吉林大学 自动化 现代控制理论实验

状态反馈和状态观测器

一、实验目的

- 1. 学习全状态反馈系统按极点配置的设计方法;
- 2. 学习降维状态观测器的设计方法。

二、实验要求

- 1. 用全状态反馈配置极点方法,按给定的性能指标进行设计;
- 2. 设计降维状态观测器。

三、实验仪器

- 1. TDN-AC/ACS 教学实验系统 一套
- 2. 计算机 一台
- 3. 数字万用表 一只

四、实验前分析、计算和设计

已知控制对象如图一所示:

图一 系统框图

- 1. 设计一个全状态反馈系统,闭环系统性能要求 ξ =0.707, t_s \leq 0.2s, 设计相应系统模拟 实验图,选择相应元件参数。
- 2. 设计降维状态观测器,自选观测器期望特征值,设计相应系统模拟实验图,选择相应 元件参数。

五、实验步骤

- 1. 全状态反馈系统实验:
 - ① 按设计的模拟实验系统图接好线;
 - ② 观测记录系统阶跃响应,测量 σ %, t_s 。
- 2. 带有状态观测器的状态反馈系统实验:
 - ① 按设计的模拟实验系统图接好线;
 - ② 观测记录系统阶跃响应,测量 σ %, t_s 。

六、实验报告要求

- 1. 实验目的和要求;
- 2. 实验线路图;
- 3. 理论设计的数据;
- 4. 实验所观测和记录的数据、波形;

5. 实验结果分析、体会和建议。

附录: 典型环节的放大器及阻容元件模拟

1、各典型环节的方块图及传函:

典型环节名称	方块图	传递函数
比例 (P)	$U_i(s)$ $U_o(s)$	$\frac{U_o(s)}{U_i(s)} = K$
积分(I)	$U_i(s)$ $U_o(s)$ $U_o(s)$	$\frac{U_o(s)}{U_i(s)} = \frac{1}{TS}$
比例积分 (PI)	$\begin{array}{c c} & & & \\ \hline U_i(s) & & & \\ \hline \hline TS & & & \\ \hline \end{array}$	$\frac{U_o(s)}{U_i(s)} = K + \frac{1}{TS}$
惯性(T)	$ U_{i}(s) $	$\frac{U_o(s)}{U_i(s)} = \frac{K}{TS + 1}$

1. 各典型环节的模拟电路图及输入响应:

典型环节名称	模拟电路图	输出响应
比例 (P)	U_i R_0	$U_o(t) = K (t \ge 0)$ 其中 $K = R_1 / R_0$
积分 (I)	U _i Ro U _o + + U _o	$U_o(t) = \frac{1}{T}t (t \ge 0)$

2. 理想曲线:

典型环节	传函与模拟电路 参数关系	单位阶跃响应	位阶跃响应 理想阶跃		响应曲线
比例 (P)	$K = \frac{R_1}{R_0}$	$\mu_0(t) = K$	$R_0 = 200K$	$R_1 = 100K$	$ \begin{array}{c c} \mu_0 & \mu_1(t) \\ 1 & \mu_0(t) \\ \hline 0 & t \end{array} $
				$R_{\rm I}=200K$	$ \begin{array}{c c} \mu_0 & \mu_1(t) \\ 1 & \mu_0(t) \end{array} $
惯性 (T)	$K = \frac{R_1}{R_0}$ $T = R_1 C$	$\mu_0(t) = K \left(1 - e^{-t/T} \right)$	$R_1 = 200K$ $R_0 = 200K$	$C = 1\mu F$	μ ₀ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				$C = 2\mu F$	μ ₀ 1 0.4 t

积分 (I)	$T = R_0 C$	$\mu_0(t) = \frac{1}{T}t$	$R_0 = 200K$	$C = 1\mu F$	$ \begin{array}{c c} \mu_0 & & \\ 1/t & & \\ 1 & & \\ 0 & 0.2 & t \end{array} $
				$C = 2\mu F$	$\begin{array}{c c} \mu_0 \\ \hline \\ 1/t \\ \hline \\ 1 \\ \hline \\ 0 \\ \hline \end{array}$
比例积 分 (PI)	$K = \frac{R_1}{R_0}$ $T = R_0 C$	$\mu_0(t) = K + \frac{1}{T}t$	$R_1 = 200K$ $R_0 = 200K$	C = 1µF	$\begin{array}{c c} \mu_0 & & \\ \hline 2 & & \\ \hline 1 & & \mu_1(t) \\ \hline 0 & 0.2 & t \\ \end{array}$
				$C = 2\mu F$	$ \begin{array}{c c} \mu_0 \\ \hline 2 \\ \hline 1 \\ 0 \\ 0.4 \\ \hline t \end{array} $