

JUL 14, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.36wgg3563lk5/v1

Protocol Citation: Sara França de Araújo dos Santos, Ueric José Borges de Souza, Martha Trindade Oliveira, Jairo Jaime, Fernando Rosado Spilki, Ana Cláudia Franco, Paulo Michel Roehe, Fabrício Souza Campos 2023. Sequencing of Canine Parvovirus (CPV) from Rectal Swab Samples V.1.

protocols.io

https://dx.doi.org/10.17504/protocols.io.36wgq3563lk5/v1

MANUSCRIPT CITATION:

Santos SFA, Souza UJB, Oliveira MT, Jaime J, Spilki RS, Franco AC, Roehe PM, Campos FS. Recovery of complete genomes of canine parvovirus from clinical samples. bioRxiv preprint, 25p.

2023.https://www.biorxiv.org/ content/10.1101/2023.07.12. 548703v1

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Sequencing of Canine Parvovirus (CPV) from Rectal Swab Samples V.1

Sara França de Araújo dos Ueric José Borges de Santos¹, Souza¹,

Jairo

Martha Trindade Oliveira², Jaime³, Fernando Rosado Spilki⁴, Paulo Michel

Ana Cláudia Franco², Roehe², Fabrício Souza

Campos²

¹- Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil;

²Virology Laboratory, Department of Microbiology, Immunology, and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;

³Universidad Nacional de Colombia, Sede Bogotá. Facultad de Medicina Veterinaria y de Zootecnia, Departamento de Salud Animal. Centro de Investigación en Infectología e Inmunología Veterinaria (CI3V). Carrera 30 # 45-03, Bogotá D.C. CP 11132. Colombia;

⁴Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo 93525-075, Brazil

Martha Oliveira

ABSTRACT

Canine parvovirus (CPV) is a highly contagious viral disease that affects dogs, especially puppies. CPV-2 is recognized for its resilience in contaminated environments, ease of transmission among dogs, and pathogenicity for puppies. In this protocol, we have adapted the methodology to allow the recovery of complete CPV-2 genomes directly from clinical samples (dry swabs) from puppies with clinical signals of viral enteritis. A multiplex PCR was designed with primers targeting fragments of 400 to 1,000 base pairs (bp) along the full length of the viral genome. The resulting reads were compared after sequencing with the Nanopore technology. Genome assembly revealed that the smaller fragments generated larger numbers of reads, allowing a more reliable coverage of the genome than those attained with primers targeting larger amplicons. Both new methodologies were efficient in amplification and sequencing.

Protocol status: Working

We use this protocol and it's

working

MATERIALS

Consumables: Isopropanol

Created: Jun 30, 2023 Beta-mercaptoethanol

Ethanol

Last Modified: Jul 14, 2023 Nuclease-free water

(primers from Table 1 and 2)

R9.4 Oxford MinION flowcell (FLO-MIN106)(Oxford Nanopore)

Commercial Kits:

Keywords: CPV, Canine Parvovirus, sequencing, viral DNA, rectal swab, DNA

PROTOCOL integer ID:

extraction

84318

- * Quick-DNA/RNA™ Viral MagBead (Zymo Research)
- * Q5® High-Fidelity 2X Master Mix (New England Biolabs)
- * AMPure XP beads (Beckman Coulter)
- * Ligation Sequencing kit SQK-LSK-109 (Oxford Nanopore)
- * Native Barcoding kits EXP-NBD104 and EXP-NBD114 (Oxford Nanopore)

Equipment:

Thermocycler

Magnetic stand (or automated extractor with magnetic block)

MinION Mk1B device (Oxford Nanopore)

Nucleic Acid Extraction using Quick-DNA/RNA Viral MagBea..

1 This protocol uses

Quick-DNA/RNA Viral MagBead **Zymo Research Catalog #R2140** / R2141

for extraction.

All kit's solutions need to be prepared beforehand, as described by the kit. If you've already prepared the solution, go to step 2. **This is a modified version of the kit's protocol.** The original kit's protocol can be found here.

1.1 DNA/RNA Buffer:

Add \perp 500 μ L of **beta-mercaptoehtanol** (user supplied) per 100 ml Viral DNA/RNA **Buffer**, (final 0.5% (v/v)

1.2 DNA/RNA Wash 1:

Kit R2140 --> Add 20 mL of isopropanol (2-propanol PA, user supplied) to MagBead DNA/RNA Wash 1 concentrate

1.3 DNA/RNA Wash 2:

Kit R2140 --> Add 30 mL of isopropanol (2-propanol PA, user supplied) to MagBead DNA/RNA Wash 2 concentrate

Kit R2141 --> Add 120 mL of isopropanol (2-propanol PA, user supplied) to MagBead DNA/RNA Wash 2 concentrate

1.4 DNA/RNA Shield™:

1.5 Proteinase K (20 mg/ml):

Mix by vortexing. Use immediately or store frozen aliquots.

- 2 Elute each dry Sample into Δ 400 μL of 1X viral DNA/RNA buffer.
- 2.1 Our samples were dry rectal swabs of animals confirmed positive by a rapid test. Samples were collected and stored in a centrifuge tube (without transporting media) at -20 °C until processing.
- 3 For each sample, add Δ 10 μ L of beads and Δ 4 μ L of proteinase K.

Obs: when working with many samples, one can always prepare a mixed solution with both components. Just make to keep the beads suspended while pipetting.

3.1 Transfer the plate (or your tubes) to **magnetic stand** (user supplied). After the beads have pelleted, aspirate and discard the supernatant.

This protocol can be **fast tracked** by the use of an **automated extractor**. We use EXTRACTA 96 (Loccus).

- 4 Perform one wash of the pellet (beads) with \angle 250 μ L of MagBead DNA/RNA **Wash 1** solution.
- Add Δ 250 μL of **80% ethanol** and mix well.

 Transfer the sample (liquid and beads) to a new place/tube.
- 7 Pellet the beads and discard the the supernatant.
- Add \perp 50 μ L of nuclease-free water and mix well (this is the elution step).
- **9** Pellet the beads (magnetically) and transfer the supernatant (containing DNA/RNA) to a new plate/tube.

Multiplex PCR to obtain CPV genome fragments

This protocol uses 2 sets of oligos: one set amplifies ~400 bp sequences that overlap about 100 nucleotides with each other (Table 1); the other amplifies ~1000 bp sequences that overlap about 100 nucleotides with each other (Table 2). Primers are listed in the tables below and were design based on Canine parvovirus reference sequence NC_001539.1 (GenBank).

Name	Pool	Sequence (5' – 3')	Size (nt)	%GC	Tm
CPV-400_0.7_LEFT*	1	ATGTCTGGCAACCAGTATACTG	22	45.50	60.30
CPV-400_1_LEFT	1	AACCAACTGACCAAGTTCACGT	22	45.45	60.80
CPV-400_1_RIGHT	1	GTTCCAGCGAACATCCTTTCCA	22	50.00	61.31
CPV-400_1.5_LEFT*	1	AGGTGGCGGGCTAATTGTG	19	57.90	59.50
CPV-400_2_LEFT	2	AAGAAACATGCAGAAAATGAAGCATT	26	30.77	59.73
CPV-400_2_RIGHT	2	CGTAGCCATTTACCAGTTGCTTG	23	47.83	60.67
CPV-400_3_LEFT	1	ATGGGGAAAAGATCAAGGCTGG	22	50.00	60.81
CPV-400_3_RIGHT	1	AGTGTGCTGACAATTTGTCTGTC	23	43.48	59.94
CPV-400_4_LEFT	2	GGGTGACTATATTAACATACAGACATA AGC	30	36.67	60.59
CPV-400_4_RIGHT	2	TCCTGGTTGTGCCATCATTTCA	22	45.45	60.68
CPV-400_5_LEFT	1	ACTTTGCGGGACTTGGTTAGTA	22	45.45	59.81
CPV-400_5_RIGHT	1	ACAACCAACATTACCCACAGCT	22	45.45	60.61
CPV-400_6_LEFT	2	CAGTTCTTTTCATGGACCAGCA	23	43.48	59.93
CPV-400_6_RIGHT	2	AAACCAAAGTCTCCTGGAAGCT	22	45.45	60.01
CPV-400_7_LEFT	1	TGGATGTGAAGAAGACCTGAACA	24	41.67	60.47
CPV-400_7_RIGHT	1	AACGCCAAGTTGGTTTGATTGT	22	40.91	60.01
CPV-400_8_LEFT	2	AGTGGACCTTGCACTGGAAC	20	55.00	60.20

Name	Pool	Sequence (5' – 3')	Size (nt)	%GC	Tm
CPV-400_8_RIGHT	2	GCTTCGTCGTGTTCTTTTGCAG	22	50.00	61.33
CPV-400_9_LEFT	1	AAATATCTTGGGCCTGGGAACA	22	45.45	59.87
CPV-400_9_RIGHT	1	ACTGCTCCATCACTCATTGGTG	22	50.00	60.80
CPV-400_10_LEFT	2	ACCACCTCATATTTTCATCAATCTTGC	27	37.04	60.91
CPV-400_10_RIGHT	2	TCAACCAATGACCAAGGTGTTACA	24	41.67	60.95
CPV-400_11_LEFT	1	GTGGTTGTAAATAATATGGATAAAACT GCA	30	30.00	60.00
CPV-400_11_RIGHT	1	TGTTCTATCCCATTGAAAATAATATCT CCA	30	30.00	59.80
CPV-400_12_LEFT	2	TGCCATTTACTCCAGCAGCTAT	22	45.45	60.01
CPV-400_12_RIGHT	2	TCCCATTTGAGTTACACCACGT	22	45.45	60.08
CPV-400_13_LEFT	1	TTTGCCTCAATCTGAAGGAGCT	22	45.45	60.14
CPV-400_13_RIGHT	1	ATCATTCGTTACAGGAAGGTTAAAGTT	27	33.33	59.83
CPV-400_14_LEFT	2	ACACCTGAGAGATTTACATATAGCA CA	29	34.48	60.63
CPV-400_14_RIGHT	2	ACCTTTCCACCAAAAATCTGAGTAAG	26	38.46	60.18
CPV-400_15_LEFT	1	CAAATGGTCAAATTTGGGATAAAGAAT TTG	30	30.00	60.15
CPV-400_15_RIGHT	1	TTCTAGGTGCTAGTTGATATGTAATAA ACA	30	30.00	59.56
CPV-400_16_LEFT	2	TGTTTATTACATATCAACTAGCACCTA GAA	30	30.00	59.56
CPV-400_16_RIGHT	2	TCTAAGGGCAAACCAACC	22	50.00	61.20
CPV-400_17_LEFT	1	AGGTTTGTTAGATGGTATACAATAACT GT	29	31.03	59.61
CPV-400_17_RIGHT	1	AGCTTTAAATACTAATTTACCTTTCCA CCA	30	30.00	60.50
CPV- 400_17.5_RIGHT*	1	AAGTATCAATCTGTCTTTAAGGGG	24	37.50	60.10
CPV-400_18_LEFT*	2	TATAAGGTGAACTAACCTTACCATA	25	32.00	59.20

Name	Pool	Sequence (5' – 3')	Size (nt)	%GC	Tm
CPV-400_18_RIGHT*	2	TTAATATAATTTTCTAGGTGCTAGTTG	27	25.90	59.20

Table 1. Primers targeting 400 bp amplicons

Name	Pool	Sequence (5'-3')	Size (nt)	%GC	Tm
CPV-1000_1_LEFT	1	CTGACCAAGTTCACGTACGTATGA	24	45.83	60.93
CPV-1000_1_RIGHT	1	TGTTCAGTGTAAAGTGTGCTGACA	24	41.67	61.18
CPV-1000_2_LEFT	2	GTGAATGGGTGACTATATTAACATACA GAC	30	36.67	60.73
CPV-1000_2_RIGHT	2	ACCAAACCAAAGTCTCCTGGAAG	23	47.83	60.95
CPV-1000_3_LEFT	1	AAGCAAATTGAACCAACTCCAGT	23	39.13	59.55
CPV-1000_3_RIGHT	1	GGTGGTGGTTTACTTCTTTTAGTTGG	26	42.31	60.90
CPV-1000_4_LEFT	2	CTAAGGACGCTAAAGATTGGGGG	23	52.17	61.00
CPV-1000_4_RIGHT	2	GTTCCTGTAGCAAATTCATCACCTG	25	44.00	60.77
CPV-1000_5_LEFT	1	CCATCTCATACTGGAACTAGTGGC	24	50.00	60.82
CPV- 1000_5_RIGHT*	1	TGGATTCCAAGTATGAGAGGCTCT	24	45.83	61.21
CPV-1000_6_LEFT	2	AACCAAGACTTCATGTAAATGCACC	25	40.00	60.66
CPV- 1000_6_RIGHT*	2	TGGATTCCAAGTATGAGAGGCTCT	24	45.83	61.21

Table 2. Primers targeting 1000 bp amplicons

We used Q5 High-Fidelity PCR Kit - 200 rxns New England Biolabs Catalog to #E0555L perform PCR.

Reactions should be set up independent for each pool, with a final volume of $25 \,\mu L$, as bellow:

Reactions for 400 bp products:

Reactions for 1000 bp products:

- The final concentration in a reaction should be [M] 15 nanomolar (nM) per primer.

 Therefore, the volume of primers used in a reaction will vary according with the number of primers in the pool. More about this subject can be found in Quick et al. (2017).
- 12 PCR's run method should be set as:

8m 15s

* \$\mathbb{\ma

Purifying PCR Products with AMPure XP beads (Beckman Co..

- Mix amplification products of Pool 1 and Pool 2 (final volume 🔼 50 µL)
- We purify the fragments with Ampure XP beads Beckman Coulter Catalog #A63881 , using a modified protocol (original protocol ca be found here).
- **14.1** This is step can also be fast-tracked by the use of an automated system.

- 15 Add an equal volume of AMPure XP per sample (\bot 50 μ L).
- After biding, on a magnetic stand, wash beads once with [M] 80 % (V/V) ethanol.
- 18 Transfer DNA to a new plate/tube.
- **19** Quantify your DNA.
- We used Qubit dsDNA HS Assay kit Thermo Fisher Scientific Catalog #Q32854

Equipment	
Qubit™ 3 Fluorometer	NAME
Fluorometer for nucleic acid quantitation	TYPE
Invitrogen	BRAND
Q33216	SKU
https://www.thermofisher.com/order/catalog/product/br/en/Q33216	LINK
Fluorometer for nucleic acid quantitation	SPECIFICATIONS

Library preparation & sequencing

To prepare a library, use the Ligation and Barcoding kits (following manufacturer's instructions).

We used **Ligation Sequencing kit SQK-LSK-109** and **Native Barcoding kits EXP-NBD104 and EXP-NBD114** (Oxford Nanopore)

- 21 Load library on your flow cell and sequence your sample.
- **21.1** We used **R9.4 Oxford MinION flow cell** (FLO-MIN106) and **MinION Mk1B** device for sequencing.