Start and Stop codons

Stop codon

Start codon

AUG: signals the beginning of polypeptide chains in both prokaryotes & eukaryotes

UAA, UGA, UAG: do not code for any known aa: signal the end of polypeptide chain synthesis

Further properties of the Genetic Code

- Orderly Code
- Amino acids with similar properties have similar codons
- The genetic code is widespread but not universal

Exceptions:

Mammalian mitochondria

AUA, AUG - start codons

UGA - Trp (not stop codon)

AGA, AGG - stop codons (not Arg)

Some bacteria & ciliates
In ciliated protozoa - UAA, UAG - Glutamine (not stop codon)

Codon - Anticodon Interaction

- Transfer RNA (tRNA): adaptor between the nucleic acid triplet code (codon) and the amino acid
- Anticodon on the tRNA base pairs with the mRNA codon

Wobble Hypothesis

- The first two nucleotides of a codon pair like DNA.
- Third base of most codons pairs rather loosely with the corresponding base of its anticodons.
- Crick called the third bases of such codons as "wobble".
- Base pairing possibilities at the third position:

Anticodon	Codon base
U	A, G
С	G
Α	U
G	U,C
I	U, C, A

Why Wobble?

- First two bases of a codon impart high specificity and tight binding
- The wobble or third base of the codon pairs only loosely with its corresponding base in the anticodon
- This permits rapid dissociation of the tRNA from its codon during protein synthesis
- Permits faster mRNA translation i.e. protein synthesis.

Summary

- The unit of genetic information is the codon
- There are 64 possible codons since there are 4 bases
- Each codon is specific to one amino acid or a start or stop signal
- The genetic code predicts the amino acid sequence of a protein from the DNA base sequence via the RNA intermediate.

Translation

Objectives

- Introduction to Translation
- Role of Translation
- Components of Translation
- The different stages involved in the process

Why are Proteins important?

Most biological activities are carried out by proteins

Participating species in Protein Synthesis

Messenger RNA (mRNA)

Specific enzymes

Ribosomes containing Ribosomal RNA

Amino acids

Transfer RNA (tRNA)

Ribosome: Protein manufacturing machinery

Transfer RNA (tRNA)

The key or adapter in traslating the language of nucleic acids into the language of proteins

Amino Acids

Amino acids are the building blocks of proteins

Polypeptide synthesis begins at the amino terminal end

Making of a Protein

Activation of amino acids

Initiation

Specific amino acid initiates protein synthesis

The first amino acid incorporated is Methionine.

Methionine of an initiator tRNA is formylated (in prokaryotes), called tRNA^{fMet}

N-Formylmethionine

Formation of Initiation Complex

How are the correct initiation codons selected from the many AUG & GUG codons in an mRNA??

BACTERIA

In bacteria, true initiation codons preceded by sequences called **Shine** - **Dalgarno** sequences

Pairs well with 3' end of 16S rRNA in the ribosome

Initiating signal - positions the ribosome properly next to the initiation codon

How are the correct initiation codons selected from the many AUG & GUG codons in an mRNA??

EUKARYOTES

No eukaryotic Shine - Dalgarno sequence

Initiation occurs at the first start codon after 5'-cap

AUG is the first codon that corresponds to the first amino acid of the polypeptide

Methionine is inserted, not N-formyl methionine

Ribosomal tRNA binding sites

Initiation Complex

Ribosome moves over one codon

The various steps in elongation are facilitated by protein factors known as elongation factors

Peptide Bond Formation

Termination

Termination

Release of the polypeptide chain

Release of the polypeptide chain

Folding & Processing

Summary

