$$Z = Min(\omega_1 \sum_{i}^{T_j} (\frac{\lambda}{S_i}) + \omega_2 \sum_{j}^{j} (P_j * x_j))$$

$$w_i = f([\lambda_i, \mu, S_i])$$

Инициализация самой задачи:

Создание популяции: инициализируется определенное количество хромосом (смен), в каждой смене, ген представляет собой индекс предпочтения (я бы назвал временное индексированное расписание).

Далее происходит проверка на общее количество часов работы врача в неделю, чтобы не превышало определенного количества $\sum_{j}^{i}(d_{j}*xj) \leq H$

Где d_i — продолжительность 1-ой смены (от 8 до 12 часов);

 x_i — количество врачей в смене

Количество врачей в смене нигде в статье не прописано. Есть два варианта выхода из данной ситуации:

1-ый задать случайным образом из диапазона, от 0 до 3 врачей в одной смене

2-ой задать формулой
$$x_j = \sum_{k=0}^{x} \frac{\lambda^k * e^{-\lambda}}{k!} \ge p$$

р — желаемая кумулятивная вероятность, (кумулятивная вероятность, это вероятность того, что количество пациентов не превысит определенное количество, то есть если р = 0.8 — означает что с 80 % вероятностью количество пациентов в данной смене не изменится, а остальные 20 % говорят о том, что количество пациентов может быть превышено определенного количества и тогда придется брать еще одного врача на смену.

k – фактическое количество пациентов

 λ — среднее количество пациентов за смену

Вторая проверка заключается в том, чтобы каждый час в определенном дне было больше или равное 1 $\sum_{i}^{i} b_{ij} * (x_j) = s_j$

После проверки у нас создается популяция из определенного количества хромосом

В фитнесс функции инициализируем популяцию, задается значение Р_j как: $6-p_{\scriptscriptstyle \mathrm{CM}}$

Далее вычисляем значение фитнесс функции (заранее прописать функцию)

$$Z = Min(\omega_1 \sum_{i}^{T_j} (w_i) + \omega_2 \sum_{j}^{j} (P_j * x_j))$$

Где - ω_1 , ω_2 — весовые коэффициенты которые определяют степень важности среднего времени ожидания и важность предпочтений;

 $w_i = rac{\lambda}{s_i(\mu-\lambda)}$ – формула Литтла по которой ищем среднее время ожидания пациента

 λ – среднее количество пациентов поступающие в час

 μ — время приема 1-ого пациента

 s_i – количество врачей, доступных в период времени

 P_i — предпочтение смены

 x_i – количество врачей в смене

Вычисляется значение этой фитнесс функции, нормируется и в итоге этой функции мы получаем fit (значение фитнесс функции, и еще можно чтонибудь выводить в качестве доп оценки)

В селекции и в последующих предлагаю сначала посмотреть какой результат будет и если выдается норм результат, то почему бы не оставить, а если выдается что-то плохое то изменить логику