Bài tập cuối chương 3

A. Trắc nghiệm

Bài 3.12 trang 44 SGK Toán 10 tập 1: Cho tam giác ABC có $B = 135^{\circ}$. Khẳng định nào sau đây là đúng?

a)

A.
$$S = \frac{1}{2}$$
ca.

B.
$$S = \frac{-\sqrt{2}}{4}ac$$
.

C.
$$S = \frac{\sqrt{2}}{4}bc$$
.

D.
$$S = \frac{\sqrt{2}}{4}$$
 ca.

b)

A.
$$R = \frac{a}{\sin A}$$
.

B.
$$R = \frac{\sqrt{2}}{2}b$$
.

$$C. R = \frac{\sqrt{2}}{2}c.$$

D.
$$R = \frac{\sqrt{2}}{2}a$$
.

c)

A.
$$a^2 = b^2 + c^2 + \sqrt{2}ab$$
.

B.
$$\frac{b}{\sin A} = \frac{a}{\sin B}$$
.

C.
$$\sin B = \frac{-\sqrt{2}}{2}$$
.

D.
$$b^2 = c^2 + a^2 - 2ca.cos135^\circ$$
.

Lời giải:

Tam giác ABC có BC = a; AC = b; AB = c; $B = 135^{\circ}$.

a) Diện tích tam giác ABC:

$$S = \frac{1}{2}ac.\sin B = \frac{1}{2}ac.\sin 135^\circ = \frac{\sqrt{2}}{4}ac.$$

Chọn D.

b) Theo định lí sin, ta có:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

A.
$$R = \frac{a}{\sin A} \sin x$$
 $R = \frac{a}{2\sin A}$

B.
$$R = \frac{\sqrt{2}}{2}b$$

Mà
$$\sin B = \frac{\sqrt{2}}{2} \Rightarrow R = \frac{b}{2\sin B} = \frac{b}{2 \cdot \frac{\sqrt{2}}{2}} = \frac{\sqrt{2}}{2}b$$
.

Do đó B đúng.

C. $R = \frac{\sqrt{2}}{2}c$ (loại vì không có dữ kiện về góc C nên không thể tính R theo c).

D. $R = \frac{\sqrt{2}}{2}a$ (loại vì không có dữ kiện về góc A nên không thể tính R theo a).

Chon B.

c)

A.
$$a^2 = b^2 + c^2 + \sqrt{2}ab$$
.

Vì theo định lí côsin, ta có: $a^2 = b^2 + c^2 - 2bc$. $\cos A$

Không đủ dữ kiện để suy ra: $a^2 = b^2 + c^2 + \sqrt{2}ab$.

Do đó A sai.

B.
$$\frac{b}{\sin A} = \frac{a}{\sin B}$$
.

Theo định lí sin, ta có: $\frac{a}{\sin A} = \frac{b}{\sin B}$

Nên
$$\frac{b}{\sin A} \neq \frac{a}{\sin B}$$
.

Do đó B sai.

C.
$$\sin B = \frac{-\sqrt{2}}{2}$$
.

Vì theo câu a, $\sin B = \frac{\sqrt{2}}{2}$.

Do đó C sai.

D.
$$b^2 = c^2 + a^2 - 2ca$$
 . $cos135^\circ$. đúng.

Theo định lý côsin ta có:

$$b^2 = c^2 + a^2 - 2ca \cdot cosB$$
 (*)

Mà
$$B = 135^{\circ} \Rightarrow \cos B = \cos 135^{\circ}$$
.

Thay vào (*) ta được: $b^2 = c^2 + a^2 - 2ca \cdot \cos 135^\circ$.

Do đó D đúng.

Chọn D.

Bài 3.13 trang 44 SGK Toán 10 tập 1: Cho tam giác ABC. Khẳng định nào sau đây là đúng?

a)

A.
$$S = \frac{abc}{4r}$$
.

B.
$$r = \frac{2S}{a+b+c}$$
.

C.
$$a^2 = b^2 + c^2 + 2bc \cdot \cos A$$
.

D.
$$S = r(a + b + c)$$
.

b)

A.
$$\sin A = \sin(B + C)$$
.

B.
$$\cos A = \cos(B + C)$$
.

C.
$$\cos A > 0$$
.

D.
$$\sin A \le 0$$
.

Lời giải:

a)

A.
$$S = \frac{abc}{4r}$$
.

Ta có
$$S = \frac{abc}{4R}$$
. Mà $r < R$ nên $S = \frac{abc}{4R} < \frac{abc}{4r}$.

Do đó A sai.

B.
$$r = \frac{2S}{a+b+c}$$
.

Ta có:
$$S = pr \Rightarrow r = \frac{S}{p}$$
.

Mà
$$p = \frac{a+b+c}{2}$$

$$\Rightarrow r = \frac{S}{p} = \frac{S}{\frac{a+b+c}{2}} = \frac{2S}{a+b+c}.$$

Do đó B đúng.

C.
$$a^2 = b^2 + c^2 + 2bc \cdot cos A$$
.

Sai vì theo định lí côsin ta có: $a^2 = b^2 + c^2 - 2bc$. $\cos A$.

D.
$$S = r(a + b + c)$$
.

Sai vì
$$S = pr = r \cdot \frac{a+b+c}{2}$$
.

Chọn B.

b)

A.
$$sin A = sin(B + C)$$
.

Ta có
$$A + B + C = 180^{\circ}$$

$$\Rightarrow$$
 B + C = 180° - A

$$\Rightarrow$$
 sin(B + C) = sin(180° - A) = sin A.

Do đó, đáp án A đúng.

B.
$$\cos A = \cos(B + C)$$
.

Sai vì
$$\cos (B + C) = \cos(180^{\circ} - A) = -\cos A (\text{do } B + C = 180^{\circ} - A).$$

C. $\cos A > 0$.

$$\cdot$$
 Nếu $0^{\rm o} <$ A $< 90^{\rm o}$ thì cos A $>$ 0.

$$\cdot$$
 Nếu $90^{\circ} < A < 180^{\circ}$ thì $\cos A < 0$.

Do đó C không đủ dữ kiện để kết luận.

D. $\sin A \le 0$.

Ta có:
$$S = \frac{1}{2}bc.\sin A > 0$$

Mà b, c > 0 nên sin A > 0.

Do đó D sai.

Chon D.

B. Tự luận

Bài 3.14 trang 44 SGK Toán 10 tập 1: Tính giá trị các biểu thức sau:

a) $M = \sin 45^{\circ} \cdot \cos 45^{\circ} + \sin 30^{\circ}$;

b)
$$N = \sin 60^{\circ} .\cos 30^{\circ} + \frac{1}{2} \sin 45^{\circ} .\cos 45^{\circ};$$

c) $P = 1 + \tan^2 60^\circ$;

d)
$$Q = \frac{1}{\sin^2 120^\circ} - \cot^2 120^\circ$$
.

Lời giải:

a) $M = \sin 45^{\circ} \cdot \cos 45^{\circ} + \sin 30^{\circ}$

Ta có:
$$\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$$
; $\sin 30^\circ = \frac{1}{2}$.

Thay vào M, ta được:

$$M = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = 1.$$

b)
$$N = \sin 60^{\circ} .\cos 30^{\circ} + \frac{1}{2} \sin 45^{\circ} .\cos 45^{\circ}$$

Ta có:
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$
; $\cos 30^\circ = \frac{\sqrt{3}}{2}$; $\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$.

Thay vào N, ta được:

$$N = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{3}{4} + \frac{1}{4} = 1.$$

c)
$$P = 1 + \tan^2 60^\circ$$

Ta có: $\tan 60^{\circ} = \sqrt{3}$.

Thay vào P, ta được: $P=1+\sqrt{3}^2=1+3=4$.

d)
$$Q = \frac{1}{\sin^2 120^\circ} - \cot^2 120^\circ$$
.

Ta có:
$$\sin 120^\circ = \frac{\sqrt{3}}{2}$$
; $\cot 120^\circ = \frac{-1}{\sqrt{3}}$

Thay vào Q, ta được:

$$Q = \frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2} - \left(\frac{-1}{\sqrt{3}}\right)^2$$

$$=\frac{1}{\frac{3}{4}}-\frac{1}{3}=\frac{4}{3}-\frac{1}{3}=1.$$

Bài 3.15 trang 44 SGK Toán 10 tập 1: Cho tam giác ABC có $B = 60^{\circ}$, $C = 45^{\circ}$, AC = 10. Tính a, R, S, r.

Lời giải:

Theo dịnh lí sin:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

Ta có:

$$+ R = \frac{b}{2\sin B}.$$

Mà
$$b = AC = 10$$
, $B = 60^{\circ}$.

Nên R =
$$\frac{10}{2\sin 60^{\circ}} = \frac{10}{2 \cdot \frac{\sqrt{3}}{2}}$$

$$=\frac{10}{\sqrt{3}}=\frac{10\sqrt{3}}{3}$$
.

$$+R = \frac{a}{2\sin A} \Rightarrow a = 2R. \sin A.$$

Mà
$$R = \frac{10\sqrt{3}}{3}$$
, $A = 180^{\circ} - B - C = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}$.

Nên
$$a = 2.\frac{10\sqrt{3}}{3}$$
. $\sin 75^{\circ} \approx 11,15$.

Diện tích tam giác ABC là:

$$S = \frac{1}{2}ab.\sin C = \frac{1}{2}.11,15.10.\sin 45^{\circ} \approx 39,42 \text{ (dvdt)}$$

Khi đó:

+ R =
$$\frac{c}{2 \sin C}$$
 \Rightarrow c = $\frac{10\sqrt{3}}{3}$.2.sin 45° = $\frac{10\sqrt{6}}{3}$ \approx 8,16.

+
$$p = \frac{a+b+c}{2} \approx \frac{5,58+10+8,165}{2} \approx 14,66$$
.

$$+ r = \frac{S}{p} \approx \frac{48,3}{14,66} \approx 2,69.$$

Vậy a
$$\approx 11,15$$
; R = $\frac{10\sqrt{3}}{3}$, c $\approx 8,16$, r $\approx 2,69$.

Bài 3.16 trang 44 SGK Toán 10 tập 1: Cho tam giác ABC có trung tuyến AM. Chứng minh rằng:

- a) $\cos AMB + \cos AMC = 0$;
- b) $MA^2 + MB^2 AB^2 = 2MA.MB.\cos AMB$ và $MA^2 + MC^2 AC^2 = 2MA.MC.\cos$ AMC;

c)
$$MA^2 = \frac{2 AB^2 + AC^2 - BC^2}{4}$$
 (công thức đường trung tuyến).

Lời giải:

a) Ta có:
$$AMB + AMC = 180^{\circ}$$

$$\Rightarrow$$
 AMC = 180° – AMB

$$\Rightarrow \cos AMB = -\cos 180^{\circ} - AMB = -\cos AMC$$

$$\Rightarrow$$
 cosAMB + cosAMC = -cosAMC + cosAMC = 0

 $V_{ay} \cos AMB + \cos AMC = 0$ (dpcm)

b) Áp dụng định lí côsin trong ΔAMB, ta có:

$$AB^2 = MA^2 + MB^2 - 2MA.MB.\cos AMB$$

$$\Leftrightarrow$$
 MA² + MB² - AB² = 2MA.MB.cos AMB (1)

Áp dụng định lí côsin trong Δ AMC, ta có:

$$AC^2 = MA^2 + MC^2 - 2MA.MC.\cos AMC$$

$$\Leftrightarrow$$
 MA² + MC² - AC² = 2MA.MC.cos AMC (2)

Từ (1) và (2) suy ra điều phải chứng minh.

c)
$$T\dot{x}$$
 (1) suy ra: $MA^2 = AB^2 - MB^2 + 2MA.MB.\cos AMB$

Từ (2) suy ra:
$$MA^2 = AC^2 - MC^2 + 2MA.MC.\cos AMC$$

Cộng vế với vế, ta được:

$$2MA^2 = (AB^2 - MB^2 + 2MA.MB.\cos AMB) + (AC^2 - MC^2 + 2MA.MC.\cos AMC)$$

$$\Leftrightarrow$$
 2MA² = AB² + AC² - MB² - MC² + 2MA.MB.cos AMB + 2MA.MC.cos AMC

Mà
$$MB = MC = \frac{BC}{2}$$
 (do AM là trung tuyến) nên:

$$2MA^{2} = AB^{2} + AC^{2} - \left(\frac{BC}{2}\right)^{2} - \left(\frac{BC}{2}\right)^{2} + 2MA.MB.\cos AMB + 2MA.MB.\cos AMC$$

$$\Leftrightarrow 2MA^2 = AB^2 + AC^2 - 2 \cdot \left(\frac{BC}{2}\right)^2 + 2MA \cdot MB \cdot (\cos AMB + \cos AMC)$$

$$\Leftrightarrow 2MA^2 = AB^2 + AC^2 - \frac{BC^2}{2}$$

$$\Leftrightarrow MA^2 = \frac{AB^2 + AC^2 - \frac{BC^2}{2}}{2}$$

$$\Rightarrow \frac{AB^2 + AC^2 - \frac{BC^2}{2}}{2} - \text{(bổ dòng này đi)}$$

$$\Leftrightarrow MA^2 = \frac{2 \ AB^2 + AC^2 \ -BC^2}{4} \ (\text{cong thức đường trung tuyến}).$$

Bài 3.17 trang 44 SGK Toán 10 tập 1: Cho tam giác ABC. Chứng minh rằng:

- a) Nếu góc A nhọn thì $b^2 + c^2 > a^2$;
- b) Nếu góc A tù thì $b^2 + c^2 < a^2$;
- c) Nếu góc A vuông thì $b^2 + c^2 = a^2$.

Lời giải:

Theo định lí côsin, ta có: $a^2 = b^2 + c^2 - 2bc.cosA$

$$\Rightarrow$$
 b² + c² - a² = 2bc.cosA.

a) Nếu góc A nhọn thì $\cos A > 0 \Rightarrow 2b \cos A > 0$

Do đó:
$$b^2 + c^2 - a^2 = 2bc.\cos A > 0$$
.

Vậy
$$b^2 + c^2 > a^2$$
 (đpcm).

b) Nếu góc A tù thì $\cos A < 0 \Rightarrow 2b \cos A < 0$

Do đó:
$$b^2 + c^2 - a^2 = 2bc.cosA < 0$$
.

Vậy
$$b^2 + c^2 < a^2$$
 (đpcm).

c) Nếu góc A vuông thì $\cos A = 0 \Rightarrow 2b \cos A = 0$

Do đó:
$$b^2 + c^2 - a^2 = 2bc.\cos A = 0$$
.

Vậy
$$b^2 + c^2 = a^2$$
 (đpcm).

Bài 3.18 trang 45 SGK Toán 10 tập 1: Trên biển, tàu B ở vị trí cách tàu A 53 km về hướng N34°E. Sau đó, tàu B chuyển động thẳng đều với vận tốc có độ lớn 30 km/h về hướng đông và tàu A chuyển động thẳng đều với vận tốc có độ lớn 50 km/h để gặp tàu B.

- a) Hỏi tàu A cần phải chuyển động theo hướng nào?
- b) Với hướng chuyển động đó thì sau bao lâu tàu A gặp tàu B?

Lời giải:

a) Gọi t (giờ) là thời gian đi cho đến khi hai tàu gặp nhau tại C.

Tàu B đi với vận tốc có độ lớn 30 km/h nên quãng đường BC = 30t.

Tàu A đi với vận tốc có độ lớn 50 km/h nên quãng đường AC = 50t.

Theo định lí sin, ta có:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin ABC}$$
.

Trong đó: a = BC = 30t, b = AC = 50t, $B = 124^{\circ}$, $\alpha = BAC$.

Khi đó,
$$\frac{30t}{\sin \alpha} = \frac{50t}{\sin 124^{\circ}}$$

$$\Leftrightarrow \sin \alpha = \frac{30t \cdot \sin 124^{\circ}}{50t} = \frac{3\sin 124^{\circ}}{5} \approx 0,497$$

 $\Leftrightarrow \alpha \approx 30^{o}$ hoặc $\alpha \approx 150^{o}$ (loại).

Do đó AC hợp với hướng bắc một góc $34^{\circ} + 30^{\circ} = 64^{\circ}$.

Vậy tàu A chuyển động theo hướng N64°E.

b) Xét tam giác ABC, ta có: $A = 30^{\circ}$; ABC = 124° .

$$\Rightarrow$$
 C = 180° - (A + B) = 180° - (30° + 124°) = 26°.

Theo định lí sin, ta có:

$$\frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow a = \frac{c \cdot \sin A}{\sin C}$$

Mà
$$a = BC = 30t$$
, $c = AB = 53$, $A = 30^{\circ}$; $C = 26^{\circ}$.

Khi đó,
$$30t = \frac{53.\sin 30^{\circ}}{\sin 26^{\circ}}$$

$$\Leftrightarrow$$
 30t \approx 60

 \Leftrightarrow t \approx 2 (h)

Vậy sau 2 giờ thì tàu A gặp tàu B.

Bài 3.19 trang 45 SGK Toán 10 tập 1: Trên sân bóng chày dành cho nam, các vị trí gôn Nhà (Home plate), gôn 1 (First base), gôn 2(Second base), gôn 3 (Third base) là bốn đỉnh của một hình vuông có cạnh dài 27,4m. Vị trí đứng ném bóng (Pitcher's mound) nằm trên đường nối gôn Nhà với gôn 2 và cách gôn Nhà 18,44m. Tính các khoảng cách từ vị trí đứng ném bóng tới các gôn 1 và gôn 3.

Hình 3.21

Lời giải:

Kí hiệu gôn Nhà, gôn 1, gôn 2, gôn 3 và vị trí ném bóng lần lượt là các điểm A, B, C, D, O như hình vẽ.

Khi đó, tứ giác ABCD là hình vuông với đường chéo CA là tia phân giác của góc BCD. Hay OCD = ACD = 45°.

Ta có: CD = 27,4
$$\Rightarrow$$
 AC = CD . $\sqrt{2}$ = 27,4 . $\sqrt{2}$ \approx 38,75.

$$\Rightarrow$$
 OC = AC - OA \approx 38,75 - 18,44 = 20,31.

Xét tam giác OCD, áp dụng định lí côsin ta có:

$$OD^2 = CD^2 + CO^2 - 2.CD.CO. \cos ACD$$
.

Trong đó
$$CD = 27.4$$
; $CO = 20.31$; $ACD = 45^{\circ}$

Khi đó:
$$OD^2 = 27,4^2 + 20,31^2 - 2.27.20,31. \cos 45^\circ$$

$$\Leftrightarrow$$
 OD² \approx 376,255

$$\Leftrightarrow$$
 OD \approx 19,4 (m)

Xét \triangle COB và \triangle COD, có:

BC = CD (ABCD là hình vuông)

BCO = DCO = 45° (CA là tia phân giác của góc BCD)

Cạnh CO chung

Do đó
$$\triangle COB = \triangle COD$$
 (c.g.c)

Suy ra $OB = OD \approx 19,4$ (m) (hai cạnh tương ứng).

Vậy khoảng cách từ vị trí đứng ném bóng tới các gôn 1 và gôn 3 khoảng 19,4 m.