Proposta de Abordagem ao Problema do Trabalho Balanceado

Gustavo Delazeri

29 de Julho de 2020

1 Formulação do Problema como Programa Inteiro

Variáveis:

• $x_{ij} \in \{0,1\}, \quad \forall i,j \mid i \in [n] \land j \in [m], \text{ onde}$

$$x_{ij} = \begin{cases} 1, & \text{Caso tarefa i e executada pelo operador j} \\ 0, & \text{Caso contrario} \end{cases}$$

• $w_{ijk} \in \{0,1\}, \quad \forall i,j,k \mid i,j \in [n] \land k \in [m] \land i \neq j$, onde

$$w_{ijk} = \begin{cases} 1, & \text{Caso } x_{ik} \land x_{jk} \text{ \'e verdade} \\ 0, & \text{Caso contrario} \end{cases}$$

• $y \in \mathbb{R}$, onde

$$y = \max \left(\sum_{i \in [n]} p_{ij} \cdot x_{ij}, \forall j \in [m] \right)$$

Função Objetivo:

Min. y

Restrições:

$$\sum_{j \in [m]} x_{ij} = 1, \quad \forall i \in [n]$$
 (1)

$$\sum_{i \in [n]} x_{ij} \ge 1, \quad \forall j \in [m]$$
 (2)

$$w_{ijk} \le (x_{ik} + x_{jk})/2, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j$$

$$(3)$$

$$w_{ijk} \ge x_{ik} + x_{jk} - 1, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j$$

$$\tag{4}$$

$$w_{ijk} \le x_{j-1k}, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j \tag{5}$$

$$y \ge \sum_{i \in [n]} p_{ij} \cdot x_{ij}, \quad \forall j \in [m]$$
 (6)

A restrição (1) garante que toda tarefa é executada por exatamente 1 operador. A restrição (2) garante que todo operador executa pelo menos uma tarefa. Restrições (3) e (4) formam uma conjunção: se as tarefas i e j são executadas pelo mesmo operador k, então w_{ijk} é verdade. A restrição (5) garante que operadores só executam tarefas sequenciais. Por exemplo, um operador não pode executar as tarefas 1,2 e 4. A restrição (6) define um limite inferior para a variável y, a qual representa o tempo gasto pelo operador que trabalha por mais tempo.

2 O Algoritmo Genético

2.1 Parâmetros

A tabela abaixo apresenta os parâmetros do algoritmo e a notação adotada.

$\overline{\mu}$	Quantidade de indivíduos na população inicial
λ	Quantidade de novos individuos gerados
\overline{k}	Número de participantes de um torneio aleatório
$\overline{\phi}$	Probabilidade de um indivíduo sofrer mutação
ω	Número máximo de gerações consecutivas que não alteram a melhor solução

2.2 Codificação de uma Solução

Uma solução para uma instância de n tarefas e m operadores é representada por um vetor v de inteiros não negativos de tamanho n. Se $v_i = j$ então o operador j executa a tarefa i. A figura abaixo ilustra a codificação de uma solução de uma instância com 6 tarefas e 4 operadores.

Operador	Tarefas	
0	4, 5	
1	3	223100
2	0, 1	
3	2	

2.3 População Inicial

A população inicial é gerada aleatoriamente. Primeiro criam-se μ permutações e depois μ partições. Por último, associa-se a cada permutação uma partição, também de forma aleatória. A tabela abaixo ilustra o processo considerando uma instância de 8 tarefas e 4 operadores.

Permutação	Partição	Indivíduo Gerado
$(0\ 3\ 2\ 1)$	0 0 1 1 2 2 3 3	0 0 3 3 2 2 1 1
$(2\ 3\ 0\ 1)$	0 1 1 1 2 3 3 3	2 3 3 3 0 1 1 1
$(3\ 1\ 0\ 2)$	$0\ 0\ 0\ 0\ 0\ 1\ 2\ 3$	3 1 0 0 0 0 0 2
$(1\ 2\ 3\ 0)$	0 1 2 2 2 3 3 3	1 2 2 2 3 3 3 0

2.4 Seleção de Indivíduos para Crossover

A seleção de indivíduos para crossover implica na realização de λ k-torneios aleatórios. Um k-torneio aleatório consiste em selecionar k indivíduos da população de forma aleatória e escolher o melhor desses k indivíduos.

2.5 Crossover

O processo de crossover consiste em criar duas novas soluções usando a partição/permutação de um pai com a partição/permutação do outro. A figura abaixo ilustra o processo. O indivíduo 3 herda a permutação do indivíduo 2 (1 0 2 3) e a partição do indivíduo 1 (um 0, três 1's, três 2's e três 3's). Já o indivíduo 4 herda a permutação do indivíduo 1 (3 1 2 0) e a partição do indivíduo 2 (dois 0's, três 1's , três 2's e dois 3's).

2.6 Mutação

O processo de mutação consiste em aplicar uma pequena perturbação aleatória na permutação da solução. A figura abaixo ilustra o processo.

2.7 Seleção da Nova População

A seleção da nova população depende do parâmetro λ . Se λ novos indivíduos foram criados via crossover, então os λ piores indivíduos entre todos os indivíduos (geração atual e nova geração) são eliminados da população.

2.8 Critério de Parada

A execução do algoritmo para e retorna uma solução se uma ou mais das condições abaixo forem satisfeitas:

- \bullet O tempo de execução do algoritmo atingiu a marca dos 30 minutos
- $\bullet \ \omega$ gerações foram geradas e o valor da função objetivo não diminuiu