Übungsblatt 4 - mit Lösungen

Kontextfreie Sprachen und Kellerautomaten

{Theoretische Informatik}@AIN3

Prof. Dr. Barbara Staehle

Wintersemester 2021/2022

HTWG Konstanz

AUFGABE 4.1 EINE KONTEXTFREIE SPRACHE

Gegeben sei die Grammatik $G = (\{S, X\}, \{x, y\}, P, S)$ mit der Produktionsmenge $P = \{X \rightarrow xXy\}$ $X \rightarrow xy$

TEILAUFGABE 4.1.1 VON G ERZEUGTE SPRACHE, 2 PUNKTE

Geben Sie an

- a) 3 Worte, welche man aus G ableiten kann,
- b) $\mathcal{L}(G)$, also alle von G erzeugten Worte.

LÖSUNG

- a) xy, xxyy, xxxyyy
- b) $\mathcal{L}(G) = \{x^n y^n \mid n \in \mathbb{N}\}$

TEILAUFGABE 4.1.2 CHOMSKY-NORMALFORM, 4 PUNKTE

Geben Sie für G eine Grammatik G' in Chomsky-Normalform mit L(G) = L(G') an.

LÖSUNG

- a) 1. Schritt: Elimination der ε -Regeln: Nichts zu tun
- b) 2. Schritt: Elimination von Kettenregeln: Eliminiere $S \rightarrow X$

$$P = \left\{ \begin{array}{ccc} S & \to & xSy \\ S & \to & xy \end{array} \right\}$$

c) 3. Schritt: Separation von Terminalzeichen

$$P = \{ \begin{array}{ccc} S & \rightarrow & USV \\ S & \rightarrow & UV \\ U & \rightarrow & x \\ V & \rightarrow & y \end{array} \}$$

d) 4. Schritt: Elimination mehrelementiger Nonterminalketten

$$S \rightarrow UW$$

$$S \rightarrow UV$$

$$P = \{ W \rightarrow SV \}$$

$$U \rightarrow x$$

$$V \rightarrow y$$

 $G' = (\{S, U, V, W\}, \{x, y\}, P, S)$ und P wie nach Schritt 4 angegeben.

AUFGABE 4.2 EINE CNF FÜR DIE DYCK-SPRACHE, 3 PUNKTE

Von Übungsblatt 2 ist Ihnen die Grammatik G_4 zur Erzeugung der Dyck-Sprache D_4 bekannt:

- $G_4 = \{N, \Sigma, P, S\} = \{\{S\}, \{(,), [,], \{,\}, <, >\}, P, S\}$
- Die Produktionsmenge *P* besteht aus den Regeln:

$$S \rightarrow \varepsilon \mid SS \mid [S] \mid (S) \mid \{S\} \mid \langle S \rangle$$

- a) Modifizieren Sie die Grammatik so, dass sich das leere Wort nicht mehr ableiten lässt.
- b) Übersetzen Sie die modifizierte Grammatik in Chomsky-Normalform.
- c) Generieren Sie mit Hilfe der Grammatik in Chomsky-Normalform eine Ableitung und den dazugehörigen Ableitungsbaum für das Wort $\lceil \rceil < \{(\lceil \rceil)()\} >$

LÖSUNG

a)
$$P: S \to [] | () | \{\} | <> | SS | [S] | (S) | \{S\} | < S >$$

- b) 1) 1. Schritt: Elimination der ε -Regeln: Nichts zu tun
 - 2) 2. Schritt: Elimination von Kettenregeln: Nichts zu tun
 - 3) 3. Schritt: Separation von Terminalzeichen

$$S \to V_{[}V_{]} \mid V_{(}V_{)} \mid V_{\{}V_{\}} \mid V_{<}V_{>} \mid SS \mid V_{[}SV_{]} \mid V_{(}SV_{)} \mid V_{\{}SV_{\}} \mid V_{<}SV_{>} \mid V_{[} \to [$$

$$V_{[} \to [$$

$$V_{]} \to [$$

$$V_{(} \to ($$

$$V_{)} \to)$$

 $V_{\{}^{'} \rightarrow \{$

 $V_{\}} \rightarrow \}$

 $V_{<} \rightarrow <$

 $V_{>} \rightarrow >$

4) 4. Schritt: Elimination mehrelementiger Nonterminalketten

$$S \rightarrow V_{[}V_{]} \mid V_{(}V_{)}V_{\{}V_{\}} \mid V_{<}V_{>} \mid SS \mid TV_{]} \mid UV_{)} \mid XV_{\}} \mid YV_{>}$$

 $V_{[} \rightarrow [$

 $V_{]} \rightarrow]$

 $V_{(}\rightarrow ($

 $V_{j} \to)$ $T \to V_{\lceil} S$

 $U \rightarrow V_{(S)}$

 $X \to V_{\{}S$

$$Y \rightarrow V_{<}S$$

 $G_{4CNF} = (N, \Sigma, P, S) = (\{S, V_{[}, V_{]}, V_{(}, V_{)}, V_{\{}, V_{\}}, V_{<}, V_{>}\}, \{[,], (,), \{,\}, <, >\}, P, S)$ mit P wie nach Schritt 4 angegeben.

AUFGABE 4.3 CHOMSKY-NORMALFORM UND CYK-ALOGRITHMUS

Gegeben seien die Grammatiken $G_x = (\{S\}, \{a, b\}, P, S)$ mit der Produktionsmenge

$$P_{x} = \{S \to aSb, S \to b\}$$

und $G_y = (\{S,A,B\}, \{a,b,c\}, P,S)$ mit der Produktionsmenge

$$P_{V} = \{S \rightarrow cAB, A \rightarrow aAb, B \rightarrow cBb, A \rightarrow ab, B \rightarrow \epsilon\}$$

TEILAUFGABE 4.3.1 2 PUNKTE

Geben Sie für die Grammatik G_x eine Grammatik G_x' in Chomsky-Normalform mit $\mathscr{L}(G_x) = \mathscr{L}(G_x')$ an.

- a) 1. Schritt: Elimination der ε -Regeln: Nichts zu tun
- b) 2. Schritt: Elimination von Kettenregeln: Nichts zu tun
- c) 3. Schritt: Separation von Terminalzeichen

$$P_{x} = \{ \begin{array}{ccc} S & \rightarrow & ASB \\ S & \rightarrow & b \\ A & \rightarrow & a \\ B & \rightarrow & b \end{array} \}$$

d) 4. Schritt: Elimination mehrelementiger Nonterminalketten

$$S \rightarrow TB$$

$$S \rightarrow b$$

$$P_x = \{ T \rightarrow AS \}$$

$$A \rightarrow a$$

$$B \rightarrow b$$

 $G_x' = (\{S, T, A, B\}, \{a, b\}, P_x, S)$ und P_x wie nach Schritt 4 angegeben.

TEILAUFGABE 4.3.2 3 PUNKTE

Bestimmen Sie mit Hilfe der Tabellen aus dem CYK-Algorithmus, welche der Wörter abb, aabb und aabbb zur Sprache $\mathcal{L}(G_x)$ gehören.

Verallgemeinern Sie Ihre Erkenntnis - welche Sprache wird von G_x erzeugt?

LÖSUNG

	cyk	i=1	i=2	i=3	i=4	i = 5	
		a	a	Ъ	Ъ	Ъ	
	j=1	{ <i>A</i> }	{ <i>A</i> }	<i>{S,B}</i>	<i>{S,B}</i>	<i>{S,B}</i>	_
c) $aabbb \in \mathcal{L}(G_x)$:	j=2	{}	{ <i>T</i> }	{}	{}		_
	j = 3	{}	<i>{S}</i>	{}			_
	j = 4	{ <i>T</i> }	{}				_
	j = 5	<i>{S}</i>				·	
c) $aabbb \in \mathcal{L}(G_x)$:	j = 2 $j = 3$ $j = 4$	{A} {} {} {T} {S}	{ <i>T</i> }	{\(\delta, B\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	{S,B} {}	{5,B}	

d)
$$\mathcal{L}(G_x) = \{a^n b^{n+1} \mid n \in \mathbb{N}_0\}$$

TEILAUFGABE 4.3.3 3 PUNKTE

Geben Sie für die Grammatik G_y eine Grammatik G_y' in Chomsky-Normalform mit $\mathcal{L}(G_y) = \mathcal{L}(G_y')$ an.

a) 1. Schritt: Elimination der
$$\varepsilon$$
-Regeln: $P_y = \{ \begin{array}{ccc} S & \to & cAB \\ S & \to & cA \\ A & \to & aAb \\ B & \to & cBb \\ B & \to & cb \\ A & \to & ab \end{array} \}$

- b) 2. Schritt: Elimination von Kettenregeln: Nichts zu tun
- c) 3. Schritt: Separation von Terminalzeichen

$$\begin{array}{cccc} S & \rightarrow & ZAB \\ S & \rightarrow & ZA \\ A & \rightarrow & XAY \\ B & \rightarrow & ZBY \\ P_y = \{ \begin{array}{ccc} B & \rightarrow & ZY \\ A & \rightarrow & XY \end{array} \}$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

$$Y \rightarrow t$$

d) 4. Schritt: Elimination mehrelementiger Nonterminalketten

$$S \rightarrow TB$$

$$S \rightarrow ZA$$

$$T \rightarrow ZA$$

$$A \rightarrow UY$$

$$U \rightarrow XA$$

$$B \rightarrow VY$$

$$R \rightarrow 7V$$

$$A \rightarrow XY$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

$$Z \rightarrow c$$

 $G_y' = (\{S,T,U,V,A,B,X,Y,Z\},\{a,b,c\},P_y,S)$ und P_y wie nach Schritt 4 angegeben.

TEILAUFGABE 4.3.4 4 PUNKTE

Bestimmen Sie mit Hilfe der Tabellen aus dem CYK-Algorithmus, welche der Wörter cab, cabcb und caabcb zur Sprache $\mathcal{L}(G_y)$ gehören.

Verallgemeinern Sie Ihre Erkenntnis - welche Sprache wird von G_y erzeugt?

	cyk	i=1	i=2	i=3	i=4	i = 5
		С	a	b	c	Ъ
	j=1	{ <i>Z</i> }	{ <i>X</i> }	{ <i>Y</i> }	{ <i>Z</i> }	{ <i>Y</i> }
b) $cabcb \in \mathcal{L}(G_y)$:	j=2	{}	{ <i>A</i> }	{}	{B}	
	j=3	{ <i>S</i> , <i>T</i> }	{}	{}		
	j=4	{}	{}			
	j = 5	<i>{S}</i>				

	cyk	i=1	i=2	i=3	i=4	i = 5	i = 6
		a	a	a	Ъ	c	Ъ
c) $caabcb \notin \mathcal{L}(G_x)$:	j=1	{ <i>Z</i> }	{ <i>X</i> }	{X}	{ <i>Y</i> }	{ <i>Z</i> }	{ <i>Y</i> }
	j=2	{}	{}	{ <i>A</i> }	{}	{B}	
	j=3	{}	{ <i>U</i> }	{}	{}		
	j=4	{}	{}	{}			
	j = 5	{}	{}				
	j = 6	{}					

 $d) \ \mathcal{L}(G_y) = \{ca^nb^nc^mb^m \mid n \in \mathbb{N}, m \in \mathbb{N}_0\} = \{cab, cabcb, caabbcb, \dots, caaaabbbb, \dots, caabbccccbbbb, \dots\}$

AUFGABE 4.4 EINE FORMELSPRACHE, 3 PUNKTE

Wir betrachten das Alphabet $\Sigma = \{x, y, *, +\}$ sowie die Sprache $L_F = \{$ korrekt formulierte mathematische Formeln mit Symbolen aus Σ $\}$.

 $S \rightarrow TRT$ L_F wird von der **kontextfreien** Grammatik $G_2 = (N_2, \Sigma, P_2, S)$ mit $N_2 = \{S, T, R\}$ und $P_2 = T \rightarrow TRT \mid x \mid y$ $R \rightarrow * \mid +$ erzeugt.

- a) Geben Sie eine **reguläre** Grammatik G_3 , welche L_F ebenfalls erzeugt (mit $\mathcal{L}(G_3) = L_F$).
- b) Bringen Sie die Grammatik G_2 in die Chomsky-Normalform.

LÖSUNG

a) reguläre Grammatik:
$$G_3 = (N_3, \Sigma, P_3, S)$$
 mit $N_3 = \{S, T, R\}$ und $P_3 = \begin{cases} S & \to & xT \mid yT \\ T & \to & +R \mid *R \\ R & \to & x \mid y \mid xT \mid yT \end{cases}$

- b) Überführung von G_2 in CNF
 - 1) 1. Schritt: Elimination der ε -Regeln: Nichts zu tun

2) 2. Schritt: Elimination von Kettenregeln:
$$P_2' = \begin{cases} S \rightarrow TX \\ T \rightarrow TX \mid x \mid y \\ R \rightarrow * \mid + \\ X \rightarrow RT \end{cases}$$

- 3) 3. Schritt: Separation von Terminalzeichen: Nichts zu tun
- 4) 4. Schritt: Elimination mehrelementiger Nonterminalketten: Nichts zu tun

 $G_{2CNF} = (N_2', \Sigma, P_2', S)$ mit $N_2' = \{S, T, R, X\}$ und P_2' wie nach Schritt 2 angegeben.

Aufgabe 4.5 Der Kellerautomat P_{ab}

Betrachten Sie den PDA $P_{ab} = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1\}, \{a, b\}, \{A, B, \#\}, \delta, q_0)$ mit δ gegeben wie folgt:

Abbildung 1: Erweitertes Zustandsübergangsdiagramm für P_{ab}

TEILAUFGABE 4.5.1 2 PUNKTE

Bestimmen Sie für die Worte

- a) $\omega_1 = ab$
- b) $\omega_2 = aab$
- c) $\omega_3 = bbbaa$

jeweils alle Konfigurationen (aktueller Zustand, verbleibendes Eingabewort, Inhalt des Kellers), die P_{ab} während der Verarbeitung der Worte durchläuft. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

LÖSUNG

Anmerkung: Da P_{ab} nichtdeterministisch arbeitet, wird jeweils **ein beispielhafter** Verarbeitungsweg gezeigt.

a)
$$\omega_1 = ab$$

 $(q_0, ab, \#) \vdash (q_0, b, A\#) \vdash (q_0, \varepsilon, \#)$

Wort komplett eingelesen, Keller ist nicht leer, ω_1 wird nicht akzeptiert (Es gibt auch keinen Verarbeitungsweg, der ω_1 akzeptieren würde).

b)
$$\omega_2 = aab$$

$$(q_0, aab, \#) \vdash (q_0, ab, A\#) \vdash (q_0, b, AA\#) \vdash (q_0, \varepsilon, A\#) \vdash (q_1, \varepsilon, \#) \vdash (q_1, \varepsilon, \varepsilon)$$

Wort komplett eingelesen, Keller leer, ω_2 wird akzeptiert (auch wenn es Verarbeitungswege gibt, die ω_2 nicht akzeptieren).

c)
$$\omega_3 = bbbaa$$

 $(q_0, bbbaa, \#) \vdash (q_0, bbaa, B\#) \vdash (q_0, baa, BB\#) \vdash (q_0, aa, BBB\#) \vdash (q_0, a, BB\#) \vdash (q_0, \epsilon, B\#) \vdash (q_1, \epsilon, \epsilon)$

Wort komplett eingelesen, Keller ist leer, ω_3 wird akzeptiert (auch wenn es Verarbeitungswege gibt, die ω_3 nicht akzeptieren).

TEILAUFGABE 4.5.2 2 PUNKTE

Welche Sprache $\mathcal{L}(P_{ab})$ wird von P_{ab} akzeptiert?

LÖSUNG

 $\mathcal{L}(P_{ab}) = \{\omega \in \Sigma^+ \mid \omega = |\omega|_a \neq |\omega|_b\} = \{\omega \in \Sigma^+ \mid \omega \text{ enthält nicht die gleiche Anzahl von as und bs}\}$

Aufgabe 4.6 Der Kellerautomat P_{01}

Betrachten Sie den PDA $P_{01} = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{A, B, X, \#\}, \delta, q_0)$ mit δ gegeben wie folgt:

- $\delta(q_0, 0, \#) = (q_1, A\#)$
- $\delta(q_0, 1, \#) = (q_3, B\#)$
- $\delta(q_0, \varepsilon, \#) = (q_0, \varepsilon)$
- $\delta(q_1, 0, A) = (q_1, AA)$
- $\delta(q_1, 1, A) = (q_2, \varepsilon)$
- $\delta(q_2, \varepsilon, A) = (q_1, \varepsilon)$
- $\delta(q_1, \varepsilon, \#) = (q_0, \varepsilon)$
- $\delta(q_2, \varepsilon, \#) = (q_3, X)$
- $\delta(q_3, 1, B) = (q_3, BB)$
- $\delta(q_3, 0, B) = (q_3, X)$
- $\delta(q_3, 0, X) = (q_3, \varepsilon)$
- $\delta(q_3, 1, X) = (q_3, XB)$
- $\delta(q_3, \varepsilon, \#) = (q_0, \#)$

TEILAUFGABE 4.6.1 1 PUNKT

Stellen Sie die Zustandsübergangsfunktion mit Hilfe eines Graphen dar.

LÖSUNG

Abbildung 2: Erweitertes Zustandsübergangsdiagramm für P_{01}

TEILAUFGABE 4.6.2 3 PUNKTE

Bestimmen Sie für die Worte

- a) $\omega_1 = 001$
- b) $\omega_2 = 101$
- c) $\omega_3 = 100001$

jeweils alle Konfigurationen (aktueller Zustand, verbleibendes Eingabewort, Inhalt des Kellers), die P_{01} während der Verarbeitung der Worte durchläuft. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

- a) $\omega_1=001$ $(q_0,001,\#)\vdash (q_1,01,A\#)\vdash (q_1,1,AA\#)\vdash (q_2,\varepsilon,A\#)\vdash (q_1,\varepsilon,\#)\vdash (q_0,\varepsilon,\varepsilon)$ Wort komplett eingelesen, Keller ist leer, ω_1 wird akzeptiert.
- b) $\omega_2=101$ $(q_0,101,\#)\vdash (q_3,01,B\#)\vdash (q_3,1,X\#)\vdash (q_3,\varepsilon,XB\#)$ Wort komplett eingelesen, aber Keller nicht leer, ω_2 wird nicht akzeptiert.
- c) $\omega_3 = 100001$

$$(q_0, 100001, \#) \vdash (q_3, 00001, B\#) \vdash (q_3, 0001, X\#) \vdash (q_3, 001, \#) \vdash (q_0, 001, \#) \vdash (q_1, 01, A\#) \vdash (q_1, 1, AA\#) \vdash (q_2, \varepsilon, A\#) \vdash (q_1, \varepsilon, \#) \vdash (q_0, \varepsilon, \varepsilon)$$

Wort komplett eingelesen, Keller ist leer, ω_3 wird akzeptiert.

TEILAUFGABE 4.6.3 2 PUNKTE

Welche Sprache $\mathcal{L}(P_{01})$ wird von P_{01} akzeptiert?

LÖSUNG

$$\mathcal{L}(P_{01}) = \{\omega \in \Sigma^* \mid \omega = |\omega|_0 = 2 \cdot |\omega|_1\} = \{\omega \in \Sigma^* \mid \omega \text{ emthält doppelt so viele 0en wie 1en}\}$$

AUFGABE 4.7 EIN PDA FÜR DIE OTTO-ZAHLEN

Erinnern Sie sich an die OTTO-Zahlen (siehe Übungsblatt 2). Wir betrachten jetzt allerdings nur OTTO-Zahlen mit dem Ziffernvorrat 1-3: $L_{O3} \subseteq \{1, 2, 3\}^*$ mit

 $L_{O3} = \{1, 2, 3, 11, 22, 33, 111, 121, 131...2332...132321,...\}$, also die natürlichen Zahlen aus Ziffern von 1-3, die von vorne und hinten gelesen gleich sind.

TEILAUFGABE 4.7.1 3 PUNKTE

Geben Sie den PDA P_{O3} an, der L_{O3} akzeptiert.

LÖSUNG

 $P_{O3} = (S, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1\}, \{1, 2, 3\}, \{A, B, C, \#\}, \delta, q_0)$ mit $\gamma \in \Gamma$, sowie δ gegeben durch

TEILAUFGABE 4.7.2 2 PUNKTE

Bestimmen Sie für die Worte

a)
$$\omega_1 = 123321$$

b)
$$\omega_2 = 321311$$

jeweils alle Konfigurationen, die P_{O3} während der Verarbeitung der Worte auf einem möglichen Pfad durchläuft. Falls es einen akzeptierenden Pfad gibt, so wählen Sie bitte diesen. Beantworten Sie anschließend, warum die Worte (nicht) akzeptiert werden.

LÖSUNG

a) $\omega_1 = 123321$	a)	ω_1	=	12	33	321
------------------------	----	------------	---	----	----	-----

	Schritt	Zustand	ω	Keller
•	0	q_0	123321	#
	1	q_0	23321	A#
	2	q_0	3321	BA#
	3	q_0	321	CBA#
	4	q_1	321	CBA#
	5	q_1	21	BA#
	6	q_1	1	A#
	7	q_1	ε	#

 ω_1 wurde vollständig eingelesen, der Keller ist leer, damit wird es akzeptiert.

b)
$$\omega_2 = 321311$$

$$(q_0, 321311, \#) \vdash (q_0, 21311, A\#)$$

 $\vdash (q_0, 1311, BA\#)$
 $\vdash (q_0, 311, ABA\#)$
 $\vdash (q_0, 11, CABA\#)$
 $\vdash (q_0, 1, ACABA\#)$
 $\vdash (q_0, \varepsilon, AACABA)$

Ein Beispiel eines nicht-akzeptierenden Weges - ω_2 wird nicht akzeptiert.

AUFGABE 4.8 VERSCHIEDENE KELLERAUTOMATEN

Betrachten Sie das Alphabet $\Sigma = \{x, y\}$, sowie die folgenden Sprachen:

a)
$$L_1 = \{x^m y^n | m, n \in \mathbb{N}_0, m \le n\} = \{\varepsilon, y, yy, xy, xyy, xxyy, xxyy, \dots\}$$

b)
$$L_2 = \{x^m y^n | m, n \in \mathbb{N}_0, m < n\} = \{y, yy, xyy, xxyyy, \ldots\}$$

c)
$$L_3 = \{x^m y^n | m, n \in \mathbb{N}_0, m \ge n\} = \{\varepsilon, x, xx, xy, xxy, xxyy, xxxyy, \ldots\}$$

d)
$$L_4 = \{x^m y^n | m, n \in \mathbb{N}_0, m > n\} = \{x, xx, xxy, xxxyy, \ldots\}$$

e)
$$L_5 = \{x^m y^n | m, n \in \mathbb{N}, n = 2m\} = \{xyy, xxyyyy, xxxyyyyyy, \ldots\}$$

f)
$$L_6 = \{x^m y^n | m, n \in \mathbb{N}, m = 2n\} = \{xxy, xxxxyy, xxxxxxyyy, \ldots\}$$

TEILAUFGABE 4.8.1 3 PUNKTE

Konstruieren Sie die PDAs P_1 , P_2 , welcher die Sprachen L_1 , L_2 erkennen. Geben Sie jeweils an, ob die Automat deterministisch oder nichtdeterministisch arbeiten.

a)
$$P_1 = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1\}, \{x, y\}, \{A, \#\}, \delta, q_0)$$
 mit δ gegeben durch

 P_1 arbeitet nichtdeterministisch (Zustandsübergänge in q_0,q_1).

b) $P_2 = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1, q_2\}, \{x, y\}, \{A, \#\}, \delta, q_0)$ mit δ gegeben durch

 P_2 arbeitet nichtdeterministisch (Zustandsübergänge in q_2).

TEILAUFGABE 4.8.2 3 PUNKTE

Konstruieren Sie die PDAs P_3 , P_4 , welcher die Sprachen L_3 , L_4 erkennen. Geben Sie jeweils an, ob die Automat deterministisch oder nichtdeterministisch arbeiten.

LÖSUNG

c) $P_3 = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1\}, \{x, y\}, \{A, \#\}, \delta, q_0)$ mit δ gegeben durch

 P_3 arbeitet nichtdeterministisch (Zustandsübergänge in q_0, q_1).

d) $P_4=(Q,\Sigma,\Gamma,\delta,q_0)=(\{q_0,q_1\},\{x,y\},\{A,\#\},\delta,q_0)$ mit δ gegeben durch

 P_4 arbeitet nichtdeterministisch (Zustandsübergänge in q_0, q_1, q_2).

TEILAUFGABE 4.8.3 3 PUNKTE

Konstruieren Sie die PDAs P_5 , P_6 , welcher die Sprachen L_5 , L_6 erkennen. Geben Sie jeweils an, ob die Automat deterministisch oder nichtdeterministisch arbeiten.

LÖSUNG

e) $P_5 = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1\}, \{x, y\}, \{A, \#\}, \delta, q_0)$ mit δ gegeben durch

 P_5 arbeitet deterministisch.

f) $P_6 = (Q, \Sigma, \Gamma, \delta, q_0) = (\{q_0, q_1, q_2\}, \{x, y\}, \{A, \#\}, \delta, q_0)$ mit δ gegeben durch

P₆ arbeitet deterministisch.

TEILAUFGABE 4.8.4 2 PUNKTE

Für $a \in \{1, 2, ..., 6\}$ können die Sprachen L_a jeweils von einer Grammatik $G_a = (\{S\}, \{x, y\}, P_a, S)$ (also nur mit einem einzigen Nonterminal) erzeugt werden.

Geben Sie die Produktionsmengen der verschiedenen Grammatiken (P_1, P_2, \dots, P_6) an.

a)
$$P_1: S \to xSy \mid Sy \mid \varepsilon$$

b)
$$P_2: S \rightarrow xSy \mid Sy \mid y$$

c)
$$P_3: S \to xSy \mid xS \mid \varepsilon$$

d)
$$P_4: S \rightarrow xSy \mid xS \mid x$$

e)
$$P_5: S \to xSyy \mid xyy$$

f)
$$P_6: S \to xxSy \mid xxy$$