

Machine Learning

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)		
$\underline{}$	y		
2104	460		
1416	232		
1534	315		
852	178		
•••			

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$_{\perp}$	X ₂	X ₃	x_4	У
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••		•••	

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_{j}^{\left(i\right)}$ = value of feature j in i^{th} training example.

$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \Re^{n+1} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \Re^{n+1} \qquad h_{\theta}(x) = \theta^T x$$

Machine Learning

Gradient descent for multiple variables

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat $\{$ $\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$ $\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $\, heta_0, heta_1$)

}

New algorithm $(n \ge 1)$: Repeat $\Big\{$ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$

(simultaneously update $\, heta_j \,$ for

$$\begin{cases} j=0,\ldots,n \end{cases} \qquad x_0^{(i)}=1$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{\substack{i=1\\m}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

. .

Machine Learning

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g. $x_1 = \text{size (0-2000 feet}^2)$

 x_2 = number of bedrooms (1-5)

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Andrew Ng

Feature Scaling

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Mean normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

E.g.
$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$x_i \leftarrow \frac{x_i - \mu_i}{S_i}$$

*S*_i: range or standard deviation

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

Machine Learning

Gradient descent in practice II: Learning rate

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

To choose α , try 0.001, 0.003, 0.1, 0.3, 1, ...

Machine Learning

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$
 x_1

$$x = frontage \times depth$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Polynomial regression

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

= $\theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

important: feature scaling

Choice of features

fplot(@ (x) (1+ 200*x - 2*x.^2), [0 70])

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$
$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Andrew Ng

Machine Learning

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D
$$(\theta \in \mathbb{R})$$

$$J(\theta) = a\theta^2 + b\theta + c$$
$$\frac{d}{d\theta}J(\theta) = 0$$

Solve for θ

$$heta \in \mathbb{R}^{n+1}$$
 $J(heta_0, heta_1, \dots, heta_m) = rac{1}{2m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2$ $rac{\partial}{\partial heta_j} J(heta) = \dots = 0$ (for every j)

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
 x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

m examples $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$; n features.

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \qquad X = \begin{bmatrix} - & (x^{(1)})^T & - \\ - & (x^{(2)})^T & - \\ \vdots \\ - & (x^{(m)})^T & - \end{bmatrix}$$

$$m \times n + 1$$

E.g. If
$$x^{(i)} = \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix}$$
 $X = \begin{bmatrix} 1 & x_1^{(i)} \\ 1 & x_1^{(2)} \\ \vdots \\ 1 & x_1^{(m)} \end{bmatrix}$ $Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$ $m \times 2$

$$\theta = (X^TX)^{-1}X^Ty$$

$$(X^TX)^{-1} \text{ is inverse of matrix } X^TX.$$

Octave: pinv(X'*X)*X'*y

No need for feature scaling

m training examples, n features.

Gradient Descent

- Need to choose α .
- Needs many iterations.
- Works well even when n is large.

Normal Equation

- No need to choose α .
- Don't need to iterate.
- Need to compute $(X^TX)^{-1}$ $O(n^3)$
- Slow if n is very large.
- Up to 10.000

Machine Learning

Normal equation and non-invertibility

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave's pinv (pseudoinverse) will work even if X^TX is non-invertible:

What if X^TX is non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

 $x_2 = \text{size in m}^2$

- Too many features (e.g. $m \le n$).
 - Delete some features, or use regularization.