Experiment No. 03

<u>Name of the experiment</u>: Determination of wavelengths of spectral lines from discharge tube by a diffraction grating.

<u>**Theory:**</u> If the monochromic light of λ wavelength is incident perpendicularly on the diffraction grating leaving from the collimator of a spectrometer, then the produced diffraction angle θ for n^{th} bright fringe we get

$$(a+b)sin\theta = n\lambda \quad ---(i)$$

Hence, a + b = d = Grating constant

If the number of lines is N per cm, then

$$a + b = \frac{1}{N}$$
 or, $N = \frac{1}{a+b} = \frac{1}{d}$

From equation (i) we get,

$$\frac{1}{N}sin\theta = n\lambda$$
 or, $\lambda = \frac{sin\theta}{nN} - - - (ii)$

Apparatus:

- 1. Spectrometer.
- 2. Diffraction grating.
- 3. Spirit level.
- 4. Helium discharge tube.

Procedure:

- 1. At first, we made the apparatus (collimator, prism table, telescope) horizontal by using the spirit level.
- 2. We determined the vernier constant of the microscope.
- 3. Sodium tube was set before the slit, so that beams are parallel.
- 4. After removing the prism from the prism table, the reading for the image of the collimator's slit was taken directly setting the cross wire.
- 5. We set the grating plane normal to the collimator's axis.
- 6. We made the lines vertical and took readings for each line.
- 5. We used Helium discharge table by replacing the sodium tube taking the position of the grating unchanged.

Data collection:

Table For λ:

Colum Of	Serial Of	Reading for telescope position								Diffracti on angle	$\lambda =$
light	diffracti	Left side				Right side				$\theta =$	$\frac{\sin\theta}{nN}$
	on n =	Main	Vernie	Vernie	Total	Main	Verni	Vernie	Total	$\left(\frac{x \sim y}{2}\right)$ deg	(cm)
		scale readin	r Readin	r consta	readin g x	scale reading	er readin	r consta	reading y (deg)		` /
		g (deg)	g	nt	(deg)	(deg)	g	nt			
				(deg)				(deg)			
Green	1	80°	10	1′	80°1	122°	15	1′	122°1	21°02′	5.97
					0′				5′		$\times 10^{-5}$
yello	1	79°3	11	1′	79°4	123°	16	1′	123°1	21°88′	6.21
w		0′			1′				6′		$\times 10^{-5}$
Orang	1	78°	23	1′	78°2	123°3	26	1′	123°5	22°66′	6.42
e					3′	0′			6′		$\times 10^{-5}$
Red	1	77°3	22	1′	77°5	124°5	25	1′	124°5	23°51′	6.64
		0′			2′	5′			5′		$\times 10^{-5}$

Vertical constant (v. c)

 $=rac{value\ of\ the\ smallest\ division\ of\ the\ mainscale}{Total\ numbers\ of\ division\ of\ vernier\ scale}$

$$=\frac{\left(\frac{1}{2}\right)^{\circ}}{30} = \left(\frac{1}{60}\right)^{\circ} = 1'$$

N = Number of lines per cm = 6000

Calculation: For helium discharge tube:

For Green color,
$$\lambda_G = \frac{\sin \theta}{nN} = \frac{\sin (21.02)}{6000} = 5.97 \times 10^{-5} = 5978 \text{Å}$$

For Yellow color,
$$\lambda_Y = \frac{\sin \theta}{nN} = \frac{\sin (21.88)}{6000} = 6.21 \times 10^{-5} = 6211 \text{Å}$$

For Orange color,
$$\lambda_0 = \frac{\sin \theta}{nN} = \frac{\sin (22.66)}{6000} = 6.42 \times 10^{-5} = 6421 \text{Å}$$

For Red color,
$$\lambda_R = \frac{\sin \theta}{nN} = \frac{\sin (23.51)}{6000} = 6.64 \times 10^{-5} = 6648 \text{Å}$$

Result: Using the helium discharges tube we get the following wavelengths for different colors:

The wavelength of green color, $\lambda_R = 5978\text{Å}$

The wavelength of yellow color, $\lambda_{\gamma} = 6211\text{\AA}$

The wavelength of orange color, $\lambda_0 = 6421\text{Å}$

The wavelength of red color, $\lambda_G = 6648\text{\AA}$

Precautions & Discussion:

- 1. We made the grating plane perpendicular to the collimator's axis.
- 2. We used one vernier scale for taking the exact reading.
- 3. The front side of the grating was taken to telescope.
- 4. We didn't touch the grating plane to remove the granting.