Арифметизация логики

История вопроса: арифметизация в работах Лейбница

Правила, по которым можно с помощью чисел судить о правильности выводов, о формах и модусах категорических силлогизмов (1679 г.)

- lacktriangle Любой термин пара взаимно простых чисел +a-b. Например, мудрый +70-33, благочестивый +10-3.
- ▶ Общеутвердительное предложение (каждый +a-b есть +c-d): a : c и b : d. Всякий мудрый есть благочестивый ($70 = 10 \cdot 7$, $33 = 3 \cdot 11$).
- Частноотрицательное предложение не верно общеутвердительное.
- ▶ Общеотрицательное предложение когда a,d или b,c имеют общий делитель, отличный от 1:

Ни один благочестивый (+10-3) не есть несчастный (+5-14), так как $10=2\cdot 5$ и $14=2\cdot 7$.

Силлогизмы

Очевидно, силлогизм «Barbara» верен:

$$+a-b$$
 есть $+c-d$ $+e-f$ есть $+a-b$ $e : c, f : d$

- Неправильный силлогизм может быть верен иногда, скажем, «AOO» из фигуры 3: Всякий благочестивый (+10-3) есть счастливый (+5-1), некоторый
 - благочестивый (+10-3) есть счастливыи (+5-1), некоторый благочестивый не есть богатый (+8-11), отсюда некоторый богатый не есть счастливый (+8-11 против +5-1).
- Но для некоторых пар всё равно следствие данного неправильного силлогизма нарушается: $+12-5,\ +4-1,\ +8-11$

И. Кант, «Новое освещение первых принципов метафизического познания», 1755 г.

- (...) Я признаюсь, что вижу в этом суждении великого философа лишь нечто подобное завещанию того отца у Эзопа, который, лежа на смертном одре, поведал своим детям, что на своем поле он зарыл клад, однако, прежде чем успел указать им точное это место, внезапно скончался. Он побудил этим сыновей к неустанному раскапыванию и разрыхлению почвы, пока они, хотя и обманутые в своих надеждах, не оказались тем не менее бесспорно разбогатевшими благодаря тому, что повысили плодородие почвы. (...)
- (...) Я не стану отрицать, что, после того как безусловно первые принципы уже найдены, можно кое-где применить знаковую комбинаторику, так как в этом случае представляется возможность использовать в качестве знаков и наиболее простые понятия, а следовательно, и простейшие выражения; однако там, где при помощи этих знаков должно быть выражено сложное познание, вся проницательность ума оказывается как бы внезапно повисшей над пропастью и наталкивается на неразрешимые трудности. (...)

Соглашения о записи

- lacktriangle Рассматриваем функции $\mathbb{N}_0^n o \mathbb{N}_0$.
- ightharpoonup Обозначим вектор $\langle x_1, x_2, \dots, x_n \rangle$ как \overrightarrow{x} .

Определение (Примитивы Z, N, U, S)

1. Примитив «Ноль» (Z)

$$Z: \mathbb{N}_0 \to \mathbb{N}_0, \qquad Z(x_1) = 0$$

Определение (Примитивы Z, N, U, S)

1. Примитив «Ноль» (Z)

$$Z: \mathbb{N}_0 \to \mathbb{N}_0, \qquad Z(x_1) = 0$$

2. Примитив «Инкремент» (N)

$$N: \mathbb{N}_0 \to \mathbb{N}_0, \qquad N(x_1) = x_1 + 1$$

Определение (Примитивы Z, N, U, S)

1. Примитив «Ноль» (Z)

$$Z: \mathbb{N}_0 \to \mathbb{N}_0, \qquad Z(x_1) = 0$$

2. Примитив «Инкремент» (N)

$$N: \mathbb{N}_0 \to \mathbb{N}_0, \qquad N(x_1) = x_1 + 1$$

3. Примитив «Проекция» (U) — семейство функций; пусть $k,n\in\mathbb{N}_0,k\leq n$ $U_n^k:\mathbb{N}_0^n\to\mathbb{N}_0,\qquad U_n^k(\overrightarrow{x})=x_k$

Определение (Примитивы Z, N, U, S)

1. Примитив «Ноль» (Z)

$$Z: \mathbb{N}_0 \to \mathbb{N}_0, \qquad Z(x_1) = 0$$

2. Примитив «Инкремент» (N)

$$N: \mathbb{N}_0 \to \mathbb{N}_0, \qquad N(x_1) = x_1 + 1$$

- 3. Примитив «Проекция» (U) семейство функций; пусть $k,n\in\mathbb{N}_0,k\leq n$ $U_n^k:\mathbb{N}_0^n\to\mathbb{N}_0,\qquad U_n^k(\overrightarrow{\varkappa})=\varkappa_k$
- 4. Примитив «Подстановка» (S) семейство функций; пусть $g: \mathbb{N}_0^k \to \mathbb{N}_0, \quad f_1, \dots, f_k: \mathbb{N}_0^n \to \mathbb{N}_0$ $S\langle g, f_1, f_2, \dots, f_k \rangle (\overrightarrow{\times}) = g(f_1(\overrightarrow{\times}), \dots, f_k(\overrightarrow{\times}))$

Определение (примитив «примитивная рекурсия», R)

Пусть
$$f:\mathbb{N}_0^n o \mathbb{N}_0$$
 и $g:\mathbb{N}_0^{n+2} o \mathbb{N}_0$. Тогда $R\langle f,g \rangle:\mathbb{N}_0^{n+1} o \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y)=\left\{\begin{array}{ll}f(\overrightarrow{x}),&y=0\\g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)),&y>0\end{array}\right.$$

Определение (примитив «примитивная рекурсия», R)

Пусть $f:\mathbb{N}_0^n o \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} o \mathbb{N}_0$. Тогда $R\langle f,g \rangle:\mathbb{N}_0^{n+1} o \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y) = \begin{cases} f(\overrightarrow{x}), & y = 0\\ g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)), & y > 0 \end{cases}$$

Пояснение

Определение (примитив «примитивная рекурсия», R)

Пусть $f:\mathbb{N}_0^n o \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} o \mathbb{N}_0$. Тогда $R\langle f,g \rangle:\mathbb{N}_0^{n+1} o \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y)=\left\{\begin{array}{ll}f(\overrightarrow{x}),&y=0\\g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)),&y>0\end{array}\right.$$

Пояснение

$$R\langle f,g\rangle(\overrightarrow{x},3) = g(\overrightarrow{x},2,R\langle f,g\rangle(\overrightarrow{x},2))$$

Определение (примитив «примитивная рекурсия», R)

Пусть $f:\mathbb{N}_0^n o \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} o \mathbb{N}_0$. Тогда $R\langle f,g \rangle:\mathbb{N}_0^{n+1} o \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y)=\left\{\begin{array}{ll}f(\overrightarrow{x}),&y=0\\g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)),&y>0\end{array}\right.$$

Пояснение

$$R\langle f, g \rangle(\overrightarrow{x}, 3) = g(\overrightarrow{x}, 2, R\langle f, g \rangle(\overrightarrow{x}, 2))$$

= $g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, R\langle f, g \rangle(\overrightarrow{x}, 1)))$

Определение (примитив «примитивная рекурсия», R)

Пусть $f:\mathbb{N}_0^n o \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} o \mathbb{N}_0$. Тогда $R\langle f,g \rangle:\mathbb{N}_0^{n+1} o \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y)=\left\{\begin{array}{ll}f(\overrightarrow{x}),&y=0\\g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)),&y>0\end{array}\right.$$

Пояснение

$$R\langle f, g \rangle (\overrightarrow{x}, 3) = g(\overrightarrow{x}, 2, R\langle f, g \rangle (\overrightarrow{x}, 2))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, R\langle f, g \rangle (\overrightarrow{x}, 1)))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, g(\overrightarrow{x}, 0, R\langle f, g \rangle (\overrightarrow{x}, 0))))$$

Определение (примитив «примитивная рекурсия», R)

Пусть $f:\mathbb{N}_0^n o \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} o \mathbb{N}_0$. Тогда $R\langle f,g \rangle:\mathbb{N}_0^{n+1} o \mathbb{N}_0$, причём

$$R\langle f,g\rangle(\overrightarrow{x},y)=\left\{\begin{array}{ll}f(\overrightarrow{x}),&y=0\\g(\overrightarrow{x},y-1,R\langle f,g\rangle(\overrightarrow{x},y-1)),&y>0\end{array}\right.$$

Пояснение

$$R\langle f, g \rangle(\overrightarrow{x}, 3) = g(\overrightarrow{x}, 2, R\langle f, g \rangle(\overrightarrow{x}, 2))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, R\langle f, g \rangle(\overrightarrow{x}, 1)))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, g(\overrightarrow{x}, 0, R\langle f, g \rangle(\overrightarrow{x}, 0))))$$

$$= g(\overrightarrow{x}, 2, g(\overrightarrow{x}, 1, g(\overrightarrow{x}, 0, f(\overrightarrow{x}))))$$

Определение

Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Определение

Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема

$$f(x) = x + 2$$
 примитивно-рекурсивна

Определение

Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема

$$f(x) = x + 2$$
 примитивно-рекурсивна

$$f = S\langle N, N \rangle$$

Определение

Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема

$$f(x) = x + 2$$
 примитивно-рекурсивна

$$f = S\langle N, N \rangle$$

$$N(x) = x + 1$$

$$S(g, f)(x) = g(f(x))$$

Определение

Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема

$$f(x) = x + 2$$
 примитивно-рекурсивна

$$f = S\langle N, N \rangle$$

$$N(x) = x + 1$$

$$S(g, f)(x) = g(f(x))$$

$$f,g=N$$

Определение

Функция f — примитивно-рекурсивна, если может быть выражена как композиция примитивов Z, N, U, S и R.

Теорема

$$f(x) = x + 2$$
 примитивно-рекурсивна

$$f = S\langle N, N \rangle$$

$$N(x) = x + 1$$

$$S(g, f)(x) = g(f(x))$$

$$f,g = N$$

$$S\langle N, N \rangle(x) = N(N(x)) = (x+1) + 1$$

f(a,b)=a+b примитивно-рекурсивна

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

 $\int \operatorname{\mathsf{PMMA}} f(a,b) = a+b \$ примитивно-рекурсивна

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

$$R\langle f,g\rangle(x,y) = \begin{cases} f(x), & y = 0\\ g(x,y-1,R\langle f,g\rangle(x,y-1)), & y > 0 \end{cases}$$

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

$$R\langle f,g\rangle(x,y) = \begin{cases} f(x), & y=0\\ g(x,y-1,R\langle f,g\rangle(x,y-1)), & y>0 \end{cases}$$

$$lack$$
 База. $R\langle U_1^1, S\langle N, U_3^3
angle
angle (x,0) = U_1^1(x) = x$

Лемма

$$f(a,b) = a + b$$
 примитивно-рекурсивна

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

$$R\langle f,g\rangle(x,y) = \begin{cases} f(x), & y=0\\ g(x,y-1,R\langle f,g\rangle(x,y-1)), & y>0 \end{cases}$$

- lack База. $R\langle U_1^1, S\langle N, U_3^3
 angle
 angle (x,0) = U_1^1(x) = x$
- ightharpoonup Переход. $R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle (x,y+1) =$

Лемма

$$f(a,b) = a + b$$
 примитивно-рекурсивна

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

$$R\langle f,g\rangle(x,y) = \begin{cases} f(x), & y=0\\ g(x,y-1,R\langle f,g\rangle(x,y-1)), & y>0 \end{cases}$$

- lack База. $R\langle U_1^1,S\langle N,U_3^3
 angle
 angle (x,0)=U_1^1(x)=x$
- ▶ Переход. $R\langle U_1^1, S\langle N, U_3^3 \rangle\rangle(x, y+1) =$... = $S\langle N, U_3^3 \rangle(x, y, R\langle U_1^1(x), S\langle N, U_2^3 \rangle\rangle(x, y)) =$

Лемма

$$f(a,b) = a + b$$
 примитивно-рекурсивна

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

$$R\langle f,g\rangle(x,y) = \begin{cases} f(x), & y=0\\ g(x,y-1,R\langle f,g\rangle(x,y-1)), & y>0 \end{cases}$$

- ► База. $R\langle U_1^1, S\langle N, U_3^3 \rangle\rangle(x,0) = U_1^1(x) = x$
- ▶ Переход. $R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle (x, y + 1) =$... = $S\langle N, U_3^3 \rangle (x, y, R\langle U_1^1(x), S\langle N, U_3^3 \rangle \rangle (x, y)) =$... = $S\langle N, U_3^3 \rangle (x, y, x + y) =$

Лемма

$$f(a,b)=a+b$$
 примитивно-рекурсивна

$$f = R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle$$
:

$$R\langle f,g\rangle(x,y) = \begin{cases} f(x), & y=0\\ g(x,y-1,R\langle f,g\rangle(x,y-1)), & y>0 \end{cases}$$

- lack База. $R\langle U_1^1, S\langle N, U_3^3
 angle
 angle (x,0) = U_1^1(x) = x$
- ▶ Переход. $R\langle U_1^1, S\langle N, U_3^3 \rangle \rangle (x, y+1) =$... = $S\langle N, U_3^3 \rangle (x, y, R\langle U_1^1(x), S\langle N, U_3^3 \rangle \rangle (x, y)) =$... = $S\langle N, U_3^3 \rangle (x, y, x+y) =$... = N(x+y) = x+y+1

1. Сложение, вычитание

- 1. Сложение, вычитание
- 2. Умножение, деление

- 1. Сложение, вычитание
- 2. Умножение, деление
- 3. Вычисление простых чисел

- 1. Сложение, вычитание
- 2. Умножение, деление
- 3. Вычисление простых чисел
- 4. Неформально: все функции, вычисляемые конечным числом вложенных циклов for:

Общерекурсивные функции

Определение

Функция — общерекурсивная, если может быть построена при помощи примитивов Z, N, U, S, R и примитива минимизации:

$$M\langle f\rangle(x_1,x_2,\ldots,x_n) = \min\{y: f(x_1,x_2,\ldots,x_n,y)=0\}$$

Если $f(x_1, x_2, \dots, x_n, y) > 0$ при любом y, результат не определён.

Общерекурсивные функции

Определение

Функция — общерекурсивная, если может быть построена при помощи примитивов Z, N, U, S, R и примитива минимизации:

```
M(f)(x_1, x_2, \dots, x_n) = \min\{y : f(x_1, x_2, \dots, x_n, y) = 0\}
Если f(x_1, x_2, ..., x_n, y) > 0 при любом у, результат не определён.
Пример:
Пусть f(x,y) = x - y^2, тогда \lceil \sqrt{x} \rceil = M \langle f \rangle(x)
int sqrt(int x) {
     int v = 0:
     while (x-y*y > 0) y++;
     return v;
```

Выразительная сила

Определение

Функция Аккермана:

$$A(m,n) = \begin{cases} n+1, & m=0\\ A(m-1,1), & m>0, n=0\\ A(m-1,A(m,n-1)), & m>0, n>0 \end{cases}$$

Пример
$$m = 0$$
 1 2 3 4 ... 0 1 2 3 5 13 0 1 2 3 5 13 0 1 2 3 5 13 0 1 2 3 5 13 0 2 3 4 7 29 0 2 0 2 0 3 0 4 0 1 0

Лемма о росте функции Аккермана

Определение

$$A^{(p)}(k,x) = \underbrace{A(k,A(k,A(k,\ldots,A(k,x)))}_{p \ pas}$$

Лемма

- 1. $A(p,q) = A^{(q+1)}(p-1,1)$
- 2. $A^{(x+2)}(k,x) < A(k+2,x)$ A(0,n) = n+1 A(2,n) = 2n+3

Доказательство.

- 1. $A(p,q) = A(p-1,A(p,q-1)) = \cdots = A(p-1,A(p-1,\ldots A(p,0)) = A^{(q)}(p-1,A(p,0)) = A^{(q+1)}(p-1,1)$
- 2. $A(k+2,x) = A(k+1,A(k+2,x-1)) = A^{(A(k+2,x-1)+1)}(k,1) \ge A^{(A(2,x-1)+1)}(k,1) = A^{(2(x-1)+3+1)}(k,1) = A^{(2x+2)}(k,1) = A^{(x+2)}(k,A^{(x)}(k,1)) \ge A^{(x+2)}(k,A^{(x)}(0,1)) = A^{(x+2)}(k,x+1) > A^{(x+2)}(k,x)$

L

 $A(m,n) = \begin{cases} n+1, & m=0 \\ A(m-1,1), & m>0, n=0 \\ A(m-1,A(m,n-1)), & m>0, n>0 \end{cases}$

Функция Аккермана не примитивно-рекурсивна

Теорема

Пусть $f(\overrightarrow{x})$ — примитивно-рекурсивная. Тогда найдётся k, что $f(\overrightarrow{x}) < A(k, \max(\overrightarrow{x}))$

Доказательство.

Индукция по структуре f.

- 1. f=Z, тогда k=0, т.к. A(0,x)=x+1>Z(x)=0;
- 2. f = N, тогда k = 1, т.к. A(1, x) = x + 2 > N(x) = x + 1;
- 3. $f = U_s^n$, тогда k = 0, т.к. $f(\overrightarrow{x}) \leq \max(\overrightarrow{x}) < A(0, \max(\overrightarrow{x}))$;
- 4. $f = S\langle g, h_1, \ldots, h_n \rangle$, тогда $k = k_g + \max(k_{h_1}, \ldots, k_{h_n}) + 2$;
- 5. $f = R\langle g, h \rangle$, тогда $k = \max(k_g, k_h) + 2$.

Доказательство оценки для R

Лемма

Пусть $f=R\langle g,h\rangle$. Тогда при $k=\max(k_g,k_h)+2$ выполнено $f(\overrightarrow{x},y)\leq A^{(y+1)}(k-2,\max(\overrightarrow{x},y)).$

Доказательство.

Индукция по у.

- ightharpoonup База: y=0. Тогда: $f(\overrightarrow{x},0)=g(\overrightarrow{x})\leq A(k_g,\max(\overrightarrow{x}))\leq A^{(1)}(k-2,\max(\overrightarrow{x},0)).$
- Ререход: пусть $f(\overrightarrow{x},y) \leq A^{(y+1)}(k-2,\max(\overrightarrow{x},y))$. Тогда $f(\overrightarrow{x},y+1) = h(\overrightarrow{x},y,f(\overrightarrow{x},y)) \leq A(k_h,\max(\overrightarrow{x},y,f(\overrightarrow{x},y))) \leq A(k_h,\max(\overrightarrow{x},y,A^{(y+1)}(k-2,\max(\overrightarrow{x},y))) = A(k_h,A^{(y+1)}(k-2,\max(\overrightarrow{x},y))) \leq A^{(y+2)}(k-2,\max(\overrightarrow{x},y+1))$

Заметим, что
$$A^{(y+1)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+1)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+2)}(k-2,\max(\overrightarrow{x},y)) \leq A^{(\max(\overrightarrow{x},y)+2)}(k-2,\max(\overrightarrow{x},y))$$

Тезис Чёрча

Определение

Тезис Чёрча для общерекурсивных функций: любая эффективно-вычислимая функция $\mathbb{N}_0^k \to \mathbb{N}_0$ является общерекурсивной.

Определение

$$\mathcal{S}$$
апись вида $\psi(heta_1,\dots, heta_n)$ означает $\psi[extit{x}_1:= heta_1,\dots, extit{x}_n:= heta_n]$

Определение

Запись вида
$$\psi(heta_1,\dots, heta_n)$$
 означает $\psi[\mathsf{x}_1:= heta_1,\dots,\mathsf{x}_n:= heta_n]$

Определение (Литерал числа)

$$\overline{a}=\left\{egin{array}{ll} 0, & ext{ecли } a=0\ (\overline{b})', & ext{ecли } a=b+1 \end{array}
ight.$$

Определение

Запись вида
$$\psi(\theta_1,\dots,\theta_n)$$
 означает $\psi[x_1:=\theta_1,\dots,x_n:=\theta_n]$

Определение (Литерал числа)

$$\overline{a}=\left\{egin{array}{ll} 0, & ext{\it если}\ a=0\ (\overline{b})', & ext{\it если}\ a=b+1 \end{array}
ight.$$

Пример: пусть $\psi := x_1 = 0$.

Определение

Запись вида
$$\psi(\theta_1,\ldots,\theta_n)$$
 означает $\psi[\mathsf{x}_1:=\theta_1,\ldots,\mathsf{x}_n:=\theta_n]$

Определение (Литерал числа)

$$\overline{a}=\left\{egin{array}{ll} 0, & ext{ecли } a=0 \ (\overline{b})', & ext{ecли } a=b+1 \end{array}
ight.$$

Пример: пусть $\psi:=x_1=0$. Тогда $\psi(\overline{3})$ соответствует формуле 0'''=0

Определение

Будем говорить, что отношение $R\subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ho, что:

- 1. если $\langle a_1,\ldots,a_n \rangle \in R$, то $\vdash \rho(\overline{a_1},\ldots,\overline{a_n})$
- 2. если $\langle a_1,\ldots,a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Определение

Будем говорить, что отношение $R\subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ho, что:

- 1. если $\langle \mathsf{a}_1,\ldots,\mathsf{a}_\mathsf{n} \rangle \in \mathsf{R}$, то $\vdash \rho(\overline{\mathsf{a}_1},\ldots,\overline{\mathsf{a}_\mathsf{n}})$
- 2. если $\langle a_1,\ldots,a_n
 angle
 otin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Теорема

отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Определение

Будем говорить, что отношение $R\subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ho, что:

- 1. если $\langle a_1,\ldots,a_n
 angle \in R$, то $\vdash
 ho(\overline{a_1},\ldots,\overline{a_n})$
- 2. если $\langle a_1,\ldots,a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Теорема

отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказательство.

Пусть $\rho := x_1 = x_2$.

Определение

Будем говорить, что отношение $R\subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ho, что:

- 1. если $\langle a_1,\ldots,a_n
 angle\in R$, то $\vdash
 ho(\overline{a_1},\ldots,\overline{a_n})$
- 2. если $\langle a_1,\ldots,a_n \rangle \notin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Теорема

отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказательство.

Пусть $ho:=x_1=x_2$. Тогда:

▶ $\vdash p = p$ при $p := \overline{k}$ при всех $k \in \mathbb{N}_0$:

Определение

Будем говорить, что отношение $R\subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ho, что:

- 1. если $\langle a_1,\ldots,a_n
 angle\in R$, то $\vdash
 ho(\overline{a_1},\ldots,\overline{a_n})$
- 2. если $\langle a_1,\ldots,a_n
 angle
 otin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Теорема

отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказательство.

Пусть $ho:=x_1=x_2$. Тогда:

$$ightharpoonup = p$$
 при $p := \overline{k}$ при всех $k \in \mathbb{N}_0$: $\vdash 0 = 0$, $\vdash 0' = 0'$, $\vdash 0'' = 0''$, ...

Определение

Будем говорить, что отношение $R\subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ho, что:

- 1. если $\langle a_1,\ldots,a_n \rangle \in R$, то $\vdash \rho(\overline{a_1},\ldots,\overline{a_n})$
- 2. если $\langle a_1,\ldots,a_n
 angle
 otin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Теорема

отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказательство.

Пусть $ho:=x_1=x_2$. Тогда:

- ightharpoonup = p при $p := \overline{k}$ при всех $k \in \mathbb{N}_0$: $\vdash 0 = 0$, $\vdash 0' = 0'$, $\vdash 0'' = 0''$, ...
- $ightharpoonup \mapsto
 abla p = q$ при $p := \overline{k}$, $q := \overline{s}$ при всех $k,s \in \mathbb{N}_0$ и k
 eq s.

Определение

Будем говорить, что отношение $R \subseteq \mathbb{N}_0^n$ выразимо в ΦA , если существует формула ho, что:

- 1. если $\langle a_1,\ldots,a_n \rangle \in R$, то $\vdash \rho(\overline{a_1},\ldots,\overline{a_n})$
- 2. если $\langle a_1,\ldots,a_n
 angle
 otin R$, то $\vdash \neg \rho(\overline{a_1},\ldots,\overline{a_n})$

Теорема

отношение «равно» выразимо в Φ .А.: $R = \{\langle x, x \rangle \mid x \in \mathbb{N}_0\}$

Доказательство.

Пусть $ho:=x_1=x_2$. Тогда:

- ightharpoonup = p при $p := \overline{k}$ при всех $k \in \mathbb{N}_0$: $\vdash 0 = 0$, $\vdash 0' = 0'$, $\vdash 0'' = 0''$, ...
- $ightharpoonup \mapsto \neg p = q$ при $p := \overline{k}, \ q := \overline{s}$ при всех $k,s \in \mathbb{N}_0$ и $k \neq s$. $\vdash \neg 0 = 0', \ \vdash \neg 0 = 0'', \ \vdash \neg 0''' = 0', \ \dots$

Представимость функций в Ф.А.

Определение

Будем говорить, что функция $f:\mathbb{N}_0^n\to\mathbb{N}_0$ представима в ΦA , если существует формула φ , что:

- 1. если $f(a_1,\ldots,a_n)=u$, то $\vdash \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 2. если $f(a_1,\ldots,a_n) \neq u$, то $\vdash \neg \varphi(\overline{a_1},\ldots,\overline{a_n},\overline{u})$
- 3. для всех $a_i \in \mathbb{N}_0$ выполнено $\vdash (\exists x. \varphi(\overline{a_1}, \ldots, \overline{a_n}, x)) \& (\forall p. \forall q. \varphi(\overline{a_1}, \ldots, \overline{a_n}, p) \& \varphi(\overline{a_1}, \ldots, \overline{a_n}, q) \rightarrow p = q)$

Соответствие рекурсивных и представимых функций

Теорема

Любая рекурсивная функция представима в Ф.А.

Соответствие рекурсивных и представимых функций

Теорема

Любая рекурсивная функция представима в Ф.А.

Теорема

Любая представимая в Ф.А. функция рекурсивна.

Теорема

Примитивы Z, N и U_n^k представимы в Φ .A.

Теорема

Примитивы Z, N и U_n^k представимы в Φ .A.

Теорема

Примитивы Z, N и U_n^k представимы в Φ .A.

Доказательство.

 $lack \zeta(x_1,x_2):=x_2=0$, формальнее: $\zeta(x_1,x_2):=x_1=x_1\ \&\ x_2=0$

Теорема

Примитивы Z, N и U_n^k представимы в Φ .A.

- $ightharpoonup \zeta(x_1,x_2):=x_2=0$, формальнее: $\zeta(x_1,x_2):=x_1=x_1\ \&\ x_2=0$
- $\nu(x_1,x_2):=x_2=x_1'$

Теорема

Примитивы Z, N и U_n^k представимы в Φ .A.

- $lack \zeta(x_1,x_2):=x_2=0$, формальнее: $\zeta(x_1,x_2):=x_1=x_1\ \&\ x_2=0$
- $\nu(x_1,x_2):=x_2=x_1'$
- $v(x_1,\ldots,x_n,x_{n+1}):=x_k=x_{n+1}$

Теорема

Примитивы Z, N и U_n^k представимы в Φ .A.

- $lack \zeta(x_1,x_2):=x_2=0$, формальнее: $\zeta(x_1,x_2):=x_1=x_1\ \&\ x_2=0$
- $\nu(x_1,x_2) := x_2 = x_1'$
- $u(x_1,\ldots,x_n,x_{n+1}) := x_k = x_{n+1}$ формальнее: $v(x_1,\ldots,x_n,x_{n+1}) := (\underbrace{\&}_{i\neq k,n+1} x_i = x_i) \& x_k = x_{n+1}$

$$S\langle f, g_1, \ldots, g_k \rangle (x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

$$S\langle f, g_1, \ldots, g_k \rangle (x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

Теорема

Пусть функции f,g_1,\ldots,g_k представимы в Ф.А. Тогда $S\langle f,g_1,\ldots,g_k\rangle$ представима в Ф.А.

$$S\langle f, g_1, \ldots, g_k \rangle (x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

Теорема

Пусть функции f, g_1, \ldots, g_k представимы в Ф.А. Тогда $S\langle f, g_1, \ldots, g_k \rangle$ представима в Ф.А.

Доказательство.

Пусть f, g_1 , ..., g_k представляются формулами φ , γ_1 , ..., γ_k .

$$S\langle f, g_1, \ldots, g_k \rangle (x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

Теорема

Пусть функции f,g_1,\ldots,g_k представимы в Ф.А. Тогда $S\langle f,g_1,\ldots,g_k\rangle$ представима в Ф.А.

Доказательство.

Пусть $f, g_1, ..., g_k$ представляются формулами $\varphi, \gamma_1, ..., \gamma_k$. Тогда $S\langle f, g_1, ..., g_k \rangle$ будет представлена формулой

$$\exists g_1,\ldots,\exists g_k,\varphi(g_1,\ldots,g_k,x_{n+1}) \& \gamma_1(x_1,\ldots,x_n,g_1) \& \cdots \& \gamma_k(x_1,\ldots,x_n,g_k)$$

Задача: закодировать последовательность натуральных чисел произвольной длины.

Задача: закодировать последовательность натуральных чисел произвольной длины.

Определение

$$eta$$
-функция Гёделя: $eta(b,c,i):=b\%(1+(i+1)\cdot c)$ Здесь (%) — остаток от деления.

Задача: закодировать последовательность натуральных чисел произвольной длины.

Определение

$$eta$$
-функция Гёделя: $eta(b,c,i):=b\%(1+(i+1)\cdot c)$ Здесь (%) — остаток от деления.

Теорема

β-функция Гёделя представима в Ф.А. формулой

$$\hat{eta}(b,c,i,d) := \exists q. (b = q \cdot (1+c \cdot (i+1)) + d) \& (d < 1+c \cdot (i+1))$$

Задача: закодировать последовательность натуральных чисел произвольной длины.

Определение

$$eta$$
-функция Гёделя: $eta(b,c,i):=b\%(1+(i+1)\cdot c)$ Здесь (%) — остаток от деления.

Теорема

 β -функция Гёделя представима в Ф.А. формулой

$$\hat{\beta}(b,c,i,d) := \exists q.(b=q\cdot(1+c\cdot(i+1))+d)\&(d<1+c\cdot(i+1))$$

Деление b на x с остатком: найдутся частное (q) и остаток (d), что $b=q\cdot x+d$ и $0\leq d< x$.

Задача: закодировать последовательность натуральных чисел произвольной длины.

Определение

$$eta$$
-функция Гёделя: $eta(b,c,i):=b\%(1+(i+1)\cdot c)$ Здесь (%) — остаток от деления.

Теорема

β-функция Гёделя представима в Ф.А. формулой

$$\hat{\beta}(b,c,i,d) := \exists q.(b=q\cdot(1+c\cdot(i+1))+d)\&(d<1+c\cdot(i+1))$$

Деление b на x с остатком: найдутся частное (q) и остаток (d), что $b=q\cdot x+d$ и $0\leq d< x$.

Теорема

Если $a_0,\dots,a_n\in\mathbb{N}_0$, то найдутся такие $b,c\in\mathbb{N}_0$, что $a_i=eta(b,c,i)$

Доказательство свойства β -функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0,\dots,u_n — попарно взаимно просты, и $0\leq a_i< u_i$, то существует такой b, что $a_i=b\%u_i$.

Доказательство свойства eta-функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0,\dots,u_n — попарно взаимно просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим $c = \max(a_0, \ldots, a_n, n)!$ и $u_i = 1 + c \cdot (i+1)$.

Доказательство свойства eta-функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0,\dots,u_n попарно взаимно просты, и $0\leq a_i< u_i$, то существует такой b, что $a_i=b\%u_i$.

Положим
$$c = \max(a_0, \ldots, a_n, n)!$$
 и $u_i = 1 + c \cdot (i+1)$.

$$ightharpoonup$$
 НОД $(u_i,u_j)=1$, если $i
eq j$.

Доказательство свойства eta-функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0,\dots,u_n — попарно взаимно просты, и $0 \leq a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим
$$c = \max(a_0, \ldots, a_n, n)!$$
 и $u_i = 1 + c \cdot (i+1)$.

▶ НОД
$$(u_i, u_i) = 1$$
, если $i \neq j$.

Пусть p — простое, $u_i : p$ и $u_j : p$ (i < j).

Доказательство свойства eta-функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0,\dots,u_n попарно взаимно просты, и $0\leq a_i< u_i$, то существует такой b, что $a_i=b\%u_i$.

Положим $c = \max(a_0, \ldots, a_n, n)!$ и $u_i = 1 + c \cdot (i+1)$.

▶ НОД
$$(u_i, u_i) = 1$$
, если $i \neq j$.

Пусть p — простое, $u_i : p$ и $u_j : p$ (i < j). Заметим, что $u_j - u_i = c \cdot (j - i)$.

Значит, c : p или (j - i) : p.

Доказательство свойства β -функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0, \ldots, u_n попарно взаимно просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим $c = \max(a_0, \ldots, a_n, n)!$ и $u_i = 1 + c \cdot (i + 1)$.

► НОД
$$(u_i, u_i) = 1$$
, если $i \neq j$.

Пусть p — простое, $u_i : p$ и $u_i : p$ (i < j). Заметим, что $u_i - u_i = c \cdot (i - i)$.

Значит, c : p или (i - i) : p. Так как i - i < n, то c : (i - i), потому если и (i-i): p, всё равно c:p.

Доказательство свойства eta-функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0,\dots,u_n — попарно взаимно просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим $c = \max(a_0, \ldots, a_n, n)!$ и $u_i = 1 + c \cdot (i+1)$.

► НОД
$$(u_i, u_i) = 1$$
, если $i \neq j$.

Пусть p — простое, $u_i \, \vdots \, p$ и $u_j \, \vdots \, p$ (i < j). Заметим, что $u_j - u_i = c \cdot (j-i)$. Значит, $c \, \vdots \, p$ или $(j-i) \, \vdots \, p$. Так как $j-i \leq n$, то $c \, \vdots \, (j-i)$, потому если и $(j-i) \, \vdots \, p$, всё равно $c \, \vdots \, p$. Но и $(1+c \cdot (i+1)) \, \vdots \, p$, отсюда $1 \, \vdots \, p$ — что невозможно.

Доказательство свойства eta-функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0,\dots,u_n — попарно взаимно просты, и $0 \leq a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим $c = \max(a_0, \ldots, a_n, n)!$ и $u_i = 1 + c \cdot (i + 1)$.

- ightharpoonup НОД $(u_i,u_j)=1$, если i
 eq j.
 - Пусть p простое, $u_i : p$ и $u_j : p$ (i < j). Заметим, что $u_j u_i = c \cdot (j i)$. Значит, c : p или (j i) : p. Так как j i < n, то c : (j i), потому если и
 - Значит, c:p или (j-i):p. Так как $j-i\leq n$, то c:(j-i), потому есл(j-i):p, всё равно c:p. Но и $(1+c\cdot(i+1)):p$, отсюда 1:p— что невозможно.
- $ightharpoonup 0 \le a_i < u_i$.

Доказательство свойства β -функции

Теорема

Китайская теорема об остатках (вариант формулировки): если u_0, \ldots, u_n попарно взаимно просты, и $0 \le a_i < u_i$, то существует такой b, что $a_i = b\%u_i$.

Положим $c = \max(a_0, \dots, a_n, n)!$ и $u_i = 1 + c \cdot (i+1)$.

- ▶ НОД $(u_i,u_j)=1$, если $i\neq j$. Пусть p простое, u_i : p и u_j : p (i< j). Заметим, что $u_j-u_i=c\cdot (j-i)$. Значит, c : p или (j-i) : p. Так как $j-i\leq n$, то c : (j-i), потому если и (j-i) : p, всё равно c : p. Но и $(1+c\cdot (i+1))$: p, отсюда 1 : p что невозможно.
- $ightharpoonup 0 \le a_i < u_i$.

Условия китайской теоремы об остатках выполнены и найдётся b, что

$$a_i = b\%(1 + c \cdot (i+1)) = \beta(b, c, i)$$

Пусть $f:\mathbb{N}_0^n \to \mathbb{N}_0$ и $g:\mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ . Зафиксируем $x_1,\dots,x_n,y\in\mathbb{N}_0$.

Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ . Зафиксируем $x_1, \ldots, x_n, v \in \mathbb{N}_0$.

Шаг вычисления
$$R\langle f,g\rangle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$$

Об. Утверждение в Ф.А.
$$a_0 \mapsto \varphi(\overline{x_1}, \dots, \overline{x_n}, \overline{a_0})$$

Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ . Зафиксируем $x_1, \ldots, x_n, v \in \mathbb{N}_0$.

Шаг вычисления Об. Утверждение в Ф.А.
$$R\langle f,g\rangle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$$
 $a_0 \vdash \varphi(\overline{x_1},\ldots,\overline{x_n},\overline{a_0})$ $R\langle f,g\rangle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,0,a_0)$ $a_1 \vdash \gamma(\overline{x_1},\ldots,\overline{x_n},0,\overline{a_1})$

Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ . Зафиксируем $x_1, \ldots, x_n, v \in \mathbb{N}_0$.

Шаг вычисления $R\langle f,g angle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$		Утверждение в Ф.А. $\vdash \varphi(\overline{x_1}, \dots, \overline{x_n}, \overline{a_0})$
$R\langle f,g\rangle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,0,a_0)$	a_1	$\vdash \gamma(\overline{x_1},\ldots,\overline{x_n},0,\overline{a_1})$

. . .

 $R\langle f,g\rangle(x_1,\ldots,x_n,y)=g(x_1,\ldots,x_n,y-1,a_{v-1})$ $a_v\vdash\gamma(\overline{x_1},\ldots,\overline{x_n},\overline{y-1},\overline{a_v})$

Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ . Зафиксируем $x_1, \ldots, x_n, v \in \mathbb{N}_0$.

Шаг вычисления Об. Утверждение в Ф.А.
$$R\langle f,g\rangle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$$
 $a_0 \vdash \varphi(\overline{x_1},\ldots,\overline{x_n},\overline{a_0})$ $R\langle f,g\rangle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,0,a_0)$ $a_1 \vdash \gamma(\overline{x_1},\ldots,\overline{x_n},0,\overline{a_1})$

$$R\langle f,g\rangle(x_1,\ldots,x_n,y)=g(x_1,\ldots,x_n,y-1,a_{y-1})\quad a_y\quad \vdash \gamma(\overline{x_1},\ldots,\overline{x_n},\overline{y-1},\overline{a_y})$$

По свойству β -функции, найдутся b и c, что $\beta(b,c,i) = a_i$ для 0 < i < y.

Пусть $f: \mathbb{N}_0^n \to \mathbb{N}_0$ и $g: \mathbb{N}_0^{n+2} \to \mathbb{N}_0$ представлены формулами φ и γ . Зафиксируем $x_1, \ldots, x_n, v \in \mathbb{N}_0$.

Шаг вычисления Об. Утверждение в Ф.А.
$$R\langle f,g\rangle(x_1,\ldots,x_n,0)=f(x_1,\ldots,x_n)$$
 $a_0 \mapsto \varphi(\overline{x_1},\ldots,\overline{x_n},\overline{a_0})$ $R\langle f,g\rangle(x_1,\ldots,x_n,1)=g(x_1,\ldots,x_n,0,a_0)$ $a_1 \mapsto \gamma(\overline{x_1},\ldots,\overline{x_n},0,\overline{a_1})$

 $R\langle f,g \rangle(x_1,\ldots,x_n,y)=g(x_1,\ldots,x_n,y-1,a_{y-1})$ $a_y \vdash \gamma(\overline{x_1},\ldots,\overline{x_n},\overline{y-1},\overline{a_y})$ По свойству β -функции, найдутся b и c, что $\beta(b,c,i)=a_i$ для 0 < i < y.

Теорема

Примитив $R\langle f,g \rangle$ представим в Φ .А. формулой $\rho(x_1,\ldots,x_n,y,a)$:

$$\exists b. \exists c. (\exists a_0. \hat{eta}(b, c, 0, a_0) \& \varphi(x_1, ... x_n, a_0)) \ \& \quad \forall k. k < y \rightarrow \exists d. \exists e. \hat{eta}(b, c, k, d) \& \hat{eta}(b, c, k', e) \& \gamma(x_1, ... x_n, k, d, e) \ \& \quad \hat{eta}(b, c, y, a)$$

Представимость рекурсивных функций в Ф.А.

Теорема

Пусть функция $f:\mathbb{N}_0^{n+1}\to\mathbb{N}_0$ представима в Ф.А. формулой $\varphi(x_1,\ldots,x_n,y,r)$. Тогда примитив $M\langle f\rangle$ представим в Ф.А. формулой

$$\mu(x_1, \ldots, x_n, y) := \varphi(x_1, \ldots, x_n, y, 0) \& \forall u.u < y \rightarrow \neg \varphi(x_1, \ldots, x_n, u, 0)$$

Представимость рекурсивных функций в Ф.А.

Теорема

Пусть функция $f:\mathbb{N}_0^{n+1}\to\mathbb{N}_0$ представима в $\Phi.A.$ формулой $\varphi(x_1,\ldots,x_n,y,r).$ Тогда примитив $M\langle f\rangle$ представим в $\Phi.A.$ формулой

$$\mu(x_1, \ldots, x_n, y) := \varphi(x_1, \ldots, x_n, y, 0) \& \forall u.u < y \rightarrow \neg \varphi(x_1, \ldots, x_n, u, 0)$$

Теорема

Если f — рекурсивная функция, то она представима в Φ .A.

Доказательство.

Индукция по структуре f.

Фиксируем f и x_1, x_2, \dots, x_n . Обозначим $y = f(x_1, x_2, \dots, x_n)$.

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$.

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

1. Закодируем доказательства натуральными числами.

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

- 1. Закодируем доказательства натуральными числами.
- 2. Напишем рекурсивную функцию, проверяющую доказательства на корректность.

Фиксируем f и x_1, x_2, \ldots, x_n . Обозначим $y = f(x_1, x_2, \ldots, x_n)$. По представимости нам известна φ , что $\vdash \varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$. Давайте просто переберём все результаты и доказательства!

- 1. Закодируем доказательства натуральными числами.
- 2. Напишем рекурсивную функцию, проверяющую доказательства на корректность.
- 3. Параллельный перебор значений и доказательств: $s=2^y\cdot 3^p$. Переберём все s, по s получим y и p. Проверим, что p код доказательства $\vdash \varphi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y})$.

Гёделева нумерация

1. Отдельный символ.

Номер	Символ	Номер	Символ	Имя	k, n	Гёделев номер
3	(17	&	0		27 + 6
5)	19	\forall	(')	0, 1	$27 + 6 \cdot 3$
7	,	21	∃	(+)	0, 2	$27 + 6 \cdot 9$
9		23	\vdash	(.)	1,2	$27+6\cdot 9 \\ 27+6\cdot 2\cdot 9$
11	\neg	$25+6\cdot k$	x_k	(=)	0, 2	$29 + 6 \cdot 9$
13	\rightarrow	$25 + 6 \cdot k$ $27 + 6 \cdot 2^k \cdot 3^n$ $29 + 6 \cdot 2^k \cdot 3^n$	f_k^n			
15	\vee	$29+6\cdot 2^k\cdot 3^n$	P_k^n			

Гёделева нумерация

1. Отдельный символ.

Номер	Символ	Номер	Символ	Имя	k, n	Гёделев номер
3	(17	&	0	0, 0	27 + 6
5)	19	\forall	(')	0, 1	$27 + 6 \cdot 3$
7	,	21	∃	(+)	0, 2	$27 + 6 \cdot 9$
9		23	\vdash	(.)	1,2	$27 + 6 \cdot 9$ $27 + 6 \cdot 2 \cdot 9$
11	\neg	$25+6\cdot k$	x_k	(=)	0, 2	$29 + 6 \cdot 9$
13	\rightarrow	$ 25 + 6 \cdot k $ $ 27 + 6 \cdot 2^k \cdot 3^n $ $ 29 + 6 \cdot 2^k \cdot 3^n $	f_k^n			
15	\vee	$9+6\cdot 2^k\cdot 3^n$	$\hat{P_k^n}$			

2. Формула. $\phi \equiv s_0 s_1 \dots s_{n-1}$. Гёделев номер: $\lceil \phi \rceil = 2^{\lceil s_0 \rceil} \cdot 3^{\lceil s_1 \rceil} \cdot \dots \cdot p_{n-1}^{\lceil s_{n-1} \rceil}$.

Гёделева нумерация

1. Отдельный символ.

Номер	Символ	Номер	Символ	Имя	k, n	Гёделев номер
3	(17	&	0		27 + 6
5)	19	\forall	(')	0, 1	$27 + 6 \cdot 3$
7	,	21	∃	(+)	0, 2	$27 + 6 \cdot 9$
9		23	\vdash	(.)	1, 2	$27+6\cdot 2\cdot 9$
11	\neg	$25+6\cdot k$	x_k	(=)	0, 2	$29 + 6 \cdot 9$
13	\rightarrow	$25 + 6 \cdot k$ $27 + 6 \cdot 2^k \cdot 3^n$ $29 + 6 \cdot 2^k \cdot 3^n$	f_k^n			
15	\vee	$29+6\cdot 2^k\cdot 3^n$	P_k^n			

- 2. Формула $\phi \equiv s_0 s_1 \dots s_{n-1}$. Гёделев номер: $\lceil \phi \rceil = 2^{\lceil s_0 \rceil} \cdot 3^{\lceil s_1 \rceil} \cdot \dots \cdot p_{n-1}^{\lceil s_{n-1} \rceil}$.
- 3. Доказательство. $\Pi = \delta_0 \delta_1 \dots \delta_{k-1}$, его гёделев номер: $\Pi = 2^{\lceil \delta_0 \rceil} \cdot 3^{\lceil \delta_1 \rceil} \cdot \dots \cdot p_{k-1}^{\lceil \delta_{k-1} \rceil}$

Проверка доказательства на корректность

Теорема

Следующая функция рекурсивна:

$$\mathit{proof}(f, x_1, x_2, \dots, x_n, y, p) = \left\{ egin{array}{ll} 1, & \mathit{если} \vdash \phi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y}), \\ & p - \mathit{r}$$
ёделев номер вывода, $f = \ulcorner \phi \urcorner \\ 0, & \mathit{иначе} \end{array} \right.$

Проверка доказательства на корректность

Теорема

Следующая функция рекурсивна:

$$\mathit{proof}(f, x_1, x_2, \dots, x_n, y, p) = \left\{ egin{array}{ll} 1, & \mathit{если} \vdash \phi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y}), \\ & p - \mathit{r\"{e}}\mathit{делев} \ \mathit{номер} \ \mathit{выводa}, f = \ulcorner \phi \urcorner \\ 0, & \mathit{иначe} \end{array} \right.$$

Идея доказательства.

1. Проверка доказательства вычислима.

Проверка доказательства на корректность

Теорема

Следующая функция рекурсивна:

$$\mathit{proof}(f, x_1, x_2, \dots, x_n, y, p) = \left\{ egin{array}{ll} 1, & \mathit{если} \vdash \phi(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}, \overline{y}), \\ & p - \mathit{r\"{e}}\mathit{делев} \ \mathit{номер} \ \mathit{выводa}, f = \ulcorner \phi \urcorner \\ 0, & \mathit{иначe} \end{array} \right.$$

Идея доказательства.

- 1. Проверка доказательства вычислима.
- 2. Согласно тезису Чёрча, любая вычислимая функция вычислима с помощью рекурсивных функций.

Лемма

Следующие функции рекурсивны:

1. Функции $plog_k(n) = \max\{p : n : k^p\}$, $fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.

Лемма

Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = \max\{p : n : k^p\}$, $fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0$, $\overline{k}(x) = k$.

Лемма

Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = \max\{p : n : k^p\}$, $fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0$, $\overline{k}(x) = k$.

Теорема

Если $f:\mathbb{N}_0^n \to \mathbb{N}_0$, и f представима в Φ .А. формулой φ , то f — рекурсивна.

Лемма

Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = max\{p : n : k^p\}$, $fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0$, $\overline{k}(x) = k$.

Теорема

Если $f:\mathbb{N}_0^n \to \mathbb{N}_0$, и f представима в $\pmb{\Phi}.A.$ формулой φ , то f — рекурсивна.

Доказательство.

Пусть заданы x_1, x_2, \ldots, x_n . Ищем $\langle y, p \rangle$, что proof($\lceil \varphi \rceil, x_1, x_2, \ldots, x_n, y, p \rangle = 1$,

Лемма

Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = \max\{p : n : k^p\}$, $fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0$, $\overline{k}(x) = k$.

Теорема

Если $f:\mathbb{N}_0^n \to \mathbb{N}_0$, и f представима в Φ .А. формулой φ , то f — рекурсивна.

Доказательство.

Пусть заданы x_1, x_2, \ldots, x_n . Ищем $\langle y, p \rangle$, что $\operatorname{proof}(\lceil \varphi \rceil, x_1, x_2, \ldots, x_n, y, p) = 1$, напомним: $y = f(x_1, x_2, \ldots, x_n)$, $p = \lceil \Pi \rceil$, Π — доказательство $\varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$.

Лемма

Следующие функции рекурсивны:

- 1. Функции $plog_k(n) = max\{p : n : k^p\}$, $fst(x) = plog_2(x)$ и $snd(x) = plog_3(x)$.
- 2. Числовые литералы: $\overline{k}: \mathbb{N}_0 \to \mathbb{N}_0$, $\overline{k}(x) = k$.

Теорема

Если $f:\mathbb{N}_0^n \to \mathbb{N}_0$, и f представима в Φ .А. формулой φ , то f — рекурсивна.

Доказательство.

Пусть заданы x_1, x_2, \ldots, x_n . Ищем $\langle y, p \rangle$, что $\operatorname{proof}(\lceil \varphi \rceil, x_1, x_2, \ldots, x_n, y, p) = 1$, напомним: $y = f(x_1, x_2, \ldots, x_n)$, $p = \lceil \Pi \rceil$, Π — доказательство $\varphi(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}, \overline{y})$.

$$f = S\langle \mathsf{fst}, M \langle S \langle \mathsf{proof}, \overline{\ulcorner \varphi \urcorner}, U^1_{n+1}, U^2_{n+1}, \dots, U^n_{n+1}, S \langle \mathsf{fst}, U^{n+1}_{n+1} \rangle, S \langle \mathsf{snd}, U^{n+1}_{n+1} \rangle \rangle \rangle$$