

MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy

Yifan Chen, Jing Mai, Xiaohan Gao, Muhan Zhang, Yibo Lin

Peking University, Beijing, China chenyifan2019@pku.edu.cn

Introduction: Placement & Routing Flow

- Macro position: high impact
- Entire flow: time consuming

Early prediction of routing performance at the macro placement stage

Introduction: Challenges

- Only know the position of macros
- How to combine geometry and interconnection information

Introduction: Related Works

	Model	Geometry Info	Interconnection Info	Pin Info	Loss
Huang et al.	CNN	Image	×	√	MSLE
Mirhoseini et al.	GNN	Coordinate	\checkmark	×	MSE
Ours	GNN	Relative Coordinate	$\sqrt{}$	$\sqrt{}$	Ranking Loss

Introduction: Contribution

- MacroRank framework: rank macro placement solutions by routing quality
- EHNN: translation equivariant, extract both netlist and macro location information
- Learning to Rank (LTR): learn the relative order of macro placement solutions
- Better performance than the SOTA model
 - Improve the Kendall rank correlation coefficient by 49.5%.
 - Improve the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively

Preliminary: Problem Formulation

- Input: Macro Position, Netlist
- Output: Score
- Target: Order-preserving

- Global Routing Metrics:
 - ICCAD2019 Contest
 - WL, #Vias, #Shorts

- Prediction Accuracy Metrics:
 - Mean Relative Error

$$MRE = \left| \frac{y_{pred} - y_{label}}{y_{label}} \right|$$

Kendall's correlation coefficient

$$\tau = \frac{n_{concordant} - n_{discordant}}{\frac{1}{2}n(n-1)}$$

Preliminary: Equivariance

Rigid body transformation

- Will not affect the optimal solutions of placement and routing
 - E(2)-equivariance
- But in practice, only suboptimal solutions can be found

Do equivariance really holds?

Preliminary: Equivariance

DREAMPlace + CU.GR

Translation

Rotation & Reflection

Preliminary: Learning to Rank (LTR)

- Pairwise LTR: Given a pair of samples, predict which is better
 - Need a scoring function f, takes sample X as input and outputs a score s

MacroRank: Architecture

MacroRank: Clustering

EHNN

- Netlist too large
- Few macros
- hMETIS

■ EHNN

HGCL

- Modeling netlist as a tripartite graph.
- Two stage message passing:
 - Instance to pin (Concatenation), pin to net (GAT)
 - Net to pin (Linear), pin to instance (MEAN)

■ EHNN

- From netlist to macro only graph
 - Remove all clusters
 - Connect to K nearest neighbors.

■ EHNN

- EGCL
 - Translation Equivariant
 - Position encoding layer

- Translation equivariant neighborhood message passing
 - Directly pass x_i , no equivariance.
 - Pass $d(x_i x_i)$, depends on encoding function $d(\cdot)$.

 $m_{ij} = f(d(\vec{x_i} - \vec{x_j}))$

Depends on $d(\cdot)$.

For example,

$$m_{ij} = f(\vec{x_i} - \vec{x_j})$$

Translation Equivariance

$$m_{ij} = f(||\vec{x_i} - \vec{x_j}||_2)$$

E(2)-Equivariance

Position encoding

$$m_{ij} = \Phi(h_i, h_j, PE_n(\vec{x_i} - \vec{x_j}))$$

Translation Equivariant

Sensitive to small position changes.

MacroRank: Pairwise Rank Loss

lacktriangle Predicted probability of $x_i > x_i$:

$$P(x_i > x_j) = \text{Sigmoid}(s_i - s_j)$$

Weighted binary cross-entropy loss:

$$L_{ij} = \log\{1 + \exp(s_j - s_i)\}|\Delta Z_{ij}|$$

Final loss function:

$$Loss = \sum_{design pair(i,j)} \sum_{lij} L_{ij}$$

MacroRank: Pairwise Rank Loss

lacktriangle Weighting coefficient ΔZ_{ij} : focus on the samples with higher rank

$$\Delta Z_{ij} = \text{Softmax}(y_i^{label}) - \text{Softmax}(y_j^{label}) = \frac{\exp y_i}{\sum_p \exp y_p} - \frac{\exp y_j}{\sum_p \exp y_p}$$

- Higher rank, greater weight
- Larger difference, greater weight

Experiment: Dataset

Dataset:

- 12 designs in ISPD 2015 benchmark, free all macros.
- Placed by DREAMPlace, perturb the result in macro legalization stage.
- Global Routing: CU. GR
- Divided to 2 groups, one for training, one for testing, cross validation.

Group	Design	#Macros	Macro	#Instances	#Nets	#Macro
	Name	"IVIACIOS	Coverage	" III Starrees	"1100	Placements
1	des perf a	4	50%	108666	110281	300
	fft a	6	65%	33641	32088	300
	matrix mult a	10	67%	154460	154284	296
	matrix mult c	10	67%	151247	151612	296
	superblue14	336	48%	633661	619697	299
	superblue19	280	60%	521805	511606	298
2	edit dist a	6	29%	129993	131134	300
	fft b	11	69%	33646	32088	300
	matrix mult b	10	67%	151247	151612	294
	pci bridge32 b	8	47%	29283	29417	299
	superblue11 a	1443	59%	954445	935613	284
	superblue16 a	419	48%	698367	680450	299

Experiment: Setting

- Training:
 - Implemented by Pytorch Geometric.
 - A Nvidia 2080Ti
 - 400 epochs, ~6 hours
- Code Release:
 - https://github.com/PKU-IDEA/MacroRank

Experiment: MRE and Kendall's τ

- EHNN dominates GNN in all groups (MRE).
- MacroRank (=EHNN + LTR) achieves the best Kendall's τ on all the groups,
 - 49.5% better than CNN.

Experiment: MRE and Kendall's τ

Experiment: Top 30 Prediction

	MEAN	CNN	GNN	EHNN	MacroRank
WL	1	0.951	1.015	0.968	0.88
#Vias	1	1.003	0.996	1.003	<u>0.98</u>
#Shorts	1	0.731	1.017	0.904	<u>0.661</u>

Conclusion

- MacroRank: translation equivariance & LTR.
- Accurately predict the relative order of the quality of macro placement solutions.
- Improve the Kendall's τ by 49.5%
- Improve the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.

- Future Work
 - Integrate the model in macro placement algorithm.

Thanks! Questions are welcome!

Email: chenyifan2019@pku.edu.cn