Area of a triangle =
$$\frac{b \times h}{2}$$

Area of a trapezium = $\frac{a+b}{2} \times h$
Area of a circle = πr^2
Circumference of a circle = πD

Formula triangle for speed:

Formula triangle for density:

Pythagoras' Theorem:

$$a^2 + b^2 = c^2$$

Trig formula for area of a triangle:

$$A = \frac{1}{2}abSinC$$

Sine Rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule:

$$a^2 = b^2 + c^2 - 2bcCosA$$

Rearranged Cosine Rule:

$$CosA = \frac{b^2 + c^2 - a^2}{2bc}$$

Quadratic Formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Where $ax^2 + bx + c = 0$

SUVAT

- S = Displacement
- U = Initial Velocity
- V = Final Velocity
- A = Acceleration
- T = Time

Exact Trig Values

	0°	30°	45°	60°	90°
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	N/A

Angle Facts

Alternate angles are equal

Corresponding angles are equal

Angle Facts

Angles on a straight line add up to 180°

Angles around a point add up to 360°

Angle Facts

Opposite angles are equal

Angles in a triangle add up to 180°

Circle Theorems

Angle in a semicircle is 90°

Opposite angles in a cyclic quadrilateral sum to 180°

Circle Theorems

Angle at the centre is twice the angle at the circumference

Angles in the same segment are equal

Circle Theorems

Angle between a radius and a tangent is 90°

Alternate segment theorem

$$y = x$$

$$y = -x$$

$$y = x^3 \qquad y = -x^3$$

$$y = n^{x}$$

$$y = -n^{x}$$

$$y = Sin x$$

$$y = -Sin x$$

$$y = Cos x$$

$$y = -Cos x$$

$$y = Tan x$$
 $y = -Tan x$

