Алгебра. ИИИ. Осенний семестр

0. На пути к алгебре

- 1. Докажите, что упорядоченные пары (a, b) и (c, d) совпадают тогда и только тогда, когда a=c и b=d.
- 2. Согласно каким аксиомам ZFC декартово произведение множеств и фактормножество являются множествами?

Пусть $a, b \in \mathbb{Z}$. Говорят, что a делится на b или b является делителем a (a : b, $b \, | \, a$), если существует такое $q \in \mathbb{Z}$, что a = bq. Числа a и b называются $estimate{saumho}$ npocmымu, если они не имеют общих делителей кроме ± 1 . Mutatis mutandis определяется делимость в \mathbb{N} .

- 3. Докажите что множество $\mathbb{N} \setminus \{1\}$ с отношением делимости есть частично упорядоченное множество (отношение рефлексивно, транзитивно и антисимметрично). Найдите его минимальные элементы.
- 4. Дано шестизначное число \overline{abcdef} , причем $\overline{abc} + \overline{def}$ делится на 37. Докажите, что и само число \overline{abcdef} делится на 37.
- 5. Докажите, что число \overline{ababab} делится на 7, 13, 37.
- 6. Докажите теорему о делении целых чисел с остатком: для любых $a, b \in \mathbb{Z}$, $b \neq 0$, существуют такие $q, r \in \mathbb{Z}$, что $a = bq + r, \ |r| < |b|$. Число q называется неполным частным, r — остатком.
- 7. Разделите с остатком (найдите все варианты неполных частных и остатков):

- а) 161 на 17; б) -161 на 17; в) 161 на -17; г) -161 на -17;

- д) 17 на 161; е) -17 на 161; ж) 17 на -161; з) -17 на -161.
- 8. Докажите, что если из множества $\{1,2,3,\ldots,2n\}$ выбрать любые n+1 чисел, то среди них найдутся два взаимно простых.
- 9. Дано 17 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 16.
- 10. Может ли дискриминант квадратного трёхчлена с целыми коэффициентами равняться 23?

Пусть $a,b\in\mathbb{Z}$. Целое число d называется наибольшим общим делителем a и b, если d — общий делитель a и b, и d делится на любой другой общий делитель a и b. Обозначение: $HO\Delta(a,b)$. Легко заметить, что $HO\Delta(a,0)=\pm a$, в частности, $HO\Delta(0,0) = 0$.

- 11. a) Докажите, что $HO\Delta(a,b) = HO\Delta(a-b,b)$;
 - б) Докажите, что существуют такие целые числа x и y, что $HO\Delta(a,b) = ax + by$ (линейное представление $HO\Delta a$);
 - в) Докажите, что a и b взаимно просты тогда и только тогда, когда существует такие целые x и y, что ax+by=1;
 - г) Докажите, что числа 1111111 и 1111 взаимно просты.
- 12. Автомат на каждом шаге преобразует пару целых чисел (m, n) в одну из трёх: (n, m), (m n, n), (m, m + n). Можно ли за конечное число шагов из пары (18, 31) получить пару (21, 12)?
- 13. В алфавите языка одного племени всего две буквы: А и У. В результате следующих замен сочетаний букв смысл любого слова не изменяется: УАУ \leftrightarrow АА, УАА \leftrightarrow АУ, ААУ \leftrightarrow УА, ААА \leftrightarrow УУ (замену можно делать в любом месте слова). Являются ли в этом языке синонимами слова УАА и АУУ?
- 14. Можно ли доску 10×10 разрезать на прямоугольники 4×1 ?
- 15. Решите в целых числах уравнения:
 - a) $x^2 = 11 + y^2$;
 - 6) 1 + xy = x + y;
 - B) 2ab + 3a + b = 0;
 - r) $3^n + 8 = m^2$;
 - д) $1! + 2! + 3! + \ldots + x! = y^2$, $x \in \mathbb{N}$.
- 16. $m,n,k\in\mathbb{N}$. Докажите, что если m+k=n+k, то m=n.
- 17. Докажите, что при любом натуральном n
 - а) $5^n 3^n + 2n$ делится на 4;
 - б) $4^n + 15n 1$ делится на 9;
 - в) $3^{2n+2} + 8n 9$ делится на 16.
- 18. Рассмотрим всевозможные обыкновенные дроби с числителем 1 и любым натуральным знаменателем, большим 1: $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ... Докажите, что для любого $n \geqslant 3$ можно представить единицу в виде суммы n различных дробей такого вида.
- 19. В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке от 0 до 9, во второй строке от 10 до 19, ..., в десятой от 90 до 99). Буратино выбрал десять чисел, таких, что никакие два из них не стоят в одной строке и

никакие два из них не стоят в одном столбце, и сложил их. Какую сумму он мог получить? Найдите все возможные варианты.

Геометрические векторы E^3 — отображения $a: \mathbb{R}^3 \to \mathbb{R}^3$,

$$(x_1, x_2, x_3) \mapsto (x_1 + a_1, x_2 + a_2, x_3 + a_3).$$

Cложение a+b геометрических векторов — композиция отображений a и b.

 $\mathit{Умножение}\ \lambda \cdot a$ геометрического вектора a на число $\lambda \in \mathbb{R}$ — отображение λa :

$$(x_1, x_2, x_3) \mapsto (x_1 + \lambda a_1, x_2 + \lambda a_2, x_3 + \lambda a_3).$$

Можно определить вычитание a-b как a+(-1)b.

- 20. Докажите, что операции в E^3 обладают свойствами:
 - а) (a + b) + c = a + (b + c) ассоциативность;
 - б) $\exists 0 \ \forall a \ a+0=0+a=a$ существование нуля (нейтрального по сложению);
 - в) $\forall a \; \exists \; -a \; a + (-a) = (-a) + a = 0$ существование противоположного (симметричного по сложению);
 - r) a+b=b+a коммутативность;
 - д) $(\lambda + \mu)a = \lambda a + \mu a$ дистрибутивность с одной стороны;
 - е) $a(\lambda + \mu) = a\lambda + a\mu$ дистрибутивность с другой стороны;
 - ж) $(\lambda \mu)a = \lambda(\mu a)$ внешняя ассоциативность;
 - в) 1a = a.

Cmandapmный базис (i, j, k) пространства геометрических векторов E^3 :

$$egin{aligned} i\colon (x_1,\ x_2,\ x_3) &\mapsto (x_1+1,\ x_2,\ x_3), \quad j\colon (x_1,\ x_2,\ x_3) &\mapsto (x_1,\ x_2+1,\ x_3), \ k\colon (x_1,\ x_2,\ x_3) &\mapsto (x_1,\ x_2,\ x_3+1). \end{aligned}$$

21. Докажите, что любой геометрический вектор a представим в виде $ia_1+ja_2+ka_3$, где $a_1,a_2,a_3\in\mathbb{R}$, причём единственным образом. Эти числа называются $\kappa oop-$ динатами вектора a в стандартном базисе. Будем записывать координаты в

столбец
$$egin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
.

 $Beкторное\ умножениe\ [_\,,\,_]\colon E^3 imes E^3 o E^3$ задаётся таблицей умножения

[_,_]	i	j	k
i	0	k	-j
j	-k	0	i
k	j	-i	0

и удовлетворяет условиям [a,b+c]=[a,b]+[a,c] и [a+b,c]=[a,c]+[b,c], $[\lambda a,b]=\lambda [a,b], [a,\lambda b]=\lambda [a,b].$

- 22. Получите выражение для векторного умножения [a,b] геометрических векторов $a=ia_1+ja_2+ka_3$ и $b=ib_1+jb_2+kb_3$. Коммутативно ли оно? Ассоциативно ли?
- 23. Докажите, что
 - a) [a, a] = 0;
 - 6) [a, b] = -[b, a];
 - в) [a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0 тождество Якоби;
- 24. В прямоугольнике 3×4 расположено 6 точек. Докажите, что среди них найдутся две точки, расстояние между которыми не превосходит $\sqrt{5}$.
- 25* На отрезке [0; 1000] случайно выбрано 11 вещественных чисел. Докажите, что среди них найдутся два числа, удовлетворяющие неравенству $|x-y| \leqslant 1+3\sqrt[3]{xy}$.
- 26.* Докажите, что из любых 13 вещественных чисел можно выбрать два числа x и y таких, что

$$0\leqslant rac{x-y}{1+xy}\leqslant 2-\sqrt{3}.$$

- 27.* На доске написаны числа 1, 2 и 4. Разрешается стереть с доски два числа a и b, а вместо них записать $\frac{a+b}{\sqrt{2}}$, $\frac{a-b}{\sqrt{2}}$. Можно ли с помощью таких операций получить на доске числа $\sqrt{2}$, $2\sqrt{2}$ и 3?
- 28. Какие из отображений $\mathbb{R} \xrightarrow{x\mapsto x^2} \mathbb{R}; \mathbb{N} \xrightarrow{x\mapsto x^2} \mathbb{N}; \mathbb{Z} \xrightarrow{x\mapsto 5x} \mathbb{Z}; \mathbb{Q} \xrightarrow{x\mapsto 5x} \mathbb{Q}$ являются инъекциями, сюръекциями, биекциями?
- 29. Пусть $|X|=m,\,|Y|=n.$ Найдите число:
 - а) отображений из X в Y;
 - б) инъективных отображений из X в Y;
 - в) биективных отображений из X в Y.
- 30. Верно ли, что
 - a) $Map(X, Y \times Z) = Map(X, Y) \times Map(X, Z)$;
 - 6) $\operatorname{Inj}(X, Y \times Z) = \operatorname{Inj}(X, Y) \times \operatorname{Inj}(X, Z);$
 - B) $Sur(X, Y \times Z) = Sur(X, Y) \times Sur(X, Z)$?