## **Συναρτήσεις** Ασύμπτωτες

Κωνσταντίνος Λόλας

## Ναι αλλά "καταλήγουμε" κάπου?

Σχεδόν τελειώσαμε την σχεδίαση. Έμεινε να δούμε, αν πλησιάζουμε σε ευθείες και πότε!

### Ζωγραφική 1 από 3

Φτιάξτε συνάρτηση που να τείνει να γίνει η ευθεία x=1

Λόλας

### Ζωγραφική 1 από 3

Φτιάξτε συνάρτηση που να τείνει να γίνει η ευθεία x=1 Τι παρατηρείτε για την συνάρτηση όσο  $x\to 1$ ?

### Κατακόρυφη ασύμπτωτη

#### Ορισμός

 $\begin{aligned} & \text{H } x = x_0 \text{ είναι } \underline{\text{κατακόρυφη ασύμπτωτη}} \text{ της } C_f \text{ αν ένα τουλάχιστον} \\ & \text{από τα όρια } \lim_{x \to x_0^+} f(x) \text{ } \text{$\acute{\eta}$ } \lim_{x \to x_0^-} f(x) \text{ είναι } +\infty \text{ } \text{$\acute{\eta}$ } -\infty. \end{aligned}$ 

## Ζωγραφική 2 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=1 Τι παρατηρείτε για την συνάρτηση όσο  $x\to +\infty$ ?

### Ζωγραφική 2 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=1 Τι παρατηρείτε για την συνάρτηση όσο  $x\to +\infty$ ?

## Οριζόντια ασύμπτωτη

#### Ορισμός

Η 
$$y=a$$
 είναι   
  $\underbrace{\text{οριζόντια ασύμπτωτη}}_{x\to +\infty}$ της  $C_f$ στο   
  $+\infty$  αν 
$$\lim_{x\to +\infty} f(x)=a$$

#### και αντίστοιχα

#### Ορισμός

Η 
$$y=a$$
 είναι   
 οριζόντια ασύμπτωτη της  $C_f$  στο  $-\infty$  αν   
 
$$\lim_{x\to -\infty} f(x)=a$$

## Ζωγραφική 3 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=2x+1 Προσπαθήστε να ορίσετε συνθήκη για να είναι μία ευθεία ασύμπτωτη της f(x)

7/1

## Ζωγραφική 3 από 3

Φτιάξτε συνάρτηση που δεξιά να τείνει να γίνει η ευθεία y=2x+1 Προσπαθήστε να ορίσετε συνθήκη για να είναι μία ευθεία ασύμπτωτη της f(x)

## Πλάγια ασύμπτωτη

#### Ορισμός

$$\mathbf{H}\; y=ax+b$$
 είναι ασύμπτωτη της  $C_f$  στο  $+\infty$  αν  $\lim_{x\to +\infty}\left[f(x)-(ax+b)\right]=0$ 

#### και αντίστοιχα

#### Ορισμός

$$\mathbf{H}\; y = ax + b$$
 είναι ασύμπτωτη της  $C_f$  στο  $-\infty$  αν 
$$\lim_{x \to -\infty} \left[ f(x) - (ax + b) \right] = 0$$



## Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- $\bullet$  η ασύμπτωτη με  $a \neq 0$  ονομάζεται πλάγια
- η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

## Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με  $a \neq 0$  ονομάζεται πλάγια
- ullet η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

9/1

## Μην μπερδευτούμε μόνο

- ullet η ασύμπτωτη με a=0 ονομάζεται οριζόντια
- ullet η ασύμπτωτη με  $a \neq 0$  ονομάζεται πλάγια
- η ασύμπτωτη που δεν ορίζεται το a ονομάζεται κατακόρυφη

## Και λίγοι υπολογισμοί

#### Ξέροντας ότι

$$\lim_{x\to +\infty} \left[ f(x) - (ax+b) \right] = 0$$

να βρείτε τα a και b.

Πλάγια ασύμπτωτη

Η ευθεία y=ax+b λέγεται πλάγια ασύμπτωτη της  $C_f$  στο  $+\infty$  αν και μόνο αν

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \in \mathbb{R}$$

και

$$\lim_{x \to +\infty} (f(x) - ax) = b \in \mathbb{R}$$

## Και λίγοι υπολογισμοί

Ξέροντας ότι

$$\lim_{x \to +\infty} \left[ f(x) - (ax + b) \right] = 0$$

να βρείτε τα a και b.

Πλάγια ασύμπτωτη

Η ευθεία y=ax+b λέγεται πλάγια ασύμπτωτη της  $C_f$  στο  $+\infty$  αν και μόνο αν

$$\lim_{x\to +\infty}\frac{f(x)}{x}=a\in \mathbb{R}$$

και

$$\lim_{x\to +\infty}\left(f(x)-ax\right)=b\in\mathbb{R}$$

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

- Ποιό είναι τα μοναδικα πολυώνυμα που έχουν ασύμπτωτες και ποιές?
- Τι πρέπει να ισχύει για τις ρητές συναρτήσεις ώστε να έχουν πλάγιες ασύμπτωτες?
- Ποιές συναρτήσεις έχουν κατακόρυφες ασύμπτωτες?
- Πού ψάχνουμε κατακόρυφες ασύμπτωτες?

Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

$$f(x) = \frac{\ln x}{x}$$

$$f(x) = \frac{x}{x-2}$$

Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

① 
$$f(x) = \frac{\ln x}{x}$$
  
②  $f(x) = \frac{x}{x-2}$ 

$$f(x) = \frac{x}{x-2}$$

$$(3) f(x) = \varepsilon \varphi x$$

Να βρείτε τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- ①  $f(x) = \frac{\ln x}{x}$ ②  $f(x) = \frac{x}{x-2}$ ③  $f(x) = \varepsilon \varphi x$

Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

**1** 
$$f(x) = \frac{x}{x^2 + 1}$$

① 
$$f(x) = \frac{x}{x^2 + 1}$$
  
②  $f(x) = \frac{e^x}{1 + e^x}$ 

4 
$$f(x) = e^{\frac{1}{x}}$$

13/1

Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

1 
$$f(x) = \frac{x}{x^2 + 1}$$
2  $f(x) = \frac{e^x}{1 + e^x}$ 
3  $f(x) = \frac{\eta \mu x}{x}$ 
4  $f(x) = e^{\frac{1}{x}}$ 

$$f(x) = e^{\frac{1}{x}}$$

Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

1 
$$f(x) = \frac{x}{x^2 + 1}$$
2  $f(x) = \frac{e^x}{1 + e^x}$ 
3  $f(x) = \frac{\eta \mu x}{x}$ 
4  $f(x) = e^{\frac{1}{x}}$ 

$$f(x) = e^{\frac{1}{x}}$$

Να βρείτε τις οριζόντιες και τις κατακόρυφες ασύμπτωτες των γραφικών παραστάσεων των συναρτήσεων:

- 1  $f(x) = \frac{x}{x^2 + 1}$ 2  $f(x) = \frac{e^x}{1 + e^x}$ 3  $f(x) = \frac{\eta \mu x}{x}$ 4  $f(x) = e^{\frac{1}{x}}$

### Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 1}$

- $\ \, \textbf{1}$  Να βρείτε στο  $+\infty$  και στο  $-\infty$  τις ασύμπτωτες  $\varepsilon_1$  και  $\varepsilon_2$  αντίστοιχα της  $C_f$
- ② Να δείξετε ότι η  $C_f$  βρίσκεται πάνω από την  $\varepsilon_1$  κοντά στο  $+\infty$  και πάνω από την  $\varepsilon_2$  κοντά στο  $-\infty$

Λόλας Συναρτήσεις 14/1

Δίνεται η συνάρτηση  $f(x) = \sqrt{x^2 + 1}$ 

- **1** Να βρείτε στο  $+\infty$  και στο  $-\infty$  τις ασύμπτωτες  $\varepsilon_1$  και  $\varepsilon_2$ αντίστοιχα της  $C_f$
- oxtimes Να δείξετε ότι η  $C_f$  βρίσκεται πάνω από την  $arepsilon_1$  κοντά στο  $+\infty$ και πάνω από την  $\varepsilon_2$  κοντά στο  $-\infty$

Λόλας Συναρτήσεις 14/1

Έστω  $f, g: \mathbb{R} \to \mathbb{R}$  δύο συναρτήσεις για τις οποίες ισχύει:

$$g(x)=f(x)-2x+\frac{x}{x^2+1}\text{, }x\in\mathbb{R}$$

και η ευθεία y = 3x - 2 η οποία είναι ασύμπτωτη της  $C_f$  στο  $+\infty$ 

- **1** Να βρείτε την ασύμπτωτη της  $C_a$  στο  $+\infty$

$$\lim_{x \to +\infty} \frac{xf(x) - 3x^2 + \lambda x - 1}{\lambda f(x) - 4x + 5} = 1$$

Λόλας Συναρτήσεις 15/1

Έστω  $f, g: \mathbb{R} \to \mathbb{R}$  δύο συναρτήσεις για τις οποίες ισχύει:

$$g(x)=f(x)-2x+\frac{x}{x^2+1}\text{, }x\in\mathbb{R}$$

και η ευθεία y=3x-2 η οποία είναι ασύμπτωτη της  $C_f$  στο  $+\infty$ 

- **1** Να βρείτε την ασύμπτωτη της  $C_a$  στο  $+\infty$
- Να βρείτε τις τιμές του λ, για τις οποίες ισχύει:

$$\lim_{x \to +\infty} \frac{xf(x) - 3x^2 + \lambda x - 1}{\lambda f(x) - 4x + 5} = 1$$

Λόλας Συναρτήσεις 15/1

Να δείξετε ότι η ευθεία y=x είναι πλάγια ασύμπτωτη της γραφικής παράστασης της συνάρτησης  $f(x)=\frac{x^2-x+1}{x-1}$  στο  $+\infty$ 

Λόλας Συναρτήσεις 16/1

Να βρείτε τις πλάγιες ή οριζόντιες ασύμπτωτες στο  $+\infty$  των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- 1  $f(x) = x 1 + \frac{1}{x}$ 2  $f(x) = 2 + \frac{1}{x+1}$

Να βρείτε τις πλάγιες ή οριζόντιες ασύμπτωτες στο  $+\infty$  των γραφικών παραστάσεων των παρακάτω συναρτήσεων

- ①  $f(x) = x 1 + \frac{1}{x}$ ②  $f(x) = 2 + \frac{1}{x+1}$

Έστω η συνάρτηση  $f(x)=\frac{x^2+x+2a}{x-a^2}$ . Να βρείτε τις τιμές του  $\alpha\in\mathbb{R}$ , για τις οποίες η ευθεία  $\varepsilon:x=1$  είναι ασύμπτωτη της  $C_f$ 

Λόλας Συναρτήσεις 18/1

Δίνεται η συνάρτηση  $f(x)=\frac{a^2x^n+5x+1}{x^2+1}$ . Να βρείτε τις τιμές των  $a\in\mathbb{R}^*$  και  $n\in\mathbb{N}-0,1$  για τις οποίες η ευθεία  $\varepsilon:y=1$  είναι οριζόντια ασύμπτωτη της  $C_f$  στο  $+\infty$ 

Λόλας Συναρτήσεις 19/1

Nα βρείτε τις τιμές των  $\alpha$  και  $\beta \in \mathbb{R}$ , ώστε

$$\lim_{x \to +\infty} \left( \frac{\alpha x^2 + \beta x + 3}{x - 1} - x \right) = 2$$

Λόλας Συναρτήσεις 20/1 Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Έστω ότι η f έχει σημείο καμπής στο  $x_0$  με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα  $f'(x) < f'(x_0)$  για κάθε  $x < x_0$  και  $f'(x) < f'(x_0)$  για κάθε  $x > x_0$ 

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

m Aρα  $f''(x_0)=0$  Πίσω στη θεωρία

Έστω ότι η f έχει σημείο καμπής στο  $x_0$  με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα  $f'(x) < f'(x_0)$  για κάθε  $x < x_0$  και  $f'(x) < f'(x_0)$  για κάθε  $x > x_0$ 

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Άρα 
$$f''(x_0)=0$$
 Πίσω στη θεωρία

Έστω ότι η f έχει σημείο καμπής στο  $x_0$  με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα  $f'(x) < f'(x_0)$  για κάθε  $x < x_0$  και  $f'(x) < f'(x_0)$  για κάθε  $x > x_0$ 

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

$$m A$$
ρα  $f''(x_0)=0$  Πίσω στη θεωρία

Έστω ότι η f έχει σημείο καμπής στο  $x_0$  με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα  $f'(x) < f'(x_0)$  για κάθε  $x < x_0$  και  $f'(x) < f'(x_0)$  για κάθε  $x > x_0$ 

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Άρα  $f''(x_0) = 0$  Πίσω στη θεωρία