Building a Semantic Search Engine

Outline

- 1. Sparse Embedding
- 2. Dense Embedding
- 3. Approximate Nearest Neighbor (ANN)
- 5. Production Considerations

About Us

Ravi Yadav <u>Linkedin</u>

Nidhin Pattaniyil Linkedin

Walmart: ML Engineers on the Search team

History of Information Retrieval

Hughes, Simon. "Semantic Product Search – Vector Search for E-Commerce." Conference Presentation at Haystack 2021, https://haystackconf.com/files/slides/haystack2021/Hughes-Haystack_2021_Semantic_Product_Search.pdf, September 29, 2021.

Token based retrieval

Boolean Retrieval

- Queries and documents are represented as bag of words
- Query terms are connected with boolean operators
- Scans through inverted index and retrieves documents that satisfies the condition
- Query: (beef OR chicken) AND stroganoff AND recipe
- Disadvantages:
 - Filtering more than retrieval
 - Terms have same weights
 - No ranking

BM25

idf - how popular is the term in the corpus?

$$bm25(d) = \sum_{t \in q, f_{t,d} > 0} \log \left(1 + \frac{N - df_t + 0.5}{df_t + 0.5} \right) \cdot \frac{f_{t,d}}{f_{t,d} + k \cdot (1 - b + b \frac{l(d)}{avgdl})}$$

$$\cdot \frac{f_{t,d}}{f_{t,d} + k \cdot (1 - b + b \frac{l(d)}{avgdl})}$$

saturation curve - limit influence of tf on the score

length weighing tweak influence of document length

Weber, Britta. "Improved Text Scoring with BM25." Conference Presentation at ElasticCon 2016, https://speakerdeck.com/elastic/improved-text-scoring-with-bm25, February 11, 2016.

Learning to Rank

Learning to Rank

- Documents and queries are represented as feature vectors (bag of words)
- Query, document and query-document features
 - Query Features: Number of words in query
 - Document Features: Pagerank, document length, inlink/outlink count...
 - Query-Document Features: BM25 score, TF*IDF score...
- RankNet, SVM-Rank, RankBoost, MART

Issues with Sparse Representation

- Lexical GAP: Covid vs Coronavirus vs Omicron variant
- Ambiguity: bank (institution) vs bank (geography)
- Position matters: "river bank" vs "bank river"
- <u>Lack of Contextualized embeddings</u>
 She will *park* the car so we can walk in the *park*.

Lab

Jupyter Hub: https://hub.np.training

Repo: https://bit.ly/search-workshop-2022

Lab 1 Goals

- Explore tokenization and some preprocessing
- Building a simple in-memory retrieval system using BM-25

Embedding Based Retrieval

Dense Embeddings

Word Representation

car: [0.2 , 0.3, 0.7]

automobile: [0.2, 0.3, 0.7]

Similar concepts have similar embeddings

Regardless of content length, similar items should have similar embeddings

Size of embedding is independent of #tokens

Review Representation

Word2Vec

- Published in 2013
- Represent each word as a dense vector
- Uses a neural network model to capture linguistic concept of words

Instagram: ig2Vec

Medvedev, Ivan, Haotian Wu, and Taylor Gordon. "Powered by AI: Instagram's Explore Recommender System." Powered by AI: Instagram's Explore recommender system, November 2019. https://ai.facebook.com/blog/powered-by-ai-instagrams-explore-recommender-system/

BERT

Input to the model, contains token, segment and position embedding

Image from BERT paper https://arxiv.org/pdf/1810.04805.pdf

BERT

- BERT is composed of multiple encoders
- There is embedding for each token after each encoder
- Sentence embedding can be created from pooling
- Pooled embeddings are not best for similarity search

Sentence Pair Encoder - Cross-encoder

Pros

Accurate classification

Cons

- Need new encoding for each pair
- Computationally inefficient for information retrieval.

Sentence Pair Encoder - Bi-Encoder

Pros

- Each sentence is encoded separately
- Distance between two sentence embeddings can be measured
- Faster and more computationally efficient

Cons

 Bi-encoders performance is poor compared to cross-encoders for supervised learning problems

Different types of negatives

Easy: Distance inequality: d(a, p) + m < d(a, n)Semihard: Distance inequality: d(a, p) < d(a, n) < d(a, p) + mHard: Distance inequality: d(a, n) < d(a, p)

Multiple Modality: Vision Transformers (ViT)

- Vision Transformer models like
 CLIP model uses two encoders
 (text and image).
- These two models are trained in parallel and optimized via a contrastive loss function
- End result is where you can search by text or image

Encoder can include metadata from multiple fields

Figure 5: Two-tower model architecture for Google Play app recommendation.

Lab

Jupyter Hub: https://hub.np.training

Repo: https://bit.ly/search-workshop-2022

Lab 2 Goals

- Explore sub word tokenization
- Building a simple in-memory retrieval system using a language model
- Building a simple in-memory retrieval system using a multi-modal model like CLIP

Approximate Nearest Neighbors

Inverted File Index: Building

- Find centroid and create Voronoi Cells
- Number of centroids is determined by nlist parameter

Inverted File Index: Building

 Built Voronoi Index with 15 centroids centroids

- Memory usage is not reduced
- But retrieval is faster

Inverted File Index: Searching

- Find the distance between query vector and all the centroids
- Query all the elements inside the n closest cluster determined by nprobe parameter

nprobe = 1

Inverted File Index: Searching

- Increasing the value of **nprobe**, improves recall but increases latency
- If nprobe=nlist, similar to flat index

Hierarchical Navigable Small Worlds (HNSW)

- Hierarchical Graph
- Every layer stores neighbors
- Earlier layers are sparse

 Common implementation in most production ANN databases

The search process through the multi-layer structure of an HNSW graph.

ANN Benchmarks

Recall/Queries per second (1/s)

Recall

Source:
ANN Benchmarks

Subset

Lot of ANN Option

FAISS

Pinecone

Evaluation Considerations

- Managed vs Self-hosted
- Performance
- Update Embeddings / Partial Updates
- Metadata Filtering
- Filtering / Hybrid Retrieval
- Plugins

Filtering

٨ **Query Vector** filter: lang=python Valid Candidates #results = 10

Closest 10 candidates don't meet our filter

Hybrid / Full Retrieval

- In ES, **disjunction** of knn and bm25 match.
- The score of each hit is the sum of the knn and query scores. A boost can be specified

```
POST image-index/_search
 "query": {
   "match": {
     "title": {
        "query": "mountain lake",
        "boost": 0.9
  "knn": {
   "field": "image-vector",
   "query_vector": [54, 10, -2],
   "k": 5,
   "num candidates": 50,
   "boost": 0.1
 },
 "size": 10
```

ElasticSearch example of Hybrid Retrieval Ex from Elastic Doc link

Lab

Jupyter Hub: https://hub.np.training

Repo: https://bit.ly/search-workshop-2022

Lab 3 Goals

- Build a flat ANN index
- Optimize retrieval by building an IVF Index

Conclusion

Multi Source Retrieval

Spotify Podcast Episode Search

Retrieval from ES + ANN + other sources

Multi Stage Retrieval and Ranking

In 2019, Instagram Explore feed was made of

- Sparse Retriever: 500 candidates
- Lightweight
 NN: 150 ->50
- Deep Neural
 Network: 50 ->
 25

Medvedev, Ivan, Haotian Wu, and Taylor Gordon. "Powered by AI: Instagram's Explore Recommender System." Powered by AI: Instagram's Explore recommender system, November 2019.

Overview of Taobao Search

Training (Offline)

Oldridge, Even. "Recommender Systems, Not Just Recommender Models | by Even Oldridge | NVIDIA Merlin | Medium." Medium, June 27, 2022. https://medium.com/nvidia-merlin/recommender-systems-not-just-recommender-models-485c161c755e.

	Retrieval	Filtering	Scoring	Ordering
Music Discovery	Find similar songs based on nearest neighbour search	Remove tracks users listened before	Predict likelihood that a user will listen to a song	Trade-Off between score, similarity, BPM, etc
Social Media	Find new posts in user's network	Remove posts from blocked and muted users	Predict likelihood that a user will interact with it	Change order that adjust posts are from different authors
Online Store	Find items which are usually co-purchased	Remove items which are out of stock	Predict likelihood that a user will purchase an item	Reorder items based on price points
Streaming Service	Find items based on different rows/shelves/topics	Remove items which are not available for user's country	Predict user's stream time per item	Organize recommendations to fit genre distributions

Oldridge, Even. "Recommender Systems, Not Just Recommender Models | by Even Oldridge | NVIDIA Merlin | Medium." Medium, June 27, 2022. https://medium.com/nvidia-merlin/recommender-systems-not-just-recommender-models-485c161c755e.

Zipfian Distribution of Web Traffic

Enhancing Sparse Index: Doc2Query / Doc2T5Query

- Use a causal language model to generate additional text to add to documents when indexing.
- At retrieval time, use BM25

Benchmarking

Dataset	BM25	Dense (TAS-B)		BM25 on docT5query	BM25 + Cross Encoder
Baseline (MS MARCO)	0.228	0.408	_	0.338	0.413
Quora	0.789	0.835	-	0.802	0.825
DBPedia	0.313	0.384	_	<u>0.331</u>	0.409
_	_	_	_	_	_
TREC-COVID (Medical)	0.656	0.481	_	0.713	0.757
Signal-1M (Tweets)	0.330	0.289	-	0.325	0.338

Do models trained on MS MARCO work for different datasets ?

Dense Retrieval performs well on similar domain

COVID/Tweets are out of domain

BM25 + DR perform best

Cost to Serve

Model	Dimension	Latency (CPU)	Latency (GPU)	Index Size
BM-25	_	20 ms	_	0.4 GB
docT5Query	_	30 ms	_	0.4 GB
Dense Embedding Passage Retrieval	768	230 ms	19 ms	3 GB
BM25 + Cross Encoder	_	6100 ms	450 ms	0.4 GB

Estimated average retrieval latency and index sizes

Dataset: DBPedia (1 million docs)

Lower Latency and Index Size is preferred

CPU: 8 core Intel Xeon Platinum 8168 CPU @ 2.70GHz

GPU: 1 Nvidia Tesla V100

Thakur, Nandan, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, και Iryna Gurevych. 'BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models'. arXiv, 2021. https://doi.org/10.48550/ARXIV.2104.08663.

Resources

- ____
- Faiss Missing Manual (Pinecone)
- Natural Language Processing (NLP) for Semantic Search (Pinecone)
- <u>CIKM 2021 Tutorial: IR From Bag-of-words to BERT</u>
- Haystack US 2021 Semantic Product Search Vector
 Search for E-Commerce Simon Hughes

Hard and Soft Negative Mining

- Start training with positive and negative data (soft negative) points.
- Best negative samples are the ones similar to anchor based on current embeddings. (Hard Negative)
- Use Hard Negative to further optimize the embeddings.
- Two strategies
 - Local for mini-batch
 - Global
- Carefully select the hard negatives
 - o Anchor Query = cordless phone
 - o False Positives = corded phone