# Orcas Infrastructure

Bhavin Gandhi

#### Context

- Relational Database Service in Azure
  - Part of our developer story for bringing customers and their apps on our cloud platform
- Provision and Manage cloud databases for developers/DBAs/CSVs
  - High Availability (HA)
  - Automatic Backups/On-demand Point-In-Time Restores (PITR)
  - Disaster Recovery (DR),
  - Performance tuning/Recommendations
  - Security/Compliance/Auditing
  - On-demand scale up/down
  - Secondary read replicas, etc. etc.
  - all while saving costs for customers and us

#### Context

- Expand our Cloud Database offering to open source database engines
  - Offer choice to our customers for bringing their apps on Azure
- Started as an Incubation project with PostgreSQL as the first PoC and soon MySQL, and now MariaDB and possibly others.
- Leverage existing SQL DB investments (a.k.a Sterling platform) instead of starting from scratch
- Formal name for these services:
  - Azure Database for [PostgreSQL | MySQL | MariaDB]
  - https://azure.microsoft.com/en-us/status/

### Azure Relational Database Platform



## Customer Experience

- Manageability
  - CRUD operations on servers/databases
  - Firewall settings/VNET endpoints
  - Server logs
  - Threat detection
  - Performance Insights
  - Typically done through Azure Portal (portal.azure.com) or Azure CLI
- Connectivity
  - DB Admin tools/data applications connecting to databases to run queries/workload (OLTP)
  - psql/pgAdmin, workbench, or language specific drivers such as libpq, NpgSQL ADO.Net driver, ODBC connectors etc.
- These two distinct experiences are implemented through different services in the architecture stack

# SQL DB Cluster (Region)



#### **Cluster name:**

wasd-prod-westeurope1-a

WASD – Windows Azure SQL Database

Prod – Environment (others test, stage)

Region<x> - xth cluster in that geography

a/b - re-build of a cluster

# High level Architecture



## SFE View

# **Control Ring Services**



#### What does the Control Plane Do?

- Handles SQL/PG/MySQL Logins (Gateway services)
- Acts as the resource provider for ARM (ManagementService)
- Knows how to provision SQL Logical servers, PG/MySQL Servers
- CRUD operations
  - Create: Create a PG server
  - Read: Get the list of servers/databases
  - Update: Change the size (SLO/Storage) of this server
  - Delete: Delete this server
- Also orchestration of lots and lots of other workflows (PITR, Deployment, Security, Workload Insights, Geo-Restore, Deactivation, etc.)

Login Flow (Default)



Login Flow (Redirection)



# Tenant Ring (DB node view)



# SQLPAL





# SQLPAL



## Server startup

- Service fabric orchestrates starting up all services (and restarting them in the event of planned/unplanned failures)
- Below 4 code packages



# PicoProcess View (for PostgreSQL)



# Useful Telemetry Tables (Kusto)

- MonManagement (For Manageability requests)
- MonLogin (filter by AppTypeName => Gateway.PG/Gateway.MySQL/Host.PG/Host.MySQL)
- MonRdmsPgSqlLaunchSetup (LaunchSetup for PG)
- MonRdmsPgSqlSandbox (DkMon & PG Picoprocess telemetry)
- MonRdmsMySqlLaunchSetup (LaunchSetup for MySQL)
- MonRdmsMySqlSandbox (DkMon & MySQL Picorprocess telemetry)
- MonRdmsInstanceAgent (for IA logs)