

CTI One Corporation 3679 Enochs Street, Santa Clara, CA 95051

2021-6-16	Establish this document	HL
2021-7-8	Update and approval of the training plan	HL and YY

Edge AI Computing Syllabus

Instructors: Harry Li, Ph.D., Yusuke Yakuwa and invited lecturers, Nitin Patil, Chee Vang.

Course Coordinator Contact: Harry Li, Ph.D. Email: hurry.li@ctione.com Mobile Phone: (650) 400-1116

Training Schedule:

Batch Name: Embedded Edge AI Computing

Duration: 2-3 hr per lecture session, 1-2 times/week for 2 and a half weeks

Core Coding Topics:

- (1) Development toolchain, e.g., jetpack and OS source distribution for Nvidia embedded platforms, Jetson NANO and Tx2;
- (2) OpenCV, Python, TF, Pytorch for Deep Learning with emphasis on IP video streaming and yolo4;
- (3) Program/performance profiling, Hardware Architecture, GPU and its optimization;
- (4) Cuda Programming and debugging tools.
- (5) Unity AI platform, C# and interface to TF and other Deep Learning package.
- (6) Mathematical foundation in Deep Reinforcement Learning.

Prerequsite:

Python, full time engineer interns.

Table 1. Course Description (80 words)

Embedded Edge AI computing, Nividia Jetson NANO and Tx2; OpenCV, Python, TF, Pytorch for Deep Learning, IP video streaming, PTZ CAM control, and yolo4; TF Program/performance profiling, Hardware Architecture, GPU and its optimization; Cuda Programming and debugging tools. Unity AI platform, C# and interface to TF and other Deep Learning package. Mathematical foundation in Deep Reinforcement Learning.

Online Lecture Schedule:

W. F. 1:30 - 3:30 pm, Zoom based.

Zoom Credential:

The credential for the Zoom meeting:

https://us05web.zoom.us/j/4593889909?pwd=eWU5RVM3YlBvempkL3owVXE0VVVuUT09

Meeting ID: 459 388 9909

Passcode: iYYeK5

Alternative Zoom link (if the first link is not functioning)

https://zoom.us/j/5019377811?pwd=c0cyeFM0eFMzNmFX0EQyNTc3dEdJUT09

Meeting ID: 501 937 7811

Passcode: ZS8pAz

Homework and Project:

Each lecture session will normally be accompanied by homework assignment and one comprehensive project will be assigned to the class as well.

Outcome: To be able to compile and run the sample code in the training class.

Table 2. Lecture Schedule

Lectures	Topic	Tools	Instructor
0.1	Embedded Edge AI computing, Nividia Jetson		Harry Li
	NANO and Tx2; OpenCV, Python, TF, Pytorch for Deep		
	Learning		
1	IP video streaming, PTZ CAM control, JS and	OpenCV, TF	Nitin Patil, Yusuke
	CGI; and yolo4 and implementation case study		Yakuwa, and Harry
			Li
2	Hardware Architecture, GPU and its	OpenCV, TF	Harry Li and
	optimization; TF Program/performance profiling.		Yusuke Yakuwa
3	Unity Al platform, C# and interface to TF and	OpenCV, TF	Chee Vang
	other Deep Learning package.		
4	Unity AI, C# and Python Interface		Chee Vang
	Cuda Programming and debugging tools.		Yusuke Yakuwa
5	Mathematical foundation in Deep	MySQL, MySQL	Harry Li
	Reinforcement Learning.	Workbench	
6	Smart phone APP for realtime streaming, TF	GitHub/Gitlab	Zhenyu Wang,
	Program/performance profiling on Yolo4 and		Yusuke Yakuwa,
	AIV100.		and Harry Li,

Appendix A. Unity Course Description

In this lecture we are using Unity 3D and ML-Agent to simulate and train a 6 DoF robot arm with a (Deep Reinforcement Learning) DRL algorithm. Then, we'll learn how to create a new Unity project to simulate a satellite's orbital movement.

Appendix B. (END)