

Inference for simple regression 1

Lecture 3

STA 371G

• Reminder: Pretest due at Thursday 11:59 PM

- Reminder: Pretest due at Thursday 11:59 PM
- The course help site ("Lecture slides and R help" on the left side of Canvas) now has review advice and links to review videos

- Reminder: Pretest due at Thursday 11:59 PM
- The course help site ("Lecture slides and R help" on the left side of Canvas) now has review advice and links to review videos
- Course help site also has lecture slides and scripts, and slides, scripts, and videos from Tuesday night R help sessions

- Reminder: Pretest due at Thursday 11:59 PM
- The course help site ("Lecture slides and R help" on the left side of Canvas) now has review advice and links to review videos
- Course help site also has lecture slides and scripts, and slides, scripts, and videos from Tuesday night R help sessions
- The "Class kickoff survey" closes tomorrow night; please complete it before then in Learning Catalytics to let me know of your previous experience (and so I can send you a free MyStatLab access code if you previously bought the 3rd edition of the book)

Measuring goodness-of-fit

• R^2 measures the fraction of the variation in Y explained by X; in our analysis from last time, $R^2 = 0.03$.

Measuring goodness-of-fit

- R^2 measures the fraction of the variation in Y explained by X; in our analysis from last time, $R^2 = 0.03$.
- The standard error of the regression s_e can be roughly interpreted as the standard deviation of the residuals.

• The residual for the *i*th case is $Y_i - \hat{Y}_i$

- The residual for the *i*th case is $Y_i \hat{Y}_i$
- The residuals are approximately Normally distributed

- The residual for the *i*th case is $Y_i \hat{Y}_i$
- The residuals are approximately Normally distributed
- The mean of the residuals is 0 (why?)

- The residual for the *i*th case is $Y_i \hat{Y}_i$
- The residuals are approximately Normally distributed
- The mean of the residuals is 0 (why?)
- Therefore: 95% of the residuals are roughly within $\pm 2s_e$

- The residual for the ith case is $Y_i \hat{Y}_i$
- The residuals are approximately Normally distributed
- The mean of the residuals is 0 (why?)
- Therefore: 95% of the residuals are roughly within $\pm 2s_e$
- In other words, 95% of the time I expect my prediction to be off by at most 5.93

In our regression, $R^2 = 0.03$. Is this "significant?"

In our regression, $R^2 = 0.03$. Is this "significant?"

• **Statistical significance:** Can we reject the null hypothesis that the correlation between *X* and *Y* in the *population* is zero?

In our regression, $R^2 = 0.03$. Is this "significant?"

- **Statistical significance:** Can we reject the null hypothesis that the correlation between *X* and *Y* in the *population* is zero?
- **Practical significance:** Is the relationship in our sample strong enough to be meaningful?

The following are equivalent ways to express the overall null hypothesis:

• $R^2 = 0$ (in the population)

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)
- $\beta_1 = 0$

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)
- $\beta_1 = 0$
- The model has no predictive power

- $R^2 = 0$ (in the population)
- cor(X, Y) = 0 (in the population)
- $\beta_1 = 0$
- The model has no predictive power
- Predictions from this model are no better than predicting \overline{Y} for every case

Two ways to test the overall null hypothesis

- The F-test (tests $H_0: R^2 = 0$ in the population vs $H_A: R^2 \neq 0$)
- The t-test for the slope (β_1) coefficient (tests $H_0: \beta_1 = 0$ vs $H_A: \beta_1 \neq 0$)
- Note that both tests are two-tailed, since we would care about the null hypothesis being wrong in either direction (i.e. $\beta_1 > 0$ and $\beta_1 < 0$ are both of interest)

Two ways to test the overall null hypothesis

- The F-test (tests $H_0: R^2 = 0$ in the population vs $H_A: R^2 \neq 0$)
- The t-test for the slope (β_1) coefficient (tests $H_0: \beta_1 = 0$ vs $H_A: \beta_1 \neq 0$)
- Note that both tests are two-tailed, since we would care about the null hypothesis being wrong in either direction (i.e. $\beta_1 > 0$ and $\beta_1 < 0$ are both of interest)

Both of these methods are equivalent; the *p*-values will be exactly the same!


```
> model <- lm(num.drinks ~ age)</pre>
> summary(model)
Call:
lm(formula = num.drinks ~ age)
Residuals:
   Min 10 Median 30
                             Max
-4.204 -1.853 -0.853 0.810 15.160
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.5542 0.2653 24.7 <2e-16 ***
age -0.1688 0.0159 -10.6 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3 on 3600 degrees of freedom
  (2902 observations deleted due to missingness)
Multiple R-squared: 0.0304, Adjusted R-squared: 0.0302
F-statistic: 113 on 1 and 3600 DF, p-value: <2e-16
```

• There is a **statistically significant** relationship between the age someone starts drinking and how much they drink as an adult.

- There is a statistically significant relationship between the age someone starts drinking and how much they drink as an adult.
- Or: People that start drinking earlier in life consume significantly more alcohol when they drink as adults.

- There is a statistically significant relationship between the age someone starts drinking and how much they drink as an adult.
- Or: People that start drinking earlier in life consume significantly more alcohol when they drink as adults.
- Each additional year you wait to start drinking is associated with consuming 0.17 fewer drinks as an adult.

- There is a statistically significant relationship between the age someone starts drinking and how much they drink as an adult.
- Or: People that start drinking earlier in life consume significantly more alcohol when they drink as adults.
- Each additional year you wait to start drinking is associated with consuming 0.17 fewer drinks as an adult.
- Is this relationship **practically significant**?

Practical significance

- To assess statistical significance, we look at the p-value
- To assess practical significance:
 - We only consider it if we already have statistical significance (why?)
 - Look at R², the standard error of the regression, and the magnitude of the coefficients
 - It's ultimately a judgement call!

• Our best estimate for the *effect* of a year's postponement of drinking is 0.17 fewer drinks as an adult

- Our best estimate for the effect of a year's postponement of drinking is 0.17 fewer drinks as an adult
- We can use a confidence interval to give a range of plausible values for what this effect size is in the population

A confidence interval is always of the form

estimate \pm (critical value)(standard error).

A confidence interval is always of the form

```
estimate \pm (critical value)(standard error).
```

Recall that the critical value for a 95% confidence interval is the cutoff value that cuts off 95% of the area in the middle of the distribution; the sampling distribution of $\hat{\beta}_1$ is a t-distribution.

```
> n <- nobs(model)
> qt(0.975, n-2)
[1] 1.960623
```

R will also calculate confidence intervals for us:

R will also calculate confidence intervals for us:

In other words, we are 95% confident that the effect of each additional year's delay in starting to drink is between 0.14 and 0.2.

We can also put a confidence interval on a prediction! Two kinds of intervals:

Confidence	Predicting the	Among all people that start drink-
	mean value of Y	ing at age 21, how many drinks do
	for a particular <i>X</i> .	have on average as adults?
Prediction	Predicting Y for a	If Bob started drinking at age 21,
	single new case.	how many drinks do we think will
		have as an adult?

```
> predict(model, list(age=21),
+ interval='confidence')
       fit
               lwr
                        upr
1 3.008664 2.83616 3.181167
> predict(model, list(age=21),
   interval='prediction')
       fit
                 lwr
                          upr
1 3.008664 -2.802894 8.820221
```



```
> predict(model, list(age=21),
+ interval='confidence')
       fit
              lwr
                       upr
1 3.008664 2.83616 3.181167
> predict(model, list(age=21),
+ interval='prediction')
       fit
                lwr
                         upr
1 3.008664 -2.802894 8.820221
```

Why is the prediction interval wider?

Because the p-value is small, we can be highly confident that there is a relationship in the population between age of first drink and number of drinks consumed as an adult.

Because the p-value is small, we can be highly confident that there is a relationship in the population between age of first drink and number of drinks consumed as an adult.

This could be because:

• Starting to drink earlier causes you to drink more as an adult.

Because the p-value is small, we can be highly confident that there is a relationship in the population between age of first drink and number of drinks consumed as an adult.

- Starting to drink earlier causes you to drink more as an adult.
- Being predisposed to drink more will cause you to start drinking sooner.

Because the p-value is small, we can be highly confident that there is a relationship in the population between age of first drink and number of drinks consumed as an adult.

- Starting to drink earlier causes you to drink more as an adult.
- Being predisposed to drink more will cause you to start drinking sooner.
- There is a third ("lurking") variable that causes both early drinking and drinking more as an adult.

Because the p-value is small, we can be highly confident that there is a relationship in the population between age of first drink and number of drinks consumed as an adult.

- Starting to drink earlier causes you to drink more as an adult.
- Being predisposed to drink more will cause you to start drinking sooner.
- There is a third ("lurking") variable that causes both early drinking and drinking more as an adult.

Because the p-value is small, we can be highly confident that there is a relationship in the population between age of first drink and number of drinks consumed as an adult.

This could be because:

- Starting to drink earlier causes you to drink more as an adult.
- Being predisposed to drink more will cause you to start drinking sooner.
- There is a third ("lurking") variable that causes both early drinking and drinking more as an adult.

We can't tell just by looking at this data set!

Regression to the mean

The value of Y will tend to be closer to the mean than X, on average (even if you switch X and Y!).

- Students who take the SAT again after getting a very low score tend to improve even if they don't receive any coaching
- Children of tall parents tend to be tall, but not as tall as their parents
- Olympic champions tend to have poorer performances following their Olympic victories
- The "Sports Illustrated curse" of athletes that appear on the cover

Regression to the mean

- In this graph, variables have been standardized,
 r = 0.8. and Ŷ = 0.8X
- Parent at mean →
 predict child height is also
 at the mean
- Parent 1 SD above mean
 → predict child height
 0.8 SD above the mean
- Parent 2 SD above mean
 → predict child height 1.6
 SD above the mean

Parent's height (z-score)