Academy of Mathematics and Systems Science

Apr. 6, 2024 Assignment

Chinese Academy of Sciences

Name: 李夏洋

Major: 运筹学与控制论 UID: 202328000206057

Personal Page: https://xiayangli2301.github.io

凸分析与优化-作业 (4.1,4.3,4.8,4.10)

4月1日作业

Question 1

设 $L \in \mathcal{L}(\mathbb{E}_1, \mathbb{E}_2)$. 证明以下结论成立:

- 1. $\ker(L) = (\operatorname{im}(L^*)^{\perp}(课上已证), (\ker(L))^{\perp} = \operatorname{im}(L^*);$
- 2. $\ker(L^*) = (\operatorname{im}(L))^{\perp}, (\ker(L^*))^{\perp} = \operatorname{im}(L).$

Solution. $\forall x \in \text{im}(L^*)$, 存在 $y \in \mathbb{E}_2$, $x = L^*(y)$. 对于任意 $\overline{x} \in \text{ker}(L)$,

$$\langle \overline{x}, L^*(y) \rangle = \langle L(x), y \rangle = 0.$$

故 $x \in (\ker(L))^{\perp}$. 这说明了

$$\operatorname{im}(L^*) \subset (\ker(L))^{\perp}$$
.

由于

$$\mathbb{E}_1 = \operatorname{im} L^* \oplus \operatorname{im}(L^*)^{\perp} = \operatorname{im} L^* \oplus \ker(L) \subset (\ker(L))^{\perp} \oplus \ker(L) = \mathbb{E}_1,$$

得到

$$\operatorname{imL}^* \oplus \ker(L) = (\ker(L))^{\perp} \oplus \ker(L)$$

由于 $(\ker(L))^{\perp} \cap \ker(L) = \emptyset$, $\operatorname{imL}^* \cap \ker(L) = \emptyset$. 故必然有

$$(\ker(L))^{\perp} = \operatorname{im}(L^*)$$

由于 L 与 L^* 互为对偶, $\ker(L^*) = (\operatorname{im}(L))^{\perp}, (\ker(L^*))^{\perp} = \operatorname{im}(L)$ 由 $\ker(L) = (\operatorname{im}(L^*)^{\perp}, (\ker(L))^{\perp} = \operatorname{im}(L^*)$ 立得.

Question 2

设 $A \in \mathbb{S}^n_+$, 证明存在唯一的 $\mathbf{B} \in \mathbb{S}^n_+$ 使得 $B^2 = A$, 即 $B = A^{\frac{1}{2}}$. 这表明开根号运算在 \mathbb{S}^n_+ 中是良定的.

Solution. 存在性. 由于 $A \in \mathbb{S}_n^+$, 故存在 $T \in O(n)$, 使得 $T^{-1}AT = \Sigma_A$. Σ_A 是对角矩阵. 记

$$\Sigma_A = \operatorname{diag}\{\lambda_1, \cdots, \lambda_n\}, \ \lambda_1 \geqslant 0, \cdots, \lambda_n \geqslant 0.$$

取

$$B = T \operatorname{diag}\{\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_n}\}T^{-1}.$$

即满足 $B^2 = A$. 唯一性. 假如还存在 $C^2 = A$, 则 $(T^{-1}CT)^2 = \Sigma_A$, 易得 $T^{-1}CT \in \mathbb{S}_+^n$.

于是, 存在另一正交矩阵 $S \in O(n)$, 使得 $S^{-1}T^{-1}CTS = \operatorname{diag}\{\lambda_1', \dots, \lambda_n'\}$, 而 $S^{-1}T^{-1}BTS = \operatorname{diag}\{\lambda_1, \dots, \lambda_n\}$, 于是 B 和 C 可同时对角化. 故 BC = CB.

于是

$$B^{2} - C^{2} = (B + C)(B - C) = 0, (1)$$

由于 $B+C \in \mathbb{S}_n^+$, 故 |B+C| > 0, 故 B-C=0. 这说明了 B 的唯一性, 本题证毕.

Question 3

设 A, B 是 \mathbb{E} 得非空闭子集, $\lambda, \mu \in \mathbb{R}$, A, B 中至少有一个有界. 证明 $\lambda A + \mu B$ 也是闭集, 并通过反例说明这里的有界性是必要的.

Solution. 不妨设 A 有界, $\forall z^* \in \overline{\lambda A + \mu B}$, 存在 $\{z_k = \lambda x_k + \mu y_k, x_k \in A, y_k \in B\}$, 使得 $\{z_k = \lambda x_k + \mu y_k\} \to z^*$. 由于 $\{x_k\}$ 有界,故存在子列 $\{x_{k_m}\} \subset \{x_k\}$,使得 $\{x_{k_m}\} \to x^* \in A$. 由此, $\{\mu y_{k_m}\} \to z^* - \lambda x^*$,由 B 的闭性, $z^* - \lambda x^* \in \mu B$,故 $z^* - \lambda x^* + \lambda x^* \in \lambda A + \mu B$,故

$$\lambda A + \mu B = \overline{\lambda A + \mu B}.$$

即 $\lambda A + \mu B$ 是闭集.

反例: $A = \{n + \frac{1}{n}\}, B = \{-n\},$ 于是

$$A + B = \{k + \frac{1}{n}\}, k \in \mathbb{Z}, n \in \mathbb{N}^+.$$

易见 0 是 A+B 的聚点, 但是 $0 \notin A+B$.

4月3日作业

Question 4

证明: $\operatorname{epi}(\operatorname{cl}(f)) = \operatorname{cl}(\operatorname{epi}(f)).$

Solution. 记 $f: \mathbb{E} \to [-\infty, +\infty]$, 由于 $\mathrm{cl}(f)$ 是下半连续的, 因此 $\mathrm{epi}(\mathrm{cl}(f))$ 是闭的. 由于

$$\operatorname{cl}(f) \leqslant f$$
,

故 $epi(cl(f)) \supset epi(f)$. 由 epi(cl(f)) 闭性, 知

$$\operatorname{epi}(\operatorname{cl}(f)) \supset \operatorname{cl}(\operatorname{epi}(f))$$
 (2)

若 \forall (x^* , α^*) ∈ epi(cl(f)), 有

$$\liminf_{x \to x^*} f(x^*) \leqslant \alpha^*.$$

即存在 α , 使得 $\exists \{x_k\} \to x^*, f(x_k) \to \alpha \leqslant \alpha^*$. 由于 $(x_k, f(x_k)) \in \operatorname{epi}(f)$, 故 $(x^*, \alpha) \in \operatorname{cl}(\operatorname{epi}(f))$. 又 $\alpha^* \geqslant \alpha$, 故必然有 $(x^*, \alpha^*) \in \operatorname{cl}(\operatorname{epi}(f))$. 于是

$$\operatorname{epi}(\operatorname{cl}(f)) \subset \operatorname{cl}(\operatorname{epi}(f)).$$
 (3)

综合(2)和(3),得

$$epi(cl(f)) = cl(epi(f)).$$

证毕.

4月8日作业

Question 5

设 $A \in \mathbb{S}^n, b \in \mathbb{R}^n$, 二次函数 $q : \mathbb{R}^n \to \mathbb{R}$ 定义为

$$q(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x$$

证明如下三条性质互相等价:

- 1. $\inf_{\mathbb{R}^n} q > -\infty$.
- 2. $A \succeq 0, b \in im(A)$.
- 3. $\operatorname{arg\,min}_{\mathbb{R}^n} q \neq \emptyset$.

Solution.

"(1) \Rightarrow (2)":由于 $\inf_{\mathbb{R}^n} q > -\infty$,故一定存在 $x^* \in \mathbb{R}^n$,使得 $x^* \in \arg\min_{\mathbb{R}^n} q$. 在 x^* 处任意施 加扰动,都有

$$q(x^* + \Delta x) - q(x^*) \geqslant 0. \tag{4}$$

由(4)可得,

$$q(x^* + \Delta x) - q(x^*) = (\Delta x)^{\top} (Ax^* + b) + (\Delta x)^{\top} A(\Delta x)$$

$$\xrightarrow{\Delta x \to 0} (\Delta x)^T (Ax^* + b) + o(\|\Delta x\|)$$

$$\geqslant 0.$$

对 $\forall \Delta x > 0$ 成立, 这说明 $Ax^* + b = 0$, 即, $b \in \text{im}(A)$ 另外, 当 $\|\Delta x\|$ 充分大时, $q(x^* + \Delta x) - q(x^*)$ 与 $\Delta x^\top A \Delta x$ 同号, 这说明, $\forall \Delta x$,

$$\Delta x^{\top} A \Delta x \geqslant 0. \tag{5}$$

这说明 $A \succeq 0$.

"(2) \Rightarrow (3)":由于 $b \in \text{im}(A)$,不妨记 $b = A\lambda$.由于 $A \succeq 0$,则

$$\begin{split} q(x) &= \frac{1}{2} x^\top A x + b^\top x \\ &= \frac{1}{2} x^\top A x + \lambda^\top A x \\ &= \frac{1}{2} (x + \lambda)^\top A (x + \lambda) - \frac{1}{2} \lambda A \lambda^\top \\ &\geqslant \frac{1}{2} \lambda A \lambda^\top. \end{split}$$

且当 $x = -\lambda$ 时取等号. 于是 $\arg \min_{\mathbb{R}^n} q \supset \{-\lambda\} \neq \emptyset$.

"(3) \Rightarrow (1)": 由 q(x) 的适定性, 立得.

Question 6

证明: 设集合 $X \neq$, 给定一个包算子 hull : $2^X \to 2^X$, 可以确定一个包系统. 即证, $\mathcal{S} = \{\text{hull}(S) \mid S \subset X\}$ 是一个包系统.

Solution. 根据教材 **命题 1.18** 知, 需验证 $S = \{\text{hull}(S) \mid S \subset X\}$ 满足包系统的两个条件.

1. $X \in \mathcal{S}$. \boxplus

$$X \subset \operatorname{hull}(X) \subset X$$

立得.

2. 对任意非空 $A \subseteq S$,

$$\bigcap_{\operatorname{hull}(S)\in\mathcal{A}}\operatorname{hull}(S)\subset\operatorname{hull}(\bigcap_{\operatorname{hull}(S)\in\mathcal{A}}\operatorname{hull}(S))\subset\bigcap_{\operatorname{hull}(S)\in\mathcal{A}}\operatorname{hull}(\operatorname{hull}(S))=\bigcap_{\operatorname{hull}(S)\in\mathcal{A}}\operatorname{hull}(S).$$

故

$$\bigcap_{\operatorname{hull}(S)\in\mathcal{A}}\operatorname{hull}(S)=\operatorname{hull}(\bigcap_{\operatorname{hull}(S)\in\mathcal{A}}\operatorname{hull}(S)).$$

即

$$\bigcap_{\text{null}(S)\in\mathcal{A}} \text{hull}(S) \subset \mathcal{S} \tag{6}$$

故 $S = \{\text{hull}(S) \mid S \subset X\}$ 是一个包系统.

4月10日作业

Question 7

证明: 设 $x_0, x_1, x_2, \cdots, x_k \in \mathbb{E}$, 则

$$x_0 + \operatorname{span}\{x_1 - x_0, \dots, x_k - x_0\} = \operatorname{aff}\{x_0, \dots, x_k\}.$$
 (7)

特别地, 如果 $\{x_0, \dots, x_k\}$ 包含 0, 则 aff $\{x_0, \dots, x_k\}$ = span $\{x_0, \dots, x_k\}$.

Solution. 取 $\sum_{i=0}^{k} a_i = 1$ 则

$$x_0 + \operatorname{span}\{x_1 - x_0, \cdots, x_k - x_0\} = x_0 + \sum_{i=1}^k a_i(x_i - x_0) = (1 - \sum_{i=1}^k a_i)(x_0) + \sum_{i=1}^k a_i x_i$$

$$= \sum_{i=0}^k a_i x_i = \operatorname{aff}\{x_0, \cdots, x_k\}$$
(8)

故立得

$$x_0 + \operatorname{span}\{x_1 - x_0, \dots, x_k - x_0\} = \operatorname{aff}\{x_0, \dots, x_k\}.$$
 (9)

若 $\{x_0,\cdots,x_k\}$ 包含 0,不妨记 $x_0=0$. 则由 (9),代入 $x_0=0$,有

$$\mathrm{span}\{x_0,\cdots,x_k\}=\mathrm{span}\{x_1\cdots,x_k\}=x_0+\mathrm{span}\{x_1-x_0,\cdots,x_k-x_0\}=\mathrm{aff}\{x_0,\cdots,x_k\}. \ \ (10)$$

本题证毕.