Reconstruction d'objets convexes à partir de photographies

Présentation de Lucie-Hélène Cuingnet

Travail réalisé avec Barnabé Baruchel

TIPE 2025

Définition du problème

Données

Objectif

Le problème de l'appariement

lmage 1

geometrie epipolaire et matrice fondamental

Appariement BRIEF avec filtrage épipolaire

Entrée: Points P_1 (image 1), Points P_2 (image 2), Matrice fondamentale F

Sortie : Liste de correspondances fiables

Appariement BRIEF avec filtrage épipolaire

Entrée: Points P_1 (image 1), Points P_2 (image 2), Matrice fondamentale F **Sortie**: Liste de correspondances fiables

- 1. Pré-tri des points sur l'image 1
 - On ne garde que les coins détectés (suppression non maximale locale)

Appariement BRIEF avec filtrage épipolaire

Entrée : Points P_1 (image 1), Points P_2 (image 2), Matrice fondamentale F **Sortie :** Liste de correspondances fiables

- 1. Pré-tri des points sur l'image 1
 - On ne garde que les coins détectés (suppression non maximale locale)
- 2. Filtrage épipolaire
 - Pour chaque point $p_1 \in P_1$:
 - Calcul de la droite épipolaire $I = F \cdot p_1$ dans l'image 2
 - Filtrage des points $p_2 \in P_2$ proches de I : distance $(p_2, I) < \varepsilon$

Filtrage epipolaire

Droite epipolaire

Appariement BRIEF avec filtrage épipolaire

Entrée : Points P_1 (image 1), Points P_2 (image 2), Matrice fondamentale F Sortie : Liste de correspondances fiables

- 1. Pré-tri des points sur l'image 1
 - On ne garde que les coins détectés (suppression non maximale locale)
- 2. Filtrage épipolaire
 - Pour chaque point $p_1 \in P_1$:
 - Calcul de la droite épipolaire $I = F \cdot p_1$ dans l'image 2
 - Filtrage des points $p_2 \in P_2$ proches de I: distance $(p_2, I) < \varepsilon$

Appariement BRIEF avec filtrage épipolaire

Entrée : Points P_1 (image 1), Points P_2 (image 2), Matrice fondamentale F **Sortie :** Liste de correspondances fiables

- 1. Pré-tri des points sur l'image 1
 - On ne garde que les coins détectés (suppression non maximale locale)
- 2. Filtrage épipolaire
 - Pour chaque point $p_1 \in P_1$:
 - Calcul de la droite épipolaire $I = F \cdot p_1$ dans l'image 2
 - Filtrage des points $p_2 \in P_2$ proches de I: distance $(p_2, I) < \varepsilon$
- 3. Comparaison des descripteurs BRIEF
 - Pour chaque $p_1 \in P_1$ et $p_2 \in C(p_1)$:
 - Calcul descripteurs BRIEF d₁, d₂
 - Distance de Hamming $h = \text{distance Hamming}(d_1, d_2)$
 - Enregistrement des paires avec leur score h

Descripteur BRIEF: Principe

Comparaisons binaires:

On considère une fenêtre autour d'un point clé.

Descripteur BRIEF: Principe

- On considère une fenêtre autour d'un point clé.
- ► On choisit aléatoirement un pixel (ex: bleu).

Descripteur BRIEF: Principe

Comparaisons binaires:

Bleu < Vert \Rightarrow 1

- On considère une fenêtre autour d'un point clé.
- ► On choisit aléatoirement un pixel (ex: bleu).
- On la compare à un autre (ex: vert) : BRIEF₁ = 1 si intensité(bleu) < intensité(vert)</p>

Descripteur BRIEF: Principe


```
Bleu < Vert \Rightarrow 1
Orange > Violet \Rightarrow 0
```

- On considère une fenêtre autour d'un point clé.
- ► On choisit aléatoirement un pixel (ex: bleu).
- ▶ On la compare à un autre (ex: vert) : BRIEF₁ = 1 si intensité(bleu) < intensité(vert)</p>
- ► On répète avec d'autres paires (ex: orange vs violet)...

Descripteur BRIEF: Principe


```
\begin{array}{ll} \mathsf{Bleu} < \mathsf{Vert} & \Rightarrow 1 \\ \mathsf{Orange} > \mathsf{Violet} & \Rightarrow 0 \\ \mathsf{Rose} < \mathsf{Turquoise} \Rightarrow 1 \end{array}
```

- On considère une fenêtre autour d'un point clé.
- ► On choisit aléatoirement un pixel (ex: bleu).
- On la compare à un autre (ex: vert) : BRIEF₁ = 1 si intensité(bleu) < intensité(vert)</p>
- ► On répète avec d'autres paires (ex: orange vs violet)...

Descripteur BRIEF: Principe


```
Bleu < Vert \Rightarrow 1
Orange > Violet \Rightarrow 0
Rose < Turquoise \Rightarrow 1
Jaune > Magenta \Rightarrow 0
```

- On considère une fenêtre autour d'un point clé.
- On choisit aléatoirement un pixel (ex: bleu).
- ▶ On la compare à un autre (ex: vert) : $BRIEF_1 = 1$ si intensité(bleu) < intensité(vert)
- ► On répète avec d'autres paires (ex: orange vs violet)...

Descripteur BRIEF: Principe


```
\begin{array}{ll} \mathsf{Bleu} < \mathsf{Vert} & \Rightarrow 1 \\ \mathsf{Orange} > \mathsf{Violet} & \Rightarrow 0 \\ \mathsf{Rose} < \mathsf{Turquoise} \Rightarrow 1 \\ \mathsf{Jaune} > \mathsf{Magenta} \Rightarrow 0 \\ \mathsf{Cyan} < \mathsf{Rouge} & \Rightarrow 1 \end{array}
```

- On considère une fenêtre autour d'un point clé.
- ► On choisit aléatoirement un pixel (ex: bleu).
- On la compare à un autre (ex: vert) : BRIEF₁ = 1 si intensité(bleu) < intensité(vert)</p>
- ► On répète avec d'autres paires (ex: orange vs violet)...

Descripteur BRIEF: Principe

Comparaisons binaires:

```
\begin{array}{ll} \text{Bleu} < \text{Vert} & \Rightarrow 1 \\ \text{Orange} > \text{Violet} & \Rightarrow 0 \\ \text{Rose} < \text{Turquoise} \Rightarrow 1 \\ \text{Jaune} > \text{Magenta} \Rightarrow 0 \\ \text{Cyan} < \text{Rouge} & \Rightarrow 1 \\ \end{array}
```

Descripteur final:

1 0 1 0 1

- On considère une fenêtre autour d'un point clé.
- On choisit aléatoirement un pixel (ex: bleu).
- On la compare à un autre (ex: vert) : BRIEF₁ = 1 si intensité(bleu) < intensité(vert)</p>
- ► On répète avec d'autres paires (ex: orange vs violet)...

Comparaison de descripteurs BRIEF : distance de Hamming

Descripteur 1 (image gauche)

Comparaison de descripteurs BRIEF : distance de Hamming

Descripteur 1 (image gauche)
1 0 1 0 1

Descripteur 2 (image droite)
1 1 0 0 1

Comparaison de descripteurs BRIEF : distance de Hamming

```
Descripteur 1 (image gauche)
1 0 1 0 1

Descripteur 2 (image droite)
1 1 0 0 1
```

Comparaison bit à bit :

```
1 0 1 0 1

- - - - -

1 1 0 0 1

0 1 1 0 0
```

Comparaison de descripteurs BRIEF : distance de Hamming

```
Descripteur 1 (image gauche)
1 0 1 0 1

Descripteur 2 (image droite)
1 1 0 0 1
```

Comparaison bit à bit :

Distance de Hamming = nombre de bits différents = 2

Comparaison de descripteurs BRIEF : distance de Hamming

Descripteur 1 (image gauche)

1 0 1 0 1

Descripteur 2 (image droite)

1 1 0 0 1

Comparaison bit à bit :

Distance de Hamming = nombre de bits différents = 2

Plus la distance est faible, plus les points sont similaires.

Amélioration progressive du descripteur BRIEF

1. BRIEF (intensité)

- Comparaison d'intensité de pixels en niveaux de gris
- Simple et rapide, mais perte d'information sur la couleur

Amélioration progressive du descripteur BRIEF

1. BRIEF (intensité)

- Comparaison d'intensité de pixels en niveaux de gris
- Simple et rapide, mais perte d'information sur la couleur

2. BRIEF RGB

- Comparaison faite indépendamment sur les 3 canaux : R, G, B
- Capture la couleur, mais très sensible aux variations de lumière

Amélioration progressive du descripteur BRIEF

1. BRIEF (intensité)

- Comparaison d'intensité de pixels en niveaux de gris
- Simple et rapide, mais perte d'information sur la couleur

2. BRIEF RGB

- Comparaison faite indépendamment sur les 3 canaux : R, G, B
- Capture la couleur, mais très sensible aux variations de lumière

3. BRIEF Lab

- Comparaison dans l'espace Lab :
 - L : luminosité (luminance)
 - − a, b : composantes de couleur perceptuelles
- Plus robuste aux variations de luminosité et plus proche de la perception humaine

Amélioration progressive du descripteur BRIEF

1. BRIEF (intensité)

- Comparaison d'intensité de pixels en niveaux de gris
- Simple et rapide, mais perte d'information sur la couleur

2. BRIEF RGB

- Comparaison faite indépendamment sur les 3 canaux : R, G, B
- Capture la couleur, mais très sensible aux variations de lumière

3. BRIEF Lab

- Comparaison dans l'espace Lab :
 - L : luminosité (luminance)
 - − a, b : composantes de couleur perceptuelles
- Plus robuste aux variations de luminosité et plus proche de la perception humaine

Amélioration globale :

- Robustesse et précision accrues à chaque étape
- BRIEF Lab permet de meilleures correspondances entre images variées (éclairage, couleur)

Pseudo-code : Appariement de points

Algorithme 1: Appariement basé sur BRIEF et filtrage épipolaire

```
Entrée: Points P<sub>1</sub> sur image 1, Points P<sub>2</sub> sur image 2, Matrice fondamentale F
Sortie: Liste de correspondances fiables
Pré-tri des points sur image 1
```

```
pour tout p \in P_1 faire
     si p n'est pas un coin alors
          retirer p
```

Filtrage épipolaire pour tout $p_1 \in P_1$ faire

```
I \leftarrow F \cdot p_1
                                                                  // droite épipolaire dans image 2
C(p_1) \leftarrow \{p_2 \in P_2 \mid \text{distance}(p_2, l) < \varepsilon\}
```

// suppression non maximale locale

Comparaison des descripteurs BRIEF pour tout $p_1 \in P_1$ faire

```
d_1 \leftarrow \mathsf{BRIEF}(p_1)
pour tout p_2 \in C(p_1) faire
    d_2 \leftarrow \mathsf{BRIEF}(p_2)
   h \leftarrow \text{distance Hamming}(d_1, d_2)
     enregistrer (p_1, p_2, h)
```

Resultat : Filtrage epipolaire

Resultat : droite epipolaire + BRIEF lab

Plan

1. Reconstruction

Modélisation théorique En pratiques Résolution Implémentation Reconstruction des points 1- Reconstruction 1.1 Modélisation théorique

Les différents repères

Représentation du cube (vue 3D)

Cube sur une image

1- Reconstruction • 1.1 Modélisation théorique

► *M* : point réel

- ► *M* : point réel
- ► *W* : origine du repère du monde

- ► *M* : point réel
- ► *W* : origine du repère du monde
- \triangleright (u', v') : coordonnées dans le plan image en pixels

- ► *M* : point réel
- W : origine du repère du monde
- ► (u', v') : coordonnées dans le plan image en pixels
- ► *m* : projection de *M* dans le plan image

- ► *M* : point réel
- W : origine du repère du monde
- ► (u', v') : coordonnées dans le plan image en pixels
- m : projection de M dans le plan image
- C : origine du repère de la caméra

- ► *M* : point réel
- W : origine du repère du monde
- ► (u', v') : coordonnées dans le plan image en pixels
- m : projection de M dans le plan image
- C : origine du repère de la caméra

- ► *M* : point réel
- W : origine du repère du monde
- ► (u', v') : coordonnées dans le plan image en pixels
- C : origine du repère de la caméra
- C' : origine du repère de l'image par projection de C

Par le théorème de Thalès (projection perspective)

$$u = fx_c$$

$$v = fy_c$$

$$w = z_c$$

Par le théorème de Thalès (projection perspective)

$$u = tx_c$$

$$v = fy_c$$

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

Le changement de repère s'écrit avec une transformation homogène :

$$\begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

Où $R \in \mathbb{R}^{3\times 3}$ est une rotation, $T \in \mathbb{R}^3$ une translation.

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

$$\lambda_{i} \begin{pmatrix} u^{(i)} \\ v^{(i)} \\ 1 \end{pmatrix} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix} \begin{pmatrix} x_{C}^{(i)} \\ y_{C}^{(i)} \\ z_{C}^{(i)} \\ 1 \end{pmatrix}$$

1- Reconstruction • 1.1 Modélisation théorique

Modèle de projection — Matrice P

▶ On considère un point 3D M = (X, Y, Z)

- ▶ On considère un point 3D M = (X, Y, Z)
- ▶ Il se projette sur un point image m = (u, v)

- ▶ On considère un point 3D M = (X, Y, Z)
- ▶ Il se projette sur un point image m = (u, v)
- ► On cherche une relation linéaire homogène :

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} P = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- ▶ On considère un point 3D M = (X, Y, Z)
- ▶ If se projette sur un point image m = (u, v)
- ► On cherche une relation linéaire homogène :

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} P = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

 \triangleright P est une matrice 3 \times 4, avec 12 inconnues

- ▶ On considère un point 3D M = (X, Y, Z)
- ▶ Il se projette sur un point image m = (u, v)
- ► On cherche une relation linéaire homogène :

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} P = \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- \triangleright P est une matrice 3 \times 4, avec 12 inconnues
- ► En développant les lignes :

$$\lambda u = p_{11}X + p_{12}Y + p_{13}Z + p_{14}$$
$$\lambda v = p_{21}X + p_{22}Y + p_{23}Z + p_{24}$$
$$\lambda = p_{31}X + p_{32}Y + p_{33}Z + p_{34}$$

Pour un point donné, on élimine λ :

$$u(p_{31}X + p_{32}Y + p_{33}Z + p_{34}) = p_{11}X + p_{12}Y + p_{13}Z + p_{14}$$
$$v(p_{31}X + p_{32}Y + p_{33}Z + p_{34}) = p_{21}X + p_{22}Y + p_{23}Z + p_{24}$$

Pour un point donné, on élimine λ :

$$u(p_{31}X + p_{32}Y + p_{33}Z + p_{34}) = p_{11}X + p_{12}Y + p_{13}Z + p_{14}$$
$$v(p_{31}X + p_{32}Y + p_{33}Z + p_{34}) = p_{21}X + p_{22}Y + p_{23}Z + p_{24}$$

Cela donne un système homogène ...

$$\begin{cases} 0 = & p_{11}x_C + p_{12}y_C + p_{13}z_C + p_{14} - p_{31}ux_C - p_{32}uz_C - p_{33}uz_C - p_{34}u \\ 0 = & p_{21}x_C + p_{22}y_C + p_{23}z_C + p_{24} - p_{31}vx_C - p_{32}vz_C - p_{33}vz_C - p_{34}v \end{cases}$$

Pour un point donné, on élimine λ :

$$u(p_{31}X + p_{32}Y + p_{33}Z + p_{34}) = p_{11}X + p_{12}Y + p_{13}Z + p_{14}$$
$$v(p_{31}X + p_{32}Y + p_{33}Z + p_{34}) = p_{21}X + p_{22}Y + p_{23}Z + p_{24}$$

Cela donne un système homogène ...

$$\begin{cases} 0 = & p_{11}x_C + p_{12}y_C + p_{13}z_C + p_{14} - p_{31}ux_C - p_{32}uz_C - p_{33}uz_C - p_{34}u \\ 0 = & p_{21}x_C + p_{22}y_C + p_{23}z_C + p_{24} - p_{31}vx_C - p_{32}vz_C - p_{33}vz_C - p_{34}v \end{cases}$$

► En faisant cela pour n points on obtient un système ...

Shootin photo : importance de la prise de vue

Vues initiales

Vues améliorées

Calibration

Figure: Cube calibrage

Figure: Selection des points

Reconstruction 3D - L.-H. Cuingnet- Mai 2025

1- Reconstruction • 1.3 Résolution

Système d'optimisation à contrainte unitaire

On souhaite résoudre le système en évitant la solution triviale P=0.

1- Reconstruction • 1.3 Résolution

Système d'optimisation à contrainte unitaire

On souhaite résoudre le système en évitant la solution triviale P=0. Sachant que la matrice P ne peut être déterminée qu'à un facteur près, on peut imposer :

$$||P||^2 = 1$$

et reformuler le système comme un problème d'optimisation :

Système d'optimisation à contrainte unitaire

On souhaite résoudre le système en évitant la solution triviale P=0. Sachant que la matrice P ne peut être déterminée qu'à un facteur près, on peut imposer :

$$||P||^2 = 1$$

et reformuler le système comme un problème d'optimisation :

$$\min_{\|\rho\|^2=1} \|A\rho\|^2 = \min_{\|\rho\|^2=1} \rho^T A^T A \rho$$

Système d'optimisation à contrainte unitaire

On souhaite résoudre le système en évitant la solution triviale P=0. Sachant que la matrice P ne peut être déterminée qu'à un facteur près, on peut imposer :

$$||P||^2 = 1$$

et reformuler le système comme un problème d'optimisation :

$$\min_{\|\rho\|^2=1} \|A\rho\|^2 = \min_{\|\rho\|^2=1} \rho^T A^T A \rho$$

On introduit les fonctions :

- $ightharpoonup f(p) = p^T A^T A p$
- $ightharpoonup g(p) = p^T p 1$

Système d'optimisation à contrainte unitaire

On souhaite résoudre le système en évitant la solution triviale P=0. Sachant que la matrice P ne peut être déterminée qu'à un facteur près, on peut imposer :

$$||P||^2 = 1$$

et reformuler le système comme un problème d'optimisation :

$$\min_{\|\rho\|^2=1} \|A\rho\|^2 = \min_{\|\rho\|^2=1} \rho^T A^T A \rho$$

On introduit les fonctions :

- $ightharpoonup f(p) = p^T A^T A p$
- \triangleright $g(p) = p^T p 1$

D'après le théorème d'optimisation sous contrainte (Lagrange), au point optimal P^* , il existe $\lambda \in \mathbb{R}$ tel que :

$$\nabla f(P^*) = \lambda \nabla g(P^*)$$

1- Reconstruction • 1.3 Résolution

Lien avec les valeurs propres

Posons $M = A^T A$. Alors:

$$f(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_i M_{ij} p_j$$

1- Reconstruction • 1.3 Résolution

Lien avec les valeurs propres

Posons $M = A^T A$. Alors:

$$f(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_i M_{ij} p_j$$

Comme *M* est symétrique :

$$\frac{\partial f}{\partial p} = 2Mp$$
 et $\frac{\partial g}{\partial p} = 2p$

Lien avec les valeurs propres

Posons $M = A^T A$. Alors:

$$f(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_i M_{ij} p_j$$

Comme *M* est symétrique :

$$\frac{\partial f}{\partial p} = 2Mp$$
 et $\frac{\partial g}{\partial p} = 2p$

On a donc :

$$\frac{\partial f}{\partial p} = \lambda \frac{\partial g}{\partial p} \quad \Rightarrow \quad \boxed{A^T A p = \lambda p}$$

Lien avec les valeurs propres

Posons $M = A^T A$. Alors:

$$f(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} p_i M_{ij} p_j$$

Comme M est symétrique :

$$\frac{\partial f}{\partial p} = 2Mp$$
 et $\frac{\partial g}{\partial p} = 2p$

On a donc :

$$\frac{\partial f}{\partial p} = \lambda \frac{\partial g}{\partial p} \quad \Rightarrow \quad \boxed{A^T A p = \lambda p}$$

C'est une équation aux valeurs propres :

- \triangleright p est un vecteur propre de A^TA
- $ightharpoonup \lambda$ est la valeur propre associée

Minimisation par SVD

▶ Pour minimiser $||AP||^2 = p^T A^T A p$, il faut choisir p comme vecteur propre associé à la plus petite valeur propre de $A^T A$.

Minimisation par SVD

- Pour minimiser $||AP||^2 = p^T A^T A p$, il faut choisir p comme vecteur propre associé à la plus petite valeur propre de A^TA .
- ► Ce problème se résout efficacement par la décomposition en valeurs singulières (SVD) de la matrice A.

- Pour minimiser $||AP||^2 = p^T A^T A p$, il faut choisir p comme vecteur propre associé à la plus petite valeur propre de $A^T A$.
- ► Ce problème se résout efficacement par la décomposition en valeurs singulières (SVD) de la matrice A.
- Une solution consiste à calculer :

$$A = U\Sigma V^T$$

- Pour minimiser $||AP||^2 = p^T A^T A p$, il faut choisir p comme vecteur propre associé à la plus petite valeur propre de $A^T A$.
- ► Ce problème se résout efficacement par la décomposition en valeurs singulières (SVD) de la matrice A.
- Une solution consiste à calculer :

$$A = U\Sigma V^T$$

où:

 $U \in \mathbb{R}^{m \times m}$ est une matrice orthogonale (vecteurs singuliers à gauche),

- Pour minimiser $||AP||^2 = p^T A^T A p$, il faut choisir p comme vecteur propre associé à la plus petite valeur propre de $A^T A$.
- ► Ce problème se résout efficacement par la décomposition en valeurs singulières (SVD) de la matrice A.
- Une solution consiste à calculer :

$$A = U\Sigma V^T$$

- $U \in \mathbb{R}^{m \times m}$ est une matrice orthogonale (vecteurs singuliers à gauche),
- $\Sigma \in \mathbb{R}^{m \times n}$ est une matrice diagonale contenant les valeurs singulières σ_i ,

- Pour minimiser $||AP||^2 = p^T A^T A p$, il faut choisir p comme vecteur propre associé à la plus petite valeur propre de $A^T A$.
- ► Ce problème se résout efficacement par la décomposition en valeurs singulières (SVD) de la matrice A.
- Une solution consiste à calculer :

$$A = U\Sigma V^T$$

- ▶ $U \in \mathbb{R}^{m \times m}$ est une matrice orthogonale (vecteurs singuliers à gauche),
- ▶ $\Sigma \in \mathbb{R}^{m \times n}$ est une matrice diagonale contenant les valeurs singulières σ_i ,
- $V \in \mathbb{R}^{n \times n}$ est une matrice orthogonale (vecteurs singuliers à droite).

- Pour minimiser $||AP||^2 = p^T A^T A p$, il faut choisir p comme vecteur propre associé à la plus petite valeur propre de $A^T A$.
- ➤ Ce problème se résout efficacement par la décomposition en valeurs singulières (SVD) de la matrice A.
- ► Une solution consiste à calculer :

$$A = U\Sigma V^T$$

- ▶ $U \in \mathbb{R}^{m \times m}$ est une matrice orthogonale (vecteurs singuliers à gauche),
- $\Sigma \in \mathbb{R}^{m \times n}$ est une matrice diagonale contenant les valeurs singulières σ_i ,
- $V \in \mathbb{R}^{n \times n}$ est une matrice orthogonale (vecteurs singuliers à droite).
- Le vecteur *p* recherché correspond à la dernière colonne de *V*, associée à la plus petite valeur singulière.

Étapes principales :

▶ 1. Calculer $A^T A$

1. Produit symétrique :

 A^TA est symétrique, de taille $n \times n$ On peut chercher ses valeurs propres via QR.

2. Algorithme QR:

$$A_k = R_k Q_k \Rightarrow A_{k+1} = Q_k^T A_k Q_k$$

Étapes principales :

- ▶ 1. Calculer A^TA
- ▶ 2. Appliquer QR à A^TA

Converge vers matrice diagonale con-

tenant σ_i^2 .

$\sigma = \sqrt{\lambda}$

Étapes principales :

- ▶ 1. Calculer A^TA
- ▶ 2. Appliquer QR à A^TA
- ▶ **3.** Extraire valeurs propres σ_i^2

3. Valeurs singulières :

 $\sigma_i = \sqrt{\lambda_i}$, avec λ_i valeur propre

On range les σ_i du plus grand au plus

petit.

4. Vecteurs singuliers :

 v_i propre de $A^T A \Rightarrow u_i = \frac{1}{\sigma_i} A v_i$

Étapes principales :

- ▶ 1. Calculer A^TA
- ▶ 2. Appliquer QR à $A^T A$
- ▶ 3. Extraire valeurs propres σ_i^2
- ▶ **4.** Déduire *V* puis $U = \frac{1}{\sigma}Av$

On normalise chaque u_i pour obtenir U.

Algorithme 2: Décomposition QR via Gram-Schmidt

```
Entrée: A \in \mathbb{R}^{m \times n}
Sortie: Q \in \mathbb{R}^{m \times n}, R \in \mathbb{R}^{n \times n} tels que A = QR
pour j \leftarrow 1 to n faire
        v_i \leftarrow A_{:,i}
                                                                                       (*Copie de la j^{eme} colonne de A*)
        pour i \leftarrow 1 to j-1 faire
        R_{i,j} \leftarrow \langle Q_{:,i}, A_{:,j} \ranglev_i \leftarrow v_i - R_{i,j} Q_{:,i}
        R_{i,j} \leftarrow ||v_i||
        si R_{i,i} > \varepsilon alors
                Q_{:,j} \leftarrow \frac{v_j}{R_{:,i}}
        sinon
           |Q_{:,i} \leftarrow 0
retourner Q, R
```

Algorithme 3: algorithme QR

retourner Σ^2 , Q_{acc}

```
Entrée: B \in \mathbb{R}^{n \times n} symétrique
Sortie: \Sigma^2, V tels que B = V\Sigma^2V^T
Q_{acc} \leftarrow I_n
                                                                                      (*Accumule les produits de Q*)
\delta \leftarrow 1, k_{\text{max}} \leftarrow 1000, k \leftarrow 0
tant que \delta > 10^{-9} et k < k_{\text{max}} faire
        Q, R \leftarrow \text{décomposition } QR \text{ de } B
        B_{\text{nouveau}} \leftarrow R \cdot Q
        Q_{acc} \leftarrow Q_{acc} \cdot Q
       \delta \leftarrow \sum_{i} |\mathsf{diag}(B_{\mathsf{nouveau}})_{i} - \mathsf{diag}(B)_{i}|
       A \leftarrow B_{\text{nouveau}}
       k \leftarrow k + 1
pour i = 1 à n faire
        si 1[i, i] > \varepsilon alors
        \Sigma^2[i,i] \leftarrow V[i,i]
        sinon
           \Sigma^{2}[i,i] \leftarrow 0
```

Algorithme 4: SVD via algorithme QR sur A^TA

```
Entrée: A \in \mathbb{R}^{m \times n}
Sortie: U, \Sigma, V tels que A \approx U \Sigma V^T
A^T \leftarrow \text{transposée de } A
A^T A \leftarrow A^T \cdot A
                                                               (*Symétrique et définie positive*)
algorithme_QR(A^TA, \Sigma^2, V)
                                                                  (*\Sigma^2 \text{ diagonale}, V \text{ orthogonale}*)
pour i \leftarrow 1 to n faire
     \sigma^2 \leftarrow \Sigma^2[i,i]
      si \sigma^2 < 10^{-12} alors
         continuer
                                                              (*Ignorer valeur singulière nulle*)
      \sigma \leftarrow \sqrt{\sigma^2}
      \Sigma[i,i] \leftarrow \sigma
                                                    (*Met à jour la vraie valeur singulière*)
      v_i \leftarrow i^e colonne de V
      u_i \leftarrow A \cdot v_i
                                                                                       (*u: non normalisé*)
      u_i \leftarrow u_i/\sigma
      normaliser u:
      insérer u: comme ie colonne de U
```

Triangulation: retrouver les coordonnées 3D

➤ On connaît les matrices de projection P₁ et P₂

Triangulation: retrouver les coordonnées 3D

- On connaît les matrices de projection P₁ et P₂
- Deux points image correspondants :

$$x_1 = (u_1, v_1), \quad x_2 = (u_2, v_2)$$

Triangulation: retrouver les coordonnées 3D

- On connaît les matrices de projection P₁ et P₂
- Deux points image correspondants :

$$x_1 = (u_1, v_1), \quad x_2 = (u_2, v_2)$$

Inconnue : $X = (x_C, y_C, z_C)$ point 3D

Triangulation : retrouver les coordonnées 3D

- On connaît les matrices de projection P_1 et P_2

$$x_1 = (u_1, v_1), \quad x_2 = (u_2, v_2)$$

- point 3D
- On pose:

$$\lambda_1 x_1 = P_1 X$$
, $\lambda_2 x_2 = P_2 X$

Point contact les matrices de projection
$$P_1$$
 et P_2

Deux points image correspondants :

$$x_1 = (u_1, v_1), \quad x_2 = (u_2, v_2)$$

Inconnue : $X = (x_C, y_C, z_C)$
point 3D

$$\begin{cases} \lambda_1 u_1 = p_{11}^1 x_C + \dots + p_{14}^1 \\ \lambda_1 v_1 = p_{21}^1 x_C + \dots + p_{24}^1 \\ \lambda_1 = p_{31}^1 x_C + \dots + p_{34}^1 \\ \lambda_2 u_2 = p_{11}^2 x_C + \dots + p_{14}^2 \\ \lambda_2 v_2 = p_{21}^2 x_C + \dots + p_{24}^2 \\ \lambda_2 = p_{31}^2 x_C + \dots + p_{34}^2 \end{cases}$$

Triangulation: retrouver les coordonnées 3D

- On connaît les matrices de projection P₁ et P₂
- Deux points image correspondants :

$$x_1 = (u_1, v_1), \quad x_2 = (u_2, v_2)$$

- Inconnue : $X = (x_C, y_C, z_C)$ point 3D
- On pose :

$$\lambda_1 x_1 = P_1 X, \quad \lambda_2 x_2 = P_2 X$$

 Cela donne un système de 6 équations linéaires homogènes

$$\begin{cases} \lambda_1 u_1 = p_{11}^1 x_C + \dots + p_{14}^1 \\ \lambda_1 v_1 = p_{21}^1 x_C + \dots + p_{24}^1 \\ \lambda_1 = p_{31}^1 x_C + \dots + p_{34}^1 \\ \lambda_2 u_2 = p_{11}^2 x_C + \dots + p_{14}^2 \\ \lambda_2 v_2 = p_{21}^2 x_C + \dots + p_{24}^2 \\ \lambda_2 = p_{31}^2 x_C + \dots + p_{34}^2 \end{cases}$$

Triangulation : formulation du système

▶ Une fois P_1 et P_2 déterminées,

Triangulation : formulation du système

- ▶ Une fois P_1 et P_2 déterminées,
- ▶ On cherche les coordonnées $X = (x_C, y_C, z_C, 1)^T$

Triangulation : formulation du système

- ▶ Une fois P_1 et P_2 déterminées,
- ▶ On cherche les coordonnées $X = (x_C, y_C, z_C, 1)^T$
- ▶ Pour chaque paire (x_1, x_2) de projections

Triangulation: formulation du système

- ▶ Une fois *P*₁ et *P*₂ déterminées,
- ▶ On cherche les coordonnées $X = (x_C, y_C, z_C, 1)^T$
- ▶ Pour chaque paire (x_1, x_2) de projections
- ▶ On élimine λ_1, λ_2 et on écrit un système homogène

Triangulation : formulation du système

- Une fois P₁ et P₂ déterminées,
- ▶ On cherche les coordonnées $X = (x_C, y_C, z_C, 1)^T$
- ▶ Pour chaque paire (x_1, x_2) de projections
- ▶ On élimine λ_1, λ_2 et on écrit un système homogène
- Système sous la forme AX = 0

$$A = \left(\begin{array}{cccc} p_{31}^1 u_1 - p_{11}^1 & p_{32}^1 u_1 - p_{12}^1 & p_{33}^1 u_1 - p_{13}^1 & p_{34}^1 u_1 - p_{14}^1 \\ p_{31}^1 v_1 - p_{21}^1 & p_{32}^1 v_1 - p_{22}^2 & p_{33}^2 v_1 - p_{23}^2 & p_{34}^2 v_1 - p_{24}^2 \\ p_{31}^2 u_2 - p_{11}^2 & p_{32}^2 u_2 - p_{12}^2 & p_{33}^2 u_2 - p_{13}^2 & p_{34}^2 u_2 - p_{14}^2 \\ p_{31}^2 v_2 - p_{21}^2 & p_{32}^2 v_2 - p_{22}^2 & p_{33}^2 v_2 - p_{23}^2 & p_{34}^2 v_2 - p_{24}^2 \end{array} \right)$$

Triangulation: résolution

▶ On résout le système AX = 0

Triangulation: résolution

- ▶ On résout le système AX = 0
- ► Solution obtenue par la SVD de A

Triangulation : résolution

- ightharpoonup On résout le système AX = 0
- ► Solution obtenue par la SVD de *A*
- Le vecteur X est donné par :

 $X = \text{dernier vecteur colonne de } V \text{ dans } A = U \Sigma V^T$

Triangulation: résolution

- ▶ On résout le système AX = 0
- ► Solution obtenue par la SVD de *A*
- ► Le vecteur X est donné par :

$$X = \text{dernier vecteur colonne de } V \text{ dans } A = U \Sigma V^T$$

▶ On homogénéise : $X \leftarrow \frac{1}{X_4}X$

Triangulation: résolution

- ▶ On résout le système AX = 0
- ► Solution obtenue par la SVD de *A*
- ► Le vecteur X est donné par :

$$X = \text{dernier vecteur colonne de } V \text{ dans } A = U \Sigma V^T$$

- ▶ On homogénéise : $X \leftarrow \frac{1}{X_4}X$
- ▶ Répété pour chaque paire de points (x_1, x_2)

Triangulation: résolution

- ightharpoonup On résout le système AX = 0
- ► Solution obtenue par la SVD de *A*
- ► Le vecteur X est donné par :

$$X = \text{dernier vecteur colonne de } V \text{ dans } A = U \Sigma V^T$$

- ▶ On homogénéise : $X \leftarrow \frac{1}{X_4}X$
- ▶ Répété pour chaque paire de points (x_1, x_2)
- ▶ On obtient la reconstruction 3D des points

Reconstruction 3D multi-vues

Points 3D

Nuage de points

matrice F

test