Exercises: Functions

Exercises

- 1. Find the values of the given functions at the stated arguments. For example, if the function is $s \colon \mathbb{N} \to \mathbb{N}$, where s(n) = n+1, then s(0) = 1 and s(5) = 6.
 - (a) $f: \mathbb{N} \to \mathbb{N}$, where f(n) = n + 3. Find the values of f(0), f(3) and f(7).
 - (b) $g: \mathbb{Z} \to \mathbb{N}$, where g(n) = |n|. (This means the absolute value of n.) Find the values of g(0), g(-1), g(2).
 - (c) $h: \mathbb{R} \to \{1\}$, where h(n) = 1. Find the values of $h(1), h(\pi), h(-e^{-\pi})$.
- 2. For each of the following functions, specify a suitable codomain X. There may be more than one suitable answer.
 - (a) $f: \mathbb{N} \to X$, where $f(x) = x^2$
 - (b) $g: \{1, 2\} \to X$, where g(x) = 2x
 - (c) $h: \mathbb{N} \to X$, where h(x) = -x
 - (d) $i: \mathbb{N} \times \mathbb{Z} \to X$, where $i(x, y) = x \times y$
- 3. In each of the following questions you will be given two functions and an input, then asked to compose the functions and describe what the output is.
 - (a) Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be functions defined by $f(m) = m^2$ and $g(n) = n^3$, for $m, n \in \mathbb{Z}$.
 - i. For a given integer $m \in \mathbb{Z}$, describe $(g \circ f)(m)$.
 - ii. If m = 3, what is the value of $(g \circ f)(m)$?
 - iii. Is $(g \circ f)(m) = (f \circ g)(m)$ always true?
 - (b) Let $\alpha \colon \mathbb{R} \to \mathbb{R}$ and $\beta \colon \mathbb{R} \to \mathbb{R}$ be functions defined by $\alpha(m) = \frac{m}{2}$ and $\beta(n) = \operatorname{abs}(n)$, for $m \in \mathbb{R}$ and $n \in \mathbb{Z}$. (The symbols α and β are pronounced 'alpha' and 'beta'. The notation for the function β is for the absolute value, sometimes written |n| instead of $\operatorname{abs}(n)$.)
 - i. For a given integer $m \in \mathbb{Z}$, describe $(\beta \circ \alpha)(m)$. If m = 3, what is the value of $(\beta \circ \alpha)(m)$?

- ii. If $m = -\pi$, what is the value of $(\beta \circ \alpha)(m)$?
- iii. If $m = -\pi$, what is the value of $(\alpha \circ \beta)(m)$?
- iv. Is $(\beta \circ \alpha)(m) = (\alpha \circ \beta)(m)$ always true?
- (c) Let $p: \{a, b, c\} \to \{1, 2, 3\}$ and $q: \{1, 2, 3\} \to \{x, y, z\}$ be functions defined by p(a) = 1, p(b) = 2, p(c) = 3 and q(1) = x, q(2) = y, q(3) = z.
 - i. For each $m \in \{a, b, c\}$, what is the value of $(q \circ p)(m)$?
 - ii. Is it possible to define the composite function $p \circ q$?
 - iii. Can you define a function $r:\{x,y,z\}\to\{a,b,c\}$ such that $(r\circ q)(1)=b,\ (r\circ q)(2)=b,$ and $(r\circ q)(3)=a$?

Solutions

- 1. (a) f(0) = 3, f(3) = 6, f(7) = 10
 - (b) g(0) = 0, g(-1) = 1, g(2) = 2
 - (c) $h(1) = 1, h(\pi) = 1, h(-e^{-\pi}) = 1$
- 2. (a) One possible codomain is $X = \mathbb{N}$.
 - (b) One possible codomain is $X = \{2, 4\}$. Another is $X = \mathbb{N}$.
 - (c) One possible codomain is $X = \mathbb{Z}$.
 - (d) One possible codomain is \mathbb{Z} .
- 3. (a) i. $(g \circ f)(m) = g(f(m)) = g(m^2) = (m^2)^3 = m^6$
 - ii. $(g \circ f)(m) = (g \circ f)(3) = 3^6 = 729$
 - iii. The other composite is given by

$$(f \circ g)(m) = f(m^3)$$

$$= (m^3)^2$$

$$= m^6$$

$$= (g \circ f)(m).$$

So no matter the value of $m \in \mathbb{Z}$, we always have $(g \circ f)(m) = (f \circ g)(m)$. We can then say that $g \circ f = f \circ g$.

- (b) i. $(\beta \circ \alpha)(m) = \beta(\alpha(m)) = \beta(\frac{m}{2}) = abs(\frac{m}{2})$. There's nothing much more we can do to simplify that.
 - ii. If $m=-\pi$, then $\alpha(m)=\alpha(-\pi)=\frac{-\pi}{2}$. Since $-\pi\approx-3.14159$, then $\frac{-\pi}{2}\approx-1.57$. (In general, don't truncate numbers like π until you have to so just keep using the symbol π until you actually need a numerical value out of it.) So $\beta(\alpha(-\pi))\approx \mathrm{abs}(-1.57)\approx 1.57$
 - iii. If $m = -\pi$, then $\beta(m) = abs(-\pi) = \pi$. So $\alpha(\beta(-\pi)) \approx (1.57)$.

- iv. We can just think about this first without putting in any values. One of the functions, α , halves the value we put into it. The other function, β , takes the absolute value of the number. It doesn't matter what order we do this in, so we always have $\beta \circ \alpha = \alpha \circ \beta$.
- (c) i. $(q \circ p)(a) = x$, $(q \circ p)(b) = y$, $(q \circ p)(c) = z$
 - ii. Since the sets $\{a,b,c\}$ and $\{x,y,z\}$ are not equal, we cannot define the other composite $p \circ q$ since the domains and codomains don't match up in the correct way.
 - iii. Define $r \colon \{x,y,z\} \to \{a,b,c\}$ by r(x) = b, r(y) = b, and r(z) = a.