0x14 - Introduction to Async

ENGR 3410: Computer Architecture

Jon Tse

Fall 2020

Housekeeping

NINJAs to have grading done by end of Nov

Project Proposal feedback ASAP

Review

• Combinational Circuits - No feedback, no state

Sequential Logic - Feedback or state

Representing Data

Time as the differentiator...

Representing Data

Time as the differentiator...

Representing Data

Time as the differentiator...

Sampling Data

1 cu2

Setup and Hold

Clocks are Important

Grant validity to data

Allow us to synchronize circuits

Grant us some noise immunity

E=12002 p=125002

But... they always switch

and they're not perfect....

Solving Skew: Clock Tree

Spatial Layout: H-Tree

Clock Gating to Save Power

Seems Inelegant...

Clocks define when data is valid

- Lots of special casing requiring control circuits
 - Clock gating
 - Clock skew/jitter
 - Multi-cycle
 - Pipeline stalls

Need to close timing on the whole chip

Transmit Data from W to E

There must be a better way!

What if "valid" was explicit?

Implications?

If there is no new data, no active power!

What happens if a stage stalls?

Pipelining

Tree FIFO

Slack Matching

Transmit Data from W to E

Transmit Data from W to E

Average Case Behavior

4-bit Ripple Carry Adder

https://www.gatevidyalay.com/ripple-carry-adder/ https://en.wikipedia.org/wiki/Kogge%E2%80%93Stone_adde

Average Carry Length

Fig. 4. Radix-4 Ripple-Adder Carry-Length

https://avlsi.csl.yale.edu/~rajit/ps/fpa.pdf

Multi-Cycle ALU

ULSNAP Teaser

Fig. 2: ULSNAP Architecture

Problem Pushing

Synchronous

- Whole chip timing
- Lots of complexity and special cases
- Some noise immunity
- Lots of power lost to clock

Asynchronous

- Localized timing considerations
- Reduced control complexity (by a lot)
- Noise is an issue depending on circuit family
- No active power when idle!

Some Cool Ideas

Obfuscated Silicon

Easy to Design Processors

Neural Network Processors

Obfuscated Silicon

Fig. 1: 3-Input C-Element FEOL

(a) Schematic

PVT Variation Robustness

FPGA

FPGA Pipelining

7 Chips, 7 Years