Análise Matemática Gleberson Antunes

15 de Setembro de 2023

Compilado de todas as minhas soluções, da parte de Álgebra Linear, das provas de admissão ao Mestrado em Matemática na UFBA. As resoluções são desprentesiosas e são sujeitas à erros.

Sugestões e correções são bem-vindas e podem ser enviadas para glebersonset@gmail.com. Outras soluções podem ser encontradas em minha página Gleberson Antunes.

Sumário

Su	ımário	1
1	Prova de seleção para o mestrado em Matemática 2015.2	2
2	Prova de seleção para o mestrado em Matemática 2016.1	7
3	Prova de seleção para o mestrado em Matemática 2016.2	12

1 Prova de seleção para o mestrado em Matemática 2015.2

25 de Agosto de 2023

Exercício 1. Mostre que dois espaços vetoriais com dimensões (finitas) diferentes não podem ser isomorfos.

Demonstração. Sejam V e W \mathbb{K} -espaços vetoriais. Suponhamos então que dim V< dim W. Se fosse verdade que V e W são isomorfos, então existiria uma aplicação $T:V\longrightarrow W$ bijetiva. Segue do **Teorema do Núcleo e da Imagem** que

$$\dim V = \dim N(T) + \dim Im(T)$$

$$= 0 + \dim Im(T)$$

$$= \dim W,$$

o que é um absurdo, pois dim $V < \dim W.$ Logo V e W não podem ser isomorfos.

Exercício 2. Sejam E e F espaços vetoriais, $L:E\longrightarrow F$ transformação linear e N(L) seu núcleo. Mostre que

$$L \text{ \'e injetora } \Leftrightarrow N(L) = \{\vec{0}\},\$$

onde $\vec{0}$ é o vetor nulo de E.

Demonstração.

 \Rightarrow Suponhamos L injetiva. Seja $v \in E$ tal que L(v) = 0. Então

$$L(v) = L(0)$$

$$\Rightarrow v = 0,$$

como queríamos.

 \Leftarrow (Por contraposição) Suponhamos que L não é injetiva. Então existem $v, w \in E$ distintos, tais que L(v) = L(w). Segue da linearidade de L que

$$L(v) = L(w)$$

$$\Rightarrow L(v) - L(w) = L(v - w) = 0$$

$$\Rightarrow v - w \in N(L).$$

Como v e w são distintos, temos que $v-w\neq 0$. Logo, $N(L)\neq \{\overrightarrow{0}\}$.

Exercício 3. Ache a transformação linear $L: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ tal que

 $N(L) \ = \ [(1,0,1,0),(-1,0,0,1)] \ {\rm e} \ I(L) \ = \ [(1,-1,0,2),(0,1,-1,0)],$

onde N(L) é o núcleo de L e I(L) é a imagem de L.

Demonstração. Consideremos a base

$$\alpha = \{(1,0,1,0), (-1,0,0,1), (0,1,0,0), (0,0,1,0)\},\$$

de \mathbb{R}^4 . Pondo

$$L(1,0,1,0) = (0,0,0,0)$$

$$L(-1,0,0,1) = (0,0,0,0)$$

$$L(0,1,0,0) = (1,-1,0,2)$$

$$L(0,0,1,0)\ =\ (0,1,-1,0)$$

e escrevendo um vetor arbitrário $(x,y,z,t) \in \mathbb{R}^4$ como

$$(x,y,z,w) \ = \ (x+t)(1,0,1,0) + (t)(-1,0,0,1) + (y)(0,1,0,0) + (z-x-t)(0,0,1,0),$$

obtemos a transformação linear

$$L(x, y, z, t) = (0, y, z - x - t, 0),$$

que satisfaz o enunciado.

Exercício 4. Seja T a aplicação linear com domínio P_2 (o conjunto dos polinômios reais de grau menor ou igual a 2) e contra-domínio \mathbb{R} definida por $T(p) = \int_0^1 p(t)dt$. Determine a matriz de T com respeito às bases $\{x^2, x, 1\}$ de P_2 e $\{1\}$ de \mathbb{R} .

Demonstração. Sejam $\alpha = \{x^2, x, 1\}$ e $\beta = \{1\}$

$$T(x^{2}) = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}.$$

$$T(x) = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}.$$

$$T(1) = \int_{0}^{1} x^{2} dx = x \Big|_{0}^{1} = 1.$$

Logo

$$[T]^{\alpha}_{\beta} = \left[\frac{1}{3}, \frac{1}{2}, 1\right].$$

Exercício 5. Seja R a rotação de \mathbb{R}^3 ao redor do eixo z, no sentido anti-horário, com centro na origem e ângulo $\pi/2$. Ou seja, R associa a cada ponto $P=(x,y,z)\in\mathbb{R}^3$ um ponto Q=(-y,x,z). Encontre o polinômio característico de R em relação a uma base de \mathbb{R}^3 e, a partir dele, determine os autovalores e autovetores de R (caso eles não existam, justifique sua conclusão com base nos cálculos feitos). Interprete geometricamente o resultado que você obteve.

Demonstração. Seja α a base canônica de \mathbb{R}^3 . Então

$$[R]_{\alpha} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Segue daí que

$$p_R(\lambda) = \det \begin{vmatrix} -\lambda & -1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = \lambda^2 (1 - \lambda) + 1 - \lambda = (\lambda^2 + 1)(1 - \lambda).$$

Ou seja, os autovalores de R são: $\lambda_1=1, \lambda_2=i, \lambda_3=-i.$

Para $\lambda_1 = 1$ temos que

$$\begin{bmatrix} -1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow -x - y = 0$$
$$x - y = 0$$

Logo devemos ter x=y=0e, por exemplo, z=1. Então, o autoespaço associado a $\lambda_1=1$ é gerado por [(0,0,1)].

Para $\lambda_2 = i$ temos que

$$\begin{bmatrix} -i & -1 & 0 \\ 1 & -i & 0 \\ 0 & 0 & 1-i \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow x-iy=0$$
$$(1-i)z=0$$

Logo devemos ter x=i,y=1 e z=0. Então, o autoespaço associado a $\lambda_2=i$ é gerado por [(i,1,0)].

Para $\lambda_3 = -i$ temos que

$$\begin{bmatrix} i & -1 & 0 \\ 1 & i & 0 \\ 0 & 0 & 1+i \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Leftrightarrow x+iy=0$$

$$(1+i)z=0$$

Logo devemos ter x=1,y=i,z=0. Então, o autoespaço associado a $\lambda_3=-i$ é gerado por [(1,i,0)].

2 Prova de seleção para o mestrado em Matemática 2016.1

26 de Agosto de 2023

Exercício 1. Mostre que dois espaços vetoriais com dimensões (finitas) diferentes não podem ser isomorfos.

Demonstração. Sejam V e W \mathbb{K} -espaços vetoriais. Suponhamos então que dim V < dim W. Se fosse verdade que V e W são isomorfos, então existiria uma aplicação $T:V\longrightarrow W$ bijetiva. Segue do **Teorema do Núcleo e da Imagem** que

$$\dim V = \dim N(T) + \dim Im(T)$$

$$= 0 + \dim Im(T)$$

$$= \dim W,$$

o que é um absurdo, pois dim $V < \dim W$. Logo V e W não podem ser isomorfos.

Exercício 2. Sejam V e U espaços vetoriais e $T:V\longrightarrow U$ uma transformação linear, de núcleo W, e sejam $v\in V,\,u\in U$ tais que T(v)=u. Seja v+W a classe

lateral $v + W = \{v + w : w \in W\}$. Mostre que $v + W = \{x \in V : T(x) = u\}$.

Demonstração. Seja $v' \in v + W.$ Então existe $w' \in W$ tal que v' = v + w'. Segue daí que

$$T(v') = T(v + w') = T(v) + T(w') = u + 0 = u.$$

Seja $x \in V$ tal que T(x) = u. Então $x = v + (x - v) \in v + W$, uma vez que

$$T(x-v) \ = \ T(x) \ - \ T(v) \ = \ u \ - \ u \ = \ 0.$$

Exercício 3. Ache a transformação linear $L: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ tal que

$$N(L) = [(1,0,1,0), (-1,0,0,1)] e I(L) = [(1,-1,0,2), (0,1,-1,0)],$$

onde N(L) é o núcleo de L e I(L) é a imagem de L.

Demonstração. Consideremos a base

$$\alpha = \{(1,0,1,0), (-1,0,0,1), (0,1,0,0), (0,0,1,0)\},\$$

de \mathbb{R}^4 . Pondo

$$L(1,0,1,0) \ = \ (0,0,0,0)$$

$$L(-1,0,0,1) = (0,0,0,0)$$

$$L(0,1,0,0) = (1,-1,0,2)$$

$$L(0,0,1,0) = (0,1,-1,0)$$

e escrevendo um vetor arbitrário $(x,y,z,t) \in \mathbb{R}^4$ como

$$(x, y, z, w) = (x+t)(1, 0, 1, 0) + (t)(-1, 0, 0, 1) + (y)(0, 1, 0, 0) + (z-x-t)(0, 0, 1, 0),$$

obtemos a transformação linear

$$L(x, y, z, t) = (0, y, z - x - t, 0),$$

que satisfaz o enunciado.

Exercício 4. Seja T a aplicação linear com domínio P_2 (o conjunto dos polinômios reais de grau menor ou igual a 2) e contra-domínio \mathbb{R} definida por $T(p) = \int_0^1 p(t)dt$. Determine a matriz de T com respeito às bases $\{x^2, x, 1\}$ de P_2 e $\{1\}$ de \mathbb{R} .

Demonstração. Sejam $\alpha = \{x^2, x, 1\}$ e $\beta = \{1\}$

$$T(x^{2}) = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3}.$$

$$T(x) = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{0}^{1} = \frac{1}{2}.$$

$$T(1) = \int_{0}^{1} x^{2} dx = x \Big|_{0}^{1} = 1.$$

Logo

$$[T]^{\alpha}_{\beta} = \left[\frac{1}{3}, \frac{1}{2}, 1\right].$$

Lema 1. Sejam V um \mathbb{K} -espaço vetorial com produto interno e $T:V\longrightarrow V$ um operador linear unitário. Então os autovalores de T possuem módulo igual a 1.

Demonstração. Sendo T um operador unitário, então $T^*=T^{-1}$ e, além disso, T preserva produto interno. Ou seja, para todo $v\in V$ temos que

$$\langle T(v), T(v) \rangle \ = \ \langle v, T * T(v) \rangle \ = \ \langle v, v \rangle.$$

Seja $\lambda \in \mathbb{K}$ um autovalor de Te $u \in V$ um autovetor de Tassociado a $\lambda.$ Então

$$|\lambda|^2 \langle v, v \rangle = \langle T(v), T(v) \rangle = \langle v, v \rangle.$$

 $\Rightarrow |\lambda| = 1.$

Exercício 5. Sejam n um inteiro positivo e $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ uma transformação linear que é uma isometria, i.e, ||T(x) - T(y)|| = ||x - y|| para quaisquer $x, y \in \mathbb{R}^n$.

- (a) Mostre que, se n for ímpar, então existe um subespaço vetorial não-trivial que é tal que: ou todos os pontos desse subespaço são fixados por T; ou todos os pontos desse subespaço são levados por T em seus opostos.
- (b) O mesmo vale para dimensões pares? Justifique cuidadosamente a sua resposta, provando-a, se for positiva ou apresentando contra-exemplo, se for negativa.

Demonstração. Sabemos que um operador $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ satisfaz ||T(x) - T(y)|| = ||x - y|| para quaisquer $x, y \in \mathbb{R}^n$ se, e somente se, é um operador unitário.

(a) Seja $p_T(\lambda)$ o polinômio característico do operador T. Sendo $gr(p_T(\lambda)) = n$ ímpar, então $p_T(\lambda)$ admite pelo menos uma raiz real, uma vez que seus coeficientes são reais e as raízes complexas nesse caso ocorrem aos pares (se $a + bi \in \mathbb{C}$ é raiz de $p_T(\lambda)$ então a - bi também será).

O Lema 1 nos garante que o módulo dessas raízes, que são exatamente os autovalores de T, é igual a 1. Seja λ_{α} uma raiz real de $p_T(\lambda)$. Então ou $\lambda_{\alpha} = 1$ ou $\lambda_{\alpha} = -1$. Assim, o autoespaço associado a λ_{α} é tal que todos os seus pontos são fixados por T ou são levados nos seus opostos.

(b) Falso. Considere o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, dado por T(x,y) = (y,-x). Com respeito a base canônica α temos que

$$[T]_{\alpha} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Notemos que esse operador é unitário pois o módulo de cada um dos vetores coluna é igual a 1. Porém

$$p_T(\lambda) = \begin{bmatrix} -\lambda & 1 \\ -1 & -\lambda \end{bmatrix} = \lambda^2 + 1,$$

não possui solução real.

3 Prova de seleção para o mestrado em Matemática 2016.2

26 de Agosto de 2023

Exercício 1. Escreva a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ cujo núcleo seja a reta y = x e a imagem seja a reta y = 2x.

Demonstração. Considere a base $\alpha = \{(1,1),(1,0)\}$. Então, dado qualquer vetor $(x,y) \in \mathbb{R}^2$, temos que

$$(x,y) = y(1,1) + (x-y)(1,0).$$

Pondo T(1,1)=(0,0) e T(1,0)=(2,1), a transformação linear

$$T\colon \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (2x - 2y, x - y),$$

satisfaz o enunciado.

Exercício 2. Seja \mathbb{V} os espaço vetorial das funções de \mathbb{R} em \mathbb{R} e considere $\mathbb{W}_1 = \{f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = f(-x)\}$ e $\mathbb{W}_2 = \{f : \mathbb{R} \longrightarrow \mathbb{R}; f(x) = -f(-x)\}.$

- (a) Mostre que \mathbb{W}_1 e \mathbb{W}_2 são subespaços vetoriais de \mathbb{V} .
- (b) Mostre que $W_1 \oplus W_2$.

Demonstração.

- (a) Óbvio.
- (b) Seja $f \in \mathbb{V}$. Então

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{h(x)}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{g(x)}}.$$

Note que

$$h(-x) = \frac{f(-x) + f(-(-x))}{2} = \frac{f(x) + f(-x)}{2} = h(x),$$

ou seja, h(x) é uma função par. De forma semelhante, temos que

$$g(-x) = \frac{f(-x) - f(-(-x))}{2} = \frac{f(-x) - f(x)}{2} = -\left(\frac{f(x) - f(-x)}{2}\right) = -g(x),$$

ou seja, g(x) é uma função ímpar. Logo f é soma de uma função par com uma função ímpar.

Exercício 3. Sejam E, F espaços vetoriais de mesma dimensão finita n. Mostre que uma transformação linear $T: E \longrightarrow F$ é injetiva se, e somente se, é sobrejetiva. A afirmação contínua verdadeira em espaços de dimensão infinita? Se verdadeira prove e se falsa dê um contraexemplo.

Demonstração.

(a)

 \Rightarrow Suponhamos Tinjetiva. Sabemos então que $N(T)=\{0\}.$ Segue do **Teorema do Núcleo e da Imagem** que

$$\dim E = \dim N(T) + \dim Im(T)$$

$$= 0 + \dim Im(T)$$

$$= \dim F,$$

ou seja, T é sobrejetiva.

 \Leftarrow Suponhamos Tsobrejetiva. Então Im(T)=F. Segue do Teorema do Núcleo e da Imagem que

$$\dim E = \dim N(T) + \dim Im(T)$$

$$\dim E = \dim N(T) + \dim F$$

$$\Rightarrow \dim E - \dim F = \dim N(T) = 0,$$

ou seja, T é injetiva.

(b) Provamos no **item b do Exercício 5** que \mathbb{R} é um \mathbb{Q} -espaço vetorial de dimensão infinita. Evidentemente, \mathbb{R}^2 é também um \mathbb{Q} -espaço vetorial de dimensão infinita. Considere a transformação linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto x.$$

Essa transformação linear é sobrejetiva mas não é injetiva.

Exercício 4. Mostre que se $v_1, ..., v_n$ são autovetores distintos de uma transformação linear associados a autovalores distindos $\lambda_1, ..., \lambda_n$, então $v_1, ..., v_n$ são linearmente independentes.

Demonstração. Encontra-se em: https://math.stackexchange.com/questions/29371/ how-to-prove-that-eigenvectors-from-different-eigenvalues-are-linearly-independe (Não tankei essa demonstração.)

Exercício 5.

(a) Mostre que dois espaços vetoriais de mesma dimensão (finita) são isomorfos. Conclua que todo \mathbb{Q} -espaço vetorial de dimensão n é isomoformo a \mathbb{Q}^n .

(b) Mostre que $\dim_{\mathbb{Q}} \mathbb{R}$ é infinita.

Demonstração.

(a) Sejam V e W \mathbb{K} -espaços vetoriais de mesma dimensão n finita, $\alpha = \{v_1, ..., v_n\}$ uma base de V e $\beta = \{w_1, ..., w_n\}$ uma base de W. Pondo $T(v_i) = w_i$, para cada $1 \le i \le n$, obteremos uma transformação linear injetiva. Pelo **Exercício 3** essa transformação é sobrejetiva e, portanto, é um isomorfismo. Logo V e W são isomorfos.

Seja V um \mathbb{Q} -espaço vetorial de dimensão n. Como \mathbb{Q}^n é um \mathbb{Q} -espaço vetorial de dimensão n, basta tomarmos uma base α de V e uma base β de \mathbb{Q}^n e definir uma transformação linear injetiva, como definimos anteriormente.

(b) Basta notar que o conjunto

$$\alpha = \{e^n : n \in \mathbb{N}\},\$$

formado por todas as potências de e é LI e é infinito. Tal fato pode ser verifcado notando que a função $f: \mathbb{R} \longrightarrow \mathbb{R}, f(x) = e^x$ é monótona crescente.