- X Jan 6: Write up methods for COG paper
- ✓ May 7: Revise summer goals if accepted for Chicago Conference
- \checkmark May 11: Find gene expression papers for bacteria and specific bacteria, printed
 - May 25: Read above papers and make notes (one a day?)
 - May 25: Think about/compile list of inversions in E. coli for new paper
- June 8: Gather gene expression data for the above mentioned $E.\ coli$ strains
- June 12-29: Have first draft of ISMB presentation done (and present for the lab)/ prepare for conference questions
 - July 5: Have final edits for ISMB presentation finished
 - July 6-13: ISB Chicago Conference
 - July 20: Have date booked for Comps
 - July 16 August 31: Prepare for Comps

Last Week

I realized that for pSymB I miscalculated the bidirectionality transformation, so I had to fix this and re-run everything. It did not change the logistic regression results (seen below). However, when I re-did the origin shuffling to see if the placement of the origin changed anything, moving the origin 100kb, 90kb and 80kb to the left made the logistic regression negative (opposite). I have been trying to figure out why this is happening but I am having no luck. I thought maybe it was because these shufflings are now 700kb away from the terminus, but the actual origin is about the same distance. I am still trying to figure this out but I am not sure what to do or what it means about the robustness of the origin shuffling.

I looked at the gene expression data for *S. meliloti* in detail and it appears to look ok. When I graph the raw data and plot the regression line it looks like there is no trend for *S. meliloti*, the points are evenly distributed throughout the genome and there appears to be no increasing or decreasing trend. When looking at the other bacteria's raw data, there is clearly a decreasing trend when moving away from the origin. Additionally the number of genes and number of replicates are all comparable between *S. meliloti* and the other bacteria. So I think that the reason *S. meliloti* does not have significant gene expression regressions is because there is simply no trend.

I spent a few days last week writing up the manuscript for the gene expression and substitution stuff.

This Week

I need to figure out the weird thing happening with the pSymB robust origin shuffling test. I also plan on having my manuscript finished before I leave for camping on Friday.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-6.41×10^{-5}	1.65×10^{-5}	1.1×10^{-4}
B. subtilis Chromosome	-9.9×10^{-5}	2.18×10^{-5}	6×10^{-6}
Streptomyces Chromosome	-1.5×10^{-6}	1.4×10^{-7}	$<2 \times 10^{-16}$
$S.\ meliloti\ { m Chromosome}$	3.19×10^{-5}	3.57×10^{-5}	3.7×10^{-1}
$S.\ meliloti\ \mathrm{pSymA}$	-5.36×10^{-5}	6.34×10^{-4}	9.33×10^{-1}
$S.\ meliloti\ p{ m Sym}{ m B}$	5.05×10^{-4}	2.6×10^{-4}	5.3×10^{-2}

Table 1: Linear regression analysis of the median counts per million expression data along the genome of the respective bacteria replicons. Grey coloured boxes indicate statistically significant results at the 0.5 significance level. Linear regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication.

Bacteria and Replicon	Coefficient Estimate	Standard Error	P-value
E. coli Chromosome	-1.394×10^{-7}	2.425×10^{-9}	$<2 \times 10^{-16}$
B. subtilis Chromosome	-2.538×10^{-8}	1.58×10^{-9}	$<2 \times 10^{-16}$
Streptomyces Chromosome	1.736×10^{-8}	7.231×10^{-10}	$<2 \times 10^{-16}$
$S. \ meliloti$ Chromosome	-1.541×10^{-6}	3.042×10^{-8}	$<2 \times 10^{-16}$
S. meliloti pSymA	-9.130×10^{-7}	1.975×10^{-8}	$<2 \times 10^{-16}$
$S. \ meliloti \ pSymB$	2.488×10^{-7}	1.964×10^{-8}	$<2 \times 10^{-16}$

Table 2: Logistic regression analysis of the number of substitutions along the genome of the respective bacteria replicons. Grey coloured boxes indicate a negative logistic regression coefficient estimate. All results are statistically significant. Logistic regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication.

8

Origin Location	$\it E.~coli$ Chromosome	${\it B. subtilis Chromosome}$	$Streptomyces\ {\bf Chromosome}$	$S.\ meliloti\ {\it Chromosome}$	$S.\ meliloti\ pSymA$	$S.\ meliloti\ p{ m Sym}{ m B}$
Moved 100kb Left	$-1.445 \times 10^{-7***}$	4.374×10^{-9} *	6.909×10 ^{-9***}	-1.316×10 ⁻⁶ ***	-1.058×10 ⁻⁶ ***	-2.009×10 ^{-7***}
Moved 90kb Left	$-1.544 \times 10^{-7***}$	$-1.036 \times 10^{-7***}$	$5.677 \times 10^{-9***}$	$-1.32 \times 10^{-6***}$	$-1.246 \times 10^{-6***}$	$-1.357 \times 10^{-7***}$
Moved 80kb Left	$-1.65 \times 10^{-7***}$	$-1.072 \times 10^{-7***}$	$8.11 \times 10^{-9***}$	$-1.338 \times 10^{-6***}$	$-1.398 \times 10^{-6***}$	-6.57×10 ^{-8***}
Moved 70kb Left	$-1.667 \times 10^{-7***}$	$-1.102 \times 10^{-7***}$	$6.716 \times 10^{-9***}$	$-1.363 \times 10^{-6} ***$	$-1.405 \times 10^{-6***}$	9.83×10^{-8}
Moved 60kb Left	$-1.64 \times 10^{-7***}$	$-1.19 \times 10^{-7***}$	$8.7 \times 10^{-9***}$	$-1.324 \times 10^{-6***}$	$-1.394 \times 10^{-6***}$	$1.129 \times 10^{-7***}$
Moved 50kb Left	$-1.446 \times 10^{-7***}$	$-1.211 \times 10^{-7***}$	$1.045 \times 10^{-8***}$	$-1.36 \times 10^{-6***}$	$-1.403 \times 10^{-6***}$	$1.521 \times 10^{-7***}$
Moved 40kb Left	$-1.4 \times 10^{-7***}$	$-1.299 \times 10^{-7***}$	$1.214 \times 10^{-8***}$	$-1.255 \times 10^{-6***}$	$-1.422 \times 10^{-6***}$	$1.543 \times 10^{-7***}$
Moved 30kb Left	$-1.498 \times 10^{-7***}$	$-1.292 \times 10^{-7***}$	$1.24 \times 10^{-8***}$	$-1.26 \times 10^{-6***}$	$-1.392 \times 10^{-6***}$	$1.63 \times 10^{-7***}$
Moved 20kb Left	$-1.51 \times 10^{-7***}$	$-1.1 \times 10^{-7***}$	$1.395 \times 10^{-8***}$	$-1.525 \times 10^{-6***}$	$-1.412 \times 10^{-6***}$	$1.603 \times 10^{-7***}$
Moved 10kb Left	$-1.262 \times 10^{-7***}$	-2.602×10^{-9}	$1.563 \times 10^{-8***}$	$-1.599 \times 10^{-6***}$	$-9.499 \times 10^{-7***}$	$2.973 \times 10^{-7***}$
Moved 10kb Right	$-1.305 \times 10^{-7***}$	$-2.045 \times 10^{-8***}$	$1.578 \times 10^{-8***}$	$1.614 \times 10^{-6***}$	$-1.026 \times 10^{-6***}$	$3.505 \times 10^{-7***}$
Moved 20kb Right	$-1.454 \times 10^{-7***}$	-1.006×10 ⁻⁷ ***	$1.903 \times 10^{-8***}$	-1.634×10 ⁻⁶ ***	$-1.475 \times 10^{-6***}$	$1.649 \times 10^{-7***}$
Moved 30kb Right	$-1.548 \times 10^{-7***}$	$-8.596 \times 10^{-8***}$	$2.046 \times 10^{-8***}$	$-1.698 \times 10^{-6***}$	$-1.417 \times 10^{-6***}$	$1.526 \times 10^{-7***}$
Moved 40kb Right	$-1.632 \times 10^{-7***}$	-8.378×10 ^{-8***}	$2.125 \times 10^{-8***}$	$-1.719 \times 10^{-6***}$	$-1.367 \times 10^{-6***}$	$1.589 \times 10^{-7***}$
Moved 50kb Right	$-1.856 \times 10^{-7***}$	-7.879×10 ^{-8***}	$1.957 \times 10^{-8***}$	$-1.735 \times 10^{-6***}$	$-1.277 \times 10^{-6***}$	$1.654 \times 10^{-7***}$
Moved 60kb Right	$-1.91 \times 10^{-7***}$	-6.98×10 ^{-8***}	$1.974 \times 10^{-8***}$	$-1.788 \times 10^{-6} ***$	$-1.169 \times 10^{-6***}$	$1.645 \times 10^{-7***}$
Moved 70kb Right	$-1.892 \times 10^{-7***}$	-6.634×10 ^{-8***}	$1.934 \times 10^{-8***}$	$-1.854 \times 10^{-6} ***$	$-1.059 \times 10^{-6***}$	$1.843 \times 10^{-7***}$
Moved 80kb Right	$-1.879 \times 10^{-7**}$	$-5.814 \times 10^{-8***}$	$2.313 \times 10^{-8***}$	$-1.891 \times 10^{-6***}$	$-9.07 \times 10^{-7***}$	$1.90 \times 10^{-7***}$
Moved 90kb Right	$-1.862 \times 10^{-7***}$	$-4.314 \times 10^{-8***}$	$2.304 \times 10^{-8***}$	$-1.865 \times 10^{-6***}$	$-7.171 \times 10^{-7***}$	$2.415 \times 10^{-7***}$
Moved 100kb Right	$-1.799 \times 10^{-7***}$	-2.597×10 ^{-8***}	$1.945 \times 10^{-8***}$	$-1.525 \times 10^{-6***}$	$-6.572 \times 10^{-7***}$	$3.095 \times 10^{-7***}$

Table 3: Logistic regression analysis of the number of substitutions along the genome of the respective bacteria replicons. All results are marked with significance codes as followed: <0.001= '***', 0.001<0.01= '**', 0.01<0.01= '**', 0.05= '*', 0.05<0.1= '.', 0.01= '.' Logistic regression was calculated after the origin of replication was moved to the beginning of the genome and all subsequent positions were scaled around the origin accounting for bidirectionality of replication.