PTC 3360 - Aula 09

3. A Camada de Rede - Parte III

(Kurose, Seção 4.3)

Setembro 2025

Conteúdo

- I A camada de aplicação
- 2 Princípios da transferência confiável de dados (recorte da camada de transporte)
- 3 Camada de rede
- A Introdução à camada de rede
- B O que tem dentro de um roteador?
- C Atrasos e vazão
- D Endereçamento IP: Sub-redes e endereços; obtendo um endereço IP; esgotamento do IPv4
- E Repasse generalizado e SDN

Endereçamento IPv4: introdução

- Endereço IP:
 identificador de 32 bits
 para interfaces de hosts e
 roteadores
- Interface: conexão entre host ou roteador e enlace físico
 - roteador tipicamente têm múltiplas interfaces
 - host tipicamente tem I ou duas interfaces (por exemplo, Ethernet e Wi-Fi)
- Endereços IP associados com cada interface – aprox.
 4 bilhões de interfaces (muito ou pouco?)

Endereçamento IPv4: introdução

Q: como as interfaces são de fato conectadas?

R: mais à frente (camada de enlace!).

R: interfaces Ethernet cabeadas / connectadas a switches Ethernet

Por hora: não precisamos nos preocupar em como as interfaces se conectam (sem roteador interveniente)

connectadas a estação base WiFi

Sub-redes

Endereço IP :

- Parte sub-rede bits de ordem mais alta
- Parte host bits de ordem mais baixa

♦ O que é uma sub-rede ?

- Interfaces de dispositivos com mesma parte sub-rede do endereço IP
- Podem alcançarem-se fisicamente sem passar por roteador

Rede com 3 sub-redes

Sub-redes

Receita

- Para determinar as sub-redes, separe cada interface do seu host ou roteador, criando ilhas de redes isoladas
- Cada rede isolada é uma sub-rede

223.1.3.0/24

Máscara de sub-rede : /24 Número de bits que identificam a sub-rede

Sub-redes

Quantas?

Endereçamento IPv4: CIDR

CIDR: Classless InterDomain Routing (lê-se sáider)

- Porção sub-rede do endereço tem comprimento arbitrário (prefixo)
- Formato do endereço: a.b.c.d/x, sendo x o número de bits na porção sub-rede do endereço

- 200.23.16.0/23

 Outra forma para máscara: 255.255.254.0 (Posições com lindicam bits da porção sub-rede)
- Exercício: Use o comando ipconfig no Windows ou ifconfig no MacOs para descobrir seu endereço IP e a sua máscara de sub-rede. No Android você pode usar o aplicativo ipconfig.

Endereçamento IPv4 : CIDR

Exemplo:

Uma rede na Internet tem máscara de sub-rede 255.25.240.0. Qual o número máximo de hosts que ela comporaria se o único limite fosse os endereços IP disponíveis?

Resposta: 4 096 hosts

Exercício interativo do livro

Conteúdo

- I A camada de aplicação
- 2 Princípios da transferência confiável de dados (recorte da camada de transporte)
- 3 Camada de rede
- A Introdução à camada de rede
- B O que tem dentro de um roteador?
- C Atrasos e vazão
- D Endereçamento IP: Sub-redes e endereços; obtendo um endereço IP; esgotamento do IPv4
- E Repasse generalizado e SDN

Endereços IP: como conseguir um?

Q: Como um host obtém um endereço IP?

- Colocado pelo administrador do sistema
 - Windows II: Configurações -> Rede e Internet
 -> Ethernet -> Atribuição de IP
 - OSX: preferências do sistema -> Rede -> Configurar IPv4
- DHCP: Dynamic Host Configuration Protocol: obtém endereço dinamicamente de um servidor
 - Protocolo cliente-servidor da camada de aplicação
 - Usa UDP e IP
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol [RFC 1541(1993) - 2131]

Objetivo: permitir a host obter dinamicamente seu endereço IP de um servidor de rede quando ele se junta à rede

- Permite reuso de endereços (apenas mantém endereço enquanto conectado / ligado) – endereço IP temporário
- Também permite que host receba mesmo IP sempre que se conectar
- Pode renovar sua concessão do endereço em uso

Visão geral do DHCP:

- Host difunde (ainda não sabe IP do servidor): mensagem "DHCP discover"
- Servidor DHCP responde com mensagem "DHCP offer"
- Host requer endereço IP : mensagem "DHCP request"
- Servidor DHCP envia endereço: mensagem "DHCP ack"

Cenário cliente-servidor DHCP

Cenário cliente – servidor DHCP

Network Layer: Data Plane 4-14

DHCP: mais do que endereços IP

DHCP retorna mais do que endereço IP alocado na sub-rede:

- Endereço do roteador de primeiro salto para o cliente
- Nome e endereço IP do servidor DNS
- Máscara de sub-rede

Exemplo: roteador TP-Link

TP-LINK[®]

Informações

Passo a passo

WPS

Interfaces LAN / WAN

Wireless

DHCP

- Configurações
- Lista de Clientes DHCP
- Reserva de Endereços

Redirecionamento de Portas

Firewall

Controle dos Pais

Controle de Acesso

DHCP - Configurações	۰	ш.	А		١.,	A			<u></u>						
JIIOI - OVIIIIUUI AGOGS	١	ш	Г	н			Λ	n	ш	Ш	10	r	۸	Δ	e
	4	ш	v	u		v	v.	ш	ш		1.4	٧	v	v	Э.

Servidor DHCP: Desabilitado Habilitado

Endereço IP Inicial: 192.168.0.100

Endereço IP Final: 192.168.0.199

Tempo de Renovação do Endereço: 120 minutos (de 1 a 2880 minutos. Valor padrão: 120).

Gateway Padrão: 192.168.0.1 (Opcional)

Domínio Padrão: (Opcional)

DNS Primário: 0.0.0.0 (Opcional)

DNS Secundário: 0.0.0.0 (Opcional)

Exemplo: roteador TP-Link

TP-LINK°

Informações

Passo a passo

WPS

Interfaces LAN / WAN

Wireless

DHCP

- Configurações

- Lista de Clientes DHCP

- Reserva de Endereços

Redirecionamento de Portas

Firewall

Controle dos Pais

Controle de Acesso

Listagem de Clientes DHCP

ID	Nome do Cliente	Endereço MAC	Atribuído IP	Tempo de Renovação
1	Unknown	A0-D0-DC-9D-38-37	192.168.0.100	01:21:43
2	iMac-de-Marcio	B8-09-8A-DB-DF-75	192.168.0.102	01:56:29
3	Unknown	52-41-51-6C-D4-D8	192.168.0.101	01:27:39
4	Marcionote	6C-40-08-97-31-8A	192.168.0.103	01:55:30
5	LCS-EISENCRAFT1	94-DB-C9-E3-73-A8	192.168.0.104	01:55:33

Atualizar

Exemplo: roteador TP-Link

TP-LINK°

Endereços IP: como obter um?

- Q: Como uma rede obtém a parte sub-rede do endereço IP?
- R: Obtém porção alocada do espaço de endereços do seu ISP

Bloco do ISP	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Empresa 0 Empresa 1				00000000	200.23.16.0/23 200.23.18.0/23
Empresa 2				00000000	200.23.20.0/23
Empresa 7	11001000	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Endereço IP : o último passo...

Q: Como um ISP obtém um bloco de endereços?

R: ICANN: Internet Corporation for Assigned

Names and Numbers http://www.icann.org/

- Alocação de endereços
- Gerenciamento dos DNS raízes
- Atribuições de nomes de domínios, resolução de disputas

R: América Latina: http://www.lacnic.net/

R: No Brasil: http://registro.br. Veja como pedir aqui e os custos aqui.