связности G не является полным графом K_{d+1} , то $\chi(G) \leq d$.

При d=2 неравенство $\chi(G)\leq 2$ выполняется, если ни одна компонента связности не является нечетным циклом.

Вспомогательное утверждение

Пусть u, v — две несмежные вершины графа H. Рассмотрим графы:

H/uv: вершины u, v склеены в одну (кратные ребра после склеивания сразу делаем простыми),

H+uv: добавлено ребро uv.

Вспомогательное утверждение

Пусть u, v — две несмежные вершины графа H. Рассмотрим графы:

H/uv: вершины u, v склеены в одну (кратные ребра после склеивания сразу делаем простыми),

H + uv: добавлено ребро uv.

Утверждение: Граф H можно покрасить в k цветов \Leftrightarrow хотя бы один из этих двух графов можно.

Вспомогательное утверждение

Пусть u, v — две несмежные вершины графа H. Рассмотрим графы:

H/uv: вершины u, v склеены в одну (кратные ребра после склеивания сразу делаем простыми),

H + uv: добавлено ребро uv.

Утверждение: Граф H можно покрасить в k цветов \Leftrightarrow хотя бы один из этих двух графов можно.

Доказательство утверждения: раскраскам H, в которых вершины u и v одного цвета, соответствуют покраски H/uv, а тем, в которых u и v разного цвета, покраски H+uv.

Доказательство теоремы Брукса.

Для d=2 утверждение следует из того, что четные циклы и пути легко красятся в два цвета, а других компонент связности в нашем графе нет.

Пусть $d \geq 3$. Можно считать граф G связным.

Доказательство теоремы Брукса.

Для d=2 утверждение следует из того, что четные циклы и пути легко красятся в два цвета, а других компонент связности в нашем графе нет.

Пусть $d \geq 3$. Можно считать граф G связным.

Предположим противное: пусть для графов с меньшим числом вершин, чем у G, утверждение теоремы Брукса выполняется, а для графа G нет.

Лемма $1\Rightarrow$ степени всех вершин графа G равны d (иначе возьмем подграф с таким свойством, связность \Rightarrow совпадает с G).

Рассмотрим любую вершину p графа G, у нее найдутся два несмежных соседа u, v (иначе G совпадает с K_{d+1}). Рассмотрим граф G/uv (z — вершина, получаемая

ightharpoonup его не покрасить в d цветов в силу утверждения

отождествлением u и v).

- ightharpoonup его не покрасить в d цветов в силу утверждения
- ▶ он связен

- ightharpoonup его не покрасить в d цветов в силу утверждения
- ▶ он связен
- ightharpoonup степени всех его вершин $\leq d$, кроме, возможно, z.

- ightharpoonup его не покрасить в d цветов в силу утверждения
- ▶ он связен
- ightharpoonup степени всех его вершин $\leq d$, кроме, возможно, z.
- ightharpoonup degp < d.

Рассмотрим граф G/uv (z — вершина, получаемая отождествлением u и v).

- ightharpoonup его не покрасить в d цветов в силу утверждения
- ▶ он связен
- ightharpoonup степени всех его вершин $\leq d$, кроме, возможно, z.
- ightharpoonup degp < d.

По Лемме 1 в G/uv найдется индуцированный подграф H, в котором степени всех вершин $\geq d$.

Рассмотрим граф G/uv (z — вершина, получаемая отождествлением u и v).

- ightharpoonup его не покрасить в d цветов в силу утверждения
- ▶ он связен
- ightharpoonup степени всех его вершин $\leq d$, кроме, возможно, z.
- ightharpoonup deg p < d.

По Лемме 1 в G/uv найдется индуцированный подграф H, в котором степени всех вершин $\geq d$.

H получается из некоторого подграфа H' графа G стягиванием ребра uv.

Рассмотрим граф G/uv (z — вершина, получаемая отождествлением u и v).

- ightharpoonup его не покрасить в d цветов в силу утверждения
- ▶ он связен
- ightharpoonup степени всех его вершин $\leq d$, кроме, возможно, z.
- ightharpoonup degp < d.

По Лемме 1 в G/uv найдется индуцированный подграф H, в котором степени всех вершин $\geq d$.

H получается из некоторого подграфа H' графа G стягиванием ребра uv.

H содержит z, т.к. степени оставшихся и так были не больше d, а из-за связности мы должны были удалить какие-то ведущие в них ребра.

Рассмотрим граф G/uv (z — вершина, получаемая отождествлением u и v).

- ightharpoonup его не покрасить в d цветов в силу утверждения
- ▶ он связен
- ightharpoonup степени всех его вершин $\leq d$, кроме, возможно, z.
- ightharpoonup degp < d.

По Лемме 1 в G/uv найдется индуцированный подграф H, в котором степени всех вершин $\geq d$.

H получается из некоторого подграфа H' графа G стягиванием ребра uv.

H содержит z, т.к. степени оставшихся и так были не больше d, а из-за связности мы должны были удалить какие-то ведущие в них ребра.

 \Rightarrow в H есть вершина z и несколько вершин степени d, которые не смежны с вершинами вне H, A

Попробуем теперь покрасить граф G+uv.

Попробуем теперь покрасить граф G+uv.

- ightharpoonup граф $ilde{H}$: состоит из u,v и вершин, не входящих в H'
- ightharpoonup G+uv состоит из H' и $ilde{H}$; эти два графа имеют общее ребро uv, а их вершины, отличные от u и v, не смежны.
- ightharpoonup \Rightarrow если мы покрасим каждый из них в d цветов, то, склеивая эти раскраски по ребру uv, получим раскраску G+uv.
- ightharpoonup Покажем, что степени всех вершин графов H', \tilde{H} не превосходят d.
 - ightharpoonup для всех вершин, кроме u и v, это очевидно, и проверить следует лишь что, например, вершина u, имеющая степень d+1 в графе G+uv, соединена не только с вершинами H' или не только с вершинами \tilde{H} .
 - lacktriangle Для H': вершина u соединена с вершиной p, лежащей в $ilde{H}$.
 - Для \tilde{H} : если u соединена только с вершинами \tilde{H} , то в H имеем $\deg z < d$ (ребрам, выходящим в H из z, будут соответствовать лишь ребра, выходящие в G из v, причем не все например, не ребро zp).

Таким образом, для графов H', \tilde{H} (оба имеют меньше вершин, чем G) выполняется утверждение теоремы Брукса, так что один из них K_{d+1} .

Таким образом, для графов H', \tilde{H} (оба имеют меньше вершин, чем G) выполняется утверждение теоремы Брукса, так что один из них \mathcal{K}_{d+1} .

Это не H', т.к. в H' вершины u и v не имеют общих соседей (такой общий сосед имел бы степень меньше d в H и потому попал бы в \tilde{H}).

Таким образом, для графов H', \tilde{H} (оба имеют меньше вершин, чем G) выполняется утверждение теоремы Брукса, так что один из них \mathcal{K}_{d+1} .

Это не H', т.к. в H' вершины u и v не имеют общих соседей (такой общий сосед имел бы степень меньше d в H и потому попал бы в \tilde{H}).

И это не $ilde{H}$, поскольку в этом случае степень z в H получается не больше двух — противоречие.