

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ

2022-2023 Bahar Yarıyılı

BULANIK MANTIK

YARIYIL	DERS						
	Teorik	Uygulama	Lab.	Kredisi	AKTS	TÜRÜ	DİLİ
4	2	0	0	2	3	Seçmeli	Türkçe

Dr. H. Serhan Yavuz

Hafta-2: Bulanık Mantık, Bulanık Kümeler

Ders Değerlendirmesi

- Arasınav: %40
 - Yüzyüze veya uzaktan olup olmayacağı ileri tarihlerde belli olacaktır.
- Yarıyıl Sonu (sınav) : %60
 - Yüzyüze veya uzaktan olup olmayacağı ileri tarihlerde belli olacaktır.

Derslere devam zorunluluğu

MADDE 16 – (1) Öğrenci, teorik ders çalışmalarının %70'ine, laboratuvar ve uygulama çalışmalarının %80'ine devam etmek zorundadır. Öğrencilerin derslere devamları, dersi veren öğretim elemanı tarafından izlenir. İlgili yönetim kurulu ile görevlendirilen öğrenciler, izinli sayılır. Sağlık raporu, derslere devam yükümlülüğünü kaldırmaz.

Ders İşleme Yöntemi

20.02.2023 Tarihli 07 No'lu ESOGÜ Senato Kararı

- 2022-2023 Bahar yarıyılı ile sınırlı olmak üzere, 27 Şubat tarihinden itibaren eğitim ve öğretimin UZAKTAN ÖĞRETİM – Çevrimiçi/Eş zamanlı olarak yapılması kararlaştırılmıştır.
- Dersler MICROSOFT-Teams platformu üzerinden çevrimiçi, eş zamanlı olarak işlenecektir.
- On-line toplantı katılım linkleri haftalık olarak ESUZEM-Canvas'da ilan edilecektir.
- Dersler 09:15'de başlatılacak, 09:20'de yoklama alınacaktır. Yoklama sırasında toplantıda bulunmayan öğrenci yoklama kaydına GİRMEDİ olarak işlenecektir.
- Derse devam koşulunu sağlamayan öğrencilere dönem sonu DEVAMSIZ notu verilmektedir.

Microsoft-Teams

- MS-Teams hizmeti, ESOGÜ Bilgi İşlem Daire başkanlığı tarafından sağlanmaktadır.
- Microsoft Teams uygulama kurulumu ve kullanımı hakkında ayrıntılı bilgi için:

https://bidb.ogu.edu.tr/hizmetler/Sayfa/Index/11/microsoft-teams

- MS-Teams hesabınız ile ilgili problem yaşamanız durumunda https://destek.ogu.edu.tr adresinden Bilgi İşlem Daire Başkanlığına mesaj yazabilirsiniz.
- MS-Teams hesabınız olmadan da toplantı linkine tıklayarak, video konferans destekleyen bir web-browser üzerinden derse katılabilirsiniz. Bu şekilde giriş yaparken yoklama kaydınızın düzgün işlenmesi için AD-SOYAD bilginizi doğru yazdığınıza emin olunuz, takma ad/kısaltma kullanmayınız.

Dosya Paylaşımı ve Bilgilendirme

 Dersle ilgili tüm duyurular ve birçok kaynak paylaşımı ESUZEM-Canvas üzerinden yapılacaktır.

https://uzemoys.ogu.edu.tr/login/canvas

Profilinizi güncelleyip, düzenli olarak takip ediniz Profilinizde güncel bir E-mail adresi giriniz.

Tanıtım

- ✓ 1965, Dr. Lotfi A. Zadeh
- √ «Fuzzy» kelimesinin kelime anlamı?
- ✓ Mantık nedir?
- ✓ Bulanık Mantık?
 - Bulanık Mantık, belirsiz terimlerle uğraşırken çıkarsama yapmak için için önerilmiş bir mantık mekanizmasıdır.
 - Her karar yüzde yüz doğru ya da yüzde yüz yanlış değildir. Bulanık mantıkta doğruluk ve yanlışlık oranlarını tarif etmek için üyelik dereceleri kullanılır.
- ✓ Bart Kosko örneği:
 - Soru-1: Kaçınız bay (veya bayan)sınız? Bu ayrım, iki uç arasında karar vermek için kolay bir seçimdir.
 - Soru-2: Kaçınız işinden ya da hayatından memnunsunuz? Bu soruya evet ya da hayır diye karar vermek o kadar belirgin değildir.

Tanıtım

- ✓ Klasik Mantık : DOĞRU/YANLIŞ, SİYAH/BEYAZ, 0/1.
- ✓ Bulanık Mantık : Hangi ölçüde DOĞRU, hangi ölçüde YANLIŞ.
- √ Örnek:
 - 50% dolu bir bardak?
 - Ali 1.69m, Veli 1.71m. T=1.70 m → Ali KISA, Veli UZUN.
- ✓ Bulanık Üyelik : Belirsizlik derecelerini tarif eder. Ne kadarı DOĞRU/YANLIŞ.

Tanıtım

- ✓ Bulanık IF-THEN kurallar
 - IF "HİZMET" is "BAŞARILI" THEN "BAHŞİŞ" is "İYİ"
 IF "HİZMET" is "ORTALAMA" VEYA "YEMEK" is "KÖTÜ" THEN
 "BAHŞİŞ" is "YOK"
- ✓ Bulanık Mantık Tabanlı Makineler/Uygulamalar
 - -Sendai Metrosu, Japonya
 - -Çimento Fabrikası, Danimarka
 - -Fotoğraf makineleri, klimalar, ABS/Cruise Control, asansörler, çamaşır makineleri, ocaklar, video oyunu yapay zekası, örüntü tanıma vb.

KLASİK KÜMELER VS BULANIK KÜMELER

Küme Kavramı

Evrensel Küme: Belirli bir sorunla ilgili tüm mevcut bilgilerin evreni.

Klasik Küme: Kesin sınırları olan bir küme (bir öğe içerilir veya içerilmez).

Bulanık Küme: Öğelerin üyelik derecesine sahip olduğu küme.

Klasik küme Örnekleri

Kümenin liste yöntemiyle gösterimi

Klasik kümelere «crisp» kümeler de denir.

Birkaç klasik küme örneği: $A = \{elma, portakal, kiraz, limon\}$

 $A = \{a_1, a_2, a_3\}$

 $A = \{2, 4, 6, 8, ...\}$

Formüller: $A = \{x \mid x \text{ bir çift doğal sayıdır}\}$

 $A = \{x \mid x = 2n, n \text{ bir doğal sayıdır}\}$

Üyelik veya karakteristik fonksiyon: $\mathcal{X}_{A}(x) = \begin{bmatrix} 1, & x \in A \\ 0, & x \notin A \end{bmatrix}$

Klasik küme teorisi

 $x \in X \Rightarrow x$, X'in elemanıdır

 $x \in A \Rightarrow x$, A'nın elemanıdır

 $x \notin A \Rightarrow x$, A'nın elemanı değildir

(X: Evrensel küme, A: Evrensel kümenin bir alt kümesi)

Klasik Kümeler

 $A \subset B \Rightarrow A$, B'nin alt kümesidir $(x \in A \rightarrow x \in B)$

 $A \subseteq B \Rightarrow A$, B'nin alt kümesidir veya B'ye eşittir.

 $A = B \Rightarrow A$ kümesi B kümesine eşittir $(A \subseteq B \text{ ve } B \subseteq A)$

 \emptyset : boş küme (null set) (hiçbir eleman içermez)

Klasik Küme İşlemleri

A ve B evrensel küme X'de iki alt küme olsun;

1. Birleşme: $A \cup B = \{x \mid x \in A \text{ veya } x \in B\}$

2. Kesişme: $A \cap B = \{x \mid x \in A \text{ ve } x \in B\}$

3. Tümleme: $\overline{A} = \{ x \mid x \notin A, x \in X \}$

Fark: $A \setminus B = \{ x \mid x \in A \text{ and } x \notin B \text{ with } x \in X \}$

Klasik Küme Özellikleri

Değişme (commutativity):

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Birleşme (associativity):

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 $A \cap (B \cap C) = (A \cap B) \cap C$

Klasik Kümeler

Klasik Küme Özellikleri - devam

Dağılma (distributivity):

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Eşkuvvetlilik (idempotency):

$$A \cup A = A$$
 $A \cap A = A$

Klasik Küme Özellikleri - devam

Özdeşlik (Identity):

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cap X = A$$

$$A \cup \emptyset = A$$
 $A \cap \emptyset = \emptyset$
 $A \cap X = A$ $A \cup X = X$

Geçişlilik (Transitivity):

If
$$A \subseteq B \subseteq C$$
, then $A \subseteq C$

Klasik Kümeler

Klasik Küme Özellikleri - devam

İnvolüsyon (içe kıvrılma) (Involution):

Excluded middle kanunu:

$$A \cup \overline{A} = X$$

(Bir önermenin veya tümleyeninin her zaman doğru olduğunu kabul etmek)

Klasik Küme Özellikleri – devam

Çelişki kuralı (Law of the contradiction):

$$A \cap \overline{A} = \emptyset$$

De Morgan Kuralları:

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Bulanık Kümeler

Bulanık küme:

- Bir bulanık küme, farklı üyelik derecelerine sahip elemanları içeren bir kümedir.
- Bir bulanık kümedeki elemanlar, aynı evrendeki diğer bulanık kümelerin de üyeleri olabilir.

Gösterim \rightarrow \mathbf{A} : bulanık A kümesi

Bulanık küme:

Her eleman, üyelik değeri ile tanımlanır.

$$\mu_{\scriptscriptstyle A}(x) \in [0,1]$$

Bir bulanık küme, sürekli veya ayrık evrende tanımlanabilir.

Bulanık Kümeler

Bulanık küme:

 $X : Evrensel küme X = {x}$

A : Bulanık A kümesi.

 $\mu_{A}(x)$: x elemanının \underline{A} kümesine olan üyelik değeri

$$\tilde{A} = \{ (x, \mu_{\tilde{A}}(x)) \mid x \in X \}$$

 $\mu_{_{\!\mathcal{A}}}\!(x)\, \boldsymbol{\epsilon}\,[\,0,1\,]$

Bulanık küme:

Ayrık küme gösterimi:

(bölme işlemi değildir (çizgi işaretidir))

$$A = \{\frac{\mu(x_1)}{x_1} + \frac{\mu(x_2)}{x_2} + \dots + \frac{\mu(x_n)}{x_n}\}$$

Sürekli küme gösterimi:

Toplama işlemi değildir (kesikli uzayda elemanların bir araya gelmesini simgeler)

$$\tilde{A} = \{ \int_{\mathbb{R}} \frac{\mu(x)}{x} \}$$

İntegral alma işlemi değildir, sürekli uzayda elemanların bir araya gelmesini simgeler

Bulanık Kümeler

Örnek: 6 kişilik bir aile düşünelim. Aile bireylerinin yaşları aşağıda gösterilsin.

Ahmet: 52 Mithat:27 Fatma:45

Murat: 3 Dilara: 25 Nuray: 19

Kendi üyelik tanımlamalarınızla Yaşlı (O) bulanık kümesini oluşturun.

Çözüm:

X : Evrensel küme (Kişiler)

X = { Ahmet, Fatma, Mithat, Dilara, Nuray, Murat }

Q: Bulanık küme "Yaşlı" ("Old")

$$Q = \{\frac{0.8}{A \text{hmet}}, \frac{0.7}{\text{Fatma}}, \frac{0.35}{\text{Mithat}}, \frac{0.3}{\text{Dilara}}, \frac{0.1}{\text{Nuray}}\}$$

Ayrık bulanık kümeler için + işareti yerine , (virgül) de kullanılabilir

Bulanık Kümeler

Üyeliklerin Şekil Olarak Gösterilmesi

Örnek: Sürekli evrende "Genç" bulanık kümesi oluşturalım.

Çözüm

Basamak-1: Evrensel küme

X = [0, 120] (insanların yaşı)

Bulanık Kümeler

Basamak-2 : Genç bulanık kümesi ismi

 $\stackrel{\mathsf{y}}{} \rightarrow \mathsf{olsun}$ ("young")

Basamak-3:

Üyelik değerleri belirleme

$$\mu_{y_2}(x) = \begin{cases} 1 & , & 0 \le x \le 20 \\ -x/30 + 5/3 & , & 20 \le x \le 50 \\ 0 & , & 50 \le x \le 120 \end{cases}$$

Ders Sonu: Soru - Cevap