

Enrichment of ontological taxonomies using a neural network approach

Bachelorarbeit

zur Erlangung des Grades einer Bachelor of Science (B.Sc.) im Studiengang Informatik

vorgelegt von Alex Baier

Erstgutachter: Prof. Dr. Steffen Staab

Institute for Web Science and Technologies

Zweitgutachter: Max Mustermann

Institute for Web Science and Technologies

Koblenz, im Januar 2017

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

	Ja	Nein	
Mit der Einstellung dieser Arbeit in die Bibliothek bin ich einverstanden.			
Der Veröffentlichung dieser Arbeit im Internet stimme ich zu.			
Der Text dieser Arbeit ist unter einer Creative Commons Lizenz verfügbar.			
Der Quellcode ist unter einer Creative Commons Lizenz verfügbar.			
Die erhobenen Daten sind unter einer Creative Commons Lizenz verfügbar.			
Ort, Datum)		(Untersc	 hrift)

Contents

1	Intr	oduction	1						
2	Fou	Foundations							
	2.1	Wikidata	1						
	2.2	Taxonomy	1						
	2.3	Similarity	1						
	2.4	Similarity-based classification	1						
	2.5	Text processing	1						
3	Ont	ology learning	2						
4	Neu	ıral networks	2						
	4.1	Recursive neural networks for graph representation	2						
	4.2	Deep neural networks for graph representation	2						
	4.3	Continuous Bag-of-Words	2						
	4.4	Skip-gram with negative sampling	2						
	4.5	Comparison	3						
5	Alg	orithm	3						
	5.1	Baseline	3						
	5.2	Supplementing with other resources	3						
6	Eva	luation	3						
	6.1	Method	3						
	6.2	Generation of gold standard	3						
	6.3	Results	3						

List of Figures

1 Introduction

Motivation. Related work. Solution. Evaluation.

2 Foundations

2.1 Wikidata

Galárraga [7]

2.2 Taxonomy

- Ontology Cimiano et al. [3] Galarraga2016
- Taxonomy Cimiano et al. [3] Galarraga2016
- Connected taxonomy (maybe: consistent taxonomy)
- Root class
- Unlinked class
- Problem statement

2.3 Similarity

- semantic similarity e.g. distributional similarity Lin [12]
 Rodríguez and Egenhofer [16]
- geometrical similarity e.g. distance based-similarity, cosine similarity

2.4 Similarity-based classification

Chen et al. [2] Zhang and Zhou [19]

2.5 Text processing

• N-Gram Jurafsky and Martin [10]

- Skip-Gram Guthrie et al. [9]
- Counting-based word representations Levy et al. [11]
- Predictive word representations Levy et al. [11]

3 Ontology learning

General concepts. Classification of considered problem in the task of ontology learning. Related work.

Cimiano et al. [3]

Wong et al. [18]

d'Amato et al. [4]

Petrucci et al. [14]

Fu et al. [6]

4 Neural networks

Notion of neural networks will be introduced.

4.1 Recursive neural networks for graph representation

Scarselli et al. [17]

4.2 Deep neural networks for graph representation

Cao et al. [1] Raghu et al. [15]

4.3 Continuous Bag-of-Words

Mikolov et al. [13]

4.4 Skip-gram with negative sampling

Mikolov et al. [13] Levy et al. [11] Goldberg and Levy [8]

4.5 Comparison

5 Algorithm

5.1 Baseline

- Hyper parameters
- Training data

5.2 Supplementing with other resources

e.g. Wikipedia

6 Evaluation

6.1 Method

Dellschaft and Staab [5]

6.2 Generation of gold standard

6.3 Results

References

- [1] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations. In Dale Schuurmans and Michael P. Wellman, editors, <u>AAAI</u>, pages 1145–1152. AAAI Press, 2016. URL http://dblp.uni-trier.de/db/conf/aaai/aaai2016.html#CaoLX16.
- [2] Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, and Luca Cazzanti. Similarity-based classification: Concepts and algorithms. J. Mach. Learn. Res., 10:747–776, June 2009. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1577069.1577096.
- [3] P. Cimiano, A. Mädche, S. Staab, and J. Völker. Ontology learning. In S. Staab and R. Studer, editors, <u>Handbook on Ontologies</u>, International Handbooks on Information Systems, pages 245–267. Springer, 2nd revised edition edition, 2009. URL http://www.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/ontology-learning-handbook2.pdf.

- [4] Claudia d'Amato, Steffen Staab, Andrea G. B. Tettamanzi, Tran Duc Minh, and Fabien L. Gandon. Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In Sascha Ossowski, editor, <u>SAC</u>, pages 333–338. ACM, 2016. ISBN 978-1-4503-3739-7. URL http://dblp.uni-trier.de/db/conf/sac/sac2016.html#dAmatoSTMG16.
- [5] Klaas Dellschaft and Steffen Staab. On how to perform a gold standard based evaluation of ontology learning. In Proceedings of the 5th International Conference on The Semantic Web, ISWC'06, pages 228–241, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-49029-9, 978-3-540-49029-6. doi: 10.1007/11926078_17. URL http://dx.doi.org/10.1007/11926078_17.
- [6] Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng Wang, and Ting Liu. Learning Semantic Hierarchies via Word Embeddings. <u>Acl</u>, pages 1199–1209, 2014.
- [7] Luis Galárraga. <u>Rule Mining in Knowledge Bases</u>. PhD thesis, Telecom Paris-Tech, 2016.
- [8] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.'s negative-sampling word-embedding method. <u>CoRR</u>, abs/1402.3722, 2014. URL http://arxiv.org/abs/1402.3722.
- [9] David Guthrie, Ben Allison, W. Liu, Louise Guthrie, and Yorick Wilks. A closer look at skip-gram modelling. In <u>Proceedings of the Fifth international</u> <u>Conference on Language Resources and Evaluation (LREC-2006)</u>, Genoa, Italy, 2006.
- [10] Daniel Jurafsky and James H. Martin. N-Grams. In <u>Speech and Language</u> Processing, chapter N-Grams. 2014.
- [11] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned from word embeddings. Transactions of the Association for Computational Linguistics, 3:211–225, 2015. ISSN 2307-387X. URL https://transacl.org/ojs/index.php/tacl/article/view/570.
- [12] Dekang Lin. An information-theoretic definition of similarity. In <u>Proceedings</u> of the Fifteenth International Conference on Machine Learning, ICML '98, pages 296–304, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-556-8. URL http://dl.acm.org/citation.cfm?id=645527.657297.
- [13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. <u>CoRR</u>, abs/1301.3781, 2013. URL http://arxiv.org/abs/1301.3781.

- [14] Giulio Petrucci, Chiara Ghidini, and Marco Rospocher. Using recurrent neural network for learning expressive ontologies. <u>CoRR</u>, abs/1607.04110, 2016. URL http://arxiv.org/abs/1607.04110.
- [15] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive power of deep neural networks. ArXiv e-prints, June 2016.
- [16] M. Andrea Rodríguez and Max J. Egenhofer. Determining semantic similarity among entity classes from different ontologies. <u>IEEE Trans. on Knowl. and Data Eng.</u>, 15(2):442–456, February 2003. ISSN 1041-4347. doi: 10.1109/TKDE.2003. 1185844. URL http://dx.doi.org/10.1109/TKDE.2003.1185844.
- [17] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, jan 2009. ISSN 1045-9227. doi: 10.1109/TNN.2008.2005605. URL http://ieeexplore.ieee.org/document/4700287/.
- [18] Wilson Wong, Wei Liu, and Mohammed Bennamoun. Ontology learning from text: A look back and into the future. ACM Comput. Surv., 44(4):20:1–20:36, September 2012. ISSN 0360-0300. doi: 10.1145/2333112.2333115. URL http://doi.acm.org/10.1145/2333112.2333115.
- [19] Min-Ling Zhang and Zhi-Hua Zhou. A k-Nearest Neighbor Based Algorithm for Multi-label Classification. volume 2, pages 718–721 Vol. 2. The IEEE Computational Intelligence Society, 2005. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1547385.