Regenerative comparator (Schmitt trigger)

- Input is given to inverting terminal
- Feedback voltage is given to noninverting terminal
- Input triggers output every time it exceeds certain voltage levels
- The voltage levels are
 - Upper threshold voltage (V_{UT})
 - Lower threshold voltage (V_{LT})

Regenerative comparator (Schmitt trigger)

assume that v+ >V

• Let,
$$v_{out} = +V_{sat}$$

Then, voltage at non-inverting terminal is

$$\frac{R_{1}}{R_{1} + R_{2}} V_{ref} + \frac{R_{2}}{R_{1} + R_{2}} V_{sai}$$

Let,
$$v_{out} = -V_{sat}$$

Then, voltage at non-inverting terminal is

$$\frac{R_1}{R_1 + R_2} V_{ref} - \frac{R_2}{R_1 + R_2} V_{sat}$$

Regenerative comparator (Schmitt trigger)

The transfer characteristic of Schmitt trigger circuit

$$V_{UI} = \frac{R_1}{R_1 + R_2} V_{ref} + \frac{R_2}{R_1 + R_2} V_{sat}$$

$$V_{LT} = \frac{R_1}{R_1 + R_2} V_{ref} - \frac{R_2}{R_1 + R_2} V_{sat}$$

If sinusoidal input is given, square wave results

In the circuit of Schmitt trigger of Fig. 5.8 (a), $R_2 = 100 \,\Omega$, $R_1 = 50 \,\mathrm{k}\Omega$, $V_{\mathrm{ref}} = 0V$, $v_i = 1V_{\mathrm{pp}}$ (peak-to-peak) sine wave and saturation voltage = \pm 14V. Determine threshold voltages V_{UT} and V_{LT} .

Solution

From Eqs. (5.1) and (5.2)

$$V_{\text{UT}} = \frac{100}{50100} \times 14 = 28 \text{ mV}$$

$$V_{\text{LT}} = \frac{100}{50100} \times (-14) = -28 \text{ mV}$$

Dr. E Paul Brainean

A Schmitt trigger with the upper threshold level $V_{\rm UT}=0\rm V$ and hysteresis width $V_{\rm H}=0.2\rm V$ converts a 1 kHz sine wave of amplitude $4\rm V_{pp}$ into a square wave. Calculate the time duration of the negative and positive portion of the output waveform.

$$V_{\text{UT}} = 0$$

 $V_{\text{H}} = V_{\text{UT}} - V_{\text{LT}} = 0.2 \text{ V}$
So, $V_{\text{LT}} = -0.2 \text{ V}$

the angle θ can be calculated as

$$-0.2 = V_m \sin (x + \theta) = -V_m \sin \theta = -2 \sin \theta$$
$$\theta = \arcsin 0.1 = 0.1 \text{ radian}$$

The period,
$$T = 1/f = 1/1000 = 1$$
 ms

$$wT_0 = 2\pi \ (1000) \ T_0 = 0.1$$

$$T_0 = (0.1/2 \,\pi) \,\mathrm{ms} = 0.016 \,\mathrm{ms}$$

$$T_1 = T/2 + T_0 = 0.516 \text{ ms}$$

$$T_2 = T/2 - T_0 = 0.484 \text{ ms}$$

