

[SWE2015-41] Introduction to Data Structures (자료구조개론)

Minimum Spanning Trees

Department of Computer Science and Engineering

Instructor: Hankook Lee (이한국)

(Recap) Graphs

- A graph is a collection of **vertices** and **edges** that connect these vertices
 - Example: social networks, maps

Social Networks

- Each vertex represents a person
- Each edge represents a relationship between two people

Maps

- Each vertex represents a building
- Each edge represents a street between two buildings

(Recap) Undirected Graphs

- A graph is a collection of vertices and edges that connect these vertices
 - Example: social networks, maps
- **Definition**: A graph G is defined by V and E, i.e., G=(V,E) where
 - V is a set of vertices in G
 - E is a set of edges in G
 - An edge $(u,v) \in E$ is a pair of two vertices $u,v \in V$
 - Undirected graph: vertices can be traversed from u to v as well as from v to u
 - The order between u and v is not important

(Recap) Weighted Graphs

- A graph is a collection of vertices and edges that connect these vertices
 - Example: social networks, maps
- **Definition**: A graph G is defined by V and E, i.e., G=(V,E) where
 - V is a set of vertices in G
 - E is a set of edges in G
 - An edge $(u,v) \in E$ is a pair of two vertices $u,v \in V$
 - Weighted graphs: each edge is associated with a weight value
 - The edge representation (u,v) is extended to (u,v,w) where w is the weight of (u,v)

(Recap) Graph Terminology

- Adjacent nodes or Neighbors
 - For every edge $(u, v) \in E$,
 - u is said to be **adjacent** to v (and vice versa)
 - u is said to be a **neighbor** of v (and vice versa)
- The **degree** of a vertex u (in an undirected graph)
 - the number of edges containing u (i.e., (*,u) & (u,*) edges)
- Examples
 - A is adjacent to B and D
 - B and D are neighbors of A
 - degree(A) = 2
 - degree(D) = 3

Undirected Graph

(Recap) Paths

- A path P in a graph G=(V,E)
 - A sequence of vertices, P = (v₀, v₁, v₂, ..., vₙ) where for all i,
 (vᵢ, vᵢ₊₁) ∈ E or (vᵢ₊₁, vᵢ) ∈ E when G is undirected

For the above path P,

- Its length is equal to n, the number of edges on P
- The vertices v_0 and v_n are said to be **connected** by the path P

- (A,B,D,E) is a path
- A and E are connected

(Recap) Subgraphs

- A subgraph G'=(V',E') of a graph G=(V,E) is a graph satisfying ...
 - $V' \subseteq V$ and $E' \subseteq E$ is
 - $u \in V'$ and $v \in V'$ for any edge $(u, v) \in E'$

- G₁ and G₂ subgraphs of G
- G₃ is not a subgraph of G
- G₂ is a subgraph of G₁

- What is tree in graph theory?
 - An undirected graph G
 - Any two vertices in G are connected by exactly one simple path
 - Note. This definition is slightly different from the tree in computer science ...
 - In CS, the tree is directed and rooted
 - In GT, the tree is undirected and has no root
- The following conditions are equivalent to the tree definition
 - G is connected and contains no cycles
 - G is connected, but would become disconnected if any single edge is removed
 - G contains no cycles, and a simple cycle if formed if any edge is added

• Which graph is tree?

• Which graph is tree?

Any two vertices in G are connected by exactly one simple path

- G₁ is tree because there exists exactly one path between any two vertices
- G₂ is not tree because there exists two paths between 3 and 9
- G₃ is not tree because there is no path between **1** and **5**

• Which graph is tree?

The graph is connected and contains no cycles

- G₁ is tree because it is connected and contains no cycle
- G_2 is not tree because it contains a cycle $3 \rightarrow 6 \rightarrow 9 \rightarrow 5$
- G₃ is not tree because it is not connected

Which graph is tree?

The graph would become disconnected after deleting an edge A cycle would be formed after adding an edge

- G₁ would be disconnected after edge deletion & contain a cycle after edge addition
- G_2 is still connected even if the edge $3 \leftrightarrow 5$ is removed from G_2
- G_3 still contains no cycle even if the edge $5 \leftrightarrow 8$ is added to G_3

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G

Not include all vertices

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - T is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?

(Case 1) $2 \leftrightarrow 5$ is not included ...

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?

(Case 2) $2 \leftrightarrow 5$ is included, but $5 \leftrightarrow 6$ is not ...

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?

(Case 3) $2 \leftrightarrow 5$ and $5 \leftrightarrow 6$ are included ...

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?

11 spanning trees exist in **G**

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - **T** is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?
 - If G is a simple cycle of N vertices, then # of spanning trees = N

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - T is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?
 - If G is a simple cycle of N vertices, then # of spanning trees = N
 - If **G** is a complete graph of **N** vertices, then # of spanning trees = N^{N-2}
 - Known as Cayley's formula (proof is not covered in this lecture)

- A spanning tree T of an undirected graph G is ...
 - T is a subgraph of G
 - T is a tree
 - T includes all the vertices of G
- How many spanning trees do exist in G?
 - If G is a simple cycle of N vertices, then # of spanning trees = N
 - If **G** is a complete graph of **N** vertices, then # of spanning trees = N^{N-2}
 - Known as Cayley's formula (proof is not covered in this lecture)
 - Can we compute the number of spanning trees in any graph?
 - Interestingly, it can be computed from the determinant of a submatrix of Laplacian matrix
 - Laplacian matrix **L** of a graph is defined by **D-A** (i.e., degree matrix adjacent matrix)
 - Known as Kirchhoff's matrix tree theorem
 - This is also not covered in this lecture

Minimum Spanning Trees

- Given a weighted graph G,
 - Let w(e) be the weight of the edge e
 - Let **T** be a spanning tree and E(**T**) be its edge set
 - The cost of spanning tree construction is the summation of all edge weights in T

$$\mathsf{cost} = \sum_{\mathbf{e} \in E(T)} \mathbf{w}(\mathbf{e})$$

The minimum spanning tree is a spanning tree with minimum construction cost

Minimum Spanning Trees

- Given a weighted graph G,
 - Let w(e) be the weight of the edge e
 - Let **T** be a spanning tree and **E(T)** be its edge set
 - The cost of spanning tree construction is the summation of all edge weights in T

$$\mathsf{cost} = \sum_{\mathbf{e} \in E(T)} \mathbf{w}(\mathbf{e})$$

The minimum spanning tree is a spanning tree with minimum construction cost

Minimum Spanning Trees

- Given a weighted graph G,
 - Let w(e) be the weight of the edge e
 - Let **T** be a spanning tree and E(**T**) be its edge set
 - The cost of spanning tree construction is the summation of all edge weights in T

$$cost = \sum_{\mathbf{e} \in E(T)} \mathbf{w}(\mathbf{e})$$

- The minimum spanning tree is a spanning tree with minimum construction cost
- (Q) How to find the minimum spanning tree?
 - Prim's Algorithm (vertex-based)
 - Kruskal's Algorithm (edge-based)

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ A B \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ A B \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ A B D \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ A B D E \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ ABDE \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ A B D E G \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ A B D E G \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ ABDEGF \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ ABDEGF \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ ABDEGFC \}$

- The key idea is to add vertex one by one into the vertex set
 - Start from a single-vertex subgraph T=(U,F) where U = { A } and F = Ø
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

The resultant graph is the minimum spanning tree!

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps
- How to implement this algorithm efficiently?
 - Maintain the addition cost array for N vertices
 - Set ∞ (e.g., a very large value) for vertices (a) already included in T or (b) cannot be added
 - Find the vertex of the minimum addition cost using Segment Tree
 - It can efficiently find the minimum cost among all vertices
 - It can efficiently update the cost

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ A B D E G \}$

- The key idea is to add vertex one by one into the vertex set
 - 1. Start from a single-vertex subgraph T=(U,F) where $U=\{A\}$ and $F=\emptyset$
 - 2. Pick the vertex of the minimum addition cost not yet included in T
 - 3. Add the vertex into T
 - 4. Repeat 2 & 3 steps

 $U = \{ ABDEGF \}$

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

 $F = \{ AB \}$

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

$$F = \{AB\}$$

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

 $F = \{ AB EG \}$

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

 $F = \{ AB EG \}$

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

F = { AB EG CF }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

F = { AB EG CF FG }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

F = { AB EG CF FG DE }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

F = { AB EG CF FG DE BD }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

The resultant graph is the minimum spanning tree!

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all\ vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps
- How to implement this algorithm efficiently?
 - Sorting edges by weights in the increasing order
 - Use the disjoint-set structure to check an edge addition forms a cycle
 - The structure is also called union-find
 - The structure is not covered in the final exam, but I'll explain its high-level concept in next slides

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

A B C D E F G

A B C D E F G

If the edge connects two disjoint sets, merge them Otherwise, skip the edge

Disjoint sets

Disjoint sets { A } { B } { C } { D } { E } { F } { G }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If the edge connects two disjoint sets, merge them Otherwise, skip the edge Disjoint sets

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

Disjoint sets { A B } { C } { D } { E G } { F }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

Disjoint sets

{ A B } { C F } { D } { E G }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

Disjoint sets { A B } { C F } { D } { E G }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

X → Y meansX belongs to the set including Y

Disjoint sets

{ A B } { C F } { D } { E G }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

Disjoint sets { A B } { C E F G } { D }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

```
Disjoint sets
```

{ A B } { C E F G } { D }

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

- The key idea is to add edge one by one into the edge set
 - 1. Start from a zero-edge subgraph T=(V,F) where $V=\{all vertices\}$ and $F=\emptyset$
 - 2. Pick the edge of the minimum addition cost not form a cycle in T
 - 3. Add the edge into T
 - 4. Repeat 2 & 3 steps

X → Y meansX belongs to the set including Y

If **the edge** connects two disjoint sets, merge them Otherwise, skip the edge

Prim's vs Kruskal's Algorithms

Prim's Algorithm

- Prim's algorithm is based on **vertex addition** and uses **segment tree** structure
- Kruskal's algorithm is based on **edge addition** and uses **disjoint-set** structure
- Both algorithms has $O(|E| \log |V|)$ time complexity

Any Questions?

