Contents

Vectors

	Interpretations of Vectors	2
	Vector Multiplication	2
	Vector Space	3
Int	rocution to Matrices	
	Terminology and Dimensionality	5
	Basic Matrix Arithmetic	6
Ma	trix Multiplications	
	Standard Matrix Multiplication	8
	Diagonal Matrix Multiplication	8
	Order of Operations	8
	Matrix-Vector Multiplication	9
	Additive and Multiplicative Matrix Identities	9

1 Vectors

Interpretations of Vectors

- ▶ Vector: an ordered list of numbers.
- \triangleright Possible notations: $\vec{v} = v$ are most common.
- Dimensionality: the number of the elements in a vector.
- ▶ **Geometric vector**: an object with a magnitude and direction.
- ► Standard position: when the vector beings at the origin.
- ▶ Vectors must have same dimensionality for addition and subtraction.
- ho **Unit vector**: a vector with a norm (length) of 1. Notation: $\hat{u} = \frac{u}{|u|}$

Vector Multiplication

- ▶ Scalar: scales each element in a vector, does not change direction. Generally represented with greek letters.
- ▶ **Dot product**: a single number that provides information about the relationship between two vectors. Must have same dimensionality.
- ho Notation for dot product: $a \cdot b = a^T b = \langle ab \rangle = \sum a_i b_i$
- > Algebraic dot product properties:
 - \circ Associative: $a^{\mathsf{T}}(b^{\mathsf{T}}c)
 eq (a^{\mathsf{T}}b)^{\mathsf{T}}c$
 - \circ Distributive: $oldsymbol{a}^{ au}(oldsymbol{b}+oldsymbol{c})=oldsymbol{a}^{ au}oldsymbol{b}+oldsymbol{a}^{ au}oldsymbol{c}$
 - \circ Commutative: $oldsymbol{a}^{\mathsf{T}}oldsymbol{b} = oldsymbol{b}^{\mathsf{T}}oldsymbol{a}$
 - \circ Vector magnitude/length: $\|oldsymbol{v}\| = \sqrt{oldsymbol{v}^Toldsymbol{v}}$
- ▶ Geometric dot product properties:
 - Magnitudes of vectors scaled by angle between them. i.e. $\vec{a} = |a||b|\cos(\theta_{ab})$
 - o Geometric and algebraic are really the same. The above equation can be rewritten as the algebraic vector length, i.e. $a^Tb = \cos(\theta_{ab})|a||b|$
- \triangleright Dot product features based on θ :
 - \circ If $\cos(\theta) > 0$ then $\alpha > 0$
 - \circ If $\cos(\theta) < 0$ then $\alpha < 0$
 - \circ If $\cos(\theta) = 0$ then $\alpha = 0$; termed **Orthogonal**
 - \circ If $\cos(\theta) = 1$ then $\alpha = |a||b|$

- ▶ Hadamard vector multiplication: elementwise multiplication of two vectors of equal dimensionality.
- ▶ **Outer product**: $vw^T = n \times m$; a matrix resulting from the product of vectors with dimensions n and m.
- ▶ **Cross product**: defined only between two 3D vectors; produces another 3D vector that is perpendicular to both original vectors, or normal, to the plane containing them.
- ▷ Complex conjugate: the inverse sign of imaginary component of a number.
- ▶ **Hermitian transpose**: or conjugate transpose, a transpose of a vector or matrix containing imaginary numbers using the complex conjugate.
- ightharpoonup Notation for Hermitian transpose on a matrix: M^H or M^*

Vector Space

- ▶ **Dimension**: in linear algebra dimension represents a new element of infomation about a vector. Geometrically, each dimension represent a new direction.
- ▶ **Fields**: a set of numbers on which a set of arithmetic are valid.
- ▶ Field notations:
 - ∘ R: real numbers.
 - ℂ: complex numbers.
 - ∘ K: real complex numbers.
 - $\circ \mathbb{Z}$: integers.
 - N: poisite integers.
 - Q: rational numbers.
 - \circ Dimensionality in fields is written with superscripts, e.g. \mathbb{R}^N
- ▶ **Subspace**: The set of all vectors that can be created by a linear combination of some vectors or a set of vectors, i.e. λv , $\lambda \in \mathbb{R}$
 - \circ More formal definition: a vector subspace (V) must be closed under addition and scalar multiplication, and must contain the zero vector.
 - $\circ \ \forall v, w \in V; \ \forall \lambda, \alpha \in \mathbb{R}; \ \lambda v + \alpha w \in V$
 - Geometric: all possible scaled versions of vector produces a line for a single vector, and a 2d plane between two linear independent vectors.
- ▶ **Subset**: a set of points that satisfies some conditions; doesn't need to include toe origin, doesn't need to be closed, and can have boundaries.

- ▶ **Span**: all possible linear combinations of vectors within a subspace.
- ▶ **Linear Independence**: a property of an entire set of vectors that is true only if no vector in the set can be written as a linear combination of the others.
 - Geometric perspective: a set of M vectors is independent if each vector points in a geometric dimension not reachable using other vectors in the set.
 - Any set of M > N vectors in \mathbb{R}^N is dependent.
 - Any set of $M \leq N$ vectors in \mathbb{R}^N could be independent.
- ▶ **Basis**: a combination of span and independence. More formally: if every element of a vector space *V* over a field is a linearly independent subset of *V* that spans *V*.

2 Introcution to Matrices

Terminology and Dimensionality

- ▶ Matrix notation:
 - **M** for reference to entire matrix.
 - \circ m_{M,N} represents an individual element in a matrix.
 - **Block matrix**: a matrix that includes matrices itself; useful for matrices with higher level structure and can have computational benifits. e.g:

$$M = \begin{bmatrix} D & \mathbf{0} \\ 1 & D \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 1 & 1 & 3 & 0 \\ 1 & 1 & 0 & 4 \end{bmatrix}$$

- Diagonal: the diagonal elements of a matrix going form top left to bottom right.
 - Off-diagonal: elements not in the diagonal elements.
 - Works for nonsquare matrices.
- Rows (M) first, then (N) columns when describing matrices.
- o **Dimensionality**: more open to interpretations:
 - $-\mathbb{R}^{MN}$: simply the product, or total number of elements.
 - $\mathbb{R}^{M\times N}$: more explicit, not the product. $M\times N$ could be different from $N\times M$
 - $C(M) \in \mathbb{R}^M$: column space that is the collection of column vectors.
 - C(M) ∈ \mathbb{R}^N : row space that is the collection of row vectors.
 - Ambiguity opens up flexibility, but makes terminology more context dependent.
- Tensor: higher dimensional cubes, won't be discussed much in early linear algebra.
- > Types of common matrices:
 - \circ Square: $M \times M$
 - **Symmetric**: a square matrix that is symmetric across the diagonal.
 - Skew-symmetric: diagonal must be zero, and numbers must mirror signs across diagonal.

- Identity: square matrix with 1s across the diagonal and zeros everywhere elses.
 - · Notation: I_x .
 - · x indicates size of matrix; no subscript means it is relevent size to matrix it is being applied to.
- Rectangular: non-square, $M \times N$
- Zero: matrix consisting of only zeros.
- o Diagonal: all off diagonal elements are zero.
 - Identity matrix is a special case of diagonal.
- Triangular:
 - Upper: all elements below diagonal are zero.
 - Lower: all elements above diagonal are zero.
- Concatenated: two matrices with same number of rows concatenated.
 Often a line is placed in the product matrix to indicate concatenation point.

Basic Matrix Arithmetic

- ▶ Addition/subtraction is defined only for two matrices with same number of elements.
 - Simply a-dd/subtract corresponding elements.
 - \circ Commutative: $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
 - Associative: $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$

⊳ Shifting:

- Adding a scaled version of identity matrix.
- o Formula: $\mathbf{A} + \lambda \mathbf{I} = \mathbf{C}$
- o Geometrically infats matrix, pushing it towards a sphere.
- Tends to regularize the matrix.

> Matrix-Scalar multiplication:

- o Elementwise multiplication by the scalar.
- \circ Commutative: $\delta MA = M\delta A = MA\delta$
- \circ Distributive: $\delta(MA) = \delta M + \delta A$
- Distributive nature makes it a linear opperation.

6

▶ Matrix transpose:

$$\circ (\mathbf{A}^{M \times N})^T = \mathbf{A}^{N \times M}$$

o First column becomes first row, and vice versa.

$$\circ \mathbf{A}^{TT} = \mathbf{A}$$

• Symmetric: $\mathbf{A} = \mathbf{A}^T$

• Skew-symmetric: $\mathbf{A} = -\mathbf{A}^T$

- ▶ Complex matrices: similar to vectors, a matrix containing at least one non-zero imaginary component.
 - Hermitian transpose only changes the sign (the conjugate) of the complex parts, not the real numbers.
- ▶ **Diagonal and trace**: extracts the diagonal as a vector.
 - o Defined both for square and rectangular.
 - Not the same as diagonalizing a matrix.
 - **Trace**: the sum of the vector extracted from a matrix and is defined only for square matrices.
 - ∘ Diagonal formula: $\mathbf{v}_i = \mathbf{A}_{i,i}$ $i = \{1, 2, ..., min(m, n)\}$
 - Trace formula: $tr(\mathbf{A}) = \sum \mathbf{A}_{i,i}$
- ▶ **Broadcasting**: expand, or repeat, a vector until traditional arithmetic is valid between a matrix and the vector.

3 Matrix Multiplications

Standard Matrix Multiplication

- > Order of multiplication often matters and is generally not communitive.
 - \circ i.e. $AB \neq BA$.
- ▶ Rules for validity:
 - Multiplication is valid only when the inner dimensions match.
 - Resulting matrix size corresponds to the outer dimensions.
 - \circ i.e. $\mathbf{M} \times \mathbf{N} \cdot \mathbf{N} \times \mathbf{K} = \mathbf{M} \times \mathbf{K}$
- ▶ Methods of multiplication:
 - **Element perspective**: an order collection of dot products; each element is a dot product between rows of the left and columns of the right matrix.
 - **Layer perspective**: outer products summed between columns of the left matrix and rows of the right matrix.
 - or the sum of rank 1 matrices.
 - **Column perspective**: columns of the left matrix scaled then summed by the elements of the right matrix to make a column in the product matrix.
 - or a *linear weighted combination* of the columns in the left, weighted by the columns in the right.
 - **Rows perspective**: rows of the left matrix scales the rows of right matrix then summed to make a row in the product matrix.

Diagonal Matrix Multiplication

- \triangleright **AD** \rightarrow Post-multiplying by a diagonal.
- \triangleright **DA** \rightarrow Pre-multiplying by a diagonal.
- ▶ Post-multiplication results in the dense matrix's columns being weighted by the diagonal elements, while pre-multiplation scales the rows.

Order of Operations

$$\triangleright (\mathbf{LIVE})^T = \mathbf{E}^T \mathbf{V}^T \mathbf{I}^T \mathbf{L}^T$$

▶ Matrices multiplied then transposed is equal to the same matrices transposed then multiplied in reverse direction.

Matrix-Vector Multiplication

- ▶ The result is always vector when multiplying by a matrix by a vector.
- ▶ The product vector always has the same orientation as the intput vector.
- ▶ The length of the vector is determined by the length of the matrix.
- ightharpoonup Aw ightharpoonup a weighted combination of the columns of A.
- \triangleright **w**^T**A** \rightarrow a weighted combination of the rows of **A**.
- > Symmetric matrices have the same result.

Additive and Multiplicative Matrix Identities

> Pre or post multiplication of an identity matrix gives you the same matrix, i.e.

$$AI = IA = A$$

- This is the multiplicative indentity, which is often just called the identity matrix.
- ▷ Adding a zeros matrix is the additive identity, i.e. A + 0 = A
- ▶ Methods of creating symmetric matrices from non-symmetric matrices:
 - Additive method: $\mathbf{S} = (\mathbf{A} + \mathbf{A}^T)/2$
 - Works only if **A** is a square matrix.
 - o Multiplicative method:
 - $-\mathbf{A}^T\mathbf{A}=\mathbf{S}$ that is $n\times n$
 - $-\mathbf{AA}^T = \mathbf{S}$ that is $m \times m$
 - Always produces a symmetric square matrix.