EVALUATING ONE LOOP N POINT INTEGRALS WITH R FUNCTION

phkhiem¹

February 23, 2009

¹The natural of science university

Chapter 1

TEST ANALYTIC CALCULATION

The external momenta have form

$$q_1^{\mu} = (q_{10}, 0, 0, \vec{0}),$$

$$q_2^{\mu} = (q_{20}, q_{21}, 0, \vec{0}),$$

$$q_3^{\mu} = (q_{30}, q_{31}, q_{32}, \vec{0}),$$

so the number of parallel dimension is J=3. Scalar one loop four point integrals is

$$D_0 = \int_{-\infty}^{\infty} dl_0 \int_{-\infty}^{\infty} dl_1 \int_{-\infty}^{\infty} dl_2 \int_{0}^{\infty} dl_{\perp} \frac{1}{P_1 P_2 P_3 P_4}$$
 (1.1)

with

$$P_{1} = (l_{0} + q_{10})^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{1}^{2} + i\rho,$$

$$P_{2} = (l_{0} + q_{20})^{2} - (l_{1} + q_{21})^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{2}^{2} + i\rho,$$

$$P_{3} = (l_{0} + q_{30})^{2} - (l_{1} + q_{31})^{2} - (l_{2} + q_{32})^{2} - l_{\perp}^{2} - m_{3}^{2} + i\rho,$$

$$P_{4} = l_{0}^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{4}^{2} + i\rho.$$

$$(1.2)$$

With general, we have

$$P_k = (l_0 + q_{k0})^2 - (l_1 + q_{k1})^2 - (l_2 + q_{k2})^2 - l_\perp^2 - m_k^2 + i\rho,$$

and

$$P_{l} - P_{k} = 2l_{0}(q_{l0} - q_{k0}) - 2l_{1}(q_{l1} - q_{k1}) - 2l_{2}(q_{l2} - q_{k2} + (q_{l}^{2} - q_{k}^{2}) - (m_{l}^{2} - m_{k}^{2}),$$

$$= l_{0}a_{lk} + l_{1}b_{lk} + l_{2}c_{lk} + (q_{l}^{2} - q_{k}^{2}) - (m_{l}^{2} - m_{k}^{2}),$$
(1.3)

with

$$a_{lk} = 2(q_{l0} - q_{k0})$$

$$b_{lk} = -2(q_{l1} - q_{k1})$$

$$c_{lk} = -2(q_{l2} - q_{k2})$$
(1.4)

Partitioning the integrand in Eq.(15) into the form

$$\frac{1}{P_1 P_2 P_3 P_4} = \frac{1}{P_1 (P_2 - P_1)(P_3 - P_1)(P_4 - P_1)} + \frac{1}{P_2 (P_1 - P_2)(P_3 - P_2)(P_4 - P_2)} + \frac{1}{P_3 (P_1 - P_3)(P_2 - P_3)(P_4 - P_3)} + \frac{1}{P_4 (P_1 - P_4)(P_2 - P_4)(P_3 - P_4)} (1.5)$$

or

$$\frac{1}{P_1 P_2 P_3 P_4} = \sum_{k=1}^{4} \frac{1}{P_k \prod_{l=1, l \neq k}^{4} (P_l - P_k)}$$
(1.6)

We rewrite the integral Eq.(16) as follows

$$D_0 = \sum_{k=1}^{4} \int_{-\infty}^{\infty} dl_0 \int_{-\infty}^{\infty} dl_1 \int_{-\infty}^{\infty} dl_2 \int_{0}^{\infty} dl_{\perp} \frac{1}{P_k \prod_{l=1}^{4} l \neq k} (P_l - P_k)}$$
(1.7)

1. The first integral in Eq.1.7

$$D_0^1 = \int_{-\infty}^{\infty} dl_0 \int_{-\infty}^{\infty} dl_1 \int_{-\infty}^{\infty} dl_2 \int_{0}^{\infty} dl_{\perp} \frac{1}{P_1 \prod_{l=2}^{4} (P_l - P_1)}$$
(1.8)

where

$$P_{1} = (l_{0} + q_{10})^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{1}^{2} + i\rho,$$

$$\prod_{l=2}^{4} (P_{l} - P_{1}) = \prod_{l=2}^{4} \left[a_{l1}l_{0} + b_{l1}l_{1} + c_{l1}l_{2} + (q_{l}^{2} - q_{1}^{2}) - (m_{l}^{2} - m_{1}^{2}) \right]$$

and

$$a_{l1} = 2(q_{l0} - q_{10})$$

$$b_{l1} = -2(q_{l1} - q_{11}) = -2q_{l1}$$

$$c_{l1} = -2(q_{l2} - q_{12}) = -2q_{l2}$$

Shifft $l_0 \longrightarrow l_0 + q_{10}$ in Eq.1.8

•
$$P_1 \longrightarrow l_0^2 - l_1^2 - l_2^2 - l_\perp^2 - m_1^2 + i\rho$$
,

•
$$\prod_{l=2}^{4} (P_l - P_1) \longrightarrow \prod_{l=2}^{4} [a_{l1}l_0 + b_{l1}l_1 + c_{l1}l_2 + (q_l - q_1)^2 - (m_l^2 - m_1^2)]$$

Infact

$$\prod_{l=2}^{4} (P_l - P_1) \longrightarrow \prod_{l=2}^{4} \left[a_{l1}(l_0 - q_{10}) + b_{l1}l_1 + c_{l1}l_2 + (q_l^2 - q_1^2) - (m_l^2 - m_1^2) \right]
= \prod_{l=2}^{4} \left[a_{l1}l_0 + b_{l1}l_1 + c_{l1}l_2 - a_{l1}q_{10} + (q_l^2 - q_1^2) - (m_l^2 - m_1^2) \right]
= \prod_{l=2}^{4} \left[a_{l1}l_0 + b_{l1}l_1 + c_{l1}l_2 - 2(q_{l0} - q_{10})q_{10} + (q_l^2 - q_1^2) - (m_l^2 - m_1^2) \right]
= \prod_{l=2}^{4} \left[a_{l1}l_0 + b_{l1}l_1 + c_{l1}l_2 - 2q_{l0}q_{10} + q_l^2 + q_1^2 - (m_l^2 - m_1^2) \right]
= \prod_{l=2}^{4} \left[a_{l1}l_0 + b_{l1}l_1 + c_{l1}l_2 + (q_l - q_1)^2 - (m_l^2 - m_1^2) \right]$$

2. The second integral in Eq.1.7

$$D_0^2 = \int_{-\infty}^{\infty} dl_0 \int_{-\infty}^{\infty} dl_1 \int_{-\infty}^{\infty} dl_2 \int_{0}^{\infty} dl_{\perp} \frac{1}{P_2 \prod_{l=1}^{4} l \neq 2} (P_l - P_2)$$
 (1.9)

where

$$P_{2} = (l_{0} + q_{20})^{2} - (l_{1} + q_{21})^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{2}^{2} + i\rho,$$

$$\prod_{l=1,\neq 2}^{4} (P_{l} - P_{2}) = \prod_{l=1,l\neq 2}^{4} \left[a_{l2}l_{0} + b_{l2}l_{1} + c_{l2}l_{2} + (q_{l}^{2} - q_{2}^{2}) - (m_{l}^{2} - m_{2}^{2}) \right]$$

and

$$a_{l2} = 2(q_{l0} - q_{20})$$

$$b_{l2} = -2(q_{l1} - q_{21})$$

$$c_{l2} = -2(q_{l2} - q_{22}) = -2q_{l2}$$

Shifft $l_0 \longrightarrow l_0 + q_{20}$; $l_1 \longrightarrow l_1 + q_{21}$ in Eq.1.9

•
$$P_2 \longrightarrow l_0^2 - l_1^2 - l_2^2 - l_\perp^2 - m_2^2 + i\rho$$
,

•
$$\prod_{l=1,\neq 2}^{4} (P_l - P_2) \longrightarrow \prod_{l=1,l\neq 2}^{4} [a_{l2}l_0 + b_{l2}l_1 + c_{l2}l_2 + (q_l - q_2)^2 - (m_l^2 - m_2^2)]$$

To prove

$$\star \prod_{l=1, \neq 2}^{4} (P_{l} - P_{2}) \longrightarrow \prod_{l=1, l \neq 2}^{4} \left[a_{l2}(l_{0} - q_{20}) + b_{l2}(l_{1} - q_{21}) + c_{l2}l_{2} + (q_{l}^{2} - q_{2}^{2}) - (m_{l}^{2} - m_{2}^{2}) \right]$$

$$= \prod_{l=1, l \neq 2}^{4} \left[a_{l2}l_{0} - a_{l2}q_{20} + b_{l2}l_{1} - b_{l2}q_{21} + c_{l2}l_{2} + (q_{l}^{2} - q_{2}^{2}) - (m_{l}^{2} - m_{2}^{2}) \right]$$

$$= \prod_{l=1, l \neq 2}^{4} \left[a_{l2}l_{0} + b_{l2}l_{1} + c_{l2}l_{2} - a_{l2}q_{20} - b_{l2}q_{21} + (q_{l}^{2} - q_{2}^{2}) - (m_{l}^{2} - m_{2}^{2}) \right]$$

$$= \prod_{l=1, l \neq 2}^{4} \left[a_{l2}l_{0} + b_{l2}l_{1} + c_{l2}l_{2} - 2(q_{l0} - q_{20})q_{20}) + 2(q_{l1} - q_{21})q_{21} + (q_{l}^{2} - q_{2}^{2}) - (m_{l}^{2} - m_{2}^{2}) \right]$$

$$= \prod_{l=1, l \neq 2}^{4} \left[a_{l2}l_{0} + b_{l2}l_{1} + c_{l2}l_{2} - (m_{l}^{2} - m_{2}^{2}) - 2(q_{l0}q_{20} - q_{l1}q_{21}) + 2(q_{20}^{2} - q_{21}^{2}) - q_{2}^{2} + q_{l}^{2} \right] \right]$$

$$= \prod_{l=1, l \neq 2}^{4} \left[a_{l2}l_{0} + b_{l2}l_{1} + c_{l2}l_{2} + (q_{l} - q_{2})^{2} - (m_{l}^{2} - m_{2}^{2}) \right]$$

3. The thirth integral in Eq.1.7

$$D_0^3 = \int_{-\infty}^{\infty} dl_0 \int_{-\infty}^{\infty} dl_1 \int_{-\infty}^{\infty} dl_2 \int_{0}^{\infty} dl_{\perp} \frac{1}{P_3 \prod_{l=1}^{4} (P_l - P_3)}$$
(1.10)

where

$$P_{3} = (l_{0} + q_{30})^{2} - (l_{1} + q_{31})^{2} - (l_{2} + q_{32})^{2} - l_{\perp}^{2} - m_{3}^{2} + i\rho,$$

$$\prod_{l=1,\neq 3}^{4} (P_{l} - P_{3}) = \prod_{l=1,l\neq 3}^{4} \left[a_{l3}l_{0} + b_{l3}l_{1} + c_{l3}l_{2} + (q_{l}^{2} - q_{3}^{2}) - (m_{l}^{2} - m_{3}^{2}) \right]$$

$$a_{l3} = 2(q_{l0} - q_{30})$$

 $b_{l3} = -2(q_{l1} - q_{31})$
 $c_{l3} = -2(q_{l2} - q_{32})$

Shifft
$$l_0 \longrightarrow l_0 + q_{30}, l_1 \longrightarrow l_1 + q_{31}, l_2 \longrightarrow l_2 + q_{32}$$

•
$$P_3 \longrightarrow l_0^2 - l_1^2 - l_2^2 - l_\perp^2 - m_3^2 + i\rho$$
,

•
$$\prod_{l=1,\neq 3}^{4} (P_l - P_3) \mapsto \prod_{l=1,l\neq 3}^{4} [a_{l3}l_0 + b_{l3}l_1 + c_{l3}l_2 + (q_l - q_3)^2 - (m_l^2 - m_3^2)]$$

To prove

$$\mapsto \prod_{l=1,l\neq 3}^{4} \left[a_{l3}(l_0 - q_{30}) + b_{l3}(l_1 - q_{31}) + c_{l3}(l_2 - q_{32}) + (q_l^2 - q_3^2) - (m_l^2 - m_3^2) \right] \\
= \prod_{l=1,l\neq 3}^{4} \left[a_{l3}l_0 - a_{l3}q_{30} + b_{l3}l_1 - b_{l3}q_{31} + c_{l3}l_2 - c_{l3}q_{32} + (q_l^2 - q_3^2) - (m_l^2 - m_3^2) \right] \\
= \prod_{l=1,l\neq 3}^{4} \left[a_{l3}l_0 + b_{l3}l_1 + c_{l3}l_2 + -(m_l^2 - m_3^2) - 2(q_{l0} - q_{30})q_{30} + 2(q_{l1} - q_{31})q_{31} + 2(q_{l2} - q_{32})q_{32} + q_l^2 - q_3^2 \right] \\
= \prod_{l=1,l\neq 3}^{4} \left[a_{l3}l_0 + b_{l3}l_1 + c_{l3}l_2 + -(m_l^2 - m_3^2) - 2(q_{l0}q_{30} - q_{l1}q_{31} - q_{l2}q_{32}) + 2(q_{30}^2 - q_{31}^2 - q_{32}^2) - q_3^2 - q_l^2 \right] \\
= \prod_{l=1,l\neq 3}^{4} \left[a_{l3}l_0 + b_{l3}l_1 + c_{l3}l_2 + (q_l - q_3)^2 - (m_l^2 - m_3^2) \right] \tag{1.11}$$

4. The four integral in Eq.1.7

$$D_0^4 = \int_{-\infty}^{\infty} dl_0 \int_{-\infty}^{\infty} dl_1 \int_{-\infty}^{\infty} dl_2 \int_{0}^{\infty} dl_{\perp} \frac{1}{P_4 \prod_{l=1, l \neq 4}^{4} (P_l - P_4)}$$
(1.12)

where

$$P_4 = l_0^2 - l_1^2 - l_2^2 - l_\perp^2 - m_4^2 + i\rho,$$

$$\prod_{l=1,l\neq 4}^4 (P_l - P_4) = \prod_{l=1,l\neq 4}^4 \left[a_{l4}l_0 + b_{l4}l_1 + c_{l4}l_2 + q_l^2 - (m_l^2 - m_2^2) \right]$$

Summarize:

$$D_{0} = \sum_{k=1}^{4} \int_{-\infty}^{\infty} dl_{0} \int_{-\infty}^{\infty} dl_{1} \int_{-\infty}^{\infty} dl_{2} \int_{0}^{\infty} dl_{\perp} \frac{1}{\left[l_{0}^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{k}^{2} + i\rho\right]} \prod_{l=1, l \neq k}^{4} \left[a_{lk}l_{0} + b_{lk}l_{1} + c_{lk}l_{2} + d_{lk}\right]$$
(1.13)

with
$$d_{lk} = (q_l - q_k)^2 - (m_l^2 - m_k^2)$$

1.1 The x integration

To do The l_0 – integrattion, we make further shift

$$\begin{array}{rcl} l_0 & = & x+z \\ l_2 & = & x, \\ l_1 & = & y, \\ l_{\perp} & = & t. \end{array}$$

then the Jacobian of this transformation is 1 and

$$D_{0} = 2\sum_{k=1}^{4} \int_{-\infty}^{\infty} dx \, dy \, dz \int_{0}^{\infty} \frac{1}{[2xz + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho] \prod_{l=1; l \neq k}^{4} [a_{lk}z + b_{lk}y + (a_{lk} + c_{lk})x + d_{lk}]}$$

Now we caculate the x-integration first. This can be done with help of the residue theorem.

1. The case of $AC_{lk} = a_{lk} + c_{lk} = 0$

$$D_{0} = 2\sum_{k=1}^{4} \int_{-\infty}^{\infty} dy \, dz \int_{0}^{\infty} \int_{-\infty}^{\infty} dx$$

$$\frac{1}{[2xz + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho] \prod_{l=1; l \neq k}^{4} [a_{lk}z + b_{lk}y + (a_{lk} + d_{lk})]}$$

$$\Longrightarrow D_0 = \infty$$

2. The case of $AC_{lk} = a_{lk} + c_{lk} \neq 0$ The singular points of the x-integrand in Eq are

$$x_{0} = \frac{y^{2} + t^{2} + m_{k}^{2} - i\rho - z^{2}}{2z}$$

$$x_{l} = -\left[\frac{a_{lk}}{AC_{lk}}z + \frac{b_{lk}}{AC_{lk}}y + \frac{d_{lk}}{AC_{lk}}\right]$$

Note: $\Im(x_0) = \frac{-\Gamma_k - \rho}{2z}$ and $\Im(x_l) = \frac{-\Delta_{lk}}{AC_{lk}}$. The pole x_0 located in the first or second quarter if z < 0 and vise versa. So we will integrate over x by closing the

contour over upper complex x-plane for z > 0 and in the lower complex x-plane for z < 0. So we have to split the z-integral

$$D_0 = D_0^+ + D_0^- (1.14)$$

with

$$D_0^+ = 2\sum_{k=1}^4 \int_0^{\infty} dz \int_{-\infty}^{\infty} dy \int_0^{\infty} dt \int_{-\infty}^{\infty} dx \ F(x, y, z, t, m_k, q_k)$$

$$D_0^- = 2\sum_{k=1}^4 \int_{-\infty}^0 dz \int_{-\infty}^{\infty} dy \int_0^{\infty} dt \int_{-\infty}^{\infty} dx \ F(x, y, z, t, m_k, q_k)$$

(a) Caculating the D_0^+

Only pole x_l which have $\Im(x_l) \ge 0$ will contribute to the integral D_0^+ . The residuce of $F(x, y, z, t, m_k, q_k)$ at singular point x_l is

$$Res [x_{l}, F(x, ...)] = \frac{1}{(2zx_{l} + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho)} \frac{1}{\prod_{m=1; m \neq l; l \neq k} (a_{mk}z + b_{mk}y + AC_{mk}x_{l} + d_{mk})}$$

Following the residuce theorem, D_0^+ have form

$$D_0^+ = 2i\pi \sum_{k=1}^4 \sum_{l=1; l \neq k}^4 \int_0^\infty dz \int_{-\infty}^\infty dy \int_0^\infty dt$$

$$\frac{1}{2zx_l + z^2 - y^2 - t^2 - m_k^2 + i\rho} \frac{f_{lk}}{\prod_{m=1; m \neq l; l \neq k} (a_{mk}z + b_{mk}y + AC_{mk}x_l + d_{mk})}$$

with

$$f_{lk} = \begin{cases} 0, & \text{if } \Im(-\frac{d_{lk}}{AC_{lk}}) < 0; \\ 1, & \text{if } \Im(-\frac{d_{lk}}{AC_{lk}}) = 0; \\ 2, & \text{if } \Im(-\frac{d_{lk}}{AC_{lk}}) > 0. \end{cases}$$

Note: if x_l stay on the real axes¹ then $f_{lk} = 1$. because we have half of contour over these poles.

¹to evaluate integral whose integrands have poles on the real axis, we use the contour which advoids these singularities by flolowing small semicircles with centers at the singular points

(b) Caculating the D_0^- :

Only pole x_l which have $\Im(x_l) \leq 0$ will contribute to the integral D_0^- Following the residuce theorem, D_0^+ have form

$$D_{0}^{-} = -2i\pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{-\infty}^{0} dz \int_{-\infty}^{\infty} dy \int_{0}^{\infty} dt \frac{1}{\left[2zx_{l} + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho\right]} \frac{f_{lk}^{-}}{\prod_{m=1; m \neq l; l \neq k} \left[a_{mk}z + b_{mk}y + AC_{mk}x_{l} + d_{mk}\right]}$$

with

$$f_{lk}^{-} = \begin{cases} 0, & \text{if } \Im(-\frac{d_{lk}}{AC_{lk}}) > 0; \\ 1, & \text{if } \Im(-\frac{d_{lk}}{AC_{lk}}) = 0; \\ 2, & \text{if } \Im(-\frac{d_{lk}}{AC_{lk}}) < 0. \end{cases}$$
(1.15)

Note: The sign "-" in front of D_0^- appear to explain for taking the contour oppsite direct

SUMMARIZE:

$$D_{0}^{+} = 2i\pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{0}^{\infty} dz \int_{-\infty}^{\infty} dy \int_{0}^{\infty} dt \left\{ \frac{1}{2zx_{l} + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho} - \frac{\left[1 - \delta(AC_{lk})\right] f_{lk}}{\prod\limits_{m=1; m \neq l; l \neq k} (a_{mk}z + b_{mk}y + AC_{mk}x_{l} + d_{mk})} \right\}$$

and

$$D_{0}^{-} = -2i\pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{-\infty}^{0} dz \int_{-\infty}^{\infty} dy \int_{0}^{\infty} dt \left\{ \frac{1}{2zx_{l} + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho} - \frac{\left[1 - \delta(AC_{lk})\right] f_{lk}^{-}}{\prod\limits_{m=1; m \neq l; l \neq k} (a_{mk}z + b_{mk}y + AC_{mk}x_{l} + d_{mk})} \right\}$$

with

$$x_{l} = -\left[\frac{a_{lk}}{AC_{lk}}z + \frac{b_{lk}}{AC_{lk}}y + \frac{d_{lk}}{AC_{lk}}\right]$$

we have

$$2zx_{l} + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho$$

$$= -2z \left[\frac{a_{lk}}{AC_{lk}} z + \frac{b_{lk}}{AC_{lk}} y + \frac{d_{lk}}{AC_{lk}} \right] + z^{2} - y^{2} - t^{2} - m_{k}^{2} + i\rho$$

$$= (1 - \frac{2a_{lk}}{AC_{lk}}) z^{2} - 2yz \frac{b_{lk}}{AC_{lk}} - 2z \frac{d_{lk}}{AC_{lk}} - y^{2} - t^{2} - m_{k}^{2} + i\rho$$

$$a_{mk}z + b_{mk}y + AC_{mk}x_{l} + d_{mk}$$

$$= a_{mk}z + b_{mk}y - AC_{mk} \left[\frac{a_{lk}}{AC_{lk}} z + \frac{b_{lk}}{AC_{lk}} y + \frac{d_{lk}}{AC_{lk}} \right] + d_{mk}$$

$$= a_{mk}z + b_{mk}y + d_{mk} - z \frac{AC_{mk}}{AC_{lk}} a_{lk} - y \frac{AC_{mk}}{AC_{lk}} b_{lk} - \frac{AC_{mk}}{AC_{lk}} d_{lk}$$

$$= \left[a_{mk} - \frac{AC_{mk}}{AC_{lk}} a_{lk} \right] z + \left[b_{mk} - \frac{AC_{mk}}{AC_{lk}} b_{lk} \right] y + d_{mk} - \frac{AC_{mk}}{AC_{lk}} d_{lk}$$

$$= A_{mlk}z + B_{mlk}y + C_{mlk}$$

$$(1.16)$$

Finally, we recollect

$$D_{0}^{+} = 2i\pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{0}^{\infty} dz \int_{-\infty}^{\infty} dy \int_{0}^{\infty} dt \frac{1}{\left[\left(1 - \frac{2a_{lk}}{AC_{lk}} \right) z^{2} - 2yz \frac{b_{lk}}{AC_{lk}} - 2z \frac{d_{lk}}{AC_{lk}} - y^{2} - t^{2} - m_{k}^{2} + i\rho \right]} \frac{\left[1 - \delta(AC_{lk}) \right] f_{lk}}{\prod_{m=1; m \neq l; l \neq k} \left[A_{mlk} z + B_{mlk} y + C_{mlk} \right]}$$

and

$$D_{0}^{-} = -2i\pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{-\infty}^{0} dz \int_{-\infty}^{\infty} dy \int_{0}^{\infty} dt \frac{1}{\left[(1 - \frac{2a_{lk}}{AC_{lk}})z^{2} - 2yz\frac{b_{lk}}{AC_{lk}} - 2z\frac{d_{lk}}{AC_{lk}} - y^{2} - t^{2} - m_{k}^{2} + i\rho \right]} \frac{\left[1 - \delta(AC_{lk}) \right] f_{lk}}{\prod_{m=1; m \neq l; l \neq k} \left[A_{mlk}z + B_{mlk}y + C_{mlk} \right]}$$

with

$$A_{mlk} = a_{mk} - \frac{AC_{mk}}{AC_{lk}} a_{lk},$$

$$B_{mlk} = b_{mk} - \frac{AC_{mk}}{AC_{lk}} b_{lk},$$

$$C_{mlk} = d_{mk} - \frac{AC_{mk}}{AC_{lk}} d_{lk}.$$

1.2 The y integration

We first linearize by shift $t \longrightarrow t + y$. To do that t^2 and y^2 must have oppsite signs. That can be obtained by a complex rotation.

1.2.1 The t rotation

The integration wrt. t has 2 poles locate in the first or the third quarter or the second and the fourth ones of the complex plane, depend on the sign of $\Im[2zx_l-m_k^2+i\rho]$

$$t = \pm \sqrt{z^2 + 2zx_l - y^2 - m_k^2 + i\rho}$$
 (1.17)

the sign of imaginary part of depends on the sign of $(2z\Im[-\frac{d_{lk}}{AC_{lk}}]+\Gamma_k+\rho)$. The locations of the t-poles for D^+ and D^- are specified in the Table4.3 and Table1.2

$\Im[-\frac{d_{lk}}{AC_{lk}}] \ge 0$	$z \ge 0$	$1^{st}, 3^{th}$ quarter
$\Im[-\frac{d_{lk}}{AC_{lk}}] < 0$	$0 \le z \le -\frac{\Gamma_k + \rho}{2\Im\left[\frac{d_{lk}}{AC_{lk}}\right]}$	$1^{st}, 3^{th}$ quarter
$\Im[-\frac{d_{lk}}{AC_{lk}}] < 0$	$0 \le -\frac{\Gamma_k + \rho}{2\Im\left[\frac{d_{lk}}{AC_{lk}}\right]} < z$	$2^{st}, 4^{th}$ quarter

Table 1.1: t-poles location of D_0^+

$\Im[-\frac{d_{lk}}{AC_{lk}}] \le 0$	$z \le 0$	$1^{st}, 3^{th}$ quarter
$\Im[-\frac{d_{lk}}{AC_{lk}}] > 0$	$-\frac{\Gamma_k + \rho}{2\Im\left[\frac{d_{lk}}{AC_{lk}}\right]} \le z \le 0$, 1
$\Im[-\frac{d_{lk}}{AC_{lk}}] > 0$	$z \le -\frac{\Gamma_k + \rho}{2\Im\left[\frac{d_{lk}}{AC_{lk}}\right]} < 0$	$2^{st}, 4^{th}$ quarter

Table 1.2: t-poles location of D_0^-

We now close the contour on the fourth quarter of the t-complex plane to obtain

$$\int_{0}^{\infty} dt = \frac{1}{2} \int_{-\infty}^{\infty} dt = -\int_{-i\infty}^{0} dt = -\frac{1}{2} \int_{-i\infty}^{i\infty} dt$$
 (1.18)

After Wick rotation, to obtains

$$D_{0}^{+} = \pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{0}^{\infty} dz \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dt \left\{ \frac{1}{\left[\left(1 - \frac{2a_{lk}}{AC_{lk}}\right) z^{2} - 2yz \frac{b_{lk}}{AC_{lk}} - 2z \frac{d_{lk}}{AC_{lk}} - y^{2} + t^{2} - m_{k}^{2} + i\rho \right]} \frac{\left[1 - \delta(AC_{lk}) \right] f_{lk}}{\prod\limits_{m=1; m \neq l; l \neq k} (A_{mlk}z + B_{mlk}y + C_{mlk})} \right\}$$
(1.19)

with $\Im[-\frac{d_{lk}}{AC_{lk}}] \ge 0$ and

$$D_{0}^{-} = -\pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{-\infty}^{0} dz \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dt \left\{ \frac{1}{\left[(1 - \frac{2a_{lk}}{AC_{lk}})z^{2} - 2yz\frac{b_{lk}}{AC_{lk}} - 2z\frac{d_{lk}}{AC_{lk}} - y^{2} + t^{2} - m_{k}^{2} + i\rho \right]} \frac{\left[1 - \delta(AC_{lk}) \right] f_{lk}^{-}}{\prod\limits_{m=1; m \neq l; l \neq k} (A_{mlk}z + B_{mlk}y + C_{mlk})} \right\}$$
(1.20)

with $\Im[-\frac{d_{lk}}{AC_{lk}}] \le 0$

1.2.2 Evaluate to the y integrate

To do caculation of the integrals in Eq1.19 and Eq1.20 we make further shift $t \longrightarrow t+y$. The Jacobian is 1. We have

$$D_{0}^{+} = \pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{0}^{\infty} dz \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dt \frac{\left[1 - \delta(AC_{lk})\right] f_{lk}}{\prod_{m=1; m \neq l; l \neq k} (A_{mlk}z + B_{mlk}y + C_{mlk})}$$

$$\frac{1}{\left[\left(1 - \frac{2a_{lk}}{AC_{lk}}\right)z^{2} + 2y\left(t - z\frac{b_{lk}}{AC_{lk}}\right) - 2z\frac{d_{lk}}{AC_{lk}} - y^{2} + t^{2} - m_{k}^{2} + i\rho\right]}$$

$$D_{0}^{-} = -\pi \sum_{k=1}^{4} \sum_{l=1; l \neq k}^{4} \int_{-\infty}^{0} dz \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dt \frac{\left[1 - \delta(AC_{lk})\right] f_{lk}^{-}}{\prod\limits_{m=1; m \neq l; l \neq k} (A_{mlk}z + B_{mlk}y + C_{mlk})}$$

$$\frac{1}{\left[\left(1 - \frac{2a_{lk}}{AC_{lk}}\right)z^{2} - 2yz\frac{b_{lk}}{AC_{lk}} - 2z\frac{d_{lk}}{AC_{lk}} - y^{2} + t^{2} - m_{k}^{2} + i\rho\right]}$$

The singular points of the integrand D_0^+ and D_0^- are

$$y_{mlk} = -\left[\frac{A_{mlk}z + C_{mlk}}{B_{mlk}}\right]$$

$$y_0 = \frac{-\left(1 - \frac{2a_{lk}}{AC_{lk}}\right)z^2 - t^2 + 2z\frac{d_{lk}}{AC_{lk}} + m_k^2 - i\rho}{2\left(t - z\frac{b_{lk}}{AC_{lk}}\right)}$$

Note: $\Im(y_0) = \frac{-2z\Im(\frac{-d_{lk}}{AC_{lk}})-\Gamma_k-\rho}{2\left(t-z\frac{bl_k}{AC_{lk}}\right)}$.

Because z and $\Im(\frac{-d_{lk}}{AC_{lk}})$ have the same sign, $-2z\Im(\frac{-d_{lk}}{AC_{lk}})-\Gamma_k-\rho<0$

• with D_0^+ (z>0): the pole y_0 locate in 1^{th} or 2^{th} quarter of the complex plane if $t<\alpha_{lk}z$ and vise versa. So we take the y-integral by closing the contour on the uper plane if $t>\alpha_{lk}z$ and on the lower plane if $t<\alpha_{lk}z$.

$$D_0^+ = D_0^{++} + D_0^{+-} (1.21)$$

with

$$D_0^{++} = \pi \sum_{k=1}^4 \sum_{l=1; l \neq k}^4 \int_0^\infty dz \int_{-\infty}^\infty dy \int_{\alpha_{lk}z}^\infty dt G(y, z, t, m_k, q_k)$$
 (1.22)

and

$$D_0^{+-} = \pi \sum_{k=1}^4 \sum_{l=1; l \neq k}^4 \int_0^\infty dz \int_{-\infty}^\infty dy \int_{-\infty}^{\alpha_{lk} z} dt G(y, z, t, m_k, q_k)$$
 (1.23)

• with D_0^- (z < 0): the pole y_0 locate in 1^{th} or 2^{th} quarter of the complex plane if $t < \alpha_{lk}z$ and vise versa. So we take the y-integral by closing the contour on the uper plane if $t > \alpha_{lk}z$ and on the lower plane if $t < \alpha_{lk}z$.

$$D_0^+ = D_0^{-+} + D_0^{--} (1.24)$$

with

$$D_0^{-+} = \pi \sum_{k=1}^4 \sum_{l=1; l \neq k}^4 \int_0^\infty dz \int_{-\infty}^\infty dy \int_{\alpha_{lk}z}^\infty dt G^-(y, z, t, m_k, q_k)$$
 (1.25)

and

$$D_0^{--} = \pi \sum_{k=1}^4 \sum_{l=1; l \neq k}^4 \int_0^\infty dz \int_{-\infty}^\infty dy \int_{-\infty}^{\alpha_{lk} z} dt G^-(y, z, t, m_k, q_k)$$
 (1.26)

where

$$G^{\pm}(y, z, t, m_k, q_k) = \frac{f_{lk}^{\pm}}{\left[\dots \right]}$$
 (1.27)

Following the residuce theorem, we have

$$D_{0}^{++} = i\pi^{2} \sum_{k=1}^{4} \int_{0}^{\infty} dz \sum_{l=1; l \neq k}^{4} \int_{\alpha lkz}^{\infty} dt \left[1 - \delta(AC_{lk})\right] f_{lk}$$

$$\sum_{m=1, m \neq k, l}^{4} \frac{\left[1 - \delta(B_{mlk})\right] g_{mlk}}{\left(A_{nlk}z + B_{nlk}y_{mlk} + C_{nlk}\right)}$$

$$\frac{1}{\left[2y_{mlk} \left(t - z \frac{b_{lk}}{AC_{lk}}\right) + \left(1 - \frac{2a_{lk}}{AC_{lk}}\right) z^{2} - 2z \frac{d_{lk}}{AC_{lk}} + t^{2} - m_{k}^{2} + i\rho\right]} (1.28)$$

and

$$D_{0}^{+-} = -i\pi^{2} \sum_{k=1}^{4} \int_{0}^{\infty} dz \sum_{l=1; l \neq k}^{4} \int_{-\infty}^{\alpha lkz} dt \left[1 - \delta(AC_{lk})\right] f_{lk}$$

$$\sum_{m=1, m \neq k, l}^{4} \frac{\left[1 - \delta(B_{mlk})\right] g_{mlk}^{-}}{\left(A_{nlk}z + B_{nlk}y_{mlk} + C_{nlk}\right)}$$

$$\frac{1}{\left[2y_{mlk} \left(t - z \frac{b_{lk}}{AC_{lk}}\right) + \left(1 - \frac{2a_{lk}}{AC_{lk}}\right) z^{2} - 2z \frac{d_{lk}}{AC_{lk}} + t^{2} - m_{k}^{2} + i\rho\right]} (1.29)$$

$$D_{0}^{-+} = -i\pi^{2} \sum_{k=1}^{4} \int_{-\infty}^{0} dz \sum_{l=1; l \neq k}^{4} \int_{\alpha lkz}^{\infty} dt \left[1 - \delta(AC_{lk})\right] f_{lk}^{-}$$

$$\sum_{m=1, m \neq k, l}^{4} \frac{\left[1 - \delta(B_{mlk})\right] g_{mlk}}{\left(A_{nlk}z + B_{nlk}y_{mlk} + C_{nlk}\right)}$$

$$\frac{1}{\left[2y_{mlk} \left(t - z \frac{b_{lk}}{AC_{lk}}\right) + \left(1 - \frac{2a_{lk}}{AC_{lk}}\right) z^{2} - 2z \frac{d_{lk}}{AC_{lk}} + t^{2} - m_{k}^{2} + i\rho\right]} (1.30)$$

and

$$D_{0}^{--} = i\pi^{2} \sum_{k=1}^{4} \int_{-\infty}^{0} dz \sum_{l=1; l \neq k}^{4} \int_{-\infty}^{\alpha l k z} dt \left[1 - \delta(AC_{lk})\right] f_{lk}^{-}$$

$$\sum_{m=1, m \neq k, l}^{4} \frac{\left[1 - \delta(B_{mlk})\right] g_{mlk}^{-}}{\left(A_{nlk} z + B_{nlk} y_{mlk} + C_{nlk}\right)}$$

$$\frac{1}{\left[2y_{mlk} \left(t - z \frac{b_{lk}}{AC_{lk}}\right) + \left(1 - \frac{2a_{lk}}{AC_{lk}}\right) z^{2} - 2z \frac{d_{lk}}{AC_{lk}} + t^{2} - m_{k}^{2} + i\rho\right]} (1.31)$$

with

$$g_{mlk} = \begin{cases} 0, & \text{if } \Im(\frac{-C_{mlk}}{B_{mlk}}) < 0; \\ 1, & \text{if } \Im(\frac{-C_{mlk}}{B_{mlk}}) = 0; \\ 2, & \text{if } \Im(\frac{-C_{mlk}}{B_{mlk}}) > 0. \end{cases}$$

$$g_{mlk}^{-} = \begin{cases} 0, & \text{if } \Im(\frac{-C_{mlk}}{B_{mlk}}) > 0; \\ 1, & \text{if } \Im(\frac{-C_{mlk}}{B_{mlk}}) = 0; \\ 2, & \text{if } \Im(\frac{-C_{mlk}}{B_{mlk}}) < 0. \end{cases}$$

with
$$y_{mlk} = -\left[\frac{A_{mlk}z + C_{mlk}}{B_{mlk}}\right]$$

$$A_{nlk}z + B_{nlk}y_{mlk} + C_{nlk}$$

$$= A_{nlk}z - B_{nlk} \left[\frac{A_{mlk}z + C_{mlk}}{B_{mlk}} \right] + C_{nlk}$$

$$= \frac{B_{mlk}A_{nlk} - B_{nlk}A_{mlk}}{B_{mlk}} z - \frac{B_{nlk}C_{mlk} - B_{mlk}C_{nlk}}{B_{mlk}}$$

$$= \frac{B_{mlk}A_{nlk} - B_{nlk}A_{mlk}}{B_{mlk}} \left[z - \frac{B_{nlk}C_{mlk} - B_{mlk}C_{nlk}}{B_{mlk}A_{nlk} - B_{nlk}A_{mlk}} \right]$$

and

$$2y_{mlk}\left(t-z\frac{b_{lk}}{AC_{lk}}\right) + \left(1-\frac{2a_{lk}}{AC_{lk}}\right)z^{2} - 2z\frac{d_{lk}}{AC_{lk}} + t^{2} - m_{k}^{2} + i\rho$$

$$= -2\left[\frac{A_{mlk}z + C_{mlk}}{B_{mlk}}\right]\left(t-z\frac{b_{lk}}{AC_{lk}}\right) + \left(1-\frac{2a_{lk}}{AC_{lk}}\right)z^{2} - 2z\frac{d_{lk}}{AC_{lk}} + t^{2} - m_{k}^{2} + i\rho$$

$$= -2\frac{A_{mlk}}{B_{mlk}}zt + 2\frac{A_{mlk}}{B_{mlk}}\frac{b_{lk}}{AC_{lk}}z^{2} - 2\frac{C_{mlk}}{B_{mlk}}t + 2\frac{C_{mlk}}{B_{mlk}}\frac{b_{lk}}{AC_{lk}}z$$

$$+ \left(1-\frac{2a_{lk}}{AC_{lk}}\right)z^{2} - 2z\frac{d_{lk}}{AC_{lk}} + t^{2} - m_{k}^{2} + i\rho$$

$$= \left(1-\frac{2a_{lk}}{AC_{lk}} + 2\frac{A_{mlk}}{B_{lmk}}\frac{b_{lk}}{AC_{lk}}\right)z^{2} + \left(2\frac{C_{mlk}}{B_{lmk}}\frac{b_{lk}}{AC_{lk}} - 2\frac{d_{lk}}{AC_{lk}}\right)z$$

$$-2\frac{A_{mlk}}{B_{mlk}}zt - 2\frac{C_{mlk}}{B_{mlk}}t + t^{2} - m_{k}^{2} + i\rho$$

$$= D'_{mlk}z^{2} + E_{mlk}z - 2\frac{A_{mlk}}{B_{mlk}}zt - 2\frac{C_{mlk}}{B_{mlk}}t + t^{2} - m_{k}^{2} + i\rho$$

$$(1.32)$$

So we can rewrite

$$D_{0}^{++} = + \bigoplus_{nlmk} \int_{0}^{\infty} dz \int_{\alpha_{lk}z}^{\infty} dt \ f_{lk} \ g_{nlk} I'_{nmlk}(z,t)$$

$$D_{0}^{+-} = - \bigoplus_{nlmk} \int_{0}^{\infty} dz \int_{-\infty}^{\infty} dt \ f_{lk} \ g_{nlk}^{-} I'_{nmlk}(z,t)$$

$$D_{0}^{-+} = - \bigoplus_{nlmk} \int_{-\infty}^{0} dz \int_{\alpha_{lk}z}^{\infty} dt \ f_{lk}^{-} \ g_{nlk} I'_{nmlk}(z,t)$$

$$D_{0}^{--} = + \bigoplus_{nlmk} \int_{-\infty}^{0} dz \int_{-\infty}^{\alpha_{lk}z} dt \ f_{lk}^{-} \ g_{nlk}^{-} I'_{nmlk}(z,t)$$

$$(1.33)$$

with

$$\bigoplus_{nmlk} = i\pi^{2} \sum_{k=1}^{4} \sum_{l=1, l \neq k}^{4} \sum_{m=1, m \neq l, k}^{4} \frac{B_{mlk}}{B_{mlk} A_{nlk} - B_{nlk} A_{mlk}} [1 - \delta_{lk} (AC_{lk})] [1 - \delta(B_{mlk})]$$

$$I'_{nmlk}(z, t) = \frac{1}{[z - F_{nmlk}]} \frac{1}{\left[D'_{mlk} z^{2} + E_{mlk} z - 2\frac{A_{mlk}}{B_{mlk}} tz - 2\frac{C_{mlk}}{B_{lmk}} t + t^{2} - m_{k}^{2} + i\rho\right]}$$

where

$$D'_{mlk} = 1 - \frac{2a_{lk}}{AC_{lk}} + \frac{2b_{lk}A_{mlk}}{AC_{lk}B_{mlk}}$$

$$E'_{mlk} = \frac{2b_{lk}C_{mlk}}{AC_{lk}B_{mlk}} - \frac{2d_{lk}}{AC_{lk}}$$

$$F_{nmlk} = \frac{C_{nlk}B_{mlk} - B_{nlk}C_{mlk}}{A_{nlk}B_{mlk} - B_{nlk}A_{mlk}}$$
(1.34)

Changing the variable $t' = t - \alpha_{lk}z$, then the Jacobian is 1 and

$$\star D'_{mlk}z^{2} + E_{mlk}z - 2\frac{A_{mlk}}{B_{mlk}}zt - 2\frac{C_{mlk}}{B_{mlk}}t + t^{2} - m_{k}^{2} + i\rho$$

$$= D'_{mlk}z^{2} + E_{mlk}z - 2\frac{A_{mlk}}{B_{mlk}}z(t + \alpha_{lk}z)z - 2\frac{C_{mlk}}{B_{mlk}}(t + \alpha_{lk}z) + (t + \alpha_{lk}z)^{2} - m_{k}^{2} + i\rho$$

$$= \left(D'_{mlk} - 2\frac{A_{mlk}}{B_{mlk}}\alpha_{lk} + \alpha_{lk}^{2}\right)z^{2} + 2\left(\alpha_{lk} - \frac{A_{mlk}}{B_{mlk}}\right)zt + \left(E_{mlk} - 2\frac{C_{mlk}}{B_{mlk}}\alpha_{lk}\right)z$$

$$-2\frac{C_{mlk}}{B_{mlk}}t + t^{2} - m_{k}^{2} + i\rho$$
(1.35)

After changing the variable, we obtains

$$D_{0}^{++} = + \bigoplus_{nlmk} \int_{0}^{\infty} dz \int_{0}^{\infty} dt \ f_{lk} \ g_{nlk} I_{nmlk}(z,t)$$

$$D_{0}^{+-} = - \bigoplus_{nlmk} \int_{0}^{\infty} dz \int_{-\infty}^{0} dt \ f_{lk} \ g_{nlk}^{-} I_{nmlk}(z,t)$$

$$D_{0}^{-+} = - \bigoplus_{nlmk} \int_{0}^{0} dz \int_{0}^{\infty} dt \ f_{lk}^{-} \ g_{nlk} I_{nmlk}(z,t)$$

$$D_{0}^{--} = + \bigoplus_{nlmk} \int_{-\infty}^{0} dz \int_{-\infty}^{0} dt \ f_{lk}^{-} \ g_{nlk}^{-} I_{nmlk}(z,t)$$
(1.36)

Here

$$\begin{split} D_{mlk} &= D'_{mlk} + \alpha_{lk}^2 - 2\frac{A_{mlk}}{B_{mlk}}\alpha_{lk} \\ &= 1 - \frac{2a_{lk}}{AC_{lk}} + \frac{2b_{lk}A_{mlk}}{AC_{lk}B_{mlk}} + \alpha_{lk}^2 - 2\frac{A_{mlk}}{B_{mlk}}\alpha_{lk} \\ &= 1 - \frac{2a_{lk}}{AC_{lk}} + \alpha_{lk}^2 \\ &= -\frac{(q_l - q_k)^2}{AC_{lk}}. \\ I_{nmlk}(z,t) &= \frac{1}{[z - F_{nmlk}]} \frac{1}{\left[D_{mlk}z^2 - 2\frac{d_{lk}}{AC_{lk}}z - 2\left(\frac{A_{mlk}}{B_{mlk}} - \alpha_{lk}\right)tz - 2\frac{C_{mlk}}{B_{lmk}}t + t^2 - m_k^2 + i\rho\right]} \end{split}$$

1.3 Linearize t and t-integral

To linearize t we now make a shift

$$z = z' + \beta_{mlk}t'$$

$$t = t' + \varphi_{mlk}z'.$$
 (1.37)

The jacobian of this shift is

$$J = |1 - \beta \varphi|. \tag{1.38}$$

$$Dz^{2} \rightarrow D(z^{2} + 2\beta zt + \beta^{2}t^{2})$$

$$-2\frac{d}{AC}z \rightarrow -2\frac{d}{AC}(z + \beta t)$$

$$-2zt(\frac{A}{B} - \alpha) \rightarrow -2(\frac{A}{B} - \alpha)(zt + \varphi z^{2} + \beta t^{2} + \beta \varphi zt)$$

$$-2\frac{C}{B}t \rightarrow -2\frac{C}{B}(t + \varphi z)$$

$$t^{2} \rightarrow t^{2} + 2\varphi zt + \varphi^{2}z^{2}.$$

$$= \left(D - 2\varphi(\frac{A}{B} - \alpha) + \varphi^{2}\right)z^{2}$$

$$+ \left(D\beta^{2} - 2\beta(\frac{A}{B} - \alpha) + 1\right)t^{2}$$

$$-2\left(\frac{d}{AC}\beta + \frac{C}{B}\right)t$$

$$-2\left[(\frac{A}{B} - \alpha)(1 + \beta\varphi) - D\beta - \varphi\right]zt$$

$$(1.39)$$

To remove the quardratic tern of t^2 , we choice β as

$$\beta_{mlk} = \frac{\left(\frac{A_{mlk}}{B_{mlk}} - \alpha_{lk}\right) + \sqrt{\left(\frac{A_{mlk}}{B_{mlk} - \alpha_{lk}}\right)^2 - D_{mlk} + i\eta}}{D_{mlk}} < 0 \tag{1.40}$$

We now obtain

$$Q_{mlk} = -2\left(\frac{C_{mlk}}{B_{mlk}} + \frac{d_{lk}}{AC_{lk}}\beta_{mlk}\right)$$

$$P_{mlk} = -2\left[\left(\frac{A_{mlk}}{B_{mlk}} - \alpha_{lk}\right)(1 + \beta_{mlk}\varphi_{mlk}) - D_{mlk}\beta_{mlk} - \varphi_{mlk}\right]$$

$$E_{mlk} = -2\left(\frac{d_{lk}}{AC_{lk}} + \frac{C_{mlk}}{B_{mlk}}\varphi_{mlk}\right)$$

$$F_{nmlk} = \frac{C_{nlk}B_{mlk} - C_{mlk}B_{nlk}}{A_{nlk}B_{mlk} - A_{mlk}B_{nlk}}$$

$$(1.41)$$

$$I_{mlk} = \frac{1}{\left[z + \beta_{mlk}t + F_{mlk}\right] \left[Q_{mlk}t + P_{mlk}tz + E_{mlk}z - m_k^2 + i\rho\right]}$$
(1.42)

(1.43)

The quardratic tern of z^2 is vanish by chosing $\varphi_{mlk} = \left(\frac{A_{mlk}}{B_{mlk}} - \alpha_{lk}\right) + \sqrt{\left(\frac{A_{mlk}}{B_{mlk} - \alpha_{lk}}\right)^2 - D_{mlk} + i\eta} > 0$ 0. "In Npoint.ps"??????

The region we take D_0 now look as

After performing this shift, one obtain

$$D_{0} = i\pi^{2} \sum_{k=1}^{4} \sum_{\substack{l=1\\k\neq l}}^{4} \sum_{\substack{m=1\\m\neq k}}^{4} \frac{B_{mlk}}{B_{mlk}A_{nlk} - B_{nlk}A_{mlk}} \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(B_{mlk})\right) |1 - \beta_{mlk}\varphi_{mlk}| \times \frac{1}{B_{mlk}A_{mlk}} \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(B_{mlk})\right) |1 - \beta_{mlk}\varphi_{mlk}| \times \frac{1}{B_{mlk}A_{mlk}} \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(B_{mlk})\right) |1 - \beta_{mlk}\varphi_{mlk}| \times \frac{1}{B_{mlk}A_{mlk}} \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(B_{mlk})\right) |1 - \beta_{mlk}\varphi_{mlk}| \times \frac{1}{B_{mlk}A_{mlk}} \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(B_{mlk})\right) |1 - \beta_{mlk}\varphi_{mlk}| \times \frac{1}{B_{mlk}A_{mlk}} \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}(B_{mlk})\right) |1 - \beta_{mlk}\varphi_{mlk}| \times \frac{1}{B_{mlk}A_{mlk}} \left(1 - \delta_{lk}(AC_{lk})\right) \left(1 - \delta_{lk}($$

In the next chapter, we will represent this integral to R function.

Chapter 2

CALCULATION D_0 FOR THE CASE OF REAL MASS

in this chapter, we continue to caculation z- integral.

2.1 The analytic calculation

We apply the formular

$$\ln\left(\frac{S(\sigma,z)}{Pz+Q}\right) = \ln(\sigma z - \sigma z_1) + \ln(z - z_2) - \ln\left(z + \frac{Q}{P} + \frac{i\rho}{P}\right) + \eta^+(\sigma,z_1,z_2)$$

$$\ln\left(\frac{-S(\sigma,z)}{Pz+Q}\right) = \ln(-\sigma z + \sigma z_1) + \ln(z - z_2) - \ln\left(z + \frac{Q}{P} + \frac{i\rho}{P}\right) + \eta^-(\sigma,z_1,z_2)$$
(2.1)

here z_1 and z_2 are solution of equation

$$S(\sigma, z) = 0$$

$$\eta^{+}(\sigma, z_{1}, z_{2}) = 2\pi i \Big(\theta[Im(\sigma z_{1})]\theta[Im(z_{2})]\theta[P] - \theta[-Im(\sigma z_{1})]\theta[-Im(z_{2})]\theta[-P]\Big)$$

$$\eta^{-}(\sigma, z_{1}, z_{2}) = 2\pi i \Big(\theta[-Im(\sigma z_{1})]\theta[Im(z_{2})]\theta[-P] - \theta[Im(\sigma z_{1})]\theta[-Im(z_{2})]\theta[P]\Big)$$

Using the formular (2.1), We recolect D_0 to form

$$D_{0} = \bigoplus_{nmlk} \int_{0}^{\infty} \left\{ \Omega_{nmlk}^{+} - fg \ln \left(\frac{1 - \beta \varphi}{\beta} z + \frac{F + I\beta \rho}{\beta} \right) - (fg + f^{-}g) \ln \left(- \frac{z}{\beta} + \frac{z_{1\beta}}{\beta} \right) - (fg + f^{-}g) \ln \left(- \frac{z}{\beta} + \frac{z_{1\beta}}{\beta} \right) - (fg + f^{-}g) \ln \left(z - z_{2\beta} \right) + fg \ln(-\varphi z + \varphi z_{1\varphi}) + fg \ln(z - \varphi z_{2\varphi}) + fg^{-} \ln(\varphi z - \varphi z_{1\varphi}) + fg^{-} \ln(z - z_{2\varphi}) + f^{-}g \ln \left(z + \frac{Q}{P} + \frac{i\rho}{P} \right) - fg^{-} \ln \left(z + \frac{Q}{P} - \frac{i\rho}{P} \right) \right\} (z - T_{1})^{-1} (z - T_{2})^{-1}$$

$$(2.2)$$

$$+ \bigoplus_{nmlk} \int_{0}^{\infty} \left\{ \Omega_{nmlk}^{-} + (f^{-}g^{-} + f^{-}g) \ln \left(\frac{1 - \beta \varphi}{\beta} z + \frac{F + I\beta \rho}{\beta} \right) + f^{-}g^{-} \ln \left(- \frac{z}{\beta} + \frac{z_{3\beta}}{\beta} \right) + f^{-}g^{-} \ln \left(z - z_{4\beta} \right) + fg^{-} \ln \left(\frac{z}{\beta} - \frac{z_{3\beta}}{\beta} \right) + fg^{-} \ln \left(z - z_{4\beta} \right) - (f^{-}g^{-} + f^{-}g) \ln(-\varphi z + \varphi z_{3\varphi}) - (f^{-}g^{-} + f^{-}g) \ln(z - z_{4\varphi}) - f^{-}g \ln \left(- z + \frac{Q}{P} + \frac{i\rho}{P} \right) - fg^{-} \ln \left(- z + \frac{Q}{P} - \frac{i\rho}{P} \right) \right\} (z - T_{3})^{-1} (z - T_{4})^{-1}$$

2.2 TO BUILD CODE ONELOOP4T

We defind some function as

$$z_{1\varphi}^{nlk} = \frac{-(E_{mlk} - Q_{mlk}\varphi_{mlk}) + \sqrt{(E_{mlk} - Q_{mlk}\varphi_{mlk})^2 - 4P_{mlk}\varphi_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}\varphi_{mlk}}$$

$$z_{2\varphi}^{mlk} = \frac{-(E_{mlk} - Q_{mlk}\varphi_{mlk}) - \sqrt{(E_{mlk} - Q_{mlk}\varphi_{mlk})^2 - 4P_{mlk}\varphi_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}\varphi_{mlk}}$$

$$z_{3\varphi}^{mlk} = \frac{-(E_{mlk} - Q_{mlk}\varphi_{mlk}) + \sqrt{(E_{mlk} - Q_{mlk}\varphi_{mlk})^2 - 4P_{mlk}\varphi_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}\varphi_{mlk}}$$

$$z_{4\varphi}^{mlk} = \frac{(E_{mlk} - Q_{mlk}\varphi_{mlk}) + \sqrt{(E_{mlk} - Q_{mlk}\varphi_{mlk})^2 - 4P_{mlk}\varphi_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}\varphi_{mlk}}$$

$$z_{1\beta}^{mlk} = \frac{-(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}}) + \sqrt{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}})^2 - 4P_{mlk}\varphi_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}\varphi_{mlk}}$$

$$z_{2\beta}^{mlk} = \frac{-(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}}) + \sqrt{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}})^2 - 4P_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}\varphi_{mlk}}$$

$$z_{3\beta}^{mlk} = \frac{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}}) + \sqrt{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}})^2 - 4P_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}\varphi_{mlk}}$$

$$z_{3\beta}^{mlk} = \frac{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}}) - \sqrt{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}})^2 - 4P_{mlk}(m_k^2 - i\rho)}}{-2P_{mlk}}$$

$$z_{4\beta}^{mlk} = \frac{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}}) - \sqrt{(E_{mlk} - \frac{Q_{mlk}}{\beta_{mlk}})^2 - 4P_{mlk}(m_k^2 - i\rho)}}}{-2P_{mlk}}$$

$$z_{4\beta}^{mlk} = \frac{(Q_{mlk} + P_{mlk}F_{mmlk} - \beta_{mlk}E_{mlk})}{-2P_{mlk}}$$

$$-2P_{mlk} + \sqrt{(Q_{mlk} + P_{mlk}F_{mmlk} - \beta_{mlk}E_{mlk})^2 - 4P_{mlk}(Q_{mlk}F_{mmlk} + \beta_{mlk}m_k^2 - i\beta_{mlk}\rho)}}}{-2P_{mlk}}$$

$$z_{2\beta}^{mnlk} = \frac{(Q_{mlk} + P_{mlk}F_{mmlk} - \beta_{mlk}E_{mlk})^2 - 4P_{mlk}(Q_{mlk}F_{mmlk} + \beta_{mlk}m_k^2 - i\beta_{mlk}\rho)}}{-2P_{mlk}}$$

$$z_{2\beta}^{mnlk} = \frac{(Q_{mlk} + P_{mlk}F_{mmlk} - \beta_{mlk}E_{mlk})^2 - 4P_{mlk}(Q_{mlk}F_{mmlk} + \beta_{mlk}m_k^2 - i\beta_{mlk}\rho)}}{-2P_{mlk}}$$

$$z_{2\beta}^{mnlk} = \frac{(Q_{mlk} + P_{mlk}F_{mmlk} - \beta_{mlk}E_{mlk})^2 - 4P_{mlk}(Q_{mlk}F_{mmlk} + \beta_{mlk}m_k^2 - i\beta_{mlk}\rho)}}{-2P_{mlk}}$$

$$z_{2\beta}^{mnlk} = \frac{(Q_{mlk} + P_{mlk}F_{mmlk} - \beta_{mlk}E_{mlk})^2 - 4P_{mlk}(Q_{mlk}F_{mmlk} + \beta_{mlk}m_k^2 - i\beta_{mlk}\rho)}}{-2P_{mlk}}$$

$$z_{2\beta}^{mnlk} = \frac{(Q_{mlk} + P_{mlk}F_{mmlk} - \beta_{mlk}E_{mlk})^2 - 4P_{mlk}(Q_{mlk}F_{mmlk$$

$$\eta^{+}(\sigma, z_{1}, z_{2}) = 2\pi i \Big(\theta[Im(\sigma z_{1})] \theta[Im(z_{2})] \theta[P] - \theta[-Im(\sigma z_{1})] \theta[-Im(z_{2})] \theta[-P] \Big)$$

$$\eta^{-}(\sigma, z_{1}, z_{2}) = 2\pi i \Big(\theta[-Im(\sigma z_{1})] \theta[Im(z_{2})] \theta[-P] - \theta[Im(\sigma z_{1})] \theta[-Im(z_{2})] \theta[P] \Big)$$

Here $\sigma = -\frac{1}{\beta}, -\varphi$

$$\Omega_{nmlk}^{-} = -f_{lk}^{-}g_{mlk}^{-} \ln\left(\frac{F_{nmlk} + I\rho\beta_{nmlk}}{\beta_{nmlk}}\right) - f_{lk}g_{mlk} \ln\left(\frac{F_{nmlk} + I\rho\beta_{nmlk}}{-\beta_{nmlk}}\right)
+ f_{lk}^{-}g_{mlk}^{-} \eta^{+}\left(-\frac{1}{\beta_{mlk}}, z_{3\beta}, z_{4\beta}\right) + f_{lk}g_{mlk}^{-} \eta^{-}\left(-\frac{1}{\beta_{mlk}}, z_{3\beta}, z_{4\beta}\right)
- (f_{lk}^{-}g_{mlk}^{-} + f_{lk}^{-}g_{mlk}) \eta^{+}\left(-\varphi_{mlk}, z_{3\varphi}, z_{4\varphi}\right)
\Omega_{nmlk}^{+} = (f_{lk}g_{mlk} + f_{lk}^{-}g_{mlk}) \ln\left(\frac{F_{nmlk} + I\rho\beta_{mlk}}{\beta_{mlk}}\right)
- (f_{lk}g_{mlk} + f_{lk}^{-}g_{mlk}) \eta^{+}\left(-\frac{1}{\beta_{mlk}}, z_{1\beta}, z_{2\beta}\right)
+ f_{lk}g_{mlk}\eta^{+}\left(-\varphi_{mlk}, z_{1\varphi}, z_{2\varphi}\right) + f_{lk}g_{mlk}^{-}\eta^{-}\left(-\varphi_{mlk}, z_{1\varphi}, z_{2\varphi}\right) \tag{2.3}$$

2.2.1 Rfunction

$$Rfunction(x,y) = \frac{\ln x - \ln y}{x - y}$$
 (2.4)

2.2.2 The LogACG function

$$LogACG(a, b, x, y) = \int_{0}^{\infty} \ln(az + b)(z + x)^{-1}(z + y)^{-1}dz$$
 (2.5)

with $t = \frac{b}{a}$ and a > 0.

$$A = \sqrt{(Ret)^2 + (Imt)^2} + \sqrt{(Rex)^2 + (Imx)^2} + \sqrt{(Rey)^2 + (Imy)^2}$$
 (2.6)

$$x_0 = \frac{x}{A};$$
 $y_0 = \frac{y}{A};$ $z_0 = \frac{t}{A}$ (2.7)

so one obtain

$$LogACG(a,b,x,y) = \frac{\ln(x_0) - \ln(y_0)}{A(x_0 - y_0)} \ln(a * A)$$

$$-\frac{1}{A(x_0 - y_0)} \left\{ -\frac{1}{2} (\ln x_0)^2 + \frac{1}{2} (\ln y_0)^2 + Li_2(1 - \frac{z_0}{y_0}) - Li_2(1 - \frac{z_0}{x_0}) + \ln(y_0) \left[\eta(z_0 - y_0, \frac{1}{1 - y_0}) - \eta(z_0 - y_0, \frac{1}{-y_0}) \right] - \ln(x_0) \left[\eta(z_0 - x_0, \frac{1}{1 - x_0}) - \eta(z_0 - x_0, \frac{1}{-x_0}) \right] + \ln\left(1 - \frac{z_0}{y_0}\right) \eta(z_0, \frac{1}{y_0}) - \ln\left(1 - \frac{z_0}{x_0}\right) \eta(z_0, \frac{1}{x_0}) \right\} (2.8)$$

2.2.3 The LogARG function

$$LogARG(a, b, x, y) = \int_{0}^{\infty} \ln(az + b)(z + x)^{-1}(z + y)^{-1}dz$$
 (2.9)

with a < 0. Return to

$$GiNaCLogARG = \ln(b)\frac{\ln(x) - \ln(y)}{x - y} + GiNaCLogACG(a/b, 1.0, x, y).$$
 (2.10)

2.2.4 The LogAG function

LogAG(a, b, x, y) is defind as

• If a > 0.

$$LogAG(a, b, x, y) = LogACG(a, b, x, y)$$
(2.11)

• If *a* < 0

$$LogAG(a, b, x, y) = LogARG(a, b, x, y)$$
(2.12)

2.2.5 THE FORM OF D_0

Using the Rfunction and LogAG function, we repesent D_0 to form

2.3 The numerical result

In this section, we compare Oneloop4pt code to LoopTools

2.3.1 Input in Looptools

We call function $D_0(p_1^2, p_2^2, p_3^2, p_4^2, (p_1 + p_2)^2, (p_2 + p_3)^2, m_1^2, m_2^2, m_3^2, m_4^2)$.

2.3.2 Input in xLoops

From $p_1^2, p_2^2, p_3^2, p_4^2, (p_1 + p_2)^2, (p_2 + p_3)^2$, we obtain

$$p_{1}p_{2} = \frac{(p_{1} + p_{2})^{2} - p_{1}^{2} - p_{2}^{2}}{2}$$

$$p_{2}p_{3} = \frac{(p_{2} + p_{3})^{2} - p_{2}^{2} - p_{3}^{2}}{2}$$

$$p_{1}p_{3} = p_{1}(-p_{1} - p_{2} - p_{4})$$

$$= -p_{1}^{2} - p_{1}p_{2} - p_{1}p_{4}$$

$$= \frac{p_{2}^{2} + p_{4}^{2} - (p_{1} + p_{2})^{2} - (p_{1} + p_{4})^{2}}{2}$$

$$= \frac{p_{2}^{2} + p_{4}^{2} - (p_{1} + p_{2})^{2} - (p_{2} + p_{3})^{2}}{2}$$
(2.13)

We have

$$q_1 = (q_{10}, 0, 0, 0) = p_1$$

 $q_2 = (q_{20}, q_{21}, 0, 0) = p_1 + p_2$
 $q_3 = (q_{30}, q_{31}, q_{32}, 0) = p_1 + p_2 + p_3$

and

$$q_{1}^{2} = q_{10}^{2} = p_{1}^{2}$$

$$\iff q_{10} = \sqrt{p_{1}^{2}}$$

$$q_{1}q_{2} = q_{10}q_{20} = p_{1}(p_{2} + p_{1})$$

$$\iff q_{20} = \frac{p_{1}(p_{2} + p_{1})}{\sqrt{p_{1}^{2}}}$$

$$q_{2}^{2} = q_{20}^{2} - q_{21}^{2} = (p_{1} + p_{2})^{2}$$

$$\iff q_{21} = \sqrt{\left(\frac{p_{1}(p_{2} + p_{1})}{\sqrt{p_{1}^{2}}}\right)^{2} - (p_{1} + p_{2})^{2}}$$

$$q_{1}q_{3} = q_{10}q_{30} = p_{1}(p_{3} + p_{2} + p_{1})$$

$$\iff q_{30} = \frac{p_{1}p_{3}}{\sqrt{p_{1}^{2}}} + \frac{p_{1}p_{2}}{\sqrt{p_{1}^{2}}} + \sqrt{p_{1}^{2}}$$

$$q_{2}q_{3} = q_{30}q_{20} - q_{21}q_{31} = (p_{1} + p_{2})(p_{3} + p_{2} + p_{1})$$

$$\iff q_{31} = \frac{q_{30}q_{20} - (p_{1} + p_{2})^{2} - p_{1}p_{3} - p_{2}p_{3}}{q_{21}}$$

$$q_{3}^{2} = q_{30}^{2} - q_{31}^{2} - q_{32}^{2} = (p_{1} + p_{2} + p_{3})^{2} = p_{4}^{2}$$

$$\iff q_{32} = \sqrt{q_{30}^{2} - q_{31}^{2} - p_{4}^{2}}$$

$$(2.14)$$

From (2.14), we obtain

$$q_{10} = \sqrt{p_1^2}$$

$$q_{20} = \frac{p_1 p_2}{\sqrt{p_1^2}} + \sqrt{p_1^2}$$

$$q_{21} = \sqrt{\left(\frac{p_1 p_2}{\sqrt{p_1^2}} + \sqrt{p_1^2}\right)^2 - (p_1 + p_2)^2}$$

$$q_{30} = \frac{p_1 p_3}{\sqrt{p_1^2}} + \frac{p_1 p_2}{\sqrt{p_1^2}} + \sqrt{p_1^2}$$

$$q_{31} = \frac{q_{30} q_{20} - (p_1 + p_2)^2 - p_1 p_3 - p_2 p_3}{q_{21}}$$

$$q_{32} = \sqrt{q_{30}^2 - q_{31}^2 - p_4^2}$$
(2.15)

Finally, We call $D_0(q_{10}, q_{20}, q_{21}, q_{30}, q_{31}, q_{32}, m_2^2, m_3^2, m_4^2, m_1^2)$

2.3.3 The result

We input

$$p_1^2 = 1$$

$$p_2^2 = 1$$

$$p_3^2 = 1$$

$$p_4^2 = 1$$

$$m_1^2 = m_3^2 = 81 * 81$$

$$m_2^2 = m_4^2 = 91 * 91$$
(2.16)

Compare Oneloop4pt to LoopTools

$(p_1^2, p_2^2, p_3^2, p_4^2)$	$(p_1+p_2)^2$	$(p_2+p_3)^2$	LoopTools	XLOOPS
(1, 5, 1, 7)	15	1	$3.05231662E^{-09}$???
(1, 5, 1, 8)	20	1	$3.05258996E^{-09}$???
(1,6,1,9)	20	1	$3.05267256E^{-09}$???

Table 2.1: $m_1s = m_3s = 81 * 81; m_2s = m_4s = 91 * 91$

Compare LoopTools To Vegas

ſ	$(p_1^2, p_2^2, p_3^2, p_4^2)$	$(p_1+p_2)^2$	$(p_2+p_3)^2$	LoopTools	Vegas
	(1, 5, 1, 7)	15	1	$3.05231662E^{-09}$	$3.0524E^{-09} \pm 5.37E^{-15}$
	(1, 5, 1, 8)	20	1	$3.05258996E^{-09}$	
	(1,6,1,9)	20	1	$3.05267256E^{-09}$	$3.0528E^{-09} \pm 5.37E^{-15}$

Table 2.2: $m_1s = m_3s = 81 * 81; m_2s = m_4s = 91 * 91$

Chapter 3

CALCULATION D_0 FOR THE CASE OF COMPLEX MASS

3.1 The analytic calculation

3.1.1 Decompose Log function

We have

$$log\left(\frac{S(\sigma,z)}{\pm(Pz+Q)}\right) = log(S(\sigma,z)) - log(\pm(Pz+Q)) + \eta\left(S(\sigma,z), \pm\frac{1}{(Pz+Q)}\right)$$
(3.1)

Here

$$S(\sigma, z) = P\sigma z^{2} + (E + Q\sigma)z - m_{k}^{2} + i\rho$$

$$= P\sigma(z - z_{1\sigma})(z - z_{2\sigma})$$

$$Im(S(\sigma, z)) \ge 0.$$
(3.2)

and

$$\eta\left(S(\sigma,z),\pm\frac{1}{(Pz+Q)}\right) = -2\pi i\theta[\pm Im(Q^*)]\theta\left[Im\left(\frac{\mp S}{Pz+Q}\right)\right] \tag{3.3}$$

$$log(S(\sigma,z)) = log(P\sigma z - P\sigma z_{1\sigma}) + log(z - z_{2\sigma}) + 2\pi i\theta [Im(P\sigma z_{1\sigma})]\theta [Im(z_{2\sigma})]$$

with the help of these formular, We now obtain

$$log\left(\frac{S(\sigma,z)}{\pm(Pz+Q)}\right) = log(P\sigma z - P\sigma z_{1\sigma}) + log(z-z_{2\sigma}) - log(\pm(Pz+Q))$$

$$+2\pi i\theta [Im(P\sigma z_{1\sigma})]\theta [Im(z_{2\sigma})]$$

$$-2\pi i\theta [\pm Im(Q^*)]\theta \left[Im\left(\frac{\mp S(\sigma,z)}{Pz+Q}\right)\right]$$
(3.4)

Because

$$\begin{split} Im\left(\frac{S(\sigma,z)}{Pz+Q}\right) &= Im\left[S(\sigma,z)(Pz+Q^*)\right] \\ &= Im\left[(P\sigma z^2 + (E+Q\sigma)z - m_k^2 + i\rho)(Pz+Q^*)\right] \\ &= Im\left[P^2\sigma z^3 + PEz^2 + (Q+Q^*)P\sigma z^2 - QQ^*\sigma z + EQ^*z - m_k^2Pz - m_k^2Q^*\right] \\ &= Im\left[PEz^2 + \left(EQ^* - m_k^2P + i\rho P\right)z - m_k^2Q^* + i\rho Q^*\right] \\ &= Im\left[(Pz+Q^*)\left(Ez - m_k^2 + i\rho\right)\right] \end{split}$$

and

$$Re\left(Pz+Q^*\right) = Pz + Re(Q^*) = Pz + Re(Q)$$

$$Im\left(Pz+Q^*\right) = Im(Q^*) = -Im(Q)$$

$$Re\left(Ez-m_k^2+i\rho\right) = Re(E)z - Re(m_k^2)$$

$$Im\left(Ez-m_k^2+i\rho\right) = Im(E)z + \Gamma_k + \rho \tag{3.5}$$

so

$$Im\left(\frac{S(\sigma,z)}{Pz+Q}\right) = \left[Pz+Re(Q)\right] \left[Im(E)z+\Gamma_k+\rho\right] - Im(Q)\left[Re(E)z-Re(m_k^2)\right]$$

$$= PIm(E)z^2 + \left[P\Gamma_k+\rho P+Re(Q)Im(E)-Im(Q)Re(E)\right]z$$

$$+Im(Q)Re(m_k^2) + Re(Q)(\Gamma_k+\rho)$$

$$= A_0z^2 + B_0z + C_0$$

Here

$$A_{0} = P Im(E)$$

$$B_{0} = Im(EQ^{*} - Pm_{k}^{2} + iP\rho) = P\Gamma_{k} + \rho P + Re(Q)Im(E) - Im(Q)Re(E)$$

$$C_{0} = Im(i\rho Q^{*} - m_{k}^{2}Q^{*}) = Im(Q)Re(m_{k}^{2}) + Re(Q)(\Gamma_{k} + \rho)$$
(3.6)

Figure 3.1: For real part

so we now obtain

$$log\left(\frac{S(\sigma,z)}{\pm(Pz+Q)}\right) = log(P\sigma z - P\sigma z_{1\sigma}) + log(z-z_{2\sigma}) - log(\pm(Pz+Q)) + 2\pi i\theta[Im(P\sigma z_{1\sigma})]\theta[Im(z_{2\sigma})] - 2\pi i\theta[\mp Im(Q)]\theta\Big[\mp (A_0z^2 + B_0z + C_0)\Big]$$
(3.7)

We now go to test the fomular (3.7).

3.2 The numerical result

Figure 3.2: For Imge part

$(p_1^2, p_2^2, p_3^2, p_4^2)$	$(p_1+p_2)^2$	$(p_2+p_3)^2$	Real X loops Vegas	Real Feynman Vegas
(1,5,1,7)	15	1	$3.05256e^{-09} \pm 3.92962e^{-13}$	$3.05229e^{-09} \pm 1.55193e^{-14}$
(1, 5, 1, 8)	20	1	$3.05278e^{-09} \pm 3.92316e^{-13}$	$3.05261e^{-09} \pm 1.55212e^{-14}$
(1,6,1,9)	20	1	$3.05287e^{-09} \pm 3.92293e^{-13}$	$3.05269e^{-09} \pm 1.55216e^{-14}$

Table 3.1: $m_1s = m_3s = 81 * 81 - 20I; m_2s = m_4s = 91 * 91 - 30I$

$(p_1^2, p_2^2, p_3^2, p_4^2)$	$(p_1+p_2)^2$	$(p_2+p_3)^2$	ImageXloopsVegas	Image Feynman Vegas
(1,5,1,7)	15	1	$2.10355e^{-11} \pm 1.92669e^{-14}$	$2.10299e^{-11} \pm 2.48297e^{-13}$
(1, 5, 1, 8)	20	1	$2.10307e^{-11} \pm 2.4639e^{-14}$	$2.10334e^{-11} \pm 2.48342e^{-13}$
(1,6,1,9)	20	1	$2.10308e^{-11} \pm 2.44831e^{-14}$	$2.10343e^{-11} \pm 2.48353e^{-13}$

Table 3.2: $m_1s = m_3s = 81 * 81 - 20I; m_2s = m_4s = 91 * 91 - 30I$

Figure 3.3: For real part

Chapter 4

APENDIX

4.1 Compare Vegas to Looptools

4.1.1 Feyman Parametrization

We have

$$D_0 = \int d^4l \frac{1}{P_1 \ P_2 \ P_3 \ P_4} \tag{4.1}$$

Here

$$P_{1} = l^{2} - m_{1}^{2}$$

$$P_{2} = (l + p_{1})^{2} - m_{2}^{2}$$

$$P_{3} = (l + p_{1} + p_{2})^{2} - m_{3}^{2}$$

$$P_{4} = (l + p_{1} + p_{2} + p_{3})^{2} - m_{4}^{2}$$

Using the formula

$$\frac{1}{A_1 A_2 \dots A_n} = \int_0^1 dx_1 dx_2 \dots dx_n \delta(\sum x_i - 1) \frac{(n-1)!}{\left[x_1 A_1 + x_2 A_2 + \dots x_n A_n\right]^n}$$
(4.2)

one obtain

$$D_0 = 3! \int_0^1 dx \, dy \, dz \, dt \int \frac{\delta(x+y+z+t-1)}{\left[tP_1 + xP_2 + yP_3 + zP_4\right]^4} d^4l$$
 (4.3)

٥r

$$D_0 = 3! \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz \int \frac{1}{\left[(1-x-y-z)P_1 + xP_2 + yP_3 + zP_4 \right]^4} dz dz dz$$

here

$$(1 - x - y - z)P_{1} = (1 - x - y - z)l^{2} - (1 - x - y - z)m_{1}^{2}$$

$$xP_{2} = xl^{2} + 2lp_{1}x + xp_{1}^{2} - xm_{2}^{2}$$

$$yP_{3} = yl^{2} + 2l(p_{1} + p_{2})y + (p_{1} + p_{2})^{2}y - ym_{3}^{2}$$

$$zP_{4} = zl^{2} + 2l(p_{1} + p_{2} + p_{3})z + (p_{1} + p_{2} + p_{3})^{2}z - zm_{4}^{2}.$$

$$= l^{2} + 2l\left[p_{1}x + (p_{1} + p_{2})y + (p_{1} + p_{2} + p_{3})z\right]$$

$$+ (p_{1}^{2} + m_{1}^{2} - m_{2}^{2})x + \left[(p_{1} + p_{2})^{2} + m_{1}^{2} - m_{3}^{2}\right]y$$

$$+ \left[(p_{1} + p_{2} + x)^{2} + m_{1}^{2} - m_{4}^{2}\right] - m_{1}^{2}$$

We make a shift $l \longrightarrow l + p_1x + (p_1 + p_2)y + (p_1 + p_2 + p_3)z$, one obtain

$$D_0 = 3! \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz \int \frac{1}{[l^2 + \Delta]^4} d^4l$$
 (4.5)

here

$$\Delta = -\left[p_1x + (p_1 + p_2)y + (p_1 + p_2 + p_3)z\right]^2 + (p_1^2 + m_1^2 - m_2^2)x + \left[(p_1 + p_2)^2 + m_1^2 - m_3^2\right]y + \left[(p_1 + p_2 + q_3)^2 + m_1^2 - m_4^2\right] - m_1^2$$

Applying the formular

$$\frac{1}{(2\pi)^4} \int \frac{1}{\left[l^2 + \Delta\right]^4} d^4 l = \frac{i\pi^2}{3!} \frac{1}{\Delta^2}$$
 (4.6)

So

$$D_0 = i\pi^2 \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz \frac{1}{\Delta^2}$$
 (4.7)

with

$$\Delta = -p_1^2 x^2 - (p_1 + p_2)^2 y^2 - (p_1 + p_2 + p_3)^2 z^2$$

$$-2p_1(p_1 + p_2)xy - 2p_1(p_1 + p_2 + p_3)xz - 2(p_1 + p_2)(p_1 + p_2 + p_3)yz$$

$$+ (p_1^2 + m_1^2 - m_2^2)x + \left[(p_1 + p_2)^2 + m_1^2 - m_3^2 \right]y$$

$$+ \left[(p_1 + p_2 + q_3)^2 + m_1^2 - m_4^2 \right]z - m_1^2$$

we have

$$2p_1p_2 = (p_1 + p_2)^2 - p_1^2 - p_2^2
2p_2p_3 = (p_2 + p_3)^2 - p_2^2 - p_3^3
2p_1p_3 = 2p_1(-p_1 - p_2 - p_4)
= -2p_1^2 - 2p_1p_2 - 2p_1p_4
= -2p_1^2 - (p_1 + p_2)^2 + p_1^2 + p_2^2 - (p_1 + p_4)^2 + p_1^2 + p_4^2
= p_2^2 + p_4^2 - (p_1 + p_2)^2 - (p_1 + p_4)^2
= p_2^2 + p_4^2 - (p_1 + p_2)^2 - (p_2 + p_3)^2$$
(4.8)

we obtain

$$\Delta = -p_1^2 x^2 - (p_1 + p_2)^2 y^2 - p_4^2 z^2$$

$$- \left[(p_1 + p_2)^2 + p_1^2 - p_2^2 \right] xy$$

$$- \left[p_1^2 + p_4^2 - (p_2 + p_3)^2 \right] xz$$

$$- \left[p_2^2 - p_3^2 + (p_1 + p_2)^2 \right] yz$$

$$+ (p_1^2 + m_1^2 - m_2^2) x$$

$$+ \left[(p_1 + p_2)^2 + m_1^2 - m_3^2 \right] y$$

$$+ \left[p_4^2 + m_1^2 - m_4^2 \right] z - m_1^2$$

SUMMARIZE:

$$\frac{D_0}{i\pi^2} = \int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} dz \frac{1}{\Delta^2}$$
 (4.9)

with

$$\begin{split} \Delta &= \Delta(p_1^2, p_2^2, p_3^2, p_4^2, (p_1 + p_2)^2, (p_2 + p_3)^2, m_1^2, m_2^2, m_3^2, m_4^2) \\ \Delta &= -p_1^2 x^2 - (p_1 + p_2)^2 y^2 - p_4^2 z^2 \\ &- \Big[(p_1 + p_2)^2 + p_1^2 - p_2^2 \Big] xy \\ &- \Big[p_1^2 + p_4^2 - (p_2 + p_3)^2 \Big] xz \\ &- \Big[p_2^2 - p_3^2 + (p_1 + p_2)^2 \Big] yz \\ &+ (p_1^2 + m_1^2 - m_2^2) x \\ &+ \Big[(p_1 + p_2)^2 + m_1^2 - m_3^2 \Big] y \\ &+ \Big[p_4^2 + m_1^2 - m_4^2 \Big] z - m_1^2 \end{split}$$

Or

$$\frac{D_0}{i\pi^2} = \int_0^1 dx \int_0^1 dy \int_0^1 dz \frac{(1-x)^2(1-y)}{\Delta_1^2}$$
 (4.10)

with

$$\begin{split} \Delta &= \Delta_1(p_1^2, p_2^2, p_3^2, p_4^2, (p_1 + p_2)^2, (p_2 + p_3)^2, m_1^2, m_2^2, m_3^2, m_4^2) \\ \Delta &= -p_1^2 x^2 - (p_1 + p_2)^2 (1 - x)^2 y^2 - p_4^2 (1 - x)^2 (1 - y)^2 z^2 \\ &- \Big[(p_1 + p_2)^2 + p_1^2 - p_2^2 \Big] x (1 - x) y \\ &- \Big[p_1^2 + p_4^2 - (p_2 + p_3)^2 \Big] x (1 - x) (1 - y) z \\ &- \Big[p_2^2 - p_3^2 + (p_1 + p_2)^2 \Big] (1 - x)^2 (1 - y) y z \\ &+ (p_1^2 + m_1^2 - m_2^2) x \\ &+ \Big[(p_1 + p_2)^2 + m_1^2 - m_3^2 \Big] (1 - x) y \\ &+ \Big[p_4^2 + m_1^2 - m_4^2 \Big] (1 - x) (1 - y) z - m_1^2 \end{split}$$

4.1.2 The result

The notation:

$$p_1^2 = p1s; \quad m_1^2 = m1s$$

$$p_2^2 = p2s; \quad m_2^2 = m2s$$

$$p_3^2 = p3s; \quad m_3^2 = m3s$$

$$p_4^2 = p4s; \quad m_4^2 = m4s$$

$$(p_1 + p_2)^2 = p12s$$

$$(p_2 + p_3)^2 = p23s$$

(4.11)

In Vegas code, we input

```
voidval(double\ x[DIMENSION], double\ f[FUNCTIONS])
          double f1, f2, f3, f4, f5, f6;
          double Pi = 3.1415926535897932385;
          double p1s = 1;
          double p2s = 1;
          double p3s = 1;
          double p4s = 1;
          double p12s = 100;
          double p23s = 50;
          double m1s = 81 * 81;
          double m2s = 91 * 91;
          double m3s = 81 * 81;
          double m4s = 91 * 91;
          double f1 = -(p12s + p1s - p2s);
          double f2 = -(-p23s + p1s + p4s);
          double f3 = -(p12s + p2s - p3s);
          double f4 = (p1s - m2s + m1s);
          double f5 = (p12s - m3s + m1s);
          double f6 = (p4s - m4s + m1s);
          //we input some - t here
          If(x[2] \le 1 - x[0] - x[1] and x[1] \le 1 - x[0])
          f[0] = 1/pow\Big(-p1s * pow(x[0], 2) - p12s * pow(x[1], 2) - p4s * pow(x[2], 2)\Big)
                  +f1 * x[0] * x[1] + f2 * x[0] * x[2] + f3 * x[1] * x[2] + f4 * x[0]
                  +f5*x[1] + f6*x[2] - m1s, 2;
          else
          f[0] = 0;
}
                                                                             (4.12)
```

And

$(p_1^2, p_2^2, p_3^2, p_4^2)$	$(p_1+p_2)^2$	$(p_2+p_3)^2$	Vegas	LoopTools
(1,1,1,1)	100	50	$3.05757E^{-09} \pm 5.05325E^{-13}$	$3.05766235E^{-09}$
(1,1,1,1)	100	60	$3.05794E^{-09} \pm 5.05019E^{-13}$	$3.05803094E^{-09}$
(1,1,1,1)	100	70	$3.05831E^{-09} \pm 5.052E^{-13}$	$3.05839976E^{-09}$
(1,1,1,1)	1000	200	$3.10604e^{-09} \pm 5.26804e^{-13}$	$3.10606296E^{-09}$
(1,1,1,1)	5	1	$3.05144e^{-09} \pm 8.61833e^{-16}$	$3.05143955E^{-09}$

Table 4.1: $m_1s = m3s = 81 * 81; m_2s = m4s = 91 * 91$

	$(p_1^2, p_2^2, p_3^2, p_4^2)$	$(p_1+p_2)^2$	$(p_2+p_3)^2$	LoopTools	vegas	xLoop
ſ	(1, 1, 1, 1)	200	-50	$3.05865044E^{-09}$	$3.05865e^{-09} \pm 8.69883e^{-16}$	xLoop
Ī	(1, 1, 1, 1)	1000	-50	$3.0967473E^{-09}$	$3.09675e^{-09} \pm 8.57708e^{-16}$	xLoop
Ĭ	(1, 1, 1, 1)	10000	-50	$3.64967589E^{-09}$	$3.64968e^{-09} \pm 1.11451e^{-15}$	xLoop
Ĭ	(1, 1, 1, 1)	10000	-100	$3.64760089E^{-09}$	$3.6476e^{-09} \pm 1.11072e^{-15}$	xLoop

Table 4.2: $m_1s = m_3s = 81 * 81$; $m_2s = m_4s = 91 * 91$

4.2 Check the Lorentz transformation

The form of \mathcal{D}_0 in Paralell and organal space is

$$D_{0} = 2 \int_{-\infty}^{\infty} dl_{0} dl_{1} dl_{2} \int_{0}^{\infty} dl_{\perp}$$

$$\frac{1}{[(l_{0} + q_{10})^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{1}^{2} + i\rho][(l_{0} + q_{20})^{2} - (l_{1} + q_{21})^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{2}^{2} + i\rho]}$$

$$\frac{1}{[(l_{0} + q_{30})^{2} - (l_{1} + q_{31})^{2} - (l_{2} + q_{32})^{2} - l_{\perp}^{2} - m_{3}^{2} + i\rho][l_{0}^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{4}^{2} + i\rho]}$$

Because

$$(l_0 + q_{10})^2 - l_1^2 - l_2^2 - l_\perp^2 - m_1^2 + i\rho = 0 (4.14)$$

have two pole

$$l_0 = -q_{10} \pm \sqrt{l_1^2 + l_2^2 + l_\perp^2 + m_1^2 - i\rho}$$
 (4.15)

here $q_{10} << m_1$, so these pole locate across in real l_0 line. Performing Wick rotaion $l_0 \to i l_0$, we obtain

$$D_{0} = 2i \int_{-\infty}^{\infty} dl_{0} dl_{1} dl_{2} \int_{0}^{\infty} dl_{\perp}$$

$$\frac{1}{[-l_{0}^{2} + 2il_{0}q_{10} + q_{10}^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{1}^{2} + i\rho]}$$

$$\frac{1}{[-l_{0}^{2} + 2il_{0}q_{20} + q_{20}^{2} - (l_{1} + q_{21})^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{2}^{2} + i\rho]}$$

$$\frac{1}{[-l_{0} + 2il_{0}q_{30} + q_{30}^{2} - (l_{1} + q_{31})^{2} - (l_{2} + q_{32})^{2} - l_{\perp}^{2} - m_{3}^{2} + i\rho]}$$

$$\frac{1}{[-l_{0}^{2} - l_{1}^{2} - l_{2}^{2} - l_{\perp}^{2} - m_{4}^{2} + i\rho]}$$

We make a change variable

$$x = tg(l_0)$$

$$y = tg(l_1)$$

$$z = tg(l_2)$$

$$t = tg(l_3)$$
(4.16)

and run Vegas.

	$(p_1^2, p_2^2, p_3^2, p_4^2)$	$(p_1+p_2)^2$	$(p_2+p_3)^2$	LoopTools	$D_0XLOOPS$
	(1, 5, 1, 7)	15	1	$3.05231662E^{-09}$	$3.05262e^{-09} \pm 3.88742e^{-13}$
ĺ	(1, 5, 1, 8)	20	1	$3.05258996E^{-09}$	$3.05276e^{-09} \pm 3.91644e^{-13}$
ĺ	(1,6,1,9)	20	1	$3.05267256E^{-09}$	$3.05289e^{-09} \pm 3.90594e^{-13}$

Table 4.3:
$$m_1s = m_3s = 81 * 81; m_2s = m_4s = 91 * 91$$

4.3 Epand R function

The R function have form

$$R_{-1-\varepsilon}\Big(1,1,\varepsilon;x,y,z\Big)$$
 (4.17)

47

we expand this function as the series of ε

$$R_{-1-\varepsilon}\Big(1,1,\varepsilon;x,y,z\Big) = \frac{B(\varepsilon,1)}{x-y}\Big[R_{-\varepsilon}(1,\varepsilon;y,z) - R_{-\varepsilon}(1,\varepsilon;x,z)\Big]$$
(4.18)

and

$$R_{-\varepsilon}(1,\varepsilon;y,z) = \sum_{n=0}^{\infty} \frac{(\varepsilon,n)}{(1+\varepsilon,n)} \sum_{m=0}^{n} \frac{(\varepsilon,m)}{(1,m)} (1-y)^{n-m} (1-z)^{m}$$
(4.19)

because

$$\frac{(\varepsilon,n)}{(1+\varepsilon,n)} = \frac{\varepsilon(\varepsilon+1)...(\varepsilon+n-1)}{(\varepsilon+1)(\varepsilon+2)...(\varepsilon+n)} = \frac{\varepsilon}{\varepsilon+n}$$

one obtain

$$R_{-\varepsilon}(1,\varepsilon;y,z) = \sum_{n=0}^{\infty} \frac{\varepsilon}{\varepsilon+n} \sum_{m=0}^{n} \frac{(\varepsilon,m)}{(1,m)} (1-y)^{n-m} (1-z)^{m}$$

$$= 1+\varepsilon \sum_{n=1}^{\infty} \frac{1}{\varepsilon+n} (1-y)^{n}$$

$$+\varepsilon^{2} \sum_{n=1}^{\infty} \frac{1}{\varepsilon+n} \sum_{m=1}^{n} \frac{1}{m} (1-y)^{n-m} (1-z)^{m} + \Theta(\varepsilon^{3})$$

$$= 1+\varepsilon \sum_{n=1}^{\infty} \frac{1}{n} (1-y)^{n} - \varepsilon^{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} (1-y)^{2}$$

$$+\varepsilon^{2} \sum_{n=1}^{\infty} \frac{1}{n} \sum_{m=1}^{n} \frac{1}{m} (1-y)^{n-m} (1-z)^{m} + \Theta(\varepsilon^{3})$$

$$(4.20)$$

For the case $|1-z_i| < 0$, this series converge to log or dilog function

$$R_{-\varepsilon}(1,\varepsilon;y,z) = 1 - \varepsilon \ln(y) - \varepsilon^2 Li_2(1-y)$$

$$+ \varepsilon^2 \left\{ Li_2(1-y) + Li_2(1-\frac{z}{y}) + \frac{1}{2} \left(\ln(y)\right)^2 \right.$$

$$+ \ln(y) \left[\eta(z-y,\frac{1}{1-y}) - \eta(z-y,\frac{1}{-y}) \right]$$

$$+ \ln\left(1 - \frac{z}{y}\right) \eta(z,\frac{1}{y})$$

$$\left. \right\} + \Theta(\varepsilon^3)$$

now we obtain

$$\begin{split} R_{-1-\varepsilon}\Big(1,1,\varepsilon;x,y,z\Big) &= \frac{\ln x - \ln y}{x-y} + \varepsilon \frac{\ln x - \ln y}{x-y} \\ &+ \frac{\varepsilon}{x-y} \Big\{ \frac{1}{2} \ln^2 y - \frac{1}{2} \ln^2 x + Li_2(1-\frac{z}{y}) - Li_2(1-\frac{z}{x}) \\ &+ \ln(y) \Big[\eta(z-y,\frac{1}{1-y}) - \eta(z-y,\frac{1}{-y}) \Big] \\ &- \ln(x) \Big[\eta(z-x,\frac{1}{1-x}) - \eta(z-x,\frac{1}{-x}) \Big] \\ &+ \ln \Big(1-\frac{z}{y}\Big) \eta(z,\frac{1}{y}) - \ln \Big(1-\frac{z}{x}\Big) \eta(z,\frac{1}{x}) \quad \Big\} + \Theta(\varepsilon^2) \end{split}$$

The conditional: We know that $|1-z_i|<0$, $z\in C$, the series (4.20) converge to log or dilog function $\iff 0<|z_i|<2$

4.3.1 THE SOLUTION FOR LogACG FUNCTION

We have

$$LogACG(a, b, x, y) = \int_{0}^{\infty} (az + b)^{-\varepsilon} (z + x)^{-1} (z + y)^{-1} dz$$
 (4.21)

with $z = \frac{b}{a}$ and a > 0, one obtain

$$LogACG(a, b, x, y) = a^{-\varepsilon} \int_{0}^{\infty} (z + z_0)^{-\varepsilon} (z + x)^{-1} (z + y)^{-1} dz$$
 (4.22)

To obtain the converge series, we make z = Az'

$$LogACG(a, b, x, y) = a^{-\varepsilon} A \int_{0}^{\infty} (Az + z_0)^{-\varepsilon} (Az + x)^{-1} (Az + y)^{-1} dz$$
 (4.23)

here

$$A = |z_0| + |x| + |y| > 0 (4.24)$$

$$LogACG(a,b,x,y) = \frac{(aA)^{-\varepsilon}}{A} \int_{0}^{\infty} (z + \frac{z_0}{A})^{-\varepsilon} (z + \frac{x}{A})^{-1} (z + \frac{y}{A})^{-1} dz$$
$$= \frac{(aA)^{-\varepsilon}}{A} B(1+\varepsilon,1) R_{-1-\varepsilon} \left(1,1,\varepsilon;\frac{x}{A},\frac{y}{A},\frac{z_0}{A}\right) \quad (4.25)$$

49

Now we have

$$0 < \left| \frac{z_i}{A} \right| < 2 \tag{4.26}$$

So the series of this function is converge to log or dilog function.

4.3.2 REWRITE THE LogACG FUNCTION

$$LogACG(a, b, x, y) = \int_{0}^{\infty} (az + b)^{-\varepsilon} (z + x)^{-1} (z + y)^{-1} dz$$
 (4.27)

with $t = \frac{b}{a}$ and a > 0.

$$A = \sqrt{(Rez_0)^2 + (Imz_0)^2} + \sqrt{(Rex)^2 + (Imx)^2} + \sqrt{(Rey)^2 + (Imy)^2}$$
 (4.28)

and

$$x_0 = \frac{x}{A};$$
 $y_0 = \frac{y}{A};$ $z_0 = \frac{t}{A}$ (4.29)

so one obtain

$$LogACG(a, b, x, y) = \frac{\ln(x_0) - \ln(y_0)}{A(x_0 - y_0)} \ln(a * A)$$

$$-\frac{1}{A(x_0 - y_0)} \left\{ -\frac{1}{2} (\ln x_0)^2 + \frac{1}{2} (\ln y_0)^2 + Li_2(1 - \frac{z_0}{y_0}) - Li_2(1 - \frac{z_0}{x_0}) + \ln(y_0) \left[\eta(z_0 - y_0, \frac{1}{1 - y_0}) - \eta(z_0 - y_0, \frac{1}{-y_0}) \right] - \ln(x_0) \left[\eta(z_0 - x_0, \frac{1}{1 - x_0}) - \eta(z_0 - x_0, \frac{1}{-x_0}) \right] + \ln\left(1 - \frac{z_0}{y_0}\right) \eta(z_0, \frac{1}{y_0}) - \ln\left(1 - \frac{z_0}{x_0}\right) \eta(z_0, \frac{1}{x_0}) \right\} (4.30)$$

and

$$LogARG(a, b, x, y) = \int_{0}^{\infty} \ln(az + b)(z + x)^{-1}(z + y)^{-1}$$
$$= \ln(b) \left(\frac{\ln(x) - \ln(y)}{x - y}\right) + LogACG(\frac{a}{b}, 1, x, y) \quad (4.31)$$

4.4 The result LogARG function

$$LogARG(a, b, x, y) = \int_{0}^{\infty} \ln(az + b)(z + x)^{-1}(z + y)^{-1}$$
(4.32)

Here a < 0.

4.4.1 For x, y are complex

We test for y=-10+10I and x=-50+(Imx)*I, Imx run -50 to 50. see fig.1,fig.2,3

4.4.2 For x, y are complex have small image

We test for $y = -10 + 10^{-5}I$ and x = -50 + (Imx) * I, $Imx \text{ run } -5.10^{-6}$ to 5.10^{-6} , see fig4,5,6

4.4.3 The solution for small image

We test for $y=-10+10^{-5}I$ and x=-50+(Imx)*I, Imx run -5.10^{-6} to 5.10^{-6} and $y=-10+10^{-15}I$ and x=-50+(Imx)*I, Imx run -5.10^{-16} to 5.10^{-16}

Figure 4.1: For real part

Figure 4.2: For Image part

Figure 4.3: Diff 1

Figure 4.4: For real part (small image)

Figure 4.5: For Image part (small image)

Figure 4.6: Diff (small image)

Figure 4.7: Compare real part

Figure 4.8: Compare real part

Figure 4.9: Compare Image part

Figure 4.10: Compare Image part