

Universidade Federal Fluminense – UFF Instituto de Matemática e Estatística da UFF – IMEUFF Pós-Graduação em Matemática – PGMAT

1ª Prova de Análise Funcional Escola de Verão 2021

Instruções

- A prova terá duração de 24 horas contando a resolução e o envio.
- Deve-se enviar somente a resolução das questões.
- Deve-se enviar um único arquivo no formato pdf.
- Deve-se digitalizar as questões na ordem correta.
- A resolução deve estar escrita a mão e a caneta.
- Não é necessário repetir o enunciado das questões.
- A interpretação das questões faz parte dos critérios de avaliação
- Responda cada questão de maneira clara e organizada.

_ Total de Pontos: 10.

- 1. [3 pts] Sejam M e N subespaços fechados não nulos de um espaço normado E. Prove que se $M \neq N$ então $M^{\perp} \neq N^{\perp}$.
- 2. [3 pts] Considere o espaço de Banach $(\ell^{\infty}, \|\cdot\|_{\infty})$ e seja $\|\cdot\|$ uma outra norma em ℓ^{∞} tal que $(\ell^{\infty}, \|\cdot\|)$ é Banach. Suponha que, para cada j, a aplicação $\varphi_j : (x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \longmapsto x_j \in \mathbb{R}$ é contínua na norma $\|\cdot\|$. Use o Teorema do Gráfico Fechado para provar que existe C > 0 tal que

$$||x|| \le C||x||_{\infty}, \ \forall x \in \ell^{\infty}.$$

- 3. Sejam E e F um espaços vetoriais normados não nulo .
 - (a) [0.5 pts] Mostre que existem $x_0 \in E \setminus \{0\}$ e $\varphi \in E'$ tais que $\varphi(x_0) = 1$.
 - (b) [0,5 pts] Para cada $u \in F$ defina $T_u : E \to F$ por $T_u x = \varphi(x)u$. Mostre que $T_u \in \mathcal{L}(E,F)$ para todo $u \in F$
 - (c) [1 pt] Conclua que se $\mathcal{L}(E, F)$ é completo, então F é completo.
- 4. [2 pts] Decida se as afirmações abaixo são verdadeira ou falsas. Apresente uma demonstração ou um contra-exemplo para justificar cada resposta.
 - (a) Seja E um espaço normado e considere uma sequência $(x_n)_{n=1}^{\infty}$ em E com a seguinte propriedade: para cada $\varphi \in E'$, a sequência $(\varphi(x_n))_{n=1}^{\infty}$ converge em \mathbb{R} . Então $(x_n)_{n=1}^{\infty}$ é limitada em E;
 - (b) Seja E um espaço normado e (T_n) uma sequência em E'. Se $\sup_n |T_n x| < +\infty$ para todo $x \in E$, então $\sup_n |T_n|_{E'} < +\infty$.
 - (c) Seja E um espaço vetorial normado. Se $T \in \mathcal{L}(E, E')$ então $T: (E, \sigma(E, E')) \longrightarrow (E', \sigma(E', E))$ é contínua.
 - (d) Seja E um espaço de Banach reflexivo. Se $K \subset E$ é fortemente fechado, convexo e limitado, então K é compacto em $\sigma(E, E')$.