Computer Security

Prof. Dr.-Ing. Volker Roth Freie Universität Berlin

June 6, 2012

Please note that your submission will not be accepted without the properly signed Academic Integrity agreement.

Academic Integrity
We each certify that this submission is our own original work and that we have due acknowledged any work of others.
Date, signature, name in block letters
Date, signature, name in block letters
Date, signature, name in block letters

Question 1: Execution-based information flow control

Trace the execution of the procedure copyl on the single accumulator machine (see Denning's book, Figure 5.8 and Table 5.2) for both x=0 and x=1 when $\underline{x}=high$, $\underline{y}=low$, $\underline{z}=high$, and \underline{pc} is initially low. Is the execution secure?

Question 2: Information flow control certification

Draw the syntax tree showing how the certification mechanism of Section 5.4.3 in Denning's book verifies the flows in the following statement:

```
\begin{array}{ll} 1 & \text{while } a>0 \text{ do begin} \\ 2 & a:=a-x; \\ 3 & b:=a*y \\ 4 & \text{end.} \end{array}
```

Question 3: Information flow control certification

Following the approach in Section 5.4.2 of Denning's book, give security conditions for a case statement:

```
\begin{array}{lll} 1 & {\rm case} \ a & {\rm of} \\ 2 & v_1 \colon S_1 \\ 3 & v_2 \colon S_2 \\ \\ 4 & \vdots \\ 5 & v_n \colon S_n \\ 6 & {\rm end.} \end{array}
```

where a is a variable and v_1, \ldots, v_n are values.