ANÁLISIS NUMÉRICO I/ANÁLISIS NUMÉRICO – 2021 Trabajo de Laboratorio Nº 2

- 1. Escribir una función que implemente el método de bisección para hallar una raíz de $f: \mathbb{R} \to \mathbb{R}$ en el intervalo [a,b]. La función debe llamarse "rbisec", y tener como entrada los argumentos (fun,I,err,mit), donde fun es una función que dado x retorna f(x), I=[a,b] es un intervalo en \mathbb{R} , err es la tolerancia deseada del error y mit es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-esima iteración si $|f(x_k)| < \text{err o si } k \ge \text{mit}$. Los argumentos de salida deben ser (hx,hf) donde $hx=[x_1,\ldots,x_N]$ es una lista que representa el historial de puntos medios y $hf=[f(x_1),\ldots,f(x_N)]$ el historial de los respectivos valores funcionales.
- 2. Utilizar la función rbisec para:
 - a) Encontrar la menor solución positiva de la ecuación $2x = \tan(x)$ con un error menor a 10^{-5} en menos de 100 iteraciones. ¿Cuántas iteraciones son necesarias cuando comenzamos con el intervalo [0.8, 1.4]? Usar la siguiente sintaxis:

$$hx, hy = rbisec(fun_lab2ej2a, [0.8, 1.4], 1e-5, 100)$$

- b) Encontrar una aproximación a $\sqrt{3}$ con un error menor a 10^{-5} . Para esto, considere la función $x \mapsto x^2 3$ (que debe llamarse fun_lab2ej2b).
- c) Graficar conjuntamente f y los pares $(x_k, f(x_k))$ para las dos funciones anteriores y con al menos dos intervalos iniciales distintos para cada una.
- 3. Escribir una función que implemente el método de Newton para hallar una raíz de $f: \mathbb{R} \to \mathbb{R}$ partiendo de un punto inicial x_0 . La función debe llamarse "rnewton", y tener como entrada (fun,x0,err,mit) donde fun es una función que dado x retorna f(x) y f'(x), x0 es un punto inicial en \mathbb{R} , err es la tolerancia deseada del error y mit es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-esima iteración si se cumple alguna de las siguientes condiciones:

$$\frac{|x_k-x_{k-1}|}{|x_k|}<\text{err}, \qquad |f(x_k)|<\text{err}, \qquad k\geq \text{mit}.$$

La salida debe ser (hx,hf) donde hx= $[x_1, \ldots, x_N]$ es una lista que representa el histórico de puntos generados y hf= $[f(x_1), \ldots, f(x_N)]$ el histórico de los respectivos valores funcionales.

- 4. Escribir una función que, ingresando a > 0, retorne una aproximación de $\sqrt[3]{a}$. La aproximación debe realizarse usando el método de Newton del ejercicio anterior para resolver $x^3 a = 0$ con un error menor a 10^{-6} mediante el uso de la función $x \mapsto x^3 a$.
- 5. Escribir una función que implemente el método de iteración de punto fijo para hallar un punto fijo de $\varphi : \mathbb{R} \to \mathbb{R}$, partiendo de un punto inicial x_0 . La función debe llamarse "ripf", y tener como entrada (fun,x0,err,mit) donde fun es una función que dado x retorna $\varphi(x)$, x0 es un punto en \mathbb{R} , err es la tolerancia deseada del error y mit es el número máximo de iteraciones permitidas. El algoritmo debe finalizar en la k-ésima iteración si

 $|x_k - x_{k-1}| < \text{err } \acute{o} \text{ bien } k \ge \text{mit.}$ La salida debe ser hx donde hx= $[x_1, \ldots, x_N]$ es una lista del histórico de puntos generados.

- 6. Se quiere usar la fórmula de iteración $x_{n+1} = 2^{x_n-1}$ para resolver la ecuación $2x = 2^x$. Utilizar la función del ejercicio anterior para investigar si converge; y en caso afirmativo, estudiar hacia qué valores lo hace para distintas elecciones de x_0 , tomando un número máximo de 100 iteraciones y un error menor a 10^{-5} . Usar la siguiente sintaxis: hx = ripf(fun_lab2ej6, x0, 1e-5, 100)
- 7. Se desea conocer la gráfica de una función u definida implícitamente como u(x)=y donde y es solución de

$$y - e^{-(1-xy)^2} = 0.$$

Implementar tres versiones de esta función, hallando el valor de y con los métodos de los ejercicios de bisección (lab2ej7bisec), Newton (lab2ej7newton) y punto fijo (lab2ej7ipf). Los valores iniciales y tolerancias usadas por los distintos métodos deben ser escogidos de manera que cualquier usuario pueda graficar u en el intervalo [0, 1.5] sin inconvenientes.

- 8. Encontrar el mínimo de la función $f(x) = \frac{\tan x}{x^2}$ en el intervalo $(0, \frac{\pi}{2})$. Para ello calcular la raíz de su derivada usando el método de Newton.
- 9. La generación de energía de un molino de viento depende del diámetro de la circunferencia generada por sus aspas y la velocidad del viento de la zona. Una buena estimación de la energía generada está dada por la fórmula:

$$E = 0.01328D^2V^3$$
,

donde E es la energía generada, D es el diámetro en metros y V es la velocidad del viento en m/s.

Usar el método de Newton para determinar el diámetro del molino si se desea generar 500W de energía eléctrica cuando la velocidad del viento es de 24 km/h.