Philosophical Detour

Modeling

Real-world Research

- Nature of Phenomena
 - "Complex"
 - Quantification (measurement) difficult IF possible
- To circumvent these issues we use models
 - Simplifies the "Reality"
 - Allows for unexplained ("error")

WHAT'S A MODEL

This is not the type of model I'm talking about

Model

Model

- Simplified representation of something observable
 - Describe, Predict, and potentially Change
- Ex:
 - $A = \pi * r^2$
 - $a^2 + b^2 = c^2$
 - F = m * a

- Approximation
- Preserves 'key elements'
 - Rectangular shape
 - Bluish/grey color

Dotted line is the **fit** between the model and
 the phenomenon

Models

How are we modeling?

- Measurement
 - Variable type
 - Scale of measurement
- Relationships
 - Statistical models
- Theory
 - Inferences we draw from results
 - (Not as much of a concern for this class)

8180 Review:

VARIABLES AND SCALES OF MEASUREMENT

Variable Types

- Qualitative
 - Categorical- Names a category
- Quantitative
 - Discrete- Comes in nice little packages (can't have half units)
 - Ex: People (can't have half a person)
 - Continuous- Varies infinitely between two values (fractionally)
 - Ex: Height (can be 5' 10.234817485712354351235436"

Scales of measurement

- Nominal- (Naming scales) Categorical
 - Ex: Group A, Blues, Person C, #1023
- Ordinal- (Ordering scales) Ranks individuals in sequences; distances between scores not same size
 - Ex: 1st place, 2nd place, 3rd place,...
- Interval- Intervals between scores of the same size and comparable
 - Ex: 20°C change is always the same; 10-pt increase in IQ is always the same
- Ratio- Same as interval scales, but with an absolute zero (a gold standard)
 - Ex: 20°K (0°K = no heat)

WHY IS THIS IMPORTANT

Central tendency

- Because the data 'centers' around them
- These are the simplest statistical models that we have
 - Median- the score that falls in the middle of an ordered list
 - Mode- the most frequently occurring score
 - Mean- the arithmetic average score

How is the mean a model?

For each score in the dataset (x_i):

-
$$x_i$$
= M + ε_i
- Ex: $x_1, x_2, x_3, x_4, x_5 \Leftrightarrow 2, 3, 4, 5, 6$ n=5

$$(2+3+4+5+6)/5 = 4 = M$$

$$x_1 = 2 = 4 + \varepsilon_i$$
 where $\varepsilon_i = (-2)$
 $x_2 = 3 = 4 + \varepsilon_i$ where $\varepsilon_i = (-1)$
 $x_3 = 4 = 4 + \varepsilon_i$ where $\varepsilon_i = (0)$
 $x_4 = 5 = 4 + \varepsilon_i$ where $\varepsilon_i = (1)$
 $x_5 = 6 = 4 + \varepsilon_i$ where $\varepsilon_i = (2)$

Median Mean 99.60 99.80

Mean as a model