Deckblatt für die Abgabe der Übungsaufgaben IngMathC2

Name, Vorname:	Mauer, Leon
StudOn-Kennung:	se 24 que
Blatt-Nummer:	5
Übungsgruppen-Nr:	_7_
Die folgenden Aufgaben g	gebe ich zur Korrektur frei:
A14,,	
0/16*16 = 10	

Any se 84 quize len Mauer

Any
$$f(x) = \frac{1-x}{\sqrt{1-x^2}}$$

If $= (-1, +1)$
 $f(x) = \frac{1-x}{\sqrt{1-x^2}}$
 $= \frac{1-$

Sleting in xx: I'm f(x) ex. und ist gleich For xx 70 ist F(x) offensichtich slebs For xx = 0 Folgt; $\lim_{x \to 0} f(x) = \lim_{x \to 0} 0 = 0$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 0 = 0$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 0 = 0$ => F(x) ist nicht stelig, da des inkswestige von rechtswestigen Granzwet assergt se84 que les Mauros

c)

ii)
$$|\ln \sqrt{2} + x + h - x| = 1$$

iii) $|\ln \sqrt{2} + x + h - x| = 0$

iii) $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty-infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$

aus typen infty+infty und infty-infty kann man nichts folgern

iii)

 $|\ln \sqrt{2} + x + h - x| = 0$
 $|\ln \sqrt{2} + x + h - x| = 0$
 $|\ln \sqrt{2} + x + h - x| = 0$
 $|\ln \sqrt{2} + x + h - x| = 0$
 $|\ln \sqrt{2} + x + h - x| = 0$

Existiert nicht, wenn man y_n = n+1/2 annimmt, da

U) $|\ln \sqrt{2} + x + h - x| = 0$

Existiert nicht, wenn man y_n = n+1/2 annimmt, da

 $|\ln \sqrt{2} + x + h - x| = 0$
 $|\ln \sqrt{2} + x + h - x| = 0$

Existiert nicht, wenn man y_n = n+1/2 annimmt, da

 $|\ln \sqrt{2} + x + h - x| = 0$
 $|\ln \sqrt{2} + x + h - x| = 0$

Existiert nicht, wenn man y_n = n+1/2 annimmt, da

 $|\ln \sqrt{2} + x + h + x + h + x| = 0$
 $|\ln \sqrt{2} + x + h + x + h + x + h + x| = 0$
 $|\ln \sqrt{2} + x + h +$

Vi) Warum? Das ist genau das Problem, du brauchst

Se84que Leon Mauer