

МИНОБРНА УКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Кафедра автоматических систем

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

по дисциплине «Сети и системы передачи информации»

«Помехоустойчивое кодирование. Код Хэмминга»

Работу выполнил: Савилов Дмитрий Алексеевич Группа: ККСО-04-19	Подпись
Работу проверил: Новоженин Максим Борисович	Подпись
Работа представлена к защите « »2022 г.	

Лабораторная работа №6 Помехоустойчивое кодирование. Код Хэмминга

Цель: ознакомление с принципами помехоустойчивого кодирования и приобретение практических навыков моделирования работы кодеров и декодеров.

Задание 1. Формирование бита четности.

Вариант 12 (10110111)

Сформировать бит четности (бит паритета) для заданного байта передаваемых данных. Исходными данными является последовательность 10110111.

Паритетный бит k для n - битного двоичного слова $b_n \dots b_2 b_1$ вычисляется по формуле:

$$k = b_n \oplus ... \oplus b_2 \oplus b_1$$

Таким образом число единиц в последовательности всегда будет четным. Получаем выражение:

$$k = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 0$$

Бит четности равен 1.

Задание 2. Исследование помехоустойчивого кода с формированием бита четности.

 $Puc\ 1$. Схема для исследования кода с формированием бита четности

В данной схемы использованы следующие элементы:

- Функциональный генератор
- Заземление
- Ключ (8 шт.)
- Логический элемент ИЛИ с двумя, четырьмя, пятью входами
- 2 индикатора
- 2 индикатора

Вариант	Информационные биты $S_4S_3S_2S_1$			Помехи $S_8 S_7 S_6 S_5$	Помехи $S_8 S_7 S_6 S_5$
12	1011	0000	1000	1001	1101

Рис 2. Помеха 1

Рис 3. Помеха 2

Рис 4. Помеха 3

Рис 5. Помеха 4

№	Помехи $S_8S_7S_6S_5$	Состояние	Состояние
помехи		индикатора X ₁	индикатора X ₂
1	0000	Горит	Не горит
2	1000	Горит	Горит
3	1001	Горит	Не горит
4	1101	Горит	Горит

Задание 3. Исправление ошибки с помощью кода Хэмминга.

Расчётным путём (вручную) определить, в каком разряде принятого кода Хэмминга (12,8) произошло искажение.

Вариант	i_8	i ₇	i_6	i_5	k_4	i_4	i_3	i_2	k_3	i_1	k_2	k_1
12	1	0	1	0	0	1	1	0	1	1	0	1

Определим, какие группы информационных бит контролируют проверочные биты:

- i_1 номер позиции $3=2^0+2^1=1+2$, поэтому информационный бит проверяется контрольными битами k_1 , k_2 ;
- i_2 номер позиции $5 = 2^0 + 2^2 = 1 + 4$, поэтому информационный бит проверяется контрольными битами k_1, k_3 ;
- i_3 номер позиции $6 = 2^1 + 2^2 = 2 + 4$, поэтому информационный бит проверяется контрольными битами k_2 , k_3 ;
- i_4 номер позиции $7=2^0+2^1+2^2=1+2+4$, поэтому информационный бит проверяется контрольными битами, k_1,k_2,k_3 ;
- i_5 номер позиции $9 = 2^0 + 2^3 = 1 + 8$, поэтому информационный бит проверяется контрольными битами, k_1, k_4
- i_6 номер позиции ${\bf 10}={\bf 2^1}+{\bf 2^3}={\bf 2}+{\bf 8}$, поэтому информационный бит проверяется контрольными битами, ${\pmb k_2},{\pmb k_4}$
- i_7 номер позиции $11 = 2^0 + 2^1 + 2^3 = 1 + 2 + 8$, поэтому информационный бит проверяется контрольными битами, k_1, k_2, k_4
- $-i_8$ номер позиции $12=2^2+2^3=4+8$, поэтому информационный бит проверяется контрольными битами, k_3,k_4

$$k'_1 = i_1 \oplus i_2 \oplus i_4 \oplus i_5 \oplus i_7 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$k'_2 = i_1 \oplus i_3 \oplus i_4 \oplus i_6 \oplus i_7 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$k'_3 = i_2 \oplus i_3 \oplus i_4 \oplus i_8 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$k'_4 = i_5 \oplus i_6 \oplus i_7 \oplus i_8 = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

k-е биты на передающей и принимающей стороне отличаются \Rightarrow есть ошибка $(k_1' \neq k_1)$

Определим синдром $S = s_4 s_3 s_2 s_1$

$$s_1 = k_1 \oplus k'_1 = 1 \oplus 0 = 1$$

 $s_2 = k_2 \oplus k'_2 = 0 \oplus 0 = 0$
 $s_3 = k_3 \oplus k'_3 = 1 \oplus 1 = 0$
 $s_4 = k_4 \oplus k'_4 = 0 \oplus 0 = 0$

 $S = 0001_2 = 1 \Rightarrow 1$ бит искажены и их нужно инвертировать.

Вариант	i_8	i_7	i_6	i_5	k_4	i_4	i_3	i_2	k_3	i_1	k_2	k_1
12	1	0	1	0	0	1	1	0	1	1	0	0

Задание 4. Исследование помехоустойчивого кода с формированием бита четности.

Рис 6. Схема моделирования кода Хэмминга в системе передачи информации

В данной схемы использованы следующие элементы:

- Функциональный генератор
- Заземление
- Переключатель
- Логический элемент ИЛИ с двумя, четырьмя, пятью входами
- Генератор слов
- Семисегментный индикатор

Результаты работы схемы Хэмминга:

Значение контрольных	Синдром $e_1 e_2 e_3 e_4$	Искаженный бит
битов на приёмнике		
$p_1p_2p_3p_4$		
0010	0000	Искажений нет
0010	0001	k_1
0010	0010	k_2
1110	0011	i_1
0010	0100	k_3
1000	0101	i_2
0100	0110	i_3
1100	0111	i_4
0010	1000	k_4
1011	1001	i_5
0111	1010	i_6
1111	1011	i_7
0001	1100	i_8

Вывод

Я ознакомился с принципами помехоустойчивого кодирования и приобрел практические навыки моделирования работы кодеров и декодеров, а также на практике исследовал моделирование работы кодеров и декодеров.