Supervised Ontology and Instance Matching with MELT

Joint Work

Sven Hertling sven@informatik.uni-mannheim.de

Jan Portisch Data and Web Science Group, University of Mannheim Data and Web Science Group, University of Mannheim / SAP SE jan@informatik.uni-mannheim.de

Prof. Dr. Heiko Paulheim Data and Web Science Group, University of Mannheim heiko@informatik.uni-mannheim.de

Agenda

- Motivation
- What is MELT
- ML-Extension
- Quantitative Evaluation
- Q&A

MOTIVATION

Motivation

Challenges in ML-based Matchers

- Python (or non-Java) libraries vs. SEALS environment
- Simple feature aggregation is not sufficient
- Many classifiers available
- Not much out-of-the-box ML functionality available for OM/IM
- No OAEI ML track

WHAT IS MELT?

What is MELT?

- Easy matcher development
- Non-Java matcher development
- Maven support

- Facilitate matcher packaging
- Facilitate matcher submission

Allow for parameter optimization

- Advanced evaluation capabilities
- Evaluation before packaging
- Allow for interactive visualization
- **Streamlined** development process
- Integration with existing tooling
- OAEI support
- Extensibility

What is MELT?

Matcher

Development

with ML

Matcher **Submission**

Matcher Fine-Tuning

Matcher **Evaluation**

MELT Dashboard

ML-Extension

Python Code Execution in MELT

starts flask server and exposes functionality

Data for Training (Gold Standard)

- Any Alignment instance can be used as gold standard.
- New instance methods:
 - sample(int n)
 Samples n instances.
 - sampleByFraction (double fraction)
 Samples the specified percentage.

Feature Generation

Matcher

- Adds or removes correspondences from/to an alignment.
- Can be used as partitioner.

Filter

- Adds or changes confidence values of existing correspondences.
- Removes correspondences from an alignment.
- Can also be thought of a feature generator for given correpondences.

21 Filters in MELT 2.6

17 Matchers in MELT 2.6

Feature Values in MELT

Correspondence

$$< E_1, E_2, R, C >$$

.addAdditionalExplanation(Class, String)

.addAdditionalConficence(Class, Double)

- Add an arbitrary number of confidences (using multiple filters, a confidence vector can be built).
- Possible to add explanations.
- Can be serialized in the Alignment Format (as simple correspondence extension).

Feature Generating Filter Examples

- SimilarNeighboursFilter (for instances)
 - analyzes for each instance correspondence how many "neighbors" (resources one predicate away) are already matched
 - multiple set similarities implemented (boolean, absolute, min, max, jaccard, dice)
- CommonPropertiesFilter (for instances)
 - intuition: equal instances share properties
 - default properties (rdfs:label) are excluded
 - multiple set similarities implemented (boolean, absolute, min, max, jaccard, dice)

Feature Generating Filter Examples

- SimilarHierarchyFilter (for instances)
 - computes similarity based on matched classes in the hierarchy of an instance
 - multiple possibilities to calculate the confidence based on hierarchy matches

Filter Examples: Machine Learning Scikit Filter

- MachineLearningScikitFilter
 - Ideally towards the end of a matching pipeline
 - Applies a five-fold cross validation (adjustable)...
 - ... on multiple classifiers (see next slide)
 - Picks the best classifier
 - Trains a model and applies it automatically to the current alignment

Filter Examples: Machine Learning Scikit Filter

- Classifiers (detailed configurations in the paper)
 - Decision Trees
 - Gradient Boosted Trees
 - Random Forest
 - Naïve Bayes
 - Support Vector Machines
 - Neural Netowrks

Quantitative Evaluation

Use Case 1: RDF2Vec Vector Transformation What is RDF2Vec?

- Simple embedding approach for knowledge graphs.
- How does it work?
 - Generate random walks through the graph
 - sample walk

- Apply word2vec
 - Sample result:

$$A \rightarrow (1, 2, 3)$$

 $B \rightarrow (2, 3, 4)$
 $a \rightarrow (-0.5, 6, 12)$

Use Case 1: RDF2Vec Vector Transformation

Use Case 1: RDF2Vec Vector Projections

- RDF2Vec embeddings do contain structural information.
- Good results on same ontologies but bad performance in other cases.

Multifarm Test Case	P	\mathbf{R}	\mathbf{R} +	\mathbf{F}	# of TP	# of FP	# of FN
iasted-iasted	0.8232	0.7459	0.6111	0.7836	135	29	46
conference-conference	0.7065	0.5285	0.1967	0.6047	65	27	58
confOf-confOf	0.9111	0.5541	0.1081	0.6891	41	4	33

Use Case 2: Supervised Classifier for the Knowledge Graph Track

- Base-Correspondences (recall oriented alignment):
 - BaseMatcher on rdfs: label and skos: altLabel
- Filters (features)
 - CommonPropertiesFilter
 - SimilarHierarchyFilter
 - BagOfWordsSetSimilarityFilter
 - SimilarNeighboursFilter
 - SimilarTypeFilter
 - MachineLearningScikitFilte
 - NaiveDescendingExtractor

Use Case 2: Supervised Classifier for the Knowledge Graph Track

	mcu-		memoryalpha-		memoryalpha-			starwars-			starwars-				
	marvel		memorybeta		stexpanded		swg			swtor					
Approach	P	R	F	P	\mathbf{R}	F	P	\mathbf{R}	F	P	R	F	P	\mathbf{R}	F
BaseMatcher	0.8548	0.6796	0.7572	0.8740	0.8978	0.8858	0.8675	0.9264	0.8960	0.9001	0.7318	0.8072	0.9007	0.9146	0.9076
CommonPropertiesFilter	0.8823	0.6614	0.7560	0.9310	0.8785	0.9040	0.9370	0.8968	0.9165	0.9257	0.7162	0.8076	0.9371	0.8999	0.9181
SimilarHierarchyFilter	0.8823	0.6614	0.7560	0.9361	0.8830	0.9088	0.9527	0.9107	0.9312	0.9281	0.7181	0.8097	0.9440	0.9057	0.9245
BagOfWordsSetSimilarityFilter	0.8823	0.6614	0.7560	0.9340	0.8810	0.9067	0.9406	0.8991	0.9194	0.9292	0.7190	0.8107	0.9348	0.8976	0.9159
SimilarNeighboursFilter	0.8912	0.6687	0.7641	0.9467	0.8916	0.9183	0.9600	0.9171	0.9380	0.9375	0.7254	0.8179	0.9317	0.8947	0.9128
SimilarTypeFilter	0.8823	0.6614	0.7560	0.9247	0.8727	0.8980	0.9303	0.8899	0.9096	0.9222	0.7135	0.8045	0.9326	0.8962	0.9140
ML (sample=0.2)	0.8831	0.6620	0.7567	0.9636	0.8592	0.9084	0.9648	0.8887	0.9252	0.9292	0.7190	0.8107	0.9621	0.8778	0.9180
	SVM		Random Forest		SVM		SVM		Random Forest						
ML (sample=0.4)	0.8831	0.6620	0.7567	0.9636	0.8599	0.9088	0.9734	0.8690	0.9182	0.9315	0.7199	0.8121	0.9445	0.8903	0.9166
	Random Forest		Random Forest		Neural Network		Neural Network		Random Forest						
ML (sample=0.6)	0.8831	0.6620	0.7567	0.9685	0.8575	0.9096	0.9667	0.8916	0.9276	0.9367	0.7153	0.8112	0.9565	0.8903	0.9222
	Random Forest		Decision Tree		Neural Network		SVM		SVM						

There is MUCH more to MELT

Ontology **Caching** Services

Multi-Threaded Matcher Execution

Execution of SEALS packages from within **MELT**

Tools

OAEI-Track Organizer

Alignment **Extensions**

ExecutionResult Indexing

One-Time Auto-Download of OAEI Tracks

Pre-Trained KG vectors through KGvec2go client

Matcher **Pipelining**

Thank you!

Sven Hertling

Data and Web Science Group, University of Mannheim sven@informatik.uni-mannheim.de

Jan Portisch

Data and Web Science Group, University of Mannheim jan@informatik.uni-mannheim.de

Heiko Paulheim

Data and Web Science Group, University of Mannheim heiko@informatik.uni-mannheim.de

