

Physique

Classe: 4ème sciences de l'informatique

Série 1: Le multivibrateur astable

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

I. Le circuit de la figure 1 est constitué d'un amplificateur opérationnel supposé

parfait et polarisé par une tension électrique symétrique U_{sat} et de deux résistors de résistances R_1 et R_2 .

1. Montrer que l'expression de la tension u_1 , aux bornes de R_1 , s'écrit $: u_1 = \frac{R_1}{R_1 + R_2} \cdot u_s$

2. En appliquant la loi des mailles à la maille **EAME** de la figure 1, montrer que l'expression de la tension différentielle ϵ de l'amplificateur opérationnel est :

$$\varepsilon = \frac{R_1}{R_{1+}R_2} u_s - u_s$$

- 3. L'amplificateur fonctionne en régime saturé. Si ϵ est positif alors $u_s=+$ Usat et si ϵ est négatif alors $u_s=-$ Usat.
 - a. Déduire les expressions des tensions de basculement du haut vers le bas U_{HB} et du bas vers le haut U_{BH} en fonction de U_{sat} , R_1 et R_2 .
 - b. Nommer ce montage et préciser son rôle.
- II. On associe au circuit précédent un condensateur de capacité C et un résistor de résistance R comme l'indique la figure D. On visualise sur l'écran d'un oscilloscope les tensions D à la sortie du bornes du condensateur et D0 à la sortie du

circuit **figure 3**. Les deux voies de l'oscilloscope ont la même sensibilité verticale **5V/div** et le même balayage horizontal **50µs/div**.

1. Montrer que la tension uc vérifie l'équation différentielle :

$$RC\frac{du_c}{dt} + u_c = u_s$$

- 2. En exploitant la figure 3, déterminer les valeurs de U_{HB} , U_{sat} et la période T de la tension $u_s(t)$.
- 3. Sachant que R_1 = R= 10 $k\Omega$ et que U_{HB} a la même expression qu'à la question 3.a, calculer R_2 et C.

On rappelle que la période T a pour expression T=2 RC. Ln $(1+2\frac{R_1}{R_2})$ avec Ln = Log.

Exercice 2:

On étudie le montage de la figure ci-contre où :

- •L'A.O. P est polarisé par les tensions \pm $U_{DD} = \pm 15$ V.
- ullet Le générateur BF délivre à l'entrée de l'amplificateur une tension u_E triangulaire.
- •Les résistors ont des résistances $R_1 = R_2 = 10 \text{ k}\Omega$.
 - 1. Montrer que le montage utilisé est un comparateur à deux seuils de basculement.

S W W.

- 2. Quelles valeurs peut prendre la tension de sortie us.
- 3. Décrire ce qu'on observe sur l'écran de l'oscilloscope si :
 - a. ue(t) est une tension triangulaire d'amplitude $U_{em} = 2V$.
 - b. ue(t) est une tension triangulaire d'amplitude $U_{em} = 9V$. Représenter dans ce cas ce qu'on observe sur l'oscilloscope en passant en mode XY.
- 4. On élimine par la suite le GBF et on insère dans le circuit un dipôle RC ou $R=10k\Omega$ et C=10 nF. On obtient le montage de la figure ci-contre :
 - a. Quel est le rôle joué par le dipôle RC?
 - **b.** Etablir l'équation différentielle qui régit les variations de \mathbf{u}_c .
 - c. Quelle est la solution de cette équation différentielle?
 - d. Trouver l'expression de la période T du signal de sortie. En déduire sa valeur.
 - **e.** Déterminer la valeur du rapport cyclique de ce multivibrateur.
 - f. Représenter l'allure des tensions \mathbf{u}_c et \mathbf{u}_s observés sur l'écran de l'oscilloscope.

Exercice 3:

On étudie le montage de la figure ci-contre avec :

- ullet Une porte logique CMOS 4093 montée en inverse, est polarisée par une tension $U_{DD}=12~\mbox{V}$
- Le générateur **BF** délivre à l'entrée de l'amplificateur une tension \mathbf{u}_E triangulaire.
- •Un résistor de résistance $R = 180 \text{ k}\Omega$.
 - 1. Montrer que le montage utilisé est un comparateur à deux seuils de basculement.
 - 2. Quelles valeurs peut prendre la tension de sortie us.
 - 3. Décrire ce qu'on observe sur l'écran de l'oscilloscope si :

- a. ue(t) est une tension triangulaire d'amplitude $U_{em} = 2V$.
- **b.** ue(t) est une tension triangulaire d'amplitude $U_{em} = 9V$. Représenter dans ce cas ce qu'on observe sur l'oscilloscope en passant en mode XY.
- 4. On élimine par la suite le GBF et on insère dans le circuit un dipôle RC ou $R=10k\Omega$ et C=10 nF. On obtient le montage de la figure ci-contre :
 - a. Quel est le rôle joué par le dipôle RC?
 - **b.** Etablir l'équation différentielle qui régit les variations de \mathbf{u}_c .
 - c. Quelle est la solution de cette équation différentielle?
 - **d.** Trouver l'expression de la période **T** du signal de sortie. En déduire sa valeur.
 - **e.** Déterminer la valeur du rapport cyclique de ce multivibrateur.
 - f. Représenter l'allure des tensions \mathbf{u}_c et \mathbf{u}_s observés sur l'écran de l'oscilloscope.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000