

Prof. MSc. Marcos Alexandruk

E-mail: alexandruk@uni9.pro.br

Estatística

Estatística

A palavra estatística tem origem no latim "**status**" e relaciona-se com "**estado**".

No início, a palavra era usada para se referir ao "cidadão político".

Posteriormente, passou a ser utilizada em alemão com o sentido de "conjunto de dados do Estado", de onde decorre o seu significado desde o século XIX.

BATISTA, Carolina. Estatística. Toda Matéria, 2021. Disponível em: https://www.todamateria.com.br/estatistica-conceito-fases-metodo/. Acesso em: 23/02/2021.

Estatística

"Estatística é uma ciência exata que estuda a coleta, a organização, a análise e registro de dados por amostras.

Utilizada desde a Antiguidade, quando se registravam os nascimentos e as mortes das pessoas, é um método de pesquisa fundamental para tomar decisões. Isso porque fundamenta suas conclusões nos estudos realizados."

BATISTA, Carolina. Estatística. Toda Matéria, 2021. Disponível em: https://www.todamateria.com.br/estatistica-conceito-fases-metodo/. Acesso em: 23/02/2021.

Estatística

Estatística é ciência que tem por fim a **pesquisa e a comparação dos fatos gerais e particulares** verificados no movimento das sociedades.

Objetivo geral da estatística

O objetivo da estatística é a análise e interpretação dos fenômenos sociais de qualquer natureza, para planejamento de ações.

Fases do Método Estatístico

BATISTA, Carolina. Estatística. Toda Matéria, 2021. Disponível em: https://www.todamateria.com.br/estatistica-conceito-fases-metodo/. Acesso em: 23/02/2021. (adaptado)

Importância da Estatística na Engenharia

A probabilidade e estatística pode contribuir para mitigação dos erros e favorecer a análise de um projeto em construção, considerando as mais diversas situações, de forma que dados estatísticos podem auxiliar os testes de desempenho e o controle de qualidade.

Análise Descritiva

A análise descritiva dos dados se limita a calcular algumas medidas de posição e variabilidade, como a média e variância, por exemplo.

Inferência

Inferência estatística é um ramo da Estatística cujo objetivo é fazer afirmações a partir de um conjunto de valores representativo (amostra) sobre um universo.

Em geral, a inferência estatística está associada à coleta, à redução, à análise e à modelagem dos dados.

Tipos de Variáveis

Variáveis qualitativas: apresentam algum tipo de atributo do elemento pesquisado. (educação, estado civil, sexo, etc.)

Variáveis quantitativas: apontam para um impacto no elemento pesquisado e contribuem na análise.

Variáveis quantitativas discretas: Quando podemos expressar as variáveis por um número inteiro em certa contagem, chamamos de variável quantitativa discreta. (número de filhos, quantidade de veículos, etc.)

Variáveis quantitativas contínuas: Quando destacamos uma variável por intermédio de uma medida, chamamos de variável quantitativa contínua. (tempo, temperatura, pressão, etc.)

Distribuições de frequências

No estudo de uma variável, devemos dispor um maior interesse em conhecer a distribuição dessa variável por meio das possíveis realizações dela e dispor seus valores, de modo que se tenha uma boa ideia global dessa distribuição.

Distribuições de frequências

Frequência de porcentagens de 20 empregados segundo o grau de instrução:

Grau de instrução	Contagem	Frequência	Proporção	Porcentagem
1º grau	8	8	0,4	40%
2º grau	7	7	0,35	35%
Superior	5	5	0,25	25%
Total	20	20	1,00	100%

Distribuições de frequências

Frequência absoluta acumulada e frequência relativa acumulada:

Grau de instrução	Frequência Absoluta	Frequência Relativa	Frequência Absoluta Acumulada	Frequência Relativa Acumulada
1º grau	8	40%	8	40%
2º grau	7	35%	8 + 7 = 15	40% + 35% = 75%
Superior	5	25%	15 + 5 = 20	75% + 25% = 100%
Total	20	100%	20	100%

As frequências acumuladas são extremamente úteis quando o objetivo é saber a quantidade ou a porcentagem até determinada característica.

Amplitude total

Alturas de 32 crianças de 1 a 4 anos:

73,93	71,51	66,83	64,17	66,16	65,7	64,78	65,81
63,15	62,56	61,88	60,94	60,3	60,15	56,57	55,86
71,47	70,09	64,44	63,27	66,06	65,09	64,73	64,16
62,69	61,91	61,49	60,73	60,24	59,37	56,03	55,77

Amplitude total = Valor Máximo – Valor Mínimo

Amplitude total = 73,93 - 55,77

Amplitude total = 18,16

Números de classes

Alturas de 32 crianças de 1 a 4 anos:

73,93	71,51	66,83	64,17	66,16	65,7	64,78	65,81
63,15	62,56	61,88	60,94	60,3	60,15	56,57	55,86
71,47	70,09	64,44	63,27	66,06	65,09	64,73	64,16
62,69	61,91	61,49	60,73	60,24	59,37	56,03	55,77

Número de classes = SQRT (n)

Número de classes = SQRT (32)

Número de classes = 5,65 (aproximado para 6)

SQRT => Raiz Quadrada

Amplitude do intervalo

Amplitude do intervalo = Amplitude total / número de classes

Amplitude do intervalo = 18,16 / 6

Amplitude do intervalo = 3,02

Classes	fi	Fi	fr	Fr
55 F	4	4	12,50%	12,50%
58 F	6	10	18,75%	31,25%
61 F	7	17	21,88%	53,13%
64 F	11	28	34,38%	87,50%
67 F	1	29	3,13%	90,63%
70 ⊢ [ERRO]	3	32	9,38%	100%
Total	32		100%	

Amplitude do intervalo

Amplitude do intervalo = Amplitude total / número de classes

Amplitude do intervalo = 18,16 / 6

Amplitude do intervalo = 3,02

Classes	fi	Fi	fr	Fr
55 F 58	4	4	12,50%	12,50%
58 ⊢ 61	6	10	18,75%	31,25%
61 ⊦ 64	7	17	21,88%	53,13%
64 ⊦ 67	11	28	34,38%	87,50%
67 ⊦ 70	1	29	3,13%	90,63%
70 F 73 [ERRO]	3	32	9,38%	100%
Total	32		100%	

[ERRO] O maior valor é 73,93 (está acima de 73)

Amplitude do intervalo

Amplitude do intervalo = Amplitude total / número de classes

Amplitude do intervalo = 18,16 / 6

Amplitude do intervalo = 3,02 (arredondar para 4)

Classes	fi	Fi	fr	Fr
55 F 59				
59 F 63				
63 F 67				
67 ⊦ 71				
71 F 75				
75 - 79				
Total	32		100%	

Regra de Sturges

$$k = 1 + 3,3 * LOG(n)$$

k = Número de classes k = 1+3,3*LOG(20)

n = Total de dados k = 5,293399 k ≈ 5

 $A_{Total} = Valor_{Max} - Valor_{Min}$ $A_{Total} = 42 - 15$ $A_{T} = 27$

 $h = A_{Total}/k$ h = 27/5 h = 5,4 $h \approx 6$

h = Amplitude do Intervalo

(Arredondar para cima)

Pesquisa: Idade							
17 18 16 24 23							
42	40	36	15	18			
26	23	23	24	28			
41	16	18	20	27			

IDADE	fi
15 F 21	8
15 F 27	6
27 F 33	2
33 F 39	1
39 F 45	3

Exercício

	SALÁRIOS						
20,50	9,50	15,30	17,20	24,10	19,90		
15,40	12,70	7,40	16,50	15,30	26,20		
14,90	7,80	23,30	15,90	11,80	18,40		
13,40	14,30	16,20	16,70	9,20	16,80		
9,80	20,10	17,80	17,10	12,60	15,90		

Classes	fi
7,40 F 10,40	
10,40 F 13,60	
13,60 F 16,80	
16,80 F 20,00	
20,00 F 23,20	
23,20 F 26,40	

Amplitude Total (A_{Total}) =

Total de dados (n) =

Número de classes (k) =

Amplitude do intervalo (h) =

Exercício

SALÁRIOS						
20,50	9,50	15,30	17,20	24,10	19,90	
15,40	12,70	7,40	16,50	15,30	26,20	
14,90	7,80	23,30	15,90	11,80	18,40	
13,40	14,30	16,20	16,70	9,20	16,80	
9,80	20,10	17,80	17,10	12,60	15,90	

Classes	fi
7,40 F 10,60	
10,60 F 13,80	
13,80 F 17,00	
17,00 F 20,20	
20,20 F 23,40	
23,40 F 26,60	

$$k = 1 + 3,3 * LOG(n)$$

k = Número de classes

k = 1+3,3*LOG(30)

n = Total de dados

k = 6

k ≈ 6

 $A_{Total} = Valor_{Max} - Valor_{Min}$

 $A_{Total} = 26,20 - 7,40$

 $A_T = 18,80$

 $h = A_{Total}/k$

h = 18,80/6

h = 3,13

h≈3,20

h = Amplitude do Intervalo

(Arredondar para cima)

Exercício

SALÁRIOS					
20,50	9,50	15,30	17,20	24,10	19,90
15,40	12,70	7,40	16,50	15,30	26,20
14,90	7,80	23,30	15,90	11,80	18,40
13,40	14,30	16,20	16,70	9,20	16,80
9,80	20,10	17,80	17,10	12,60	15,90

Classes	fi
7,40 F 10,60	5
10,60 F 13,80	4
13,80 F 17,00	11
17,00 F 20,20	6
20,20 F 23,40	2
23,40 F 26,60	2
TOTAL VALORES	30

Amplitude Total (A_{Total}) =	18,80

Total de dados (n) =	30
----------------------	----

Amplitude do intervalo (h) =	3,20
------------------------------	------

Exercício

Classes	fi	Fi	fr	Fr
7,40 ⊢ 10,60	5	5	16,66%	16,66%
10,60 ⊢ 13,80	4	9	13,33%	30,00%
13,80 ⊢ 17,00	11	20	36,66%	66,66%
17,00 ⊢ 20,20	6	26	20,00%	86,66%
20,20 F 23,40	2	28	6,66%	93,33%
23,40 ⊢ 26,60	2	30	6,66%	100,00%
Total	30		100%%	

fi = frequência absoluta

Fi = frequência absoluta acumulada

fr = frequência relativa

Fr = frequência relativa acumulada

Referências

DACHS J. N. W. Análise de dados e regressão. São Paulo: IME USP, 1978.

LEVIN J. Estatística aplicada a Ciências Humanas. São Paulo: Harper e Row do Brasil, 1978.

MORETTIN P. A. Introdução a estatística para ciências exatas. São Paulo: Atual Editora, 1981.

Prof. MSc. Marcos Alexandruk

E-mail: alexandruk@uni9.pro.br

Representações gráficas

Produtos	Quantidade
Α	35
В	25
С	45
D	10

Classes	Frequências
0 F 2	3
2 F 4	6
4 F 6	8
6 F 8	5
8 F 10	2

Medição	Temperatura
1	38,4
2	37,0
3	38,7
4	38,5
5	38,0
6	37,3
7	36,5
8	36,0
9	37,0
10	37,9
11	37,6
12	36,8

Medição	Temperatura
1	38,4
2	37,0
3	38,7
4	38,5
5	38,0
6	37,3
7	36,5
8	36,0
9	37,0
10	37,9
11	37,6
12	36,8

Produtos	Quantidade (%)
Α	32,4
В	13,6
С	43,2
D	10,8

SP	10
SP	5
SP	30
SP	12
SP	10
SP	20
SP	14
SP	10
RJ	12
RJ	60
RJ	5
RJ	15
RJ	18
RJ	12
RJ	14
MG	10
MG	10
MG	12
MG	5
MG	14
MG	25
MG	12
MG	20
MG	15

Medidas de tendência central: média aritmética; média geométrica; média harmônica

Média aritmética

1º caso: dados não agrupados

A média aritmética dos valores x_1 , x_2 , x_3 , ..., x_n é o quociente entre a soma desses valores e o seu número total n.

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$
 ou $\bar{x} = \frac{\Sigma x_i}{n}$

Exemplo: Determinar a média aritmética dos valores: 3, 7, 8, 10 e 11.

$$\bar{x} = \frac{3+7+8+10+11}{5} = 7.8$$

Média aritmética

2º caso: dados agrupados sem intervalos

Se os elementos x_1 , x_2 , x_3 , ..., x_n apresentam, respectivamente, frequências f_1 , f_2 , f_3 , ..., f_n , então:

$$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + x_3 f_3 + \dots + x_n f_n}{n} \text{ ou } \bar{x} = \frac{\Sigma x_i f_i}{n}$$

Exemplo: dada a amostra: 2, 5, 5, 5, 6, 6, 6, 8, 8, a média será:

$$\bar{x} = \frac{2.1 + 5.4 + 6.3 + 8.2}{10} = \frac{56}{10} = 5.6$$

x _i	- f _i	x _i f _i
2	1	2
5	4	20
6	3	18
8	2	16
Total	10	56

Média aritmética

3º caso: dados agrupados com intervalos

Quando os dados estão agrupados, aceita-se, por convenção, que as frequências se distribuam uniformemente ao longo da classe e que, portanto, o seu ponto médio (x) é o valor representativo do conjunto. Então:

$$\bar{x} = \frac{x_1 f_1 + x_2 f_2 + x_3 f_3 + \dots + x_n f_n}{n} \text{ ou } \bar{x} = \frac{\sum x_i f_i}{n}$$

Exemplo: dada a amostra conforme a tabela, a média será:

$$\bar{x} = \frac{3,5.1+6,5.10+9,5.8+12,5.1}{20} = \frac{157}{20} = 7,85$$

Classe	x _i	f	$x_i f_i$
2 F 5	3,5	1	3,5
5 F 8	6,5	10	65
8 F 11	9,5	8	76
11 ⊦ 14	12,5	1	12,5
Total		20	157

Média geométrica

A média geométrica de um conjunto de números positivos é definida como o **produto de todos os membros do conjunto elevado ao inverso do número de membros**. Indica a tendência central ou o valor típico de um conjunto de números usando o produto dos seus valores.

A média geométrica é frequentemente utilizada quando comparamos diferentes itens – encontrando uma única "figura representativa" para esses itens – quando cada um desses itens possuem múltiplas propriedades que possuem diferentes escalas numéricas. Por exemplo, a média geométrica pode nos dar uma "média" significativa para comparar duas companhias que estão sendo classificadas numa escala de 0 a 5 para suas sustentabilidades ambientais e sendo classificadas de 0 a 100 para suas viabilidades financeiras. Se a média aritmética fosse usada em vez da média geométrica, a viabilidade financeira pesaria mais pois seu alcance numérico é grande, logo uma pequena mudança percentual na classificação financeira (por exemplo: uma mudança de 80 para 90) faria uma grande diferença na média aritmética do que uma grande diferença percentual na classificação da sustentabilidade ambiental (por exemplo uma mudança de 2 para 5 na escala).

Média geométrica

Sejam x1, x2, x3, ..., xn valores da variável X, associadas, respectivamente, às frequências f1, f2, f3, ..., fn. Então, a média geométrica de x é definida por:

$$M_g = \sqrt[n]{x_1^{f_1} \cdot x_2^{f_2} \cdot x_3^{f_3} \cdot \dots \cdot x_n^{f_n}}$$

Em particular, se f_1 , f_2 , f_3 , ..., $f_n = 1$. temos:

$$M_g = \sqrt[n]{x_1 \cdot x_2 \cdot x_3 \cdot \dots \cdot x_n}$$

Exemplo: Dada a tabela de distribuição de frequências, temos:

$$M_q = \sqrt[22]{18.26.35.5^3} = \sqrt[22]{1944000} = 1,93$$

x _i	f
1	8
2	6
3	5
5	3
Total	22
Total	22

Média harmônica

A média harmônica é definida como a quantidade de elementos no conjunto, divida pela soma do inverso dos elementos do conjunto.

A média aritmética é muitas vezes utilizada erroneamente em locais que exigem a média harmônica. Um exemplo é o cálculo da velocidade média em um percurso de ida e volta em uma mesma via, em que a ida é percorrida a 60 km/h e a volta a 40 km/h a média aritmética de 50 está incorreta. A velocidade média no percurso total é a média harmônica de 40 e 60, ou seja 48km/h. Isto se deve ao fato de que, como os dois trechos tem o mesmo comprimento, quanto menor for a velocidade, mais do tempo total é despendido àquela velocidade e, então, ela tem um peso maior na composição da velocidade média.

Média harmônica

Se os elementos x_1 , x_2 , x_3 , ..., x_n apresentam, respectivamente, frequências f_1 , f_2 , f_3 , ..., f_n , então, a média harmônica é definida como o inverso da média aritmética do inverso dos valores:

$$M_h = \frac{n}{\frac{f_1}{x_1} + \frac{f_2}{x_2} + \frac{f_3}{x_3} + \dots + \frac{f_n}{x_n}} = \frac{n}{\sum \frac{f_i}{x_i}}$$

Em particular, se f_1 , f_2 , f_3 , ..., $f_n = 1$. temos:

$$M_h = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}} = \frac{n}{\sum \frac{1}{x_i}}$$

Exemplo: Dada a tabela de distribuição de frequências, temos:

$$M_h = \frac{22}{\frac{8}{1} + \frac{6}{2} + \frac{5}{3} + \frac{3}{5}} = \frac{22}{\frac{398}{30}} = 22.\frac{30}{398} = \frac{330}{199} = 1,66$$

X _i	fi
1	8
2	6
3	5
5	3
Total	22