The result:

```
Time: 0.0009963512420654297s
plan:
action: move
 parameters: ('npc', 'town', 'tunnel')
 positive_preconditions: [['at', 'npc', 'town'], ['border', 'town', 'tunnel']]
 negative_preconditions: [['guarded', 'tunnel']]
 add_effects: [['at', 'npc', 'tunnel']]
 del_effects: [['at', 'npc', 'town']]
action: move
  parameters: ('npc', 'tunnel', 'river')
  positive_preconditions: [['border', 'tunnel', 'river'], ['at', 'npc', 'tunnel']]
 negative_preconditions: [['guarded', 'river']]
 add_effects: [['at', 'npc', 'river']]
 del_effects: [['at', 'npc', 'tunnel']]
action: move
 parameters: ('npc', 'river', 'castle')
 positive_preconditions: [['at', 'npc', 'river'], ['border', 'river', 'castle']]
 negative_preconditions: [['guarded', 'castle']]
 add_effects: [['at', 'npc', 'castle']]
 del_effects: [['at', 'npc', 'river']]
```

The result is mean that 2 steps needed to get the goal state. First move npc from town to tunnel, second move npc from tunnel to river, finally more npc from river to castle.

To solve the Wumpus World problem:

First, define the Wumpus world.

```
(not (guarded ?12)))
     :effect (and (at ?p ?12) (not (at ?p ?11)))
 (:action move
       :parameters (?who ?from ?to)
       :precondition (and (adj ?from ?to)
                           (not (pit ?to))
                           (at ?who ?from))
      :effect (and (not (at ?who ?from))
                           (at ?who ?to))
 (:action take
       :parameters (?who ?what ?where)
       :precondition (and (at ?who ?where)
                           (at ?what ?where))
       :effect (and (have ?who ?what)
                    (not (at ?what ?where)))
 (:action shoot
       :parameters (?who ?where ?arrow ?victim ?where-
 victim)
       :precondition (and (have ?who ?arrow)
                           (at ?who ?where)
                           (at ?victim ?where-victim)
                           (adj ?where ?where-victim))
       :effect (and (dead ?victim) (not (at ?victim ?where-
 victim)) (not (have ?who ?arrow)))
)
```

Second, define the problem:

```
(adj sq-1-2 sq-1-3) (adj sq-1-3 sq-1-2)
  (adj sq-2-1 sq-2-2) (adj sq-2-2 sq-2-1)
  (adj sq-2-2 sq-2-3) (adj sq-2-3 sq-2-2)
  (adj sq-1-1 sq-2-1) (adj sq-2-1 sq-1-1)
  (adj sq-1-2 sq-2-2) (adj sq-2-2 sq-1-2)
  (adj sq-1-3 sq-2-3) (adj sq-2-3 sq-1-3)
  (pit sq-1-2)
  (at the-gold sq-1-3) (at agent sq-1-1)
  (have agent the-arrow) (at wumpus sq-2-3))
(:goal (and (have agent the-gold) (at agent sq-1-1)))
```

Then solve the PDDL.