1 Theoretical exercise: Local linear regression as a linear smoother

Setup. We observe i.i.d. data (X_i, Y_i) from

$$Y_i = m(X_i) + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i] = 0, \quad i = 1, \dots, n,$$

with scalar covariate $X_i \in \mathbb{R}$. For a target point $x \in \mathbb{R}$, the local linear estimator $(\hat{\beta}_0(x), \hat{\beta}_1(x))$ is defined as the weighted least-squares solution

$$(\hat{\beta}_0(x), \hat{\beta}_1(x)) = \arg \min_{\beta_0, \beta_1 \in \mathbb{R}} \sum_{i=1}^n (Y_i - \beta_0 - \beta_1(X_i - x))^2 K\left(\frac{X_i - x}{h}\right), \tag{1}$$

where K is a kernel and h > 0 is a bandwidth. The fitted value is $\hat{m}(x) := \hat{\beta}_0(x)$.

1.1 Linearity in Y: $\hat{m}(x)$ is a weighted average of the Y_i

Write the problem in matrix form. Define

$$r_i := X_i - x, \qquad w_i := K\left(\frac{X_i - x}{h}\right) \ (\ge 0),$$

and the $n \times 2$ design matrix and diagonal weight matrix

$$X = \begin{bmatrix} 1 & r_1 \\ \vdots & \vdots \\ 1 & r_n \end{bmatrix}, \quad W = \operatorname{diag}(w_1, \dots, w_n).$$

Let $Y = (Y_1, \dots, Y_n)^{\top}$ and $\beta = (\beta_0, \beta_1)^{\top}$. Then (1) is the weighted least squares (WLS)

$$\hat{\beta}(x) = \arg\min_{\beta \in \mathbb{R}^2} (Y - X\beta)^\top W(Y - X\beta).$$

Under the mild condition that $X^{\top}WX$ is invertible (e.g., at least two distinct X_i with nonzero weight), the WLS solution is

$$\hat{\beta}(x) = (X^{\top}WX)^{-1}X^{\top}WY.$$

Since $\hat{m}(x) = \hat{\beta}_0(x) = e_1^{\top} \hat{\beta}(x)$ with $e_1 = (1,0)^{\top}$, we have

$$\hat{m}(x) = e_1^{\top} (X^{\top} W X)^{-1} X^{\top} W Y = \sum_{i=1}^{n} \underbrace{\left[e_1^{\top} (X^{\top} W X)^{-1} X^{\top} W e_i \right]}_{=: w_{n,i}(x)} Y_i, \tag{2}$$

where e_i is the *i*th standard basis vector in \mathbb{R}^n . Thus $\hat{m}(x) = \sum_{i=1}^n w_{ni}(x)Y_i$, and the weights $w_{ni}(x)$ depend only on x, $\{X_i\}$, K, and h (through W and X), not on the Y_i 's. This proves 1.1.

1.2 Explicit weights in terms of $S_{n,k}(x)$

Introduce the shorthand

$$S_0 := \sum_{i=1}^n w_i, \qquad S_1 := \sum_{i=1}^n w_i r_i, \qquad S_2 := \sum_{i=1}^n w_i r_i^2.$$

Then

$$X^{\top}WX \ = \ \begin{bmatrix} S_0 & S_1 \\ S_1 & S_2 \end{bmatrix}, \qquad (X^{\top}WX)^{-1} \ = \ \frac{1}{\Delta} \begin{bmatrix} S_2 & -S_1 \\ -S_1 & S_0 \end{bmatrix}, \quad \Delta := S_0S_2 - S_1^2.$$

Also, the *i*th column of $X^{\top}W$ is $(w_i, w_i r_i)^{\top}$. Therefore,

$$w_{ni}(x) = e_1^{\top} (X^{\top} W X)^{-1} (X^{\top} W e_i) = \frac{1}{\Delta} [S_2, -S_1] \begin{bmatrix} w_i \\ w_i r_i \end{bmatrix} = \frac{w_i}{\Delta} (S_2 - S_1 r_i).$$

Next, rewrite everything using the normalized sums

$$S_{n,k}(x) := \frac{1}{nh} \sum_{i=1}^{n} r_i^k K\left(\frac{r_i}{h}\right) = \frac{1}{nh} \sum_{i=1}^{n} r_i^k w_i, \qquad k = 0, 1, 2.$$

Because $S_k = \sum_{i=1}^n w_i r_i^k = nh S_{n,k}(x)$ for k = 0, 1, 2, we have

$$\Delta = S_0 S_2 - S_1^2 = (nh)^2 (S_{n,0} S_{n,2} - S_{n,1}^2).$$

Finally, $w_i = K(r_i/h)$ and

$$w_{ni}(x) = \frac{K\left(\frac{X_i - x}{h}\right) \left(S_2 - S_1 r_i\right)}{S_0 S_2 - S_1^2} = \frac{1}{nh} \frac{K\left(\frac{X_i - x}{h}\right) \left(S_{n,2}(x) - \left(X_i - x\right) S_{n,1}(x)\right)}{S_{n,0}(x) S_{n,2}(x) - \left(S_{n,1}(x)\right)^2}.$$

Thus,

$$w_{ni}(x) = \frac{1}{nh} \frac{K\left(\frac{X_i - x}{h}\right) \left(S_{n,2}(x) - (X_i - x)S_{n,1}(x)\right)}{S_{n,0}(x)S_{n,2}(x) - \left(S_{n,1}(x)\right)^2}$$
(3)

which yields the explicit linear-smoother representation

$$\hat{m}(x) = \sum_{i=1}^{n} w_{ni}(x) Y_i.$$

1.3 The weights sum to one: $\sum_{i=1}^{n} w_{ni}(x) = 1$

Starting from (3),

$$\sum_{i=1}^{n} w_{ni}(x) = \frac{1}{nh} \frac{S_{n,2}(x) \sum_{i=1}^{n} K\left(\frac{X_{i}-x}{h}\right) - S_{n,1}(x) \sum_{i=1}^{n} (X_{i}-x) K\left(\frac{X_{i}-x}{h}\right)}{S_{n,0}(x) S_{n,2}(x) - \left(S_{n,1}(x)\right)^{2}}.$$

Recognize the two sums in the numerator:

$$\sum_{i=1}^{n} K\left(\frac{X_{i} - x}{h}\right) = S_{0} = nh S_{n,0}(x), \qquad \sum_{i=1}^{n} (X_{i} - x) K\left(\frac{X_{i} - x}{h}\right) = S_{1} = nh S_{n,1}(x).$$

Hence

$$\sum_{i=1}^{n} w_{ni}(x) = \frac{1}{nh} \frac{S_{n,2}(x) nh S_{n,0}(x) - S_{n,1}(x) nh S_{n,1}(x)}{S_{n,0}(x) S_{n,2}(x) - \left(S_{n,1}(x)\right)^2} = \frac{S_{n,0}(x) S_{n,2}(x) - \left(S_{n,1}(x)\right)^2}{S_{n,0}(x) S_{n,2}(x) - \left(S_{n,1}(x)\right)^2} = 1.$$

This proves $\sum_{i=1}^{n} w_{ni}(x) = 1$.

2 Practical exercise: Global bandwidth selection

2.1 Setup and goal

We observe i.i.d. (X_i, Y_i) from

$$Y_i = m(X_i) + \varepsilon_i, \qquad \varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2), \quad i = 1, \dots, n,$$

with $X_i \in [0,1]$ drawn from Beta (α, β) and

$$m(x) = \sin\left\{\left(\frac{x}{3} + 0.1\right)^{-1}\right\}.$$

We consider the local linear estimator \hat{m} and focus on selecting a global bandwidth h that minimizes AMISE under homoscedasticity and a quartic (biweight) kernel. Under these assumptions the optimal bandwidth admits the explicit form

$$h_{\text{AMISE}} = n^{-1/5} \left(\frac{35 \,\sigma^2 \,|\text{supp}(X)|}{\theta_{22}} \right)^{1/5}, \qquad \theta_{22} = \int \{m''(x)\}^2 f_X(x) \,dx,$$
 (4)

We must estimate the unknowns σ^2 and θ_{22} .

Following the blocked quartic pilot strategy, we partition the sample into N blocks and fit a separate quartic:

$$Y_i = \beta_{0j} + \beta_{1j}X_i + \beta_{2j}X_i^2 + \beta_{3j}X_i^3 + \beta_{4j}X_i^4 + \varepsilon_i, \quad X_i \in \mathcal{X}_j, \ j = 1, \dots, N,$$

then define

$$\widehat{\theta}_{22}(N) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{N} \left\{ \widehat{m}_{j}''(X_{i}) \right\}^{2} \mathbf{1} \{ X_{i} \in \mathcal{X}_{j} \}, \qquad \widehat{\sigma}^{2}(N) = \frac{1}{n-5N} \sum_{i=1}^{n} \sum_{j=1}^{N} \left\{ Y_{i} - \widehat{m}_{j}(X_{i}) \right\}^{2} \mathbf{1} \{ X_{i} \in \mathcal{X}_{j} \}.$$

To choose N in a data-driven way we minimize Mallow's C_p over $N = 1, \ldots, N_{\text{max}}$,

$$C_p(N) = \frac{\text{RSS}(N)}{\text{RSS}(N_{\text{max}})/(n-5N_{\text{max}})} - (n-10N), \quad N_{\text{max}} = \max\{\min(\lfloor n/20 \rfloor, 5), 1\}.$$

With $\hat{\sigma}^2 = \hat{\sigma}^2(N_{\rm opt})$ and $\hat{\theta}_{22} = \hat{\theta}_{22}(N_{\rm opt})$, we plug into (4) to obtain $\hat{h}_{\rm AMISE}$.

2.2 Simulation design

We use:

- Sample size $n \in \{100, 1000, 10000, 100000\}$;
- **Design shape** $(\alpha, \beta) \in \{(2, 2), (2, 5), (5, 2), (0.5, 0.5)\}$ for $X \sim \text{Beta}(\alpha, \beta)$;
- Noise level $\sigma^2 = 1$;
- Replicates R = 100 per setting.

Within each replicate we:

- 1. Simulate (X_i, Y_i) and compute $(\widehat{\theta}_{22}(N), \widehat{\sigma}^2(N), C_p(N))$ for all $N = 1, \dots, N_{\text{max}}$;
- 2. Choose $N_{\text{opt}} = \arg\min_{N} C_p(N)$;
- 3. Compute $\hat{h}_{\text{AMISE}} = n^{-1/5} \left(35 \, \widehat{\sigma}^2 \, |\text{supp}(X)| / \widehat{\theta}_{22} \right)^{1/5}$

2.3 Key figures and tables

Below we include representative visualizations created by the script.

Figure 1: For a single dataset $(n=200,\,\alpha=\beta=2)$: $\hat{h}_{\rm AMISE},\,\widehat{\theta}_{22},\,{\rm and}\,\,\widehat{\sigma}^2$ versus the number of blocks N.

Figure 2: Distribution of \hat{h}_{AMISE} vs n for $X \sim \text{Beta}(2,2)$.

Figure 3: Distribution of N_{opt} (by C_p) vs n for $X \sim \mathrm{Beta}(2,2)$.

Table 1: Summary statistics of $\hat{h}_{\rm AMISE}$ and $N_{\rm opt}$ across simulation scenarios.

α	β	n	$Median(\hat{h}_{AMISE})$	$IQR(\hat{h}_{AMISE})$	$Mode(N_{opt})$
0.5	0.5	100	0.083122	0.031411	2
		1000	0.053817	0.004222	2
		10000	0.035148	0.002759	3
		100000	0.025698	0.001491	4
2.0	2.0	100	0.173648	0.075198	1
		1000	0.081186	0.020890	2
		10000	0.049761	0.006789	3
		100000	0.031673	0.001402	4
2.0	5.0	100	0.137356	0.055404	1
		1000	0.059287	0.010956	2
		10000	0.038903	0.001932	2
		100000	0.024997	0.000778	3
5.0	2.0	100	0.181831	0.082602	1
		1000	0.163484	0.037461	1
		10000	0.112094	0.011551	1
		100000	0.067144	0.008476	2

2.4 Findings and interpretation

2.4.1 Overall scaling of the optimal bandwidth

Across all designs, the median \hat{h}_{AMISE} decreases as n grows (Table 1; Figures 2, 7–9). This matches the AMISE formula

$$\hat{h}_{\text{AMISE}} = n^{-1/5} \left(\frac{35 \,\hat{\sigma}^2 |\text{supp}(X)|}{\hat{\theta}_{22}} \right)^{1/5},$$

whose leading $n^{-1/5}$ factor drives a systematic shrinkage with sample size. Empirically, the interquartile range (IQR) also tightens with n, reflecting reduced Monte Carlo variability as more information is available.

2.4.2 How \hat{h}_{AMISE} behaves when N grows (single-dataset diagnostics)

From Figures 1 and 4–6, we observe a common pattern:

- (a) $\hat{\theta}_{22}(N)$ typically increases with N. More blocks yield quartic pilots that adapt more locally, revealing curvature and pushing the denominator of \hat{h}_{AMISE} up.
- (b) $\hat{\sigma}^2(N)$ is comparatively stable around 1 for moderate N (the d.f. adjustment n-5N compensates the added flexibility).
- (c) Because $\hat{h}_{\text{AMISE}} \propto (\hat{\sigma}^2/\hat{\theta}_{22})^{1/5}$, \hat{h} often decreases with N (driven by the growth of $\hat{\theta}_{22}$) and flattens.

2.4.3 Should N depend on n?

Yes, and the data confirm it. As n increases, the C_p -selected $N_{\rm opt}$ slowly increases (Figures 3 and 10–12; Table 1). Intuitively, larger samples support more blocks without destabilizing the blockwise quartic fits. Concretely:

- Beta(2,2): N_{opt} moves from 1 (n=100) to 2 (n=1000), then to 3 and 4 (n=10⁴, 10⁵).
- Beta(2,5): $1 \rightarrow 2 \rightarrow 2 \rightarrow 3$ over the same n grid.
- Beta(0.5,0.5): $2 \to 2 \to 3 \to 4$.
- Beta(5,2): the most conservative: $1 \to 1 \to 1 \to 2$.

Growth remains modest because C_p imposes a linear complexity penalty in N and because the cap $N_{\text{max}} = \min(\lfloor n/20 \rfloor, 5)$ prevents over-fragmentation.

2.4.4 Impact of the design density f_X (via Beta (α, β))

The curvature functional $\theta_{22} = \int \{m''(x)\}^2 f_X(x) dx$ weights curvature by f_X . This explains the systematic differences across designs:

- Skewed right (Beta(5,2)): Many points cluster near $x \approx 1$, with a sparser left tail. Extra blocks create very small, noisy blocks in sparse regions, so the RSS reduction rarely offsets the C_p penalty. Hence N_{opt} stays at 1 until very large n, and the median \hat{h} is comparatively large (Table 1).
- Skewed left (Beta(2,5)) and symmetric (Beta(2,2)): The mass is more balanced where m'' is non-negligible, so $\hat{\theta}_{22}$ increases more with N, making a second (and later a third) block worthwhile as n grows. Correspondingly, N_{opt} rises to 2 and then to 3–4 at large n, while \hat{h} decreases more rapidly.

• U-shaped (Beta(0.5,0.5)): Many points lie near the boundaries; if those regions also feature substantial curvature, $\hat{\theta}_{22}$ is relatively large, yielding a smaller \hat{h} already at moderate n. The design naturally supports at least two blocks (left/right), so N_{opt} starts at 2 and increases with n.

2.4.5 Practical takeaways

- (i) The dominant effect is the theoretical $n^{-1/5}$ shrinkage of \hat{h}_{AMISE} ; the data follow this trend across all designs.
- (ii) The pilot block count N should increase slowly with n; C_p finds small values (typically 1–4 here), balancing curvature resolution against variance.
- (iii) When f_X is highly uneven, a global h must compromise between dense and sparse regions. Designs concentrating mass where |m''| is large (e.g., Beta(0.5, 0.5)) tend to produce smaller \hat{h} ; designs with long sparse tails (e.g., Beta(5, 2)) tend to keep N_{opt} small and \hat{h} larger.

2.5 Additional figures

Figure 4: For a single dataset ($n=1000,\,\alpha=2,\,\beta=5$): $\hat{h}_{\rm AMISE},\,\hat{\theta}_{22},\,$ and $\hat{\sigma}^2$ versus the number of blocks N.

Figure 5: For a single dataset ($n=1000,\,\alpha=5,\,\beta=2$): $\hat{h}_{\rm AMISE},\,\hat{\theta}_{22},\,$ and $\hat{\sigma}^2$ versus the number of blocks N.

Figure 6: For a single dataset ($n=1000,~\alpha=0.5,~\beta=0.5$): $\hat{h}_{\rm AMISE},~\widehat{\theta}_{22},~{\rm and}~\widehat{\sigma}^2$ versus the number of blocks N.

Figure 7: Distribution of \hat{h}_{AMISE} vs n for $X \sim \text{Beta}(2, 5)$.

Figure 8: Distribution of \hat{h}_{AMISE} vs n for $X \sim \text{Beta}(5,2)$.

Figure 9: Distribution of \hat{h}_{AMISE} vs n for $X \sim \text{Beta}(0.5, 0.5)$.

Figure 10: Distribution of N_{opt} (by C_p) vs n for $X \sim \mathrm{Beta}(2,5)$.

Figure 11: Distribution of N_{opt} (by C_p) vs n for $X \sim \mathrm{Beta}(5,2)$.

Figure 12: Distribution of $N_{\rm opt}$ (by C_p) vs n for $X \sim \text{Beta}(0.5, 0.5)$.