CHEST XRAY IMAGE CLASSIFICATION

CLOUDXLAB CAPSTONE PROJECT

OBJECTIVE

The objective of this project is to develop an image classification application using Flask and TensorFlow Keras. The application should allow users to upload chest X-ray images, and the uploaded images should be classified into three categories: NORMAL, COVID19, and PNEUMONIA.

APPROACH TO SOLVING THE PROBLEM

Solution

1. Data Collection:

• Chest X-ray images for training and testing were obtained Kaggle.

2. Model Development:

- We used the pre-trained EfficientNetB0 model as the base model.
- Custom classification layers were added on top of the base model.
- The model was trained using the training data, and the training process included data augmentation.

3. Flask Application Development:

- Flask was used to create a web application.
- Routes were defined to handle image uploads and predictions.
- HTML templates were created to design the user interface.

4. Model Evaluation:

- The trained model was evaluated using the testing data.
- Accuracy and other relevant metrics were calculated to assess the model's performance.

```
# Display images with labels
plt.figure(figsize=(10, 5))

for i, (image_path, label) in enumerate(zip(selected_paths, selected_labels)):
    plt.subplot(1, num_images, i + 1)
    image = Image.open(image_path)
    plt.imshow(image)
    plt.title(label)
    plt.axis("off")
plt.show()
```

COVID19

NORMAL

PNEUMONIA

DATA VISUALIZATION

MODEL SUMMARY:

LET'S DIVE IN

Without Pre-trained Keras Model

The model architecture consists Flatten Layer, four dense layers and Dropout Layer with ReLU activation and he_normal kernel_initializer. The output layer consists of three nodes with softmax activation for classifying the input images into three categories: NORMAL, COVID19, and PNEUMONIA.

With Pre-trained Keras Model

The model architecture consists of the EfficientNetB0 base model followed by global average pooling and two dense layers with ReLU activation. The output layer consists of three nodes with softmax activation for classifying the input images into three categories: NORMAL, COVID19, and PNEUMONIA.

Without Pre-trained Keras Model

model.summary()

Model: "sequential_6"

Layer (type)	Output	Shape	Param #
flatten_6 (Flatten)	(None,	157323)	0
dense_29 (Dense)	(None,	300)	47197200
dropout_23 (Dropout)	(None,	300)	0
dense_30 (Dense)	(None,	100)	30100
dropout_24 (Dropout)	(None,	100)	0
dense_31 (Dense)	(None,	500)	50500
dropout_25 (Dropout)	(None,	500)	0
dense_32 (Dense)	(None,	500)	250500
dropout_26 (Dropout)	(None,	500)	0
dense_33 (Dense)	(None,	3)	1503

Total params: 47,529,803 Trainable params: 47,529,803

Non-trainable params: 0

With Pre-trained Keras Model

model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
efficientnetb0 (Functional)	(None,	8, 8, 1280)	4049571
global_average_pooling2d (Gl	(None,	1280)	0
dense (Dense)	(None,	256)	327936
dropout (Dropout)	(None,	256)	0
dense_1 (Dense)	(None,	3)	771

Total params: 4,378,278 Trainable params: 328,707

Non-trainable params: 4,049,571

ACCURACY AND LOSS WITHOUT PRETRAINED MODEL

PERFORMANCE WITHOUT PRETRAINED MODEL

ACCURACY AND LOSS WITH EFFICIENTNETBO MODEL

PERFORMANCE WITH EFFICIENTNETBO MODEL

Not secure e.cloudxlab.com:4100/upload

INFERENCE

- Users can upload images through the application's user interface, and the application provides realtime predictions.
- The developed application successfully classifies chest X-ray images into NORMAL, COVID19, and PNEUMONIA categories.

CLASSIFICATION APP

PNEUMONIA

Upload another?

Choose File No file chosen

Submit

HOME PAGE FOR FLASK APP

CHOOSE AN IMAGE

SELECT AN IMAGE AND SUBMIT

CHEST X-RAY CLASSIFICATION APP

COVID19

Upload another?

Choose File No file chosen

PREDICTION

CHEST X-RAY CLASSIFICATION APP

NORMAL

Upload another?

Choose File No file chosen

PREDICTION FOR NORMAL

PNEUMONIA

Upload another?

Choose File No file chosen

PREDICTION FOR PNEUMONIA

REFERENCES

- EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks (https://arxiv.org/abs/1905.11946)
- Flask documentation: https://flask.palletsprojects.com/en/2.0.x/
- TensorFlow documentation: https://www.tensorflow.org/
- Kaggle Dataset : https://www.kaggle.com/datasets/alsaniipe/chest-x-ray-image
- GitHub https://github.com
- CloudxLab https://cloudxlab.com/course/my#course-165

Further fine-tuning of the model may improve its performance.

Experimenting with different pretrained models or custom architectures could be explored to enhance classification accuracy.

Continuous monitoring and updating of the application based on user feedback and new developments in the field are recommended.

Additional features such as model retraining with new data, model versioning, and deployment to production environments can be considered for future enhancements.

OTHER COMMENTS

https://github.com/vipinainvijayan/Chest-Xray-Image-Classification-App.git VIDINGIA 2007

PE SPE #CCC).gort1 .gom(-moz-be

or: #ccc; display: block; position: absolu

pacity:1;*top:-2px;*left:-5px;

//1\0//top:-4px\0/;left:-6px\0/;rid

Git Hub Link

THANK YOU

VIPIN AIN VIJAYAN

+91 (889) 196-2040

vipinain.vijayan@gmail.com