Métodos de Passos Múltiplos

Os métodos de passos múltiplos seguem uma abordagem parecida com a do Runge-Kutta. Da aula passada, temos:

$$S_{i+1} = S_i + \int_{t_i}^{t_{i+1}} F(S(t),t) dt$$

Agora, em vez de aproximar a integral usando alguma fórmula, vamos fazer o seguinte:

1. Dado o estado S_i , a derivada da função S(t) no instante t_i é dada por:

$$rac{dS(t_i)}{dt} = F(S(t_i), t_i) pprox F(S_i, t_i)$$

2. Dada uma aproximação da função $\frac{dS(t)}{dt}$ for conhecida (suponha que seja chamada de g(t)), ela poderá ser usada em:

$$\int_{t_i}^{t_{i+1}}F(S(t),t)dt=\int_i^{t_{i+1}}rac{dS(t)}{dt}dtpprox \int_{t_i}^{t_{i+1}}g(t)dt$$

Assim, podemos voltar para a expressão original fazendo:

$$S_{i+1}=S_i+\int_{t_i}^{t_{i+1}}g(t)dt$$

Observe que para cada valor de tempo obtido, podemos obter sua derivada usando $F(S_i,t_i)$. Assim, dados n instantes de tempos calculados, podemos encontrar a aproximação da derivada usando a expressão dada.

Portanto, podemos construir a função g(t) como uma função de interpolação passando pelas derivadas desses n estados calculados.

Método de passos múltiplos de segunda ordem (Adams-Bashforth)

Nesse método teremos dois pontos para calcular nossa função g(t), então apenas os pontos $(t_{i-1},F(S_{i-1},t_{i-1}))$ e $(t_i,F(S_i,t_i))$ serão usados para construir nossa função $\frac{dS(t)}{dt}\approx g(t)$. Nesse caso, a função será uma reta que pode ser facilmente escrita com as funções de interpolação de Lagrangue.

Usando o desenvolvimento que será omitido aqui, podemos chegar na seguinte fórmula:

$$ar{S}_{i+1} = S_i + rac{\Delta t}{2}(-Fi-1+3F_i)$$

Agora que temos uma estimativa para \bar{S}_{i+1} , podemos repetir o processo, construindo g(t) com base nos pontos $(t_i, F(S_i, t_i))$ e $(t_{i+1}, F(S_{i+1}, t_{i+1}))$

Aplicando o mesmo desenvolvimento que foi omitido, podemos chegar na seguinte fórmula:

$$S_{i+1}=S_i+rac{\Delta t}{2}(F_i+F_{i+1})$$

Okay! Mas para usar a fórmula de predição, precisamos do instante t_{i-1} , que precisa ser obtido por um outro método. Dessa maneira, o primeiro estado (S_1) , precisa ser obtido por um método de passo simples equivalente. Vamos sintetizar usando o Runge-Kutta:

- 1. Fase de inicialização: Obter o estado S_1 pelo método de Runge-Kutta de segunda ordem.
- 2. Fase de predição: Estimar o estado \bar{S}_{i+1}

$$ar{S}_{i+1} = S_i + rac{\Delta t}{2} (-F_{i-1} + 3F_i)$$

3. Fase de correção: Atualizar o estado de S_{i+1}

$$S_{i+1} = S_i + \Delta t \left(rac{1}{2} F(S_i, t_i) + rac{1}{2} (ar{S}_{i+1}, t_{i+1})
ight)$$

Note que a nossa correção pode ser repetida várias vezes, basta tomar o novo S como o \bar{S} e fazer o processo novamente.

Para o desenvolvimento de terceira ordem, o processo é o mesmo, mas usaremos três pontos. Com isso, precisaremos obter S_1 e S_2 pelo Runge-Kutta de segunda ordem. Como parte do exercício da aula 26, precisaremos desenvolver o Range-Kutta de **quarta-ordem**, usando o desenvolvimento das notas de aula.