IIB and MQ HA on Pure Applications

IIB is locally bound to Queue Managers

MQ and IIB logs and data on a GPFS in the pattern

Pattern Description

Table of Contents

Context diagrams	4
High level physical view	4
High level logical MQ/IIB view	4
Pattern Diagram- DA1 - MQ and IIB local HA on GPFS new (FULL) v2.4	5
Pattern Definition	6
Overview Description	6
MQ Cluster	6
MQ multi-instance HA pairs	6
IBM Integration Bus	6
MQ Client Application Gateway nodes	6
Pattern Parameters	6
Passwords	6
Pattern Nodes	8
MQ Client Application Gateway nodes	8
Description	8
MQ Client Application Gateway Parameters	8
MQ Gateway nodes	8
Description	8
MQ Gateway Parameters	9
MQ Application/IIB nodes	9
Description	9
MQ Application Parameters	10
Pattern Software Parts	11
IBM MQ v8.0.0.4	11
IBM Integration Bus V10.0.0.n	14
Script package descriptions	16
NPP-firewall	16
NPP-MQ Cleanup	16
NPP-IIBDEPOY-IIBNODE-L	17
NPP-MQCCDT-PAGNODE	17
NPP-MQExMQSC-APPQM1-201	18
NPP-MQExMQSC-APPQM2-201	22
NPP-MQExMQSC-GWQM1-201	22
NPP-MQExMQSC-GWQM2-201	22
NIDD MOM VIDTUSED	າາ

OpenfirewallPorts-10.0.0.0	23
Ordering	
IBM GPFS Shared Service	
GPFS Pattern Type 1.2	24
GPFS client configuration	25
IBM Integration Bus Message Flows	25

Context diagrams

High level physical view

High level logical MQ/IIB view

Pattern Diagram- DA1 - MQ and IIB local HA on GPFS new (FULL) v2.4

Pattern Definition

Overview Description

The "DA1 - MQ and IIB local HA on GPFS" v2.4 features

MQ Cluster

- 2 nodes wide
 - o 2 Gateway queue managers
 - o 2 Application queue managers
- Gateway and Application queue managers
- Non-dedicated full cluster repositories on Gateway queue managers
- Gateway to Application queue manager inbound load balancing via RQ (receipt queues)
- Application to Gateway queue manager outbound load balancing via EQ (emission queues)
- Cluster queues defined with DEFBIND(NOTFIXED)

MQ multi-instance HA pairs

o Each queue manager has a single Multi-instance standby partner

IBM Integration Bus

- 2 IIB Nodes
- Each IIB Node is associated with an Application Queue Manager (Local binding)
- IIB Multi-instance standby nodes are deployed for each IIB node.
- "Loop back" message flows are deployed to
 - o MQGet from RQs
 - o MQPut to EQs

MQ Client Application Gateway nodes

- 4 MQ Client nodes
- MQ Installation only no queue managers
- MQ CCDT used to resolve a Gateway queue manager per pair
 - o MQ client HA1 pair resolve GWQM1 primary and standby
 - o MQ client HA2 pair resolve GWQM2 primary and standby

Pattern Parameters

Passwords

Virtuser = passw0rd

Root = passw0rd

	new
lersion error	
2.4	
escription	
based NPP MQ and IIB HA on GPFS v2.3 add a PAG layer with MQ S/W installed a CCDT table creation	
ype	
Pattern	
Pattern Template	
ck option for plug-in usage	
Unlock plug-ins	
Lock all plug-ins except Foundation plug-ins	
Lock all plug-ins	
attern-level Parameters	
Add new parameter	
Password (root)	
•••••	
•••••	
Password (virtuser)	

Pattern Nodes

MQ Client Application Gateway nodes

Description

Place holder virtual machine set up to house MQ Client connected applications. In this pattern the MQ Client application will work in HA pairs. Each pair resolving connectivity to a Gateway Queue Manager Multi-instance HA pair via the Client Channel Definition Table (CCDT)

MQ Client Application Gateway Parameters

HA1-A

Core OS IBM OS Image for Red Ha	at Linux Systems 2.1.2.0 79
	Lock all attribute
* Name	
PAGA_HA1	
* Virtual CPUs	
1	*
* Memory size (MB)	
2048	
* Password (root)	
•••••	
* Password (virtuser)	

НА1-В

As above for HA1-A

HA2-C

As above for HA1-A

HA2-D

As above for HA1-A

MQ Gateway nodes

Description

Twin MQ Gateway queue managers each with a multi-instance partner working in an MQ cluster with the MQ Application queue managers. Gateway queue managers host a full cluster repository each.

EQs are local and shared in the cluster.

MQ Security is disabled.

MQ Gateway Parameters

GWQM1P – primary node 1

	Lock al	l attribu
Name		
GWQM1P		
Virtual CPUs		
1	*	
Memory size (MB)		
Memory size (MB) 4096		
4096	d}]
4096 Password (root)	d}]

GWQM1S – standby node 1

As above for GWQM1P

GWQM2P – primary node 2

As above for GWQM1P

GWQM2S – standby node 2

As above for GWQM1P

MQ Application/IIB nodes

Description

Twin MQ Application queue managers each with a multi-instance partner working in an MQ cluster with the MQ Gateway queue managers.

Primary Application queue managers "host" a primary IIB node.

Standby Application queue managers "host" a standby IIB node.

IIB has "loop back" flows deployed serving RQs and putting to EQs

RQs are local and shared in the MQ cluster.

MQ Security is disabled.

MQ Application Parameters

APPQM1P – primary node 1

APPQM1S – standby node 1

As above for APPQM1P

APPQM2P – primary node 2

As above for APPQM1P

APPQM2S – standby node 2

As above for APPQM1P

Pattern Software Parts

IBM MQ v8.0.0.4

IBM MQ version 8 fix pack 4

MQ Client Application Gateway Parameters

MQ Gateway Primary Parameters

MQ Gateway Standby Parameters

MQ Application Primary Parameters

MQ Application Standby Parameters

IBM Integration Bus V10.0.0.n

The pattern was built against IBM Integration Bus 10.0.0.3. Since delivering this version the fix pack 4 for IIB, 10.0.0.4 has been released. This fix pack resolves a problem where by the NPP-MQM-VIRTUSER script package is no longer required in the IIB Standby nodes. If you are using IIB v10.0.0.4 you may remove that script package.

The NPP-firewall and IIB Open firewall ports script packages are doing the same job in the IIB/Application nodes. Assuming no additional ports for IIB specifically are required the one or other script package could be removed in these nodes.

IIB Primary Parameters on MQ Application nodes

IIB Standby Parameters on MQ Application nodes

Script package descriptions

NPP-firewall

Open a MQ Listener port in the firewall.

Parameters

NPP-MQ Cleanup

This script package should be run when "tearing down" a pattern instance. The intention is to delete the queue managers and clean up their data log files on shared storage. I have found that this does not work very well and a manual clean up is best.

At MQ v8.0.0.3 and earlier if you do not clean up, repeated instantiation of the same pattern, which we often do when demoing and developing patterns, the Queue managers come up and pick up the old logs and data files. On the up side, the logs are replayed and you get persistent messages reloaded from previous pattern instances – good old MQ doing its job. On the down side, the exclusive file lock to determine if an HA primary is running is not honoured and both the primary and standby come up – Split brain which is bad.

At MQ v8.0.0.4 the unique pattern instance ID is inserted into the log/data file directory structure and you can no longer pick up previous iterations files. Problem solved! It is still worth going in and cleaning up from time to time.

Parameters

Source code

Not updated for the introduction of the pattern instance ID

```
./execute.sh "sudo su - mqm -c \"dspmq\""

./execute.sh "sudo su - mqm -c \"endmqm -i $QMGR_NAME\""

./execute.sh "sudo su - mqm -c \"dltmqm -z $QMGR_NAME\""

./execute.sh "sudo su - mqm -c \"dspmq\""

echo "Deleting GPFS folder."

./execute.sh "rm -rf /opt/MQShare/$QMGR_NAME"
```

NPP-IIBDEPOY-IIBNODE-L

The "-L" stands for local binding mean that the BAR contained in this script package contains a single flow to MQGet from the RQ of the queue manager associated with the IIB node and MQPut to the EQ of the same queue manager. The message flow only interacts with its associated IIB node queue manager.

Parameters

•	NPP-IIBDEPLOY-IIBNODE-L	-
		Lock all attributes
*	MQSI_DEPLOY_INT_SRV_NAME	
	default	
*	IIBNODE_NAME	
	IIBNODE1	

Source code

./execute.sh "mqsideploy \$IIBNODE NAME -e

NPP-MQCCDT-PAGNODE

For use with MQ Client application wishing to resolve more than one MQ queue manager. In this example we have 2 queue managers that are a multi-instance pair (A primary and a standby). The script package could be extended to be greater than 2 queue managers if required.

The pure app pattern wiring is used to obtain the IP addresses of the nodes hosting the two queue managers. These are then substituted for placeholders in the script package runmqsc input file such that the CCDT is created in the node with real IP addresses. The CCDT is created in the default location with the default name such that the MQ client code picks it up.

The client code checks the MQclient.ini file, MQSERVER environment variable and MQCHLTAB environment variable none of which are set before it goes after a default location CCDT.

I have supplied but not used a script package called NPP-SET-MQENV-1.0.0.1 that can be used to set up environment variables such as MQSERVER or MQCHLTAB

Parameters


```
MQSC File

DEFINE CHANNEL(TARG_QMGRNAME) +

CHLTYPE(CLNTCONN) +

TRPTYPE(TCP) +

CONNAME('gwqmp(1414),gwqms(1414)') +

QMNAME(TARG_QMGRNAME) +

REPLACE
```

Source code

```
echo "modifiying ipaddress for gwqm1p"
sed -i s/gwqm1p/$gwqm1p/g PAGCLCHL.mqsc

echo "modifiying ipaddress for gwqm1s"
sed -i s/gwqm1s/$gwqm1s/g PAGCLCHL.mqsc

./execute.sh "runmqsc -n < /tmp/mq/mqsc/PAGCLCHL.MQSC"
```

NPP-MQExMQSC-APPQM1-201

The IP addresses of connect nodes in the pattern are capture via the pattern wiring and fed into the script package. The placeholders appqm1s, appqm1p,gwqm1s,gwqm1p are replaced with the actual IP addresses in the MQSC file used to configure the queue manager by running the runmqsc command. In this way all MQ channels resolve to the correct IP addresses for all primary and standby MQ nodes in the pattern.

Parameters

MQSC File

```
ALTER QMGR +
```

CCSID(850) +

CLWLUSEQ(LOCAL) +

DEADQ('SYSTEM.DEAD.LETTER.QUEUE') +

CHLAUTH(DISABLED) +

FORCE

DEFINE QLOCAL('RQ1') +

CLUSTER('NPPCLUSTER') +

DEFPSIST(YES) +

DEFBIND(NOTFIXED) +

```
DISTL(NO) +
 MAXDEPTH(5000) +
REPLACE
DEFINE QLOCAL('SRA') +
CLUSTER('NPPCLUSTER') +
DEFBIND(NOTFIXED) +
 DISTL(NO) +
 MAXDEPTH(5000) +
REPLACE
DEFINE QLOCAL('SRB') +
CLUSTER('NPPCLUSTER') +
DEFBIND(NOTFIXED) +
 DISTL(NO) +
 MAXDEPTH(5000) +
REPLACE
DEFINE CHANNEL('TO.APPQM1') +
CHLTYPE(CLUSRCVR) +
CLUSTER('NPPCLUSTER') +
CONNAME('appqm1p(1414),appqm1s(1414)') +
 DISCINT(6000) +
MCATYPE(THREAD) +
TRPTYPE(TCP) +
REPLACE
DEFINE CHANNEL('TO.GWQM1') +
 CHLTYPE(CLUSSDR) +
 CLUSTER('NPPCLUSTER') +
 CONNAME('gwqm1p(1414),gwqm1s(1414)') +
 DISCINT(6000) +
 MCATYPE(THREAD) +
 TRPTYPE(TCP) +
 REPLACE
```

```
DEFINE CHANNEL('TO.GWQM2') +
 CHLTYPE(CLUSSDR) +
 CLUSTER('NPPCLUSTER') +
 CONNAME('gwqm2p(1414),gwqm2s(1414)') +
 DISCINT(6000) +
 MCATYPE(THREAD) +
 TRPTYPE(TCP) +
 REPLACE
DEFINE LISTENER('LISTENER.TCP') +
 TRPTYPE(TCP) +
 CONTROL(QMGR) +
 PORT(1414) +
 REPLACE
DEFINE CHANNEL(APPQM1) +
      CHLTYPE(SVRCONN) +
      TRPTYPE(TCP) +
      REPLACE
DEFINE CHANNEL(APPQM1) +
      CHLTYPE(CLNTCONN) +
      TRPTYPE(TCP) +
      CONNAME('appqm1p(1414),appqm1s(1414)') +
      QMNAME(APPQM1) +
      REPLACE
ALTER CHL(APPQM1) CHLTYPE(SVRCONN) MCAUSER('mqm')
ALTER CHL(SYSTEM.DEF.SVRCONN) CHLTYPE(SVRCONN) MCAUSER('mqm')
ALTER QMGR CHLAUTH(DISABLED)
ALTER AUTHINFO(SYSTEM.DEFAULT.AUTHINFO.IDPWOS) AUTHTYPE(IDPWOS) CHCKCLNT(NONE)
REFRESH SECURITY
Source code
echo "modifiying ipaddress for gwqm1p"
sed -i s/gwqm1p/$gwqm1p/g APPQM1noSYS.mqsc
```

```
echo "modifiying ipaddress for gwqm1s"
sed -i s/gwqm1s/$gwqm1s/g APPQM1noSYS.mqsc

echo "modifiying ipaddress for gwqm2p"
sed -i s/gwqm2p/$gwqm2p/g APPQM1noSYS.mqsc

echo "modifiying ipaddress for gwqm2s"
sed -i s/gwqm2s/$gwqm2s/g APPQM1noSYS.mqsc

echo "modifiying ipaddress for appqm1p"
sed -i s/appqm1p/$appqm1p/g APPQM1noSYS.mqsc

echo "modifiying ipaddress for appqm1p"
sed -i s/appqm1p/$appqm1p/g APPQM1noSYS.mqsc

echo "modifiying ipaddress for appqm1s"
sed -i s/appqm1s/$appqm1s/g APPQM1noSYS.mqsc

./execute.sh "runmqsc $QMGR NAME < \"$f\""
```

NPP-MQExMQSC-APPQM2-201

See NPP-MQExMQSC-APPQM1-201 above. APPQM2 has its own unique .mqsc file

NPP-MQExMQSC-GWQM1-201

See NPP-MQExMQSC-APPQM1-201 above. GWQM1 has its own unique .mqsc file

NPP-MQExMQSC-GWQM2-201

See NPP-MQExMQSC-APPQM1-201 above. GWQM2 has its own unique .mqsc file

NPP-MQM-VIRTUSER

This script package address a problem in IIB v10.0.0.3 Standby node that is resolved in IIB v10.0.0.4. If you are at 10.0.0.4 you do not need to use it.

Parameters

NPP-MQM-VIRTU	SER_1
	Lock all attributes
MQSC_DIRECTORY	
* QMGR_NAME	
APPQM2	

Source code

echo "@DA add virtuser to the mqm group" usermod -a -G mqm virtuser

OpenfirewallPorts-10.0.0.0

Open any additional fire wall ports. May not be required as NPP-Firewall was used to open 1414 for these IIB nodes. Use it if you have other IIB ports you need to open.

Parameters

Ordering

Ordering is important such that IP addresses etc can be resolved when script packages to configure MQ channels are run.

Refer to the ordering tab in the IBM Pattern builder for the pattern.

IBM GPFS Shared Service

The pattern has been tested with in single rack against GPFS shared service and we have also tested it against a GPFS service that spanned 2 racks where no Queue Manager primary node and standby were located in the same rack.

For the twin rack approach we used multi-rack deploy and location profiles to determine that standbys ran in opposite racks from their primaries. In this way we had MQ across rack multi-instance HA. We did this testing before the IIB Primary and Standby parts became available, so IIB multi-instance has not been tested in the same way to date by the team producing this collateral.

GPFS Pattern Type 1.2

IBM Shared Service for GPFS

	Application ID:	a-d3481a6b-9ce0-4384-8842-b25fbbf74e6a
	Description:	Provides access to a GPFS Cluster Manager where the workload requests a highly available file system.
	Service version:	1.2.4.0
	Created by:	antonyp
	Created on:	Jan 14, 2016, 6:17:00 PM
	Supported clients version:	[1.0,1.2]
>	Pattern type:	GPFS Pattern Type 1.2
	Service Type:	External
	In the cloud now:	▶ IBM Shared Service for GPFS (Build-CG)

GPFS client configuration

IBM Integration Bus Message Flows

There is a Project Interchange supplied in the materials called NPPMQLocal.zip

