Appendix Supplement for the paper "Semiparametric Estimation of a Simultaneous Game with Incomplete Information"

Andres Aradillas-Lopez*

Abstract

We present a direct, step by step proof of Theorem A-1 in the paper Semiparametric Estimation of a Simultaneous Game with Incomplete Information

Suppose $(X,Z) \in \mathbb{R}^P \times \mathbb{R}^L$ is a random vector with joint density $f_{X,Z}(x,z)$ and let $M \geq L+1$. Assume an iid sample $\{X_n,Z_n\}_{n=1}^N$. Fix $\gamma \in \mathbb{R}^D$ and $z \in \mathbb{R}^L$, consider a function $\eta: \mathbb{R}^P \times \mathbb{R}^L \times \mathbb{R}^D \to \mathbb{R}$, a kernel $K: \mathbb{R}^L \to \mathbb{R}$ and a bandwidth $h_N \to 0$. Let $K_{h_N}(\psi) = K(\psi/h_N)$ and define $R_N(z,\gamma) = (Nh_N^L)^{-1} \sum_{n=1}^N \eta(X_n,z,\gamma) K_{h_N}(Z_n-z)$, $\hat{f}_{Z_N}(z) = (Nh_N^L)^{-1} \sum_{n=1}^N K_{h_N}(Z_n-z)$ and $\mu_N(z,\gamma) = R_N(z,\gamma)/\hat{f}_{Z_N}(z)$. For any $z \in \mathbb{S}(Z)$ let $\mu(z,\gamma) = E\left[\eta(X,z,\gamma) \middle| Z=z\right]$. Consider the following assumptions:

Assumption S1. (A) Z is absolutely continuous w.r.t Lebesgue measure. (B) $f_{X,Z}(x,z)$ and $f_Z(z)$ are bounded, M times differentiable with respect to z with bounded derivatives.

Assumption S2. There exist compact sets $\mathcal{Z} \subset \mathbb{S}(Z)$ with $\inf_{z \in \mathcal{Z}} f_z(z) > 0$, and $\Gamma \subset \mathbb{R}^D$ such that: (A) $\mu(z,\gamma)$ is M times differentiable w.r.t z and γ with bounded derivatives $\forall z \in \mathbb{S}(Z)$, $\gamma \in \Gamma$. (B) There exists $\overline{\eta} : \mathbb{R}^P \to \mathbb{R}_+$ such that $|\eta(X,z,\gamma)| \leq \overline{\eta}(X)$ w.p.1 for all $X \in \mathbb{S}(X)$, $z \in \mathcal{Z}$, $\gamma \in \Gamma$; $E[\overline{\eta}(X)^2 \mid Z = z]$ is a continuous function of z for all $z \in \mathbb{S}(Z)$, and $E[\overline{\eta}(X)^4] < \infty$. (C) There exists $\overline{\eta}_1 : \mathbb{R}^P \to \mathbb{R}_+$, and $\varphi_1 > 0$ such that $|\eta(X,z,\gamma) - \eta(X,z',\gamma)| \leq \overline{\eta}_1(X)||z-z'||^{\varphi_1}$ w.p.1 for all $X \in \mathbb{S}(X)$, $z,z' \in \mathcal{Z}$, $\gamma \in \Gamma$, and $E[\overline{\eta}_1(X)] < \infty$. (D) There exists $\overline{\eta}_2 : \mathbb{R}^P \to \mathbb{R}_+$, and $\varphi_2 > 0$ such that $|\eta(X,z,\gamma) - \eta(X,z,\gamma')| \leq \overline{\eta}_2(X)||\gamma - \gamma'||^{\varphi_2}$ w.p.1 for all $X \in \mathbb{S}(X)$, $z \in \mathcal{Z}$, $\gamma, \gamma' \in \Gamma$, and $E[\overline{\eta}_2(X)] < \infty$.

^{*}Department of Economics, Princeton University, Princeton NJ 08544.

Assumption S3. (A) The kernel $K(\cdot)$ has compact support, is Lipschitz-continuous, bounded and symmetric about zero. Denote $\psi = (\psi_1, \dots, \psi_L)'$, then $\int K(\psi)d\psi = 1$, $\int ||\psi||^M |K(\psi)|d\psi < \infty$ and $\int (\psi_1^{q_1} \cdots \psi_L^{q_L}) K(\psi) d\psi_1 \dots d\psi_L = 0$ for all $0 < q_1 + \dots + q_L < M$. (B) $h_N \to 0$ satisfies: $Nh_{_{N}}^{L+2}
ightarrow \infty; \ Nh_{_{N}}^{2L}/\mathrm{log}(N)
ightarrow \infty \ and \ Nh_{_{N}}^{2M}
ightarrow 0. \ ^{1}$

Theorem A-1 If assumptions S1-S3 are satisfied, then for any $z \in \mathcal{Z}$, $\gamma \in \Gamma$,

$$\mu_{N}(z,\gamma) - \mu(z,\gamma) = \frac{1}{f_{Z}(z)} \frac{1}{Nh_{N}^{L}} \sum_{n=1}^{N} \left[\eta(X_{n}, z, \gamma) - \mu(z, \gamma) \right] K_{h_{N}}(Z_{n} - z) + \xi_{N}(z, \gamma)$$

where $\sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} |\xi_N(z,\gamma)| = O_p(N^{\delta-1}h_N^{-L}) \text{ for any } \delta > 0.$

Corollary 1 If we strengthen the condition $\log Nh_N^{-2L}=o(N)$ to $N^{\delta}h_N^{-2L}=o(N)$ for some $\delta>0$. Let $\xi_N(z,\gamma)$ be as defined in Theorem A-1, then $\sup_{z\in\mathcal{Z}} \left|\xi_N(z,\gamma)\right| = o_p(N^{-1/2})$.

Proof of Theorem A-1: Let $\varphi = \text{Min } \{1, \varphi_1, \varphi_2\}$. Without loss of generality, suppose $\mathcal{Z} =$ $[a_1,b_1] \times \cdots \times [a_L,b_L]$ and $\Gamma = [e_1,h_1] \times \cdots \times [e_D,h_D]$ where $a_\ell < b_\ell$ and $e_d < h_d$. For $\ell =$ $1, \ldots, L$ and $d = 1, \ldots, D$, let $z_0^{(\ell)} = a_\ell$, $\gamma_0^{(d)} = e_d$, $z_i^{(\ell)} = \min\{z_0^{(\ell)} + i/N^{1/\varphi}, b_\ell\}$ and $\gamma_i^{(d)} = \sum_{i=1}^{d} a_i + i/N^{1/\varphi}$ $\min\{\gamma_0^{(d)}+j/N^{1/\varphi}, h_\ell\}$ where $i,j\in\mathbb{N}$. Define the sets $\mathcal{A}_{1_N}\subset\mathcal{Z}$ and $\mathcal{A}_{2_N}\subset\Gamma$ as $\mathcal{A}_{1_N}=0$ $\left\{z_0^{(1)}, \dots, z_{Q_1}^{(1)}\right\} \times \dots \times \left\{z_0^{(L)}, \dots, z_{Q_L}^{(L)}\right\} \text{ and } \mathcal{A}_{2_N} = \left\{\gamma_0^{(1)}, \dots, \gamma_{T_1}^{(1)}\right\} \times \dots \times \left\{\gamma_0^{(D)}, \dots, \gamma_{T_D}^{(D)}\right\}. \text{ Let }$ $z^* = \max_{z \in \mathcal{Z}} \lVert z \rVert \text{ and } \gamma^* = \max_{\gamma \in \Gamma} \lVert \gamma \rVert. \text{ It follows that } Q_\ell \leq \left\lceil 2z^*N^{1/\varphi} \right\rceil \; \forall \; \ell, \; \; T_d \leq \left\lceil 2\gamma^*N^{1/\varphi} \right\rceil \; \forall \; d;$ $\# \mathcal{A}_{1_N} < (2(z^*+1))^L N^{L/\varphi} \text{ and } \# \mathcal{A}_{2_N} < (2(\gamma^*+1))^D N^{D/\varphi} \text{ for all } N. \text{ For any } (z,\gamma) \in \mathcal{Z} \times \Gamma \text{ we}$ will denote from now on: $z_{\kappa} = \underset{u \in \mathcal{A}_{1_N}}{\operatorname{argmin}} \|u - z\|$ and $\gamma_{\kappa} = \underset{v \in \mathcal{A}_{2_N}}{\operatorname{argmin}} \|v - \gamma\|$. Note that $\underset{z \in \mathcal{Z}}{\sup} \|z - z_{\kappa}\| \le \sqrt{L}/N^{1/\varphi}$ and $\underset{\gamma \in \Gamma}{\sup} \|\gamma - \gamma_{\kappa}\| \le \sqrt{D}/N^{1/\varphi}$ by construction.

 $\textbf{Step 1} \ \, \textbf{Take any pair of random variables} \, \mathcal{S}_{\scriptscriptstyle N}, \, \mathcal{R}_{\scriptscriptstyle N} \, \, \textbf{such that:} \, \, \mathcal{S}_{\scriptscriptstyle N} \leq \mathcal{R}_{\scriptscriptstyle N} \, \, \textbf{and} \, \, \mathcal{S}_{\scriptscriptstyle N} \in [0,1] \, \, \textbf{w.p.} 1 \, \, \forall \, \, N.$ Suppose there exist $\varepsilon_1 \in (0,1)$, $\varepsilon_2 \in (0,1)$ and \overline{N} such that $Pr(\mathcal{R}_N > \varepsilon_1) \leq \varepsilon_2 \ \forall \ N \geq \overline{N}$. Then, $E[S_N] \le \varepsilon_1 + \varepsilon_2 \ \forall \ N \ge \overline{N}.$

Proof: $E[S_N] \leq \varepsilon_1 \cdot \Pr(S_N \leq \varepsilon_1) + 1 \cdot \Pr(S_N > \varepsilon_1) \leq \varepsilon_1 \cdot 1 + 1 \cdot \Pr(R_N > \varepsilon_1) \leq \varepsilon_1 + \varepsilon_2 \ \forall \ N \geq \overline{N}.$

If $L \geq 2$, $Nh_N^{2L}/\log(N) \to \infty$ implies $Nh_N^{L+2} \to \infty$.
Every pair compact sets in \mathbb{R}^L and \mathbb{R}^D with Lebesgue measure greater than zero contains a set of the form $[a_1, b_1] \times \cdots \times [a_L, b_L]$ and $[e_1, h_1] \times \cdots \times [e_D, h_D]$ respectively, where $a_\ell < b_\ell$ and $e_d < h_d$.

Step 2 Define the objects

$$V_{1_N}(z) = \left(Nh_N^L\right)^{-1} \sum_{n=1}^N \overline{\eta}(X_n)^2 K_{h_N}(Z_n - z)^2 \quad \text{and} \quad V_{2N}(z) = N^{-1} \sum_{n=1}^N \overline{\eta}(X_n) \left|K_{h_N}(Z_n - z)\right|.$$

Then $\underset{z \in \mathcal{A}_{1_N}}{\operatorname{Max}} \ V_{1_N}(z) = O_p(1)$ and $\underset{z \in \mathcal{A}_{1_N}}{\operatorname{Max}} \ V_{2N}(z) = O_p(1)$.

Proof: By continuity of $E\left[\overline{\eta}(X)\big|Z\right]$ and boundedness of $K(\cdot)$, $\exists \overline{K}$ and \overline{V}_1 such that $\max_{\psi \in \mathbb{R}^L} |K(\psi)| < \overline{K}$ and $\max_{z \in \mathcal{A}_{1_N}} EV_{1_N}(z)$. Define $W_{1_N} = \overline{K}^2 \overline{\eta}(X_n)^2 + h_N^L \overline{V}_1$ and $\overline{W}_{1_N}^2 = N^{-1} \sum_{n=1}^N W_{1_N}^2$. Existence of $E\left[\overline{\eta}(X)^4\right]$ implies that $\overline{W}_{1_N}^2 = O_p(1)$. Take any $\overline{M} > 0$. Using Hoeffding's inequality and the fact that $\#\mathcal{A}_{1_N} < (2(z^*+1))^L N^{L/\varphi}$, S1-S3 yield $\Pr\left(\max_{z \in \mathcal{A}_{1_N}} |V_{1_N}(z) - EV_{1_N}(z)| > M\right) \le \sum_{z \in \mathcal{A}_{1_N}} \Pr\left(|V_{1_N}(z) - EV_{1_N}(z)| > M\right) < 2(2(z^*+1))^L N^{L/\varphi} \exp\left\{-\frac{1}{2}Nh_N^{2L}M^2\Big/\overline{W}_{1_N}^2\Big\}$. Let $a_{1_N} = \log(2) + L \cdot \log(2(z^*+1)) + (L/\varphi)\log(N)$. Take any $\varepsilon \in (0,1)$. Since $\overline{W}_{1_N}^2 = O_p(1)$, there exists \overline{N}_ε and $\Delta_\varepsilon > 0$ such that $\Pr\left(\overline{W}_{1_N}^2 > \Delta_\varepsilon\right) < \varepsilon/2$ for all $N > \overline{N}_\varepsilon$. Define $M_\varepsilon = \sqrt{2\Delta_\varepsilon(a_{1_{\overline{N}_\varepsilon}} - \log(\varepsilon/2))/\overline{N}_\varepsilon h_{N_\varepsilon}^{2L}}$. Since $Nh_N^{2L}/\log(N) \to \infty$, we have $a_{1_N} - \frac{1}{2}Nh_N^{2L}M_\varepsilon^2\Big/\Delta_\varepsilon < \log(\varepsilon/2) \ \forall N > \overline{N}_\varepsilon$. Therefore $\forall \varepsilon \in (0,1)$, $\exists M_\varepsilon$, \overline{N}_ε such that $\Pr\left(2(2(z^*+1))^L N^{L/\varphi} \exp\left\{-\frac{1}{2}Nh_N^{2L}M_\varepsilon^2\Big/\overline{W}_{1_N}^2\right\} > \varepsilon/2\right) < \varepsilon/2$. Then $\max_{z \in \mathcal{A}_{1_N}} V_{1_N}(z) = O_p(1)$ follows from Step 1 with $\mathcal{S}_N = \Pr\left(\max_{z \in \mathcal{A}_{1_N}} |V_{1_N}(z) - EV_{1_N}(z)| > M_\varepsilon\right)$ and $\mathcal{R}_N = 2(2(z^*+1))^L N^{L/\varphi} \exp\left\{-\frac{1}{2}Nh_N^{2L}M_\varepsilon^2\Big/\overline{W}_{1_N}^2\right\}$. The result $\max_{z \in \mathcal{A}_{1_N}} V_{2_N}(z) = O_p(1)$ follows more simply by noting that $\max_{z \in \mathcal{A}_{1_N}} V_{2_N}(z) \le \overline{K}N^{-1}\sum_{n=1}^N \overline{\eta}(X_n) = O_p(1)$. \square

Step 3 If Assumptions S1-S3 are satisfied, then there exists N' and \overline{R} such that for all N>N': $\sup_{\substack{z\in\mathcal{Z}\\\gamma\in\Gamma}} \left|ER_N(z,\gamma)-f_Z(z)\mu(z,\gamma)\right| \leq h_N^M\overline{R}.$

Proof: Take any $(z, \gamma) \in \mathcal{Z} \times \Gamma$. Given our assumptions, $\exists C > 0$ and $N' \in \mathbb{N}$ such that $\forall N > N'$, an M^{th} -order Taylor approximation yields

$$\sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} \left| ER_N(z,\gamma) - f_Z(z)\mu(z,\gamma) \right| \le C \frac{h_N^M}{M!} \left| \int \sum_{Q_M} \psi_1^{q_1} \cdots \psi_L^{q_L} K(\psi) d\psi \right|.$$

The result follows from the fact that $\int ||\psi||^M |K(\psi)| d\psi < \infty$.

Step 4
$$\sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} \left(N^{1-\delta} h_N^L \right)^{1/2} \left| R_N(z,\gamma) - E R_N(z,\gamma) \right| = O_p(1)$$
 for any $\delta > 0$.

Proof: Let z_{κ} and γ_{κ} be as defined prior to Step 1. The triangle inequality yields

$$\begin{aligned}
\left| R_{N}(z,\gamma) - ER_{N}(z,\gamma) \right| &\leq \left| R_{N}(z_{\kappa},\gamma_{\kappa}) - ER_{N}(z_{\kappa},\gamma_{\kappa}) \right| + \left| R_{N}(z,\gamma) - R_{N}(z_{\kappa},\gamma_{\kappa}) \right| \\
&+ \left| ER_{N}(z,\gamma) - ER_{N}(z_{\kappa},\gamma_{\kappa}) \right|.
\end{aligned} (A-1)$$

By S1-S3:
$$\sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} \left(N^{1-\delta} h_N^L \right)^{1/2} \left| R_N(z, \gamma) - R_N(z_\kappa, \gamma_\kappa) \right| \le c_k \left(N^{1+\delta} h_N^{L+2} \right)^{-1/2} \sum_{n=1}^N \overline{\eta}(X_n) / N + \sum_{n=1}^N \left(C_n (x_n) + C_n (x_n) \right)^{1/2} \left| R_N(z, \gamma) - R_N(z_\kappa, \gamma_\kappa) \right| \le c_k \left(N^{1+\delta} h_N^{L+2} \right)^{-1/2} \sum_{n=1}^N \overline{\eta}(X_n) / N + C_n (x_n) + C_n (x_n)$$

$$\overline{K}/(N^{1+\delta}h_N^L)^{-1/2} \left[L^{\varphi_1/2} \cdot \sum_{n=1}^N \overline{\eta}_1(X_n)/N + L^{\varphi_2/2} \cdot \sum_{n=1}^N \overline{\eta}_1(X_n)/N \right] = o_p(1)$$
. Step 3 yields

$$\sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} \left(N^{1-\delta} h_N^L \right)^{1/2} \left| ER_N(z,\gamma) - ER_N(z_\kappa,\gamma_\kappa) \right| \leq 2 \left(N^{1-\delta} h_N^{L+2M} \right)^{1/2} \overline{R} + \left(h_N^L / N^{1+\delta} \right)^{1/2} \cdot \left[\overline{f} c_1 + c_2 \right] = o(1).$$

Equation A-1 becomes

$$\sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} \left(N^{1-\delta} h_N^L \right)^{1/2} \left| R_N(z,\gamma) - ER_N(z,\gamma) \right| \leq \max_{\substack{z \in \mathcal{A}_{1_N} \\ \gamma \in \mathcal{A}_{2_N}}} \left(N^{1-\delta} h_N^L \right)^{1/2} \left| R_N(z,\gamma) - ER_N(z,\gamma) \right| + o_p(1).$$

Take any M > 0, then

$$\begin{split} \Pr\Big(\max_{\mathcal{A}_{1_N},\mathcal{A}_{2_N}} \left. \left(N^{1-\delta} h_N^L \right)^{1/2} \Big| R_N(z,\gamma) - E R_N(z,\gamma) \Big| \ > M \Big) \\ & \leq \sum_{\gamma \in \mathcal{A}_{2_N}} \sum_{z \in \mathcal{A}_{1_N}} \Pr\Big(\left. \left(N^{1-\delta} h_N^L \right)^{1/2} \Big| R_N(z,\gamma) - E R_N(z,\gamma) \Big| \ > M \Big). \end{split}$$

Let $V_N(z) = V_{1_N}(z) + 2(h_N^M \overline{R} + \overline{f} \overline{\mu})V_{2_N}(z) + h_N^L (h_N^M \overline{R} + \overline{f} \overline{\mu})^2$ and $V_N = \max_{z \in \mathcal{A}_{1_N}} V_N(z)$, where $V_{1_N}(z)$ and $V_{2_N}(z)$ are as in Step 2, $\overline{\mu} = \sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} |\mu(z, \gamma)|$ and \overline{f} , \overline{R} are as defined

above. Using Steps 1, 2 and Hoeffding's inequality, $\Pr\left(\left(N^{1-\delta}h_N^L\right)^{1/2}\Big|R_N(z,\gamma) - ER_N(z,\gamma)\Big| > M\right) \le \exp\left\{-\frac{1}{2}NM^2\left(N^{1-\delta}h_N^L\right)^{-1}\Big/\frac{V_N(z)}{h_N^L}\right\} = \exp\left\{-\frac{1}{2}N^\delta M^2\Big/V_N(z)\right\} \quad \forall \ z \in \mathcal{Z}, \gamma \in \Gamma \le \exp\left\{-\frac{1}{2}N^\delta M^2\Big/V_N\right\} \quad \forall \ z \in \mathcal{A}_{1_N}, \gamma \in \Gamma. \text{ Since } \mathcal{A}_{2_N} \subset \Gamma, \text{ this implies that}$

$$\Pr\left(\max_{\substack{z \in \mathcal{A}_{1_N} \\ \gamma \in \mathcal{A}_{2_N}}} \left(N^{1-\delta} h_N^L\right)^{1/2} \middle| R_N(z,\gamma) - ER_N(z,\gamma) \middle| > M\right) \le \sum_{\gamma \in \mathcal{A}_{2_N}} \sum_{z \in \mathcal{A}_{1_N}} \exp\left\{-\frac{1}{2} N^{\delta} M^2 \middle/ V_N\right\}
< (2(z^*+1))^L (2(\gamma^*+1))^D N^{(L+D)/\varphi} \exp\left\{-\frac{1}{2} N^{\delta} M^2 \middle/ V_N\right\},$$
(A-2)

where z^* and γ^* were defined above. From Step 2, we have $V_N = O_p(1)$. Complete the proof by invoking the result of Step 1 and the same arguments as in Step 2, defining a_N and M_{ε} in the same fashion and letting $\mathcal{S}_N = \Pr\left(\max_{z \in \mathcal{A}_{1_N}} \left(N^{1-\delta}h_N^L\right)^{1/2} \Big| R_N(z,\gamma) - ER_N(z,\gamma) \Big| > M_{\varepsilon}\right)$ and $\gamma \in \mathcal{A}_{2_N}$

$$\mathcal{R}_{N} = (2(z^{*}+1))^{L} (2(\gamma^{*}+1))^{D} N^{(L+D)/\varphi} \exp\left\{-\frac{1}{2}N^{\delta}M^{2}/V_{N}\right\}. \ \Box$$

Step 5
$$\sup_{\substack{z \in \mathcal{Z} \\ \gamma \in \Gamma}} \left(N^{1-\delta} h_N^L \right)^{1/2} \left| R_N(z,\gamma) - f_Z(z) \mu(z,\gamma) \right| = O_p(1) \text{ for any } \delta > 0.$$

Proof: Follows immediately from Steps 3, 4 and the bandwidth condition $Nh_N^{2M} \to 0$. \square

Step 6 (final step) Using Step 4, $\sup_{z\in\mathcal{Z}} (N^{1-\delta}h_N^L)^{1/2} |\widehat{f}_{Z_N}(z) - f_Z(z)| = O_p(1)$ for any $\delta > 0$. Take any $z \in \mathcal{Z}, \ \gamma \in \Gamma$. Consider the second-order approximation

$$\begin{split} &\mu_{N}(z,\gamma)-\mu(z,\gamma) = \frac{1}{f_{Z}(z)} \big[R_{N}(z,\gamma)-f_{Z}(z)\mu(z,\gamma)\big] - \frac{\mu(z,\gamma)}{f_{Z}(z)} \big[\widehat{f}_{Z_{N}}(z)-f_{Z}(z)\big] \\ &+\frac{1}{2} \big[R_{N}(z,\gamma)-f_{Z}(z)\mu(z,\gamma) \ , \ \widehat{f}_{Z_{N}}(z)-f_{Z}(z)\big] \underbrace{\begin{bmatrix} 0 & \frac{-1}{\widetilde{f}_{Z_{N}}(z)^{2}} \\ \frac{-1}{\widetilde{f}_{Z_{N}}(z)^{2}} & \frac{2\widetilde{R}_{N}(z,\gamma)}{\widetilde{f}_{Z_{N}}(z)^{3}} \end{bmatrix}}_{\equiv \widetilde{H}_{N}(z,\gamma)} \begin{bmatrix} R_{N}(z,\gamma)-f_{Z}(z)\mu(z,\gamma) \\ \widehat{f}_{Z_{N}}(z)-f_{Z}(z) \end{bmatrix}, \end{split}$$

with $\widetilde{f}_{Z_N}(z)$ between $f_N(z)$ and $f_Z(z)$, and $\widetilde{R}_N(z,\gamma)$ between $R_N(z,\gamma)$ and $f_Z(z)\mu(z,\gamma)$. Using Step 5 and the characteristics of $\mathcal Z$ we get $\sup_{\substack{z\in\mathcal Z\\\gamma\in\Gamma}} \big\|\widetilde{H}_N(z,\gamma)\big\| = O_p(1)$. Given this, the result of Theorem A-1 follows immediately from Step 5. \square