

Algebra matricial Soluciones

Francesc Carmona

30 de septiembre de 2020

1. Matrices

- 1. Las siguientes cuestiones se refieren a propiedades elementales del álgebra matricial que debes conocer. Indicar si son CIERTAS o FALSAS las siguientes propiedades:
 - $a) (\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$
 - $b) \mathbf{AB} = \mathbf{BA}$
 - c) $|\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}|$, donde ambas matrices son cuadradas.
 - d) $|\mathbf{AB}| = |\mathbf{BA}|$, donde ambas matrices son cuadradas.
 - e) $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$
 - f) tr(AB) = tr(BA), ilustrarlo con un ejemplo de dos matrices 2×2 .
 - g) A'A es simétrica.
 - $h) (\mathbf{AB})' = \mathbf{A}'\mathbf{B}'$
 - *i*) $({\bf A}')^{-1} = ({\bf A}^{-1})'$, si **A** tiene inversa.
 - j) Para una matriz **A** cuadrada, si existe un $\mathbf{x} \neq \mathbf{0}$ tal que $\mathbf{A}\mathbf{x} = \mathbf{0}$, entonces $|\mathbf{A}| = 0$.
- 2. (*) Comprobar las siguientes propiedades:
 - a) Cualquiera que sea el vector \mathbf{x} , resulta que $\mathbf{x}'\mathbf{x} \geq 0$.
 - b) Con la propiedad anterior se puede probar que $\mathbf{A}'\mathbf{A}$ es siempre definida o semidefinida positiva. Poner algunos ejemplos.
 - c) $\mathbf{A}'\mathbf{A}$ siempre es simétrica. Poner algunos ejemplos
 - d) (**) Si $\mathbf{A'A}$ es semidefinida positiva y no definida positiva, entonces existe un $\mathbf{x} \neq \mathbf{0}$ tal que $\mathbf{A}\mathbf{x} = \mathbf{0}$. Poner algún ejemplo.
- 3. Dadas las matrices:

$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 0 & 0 \\ 5 & 1 & 1 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Calcular: A + B; A - B; AB; BA; A'.

Hacerlo manualmente y con un programa como R.

4. Demostrar que $\mathbf{A}^2 - \mathbf{A} - 2\mathbf{I} = \mathbf{0}$, siendo:

$$\mathbf{A} = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right)$$

5. Calcular la matriz inversa de:

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array} \right)$$

Se puede utilizar la función solve() de R.

6. Resolver, en forma matricial, el sistema:

$$\begin{cases} x + y + z = 6 \\ x + 2y + 5z = 12 \\ x + 4y + 25z = 36 \end{cases}$$

2. Diagonalización y valores singulares

1. (*) Sean

$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ -3 & 2 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

- a) Probar que u es un vector propio de A. ¿Cual es su valor propio correspondiente?
- b) Comprobar que $\lambda \mathbf{u}$, con λ un escalar no nulo, también es vector propio de \mathbf{A} .
- c) Probar que v es un vector propio de A. ¿Cual es su valor propio correspondiente?
- d) $\mathbf{u} + \mathbf{v}$ es un vector propio de \mathbf{A} ?
- 2. Para las siguientes matrices determinar:
 - a) el polinomio característico,
 - b) los valores propios,
 - c) vectores propios para cada valor propio,
 - d) (*) la multiplicidad de cada valor propio y el número de vectores propios independientes asociados a cada valor propio.

$$\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 3 \end{array}\right).$$

Se puede utilizar la función eigen() de R.

- 3. Si $S = \{(0,1,0),(1,0,1),(-1,0,1)\}$ es el conjunto de vectores propios, para los valores propios 1,1,-1, hallar la matriz \mathbf{A} correspondiente.
- 4. (*) Estudiar si son ciertas las siguientes propiedades con algunos ejemplos (las demostraciones son difíciles) o si son falsas con un contraejemplo:
 - a) Si A es simétrica semidefinida positiva, siempre hay una matriz B tal que A = BB'. (B no es única).
 - b) Si **A** es cuadrada, simétrica, con valores propios $\lambda_1, \ldots, \lambda_p$, entonces $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^p \lambda_i$ y $|\mathbf{A}| = \prod_{i=1}^p \lambda_i$.
 - c) Los valores propios de una matriz simétrica son siempre reales y positivos.
 - d) Una matriz simétrica, semidefinida positiva e idempotente tiene valores propios 0 ó 1.
- 5. Mediante la diagonalización de la matriz

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 2 \\ 3 & 2 \end{array}\right)$$

Calcular \mathbf{A}^7 .

6. Dada la matriz de covarianzas

$$\Sigma = \begin{pmatrix} 2 & 1 & 1/3 \\ 1 & 1 & -1 \\ 1/3 & -1 & 4 \end{pmatrix}$$

Hallar una matriz $\Sigma^{-1/2}$ tal que $\Sigma^{-1/2}\Sigma^{-1/2} = \Sigma^{-1}$.

7. Hallar la descomposición en valores singulares de la matriz

$$\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

R-intro: 5.7.4 Singular value decomposition and determinants in R

The function svd(M) takes an arbitrary matrix argument, M, and calculates the singular value decomposition of M. This consists of a matrix of orthonormal columns U with the same column space as M, a second matrix of orthonormal columns V whose column space is the row space of M and a diagonal matrix of positive entries D such that M = U % % D % % t(V). D is actually returned as a vector of the diagonal elements. The result of svd(M) is actually a list of three components named d, u and v, with evident meanings.

If M is in fact square, then, it is not hard to see that

> absdetM <- prod(svd(M)\$d)</pre>

calculates the absolute value of the determinant of M. If this calculation were needed often with a variety of matrices it could be defined as an \mathbf{R} function

> absdet <- function(M) prod(svd(M)\$d)

after which we could use absdet() as just another **R** function. As a further trivial but potentially useful example, you might like to consider writing a function, say tr(), to calculate the trace of a square matrix. [Hint: You will not need to use an explicit loop. Look again at the diag() function.]

R has a builtin function **det** to calculate a determinant, including the sign, and another, **determinant**, to give the sign and modulus (optionally on log scale).

8. Calcular el rango de la matriz¹

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 3 & 2 \\ 3 & 2 & 5 & 1 \\ -1 & 1 & 0 & -7 \\ 3 & -2 & 1 & 17 \\ 0 & 1 & 1 & -4 \end{pmatrix}$$

Utilizar la siguiente función de R:

Explicar lo que hace esta función.

Una versión más sofisticada:

¹Los métodos computacionales aproximan el concepto de rango y están sujetos a error.

```
rankMat <- function(A, tol = NULL, singValA = svd(A, 0,0)$d)
   ## Purpose: rank of a matrix 'as Matlab'
   ## -----
   ## Arguments: A: a numerical matrix, maybe non-square
   ##
               tol: numerical tolerance (compared to singular values)
   ##
          singValA: vector of non-increasing singular values of A
                    (pass as argument if already known)
   ##
   ## Author: Martin Maechler, Date: 7 Apr 2007, 16:16
   d \leftarrow dim(A)
   stopifnot(length(d) == 2, length(singValA) == min(d),
             diff(singValA) < 0)</pre>
                                      # must be sorted decreasingly
   if(is.null(tol))
       tol <- max(d) * .Machine$double.eps * abs(singValA[1])</pre>
   else stopifnot(is.numeric(tol), tol >= 0)
   sum(singValA >= tol)
}
Otras opciones en R son:
    qr(A)$rank
o incluso
    qr(A, LAPACK=TRUE) $rank
o mejor
    qr(A, tol = .Machine$double.eps, LAPACK = TRUE)$rank
```

9. (*) Probar que para la matriz

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 3 & 2 \\ 2 & 6 & 4 \end{array}\right)$$

dos inversas generalizadas son:

$$\mathbf{A}_{1}^{-} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \mathbf{A}_{2}^{-} = \begin{pmatrix} -42 & -1 \\ 5 & 3 \\ 2 & 2 \end{pmatrix}$$

10. (*) Hallar una inversa generalizada de la matriz

$$\mathbf{A} = \begin{pmatrix} -6 & 2 & -2 & -3 \\ 3 & -1 & 5 & 2 \\ -3 & 1 & 3 & -1 \end{pmatrix}$$

mediante la inversa del menor de rango máximo.

11. (*) Determinar la inversa de Moore-Penrose de la matriz

$$\mathbf{A} = \left(\begin{array}{rrrr} 1 & 0 & -1 & 1 \\ 0 & 2 & 2 & 2 \\ -1 & 4 & 5 & 3 \end{array} \right)$$

Utilizar la función ginv() del paquete MASS de R.

- 12. (**) Sea $\bf B$ una matriz simétrica y definida positiva y $\bf A$ una matriz simétrica y semidefinida positiva. La obtención de los valores propios de $\bf A$ relativos a $\bf B$, es decir $\bf Av=\lambda Bv$, recibe el nombre de diagonalización simétrica generalizada.
 - a) Probar que se reduce a la diagonalización ordinaria de la matriz $\mathbf{B}^{-1}\mathbf{A}$. El número de valores propios no nulos es igual al rango de \mathbf{A} .
 - b) Probar que la diagonalización de $\mathbf{B}^{-1}\mathbf{A}$ se resuelve por diagonalización ordinaria de dos matrices simétricas: $\mathbf{B} \ \mathbf{y} \ \mathbf{B}^{-1/2}\mathbf{A}\mathbf{B}^{-1/2}$.
 - c) En un problema con varias poblaciones, se considera la matriz ${\bf A}$ que mide la covariabilidad entre poblaciones y la matriz ${\bf B}$ de covarianzas estimada dentro de cada población y teóricamente común en todas las poblaciones. Hallar la diagonalización simétrica generalizada para las matrices

$$\mathbf{A} = \begin{pmatrix} 10 & -4 & 12 \\ -4 & 3 & -1 \\ 12 & -1 & 25 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 14 & 0 & 17 \\ 0 & 3 & -2 \\ 17 & -2 & 26 \end{pmatrix}$$