7.C Positive Operators and Isometries

Monday 2 September 2024 22:27

definition: Telly) is positive if

T=T* and
$$\langle Tv,v \rangle \geq 0 + veV$$

definition: RELLV) is square root of TEL(W) if
$$R^2 = T$$

properties in
$$T \in L(V)$$
 is positive
 $\langle - \rangle$

(b) $T = T^*$ and e -value $\lambda_i \geqslant 0 \ \forall i$

(c) $\exists positive R \in L(V) \ s.t. \ R^2 = T$

(d) $\exists R \in L(V) \ s.t. \ R = R^* \ and \ R^2 = T$

(e) $\exists R \in L(V) \ s.t. \ R^*R = T$

proof: (N) > let
$$T_V = \lambda_V$$
 then

 $0 \le \langle T_V, V \rangle = \langle \lambda_V, V \rangle = \lambda \langle V, V \rangle \Rightarrow Cb$

Spectral Abovern \Rightarrow orthogonal $\{e_i\} = e^{-vector_V}$ of T
 \Rightarrow let $T_{e_i} = \lambda_i e_i$ (Not Einstein convention)

 $(b) \Rightarrow \lambda_i > 0 \ \forall i \Rightarrow let \ R \in L(V) \ s.t. \ Re_i = \int_{A_i}^{A_i} e_i$
 $\Rightarrow R$ is positive, $R^2e_i = \lambda_i e_i = Te_i \Rightarrow (\omega) \Rightarrow (d)$
 $\Rightarrow R = R^4$, $T = R^2 = RR^* \Rightarrow ce$
 $\Rightarrow T^* = (R^*R^* = R^4(R^*)^* = R^*R = T$
 $\Rightarrow \langle T_V, V \rangle = \langle R^*R_V, V \rangle = \langle R_V, R_V \rangle \geq 0 \ \forall V \in V$
 $\Rightarrow Ca)$
 $\Rightarrow Ca$

theorem i positive operator has unique positive square root

proof: let TEL(V) positive => = 1 De Lt. Tv=Lv let R be positive, RZ=T =) lot {ei} eigenbasis of R ∈ [(V) => = {\lambda \lambda VEV => V= O.e. $\Rightarrow R_{V} = a_{i} \int_{i}^{\infty} e_{i}$ $\Rightarrow R^2 V = \alpha_i \lambda_i e_i = TV = \lambda_V = \lambda_{\alpha_i} e_i$ $\Rightarrow \alpha_i(\lambda - \lambda_i) = 0 \ \forall i$ => v=< 0;e; \$ [] \ \; = \ \} > Rv = aske; = sx v R is uniquely determined for each e-vector v of T

definition: $S \in L(V)$ is isometry if ||Sv|| = ||v|| corollary: isometry preserves norms

7.42 Characterization of isometries

Suppose $S \in \mathcal{L}(V)$. Then the following are equivalent:

- (a) S is an isometry;
- (b) $\langle Su, Sv \rangle = \langle u, v \rangle$ for all $u, v \in V$;

Print

- (c) Se_1, \ldots, Se_n is orthonormal for every orthonormal list of vectors e_1, \ldots, e_n in V;
- (d) there exists an orthonormal basis e_1, \ldots, e_n of V such that Se_1, \ldots, Se_n is orthonormal;
- (e) $S^*S = I$;
- (f) $SS^* = I$;
- (g) S^* is an isometry;
- (h) S is invertible and $S^{-1} = S^*$.

prosti 229 pot LAPR

7.43 Description of isometries when $\mathbf{F} = \mathbf{C}$

Suppose V is a complex inner product space and $S \in \mathcal{L}(V)$. Then the following are equivalent:

- (a) S is an isometry.
- (b) There is an orthonormal basis of V consisting of eigenvectors of S whose corresponding eigenvalues all have absolute value 1.