

Battery Management System (BMS) Analysis

June 2018

Ricardo Inc. has taken all reasonable care in compiling the analyses and recommendations provided in this report. Information contained in this report is based on limited data available to Ricardo believed correct on the date of publication. Ricardo does not assume any liability, provide any warranty to activities based on the contents of this report.

This report is restricted for use only to those subscribers of the EV/Hybrid Analysis module and may not be distributed, republished, sold or exchanged outside use by subscribing companies.

Battery Management System (BMS) Summary

- Distributed battery management system is split into (1) master board and (4) module sense boards
- Main master control runs with two micros a Texas Instruments TMS570LS0432 processor and a Freescale SPC5746CSMKU6
- Each cell sense board uses two custom ASICs for cell voltage monitoring, probably made by Linear Technology
- Cell sense boards are in daisy chain connection and are connected to the battery cells through polyimide flexible printed circuit strips.
- Passive cell balancing is performed using 37.4Ω balance resistors

Architecture Advantages

- Simple cell voltage and temperature monitoring.
- High voltage measurement (pre/post contactors) increases safety and reliability
- Flexible polyimide strip eliminates the complexity of routing copper wires The connection process can be fully automated to reduce assembly time
- Simple wire connections between individual cell sense board and to the master controller (BMS)

Architecture Disadvantages

- Distributed system is complex and increase costs
- All four cell sense boards are unique and therefore reduce the benefits of scale economy from manufacturing
- Flexible polyimide strip increases material cost and add more wire bounding each wire should be
 inspected for defect However, because of the existing bounding technique used by Tesla, the cost
 savings in automation may outweigh the material cost

Battery Specification

Cell manufacturer: Panasonic

Battery Energy: ~75kWh

Battery cells (total in pack): 4416

Battery pack configuration: 96S46P

 Number of battery module: 4 blocks (2x Long Blocks (25S46P) and 2x Short Blocks (23S46P)

Nominal battery voltage (total): ~355V

Nominal cell voltage: ~3.7V

Coolant: Liquid cooled

Battery Pack (Exploded view)

High Voltage Battery Electrical Schematic

High level specification

- 21700 cylindrical cells
- Est. 75kWh battery pack
- 4 Modules Blocks
 - · 2x Long Blocks (25S46P)
 - · -2x Short Blocks (23S46P)
- · 96S46P pack configuration
- 4416 total cells
- Liquid cooled

- · Long Block Module voltage as tested: 86.2V
- Short Block Module voltage as tested: 79.2V

MASTER PCB DESCRIPTION

- PCB dimension is 424 x 123 mm
- 4 layer PCB with conformal coating
- Total height of the board is 46mm (with the connectors)
- Board has components on both sides
- Board has milled edges
- On the board are electrolytic capacitors for switching power supplies

MASTER PCB DESCRIPTION - Connectors

Connectors:

- 7 connectors:
 - Vehicle Interface (black vertical, 13 pin)
 - External low voltage interface (black, 44 pin)
 - HV sense (white, 24 pin, 6 used)
 - Current Shunt interface (black, 8 pin)
 - Battery Management Board interface low (black, 2 pin)
 - Battery Management Board interface high (grey, 2 pin)
 - Pyro fuse loop (grey, 2 pin)

MASTER PCB DESCRIPTION - Connections

MASTER PCB DESCRIPTION - Major Components Top (1/2)

MASTER PCB DESCRIPTION - Major Components Top (2/2)

MASTER PCB DESCRIPTION - Major Components Bottom

MASTER PCB DESCRIPTION - Major Components

MCUs:

- Freescale SPC5746CSMKU6
 - LQFP176
 - 20MHz crystal
 - Custom build chip (SPC)
- TI TMS570LS0432 **
 - LQFP100
 - 20MHz crystal

CAN Interface:

- Two CAN transceivers (TJA1042)
 - One is terminated

Interface with Cell Sense

Control Board:

- Master and cell sense control board interfaces
 - XFMRS isolation transformer (custom).
 - Custom Communication ASIC.
 - Interface to high side of daisy chain
 - Interface to low side of daisy chain.

MASTER PCB DESCRIPTION - Major Components

MASTER PCB DESCRIPTION - Major Components

HV Measurements:

- Has non-isolated external HV analog measurement (6 channels)
 - 3x 3.4MΩ input divider
 - Assume 6 channels to measure both sides of each of the main and DC charge contactors
 - Connector is used to detect contactors close or open by measuring the voltage on both side of the contactors
 - Connector not assume to be high voltage rated – only 6 pins of 24 used for clearance

CELL SENSE PCB DESCRIPTION - Module 1

- PCB dimension is 141 x 149mm
- 4 layer PCB with conformal coating
- Total height of the board is 16mm (with the connectors)
- Board has components on both sides
- 4 boards per pack
- On the board are electrolytic capacitors for switching power supplies
- Board depicted below is used to monitor battery module 1 and can sense 23 series cells

CELL SENSE PCB DESCRIPTION - Connections

- There are 4 cell sense boards per battery pack
 - All connected in daisy chain
- Each board has unique layout but similar ASICs
 - Only #1 & #4 connect to master control board
 - #2 & #3 are in the middle of the communication daisy-chain
- Cells connect with bonded wires to 27 edge tabs
 - Cell monitor and protector, each have their own cell connections
- Keep-out area for plug seal interface

CELL SENSE PCB Position – Module 1

Cell sense board is mounted at the top end of the battery module

Flexible strip

CELL SENSE PCB DESCRIPTION - Connectors

Connectors:

- Each cell sense board has 2 connectors;
 - Daisy-chain down interface (black vertical, 2 pin)
 - Daisy-chain up interface (black vertical, 2 pin)

- Each cell sense board has 2 edges with cell connection tabs
 - 27 tabs on each edge
 - 24 tabs are used for individual cell voltage monitoring

CELL SENSE PCB DESCRIPTION - Major Components Top (1/2)

CELL SENSE PCB DESCRIPTION - Major Components Top (2/2)

CELL SENSE PCB DESCRIPTION - Major Components Bottom

CELL SENSE PCB DESCRIPTION - Major Components

Cell Voltage Monitoring:

- Custom T2 ASIC used for cell voltage monitoring
 LQFP64
 Custom built chip (Assume Linear Technology due to isoSPI net labels)
 Custom T1 ASIC used for secondary protection
 TSSOP38
 - Cell monitor daisy-chain
 - isoSPI
 - Custom communication isolation transformer (XFMRS 1730 BMC29-BA09-B)

Cell Balancing:

- Passive cell balancing circuits
 - 37.4Ω balance resistors

BOM - BMS MASTER CONTROL BOARD

Bill of Material - BMS PCB

PART	DESCRIPTION	Quantity	Supplier
MCU (SPC5746CSMKU6, TMS570LS0432)	LQFP176, LQFP100	2	Freescale, TI
Connector	Tesla custom	2	?, JST
LDO (TPS7P6950)	5V, SO-8	2	TI
Single step-down controller with dual DC-DC controller (MAX16993)	5V, 1.2V/1.25V, 3.3V TQFN32	2	Maxim
CAN transceiver (TJA1042)	SO8	2	NXP
Common mode choke	CAN	2	
Inductors	SMD, power	3	
Ferrite bead	SMD, 1206, 0805, 0603	~33	
Electrolytic cap	SMD, TH	8	
Ceramic cap	0603, 0805, 1206	~206	
Resistors	0402, 0603, 0805, 1206, 1210, 1608	~337	
Diode	SMA, SMB	~53	
ADC	TSSOP20	1	AMS
Logic	SMD, SO-8	~3	
Xtal	SMD	2	
Quad opamp (TLV2343A-Q1)	SMD, TSSOP14	5	TI
3V precision reference (REF5030A)	SO-8	2	TI
Transistor/FET	NPN, PNP, SOT23, SOT-323, SO89, DPAK	~44	
Transformer	SMD, TH, Power, Signal	2	

Note:

~ mark shows estimation

Bill of Material - BMS PCB

PART	DESCRIPTION	Quantity	Supplier
Cell monitor ASIC	LQFP64	2	Linear
Secondary protector ASIC	TSSOP38	2	
Communication isolation transformer	SO-6 (custom)	4	XFMRS
Connectors	Vertical 2-pin	2	
Common mode choke	Inter-ASIC	2	
NPN BJT transistor (PHPT61003NY)	LFPAK56, 100V 3A	4	NXP
Fuse	SMD, SSQ 3/8A (375mA)	8	Bel Fuse
TVS Diode (SM4T68AY)	SMD, SMA, 58V	4	ST
Ceramic cap	0603, 0805, 1206	~132	
Resistors	0402, 0603, 0805, 1206	~137	
Diode	0402	2	

Note:

~ mark shows estimation