Faculdade de Engenharia da Universidade do Porto

Controlo de um manipulador antropomórfico de 3 eixos Relatório do Trabalho Prático

Unidade Curricular

Robótica Industrial

Autores

Alberto Santos | up201708979

Ana Alves | up201506789

Francisco Neves | up201404576

Rita Ferreira | up201604728

Junho 2020

Índice

1.	Introdução	2
2.	Cinemática Direta	2
2.1.	. Introdução e Cálculos	2
2.2.	. Simulador	4
3.	Cinemática Inversa	6
3.1.	. Introdução e Cálculos	6
3.2.	Simulador	9
4.	Jacobiano	11
4.1.	Introdução e Cálculos	11
4.2.	Simulador	13
5.	Conclusões	18

1. Introdução

No âmbito da unidade curricular Robótica Industrial, foi proposto um trabalho prático que consistia no controlo de um manipulador antropomórfico de 3 eixos.

Para este efeito, utilizou-se o simulador SimTwo2020 com o cenário "Manipulator3DoF" disponibilizado pelos docentes.

O simulador disponibiliza um modelo 3D do braço robótico e um ambiente de programação em linguagem Pascal que permite a programação e visualização gráfica do controlo programado.

O manipulador robótico em estudo possui as seguintes características:

- 3 articulações rotativas
- Comprimento do 1º ligamento (da base para a 1ª articulação): 0.55m
- Comprimento do 2º ligamento (da 1ª articulação para a 2ª articulação): 0.4m
- Comprimento do 3º ligamento (da 2ª articulação para a 3ª articulação): 0.325m

O objetivo do trabalho é a implementação de três processos matemáticos usados em robótica para calcular variáveis de controlo:

- Cinemática direta
- Cinemática inversa
- Jacobiano

2. Cinemática Direta

2.1. Introdução e Cálculos

Neste capítulo, utilizar-se-á a cinemática direta para calcular a posição cartesiana da extremidade do manipulador.

A cinemática direta é um processo matemático que calcula a posição cartesiana do efetuador a partir dos valores dos parâmetros das articulações. Esses parâmetros dependem do tipo de articulações: são orientações angulares, posições cartesianas, ou velocidades angulares se forem articulações rotativas, prismáticas ou contínuas, respetivamente.

Assim, a partir da figura 1, com os eixos devidamente desenhados e com recurso ao método de *Denavit-Hartenberg*, obtemos a tabela 1.

Figura 1 - Manipulador Antropomórfico de 3 eixos

i	θ	d	а	α
0	θ1	d1	0	-90°
1	θ2	0	d2	0
2	θ3	0	d3	0

Tabela 1

O método Denavit-Hartenberg, afirma que cada transformação homogénea tem a seguinte forma:

$$A_i = Rot_{z,\theta_i} Trans_{z,d_i} Trans_{x,a_i} Rot_{x,\alpha_i}$$

$$= \begin{bmatrix} c\theta_i & -s\theta_i & 0 & 0 \\ s\theta_i & c\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c\alpha_i & -s\alpha_i & 0 \\ 0 & s\alpha_i & c\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Que resulta:

$$\mathbf{A}_{i} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Logo,

$${}^{0}A_{1}=[Rot_{z,\theta 1}*Trans_{z,d 1}*Trans_{x,0}*Rot_{x,90}];$$

¹A₂=[
$$Rot_{z,\theta 2} * Trans_{z,0} * Trans_{x,d 2} * Rot_{x,0}$$
];

$$^{2}A_{3}=[Rot_{z,\theta 3}*Trans_{z,0}*Trans_{x,d 3}*Rot_{x,0}].$$

Assim, podemos obter a matriz ⁰A₃, representada a seguir, a partir da multiplicação de ⁰A₁ por ¹A₂ por ²A₃.

$${}^{0}\text{A}_{3} = \begin{bmatrix} \text{C1C2C3} - \text{C1S2S3} & -S3C1C2 - C3C1S2 & s1 & 0.325C1C2C3 - 0.325C1S2S3 + 0,4C1C2 \\ C2S1C3 - S1S2S3 & -S3C2S1 - C3S1S2 & -C1 & 0.325C3C2S1 - 0.325S3S1S2 + 0,4C2S1 \\ \text{C3S2} + \text{C2S3} & -S3S2 + C3C2 & 0 & 0.325C3S2 + 0.325S3C2 + 0,4S2 + 0.55 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Onde:

C1=
$$\cos(\theta_1)$$
; C2= $\cos(\theta_2)$; C3= $\cos(\theta_3)$; S1= $\sin(\theta_1)$; S2= $\sin(\theta_2)$; S3= $\sin(\theta_3)$.

2.2. Simulador

Em relação à implementação em código, a seguinte função DK3, foi criada e devidamente comentada:

```
function DK3(Thetas: matrix): matrix;
 AO1, A12, A23, AO3 : Matrix; // DH matrix variables
 XYZ column vector : Matrix; // position of the end effector vector
  // Compute the homogeneous DH transformation matrixes
  // using DHMat function:
  // parameters: a, alpha, d, theta
  // return: DH transformation matrix
 A01 := DHMat(0, -pi*0.5, dl , Mgetv(Thetas,0,0));
 Al2 := DHMat(d2, 0, 0, Mgetv(Thetas,1,0));
 A23 := DHMat(d3, 0, 0, Mgetv(Thetas,2,0));
  // Compute the DH transformation matrix between base joint and end-effector
 A03 := MMult(MMult(A01,A12),A23);
  // Get the position of the end-effector from the last column of A03 matrix
 XYZ column vector := Mzeros(3,1);
 Msetv(XYZ column vector, 0, 0, Mgetv(A03, 0, 3));
 Msetv(XYZ_column_vector, 1, 0, Mgetv(A03, 1, 3));
 Msetv(XYZ_column_vector, 2, 0, Mgetv(A03, 2, 3));
 // return the position vector
 result := XYZ column vector;
end:
```

Como o braço antropomórfico em estudo consiste em 3 articulações rotativas, a função recebe como entrada um vetor coluna com os 3 ângulos das articulações em radianos (θ_1 , θ_2 , θ_3). Como output, a função retorna a posição do efetuador (x, y, z).

Abaixo demonstram-se dois exemplos de uso da função DK3.

As seguintes figuras são snapshots retirados à sheet e ao ambiente gráfico do programa SimTwo.

Exemplo 1:

Tendo como input:

- Ângulo da articulação 1: 20º
- Ângulo da articulação 2: 10º
- Ângulo da articulação 3: -20º

A função responde com o output:

Posição em X do efetuador: 0.671 m

Posição em Y do efetuador: 0.244 m

• Posição em Z do efetuador: 0.537 m

DK	
0.671	
0.244	
0.537	

E a representação gráfica da posição do braço:

Figura 2 - Representação gráfica da posição do braço para o exemplo 1 da cinemática direta (o eixo X é o eixo verde-claro que aponta para a direita. O eixo Y é o eixo verde-claro o que aponta para cima)

Exemplo 2:

Tendo como input:

Ângulo da articulação 1: -30º

Ângulo da articulação 2: -10º

• Ângulo da articulação 3: 20º

Direct	
-30	
-10	
20	

A função responde com o output:

Posição em X do efetuador: 0.618 m

Posição em Y do efetuador: -0.357 m

• Posição em Z do efetuador: 0.563 m

DK	
0.618	
-0.357	
0.563	

E a representação gráfica da posição do braço:

Figura 3 - Representação gráfica da posição do braço para o exemplo 2 da cinemática direta (o eixo X é o eixo verde-claro que aponta para a direita. O eixo Y é o eixo verde-claro o que aponta para cima)

3. Cinemática Inversa

3.1. Introdução e Cálculos

Neste capítulo, utilizar-se-á a cinemática inversa para calcular os valores dos parâmetros de cada articulação (no caso específico do problema, esses parâmetros são os ângulos das articulações rotativas) de modo a que a extremidade do manipulador se posicione num dado ponto cartesiano do espaço 3D. Ao contrário da cinemática direta, em que se teve como entrada os parâmetros das articulações e como saída a posição cartesiana do efetuador, neste método vamos ter como entrada as posições cartesianas do efetuador e como saída os ângulos das articulações.

Com recurso a trigonometria e à lei dos cossenos, demonstrar-se-á a seguir como obter cada ângulo de articulação.

 Comecemos pela determinação do 1º ângulo (o ângulo da 1ª articulação). Chamaremos a esse parâmetro θ₁. Pode observar-se na figura abaixo uma relação direta entre a posição x e y do efetuador e a altura z do efetuador para determinar o ângulo θ₁:

Figura 4 - Representação dos ângulos θ1, θ2 e θ3 no espaço

Usar-se-á a função Atan2 com vista a questões de normalização de ângulos. θ_1 obtém-se então da seguinte forma:

$$z = z_c$$

$$y = y_c$$

$$x = x_c$$

$$s = z - d_1$$

$$c^2 = s^2 + r^2$$

$$r = \sqrt{x^2 - y^2}$$

$$\theta_1 = \text{Atan2}\left(\frac{y}{x}\right)$$

 Passemos agora à determinação do 2º ângulo (o ângulo da 2ª articulação). Chamaremos a esse parâmetro θ₂. Pode observar-se na figura abaixo uma relação direta entre o ângulo
 Φ, o ângulo β e o ângulo θ₂. Tira-se a seguinte relação:

$$\theta_2 = \Phi - \beta$$

Para obter β, e tendo em conta a notação das duas figuras abaixo, usar-se-á a lei dos cossenos e obtém-se a seguinte relação:

$$d_3^2 = d_2^2 + c^2 - 2d_2d_3\cos(\beta)$$

$$\beta = \cos^{-1}\left(\frac{c^2 + {d_2}^2 - {d_3}^2}{2d_2c}\right)$$

Figura 5 - Representação do ângulo β

Figura 6 - Representação do ângulo Φ

Para obter Φ, usar-se à a relação direta entre s e r:

$$\Phi = \text{Atan2}\left(\frac{s}{r}\right) = \text{Atan2}\left(\frac{z - d_1}{\sqrt{x^2 - y}}\right)$$

 Concluiremos com o cálculo 3º ângulo (o ângulo da 3ª articulação). Chamaremos a esse parâmetro θ₃. Pode observar-se na figura abaixo uma relação direta entre o ângulo γ e θ₃. Tira-se a seguinte relação:

$$\theta_3 = \pi - \gamma$$

Para obter y, usar-se-á a lei dos cossenos novamente:

$$c^{2} = d_{2}^{2} + d_{3}^{2} - 2d_{2}d_{3}\cos(\gamma)$$
$$\gamma = \cos^{-1}\left(\frac{c^{2} - d_{2}^{2} - d_{3}^{2}}{2d_{2}d_{3}}\right)$$

Nota: A cinemática inversa tem várias soluções possíveis para diferentes configurações de braço. Escolheu-se a configuração "*Left Arm Elbow Down*", logo todo o controlo funcionará para operações com o braço à esquerda e de cotovelo para baixo como o próprio nome da configuração indica.

3.2. Simulador

Em relação á implementação em código, a seguinte função IK3, foi criada e devidamente comentada:

```
function IK3(XYZ: matrix): matrix;
 beta, phi, s, r, c, d, x, y, z, num, den, Thetal, Theta2, Theta3: double;
 Thetas: Matrix;
 // desired positions
 x := Mgetv(XYZ, 0, 0);
 y := Mgetv(XYZ, 1, 0);
 z := Mgetv(XYZ, 2, 0);
  // auxiliar terms
  s := z - dl;
  r := sqrt(sqr(x) + sqr(y));
  c := sqrt(sqr(s) + sqr(r));
 num := sqr(c) - Sqr(d2) - Sqr(d3);
  den := 2 * d2 * d3;
 phi := Atan2(s,r);
 beta := arccos((sqr(c) + Sqr(d2) - Sqr(d3)) / (2 * d2 * c));
  // angles computation
 Thetal := Atan2(y,x);
 Theta2 := -(phi - beta);
 Theta3 := -arccos(num/den);
 Thetas := Mzeros(3, 1);
 Msetv(Thetas, 0, 0, Thetal);
 Msetv(Thetas, 1, 0, Theta2);
 Msetv(Thetas, 2, 0, Theta3);
 //return the angles vector
 result := Thetas;
end:
```

A função recebe como input um vetor coluna com as 3 posições cartesianas (x, y, z) do efetuador e como output retorna os ângulos das articulações pretendidos (θ_1 , θ_2 , θ_3) para obter a posição desejada do efetuador.

Abaixo demonstram-se dois exemplos de uso da função IK3.

Nota: A implementação de θ_2 e θ_3 no código é simétrica à representação matemática descrita no capítulo 3.1., visto que o simulador tem como convenção o crescimento dos ângulos no sentido horário enquanto que nas equações convencionou-se o crescimento dos ângulos no sentido antihorário.

As seguintes figuras são *snapshots* retirados à *sheet* e ao ambiente gráfico do programa SimTwo. Exemplo 1:

Tendo como input:

• Posição em X do efetuador: 0.685 m

Posição em Y do efetuador: 0.121 m

• Posição em Z do efetuador: 0.470 m

A função responde com o output:

Ângulo da articulação 1: 10º

Ângulo da articulação 2: 20,1º

• Ângulo da articulação 3: -30,2º

IK	
10.0	
20.1	
-30.2	

E a representação gráfica da posição do braço:

Figura 7 - Representação gráfica da posição do braço para o exemplo 1 da cinemática inversa (o eixo X é o eixo verde-claro que aponta para a direita. O eixo Y é o eixo verde-claro o que aponta para cima)

Exemplo 2:

Tendo como input:

Posição em X do efetuador: 0.589 m

Posição em Y do efetuador: -0.214 m

• Posição em Z do efetuador: 0.349 m

indirect	
0.589	
-0.214	
0.349	

A função responde com o output:

Ângulo da articulação 1: -20º

• Ângulo da articulação 2: 40º

Ângulo da articulação 3: -49,9°

IK	
-20.0	
40.0	
-49.9	

E a representação gráfica da posição do braço:

Figura 8 - Representação gráfica da posição do braço para o exemplo 2 da cinemática inversa (o eixo X é o eixo verde-claro que aponta para a direita. O eixo Y é o eixo verde-claro o que aponta para cima)

4. Jacobiano

4.1. Introdução e Cálculos

Neste capítulo, vamos utilizar o Jacobiano do controlador para calcular a velocidade a impor a cada articulação de modo a ter a extremidade do manipulador a mover-se com uma determinada velocidade linear.

O Jacobiano é dado por:

$$\begin{bmatrix} v_n^0 \\ w_n^0 \end{bmatrix} = \begin{bmatrix} J_v \\ J_w \end{bmatrix} \dot{q} \text{ (t)}$$

Como apenas nos interessa a velocidade linear, vamos considerar apenas o Jv. Assim:

$$J_{v} = \begin{bmatrix} J_{v1} & J_{v2} \dots J_{vn} \end{bmatrix}, \quad J_{vi} = \begin{cases} z_{i-1}^{0} \times (o_{n}^{0} - o_{i-1}^{0}) - \text{articulação rotativa} \\ z_{i-1}^{0} & - \text{articulação prismática} \end{cases}$$

Como temos apenas articulações rotativas consideramos apenas a primeira linha do sistema apresentado anteriormente.

A matriz de transformação homogénea obtida na cinemática direta está sob a forma de:

$$H = \left[\begin{array}{cc} R & d \\ 0 & 1 \end{array} \right]$$

A partir das ${}^{0}A_{1}$, ${}^{0}A_{2}$ e ${}^{0}A_{3}$ é possível retirar as matrizes ${}^{0}R_{0}$, ${}^{0}R_{1}$, ${}^{0}R_{2}$, ${}^{0}d_{1}$, ${}^{0}d_{2}$ e ${}^{0}d_{3}$, uma vez que a matriz Jacobiana irá ser calculada por:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} R_0^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} (d_3^0 - d_0^0) & R_1^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} (d_3^0 - d_1^0) & R_2^0 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} (d_3^0 - d_2^0) \end{bmatrix} \begin{bmatrix} \theta 1 \\ \theta 2 \\ \theta 3 \end{bmatrix}$$

Obtendo-se:

$$R_0^0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad R_1^0 = \begin{bmatrix} C1 & 0 & -S1 \\ S1 & 0 & C1 \\ 0 & -1 & 0 \end{bmatrix} \quad R_2^0 = \begin{bmatrix} C1C2 & -C1S2 & -S1 \\ S1C2 & -S1S2 & C1 \\ -S2 & -C2 & 0 \end{bmatrix}$$

$$d_3^0 = \begin{bmatrix} 0.325C1C2C3 - 0.325C1S2S3 + 0.4C1C2 \\ 0.325C3C2S1 - 0.325S1S2S3 + 0.4C2S1 \\ 0.325S3C2 + 0.325C3S2 + 0.4S2 + 0.55 \end{bmatrix} \quad d_2^0 = \begin{bmatrix} 0.4C1C2 \\ 0.4S1C2 \\ -0.4S2 + 0.55 \end{bmatrix} \quad d_1^0 = \begin{bmatrix} 0 \\ 0 \\ 0.55 \end{bmatrix}$$

Efetuando os cálculos, é possível obter a seguinte matriz Jacobiana:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1^{\underline{a}} \ Coluna \ (J1) & 2^{\underline{a}} \ Coluna \ (J2) & 3^{\underline{a}} \ Coluna \ (J3) \end{bmatrix} \begin{bmatrix} \theta 1 \\ \theta 2 \\ \theta 3 \end{bmatrix}$$

$$[J1] = \begin{bmatrix} -0.325C3C2S1 + 0.325S3S1S2 - 0.4C2S1 \\ 0.325C3C1C2 - 0.325C1S2S3 + 0.4C2C1 \\ 0 \end{bmatrix}$$

$$[J2] = \begin{bmatrix} 0.325C1C2S3 + 0.325S2C3C1 + 0.4S2C1 \\ 0.325S3C2S1 + 0.325C3S2S1 + 0.4S2S1 \\ -0.325C3C2S1S1 + 0.325S1S1S2S3 - 0.4C2S1S1 - 0.325C1C1C2C3 + 0.325C1C1S2S3 - 0.4C1C1C2C3 \end{bmatrix}$$

$$[J3] = \begin{bmatrix} 0.325S3C2C1 + 0.325C3S2C1 + 0.8S2C1 \\ 0.325S3C2S1 + 0.325C3S2S1 + 0.8S1S2 \\ -0.325C3C2S1S1 + 0.325S1S1S2S3 - 0.325C1C1C2C3 + 0.325C1C1S2S3 \end{bmatrix}$$

Sabendo que:

Velocidades do efetor = Matriz Jacobiana * Velocidades das articulações, então:

Velocidades das articulações = Matriz Jacobiana Invertida * Velocidades do efetor

4.2. Simulador

Em relação à implementação de código, foram implementadas uma função principal e várias subfunções auxiliares de modo a tornar o código mais limpo e modular. Abaixo descrever-se-á e mostrar-se-á o corpo de cada função bem como o seu papel.

A função principal *ComputeJointVelocities* recebe como entrada um vetor coluna das velocidades lineares desejadas (V_x, V_y, V_z) para o efetuador e responde com duas possíveis saídas, dependendo de a condição de singularidade do manipulador ter sido atingida ou não.

Num breve resumo, a condição de singularidade atinge-se quando uma determinada configuração solicitada pelo controlador ao manipulador não pode ser atingida. Esta situação pode ser atingida, por exemplo, quando o braço do robô está completamente esticado e é solicitada uma posição no seu espaço de trabalho para o qual ele já não chega, porque atingiu os limites do seu comprimento.

Para converter velocidades do efetuador em velocidades de articulações é necessário inverter a matriz do jacobiano, como se pode verificar no capítulo 4.1., e isso implica uma divisão pelo determinante do jacobiano. Acontece que o determinante do jacobiano em configurações de singularidade aproxima-se de zero, o que implica que se tenha de fazer uma divisão por zero e se atinjam valores incomportáveis de velocidades nas articulações. Em conclusão, para controlar a situação de singularidade é necessário verificar o valor do determinante para que não aconteçam, por exemplo, num contexto real, danos na hardware.

As duas possíveis saídas da função são:

- Se atingida a condição singularidade é retornada uma matriz nula de dimensão 3 e o cálculo não é efetuado;
- Caso contrário, faz a inversão da matriz e retorna a multiplicação da matriz inversa pelo vetor coluna das velocidades, ou seja, a velocidade das articulações.

Abaixo um screenshot da função ComputeJointVelocities:

```
// Using the inverted jacobian computes and returns the joint velocities
// Takes as input the desired velocity of the end effector
function ComputeJointVelocities(endEffectorVelocity: matrix): matrix;
var
  Jacobian :matrix;
  invertedJacobian :matrix:
begin
   Jacobian := computeJacobian;
  //Check singularity
  if checkSingularity(Jacobian) them begin
    result := Mzeros(3,1);
  end
  else begin
    invertedJacobian := Minv(Jacobian);
    result := Mmult(invertedJacobian, endEffectorVelocity);
  end:
end:
```

No corpo da função *ComputeJointVelocities* encontramos mais duas funções que houve necessidade de implementar.

A função *checkSingularity* tem como papel a verificação do valor do determinante do jacobiano. Recebe como entrada a matriz do jacobiano e retorna um booleano que indica se a singularidade foi atingida ou não. Se o valor estiver muito próximo de zero, a variável booleana *singularity* é ativada, sinalizando que se atingiu a condição de singularidade. A verificação do valor efetua-se em função de um valor limite de tolerância. Este valor foi arbitrado por tentativa-erro e definido como constante no programa, tendo em atenção o robô conseguir sempre verificar a condição de singularidade a tempo (com tempo suficiente para ser processado pelo tempo do ciclo de controlo de cerca de 40ms).

Um snapshot da função checkSingularity abaixo:

```
function checkSingularity(jacobian :matrix): boolean;
begin
if abs(Mdet3x3(Jacobian)) < singularity_tolerance then begin
    singularity := true;
    result := true;
end
else begin
    singularity := false;
    result := false;
end;
end;</pre>
```

Verificamos também a função computeJacobian, abaixo, que calcula e retorna o jacobiano:

```
function computeJacobian: matrix;
var
  Thetal, Theta2, Theta3: double;
  A01, A12, A23, A02 ,A03: matrix;
  R00,R01,R02 :matrix;
  d00, d01, d02, d03: matrix;
  ZColumnVector: matrix;
  Jvl, Jv2, Jv3: matrix;
  A, B: matrix;
  Jacobian :matrix;
  invertedJacobian :matrix;
begin
  //Z unit vector
  ZColumnVector := Mzeros(3,1);
  Msetv(ZColumnVector, 2, 0, 1);
  //Current angles of the joints
  Thetal := GetAxisPos(irobot, 0);
  Theta2 := GetAxisPos(irobot, 1);
  Theta3 := GetAxisPos(irobot, 2);
  //Compute the Homogeneous Transformation Matrixes using DH method
  A01 := DHMat(0, -pi*0.5, dl, Thetal);
  A12 := DHMat(d2, 0, 0, Theta2);
  A23 := DHMat(d3, 0, 0, Theta3);
 //Jacobian columns
 //Jv1
 R00 := Meye(3);
 A02 := MMult(A01,A12);
 A03 := MMult(A02,A23);
 d03 := MCrop(A03, 0, 3, 2, 3);
 d00 := Mzeros(3,1);
 A := MMult(R00, ZColumnVector);
 B := Msub(d03, d00);
 Jvl := crossProduct(A, B);
 //Jv2
 R01 := Mcrop(A01, 0, 0, 2, 2);
 d01 := MCrop(A01, 0, 3, 2, 3);
 A := Mmult(R01, ZColumnVector);
 B := Msub(d03, d01);
 Jv2 := crossProduct(A, B);
 //Jv3
 R02 := MCrop(A02, 0, 0, 2, 2);
 d02 := MCrop(A02, 0, 3, 2, 3);
 A03 := Mmult(A02, A23);
 d03 := MCrop(A03, 0, 3, 2, 3);
 A := Mmult(R02, ZColumnVector);
 B := Msub(d03,d02);
 Jv3 := crossProduct(A, B);
```

```
Jacobian := Mzeros(3,3);
Msetv(Jacobian, 0, 0, Mgetv(Jv1, 0, 0));
Msetv(Jacobian, 1, 0, Mgetv(Jv1, 1, 0));
Msetv(Jacobian, 2, 0, Mgetv(Jv1, 2, 0));
Msetv(Jacobian, 0, 1, Mgetv(Jv2, 0, 0));
Msetv(Jacobian, 1, 1, Mgetv(Jv2, 1, 0));
Msetv(Jacobian, 2, 1, Mgetv(Jv2, 2, 0));
Msetv(Jacobian, 0, 2, Mgetv(Jv3, 0, 0));
Msetv(Jacobian, 1, 2, Mgetv(Jv3, 1, 0));
Msetv(Jacobian, 2, 2, Mgetv(Jv3, 2, 0));
printValue(Mdet3x3(Jacobian),15,1);
result := Jacobian;
end;
```

O produto cruzado de matrizes, o cálculo do determinante de matrizes de dimensão 3 e uma função de reinicialização do robô para o caso de singularidade foram também implementadas como funções auxiliares (*crossProduct*, *Mdet3x3* e *reset*), representadas abaixo:

```
function crossProduct(Matrix1, Matrix2: matrix): matrix;
a,b,c,d,e,f: Double;
crossProductMatrix: matrix;
a := Mgetv(Matrix1,0,0);
b := Mgetv(Matrix1,1,0);
c := Mgetv(Matrix1,2,0);
d := Mgetv(Matrix2,0,0);
e := Mgetv(Matrix2,1,0);
f := Mgetv(Matrix2,2,0);
crossProductMatrix := Mzeros(3,1);
Msetv(crossProductMatrix, 0, 0, b*f - e*c);
Msetv(crossProductMatrix, 1, 0, c*d - a*f);
Msetv(crossProductMatrix, 2, 0, a*e - b*d);
result := crossProductMatrix;
function Mdet3x3(mat: matrix): double;
  all,al2,al3,a21,a22,a23,a31,a32,a33: double;
begin
  all := Mgetv(mat, 0,0);
  al2 := Mgetv(mat, 0,1);
  al3 := Mgetv(mat, 0,2);
  a21 := Mgetv(mat, 1,0);
  a22 := Mgetv(mat, 1,1);
  a23 := Mgetv(mat, 1,2);
  a31 := Mgetv(mat, 2,0);
  a32 := Mgetv(mat, 2,1);
  a33 := Mgetv(mat, 2,2);
  result := (all*a22*a33 + al2*a23*a31 + al3*a21*a32) - (a31*a22*al3 + a32*a23*al1 + a33*a21*al2);
end:
```

```
//Reset the joints angles to a predefined position under constant values named:
// initial_angle_joint0
// initial_angle_joint1
// initial_angle_joint2
procedure reset;
var initialThetas: matrix;
begin
   initialThetas := Mzeros(3,1);
   Msetv(initialThetas, 0, 0,rad(initial_angle_joint0));
   Msetv(initialThetas, 1, 0,rad(initial_angle_joint1));
   Msetv(initialThetas, 2, 0,rad(initial_angle_joint2));
   SetThetas(initialThetas);
end;
```

Na *sheet* o utilizador define as velocidades lineares desejadas (neste exemplo: $V_x = 1 \text{cm/s}$, $V_y = -1 \text{cm/s}$, $V_z = 0 \text{cm/s}$):

SetVelocity	
1	
-1	
0	

Na *sheet* o utilizador observa as velocidades das articulações calculadas pelo método do jacobiano inverso (neste exemplo: v1 = -2.12cm/s, v2 ~ 0cm/s v3, ~ 0cm/s):

Vjoints	
v1:	-2.121938
v2:	-0.000016347€
v3	0.000034041

Para terminar, abaixo mostram-se as constantes definidas para o problema do jacobiano:

- Duration_speed_simulation: a duração do tempo em que se simula a velocidade solicitada pelo utilizador. Neste exemplo são 10 segundos;
- initial_angle_joint0, initial_angle_joint1, initial_angle_joint2: Os ângulos iniciais da configuração do braço quando adota uma posição de repouso. Neste exemplo são 45º na articulação 0, 30º na articulação 1, -40º na articulação 2;
- singularity_tolerance: a tolerância que se atribui ao valor do determinante do jacobiano em que já se considera que se atingiu singularidade;

```
Duration_speed_simulation = 10;
initial_angle_joint0 = 45;
initial_angle_joint1 = 30;
initial_angle_joint2 = -40;
singularity tolerance = 4e-2;
```

5. Conclusões

Considerou-se que o trabalho que nos foi proposto foi bem conseguido, uma vez que se atingiram todos os objetivos pretendidos.

Foi uma oportunidade de consolidar e de aplicar os conceitos relacionados com as cinemáticas e o jacobiano, já que, através do uso do simulador e da visualização gráfica da implementação, tornou-se clara e intuitiva a teoria por trás dos métodos.