Revolutions towards Embedded Systems

Course Teacher:

Md. Obaidur Rahman, Ph.D.

Professor

Department of Computer Science and Engineering (CSE)
Dhaka University of Engineering & Technology (DUET), Gazipur.

Course ID: CSE - 4619

Course Title: Peripherals, Interfacing and Embedded Systems

Department of Computer Science and Engineering (CSE),

Islamic University of Technology (IUT), Gazipur.

Lecture References:

- Book:
 - Embedded System Design, Author: P. Marwedel
 - Embedded System Design: An Introduction to Processes, Tools and Techniques, Author: Arnold Berger, Arnold S. Berger
- Lecture Materials:
 - http://webct.edtec.unsw.edu.au/
 - Saeid Nooshabadi, Microprocessor and Interfacing

What is an Embedded System??

Examples of Embedded Systems

Office systems and mobile equipment	Building systems	Manufacturing and Process Control
Answering machines Copiers Faxes Laptops and notebooks Mobile Telephones PDAs, Personal organisers Still and video cameras Telephone systems Time recording systems Printer Microwave	Air conditioning Backup lighting and generators Building management systems CCTV systems Fire Control systems Heating and ventilating systems Lifts, elevators, escalators Lighting systems Security systems Security cameras Sprinkler systems	Automated factories Bottling plants Energy control systems Manufacturing plants Nuclear power stations Oil refineries and related storage facilities Power grid systems Power stations Robots Switching systems Water and sewage systems

Example of Embedded Systems

Transport	Communications	Other equipment
Aeroplanes	Telephone systems	Automated teller systems
Trains	Cable systems	Credit card systems
Buses	Telephone switches	Medical Imaging equipment
Marine craft	Satellites	Domestic Central Heating control
Jetties	Global Positioning	VCRs
Automobiles	System	
Air Traffic Control		
Signalling Systems		
Radar Systems		
Traffic Lights		
Ticketing machines		
Speed cameras,		
Radar speed		
detectors		

Automotive Embedded Systems

- ▶ Today's high-end automobile may have 100 microprocessors:
 - 4-bit microcontroller checks seat belt;
 - Microcontrollers run dashboard devices;
 - ▶ 16/32-bit microprocessor controls engine.

Example:

- BMW 850i brake and stability control system
 - ▶ Anti-lock brake system (ABS): pumps brakes to reduce skidding.
 - Automatic stability control (ASC+T): controls engine to improve stability.
 - ABS and ASC+T communicate.
 - ▶ ABS was introduced first---needed to interface to existing ABS module.

Embedded Systems Rule the Market

- ▶ 80 Million PCs vs. 3 Billion Embedded CPUs Annually
- Embedded market is growing; whereas PC market is mostly saturated

Embedding a Computer

An Embedded Control System Designer's View

Measured by: Cost, Time-to-market, Cost, Functionality, Cost & Cost.

A Customer View

- Reduced Cost
- Increased Functionality
- Improved Performance
- Increased Overall Dependability
 - (Debatable, but can be true)

At the high end of the scale

Processor: Intel Pentium 4
Frequency: 3.2GHz

Power consumption: 103 W

At the low end of the scale

Processor can consume no more than 250-300mW

Embedded Devices

Computer Technology → Dramatic Change

- Processor
 - 2X in speed every 1.5 years;100X performance in last decade
- Memory
 - ▶ DRAM capacity: 2X / 2 years; **64X** size in last decade
 - Cost per bit: improves about 25% per year
- Disk
 - capacity: > 2X in size every 1.0 years
 - Cost per bit: improves about 100% per year
 - ▶ 250X size in last decade

Computer Technology → Dramatic Change!

State-of-the-art PC when you graduate: (at least...)

Processor clock speed: 5000 MegaHertz

(5.0 GigaHertz)

Memory capacity: 4000 MegaBytes

(8.0 GigaBytes)

Disk capacity: 2000 GigaBytes

(2.0 TeraBytes)

▶ New units! Mega => Giga, Giga => Tera

(Kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta = 10^{24})

Now a days, Kilo, Mega, etc. are incorrect Terminologies!

Computer Technology → Dramatic Change!

Another Example of Computer Revolution

Original IBM PC (1981)	MICAZ Mote (2005)	
4.77 MHz	4 MHz	
16-256 KB RAM	I 28 KB RAM	
160 KB Floppies	512 KB Flash	
~ \$6K (today)	~ \$35	
~ 64 W	~I4 mW	
25 lb, 19.5 x 5.5 x 16 inch	0.5 oz, 2.25 x 1.25 x 0.25 inch	

Another Revolution to Reach Here:

Wireless Revolution

Boston central telephone station at 40 Pearl Street after the blizzard of 1881

Technology Projection Challenge for Energy: Communication/Computation

	1999 (Bluetooth Technology)	2004
Communication	(150nJ/bit)	(5nJ/bit)
	1.5mW*	50uW
Computation		~ 190 MOPS
Computation		(5pJ/OP)

Assume: 10kbit/sec. Radio, 10 m range.

Large cost of communications relative to computation continues

Bottom Line ...

- ▶ By Computer Systems we often mean
 - General-purpose, digital computers that interact with humans and possibly with each other.
- Change in Trend using Embedded Systems
 - More special purpose-computers
 - More scenarios without humans in the loop
 - More environments where computing is not the explicit / main goal.

Bottom Line ...

Computer Systems

- Interactive (HCI)
- Discrete Time not counted
- Stand-alone / Networked
- Isolated Environment

Embedded Systems

- Reactive (Event-driven)
- Timeliness is important to critical
- Computing Component may be controlled by external system
- Alien Environment (may affect function)

Implications (of being embedded)

Low cost hardware

 Software Development cost (one-time) vs. Per-shipped-item cost (recurring)

Very Limited Storage Space

- Convoluted Algorithms and Aggressive Optimization
- Space complexity !!

Development Environment is different from execution environment

- Can't do all time test-bed implementation, rather depending on simulation
- Constrained process; innovative techniques?

Implications (of being embedded)

Long and un-interrupted running times

- Always running system !!
- Can't reset flight control system or cardiac pacemaker at operation

Alien (Uncontrolled) Environments

- Harsh and human un-attendant scenario
- Increase reliability constraints

Timeliness expectations

- ▶ Time complexity !!
- Specific approaches for design, development and testing

Thank You!!

