Homework 1

- **1.** 假定 f(n) 与 g(n) 都是渐进非负函数,判断下列等式或陈述是否一定是正确的,并简要解释你的答案.
- a) $f(n) = O(f(n)^2)$.
- b) $f(n) + g(n) = \Theta(max(f(n), g(n))).$
- c) $f(n) + O(f(n)) = \Theta(f(n))$.
- d) if $f(n) = \Omega(g(n))$, then g(n) = o(f(n)). (注意是小 o)
- 2. 时间复杂度
- a) 证明 $lg(n!) = \Theta(nlg(n))$ (课本等式 3.19), 并证明 $n! = \omega(2^n)$ 且 $n! = o(n^n)$.
- b) 使用代入法证明 $T(n) = T(\lceil n/2 \rceil) + 1$ 的解为 O(lgn).
- c) 对递归式 T(n) = T(n-a) + T(a) + cn,利用递归树给出一个渐进紧确解, 其中 $a \ge 1$ 和 c > 0 为常数.
- d) 主方法能应用于递归式 $T(n) = 4T(n/2) + n^2 lgn$ 吗?请说明为什么可以或者为什么不可以. 给出这个递归式的一个渐进上界.
- 3. 对下列递归式, 使用主方法求出渐进紧确解:
- a) $T(n) = 2T(n/4) + \sqrt{n}$
- b) $T(n) = 2T(n/4) + n^2$.
- 4. 考虑以下查找问题:

输入: n 个数的一个序列 $A = a_1, a_2, ..., a_n$ 和一个值 v.

输出: 下标 i 使得 v = A[i] 或者当 v 不在 A 中出现时, v 为特殊值 NIL.

- a) 写出**线性查找**的伪代码, 它扫描整个序列来查找 v. 使用一个 Loop Invariant (循环不变式) 来证明 你的算法是正确的.
- b) 假定 ν 等可能的为数组中的任意元素,平均需要检查序列的多少元素? 最坏情况又如何呢? 用 Θ 记号给出线性查找的平均情况和最坏运行时间.
- 5. 堆排序:

对于一个按升序排列的包含 n 个元素的有序数组 A 来说,HEAPSORT 的时间复杂度是多少?如果 A 是降序的呢?请简要分析并给出结果.

- 6. 快速排序:
 - 1. 假设快速排序的每一层所做的划分比例都是 $1-\alpha:\alpha$,其中 $0<\alpha\le 1/2$ 且是一个常数. 试证明:在相应的递归树中,叶结点的最小深度大约是 $-\lg n/\lg\alpha$,最大深度大约是 $-\lg n/\lg(1-\alpha)$ (无 需考虑舍入问题).
 - 2. 试证明: 在一个随机输入数组上,对于任何常数 $0 < \alpha \le 1/2$, Partition 产生比 $1-\alpha:\alpha$ 更平衡的划分的概率约为 $1-2\alpha$.

[(a) 報模 版
$$f(n) = \frac{1}{n}$$

bc, no $\exists n > \max(c, n_0) \quad \frac{1}{n} > \frac{c}{n^2} > 0$ 版 $f(n) \neq 0$ ($f(n)$)

(b) 正确

 $\max(f(n),g(n)) \leq f(n) + g(n) \leq 2\max(f(n),g(n))$

to $f(n) + g(n) = \Theta(\max_{i}(f(n),g(n)))$

(C) 正确 $g(n) = \Theta(\max_{i}(f(n),g(n)))$

(C) 正确 $g(n) = \Theta(f(n)) = g(n)$
 $g(n) \leq g(n) \in Cf(n)$
 $f(n) \leq f(n) + O(f(n)) \leq (1+C)f(n)$

to $f(n) + O(f(n)) = \Theta(f(n))$

$$f(n) \leq f(n) + O(f(n)) \leq (1+c) f(n)$$

$$f(n) + O(f(n)) = O(f(n))$$

$$(d) \text{ fin} = g(n) = n$$

$$f(n) = \Omega(g(n))$$

$$\text{Fin} = f(n)$$

$$f(n) = 1 + 0 \text{ to } g(n) \neq o(f(n))$$

2 a) the stiving is:
$$n! = \sum_{n=1}^{\infty} (\frac{n}{e}) e^{\frac{2n}{2n}}$$
 $|gn! = |g\sqrt{2n} + \frac{1}{2}|gn + n(gn - n|ge + \frac{n}{12n}|ge)$
 $|gn! = |g\sqrt{2n} + \frac{1}{2}|gn + n(gn - n|ge + \frac{n}{12n}|ge)$
 $|gn! = |gn| = |gn| = |gn| = |gn| = |gn| = |gn| = |gn|$
 $|gn! = |gn| = |$

2b)
$$T(n) = T(Ty(2)) + 1$$
 $T(n) = O(fg)$

(版版 as $x_m < n$ 帮 $x_n \le f$ $y_n = T_n \le 7$
 $T(n) \le C(g(\frac{n}{2})) + 1 \le C(g(\frac{n}{2} + 1) + 1)$
(公为大的) $\le C(gn)$

(公为人的) $\ge C(gn$

to $\frac{n}{\alpha}$ -cn $\leq T(n) \leq \left(\frac{n}{\alpha}+1\right)$ cn to $T(n) = O(n^2)$

2 d)
$$T(n) = 47(\frac{1}{2}) + n^{2}lgh$$

(eq. a = (g.4 = 2 = $\frac{1}{2}$ + $\frac{1}{2}$) $\frac{1}{2}$ in $\frac{1}{2}$ in

3. a)
$$T(n) = 2T(\frac{1}{4}) + \int n$$

 $a=2$ $b=4$ (og₆ $a=\frac{1}{2}$ $f(n)=In=\Theta(n^{\frac{1}{2}})$
 $t> T(n)=\Theta(\ln \lg n)$

b)
$$T(n) = 2T(4) + h^2$$
 $(g_6 a) = \frac{1}{2}$
 $(g_6 a) = \frac{1}{2}$

4.a)SEARCH (A,V)
for i=1 to A.length
if A[i] ==V
return i
return NIL

初鄉:可的查找V老和了=V的返回| 保持:每次循环了=计数段和习与V 若ATO =V的返回了与问的查找对相同 终业当我到了ATO=V好会终止返回了 若了>A-lengt的,说明未找到ATO==V 返回NIL 算法正确

b) AVE: $\uparrow (1+2+\cdots+h) = \dot{\uparrow} \cdot \frac{n(n+1)}{2} = \overset{\text{Atl}}{2} = \Theta(A)$ WORST: V REAP ENTERN $\Phi(A)$

5. 无论行序还是降序都是 nign 因为推翻序址的中尾部额字换到顶部还是写下沉,改致的时间仍然是 nign

不能会入的及八足文与 10 的整数次幂 因为 2 < 1~2 故: 最左侧缘底为 logs n = - lgn 为最小深度 最左侧深底为 logs n = - lgn 为最小深度