A) Amendments to the Claims:

1. (currently amended) A method for producing an onium salt derivative, characterized by comprising reacting an onium salt derivative which has a halide Q as an anion moiety and which is represented by any one of formulas (1) through (4):

wherein each of R_1 , R_2 , R_3 , and R_5 represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, an aromatic organic group, an aralkyl group, or a phenacyl group, each of these groups having ≤ 25 carbon atoms and being optionally substituted; one or both of the pairs of R_1 and R_3 , and R_2 and R_5 may together form a divalent organic group; R_4 represents a $C \leq 20$ divalent organic group; and Q represents a halide anion or a $C \leq 10$ -carboxylate anion,

with an ester compound which has an alkyl group R_7 and which is represented by any one of formulas (5) through (7):

wherein R_6 represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, an aromatic organic group, or an aralkyl group, each of these groups having ≤ 25 carbon atoms and being optionally substituted; R_7 represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, or an aralkyl group, each of these groups having ≤ 5 10 carbon atoms and being optionally substituted; and each of R_8 and R_9 represents an alkyl group, a cycloalkyl group, a

perfluoroalkyl group, or an aralkyl group, each of these groups having ≤10 carbon atoms and being optionally substituted,

to thereby yield-form R₂Q through nucleophilic attack by the halide Q on the alkyl group R7 of the ester comound, and to also produce an onium salt derivative which is formed of an anion represented by an one of R₆SO₂O-, PO₄R₈R9-, and R₈SO₄- derived from the ester comound and an onium cation derived from the onium salt, an onium salt derivative represented by one of formulas (8) through (19).

Applicants: Kyoichi Tomita, et al. 09/11/2003 Page 4

$$R_{1} \xrightarrow{\bigoplus} R_{2} \qquad R_{1} \xrightarrow{\bigoplus} R_{4} \xrightarrow{\bigoplus} R_{2}$$

$$R_{8}O-S=O \qquad R_{8}O-S=O \qquad R_{8}O-S=O \qquad R_{1}O \qquad R_{2}O \qquad R_{3}O \qquad R_{4}O \qquad R_{5}O \qquad R_{2}O \qquad R_{5}O \qquad R_{5}O \qquad R_{2}O \qquad R_{5}O \qquad R_{5}O \qquad R_{2}O \qquad R_{5}O \qquad R_{$$

- 3. (original) A method for producing an onium salt derivative according to claim 1, wherein reaction is carried out while removing generated R_7Q from the reaction system.
- 4. (currently amended) A method for producing an onium salt derivative according to claim 1 or 3, wherein the reaction is carried out in a solvent.
 - 5. (cancelled)
 - 6. (cancelled)
 - 7. (cancelled)
 - 8. (cancelled)
 - 9. (cancelled)
 - 10. (cancelled)
- 11. (currently amended) A novel An onium compound which has a phosphate derivative as an anion moiety and which is represented by any one of formulas (12) through (15):

wherein each of R_1 , R_2 , R_3 , and R_5 represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, an aromatic organic group, an aralkyl group, or a phenacyl group, each of these groups having ≤ 25 carbon atoms and being optionally substituted; one or both of the pairs of R_1 and R_3 , and R_2 and R_5 may together form a divalent organic group; R_4 represents a $C \leq 20$ divalent organic group; and each of R_8 and R_9 represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, or an aralkyl group, each of these groups having ≤ 10 carbon atoms and being optionally substituted.

12. (new) A method for producing an onium salt derivative, characterized by comprising reacting an onium salt which has a halide Q as an anion moiety and which is represented by any one of the following formulas (1) through (4):

wherein each of R_1 , R_2 , R_3 , and R_5 represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, an aromatic organic group, an aralkyl group, or a phenacyl group, each of these groups having \leq 25 carbon atoms and being optionally substituted; one or both of the pairs of R_1 and R_3 , and R_2 and R_5 may together form a divalent organic group; R_4 represents a C \leq 20 divalent organic group; and Q represents a halide anion or a C \leq 10 carboxylate anion,

with an ester compound which has an alkyl group R_7 and which is represented by any one of formulas (6) or (7):

wherein R_7 represents an alkyl group, having ≤ 5 carbon atoms and being optionally substituted; and each of R_8 , and R_9 represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, or an aralkyl group, each of these groups having ≤ 10 carbon atoms and being optionally substituted;

to thereby form R_7Q through nucleophilic attack by the halide Q on the alkyl group R7 of the ester comound, and to also produce an onium salt derivative which is formed of an anion represented by an one of R_6SO_2O -, PO_4R_8R9 -, and R_8SO_4 - derived from the ester comound and an onium cation derived from the onium salt, an onium salt derivative and with a sulfonic acid derivative represented by formula (24):

$R_{15}SO_2OY$ (24)

wherein R_{15} represents an alkyl group, a cycloalkyl group, a perfluoroalkyl group, an aromatic organic group, or an aralkyl group, each of these groups having \leq 25 carbon atoms and being optionally substituted; and Y represents a hydrogen atom, an alkali metal, or ammonium,

to thereby cause salt exchange and yield an onium salt derivative represented by one of formulas (25) through (28).

Applicants:Kyoichi Tomita, et al. 09/11/2003 Page 7

13. (new) A method for producing an onium salt derivative according to claim 12, wherein each of R_7 , R_8 and R_9 is a methyl group or an ethyl group.