Cross-Lingual Constituency Parsing for Middle High German: A Delexicalized Approach

Ercong Nie ^{1,2}

Helmut Schmid¹

Hinrich Schütze^{1,2}

¹Center for Information and Language Processing (CIS), LMU Munich, Germany ² Munich Center for Machine Learning (MCML), Germany nie@cis.lmu.de

> September 8, 2023 ALP 2023 @ Varna, Bulgaria

Outline

- Introduction
- 2 Delexicalization Parsing for Middle High German
- Experimental Setup and Results
- 4 Conclusion

Parsing for Historical Languages

Syntactically annotated corpora of historical languages

- form the foundation for **linguistic analysis** (language change, contact and variation, linguistic evolution of morphology, syntax, etc.).
- serve as a building block for **NLP applications**.
- enrich interdisciplinary cultural, literature and historical studies.

Parsing for Historical Languages

Syntactically annotated corpora of historical languages

- form the foundation for **linguistic analysis** (language change, contact and variation, linguistic evolution of morphology, syntax, etc.).
- serve as a building block for **NLP applications**.
- enrich interdisciplinary cultural, literature and historical studies.
- Difficulties in constructing parsed corpora for historical languages:
 - Scarcity of digital text resources
 - High demand of linguistic expertise
 - Large manual effort

Parsing for Historical Languages

Syntactically annotated corpora of historical languages

- form the foundation for **linguistic analysis** (language change, contact and variation, linguistic evolution of morphology, syntax, etc.).
- serve as a building block for **NLP applications**.
- enrich interdisciplinary cultural, literature and historical studies.
- Difficulties in constructing parsed corpora for historical languages:
 - Scarcity of digital text resources
 - High demand of linguistic expertise
 - Large manual effort
- → **Solution**: Training an automatic syntactic analysis system using cross-lingual transfer techniques.

Historical German Language Resources

POS-Tagged Corpora

- German Reference Corpus¹

¹https://www.deutschdiachrondigital.de/

²https://korpling.german.hu-berlin.de/ddb-doku/index.htm

³https://ipchg.iu.edu/index.html

⁴https://www.chlg.ugent.be/

Historical German Language Resources

POS-Tagged Corpora

- German Reference Corpus¹

Parsed Corpora

ld.	Name	Languages	Style	Size
DDB ²	German Diachronic Treebank	OHG, MHG, ENHG	Tiger	8,580
IPCHG ³	Indiana Parsed Corpus of Historical (High) German	OHG, MHG, ENHG	PTB	~10,000
CHLG ⁴	Corpus of Historical Low German	MLG, OLG	PTB	~200,000

¹https://www.deutschdiachrondigital.de/

 $^{^2 {\}it https://korpling.german.hu-berlin.de/ddb-doku/index.htm}$

³https://ipchg.iu.edu/index.html

Outline

- Introduction
- Delexicalization Parsing for Middle High German
- Experimental Setup and Results
- 4 Conclusion

Motivation

Our work focused on the constituency parsing of **Middle High German** (MHG):

- a historical stage of the German language that was spoken between 1050 and 1350.
- the linguistic predecessor of Modern German (MG).

Motivation

Our work focused on the constituency parsing of **Middle High German** (MHG):

- a historical stage of the German language that was spoken between 1050 and 1350.
- the linguistic predecessor of Modern German (MG).

Motivation of the Delexicalization Method:

- The continuity in the process of language evolution gives rise to linguistic similarities between MG and MHG.
 - Similar sentence structure
 - Similar word order
- Rich resources of MG texts with syntactic annotations.
 - Tiger Corpus (Smith, 2003)

The delexicalization parsing system for MHG comprises three modules:

POS Tagger

- Annotates a sequence of MHG tokens with POS and morphological tags.
- Trained on the ReM corpus using RNNTagger (Schmid, 2019).

The delexicalization parsing system for MHG comprises three modules:

POS Tagger

- Annotates a sequence of MHG tokens with POS and morphological tags.
- Trained on the ReM corpus using RNNTagger (Schmid, 2019).

Tag Mapper

 Mapping tags from the HiTS tag set (used for ReM) to STTS tag set (used for MG treebanks).

The delexicalization parsing system for MHG comprises three modules:

POS Tagger

- Annotates a sequence of MHG tokens with POS and morphological tags.
- Trained on the ReM corpus using RNNTagger (Schmid, 2019).

Tag Mapper

 Mapping tags from the HiTS tag set (used for ReM) to STTS tag set (used for MG treebanks).

Delexicalized Parser

- Based on the Berkeley Neural Parser (Benepar) (Kitaev and Klein, 2018)
- Trained on the Tiger Treebank (50,474 MG parse trees)

7 / 16

Figure: Overview of the cross-lingual delexicalized parsing system for $\ensuremath{\mathsf{MHG}}$

Outline

- Introduction
- 2 Delexicalization Parsing for Middle High German
- Experimental Setup and Results
- 4 Conclusion

Baselines

- Vanilla Benepar: performing a vanilla zero-shot cross-lingual transfer, training a Benepar model directly on MG treebanks without the delexicalization.
- Tetra-Tagging with PLMs: a technique reducing constituency parsing to sequence labeling (Kitaev and Klein, 2020)
 - **gBERT**: Tetra-Tagging with the German BERT model (Chan et al., 2020)
 - mBERT: Tetra-Tagging with the multilingual BERT model (Devlin et al., 2019)

Main results

	Recall		Precision		FScore		СМ	
	MG	MHG	MG	MHG	MG	MHG	MG	MHG
Baselines								
Vanilla Benepar	84.18	34.41	87.57	44.40	85.84	38.77	45.80	0.00
Tetra-gBERT	86.31	23.20	88.19	29.53	87.24	25.98	51.70	3.12
Tetra-mBERT	60.68	19.69	65.61	23.25	63.15	21.32	21.35	0.00
Our proposed method Dexparser	81.39	64.72	84.89	70.19	83.10	67.34	39.03	12.50

Table: Parsing performance of different cross-lingual transfer methods. CM refers to "complete match" The best value of each column is indicated in **bold**.

- Dexparser demonstrates substantial advantages in parsing MHG compared to other baselines.
- Dexparser also achieves comparable results on MG.

Ablation Study

	Recall	Precision	FScore	СМ
Delexicalized parser using gold tags	66.18	71.17	68.59	14.58
- using predicted tags	64.72	70.19	67.34	12.50
- without mapping	59.16	68.82	63.63	7.29
- without morphological information	48.66	65.38	55.8	9.28

Table: The MHG parsing results with delexicalized parser in the ablation study.

 Quality of POS annotation, tag set mapping and annotation of morphological information collectively contribute to the performance of the delexicalization parser on MHG.

Outline

- Introduction
- Delexicalization Parsing for Middle High German
- Security (3) Experimental Setup and Results
- 4 Conclusion

Conclusion

- We present an effective cross-lingual constituency parsing approach by using the delexicalization.
- We utilize the linguistic similarities between MHG and Modern German (MG) to develop an automatic syntactic annotation system for Middle High German (MHG) based on the rich treebank resources of MG.
- Our work provides a solution for the parsing of historical and ancient languages facing similar situations:
 - a. having relevant (modern) languages with rich treebank resources,
 - b. having rich POS-tagged text data.

14 / 16

Thanks for your attention!

References

- Branden Chan, Stefan Schweter, and Timo Möller. 2020. German's next language model. In *Proceedings of the 28th International Conference on Computational Linguistics*, pages 6788–6796, Barcelona, Spain (Online). International Committee on Computational Linguistics.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.
- Nikita Kitaev and Dan Klein. 2018. Constituency parsing with a self-attentive encoder. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2676–2686, Melbourne, Australia. Association for Computational Linguistics.
- Nikita Kitaev and Dan Klein. 2020. Tetra-tagging: Word-synchronous parsing with linear-time inference. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 6255–6261, Online. Association for Computational Linguistics.
- Helmut Schmid. 2019. Deep learning-based morphological taggers and lemmatizers for annotating historical texts. In *Proceedings of the 3rd international conference on digital access to textual cultural heritage*, pages 133–137.
- George Smith. 2003. A brief introduction to the tiger treebank, version 1. Technical report, Universität Potsdam.