MAT-032: Probabilidad y Estadística Comercial

Certamen 1. Abril 1, 2019

Tiempo: 90 minutos Felipe Osorio

1. Tenemos la siguiente tabla de frecuencias:

Ingreso (UM)	C_i	n_i	f_i	N_i	$\overline{F_i}$
65 - 75	70	10	0.090	10	0.090
75-85	80	15	0.136	25	0.226
85-95	90	60	0.548	85	0.774
95 - 105	100	15	0.136	100	0.910
105-115	110	10	0.090	110	1.000
Total	_	110	1.000	_	

En este caso n=110 y $\sum_{i=1}^5 n_i C_i = 9\,900$. De este modo, la media aritmética es

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{5} n_i C_i = \frac{9900}{110} = 90 \text{ (UM)}.$$

Para calcular la mediana, primero debemos ubicar el intervalo mediano. En efecto, debemos ubicar la primera frecuencia relativa acumulada (F_i) que supere 0.5 (o bien, frecuencia absoluta acumulada (N_i) que supere n/2). De este modo el intervalo mediano es (85, 95]. Además, $a_i = 10$ para todos los intervalos. De este modo,

$$\mathsf{me} = L_i + \frac{1/2 - F_{i-1}}{f_i} \, a_i,$$

donde $L_i = 85$, $F_{i-1} = 0.226$, $f_i = 0.548$ y $a_i = 10$, luego

$$me = 85 + \frac{0.500 - 0.226}{0.548} \cdot 10 = 85 + 0.5 \cdot 10 = 90 \text{ (UM)}.$$

Por otro lado,

$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{5} n_{i} C_{i}^{2} - n \overline{x}^{2} \right).$$

En nuestro caso,

$$\sum_{i=1}^{5} n_i C_i^2 = 902\,000, \qquad \overline{x}^2 = 8\,100.$$

Así,

$$s^{2} = \frac{1}{110 - 1} (902\,000 - 110 \cdot 8\,100^{2}) = \frac{1}{109} (902\,000 - 891\,000)$$
$$= \frac{11\,000}{109} = 100.9174 \text{ (UM)}^{2}.$$

Además, tenemos que $s=\sqrt{11\,000/109}=10.0458$ (UM). Mientras que

$$CV = \frac{10.0458}{90} = 0.1116.$$

Podemos evaluar la simetría usando el coeficiente de Galton. Por tanto, debemos calcular Q_1 y Q_3 , como:

$$Q_1 = 85 + \frac{0.250 - 0.226}{0.548} \cdot 10 = 85.4380$$
$$Q_3 = 85 + \frac{0.750 - 0.226}{0.548} \cdot 10 = 94.5620,$$

de este modo IQR = 9.1240, y

$$\gamma_{G} = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1}$$

$$= \frac{(94.562 - 90) - (90 - 85.438)}{9.124} = \frac{4.562 - 4.562}{9.124} = 0.000$$

Es decir, la distribución de los datos es simétrica.

2. Sean $x_{11}, x_{12}, \ldots, x_{1n_1}$ las observaciones recolectadas el día 1, mientras que $x_{21}, x_{22}, \ldots, x_{2n_2}$ las observaciones obtenidas el día 2.

Así, el promedio de los datos combinados es:

$$\overline{x} = \frac{1}{n_1 + n_2} \left(\sum_{j=1}^{n_1} x_{1j} + \sum_{j=1}^{n_2} x_{2j} \right) = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}.$$

Por otro lado,

$$s^{2} = \frac{1}{n_{1} + n_{2} - 1} \left(\sum_{i=1}^{2} \sum_{j=1}^{n_{i}} x_{ij}^{2} - (n_{1} + n_{2}) \overline{x}^{2} \right)$$
$$= \frac{1}{n_{1} + n_{2} - 1} \left(\sum_{j=1}^{n_{1}} x_{1j}^{2} + \sum_{j=1}^{n_{2}} x_{2j}^{2} - (n_{1} + n_{2}) \overline{x}^{2} \right).$$

Además,

$$\sum_{j=1}^{n_1} x_{1j}^2 = (n_1 - 1)s_1^2 + n_1 \overline{x}_1^2, \qquad \sum_{j=1}^{n_2} x_{2j}^2 = (n_2 - 1)s_2^2 + n_2 \overline{x}_2^2,$$

substituyendo estas sumas en s^2 obtenemos el resultado deseado.

3. a) Resulta más sencillo calcular la probabilidad del complemento. De este modo, la probabilidad de que **no** salga un doble seis en un lanzamiento de los dados es 35/36 y que no salga ningún doble seis en n lanzamientos es $(35/36)^n$. Por tanto, se desea:

$$p = 1 - \left(\frac{35}{36}\right)^n.$$

3.b) Deseamos resolver la ecuación, $p = \frac{1}{2}$. Es decir,

$$\frac{1}{2} = 1 - \left(\frac{35}{36}\right)^n$$
, o bien, $\frac{1}{2} = \left(\frac{35}{36}\right)^n$.

Tomando logaritmos, obtenemos

$$n\log(35/36) = \log(1/2)$$
 \Rightarrow $n = \frac{\log(1/2)}{\log(35/36)} = \frac{-\log(2)}{\log(35) - \log(36)} = 24.6051,$

Por tanto, se deben jugar 25 partidas para obtener una probabilidad de 1/2 de lograr un doble seis.

4. Desde el enunciado del problema se tiene que:

$$\mathrm{P}(A) = \frac{1}{2}, \quad \mathrm{P}(B) = \frac{1}{3}, \quad \mathrm{P}(C) = \frac{1}{6}, \quad \mathrm{P}(Z|A) = \frac{1}{10}, \quad \mathrm{P}(Z|B) = \frac{1}{15}, \quad \mathrm{P}(Z|C) = \frac{1}{12}.$$

a) Por el Teorema de probabilidad total, sigue que:

$$P(Z) = P(Z|A) P(A) + P(Z|B) P(B) + P(Z|C) P(C)$$
$$= \frac{1}{2} \cdot \frac{1}{10} + \frac{1}{3} \cdot \frac{1}{15} + \frac{1}{6} \cdot \frac{1}{12} = \frac{31}{360}.$$

b) Por el Teorema de Bayes, obtenemos:

$$P(A|Z) = \frac{P(Z|A) P(A)}{P(Z)} = \frac{\frac{1}{2} \cdot \frac{1}{10}}{\frac{31}{360}} = \frac{18}{31}.$$

c) Sea Z^c el evento que indica que la persona está sana. De este modo podemos calcular:

$$P(Z^c) = 1 - P(Z) = 1 - \frac{31}{360} = \frac{329}{360},$$

y, análogamente

$$P(Z^c|A) = 1 - P(Z|A) = 1 - \frac{1}{10} = \frac{9}{10}.$$

Por tanto la probabilidad deseada es:

$$P(A|Z^c) = \frac{P(Z^c|A) P(A)}{P(Z^c)} = \frac{\frac{1}{2} \cdot \frac{9}{10}}{\frac{329}{360}} = \frac{162}{329}.$$