Mandatory Assignment 2 for FunkAn

Problem 1

Let H be an infinite dimensional separable Hilbert space with orthonormal basis $(e_n)_{n\geq 1}$. Set $f_N=\frac{1}{N}\sum_{n=1}^{N^2}e_n$ for all $N\geq 1$

(a) We want to show that $f_N \to 0$ weakly, as $N \to \infty$, while $||f_N|| = 1$ for all N > 1.

First we show that $||f_N|| = 1$. We have that $||f_N|| = \sqrt{\langle f_N, f_N \rangle}$. So we compute the inner product of f_N .

$$\langle f_N, f_N \rangle = \left\langle \frac{1}{N} \sum_{n=1}^{N^2} e_n, \frac{1}{N} \sum_{k=1}^{N^2} e_k \right\rangle = \frac{1}{N^2} \sum_{n,k=1}^{N^2} \langle e_n, e_k \rangle$$

by bilinearity in both coordinates. Note that $\langle e_n, e_k \rangle = 1$ if k = n otherwise 0, so we can just sum over the n's, then we have

$$\frac{1}{N^2} \sum_{n,k=1}^{N^2} \langle e_n, e_k \rangle = \frac{1}{N^2} \sum_{n=1}^{N^2} 1 = \frac{N^2}{N^2} = 1$$

This means that $||f_N|| = \sqrt{\langle f_N, f_N \rangle} = \sqrt{1} = 1$.

Now we want to show that $f_N \to 0$ weakly as $N \to \infty$, $N \ge 1$. Since $f_N \to 0$ weakly as $N \to \infty$ we have by HW 4 Pb 2(a) that $\varphi(f_N) \to 0$ as $N \to \infty$ for all $\varphi \in H^*$. Then by Riesz representation theorem there exists a $y \in H$ such that $\varphi(f_N) = \langle f_N, y \rangle$, $f_N \in H$. Bessel's inequality says $\sum_{n=1}^{\infty} |\langle y, e_n \rangle|^2 \le ||y||^2$ where $(e_n)_{n\ge 1}$ is a orthonormal basis for H, and $y \in H$. This means that the series is bounded, so its tail goes to zero. Let $\epsilon > 0$ arbitrarily. Then for some $M \ge N_{\epsilon}$ we have $\sum_{n=M}^{\infty} |\langle y, e_n \rangle|^2 < \frac{\epsilon^2}{4}$. So since $y \in H$ then we can write $y = \sum_{n=1}^{\infty} \langle y, e_n \rangle e_n$ because $(e_n)_{n\ge 1}$ is a O.N.B. of H. Then

$$|\langle f_N, y \rangle| = \left| \left\langle f_N, \sum_{n=1}^{\infty} \langle y, e_n \rangle e_n \right\rangle \right| = \left| \left\langle f_N, \sum_{n=1}^{M-1} \langle y, e_n \rangle e_n, \sum_{n=M}^{\infty} \langle y, e_n \rangle e_n \right\rangle \right|$$

$$\leq \left| \left\langle f_N, \sum_{n=1}^{M-1} \langle y, e_n \rangle e_n \right\rangle \right| + \left| \left\langle f_N, \sum_{n=M}^{\infty} \langle y, e_n \rangle e_n \right\rangle \right|$$

where we use biniliearity in the second coordinate and the triangle-inequality. First we look at the inner product with the finite sum.

$$\begin{split} \left| \left\langle f_N, \sum_{n=1}^{M-1} \langle y, e_n \rangle e_n \right\rangle \right| &= \left| \sum_{n=1}^{M-1} \overline{\langle y, e_n \rangle} \langle f_N, e_n \rangle \right| = \left| \sum_{n=1}^{M-1} \overline{\langle y, e_n \rangle} \left\langle \frac{1}{N} \sum_{k=1}^{N^2} e_k, e_n \right\rangle \right| \\ &= \frac{1}{N} \left| \sum_{n=1}^{M-1} \overline{\langle y, e_n \rangle} \sum_{k=1}^{N^2} \langle e_k, e_n \rangle \right| = \frac{1}{N} \left| \sum_{n=1}^{\min(M-1, N^2)} \overline{\langle y, e_n \rangle} \right| \\ &< \frac{\epsilon}{2} \end{split}$$

since $\sum_{k=1}^{N^2} \langle e_k, e_n \rangle = 1$ if k=n and zero otherwise because n is fixed, this can happen if $n \in \{1, \ldots, N^2\}$ if $N^2 \leq M-1$ or if $n \in \{1, \ldots, M-1\}$ if $N^2 \geq M-1$. Now we look at the inner product with the infinite sum. First we use Cauchy-Schwarz inequality and get

$$\left| \left\langle f_N, \sum_{n=M}^{\infty} \langle y, e_n \rangle e_n \right\rangle \right| \le \|f_N\| \left\| \sum_{n=M}^{\infty} \langle y, e_n \rangle e_n \right\| = \left\| \sum_{n=M}^{\infty} \langle y, e_n \rangle e_n \right\|$$

since $||f_N|| = 1$ which we shown above. And because $||y|| = ||\sum_{n=M}^{\infty} \langle y, e_n \rangle e_n||$, so it's a convergent series. Then we have by Pythagorean theorem extended to series that

$$\left\| \sum_{n=M}^{\infty} \langle y, e_n \rangle e_n \right\| = \sqrt{\sum_{n=M}^{\infty} \|\langle y, e_n \rangle e_n \|^2} = \sqrt{\sum_{n=M}^{\infty} \langle (\langle y, e_n \rangle, e_n), (\langle y, e_n \rangle, e_n) \rangle}$$

$$= \sqrt{\sum_{n=M}^{\infty} \langle y, e_n \rangle \overline{\langle y, e_n \rangle} \langle e_n, e_n \rangle} = \sqrt{\sum_{n=M}^{\infty} |\langle y, e_n \rangle|^2}$$

$$< \sqrt{\frac{\epsilon^2}{4}} = \frac{\epsilon}{2}$$

for $M \geq N_{\epsilon}$. So now we have that $|\langle f_N, y \rangle < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$, then $\langle f_N, y \rangle \to 0$ as $N \to \infty$, so $\varphi(f_N) \to 0$ as $N \to \infty$ and then by HW4 Pb 2(a) we have that $f_N \to 0$ weakly as $N \to \infty$.

(b) We want to argue that K is weakly compact and that $0 \in K$. Since $co\{f_N: N \ge 1\}$ is convex we have by Theorem 5.7 norm closure is the same as weak closure so $K = \overline{co\{f_N: N \ge 1\}}^{\|\cdot\|} = \overline{co\{f_N: N \ge 1\}}^{\tau_w}$. And since by (a) we have that $f_N \to 0$ weakly as $N \to \infty$ we have that $0 \in K$. We want to show that $K \subset \overline{B_H}(0,1)$. First we show that $co\{f_N: N \ge 1\} \subset \overline{B_H}(0,1)$. Let $x \in co\{f_N: N \ge 1\}$ then $x = \sum_{i=1}^n \alpha_i f_{N_i}$ where $\alpha_i > 0$ and $\sum_{i=1}^n \alpha_i = 1$. So

$$||x|| = \left|\left|\sum_{i=1}^{n} \alpha_i f_{N_i}\right|\right| \le \sum_{i=1}^{n} |\alpha_i| ||f_{N_i}|| = \sum_{i=1}^{n} \alpha_i = 1$$

where use the triangle-inequality and we have that $||f_{N_i}|| = 1$ from (a). So $x \in \overline{B_H}(0,1)$. Since K is the intersection of closed sets containing $co\{f_N: N \geq 1\}$ and $co\{f_N: N \geq 1\} \subset \overline{B_H}(0,1)$ then $K \subset \overline{B_H}(0,1)$. And because H is a Hilbert space it's a reflexive and Banach we have by Theorem 6.3 that $\overline{B_H}(0,1)$ is compact. Thus K is compact, since closed subspace of compact space is compact.

(c) We want to show that 0, as well as each f_N , $N \ge 1$, are extreme points in K. So we write $0 = \alpha k_1 + (1 - \alpha)k_2$ where $0 < \alpha < 1$ and $k_1, k_2 \in K$. We want to show that $k_1 = k_2 = 0$.

We claim that $\langle k, e_m \rangle \in [0, \infty)$ for all $k \in K$ and e_m a orthonormal basis. This is so, since K is the norm closure of $co\{f_N: N \geq 1\}$ so there exists a sequence $(k_n)_{n \geq n} \subset co\{f_N: N \geq 1\}$ where $k_n \to k$ as $n \to \infty$ (in the norm).

Then $k_n = \sum_{i=1}^t \alpha_i f_{N_i}$ where $\alpha_i > 0$ and $\sum_{i=1}^t \alpha_i = 1$ for $t \in \mathbb{N}$. We see that

$$\langle k_n, e_m \rangle = \left\langle \sum_{i=1}^t \alpha_i f_{N_i}, e_m \right\rangle = \sum_{i=1}^t \alpha_i \langle f_{N_i}, e_m \rangle = \sum_{i=1}^t \alpha_i \frac{1}{N_i} \sum_{l=1}^{N_i^2} \langle e_l, e_m \rangle \in [0, \infty)$$

since $\langle e_l, e_m \rangle$ are either 1 or 0 and $N_i \geq 1$, $\alpha_i > 0$.

We have that the function $x \mapsto \langle x, e_m \rangle$ is continuous so $\langle k_n, e_m \rangle \to \langle k, e_m \rangle$ as $n \to \infty$, by continuity we can pull the limit inside. So $\langle k_n, e_m \rangle \in [0, \infty)$ which is sequentially closed so $\langle k, e_m \rangle \in [0, \infty)$ for all $k \in K$, which prove our claim. Then

$$0 = \langle 0, e_m \rangle = \langle \alpha k_1 + (1 - \alpha) k_2, e_m \rangle = \alpha \langle k_1, e_m \rangle + (1 - \alpha) \langle k_2, e_m \rangle$$

Then by our claim we have that $\langle k_1, e_m \rangle = \langle k_2, e_m \rangle = 0$ for all $m \in \mathbb{N}$. And since e_m is a orthonormal basis then $k_1 = k_2 = 0$. So 0 is an extreme point.

Now we show that each of f_N , $N \geq$, are extreme points in K. First we set $F := \{f_N : N \geq 1\}$. Then we claim that weak closure of F is $\{0\} \cup \{f_n : N \geq 1\}$. To prove this let $(x_n)_{n\geq 1} \subset F$ We have that $f_N \to 0$ weakly so by HW 4 Pb $2(a) \varphi(f_N) \to 0$ for $\varphi \in H^*$. So for $\epsilon > 0$ we have $|\varphi(f_N)| < \epsilon$ for $N \geq M$, we look at $N \geq M$ otherwise we may create a cluster point. But then there exists a n_{ϵ} such that $x_n \subset \{f_N : N \geq M\}$ for $n \geq n_{\epsilon}$. And so we have that $|\varphi(x_n)| < \epsilon$ for $n \geq n_{\epsilon}$. And then by HW 4 Pb 2(a) we have that $x_n \to 0$ weakly. This prove the claim.

We have that the weak topology makes H into a LCTVS. We have that K is non-empty, weakly compact by (b) and convex since the closure of a convex set is convex. And since co(F) is convex we have by Theorem 5.7 that $\overline{co(F)}^{\parallel \cdot \parallel} = \overline{co(F)}^{\tau_w}$. So $K = \overline{co(F)}^{\tau_w}$. Then we can use Millman (Theorem 7.9) to say that $Ext(K) \subset \overline{F}^{\tau_w} = \{0\} \cup \{f_n : N \geq 1\}$ by our claim.

Again since K is non-empty, weakly compact by (b) and convex we have that by Krein-Millman that $K = \overline{co(Ext(K))}^{\tau_w} = \overline{co(Ext(K))}^{\parallel \cdot \parallel}$ again by theorem 5.7. Assume for contradiction that there exists $N_0 \in N$ such that $f_{N_0} \in Ext(K)$ but $f_{N_0} \in K = \overline{co(Ext(K))}^{\parallel \cdot \parallel}$.

Let $(x_n)_{n\geq}$ be a sequence in $co(Ext(K)) \subset co(\{0\} \cup \{f_N : N \geq 1, N \neq N_0\})$ which holds because of what we have shown above. And $x_n \to f_{N_0}$ in the norm. Then $x_n = \sum_{i=1}^m \alpha_i f_{N_i}$, $N_i \neq N_0$, $\alpha_i > 0$ and α_i sums to 1. Then we have that

$$\langle x_n, e_{N_0^2} \rangle = \left\langle \sum_{i=1}^m \alpha_i f_{N_i}, e_{N_0^2} \right\rangle = \left\langle \sum_{i=1}^m \alpha_i \frac{1}{N_i} \sum_{k=1}^{N_i^2} e_k, e_{N_0^2} \right\rangle$$

$$= \sum_{i=1}^m \alpha_i \frac{1}{N_i} \sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2} \rangle = \sum_{\substack{i=1 \ N_i \ge N_0}}^m \alpha_i \frac{1}{N_i} \sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2} \rangle$$

since if $N_i < N_0$ then $\sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2} \rangle$ is zero, and since $N_i \neq N_0$ we have that

$$\sum_{\substack{i=1\\N_i\geq N_0}}^m \alpha_i \frac{1}{N_i} \sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2} \rangle = \sum_{\substack{i=1\\N_i>N_0}}^m \alpha_i \frac{1}{N_i} \sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2} \rangle = \sum_{\substack{i=1\\N_i>N_0}}^m \alpha_i \frac{1}{N_i} \sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2+1} \rangle$$

the last equality holds since both $\sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2} \rangle = 1$ and $\sum_{k=1}^{N_i^2} \langle e_k, e_{N_0^2+1} \rangle = 1$ when $N_i > N_0$. We then have that $\langle x_n, e_{N_0^2} \rangle = \langle x_n, e_{N_0^2+1} \rangle$. This means that

$$\begin{split} &\lim_{n\to\infty}\langle x_n,e_{N_0^2}\rangle = \left\langle \lim_{n\to\infty} x_n,e_{N_0^2}\right\rangle = \left\langle f_{N_0},e_{N_0^2}\right\rangle \\ &= \frac{1}{N_0} \left\langle \sum_{k=1}^{N_0^2} e_k,e_{N_0^2}\right\rangle = \frac{1}{N_0} \end{split}$$

since $\langle e_k, e_{N_0^2} \rangle$ is only one when $k = N_0^2$, and we can pull the limit inside by continuity. But $\lim_{n \to \infty} \langle x_n, e_{N_0^2+1} \rangle = \left\langle \lim_{n \to \infty} x_n, e_{N_0^2+1} \right\rangle = \left\langle f_{N_0}, e_{N_0^2+1} \right\rangle = 0$ since $\langle e_k, e_{N_0^2+1} \rangle = 0$ when $k < N_0^2 + 1$. This is a contradiction since $\langle x_n, e_{N_0^2} \rangle = \langle x_n, e_{N_0^2+1} \rangle$, so f_N , $N \ge 1$ are extreme points of K.

(d) There are no other extreme points in K, since in (c) we saw that $\overline{\{f_N: N \geq 1\}}^{\tau_w} = \{0\} \cup \{f_N: N \geq 1\}$. And then by Millman we have that $Ext(K) \subset \overline{\{f_N: N \geq 1\}}^{\tau_w} = \{0\} \cup \{f_N: N \geq 1\}$. And Ext(K) denotes all extreme points of K.

Problem 2

Let X and Y be infinite dim Banach spaces.

- (a) Let $T \in \mathcal{L}(X,Y)$. We want to show that for a sequence $(x_n)_{n \geq 1}$ in X and $x \in X$ where $x_n \to x$ weakly, as $n \to \infty$ then $Tx_n \to Tx$ weakly as $n \to \infty$. Let $g: Y \to \mathbb{K}$ be a linear functional. Then $g \circ T: X \to \mathbb{K}$ is a functional since T is a continuous map. And then since $x_n \to x$ weakly, as $n \to \infty$ we have by HW 4 Pb 2(a) that $g \circ T(x_n) \to g \circ T(x)$ as $n \to \infty$. But this is the same as $g(Tx_n) \to g(Tx)$ as $n \to \infty$, and then again by HW $\mathfrak C$ Pb 2(a) we have that $Tx_n \to T_x$ weakly, as $n \to \infty$.
- **(b)** Let $T \in \mathcal{K}(X,Y)$. We want to show that for a sequence $(x_n)_{n\geq 1}$ in X if $x_n \to x$ weakly as $n \to \infty$ then $||Tx_n Tx|| \to 0$ as $n \to \infty$.

We claim that any subsequence of $(T(x_n))_{n\geq 1}$ has a subsequence which converge to Tx. To prove this claim let $(x_{n_k})_{k\geq 1}$ be a subsequence of $(x_n)_{n\geq 1}$ when by HW 4 2(b) the subsequence is bounded. Since T is compact we have by proposition 8.2 that $(x_{n_k})_{k\geq 1}$ contains a subsequence $(x_{n_{k_t}})_{t\geq 1}$ such that $(T(x_{n_{k_t}}))_{t\geq 1}$ converges. But it has to converge to Tx since norm convergence implies weak convergence and by (a) we have weak convergence.

Assume for contradiction that $(T(x_n))_{n\geq 1}$ does not converge to Tx in the norm. So there exists an $\epsilon > 0$ such for all m there exists N(m) > m such that $||Tx_n - Tx|| \geq \epsilon$. We now construct a subsequence where we set $n_1 = N(1)$ and then reflexive $n_k = N(n_{k-1})$ for $k = 2, \ldots$. And then this subsequence does not converges to Tx in the norm, but this is a contradiction of our claim. So $||Tx_n - Tx|| \to 0$ as $n \to \infty$.

(c) Let H be a separable in infinite dimensional Hilbert space. We want to show that if $T \in \mathcal{L}(H,Y)$ satisfies that $||Tx_n - Tx|| \to 0$ as $n \to \infty$, whenever $(x_n)_{n\geq 1} \subset H$ converging weakly to $x \in H$, then $T \in \mathcal{K}(H,Y)$.

Assume that T is non-compact with the property above. By proposition 8.2 we have that if T is non-compact then there exists a bounded sequence $(x_n)_{n\geq 1}$ such that $(T(x_n)_{n\geq 1})$ has no convergent subsequence. Since $(x_n)_{n\geq 1}$ is bounded we have that $(x_n)_{n\geq 1}\subset \overline{B_H}(0,1)$ by scaling. Then since H is reflexive (H it's a Hilbert space) we have by Theorem 6.3 that $\overline{B_H}(0,1)$ is weakly compact. And since H is reflexive we have by Theorem 5.9 that the weak and weak* topology is the same on H. And because H is separable we have by Theorem 5.13 that $\overline{B_H}(0,1)$ is metrizable in the weak topology. Then since $(x_n)_{n\geq 1}\subset \overline{B_H}(0,1)$ which is compact-metrizable so $(x_n)_{n\geq 1}$ has a convergent subsequence $(x_{n_k})_{k\geq 1}$. But then by property of T we have $(T(x_{n_k}))_{k\geq 1}$ is convergent in the norm which is a contradiction. So T is non-compact.

- (d) We want to show that each $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ is compact. Let $(x_n)_{n \geq 1}$ be a sequence in $\ell_2(\mathbb{N})$ which converges weakly. Then by (a) we have that $Tx_n \to Tx$ weakly as $n \to \infty$. We know that in $\ell_1(\mathbb{N})$ weak converges is the same as norm converges. So we have that $||Tx_n Tx|| \to 0$ as $n \to \infty$. Note that $\ell_2(N)$ is a infinite dimensional Hilbert space, and the by (c) we have hat T is compact.
- (e) We want to show that no $T \in \mathcal{K}(X,Y)$ is onto. Assume for contradiction that T is surjective. Then we have by the Open mapping theorem (Theorem 3.15) that T is open. So $T(B_X(0,1))$ is open, and $\overline{T(B_X(0,1))}$ is compact since T is compact. Then $0 \in T(B_X(0,1))$, so there exists a r > 0 such that $\overline{B_Y}(0,r) \subset T(B_X(0,1)) \subset \overline{T(B_X(0,1))}$. We have that closed subsets of compact sets are compact. This gives that $\overline{B_Y}(0,r)$ is compact. Since scalar multiplication is continuous and the image of compact set under continuous functions is compact we have that $\overline{B_Y}(0,1)$ is compact. But by the first mandatory assignment problem 3 we have that if the closed unit ball in Y is compact then Y is finite dimensional, but this is a contradiction. So T is not surjective.
- (f) Let $H = L_2([0,1], m)$ and let $M \in \mathcal{L}(H, H)$ be the operator given by Mf(t) = tf(t), for $f \in H$ and $t \in [0,1]$. We to justify that M is self-adjoint, but not compact. Let $f, g \in H$ and $t \in [0,1]$, so notice that $\bar{t} = t$, then

$$\begin{split} \langle Mf,g\rangle &= \int_{[0,1]} tf(t)\overline{g(t)}dm(t)\\ &= \int_{[0,1]} f(t)\overline{tg(t)}dm(t)\\ &= \langle f,Mg\rangle \end{split}$$

Thus M is self-adjoint.

Since H is a separable infinite Hilbert space and by example 9.15 we know that M has no eigenvalues. We have by The Spectral Theorem (Theorem 10.1) that M is non-compact, since M is self-adjoint.

Problem 3

(a) We want to justify that T is compact. First we want to show that $K \in L_2([0,1] \times [0,1], m \otimes m)$. We have that K is measurable. So we want to show that $||K||_2 < \infty$. Notice $|K(s,t)| \leq 1$. So we have that

$$||K||_{2}^{2} = \int_{[0,1]\times[0,1]} |K(s,t)|^{2} d(m\otimes m)(s,t)$$

$$\leq \int_{[0,1]} \int_{[0,1]} 1 dm(s) dm(t)$$

$$= \int_{0}^{1} \int_{0}^{1} 1 ds dt = 1 < \infty$$

And then by proposition 9.12 we have that T is a Hilbert-Schmidt operator, and then by proposition $9.11\ T$ is compact.

(b) We want to show that $T = T^*$. Note that K is symmetric, so K(s,t) = K(t,s). Let $f,g \in [0,1]$, then

$$\langle Tf, g \rangle = \int_{[0,1]} (Tf)(s)\overline{g(s)}dm(s)$$
$$= \int_{[0,1]} \int_{[0,1]} K(s,t)f(t)\overline{g(s)}dm(t)dm(s)$$

We then use Fubini to change the integration order. We can do this since

$$\begin{split} \int_{[0,1]} \int_{[0,1]} |K(s,t)f(t)\overline{g(t)}| dm(t) dm(s) &\leq \int_{[0,1]} \int_{[0,1]} |f(t)| |\overline{g(t)}| dm(t) dm(s) \\ &= \int_{[0,1]} |\overline{g(t)}| \int_{[0,1]} |f(t)| dm(t) dm(s) \\ &< \infty \end{split}$$

because as noted before $|K(s,t)| \leq 1$, and since by HW 2(a) we have that $L_2([0,1],m) \subsetneq L_1([0,1],m)$, so both $\int_{[0,1]} |\overline{g(s)}| dm(s)$, $\int_{[0,1]} |f(t)| dm(t) < \infty$. So get that

$$\begin{split} \int_{[0,1]} \int_{[0,1]} K(s,t) f(t) \overline{g(s)} dm(t) dm(s) &= \int_{[0,1]} \int_{[0,1]} K(s,t) f(t) \overline{g(s)} dm(s) dm(t) \\ &= \int_{[0,1]} f(t) \int_{[0,1]} \overline{K(t,s) g(s)} dm(s) dm(t) \\ &= \int_{[0,1]} f(t) \overline{\int_{[0,1]} K(t,s) g(s) dm(s)} dm(t) \\ &= \langle f, Tg \rangle \end{split}$$

Thus T is self-adjoint.

(c) Let $s \in [0,1]$ and $f \in H$. Then

$$\begin{split} (Tf)(s) &= \int_{[0,1]} K(s,t) f(t) dm(t) \\ &= \int_{[0,1]} (1-s) t f(t) \mathbbm{1}_{[0,s]} + (1-t) s f(t) \mathbbm{1}_{[s,1]} dm(t) \\ &= \int_{[0,s]} (1-s) t f(t) dm(t) + \int_{[s,1]} (1-t) s f(t) dm(t) \\ &= (1-s) \int_{[0,s]} t f(t) dm(t) + s \int_{[s,1]} (1-t) f(t) dm(t) \end{split}$$

Now we want to show using this that Tf is continuous. We have that $f(t) \in L_1([0,1],m)$, since $L_2([0,1],m) \subsetneq L_1([0,1],m)$, so we see that $tf(t), (1-t)f(t) \in L_2([0,1],m)$. Then we note that $\int_{[0,s]} |(1-s)tf(t)|dm(t) \leq \int_{[0,s]} |tf(t)|dm(t) < \infty$, so $(1-s)tf(t) \in L_1([0,1],m)$ and that (1-s)tf(t) is continuous for all fixed $s \in [0,1]$. And that $|(1-s)tf(t)| \leq tf(t) \in L_1([0,1],m)$. So by continuity lemma we have that $\int_{[0,s]} (1-s)tf(t)dm(t)$ is continuous on [0,1].

We see that $\int_{[s,1]} |(1-t)sf(t)|dm(t) \leq \int_{[s,1]} |(1-t)f(t)|dm(t) < \infty$. So $(1-t)sf(t) \in L_1([0,1],m)$. And that (1-t)sf(t) is continuous for all fixed $s \in [0,1]$. Also we have that $|(1-t)sf(t)| \leq (1-t)f(t)$. So again by the continuity lemma we have that $\int_{[s,1]} (1-t)sf(t)dm(t)$ is continuous. Therefor is Tf continuous. When we integrate over singletons we get zero, so (Tf)(0) = (Tf)(1) = 0.

Problem 4

Consider the Schwartz space $\mathscr{S}(\mathbb{R})$ and view the Fourier transform as a linear map $\mathcal{F}:\mathscr{S}(\mathbb{R})\to\mathscr{S}(\mathbb{R})$

(a) For each integer $k \geq 0$, set $g_k(x) = x^k e^{-x^2/2}$, for $x \in \mathbb{R}$. We want to justify that $g_k \in \mathscr{S}(\mathbb{R})$, for all integers $k \geq 0$. When take the derivatives of g_k we get a polynomial times $e^{-\frac{1}{2}x^2}$. So we have that g_k together with all its derivatives vanishes faster than any polynomial, since $e^{-\frac{1}{2}x^2}$ grows faster than any polynomial. So g_k is a Schwartz function.

Then we want to compute $\mathcal{F}(g_k)$, for k = 0, 1, 2, 3. For k = 0 we see that by proposition 11.4 we have that

$$\hat{g_0}(\xi) = e^{-\frac{1}{2}\xi^2}$$

For k = 1. We notice that $g_1(x) = xg_0(x)$, and $g_k \in \mathcal{S}(\mathbb{R})$, for all integers $k \geq 0$ so specially $g_k \in L_1(\mathbb{R})$. So by Proposition 11.13(c) we have

$$\hat{g_1}(\xi) = \widehat{(xg_0)}(\xi) = i\left(\frac{\partial}{\partial \xi}\hat{g_0}\right)(\xi) = i\frac{\partial}{\partial \xi}e^{-\frac{1}{2}\xi^2} = -ie^{-\frac{1}{2}\xi^2\xi}$$

For k = 2. Here we notice that $g_2(x) = xg_1(x)$. And we use proposition 11.13(c) again and get

$$\widehat{g}_{2}(\xi) = \widehat{(xg_{1})}(\xi) = i\left(\frac{\partial}{\partial \xi}\widehat{g}_{1}\right)(\xi) = i\frac{\partial}{\partial \xi}(-ie^{-\frac{1}{2}\xi^{2}}\xi)$$
$$= i(i\xi^{2}e^{-\frac{1}{2}\xi^{2}}\xi - ie^{\frac{1}{2}\xi^{2}}) = i^{2}(\xi^{2} - 1)e^{-\frac{1}{2}\xi^{2}}$$

For k=3. We notice that $g_3(x) = xg_2(x)$ and so by proposition 11.13(c) we have that

$$\hat{g}_{3}(\xi) = \widehat{(xg_{2})}(\xi) = i\left(\frac{\partial}{\partial \xi}\hat{g}_{2}\right)(\xi)$$

$$= i\left(\frac{\partial}{\partial \xi}\left(i^{2}\xi^{2}e^{-\frac{1}{2}\xi^{2}}\xi - i^{2}e^{\frac{1}{2}\xi^{2}}\right)\right)$$

$$= i\left(2\xi i^{2}e^{-\frac{1}{2}\xi^{2}} - i^{2}\xi^{3}e^{-\frac{1}{2}\xi^{2}} + i^{2}e^{-\frac{1}{2}\xi^{2}}\right)$$

$$= i^{3}(3\xi - \xi^{3})e^{-\frac{1}{2}\xi^{2}}$$

(b) We want to find non-zero functions $h_k \in \mathscr{S}(\mathbb{R})$ such that $\mathcal{F} = i^k h_k$, for k = 0, 1, 2, 3. From (a) we observe that

$$\mathcal{F}(g_0) = g_0$$

$$\mathcal{F}(g_1) = -ig_1$$

$$\mathcal{F}(g_2) = -g_2 + g_0$$

$$\mathcal{F}(g_3) = ig_3 - 3g_1$$

So for k = 0, 3 we see that $h_0 = g_0$ then $\mathcal{F}(h_0) = h_0$ and that $h_3 = g_1$ since $\mathcal{F}(h_3) = -ig_1 = i^3h_3$. For k = 1. Set $h_1 = 3ig_1 + 2g_3$. Remember that \mathcal{F} is linear so we get that $\mathcal{F}(h_1) = \mathcal{F}(3ig_1 + 2g_3) = 3i\mathcal{F}(g_1) + 2\mathcal{F}(g_3) = 3g_i + 2ig_3 - 6g_1 = i(3ig_1 + 2g_3) = ih_1$. For k = 2. Set $h_2 = -g_0 + 2g_2$. Then we have that $\mathcal{F}(h_2) = -g_0 + 2(-g_2 + g_0) = g_0 - 2g_1 = -(-g_0 + 2g_2) = i^2h_2$.

(c) We want to show that $\mathcal{F}^4(f) = f$ for all $f \in \mathscr{S}(\mathbb{R})$. Because $f \in \mathscr{S}(\mathbb{R})$ it has a inverse Fourier transform $\mathcal{F}^*(f)$. We first want to show that $\mathcal{F}(f) = -\mathcal{F}^*(f)$. We will do this by using change of variable in $\mathcal{F}(f)$ so we set u = -x then dx = -du, and so

$$\mathcal{F}(f) = \int_{\mathbb{R}} f(\xi)e^{-i\xi x}dm(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(\xi)e^{-i\xi x}dx$$
$$= -\frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(\xi)e^{i\xi u}du = -\int_{\mathbb{R}} f(\xi)e^{i\xi u}dm(u)$$
$$= -\mathcal{F}^*(f)$$

We then have by corollary 12.12 (iii) that $\mathcal{F}^2(f) = \mathcal{F}(\mathcal{F}(f)) = -\mathcal{F}(\mathcal{F}^*(f)) = -f$. And so $\mathcal{F}^4(f) = \mathcal{F}^2(\mathcal{F}^2(f)) = \mathcal{F}^2(-f) = f$.

(d) We want to show that if $f \in \mathscr{S}(\mathbb{R})$ is non-zero and $\mathcal{F}(f) = \lambda f$, $\lambda \in \mathbb{C}$ then $\lambda \in \{1, i, -1, -i\}$. So $\mathcal{F}^4(f) = \lambda^4 f$, also by (c) we have that $\mathcal{F}^4(f) = f$, that means that $\lambda^4 = 1$, and so $\lambda \in \{1, i, -1, -i\}$. This together with (b) gives that we eigenvalues of \mathcal{F} precisely are $\{1, i, -1, -i\}$.

Problem 5

Let $(x_n)_{n\geq 1}$ be a dense subset og [0,1] and consider the Radon measure $\mu=\sum_{n=1}^{\infty}\frac{1}{2^2}\delta_{x_n}$ on [0,1]. We want to show that $\mathrm{supp}\,(\mu)=[0,1]$. Since $(x_n)_{n\geq 1}$ is dense in [0,1] then the closure of $(x_n)_{n\geq 1}$ is the whole [0,1]. But then the smallest closed set containing $(x_n)_{n\geq 1}$ are [0,1]. Hence the the largest open set in [0,1] with $\mu(N)=0$ is $N=\emptyset$. Therefore by definition we have that $\mathrm{supp}\,(\mu)=N^c=[0,1]$.