Chapter 3: The Four Fundamental Subspaces

Sarah Helmbrecht

1 Vector Spaces

Definition 1.1. A vector space V defined over \mathbb{R} consists of a set on which addition and scalar multiplication are defined so that for each pair of elements $v, w \in V$, there is a unique element $v + 2 \in V$, and for each element $c \in \mathbb{R}$ and $v \in V$, there is a unique element $c \in \mathbb{R}$ and $c \in V$, such that the following conditions hold:

- 1. For all $v, w \in V$, v + w = w + v (commutativity).
- 2. For all $u, v, w \in V$, (u + v) + w = u + (v + w) (associativity under addition).
- 3. There exists an element $0 \in V$ such that v + 0 = v for each $v \in V$ (identity element under vector addition).
- 4. For each element $v \in V$, there exists an element $-v \in V$ such that v + (-v) = 0 (additive inverse).
- 5. There exists an element $1 \in V$ such that 1v = v for each $v \in V$ (identity element under scalar multiplication).
- 6. For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (cd)v = c(dv) (associativity under scalar multiplication).
- 7. For each element $c \in \mathbb{R}$, and each pair $v, w \in V$, c(v+w) = cv + cw (distributivity of scalar multiplication over vector addition).
- 8. For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (c + d)v = cv + dv (distributivity of scalar addition over scalar multiplication).

2 Subspaces

Definition 2.1. Let V be a vector space. A subset $S \subseteq V$ is a **subspace** of V if the following hold:

- 1. $\vec{0} \in S$.
- 2. If $\vec{x}, \vec{y} \in S$, then $\vec{x} + \vec{y} \in S$.
- 3. If $\vec{x} \in S$ and c is a scalar, then $c\vec{x} \in S$.

3 Column Space

Definition 3.1. The column space of a matrix consists of all linear combinations of its columns. So if $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} \\ \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} \end{bmatrix}$ is an $m \times n$ matrix, where $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n} \in \mathbb{R}^m$, then $ColA = span\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$. ColA is a subspace of \mathbb{R}^m .

Proposition 3.2. The system $A\vec{x} = \vec{b}$ is solvable if and only if $\vec{b} \in C(A)$.

4 Nullspace

Definition 4.1. The nullspace of a matrix A consists of all solutions \vec{x} to the system $A\vec{x} = \vec{0}$. So if $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} \end{bmatrix}$ is an $m \times n$ matrix, where $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n} \in \mathbb{R}^m$, then $NulA = \{\vec{x} : A\vec{x} = \vec{0}\}$. Null A is a subspace of \mathbb{R}^n .

5 Row Echelon Form (REF)

Definition 5.1. An $m \times n$ matrix is in **row echelon form** (REF) if:

- 1. All rows consisting entirely of zeros lie beneath all nonzero rows.
- 2. The first nonzero element in any row, called a pivot, must lie to the right of any pivot above it.

Algorithm 5.2. (REF) To find the REF of a matrix A, find the pivots and use them to make all elements below them equal zero.

Definition 5.3. A pivot column in a matrix in REF is a column that contains exactly one pivot. A free column in a matrix in REF is a column that contains no pivots.

6 Reduced Row Echelon Form (RREF)

Algorithm 6.1. (RREF) To find the RREF of a matrix A::

- 1. Find the REF of A using Algorithm 5.2.
- 2. Use the obtained pivots to make all elements above them equal zero.
- 3. Finally, make all pivots equal 1.

Proposition 6.2. The RREF of a matrix A has the same nullspace as the original matrix A.

Algorithm 6.3. (Nullspace) To find the nullspace of a matrix A,

- 1. Find the RREF of A.
- 2. Use the RREF and back substitution to solve the system $A\vec{x} = \vec{0}$.
- 3. NulA is the set of solutions \vec{x} .

7 Rank

Definition 7.1. The rank r of an $m \times n$ matrix A is the number of pivots in its REF.

8 Complete Solutions

Theorem 8.1. Let A be an $m \times n$ matrix such that m < n. In this case, we are guaranteed to have free columns, and the system $A\vec{x} = \vec{b}$ will have more unknowns than equations, so it will have free variables associated with the free columns. Thus, the system $A\vec{x} = \vec{b}$ will always have either an infinite number of solutions or no solutions.

Definition 8.2. The particular solution $\vec{x_p}$ of a system is obtained by setting the free variables to zero. $\vec{x_p}$ solves $A\vec{x_p} = \vec{b}$.

Definition 8.3. The nullspace solution $\vec{x_n}$ of a system is obtained by setting \vec{b} to $\vec{0}$. There are n-r nullspace solutions which solve $A\vec{x_n} = \vec{0}$, where r is the rank of A.

Definition 8.4. The complete solution to $A\vec{x} = \vec{b}$ can be expressed as $\vec{x} = \vec{x_p} + \vec{x_n}$.

9 Ranks and Systems

Proposition 9.1. Let A be an $m \times n$ matrix with rank r.

- 1. The r pivot columns of A are linearly independent.
- 2. A has n-r free columns.
- 3. Since ColA is the span of the pivot columns of A, the column space spans an r-dimensional space.
- 4. The dimension of NulA is n-r.

Definition 9.2. Let A be an $m \times n$ matrix. Then A has full column rank r = n if:

- 1. All columns of A are pivot columns.
- 2. All columns of A are linearly independent.
- 3. There are no free columns, which implies that there are no free solutions.
- 4. $NulA = \{\vec{0}\}.$
- 5. If $A\vec{x} = \vec{b}$ has a solution, then it has exactly one solution.

Definition 9.3. Let A be an $m \times n$ matrix. Then A has **full row rank** r = m if:

- 1. All rows of A have pivot positions.
- 2. All rows of A are linearly independent.
- 3. There are n r = n m nullspace solutions.
- 4. ColA spans all of \mathbb{R}^m .
- 5. $A\vec{x} = \vec{b}$ has a solution for every \vec{b} .

Proposition 9.4. (Rank and Solvability) Let A be an $m \times n$ matrix with rank r. The solutions to $A\vec{x} = \vec{b}$ can be classified as follows:

- 1. If r = m = n, then A is a square invertible matrix, so $A\vec{x} = \vec{b}$ has exactly one solution.
- 2. If r = m, r < n, then A is short and wide, so $A\vec{x} = \vec{b}$ has an infinite number of solutions.
- 3. If r < m, r = n, then A is tall and thin, so $A\vec{x} = \vec{b}$ has either no solution or exactly one solution.
- 4. If r < m, r < n, then A does not have full rank, so $A\vec{x} = \vec{b}$ has either no solutions or an infinite number of solutions.

10 Row Space

Definition 10.1. The row space RowA of an $m \times n$ matrix A is the span of the nonzero rows of its REF.

Theorem 10.2. Let A be an $m \times n$ matrix. Then $RowA = ColA^T = span\{linearly\ independent\ columns\ of\ A^T\}.$

11 Basis of a Vector Space

Definition 11.1. A basis β for a vector space V is a set of vectors $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ such that

- 1. $vecv_1, \vec{v_2}, \dots, \vec{v_n}$ are linearly independent.
- 2. $vecv_1, \vec{v_2}, \ldots, \vec{v_n} \ span \ V$.

Definition 11.2. The standard basis for
$$\mathbb{R}^n$$
 is $\beta = \left\{ \begin{bmatrix} 1\\0\\\vdots\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0\end{bmatrix}, \cdots, \begin{bmatrix} 0\\0\\\vdots\\1\end{bmatrix} \right\}$.

Proposition 11.3. The pivot columns of a matrix A form a basis for ColA.

Proposition 11.4. The nullspace solutions of a matrix A form a basis for NulA.

Theorem 11.5. If V is a vector space and $\vec{v} \in V$, then there is a unique way to write \vec{v} as a linear combination of the basis vectors of V.

12 Dimension of a Vector Space

Definition 12.1. The dimension of a vector space V is the number of vectors in a basis β for V.

Proposition 12.2. For an $m \times n$ matrix A with rank r,

- 1. dim(ColA) = r.
- 2. dim(RowA) = r.
- 3. dim(NulA) = n r.

Theorem 12.3. If $\vec{v_1}, \ldots, \vec{v_m}$ and $\vec{w_1}, \ldots, \vec{w_n}$ are both bases for a vector space V, then m = n.

13 Matrix Subspaces

Definition 13.1. Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix, where $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n} \in \mathbb{R}^m$. Then the **four fundamental** subspaces associated with A are:

- 1. The column space $ColA = span\{pivot\ columns\} \subseteq \mathbb{R}^m$.
- 2. The row space $RowA = ColA^T \subseteq \mathbb{R}^n$.
- 3. The nullspace $NulA = \{\vec{x} : A\vec{x} = \vec{0}\} \subseteq \mathbb{R}^n$.
- 4. The left nullspace $NulA^T = \{\vec{y} : A^T \vec{y} = \vec{0}\} \subseteq \mathbb{R}^m$.

Proposition 13.2. If A is an $m \times n$ matrix with rank r, then

- 1. dim(ColA)=r.
- 2. dim(RowA)=r.
- 3. dim(NulA)=n-r.
- 4. $dim(NulA^T)=m-r$.