

प्रतिशत का परिचय

Prep Smart. Score Better. Go gradeup

www.gradeup.co

प्रतिशतता

इस लेख में, हम आपको प्रतिशत के बारे में लघु और प्रभावी संक्षिप्त विवरण प्रदान करेंगे। हम एक सूत्र और शॉर्ट-कट की सूची प्रदान करेंगे जो आप प्रतिशत के प्रश्नों को हल करने में बहुत उपयोगी होगा। प्रतिशत के प्रश्नों को हल करने के लिए महत्वपूर्ण सूत्रों की सूची:

- 1. **प्रतिशत** का अर्थ है "**प्रत्येक 100 के लिए**"।
- 2. % को 'प्रतिशत' के रूप में पढ़ा जाता है

उदाहरण: x% को 'x प्रतिशत' के रूप में पढ़ा जाता है।

3. y का x% =
$$\frac{x}{100} \times y$$

उदाहरण: ? = 80 का 20%

हल: ? =
$$\frac{20}{100}$$
 x 80 = 16

4. y का x% = x का y%

उदाहरण: ? = 48% of 50

हल: ? = 50 का 48% = 48 का 50% =
$$\frac{48}{2}$$
 = 24

5. x का कितना प्रतिशत
$$y = \frac{y}{x} \times 100$$

उदाहरण: 30, 48 का कितना प्रतिशत है?

हल: उत्तर =
$$\frac{30}{48}$$
 × 100 = 62.5%

उदाहरण: यदि एक साबुन की कीमत 24 रुपये से 30 रुपये हो गई है। साबुन की कीमत में कितना प्रतिशत परिवर्तन हुआ है?

हल: उत्तर =
$$\frac{30-24}{24} \times 100 = 25\%$$

7. प्रतिशत बिंदु परिवर्तन = दो प्रतिशततो का अंतर (अंतिम प्रतिशत – प्रारंभिक प्रतिशत)

उदाहरणः यदि किसी परीक्षा में उत्तीर्ण प्रतिशत 2017 में 60% और 2018 में 75% था, तो

प्रतिशत बिंदु परिवर्तन = अंतिम प्रतिशत – प्रारंभिक प्रतिशत = 75% – 60% = 15%

उदाहरण: कुल अंक 600 की एक परीक्षा में उत्तीर्ण प्रतिशत 60% है। उत्तीर्ण प्रतिशत में 15% की वृद्धि हुई है, तो नया उत्तीर्ण प्रतिशत

हल: पुराना उत्तीर्ण प्रतिशत = 60% और नया उत्तीर्ण प्रतिशत = 60% + 15% = 75% [न की (60% + 60% का 60%) = 60% + 9% = 69%]

8. यदि कोई संख्या x, y% से बढ़ती है, तो नयी संख्या = $x(1 + \frac{y}{100})$

उदाहरण: 2018 में रमेश का मासिक वेतन 56000 था और 2019 में यह 20% बढ़ गया, तो 2019 में उसका मासिक वेतन होगा

हल: 2019 में रमेश का मासिक वेतन = 56000(1+ $\frac{20}{100}$) = 67200 रुपये

9. यदि कोई संख्या x, y% से घटती है, तो नयी संख्या = $x(1 - \frac{y}{100})$

उदाहरण: 2018 में रमेश का मासिक वेतन 56000 रुपये था और 2019 में यह 20% कम हो गया, तो 2019 में उसका मासिक वेतन होगा

हल: 2019 में रमेश का मासिक वेतन = 56000(1 - $\frac{20}{100}$) = 44800 रुपये

10. यदि किसी वस्तु / संख्या का मान x% अधिक हो जाता है, तो इसे वापस मूल बिंदु तक लाने के लिए इसमें की गयी प्रतिशत कमी = $\frac{x}{100+x} \times 100\%$

उदाहरण: एक साबुन की कीमत 40 रुपये है । अगर मूल्य 25% बढ़ जाता है, तो साबुन की कीमत को वापस पुराने मुल्ये तक वापस लाने के लिए इसमें की गयी प्रतिशत कमी क्या होगा?

हल: आवश्यक प्रतिशत = $\frac{25}{100+25} \times 100 = 20\%$

11. यदि किसी वस्तु / संख्या का मान x% कम हो जाता है, तो इसे वापस मूल बिंदु तक लाने के लिए इसमें की गयी प्रतिशत वृद्धि = $\frac{x}{100-x} \times 100\%$

उदाहरण: एक साबुन की कीमत 40 रुपये है । अगर मूल्य 25% कम हो जाता है, तो साबुन की कीमत को वापस पुराने मुल्ये तक वापस लाने के लिए इसमें की गयी प्रतिशत वृद्धि क्या होगा?

हल: आवश्यक प्रतिशत =
$$\frac{25}{100-25} \times 100 = 33\frac{1}{3}\%$$
.

12. यदि A, B से X% अधिक है, तो B, A से $\left(\frac{x}{100+x} \times 100\right)$ % कम है।

उदाहरण: A, B से 30% अधिक है, तो B, A से कितने प्रतिशत कम है?

हल: आवश्यक प्रतिशत =
$$\frac{30}{100+30}$$
 × 100 = $23\frac{1}{13}$ %.

13. यदि A, B से X% कम है, तो B, A से $\left(\frac{x}{100-x} \times 100\right)$ % अधिक है।

उदाहरण: A, B से 30% कम है, तो B, A से कितने प्रतिशत अधिक है?

हल: आवश्यक प्रतिशत =
$$\frac{30}{100-30} \times 100 = 42\frac{6}{7}\%$$
.

14. यदि किसी वस्तु की कीमत में x% की वृद्धि हुई है, तो उपभोग की गई मात्रा में $\left(\frac{x}{100+x} \times \ 100\right)$ की कमी करना होगा ताकि कुल व्यय समान रहे।

उदाहरण: चीनी की कीमत 10% बढ़ जाती है, फिर एक गृहिणी को चीनी की खपत कितनी घटानी चाहिए, ताकि उसका खर्च न बढ़े?

हल: आवश्यक प्रतिशत =
$$\frac{10}{100+10} \times 100 = 9\frac{1}{11}$$
%.

15. यदि किसी वस्तु की कीमत में x% की कमी हुई है, तो उपभोग की गई मात्रा में $\left(\frac{x}{100-x}\times 100\right)$ की वृद्धि करना होगा ताकि कुल व्यय समान रहे।

उदाहरण: चीनी की कीमत 10% कम हो जाती है, फिर एक गृहिणी को चीनी की खपत कितनी बढ़ा सकती, ताकि उसका खर्च न बढ़े?

हल: आवश्यक प्रतिशत =
$$\frac{10}{100-10} \times 100 = 11\frac{1}{9}\%$$
.

16. क्रमिक प्रतिशत परिवर्तनः

यदि क्रमिक प्रतिशत परिवर्तन a% और b% हैं, तो प्रभावी प्रतिशत परिवर्तन = $[a + b + \frac{ab}{100}]$ %

नोटः यहां, यदि प्रतिशत वृद्धि (एक या दोनों में), तो धनात्मक मान लें और यदि प्रतिशत कमी है, तो ऋणात्मक मान लें।

उदाहरण: एक सेब की कीमत में दो बार 10% और फिर 20% की वृद्धि हुई है, फिर सेब के मूल्य में समतुल्य प्रतिशत वृद्धि क्या है?

हल: समतुल्य प्रतिशत वृद्धि =
$$[10 + 20 + \frac{10 \times 20}{100}]\% = (30 + 2)\% = 32\%$$

उदाहरणः एक सेब की कीमत में 10% की वृद्धि हुई और फिर 20% की कमी हुई, तो सेब के मूल्य में समतुल्य प्रतिशत परिवर्तन क्या है?

हल: समतुल्य प्रतिशत वृद्धि =
$$[10 - 20 - \frac{10 \times 20}{100}]\% = (-10 - 2)\% = -12\%$$
 (12% की कमी)

उदाहरणः एक सेब की कीमत में पहले 10% की कमी हुई और फिर 20% की कमी हुई, तो सेब के मूल्य में समतुल्य प्रतिशत कमी क्या है?

हल: समतुल्य प्रतिशत कमी = [-10 - 20 +
$$\frac{-10 \times -20}{100}$$
]% = (-30 + 2)% = -28% = 28% की कमी

17. प्रतिशत - अनुपात समानताः

1/3 × 100 = 33.33%	1/10 × 100 = 10%
1/4 × 100 = 25%	1/11 × 100 = 9.09%
1/5 × 100 = 20%	1/12 × 100 = 8.33%
1/6 × 100 = 16.66%	1/13 × 100 = 7.69%
1/7 × 100 = 14.28%	1/14× 100 = 7.14%
1/8 × 100 = 12.5%	1/15× 100 = 6.66%
1/9 × 100 = 11.11%	1/16 × 100 = 6.25%

gradeup

In this article, we provide you a short and effective summary for Percentages. We cover a list of 1 formulas and short-cuts that you can use for Percentage questions. The following is a list of important formulas for Percentage:

- Percent implies "for every hundred".
 is read as percentage and x % is read as x per cent.
- **2.** To calculate p % of y $(p/100) \times y = (p \times y)/100$ p % of y = y % of p
- 3. To find what percentage of x is y: $y/x \times 100$
- 4. To calculate percentage change in value Percentage change = {change/(initial value)} x 100
- 5. Percentage point change = Difference of two percentage figures
- 6. Increase N by S % = N (1 + S/100)
- 7. Decrease N by S % = N (1 S/100)
- 8. If the value of an item goes up/down by x%, the percentage reduction/increment to be now made to bring it back to the original point is 100x/(100 + x) %.
- 9. If A is x% more /less than B, then B is 100x/(100 + x) % less/more than A.
- 10. If the price of an item goes up/down by x %, then the quantity consumed should be reduced by 100x/(100 + x)% so that the total expenditure remains the same.
- 11. Successive Percentage Change

If there are successive percentage increases of a % and b%, the effective percentage increase is:

$$\{(a + b + (ab/100))\}\%$$

12. Percentage - Ratio Equivalence:

1/3 × 100 = 33.33%	1/10 × 100 = 10%
1/4 × 100 = 25%	1/11 × 100 = 9.09%
1/5 × 100 = 20%	1/12 × 100 = 8.33%
1/6 × 100 = 16.66%	1/13 × 100 = 7.69%
1/7 × 100 = 14.28%	1/14× 100 = 7.14%
1/8 × 100 = 12.5%	1/15× 100 = 6.66%
1/9 × 100 = 11.11%	1/16 × 100 = 6.25%

D/N	1	2	3	4	5	6	7	8	9	10
1	100	200	300	400	500	600	700	800	900	1000
2	50	100	150	200	250	300	350	400	450	500
3	33.33	66.66	100							
4	25	50	75	100						
5	20	40	60	80	100					
6	16.66	33.33	50	66.66	83.33	100				
7	14.28	28.56	42.85	57.14	71.42	85.71	100			
8	12.5	25	37.5	50	62.5	75	87.5	100		
9	11.11	22.22	33.33	44.44	55.55	66.66	77.7	88.8	100	
10	10	20	30	40	50	60	70	80	90	100
11	9.09	18.18	27.27	36.36	45.45	54.54	63.6	72.7	81.8	90.9
12	8.33	16.66	25	33.33	41.66	50	58.3	66.6	75	83.3
13	7.69	15.38	23.07	30.76	38.45	46.14	53.83	61.52	69.21	76.9
14	7.14	14.28	21.42	28.57	35.71	42.85	49.98	57.12	64.26	71.4
15	6.66	13.33	20	26.66	33.33	40	46.6	53.3	60	66.6
16	6.25	12.5	18.75	25	31.25	37.5	43.7	50	56.2	62.5

N is Numerator D is the Denominator

13. Product Stability Ratio:

 $A \times B = P$

If A is increased by a certain percentage, then B is required to be decreased by a certain percentage to keep the product P stable.

Expressing the percentage figures in ratios:

Change in A	Change in B	Change in P
(INCREASE)	(DECREASE)	
1	1	0
$\overline{1}$	$\frac{\overline{2}}{2}$	
1	1	0
$\frac{\overline{2}}{2}$	3	
1	1	0
3	$\frac{\overline{4}}{4}$	
1	1	0
$\frac{\overline{4}}{4}$	5	

14. If the price of a commodity increases by P%, then the reduction in consumption so as not to increase the expenditure is:

$$\left(\frac{P}{100+P}\times100\right)\%.$$

15. If the price of a commodity decreases by P%, then the increase in consumption so as not to decrease the expenditure is:

$$\left(\frac{P}{100-P}\times100\right)\%.$$

