MAST20009 Vector Calculus

Practice Class 3 Questions

Lagrange Multipliers

If \boldsymbol{a} is an extremum of $f(\boldsymbol{x})$ subject to the constraint $g(\boldsymbol{x}) = 0$, then there exists a real number λ such that

$$\nabla f = \lambda \nabla g$$

at $\boldsymbol{x} = \boldsymbol{a}$.

1. Consider the function

$$f(x,y) = x^3 - 3xy^2$$

- (a) Find and classify the extrema of f in the region $x^2 + y^2 < 1$.
- (b) Find and classify the extrema of f subject to the constraint $x^2 + y^2 = 1$.
- (c) Determine the absolute minimum and absolute maximum values of f on the set $S = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}.$

The arclength s of a path c(t) = (x(t), y(t), z(t)) for $a \le t \le b$ is given by:

$$s = \int_a^b \left| \frac{d\mathbf{c}}{dt} \right| dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt$$

We can parametrise a path in terms of arclength by defining

$$s(t) = \int_{a}^{t} \left| \frac{d\mathbf{c}}{d\tau} \right| d\tau$$

to be the length from a point P_0 to any point P on the path.

2. Consider the curve

$$\boldsymbol{c}(t) = (\cos t, \sin t, t).$$

1

- (a) Find the arclength of the curve from c(0) to $c(2\pi)$.
- (b) Parametrise the curve in terms of the arclength s.

For a curve c(t)Unit tangent vector: $T(t) = \frac{\frac{dc}{dt}}{\left|\frac{dc}{dt}\right|}$ Unit normal vector: $N(t) = \frac{\frac{dT}{dt}}{\left|\frac{dT}{dt}\right|}$ Unit binormal vector: $B(t) = T \times N$ Curvature: $\kappa(t) = \frac{\left|\frac{dT}{dt}\right|}{\left|\frac{dc}{dt}\right|}$ Torsion: $\tau(t) \text{ such that } \frac{dB}{ds} = \frac{\frac{dB}{dt}}{\left|\frac{dc}{dt}\right|} = -\tau N$

3. Consider the curve

$$\boldsymbol{c}(t) = (e^t \sin t, e^t \cos t, e^t).$$

Find
$$T(t)$$
, $N(t)$, $B(t)$, $\kappa(t)$, and $\tau(t)$.

When you have finished the above questions, continue working on the questions in the Vector Calculus Problem Sheet Booklet.