Unsupervised Learning Graph clustering: spectral clustering and the Stochastic Bloc Model

Polytechnique MAP 573, 2019 - Julien Chiquet

Autumn semester, 2019

https://github.com/jchiquet/CourseUnsupervisedLearningX

Outline

- Basic notions on graphs and networks
 Definitions
 Representations
- ② Graph Partionning Hierarchical clustering Spectral Clustering
- 3 The Stochastic Block Model (SBM) Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Inference in SBM with variational EM

Outline

- Basic notions on graphs and networks
 Definitions
 Representations
- 2 Graph Partionning
- 3 The Stochastic Block Model (SBM)

References

Statistical Analysis of Network Data: Methods and Models, Eric Kolazcyk Chapiter 2, Section 1

Analyse statistique de graphes, Catherine Matias Chapitre 1

Outline

- Basic notions on graphs and networks
 Definitions
 Representations
- @ Graph Partionning
- 3 The Stochastic Block Model (SBM)

Graphs, Networks: some definitions

Definition (Network versus Graph)

- A Network is a collection of interacting entities
- A Graph is the mathematical representation of a network

Definition (Graph)

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a mathematical structure consisting of

- a set $\mathcal{V} = \{1, \dots, n\}$ of vertices or nodes
- a set $\mathcal{E}=\{e_1,\ldots,e_p:e_k=(i_k,j_k)\in(\mathcal{V}\times\mathcal{V})\}$ of edges or links
- The number of vertices $N_v = |\mathcal{V}|$ is called the order
- ullet The number of edges $N_e=|\mathcal{E}|$ is called the size

Definition (Vocabulary)

subgraph, induced subgraph, (un)directed graph, weighted graph, bipartite graph, tree, DAG, etc.

Paths, Cycles, Connected Components

Definition (Path)

In a undirected graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ a path between $i,j\in\mathcal{V}^2$ is a series of edges e_1,\ldots,e_k such that

- $\forall 1 \leq \ell < k$, all edges $(e_{\ell}, e_{\ell+1})$ share a vertex in \mathcal{V}
- e_1 starts from i, e_k ends to j.

Vocabulary

- A cycle is a path from i to itself.
- A connected component is a subset $\mathcal{V}' \subset \mathcal{V}$ such that there exists an path between any $i,j \in \mathcal{V}'$.
- A graph is connected when there is a path between every node pairs.

Proposition (Decomposition)

Any graph can be decomposed in a unique set of maximal connected components. The number of connected component is a least $n-|\mathcal{E}|$

Neighborhood, Degree

Definition (Neighborhood)

The neighbors of a vertex are the nodes directly connected to this vertex:

$$\mathcal{N}(i) = \{ j \in \mathcal{V} : (i, j) \in \mathcal{E} \}.$$

Definition (Degree)

The degree d_i of a node i is given by its number of neighbors, i.e. $|\mathcal{N}(i)|$.

Remark

In digraphs, vertex degree is replaced by in-degree and out-degree.

Proposition

In a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ the sum of the degree is given by $2|\mathcal{E}|$. Hence this is always an even quantity.

Outline

- Basic notions on graphs and networks
 Definitions
 Representations
- 2 Graph Partionning
- 3 The Stochastic Block Model (SBM)

Adjacency matrix and list of edges

Definition (Adjacency matrix)

The connectivity of $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is captured by the $|\mathcal{V}| \times |\mathcal{V}|$ matrix **A**:

$$(\mathbf{A})_{ij} = \begin{cases} 1 & \text{if } i \sim j, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

The degree of G are then simply obtained as the row-wise and/or column-wise sums of A.

Remark

If the list of vertices is known, the only information which needs to be stored is the list of edges. In terms of storage, this is equivalent to a sparse matrix representation.

Incidence matrix

Definition (Incidence matrix)

The connectivity of $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is captured by the $|\mathcal{V}|\times |\mathcal{E}|$ matrix \mathbf{B} :

$$(\mathbf{B})_{ij} = \begin{cases} 1 & \text{if } i \text{ is incident to edge } j, \\ 0 & \text{otherwise.} \end{cases}$$

Proposition (Relationship)

Let $\tilde{\mathbf{B}}$ be a modified signed version of \mathbf{B} where $\tilde{B}_{ij}=1/-1$ if i is incident to j as tail/head. Then

$$\tilde{\mathbf{B}}\tilde{\mathbf{B}}^{\mathsf{T}} = \mathbf{D} - \mathbf{A},$$

where $\mathbf{D} = diag(\{d_i, i \in \mathcal{V}\})$ is the diagonal matrix of degrees.

 $\leadsto BB^\intercal$ is called the Laplacian matrix and will be studied latter.

Layout and Vizualization

- Vizualization of large networks is a field of research in its own
- Be carefull with graphical interpretation of (large) networks

```
library(igraph)
library(sand)
GLattice <- graph.lattice(c(5,5,5))
GBlog <- aidsblog</pre>
```

Layout and Vizualization

Example with circle plot

```
par(mfrow=c(1,2))
plot(GLattice, layout=layout.circle); title("5x5x5 lattice")
plot(GBlog , layout=layout.circle); title("blog network")
```


5x5x5 lattice

blog network

Layout and Vizualization

Example with Fruchterman and Reingold

```
par(mfrow=c(1,2))
plot(GLattice, layout=layout.fruchterman.reingold); title("5x5x5 lattice")
plot(GBlog , layout=layout.fruchterman.reingold); title("blog network")
```

5x5x5 lattice

blog network

Layout and Vizualization: ggraph way I

```
library(ggraph)
library(gridExtra)
g1 <- ggraph(GBlog, layout = "fr") +
  geom_edge_link(color = "lightgray") + geom_node_point() + theme_void()
g2 <- ggraph(GBlog , layout = "kk") +
  geom_edge_link(color = "lightgray") + geom_node_point() + theme_void()
g3 <- ggraph(GBlog, layout = "linear") +
  geom_edge_arc(aes(alpha=..index..), show.legend = FALSE) +
  geom_node_point() + theme_void()
g4 <- ggraph(GBlog , layout = "linear", circular = TRUE) +
  geom_edge_link(aes(alpha=..index..), show.legend = FALSE) +
  geom_node_point() + theme_void()
grid.arrange(g1, g2, g3, g4, nrow = 2, ncol = 2)
```

Layout and Vizualization: ggraph way II

Outline

- Basic notions on graphs and networks
- ② Graph Partionning
 Hierarchical clustering
 Spectral Clustering
- 3 The Stochastic Block Model (SBM)

References

- Statistical Analysis of Network Data: Methods and Models, Eric Kolazcyk Chapiter 4, Section 4
- Statistical Analysis of Network Data with R, Eric Kolazcyk, Gábor Csárdi Chapiter 4, Section 4
 - Analyse statistique de graphes, Catherine Matias Chapitre 3
- A Tutorial on Spectral Clustering, Ulrike von Luxburg

Principle of graph partionning

Definition (Partition)

A decomposition $\mathcal{C} = \{C_1, \dots, C_K\}$ of the vertices \mathcal{V} such that

- $C_k \cap C_{k'} = \emptyset$ for any $k \neq k'$
- $\bigcup_k C_k = \mathcal{V}$

Goal of graph paritionning

Form a partition of the vertices with unsupervized approach where the $\mathcal C$ is composed by "cohesive" sets of vertices, for instance,

- vertices well connected among themselves
- well separated from the remaining vertices

Outline

- Basic notions on graphs and networks
- ② Graph Partionning Hierarchical clustering Spectral Clustering
- 3 The Stochastic Block Model (SBM)

Principle

Input: n individuals with p attributes)

- 1. Compute the dissimilarity between groups
- 2. Regroup the two most similar elements Iterate until all element are in a single group

```
Output: n nested partitions from \{\{1\},\ldots,\{n\}\} to \{\{1,\ldots,n\}\} Algorithm 1: Agglomerative hierarchical clustering
```

Ingredients

- 1 a dissimilarity measure between singleton
- 2 a distance measure between sets

Dissimilarity measures

Standards

Use standard distances on adjacency matrix:

- Euclidean distance: $x_{ij} = \sqrt{\sum_{ij} (A_{ik} A_{jk})^2}$
- ullet Manhattan distance: $x_{ij} = \sum_{ij} |A_{ik} A_{jk})|$
- etc. . .

Graph-specific

For instance, Modularity (studied during tutorial)

Example: karaté club

```
library(sand) data(karate)
par(mfrow=c(1,2)) plot(karate)
hist(degree(karate), col=adjustcolor("lightblue", alpha.f = 0.5), main="")
```


Examples of graph clustering I

```
hc <- cluster_fast_greedy(karate)
plot(hc,karate)</pre>
```


Examples of graph clustering II

```
hc <- cluster_edge_betweenness(karate)
plot(hc,karate)</pre>
```


Examples of graph clustering III

```
hc <- cluster_walktrap(karate)
plot(hc,karate)</pre>
```


Outline

- Basic notions on graphs and networks
- ② Graph Partionning Hierarchical clustering Spectral Clustering
- 3 The Stochastic Block Model (SBM)

Graph Laplacian

Definition ((Un-normalized) Laplacian)

The Laplacian matrix ${\bf L}$, resulting from the modified incidence matrix $\tilde{{\bf B}}$ $\tilde{B}_{ij}=1/-1$ if i is incident to j as tail/head, is defined by

$$\mathbf{L} = \tilde{\mathbf{B}}\tilde{\mathbf{B}}^{\mathsf{T}} = \mathbf{D} - \mathbf{A},$$

where $\mathbf{D} = \mathsf{diag}(d_i, i \in \mathcal{V})$ is the diagonal matrix of degrees.

Remark

- L is called Laplacian by analogy to the second order derivative (see below).
- \bullet Spectrum of L has much to say about the structure of the graph $\mathcal{G}.$

Graph Laplacian: spectrum

Proposition (Spectrum of L)

The $n \times n$ matrix $\mathbf L$ has the following properties:

$$\mathbf{x}^{\top} \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i,j} A_{ij} (x_i - x_j)^2, \quad \forall \mathbf{x} \in \mathbb{R}^n.$$

- L is a symmetric, positive semi-definite matrix,
- the smallest eigenvalue is 0 with associated eigenvector 1.
- L has n positive eigenvalues $0 = \lambda_1 < \cdots < \lambda_n$.

Corollary (Spectrum and Graph)

- The multiplicity of the first eigen value (0) of **L** determines the number of connected components in the graph.
- The larger the second non trivial eigenvalue, the higher the connectivity of G.

Normalized Graph Laplacian

Definition ((Normalized) Laplacian)

The normalized Laplacian matrix ${f L}$ is defined by

$$\mathbf{L}_N = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}.$$

Proposition

The $n \times n$ matrix \mathbf{L}_N has the following properties:

$$\mathbf{x}^{\top} \mathbf{L}_{N} \mathbf{x} = \frac{1}{2} \sum_{i,j} A_{ij} \left(\frac{x_i}{\sqrt{d_i}} - \frac{x_j}{\sqrt{d_j}} \right)^2, quad \forall \mathbf{x} \in \mathbb{R}^n.$$

- L is a symmetric, positive semi-definite matrix, with n nonnegative eigenvalues $0 = \lambda_1 < \cdots < \lambda_n$
- the smallest eigenvalue is 0 with associated eigenvector ${f D}^{-1/2}{f 1}$.

Absolute Graph Laplacian

Definition ((Absolute) Laplacian)

The absolute Laplacian matrix \mathbf{L}_{abs} is defined by

$$\mathbf{L}_{abs} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{L}_N,$$

with eigenvalues $1 - \lambda_n \leq \cdots \leq 1 - \lambda_2 \leq 1 - \lambda_1 = 1$, where $0 = \lambda_1 \leq \cdots \leq \lambda_n$ are the eigenvalues of \mathbf{L}_N .

Spectral Clustering

Principle

- $oldsymbol{0}$ Use the spectral property of $oldsymbol{L}$ to perform clustering in the eigen space
- 2 If the network have K connected components, the first K eigenvectors are ${\bf 1}$ span the eigenspace associated with eigenvalue 0
- $\ensuremath{\mathfrak{g}}$ Applying a simple clustering algorithm to the rows of the K first eigenvectors separate the components
- → This principle generalizes to a graph with a single component: spectral clustering tends to separates groups of nodes which are highly connected together

Normalized Spectral Clustering

Input: Adjacency matrix and number of classes Q

Compute the normalized graph Laplacian ${f L}$

Compute the eigen vectors of ${f L}$ associated with the Q smallest eigenvalues

Define U, the $p \times Q$ matrix that encompasses these Q vectors

Define $\tilde{\mathbf{U}}$, the row-wise normalized version of \mathbf{U} : $\tilde{u}_{ij} = \frac{u_{ij}}{\|\mathbf{U}_i\|_2}$

Apply k-means to $(\tilde{\mathbf{U}}_i)_{i=1,\dots,p}$

t=1,...,*p*

Output: vector of classes $C \in Q^p$, such as $C_i = q$ if $i \in q$ **Algorithm 2:** Spectral Clustering by Ng, Jordan and Weiss (2002)

Absolute Spectral Clustering

Input: Adjacency matrix and number of classes Q

Compute the graph Laplacian \mathbf{L}_{abs}

Compute the eigen vectors of \mathbf{L}_{abs} associated with the Q largest absolute eigenvalues

Define U, the $p \times Q$ matrix that encompasses these Q vectors Apply k-means to $(U_i)_{i=1,\dots,p}$

Output: vector of classes $\mathbf{C} \in \mathcal{Q}^p$, such as $C_i = q$ if $i \in q$ **Algorithm 3:** Spectral Clustering by Rohe et al. (2011)

Example: Karate club and Fielder vector and eigenvalue I

```
k.lap <- graph.laplacian(karate)
eig.anal <- eigen(k.lap)
f.vec <- eig.anal$vectors[, 33]
faction <- igraph::get.vertex.attribute(karate, "Faction")</pre>
f.colors <- as.character(length(faction))</pre>
f.colors[faction == 1] <- "red"</pre>
f.colors[faction == 2] <- "cyan"</pre>
par(mfrow=c(1,2))
plot(eig.anal$values, col="blue",
   vlab="Eigenvalues of Graph Laplacian")
plot(f.vec, pch=16, xlab="Actor Number",
   ylab="Fiedler Vector Entry", col=f.colors)
abline(0, 0, lwd=2, col="lightgray")
```

Example: Karate club and Fielder vector and eigenvalue II

Clustering based on the first non null eigenvalue

```
hc <- cluster_leading_eigen(karate)
plot(hc,karate)</pre>
```


Outline

- 1 Basic notions on graphs and networks
- 2 Graph Partionning
- 3 The Stochastic Block Model (SBM)
 Some Graphs Models and their limitations
 Mixture of Erdös-Rényi and the SBM
 Inference in SBM with variational EM

References

Mixture model for random graphs, Statistics and Computing Daudin, Robin, Picard

pbil.univ-lyon1.fr/members/fpicard/franckpicard_fichiers/pdf/DPR08.pdf

Analyse statistique de graphes, Catherine Matias Chapitre 4, Section 4

Motivations

Last section: find an underlying organization in a observed network Spectral or hierarchical clustering for network data

Not model-based, thus no statistical inference possible

now: clustering of network based on a probabilistic model of the graph

- Become familiar with
 - the stochastic block model, a random graph model tailored for clustering vertices,
 - the variational EM algorithm used to infer SBM from network data

hierarchical/kmeans clustering \leftrightarrow Gaussian mixture models \updownarrow

hierarchical/spectral clustering for network ↔ Stochastic block model

Motivations

Last section: find an underlying organization in a observed network

Spectral or hierachical clustering for network data

Not model-based, thus no statistical inference possible

now: clustering of network based on a probabilistic model of the graph

Become familiar with

- the stochastic block model, a random graph model tailored for clustering vertices,
- the variational EM algorithm used to infer SBM from network data.

hierarchical/kmeans clustering \leftrightarrow Gaussian mixture models \updownarrow

hierarchical/spectral clustering for network ↔ Stochastic block model

Motivations

Last section: find an underlying organization in a observed network

Spectral or hierachical clustering for network data

Not model-based, thus no statistical inference possible

now: clustering of network based on a probabilistic model of the graph

Become familiar with

- the stochastic block model, a random graph model tailored for clustering vertices,
- the variational EM algorithm used to infer SBM from network data.

hierarchical/kmeans clustering \leftrightarrow Gaussian mixture models \uparrow

hierarchical/spectral clustering for network \leftrightarrow Stochastic block model

Outline

- 1 Basic notions on graphs and networks
- 2 Graph Partionning
- 3 The Stochastic Block Model (SBM) Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Inference in SBM with variational EM

A mathematical model: Erdös-Rényi graph

Definition

Let $\mathcal{V}=1,\dots,n$ be a set of fixed vertices. The (simple) Erdös-Rény model $\mathcal{G}(n,\pi)$ assumes random edges between pairs of nodes with probability π . In orther word, the (random) adjacency matrix \mathbf{X} is such that

$$X_{ij} \sim \mathcal{B}(\pi)$$

Proposition (degree distribution)

The (random) degree D_i of vertex i follows a binomial distribution:

$$D_i \sim b(n-1,\pi).$$

Erdös-Rényi - example

```
G1 <- igraph::sample_gnp(10, 0.1)
G2 <- igraph::sample_gnp(10, 0.9)
G3 <- igraph::sample_gnp(100, .02)
par(mfrow=c(1,3))
plot(G1, vertex.label=NA); plot(G2, vertex.label=NA)
plot(G3, vertex.label=NA, layout=layout.circle)
```


Erdös-Rény - limitations: very homegeneous

```
average.path.length(G3); diameter(G3)
## [1] 5.41448
## [1] 16
```

Histogram of degree(G3)

Mechanism-based model: preferential attachment

The graph is defined dynamically as follows

Definition

Start from a initial graph $\mathcal{G}_0 = (\mathcal{V}_0, \mathcal{E}_0)$, then for each time step,

- $oldsymbol{1}$ At t a new node V_t is added
- 2 V_t is connected to $i \in V_{t-1}$ with probability

$$D_i^{\alpha} + \text{cst.}$$

Nodes with high degree get more connections thus richers get richers

Preferential attachment - example

```
G1 <- igraph::sample_pa(20, 1, directed=FALSE)
G2 <- igraph::sample_pa(20, 5, directed=FALSE)
G3 <- igraph::sample_pa(200, directed=FALSE)
par(mfrow=c(1,3))
plot(G1, vertex.label=NA); plot(G2, vertex.label=NA)
plot(G3, vertex.label=NA, layout=layout.circle)
```


Preferential attachment - limitations

```
average.path.length(G3); diameter(G3)
## [1] 6.26809
## [1] 15
```

Histogram of degree(G3)

Limitations

Erdös-Rényi

The ER model does not fit well real world network

- As can been seen from its degree distribution
- ER is generally too homogeneous
- Preferential attachment
 - Is defined through an algorithm so performing statistics is complicated
 - Is stucked to the power-law distribution of degrees

The Stochastic Block Model

The SBM¹ generalizes ER in a mixture framework. It provides

- a statistical framework to adjust and interpret the parameters
- a flexible yet simple specification that fits many existing network data

¹Other models exist (e.g. exponential model for random graphs) but less popular.

Outline

- 1 Basic notions on graphs and networks
- 2 Graph Partionning
- The Stochastic Block Model (SBM) Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Inference in SBM with variational EM

Stochastic Block Model: definition

Mixture model point of view: mixture of Erdös-Rényi

Latent structure

Let $\mathcal{V}=\{1,..,n\}$ be a fixed set of vertices. We give each $i\in\mathcal{V}$ a latent label among a set $\mathcal{Q}=\{1,\ldots,Q\}$ such that

- $\alpha_q = \mathbb{P}(i \in q), \quad \sum_q \alpha_q = 1;$
- $Z_{iq} = \mathbf{1}_{\{i \in q\}}$ are independent hidden variables.

The conditional distribution of the edges

Connexion probabilities depend on the node class belonging:

$$X_{ij} | \{i \in q, j \in \ell\} \sim \mathcal{B}(\pi_{q\ell}) \qquad \left(\Leftrightarrow X_{ij} | \{Z_{iq}Z_{j\ell} = 1\} \sim \mathcal{B}(\pi_{q\ell}). \right)$$

The $Q \times Q$ matrix π gives for all couple of labels $\pi_{q\ell} = \mathbb{P}(X_{ij} = 1 | i \in q, j \in \ell).$

Stochastic Block Model: the big picture

Stochastic Block Model

Let n nodes divided into

- $Q = \{ \bullet, \bullet, \bullet \}$ classes
- $\alpha_{\bullet} = \mathbb{P}(i \in \bullet), \bullet \in \mathcal{Q}, i = 1, \dots, n$
- $\pi_{\bullet \bullet} = \mathbb{P}(i \leftrightarrow j | i \in \bullet, j \in \bullet)$

$$Z_i = \mathbf{1}_{\{i \in \bullet\}} \sim^{\mathsf{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q},$$
$$X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet})$$

Stochastic Block Model: unknown parameters

Stochastic Block Model

Let n nodes divided into

- $Q = \{ \bullet, \bullet, \bullet \}$, card(Q) known
- $\alpha_{\bullet} = ?$,
- $\pi_{\bullet \bullet} = ?$

$$\begin{split} Z_i &= \mathbf{1}_{\{i \in \bullet\}} \ \sim^{\mathsf{iid}} \mathcal{M}(1, \alpha), \quad \forall \bullet \in \mathcal{Q}, \\ X_{ij} \mid \{i \in \bullet, j \in \bullet\} \sim^{\mathsf{ind}} \mathcal{B}(\pi_{\bullet \bullet}) \end{split}$$

Stochastic block models – examples of topology

Community network

Stochastic block models – examples of topology

Star network

```
pi <- matrix(c(0.05,0.3,0.3,0),2,2)
star <- igraph::sample_sbm(100, pi, c(4, 96))
plot(star, vertex.label=NA, vertex.color = rep(1:2,c(4,96)))</pre>
```


Degree distributions

Conditional degree distribution

The conditional degree distribution of a node $i \in q$ is

$$D_i|i \in q \sim \mathrm{b}(n-1,\bar{\pi}) \approx \mathcal{P}(\lambda_q), \qquad \bar{\pi}_q = \sum_{\ell=1}^Q \alpha_\ell, \pi_{q\ell} \quad \lambda_q = (n-1)\bar{\pi}_q$$

Conditional degree distribution

The degree distribution of a node i can be approximated by a mixture of Poisson distributions:

$$\mathbb{P}(D_i = k) = \sum_{q=1}^{Q} \alpha_q \exp\{-\lambda_q\} \frac{\lambda_q^k}{k!}$$

Likelihoods

Complete-data loglikelihood

$$\log L(\mathbf{X}, \mathbf{Z}) = \sum_{i,q} Z_{iq} \log \alpha_q + \sum_{i < j,q,\ell} Z_{iq} Z_{j\ell} \log \pi_{q\ell}^{X_{ij}} (1 - \pi_{q\ell})^{1 - X_{ij}}.$$

Conditional expectation of the complete-data loglikelihood

$$\mathbb{E}_{\mathbf{Z}|\mathbf{X}}\left[\log L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Z})\right] = \sum_{i, q} \tau_{iq} \log \alpha_q + \sum_{i < j, q, \ell} \eta_{ijq\ell} \log \pi_{q\ell}^{X_{ij}} (1 - \pi_{q\ell})^{1 - X_{ij}}$$

where τ_{iq} , $\eta_{ijq\ell}$ are the posterior probabilities:

- $\tau_{iq} = \mathbb{P}(Z_{iq} = 1|\mathbf{X}) = \mathbb{E}[Z_{iq}|\mathbf{X}].$
- $\eta_{ijq\ell} = \mathbb{P}(Z_{iq}Z_{j\ell} = 1|\mathbf{X}) = \mathbb{E}[Z_{iq}Z_{j\ell}|\mathbf{X}].$

Outline

- Basic notions on graphs and networks
- 2 Graph Partionning
- The Stochastic Block Model (SBM) Some Graphs Models and their limitations Mixture of Erdös-Rényi and the SBM Inference in SBM with variational EM

The EM strategy does not apply directly for SBM

Ouch: another intractability problem

- the Z_{iq} are not independent in the SBM framework...
- we cannot compute $\eta_{ijq\ell} = \mathbb{P}(Z_{iq}Z_{j\ell} = 1|\mathbf{X}) = \mathbb{E}\left[Z_{iq}Z_{j\ell}|\mathbf{X}\right]$,
- the conditional expectation $Q(\theta)$, i.e. the main EM ingredient, is intractable.

Solution: mean field approximation

Approximate $\eta_{ijq\ell}$ by $\tau_{iq}\tau_{j\ell}$, i.e., assume independence between Z_{iq} \leadsto This can be formalized in the variational framework

Revisting the EM algorithm I

Proposition

Consider a distribution \mathbb{Q} for the $\{Z_{iq}\}$. We have

$$\log L(\boldsymbol{\theta}; \mathbf{X}) = \mathbb{E}_{\mathbb{Q}}[\log L(\boldsymbol{\theta}, \mathbf{X}, \mathbf{Z})] + \mathcal{H}(\mathbb{Q}) + \mathrm{KL}(\mathbb{Q} \mid \mathbb{P}(\mathbf{Z} | \mathbf{X}; \boldsymbol{\theta})),$$

where \mathcal{H} is the entropy and $\mathrm{KL}(\cdot|\cdot)$ is the Kullback-Leibler divergence:

$$\mathcal{H}(\mathbb{Q}) = -\sum_{z} \mathbb{Q}(z) \log \mathbb{Q}(z) = -\mathbb{E}_{\mathbb{Q}}[\log \mathbb{Q}(Z)]$$

$$\mathcal{KL}(\mathbb{Q} \mid \mathbb{P}(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta})) = \sum_{z} \mathbb{Q}(z) \log \frac{\mathbb{Q}(z)}{\mathbb{P}(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta})} = \mathbb{E}_{\mathbb{Q}} \left[\log \frac{\mathbb{Q}(z)}{\mathbb{P}(\mathbf{Z}|\mathbf{X}; \boldsymbol{\theta})} \right]$$

Revisting the EM algorithm II

Let

$$J(\mathbb{Q}, \boldsymbol{\theta}) \triangleq \mathbb{E}_{\mathbb{Q}} \left(\log L(\boldsymbol{\theta}; \mathbf{X}, \mathbf{Z}) \right) + \mathcal{H}(\mathbb{Q})$$

The steps in the EM algorithm may be viewed as:

Expectation step : choose $\mathbb Q$ to maximize $J(\mathbb Q; \boldsymbol{\theta}^{(t)})$

The solution is $\mathbb{P}(\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}^{(t)})$

Maximization step : choose $oldsymbol{ heta}$ to maximize $J(\mathbb{Q}^{(t)};oldsymbol{ heta})$

The solution maximizes $\mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}^{(t)}}\left(\log L(\boldsymbol{\theta};\mathbf{X},\mathbf{Z})\right)$

Variational approximation for SBM

Problem for SBM

 $\mathbb{P}(\mathbf{Z}|\mathbf{X}; \pmb{ heta}^{(t)})$ cannot be computed thus the E-step cannot be solved.

Idea

Choose $\mathbb Q$ in a class of function so that the E-step can be solved.

Family of distribution that factorizes

We chose $\mathbb Q$ so as the Z_{iq} are marginally independents:

$$\mathbb{Q}(\mathbf{Z}) = \prod_{i=1}^{n} \mathbb{Q}_i(Z_i) = \prod_{i=1}^{n} \prod_{q=1}^{Q} \tau_{iq}^{Z_{iq}},$$

where $\tau_{iq} = \mathbb{Q}_i(Z_i = q) = \mathbb{E}Q(Z_{iq})$, with $\sum_q \tau_{iq} = 1$ for all $i = 1, \dots, n$.

Variational EM for SBM: the criterion

Lower bound of the loglikehood

Since $\mathbb Q$ is an approximation of $\mathbb P(\mathbf Z|\mathbf X),$ the Kullback-Leibler divergence is non-negative and

$$\log L(\boldsymbol{\theta}; \mathbf{X}) \geq \mathbb{E}_{\mathbb{Q}}[\log L(\boldsymbol{\theta}, \mathbf{X}, \mathbf{Z})] + \mathcal{H}(\mathbb{Q}) = J(\mathbb{Q}, \boldsymbol{\theta}).$$

For the SBM,

$$J(\mathbb{Q}, \boldsymbol{\theta}) = \sum_{i,q} \tau_{iq} \log \alpha_q + \sum_{i < j,q,\ell} \tau_{iq} \tau_{j\ell} \log b(X_{ij}; \pi_{q\ell}) - \sum_{i,q} \tau_{iq} \log(\tau_{iq}),$$

 \leadsto we optimize the loglikelihood lower bound $J(\mathbb{Q}, \theta) = J(\tau, \theta)$ in (τ, θ) .

E and M steps for SBM

Variational E-step

Maximizing $J(\tau)$ for fixed θ , we find a fixed-point relationship:

$$\hat{\tau}_{iq} \propto \alpha_q \prod_j \prod_\ell b(X_{ij}, \pi_{q\ell})^{\hat{\tau}_{j\ell}} \tag{1}$$

M-step

Maximizing $J(\boldsymbol{\theta})$ for fixed $\boldsymbol{\tau}$, we find,

$$\hat{\alpha}_q = \frac{1}{n} \sum_{i} \hat{\tau}_{iq}, \quad \hat{\pi}_{q\ell} = \frac{\sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{j\ell} X_{ij}}{\sum_{i \neq j} \hat{\tau}_{iq} \hat{\tau}_{j\ell}}.$$
 (2)

Model selection

We use our lower bound of the loglikelihood to compute an approximation of the ICL

$$vICL(Q) = \mathbb{E}_{\hat{\mathbb{Q}}}[\log L(\hat{\boldsymbol{\theta}}); \mathbf{X}, \mathbf{Z}] - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} + (Q-1) \log(n) \right),$$

where

$$\mathbb{E}_{\hat{\mathbb{Q}}}[\log L(\hat{\boldsymbol{\theta}}; \mathbf{X}, \mathbf{Z})] = J(\hat{\boldsymbol{\tau}}, \hat{\boldsymbol{\theta}}) - \mathcal{H}(\hat{\mathbb{Q}}).$$

The variational BIC is just

vBIC(Q) =
$$J(\hat{\tau}, \hat{\theta}) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} + (Q-1) \log(n) \right).$$

Example on the French blogsphere (I)

Example on the French blogsphere (II)

Example on the French blogsphere (III)

```
library(Matrix)
clusters <-
   apply(mySBM_collection$memberships[[10]]$Z, 1, which.max)
image(Matrix(adj_blog[order(clusters), order(clusters)]))</pre>
```


Example on the French blogsphere (IV) I

```
library(RColorBrewer); pal <- brewer.pal(10, "Set3")</pre>
g <- graph_from_adjacency_matrix(</pre>
  adj_blog,
  mode = "undirected",
  weighted = TRUE,
  diag = FALSE
V(g)$class <- clusters
V(g)$size <- 5
V(g) $frame.color <- "white"
V(g)$color <- pal[V(g)$class]
V(g)$label <- ""
E(g) $arrow.mode <- 0
par(mar = c(0,0,0,0))
plot(g, edge.width=E(g)$weight)
```

Example on the French blogsphere (IV) II

