Exercícios de Probabilidade

Paulo Justiniano Ribeiro Jr

Versão compilada em 22 de abril de 2024 às 10:39

1. Três indivíduos tentam, de forma independente, resolver um problema. O primeiro tem 50% de chance de resolver, o segundo tem 65% e o terceiro tem 30%. Qual a probabilidade do problema ser resolvido?

Solução:

A: o primeiro resolve o problema P(A) = 0.50 $P(\overline{A}) = 0.50$

B : o segundo resolve o problema $\quad P(B)=0,65 \quad P(\overline{B})=0,35$

C: o terceiro resolve o problema P(C) = 0.30 $P(\overline{C}) = 0.70$

$$P(A \cup B \cup C) = 1 - P(\overline{A} \cap \overline{B} \cap \overline{C}) \stackrel{ind}{=} 1 - P(\overline{A}) \cdot P(\overline{B}) \cdot P(\overline{C}) = 1 - (1 - 0, 50)(1 - 0, 65)(1 - 0, 30) = 0,878$$

2. Dentre seis números inteiros pares e oito ímpares, todos diferentes um do outro, dois números são escolhidos ao acaso e multiplicados. Qual a probabilidade de que o produto seja par?

Solução:

Evento	$Par \cap Par$	$Par \cap Impar$	$Impar\cap Par$	$Impar \cap Impar$
Produto	Par	Par	Par	Impar
Probabilidade	$\frac{6}{14} \frac{5}{13}$	$\frac{6}{14} \frac{8}{13}$	$\frac{8}{14} \frac{6}{13}$	$\frac{8}{14} \frac{7}{13}$

$$P[ProdutoPar] = 1 - P[ProdutoImpar] = 1 - \frac{8}{14} \frac{7}{13} = 0,692$$

- 3. Em um programa da regeneração são plantadas 10 mudas de uma determinada espécie em cada uma das unidades de manejo. A probabilidade de que qualquer muda complete dois anos de idade é de 0,20. Fazendo suposições necessárias, responda os itens a seguir.
 - (a) Qual a probabilidade de uma unidade ter alguma planta com dois anos?
 - (b) Quantas mudas deveriam plantadas para que a probabilidade de alguma planta completar dois anos seja superior a 0,99 ?
 - (c) Qual deveria ser a probabilidade de cada muda completar dois anos para que a probabilidade da unidade ter alguma muda fosse superior a 0,95?
 - (d) Descreva e discuta as suposições feitas para resolver o problema indicando situações em que elas poderiam ser inválidas.

Solução:

Evento P_i : a i-ésima planta completa 2 anos $P[P_i] = 0, 2 = P[P] \longrightarrow P[\overline{P_i}] = 0, 8 = P[\overline{P}]$

Evento C: a unidade tem ao menos 1 planta após 2 anos

(a)
$$P[C] = 1 - P[\overline{C}] = 1 - P[\overline{P}_1 \cap \overline{P}_2 \cap \dots \cap \overline{P}_{10}] = 1 - \prod_{i=1}^{10} P[\overline{P}_i] = 1 - P[\overline{P}]^{10} = 1 - 0.893$$

(b)
$$P[C] > 0,99 \longrightarrow 1-0,8^n > 0,99 \longrightarrow 0,8^n < 0,01 \longrightarrow n \ge \frac{\log(0,01)}{\log(0,80)} = 21$$

(c)
$$P[C] > 0.95 \longrightarrow 1 - P[\overline{P}]^{10} > 0.95 \longrightarrow P[\overline{P}]^{10} < 0.05 \longrightarrow P[\overline{P}] < (0.05)^{1/10} = 0.74 \longrightarrow P[P] = 0.26$$

(d)

- 4. Uma urna contém doze bolas brancas e oito bolas vermelhas. Serão retiradas, sequencialmente, três bolas da urna. A cada bola anota-se a cor e, se a bola for vermelha, ela é retornada à urna e, se for branca, ela é posta de lado.
 - (a) Forneça o espaço amostral do experimento.
 - (b) Calcule probabilidade de cada elemento do espaço amostral.
 - (c) Qual a probabilidade de não se obter todas as bolas da mesma cor?
 - (d) Qual a probabilidade de se retirar ao menos duas bolas brancas?
 - (e) Qual a probabilidade de retirar três vermelhas sabendo-se que ao menos uma das bolas é vermelha?
 - (f) Se a primeira bola for branca, qual a probabilidade de obter três bolas brancas?

Solução:

(a)
$$\Omega = \{(B, B, B), (B, B, V), (B, V, B), (V, B, B), (B, V, V), (V, B, V), (V, V, B), (V, V, V)\}$$

(b) Evento
$$(B, B, B)$$
 (B, B, V) (B, V, B) (V, B, B) (B, V, V) (V, B, V) (V, B, V) (V, V, B) (V, V, V) Probabilidade $\frac{12}{20}\frac{11}{19}\frac{10}{18}$ $\frac{12}{20}\frac{11}{19}\frac{18}{18}$ $\frac{12}{20}\frac{8}{19}\frac{11}{19}$ $\frac{8}{20}\frac{12}{20}\frac{11}{19}$ $\frac{12}{20}\frac{8}{19}\frac{8}{19}$ $\frac{8}{20}\frac{12}{20}\frac{8}{19}$ $\frac{8}{20}\frac{8}{20}\frac{12}{20}$ $\frac{8}{20}\frac{8}{20}\frac{8}{20}$ (c) $P = 1 - P[(B, B, B)] - P[(V, V, V)] = 1 - \frac{12}{20}\frac{11}{19}\frac{10}{18} - \frac{8}{20}\frac{8}{20}\frac{8}{20} = 0.743$

(c)
$$P = 1 - P[(B, B, B)] - P[(V, V, V)] = 1 - \frac{12}{20} \frac{11}{19} \frac{10}{18} - \frac{8}{20} \frac{8}{20} \frac{8}{20} = 0,743$$

$$(\mathrm{d}) \ \ P = P[(B,B,B)] + P[(B,B,V)] + P[(B,V,B)] + P[(V,B,B)] = \frac{12}{20} \frac{11}{19} \frac{10}{18} + \frac{12}{20} \frac{11}{19} \frac{8}{18} + \frac{12}{20} \frac{8}{19} \frac{11}{19} + \frac{8}{20} \frac{12}{20} \frac{11}{19} = 0,6326$$

(e)
$$P = \frac{P[(V,V,V)]}{1-P[(B,B,B)]} = \frac{\frac{8}{20} \frac{8}{20} \frac{8}{20}}{1-\frac{12}{20} \frac{11}{19} \frac{10}{18}} = 0,0793$$

(f)
$$P = \frac{P[(B,B,B)]}{P[(B,B,B)] + P[(B,B,V)] + P[(B,V,B)] + P[(B,V,V)]} = \frac{\frac{12}{20} \frac{11}{19} \frac{10}{18}}{\frac{12}{20} \frac{11}{19} \frac{10}{18} + \frac{12}{20} \frac{8}{19} \frac{11}{19} + \frac{12}{20} \frac{8}{19} \frac{8}{19}} = 0,3216$$

5. Um professor preparou 40 versões diferentes de uma lista de exercícios. As listas são atribuídas ao acaso sorteando-se para cada estudante um número de 1 a 40 que identifica a lista a ser recebida. Se um grupo de três colegas decide fazer as listas juntos, qual a probabilidade de que dois ou mais deles recebam a mesma versão?

Solução:

Espaço Amostral: S todas possíveis atribuições de 40 listas para 3 estudantes

$$n(S) = 40 \cdot 40 \cdot 40$$

Evento: E coincidência de lista em ao menos 2 estudantes

 \overline{E} sem coincidência de listas

$$n(\overline{E}) = 40 \cdot 39 \cdot 38$$

$$P[E] = 1 - P[\overline{E}] = 1 - \frac{n(\overline{E})}{n(S)} = 1 - \frac{40 \cdot 39 \cdot 38}{40^3} = 0,0737.$$

Nota: este exercício é semelhante ao problema da coincidência de aniversários em um grupo de pessoas.

- 6. A probabilidade de haver algum acidente considerado grave em um dia, em um trecho de uma rodovia é de 0.04 se não chove e de 0,12 se chove. Sabe-se que, no período considerado, chove em 30% dos dias.
 - (a) Se em um determinado dia não houve nenhum acidente, qual a probabilidade que não tenha chovido?
 - (b) qual a probabilidade de que, chovendo ou não, haja acidente?

Solução:

Eventos e probabilidades informadas:

A : ocorre acidente \overline{A} : não ocorre acidente C: chove \overline{C} : não chove $P[A|\overline{C}] = 0.04 \longrightarrow P[\overline{A}|\overline{C}] = 1 - 0.04 = 0.96$ $P[A|C] = 0, 12 \longrightarrow P[\overline{A}|C] = 1 - 0, 12 = 0, 88$ $P[C] = 0.30 \longrightarrow P[\overline{C}] = 1 - 0.30 = 0.70$

Probabilidades pedidas:

(a)
$$P[\overline{C}|\overline{A}] = \frac{P[\overline{C}\cap \overline{A}]}{P[\overline{A}]} = \frac{P[\overline{C}\cap \overline{A}]}{P[\overline{C}\cap \overline{A}] + P[C\cap \overline{A}]} = \frac{P[\overline{C}]\cdot P[\overline{A}|\overline{C}]}{P[\overline{C}]\cdot P[\overline{A}|\overline{C}] + P[C]\cdot P[\overline{A}|C]} = \frac{0.70\cdot 0.96}{0.70\cdot 0.96 + 0.30\cdot 0.88} = 0.718$$

(b) $P[A] = P[A\cap C] + P[A\cap \overline{C}] = P[C]\cdot P[A|C] + P[\overline{C}]\cdot P[A|\overline{C}] = 0.30\cdot 0.12 + 0.70\cdot 0.04 = 0.064$

OBS: pode-se ver a solução organizando os dados em uma tabela. Este problema é análogo ao do teste de diagnóstico.

- 7. Em um grupo de estudantes 45% são do curso A, 25% do curso B o restante do curso C. A proporção de mulheres em cada curso um dos cursos é de 20, 50 e 75%, respectivamente. Se um estudante é sorteado qual a probabilidade de:
 - (a) seja homem;
 - (b) seja do curso A, sabendo que foi sorteada uma mulher;
 - (c) seja do curso C sabendo que foi sorteado um homem.

Solução:

(a)
$$P[H] = 1 - P[M] = 1 - (P[M \cap A] + P[M \cap B] + P[M \cap C]) = 1 - (P[M|A] \cdot P[A] + P[M|B] \cdot P[B] + P[M|C] \cdot P[C]) = 1 - (0, 20 \cdot 0, 45 + 0, 50 \cdot 0, 25 + 0, 75 \cdot 0, 30) = 1 - 0,44 = 0,56$$

(b)
$$P[A|M] = \frac{P[A \cap M]}{P[M]} = \frac{P[M|A] \cdot P[A]}{P[M]} = \frac{0.09}{0.44} = 0.205$$

(c) $P[C|H] = \frac{P[C \cap H]}{1 - P[M]} = \frac{P[H|C] \cdot P[C]}{P[H]} = \frac{0.075}{0.56} = 0.134$

(c)
$$P[C|H] = \frac{P[C \cap H]}{1 - P[M]} = \frac{P[H|C] \cdot P[C]}{P[H]} = \frac{0.075}{0.56} = 0.134$$

OBS: pode-se ver a solução organizando os dados em uma tabela como a seguir e completando as caselas da tabela.

Sexo/Curso	A	В	\mathbf{C}	Total
Feminino (M)	(0,20)(0,45)	(0,50)(0,25)	(0,75)(0,30)	
Masculino (H)				
Total	0,45	0,25	0,30	1

- 8. Um algorítmo de classificação deve tentar resolver corretamente dois problemas, A e B. A probabilidade resolver A corretamente é de 0,6. Caso resolva A corretamente, a probabilidade de resolver B corretamente é de 0,85; caso contrário, essa probabilidade é de 0,25.
 - (a) Qual a probabilidade de ele:
 - i. resolver corretamente os dois problemas?
 - ii. resolver corretamente apenas um dos problemas?
 - iii. não resolver nenhum corretamente?
 - (b) os eventos "resolver corretamente A" e "resolver corretamente B",
 - i. são independentes? (justifique)
 - ii. são mutuamente exclusivos? (justifique)

Solução:

A: resolver corretamente o problema A

 $B: \ {\rm resolver} \ {\rm corretamente} \ {\rm o} \ {\rm problema} \ {\rm B}$

$$P[A] = 0.6$$
; $P[B|A] = 0.85$; $P[B|\overline{A}] = 0.25$

$$P[\overline{A}] = 0,4$$
; $P[\overline{B}|A] = 0,15$; $P[\overline{B}|\overline{A}] = 0,75$

(a) i.
$$P[A \cap B] = P[A] \cdot P[B|A] = (0,6) \cdot (0,85) = 0.51$$

ii.
$$P[A \cap \overline{B}] + P[\overline{A} \cap B] = P[A] \cdot P[\overline{B}|A] + P[\overline{A}] \cdot P[B|\overline{A}] = (0,6) \cdot (0,15) + (0,4) \cdot (0,25) = 0.19$$

iii.
$$P[\overline{A} \cap \overline{B}] = P[\overline{A}] \cdot P[\overline{B}|\overline{A}] = (0,4) \cdot (0,75) = 0,3$$

(b) i. Não, pois
$$P[A \cap B] = 0.51 \neq P[A] \cdot P[B] = 0.61$$
,
em que $P[B] = P[B \cap A] + P[B \cap \overline{A}] = (0.6)(0.85) + (0.4)(0.25) = 0.61$

- ii. Não pois $P[A \cap B] \neq 0$
- 9. A probabilidade de um programador cometer um erro de sintaxe em uma primeira versão de seu trabalho é de 2/5. Caso cometa o erro de sintaxe, a probabilidade de comentar um erro de lógica é de 7/10, caso contrário essa probabilidade é de 1/4. Calcule a probabilidade de ele:
 - (a) cometer os dois erros
 - (b) cometer apenas um dos erros
 - (c) não cometer erros.

Solução:

Notação e dados:

S:comete erro de sintaxe

L:comete erro de lógica

$$P[S] = 2/5$$

$$P[L|S] = 7/10$$

$$P[L|\overline{S}] = 1/4$$

Portanto

$$P[\overline{L}|S] = 3/10$$

$$P[\overline{L}|\overline{S}] = 3/4$$

(a)
$$P[S \cap L] = P[S] \cdot [L|S] = \frac{2}{5} \cdot \frac{7}{10} = 0.28 = 0.28$$

(b)
$$P[S \cap \overline{L}] + P[\overline{S} \cap S] = P[S] \cdot [\overline{L}|S] + P[\overline{S}] \cdot P[L|\overline{S}] = \frac{2}{5} \cdot \frac{3}{10} + \frac{3}{5} \cdot \frac{1}{4} = 0,27 = 0,27 = 0$$

(c)
$$P[\overline{S} \cap \overline{L}] = P[\overline{S}] \cdot [\overline{L}|\overline{S}] = \frac{3}{5} \cdot \frac{3}{4} = 0.45 = 0.45$$

10. Discos de plástico policarbonado de um fornecedor foram analisados quanto a resistência a riscos e a choques. Os resultados de 100 discos analisados são resumidos na tabela a seguir.

resistência	resistência a choques		
a riscos	alta	baixa	
alta	80	9	
baixa	6	5	

Denote por A o evento o disco tem alta resistência a riscos e por B o evento o disco tem alta resistência a choques.

- (a) Obtenha: P[A], $P[A \cap B]$, $P[A^c]$, $P[A^c \cap B^c]$, $P[A^c \cup B]$.
- (b) Obtenha: P[A|B], P[B|A], $P[A|B^c]$, $P[B^c|A]$, $P[B|A^c]$.
- (c) Se um disco é selecionado ao acaso qual a probabilidade de ter:
 - alta resistência a choque e baixa a riscos?
 - alta resistência a riscos e baixa a choques?
- (d) os eventos ter alta resistência a ambos atributos são mutuamente exclusivos? (justifique)
- (e) os eventos ter alta resistência a ambos atributos são independentes? (justifique)

Solução:

Probabilidades conjuntas (interseções).

	В	B^c
A	0,80	0,09
A^c	0,06	0,05

- (a) P[A] = 0.89
 - $P[A \cap B] = 0.8$
 - $P[A^c] = 0.11$
 - $P[A^c \cap B^c] = 0.05$
 - $P[A^c \cup B] = P[A^c] + P[B] P[A^c \cap B] = 0.91$
- (b) $P[A|B] = \frac{P[A \cap B]}{P[B]} = 0.93$
 - $P[B|A] = \frac{P[A \cap B]}{P[A]} = 0.9$
 - $P[A|B^c] = \frac{P[A \cap B^c]}{P[B^c]} = 0.64$
 - $P[B^c|A] = \frac{P[B^c \cap A]}{P[A]} = 0.1$
 - $P[B|A^c] = \frac{P[A^c \cap B]}{P[A^c]} = 0.55$
- (c) $P[B \cap A^c] = 0.06$
 - $P[A \cap B^c] = 0.09$
- (d) Não, pois $P[A \cap B] \neq 0$, isto é, os eventos ter alta resistência em ambos os atributos possuem intersecção, por isso não são mutuamente exclusivos. No contexto do exemplo, isto significa, por exemplo, que é possível ter resistência a ambos fatores ao mesmo tempo.
- (e) $P[A \cap B] \neq P[A] \cdot P[B]$, isto é, o produto das marginais difere dos valores observados, por isso sabemos que os eventos não são independentes. No contexto do exemplo, as chances de ter resistência a um fator para os casos de se ter ou não resistência ao outro fator.

	В	B^c	Sum
A	0,80	0,09	0,89
A^c	0,06	0,05	$0,\!11$
Sum	0,86	0,14	1,00

Tabela 1: Probabilidades conjuntas e marginais.

	В	B^c
A	0,77	0,12
A^c	0,09	0,02

Tabela 2: Probabilidades conjuntas esperadas sob independência.