GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

MOMBBE DE LA AGIONIATIONA			
NOMBRE DE LA ASIGNATURA			
NOMBINE DE LA AGIGNATORIA			
	Elemento Finito		
1	Liemento i mito		

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Séptimo Semestre	170701	85

OBJETIVOS(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante las herramientas matemáticas necesarias para construir un método numérico capaz de resolver, mediante ecuaciones matriciales, las ecuaciones diferenciales parciales que surgen de modelar los sistemas discretos (estructurales) o continuos (campos).

TEMAS Y SUBTEMAS

1. Formulación del Método de los Elementos Finitos

- 1.1 Introducción. Justificación.
- 1.2 Discretización en elementos finitos.
- 1.3 Función de aproximación.
- 1.4 Matriz tensión de los elementos.
- 1.5 Matriz de rigidez elemental.
- 1.6 Condiciones de convergencia de las funciones de aproximación.

2. Formulación Variacional

- 2.1 Propiedades del calculo variaciona.l
- 2.2 Ecuación de Euler-Lagrange.
- 2.3 Método de Ritz.
- 2.4 La energia potencial total como variacional.
- 2.5 Discretizacion de la energia potencial.

3. Formulación Residual

- 3.1 Método general de los residuos ponderados.
- 3.2 Método de Galerkin.
- 3.3 Ejemplos de aplicación.
- 3.4 Flexión de vigas.
- 3.5 Pandeo de barras rectas de sección variable.

4. Discretizacion de la estructura

- 4.1 Generación de la malla.
- 4.2 Minimización del ancho de banda de la matriz de rigidez.
- 4.3 Tipos de elementos finitos.
- 4.4 Definición geométrica de los elementos finitos.
- 4.5 Continuidad geométrica de la transformación.
- 4.6 Elementos curvos.
- 4.7 Geometría de elementos finitos en coordenadas generalizadas.

5. Corrimiento de los elementos finitos

- 5.1 Requisitos de las funciones de interpolación.
- 5.2 Aproximación polinomial de los corrimientos.
- 5.3 Consideraciones para la reducción del numero de nodos.
- 5.4 Comprobación de la formulación del elemento finito.
- 5.5 Valores y vectores propios de la matriz de rigidez.

COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

6. Ejemplos de aplicación prácticos

- 6.1 Solución de ecuaciones diferenciales parciales de segundo orden que modelan problemas que se presentan en: Análisis de estructuras, transferencia de calor, vibraciones mecánica campos electromagnéticos, mecánica de fluidos, etc.
- 6.2 Presentación de problemas reales en la industria que son resueltos con paquetes Software comerciales.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Así mismo se desarrollaran programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; estas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. El método de los elementos finitos ,O.C. Zienkiewicz , R. L. Taylor , McGrawHill , 4ª ed. 1994.
- 2. Finite elements in electric and magnetic field problems, Silvester-Chari, Ed. John Wiley, 1980.
- 3. Finite element procedures, K.J. Bathe, Ed. Prentice Hall, 1996.
- 4. Concepts and applications of finite element analysis, Robert D.Cook, Ed. John Wiley, 1989.

Libro de Consulta:

- 1. Elementos finitos para ingeniería eléctrica, Silvester-Ferrari, Ed. Limusa, 1989.
- método de los elementos finitos en la ingeniería de estructuras , J. M. Fornons , Ed. Marcombo, 1ª edición 1982.
- 3. An introduction to the finite element method , J. N. Reddy , Ed. McGrawHill , 1993.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Ciencias e Ingeniería Mecánica.

