

NPS 68-86-003

# NAVAL POSTGRADUATE SCHOOL

Monterey, California





HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM
OPTOMA19
8 - 13 February 1986

by

Paul A. Wittmann Christopher N.K. Mooers

Hay 1986

Approved for public release; distribution unlimited.

Prepared for: Office of Naval Research Environmental Sciences Directorate (Code 1122) Arlington, VA 22217

86

# NAVAL POSTGRADUATE SCHOOL Monterey, California 93943

RADM R.H. Shumaker Superintendent David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observation, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N. Reproduction of all or part of this report is authorized.

This report was prepared by:

Paul A. Wittmann (by

PAUL A. WITTMANN Oceanographer CHRISTOPHER N.K. MODERS
Professor and Chairman,
Department of Oceanography

Reviewed by:

Released by:

CHRISTOPHER N.K. MODERS, Chairman

Department of Oceanography

Dean of Science and Engineering

| SEC. AND CLASSIFICATION OF THIS PAGE                                                                            | REPORT DOCU                      | MENTATION                     | PAGE                        | 1697                        | 20             |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------|-----------------------------|-----------------------------|----------------|
| TA REFORT SECURITY CLASSIFICATION Unclassified                                                                  |                                  | 16 RESTRICTIVE                | MARKINGS                    |                             | <del></del>    |
| 24 SECURITY CLASSIFICATION AUTHORITY                                                                            |                                  | 3 DISTRIBUTION                | AVAILABILITY OF             | REPORT                      |                |
| 2. DECLASSIFICATION / DOWNGRADING SCHED                                                                         | ULE                              |                               | for public<br>ion unlimit   |                             |                |
| 1 PERFORMING ORGANIZATION REPORT NUMB NPS 68-86-003                                                             | ER(S)                            | 5 MONITORING                  | ORGANIZATION RI             | EPORT NUMBER(S              | )              |
| 62 NAME OF PERFORMING ORGANIZATION NAVPGSCOL                                                                    | 6b OFFICE SYMBOL (If applicable) | 78 NAME OF MO                 | ONITORING ORGA              | NIZATION                    |                |
| Dept. of Oceanography  6c ADDRESS (City, State, and ZIP Code)                                                   | 68                               | 7h ADDRESS (Con               | y, State, and ZIP (         | (ode)                       |                |
| Monterey, California 93943-50                                                                                   | 003                              |                               |                             |                             |                |
| 8a NAME OF FUNDING, SPONSORING<br>ORGANIZATION                                                                  | 8b OFFICE SYMBOL (If applicable) | 9 PROCUREMENT                 | INSTRUMENT ID               | ENTIFICATION NU             | MBER           |
| Office of Naval Research                                                                                        | (1122 PO)                        | N000146HR2                    |                             |                             |                |
| BC ADDRESS (City, State, and ZIP Code)                                                                          |                                  | 10 SOURCE OF F                | UNDING NUMBER               | S<br>TASK                   | WORK UNIT      |
| Arlington, VA 22217                                                                                             |                                  | ELEMENT NO                    | RR0310306                   | NO.                         | ACCESSION NO   |
| ii file include Security Classification) Hydrographic Data from the OPI Approved for public release; o          |                                  |                               | February, 19                | 986;                        |                |
| Paul A. Wittmann, Christopher                                                                                   | N.K. Mooers                      |                               |                             |                             | _              |
| 13a TYPE OF REPORT 13b TIME (                                                                                   |                                  | 14 DATE OF REPO<br>86, May    |                             | Day) 15 PAGE 40             |                |
| 16 SUPPLEMENTARY NOTATION                                                                                       |                                  |                               |                             |                             |                |
| 12 COSATI CODES                                                                                                 | 18 SUBJECT TERMS (               | Continue on reverse           | if necessary and            | l identify by bloc          | k number)      |
| FELD GROUP SUB-GROUP                                                                                            | 4                                |                               |                             |                             |                |
|                                                                                                                 |                                  |                               |                             |                             | <u></u>        |
| The cruise OPTOMA19 was u<br>a subdomain of the California<br>data from the cruise.                             | indertaken from t                | he period 8                   | to 13 Februa<br>presents th | ary 1986 to<br>ne hydrograf | sample<br>phic |
| <b>&gt;</b>                                                                                                     |                                  |                               |                             |                             |                |
|                                                                                                                 |                                  |                               |                             |                             |                |
| 20 O STRIBUT ON A A ALABILITY OF ABSTRACT  \$\infty \text{V} \text{UNC:ASS FIED/UNL/MITED } \Box \text{SAME AS} | RPT DTIC USERS                   | 21 ABSTRACT SEC<br>UNCLASSI   | CURITY CLASSIFIC<br>FIED    | ATION                       |                |
| Paul A. Wittmann                                                                                                |                                  | 226 TELEPHONE (1<br>(408) 641 |                             | ) 22c OFFICE SY<br>68       | MBOL           |
| DD FORM 1472 941469 834                                                                                         | PR edition may be used up        | tileshausted                  |                             |                             |                |

## Hydrographic Data from the OPTOMA Program:

OPTOMA19 8 - 13 February, 1986

bу

Paul A. Wittmann Christopher N. K. Mooers

> Chief Scientist: Gordon W. Groves



| Access | ion For  |       |
|--------|----------|-------|
| NC 3   | GFA&I    | Ø     |
| DITC T | AB       |       |
| Unanne |          |       |
| Justif | dention. |       |
| i      |          |       |
| Ву     |          |       |
| Distr  | (hution/ |       |
| Avai   | Lability | Codes |
|        | Avail ar | nd/or |
| Dist   | Specia   | al    |
| 1 1    |          |       |
| 111    | }        |       |
| MI     | 1        |       |
| 1_L    |          |       |

The **OPTOMA** Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943.

Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.

## TABLE OF CONTENTS

|                           | PAGE |
|---------------------------|------|
| LIST OF TABLES            | 3    |
| LIST OF FIGURES           | 4    |
| INTRODUCTION              | 6    |
| DATA ACQUISITION          | 6    |
| DATA PROCESSING           | 7    |
| DATA PRESENTATION         | 7    |
| ACKNOWLEDGEMENTS          | 32   |
| REFERENCE                 | 32   |
| INITIAL DISTRIBUTION LIST | 33   |

## LIST OF TABLES

| Table No. | Caption                                        | Page |
|-----------|------------------------------------------------|------|
| 1.        | Scientific instruments aboard USNS DE STEIGUER | 9    |
| 2.        | Station Listing                                | 13   |

## LIST OF FIGURES

| Figure | No.     | Caption                                                                                                                                                                         | Page |
|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.     |         | The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.                                                                                            | 5    |
| 2.     |         | Cruise track for OPTOMA19 with transect extremes identified by letter.                                                                                                          | 10   |
| 3.     |         | XBT and CTD locations for OPTOMA19.                                                                                                                                             | 11   |
| 4.     |         | Station numbers for OPTOMA19.                                                                                                                                                   | 12   |
| 5.     | (a)-(f) | Staggered temperature profiles from the XBT's. Profiles are staggered by a multiple of 5C (OPTOMA19).                                                                           | 16   |
| 6.     | (a)-(b) | CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA19).                                                       | 22   |
| 7.     | (a)-(c) | Isotherms from XBT's and CTD's. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. (OPTOMA19).                                  | 24   |
| 8.     |         | Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's. (OPTOMA19).                                                                                           | 27   |
| 9.     |         | Profiles of $\overline{T(z)}$ with + and - the standard deviation from (a) XBT's and (b) CTD's. (OPTOMA19).                                                                     | 28   |
| 10.    |         | Profiles of (a) mean salinity and (b) mean sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA19).                                                            | 29   |
| 11.    |         | (a) T-S pairs and (b) mean T-S relationship with + and - the standard deviation, and selected sigma-t contours, from the CTD casts (OPTOMA19).                                  | 30   |
| 12.    |         | Profile of $\overline{N^2(z)}$ (——), with + and - the standard deviation (), and the profile of $\overline{N^2}$ from $\overline{T(z)}$ and $\overline{S(z)}$ (···) (OPTOMA19). | 31   |



Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

#### INTRODUCTION

electromagnetic recognition of the contract of the contract of

The OPTOMA (Ocean Prediction Through Observation, Modeling and Analysis) Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

The cruise OPTOMA19 was undertaken, in the USNS DE STEIGUER, in February.

1986 and covered a domain 240 km square centered 190 km off the coast from Pt.

Arena.

Hydrographic data were acquired during the period 8 to 13 February. The cruise track consisted of alongshore transects, shown in Figure 2. Transect extremes are identified by letter to aid in cross-referencing the data presented in subsequent figures. Hydrographic stations were occupied at approximately 19km along the track.

#### DATA ACQUISITION

Data acquired during OPTOMA19 include XBT and CTD profiles. Wind velocity, air temperature, dew point, and 2 meter thermalsalinograph measurements were recorded every 2 minutes using a Serial ASCII Interface Loop (SAIL) data acquisition system. CTD data were digitized using a Neil Brown MK3 unit and the XBT data were digitized using a Sippican MK9 unit. All data were recorded on data disks using HP200 series computers, and transferred ashore to the IBM 3033 mainframe computer at the Naval Postgraduate School for editing and processing.

Station positions were determined by Loran C fixes and are claimed to be accurate to within about 0.1km. A NAVOCEANO Neil Brown CTD was used on the cruises. Table 1 on page 6 summarizes the various sensors used on the USNS DE STEIGUER and their accuracy.

#### DATA PROCESSING

The data processing, such as estimating depth profiles for the XBT temperature profiles based on descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on the IBM 3033. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 97% of casts were retained. The CTD data were interpolated to 5m intervals. The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

#### DATA PRESENTATION

The cruise track, station locations (with XBT's and CTD's identified) and station numbers are shown in Figures 2, 3, and 4, respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion in Figure 5. The location of these profiles may be found by reference to the various maps of the cruise track. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow. Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages, followed by isopleths of temperature, salinity and sigma-t from the CTD's. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to  $\pm 20$ m. The tick marks identify station positions and, again, the transect extremes are shown in these plots.

Mean profiles of temperature from the XBT's and temperature, salinity and sigma-t from the CTD's are given in Figures 9 and 10, followed by a scatter diagram of the T-S pairs and the mean S(T) curve with the  $\pm$  standard deviation envelope. The data presentation concludes with a plot of the mean N<sup>2</sup> (Brunt-Vaisala frequency squared) profile with  $\pm$  the standard deviation. On the sigma-t and N<sup>2</sup> plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown.

Table 1: Scientific instruments aboard the USNS DE STEIGUER

| Instrument                                   | Variable                                       | Sensor                                       | Accuracy                                    | Resolution                        |
|----------------------------------------------|------------------------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------------|
| Neil Brown<br>CTD<br>Mark IIIb               | pressure<br>temperature<br>conductivity        | strain gauge<br>thermistor<br>electrode cell | 1.6 db<br>0.005 C<br>0.005 mmbo             | 0.025 db<br>0.0005 C<br>0.001mmbo |
| Sippican<br>MK9<br>XBT                       | temperature<br>depth                           | thermistor<br>descent speed                  | 0.2C<br>greater of 4.6 m<br>and 2% of depth |                                   |
| Sea-Bird<br>Sensors                          | temperature<br>conductivity<br>at 2 meters     | thermistor<br>electrode cell                 | 0.003 C<br>0.003 mmho                       | 0.0005 C<br>0.0005 mmho           |
| General<br>Eastern<br>Temperature<br>Sensors | air<br>temperature<br>dew point<br>temperature | thermometer<br>condensation<br>temp. sensor  | 0.01C<br>0.2C                               |                                   |
| R.M. Young<br>Wind Sensors                   | wind speed<br>wind<br>direction                | anemometer<br>vane                           | 0.15mph<br>2.5 degrees                      |                                   |
| Internav<br>LC 408<br>LORAN C                | position                                       | two chain<br>LORAN<br>receiver               | 100 meters                                  | 10 meters                         |



Figure 2: Cruise track for OPTOMA19 with transect extremes identified by letter.



Figure 3: XBT and CTD locations for OPTOMA19.

CONTROL INDOVERSAL MARKETS TRANSPORT MARKET



Figure 4: Station numbers for OPTOMA19.

by a section which

Description (Parameter Parameter Income

Table 2: Station Listing

|                                                          | Sugar(ve)  | ndreinenenen           |              |                | NO. IND. EMBRESSING |                 | ng nating nations   |
|----------------------------------------------------------|------------|------------------------|--------------|----------------|---------------------|-----------------|---------------------|
|                                                          |            |                        |              |                |                     |                 |                     |
|                                                          |            |                        |              |                |                     |                 |                     |
|                                                          |            | Tab                    | le 2         | : Stati        | on Listi            | ing             |                     |
| STN  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18        | TYPE       | YR/DAY                 | GMT          | LAT<br>(NORTH) | LONG<br>(WEST)      | SURFACE<br>TEMP | SURFACE<br>SALINITY |
| -                                                        |            | 24222                  | 2222         | ,              | `                   | )(DEG C)        | (PPT)               |
| 1 2                                                      | XBT        | 86039<br>86039         | 2000         | 37.40<br>37.45 | 122.56<br>123.12    | 12.7<br>13.0    |                     |
| 3 4                                                      | XBT<br>XBT | 8603 <b>9</b><br>86040 | 2326         | 37.48<br>37.55 | 123.30<br>123.37    | 13.4<br>13.4    |                     |
| 5 6                                                      | XBT<br>XBT | 86040                  | 125<br>216   | 38.03<br>38.11 | 123.44<br>123.51    | 13.2<br>13.1    |                     |
| 7                                                        | XBT        | 86040<br>86040         | 311          | 38.19          | 123.58              | 12.6            |                     |
| 8                                                        | CTD<br>XBT | 86040<br>86040         | 424<br>547   | 38.28<br>38.35 | 123.58<br>124.05    | 12.5<br>12.1    | 33.10               |
| 10                                                       | XBT        | 86040                  | 651          | 38.43          | 124.11              | 11.8            |                     |
| 11<br>12                                                 | XBT<br>CTD | 86040<br>86040         | 736<br>854   | 38.51<br>38.59 | 124.17<br>124.22    | 11.9<br>11.7    | 32.75               |
| 13<br>14                                                 | XBT        | 86040                  | 1028         | 39.07<br>39.16 | 124.28              | 11.9<br>11.8    |                     |
| 15                                                       | XBT<br>XBT | 86040<br>86040         | 1143<br>1208 | 39.23          | 124.35<br>124.41    | 12.1            |                     |
| 16<br>17                                                 | XBT<br>CTD | 86040<br>86040         | 1307<br>1417 | 39.31<br>39.38 | 124.47<br>124.53    | 11.6<br>12.1    | 33.20               |
| 18                                                       | XBT        | 86040                  | 1537         | 39.34          | 125.03              | 12.0            |                     |
| 13                                                       | CTD<br>XBT | 86040<br>86040         | 1751<br>1933 | 39.29<br>39.24 | 125.13<br>125.24    | 11.8<br>12.6    | 32.63               |
| 20<br>21<br>22<br>22                                     | CTD        | 86040                  | 2115         | 39.19          | 125.34              | 12.6<br>13.1    | 32.70               |
| 23                                                       | XBT<br>XBT | 86040<br>86040         | 2225<br>2314 | 39.12<br>39.04 | 125.29<br>125.23    | 12.9            |                     |
| 24<br>25                                                 | XBT<br>XBT | 86041<br>86041         | 3<br>51      | 38.56<br>38.48 | 125.17<br>125.12    | 12.9<br>12.7    |                     |
| <b>?</b> . 26                                            | CTD        | 86041                  | 217          | 38.38          | 125.05              | 11.9            | 32.64               |
| 27<br>28                                                 | XBT<br>XBT | 86041<br>86041         | 328<br>418   | 38.32<br>38.24 | 124.57<br>124.51    | 12.9<br>12.8    |                     |
| 29<br>30                                                 |            | 86041<br>86041         | 509<br>617   | 38.16<br>38.09 | 124.44<br>124.39    | 12.5<br>12.4    | 33.09               |
| 31                                                       | XBT        | 86041                  | 743          | 38.00          | 124.33              | 12.8            | 33.07               |
| 32<br>2 33                                               | XBT<br>XBT | 86041<br>86041         | 828<br>922   | 37.52<br>37.42 | 124.27<br>124.20    | 13.2<br>13.0    |                     |
| 34                                                       | XBT        | 86041                  | 1009         | 37.36          | 124.16              | 13.1            | 20.00               |
| 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41 |            | 86041<br>86041         | 1139<br>1300 | 37.26<br>37.22 | 124.09<br>124.19    | 13.0<br>13.3    | 32.88               |
| 37<br>38                                                 |            | 86041<br>86041         | 1445<br>1628 | 37.19<br>37.14 | 124.29<br>124.39    | 13.0<br>13.4    | 32.91               |
| 39                                                       | XBT        | 86041                  | 1730         | 37.09          | 124.50              | 13.2            |                     |
| 40<br>41                                                 |            | 86041<br>86041         | 1824<br>1915 | 37.17<br>37.26 | 124.56<br>125.02    | 12.2<br>12.3    |                     |
| 42                                                       | XBT        | 86041                  | 2005         | 37.33          | 125.08              | 12.3            |                     |
| 43                                                       |            | 86041<br>86041         | 2059<br>2153 | 37.41<br>37.49 | 125.14<br>125.20    | 12.3<br>12.3    |                     |
| 45                                                       |            | 86041                  | 2247         | 37.57          | 125.26              | 12.7            |                     |
|                                                          |            |                        |              |                |                     |                 |                     |
| £                                                        |            |                        |              |                |                     |                 |                     |
| <del>v</del>                                             |            |                        |              |                | 1                   | 3               |                     |
|                                                          |            |                        |              |                |                     |                 |                     |
|                                                          | cece       | 111                    |              |                |                     |                 |                     |

```
LONG
STN TYPE
           YR/DAY
                     GMT
                            LAT
                                            SURFACE SURFACE
                          (NORTH)
                                    (WEST)
                                             TEMP
                                                     SALINITY
                           DD.MM
                                    DDD.MM (DEG C)
                                                       (PPT)
                    2341
                           38.05
 46
     XBT
           86041
                                    125.32
                                             12.6
      XBT
           86042
                      32
                           38.13
                                    125.37
 47
                                             12.6
                     124
 48
      XBT
            86042
                           38.21
                                    125.43
                                             12.3
 49
     XBT
           86042
                     221
                           38.29
                                    125.49
                                             12.6
 50
                     312
                           38.37
                                    125.55
                                             12.8
     XBT
           86042
                           38.45
                                    126.01
 51
      XBT
           86042
                     403
                                             12.5
                           38.53
 52
     XBT
           86042
                     456
                                    126.08
                                             12.6
 53
     XBT
           86042
                     545
                           39.01
                                    126.13
                                             11.8
 54
                                    126.24
                           38.56
      XBT
           86042
                     640
                                             11.9
 55
      CTD
           86042
                     846
                           38.51
                                    126.34
                                             11.3
                                                     32.68
                    1040
 56
     XBT
           86042
                           38.46
                                    126.45
                                             11.7
                                    126.54
 57
      XBT
           86042
                    1127
                           38.42
                                             11.6
                           38.35
 58
     XBT
           86042
                    1218
                                    126.48
                                             11.7
 59
     XBT
           86042
                    1310
                           38.26
                                    126.42
                                             11.7
 60
     XBT
           86042
                    1408
                           38.19
                                   126.35
                                             12.8
 61
      XBT
           86042
                    1503
                           38.11
                                    126.28
                                             13.0
 62
     XBT
           86042
                    1555
                           38.03
                                    126.22
                                             13.3
                    1656
 63
     XBT
           86042
                           37.55
                                    126.15
                                             13.0
                    1756
                           37.46
                                    126.10
 64
      XBT
           86042
                                             13.4
                           37.38
 65
     XBT
           86042
                    1845
                                    126.05
                                             13.4
 66
     XBT
           86042
                    1944
                           37.31
                                    125.59
                                             13.4
 67
     XBT
           86042
                    2038
                           37.22
                                    125.53
                                             13.0
 68
     XBT
           86042
                    2136
                           37.14
                                    125.48
                                             13.5
 69
     XBT
           86042
                    2237
                           37.06
                                    125.42
                                             13.0
                                             12.5
 70
     XBT
           86042
                    2344
                           36.58
                                    125.36
                                   125.30
125.39
                           36.50
 71
     XBT
           86043
                     125
                                             12.7
 72
     XBT
           86043
                     241
                           36.45
                                             12.8
 73
     XBT
           86043
                     426
                           36.41
                                    125.49
                                             13.0
 74
     XBT
           86043
                     624
                           36.51
                                    125.56
                                             13.4
 75
     XBT
           86043
                     756
                           36.59
                                    126.01
                                             13.4
 76
     XBT
           86043
                     954
                           37.08
                                    126.07
                                             14.0
 77
      XBT
           86043
                    1138
                           37.15
                                    126.13
                                             14.0
                           37.21
                                    126.19
 78
      XBT
           86043
                    1312
                                             13.3
                           37.29
                                   126.25
 79
     XBT
           86043
                    1448
                                             13.7
 80
     XBT
           86043
                    1629
                           37.37
                                    126.32
                                             13.5
 81
      XBT
           86043
                    1812
                           37.46
                                    126.38
                                             13.6
 82
      XBT
           86043
                    1932
                           37.46
                                    126.27
                                             13.7
 83
     XBT
           86043
                    2056
                           37.46
                                    126.16
                                             13.1
 84
      XBT
           86043
                    2219
                           37.46
                                    126.04
                                             13.0
                           37.45
 85
      XBT
           86043
                    2339
                                    125.53
                                             13.5
                           37.44
 86
     XBT
           86044
                      59
                                    125.41
                                             12.6
 87
      XBT
           86044
                     214
                           37.43
                                    125.30
                                             12.6
                           37.41
 88
      XBT
            86044
                     327
                                   125.19
                                             12.5
                           37.39
 89
      XBT
            86044
                     553
                                    124.55
                                             12.3
 90
      XBT
            86044
                     701
                           37.38
                                    124.44
                                             12.5
```

cord exercises environment conductions

| STN | TYPE | YR/DAY | GMT  | LAT<br>(NORTH)<br>DD.MM | LONG<br>(WEST)<br>DDD.MM | TEMP | SURFACE<br>SALINITY<br>(PPT) |
|-----|------|--------|------|-------------------------|--------------------------|------|------------------------------|
| 91  | XBT  | 86044  | 810  | 37.38                   | 124.33                   | 13.1 |                              |
| 92  | XBT  | 86044  | 914  | 37.37                   | 124.21                   | 13.1 |                              |
| 93  | XBT  | 86044  | 1020 | 37.36                   | 124.09                   | 13.4 |                              |
| 94  | XBT  | 86044  | 1137 | 37.35                   | 124.02                   | 13.1 |                              |
| 95  | XBT  | 86044  | 1243 | 37.35                   | 123.48                   | 12.9 |                              |
| 96  | XBT  | 86044  | 1353 | 37.34                   | 123.38                   | 12.8 |                              |
| 97  | XBT  | 86044  | 1502 | 37.34                   | 123.26                   | 13.1 |                              |
| 98  | XBT  | 86044  | 1615 | 37.34                   | 123.15                   | 13.0 |                              |
| 99  | XBT  | 86044  | 1740 | 37.35                   | 123.03                   | 13.1 |                              |

town recesses execute revenues account about the

Linear Discouraged Bearings of Indianaes. Appropriate Islands





BANGERIC BASSASSA VARIORIA

RESISSION CONSIDERAL PROPERTY SESSIONS

Figure 5(b)



Figure 5









PROPERTY ASSESSED. CHARGOST



Figure 6(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA19).





Figure 6(b)



THE REPORT OF THE PROPERTY OF



Figure 7(a): Isotherms from XBT's and CTD's. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. (OPTOMA19).





responde appropriate additional engagests appayable beneficial bediction filescolosis

Figure 7(b)



SUSSET TONISTAN PROGRAMME PROGRAMME SUSSESSION PROGRAMME PROGRAMME THE PROGRAMME TONISTANCE PROGRAMME THE PROGRAMME TONISTANCE PROGRAMME TO THE PROGRAMME.



consists encoured authorized periodicises valuablished

Accessor occurrences accessors acces

Figure 8: Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's. (OPTOMA19).



reserve increases accesses accompany sometimes accompany

Figure 9: Profiles of  $\overline{I(z)}$  with + and - the standard deviation from (a) XBI's and (b) CTD's. (OPTOMA19).



Figure 10: Profiles of (a) mean salinity and (b) mean sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA19).



CODE RECESSE DODDESSE TODDESCE COLORES CONTROL

30



Figure 12: Profile of  $N^2(z)$  (----), with + and - the standard deviation (---), and the profile of  $N^2$  from  $\overline{T(z)}$  and  $\overline{S}(z)$  (...) (OPTOMA19).

#### **ACKNOWLEDGEMENTS**

This research was sponsored by the ONR Physical Oceanography Program.

The success of the fieldwork was strongly dependent on the competent, willing support of the Captain and crew of the USNS DE STEIGUER. Members of the scientific cruise party were:

Dr. Gordon Groves, Chief Scientist, NPS Mr. Jim Stockel, Watch Chief, NPS Mr. Don Martens, Watch Chief, NPS Mr. Paul Wittmann, Watch Chief, NPS Ms. Genine Scelfo, UCSC DP3 Girard Gude, FNOC

#### REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328.

BEEL BECKESSES SESSESSES BELLESEEN BESKESSES VERKEREN BESKESSES BEFELDER BESKESEN BESKESSEN BESKESSEN

## INITIAL DISTRIBUTION LIST

| 1. | Naval Postgraduate School<br>Department of Oceanography<br>Monterey, CA 93943                                                                                                                                                                                                                                     |                                                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|    | Prof. Christopher N.K. Mooers Dr. Michele M. Rienecker Mr. Paul A. Wittmann Dr. Mary L. Batteen Dr. Laurence C. Breaker LCDR J. Edward Johnson, USN Prof. Kenneth L. Davidson Dr. Roland W. Garwood Prof. Robert L. Haney Prof. Robert D. Renard Dr. David C. Smith, IV Dr. Gordon Groves LT John J. Rendine, USN | 33<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| 2. | Harvard University<br>Division of Applied Sciences<br>Pierce Hall, Room 100D<br>Cambridge, MA 02138                                                                                                                                                                                                               |                                                      |
|    | Prof. Allan R. Robinson<br>Mr. Leonard J. Walstad<br>Mr. Wayne G. Leslie<br>Prof. Myron B. Fiering                                                                                                                                                                                                                | 1<br>1<br>1<br>1                                     |
| 3. | Office of Naval Research (ONR)<br>800 N. Quincy St.<br>Arlington, VA 22217                                                                                                                                                                                                                                        |                                                      |
|    | Dr. Thomas W. Spence<br>Dr. Thomas B. Curtin<br>Dr. Dennis Conlon                                                                                                                                                                                                                                                 | 1<br>1<br>1                                          |
| 4. | College of Oceanography<br>Oregon State University<br>Corvallis, OR 97331                                                                                                                                                                                                                                         |                                                      |
|    | Prof. Robert L. Smith<br>Dr. Adriana Huyer                                                                                                                                                                                                                                                                        | 1<br>1                                               |

| 5.  | Jet Propulsion Laboratory (JPL)<br>California Institute of Tech.<br>4800 Oak Grove Road<br>Pasadena, CA 91109                 |             |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | Dr. Mark Abbott (also at Scripps)                                                                                             | 1           |
| 6.  | Commanding Officer<br>Fleet Numerical Oceanography Center (FNOC)<br>Monterey, CA 93943                                        |             |
|     | Mr. R. Michael Clancy<br>Mr. Ken Pollak<br>Ms. Evelyn Hesse                                                                   | 1<br>1<br>1 |
| 7.  | Sandia National Laboratories<br>Div. 6334<br>Albuquerque, NM 97185                                                            |             |
|     | Dr. Mel Marietta<br>Dr. Eugene S. Hertel<br>Dr. Stuart L. Kupferman                                                           | 1<br>1<br>1 |
| 8.  | Marine Products Branch, W/NMC21<br>National Meteorological Center<br>National Weather Service, NOAA<br>Washington, D.C. 20233 |             |
|     | LCDR Craig S. Nelson, NOAA Corps                                                                                              | 1           |
| 9.  | National Center for Atmospheric Research (NCAR) P.O. Box 3000 Boulder, CO 80307                                               |             |
|     | Dr. Dale B. Haidvogel                                                                                                         | 1           |
| 10. | Scripps Institution of Oceanography<br>University of California, San Diego<br>La Jolla, CA 92093                              |             |
|     | Prof. Russ E. Davis<br>Dr. Jerome A. Smith<br>Mr. Phillip Bogden                                                              | 1<br>1<br>1 |
| 11. | Princeton University<br>Geophysical Fluid Dynamics Program<br>P.O. Box 308<br>Princeton, NJ 08540                             |             |
|     | Prof. George L. Mellor                                                                                                        | 1           |

| 12. | Woods Hole Oceanographic Institution<br>Department of Physical Oceanography<br>Woods Hole, MA 02543                                   |             |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | Dr. John A. Spiesberger<br>Dr. Kenneth H. Brink<br>Dr. Robert C. Beardsley                                                            | 1<br>1<br>1 |
| 13. | Naval Ocean Research and<br>Development Activity (NORDA)<br>NSTL Station<br>Bay St. Louis, MS 39525                                   |             |
|     | Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas                                            | 1<br>1<br>1 |
| 14. | Department of Oceanography<br>University of Hawaii<br>2525 Correa Road<br>Honolulu, HI 96822                                          |             |
|     | Prof. Lorenz Magaard                                                                                                                  | 1           |
| 15. | Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2 |             |
|     | Dr. Motoyoshi Ikeda                                                                                                                   | 1           |
| 16. | Precision Marine<br>Meteorologic Nationale<br>2 Ave. RAPP<br>75340 Paris CEDEX 07<br>France                                           |             |
|     | Dr. Jacques Saurel                                                                                                                    | 1           |
| 17. | Div. of Oceanography<br>RSMAS<br>University of Miami<br>4600 Rickenbacker Causeway<br>Miami, FL 33149                                 |             |
|     | Dr. Otis Brown                                                                                                                        | 1           |
| 18. | Applied Physics Laboratory<br>University of Washington<br>1013 NE 40th Str.<br>Seattle, WA 98105                                      |             |
|     | Dr. Thomas B. Sanford                                                                                                                 | 1           |

Geren properties secretaris essentials essenties. Essentials

| 19. School of Oceanography University of Washington Seattle, WA 98195  Dr. Steven C. Riser  20. California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093  Dr. Robert L. Bernstein  21. Marine Sciences Research Center State University of New York Stony Brook, NY 11794  Dr. Dong-Ping Wang  22. Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707  Dr. Jack Calman  23. Pacific Marine Environmental Lab NOAA Bldg, 3 7600-Sand Point Way, NE Seattle, WA 98115  Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF) Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Meryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371  Dr. Burton H. Jones |     |                                             |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------|---|
| 20. California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093 Dr. Robert L. Bernstein 21. Marine Sciences Research Center State University of New York Stony Brook, NY 11794 Dr. Dong-Ping Wang 22. Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707 Dr. Jack Calman 23. Pacific Marine Environmental Lab NOAA Bldg, 3 7600-Sand Point Way, NE Seattle, WA 98115 Mr. James R. Holbrook 24. Naval Environmental Prediction Research Facility (NEPRF) Ms. Marie Colton 25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881 Dr. Everett F. Carter 26. Dept. of Meteorology University of Maryland College Park, MD 20792 Dr. James A. Carton 27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                               | 19. | University of Washington                    |   |
| MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093  Dr. Robert L. Bernstein  21. Marine Sciences Research Center State University of New York Stony Brook, NY 11794  Dr. Dong-Ping Wang  22. Applied Physics Laboratory Johns Hopkins University Laurel, ND 20707  Dr. Jack Calman  23. Pacific Marine Environmental Lab NOAA Bldg, 3 7600-Sand Point Way, NE Seattle, WA 98115  Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF)  Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                |     | Dr. Steven C. Riser                         | 1 |
| 21. Marine Sciences Research Center State University of New York Stony Brook, NY 11794  Dr. Dong-Ping Wang  22. Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707  Dr. Jack Calman  23. Pacific Marine Environmental Lab NOAA Bldg, 3 7600-Sand Point Way, NE Seattle, WA 98115  Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF)  Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                         | 20. | MS-A021 Scripps Institution of Oceanography |   |
| State University of New York Stony Brook, NY 11794  Dr. Dong-Ping Wang  22. Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707  Dr. Jack Calman  23. Pacific Marine Environmental Lab NOAA  Bldg, 3 7600-Sand Point Way, NE Seattle, WA 98115  Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF)  Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                            |     | Dr. Robert L. Bernstein                     | 1 |
| 22. Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707  Dr. Jack Calman  23. Pacific Marine Environmental Lab NOAA Bldg. 3 7600-Sand Point Way, NE Seattle, WA 98115  Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF)  Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                     | 21. | State University of New York                |   |
| Johns Hopkins University Laurel, MD 20707  Dr. Jack Calman  23. Pacific Marine Environmental Lab NOAA Bldg. 3 7600-Sand Point Way, NE Seattle, WA 98115  Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF)  Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                    |     | Dr. Dong-Ping Wang                          | 1 |
| 23. Pacific Marine Environmental Lab NOAA Bldg. 3 7600-Sand Point Way, NE Seattle, WA 98115 Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF) Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881 Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792 Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22. | Johns Hopkins University                    |   |
| NOAA Bldg. 3 7600-Sand Point Way, NE Seattle, WA 98115  Mr. James R. Holbrook  24. Naval Environmental Prediction Research Facility (NEPRF)  Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Dr. Jack Calman                             | 1 |
| <ul> <li>24. Naval Environmental Prediction Research Facility (NEPRF)  Ms. Marie Colton</li> <li>25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter</li> <li>26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton</li> <li>27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23. | NOAA<br>Bldg. 3<br>7600-Sand Point Way, NE  |   |
| Research Facility (NEPRF)  Ms. Marie Colton  25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Mr. James R. Holbrook                       | 1 |
| <ul> <li>25. Graduate School of Oceanography University of Rhode Island Kingston, RI 02881</li> <li>Dr. Everett F. Carter</li> <li>26. Dept. of Meteorology University of Maryland College Park, MD 20792</li> <li>Dr. James A. Carton</li> <li>27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24. |                                             |   |
| University of Rhode Island Kingston, RI 02881  Dr. Everett F. Carter  26. Dept. of Meteorology University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Ms. Marie Colton                            | 1 |
| <ul> <li>Dept. of Meteorology University of Maryland College Park, MD 20792</li> <li>Dr. James A. Carton</li> <li>Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25. | University of Rhode Island                  | 1 |
| University of Maryland College Park, MD 20792  Dr. James A. Carton  27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Dr. Everett F. Carter                       | 1 |
| 27. Allan Hancock Foundation University of Southern California Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26. | University of Maryland                      | 1 |
| University of Southern California<br>Los Angeles, CA 90089-0371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Dr. James A. Carton                         |   |
| Dr. Burton H. Jones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27. | University of Southern California           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | Dr. Burton H. Jones                         | 1 |

| 28. | Defense Technical Information Center<br>Cameron Station<br>Alexandria, VA 22314       | 2 |
|-----|---------------------------------------------------------------------------------------|---|
| 29. | Dudley Knox Library<br>Code 0142<br>Naval Postgraduate School<br>Monterey, CA 93943   | 2 |
| 30. | Research Administration (Code 012)<br>Naval Postgraduate School<br>Monterey, CA 93943 | 1 |