Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2016-2017

Mathematical Analysis Seminar 7

- 1. Let $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$. Find the second Taylor polynomial $T_2(x)$ of f at 0 and the remainder term $R_2(x)$ of the corresponding Taylor's formula in Lagrange's form. Deduce that $1 \frac{x^2}{2} \le \cos x$ for all $x \in \mathbb{R}$.
- **2.** For each function $f: \mathbb{R} \to \mathbb{R}$ given below check that f'(0) = 0 and find the smallest number $n \in \mathbb{N}$ such that $f^{(n)}(0) \neq 0$. Then, deduce whether 0 is a local extremum point of f or not; in the affirmative, specify if 0 is a global extremum point or just a local one.

a)
$$f(x) = e^x + e^{-x} - x^2$$
; b) $f(x) = \cos(x^2)$; c) $f(x) = 6\sin x - 6x + x^3$.

- **3.** Let $f:(-1,\infty)\to\mathbb{R}$, $f(x)=\ln(x+1)$. Show that f can be expanded as a Taylor series around 0 on [0,1] and find the corresponding Taylor series expansion.
- **4.** Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \le 0\\ e^{-1/x} & \text{if } x > 0 \end{cases}$$

is infinitely differentiable, but f is not expandable as a Taylor series around 0 on any neighborhood of 0. Find all global extremum points of f.

5. Find the radius of convergence and the convergence set for each of the following power series:

a)
$$\sum_{n\geq 1} (x-e)^n$$
; b) $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}} (x+1)^n$; c) $\sum_{n\geq 1} \frac{1}{(2n)!!} x^n$; d) $\sum_{n\geq 1} (2n+1)!! x^n$.

6. Compute the following limits as Riemann integrals:

a)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right);$$
 b) $\lim_{n \to \infty} \frac{\sqrt[n]{e} + 2\sqrt[n]{e^2} + \dots + n\sqrt[n]{e^n}}{n^2}.$

7. Compute the improper integrals:

a)
$$\int_0^1 \frac{1}{x} dx$$
; b) $\int_1^2 \frac{1}{x(x-2)}$; c) $\int_{-\infty}^0 x e^{-x^2} dx$; d) $\int_0^{+\infty} e^{-x} \sin x dx$.

1