Załóżmy, że mamy źródło S, które generuje symbole ze zbioru  $S=\{x_1, x_2, ..., x_N\}$  z prawdopodobieństwem  $P=\{p_1, p_2, ..., p_N\}$ , symbolom tym odpowiadają kody  $P=\{c_1, c_2, ..., c_N\}$ . Efektywność danego sposobu kodowania można określić jako

$$L_{sr} = \sum_{i=1}^{N} p_i \left| c_i \right|$$

Def. Kod jednoznacznie definiowalny

**Def. Kod przedrostkowy** 

**Def. Kod optymalny** 

# Przykłady kodów



# **Kody optymalne**

#### Idea

symbole (litery) występujące częściej powinny otrzymać kody krótsze, a symbole występujące rzadziej dłuższe.

## Alfabet Morse'a (połowa XIX)



#### Kodowanie Huffmana

### Algorytm konstrukcji drzewa Huffmana

- 1. dla każdej litery utwórz reprezentujące ją drzewo złożone tylko z jednego węzła (korzenia). W korzeniu tego drzewa umieść nazwę litery i prawdopodobieństwie jej wystąpienia.
- 2. znajdź dwa drzewa  $t_1$  i  $t_2$  z najmniejszą wartością wskaźnika prawdopodobieństwa.
- 3. połącz te drzewa w jedno drzewo w korzeniu nowego drzewa wpisz sumę prawdopodobieństw  $p_1$  i  $p_2$ . Lewym poddrzewem nowego drzewa jest drzewo  $t_1$ , prawym  $t_2$ . Nadaj etykietę 0 lewej gałęzi łączącej korzeń nowego drzewa z korzeniem drzewa  $t_1$ , nadaj etykietę 1 prawej gałęzi łączącej korzeń nowego drzewa z korzeniem drzewa  $t_2$ .
- 4. jeśli istnieją przynajmniej dwa drzewa wróć do punktu 2.
- 5. w tym momencie istnieje tylko jedno drzewo, a wszystkie symbole umieszczone są w jego liściach. Utwórz kod dla każdego symbolu przechodząc z korzenia do liścia i łącząc etykiety gałęzi, po których przechodzisz.

# Przykład:

Dane są symbole i częstości ich wystąpień. Należy zaprojektować drzewo Huffmana i skonstruować kod.







Rzecz ciekawa dwa różne drzewa dają taką samą średnią długość kodu!

Przykład: kodowanie i dekodowanie:

Zakodować ciąg danych EDBCB używając kodu z lewej części powyższej tablicy

$$Kod(EDBCB) = 1,011,001,010,001$$

Przecinki postawiono tylko dla zwiększenia czytelności

## Zdekodować ciąg:

#### 1011001010001

Procedurę dekodowania rozpoczynamy od korzenia, czytamy pierwszy bit (0) i dochodzimy do liścia zawierającego symbol *E*. Czytamy drugi bit i znowu rozpoczynając od korzenia idziemy w prawo, potem trzeci bit prowadzi nas do liścia z symbolem *D*, itd.

## Implementacja tablicowa

- 1. utwórz tablicę o 2*N*-1 pozycjach, gdzie *N* jest liczbą symboli
- 2. znajdź dwa symbole  $s_i$  i  $s_j$  o najmniejszej wadze i zerowej wartości pola Link
- 3. w drugiej części tablicy w pierwszej wolnej komórce utwórz nowy symbol  $s_{ij}$  i zapisz sumę wag symboli  $s_i$  i  $s_i$ .
- 4. w polu Link zapisz numer nowo utworzonego symbolu
- 5. w polu P symbolu  $s_i$  wpisz 0, a w pole P symbolu  $s_i$  wpisz 1.
- 6. jeśli są co najmniej dwa symbole z pustym polem *Link* wróć do punktu 2
- 7. rozpoczynając od symbolu (pozycje: 1:*N*) idziemy do korzenia (pozycja 2*N*-1) korzystając z pola *Link* i zapisując wartości z pola *P* to daje ścieżkę od symbolu do korzenia.
- 8. utworzone ciągi zapisujemy w odwróconej kolejności otrzymując zapis ścieżki od korzenia do symbolu.

# Przykład:

Stosując algorytm tablicowy konstrukcji drzewa Huffmana zbudować optymalny kod dla symboli występujących z częstością jak w poprzednim przykładzie.

Etap 1.

| Id   | 1   | 2   | 3    | 4    | 5    | 6 | 7 | 8 | 9 |
|------|-----|-----|------|------|------|---|---|---|---|
| P    | 0.1 | 0.1 | 0.15 | 0.20 | 0.45 |   |   |   |   |
| Link |     |     |      |      |      |   |   |   |   |

Etap 2: symbole 1 i 2, utworzono 6

| Id   | 1 | 2 | 3    | 4    | 5    | 6   | 7 | 8 | 9 |
|------|---|---|------|------|------|-----|---|---|---|
| P    | 0 | 1 | 0.15 | 0.20 | 0.45 | 0.2 |   |   |   |
| Link | 6 | 6 |      |      |      |     |   |   |   |

Etap 2: symbole 3 i 6, utworzono 7

| Id   | 1 | 2 | 3 | 4    | 5    | 6 | 7    | 8 | 9 |
|------|---|---|---|------|------|---|------|---|---|
| P    | 0 | 1 | 0 | 0.20 | 0.45 | 1 | 0.35 |   |   |
| Link | 6 | 6 | 7 |      |      | 7 |      |   |   |

Etap 2: symbole 4 i 7, utworzono 8

| Id   | 1 | 2 | 3 | 4 | 5    | 6 | 7 | 8    | 9 |
|------|---|---|---|---|------|---|---|------|---|
| P    | 0 | 1 | 0 | 0 | 0.45 | 1 | 1 | 0.55 |   |
| Link | 6 | 6 | 7 | 8 |      | 7 | 8 |      |   |

Etap 2: symbole 5 i 8, utworzono 9 – koniec konstrukcji drzewa

| Id   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------|---|---|---|---|---|---|---|---|---|
| P    | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |   |
| Link | 6 | 6 | 7 | 8 | 9 | 7 | 8 | 9 |   |

Słowa kodu otrzymane w wyniku wykonania powyższego algorytmu

| Symbol | Utworzony ciąg | Kod  |
|--------|----------------|------|
| A      | 0111           | 1110 |
| В      | 1111           | 1111 |
| C      | 011            | 110  |
| D      | 01             | 10   |
| E      | 0              | 0    |

# Szybki algorytm dekodowania (tablicowy)

Tworzymy tablicę o rozmiarze  $2^N$ , gdzie N jest długością najdłuższego kodu Huffmana. Z konstrukcji (przez drzewo H) wynika, że kod H jest kodem przedrostkowym, tzn. kod żadnego symbolu nie jest prefiksem kodu innego symbolu. Z tego faktu wynika możliwość szybkiego dekodowania przy użyciu odpowiednio wypełnionej tablicy:

| indeks | wartość            | symbol | długość |
|--------|--------------------|--------|---------|
| 0      | 0000               | Е      | 1       |
| 1      | 0001               | Е      | 1       |
| 2      | 0010               | Е      | 1       |
| 3      | 0011               | Е      | 1       |
| 4      | 0100               | Е      | 1       |
| 5      | 0101               | Е      | 1       |
| 6      | 0110               | Е      | 1       |
| 7      | 0111               | Е      | 1       |
| 8      | 1000               | D      | 2       |
| 9      | 1001               | D      | 2       |
| 10     | 1010               | D      | 2       |
| 11     | 1011               | D      | 2       |
| 12     | 110 <mark>0</mark> | С      | 3       |
| 13     | 1101               | С      | 3       |
| 14     | 1110               | A      | 4       |
| 15     | 1111               | В      | 4       |

| Symbol | Kod  |
|--------|------|
| A      | 1110 |
| В      | 1111 |
| C      | 110  |
| D      | 10   |
| Е      | 0    |

Kod(EDACB) = 01011111101111

#### Algorytm budowy tablicy dekodera

Dla każdego symbolu  $s_i$  o kodzie  $c_i$  o długości  $l_i$  tworzymy  $2^{(N-li)}$  liczb  $\mathrm{Idx}(k)$ , które traktujemy jako indeksy  $\mathrm{Idx}(k)$  do tablicy T. Wartości tych indeksów wynoszą  $\mathrm{Idx}(k)=(c_i << (N-l_i)) + k$ , k=0:  $2^{(N-li)}-1$ , gdzie << oznacza bitowe przesunięcie w lewo (równoważnie:  $\mathrm{Idx}(k)=2^{(N-li)}\times c_i+k$ , k=0:  $2^{(N-li)}-1$ ). W pierwszą kolumnę wiersza  $\mathrm{Idx}(k)$  tablicy T wpisujemy nazwę symbolu  $(s_i)$ , a w drugiej kolumnie długość kodu tego symbolu  $(l_i)$ . W powyższym przykładzie N=4, dla symbolu "D" o kodzie  $10_b$  otrzymujemy  $\mathrm{Idx}(k)=10_b <<<2+k=1000_b+k$ , k=0:3,  $\mathrm{Idx}(0)=1000_b$ ,  $\mathrm{Idx}(1)=1001_b$ ,  $\mathrm{Idx}(2)=1010_b$ ,  $\mathrm{Idx}(2)=1011_b$ , oraz

 $T[1000_b, 1]=D, T[1000_b, 2]=2$   $T[1001_b, 1]=D, T[1001_b, 2]=2$  $T[1010_b, 1]=D, T[1010_b, 2]=2$ 

 $T[1011_b, 1]=D, T[1011_b, 2]=2$ 

**Proces dekodowania** polega na utrzymywaniu bufora zawierającego *N* bitów i traktowaniu go jako indeksu do tablicy. Po odczytaniu symbolu i jego długości przesuwamy zawartość bufora w lewo o tyle pozycji jak była odczytana długość kodu, na zwolnione miejsce wprowadzamy nowe bity ze strumienia wejściowego.

#### Laboratorium

- 1. Dla źródła S generującego symbole z prawdopodobieństwem P = [0.01, 0.02, 0.07, 0.02, 0.04, 0.14, 0.07, 0.14, 0.49]; zaprojektować kod optymalny Huffmana stosując algorytm tablicowy. Sprawdzić, czy otrzymany kod jest kodem przedrostkowym.
- 2. Dla ciągu współczynników lena.cof uzyskanych w wyniku transformacji DCT i kwantyzacji obrazu lena.bmp wyznaczyć optymalny kod stosując metodę Huffmana. Następnie zakodować ten ciąg w formie binarnej. Przed przystąpieniem do projektowania kodu należy wyznaczyć częstotliwości występowania poszczególnych współczynników. Proponowaną metodą jest założenie tablicy hist w której będziemy zliczać liczbę wystąpień danego symbolu. Na początku tablica jest pusta, po znalezieniu symbolu nie należącego do tablicy należy go do niej wstawić.

Przydatne funkcje Matlaba, to: dec2bin, bin2dec, bitand, bitor, bitshift, bitxor, bitget.