

Περιεχόμενα του μαθήματος

- Δίοδος Ζένερ
 - Χαρακτηριστικά μεγέθη
 - Πρακτικά ζητήματα
- Οπτοηλεκτρονικές διατάξεις
- 7 LED
 - **7** Πλεονεκτήματα Μειωνεκτήματα
 - **7** Εφαρμογές

Ειδικοί Τύποι Διόδων

- Με κατάλληλες διαφοροποιήσεις στην κατασκευή τους η συμπεριφορά των διόδων μπορεί να τροποποιηθεί, οδηγώντας σε ειδικούς τύπους οι οποίοι μπορούν να εξυπηρετήσουν εφαρμογές πέραν των συνήθων εφαρμογών των κοινών διόδων επαφής p-n
- Στη συνέχεια θα εξετάσουμε με συντομία τους συνηθέστερους τύπους ειδικών διόδων

- Είναι μια δίοδος που μπορεί να λειτουργεί στην περιοχή κατάρρευσης, δηλαδή στην περιοχή τάσης στην οποία οι λοιπές δίοδοι κινδυνεύουν να καταστραφούν.
- Μεταβάλλοντας τη στάθμη προσμίξεων των διόδων πυριτίου, στην πράξη μπορούμε να έχουμε τέτοιες διόδους με τάσεις κατάρρευσης από 2 έως 200 βολτ

Χαρακτηριστική καμπύλη διόδου zener

- **7 Ορθή πόλωση:** σαν απλή δίοδος
- **Ανάστροφη πόλωση:** ρεύμα σταθερό & μικρό στην αρχή, απότομα μεγάλο μετά τάση Zener V_z.
 - 7 Τάση στα άκρα διόδου παραμένει **σταθερή=V_z** ανάμεσα σε I_{zmin} & I_{zmax}
- Δίοδοι Zener: όταν πολωθούν ανάστροφα, κρατούν την τάση στα άκρα τους σταθερή, ανεξάρτητα των μεταβολών του ρεύματος που τις διαρρέει

- Χαρακτηριστικά μεγέθη διόδου zener
 - Δίνονται από τους κατασκευαστές
 - Υπάρχουν στα φύλλα δεδομένων (data sheets)
- **7** Τάση zener V_z
 - Τάση που σταθεροποιεί η zener
- Ρεύμα λειτουργίας zener I_{ZT}
 - 7 Η τιμή του ρεύματος που αντιστοιχεί στην τάση V_z
- Μέγιστο ρεύμα zener I_{Zmax}
 - Το μέγιστο ρεύμα που μπορεί να περάσει από τη zener χωρίς αυτή να καταστραφεί

- Η μέγιστη ισχύς zener PD
 - **7** Η ονομαστική ισχύ την οποία καταναλώνει η δίοδος

 - Στο εμπόριο υπάρχουν δίοδοι z
- Το ελάχιστο ρεύμα zener I_{znin}
 - Το ελάχιστο ρεύμα για τη λειτουργία της διόδου
- Το ανάστροφο ρεύμα zener I_R
 - Το ρεύμα που αντιστοιχεί σε τάσεις V_R μικρότερες της V_Z
- **Η** δυναμική αντίσταση \mathbf{Z}_{ZT} $\mathbf{Z}_{ZT} = \frac{\Delta V_Z}{\Delta \mathbf{I}_Z}$

Τμήμα Πληροφορικής και Τηλεπικοινωνιών

αντίστασης Zener

Σταθεροποιητής τάσης με zener

Η τάση στα άκρα της διόδου παραμένει σταθερή και ίση με V_z, παρά τη μεταβολή της τάσης τροφοδοσίας

Σταθεροποιητής Zener

Διακρίνουμε δύο είδη:

Σταθεροποιητής γραμμής (σταθερό Ι_ι, μεταβάλλεται η V₁)

Ισχύει:
$$I_1 = I_z + I_L$$
,
 $V_1 = I_1 R_s + V_z$
⇒ $V_1 = (I_Z + I_L)R_S + V_Z$

- Όταν V_1 μεταβάλλεται, επειδή I_L , R_S είναι σταθερά \Rightarrow θα μεταβληθεί το I_Z
- Εφόσον οι μεταβολές του I_Z περιοριστούν ανάμεσα σε I_{Zmin} και I_{Zmax} , η V_Z , δεν αλλάζει και επειδή $V_{out} = V_Z$ συμπεραίνουμε ότι παρά τις μεταβολές της τάσης εισόδου, η τάση στα άκρα του φορτίου παραμένει σταθερή

Σταθεροποιητής Zener

Σταθεροποιητής φορτίου (σταθερή V₁, μεταβάλλεται το ρεύμα I_L)

$$\mathbf{I}_{L} = \mathbf{I}_{1} - \mathbf{I}_{Z} = \left(\frac{V_{1} - V_{Z}}{R_{S}}\right) - \mathbf{I}_{Z}$$

- Όταν R_L μεταβάλλεται, επειδή V_1 , R_S είναι σταθερά \Rightarrow θα μεταβληθεί το I_L
- Εφόσον μεταβολές του I_Z περιοριστούν ανάμεσα στις τιμές I_{Zmin} και I_{Zmax} , $\Rightarrow V_Z$ δεν αλλάζει και επειδή $V_{out} = V_Z$ συμπεραίνουμε ότι: παρά τις μεταβολές της αντίστασης φορτίου η τάση στα άκρα του παραμένει σταθερή

Επί τις εκατό σταθεροποίηση

Η απόδοση ενός σταθεροποιητή γραμμής εκφράζεται με τον όρο:

σταθεροποίηση γραμμής=
$$\left(\frac{\Delta V_{out}}{\Delta V_{in}}\right) \times 100\%$$

Η απόδοση ενός σταθεροποιητή φορτίου εκφράζεται με τον όρο:

σταθεροποίηση φορτίου=

$$= \left(\frac{V_{\text{out}_{\chi \text{wpís} \text{ woptío}}} - V_{\text{out}_{\mu\epsilon} \pi \text{λήρες woptío}}}{V_{\text{out}_{\mu\epsilon} \pi \text{λήρες woptío}}}\right) 100\%$$

Είναι ανάστροφα πολωμένη?

Ποια είναι η εργοστασιακή Τιμή της τάσης Zener?

Εάν δεν υπήρχε στο κύκλωμα η δίοδος τι τάση θα υπήρχε στα αντίστοιχα σημεία?

V_{thevenin}?

Δίοδος Schottky

- Αντί για επαφή P-N υπάρχει επαφή ημιαγωγού τύπου N με κάποιο μέταλλο, όπως χρυσός, ψευδάργυρος κτλ
- Όταν πολώνεται κατά την ορθή φορά οι φορείς πλειονότητας του ημιαγωγού τύπου Ν εισέρχονται στο μέταλλο μαζί με το νέφος ηλεκτρονίων του
- Τα ηλεκτρόνια δεν «συνωστίζονται» για να κερδίσουν κάποια οπή και για το λόγω αυτό η εναλλαγές στις καταστάσεις γίνονται πολύ πιο γρήγορα

Οπτοηλεκτρονικές διατάξεις

- Οπτοηλεκτρονική
 - 🐬 η τεχνολογία που συνδυάζει την οπτική & τα ηλεκτρονικά
- Περιλαμβάνει πολλές διατάξεις που βασίζονται στην επαφή p-n
- Οπτοηλεκτρονικές δίοδοι

Κατηγορίες:

- **εκπομποί φωτός:** Όπως δίοδοι φωτοεκπομπής LED που ακτινοβολούν υπεριώδη ή υπέρυθρη ακτινοβολία
- αισθητήρες φωτός: Όπως η φωτοδίοδος που μετατρέπει τη φωτεινή ενέργεια που προσπίπτει επάνω της, σε ηλεκτρικό ρεύμα

Δίοδος φωτοεκπομπής ή Light Emitting Diode (LED)

7 Όταν πολωθεί ορθά εκπέμπει φως

Συμβολισμός φωτοδιόδου (LED)

- Υπάρχουν LED διαφόρων ειδών χρώματα όπως κίτρινο, πράσινο, πορτοκαλί, κόκκινο ή υπέρυθρο (αόρατο)
- Με ανάστροφη πόλωση η δίοδος δεν εκπέμπει φως

Δίοδος φωτοεκπομπής ή Light Emitting Diode (LED)

- Απαιτούμενο ρεύμα για ικανοποιητικό φωτισμό στα LED του εμπορίου ≈ 10-20 mA
- Τάση στα άκρα της LED κατά τη λειτουργία της: σταθερή=1, 5 V-2,5 V (εξαρτάται από το χρώμα που εκπέμπει)
- Εάν μια LED πολωθεί ανάστροφα με τάση που ξεπερνάει τα 3 V, κινδυνεύει να καεί

Απλό κύκλωμα συνδεσμολογίας LED

Αντίσταση προστασίας της LED (1)

- Περιορίζει το ρεύμα που περνάει από τη LED, σε μια τιμή που αφ' ενός να μην κινδυνεύει να καταστραφεί, αφ' ετέρου να εκπέμπει ικανοποιητικό φωτισμό
- Αν π.χ. V=5 volts dc και συνδέσουμε κατ' ευθείαν μια LED, με μέγιστο ρεύμα ορθής πόλωσης 55 mA & εσωτερική αντίσταση R_{εσ}=80Ω, το ρεύμα της I_F θα είναι:

$$I_F = \frac{5 \text{ V}}{R_{\epsilon \sigma}} = \frac{5 \text{ V}}{80 \Omega} = 62 \text{ mA} \Rightarrow 55 \text{ mA} \Rightarrow LD$$

Με αντίσταση R_{πρ} σε σειρά, θα είναι:

$$5 V = I_F(R_{\pi\rho} + R_{\epsilon\sigma}) (\mu \epsilon I_F = 20 \text{ mA})$$

Αντίσταση προστασίας της LED (2)

Με αντίσταση R_{πρ} σε σειρά, θα είναι :

$$5 V = I_F(R_{\pi\rho} + R_{\epsilon\sigma}) (\mu \epsilon I_F = 20 \text{ mA})$$

$$\Rightarrow$$
 5 V = 20 mA × (R_{πρ} + 80) Ω και

$$R_{\pi\rho} + 80 = 250 \; \Omega \quad \acute{\eta} \quad R_{\pi\rho} = 170 \; \Omega. \label{eq:Rphi}$$

Δίοδος φωτοεκπομπής (LED)

Τυπικές δίοδοι φωτοεκπομπής (LED)

Κυκλωματικό σύμβολο διόδου φωτοεκπομπής (LED)

Πολικότητα ακροδεκτών διακριτής διόδου φωτοεκπομπής (LED)

Εφαρμογές LED

Οι εφαρμογές των LED μπορούν να χωριστούν σε τρεις κατηγορίες:

- 7 1. **Ορατή απεικόνιση:** όπου το φως κατευθύνεται περισσότερο ή λιγότερο στο ανθρώπινο μάτι για να μεταφέρει ένα μήνυμα ή μια έννοια.
- 2. Φωταγώγηση: όπου το φως από τα LED ανακλάται από αντικείμενα για να μπορούν αυτά να είναι ορατά
- 3. Μη ορατές εφαρμογές: Παράγωγη φωτός για μέτρηση και αλληλεπίδραση με διαδικασίες που δεν γίνονται αντιληπτές από το ανθρώπινο μάτι.

Εφαρμογές LED

^{*}Compact Fluorescent Lamp – συμπαγής λαμπτήρας φθορισμού

Εφαρμογές LED

Display 7 Τμημάτων (Seven Segment)

(a) LED segment arrangement and typical device

Εφαρμογές LED στην καθημερινότητα

Εφαρμογές LED στην καθημερινότητα

Έστω τηλεόραση LED με ανάλυση 1366x768. Πόσο ρεύμα απαιτείται να διαρρέει κάθε φωτοδίοδο (LED) εάν η τηλεόραση καταναλώνει 40 watt. (Θεωρείστε ότι η ισχύς καταναλώνεται μόνο στα LED και ότι το κάθε LED απαιτεί 2 Volts τάση)

ΛΥΣΗ

Η τηλεόραση θα έχει συνολικά 1366x768x3 = 3,147,264 LED

Το κάθε ένα θα καταναλώνει 40 watt / 3,147,264 = 1.27×10^{-5} watt

Το ρεύμα LED θα είναι 1.27 x 10^{-5} watt / 2 V = 6.35 x 10^{-6} A = 635 μA

Πλεονεκτήματα LED

- **Απόδοση:** Τα LED παράγουν περισσότερο φως ανά watt συγκριτικά με της λάμπες πυράκτωσης.
- Χρώμα: Τα LED εκπέμπουν φως συγκεκριμένου χρώματος χωρίς την χρήση φίλτρων που απαιτούν οι παραδοσιακοί μέθοδοι φωτισμού. Είναι πιο αποδοτικά και χαμηλώνουν το αρχικό κόστος.
- **Μέγεθος:** Τα LED είναι πολύ μικρά (μικρότερα από 2mm)
- Χρόνος ON/OFF: Τα LED έχουν γρήγορη απόκριση. Μια τυπική κόκκινη LED μπορεί να έρθει σε κατάσταση πλήρους φωτεινότητας σε χρόνο microsecond. Τα LED που χρησιμοποιούνται ως συσκευές επικοινωνίας έχουν ακόμα μικρότερους χρόνους απόκρισης.

Πλεονεκτήματα LED

- Ψυχρό φως: Σε αντίθεση με τις κοινές πήγες φωτός, τα LED εκπέμπουν πολύ λίγη θερμότητα σε μορφή υπέρυθρης ακτινοβολίας που μπορεί να προκαλέσει ζημιά σε ευαίσθητα αντικείμενα ή κατασκευές. Η ενέργεια που χάνεται διαχέεται ως θερμότητα μέσω της βάσης του LED.
- **Χρόνος ζωής:** Τα LED έχουν μεγάλους χρόνους ζωής. Οι ώρες λειτουργίας τους κυμαίνονται από **35.000 έως 50.000 ώρες**, αριθμός τεράστιος συγκριτικά με αυτόν των λαμπτήρων πυράκτωσης που κυμαίνεται από 1.000 έως 2.000 ώρες και των λαμπτήρων φθορισμού που κυμαίνεται από 10.000 έως 15.000 ώρες.

Πλεονεκτήματα LED

- **Αντίσταση σε κραδασμούς:** Τα LED, όντας στοιχεία στερεάς κατάστασης, είναι δύσκολο να υποστούν ζημιά από κραδασμούς όπως συμβαίνει με τις λάμπες πυράκτωσης και φθορισμού
- **Εστίαση:** Τα LED μπορούν να σχεδιαστούν ώστε να εστιάζουν το φως σε ένα συγκεκριμένο σημείο ή περιοχή. Οι λάμπες πυράκτωσης και φθορισμού απαιτούν ένα εξωτερικό ανακλαστήρα για να συλλέγει το φως και να το κατευθύνει με ένα χρήσιμο τρόπο
- **Τοξικότητα:** Τα LED δεν περιέχουν υδράργυρο όπως οι λάμπες φθορισμού.

Μειονεκτήματα LED

- Υψηλό αρχικό κόστος: Τα LED σήμερα είναι ακριβότερα στην αγορά τους απ΄ ότι οι κοινές τεχνολογίες φωτισμού. Όμως αυτό το κόστος αντισταθμίζεται με την χαμηλή κατανάλωση ενέργειας που έχουν.
- **Εξάρτηση από τη θερμοκρασία:** Η λειτουργιά των LED έχει ισχυρή εξάρτηση από της θερμοκρασιακές συνθήκες που επικρατούν στον χώρο που τα περιβάλει.
 - **7** Σε περιβάλλον υψηλών θερμοκρασιών, τα LED μπορούν να υπερθερμανθούν και να υποστούν ζημιά
 - Πολύ σημαντικός αν σκεφτούμε ότι αυτοκινητιστικές, στρατιωτικές και ιατρικές εφαρμογές απαιτούν η συσκευή να λειτουργεί σε ένα επαρκώς μεγάλο εύρος θερμοκρασιών και να είναι ανθεκτική στις βλάβες.

Μειονεκτήματα LED

- **Ευαισθησία στην Τάση:** Τα LED είναι αρκετά ευαίσθητα στη τάση και κατ' επέκταση στο ρεύμα που τα τροφοδοτεί
- Ποιότητα φωτός: Τα περισσότερα ψυχρού λευκού LED έχουν φάσμα που διαφέρει σημαντικά από πηγή φωτός μελανού σώματος όπως ο ήλιος ή ο λαμπτήρας πυράκτωσης.
 - το χρώμα κάποιων αντικειμένων μπορεί να φαίνεται διαφορετικό κάτω από μια LED ψυχρού λευκού απ' ότι θα φαίνονταν κάτω από το φως του ήλιου ή κάτω από μια λάμπα πυράκτωσης.
- Μόλυνση από το μπλε: τα μπλε LED και αυτά του ψυχρού λευκού εκπέμπουν περισσότερο μπλε φως απ' ότι οι κοινές πηγές φωτός

<u>Δίοδος Laser</u>

- Αποτελείται από δύο τμήματα p & n
- Στην επαφή υπάρχει μια κοιλότητα οι επιφάνειες της οποίας είναι στιλβωμένες
- Το μήκος της καθορίζει & το μήκος κύματος της παραγόμενης ακτινοβολίας
- Η επαφή *p-n* πολώνεται από εξωτερική πηγή & δημιουργείται δέσμη φωτός που εξέρχεται από το άνοιγμα της κοιλότητας

Δίοδος Laser

Όταν πολωθεί ανάστροφα & φωτιστεί με φως κατάλληλης συχνότητας, δημιουργείται ρεύμα Ι_λ

ρεύματος

Το φωτοτρανζίστορ (1)

(β) Τυπικές συσκευασίες

Το φωτοτρανζίστορ (2)

Πρακτικές εφαρμογές του φωτοτρανζίστορ

Οπτοαπομονωτές ή οπτοζεύκτες

Απόλυτη ηλεκτρική απομόνωση μεταξύ εισόδου & εξόδου ενός κυκλώματος

