ECON 6170 Problem Set 4

Gabe Sekeres

September 20, 2024

Exercise 6 Every real-valued function $f: S \to \mathbb{R}$ is continuous at every isolated point $x \in S$.

Proof. We have that x is an isolated point, meaning that $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \cap S = \{x\}$. Fix some $\varepsilon' > 0$. We have that f is continuous at x if $\exists \delta$ s.t. $|f(x) - f(y)| < \varepsilon'$ whenever $|x - y| < \delta \ \forall \ y \in S$. We can take $\delta < \varepsilon$. Then, since $B_{\varepsilon}(x) \cap S = \{x\}$, the set $\{y \in S \mid |x - y| < \delta\}$ is a singleton that contains only x. Thus, since $|f(x) - f(x)| = 0 < \varepsilon'$ for each $\varepsilon' > 0$, f is trivially continuous at x. This holds for any f where f(x) is well-defined.

Exercise 7 Prove the following using the $\varepsilon - \delta$ definition of continuity.

Proposition 7. If $f: S \to \mathbb{R}$ is continuous at $x_0, f(x_0) \in T \subseteq \mathbb{R}$, and $g: T \to \mathbb{R}$ is continuous at $f(x_0)$, then the composite function $g \circ f$ is continuous at x_0 .

Proof. Fix $\varepsilon > 0$. Since g is continuous at $f(x_0)$, $\exists \delta_g > 0$ s.t. $|f(x_0) - f(y)| < \delta_g \Longrightarrow |g(f(x_0)) - g(f(y))| < \varepsilon \ \forall \ f(y) \in T$. Then take $\varepsilon_f = \delta_g$. Since f is continuous at x_0 , $\exists \ \delta_f > 0$ s.t. $|x_0 - y| < \delta_f \Longrightarrow |f(x_0) - f(y)| < \varepsilon_f \ \forall \ y \in S$. Then, we have that the composition works as follows: For $\varepsilon > 0$, $\exists \ \delta_f$ s.t. $\forall \ y \in S, |x_0 - y| < \delta_f \Longrightarrow |f(x_0) - f(y)| < \delta_g \Longrightarrow |g(f(x_0)) - g(f(y))| < \varepsilon$. Thus, $g \circ f$ is continuous.

Exercise 8 True!

Proof. Note that $\max\{f,g\} = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$. We will use many elements of Proposition 6. Since g is continuous, -g is continuous from (ii), taking $k = -1 \in \mathbb{R}$. Then f-g is continuous from (iii), and |f-g| is continuous from (i). Additionally, (f+g) is continuous from (iii), and $\frac{1}{2}|f-g|$ and $\frac{1}{2}(f+g)$ are both continuous from (ii), taking $k = \frac{1}{2} \in \mathbb{R}$. Finally, $\max\{f,g\} = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$ is continuous from (iii). \square

Exercise 9 This statement is true! First, we will prove the useful lemma indicated.

Lemma 1. A sequence $\{x_n\}$ converges to x if and only if for every subsequence $\{x_{n_k}\}$ there exists subsequence $\{x_{n_k}\}$ that converges to x.

Proof. (\Rightarrow) $x_n \to x \Rightarrow \{x_n\}$ Cauchy, meaning that $\forall \ \varepsilon > 0, \exists \ N \in \mathbb{N}$ s.t. $|x_n - x_m| < \varepsilon \ \forall \ n, m > N$. Taking some subsequence $\{x_{n_k}\}$, we have that $|x_{n_i} - x_{n_j}| < \varepsilon$ if $n_i, n_j > N$ where N is from the initial sequence. Thus, $\{x_{n_k}\}$ is Cauchy. Taking a sub-subsequence $\{x_{n_{k_l}}\}$, we have that $|x_{n_{k_i}} - x_{n_{k_j}}| < \varepsilon$ as long as $n_{k_i}, n_{k_j} > N$, where N is again from the initial sequence. Thus, $\{x_{n_{k_l}}\}$ is Cauchy, so it converges by Theorem 2. It remains to show that $\{x_{n_{k_l}}\}$ converges to x. FSOC, assume that $x_{n_{k_l}} \to y \neq x$. Then $|y - x| = \delta > 0$. Taking $\varepsilon = \delta/3$, we have that $\exists \ N \in \mathbb{N}$ s.t. $x_{n_{k_l}} \in B_{\varepsilon}(y) \Rightarrow x_{n_{k_l}} \notin B_{\varepsilon}(x) \ \forall \ n_{k_l} > N$, which implies that $x_n \not\to x$, which is a contradiction. Thus, $x_{n_{k_l}} \to x$.

(\Leftarrow) Proof by contrapositive. Assume that there exists a subsequence $\{x_{n_k}\}$ such that all sub-subsequences $\{x_{n_{k_l}}\}$ do not converge to x. Consider two cases. First, assume that there exists some $\{x_{n_{k_l}}\}$ such that $x_{n_{k_l}} \to y \neq x$. This is the exact same case as the assumed contradiction above, where we showed that $x_n \not\to x$. Second, assume that all $\{x_{n_{k_l}}\}$ do not converge. This means that $\forall y \in \mathbb{R}, \exists \varepsilon > 0$ s.t. $\forall N \in \mathbb{R}$

 $\mathbb{N}, \exists \ n > N \text{ s.t. } |x_{n_{k_l}} - y| > \varepsilon$. Taking y = x, and recalling that $x_{n_{k_l}} \in \{x_n\} \ \forall \ n_{k_l}$, this is a direct negation of the definition of convergence, so $x_n \not\to x$.

Now we move on to the main result:

Proposition 1. $f: S \to \mathbb{R}$ is continuous at x_0 if and only if for every monotonic sequence $\{x_n\}$ converging to $x_0, f(x_n) \to f(x_0)$.

Proof. (\Rightarrow) If f is continuous, then $x_n \to x \Rightarrow f(x_n) \to f(x)$. This holds also for monotone $x_n \to x$.

(\Leftarrow) We have that for all monotone $\{y_n\}$ where $y_n \to y$, $f(y_n) \to f(y)$. Take some $\{x_n\}$ not necessarily monotone, where $x_n \to x$. It suffices to show that $f(x_n) \to f(x)$, from the sequential definition of continuity. Take any subsequence $\{x_{n_k}\}$. From Proposition 7, it has a monotone sub-subsequence $\{x_{n_{k_l}}\}$, and from Exercise 26, $x_{n_{k_l}} \to x$. By assumption, $f(x_{n_{k_l}}) \to f(x)$. Thus, since we have that for the sequence $f(x_n)$, every subsequence $f(x_{n_k})$ has a sub-subsequence $f(x_{n_{k_l}})$ that converges to f(x), $f(x) \to f(x)$ by Lemma 1.

Exercise 1 Let $S \subset \mathbb{R}$ be open. Prove that a function $f: S \to \mathbb{R}^s$ is continuous if and only if for every open set $A \subset \mathbb{R}^d$, $f^{-1}(A)$ is open.

Proof. (\Rightarrow) We have that f is continuous. FSOC, assume that $f^{-1}(A)$ is not open, meaning that there exists $x \in f^{-1}(A)$ s.t. $\forall \varepsilon > 0$, $B_{\varepsilon}(x) \not\subseteq f^{-1}(A)$. Fix some $\delta > 0$. Then $\exists y_1 \in B_{\delta}(x) \subseteq S$ s.t. $y_1 \not\in f^{-1}(A)$. Consider the sequence defined by $y_n = \{y \in S : y \in B_{\frac{1}{n}\delta}(x), y \not\in f^{-1}(A)\}$. Definitionally, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $\forall n > N, |y_n - x| < \varepsilon$, because $\frac{1}{n}\delta \to 0$. Thus, $y_n \to x$. However, $f(y_n) \not\in A \forall y_n$. Since A is open, $\exists \varepsilon' > 0$ s.t. $B_{\varepsilon'}(f(x)) \subseteq A$. $f(y_n) \not\in B_{\varepsilon'}(f(x))$, so taking $\varepsilon = \varepsilon'$, $\not\supseteq n \in \mathbb{N}$ s.t. $|f(y_n) - f(x)| < \varepsilon$. This contradicts the assumption that f is continuous, since $y_n \to x$ but $f(y_n) \not\to f(x)$.

(\Leftarrow) We have that for every open $A \subset \mathbb{R}^d$, $f^{-1}(A)$ is open. Fix some $x \in f^{-1}(A)$, and some $\varepsilon > 0$. $B_{\varepsilon}(f(x))$ is an open subset of S by definition, so $f^{-1}(B_{\varepsilon}(f(x)))$ is open by assumption. Since $x \in f^{-1}(B_{\varepsilon}(f(x)))$, $\exists \ \delta > 0 \text{ s.t. } B_{\delta}(x) \subseteq f^{-1}(B_{\varepsilon}(f(x)))$. Thus, we have shown that for every $\varepsilon > 0$, $x, y \in S$, $\exists \ \delta > 0 \text{ s.t. } |x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$. Thus, f is continuous.