LE SECOND PRINCIPE

Exercice n°1

Un corps A (m_A = 400 g; C_A = 0.960 J/K/g) initialement à la température T_A = 90°C est mis en contact avec un corps B (m_B = 150g; C_B = 1.03 J/K/g) à la température initiale T_B = 25°C.

L'ensemble est calorifugé de façon à éviter toute fuite vers l'extérieur.

Déterminer la température finale et la variation d'entropie du système constitué par les deux corps.

Exercice n°2

Les deux compartiments contiennent le même gaz parfait initialement dans le même état P_0 , V_0 T_0 . Les parois sont calorifugées ainsi que le piston. Ce dernier peut se déplacer sans frottements dans le cylindre. On notera γ le coefficient c_p/c_v . On fait passer un courant i dans la résistance R (supposée constante) de telle sorte que la transformation puisse être considérée comme quasistatique, et jusqu'à ce que la pression devienne P_f .

- 1°) Déterminer complètement l'état thermique du gaz dans chaque compartiment à l'état final.
- 2°) Donner l'expression de l'énergie fournie par le générateur qui alimente la résistance.
- 3°) Calculer la variation d'entropie du système complet.

Exercice n°3

Une mole d'un gaz parfait de capacité thermique à volume constant $c_{VM} = 5R/2$ est contenue dans un cylindre vertical calorifugé comportant un piston mobile calorifugé de section $S = 0.01m^2$ en contact avec une atmosphère extérieure à pression constante P_0 . Initialement, le piston est libre et le gaz est en équilibre dans l'état E_0 , sa température vaut $T_0 = 300$ K et son volume vaut V_0 . On donne R = 8.314 J.K⁻¹.mol⁻¹ et g = 9.81 m.s⁻².

- 1°) On pose sur le piston une masse M = 102 kg et on laisse le système évoluer. Déterminer sa pression P_1 , son volume V_1 et sa température T_1 lorsqu'on atteint un nouvel état d'équilibre E_1 . Calculer la variation d'entropie du gaz et commenter.
- 2°) Pour ramener le système dans son état initial, on supprime la surcharge et on déplace lentement le piston pour faire subir au gaz une détente réversible dans le cylindre calorifugé, jusqu'au volume $V_2 = V_0$ d'un état E_2 ; puis on bloque le piston, on supprime l'isolation thermique du cylindre et on met le système en contact avec un thermostat à la température T_0 : il évolue de manière isochore jusqu'à l'état d'équilibre E_3 . Déterminer la pression et la température dans les états E_2 et E_3 .

Calculer les variations d'entropie du gaz pour les transformations $1 \rightarrow 2$; $2 \rightarrow 3$ et $1 \rightarrow 3$.

Calculer l'entropie créée au cours de la transformation 1→3.

Exercice n°4

Dans un récipient parfaitement calorifugé on place :1 kg d'eau liquide à θ_1 = 20°C et 0.5 kg de glace à θ_2 = 0°C.

- 1°) Déterminer la composition et la température à l'équilibre. (On supposera que la pression reste constante).
- 2°) Déterminer la variation d'entropie. Conclure.

Données: C_{eaulig} = 4.2 kJ/kg/°K; L_f = 336 kJ/kg.

Exercice n°5

Un récipient fermé et indéformable, de volume V = 1.00 litre, contient de la vapeur d'eau saturante dans l'état initial I (T_I = 485K, p_I = Π (T_I) = 20 bars ; x_{VI} = 1). On le met en contact avec un thermostat T_0 = 373K. Déterminer l'état d'équilibre final F, le transfert thermique Q algébrique reçu par l'eau, la variation d'entropie de l'eau, l'entropie échangée par l'eau et l'entropie créée au cours de la transformation $I \to F$; commenter . On donne dans le tableau ci-dessous des extraits des tables thermodynamiques de l'eau.

on define dane to tablead of deceded dec extrane dec tables are interned y harmages de read.								
			Liquide juste saturé $x_V = 0$			Vapeur saturante séche x _v = 1		
	Т	р	V _L	h_L	S _L	V _V	h _V	S _V
	K	Bar	m³.kg ⁻¹	kJ.kg ⁻¹	kJ.K ⁻¹ .Kg ⁻¹	m³.kg ⁻¹	kJ.kg ⁻¹	kJ.K ⁻¹ .Kg ⁻¹
	485	20	1.18 10 ⁻³	909	2.45	0.0998	2 801	6.35
	373	1	1.04 10 ⁻³	418	1.30	1.70	2 676	7.36

Exercice n°6

Dans le domaine de température et de pression considéré, une mole d'un gaz monoatomique de sphères dures est décrite par la fonction caractéristique :

S (U, V) = S₀ +
$$\frac{3R}{2}$$
 Ln $\frac{U}{U_0}$ + RLn $\frac{V-b}{V_0-b}$

où S_0 , U_0 et V_0 désignent respectivement l'entropie, l'énergie interne et le volume dans un état de référence, et où $b = 2.10^{-5} \text{ m}^3$ et $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.

Son équation d'état est P (V – b) = RT et son énergie interne U(T) = $\frac{3}{2}$ RT.

1) Une mole de ce gaz est initialement en équilibre dans un cylindre parfaitement calorifugé de volume $V_1 = 10b$, à la température $T_1 = 300$ K. On réalise une détente réversible faisant passer le volume du cylindre de V_1 à $V_F = 20b$.

Déterminer la pression initiale, la température finale, la pression finale et le travail W reçu par le gaz.

2) On réalise une détente de Joule-Gay Lussac (détente adiabatique irréversible se faisant à énergie interne constante) d'une mole de ce gaz : initialement le gaz occupe un volume V_1 = 10b et sa température vaut T_1 = 300 K; dans un état d'équilibre final le gaz occupe un volume V_F = 20b.

Déterminer la température finale, la pression finale et l'entropie crée; commenter.

Exercice n°7

Un cylindre à parois diathermanes (parfaitement perméables à la chaleur) contient une masse m = 0,50 kg d'eau à l'état de vapeur saturante sèche : $T = T_1 = 373$ K et $P = P_0 = 1$ atm. Il est fermé par un piston sans masse pouvant coulisser sans frottements; la pression extérieure au niveau du piston étant maintenue égale à P_0 . Le système est placé dans un thermostat de température $T_0 = 290$ K.

- a) Représenter la transformation dans un diagramme de Clapeyron; on fera figurer la courbe de saturation et les deux isothermes concernées T₀ et T₁.
- b) Calculer littéralement puis numériquement le transfert thermique reçu par le fluide, le travail reçu par le fluide et sa variation d'énergie interne.
- c) Faire un bilan entropique en donnant les expressions de la variation d'entropie ΔS du fluide, de l'entropie d'échange S_e et de la création d'entropie S_c . Calculer numériquement S_c . On donne :
- * enthalpie massique de vaporisation Lv (T₁) = 2260 kJ.kg⁻¹;
- * capacité thermique massique de l'eau liquide C_L = 4,18 kJ.K⁻¹.kg⁻¹;
- * volume massique de la vapeur v_1 (373 K, 1 atm) = 1,670 m³.kg⁻¹;
- * volume massique du liquide v_0 (290 K, 1 atm) = 1.10⁻³ m³.kg⁻¹.