S-asb $| x | A \rightarrow aA$ b S-A-aA \rightarrow and C. welcos. variables. = | x

 $S \rightarrow \alpha S |A|C.$, $A \rightarrow \alpha$., $B \rightarrow \alpha \alpha$ ($C \rightarrow \alpha Cb$.) $C_1 = (PS, A, B^{\dagger}, P\alpha, PS, S, Ps)$ $A \rightarrow \alpha$, $A \rightarrow \alpha$,

G'=(3,A7, 2a,b1,S,p') p'=S-as1A,A-xa Find. G. = (V, To, S, P,) having only variables A. tor which (A) W. ET*

(m) Set 1/=?].

S-asialc., A-a., B-aa, c-aa Cb.

2 Production

 $A \rightarrow X$ $S \rightarrow$

 $S \rightarrow aSb , S_1 \rightarrow aS_1b \mid X$ $S \rightarrow aS_1b \rightarrow aaS_1bb$ $LG_1 = 70^{11}b^{1} \mid n > 0.7$ $\Rightarrow aabb$

S->a.S.b | ab -> substitude roll = 208 A> = 34.

1. CFG with $2 \in L(G)$ (Then \rightarrow exist an equivalent grammar G')

without 2 - productions.

Vn. of all nullable variables of C.

A $\rightarrow \times$, put A into $\forall n - ?A \cdot ?$

Repeat until no more variables are added to V_n for all $B \rightarrow A_1A_2...A_n$ with all $A_i \in V_n$ put B into V_n

find. P

(OS-ABAC) or | Bac| Aac. | ABa | a.c. | Aar | Ba.

(OA-BC| B| C A) delete.

$$\begin{pmatrix}
\mathbf{G} & \mathbf{B} \rightarrow \mathbf{J} \\
\mathbf{G} & \mathbf{C} \rightarrow \mathbf{D} \\
\mathbf{G} & \mathbf{D} \rightarrow \mathbf{G}
\end{pmatrix}$$

A-B (ABEV)

A GET without >- productions. unit-production

There exist an equivalent grammar G

without unit-productions

put non-unit product into p'

(S-An. B-bb, A-a|be.)

S-Aalbb.a.bc., B-sbalabc, A-albc. bb.

vie production

view productions

Chomskey Normal form.

A-BC, or A-Q CABCEV, aET)

 $S \rightarrow AS \mid \alpha$, $A \rightarrow SA \mid b$ $\Rightarrow CNP$ $S \rightarrow AS \mid AAS$, $A \rightarrow SA \mid \alpha\alpha \Rightarrow CNPx$

$$S \rightarrow AB\alpha$$
, $A \rightarrow \alpha b$, $B \rightarrow Ac$.

Step 1)

 $O S \rightarrow ABV^{\alpha}$, $V^{\alpha} \rightarrow \alpha$
 $O A \rightarrow VV^{\alpha}V^{\beta}$, $V^{\beta} \rightarrow b$
 $O A \rightarrow AV^{\alpha}$, $V^{\beta} \rightarrow c$

Greibach Normal Form

CFG with. -> (2in. V*, a in T.)

BE CFG -> Greibalh Normal Form

BE EE > Greibalh Normal tom

S-AB, A-AAI bB/b, B-b

S-AB/ bBB/ bB

WING. LCG) S = WIN. VIJ= YAGV. |A => Wir]

$$V_{11} = PAY$$

$$V_{22} = PAY$$

$$V_{33} = PAY$$

$$V_{44} = PAY$$

$$V_{33} = PAY$$

$$V_{44} = PAY$$

$$V_{45} = PAY$$

$$V_{45} = PAY$$

S> aA | aBB , A-ranAl x , B-bB | bb C., C-B.

O temore all x-broactions.

S-OA/ABB/a-, A-MalanA., B-bB/bbC, C-B

@ Remove. unit- productions

S-MA/MBB a, A-son and, B-bB/bbC, C-> bB/bbC.

B) Rangle (useless - raductions).

Change to Chonga Normal Form

S-aAla, A-saalaaA.

rfeb 1)

S-NA. La., A-No. Valat, Vala.

Step 2)

P' $S \rightarrow VA | \alpha., A \rightarrow VV^{\alpha} | V^{\alpha}D_{1}, V^{\alpha} \rightarrow \alpha, D_{1} \rightarrow V^{\alpha}A.$

S V

$$\sqrt{l^2 = \sqrt{l} \sqrt{27}}$$

A

SA Va A 7 S, D, J.

 $\begin{cases} S \\ V^{\alpha} \\ V^{\alpha} \end{cases} = ?A$

A SV

A Va.

S V

A. <u>A</u>.

SDI

SPI

J A.,

ST ST DTS

