Analysis of Ontario wages in relation to economic factors based on Ontario Data Catalogue (1997-2019)

```
Borys Łangowicz (1010725967) Kian Dianati (1010205485)
2024-04-05
```

1 Loading the Data

We will use the following data sets:

```
wages = read.csv("wages.csv") %>% mutate_if(is.character, str_trim)
wages$Education.level =
  factor(wages$Education.level,
         levels = c("Above bachelor's degree",
                    "Bachelor's degree",
                    "University certificate below bachelors degree",
                    "University degree",
                     "Community college, CEGEP",
                     "Trade certificate or diploma",
                    "Post-secondary certificate or diploma",
                    "Some post-secondary",
                    "High school graduate",
                    "Some high school",
                    "PSE (5,6,7,8,9))",
                    "No PSE (0,1,2,3,4)",
                    "0 - 8 years",
                     "Total, all education levels"),
         ordered = TRUE)
wages$Age.group =
  factor(wages$Age.group,
         levels = c("25-64 \text{ years"})
                    "25-54 years",
                    "25-34 years",
                    "20-34 years",
                    "15-24 years",
                    "55 years and over",
                    "25 years and over",
                    "15 years and over"),
         ordered = TRUE)
```

2 Description of the Data set

The wages data set includes the average weekly wages rates by education level and immigration status for Canada and Ontario in the years from 1997 to 2019. It includes the following columns:

names(wages)

```
## [1] "YEAR" "Geography" "Type.of.work" "Wages"
## [5] "Education.level" "Age.group" "Both.Sexes" "Male"
## [9] "Female"
```

- 1. YEAR: Indicates the year in which the data was collected.
- 2. Geography: Indicates the region from which the data was collected. Its possible values include Canada as well as the Canadian provinces and territories.
- 3. Type.of.work: Indicates whether the data in the row is for full-time employees or part-time employees or both.
- 4. Wages:
 - 1. Total employees: The number of employees in the given age range, education level, and job status.
 - 2. Average hourly wage rate: The average hourly wage of the employees in the given age range, education level, and job status.
 - 3. And so on for Average weekly wage rate, Median hourly wage rate, and Median weekly wage rate.
- 5. Education.level: Indicates the level of education. It can include the following:

Education.level
Above bachelor's degree
Bachelor's degree
University certificate below bachelors degree
University degree
Community college, CEGEP
Trade certificate or diploma
Post-secondary certificate or diploma
Some post-secondary
High school graduate
Some high school
PSE(5,6,7,8,9))
No PSE (0,1,2,3,4)
0 - 8 years
Total, all education levels

6. Age.group: Indicates the age range of the individuals under consideration. It can include the following:

Age.group						
25-64 years						
25-54 years						
25-34 years						
20-34 years						
15-24 years						
55 years and over						
25 years and over						
15 years and over						

- 7. Both.sexes: The data not seperated by gender.
- 8. Male: The data for males.
- 9. Female: The data for females.

3 The Background of the Data

4 Overall Research Question

4.1 Trend Analysis

- How has the average hourly wage rate changed over the years across different age groups?
- Are there any noticeable trends in the median weekly wage rate for full-time employees over the past decade?
- What is the overall trend in the number of full-time employees versus part-time employees across different age groups?

4.2 Regional Disparities

- How do average hourly wage rates vary between different Canadian provinces and territories?
- Are there significant differences in the employment rates between urban and rural areas within a specific province?

4.3 Educational Attainment

- How does the average hourly wage rate differ across various education levels?
- Are there any trends in the employment rates based on different levels of education attainment?
- Is there a correlation between educational attainment and the likelihood of being employed full-time versus part-time?

4.4 Age Groups Analysis

- How do wage rates vary across different age groups, and is there a trend in wage growth as individuals age?
- Are there noticeable differences in employment rates between younger and older age groups?
- What is the distribution of educational attainment among different age groups, and how does it correlate with employment status and wage rates?

4.5 Gender Analysis

- Is there a significant gender wage gap, and how has it evolved over time?
- Are there differences in the distribution of employment types (full-time vs. part-time) between males and females?
- How does educational attainment affect the gender wage gap within specific age groups or regions?

4.6 Overall Employment Trends

- How has the total number of employees changed over the years?
- Are there seasonal variations in employment rates or wage rates within certain industries?
- What industries or sectors have shown the highest growth in employment rates, and how does this correlate with wage rates?

5 Summary

5.1 How has the average hourly wage rate changed over the years across different age groups?

```
avg_wage_by_age <- wages %>%
filter(Wages == "Average hourly wage rate",
```

```
Geography == "Canada",
    Type.of.work == "Full-time",
    Education.level == "Total, all education levels") %>%
select(YEAR, Age.group, Both.Sexes) %>%
group_by(YEAR, Age.group) %>%
summarise(Avg_Hourly_Wage = mean(Both.Sexes))
```

`summarise()` has grouped output by 'YEAR'. You can override using the
`.groups` argument.

```
kable(avg_wage_by_age %>%
pivot_wider(names_from = Age.group, values_from = Avg_Hourly_Wage))
```

	25-64	25-54	25-34	20-34	15-24	55 years and	25 years and	15 years and
YEAR	years	years	years	years	years	over	over	over
1997	17.41	17.35	15.29	14.08	9.82	17.92	17.40	16.54
1998	17.64	17.57	15.66	14.41	10.06	18.15	17.62	16.76
1999	18.13	18.06	16.11	14.77	10.33	18.65	18.11	17.19
2000	18.69	18.63	16.72	15.31	10.81	19.04	18.67	17.72
2001	19.28	19.23	17.48	15.97	11.21	19.63	19.27	18.29
2002	19.87	19.80	17.94	16.34	11.37	20.19	19.84	18.83
2003	20.28	20.19	18.15	16.55	11.66	20.85	20.26	19.24
2004	20.80	20.70	18.54	16.88	11.77	21.31	20.77	19.71
2005	21.44	21.32	19.25	17.50	12.23	21.98	21.41	20.32
2006	22.12	22.03	19.94	18.15	12.84	22.56	22.10	20.99
2007	22.91	22.84	20.77	18.94	13.40	23.07	22.87	21.74
2008	23.86	23.77	21.69	19.81	14.06	24.16	23.83	22.67
2009	24.60	24.55	22.32	20.47	14.57	24.63	24.56	23.48
2010	25.09	24.98	22.70	20.86	14.76	25.39	25.04	23.97
2011	25.54	25.45	23.16	21.29	15.13	25.73	25.50	24.42
2012	26.27	26.20	23.92	21.98	15.50	26.31	26.22	25.13
2013	26.85	26.76	24.35	22.36	15.86	27.02	26.81	25.70
2014	27.33	27.29	24.89	22.87	16.20	27.25	27.28	26.17
2015	28.10	28.14	25.64	23.52	16.53	27.57	28.03	26.88
2016	28.69	28.66	26.18	24.05	16.81	28.48	28.62	27.47
2017	29.12	29.16	26.55	24.41	17.01	28.49	29.03	27.88
2018	29.75	29.75	27.10	25.07	17.96	29.38	29.68	28.56
2019	30.69	30.75	27.79	25.97	19.32	30.12	30.62	29.56

Wage by Age Group in 2019

From the data, we can observe the following trends:

- 1. Across all age groups, there is a general trend of increasing average hourly wage rates over the years.
- 2. The wage rates tend to increase with age, with the highest rates typically observed in the 55 years and over age group.
- 3. The 15-24 years age group consistently has the lowest average hourly wage rates, which gradually increase as individuals move into older age groups.
- 4. There is a noticeable increase in wage rates during the late 1990s and early 2000s, followed by a slight dip during the economic downturn of 2008-2009, after which wages steadily increased again.

These observations provide an overview of how the average hourly wage rates have changed over the years across different age groups.

5.2 How does the average hourly wage rate differ across various education levels for different genders?

Education.level	male_avg	female_avg
Above bachelor's degree	33.18565	29.29043
Bachelor's degree	28.89087	24.83000
University certificate below bachelors degree	25.33957	21.80435
University degree	30.29478	26.04565
Community college, CEGEP	23.81000	19.74957
Trade certificate or diploma	23.44783	17.01913
Post-secondary certificate or diploma	23.75652	19.35348
Some post-secondary	18.32478	15.12348
High school graduate	19.64739	15.93130
Some high school	16.34565	12.35565
PSE(5,6,7,8,9))	26.32174	22.16043
No PSE (0,1,2,3,4)	18.38304	14.83043
0 - 8 years	17.05087	12.62870
Total, all education levels	22.94130	19.38304

```
ggplot(avg_wage_by_education %>% melt(),
    aes(x = Education.level, fill = variable)) +
geom_bar(aes(y = value),
    stat = "identity",
    alpha = 0.8,
    show.legend = TRUE,
    position = position_identity()) +
labs(title = "Average Hourly Wage Rate by Education Level and Gender",
    x = "Education Level",
    y = "Average Hourly Wage Rate",
    fill = "Gender") +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
    text = element_text(size = 8),
    legend.position = "bottom") +
coord_flip()
```

Using Education.level as id variables

Observations:

- 1. In almost all cases, the average hourly wage for males is higher than for females across various education levels.
- 2. The wage gap tends to decrease as the education level increases.

geom_bar(stat = "identity", position = "dodge") +

- 3. The largest wage gaps are observed at lower education levels, such as "Some high school" and "0 8 years", where the male average wage is significantly higher than the female average wage.
- 4. At higher education levels, such as "Above bachelor's degree" and "Bachelor's degree", the wage gap is relatively smaller compared to lower education levels but still exists.

These observations highlight disparities in wages between genders across different education levels, indicating the presence of gender-based wage inequality.

5.3 What is the overall trend in the number of full-time employees versus part-time employees across different age groups?

```
unique(wages$Type.of.work)

## [1] "Both full- and part-time" "Full-time"

## [3] "Part-time"

full_time_part_time <- wages %>% group_by(Age.group, Type.of.work) %>% summarise(Employees = sum(Both.S)

## `summarise()` has grouped output by 'Age.group'. You can override using the

## `.groups` argument.

options(scipen = 999)
ggplot(full_time_part_time, aes(x = Age.group, y = Employees, fill = Type.of.work)) +
```

```
labs(title = "Number of Full-time, Part-time vs Part- and Full-time Employees\n Across Age Groups",
    x = "Age Group",
    y = "Number of Employees",
    fill = "Type of Work") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Number of Full-time, Part-time vs Part- and Full-time Employees Across Age Groups

- 6 Hypothesis Testing
- 7 Bootstrapping
- 8 Non-linear Regression Analysis
- 9 Cross Validation
- 10 Random Forest
- 11 Random Forest Validation
- 12 Summary of Research
- 13 Appendix