Range-Only Simultaneous Localization and Mapping mittels Ultra-Wideband

26.02.2018

Albert Kasdorf

Matr.-Nr.: 3029294

Lokalisierung, Kartenerstellung, SLAM, RO-SLAM

> Lokalisierung

- > Lokalisierung
- > Kartenerstellung

- > Lokalisierung
- > Kartenerstellung
- > SLAM

- > Lokalisierung
- > Kartenerstellung
- > SLAM
- > RO-SLAM

- > Lokalisierung
- > Kartenerstellung
- > SLAM
- > RO-SLAM

UWB Modul

Erstellte Hardware

> UWB

- > Kurze Impulse
- > Präzise Entfernungsmessung

UWB Modul

Erstellte Hardware

- > UWB
 - > Kurze Impulse
 - > Präzise Entfernungsmessung
- $> \ \mathsf{Begrifflichkeiten}$
 - > Landmarke, Beacon
 - > Anker, Tag, UWB Modul

UWB Modul

Erstellte Hardware

- > UWB
 - > Kurze Impulse
 - > Präzise Entfernungsmessung
- > Begrifflichkeiten
 - > Landmarke, Beacon
 - > Anker, Tag, UWB Modul
- > UWB Modul
 - > DecaWave Transceiver
 - > Hardwareplattform
 - > Energieversorgung

Kalibierung der UWB Module (1/2)

Bestimmung der Antennenverzögerung

- > DecaWave Verfahren
 - > Genetischer Algorithmus
- > LGS Verfahren
 - $> t_{ad1} + t_{ad2} = tof_{measured} tof_{actual}$

Kalibierung der UWB Module (1/2)

Bestimmung der Antennenverzögerung

- > DecaWave Verfahren
 - > Genetischer Algorithmus
- > LGS Verfahren
 - $> t_{ad1} + t_{ad2} = tof_{measured} tof_{actual}$

Kalibierung der UWB Module (2/2)

Ergebnisse

ſ	UWB Modul	LGS	DecaWave	DecaWave 1	DecaWave 2
		[ns]	[ns]	[ns]	[ns]
	176	257,45	242,48	232,21	254,50
	177	257,49	238,47	249,38	254,73
İ	178	257,11	257,17	255,36	215,07

 $=>1\,\text{ns}\approx \text{0,3}\,\text{m}$

UWB Module

Entfernungsmessungen mit mehreren Materialien

Partikel Filter

> EKF SLAM

> Kombinierter Zustandsvektor

Partikel Filter

	robot path	feature 1	feature 2	 feature I
Particle $k = 1$	$x_{1:t}^{[1]} = \{(x\ y\ \theta)^T\}_{1:t}^{[1]}$	$\mu_1^{[1]}, \Sigma_1^{[1]}$	$\mu_2^{[1]}, \Sigma_2^{[1]}$	 $\mu_N^{[1]}, \Sigma_N^{[1]}$
Particle $k = 2$	$x_{1:t}^{[2]} = \{(x \ y \ \theta)^T\}_{1:t}^{[2]}$	$\mu_1^{[2]}, \Sigma_1^{[2]}$	$\mu_2^{[2]}, \Sigma_2^{[2]}$	 $\mu_N^{[2]}, \Sigma_N^{[2]}$
		:		
$\begin{aligned} & \text{Particle} \\ & k = M \end{aligned}$	$x_{1:t}^{[M]} = \{(x \ y \ \theta)^T\}_{1:t}^{[M]}$	$\mu_1^{[M]}, \Sigma_1^{[M]}$	$\mu_2^{[M]}, \Sigma_2^{[M]}$	 $\mu_N^{[M]}, \Sigma_N^{[M]}$
		[2]		

- > EKF SLAM
 - > Kombinierter Zustandsvektor
- > PF SLAM
 - > Aufspaltung des Zustandsvektor
 - > Rao-Blackwellized Partikel Filter
 - > FastSLAM

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Hilfspartikel Filter
 - > Pro UWB Modul
 - > Radiale Verteilung
 - > Gewicht pro Partikel

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Hilfspartikel Filter
 - > Pro UWB Modul
 - > Radiale Verteilung
 - > Gewicht pro Partikel

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Hilfspartikel Filter
 - > Pro UWB Modul
 - > Radiale Verteilung
 - > Gewicht pro Partikel

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Hilfspartikel Filter
 - > Pro UWB Modul
 - > Radiale Verteilung
 - > Gewicht pro Partikel
- > Nach der Konvergenz
 - > Umwandung in einen EKF

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Sum of Gaussian (SOG)
 - > Radial angeordnete Normalverteilungen
 - > Gewicht pro Normalverteilung
 - > Pro UWB Modul

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Sum of Gaussian (SOG)
 - > Radial angeordnete Normalverteilungen
 - > Gewicht pro Normalverteilung
 - > Pro UWB Modul

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Sum of Gaussian (SOG)
 - > Radial angeordnete Normalverteilungen
 - > Gewicht pro Normalverteilung
 - > Pro UWB Modul

- > Hauptpartikel Filter
 - > Betrachung eines Partikels
- > Sum of Gaussian (SOG)
 - > Radial angeordnete Normalverteilungen
 - > Gewicht pro Normalverteilung
 - > Pro UWB Modul
- > Nach der Konvergenz
 - > Umwandung in einen EKF

RO-SLAM

Odometrie der Roboterplattform

RO-SLAM

Positionsschätzung der Roboterplattform

RO-SLAM

Ground Truth Position

10 11

Fehlerellipse der UWB-Modul Position

13 14

X [m]

8.5

8

Positionsschätzung der UWB Module

16

Ground Truth Position

10

Fehlerellipse der UWB-Modul Position

12 13 14

X [m]

8.5

16

Fazit

- > UWB
 - > Technologie mit vielen Anwendungsmöglichkeiten
 - > Spezialisierte Einsatzgebiete

- > UWB
 - > Technologie mit vielen Anwendungsmöglichkeiten
 - > Spezialisierte Einsatzgebiete
- > UWB Module
 - > Aufbau und Entfernungsmessung möglich, aber ohne Optimierungen
 - > Abwegung über die Nutzung des kommerziellen Produktes

Fazit

- > UWB
 - > Technologie mit vielen Anwendungsmöglichkeiten
 - > Spezialisierte Einsatzgebiete
- > UWB Module
 - > Aufbau und Entfernungsmessung möglich, aber ohne Optimierungen
 - > Abwegung über die Nutzung des kommerziellen Produktes
- > RO-SLAM
 - > Rein probabilistisches Verfahren
 - > Genauigkeit von =< 10 cm konnte nicht erreicht werden
 - > Ergebnisse sind abhängig von der Qualität der Entfernungsmessung

Literaturverzeichnis I

- Antenna delay calibration of DW1000-based products and systems. Version 1.01. DecaWave Limited, 2014. URL: https://www.decawave.com/sites/default/files/aps014-antennadelaycalibrationofdw1000-basedproductsandsystems_v1.01.pdf (besucht am 13.12.2017).
- Sebastian Thrun, Wolfram Burgard und Dieter Fox. *Probabilistic robotics*. MIT press, 2005.
- Jose-Luis Blanco, Javier González und Juan-Antonio Fernández-Madrigal. "A pure probabilistic approach to range-only SLAM". In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on. IEEE. 2008, S. 1436–1441.

Literaturverzeichnis II

Jose-Luis Blanco, Juan-Antonio Fernández-Madrigal und Javier González. "Efficient probabilistic range-only SLAM". In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE. 2008, S. 1017–1022.