

CIS 415 Operating Systems Midterm Review

Prof. Allen D. Malony
Department of Computer and Information Science
Spring 2020

UNIVERSITY OF OREGON

Logistics

- □ Midterm next Tuesday, May 5
 - Online using Canvas
 - Honor system
 - Will have 2 parts, each taken separately
 - **◆** concepts
 - ◆ problems
 - You will be given 1.5 hours for each part
 - need to allocate up to 3 hours on the exam day
 - No programming will be required
- □ Monday office hours
 - o Extended 1-3pm

Canvas Exams

- □ Canvas provides support for "Quizzes"
 - Variety of types of questions
 - multiple choice and true/false
 - ♦ fill-in-the-blank and matching
 - ◆ essay
 - o Control of when a quiz is available
 - ♦ 8:00am to 11:59pm, Tuesday, May 5
 - Control of quiz duration
 - ◆ 90 minutes (1.5 hours) for <u>each</u> part (take separately)
 - ◆ each part will be designed to take 45 minutes
 - ♦ this will give everyone plenty of time

Honor System

- □ We will not use the "LockDown Browser" to prevent you from accessing your computer or the internet
 - Too problematic (does not run on some platforms)
 - Not configured with UO Canvas options (I think)
- □ Open book, open notes, ...
- □ However, the honor system applies
 - Do the exams by YOURSELF
 - Do not discuss the exams with your classmates on test day
 - Do not share answers with your classmates
 - Do not search for questions online (e.g., to find old tests)
- □ Taking tests are part of your learning process
- □ If you have someone else help you take the test, you are cheating, both yourself and your classmates

What did we cover so far?

Lecture **Topic** □ Overview ○ Chapter 1 – Introduction 1: Introduction Chapter 2 – Operating System Structures 2: OS architecture / System Calls □ Process Management ○ Chapter 3 – Processes and IPC 3: Processes 4: IPC 5: Threads ○ Chapter 4 – Threads ○ Chapter 5 – CPU Scheduling 6: Scheduling □ Concurrency Chapter 6/7 – Process Synchronization 7: Synchronization

○ Chapter 8 — Multi-Resource Allocation 8: Deadlocks

What do we need to know for the midterm?

- □ All OSC chapters covered thus far
- □ All lectures presented thus far
- □ Things learned in lab exercises
- □ All of it

Study Advice

- □ Read book
- □ Review lectures
 - Please DO NOT print lecture slides save the forest!
- □ Think about concepts
- □ You do not need to know specific details that pertain to specific operating systems, as described in the OSC book

Let's try this again ... what will you ask?

- □ Ah, that's a different question!
- □ Let's start first with what you might expect the midterm to look like
- □ Then maybe I will be more specific about what will be actually on the midterm ... maybe

What to expect on the midterm?

- □ Online using Canvas
 - Two parts, taken separately
 - o Each part is 90 minutes
 - Will be available from 8:00am to 11:59pm on May 5
 - Must begin the 2nd part before 10:30pm to get the full 90 minutes
- □ Structure
 - Three sections (see next slide)
 - Each with concept questions and problems
- □ Part 1: Concepts
 - Each question is intended to take limited time to answer
 - Includes true/false, multiple choice, short answer
- □ Part 2: Problems
 - Intended to involve a bit more thinking and more time
 - Include more essay answers

What will be covered on the midterm?

- □ All areas covered are fair game
 - Especially for concept questions
- □ But I can not reasonably expect to ask you about everything ... Hmm, can I?
- □ Will have concept questions and/or problems on:
 - Section 1: Processes and Threads
 - Section 2: Scheduling
 - Section 3: Concurrency/Synchronization and Deadlocks
- □ My job is to make sure you have enough time

Processes and Threads

- □ What are they?
- □ How are they different?
- □ How does the OS represent and manage them?
- □ How do they operate with respect to each other?
- □ How do they execute with respect to the OS?
 - System calls
 - Interrupts
- □ How do they interact?
- □ What are the threading models?

What makes up a process / thread?

- □ Process address space
- □ Process control block
- □ User-level threads / kernel-level threads
- □ Thread control block
- □ How is a process created?
- □ How is a thread created?

Interprocess Communication (IPC)

- □ What is IPC?
- □ What are different types of IPC?

Scheduling

- □ Know your scheduling algorithms
- □ Easy topic to write a problem for
- □ Think about non-preemptive versus preemptive

Concurrency and Synchronization

- □ What is a critical section?
- □ What is the critical section problem?
- □ What are solutions to the critical section problem?
- □ Look at the classic synchronization problems
 - Dining philosopher

- □ Know about synchronization constructs ...
 - Mutex
 - Semaphore
 - Condition variables (not so much)
- □ ... and how they are used

Deadlocks

- □ Understand the issues with multi-resource synchronization
- □ What is the multi-resource deadlock problem?
- □ What are the solution approaches:
 - Deadlock prevention
 - Deadlock avoidance
 - ♦ Banker's algorithm
 - Deadlock detection and recovery
- □ Easy topic to write a problem for

Next Class

□ Midterm