Introduction to resampling methods

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Resampling workflow

Why resample?

Advantages

- Simple implementation procedure.
- Applicable to complex estimators.
- No strict assumptions.

Drawbacks

Computationally expensive.

Types of resampling methods

Let's practice!

STATISTICAL SIMULATION IN PYTHON

Bootstrapping

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Easter eggs

Easter eggs

Bootstrapping Easter eggs

Bootstrapped distribution

Bootstrap - Good to know

- Run at least 5-10k iterations.
- Expect an approximate answer.
- Consider bias correction.

Let's practice!

STATISTICAL SIMULATION IN PYTHON

Jackknife resampling

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Easter eggs

Easter eggs

Jackknifing Easter eggs

Jackknife estimate

Jackknife Estimate

$$\hat{\theta}_{jackknife} = \frac{1}{n} \sum_{i=1}^{n} \hat{\theta}_{i}$$

 $\hat{\theta}_{jackknife}$: Jackknife Estimate, $\hat{\theta}_i$: Estimate for each Jackknife Sample

Variance of Jackknife Estimate

$$Var(\hat{\theta}_{jackknife}) = \frac{n-1}{n} \Sigma (\hat{\theta}_i - \hat{\theta}_{jackknife})^2$$

 $\hat{\theta}_{jackknife}$: Jackknife Estimate $\hat{\theta}_i$: Estimate for each Jackknife Sample

Useful When underlying Distribution of the data is unknown

Jackknife vs Bootstrap

Jackknife

- Mean Weight = 51g
- 95% CI = [33.36g, 68.64g]

Leave one out resampling

Bootstrap

- Mean Weight = 50.8g
- 95% CI = [35g, 67.03g]

Sampling With replacement

Let's practice!

STATISTICAL SIMULATION IN PYTHON

Permutation testing

STATISTICAL SIMULATION IN PYTHON

Tushar ShankerData Scientist

Steps involved

Steps involved

Discussion

Advantages

- Very flexible
- No strict assumptions
- Widely applicable

Drawbacks

- Computationally Expensive
- Custom coding required

Donation website

Donation Website
Design Comparison

Let's practice!

STATISTICAL SIMULATION IN PYTHON

