Hong Kong Temperature

Weather has always been an important topic for human beings. Therefore, in this project, we are going to build time series model on monthly historical temperature data of Hong Kong and forecast the temperature of different months of 2018. The temperature data is downloaded from Hong Kong Observatory. The link is http://www.hko.gov.hk/cis/monthlyElement uc.htm. We used the historical data from 1885 Jan to 2017 Dec and forecast temperature of different months of 2018.

The first step is to build time series model.

We first load the data, and then we subtract its mean from it. We plot it

We calculate its ACF and PACF

It is obvious the ACF shows seasonal pattern. Since we are using monthly data, we take lag=12, which is consistent with the ACF. After that, we plot the ACF again.

We see that the PACF shows seasonal exponential decay. The period is 12. Therefore, we suspect seasonal ARIMA(0,0,0)*(0,1,1,12). We fit the model and check the ACF of residuals. We got the following result.

Statespace Model Results

Dep. Variable	 e:		y No. C	bservations:	-2085.858			
Model:		MAX(0, 1, 1,	•	kelihood				
Date:		Tue, 08 May	2018 AIC			4175.716		
Time:		21	:51:41 BIC		4186.359			
Sample:			0 HC	QIC	4179.679			
			- 1512					
Covariance T	ype:		opg					
=======	coef	std err	z	P> z 	[0.025	0.975]		
ma.S.L12	-0.9102	0.010	-89.030	0.000	-0.930	-0.890		
sigma2	0.9316	0.026	35.612	0.000	0.880	0.983		
Ljung-Box (Q	========):	=======	 105.43 Ja	rque-Bera (JB	:=======):	146.47		
Prob(Q):				Prob(JB):	0.00			
Heteroskeda	eteroskedasticity (H): 1.12 Skew: -0.08				-0.08			
Prob(H) (two	Prob(H) (two-sided):			rtosis:		4.52		

Note that the p-value of Ljung-Box test is 0. Namely, the residuals are not white noise. We should adjust our model.

Let's look back to our model.

The first ACF term is larger than 0.2, which is significant. Therefore, we suspect the data comes from (1,0,0)*(0,1,1,12). We fit the model and check the ACF of residuals. We got the following result.

Statespace Model Results

Statespace Model Results									
Dep. Variable	2:			y No. Ol	oservations:		1512		
Model: SARI Date:		MAX(1, 0, 0)x(0, 1, 1, 12) Log Likelihood				-2047.210			
		,	Tue, 08 May 2	4100.420					
Time:			22:38:46 BIC			4116.384			
Sample:				0 HQ	IC		4106.365		
			-	1512					
Covariance Ty	ype:			opg					
========				=======		=======			
	coef	std err	Z	P> z	[0.025	0.975]			
ar.L1	0.2278	0.023	10.108	0.000	0.184	0.272			
ma.S.L12	-0.9248	0.010	-96.231	0.000	-0.944	-0.906			
sigma2	0.8836	0.024	36.264	0.000	0.836	0.931			
Ljung-Box (Q)	========):	=======		rque-Bera (JE		========= 183.02	====		
Prob(Q):			0.47	Prob(JB):		0.00			
Heteroskedasticity (H):			1.09 Skew	<i>I</i> :		-0.12			
Prob(H) (two-sided):			0.36 Kur	tosis:	4.69				

Note that the p-value of Jyung-box test is 0.47, which is very satisfactory. Moreover, the p-values of all coefficients are all close to 0, which means these coefficients are significant. This is our final model.

$$(1-0.2278B)(1-B^{12})(X_t-\mu)=(1+0.9248B^{12})a_t$$

Then we forecast temperature of different months of 2018.

The following is our forecast:

16.25943111 16.8828221 19.15698154 22.82703633 26.19575051 28.32051208 28.92710004 28.75853273 28.00080662 25.74414145 22.10149286 17.91269989

We also showed the actual temperature data from Jan to Apr 2018.

16.1

16.0

20.8

23.6

Indeed, we got very close estimate for the first 4 months.