	Teste de Matemática A				
	2021 / 2022				
Teste N.º 2 Matemática A					
12.º Ano de Escolaridade					
Nome do aluno:	N.º: Turma:				
Utilize apenas caneta ou esferográfica de tinta azul ou preta	l.				
Não é permitido o uso de corretor. Risque aquilo que preten	de que não seja classificado.				
É permitido o uso de calculadora.					
Apresente apenas uma resposta para cada item.					
As cotações dos itens encontram-se no final do enunciado.					
Na resposta aos itens de escolha múltipla, selecione a opç	ão correta. Escreva na folha de				
respostas o número do item e a letra que identifica a opção					
Na resposta aos restantes itens, apresente todos os cálcu	los que tiver de efetuar e todas				

as justificações necessárias. Quando para um resultado não é pedida a aproximação, apresente sempre o valor exato.

Formulário

Geometria

Comprimento de um arco de circunferência:

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área de um polígono regular: Semiperímetro × Apótema

Área de um setor circular:

$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Área lateral de um cone: $\pi r g (r - \text{raio da base}; g - \text{geratriz})$

Área de uma superfície esférica: $4 \pi r^2 (r - raio)$

Volume de uma pirâmide: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de um cone: $\frac{1}{3} \times \text{Área da base} \times \text{Altura}$

Volume de uma esfera: $\frac{4}{3} \pi r^3 (r - \text{raio})$

Progressões

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética: $\frac{u_1+u_n}{2} \times n$

Progressão geométrica: $u_1 \times \frac{1-r^n}{1-r}$

Trigonometria

$$sen(a + b) = sen a cos b + sen b cos a$$

cos(a + b) = cos a cos b - sen a sen b

Complexos

$$(\rho e^{i\theta})^n = \rho^n e^{in\theta}$$

$$\sqrt[n]{\rho \, e^{i\theta}} = \sqrt[n]{\rho} \, e^{i\frac{\theta + 2k\pi}{n}} \quad (k \in \{0, \dots, n-1\} \, \text{e} \, n \in \mathbb{N})$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(u v)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - u \, v'}{v^2}$$

$$(u^n)' = n u^{n-1} u'(n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' e^u$$

$$(a^u)' = u' a^u \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e \quad (n \in \mathbb{N})$$

$$\lim_{x\to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

- 1. Turistas de diversas nacionalidades encontravam-se de visita à cidade do Porto.
 - 1.1. Os turistas foram inquiridos acerca da sua preferência quanto ao melhor jogador de futebol do mundo - Cristiano Ronaldo ou Leonel Messi.

Sabe-se que todos os turistas responderam ao inquérito e que todos manifestaram preferência por um e apenas um dos dois futebolistas.

Sabe-se ainda que:

- um em cada três turistas era de nacionalidade italiana;
- dos turistas italianos, $\frac{5}{7}$ consideraram Cristiano Ronaldo como o melhor jogador do mundo;
- a probabilidade de um turista ter referido que considerava Leonel Messi como sendo o melhor jogador do mundo, sabendo que era um turista não italiano, é $\frac{11}{70}$.

Escolheu-se, ao acaso, um turista desse grupo.

Determine a probabilidade de o turista escolhido ser italiano ou considerar Cristiano Ronaldo como o melhor jogador do mundo.

Apresente o resultado sob a forma de fração irredutível.

1.2. Um autocarro turístico tem oito paragens previstas, em locais de interesse, para n turistas que se encontram no autocarro.

Supondo que cada turista escolhe, ao acaso, apenas uma das oito paragens para sair, qual é a probabilidade de todos os turistas escolherem sair no mesmo local de interesse?

(A)
$$\frac{1}{n_{A_8'}}$$

(B)
$$\frac{1}{n_{C_8}}$$

(C)
$$8^{-n}$$

(D)
$$8^{1-n}$$

1.3. Numa loja de lembranças, um turista comprou dois tipos de lembranças da cidade: ímanes e pins. No saco da compra encontravam-se seis ímanes e alguns pins.

Considere que foram retirados do saco dois desses objetos de forma aleatória, não repondo o primeiro antes de se retirar o segundo.

Sejam A e B os acontecimentos:

A: "o primeiro objeto retirado é um pin."

B: "o segundo objeto retirado é um íman."

Sabe-se que P(B|A) = 0.5.

Quantos pins se encontravam inicialmente no saco?

Elabore uma pequena composição, na qual justifique a sua resposta, começando por explicar o significado de P(B|A), no contexto da situação descrita.

2. Seja n um número natural superior a dois.

Resolva a seguinte equação:

$${}^{n}A_{2} + \frac{(n-1)!(n+1)!}{(n!)^{2}} = \frac{10}{9} + {}^{n}C_{n-1} \times {}^{n-1}C_{1}$$

3. Seja *S*, conjunto finito, o espaço amostral associado a uma certa experiência aleatória.

Sejam $A \in B$ dois acontecimentos $(A \subset S \in B \subset S)$.

Sabe-se que:

- $P(B) \neq 0$
- $P(A|B) = \frac{1}{3}$
- $P(A) = \frac{4}{3}P(B)$

Qual é o valor de $2P(B) + P(\bar{A} \cap \bar{B})$?

(A) 0

- **(B)** $\frac{2}{3}$
- (C) $\frac{3}{4}$
- **(D)** 1
- 4. A soma dos três primeiros elementos de uma certa linha do triângulo de Pascal é 352.

Qual é a diferença entre a soma de todos os elementos dessa linha e o elemento central dessa linha?

- (A) 56 708 264
- **(B)** 67 108 864
- **(C)** 114 159 428
- **(D)** 123 817 128
- **5.** Considere o desenvolvimento de $\left(\frac{\sqrt{x}}{2} \frac{1}{x^2}\right)^{10}$, com x > 0.

Sem efetuar o desenvolvimento do binómio, determine, se existir, o termo independente.

6. Seja S, conjunto finito, o espaço amostral associado a uma certa experiência aleatória.

Sejam $A \in B$ dois acontecimentos ($A \subset S \in B \subset S$).

Prove que:

$$P(A \cup B) + P(\bar{A} \cup B) - P(\bar{A}) = P(A) + P(B)$$

7. Na figura seguinte está representado o tetraedro truncado [ABCDEFGHI]KL], sólido constituído por oito faces, das quais quatro são hexágonos regulares e quatro são triângulos equiláteros. Duas das faces já estão numeradas com os números 1 e 2, como mostra a figura.

7.1. Escolhem-se, ao acaso, dois vértices distintos do sólido.

Qual é a probabilidade de esses vértices formarem uma diagonal facial do sólido?

- (A) $\frac{5}{11}$
- (B) $\frac{6}{11}$ (C) $\frac{9}{11}$
- 7.2. Considere que se pretende numerar as seis faces do sólido não numeradas, utilizando os algarismos de 3 a 8 e colocando um algarismo diferente em cada face.

De quantas maneiras o poderemos fazer, de forma que:

- a) nas faces que são hexágonos fiquem só números primos?
- b) nas faces que são triângulos sejam colocados no máximo dois números pares?
- **7.3.** Considere agora que se dispõe de n cores diferentes $(n \ge 8)$ para colorir todas as faces do sólido.

Qual é a probabilidade de, ao colorir cada face do sólido com uma única cor, exatamente duas faces sejam pintadas da mesma cor e as restantes faces sejam pintadas com cores diferentes entre si?

(A)
$$\frac{{}^{8}C_{2} \times n \times^{n-1}A_{6}}{n^{8}}$$

(B)
$$\frac{{}^{8}C_{2}\times n\times^{n-1}A_{6}}{n_{A}}$$

(C)
$$\frac{{}^{8}C_{2} \times 2 \times {}^{n-1}A_{6}}{{}^{n}A'_{8}}$$

(A)
$$\frac{{}^{8}C_{2} \times n \times^{n-1}A_{6}}{n^{8}}$$
 (B) $\frac{{}^{8}C_{2} \times n \times^{n-1}A_{6}}{{}^{n}A_{8}}$ (C) $\frac{{}^{8}C_{2} \times 2 \times^{n-1}A_{6}}{{}^{n}A'_{8}}$ (D) $\frac{{}^{8}C_{2} \times n \times^{n-1}C_{6} \times 8!}{n^{8}}$

FIM

COTAÇÕES

Item												
Cotação (em pontos)												
1.1.	1.2.	1.3.	2.	3.	4.	5.	6.	7.1.	7.2. a)	7.2. b)	7.3.	Total
25	10	20	25	10	10	20	20	10	20	20	10	200