2019년 삼계고 수학2 중간고사

- **1.** $\lim_{x\to 2} \frac{x^2+x-6}{x-2}$ 의 극한값은? [3.5점]

- ① 1 ② 2 ③ 3 ④ 4
- ⑤ 5

2. 다음 등식이 성립하도록 하는 상수 a,b에 대하여 a+b의 값은? [3.9점]

$$\lim_{x \to 1} \frac{x^2 + ax + b}{x - 1} = 5$$

- $\bigcirc 1 2$ $\bigcirc 2 1$ $\bigcirc 3 0$ $\bigcirc 4 1$ $\bigcirc 5 2$

- **3.** 함수 f(x)가 모든 실수 x에 대하여 $\frac{x^2}{x^2+1} \le f(x) \le \frac{x^2+2}{x^2+1}$ 를 만족시킬 때, $\lim_{x\to\infty} f(x)$ 의 값은? [3.8점]

- ① 1 ② 2 ③ 3 ④ $\frac{7}{2}$ ⑤ 5

- **4.** 두 함수 f(x),g(x)가 $\lim_{x\to 1}f(x)=0$, $\lim_{x\to 1}g(x)=3$ 을 만족시킬 때, $\lim_{x \to 1} \frac{f(x)}{g(x)}$ 의 값을 구하면? [3.7점]
- ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

- **5.** x = 1에서 연속인 함수를 고르면? [4.1점]

- ① $f(x) = \frac{3x+2}{x-1}$ ② $f(x) = \begin{cases} 2x-1 & (x<1) \\ x^2 & (x \ge 1) \end{cases}$ ③ $f(x) = \begin{cases} \frac{x^2-1}{x-1} & (x \ne 1) \\ 1 & (x=1) \end{cases}$ ④ $f(x) = \begin{cases} x & (x<1) \\ \sqrt{x-1} & (x \ge 1) \end{cases}$ ⑤ $f(x) = \begin{cases} x & (x<1) \\ -x+1 & (x \ge 1) \end{cases}$

- **6.** 함수 $f(x)=x^2+1, g(x)=x^2-ax+4$ 에 대하여 함수 $\frac{f(x)}{g(x)}$ 가 모든 실수 x에서 연속이 되도록 하는 정수 a의 개수를 구하면? [4.6점]
- ① 2 ② 7 ③ 12 ④ 15 ⑤ 18

- **7.** 닫힌구간 [2,4]에서 함수 $f(x) = x^2 2x + 2$ 의 최댓값을 a, 최솟값을 b라 할 때, a+b의 값을 구하면? [4.2점]
- ① 8
- ② 9
- 3 10
- 4 11
- ⑤ 12
- **10.** 함수 $f(x) = x^3 3x^2$ 에 대하여 [0,3]에서 롤의 정리를 만족시키는 상수 c의 값을 구하면? [4.2점]
- ① 0
- 2 1
- 3 2
- ④ 3
- ⑤ 4

8. y=f(x)의 그래프가 다음과 같을 때, $\lim_{x\to 0} f(x) + \lim_{x\to 0} f(x)$ 의 값은? [4.5점]

- ① 1
- ② 2
- ③ 3
- (4) 4
- (5) 5

- **11.** $f(x) = x^2 + ax + b$ 에 대하여 f(1) = 2, f'(2) = 0일 때, f(3)의 값을 구하면? [4.3점]
- ① 2 ② 4
- 3 6
- 4 8
- ⑤ 10

- **9.** 함수 $f(x) = x^4 + x^3 + 3x^2 2x$ 일 때, f'(1)의 값은? [3.6점]
- ① 3 ② 7 ③ 9
- 4 11
- (5) 15
- **12.** $f(x) = (x-2)(x^2+2x+4)$ 일 때, f'(3)의 값은? [4.0점]
- ① 9
- ② 18
- ③ 27
- ④ 36
- ⑤ 45

13.	$f(x) = x^2 + 4x \text{ O}$	대하여	$\lim_{h\to 0}f($	$\frac{1+3h)-f(}{h}$	<u>1)</u> 의	값은?	[4.3점]
-----	-----------------------------	-----	-------------------	----------------------	-------------	-----	--------

- ① 6 ② 9 ③ 12 ④ 15
- ⑤ 18

14. 곡선 $y=x^2+x$ 위의 점 (1,2)에서의 접선의 방정식을 구하면? [4.1점]

- ② y = x + 1
- ③ y = 3x + 3
- (4) y = 3x 1⑤ y = -2x + 4

15. 함수
$$f(x) = x^3 + 3x^2 - 9x$$
의 감소하는 구간을 $[a,b]$ 라 할 때, $b-a$ 의 최댓값은? $[4.7점]$

- ① 4 ② 6 ③ 8 ④ 10
- ⑤ 12

16. 함수
$$f(x) = x^3 - 3x^2 - 9x + 10$$
의 극댓값을 구하면? [4.4점]

- ① 3 ② 6 ③ 9 ④ 12 ⑤ 15

17. 다음은 함수
$$f(x) = |x^2 - 1|$$
의 $x = -1$ 에서 연속성과 미분가능성을 조사하는 과정이다.

(i) x = -1에서 f(x)의 연속성

f(-1) = 00|고

 $\lim_{x \to \infty} f(x) = \boxed{(7)}$

따라서 f(x)는 x=-1에서 연속이다.

(ii) x = -1에서 f(x)의 미분가능성

$$\lim_{x\to -1-}\!\frac{f(x)\!-\!f(-1)}{x\!-\!(-1)}\!=\!\!-2$$

$$\lim_{x \to -1+} \frac{f(x) - f(-1)}{x - (-1)} = \boxed{(1)}$$

따라서 f(x)는 x=-1에서 [다]

이 과정에서 (가), (나), (다)에 알맞은 것은? [4.4점]

	(가)	(나)
1	0	2
2	0	2
3	0	-2
(A)	1	- 9

(다) 미분가능하다.

- 미분가능하지 않다. 미분가능하지 않다. 미분가능하다.
- 1 1 (5)
- 미분가능하지 않다.

18. 다항함수
$$f(x)$$
에 대하여 $\lim_{x\to 1}\frac{f(x+1)-3}{x^2-1}=4$ 일 때, $f(2)+f'(2)$ 의 값은? [5.0점]

- ① 11 ② 13 ③ 15 ④ 19 ⑤ 21

19. 다음은 두 함수 y = f(x)와 y = g(x)의 그래프이다.

〈보기〉에서 항상 옳은 것만을 있는 대로 고르면? [4.9점]

______ 〈보기〉

- $\neg \lim_{x \to 1} \{f(x) + g(x)\} = 0$
- L . 함수 y = f(x) + g(x)는 x = 1에서 연속이다.
- c . 함수 y = f(x)g(x)는 x = -1에서 연속이다.

- ③ ¬, ∟

- (1) ¬ (2) ⊏ (4) L, ⊏ (5) ¬, L, ⊏

 $oldsymbol{20}_{oldsymbol{\cdot}}$ 두 함수 f(x),g(x)에 대하여 옳은 것만을 \langle 보기 \rangle 에서 있는 대로 고른 것은? [4.8점]

- ㄱ. $\lim_{x\to 0} f(x)$, $\lim_{x\to 0} f(x)g(x)$ 가 존재하면 $\lim_{x\to 0} g(x)$ 도 존재한다.
- ㄴ. $\lim_{x\to 0} g(x)$, $\lim_{x\to 0} \frac{f(x)}{g(x)}$ 가 존재하면 $\lim_{x\to 0} f(x)$ 도 존재한다.
- ${\tt c.}\ \lim_{x} f(x)$ 와 $\lim_{x} g(x)$ 가 모두 존재하지 않으면 $\lim_{x} \{f(x) + g(x)\}$ 도 존재하지 않는다.

- ③ ¬, ⊏

- (1) ¬ (2) L (4) L, C (5) ¬, L, C

[논술형1] (0,-1)에서 $y=x^2-x$ 에 그은 접선의 방정식을 구하고, 그 과정을 서술하시오. [7점]

[논술형2] 다음 그림과 같이 함수 $y = \sqrt{x}$ 의 그래프 위의 점 $A(t, \sqrt{t})$ 에 대하여 $\overline{\mathit{OA}}$ 의 수직이등분선 l 의 x 절편과 y 절편을 각각 $\mathit{f}(\mathit{t}), \mathit{g}(\mathit{t})$ 라고 할 때, $\lim_{t \to \infty} \frac{f(t) + g(t)}{f(t) - g(t)}$ 의 값을 구하고, 그 과정을 서술하시오. [8점]

- 1) ⑤
- 2) ②
- 3) ①
- 4) ③
- 5) ②
- 6) ②
- 7) ⑤
- 8) ②
- 9) ④
- 10) ③
- 11) ①
- 12) ③
- 13) ⑤
- 14) ④
- 15) ①
- 13)
- 16) ⑤17) ②
- 18) ①
- . .,
- 19) ③ 20) ②
- 21) [논술형1] y = x 1, y = -3x 1
- 22) [논술형2] -1