Геометрия в компьютерных приложениях

Лекция ∞: Laplacian Smoothing / Лапласиан

Богачев Николай Владимирович

28 ноября 2020 года

Skoltech & MIPT

Оператор Лапласа

Пусть M – гладкое многообразие. Напоминаем, что оператор Лапласа на пространстве $\Lambda^k(M)$ задается формулой $\Delta \coloneqq \mathrm{d} \; \delta + \delta d$, где $\delta \coloneqq (-1)^{nk+1} \star d \star -$ кодифференциал, а $\star : \Lambda^k(M) \to \Lambda^{n-k}(M)$, $(n = \dim M)$ – звезда Ходжа.

Проверьте, что при k=0 и $M=\mathbb{R}^n$ это определение даст

стандартную формулу Лапласиана: $\Delta \varphi = -\sum_{j=1}^n \frac{\partial^2 \varphi}{\partial x_j^2}$.

Скалярное произведение: $\langle \alpha, \beta \rangle = \int_M \alpha \wedge \star \beta$. Можно проверить, что $\langle d\alpha, \beta \rangle = \langle \alpha, \delta\beta \rangle$.

Свойства Лапласиана

Положительная полуопределенность: $(\Delta u, u) \ge 0$.

Симметричность: $(\Delta u, v) = (u, \Delta v)$.

Если $\Delta u = 0$ для ограниченной $u \in C^2(\mathbb{R}^n)$, то $u \equiv const.$

Если $\Delta u = 0$ для $u \in C^2(U \subset \mathbb{R}^n)$, то локальный экстремум достигается в граничных точках ∂U .

Если $M=f(U)\subset \mathbb{R}^3$, то $\Delta f=(\Delta f_1,\Delta f_2,\Delta f_3)=2H\cdot \overrightarrow{N}$, где H – средняя кривизна поверхности, \overrightarrow{N} – ее вектор главной нормали.

Дискретный Лапласиан

Пусть $M = \{V, E, F\} \subset \mathbb{R}^3$ – симплициальная поверхность.

Дискретный Лапласиан L рассматриваем на вершинах:

$$L(v_j) = (L(v_{jx}), L(v_{jy}), L(v_{jz}))$$
, где $v_j = (v_{jx}, v_{jy}, v_{jz})$ – набор координат вершины $v_i \in V$.

Имеем:
$$L(v_j) = (L(v_{jx}), L(v_{jy}), L(v_{jz})) = (\delta_{jx}, \delta_{jy}, \delta_{jz}) = \delta_j$$
.

Общий вид Лапласиана: $L(v_j) = \sum_{(i,j) \in E} \omega_{ij} (v_i - v_j)$, где

$$\sum_{(i,j)\in E}\omega_{ij}=1.$$

Типы дискретизации Лапласиана

Что хотим от дискретизации? Как всегда, всякие свойства..

- Однородная/средняя дискретизация: $\omega_{ij} = \frac{1}{|E|}$.
- Через внешние формы:

$$(\Delta f)_{j} = \frac{1}{2 \cdot \operatorname{Area}(v_{j}^{*})} \cdot \sum_{i} (\operatorname{ctg} \alpha_{ij} + \operatorname{ctg} \beta_{ij}) (f(v_{i}) - f(v_{j})).$$

• Через конечный набор собственных функций.

Приложения: сглаживание

Нетрудно заметить, что $L(v) \in \text{conv}\{v' \mid (v,v') \in E\}$.

Применяем Лапласиан к вершинам сетки:

Приложения: деформация и метод якорей

Для более сложных деформаций – метод якорей. Якоря – это опорные точки, координаты которых зафиксированы. Остальные меняются так, чтобы деформация была «гладкой».

Пусть $V=(v_1,\ldots,v_n)$ – матрица векторов вершин сетки в \mathbb{R}^3 , а L – матрица Лапласиана, где $L_{ij}=-1$ при $i=j, L_{ij}=\omega_{ij}$, если $(i,j)\in E$, и $L_{ij}=0$ иначе.

Приложения: деформация и метод якорей

Таким образом, $LV = \Delta = (\delta_1, ..., \delta_n)$ – матрица значений Лапласиана на вершинах сетки.

 $v_x = \delta_x$ Зафиксируем значения v_1', \dots, v_m' . $oldsymbol{v_y} = oldsymbol{\delta_y}$ Как должны измениться остальные вершины? $|v_z| = \delta_z$

Приложения: деформация и метод якорей

Как должны измениться остальные вершины?

