Programming constructs in 2 calc.

 χ_{∞} . M

"Corrying"

$$(\lambda x. \lambda y. x+y) = \frac{1}{3}$$

$$(\lambda y. 3+y) = \frac{1}{3}$$

Church Boolean

$$tru = \lambda \pm \lambda f \pm f$$

$$fls = \lambda \xi \lambda f + f$$

tru retuins (1)

```
conditional
```

$$cond = \lambda l \cdot \lambda m \cdot \lambda n \cdot l \cdot m \cdot n$$

AND =
$$\lambda_{P}$$
. λ_{Q} . $(P q)$ fls $(P q)$ P

OR =
$$\lambda_p$$
. λ_q . $(p tru) q$

pair =
$$\lambda f$$
. λs . λb . b f s

$$fst = \lambda p. p tru$$

$$\rightarrow \uparrow \sim \vee \omega$$

$$\rightarrow \vee$$

Church numerals

$$C_1 = \lambda_5, \lambda_{\overline{2}}, \overline{Z}$$
 successor

0000

0001

0010

inc =
$$\lambda n \cdot \lambda s \cdot \lambda z \cdot s(n \leq z)$$

rebuild demolish $\lambda s \cdot \lambda z$
 $\lambda s \cdot \lambda z$

adds an additional s in n

 $plus = \lambda m. \lambda n. \lambda s. \lambda z. (m s) (n s z)$ $= \lambda s. \lambda z. s (s z)$ $= \lambda s. \lambda z. s z$ $\Rightarrow \lambda z. s (s z)$ $\Rightarrow s z$ $\Rightarrow s z$

times = $\lambda m \cdot \lambda n \cdot m \left(plus n \right) c_0$ $\leq (\leq (\leq \dots , \geq))$

inc _____ sc

ister = 2 n. n (AND fis) two Dx. fls Co= 25. 22. 2 Co (yx.x) pu (AND RIS) dru C' = y2-y5' 25 (AND FIS) ((AND FIS) br) fs

Exponentiation

M

exp = \mathread m. \mathread m

de Broija Indian O Caml