Lecture 06

§14 Relations

- A relation is a set of ordered pairs. Notation: $x R y \iff (x,y) \in R$. $x \not R y \iff (x,y) \notin R$.
- We say R is a relation on a set A provided $R \subseteq A \times A$, and R is a relation from set A to set B provided $R \subseteq A \times B$.
- Inverse relation: $R^{-1} = \{(x,y) : (y,x) \in R\}$. $(R^{-1})^{-1} = R$.
- Let R be a relation on a set A.
 - If for all $x \in A$ we have x R x, we call R reflexive.
 - If for all $x \in A$ we have $x \not R x$, we call R irreflexive.
 - If for all $x, y \in A$ we have $x R y \implies y R x$, we call R symmetric.
 - If for all $x, y \in A$ we have $(x R y) \land (y R x) \implies x = y$, we call R antisymmetric.
 - If for all $x, y, z \in A$ we have $(x R y) \land (y R z) \implies x R z$, we call R transitive.
- Examples
 - (1) Relations on \mathbb{Z} : \leq , <, \geq , >, =.
 - (2) Define a relation R on the set $\{(x,y): x,y \in \mathbb{R}\}$: (x,y) R (x',y') provided $(x-x')(y-y') \ge 0$. Is this relation reflexive? symmetric? transitive?

§15 Equivalence Relations

- Let R be a relation on a set A. We say R is an equivalence relation provided it is reflexive, symmetric, and transitive.
- Equivalence Class: Let R be an equivalence relation on a set A and $a \in A$. The equivalent class of a, denoted [a], is the set of all elements of A related (by R) to a; that is, $[a] = \{x \in A : x R a\}$.
- If R is an equivalence relation on a set A. Then the equivalence classes of R are nonempty, pairwise disjoint subsets of A whose union is A.
- Congruence modulo n: Let n be a positive integer. We say that integers x and y are congruent modulo n provided n|(x-y). The notation is $x \equiv y \pmod{n}$. This congruence-mod-n relation is an equivalence relation on \mathbb{Z} .
- Examples
 - (3) Let $x, y \in \mathbb{Z}$. $x \equiv y \pmod{2}$ if and only if x, y are both odd or both even.
 - (4) There are n equivalence classes of the congruence-mod-n relation.
 - (5) Let X be the set of ordered pairs of integers (a, b) with $b \neq 0$, and define a relation R on X according to which (a, b) R (c, d) if and only if ad = bc. Then R is an equivalence relation. Moreover, the equivalence class of the pair (a, b) can be identified with the rational number a/b.

HW3(b) (Due 2/17/2016)

- 14.10
- 15.3 (b), (c), (e)
- 15.7 (b), (c), (f)