Instant-by-instant and simultaneous confidence prediction bands

Davidson Lova Razafindrakoto^{1, 2}

¹Laboratoire SAMM, Université Paris 1 Panthéon-Sorbonne, Paris, France.

²Safran Aircraft Engines, Paris, France.

davidson-lova.razafindrakoto@safrangroup.com

Appendix

Definition 1. Let K the size of the fleet and T the size of the time grid be non-zero integers. Let a cumulative event number evolution curve $\xi = (\xi_1, \ldots, \xi_T)$ be a random vector where for every $\tau \in \{1, \ldots, T\}$, ξ_τ is a $\{1, \ldots, K\}$ -valued random variable. Let a band $B = (B_1, \ldots, B_T)$ be such that for every $\tau \in \{1, \ldots, K\}$, $\hat{B}_{\alpha;\tau} \subseteq \{1, \ldots, K\}$.

Definition 2 (Instant-by-instant coverage). Let $\alpha \in (0,1)$. A band B controls the instant-by-instant coverage of the curve ξ at a control level α if

$$\forall \tau \in \{1, \dots, T\}, \quad \mathbb{P}\left[\xi_{\tau} \in \hat{B}_{\alpha;\tau}\right] \ge 1 - \alpha.$$

Definition 3 (γ -Simultaneous coverage). Let $\alpha \in (0,1)$ and $\gamma \in [0,1]$. A band B controls the γ -simultaneous coverage of the curve ξ at a control level α if

$$\mathbb{P}\left[\frac{\operatorname{Card}\left(\left\{\tau \in \{1, \dots, T\} : \xi_{\tau} \in \hat{B}_{\alpha; \tau}\right\}\right)}{T} \ge 1 - \gamma\right] \ge 1 - \alpha.$$

Proposition 1 (Instant-by-instant prediction band, MD-full). Let ξ_1, \ldots, ξ_n be n independent copies of ξ . For any control level $\alpha \in [0,1]$, the band $\hat{B}_{\alpha}^{\text{MD-full}}$ defined as, for every $\tau \in \{1,\ldots,T\}$

$$\hat{B}_{\alpha;\tau}^{\text{MD-full}} := \left\{ k \in \{1, \dots, K\} : \hat{p}_{\tau}(k) \ge \hat{\ell}_{\alpha;\tau} - \frac{1}{n} \right\}$$
 (1)

ensures control of the instant-by-instant coverage of ξ at a control level α , where the marginal empirical probability density function \hat{p}_{τ} is defined in Equation (Eq. (2)) and the threshold $\hat{\ell}_{\alpha;\tau}$ in Equation (Eq. (3)).

Proof of Proposition 1. Let $\alpha \in [0,1]$ and $\tau \in \{1,\ldots,T\}$. Following Lei, Robins, and Wasserman (2013), a full conformal prediction $\hat{C}_{\alpha;\tau}$ region is built form the observations $\xi_{1;\tau},\ldots,\xi_{n;\tau}$ for ξ_{τ} as follows

$$\hat{C}_{\alpha;\tau} = \{k \in \{1, \dots, K\} : \hat{\pi}_{\tau}(k) > \alpha\}$$

where for every $k \in \{1, \dots, K\}$

$$\hat{\pi}_{\tau}(k) := \frac{1 + \sum_{i=1}^{n} \mathbb{1} \left\{ \hat{p}_{\tau}^{k}(\xi_{i;\tau}) \le \hat{p}_{\tau}^{k}(k) \right\}}{n+1}$$

where for every $l \in \{1, \dots, K\}$

$$\hat{p}_{\tau}^{k}(l) = \frac{n}{n+1}\hat{p}_{\tau}(l) + \frac{1}{n+1}\mathbb{1}\left\{k = l\right\},\,$$

and the empirical marginal probability density function is given by

$$\hat{p}_{\tau}(l) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ \xi_{i;\tau} = l \right\}$$
 (2)

Since $\xi_{1;\tau}, \ldots, \xi_{n;\tau}$ are i.i.d. copies of ξ_{τ} , $\hat{C}_{\alpha;\tau}$ is a confidence prediction region (Vovk, Gammerman, and Shafer, 2005)

$$\mathbb{P}\left[\xi_{\tau} \in \hat{C}_{\alpha;\tau}\right] \ge 1 - \alpha.$$

Let us now provide an explicit expression of this region.

$$k \in \hat{C}_{\alpha;\tau} \iff \hat{\pi}_{\tau}(k) > \alpha$$

$$\iff \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{\hat{p}_{\tau}^{k}\left(\xi_{i;\tau}\right) \leq \hat{p}_{\tau}^{k}(k)\right\}}{n+1} > \alpha$$

$$\iff \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{\hat{p}_{\tau}^{k}\left(\xi_{i;\tau}\right) > \hat{p}_{\tau}^{k}(k)\right\} < (1-\alpha)\left(1 + \frac{1}{n}\right).$$

Let us consider the term on the l.h.s.

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n}\mathbbm{1}\left\{\hat{p}_{\tau}^{k}(\xi_{i;\tau})>\hat{p}_{\tau}^{k}(k)\right\}\\ &=\frac{1}{n}\sum_{i=1}^{n}\sum_{l=1}^{K}\mathbbm{1}\left\{l=\xi_{i;\tau}\right\}\mathbbm{1}\left\{\hat{p}_{\tau}^{k}(\xi_{i;\tau})>\hat{p}_{\tau}^{k}(k)\right\}\\ &=\sum_{l=1}^{K}\hat{p}_{\tau}(l)\mathbbm{1}\left\{\hat{p}_{\tau}^{k}(l)>\hat{p}_{\tau}^{k}(k)\right\}\\ &=\sum_{l=1}^{K}\hat{p}_{\tau}(l)\mathbbm{1}\left\{\frac{n}{n+1}\hat{p}_{\tau}(l)+\frac{1}{n+1}\mathbbm{1}\left\{k=l\right\}>\frac{n}{n+1}\hat{p}_{\tau}(k)+\frac{1}{n+1}\right\}\\ &=\sum_{l=1}^{K}\hat{p}_{\tau}(l)\mathbbm{1}\left\{\hat{p}_{\tau}(l)+\frac{1}{n}\mathbbm{1}\left\{k=l\right\}>\hat{p}_{\tau}(k)+\frac{1}{n}\right\}\\ &=\hat{p}_{\tau}(k)\mathbbm{1}\left\{\hat{p}_{\tau}(k)+\frac{1}{n}>\hat{p}_{\tau}(k)+\frac{1}{n}\right\}+\sum_{l=1,l\neq k}^{K}\hat{p}_{\tau}(l)\mathbbm{1}\left\{\hat{p}_{\tau}(l)>\hat{p}_{\tau}(k)+\frac{1}{n}\right\}\\ &=\hat{p}_{\tau}(k)\mathbbm{1}\left\{\hat{p}_{\tau}(k)>\hat{p}_{\tau}(k)+\frac{1}{n}\right\}+\sum_{l=1,l\neq k}^{K}\hat{p}_{\tau}(l)\mathbbm{1}\left\{\hat{p}_{\tau}(l)>\hat{p}_{\tau}(k)+\frac{1}{n}\right\}\\ &=\sum_{l=1}^{K}\hat{p}_{\tau}(l)\mathbbm{1}\left\{\hat{p}_{\tau}(l)>\hat{p}_{\tau}(k)+\frac{1}{n}\right\}. \end{split}$$

It follows that

$$k \in \hat{C}_{\alpha;\tau} \iff \sum_{l=1}^{K} \hat{p}_{\tau}(l) \mathbb{1} \left\{ \hat{p}_{\tau}(l) > \hat{p}_{\tau}(k) + \frac{1}{n} \right\} < (1 - \alpha) \left(1 + \frac{1}{n} \right)$$

$$\iff \hat{p}_{\tau}(k) \ge \hat{\ell}_{\alpha;\tau},$$

where the threshold $\hat{\ell}_{\alpha;\tau}$ is defined as

$$\hat{\ell}_{\alpha;\tau} := \inf \left\{ t \in [0,1] : \sum_{l=1}^{K} \hat{p}_{\tau}(l) \mathbb{1} \left\{ \hat{p}_{\tau}(l) > t \right\} < (1-\alpha) \left(1 + \frac{1}{n}\right) \right\}. \tag{3}$$

How to compute $\hat{\ell}_{\alpha;\tau}$. The function $G:[0,1]\to [0,1], t\mapsto \hat{G}_{\tau}(t):=\sum_{l=1}^K\hat{p}_{\tau}(l)\mathbbm{1}\{\hat{p}_{\tau}(l)>t\}$ is decreasing piece-wise constant right-continuous function which changes value at $\hat{p}_{\tau}(1),\ldots,\hat{p}_{\tau}(K)$. Let $x_1>\ldots>x_{\kappa}$ be the distinct values among $\hat{p}_{\tau}(1),\ldots,\hat{p}_{\tau}(K)$ sorted from largest to smallest, and for all $j\in\{1,\ldots,\kappa\},\ \rho_j:=\sum_{l=1}^K\hat{p}_{\tau}(k)\mathbbm{1}\{\hat{p}_{\tau}(k)=x_j\}$. Consider the cumulative sum of $\rho_1,\ldots,\rho_{\kappa},\ s_1,\ldots s_{\kappa}$. It follows that $G(x_1)=0$ and for every $j\in\{2,\ldots,\kappa\}$

$$G(x_j) = \sum_{l=1}^K \hat{p}_{\tau}(l) \mathbb{1} \left\{ \hat{p}_{\tau}(l) > x_j \right\} = \sum_{l=1}^K \sum_{i=1}^\kappa \mathbb{1} \left\{ x_i = \hat{p}_{\tau}(l) \right\} \hat{p}_{\tau}(l) \mathbb{1} \left\{ \hat{p}_{\tau}(l) > x_j \right\}$$
$$= \sum_{i=1}^\kappa \rho_i \mathbb{1} \left\{ x_i > x_j \right\} = \sum_{i=1}^{j-1} \rho_i = s_{j-1}.$$

It follows that, one only has to check for finite number of values

$$\hat{\ell}_{\alpha;\tau} = \inf \left\{ t \in [0,1] : \hat{G}_{\tau}(t) < (1-\alpha) \left(1 + \frac{1}{n}\right) \right\}$$

$$= \min \left\{ x_i : i \in \{1, \dots, \kappa\}, s_{i-1} < (1-\alpha) \left(1 + \frac{1}{n}\right) \right\}.$$

Proposition 2 (Instant-by-instant prediction upper band, MDist-full). Let ξ_1, \ldots, ξ_n be n independent copies of ξ . For any control level $\alpha \in [0,1]$, the band $\hat{B}_{\alpha}^{\text{MDist-full,up}}$ defined as, for every $\tau \in \{1, \ldots, T\}$

$$\hat{B}_{\alpha;\tau}^{\text{MDist-full,up}} := \left\{ k \in \{1, \dots, K\} : k \le \hat{Q}_{\tau}^{\text{up}} \left((1 - \alpha) \left(1 + \frac{1}{n} \right) \right) + 1 \right\}$$
 (4)

ensures control of the instant-by-instant coverage of ξ at a control level α , the empirical marginal upper quantile function $\hat{Q}_{\tau}^{\text{up}}$ is defined in Equation (Eq. (6)).

Proof of Proposition 2. Let $\alpha \in [0,1]$ and $\tau \in \{1,\ldots,T\}$. A full conformal prediction region $\hat{C}_{\alpha;\tau}$ can be defined as

$$\hat{C}_{\alpha;\tau} := \left\{ k \in \left\{ 1, \dots, K \right\} : \hat{\pi} \left(k \right) > \alpha \right\},\,$$

where for every $k \in \{1, \dots, K\}$

$$\hat{\pi}(k) := \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{\hat{F}_{\tau}^{k}(\xi_{i;\tau}) \ge \hat{F}_{\tau}^{k}(k)\right\}}{n+1},$$

and for every $l \in \{1, \dots, K\}$

$$\hat{F}_{\tau}^{k}(l) := \frac{n}{n+1} \hat{F}_{\tau}(l) + \frac{1}{n+1} \mathbb{1} \left\{ k \leq l \right\},$$

where the empirical marginal cumulative density function \hat{F}_{τ} is defined as

$$\hat{F}_{\tau}(l) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ \xi_{i;\tau} \le l \right\}.$$
 (5)

Since $\xi_{1;\tau}, \ldots, \xi_{n;\tau}$ are i.i.d. copies of ξ_{τ} , $\hat{C}_{\alpha;\tau}$ is a confidence prediction region (Vovk, Gammerman, and Shafer, 2005)

$$\mathbb{P}\left[\left.\xi_{\tau}\in\hat{C}_{\alpha;\tau}\right.\right]\geq1-\alpha.$$

Let us now provide an explicit expression of $\hat{C}_{\alpha;\tau}$.

$$k \in \hat{C}_{\alpha;\tau} \iff \hat{\pi}_{\tau}(k) > \alpha$$

$$\iff \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{\hat{F}_{\tau}^{k}\left(\xi_{i;\tau}\right) \ge \hat{F}_{\tau}^{k}\left(k\right)\right\}}{n+1} > \alpha$$

$$\iff \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{\hat{F}_{\tau}^{k}\left(\xi_{i;\tau}\right) < \hat{F}_{\tau}^{k}\left(k\right)\right\} < (1-\alpha)\left(1 + \frac{1}{n}\right).$$

Let us focus on the l.h.s. term. Let us define the function $\hat{G}_{\tau}: \{1, \dots, K\} \to [0, 1]$ such that for every k

$$\begin{split} \hat{G}_{\tau}(k) &:= \frac{1}{n} \sum_{i=1}^{n} \mathbbm{1} \left\{ \hat{F}_{\tau}^{k} \left(\xi_{i;\tau} \right) < \hat{F}_{\tau}^{k} \left(k \right) \right\} \\ &= \frac{1}{n} \sum_{i=1}^{n} \sum_{l=1}^{K} \mathbbm{1} \left\{ l = \xi_{i;\tau} \right\} \mathbbm{1} \left\{ \hat{F}_{\tau}^{k} \left(\xi_{i;\tau} \right) < \hat{F}_{\tau}^{k} \left(k \right) \right\} \\ &= \sum_{l=1}^{K} \hat{p}_{\tau} \left(l \right) \mathbbm{1} \left\{ \hat{F}_{\tau}^{k} \left(l \right) < \hat{F}_{\tau}^{k} \left(k \right) \right\} \\ &= \sum_{l=1}^{K} \hat{p}_{\tau} \left(l \right) \mathbbm{1} \left\{ \frac{n}{n+1} \hat{F}_{\tau} \left(l \right) + \frac{1}{n+1} \mathbbm{1} \left\{ k \leq l \right\} < \frac{n}{n+1} \hat{F}_{\tau} \left(k \right) + \frac{1}{n+1} \right\} \\ &= \sum_{l=1}^{K} \hat{p}_{\tau} \left(l \right) \mathbbm{1} \left\{ \hat{F}_{\tau} \left(l \right) + \frac{1}{n} \mathbbm{1} \left\{ k \leq l \right\} < \hat{F}_{\tau} \left(k \right) + \frac{1}{n} \right\} \\ &= \sum_{l=1, l < k}^{K} \hat{p}_{\tau} \left(l \right) \mathbbm{1} \left\{ \hat{F}_{\tau} \left(l \right) < \hat{F}_{\tau} \left(k \right) + \frac{1}{n} \right\} + \sum_{l=1, l \geq k}^{K} \hat{p}_{\tau} \left(l \right) \mathbbm{1} \left\{ \hat{F}_{\tau} \left(l \right) < \hat{F}_{\tau} \left(k \right) \right\}. \end{split}$$

If $1 \leq l < k$ then $\hat{F}_{\tau}(l) \leq \hat{F}_{\tau}(k) < \hat{F}_{\tau}(k) + \frac{1}{n}$, and if $K \geq l \geq k$ then $\hat{F}_{\tau}(l) \geq \hat{F}_{\tau}(k)$. The above equation can be rewritten as

$$\hat{G}_{\tau}(k) = \sum_{l=1, l < k}^{K} \hat{p}_{\tau}(l) = \hat{F}_{\tau}(k-1).$$

Going back to trying to find an expression for $\hat{C}_{\alpha;\tau}$

$$k \in \hat{C}_{\alpha;\tau} \iff \hat{F}_{\tau}(k-1) < (1-\alpha)\left(1+\frac{1}{n}\right)$$

$$\iff k - 1 \le \hat{Q}_{\tau} \left((1 - \alpha) \left(1 + \frac{1}{n} \right) \right)$$

$$\iff k \le \hat{Q}_{\tau} \left((1 - \alpha) \left(1 + \frac{1}{n} \right) \right) + 1,$$

where the empirical marginal upper quantile function is defined as, for every level $a \in [0,1]$,

$$\hat{Q}_{\tau}^{\text{up}}(a) := \max \left\{ k \in \{1, \dots, K\} : \hat{F}_{\tau} < a. \right\}$$
 (6)

the empirical marginal cumulative distribution function \hat{F}_{τ} in Equation (Eq. (5)).

Proposition 3 (Instant-by-instant prediction lower band, MDist-full). Let ξ_1, \ldots, ξ_n be n independent copies of ξ . For any control level $\alpha \in [0,1]$, the band $\hat{B}_{\alpha}^{\text{MDist-full,lo}}$ defined as, for every $\tau \in \{1, \ldots, T\}$

$$\hat{B}_{\alpha;\tau}^{\text{MDist-full,lo}} := \left\{ k \in \{1, \dots, K\} : k \ge \hat{Q}_{\tau}^{\text{lo}} \left(\alpha \left(1 + \frac{1}{n} \right) - \frac{1}{n} \right) \right\}$$
 (7)

ensures control of the instant-by-instant coverage of ξ at a control level α , where the marginal empirical lower quantile function $\hat{Q}_{\tau}^{\text{lo}}$ is defined in Equation (Eq. (8)).

Proof of Proposition 3. Let $\alpha \in [0,1]$ and $\tau \in \{1,\ldots,T\}$. A full conformal prediction region $\hat{C}_{\alpha;\tau}$ can be defined as

$$\hat{C}_{\alpha:\tau} := \left\{ k \in \left\{ 1, \dots, K \right\} : \hat{\pi} \left(k \right) > \alpha \right\},\,$$

where

$$\hat{\pi}(k) := \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{\hat{F}_{\tau}^{k}(\xi_{i;\tau}) \leq \hat{F}_{\tau}^{k}(k)\right\}}{n+1}$$

Since $\xi_{1;\tau}, \dots, \xi_{n;\tau}$ are i.i.d. copies of ξ_{τ} , $\hat{C}_{\alpha;\tau}$ is a confidence prediction region (Vovk, Gammerman, and Shafer, 2005)

$$\mathbb{P}\left[\xi_{\tau} \in \hat{C}_{\alpha;\tau}\right] \ge 1 - \alpha.$$

Let us now provide an explicit expression of $\hat{C}_{\alpha;\tau}$.

$$k \in \hat{C}_{\alpha;\tau} \iff \hat{\pi}_{\tau}(k) > \alpha$$

$$\iff \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{\hat{F}_{\tau}^{k}\left(\xi_{i;\tau}\right) \leq \hat{F}_{\tau}^{k}\left(k\right)\right\}}{n+1} > \alpha$$

$$\iff \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{\hat{F}_{\tau}^{k}\left(\xi_{i;\tau}\right) \leq \hat{F}_{\tau}^{k}\left(k\right)\right\} > \alpha\left(1 + \frac{1}{n}\right) - \frac{1}{n}.$$

Let us focus on the l.h.s. term. Let us define the function $\tilde{G}_{\tau}: \{1, \ldots, K\} \to [0, 1]$ such that for every k

$$\tilde{G}_{\tau}(k) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ \hat{F}_{\tau}^{k} \left(\xi_{i;\tau} \right) \le \hat{F}_{\tau}^{k} \left(k \right) \right\}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \sum_{l=1}^{K} \mathbb{1} \left\{ l = \xi_{i;\tau} \right\} \mathbb{1} \left\{ \hat{F}_{\tau}^{k} \left(\xi_{i;\tau} \right) \le \hat{F}_{\tau}^{k} \left(k \right) \right\}$$

$$\begin{split} &= \sum_{l=1}^{K} \hat{p}_{\tau}\left(l\right) \mathbb{1}\left\{\hat{F}_{\tau}^{k}\left(l\right) \leq \hat{F}_{\tau}^{k}\left(k\right)\right\} \\ &= \sum_{l=1}^{K} \hat{p}_{\tau}\left(l\right) \mathbb{1}\left\{\frac{n}{n+1}\hat{F}_{\tau}\left(l\right) + \frac{1}{n+1}\mathbb{1}\left\{k \leq l\right\} \leq \frac{n}{n+1}\hat{F}_{\tau}\left(k\right) + \frac{1}{n+1}\right\} \\ &= \sum_{l=1}^{K} \hat{p}_{\tau}\left(l\right) \mathbb{1}\left\{\hat{F}_{\tau}\left(l\right) + \frac{1}{n}\mathbb{1}\left\{k \leq l\right\} \leq \hat{F}_{\tau}\left(k\right) + \frac{1}{n}\right\} \\ &= \sum_{l=1,l \leq k}^{K} \hat{p}_{\tau}\left(l\right) \mathbb{1}\left\{\hat{F}_{\tau}\left(l\right) \leq \hat{F}_{\tau}\left(k\right) + \frac{1}{n}\right\} + \sum_{l=1,l > k}^{K} \hat{p}_{\tau}\left(l\right) \mathbb{1}\left\{\hat{F}_{\tau}\left(l\right) \leq \hat{F}_{\tau}\left(k\right)\right\}. \end{split}$$

If $1 \leq l < k$ then $\hat{F}_{\tau}(l) \leq \hat{F}_{\tau}(k) < \hat{F}_{\tau}(k) + \frac{1}{n}$, and if $K \geq l > k$ and $\hat{p}_{\tau}(l) \neq 0$, then

$$\hat{F}_{\tau}\left(l\right) = \sum_{\tilde{l}=1}^{l} \hat{p}_{\tau}\left(\tilde{l}\right) = \sum_{\tilde{l}=1}^{k} \hat{p}_{\tau}\left(\tilde{l}\right) + \sum_{\tilde{l}=k+1}^{l} \hat{p}_{\tau}\left(\tilde{l}\right) = \hat{F}_{\tau}\left(k\right) + \sum_{\tilde{l}=k+1}^{l} \hat{p}_{\tau}\left(\tilde{l}\right) > \hat{F}_{\tau}\left(k\right),$$

since $\sum_{\tilde{l}=k+1}^{l} \hat{p}_{\tau}\left(\tilde{l}\right)$ includes $\hat{p}_{\tau}\left(l\right) \neq 0$. Hence, the function \tilde{G}_{τ} can be rewritten as

$$\tilde{G}_{\tau}\left(k\right) = \sum_{l=1, l < k}^{K} \hat{p}_{\tau}\left(l\right) = \hat{F}_{\tau}\left(k\right).$$

Going back to trying to find an expression for $\hat{C}_{\alpha;\tau}$

$$k \in \hat{C}_{\alpha;\tau} \iff \hat{F}_{\tau}(k) > \alpha \left(1 + \frac{1}{n}\right) - \frac{1}{n}$$
$$\iff k \ge \tilde{Q}_{\tau}\left(\alpha \left(1 + \frac{1}{n}\right) - \frac{1}{n}\right),$$

where the empirical marginal lower quantile function is defined as, for every level $a \in (0,1)$

$$\tilde{Q}_{\tau}^{\text{lo}}(a) := \min \left\{ k \in \{1, \dots, K\} : \hat{F}_{\tau}(k) > a \right\},$$
 (8)

the empirical marginal cumulative distribution function \hat{F}_{τ} in Equation (Eq. (5)).

Proposition 4 (Instant-by-instant prediction band, MDist-full). Let ξ_1, \ldots, ξ_n be n independent copies of ξ . For any control level $\alpha \in [0,1]$, and for any $\alpha_{lo}, \alpha_{up} \in [0,1]$ such that $\alpha_{lo} + \alpha_{up} = \alpha$, the band $\hat{B}_{\alpha}^{\text{MDist-full}}$ defined as, for every $\tau \in \{1, \ldots, T\}$

$$\hat{B}_{\alpha;\tau}^{\text{MDist-full}} := \left\{ k \in \{1, \dots, K\} : \hat{Q}_{\tau}^{\text{lo}} \left(\alpha_{\text{lo}} \left(1 + \frac{1}{n} \right) - \frac{1}{n} \right) \le k, \right.$$

$$k \le \hat{Q}_{\tau}^{\text{up}} \left((1 - \alpha_{\text{up}}) \left(1 + \frac{1}{n} \right) \right) + 1 \right\},$$

$$(9)$$

ensures control of the instant-by-instant coverage of ξ at a control level α .

Proof of Proposition 4. Let $\alpha \in [0,1]$ and $\tau \in \{1,\ldots,T\}$. It follows from union bound that

$$\begin{split} \mathbb{P}\left[\,\xi_{\tau} \in \hat{B}^{\text{MDist-full}}_{\alpha;\tau}\,\right] &= \mathbb{P}\left[\,\xi_{\tau} \in \hat{B}^{\text{MDist-full},\text{up}}_{\alpha_{\text{up}};\tau} \cap \hat{B}^{\text{MDist-full},\text{lo}}_{\alpha_{\text{lo}};\tau}\,\right] \\ &= 1 - \mathbb{P}\left[\,\xi_{\tau} \in \left(\hat{B}^{\text{MDist-full},\text{up}}_{\alpha_{\text{up}};\tau}\right)^{c} \cup \left(\hat{B}^{\text{MDist-full},\text{lo}}_{\alpha_{\text{lo}};\tau}\right)^{c}\,\right] \end{split}$$

$$\geq 1 - \left(\mathbb{P} \left[\xi_{\tau} \in \left(\hat{B}_{\alpha_{\mathrm{up}};\tau}^{\mathrm{MDist-full,up}} \right)^{c} \right] + \mathbb{P} \left[\xi_{\tau} \in \left(\hat{B}_{\alpha_{\mathrm{lo}};\tau}^{\mathrm{MDist-full,lo}} \right)^{c} \right] \right) \\ \geq 1 - (\alpha_{\mathrm{up}} + \alpha_{\mathrm{lo}}) = 1 - \alpha.$$

Proposition 5 (Instant-by-instant prediction band, MDist-Split). Let ξ_1, \ldots, ξ_n be n independent copies of ξ . Let I_1 and I_2 be two index sets with cardinal n_1 and n_2 respectively such that $I_1 \sqcup I_2 = \{1, \ldots, n\}$. For any control level $\alpha \in [0, 1]$, the band $\hat{B}_{\alpha}^{\text{MDist-split}}$ defined as, for every $\tau \in \{1, \ldots, T\}$

$$\hat{B}_{\alpha;\tau}^{\text{MDist-split}} := \left\{ k \in \{1, \dots, K\} : \tilde{Q}_{D_1;\tau}^{\text{lo}} \left(\hat{t}_{\alpha;\tau}^{\text{MDist-split}} \right) \le k \le \tilde{Q}_{D_1;\tau}^{\text{up}} \left(1 - \hat{t}_{\alpha;\tau}^{\text{MDist-split}} \right) \right\}, \tag{10}$$

ensures control of the instant-by-instant coverage of ξ at a control level α , where the threshold $\hat{t}_{\alpha;\tau}^{\text{MDist-split}}$ is defined in Equation (Eq. (12)) and the marginal empirical upper and lower quantile function $\tilde{Q}_{D_1;\tau}^{\text{up}}$ and $\tilde{Q}_{D_1;\tau}^{\text{lo}}$ are defined in Equations (Eq. (13)) and (Eq. (14)) respectively.

Proof of Proposition 5. Let $\tau \in \{1, ..., T\}$. Define the empirical marginal cumulative density function $\hat{F}_{D_1:\tau}$ trained on the data set $D_1 := \{\xi_i, i \in I_1\}$ as, for every $k \in \{1, ..., K\}$

$$\hat{F}_{D_1;\tau}(k) := \frac{1}{n_1} \sum_{i \in I_1} \mathbb{1} \left\{ \xi_{i;\tau} \le k \right\}. \tag{11}$$

Upon the dataset $D_2 := \{\xi_i, i \in I_2\}$, one can define split conformal prediction region $\hat{C}_{\alpha;\tau}$ as

$$\hat{C}_{\alpha;\tau} := \{k \in \{1, \dots, K\} : \hat{\pi}_{D_2,\tau}(k) > \alpha\},\$$

where for every $k \in (1, ..., K)$

$$\hat{\pi}_{D_{2},\tau}(k) := \frac{1 + \sum_{i \in I_{2}} \mathbb{1}\left\{\hat{A}_{D_{1};\tau}(\xi_{i;\tau}) \leq \hat{A}_{D_{1};\tau}(k)\right\}}{1 + n_{2}}$$

where the conformity score $\hat{A}_{D_1;\tau}(k) := \min \left(\hat{F}_{D_1;\tau}(k), 1 - \hat{F}_{D_1;\tau}(k)\right)$. Since $\xi_{1;\tau}, \dots, \xi_{n;\tau}$ are i.i.d. copies of ξ_{τ} , it follows that $\hat{C}_{\alpha;\tau}$ is a confidence prediction region

$$\mathbb{P}\left(\xi_{\tau} \in \hat{C}_{\alpha;\tau}\right) \ge 1 - \alpha.$$

Let us now compute an explicit expression for $\hat{C}_{\alpha;\tau}$.

$$k \in \hat{C}_{\alpha;\tau}$$

$$\iff \frac{1 + \sum_{i \in \mathcal{I}_2} \mathbb{1}\left\{\hat{A}_{D_1;\tau}\left(\xi_{i;\tau}\right) \leq \hat{A}_{D_1;\tau}\left(k\right)\right\}}{1 + n_2} > \alpha$$

$$\iff \frac{1}{n_2} \sum_{i \in \mathcal{I}_2} \mathbb{1}\left\{\hat{A}_{D_1;\tau}\left(\xi_{i;\tau}\right) \leq \hat{A}_{D_1;\tau}\left(k\right)\right\} > \alpha\left(1 + \frac{1}{n_2}\right) - \frac{1}{n_2}$$

$$\iff \hat{A}_{D_1;\tau}\left(k\right) \geq \hat{\ell}_{\alpha;\tau},$$

where the level $\hat{t}_{\alpha;\tau}^{\text{MDist-split}}$ is defined as

$$\hat{t}_{\alpha;\tau}^{\text{MDist-split}} := \inf \left\{ t \in [0,1] : \frac{1}{n_2} \sum_{i \in \mathcal{I}_2} \mathbb{1} \left\{ \hat{A}_{D_1;\tau} \left(\xi_{i;\tau} \right) \le t \right\} > \alpha \left(1 + \frac{1}{n_2} \right) - \frac{1}{n_2} \right\}$$

$$= \hat{A}_{D_1;\tau} \left(\xi_{(i_{n_2;\alpha}),\tau} \right), \tag{12}$$

where the index $i_{n_2;\alpha} := \lceil \alpha(n_2+1) - 1 \rceil$, and $\hat{A}_{D_1;\tau}(\xi_{(1);\tau}) \leq \ldots \leq \hat{A}_{D_1;\tau}(\xi_{(n_2);\tau})$ are the conformity scores sorted in increasing order. Going back to trying to find an expression of the prediction region

$$\begin{split} k &\in \hat{C}_{\alpha;\tau} \\ \Longleftrightarrow \min \left(\hat{F}_{D_1;\tau} \left(k \right), 1 - \hat{F}_{D_1;\tau} \left(k \right) \right) \geq \hat{t}_{\alpha;\tau}^{\text{MDist-split}}, \\ \Longleftrightarrow \hat{F}_{D_1;\tau} \left(k \right) \geq \hat{t}_{\alpha;\tau}^{\text{MDist-split}}, \text{ and } 1 - \hat{F}_{D_1;\tau} \left(k \right) \geq \hat{t}_{\alpha;\tau}^{\text{MDist-split}}, \\ \Longleftrightarrow \hat{t}_{\alpha;\tau}^{\text{MDist-split}} \leq \hat{F}_{D_1;\tau} \left(k \right) \leq 1 - \hat{t}_{\alpha;\tau}^{\text{MDist-split}}, \\ \Longleftrightarrow \hat{Q}_{D_1;\tau}^{\text{lo}} \left(\hat{t}_{\alpha;\tau}^{\text{MDist-split}} \right) \leq k \leq \tilde{Q}_{D_1;\tau}^{\text{up}} \left(1 - \hat{t}_{\alpha;\tau}^{\text{MDist-split}} \right), \end{split}$$

where the empirical marginal upper quantile function built from D_1 is defined as, for every level $a \in [0, 1]$ is defined as

$$\tilde{Q}_{D_{1};\tau}^{\text{up}}(1-a) := \max \left\{ k \in \{1,\dots,K\} : \hat{F}_{D_{1};\tau}(k) \le 1-a \right\}, \tag{13}$$

as for the lower one

$$\tilde{Q}_{D_1;\tau}^{\text{lo}}(a) := \min \left\{ k \in \{1, \dots, K\} : \hat{F}_{D_1;\tau}(k) \ge a \right\}.$$
 (14)

Proposition 6 (γ -simultaneous band). Let ξ_1, \ldots, ξ_n be i.i.d. copies of ξ . Let I_1 and I_2 be two index sets with cardinal n_1 and n_2 respectively such that $I_1 \sqcup I_2 = \{1, \ldots, n\}$. Let $\hat{A}_{D_1;\tau}: \{1, \ldots, K\} \to \mathbb{R}, \ k \mapsto \hat{A}_{D_1;\tau}(k)$ be a conformity-measure over $\{1, \ldots, K\}$ built from the dataset $D_1 := \{\xi_i : i \in I_1\}$.

For any slack level $\gamma \in [0,1]$, control level $\alpha \in [0,1]$, the prediction band $\hat{B}_{\gamma;\alpha}$ defined as for every $\tau \in \{1,\ldots,T\}$

$$\hat{B}_{\gamma;\alpha;\tau} := \left\{ k \in \left\{ 1, \dots, K \right\} : \hat{A}_{D_1;\tau} \left(k \right) \ge \hat{t}_{D_1;\gamma} \left(\xi_{\left(i_{n_2;\alpha} \right)} \right) \right\}$$

ensures control of the γ -simultaneous coverage of ξ at a level α where the cut-off level $\hat{t}_{D_1;\gamma}\left(\xi_{(i_{n_2;\alpha})}\right)$ is defined in Equation (Eq. 16) from the conformity score defined in Equation (Eq. 15).

Proof of Proposition 6. Let $\gamma \in [0,1]$ and $\alpha \in [0,1]$. One can define a conformity measure $\hat{t}_{D_1;\gamma}: \{1,\ldots,K\}^T \to \mathbb{R}$ such that for every $\xi \in \{1,\ldots,K\}^T$

$$\hat{t}_{D_1;\gamma}\left(\xi\right) := \sup \left\{ t \in \mathbb{R} : \frac{1}{T} \sum_{\tau=1}^{T} \mathbb{1} \left\{ \hat{A}_{D_1;\tau}\left(\xi_{\tau}\right) \ge t \right\} \ge 1 - \gamma \right\} = \hat{A}_{D_1;\left(\tau_{\gamma,T}\right)}\left(\xi_{\left(\tau_{\gamma,T}\right)}\right), \quad (15)$$

where $\hat{A}_{D_1;(1)}\left(\xi_{(1)}\right) \geq \ldots \geq \hat{A}_{D_1;(T)}\left(\xi_{(T)}\right)$ are sorted in decreasing order and $\tau_{\gamma,T} := \lceil T\left(1-\gamma\right) \rceil$. Upon the dataset $D_2 := \{\xi_i : i \in I_2\}$, one can define a split conformal prediction region as

$$\hat{C}_{\gamma;\alpha} := \left\{ \xi \in \{1, \dots, K\}^T : \hat{\pi}_{D_2}(\xi) > \alpha \right\},\,$$

where for every $\xi \in \{1, \dots, K\}^T$

$$\hat{\pi}_{D_2}(\xi) := \frac{1 + \sum_{i \in I_2} \left\{ \hat{t}_{D_1;\gamma}(\xi_i) \le \hat{t}_{D_1;\gamma}(\xi) \right\}}{n_2 + 1}.$$

Let us now provide an explicit expression for $\hat{C}_{\gamma;\alpha}$,

$$\xi \in \hat{C}_{\gamma;\alpha} \iff \frac{1 + \sum_{i \in I_2} \left\{ \hat{t}_{D_1;\gamma}\left(\xi_i\right) \leq \hat{t}_{D_1;\gamma}\left(\xi\right) \right\}}{n_2 + 1} > \alpha$$

$$\iff \frac{1}{n_2} \sum_{i \in I_2} \left\{ \hat{t}_{D_1;\gamma}\left(\xi_i\right) \leq \hat{t}_{D_1;\gamma}\left(\xi\right) \right\} > \left(1 + \frac{1}{n_2}\right) \alpha - \frac{1}{n_2}$$

$$\iff \hat{t}_{D_1;\gamma}\left(\xi\right) \geq \hat{t}_{D_1;\gamma}\left(\xi_{\left(i_{n_2;\alpha}\right)}\right), \tag{16}$$

where $\hat{t}_{D_1;\gamma}\left(\xi_{(i_{n_2;\alpha})}\right) \leq \ldots \leq \hat{t}_{D_1;\gamma}\left(\xi_{(i_{n_2;\alpha})}\right)$ are sorted in increasing order and $i_{n_2;\alpha} := \lceil (n_2+1)\alpha - 1 \rceil$. Hence, the prediction band $\hat{B}_{\gamma;\alpha}$ defined as for every $\tau \in \{1,\ldots,T\}$

$$\hat{B}_{\gamma;\alpha;\tau} := \left\{ k \in \{1, \dots, K\} : \hat{A}_{D_1;\tau}(k) \ge \hat{t}_{D_1;\gamma}\left(\xi_{(i_{n_2;\alpha})}\right) \right\}$$

ensures the following

$$\mathbb{P}\left[\frac{1}{T}\sum_{\tau=1}^{T}\mathbb{1}\left\{\xi_{\tau}\in\hat{B}_{\gamma;\alpha;\tau}\right\}\right] = \mathbb{P}\left[\frac{1}{T}\sum_{\tau=1}^{T}\mathbb{1}\left\{\hat{A}_{D_{1};\tau}\left(\xi_{\tau}\right)\geq\hat{t}_{D_{1};\gamma}\left(\xi_{\left(i_{n_{2};\alpha}\right)}\right)\right\}\right]$$
$$=\mathbb{P}\left[\hat{t}_{D_{1};\gamma}\left(\xi\right)\geq\hat{t}_{D_{1};\gamma}\left(\xi_{\left(i_{n_{2};\alpha}\right)}\right)\right]$$
$$=\mathbb{P}\left[\xi\in\hat{C}_{\gamma,\alpha}\right]\geq1-\alpha.$$

Corollary 1 (γ -simultaneous band, MD-Split). Let ξ_1, \ldots, ξ_n be i.i.d. copies of ξ . Let I_1 and I_2 be two index sets with cardinal n_1 and n_2 respectively such that $I_1 \sqcup I_2 = \{1, \ldots, n\}$.

For any slack $\gamma \in (0,1)$, control level $\alpha \in [0,1]$, the prediction band $\hat{B}_{\gamma;\alpha}^{\text{MD-split}}$ such that for every $\tau \in \{1,\ldots,T\}$

$$\hat{B}_{\gamma;\alpha;\tau}^{\text{MD-split}} := \left\{ k \in \{1, \dots, K\} : \hat{p}_{D_1;\tau}(k) \ge \hat{\ell}_{\gamma;\alpha}^{\text{MD-Split}} \right\}, \tag{17}$$

ensures control of γ -simultaneous coverage of ξ at a control level α , where empirical marginal probability density function $\hat{p}_{D_1;\tau}$ is defined in Equation (Eq. (18)), and the threshold is $\hat{\ell}_{\gamma;\alpha}^{\text{MD-Split}}$ is defined in Equation (Eq. (19)).

Proof of Corollary 1. For every $\tau \in \{1, ..., K\}$, define empirical marginal probability density function $\hat{p}_{D_1;\tau}$ built from the dataset $D_1 := \{\xi_i : i \in I_1\}$ as, for every $k \in \{1, ..., K\}$

$$\hat{p}_{D_1;\tau}(k) := \frac{1}{n_1} \sum_{i \in I_1} \mathbb{1} \left\{ \xi_{i;\tau} = k \right\}.$$
(18)

Applying Proposition 6 by choosing for every $\tau \in \{1, ..., T\}$, and every $k \in \{1, ..., K\}$, $\hat{A}_{D_1;\tau}(k) := \hat{p}_{D_1;\tau}(k)$, the prediction band $\hat{B}_{\gamma;\alpha}^{\text{MD-split}}$ defined as, for every $\tau \in \{1, ..., T\}$

$$\begin{split} \hat{B}_{\gamma;\alpha;\tau}^{\text{MD-split}} &:= \left\{ k \in \left\{ 1, \dots, K \right\} : \hat{A}_{D_1;\tau}\left(k\right) \geq \hat{t}_{D_1;\gamma}\left(\xi_{\left(i_{n_2;\alpha}\right)}\right) \right\} \\ &= \left\{ k \in \left\{ 1, \dots, K \right\} : \hat{p}_{D_1;\tau}\left(k\right) \geq \hat{\ell}_{\gamma;\alpha}^{\text{MD-Split}} \right\}, \end{split}$$

ensures control of γ -simultaneous coverage of ξ at a control level α , where the threshold $\hat{\ell}_{\gamma;\alpha}^{\text{MD-Split}}$ is defined as

$$\hat{\ell}_{\gamma;\alpha}^{\text{MD-Split}} := \hat{t}_{D_1;\gamma} \left(\xi_{(i_{n_2;\alpha})} \right). \tag{19}$$

Corollary 2 (γ -simultaneous band, MHPD-Split). Let ξ_1, \ldots, ξ_n be i.i.d. copies of ξ . Let I_1

and I_2 be two index sets with cardinal n_1 and n_2 respectively such that $I_1 \sqcup I_2 = \{1, \ldots, n\}$. For any slack $\gamma \in (0,1)$, control level $\alpha \in [0,1]$, the prediction band $\hat{B}_{\gamma;\alpha}^{\mathrm{MHPD-split}}$ such that for every $\tau \in \{1, \ldots, T\}$

$$\hat{B}_{\gamma;\alpha;\tau}^{\text{MHPD-split}} := \left\{ k \in \{1, \dots, K\} : \hat{p}_{D_1;\tau}(k) > \hat{\ell}_{\gamma;\alpha;\tau}^{\text{MHPD-split}} \right\}, \tag{20}$$

ensures γ -simultaneous coverage of ξ at a control level α , where empirical marginal probability density function $\hat{p}_{D_1;\tau}$ is defined in Equation (Eq. (18)), and the threshold $\hat{\ell}_{\gamma;\alpha;\tau}^{\mathrm{MHPD-split}}$ is defined in Equation (Eq. (22)).

Proof of Corollary 2. For every $\tau \in \{1, \ldots, K\}$, and every $k \in \{1, \ldots, K\}$ define the rank $R_{D_1;\tau}(k)$ of k at the instant τ built from the dataset $D_1 := \{\xi_i : i \in I_1\}$ as

$$\hat{R}_{D_{1};\tau}(k) := \sum_{l=1}^{K} \hat{p}_{D_{1};\tau}(l) \mathbb{1} \left\{ \hat{p}_{D_{1};\tau}(l) \le \hat{p}_{D_{1};\tau}(k) \right\}.$$
(21)

Applying Proposition 6 by choosing for every $\tau \in \{1, \ldots, T\}$, and every $k \in \{1, \ldots, K\}$, $\hat{A}_{D_1;\tau}(k) := \hat{R}_{D_1;\tau}(k)$, the prediction band $\hat{B}_{\gamma;\alpha}^{\text{MD-split}}$ defined as, for every $\tau \in \{1, \ldots, T\}$

$$\begin{split} \hat{B}_{\gamma;\alpha;\tau}^{\text{MHPD-split}} &:= \left\{ k \in \{1, \dots, K\} : \hat{A}_{D_1;\tau}\left(k\right) \geq \hat{t}_{D_1;\gamma}\left(\xi_{\left(i_{n_2;\alpha}\right)}\right) \right\} \\ &= \left\{ k \in \{1, \dots, K\} : \hat{R}_{D_1;\tau}\left(k\right) \geq \hat{t}_{D_1;\gamma}\left(\xi_{\left(i_{n_2;\alpha}\right)}\right) \right\} \\ &= \left\{ k \in \{1, \dots, K\} : \hat{p}_{D_1;\tau}\left(k\right) > \hat{\ell}_{\gamma;\alpha;\tau}^{\text{MHPD-split}} \right\}, \end{split}$$

ensures control of γ -simultaneous coverage of ξ at a control level α , where the cut-off $\hat{\ell}_{\gamma;\alpha;\tau}^{\text{MHPD-split}}$ is defined as

$$\hat{\ell}_{\gamma;\alpha;\tau}^{\text{MHPD-split}} := \sup \left\{ \ell \in [0,1] : \sum_{l=1}^{K} \hat{p}_{D_1;\tau}\left(l\right) \mathbb{1}\left\{\hat{p}_{D_1;\tau}\left(l\right) > \ell\right\} > 1 - \hat{t}_{D_1;\gamma}^{\text{MHPD-split}}\left(\xi_{\left(i_{n_2;\alpha}\right)}\right) \right\},\tag{22}$$

Corollary 3 (γ -simultaneous band, MDist-Split). Let ξ_1, \ldots, ξ_n be n independent copies of ξ . Let I_1 and I_2 be two index sets with cardinal n_1 and n_2 respectively such that $I_1 \sqcup I_2 =$ $\{1,\ldots,n\}.$

For any slack $\gamma \in (0,1)$, any control level $\alpha \in [0,1]$, the band $\hat{B}_{\gamma;\alpha}^{\mathrm{MDist-split}}$ defined as, for every $\tau \in \{1, \ldots, T\}$

$$\hat{B}_{\gamma;\alpha;\tau}^{\text{MDist-split}} := \left\{ k \in \{1, \dots, K\} : \hat{Q}_{D_1,\tau}^{\text{lo}} \left(\hat{t}_{\gamma;\alpha}^{\text{MDist-split}} \right) \le k \le \hat{Q}_{D_1,\tau}^{\text{lo}} \left(1 - \hat{t}_{\gamma;\alpha}^{\text{MDist-split}} \right) \right\}, \tag{23}$$

ensures γ -simultaneous coverage of ξ at a control level α , where the level $\hat{t}_{\gamma;\alpha}^{\text{MDist-split}}$ is defined in Equation (Eq. (25)).

Proof of Corollary 3. Applying Proposition 6, for every $\tau \in \{1, \ldots, K\}$, and $k \in \{1, \ldots, K\}$

$$\hat{A}_{D_{1};\tau}(k) := \min \left(\hat{F}_{D_{1};\tau}(k), 1 - \hat{F}_{D_{1};\tau}(k) \right), \tag{24}$$

the prediction band $\hat{B}_{\gamma;\alpha}^{\text{MDist-split}}$ defined as, for every $\tau \in \{1, \dots, T\}$

$$\hat{B}_{\gamma;\alpha;\tau}^{\mathrm{MHPD-split}} := \left\{ k \in \left\{ 1, \dots, K \right\} : \hat{A}_{D_{1};\tau}\left(k\right) \ge \hat{t}_{D_{1};\gamma}\left(\xi_{\left(i_{n_{2};\alpha}\right)}\right) \right\}$$

$$\begin{split} &= \left\{ k \in \left\{ 1, \dots, K \right\} : \min \left(\hat{F}_{D_1; \tau} \left(k \right), 1 - \hat{F}_{D_1; \tau} \left(k \right) \right) \geq \hat{t}_{\gamma; \alpha}^{\text{MDist-split}} \right\} \\ &= \left\{ k \in \left\{ 1, \dots, K \right\} : \hat{Q}_{D_1, \tau}^{\text{lo}} \left(\hat{t}_{\gamma; \alpha}^{\text{MDist-split}} \right) \leq k \leq \hat{Q}_{D_1, \tau}^{\text{lo}} \left(1 - \hat{t}_{\gamma; \alpha}^{\text{MDist-split}} \right) \right\}, \end{split}$$

ensures control of γ -simultaneous coverage of ξ at a control level α , where the level $\hat{t}_{\gamma;\alpha}^{\text{MDist-split}}$ is defined as

$$\hat{t}_{\gamma;\alpha}^{\text{MDist-split}} := \hat{t}_{D_1;\gamma} \left(\xi_{\left(i_{n_2;\alpha}\right)} \right). \tag{25}$$

References

- [1] Jing Lei, James Robins, and Larry Wasserman. "Distribution-free prediction sets". In: *Journal of the American Statistical Association* 108.501 (2013), pp. 278–287.
- [2] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world. Vol. 29. Springer, 2005.