Оглавление

1	1 Жорданова форма оператора	2
	1.0.1 Напоминание: собственные числа	2
	1.1 Собственные подпространства	3
	1.2 Операторы с диагональными и блочно-диагональными матрицами	4

Глава 1

Жорданова форма оператора

V – векторное пространство, $\mathcal{A}: V \to V$

$$A \xrightarrow{e_1, \dots, e_n} A, \qquad A \xrightarrow{e'_1, \dots, e'_n} A'$$

Жорданова клетка:

$$Jr(\lambda) = \begin{pmatrix} \lambda & 0 & 0 & . \\ 1 & \lambda & 0 & . \\ 0 & 1 & \lambda & . \\ . & . & . & . \end{pmatrix}$$

Например,

$$\begin{pmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix}$$

Жорданова форма – матрица, у которой на главной диагонали жордановы клетки

$$\begin{pmatrix} Jr(\lambda_1) & 0 & 0 & .\\ 0 & Jr(\lambda_2) & 0 & .\\ 0 & 0 & Jr(\lambda_3) & .\\ . & . & . & . \end{pmatrix}$$

1.0.1 Напоминание: собственные числа

Определение 1. \mathcal{A} – оператор на V

Число λ называется собственным для \mathcal{A} , если

$$\exists v \in V : Av = \lambda v$$

v называется собственным вектором, соответствующим λ

Определение 2. А – квадратная матрица

Число λ называется собственным, если

$$\exists$$
 столбец $X: \mathcal{A}X = \lambda X$

Х называется собственным столбцом

Определение 3. A – квадратная матрица

Характеристическим многочленом A называется $\chi_A(t) = \det(A - tE)$

Теорема 1. Собственные числа A – корни $\chi_A(t)$

Определение 4. \mathcal{A} – оператор, A – его матрица в некотором базисе

Характеристическим многочленом \mathcal{A} называется $\chi_A(t)$

1.1 Собственные подпространства

Определение 5. V – векторное пространство, \mathcal{A} – оператор на V, λ – с. ч. Собственным подпространством, соответствующим λ , называется множество с. в., соответствующих λ

Обозначение. V_{λ}

Определение 6. U — подпространство V U называется инвариантным относительно \mathcal{A} , если

$$\forall x \in U \quad \mathcal{A}x \in U$$

Утверждение 1. V_{λ} – инвариантное подпространство

Доказательство.

• Подпространство

$$-u, v \in V_{\lambda} \implies \begin{cases} \mathcal{A}u = \lambda u \\ \mathcal{A}v = \lambda v \end{cases} \implies \mathcal{A}(u+v) \underset{\text{линейность}}{=} \mathcal{A}u + \mathcal{A}v = \lambda u + \lambda v = \lambda(u+v) \implies u+v \in V_{\lambda}$$

$$-u \in V_{\lambda}, k \in K \implies \mathcal{A}(ku) = k\mathcal{A}(u) = k\lambda u = \lambda(ku) \implies ku \in V_{\lambda}$$

• Инвариантность

$$u \in V_{\lambda} \implies \mathcal{A}u = \lambda u \in V_{\lambda}$$

Теорема 2 (о сумме собственных подпространств). $\lambda_1,...,\lambda_k$ – различные собственные числа Тогда сумма $V_{\lambda_1}+...+V_{\lambda_k}$ является прямой

Доказательство. Индукция по k

- **База.** k = 1 очевидно
- Переход. $k-1 \rightarrow k$

Пусть
$$U_1 + ... + U_{k-1} + U_k = 0,$$
 $U_i \in V_{\lambda_i}$

$$0 = \mathcal{A}(\underbrace{U_1 + \ldots + U_{k-1} + U_k}) - \lambda_k(\underbrace{U_1 + \ldots + U_{k-1} + U_k}) = \underbrace{\lambda_1 U_1 + \ldots + \lambda_{k-1} U_{k-1} + \lambda_k U_k - \lambda_k U_1 - \ldots - \lambda_k U_{k-1} - \lambda_k U_k} = \underbrace{(\lambda_1 - \lambda_k)}_{=0} U_1 + \ldots + \underbrace{(\lambda_{k-1} - \lambda_k)}_{=0} U_{k-1}$$

$$(\lambda_1 - \lambda_k)U_1 \in V_{\lambda_1}, \dots, (\lambda_{k-1} - \lambda_k)U_{k-1} \in V_{\lambda_{k-1}}$$

$$V_{\lambda_1}+\ldots+V_{\lambda_{k-1}}$$
 – прямая

$$\implies (\lambda_1 - \lambda_k)U_1 = \dots = (\lambda_{k-1} - \lambda_k)U_{k-1} = 0 \implies U_1 = \dots = U_{k-1} = 0 \implies U_k = 0$$

Следствие. $\lambda_1,...,\lambda_k$ – различные с. ч., $U_i \in V_{\lambda_i},\, U_i \neq 0$ Тогда $U_1,...,U_k$ ЛНЗ

Доказательство. Пусть $a_1U_1 + ... + a_kU_k = 0$

$$a_1U_1 \in V_{\lambda_1}, ..., a_kU_k \in V_{\lambda_k} \implies a_1U_1 = ... = a_kU_k = 0 \implies a_1 = ... = a_k = 0$$

1.2 Операторы с диагональными и блочно-диагональными матрицами

В этом параграфе рассматриваем конечномерные пространства

Определение 7. Оператор \mathcal{A} , действующий на V называется диагонализуемым, если его матрица в некотором базисе диагональна

Определение 8. \mathcal{A} – оператор, λ – с. ч.

- Геометрической кратностью λ называется $\dim V_{\lambda}$
- Арифметической кратностью λ называется кратность λ как корня $\chi_{\mathcal{A}}(t)$

Теорема 3 (критерий диагонализуемости в терминах геометрической кратности). (I) \mathcal{A} диагонализуем \iff (II) сумма геометрических кратностей всех с. ч. равна $\dim V$

Доказательство. \mathcal{A} диагонализуем \iff в нек. базисе $e_1,...,e_n$ матрица \mathcal{A} имеет вид $A=\begin{pmatrix} a_1 & 0 & . \\ 0 & a_2 & . \\ . & . & . \end{pmatrix}$

 \iff для некоторого базиса $e_1,...,e_n$ выполнено

$$Ae_i = 0e_1 + \dots + a_i e_i + \dots + 0e_n = a_i e_i$$

 \iff (I') сущ. базис из с. в.

Докажем, что $(I) \iff (I')$:

Пусть $U = V_{\lambda_1} + ... + V_{\lambda_k}$

$$n \coloneqq \dim V, \qquad d_i \coloneqq \dim V_{\lambda_i}$$

• (II) \Longrightarrow (I') Докажем, что $d_1 + ... + d_k = n$

$$V_{\lambda_1} + V_{\lambda_k}$$
 прямая $\implies \dim U = n \implies U = V$

 $V_{\lambda_1} + V_{\lambda_k}$ прямая \implies объединение базисов является базисом U = V

Эти базисы состоят из с. в.

Объединение базисов состоит из с. в.

Это базис V

• $(I') \implies (II)$

Сущетсвует базис V из с. в.

Следствие (достаточное условие диагонализуемости). Пусть $\dim V = n$ Если у \mathcal{A} есть n различных с. ч., то \mathcal{A} диагонализуем

Доказательство. $\dim V_{\lambda_i} \geq 1$

$$n \geq \dim(V_{\lambda_1} + \ldots + V_{\lambda_k}) \underset{\text{idd. cymma}}{=} \dim V_{\lambda_1} + \ldots + \dim V_{\lambda_k} \geq n$$

Значит, достигается равенство

Напоминание (определитель ступенчатой матрицы).

$$M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}, A, C - \text{kb.} \implies |M| = |A| \cdot |C|$$

Теорема 4 (арифм. и геом. кратности). λ – с. ч. \mathcal{A}

Геом. кратность $\lambda \leq$ арифм. кратности λ

Доказательство. Пусть $n = \dim V$, k – геом. кр. λ

Выберем базис $e_1,...,e_k$ пространства V_λ

Дополним его до базиса $V: e_1, ..., e_k,, e_n$

При $i \leq k$ выполнено $\mathcal{A}e_i = \lambda e_i = 0e_1 + ... + \lambda e_i + ... + 0e_n$

Матрица \mathcal{A} в базисе $e_1, ..., e_n$:

$$A = \begin{pmatrix} \lambda & \cdot & B \\ \cdot & \lambda & \\ 0 & 0 & C \\ 0 & 0 & \end{pmatrix}$$

Для некоторых $B_{k\times n-k},\,C_{n-k\times n-k}$

$$\chi(t) = \begin{vmatrix} (\lambda - t)E_k & B \\ 0 & C - tE_{n-k} \end{vmatrix} = \det\left((\lambda - t)E_k\right) \cdot \det(C - tE_{n-k}) = (\lambda - t)^k \cdot \det(C - tE_{k-n})$$

Следствие (критерий диагонализуемости в терминах арифметических и геометрических кратностей). Опреатор ${\cal A}$ диагонализуем \iff

- 1. $\chi_A(t)$ раскладывается на линейные множители
- 2. \forall с. ч. λ арифм. кр. = геом. кр.

Доказательство. Пусть λ_i – с. ч., d_i – геом. кр., a_i – арифм. кр., $n = \dim C$

$$\chi(t) - (t - \lambda_1)^{a_1} ... (t - \lambda_k)^{a_k} \cdot f(t)$$

$$n = \deg \chi(t) \ge a_1 + \dots + a_k \ge d_1 + \dots + d_k$$

Диагонал. $\iff n = d_1 + ... + d_k \iff$ везде достигаются равенства

5