p8106 - Final Project - NBA Players Salary Prediction

Mingkuan Xu, Mengfan Luo, Yiqun Jin

5/6/2022

Introduction

Describe your data set. Provide proper motivation for your work.

What questions are you trying to answer? How did you prepare and clean the data?

Data Preprocessing

Part 0 - Data Preprocessing

Part 1 - Exploratory Analysis

Since minute stands for minutes played per game, we will divided variables stands for counts by minute to get a rate. These variables includes field_goal, fg_attempt x3p, x3p_attempt, x2p, x2p_attempt, free_throw, ft_attempt, offensive_rb defenssive_rb, total_rb, assistance, steal, block, turnover, personal_foul and point.

Univariate Analysis

Distributions of the two categorical variables, team and position.

Distributions of other numeric variables.

Histograms of Predictive Variables (Group A)

Histograms of Predictive Variables (Group B)

Histograms of Predictive Variables (Group C)

Correlation Analysis

Analyzing trends in data

From numeric variables, we found that stl,x3p, age,gs seem to have some non-linear trends.

From categorical variable position, extremely high values in salary show in all positions and some teams.

Models

Data Partition

After getting an overview of data from exploratory analysis, we splitted the dataset into training (75%) and testing (20%). We would use 10 fold repeated cross validation to compare each model using training data and then select a best model to predict on testing data. Based on the exploratory analysis, we would build 8 models in four category: 1. Linear Regression: (1) simple Linear Regression Model, (2) Elastic-net Model, (3) Principal Component Regression Model (PCR) 2. Generalized Linear Regression: (4) Generalized Addictive Model (GAM), (5) Multivariate Adaptive Regression Splines Model (MARS) 3. Tree based Models Models: (6) Random Forest, (7) Generalized Boosted Regression Modeling (GBM) 4. Blackbox Model (8) neural network

Part 1 Linear regression

(a) Standard Least-Squared

There is no tuning parameter for standard least-squared model.

[1] 52.62129

(b) Elastic Net

The elastic-net model has two parameter, which are alpha (compromise between LASSO and ridge) and lambda (the penalty term limits the number or magnitude of predictor coefficients). The elastic-net model reached its best tune at $\alpha = 1$ (i.e. LASSO model) and lambda = 0.27.

###(c) Principle Component Regression

The tuning parameter of PCR is the number of predictors included in the final model. There are 5 components included in the model with minimum RMSE.

Part 2 Generalized Linear Regression

(a) GAM

There is no tuning parameter for GAM. The GAM model can capture the non-linear trend in the model, but it may have a high variance. age, game_starting, assistance, personal_foul, and point are statistically significant predictors at 0.0001 significant level.

```
## Family: gaussian
## Link function: identity
##
## Formula:
## salary ~ s(age) + s(game) + s(game_starting) + s(free_throw) +
       s(ft_attempt) + s(defenssive_rb) + s(assistance) + s(block) +
##
       s(personal_foul) + s(point)
##
##
##
  Parametric coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                  8.151
                             0.301
                                     27.08
                                             <2e-16 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
##
                      edf Ref.df
                                      F p-value
```

```
## s(age)
                   4.722 5.775 14.002 < 2e-16 ***
## s(game)
                   1.000
                          1.000 4.324 0.038422 *
## s(game starting) 1.532
                          1.883 23.181 < 2e-16 ***
## s(free_throw)
                   7.542
                          8.452
                                 2.095 0.022370 *
## s(ft attempt)
                   2.098
                          2.759
                                 0.603 0.485917
## s(defenssive rb) 1.330
                          1.585
                                 2.465 0.065744 .
## s(assistance)
                   1.114
                          1.217 17.575 2.90e-05 ***
## s(block)
                   1.000
                          1.000
                                 0.009 0.923298
## s(personal foul) 7.693
                          8.529
                                 3.699 0.000214 ***
## s(point)
                   3.351
                          4.242
                                6.044 7.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## R-sq.(adj) = 0.652
                        Deviance explained = 68.5%
## GCV = 33.514 Scale est. = 30.265
## [1] 51.72913
```

(b) MARS

The tuning parameter for MARS is nprune and degree. When attempting to fit the MARS model, we noticed that the RMSE increased drastically when degree is over 3 and nprune is over 8. Therefore, we would choose the range of degrees as 1:3 and range of nprune as 2:8. When number of terms is 6 and product degree is 2, MARS model reached its best tune and RMSE is lowest. The MARS model selected 6 of 69 terms, and 6 of 54 predictors. And the top 3 important predictors are: age, minute, game. MARS model is highly adaptive comparing with previous models and has a higher prediction accuracy.

```
nprune degree
##
## 12
           6
## Call: earth(x=matrix[334,54], y=c(3.98,3.63,2,9...), keepxy=TRUE, degree=2,
##
               nprune=6)
##
##
                                         coefficients
## (Intercept)
                                              4.00399
## h(minute-28.7)
                                              0.80909
## teamWAS * h(free_throw-0.0879121)
                                            146.14964
## teamCLE * h(free throw-0.0879121)
                                            803.51599
## h(age-22) * h(minute-22.8)
                                              0.17834
## h(game-30) * h(free_throw-0.0879121)
                                              4.82540
##
## Selected 6 of 69 terms, and 6 of 54 predictors (nprune=6)
## Termination condition: RSq changed by less than 0.001 at 69 terms
## Importance: age, minute, game, free_throw, teamWAS, teamCLE, ...
## Number of terms at each degree of interaction: 1 1 4
## GCV 27.39806
                   RSS 8426.154
                                    GRSq 0.6863058
                                                      RSq 0.7094144
```


[1] 40.30051

Model Comparison

The CV RMSE are shown as followed. We can see MARS model has lowest RMSE.

Table 1: RMSE of Different Models

	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	NA's
LeastSquare	4.92	5.92	6.41	6.44	6.89	9.04	0
ElasticNet	4.36	5.44	5.88	6.02	6.59	8.22	0
PCR	4.07	6.10	6.78	6.70	7.41	8.80	0
MARS	4.04	5.38	5.82	5.84	6.45	8.25	0

Table 2: RMSE of Different Models on Test Set

	Linear	ElasticNet	PCR	GAM	MARS
RMSE	7.25	7.21	7.34	7.19	6.35