PSG COLLEGE OF TECHNOLOGY, COIMBATORE - 641 004

Department of Applied Mathematics and Computational Sciences

MSc - Theoretical Computer Science - Semester 5

CONTINUOUS ASSESSMENT TEST 1

23XT51 - Theory of Computing

Date: 26.08.2025

(BTL-6)

Time: 1 Hour 30 min.

Maximum Marks: 40

INSTRUCTIONS

1. Answer ALL questions. Each question carries 20 Marks.

2. Subdivisions (a)(i) and (a)(ii) carry 2 marks each, subdivision (b) carries 6marks, and subdivision (c) carries 10 marks. 3. Course Outcome Table:

Qn. 1 CO 1

Qn. 2 CO_2

Qn.1

- (a) (i) Let $L = \{ab, aa, baa\}$. Which of the following statements correctly describes
 - 1. L^* contains all finite concatenations of ab, aa, baa
 - 2. L^4 contains exactly those strings that are concatenations of four elements
 - 3. The empty string belongs to L^* but not to L^4
 - 4. There exists at least one string w such that $w \in L^4 L^*$
 - (ii) Show by example that $(L_1 \cup L_2)^* \neq L_1^* \cup L_2^*$.
- (b) Design a minimal DFA that accepts the same language as the following finite automaton. Also, find the equivalence class of indistinguishable states.

Figure 1:

(c) Differentiate between NFA and DFA. Determine whether the finite automaton given in Figure 1 is a DFA. Justify your answer. Find an equivalent DFA for the following NFA.

(BTL-4)

Figure 2:

Qn.2

(a) (i) Define mealy machine.

(BTL-1)

(ii) Find a nfa that accepts the following language.

$$L = L(a^*b^*a) \cup L(ab^*ba)$$

(BTL-6)

(b) State Pumping Lemma. Is $L = \{w : w \in \{a, b\}^* | w|_a = |w|_b\}$ regular? Justify your answer. (BTL-4)

(c) Construct a left-linear grammar for the given automaton. Additionally, derive the regular expression using the state elimination method. (BTL-6)

Figure 3: