СБОРНИК ДОМАШНИХ ЗАДАНИЙ

по линейной алгебре

Москва 2005

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ МОСКОВСКИЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

СБОРНИК ДОМАШНИХ ЗАДАНИЙ

по линейной алгебре

Под редакцией доцента А.П. Горячева

Москва 2005

УДК 512.64(076) ББК 22.143 С 23

Сборник домашних заданий по линейной алгебре. / Под редакцией доцента А.П. Горячева. М.: МИФИ, 2005. – 72 с.

Предназначен для выдачи домашнего задания ДЗ 2-10 по курсу линейной алгебры на втором семестре всех факультетов.

Данный сборник задач содержит 30 вариантов домашних заданий по темам курса линейной алгебры, изучаемых во втором семестре. В каждом параграфе собрано 30 или 60 задач по каждой теме. Рекомендуется при выдаче задания давать каждому студенту по одной или по две задачи из каждого параграфа (если в параграфе 60 задач, то номера должны отличаться друг от друга на 30). Все варианты приблизительно одинаковы по трудности.

Авторы: А.П. Горячев, И.Л. Гусева, В.Б. Шерстюков

Рекомендовано к изданию редсоветом МИФИ

© Московский инженерно-физический институт (государственный университет), 2005

1. Линейные пространства, размерность, базис

В этом параграфе рассматриваются подмножества следующих действительных линейных пространств:

- арифметическое (координатное) n-мерное пространство \mathbb{R}_n элементов $x = \{x_1; x_2; \dots; x_n\}$ с вещественными компонентами; операции сложения элементов и умножения элемента на число осуществляются покомпонентно;
- пространство $\mathbb{L}_{m \times n}$ вещественных матриц размера $m \times n$ с обычными операциями сложения и умножения матриц на число;
- пространство \mathbb{P}_n многочленов с вещественными коэффициентами от одной переменной (степень многочлена не превосходит n) с обычными операциями сложения и умножения многочленов на число;
- пространство $\mathbb{C}[a,b]$ вещественных и непрерывных на отрезке [a,b] функций с обычными операциями сложения и умножения функций на число.

В задачах этого параграфа требуется выяснить, являются ли линейными пространствами данные множества. В случае положительного ответа найти размерность этих пространств, а также (если размерность конечна) указать какой-либо базис.

1. Множество всех элементов \mathbb{R}_7 вида $\{x_1; x_2; \dots; x_7\}$, у которых $x_1 = x_2$.

- **2.** Множество всех элементов \mathbb{R}_7 вида $\{x_1; x_2; \dots; x_7\}$, у которых $x_1 = x_7$.
- **3.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 + x_6 = 0$.
- **4.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 + x_3 + x_5 = 0$.
- **5.** Множество всех элементов \mathbb{R}_8 вида $\{x_1; x_2; \dots; x_8\}$, у которых $x_1 + x_7 + x_8 = 1$.
- **6.** Множество всех элементов \mathbb{R}_8 вида $\{x_1; x_2; \dots; x_8\}$, у которых $x_1 = x_2 = \dots = x_8$.
- 7. Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 + 6x_6 = 0$.
- 8. Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_2 = x_4 = x_6$.
- **9.** Множество всех элементов \mathbb{R}_8 вида $\{x_1; x_2; \dots; x_8\}$, у которых $x_1 = x_3 = x_5 = x_7 = 1$.
- **10.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 + 2x_2 + 4x_3 + 8x_4 + 16x_5 + 32x_6 = 0$.
- **11.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $6x_1 + 5x_2 + 4x_3 + 3x_4 + 2x_5 + x_6 = 0$.
- **12.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 = x_6, x_2 = x_5$.
- **13.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 = x_2 = x_3, x_4 = x_5 = x_6$.

- **14.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_3 = 1, x_6 = 0$.
- **15.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 + 6x_6 = 0$.
- **16.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_2 = x_6, x_1 = 0$.
- **17.** Множество всех элементов \mathbb{R}_8 вида $\{x_1; x_2; \dots; x_8\}$, у которых $x_1 \leq 0, x_8 > 0$.
- **18.** Множество всех элементов \mathbb{R}_7 вида $\{x_1; x_2; \dots; x_7\}$, у которых x_7 целое число.
- **19.** Множество всех элементов \mathbb{R}_7 вида $\{x_1; x_2; \dots; x_7\}$, у которых $x_1 = x_4 = x_7 = 0$.
- **20.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 \leqslant x_6$.
- **21.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_1 = x_2, x_3 = x_4, x_5 = x_6$.
- **22.** Множество всех элементов \mathbb{R}_8 вида $\{x_1; x_2; \dots; x_8\}$, у которых $x_1^2 = x_8$.
- **23.** Множество всех элементов \mathbb{R}_7 вида $\{x_1; x_2; \dots; x_7\}$, у которых $x_1 = x_3 = x_5 = x_7$.
- **24.** Множество всех элементов \mathbb{R}_8 вида $\{x_1; x_2; \dots; x_8\}$, у которых $x_1 \cdot x_8 = 0$.
- **25.** Множество всех элементов \mathbb{R}_6 вида $\{x_1; x_2; \dots; x_6\}$, у которых $x_2 x_4 + x_6 = 0$.

- **26.** Множество всех многочленов степени n.
- **27.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P(1) = 0.
- **28.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P(1) = P(0) = 0.
- **29.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P(0) = P'(0) = 0.
- **30.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P'(-1) = 0.
- **31.** Множество всех многочленов $P(x) \in \mathbb{P}_6$, таких, что P'(0) = 1.
- **32.** Множество всех многочленов $P(x) \in \mathbb{P}_6$, таких, что P(1) = P'(1) = 1.
- 33. Множество всех многочленов $P(x) \in \mathbb{P}_6$, таких, что P(0) = P(1) = P(2) = 0.
- **34.** Множество всех многочленов $P(x) \in \mathbb{P}_6$, таких, что P(0) = P(1) = P(2) = 2.
- **35.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P(0) + P'(0) = 0.
- **36.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P(0) + P'(0) = 1.
- **37.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P''(x) = 0 для всех $x \in (-\infty, +\infty)$.

- **38.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P'(x) = 1 для всех $x \in (-\infty, +\infty)$.
- **39.** Множество всех многочленов $P(x) \in \mathbb{P}_5$, таких, что P'(x) = 0 для всех $x \in (-\infty, +\infty)$.
- **40.** Множество всех функций $f(x) \in \mathbb{C}[a,b]$, таких, что f(a) = 1.
- **41.** Множество всех функций $f(x) \in \mathbb{C}[a,b]$, таких, что f(a) = f(b) = 1.
- 42. Множество всех функций f(x), дифференцируемых на $(-\infty, +\infty)$ и таких, что f'(x) = 0 для всех x.
- 43. Множество всех функций f(x), дифференцируемых на $(-\infty, +\infty)$ и таких, что f'(x) = -1 для всех x.
- **44.** Множество всех функций f(x), дифференцируемых на $(-\infty, +\infty)$ и таких, что f''(x) = 0 для всех x.
- **45.** Множество всех функций $f(x) \in \mathbb{C}[a,b]$, таких, что $f(a) \geqslant 0$.
- **46.** Множество всех матриц $A \in \mathbb{L}_{2\times 2}$, таких, что $A = \begin{pmatrix} a & a^2 \\ b & b^2 \end{pmatrix}$.
- **47.** Множество всех матриц $A \in \mathbb{L}_{2\times 2}$, таких, что $A = \left(\begin{array}{cc} a & b \\ b & c \end{array} \right)$.
- **48.** Множество всех матриц $A \in \mathbb{L}_{2\times 2}$, таких, что $A = \begin{pmatrix} a & 2b \\ b & 0 \end{pmatrix}$.

- **49.** Множество всех матриц $A \in \mathbb{L}_{2\times 2}$, таких, что rangA = 1.
- **50.** Множество всех матриц $A\in\mathbb{L}_{2\times 2}$, таких, что $A=\left(\begin{array}{cc}a&b\\-b&c\end{array}\right)$.
- **51.** Множество всех матриц $A=\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right)\in\mathbb{L}_{2\times 2},$ таких, что $a_{11}(a_{12}-a_{21})=0.$
- **52.** Множество всех матриц $A\in\mathbb{L}_{2\times 3}$, таких, что $A=\left(\begin{array}{cc}a&b&c\\b&-c&a\end{array}\right).$
- **53.** Множество всех матриц $A\in\mathbb{L}_{2\times 3}$, таких, что $A=\left(egin{array}{ccc} a&b&a^2-b\\c&d&c^2-d \end{array}
 ight).$
- **54.** Множество всех матриц $A\in\mathbb{L}_{2\times 3}$, таких, что $A=\left(egin{array}{cc} a&b&a-b+c\\c&0&2a+b \end{array}
 ight).$
- **55.** Множество всех матриц $A \in \mathbb{L}_{2\times 3}$, таких, что $A = \begin{pmatrix} a & b^2 & a^3 \\ b & a^2 & b^3 \end{pmatrix}$.
- **56.** Множество всех матриц $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \in \mathbb{L}_{2\times 3},$ таких, что rang $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = 0.$
- **57.** Множество всех матриц $A \in \mathbb{L}_{3\times 2}$, таких, что $A = \begin{pmatrix} a & b \\ b^2 & 0 \\ c & d \end{pmatrix}$.

- **58.** Множество всех матриц $A \in \mathbb{L}_{2 \times 2}$, таких, что $\det A = 0$.
- **59.** Множество всех матриц $A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{array} \right) \in \mathbb{L}_{3 \times 2},$ таких, что $a_{32}^2 = a_{11}$.

60. Множество всех матриц
$$A\in\mathbb{L}_{3\times 2},$$
 таких, что
$$A=\left(\begin{array}{cc}a&b\\c&d\\ac&bd\end{array}\right).$$

2. Ранг матрицы

Вычислить ранги следующих матриц, используя метод элементарных преобразований или метод окаймления миноров.

1.
$$\begin{pmatrix} -4 & 4 & 0 & -8 & -2 & -4 \\ -2 & 6 & 4 & -8 & -6 & -5 \\ -2 & -2 & -4 & 0 & 4 & 1 \\ 2 & 4 & 6 & -2 & -4 & 4 \end{pmatrix}.$$

$$2. \begin{pmatrix} 1 & -3 & -2 & 4 & -3 & 2 \\ 3 & -5 & -2 & 8 & -7 & 4 \\ -2 & 2 & 0 & -4 & 4 & -2 \\ 1 & 1 & 2 & 0 & -3 & -3 \end{pmatrix}.$$

$$3. \begin{pmatrix} 3 & 2 & 5 & 1 & -2 & -2 \\ 0 & -2 & -2 & 2 & 1 & 1 \\ 3 & 4 & 7 & -1 & -3 & -3 \\ -4 & -3 & -7 & -1 & -3 & 3 \end{pmatrix}.$$

4.
$$\begin{pmatrix} -3 & -2 & -5 & -1 & -3 & 1 \\ -1 & 2 & 1 & -3 & -7 & 5 \\ -2 & -4 & -6 & 2 & 4 & -4 \\ -4 & 1 & -3 & -5 & 1 & 4 \end{pmatrix}.$$

5.
$$\begin{pmatrix} -4 & 2 & -2 & -6 & -2 & -3 \\ -7 & -1 & -8 & -6 & 0 & 0 \\ 3 & 3 & 6 & 0 & -2 & -3 \\ 1 & 2 & 3 & -1 & 3 & -2 \end{pmatrix}.$$

6.
$$\begin{pmatrix} 1 & 3 & 4 & -2 & 1 & 2 \\ -1 & 7 & 6 & -8 & -2 & 5 \\ 2 & -4 & -2 & 6 & 3 & -3 \\ 4 & -2 & 2 & 6 & 3 & 4 \end{pmatrix}.$$

7.
$$\begin{pmatrix} -4 & -3 & -7 & -1 & 3 & 4 \\ -5 & -4 & -9 & -1 & 7 & 8 \\ 1 & 1 & 2 & 0 & -4 & -4 \\ 4 & 1 & 5 & 3 & 2 & -4 \end{pmatrix} .$$

$$g. \left(\begin{array}{ccccccc} -4 & -4 & -8 & 0 & -4 & 3 \\ -5 & -1 & -6 & -4 & -8 & 7 \\ 1 & -3 & -2 & 4 & 4 & -4 \\ 2 & 3 & 5 & -1 & 2 & 4 \end{array} \right).$$

10.
$$\begin{pmatrix} -4 & 1 & -3 & -5 & -2 & 3 \\ -2 & -3 & -5 & 1 & 1 & 5 \\ -2 & 4 & 2 & -6 & -3 & -2 \\ -2 & -3 & -5 & 1 & 2 & 4 \end{pmatrix}.$$

11.
$$\begin{pmatrix} 4 & -3 & 1 & 7 & 2 & -2 \\ 8 & -1 & 7 & 9 & -2 & -5 \\ -4 & -2 & -6 & -2 & 4 & 3 \\ 1 & 3 & 4 & -2 & -4 & -2 \end{pmatrix}.$$

$$12. \begin{pmatrix} -3 & -4 & 1 & -7 & -4 & -2 \\ -7 & -2 & -5 & -9 & -6 & -4 \\ 4 & -2 & 6 & 2 & 2 & 2 \\ 2 & -1 & 3 & 1 & 1 & 1 \end{pmatrix}.$$

13.
$$\begin{pmatrix} -2 & -3 & -5 & 1 & -2 & -3 \\ -6 & 1 & -5 & -7 & -4 & 1 \\ 4 & -4 & 0 & 8 & 2 & -4 \\ -4 & -3 & -7 & -1 & 1 & 1 \end{pmatrix}.$$

$$15. \begin{pmatrix} -2 & -4 & -6 & 2 & -4 & 1 \\ 1 & -8 & -7 & 9 & -2 & -3 \\ -3 & 4 & 1 & -7 & -2 & 4 \\ 1 & -4 & -3 & 5 & -3 & 2 \end{pmatrix}.$$

$$\mathbf{16.} \left(\begin{array}{cccccc} 1 & -3 & -2 & 4 & 2 & 3 \\ -1 & 0 & -1 & -1 & 5 & -1 \\ 2 & -3 & -1 & 5 & -3 & 4 \\ 2 & -4 & -2 & 6 & 1 & 4 \end{array} \right).$$

17.
$$\begin{pmatrix} 1 & 4 & 5 & -3 & 2 & -2 \\ -1 & 6 & 5 & -7 & 0 & -5 \\ 2 & -2 & 0 & 4 & 2 & 3 \\ -4 & -4 & -8 & 0 & -2 & -4 \end{pmatrix}.$$

$$19. \left(\begin{array}{ccccccc} 3 & 1 & 4 & 2 & 4 & 4 \\ 2 & -2 & 0 & 4 & 1 & 2 \\ 1 & 3 & 4 & -2 & 3 & 2 \\ -3 & 1 & -2 & -4 & -2 & -3 \end{array}\right).$$

$$20. \left(\begin{array}{cccccc} 1 & 1 & 2 & 0 & 1 & -2 \\ -3 & -2 & -5 & -1 & -2 & 2 \\ 4 & 3 & 7 & 1 & 3 & -4 \\ 4 & -2 & 2 & 6 & 3 & -3 \end{array}\right).$$

$$21. \begin{pmatrix} -4 & 1 & -3 & -5 & -4 & -4 \\ 0 & 4 & 4 & -4 & -5 & -1 \\ -4 & -3 & -7 & -1 & 1 & -3 \\ 1 & 2 & 3 & -1 & 1 & -3 \end{pmatrix}.$$

$$22. \left(\begin{array}{cccccc} 1 & 3 & 4 & -2 & -4 & 2 \\ 0 & 5 & 5 & -5 & -5 & 0 \\ 1 & -2 & -1 & 3 & 1 & 2 \\ -4 & -2 & -6 & -2 & 2 & -4 \end{array}\right).$$

$$23. \begin{pmatrix} 1 & 2 & -1 & 3 & -2 & -4 \\ 3 & 4 & -1 & 7 & -4 & -1 \\ -2 & -2 & 0 & -4 & 2 & -3 \\ -4 & -3 & -1 & -7 & 3 & 2 \end{pmatrix}.$$

$$24. \left(\begin{array}{cccccc} 1 & -4 & -3 & 5 & -3 & 4 \\ -2 & -2 & -4 & 0 & -4 & 6 \\ 3 & -2 & 1 & 5 & 1 & -2 \\ -2 & 1 & -1 & -3 & -2 & -4 \end{array}\right).$$

$$25. \begin{pmatrix} -4 & -3 & -7 & -1 & 3 & -3 \\ 0 & -1 & -1 & 1 & -1 & -4 \\ -4 & -2 & -6 & -2 & 4 & 1 \\ 2 & -4 & -2 & 6 & -4 & 1 \end{pmatrix}.$$

$$26. \begin{pmatrix} -3 & 1 & -2 & -4 & -3 & -4 \\ -1 & -1 & -2 & 0 & -1 & -6 \\ -2 & 2 & 0 & -4 & -2 & 2 \\ -3 & 1 & -2 & -4 & 1 & 3 \end{pmatrix}.$$

$$27. \begin{pmatrix} 2 & -2 & 0 & 4 & 1 & 1 \\ -1 & 0 & -1 & -1 & -2 & 3 \\ 3 & -2 & 1 & 5 & 3 & -2 \\ -4 & -3 & -7 & -1 & -3 & -2 \end{pmatrix}.$$

$$28. \left(\begin{array}{ccccccc} -2 & 1 & -1 & -3 & 3 & -3 \\ -3 & -1 & -4 & -2 & 6 & -4 \\ 1 & 2 & 3 & -1 & -3 & 1 \\ 1 & 1 & 2 & 0 & 1 & -4 \end{array}\right).$$

$$29. \begin{pmatrix} 1 & 1 & 2 & 0 & -4 & 2 \\ 4 & -2 & 2 & 6 & -6 & -2 \\ -3 & 3 & 0 & -6 & 2 & 4 \\ -4 & -2 & -6 & -2 & 4 & 3 \end{pmatrix}.$$

$$30. \begin{pmatrix} -2 & 2 & 0 & -4 & 1 & 2 \\ 1 & 4 & 5 & -3 & 5 & -1 \\ -3 & -2 & -5 & -1 & -4 & 3 \\ 1 & -3 & -2 & 4 & 1 & 4 \end{pmatrix}.$$

31.
$$\begin{pmatrix} -4 & -4 & -8 & 0 & 2 & -2 \\ 0 & -6 & -6 & 6 & 6 & 1 \\ -4 & 2 & -2 & -6 & -4 & -3 \\ -3 & 1 & -2 & -4 & -4 & 2 \end{pmatrix}.$$

$$32. \begin{pmatrix} -1 & -8 & -5 & -3 & 3 & -4 \\ 0 & -6 & -3 & -3 & 7 & -3 \\ -1 & -2 & -2 & 0 & -4 & -1 \\ -1 & -8 & -5 & -3 & 3 & -4 \end{pmatrix}.$$

$$33. \begin{pmatrix} -3 & 1 & -2 & -4 & -2 & -4 \\ -4 & 4 & 0 & -8 & -3 & -5 \\ 1 & -3 & -2 & 4 & 1 & 1 \\ -4 & -2 & -6 & -2 & -2 & -2 \end{pmatrix}.$$

$$34. \begin{pmatrix} -3 & 4 & 1 & -7 & -2 & -3 \\ -1 & 6 & 5 & -7 & -4 & 1 \\ -2 & -2 & -4 & 0 & 2 & -4 \\ 4 & 1 & 5 & 3 & -3 & -4 \end{pmatrix}.$$

$$35. \left(\begin{array}{cccccc} 3 & 2 & 5 & 1 & -2 & -4 \\ 7 & -1 & 6 & 8 & -4 & 0 \\ -4 & 3 & -1 & -7 & 2 & -4 \\ 2 & 2 & 4 & 0 & -2 & 3 \end{array}\right).$$

$$36. \begin{pmatrix} 2 & 1 & 3 & 1 & -2 & -4 \\ 6 & -1 & 5 & 7 & -6 & -7 \\ -4 & 2 & -2 & -6 & 4 & 3 \\ 3 & 4 & 7 & -1 & 1 & -2 \end{pmatrix}.$$

$$37. \begin{pmatrix} -2 & 1 & -1 & -3 & 1 & -4 \\ -4 & 4 & 0 & -8 & -3 & -5 \\ 2 & -3 & -1 & 5 & 4 & 1 \\ 1 & -3 & -2 & 4 & -3 & 1 \end{pmatrix}.$$

$$39. \begin{pmatrix} -3 & 3 & 0 & -6 & -3 & 2 \\ 0 & 5 & 5 & -5 & -7 & 4 \\ -3 & -2 & -5 & -1 & 4 & -2 \\ -4 & 1 & -3 & -5 & 4 & -3 \end{pmatrix}.$$

$$40. \begin{pmatrix} -2 & 2 & 0 & -4 & 3 & -2 \\ -4 & 4 & 0 & -8 & 6 & -4 \\ 2 & -2 & 0 & 4 & -3 & 2 \\ -4 & -2 & -6 & -2 & 2 & 2 \end{pmatrix}.$$

41.
$$\begin{pmatrix} -2 & 4 & 2 & -6 & -2 & -3 \\ -4 & 3 & -1 & -7 & -6 & 0 \\ 2 & 1 & 3 & 1 & 4 & -3 \\ -3 & -4 & -7 & 1 & 2 & 1 \end{pmatrix}.$$

$$42. \begin{pmatrix} 1 & 2 & 3 & -1 & 2 & -3 \\ 3 & 1 & 4 & 2 & -1 & -6 \\ -2 & 1 & -1 & -3 & 3 & 3 \\ -2 & -4 & -6 & 2 & 2 & -4 \end{pmatrix}.$$

$$43. \begin{pmatrix} -2 & 2 & 0 & -4 & 4 & -3 \\ -4 & -2 & -6 & -2 & 7 & -1 \\ 2 & 4 & 6 & -2 & -3 & -2 \\ 1 & 1 & 2 & 0 & -2 & 2 \end{pmatrix}.$$

$$44. \begin{pmatrix} -3 & 1 & -2 & -4 & 1 & -3 \\ 0 & -2 & -2 & 2 & 0 & 1 \\ -3 & 3 & 0 & -6 & 1 & -4 \\ 4 & 1 & 5 & 3 & -2 & -4 \end{pmatrix}.$$

$$45. \begin{pmatrix} 1 & -3 & -2 & 4 & 1 & 3 \\ -2 & -7 & -9 & 5 & 0 & 2 \\ 3 & 4 & 7 & -1 & 1 & 1 \\ 1 & -2 & -1 & 3 & -4 & -3 \end{pmatrix}.$$

$$46. \begin{pmatrix} -4 & -4 & -8 & 0 & -3 & -2 \\ -1 & -7 & -8 & 6 & -1 & -3 \\ -3 & 3 & 0 & -6 & -2 & 1 \\ 1 & 3 & 4 & -2 & 3 & 3 \end{pmatrix}.$$

$$47. \begin{pmatrix} -4 & -2 & -6 & -2 & 2 & -4 \\ -5 & 1 & -4 & -6 & 1 & -5 \\ 1 & -3 & -2 & 4 & 1 & 1 \\ -2 & 3 & 1 & -5 & -4 & 1 \end{pmatrix}.$$

$$48. \left(\begin{array}{ccccccc} 2 & -3 & -1 & 5 & -4 & -2 \\ -1 & 1 & 0 & -2 & -6 & 1 \\ 3 & -4 & -1 & 7 & 2 & -3 \\ -4 & 1 & -3 & -5 & 1 & 4 \end{array}\right).$$

$$49. \begin{pmatrix} 1 & 2 & 3 & -1 & -2 & 1 \\ 5 & -1 & 4 & 6 & -4 & -1 \\ -4 & 3 & -1 & -7 & 2 & 2 \\ 2 & 1 & 3 & 1 & 1 & -3 \end{pmatrix}.$$

$$50. \begin{pmatrix} -2 & -2 & -4 & 0 & 4 & 1 \\ 0 & -3 & -3 & 3 & 2 & 0 \\ -2 & 1 & -1 & -3 & 2 & 1 \\ -4 & -2 & -6 & -2 & -3 & -2 \end{pmatrix}.$$

$$51. \left(\begin{array}{ccccccc} 1 & -3 & -2 & 4 & 1 & -2 \\ 4 & -4 & 0 & 8 & 0 & 0 \\ -3 & 1 & -2 & -4 & 1 & -2 \\ 3 & 1 & 4 & 2 & -2 & 4 \end{array}\right).$$

$$52. \left(\begin{array}{cccccc} 1 & 1 & 2 & 0 & 3 & 4 \\ -2 & 5 & 3 & -7 & 6 & 8 \\ 3 & -4 & -1 & 7 & -3 & -4 \\ 3 & 2 & 5 & 1 & -3 & 4 \end{array}\right).$$

$$53. \begin{pmatrix} -3 & 2 & -1 & -5 & -3 & -4 \\ -4 & 4 & 0 & -8 & -7 & -2 \\ 1 & -2 & -1 & 3 & 4 & -2 \\ -2 & 3 & 1 & -5 & 1 & -4 \end{pmatrix}.$$

$$54. \begin{pmatrix} 4 & 2 & 6 & 2 & 1 & 4 \\ 8 & 1 & 9 & 7 & -3 & 2 \\ -4 & 1 & -3 & -5 & 4 & 2 \\ -3 & -3 & -6 & 0 & -3 & -4 \end{pmatrix}.$$

$$55. \left(\begin{array}{cccccc} 2 & -4 & -2 & 1 & -3 & 2 \\ 4 & -8 & -4 & 2 & -6 & 4 \\ -2 & 4 & 2 & -1 & 3 & -2 \\ 1 & 1 & 2 & 0 & -4 & 3 \end{array}\right).$$

$$56. \begin{pmatrix} -2 & -3 & 1 & -5 & -2 & 3 \\ -3 & -2 & -1 & -5 & -3 & 2 \\ 1 & -1 & 2 & 0 & 1 & 1 \\ -2 & -1 & -1 & -3 & -2 & -4 \end{pmatrix}.$$

57.
$$\begin{pmatrix} 3 & 2 & 5 & 1 & 3 & 1 \\ 7 & -1 & 6 & 8 & -1 & 4 \\ -4 & 3 & -1 & -7 & 4 & -3 \\ -3 & -2 & -5 & -1 & -3 & -4 \end{pmatrix}.$$

$$58. \begin{pmatrix} -2 & -3 & -5 & 1 & -2 & -2 \\ 0 & 1 & 1 & -1 & 2 & -3 \\ -2 & -4 & -6 & 2 & -4 & 1 \\ 1 & 2 & 3 & -1 & 2 & 1 \end{pmatrix}.$$

$$\mathbf{59.} \left(\begin{array}{ccccccccc} 2 & -4 & -2 & 1 & -4 & 4 \\ 4 & -8 & -4 & 2 & -5 & 6 \\ -2 & 4 & 2 & -1 & 1 & -2 \\ 2 & -4 & -2 & 1 & 4 & -4 \end{array} \right).$$

60.
$$\begin{pmatrix} -4 & 4 & 0 & -8 & -4 & -4 \\ -6 & 3 & -3 & -9 & -7 & -6 \\ 2 & 1 & 3 & 1 & 3 & 2 \\ -2 & -4 & -6 & 2 & -4 & 4 \end{pmatrix}.$$

3. Системы линейных уравнений, решаемые по формулам Крамера

3.1. Линейные системы третьего порядка

1.
$$\begin{cases} x_1 + 4x_2 + x_3 = 8, \\ x_1 + 2x_2 + x_3 = 6, \\ 4x_1 - 2x_2 + x_3 = 8. \end{cases}$$

2.
$$\begin{cases}
-3x_1 + x_2 + 3x_3 = 6, \\
-2x_1 + x_2 + 3x_3 = 7, \\
4x_1 + x_2 + 2x_3 = 9.
\end{cases}$$

3.
$$\begin{cases} x_1 + 2x_2 - 2x_3 = 1, \\ -3x_1 + 2x_2 - 2x_3 = 2, \\ 2x_1 - 3x_2 + 3x_3 = 2. \end{cases}$$

4.
$$\begin{cases} x_1 + 3x_2 + 3x_3 = -6, \\ x_1 + 2x_2 + 2x_3 = -5, \\ x_1 - 4x_2 - 3x_3 = -3. \end{cases}$$

5.
$$\begin{cases} 4x_1 - 3x_2 - 4x_3 = 9, \\ 4x_1 - 2x_2 - 3x_3 = 7, \\ x_1 + 4x_2 + 2x_3 = -9. \end{cases}$$

6.
$$\begin{cases} x_1 + x_2 - 2x_3 = 4, \\ 2x_1 + x_2 - 2x_3 = 6, \\ x_1 + x_2 - 3x_3 = 3. \end{cases}$$

7.
$$\begin{cases} 2x_1 + x_2 + 3x_3 = -4, \\ -4x_1 + x_2 - 4x_3 = -2, \\ 2x_1 + x_2 + 4x_3 = -6. \end{cases}$$

- 8. $\begin{cases} x_1 + 2x_2 + 2x_3 = 2, \\ 3x_1 2x_2 2x_3 = 1, \\ 3x_1 + 4x_2 + 4x_3 = -4. \end{cases}$
- $\mathbf{g.} \begin{cases} -3x_1 + x_2 2x_3 = 1, \\ x_1 + x_2 2x_3 = 5, \\ -4x_1 + x_2 4x_3 = 8. \end{cases}$
- 10. $\begin{cases} 3x_1 + 4x_2 4x_3 = 7, \\ -3x_1 3x_2 + 4x_3 = -6, \\ x_1 2x_2 4x_3 = 7. \end{cases}$
- 11. $\begin{cases} 3x_1 4x_2 3x_3 = 5, \\ 3x_1 2x_2 2x_3 = 4, \\ 4x_1 3x_2 4x_3 = 2. \end{cases}$
- 12. $\begin{cases} x_1 2x_2 3x_3 = -4, \\ -2x_1 3x_2 4x_3 = 6, \\ 2x_1 + 2x_2 + 3x_3 = -5. \end{cases}$
- 13. $\begin{cases} 3x_1 2x_2 + 2x_3 = -8, \\ 3x_1 + 2x_2 3x_3 = 0, \\ x_1 + 2x_2 3x_3 = 4. \end{cases}$
- 14. $\begin{cases}
 -2x_1 + 3x_2 2x_3 &= 3, \\
 -3x_1 + 2x_2 3x_3 &= 2, \\
 2x_1 2x_2 + 3x_3 &= -5.
 \end{cases}$
- 15. $\begin{cases} x_1 + 4x_2 4x_3 = 3, \\ x_1 3x_2 + 3x_3 = 3, \\ -3x_1 + 4x_2 4x_3 = -3. \end{cases}$
- 16. $\begin{cases} 4x_1 2x_2 3x_3 = 7, \\ -3x_1 2x_2 + 4x_3 = -7, \\ 2x_1 + 3x_2 3x_3 = 6. \end{cases}$

17.
$$\begin{cases} x_1 + x_2 + 2x_3 = 7, \\ x_1 + x_2 + 3x_3 = 8, \\ -2x_1 + x_2 + 2x_3 = 4. \end{cases}$$

18.
$$\begin{cases} x_1 + 2x_2 + 2x_3 = -4, \\ -3x_1 - 3x_2 - 4x_3 = 7, \\ -4x_1 + 2x_2 - 3x_3 = -4. \end{cases}$$

19.
$$\begin{cases} x_1 - 3x_2 + 4x_3 = 4, \\ x_1 - 2x_2 + 3x_3 = 4, \\ -2x_1 + 3x_2 + 4x_3 = 1. \end{cases}$$

20.
$$\begin{cases} x_1 - 2x_2 + 3x_3 = 2, \\ -2x_1 + 3x_2 - 2x_3 = 3, \\ x_1 - 3x_2 + 3x_3 = 1. \end{cases}$$

21.
$$\begin{cases} 3x_1 + 4x_2 - 3x_3 = -5, \\ x_1 + 3x_2 - 3x_3 = -8, \\ -3x_1 - 3x_2 + 2x_3 = 2. \end{cases}$$

22.
$$\begin{cases} x_1 + 2x_2 + 2x_3 = 1, \\ x_1 + 4x_2 + 4x_3 = 4, \\ x_1 - 4x_2 - 4x_3 = 1. \end{cases}$$

23.
$$\begin{cases} 2x_1 + 3x_2 + 2x_3 = -8, \\ x_1 - 3x_2 + 4x_3 = 8, \\ x_1 - 3x_2 + 3x_3 = 7. \end{cases}$$

24.
$$\begin{cases} 2x_1 + 3x_2 - 2x_3 = -4, \\ 4x_1 + 4x_2 - 3x_3 = -2, \\ -3x_1 - 3x_2 + 4x_3 = -2. \end{cases}$$

25.
$$\begin{cases} x_1 - 2x_2 + 2x_3 = 1, \\ -2x_1 + 3x_2 - 2x_3 = -4, \\ x_1 + 4x_2 - 2x_3 = -3. \end{cases}$$

26.
$$\begin{cases} -2x_1 + 3x_2 + x_3 = 0, \\ -2x_1 + 4x_2 + x_3 = 1, \\ 3x_1 - 2x_2 + x_3 = 5. \end{cases}$$

27.
$$\begin{cases} -4x_1 + 3x_2 + x_3 = -5, \\ 4x_1 - 2x_2 + x_3 = 9, \\ -3x_1 + 3x_2 + x_3 = -2. \end{cases}$$

28.
$$\begin{cases} x_1 + x_2 - 4x_3 = 3, \\ 3x_1 + x_2 - 4x_3 = -3, \\ -3x_1 + x_2 - 4x_3 = -2. \end{cases}$$

29.
$$\begin{cases} x_1 - 2x_2 + x_3 = -4, \\ x_1 + 4x_2 + x_3 = 2, \\ 2x_1 + 3x_2 + x_3 = -3. \end{cases}$$

30.
$$\begin{cases}
-3x_1 + 4x_2 - 4x_3 = 6, \\
-2x_1 + 2x_2 - 3x_3 = 3, \\
x_1 - 4x_2 - 2x_3 = -8.
\end{cases}$$

3.2. Линейные системы четвёртого порядка

1.
$$\begin{cases} 3x_1 + 2x_2 - 5x_3 - 5x_4 = -7, \\ 4x_1 + 3x_2 - 4x_3 + 4x_4 = 3, \\ x_1 + 2x_2 - 3x_3 + 4x_4 = -2, \\ 2x_1 + 2x_2 - 3x_3 + 3x_4 = 0. \end{cases}$$

2.
$$\begin{cases} 3x_1 + 2x_2 + 3x_3 + 4x_4 = -4, \\ 3x_1 - 3x_2 - 3x_3 - 4x_4 = -9, \\ 2x_1 - 4x_2 - 4x_3 - 5x_4 = -7, \\ 2x_1 + 5x_2 + 3x_3 + 2x_4 = -5. \end{cases}$$

3.
$$\begin{cases}
-2x_1 + 2x_2 + 5x_3 + 2x_4 &= 5, \\
-4x_1 - 5x_2 + 2x_3 - 4x_4 &= -3, \\
x_1 - 3x_2 - 3x_3 - 3x_4 &= -5, \\
x_1 - 5x_2 - 3x_3 - 5x_4 &= -7.
\end{cases}$$

4.
$$\begin{cases} x_1 + 5x_2 + 2x_3 - 3x_4 = 1, \\ x_1 - 5x_2 - 3x_3 + 4x_4 = 9, \\ 2x_1 + 4x_2 + 2x_3 - 3x_4 = 4, \\ x_1 + 2x_2 + 2x_3 - 3x_4 = -2. \end{cases}$$

5.
$$\begin{cases} 3x_1 + 4x_2 + 4x_3 + 5x_4 = 1, \\ -2x_1 + 3x_2 + 3x_3 + 3x_4 = -3, \\ x_1 + 2x_2 + 2x_3 + 5x_4 = -2, \\ x_1 - 4x_2 - 4x_3 - 5x_4 = 2. \end{cases}$$

6.
$$\begin{cases} 3x_1 + 2x_2 + 3x_3 - 3x_4 = 5, \\ -3x_1 - 3x_2 - 3x_3 + 4x_4 = -6, \\ -2x_1 + 5x_2 - 4x_3 - 5x_4 = -1, \\ x_1 + 2x_2 + 2x_3 - 3x_4 = 2. \end{cases}$$

7.
$$\begin{cases} x_1 + 2x_2 + 2x_3 - 4x_4 = 2, \\ x_1 - 4x_2 - 5x_3 + 3x_4 = 4, \\ -2x_1 - 5x_2 - 5x_3 + 4x_4 = 6, \\ 4x_1 + 5x_2 + 4x_3 - 3x_4 = -8. \end{cases}$$

8.
$$\begin{cases} x_1 + 2x_2 - 5x_3 + 2x_4 = -5, \\ 3x_1 + 4x_2 + 4x_3 - 3x_4 = 2, \\ x_1 + 2x_2 - 4x_3 + 2x_4 = -2, \\ 2x_1 + 2x_2 + 2x_3 - 3x_4 = -6. \end{cases}$$

$$g. \begin{cases} -2x_1 + 5x_2 + 4x_3 + 4x_4 &= 9, \\ x_1 + 2x_2 + 2x_3 + 2x_4 &= 0, \\ -3x_1 + 4x_2 + 5x_3 + 4x_4 &= 7, \\ 4x_1 + 4x_2 + 2x_3 + 3x_4 &= -1. \end{cases}$$

- 10. $\begin{cases} x_1 5x_2 3x_3 + 5x_4 = -8, \\ 4x_1 + 2x_2 + 4x_3 + 3x_4 = 5, \\ 4x_1 + 5x_2 + 5x_3 + 2x_4 = 9, \\ -2x_1 4x_2 5x_3 + 2x_4 = -8. \end{cases}$
- 11. $\begin{cases} x_1 + 3x_2 + 4x_3 + 4x_4 = 1, \\ x_1 + 2x_2 5x_3 + 2x_4 = -4, \\ x_1 + 2x_2 + 5x_3 + 3x_4 = 2, \\ 2x_1 + 2x_2 + 5x_3 + 4x_4 = -1. \end{cases}$
- 12. $\begin{cases} x_1 + 4x_2 + 2x_3 + 3x_4 = 0, \\ x_1 + 2x_2 + 2x_3 + 4x_4 = 9, \\ -4x_1 + 2x_2 4x_3 + 3x_4 = -5, \\ x_1 + 4x_2 + 2x_3 + 2x_4 = -3. \end{cases}$
- 13. $\begin{cases} x_1 + 2x_2 + 2x_3 + 2x_4 = 1, \\ x_1 + 3x_2 + 2x_3 + 3x_4 = 3, \\ 2x_1 + 2x_2 + 5x_3 + 2x_4 = -3, \\ 3x_1 4x_2 + 5x_3 4x_4 = -4. \end{cases}$
- 14. $\begin{cases} x_1 4x_2 + 4x_3 5x_4 = 7, \\ 4x_1 + 3x_2 4x_3 4x_4 = -8, \\ -3x_1 4x_2 + 5x_3 + 3x_4 = 7, \\ -2x_1 + 3x_2 3x_3 + 5x_4 = -4. \end{cases}$
- 15. $\begin{cases} x_1 + 5x_2 5x_3 + 2x_4 = 8, \\ 2x_1 + 5x_2 5x_3 + 2x_4 = 9, \\ x_1 + 5x_2 4x_3 + 3x_4 = 6, \\ x_1 + 2x_2 + 3x_3 + 4x_4 = -8. \end{cases}$
- 16. $\begin{cases} 4x_1 + 2x_2 3x_3 5x_4 = 5, \\ x_1 3x_2 + 3x_3 + 3x_4 = 1, \\ -4x_1 + 5x_2 5x_3 5x_4 = -4, \\ -3x_1 + 3x_2 3x_3 4x_4 = -4. \end{cases}$

17.
$$\begin{cases} x_1 + 5x_2 + 2x_3 + 5x_4 = -4, \\ -2x_1 + 2x_2 - 3x_3 + 2x_4 = -3, \\ x_1 + 3x_2 + 3x_3 + 3x_4 = 1, \\ x_1 + 2x_2 + 2x_3 + 2x_4 = -3. \end{cases}$$

18.
$$\begin{cases}
-2x_1 - 4x_2 + 3x_3 + 5x_4 = 1, \\
-3x_1 - 5x_2 + 2x_3 + 2x_4 = 9, \\
-2x_1 - 5x_2 - 4x_3 + 2x_4 = 0, \\
x_1 + 3x_2 + 2x_3 - 3x_4 = 4.
\end{cases}$$

19.
$$\begin{cases} x_1 + 2x_2 + 2x_3 + 4x_4 = 5, \\ x_1 + 2x_2 + 2x_3 + 2x_4 = 3, \\ 3x_1 + 4x_2 + 5x_3 + 4x_4 = 4, \\ -4x_1 + 2x_2 - 4x_3 - 5x_4 = 5. \end{cases}$$

20.
$$\begin{cases} x_1 + 2x_2 + 2x_3 + 2x_4 = -1, \\ -2x_1 - 4x_2 - 3x_3 - 4x_4 = 4, \\ 4x_1 + 4x_2 + 3x_3 + 2x_4 = -4, \\ x_1 + 2x_2 + 4x_3 + 4x_4 = 5. \end{cases}$$

21.
$$\begin{cases} 2x_1 + 3x_2 + 5x_3 + 5x_4 = 5, \\ -4x_1 - 3x_2 - 3x_3 - 3x_4 = -9, \\ -4x_1 - 4x_2 - 5x_3 - 5x_4 = -9, \\ -2x_1 + 3x_2 + 5x_3 + 2x_4 = 2. \end{cases}$$

22.
$$\begin{cases} x_1 + 4x_2 - 3x_3 - 3x_4 = 5, \\ x_1 - 3x_2 + 3x_3 + 4x_4 = -7, \\ -3x_1 - 5x_2 + 2x_3 + 3x_4 = -3, \\ 2x_1 + 2x_2 - 3x_3 + 3x_4 = -2. \end{cases}$$

23.
$$\begin{cases}
-3x_1 - 4x_2 - 4x_3 - 3x_4 = -4, \\
x_1 + 2x_2 + 2x_3 + 2x_4 = 2, \\
x_1 + 2x_2 - 5x_3 - 4x_4 = 5, \\
-4x_1 - 5x_2 - 4x_3 - 3x_4 = -4.
\end{cases}$$

- 24. $\begin{cases} 4x_1 + 2x_2 + 2x_3 3x_4 = 2, \\ x_1 5x_2 5x_3 + 3x_4 = -3, \\ x_1 + 2x_2 + 2x_3 + 2x_4 = 3, \\ -4x_1 + 5x_2 + 5x_3 + 2x_4 = 3. \end{cases}$
- 25. $\begin{cases} x_1 + 5x_2 5x_3 3x_4 = 3, \\ x_1 + 3x_2 3x_3 3x_4 = 1, \\ -3x_1 4x_2 + 3x_3 + 3x_4 = 0, \\ -3x_1 + 4x_2 4x_3 + 5x_4 = 6. \end{cases}$
- 26. $\begin{cases} x_1 4x_2 + 2x_3 + 3x_4 = -4, \\ 2x_1 5x_2 + 4x_3 + 5x_4 = -3, \\ 3x_1 5x_2 + 5x_3 + 4x_4 = 4, \\ 2x_1 3x_2 + 2x_3 + 2x_4 = 3. \end{cases}$
- $\mathbf{27.} \begin{cases} -3x_1 4x_2 3x_3 4x_4 = -6, \\ x_1 4x_2 3x_3 3x_4 = -5, \\ -4x_1 + 2x_2 + 3x_3 + 2x_4 = -1, \\ -3x_1 + 2x_2 + 4x_3 + 3x_4 = -2. \end{cases}$
- 28. $\begin{cases} 4x_1 + 3x_2 + 4x_3 + 2x_4 = -4, \\ x_1 + 4x_2 + 2x_3 + 5x_4 = 4, \\ -4x_1 5x_2 3x_3 5x_4 = 3, \\ -4x_1 4x_2 3x_3 4x_4 = 5. \end{cases}$
- $29. \begin{cases} -4x_1 4x_2 4x_3 5x_4 = 4, \\ 3x_1 + 3x_2 + 5x_3 + 4x_4 = -4, \\ -3x_1 3x_2 + 2x_3 + 2x_4 = 4, \\ -3x_1 3x_2 + 4x_3 4x_4 = 1. \end{cases}$
- 30. $\begin{cases} 4x_1 + 5x_2 4x_3 + 3x_4 = -1, \\ 4x_1 + 2x_2 5x_3 + 4x_4 = -3, \\ x_1 + 2x_2 + 3x_3 5x_4 = 0, \\ x_1 3x_2 3x_3 + 3x_4 = -3. \end{cases}$

4. Системы линейных уравнений

4.1. Однородные системы

Найти общее решение систем и записать его в векторной форме. Выделить фундаментальную систему решений.

1.
$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = 0, \\ x_2 - x_3 + x_4 = 0, \\ x_1 + 3x_2 - 3x_4 = 0, \\ 7x_2 - 3x_3 - x_4 = 0. \end{cases}$$

2.
$$\begin{cases} 3x_1 + 4x_2 - 5x_3 + 7x_4 = 0, \\ 2x_1 - 3x_2 + 3x_3 - 2x_4 = 0, \\ 4x_1 + 11x_2 - 13x_3 + 16x_4 = 0, \\ 7x_1 - 2x_2 + x_3 + 3x_4 = 0. \end{cases}$$

3.
$$\begin{cases} x_1 + 2x_2 + 3x_3 - x_4 = 0, \\ 3x_1 + 2x_2 + x_3 - x_4 = 0, \\ 2x_1 + 3x_2 + x_3 + x_4 = 0, \\ 2x_1 + 2x_2 + 2x_3 - x_4 = 0, \\ 5x_1 + 5x_2 + 2x_3 = 0. \end{cases}$$

4.
$$\begin{cases} 4x_1 + 7x_2 + 10x_3 - 7x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0. \end{cases}$$

5.
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 = 0, \\ 3x_1 - 2x_2 + 2x_3 - 3x_4 = 0, \\ 5x_1 + x_2 - x_3 + 2x_4 = 0, \\ 2x_1 - x_2 + x_3 - 3x_4 = 0. \end{cases}$$

6.
$$\begin{cases} 2x_1 - 4x_2 + 5x_3 + 3x_4 = 0, \\ 3x_1 - 6x_2 + 4x_3 + 2x_4 = 0, \\ x_1 - 2x_2 + 13x_3 + 9x_4 = 0. \end{cases}$$

7.
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 0, \\ 4x_1 + 7x_2 + 5x_3 = 0, \\ x_1 + x_2 - 4x_3 = 0, \\ 2x_1 + 9x_2 + 6x_3 = 0. \end{cases}$$

8.
$$\begin{cases} 2x_1 - x_2 + 5x_3 + 7x_4 = 0, \\ 4x_1 - 2x_2 + 7x_3 + 5x_4 = 0, \\ 2x_1 - x_2 + x_3 - 5x_4 = 0. \end{cases}$$

$$g. \begin{cases} x_1 + x_2 & -3x_4 - x_5 = 0, \\ x_1 - x_2 + 2x_3 - x_4 & = 0, \\ 4x_1 - 2x_2 + 6x_3 + 3x_4 - 4x_5 = 0, \\ 2x_1 + 4x_2 - 2x_3 + 4x_4 - 7x_5 = 0. \end{cases}$$

10.
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 0, \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 = 0, \\ x_2 + 2x_3 + 2x_4 + 6x_5 = 0, \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 = 0. \end{cases}$$

11.
$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + x_5 = 0, \\ 2x_1 + x_2 - x_3 + 2x_4 - 3x_5 = 0, \\ 3x_1 - 2x_2 - x_3 + x_4 - 2x_5 = 0, \\ 2x_1 - 5x_2 + x_3 - 2x_4 + 2x_5 = 0. \end{cases}$$

12.
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 - x_5 = 0, \\ 2x_1 + x_2 - x_3 - x_4 + x_5 = 0, \\ x_1 + 7x_2 - 5x_3 - 5x_4 + 5x_5 = 0, \\ 3x_1 - x_2 - 2x_3 + x_4 - x_5 = 0. \end{cases}$$

13.
$$\begin{cases} x_1 + 4x_2 - 3x_3 = 0, \\ 3x_1 + 5x_2 - 7x_3 = 0, \\ 4x_1 - 5x_2 - 6x_3 = 0. \end{cases}$$

14.
$$\begin{cases} 2x_1 + 2x_2 - x_3 - x_4 + x_5 = 0, \\ x_1 - x_2 + x_3 + x_4 - 2x_5 = 0, \\ 3x_1 + 3x_2 - 3x_3 - 3x_4 + 4x_5 = 0, \\ 4x_1 + 5x_2 - 5x_3 - 5x_4 + 7x_5 = 0. \end{cases}$$

15.
$$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 + x_5 = 0, \\ x_1 + 2x_2 - x_3 + x_4 - 2x_5 = 0, \\ 4x_1 - 10x_2 + 5x_3 - 5x_4 + 7x_5 = 0, \\ 2x_1 - 14x_2 + 7x_3 - 7x_4 + 11x_5 = 0. \end{cases}$$

16.
$$\begin{cases} x_1 + 3x_2 + 5x_3 - 4x_4 &= 0, \\ x_1 + 3x_2 + 2x_3 - 2x_4 + x_5 &= 0, \\ x_1 - 2x_2 + x_3 + x_4 - x_5 &= 0, \\ x_1 - 4x_2 + x_3 + x_4 - x_5 &= 0, \\ x_1 + 2x_2 + x_3 - x_4 + x_5 &= 0. \end{cases}$$

17.
$$\begin{cases} 2x_1 - x_2 + x_3 - x_4 = 0, \\ 2x_1 - x_2 - 3x_4 = 0, \\ 3x_1 - x_3 + x_4 = 0, \\ 2x_1 + 2x_2 - 2x_3 + 5x_4 = 0. \end{cases}$$

18.
$$\begin{cases} 3x_1 + 3x_2 - x_3 + 3x_4 + 2x_5 = 0, \\ 2x_1 + 3x_2 - x_3 + 4x_4 + 2x_5 = 0, \\ 7x_1 + 9x_2 - 3x_3 + 5x_4 + 6x_5 = 0, \\ 5x_1 + 9x_2 - 3x_3 + x_4 + 6x_5 = 0. \end{cases}$$

19.
$$\begin{cases} 3x_1 - x_2 + 2x_3 + 3x_4 + 2x_5 = 0, \\ 9x_1 - 3x_2 + 4x_3 + 8x_4 + 9x_5 = 0, \\ 6x_1 - 2x_2 + 6x_3 + 7x_4 + x_5 = 0, \\ 3x_1 - x_2 + 4x_3 + 4x_4 - x_5 = 0. \end{cases}$$

$$20. \begin{cases} 2x_1 + 3x_2 + 2x_4 + x_5 = 0, \\ 5x_1 + 7x_2 + x_3 + 3x_4 + 4x_5 = 0, \\ 4x_1 + 5x_2 + 2x_3 + x_4 + 5x_5 = 0, \\ 7x_1 + 10x_2 + x_3 + 6x_4 + 5x_5 = 0. \end{cases}$$

21.
$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 0, \\ 8x_1 + 12x_2 - 9x_3 + 8x_4 = 0, \\ 4x_1 + 6x_2 + 3x_3 - 2x_4 = 0, \\ 2x_1 + 3x_2 + 9x_3 - 7x_4 = 0. \end{cases}$$

22.
$$\begin{cases} 5x_1 + 3x_2 + 4x_3 = 0, \\ 6x_1 + 5x_2 + 6x_3 = 0, \\ x_1 + 2x_2 + 2x_3 = 0, \\ 7x_1 + 7x_2 + 8x_3 = 0. \end{cases}$$

23.
$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 0, \\ x_1 + 3x_2 + 5x_3 - 2x_4 = 0, \\ x_1 + 5x_2 - 9x_3 + 8x_4 = 0, \\ 5x_1 + 18x_2 + 4x_3 + 5x_4 = 0. \end{cases}$$

24.
$$\begin{cases} 2x_1 + 3x_2 + 5x_3 + 6x_4 = 0, \\ 3x_1 + 4x_2 + 6x_3 + 7x_4 = 0, \\ 3x_1 + x_2 + x_3 + 4x_4 = 0. \end{cases}$$

25.
$$\begin{cases} 3x_1 + 2x_2 + 2x_3 + 2x_4 - 2x_5 = 0, \\ 6x_1 + 4x_2 + 7x_3 + 4x_4 + 5x_5 = 0, \\ 3x_1 + 2x_2 - x_3 + 2x_4 - 11x_5 = 0, \\ 6x_1 + 4x_2 + x_3 + 4x_4 - 13x_5 = 0. \end{cases}$$

26.
$$\begin{cases} 4x_1 - 6x_2 + 5x_3 = 0, \\ 6x_1 - 9x_2 + 10x_3 = 0, \\ 2x_1 - 3x_2 + 5x_3 = 0. \end{cases}$$

$$27. \begin{cases} 2x_1 + 7x_2 + 4x_3 + 5x_4 + 8x_5 = 0, \\ 2x_1 - 3x_2 + 4x_3 - 4x_5 = 0, \\ x_1 - 9x_2 - 3x_3 - 5x_4 - 14x_5 = 0, \\ 3x_1 + 5x_2 + 7x_3 + 5x_4 + 6x_5 = 0. \end{cases}$$

28.
$$\begin{cases} 3x_1 - x_2 + x_3 - 2x_4 + 6x_5 = 0, \\ 3x_1 - x_2 + 2x_3 + 6x_4 + 3x_5 = 0, \\ 6x_1 - 2x_2 + 5x_3 + 20x_4 + 3x_5 = 0, \\ 9x_1 - 3x_2 + 4x_3 + 2x_4 + 15x_5 = 0. \end{cases}$$

29.
$$\begin{cases} 6x_1 + 4x_2 + 2x_3 - 3x_4 + 3x_5 = 0, \\ 9x_1 + 8x_2 + 5x_3 + 6x_4 + 9x_5 = 0, \\ 3x_1 + 8x_2 + 7x_3 + 30x_4 + 15x_5 = 0, \\ 6x_1 + 6x_2 + 4x_3 + 7x_4 + 5x_5 = 0. \end{cases}$$

30.
$$\begin{cases} x_1 & -x_3 & = 0, \\ x_2 & -x_4 & = 0, \\ x_1 & -x_3 & +x_5 & = 0, \\ x_2 & -x_4 & +x_6 & = 0, \\ x_3 & -x_5 & = 0, \\ x_4 & -x_6 & = 0. \end{cases}$$

31.
$$\begin{cases} 2x_1 + x_2 - 2x_3 + x_4 + x_5 - x_6 = 0, \\ 4x_1 + 2x_2 + x_3 - x_4 - x_5 + x_6 = 0, \\ 2x_1 + x_2 + 7x_3 - 5x_4 - 5x_5 + 5x_6 = 0, \\ 6x_1 + 3x_2 - x_3 - 2x_4 + x_5 - x_6 = 0. \end{cases}$$

32.
$$\begin{cases} x_1 - x_2 - 2x_3 + 3x_4 - 4x_5 = 0, \\ x_1 - x_2 - x_3 + 2x_4 - 3x_5 = 0, \\ x_1 - x_2 + 3x_3 - 3x_5 = 0, \\ x_1 - x_2 + 10x_3 - 3x_4 - 4x_5 = 0. \end{cases}$$

33.
$$\begin{cases} 8x_1 - 5x_2 - 6x_3 + 3x_4 = 0, \\ 4x_1 - x_2 - 3x_3 + 2x_4 = 0, \\ 12x_1 - 7x_2 - 9x_3 + 5x_4 = 0. \end{cases}$$

34.
$$\begin{cases} x_1 + 2x_2 + 3x_3 - 3x_4 = 0, \\ 4x_1 + 7x_2 + 5x_3 - 5x_4 = 0, \\ x_1 + x_2 - 4x_3 + 4x_4 = 0, \\ 2x_1 + 9x_2 + 6x_3 - 6x_4 = 0. \end{cases}$$

35.
$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 - x_5 = 0, \\ 2x_1 - x_2 & -3x_5 = 0, \\ 3x_1 - x_3 - x_4 + x_5 = 0, \\ 2x_1 + 2x_2 - 2x_3 - 2x_4 + 5x_5 = 0. \end{cases}$$

36.
$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 + 2x_5 = 0, \\ 3x_1 - 2x_2 + 2x_3 - 3x_4 - 6x_5 = 0, \\ 5x_1 + x_2 - x_3 + 2x_4 + 4x_5 = 0, \\ 2x_1 - x_2 + x_3 - 3x_4 - 6x_5 = 0. \end{cases}$$

37.
$$\begin{cases} x_1 & -x_3 & +x_5 & = 0, \\ x_2 & -x_4 & +x_6 & = 0, \\ x_1 - x_2 & +x_5 - x_6 & = 0, \\ x_2 - x_3 & +x_6 & = 0, \\ x_1 & -x_4 + x_5 & = 0. \end{cases}$$

38.
$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 0, \\ 2x_1 + 3x_2 + 4x_3 + x_4 = 0, \\ 3x_1 + 4x_2 + x_3 + 2x_4 = 0, \\ 4x_1 + x_2 + 2x_3 + 3x_4 = 0. \end{cases}$$

$$39. \begin{cases} 8x_1 - 5x_2 - 5x_3 - 6x_4 + 3x_5 = 0, \\ 4x_1 - x_2 - x_3 - 3x_4 + 2x_5 = 0, \\ 12x_1 - 7x_2 - 7x_3 - 9x_4 + 5x_5 = 0. \end{cases}$$

$$40. \begin{cases} x_1 + 3x_2 + 5x_3 - 5x_4 - 4x_5 &= 0, \\ x_1 + 3x_2 + 2x_3 - 2x_4 - 2x_5 + x_6 &= 0, \\ x_1 - 2x_2 + x_3 - x_4 - x_5 - x_6 &= 0, \\ x_1 - 4x_2 + x_3 + x_4 + x_5 - x_6 &= 0, \\ x_1 + 2x_2 + x_3 - x_4 - x_5 + x_6 &= 0. \end{cases}$$

41.
$$\begin{cases} 3x_1 + x_2 + x_3 + x_4 = 0, \\ x_1 + 3x_2 + x_3 + x_4 = 0, \\ x_1 + x_2 + 3x_3 + x_4 = 0, \\ x_1 + x_2 + x_3 + 3x_4 = 0. \end{cases}$$

42.
$$\begin{cases} 3x_1 + 3x_2 - x_3 + 3x_4 + 3x_5 + 2x_6 = 0, \\ 2x_1 + 3x_2 - x_3 + 4x_4 + 4x_5 + 2x_6 = 0, \\ 7x_1 + 9x_2 - 3x_3 + 5x_4 + 5x_5 + 6x_6 = 0, \\ 5x_1 + 9x_2 - 3x_3 + x_4 + x_5 + 6x_6 = 0. \end{cases}$$

43.
$$\begin{cases} 2x_1 + 3x_2 + 2x_4 - 2x_5 + x_6 = 0, \\ 5x_1 + 7x_2 + x_3 + 3x_4 - 3x_5 + 4x_6 = 0, \\ 4x_1 + 5x_2 + 2x_3 + x_4 - x_5 + 5x_6 = 0, \\ 7x_1 + 10x_2 + x_3 + 6x_4 - 6x_5 + 5x_6 = 0. \end{cases}$$

44.
$$\begin{cases} 2x_1 + 3x_2 - x_3 + 5x_4 = 0, \\ 3x_1 - x_2 + 2x_3 - 7x_4 = 0, \\ 4x_1 + x_2 - 3x_3 + 6x_4 = 0, \\ x_1 - 2x_2 + 4x_3 - 7x_4 = 0. \end{cases}$$

45.
$$\begin{cases} 2x_1 + x_2 + 2x_3 + 3x_4 - 3x_5 = 0, \\ 8x_1 + 4x_2 + 7x_3 + 5x_4 - 5x_5 = 0, \\ 2x_1 + x_2 + x_3 - 4x_4 + 4x_5 = 0, \\ 4x_1 + 2x_2 + 5x_3 + 6x_4 - 6x_5 = 0. \end{cases}$$

46.
$$\begin{cases} x_1 - 2x_2 + 2x_3 + 3x_4 + 4x_5 = 0, \\ 2x_1 - 4x_2 + 3x_3 + 4x_4 + x_5 = 0, \\ 3x_1 - 6x_2 + 4x_3 + x_4 + 2x_5 = 0, \\ 4x_1 - 8x_2 + x_3 + 2x_4 + 3x_5 = 0. \end{cases}$$

47.
$$\begin{cases} 4x_1 - 6x_2 - 5x_3 - x_4 = 0, \\ 6x_1 - 9x_2 + 10x_3 - 2x_4 = 0, \\ 2x_1 - 3x_2 + 5x_3 - x_4 = 0. \end{cases}$$

48.
$$\begin{cases} x_1 + x_2 + 3x_3 - 3x_4 + x_5 = 0, \\ 2x_1 + x_2 + 6x_3 - 4x_4 + 2x_5 = 0, \\ x_1 + 3x_3 - x_4 + x_5 = 0, \\ 5x_1 + 2x_2 + 15x_3 - 9x_4 + 3x_5 = 0. \end{cases}$$

49.
$$\begin{cases} x_1 + 3x_2 + 2x_3 = 0, \\ 2x_1 - 7x_2 + 3x_3 = 0, \\ 3x_1 - 5x_2 + 4x_3 = 0, \\ x_1 + 17x_2 + 4x_3 = 0. \end{cases}$$

50.
$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 0, \\ x_1 - 2x_2 + x_3 - x_4 = 0, \\ x_1 - 2x_2 + x_3 + 5x_4 = 0. \end{cases}$$

51.
$$\begin{cases} x_1 + x_2 + x_3 = 0, \\ x_1 + 2x_2 + 3x_3 = 0, \\ 4x_1 + 5x_2 + 6x_3 = 0, \\ 7x_1 - 8x_2 + 9x_3 = 0. \end{cases}$$

52.
$$\begin{cases} 3x_1 - 9x_2 + 15x_3 + 2x_4 + 5x_5 = 0, \\ x_1 - x_2 + 3x_3 + x_5 = 0, \\ 2x_1 - 4x_2 + 3x_3 + x_4 + 2x_5 = 0, \\ x_1 - 3x_2 + 3x_3 + x_4 + x_5 = 0. \end{cases}$$

53.
$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 - 13x_5 = 0, \\ x_1 - x_2 - 2x_4 + 2x_5 = 0, \\ x_1 + x_2 + x_3 - 6x_5 = 0, \\ x_2 + 2x_3 + x_4 - 7x_5 = 0. \end{cases}$$

54.
$$\begin{cases} 11x_1 - 16x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 - 2x_2 + x_4 = 0, \\ x_1 - 5x_2 + x_3 = 0, \\ 2x_1 + 3x_2 + x_3 + x_4 = 0, \\ 5x_1 + x_2 + x_3 + 2x_4 = 0. \end{cases}$$

55.
$$\begin{cases} 2x_1 + x_2 + & x_3 + 5x_4 = 0, \\ x_1 + x_2 + & 3x_3 + 2x_4 = 0, \\ 4x_1 - x_2 - & 13x_3 + 13x_4 = 0, \\ x_1 - & 2x_3 + 3x_4 = 0, \\ x_2 + & 5x_3 - & x_4 = 0. \end{cases}$$

56.
$$\begin{cases} 3x_1 - 7x_2 - 5x_3 + 5x_4 - 2x_5 = 0, \\ -2x_2 + 2x_3 + x_4 - x_5 = 0, \\ x_1 - 6x_3 + x_4 + x_5 = 0, \\ 2x_1 + x_2 - 7x_3 + x_5 = 0. \end{cases}$$

57.
$$\begin{cases} 19x_1 - 24x_2 - 8x_3 - 3x_4 = 0, \\ 3x_1 - 2x_2 + 5x_3 + 4x_4 = 0, \\ 4x_1 - 6x_2 - 5x_3 - 3x_4 = 0, \\ -3x_1 + 4x_2 + 2x_3 + x_4 = 0. \end{cases}$$

58.
$$\begin{cases} 3x_1 + 2x_2 + x_3 + 3x_4 + 5x_5 = 0, \\ 6x_1 + 4x_2 + 3x_3 + 5x_4 + 7x_5 = 0, \\ 9x_1 + 6x_2 + 5x_3 + 7x_4 + 9x_5 = 0, \\ 3x_1 + 2x_2 + 4x_4 + 8x_5 = 0. \end{cases}$$

$$\mathbf{59.} \begin{cases} 4x_1 + 7x_2 - 2x_3 + 6x_4 + 5x_5 &= 0, \\ 2x_1 + 4x_2 - x_3 + 3x_4 + 2x_5 &= 0, \\ 6x_1 + 5x_2 - 3x_3 + 9x_4 + 7x_5 &= 0, \\ 6x_1 + x_2 - 3x_3 + 9x_4 + 5x_5 &= 0. \end{cases}$$

60.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_5 + x_6 = 0, \\ x_2 - x_4 + x_6 = 0, \\ x_1 - x_2 + x_5 - x_6 = 0, \\ x_1 + 2x_2 + 3x_3 + x_5 + 2x_6 = 0, \\ x_1 - x_4 + x_5 = 0. \end{cases}$$

4.2. Неоднородные системы

Найти общее решение систем и записать его в векторной форме. Выделить фундаментальную систему решений соответствующей однородной системы.

1.
$$\begin{cases} x_1 - x_2 - 3x_3 + x_4 &= -3, \\ 3x_1 + 3x_2 + 3x_3 - x_4 - 2x_5 &= 1, \\ x_1 - 4x_2 - 9x_3 + 3x_4 + x_5 &= -8, \\ 2x_1 + x_2 &- x_5 &= -1. \end{cases}$$

2.
$$\begin{cases} x_1 - 3x_2 - x_3 + x_4 + 3x_5 = 7, \\ x_1 + 3x_2 - x_3 - x_4 - x_5 = -3, \\ 2x_1 + 3x_2 - 2x_3 - x_4 = -1. \end{cases}$$

3.
$$\begin{cases} 2x_1 - 3x_2 + 3x_3 + x_4 + x_5 = 3, \\ 4x_1 - 5x_2 + 3x_3 + x_4 + 3x_5 = 1, \\ 6x_1 - 7x_2 + 3x_3 + x_4 + 5x_5 = -1. \end{cases}$$

4.
$$\begin{cases} x_1 - 5x_2 + x_3 + x_4 + 2x_5 = 3, \\ x_1 - 2x_2 - x_3 + x_5 = 1, \\ 5x_1 - 16x_2 - x_3 + 2x_4 + 7x_5 = 9. \end{cases}$$

5.
$$\begin{cases} 2x_1 + 5x_2 + 4x_3 - x_4 &= 7, \\ 2x_1 + x_2 &- x_4 &= 7, \\ 2x_1 - x_2 - 2x_3 - x_4 &= 7. \end{cases}$$

6.
$$\begin{cases} x_1 + x_2 - 2x_3 &= 1, \\ 2x_1 - 2x_2 + x_3 + x_4 &= 4, \\ x_1 - 7x_2 + 8x_3 + 2x_4 &= 5. \end{cases}$$

7.
$$\begin{cases} -x_1 + x_2 + x_3 + x_4 = 1, \\ 2x_1 + 3x_2 + 6x_4 = 25, \\ x_1 + 2x_3 - 2x_4 = -6, \\ 3x_2 + 5x_3 + x_4 = 1. \end{cases}$$

8.
$$\begin{cases} 2x_1 - x_2 - x_3 - x_4 = 1, \\ 4x_1 + x_2 - 3x_3 - 8x_4 = 6, \\ x_2 + x_3 - 2x_4 = 4, \\ -2x_1 + 4x_3 + 3x_4 = 3. \end{cases}$$

$$g. \begin{cases} x_1 - 2x_2 + 2x_3 + 5x_4 = -6, \\ -x_1 + 2x_3 + 3x_4 = 10, \\ 2x_2 - 4x_3 - 11x_4 = -4, \\ 2x_1 - 2x_2 - x_4 = -16. \end{cases}$$

10.
$$\begin{cases} x_1 - 2x_2 + 4x_3 + 5x_4 = -1, \\ x_1 + x_2 + x_3 + 2x_4 = 2, \\ 5x_1 - 4x_2 + 14x_3 + 19x_4 = 1, \\ x_1 + 2x_2 + x_4 = 3. \end{cases}$$

11.
$$\begin{cases} x_1 + x_2 + 2x_3 - x_4 = 0, \\ 4x_1 + 5x_3 - 3x_4 = 4, \\ 4x_2 + 3x_3 - x_4 = -4. \end{cases}$$

12.
$$\begin{cases} x_1 - 2x_2 + 2x_3 - x_4 = -6, \\ 3x_1 - 2x_2 - 2x_3 + x_4 = -26, \\ x_1 - x_2 = -8. \end{cases}$$

13.
$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 &= 2, \\ x_1 - x_2 - x_3 &= 3, \\ x_2 - 3x_3 + x_4 + 2x_5 &= 12, \\ 2x_1 - x_2 & -2x_4 - x_5 &= -7. \end{cases}$$

14.
$$\begin{cases} 2x_1 - 2x_2 + x_3 + 3x_4 = -2, \\ 10x_1 - 7x_2 + 4x_3 + 9x_4 = 1, \\ 6x_1 + x_3 - 3x_4 = 16, \\ 4x_1 - x_2 + x_3 = 7. \end{cases}$$

15.
$$\begin{cases} 9x_1 - 10x_2 - 4x_3 - x_4 - 6x_5 = -20, \\ 5x_1 + 18x_2 + 7x_4 = 2, \\ 20x_2 + 4x_3 + 8x_4 - x_5 = -3, \\ 4x_1 - 8x_2 - 7x_5 = -25. \end{cases}$$

16.
$$\begin{cases} x_1 + 14x_2 + 3x_3 + 3x_4 = -12, \\ x_1 + 2x_2 + 3x_3 - 3x_4 = 0, \\ x_1 - 10x_2 + 3x_3 - 9x_4 = 12, \\ 2x_2 + x_4 = -2. \end{cases}$$

17.
$$\begin{cases} x_1 + 3x_2 - 2x_3 - 6x_4 = 19, \\ x_1 + x_2 - x_3 - 2x_4 = 6, \\ 2x_1 - x_3 = -1, \\ x_1 - x_2 + 2x_4 = -7. \end{cases}$$

18.
$$\begin{cases} x_1 - 2x_2 + 5x_3 + 6x_4 &= 21, \\ 3x_1 + 2x_2 + 3x_3 + 6x_4 &= 19, \\ x_1 + 2x_2 - x_3 &= -1, \\ 2x_2 - 3x_3 - 3x_4 &= -11. \end{cases}$$

19.
$$\begin{cases} x_1 + x_2 - 5x_3 - x_4 = 6, \\ x_2 + 11x_3 - 7x_4 = -16, \\ 2x_1 + 3x_2 + x_3 - 9x_4 = -4, \\ 8x_1 + 11x_2 - 7x_3 - 29x_4 = 0. \end{cases}$$

20.
$$\begin{cases} 6x_1 + 3x_2 + x_3 - x_4 = -10, \\ x_1 + x_4 = 8, \\ 8x_1 + 3x_2 + x_3 + x_4 = 6. \end{cases}$$

21.
$$\begin{cases} x_2 + x_3 - x_4 = -2, \\ 5x_1 - x_2 - 4x_3 = -12, \\ 10x_1 - x_2 - 7x_3 - x_4 = -26. \end{cases}$$

22.
$$\begin{cases} 5x_1 - 4x_2 + 5x_3 + 2x_4 = 15, \\ 10x_1 - 3x_2 - x_4 = 5, \\ 5x_1 + x_2 - 5x_3 - 3x_4 = -10. \end{cases}$$

23.
$$\begin{cases} 6x_1 + 7x_2 - 2x_3 &= 3, \\ 2x_1 + x_2 - 2x_3 - 2x_4 &= 1, \\ 2x_1 + 5x_2 + 2x_3 + 4x_4 &= 1. \end{cases}$$

24.
$$\begin{cases} x_1 + x_2 - x_3 - 3x_4 = -7, \\ x_1 + 4x_2 - 4x_4 = -15, \\ 3x_2 + x_3 - x_4 = -8, \\ -2x_1 + x_2 + 3x_3 + 5x_4 = 6. \end{cases}$$

25.
$$\begin{cases} 3x_1 - 2x_2 + x_3 + x_4 = 11, \\ 2x_3 + 3x_4 = 20, \\ -3x_1 + 2x_2 + x_3 + 2x_4 = 9. \end{cases}$$

26.
$$\begin{cases} 16x_1 + 2x_2 - 2x_3 - x_4 = 3, \\ 14x_2 + 2x_3 - 11x_4 = -95, \\ 480x_1 + 74x_2 - 58x_3 - 41x_4 = -5. \end{cases}$$

- 27. $\begin{cases} 2x_1 + 3x_3 3x_4 = -1, \\ 5x_1 + 6x_2 + 6x_3 15x_4 = -19, \\ x_1 6x_2 + 3x_3 + 6x_4 = 16. \end{cases}$
- 28. $\begin{cases} x_1 + 2x_2 + x_3 x_4 = -3, \\ 2x_1 + 2x_2 + 2x_3 x_4 = -3, \\ x_1 + x_3 = 0. \end{cases}$
- 29. $\begin{cases} 3x_1 x_2 x_3 + 3x_4 = 0, \\ x_1 + 2x_2 x_3 = -2, \\ 5x_1 4x_2 x_3 + 6x_4 = 2. \end{cases}$
- 30. $\begin{cases}
 -2x_1 + 3x_2 2x_3 x_4 &= 1, \\
 5x_1 4x_2 + 4x_3 + x_4 &= -6, \\
 3x_1 x_2 + 2x_3 &= -5, \\
 x_1 + 2x_2 &- x_4 &= -4.
 \end{cases}$
- 31. $\begin{cases} x_1 x_2 + x_3 5x_4 = 5, \\ 3x_1 + 4x_3 13x_4 = 18, \\ x_1 4x_2 7x_4 = 2, \\ 3x_2 + x_3 + 2x_4 = 3. \end{cases}$
- 32. $\begin{cases} x_1 + x_2 x_3 + 3x_4 = 5, \\ 3x_1 x_2 x_3 x_4 = -1, \\ 5x_1 x_2 2x_3 = 1, \\ x_1 x_2 2x_4 = -3. \end{cases}$
- 33. $\begin{cases} x_1 2x_2 + 3x_3 4x_4 + x_5 = 1, \\ x_1 + x_2 x_3 + 2x_4 x_5 = 1, \\ x_1 5x_2 + 7x_3 10x_4 + 3x_5 = 1. \end{cases}$
- 34. $\begin{cases} x_1 + 3x_2 x_3 + 2x_4 x_5 = 2, \\ x_1 x_2 + 2x_3 + x_4 + x_5 = 1, \\ x_1 + 7x_2 4x_3 + 3x_4 3x_5 = 3. \end{cases}$

35.
$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 + x_5 = -1, \\ x_1 + 2x_2 + x_3 + x_4 + 2x_5 = -2, \\ x_1 + 5x_2 + 3x_4 + 3x_5 = -3. \end{cases}$$

36.
$$\begin{cases} 2x_1 + x_2 + 30x_3 - 4x_4 + 16x_5 &= 20, \\ 2x_1 - 3x_2 - 4x_3 + 2x_4 + 22x_5 &= 4, \\ 2x_2 + 17x_3 - 3x_4 - 3x_5 &= 8, \\ x_1 + 2x_3 + 5x_5 &= 3, \\ 7x_3 - x_4 + 3x_5 &= 4. \end{cases}$$

37.
$$\begin{cases} x_1 + 2x_2 - x_3 + 3x_4 - x_5 = -2, \\ x_1 + x_2 + x_3 - x_4 - x_5 = 1, \\ x_1 + 3x_2 - 3x_3 + 7x_4 - x_5 = -5, \\ 2x_1 + x_2 + 4x_3 - 6x_4 - 2x_5 = 5. \end{cases}$$

38.
$$\begin{cases} 2x_1 - 11x_2 + 5x_3 + 3x_4 + 6x_5 &= 14, \\ x_1 + 2x_2 - 2x_3 & -3x_5 &= 1, \\ 5x_2 - 3x_3 - x_4 - 4x_5 &= -4. \end{cases}$$

39.
$$\begin{cases} x_1 - 3x_2 + 2x_3 - x_4 - x_5 = 1, \\ x_1 + x_2 - x_3 - x_4 + 2x_5 = -1, \\ x_1 - 7x_2 + 5x_3 - x_4 - 4x_5 = 3. \end{cases}$$

40.
$$\begin{cases} 3x_1 - 2x_2 - 4x_3 - 12x_4 = -35, \\ 5x_1 - 3x_2 + 2x_3 + 37x_4 = -31, \\ x_1 + 2x_2 - x_3 - 31x_4 = 0, \\ x_2 + x_3 - 4x_4 = 7. \end{cases}$$

41.
$$\begin{cases} x_1 + x_2 - x_3 - x_4 + x_5 + 2x_6 = 1, \\ x_1 - x_2 + 2x_3 - x_4 - x_5 + 3x_6 = -1, \\ x_1 + 3x_2 - 4x_3 - x_4 + 3x_5 + x_6 = 3. \end{cases}$$

42.
$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 = 1, \\ x_1 + x_2 - x_3 - x_4 = -1, \\ x_1 - 3x_2 + 5x_3 + 5x_4 = 3, \\ 2x_1 + 4x_2 - 5x_3 - 5x_4 = -4. \end{cases}$$

43.
$$\begin{cases} x_1 + 2x_2 - x_3 - x_4 = 2, \\ 2x_1 - x_2 + x_3 + x_4 = 1, \\ x_1 - 3x_2 + 2x_3 + 2x_4 = -1, \\ x_1 + 7x_2 - 4x_3 - 4x_4 = 5. \end{cases}$$

44.
$$\begin{cases} x_1 - 3x_2 + 2x_3 + x_4 - x_5 = 1, \\ -2x_1 + 6x_2 - 4x_3 - 2x_4 + x_5 = -3, \\ x_1 - 3x_2 + 2x_3 + x_4 - 2x_5 = 0. \end{cases}$$

45.
$$\begin{cases} 2x_1 + 10x_2 + 3x_3 + x_4 = 22, \\ -x_1 + 27x_2 + 5x_3 + 2x_4 = 55, \\ x_1 + 24x_2 + 2x_3 + 4x_4 = 26, \\ 3x_1 + 28x_2 + 3x_3 + 5x_4 = 30. \end{cases}$$

46.
$$\begin{cases} x_1 - x_2 + 2x_3 + x_4 = 10, \\ x_1 + 2x_2 - x_3 - x_4 = 7, \\ x_1 + x_2 + x_3 - 2x_4 = -2, \\ x_1 - 2x_2 + 4x_3 = 1. \end{cases}$$

47.
$$\begin{cases} x_1 + 4x_2 - 6x_3 - 2x_4 + 3x_5 = -4, \\ 2x_1 + 15x_2 - x_4 - 2x_5 = 6, \\ 3x_1 + 18x_2 - 7x_3 - 2x_4 = 5, \\ 3x_2 + 4x_3 - x_4 = -2. \end{cases}$$

48.
$$\begin{cases} 18x_1 - 2x_2 + 3x_3 + 7x_4 = 25, \\ 3x_1 - x_2 + 2x_4 = 2, \\ x_1 + x_2 + x_3 - x_4 = 5, \\ 4x_1 + x_3 + x_4 = 7. \end{cases}$$

49.
$$\begin{cases} x_1 - x_2 + 2x_3 + x_4 - x_5 &= 1, \\ x_1 + 2x_2 + x_3 + x_4 + 2x_5 &= 1, \\ x_1 - 4x_2 + 3x_3 + x_4 - 4x_5 &= 1, \\ x_1 + 5x_2 + x_4 + 5x_5 &= 1. \end{cases}$$

$$50. \begin{cases} 12x_1 - 2x_2 - 14x_3 + 3x_4 + 29x_5 &= 19, \\ x_1 - x_2 + 3x_3 - x_4 - 3x_5 &= -3, \\ 5x_1 + x_2 - 15x_3 + 4x_4 + 24x_5 &= 18, \\ 2x_1 - 4x_3 + x_4 + 7x_5 &= 5, \\ 3x_1 - x_2 - x_3 + 4x_5 &= 2. \end{cases}$$

51.
$$\begin{cases} x_1 + x_2 + x_3 - x_4 + x_5 - x_6 = 1, \\ x_1 + x_2 - x_3 + 2x_4 - x_5 + x_6 = -1, \\ 2x_1 + 2x_2 + x_4 = 0. \end{cases}$$

52.
$$\begin{cases} x_1 - 10x_2 - 2x_3 & +11x_5 = -8, \\ x_1 + 3x_2 + x_3 + x_4 - 5x_5 = -2, \\ 3x_1 - 8x_2 - x_3 + 2x_4 + 8x_5 = -15, \\ x_1 - 2x_2 & -3x_5 = -2. \end{cases}$$

53.
$$\begin{cases} 2x_1 + x_2 + 28x_3 - 33x_4 - 3x_5 = -21, \\ x_1 - 2x_2 + 4x_3 - x_4 + 2x_5 = 5, \\ 3x_1 - 2x_2 + 35x_3 - 32x_4 - x_5 = -14, \\ x_1 + x_2 - 10x_4 + x_5 = -4. \end{cases}$$

54.
$$\begin{cases} 2x_1 - 2x_2 - 18x_3 - 6x_4 + 3x_5 = 33, \\ x_1 + 3x_2 + 10x_3 + 10x_4 - 2x_5 = -24, \\ x_1 - x_2 - 8x_3 - 4x_4 + x_5 = 13, \\ 2x_2 + 16x_3 - 5x_5 = -43. \end{cases}$$

55.
$$\begin{cases} 2x_1 + 3x_2 - 3x_3 + 11x_4 - 24x_5 &= 24, \\ x_1 + 4x_2 + x_3 - 7x_4 - 2x_5 &= 7, \\ 2x_1 + 5x_2 - x_3 + x_4 - 16x_5 &= 20, \\ x_2 + x_3 - 5x_4 + 4x_5 &= -2. \end{cases}$$

56.
$$\begin{cases} x_1 - 5x_2 + x_3 + x_4 = -4, \\ -3x_1 + 16x_2 + x_3 - 2x_4 = 3, \\ 2x_1 - 13x_2 - 10x_3 - x_4 = 19, \\ x_1 - 6x_2 - 3x_3 = 5. \end{cases}$$

57.
$$\begin{cases} x_1 + x_2 - x_3 + 3x_4 - x_5 = 1, \\ x_1 + 2x_2 + x_3 - x_4 - 2x_5 = 2, \\ x_1 - 3x_3 + 7x_4 = 0, \\ x_2 + 2x_3 - 4x_4 - x_5 = 1. \end{cases}$$

58.
$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 2, \\ -x_1 - x_2 + 2x_3 + 2x_4 - x_5 = 1, \\ x_1 + x_2 - 2x_3 + x_5 = 5. \end{cases}$$

$$\mathbf{59.} \begin{cases} x_1 + x_2 + x_3 - 3x_4 - 11x_5 = 2, \\ 3x_1 - 2x_2 - 5x_3 - 13x_4 + 54x_5 = -5, \\ -2x_1 + 3x_2 + x_3 + 20x_4 - 20x_5 = 22, \\ x_1 - 5x_4 + x_5 = -2. \end{cases}$$

60.
$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 2, \\ x_1 - x_2 + 2x_3 - x_4 = 1, \\ 5x_1 + 4x_2 + x_3 + x_4 = 8, \\ x_1 + 5x_2 - 4x_3 + 3x_4 = 3. \end{cases}$$

5. Линейные операторы

и их матрицы

Пусть $x = \{x_1; x_2; x_3\} \in \mathbb{R}_3$. Выяснить, является ли оператор $\varphi(x)$ линейным и найти в этом случае его матрицу в базисе $e_1 = \{1; 0; 0\}, e_2 = \{0; 1; 0\}, e_3 = \{0; 0; 1\}$.

1.
$$\varphi(x) = \{x_1 + x_2; x_2 - x_3; 0\}.$$

2.
$$\varphi(x) = \{2x_1 + x_2; 3x_3; 4x_2 - x_1\}.$$

3.
$$\varphi(x) = \{x_1^2; 0; x_3 - x_1\}.$$

4.
$$\varphi(x) = \{x_3 - x_2; 2x_1 - 3x_2; x_2\}.$$

5.
$$\varphi(x) = \{x_1^3; x_2^3; x_3^3\}.$$

6.
$$\varphi(x) = \{3x_1 - x_2; 3x_1 - x_2; 3x_1 - x_2\}.$$

7.
$$\varphi(x) = \{x_1 + x_2 + x_3; x_2 + x_3 - x_1; x_1 - x_2 + x_3\}.$$

8.
$$\varphi(x) = \{x_2 - x_3; x_3 - x_2; x_1 + x_2 - x_3\}.$$

9.
$$\varphi(x) = \{\sin x_1; -x_2; x_3\}.$$

10.
$$\varphi(x) = \{x_1; x_2; x_1 + x_2 + x_3\}.$$

11.
$$\varphi(x) = \{x_1; x_2 - x_3; x_1 - x_2 + x_3\}.$$

12.
$$\varphi(x) = \{x_1 - x_2; |x_2|; x_3\}.$$

13.
$$\varphi(x) = \{3x_2 + 2x_3; x_3; 2x_1 + x_2\}.$$

14.
$$\varphi(x) = \{2x_2 + x_3; 2x_2 + x_3; 2x_2 + x_3\}.$$

15.
$$\varphi(x) = \{2x_1 - x_3; x_2 - x_3; 2x_3\}.$$

16.
$$\varphi(x) = \{x_1; 2x_2; 3x_3\}.$$

17.
$$\varphi(x) = \{x_3; x_2; x_1 - x_2 - x_3\}.$$

18.
$$\varphi(x) = \{\cos x_1; 0; \sin x_3\}.$$

19.
$$\varphi(x) = \{x_2 - x_1; x_3 - x_2; x_1 + x_2 + x_3\}.$$

20.
$$\varphi(x) = \{3x_2 - x_1 + 2x_3; 2x_2 + x_3; 2x_1 + x_2 - x_3\}.$$

Пусть вектор \vec{x} трёхмерного геометрического векторного пространства в правом ортонормированном базисе \vec{i} , \vec{j} , \vec{k} имеет координаты $\vec{x} = \{x_1; x_2; x_3\}$, а векторы \vec{a} и \vec{c} в том же базисе имеют координаты $\vec{a} = \{a_1; a_2; a_3\}$ и $\vec{c} = \{c_1; c_2; c_3\}$. Пусть круглые и квадратные скобки означают, как обычно, скалярное и векторное произведения векторов соответственно. Выяснить, является ли оператор $\varphi(\vec{x})$ линейным и найти в этом случае его матрицу в базисе \vec{i} , \vec{j} , \vec{k} .

21.
$$\varphi(\vec{x}) = [\vec{a}, \vec{x}].$$
 27. $\varphi(\vec{x}) = (\vec{x}, \vec{x})\vec{x}.$

22.
$$\varphi(\vec{x}) = (\vec{a}, \vec{x})\vec{a}$$
. **28.** $\varphi(\vec{x}) = (\vec{a}, \vec{c})\vec{x}$.

23.
$$\varphi(\vec{x}) = (\vec{a}, \vec{a})\vec{x}$$
. **29.** $\varphi(\vec{x}) = [\vec{a}, \vec{x}], \vec{x}]$.

24.
$$\varphi(\vec{x}) = (\vec{x}, \vec{x})\vec{a}$$
. **30.** $\varphi(\vec{x}) = [\vec{x}, [\vec{a}, \vec{c}]]$.

25.
$$\varphi(\vec{x}) = [\vec{a}, \vec{x}], \vec{a}].$$
 31. $\varphi(\vec{x}) = (\vec{c}, \vec{x})\vec{x}.$

26.
$$\varphi(\vec{x}) = (\vec{a}, \vec{x})\vec{c}$$
. **32.** $\varphi(\vec{x}) = [\vec{x}, \vec{a}], \vec{c}$.

Пусть $y = y(x) \in \mathbb{P}_3$. Выяснить, является ли оператор $\varphi(y)$ линейным и найти в этом случае его матрицу в базисе $e_1(x) \equiv 1$, $e_2(x) = x$, $e_3(x) = x^2$, $e_4(x) = x^3$.

33.
$$\varphi(y) = (x+1)y'(x)$$
.

34.
$$\varphi(y) = xy'(x) + x$$
.

35.
$$\varphi(y) = x^2 y''(x) + y(x)$$
.

36.
$$\varphi(y) = (x^2y(x))''$$
.

37.
$$\varphi(y) = x^2 y''(x) + 3y'(x)$$
.

38.
$$\varphi(y) = (xy(x) + x^2)'$$
.

39.
$$\varphi(y) = (x+2)y''(x) - 2y(x)$$
.

40.
$$\varphi(y) = xy''(x) + 2y'(x) + 3y(x)$$
.

41.
$$\varphi(y) = ((2x+1)y(x))''$$
.

42.
$$\varphi(y) = xy'''(x) - y(x)$$
.

43.
$$\varphi(y) = 3y''(x) + xy'(x) + 2.$$

44.
$$\varphi(y) = y''(x) - xy'(x)$$
.

45.
$$\varphi(y) = xy''(x) + 3x$$
.

46.
$$\varphi(y) = (x^2 + 1)y''(x)$$
.

Выяснить, какие из данных операторов являются линейными в пространстве $\mathbb{L}_{2\times 2}$. В случае линейности оператора найти его матрицу в базисе $e_1=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_2=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$ $e_3=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ e_4=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$

47. Умножение на заданную матрицу
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 так, что матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ является первым сомножителем.

- **48.** Умножение на заданную матрицу $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ так, что матрица $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ является вторым сомножителем.
- **49.** Умножение на заданную матрицу $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ слева и справа.
- **50.** Сложение с заданной ненулевой матрицей $\left(egin{array}{cc} a & b \\ c & d \end{array} \right).$
- **51.** Перестановка строк.
- **52.** Перестановка столбцов.
- **53.** Транспонирование.
- 54. Умножение матрицы на себя.
- 55. Замена элементов верхней строки единицами.
- 56. Замена элементов верхней строки нулями.
- 57. Замена элементов нижней строки единицами.
- 58. Замена элементов нижней строки нулями.
- **59.** Умножение элементов левого столбца на число λ .
- 60. Замена элементов главной диагонали единицами.

6. Собственные числа и собственные векторы линейных операторов

6.1. Линейные операторы трёхмерного пространства

1.
$$\begin{pmatrix} 2 & 0 - 1 \\ -7 & 4 & 4 \\ 6 - 2 - 3 \end{pmatrix}$$
.

8.
$$\begin{pmatrix} 9-4-3 \\ 8 & 1-7 \\ -1-3 & 6 \end{pmatrix}$$
.

$$2. \begin{pmatrix} -4 & 3 & 3 \\ -9 & 8 & 3 \\ -9 & 3 & 8 \end{pmatrix}.$$

$$\mathbf{9.} \begin{pmatrix} -1 & 3 & 1 \\ -4 & 6 & 1 \\ -4 & 3 & 4 \end{pmatrix}.$$

3.
$$\begin{pmatrix} 5-4 & 1 \\ 7-6 & 1 \\ 3-4 & 3 \end{pmatrix}$$
.

10.
$$\begin{pmatrix} 3 & 1 & 1 \\ -2 & 6 & 1 \\ -3 & 2 & 6 \end{pmatrix}.$$

$$4. \begin{pmatrix} -1 & 2 & 1 \\ -3 & 4 & 1 \\ -3 & 2 & 3 \end{pmatrix}$$

4.
$$\begin{pmatrix} -1 & 2 & 1 \\ -3 & 4 & 1 \\ -3 & 2 & 3 \end{pmatrix}$$
. 11. $\begin{pmatrix} -4-6 & 4 \\ 3 & 2-1 \\ -4-8 & 6 \end{pmatrix}$.

$$5. \begin{pmatrix} 1 & 1 & 1 \\ -2 & 4 & 1 \\ -3 & 2 & 4 \end{pmatrix}.$$

$$12. \begin{pmatrix} -1 & 1 & 2 \\ -6 & 4 & 4 \\ -3 & 1 & 4 \end{pmatrix}.$$

6.
$$\begin{pmatrix} -4 & 5-4 \\ -4 & 7-6 \\ 3 & 0-1 \end{pmatrix}$$
.

13.
$$\begin{pmatrix} 6 & 1-5 \\ 9-2-5 \\ 8 & 2-8 \end{pmatrix}.$$

7.
$$\begin{pmatrix} 2 & 5-5 \\ 5 & 2-5 \\ 5 & 5-8 \end{pmatrix}.$$

$$14. \begin{pmatrix} 2 & 2 & 1 \\ -3 & 7 & 1 \\ -3 & 2 & 6 \end{pmatrix}.$$

15.
$$\begin{pmatrix} 5 & 1 & 1 \\ -2 & 8 & 1 \\ -3 & 2 & 8 \end{pmatrix} .$$

23.
$$\begin{pmatrix} 6 & 7-9 \\ 1-1 & 4 \\ 3 & 2-1 \end{pmatrix}$$
.

16.
$$\begin{pmatrix} -5 & 4-4 \\ -8 & 3 & 4 \\ 0-2 & 7 \end{pmatrix}.$$

$$24. \begin{pmatrix} -2 & 3 & 1 \\ -5 & 6 & 1 \\ -5 & 3 & 4 \end{pmatrix}.$$

17.
$$\begin{pmatrix} 7 & 5-5 \\ 5 & 7-5 \\ 5 & 5-3 \end{pmatrix}.$$

25.
$$\begin{pmatrix} 5 & 1-4 \\ 7-1-4 \\ 6 & 2-6 \end{pmatrix}$$
.

18.
$$\begin{pmatrix} 2 & 7-6 \\ 5 & 4-6 \\ 4 & 8-9 \end{pmatrix}$$
.

$$26. \begin{pmatrix} 1 & 1 & 1 \\ -4 & 6 & 1 \\ -4 & 3 & 4 \end{pmatrix}.$$

19.
$$\begin{pmatrix} 4 & 2 & 1 \\ -3 & 9 & 1 \\ -3 & 2 & 8 \end{pmatrix}.$$

27.
$$\begin{pmatrix} -2-6 & 4 \\ 3 & 4-1 \\ -4-8 & 8 \end{pmatrix}.$$

20.
$$\begin{pmatrix} -2 & 3 & 1 \\ -4 & 5 & 1 \\ -5 & 4 & 3 \end{pmatrix}.$$

$$28. \begin{pmatrix} 6-8-6 \\ 1 & 0-3 \\ -1 & 4 & 7 \end{pmatrix}.$$

21.
$$\begin{pmatrix} 2 & 2-5 \\ 8 & 2-5 \\ 6-2 & 3 \end{pmatrix}$$
.

29.
$$\begin{pmatrix} 8-3-2 \\ 7 & 2-6 \\ -2-2 & 7 \end{pmatrix}.$$

22.
$$\begin{pmatrix} 7-8-6 \\ 1 & 1-3 \\ -1 & 4 & 8 \end{pmatrix}.$$

$$30. \begin{pmatrix} 2 & 1 & 2 \\ -5 & 8 & 2 \\ -6 & 2 & 9 \end{pmatrix}.$$

6.2. Линейные операторы четырёхмерного пространства

1.
$$\begin{pmatrix} -2 & 1 & 1 & 1 \\ -4 & 3 & 1 & 1 \\ -3 & 1 & 2 & 1 \\ -4 & 1 & 2 & 2 \end{pmatrix}$$
 7.
$$\begin{pmatrix} 5 & -2 & -3 & 1 \\ 7 & -4 & -3 & 1 \\ 6 & -1 & -5 & 1 \\ 3 & -2 & -3 & 3 \end{pmatrix}$$

$$2. \begin{pmatrix} 7 & 1 & -5 & -2 \\ 5 & 3 & -5 & -2 \\ 8 & 1 & -6 & -2 \\ 7 & 1 & -4 & -3 \end{pmatrix} . \qquad 8. \begin{pmatrix} 6 & -3 & -3 & 1 \\ 8 & -5 & -3 & 1 \\ 8 & -3 & -5 & 1 \\ 4 & -3 & -3 & 3 \end{pmatrix} .$$

3.
$$\begin{pmatrix} 7 & -3 & -1 & -2 \\ 9 & -5 & -1 & -2 \\ 9 & -3 & -3 & -2 \\ 9 & -3 & -2 & -3 \end{pmatrix}$$
.
$$g. \begin{pmatrix} 1 & 2 & -1 & -1 \\ 1 & 2 & -2 & -2 \\ 2 & 3 & -3 & -1 \\ 2 & 2 & -3 & 0 \end{pmatrix}$$
.

4.
$$\begin{pmatrix} 2 & 0 & 0 & 2 \\ -6 & -2 & 5 & -3 \\ -3 & -2 & 4 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$
. 10.
$$\begin{pmatrix} 1 & 1 & 1 & -2 \\ -1 & 3 & 1 & -2 \\ -1 & 1 & 3 & -2 \\ 2 & 1 & 1 & -3 \end{pmatrix}$$
.

5.
$$\begin{pmatrix} 1 & -2 & 2 & 1 \\ 1 & -2 & 2 & 1 \\ -1 & -2 & 4 & 1 \\ -1 & -2 & 2 & 3 \end{pmatrix}$$
. 11.
$$\begin{pmatrix} -1 & 1 & 1 & 1 \\ -3 & 3 & 1 & 1 \\ -4 & 2 & 3 & 1 \\ -4 & 1 & 2 & 3 \end{pmatrix}$$
.

6.
$$\begin{pmatrix} -2 & -2 & 4 & 1 \\ -1 & -3 & 4 & 1 \\ -3 & -2 & 5 & 1 \\ -4 & -2 & 5 & 2 \end{pmatrix}$$
. 12.
$$\begin{pmatrix} -3 & 1 & 2 & 1 \\ -5 & 3 & 2 & 1 \\ -4 & 1 & 3 & 1 \\ -4 & 1 & 2 & 2 \end{pmatrix}$$
.

13.
$$\begin{pmatrix} -2 & -1 & 3 & 1 \\ -2 & -1 & 3 & 1 \\ -4 & -1 & 5 & 1 \\ -4 & -1 & 3 & 3 \end{pmatrix}$$
. 19.
$$\begin{pmatrix} 4 & 0 & 0 & -2 \\ 6 & 0 & -2 & 0 \\ -6 & 5 & 6 & -6 \\ 1 & 0 & 0 & 2 \end{pmatrix}$$
.

$$14. \begin{pmatrix} 3 & 0 & 0 & 2 \\ -6 & -1 & -5 & -3 \\ 3 & 2 & 5 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}. 20. \begin{pmatrix} -1 & -3 & 4 & 1 \\ 1 & -5 & 4 & 1 \\ -3 & -3 & 6 & 1 \\ -3 & -3 & 4 & 3 \end{pmatrix}.$$

15.
$$\begin{pmatrix} 6 & -2 & -1 & -2 \\ 8 & -4 & -1 & -2 \\ 7 & -1 & -3 & -2 \\ 7 & -1 & -2 & -3 \end{pmatrix}$$
. 21.
$$\begin{pmatrix} 6 & -3 & -2 & 1 \\ 8 & -5 & -2 & 1 \\ 7 & -2 & -4 & 1 \\ -2 & -5 & 6 & 3 \end{pmatrix}$$
.

$$16. \begin{pmatrix} 5 & -2 & 1 & -2 \\ 5 & -2 & 1 & -2 \\ 5 & -2 & 1 & -2 \\ 4 & -2 & 2 & -2 \end{pmatrix} . \quad 22. \begin{pmatrix} -1 & -1 & 2 & 1 \\ -1 & -1 & 2 & 1 \\ -3 & -1 & 4 & 1 \\ -4 & -1 & 3 & 3 \end{pmatrix} .$$

17.
$$\begin{pmatrix} -2 & -1 & 3 & 1 \\ -2 & -1 & 3 & 1 \\ -4 & -1 & 5 & 1 \\ -1 & -1 & 1 & 2 \end{pmatrix}$$
. 23.
$$\begin{pmatrix} 5 & -2 & 1 & -3 \\ 7 & -4 & 1 & -3 \\ 6 & -1 & -1 & -3 \\ 5 & -1 & 2 & -5 \end{pmatrix}$$
.

$$18. \begin{pmatrix} 4 & 1 & -2 & -2 \\ 2 & 3 & -2 & -2 \\ 5 & 1 & -3 & -2 \\ 5 & 1 & -2 & -3 \end{pmatrix}. \quad 24. \begin{pmatrix} 4 & -1 & -3 & 1 \\ 4 & -1 & -3 & 1 \\ 6 & -1 & -5 & 1 \\ 3 & -1 & -3 & 2 \end{pmatrix}.$$

$$25. \begin{pmatrix} -2 & 1 & 1 & 1 \\ -4 & 3 & 1 & 1 \\ -4 & 1 & 3 & 1 \\ -4 & 1 & 1 & 3 \end{pmatrix}. 28. \begin{pmatrix} 5 & -3 & -2 & 1 \\ 7 & -5 & -2 & 1 \\ 6 & -3 & -3 & 1 \\ 4 & -3 & -2 & 2 \end{pmatrix}.$$

$$26. \begin{pmatrix} -3 & 1 & 1 & 1 \\ -3 & 1 & 1 & 1 \\ -4 & 2 & 1 & 1 \\ -4 & 1 & 2 & 1 \end{pmatrix}. 29. \begin{pmatrix} 6 & -1 & -2 & -2 \\ 6 & -1 & -2 & -2 \\ 7 & -1 & -3 & -2 \\ 7 & -1 & -2 & -3 \end{pmatrix}.$$

$$27. \begin{pmatrix} 5 & -2 & -3 & 1 \\ 7 & -4 & -3 & 1 \\ 6 & -1 & -5 & 1 \\ 4 & -2 & -3 & 2 \end{pmatrix} . \quad 30. \begin{pmatrix} -3 & 1 & 2 & 1 \\ -5 & 3 & 2 & 1 \\ -5 & 1 & 4 & 1 \\ -6 & 1 & 3 & 3 \end{pmatrix} .$$

7. Приведение квадратичных форм к нормальному виду методом Лагранжа

7.1. Квадратичные формы в трёхмерном пространстве

1.
$$f = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

2.
$$f = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

3.
$$f = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
.

4.
$$f = x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$
.

5.
$$f = x_1^2 + x_2^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$
.

6.
$$f = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 6x_2x_3$$
.

7.
$$f = x_1^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

8.
$$f = x_1^2 - x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$
.

9.
$$f = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 2x_1x_3$$
.

10.
$$f = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3$$
.

11.
$$f = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 6x_2x_3$$
.

12.
$$f = x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3 - 2x_2x_3$$
.

13.
$$f = x_1^2 + x_2^2 + 2x_1x_2 - 2x_1x_3 - 2x_2x_3$$
.

14.
$$f = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$$
.

15.
$$f = x_1^2 + 2x_1x_2 - 2x_1x_3$$
.

16.
$$f = x_1^2 - x_3^2 + 2x_1x_2 - 2x_1x_3$$
.

17.
$$f = x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 + 2x_1x_3$$
.

18.
$$f = x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 + 2x_1x_3$$
.

19.
$$f = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3 - 6x_2x_3$$
.

20.
$$f = x_1^2 + x_2^2 + 2x_3^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
.

21.
$$f = x_1^2 + x_2^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$
.

22.
$$f = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3 + 2x_2x_3$$
.

23.
$$f = x_1^2 - 2x_1x_2 + 2x_1x_3$$
.

24.
$$f = x_1^2 - x_3^2 - 2x_1x_2 + 2x_1x_3$$
.

25.
$$f = x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_1x_3 + 4x_2x_3$$
.

26.
$$f = x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_1x_3 + 4x_2x_3$$
.

27.
$$f = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 - 2x_2x_3$$
.

28.
$$f = x_1^2 - 2x_1x_2 - 2x_1x_3 + 4x_2x_3$$
.

29.
$$f = x_1^2 - x_3^2 - 2x_1x_2 - 2x_1x_3 + 4x_2x_3$$
.

30.
$$f = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 2x_1x_3 + 6x_2x_3$$
.

7.2. Квадратичные формы в четырёхмерном пространстве

1.
$$f = 4x_1x_2 + 2x_1x_3 + 2x_1x_4 + 2x_2x_3 + 2x_2x_4 + 2x_3x_4$$
.

2.
$$f = 4x_1x_2 - 4x_2x_3 - 4x_2x_4 - 4x_3x_4$$
.

3.
$$f = 4x_1x_2 + 2x_1x_3 + 2x_1x_4 + 2x_2x_3 - 2x_2x_4$$
.

4.
$$f = 4x_1x_2 - 4x_2x_3 - 4x_2x_4 + 4x_3x_4$$
.

5.
$$f = 4x_1x_2 + 2x_1x_3 + 2x_1x_4 - 2x_2x_3 + 2x_2x_4$$
.

6.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2x_1x_2 - 2x_1x_3 + 2x_1x_4 - 6x_2x_3 + 2x_2x_4 + 2x_3x_4$$
.

7.
$$f = 4x_1x_2 - 4x_2x_3 - 4x_2x_4$$
.

8.
$$f = 4x_1x_2 + 2x_1x_3 + 2x_1x_4 - 2x_2x_3 - 2x_2x_4 - 2x_3x_4$$
.

9.
$$f = 4x_1x_2 - 4x_2x_3 + 4x_2x_4 - 4x_3x_4$$
.

10.
$$f=x_1^2+x_2^2+4x_3^2+x_4^2+2x_1x_2+4x_1x_3-2x_1x_4+4x_2x_3-6x_2x_4$$
.

11.
$$f = 4x_1x_2 + 2x_1x_3 - 2x_1x_4 + 2x_2x_3 + 2x_2x_4$$
.

12.
$$f = 4x_1x_2 - 4x_2x_3 + 4x_2x_4 + 4x_3x_4$$
.

13.
$$f = 4x_1x_2 + 2x_1x_3 - 2x_1x_4 + 2x_2x_3 - 2x_2x_4 - 2x_3x_4$$
.

14.
$$f = 4x_1x_2 - 4x_2x_3 + 4x_2x_4$$
.

15.
$$f = x_1^2 + x_2^2 + x_3^2 + 9x_4^2 - 2x_1x_2 + 2x_1x_3 + 6x_1x_4 - 6x_2x_3 - 2x_2x_4 + 6x_3x_4$$
.

16.
$$f = 4x_1x_2 + 2x_1x_3 - 2x_1x_4 - 2x_2x_3 + 2x_2x_4 + 2x_3x_4$$
.

17.
$$f = 4x_1x_2 + 4x_2x_3 - 4x_2x_4 - 4x_3x_4$$
.

18.
$$f = 4x_1x_2 + 2x_1x_3 - 2x_1x_4 - 2x_2x_3 - 2x_2x_4$$
.

19.
$$f = 4x_1x_2 + 4x_2x_3 - 4x_2x_4 + 4x_3x_4$$
.

20.
$$f = x_1^2 + 4x_2^2 + 4x_3^2 + x_4^2 + 4x_1x_2 - 4x_1x_3 + 2x_1x_4 - 4x_2x_3 + 4x_2x_4 - 8x_3x_4$$
.

21.
$$f = 4x_1x_2 - 2x_1x_3 + 2x_1x_4 + 2x_2x_3 + 2x_2x_4$$
.

22.
$$f = 4x_1x_2 + 4x_2x_3 - 4x_2x_4$$
.

23.
$$f = 4x_1x_2 - 2x_1x_3 + 2x_1x_4 + 2x_2x_3 - 2x_2x_4 + 2x_3x_4$$
.

24.
$$f = 4x_1x_2 + 4x_2x_3 + 4x_2x_4 - 4x_3x_4$$
.

25.
$$f = x_1^2 + x_2^2 + 4x_3^2 + 9x_4^2 + 2x_1x_2 - 4x_1x_3 + 6x_1x_4 - 8x_2x_3 + 6x_2x_4 - 8x_3x_4$$
.

26.
$$f = 4x_1x_2 - 2x_1x_3 + 2x_1x_4 - 2x_2x_3 + 2x_2x_4 - 2x_3x_4$$
.

27.
$$f = 4x_1x_2 + 4x_2x_3 + 4x_2x_4 + 4x_3x_4$$
.

28.
$$f = 4x_1x_2 - 2x_1x_3 + 2x_1x_4 - 2x_2x_3 - 2x_2x_4$$
.

29.
$$f = 4x_1x_2 + 4x_2x_3 + 4x_2x_4$$
.

30.
$$f = 4x_1x_2 - 2x_1x_3 - 2x_1x_4 + 2x_2x_3 + 2x_2x_4 - 2x_3x_4$$
.

8. Приведение квадратичных форм к каноническому виду ортогональным преобразованием

8.1. Квадратичные формы в трёхмерном пространстве

1.
$$f = 5x_1^2 + 8x_2^2 + 8x_3^2 - 4x_1x_2 - 4x_1x_3 + 8x_2x_3$$
.

2.
$$f = 5x_1^2 + 7x_2^2 + 9x_3^2 - 8x_1x_2 + 8x_2x_3$$
.

3.
$$f = 4x_1^2 + 7x_2^2 + 7x_3^2 - 4x_1x_2 - 4x_1x_3 + 8x_2x_3$$
.

4.
$$f = 7x_1^2 + 8x_2^2 + 9x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

5.
$$f = 3x_1^2 + 6x_2^2 + 6x_3^2 - 4x_1x_2 - 4x_1x_3 + 8x_2x_3$$
.

6.
$$f = 6x_1^2 + 7x_2^2 + 8x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

7.
$$f = 6x_1^2 + 6x_2^2 + 9x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

8.
$$f = 3x_1^2 + 5x_2^2 + 7x_3^2 - 8x_1x_2 + 8x_2x_3$$
.

9.
$$f = 2x_1^2 + 5x_2^2 + 5x_3^2 - 4x_1x_2 - 4x_1x_3 + 8x_2x_3$$
.

10.
$$f = -5x_1^2 + 2x_2^2 + 9x_3^2 + 8x_1x_2 + 8x_2x_3$$
.

11.
$$f = 5x_1^2 + 5x_2^2 + 8x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

12.
$$f = 5x_1^2 + 6x_2^2 + 7x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

13.
$$f = x_1^2 + 4x_2^2 + 4x_3^2 - 4x_1x_2 - 4x_1x_3 + 8x_2x_3$$
.

14.
$$f = x_1^2 + 3x_2^2 + 5x_3^2 - 8x_1x_2 + 8x_2x_3$$
.

15.
$$f = 4x_1^2 + 4x_2^2 + 7x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

16.
$$f = 4x_1^2 + 5x_2^2 + 6x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

17.
$$f = 3x_1^2 + 3x_2^2 + 6x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

18.
$$f = 3x_1^2 + 4x_2^2 + 5x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

19.
$$f = 2x_1^2 + 2x_2^2 + 5x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

20.
$$f = -6x_1^2 + x_2^2 + 8x_3^2 + 8x_1x_2 + 8x_2x_3$$
.

21.
$$f = x_1^2 + x_2^2 + 4x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

22.
$$f = -x_1^2 + x_2^2 + 3x_3^2 - 8x_1x_2 + 8x_2x_3$$
.

23.
$$f = 3x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

24.
$$f = 2x_1^2 + 3x_2^2 + 4x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

25.
$$f = -x_1^2 - x_2^2 + 2x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

26.
$$f = x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

27.
$$f = -2x_1^2 - 2x_2^2 + x_3^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

28.
$$f = x_2^2 + 2x_3^2 - 4x_1x_2 + 4x_2x_3$$
.

29.
$$f = -3x_1^2 - 3x_2^2 - 8x_1x_2 + 4x_1x_3 + 4x_2x_3$$
.

30.
$$f = -7x_1^2 + 7x_3^2 + 8x_1x_2 + 8x_2x_3$$
.

8.2. Квадратичные формы в четырёхмерном пространстве

1.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_1x_2 - x_1x_3 + 2x_1x_4 + 2x_2x_3 - x_2x_4 - x_3x_4$$
.

2.
$$f = -x_1^2 - x_2^2 - x_3^2 - x_4^2 + 6x_1x_2 - x_1x_3 - x_1x_4 - x_2x_3 - x_2x_4 + 6x_3x_4$$
.

3.
$$f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4^2 - 3x_1x_2 + x_1x_4 + x_2x_3 - 3x_3x_4$$
.

4.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_1x_2 + x_1x_4 + x_2x_3 - x_3x_4$$
.

5.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_1x_2 + 3x_1x_3 - 2x_1x_4 - 2x_2x_3 + 3x_2x_4 - x_3x_4$$
.

6.
$$f = x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4$$
.

7.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1x_2 + 2x_1x_3 - 3x_1x_4 - 3x_2x_3 + 2x_2x_4 + x_3x_4$$
.

8.
$$f = 2x_1x_2 + 2x_1x_3 - 2x_1x_4 - 2x_2x_3 + 2x_2x_4 + 2x_3x_4$$
.

9.
$$f = x_1x_2 + 2x_1x_3 - x_1x_4 - x_2x_3 + 2x_2x_4 + x_3x_4$$
.

10.
$$f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4^2 - 2x_1x_2 - x_1x_3 + x_1x_4 + x_2x_3 - x_2x_4 - 2x_3x_4$$
.

11.
$$f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4^2 + x_1x_2 + x_1x_3 - 4x_1x_4 - 4x_2x_3 + x_2x_4 + x_3x_4$$
.

12.
$$f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4^2 - 2x_1x_2 - 2x_3x_4$$
.

13.
$$f = -x_1^2 - x_2^2 - x_3^2 - x_4^2 + 3x_1x_2 + 2x_1x_3 - x_1x_4 - x_2x_3 + 2x_2x_4 + 3x_3x_4$$
.

14.
$$f = 2x_1x_2 + 3x_1x_3 - 3x_1x_4 - 3x_2x_3 + 3x_2x_4 + 2x_3x_4$$
.

15.
$$f = -x_1^2 - x_2^2 - x_3^2 - x_4^2 + 3x_1x_2 + x_1x_3 + x_2x_4 + 3x_3x_4$$
.

16.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2x_1x_3 - 2x_1x_4 - 2x_2x_3 + 2x_2x_4$$
.

17.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1x_2 + 3x_1x_3 - 4x_1x_4 - 4x_2x_3 + 3x_2x_4 + x_3x_4$$
.

18.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + 3x_1x_3 - 3x_1x_4 - 3x_2x_3 + 3x_2x_4$$
.

19.
$$f = 3x_1x_2 - x_1x_4 - x_2x_3 + 3x_3x_4$$
.

20.
$$f = -x_1^2 - x_2^2 - x_3^2 - x_4^2 + 4x_1x_2 + x_1x_3 - x_1x_4 - x_2x_3 + x_2x_4 + 4x_3x_4$$
.

21.
$$f = -x_1^2 - x_2^2 - x_3^2 - x_4^2 + 5x_1x_2 - x_1x_4 - x_2x_3 + 5x_3x_4$$
.

22.
$$f = 2x_1x_2 + 2x_3x_4$$
.

23.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2x_1x_2 + 3x_1x_3 - 5x_1x_4 - 5x_2x_3 + 3x_2x_4 + 2x_3x_4$$
.

24.
$$f = -x_1^2 - x_2^2 - x_3^2 - x_4^2 + 4x_1x_2 + 4x_3x_4$$
.

25.
$$f = 4x_1x_2 - 2x_1x_4 - 2x_2x_3 + 4x_3x_4$$
.

26.
$$f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4^2 - x_1x_2 - x_1x_3 - x_2x_4 - x_3x_4$$
.

27.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_1x_2 + x_1x_3 - 2x_1x_4 - 2x_2x_3 + x_2x_4 + x_3x_4$$
.

28.
$$f = x_1^2 + x_2^2 + x_3^2 + x_4^2 + 2x_1x_2 + 2x_1x_3 - 4x_1x_4 - 4x_2x_3 + 2x_2x_4 + 2x_3x_4$$
.

29.
$$f = 3x_1^2 + 3x_2^2 + 3x_3^2 + 3x_4^2 - 2x_1x_2 - x_1x_3 - x_1x_4 - x_2x_3 - x_2x_4 - 2x_3x_4$$
.

30.
$$f = 4x_1x_2 - x_1x_3 - x_1x_4 - x_2x_3 - x_2x_4 + 4x_3x_4$$
.

9. Приведение двух квадратичных форм к простейшему виду одним преобразованием

9.1. Квадратичные формы в трёхмерном пространстве

1.
$$f = 3x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_2x_3$$
,
 $g = 2x_1^2 + 3x_2^2 + 4x_3^2 + 6x_1x_2 - 4x_1x_3 - 6x_2x_3$.

2.
$$f = 3x_1^2 + 2x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3$$
,
 $g = 5x_1^2 + 3x_2^2 + x_3^2 + 6x_1x_2 + 2x_1x_3 + 2x_2x_3$.

3.
$$f = 3x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3,$$

 $g = 5x_1^2 + 4x_2^2 + 7x_3^2 + 8x_1x_2 + 2x_1x_3 + 8x_2x_3.$

4.
$$f = 3x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3,$$

 $g = 3x_1^2 + 2x_2^2 - x_3^2 + 4x_1x_2 - 2x_1x_3.$

5.
$$f = 3x_1^2 + 2x_2^2 + 2x_3^2 + 4x_1x_2 - 4x_1x_3 - 2x_2x_3,$$

 $g = 3x_2^2 - 2x_3^2 + 6x_1x_2 + 4x_1x_3 - 2x_2x_3.$

6.
$$f = 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3,$$

 $g = 4x_1^2 - x_2^2 - 3x_3^2 + 4x_1x_2 - 6x_2x_3.$

7.
$$f = 2x_1^2 - 5x_2^2 - 2x_3^2 - 2x_1x_2 - 4x_1x_3 - 6x_2x_3,$$

 $g = 2x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_2 - 4x_1x_3.$

8.
$$f = 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 2x_2x_3,$$

 $g = x_1^2 + x_2^2 + 3x_3^2 + 6x_1x_2 - 6x_1x_3 - 6x_2x_3.$

9.
$$f = x_1^2 + 3x_2^2 - 8x_1x_2 - 2x_1x_3 + 6x_2x_3,$$

 $g = 2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 - 4x_1x_3 + 4x_2x_3.$

10.
$$f = x_1^2 + 3x_2^2 + 6x_3^2 + 6x_1x_2 - 6x_1x_3 - 6x_2x_3$$
, $g = 2x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3 - 2x_2x_3$.

11.
$$f = x_1^2 + 4x_2^2 - x_3^2 - 8x_1x_2 - 2x_1x_3 + 8x_2x_3$$
,
 $g = 2x_1^2 + x_2^2 + 3x_3^2 - 2x_1x_2 - 4x_1x_3 + 2x_2x_3$.

12.
$$f = 2x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3$$
,
 $q = 2x_1^2 - x_2^2 + 2x_3^2 - 2x_1x_2 - 6x_1x_3$.

13.
$$f = x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_1x_3 + 2x_2x_3,$$

 $g = 4x_1^2 + x_2^2 - x_3^2 - 8x_1x_2 - 8x_1x_3 + 8x_2x_3.$

14.
$$f = 5x_1^2 - x_2^2 + 2x_3^2 - 2x_1x_2 - 4x_1x_3 + 2x_2x_3$$
, $g = 3x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 - 4x_1x_3 - 2x_2x_3$.

15.
$$f = 7x_1^2 + x_2^2 - 3x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3,$$

 $g = 2x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3.$

16.
$$f = x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_3 + 2x_2x_3,$$

 $g = 3x_1^2 + x_2^2 + 6x_3^2 - 6x_1x_3 + 6x_2x_3.$

17.
$$f = 2x_1^2 + 3x_2^2 - 3x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$$
, $g = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$.

18.
$$f = x_1^2 + x_2^2 + 3x_3^2 - 2x_1x_3 - 2x_2x_3$$
, $q = 3x_1^2 + 3x_2^2 + 5x_3^2 - 6x_1x_3 - 6x_2x_3$.

19.
$$f = 3x_1^2 - 2x_2^2 + 3x_3^2 + 6x_1x_2 - 6x_1x_3 - 6x_2x_3$$
, $g = x_1^2 + 3x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3$.

20.
$$f = x_1^2 + x_2^2 + 3x_3^2 - 2x_1x_3 + 2x_2x_3,$$

 $g = 3x_1^2 - 4x_2^2 + 2x_3^2 - 6x_1x_3 - 8x_2x_3.$

21.
$$f = 3x_1^2 - 2x_2^2 + 4x_3^2 + 6x_1x_2 - 6x_1x_3 - 6x_2x_3$$
, $g = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 - 2x_1x_3 - 2x_2x_3$.

22.
$$f = 3x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3,$$

 $g = 2x_1^2 + 3x_2^2 + 3x_3^2 - 6x_1x_2 + 6x_1x_3.$

23.
$$f = x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_3 - 2x_2x_3,$$

 $g = x_1^2 - x_2^2 + 5x_3^2 + 2x_1x_3 - 8x_2x_3.$

24.
$$f = x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_1x_3,$$

 $g = 4x_1^2 + 8x_2^2 + 7x_3^2 - 8x_1x_2 - 8x_1x_3.$

25.
$$f = 4x_1^2 + x_2^2 - 4x_1x_2 + 2x_1x_3,$$

 $g = 6x_1^2 + 3x_2^2 + 2x_3^2 - 8x_1x_2 + 6x_1x_3 - 4x_2x_3.$

26.
$$f = 2x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3,$$

 $g = x_1^2 + x_2^2 + 4x_3^2 + 6x_1x_2 + 8x_2x_3.$

27.
$$f = 2x_1^2 + 3x_2^2 - 3x_3^2 + 4x_1x_2 + 4x_1x_3 - 6x_2x_3$$
, $q = x_1^2 + 3x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$.

28.
$$f = 6x_1^2 - 2x_2^2 + 3x_3^2 - 6x_1x_2 + 6x_1x_3,$$

 $g = 2x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3.$

29.
$$f = x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_1x_3 + 4x_2x_3,$$

 $g = 4x_1^2 - x_2^2 + 3x_3^2 - 8x_1x_2 - 8x_1x_3 - 2x_2x_3.$

30.
$$f = 4x_1^2 - x_2^2 + 2x_3^2 + 8x_1x_2 + 4x_1x_3 + 4x_2x_3,$$

 $g = 2x_1^2 + 3x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3.$

9.2. Квадратичные формы в четырёхмерном пространстве

- 1. $f = 2x_1^2 + x_2^2 + x_3^2 + 2x_4^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 + 2x_2x_4 + 2x_3x_4$, $g = 4x_1^2 + 3x_2^2 + 2x_3^2 + 2x_4^2 + 6x_1x_2 + 4x_1x_3 + 4x_2x_3 + 2x_2x_4 + 2x_3x_4$.
- 2. $f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_3 2x_1x_4 + 2x_2x_3 4x_2x_4 2x_3x_4,$ $g = 3x_1^2 - 2x_2^2 + x_3^2 - x_4^2 + 4x_1x_3 - 2x_1x_4 - 2x_2x_3 + 4x_2x_4 + 2x_3x_4.$
- 3. $f = x_1^2 + x_2^2 + 3x_4^2 + 2x_1x_2 + 2x_1x_3 4x_1x_4 + 2x_2x_3 4x_2x_4 6x_3x_4$, $g = 2x_1^2 + 2x_2^2 + 2x_3^2 + 7x_4^2 + 2x_1x_2 + 2x_1x_3 - 6x_1x_4 + 2x_2x_3 - 6x_2x_4 - 2x_3x_4$.
- 4. $f = 4x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 4x_1x_2 + 4x_1x_3 6x_1x_4 + 2x_2x_3 2x_2x_4 2x_3x_4,$ $g = x_2^2 - x_3^2 - x_4^2 + 2x_1x_2 - 2x_1x_3 + 2x_1x_4 + 2x_2x_3 + 4x_3x_4.$
- 5. $f = 4x_1^2 + 3x_2^2 + 3x_3^2 + 2x_4^2 + 6x_1x_2 2x_1x_3 4x_1x_4 4x_2x_4 + 2x_3x_4,$ $g = x_1^2 + 2x_2^2 - x_3^2 + 4x_4^2 + 4x_1x_2 - 6x_1x_3 - 8x_1x_4 - 8x_2x_3 - 8x_2x_4 + 4x_3x_4.$
- 6. $f = 2x_1^2 + 3x_2^2 + 2x_3^2 + 3x_4^2 4x_1x_2 + 2x_1x_3 2x_1x_4 4x_2x_3 + 4x_2x_4 4x_3x_4,$ $g = x_1^2 + 3x_2^2 + x_3^2 + 3x_4^2 - 2x_1x_2 - 2x_1x_3 + 2x_1x_4 - 2x_2x_3 + 2x_2x_4 - 2x_3x_4.$

- 7. $f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 7x_4^2 + 2x_1x_2 + 2x_1x_3 6x_1x_4 + 2x_2x_3 2x_2x_4 6x_3x_4,$ $g = 2x_1^2 + 2x_2^2 + x_3^2 + 7x_4^2 + 4x_1x_2 + 4x_1x_3 - 8x_1x_4 + 4x_2x_3 - 8x_2x_4 - 6x_3x_4.$
- 8. $f = x_2^2 + x_3^2 + 4x_4^2 + 2x_1x_2 2x_1x_3 8x_1x_4 4x_2x_3 8x_2x_4 + 4x_3x_4,$ $g = 4x_1^2 + 3x_2^2 + 2x_3^2 + 2x_4^2 + 6x_1x_2 - 4x_1x_3 - 4x_1x_4 - 2x_2x_3 - 4x_2x_4 + 2x_3x_4.$
- 9. $f = x_1^2 + x_2^2 + x_3^2 2x_4^2 + 2x_1x_2 + 2x_1x_3 + 4x_1x_4 + 2x_2x_3 + 4x_2x_4 + 4x_3x_4,$ $g = 4x_1^2 + 3x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_2 + 4x_1x_3 - 6x_1x_4 + 4x_2x_3 - 2x_3x_4.$
- 10. $f = 4x_1^2 + 3x_2^2 + 2x_3^2 + 2x_4^2 + 6x_1x_2 + 4x_1x_3 4x_1x_4 + 4x_2x_3 2x_2x_4 2x_3x_4,$ $g = 4x_1^2 + 3x_2^2 + 3x_3^2 + x_4^2 + 6x_1x_2 + 6x_1x_3 - 2x_1x_4 + 6x_2x_3.$
- 11. $f = 3x_1^2 2x_2^2 + 3x_3^2 2x_4^2 4x_1x_2 + 6x_1x_3 + 4x_1x_4 4x_2x_3 + 4x_2x_4 + 4x_3x_4,$ $g = 4x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 4x_1x_3 - 6x_1x_4 + 2x_2x_3 - 2x_3x_4.$
- 12. $f = 3x_1^2 + 3x_2^2 + 2x_3^2 x_4^2 + 6x_1x_2 + 6x_1x_3 + 6x_2x_3 2x_3x_4$, $g = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_2 + 2x_1x_3 2x_1x_4 + 2x_2x_3 + 2x_2x_4 + 2x_3x_4$.
- 13. $f = x_3^2 + 2x_4^2 + 2x_1x_3 + 2x_1x_4 + 2x_2x_3 + 2x_2x_4 + 2x_3x_4$, $g = 6x_1^2 + 3x_2^2 + 2x_3^2 + 3x_4^2 + 8x_1x_2 + 6x_1x_3 + 6x_1x_4 + 4x_2x_3 + 4x_2x_4 + 4x_3x_4$.

- 14. $f = 4x_1^2 + 2x_2^2 + 3x_3^2 + 2x_4^2 + 4x_1x_2 2x_1x_3 2x_2x_3 2x_2x_4 + 4x_3x_4,$ $g = 3x_1^2 + 4x_2^2 + x_3^2 + 2x_4^2 + 8x_1x_2 - 2x_1x_3 - 4x_1x_4 - 4x_2x_3 - 4x_2x_4 + 4x_3x_4.$
- 15. $f = 2x_1^2 x_2^2 + 2x_3^2 x_4^2 2x_1x_2 + 4x_1x_3 2x_1x_4 2x_2x_3 2x_2x_4 2x_3x_4$, $g = 4x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 4x_1x_3 - 2x_1x_4 + 2x_2x_3 + 4x_2x_4 + 2x_3x_4$.
- 16. $f = x_1^2 + 2x_4^2 + 2x_1x_2 2x_1x_3 4x_1x_4 2x_2x_3 6x_2x_4 + 2x_3x_4$, $g = 2x_1^2 + 2x_2^2 + 2x_3^2 + 7x_4^2 + 2x_1x_2 - 2x_1x_3 - 6x_1x_4 - 2x_2x_3 - 2x_2x_4 + 6x_3x_4$.
- 17. $f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_2 2x_1x_3 + 2x_1x_4 2x_2x_3 2x_2x_4 2x_3x_4,$ $g = 2x_1^2 + x_2^2 + x_3^2 - 2x_4^2 + 4x_1x_2 - 4x_1x_3 - 4x_2x_3 + 2x_2x_4 + 2x_3x_4.$
- 18. $f = 2x_1^2 + 4x_2^2 + 3x_3^2 + 2x_4^2 + 2x_1x_3 2x_1x_4 + 2x_2x_3 + 4x_2x_4 + 2x_3x_4,$ $g = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_4^2 + 2x_1x_2 + 2x_1x_3 - 8x_2x_3 - 8x_2x_4 - 8x_3x_4.$
- 19. $f = 2x_1^2 + 2x_2^2 5x_4^2 + 6x_1x_2 6x_1x_3 + 2x_1x_4 6x_2x_3 + 2x_2x_4 + 6x_3x_4,$ $g = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_2 - 2x_1x_3 - 2x_1x_4 - 2x_2x_3 - 2x_2x_4 - 2x_3x_4.$
- **20.** $f = 3x_1^2 + 3x_2^2 + 2x_3^2 + 3x_4^2 2x_1x_3 4x_1x_4 + 4x_2x_3 + 4x_2x_4 + 4x_3x_4$

$$g = 8x_1^2 + x_2^2 - 3x_3^2 + x_4^2 + 8x_1x_2 - 8x_1x_4 - 6x_2x_3 - 6x_2x_4 - 6x_3x_4.$$

- **21.** $f = 2x_1^2 x_2^2 + x_4^2 + 2x_1x_2 + 2x_1x_3 4x_1x_4 4x_2x_3 6x_2x_4 4x_3x_4,$ $g = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_4^2 + 2x_1x_2 + 2x_1x_3 - 4x_1x_4 + 2x_2x_3 + 2x_3x_4.$
- 22. $f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 2x_1x_2 2x_1x_3 2x_1x_4 + 2x_2x_3 2x_2x_4 + 2x_3x_4,$ $g = 4x_1^2 + x_2^2 + x_3^2 - 6x_4^2 - 8x_1x_2 - 8x_1x_3 + 8x_2x_3 + 6x_2x_4 - 6x_3x_4.$
- 23. $f = 2x_1^2 3x_2^2 3x_3^2 + 3x_4^2 + 2x_1x_2 4x_1x_4 8x_2x_3 2x_2x_4 + 2x_3x_4,$ $g = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_2 - 4x_1x_4 + 2x_2x_3 - 2x_2x_4 + 2x_3x_4.$
- 24. $f = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_4^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3 4x_2x_4 + 2x_3x_4,$ $g = 3x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_2 - 2x_1x_3 - 4x_1x_4 + 4x_2x_3 - 6x_2x_4 - 4x_3x_4.$
- $25. \ \ f = 4x_1^2 + 3x_2^2 + 3x_3^2 + 2x_4^2 + 2x_1x_2 + 2x_1x_3 4x_1x_4 + 4x_2x_3 + \\ + 2x_2x_4, \\ g = 4x_1^2 + x_2^2 + x_3^2 + 3x_4^2 + 2x_1x_2 + 2x_1x_3 6x_1x_4 4x_2x_3 \\ 6x_3x_4.$
- **26.** $f = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 2x_1x_2 + 2x_1x_3 2x_1x_4 2x_2x_3 2x_2x_4 2x_3x_4,$ $g = x_1^2 + x_2^2 + x_3^2 - 3x_4^2 - 4x_1x_2 + 4x_1x_3 + 2x_1x_4 - 4x_2x_3 + 2x_2x_4 + 2x_3x_4.$

27.
$$f = 2x_1^2 - 3x_2^2 + 2x_3^2 - 4x_4^2 - 2x_1x_2 + 6x_1x_3 + 2x_1x_4 + 6x_2x_4 - 2x_3x_4,$$

 $g = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 2x_1x_2 + 2x_1x_3 - 2x_1x_4 - 4x_1x_2 + 2x_1x_3 - 2x_1x_4 - 2x_1x_2 + 2x_1x_3 - 2x_1x_4 - 2x_1x_$

28.
$$f = x_1^2 - x_2^2 + 3x_3^2 + 5x_4^2 - 2x_1x_2 - 4x_1x_3 - 8x_1x_4 - 4x_2x_4 + 6x_3x_4,$$
 $g = 3x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 + 4x_1x_2 - 2x_1x_3 - 4x_1x_4 - 2x_2x_4 + 4x_3x_4.$

29.
$$f = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_4^2 + 4x_1x_2 - 2x_1x_3 - 2x_1x_4 - 2x_2x_3 + 2x_3x_4,$$

 $g = x_1^2 - 2x_2^2 + 2x_3^2 + 4x_4^2 - 4x_1x_2 - 2x_1x_3 - 6x_1x_4 - 2x_2x_3 + 2x_3x_4.$

30.
$$f = 3x_1^2 + 3x_2^2 + 2x_3^2 - 4x_4^2 - 8x_1x_2 + 8x_1x_3 - 2x_1x_4 - 8x_2x_3 - 2x_2x_4 + 4x_3x_4,$$

 $g = 2x_1^2 + 2x_2^2 + 2x_3^2 + 3x_4^2 - 2x_1x_2 + 2x_1x_3 + 2x_1x_4 - 2x_2x_3 + 2x_2x_4 - 2x_3x_4.$

Содержание

1.	Линейные пространства, размерность, базис	3
2.	Ранг матрицы	10
3.	Системы линейных уравнений, решаемые по	
	формулам Крамера	19
	3.1. Линейные системы третьего порядка	19
	3.2. Линейные системы четвёртого порядка	22
4.	Системы линейных уравнений	27
	4.1. Однородные системы	27
	4.2. Неоднородные системы	36
5.	Линейные операторы и их матрицы	45
6.	Собственные числа и собственные векторы ли-	
	нейных операторов	49
	6.1. Линейные операторы трёхмерного	
	пространства	49
	6.2. Линейные операторы четырёхмерного	
	пространства	51
7.	Приведение квадратичных форм к нормально-	
	му виду методом Лагранжа	54
	7.1. Квадратичные формы в трёхмерном	
	пространстве	54
	7.2. Квадратичные формы в четырёхмерном	
	пространстве	56
	nposipaneize	

8.	При	ведение квадратичных форм к канониче-	
	ског	му виду ортогональным преобразованием	58
	8.1.	Квадратичные формы в трёхмерном	
		пространстве	58
	8.2.	Квадратичные формы в четырёхмерном	
		пространстве	60
9.	При	ведение двух квадратичных форм к про-	
	стей	ішему виду одним преобразованием	62
	9.1.	Квадратичные формы в трёхмерном	
			62
		пространстве	02
	9.2.	пространстве	02
	9.2.		65

Александр Петрович Горячев Ирина Львовна Гусева Владимир Борисович Шерстюков

Сборник домашних заданий по линейной алгебре

Под редакцией доцента А.П. Горячева

Редактор М.В. Макарова Оригинал-макет изготовлен А.П. Горячевым

Подписано в печать . Формат $60 \times 84^{1/16}$. Уч.-изд. л. 4,5. Печ. л. 4,5. Тираж 1000 экз. Изд. ь 052-1. Заказ № 603.

Московский инженерно-физический институт (государственный университет). Типография МИФИ. 115409, Москва, Каширское ш., 31