Model Predictive Control: Mini-Project

In this project, you will develop an MPC cruise controller for a car on a highway.

The project is worth 40% of your final grade and is due on Friday, January 10^{th} , 2025.

Report and handing-in instructions

- Group sign up and report hand-in is via Moodle.
- You can do the project in groups of one, two or three.
- Include everyone's name and SCIPER on the title page of your project report.
- When you have completed the project, hand in one report (pdf) per group and your Matlab code (zip).
- Report:
 - Your report should contain headings according to the **Deliverables** listed below in the project description.
 - You will be graded on the Deliverables, and not on the Todos.
 - The report should be written in **English**.
 - Explain what you're doing and why for each deliverable, but don't be excessive. The
 entire report must not exceed more than 20 pages.
- Code:
 - Include a directory for each deliverable containing all the m-files to run the deliverable.
 - Create a file in each directory Deliverable_xxx.m which can be run to produce all the the figures for the deliverable.
 - Compress all the code / directories into a single zip file for submission.

More parts will follow in the coming weeks, i.e., only completing the Deliverables of this document will result in a low grade. Check Moodle for updates.

Before you start

- Make sure you have installed YALMIP, MPT3, Gurobi and CasADi according to the course exercise setup instructions on Moodle.
- Download and unpack the file car_project.zip from Moodle.
- Run car = Car(1/10); If this executes correctly, then your setup should be ready to go.

Figure 1: Car Model

Part 1 | System Dynamics

Building a model of the system dynamics from physical principles is a crucial step in the development of an MPC controller and is a significant part of the task in practice. However, as this process is out of the scope of this course, you are not required to model the car by yourself. Instead, we provide you with a nonlinear model.

System Definition We consider a four-state kinematic model of a car moving in a 2D plane. The state vector is defined as

$$\mathbf{x} = \begin{bmatrix} x & y & \theta & V \end{bmatrix}^T$$
, $[\mathbf{x}] = \begin{bmatrix} \mathbf{m} & \mathbf{m} & \text{rad} & \mathbf{m/s} \end{bmatrix}^T$

where (x, y) represents the position of the car's center of mass in the world frame, θ is the heading angle of the car with respect to the x-axis, and V is the velocity of the vehicle.

The input vector of the model is

$$\mathbf{u} = \begin{bmatrix} \delta & u_T \end{bmatrix}^T$$
, $[\mathbf{u}] = \begin{bmatrix} \text{rad} & - \end{bmatrix}^T$

where δ is the steering angle of the front wheels, and u_T is the normalized throttle to the motor limited to $-1 \le u_T \le 1$.

Vehicle Kinematics and Dynamics We capture the motion of the car with what is called a bicycle model. The equations derived below are with reference to the constants shown in Figure 1.

The kinematic slip angle β is the angle between a wheel's actual direction of travel and the direction in which it is pointed. We define the slip angle β at the center of mass and compute it based on the steering geometry:

$$\beta = \arctan\left(\frac{\ell_r \tan(\delta)}{\ell_r + \ell_f}\right) \tag{1}$$

where ℓ_r and ℓ_f are the distances from the center of mass to the rear and front axles, respectively. The longitudinal dynamics are influenced by the motor force, aerodynamic drag, and roll resistance:

$$F_{\text{motor}} = \frac{u_T P_{\text{max}}}{V}$$

$$F_{\text{drag}} = \frac{1}{2} \rho C_d A_f V^2$$

$$F_{\text{roll}} = C_r m q$$

where m is the vehicle mass, P_{max} is the maximum motor power, ρ is the air density, C_d is the drag coefficient, A_f is the frontal area of the vehicle, C_r is the roll coefficient, and g is the gravity constant. Note that this model is only valid for V > 0, which we assume to hold on the highway.

In particular, F_{motor} models the motor dynamics of an electric car due to the instant torque at low velocities. Similarly, a negative input can be seen as recuperation-braking, i.e., the motor acts as a generator and thus slows down the car.

The complete state equations are:

$$\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{V} \end{bmatrix} = \begin{bmatrix} V\cos(\theta + \beta) \\ V\sin(\theta + \beta) \\ \frac{V}{\ell_r}\sin(\beta) \\ \frac{F_{\text{motor}} - F_{\text{drag}} - F_{\text{roll}}}{\sigma} \end{bmatrix}$$
(2)

These equations have been implemented in the function f in the Matlab class Car.m, which is in the directory src.

Todo 1.1 | Study the function f in the Matlab Car class to confirm that it implements the dynamics of the system as described above.

To evaluate the functions, you can call them independently:

Todo 1.2 | Simulate the car with various step inputs to confirm that the dynamics responds as expected.

To simulate the nonlinear model for two seconds starting from \mathbf{x}_0 with constant input, you can use:

You can inspect the result of the simulation in the result struct. You will notice it has the following structure:

```
result.T % Time at every simulation step
result.myCar.X % State trajectory
result.myCar.U % Input trajectory
```

A few things to try to see if the car is behaving as you think it should. Find input ${\bf u}$ that will cause the car to:

- Accelerate/decelerate.
- Turn left or right.

Part 2 | Linearization

In the first part of the project, we are going to control a linearized version of the car. In particular, we are linearizing in the x-direction of travel, i.e., the longitudinal motion.

Normally, one would linearize the system around a steady state. But in our case, we are interested in cruise control for a target velocity reference for which no true steady state exists (the x-position is integrated in time with a positive velocity). Hence, we are only considering the subsystem steady-state where

$$f_s(\mathbf{x}_s, \mathbf{u}_s) = \begin{bmatrix} \dot{y} \\ \dot{\theta} \\ \dot{V} \end{bmatrix} = 0, \tag{3}$$

which will result in $f(\mathbf{x}_s, \mathbf{u}_s) \neq 0$. We can then find the linearized dynamics through a Taylor series expansion up to first order

$$f(\mathbf{x}, \mathbf{u}) \approx f(\mathbf{x}_s, \mathbf{u}_s) + A(\mathbf{x} - \mathbf{x}_s) + B(\mathbf{u} - \mathbf{u}_s), \tag{4}$$

where $A = \frac{\partial f(x,u)}{\partial x}|_{(x_s,u_s)}$ and $B = \frac{\partial f(x,u)}{\partial u}|_{(x_s,u_s)}$.

- **Deliverable 2.1** | Derive the analytical expressions of $f(\mathbf{x}_s, \mathbf{u}_s)$, A, and B as a function of \mathbf{x}_s and \mathbf{u}_s , where $\mathbf{x}_s = (0, 0, 0, V_s)$ and $\mathbf{u}_s = (0, u_{T,s})$.
 - **Todo 2.1** | In practice, we calculate the linearization numerically. Use the following code to generate a linearized version of the car and compare it against your analytical derivation. Note that all of the physical constants of the car are stored in the struct car.

Go through the functions steady_state and linearize to see how they work.

Note that we have named all the states in the linearized model. Type sys and you will see the ordering of the states and $f(\mathbf{x}_s, \mathbf{u}_s)$, \mathbf{x}_s , and \mathbf{u}_s are stored in sys.UserData.

Study the resulting **A**, **B**, **C** and **D** matrices until you recognize that the linearized system around the quasi-steady-state can be broken into two independent/non-interacting systems.

- **Deliverable 2.2** | Explain from an intuitive physical / mechanical perspective, why this separation into independent subsystems is possible.
 - Todo 2.2 | Compute the two independent systems above using the following command

```
[sys_lon, sys_lat] = car.decompose(sys);
```

Two models are produced:

sys_lon | Longitudinal dynamics, i.e., throttle u_T to position x. The system has two states: x, V. sys_lat | Lateral dynamics, i.e., steering angle δ to position y. The system has two states: y, θ .

Note that these are all **continuous-time** models.

Discretization

In the following parts, you will implement discrete MPC controllers, i.e., the continuous-time models have to be discretized. We will use a sampling period of $T_s=1/10$ seconds. Discretizing the continuous system (4) results in the following discrete-time dynamics:

$$\mathbf{x}^{+} = f_d(\mathbf{x}_s, \mathbf{u}_s) + A_d(\mathbf{x} - \mathbf{x}_s) + B_d(\mathbf{u} - \mathbf{u}_s). \tag{5}$$

We have implemented the exact discretization for you. You can use the following code to obtain the matrices of the discretized dynamics:

```
Ts = 1/10;

[fd_xs_us, Ad, Bd, Cd, Dd] = Car.c2d_with_offset(sys, Ts);
```

Delta Dynamics

Let's consider the reduced system

$$\mathbf{ar{x}} = egin{bmatrix} y \ heta \ V \end{bmatrix}$$
 ,

for which $\bar{\mathbf{x}}_s^+ = \bar{\mathbf{x}}_s$. Then (5) simplifies to

$$\bar{\mathbf{x}}^+ = \bar{\mathbf{x}}_s + \bar{A}_d(\bar{\mathbf{x}} - \bar{\mathbf{x}}_s) + \bar{B}_d(\mathbf{u} - \mathbf{u}_s),$$

where \bar{A}_d is the matrix of the sub-system. From this, we can then derive the delta formulation with delta state $\Delta \bar{\mathbf{x}} = \bar{\mathbf{x}} - \bar{\mathbf{x}}_s$ and delta input $\Delta \mathbf{u} = \mathbf{u} - \mathbf{u}_s$ giving us the standard linear dynamics

$$\Delta \bar{\mathbf{x}}^{+} = \bar{\mathbf{x}}_{s} + \bar{A}_{d}(\bar{\mathbf{x}} - \bar{\mathbf{x}}_{s}) + \bar{B}_{d}(\mathbf{u} - \mathbf{u}_{s}) - \bar{\mathbf{x}}_{s}$$

$$= \bar{A}_{d}\Delta \bar{\mathbf{x}} + \bar{B}_{d}\Delta \mathbf{u}$$
(6)

you have seen in the lecture.

Note that throughout the project, you can use either (6) or (7). You just have to be sure to manage the steady-state offsets correctly.

Part 3 | Design MPC Controllers for Each Sub-System

For each sub-system, your goal is to design a recursively feasible, stabilizing MPC controller that can track step references.

The discretization of the continuous time models is done for you when using the provided MpcControl-* template files, i.e., you can find the discretization routine in the constructor of MpcControlBase.

Constraints

The car drives at highway speeds and should always stay inside the lanes. Also, to increase the comfort of the passenger, we limit the maximum heading of the car during a lane change. Apart from comfort, this also bounds the linearization error nicely.

$$-0.5 \text{ m} \le y \le 3.5 \text{ m}$$

 $|\theta| < 5^{\circ} = 0.0873 \text{ rad}$

The inputs are constrained by mechanical limitations:

$$-1 \le u_T \le 1$$

 $|\delta| \le 30^{\circ} = 0.5236 \text{ rad}$

Design Tracking MPC Controllers

Todo 3.1 | Design two MPC controllers for each sub-system, with the following properties:

- Recursive satisfaction of the input, heading, and lane constraints.
- Settling time no more than 10 seconds when accelerating from 80 km/h to 120 km/h or 3 seconds doing a lane change (width of track is 3 m).

To help you design the controllers, we have created two files:

- MpcControl_lon.m
- MpcControl_lat.m

which you will find in the templates directory. Copy these into the <code>Deliverable_3.1</code> directory and then make your changes. Your job is to fill in the functions <code>setup_controller</code> and <code>compute_steady_state_target</code> in each file.

Hint | Note that you have no cost or constraints on the x-position (although there is on the x-velocity). Hence, there is no need to optimize over the x-position (which is also not a steady state). Thus, only consider the steady-state subsystem $\bar{\mathbf{x}}$ in your controllers. You might want to take sub-matrices of A_d and B_d as described in the section above on Delta Dynamics, and extract the relevant part of the initial state $\mathbf{x}0 = [position, velocity]$, etc

You can then get the control from solving the MPC problem via the following code:

```
Ts = 1/10; % Sample time
car = Car(Ts);
[xs, us] = car.steady_state(120 / 3.6);
sys = car.linearize(xs, us);
[sys_lon, sys_lat] = car.decompose(sys);

% Design MPC controller
H_lon = ..; % Horizon length in seconds
mpc_lon = MpcControl_lon(sys_lon, Ts, H_lon);

% Get control input for longitudinal subsystem
u_lon = mpc_lon.get_u(x_lon, ref_lon);
```

Before applying MPC in closed-loop, you should always check first if the optimal open-loop trajectory from a representative state is reasonable. This helps to understand whether the underlying optimal control problem is correctly formulated or, in case of unintended results, how it should be adjusted. For this you can specify debug variables in your optimization problem:

```
%%% In MPCControl_lon.m, setup_controller:
X = sdpvar(1, N);
U = sdpvar(1, N);
...
debugVars = {X, U}; % arbitrary number of variables can be passed
%%%

%%% In your test script:
[u_lon, X_lon, U_lon] = mpc_lon.get_u(x_lon, ref_lon);
% Plot and debug X_lon and U_lon accordingly
%%%
```

You can simulate your system with the following command:

```
mpc.lon = MpcControl.lon(sys.lon, Ts, H.lon);
mpc.lat = MpcControl.lat(sys.lat, Ts, H.lon);
mpc = car.merge.lin.controllers(mpc.lon, mpc.lat);

x0 = [0 0 0 80/3.6]'; % (x, y, theta, V)
ref1 = [0 80/3.6]'; % (y_ref, V_ref)
ref2 = [3 120/3.6]'; % (y_ref, V_ref)

params = {};
params.Tf = 15;
params.myCar.model = car;
params.myCar.x0 = x0;
params.myCar.v1 = @mpc.get_u;
params.myCar.ref = car.ref_step(ref1, ref2, 5); % delay reference step by 5s
result = simulate(params);
visualization(car, result);
```

Deliverable 3.1

- Explanation of design procedure that ensures recursive constraint satisfaction.
- Explanation of choice of tuning parameters. (e.g., **Q**, **R**, *H*).
- Plot the terminal invariant set for the lateral sub-system and explain how it was designed and tuned.
- Closed-loop plots for each dimension of the system starting at the origin (for x and y) with $V=80~\mathrm{km/h}$ to a reference of $y=3~\mathrm{m}$ and target velocity of $V=120~\mathrm{km/h}$. Note, that there should be no steady-state error.
- Matlab code for the two controllers, and code to produce the plots in the previous step.

Part 4 | Offset-Free Tracking

As you might already have noticed, tracking any velocity which is not the steady-state velocity we linearized around leads to a steady-state tracking error. This is due to the linearization error introduced by the motor and drag term in the system dynamics.

We assume the linearization error enters the dynamics of the system via the input u_T according to

$$\mathbf{x}^+ = f_d(\mathbf{x}_s, \mathbf{u}_s) + A_d(\mathbf{x} - \mathbf{x}_s) + B_d(\mathbf{u} - \mathbf{u}_s) + \hat{B}_d d,$$

where d is a constant, unknown disturbance and \hat{B}_d the submatrix of B_d for the input u_T . Your goal is to update your controller to reject this disturbance and track setpoint references with no offset.

Todo 4.1 | Design an offset-free tracking controller.

- Complete the relevant functions in the LonEstimator.m file. Note that you are only estimating a small subset of the state, i.e., you are estimating the velocity V and the disturbance d for the next time step based on the current estimate and the longitudinal subsystem state measurements.
- Update the functions setup_controller and compute_steady_state_target in MpcControl_lon.m to provide offset-free tracking.

Once you have updated the relevant functions, you can test it in simulation by adding <code>est_fcn</code> and <code>est_dist0</code> to <code>params.myCar</code>. Here, <code>est_dist0</code> is the initial state of the disturbance estimate, i.e., d at time t=0. The controller will now act based on the state estimates from the observer. You can obtain the estimates of the z states (concatenation of the current estimation of V and d) from the corresponding rows of the <code>result.myCar.Z_hat</code> output in which the last row is the disturbance estimate d.

```
estimator = LonEstimator(sys_lon, Ts);

x0 = [0 0 0 80/3.6]'; % (x, y, theta, V)
ref1 = [0 80/3.6]'; % (y_ref, V_ref)
ref2 = [3 50/3.6]'; % (y_ref, V_ref)

params = {};
params.Tf = 15;
params.myCar.model = car;
params.myCar.x0 = x0;
params.myCar.est_fcn = @estimator.estimate;
params.myCar.est_dist0 = 0;
params.myCar.u = @mpc.get_u;
params.myCar.ref = car.ref_step(ref1, ref2, 2); % delay reference step by 2s;
result = simulate(params);
```

Deliverable 4.1

- Explanation of your design procedure and choice of tuning parameters.
- Plot showing the impact of the state estimator, resulting in offset-free velocity tracking. Simulate from $x0 = [0\ 0\ 80/3.6]$ ' with ref = [3 50/3.6]' for 15 seconds, where the reference step is delayed by 2 seconds.
- Matlab code for your controllers, and code to produce the plots in the previous step.

Part 5 | Robust Tube MPC for Adaptive Cruise Control

To come next week!

Part 6 | Nonlinear MPC

To come next week!