HW 1

Adon Rosen

Date: 2020-02-13

Question 1

A person's muscle mass is expected to decrease with age. To explore this relationship in women, a nutritionist randomly selected 4 women from each 10-year age group, beginning with age 40 and ending with age 79, resulting in a total sample size of n=16. Some results follow, where X is the age, and Y is a measure of the muscle mass. Assume a simple linear regression model is appropriate. For these data:

Mean(X) =
$$61.69$$
 SD(X) = 14.67 Mean(Y) = 52.21 SD(Y) = 24.16 y-hat = $142.68 - 1.47$ *X SE(Slope) = 0.200 Root MSE = 11.38

a.

Parameters: 1. $\beta_0 = 142.68 =$ The predicted muscle mass in a women when her X value, age is equal to 0 1. $\beta_1 = -1.47 =$ The change in muscle mass for every one unit change in age

b.

$$\hat{Y}_{63} = 142.68 - 1.47 * 63 = 50.07$$

c.

In order to calculate the corellation from the slope first multiply the slope of the regression line by the standard deviation of X and then divide by the standard deviation of Y.

Slope: -1.47 SDx: 14.67 SDy: 24.16 r = (Slope * SDx) / SDy = -0.8925869

d.

State our hypotheses:

 $H_0: r = 0$

 $H_a: r \neq 0$

 $\alpha = 0.05$

We would like to calculate the t value of the correlation. The t value's formula is: $t = \frac{r\sqrt{(n-2)}}{\sqrt{1-r^2}}$

t = -7.4072668

 $p = 3.3156464 \times 10^{-6}$

Given this p value, we reject the null hypothesis and conclude there is a non-zero relationship between age and muscle mass.

e.

The 95% C.I. for $\beta_1 = -1.47 + /-0.429$; [-1.899,-1.041]

I will interpret this later

f.

The 95% C.I. for a participant with an age of 63 is equal to [23.043,77.097].

I will interpret this later

g.

The residual is equal to $Y - \hat{Y} = 45 - 54.48 = -9.48$

h.

PRE = 0.7967114

$$\beta_{standardized} = \beta \frac{SD_x}{SD_y} = \text{-}0.8925869$$

Here we see that we explain roughly 0.7967 percent of the total variance in the outcome. Furthermore, it appears that the standardized coefficient between age and muscle mass is: -0.8925869 which suggests a very strong relationship between these two variables.

i.

If two women differ in age by 10 years the predicted difference in muscle mass will be -14.7 units.

j.

It is difficult to tell if the linear assumption holds with these data. However the provided model fits the data very well.

Question 2

The following SAS output contains an analysis in which 6-year graduation rates were collected over a 6-year period and analyzed for trends. The response variable Y is graduation rate (measured as a percentage). The explanatory variable X is year (beginning with year 1)

a.

 $\hat{Y} = 61.52667 + 0.95429 * year$

b.

 $\hat{Y}_6 = 61.52667 + 0.95429 * 6 = 67.25241$

c.

The residual is equal to $Y - \hat{Y} = 67.8 - 66.29812 = 1.50188$

Here the residual is 1.5, meaning the value was underpredicted by 1.5%.

d.

PRE = 0.7541 This PRE suggests an excellent model fit.

e.

The 95% C.I. for $\beta_1 = 0.95429 + (-0.7565; [0.19779, 1.71079]$

I will interpret this later

f.

State our hypotheses:

 $H_0: \beta_{year} = 0$

 $H_a: \beta_{year} \neq 0$

 $\alpha = 0.05$

We reject the null hypothesis that $\beta_{year} = 0$ given the strength of the coefficient $\beta_{year} = 0.95429(t(4) = 3.50, p = 0.0248)$.