Monash University Faculty of Information Technology

Lecture 2 Propositional Logic

Slides by David Albrecht (2011), modified by Graham Farr (2013).

FIT2014 Theory of Computation

Overview

- Propositions
- Connectives
- Tautologies
- Arguments
- Representing Knowledge

Definition

A proposition is

A statement

which is

• Either true or false.

Examples

- 2 + 2 = 4
 - is a proposition which is true.
- The moon is made of cheese
- $^{\circ}$ is a proposition which is **false**.
- It will rain tomorrow
 - o is a proposition.
- This statement is false
 - o is **not** a proposition.
- Vote for Mickey Mouse
 - o is **not** a proposition.

Negation

P: I have three children.

P: I do **not** have three children.

Other Notation: $\sim P$, \overline{P}

Truth table:

Connectives

- And ^ (&)
- Or v
- Implies \Rightarrow (\rightarrow)
- Equivalence ⇔ (↔)

Conjunction

P: This subject is interesting. Q: I am tired.

P A Q:

- This subject is interesting and I am tired.
- This subject is interesting although I am tired.
- This subject is interesting **but** I am tired.

Ρ	Q	PAC
F	F	F
F	Т	F
Τ	F	F
Т	Т	Т

Disjunction

P : Sue is a football player.

Q: Bob is lazy.

P v Q: Sue is a football player **or** Bob is lazy. Note: Disjunction is inclusive.

Р	Q	PvG
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

De Morgan's Laws

$$\neg (P \lor Q) = \neg P \land \neg Q$$

 $\neg (P \land Q) = \neg P \lor \neg Q$

				htt	p://www-h	istory.mcs.st-andro iographies/De_Mo
Р	Q	PvQ	¬(PvQ)	¬P	¬Q	¬P∧¬Q
F	F	F	Т	Т	T	Т
F	Т	Т	F	Т	F	F
Τ	F	Т	F	F	Т	F
Т	Т	Т	F	F	F	F

Conditional

P: It is Tuesday.

Q: We are in Belgium.

 $P \Rightarrow Q$:

- If it is Tuesday then we are in Belgium.
- It's being Tuesday **implies** we are in Belgium.
- It's Tuesday only if we are in Belgium.
- $^{\circ}$ It's being Tuesday is sufficient for us to be in Belgium.

Conditional Table

Ρ	Q	$P \Rightarrow Q$
F	F	T
F	Т	Т
Τ	F	F
Т	Т	Т

- P: Grace is a COBOL expert.
- Q: Grace can program.

If Grace is a COBOL expert then she can program.

Biconditional

P: The world will blow up.

Q: KAOS rules the world.

 $P \Leftrightarrow Q$:

- The world will blow up if and only if KAOS rules the world.
- KAOS ruling the world is a necessary and sufficient condition that the world will blow

Biconditional Table

Р	Q	P ⇔ Q
F	F	Т
F	Τ	F
Т	F	F
Т	Т	Т

P: It will rain tomorrow.

Q: I will wear a raincoat tomorrow.

P ⇔ Q:

I will wear a raincoat tomorrow **if and only if** it rains.

Interpretation

The truth table for a statement provides a record for all possible interpretations of that statement.

Example:

S: If the price is less than \$30 and I have at least \$50, then I will buy that CD.

- P:The price of the CD is less than \$30.
- L: I have at least \$50.

B: I will buy that CD.

S:
$$(P \land L) \Rightarrow B$$

P	L	В	\mathbf{S}
F	F	F	T
T	F	F	T
F	T	F	T
T	T	F	F
F	F	T	T
T	F	T	T
F	T	T	T
T	T	T	T

Definitions

A **tautology** is a statement whose interpretation is always true.

We say two statements P and Q are logically equivalent if they always have the same interpretation.

- Their truth tables are the same.
- **i.e.,** P⇔Q is a

Examples of logical equivalence

 $P \Rightarrow Q$ is logically equivalent to $\neg P \lor Q$

 $P \Leftrightarrow Q$ is logically equivalent to $(\neg P \lor Q) \land (P \lor \neg Q)$

These can be proved using truth tables.

Fitness Example

S: If I exercise then I will get fit, and I do exercise, so I will get fit.

E: I do exercise.

F: I will get fit.

S: $(E \Rightarrow F) \land E \Rightarrow F$

Definition

An argument consists of:

- A set of propositions, P₁, ..., P_n, called the premises.
- Another proposition, **C**, called the **conclusion**.

An argument is called **valid** if the statement

$$P_1 \land \dots \land P_n \Rightarrow C$$

is a tautology.

Mary's Exam Example

Today Mary has a Law exam or a Computer Science exam or both. She doesn't have a Law exam. Therefore she must have a Computer Science exam.

L: Mary has a Law exam today.

C: Mary has a Computer Science exam today.

Premises: L v C, ¬L

Conclusion: C

Wumpus World

[based on a video game by Gregory Yob, c1972]

- The idea of the game is to find the gold.
- The cave has rooms that lie in a grid.
- Dangers
 - **The Wumpus** (You can smell a Wumpus in the next room or the same room)
 - **Pits** (You can feel a breeze in the next room)
 - Bats (You can hear the bats in the next room)
- You can use to kill a Wumpus with an arrow.

Example

			P
W	G	P	
			В
S		P	

- W represents the Wumpus
- P represents a Pit
- B represents Bats
- S is the Starting Position
- G represents where the gold is.

A Game

- No stench or breeze in square 1,1
 - $^{\circ}$ Therefore Wumpus is not in 1,2 or 2,1
- Suppose you move to square 2,1 and detect a breeze and no stench there.
 - Therefore there is a Pit in either 2,2 or 3,1
- So you go back and up to square 1,2 and detect a stench and no breeze.
 - Therefore the Wumpus is in square 1,3.

Notation

- W_{I,I}
- The Wumpus is in square 1,1.
- S_{1.5}
 - A stench was detected in square 1,2.
- B_{2.}
- $^{\circ}$ A breeze was detected in square 2,1. Etc.

Knowledge

- P: 7 S ... A 7 B ...
- P2: ¬ S2,1 ∧ B2,1
- P₃: S_{1,2} A ¬ B_{1,2}
- $P_4: \neg S_{1,1} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$
- P_5 : $\neg S_{2,1} \Rightarrow \neg W_{1,1} \land \neg W_{2,1} \land \neg W_{2,2} \land \neg W_{3,1}$
- P_6 : $\neg S_{1,2} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,2} \land \neg W_{1,3}$ P_7 : $S_{1,2} \Rightarrow W_{1,3} \lor W_{1,2} \lor W_{2,2} \lor W_{1,1}$

Wumpus Argument

- Want to obtain the conclusion: W₁₃
- Need to show:
 - $P_1 \wedge P_2 \wedge P_3 \wedge P_4 \wedge P_5 \wedge P_6 \wedge P_7 \Rightarrow W_{1,3}$ is a tautology.
- Truth Table has 2¹² = 4096 rows.

Problems

- Need to introduce a lot of propositions to represent any useful knowledge.
- Using truth tables to show validity requires:
 - Exponential Space
 - Exponential Time

History

George Boole 1815-1864

Revision

- **Propositions**
- Connectives
- Tautologies & Logical Equivalence
- Arguments

Reading

Sipser, pp. 14-15, 21-25.