1998 (MO Camp

Scrumptious Sequences

Served with your choice of rice, fries, salad, soup₀, soup₁, soup₂, soup₃, ...

1. The sequence $\{u_n\}$ of real numbers is defined by $u_0 = 2$, $u_1 = 5$, and

$$u_{n+1}u_{n-1} - u_n^2 = 6^{n-1}$$
 $n \ge 1$

Prove that each u_n is an integer.

- An integer sequence is defined by $a_n = 2a_{n-1} + a_{n-1}$ (n > 1), $a_0 = 0$ and $a_1 = 1$. Prove that 2^k divides a_n if and only if 2^k divides n. (IMO 1988 shortlist)
- Let a be the greatest positive root of the equation $x^3 3x^2 + 1 = 0$. Show that $\lfloor a^{1788} \rfloor$ and $\lfloor a^{1988} \rfloor$ are both divisible by 17, where $\lfloor x \rfloor$ denotes the integer part of x. (IMO 1988 shortlist)
- 4. The sequence $\{a_n\}$ of integers is defined by $a_1 = 2$, $a_2 = 7$ and

$$-\frac{1}{2} < a_{n+1} - \frac{a_n^2}{a_{n-1}} \le \frac{1}{2}$$

for $n \ge 2$. Prove that a_n is odd for all n > 1. (IMO 1988 shortlist)

- 5. If $u_0 = -\frac{14}{3}$ and $u_{n+1} = \frac{u_n + 6}{u_n + 2}$ for n = 0, 1, 2, ... determine the value of u_{1984} .
- 6. A sequence $\{a_n\}$ of real numbers is defined by $a_1 = A$, $a_2 = B$ and

$$a_n = \frac{a_{n-1}^2 + C}{a_{n-2}}$$

for all n > 2. If A, B and $\frac{A^2 + B^2 + C}{AB}$ are all integers, show that a_n is an integer for all n.

7. A sequence $\{a_n\}$ is defined by $a_1 = 1$ and

$$a_{n+1} = \frac{1}{16} \left(1 + 4a_n + \sqrt{1 + 24a_n} \right)$$

Find an explicit formula for a_n .

- 8. Define a sequence $\{a_n\}$ by $a_n = \sqrt{p_n p_{n+1} + 1}$ where p_n denotes the n^{th} prime number. Show that a_n is an integer for infinitely many values of n.
- 9. Let $\{X_n\}$ and $\{Y_n\}$ be two sequences defined as follows:

$$X_0 = 1,$$
 $X_1 = 1,$ $X_{n+1} = X_n + 2X_{n-1} \quad (n \ge 1)$

$$Y_0 = 1,$$
 $Y_1 = 7,$ $Y_{n+1} = 2Y_n + 3Y_{n-1} \quad (n \ge 1)$

Prove that, except for the '1', there is no integer which appears in both sequences. (USAMO 1973 #2).

10. Let $a_1, a_2, ..., a_8$ be eight real numbers, not all equal to zero. Define a sequence $\{c_n\}$ by

$$c_n = a_1^n + a_2^n + \dots + a_8^n \quad (n \ge 1)$$

If an infinite number of terms of the sequence $\{c_n\}$ are zero, then find all natural numbers n for which $c_n = 0$. (IMO 1967 # 5).

11. Let $a_0 = 0$ and

$$a_{n+1} = k(a_n + 1) + (k+1)a_n + 2\sqrt{k(k+1)a_n(a_n + 1)}$$
 $n = 0, 1, 2, ...$

where k is a positive integer. Prove that a_n is a positive integer for all $n \ge 1$.

12. For every real number x, construct the sequence x_1, x_2, \dots by setting

$$x_{n+1} = x_n \left(x_n + \frac{1}{n} \right)$$

for each $n \ge 1$. Prove that there exists exactly one value of x_1 for which

$$0 < x_n < x_{n+1} < 1$$

for all n. (IMO 1985 # 6).