序列发生器 预习报告

实验内容

分别用 MSI 计数器和移位寄存器各设计一个具有自启动功能的 01011 序列信号发生器。

- 1) 写出设计过程, 画出电路逻辑图
- 2) 搭接电路,并用单脉冲静态验证实验结果
- 3) 用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲,用 Tektronix 示波器观察 并记录时钟脉冲 CP、序列输出端的波形。

实验设计方案

1. 使用 MSI 计数器完成实验设计

状态图

根据实验要求,本次实验采用 74161 同步加法计数器和 74151 数据选择器完成。得到状态图如图 1。

时钟方程

74161 同步加法计数器的时钟方程为:

$$CP = CP_0$$

反馈方程

74161 同步加法计数器拥有异步清零端,因此计数器异步清零端的反馈方程为:

$$\overline{CR} = \overline{Q_2^n \cdot Q_0^n}$$

自启动检查

该电路设计的无效状态之间的转移关系如图 2。可见设计满足自启动。

逻辑电路图

根据实验要求,在 Multisim 软件中绘制逻辑电路图如图 3 所示。(利用指示灯显示电路输出状态)

图 3

静态验证实验电路

将单脉冲加到系统时钟端,观察 LED 指示灯的输出情况,LED 亮则输出为 1,灭则输出为 0,将测试结果填入表 1。

动态验证实验电路

用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲信号加到系统时钟端,用 Tektronix 示波器观察并记录时钟脉冲 CP、序列输出端的波形。

实验电路图及时钟脉冲 CP 的波形如图 4 所示。

状态	Y
0	0
1	1
2	0
3	1
4	1

2. 使用移位寄存器完成实验设计

状态图

根据实验要求,本次实验采用74194移位寄存器完成。得到状态图如图5。

状态转移表

状态转移表如表 2。

	现态				次态			
Q0	Q1	Q2	Q3	Q0	Q1	Q2	Q3	
0	0	0	0	×	×	×	×	
0	0	0	1	×	×	×	×	
0	0	1	0	×	×	×	×	
0	0	1	1	×	×	×	×	
0	1	0	0	×	×	×	×	
0	1	0	1	1	0	1	0	
0	1	1	0	1	0	1	1	

0	1	1	1	×	×	×	×
1	0	0	0	×	×	×	×
1	0	0	1	×	×	×	×
1	0	1	0	1	1	0	1
1	0	1	1	0	1	0	1
1	1	0	0	×	×	×	×
1	1	0	1	0	1	1	0
1	1	1	0	×	×	×	X
1	1	1	1	×	×	×	×

表 2

时钟方程

74194 移位寄存器的时钟方程为:

$$CP = CP_0$$

激励方程

根据卡诺图 (图 6) 得到 74194 移位寄存器的 激励方程:

$$D_R = Q_0^{n+1} = \overline{Q_0^n} + \overline{Q_3^n}$$

Q2Q3 Q0Q1\	0 0	0 1	1 1	1 0	
0 0	×	×	×	×	
0 1	×	1	×	1	
1 1	×	0	×	×	
1 0	×	×	0	1	

图 6

自启动检查

该电路设计的无效状态之间的转移关系如图 7。可见设计满足自启动。

图 7

逻辑电路图

根据实验要求,在 Multisim 软件中绘制逻辑电路图如图 8 所示。(利用指示灯显示电路输出状态)

图 8

静态验证实验电路

将单脉冲加到系统时钟端,观察 LED 指示灯的输出情况,LED 亮则输出为 1,灭则输出为 0,将测试结果填入表 3。

动态验证实验电路

用 Multisim 中 Agilent 函数发生器产生 TTL 连续脉冲信号加到系统时钟端,用 Tektronix 示波器观察并记录时钟脉冲 CP、序列输出端的波形。

状态	Y
0	0
1	1
2	0
3	1
4	1

表 3

实验电路图及时钟脉冲 CP 的波形如图 9 所示。

图 9