	奇幻之旅	博弈游戏	吃货的烦恼	奇幻返程
程序名称	tourism	bingo	chowhound	back
输入文件	tourism.in	bingo.in	chowhound.in	back.in
输出文件	tourism.out	bingo.out	chowhound.out	back.out
时间限制	1s	1s	1s	1s
空间限制	128m	128m	128m	128m

1、奇幻之旅

【问题描述】

小顾在家里十分无聊,一边看着电视一边吃着东西,突然天旋地转,小顾穿梭进入了一个新世界-奇幻大陆,这里有他最爱的梦中圣地-黄金海岸。

奇幻大陆上可以通过加入旅游团,随意穿梭各个区域,通过调查,小顾 查到了每个不同旅游团去黄金海岸的费用,

小顾想起了老师刚刚教的平均数和中位数,他便想知道这些旅游团去黄 金海岸的费用的中位数和平均数是否相同。由于不同日期去有不同的价钱, 所以会有多组数据。

注意:每个价格≤100000,在数据个数为偶数时,中位数的计算方法是取中间两个数的平均值。

【输入格式】

第一行有一个整数 n,表示有 n 组数据,接下来若干行有 n 组数据。 每组数据:

第一行有一个整数 m,表示这组数据有 m 个旅游公司。

接下来 m 行,每行格式为,公司名(字符串)加一个整数(整数为费用),公司名与整数中有一个空格。

【输出格式】

共n行。

每行一个字符串"YES"或"NO"(若中位数与平均数相等则输出"YES",否则输出"NO")。

【输入样例】

2

5

Ssr 1

Hjh 2

lyw 3

xj 4

xiaopengyou 5

4

Yay 1

yyy 5

Weisuo 3

nozuonodie 4

【输出样例】

YES

NO

【数据范围】

对于 30%的数据 1≤m≤10000

对于 60%的数据 1≤m≤100000

对于 100%的数据 1≤m≤1000000

对于 100%的数据 n≤10

2、博弈游戏

【问题描述】

黄金海岸此刻正在举行有趣的活动。参加活动的人们围在一起。规则如下:给出一堆筹码共 n 个,每一次可以取 2 ^ k (0≤k≤log2(n)),最后取完者胜。如果 小顾赢了就可以获得超级大奖,你能帮他获得大奖吗? 注意:双方都用最佳方案。

【输入格式】

第一行有一个整数 n。

第二行一个字符串,若为"Wei Ge"则小顾先取,若为"Hui Xiong"则他人 先取。

【输出格式】

如果小顾先取获胜则输出"Win!"与第一次取的最小的个数。

如果小顾后取获胜则输出"Win!"。

如果小顾无法获胜则输出"Lost!"。

【输入样例 1】

3

Wei Ge

【输出样例 1】

Lost!

【输入样例 2】

10

Wei Ge

【输出样例 2】

Win! 1

【数据范围】

对于 30%的数据 1≤n≤10000

对于 60%的数据 1≤n≤1000000

对于 100%的数据 1≤n≤100000000

3、吃货的烦恼

【问题描述】

在游览完黄金海岸后,小顾还想尝尝这个奇幻大陆的美食,奇幻大陆每种小吃有固定数量,还有不同的价格,每种小吃有固定的饱腹值,小顾想用一定数量的钱,尽可能填饱肚子。

【输入格式】

第一行一个整数 t,表示组数。

接下来 t 组数据, 每组数据形式如下:

第 1 行: 3 个整数 m,n,k(小吃的种类量,小顾需要的饱腹值,小顾可以使用的钱)

接下来 m 行: x,y,z(第 i 种小吃的价钱,数量,饱腹值)

【输出格式】

共t行,每组数据输出一行。

若肚子填饱了,则输出"YES"。

若肚子没填饱,则输出一个整数 ans(小顾肚子还剩的空间)

【输入样例】

2

2 100 130

50 3 10

40 3 20

2 1000 8

2 4 100

4 2 100

【输出样例】

40

600

【数据范围】

对于 30%的数据 t=1,0<m≤10,0<n≤1000,0<k≤100

对于 60%的数据 t≤10,0<m≤100,0<n≤10000,0<k≤500

对于 100%的数据 t≤20,0<m≤500,0<n≤100000,0<k≤1000

4.奇幻返程!

【问题描述】

小顾结束了他的奇幻之旅,由于他人品太好,在奇幻大陆中获得了很多很多的钱,因此,我们在此定义一种货币单位来衡量小顾所持有的钱: 亿元。现在小顾要带这些钱回家,由于小顾的钱来路不明,银行拒绝为他提供储存服务,于是,小顾决定把用各种方式钱运回家里慢慢花,在从奇幻大陆到小顾家之间有 n 个中转站(小顾家是 n+1,奇幻大陆是 0),小顾联络了 m 家运输公司,由于小顾喜欢用硬币,所以每个公司只能把 z 亿元从 x 中转站运送到 y 中转站。于是,他请你帮他算算他最多可以运多少亿元回家,并告诉你: 把剩下的钱的 90%给运输公司,其他的都归你了!

【输入格式】

第一行 m,n,money 三个整数,分别指运输公司个数,中转站个数,小顾所持有的钱(按亿元算);

接下来 n 行每行 x,y,z 三个整数,指第 i 个公司能把 z 亿元从 x 中转站 运送到 v 中转站

【输出格式】

求小顾在家里可以用的钱,还有你自己可以得到的钱(直接去掉小数位);(由于你和运输公司的串通,小顾是不可能把所有钱运回家的)。

【输出样例】

- 5 4 60
- 1 2 40
- 1 4 20
- 2 4 20
- 2 3 30
- 3 4 10

【输入样例】

50 1

【数据范围】

对于100% 0≤N≤200,2≤m≤200,1≤x,y≤m,0≤z≤10000000

解释: 1->2 送 40,此时分为 2 条路送,分别为 2->4 送 $\frac{20}{10}$ (已到终点)和 2-3 送 20 (接下来 3->4 送 $\frac{10}{10}$ 到终点 4),而 1->4 直接可以送 $\frac{20}{10}$ 。

最大可以送的额度为(红色数字相加)20+10+20=50, 还有 10 剩余, 可获利 10*0.1=1