Numerical Analysis

Iydon

2018年11月1日

1日录

目录

1	Her	Hermite Interpolation		
	1.1	Hermite Polynomials	3	
	1.2	Hermite Polynomials Using Divided Differences	4	

Hermite Interpolation 1

The osculating polynomial approximating a function $f \in C^m[a, b]$ at x_i for each i = 0 : n, of which the derivatives of order less than or equal to m_i , then the degree of this osculating polynomial is at most $M = \sum_{i=0}^{n} m_i + n$.

$$\frac{\mathrm{d}^k P(x_i)}{\mathrm{d}x^k} = \frac{\mathrm{d}^k f(x_i)}{\mathrm{d}x^k}, \quad \text{for each } i = 0: n, \ k = 0: m_i.$$

$$\begin{cases} n = 0 & m_0 \text{ Taylor polynomial for } f \text{ at } x_0 \\ m_i = 0 \text{ (each } i) & n \text{th Lagrange polynomial} \end{cases}$$

Hermite Polynomials

定理 1.1 $f \in C'[a,b]$ and $x_0, \dots, x_n \in [a,b]$, the unique polynomial of least degree agreeing with f and f' at x_0, \dots, x_n is the Hermite polynomial of degree at most 2n + 1.

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \hat{H}_{n,j}(x)$$

$$\begin{cases} H_{n,j}(x) &= \left[1 - 2(x - x_j) L'_{n,j}(x_j)\right] L^2_{n,j}(x) \\ \hat{H}_{n,j}(x) &= (x - x_j) L^2_{n,j}(x) \end{cases}$$

Moreover, if
$$f \in C^{2n+2}[a,b]$$
, then
$$f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi(x)).$$

[Proof]

$$H_{n,j}(x_i) = \delta_{i,j}$$

$$\hat{H}_{n,j}(x_i) = 0$$

$$\hat{H}'_{n,j}(x_i) = \delta_{i,j}$$

1.2 Hermite Polynomials Using Divided Differences

Suppose that the distinct numbers x_0, \dots, x_n are given together with values of f and f'. Define a new sequence z_0, \dots, z_{2n+1} by

$$z_{2i} = z_{2i+1} = x_i$$
 for $i = 0 : n$.

We have
$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x-z_0) \cdots (x-z_{k-1}).$$

z	f(z)	First divided differences	
$z_0 = x_0$	$f[z_0] = f(x_0)$	$f[z_0, z_1] = f'(x_0)$:
$z_1 = x_0$	$f[z_1] = f(x_0)$	$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	÷
$z_2 = x_1$	$f[z_2] = f(x_1)$	$f[z_2, z_3] = f'(x_1)$	÷
$z_3 = x_1$	$f[z_3] = f(x_1)$	$f[z_3, z_4] = \frac{f[z_3] - f[z_4]}{z_3 - z_4}$	÷
$z_4 = x_2$	$f[z_4] = f(x_2)$	$f[z_4, z_5] = f'(x_2)$	
$z_5 = x_2$	$f[z_5] = f(x_2)$		