Методы машинного обучения

Лекция 4

Линейная регрессия

Эльвира Зиннурова

elvirazinnurova@gmail.com

НИУ ВШЭ, 2019

Линейная регрессия

Одномерная выборка

Одномерная выборка

Парная регрессия

- Простейший случай: один признак
- Модель: $a(x) = w_1 x + w_0$
- Два параметра: w_1 и w_0
- Одна из простейших моделей

Линейная регрессия

• Взвешенная сумма признаков:

$$a(x) = w_0 + w_1 x^1 + \dots + w_d x^d$$

- $x^1, x^2, ..., x^d$ значений признаков
- $w_0, w_1, w_2, ..., w_d$ параметры
- *w*₀ смещение

Линейная регрессия

• Взвешенная сумма признаков:

$$a(x) = w_0 + w_1 x^1 + \dots + w_d x^d$$

- $x^1, x^2, ..., x^d$ значений признаков
- $w_0, w_1, w_2, ..., w_d$ параметры
- *w*₀ смещение

Единичный признак

$$a(x) = w_0 * 1 + w_1 x^1 + \dots + w_d x^d$$

- w_0 как бы коэффициент при единичном признаке
- Добавим его!

$$\begin{pmatrix} 1 & x_{11} & \dots & x_{1d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{\ell 1} & \dots & x_{\ell d} \end{pmatrix}$$

Линейная регрессия

• Везде далее считаем, что среди признаков есть единичный

$$a(x)=w_1x^1+\cdots+w_dx^d=\langle w,x\rangle$$
Скалярное произведение

Линейная регрессия

• Линейная модель: $a(x) = w_1 x^1 + \dots + w_d x^d = \langle w, x \rangle$

• Обучение:

Функция с d аргументами

Умножение матриц и MSE

Векторы и матрицы

- ullet Вектор размера d тоже матрица
- Вектор-строка: $w = (w_1, ..., w_d) \in \mathbb{R}^{1 \times d}$
- Вектор-столбец: $w = \begin{pmatrix} w_1 \\ ... \\ w_d \end{pmatrix} \in \mathbb{R}^{d \times 1}$

Линейная модель

•
$$a(x) = w_1 x^1 + \dots + w_d x^d$$

• Как применить модель к целой выборке?

$$egin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \ x_{21} & x_{22} & \cdots & x_{2d} \ dots & dots & \ddots & dots \ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \end{pmatrix} \qquad egin{pmatrix} \sum_{i=1}^d w_i x_{1i} \ \sum_{i=1}^d w_i x_{2i} \ dots \ \sum_{i=1}^d w_i x_{\ell i} \end{pmatrix} \qquad egin{pmatrix} \sum_{i=1}^d w_i x_{\ell i} \end{pmatrix}$$

Матричное умножение

- Только для матриц $A \in \mathbb{R}^{m \times k}$ и $A \in \mathbb{R}^{k \times n}$
- Результат: $AB = C \in \mathbb{R}^{m \times n}$
- Правило:

$$c_{ij} = \sum_{p=1}^{k} a_{ip} b_{pj}$$

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 10 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 10 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 10 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ & & \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 10 & 0 \end{pmatrix} * \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ & & & \\ & & & \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 10 & 0 \end{pmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & & \end{pmatrix}$$

Линейные преобразования

- Умножение на матрицу линейная функция:
 - $A(x_1 + x_2) = Ax_1 + Ax_2$
 - $A(\alpha x) = \alpha A x$
- Любая линейная функция описывается некоторой матрицей

Линейная модель

• Как применить модель к целой выборке?

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \end{pmatrix} \qquad \begin{pmatrix} \sum_{i=1}^{d} w_{i} x_{1i} \\ \sum_{i=1}^{d} w_{i} x_{2i} \\ \vdots \\ \sum_{i=1}^{d} w_{i} x_{\ell i} \end{pmatrix}$$

Линейная модель

• Как применить модель к целой выборке?

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{\ell 1} & x_{\ell 2} & \cdots & x_{\ell d} \end{pmatrix} \qquad \begin{pmatrix} \sum_{i=1}^{d} w_{i} x_{1i} \\ \sum_{i=1}^{d} w_{i} x_{2i} \\ \vdots \\ \sum_{i=1}^{d} w_{i} x_{\ell i} \end{pmatrix} = Xw$$

$$\vdots$$

$$\sum_{i=1}^{d} w_{i} x_{\ell i}$$

Векторный вид MSE

$$Q(w,X) = \frac{1}{\ell} ||Xw - y||^2 \to \min_{w}$$

- X матрица объекты-признаки
- у вектор ответов на обучающей выборке

Производная и градиент

• Численность населения:

1950	1960	1970	1980	1990	2000
2,525,778,669	3,026,002,942	3,691,172,616	4,449,048,798	5,320,816,667	6,127,700,428

• Скорость роста между 1990 и 2000:

$$\frac{6127700428 - 5320816667}{10} = 80,688,376$$

• Дискретная величина

• Отклонение температуры от нормы (непрерывная величина):

• Отклонение температуры от нормы:

Высокая скорость

Низкая скорость

• Можем измерить скорость на интервале $[x_0, x]$:

$$\frac{f(x) - f(x_0)}{x - x_0}$$

- Как измерить мгновенную скорость в конкретный момент x_0 ?
- Устремим x к x_0 !

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

• Можем измерить скорость на интервале $[x_0, x]$:

$$\frac{f(x) - f(x_0)}{x - x_0}$$

- Как измерить мгновенную скорость в конкретный момент x_0 ?
- Устремим x к x_0 !

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

Производная

Производная

Экстремумы

- Экстремум минимум или максимум
- Локальный минимум меньше всех значений в некоторой окрестности
- Глобальный минимум меньше всех значений

Экстремумы

• Локальные минимумы — одна из главных проблем в машинном обучении

Условие оптимальности

- Как понять, является ли точка x_0 экстремумом?
- Теорема Ферма: если точка x_0 экстремум, и в ней существует производная, то $f'(x_0)=0$

- Если функция везде имеет производную: решаем f'(x) = 0
- Если с производной проблемы: не повезло

• Даже если производная есть, то что делать с локальными экстремумами?

Выпуклые функции

• Функция выпуклая, если ее график лежит ниже любого отрезка, соединяющего две точки

Выпуклые функции

• Функция выпуклая, если во всех точках $f''(x) \ge 0$

- Важное свойство: любой локальный экстремум выпуклой функции является глобальным
- Решая уравнение f'(x) = 0, получим глобальные экстремумы
- Вывод: будем стараться выбирать выпуклые функционалы!

• Функционал качества линейной регрессии:

$$Q(w_1, ..., w_d) = \sum_{i=1}^{t} (w_1 x^1 + \dots + w_d x^d - y_i)^2$$

- Многомерная функция (т.е. от нескольких аргументов)
- Как искать ее минимум?

Частные производные

- С какой скоростью функция меняется вдоль переменной x_i ?
- Частная производная по x_i :

$$\frac{\partial f}{\partial x_i} = \lim_{t \to 0} \frac{f(x_1, ..., x_i + t, ..., x_d) - f(x_1, ..., x_i, ..., x_d)}{t}$$

Градиент

• Градиент — вектор из частных производных:

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right)$$

Условие оптимальности

- Как понять, является ли точка x_0 экстремумом?
- Обобщение теоремы Ферма: если точка x_0 экстремум, и в ней существует градиент, то $\nabla f(x_0) = 0$

- Если функция везде имеет градиент: решаем $\nabla f(x) = 0$ (теперь это система уравнений!)
- Если с градиентом проблемы: не повезло

Экстремумы

• Проблема с локальными экстремумами все еще актуальна

Выпуклые функции

• Функция выпуклая, если ее график лежит ниже отрезка, соединяющего любые две точки

Выпуклые функции

 Функция выпуклая, если ее график лежит ниже отрезка, соединяющего любые две точки

Выпуклая функция

Невыпуклая функция

Производная по направлению

- Градиент про скорость роста по конкретному аргументу
- С какой скоростью растет функция в конкретном направлении?

Производная по направлению

- Направление: v, причем ||v|| = 1
- Производная:

$$f_v'(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

Связь с градиентом

- Зафиксируем точку x_0
- В каком направлении функция быстрее всего растет?

$$f_v'(x_0) \to \max_v$$

Угол между градиентом и направлением

• Связь производной по направлению и градиента:

$$f_v'(x_0) = \langle \nabla f(x_0), v \rangle = \|\nabla f(x_0)\| * \|v\| * \cos \varphi$$

Важное свойство градиента

- Произвольная по направлению максимальна, если направление совпадает с градиентом!
- Градиент направление наискорейшего роста функции
- Антиградиент направление наискорейшего убывания

Обучение линейной регрессии

Задача оптимизации

$$Q(w,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 \to \min_{w}$$

- Градиент существует в любой точке
- Выпуклая функция
- Единственный минимум (не всегда)

Градиент

$$\nabla Q(w, X) = \left(\frac{\partial Q}{\partial w_1}, \dots, \frac{\partial Q}{\partial w_d}\right)$$

Производные:

$$\frac{\partial Q}{\partial w_j} = \frac{2}{\ell} \sum_{i=1}^{\ell} x_i^j (\langle w, x_i \rangle - y_i)$$

Векторный вид

• Векторная запись MSE:

$$Q(w, X) = \frac{1}{\ell} ||Xw - y||^2$$

• Условие минимума:

$$\nabla Q = \frac{2}{\ell} X^T (Xw - y) = 0$$

• Что, если попробуем решить эту систему уравнений?

Обратная матрица

- A^{-1} обратная к А
- $\bullet AA^{-1} = A^{-1}A = I$
- І единичная матрица
- Только для квадратных матриц

• Существует тогда и только тогда, когда $\det A \neq 0$

Обучение линейной регрессии

• Условие минимума решается аналитически!

$$w = (X^T X)^{-1} X^T y$$

- Но обращение матрицы очень сложная операция
- А также некоторые другие проблемы
- Градиентный спуск гораздо быстрее но об этом позже

Резюме

- Линейная регрессия одна из самых простых моделей в машинном обучении
- Функционал качества: среднеквадратичная ошибка
- Обучение: аналитическая формула или градиентный спуск