Summary of Key Concepts

Review and Multi-Qubit Circuits

Week of November 12, 2023

Resources	1
Key Terms	2
Lecture	3
Learning Objectives	3
Key Ideas	3
Lab	4
Learning Objectives	4
Key Ideas	4

Resources

- QXQ YLC Week 8 Lab Notebook [SOLUTIONS].ipynb
- QXQ YLC Week 8 Homework [SOLUTIONS].ipynb
- E YLC 23-24 Cirq Basics Cheat Sheet

Key Terms

Key Term	Definition
CNOT Gate	Also called a Controlled X gate or CX gate is a two qubit gate, the control and target qubit, that acts based on the state of the control qubit. If the control qubit is in the 1 state, the CNOT gate applies an X gate to the target qubit. If the control qubit is in the 0 state, the CNOT gate does nothing.

Lecture

Learning Objectives

- 1. *Understand* three representations of single qubit states: kets, Bloch sphere, and state vectors.
- 2. *Understand* how to determine the final state of a quantum circuit involving X, Z, and H gates.
- 3. *Understand* how to predict the probability of measurement outcomes for a given quantum state.
- 4. *Recognize* how the CX gate acts on qubits, including what the target and control qubits are.
- 5. Recognize how the CX gate can create entanglement.

Key Ideas

- 1. The CNOT gate is a two qubit gate that acts on the target qubit based on the state of the control qubit, applying an X gate only if the control qubit is in the 1 state.
- 2. The CNOT gate can be used to create entanglement between the control and target qubit.

Lab

Learning Objectives

- 1. *Understand* the basics of Cirq for single qubit circuits.
- 2. Recognize how to implement multi-qubit circuits, including the CNOT gate, in Cirq.
- 3. Recognize how to simulate and interpret measurement results in Cirq.

Key Ideas

- 1. When creating multi-qubit circuits in Cirq, there are two things to keep in mind:
 - a. Prior to creating your circuit, you must create the appropriate number of qubits.
 - b. When modifying your circuit with gates and measurements, you must use the correct qubit indices.
- 2. The CNOT gate is a two qubit gate which applies an X gate to the target qubit if the control qubit is in the 0 state.
- 3. The CNOT gate can be used to create entanglement between two qubits.
- 4. A histogram can be used to visually represent measurements from a quantum circuit.

