Глубинное обучение О курсе

Лектор: Антон Осокин Лаборатория компании Яндекс, ФКН ВШЭ Yandex Research

Научные стажировки: https://cs.hse.ru/big-data/yandexlab/internship

ФКН ВШЭ, 2021

Что такое и зачем изучать глубинное обучение?

- Про что курс?
 - Про **глубокие (многослойные) нейросети**
 - Архитектуры, обучение, регуляризация
 - Примеры использования
 - Компьютерное зрение
 - Обработка текстов
- Зачем это изучать?
 - Практические результаты
 - Развитая технология

Нейросети в компьютерном зрении

Классификация изображений

Обнаружение объектов

[Redmon&Farhadi, 2017]

IM GENET

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

[Krizhevsky et al., 2012]

Сегментация объектов

[He et al., 2017]

Нейросети для текстов

Автоматический перевод

Диалоговые системы

Привет, я Алиса

Ваш голосовой помощник, придуманный в компании Яндекс. Многие вещи проще делать, говоря со мной.

Нейросети для аудио

- Распознавание речи
- text2speech WaveNet [van den Oord et al., 2016]

• Синтез музыки

Performance RNN was trained in TensorFlow on MIDI from piano performances. It was then ported to run in the browser using only Javascript in the <u>deeplearn.js</u> environment.

Игры

Atari [DeepMind, Mnih et al., 2013] Fo [DeepMind, Silver et al., 2016]

Dota2 5v5 [OpenAl Five, 2018]

Молекулы и код программ

Восстановление структуры белка [DeepMind, Senior et al., 2020]

Помощь человеку в написаии кода GitHub Copilot/OpenAl Codex [Chen et al., 2021]

AlphaFold: Using AI for scientific discovery

План курса

- Введение
- Основные концепции
 - Механика нейросетей и backprop
 - Виды архитектур
 - Обучение и регуляризация
- Продвинутые темы
 - Применения в компьютерном зрении
 - Применения для обработки языка
 - Вероятностные модели
 - Adversarial X
 - Дифференцируемое программирование
 - Недифференцируемые модели и Deep RL

Домашние задания

- Малые домашние задания (МДЗ)
 - Каждую неделю по материалам лекции (задание небольшое)
 - pytorch
 - Удобно делать на Google Colab: https://colab.research.google.com/
 - Проверочные

- Домашние задания максимум практики!
 - Д31, Д32, Д33
 - Практические задания (с GPU)
 - GPU на Яндекс.Облако (датасфера)

Дедлайны

• Дедлайны не переносятся!

- Дедлайны:
 - У каждого (М)Д3 есть мягкий и жесткий деддайны
 - После мягкого дедлайна штраф -10% от оценки в день (точнее в задании)
 - После жетского дедлайна работы не принимаются

Списывать нельзя!

- Задания делаются индивидуально
 - Обсуждать между собой решения можно
 - Код должен быть написан самостоятельно
- В заданиях сказано из каких источником можно копировать код
 - Можно (и нужно) ресурсами библиотеки pytorch
 - Сами библиотеки: pytorch, torchvision, torchtext
 - Документация: https://pytorch.org/docs/stable/index.html
 - Туториалы: https://pytorch.org/tutorials/, https://github.com/pytorch/tutorials/
 - Примеры: https://github.com/pytorch/examples
- Копировать другой код из интернета или у соседа нельзя
 - Мы будем сразу писать жалобы в учебную часть (без предупреждений)
- Обязательно указывать источники, которыми вы вдохновлялись
- Если не понятно, можно ли использовать, то спросите нас

Формула оценки

• Многослойная формула оценки

- О_{МДЗ} среднее по всем МДЗ и проверочным
- $O_{J3} = O_{J31} W_{J31} + O_{J32} W_{J32} + O_{J33} W_{J33}$
- веса $w_{д31}$, $w_{д32}$, $w_{\Pi P}$ вычисляются при помощи softmin:
- $s_{J31} := exp(-O_{J31} / T); s_{J32} := exp(-O_{J32} / T); s_{J33} := exp(-O_{J33} / T)$
- $w_{J31} := s_{J31} / (s_{J31} + s_{J32} + s_{J33}); w_{J32} := s_{J32} / (s_{J31} + s_{J32} + s_{J33}); w_{J33} := s_{J33} / (s_{J31} + s_{J32} + s_{J33})$
- Значения параметров: Т := 20
- O_{накоп} := round ($0.3 O_{MД3} + 0.7 O_{Д3}$)
- O_э: экзамен, автоматы, если накоп ≥ 6
- Итоговая оценка
 - O_{μτοΓ} := round (0.7 O_{HaKOΠ} + 0.3 O_Э)

Быстрое начало

- Многие базовые темы вам уже встречались
- Быстро пройдем начало, чтобы было больше времени на большие Д3
- План на 3 недели:
 - Посмотреть 4 видео
 - Сделать 4 МДЗ ноутбука (у двух дедлайн 13.09, у двух 20.09)
 - Проверочная работа по лекциям 22.09
 - 08.09 и 15.09 будут семинары с ответами на вопросы по видео и МДЗ

Контакты с нами

- Материалы курса:
 - https://github.com/aosokin/dl cshse ami/tree/master/2021-fall
- E-mail курса: <u>dl.cshse@gmail.com</u>
 - Доступ к датасфере:
 - с почты на yandex.ru написать на <u>dl.cshse@gmail.com</u>ФИО и номер группы
- Сдача заданий: https://anytask.org/course/829
 - Инвайты пришлю по почте (если не придет, спросите)
- Чат курса: пришлю по почте