

Lógica de Programação

Prof. Me. Massaki de O. Igarashi

massaki.igarashi@anchieta.br

Agenda desta aula!

• Fluxogramas (Continuação) 01 Variáveis 02 Operadores 03 • Sistema / Computador 04 Analogia (Computação x Cozinha) • Spoiler da próx. aula

Norma ISO 5807 – Simbologia Fluxograma

SÍMBOLO	SIGNIFICADO	DESCRIÇÃO
	Terminal (Terminator)	Definição de Início e Fim do fluxo lógico de um programa. Também usado na definição de sub-rotinas de procedimento ou de função.
	Entrada Manual (Manual Input)	Representa a entrada manual de dados , normalmente efetuada em um teclado conectado diretamente ao console do computador.
	Processamento (Process)	Representa a execução de uma operação ou grupo de operações que estabelecem o resultado de operação lógica ou matemática.
	Exibição (Display)	Representa a execução da operação de saída visual de dados em um monitor de vídeo conectado ao console do computador.
	Decisão (Decision)	Este símbolo representa o uso de desvios condicionais para outros pontos do programa de acordo com determinadas situações.
	Preparação (<i>Preparation</i>)	Representa a modificação de instruções ou grupo de instruções existentes em relação à ação de sua atividade subsequencial.
	Processo Predefinido (Predefined Process)	Definição de um grupo de operações estabelecidas como uma sub-rotina de processamento anexa ao diagrama de blocos

MANZANO, José Augusto Navarro G.; OLIVEIRA, Jayr Figueiredo de. **Algoritmos - Lógica para Desenvolvimento de Programação de Computadores**. [Digite o Local da Editora]: Editora Saraiva, 2019. *E-book*. ISBN 9788536531472. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536531472. Acesso em: 10 mar. 2024.

5) Criar a narrativa, o pseudocódigo e o fluxograma para um programa que receba o raio (r) de uma esfera, e em seguida calcule e exibir o seu volume (v) desta esfera.

Narrativa: Atribuir PI =3.14159265358979323846 Ler r Calcular v = (4/3.0)*PI/(r*r*r)

Pseudocódigo:

Início:

Exibir r

Real: r, v

Real PI = 3.14159265358979323846

Ler r

Calcular v = (4/3.0)*PI/(r*r*r)

Exibir v

FIM

6) Criar a narrativa, o pseudocódigo e o fluxograma para um programa que receba um ângulo (g) em graus, e converta este valor para radianos (r).

```
Narrativa:
Atribuir PI =3.14159265358979323846
Ler g
Calcular r =g*PI/180.0
Exibir r
```

Pseudocódigo:

Início:

FIM

Real: g, r
Real PI = 3.14159265358979323846
Ler g
Calcular r = g*PI/180.0
Exibir r

7) Criar a narrativa, o pseudocódigo e o fluxograma para um programa que receba o valor de um ângulo em radianos, e converta este valor para graus.

```
Narrativa:
Atribuir PI = 3.14159265358979323846
Ler r
Calcular g = r*180.0/PI
Exibir g
Pseudocódigo:
Início:
    Real: g, r
    Real PI = 3.14159265358979323846
    Ler r
```

Calcular g =r*180.0/PI

Exibir g

FIM

8) Criar a narrativa, o pseudocódigo e o fluxograma para um programa que receba ângulo em radianos (Rad), e converta este valor para grados(Gr). Lembrar que 400 grados equivalem a 2π .

Narrativa:

Atribuir PI =3.14159265358979323846

Ler Rad

Calcular Gr = 400*Rad/(2*PI)

Exibir Gr

Pseudocódigo:

Início:

Real: Rad, Gr

Real PI = 3.14159265358979323846

Ler Rad

Calcular Gr = 400*Rad/(2*PI)

Exibir Gr

FIM

Nas últimas aulas aprendemos sobre algoritmo e suas formas de representação, inclusive sobre a função do algoritmos de representar uma solução para um problema no mundo real escrito em linguagem que o computador compreende. Com esse mesmo pensamento, podemos entender que cada item tratado nesse problema pode ser representado por uma variável.

Pode-se dizer que você certamente irá lidar com variáveis na maior parte do seu tempo como profissional de programação, mas as variáveis não costumam vir sozinhas; elas costumam operadores aritméticos e relacionais, aparecer com principalmente quando o programa tem a função de processar algum cálculo específico ou algum sinal de entrada para tomar uma determinada decisão.

Em programação, um identificador é um nome atribuído a uma variável de memória, uma estrutura de dados, uma classe, um objeto, um procedimento, uma função, um comando ou palavra reservada da linguagem.

Variável é tudo que está sujeito a variações, que é incerto, instável ou inconstante. Quando se fala de computadores, é preciso ter em mente que o volume de dados a serem tratados é grande e diversificado. Dessa forma, os dados a serem processados são bastante variáveis.

Todo dado a ser armazenado na memória de um computador deve ser previamente identificado segundo seu tipo, ou seja, primeiramente é necessário saber o tipo do dado para depois fazer seu armazenamento adequado. Armazenado o dado, ele pode ser utilizado e processado a qualquer momento.

Um identificador pode ter até 32 caracteres de comprimento.

- ❖O 1º caractere deve ser uma letra do alfabeto.
- ❖Os demais caracteres podem ser letras, números ou sinal *underscore* (_)
- ❖Não usar sinais de pontuação, caracteres acentuados, cedilha (ç) ou espaço em branco.
- **❖** Exemplos de identificadores: Nome, Nome_Cliente, Nome_Completo, Data, Data_Emissao, Mensagem, Aviso, 1aSemana, Endereco, a, b, c, ..., X, Y, Z.

VARIÁVEIS

Uma variável representa um contêiner ou espaço na memória física ou virtual de um computador, onde diferentes tipos de dados (valores) são armazenados durante a execução de um programa. A cada variável é atribuído um nome descritivo ou identificador que se refere ao valor salvo.

Elas são importantes para o funcionamento de programas e aplicações que lidam com cálculos, condições, repetições e qualquer outro dado mutável durante o seu funcionamento.

OPERADORES

Operadores aritméticos: são símbolos especiais que realizam operações matemáticas básicas

OPERAÇÃO	SÍMBOLO	CÓDIGO EM PYTHON	CÓDIGO EM C++	DESCRIÇÃO						
ADIÇÃO	+	x + y	x + y	Efetua a soma x + y						
SUBTRAÇÃO	-	x – y	x – y	Efetua a subtração x - y						
MULTIPLICAÇÃO	*	x * y	x * y	Efetua a multiplicação x*y						
DIVISÃO	/	x / y	x / y	Efetua a divisão x/y						
DIVISÃO INTEIRA	//	x // y	Operador inexistente	Efetua a divisão truncada $x//y$ Ou seja, $5//2 = 2$, pois trunca o ponto flutuante 0.5						
POTÊNCIA	**	x ** y	Operador inexistente	Eleva um número x a um expoente y (x ^y)						
RESTO DA DIVISÃO	%	x % y	x % y	Obtém o resto da divisão entre dois inteiros						

OPERADORES

Operadores Relacionais

	OPERAÇÃO	SÍMBOLO	CÓDIGO EM PYTHON	CÓDIGO EM C++	DESCRIÇÃO
	Menor que	<	x < y	x < y	Verdadeiro se x Menor y
	Maior que	>	x > y	x > y	Verdadeiro se x Maior y
	lgual	==	x == y	x == y	Verdadeiro se x Igual a y
-	ATRIBUIÇÃO	=	X = 2	X = 2	Atribui um valor ou resultado de cálculo à uma constante
	Diferente	!=	x != y	x != y	Verdadeiro se x Diferente de y
	Menor igual	<=	x <= y	x <= y	Verdadeiro se x Menor ou Igual a y
	Maior Igual	>=	x >= y	x >= y	Verdadeiro se x Maior ou Igual a y

O símbolo = é considerado operador de atribuição; usado para atribuir valores para constantes OU atribuir cálculos

Exemplo: X = 2

Y = 3

soma = X + Y

As operações com os operadores aritméticos básicos podem ser feitas de forma a armazenar os cálculos realizados primeiramente em variáveis e em seguida exibí-los. Isto é um procedimento muito comum na computação; já que as variáveis tem seus valores armazenados em posições da memória RAM do computador.

Mas antes de sairmos processando e fazendo uso de variáveis e operadores, é preciso fazer uma pausa para responder duas perguntas:

O que é um sistema?
O computador é um sistema?

Introdução: Você sabe o que é um Sistema?

Uma super "dica"!

Toda linguagem de programação tem:

- Comandos de ENTRADA
- 2. OPERADORES MATEMÁTICOS
- 3. Comandos de CONDIÇÃO
- 4. Comandos de REPETIÇÃO
- 5. Comandos de SAÍDA

Introdução: O Sistema processando um programa

Exemplo 01: Crie um código em linguagem Python p/ Solicitar 2 valores a e b e em seguida calcular e exibir o resultado.

Entrada(s)

```
a = input("Digite a: ")
b = input("Digite b: ")
```

Processamento

```
soma = float(a) +float(b)
```

```
Saída

print(soma)
```

1º Passo: Criar a Narrativa ou pseudo-código

Ler valor a
Ler valor b
Calcular soma=a+b
imprimir soma

2º Passo: criar o Algoritmo do programa início:

imprimir("Digite a: ") e ler_e_guardar(a)
imprimir("Digite b: ") e ler_e_guardar(b)
Processar soma = real(a) + real(b)
Imprimir(soma)

Fim

```
LP03 - Fluxogramas Variáveis Tipos de Dados e Operadores.ipynb
Arquivo Editar Ver Inserir Ambiente de execução Ferramentas Ajuda
As operações com os operadores aritméticos básicos podem ser feitas de forma a armazenar os cálculos realizados primeiramente em
                         um procedimento muito comum na computação; já que as variáveis tem seus valores
                                                                          V ⊕ ■ ◘ ₽ ☐ :
    #ENTRADAS DO PROGRAMA
        # Imprimir ("Digite a: ") e ler e guardar (a)
    a = input("Digite a:")
        # Imprimir("Digite b: ") e ler e guardar(b)
    b = input("Digite b:")
    #PROCESSAMENTO
        # Processar soma = real(a) + real(b)
    soma = float(a) + float(b)
    #SAÍDA NA TELA
        #Imprimir(soma)
    print(soma)
```


https://bit.ly/ANC01 LP03

EXEMPLO 02

Narrativa ou pseudo-código

Ler valor a Ler valor b

Calcular soma=a+b

Calcular subtracao=a-b

Calcular multiplicacao=a*b

Calcular divisao=a/b

e divisão Inteira =a//b

Calcular potencia=a**b

Calcular resto=a%b

imprimir soma

imprimir Subtração

imprimir Multiplicação

imprimir Potência

imprimir Resto

Crie o algoritmo a partir da imprimir Divisão e Divisão inteira

Narrativa ao lado

```
+ Código + Texto
!≡
       Exemplo 02) Crie um código de programa em linguagem Python para Solicitar dois
       valores a e b e em seguida calcular e exibir o resultado de:
\{x\}

    Soma

CT

    Subtração

    Multiplicação

    Divisão

    Divisão Inteira

    Potência

    Resto

         #ENTRADAS DO PROGRAMA
         a = float(input("Digite a:"))
         b = float(input("Digite b:"))
         #PROCESSAMENTOS
         soma = a + b
         subtracao = a - b
         multiplicacao = a * b
         divisao = a / b
         potencia = a ** b
         resto = a % b
         #SAÍDAS NA TELA
         print("Soma = " + str(soma))
         print("Subtração = " + str(subtracao))
         print("Multiplicação = " + str(multiplicacao))
         print("Divisão = " + str(divisao))
         print("a elevado a b = " + str(potencia))
         print("Resto da divisao de a por b = " + str(resto))

√ 7s conclusão: 15:39
```

TIPOS DE DADOS

Saber sobre variável e operadores apenas não basta; você precisa saber sobre tipos de dados para programar!

Tipificar é apenas uma forma de classificar um valor. Um caractere é diferente de um número inteiro e um número decimal; que também difere de um booleano. A maioria das linguagens de programação lida com 4 tipos primitivos de dados:

Tipos de dados

Inteiro (do inglês, integer)

int → Tipo para definir números inteiros: 8 / 80

Decimal ou ponto flutuante (do inglês, float point)

float → Tipo para definir números decimais: 3.14 | 5.50

Caracteres (do inglês String)

str → Tipo para definir caracteres: "Exemplo de String" | "12"

Booleano (do inglês, Bool)

bool → Tipo para definir valores booleanos: **True / False**

O tipo de dados Caracter(String) sempre virá entre aspas!

PRÓXIMA AULA

Aprenderemos sobre as bases numéricas e as conversões numéricas

ANALOGIA

Mas antes, vamos fazer um pouco de analogia!

Computador x Cozinha

https://tudosobrehospedagemdesites.com.br/memoria-ram-hospedagem/

ANALOGIA

A memória RAM é como uma prateleira de dispensa da cozinha; neste caso, cada parte da prateleira é como uma posição de memória e os dados podem ser armazenados individualmente em potes, que nesta analogia entenderemos como armazenados nas variáveis.

DADOS

50H

00H

25H

ENDEREÇOS

(00H,

01H

02H

03H

05H

06H

07H

Endereços → posição onde os dados ou informações serão colocados, geralmente expressos em números hexadecimais. Cada endereço pode conter apenas uma informação.

Conteúdo ou dado → informação presente em cada posição de memória, para nosso estudo consideraremos os dados sempre como 8 bits ou 1 byte. Geralmente também são expressos em números hexadecimais.

Assim como os potes recebem nomes individuais para suas específicas funções na dispensa da cozinha, as variáveis também recebem nomes!

BITS E BYTES

8 BITS = 1 BYTES

DECIMAL > HEXADECIMAL > BINÁRIO

BINÁRIO	HEXADECIMAL	DECIMAL
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	А	10
1011	В	11
1100	С	12
1101	D	13
1110	Е	14
1111	F	15

Decimal → Hexadecimal

DECIMAIS	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HEXADECIMAIS	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F

Decimal → HEXADECIMAL

Transcrevendo o hexadecimal:

2EA₁₆

Decimais	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexadecimais	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F

EXERCÍCIO DESAFIO

9) Criar a narrativa, o pseudocódigo e o fluxograma para um programa que solicite ao usuário um valor decimal de duas casas decimais e seja capaz de converter este valor para binário. E se puder ir além, tente também fazer um programa em linguagem python para este desafio.

Narrativa: Fluxograma:

Pseudocódigo:

REFERÊNCIAS BIBLIOGRÁFICAS

MANZANO, José Augusto Navarro G.; OLIVEIRA, Jayr Figueiredo de. **Algoritmos - Lógica para Desenvolvimento de Programação de Computadores**. [Digite o Local da Editora]: Editora Saraiva, 2019. *E-book.* ISBN 9788536531472. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536531472. Acesso em: 10 mar. 2024.

GOOGLE COLABORATORY:

https://colab.research.google.com/notebooks/intro.ipynb