

Question Type Guided Attention in Visual Question Anwering

Shi $^{1\ 2}$ Tommaso Furlanello $^{1\ 3}$ Sheng Zha 1 Animashree Anandkumar $^{1\ 4}$

Amazon Al 2 University of California Irvine 3 University of Southern California 4 California Institution of Technology

Caltech

Keypoints

- Propose question type-guided attention(QTA) to balance between bottom-up and top-down visual features.
- Propose a multi-task extension that is trained to predict question types from the lexical inputs during training time that do not require ground truth labels during inference.
- QTA systematically improves the performance by more than 5% across multiple question type categories such as "Activity Recognition", "Utility" and "Counting" on TDIUC dataset.

VQA Task

- Provide a natural language answer given any image and any open-ended question.
- Require a joint representation of both visual and textual input.

How many slices of pizza are there? 7
Figure 1: VQA task sample

VQA Dataset: TDIUC

- Total questions: 1653842, total images:179994.
- Categorized questions: Each question belongs to one of the 12 categories.
- Absurd questions: Questions that are totally irrelevant to the image.

Feature Extraction

Image and text features are extracted from pretrained/end-to-end neural networks.

Image pretrained model: Question model:

- ResNet
- Faster R-CNN
- Word2Vec
- Skipthought
- GNMT encoder
- End-to-end LSTM

Question Type Guided Attention

Intuition: (1)Question type is very important in predicting the answer. (2)Explore different Image features: top-down and bottom-up features.

What is the mustache made of?

What is the formula to the mustache made of?

Tex

Figure 3: Concatenation model with QTA structure for VQA $task(CATL-QTA^W)$

Given concatenated image feature $F = [F_1, F_2, \dots, F_k] \in \mathcal{R}^M$. Assume there are N different question types, QTA is defined as $F \circ WQ$, where $Q \in \mathcal{R}^N$ is the one-hot encoding of the question type and $W \in \mathcal{R}^{M \times N}$ is the hidden weight, \circ is element-wise product.

Multi-task for QTA network

Limitation of QTA: Requires question type label.

Solution: Predict the question type from text, and use it as input to the QTA network.

	Accuracy(%)
Element-wise Sum [1]	56.50
Concatenation [1]	57.49
Concatenation $+$ FC [1]	58.40
Concatenation $+$ FC $+$ FC [1]	57.10
Element-wise Product [1]	58.57
Element-wise Product + FC [1]	56.44
Element-wise Product $+$ FC $+$ FC [1]	57.88
$MCB(2048 \times 2048 \rightarrow 16K)$ [1]	59.83
CATL-QTA-M + FC	$\boldsymbol{60.32}$

Table 1: Results of test-dev accuracy on VQA v1. Models are

Figure 4: Concatenation model with QTA structure for multi-task test-dev

Table 2: Results of QTA models on TDIUC dataset compared to state-of-art models. W denotes that additional Word2Vec embedding is concatenated to LSTM output

Accuracy(%)	CATL	CATL-QTA	\mathbf{CATL}^W	${f CATL\text{-}{f QTA}}^W$	MCB-QTA	MCB-A [2]	RAU [2]
Scene Recognition	93.18	93.45	93.31	93.80	93.56	93.06	$\overline{93.96}$
Sport Recognition	94.69	95.45	94.96	95.55	$\boldsymbol{95.70}$	92.77	93.47
Color Attributes	54.66	56.08	57.59	60.16	59.82	$\boldsymbol{68.54}$	66.86
Other Attributes	48.52	50.30	52.25	54.36	54.06	$\boldsymbol{56.72}$	56.49
Activity Recognition	53.36	58.43	54.59	60.10	60.55	52.35	51.60
Positional Reasoning	32.73	31.94	33.63	34.71	34.00	35.40	35.26
Sub. Object Recognition	86.56	86.76	86.52	86.98	87.00	85.54	86.11
Absurd	95.03	100.00	98.01	100.00	100.00	84.82	96.08
Utility and Affordances	29.01	23.46	29.01	31.48	37.04	35.09	31.58
Object Presence	93.34	93.48	94.13	$\boldsymbol{94.55}$	94.34	93.64	94.38
Counting	50.08	49.93	52.97	53.25	53.99	51.01	48.43
Sentiment Understanding	56.23	56.87	62.62	64.38	65.65	$\boldsymbol{66.25}$	60.09
Overall (Arithmetic MPT)	65.62	66.34	67.46	69.11	69.69	67.90	67.81
Overall (Harmonic MPT)	55.95	54.60	57.83	60.08	61.56	60.47	59.00
Overall Accuracy	82.23	83.62	83.92	85.03	84.97	81.86	84.26

Figure 5: MCB model with QTA structure for VQA task(MCB-QTA)

Analysis

- Top-down v.s. bottom-up visual features
 Different question types need different visual features.
- Pre-trained v.s. Jointly-trained text features Jointly-trained text feature is better than pre-trained ones when corpus is large enough.
- QTA v.s. Prior SOTA QTA shows better performance than complicated deep networks such as RAU and MCB-A.
- Multi-task Apply to VQA v1.0 dataset that doesn't have question type information. Its performance is better than MCB's performance with approximately same number of parameters in the network.

Limitation of TDIUC

• **Bias** More than 60% of absurd questions start with "What color". Consequently, "Color" and "Absurd" question type predictions are most often

Reference

- [1] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach. Multimodal compact bilinear pooling for visual question answering and visual grounding.

 EMNLP 2016.
- [2] Kushal Kafle and Christopher Kanan.

 An analysis of visual question answering algorithms.

 In *ICCV*, 2017.