SOLUTIONS

YUQING SHI

1. WEEK 8, EXERCISE 2A

First, there is some corrections to this exercise: we assume that X is a CW-complex and (Y, e) is a path-connected pointed H-group.

Exercise 1.1. Find a counterexample of the statement if Y is an arbitrary path-connected topological space. (Hint: Injectivity does not hold in general.)

Claim 1.2. The map $i: [X,Y]^{\bullet} \to [X,Y]$ is injective.

We denote the basepoint in X by x_0 .

Proof. Let f_0 and f_1 be two pointed maps $(X, x_0) \to (Y, e)$ such that there is a unbased homotopy $h^u \colon X \times I \to Y$ between them. We will show that f_0 and f_1 is based homotopic. Denote by $\gamma \colon I \to Y$ the restriction of h^u to $\{x_0\} \times I$. Define a map $h^Y \colon Y \times I \to Y$, $(y, t) \mapsto m(y, \gamma(t))$.

First we define a homotopy $h^m: X \times I \to Y$, $(x,t) \mapsto m(f_0(x), \gamma(t))$. From the definition of pointed H-group we see that $h^m(-,1) = m(f_0(x),e)$ and $h^m(-,1) = m(f_0(x),e)$ are based homotopic to f_0 .

Claim 1.3. The map $h^m(-,1)$ is based homotopic to f_1 .

Proof of Claim 0.3. Denote by h^0 an explicit based homotopy from f_0 to $h^m(-,0)$. Note that the restriction $h^m|_{\{x_0\}\times I}$ is based homotopic to γ , again by definition of pointed H-space. We denote by $h^l: \{x_0\} \times I \times I \to Y$ an explicit based homotopy between them. The homotopies h^u , h^l and h^m gives us a map

$$h^b: X \times I \times \partial I \cup X \times \{0\} \times I \cup \{x_0\} \times I \times I \to Y$$

such that $h^b|_{X\times I\times\{0\}}=h^u$, $h^b|_{X\times I\times\{1\}}=h^m$, $h^b|_{X\times\{0\}\times I}=h^0$ and $h^b|_{\{x_0\}\times I\times I}=h^l$. The pair $(I\times I,I\times\partial I\cup\{0\}\times I)$ is homeomorphic to the pair $(I\times I,I)$. Using this homeomorphism, h^b can be written as a map $X\times I\cup\{x_0\}\times I\times I\to Y$. Now using the homotopy extension property of the pair $(X\times I,\{x_0\}\times I)$, we obtain a map $h\colon X\times I\times I\to Y$ such that $h|_{X\times\{1\}\times I}$ is a based homotopy between $h^m(-,1)$ and f_1 .

Therefore, f_0 and f_1 are based homotopic.

Claim 1.4. The map i is surjective.

Proof. Let $g: X \to Y$ such that $y_0 := g(x_0) \neq e$. Since Y is path-connected, we can choose a path $p: I \to Y$ from y_0 to e. We can use the homotopy extension property of the pair (X, x_0) to extend g to a homotopy $h: X \times I \to Y$ such that $h \circ i_{\{x_0\} \times I} = p$. Here $i_{\{x_0\} \times I}$ is the canonical inclusion $\{x_0\} \times I \to X \times I$. We see that $h(-, 1): X \to Y$ is a map sending x_0 to e and h(-, 1) is homotopic to g. Thus i([h(-, 1)]) = [g].

By Claim 0.2 and Claim 0.4 we see that i is an bijection.

Date: 26.03.2019.

Remark 1.5. The proof of Claim 0.4 does not use the fact that Y is an H-group.

Remark 1.6. For a more general statement, see [Hat02, Section 4.A].