Build Heap

- Let index = length/2-1. This is the parent of the last node in the tree, i.e. list[index + 1] . . . list[length-1] are leaves
- 2. Convert the subtree with root of list[index] into a heap.
 - a. Given list[a] is root of tree, list[b] is left child (root *2 +1), list[c] is right child (root*2+2), if exists
 - b. Compare list[b] with list[c] to determine larger child, list[largerIndex]
 - c. Compare list[a] with list[largerIndex]. If list[a] < list[largerIndex], then swap, else already a heap
 - d. If swap, repeat step 2 for the subtree of list[largerIndex]
- 3. Convert the subtree with the root of list[index-1] into a heap, repeat until list[0]

Heap Sort

- 1. Swap the root with the end of the list.
- 2. Heapify the list up to but not including the root
- 3. Repeat until there is only one node in the list

Simulate the heapsort algorithm manually to sort the array:

Show all steps

- 1. Make into a heap
- 2. Sort

								M	ax-He	ap
[0]	5	5	5	5	92					
[1]	22	22	22	92	76					
[2]	9	9	81	81	81					
[3]	76	92	92	76	54					
[4]	63	63	63	63	63					
[5]	81	81	9	9	9					
[6]	48	48	48	48	48					
[7]	92	76	76	22	22					
[8]	54	54	54	54	5					
[9]	28	28	28	28	28					

Heap Sort

		a)	6)	c)	d)	e)	g)	g)	h)	i)	
[0]	92	81	76	63	54	48	28	22	9	5	
[1]	76	76	63	54	28	28	22	5	5	9	
[2]	81	48	48	48	48	9	9	9	22	22	
[3]	54	54	54	22	22	22	5	28	28	28	
[4]	63	63	5	5	5	5	48	48	48	48	
[5]	9	9	9	9	9	54	54	54	54	54	
[6]	48	28	28	28	63	63	63	63	63	63	
[7]	22	22	22	76	16	76	76	76	76	76	
[8]	5	5	81	81	81	81	81	81	81	81	
[9]	28	92	92	92	92	92	92	92	92	92	

[0]						
[1]						
[2]						
[3]						
[4]						
[5]						
[6]						
[7]						
[8]						
[9]						