The group G is isomorphic to the group labelled by [60, 5] in the Small Groups library. Ordinary character table of $G\cong A5$:

	1a	2a	3a	5a	5b
χ_1	1	1	1	1	1
$ \chi_2 $	3	-1	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$
χ_3	3	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

Trivial source character table of $G \cong A5$ at p = 5:

Normalisers N_i	N_1			N_2	
p-subgroups of G up to conjugacy in G	P_1			P_2	
Representatives $n_j \in N_i$	1a	3a	2a	1a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$	5	2	1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$	10	1	-2	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	5	-1	1	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	1	1	1	1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	6	0	-2	1	-1

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(1, 5, 2, 4, 3)]) \cong C5$

$$\begin{split} N_1 &= AlternatingGroup([1..5]) \cong \mathsf{A5} \\ N_2 &= Group([(1,5,2,4,3),(2,4)(3,5)]) \cong \mathsf{D10} \end{split}$$