作业五

1. 设 T 为 R^3 的一个线性算子, 其定义为 T(x, y, z) = (x-y, y-x, x-z),

$$\mathcal{B} = \left\{ \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \mathbf{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$
 为其一组基, $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ 为

 R^3 的一个向量。

- (1) 分别计算 $[\mathbf{T}]_{\mathcal{B}}$ 和 $[\mathbf{v}]_{\mathcal{B}}$ 。
- (2) 计算 $[\mathbf{T}(\mathbf{v})]_{\mathcal{B}}$, 并验证 $[\mathbf{T}(\mathbf{v})]_{\mathcal{B}} = [\mathbf{T}]_{\mathcal{B}}[\mathbf{v}]_{\mathcal{B}}$ 成立。
- **2.** 设 $\mathbf{A} \in \mathcal{R}^{n \times n}$, \mathbf{T} 为 $\mathcal{R}^{n \times 1}$ 的一个线性算子,定义为: $\mathbf{T}(\mathbf{x}) = \mathbf{A}\mathbf{x}$. 记 S 为标准基,试说明 $[\mathbf{T}]_S = \mathbf{A}$.

$$\mathbf{3.A}(x,y,z) = (x+2y-z,-y,x+7z) 为 R^3 的一个线性算子, 记$$

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}, \ \mathcal{B}' = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}.$$

- (1) 计算 $[\mathbf{A}]_{\mathcal{B}}$ 和 $[\mathbf{A}]_{\mathcal{B}'}$.
- (2) 求矩阵 \mathbf{Q} 使得 $[\mathbf{A}]_{\mathcal{B}'} = \mathbf{Q}^{-1}[\mathbf{A}]_{\mathcal{B}}\mathbf{Q}$ 成立。
- 4. 设 T 为 R^4 的一个线性算子,其定义为 $\mathbf{T}(x_1, x_2, x_3, x_4) = (x_1 + x_2 + 2x_3 x_4, x_2 + x_4, 2x_3 x_4, x_3 + x_4)$. 令 $\mathcal{X} = span\{\mathbf{e}_1, \mathbf{e}_2\}$. 试说明 \mathcal{X} 为 \mathbf{T} 的一个不变子空间,并计算 $[\mathbf{T}_{/\mathcal{X}}]_{\{\mathbf{e}_1,\mathbf{e}_2\}}$.