www.jacobericson.me

CSCE 222

DISCRETE STRUCTURES FOR COMPUTER SCIENCE

Dr. Hyunyoung Lee • Spring 2016 • Texas A&M University

Last Revision: January 23, 2016

Table of Contents

1 Propositional Logic (1/22)

1

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 Propositional Logic (1/22)

Proposition

• A declatitive sentence that is either True or False (**NOT** both).

Examples:

- College Station is the captital of the USa
- There are fewer politicians in College Station than in Washington, D.C.
- 1+1=2
- 2+2=5

A variable that represents propositions is called a propositional variable. (stick with boolean algebra)

For example: p, q, r, ... [Propositional variables in logic play the same role as numerical variables in arithmetic] Propositional Logic

• The area of logic that deals with propositions

Logical Connectives

- not
 - _ -
 - reverses the boolean (ex. from True to False).
- \bullet and
 - \wedge
 - only True if both components are True.
- \bullet or
 - \(\times \)
 - only False if both componets are False.
- exclusive or
 - \bigoplus
 - True if only one or the other is True, but not both.
- conditional
 - $-p \rightarrow q$
 - if p, then q
 - ex. if you do all your homework in this class, then you should get an A.
- biconditional
 - $p \leftrightarrow q$
 - is the same as $(p \to q) \land (q \to p)$.

Each logical connective is enclosed in parentheses except for the negation connective, \neg .

Operator Precedence Rules

- 1. negation
- 2. and
- 3. or and xor
- 4. conditional

5. biconditional

Tautology

- A proposition that always evaluated to True regardless of the assignment of truth values to its variables.
- ex. $p \vee \neg p$
- To prove a tautology, typically a truth table is required.