Simulación **ITAM** 2021-II

15 de agosto de 2021

Tarea 1.

La fecha de entrega es el **miércoles 26 de agosto de 2021**. Subir la tarea vía Canvas **por equipo** antes de la medianoche (o se convierte en calabaza).

Lecturas

- Robert & Casella Capítulo 2 sección 2.1 y 2.2.
- Dagpunar Capítulo 2
- Good random number generators are (not so) easy to find
- Linear Congruential Generator in R

Problemas

1. Una propiedad importante de la distribución exponencial es su amnesia, o falta de memoria:

$$P(X > t + s | X > t) = P(X > s)$$

- i. Escriban en R una función con la que se pueda comprobar la propiedad de falta de memoria.
- ii. Usen la función que crearon en el inciso anterior para realizar la comparación de los dos términos de la igualdad, empleando primero una muestra de 100 observaciones y luego usando una muestra de 1,000,000 de observaciones. £ qué tan bien se cumple la igualdad en cada caso? Comparen su resultado con el resultado exacto, utilizando la densidad de la función exponencial.
- 2. Lanzar una moneda honesta 500 veces y hacer una gráfica de:
 - i r/n vs n, para $n=1,2,\ldots,500$, donde n es el número de lanzamientos y r es el número de soles para esos n lanzamientos; y
 - ii. (2r-n) vs n, la diferencia entre el número de soles y águilas.

Comentar sobre el comportamiento de r/n y (2r-n)

3. Una canoa que contiene tres mujeres y tres hombres llega a una isla deshabitada. Discutan la información que requieren para modelar la sociedad de estos individuos y cómo el tamaño de la población crece con el tiempo. Por ejemplo, pueden hacer supuestos como los siguientes y hacer modificaciones para ver cómo cambiarían las proyecciones que hagan:

- Todas las personas son adultos (digamos 20 años todos). La edad de las mujeres es importante para el tema de capacidad reproductiva.
- Las parejas se determinan al inicio y no hay cambios de pareja a lo largo del tiempo
- Cada pareja puede tener una bebé al año con probabilidad p, y éste sobrevive con probabilidad w.

Con los supuestos que hagan, determinen el tiempo promedio en que se duplica la población.

- 4. Considerar cómo podrían simular el siguiente modelo de una sala de cirugía que opera bajo citas:
 - Los pacientes se programan para llegar en cada 5 horas.
 - Independientemente de los otros pacientes, cada paciente falla a su cita con probabilidad 0.1
 - Independientemente de los otros pacientes, cada paciente tiene tiempos de llegada con la siguiente distribución:

Tiempo	2 hrs antes	1 hra antes	a tiempo	1 hra tarde	2 hrs tarde
probabilidad	1/10	1/5	2/5	1/5	1/10

Los tiempos de consulta tienen la siguiente distribución:

Tiempo en hrs	2	3	4	5	6	7	8	9
probabilidad	1/10	1/10	1/10	1/5	1/5	1/10	1/10	1/10

- Los pacientes se atienden en el orden en el que llegan.
- 5. Probar que la parte fraccional de la suma de uniformes [0,1] $U_1 + U_2 + \cdots + U_k$ es también uniforme en el intervalo [0,1]. (hint: lo pueden hacer por inducción matemática)
- 6. El método del cuadrado medio de John von Neumann es el siguiente: comenzando con $Z_0 \in \{0,1,\ldots,99\}$, definir Z_n para $n \in \mathbb{N}$ a ser los dos dígitos de enmedio del número de 4 dígitos Z_{n-1}^2 . Si Z_{n-1}^2 no tiene 4 dígitos, se le pegan a la izquierda con ceros. Por ejemplo, si $Z_0 = 64$, tenemos que $Z_0^2 = 4096$ y entonces $Z_1 = 09 = 9$. En el siguiente paso, encontramos que $Z_1^2 = 81 = 0081$, así que $Z_2 = 08 = 8$.
 - Escriban una función que calcule Z_n a partir de Z_{n-1} .
 - La salida del cuadrado medio tiene bucles. Por ejemplo, una vez que $Z_N = 0$, tendremos que $Z_n = 0$ para toda $n \ge N$. Escriban un programa que encuentre todos los ciclos del método del cuadrado medio y lístenlos.
 - Comenten sobre la calidad del método como generador de números aleatorios.
 - Hacer un diagrama como el mostrado en clase.
- 7. Si dos dados están cargados de tal manera que en un dado, el valor 1 aparecerá exactamente el doble de veces que los otros valores, y el otro dado está igualmente cargado hacia el 6, calculen la probabilidad p_s de que un total exactamente igual a s aparecerá en la suma de los dos dados, para $2 \le s \le 12$.