Corrigé du partiel 1

Exercice 1 (3 points)

1. Soit
$$(u_n) = \left(\frac{(2n)!}{n!(n+1)!}\right)$$

$$\frac{u_{n+1}}{u_n} = \frac{(2n+2)!}{(n+1)!(n+2)!} \times \frac{n!(n+1)!}{(2n)!}$$

$$= \frac{(2n+1)(2n+2)}{(n+1)(n+2)}$$

$$= \frac{2(2n+1)}{n+2} \xrightarrow{n \to +\infty} 4 > 1$$

Donc, via la règle de D'Alembert, la série $\sum u_n$ diverge.

2.
$$\left|\frac{\sin(n)}{n^2}\right| \leqslant \frac{1}{n^2}$$
 or $\sum \frac{1}{n^2}$ converge donc $\sum \frac{\sin(n)}{n^2}$ converge absolument donc converge.

Exercice 2 (5 points)

Via les transformations $C_3 \leftarrow C_3 + C_1$ puis $L_3 \leftarrow L_3 - L_1$, on a $P_A = (2 - X)^3$.

Donc P_A est scindé dans \mathbb{R} et $\operatorname{Sp}_{\mathbb{R}}(A) = \{2\}$ avec m(2) = 3.

$$E_2 = \operatorname{Ker}(A - 2I) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad (A - 2I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad \begin{vmatrix} x + 4y - z = 0 \\ -x - y + z = 0 \\ 3y = 0 \end{vmatrix} \right\}$$

soit encore
$$E_2 = \text{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Ainsi $\dim(E_2) = 1 \neq m(2)$ donc A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

Via les transformations
$$C_1 \longleftarrow C_1 + C_2 + C_3$$
 puis
$$\left\{ \begin{array}{l} L_2 \longleftarrow L_2 - L_1 \\ L_3 \longleftarrow L_3 - L_1 \end{array} \right.$$
, on a $P_B(X) = X^2(1-X)$.

Donc P_B est scindé dans \mathbb{R} et $\operatorname{Sp}_{\mathbb{R}}(B)=\{0,1\}$ avec m(0)=2.

$$E_0 = \operatorname{Ker}(B) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } \middle| \begin{array}{c} 2x - y - z = 0 \\ 2x - y - z = 0 \\ x - y = 0 \end{array} \right\} = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

Ainsi $\dim(E_0) = 1 \neq m(0)$ donc B n'est pas diagonalisable.

Exercice 3 (4 points)

Via les transformations $C_3 \leftarrow C_3 - C_2$ puis $L_3 \leftarrow L_3 + L_2$, on a $P_A = (2 - X)(1 - X)^2$.

Donc P_A est scindé dans \mathbb{R} et $\operatorname{Sp}_{\mathbb{R}}(A) = \{1,2\}$ avec m(1) = 2 et m(2) = 1.

$$E_1 = \operatorname{Ker}(A - I) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad (A - I) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3, \quad \begin{vmatrix} \alpha(y + z) = 0 \\ -x - z = 0 \\ x + z = 0 \end{vmatrix} \right\}$$

EPITA

soit encore
$$E_1 = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in \mathbb{R}^3, \quad \left| \begin{array}{c} \alpha(y+z) = 0 \\ x+z = 0 \end{array} \right. \right\}$$

Si $\alpha = 0$

$$E_1 = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in \mathbb{R}^3, \quad x+z=0 \right\} = \operatorname{Vect} \left\{ \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) \right\}$$

donc $\dim(E_1) = 2 = m(1)$.

D'autre part comme m(2) = 1, $\dim(E_2) = 1$.

Ainsi B est diagonalisable.

Si $\alpha \neq 0$

$$E_1 = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in \mathbb{R}^3, \quad \left| \begin{array}{c} y+z=0 \\ x+z=0 \end{array} \right. \right\} = \operatorname{Vect} \left\{ \left(\begin{array}{c} -1 \\ -1 \\ 1 \end{array} \right) \right\}$$

donc $\dim(E_1) = 1 \neq m(1)$ d'où B n'est pas diagonalisable.

Exercice 4 (3 points)

1. Notons
$$\mathscr{B} = ((1,0,0),(0,1,0),(0,0,1))$$
 la base canonique de \mathbb{R}^3 . Alors $\mathrm{Mat}_{\mathscr{B}}(u) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

2.
$$\operatorname{Mat}_{\mathscr{B}}(D) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Exercice 5 (4 points)

Via les transformations $L_1 \leftarrow L_1 + L_2$ puis $C_2 \leftarrow C_2 - C_1$, on a $P_A = (1 - X)(X^2 - 2(a + 1)X + a^2 + 2a + 1)$ soit encore $P_A = (1 - X)(X - (a + 1))^2$

Donc P_A est scindé dans \mathbb{R} .

Si a = 0, $P_A = (1 - X)^3$ donc $Sp_{\mathbb{R}}(A) = \{1\}$ avec m(1) = 3.

$$E_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } \middle| \begin{array}{c} x + z = 0 \\ -x - z = 0 \\ -x - z = 0 \end{array} \right\} = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

Donc dim $(E_1) = 2 \neq m(1)$ donc A n'est pas diagonalisable.

Si
$$a \neq 0$$
, $P_A = (1 - X)(X - (a + 1))^2$, $\operatorname{Sp}_{\mathbb{R}}(A) = \{1, a + 1\}$ avec $m(a + 1) = 2$.

$$E_{a+1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \text{ tel que } \middle| \begin{array}{l} (1-a)x + (1-a)z = 0 \\ -x - ay + (a-1)z = 0 \\ (a-1)x + (a-1)z = 0 \end{array} \right\}$$

Deux cas sont alors à envisager :

- Si a = 1, $E_{a+1} = \text{Vect}\left\{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\right\}$ donc $\dim(E_{a+1}) = 2 = m(a+1)$ et d'autre part $\dim E_1 = 1$ car m(1) = 1 donc A est diagonalisable.
- Si $a \neq 1$, $E_{a+1} = \text{Vect} \left\{ \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \right\}$ donc $\dim(E_{a+1}) = 1 \neq m(a+1)$ d'où A n'est pas diagonalisable.

Exercice 6 (2 points)

Soit $\lambda \in \operatorname{Sp}_{\mathbb{R}}(f)$. Alors il existe une suite réelle (x_n) non nulle telle que $f((x_n)) = \lambda(x_n)$ i.e. telle que $(y_n) = \lambda(x_n)$.

Donc par définition de
$$(y_n)$$
, on a
$$\begin{cases} 0 = \lambda x_0 & (1) \\ x_0 = \lambda x_1 & (2) \\ \vdots & \text{i.e. } \end{cases} \begin{cases} 0 = \lambda x_0 \\ \forall n \in \mathbb{N}^*, x_{n-1} = \lambda x_n \end{cases}$$

Si $\lambda = 0$, alors via l'équation (2), $x_0 = 0$ donc via les équations suivantes, pour tout $n \in \mathbb{N}^*$, $x_n = 0$ donc (x_n) est la suite nulle d'où une contradiction avec l'hypothèse.

Si $\lambda \neq 0$, alors via l'équation (1), $x_0 = 0$ et via les équations suivantes, pour tout $n \in \mathbb{N}^*$, $x_n = 0$ donc à nouveau (x_n) est la suite nulle d'où une contradiction avec l'hypothèse.

Ainsi $\operatorname{Sp}_{\mathbb{R}}(f) = \emptyset$.