

Version: 1.1

Release date: 30 June 2017

© 2017 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.

Document Revision History

Revision	Date	Description	
1.0	5 May 2017	Initial release	
1.1	30 June 2017	Updated the HDK board version to V11.	
		Corrected XTAL frequency to 26MHz.	
		Add power jumper setting configuration description.	
		Corrected extension connector pin definitions.	

Table of Contents

1.	Intro	duction	4
2.	Get	started with the HDK	6
	2.1.	Configuring the MT7682 HDK	6
	2.2.	Installing the MT7682 HDK drivers on Microsoft Windows	7
	2.3.	Configuring the HDK flash mode	
	2.4.	Downloading the image using the MT7682 HDK as a removable storage	
3.	Hard	ware Features	10
4.	Hard	ware Feature Configuration	11
	4.1.	Microcontroller	11
	4.2.	Power supply	11
	4.3.	LEDs	12
	4.4.	Buttons	13
	4.5.	Extension connectors	13
	4.6.	RTC	17
	4.7.	RF connections	17
	4.8.	CMSIS-DAP Firmware update procedure	17
5.	Sche	matics (V11)	19

Lists of Tables and Figures

Table 1. Jumper settings for system power input through USB connection	11
Table 2. System power input from AA or AAA battery jumpers	12
Table 3. GPIO pins to activate the LEDS	13
Table 4. GPIO pin-out extension connectors	14
Table 5. GPIO pin multi-function definition	14
Figure 1. Front view of MT7682 HDK	5
Figure 2. Jumpers and connectors on the MT7682 HDK	6
Figure 3. COM port associated with the MT7682 HDK	8
Figure 4. New removable storage detected	9
Figure 5. Power up the HDK using an AA or AAA Battery (J2001)	12
Figure 6. On-board LEDs	13
Figure 7. Location of the components C17 and C18	17

1. Introduction

MediaTek Linklt™ for real-time operating system (RTOS) is a low-cost and easy to use Internet of Things (IoT) development platform to design, prototype, evaluate and implement IoT projects. The platform supports MT7682 hardware development kit (HDK). This user manual provides required knowledge on features of the HDK, including the pins, communication interfaces, core microcontroller unit (MCU) description, the networking capabilities and how to use them through the host driver.

The HDK includes MediaTek MT7682 chipset which is based on ARM Cortex-M4 with floating point unit in QFN40 package. It enables rich connectivity features, communication with cloud services and real-time control. The MT7682 HDK supports ARM mbed IoT Device Platform for more convenient debugging and binary code download operations.

The following features are available:

- Mass storage device (MSD) programmer.
 - The MT7682 HDK has three binary files for bootloader, Wi-Fi connectivity and FreeRTOS. The MSD programmer enables to update the FreeRTOS binary file only.
- Coresight Debug Access Port (<u>CMSIS-DAP</u>) debug interface.
 - A firmware debug interface similar to <u>ST-link</u> or <u>J-link</u>. It enables debugging a target project or downloading a binary to the flash storage of the device.
- Virtual Serial Port.
 - Supports UART functionality, such as transferring log information from the HDK.

These features are used to download and debug a project on MT7682 HDK.

The front view of the HDK including a stamp module and main board is shown in Figure 1. MT7682 and MT7686 use the same HDK main board.

Figure 1. Front view of MT7682 HDK

2. Get started with the HDK

Before commencing the application development, you need to configure the development platform.

2.1. Configuring the MT7682 HDK

MT7682 HDK includes a main board (MT7686 Main Board_V11) and a MT7682 stamp module. The MT7682 stamp module is mounted on the main board. The top view of the main board is shown in Figure 2.

Figure 2. Jumpers and connectors on the MT7682 HDK

The description of pins (Figure 2) and their functionality is provided below.

- 1) **CON3001** is a USB connector to debug through UART, transmit and receive a signal and supply power from the PC. The USB connectivity with the PC is supported by the on-board MK20DX128VFM5.
 - a) Set the jumpers **J2002** pin1 and pin 2, **J2003** pin 1 and pin 2, **J2004** and **J2007** on, if the board is powered by a USB connector.
- 2) **\$2005** enables the external interrupt (configured at **GPIO0**) see section 4.4, "Buttons".
- 3) Press **\$2001** to reset the system.
- **4) Wi-Fi Antenna** is a PCB antenna. MT7682 stamp module is by default connected to the PCB antenna to transmit and receive RF signals.

The default configuration of the MT7682 HDK supports the following functionality:

- 1) Power supply. Attach a micro-USB connector to the **CON3001.**
- 2) Supports RTC interrupt.

WEDIATEK

MT7682 HDK V11 User's Guide

- 3) Clock source 32.768kHz source crystal clock for the RTC mode or external clock operating on 32.768 kHz.
- 4) XTAL at 26MHz.
- 5) Supports RTC mode.

The hardware settings of the stamp module are shown below:

- 1) XTAL at 26MHz.
- 2) Clock source 32.768kHz source crystal clock for the RTC mode or external clock operating at 32.768kHz.
- 3) Supports RTC mode.

2.2. Installing the MT7682 HDK drivers on Microsoft Windows

To configure the MT7682 HDK:

- 1) Connect the HDK to the computer using a micro-USB cable.
- 2) Download and install mbed Windows serial port driver from here. Open Windows **Control Panel** then click **System** and:
 - On Windows 7 and 8, click **Device Manager**.
- 3) In Device Manager, navigate to Ports (COM & LPT) (see Figure 3).
- 4) A new COM device should appear under Ports (COM & LPT) in Device Manager, as shown in Figure 3. Note the COMx port number of the serial communication port, this information is needed to send command and receive logs from the COM port. Virtual COM port is connected to the board through the UARTO of the chipset, see section 4.5, "Extension connectors". The mbed Serial Port (UARTO) is applied to flash the board and log the outputs.

Figure 3. COM port associated with the MT7682 HDK

2.3. Configuring the HDK flash mode

The MT7682 HDK is embedded with 1MB flash memory. The boot options are either from the Flash memory or from the UART port.

To update the firmware on the MT7682 HDK:

- 1) Set the jumpers **J2002** pin 1 and pin2, **J2003** pin 1 and pin2, **J2004** and **J2007** on.
- 2) To enable the chipset to UART download mode, set the jumper **J2201** pin 2 and pin 3 on.
- In this mode, if the power is on, the board will load ROM code and start the **ATE Daemon** or **Firmware Upgrade Daemon** according to the MT7682 Flash Tool's behavior on the PC. A message is sent to the **UART0** port of the chipset and the code is uploaded to the embedded flash memory through **UART0**.
- 3) Connect the board to the computer using a micro-USB cable.

The development board should now be connected to the PC, as shown in Figure 2.

To run the project on the MT7682 HDK:

- 1) Set the jumpers **J2002** pin 1 and pin 2, **J2003** pin 1 and pin 2, **J2004** and **J2007** on.
- In this mode, if the power is on, the board will load firmware from the Flash and reboot.
- 2) Connect the board to a computer using a micro-USB cable.

The development board should now be connected to the PC, as shown in Figure 2.

2.4. Downloading the image using the MT7682 HDK as a removable storage

To update the FreeRTOS binary only (example project binary: mt7682_iot_sdk.bin), use the HDK as a mass storage device according to the following steps:

- 1) Power up the board with a micro-USB cable.
- 2) Navigate to **Computer** on your PC to check if a new mass storage named **MT7682** is available under **Removable Disk**, as shown in Figure 4.
- 3) Open the **MT7682** removable storage, then drag and drop the binary mt7682_iot_sdk.bin to complete downloading the image.

Figure 4. New removable storage detected

3. Hardware Features

This section provides the main supported features of the MT7682 HDK. The detailed description of the features is provided in the upcoming sections.

- IEEE 802.11bgn Wireless Connectivity Single Chip with QFN40 package.
- The IOs on MT7682 HDK are 3.3V compatible. MT7682 chip IO can support 3.3V, 2.8V and 1.8V.
- Support for <u>FreeRTOS</u>.
- Flexible on-board power supply
 - o <u>USB</u> with power (V_{Bus} , 5V).
 - o External V_{IN} (1.8~3.2V).
- Ten LEDs
 - Power LEDs (D2001, D2002) and user LEDs (D1, D2, D3, D4, D5).
- Three push buttons
 - System Reset.
 - o Real Time Clock (RTC) Interrupt.
 - o External Interrupt.
- XTAL (Crystal Oscillator)
 - o 26MHz source clock support with low power consumption in idle mode.
 - o 32.768kHz clock for the RTC mode or external 32.768kHz mode.
- USB re-enumeration capability: two different interfaces supported on the same USB.
 - o CMSIS-DAP USB.
 - o Virtual COM port UART through USB on PC.
- On-board chip antenna with <u>U.FL</u> for conducted testing.
- Micro USB connector for power and debug connections.
- Headers for current measurement.

4. Hardware Feature Configuration

4.1. Microcontroller

MT7682 features an ARM Cortex-M4 with floating point processor, which is the most energy efficient ARM processor available.

MT7682 provides low power consumption embedded architecture and it's optimized for various types of applications in home automation, smart grid, handheld devices, personal medical devices and industrial control that have lower data rates, and transmit or receive data on an infrequent basis.

4.2. Power supply

MT7682 HDK supports two types of power supply.

1) Power up with a micro-USB connector.

An on-board switching regulator provides voltage of 3.3V for the MT7682 HDK based on MT7682, if the power is supplied from an on-board micro-USB connector **CON3001** (Figure 2). This supply can be isolated from the switching regulator using the jumpers. Note, that the jumpers **J2002** pin 1 and 2, **J2003** pin 1 and 2, **J2004** and **J2007** are required to be set on. More details on the jumpers can be found in Table 1.

Jumper	Usage	Comments
J2002(1-2)	3.3V power supply	Use micro-USB connector supporting 3.3V power source.
J2004	Current measurement	Measures the current flow in MT7682.
J2003(1-2)	AVDD33_VRTC power supply	Use micro-USB connector supporting RTC 3V3 power.
J2007	Current measurement in RTC mode	Measures the current flow in RTC mode for MT7682.

Table 1. Jumper settings for system power input through USB connection

- 2) Power up using an AA or AAA battery.
- Connect an external AA battery to battery pin header (J2001) to supply power to the system, as shown in Figure 5. When using an AA battery, plug the USB to micro-USB connector CON3001 (Figure 2). Note, that the jumpers J2002 pin 2 and 3, J2003 pin2 and 3, J2004, and J2007 are required to be set on. More details on the jumpers can be found in Table 2.

Figure 5. Power up the HDK using an AA or AAA Battery (J2001)

Table 2. System power input from AA or AAA battery jumpers

Jumper	Usage	Comments
J2002(2-3)	3.3V power supply	Use AA or AAA battery source supporting 3.3V power.
J2004	Current measurement	Measures the current flow in MT7682.
J2003(2-3)	AVD33_VRTC power supply	Use AA or AAA battery source supporting RTC 3V3 power.
J2007	Current measurement in RTC mode	Measures the current flow in RTC mode for MT7682.

4.3. **LEDs**

The MT7682 HDK has onboard LEDs associated with different functionalities of the board (Figure 6).

- 1) **D2002** indicates the power rail 5V is on.
- 2) **D2001** indicates the power rail 3.3V is on.

Figure 6. On-board LEDs

3) **D1**, **D2**, **D3**, **D4**, and **D5** are LEDs assigned for user interaction. All LEDs are high active (Figure 6). GPIO pins to activate the LEDs are shown in Table 3.

Table 3. GPIO pins to activate the LEDS

LED	GPIO
D1	GPIO11
D2	GPIO12
D3	GPIO13
D4	GPIO14
D5	GPIO15

4.4. Buttons

The MT7682 HDK is equipped with buttons with the following functionality. The push buttons are shown in Figure 2.

- 1) System reset button (**S2001**) resets the MT7682 HDK.
- 2) External interrupt button (**\$2005**). Users can configure GPIO0 as an external interrupt pin. Press the button to wake up the system from the sleep mode.
- 3) RTC interrupt button (**\$2006**). When the system is in RTC mode, push the button to wake up the system.

4.5. Extension connectors

The MT7682 HDK provides similar pin-out extension connectors (**J2101** and **J2103**) for various sensor and device connectivity, as shown in Figure 2 and described in Table 4.

The board has 14 GPIOs multiplexed with other interfaces. Depending on the use case, user can configure each I/O functionality.

Table 4. GPIO pin-out extension connectors

Connector Pin Number	Signal Name	Connector Pin Number	Signal Name
J2101.1	GPIO22	J2103.1	GPIO1
J2101.2	GPIO21	J2103.2	GPIO0
J2101.3	х	J2103.3	GPIO3
J2101.4	GPIO17	J2103.4	GPIO2
J2101.5	GPIO16	J2103.5	х
J2101.6	GPIO15	J2103.6	GPIO4
J2101.7	GPIO14	J2103.7	х
J2101.8	GPIO13	J2103.8	х
J2101.9	GPIO12	J2103.9	х
J2101.10	GPIO11	J2103.10	х
		J2103.11	х

Table 5. GPIO pin multi-function definition

Pin alias	Name	Direction	Description
GPIO0	GPIO[0]	1/0	General purpose input, output
	UART1_RTS	0	UART1 RTS
	PWM[0]	I/O	Pulse-width-modulated output
	EINT[0]	1	External interrupt
	I2C1_CLK	I/O	I2C1 CLK
	I2S_RX	1	I2S slave RX
GPIO1	GPIO[1]	I/O	General purpose input, output
	UART1_CTS	0	UART1 CTS
	PWM[1]	0	Pulse-width-modulated output
	EINT[1]	1	External interrupt
	I2C1_CLK	I/O	I2C1 CLK
	I2S_TX	0	I2S slave TX
GPIO2	GPIO[2]	1/0	General purpose input, output
	UART1_RX	1	UART1_RX
	PWM[0]	0	Pulse-width-modulated output
	EINT[2]	1	External interrupt
	12S_WS	0	I2S slave TX
GPIO3	GPIO[3]	1/0	General purpose input, output
	UART1_TX	0	UART1_TX

	PWM[1]	О	Pulse-width-modulated output
	EINT[3]	I	External interrupt
	I2S_CK	0	I2S slave TX
GPIO4	GPIO[4]	1/0	General purpose input, output
	SPI_A_SIO2_M	1/0	SPI_ A master SIO2
	PWM[1]	0	Pulse-width-modulated output
	EINT[4]	1	External interrupt
	SPI_A _SIO2_S	1/0	SP_ A I slave SIO2
	I2S_MCK	0	I2S master MCK
GPIO11	GPIO[11]	1/0	General purpose input, output
	MC0_ CK_M	0	SDIO master CK
	PWM[3]	0	Pulse-width-modulated output
	EINT[11]	I	External interrupt
	MCO_ CK_S	0	SDIO slave CK
	CLKO2	0	Clock output source_2
	I2S_RX	I	I2S RX
GPIO12	GPIO[12]	1/0	General purpose input, output
	SPI_B_ SIO3_M	I/O	SPI_ B master SIO3
	UARTO_RTS	1	UARTO RTS
	EINT[12]	1	External interrupt
	SPI_A _SIO3_S	1/0	SPI_ B slave SIO3
	UART2_TX	0	UART2 TX
	I2S_TX	0	I2S TX
	MC0_ CMD_M	0	SDIO master CMD
	MC0_ CMD_S	0	SDIO slave CMD
GPIO13	GPIO[13]	1/0	General purpose input, output
	SPI_B_ SIO2_M	I/O	SPI_ B master SIO2
	UARTO_RTS	I	UARTO RTS
	EINT[13]	1	External interrupt
	SPI_A _SIO2_S	1/0	SPI_ B slave SIO2
	UART2_RTS	1	UART2 RTS
	I2S_WS	0	12S WS
	MC0_DA0_M	1/0	SDIO master DA0
	MC0_ DA0_S	1/0	SDIO slave DA0
	CLKO4	0	Clock output source_4
GPIO14	GPIO[14]	I/O	General purpose input, output
	SPI_B_SIO1_M	1/0	SPI_ B master SIO1
	UARTO_RTS	1	UARTO RTS
	EINT[14]	1	External interrupt
	SPI_A _SIO1_S	1/0	SPI_B slave SIO1

	UART2_RTS	1	UART2 RTS
	TDM_RX	I	TDM RX
	MC0_DA1_M	1/0	SDIO master DA1
	MCO_ DA1_S	1/0	SDIO slave DA1
	CLKO4	0	Clock output source_4
	PWM[4]	0	Pulse-width-modulated output
GPIO15	GPIO[15]	1/0	General purpose input, output
	SPI_B_SIO0_M	1/0	SPI_ B master SIO0
	UARTO_RTS	1	UARTO RTS
	EINT[15]	1	External interrupt
	SPI_A _SIOO_S	I/O	SPI_ B slave SIO0
	UART2_RTS	1	UART2 RTS
	TDM_TX	1	TDM TX
	MC0_DA2_M	1/0	SDIO master DA2
	MCO_ DA2_S	1/0	SDIO slave DA2
	I2C1_SCL	0	I2C1 SCL
	PWM[3]	0	Pulse-width-modulated output
GPIO16	GPIO[16]	1/0	General purpose input, output
	SPI_B_ SCK_M	0	SPI_ B master SCK
	UARTO_RTS	1	UARTO RTS
	EINT[16]	1	External interrupt
	SPI_A _ SCK _S	1/0	SPI_ B slave SCK
	UART2_RTS	1	UART2 RTS
	TDM_WS	1	TDM WS
	MC0_DA3_M	I/O	SDIO master DA3
	MCO_ DA3_S	1/0	SDIO slave DA3
	I2C1_SDA	I/O	I2C1 SDA
	UART3_TX_N9	I	N9_UART3 TX
GPIO17	GPIO[17]	1/0	General purpose input, output
	SPI_B_CS_M	0	SPI_ B master CS
	EINT[16]	1	External interrupt
	SPI_B _ CS _S	I/O	SPI_ B slave CS
	UART2_RTS	1	UART2 RTS
	TDM_CK	I	TDM CK
	PWM[5]	0	Pulse-width-modulated output
	CLKO3	0	Clock output source_3
	ADC_IN0	I	Auxiliary ADC input
GPIO21	GPIO[21]	I/O	General purpose input, output
	EINT[19]	1	External interrupt
	UARTO_RX	ı	UARTO RX

	ADC_IN3	1	Auxiliary ADC input
	I2C1_SCL	0	I2C1 SCL
	PWM[5]	0	Pulse-width-modulated output
GPIO22	GPIO[22]	I/O	General purpose input, output
	EINT[20]	I	External interrupt
	UARTO_TX	0	UARTO TX

4.6. RTC

The MT7682 HDK features an RTC module. The clock source operates at 32.768kHz crystal oscillator or an external clock source. The RTC has built-in accurate timer to wake up the system when the user-defined timer expires. The RTC uses a different power source from the Power Management Unit (PMU). In hibernate mode, the PMU is turned off while the RTC module remains powered on. The RTC module only consumes 3μ A in hibernate mode. The RTC has a dedicated PMU control pin EXT_PWR_EN (pin 14) used to turn the power on when the RTC timer expires and turn the power off when it intends to enter the hibernate mode.

4.7. RF connections

By default, the board ships with RF signals routed to the on-board circuit antenna. An on-board U.FL, a conductive test component, (I-PEX) connector enables to test the signals using a compatible cable. If a user wants to perform the testing, the user needs to solder the capacitor from the location **C17** to **C18**.

Figure 7. Location of the components C17 and C18

4.8. CMSIS-DAP Firmware update procedure

The latest firmware from OpenSDA platform can be downloaded from the mbed official website. To update the binary firmware of CMSIS-DAP, press and hold the **SW3001**, then plug-in the USB cable to **CON3001**, release the

button **SW3001** once the mass storage is shown, and then drag and drop in the binary code. After the mass storage disappears, keep the power connected for 10 seconds, and then reboot the system again to finish the firmware update.

5. Schematics (V11)

Main board schematic-1

20_Power Tree

© 2017 MediaTek Inc.

R / 0 / ohm / 0603 / NC SPIMST_B_SIO0

MT7682_STAMP_MODULE_V10 schematic-1

MT7682_STAMP_MODULE_V10 schematic-2

MT7682_STAMP_MODULE_V10 schematic-3

