```
import pandas as pd
import numpy as np

XXX = pd.read_csv("tmp_hms_sav_ass.csv", sep=';')

XXX
```


	id	idResource	idProject	refType	refId	rate	assignedWork	realWork	lef ¹
0	1	5	1	Activity	1	100	NaN	21.00	
1	4	15	4	Activity	4	100	NaN	131.00	
2	6	15	4	Activity	6	100	NaN	21.00	
3	8	15	4	Activity	9	100	NaN	4.00	
4	9	15	4	Activity	10	100	NaN	2.00	
7196	7601	9	34	Activity	594	100	NaN	0.00	
7197	7602	32	34	Activity	594	100	NaN	NaN	
7198	7603	9	34	Activity	597	100	NaN	0.25	
7199	7604	7	12	Activity	1524	100	NaN	0.50	
7200	7605	7	50	Activity	1525	100	NaN	2.50	

7201 rows × 25 columns

```
XX = XXX[['idResource','idProject','refId','realCost','realWork']]
dataset = XX.replace(np.nan,0)
dataset = XX.replace(np.nan,0)
dataset['realWork'] = dataset['realWork'].astype(int)
dataset['realCost'] = dataset['realCost'].astype(int)
dataset
```

	idResource	idProject	refId	realCost	realWork
0	5	1	1	0	21
	oy as np Dotlib.pyplo Was as pd	t as plt	Л	^	121
	iloc[:, :-1 :.iloc[:, 4].	=		-	-
7196	9	34	594	0	0
	rn.model_sele _test, y_trai				
7400 om sklear	rn.preprocess	ing import	1501 Standar	n ndScaler	^
aler = St	andardScaler X_train)	• .	Scandar	uscarei	
	caler.transf	· —	1)		
ssifier	rn.neighbors = KNeighbors fit(X_train,	Classifier	_		
KNeigh	nborsClassifi	er(n_neighb	oors=1)		
ored = cl	assifier.pre	dict(X_test	=)		
rint(confu	rn.metrics im sion_matrix(sification_re	y_test, y_p	ored))		confusion
[[1308 [9	8 1.	0	0 0 0 0 0 0]	
 [1 [6	0 0.	0 0	0 0 0 0 0 0		support
	0 1 2 3	0.97 0.24 0.08 0.00	0.97 0.38 0.08 0.00	0.97 0.29 0.08 0.00	1351 21 13 7
	4	0.00	0.00	0.00	5

```
5
                         0.00
                                    0.00
                                               0.00
                                                             5
                 6
                         0.00
                                    0.00
                                               0.00
                                                             4
                 7
                                                             3
                         0.00
                                               0.00
                                    0.00
                 8
                         0.00
                                    0.00
                                               0.00
                                                             6
                 9
                                                             2
                         0.00
                                    0.00
                                               0.00
                                                             1
                10
                         0.00
                                    0.00
                                               0.00
                11
                         0.00
                                    0.00
                                               0.00
                                                             0
                12
                         0.00
                                                             1
                                    0.00
                                               0.00
                13
                         0.00
                                    0.00
                                               0.00
                                                             1
                         0.00
                                               0.00
                                                             2
                14
                                    0.00
                15
                                                             2
                         0.00
                                    0.00
                                               0.00
                18
                         0.00
                                                             3
                                    0.00
                                               0.00
                19
                         0.00
                                    0.00
                                               0.00
                                                             1
                                                             0
                20
                         0.00
                                    0.00
                                               0.00
                21
                         0.00
                                                             2
                                    0.00
                                               0.00
                22
                         0.00
                                    0.00
                                               0.00
                                                             1
                23
                         0.00
                                    0.00
                                               0.00
                                                             1
                27
                         0.00
                                    0.00
                                               0.00
                                                             0
                32
                         0.00
                                    0.00
                                               0.00
                                                             0
                35
                                                             0
                         0.00
                                    0.00
                                               0.00
                37
                         0.00
                                               0.00
                                                             1
                                    0.00
                38
                         0.00
                                    0.00
                                               0.00
                                                             1
                39
                                                             1
                         0.00
                                    0.00
                                               0.00
                54
                         0.00
                                    0.00
                                               0.00
                                                             2
                                                             1
                62
                         0.00
                                    0.00
                                               0.00
                                                             1
                81
                         0.00
                                    0.00
                                               0.00
               163
                         0.00
                                    0.00
                                               0.00
                                                             1
               214
                         0.00
                                               0.00
                                                             1
                                    0.00
               235
                         0.00
                                    0.00
                                               0.00
                                                             0
         accuracy
                                               0.91
                                                          1441
                         0.04
                                               0.04
                                                          1441
        macro avg
                                    0.04
     weighted avg
                         0.92
                                    0.91
                                               0.92
                                                          1441
     C:\Users\saifn\anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1221: \lambda
        _warn_prf(average, modifier, msg_start, len(result))
     C:\Users\saifn\anaconda3\lib\site-packages\sklearn\metrics\_classification.py:1221: \[ \]
       _warn_prf(average, modifier, msg_start, len(result))
error = []
# Calculating error for K values between 1 and 40
for i in range(1, 40):
    knn = KNeighborsClassifier(n neighbors=i)
    knn.fit(X_train, y_train)
    pred i = knn.predict(X test)
    error.append(np.mean(pred_i != y_test))
```

```
https://colab.research.google.com/drive/1RwKmf7FNKjaNn39ZUWjYgx_yKDnuLsGO?authuser=1#printMode=true
```

markerfacecolor='blue', markersize=10)

plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o',

plt.figure(figsize=(12, 6))

plt.xlabel('K Value')
plt.ylabel('Mean Error')

plt.title('Error Rate K Value')

Text(0, 0.5, 'Mean Error')

from sklearn.neighbors import KNeighborsClassifier

```
#Setup arrays to store training and test accuracies
neighbors = np.arange(1,40)
train_accuracy =np.empty(len(neighbors))
test accuracy = np.empty(len(neighbors))
#Compute accuracy on the training set
for i,k in enumerate(neighbors):
    #Setup a knn classifier with k neighbors
    knn = KNeighborsClassifier(n_neighbors=k)
    #Fit the model
    knn.fit(X_train, y_train)
    train_accuracy[i] = knn.score(X_train, y_train)
    #Compute accuracy on the test set
    test accuracy[i] = knn.score(X test, y test)
#Generate plot
plt.title('k-NN Varying number of neighbors')
plt.plot(neighbors, test accuracy, label='Testing Accuracy')
plt.plot(neighbors, train_accuracy, label='Training accuracy')
plt.legend()
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.show()
```


knn.score(X_test, y_test)

0.9375433726578765