Estruturas Discretas

Teoria dos Conjuntos Definições

Profa. Helena Caseli helenacaseli@dc.ufscar.br

- É uma coleção de objetos não ordenada e sem repetição
- Todos os objetos de um conjunto têm alguma propriedade em comum
 - Qualquer objeto que tem essa propriedade pertence ao conjunto e qualquer objeto que não tem essa propriedade não pertence ao conjunto

- É uma coleção de objetos não ordenada e sem repetição
- Todos os objetos de um conjunto têm alguma propriedade em comum
 - Qualquer objeto que tem essa propriedade pertence ao conjunto e qualquer objeto que não tem essa propriedade não pertence ao conjunto
- Lembre-se
 - Não há ordem para os objetos do conjunto

- É uma coleção de objetos não ordenada e sem repetição
- Todos os objetos de um conjunto têm alguma propriedade em comum
 - Qualquer objeto que tem essa propriedade pertence ao conjunto e qualquer objeto que não tem essa propriedade não pertence ao conjunto
- Lembre-se
 - → Não há ordem para os objetos do conjunto
 - Um objeto não pode aparecer em um conjunto mais de uma vez

- Exemplos
 - 1. { 1, 2, 3 }, { 3, 2, 1 } e { 1, 1, 2, 3, 3 }
 - Representam o mesmo conjunto

- Exemplos
 - 1. { 1, 2, 3 }, { 3, 2, 1 } e { 1, 1, 2, 3, 3 }
 - Representam o mesmo conjunto
 - O conjunto formado por todas as mulheres da sala
 (M)

- Exemplos
 - 1. { 1, 2, 3 }, { 3, 2, 1 } e { 1, 1, 2, 3, 3 }
 - Representam o mesmo conjunto
 - O conjunto formado por todas as mulheres da sala (M)
 - 3. O conjunto formado por todos(as) os(as) corinthianos da sala (T)

- Exemplos
 - 1. { 1, 2, 3 }, { 3, 2, 1 } e { 1, 1, 2, 3, 3 }
 - Representam o mesmo conjunto
 - O conjunto formado por todas as mulheres da sala (M)
 - 3. O conjunto formado por todos(as) os(as) corinthianos da sala (T)
 - 4. O conjunto formado por todas as pessoas com mais de 65 anos na sala

- Exemplos
 - 1. { 1, 2, 3 }, { 3, 2, 1 } e { 1, 1, 2, 3, 3 }
 - Representam o mesmo conjunto
 - 2. O conjunto formado por todas as mulheres da sala (M)
 - 3. O conjunto formado por todos(as) os(as) corinthianos da sala (T)
 - 4. O conjunto formado por todas as pessoas com mais de 65 anos na sala (\varnothing)
 - → O conjunto vazio (∅) é um conjunto desprovido de elementos

- Nomenclatura e Notação
- Pertinência a um Conjunto
- Cardinalidade
- Alguns conjuntos especiais
- Descrição de Conjuntos
- Igualdade de Conjuntos
- Conjunto Universo
- Subconjunto
- $\subseteq X \in$

- Nomenclatura e Notação
 - Geralmente são usadas letras maiúsculas para denotar conjuntos

- Nomenclatura e Notação
 - Geralmente são usadas letras maiúsculas para denotar conjuntos
 - Os objetos de um conjunto são apresentados entre chaves ({ e }) e separados por vírgula

- Nomenclatura e Notação
 - Geralmente são usadas letras maiúsculas para denotar conjuntos
 - Os objetos de um conjunto são apresentados entre chaves ({ e }) e separados por vírgula
 - Exemplos
 - A = { 1, 2, 3 }
 - B = { Pedro, João, Maria }
 - C = { !, \$, @ }

Nomenclatura e Notação

- Defina conjuntos contendo
 - a) As frutas de que você mais gosta
 - b) Nomes de seus irmãos
 - c) Seus apelidos
 - d) O melhor time de futebol do país
 - e) Os números primos positivos

Nomenclatura e Notação

- Defina conjuntos contendo
 - a) As frutas de que você mais gosta
 - b) Nomes de seus irmãos
 - c) Seus apelidos
 - d) O melhor time de futebol do país
 - e) Os números primos positivos

RESPOSTAS

```
a) F = { banana, mamão, uva }
b) I = { Henrique }
c) A = { }
d) M = { TIMÃO }
e) P = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... }
(a, b, c e d são apenas exemplos já que outras respostas diferentes são possíveis)
```

Pertinência a um Conjunto

- Um objeto que pertence a um conjunto é chamado membro do conjunto ou elemento do conjunto
 - A pertinência a um conjunto é denotada pelo símbolo

 \in

- Um objeto que pertence a um conjunto é chamado membro do conjunto ou elemento do conjunto
 - A pertinência a um conjunto é denotada pelo símbolo ∈
 - A expressão x ∈ A significa que o objeto x <u>é elemento</u> do conjunto A
 - A expressão x ∉ A significa que o objeto x <u>não é</u> <u>elemento</u> do conjunto A

- Um objeto que pertence a um conjunto é chamado membro do conjunto ou elemento do conjunto
 - A pertinência a um conjunto é denotada pelo símbolo ∈
 - A expressão x ∈ A significa que o objeto x <u>é elemento</u> do conjunto A
 - A expressão x ∉ A significa que o objeto x não é elemento do conjunto A
 - Outras formas de ler a expressão "é elemento de":
 - → é membro de,
 - → pertence a,
 - → está em

- Pertinência a um Conjunto
 - Exemplos
 - 2? { 1, 2, 3 }

- Pertinência a um Conjunto
 - Exemplos
 - **2** ∈ { 1, 2, 3 }
 - 4? { 1, 2, 3 }

- Exemplos
 - **■** 2 ∈ { 1, 2, 3 }
 - 4 ∉ { 1, 2, 3 }
 - Seja A = { a, x, b } então a ? A e c ? A

- Exemplos
 - **■** 2 ∈ { 1, 2, 3 }
 - 4 ∉ { 1, 2, 3 }
 - Seja A = { a, x, b } então a ∈ A e c ∉ A

- Para os conjuntos definidos anteriormente por você, preencha com ∈ ou ∉
 - a) uva ? Conjunto das frutas de que você mais gosta
 - b) Pedro ? Conjunto com os nomes de seus irmãos
 - c) Tico ? Conjunto com seus apelidos
 - d) Palmeiras ? Conjunto do melhor time de fut. do país
 - e) 5 ? Conjunto dos números primos positivos

- Para os conjuntos definidos anteriormente por você, preencha com ∈ ou ∉
 - a) uva ? Conjunto das frutas de que você mais gosta
 - b) Pedro ? Conjunto com os nomes de seus irmãos
 - c) Tico ? Conjunto com seus apelidos
 - d) Palmeiras ? Conjunto do melhor time de fut. do país
 - e) 5 ? Conjunto dos números primos positivos

```
      RESPOSTAS

      a) uva \in F
      F = { banana, mamão, uva }

      b) Pedro \notin I
      I = { Henrique }

      c) Tico \notin A
      A = { }

      d) Palmeiras \notin M
      M = { TIMÃO }

      e) 5 \in P
      P = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... }
```

- Cardinalidade (tamanho)
 - A cardinalidade ou tamanho de um conjunto A é o número de elementos do conjunto A
 - É denotada pelas barras de valor absoluto em torno do símbolo do conjunto:

| A |

- Cardinalidade (tamanho)
 - A cardinalidade ou tamanho de um conjunto A é o número de elementos do conjunto A
 - É denotada pelas barras de valor absoluto em torno do símbolo do conjunto:

| A |

- Um conjunto é finito se sua cardinalidade é um inteiro (é finita)
- Caso contrário, dizemos que o conjunto é infinito

- Cardinalidade (tamanho)
 - Exemplos
 - A cardinalidade do conjunto { 1, 2, 3 } é ?
 - Seja A = { 1, 2, 3, 5 }, | A | = ?

- Exemplos
 - A cardinalidade do conjunto { 1, 2, 3 } é 3
 - Seja A = { 1, 2, 3, 5 }, | A | = 4

- Exemplos
 - A cardinalidade do conjunto { 1, 2, 3 } é 3
 - Seja A = { 1, 2, 3, 5 }, | A | = 4
 - → A cardinalidade do conjunto dos inteiros é infinita
 - \Rightarrow A cardinalidade do conjunto vazio é zero, ou seja $|\varnothing| = 0$

- Para os conjuntos definidos anteriormente por você, diga qual a cardinalidade
 - a) |Conjunto das frutas de que você mais gosta| =
 - b) |Conjunto com os nomes de seus irmãos| =
 - c) |Conjunto com seus apelidos| =
 - d) |Conjunto do melhor time de futebol do país| =
 - e) |Conjunto dos números primos positivos| =

- Para os conjuntos definidos anteriormente por você, diga qual a cardinalidade
 - a) |Conjunto das frutas de que você mais gosta| =
 - b) |Conjunto com os nomes de seus irmãos| =
 - c) |Conjunto com seus apelidos| =
 - d) |Conjunto do melhor time de futebol do país| =
 - e) |Conjunto dos números primos positivos| =

Alguns conjuntos especiais

 \mathbb{N} = conjunto dos números naturais ou inteiros não-negativos

 \mathbb{Z} = conjunto dos números inteiros

 \mathbb{Q} = conjunto dos número racionais (formados pela divisão de dois inteiros a/b com b \neq 0)

 \mathbb{R} = conjunto dos números reais

Alguns conjuntos especiais

 $\mathbb{N}=$ conjunto dos números naturais ou inteiros não-negativos (note que $0\in\mathbb{N}$)

$$\{0, 1, 2, 3, 4, \ldots\}$$

 \mathbb{Z} = conjunto dos números inteiros

$$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

 \mathbb{Q} = conjunto dos número racionais (formados pela divisão de dois inteiros a/b com b \neq 0)

```
\{ \ldots, -1/2, -1/3, -1/4, 0, 1/4, 1/3, 1/2, \ldots \}
```

 \mathbb{R} = conjunto dos números reais

```
\{ \ldots, -0.1, 0, +0.1, \ldots \}
```

Descrição de Conjuntos

1. Listar total ou parcialmente os elementos do conjunto

Descrição de Conjuntos

- 1. Listar total ou parcialmente os elementos do conjunto
 - A = { a, b, c } ou S = { 2, 4, 6, 8, ... }

Descrição de Conjuntos

- 1. Listar total ou parcialmente os elementos do conjunto
 - A = { a, b, c } ou S = { 2, 4, 6, 8, ... }
- Usar recorrência para descrever como gerar os elementos do conjunto
 - Explicitar um elemento desse conjunto e descrever os outros em termos de elementos já conhecidos

Descrição de Conjuntos

- 1. Listar total ou parcialmente os elementos do conjunto
 - A = { a, b, c } ou S = { 2, 4, 6, 8, ... }
- Usar recorrência para descrever como gerar os elementos do conjunto
 - Explicitar um elemento desse conjunto e descrever os outros em termos de elementos já conhecidos
 - i. 2 ∈ S

е

ii. Se $n \in S$, então $(n+2) \in S$

Descrição de Conjuntos

- 1. Listar total ou parcialmente os elementos do conjunto
 - A = { a, b, c } ou S = { 2, 4, 6, 8, ... }
- Usar recorrência para descrever como gerar os elementos do conjunto
 - Explicitar um elemento desse conjunto e descrever os outros em termos de elementos já conhecidos
 - i. $2 \in S$ e ii. Se $n \in S$, então $(n+2) \in S$
- 3. Descrever uma propriedade que caracteriza os elementos do conjunto usando a notação { variável de referência | condições }

Descrição de Conjuntos

- 1. Listar total ou parcialmente os elementos do conjunto
 - A = { a, b, c } ou S = { 2, 4, 6, 8, ... }
- Usar recorrência para descrever como gerar os elementos do conjunto
 - Explicitar um elemento desse conjunto e descrever os outros em termos de elementos já conhecidos
 - i. $2 \in S$ e ii. Se $n \in S$, então $(n+2) \in S$
- 3. Descrever uma propriedade que caracteriza os elementos do conjunto usando a notação { variável de referência | condições }
 - $S = \{ x \mid x \in um \text{ inteiro par, } x > 0 \}$

Descrição de Conjuntos

Não funciona para alguns conjuntos. Por exemplo: $S = \{3, 5, 7, ...\}$?

- 1. Listar total ou parcialmente os elementos do conjunto
 - A = { a, b, c } ou S = { 2, 4, 6, 8, ... }
- Usar recorrência para descrever como gerar os elementos do conjunto
 - Explicitar um elemento desse conjunto e descrever os outros em termos de elementos já conhecidos
 - i. $2 \in S$ e ii. Se $n \in S$, então $(n+2) \in S$
- 3. Descrever uma propriedade que caracteriza os elementos do conjunto usando a notação { variável de referência | condições }
 - $S = \{ x \mid x \in um \text{ inteiro par, } x > 0 \}$

Descrição de Conjuntos

- Listar total ou parcialmente os elementos do conjunto
 Difícil de espec
 - A = { a, b, c } ou S = { 2, 4, 6, 8
- Difícil de especificar em muitos casos
- 2. Usar recorrência para descrever como gerar os elementos do conjunto
 - Explicitar um elemento desse conjunto e descrever os outros em termos de elementos já conhecidos
 - i. 2 ∈ S

е

- ii. Se $n \in S$, então $(n+2) \in S$
- 3. Descrever uma propriedade que caracteriza os elementos do conjunto usando a notação { variável de referência | condições }
 - $S = \{ x \mid x \in um \text{ inteiro par, } x > 0 \}$

Descrição de Conjuntos

- 1. Listar total ou parcialmente os elementos do conjunto
 - A = { a, b, c } ou S = { 2, 4, 6, 8, ... }
- 2. Usar recorrência para descrever como gerar os elementos do conjunto
 - Explicitar um elemento desse conjunto e descrever os outros em termos de elementos já Em geral, é a melhor opção
 i. 2 ∈ S e ii. Se r
- 3. Descrever uma propriedade que caracteriza os elementos do conjunto usando a notação { variável de referência | condições }
 - $S = \{ x \mid x \in um \text{ inteiro par, } x > 0 \}$

Descrição de Conjuntos

 Descreva cada um dos conjuntos a seguir listando seus elementos

```
a) { x | x é um inteiro e 3 < x \leq 7 }
b) { x | x é um mês iniciado com a letra A }
c) { x | x \in N, x \leq 10 e x é múltiplo de 3 }
d) { x | x \in Z e x^2 = 4 }
```


Descrição de Conjuntos

 Descreva cada um dos conjuntos a seguir listando seus elementos

```
a) { x | x é um inteiro e 3 < x \leq 7 }
b) { x | x é um mês iniciado com a letra A }
c) { x | x \in N, x \leq 10 e x é múltiplo de 3 }
d) { x | x \in Z e x^2 = 4 }
```

```
RESPOSTAS

a) { 4, 5, 6, 7 }

b) { Abril, Agosto }

c) { 0, 3, 6, 9 }

d) { -2, 2 }
```


Descrição de Conjuntos

 Descreva cada um dos conjuntos a seguir por meio de uma propriedade que caracterize seus elementos

```
a) { 2, 3, 5, 7, 11, 13, 17, ... }
b) { 0, 1, 10, 11, 100, 101, 110, 111, 1000, ... }
```


Descrição de Conjuntos

 Descreva cada um dos conjuntos a seguir por meio de uma propriedade que caracterize seus elementos

```
a) { 2, 3, 5, 7, 11, 13, 17, ... }
b) { 0, 1, 10, 11, 100, 101, 110, 111, 1000, ... }
```

RESPOSTAS

- a) { x | x é um número primo }b) { x | x é a codificação em binário de um inteiro }

Descrição de Conjuntos

Determine a cardinalidade dos seguintes conjuntos

```
a) \{ x \mid x \in \mathbb{Z} \ e \ |x| \le 10 \}
```

b)
$$\{ x \mid x \in \mathbb{Z} \ e \ 1 \le x^2 \le 2 \}$$

Descrição de Conjuntos

Determine a cardinalidade dos seguintes conjuntos

```
a) \{ x \mid x \in \mathbb{Z} \ e \ |x| \le 10 \}
```

b)
$$\{ x \mid x \in \mathbb{Z} \ e \ 1 \le x^2 \le 2 \}$$

RESPOSTAS

```
a) 21, pois o conjunto é: { -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
```

Igualdade de Conjuntos

- Dois conjuntos são iguais se contêm <u>exatamente</u> os mesmos elementos
 - Lembre-se que um conjunto não se altera se seus elementos forem repetidos ou reordenados

Igualdade de Conjuntos

- Dois conjuntos são iguais se contêm <u>exatamente</u> os mesmos elementos
 - Lembre-se que um conjunto não se altera se seus elementos forem repetidos ou reordenados
- Exemplos
 - B = {1, 2, 3, 4, 5} e C = {5, 4, 3, 2, 1} s\(\tilde{a}\) iguais?
 - E = {1, 2} e F = {2, 1, 4/2, 5/5} são iguais?
 - G = {x | x² 3x + 2 = 0}, H = {2, 1} e I = {1, 2, 2, 1, 6/3} são todos iguais?

Igualdade de Conjuntos

- Dois conjuntos são iguais se contêm <u>exatamente</u> os mesmos elementos
 - Lembre-se que um conjunto não se altera se seus elementos forem repetidos ou reordenados
- Exemplos
 - B = {1, 2, 3, 4, 5} e C = {5, 4, 3, 2, 1} são iguais
 - E = {1, 2} e F = {2, 1, 4/2, 5/5} são iguais
 - G = {x | x² 3x + 2 = 0}, H = {2, 1} e I = {1, 2, 2, 1, 6/3} são todos iguais, ou seja, G = H = I

Conjunto Universo

- Define o contexto dos objetos em discussão
 - Denotado por U

Conjunto Universo

- Define o contexto dos objetos em discussão
 - Denotado por U
 - Exemplo
 - O conjunto

$$A = \{x \mid 10 \le x \le 20\}$$

Terá sua formatação exata conhecida apenas se soubermos qual o seu conjunto universo

Conjunto Universo

- Define o contexto dos objetos em discussão
 - Denotado por U
 - Exemplo
 - O conjunto

$$A = \{x \mid 10 \le x \le 20\}$$

Terá sua formatação exata conhecida apenas se soubermos qual o seu conjunto universo

• Se
$$\mathbf{U} = \mathbb{N}$$
,
 $A = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$
• Se $\mathbf{U} = \mathbb{R}$,
 $A = [10, 20]$

Conjunto Universo

- Define o contexto dos objetos em discussão
 - Denotado por U
 - Exemplo
 - O conjunto

$$A = \{x \mid 10 \le x \le 20\}$$

Terá sua formatação exata conhecida apenas se soubermos qual o seu conjunto universo

- Se U = N,
 A = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
 Se U = ℝ,
 A = [10, 20]
- Quando não houver dúvida, U não precisa ser especificado

Subconjunto

- A é subconjunto de B se todo elemento de A também é elemento de B
 - Diz-se que A está contido em B ou B contém A, usando os símbolos:
 - A ⊆ B A está contido em B
 - B ⊇ A B contém A

Subconjunto

- A é subconjunto de B se todo elemento de A também é elemento de B
 - Diz-se que A está contido em B ou B contém A, usando os símbolos:
 - A ⊆ B A está contido em B
 - B ⊇ A B contém A
- A não é subconjunto de B se pelo menos um elemento de A não pertence a B
 - → Escrevemos A ⊄ B

- Subconjunto
 - Exemplos
 - a) $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$

Subconjunto

Exemplos

a)
$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$$

b) $A = \{2, 4, 6, 8, 10\}$ $B = \{2, 3, 4\}$ $C = \{2, 3\}$
 $C ? A B ? A$

Subconjunto

Exemplos

a)
$$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$$

b) $A = \{2, 4, 6, 8, 10\}$ $B = \{2, 3, 4\}$ $C = \{2, 3\}$
 $C \not\subset A$ $B \not\subset A$

Subconjunto

Exemplos

```
a) N ⊆ Z ⊆ Q ⊆ R
b) A = {2, 4, 6, 8, 10} B = { 2, 3, 4} C = {2, 3}
C ⊄ A B ⊄ A
c) E = { 1, 3, 5} F = {5, 1, 3}
E ? F e F ? E
```

Subconjunto

Exemplos

```
a) N ⊆ Z ⊆ Q ⊆ R
b) A = {2, 4, 6, 8, 10} B = { 2, 3, 4} C = {2, 3}
C ⊄ A B ⊄ A
c) E = { 1, 3, 5} F = {5, 1, 3}
E ⊆ F e F ⊆ E . Logo, E = F
```

Todo conjunto é subconjunto dele mesmo

Subconjunto próprio

- A é subconjunto próprio de B se A ⊆ B mas A ≠ B
 - Existe pelo menos um elemento de B que não pertence a A
 - \rightarrow Escrevemos A \subset B (B \supset A)

Subconjunto próprio

- A é subconjunto próprio de B se A ⊆ B mas A ≠ B
 - Existe pelo menos um elemento de B que não pertence a A
 - \rightarrow Escrevemos A \subset B (B \supset A)
- Exemplos:
 - $A = \{2, 5, 7\} \ e B = \{2, 6, 7, 5\}$
 - A é subconjunto próprio de B, ou seja, A ⊂ B
 - {7} ⊂ B

$\subseteq X \in$

- Os símbolos ⊆ e ∈ tem significados relacionados, porém, diferentes
 - A notação $x \in A$ significa que $x \in A$ elemento de A e
 - A notação A ⊆ B significa que todo elemento de A também é elemento de B

$\subseteq X \in$

- Os símbolos ⊆ e ∈ tem significados relacionados, porém, diferentes
 - A notação $x \in A$ significa que x é elemento de A e
 - A notação A ⊆ B significa que todo elemento de A também é elemento de B
 - Assim,
 - $\emptyset \subseteq \{1, 2, 3\}$ é verdadeiro ou falso?
 - $\emptyset \in \{1, 2, 3\}$ é verdadeiro ou falso?

$\subseteq X \in$

- Os símbolos ⊆ e ∈ tem significados relacionados, porém, diferentes
 - A notação $x \in A$ significa que $x \in A$ elemento de A e
 - A notação A ⊆ B significa que todo elemento de A também é elemento de B
 - Assim,
 - $\emptyset \subseteq \{1, 2, 3\}$ é verdadeiro
 - $\emptyset \in \{1, 2, 3\} \text{ \'e falso}$

Algumas propriedades importantes

- i. para todo conjunto A, tem-se que Ø ⊆ A ⊆ U
 (todo conjunto é subconjunto do conjunto universo e contém o conjunto vazio)
- ii. para todo conjunto A, A ⊆ A(todo conjunto é subconjunto de si mesmo)
- iii. se $A \subseteq B$ e $B \subseteq C$ então $A \subseteq C$ (transitividade)
- iv. A = B se e somente se A ⊆ B e B ⊆ A
 (provar a inclusão nas duas direções é a maneira usual de estabelecer a igualdade de dois conjuntos)

Exercício para casa

- Sejam
 - $A = \{ x \mid x \in \mathbb{N} \text{ e } x \geq 12 \}$
 - B = { 14, 16, 18, 19, 20 }
 - Diga quais das proposições a seguir são verdadeiras

a)
$$\{ 15, 16, 17 \} \subseteq A$$

b)
$$\{ 18 \} \in B$$

c)
$$B \subset A$$

d)
$$\{18\}\subseteq B$$

e)
$$\{\emptyset\}\subseteq B$$

f) { x |
$$x \in \mathbb{N}$$
 e x < 20} $\subset B$