# **Finale**

收官! 走走停停快一年#emoji ③ ⑤ ⑨

## 一、Feature Exploitation Techniqus

1. kernel family:



kernel不只适用于SVM

2. aggregation family: ensemble learning集成学习



三种机制: 民主、加权、条件

3. extraction family: 提取特征

## Exploiting Hidden Features via Extraction

hidden features within some Φ:

as hidden variables to be 'jointly' optimized with usual weights

—possibly with the help of unsupervised learning

Neural Network; Deep Learning

**RBF Network** 

Matrix Factorization

**RBF** centers

user/movie factors

AdaBoost; GradientBoost

neuron weights

g<sub>t</sub> parameters

*k*-Means

cluster centers

Autoencoder; PCA

'basis' directions

possibly GradientBoosted Neurons, NNet on Factorized Features, ...

非监督学习的方式

4. 压缩降维的方法: 把困难的事情简单化

Exploiting Low-Dim. Features via Compression

low-dimensional features within some Φ:

compressed from original features

Decision Stump; DecTree Branching

'best' naïve projection to  ${\mathbb R}$ 

Random Forest Tree Branching

'random' low-dim. projection Autoencoder;PCA

info.-preserving compression

Matrix Factorization

projection from abstract to concrete

Feature Selection

'most-helpful' low-dimensional projection

possibly other 'dimension reduction' models

- 我们在decision tree里面用decision stump;
- 我们在random forest中的随机投影;
- 我们在auto encoder、pca中直接的降维;
- 我们在matrix factorization中直接分解分析eigenvalue

## 二、Error Optimization Techniques

1. GD family: first-order optimization

## Numerical Optimization via Gradient Descent

when  $\nabla E$  'approximately' defined, use it for 1st order approximation:

new variables = old variables -  $\eta \nabla E$ 

### SGD/Minibatch/GD

(Kernel) LogReg;

Neural Network

[backprop];

Matrix Factorization; Linear SVM (maybe)

### Steepest Descent

AdaBoost;

GradientBoost

### Functional GD

AdaBoost;

GradientBoost

possibly 2nd order techniques, GD under constraints, ...

#### 还有牛顿法这些二阶优化

2. 化归思想的应用——转换问题:

# Indirect Optimization via Equivalent Solution

when difficult to solve original problem, seek for equivalent solution

#### **Dual SVM**

equivalence via convex QP

## Kernel LogReg Kernel RidgeReg

equivalence via representer

### **PCA**

equivalence to eigenproblem

some other boosting models and modern solvers of kernel models rely on such a technique heavily

• 对偶SVM: 凸二次优化问题

• kernel logReg和RidgeReg:表示定理

• PCA: 特征值问题

3. 多步学习策略:

# Complicated Optimization via Multiple Steps

when difficult to solve original problem, seek for 'easier' sub-problems

#### Multi-Stage

probabilistic SVM;

linear blending;

stacking;

RBF Network:

DeepNet pre-training

#### Alternating Optim.

*k*-Means;

alternating LeastSqr;

(steepest descent)

#### Divide & Conquer

decision tree;

#### useful for complicated models

• 多步骤学习: blending、learning、stacking等等

• 交互式学习: K-Means、alternating LeastSqr(最陡梯度)

• 分治法学习: decision tree

## 三、Overfitting Elimination Techniques

1. 正则化:

# 

# large-marginL2voting/averagingSVM;SVR;uniform blending;

AdaBoost (indirectly) kernel models;

NNet [weight-decay]

weight-elimination

Random Forest

constraining

Bagging;

autoencoder NNet

autoenc. [weights]; RBF [# centers];

pruning early stopping
decision tree NNet (any GD-li

NNet (any GD-like)

arguably most important techniques

随时随地踩刹车! 这比开车重要

denoising

实际上正则化就是降低模型复杂度来让泛化能力提高,着重考虑的是结构风险最优化。

#### 2. 验证集:



作为模型选择的依据

## 四、Machine Learning in Action

machine learning jungle!



welcome to the jungle!

平凡生活的英雄主义梦想!