

Nilai Eigen dan Vektor Eigen

Pertemuan ke 21 – 22

Diadopsi dari sumber:

Sub-CPMK

 Mahasiswa dapat melakukan perhitungan nilai eigen dan vektor eigen untuk melakukan diagonalisasi matriks (C3, A3)

Materi

- 1. Nilai eigen dan vektor eigen
- 2. Diagonalisasi

1. Nilai Eigen dan Vektor Eigen

1.1. Definisi Nilai Eigen dan Vektor Eigen

Jika A adalah matriks $n \times n$, maka vektor tak nol \mathbf{x} di \mathbb{R}^n disebut **vektor eigen** dari A jika $A\mathbf{x}$ adalah perkalian skalar dari \mathbf{x} ; yakni,

$$A\mathbf{x} = \lambda \mathbf{x}$$

untuk suatu skalar λ . Skalar λ disebut **nilai eigen** dari A (atau dari T_A), dan \mathbf{x} adalah **vektor eigen** yang bersepadanan dengan λ .

Contoh 1.1. Diketahui vektor $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ dan matriks $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. Tentukan nilai eigen dari A.

Solusi.

$$A\mathbf{x} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3(1) + 0(2) \\ 8(1) - 1(2) \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 3\mathbf{x}$$

Jadi nilai eigen $\lambda = 3$.

Secara geometris, perkalian dengan matriks A memperpanjang vektor **x** menjadi 3 kali lipat.

1.2. Menghitung Nilai Eigen dan Vektor Eigen

Dari persamaan sebelumnya diketahui

$$A\mathbf{x} = \lambda \mathbf{x}$$
$$A\mathbf{x} = \lambda I\mathbf{x} \Rightarrow (\lambda I - A)\mathbf{x} = 0$$

• Jika A adalah matriks $n \times n$, maka λ merupakan **nilai eigen** dari A jika dan hanya jika λ memenuhi persamaan

$$\det(\lambda I - A) = 0$$

Persamaan tersebut merupakan persamaan karakteristik dari A.

Contoh 1.2 Diketahui $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$. Tentukan nilai eigen dari A.

Solusi. Dari contoh 1.1 diketahui bahwa $\lambda = 3$, namun tidak ada penjelasan bagaimana cara mencari nilai tersebut.

Pertama-tama, dicari persamaan karakteristik dari A, yakni

$$|\lambda I - A| = \begin{vmatrix} \lambda - 3 & 0 \\ -8 & \lambda + 1 \end{vmatrix} = 0$$

sehingga diperoleh $(\lambda - 3)(\lambda + 1) = 0$.

Hal ini menunjukkan bahwa nilai eigen dari A adalah $\lambda = 3$ dan $\lambda = -1$.

Contoh 1.3. Tentukan nilai eigen dari
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$
.

Solusi. Persamaan karakteristik dari A adalah

$$\det(\lambda I - A) = \begin{vmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{vmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

Nilai eigen dari A dapat diperoleh dari solusi persamaan

$$\lambda^{3} - 8\lambda^{2} + 17\lambda - 4 = 0$$

$$(\lambda - 4)(\lambda^{2} - 4\lambda + 1) = 0$$

$$\lambda_{1,2} = \frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}$$

Jadi nilai eigen dari A adalah $\lambda=4$, $\lambda=2+\sqrt{3}$ dan $\lambda=2-\sqrt{3}$.

1.3. Nilai Eigen dari Matriks Segitiga

 Jika A adalah matriks segitiga n × n, maka nilai eigen dari A adalah elemen dari diagonal utama matriks A.

Contoh 1.4. Tentukan nilai eigen dari
$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & \frac{2}{3} & 0 \\ 5 & -8 & -\frac{1}{4} \end{bmatrix}$$
.

Solusi. Persamaan karakteristik dari A adalah

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - \frac{1}{2} & 0 & 0 \\ 1 & \lambda - \frac{2}{3} & 0 \\ -5 & 8 & \lambda + \frac{1}{4} \end{vmatrix} = (\lambda - \frac{1}{2})(\lambda - \frac{2}{3})(\lambda + \frac{1}{4}) = 0$$

ladi nilai eigen dari A adalah $\lambda = \frac{1}{}$ $\lambda = \frac{2}{}$ dan $\lambda = -\frac{1}{}$

1.4. Mencari Vektor Eigen dan Basis Ruang Eigen

 Vektor eigen dari A dengan nilai eigen tak nol λ adalah vektor tak nol yang memenuhi

$$(\lambda I - A)\mathbf{x} = 0$$

- Ruang penyelesaian dari vektor eigen disebut sebagai ruang eigen dari A, yang juga dapat dilihat sebagai:
 - 1. Rang null dari matriks $\lambda I A$
 - 2. Kernel dari matriks operator $T_{\lambda I-A}: \mathbb{R}^n \to \mathbb{R}^n$
 - 3. Himpunan vektor dimana $A\mathbf{x} = \lambda \mathbf{x}$

Contoh 1.5. Carilah basis ruang eigen dari matriks $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$.

Solusi. Persamaan karakteristik dari A adalah

$$\begin{vmatrix} \lambda + 1 & -3 \\ -2 & \lambda \end{vmatrix} = \lambda^2 + \lambda - 6 = (\lambda - 2)(\lambda + 3) = 0$$

Sehingga nilai eigen dari A adalah $\lambda=2$ dan $\lambda=-3$. Jadi, ada dua ruang eigen dari A, masing-masing untuk setiap nilai eigen.

Vektor $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ adalah vektor eigen dari A untuk setiap nilai eigen λ jika dan hanya jika $(\lambda I - A)\mathbf{x} = \mathbf{0}$, yakni saat

$$\begin{bmatrix} \lambda + 1 & -3 \\ -2 & \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Contoh 1.5 (lanjutan). Pada saat $\lambda = 2$, maka

$$\begin{bmatrix} 3 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

yang memiliki penyelesaian umum $x_1 = t$ dan $x_2 = t$ (cek). Penyelesaian ini dapat dituliskan dalam bentuk matriks

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

sehingga $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ merupakan basis ruang vektor untuk $\lambda=2$. Dengan cara yang sama diperoleh vektor $\begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix}$ sebagai basis ruang vektor untuk $\lambda=-3$ (cek).

Contoh 1.6. Carilah basis ruang eigen dari
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
.

Solusi. Persamaan karakteristik dari A adalah

$$\begin{vmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{vmatrix} = \lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$$

sehingga diperoleh $(\lambda - 1)(\lambda - 2)^2 = 0$. Jadi nilai eigen dari A adalah $\lambda = 1$ dan $\lambda = 2$, maka terdapat dua ruang eigen dari A.

Akan dicari vektor
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 yang merupakan solusi nontrivial dari $(\lambda I - A)\mathbf{x} = \mathbf{0}$.

Contoh 1.6 (lanjutan). Dalam bentuk matriks, dicari solusi dari

$$\begin{bmatrix} \lambda & 0 & 2 \\ -1 & \lambda - 2 & -1 \\ -1 & 0 & \lambda - 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Untuk $\lambda=2$, penyelesaian dari $\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ dengan

menggunakan eliminasi Gauss (cek) menghasilkan

$$x_1 = -s$$
, $x_2 = t$, $x_3 = s$

Jadi vektor eigen dari A untuk $\lambda = 2$ adalah vektor tak nol

$$\mathbf{x} = \begin{bmatrix} -s \\ t \\ s \end{bmatrix} = \begin{bmatrix} -s \\ 0 \\ s \end{bmatrix} + \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Contoh 1.6 (lanjutan).

Karena vektor $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ dan $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$ saling bebas linier, kedua vektor

tersebut membentuk basis ruang eigen untuk $\lambda = 2$.

Untuk
$$\lambda=1$$
, penyelesaian dari $\begin{bmatrix}1&0&2\\-1&-1&-1\\-1&0&-2\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$ adalah

 $x_1 = -2s, \ x_2 = s, \ x_3 = s.$ Jadi vektor eigen tuntuk $\lambda = 1$ adalah

vektor tak nol
$$\begin{bmatrix} -2s \\ s \\ s \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$
 sehingga $\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$ adalah basis ruang vektor untuk $\lambda = 1$.

1.5. Nilai Eigen dan Invers Matriks

• Matriks persegi A memiliki invers jika dan hanya jika $\lambda = 0$ bukan merupakan nilai eigen dari A.

Contoh 1.7. Matriks A pada contoh 1.6 memiliki invers karena memiliki nilai eigen $\lambda=1$ dan $\lambda=2$, tidak ada yang bernilai nol. Jika dicek dengan menggunakan determinan

$$\det(A) = \begin{vmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{vmatrix} = 0 \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} - 1 \begin{vmatrix} 0 & -2 \\ 0 & 3 \end{vmatrix} + 1 \begin{vmatrix} 0 & -2 \\ 2 & 1 \end{vmatrix} = 4$$

Karena $det(A) \neq 0$, maka matriks A memiliki invers.

2. Diagonalisasi

2.1. Masalah Diagonalisasi Matriks (1)

- Topik utama dari bagian ini adalah hasil kali matriks $P^{-1}AP$ dimana A dan P adalah matriks $n \times n$ dan P mempunyai invers.
- Terdapat berbagai cara untung memandang perkalian matriks tersebut, salah satunya adalah melihat perkalian tersebut sebagai transformasi

$$A \rightarrow P^{-1}AP$$

dimana matriks A dipetakan ke dalam matriks $P^{-1}AP$.

- Transformasi tersebut dikenal sebagai transformasi similaritas.
- Transformasi ini penting karena mempertahankan banyak sifat dari matriks A, salah satunya nilai determinannya.

2.1. Masalah Diagonalisasi Matriks (2)

Sifat	Keterangan
Determinan	$A \operatorname{dan} P^{-1}AP$ memiliki determinan yang sama
Invers	A memiliki invers jika dan hanya jika $P^{-1}AP$ punya invers
Rank	$A \operatorname{dan} P^{-1}AP$ memiliki rank yang sama
Nulitas	$A \operatorname{dan} P^{-1}AP$ memiliki nulitas yang sama
Trace	$A \operatorname{dan} P^{-1}AP$ memiliki trace yang sama
Persamaank arakteristik	A dan $P^{-1}AP$ memiliki persamaan karakteristik yang sama
Nilaieigen	A dan $P^{-1}AP$ memiliki nilai eigen yang sama
Dimensirua ngeigen	Jika λ adalah nilai eigen dari A (dan $P^{-1}AP$) maka ruang eigen A (dan $P^{-1}AP$) terhadap λ memiliki dimensi sama

2.1. Masalah Diagonalisasi Matriks (3)

- Jika A dan B adalah matriks persegi, maka matriks B dikatakan mirip dengan matriks A jika terdapat matriks P yang memiliki invers sedemikian sehingga $B = P^{-1}AP$.
- Matiks persegi A dikatakan **dapat didagonalisasi** jika terdapat matriks diagonal yang mirip dengan A; yakni, jika terdapat matriks P yang memiliki invers sedemikian sehingga $P^{-1}AP$ adalah matriks diagonal.
- Matriks P disebut sebagai matriks yang mendiagonalkan A.

2.2. Langkah-Langkah Diagonalisasi Matriks

- Tentukan apakah matriks dapat didiagonalisasi dengan mencari n vektor eigen yang bebas linier. Salah satu cara adalah dengan mencari basis ruang vektor dan hitung jumlah vektor yang diperoleh. Jika terdapat n vektor, maka matriks tersebut dapat didiagonalkan, jika kurang dari n vektor, maka tidak dapat didiagonalkan.
- 2. Jika dapat didiagonalkan, bentuk matriks $P = [\mathbf{p}_1 \quad \mathbf{p}_2 \quad \cdots \quad \mathbf{p}_n]$ dengan vektor kolom berisi n basis yang diperoleh dari langkah 1.
- 3. Bentuk matriks diagonal $P^{-1}AP$ dengan $\lambda_1, \lambda_2, ..., \lambda_n$ sebagai diagonalnya. (λ_i adalah nilai eigen yang berpadanan dengan \mathbf{p}_i , untuk i = 1, 2, ..., n).

Contoh 2.1. Carilah matriks *P* yang mendiagonalkan

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Solusi. Pada contoh 1.6 di bagian sebelumnya diperoleh persamaan karakteristik dari A adalah

$$(\lambda - 1)(\lambda - 2)^2 = 0$$

dan diperoleh basis ruang vektor sebagai berikut

$$\lambda = 2$$
: $\mathbf{p}_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{p}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$; $\lambda = 1$: $\mathbf{p}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$

Contoh 2.1 (lanjutan). Terdapat total tiga vektor basis, maka

matriks
$$P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 mendiagonalkan A . Dapat dicek bahwa

$$P^{-1}AP = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Secara umum, tidak ada urutan yang khusus untuk kolom matriks P. Karena elemen diagonal ke-i dari $P^{-1}AP$ merupakan nilai eigen untuk vektor kolom ke-i, perubahan letak kolom P hanya mengubah letak nilai eigen pada diagonal $P^{-1}AP$.

Contoh 2.2. Tunjukkan bahwa matriks
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$
 tidak

dapat didiagonalkan.

Solusi. Persamaan karakteristik dari A adalah $(\lambda - 1)(\lambda - 2)^2 = 0$ (matriks segitiga bawah), sehingga nilai eigennya adalah $\lambda = 1$ dan $\lambda = 2$.

Untuk
$$\lambda = 1$$
, diperoleh $\mathbf{p}_1 = \begin{bmatrix} \frac{1}{8} \\ -\frac{1}{8} \\ 1 \end{bmatrix}$ dan untuk $\lambda = 2$, $\mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Karena A matriks 3×3 dan hanya ada 2 vektor basis, maka A tidak dapat didiagonalkan.

2.3. Nilai Eigen Matriks Berpangkat

• Jika k adalah bilangan bulat positif, λ adalah nilai eigen dari matriks A dan \mathbf{x} adalah vektor eigen untuk λ , maka λ^k adalah nilai eigen dari A^k dan \mathbf{x} adalah vektor eigennya.

Contoh 2.3. Diketahui
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$$
. Carilah nilai eigen dan vektor eigen untuk A^7 .

Solusi. Dari contoh 2.2 diperoleh nilai eigen dari A adalah $\lambda=1$ dan $\lambda=2$, maka niali eigen dari A^7 adalah $\lambda=1^7=1$ dan $\lambda=2^7=128$.

Vektor eigen \mathbf{p}_1 dan \mathbf{p}_2 di contoh 2.2 untuk nilai eigen $\lambda=1$ dan $\lambda=2$ di A merupakan vektor eigen untuk $\lambda=1$ dan $\lambda=128$ di A^7 .

2.4. Pangkat Suatu Matriks

Jika matriks A dapat didiagonalkan oleh P, maka

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = D$$

Hasil pangkat dari D, dapat dituliskan sebagai berikut

$$D^{k} = P^{-1}A^{k}P = \begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k} \end{bmatrix}$$

sehingga diperoleh
$$A^k = PD^kP^{-1} = P\begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{bmatrix} P^{-1}$$

Contoh 2.4. Tentukan matriks
$$A^{13}$$
 dari $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

Solusi. Dari contoh 2.1, matriks A didiagonalkan oleh

$$P = \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} dan D = P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{aligned} \mathsf{Jadi,A}^{13} &= \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \\ &= \begin{bmatrix} -8190 & 0 & -16382 \\ 8191 & 8192 & 8191 \\ 8191 & 0 & 16383 \end{bmatrix} \end{aligned}$$

LATIHAN SOAL

SOAL 1

Carilah persamaan karakteristik, nilai eigen, dan basis ruang eigen untuk setiap matriks berikut.

a.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 c. $\begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$

d.
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

d.
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 e. $\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

SOAL 2

Untuk setiap matriks pada soal 1, tentukan apakah matriks tersebut memiliki invers.

LATIHAN SOAL

SOAL 3

Carilah matriks P yang mendiagonalkan matriks A (jika ada) kemudian cek dengan menghitung $P^{-1}AP$.

a.
$$A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$

c.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

b.
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{bmatrix}$$

d.
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

RINGKASAN

- Jika A adalah matriks $n \times n$, maka vektor tak nol \mathbf{x} di \mathbb{R}^n disebut **vektor eigen** dari A jika $A\mathbf{x}$ adalah perkalian skalar dari \mathbf{x} ; yakni, $A\mathbf{x} = \lambda \mathbf{x}$ untuk suatu skalar λ .
- Skalar λ disebut **nilai eigen** dari A (atau dari T_A), dan \mathbf{x} adalah **vektor eigen** yang bersepadanan dengan λ .
- Jika A adalah matriks $n \times n$, maka λ merupakan **nilai eigen** dari A jika dan hanya jika λ memenuhi persamaan $\det(\lambda I A) = 0$.
- Persamaan tersebut merupakan persamaan karakteristik dari A.
- Jika A adalah matriks segitiga n × n, maka nilai eigen dari A adalah elemen dari diagonal utama matriks A.

RINGKASAN

- Vektor eigen dari A dengan nilai eigen tak nol λ adalah vektor tak nol yang memenuhi $(\lambda I A)\mathbf{x} = 0$.
- Matriks persegi A memiliki invers jika dan hanya jika λ = 0 bukan merupakan nilai eigen dari A.
- Matiks persegi A dikatakan dapat didagonalisasi jika terdapat matriks diagonal yang mirip dengan A; yakni, jika terdapat matriks P yang memiliki invers sedemikian sehingga P⁻¹AP adalah matriks diagonal.
- Matriks P disebut sebagai matriks yang mendiagonalkan A.
- Langkah-langkah diagonalisasi dapat dilihat di slide 22.

RINGKASAN

- Secara umum, tidak ada urutan yang khusus untuk kolom matriks P.
- Karena elemen diagonal ke-i dari $P^{-1}AP$ merupakan nilai eigen untuk vektor kolom ke-i, perubahan letak kolom P hanya mengubah letak nilai eigen pada diagonal $P^{-1}AP$.
- Jika k adalah bilangan bulat positif, λ adalah nilai eigen dari matriks A dan \mathbf{x} adalah vektor eigen untuk λ , maka λ^k adalah nilai eigen dari A^k dan \mathbf{x} adalah vektor eigennya.
- Matriks pangkat dapat dicari dengan menggunakan matriks diagonalnya.

Terima Kasih