4- AMALIY MASHG'LOT. Akslantirishlar. Inyektiv, suryektiv, biyektiv funksiyalar. Funksiya turlarini aniklashga doir misollar yechish Reja:

- 1. Akslantirishlar haqida ma'lumotlar.
- 2. Mustaqil bajarish uchun masala va topshiriqlar
 - 2.1. Akslantirishlar. Inyektiv, suryektiv, biyektiv funksiyalarga doir topshiriqlar
 - 2.2. Funksiya turlarini aniklashga doir topshiriqlar
 - 2.3. Funksiyalar kompozitsiyasiga doir topshiriqlar

1. Akslantirishlar haqida ma'lumotlar.

- **4.1-Ta'rif.** Agar biror X to'plamning har bir x elementiga qandaydir qonuniyat bo'yicha yagona f(x) ob'yekt mos qo'yilgan bo'lsa, bu f moslik **funktsiya** deyiladi.
- **4.2-Ta'rif.** $f \subset A \times B$ munosabat **funktsiya** yoki A to'plamdan B to'plamga **akslantirish** deyiladi, agarda quyidagi shartlar bajarilsa:
 - 1) $D_{l}(f) = A$, $D_{r}(f) \subseteq B$,
 - 2) $(x, y_1) \in f$, $(x, y_2) \in f$ ekanligidan $y_1 = y_2$ ekanligi kelib chiqsa.

Funktsiya $f: A \to B$ yoki $A \xrightarrow{f} B$ kabi belgilanadi, agar $(x, y) \in f$ boʻlsa, u holda y = f(x) kabi yoziladi va f funktsiya x elementga y elementni mos qoʻyadi deb gapiriladi. $y \in B$ elementga x elementning **tasviri**, $x \in A$ elementga y ning **asli** deyiladi.

Agar $D_l(f) \subset A$ bo`lsa, f funktsiya **qismiy funktsiya** deyiladi.

Ixtiyoriy funktsiya $f: A \to B$ bu binar munosabat. Shuning uchun teskari munosabat f^{-1} ni qurish mumkin. Agar buning natijasida yana funktsiya hosil bo'lsa, u holda f ga teskarilanuvchi funktsiya deyiladi va teskari funktsiya $f^{-1}: B \to A$ ko'rinishda belgilanadi.

- **Misol 1.** 1) $g = \{(1, 2), (2, 3), (3, 2)\}$ munosabat funktsiya boʻladi.
 - 2) $R = \{(1, 2), (1, 3), (2, 3)\}$ munosabat funktsiya boʻlmaydi.
 - 3) $f = \{(x, x^2 2x + 3), x \in R\}$ munosabat funktsiya boʻladi va $y = x^2 2x + 3$ koʻrinishda ham yoziladi.

4.3-Ta'rif. Agar

- 1) $D_{l}(f) = D_{l}(g);$
- 2) ixtiyoriy $x \in D_l(f)$ uchun f(x) = g(x) bajarilsa, $f : A \to B$ va $g : C \to D$ akslantirishlarga **teng akslantirishlar** deyiladi.

4.1-Teorema. $f: A \to B$ akslantirish va $X, Y \subseteq A$ lar uchun $f(X \cup Y) = f(X) \cup f(Y)$ tenglik o'rinli.

(Birlashmaning obrazi obrazlar birlashmasiga teng.)

Isboti: Aytaylik, $b \in f(X \cup Y)$ bo'lsin. Demak, shunday $a \in X \cup Y$ mavjudki, uning uchun f(a) = b. Agar $a \in X$ bo'lsa, u holda $f(a) = b \in f(X)$, bundan esa $b \in f(X) \cup f(Y)$ kelib chiqadi. Xuddi shuningdek, $a \in Y$ ham isbotlanadi. Demak, $f(X \cup Y) \subseteq f(X) \cup f(Y)$ ekanligi isbotlandi.

Endi $b \in f(X) \cup f(Y)$ bo'lsin. Aniqlik uchun $b \in f(X)$ ni qaraylik, demak, shunday $a \in X$ mavjudki, uning uchun f(a) = b. Bundan $a \in X$ va $a \in X \cup Y$ ekanligi, demak, $b \in f(X \cup Y)$ ekanligi kelib chiqadi. Xuddi shuningdek, $b \in f(Y)$ ham isbotlanadi. Demak, $f(X) \cup f(Y) \subseteq f(X \cup Y)$ ekanligi isbotlandi. $f(X \cup Y) \subseteq f(X) \cup f(Y)$ va $f(X) \cup f(Y) \subseteq f(X \cup Y)$ o'rinli bo'lsa, demakki, $f(X \cup Y) = f(X) \cup f(Y)$ tenglik o'rinli.

Teorema isbotlandi.

4.2-Teorema. $f: A \to B$ akslantirish va $X, Y \subseteq B$ lar uchun $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$ tenglik o'rinli.

(Birlashmaning proobrazi proobrazlar birlashmasiga teng.)

Isboti: $a \in f^{-1}(X \cup Y)$ elementni olaylik, bu $f(a) \in X \cup Y$ ekanini bildiradi, ya'ni $f(a) \in X$ yoki $f(a) \in Y$. Agar $f(a) \in X$ bo'lsa, u holda proobraz ta`rifiga ko'ra $a \in f^{-1}(X)$ bo'ladi, bundan esa $a \in f^{-1}(X) \cup f^{-1}(Y)$ ekanligi kelib chiqadi. Xuddi shuningdek, agar $f(a) \in Y$ bo'lsa, u holda $a \in f^{-1}(X) \cup f^{-1}(Y)$. Bundan

$$f^{-1}(X \cup Y) \subseteq f^{-1}(X) \cup f^{-1}(Y)$$

kelib chiqadi.

Endi aksincha qism to'plam bo'lishini ko'rsatamiz.

 $a \in f^{-1}(X) \cup f^{-1}(Y)$ bo'lsin, bundan $a \in f^{-1}(X)$ yoki $f(a) \in Y$. Agar $a \in f^{-1}(X)$ bo;lsa, u holda $f(a) \in X$ bo'ladi. Shuningdek, $f(a) \in X \cup Y$ bo'ladi, bundan $a \in f^{-1}(X \cup Y)$ kelib chiqadi. $a \in f^{-1}(Y)$ bo'lgan hol gam shunday yo'l bilan isbotlanadi va $F^{-1}(X) \cup F^{-1}(Y) \subseteq F^{-1}(X \cup Y)$ hosil qilinadi. Bu ikkita isbotlangan qism to'plamlar birlashtirilsa, talab qilingan tenglikka kelamiz.

$$F^{-1}(X \cup Y) = F^{-1}(X) \cup F^{-1}(Y)$$
.

Teorema isbotlandi.

4.3-Teorema. $f: A \to B$ akslantirish va $X, Y \subseteq A$ lar uchun $f(X \cap Y) \subseteq f(X) \cap f(Y)$ tenglik o'rinli.

Isboti: $b \in f(X \cap Y)$ bo'lsin. Obraz ta'rifiga ko'ra, shunday $a \in X \cap Y$ elementlar to'piladiki, ular uchun f(a) = b tenglik o'rinli. $a \in X \cap Y$ ekanligidan $a \in X \cap a \in Y$ kelib chiqadi, demak, $f(a) = b \in f(X)$ va $f(a) = b \in f(Y)$, ya'ni -. Bulardan talab qilingan tasdiq kelib chiqadi: $f(X \cap Y) \subseteq f(X) \cap f(Y)$

Teorema isbotlandi.

4.2-Misol. Teskari tasdiq o'rinli bo'lmasligini misol yordamida ko'ramiz.

$$f(x) = x^2 : R \to \bigcup R_+ \cup \{0\}$$

akslantirish bo'lsin.

X va Y to'plamlar sifatida $X = \begin{bmatrix} -1;0 \end{bmatrix}$, $Y = \begin{bmatrix} 0;1 \end{bmatrix}$ larni ko'raylik. Ravshanki, $f(X) = \begin{bmatrix} 0;1 \end{bmatrix}$, $f(Y) = \begin{bmatrix} 0;1 \end{bmatrix}$, demak ularning kesishmasi $f(X) \cap f(Y) = \begin{bmatrix} 0;1 \end{bmatrix}$. So'ngra $\begin{bmatrix} -1;0 \end{bmatrix} \cap \begin{bmatrix} 0;1 \end{bmatrix} = \{0\}$ ekanligidan $f(X \cap Y) = f(\{0\}) = \{0\}$ ni aniqlaymiz. Bu holda qism to'plam bo'lish $f(X) \cap f(Y) \not\subset f(X \cap Y)$ munosabati bajarilmaydi.

4.4-Teorema. $f: A \to B$ akslantirish va $X, Y \subseteq B$ to'plamlar uchun $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$ tenglik o'rinli.

Isboti: $a \in f^{-1}(X \cap Y)$ bo'lsin, ya'ni $f(a) = b \in X \cap Y$, demak, $b \in X \cap b \in Y$, shuning uchun $a \in f^{-1}(X)$ va $a \in f^{-1}(Y)$ bundan $a \in f^{-1}(X) \cap f^{-1}(Y)$.

Demak, $f^{-1}(X \cap Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$.

Endi teskari munosabatni isbotlash uchun $a \in f^{-1}(X) \cap f^{-1}(Y)$ ni olamiz, bundan $a \in f^{-1}(X)$ va $a \in f^{-1}(Y)$, demak, $f(a) \in X$ и $f(a) \in Y$, ya'ni $f(a) \in X \cap Y$, shuningdek, $a \in f^{-1}(X \cap Y)$ o'rinli ekanligi kelib chiqadi. Bundan esa $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X \cap Y)$. Olingan qism to'plamlar birlashtirilsa, talab qilingan tenglikka kelamiz:

$$F^{-1}(X \cap Y) = F^{-1}(X) \cap F^{-1}(Y).$$

Teorema isbotlandi.

4.4-Ta'rif. Agar f^{-1} munosabat qismiy funktsiya bo'lsa, ya'ni $\forall x_1, x_2 \in D_l(f)$ dan olingan $x_1 \neq x_2$ uchun $f(x_1) \neq f(x_2)$ bajarilsa, f funktsiyaga **o'zaro bir qiymatli** f**unktsiya** yoki **in'yektiv funktsiya** deyiladi va $f: A \xrightarrow{l-1} B$ kabi belgilanadi.

Demak, in'yektiv funktsiyada takrorlanuvchi qiymatlar bo'lmaydi. Bundan $f(x_1) = f(x_2)$ dan $x_1 = x_2$ kelib chiqadi.

4.3-Misol. f(x) = 4x + 3 funktsiya $f(x): R \to R$ in'yektiv funktsiya bo'lishini ko'rsating.

Yechilishi: Faraz qilaylik, $f(x_1) = f(x_2)$ bo'lsin, ya'ni $4x_1 + 3 = 4x_2 + 3$, bundan $4x_1 = 4x_2$, $x_1 = x_2$ kelib chiqadi. Demak, f - in'yektiv funktsiya bo'ladi.

- **4.5-Ta'rif.** Agar $D_r(f) = B$ bo'lsa, $f: A \to B$ funktsiya A **ni** B **ga ustiga akslantirish** yoki **syur'yektiv funktsiya** deyiladi va $f: A \xrightarrow{\text{ustiga}} B$ kabi belgilanadi.
- **4.4-Misol.** 3-misoldagi f(x) = 4x + 3 funktsiyaning syur'yektivlikka tekshiramiz.

Yechilishi: Aytaylik, $b \in R$ bo'lsin. Ta'rifga ko'ra, f - syur'yektiv funktsiya bo'lishi uchun $D_r(a) = b$ o'rinli bo'ladigan shunday haqiqiy son $a \in R$ ni topish mumkin. Buning uchun b = 4a + 3 deb olsak, $a = \frac{b-3}{4}$ son topiladi. Demak, f - syur'yektiv funktsiya.

4.6-Ta'rif. Ham in'yektiv, ham syur'yektiv bo'lgan f funktsiya A va B to'plamlarning **biyektiv funktsiyasi** deyiladi va $f: A \longleftrightarrow B$ kabi belgilanadi.

4.5-Misol. f(x) = 4x + 3 funktsiya ham in'yektiv, ham syur'yektiv, demak biyektiv ham bo'ladi.

Umuman olganda, $f(x) = ax + b \ (a \ne 0)$ akslantirishlarning barchasi $f(x): R \to R$ biyektsiya bo'ladi.

- **4.6-Misol.** $f(x) = \sin x$ tenglik uchun:
 - a) $f(x): R \to R$ akslantirish in'yektsiya ham, syur'yektsiya ham bo'lmaydi.
- b) $f(x): R \to [-1;1]$ akslantirishni olsak, bu syur'yektiv akslantirish bo'ladi, lekin in'yektiv bo'lmaydi.
- v) $f(x): \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \rightarrow \left[-1;1\right]$ deb oladigan bo'lsak, bu akslantirish biyektsiya bo'ladi.
- **4.7-Misol.** $f(x) = x^2$ tenglik uchun:
 - a) $f(x): R \to R$ akslantirish in'yektiv ham, syur'yektiv ham emas.
- b) $f(x):[0,\infty)\to R$ in'yektiv bo'ladi, syur'yektiv emas.
- v) $f(x): R \to [0, \infty)$ syur'yektiv bo'ladi, in'yektiv emas.
- g) $f(x):[0,\infty) \to [0,\infty)$ biyektiv akslantirish bo'ladi.

Keltirilgan misollardan ko'rinadiki, $f:A\to B_x$ akslantirishlarda nafaqat f amalning tuzilishi, balki A va B to'plamlarning ham tuzilishi muhim rol o'ynaydi..

4.8-Ta'rif. 1) $f: A \to B$ – biyektiv akslantirish bo'lsin. f akslantirishga **teskari akslantirish** f^{-1} deb, quyidagi shartlarni qanoatlantiruvchi akslantirishga aytiladi:

a)
$$D_{l}(f^{-1}) = D_{r}(f) = B;$$

b)
$$D_r(f^{-1}) = D_l(f) = A$$
;

v) ixtiyoriy $x \in A$ uchun $f(x) = y \Leftrightarrow x = f^{-1}(y)$

- 2) $Id_A: A \longleftrightarrow A$ akslantirish quyidagicha aniqlanadi;
 - a) $D_{l}(Id_{A}) = D_{r}(Id_{A}) = A$;
 - b) ixtiyoriy $x \in A$ uchun $Id_A(x) = x$.

 Id_A ga A da birlik akslantirish yoki ayniy akslantirish deyiladi.

- **4.9-Misol.** $f_i: \mathbb{R} \to \mathbb{R}$, i = 1, 2, 3, funktsiyalarni qaraylik.
- 1) $f_1(x) = e^x$ funktsiya in'yektiv, lekin syur'yektiv emas.
- 2) $f_2(x) = x \sin x$ funktsiya in'yektiv emas, lekin syur'yektiv.
- 3) $f_3(x) = 2x 1$ funktsiya ham in'yektiv, ham sur'yektiv, demak biyektiv bo'ladi.
- 2. Mustaqil bajarish uchun masala va topshiriqlar

2.1. Akslantirishlar. Inyektiv, suryektiv, biyektiv funksiyalarga doir topshiriqlar

 $A=\{1,2,3,4\}$, $B=\{a,b,c,d\}$ to 'plamlar dekart ko 'paytmasida aniqlangan quyidagicha R munosabatlar funksiya bo 'ladimi? Agar bo 'lsa in 'yektiv, syur 'yektiv, biyektiv funksiya bo 'ladimi?

2.1.1.
$$R = \{(1,a),(2,b),(3,a),(4,d)\}$$
 2.1.15 $R = \{(3,b),(2,a),(1,c),(4,d)\}$

2.1.2.
$$R = \{(1,a),(2,c),(3,b),(3,d)\}$$
 2.1.16 $R = \{(4,c),(3,b),(3,a),(4,d)\}$

2.1.3.
$$R = \{(2,a),(1,b),(2,c),(4,d)\}$$
 2.1.17 $R = \{(4,a),(1,b),(2,a),(3,c)\}$

2.1.4.
$$R = \{(1,a),(2,b),(3,c),(4,d)\}$$
 2.1.18 $R = \{(3,b),(2,c),(1,a),(4,d)\}$

2.1.5.
$$R = \{(2,a),(1,b),(3,d),(4,c)\}$$
 2.1.19 $R = \{(2,a),(3,b),(4,b),(3,a)\}$

2.1.6.
$$R = \{(1,b),(2,c),(3,c),(4,d)\}$$
 2.1.20 $R = \{(1,a),(2,b),(3,a),(4,d)\}$

2.1.7.
$$R = \{(4,a),(3,b),(2,a),(3,c)\}$$
 2.1.21 $R = \{(4,c),(2,a),(3,a),(3,d)\}$

2.1.8.
$$R = \{(3,a),(1,b),(2,a),(4,d)\}$$
 2.1.22 $R = \{(3,a),(1,b),(2,c)\}$

2.1.9.
$$R = \{(1,a),(4,b),(2,d),(3,c)\}$$
 2.1.23 $R = \{(2,a),(1,b),(4,c),(3,d)\}$

2.1.10.
$$R = \{(4,d),(1,b),(2,c),(3,a)\}$$
 2.1.24 $R = \{(4,b),(1,c),(2,d),(3,c)\}$

2.1.11.
$$R = \{(1,a),(2,b),(3,c),(4,b)\}$$
 2.1.25 $R = \{(2,a),(1,b),(3,c),(4,d)\}$

2.1.12.
$$R = \{(3,a),(4,b),(2,d),(3,c)\}$$
 2.1.26 $R = \{(2,b),(3,a),(4,c),(1,d)\}$

2.1.13.
$$R = \{(4,b),(3,a),(2,c),(3,d)\}$$
 2.1.27 $R = \{(4,c),(2,b),(3,a),(1,d)\}$

2.1.14.
$$R = \{(4,a),(1,b),(2,d),(3,c)\}$$
 2.1.28 $R = \{(3,a),(2,b),(4,a),(1,c)\}$

2.1. Akslantirishlar. Inyektiv, suryektiv, biyektiv funksiyalarga doir topshiriq(na'muna)

 $A=\{1,2,3,4\}$, $B=\{a,b,c,d\}$ to 'plamlar dekart ko 'paytmasida aniqlangan quyidagicha R munosabatlar funksiya bo 'ladimi? Agar bo 'lsa in 'yektiv, syur 'yektiv, biyektiv funksiya bo 'ladimi?

2.1.0.
$$R = \{(1,a),(1,b),(2,a),(3,d)\}$$

2.1. Topshiriqni bajarish bo'yicha na'muna

2.1.0. A= $\{1,2,3,4\}$, B= $\{a,b,c,d\}$ to plamlar dekart ko paytmasida aniqlangan R= $\{(1,a),(1,b),(2,a),(3,d)\}$ munosabat funksiya bo ladimi? Agar bo la in yektiv, syur yektiv, biyektiv funksiya bo ladimi?

R

AxB munosabat funksiya boʻladi, agar quyidagicha 2 ta shart bajarilsa:

- 1) $D_l(R) = A$, $D_r(f) \subseteq B$,
- 2) $(x, y_1) \in R$, $(x, y_2) \in R$ ekanligidan $y_1 = y_2$ ekanligi kelib chiqsa R munosabatga A toʻplamdan B toʻplamga **funktsiya** yoki **akslantirish** boʻladi, shunga koʻra :
 - 1) $D_l(R) = \{1,2,3\} \subset A, D_r(R) = \{a,b,d\} \subset B;$
 - 2) $(1,a) \in \mathbb{R}$, $(1,b) \in \mathbb{R}$ ekanligidan a=b ekanligi kelib chiqishi lozim edi, lekin $a \neq b$, chunki toʻplamda bitta element faqat bir marta qatnashadi, B toʻplamda esa ushbu elementlar alohida-alohida berilgan. Demak R munosabat funksiya boʻla olmaydi.

2.2. Funksiya turlarini aniklashga doir topshiriqlar

Quyidagicha aniqlangan $f_i(x)$:[0;+1] \rightarrow [0;+1] funksiyalar in'yektiv bo'ladimi? Syur'yektiv bo'ladimi? Biyektiv bo'ladimi? Javoblaringizni isbotlang?

2.2.4.

2.2.5.

2.2.6. $(-\infty; +\infty)x(-\infty; +\infty)$ dekart ko'paytmada aniqlangan in'yektiv ham, syur'yektiv ham bo'lmagan funksiyaga misol keltiring va isbotlang?

2.2.7. $(-\infty;+\infty)x(-\infty;+\infty)$ dekart ko'paytmada aniqlangan in'yektiv bo'lgan, syur'yektiv bo'lmagan funksiyaga misol keltiring va isbotlang?

2.2.8. $(-\infty; +\infty)x(-\infty; +\infty)$ dekart ko'paytmada aniqlangan in'yektiv bo'lmagan, syur'yektiv bo'lgan funksiyaga misol keltiring va isbotlang?

2.2.9. $(-\infty; +\infty)x(-\infty; +\infty)$ dekart ko'paytmada aniqlangan in'yektiv ham, syur'yektiv ham bo'lgan funksiyaga misol keltiring va isbotlang?

Quyidagicha aniqlangan $f_i(x):(-\infty;+\infty) \to (-\infty;+\infty)$ funksiyalar in'yektivlik, syur'yektivlik, biyektivlikka tekshirilsin:

2.2.10.
$$f_I(x) = x^2$$

2.2.11.
$$f_2(x) = lnx$$

2.2.11.
$$f_2(x) = lnx$$
 2.2.12. $f_3(x) = x * sinx$

2.2.13.
$$f_4(x) = tgx$$

2.2.13.
$$f_4(x) = tgx$$
 2.2.14. $f_5(x) = 2x + 1$ **2.2.15.** $f_6(x) = sinx$

2.2.15.
$$f_6(x) = \sin x$$

2.2.16.
$$f_7(x) = cosx$$
 2.2.17. $f_8(x) = ctgx$ **2.2.18.** $f_9(x) = a^x$

2.2.17.
$$f_8(x) = ctgx$$

2.2.18.
$$f_9(x) = a^x$$

2.2.19.
$$f_{10}(x) = log_a x$$

2.2.19.
$$f_{10}(x) = log_a x$$
 2.2.20. $f_{11}(x) = 2 * x + 1$ **2.2.21.** $f_{12}(x) = x^3$

2.2.21.
$$f_{12}(x)=x^3$$

2.2.22.
$$f_{13}(x)=1/x$$

2.2.22.
$$f_{13}(x)=1/x$$
 2.2.23. $f_{14}(x)=1/(x+1)$ **2.2.24.** $f_{15}(x)=x^3-4x$

2.2.24.
$$f_{15}(x)=x^3-4x$$

2.2. Funksiya turlarini aniklashga doir topshiriq(na'muna)

Quyidagicha aniqlangan $f_i(x):[0;+1] \rightarrow [0;+1]$ funksiyalar in'yektiv bo'ladimi? Syur'yektiv bo'ladimi? Biyektiv bo'ladimi? Javoblaringizni isbotlang?

2.2.0.

2.2. Topshiriqni bajarish bo'yicha na'muna

2.2.0. Topshiriqda grafik koʻrinishda berilgan $f_I(x) \subset [0;1] \times [0;1] = A \times B$ munosabatni funksiyaga tekshiramiz:

1)
$$D_l(f_1) = [0;0.5] \subset A$$
, $D_r(f_1) = [0;1] = B$

2) $(x, y_1) \in R$, $(x, y_2) \in R$ ekanligidan $y_1 = y_2$ ekanligi kelib chiqadi, ya'ni bitta x qiymatga turli xil y lar mos qo'yilmagan. Demak $f_I(x)$ qisman funksiya boʻladi.

 $\forall x_1, x_2 \in D_l(f_1)$ uchun $x_1 \neq x_2$ ekanligidan $f_1(x_1) \neq f_1(x_2)$ kelib chiqqanligi, ya'ni turlicha x lar uchun turli xil y lar mos kelganligi uchu bunday funksiya in'yektiv funksiya bo'ladi.

 $D_r(f_l)=[0;1]=B$ funksiyaning qiymatlar sohasi B to'plamga teng bo'lgani uchun $f_I(x)$ funksiya syur'yektiv funksiya boʻladi.

 $f_I(x)$ in'yektiv emas, syur'yektiv funksiya bo'lgani uchun biyektiv funksiya boʻlmaydi.

2.3. Funksiyalar kompozitsiyasiga doir topshiriqlar

Quyida keltirilgan f, g: $R \rightarrow R$ funksiyalar uchun f*g, g*f kompozitsiyalar aniqlansin?

2.3.1.
$$f(x) = \begin{cases} 1+x, & \text{agar } x \ge 0 \text{ bo'lsa,} \\ 1-x & \text{agar } x < 0 \text{ bo'lsa.} \end{cases}$$

2.3.2.
$$f(x) = \begin{cases} x^2, & \text{agar } x \ge 1 \text{ bo'lsa,} \\ x & \text{agar } x < 1 \text{ bo'lsa.} \end{cases}$$

2.3.3.
$$f(x) = \begin{cases} x^2, & \text{agar } x \le 1 \text{ bo'lsa,} \\ e^{-x+1} & \text{agar } x > 1 \text{ bo'lsa.} \end{cases}$$

2.3.4.
$$f(x) = \begin{cases} \sin x, & \text{agar } x \le 0 \text{ bo'lsa,} \\ -x & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.2.
$$f(x) = \begin{cases} x^2, & \text{agar } x \ge 1 \text{ bo'lsa}, \\ x & \text{agar } x < 1 \text{ bo'lsa}. \end{cases}$$
 $g(x) = \begin{cases} |x| & \text{agar } x < 2 \text{ bo'lsa}, \\ 4 - x & \text{agar } x \ge 2 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} |x| & \text{agar } x < 2 \text{ bo'lsa}, \\ 4 - x & \text{agar } x \ge 2 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} |x| & \text{agar } x < 2 \text{ bo'lsa}, \\ 4 - x & \text{agar } x \ge 2 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} \cos x & \text{agar } x < 0 \text{ bo'lsa}, \\ 2x + 1 & \text{agar } x \ge 0 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} \cos x & \text{agar } x < 0 \text{ bo'lsa}, \\ 2x + 1 & \text{agar } x \ge 0 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} -x - 1 & \text{agar } x < -1 \text{ bo'lsa}, \\ -x^2 + 1 & \text{agar } x \ge -1 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} -x - 1 & \text{agar } x < -1 \text{ bo'lsa}, \\ -x^2 + 1 & \text{agar } x \ge -1 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} -x - 1 & \text{agar } x < -1 \text{ bo'lsa}, \\ -x - 1 & \text{agar } x \ge -1 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} -x - 1 & \text{agar } x < -1 \text{ bo'lsa}, \\ -x - 1 & \text{agar } x \ge -1 \text{ bo'lsa}. \end{cases}$ $g(x) = \begin{cases} -x - 1 & \text{agar } x < -1 \text{ bo'lsa}, \\ -x - 1 & \text{agar } x \ge -1 \text{ bo'lsa}. \end{cases}$

2.3.6.
$$f(x) = \begin{cases} 3x+1, & \text{agar } x \le 0 \text{ bo'lsa,} \\ x^2+1 & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$
 $g(x) = \begin{cases} |x| & \text{agar } x < 1 \text{ bo'lsa,} \\ -(x-1)^2+1 & \text{agar } x \ge 1 \text{ bo'lsa.} \end{cases}$

2.3.7.
$$f(x) = \begin{cases} x+1, & \text{agar } x \le 0 \text{ bo'lsa,} \\ -x+1 & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$
 $g(x) = \begin{cases} -x-2 & \text{agar } x < -2 \text{ bo'lsa,} \\ x+2 & \text{agar } x \ge -2 \text{ bo'lsa.} \end{cases}$

$$g(x) = \begin{cases} 1 + x & \text{agar} \quad x \ge 1 \text{ bo'lsa,} \\ 2 * x & \text{agar} \quad x < 1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} |x| & \text{agar } x < 2 \text{ bo'lsa,} \\ 4 - x & \text{agar } x \ge 2 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} \cos x & \text{agar } x < 0 \text{ bo'lsa,} \\ 2x + 1 & \text{agar } x \ge 0 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} -x - 1 & \text{agar} \quad x < -1 \text{ bo'lsa,} \\ -x^2 + 1 & \text{agar} \quad x \ge -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} -x^2 & \text{agar } x < -1 \text{ bo'lsa,} \\ \sin x & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} |x| & \text{agar } x < 1 \text{ bo'lsa,} \\ -(x-1)^2 + 1 & \text{agar } x \ge 1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} -x-2 & \text{agar } x < -2 \text{ bo'lsa,} \\ x+2 & \text{agar } x \ge -2 \text{ bo'lsa.} \end{cases}$$

2.3.8.
$$f(x) = \begin{cases} \cos x, & \text{agar } x \le 0 \text{ bo'lsa,} \\ -x^2 + 1 & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.9.
$$f(x) = \begin{cases} -|x|, & \text{agar } x \le 1 \text{ bo'lsa,} \\ x - 2 & \text{agar } x > 1 \text{ bo'lsa.} \end{cases}$$

2.3.10.
$$f(x) = \begin{cases} |x|, & \text{agar } x \le 1 \text{ bo'lsa,} \\ -x + 2 & \text{agar } x > 1 \text{ bo'lsa.} \end{cases}$$

2.3.11.
$$f(x) = \begin{cases} -x, & \text{agar } x \le 0 \text{ bo'lsa,} \\ \ln(x+1) & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$
 $g(x) = \begin{cases} x+2 & \text{agar } x < -1 \text{ bo'lsa,} \\ x^2 & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$

2.3.12.
$$f(x) = \begin{cases} |x+1|, & \text{agar } x \le 0 \text{ bo'lsa,} \\ |x-1| & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.13.
$$f(x) = \begin{cases} 1+x, & \text{agar } x \ge 0 \text{ bo'lsa,} \\ 1-x & \text{agar } x < 0 \text{ bo'lsa.} \end{cases}$$

2.3.14.
$$f(x) = \begin{cases} x^2, & \text{agar } x \ge 1 \text{ bo'lsa,} \\ x & \text{agar } x < 1 \text{ bo'lsa.} \end{cases}$$

2.3.15.
$$f(x) = \begin{cases} x^2, & \text{agar } x \le 1 \text{ bo'lsa,} \\ e^{-x+1} & \text{agar } x > 1 \text{ bo'lsa.} \end{cases}$$

2.3.16.
$$f(x) = \begin{cases} \sin x, & \text{agar } x \le 0 \text{ bo'lsa,} \\ -x & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.17.
$$f(x) = \begin{cases} x^3, & \text{agar } x \le 1 \text{ bo'lsa,} \\ -x+2 & \text{agar } x > 1 \text{ bo'lsa.} \end{cases}$$

2.3.18.
$$f(x) = \begin{cases} 3x+1, & \text{agar } x \le 0 \text{ bo'lsa,} \\ x^2+1 & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.19.
$$f(x) = \begin{cases} x+1, & \text{agar } x \le 0 \text{ bo'lsa,} \\ -x+1 & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.20.
$$f(x) = \begin{cases} \cos x, & \text{agar } x \le 0 \text{ bo'lsa,} \\ -x^2 + 1 & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.21.
$$f(x) = \begin{cases} -|x|, & \text{agar } x \le 1 \text{ bo'lsa,} \\ x - 2 & \text{agar } x > 1 \text{ bo'lsa.} \end{cases}$$

2.3.22.
$$f(x) = \begin{cases} -x, & \text{agar } x \le 0 \text{ bo'lsa,} \\ \ln(x+1) & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.23.
$$f(x) = \begin{cases} |x+1|, & \text{agar } x \le 0 \text{ bo'lsa,} \\ |x-1| & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

2.3.8.
$$f(x) = \begin{cases} \cos x, & \text{agar } x \le 0 \text{ bo'lsa,} \\ -x^2 + 1 & \text{agar } x > 0 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} \sin x & \text{agar } x < \frac{\pi}{2} \text{ bo'lsa,} \\ -x + \pi & \text{agar } x \ge \frac{\pi}{2} \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} x^2 & \text{agar } x < 0 \text{ bo'lsa,} \\ -|x-1|+1 & \text{agar } x \ge 0 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} x+2 & \text{agar } x < -1 \text{ bo'lsa,} \\ x^2 & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} x+2 & \text{agar } x < -1 \text{ bo'lsa,} \\ x^2 & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} x^2 & \text{agar } x < 1 \text{ bo'lsa,} \\ -(x-1)^2 + 1 & \text{agar } x \ge 1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} |x| & \text{agar } x < 2 \text{ bo'lsa,} \\ 4 - x & \text{agar } x \ge 2 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} \cos x & \text{agar } x < 0 \text{ bo'lsa,} \\ 2x + 1 & \text{agar } x \ge 0 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} -x - 1 & \text{agar} \quad x < -1 \text{ bo'lsa,} \\ -x^2 + 1 & \text{agar} \quad x \ge -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} -x^2 & \text{agar } x < -1 \text{ bo'lsa,} \\ \sin x & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} -x - 2 & \text{agar } x < -2 \text{ bo'lsa,} \\ x + 2 & \text{agar } x \ge -2 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} -x^2 & \text{agar } x < -1 \text{ bo'lsa,} \\ \sin x & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} \sin x & \text{agar } x < \frac{\pi}{2} \text{ bo'lsa,} \\ -x + \pi & \text{agar } x \ge \frac{\pi}{2} \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} x+2 & \text{agar } x < -1 \text{ bo'lsa,} \\ x^2 & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$$
$$g(x) = \begin{cases} x+2 & \text{agar } x < -1 \text{ bo'lsa,} \\ x^2 & \text{agar } x \ge -1 \text{ bo'lsa,} \end{cases}$$

$$g(x) = \begin{cases} x+2 & \text{agar } x < -1 \text{ bo'lsa,} \\ x^2 & \text{agar } x > -1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} x^2 & \text{agar } x < 1 \text{ bo'lsa,} \\ -(x-1)^2 + 1 & \text{agar } x \ge 1 \text{ bo'lsa.} \end{cases}$$

$$g(x) = \begin{cases} |x| & \text{agar } x < 2 \text{ bo'lsa,} \\ 4 - x & \text{agar } x \ge 2 \text{ bo'lsa.} \end{cases}$$

2.3.24.
$$f(x) = \begin{cases} 1+x, & \text{agar } x \ge 0 \text{ bo'lsa,} \\ 1-x & \text{agar } x < 0 \text{ bo'lsa.} \end{cases}$$
 $g(x) = \begin{cases} -x-1 & \text{agar } x < -1 \text{ bo'lsa,} \\ -x^2+1 & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$
2.3.25. $f(x) = \begin{cases} x^2, & \text{agar } x \ge 1 \text{ bo'lsa,} \\ x & \text{agar } x < 1 \text{ bo'lsa.} \end{cases}$ $g(x) = \begin{cases} -x-1 & \text{agar } x < -1 \text{ bo'lsa,} \\ -x^2+1 & \text{agar } x \ge -1 \text{ bo'lsa.} \end{cases}$

2.3. Funksiyalar kompozitsiyasiga doir topshiriq (namuna)

Quyida keltirilgan f, g: $R \rightarrow R$ funksiyalar uchun f*g, g*f kompozitsiyalar aniqlansin?

2.3.0.
$$f(x) = \begin{cases} x^3 & agar |x| > 1 \text{ bo'lsa} \\ -x & agar |x| \le 1 \text{ bo'lsa} \end{cases}$$
$$g(x) = \begin{cases} x & agar |x| \le 8 \text{ bo'lsa}, \\ 2 - x & agar |x| \le 8 \text{ bo'lsa}, \\ 2 + x & agar |x| \le 8 \text{ bo'lsa}, \end{cases}$$

2.3. Topshiriqni bajarish bo'yicha na'muna

2.3.0. 1) Kompozitsiya — akslantirishlarni birin-ketin qoʻllashdir. g*f kompozitsiyada birinchi boʻlib f akslantirish, ikkinchi g akslantirish taʻsir qiladi. Shuning uchun ham f akslantirish aniqlanish sohasini qanday sohaga akslantirishini, yaʻni f(X) toʻplamni aniq tasavvur qilish lozim. Nafaqat hosil boʻlgan toʻplam, balki f ning aniqlanish sohasi ham g ning berilishiga qarab qismlarga boʻlinadi.

f ning berilishini modul belgisini olib tashlab yozib olamiz:

$$f(x) = \begin{cases} x^3, & \text{agar } x > 1; \\ -x, & \text{agar } -1 \le x \le 1 \\ x^3, & \text{agar } x < -1. \end{cases}$$

1. agar $x \in (1,+\infty)$ bo'lsa, u holda f akslantirish x^3 qoida bo'yicha ta'sir qilib, $(1,+\infty)$ oraliqni $(1,+\infty)$ oraliqqa akslantiradi. Hosil bo'lgan to'plamda esa g akslantirish yuqori va o'rta qator bilan aniqlanadi, Qachon qaysi qator ta'sir qilishini aniqlash uchun boshlang'ich to'plamni x=2 nuqta bilan ikkita to'plam ostiga ajratamiz: $(1,+\infty)=(1,2]\cup(2,+\infty)$

f((1, 2])=(1,8] ushbu oraliqda esa g(x)=2-x, $f((2,+\infty))=(8,+\infty)$ usbu oraliqda esa g(x)=x. Shunday qilib,

$$(g * f)(x) = \begin{cases} x^3, & \text{agar } x \in (2,+\infty) \text{ bo'lsa;} \\ 2 - x^3 & \text{agar } x \in (1,2] \end{cases}$$

2. Agar $x \in [-1,+1]$ bo'lsa, u holda f([-1,+1])=[-1,+1] ushbu to'plam esa to'laligicha g ning o'rta qator aniqlanishiga tushadi. Demak,

$$(g * f)(x) = 2 - (-x) = 2 + x$$
, agar $x \in [-1,+1]$ bo'lsa.

3. Agar $x \in (-\infty,-1)$ boʻlsa, u holda $f((-\infty,-1))=(-\infty,-1)$ ushbu toʻplamda esa g akslantirish oʻrta va quyi qatorlar bilan aniqlanadi, shuning uchun boshlangʻich toʻplamni ikki qismga ajratamiz: $(-\infty,-1)=(-\infty,-2)\cup[-2,-1)$. Ushbu boʻlaklarning har birini alohida koʻrib chiqamiz:

 $f((-\infty,-2))=(-\infty,-8)$ ushbu oraliqda esa g(x)=2+x kabi aniqlanadi. Demak, $(g*f)(x)=2+x^3$, agar $x \in (-\infty,-2)$ bo'lsa.

f([-2,-1))=[-8,-1) ushbu oraliqda esa g(x)=2-x kabi aniqlanadi. Demak, $(g*f)(x)=2-x^3$, agar $x\in[-2,-1)$ bo'lsa.

Shunday qilib oxirgi natija quyidagi koʻrinishni oladi:

$$(g * f)(x) = \begin{cases} x^3, & \text{agar } x \in (2, +\infty) \\ 2 - x^3, & \text{agar } x \in [-2, -1) \cup (1, 2] \\ 2 + x, & \text{agar } x \in [-1, +1] \text{ bo'lsa,} \\ 2 + x^3, & \text{agar } x \in (-\infty, -2) \text{ bo'lsa.} \end{cases}$$

f*g kompozitsiya ham shunga oʻxshash prinsipda amalga oshiriladi.