Linear Inequalities in Two Variables

Graphing Linear Inequalities

Graphing Linear Inequalities - one variable

Tell whether the ordered pair is a solution of the inequality.

1.
$$x + y > -9$$
; (0, 0)

2.
$$x - y \ge 8$$
; (14, 9)

2.
$$x - y \ge 8$$
; (14, 9) **3.** $2x - y > 4$; (-6, -15)

4.
$$2x + y > -5$$
; $(-5, 12)$ **5.** $5x + 2y \le 8$; $(-3, 6)$ **6.** $4x - 3y \ge -5$; $(6, 8)$

5.
$$5x + 2y \le 8$$
; $(-3, 6)$

6.
$$4x - 3y \ge -5$$
; (6, 8)

13.
$$4y \le 6x - 2$$

14.
$$5y \le 10x + 15$$

15.
$$6y + 3 \ge -18x$$

$$\frac{5y \leq 10x + 15}{4 \leq 2x + 3}$$

$$0 = 2(0) + 3$$
 $0 = 3$

$$Y = 2x + 3$$

 $Y = 2(0) + 3$
 $Y = 3$

$$0=2x+3$$
 $-3=2x$
 $-3=x$

Window The area of the window shown is less than 42 square feet. Let x and y represent the heights of the triangular and rectangular portions of the window, respectively.

- **a.** Write and graph an inequality that describes the different dimensions of the window.

Homework:

p. 409; 3-12 by 3, 17-33 by 3, 53, 57, 58