Discrete Mathematics, 2016 Fall - Worksheet 6

September 26, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

- 1. Similar to what we did on the slide for <, define the corresponding relation set to two of the integer relations \le , =, >, \ge .
- 2. Write the following relations on the set $\{1, 2, 3, 4, 5\}$ as sets of ordered pairs.
 - (a) The \leq relation.
 - (b) The 'divides' relation.
 - (c) The = relation.
- 3. Each of the following is a relation on the set $\{1, 2, 3, 4, 5\}$. Express these relations in words and then find their inverses.
 - (a) $\{(1,2),(2,3),(3,4),(4,5)\}$
 - (b) $\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5)\}.$
 - (c) $\{(1,5),(2,4),(3,3),(4,2),(5,1)\}.$
- 4. What is the inverse of the following relations?
 - (a) \leq .
 - (b) $\{(x,y): x,y \in \mathbb{Z}, x-y=1\}.$
 - (c) $\{(x,y): x,y \in \mathbb{Z}, xy > 0\}.$
- 5. For each of the following relations on $\{1, 2, 3, 4, 5\}$ determine whether the relation is reflexive, irreflexive, symmetric, antisymmetric, and/or transitive:
 - $R = \{(1,1), (2,2), (3,3), (4,4), (5,5).$
 - $R = \{(1, 2), (2, 3), (3, 4), (4, 5)\}.$
 - $R = \{(1,1), (1,2), (1,3), (1,4), (1,5)\}.$
 - $R = \{(1,1), (1,2), (2,1), (3,4), (4,3)\}.$
 - $R = \{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}.$

- 6. For the following relations on the set of humans beings, please determine whether the relation if reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.
 - (a) has the last name as
 - (b) is the child of
 - (c) is married to
 - (d) has a common parent as
- 7. Consider the relation | (divisible) on
 - (a) On the naturals.
 - (b) On the integers.

Decide what properties do they have.

8. Show that the following relation is an equivalence relation:

$$A = \{B \in 2^{\mathbb{Z}} : |B| < \infty\}, \qquad R = \{(B, C) : B, C \in A, |B| = |C|\}$$

- 9. Which of the following are equivalence relations?
 - (a) $R = \{(1,1), (1,2), (2,1), (2,2), (3,3)\}$ on the set $\{1,2,3\}$.
 - (b) \mid on \mathbb{Z} .
 - (c) \leq on \mathbb{Z} .
 - (d) Is-an-anagram-of on the set of English words.
- 10. For each of the following congruences, find all integers N, with N > 1, that make the congruence true
 - (a) $23 \equiv 13 \pmod{N}$
 - (b) $10 \equiv 5 \pmod{N}$
 - (c) $6 \equiv 60 \pmod{N}$