

IO-AVSTATS-DB - User Manual Release 23.10.01

IO Aeronautical Autonomy Labs, LLC

© IO-Aero 2023

1.	Introduc	tion	3
2.	Getting S	Started	4
3.	Database	e Schema	5
	3.1. NTS	iB	5
	3.2. IO- <i>A</i>	Aero specific supplements	6
	3.2.1.	Column io_last_seen_ntsb	6
	3.2.2.	Indexes	7
	3.2.3.	Materialized View io_app_ae1982	8
	3.2.4.	Table events	15
	3.2.5.	Table io_airports	16
	3.2.6.	Table io_aviation_occurrence_categories	20
	3.2.7.	Table io_countries	22
	3.2.8.	Table io_lat_lng	24
	3.2.9.	Table io_md_codes_category	28
	3.2.10.	Table io_md_codes_eventsoe	29
	3.2.11.	Table io_md_codes_modifier	30
	3.2.12.	Table io_md_codes_phase	31
	3.2.13.	Table io_md_codes_section	32
	3.2.14.	Table io_md_codes_subcategory	33
	3.2.15.	Table io_md_codes_subsection	34
	3.2.16.	Table io_processed_files	35
	3.2.17.	Table io_sequence_of_events	36
	3.2.18.	Table io_states	37
	3.2.19.	View io_lat_Ing_issues	38
4.	Data Cle	ansing	41
	4.1. Dec	imal latitude and longitude	41
	4.2. Trin	nmed Database Columns	42
_	D = f =		42

1. Introduction

The National Transportation Safety Board (NTSB) investigates all aviation accidents in the U.S. and makes the investigation results available on their website (data.ntsb.gov, n.d.) in Microsoft Access database files for public use. The NTSB provides aviation event data from 1982 through 2007 in the file Pre2008.zip (version 9/30/2020 12:51:56 PM). Data since 2008 are available first in the overall avall.zip file, which is updated monthly, and second with a quasi-weekly amendment file each month on the 1st, 8th, 15th, and 22nd, e.g., up22JUN.zip.

IO-AVSTATS-DB is IO-Aero's database version of NTSB's aviation event data. **IO-AVSTATS-DB** is based on a PostgreSQL database (The PostgreSQL Global Development Group, 2019) and contains, in addition to the data from NTSB IO-Aero specific extensions and data from the following sources:

- Aviation Occurrence Categories (AVIATION OCCURRENCE CATEGORIES DEFINITIONS AND USAGE NOTES, 2013)
- GeoDatos (Geodatos.net, 2019)
- opendatasoft (Opendatasoft, n.d.)
- simplemaps (simplemaps.com, n.d.)
- United States Zip Codes.org (UnitedStatesZipCodes, n.d.)

The IO-AVSTATS-DB is updated on the 8th, 15th, and 22nd of each month with the update file provided by NTSB. Every first of the month a new database version is created from the two files Pre2008.zip and avall.zip. This ensures that the deletions made by NTSB, which are not included in the update file, are reflected in the IO-AVSTATS-DB database.

Release 23.10.01 Page 3 of 44

2. Getting Started

IO-Aero provides the database files in PostgreSQL format. The development of **IO-AVSTATS-DB** was done using PostgreSQL version 15 in the form of the official Docker images available on DockerHub (hub.docker.com. (n.d.)). This is also the recommended installation form for using **IO-AVSTATS-DB**.

Release 23.10.01 Page 4 of 44

3. Database Schema

3.1. NTSB

The documentation provided by NTSB on the data provided consists of the following two documents (data.ntsb.gov. (n.d.)):

- codman.pdf —aviation coding manual
- eadmspub.pdf database schema diagram

For the data provided by NTSB in the form of MS Access databases, the data dictionary was extracted using RazorSQL (razorsql.com, n.d.) and transferred to the PostgreSQL database IO-AVSTATS-DB. This includes the following tables:

- aircraft
- dt_aircraft
- dt_events
- dt_flight_crew
- engines
- events
- Events_Sequence
- Findings
- Flight_Crew
- flight_time
- injury
- narratives
- NTSB_Admin
- Occurrences
- seq_of_events

During the transfer to PostgreSQL, the spelling of all table and column names was unified to lowercase letters. Furthermore, the following adjustments were made to the data types:

MS Access	PostgreSQL
bit	boolean
byte	char(1)
datetime	timestamp
double	float
integer	int
longchar	text

Release 23.10.01 Page 5 of 44

3.2. IO-Aero specific supplements

3.2.1. Column io_last_seen_ntsb

This database column of the timestamp data type has been added to all NTSB tables to document when a specific row was created or last modified.

Release 23.10.01 Page 6 of 44

3.2.2. Indexes

table / view	column(s)
aircraft	acft_category
events_sequence	occurrence_code
findings	finding_code
io_app_ae1982	cictt_codes
io_app_ae1982	ev_highest_injury
io_app_ae1982	ev_type
io_app_ae1982	far_parts
io_app_ae1982	inj_f_grnd
io_app_ae1982	inj_tot_f
io_app_ae1982	latlong_acq
io_app_ae1982	no_aircraft
io_app_ae1982	preventable_events
io_app_ae1982	tll_parameters

Release 23.10.01 Page 7 of 44

3.2.3. Materialized View io app ae1982

This materialized view provides all necessary data for IO-Aero's data analysis applications.

3.2.3.1. Original Data - Unconditional

- events.ev_highest_injury
- events.ev_id
- events.ev_month
- events.ev_type
- events.ev_year
- events.inj_f_grnd
- events.inj_tot_f
- events.io_dec_lat_lng_actions as dec_lat_lng_actions
- events.io_invalid_latitude as is_invalid_latitude
- events.io_invalid_longitude as is_invalid_longitude
- events.io_invalid_us_city as is_invalid_us_city
- events.io_invalid_us_city_zipcode as is_invalid_us_city_zipcode
- events.io_invalid_us_state as is_invalid_us_state events.io_invalid_us_zipcode as is_invalid_us_zipcode
- events.io_nearest_airport_distance as nearest_airport_distance
- events.io_nearest_airport_global_id as nearest_airport_global_id
- events.lat_lng_acq
- events.ntsb_no
- io_airports.ident as nearest_airport_ident
- io_airports.servcity as nearest_airport_servcity

3.2.3.2. Original Data - with Conditions

- events.ev_dow capital letters
- events.io_city if empty events.ev_city
- events.io_country-if empty events.ev_country
- events.io_dec_latitude if empty events.ev_dec_latitude
- events.io_dec_latitude_deviating if empty 0
- events.io_dec_longitude if empty events.ev_dec_longitude
- events.io_dec_longitude_deviating if empty 0
- events.io_site_zipcode if empty events.ev_site_zipcode
- events.io_state if empty events.ev_state

3.2.3.3. Logical Variables

3.2.3.3.1. Level Base

- acft_categories an array of aircraft.acft_category
- all_category_codes an array of findings.category_no
- all_category_cause_codes an array of findings.category_no where cause factor is 'C'
- all_category_factor_codes an array of findings.category_no where cause factor is 'F'
- all_category_none_codes an array of findings.category_no where cause_factor
 is neither 'C' nor 'F'

Release 23.10.01 Page 8 of 44

- all_eventsoe_codes an array of events_sequence.eventsoe_no
- all_eventsoe_false_codes an array of events_sequence.eventsoe_no where defining_ev is not true
- all_eventsoe_true_codes an array of events_sequence.eventsoe_no where defining_ev is true
- all_finding_codes an array of findings.finding_no
- all_finding_cause_codes an array of findings.finding_no where cause_factor is 'C'
- all_finding_factor_codes an array of findings.finding_no where cause_factor is 'F'
- all_finding_none_codes an array of findings.finding_no where cause_factor is neither 'C' nor 'F'
- all modifier codes an array of modifiers.modifier no
- all_modifier_cause_codes an array of modifiers.modifier_no where cause factor is 'C'
- all_modifier_factor_codes an array of modifiers.modifier_no where cause_factor is 'F'
- all_modifier_none_codes an array of modifiers.modifier_no where cause factor is neither 'C' nor 'F'
- all_occurrence_codes an array of events_sequence.occurrence_no
- all_occurrence_false_codes an array of events_sequence.occurrence_no where defining_ev is not true
- all_occurrence_true_codes an array of events_sequence.occurrence_no where defining ev is true
- all_phase_codes an array of events_sequence.phase_no
- all_phase_false_codes an array of events_sequence.phase_no where defining_ev is not true
- all_phase_true_codes an array of events_sequence.phase_no where defining_ev is true
- all_section_codes an array of sections.section_no
- all_section_cause_codes an array of sections.section_no where cause_factor is 'C'
- all_section_factor_codes an array of sections.section_no where cause_factor is 'F'
- all_section_none_codes an array of sections.section_no where cause_factor is neither 'C' nor 'F'
- all_subcategory_codes an array of subcategorys.subcategory_no
- all_subcategory_cause_codes an array of subcategorys.subcategory_no where cause_factor is 'C'
- all_subcategory_factor_codes an array of subcategorys.subcategory_no where cause_factor is 'F'
- all_subcategory_none_codes an array of subcategorys.subcategory_no where cause_factor is neither 'C' nor 'F'
- all_subsection_codes an array of subsections.subsection_no
- all_subsection_cause_codes an array of subsections.subsection_no where cause_factor is 'C'
- all_subsection_factor_codes an array of subsections.subsection_no where cause_factor is 'F'
- all_subsection_none_codes an array of subsections.subsection_no where cause_factor is neither 'C' nor 'F'
- cictt_codes an array of events_sequence.cictt_code

Release 23.10.01 Page 9 of 44

- description_main_phase_defining an array of dewcription_main_phase where defining_ev is true
- dest_countries an array of aircraft.dest_country
- dprt_countries an array of aircraft.dprt_country
- ev_highest_injury: Categorization of missing data as 'n/a'.
- far_parts an array of aircraft.far_part
- finding_codes an array of encoded findings.finding_code:
 - 'PARAMS_ALT' if position 1 to 8 of finding_code is '01062012'
 - o 'PARAMS_DEC_RATE' if position 1 to 8 of finding_code is '01062037'
 - o 'PARAMS_DEC_APP' if position 1 to 8 of finding_code is '01062040'
 - o 'PARAMS_AoA' if position 1 to 8 of finding_code is '01062042'
 - 'ENV_TER if position 1 to 6 of finding_code is '030210'
 - o 'ENV_OAS' if position 1 to 6 of finding_code is '030220'
- is attitide controllable-if:
 - o position 1 to 6 of **finding_code** is one of
 - '010355', '010357', '030320', '030330'
 - o or position 1 to 8 of finding_code is one of
 - '01061040', '03031025', '03034020', '03034030', '03034050', '03034060'
 - o oreventsoe_no is one of
 - '210', '245', '333', '361',
 - o or eventsoe_no is one of '337', '338' and defining_ev
- is_midair_collision-if:
 - o eventsoe_no is '250' and defining_ev
- is_narrative_stall -if:
 - o narratives.narr_accp is like '%STALL%
- is_pilot_issue -if:
 - o modifier_no is one of '44', '45', '46'
- latlong_acq is 'none' if
 - o latlong_acq is null
 - o and io_latlong_acq is null
 - and one of dec_latitude, dec_longitude, io_dec_latitude,
 io dec longitude is not null
- no aircraft —the number of aircraft involved in the event
- occurrence_codes an array of encoded events_sequence.occurrence_code:
 - o 'INIT_CLIMB' if phase:no is '350'
 - o 'MAN_LALT' if phase:no is '452'
 - o 'FINAL_APP' if phase:no is '502'
 - o 'CFIT' if eventsooe no is '120'
 - o 'LALT' if eventsooe no is '220'
 - 'LOC-I' if eventsooe no is '240'
 - o 'STALL' if eventsooe_no is '241'
 - 'MIDAIR' if eventsooe_no is '250'
 - O 'UIMC' if eventsooe_no is '401'
 - o 'CAA' if eventsooe_no is '420'
 - o 'BIRD' if eventsooe no is '901'
- oper_countries an array of aircraft.oper_country
- owner_countries an array of aircraft.owner_country
- phase_codes_defining an array of events_sequence.phase_no where defining_ev
 is true
- regis_countries an array of
 - o 'USA' if regis_no has one of the formats 'N99999', 'N9999A', 'N999AA',
 - o 'NON-US' else

Release 23.10.01 Page 10 of 44

```
• regis_nos - an array of aircraft.regis_no
          3.2.3.3.2.
                       Level 1
• is_dest_country_usa -if 'USA' is in dest_countries
  is_dprt_country_usa -if 'USA' is in dprt_countries
• is emergency landing -if:
       o modifier_no is one of

    '01', '02', '03', '06', '22', '23', '24', '25', '26'

          or position 1 to 6 of finding_code is one of
                 '010224', '010228', '010230', '010461', '010462', '010465', '010467',
                  '010571', '010572', '010573', '010574', '010578', '010579', '010581',
                 '010585'
       o or position 1 to 8 of finding_code is one of

    '01050000', '01061010', '01061020', '01062025', '01071000', '01071010'

       o or phase no is '600'
       o or eventsoe no is one of
              130', '140', '190', '191', '192', '193', '194', '340', '341',
                  `342', `343', `440', `441', `500', `901',
       o or eventsoe_no is one of '337', '338' and defining_ev
   is_far_part_091x -if far_parts is any of
       o '091'
       o '091F'
          '091K'
  is_far_part_121 -if '121' is in far_parts
  is_far_part_135 -if '135' is in far_parts
  is_oper_country_usa -if 'USA' is in oper_countries
  is_owner_country_usa -if 'USA' is in owner_countries
  is_regis_country_usa -if 'USA' is in regis_countries
  is spin stall-if
       ('PARAMS_AoA' is in findings_codes
       o or 'STALL' is in occurrence_codes
       o or 'LOC-I' is in occurrence_codes and is_narrative_stall)

    and not (occurrence_codes is any of 'CAA', 'CFIT')

          3.2.3.3.3.
                         Level 2
• is_altitude_controllable - if one of the following logical variables is true:
       is_attitude_controllable
       o is_emergency_landing
       o is_spin_stall
   is_altitude_low-if:
       o (occurrence_codes is one of
                 'CAA',
                 'CFIT',
                 'FINAL_APP',
                 'INIT_CLIMB',
                 'LALT',
                 'MAN LALT'
       o or findings_codes is 'ENV_OAS' and occurrence_codes is not 'BIRD'
       o or findings_codes is one of
                 'ENV TER'
               'PARAMS ALT'
```

Release 23.10.01 Page 11 of 44

'PARAMS DEC APP'

```
'PARAMS DEC RATE')
        and not (occurrence_codes is 'MIDAIR' and is_spin_stall is false)
        3.2.3.3.4.
                      Level 3
is_rss_forced_landing -if one of the following logical variables is true:
     o is_attitude_controllable
       is_emergency_landing
 is_rss_spin_stall_prevention_and_recovery -if one of the following logical variables
     o is_attitude_controllable
     o is_spin_stall
 is_rss_terrain_collision_avoidance -if one of the following logical variables is true:
     is_altitude_controllable
     o is_altitude_low
     is_attitude_controllable
        3.2.3.3.5.
                     Level 4
cictt_codes: Categorization of missing data as 'no data'.
far_parts: Categorization of missing data as 'no data'.
is_lp_n_a - a logical parameter is not available if none of the following logical variables is true:
        is altitude low
     o is_attitude_controllable
       is_emergency_landing
       is_midair_collision
       is_pilot_issue
       is_rss_forced_landing
       is_rss_spin_stall_prevention_and_recovery
       is_rss_terrain_collision_avoidance
       is_spin_stall
is_rss_n_a - a required safety system is not available if none of the following logical variables is
 true:
     o is_midair_collision
     o is_rss_forced_landing
     o is_rss_spin_stall_prevention_and_recovery
     is_rss_terrain_collision_avoidance
 phase_codes_defining: Categorization of missing data as 'no data'.
 preventable events:

    Airborne collision if is_midair_collision

    Forced landing

                             if is_rss_forced_landing
     o Spin / stall
                             if is_rss_spin_stall_prevention_and_recovery

    Terrain collision if is_rss_terrain_collision_avoidance

                             if none of the above
     Not preventable
tll_parameters - top logical parameters:
     o Aerodynamic spin / stall
                                                  if is_spin_stall
     o Aircraft can climb
                                                  if is_altitude_controllable

    Aircraft has degraded control failure if is_emergency_landing

    Altitude too low

                                                   if is_altitude_low

    Attitude is controllable

                                                   if is_attitude_controllable
     O Pilot is able to perform maneuver
                                                   if is pilot issue
                                                   if none of the above
     o n/a
```

Release 23.10.01 Page 12 of 44

Sample data:

Name	Value
ev_id	20221112106276
ntsb_no	CEN23MA034
ev_type	ACC
ev_year	2022
ev_month	11
ev_dow	SA
country	USA
state	TX
city	Dallas
zip	75237
acft_categories	{AIR,AIR}
all_category_codes	{}
all_category_cause_codes	[{ }
all_category_factor_codes	[{ }
all_category_none_codes	[{ }
all_eventsoe_codes	{ee_250_a}
all_eventsoe_false_codes	[{ }
all_eventsoe_true_codes	{ee_250_t}
all_finding_codes	[{ }
all_finding_cause_codes	[{ }
all_finding_factor_codes	[{ }
all_finding_none_codes	[{ }
all_modifier_codes	[{ }
all_modifier_cause_codes	[{ }
all_modifier_factor_codes	{ }
all_modifier_none_codes	[{}
all_occurrence_codes	{eo_452250_a}
all_occurrence_false_codes	{}
all_occurrence_true_codes	{eo_452250_t}
all_phase_codes	{ep_452_a}
all_phase_false_codes	{ }
all_phase_true_codes	{ep_452_t}
all_section_codes	{ }
all_section_cause_codes	{ }
all_section_factor_codes	{ }
all_section_none_codes	{ }
all_subcategory_codes	{ }
all_subcategory_cause_codes	{ }
all_subcategory_factor_codes	{ }
all_subcategory_none_codes	{ }
all_subsection_codes	{ }
all_subsection_cause_codes	{ }
all_subsection_factor_codes all_subsection_none_codes	{ }
	{ }
cictt_codes	MAC
dec_lat_lng_actions	
<pre>dec_latitude dec_latitude_deviating</pre>	32.673779
	!
dec_longitude	-96.862801
dec_longitude_deviating	0.0 Manuarana
description_main_phase_defining	Manuevering
dest_countries	$ \{n/a,n/a\} $
dprt_countries	{n/a,n/a}
ev_highest_injury	FATL

Release 23.10.01 Page 13 of 44

far_parts	091
	{}
inj_f_grnd	0
inj_tot_f	6
is_altitude_controllable	true
· · · · · · · · · · · · · · · · · · ·	true
is_attitude_row is_attitude_controllable	true
is_dest_country_usa	false
is_dprt_country_usa	false
is_emergency_landing	false
is_far_part_091x	true
is_far_part_121	false
is_far_part_135	false
is_invalid_latitude	false
is_invalid_longitude	false
is_invalid_us_city	false
	false
<pre>is_invalid_us_city_zipcode is_invalid_us_state</pre>	false
·	false
is_invalid_us_zipcode	
is_lp_n_a	false
is_midair_collision	true
is_narrative_stall	false
is_oper_country_usa	true
is_owner_country_usa	true
is_pilot_issue	false
is_regis_country_usa	true
is_rss_forced_landing	false
is_rss_n_a	false
is_rss_spin_stall_prevention_and_recovery	i i
is_rss_terrain_collision_avoidance	true
is_spin_stall	false
latlong_acq	MEAS
nearest_airport_distance	0.6260786976106293
nearest_airport_global_id	18C8BDB4-18B7-44
nearest_airport_ident	RBD
nearest_airport_servcity	DALLAS
no_aircraft	2
occurrence_codes	{MAN_LALT,MAN_LALT}
_	{USA,USA}
	{USA,USA}
phase_codes_defining	452
preventable_events	Airborne collision,
regis_countries	{NON-US,USA}
	{N6763,N7227C}
tll_parameters	Aircraft can climb,

Release 23.10.01 Page 14 of 44

3.2.4. Table events

3.2.4.1. Column io_latlong_acq

Extending the categories used in the latlong_acq column:

- LOLA: Correction based on swapped latitude and longitude
- LALO: Correction based on latitude and longitude
- ERRA: Invalid latitude string
- ERRO: Invalid longitude string

3.2.4.2. Corrections with csv files

The values of the columns city, country, latitude, longitude, site_zipcode and state can be corrected via csv files and the changed value is used in all subsequent processing. The changed values are stored in the following IO-Aero specific columns:

- io_city
- io_country
- io_latitude
- io_longitude
- io_site_zipcode
- io_state

3.2.4.3. Determination of the missing values of dec_latitude / dec_longitude

- io_dec_lat_lng_actions shows the actions performed to find the missing values in the dec_latitude and dec_longitude columns.
- io_dec_latitude the found value for the dec_latitude column.
- io_dec_latitude_deviating Difference between latitude and decimal latitude if a predefined threshold value is exceeded.
- io_dec_longitude the found value for the dec_longitude column.
- io_dec_longitude_deviating Difference between longitude and decimal longitude if a predefined threshold value is exceeded.

3.2.4.4. Error Flags

- io_invalid_latitude invalid value in column latitude.
- io_invalid_longitude invalid value in column longitude.
- io_invalid_us_city unknown value in ev_city column.
- io_invalid_us_city_zipcode unknown combination of values in columns ev_site_zipcode and ev_city.
- io_invalid_us_state unknown value in ev_state column.
- io_invalid_us_zipcode unknown value in ev_site_zipcode column.

3.2.4.5. Nearest airport

These columns determine the nearest airport for events on U.S. soil.

- io_nearest_airport_distance distance in miles to the nearest airport.
- io_nearest_airport_global_id global identification of the nearest airport.

Release 23.10.01 Page 15 of 44

3.2.5. Table io_airports

This database table contains data on airports provided by the FAA.

3.2.5.1. Sample data:

Name	Value
global_id	68E20291-FCD0-46C3-91B3-4A0B3CCA9D82
airanal	NOT ANALYZED
country	USA
dec_latitude	36.1984000191282
dec_longitude	-95.8881130841036
dodhiflib	1
elevation	677.5
far91	0
far93	0
iapexists	0
ident	TUL
latitude	36-11-54.2170N
longitude	095-53-17.1800W
max_runway_comp_code	CONC
max_runway_length	10000.0

Release 23.10.01 Page 16 of 44

mil_code CIVIL |Tulsa Intl name OPERATIONAL operstatus privateuse TULSA servcity OK state type_code AD |2023-04-19 15:51:05.225 first_processed last_processed |2023-04-19 15:51:09.217

3.2.5.2. Data source - FAA Airports:

The csv file from this FAA Website has been downloaded and converted into a MS Excel file

https://adds-faa.opendata.arcgis.com/datasets/faa::airports-1/explore?location=0.158824%2C-1.633886%2C2.00

and the MS Excel file can be loaded into the database table.

	-	-	-	_	
X	Įγ	OBJECTID	GLOBAL_ID	IDENT	NAME
-176.6424981	51.88358162	. 1	656D38F0-F1FE-49A8-AB4F-677281616EF8	ADK	Adak
-154.1825759	56.9386921	. 2	F39AFCD2-D07F-4F41-96CF-08B79A271EAB	AKK	Akhiok
-161.4933513	60.91380952	. 3	C0EE48D3-E3AD-404E-945D-F404E345020D	Z13	Akiachak
-161.4350994	60.90786453	4	26D96486-FA29-4866-93EB-2EEEB7FA7144	KKI	Akiachak
-161.2306055	60.90289706	5 5	C7DF2896-135E-487B-9172-2FF613E7EAF1	AKI	Akiak
-165.7784016	54.13389989	6	81424AAF-E13A-4719-AD36-D26A582192AB	KQA	Akutan
-165.6041266	5 54.14461102	. 7	7 2441EA57-02E3-47E2-AC9C-1DC54444A884	7AK	Akutan
-164.7222175	62.68305467	8	978B7D5B-2C47-4B0F-BFBA-63975F26AD11	AUK	Alakanuk

Release 23.10.01 Page 17 of 44

3.2.5.3. Data source - FAA List of NPIAS Airports:

The MS Excel file from this FAA Website has been downloaded

https://www.faa.gov/sites/faa.gov/files/2022-09/NPIAS-2023-2027-Appendix-A.xlsx

and only the airports in US states listed here are considered for the database table io_airports.

-		u		
	State	City	Airport	LocID
15	NE	Scottsbluff	Western Nebraska Regional/William B Heilig Field	BFF
16	NE	Scribner	Scribner State	SCB
17	NE	Seward	Seward Municipal	SWT
18	NE	Sidney	Sidney Municipal/Lloyd W Carr Field	SNY
19	NE	Superior	Superior Municipal	12K
10	NE	Tecumseh	Tecumseh Municipal	0G3
i1	NE	Tekamah	Tekamah Municipal	TQE
i2	NE	Thedford	Thomas County	TIF
13	NE	Valentine	Miller Field	VTN

Release 23.10.01 Page 18 of 44

3.2.5.4. Data source - FAA Runways:

The csv file from this FAA Website has been downloaded and converted into a MS Excel file

https://adds-

<u>faa.opendata.arcgis.com/datasets/faa::runways/explore?location=0.059024%2C-1.628764%2C2.00</u>

and selected data from the MS Excel file will be loaded into the database table.

Release 23.10.01 Page 19 of 44

3.2.6. Table io aviation occurrence categories

This table contains CICTT codes from the document Aviation Occurrence Categories (AVIATION OCCURRENCE CATEGORIES DEFINITIONS AND USAGE NOTES):

3.2.6.1. Sample data:

Name	Value
	+
cictt_code	LOC-I
identifier	LOSS OF CONTROL-INFLIGHT
definition	Loss of aircraft control while, or deviation from inten
first_processed	2023-01-18 11:07:38.756
last_processed	
last_seen	2023-01-18 10:07:37.837

3.2.6.2. Data source:

AVIATION OCCURRENCE CATEGORIES

DEFINITIONS AND USAGE NOTES

October 2013 (4.6)

Aviation San

The data from this document (AVIATION OCCURRENCE CATEGORIES DEFINITIONS AND USAGE NOTES, 2013) has been extracted into the MS Excel file

Aviation_Occurrence_Categories/aviation_occurrence_categories.xlsx and can be loaded from there into the database table.

Release 23.10.01 Page 20 of 44

CICTT Code	Identifier	Definition
ADRM	AERODROME	Occurrences involving Aerodrome design, service, or functionality issues
AMAN	ABRUPT MANEU VER	The intentional abrupt maneuvering of the aircraft by the flight crew.
ARC	ABNORMAL RUNWAY CONTACT	Any landing or takeoff involving abnormal runway or landing surface contact.
		Occurrences involving Air Traffic Management (ATM) or Communication, Navigation,
ATM	ATM/CNS	Surveillance (CNS) service issues.
BIRD	BIRD	Occurrences involving collisions/near collisions with bird(s).
CABIN	CABIN SAFETY EVENTS	Miscellaneous occurrences in the passenger cabin of transport category aircraft.
		In-flight collision or near collision with terrain, water, or obstacle without indication of loss
CFIT	CONTROLLED FLIGHT INTO OR TOWARD TERRAIN	of control.
	COLLISION WITH OBSTACLE(S) DURING TAKEOFF AND	
CTOL	LANDING	Collision with obstacle(s) during takeoff or landing while airborne.

Release 23.10.01 Page 21 of 44

3.2.7. Table io_countries

This table mainly contains data on latitudes and longitudes of countries. Currently, only the values of the USA are stored.

The latitude and longitude stored here will be applied to US events that do not themselves contain decimal latitude and longitude and which cannot be determined at the zip code, city or state level.

3.2.7.1. Sample data:

3.2.7.2. Data source:

United States Geographic coordinates

United States is located at latitude 37.09024 and longitude -95.712891. It is part of America and the northern hemisphere.

Release 23.10.01 Page 22 of 44

The data must be provided in a JSON file with the following format:

```
"type": "country",
 "country": "USA",
"country_name": "United States",
  "dec_latitude": 37.09024,
  "dec_longitude": -95.712891
},
  "type": "state",
  "country": "USA",
  "state": "AK",
  "state_name": "Alaska",
  "dec_latitude": 63.7431630974,
  "dec_longitude": -151.594035116
 "type": "state",
  "country": "USA",
  "state": "AL",
  "state_name": "Alabama",
  "dec_latitude": 32.7570463396,
  "dec_longitude": -86.844525962
},
```

Release 23.10.01 Page 23 of 44

3.2.8. Table io_lat_lng

This is the main table for determining missing decimal latitude or longitude for US events. The table is fed by the following sources:

- simplemaps United States Cities Database (simplemaps.com. (n.d.))
- simplemaps US Zip Codes Database (simplemaps.com. (n.d.))
- Zip Codes.org ZIP Code Database (UnitedStatesZipCodes. (n.d.))

In addition, the missing values for cities are averaged from the values of the matching zip codes.

⋮	Name \triangle	Type	Primary	Not Null
1	tity city	varchar(50)		
2	country	varchar(4)		
3	dec_latitude	double precision		\checkmark
4	dec_longitude	double precision		\checkmark
5	first_processed	timestamp withou		\checkmark
6 9	₿ id	serial	\square	$\overline{\mathbf{v}}$
7	ast_processed	timestamp withou		
8	source	varchar(50)		\checkmark
9	state	varchar(2)		
10	type type	varchar(7)		\checkmark
11	ipcode zipcode	varchar(10)		

3.2.8.1. Sample data:

Name	Value
id	13620
type	ZIPCODE
country	USA
state	SC
city	ABBEVILLE
zipcode	29620
dec_latitude	34.1813
dec_longitude	-82.42804
source	simplemaps US Zip Codes Database
first_processed	2022-11-29 13:11:16.347
last_processed	2022-11-29 13:28:49.520

3.2.8.2. Data source simplemaps

Data from the simplemaps flat files uscities.xlsx and uszips.xlsx is loaded into the PostgreSQL database using the following processing logic:

- 1. the existing data with column source equal to 'simplemaps United States Cities Database' or 'simplemaps US Zip Codes Database' are deleted,
- 2. the database United States Cities is processed, whereby for each zip code in the column zips an entry in the PostgreSQL table io_lat_lng is created (not updated) as

Release 23.10.01 Page 24 of 44

latitude and longitude the corresponding values of the affected city are used, with column type equal to 'ZIPCODE' and column source equal to 'simplemaps United States Cities Database',

- 3. the database US Zip Codes is processed, whereby for each zip code an entry in the PostgreSQL table io_lat_lng is created or updated with column type equal to 'ZIPCODE' and column source equal to 'simplemaps US Zip Codes Database',
- 4. the database United States Cities is processed, whereby for each city an entry in the PostgreSQL table io_lat_lng is created or updated with column type equal to 'CITY' and column source equal to 'simplemaps United States Cities Database',
- 5. the existing rows of the database table io_lat_lng with column source equal to 'average' are deleted,
- 6. from the lines of the database table io_lat_lng of type 'ZIPCODE' the average of latitude and longitude per city is calculated and this value is stored as latitude and longitude of this city in the database table io_lat_lng with source equal to 'average'.

Release 23.10.01 Page 25 of 44

3.2.8.2.2. Data source United States Cities Database

-	-	_	_	-		
city_ascii	state_id	state_name	county_fips	county_name	lat	Ing
New York	NY	New York	36081	Queens	40.6943	-73.9249
Los Angeles	CA	California	06037	Los Angeles	34.1141	-118.4068
Chicago	IL	Illinois	17031	Cook	41.8375	-87.6866
Miami	FL	Florida	12086	Miami-Dade	25.784	-80.2101
Dallas	TX	Texas	48113	Dallas	32.7935	-96.7667
Houston	TX	Texas	48201	Harris	29.786	-95.3885
Philadelphia	PA	Pennsylvania	42101	Philadelphia	40.0077	-75.1339
Atlanta	GA	Georgia	13121	Fulton	33.7628	-84.422
Washington	DC	District of Columbia	11001	District of Columbia	38.9047	-77.0163
Boston	MA	Massachusetts	25025	Suffolk	42.3188	-71.0852
Phoenix	AZ	Arizona	04013	Maricopa	33.5722	-112.0892
Detroit	MI	Michigan	26163	Wayne	42.3834	-83.1024
San Francisco	CA	California	06075	San Francisco	37.7558	-122.4449
Seattle	WA	Washington	53033	King	47.6211	-122.3244
San Diego	CA	California	06073	San Diego	32.8313	-117.1222
Minneapolis	MN	Minnesota	27053	Hennepin	44.9635	-93.2678

3.2.8.2.3. Data source US Zip Codes Database

zip	lat	Ing
00601	18.18027	-66.75266
00602	18.36075	-67.17541
00603	18.45744	-67.12225
00606	18.16585	-66.93716
00610	18.2911	-67.12243
00611	18.27698	-66.80688
00612	18.41283	-66.7051
00616	18.41878	-66.6679
00617	18.44598	-66.56006
00622	17.98892	-67.1566
00623	18.08429	-67.15336
00624	18.05905	-66.71932

3.2.8.3. Data source Zip Codes.org

Data from the Zip Codes.org flat file **zip_code_database.xls** is loaded into the PostgreSQL database using the following processing logic:

- 1. the existing data with column source equal to 'Zip Codes.org ZIP Code Database' are deleted,
- the Excel rows of type equals 'STANDARD' and country equals 'US' are inserted or updated in the database table io_lat_lng with column source equal to 'Zip Codes.org ZIP Code Database',

Release 23.10.01 Page 26 of 44

- 3. the existing rows of the database table io_lat_lng with column source equal to 'average' are deleted,
- 4. from the lines of the database table io_lat_lng of type 'ZIPCODE' the average of latitude and longitude per city is calculated and this value is stored as latitude and longitude of this city in the database table io_lat_lng with source equal to 'average'.

3.2.8.3.1. Resulting database table **io_lat_lng**:

3.2.8.3.2. Data source ZIP Code Database

zip	type	decommissioned	primary_city	state	county	country	latitude	longitude
00501	UNIQUE	0	Holtsville	NY	Suffolk County	US	40.81	-73.04
00544	UNIQUE	0	Holtsville	NY	Suffolk County	US	40.81	-73.04
00601	STANDARD	0	Adjuntas	PR	Adjuntas Municipio	US	18.16	-66.72
00602	STANDARD	0	Aguada	PR	Aguada Municipio	US	18.38	-67.18
00603	STANDARD	0	Aguadilla	PR	Aguadilla Municipio	US	18.43	-67.15
00604	PO BOX	0	Aguadilla	PR		US	18.43	-67.15
00605	PO BOX	0	Aguadilla	PR		US	18.43	-67.15
00606	STANDARD	0	Maricao	PR	Maricao Municipio	US	18.18	-66.98
00610	STANDARD	0	Anasco	PR	Anasco Municipio	US	18.28	-67.14
. 00611	PO BOX	0	Angeles	PR		US	18.28	-66.79
00612	STANDARD	0	Arecibo	PR	Arecibo Municipio	US	18.45	-66.73
00613	PO BOX	0	Arecibo	PR		US	18.45	-66.73
00614	PO BOX	0	Arecibo	PR		US	18.45	-66.73
00616	STANDARD	0	Bajadero	PR	Arecibo Municipio	US	18.42	-66.67
00617	STANDARD	0	Barceloneta	PR	Barceloneta Municipio	US	18.45	-66.56
00622	STANDARD	0	Boqueron	PR	Cabo Rojo Municipio	US	17.99	-67.15
00623	STANDARD	0	Cabo Rojo	PR	Cabo Rojo Municipio	US	18.08	-67.14
00624	STANDARD	0	Penuelas	PR	Penuelas Municipio	US	18.06	-66.72

Release 23.10.01 Page 27 of 44

3.2.9. Table io_md_codes_category

This table contains the category codes extracted from the findings table.

3.2.9.1. Sample data:

Name	Value
category_code description	
deber iperon	IIII CI GI C

Release 23.10.01 Page 28 of 44

3.2.10. Table io_md_codes_eventsoe

This table contains the eventsoe codes extracted from the events_sequence table.

3.2.10.1. Sample data:

Name	Value		
	+		+
eventsoe_code	490		
description	$ {\tt Collision}$	during	takeoff/land

Release 23.10.01 Page 29 of 44

3.2.11. Table io_md_codes_modifier

This table contains the modifier codes extracted from the findings table.

3.2.11.1. Sample data:

Name	Value
	++
modifier_code	01
description	Failure

Release 23.10.01 Page 30 of 44

3.2.12. Table io_md_codes_phase

This table contains the phase codes extracted from the events_sequence table. From a suitable MS Excel file the column description_main_phase is added.

3.2.12.1. Sample data:

Name	Value
	++
phase_code	453
description	Maneuvering-hover
description_main_phase	Manuevering

3.2.12.2. Data source:

phase_code	description	main_phase
10	0 Prior to flight	Pre-taxi
13	0 Standing	Pre-taxi
13	51 Standing-engine(s) not oper	Pre-taxi
15	52 Standing-engine(s) start-up	Pre-taxi
15	3 Standing-engine(s) operating	Pre-taxi
15	4 Standing-engine(s) shutdown	Pre-taxi
20	00 Pushback/towing	Pre-taxi
20	1 Pushback/tow-engine not oper	Pre-taxi
20	2 Pushback/tow-engine start-up	Pre-taxi
20	3 Pushback/tow-engine oper	Pre-taxi
25	0 Taxi	Taxi
25	1 Taxi-to runway	Taxi
25	2 Taxi-into takeoff position	Taxi

Release 23.10.01 Page 31 of 44

3.2.13. Table io_md_codes_section

This table contains the section codes extracted from the findings table.

3.2.13.1. Sample data:

Name	Value
	++
category_code	01
subcategory_code	01
section_code	00
description	(general)

Release 23.10.01 Page 32 of 44

3.2.14. Table io_md_codes_subcategory

This table contains the subcategory codes extracted from the findings table.

3.2.14.1. Sample data:

Name	Value	
	+	-
category_code	02	
<pre>subcategory_code</pre>	02	
description	Psychological	

Release 23.10.01 Page 33 of 44

3.2.15. Table io_md_codes_subsection

This table contains the subsection codes extracted from the **findings** table.

3.2.15.1. Sample data:

Name	Value
	01
<pre>subcategory_code section_code</pre>	02 37
subsection_code	
description	Vacuum distribution system

Release 23.10.01 Page 34 of 44

3.2.16. Table io_processed_files

This table documents which external files were processed to create and maintain the database content.

	∄	Name	Type	Primary	Not Null
1	Þ	file_name	varchar(100)		$\overline{\mathbf{A}}$
2		first_processed	timestamp without time zone		~
3		last_processed	timestamp without time zone		
4		counter	integer		\checkmark

3.2.16.1. Sample data:

Name	Value	
file name	+ up22NOV	+
first_processed		13:40:18.094
last_processed	2022-12-12	12:08:15.915
counter	2	

Release 23.10.01 Page 35 of 44

3.2.17. Table io_sequence_of_events

This table enables the assignment of CICTT codes via the event sequence number.

		Name	Type	Primary	Not Null
1	Þ	soe_no	integer	$\overline{\mathbf{V}}$	
2		cictt_code	varchar(10)		
3		meaning	varchar(100)		
4		first_processed	timestamp without time zone		~
5		last_processed	timestamp without time zone		
6		last_seen	timestamp without time zone		

3.2.17.1. Sample data:

soe_no|cictt_code|meaning

	ı	
	UNK RAMP RAMP	Unknown or undetermined Aircraft loading event Aircraft servicing event
30		Preflight or dispatch event
40		Aircraft maintenance event
50		Aircraft inspection event
60		Attempted remediation/recovery
70	ADRM	Airport occurrence
80	RAMP	Ground handling event
81	RAMP	AC/prop/rotor contact w person
82	RAMP	Prop/jet/rotor blast/suction

3.2.17.2. Data source CICTT_SOE_MAP.csv (file given by NTSB):

eventsoe_no meaning	CICTT_Code	CICTT_Description
0 Unknown or undetermined	UNK	Unknown
10 Aircraft loading event	RAMP	Ground Handling
20 Aircraft servicing event	RAMP	Ground Handling
30 Preflight or dispatch event		
40 Aircraft maintenance event		
50 Aircraft inspection event		
60 Attempted remediation/recovery		
70 Airport occurrence	ADRM	Aerodrome
80 Ground handling event	RAMP	Ground Handling
81 AC/prop/rotor contact w person	RAMP	Ground Handling
82 Prop/jet/rotor blast/suction	RAMP	Ground Handling
90 Abnormal runway contact	ARC	Abnormal Runway Contact
91 Tailstrike	ARC	Abnormal Runway Contact
92 Hard landing	ARC	Abnormal Runway Contact
93 Dragged wing/rotor/float/other	ARC	Abnormal Runway Contact
94 Landing gear collapse	ARC	Abnormal Runway Contact

Release 23.10.01 Page 36 of 44

3.2.18. Table io states

This table mainly contains data on latitudes and longitudes of US states.

The latitude and longitude stored here will be applied to US events that do not themselves contain decimal latitude and longitude and which cannot be determined at the zip code or city level.

3.2.18.1. Sample data:

3.2.18.2. Data source:

Same JSON file as with table io_countries.

Release 23.10.01 Page 37 of 44

3.2.19. View io_lat_lng_issues

This view shows the related data from the tables events, io_countries, io_lat_lng and io_states for those events in the USA where either the decimal latitude or longitude is missing from the NTSB data.

Release 23.10.01 Page 38 of 44

	ar(14)
2 III ou country	
2 ev_country varcha	ar(4)
3 ev_state varcha	ar(2)
4 ev_city varcha	ar(50)
5 ev_site_zipcode varcha	ar(10)
6 ev_dec_latitude double	e precision
7 ev_dec_longitude double	e precision
8 ev_latitude varch	ar(7)
9 ev_longitude varch	ar(8)
10 io_country varch	ar(4)
11 io_state varch	ar(2)
12 io_city varcha	ar(50)
13 io_site_zipcode varcha	ar(10)
14 io_dec_latitude double	e precision
	e precision
16 io_latitude varch	ar(7)
17 io_longitude varch	ar(8)
18 io_dec_lat_lng_actions text	
19 io_dec_latitude_deviating double	e precision
20 io_dec_longitude_deviating double	e precision
21 io_invalid_latitude boolea	an
22 io_invalid_longitude boolea	an
23 io_invalid_us_city boolea	an
24 io_invalid_us_city_zipcode boolea	an
25 io_invalid_us_state boolea	an
2.6 io_invalid_us_zipcode boolea	an
27 country varch	ar(4)
28 state varch	ar(2)
29 dity varch	ar(50)
	ar(10)
31 latitude varch	ar(7)
32 longitude varch	ar(8)
33 state_name varch	ar(100)
	e precision
35 zipcode_dec_longitude double	e precision
	e precision
1	e precision
38 state_dec_latitude double	e precision
	e precision
40 country_dec_latitude double	e precision
41 country_dec_longitude double	e precision

Release 23.10.01 Page 39 of 44

3.2.19.1. Sample data:

Name	Value
ev_id	20030618x00903
ev_country	USA
ev_state	AK
ev_city	Anchorage
ev_site_zipcode	99515
ev_dec_latitude	
ev_dec_longitude	
ev_latitude	610624N
ev_longitude	1495152W
io_country	
io_state	
io_city	
io_site_zipcode	
io_dec_latitude	61.1066666666667
io_dec_longitude	-149.8644444444444
io_latitude	
io_longitude	
io_dec_lat_lng_actions	INFO.00.037 Correction based on latitude and 1
io_dec_latitude_deviating	
io_dec_longitude_deviating	
<pre>io_invalid_latitude io_invalid_longitude</pre>	
io_invalid_rongitude	
io_invalid_us_city_zipcode	
io_invalid_us_state	
io_invalid_us_state io_invalid_us_zipcode	
country	USA
state	AK
city	Anchorage
site_zipcode	99515
latitude	 610624N
longitude	1495152W
state_name	Alaska
zipcode_dec_latitude	61.11733
zipcode_dec_longitude	-149.88894
city_dec_latitude	61.1508
city_dec_longitude	-149.1091
state_dec_latitude	63.7431630974
state_dec_longitude	-151.594035116
country_dec_latitude	37.09024
country_dec_longitude	-95.712891

Release 23.10.01 Page 40 of 44

4. Data Cleansing

4.1. Decimal latitude and longitude

The values in the following columns will be filled when executing task c_1_1 (Correct decimal US latitudes and longitudes):

- io_dec_latitude
- io_dec_longitude
- io_dec_lat_lng_actions

The columns dec_latitude and dec_longitude were added by NTSB in 2008. For data from previous years, the two columns remained empty (NULL). **IO-Aero** pursues the following two goals with the c 1 1 task:

- to check the validity of the existing values in the columns latitude and longitude and
- to find the missing values in the columns dec_latitude and dec_longitude for rows with ev_country equal to 'USA'.

The underlying algorithm logs its processing steps in the io_dec_lat_lng_actions column - see the following examples:

```
io_dec_lat_lng_actions |

ERROR.00.916 Unknown US state and city & INFO.00.035 Correction based on US state |
ERROR.00.922 Invalid US state id & INFO.00.033 Correction based on US zip code |

INFO.00.033 Correction based on US zip code |
INFO.00.034 Correction based on US state and city |
INFO.00.037 Correction based on latitude and longitude |
```

Release 23.10.01 Page 41 of 44

4.2. Trimmed Database Columns

The following database columns are trimmed because they contain different whitespace elements:

Table	Column
aircraft	acft_category
aircraft	dest_country
aircraft	dprt_country
aircraft	far_part
aircraft	oper_country
aircraft	owner_country
aircraft	regis_no
events	ev_city
events	ev_site_zipcode
events	latitude
events	longitude
events_sequence	occurrence_code

Release 23.10.01 Page 42 of 44

5. References

adds-faa.opendata.arcgis.com. (n.d.). Airports. [online] Available at: https://adds-faa.opendata.arcgis.com/datasets/faa::airports-1/explore?location=0.158824%2C-1.633886%2C2.00 [Accessed 14 Apr. 2023].

adds-faa.opendata.arcgis.com. (n.d.). Runways. [online] Available at: https://adds-faa.opendata.arcgis.com/datasets/faa::runways/explore?location=0.059024%2C-1.628764%2C2.00 [Accessed 19 Apr. 2023].

AVIATION OCCURRENCE CATEGORIES DEFINITIONS AND USAGE NOTES. (2013). Available at: https://www.ntsb.gov/safety/data/Documents/datafiles/OccurrenceCategoryDefinitions.pdf [Accessed 28 Mar. 2023].

data.ntsb.gov. (n.d.). MDB Download Directory - NTSB.ADMS.DataTransfer.Web. [online] Available at: https://data.ntsb.gov/avdata.

Docker Documentation. (2022). Get Docker. [online] Available at: https://docs.docker.com/get-docker/.

Faa.gov. (2015). National Plan of Integrated Airport Systems (NPIAS) | Federal Aviation Administration. [online] Available at: https://www.faa.gov/airports/planning_capacity/npias.

Geodatos.net. (2019). GeoDatos - Information and maps of the world. [online] Available at: https://www.geodatos.net/en.

hub.docker.com. (n.d.). Docker Hub. [online] Available at: https://hub.docker.com/ /postgres.

members.io-aero.com. (n.d.). Streamlit. [online] Available at: http://members.io-aero.com/ [Accessed 28 Mar. 2023].

Opendatasoft. (n.d.). Create the best data experiences. [online] Available at: https://www.opendatasoft.com/?hsLang=en [Accessed 28 Mar. 2023].

The PostgreSQL Global Development Group (2019). PostgreSQL: The world's most advanced open source database. [online] Postgresql.org. Available at: https://www.postgresql.org/.

Release 23.10.01 Page 43 of 44

razorsql.com. (n.d.). RazorSQL - SQL Query Tool and SQL Editor for Mac, Windows, and Linux. [online] Available at: https://razorsql.com/.

simplemaps.com. (n.d.). Interactive HTML5 and JavaScript Maps for Websites | Simplemaps.com. [online] Available at: https://simplemaps.com [Accessed 28 Mar. 2023].

UnitedStatesZipCodes. (n.d.). U.S. ZIP Codes: Free ZIP code map and zip code lookup. [online] Available at: https://www.unitedstateszipcodes.org.

www.ntsb.gov. (n.d.). U.S. Civil Aviation Fatalities and Flight Activity Decreased in 2020. [online] Available at: https://www.ntsb.gov/news/press-releases/Pages/NR20211117.aspx.

Release 23.10.01 Page 44 of 44