Time Series and Forecasting ARIMA Models

Maria Eduarda Silva mesilva@fep.up.pt

School of Economics, University of Porto

LMU, July 1 2022

- Outline
- 2 ARMA Models
- ARIMA Models
- SARIMA Models
- 6 Lab Session
- 6 References

Time Series Models

- Models for the conditional mean
- Models for the conditional variance
- ARMA models: linear models for the conditional mean
- Non-linear models: example Garch model which is a model for conditional variance (won Engle the 2003 Nobel Prize in Economics)

The Autoregressive Model, AR(1)

- If there is dependence in the data we would like a model that allows to predict future outcomes from past outcomes.
- If there is information about Y_t contained on $(Y_{t-1}, Y_{t-2}, ...)$ the obvious is to try a regression of Y_t on its lags.
- First we consider a simple model called AR(1).

AR(1)

$$Y_t = c + a Y_{t-1} + e_t \tag{1}$$

It is like a simple linear repression with lagged value of Y_t as predictor

The model has two parts:

- $a Y_{t-1} \longrightarrow \text{that depends on the past}$
- $e_t \longrightarrow$ the part that is not predictable from the past.
- e_t is iid $N(0, \sigma^2)$
- e_t independent of Y_{t-1}, Y_{t-2}, \dots

but we must put restrictions on parameter a

so that Y_t is stationary

AR(1)- Some properties

$$Y_t = c + a Y_{t-1} + e_t$$

- $E(Y_t) = c/(1-a)$
- $Var(Y_t) = \gamma(0) = \sigma_e^2/(1-a^2)$
- $\rho_{\tau} = a\rho_{\tau-1} = \frac{\gamma(\tau)}{\gamma(0)} = a^{|\tau|}$

Note that a is the correlation between Y_t and Y_{t-1} - successive observations

Note that the correlation between Y_t and Y_{t-k} decays exponentially with k

AR(1) ACF and SACF

AR(1) ACF and SACF

AR(1) and causality

$$Y_t = aY_{t-1} + e_t$$

 $Y_t = a(aY_{t-2} + e_{t-1}) + e_t = a^2 Y_{t-2} + a e_{t-1} + e_t$
...
 $Y_t = e_t + ae_{t-1} + a^2 e_{t-2} + ...$
 $Y_t = \sum_{j=0}^{\infty} a^j e_{t-j}$

This is called the causal representation of an AR(1) referring to the fact that Y_t does not depend on the future. Check by that $Y_t = \sum_{j=0}^{\infty} a^j e_{t-j}$ satisfies the AR(1) equation.

Compute the mean and autocovariance function of Y_t using the causal representation.

Partial correlation

- X, Y, Z random variables
- Partial correlation between X and Y given Z is obtained by
 - regressing X on Z to obtain the predictor \hat{X} , regressing Y on Z to obtain the predictor \hat{Y}
 - compute $\rho_{XY|Z} = corr(X \hat{X}, Y \hat{Y})$
- Computes the correlation between X and Y with the linear effect of Z removed

The partial autocorrelation function, PACF

- Helps to determine the order of the AR model
- Computes the correlation between Y_t and Y_{t-k} removing the linear effect of the variables between
- The first PACF is the coefficient β_1^1 in the regression $Y_t = \beta_0^1 + \beta_1^1 Y_{t-1}$

$$\phi_{11} = \rho(1)$$

• The kth PACF is

$$\phi_{kk} = corr(Y_k - \hat{Y}_k, Y_0 - \hat{Y}_0)$$

where \hat{Y}_t is the predictor of Y_t based on $\{Y_1, \dots, Y_{k-1}\}$, $k = 2, 3, \dots$

PACF of AR(1) and sample PACF, SPACF

- For an AR(1)
 - $\phi_{11} = a$
 - $\phi_{hh}=0, h\geq$
- A sample PACF β_k^k is significant if $\beta_k^k > 2/\sqrt{n}$ (Bartlett test)

AR(1) PACF and SPACF

AR(1) PACF and SPACF

AR(1) a = 0.7 PACF and SPACF

AR(p)

 Generalization of AR(1) model: the dependence is on p past values

$$Y_t = c + a_1 Y_{t-1} + \ldots + a_p Y_{t-p} + e_t$$

Multiple regression with p lagged values of Y_t as predictors

- e_t iid sequence with variance σ_e^2
- Conditions on the a_i so that the model exists (in the mathematical sense) the (complex) roots z_1, \ldots, z_p of the autoregressive polinomial

$$\phi(z)=1-a_1z-\ldots-a_pz^p$$

are $|z_i| > 1$

allows periodic behaviour

Example: AR(2)

$$Y_t = 1.5Y_{t-1} - 0.75Y_{t-2} + e_t$$

```
z=c(1,-1.5,0.75)
polyroot(z)
[1] 1+0.57735i 1-0.57735i
abs(polyroot(z))^2
[1] 1.333333 1.3333333
```

Realization of $Y_t = 1.5 Y_{t-1} - 0.75 Y_{t-2} + e_t$

AR(2) ACF, PACF and sample counterparts

MA(1) Model

•

$$X_t = e_t + be_{t-1} = (1 - b B)e_t$$

where |b| < 1 and e_t iid $var(e_t) = \sigma_e^2$

- Stationary for all b
- The model is different from AR(1) since we write X_t as a sum of two random draws from a distribution (usually normal)
- The value of X today depends on the surprise from yesterday and the surprise from today
- ACF: $\rho(1) = b/(1+b^2)$ e $\rho(k) = 0, k \ge 2$

MA(q) model

•

$$X_t = e_t + b_1 e_{t-1} + \ldots + b_q e_{t-q}$$
 (2)

where e_t iid random variables N(0,1) and the b_j are such that the roots z_1, \ldots, z_q of the polinomial

$$\theta(z) = 1 + b_1 z + \ldots + b_q z^q$$

satisfy $|z_i| > 1$, i = 1, ..., q (for technical reasons)

- The ACF is zero for lags $\tau > q$ and the PACF decays to zero.
- the joint use of ACF and PACF allows to distinguish between AR and MA models

ACF e PACF properties for AR(p) and MA(q) models

	AR(p)	MA (<i>q</i>)
ACF	Decay to zero	Zero for lags $\geq q+1$
PACF	Zero for lags $\geq p+1$	Decay to Zero

ARMA models

- Data is generally not well represented by AR or MA models
- Combine both → ARMA models
- ARMA(1,1)

$$X_t = c + aX_{t-1} + be_{t-1} + e_t$$

$$e_t$$
 iid, $|a| < 1$, $|b| < 1$

ARMA models

ARMA(p, q)

$$X_t = c + a_1 X_{t-1} + \ldots + a_p X_{t-p} + b_1 e_{t-1} + \ldots + b_q e_{t-q} + e_t$$

where a_1, \ldots, a_p and b_1, \ldots, b_q are such that the roots of the polynomials

$$\phi(z)=1-a_1z-\ldots-a_pz^p$$

and

$$\theta(z) = 1 + b_1 z + \ldots + b_q z^q$$

are inside the unit circle, $|z_i| > 1$

 Predictors include both lagged values of X_t lagged vaues of errors/innovations.

AutorRegressive Integrated Moving Average models

- Combine ARMA models with differencing
- d-differenced series follows an ARMA model
 - Difference the series d times

$$Y_t = (1 - B)^d X_t = \nabla^d X_t$$

▶ ARMA(p, q) model for Y_t

$$X_t = a_1 X_{t-1} + \ldots + a_p X_{t-p} + b_1 e_{t-1} + \ldots + b_q e_{t-q} + e_t$$

• Need to choose p, q, d and whether include constant

ARIMA(p, d, q)

- White noise: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with a constant
- AR(p): ARIMA(p, 0, 0)
- MA(q): ARIMA(0, 0, q)
- ARMA(p, q): ARIMA(p, 0, q)
- ARIMA(1,1,1)

$$(1 - a B)(1 - B)X_t = (1 - b B)e_t$$

Global Temperature

Global Temperature

Differenced global Temperature

ACF and **PACF** of Differenced global Temperature

Global Temperature - ARIMA(1,1,1)?

Coefficients:

	ar1	ma1	constant
	0.2707	-0.8367	0.0053
s.e.	0.1144	0.0633	0.0028

what about the residuals?

Residuals from ARIMA(1,1,1) for Temperature data

What about an ARIMA(1,1,2)?

Coefficients:

	ar1	ma1	ma2	constant
	-0.0415	-0.4641	-0.2713	0.0061
s.e.	0.2257	0.2068	0.1440	0.0030

what about the residuals?

Residuals from ARIMA(1,1,2) for Temperature data

An ARIMA(0,1,2)?

Coefficients:

ma1 ma2 constant -0.4992 -0.2486 0.0061 s.e. 0.0843 0.0796 0.0030 what about the residuals?

Residuals from ARIMA(0,1,2) for Temperature data

How to choose between ARIMA(1,1,1) and ARIMA(0,1,2)?

Information Criteria

Akaike (1969, 1973, 1974) suggested measuring the goodness of a model by balancing the error of the fit against the number of parameters in the model. Thus Akaike Information Criteria was born. Later developed into AICc and BIC (Bayesian Information Criteria).

Definition 2.1 Akaike's Information Criterion (AIC)

$$AIC = \log \hat{\sigma}_k^2 + \frac{n+2k}{n}, \tag{2.16}$$

where $\hat{\sigma}_k^2$ is given by (2.15) and k is the number of parameters in the model.

Information criteria

For comparing (nested) models leading to automatic choice of order: Good models are obtained by minimizing either

AIC Akaike Information Criteria

$$AIC = -2 \log(L) + 2(p + q + k + 1)$$

where L is the likelihood of the data and k = 1 if we are also estimating the mean

AICC Corrected AIC

$$AIC_C = AIC + \frac{2(p+q+k+1)(p+q+2)}{n-p-q-k-2}$$

BIC Bayesian Information Criteria

$$BIC = AIC + \log(n)(p + q + k + 1)$$

How to choose between ARIMA(1,1,1) and ARIMA(0,1,2)?

Given more than one adequate model choose the model that minimizes AIC or AICc

```
Model AIC AICc
ARIMA(1,1,1) -3.028143 -3.008577
ARIMA(0,1,2) -3.044159 -3.024593
```

Seasonal ARIMA Models

- Seasonal and non-seasonal terms combine multiplicatively
- SARIMA $(p, d, q) \times (P, D, Q)_S$ where
 - d differences; D seasonal differences
 - p AR lags; q MA lags
 - P Seasonal AR lags; Q Seasonal MA lags
 - ▶ S is the seasonality, ex: S=4 months, S=12 months
 - This model provides a reasonable representation for seasonal, nonstationary, economic time series.

ARIMA	$\underbrace{(p,d,q)}$	$\underbrace{(P,D,Q)_m}$
	†	†
	Non-seasonal part	Seasonal part of
	of the model	of the model

Modelling CARDOX

Seasonal Difference of CARDOX

Simple difference of CARDOX

Simple and Seasonal difference of CARDOX

ACF and PACF of differenced CARDOX

scale=0.5]acf-and-pacf-of-differenced-cardox

acf2(diff(diff(cardox,12),1))

cardox_fit1 = sarima(cardox,1,1,1,1,1,1,1)

cardox_fit1

```
## $fit
##
## Coefficients:
##
           ar1
                 ma1
                       sar1 sma1
        0.1941 -0.5578 -0.0008 -0.8647
##
## s.e. 0.0953 0.0813 0.0427 0.0211
##
## sigma^2 estimated as 0.09585: log likelihood = -184.82,
##
## $degrees of freedom
## [1] 712
##
```

```
## $ttable
       Estimate SE t.value p.value
##
## ar1 0.1941 0.0953 2.0364 0.0421
## ma1 -0.5578 0.0813 -6.8645 0.0000
## sar1 -0.0008 0.0427 -0.0185 0.9852
## sma1 -0.8647 0.0211 -40.9625 0.0000
##
## $AIC
## [1] 0.5302324
##
## $AICc
## [1] 0.530311
##
## $BIC
## [1] 0.5621715
```

cardox_fit2=sarima(cardox,1,1,1,0,1,1,12, no.constant = TRUE)


```
cardox_fit2
```

```
## Coefficients:
## ar1 ma1 sma1
## 0.1941 -0.5578 -0.8648
## s.e. 0.0953 0.0813 0.0189
##
## sigma^2 estimated as 0.09585: log likelihood = -184.82, as
##
## $degrees_of_freedom
## [1] 713
```

```
## $ttable
## Estimate SE t.value p.value
## ar1 0.1941 0.0953 2.0374 0.042
## ma1 -0.5578 0.0813 -6.8634 0.000
## sma1 -0.8648 0.0189 -45.7161 0.000
##
## $AIC
## [1] 0.5274396
##
## $AICc
## [1] 0.5274867
##
## $BIC
## [1] 0.5529909
```

cardox_fit3=sarima(cardox,0,1,1,0,2,1,12, no.constant Model: (0,1,1) (0,2,1) [12] Standardized Re ო -∾-1960 1970 1980 199 Time **ACF of Residuals**


```
## $ttable
## Estimate SE t.value p.value
## ma1 -0.4008 0.0382 -10.4883
## sma1 -0.9992 0.0125 -80.0660
##
## $AIC
## [1] 1.167823
##
## $AICc
## [1] 1.167847
##
## $BIC
## [1] 1.187241
```

cardox_fit3=sarima(cardox,0,1,1,0,2,2,12, no.constant = TRUE)

cardox_fit3

```
## $fit
## Coefficients:
##
            ma1
                 sma1
                           sma2
##
        -0.4153 -1.9038 0.9095
## s.e. 0.0388 0.0268 0.0264
##
## sigma^2 estimated as 0.09724: log likelihood = -234.14,
##
## $degrees_of_freedom
## [1] 701
##
```

```
## $ttable
                       SF.
                                 t.value
##
       Estimate
                                                 p.value
## ma1 -0.4153 0.0388 -10.6930
## sma1 -1.9038 0.0268 -70.9709
                                        0
## sma2 0.9095 0.0264 34.3908
                                           0
##
## $AIC
## [1] 0.6765383
##
## $AICc
## [1] 0.676587
##
## $BIC
## [1] 0.7024291
```

A model for CARDOX

Model	Residuals	Parameters	AICc	BIC
$(1,1,1) \times (1,1,1)$	✓		0.5303	0.5622
$(1,1,1) \times (0,1,1)$	✓	✓	0.5275	0.5530
$(1,1,1) \times (0,2,1)$	correlated	near unit root	1.167823	1.1872
$(1,1,1) \times (0,2,2)$	✓	near unit root	0.6766	0.7024

Lab Session

Lab Session 2: choose a time series and find a suitable SARIMA model

The file LabSession21.html and LabSession22.html provide examples.

References

- R. Shumway, D. Stoffer. Time series analysis and its applications with R examples. Springer Texts in Statistics, 2006.
- D. Stoffer web page http://www.stat.pitt.edu/stoffer/dss.html data, tips about R http://www.stat.pitt.edu/stoffer/tsa2/
- R. Hyndman web page http://robjhyndman.com/ data, slides about R, interesting blog, lots of stuff about forecasting