Boolean Algebra and Digital Logic

Basic Logic Block-Gates

Name	Symbol	Function	Truth Table
AND	X B	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1
OR	А X	X = A + B	A B X 0 0 0 0 1 1 1 1 1 1
I	A — X	X = A'	A X 0 1 1 0
Buffer	A — X	X = A	A X 0 0 1 1
NAND	A X	X = (AB)'	A B X 0 0 1 0 1 1 1 1 0 1
NOR	АX	X = (A + B)'	A B X 0 0 1 0 1 0 1 0 0 1 1 0

XOR Exclusive OR	А В	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 0 1 1 0 0
XNOR Exclusive NOR or Equivalence		X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1

Boolean Algebra

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
 - In formal logic, these values are "true" and "false."
 - In digital systems, these values are "on" and "off," 1 and 0, or "high" and "low."
- Boolean expressions are created by performing operations on Boolean variables.
 - Common Boolean operators include AND, OR, and NOT.

- A Boolean operator can be completely described using a truth table.
- The AND operator is also known as a Boolean product.
- The OR operator is the Boolean sum.

- A Boolean function has:
 - At least one Boolean variable,
 - At least one Boolean operator, and
 - At least one input from the set {0,1}.
- It produces an output that is also a member of the set {0,1}.

- A Boolean algebra is defined as a closed algebraic system containing a set K or two or more elements and the two operators, . and +.
- Useful for identifying and minimizing circuit functionality
- Identity elements

$$a + 0 = a$$

$$a.1 = a$$

0 is the identity element for the + operation.

1 is the identity element for the . operation.

Commutativity and Associativity of the Operators

• The Commutative Property:

$$a + b = b + a$$

 $a \cdot b = b \cdot a$

The Associative Property:

$$a + (b + c) = (a + b) + c$$

 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

The Distributive Property:

$$a + (b.c) = (a+b).(a+c)$$

 $a.(b+c) = (a.b) + (a.c)$

The Existence of the Complement:

For every a there exists a unique element called a' (complement of a) such that,

$$a + a' = 1$$

$$a . a' = 0$$

 To simplify notation, the . operator is frequently omitted. When two elements are written next to each other, the AND (.) operator is implied

$$a + b \cdot c = (a + b) \cdot (a + c)$$

 $a + bc = (a + b)(a + c)$

Duality

- The principle of duality says that if an expression is valid in Boolean algebra, the dual of that expression is also valid.
- To form the dual of an expression, replace all + operators with . operators, all . operators with + operators
- Form the dual of the expression F=a + (bc)
 Dual of F is (a + b)(a + c)

Involution

 Taking the double inverse of a value will give the initial value.

Absorption

• This theorem states:

$$a + ab = a$$
 $a(a+b) = a$

To prove the first half of this theorem:

$$a + ab = a \cdot 1 + ab$$
 $= a (1 + b)$
 $= a (b + 1)$
 $= a (1)$
 $= a + ab = a$

DeMorgan's Theorem

 A key theorem in simplifying Boolean algebra expression is DeMorgan's Theorem. It states:

$$(a + b)' = a'b'$$

 $(ab)' = a' + b'$

Find the complement of:

$$F = (AB'+C)D'+E$$

$$F' = [(AB'+C)D'+E]'$$

$$= [(AB'+C)D']'E'$$

$$= [(AB'+C)'+D'']E'$$

$$= [(AB')'C'+D]E'$$

$$= (A'+B)C'E'+DE'$$

Boolean Functions

- Boolean algebra deals with binary variables and logic operations.
- Function results in binary 0 or 1

X	У	Z	<u> </u>	_
0	0	0	0	
0	0	1	0	×
0	1	0	0	\(\frac{1}{2}\)
0	1	1	0	$z \rightarrow V+z'$ $F = x(y+z')$
1	0	0	1	$z \longrightarrow z'$ $y+z'$ $F = X(y+z')$
1	0	1	0	
1	1	0	1	
1	1	1	1	F = x(y+z')

Simplifying Boolean Functions

• Simplify the following Boolean function to a minimum number of terms: F = xy + x'z + yz

$$F_{3} = xy + x'z + yz$$

$$= xy + x'z + yz(x + x')$$

$$= xy + x'z + xyz + x'yz$$

$$= xy(1+z) + x'z(1+y)$$

$$= xy + x'z$$

- Any Boolean Expression can be represented in two forms:
 - sum of products (SOP)
 - Product of Sum(POS)

SOP Form

- Each variable in a Boolean expression is a literal
- Boolean variables can appear in normal (x) or complement form (x')
- Each AND combination of terms is a minterm

Minterms

X	У	Z	Minte	rm
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
1	0	0	xy'z'	m ₄
1	1	1	xyz	m ₇

POS form

Each OR combination of terms is a <u>maxterm</u>

Maxterms

 Note that each maxterm is the complement of its corresponding minterm and vice versa.

Minterms and Maxterms for Three Binary Variables

x y z	minte	rms	Maxte	rms
0 0 0	x 'y 'z '	m_{o}	x+y+z	$M_{\rm o}$
0 0 1	x 'y 'z	m_1	x+y+z'	M_1
0 1 0	x 'yz '	m_2	x+y'+z	M_2
0 1 1	x 'yz	m_3	x+y'+z'	M_3
1 0 0	xy 'z '	m_4	x'+y+z	M_4
1 0 1	xy'z	m_5	x'+y+z'	M_5
1 1 0	xyz'	m_6	x'+y'+z	M_6
1 1 1	xyz	m_7	x '+y '+z '	M_7

Given the truth table, express F1 in sum of minterms

х	у	Z	F_1	$\overline{F_2}$
0	0	0	_0_	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
_1	1	1	1	0

$$F_1(x, y, z) = \sum (1,4,5,6,7) = m_1 + m_4 + m_5 + m_6 + m_7$$

= $(x'y'z) + (xy'z') + (xy'z) + (xyz') + (xyz)$

For product of maxterms:

x	\boldsymbol{y}	z	${F}_1$	F_2
O	0	O	0	1
O	O	1	_1_	O
O	1	O	0	1
O	1	1	0	1
1	O	O	1	O
1	O	1	1	O
1	1	O	1	O
1	1	1	1	O

$$F_1(x, y, z) = \Pi(0,2,3) = M_0 \cdot M_2 \cdot M_3$$
$$= (x + y + z)(x + y' + z)(x + y' + z')$$

Minimization with Karnaugh Maps

Gate-Level Minimization

- The Boolean functions also can be simplified by map method as Karnaugh map or K-map.
- The map is made up of squares, with each square representing one minterm of the function.
- This produces a circuit diagram with a minimum number of gates and the minimum number of inputs to the gate.
- It is sometimes possible to find two or more expressions that satisfy the minimization criteria.

- A Kmap is a matrix consisting of rows and columns that represent the output values of a Boolean function.
- The output values placed in each cell are derived from the minterms of a Boolean function.
- A *minterm* is a product term that contains all of the function's variables exactly once, either complemented or not complemented.

- K-maps are often used to simplify logic problems with 2, 3 or 4 variables.
- Cell = 2ⁿ, where n is a number of variables

Two-Variable K map

 A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map (K-map).

Х	у	minterm		У	1
0	0	x'n		<u></u>	1
0	1	х'n	, [o	x'y'	x'y
1	0	xy'	$X \mid 1$	xy'	ху
1	1	ху		,	

m_0	m_1
m_2	m_3

	\)	, _	у
	x	0	1
	0	x'y'	x'y
X	$\left\{_1\right $	xy'	хy

For the Boolean expression

 $m_1 + m_2 + m_3 = x'y + xy' + xy, 2 \text{ variable K}$ map is

	\sum_{x}^{y}	, o –	<u>y</u>
	0		1
х	$\begin{bmatrix} 1 \end{bmatrix}$	1	1

Three-Variable K map

- For a three-variable expression with inputs x, y, z, the arrangement of minterms follows Gray code.
- For simplifying Boolean functions, we must recognize the basic property possessed by adjacent squares.
- Each cell differs from an adjacent cell by only one variable

- Cells are usually labeled using 0's and 1's to represent the variable and its complement
- The numbers are entered in gray code, to force adjacent cells to be different by only one variable.
- Ones are read as the true variable and zeros are read as the complemented variable.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$A = \begin{bmatrix} BC \\ 00 & 01 & 11 & 10 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'$$

 Minterm which are identical, except for one variable, are considered to be adjacent to one another.

•
$$m_5+m_7=xy'z+xyz=xz(y'+y)=xz$$

				\ 7			y		
		-		x	<u> 00</u>	01	11	10	
m_0	m_1	m_3	m_2	0	x'y'z'	x'y'z	x'yz	x'yz'	
m_4	m_5	m_7	m_6	x 1	xy'z'	xy'z	xyz	xyz'	
				у	83	•	z	→ 6	

With this ordering, any group of 2, 4 or 8
 adjacent squares on the map contains
 common literals that can be factored out.

Four-variable K map

Can accommodate 16 minterms that are produced by a four-input function.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

• $F = \sum m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)$

The function can be written as:

$$F = A'B'C'D' + A'B'CD' + A'B'CD + A'BC'D + A'BCD' + A'BCD' + AB'C'D' + AB'CD' + ABCD' + ABCD$$

AB	00	01	11	10
00	1	0	1	1
01 11	0	1	1	1
11	0	0	1	1
10	1	0	1	1

Insert 1 in those cells where the function F has a value of 1. Put 0 in the other cells.

Simplification using 2 variable K map

 Is done by finding adjacent 1s in the Kmap that can be collected into groups that are powers of two.

- The rules of Kmap simplification are:
 - Groupings can contain only 1s; no 0s.
 - Groups can be formed only at right angles; diagonal groups are not allowed.
 - The number of 1s in a group must be a power of 2 – even if it contains a single 1.
 - The groups must be made as large as possible.
 - Groups can overlap and wrap around the sides of the Kmap.

Simplification using 3 variable K map $\mathbf{F}(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \mathbf{\bar{X}}\mathbf{\bar{Z}} + \mathbf{\bar{X}}\mathbf{\bar{Y}}\mathbf{Z} + \mathbf{\bar{X}}\mathbf{Y}\mathbf{Z} + \mathbf{\bar{X}}\mathbf{Y}\mathbf{\bar{Z}} + \mathbf{X}\mathbf{\bar{Y}}\mathbf{\bar{Z}} + \mathbf{\bar{X}}\mathbf{\bar{Y}}\mathbf{\bar{Z}} + \mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{Z}} + \mathbf{\bar{X}}\mathbf{\bar{Z}} + \mathbf{\bar{X}}\mathbf{\bar{Z}} + \mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf{\bar{Z}} + \mathbf{\bar{X}}\mathbf{\bar{X}}\mathbf$

X	Z 00	01	11	10
0	1	1	1	1
1	1	0	0	1

reduced function is

$$F(X,Y,Z) = \overline{X} + \overline{Z}$$

F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'

$$F=A+B'C+BC'$$

Simplification using 4 variable K map $F(W,X,Y,Z) = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}\overline{X}\overline{Y}Z + \overline{W}\overline{X}Y\overline{Z}$ $+ \overline{W}XY\overline{Z} + W\overline{X}\overline{Y}\overline{Z} + W\overline{X}\overline{Y}Z + W\overline{X}Y\overline{Z}$

Y. WX	Z 00	01	11	10
00	1	1		1
01				1
11				
10	1	1		1

Don't Care Conditions

- Real circuits don't always need to have an output defined for every possible input.
- If a circuit is designed so that a particular set of inputs can never happen, we call this set of inputs a don't care condition.
- In a Kmap, a don't care condition is identified by an X in the cell of the minterm(s) for the don't care inputs
- In performing the simplification, we are free to include or ignore the X's when creating our groups.

Karnaugh maps: Don't cares

• $f(A,B,C,D) = \sum m(1,3,5,7,9) + d(6,12,13)$

Α	В	С	D	f
0 0 0 0 0 0 0 0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1 0 0 1 1	1	1
0	1 1 1	0	0 1 0 1	0
0	1	0	1	1
0	1	1	0	X
0	1	1	1	1
1	0	0	0	0
1	0	Ō	1	1
1	0	1	0	0
1	0	1	1	0 1 0 1 0 1 X 1 0 1 0 0 X X 0 0
1 1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	0
1	1	1	1	0
				l

- In some situations, we don't care about the value of a function for certain combinations of the variables.
 - these combinations may be impossible in certain contexts
 - or the value of the function may not matter in when the combinations occur

Map Simplification with Don't Cares

$$F=A'C'D+B+AC$$

Alternative covering.

$$F=A'B'C'D+ABC'+BC+AC$$

Example

Use a K-Map to simplify the following Boolean expression

$$F(a,b,c,d) = \sum m(0,2,6,8,12,13,15) + d(3,4,9)$$

$$F(a,b,c,d) = \sum m(0,2,6,8,12,13,15) + d(3,4,9)$$

ab cd	00	01	11	10
00	1	d	1	1
01			1	d
11	d		1	
10	1	1		

 $F = a\overline{c} + \overline{ad} + abd$

Universal Logic Gates

- NAND
- NOR

The NAND Gate

- Therefore, we can use a NAND gate to implement all three of the elementary operators (AND,OR,NOT).
- Therefore, ANY switching function can be constructed using only NAND gates. Such a gate is said to be primitive or functionally complete.

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NAND Gates into Other Gates

The NOR Gate

 Just like the NAND gate, the NOR gate is functionally complete, ie, any logic function can be implemented using just NOR gates.

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

NOR Gates into Other Gates

Universality of NAND gates

Universality of NOR gate

- Boolean algebra defines how binary variables with NAND, NOR can be combined
- DeMorgan's rules are important.
 - Allow conversion to NAND/NOR representations