

七、晶体三极管的结构与工作原理

• 1、晶体三极管简介

晶体三极管,又称为晶体管、双极型晶体管(BJT)。

由于有三个电极, 所以称为晶体三极管。

• 2、晶体管的结构

同一硅片上制造出三个掺杂区域,并形成两个PN结,就构成了晶体管。

• 3、晶体管的两种类型

• 4、晶体管的电流放大作用

放大是对模拟信号最基本的处理。

传感器获得的电信号很微弱

- 只有经放大后才能做进一 步处理;
- 只有经放大后才能具有足 够大能量来驱动执行机构。

放大电路能够实现信号放大

- 晶体管是放大电路的核心 元件。
- 晶体管能够控制能量的转 换,将输入的任何微小变 化不失真的放大输出。

· 5、基本共射放大电路(NPN型)

晶体管最基本的放大电路为: 共射放大电路。

输入与输出共用发射极, 称为共射放大电路。

· 6、晶体管工作在放大状态的条件(NPN型)

晶体管工作在放大状态的外部条件是:发射结正偏且集电结反偏。

• 8、晶体管电流分配的关系

集电极电流 $I_{\rm C}$

$$I_C = I_{CN} + I_{CBO}$$

基极电流 IB

$$I_{\mathit{BN}} + I_{\mathit{CN}} = I_{\mathit{EN}}$$

$$I_B' = I_{BN} + I_{EP}$$

$$I_{\scriptscriptstyle B} = I_{\scriptscriptstyle B}$$
' $-I_{\scriptscriptstyle CBO}$

发射极电流 IE

$$I_E = I_{EP} + I_{EN}$$

$$I_E = I_B + I_C$$

八、共射放大电路的放大系数

• 1、基本共射放大电路(NPN型)

输入与输出共用发射极,称为共射放大电路。

• 2、晶体管的共射直流放大系数

定义: 电流 I_{CN} 与 I_B 之比称为共射直流电流放大系数 β 。

$$\overline{\beta} = \frac{I_{CN}}{I_{B}}$$

多子电流在集电极和 基极间的分配比例

因为:
$$I_{OV} = I_{C} + I_{OBO}$$

$$I_{B} = I_{B} + I_{OBO}$$

所以:
$$\beta = \frac{I_{CN}}{I_B} = \frac{I_C - I_{CBO}}{I_B + I_{CBO}}$$

图:
$$I_C = /I_B + (1 + /3)I_{CBO}$$

令
$$I_B = 0$$
,电流 I_C 称为穿透电流 I_{CEO}
$$I_{CEO} = \left(1 + \overline{\beta}\right)I_{CBO}$$

$$I_C = \overline{\beta}I_B + I_{CBO}$$

3、晶体管的共射交流放大系数

定义: 电流变化量 $\triangle i_{\rm C}$ 与 $\triangle i_{\rm B}$ 之比称为共射交流电流放大系数 β 。

$$\beta = \frac{\Delta i_C}{\Delta i_B}$$

集电极和基极 电流变化量之比

直流: $I_C = \beta I_B + I_{CEO}$

当 $|\Delta i_B|$ 变化较小时,对上式

求导: $\Delta i_C = \overline{\beta} \Delta i_B$

因此:
$$\beta = \frac{\Delta i_C}{\Delta i_R} = \overline{\beta}$$

某<mark>直流量</mark>下的 $_{\beta}$ 直流电流放大系数 $_{\beta}$

代替

该直流量基础上附加<mark>动态信号</mark>的 交流电流放大系数 β

• 4、共射放大电路中的总电流

晶体管中的总电流为直流电流与交流电流之和。

• 近似计算时,不需要对 β 和 β 加以区分,统一写为 $i_C \approx \beta i_B$ 。

九、共基放大电路的放大系数

· 1、基本共基放大电路(NPN型)

输入与输出共用基极, 称为共基放大电路。

· 2、共基直流电流放大系数

定义: 电流 I_{CN} 与 I_{E} 之比称为共基直流电流放大系数 α 。

$$\frac{-}{\alpha} = \frac{I_{CN}}{I_E}$$

集电极和发射极间多 子电流的比例

因为:
$$I_{CV} = I_C - I_C$$

所以
$$\overline{\alpha} = \frac{I_{CN}}{I_{E}} = \frac{I_C - I_{CBO}}{I_E}$$

整理:
$$I_C = \alpha I_E + I_{CBC}$$

• 3、共基交流电流放大系数

定义: 电流变化量 $\triangle i_c$ 与 $\triangle i_E$ 之比称为共基交流电流放大系数 α 。

$$\alpha = \frac{\Delta i_C}{\Delta i_E}$$

集电极和发射极电流变化量之比

直流: $I_C = \alpha I_E + I_{CBO}$

 $| \Delta i_{\rm E} |$ 变化较小时,对上式

求导: $\Delta i_C = \alpha \Delta i_E$

因此: $\alpha = \frac{\Delta i_C}{\Delta i_F} = \alpha$

某<mark>直流量</mark>下的 α 直流电流放大系数 α

代替

该直流量基础上附加<mark>动态信号</mark>的 交流电流放大系数 α

• 4、共基放大电路中的总电流

晶体管中的总电流为直流电流与交流电流之和。

• 近似计算时,不需要对 α 和 α 加以区分,统一写为 $i_C \approx \alpha i_E$ 。

• 5、共射放大系数与共基放大系数的关系

直流

$$\overline{\beta} = \frac{I_{CN}}{I_{B'}} \qquad I_{E} = I_{B} + I_{C}$$

$$\overline{\alpha} = \frac{I_{CN}}{I_{E}} \qquad I_{B'} = I_{B} + I_{CBO}$$

$$I_{CN} = I_{C} - I_{CBO}$$

$$\overline{\alpha} = \frac{I_{CN}}{I_{CN} + I_{CBO} + I_{B}} = \frac{I_{CN}}{I_{CN} + I_{B}}$$

$$= \frac{\frac{I_{CN}}{I_{B}'}}{\frac{I_{CN}}{I_{B}'} + 1} = \frac{\overline{\beta}}{\overline{\beta} + 1}$$

交流

$$\beta = \frac{\Delta i_C}{\Delta i_B}$$

$$\alpha = \frac{\Delta i_C}{\Delta i_E}$$

$$\Delta i_E = \Delta i_B + \Delta i_C$$

$$\alpha = \frac{\Delta i_C}{\Delta i_E}$$

$$\alpha = \frac{\Delta i_C}{\Delta i_E} = \frac{\Delta i_C}{\Delta i_C + \Delta i_B}$$

$$= \frac{\frac{\Delta i_C}{\Delta i_B}}{\frac{\Delta i_C}{\Delta i_B} + 1} = \frac{\beta}{\beta + 1}$$

十、晶体管的共射特性曲线

• 1、共射放大电路的关键参数

• 2、载流子的简化

为了更好的理解输入与输出特性,对晶体管中的载流子进行简化。

• 3、输入特性曲线

输出端管压降 U_{CE} 一定的情况下,输入回路的基极电流 i_B 与发射结压降 u_{BE} 间的函数关系。

$$i_B = f\left(u_{BE}\right)\Big|_{U_{CE} = const}$$

· 3、输入特性曲线

• 3、输入特性曲线

4、输出特性曲线

输入端基极电流 I_B 一定的情况下,输出回路的集电极电流 i_C 与管压降 u_{CE} 间的函数关系。

$$i_C = f\left(u_{CE}\right)\Big|_{I_B = const}$$

饱和区

- 条件: 发射结和集电结均正偏(u_{BE})
 ≥ U_{on}且u_{CE} < u_{BE})
- ·特点: ic 随 ucr 的增大而逐渐增大。
- 电流关系: i_C < βi_B

截止区

- 条件: 发射结电压小于开启电压且
 集电结反偏(u_{BE} < U_{on} 且u_{CE} > u_{BE})
- 特点: 晶体管截止, 输出电流为零

4、输出特性曲线

放大区

- 条件: 发射结正偏, 集电结反偏 $(u_{\rm BE} \ge U_{\rm on} \perp u_{\rm CE} > u_{\rm BE})$
- · 特点: ic 几乎仅仅取决于 iB. 而与 u_{CE} 无关。
- 放大区体现了输入电流ip对输出电 流ic的控制作用,实现了电流放大。

• 直流:
$$I_C = \overline{\beta}I_B$$

• 交流: $\Delta i_C = \beta \Delta i_B$ $I_C = \beta i_B$

• 交流:
$$\Delta i_C = \beta \Delta i_B$$

在模拟电路中,一般情况下晶体管都工作在放大状态。

临界状态

- 条件: 发射结正偏,集电结电压为0
 (u_{BE} ≥ U_{on}且u_{CE} = u_{BE})
- 特点:处于饱和区和放大区的交界
 处,称为临界饱和或临界放大状态。

饱和导通压降 Uces

- · 晶体管饱和导通时c-e两端压降。
- $u_{CE} > U_{CES}$ 时,放大区, u_{CE} 不变
- $u_{CE} < U_{CES}$ 时,饱和区, $u_{CE} = U_{CES}$

- 5、晶体管工作状态的判断
 - ① 判断是否导通

- · 根据b-e间电压 uRE 判断晶体管导通还是截止。
- 若导通,则进行第②步判断。

② 判断是放大还是饱和状态

假设验证法:假设处于放大或饱和状态,然后计算晶体管的电压和电流,判断假设是否成立,从而确定工作状态。

- 例3: 已知晶体管 β = 100, $U_{\rm ON}$ = 0.7,饱和管压降 $U_{\rm CES}$ = 0.4 V;稳压管稳定电压 $U_{\rm Z}$ = 4 V,正向导通电压 $U_{\rm D}$ = 0.7 V,稳定电流 $I_{\rm ZM}$ = 25 mA,最大稳定电流 $I_{\rm ZM}$ = 25 mA。
- 试问: 当u_I分别为0 V、1.6 V、2.5 V时, u_O各为多少?

• ① $u_1 = 0 \text{ V}$

去掉晶体管,计算b-e间电压:

$$u_{BE} = u_I = 0 < U_{ON} = 0.7V$$

因此, 晶体管截止。

假设: 稳压管工作在稳压状态。 则稳压管电流:

$$I_{D_z} = \frac{V_{CC} - U_z}{R_c} = 8mA$$

$$I_Z \le I_{D_Z} = 8mA \le I_{ZM}$$

因此, 稳压管工作在稳压状态。

输出电压:

$$u_O = U_Z = 4V$$

• ② $u_1 = 1.6 \text{ V}$

去掉晶体管,计算b-e间电压:

$$u_{BE} = u_I = 1.6V > U_{ON} = 0.7V$$

因此,晶体管导通。

假设:晶体管工作在放大状态。 去掉稳压管,则电流:

$$I_{B} = \frac{u_{I} - U_{ON}}{R_{b}} = 0.09 mA$$

$$I_C = \beta I_B = 9mA$$

$$u_{CE} = V_{CC} - I_C R_c = 3V > U_{CES}$$

因此,晶体管工作在放大状态。

稳压管截止,输出电压:

$$u_O = u_{CE} = 3V$$

• ③ $u_1 = 2.5 \text{ V}$

去掉晶体管,计算b-e间电压:

$$u_{BE} = u_I = 2.5V > U_{ON} = 0.7V$$

因此,晶体管导通。

假设:晶体管工作在放大状态。 去掉稳压管,则电流:

$$I_{B} = \frac{u_{I} - U_{ON}}{R_{b}} = 0.18 mA$$

$$I_C = \beta I_B = 18mA$$

$$u_{CE} = V_{CC} - I_C R_c = -6V < U_{CES}$$

因此,晶体管工作在饱和状态。

稳压管截止,输出电压:

$$u_O = U_{CES} = 0.4V$$

十一、晶体管的主要参数

• 1、三类主要参数 三类主要参数 直流参数 交流参数 极限参数

> 直流信号 (静态)

交流信号 (动态)

安全工作

• 2、直流参数

共射直流电流放大系数 β

共基直流电流放大系数 $_{lpha}^{-}$

$$\overline{\alpha} = \frac{I_{CN}}{I_E} = \frac{I_C - I_{CBO}}{I_E}$$

• 忽略 I_{CBO} 时, $\alpha \approx \frac{I_C}{I_F}$

两者间关系

$$\overline{\alpha} = \frac{\beta}{\overline{\beta} + 1}$$

2、直流参数

极间反向电流

发射结开路时,集电结的 反向饱和电流 I_{CBO} 。

基极开路时,集电极与发射极间的穿透电流 I_{CEO} 。

$$I_{CEO} = \left(1 + \overline{\beta}\right) I_{CBO}$$

同一型号的管子,反向电流越小,性能越稳定。

3、交流参数

共射交流电流放大系数 β

$$\beta = \frac{\Delta i_C}{\Delta i_B}$$

- · 选用管子时, ß 要适中。
 - 太小则放大能力不强;
 - 太大则温度稳定性差。

共基交流电流放大系数 α

$$\alpha = \frac{\Delta i_C}{\Delta i_F}$$

两者间关系

$$\alpha = \frac{\beta}{\beta + 1}$$

3、交流参数

晶体管中PN结存在结电容,交流放大系数β是所加信号频率f的函数。

4、极限参数

为使晶体管安全工作,需对其电压、电流、功率损耗进行限制。

4、极限参数

最大集电极电流 I_{CM}

 $i_{\rm C}$ 在相当大的范围内 β 值基本不变。

当 $i_{\rm C}$ 的数值增大到一定程度时, β 值将减小。 使 β 值明显减小的 $i_{\rm C}$ 值,即为最大集电极电流 $I_{\rm CM}$ 。

对小功率管: $\exists u_{CE} = 1 \text{ V时},$ 由 $P_{CM} = i_{C}u_{CE}$ 得出的 i_{C} 即为 I_{CM} 。

4、极限参数

极间反向击穿电压

晶体管某一电极开路时,另外两个电 极间所允许的最高反向电压。

$U_{\mathrm{BR(CBO)}}$

发射级e开路时, 集电极c与基极b间 的反向击穿电压。

几十伏到上千伏

$U_{\rm BR(CEO)}$

基极b开路时,集
 电极c与发射级e间
 的反向击穿电压。

$U_{\rm BR(EBO)}$

集电极c开路时, 发射极e与基极b间 的反向击穿电压。

• 1伏以下到几伏

十二、温度对晶体管的影响

• 1、温度对 I_{CBO} 的影响

发射结开路时,集电结的 反向饱和电流 I_{CBO} 。 温度升高, 热运动加剧

少子浓度增大

少子漂移电流增大

集电结反向饱和电流 IcBo 增大

温度每升高10℃, I_{CBO} 约增大一倍。

由于 $I_{CEO} = (1 + \overline{\beta})I_{CBO}$,温度变化时, I_{CEO} 也会相应变化。

• 2、温度对输入特性的影响

与二极管伏安特性类似,温度升高时,正向特性将左移。

3、温度对输出特性的影响

$$I_C = \beta I_B + I_{CEO}$$

温度升高,多子运动变得剧烈,多子穿越基区时复合概率变小,到达集电区的数量增多。

 $I_{\rm c}$ 增大

I_{CEO} 增大

在相同的 I_B 情况下,集电极电流 I_C 随温度上升而增大。

晶体管的β随温度的升 高而增大。

温度每上升1℃,β值约增大0.5~1%。

十三、光电三极管

• 1、光电三极管简介

光电三极管依据光照的强度来控制集电极电流的大小。

• 2、光电三极管的输出特性曲线

光电三极管通过光照强度 E 来控制基极电流 i_B 的大小。

除基极电流的来源不同外,光电三极管在其他方面与晶体管类似。

2、光电三极管的输出特性曲线

光电三极管依据光照强度 E 来控制集电极电流 i_c 的大小。

当 uCE 足够大时,ic 几乎仅仅取决于入射光强 E, 类似晶体管放大区。

十四、NPN型与PNP型晶体管

• 1、结构与符号

根据结构的不同,可以将晶体管分为NPN型、PNP型两类。

• 2、基本共射放大电路

由于晶体管结构相反, 共射放大电路的电源、电流、电压也相反。

PNP型 输入特性曲线

5、工作状态

管子类型	开启电压 U _{ON}	截止区	放大区	饱和区
		发射结截止 集电结反偏	发射结正偏 集电结反偏	发射结正偏 集电结正偏
NPN型	U _{ON} > 0	$u_{\mathrm{BE}} < U_{\mathrm{ON}}$ \blacksquare $u_{\mathrm{CE}} \geq u_{\mathrm{BE}}$	$u_{\mathrm{BE}} > U_{\mathrm{ON}}$ \coprod $u_{\mathrm{CE}} \geq u_{\mathrm{BE}}$	$u_{\rm BE} > U_{\rm ON}$ \perp $u_{\rm CE} < u_{\rm BE}$
PNP型	<i>U</i> _{ON} < 0	$u_{\rm BE} > U_{\rm ON}$ \blacksquare $u_{\rm CE} \leq u_{\rm BE}$	$u_{\mathrm{BE}} \leq U_{\mathrm{ON}}$ 且 $u_{\mathrm{CE}} \leq u_{\mathrm{BE}}$	$u_{\rm BE} < U_{\rm ON}$ \perp $u_{\rm CE} > u_{\rm BE}$