rauton.....

- hallar una aproximación de la solución real para la intersección entre la circunferencia $x^2 2x + y^2 = 0$ y la hipérbola xy = 1. Utilizar tres iteraciones del método de Newton para sistemas no lineales. Usar como semilla $x^{(0)} = (1.9 \ 0.4)^t$. Trabajar con al menos tres decimales y redondeo.
- b) Graficar ambas curvas y la solución obtenida.

En un contenedor se transportan refrigeradores y cocinas industriales. Cada cocina pesa 1 tonelada y cada refrigerador 2 toneladas. Por otro lado una cocina ocupa $1.1m^3$ y cada refrigerador $2m^3$. En total entre cocinas y refrigeradores se registró un peso de 10 toneladas, ocupando un espacio de $10.4m^3$.

- a) Obtener, usando tres iteraciones del método de Gauss-Seidel, una aproximación de la cantidad de cocinas y refrigeradores que se transportaron. Trabajar con aritmética de tres dígitos.
- b) Indicar si el sistema está bien condicionado.

3. Suponga que en un pequeño bosque la población de venados P(t), inicialmente con 25 individuos, satisface la ecuación logística; $\begin{cases} \frac{dP(t)}{dt} = 0.0225P(t) - 0.0003P(t)^2 \\ P(0) = 25 \end{cases}$ el tiempo está medido en meses

a) Utilizar tres iteraciones del método de Runge-Kutta del punto medio para aproximar la solución en 6 meses. Trabajar al menos con tres cifras decimales y redondeo.

b) ¿Qué porcentaje de la población se incrementó er ese tiempo?

El balance de calor en estado estacionario se representa como: $\frac{d^2T}{dx^2} + 0.01(T_a - T) = 0$, para una barra de longitud L. Sabiendo que $T_a = 20$.

- a) Desarrolle el método de diferencias finitas para un problema de valores en la frontera.
- b) Sabiendo que la barra tiene una longitud de 10m con T(0) = 40 y T(L) = 200. Usar lo desarrollado en a) para evaluar el calor en los puntos intermedios de la barra con N = 5.

Dada la siguiente tabla correspondiente a valores medidos de una determinada función calcular el valor aproximalo de la derivada en x = 1 usando el método de extrapolación de Richardson. $(R^{(k)}(h) = \frac{4^k R^{(k-1)}(h/2) - R^{(k-1)}(h)}{4^k - 1}, R^{(0)}(h) = R(h))$

\boldsymbol{x}	0.0	0.25	0.5	0.75	1		1.50	-1.	2.00
f(x)	1.0000	1.2840	1.6487	2.1170	2.7183	3.4903	4.4817	5.7546	7.3891

eton c															
	$\begin{cases} x + \\ 1.1 x + \end{cases}$	2y = 2y =	10,4		5										
Tere	uos un	sistemo	Ax	.= b	_	on :								-	
	A	= (1	2)	k	> = (10,4									
Para	usa e	el nét	iodo de	Gan	155 - 5	eidel	esu	A od	con	p.;					
	A=	D-L	- U												-
	D=	(1 0	2)	L=	(° (-1,1	0)		Ú =	0 -	2)					
Def	ino T	= (c)-L)-1	Ů.		C=	(0-	٢)_, {	2						
Ento	nus las						ano								
		X(u)	= T X	(n-1)	+ 0										-141
Ca	Jans T														
		T= ((D-L)-	U	= (1 0	-)	0 -	2)	= (0	-2 1,4			
		C =	(10	\-1	(10,4	\ =	(10	3							-

$$\begin{array}{l} (5) \ \text{Colono} \ & R(h), \ R(h)_2), \ R(h)_4 \ & \text{Con } \ h = 1. \\ P(h) = \frac{f(x+h) - f(x-h)}{2h} = \frac{7,3891 - 4,0000}{2} = \frac{3,19455}{2} \\ P(h)_2) = \frac{4,4817 - 1,6487}{1} = \frac{2,883}{3} \\ P(h)_4) = \frac{3,4903 - 2,1170}{4 \cdot 0,5} = \frac{21,7466}{4} \\ P(h)_4 = \frac{3,4903 - 2,1170}{4 \cdot 0,5} = \frac{21,7466}{4} \\ P(h)_4 = \frac{4,2,833 - 3,19455}{3} = \frac{21,7425}{3} = \frac{21,7425}{3} \\ P(h)_2 = \frac{4,2,7466 - 2,833}{3} = 2,7178 \\ P(h)_3 = \frac{4^2 \cdot 2,7478 - 2,7425}{4^2 - 1} = \frac{21,7182}{4} \\ P(h)_4 = \frac{4^2 \cdot 2,7482}{4} = \frac{1}{4} \\ P(h)_4 =$$