Use truth tables to show that the following pairs of sentences are equivalent:

(a)
$$P \Rightarrow Q, \neg Q \Rightarrow \neg P$$

(b)
$$P \Leftrightarrow \neg Q, ((P \land \neg Q) \lor (\neg P \land Q))$$

Solution

(a) Let $\Delta_1 = P \Rightarrow Q$ and $\Delta_2 = \neg Q \Rightarrow \neg P$ We then end up with the following truth table:

World	Р	Q	Δ_1	Δ_2
1	0	0	1	1
2	0	1	1	1
3	1	0	0	0
4	1	1	1	1

We can thus observe

$$M(\Delta_1) = w_1, w_2, w_4$$

$$M(\Delta_2) = w_1, w_2, w_4$$

$$M(\Delta_1) = M(\Delta_2),$$

$$\Longrightarrow \Delta_1 = \Delta_2$$

(b) Let $\Delta_1 = P \Leftrightarrow \neg Q$ and $\Delta_2 = ((P \vee \neg Q) \vee (\neg P \wedge Q))$ We then end up with the following truth table:

World	P	Q	Δ_1	Δ_2
1	0	0	0	0
2	0	1	1	1
3	1	0	1	1
4	1	1	0	0

We can thus observe

$$M(\Delta_1) = w_2, w_3$$

$$M(\Delta_2) = w_2, w_3$$

$$M(\Delta_1) = M(\Delta_2),$$

$$\Longrightarrow \Delta_1 = \Delta_2$$

Decide whether each of the following sentences is valid, satisfiable, or neither:

- (a) (Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)
- (b) (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)
- (c) ((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))

Solution

World	Smoke	Heat	Fire	(a)	(b)	(c)
1	0	0	0	1	1	1
2	0	0	1	1	0	1
3	0	1	0	0	1	1
4	0	1	0	0	1	1
5	1	0	0	1	1	1
6	1	0	1	1	1	1
7	1	1	0	1	1	1
8	1	1	1	1	1	1

This implies (a) is satisfiable, (b) is satisfiable, and (c) is valid.

Consider the following:

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

- (a) Represent the information using a propositional logic knowledge base.
- (b) Convert the knowledge base into CNF.
- (c) Can you prove that the unicorn is mythical? magical? horned?

Solution

(a) We will use the properties names: Mythical, Mortal, Mammal, Horned We can thus represent the knowledge base by:

$$KB = \begin{cases} \text{Mythical} & \Rightarrow \neg \text{Mortal} \\ \neg \text{Mythical} & \Rightarrow (\text{Mortal} \land \text{Mammal}) \\ (\neg \text{Mortal} \lor \text{Mammal}) & \Rightarrow \text{Horned} \\ \text{Horned} & \Rightarrow \text{Magical} \end{cases}$$

(b) We first convert the knowledge base to a CNF:

$$\begin{aligned} (\neg \mathbf{Mythical} \vee \neg \mathbf{Mortal}) \wedge (\mathbf{Mythical} \vee \mathbf{Mortal}) \wedge (\mathbf{Mythical} \vee \mathbf{Mammal}) \wedge \\ (\mathbf{Mortal} \vee \mathbf{Horned}) \wedge (\neg \mathbf{Mammal} \vee \mathbf{Horned}) \wedge (\neg \mathbf{Horned} \vee \mathbf{Magical}) \end{aligned}$$

(c) We can then use this CNF to attempt to resolve each of the statements:

	Mythical	Magical	Horned
1.	\neg Mythical $\lor \neg$ Mortal	\neg Mythical $\lor \neg$ Mortal	\neg Mythical $\lor \neg$ Mortal
2.	$Mythical \vee Mortal$	$Mythical \vee Mortal$	$Mythical \vee Mortal$
3.	$Mythical \lor Mammal$	$Mythical \vee Mammal$	$Mythical \lor Mammal$
4.	$Mortal \vee Horned$	$Mortal \vee Horned$	$Mortal \vee Horned$
5.	$\neg Mammal \lor Horned$	$\neg Mammal \lor Horned$	$\neg Mammal \lor Horned$
6.	$\neg Horned \lor Magical$	$\neg Horned \lor Magical$	$\neg Horned \lor Magical$
7.	\neg Mythical	$\neg \text{Magical}$	$\neg Horned$
8.	Horned < 3, 7 >	$\neg \text{Horned} < 6, 7 >$	Mortal < 4,7 >
9.	Mortal < 2, 7 >	Mortal < 4, 8 >	Mythical < 3, 7 >
10.	Magical < 6, 8 >	$\neg Mortal < 1, 9 >$	$\neg Mythical < 1, 8 >$
11.		$\Phi < 9, 10 >$	$\Phi < 9, 10 >$

Thus we can prove that the unicorn must be Magical and Horned.

Consider the two NNF circuits in Figure 1 and Figure 2. Identify whether they are decomposable, deterministic, smooth and why.

Solution

Decomposability: any inputs of an AND gate have no shared inputs.

Determinism: inputs to OR gates are mutually exclusive. Smoothness: all input atoms to OR gates are identical.

Thus Figure 1 is decomposable and deterministic but not smooth

(second OR on the second OR level: {C} vs $\{\neg C, \neg D\}$) And Figure 2 is decomposable and smooth but non-deterministic

And Figure 2 is decomposable and smooth but non-determinist (first OR on the second OR level: $\{\neg A, B\}$)

The weight of a truth assignment is defined as the product of its literals weights. The WMC of a formula is the added weight of its satisfying assignments.

- If we assign the weights of literals to all the leaf nodes on a circuit,
 - (i) the count of each ∧ node is the product of the counts of its children
 (ii) the count of each ∨ node is the sum of the counts of its children.

Suppose we have the following literal weights:

$$w(A)=0.2, w(B)=0.4, w(C)=0.6, w(D)=0.8$$

 $w(\neg A)=0.8, w(\neg B)=0.6, w(\neg C)=0.4 w(\neg D)=0.2.$

Use the above values to answer the following:

- (a) Compute the WMC for formula $(\neg A \land B) \lor (\neg B \land A)$.
- (b) Consider the smooth d-DNNF circuit in Figure 3. What is the relation between the root count and the WMC?
- (c) Compute the WMC for the smooth d-DNNF circuit in Figure 4.

Solution

(a)

Weight(
$$\neg A \land B$$
) \lor ($\neg B \land A$) = (0.8)(0.4) + (0.2)(0.6)
= (0.32) + (0.12) = (0.44)

- (b) The root count is (0.44); they match!
- (c) Let w(x) denote the weight of the literal x.

$$\begin{aligned} \text{Count}(\text{Figure 4}) &= \left[(w(\neg A))(w(B)) + (w(A))(w(\neg B)) \right] \cdot \left[(w(C))(w(D)) + (w(\neg C))(w(\neg D)) \right] \\ &+ \left[w(\neg A)w(\neg B) + w(A)w(B) \right] \cdot \left[w(C)w(\neg D) + w(\neg C)w(D) \right] \\ &= \left[(0.8)(0.4) + (0.6)(0.2) \right] \cdot \left[(0.6)(0.8) + (0.2)(0.4) \right] \\ &+ \left[(0.8)(0.6) + (0.2)(0.4) \right] \cdot \left[(0.2)(0.6) + (0.4)(0.8) \right] \\ &= 2 \cdot \left[(0.32) + (0.12) \right] \cdot \left[(0.48) + (0.08) \right] = (0.4928) \end{aligned}$$