How flexible should my algorithms be?

Supervised machine learning model

We search for the model that best fits our data

Example: linear regression

Using any line as a hypothesis function, how many possible hypothesis functions are in the set?

Infinitely many

Using the line y = wx as the family of hypothesis functions, how many possible hypothesis functions are in the set?

Infinitely many

Which set contains the better hypothesis? Which set has more options to consider? What is our learning algorithm?

Historic Progression of Algorithms

François Chollet, Deep Learning with Python, 2017

K-Nearest Neighbors

Classification and Regression

Step 1: Training

Every new data point is a model parameter

Step 2:

Place new (unseen) examples in the feature space

Feature認是

Step 3:

Classify the data by assigning the class of the k nearest neighbors

Score vs Decision:

For 5-NN, the confidence score that a sample belongs to a class could be: {0,1/5,2/5,3/5,4/5,1}

Feature 1

Decision Rule:

If the confidence score for a class > threshold, predict that class

K Nearest Neighbor Regression

K Nearest Neighbor Regression

$$\hat{y} = \frac{1}{k} \sum_{y_i \in \{k \text{ nearest}\}} y$$

KNN Pros and Cons

Pros

- Simple to implement and interpret
- Minimal training time
- Naturally handles multiclass data

Cons

- Computationally expensive to find nearest neighbors
- Requires all of the training data to be stored in the model
- Suffers if classes are imbalanced
- Performance may suffer in high dimensions

Feature 2

What happens if the data aren't balanced?

How flexible should my model be?

the bias-variance tradeoff and learning to generalize

bias consistently incorrect prediction

error from poor model assumptions (high bias results in underfit)

variance inconsistent prediction

error from sensitivity to small changes in the training data

(high variance results in overfit)

noiselower bound on generalization error

irreducible error inherent to the problem

(e.g. you cannot predict the outcome of a flip of a fair coin any more than 50% of the time)

Bias-Variance Tradeoff

generalization error = bias² + variance + noise

Classification feature space

What's the lowest classification error we can achieve for binary classification?

If we fully know the probability distribution of the data...

The Bayes decision rule

Bayes' Rule

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$
Posterior
$$P(X|C) = \frac{P(X|C)P(C)}{P(X)}$$
Evidence

X Features

C Class label i.e. $C \in \{c_0, c_1\}$ for the binary case

Bayes' Decision Rule:

choose the most probable class given the data

If
$$P(C_i=c_1|X_i)>P(C_i=c_0|X_i)$$
 then $\hat{y}=c_1$ otherwise $\hat{y}=c_0$

- If the distributions are correct, this decision rule is optimal
- Rarely do we have enough information to use this in practice

Bayes' Rule Biased Coin Example

Two types of coins:

 c_0 Coin with probability of heads: 0.5 (fair)

 C_1 Coin with probability of heads: 0.7 (unfair)

$$P(C|X) = \frac{P(X|C)P(C)}{P(X)}$$
Posterior
Evidence

You want to classify a coin as fair or unfair You draw a coin from a bag that has 50/50 fair/unfair coins

$$P(c_0) = P(c_1) = 0.5$$

You flip the coin 5 times and it lands on heads 5 times ($\mathbf{X} = \{\text{flip 5 heads}\}$)

$$P(X|c_0) = (0.5)^5 \approx 0.03$$

$$P(X|c_1) = (0.7)^5 \approx 0.17$$

Decision rule: if $P(c_1|X) > P(c_0|X)$, then the coin is unfair, otherwise the coin is fair

$$\frac{P(X|c_1)P(c_1)}{P(X)} > \frac{P(X|c_0)P(c_0)}{P(X)} \to \frac{(0.17)(0.5)}{P(X)} > \frac{(0.03)(0.5)}{P(X)} \to \text{We predict the coin is unfair}$$

Classification feature space

Bayes Decision Boundary

Decision Boundary Examples

Bias Variance Tradeoff

higher variance overfit

Sample 3

Bias Variance Tradeoff

$$\widehat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\widehat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

$$\hat{y}_i = \sum_{j=0}^m a_j x_i^j$$

Problem

Too much flexibility leads to overfit

Too little flexibility leads to underfit

Over/underfit hurts generalization performance

Solutions for overfitting

- 1. Add more data for training
- 2. Constrain model flexibility through regularization
- 3. Use model ensembles