Pesticides pollution of small streams in

Germany

Eduard Szöcs.*,† Marvin Brinke.‡ Bilgin Karaoglan.¶ and Ralf B. Schäfer†

Institute for Environmental Sciences, University of Koblenz-Landau, Germany, German

Federal Institute of Hydrology (BfG), Koblenz, Germany, and Federal Environmental

Agency (UBA), Dessau-Roßlau, Germany

E-mail: szoecs@uni-landau.de

Abstract

Fehlt noch...

Introduction

More than 50% of the total land area in Germany are used by agriculture¹. In the year

2014 more the 45,000 tonnes of 766 authorized pesticides were sold for application on this

area². The applied pesticides may enter surface waters via spray-drift, edge-off-field run-off

or drainage, with run-off being one of the major input routes^{3,4}. Once entered the surface

waters pesticides are frequently detected in environmental monitoring⁵ and may have adverse

effects on biota and ecosystem functioning 6,7 .

*To whom correspondence should be addressed

[†]Institute for Environmental Sciences

[‡]German Federal Institute of Hydrology

¶German Federal Environmental Agency

1

National monitoring programs are setup for determination and surveillance of the chemical and ecological status of surface, ground and drinking water. These monitoring programs produce large amounts of data, which possibly can also be used to answer other questions. In Germany monitoring programs are setup by the federal states in compliance with the Water Framework Directive⁸ and further state specific needs. However, currently there is no curated national-wide compilation of this data.

Small water bodies are important refuges of biodiversity⁹ and enabling downstream colonisation of polluted streams¹⁰. At the same time they may be exposed to a high risk of pesticide contamination from adjacent agricultural areas and low dilution effects⁴. Although small streams comprise a major fraction of streams¹¹ relatively little is know about their chemical and ecological status.

The aim of this study was to compile monitoring data on a national scale and to answer the questions:

- (i) Can the currently available monitoring data used for a representative description of the pollution situation?
- (ii) Are small agricultural waters more polluted compared to bigger streams? Are there thresholds in these relationships?
- (iii) baHow polluted are small streams and which pesticides are responsible?

Methods

Data compilation

We queried chemical monitoring data of pesticides from sampling sites with catchment sizes < 100km² for the years 2005 to 2015 from all 13 non-city federal states of Germany. Additionally, we compiled data available from previous studies and searched online databases. This yielded to a total of more then 30 datasets of different formats. In the following we will use the ISO 3166-2:DE standard abbreviations for federal states.

We homogenized and unified these datasets into a common database. We implemented a robust and transparent data cleaning work flow ¹², though parts of the dataset are proprietary. An overview of the data cleaning process is provided in the supplemental materials. To assess whether samples were taken during potential rainfall events we intersected sampling coordinates with daily precipitation data¹³ from the sampling date and the day before.

Characterization of chemical pollution

We characterized chemical pollution (excluding sum parameters) using three indicators:

- 1. National and international Environmental Quality Standards (EQS)^{14,15}: We used only Maximum Annual Concentration EQS (MAC-EQS) for characterization. These were available for 29 compounds (Supplement, Table xxx).
- 2. Regulatory Acceptable Concentrations (RAC)¹⁶: This is the lowest concentration at which no acceptable biological effects are expected. These are derived during authorization process of pesticides and contain an uncertainty factor. The German Federal Environmental Agency provided RACs for 105 compounds (Supplement, Table xxx). ref

$$RQ = \frac{C}{RAC} \tag{1}$$

ref

Where C is the concentration of a compound in a sample.

3. Maximum Toxic Units $(TU_{max})^{17}$:

$$TU_{max} = max(\frac{C_i}{EC_{50,D.magna,i}})$$
 (2)

Where C_i is the concentration of compound i in a sample and $EC_{50,D.magna,i}$ is the concentration of this compound where 50% of the exposed animals showed after 48

hours an effect in a laboratory study. We compiled $EC_{50,D.magna}$ values from literature⁵, databases^{18,19} or model predictions²⁰, where experimental data had priority. We could compile $EC_{50,D.magna}$ values for 384 compounds (Supplement, Table xxx)) We used the maximum TU per sample, as it is independent of the number of measured compounds and makes no assumptions on the mode of action. A table of all included compounds can be found in the supplement.

Characterization of catchments

We delineated catchments upstream of the sampling sites using a digital elevation model²¹ and a multiple flow direction algorithm²² as implemented in GRASS GIS 7²³. Catchment delineation has been manually checked for accuracy. In areas with low relief energy the delineation algorithm did not produce accurate results and we used river catchments provide by federal state authorities in these cases. For each catchment we calculated the relative coverage (%) with agricultural areas based on Official Topographical Cartographic Information System (ATKIS) of the land survey authorities.

Statistical analyses

All data-processing and analyses have been performed using R, version 3.3.1²⁴. To display differences in the spectra of analysed compounds between federal states we used Multidimensional Scaling (MDS) based on Jaccard dissimilarity in conjunction with hierarchical clustering using the vegan package²⁵. We expected non-linear responses to agriculture and catchment size and therefore, used generalized additive models (GAM) to identify relationships²⁶.

We modeled the number of RAC exceedances (No) as:

$$No_{i} \sim NB(\mu_{i}, k)$$

$$E(No_{i}) = \mu_{i} \text{ and } Var(No_{i}) = \mu_{i} + \frac{\mu_{i}^{2}}{k}$$

$$log(\mu_{i}) = \beta_{0} + f_{1}(Agri_{i}) + f_{2}(Size_{i}) + log(n_{i})$$
(3)

where No_i is the observed number of exceedances at site i, $Agri_i$ the proportion of agriculture within the catchment and $Size_i$ the catchment size of the site. We modeled No_i as resulting from a negative binomial distribution (NB) and used the number of sampling events per site (n_i) as an offset to account different sampling efforts. f_1 and f_2 are smoothing functions using thin plate regression splines²⁷. The degree of smoothness was estimated using restricted maximum likelihood (REML) during model fitting process²⁸. Similar models were fitted to the number of EQS-exceedances and the 95th percentile of TU_{max} (see Supplement for details). We used pointwise 95% Confidence Intervals of the first derivative of the fitted smooth to check if there are regions of statistically significant changes. GAMs were fitted using the mgcv package²⁸.

Results

Overview and representativeness of compiled data

The compiled dataset comprised only few standing waters (58 sites) and the majority (90%) of samples where taken via grab sampling. Therefore, we report only results of grab samples from streams. The analysed dataset comprised 42236 samples from 3049 sampling sites. We found big differences in the number of sampling sites between federal states (Figure 1 and Supplement, Table).

In total 484 different compounds that could be classified as pesticides and their metobalites were measured at least once (Supplement, Table). Most of the compounds were ref to

Set

table

Set

ref to

 table

Figure 1: Spatial distribution of the 3109 sampling sites. Colour codes different federal states.

herbicides (179), followed by insecticides (117) and fungicides (109). We found substantial differences of the spectra of analysed compounds (Figure 2). Hierarchical clustering revealed three groups of states: i) with less then 100 compounds (SL, ST and TH), ii) with a medium sized spectra and iii) with a big and distinct spectra (RP and NI). Only 5% of the samples were taken at or after days with rainfall events greater than 10mm / day.

Figure 2: Compound spectra of the different federal states. Left: Barcode plot - Each vertical line is an analysed compound. Right: MDS ordination. Colors according to three groups determined by hierarchical clustering (see Supplement Figure xxx).

We were able to derive for 2376 sites catchment sizes and the proportion of agriculture within catchments. The distribution of sampling sites across catchment area and agricultural area in the catchment revealed a sharp decline in the distribution of catchment-sizes below $10 \ km^2$, with most sampling sites with catchments between 10 and $25 \ km^2$ (Figure 3). The proportion of agriculture in the catchments decreased with increasing catchment size.

Figure 3: Distribution of catchment area and agriculture within the catchment area across the sampling sites. Only sampling sites with catchment area $< 150 \ \rm km^2$ are displayed. Colour codes the 2-dimensional density of points.

Are small agricultural waters more polluted compared to bigger streams?

Modelling the number of RAC exceedances as function of agriculture within catchment and catchment size revealed that there is a strong and statistically significant increase up to 25% agriculture. Above it levels off with a slight increase towards completely agricultural catchments (Figure 4, left). This indicates thresholds at 25%, above chemical pollution from agriculture can be detected, and 75% above pollution increases. We could no detect any discussion? effect of catchment size on the number of RAC exceedances (Figure 4, right).

Figure 4: Effect of agriculture within the catchment (left) and catchment size (right) on the number of RAC exceedances. Red line marks statistically significant changes. Dashed lines denote 95% Confidence Intervals.

The number of EQS-exceedances and the 95th percentile of TU_{max} showed the same patterns (see Supplement Figure Sxxx - Sxxx).

Pesticide pollution of small streams

Based on the results previous results and give the low amount of sample sites with catchment sizes $<10 \text{ km}^2$ we divided the dataset into four groups to further explore the pollution of german streams.

The four groups were: i) small, agricultural streams (catchment size $<30~\rm{km^2}$ and agriculture >40%, n = 842 sites); ii) small, non-agricultural streams (catchment size $<30~\rm{km^2}$ and agriculture <10%, n = 254 sites); iii) medium sized, agricultural streams (30 km² \le catchment size $<150~\rm{km^2}$ and agriculture >40%); iv) medium sized, non-agricultural streams (30 km² \le catchment size $<150~\rm{km^2}$ and agriculture <10%).

Discussion

Representativeness of the data

Influence of catchment area and agriculture

Pollution of streams

Acknowledgement

The authors thank the authorities for providing chemical monitoring data and the German Federal Environmental Protection Agency (UBA) for funding this project.

Supporting Information Available

The following files are available free of charge.

• Supplemental Materials.pdf: Supplemental Materials

This material is available free of charge via the Internet at http://pubs.acs.org/.

References

- (1) Statistisches Bundesamt, Bodenfläche nach Art der tatsächlichen Nutzung; Fachserie 3 Reihe 5.1; 2014.
- (2) Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Absatz an Pflanzenschutzmitteln in der Bundesrepublik Deutschland Ergebnisse der Meldungen gemäß

 § 64 Pflanzenschutzgesetz für das Jahr 2014; 2015.
- (3) Schulz, R. Comparison of spray drift-and runoff-related input of azinphos-methyl and endosulfan from fruit orchards into the Lourens River, South Africa. *Chemosphere* **2001**, 45, 543–551.
- (4) Liess, M.; Schulz, R.; Liess, M.-D.; Rother, B.; Kreuzig, R. Determination of insecticide contamination in agricultural headwater streams. *Water Research* **1999**, *33*, 239–247.
- (5) Malaj, E.; Ohe, P. C. v. d.; Grote, M.; Kühne, R.; Mondy, C. P.; Usseglio-Polatera, P.; Brack, W.; Schäfer, R. B. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. *Proceedings of the National Academy of Sciences* 2014, 111, 9549–9554.
- (6) Schulz, R. Field Studies on Exposure, Effects, and Risk Mitigation of Aquatic Nonpoint-Source Insecticide Pollution: A Review. Journal of Environmental Quality 2004, 33, 419–448.
- (7) Schäfer, R. B.; Caquet, T.; Siimes, K.; Mueller, R.; Lagadic, L.; Liess, M. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment 2007, 382, 272–285.
- (8) Quevauviller, P.; Borchers, U.; Thompson, C.; Simonart, T. The Water Framework Directive: Ecological and Chemical Status Monitoring; John Wiley & Sons, 2008.

- (9) Davies, B. R.; Biggs, J.; Williams, P. J.; Lee, J. T.; Thompson, S. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. *Hydrobiologia* **2008**, *597*, 7–17.
- (10) Liess, M.; von der Ohe, P. C. Analyzing effects of pesticides on invertebrate communities in streams. *Environmental Toxicology and Chemistry* **2005**, *24*, 954–965.
- (11) Nadeau, T.-L.; Rains, M. C. Hydrological Connectivity Between Headwater Streams and Downstream Waters: How Science Can Inform Policy1: Hydrological Connectivity Between Headwater Streams and Downstream Waters: How Science Can Inform Policy. JAWRA Journal of the American Water Resources Association 2007, 43, 118–133.
- (12) Poisot, T. Best publishing practices to improve user confidence in scientific software.

 Ideas in Ecology and Evolution 2015, 8.
- (13) Rauthe, M.; Steiner, H.; Riediger, U.; Mazurkiewicz, A.; Gratzki, A. A Central European precipitation climatology Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS). *Meteorologische Zeitschrift* 2013, 22, 235–256.
- (14) OGewV, Verordnung zum Schutz der Oberflächengewässer (Oberflächengewässerverordnung). 2011; BGBl. I S. 1429.
- (15) European Union, DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. 2013.
- (16) Brock, T. C. M., Alix, A., Brown, C. D., Capri, E., Gottesbüren, B. E., Heimbach, F., Lythgo, C. M., Schulz, R., Streloke, M., Eds. Linking aquatic exposure and effects: risk assessment of pesticides: EU and SETAC Europe workshop ELINK, Bari, Italy, and Wageningen, Netherlands; CRC Press: Boca Raton, 2010.

- (17) Sprague, J. Measurement of pollutant toxicity to fish, II-Utilizing and applying bioassay results. Water Research 1970, 4, 3–32.
- (18) Lewis, K. A.; Tzilivakis, J.; Warner, D. J.; Green, A. An international database for pesticide risk assessments and management. *Human and Ecological Risk Assessment:*An International Journal 2016, 22, 1050–1064.
- (19) U.S. EPA, The ECOTOXicology knowledgebase (ECOTOX). 2015; http://cfpub.epa.gov/ecotox/.
- (20) Schüürmann, G.; Ebert, R.-U.; Kühne, R. Quantitative read-across for predicting the acute fish toxicity of organic compounds. *Environmental Science & Technology* **2011**, 45, 4616–4622.
- (21) EEA, Digital Elevation Model over Europe (EU-DEM). 2013; http://www.eea.europa.eu/data-and-maps/data/eu-dem#tab-metadata.
- (22) Holmgren, P. Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. *Hydrological Processes* **1994**, *8*, 327–334.
- (23) Neteler, M.; Bowman, M. H.; Landa, M.; Metz, M. GRASS GIS: A multi-purpose open source GIS. *Environmental Modelling & Software* **2012**, *31*, 124–130.
- (24) R Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016.
- (25) Oksanen, J.; Blanchet, F. G.; Kindt, R.; Legendre, P.; Minchin, P. R.; O'Hara, R. B.; Simpson, G. L.; Solymos, P.; Stevens, M. H. H.; Wagner, H. vegan: Community Ecology Package; 2016; R package version 2.3-5.
- (26) Fewster, R. M.; Buckland, S. T.; Siriwardena, G. M.; Baillie, S. R.; Wilson, J. D. Analysis of population trends for farmland birds using generalized additive models. *Ecology* 2000, 81, 1970–1984.

- (27) Wood, S. N. Thin Plate Regression Splines. Journal of the Royal Statistical Society.

 Series B (Statistical Methodology) 2003, 65, 95–114.
- (28) Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **2011**, 73, 3–36.

Graphical TOC Entry

Some journals require a graphical entry for the Table of Contents. This should be laid out "print ready" so that the sizing of the text is correct. Inside the tocentry environment, the font used is Helvetica 8 pt, as required by Journal of the American Chemical Society.

The surrounding frame is 9 cm by 3.5 cm, which is the maximum permitted for *Journal of the American Chemical Society* graphical table of content entries. The box will not resize if the content is too big: instead it will overflow the edge of the box.

This box and the associated title will always be printed on a separate page at the end of the document.