Haptic Feedback Glove Ben Tures Nicholas Minton

EXECUTION AND VALIDATION PLAN

EXECUTION AND VALIDATION PLAN FOR Haptic Feedback Glove

PREPARED BY:	
Team 64	09/20/1998
Author	Date
APPROVED BY:	
Nicholas Minton	09/20/1998
Project Leader	Date
John Lusher, P.E.	Date
T/A	Date

Change Record

Rev.	Date	Originator	Approvals	Description
0	9/20/2020	Nicholas Minton	NM BT	Rev 0
1	11/24/2020	Nicholas Minton	NM BT	End of Semester status

Table of Contents

Table of	of Contents	II
	Tables	
	Figures	
	le of figures entries found	
	II 2020 Execution Plans	
	Fall 2020 High Level Execution Schedule	
1.2.	Subsystem Execution Schedule	2
2. Va	lidation Plans	
2.1.	Glove Assembly	
	MCU and Hand Tracking	
	Graphical User Interface	

List of Tables

Table 1: Fall 2020 Execution Schedule	1
Table 2 Glove Assembly Schedule	2
Table 3: Virtual Environment Subsystem Schedule	
Table 4: MCU Subsystem Schedule	
Table 5: Glove Assembly Validation Plan	
Table 6: MCU Validation Plan	
Table 7: GUI Validation Plan	

List of Figures

No table of figures entries found.

1. Fall 2020 Execution Plans

1.1. Fall 2020 High Level Execution Schedule

Table 1: Fall 2020 Execution Schedule

1.2. Subsystem Execution Schedule

Task	24-Aug	7-Sep	21-Sep	5-Oct	19-Oct	2-Nov	16-Nov
Develop Exoskeleton 3D Model							
Request Machining and 3D Printing							
Assemble Individual Finger							
Test Single Finger							
Assemble Remaining Fingers							
Validation							

Table 2 Glove Assembly Schedule

Task	24-Aug	7-Sep	21-Sep	5-Oct	19-Oct	2-Nov	16-Nov
Learn C# and Unity							
Develop Virtual Environment							
Develop Spatial Tracking							
Develop Force Feedback							
MCU Communication							
Validation					·	·	

Table 3: Virtual Environment Subsystem Schedule

Task	24-Aug	7-Sep	21-Sep	5-Oct	19-Oct	2-Nov	16-Nov
Download and Learn ALTIUM							
Design PCB							
Order MCU and IMU							
Program MCU							
Fabricate PCB							
Demonstrate Output with Flex Sensor and IMU							
Validation							

Table 4: MCU Subsystem Schedule

2. Validation Plans

2.1. Glove Assembly

Task #	Description	Relevant Requirement	Status
1	Index Finger brake module glides correctly	Movement is not inhibited by exoskeleton	~
2	Middle Finger brake module glides correctly	Movement is not inhibited by exoskeleton	
3	Ring Finger brake module glides correctly	Movement is not inhibited by exoskeleton	
4	Pinky Finger brake module glides correctly	Movement is not inhibited by exoskeleton	
5	Thumb brake module glides correctly	Movement is not inhibited by exoskeleton	
6	Index Finger flex sensor is secured	Movement is not inhibited by exoskeleton	V
7	Middle Finger flex sensor is secured	Movement is not inhibited by exoskeleton	
8	Ring Finger flex sensor is secured	Movement is not inhibited by exoskeleton	
9	Pinky Finger flex sensor is secured	Movement is not inhibited by exoskeleton	
10	Thumb flex sensor is secured	Movement is not inhibited by exoskeleton	
11	Hand stretching flex sensor on pinky is secured	Movement is not inhibited by exoskeleton	
12	Hand Stretching flex sensor on index finger is secured	Movement is not inhibited by exoskeleton	
13	Mounted Electrostatic brake can withstand 1300 V	No shorts occur during voltage applied for hard object	
14	Index finger mounts withstand 9 N Force	Glove is to retain shape when force is applied	
15	Middle Finger mounts withstand 9 N Force	Glove is to retain shape when force is applied	
16	Ring Finger mounts withstand 9 N Force	Glove is to retain shape when force is applied	
17	Pinky Finger mounts withstand 9 N Force	Glove is to retain shape when force is applied	
18	Thumb mounts withstand 9 N Force	Glove is to retain shape when force is applied	

Table 5: Glove Assembly Validation Plan

2.2. MCU and Hand Tracking

Task #	Description	Relevant Requirement	Status
		The sensors should have a resistance between 20k	V
1	Measure Flex Resistor values	and 120kΩ	/
2	Pair and demo Integrator Circuit with flex resistor	Flex sensors will accuratley measure bending	V,
3	IMU X-axis rotation	Mapping should beaccurate to less than 2.5 degrees	7
4	IMU Y-axis rotation	Mapping should beaccurate to less than 2.5 degrees	1
5	IMU Z-axis rotation	Mapping should beaccurate to less than 2.5 degrees	0,
6	MCU I2C Protocol	MCU interfaces with IMU	\sqrt{I}
7	MCU Calibration Test	Calibrate maximum bend resistance data before use	9
8	Send data to host	MCU establish communication with host	₩
		Must send accurate angle data based on bend in	
9	Send resistance data to host	flex resistor	

Table 6: MCU Validation Plan

2.3. Graphical User Interface

Task #	Description	Relevant Requirement	Status
1	Verify Sensor MCU Communication	Virtual Environment Can Communicate with Glove Peripherals	Pass
2	Verify Power Supply MCU Communication	Virtual Environment Can Communicate with Glove Peripherals	Pass
3	Detects Thumb Rotation	Virtual Environment Can Interpret MCU Data	
4	Detects Index Rotation	Virtual Environment Can Interpret MCU Data	Pass
5	Detects Middle Rotation	Virtual Environment Can Interpret MCU Data	
6	Detects Ring Rotation	Virtual Environment Can Interpret MCU Data	
7	Detects Small Rotation	Virtual Environment Can Interpret MCU Data	
8	Detects Change in Hand Location/Orientation	Virtual Environment Can Interpret IMU Data	Pass
9	Detects Thumb Collision	Virtual Environment Provides Appropriate Feedback	Pass
10	Detects Index Collision	Virtual Environment Provides Appropriate Feedback	Pass
11	Detects Middle Collision	Virtual Environment Provides Appropriate Feedback	Pass
12	Detects Ring Collision	Virtual Environment Provides Appropriate Feedback	Pass
13	Detects Small Collision	Virtual Environment Provides Appropriate Feedback	Pass
14	Virtual Environment Can Recieve Improper Data	In the Event of Faulty Data the Virtual Environment Operated Properly	
15	Applies Appropriate Level of Force	Virtual Environment Provides Appropriate Feedback	

Table 7: GUI Validation Plan