概率问题的求解

离散数据的直方图与饼图表示

- \rightarrow 一组离散的检测数据 x_1, x_2, \dots, x_n
 - ➤ 数据区间 (a,b), m 等分 , $b_1 = a$, $b_{m+1} = b$
 - \rightarrow 每个子区间 (b_i, b_{i+1}) 落入数据的个数为 f_i , 频度 f_i/n
 - ➤ MATLAB求解

$$oldsymbol{k} = ext{hist}(oldsymbol{x}, oldsymbol{b}); \ oldsymbol{f} = oldsymbol{k}/n; \ oldsymbol{p} = oldsymbol{f}/(b_2 - b_1)$$

- \triangleright 直方图 bar(b,p);
- \succ 饼图 pie(p)

例9-10 Rayleigh分布的直方图

- ➤生成 30000 个伪随机数,满足Rayleigh分布
 - ➤ 参数 b=1
- ➤MATLAB绘图

```
>> b=1; p=raylrnd(1,30000,1);
    x=0:.1:4; x1=x+0.05; yy=hist(p,x1);
    yy=yy/(30000*0.1); bar(x1,yy),
    y=raylpdf(x,1); line(x,y)
```

例9-11 离散数据的概率表示

▶随机测得200只荧光灯流明数据,文件c9dlamp.dat

1067	919	1196	785	1126	936	918	1156	920	948	855	1092	1162	1170	929
950	905	972	1035	1045	1157	1195	1195	1340	1122	938	970	1237	956	1102
1022	978	832	1009	1157	1151	1009	765	958	902	923	1333	811	1217	1085
896	958	1311	1037	702	521	933	928	1153	946	858	1071	1069	830	1063
930	807	954	1063	1002	909	1077	1021	1062	1157	999	932	1035	944	1049
940	1122	1115	833	1320	901	1324	818	1250	1203	1078	890	1303	1011	1102
996	780	900	1106	704	621	854	1178	1138	951	1187	1067	1118	1037	958
760	1101	949	992	966	824	653	980	935	878	934	910	1058	730	980
844	814	1103	1000	788	1143	935	1069	1170	1067	1037	1151	863	990	1035
1112	931	970	932	904	1026	1147	883	867	990	1258	1192	922	1150	1091
1039	1083	1040	1289	699	1083	880	1029	658	912	1023	984	856	924	801
1122	1292	1116	880	1173	1134	932	938	1078	1180	1106	1184	954	824	529
998	996	1133	765	775	1105	1081	1171	705	1425	610	916	1001	895	709
610	916	1001	895	709	860	1110	1149	972	1002					

➤MATLAB绘图

f=hist(A,bins)/length(A); bar(bins,f)

>> pie(f)

连续概率问题的求解

- >三个求取概率的公式:
 - $> \xi \leqslant x$ 的概率

$$P[\xi \leqslant x] = F(x)$$

 $> x_1 \leqslant \xi \leqslant x_2$ 的概率

$$P[x_1 \leqslant \xi \leqslant x_2] = F(x_2) - F(x_1)$$

 $\triangleright \xi \geqslant x$ 的概率 $P[\xi \geqslant x] = 1 - F(x)$

例9-12 Rayleigh分布概率计算

- ightharpoonup已知随机变量 x 为 Rayleigh 分布,且 b=1
 - \rightarrow 求出随机变量 x 值落入区间 [0.2, 2] 及区间 [1, ∞) 的概率
- ➤MATLAB求解语句:
 - > 落入区间 [0.2, 2] P = F(2) F(0.2)
 - >> b=1; p1=raylcdf(0.2,b); p2=raylcdf(2,b); P1=p2-p1

例9-13 联合概率计算

> 二维随机变量 (ξ, η) 的联合概率密度为

$$p(x,y) = \begin{cases} x^2 + \frac{xy}{3}, & 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 2\\ 0, & \text{others} \end{cases}$$

>求出
$$P(\xi < 1/2, \eta < 1/2)$$

文地
$$P(\xi < 1/2, \eta < 1/2)$$
 $P = \int_{-\infty}^{a} \int_{-\infty}^{b} p(x, y) dy dx$

➤MATLAB求解语句:

>> syms x y; f=x^2+x*y/3; P=int(int(f,x,0,1/2),y,0,1/2)

例9-14 概率计算

- ➤假设某两地 A、B间有6个交通岗
 - ightharpoonup 在各个交通岗处遇到红灯的概率均相同,为p=1/3
 - ➤ 中途遇红灯次数满足二项分布 B(6,p)
 - ➤ 试求出从 A 出发到达 B 至少遇到一次红灯的概率
 - >> x=0:6; y=binopdf(x,6,1/3) P=1-y(1) % or P=sum(y(2:end))
 - >> p0=0.05:0.05:0.95; y=[];
 for p=p0, y=[y 1-binopdf(0,6,p)]; end,
 plot(p0,y,1/3,P,'o')

基于Monte Carlo法的 数学问题求解

- ➤ Monte Carlo法是通过大量实验来求取随机变量近似值的一种采用的方法
- ➤在现代科学研究中, Monte Carlo法经常用来求解一些建模困难的问题
- ▶本节只介绍该方法的思路与入门知识

例9-15 利用Monte Carlo方法计算 π

ightharpoonup id用 Monte Carlo 法近似求出 π 的值 $\pi \approx 4N_1/N$

数学求解公式

$$N_1/N \approx \pi/4$$

MATLAB求解语句:


```
>> N=100000;
x=rand(1,N); y=rand(1,N);
i=(x.^2+y.^2)<=1;
N1=sum(i); p=N1/N*4</pre>
```

例9-16 定积分近似

➤试用Monte Carlo法计算积分

$$\int_{1}^{3} \left[1 + e^{-0.2x} \sin(x + 0.5) \right] dx$$
假设 $f(t) \ge 0$

$$\frac{N_1}{N} \approx \frac{1}{M(b-a)} \int_a^b f(x) dx$$
$$\int_a^b f(x) dx \approx \frac{M(b-a)N_1}{N}$$

▶计算公式

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{M(b-a)N_1}{N}$$

➤MATLAB求解语句:

```
>> f=@(x)1+exp(-0.2*x).*sin(x+0.5);
a=1; b=3; M=2; N=100000;
x=a+(b-a)*rand(N,1); y=M*rand(N,1);
i=y<=f(x); N1=sum(i);
p=M*N1*(b-a)/N, syms x;
I=vpa(int(1+exp(-0.2*x)*sin(x+0.5),x,a,b))</pre>
```

例9-17 Brown运动的仿真

- ▶单个粒子的Brown运动仿真
 - > 粒子位置的递推公式

$$x_{i+1} = x_i + \sigma \Delta x_i, \quad y_{i+1} = y_i + \sigma \Delta y_i$$

- > 运动步距满足标准正态分布
- \triangleright 选择比例因子 $\sigma=1$

