

[ワーク] 活性化関数の種類

■ ステップ関数、シグモイド関数、ReLUをそれぞれグラフで表現してみよう

	ステップ関数	シグモイド関数	ReLU
グラフ (記入して ください)	<i>y</i>	<i>y</i>	<i>y</i>

[ワーク] 順伝播計算と逆伝播計算

- ニューラルネットワークの学習では、順伝播(でんぱ)計算と 逆伝播(でんぱ)計算を繰り返し行う
- 順伝播計算と逆伝播計算では、それぞれ何を伝えているのだろうか?
- 図を描いて説明してみよう

順伝播計算では、	の情報を出力	
まで伝え、	を算出する。	
逆伝播計算では、	の情報	
を	_に伝える。この	
	の情報をもとに	
	を計算する。	
これを	という。	

[ワーク] パラメータ最適化の手順

- ニューラルネットワークにおけるパラメータの最適化は、山の谷底を見つける 問題で例えられる
- パラメータ最適化の過程を山の絵を描いて説明してみよう

[パラメータ最適化の手順]

- ① 順伝播計算
- ② 逆伝播計算
- ③ ②で求めた____を用いて山を1歩下る
- ④ 谷底に到達するまで①~③を繰り返す

微分を用いて最小点を探す方法を という

[ワーク] パラメータの最適化に関連するキーワード

- パラメータの最適化に関連する以下のキーワードの意味を確認しよう
 - ・勾配降下法、学習率、バッチ学習、ミニバッチ学習、バッチサイズ、確率的勾配降下法、 エポック
- 以下の空欄に、上記のいずれかの単語を入れよう

・微分を用いて最小点を探す方法を	という。			
・を変更すると、山を慎重に下る	が大胆に下るかを調整することができる。			
・訓練用データを1度に全て使って、山を下る	ることをという。			
・訓練用データをランダムに幾つかのグルー	プにわけ、使用するグループを順番に入れ替えな			
がら、山を下ることを	_という。1つのグループに属するデータ数のこと			
をという。グループは、	ごとに更新される。ミニバッチ学			
習時の勾配降下法は、ランダム(確率的)にデータを入れ替えながら山を下るため、				
と呼ばれる。				

[ワーク] CNNにおけるハイパーパラメータ

- CNNでは、全結合型ニューラルネットワークに比べて、ハイパーパラメータが 多くなる
- どのようなハイパーパラメータがあるか書き出してみよう

[ワーク] 深層学習の基本の4モデル

- 深層学習で基本となる以下の4つのモデルを学んだ
 - 全結合型ニューラルネットワーク
 - 自己符号化器型
 - 畳み込みニューラルネットワーク(CNN)
 - 再帰型ニューラルネットワーク(RNN)
- 上記のそれぞれのモデルについて、その特徴と、どのようなタスクに 向いているかを整理しよう

•	画像に関連したタスクを解く場合は、	_が向いている
•	自然言語などのようにデータの順序に意味があるデータを扱う場合は、	
•	が向いている	
•	特徴抽出や次元削減に向いているのは、	である
•	は、テーブルデータに向いている	3