CS4104 Applied Machine Learning

Evaluation Measures

Evaluating a Machine Learning Algorithm

- Relevance is assessed relative to the information need
- E.g., <u>Information need</u>: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
- Evaluate whether the doc addresses the information need, not whether it has these words

zeshan.khan@nu.edu.pk

Dataset

Supervised

- Train Test Data
- Evaluation/Ground Truth

Un-Supervised

• Train Test Data

zeshan.khan@nu.edu.pk

Standard Datasets

Textual

- GOV2
 - Another TREC/NIST collection
 - 25 million web pages
 - Largest collection that is easily available
 - But still 3 orders of magnitude smaller than what Google/Yahoo/MSN index
- Cross Language Evaluation Forum (CLEF)
 - This evaluation series has concentrated on European languages and cross-language information retrieval.
- TREC (Text Retrieval Conference)
 - 450 Queries/Information Needs
 - 1.89 M Documents
- · Reuters-RCV2
- 20 Newsgroups
 - 18941 articles

Image

- · Image Net
 - Millions of Images
 - 1000 classes
- Object Net
 - Millions of Images
 - 1000 classes
- MNIST
 - 10 classes

Un-Ranked Results

- Precision
- Recall
- Accuracy
- F-Measure
- MCC
- Jaccard Index

Ranked Results

- Top 5 Accuracy
- Mean Average Precision
- Normalized Discounted Cumulative Gain

- **TP**: True Positive
 - Number of relevant documents retrieved.
- **FP**: False Positive
 - Number of documents retrieved but irrelevant.
- TN: True Negative
 - Number of irrelevant documents not retrieved.
- FN: False Negative
 - Number of relevant documents not retrieved.

	Relevant	Irrelevant
Retrieved	TP	FP
Not Retrieved	FN	TN

 Precision: fraction of retrieved docs that are relevant

•
$$P = \frac{TP}{TP + FP} = P(relevant | retrieved)$$

 Recall: fraction of relevant docs that are retrieved

•
$$R = \frac{TP}{TP + FN} = P(\text{retrieved}|\text{relevant})$$

• Accuracy: the fraction of correct retrieval.

•
$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

• Fall-out: The proportion of non-relevant documents retrieved.

•
$$Fall - out = \frac{FP}{FP + TN}$$

	Relevant	Irrelevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Confusion Matrix

Corpus=120 Relevant=10 0	Retrieved	Relevant Retrieved
Model 1	80	80
Model 2	90	70
Model 3	120	100
Model 4	0	0
Model 5	50	50
Model 1	Relevant	Irrelevant
Retrieved	80	0
Not-Retrieve d	20	20

Model 2	Relevant	Irrelevant
Retrieved	70	20
Not-Retrieve	30	0
Model 3	Relevant	Irrelevant
Retrieved	100	20
Not-Retrieve	0	0
Model 4	Relevant	Irrelevant
Retrieved	0	0
Not-Retrieve d	100	20
Model 5	Relevant	Irrelevant
Retrieved	50	0
Not-Retrieve d	50	20

	Relevant	Irrelevant
Retrieved	TP	FP
Not Retrieved	FN	TN

Reca

	Precision	Recall
Model 1		
Model 2		
Model 3		
Model 4		
Model 5		

$$P = \frac{TP}{TP + FP}$$
$$R = \frac{TP}{TP + FN}$$

Model 1	Relevant	Irrelevant
Retrieved	80	0
Not-Retrieve	20	20
Model 2	Relevant	Irrelevant
Retrieved	70	20
Not-Retrieve d	30	0
Model 3	Relevant	Irrelevant
Retrieved	100	20
Not-Retrieve	0	0
Model 4	Relevant	Irrelevant
Retrieved	0	0
Not-Retrieve	100	20
Model 5	Relevant	Irrelevant
Retrieved	50	0
Not-Retrieve d	50	20

	Relevant	Irrelevant
Retrieved	TP	FP
Not Retrieved	FN	TN
_		

r recision and Reca

	Precision	Recall
Model 1	80/80=1	80/100=0.
Model 2	70/90=0.78	7 0/100=0.7
Model 3	100/120=0.83	100/100=1
Model 4	0/0= NA	0/100=0
Model 5	50/50=1	50/100=0.5

$$P = \frac{TP}{TP + FP}$$
$$R = \frac{TP}{TP + FN}$$

Model 1	Relevant	Irrelevant
Retrieved	80	0
Not-Retrieve	20	20
Model 2	Relevant	Irrelevant
Retrieved	70	20
Not-Retrieve d	30	0
Model 3	Relevant	Irrelevant
Retrieved	100	20
Not-Retrieve	0	0
Model 4	Relevant	Irrelevant
Retrieved	0	0
Not-Retrieve	100	20
Model 5	Relevant	Irrelevant
Retrieved	50	0
Not-Retrieve d	50	20

Precision and Recall

	Precision	Recall
Model 1	80/80=1	80/100=0.8
Model 2	70/90=0.78	70/100=0.7
Model 3	100/120=0.83	100/100=1
Model 4	0/0= NA	0/100=0
Model 5	50/50=1	50/100=0.5

Accuracy

	Accuracy
Model 1	
Model 2	
Model 3	
Model 4	
Model 5	

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Model 1	Relevant	Irrelevant
Retrieved	80	0
Not-Retrieve	20	20
Model 2	Relevant	Irrelevant
Retrieved	70	20
Not-Retrieve d	30	0
Model 3	Relevant	Irrelevant
Retrieved	100	20
Not-Retrieve	0	0
Model 4	Relevant	Irrelevant
Retrieved	0	0
Not-Retrieve	100	20
Model 5	Relevant	Irrelevant
Retrieved	50	0
Not-Retrieve d	50	20

Accuracy

	Accuracy
Model 1	100/120=0.83
Model 2	70/120=0.58
Model 3	100/120=0.83
Model 4	20/120=0.16
Model 5	70/120=0.58

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Model 1	Relevant	Irrelevant
Retrieved	80	0
Not-Retrieve	20	20
Model 2	Relevant	Irrelevant
Retrieved	70	20
Not-Retrieve d	30	0
Model 3	Relevant	Irrelevant
Retrieved	100	20
Not-Retrieve	0	0
Model 4	Relevant	Irrelevant
Retrieved	0	0
Not-Retrieve	100	20
Model 5	Relevant	Irrelevant
Retrieved	50	0
Not-Retrieve d	50	20

Precision/Recall

- You can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved
- In a good system, precision decreases as either the number of docs retrieved or recall increases
 - This is not a theorem, but a result with strong empirical confirmation

Comminated Measures

Weighted Harmonic Mean (F-Measure)

• Combined measure that assesses precision/recall tradeoff is **F measure** (weighted harmonic mean):

•
$$F = \frac{1}{\alpha * \frac{1}{P} + (1 - \alpha) * \frac{1}{R}}$$

•
$$\beta^2 = \frac{1-\alpha}{\alpha}$$

•
$$F = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

• People usually use balanced F_1 measure

•
$$\beta = 1$$
 or $\alpha = \frac{1}{2}$

•
$$F1 = \frac{2PR}{P+R}$$

	Relevant	Irrelevant	
Retrieved	TP	FP	
Not	FN	TN	
Retrieved			Magg
r 1-Doute, r 1-Meas			

	Precisi on	Reca ll	F1-Measure (2*1*0.8)/1.8=0.89
Model 1	1	0.8	(2*0.78*0.7)/1.48=0.74 (2*0.83*1)/1.83=0.91
Model 2	0.78	0.7	NA
Model 3	0.83	1	(2*1*0.5)/1.5=0.67
Model 4	NA	0	
Model 5	1	0.5	

Model 1	Relevant	Irrelevant
Retrieved	80	0
Not-Retrieve	20	20
Model 2	Relevant	Irrelevant
Retrieved	70	20
Not-Retrieve d	30	0
Model 3	Relevant	Irrelevant
Retrieved	100	20
Not-Retrieve	0	0
Model 4	Relevant	Irrelevant
Retrieved	0	0
Not-Retrieve	100	20
Model 5	Relevant	Irrelevant
Retrieved	50	0
Not-Retrieve d	50	20

Matthews Correlation Coefficient (MCC)

•
$$MCC = \frac{(TP*TN)-(FP*FN)}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}}$$

- Perfect return 1
- Worst results -1
- 0 for the random resuls

Jaccard Index (JI)

•
$$JI = \frac{Intersection}{Union} * 100$$

- Intersection: The number of common elements in the prediction and ground truths
- Union: Total number of distinct values in predicted and ground truths
- Range of value: 0 to 100
- 0 for Worst
- 100 for Best

TPR (Sensitivity): True Positive Rate

$$TPR = \frac{TP}{TP + FN}$$

FPR: False Positive Rate $FPR = \frac{FP}{FP+TN}$

$$Specificity = \frac{TN}{TN + FP}$$

ROC Curve: A curve of TPR on FPR

Evaluation of ranked results

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a *precision-recall curve*

Ranking Evaluation Measures

- Top 5 Accuracy
- Interpolated precision (P_{interp}): The highest precision at recall r.
- Average Interpolated precision (P_{interp}): The highest precision at recall r.
- R-precision: Precision at cut-off R (top R relevant documents).
- Precision at K: Precision from top k documents retrieved.
- BREAK-EVEN POINT:
- Average Precision AveP: The precision average of thee ranked documents.
- Mean average precision (MAP): Average precision for top k documents.
- Cumulative Gain (CG):
- Discounted Cumulative Gain (DCG):
- Normalized Discounted Cumulative Gain (NDCG):

Accuracy

- Top 1 Accuracy
 - The accuracy considering top 1 element as true
- Top 5 Accuracy
 - The accuracy considering top 5 element as true

Interpolated precision (P_{interp})

 P_{interp}

The highest precision at recall r.

$$P_{interp}(r) = \max_{r1 \le r} P(r1)$$

Example

$$P = \{0.1, 0.5, 0.6, 0.6, 0.5, 0.5, 0.7, 0.9, 1\}$$

$$R = \{1,0.9,0.7,0.5,0.4,0.4,0.3,0.1,0\}$$

$$P_{interp}(0) = 1$$

$$P_{interp}(0.5) = 0.6$$

$$P_{interp}(0.9) = 0.5$$

$$P_{interp}(1) = 0.1$$

Interpolated precision (P_{interp})

 $AvgP_{interp}$

Commonly used 11 point average interpolation precision

$$AvgP_{interp} = \frac{1}{11} \sum_{i \in (0,0.1,0.2,...,1.0)} \max_{r \ge i} P(r)$$

Example

$$P = \{0.1, 0.5, 0.6, 0.6, 0.5, 0.5, 0.7, 0.9, 1\}$$

$$R = \{1,0.9,0.7,0.5,0.4,0.4,0.3,0.1,0\}$$

$$\begin{array}{l} AvgP_{interp} = \\ \frac{1}{11}\sum_{i\in\{0,0.1,0.2,...,1.0\}}\{1,0.9,0.7,0.7,0.6,0.6,0.6,0.6,0.5,0.5,0.1\} \end{array}$$

$$AvgP_{interp} = 0.62$$

R-precision

- If we have a known (though perhaps incomplete) set of relevant documents of size *Rel*, then calculate precision of the top *Rel* docs returned
- Perfect system could score 1.0.

Average Precision AveP

AveP

- The precision average of thee ranked documents.
- $AveP = \sum_{k=1}^{n} \frac{(P(k) \times rel(k))}{docs count}$
- P(k): The precision at cut-off k
- rel(k) = 1 if doc_k is relavant zero otherwise

Example

- D_1 , D_2 , D_3 , D_4 , D_5 , D_6 , D_7 , D_8
- $q_1 = \{1, 0.5, \mathbf{0}. \mathbf{66}, \mathbf{0}. \mathbf{75}, \mathbf{0}. \mathbf{8}, 0.66, 0.57, \mathbf{0}. \mathbf{63}\}$
- $rel_{q1} = \{1,0,1,1,1,0,0,1\}$
- $AveP = \frac{1+0.66+0.75+0.80+0.63}{5} = 0.77$
- $q_2 = \{\mathbf{1}, 0.5, \mathbf{0}, \mathbf{66}, 0.75, \mathbf{0}, \mathbf{8}, \mathbf{0}, \mathbf{66}, 0.57, \mathbf{0}, \mathbf{63}\}$
- $rel_{q2} = \{1,0,1,0,1,1,0,1\}$
- $AveP = \frac{1+0.66+0.80+0.66+0.63}{5} = 0.75$

Mean average precision (MAP)

MAP

- Average of the precision value obtained for the top *k* documents, each time a relevant doc is retrieved
- Avoids interpolation, use of fixed recall levels
- MAP for query collection is arithmetic average.
 - · Macro-averaging: each query counts equally

•
$$MAP = \frac{\sum_{q=1}^{Q} AveP(q)}{Q}$$

EXAMPLE $(D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8)$

- $q_1 = \{1, 0.5, \mathbf{0}, \mathbf{66}, \mathbf{0}, \mathbf{75}, \mathbf{0}, \mathbf{8}, 0.66, 0.57, \mathbf{0}, \mathbf{63}\}$
- $rel_{q1} = \{1,0,1,1,1,0,0,1\}$
- $AveP = \frac{1+0.66+0.75+0.80+0.63}{5} = 0.77$
- $q_2 = \{1, 0.5, \mathbf{0}. \mathbf{66}, 0.75, \mathbf{0}. \mathbf{8}, \mathbf{0}. \mathbf{66}, 0.57, \mathbf{0}. \mathbf{63}\}$
- $\quad \ \ rel_{q2} = \{1,0,1,0,1,1,0,0\} \\$
- $AveP = \frac{1+0.66+0.80+0.63}{4} = 0.75$
- $MAP = \frac{1}{2}(0.77 + 0.75) = 0.76$

Cumulative Gain

Cumulative Gain (CG):

- $CG = \sum_{i=1}^{docs} rel_i$
- rel_i is the relevancy of the i^{th} documents in ranked retrieved.

Example

$$D_1, D_2, D_3, D_4, D_5, D_6$$

 $relevance = \{3,2,3,0,1,2\}$
 $CG_6 = rel_1, rel_2, rel_3, rel_4, rel_5, rel_6$
 $CG_6 = 3 + 2 + 3 + 0 + 1 + 2 = 11$

zeshan.khan@nu.edu.pk

Discounted Cumulative Gain

Discounted Cumulative Gain (DCG):

•
$$DCG = \sum_{i=1}^{docs} \frac{rel_i - 1}{\log_2 i + 1}$$

Example

$$D_1, D_2, D_3, D_4, D_5, D_6$$

 $relevance = \{3,2,3,0,1,2\}$

$$\Sigma(3,1.3,1.5,0,0.4,0.7) = 6.9$$

DCG = 6.9

i			
1	3	1	3
2	2	1.6	1.3
3	3	2	1.5
4	0	2.3	0
5	1	2.6	0.4
6	2	2.8	0.7

zeshan.khan@nu.edu.pk

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG):

$$nDCG = \frac{\sum_{i=1}^{docs} \frac{rel_i - 1}{\log_2 i + 1}}{\sum_{i=1}^{docs} \frac{rel_i - 1}{\log_2 i + 1}}$$

Example

$$D_1, D_2, D_3, D_4, D_5, D_6$$

 $relevance = \{3,2,3,0,1,2\}$

$$\Sigma(3,1.8,1,0.9,0.4,0) = 7.2$$

$$nDCG = \frac{6.9}{7.2} = 0.96$$

i			
1	3	1	3
2	3	1.6	1.8
3	2	2	1
4	2	2.3	0.9
5	1	2.6	0.4
6	0	2.8	0

Cluster Evaluation

- Silhouette Index
- Davies Bouldin
- Calinski Harabasz

Silhouette Index

- Measurement of consistency of clusters
- Mean Distance Inner/Intra Cluster
 - $sim(p) = \frac{1}{|C_L|} \sum_{i \in C_L} d(i, p) : p \in C_L$
 - Evaluation of the assignment of p
- Mean Distance Outer
 - $diff(p) = \min_{L \neq M} \frac{1}{|C_M|} \sum_{i \in C_M} d(i, p) : p \in C_L$ Value of Silhouette (-1,+1)
 - Evaluation of the assignment of p with near most cluster
- Silhouette Value of p

•
$$s(p) = \frac{diff(p) - sim(p)}{max(diff(p), sim(p))} if |C_L| > 1$$

•
$$s(p) = 0$$
 if $|C_L| = 1$

•
$$s(p) =$$

$$\begin{cases}
1 - \frac{sim(p)}{diff(p)} & \text{if } sim(p) < diff(p) \\
0 & \text{if } sim(p) = diff(p) \\
\frac{diff(p)}{sim(p)} - 1 & \text{if } sim(p) > diff(p)
\end{cases}$$

- $s(P) = \text{mean}_{p \in P} s(p)$

Davies Bouldin

•
$$DB = \frac{1}{|c|} \sum_{i=1}^{|c|} R_i$$

•
$$R_i = \max_{j=1,...,nc,i\neq j} R_{ij}$$
, $i = [1, ..., |c|]$

•
$$R_{ij} = \frac{s_i + s_j}{d_{ij}}$$

•
$$d_{ij} = d(v_i, v_j)$$

•
$$s_i = \frac{1}{|c_i|} \sum_{x \in c_i} d(x, v_i)$$

• v_i is the centroid of c_i

Calinski Harabasz

•
$$CH = \frac{\left(\frac{\left(\sum_{k=1}^{K} n_k |c_k - c|^2\right)}{K-1}\right)}{\frac{\sum_{k=1}^{K} \sum_{i=1}^{n_k} |d_i - c_k|^2}{N-K}}$$

- n_k number of points in cluster k
- c_k centroid of cluster k
- c centroid of all clusters
- *N* total points