

Ground Segment

구 인 회

2022.1

Ground Segment Overview

Ground Segment: Overview

한국항공우주연구원 위성 현황

KARI Constellation Satellites(2021. 05. 12. 기준)

저궤도 위성 vs. 정지궤도 위성

위성 임무 운영 절차

TTC Operation

TTC 원격 감시제어 소프트웨어

- 하나의 안테나로 여러 위성을 운영하기 위해서는 위성과의 교신 전 위성의 특성에 맞게 TTC 장비들의 파라메터를 설정해주어야 함.
- TTC 장비의 Control & Monitoring 은 C&M 소프트웨어를 통해 원격으로 수행
- TTC C&M S/W 의 또다른 기능은 위성의 TLE (Two Line Element)를 이용하여, 위성의 교신 스케쥴을 생성하고, 스케쥴 예약을 통해 장비 초기화 및 여러 기능을 자동 수행함.

TTC 원격 감시제어 소프트웨어

Telemetry Processing

S-Band Telemetry Format

> S-Band Telemetry Format

- ✓ The S-band telemetry format is designed to follow CCSDS Grade-2 standards
- ✓ A Channel Access Data Unit (CADU) contains 256 bytes

Channel Access Data Unit (CADU) format

	SYNC Word	VCDU Primary Header	MPDU Header	VCDU Data	R-S Check Symbols	SYNC Word	VCDU Primary Header	MPDU Header	•••
BYTES	4	6	2	212	32	4	6	2	

- Sync Word: 1A CF FC 1D (4bytes)
- VCDU Primary Header Values (6bytes)

Bits	Field	Value
2	Transfer Frame Version Number	01b (AOS – grade 2)
8	Spacecraft ID	
6	Virtual Channel ID	
24	Virtual Channel Data Unit Count	Counter
1	Relay Flag	0 = Real time VCDU, 1 = Playback VCDU
7	Spare	0d

- MPDU Header (2bytes)

→ MPDU Header 에는 Packet 의 시작 위치 정보

Telemetry Processing

Concatenated Coding System Block Diagram

Telemetry Processing 순서

- 1. Bit synchronization
- 2. Frame synchronization
- 3. De-Randomizing
- 4. RS-Decoding
- 5. Packet Reconstruction
- 6. Raw value → Engineering Value (using Telemetry Data Base, Calibration Curve information)

Frame Synchronization

➤ Frame Sync Word 의 다양한 형태

			1	A	C	F	F	C	1	D	В	D
original			0001	1010	1100	1111	1111	1100	0001	1101	1011	1101
			3	5	9	F	F	8	3	В	8	
1bit offset		0	0011	0101	1001	1111	1111	1000	0011	1011	0111	101
			6	В	3	F	F	0	7	6	0	
2bit offset		00	0110	1011	0011	1111	1111	0000	0111	0110	1111	01
			D	6	7	F	E	0	E	D	1	
3bit offset		000	1101	0110	0111	1111	1110	0000	1110	1101	1110	1
		1	A	C	F	F	C	1	D	В	2	
4bit offset		0001	1010	1100	1111	1111	1100	0001	1101	1011	1101	
		3	5	9	F	F	8	3	В	7		
5bit offset	0	0011	0101	1001	1111	1111	1000	0011	1011	0111	101	
		6	В	3	F	F	0	7	6	F		
6bit offset	00	0110	1011	0011	1111	1111	0000	0111	0110	1111	01	
		D	6	7	F	E	0	E	D	E		
7bit offset	000	1101	0110	0111	1111	1110	0000	1110	1101	1110	1	
		A	C	F	F	C	1	D	В	D		
8bit offset	0001	1010	1100	1111	1111	1100	0001	1101	1011	1101		

Frame Synchronization

Raw Data 의 Sync pattern 예시

Frame Synchronization

> Sequence of Frame Synchronization

- Frame Sync. 관련 Cortex 설정

SYNC

- sync code 중 일치하지 않은 bit의 한계치를 말하며 예를 들어 2라고 설정하면 2bits 까지는 틀리더라도 sync code를 찾은 것으로 간주함. Maximum = 8 bits

CTL (Check to Lock)

- Verify 횟수를 의미하며 연속해서 Verify count 동안 계속 일치하면 Lock 상태로 이동함.

LTS (Lock to Search)

- Lock 상태에서 연속해서 LTS count 동안 sync code가 불일치하면 Search 단계로 이동함.

• SLIP

- 송신 및 수신장치의 각 클럭 속도 차이에서 발생 하는 비트의 손실 및 추가.

De-Randomizing Theory

Randomizing?

- ✓ 위성에서 데이터를 최종적으로 전송하기에 앞서 지상 장비가 수신된 신호에 대해 Bit sync를 유지할 수 있도록 데이터에 pseudo noise 를 섞어서 전송 (같은 비트가 연속인 경우, 지상장비에서 비트 동기화 불가능)
- ✓ Randomizing 은 전송할 데이터의 각 bit들과 Randomizer에서 생성된 Random code의 각 bit 들간에 XORing 시킴으로써 수행된다.

Pseudo-Randomizer

Pseudo-Random code (255bytes)

- ✓ Pseudo-random generator polynomial = $x^8 + x^7 + x^5 + x^3 + 1$
- √ First 40bits of the pseudo-random sequence are:

1111 1111 0100 1000 0000 1110 1100 0000 1001 1010 ...

- ✓ Pseudo-random code 는 255bit 마다 반복된다. (반복주기: 2^N-1 bits)
- ✓ 지상에서는 Sync word를 제외한 데이터에 대해 위의 Pseudo-Random code 와 XORing 시킨다.

(= De-randomizing = De-scrambling)

De-randomizing Example

XORing

Before DeRandomizing

Pseudo-Random code

After DeRandomizing

Reed Solomon Coding

➤ Reed-Solomon Coding이란?

- ✓ 리드(Reed)와 솔로몬(Solomon)이 제안한 것으로 군집형태의 오류(Burst Error)에 대해 검출 및 정정할 수 있는 방법
- \checkmark Reed-Solomon code is specified as RS(n, k) with s-bit symbols
- ✓ CCSDS format 에서 사용되는 RS-coding 방법 = RS(255, 223) with 8bit symbols
- \sqrt{n} = 255, k = 223, s = 8, 2t = 32, t = 16
- → input = 223 byte, output = 255 byte, rs-code = 32byte, error correction = maximum 16bytes

✓ RS(255, 223) 을 사용하여 인코딩을 수행하면 KOMSAT-1의 경우 sync(4byte) + data (223byte) + rs_code(32byte) = 259 byte 가 되어야하나 32bit 프로세싱을 위해 3byte의 virtual fill 을 사용하여 RS_encoding을 수행한다.

S	ync Word (4byte)	DATA (220byte)	RS-Code (32byte)	= 256byte
		,		

Reed Solomon Coding

What is Interleaving ?

✓ 인터리빙은 데이터에서 발생할 수 있는 비트들의 연집오류를 독립오류(isolated error)로 바꾸어 줌으로써 에러정정부호의 효율을 높이고 결과적으로 Invalid frame의 개수를 줄여주는 역할을 한다.

> CADU size ?

✓ CADU 의 size는 interleaving depth와 virtual fill 의 크기에의해 결정된다. (i = interleaving depth)

Sync Word	DATA	RS-Code
(4)	(223 * i)	(32 * i)

- ✓ Interleaving depth = 1
 - data size = 4 + (223*1) + (32*1) = 259. if virtual fill 3 = 256
- ✓ Interleaving depth = 2
- data size = 4 + (223*2) + (32*2) = 514. if virtual fill 1 = 512
- ✓ Interleaving depth = 3
- data size = 4 + (223*3) + (32*3) = 769. if virtual fill 3 = 760
- ✓ Interleaving depth = 4
- data size = 4 + (223*4) + (32*4) = 1024.
- ✓ Interleaving depth = 5
- data size = 4 + (223*5) + (32*5) = 1279. if virtual fill 3 = 1264

R-S Coding Gain

Probability of Bit Error versus Eb/No

감사합니다