Convolution Neural Networks

COS 314

Outline

- History of Convolution Neural Network
- Application Area
- Structure
- Functionality
- Future

Introduction

- Convolutional Neural Networks or CovNets
- Alex Krizhevsky won the ImageNet Challenge AlexNet
- Image classification
- Classification

Class

Probabilities for each class

Image Classification

- Image converted to a matrix of pixels
- Grayscale images a single integer 2D matrix with values in the range 0 to 255
- Colour images 3 stacked (RGB) 2D matrices with values in the range 0 to 255
- Size of the matrix is resolution dependent
- Preprocessing to reduce the size of the matrix

Fully Connected vs Sparse Connected

CNN Layers

- Convolutional layer
- Nonlinear or ReLU layer
- Pooling layer
- Fully connected layer

Overview

Convolution Layer

Convolution Layer

- First layer after the input layer
- Additional convolutional layers
- Convolution operator
- Filter or kernel
- Feature map
- Sparsely connected layer parameter sharing

Convolution Layer

- Different convolution operators include:
 - Identity
 - Edge detection
- Different convolutions are used with different kernels/filters.
- Selection of values for kernels/filters
- Stride
- Zero padding

- Decide on the dimensions of the kernel, e.g. 3x3
- Determine the values of the kernel.

- Apply the convolution to produce the feature map.
- Map the kernel across the pixel matrix to produce the feature map.

Determining the Feature Map -2D Example

Convolution Layer - 3D Example

ReLU Layer

Nonlinear ReLU Layer

- Is used to incorporate nonlinearity
- The ReLU activation function is used
- f(x) = max(0, x)

Pooling Layer

Pooling Layer

- Reduces the number of parameters
- This is achieved by reducing the size of the feature map

Fully Connected Layer

Fully Connected Layer

- Output layer
- Last or last two layers
- Softmax activation function
- Transfer learning

Fully Connected Layer

CNN - Architectures

- LeNet
- AlexNet
- GoogLeNet
- VGGNet
- RestNet
- DenseNet
- ImageNet and transfer learning

Image Classification - Transformers

- Use Attention
- Natural Language Processing based on RNN
- Vision Transformer performs better than CNNs

Multi-Task Learning

- Multi-task learning (MTL) is a machine learning technique where a model is trained on multiple learning tasks simultaneously.
- The goal is to improve the performance of each task.
- Through leveraging the knowledge and information shared across them.

- Training a single model on multiple related tasks, the model can learn shared representations and features that are beneficial for all tasks.
- This can lead to better performance compared to training separate models for each task.

Advantages of Multitask

- **Improved Generalization:** By considering information from multiple tasks, the model can potentially generalize better to unseen data within each task domain.
- **Data Efficiency:** MTL can be particularly beneficial when dealing with limited data for each individual task. Sharing information across tasks allows the model to learn more effectively with less data.
- Regularization: MTL can act as a regularizer, preventing the model from overfitting to the specific features of any single task. (e.g Droput or early stopping).

QUESTIONS

