CS 421: Design and Analysis of Algorithms

Chapter 3: Growth of Functions

Dr. Gaby DagherDepartment of Computer Science

Boise State University

January 20, 2022

Content of this Chapter

Asymptotic notations:

- **>** Θ−notation
- O-notation
- Ω-notation
- Other notations
- Comparing functions
- Comparing Growth Rates Using Limits

Asymptotic Efficiency

• When we look at input sizes large enough to make only the <u>order of growth</u> of the running time relevant, we are studying the <u>asymptotic</u> efficiency of algorithms.

We write $f(n) = \Theta(g(n))$ if there exist constants $c_1, c_2, n_0 > 0$ such that: $0 \le c_1.g(n) \le f(n) \le c_2.g(n)$ for all $n \ge n_0$

- $f(n) \in \Theta(g(n))$
- g(n) is an asymptotically tight bound for f(n)

Example #1:

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

True/False?

EXAMPLE #2:

$$n^3 = \Theta(n^2)$$

True/False?

EXAMPLE #3:

$$n^3 + 4n - 6 = \Theta(n^3)$$
 True/False?

Note#1: Often, c_1 and/or c_2 are less than 1.

Note#2: If f(n) is polynomial and the coefficients of f(n) are all positive, then:

- c_1 = the coefficient of the highest order term in f(n)
- c_2 = the sum of all coefficients of f(n)
- $n_0 = 1$

EXAMPLE:
$$n^3 + 4n + 6 = \Theta(n^3)$$

Content of this Chapter

Asymptotic notations:

- Θ-notation
- > O-notation
- Ω-notation
- Other notations
- Comparing functions
- Comparing Growth Rates Using Limits

O-notation (upper bounds)

O-notation (upper bounds)

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that: $0 \le f(n) \le c.g(n)$ for all $n \ge n_0$

- $f(n) \in O(g(n))$
- g(n) is an asymptotic upper bound for f(n)

O-notation (upper bounds)

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$

Rule: If $a \le b$ then $n^a \le n^b$: $n \ge 1$.

Strategy: sometimes, c could be the sum of the *positive* coefficients of f(n).

Example:
$$n^2 + 4 = O(n^2)$$
 $(c = 5, n_0 = 1)$
 $n^2 - 3n + 4 = O(n^2)$ $(c = ?, n_0 = ?)$

Θ and O notations

- O-notation describes an upper bound.
- When O-notation is used to bound the <u>worst-case</u> running time of an algorithm, we have a *blanket statement* (for every input).
- Example: Insertion Sort
 - $O(n^2)$ bound on worst-case running time. *Is it a blanket statement?*
 - Yes, because it applies to its running time on every input.
 - $\Theta(n^2)$ bound on worst-case running time. *Is it a blanket statement?*
 - No, because it does not apply to its running time on every input. More specifically, when the input is already sorted, insertion sort runs in $\Theta(n)$ time.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example:
$$f(n) = n^3 + O(n^2)$$

means
$$f(n) = n^3 + h(n)$$
for some $h(n) \in O(n^2)$.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

```
EXAMPLE: n^2 + O(n) = O(n^2) means for any f(n) \in O(n): n^2 + f(n) = h(n) for some h(n) \in O(n^2).
```

Content of this Chapter

Asymptotic notations:

- Θ-notation
- O-notation
- $\triangleright \Omega$ -notation
- Other notations
- Comparing functions
- Comparing Growth Rates Using Limits


```
\Omega(g(n)) = \{f(n) : \text{there exist constants} \ c > 0, \, n_0 > 0 \text{ such that:} \ 0 \le c.g(n) \le f(n) \text{ for all } n \ge n_0
```

- $f(n) = \Omega(g(n))$ (no qualifier), means a *lower bound on the best-case* running time of f(n).
- For example:
 - The best-case running time of insertion sort is $\Omega(n)$.
 - This implies that the running time of insertion sort is $\Omega(n)$.
- However:
 - Insertion sort is not $\Omega(n^2)$, since there exists an input for which it runs in $\Omega(n)$ time (e.g., input is already sorted).
 - Insertion sort is *worst-case* $\Omega(n^2)$, since there exists an input for which it runs in $\Omega(n^2)$ time (e.g., input is sorted in reverse order).

Example:
$$n^3 + 3n^2 = \Omega(n^2)$$
 $(c = ?, n_0 = ?)$ Solution:

$$0 \le c.g(n) \le f(n) \Rightarrow c.n^2 \le n^3 + 3n^2$$
$$\Rightarrow c \le n + 3$$

$$\rightarrow c = 1$$
 and $n_0 = 1$

EXAMPLE:
$$\sqrt{n} = \Omega(\lg n)$$
 $(c = ?, n_0 = ?)$

Solution:

$$0 \le c.g(n) \le f(n) \rightarrow c.lg(n) \le n^{1/2}$$
$$\rightarrow c \le n^{1/2}/lg(n)$$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
SQRT(n)	1	1.414	1.732	2	2.236	2.449	2.646	2.828	3	3.162	3.317	3.464	3.606	3.742	3.873	4	4.123	4.243	4.359	4.472
lg n	0	1	1.585	2	2.322	2.585	2.807	3	3.17	3.322	3.459	3.585	3.7	3.807	3.907	4	4.087	4.17	4.248	4.322
SQRT(n) / lg n	#####	1.414	1.093	1	0.963	0.948	0.942	0.943	0.946	0.952	0.959	0.966	0.974	0.983	0.991	1	1.009	1.017	1.026	1.035

$$\rightarrow c = 1$$
 and $n_0 = 16$

EXAMPLE: $n \lg n - 2n + 11 = \Omega(n \lg n)$

Solution:

Observe that: $n \lg n - 2n \le n \lg n - 2n + 11 \rightarrow$ we will consider $f(n) = n \lg n - 2n$ going forward.

$$0 \le c.g(n) \le f(n) \rightarrow c.n \lg n \le n \lg n - 2n$$
$$\rightarrow c \le 1 - 2/\lg n$$

If
$$n = 5 \rightarrow 1 - 2/\lg n = 0.861$$

→
$$c = 0.5$$
 and $n_0 = 5$

Θ , O, Ω notations

$$f(n) = \Theta(g(n)) \rightarrow f(n) = O(g(n))$$

 $\Theta(g(n)) \subseteq O(g(n))$

$$f(n) = \Theta(g(n)) \rightarrow f(n) = \Omega(g(n))$$

$$\Theta(g(n)) \subseteq \Omega(g(n))$$

$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

Content of this Chapter

Asymptotic notations:

- Θ-notation
- O-notation
- Ω -notation

Other notations

- Comparing functions
- Comparing Growth Rates Using Limits

o-notation

O-notation and Ω -notation are like \leq and \geq . o-notation and ω -notation are like \leq and \geq .

$$o(g(n)) = \{f(n) : \text{for } \underline{any} \ c > 0 \text{, there is a}$$
 $constant \ n_0 > 0 \text{ such that}$
 $0 \le f(n) < c.g(n) \text{ for all } n \ge n_0$

Example:
$$2n^2 = o(n^3)$$
 $(n_0 = ?)$
Answer: $n_0 > 2/c$ e.g. $n_0 = [1 + 2/c]$

ω-notation

O-notation and Ω -notation are like \leq and \geq . o-notation and ω -notation are like \leq and \geq .

$$\omega(g(n)) = \{f(n) : \text{for } \underline{any} \ c > 0 \text{, there is a}$$

$$\operatorname{constant} n_0 > 0 \text{ such that}$$

$$0 \le c.g(n) < f(n) \text{ for all } n \ge n_0$$

Content of this Chapter

Asymptotic notations:

- Θ-notation
- O-notation
- Ω -notation
- Other notations
- Comparing functions
- Comparing Growth Rates Using Limits

Comparing Functions

Transitivity:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$, $f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$, $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$, $f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$, $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$.

Reflexivity:

$$f(n) = \Theta(f(n)),$$

$$f(n) = O(f(n)),$$

$$f(n) = \Omega(f(n)).$$

Comparing Functions

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Comparing Functions

Comparison of two functions *f* and g and the comparison of two real numbers *a* and *b*:

$$f(n) = O(g(n))$$
 is like $a \le b$,
 $f(n) = \Omega(g(n))$ is like $a \ge b$,
 $f(n) = \Theta(g(n))$ is like $a = b$,
 $f(n) = o(g(n))$ is like $a < b$,
 $f(n) = \omega(g(n))$ is like $a > b$.

Analogy does not apply:

Trichotomy: For any two real numbers a and b, exactly one of the following must hold: a < b, a = b, or a > b.

Growth of Common Functions

Class	Name	Examples
1	Constant	Only used in best-case efficiencies.
log n	logarithmic	Result of cutting problem size by a constant factor, like Binary Search
n	linear	Algorithms that scan a list of size <i>n</i> , like Sequential, or Linear, Search
n log n	n-log-n	Divide-and-Conquer algorithms, like Merge Sort and Quick Sort
n^2	quadratic	Efficiencies with two embedded loops, Bubble Sort and Insertion Sort
n ³	cubic	Efficiencies with three embedded loops, like many linear algebra algorithms
2 ⁿ	exponential	Algorithms that generate all sub-sets of an <i>n</i> -element set
n!	factorial	Algorithms that generate all permutations of an <i>n</i> -element set

Growth of Common Functions

Content of this Chapter

Asymptotic notations:

- Θ–notation
- O-notation
- Ω -notation
- Other notations
- Comparing functions
- Comparing Growth Rates Using Limits

Case I:
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

- f(n) has smaller growth rate than g(n)
- $f(n) = o(g(n)) \rightarrow f(n) = o(g(n))$

Case II:
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

- f(n) has <u>larger</u> growth rate than g(n)
- $f(n) = \omega(g(n)) \rightarrow f(n) = \Omega(g(n))$

Case III:
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$
 (constant)

- f(n) has same growth rate as g(n)
- $f(n) = \Theta(g(n)) \rightarrow f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

EXAMPLE:
$$5n^2 - 2n + 8 \stackrel{?}{=} O(n^2)$$

Solution:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{5n^2 - 2n + 8}{n^2}$$

$$= \lim_{n \to \infty} 5 + \lim_{n \to \infty} \frac{-2}{n} + \lim_{n \to \infty} \frac{8}{n^2} = 5 \quad \text{Case III}$$

$$\implies 5n^2 - 2n + 8 = \Theta(n^2) \implies 5n^2 - 2n + 8 = O(n^2)$$

EXAMPLE:
$$n \log n \stackrel{?}{=} \Theta(n^2)$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n \log n}{n^2} = \lim_{n\to\infty} \frac{\log n}{n} = \frac{\infty}{\infty}$$
 Undefined!

Recall that:
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$
 (L'Hôpital's rule)

$$\Rightarrow \lim_{n \to \infty} \frac{\log n}{n} = \lim_{n \to \infty} \frac{1/(n \cdot \ln 10)}{1} = \lim_{n \to \infty} \frac{1}{n \cdot \ln 10} = 0$$

$$\frac{d}{dn}\log_a n = \frac{1}{n\ln a}$$

$$\Rightarrow$$
 Case I \Rightarrow $n \log n = o(n^2) \Rightarrow n \log n \neq \Theta(n^2)$

EXAMPLE:
$$n^3 + 3n^2 - 5n - 1 \stackrel{?}{=} \Omega(n)$$

Solution:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^3 + 3n^2 - 5n - 1}{n}$$

$$= \lim_{n \to \infty} n^2 + \lim_{n \to \infty} 3n + \lim_{n \to \infty} -5 + \lim_{n \to \infty} \frac{-1}{n} = \infty \text{ Case II}$$

$$\implies n^3 + 3n^2 - 5n - 1 = \omega(n) \implies n^3 + 3n^2 - 5n - 1 = \Omega(n)$$