Machine Learning: HW3 Report

B03901034 吳泓霖

Supervised Learning

The following is the model I used as the main training model:

Layer (type) 	Output	Shape 	Param #	Connected to
convolution2d_1 (Convolution2D)	(None,	32, 32L, 32L)	896	convolution2d_input_1[0][0]
activation_1 (Activation)	(None,	32, 32L, 32L)	0	convolution2d_1[0][0]
convolution2d_2 (Convolution2D)	(None,	32, 30L, 30L)	9248	activation_1[0][0]
activation_2 (Activation)	(None,	32, 30L, 30L)	0	convolution2d_2[0][0]
naxpooling2d_1 (MaxPooling2D)	(None,	32, 15L, 15L)	0	activation_2[0][0]
dropout_1 (Dropout)	(None,	32, 15L, 15L)	0	maxpooling2d_1[0][0]
convolution2d_3 (Convolution2D)	(None,	64, 15L, 15L)	18496	dropout_1[0][0]
activation_3 (Activation)	(None,	64, 15L, 15L)	0	convolution2d_3[0][0]
convolution2d_4 (Convolution2D)	(None,	64, 13L, 13L)	36928	activation_3[0][0]
activation_4 (Activation)	(None,	64, 13L, 13L)	0	convolution2d_4[0][0]
naxpooling2d_2 (MaxPooling2D)	(None,	64, 6L, 6L)	0	activation_4[0][0]
dropout_2 (Dropout)	(None,	64, 6L, 6L)	0	maxpooling2d_2[0][0]
Flatten_1 (Flatten)	(None,	2304)	0	dropout_2[0][0]
dense_1 (Dense)	(None,	512)	1180160	flatten_1[0][0]
activation_5 (Activation)	(None,	512)	0	dense_1[0][0]
dropout_3 (Dropout)	(None,	512)	0	activation_5[0][0]
dense_2 (Dense)	(None,	10)	5130	dropout_3[0][0]
activation_6 (Activation)	(None,	10)	0	dense_2[0][0]

With the following parameters:

```
batch_size = 32
nb_classes = 10
nb_epoch = 30
potimizer = 'adam'
```

This model is referenced from the Keras example (cifar10_cnn.py), and the performance is pretty decent.

Semi-Supervised Learning (1)

(Only shows the different part)

```
1
    # Same as supervised learning
 2
    # Predict the unlabeled data
4
    predicts = model.predict(unlabeled, verbose=1)
5
    # We store the results here: sampled[n] = [data, answer, weight]
6
    sampled = \square
7
8
    for i in range(len(predicts)):
9
        # These steps are for finding the maximum confidence
10
        predict = predicts[i]
11
        max = predict[0]
12
        assumption = 0
13
        for j in range(len(predict)):
14
15
            if predict[j] > max:
                 assumption = j
16
17
                 max = predict[j]
        if max > threshold:
18
            index = assumption
19
             sampled
20
                 .append([unlabeled[i], set_answer([0 for i in range(10)]), max])
21
22
    # Add the data and the correspond answer into the original data
23
    data = np.concatenate((labeled, map(lambda x: x[0], sampled)), axis=0)
24
    ans = np.concatenate((ans, map(lambda x: x[1], sampled)), axis=0)
25
26
    # Finally, train again
27
    model.fit(data, ans, batch_size=batch_size, nb_epoch=nb_epoch,
28
                 shuffle=True, sample_weight=weights)
29
30
31
    . . .
```

What the code above will do is train the model with the labeled data, then predict the unlabeled data; finally, add those with high confidence back to the training data as if it is "labeled data", then train again.

Semi-Supervised Learning (2)

For method 2, I used autoencoder for clustering. Here are the differences:

```
1
    # Read data
 2
 3
    . . .
4
   encode_layer = 5
5
    encode_width = 512
6
    # Only choose the best 3000 to add back to data
7
8
    new_item_size = 3000
9
    # Create encode NN
10
11
    model = Sequential()
    model.add(Dense(encode_width, activation='relu', input_shape=(3072, )))
12
    for i in range(encode_layer) :
13
        model.add(Dense(encode_width, activation='relu'))
14
    model.add(Dense(3072, activation='linear'))
15
    model.compile(loss='mse', optimizer='rmsprop', metrics=[ 'accuracy' ])
16
    # Train labeled-labeled ==> train both encoder and decoder
17
    model.fit(labeled, labeled, batch_size=256, nb_epoch=200, verbose=1,
18
                 validation_data=(labeled, labeled))
19
20
    # The encoder is the first half
21
    encoder = K.function([model.layers[0].input],
22
23
                               [model.layers[(encode_layer + 1) / 2].output])
24
    # Get the clustered unlabled data
25
26
    encoded = encoder([labeled])[0]
27
    # "before" stores the average code for each labeled data
28
    before = \lceil 0.0 \text{ for } x \text{ in range(encode_width)} \rceil for x in range(10)
29
    for feature in range(encode_width):
30
31
        for category in range(10):
             for i in range(500):
32
                 before [category] [feature]
33
                     += encoded[category * 500 + i][feature]
34
             before[category][feature] /= 500
35
36
    # Find the minimum mean square error to determine which category
37
    after = encoder([unlabeled])[0]
38
    cand_list = []
39
```

```
40
    for image_num in range(45000):
41
         best_category = 0
         min = float('inf')
42
43
         for category in range(10):
44
             mse = 0.0
             for feature in range(encode_width):
45
                 mse += (after[image_num][feature]
46
                           - before[category][feature]) ** 2
47
48
             if mse < min:</pre>
                 best_category = category
49
50
                 min = mse
51
         cand_list.append([image_num, best_category, min])
    # Sort it so we can get the best results
52
53
    cand_list.sort(key = lambda x: x[2])
54
55
    new_data = \bigcap
56
    new_ans = []
    for i in range(new_item_size):
57
58
         new_data.append(unlabeled[cand_list[i][0]])
59
         index = cand_list[i][1]
         new_ans.append(set_answer([0 for x in range(10)]))
60
61
    # Add the new data and answers back to data
62
63
    data = np.concatenate((labeled, new_data), axis=0)
64
              .reshape(5000 + new_item_size, 3, 32, 32)
    ans = np.concatenate((ans, new_ans), axis=0)
65
66
67
68
    # Same as supervised learning
69
    . . .
```

It will select the best 3000 data from the encoder and add them along with the labeled data, and then train with the same model used in supervised learning.

Comparision

Running time:

```
Supervised < Semi-supervised (1) <<< Semi-supervised (2)
```

The main difference between method one and method two is that, in method two, we have to process data with CPU (line 29 - 35, 39 - 65), which cannot make good use of GPU acceleration, and the data is actually pretty large, which will slow down the whole process.

Performance (by accuracy):

```
Semi-supervised (1) > Supervised > Semi-supervised (2)
```

I haven't spent much time investigating into method two, so I assume that the autoencoder can be improved if effort is put into it.

Things worth noting: the optimizer in semi-supervised learning will affect the result. In trial-and-error, adam is the best to use. Also, the threshold used to filter out bad results should be set to a very high value (e.g. 0.98), or the incorrect assumptions will pollute the labeled data, which will lead to bad results.