

### Biomecatrónica

Análisis del estado estacionario



# Motivación



#### Error en estado estacionario





El error es la entrada al controlador y se calcula como la diferencia entre la referencia y la salida

$$E(s) = R(s) - Y(s)$$

### $e_{ss}$ para un control proporcional



#### Considerando el caso en el que:

- o Referencia es un escalón
- La planta tiene polos con parte real estrictamente negativa
- El controlador es solo un bloque de ganancia



$$e_{ss} = r_{ss} - y_{ss}$$

$$e_{ss} = r_{ss} - Ke_{ss}$$

$$e_{ss} = \frac{r_{ss}}{1 + K}$$

# $e_{ss}$ para un control integral



#### Considerando el caso en el que:

- o Referencia es un escalón
- La planta tiene polos con parte real estrictamente negativa
- El controlador es un integrador



$$E(s) = \frac{1}{s+K}$$
  $e_{ss} = \lim_{s\to 0} sE(s) = \lim_{s\to 0} \frac{s}{s+K} = 0$ 

# $e_{ss}$ para un control integral



#### Considerando el caso en el que:

- o Referencia es una rampa
- La planta tiene polos con parte real estrictamente negativa
- El controlador es un integrador



$$E(s) = \frac{1}{s(s+K)}$$
  $e_{ss} = \lim_{s\to 0} sE(s) = \lim_{s\to 0} \frac{s}{s(s+K)} = \frac{1}{K}$ 

# Tipo de sistema



El grado del polinomio de entrada para el cual el error en estado estacionario es una constante finita y no nula

- o **Tipo 0:** error finito y no nulo en respuesta a una entrada de escalón
- o **Tipo 1:** error finito y no nulo en respuesta a una entrada de rampa
- o Tipo 2: error finito y no nulo en respuesta a una entrada parabólica

# Tipo de sistema



**Tipo 0:** sin integradores en lazo abierto

$$G(s) = \frac{s+4}{(s+6)(s^2+4s+9)}$$

**Tipo 1:** un integrador en lazo abierto

$$G(s) = \frac{15}{s(s^2 + 3s + 12)}$$

Tipo 2: dos integradores en lazo abierto

$$G(s) = \frac{s+3}{s^2(s+5)(s+10)}$$



#### Error en estado estacionario





El error en estado estacionario se puede expresar en términos de la función de transferencia de lazo abierto

$$E(s) = R(s) - Y(s)$$

$$= R(s) - E(s)G(s)$$

$$= \frac{R(s)}{1 + G(s)}$$

$$e_{ss} = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} \frac{s R(s)}{1 + G(s)}$$

# $e_{ss}$ para entrada escalón



Para una entrada escalón unitario

$$r(t) = u_s(t) \longleftrightarrow R(s) = \frac{1}{s}$$

por lo que el error en estado estacionario es

$$e_{ss} = \lim_{s \to 0} \frac{s R(s)}{1 + G(s)}$$

$$= \lim_{s \to 0} \frac{\frac{s}{1 + G(s)}}{\frac{s}{1 + \lim_{s \to 0} G(s)}}$$

$$= \frac{1}{1 + \lim_{s \to 0} G(s)}$$

# $e_{ss}$ para entrada escalón



Sistema tipo 0

Sistemas tipo 
$$n (n \ge 1)$$

$$G(s) = \frac{(s+z_1)(s+z_2)\cdots}{(s+p_1)(s+p_2)\cdots}$$

$$G(s) = \frac{(s+z_1)(s+z_2)\cdots}{s^n(s+p_1)(s+p_2)\cdots}$$

$$\lim_{s \to 0} G(s) = \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots} \neq \infty$$

$$\lim_{s \to 0} G(s) \to \infty$$

### Constantes de error estático



$$K_p = \lim_{s \to 0} G(s),$$
 Tipo 0  
 $K_v = \lim_{s \to 0} sG(s),$  Tipo 1  
 $K_a = \lim_{s \to 0} s^2G(s),$  Tipo 2

| Tipo de | Entrada           |                 |                 |
|---------|-------------------|-----------------|-----------------|
| sistema | Escalón           | Rampa           | Parábola        |
| 0       | $\frac{1}{1+K_p}$ | $\infty$        | $\infty$        |
| 1       | 0                 | $\frac{1}{K_v}$ | $\infty$        |
| 2       | 0                 | 0               | $\frac{1}{K_a}$ |

# $e_{ss}$ para realimentación no unitaria







# Ejemplo 1



¿Cuál es el error en estado estacionario del sistema mostrado en la figura ante una entrada escalón de amplitud 3?



# Ejemplo 2



Diseñe el controlador, D(s), tal que el sistema de la figura exponga un error de 0.05 ante una entrada tipo rampa



# Ejemplo 3



Determine la ganancia del controlador, K, para que el sistema de la figura exhiba un error en estado estacionario del 2% ante una entrada de referencia constante

