ColumbiaX: Machine Learning Lecture 5

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

BAYESIAN LINEAR REGRESSION

Model

Have vector $y \in \mathbb{R}^n$ and covariates matrix $X \in \mathbb{R}^{n \times d}$. The *i*th row of y and X correspond to the *i*th observation (y_i, x_i) .

In a Bayesian setting, we model this data as:

Likelihood:
$$y \sim N(Xw, \sigma^2 I)$$

$$\mathbf{Prior}: \quad w \sim N(0, \lambda^{-1}I)$$

The unknown model variable is $w \in \mathbb{R}^d$.

- ► The "likelihood model" says how well the observed data agrees with w.
- ► The "model prior" is our prior belief (or constraints) on w.

This is called Bayesian linear regression because we have defined a prior on the unknown parameter and will try to learn its posterior.

REVIEW: MAXIMUM A POSTERIORI INFERENCE

MAP solution

MAP inference returns the maximum of the log joint likelihood.

Joint Likelihood:
$$p(y, w|X) = p(y|w, X)p(w)$$

Using Bayes rule that this point also maximizes the *posterior* of w.

$$\begin{split} w_{\text{MAP}} &= & \arg\max_{w} & \ln p(w|y,X) \\ &= & \arg\max_{w} & \ln p(y|w,X) + \ln p(w) \\ &= & \arg\max_{w} & -\frac{1}{2\sigma^{2}}(y-Xw)^{T}(y-Xw) - \frac{\lambda}{2}w^{T}w + \text{const.} \end{split}$$

We saw that this solution for W_{MAP} is the same as for ridge regression:

$$w_{\text{MAP}} = (\lambda \sigma^2 I + X^T X)^{-1} X^T y \quad \Leftrightarrow \quad w_{\text{RR}}$$

POINT ESTIMATES VS BAYESIAN INFERENCE

Point estimates

 W_{MAP} and W_{ML} are referred to as *point estimates* of the model parameters.

They find a specific value (point) of the vector w that maximizes an objective function (MAP or ML).

- ▶ ML: Only consider data model: p(y|w, X).
- ▶ MAP: Takes into account model prior: p(y, w|X) = p(y|w, X)p(w).

Bayesian inference

Bayesian inference goes one step further by characterizing uncertainty about the values in *w* using Bayes rule.

BAYES RULE AND LINEAR REGRESSION

Posterior calculation

Since *w* is a continuous-valued random variable in \mathbb{R}^d , Bayes rule says that the *posterior* distribution of *w* given *y*, *X* is

$$p(w|y,X) = \frac{p(y|w,X)p(w)}{\int_{\mathbb{R}^d} p(y|w,X)p(w) dw}$$

That is, we get an updated distribution on w through the transition

$$prior \ \rightarrow \ likelihood \ \rightarrow \ posterior$$

Quote: "The posterior of __ is proportional to the likelihood times the prior."

FULLY BAYESIAN INFERENCE

Bayesian linear regression

In this case, we can update the posterior distribution p(w|y, X) analytically.

We work with the proportionality first:

$$\begin{aligned} p(w|y,X) & \propto & p(y|w,X)p(w) \\ & \propto & \left[e^{-\frac{1}{2\sigma^2}(y-Xw)^T(y-Xw)}\right] \left[e^{-\frac{\lambda}{2}w^Tw}\right] \\ & \propto & e^{-\frac{1}{2}\left\{w^T(\lambda I + \sigma^{-2}X^TX)w - 2\sigma^{-2}w^TX^Ty\right\}} \end{aligned}$$

The \propto sign lets us multiply and divide this by anything as long as it doesn't contain w. We've done this in two lines above.

BAYESIAN INFERENCE FOR LINEAR REGRESSION

We need to normalize:

$$p(w|y, X) \propto e^{-\frac{1}{2}\{w^{T}(\lambda I + \sigma^{-2}X^{T}X)w - 2\sigma^{-2}w^{T}X^{T}y\}}$$

There are two key terms in the exponent:

$$\underbrace{w^{T}(\lambda I + \sigma^{-2}X^{T}X)w}_{\text{quadratic in }w} - \underbrace{2w^{T}X^{T}y/\sigma^{2}}_{\text{linear in }w}$$

We can conclude that p(w|y, X) is Gaussian. Why?

- 1. We can multiply and divide by anything not involving w.
- 2. A Gaussian has $(w \mu)^T \Sigma^{-1} (w \mu)$ in the exponent.
- 3. We can "complete the square" by adding terms not involving w.

BAYESIAN INFERENCE FOR LINEAR REGRESSION

Compare: In other words, a Gaussian looks like:

$$p(w|\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(w^T \Sigma^{-1} w - 2w^T \Sigma^{-1} \mu + \mu^T \Sigma^{-1} \mu)}$$

and we've shown for some setting of Z that

$$p(w|y,X) = \frac{1}{Z}e^{-\frac{1}{2}(w^T(\lambda I + \sigma^{-2}X^TX)w - 2w^TX^Ty/\sigma^2)}$$

Conclude: What happens if in the above Gaussian we define:

$$\Sigma^{-1} = (\lambda I + \sigma^{-2} X^T X), \qquad \Sigma^{-1} \mu = X^T y / \sigma^2 ?$$

Using these specific values of μ and Σ we only need to set

$$Z = (2\pi)^{\frac{d}{2}} |\Sigma|^{\frac{1}{2}} e^{\frac{1}{2}\mu^T \Sigma^{-1} \mu}$$

BAYESIAN INFERENCE FOR LINEAR REGRESSION

The posterior distribution

Therefore, the posterior distribution of w is:

$$\begin{array}{lcl} p(w|y,X) & = & N(w|\mu,\Sigma), \\ \\ \Sigma & = & (\lambda I + \sigma^{-2}X^TX)^{-1}, \\ \\ \mu & = & (\lambda \sigma^2I + X^TX)^{-1}X^Ty & \Leftarrow & w_{\text{map}} \end{array}$$

Things to notice:

- $\mu = w_{\text{MAP}}$ after a redefinition of the regularization parameter λ .
- ▶ Σ captures uncertainty about w as $Var[w_{LS}]$ and $Var[w_{RR}]$ did before.
- ► However, now we have a full probability distribution on w.

USES OF THE POSTERIOR DISTRIBUTION

Understanding w

We saw how we could calculate the variance of w_{LS} and w_{RR} . Now we have an entire distribution. Some questions we can ask are:

Q: Is $w_i > 0$ or $w_i < 0$? Can we confidently say $w_i \neq 0$?

A: Use the marginal posterior distribution: $w_i \sim N(\mu_i, \Sigma_{ii})$.

Q: How do w_i and w_j relate?

A: Use their joint marginal posterior distribution:

$$\left[\begin{array}{c} w_i \\ w_j \end{array}\right] \sim N\left(\left[\begin{array}{c} \mu_i \\ \mu_j \end{array}\right], \left[\begin{array}{cc} \Sigma_{ii} & \Sigma_{ij} \\ \Sigma_{ji} & \Sigma_{jj} \end{array}\right]\right)$$

Predicting new data

The posterior p(w|y, X) is perhaps most useful for predicting new data.

Recall: For a new pair (x_0, y_0) with x_0 measured and y_0 unknown, we can predict y_0 using x_0 and the LS or RR (i.e., ML or MAP) outputs:

$$y_0 \approx x_0^T w_{\text{LS}}$$
 or $y_0 \approx x_0^T w_{\text{RR}}$

With Bayes rule, we can make a *probabilistic* statement about y_0 :

$$p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} p(y_0, w|x_0, y, X) dw$$
$$= \int_{\mathbb{R}^d} p(y_0|w, x_0, y, X) p(w|x_0, y, X) dw$$

Notice that conditional independence lets us write

$$p(y_0|w, x_0, y, X) = \underbrace{p(y_0|w, x_0)}_{likelihood}$$
 and $p(w|x_0, y, X) = \underbrace{p(w|y, X)}_{posterior}$

Predictive distribution (intuition)

This is called the *predictive distribution*:

$$p(y_0|x_0, y, X) = \int_{\mathbb{R}^d} \underbrace{p(y_0|x_0, w)}_{likelihood} \underbrace{p(w|y, X)}_{posterior} dw$$

Intuitively, we evaluate the likelihood of a new y_0 for a particular w and observed x_0 , and weight it by our current belief about w given data (y, X).

We then sum (integrate) over all possible values of w.

We know from the model and Bayes rule that

Model:
$$p(y_0|x_0, w) = N(y_0|x_0^T w, \sigma^2)$$
,
Bayes rule: $p(w|y, X) = N(w|\mu, \Sigma)$.

With μ and Σ calculated on a previous slide.

The predictive distribution can be calculated exactly with these distributions. Again we get a Gaussian distribution:

$$\begin{array}{rcl} p(y_0|x_0,y,X) & = & N(y_0|\mu_0,\sigma_0^2), \\ \mu_0 & = & x_0^T \mu, \\ \sigma_0^2 & = & \sigma^2 + x_0^T \Sigma x_0. \end{array}$$

Notice that the expected value is the MAP prediction since $\mu = x_0^T w_{\text{MAP}}$, but we now quantify our confidence in this prediction with the variance σ_0^2 .

$PRIOR \rightarrow POSTERIOR \rightarrow PRIOR$

Bayesian learning is naturally thought of as a sequential process. That is, the posterior after seeing some data becomes the prior for the next data.

Let y and X be "old data" and y_0 and x_0 be some "new data". By Bayes rule

$$p(w|y_0, x_0, y, X) \propto p(y_0|w, x_0)p(w|y, X).$$

The posterior after (y, X) has become the prior for (y_0, x_0) .

Simple modifications can be made sequentially:

$$\begin{split} p(w|y_0, x_0, y, X) &= N(w|\mu, \Sigma), \\ \Sigma &= (\lambda I + \sigma^{-2}(x_0 x_0^T + \sum_{i=1}^n x_i x_i^T))^{-1}, \\ \mu &= (\lambda \sigma^2 I + (x_0 x_0^T + \sum_{i=1}^n x_i x_i^T)^{-1}(x_0 y_0 + \sum_{i=1}^n x_i y_i). \end{split}$$

INTELLIGENT LEARNING

Of course, we could also have written

$$p(w|y_0, x_0, y, X) \propto p(y_0, y|w, X, x_0)p(w)$$

but often we want to use the sequential aspect of inference to help us learn.

Learning w and making predictions for new y_0 is a two-step procedure:

- ▶ Form the predictive distribution $p(y_0|x_0, y, X)$.
- ▶ Update the posterior distribution $p(w|y, X, y_0, x_0)$.

Question: Can we learn p(w|y, X) intelligently?

That is, if we're in the situation where we can pick which y_i to measure with the knowledge of $\mathcal{D} = \{x_1, \dots, x_n\}$, can we come up with a good strategy?

An "active learning" strategy

Imagine we already have a measured dataset (y, X) and posterior p(w|y, X). We can construct the predictive distribution for every remaining $x_0 \in \mathcal{D}$.

$$p(y_0|x_0, y, X) = N(y_0|\mu_0, \sigma_0^2),$$

$$\mu_0 = x_0^T \mu,$$

$$\sigma_0^2 = \sigma^2 + x_0^T \Sigma x_0.$$

For each x_0 , σ_0^2 tells how confident we are. This suggests the following:

- 1. Form predictive distribution $p(y_0|x_0, y, X)$ for all unmeasured $x_0 \in \mathcal{D}$
- 2. Pick the x_0 for which σ_0^2 is largest and measure y_0
- 3. Update the posterior p(w|y, X) where $y \leftarrow (y, y_0)$ and $X \leftarrow (X, x_0)$
- 4. Return to #1 using the updated posterior

Entropy (i.e., uncertainty) minimization

When devising a procedure such as this one, it's useful to know what *objective function* is being optimized in the process.

We introduce the concept of the *entropy* of a distribution. Let p(z) be a continuous distribution, then its (differential) entropy is:

$$\mathcal{H}(p) = -\int p(z) \ln p(z) dz.$$

This is a measure of the spread of the distribution. Larger values correspond to a more "uncertain" distribution (more variance).

The entropy of a multivariate Gaussian is

$$\mathcal{H}(\mathit{N}(\mathit{w}|\mu,\Sigma)) = \frac{d}{2} \ln \Big(2\pi \mathrm{e} |\Sigma| \Big).$$

The entropy of a Gaussian changes with its covariance matrix. With sequential Bayesian learning, the covariance transitions from

$$\begin{array}{ccc} \text{Prior}: & (\lambda I + \sigma^{-2}X^TX)^{-1} & \equiv & \Sigma \\ & & \Downarrow \\ \\ \text{Posterior}: & (\lambda I + \sigma^{-2}(x_0x_0^T + X^TX))^{-1} \equiv & (\Sigma^{-1} + \sigma^{-2}x_0x_0^T)^{-1} \end{array}$$

Using a rank-one update property of the determinant, the entropy of the prior \mathcal{H}_{prior} is related to the entropy of the posterior \mathcal{H}_{post} as follows:

$$\mathcal{H}_{\text{post}} = \mathcal{H}_{\text{prior}} - \frac{d}{2} \ln(1 + \sigma^{-2} x_0^T \Sigma x_0)$$

Therefore, the x_0 that minimizes \mathcal{H}_{post} also maximizes $\sigma^2 + x_0^T \Sigma x_0$. We are minimizing \mathcal{H} myopically, so this is called a "greedy algorithm".

MODEL SELECTION

Selecting λ

We've discussed λ as a "nuisance" parameter that can impact performance.

Bayes rule gives a principled way to do this via evidence maximization:

$$p(w|y,X,\lambda) \ = \ \underbrace{p(y|w,X)}_{likelihood} \underbrace{p(w|\lambda)}_{prior} \ / \ \underbrace{p(y|X,\lambda)}_{evidence}.$$

The "evidence" gives the likelihood of the data with *w* integrated out. It's a measure of how good our model and parameter assumptions are.

Selecting λ

If we want to set λ , we can also do it by maximizing the evidence.

$$\hat{\lambda} = \arg \max_{\lambda} \ln p(y|X,\lambda).$$

We can show that the distribution of y is $p(y|X, \lambda) = N(y|0, \sigma^2 I + \lambda^{-1} X^T X)$. This requires an algorithm to maximize over λ .

We notice that this looks exactly like maximum likelihood, and it is:

Type-I ML: Maximize the likelihood over the "main parameter" (w).

Type-II ML: Integrate out "main parameter" (w) and maximize over the "hyperparameter" (λ). Also called *empirical Bayes*.

The difference is only in their perspective.

This approach requires that we can solve this integral, but often we can't for more complex models. Cross-validation is the method that always works.

ColumbiaX: Machine Learning Lecture 6

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

Underdetermined linear equations

We now consider the regression problem y = Xw where $X \in \mathbb{R}^{n \times d}$ is "fat" (i.e., $d \gg n$). This is called an "underdetermined" problem.

- ▶ There are more dimensions than observations.
- \triangleright w now has an infinite number of solutions satisfying y = Xw.

$$\left[\begin{array}{c} y \end{array}\right] = \left[\begin{array}{c} & & \\ & & \end{array}\right] \left[\begin{array}{c} w \end{array}\right]$$

These sorts of high-dimensional problems often come up:

- ▶ In gene analysis there are 1000's of genes but only 100's of subjects.
- ► Images can have millions of pixels.
- ► Even polynomial regression can quickly lead to this scenario.

Minimum ℓ_2 regression

ONE SOLUTION (LEAST NORM)

One possible solution to the underdetermined problem is

$$w_{\text{ln}} = X^T (XX^T)^{-1} y \quad \Rightarrow \quad Xw_{\text{ln}} = XX^T (XX^T)^{-1} y = y.$$

We can construct another solution by adding to w_{ln} a vector $\delta \in \mathbb{R}^d$ that is in the *null space* \mathcal{N} of X:

$$\delta \in \mathcal{N}(X) \quad \Rightarrow \quad X\delta = 0 \text{ and } \delta \neq 0$$

and so
$$X(w_{ln} + \delta) = Xw_{ln} + X\delta = y + 0$$
.

In fact, there are an infinite number of possible δ , because d > n.

We can show that w_{ln} is the solution with smallest ℓ_2 norm. We will use the proof of this fact as an excuse to introduce two general concepts.

TOOLS: ANALYSIS

We can use *analysis* to prove that w_{ln} satisfies the optimization problem

$$w_{\text{ln}} = \arg\min_{w} ||w||^2 \text{ subject to } Xw = y.$$

(Think of mathematical analysis as the use of inequalities to prove things.)

Proof: Let w be another solution to Xw = y, and so $X(w - w_{ln}) = 0$. Also,

$$(w - w_{\ln})^T w_{\ln} = (w - w_{\ln})^T X^T (XX^T)^{-1} y$$

= $(\underbrace{X(w - w_{\ln})}_{= 0})^T (XX^T)^{-1} y = 0$

As a result, $w - w_{ln}$ is *orthogonal* to w_{ln} . It follows that

$$||w||^2 = ||w - w_{ln} + w_{ln}||^2 = ||w - w_{ln}||^2 + ||w_{ln}||^2 + 2\underbrace{(w - w_{ln})^T w_{ln}}_{= 0} > ||w_{ln}||^2$$

TOOLS: LAGRANGE MULTIPLIERS

Instead of starting from the solution, start from the problem,

$$w_{\text{ln}} = \arg\min_{w} w^{T} w$$
 subject to $Xw = y$.

- ► Introduce Lagrange multipliers: $\mathcal{L}(w, \eta) = w^T w + \eta^T (Xw y)$.
- ▶ Minimize \mathcal{L} over w maximize over η . If $Xw \neq y$, we can get $\mathcal{L} = +\infty$.
- ▶ The optimal conditions are

$$\nabla_{w}\mathcal{L} = 2w + X^{T}\eta = 0, \qquad \nabla_{\eta}\mathcal{L} = Xw - y = 0.$$

We have everything necessary to find the solution:

- 1. From first condition: $w = -X^T \eta/2$
- 2. Plug into second condition: $\eta = -2(XX^T)^{-1}y$
- 3. Plug this back into #1: $w_{ln} = X^T (XX^T)^{-1} y$

Sparse ℓ_1 regression

LS AND RR IN HIGH DIMENSIONS

Usually not suited for high-dimensional data

- ► Modern problems: Many dimensions/features/predictors
- ▶ Only a few of these may be important or relevant for predicting *y*
- ▶ Therefore, we need some form of "feature selection"
- ▶ Least squares and ridge regression:
 - ► Treat all dimensions equally without favoring subsets of dimensions
 - ► The relevant dimensions are averaged with irrelevant ones
 - ▶ Problems: Poor generalization to new data, interpretability of results

REGRESSION WITH PENALTIES

Penalty terms

Recall: General ridge regression is of the form

$$\mathcal{L} = \sum_{i=1}^{n} (y_i - f(x_i; w))^2 + \lambda ||w||^2$$

We've referred to the term $||w||^2$ as a *penalty term* and used $f(x_i; w) = x_i^T w$.

Penalized fitting

The general structure of the optimization problem is

total cost = goodness-of-fit term + penalty term

- ► Goodness-of-fit measures how well our model *f* approximates the data.
- ▶ Penalty term makes the solutions we don't want more "expensive".

What kind of solutions does the choice $||w||^2$ favor or discourage?

QUADRATIC PENALTIES

Intuitions

- ▶ Quadratic penalty: Reduction in cost depends on $|w_i|$.
- ► Suppose we reduce w_j by Δw . The effect on \mathcal{L} depends on the starting point of w_j .
- Consequence: We should favor vectors w whose entries are of similar size, preferably small.

SPARSITY

Setting

- ▶ Regression problem with *n* data points $x \in \mathbb{R}^d$, $d \gg n$.
- ▶ Goal: Select a small subset of the *d* dimensions and switch off the rest.
- ▶ This is sometimes referred to as "feature selection".

What does it mean to "switch off" a dimension?

- ► Each entry of w corresponds to a dimension of the data x.
- ▶ If $w_k = 0$, the prediction is

$$f(x, w) = x^T w = w_1 x_1 + \dots + 0 \cdot x_k + \dots + w_d x_d,$$

so the prediction does not depend on the *k*th dimension.

- ► Feature selection: Find a *w* that (1) predicts well, and (2) has only a small number of non-zero entries.
- ightharpoonup A w for which most dimensions = 0 is called a *sparse* solution.

SPARSITY AND PENALTIES

Penalty goal

Find a penalty term which encourages sparse solutions.

Quadratic penalty vs sparsity

- ightharpoonup Suppose w_k is large, all other w_i are very small but non-zero
- ▶ Sparsity: Penalty should keep w_k , and push other w_j to zero
- ▶ Quadratic penalty: Will favor entries w_j which all have similar size, and so it will push w_k towards small value.

Overall, a quadratic penalty favors many small, but non-zero values.

Solution

Sparsity can be achieved using *linear* penalty terms.

LASSO

Sparse regression

LASSO: Least Absolute Shrinkage and Selection Operator

With the LASSO, we replace the ℓ_2 penalty with an ℓ_1 penalty:

$$w_{\text{lasso}} = \arg\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{1}$$

where

$$||w||_1 = \sum_{i=1}^d |w_i|.$$

This is also called ℓ_1 -regularized regression.

QUADRATIC PENALTIES

Quadratic penalty

Reducing a large value w_j achieves a larger cost reduction.

Linear penalty

Cost reduction does not depend on the magnitude of w_j .

RIDGE REGRESSION VS LASSO

This figure applies to d < n, but gives intuition for $d \gg n$.

- ▶ Red: Contours of $(w w_{LS})^T (X^T X)(w w_{LS})$ (see Lecture 3)
- ▶ Blue: (left) Contours of $||w||_1$, and (right) contours of $||w||_2^2$

COEFFICIENT PROFILES: RR VS LASSO

ℓ_p REGRESSION

ℓ_p -norms

These norm-penalties can be extended to all norms:

$$||w||_p = \left(\sum_{j=1}^d |w_j|^p\right)^{\frac{1}{p}}$$
 for 0

ℓ_p -regression

The ℓ_p -regularized linear regression problem is

$$w_{\ell_p} := \arg\min_{w} \|y - Xw\|_2^2 + \lambda \|w\|_p^p$$

We have seen:

- ℓ_1 -regression = LASSO
- ℓ_2 -regression = ridge regression

ℓ_p PENALIZATION TERMS

Computing the solution for ℓ_p

Solution of ℓ_p problem

- ℓ_2 aka ridge regression. Has a closed form solution
- $\ell_p \ (p \ge 1, p \ne 2)$ By "convex optimization". We won't discuss convex analysis in detail in this class, but two facts are important
 - ▶ There are no "local optimal solutions" (i.e., local minimum of \mathcal{L})
 - ► The true solution can be found *exactly* using iterative algorithms

(p < 1) — We can only find an approximate solution (i.e., the best in its "neighborhood") using iterative algorithms.

Three techniques formulated as optimization problems

Method	Good-o-fit	penalty	Solution method
Least squares Ridge regression LASSO	$ y - Xw _2^2 y - Xw _2^2 y - Xw _2^2$	none $ w _2^2$ $ w _1$	Analytic solution exists if X^TX invertible Analytic solution exists always Numerical optimization to find solution