

MATHEMATICS EXTENSION 2

4 UNIT MATHEMATICS

TOPIC 5: VOLUMES

SUMMARY

A **solid of revolution** is obtained by revolving a **region** in a plane about a straight line called the **axis of revolution** that does not intersect the region.

Rotation about the X-axis

y = f(x) is a single valued function and the region R is bounded by the function y = f(x), the X-axis and the vertical lines x_a and x_b . The Y-axis limits are $y_a = f(x_a)$ $y_b = f(x_b)$

The volume V of the solid of revolution obtained by revolving a region R about the X-axis is

DISK METHOD

$$V = \int_{x_a}^{x_b} A(x) dx$$
$$A(x) = \pi R(x)^2 \quad R(x) = y \quad A(x) = \pi y^2$$

$$V = \pi \int_{x_a}^{x_b} R(x)^2 dx = \pi \int_{x_a}^{x_b} y^2 dx$$

CYLINDRICAL SHELL METHOD

The cylindrical shell method can be used to find the volume of revolution of **R** about the X-axis. But in this example, the disk method is much easier.

You need to use volume of the shell between the line x_b and the Y-axis and subtract from this the volume between the line x_a and the Y-axis

$$V = 2\pi \left(\int_0^{y_b} y \, x \, dy - x_a \int_0^{y_a} y \, dy \right)$$

Example

The region **R** is the blue shaded area under the curve which is rotated about the X-axis. The function

$$y = f(x) = 2 + (x^4 - x^2)/4$$

is shown by the blue curved line. The region is bounded by the X-axis and the lines x_a = -2 and x_b = +2.4. The Y limits are

$$y_a$$
 = +1 and y_b = 3.

The blue shaded region is rotated around the X-axis. The red shaded area shows the reflection of the blue shaded area about the X-axis. The blue and red lines give the profile of the solid of revolution in the XY plane.

[3D] plot of the solid of revolution

[3D] plot of the solid of revolution (x, y and z values too scale)

View animation of the rotation of the function

Rotation about the Y-axis

y = f(x) is a single valued function and the region \mathbb{R} is bounded by the function y = f(x), the X-axis and the vertical lines x_a and x_b . The Y-axis limits are $y_a = f(x_a)$ $y_b = f(x_b)$

The volume V of the solid of revolution obtained by revolving a region R about the Y-axis is

CYLINDRICAL SHELL METHOD

$$V = 2\pi \int_{x_a}^{x_b} y \, x \, dx$$

This is often the best method to use for the rotation around the Y-axis of the region bounded by the X-axis and a function y = f(x).