Institute of Eximination MODEL ENTRANCE EXAM

Section-A

Believe in yourself. Do great! ■

1) Locate the word with sound.			
a) question2) Moot	b) parachute	c) moustache	d) discretion
a) controversial 3) When the teacher t	b) debatable he student entered the room.	c) questionable	d) clear
a) was teaching4) Her father, as well as I,	,	c) taught	d) had taught
a) want 5) The equipment for s	b) wants ale.	c) are wanting	d) have wanted
a) arebeds he bought are exp	b) were pensive.	c) is	d) have
a) A 7) down.	b) An	c) The	d) None
a) Lie 8) He said, "Let's help the poor	b) Lay r."	c) Lied	d) Lain
a) He suggested to help the poor.9) You like apples and so	b) He suggested helping the poor.	c) He suggested let's help the poor.	d) He suggests helping the poor.
a) I do 10) It is 6 O' clockmy wa	b) I like	c) do I	d) did I
a) at 11) Before I went out I1	b) by my homework.	c) in	d) on
a) had done12) Phosphatesto most far	b) do m lands nowadays.	c) did	d) have done
a) need added 13) If f: A B is a function and	b) needs to be added distinct elements in A have di	c) need to add stinct images in B, then the fu	d) need to be added unction is:
a) one to one 14) If log64 = 3, then the value	b) onto of a =	c) into	d) bijective
a) 3 15) If and are the imaginary cu	b) 5 be roots of unity, then the val	c) 4 ue of + + 1 =	d) 1
a) 1 16) If $P(n, 5) = 20 P(n, 3)$, then	b) -1 n =	c) 0	d) 3
a) 8	b) 6	c) 10	d) 4

17) The value	e of (1+++	. + - (1 + +	- ++ =					
a)	$rac{1}{2}$		b) 2e	c)	$\frac{e-e^{-1}}{2}$		d) 1	
18) The fourt	h term of a G.P. is	2. Then, th	ne product of the fir	st seven te	erms is			
a)	2^5	b)	2^6	c)	2^7	d)	2^4	
19) The most	general value of sa	atisfying th	e equations and is					
a) 20) If sin(sin	$2n\pi + \alpha$ $1/5 + \cos x = 1, \text{ the}$	b) en x =	$2n\pi-lpha$	c)	$n\pi + lpha$	d)	$n\pi-lpha$	
a) 1/3 21) If and the	en	b) 0		c) 1/5		d) 4/5		
a) 16 22) Which of	the following is no	b) 8 ot a proper	ty of vectors	c) 3		d) 12		
a) 23) The funct	$\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$	b)	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$	c)	$\langle u \times v \rangle^2 = u^2 \cdot v^2 - \langle u, v \rangle^2$	d)	$\mathbf{u}^2 = \mathbf{u} ^2$	
a) Continuous and differentiable at $x = 0$		b) Neither continuous nor differentiable at x = 0			nuous but not table at $x = 0$		d) Not continuous but differentiable at $x = 0$	
24) If then								
a)	$x^2\frac{dy}{dx} + xy = 0$	b)	$x^2\frac{dy}{dx} + xy = 0$	C	$x^2 \frac{dy}{dx} - xy$	+2 = 0	d) None of these	
25) The two s maximum is	sides of a rectangle	are 2x and	l (15 -x) units. The	n, the valu	e of x for which	the area of t	he rectangle is	
			3			3		
a) 15	b) 5		$\frac{3}{4}$		d)	$\frac{3}{2}$		
26) A functio	on f(x) defined by is	continuo	is at . Then,					
a) p = 3 27) If then		b) p = 2		c) $p = 1/2$	2	d) $p = 3/$	2	
a)	$\frac{t^2+1}{t^2-1}$	b)	$\frac{t+1}{t-1}$	c)	$\frac{t^2-1}{t^2+1}$	d)	$\frac{2t}{1-t^2}$	
28) The area	under the curve y =	and between	een x = 0 and x = 4	is:				
a)	$\frac{112}{9}$	b)	$\frac{34}{5}$	c)	$\frac{16}{3}$	d)	$-rac{64}{3}$	

29) For the ellipse , the length of latus rectum is:

						$\sqrt{3}$	
	a) 3/2	b) 3	c) 8/3		d)	$\sqrt{\frac{3}{2}}$	
30)	The circle passes throu	igh the points ((1, 0), (-1, 0) and	l (0, 1) is:		,	
	a) \mathbf{x}^2	b)	\mathbf{x}^2	c)	\mathbf{x}^2	d)	\mathbf{x}^2
31)	-6xy + +4x - 12y + 4	= 0 represents:					
	a) a pair of perpendicular lines	b) a pai	r of parallel lines	c) a pa lines	ir of coincident	d) a par	abola
32)	The area of formed by	the lines y - x	= 0, y + x = 0 an	dx - c = 0i	s:		
	a) 0 b)	1	c)	$2\mathrm{c}^2$	d)	c	2
33)	The angle of contact of	f liquid on incr	easing temperatu	ıre			
	a) increasing	b) decre	eases	c) rem	ain constant	d) none	;
ma	A physical parameter a ximum errors in the methe experiment is						
	$a) \qquad \qquad ^{\scriptscriptstyle (b_1+c_1+d_1+c_1)\%}$	b)	$\{b_1+c_1-d_1-c_1\}$ %	c)	$(ab_1+\beta c_1-\gamma d_1-\delta c_1)\%$	d)	$\langle \alpha b_1 + \beta c_2 + \gamma d_1 + \delta c_1 \rangle \%$
35)	Moment of inertia is						
	a) Scalar	b) Vecto		· ·	al vector	d) Pola	r vector
36)	A hot body will radiate	e heat most rap	idly if its surface	e is			
37)	a) white and polished In a cyclic process, wo	•	e and rough system is	c) blac	k and polished	d) black	k and rough
	a) Zero	b) Equa the syst	ıl to heat given to em		re than the heat to system		pendent of heat the system
and	The heat is flowing thr I their lengths are in the flow of heat through the	ratio 2:1. If t					
	a) 1:1	b) 2 : 1		c) 1:4	1	d) 1:8	
39)	Bells are made larger s	size to					
	a) produce sound of high pitch	b) prod	uce loud sound	c) proc high q	luce sound of uality	d) prod quality	uce sound of low
40)	Which of the following	g is the most in	nportant factor w	hich helps	to recognize a per	son by his vo	oice alone?
	a) Intensity	b) pitch		c) qual	lity		re equally ant factors
inci	A ray of light travelling idence of 45. The ray un select the possible value.	ndergoes total i	internal reflection				
	a) 1.3	b) 1.4		c) 1.5		d) 1.6	
42)	A completely transpare	ent material wi	ll be invisible in	vacuum wh	nen the R.I. is		
	a) unity	b) more	than unity	c) less	than unity	d) equa	1 to 1.5
43)	In general, metallic rop	es are suspend	led on the carrier	s which tak	e inflammable ma	aterial. The r	eason is

	a) There controlle		b) To keep the centre of gravity of the carrier nearer to the earth c) To keep the body of the carrier in contact with the earth			ing should be under the carrier		
44)	In order t	o increase the capa	city of a p	arallel plate conder	nser one sl	hould introduce be	tween the	plates a sheet of
45)	a) tin) Which of	the following caus	b) coppe es produc		c) steel urrent is s	et up in the wire	d) mica	
	a) interat	b) interelectonic collision c) collision of conduction electrons with atoms/ions .			d) jumping of electro from higher orbits to lower orbits			
46)) Two para	llel wires carrying	currents in	the same direction	n attract ea	ach other because	of	
	a) potent between	ial difference them	b) mutua between	l inductance them	c) electri between		d) magn betweer	etic forces them
	A nucleus enomenon	s is bombarded with is called	h a high sp	peed neutron so tha	t resulting	nucleus is a radio	active one	. This
18)	a) Artific radioacti	vity	b) Fusion		c) Fissio	c) Fission		pactivity
	a) light energy into heat b) light energy into c) light energy in energy chemical energy mechanical energy. D) In a beryllium atom, if be the radius of the first orbit, then the radius of the			cal energy	electrica	energy into al energy in general		
- /	,	,		, , , , , , , , , , , , , , , , , , , ,				8
	a)	$2a_0$	b)	a_0	c)	$4a_0$	d)	$\frac{a_0}{4}$
50)	The speci	ific charge of proto	n is then f	or an -particle it wi	11 be			-
	a)	$_{38.4 \times 10^{7}Ckg^{-1}}^{38.4 \times 10^{7}Ckg^{-1}}$ the correct represen	b)	$19.2 \times 10^{7} C kg^{-1}$	c)	$2.4 \times 10^7 Ckg^{-1}$	d)	$4.8 \times 10^7 C kg^{-1}$
31)		•		• •			10	(a.t. ±12 (g. q-2)
	a) The value water	$[Ag^+]^2[CrO_4^{-2}]$ es of dissociation co	b) onstants of	$[Ag^+][CrO_4^{-2}]$ f some acids (at 250)	c) oC) are as	$[2Ag^+][CrO_4^{-2}]$ s follows. Indicate	d) which is t	[2Ag+] ² [CrO ₄ ⁻²] he strongest acid
53)	a) 1.4*1() Accordin)-2 g to Hess's law the	b) 1.6*10 charge in		c) 4.4*1		d) 4.3*1 he	0-7
	a) interm	nediate state ber of orbitals in the	b) Initial	state	c) initial	and final state	d) final	state
	a) 4	ne of the following	b) 8		c) 12		d) 16	
ĺ	a) HClO		b) HBr		c) HClO	3	d) HCl	
56)		water reacts with to	,		-,		,	
	a)	H_2O and HBr	b)	H_2SO_4 and HBr	c)	$HBr ext{ and } S$	d)	S and H_2O
57)	The roast	ing is done is case	of					
58)	a) Oxide Ozonolys	ores sis of which one of	b) Carbo the follow		c) Sulph		d) Silica	ate ores

) 1-butene oisonous g		b) 2-bı	itene		c) 1-pe	entene		d) 2-pent	ene
) Lewisite	e ompound, tha	b) pho	-	diethyl ethe		tard gas		d) all of	these
a) n-propyl	lmethyl ether	b) Buta	ane-1-ol	•		ethylpropane	e-2-ol	d) Butan	one
61) 11	ne solutio	n of the equat	10n, 1s:							
a)	x=2	b)		x = -4		c)	x=4		d) none of these
62) If	a root of	the equation is	s 4, while the	he roots	of the equat	ion are sa	ame, then the	e value of	will be	
a) 4		b) 4/49)		c) 49/4			d) None	of these
	,	the series	-, -			,				
a)	$\log{(2/e)}$	b)		$\log{(e/2)}$		c)	e		d) e/2
64) If	for comp	lex numbers a	and, then is	equal to)					
a)	$ z_1 + z_2 $	b)		$ z_1 - z_2 $		c)	$ z_1 - z_2 $		d) 0
65) Fo	or the com	nplex number	, which is t	rue abou	it and?		,			,
a)) one of th	nem is real	b) one imagin		is purely	c) both	are real nur	mbers	d) both a	re purely y numbers
66) If	then gene	eral values of	•	iai y					magmar	y numbers
00, 11	_						σ			σ
a) n	$\pi+(-1)^nrac{\pi}{3}$	b)	$n\pi + (-$	$(-1)^n \frac{\pi}{6}$	c)	$2n\pi\pmrac{\pi}{3}$		d)	$n\pi \pm c\frac{\pi}{6}$
67) Tl	he unit ve	ctor perpendic	cular to bot	h the vec	ctors and and	d making	an acute ang	gle with t	he vector	is
a)	$\frac{1}{\sqrt{26}}(4\hat{i}-\hat{j}-3\hat{k})$	b)	$\frac{1}{\sqrt{26}}(4\hat{i} -$	$\hat{j}-3\hat{k})$	c)	$\frac{1}{\sqrt{26}}(4\hat{i}-\hat{j}+3\hat{k})$		d)	$-rac{1}{\sqrt{26}}(4\hat{i}-\hat{j}+3\hat{k})$
68) =	,		,			,			,	
a)	$\left(\frac{a}{bc}\right)$		b) 1		c)	x			d) log (abc)
69) Sı	maller are	a enclosed by	the circle x	x + y = 4	and the line	$\mathbf{x} + \mathbf{y} =$	2 is:			
a		π	b)	π		c)	π		d)	π
	+ sinx)cc		0)	′'		C)	**		u)	**
,0)(0	i simije c	on un					0			
				1			x^2			
a)) s	inx	b)	_		c)			d)	-xsinx+cosx
				4			2			
71)										
a) In/si	$\operatorname{in}\operatorname{ex} + \cos\operatorname{ex}) + c$	b)	$\frac{2}{a}(\sin ax - \cos ax) + c$		c)	$\frac{1}{a}(\sin\alpha x - \cos\alpha x) + c$		d)	$\frac{1}{\alpha} \ln(\sin\alpha x - \cos\alpha x) + \varepsilon$
	,	$\cos + y \sin = a$,	rcle +=		,			,	
) in two d	-) in two						<i>~</i> .	
	oints		oincident p	oints	c) at no p	oint	d)		α	
	he pair of ident if:	straight lines	joining the	origin to	the interse	ction of t	he curve = 1	by the lin	ne x + my	+ n = 0 are

Page 5

a)	\mathbf{a}^2		b)	\mathbf{a}^2	(c)	\mathbf{a}^2		d) none of these
74) The	diagonals of a	parallelog	ram PQRS	are the lines x +	3y = 4 and	16x - 2y =	7. Then,	PQRS mu	st be a:
· ·	rectangle o circles + - 6x	- 2y + 1 =	b) square 0 and ++	2x - 8y + 13 = 0	c) cyclic	quadrilate	ral	d) rhomb	us
	ouch each othe ernally	er	b) touch e externally		c) cut ea orthogor			d) does no other	ot cut each
	nan moves on a ly downwards.			of 4 km/hr. The of rain is	rain appea	rs to fall to	him with	n a velocit	y of 3 km/hr
a) :	5 km/hr	b)	$\sqrt{}$	7	c)	$\frac{3}{4}$			d) 7 km/hr
77) The	KE of a body	is changed	by 2% the	en momentum cha	anges by				
		.4. If force	b) 2% is applied	on material then	c) 3% the decrea	se in cross	sectional	d) 4% area is 2%	then %
a) 3 79) The will be		of body fro	b) 2.5 % om a fixed	point at any insta	c) 1% nt is given	$by = 5t + \epsilon$	6t + 4 the	d) 0.5% n accelera	tion after 3 sec
a)	2		b)	2	c)	2		d)	2
80) The	temperature o	f a body is	10 C then	the temperature i	n Fahrenhe	eit scale wi	ll be		
a)	0		b)	0	c)	0		d)	0
81) The	efficiency of o	arnot engi	ne operatii	ng between 300K	and 500K	is			
a) 2			b) 2/5		c) 0.3			d) 3/5	
82) Bea	ts are produced	l by two w	aves and.	The number of be	eats heard	per second	is:		
-	zero		b) one	25 6	c) four		11	d) eight	71
				tance 25cm from is normal to axis					
a)	2		b)	2	c)	2		d)	2
84) The	equivalent cap	acitance b	etween an	d is					
a)	\mathbf{C}		b)	\mathbf{C}	c)	\mathbf{C}		d)	\mathbf{C}
85) If a	wire is stretche	ed such tha	it its area o	f cross-section be	ecomes 1/t	imes, then	its resista	ance will b	ecome
a)	\mathbf{n}		b)	\mathbf{n}	c)	\mathbf{n}		d)	n
86) Cal	culate the curre	ent in the c	ircuit.						
	2 A		b) 1 A		c) 3 A			d) 4 A	
87) Electricle is		with veloc	ity 210m/s	describe a circle	in magneti	ic field of s	trength 2	10T. The	diameter of
a) 1	1.1m		b) 1.1cm		c) 1.1mn	n		d) 11cm	

88) The energy required to take an electron from ground state to first excited state of hydrogen atom is										
a) -10	a) -10.2 eV. b) +10.2 eV c) 3.4 eV d) 13.6 eV									
89) At a certain instant, a piece of radioactive material contains 10 atoms. The half of the material is 30 days. The number of disintegrations is first second is										
a)	×	b)	×	c)	×	d)	\times			
	90) 1.0gm of a piece of metal was allowed to react with 25ml of 4N-HCl. When the reaction was over, 0.1gm of the metal remained unreacted. The eq.wt of metal is									
a) 9		b) 12		c) 18		d) 24				
91) At the would be	dissociation const	ant of a base	e is The concent	ration of Hyd	droxyl ions in 0.0	1 aqueous so	olution of the base			
a)	$2.0 \times 10^{-6} \; \mathrm{mol} \; L^{-1}$	b)	$1.0 \times 10^{-5} \; \mathrm{mol} \; L^{-1}$	c)	$1.0 \times 10^{-6} \; \mathrm{mol} \; L^{-1}$	d)	$1.0\times 10^{-7}\;{\rm mol}\;L^{-1}$			
92) What	volume of at NTP	will be liber	rated by the action	on of 100ml o	of 0.2N HCl on					
a) 112	2ml	b) 224	ml	c) 4481	ml	d) 112	0ml			
93) about										
a) 7 b) 4.7 c) 5.3 d) 1.4										
94) How n	nany atoms of calc	ium will be	deposited from	a solution of	by a current 0.25	5 following	for 60 seconds?			
a)	4.68×10^{18}	b)	4.68×10^{15}	c)	4.68×10^{12}	d)	4.68×10^{9}			
95) when l	neated with conc.	gives								
a)	HI	b)	I_2	c)	HIO_3	d)	KIO_3			
96) A Grig	gnard's reagent ma	y be obtaine	ed when magnes	ium reacts wi	ith					
a) Eth	yl iodide	b) Diet	thyle ether	c) Met	hyl amine	d) Eth	ylene			
97) A British survey found that 44 percent of the firms, which started to use robots, met with initial failure and 22 percent abandoned them altogether, mainly because of inadequate technological know-how and skills at all plant levels. Robotization is, by and large, a viable proposition. The machines can work round the clock, raise output, protect quality and industrial competitiveness. One robot can replace between two and five production workers, while providing cheaper labour. In the US the car industry, an-hour costs around \$ 23 but a robot hour costs only \$6. Certain jobs, mostly simple or hazardous ones, are irretrievably lost to robotics. Thus spot welders, press operators, spray painters, cleaners, machine loaders, grinding and polishing machine operators are endangered species. a) b) c) d)										
,		,		,		,				