Predição de produtividade de sementes

SCC0230 - Inteligência Artificial (Trabalho 2)

Antonio Carrilho Neto - Aluno UATI Eduardo Souza Rocha - 11218692 Fábio Verardino de Oliveira - 12674547 Olavo Morais Borges Pereira - 11297792

Introdução

Contextualização

- As sementes são um dos insumos agrícolas com maior valor agregado, pois contém a constituição genética da variedade sendo cultivada: um dos fatores determinantes da produtividade.
- Sementes comerciais passam por rigoroso controle de qualidade e supervisão legal, sendo classificadas por sua origem, tecnologia utilizada, entre outros...
- Portanto, é interessante para os produtores de sementes que o processo seja o mais eficiente possível.

Problema

- O Ministério da Agricultura e Pecuária mantém um registro de dados enviados por produtores de semente a cada safra, que inclui, entre outros dados, as características da área, a classe de semente produzida e, além da produção bruta real, uma estimativa dessa produção.
- Analisando os dados, percebe-se que a estimativa de produção tem, em geral, baixa precisão.
- Logo, temos como objetivo desenvolver um modelo que aumente a precisão dessa predição.

Dados

- Trata-se de dados inseridos por campos produtores de sementes no SIGEF (Sistema de Gestão Fundiária), contemplando as safras de 2013 a 2023.
- O informe desses dados é requerido pela legislação brasileira de sementes.
- O conjunto de dados utilizado é disponibilizado no Portal de Dados Abertos do Ministério da Agricultura e Pecuária (https://dados.agricultura.gov.br/).
 - "Controle da Produção de Sementes e Mudas SIGEF"
 - o Total de 458.618 registros com 12 colunas.

Dados

• Exemplo do dataset:

	Safra	Especie	Categoria	Cultivar	Municipio	UF	Status	Data do Plantio	Data de Colheita	Area	Producao bruta	Producao estimada
0	2013/2013	Zea mays L.	C1	P4285H	Paraúna	GO	Aprovado	16/02/2013	10/06/2013	44.0	409.0600	140.80
1	2013/2013	Zea mays L.	C1	P4285YH	Paraúna	GO	Aprovado	17/02/2013	19/06/2013	37.0	279.1600	118.40
2	2013/2013	Zea mays L.	C1	P3646	Morrinhos	GO	Aprovado	28/02/2013	29/06/2013	23.5	201.6700	105.00
3	2013/2013	Zea mays L.	C1	P3161H	Paraúna	GO	Aprovado	15/02/2013	05/06/2013	28.0	167.7100	72.80
4	2013/2013	Zea mays L.	C1	BG7061H	Caiapônia	GO	Aprovado	14/02/2013	24/06/2013	87.0	848.2700	279.10
••••												

Pré-processamento

Dados faltantes

 317.093 registros não possuem informações de Data de Colheita e Produção Bruta (real) e, portanto, foram descartados.

• Dessa forma, restam 141.516 registros a serem utilizados na análise (aprox. 30% do *dataset* original).

Tratamento de outliers

- Calculando o erro médio (RMSE) da produção estimada em relação à produção bruta no conjunto de dados, obtém-se um valor de aprox. 37.498 t, o que indica a presença de outliers no conjunto.
- Para tratar esses dados, foi realizado um agrupamento por k-means com k=3, sendo descartados os dois menores clusters.
- Após isso, restaram 139.646 registros, i.e., cerca de 1,3% foram considerados *outliers*.
- Como resultado, o RMSE passou a ser de 9.193 t, um valor bem mais plausível.

Distribuição dos dados

• A fim de entender melhor a distribuição dos dados do conjunto e as possíveis correlações (atributos de interesse), foi realizada uma análise estatística do conjunto.

- Foram gerados histogramas e gráficos em função da produção bruta para as seguintes colunas:
 - Safra, Espécie, Categoria, Cultivar, Município, UF, Status e Área

Distribuição dos dados - Safra

Distribuição dos dados - Espécie

Distribuição dos dados - Categoria

Distribuição dos dados - Cultivar

Distribuição dos dados - Município

Distribuição dos dados - UF

Distribuição dos dados - Status

Distribuição dos dados - Área

Atributos considerados

- A partir dos resultados da análise estatística, conclui-se que devem ser utilizados, para a predição, os atributos: Categoria, UF, Área, Espécie e Safra.
- Como a qualidade das correlações para Espécie e Safra não é tão boa, os modelos serão treinados sobre 4 conjuntos de atributos:
 - o Categoria; UF; Área.
 - o Categoria; UF; Área; Espécie.
 - o Categoria; UF; Área; Safra.
 - o Categoria; UF; Área; Espécie; Safra.

Normalização

• Todos os dados foram normalizados com o standard scaler:

$$z = \frac{x - \bar{x}}{\sigma}$$

Modelos de predição

Modelos de predição

- Foram testados diversos algoritmos (e parâmetros) de predição, a fim de encontrar o melhor modelo para melhorar a estimativa de produção de sementes, em relação à fornecida pelo dataset.
- Os modelos utilizados são fornecidos pela biblioteca Scikit Learn.
- Algoritmos testados:
 - Regressão linear; Regressão linear positiva
 - Árvores de decisão Comum, Friedman MSE, Aleatória; Random Forest
 - KNN (K Nearest Neighbors); Gradient Boost
 - MLP (Multilayer Perceptron)

Análise de resultados

Métricas

• Após o treinamento de cada um dos 10 modelos para cada um dos 4 *datasets*, foi realizada a predição para cada registro e comparada com a produção bruta reportada (real), sendo utilizada como métrica de erro o RMSE.

Métricas

Modelo\Datase	t Espécie/Safra	Espécie	Safra	Padrão
Original	7,864.79	7,864.79	7,864.79	7,864.79
LR	5,888.85	5,889.51	5,890.24	5,890.84
LR_P	5,890.26	5,890.26	5,892.03	5,892.03
DT	6,506.80	6,308.22	6,508.80	6,105.72
DT_F_MSE	6,511.80	6,318.04	6,510.22	6,107.31
DT_R	6,420.10	6,174.64	6,406.49	6,129.58
RF	5,774.77	5,966.45	5,993.81	5,977.68
KNN	5,828.03	6,129.18	5,943.72	6,292.39
GB	5,806.71	5,820.14	5,822.40	5,848.85
MLP_S	5,873.70	5,876.32	5,881.44	5,884.91
MLP_S	5,871.11	5,875.97	5,881.09	5,884.51

RMSE por modelo/dataset

Em negrito, o melhor resultado para cada dataset. Destacado em verde, o melhor em geral.

Métricas

RMSE por modelo/dataset

Modelo

Conclusões

- Todos os modelos performaram bem melhor que a estimativa presente no conjunto de dados.
- Além disso, o algoritmo de Gradient Boost foi o mais preciso na maioria dos *datasets*.
- Em geral, entretanto, a melhor performance foi exibida pelo Random Forest, no conjunto com Espécie e Safra, apresentando redução de 26,5% no RMSE em relação à original.
- Em contrapartida, a pior precisão foi da Decision Tree (Friedman MSE) no mesmo *dataset*, com redução de 17,2% no RMSE.
- Ou seja, até no pior caso, houve melhora considerável na qualidade da predição.

Fim