Zachary Seymour CS 575 Theory Assignment 4 October 29, 2013

1 Use the Master Theorem to solve the recurrences

1a
$$T(n) = 4T(\frac{n}{2}) + n^3$$

We have $\log_b a = \log_2 4 = 2$ and $f(n) = n^3$. So, $\frac{n^3}{n^2} = n = \Omega(n^1)$, which is Case 3. So $T(n) = \Theta(n^3)$.

1b
$$T(n) = 2T(\frac{n}{2}) + n\lg^2 n$$

We have $\log_b a = \log_2 2 = 1$ and $f(n) = n \lg^2 n$. So, $\frac{n \lg^2 n}{n} = \lg^2 n = \Theta(\lg^2 n)$, which is Case 2. So $T(n) = \Theta(n \lg^3 n)$.

1c
$$T(n) = 3T(\frac{n}{4}) + n$$

We have $\log_b a = \log_4 3$ and f(n) = n. So, $\frac{n}{n^{\log_4 3}} = n^{1 - \log_4 3} = \Omega\left(n^{1 - \log_4 3}\right)$, which is Case 3. So $T(n) = \Theta(n)$.

1d
$$T(n) = 2T(\frac{n}{4}) + n \lg n$$

We have $\log_b a = \log_4 2 = \frac{1}{2}$ and $f(n) = n \lg n$. So, $\frac{n \lg n}{\sqrt{n}} = \sqrt{n} \lg n = \Omega(n)$, which is Case 3. So $T(n) = \Theta(n \lg n)$.

1e
$$T(n) = 4T(\frac{n}{2}) + n^2$$

We have $\log_b a = \log_2 4 = 2$ and $f(n) = n^2$. So, $\frac{n^2}{n^2} = 1 = \Omega(\lg^0 n)$, which is Case 2. So $T(n) = \Theta(n^2 \lg n)$.

1f
$$T(n) = 4T(\frac{n}{2}) + n^3$$

We have $\log_b a = \log_2 4 = 2$ and $f(n) = n^3$. So, $\frac{n^3}{n^2} = n = \Omega(n)$, which is Case 3. So $T(n) = \Theta(n^3)$.

2 Use substitution to show that $T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + T(\frac{n}{9})$ belongs to $\Theta(n)$.

We will guess an upper bound of kn - b. We need to show that $T(n) \le kn - b$ for all n. Our base case is n = 1. We'll assume T(1) = 1. So we have $1 = T(1) \le k - b$, which holds as long as $k \ge b + 1$. Now, we will assume this holds for $\frac{n}{2}$, $\frac{n}{4}$, and $\frac{n}{9}$.

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + T(\frac{n}{9})$$
$$= \frac{kn}{2} + \frac{kn}{4} + \frac{kn}{9} - 3b$$
$$= \frac{31kn}{36} - 3b$$
$$\leq kn - b$$

Thus, $T(n) = T(\frac{n}{2}) + T(\frac{n}{4}) + T(\frac{n}{9})$ belongs to $\Theta(n)$.

 $T(n) = \begin{cases} \Theta(1) & \text{for } n \leq 1\\ T(\frac{n}{4}) + T(\frac{3n}{4}) & \text{otherwise} \end{cases}$

3a Show using the recursion tree method that $T(n) = \Theta(n \lg n)$ is a good guess.

The two branches receive unequal portions of the work, with the rightmost branch being the longest, having length $\log_{4/3} n$. Thus, our guess is $\Theta(n \lg n)$.

3b Prove that $T(n) = \Theta(n \lg n)$ using the substitution method.

Proof. We will guess an upper bound of $kn\lg bn$. So, we need to show $T(n) \leq kn\lg bn$ for all n. Our base case is n=1. We have $T(1)=\Theta(1)\leq k\cdot 1\cdot \lg b=\lg b$. Now, we will assume it holds for $\frac{n}{4}$ and $\frac{3n}{4}$.

$$T(n) = T(\frac{n}{4}) + T(\frac{3n}{4})$$

$$= \frac{n}{4} \lg \left(b\frac{n}{4}\right) + \frac{3n}{4} \lg \left(b\frac{3n}{4}\right)$$

$$= n \lg(\frac{3^{3/4}}{4}bn)$$

$$\leq kn \lg bn$$

Extra Credit Assume a MinHeap. Assume that each record contains a key k and data d. Modify the insert and deleteMin procedure of a minheap so that the function location(d) (the index in the heap) takes only $\Theta(1)$ time. Assume that d is an integer between 0 and n.

The only way I can really think to get constant time complexity is to use another array alongside the array storing the heap, where the indices, from 0 to n, are the data values.

```
function INSERT(v)
   last = last + 1
   bt[last] \leftarrow v
   index = percolate(last)
                                     ▶ We would need percolate to return the true index.
   indices[v.d] \leftarrow index
end function
function Deletemin
   minKeyItem = bt[root]
   swap(root, last)
   indices[minKeyItem.d] = NULL
   last = last - 1
   if last > 0 then
      siftDown(root)
   end if
   return minKeyItem
end function
```