BlastNet: Exploiting Duo-Blocks for Cross-Processor Real-Time DNN Inference

Ling, Xuan Huang, Zhihe Zhao, Nan Guan, Zhenyu Yan, and Guoliang Xing

SenSys'22

Introduction

CPU-GPU heterogeneous architectures for edge platforms

- NVIDIA Xavier
 - An 8-core CPU
 - A Volta GPU
- Google Pixel 6
 - An 8-core CPU
 - A MaliG78 MP20 GPU

Introduction

Cross-Processor Real-Time DNN Inference

autonomous driving

smart roadside infrastructure

embedded computer vision

Platforms

Figure 1: Concurrent DNN inference under PyTorch framework on heterogeneous CPU-GPU platforms.

Current mainstream deep learning frameworks monolithically allocate heterogeneous resources for concurrently executed DNN models..

Model-level DNN Inference

Figure 2: Worst-case execution time for concurrent DNN model inference on CPU-GPU platform under different resource allocation strategies.

Allocate DNN models to CPU and GPU in a model-level granularity leads to severe resource contention.

Layer-level DNN Inference

Figure 3: CPU/GPU execution ratio for each DNN layer.

Allocate DNN models to CPU and GPU in a layer-level granularity may cause low resource utilization and significant layer switching overhead.

Layer-level DNN Inference

Figure 4: Layer delay by executing each layer on the processor with the shortest inference time (CPU Utilization: 9.05% for VGG11, 13.37% for AlexNet, GPU Utilization: 65.59% for VGG11, 73.39% for AlexNet, Communication Overhead: 25.35% for VGG11, 13.37% for AlexNet).

Allocate DNN models to CPU and GPU in a layer-level granularity may cause low resource utilization and significant layer switching overhead.

Design – A new abstraction of model partition

- The model-level allocation strategy often causes severe resource contention on the GPU while leaving the CPU idle.
- The layer-level allocation may lead to frequent layer switching and significant communication overhead.

Design – System Overview

Figure 5: System architecture of BlastNet

Design – System Overview

- Block-level Model Partition
 - The layer-level computing
 - Communication characteristics
 - operator fusion rules

- Block-level Model Partition
 - Fuse DNN layers into blocks based on the general operator fusion rules and layer characteristics.
 - Determine the primary and the secondary processors for each block.
 - Optimize the block execution on its secondary processor.

Figure 6: Generation procedure for cross-processor block

Figure 7: Operator fusion and its benefit (evaluated under torchscript on the desktop platform with NVIDIA RTX 2060 GPU). $T_{operator_name}$ denotes the execution time of the operator. T_{sum} denotes the sum of T_{conv2d} , T_{relu} or T_{linear} , $T_{dropout}$. T_{fused_sum} denotes the execution time of fused operators.

- Block-level Model Partition
 - Fuse DNN layers into blocks based on the general operator fusion rules and layer characteristics.
 - Determine the primary and the secondary processors for each block.
 - Optimize the block execution on its secondary processor.

- Block-level Model Partition
 - Fuse DNN layers into blocks based on the general operator fusion rules and layer characteristics.

• Optimize the block execution on its secondary processor.

Figure 6: Generation procedure for cross-processor block

Figure 6: Generation procedure for cross-processor block

Block-level Model Partition

- Fuse DNN layers into blocks based on the general operator fusion rules and layer characteristics.
- Determine the primary and the secondary processors for each block
- Optimize the block execution on its secondary processor.

$$CD = \frac{T^{sec}(B_k)}{T^{pri}(B_k)}, \quad WP = \frac{T^{pri}(B_k)}{\sum_{k=0}^{k_{max}} T^{pri}(B_k)}$$

$$CD > \varepsilon \qquad WP > 1/block_num$$

Figure 8: Example for candidate blocks of a convolutional layer on CPU

- NAS-based Block Optimization
 - Only consider convolutional and fullyconnected layers since they account for the most execution time.
 - Convolutional layer optimized in CPU
 - choose the most CPU-friendly
 operators (i.e., depthwise separable
 convolutional layer)
 - Convolutional layer optimized in GPU
 - Fully-connected layer optimized

Figure 8: Example for candidate blocks of a convolutional layer on CPU

- NAS-based Block Optimization
 - Only consider convolutional and fullyconnected layers since they account for the most execution time.
 - Convolutional layer optimized in CPU
 - Convolutional layer optimized in GPU
 - adopt denser convolutional layers
 - Fully-connected layer optimized

Figure 8: Example for candidate blocks of a convolutional layer on CPU

- NAS-based Block Optimization
 - Only consider convolutional and fullyconnected layers since they account for the most execution time.
 - Convolutional layer optimized in CPU
 - Convolutional layer optimized in GPU
 - Fully-connected layer optimized
 - choose the fully-connected layer
 with a smaller/larger channel size

Figure 8: Example for candidate blocks of a convolutional layer on CPU

- NAS-based Block Optimization
 - Each candidate block has a head module and a tail module.
 - Search for the optimal block that minimizes the accuracy loss.
 - The search algorithm is based on the
 Differentiable Architecture Search
 (DARTS) algorithm

$$\begin{array}{ll} \forall \; k \; \; \min \; \mathcal{L}(B_k^{new}, W^*) \\ s.t. \; T^{sec}(B_k^{old}) > T^{sec}(B_k^{new}) \end{array}$$

Design – dynamic cross processor scheduling

Figure 9: Procedure for cross-processor scheduling, worker thread 1.1 represents the worker thread for DNN model 1 on the GPU processor.

- The scheduler prioritizes each duoblock based on its task urgency.
 - Primary processor-first execution
 mechanism decides the execution
 processor for each duo-block based on
 the status of the processors.

Design – dynamic cross processor scheduling

Figure 9: Procedure for cross-processor scheduling, worker thread 1.1 represents the worker thread for DNN model 1 on the GPU processor.

- The scheduler prioritizes each duoblock based on its task urgency.
- Primary processor-first execution
 mechanism decides the execution
 processor for each duo-block based on
 the status of the processors.

Design – dynamic cross processor scheduling

Figure 10: Primary-processor-first execution mechanism

- The scheduler prioritizes each duoblock based on its task urgency.
- Primary processor-first execution
 mechanism decides the execution
 processor for each duo-block based on
 the status of the processors.

Implementation

Platforms

Table 1: Platforms used in evaluation experiments.

Platform	GPU	CPU	Memory	Storage
NVIDIA AGX	512-core	8-core ARMv8.2	16GB	32GB
Xavier	Volta			
NVIDIA Jet-	256-core	2-core ARM Den-	8GB	32GB
son TX2	Pascal	ver + 4-core ARM		
		A57		
Desktop	RTX2080	8-core Intel i9-	32GB	5TB
		9900K		

Implementation

Implementation

DNN Inference Task	Dataset	DNN Model
Type		
Image Classification	CIFAR10 [24]	MobileNet[17], VGG11, AlexNet
Sign Recognition	GTSRB [48]	ResNet18
Object Detection	COCO [32]	YOLO [44]

Figure 11: BlastNet Software Implementation

Implementation

Implementation

DNN Inference Task	Dataset	DNN Model	
Type			
Image Classification	CIFAR10 [24]	MobileNet[17], VGG11, AlexNet	
Sign Recognition	GTSRB [48]	ResNet18	
Object Detection	COCO [32]	YOLO [44]	

Figure 11: BlastNet Software Implementation

End-to-end System Evaluation

Autonomous driving testbed

(b) Testbed setup

Figure 12: F1/10 autonomous driving testbed.

Four real-time DL tasks for traffic sign recognition and a lane detection task running on this platform.

End-to-end System Evaluation

Autonomous driving testbed

Figure 13: Performance of BlastNet under various driving settings.

- Baseline: Layer _Sched schedules the DNN model at the layer level
- Running the F1/10 autonomous vehicle at different speeds, resulting in different levels of resource utilization.

Performance of Cross-processor Duo-block Generation

Figure 14: Model accuracy with all possible inference paths with the optimized blocks.

• Baseline: Similarity-based NAS

Impact of different DNN workloads

(a) 4DNN inference task set (Real-time (b) 4DNN inference task set (Accuracy performance)

(c) 8DNN inference task set (Real-time (d) 8DNN inference task set (Accuracy performance)

Performance)

- Mono_Sched: Monolithically allocate the DNN models to heterogeneous resources.
- Layer _Sched : Schedule the DNN model at the layer level
- Mono_Adapt: Differs from BlastNet only in DNN scheduling by adopts monolithic scheduling to execute the models.
- BlastNet w/o-PF: Differ from BlastNet only in that it has no primary-first execution mechanism

Impact of different DNN workloads

	Minimum	Average	1/4 Value	Maximum
BlastNet (4task)	73.05%	80.08%	80.79%	80.79%
BlastNet-w/o-PF	46.65%	65.69%	46.65%	80.79%
(4task)				
BlastNet (8task)	73.05%	79.16%	80.79%	80.79%
BlastNet-w/o-PF	46.65%	67.02%	46.65%	80.79%
(8task)				

(e) Statistics for accuracy

Figure 15: Real-time/Accuracy performance of BlastNet under different DNN workloads.

Impact of background load

(Real-time Performance)

(Accuracy Performance)

Figure 16: Real-time/Accuracy performance of BlastNet under interference.

Different edge platforms

Figure 17: Performance comparison of BlastNet under different edge platforms.

CPU/GPU utilization

System Overhead

Table 3: CPU Overhead of Block-level DNN Scheduling

Task Set Size	Desktop	Xavier	TX2
2 DNN inference tasks	1.21%	1.61%	2.86%
4 DNN inference tasks	1.52%	1.38%	3.97%
6 DNN inference tasks	2.08 %	1.71%	3.20%

• caused by the dynamic cross-processor DNN scheduler

Advantage

- Propose a new abstraction of model partition: duo-block.
- Efficient utilize the resource of GPU and CPU.

Disadvantage

The online scheduling strategy is overly simplistic.