Exersice Sheet 5

——— Sample Solution ———

Task 1: Fusion Lemma

(a)

1 We first prove that $G^n(\bot_2) = H \circ F^n(\bot_1)$ by induction over n.

Induction Base: n = 0

$$G^{0}\left(\bot_{2}\right) = \bot_{2} \stackrel{H \text{ strict}}{=} H\left(\bot_{1}\right) = H\left(F^{0}\left(\bot_{1}\right)\right)$$

Induction Hypothesis:

 $G^{n}\left(\bot_{2}\right)=H\left(F^{n}\left(\bot_{1}\right)\right)$ holds for any arbitrary but fixed $n\in\mathbb{N}.$

Induction Step: $\underline{n \mapsto n+1}$

$$G^{n+1}(\bot_{2}) = G \circ G^{n}(\bot_{2})$$

$$\stackrel{I.H.}{=} G \circ H \circ F^{n}(\bot_{1})$$

$$\stackrel{G \circ H = H \circ F}{=} H \circ F \circ F^{n}(\bot_{1})$$

$$= H(F^{n+1}(\bot_{1}))$$

(2) Now we prove that fix (G) = H(fix(F)).

$$fix (G) = \sqcup \{G^n(\bot_2) | n \in \mathbb{N}\}$$
 | by Tarski-Knaster
$$= \sqcup \{H \circ F^n(\bot_1) | n \in \mathbb{N}\}$$
 | by $\widehat{ \mathbb{1}}$ |
$$= H(\sqcup \{F^n(\bot_1) | n \in \mathbb{N}\})$$
 | by H continuous
$$= H(fix(F))$$
 | by Tarski-Knaster

1

(b)

Wrong!

G, F, H continuous \checkmark

$$H \circ F = G \circ H \quad \checkmark$$

$$H(\operatorname{fix}(F)) = \mathbf{I} \neq \operatorname{fix}(G)$$

Task 2: Tarski-Kantorovich Principle

Prove or disprove: Let (D, \sqsubseteq) be a CCPO and let $F: D \to D$ be continuous. Moreover, let $d \in D$, such that $d \sqsubseteq F(d)$.

Then F has at least one fixpoint larger than d and the least of those fixpoints is given by

$$\sqcup \left\{ F^{n}\left(d\right) | n \in \mathbb{N} \right\}$$

We disprove this assumption by specifying a counterexample.

We define F in such a way that d = F(d) but $d \neq \text{fix}(F)$.

Utilising Tarski-Knaster and the definition of this partial order we get $d \sqsubseteq F(d)$ and $\sqcup \{F^n(d) | n \in \mathbb{N}\} = d \supsetneq d$.

Prove or disprove: Let (D, \sqsubseteq) be a CCPO and let $F: D \to D$ be continuous. Moreover, let $d \in D$, such that $d \sqsubseteq F(d)$.

Then F has at least one fixpoint larger or equal than d and the least of those fixpoints is given by

$$\sqcup \left\{ F^{n}\left(d\right) | n \in \mathbb{N} \right\}$$

Let $\hat{d} := \sqcup \{F^n(d) | n \in \mathbb{N}\}.$ \hat{d} exists, since $d \sqsubseteq F(d) \sqsubseteq F^2(d) \sqsubseteq \cdots$ is a chain and D is a CCPO. \hat{d} is a fixpoint since

$$F\left(\hat{d}\right) = F\left(\sqcup \left\{F^{n}\left(d\right)n \in \mathbb{N}\right\}\right)$$

$$= \sqcup \left\{F^{n+1}\left(d\right)|n \in \mathbb{N}\right\} \quad | \text{ by continuity of } F$$

$$= \sqcup \left\{F^{n}\left(d\right)|n \in \mathbb{N}\right\} \quad | d \sqsubseteq F\left(d\right)$$

$$= \hat{d}$$

 \hat{d} is least fixpoint "above" d

Let x be another fixpoint "above" d "smaller" than \hat{d} , i.e.

- (1) f(x) = x
- (2) $d \sqsubseteq x$
- (3) $x \sqsubseteq \hat{d}$

But:

Task 3: Complete Lattice

Every chain is a subset

Thus: Complete Lattices are chain complete partial orders (**CCPO**) ⇒ Tarski-Knaster is applicable.