Digital Modulation: ASK FSK

Sihat Afnan Farhana Khan

Department of Computer Science & Engineering Bangladesh University of Engineering and Technology

June, 2021

Introduction

- Digital Communication
 - Noise Immunity
 - Economic \rightarrow Profitable
 - Viability of distortion less regenerative repeaters
- But ... digital signals cannot be directly transmitted
- Solution?

Introduction

- Digital Communication
 - Noise Immunity
 - Economic \rightarrow Profitable
 - Viability of distortion less regenerative repeaters
- But ... digital signals cannot be directly transmitted
- Solution?

Introduction

- Digital Communication
 - Noise Immunity
 - Economic \rightarrow Profitable
 - Viability of distortion less regenerative repeaters
- But ... digital signals cannot be directly transmitted
- Solution?

Digital Modulation

Digital Modulation

- Encoding Digital information
- ullet Modifying carrier wave o Amplitude, Frequency, Phase

- Two methods of Digital Modulation
 - Amplitude Shift Keying (ASK)
 - Frequency Shift Keying (FSK)

Digital Modulation

Digital Modulation

- Encoding Digital information
- ullet Modifying carrier wave o Amplitude, Frequency, Phase

- Two methods of Digital Modulation
 - Amplitude Shift Keying (ASK)
 - Frequency Shift Keying (FSK)

Amplitude Shift Keying

- Simplest
- Carrier wave
 - Analog
 - High frequency
- ullet A digital signal o changes amplitude of carrier

Amplitude Shift Keying

- Simplest
- Carrier wave
 - Analog
 - High frequency
- ullet A digital signal o changes amplitude of carrier

Amplitude Shift Keying

- Simplest
- Carrier wave
 - Analog
 - High frequency
- ullet A digital signal o changes amplitude of carrier

Figure: Binary signal modulation with ASK

Figure: Multilevel signal modulation with ASK

Demodulation of ASK

Synchronous

Asynchronous

- Synchronous
 - efficient
- Asynchronous

- Synchronous
 - efficient
 - costly
- Asynchronous

- Synchronous
 - efficient
 - costly
- Asynchronous
 - less costly

- Synchronous
 - efficient
 - costly
- Asynchronous
 - less costly
 - less SNR
 - poor performance

Applications

Applications

Broadcasting digital signal

Applications

- Broadcasting digital signal
- In optical fiber communication for lesser intensity modulation

Discrete variation of carrier signal frequency.

- ② Different from the continuous variation of carrier signal frequency in analog FM modulation.
- Number of discrete frequencies can be
 - two : Binary FSK or BFSK
 - More than two: M-ary FSK

Discrete variation of carrier signal frequency.

- ② Different from the continuous variation of carrier signal frequency in analog FM modulation.
- Number of discrete frequencies can be
 - two : Binary FSK or BFSK
 - More than two: M-ary FSK

Discrete variation of carrier signal frequency.

- Oifferent from the continuous variation of carrier signal frequency in analog FM modulation.
- Number of discrete frequencies can be
 - two : Binary FSK or BFSK
 - More than two : M-ary FSK

BFSK

- Two frequencies: Mark and Space
- ② Same amount of deviation from the carrier frequency f_c

BFSK

 Carrier amplitude doesn't change(only frequency). So simplifies the amplifier design and selection

Tone Spacing

- How far apart should the mark an space be?
 - Too close InterSymbol interference(ISI)

• Too far - Excessive Bandwith

Minimum FSK Bandwith

- Function of
 - Frequency Deviation (F_d)
 - Bit Rate(F_b)

② But how far apart the tone should be?

Minimum FSK Bandwith

- Function of
 - Frequency Deviation (F_d)
 - Bit Rate(F_b)

But how far apart the tone should be?

Modulation Index

- Tones should be as close as possible without creating ISI.
- Modulation Index

$$h = \frac{2*F_d}{F_b}$$

- **3** Optimal detetction occurs when $h \ge 1$
- Why MFSK needs less bandwith than BFSK for a given bit rate?

MFSK

More than two frequencies

- 2 Each MFSK tone corresponds to $log_2 M$ bits
- BFSK Formulas are applicable for MFSK too.

Application of FSK

- ② Digital Radio Technology
- Oata Collection and Remote Controls

The End

Thank You Any Question?