Middleware: 11. Fault Tolerance

A. Buchmann Wintersemester 2011/2012

Topics

Reading for THIS Lecture

- The slides for the lecture are based on material from:
 - Andrew S. Tanenbaum and Maarten Van Steen. 2001. Distributed Systems:
 Principles and Paradigms. Prentice Hall.
 - Chapter 7
 - George Coulouris, Jean Dollimore, and Tim Kindberg. 2005. Distributed Systems:
 Concepts and Design. Addison-Wesley Longman.
 - Chapter 16
 - Jim Gray, Andreas Reuter
 - Dependable Computing Systems.
 - M. Tamer Özsu, Patrick Valduriez
 - Principles of Distributed Database Systems, 3rd Ed., Springer
 - Chapter 12

Fault Tolerance Basic Concepts

- Fault tolerance is strongly related to dependable systems
- Dependability:
 - Availability system is available to serve user requests at any given time
 - Reliability system runs continuously, without failure
 - Safety
 - Maintainability
- Question: What is the difference between Reliability and Availability
 - System down for 1 sec every hour → 99.97% availability but unreliable
 - System down for 2 weeks but otherwise runs continuously → 96% available → low availability but highly reliable

Faults, Errors, Failures

- Hard or permanent fault → irreversible change in behavior of system
 - Requires intervention to repair
- Soft fault → reversible change in behavior of system
 - Intermittent fault → shows up occasionally due to unstable components
 - Transient fault → shows up due to changes in environment
 - Timing faults → shows up when particular sequences of states occur
- Design fault
- Operator error

Sources of System Failure

Reliability

 Reliability refers to the probability that a system does not experience failures in a given time interval

 $R(t) = P \{0 \text{ failures in time interval } [0,t] \}$ (starting from a correct state at t=0)

P {k failures in [0,t]} =
$$e^{-m(t)}$$
 [m(t)]^k / k! where m(t) = $\int_0^t z(x) dx$

z(x) is the hazard function that gives the time-dependent failure rate of a component

■ The expected (mean) number of failures in time [0,t] can be computed as

$$E[k] = \sum_{k=0}^{\infty} k e^{-m(t)} [m(t)]^k / k! = m(t)$$

$$Var[k] = E[k^2] - (E[k])^2 = m(t)$$
 and $R(t) = e^{-m(t)}$

Reliability for multicomponents Availability

 For e system with n independent components (all must function properly for the system to work)

$$R_{sys} = \prod_{i=1}^{n} Ri(t)$$

- Availability refers to the probability that a system is operational according to its specification at a given point in time (prior failures have been repaired)
- In the limit (as time goes to infinity) availability refers to the percentage of time the system is able to perform the desired task
- If failures follow a Poisson distribution with failure rate λ and that repair time is distributed exponentially with mean repair time $1/\mu$ the steady state availability of the system is

$$A = \mu / (\lambda + \mu)$$

Failure Models

Type of failure	Description
Crash failure	A server halts, but is working correctly until it halts
Omission failure Receive omission Send omission	A server fails to respond to incoming requests A server fails to receive incoming messages A server fails to send messages
Timing failure	A server's response lies outside the specified time interval
Response failure Value failure State transition failure	A server's response is incorrect The value of the response is wrong The server deviates from the correct flow of control
Arbitrary failure	A server may produce arbitrary responses at arbitrary times

Mean time between failures Mean time to repair

- Mean Time Between Failures (MTBF) is the expected time between failures in a system with repair
- Mean Time To Failure (MTTF) is the expected time between time = 0 and the first failure in a system without repair

$$\mathsf{MTBF} = \int\limits_0^\infty R(t)dt$$

- Mean Time To Repair (MTTR) is the expected time to repair a failed system
- The availability of the system is then given by

$$A = MTBF / (MTBF + MTTR)$$

Latency in fault/failure detection

- System failures may be latent (i.e. they are discovered some time after they occur)
- Average error latency (assuming identical systems) is called Mean Time
 To Detect (MTTD)

Reliability – MTTF storage systems

MTTF (Mean Time To Failure)

- High quality disk (2)(10⁵) 10⁶ h or 20-100 yrs
- Standard components ~ 10 yrs

MTTDL (Mean Time To Data Loss)

- assume independent failures
- without redundancy and n disks MTTDL = MTTF/n
- Example: MTTF = 10 yrs., n = 100 disks → MTTDL ~ 36 days
- Not acceptable → need redundancy to increase reliability (concept underlying RAID)

High Availability System Classes Goal: Build According to Application Needs

System Type	Unavailable (min/year)	Availability	Availability Class
Unmanaged	50,000	90.%	1
Managed	5,000	99.%	2
Well Managed	500	99.9%	3
Fault Tolerant	50	99.99%	4
High-Availability	5	99.999%	5
Very-High-Availability	.5	99.9999%	6
Ultra-Availability	.05	99.99999%	7

J.Gray and A.Reuter. Fault Tolerance

Sources of Failures

Source	MTTF	MTTR
Power Failure	2000 hr	1 hr
Phone Lines: Hard	4000 hr	10 hr
Phone Lines: Soft	>.1 hr	>.1 hr
Hardware Modules	100 000 hr	10 hr

Software:

1 Bug/1000 Lines Of Code (after vendor-user testing)

→ Thousands of bugs in System!

Most software failures are transient: dump & restart system.

