

Tricycle Project
Dick Dastardly
Crystal Ball

Review

09/11/2021

-Sprint 1-

Pierre Calmettes Romain Choulot Yixia Liu Gautier Martin Nikita Mikhin Valentin Piqueras

Yassine Ariba Guillaume Auriol Elodie Chanthery Barbara Moore Didier Le Botlan

Presentation plan

Project Purpose

A tricycle with multiple integrated sensors and actuators. It is conscious of its surrounding.

Road Safety

+ Less stressful driving

+ Ecological

Equip a car with sensors and using **AI** algorithms to assist the driver

Warn in case of danger

- Avoid personal injury or material damage
- React faster than humans
- Automation of conditional driving

Sprint 1 (objectives) - Camera

Recognition?

Raise an alarm!

Find a way to raise an alarm

Find and implement a recognition algorithm on the Jetson Nano

Raise the alarm each time the camera detects a human

Sprint 1 (objectives) - LIDAR

Detect an object in the blue zone

- azimuth between -10° to +10°
- distance less than 2 m

Print a message (e.g. "object detected") on the computer screen

Stories: Use an AI to detect object and alert if a person is detected

Preliminary work

Display the video output of the camera

Getting started with ROS

Stories: Use an AI to detect object and alert if a person is detected

Tutorial to use pretrained neural network for computer vision on the Jetson

jetson-inference

Multiple libraries and models to do classification, detection and segmentation on videos and images

Made by Dustin Franklin

jetson-gpio

A Python library that enables the use of Jetson's GPIOs

Stories: Use an Al to detect object and alert if a person is detected

DetectNet

Python Script

Pretrained Neural Network

PWM Buzzer on the GPIO

Documentation on Git (script + README with commands and electronic scheme)

DEMO

LIDAR

Obtention of usable numeric data from the LIDAR

Raw data sent by the sensor

identification

0xffee34c400820e 00830d...

Capturing and

0xffee34c400820e 00830d...

Captured hex data with

identified sections of

azimut, distances and

reflectivity for layers (1 to 16)

Transformation in understandable units

Distance (in meters), Reflectivity (number out of 255) for an azimuth (in degrees)

Azimut: 135.08 °

Distance layer 1: 1.30 m Reflectivity layer 1:14 Distance layer 2: 1.31 m Reflectivity layer 2:13

etc...

LIDAR

LIDAR Data analysis

2D array, tab_distance[channel][azimuth]

Allows us to have the distance of all the points given by the lidar, which is 360° and 16 channels

tab_distance 💌	Azimuth (°)	0 -	1 -	2 -	3 -	🔻	360 -
Channel		124	98	116	198		19
1		87	16	173	23		7
2		135	225	107	10		112
3		160	33	42	67		117
4		202	178	115	105		32
5		172	4	110	4		201
6		250	109	86	198		125
7		35	218	107	86		165
8		102	10	181	142		164
9		248	151	82	171		81
10		89	45	226	211		174
11		136	65	83	231		99
12		202	141	216	121		126
13		34	236	158	229		47
14		92	223	161	246		182
15		133	128	34	234		149
16		74	109	233	114		136

LIDAR

LIDAR Data analysis and obstacle detection

The program is able to detect an obstacle and recognize if it is a tall obstacle (adult person) or a short obstacle (kid)

Conditions for detection : distance < 2 m and azimut 0°

DEMO

Tests and performances

CAMERA

What we want to know

- Quality of object recognition
- Quantity of objects
 recognized at the same time

Test

- The camera can recognize the type of an object among various objects
- Alert when detect humain
- Percentage of certainty
- The camera can detect and recognize the whole team and the objects next to it

Performances

- Alert until there is no one left
- Percentage of certainty
 >95% when the whole
 body is photographed
- Able to recognize ≥ 6 pers + 1 chair + 1 box
- Mistake of recognition but able to correct itself in 1 second

Tests and performances

CAMERA

Tests and performances

LIDAR

What we want to know

 Distance of an object from the LIDAR at azimuth 0°

Tests

- An array of distance data is generated
- An obstacle in less than 2 meters is detected
- It can be recognized as a short or a tall object

Performances

- Detection time less than1 second
- Distinction between 'tall' (>1.5m) and 'short' object (≈ 1m)

Sprint 2

CAMERA

Stories

List everything the algorithm can recognize Train the algorithm for the missing elements

Eliminate the 'False Positives'

Use the algorithm in the ROS environment

Tests & Demos: same test as Sprint 1 with ROS, detect the missing elements and avoid false positives

Sprint 2 LIDAR Stories Alarm when Extend the Use the an object is azimuth to LIDAR with detected with a 360° the Jetson buzzer Tests & Demos: same test as Sprint 1, but 360° and use the Jetson and a buzzer to print 18

CONCLUSION

Thank you for your attention

Pierre Calmettes Romain Choulot Yixia Liu Gautier Martin Nikita Mikhin Valentin Piqueras

Yassine Ariba Guillaume Auriol Elodie Chanthery Barbara Moore Didier Le Botlan