CS 3313 Foundations of Computing:

Properties of Regular Languages: Non-regular Languages

http://gw-cs3313.github.io

© slides based on material from Peter Linz book, Hopcroft & Ullman, Narahari

1

Properties of Regular Languages

- Closure Properties: what happens when we "combine" two regular languages or perform set operations on them?
- Decision Problems: can we provide procedures to determine properties of a language ?
- Next....How do we determine if a language does not belong to that class of languages ?
 - Ex: How do we show that a language (problem?) cannot be accepted by a DFA?

Closure Properties

- Regular languages are closed under:
 - Union
 - Complement
 - Intersection
 - Concatenation
 - Star closure
 - Reversal
 - Set difference
 - homomorphism

3

Decision Properties

- A property is decidable if there is an algorithm that can determine if the property holds over the language
- Regular languages, properties that are decidable:
 - Membership (Is w accepted by M)
 - Emptiness (if L(M) empty)
 - Set containment (L1 is contained in L2)
 - Set difference
 -

Finite and Infinite Languages

- Theorem: If a language is a finite set then it is a regular languages
 - $L = \{ w_1, w_2,...,w_n \mid \text{ for some fixed } n \}$
- Proof:
- Question: Can we test if a regular language is finite or infinite?

5

5

The Infiniteness Problem

- Theorem: Testing if L(M) is infinite is a decidable problem.
- Key idea: Homework 1
 - If there is a walk of length *n* or greater (from start to a final state) then there is a cycle in the graph
 - We can repeat the cycle any number of times

7

7

The Infiniteness Problem

- Theorem: Testing if L(M) is infinite is a decidable problem.
- Algorithm: compute all paths between all pairs of vertices (length n), and check if there is a cycle in the graph
 - Input: Transition graph for DFA M
 - Output: Yes if L(M) is infinite, No if L(M) is finite
 - Check if graph has a cycle (from start state to some final state)!
 - If cycle then L(M) is infinite else L(M) is finite

8

So what kinds of languages are not regular and how do we prove they are not?

- Proof for testing infiniteness of L(M) reveals some properties that can be used to prove that a language is not regular.
- Given any language L, it is either regular or it is not.
 - To prove L is regular, we have to provide a DFA/NFA or Regular expression that accepts L.
 - To prove L is not regular, we need to provide a formal proof using some properties of all regular languages
 - Simply saying "I spent a lot of time and could not find a DFA" is NOT a proof.

9

Why is it useful to ask if a language is Regular

- Example: Can we check if there are syntax errors in a C program by using a DFA?
 - Syntax checking is first step in a compiler's translation process
 - Program must satisfy the rules (specified as a grammar) of the C programming language (or any programming language)

Power of abstraction

- If a DFA can do syntax checking, then a DFA can check if there are an equal number of left and right braces ({ and } are used to specify a code block in C)
 - Choose $L = \{ w \mid w \text{ is a string over a,b and } w \text{ has equal number of a 's and b 's} \}$
 - Using a to denote { and b to denote } (recall homomorphism which will let you substitute symbols)
- Now apply closure properties: we know that a*b* is regular and regular languages are closed under intersection
 - - Equal number of a's and b's
- So, is L1 a regular language ?

11

"power" of DFAs: A little intuition

- So what can DFAs (i.e., finite state machines) "compute"?
- What can they store and where ?
 - State
 - Do they have an "external" memory to store a value?
- Example: A DFA for $L = \{ a^j b^j \}$? (equal number of a's and b's)

"power" or limits of DFAs....

- Key takeaway: If we have a solution that requires external storage of arbitrary size (value of a counter, storing an entire string, etc.) then DFAs don't have that capability
- Ex: $L = \{ a^j b^j \}$ or $L = \{ w w \mid w \text{ in } \{0,1\}^* \}$
- But is this argument a formal proof?
- How do you prove a language is not regular?

13

How do we prove a language is not regular....constructing the formal framework

- Note: we are only interested in infinite language (since all finite languages are regular)
- If a language is regular then it is accepted by some DFA with n states
 - We don't know what n is ...just that it exists
 - DFA represented by a graph... has *n* vertices (for the *n* states)
- When is a string w accepted by a DFA? In terms of transition graph of the DFA

Walk/Paths in a graph – recall HW1 proof

- Graph has *n* vertices
- Walk/Path in a graph can be represented as a sequence of vertices: $v_1v_2v_3...v_k$ where each (v_i,v_i) is an edge
- Recall proof from HW1: Suppose we have a path of length n, how many vertices on the path?

15

DFA Transition Graph

- The transition function of a DFA can be represented as a (directed graph).
- DFA has a finite number of states: *n*
- If DFA accepts an infinite language, then it must accept a string of length >= n
 - Else it is a finite set!
- Suppose there is a string of length $m \ge n$ accepted by the DFA
 - Vertex sequence in the path = ?
 - $p_1 p_2 p_3 ... p_i ... p_j ... p_n p_{n+1} ... p_m p_{m+1}$

Cycles in the path?

- DFA M= $(Q, \Sigma, \delta, q_0. F)$ and |Q| = n (there are n states)
- M accepts string w of length m >= n, $\delta(q_0, w) \in F =>$ There is a walk of length (m+1) > n with vertex sequence of (m+1) vertices

 $p_1 p_2 p_3...p_i...p_j...p_n p_{n+1} ... p_m p_{m+1}$ with $p_i \in Q$, $p_1 = q_0$, $p_{m+1} \in F$ We have n unique vertices, therefore from pigeon hole principle: there must be two states p_i and p_j from first n+1 in { $p_1 p_2$ $p_3...p_i...p_j...p_n p_{n+1}$ } such that $p_i = p_j$ (they are the same)

The walk in DFA for input w is therefore:

 $p_1 p_2 p_3 ... p_i ... p_{j-1} p_i p_{j+1} ... p_n p_{n+1} ... p_m p_{m+1}$

17

Paths in the graph....

$$w = xyz, |y| \le 1, |xy| \le n$$

$$\delta(q_0,x) = p_i$$
 $\delta(p_i,y) = p_i$ $\delta(p_i,z) = p_{m+1} \in F$

$$\delta(q_0, x y^i z) = p_{m+1} \epsilon F$$

therefore, if $w \in L$ then $x y^i z \in L$ for all $i \ge 0$

The Pumping Lemma for Regular Languages

For every regular language L

Number of states of DFA for L

There is an integer n, such that

For every string w in L of length $\geq n$

We can write w = xyz such that:

1. $|xy| \leq n$.

2. |y| > 0.

Labels along first cycle on path labeled w

3. For all $i \ge 0$, xy^iz is in L.

19

19

Example: L= { a | b | | i>= 0 }

- L is not regular. Prove by contradiction
- Assume L is regular....(and apply pumping lemma)

Pumping Lemma as Adversarial Game

■ 1: Player 1 (me) picks the language to be proved nonregular

$$L = \{ ww \mid w \in \{a,b\}^* \}$$

2. Player 2 picks n, but does'nt reveal to player 1 what n is; player
 1 must now devise a play for all possible n's

important: you cannot assume a value for n!

3. Player 1 picks w, which may depend on n and which must be of length at least n

```
pick w = a^n b^n a^n b^n (note: we express string in terms of n)
```

21

Pumping Lemma as Adversarial Game

- 4: Player 2 divides w into x,y,z obeying the constraints that are stipulated in the lemma: y is not empty and $|xy| \le n$.
 - Again, Player 2 does not tell Player 1 what xyz are; just that they obey the constraints

$$w=xyz$$
 $y \text{ is not } \lambda \text{ (since } |y|>=1) |xy|<=n$
 $since |xy|<=n, \text{ string } xy \text{ consists entirely of } a\text{ 's}$
 $let |x|=m_1 \text{ and } |y|=m_2 \text{ and } m_2>=1$
 $x=a^{ml} y=a^{m2} z=a^{n-ml-m2}b^n a^n b^n$

• 5. Player 1 "wins" by picking k, which may be a function of n, x, y, and z such that xy^kz is not in L.

```
pick i=0 and consider xy^0z=a^{ml} a^{n-ml-m2} b^n a^n b^n=a^{n-m2}b^na^nb^n since m_2>=1, n-m_2< n therefore a^{n-m2}b^na^nb^n is not in L... Contradiction.
```

Power of abstraction & Combining theorems

- If a DFA can do syntax checking, then a DFA can check if there are an equal number of left and right braces ({ and } are used to specify a code block in C)
 - Choose L = { w | w is a string over a,b and w has equal number of a's and b's}
 - Using a to denote { and b to denote } (recall homomorphism which will let you substitute symbols)
- Now apply closure properties: we know that a*b* is regular and regular languages are closed under intersection
 - Therefore L1 = L \cap a*b* = {aⁱ bⁱ | i >1} must be a regular language
 - Equal number of a's and b's
- So, is L1 a regular language ?

23

Example: L = { w | w does not have an equal number of a's and b's}

- Two approaches:
 - 1. Directly apply pumping lemma to get a contradiction by picking some string *w*
 - 2. Use previous results and closure properties of regular languages

Exercise:

• *Is the following language regular, prove or disprove:*

$$L = \{0^{i}1^{j}2^{i}3^{j} \mid i,j > 0\}$$

Can you come up with a short proof using previous proofs/results and properties of regular languages?