静电场中的导体与电介质 (一)

1. 下面哪个条件不能判断该导体处于静电平衡状态()

一、选择题

(A) 导体内部电场处处为零。 (B) 导体内部及表面成一个等势体。	
(C) 导体内部及表面没有净余电荷。 (D) 导体内部及表面的电流为零。	
2. 已知一孤立无限大导体带电平板每个表面的电荷密度均为 σ ,则两侧的电场强度的为() (A) 0 (B) $\sigma/(2\varepsilon_0)$ (C) σ/ε_0 (D) $2\sigma/\varepsilon_0$	大小
(A) 0 (B) $\sigma/(2\varepsilon_0)$ (C) σ/ε_0 (D) $2\sigma/\varepsilon_0$	
3. 以下关于临近静电平衡导体表面的外部电场的描述,不正确的是()(A)临近表面的电场强度大小与表面的面电荷密度成正比(B)电场分布不仅与导体的形状有关,面且与导体所在区域原有电场分布有关。(C)当没有原有外电场作用时,临近导体表面电场与表面垂直(D)在原有外电场作用下,临近导体表面电场可与表面不垂直	
4. 质量为 m 的导体球被一绝缘弹簧吊于一天花板下保持平衡静止状态,假设	
有一点电荷出现在导体球正下方位置,如图所示。请问导体球将如何移动(k
(A) 只有当 q>0 时金属球才下移 (B) 只有当 q<0 时金属球才下移) mg
(C) 无论 q 是正是负金属球都下移 (D) 无论 q 是正是负金属球都不动	q
5. 一平板电容器与电源相连,在两个极板之间充满某种电介质,则两极板间((A) 电场强度 E 、电位移矢量 D 都增大(B) 电场强度 E 、电位移矢量 D 都减小(C) 电场强度 E 不变、电位移矢量 D 增大(D) 电位移矢量 D 不变、电场强度 E 增大)

二、填空题

1. 半径为R的金属球与地连接,在与球心O相距 1.5R处有一电量为q的点电荷,如图所示。设地的电势为零,则球上感应电荷为

- 2. 已知一导体球壳内部有一导体,导体带正电,导体球壳不带电,当用一导线将内导体与外导体球壳相连,电荷重新分布,则系统的电势能大小的变化趋势为____。
- 3. 当一半径为R的导体球与一半径为r的导体球以一细长导线相连,体系总电量为Q,两球相距很远时,Q分配在以上两个导体球上的电量分别为 和 。
- 4. 两同心导体球壳,已知半径分别为 R_1 和 R_2 ($R_1 > R_2$),所带电量分别为 q_1 和 q_2 ,当两球壳间填充相对介电常数为 ε_r 的某种均质电介质时,则两球壳间半径为 r 处的电场强度为
- 5. 一电量为 q 的点电荷被一厚度为 R,相对介电常数为 ε_r 的某种均质电介质球包裹,电介质之外为真空,则介质球表面的极化电荷面密度为_____。

三、计算题

1. 如图所示,三个平行放置厚度可忽略的金属板 A、B和 C,面积均为 $100cm^2$,A、B相隔距离为 2mm,B、C 相隔距离为 4mm。A A C 接地。对 B 充电,当 B 板电压升至 100V时,试问金属板 A、B和 C 三块板上的电荷分别是多少?若在 A、B和 C 之间充满相对介电常数为 ε_r =4 的均质电介质,则以上携带的电荷量又分别是多少?

- 2. 两个很薄的导体圆筒同轴地套在一起,内、外圆筒半径分别为 R_1 和 R_2 ,高 L ($L>>R_1$ 、 R_2),忽略边缘效应,如图所示。现把电量 q 给予内筒;外筒原本不带电;以半径 R_0 处($R_0>>R_2$)为电势零点,即接地,试求:
- (1) 两圆筒之间的电场强度矢量;
- (2) 外圆筒的电势;
- (3) 若把外圆筒接地后再重新绝缘,外圆筒上所带的电荷;
- (4) 然后把内圆筒接地,此时内圆筒上所带的电荷及外圆筒的电势。

