Root Finding: Bisection Method

ME 2004

Outline

• 1.1: Bisection Method

Root Finding: Bisection Method

- Bisection Method: application of the Intermediate Value Theorem
- Premise: the root lies somewhere in a user-specified initial interval. The interval is narrowed down until it "hugs" the root.
- Called a bracketing method because the user must supply the algorithm with a bracket which contains the root
 - Contrast: Newton-Raphson method is an open method because it only requires an initial estimate (not a bracket) of the root
- Assumption: f(x) is real and continuous

- Whenever we mention a function f(x) in root finding, we imply a function in "f(x) = 0" form
 - Roots vs. intercepts there's a difference! (Root Finding Intro video)
- Example: If we want to compute the roots of $x^3 = 27$:

"such that"

• Brief algorithm overview:

- **1** Specify an initial interval: $[x_l \ x_u] \ni sign(f(x_l)) \neq sign(f(x_u))$
 - Assume the root x_r lies at the midpoint of the interval
 - Compute error*. If error is too large...
 - Divide the initial interval into two (equal) subintervals: $[x_l \ x_r]$ and $[x_r \ x_u]$
 - Evaluate $f(x_l)$ and $f(x_r)$ and determine which of the two subintervals contains a sign change
 - Assign new x_l , x_u accordingly and iterate until the stopping criterion e_s is met

*error can be a tolerance in
$$x$$
: $err = 100\% * \left| \frac{x_{r,current} - x_{r,previous}}{x_{r,current}} \right| \le e_s$ or a tolerance in y : $err = \left| f(x_{r,current}) \right| \le e_s$

1st iteration:

$$x_l = 0, x_u = 100$$
$$x_r = \frac{100 + 0}{2} = 50$$

Subintervals: [0 50] and [50 100]

 $f(x_l) > 0, f(x_r) > 0 \rightarrow$ no sign change in [0 50]

 \rightarrow Discard [0 50] (no sign change) and keep [50 100] (sign change).

New
$$x_l = 50$$
, new $x_u = 100$.

1st iteration:

2nd iteration:

$$x_l$$
 x_r x_u

$$x_l = 50, x_u = 100$$
$$x_r = \frac{100 + 50}{2} = 75$$

Subintervals: [50 75] and [75 100]

 $f(x_l) > 0$, $f(x_r) < 0 \rightarrow \text{sign change in } [50 75]$

 \rightarrow Discard [75 100] (no sign change) and keep [50 75] (sign change).

New
$$x_l = 50$$
, new $x_u = 75$.

1st iteration:

2nd iteration:

3rd iteration:

$$x_l$$
 x_r x_u

$$x_l \quad x_r \quad x_u$$

$$x_l = 50, x_u = 75$$
$$x_r = \frac{50 + 75}{2} = 62.5$$

Subintervals: [50 62.5] and [62.5 75]

 $f(x_l) > 0, f(x_r) < 0 \rightarrow \text{ sign change in } [50 62.5]$

 \rightarrow Discard [62.5 75] (no sign change) and keep [50 62.5] (sign change).

New $x_l = 50$, new $x_u = 62.5$.

- Stopping criterion (e_s) : condition which terminates the search if met
 - Relative error (tolerance in x): $err = 100\% * \left| \frac{x_{r,current} x_{r,previous}}{x_{r,current}} \right| \le e_s$
 - Absolute error (tolerance in y): $err = |f(x_{r,current})| \le e_s$

Here, $x_{r,current}$ is close enough to $x_{r,previous}$.

- Number of iterations required to attain an absolute error $E_t = |true approx|$ can be computed a priori
- After 1 iteration, the original interval $\Delta x = [x_l \ x_u]$ becomes $\frac{\Delta x}{2}$
- After 2 iterations, the original interval is reduced to $\frac{\Delta x}{4}$...

$$E_{t,n} = \frac{|x_u - x_l|}{2^n} \to \boxed{n \le \log_2\left(\frac{|x_u - x_l|}{E_t}\right)}$$

• Error behaves linearly (linear convergence): $e_{current} = \frac{e_{previous}}{2}$

Pros

- Guaranteed to converge (if the initial guesses are valid)
- Logical, easy-to-follow algorithm
- Can compute the max number of iterations needed ahead of time

Cons

- Slow (linear convergence)
- Computationally expensive

Root Finding: Bisection Method

Summary

- Bisection Method requires 2 initial guesses such that $sign(f(x_l)) \neq sign(f(x_u))$
- Bisection is guaranteed to converge (if initial guesses are valid), albeit slowly
- Max number of iterations required to attain prespecified true error can be computed ahead of time

Root Finding: Bisection Method