

## 厦门大学《微积分 1-2》课程期末试卷

考试日期: 2016 信息学院自律督导部整理

- 一、计算下列各题: (每小题 5 分, 共 10 分)
- (1) 考察级数  $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n}\right)^{n^2}$  的收敛性。
- (2) 将函数  $\frac{1}{(3-x)^2}$  展开成x 的幂级数, 并指出其收敛域.
- 二、计算下列各题: (每小题 5 分, 共 10 分)
- (1) 计算曲线积分  $\int_{\Gamma} \frac{-y dx + x dy + dz}{x^2 + y^2 + z^2}$ , 其中 $\Gamma$ 为曲线  $x = e^t \cos t$ ,  $y = e^t \sin t$ ,  $z = e^t \bot$  对应于t 从0到2的一段弧.
- (2) 计算 $\oint_I (2|x|+y) ds$ , 其中L为圆周 $x^2 + y^2 = 4$ .
- 三、计算  $\iint_{\Sigma} (x+y+z) dS$ , 其中  $\Sigma$  是曲面  $x^2+y^2+z^2=a^2(a>0)$  在  $z\geq 0$  的部分.

四、计算  $\iint_{\Sigma} y(x-z) dydz + x^2 dzdx + (y^2 + xz) dxdy$  , 其中  $\Sigma$  是正立方体  $\Omega$ :

 $0 \le x \le a$ ,  $0 \le y \le a$ ,  $0 \le z \le a$ 的表面取外侧. (8分)

五、求由曲面  $z = \sqrt{5 - x^2 - y^2}$  及  $x^2 + y^2 = 4z$  所围成的立体图形的体积. (8分)

六、讨论级数 
$$\sum_{n=1}^{\infty} (-1)^n [\sqrt{n+1} - \sqrt{n}]$$
 的收敛性. (10 分)

七、求无穷级数  $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n(n+1)}$  的和函数 S(x) ,指出其收敛域,并计算  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$  . (10 分)

八、计算 $\oint_L \frac{x+y}{x^2+y^2} dx + \frac{y-x}{x^2+y^2} dy$ , L 为椭圆曲线 $\frac{(x-a)^2}{4} + (y-a)^2 = 1$  取正向, 其中参数 a 满足 a > 0 且  $a \neq \frac{2\sqrt{5}}{5}$ .

九、展开函数  $f(x) = |x|(-\pi < x < \pi)$  为傅里叶级数,并求  $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$  与  $\sum_{n=1}^{\infty} \frac{1}{(2n)^2}$  的值. (10 分)

十、 计算  $\iint_{\Sigma} yz dy dz + xz dz dx + dx dy$  , 其中  $\Sigma$  是抛物面  $z = 1 - x^2 - y^2$  在第一卦限部分,方向取下侧. (8分)

十一、设
$$u_n = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot^n x dx$$
,(1)求级数  $\sum_{n=1}^{\infty} \frac{1}{n} (u_n + u_{n+2})$  的值;(2) 证明:对任意参数  $\lambda > 0$ ,级数  $\sum_{n=1}^{\infty} \frac{u_n}{n^{\lambda}}$  收敛.