ATOMIC STRUCTURE

$$\Delta E = hv$$

$$c = \lambda v$$

$$\lambda = \frac{h}{mv}$$

$$p = mv$$

$$E_n = \frac{-2.178 \times 10^{-18}}{n^2} \text{ joule}$$

EQUILIBRIUM

$$K_{a} = \frac{[\mathrm{H}^{+}][\mathrm{A}^{-}]}{[\mathrm{HA}]}$$

$$K_{b} = \frac{[\mathrm{OH}^{-}][\mathrm{HB}^{+}]}{[\mathrm{B}]}$$

$$K_{w} = [\mathrm{OH}^{-}][\mathrm{H}^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}\mathrm{C}$$

$$= K_{a} \times K_{b}$$

$$\mathrm{pH} = -\log[\mathrm{H}^{+}], \ \mathrm{pOH} = -\log[\mathrm{OH}^{-}]$$

$$14 = \mathrm{pH} + \mathrm{pOH}$$

$$\mathrm{pH} = \mathrm{p}K_{a} + \log\frac{[\mathrm{A}^{-}]}{[\mathrm{HA}]}$$

$$\mathrm{pOH} = \mathrm{p}K_{b} + \log\frac{[\mathrm{HB}^{+}]}{[\mathrm{B}]}$$

$$\mathrm{p}K_{a} = -\log K_{a}, \ \mathrm{p}K_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$
where Δn = moles product gas – moles reactant gas

THERMOCHEMISTRY

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products } -\sum \Delta H_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -RT \ln K = -2.303 RT \log K$$

$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$

$$q = mc\Delta T$$

$$C_{p} = \frac{\Delta H}{\Delta T}$$

$$E = \text{energy}$$

 $v = \text{frequency}$
 $\lambda = \text{wavelength}$
 $p = \text{momentum}$
 $v = \text{velocity}$
 $n = \text{principal quantum number}$
 $m = \text{mass}$

Speed of light,
$$c = 3.0 \times 10^8 \text{ m s}^{-1}$$

Planck's constant, $h = 6.63 \times 10^{-34} \text{ J s}$
Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$
Avogadro's number $= 6.022 \times 10^{23} \text{ molecules mol}^{-1}$
Electron charge, $e = -1.602 \times 10^{-19} \text{ coulomb}$
1 electron volt per atom $= 96.5 \text{ kJ mol}^{-1}$

Equilibrium Constants

K_a	(weak acid)
K_b	(weak base)
K_w	(water)
K_p	(gas pressure)
K_c	(molar concentrations)

$$S^{\circ} = \text{standard entropy}$$
 $H^{\circ} = \text{standard enthalpy}$
 $G^{\circ} = \text{standard free energy}$
 $E^{\circ} = \text{standard reduction potential}$
 $T = \text{temperature}$
 $n = \text{moles}$
 $m = \text{mass}$
 $q = \text{heat}$
 $c = \text{specific heat capacity}$
 $C_p = \text{molar heat capacity at constants}$

$$C_p$$
 = molar heat capacity at constant pressure 1 faraday \mathcal{F} = 96,500 coulombs