1 Introduction

Theorem 1.1. A sequence is an infinite list of numbers that are indexed by \mathbb{N} or a subset of \mathbb{N} . We can often write a sequence in the form $a_1, a_2, ... a_n$

Example:
$$(A_n)_{n=0}^{\infty}$$

Theorem 1.2. We can define a sequence recursively (recursive definition). The Fibonacci sequence f_n is defined as follows:

Example:

$$f_n = \begin{cases} f_0 = 1, f_1 = 1\\ f_{n+2} = f_{n+1} + f_n \text{ if } n \ge 0. \end{cases}$$

Theorem 1.3. For each $n \in \mathbb{N}$, the Fibonacci number f_{3n} is an even natural number.

Proof: We prove this by induction.

Base case: when $n = 0, f_0$ is even.

Inductive step: Suppose f_{3k} is even for some $k \geq 0$

We want to prove $f_{3(k+1)}$ is even

Note $f_{3(k+1)} = f_{3k+3}$

By the recursive definition, $f_{3k+3} = f_{3k+2} + f_{3k+1}$

Further simplifying, $(f_{3k+1} + f_{3k}) + f_{3k+1}$

 $2f_{3k+1} + f_{3k}$

Substituting, $2f_{3k+1} + 2L$

Thus, $2(f_{3k+1} + L)$ is even.

By the closure of the set of integers and the recursive definition, this is an integer.

By induction, this statement is true for any \mathbb{N}

Theorem 1.4. How many ways can you tile a 2 by n grid with dominoes?

Illustrated: Working from a simpler case, suppose n=1. There is only one way to fill the grid.

When n = 2, there are only two ways like such $\|$ and =

When n = 3, there are 3 ways in which you can tile the dominoes

When n = 4, there are 5 ways.

When n = 5, there are 8 ways.

Illustrated: For any integer $n \ge 1$, the number of ways to tile a 2 by n grid with dominoes is the (n+1)th Fibonacci number, f_{n+1}

Recall,

$$f_n = \begin{cases} f_0 = 1, f_1 = 1\\ f_{n+2} = f_{n+1} + f_n \text{ if } n \ge 0. \end{cases}$$

Proof using induction.

Base Case:

Suppose n = 1. There is 1 way to tile a 2 by 1 grid and $f_1 = 1$

Suppose n=2. There are 2 ways to tile a 2 by 2 grid and $f_3=2$

Inductive Case:

Suppose the number of ways to tile an n by k grid is f_{k+1}

Suppose the number of ways to tile a 2 by (k + 1) grid is f_{k+2}

Goal: Find out the number of ways to tile a 2 by (k + 2) grid.

Consider the top left square of this 2 by (k + 2) grid.

There are only two ways in which it can be covered

Case 1:

This square is covered by a vertical d.

The remaining part is a 2 by (k + 1) grid.

By the inductive hypothesis, there are f_{k+2} to cover the grid.

Case 2:

The square is covered by a horizontal d.

The square underneath it must be covered by a horizontal domino.

The remaining grid is a 2 by k grid. Which has f_{k+1} ways to tile.

Technique: Strong Mathematical Induction.

Base case: Prove $P(K_0)$ is true

Inductive Step: For every integer $k \ge k_0$, prove P(k + 1) is true under the assumption that it is true for all smaller cases, instead of assuming that it is true for one case.

Thus we are proving $P(K_0) \wedge P(K_0 + 1) \dots \wedge P(k) \implies P(k + 1)$

Theorem: Every positive integer $n \geq 2$ is either a prime number or is a product of prime numbers.

Let X, Y be two sets. The union of X and Y, denoted by $X \cup Y$ is $\{x \in U | x \in X \text{ or } x \in Y\}$

The intersection of X and Y, denote by $X \cap Y$, is $\{x \in U | x \in X \text{ and } x \in Y\}$

The set difference of X and Y (relative complement of Y w.r.t X), denoted by X-Y (or $X\backslash Y$) is $\{x\in U|x\in Y \text{ and } x\notin X\}$

Set Difference Diagram

The complement of X^c is regarded as U-X (The universal set minus the set X)

Example Problem:

Let
$$X = \{1, 2, 3, 4\}$$

Let $Y = \{x \in \mathbb{R} | -1 < x \le 3\}$
 $X \cup Y = 1, 2, 3, 4$
 $X \cap Y = 0, 1, 2, 3$
 $X \backslash Y = 4$
 $Y \backslash X = 0$
 $Y^c = \{x \in \mathbb{U} | x \le -1 \text{ or } x \ge 3\}$

Power Set: Let U be the universal set and let A be a subset of U. The power set of A, denoted by $\mathcal{P}(A)$, is the set of all subsets of A, that is $\mathcal{P}(A) = \{Y \subseteq U \mid Y \subseteq A\}$.

Example 1:

Let $U = \mathbb{R}$ and $A = \{1, 2\}$.

Subsets of $A: \emptyset, \{1\}, \{2\}, \{1, 2\}.$

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$$

Example 2:

Let $U = \mathbb{R}$ and $A = \{-1, 4, 7\}$.

Subsets of A: \emptyset , $\{-1\}$, $\{4\}$, $\{7\}$, $\{-1,4\}$, $\{-1,7\}$, $\{4,7\}$, $\{-1,4,7\}$.

$$\mathcal{P}(A) = \{\emptyset, \{-1\}, \{4\}, \{7\}, \{-1, 4\}, \{-1, 7\}, \{4, 7\}, \{-1, 4, 7\}\}.$$

Cardinality:

The cardinality of a finite set is the number of elements of the set.

Card(A), where $A = \{-1, 4, 7\}$ is equal to 3.

Question:

Suppose $\operatorname{card}(A) = n$. What is $\operatorname{card}(\mathcal{P}(A))$?

$$\operatorname{card}(\mathcal{P}(A)) = 2^n$$

Theorem: If A is a finite set with card(A) = n, then $card(\mathcal{P}(A)) = 2^n$

Proof: We prove it by induction.

(1) Base Case: n = 0, so $A = \emptyset$.

$$\mathcal{P}(A) = \{\emptyset\}$$

Therefore,

$$\operatorname{card}(\mathcal{P}(A)) = 1 = 2^0$$

(2) Inductive Step: Suppose any finite set A with card(A) = k has a power set $\mathcal{P}(A)$ with cardinality 2^k .

Now consider a set with card = k + 1.

Here we focus on the (k+1)th element, A_{k+1}

For any subset of A, we only have 2 possiblities.

Case 1: This subset contains A_{k+1} . If we remove A_{k+1} from this subset, we get a subset of a set with card = k.

By the inductive hypothesis, we have 2^k possiblities for such subsets.

Case 2: This subset does not contain A_{k+1} . Then it is a subset of a set with card = k. By the inductive hypothesis, we have 2^k in this case. Thus, A has $2^k + 2^k = 2^{k+1}$ possibilities of subsets.

Technique (Element Chasing):

To prove $A \subseteq B$, for every $x \in A$, prove $x \in B$.

To disprove $A \subseteq B$, give an example of some $x \in A$ such that $x \notin B$.

Theorem 1.5. Suppose A, B, C are subsets. Then $A \setminus (B \cup C) \subseteq (A \setminus B) \cup (A \setminus C)$.

Proof: Let $x \in A \setminus (B \cup C)$, which means $x \in A$ and $x \notin (B \cup C)$.

Since $x \in A$ and $x \notin B$, then $x \in A \setminus B$.

Then by the definition of the union of two sets, $x \in (A \setminus B) \cup (A \setminus C)$. We conclude $A \setminus (B \cup C) \subseteq (A \setminus B) \cup (A \setminus C)$.

Question: Do we have $(A \setminus B) \cup (A \setminus C) \subseteq A \setminus (B \cup C)$?

Counterexample:

$$A = \{1, 2, 3\}$$

$$B = \{2\}$$

$$C = \{3\}$$

$$A \setminus B = \{1, 3\}$$

$$A \setminus C = \{1, 2\}$$

$$(A \setminus B) \cup (A \setminus C) = \{1, 2, 3\}$$

Theorem 1.6. Suppose A, B, C are subsets. Then A (B union C) = (A B) intersection (A C)

Proof: We prove two inclusions.

- (1) We prove A (B union C) subset (A B) union (A C)
- (2) We prove ...