Claims

[c1] 1.An optical substrate comprising:

a surface comprising a prism structure characterized by a cross section having a curved facet described by the equation

$$z = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}} + dr^2 + er^4 + fr^6,$$

wherein z is the perpendicular deviation of the surface of the facet of the prism from a straight line originating at a first reference point at a base of the prism and terminating at a second reference point near the peak of the prism and the coefficients of the polynomial lie within the following approximate ranges: -20 < c < 20; -10 < d < 10; -10 < e < 10; -10 < f < 10 and -1 < k is less than or equal to zero and where r is a radial coordinate or distance from an optical axis.

- [c2] 2.The optical substrate as set forth in Claim 1 wherein the prism structure comprises a plurality of prisms having a prescribed peak angle, α , a height, h, a length, l, and a pitch, p.
- [c3] 3. The optical substrate as set forth in Claim 2 wherein the plurality of prisms include at least a pseudorandom peak angle, α , height, h, length, l, and pitch, p.
- [c4] 4.The optical substrate as set forth in Claim 1 wherein a peak angle of the prism is greater than 90 degrees and the refractive index of the substrate is between approximately 1.65 and 1.8.
- [c5] 5.The optical substrate as set forth in Claim 4 wherein the peak angle is 100 degrees.
- [C6] 6.An optical substrate comprising:
 a surface comprising a prism structure characterized by a peak angle of greater than 90 degrees and a refractive index of between approximately 1.65 and 1.8.
- [c7] 7.The optical substrate as set forth in Claim 6 wherein the peak angle is 100 degrees.
- [c8] 8.A backlight display device comprising:

an optical source for generating light;

a light guide for guiding the light therealong including a reflective device positioned along the light guide for reflecting the light out of the light guide; an optical substrate receptive of the light from the reflective device, the optical substrate comprising:

a surface comprising a prism structure characterized by a cross section having a curved facet.

- [c9] 9.The backlight display device as set forth in Claim 8 wherein the curved facet is described by a segment of a polynomial function.
- [c10] 10.The backlight display device as set forth in Claim 8 wherein the segment of the polynomial function is described by the equation

$$z = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}} + dr^2 + er^4 + fr^6,$$

wherein z is the perpendicular deviation of the surface of the facet of the prism from a straight line originating at a first reference point at a base of the prism and terminating at a second reference point near the peak of the prism and the coefficients of the polynomial lie within the following approximate ranges: -20 < c < 20; -10 < d < 10; -10 < e < 10; -10 < f < 10 and -1 < k is less than or equal to zero and where r is a radial coordinate or distance from an optical axis.

- [c11] 11.The backlight display device as set forth in Claim 8 wherein a peak angle of the prism is greater than 90 degrees and the refractive index of the substrate is between approximately 1.65 and 1.8.
- [C12] 12.The backlight display device as set forth in Claim 11 wherein the peak angle is 100 degrees.
- [c13] 13.The backlight display device as set forth in Claim 8 wherein the optical substrate is formed with an optically transparent material with an index of refraction between approximately 1.65 and 1.8.
- [C14] 14.The backlight display device as set forth in Claim 10 wherein the optical substrate is formed with an optically transparent material with an index of refraction of approximately 1.75.

[c15]	15.An optical substrate comprising:
	a surface comprising a prism structure characterized by a cross section having a
	plurality of facets including a first facet oriented at a first angle with respect to
	the surface of the prism and a second facet oriented at a second angle with
	respect to the surface of the prism;
	wherein the first and second facets intersect at one side of a centerline of the
	prism and the first and second angles are different.
[c16]	16.The optical substrate as set forth in Claim 15 wherein a peak angle of the
	prism structure is greater than 90 degrees and the refractive index of the
	substrate is between approximately 1.65 and 1.8.
[c17]	17.The optical substrate as set forth in Claim 16 wherein the peak angle is 100
	degrees.
[c18]	18. The optical substrate as set forth in Claim 1 wherein the prism structure is
	an ultraviolet curable organic or inorganic material.
[c19]	19.The optical substrate as set forth in Claim 6 wherein the prism structure is
· ·	an ultraviolet curable organic or inorganic material.
[c20]	20.The backlight display device as set forth in Claim 8 wherein the prism
	structure is an ultraviolet curable organic or inorganic material.
[c21]	21. The optical substrate as set forth in Claim 15 wherein the prism structure is
	an ultraviolet curable organic or inorganic material.
[c22]	22.The optical substrate as set forth in Claim 1 wherein the prism structure
• •	includes a peak angle of greater than approximately 94 degrees and wherein c,
	d, e, f, and k are approximately equal to zero.
[c23]	23.The optical substrate as set forth in Claim 1 wherein the equation for z
	includes higher order terms in r defined by the summation
	$\sum_{i=1}^{N} a_i r^i$
	where a are coefficients and N is an integer.
[c24]	
-	24. The optical substrate as set forth in Claim 10 wherein the prism structure

includes a peak angle of greater than approximately 94 degrees and wherein c, d. e. f. and k are approximately equal to zero.

[c25] 25.The optical substrate as set forth in Claim 10 wherein the equation for z includes higher order terms in r defined by the summation

 $\sum_{i=1}^{N} a_i r^i$

where a are coefficients and N is an integer.

[c26] 26.An optical substrate comprising:

a surface comprising a prism structure characterized by a cross section having a facet described by the equation

$$z = \frac{cr^2}{1 + \sqrt{1 - (1 + k)c^2r^2}}$$

wherein Z is the perpendicular deviation of the surface of the facet of the prism from a straight line originating at a first reference point at a base of the prism and terminating at a second reference point near the peak of the prism.

[c27] 27.The optical substrate as set forth in Claim 26 wherein the equation further comprises thea summation of higher order terms

 $+ dr^2 + er^4 + fr^6$

wherein the coefficients thereof lie within the following approximate ranges: -20 < c < 20; -10 < d < 10; -10 < e < 10; -10 < f < 10 and -1 < k is less than or equal to zero and where r is a radial coordinate or distance from an optical axis.

[c28] 28.An optical substrate comprising:

a surface comprising a prism structure characterized by a cross section having a plurality of facets intersecting at a peak so as to subtend a peak angle of α .

[c29] 29.The optical substrate as set forth in Claim 28 wherein the plurality of facets form one or more compound facets respectively subtending an angle of β or θ with a base of the prism.