STAT 230 SECTION 2 LECTURE 11

Today's Agenda

Last time:

Discrete random variables and probability function

Today (Lec 11, 05/27):

- Cumulative distribution function
- Discrete uniform distribution

5. DISCRETE RANDOM VARIABLES

A **random variable** is a function that maps from the sample space S to the set of real numbers \mathbb{R} . In other words, we say X is a random variable if

$$X:S\to\mathbb{R}$$
.

Often "random variable" is abbreviated with "RV".

Definition

The values that a random variable takes is called the **range** of the random variable. We often denote the range of a random variable X by X(S).

Definition

- We say that a random variable is **discrete** if its range is a discrete subset of \mathbb{R} (i.e., a finite or a countably infinite set).
- A random variable is **continuous** if its range is an interval that is a subset of \mathbb{R} (e.g. $[0,1],(0,\infty),\mathbb{R}$).

The **probability (mass) function** of a discrete random variable X is the function

$$f_X(x) = P(X = x).$$

We use the short hand P(X = x) to denote $P(\{\omega \in S : X(\omega) = x\})$. The definition f is valid for all x, but its value is zero when x is outside the range of random variable X.

Any probability function f satisfied

$$0 \le f_X(x) \le 1$$
 for all x

$$\sum_{x \in X(S)} f_X(x) = 1$$

Now we have a way to assign probability to specific values of a random variable.

However, we often encounter situations like "at least" or "at most". What do we do then?

The **cumulative distribution function** (cdf) of a random variable X is

$$F_X(x) = P(X \le x), x \in \mathbb{R}.$$

Again we use the short hand notation

$$P(X \le x) = P(\{\omega \in S : X(\omega) \le x\}).$$

If X is discrete with probability function f_X , then

$$F_X(x) = P(X \le x) = \sum_{y: y \le x} f_X(y)$$

Properties of the cdf

Let F_X be a cdf. Then,

a)
$$0 \le F_X(x) \le 1$$

b)
$$F_X(x) \le F_X(y)$$
 for $x < y$

c)
$$\lim_{x \to -\infty} F_X(x) = 0$$
, and $\lim_{x \to \infty} F_X(x) = 1$.

Suppose a fair six sided die is rolled, and let X denote the number of dots on the top face of the die. Compute and graph $F_X(x)$.

Suppose students A,B and C each independently answer a question on a test. The probability of getting the correct answer is 0.9 for A, 0.7 for B and 0.4 for C. Let X denote the number of people who get the answer correct.

- a) Compute the probability function of X
- b) Compute the cdf of X.
- c) Compute the probability that at least one person gets the answer correct.

Suppose that N balls labelled $1, 2, \ldots, N$ are placed in a box, and n balls $(n \leq N)$ are randomly selected without replacement. Define the random variable X = largest number selected. Find the probability function of X.

A notation

Two random variables X and Y are said to have the same distribution if $F_X(x) = F_Y(x)$ for all $x \in \mathbb{R}$. We denote this by

$$X \sim Y$$

Suppose the range of X is $\{a, a+1, \ldots, b\}$, where $a, b \in \mathbb{Z}$, and suppose all values are equally likely. Then we say that X has a **discrete uniform distribution** on $\{a, a+1, \ldots, b\}$, shorthand: $X \sim U[a, b]$.

If $X \sim U[a,b]$, then its probability function is defined as

$$P(X = x) = \frac{1}{b-a+1}, \in \{a, a+1, \dots, b\},\$$

and if $x \notin [a, b]$, then P(X = x) = 0.

Examples of discrete uniform random variables

Experiment	X	Distribution
Roll a 6 sided die	# showing on die	<i>U</i> [1, 6]
Draw a number between 1 and 50	# Drawn	U[1, 50]

Suppose $X \sim U[a, b]$. Compute $F_X(x)$, and verify that $F_X(x)$ is indeed a valid cdf.

Suppose that $X \sim U[1,6]$ and $Y \sim U[1,20]$. Which of the following are true?

- a) P(X > 3) < P(Y > 10)
- b) P(X > 3) = P(Y > 10)
- c) P(X > 3) > P(Y > 10)