9 日本国特許庁(JP)

①実用新案出願公告

⑫実用新案公報(Y2)

平5-41087

®Int. Cl. 5

₽ 3.17

識別記号

庁内整理番号

❷❸公告 平成5年(1993)10月18日

21/00 B 60 R H 04 N

Ç

2105-3D

(全5頁)

会考案の名称 車両用視界向上装置

> ② 実 昭62-81167

69公 開 昭63-192788

22出 皕 昭62(1987)5月29日

@昭63(1988)12月12日

70考 案 古

恭 俊

神奈川県横浜市神奈川区宝町2番地 日産自動車株式会社

勿出 願 人 日産自動車株式会社 神奈川県横浜市神奈川区宝町2番地

個代 理 人 弁理士 鈴木 弘男

審査官

小 野 塚

99多考文献

特開 昭62-23842 (JP, A)

特開 昭62-23843 (JP, A)

特開 昭59-156089 (JP, A)

特公 昭48-2979 (JP, B1)

2

1

匈実用新案登録請求の範囲

自車両前方の光景を撮像する撮像手段と、該撮 像手段から出力される画像情報より光強度分布を 検出する強度分布検出手段と、検出した光強度分 布から所定の光強度以上となつている領域を特定 5 する領域特定手段と、特定した領域において急激 な明暗の変化点を検出する明暗検出手段と、前記 変化点の移動方向を判断する判断手段とを有する ことを特徴とする車両用視界向上装置。

考案の詳細な説明

(産業上の利用分野)

本考案は、撮像装置を用いて車両前方の障害物 を検知する視界向上装置に関する。

(従来技術および問題点)

角領域)をテレビカメラで撮影して撮影画像を運 転席に設けたブラウン管などに映し出して運転の 安全を期するようにした車両用視認補助装置がた とえば(特開昭58-180346号公報で)知られてい る。

このような装置においては、CCDカメラを用 いて夜間の歩行者や障害物を撮影しようとすると 輝度が低すぎて撮影できない場合があるために、 CCDカメラの感度を上げると今度は対向車の前 照灯によりブルーミング現象が発生して、画面全 25 体が白つぼくなつてしまい、結局対向車前照灯近 傍すなわち、自車から対向車前照灯をみた時の角

度からある角度の範囲をもつた領域に存在する障 害物が見えないという問題があつた。

(考案の目的および構成)

本考案は上記の点にかんがみてなされたもの で、対向車の右側前照灯よりセンターラインより の部分にいる歩行者や障害物を確実に検出するこ とを目的とし、この目的を達成するために、第1 10 図に全体構成を示すように、自車両前方の光景を 撮像手段15により撮像し、得られる画像情報か ら強度分布検出手段20により前記撮像手段に照 射された対向車前照灯による照射光強度分布を求 め、この照射光強度分布から所定の光強度以上と 従来バスなどでは、運転者の見にくい場所(死 15 なつている領域を領域特定手段25により特定 し、特定した領域において急激な明暗の変化点を 明暗検出手段30により検出し、急激な明暗の変 化点の移動方向を判断手段35により判断するよ うに構成した。

> (作用) 20

> > 本考案の車両用視界向上装置では照射光強度分 布の明から暗への急激な変化をすることで障害物 等を検出するようにしている。

(実施例)

以下本考案を図面に基づいて説明する。

第2図は本考案による視界向上装置の一実施例 のブロック線図である。

まず構成を説明すると、1は対向車前照灯の近 傍を撮影するCCDカメラ、2はCCDカメラ1か ら出力する画像信号を演算処理するマイコン、3 は対向車前照灯の光をできるだけ避けて路屑付近 を撮像するCCDカメラ、4はCCDカメラ3から 出力する画像信号を演算処理するマイコンであ る。撮像手段15としてのCCDカメラ1および のフロントガラス7に近い位置に取り付けられて いる。また、5は、強度分布検出手段20、領域 特定手段25、明暗検出手段30および判断手段 35としてのマイコン2および4からの信号によ の存在を報知するLEDまたはランプなどの表示 装置である。8はピラー、9はメータクラスタ 一、10はインストである。なお、表示装置6は フロントガラス7とインスト10との境界部に設 けると運転者に見易くてよい。

第4図は本考案により歩行者を検出する際の説 明図で、イは歩行者がいない場合、口は歩行者の いる場合である。この図において、11Rは対向 車の右側前照灯、11Lは対向車の左側前照灯、 12は模式的に示した光強度分布、13は歩行者 25 であり、対向車の前照灯による光強度が、所定の 光強度以上となつている領域が、領域特定手段 2 5により特定する所定の光強度以上となつている 領域である。イのように歩行者がいない場合は CCDカメラ1に照射される照射光強度分布にあ 30 まり差がないが、口のように歩行者がいると CCDカメラ1に照射される光の強度は歩行者の いる部分は光がさえぎられて弱くなり、歩行者の いない部分は強くなつてCCDカメラからの画像

第5図はマイコン2の動作のフローチャート、 第6図はマイコン4のフローチヤートである。

まず第5図を参照してマイコン2の動作を説明 する。

自車両前方の対向車前照灯の近傍をCCDカメ ラ1により撮影し、その画像信号を入力し(Fー 1)、その画像情報から前方20~60mで最も近い 対向車の右側前照灯を検知する (F-2)。次に、

対向車の右側前照灯からセンターライン方向に向 つての画像情報をとり出し(F-3)、おのおの 隣接する画素に大きな明暗差(センターライン側 が暗)があるか否かを解析する (F-4)。第4 図口からわかるように、歩行者13がいるときは 明暗が大きく変るので、明暗差があれば、歩行者 ありの信号を出力する (F-5)。それに対して 明暗差がないときは次の対向車の前照灯を検知し (F-6)、ステップ (F-3) に進み、<u>上述</u>した 3はいずれも第3図に示すように運転席上の天井 10 ように対向車前照灯の照射光が作る光強度分布を

> 次に第6図を参照してマイコン4の動作を説明 する。

利用して明暗差を求める。

CCDカメラ3により撮影した自車両前方の路 り表示装置6を作動させる駆動回路、6は障害物 15 屑付近の画像信号を入力し(P-1)、その画像 情報から前方20~60mのゾーンで水平方向右方向 に移動する路面輝度より高い光点を検知する(P - 2)。光点があれば障害物たとえば歩行者あり の信号を出力する (P-3)。

> マイコン2は単に明暗差を検出するだけである 20 から、このようにマイコン4による光点の移動検 出と合わせて歩行者の検出が確実にできる。

さらに第7図は本考案による視界向上装置の他 の実施例の動作のフローチャートを示す。

この実施例では第5図に示したフローチャート をさらに改良したもので、第5図のステップ (F -1), (F-2), (F-3), (F-4) の後明暗 差の生じた位置θιを記憶する (F-7)。次いで X = (F-1), (F-2), (F-3), (F-4)4), (F-6) を繰り返して明暗の変化を検知す る (F-8)。その結果、明暗差が生じた位置 θ_2 を記憶し(F-9)、次に位置62の方が位置61よ りCCD画面の中心に近いか否かを判別する(F -10)。位置検出の処理の短い時間に車両が進む 情報から得られる強度分布には大きな明暗差がで 35 距離に相当する画像情報上の距離より位置のから 位置02の移動距離の方が長く、位置02が位置01よ りCCD画面の中心に近い場合は明暗差のある部 分がCCDカメラ1の中心点に近づいたことにな り歩行者などが自車前方へ近づきつつあることが 40 わかる。そこで歩行者接近信号を出力する (F-11)。これとは逆に位置θ2が位置θ1よりCCD画面 の中心に近くない場合は次の対向車の前照灯を検 知するステップ (F-6) に進む。以上説明した ように本考案の他の実施例では強度分布のうち明

5

から暗への変化を2回に分けて検出し、2回目に 検出した明暗の変化した位置がCCDカメラの方 に近づいたら歩行者などが自車に近づいたことを 検知できる。さらに暗部位が左右へ動いたかどう 運転者が特に注意すべき情報のみを精度よく視認 することができる。

(考案の効果)

以上説明したように、本考案においては、対向 行者や障害物が照射光を遮蔽することにより生じ た急敵な明暗差を検知することにより、歩行者や 障害物を検知するように構成したので、対向車の 前照灯近傍を横断する歩行者を検知し易くなると いう効果がある。

図面の簡単な説明

第1図は本考案による視界向上装置の全体構成 図、第2図は本考案による視界向上装置の一実施 例のブロック線図、第3図は本考案で用いる かを検知することにより歩行者や犬、猫のような 5 CCDカメラの取付け位置と障害物検出表示装置 の取付け位置を例示する車室内前部の斜視図、第 4図イおよび口はCCDカメラによる撮影画面、 第5図および第6図は本考案による視界向上装置 の一実施例における障害物検出動作のフローチャ 車前照灯の照射光が作る光強度分布を利用し、歩 10 一ト、第7図は本考案による視界向上装置の他の 実施例における障害物検出動作のフローチャート である。

6

1, 3……CCDカメラ、2, 4……マイコン、 5 …… 駆動回路、6 …… 表示装置、13 …… 歩行 15 者。

