Below is a concise walkthrough of how that slide (and its scribbled notes) derive the circuit for a 3-bit input $(X_2X_1X_0)$ whose 3-bit 2's-complement output $(Y_2Y_1Y_0)$ equals "input 2."

1. Truth Table Construction

Because the input is only 3 bits (0 through 7 in decimal), you list each input and compute (input -2) in 3-bit 2's-complement:

Decimal Input	$X_2X_1X_0$	(input - 2) in decimal	(input - 2) in 3-bit 2's-comp	$Y_2Y_1Y_0$
0	000	-2	110	110
1	001	-1	111	111
2	010	0	000	000
3	011	1	001	001
4	100	2	010	010
5	101	3	011	011
6	110	4	100	100
7	111	5	101	101

From this table:

- $Y_2 = 1$ for input decimal $\{0, 1, 6, 7\}$
- $Y_1 = 1$ for input decimal $\{0, 1, 4, 5\}$
- $Y_0 = 1$ for input decimal $\{1, 3, 5, 7\}$

2. Setting Up the K-Maps

A Karnaugh map for 3 inputs can be arranged in a 2×4 or 4×2 grid. A common layout is:

- Columns labeled by (X_2, X_1) in Gray code: 00, 01, 11, 10
- Rows labeled by $X_0 = 0$ and $X_0 = 1$

You create three separate K-maps, one for each output bit Y_2, Y_1, Y_0 . Below is a conceptual sketch for Y_2 . The same grid pattern is repeated for Y_1 and Y_0 .

(a) K-Map for Y_2

- Mark a 1 in the cells corresponding to $(X_2X_1X_0)$ in $\{000, 001, 110, 111\}$.
- Notice that these cells form two 2×1 vertical "blocks" that combine to a larger grouping if your K-map arrangement is standard.
- The minimal Sum of Products (SOP) from that grouping is:

$$Y_2 = (X_2'X_1') + (X_2X_1).$$

Equivalently, $Y_2=1$ when X_2 and X_1 are equal—often called the "equivalence" function $X_2\leftrightarrow X_1$.

(b) K-Map for Y_1

- From the truth table, Y_1 is 1 for $\{000, 001, 100, 101\}$.
- All of those have $X_1 = 0$, so the simplified form is:

$$Y_1 = X_1' = \neg X_1.$$

(c) K-Map for Y_0

- From the truth table, Y_0 is 1 for $\{1, 3, 5, 7\}$ in decimal, i.e., whenever $X_0 = 1$.
- So, immediately:

$$Y_0 = X_0$$
.

3. Final Expressions

Putting it all together, the final minimal SOP expressions for "input -2" in 3-bit 2's-complement are:

$$Y_2 = X'_2 X'_1 + X_2 X_1,$$

 $Y_1 = X'_1,$
 $Y_0 = X_0.$

These three outputs correctly yield (input 2) for any 3-bit input $X_2X_1X_0$.

Key Takeaways

- 1. **Truth Table**: Enumerate all inputs (0–7), then subtract 2 in 3-bit 2's-complement.
- 2. **K-Maps**:
 - Each output bit gets its own 3-input K-map.
 - Label in Gray code so adjacent cells differ by only one bit.
- 3. Simplification:
 - Identify the largest adjacent groupings of 1-cells in each K-map.
 - The resulting minimal SOP reveals the neat patterns:
 - $-Y_2$ is an equivalence function of (X_2, X_1) .
 - $-Y_1$ is simply $\neg X_1$.
 - $-Y_0$ is simply X_0 .

Hence, the scribbles you see on the slide show how to fill the K-maps (grouping 1-cells) and arrive at those nicely reduced Boolean expressions.