

SEQUENCE LISTING

<110> Anderson, John P.
Basi, Guriqbal
Doane, Minh Tam
Frigon, Normand
John, Varghese
Power, Michael
Sinha, Sukanto
Tatsuno, Gwen
Tung, Jay
Wang, Shuwen
McConlogue, Lisa

<120> Beta-Secretase Enzyme Compositions and Methods

<130> 228-US-NEW2C6

<140> 09/724,569
<141> 2000-11-28

<150> US 09/501,708
<151> 2000-02-10

<150> 60/119,571
<151> 1999-02-10

<150> 60/139,172
<151> 1999-06-15

<160> 104

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1503
<212> DNA
<213> Homo sapiens

<400> 1

atggcccaag	ccctgccctg	gctcctgctg	tggatggcg	cgggagtgt	gcctgcccac	60
ggcacccagc	acggcatccg	gctgccctg	cgacggcc	tggggggcgc	ccccctgggg	120
ctgcggctgc	cccgaggagac	cgacgaagag	cccgaggagc	ccggccggag	ggcagcttt	180
gtggagatgg	tggacaacct	gaggggcaag	tcggggcagg	gctactacgt	ggagatgacc	240
gtggggcagcc	cccccgagac	gctcaacatc	ctgttggata	caggcagcag	taactttgca	300
gtgggtgctg	ccccccaccc	cttcctgcat	cgctactacc	agaggcagct	gtccagcaca	360
taccgggacc	tccgaaaggg	tgtgtatgt	ccctacaccc	agggcaagt	ggaagggag	420
ctgggcaccc	acctgttaag	atccccat	ggccccaacg	tcactgtgcg	tgccaacatt	480
gctgccatca	ctgaatcaga	caagttcttc	atcaacggct	ccaactgg	aggcatcct	540
ggctggccct	atgctgagat	tgccaggcct	gacgactccc	tggagcctt	cttgactct	600
ctggtaaagc	agaccacgt	tcccaaccc	ttctccctgc	agctttgtgg	tgctggcttc	660
cccctaacc	agtctgaagt	gctggcctct	gtcgaggg	gcatgatcat	tgaggtatc	720
gaccactcgc	tgtacacagg	cagtctctgg	tatacacc	tccggccgg	gtgttattat	780
gaggtgatca	ttgtgcgggt	ggagatcaat	ggacaggatc	tggaaatgg	ctgcaaggag	840
tacaactatg	acaagagcat	tgtggacagt	ggcaccacca	accttcgtt	gcccaagaaa	900
gtgtttgaag	ctgcagtcaa	atccatcaag	gcagcctct	ccacggagaa	gttccctgat	960
ggtttctggc	taggagagca	gctggtg	tggcaagcag	gcaccaccc	ttggaacatt	1020
ttcccgactca	tctcactcta	cctaattgggt	gagttacca	accagtctt	ccgcatcacc	1080
atccctccgc	agcaatacct	gcggccagtg	gaagatgtgg	ccacgtccca	agacgactgt	1140

tacaagtttg ccatctcaca gtcatccacg ggcaactgtta tgggagctgt tatcatggag	1200
ggcttctacg ttgtcttga tcgggcccga aaacgaattt gctttgtgt cagcgcttgc	1260
catgtgcacg atgagttcag gacggcagcg gtgaaaggcc cttttgtcac cttggacatg	1320
gaagactgtg gctacaacat tccacagaca gatgagtcaa ccctcatgac catagcctat	1380
gtcatggctg ccatctgcgc cctcttcatg ctgccactt gcctcatggt gtgtcagtgg	1440
cgtgcctcc gctgcctgcg ccagcagcat gatgactttg ctgatgacat ctcctgctg	1500
aag	1503

<210> 2
<211> 501
<212> PRT
<213> Homo sapiens

<400> 2	
Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val	
1 5 10 15	
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser	
20 25 30	
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp	
35 40 45	
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val	
50 55 60	
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr	
65 70 75 80	
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser	
85 90 95	
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr	
100 105 110	
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val	
115 120 125	
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp	
130 135 140	
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile	
145 150 155 160	
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp	
165 170 175	
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp	
180 185 190	
Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro	
195 200 205	
Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln	
210 215 220	
Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile	
225 230 235 240	
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg	
245 250 255	
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln	
260 265 270	
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val	
275 280 285	
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala	
290 295 300	
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp	
305 310 315 320	
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr	
325 330 335	
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val	
340 345 350	
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg	
355 360 365	
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala	

370	375	380
Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu		
385	390	395
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala		400
405	410	415
Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu		
420	425	430
Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro		
435	440	445
Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala		
450	455	460
Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp		
465	470	475
Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp		480
485	490	495
Ile Ser Leu Leu Lys		
500		

<210> 3
<211> 24
<212> DNA
<213> Homo sapiens

<400> 3
gagagacgar garccwagg agcc 24

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 4
gagagacgar garccwgaag agcc 24

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 5
gagagacgar garccwgaag aacc 24

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 6
gagagacgar garccwagg aacc 24

<210> 7
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 7
agagacgarg arccsgagga gcc 23

<210> 8
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 8
agagacgarg arccsgaaga gcc 23

<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 9
agagacgarg arccsgaaga acc 23

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 10
agagacgarg arccsgagga acc 23

<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 11
cgtcacagrt trtcaaccat ctc 23

<210> 12
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 12
cgtcacagrt trtctaccat ctc 23

<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 13
cgtcacagrt trtccaccat ctc 23

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 14
cgtcacagrt trtcgaccat ctc 23

<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 15
cgtcacagrt trtcaaccat ttc 23

<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 16
cgtcacagrt trtctaccat ttc 23

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 17
cgtcacagrt trtccaccat ttc 23

<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 18
cgtcacagrt trtcgaccat ttc 23

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 19
gaggggcagc tttgtggaga 20

<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 20
cagcataggc cagccccagg atgcct 26

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer derived from SEQ
ID NO: 2

<400> 21
gtgatggcag caatgttggc acgc 24

<210> 22

```
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 22
gaygargagc cngagga                                17

<210> 23
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 23
gaygargagc cngaaga                                17

<210> 24
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 24
gaygargaac cngagga                                17

<210> 25
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(17)
<223> n = A,T,C or G

<400> 25
```

gaygargaaac cngaaga	17
<210> 26	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(15)	
<223> n = A,T,C or G	
<400> 26	
rttrtcnacc atttc	15
<210> 27	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(15)	
<223> n = A,T,C or G	
<400> 27	
rttrtcnacc atctc	15
<210> 28	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(17)	
<223> n = A,T,C or G	
<400> 28	
tcnaccatyt cnacaaa	17
<210> 29	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(17)	

<223> n = A,T,C or G

<400> 29
tcnaccatyt cnacgaa 17

<210> 30
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 30
atattctaga gaygargagc cagaaga 27

<210> 31
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 31
atattctaga gaygargagc cggaaga 27

<210> 32
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 32
atattctaga gaygargagc ccgaaga 27

<210> 33
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<400> 33
atattctaga gaygargagc ctgaaga 27

<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Degenerate oligonucleotide primer

<220>
<221> misc_feature
<222> (1)...(30)
<223> n = A,T,C or G

<400> 34	
acacgaattc ttrtcnacca tytcaacaaa	30
<210> 35	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(30)	
<223> n = A,T,C or G	
<400> 35	
acacgaattc ttrtcnacca tytcgacaaa	30
<210> 36	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(30)	
<223> n = A,T,C or G	
<400> 36	
acacgaattc ttrtcnacca tytccacaaa	30
<210> 37	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<220>	
<221> misc_feature	
<222> (1)...(30)	
<223> n = A,T,C or G	
<400> 37	
acacgaattc ttrtcnacca tytctacaaa	30
<210> 38	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Degenerate oligonucleotide primer	
<400> 38	

aagagcccg	ccggagggc	a	21			
<210>	39					
<211>	21					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Degenerate oligonucleotide primer					
<400>	39					
aaagctgcc	ctccggccgg	g	21			
<210>	40					
<211>	26					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Degenerate oligonucleotide primer					
<400>	40					
agctcgttt	gtgaaccgtc	agatcg	26			
<210>	41					
<211>	26					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Degenerate oligonucleotide primer					
<400>	41					
acctacaggt	ggggctttc	attccc	26			
<210>	42					
<211>	1368					
<212>	DNA					
<213>	Homo sapiens					
<400>	42					
gagaccgacg	aagagccga	ggagccggc	cggagggca	gctttgtgga	gatggtgac	60
aacctgaggg	gcaagtggg	gcagggtac	tacgtggaga	tgaccgtggg	cagcccccg	120
cagacgctca	acatccttgtt	ggatacaggc	agcagtaact	ttgcagtggg	tgctgcccc	180
caccccttcc	tgcatcgcta	ctaccagagg	cagctgtcca	gcacataccg	ggacctccgg	240
aagggtgtgt	atgtgcccta	cacccagggc	aagtgggaag	gggagctggg	caccgacctg	300
gtaagcatcc	cccatggccc	caacgtact	gtgcgtgcca	acattgctgc	catcaactgaa	360
tcagacaagt	tcttcataa	cggctccaac	tgggaaggca	tcctggggct	ggcctatgct	420
gagattgcca	ggcctgacga	ctccctggag	cctttctttg	actctcttgtt	aaagcagacc	480
cacgttccca	acctcttctc	cctgcagctt	tgtggtgctg	gcttccccct	caaccagtct	540
gaagtgctgg	cctctgtcgg	agggagcatg	atcattggag	gtatcgacca	ctcgctgtac	600

acaggcagtc tctggtatac acccatccgg cgggagtggt attatgaggt gatcattgtg	660
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag	720
agcattgtgg acagtggcac caccaacctt cgtttgcaca agaaagtgtt tgaagctgca	780
gtcaaatcca tcaaggcagc ctccctccacg gagaagttcc ctgatggttt ctggcttagga	840
gagcagctgg tgtgctggca agcaggcacc accccttggaa acatttccc agtcatctca	900
ctctacctaa tgggtgaggt taccaaccag tccttccgca tcaccatcct tccgcagcaa	960
tacctgcggc cagtggaaaga tgtggccacg tcccaagacg actgttacaa gtttgcac	1020
tcacagtcat ccacgggcac tgttatggaa gctgttatca tggagggctt ctacgttgc	1080
tttcatcgaaa cccgaaaaacg aattggctt gctgtcagcg cttgccatgt gcacgatgag	1140
ttcaggacgg cagcggtggaa aggccctttt gtacaccttgg acatggaaaga ctgtggctac	1200
aacattccac agacagatga gtcaaccctc atgaccatag cctatgtcat ggctgccatc	1260
tgcgcctct tcatactgccc actctgcctc atggtgtgtc agtggcgctg cctccgctgc	1320
ctgcgccagc agcatgatga ctggctgtat gacatctccc tgctgaag	1368

<210> 43
<211> 456
<212> PRT
<213> Homo sapiens

Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val	
1 5 10 15	
Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val	
20 25 30	
Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp	
35 40 45	
Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu	
50 55 60	
His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg	
65 70 75 80	
Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu	
85 90 95	
Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg	
100 105 110	
Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly	
115 120 125	
Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg	
130 135 140	
Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr	
145 150 155 160	
His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro	
165 170 175	
Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile	
180 185 190	
Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro	
195 200 205	
Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile	
210 215 220	

Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys
225				230					235					240	
Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val
				245					250				255		
Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys
				260				265			270				
Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala
				275			280			285					
Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met
				290			295			300					
Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
				305			310			315			320		
Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
				325				330			335				
Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val
				340				345			350				
Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile
				355				360			365				
Gly	Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala
				370			375			380					
Ala	Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr
				385			390			395			400		
Asn	Ile	Pro	Gln	Thr	Asp	Glu	Ser	Thr	Leu	Met	Thr	Ile	Ala	Tyr	Val
				405				410			415				
Met	Ala	Ala	Ile	Cys	Ala	Leu	Phe	Met	Leu	Pro	Leu	Cys	Leu	Met	Val
				420				425			430				
Cys	Gln	Trp	Arg	Cys	Leu	Arg	Cys	Leu	Arg	Gln	Gln	His	Asp	Asp	Phe
				435				440			445				
Ala	Asp	Asp	Ile	Ser	Leu	Leu	Lys								
				450			455								

<210> 44

<211> 2348

<212> DNA

<213> Homo sapiens

<400> 44

ccatgcccgc	ccctcacacgc	ccccgggga	gcccgagccc	gctgcccagg	ctggccgccc	60
csgtggcgt	gtagcgggct	ccggatccca	gcctctcccc	tgcctccgtg	ctctgcggat	120
ctccccctgac	cgctctccac	agccccggacc	cgggggctgg	cccagggccc	tgcaggccc	180
ggcgtcctga	tgcccccaag	ctccctctcc	tgagaagcca	ccagcaccac	ccagacttgg	240
ggcaggcgc	cagggacgga	cgtgggccag	tgcagggcca	gagggcccgaa	aggccggggc	300
ccacccatggc	ccaagccctg	ccctggctcc	tgcgtgtggat	gggcgcggga	gtgcgtgcctg	360
cccacggcac	ccagcacccgc	atccggctgc	ccctgcgcag	cggccttgggg	ggcgcccccc	420
tggggctgctg	gctgccccgg	gagaccgacg	aagagccgaa	ggagcccgcc	cggagggggca	480
gttttgtgaa	gtatgtggac	aacctgaggg	gcaagtgcggg	gcagggtctac	tacgtggaga	540
tgaccgtggg	cagcccccgg	cagacgctca	acatccctgg	ggatacaggc	agcagtaact	600
ttgcagtggg	tgcgtcccccc	caccctttcc	tgcacatcgta	ctaccagagg	cagctgtccca	660
gcacataccg	ggaccccccgg	aagggtgtgt	atgtgcctta	caccctgggc	aagtggaaag	720
ggagactggg	caccgacccgt	gtaagcatcc	cccatggccc	caacgtca	gtgcgtgc	780
acattgtgc	catcaactgaa	tcagacaatgt	tcttcatcaa	cggctccaa	tgggaaggca	840
tcctggggct	ggccttatgt	gagattggca	ggcctgacga	ctccctggag	cotttcttt	900
actctctgtt	aaagcagacc	cacgttccca	acctttctc	cctgcagctt	tgtggtgctg	960
gtttccccct	caaccaggct	gaagtgtgg	cctctgtcgg	agggagcatg	atcattggag	1020
gtatcgacca	ctcgctgtac	acaggcagtc	tctggatatac	acccatccgg	cgggagtggt	1080
attatgaggt	gtcattgtg	cgggtggaga	tcaatggaca	ggatctgaaa	atggactgca	1140
aggagtacaa	ctatgacaag	agcattgtgg	acagtggcac	caccaacctt	cgtttggcc	1200
agaaagtgtt	tgaagctgca	gtcaaataa	tcaaggcagc	ctcctccacg	gagaagttcc	1260
ctgatggttt	ctggcttagga	gagcagctgg	tgtgctggca	agcaggcacc	acccttggga	1320
acatttcc	agtcatctca	ctctaccaa	tgggtgaggt	taccaaccag	tccctccgca	1380
tcaccatcct	tccgcagcaa	tacctgcggc	cagtggaaaga	tgtggccacg	tcccaagacg	1440

actgttacaa	gtttgccatc	tcacagtcat	ccacgggcac	tgttatggg	gctgttatca	1500
tggagggctt	ctacgttgc	tttgatcggg	cccggaaaacg	aattggctt	gtgtcagcg	1560
cttgcctatgt	gcacgatgag	ttcaggacgg	cagcgggtgg	aggcccttt	gtcaccccttgg	1620
acatggaaaga	ctgtggctac	aacattccac	agacagatga	gtcaaccctc	atgaccatag	1680
cctatgtcat	ggctgccatc	tgccgcctct	tcatgctgcc	actctgcctc	atggtgtgtc	1740
agtggcgctg	cctccgctgc	ctgcccagc	agcatgatga	ctttgtgtat	gacatctccc	1800
tgctgaagtg	aggaggcccc	tggcagaag	ata gagat	ccctggacca	cacccctcg	1860
gttcactttt	gtcacaagta	ggagacacag	atggcacctg	tggccagagc	acctcaggac	1920
cctccccacc	caccaaattgc	ctctgcctt	atggagaagg	aaaaggctgg	caaggtgggt	1980
tcagggact	gtacctgttag	gaaacagaaa	agagaagaaa	gaagcactct	gctggcgggg	2040
atactctgg	tcacccatcaaa	ttaagtccgg	gaaattctgc	tgcttggaaac	ttcagccctg	2100
aacctttgtc	caccattccct	ttaaattctc	caacccaaag	tattcttctt	ttcttagttt	2160
cagaagtaact	ggcatcacac	gcagggttacc	ttggcgtgtg	tccctgtgg	accctggcag	2220
agaagagacc	aagctgtttt	ccctgctggc	caaagtca	aggagaggat	gcacagttt	2280
ctatggctt	tagagacagg	gactgtataa	acaagctaa	cattggtgca	aagattgcct	2340
cttgaatt						2348

<210> 45
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Flag sequence

<400> 45
Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 46
<211> 21
<212> PRT
<213> Homo sapiens

<400> 46
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly
20

<210> 47
<211> 24
<212> PRT
<213> Homo sapiens

<400> 47
Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala
1 5 10 15
Pro Leu Gly Leu Arg Leu Pro Arg
20

<210> 48
<211> 16080
<212> DNA
<213> Artificial Sequence

<220>
<223> Expression Vector pCEK

<220>
<221> misc_feature

<222> (1)...(16080)
<223> n = A,T,C or G

<400> 48

ttctcatgtt tgacagctta tcatcgaga tccggcaac gttgttgc	tgctgcaggc	60
gcagaactgg taggtatgga agatccgatg tacggccag	atatacgcgt	120
tattgactag ttattaatag taatcaatta cgggtcatt	agttcatagc	180
agttccgcgt tacataactt acggtaatg gcccgcctgg	ctgaccgccc	240
gcccattgac gtcaataatg acgtatgtt ccatagtaac	gccaataggg	300
gacgtcaatg ggtggactat ttacggtaaa ctggccactt	ggcagtagat	360
atatgccaag tacgccccct attgacgtca atgacggtaa	atggccgc	420
cccaagtacat gaccttatgg gacttccta cttggcagta	catctacgt	480
ctattaccat ggtgatgcgg ttttggcagt acatcaatgg	gcgtggatag	540
cacggggatt tccaagtctc caccggattt acgtcaatgg	gagtttgtt	600
atcaacggga ctttccaaaa tgcgttaaca actccgcccc	attgaocaa	660
ggcgtgtacg gtgggagggtc tatataagca gagtcctctg	gctaactaga	720
cttactgggt tatcaaattt aatacgactc actataggga	gacccaagct	780
cgcgggttag gacaacttc tgcgggttcc tccagttactc	ttggatcga	840
cctccgaacg gtactccgac accgagggtc ctgagcgagt	ccgcacatcgac	900
aacctctcgat ctgttgggtt gaggactccc tctcaaaaagc	gggcatgact	960
gattgtcagt ttccaaaaac gaggaggatt tgatattcac	ctggccgcg	1020
tgagggtggc cgcgtccatc tggtcagaaa agacaatttt	tttggtgtca	1080
gtggcagggt tgagatctgg ccatacactt gagtgacaaat	gacatccact	1140
ctccacaggt gtccactccc aggtcaact gcaggctcgc	tctagaccccg	1200
cagatatcca tcacactggc cgcactcgtc cccagccgc	ccgggagctg	1260
gctggattat ggtggctga gcagccaacg cagggcgcagg	agccggagc	1320
gcccgccgcg ccgcccgcg gggggacccag ggaagccgc	accggccgc	1380
cctcccaagcc ccggccggag cccgcgcgcg ctggccagggc	tggccgcgc	1440
tagcgggctc cggatcccag cctctccctt gctccgtgc	tctgcggatc	1500
gctctccaca gcccggaccc gggggctggc ccagggccct	gcaggccctg	1560
gcccccaagc tcccttcctt gagaagccac cagcaccacc	cagacttggg	1620
agggacggac gtgggcccagt gcgagccacg aggcccggaa	ggccggggcc	1680
caagccctgc cctggcttctt gctgtggatg ggcgcggag	tgctgcctgc	1740
cagcacggca tccggctgccc cctgcgcacgc ggcttgggg	gcgccccctt	1800
ctgccccggg agaccgacga agagcccgag gagcccgcc	ggagggcag	1860
atggtgaca acctgagggg caagtccggg cagggctact	acgtggagat	1920
agccccccgc agacgctcaa catccctggt gatacaggca	gcagtaactt	1980
gctgcccccc acccccttctt gcatcgatc taccagaggc	agctgtccag	2040
gacctccgga agggtgtgtt tgcgtccatc acccaggcga	agtggaaagg	2100
accgacctgg taagcatccc ccatggcccc aacgtcaact	tgctgccttca	2160
atcaactgaat cagacaagtt ttccatcaac ggctccaact	ggaaaggcat	2220
gctatgtct agattggccag gcctgacgac tccctggagc	ctttcttga	2280
aagcagaccc acgtttccaa cctcttcctt ctgcagctt	ctctctggta	2340
aaccagtctg aagtgtggc ctctgtcgga gggagcatga	ttgggtgctgg	2400
tcgctgtaca caggcagtct ctggatataca cccatccggc	tcattggagg	2460
atattgtgc gggtgagat caatggacag gatctaaaaa	tatcgaccac	2520
tatgacaaga gcattgtggc cagttggcacc accaaccttc	ttatgagggtc	2580
gaagctgcag tcaaattccat caaggcagcc tcctccacgg	gaaagtgttt	2640
tggtcttaggag agcagctggt gtgtggcaac gcaggccacca	ccctttggaa	2700
gtcatctcac tctacctaattt gggtgagggtt accaaccagt	cattttccca	2760
ccgcagcaat acctgcggcc agtggaaagat gtggccacgt	caccatcctt	2820
tttgcctatct cacagtcatc cacgggcactt gttatgggg	ctgttatcat	2880
tacgttgtct ttgatcgggc ccgaaaacgaa attggctttt	ggagggcttc	2940
cacgatgagt tcaggacggc acgggtggaa gccccttttgc	ctgtcagcgc	3000
tgtggctaca acattccaca gacagatgag tcaaccctca	ttgcatgttca	3060
gctgcccattt gccccttcatcgtgcac ctctgcctca	catggaagac	3120
ctccgcgtcc tgcgccttgc gcatgtgac tttgtgtatg	ctatgtcatg	3180
ggaggcccat gggcagaaga tagagattcc cctggaccac	gtggcgctgc	3240
tcacaagtag gagacacaga tggcacctgt gcccggagca	ttcaactttgg	3300
accaaattgcc tctgccttga tggagaagga aaaggctgg	ccagggactg	3360

tacctgttagg	aaacagaaaa	gagaagaaa	aagca	c	ctggcggaa	tactcttgg	3420											
caccta	aat	ttaa	gtcg	gaa	attctgc	gt	tcagcc	tga	actt	ttgt	cc	3480						
accattc	cctt	taa	attctcc	aac	ccaa	agt	attctt	ttt	tcttag	ttc	aga	agtact	3540					
gcatcacac	g	cagg	ttac	ct	tgg	gtgt	gt	cc	ctgt	ggta	cc	ctggcaga	3600					
agctt	gtt	c	c	tgg	cc	aa	gtc	gat	ggat	g	ca	ca	3660					
agagac	agg	g	act	gtata	aa	ca	agc	tta	ac	at	tggt	ca	3720					
aaaaaa	act	aa	att	gtact	ttt	tata	caaa	tgg	ggc	g	at	ttga	at	aa	3780			
ggagt	aca	aa	gac	agg	ga	at	gtggat	ca	a	act	tag	aa	agg	gag	3840			
accagt	cct	ta	ttt	tag	ac	c	tat	ctcc	aa	gat	ac	cat	cc	aca	acc	3900		
gtttca	at	ttt	ttt	ttc	tgt	gtt	gtc	ga	cc	gt	gac	aa	a	gt	gggt	3960		
atctag	ccaa	ag	ag	ctt	ttt	ta	tt	at	gt	ca	act	aa	g	tt	cc	4020		
ttaacacat	g	at	ttt	c	tc	at	ttt	at	ta	ttt	at	ct	gaa	cc	ctt	att	4080	
tacatat	gt	agg	cac	act	aa	at	at	cct	aa	ac	cc	cct	aa	gt	cc	ttgg	4140	
gagca	act	gg	act	at	at	ag	ca	gg	gg	gt	tt	cc	ct	gt	gg	gg	4200	
ccaaat	at	c	c	tc	tgg	gag	g	ttt	gc	ag	gt	cc	act	aa	ga	gtt	cc	4260
ttctat	ctaa	tc	ctt	aaa	aa	cata	at	gtt	gg	aa	catt	tc	ac	g	ct	ta	taa	4320
cccctgc	ctg	ttt	c	tcc	tcc	tatt	agg	gt	ct	ta	aa	gt	at	ctt	ttt	ac	at	4380
gagtgg	ttt	c	tt	tc	tcc	tct	c	at	gg	cc	cct	cc	at	ttt	ttt	ttt	ttt	4440
tcacac	at	gt	gc	act	ag	ca	tt	at	ca	aa	gt	gag	aa	ta	at	gt	ct	4500
acattact	gc	tt	tc	at	tc	at	tt	gg	ct	cc	ct	gg	aa	gg	cc	ct	cc	4560
tatgtc	c	tc	c	cc	c	cc	tt	tt	cc	cc	cc	cc	cc	cc	cc	cc	cc	4620
ccccc	cccc	cc	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	4680
gacca	ag	tt	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	4740
ggga	ag	gg	ttt	cc	t	tt	tt	cc	t	tt	cc	t	tt	cc	t	tt	cc	4800
tgcttcc	c	agg	cc	tt	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	4860
aggagg	cc	ct	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	cc	tt	4920
caaga	ata	ct	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	tt	4980
cttgg	ct	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5040
cacttct	at	tc	gg	aa	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5100
aatgcc	ccat	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5160
ccttcc	cagg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5220
ttaa	agaaaa	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5280
taaact	ctaa	gt	tttt	aaaa	aa	gt	tta	cc	ttt	cc	ttt	cc	ttt	cc	ttt	cc	ttt	5340
atacat	ctgt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5400
catttgg	gg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5460
ggaga	agg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	5520
aaagag	taac	act	gggg	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	5580
caagag	tttt	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	5640
ttttt	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	cc	5700
cttact	cc	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5760
cactcat	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5820
gctgct	gt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	5880
taaaca	aaaa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	5940
tactaac	ct	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6000
tccagct	c	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6060
taaact	gt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6120
gaaga	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6180
tact	gt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6240
ttatata	ata	gn	nnnnnnnn	nnnnnnnn	nnnnnnnn	nn	nt	cg	ag	cat	gt	at	tc	at	gc	ac	tg	6300
tatagt	gt	cc	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6360
agccat	ctgt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6420
ctgtc	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6480
ttctgg	gg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6540
atgctt	gg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6600
gggg	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6660
ggatc	t	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6720
gttcc	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6780
ttttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6840
ttttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6900
tcttta	at	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	6960
ttttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	ttt	7020

aacaaaaatt	taacgcgaat	tctagagccc	cggccgcgga	cgaactaaac	ctgactacgg	7080
catctctgc	ccttcttcgc	ggggcagtgc	atgtaatccc	ttcagtttgt	tggtacaact	7140
tgccaactgg	gccctgtcc	acatgtgaca	cgggggggga	ccaaacacaa	aggggttctc	7200
tgactgttagt	tgacatcctt	ataaatggat	gtgcacattt	gccaacactg	agtggcttc	7260
atccctggagg	agactttgca	gtctgtggac	tgcaacacaa	cattgcctt	atgtgttaact	7320
cttggctgaa	gctcttacac	caatgtggg	ggacatgtac	ctccccagggg	cccaggaaga	7380
ctacgggagg	ctacaccaac	gtcaatcaga	ggggcctgtg	tagtaccga	taagcggacc	7440
ctcaagaggg	cattagcaat	agtgtttata	aggccccctt	gttaacccta	aacgggttagc	7500
atatgctcc	cgggttagtag	tatatactat	ccagactaac	cctaattcaa	tagcatatgt	7560
tacccaacgg	gaagcatatg	ctatcgattt	agggttagta	aaagggtctt	aaggaacacg	7620
gatatctccc	acccatgag	ctgtcacgg	tttatttaca	tggggtcagg	attccacgag	7680
ggtagtgaac	cattttagtc	acaagggcag	tggctgaaga	tcaaggagcg	ggcagtgaac	7740
tctcctgaat	cttcgcctgc	tttttcattt	tccttcgttt	agctaata	gataactgtg	7800
agttgtgaac	agtaaagggt	atgtgaggtt	ctcgaaaaca	aggtttcagg	tgacgcccc	7860
agaataaaaat	ttggacgggg	ggttcagtgg	tggcattgtg	ctatgacacc	aatataaccc	7920
tcacaaaccc	cttgggcaat	aaataactagt	gttaggaatga	aacattctga	atatcttaa	7980
caatagaaat	ccatgggggt	gggacaagcc	gtaaagactg	gatgtccatc	tcacacgaat	8040
ttatggctat	ggcaacaca	taatccatgt	gcaatatgt	actgggtta	ttaagatgtg	8100
tcccaggcag	ggaccaagac	aggtgaacca	tgttgcattt	ctcttattgt	aacaagggga	8160
aagagagtg	acggccacag	cagcggactc	cactgggtt	ctctaaccacc	cccgaaaatt	8220
aaacggggct	ccaccccaat	ggggccctata	aacaagaca	agtggccact	ctttttttt	8280
aaattgtgga	gtgggggcac	gctgtcagccc	ccacacgcgc	ccctgcgggt	ttggactgt	8340
aaataagggt	gtaataactt	ggctgattgt	aaccccgcta	accactgcgg	tcaaaccact	8400
tgcccacaaa	accactaatg	gcaccccccgg	gaatacctgc	ataagtaggt	gggcggggca	8460
agatagggc	gctgtgtctg	cgatctggag	gacaattac	acacacttgc	gcctgagcgc	8520
caagcacagg	gttgcatttgc	ctcatattca	cgaggtcgct	gagagcacgg	tggcttaatg	8580
ttgcccattgg	tagcatatac	tacccaaata	tctggatagc	atatgtctac	ctaatctata	8640
tctgggttagc	ataggctatc	ctaatctata	tctgggttagc	atatgtctac	ctaatctata	8700
tctgggttagt	atatgtctac	ctaatttata	tctgggttagc	ataggctatc	ctaatctata	8760
tctgggttagc	atatgtctac	ctaatctata	tctgggttagt	atatgtctac	ctaatctgt	8820
tccgggttagc	atatgtctac	ctaatagaga	ttagggtagt	atatgtctac	ctaatttata	8880
tctgggttagc	atatactacc	caaataatctg	gatagcatat	gctatctaa	tctatatctg	8940
gtagcatat	gctatctaa	tctatatctg	gtagcatat	gctatctaa	tctatatctg	9000
gtagcatat	gctatctaa	tctatatctg	gtagtatat	gctatctaa	tttatatctg	9060
gtagcatat	gctatctaa	tctatatctg	gtagcatat	gctatctaa	tctatatctg	9120
gtagtatat	gctatctaa	tctgtatccg	gtagcatat	gctatctca	tgcataataca	9180
gtcagcatat	gataccagt	agtagagttt	gagtgctatc	cttgcataat	gccgcccacct	9240
cccaaggggg	cgtgaatttt	cgctgtttgt	cctttccctg	catgtcggtt	gtccccattt	9300
ttaggtgaat	ttaaggaggc	caggctaaag	ccgtcgcatg	tctgattgt	caccaggtaa	9360
atgtcgctaa	tgtttccaa	cgcgagaagg	tgttgagcgc	ggagctgagt	gacgtgacaa	9420
catgggtatg	cccaattgcc	ccatgttggg	aggacaaaaa	tgttgacaag	acagatggcc	9480
agaaatacac	caacagcacg	catgtatgt	actggggatt	tattctttag	tgcgggggaa	9540
tacacggctt	ttaatacgt	tgaggggcgtc	tcctaacaag	ttacatcaat	cctgcccctt	9600
ctcacccctca	tctccatcac	ctccctcatc	tccgtcatct	ccgtcatcac	cctccgcggc	9660
agcccttcc	accataggt	gaaaccagggg	aggcaatct	actccatctgt	caaagctgca	9720
cacagtccac	ctgatattgc	aggttagggc	gggctttgtc	ataacaaggt	ccttaatcg	9780
atccctcaaa	acctcagcaa	atatactgt	ttgtaaaaag	accatgaaat	aacagacaaat	9840
ggactccctt	agcggcccg	gttggggcc	gggtccaggg	gccattccaa	aggggagacg	9900
actcaatgg	gtaagacgac	attgtggaaat	agcaagggca	gttcctcgcc	ttaggttga	9960
aaggggagg	ttactaccc	catatacgaa	cacaccggcg	acccaagttc	cttcgtcggt	10020
atgcctttct	acgtgactcc	tagccaggag	agctcttaaa	ccttctgc	tgttctcaaa	10080
tttcgggttg	gaacccctt	gaccacgt	ctttccaaac	cacccttctt	tttgcgcct	10140
gcctccatca	ccctgacccc	ggggtccagt	gcttgggcct	tctcttgggt	catctgcggg	10200
gcctcgctct	atcgctcccg	ggggcacgtc	aggctcacca	tctggggcac	cttcgttgggt	10260
gtattcaaa	taatcggtt	cccctacagg	gtggaaaaat	ggccttctac	ctggaggggg	10320
cctgcgcgg	ggagaccccg	atgtatgt	ctgactactg	ggactctgg	gcctcttttc	10380
tccacgtcca	cgacccctcc	ccctggctt	ttcacgactt	ccccccctgg	ctctttcacg	10440
tcctcttaccc	cggcgccctc	caactacctcc	tcgaccccccgg	cctccactac	cttcctcgacc	10500
ccggccctcca	ctgcctccctc	gaccccgcc	tccacccctct	gctctcgccc	ctccctgctcc	10560
tgcctccctt	cctgctccctg	ccccctctgc	ccctccctgt	cctgcccctc	ctgcccctcc	10620
tgcctccctg	cctccctgccc	ctccctgtcc	tgccccctct	gccccctctc	ctgctccctgc	10680

ccctcctgcc	cctcctcctg	ctcctgcccc	tcctgcccct	cctgctcctg	cccctcctgc	10740
ccctcctgt	cctgcccctc	ctgccccctc	tgtctctgcc	cctcctgctc	ctgccccctcc	10800
tgctcctgcc	cctcctgctc	ctgccccctc	tgccttctct	gcccctcctc	ctgctctgctc	10860
ccctcctgt	cctgcccctc	ctgccccctc	tgccttctct	gctcctgecc	ctcctctgctc	10920
tcctgcccct	cctgcccctc	ctgccccctc	tcctgctct	gcccctcctg	cccctctcc	10980
tgctcctgcc	cctcctcctg	ctcctgcccc	tcctgcccct	cctgcccctc	ctcctgctcc	11040
tgccccctct	gcccctcctc	ctgctcctgc	ccctcctct	gctcctgecc	ctcctgcccc	11100
tcctgcccct	cctcctgctc	ctgccccctc	tcctgctct	gcccctcctg	cccctctgc	11160
ccctcctgcc	cctcctcctg	ctcctgcccc	tcctcctgt	cctgcccctc	ctgctcctgc	11220
ccctcccgt	cctgctcctg	ctcctgtcc	accgtgggtc	cctttgcagc	caatgcaact	11280
tggacgttt	tgggtctcc	ggacaccatc	tctatgtctt	ggccctgatc	ctgagccgccc	11340
cggggctcc	ggtctccgc	ctcctgtcc	tcgtcccttt	ccccgtcctc	gtccatgggt	11400
atcacccct	cttctttgag	gtccactgcc	gcccggagct	tctgggtccag	atgtgtctcc	11460
cttctctcc	aggccatttc	caggtcttgt	acctggcccc	tcgtcagaca	tgattcacac	11520
taaaagagat	caatagacat	ctttattaga	cgacgctcag	tgaatacagg	gagtgcagac	11580
tcctgcccc	tccaacagcc	cccccacct	catccccctc	atggctcgt	tcagacagat	11640
ccaggtctga	aaattcccc	tcctccgaac	catcctcgta	ctcatcacca	attactcgca	11700
gcccggaaaa	ctcccgtga	acatcctcaa	gatttgcgtc	ctgagctca	agccaggcct	11760
caaattcctc	gtcccccttt	ttgctggacg	gtagggatgg	ggatttcgg	gaccctctct	11820
cttcctcttc	aaggtcacca	gacagagatg	ctactggggc	aacggaagaa	aagctgggtg	11880
cggcctgtga	ggatcagctt	atcgatgata	agctgtcaaa	catgagaatt	cttgaagacg	11940
aaagggcctc	gtgatacgcc	tattttata	ggtaatgtc	atgataataa	tggtttctta	12000
gacgtcaggt	ggcacttttc	ggggaaatgt	gcmcggaaacc	cttatttgc	tattttctta	12060
aatacattca	aatatgtatc	cgctcatgag	acaataaccc	tgataaatgc	ttcaataata	12120
ttgaaaagg	aagagtatga	gtattcaaca	tttccgtgtc	gcccttattc	ccttttttgc	12180
ggcattttgc	cttcctgttt	ttgctcaccc	agaaacgctg	gtgaaagtaa	aagatgctga	12240
agatcagttt	ggtgacacgag	tgggttacat	cgaactggat	ctcaacagcg	gtaagatcct	12300
tgagagttt	cgcggcgaag	aacgtttcc	aatgatgagc	acttttaaag	ttctgtctatg	12360
tggcgcggta	ttatcccgtg	ttgacgcgg	gcaagagcaa	ctcggtcgcc	gcatacacta	12420
ttctcagaat	gacttgggtt	agtactcacc	agtcacagaa	aagcatctta	cggatggcat	12480
gacagtaaga	gaattatgca	gtgctccat	aaccatgagt	gataacactg	cggccaactt	12540
acttctgaca	acgatcgag	gaccgaagga	gctaaccgct	ttttgcaca	acatggggga	12600
tcatgttaact	cgccttgatc	gttgggaacc	ggagctgaat	gaagccatac	caaacgacga	12660
gctgtacacc	acgatgcctg	cagcaatggc	aacaacgctt	cgcaaaactat	taactggcga	12720
actacttact	ctagcttccc	ggcaacaatt	aatagactgg	atggaggcgg	ataaagttgc	12780
aggaccactt	ctgcgctcgg	cccttccggc	tggctggttt	attgctgata	aatctggagc	12840
cgtgtacgt	gggtctcgcg	gtatcatgc	agcaactgggg	ccagatggta	agccctcccg	12900
tatcgtagtt	atctacacga	cggggagtc	gcaactatg	gatgaacgaa	atagacagat	12960
cgctgagata	ggtgccctcac	tgattaagca	ttgtaactg	tcagaccaag	tttactcata	13020
tatactttag	attgatttaa	aacttcattt	ttaatttaaa	aggatctagg	tgaagatcct	13080
ttttgataat	ctcatgacca	aaatcccta	acgtgagtt	tcgttccact	gagcgtcaga	13140
ccccgtagaa	aagatcaaag	gatcttctt	agatcctttt	tttctgcgcg	taatctgctg	13200
cttgcaaaca	aaaaaaccac	cgctaccagc	gggggtttgt	ttgcccgtac	aagagctacc	13260
aactttttt	ccgaaggtaa	ctggcttcag	cagagcgcag	ataccaaata	ctgtccttct	13320
atgttagccg	tagttaggcc	accacttcaa	gaactctgta	gcaccgccta	catacctcg	13380
tctgctaattc	ctgttaccag	tggctctgc	cagtggcgat	aagtctgtc	ttaccgggtt	13440
ggactcaaga	cgatagttac	cggataaggc	gcaagcggcg	ggctgaacgg	gggggttcgt	13500
cacacagccc	agcttggagc	gaacgaccta	caccgaactg	agataacctac	agcgtgagct	13560
atgagaaagc	gccacgctt	ccgaaggggag	aaaggcggac	aggtatccgg	taagcggcag	13620
ggtcggaaaca	ggagagcgc	cgagggagct	tccaggggaa	aacgccttgt	atctttataag	13680
tcctgtcggt	tttcgcccacc	tctgacttga	gcgtcgat	ttgtgtatgt	cgtcaggggg	13740
ggggagccta	tggaaaaaacg	ccagcaacgc	ggccttttta	cggttctcgg	ccttttgcgt	13800
cggcgcgtgc	ggctgtgga	gatggcgac	gcatggata	tgttctgcca	agggttgggt	13860
tgcgcattca	cagttctccg	caagaattga	ttgctccaa	ttcttggagt	ggtaatcccg	13920
ttagcgaggt	gccgcggct	tccattcagg	tcgaggtggc	ccggctccat	gcaccgcgac	13980
gcaacgcgg	gaggcagaca	aggtataggg	cggcgcctac	aatccatgcc	aacccgttcc	14040
atgtgtctgc	cgaggcggca	taaatcgccg	tgacgatcag	cggtccagt	atcgaagtt	14100
ggctgttaag	agccgcgagc	gatcctgaa	gctgtccctg	atggctgtca	tctacctgccc	14160
tggacagcat	ggcctgcaac	gccccatcc	cgatgcgc	ggaagcggaga	agaatcataa	14220
tggggaaaggc	catccagcct	cgcgtcgca	accccagcaa	gacgtagccc	agcgcgtcg	14280
ccgcctatgcc	ctgcttcatc	cccggtggcc	gttgcgtcg	tttgctggcg	gtgtccccgg	14340

aagaaatata	tttgcacatgtc	tttagttcta	tgtacacaca	aaccccgccc	agcgtttgt	14400
cattggcgaa	ttcgaacacg	cagatgcagt	cggggcggcg	cggtcccagg	tccacttcgc	14460
atattaagg	gacgcgtgt	gcctcgaaca	ccgagcgcacc	ctgcagcgcac	ccgcttaaca	14520
gcgtcaacag	cgtgccgcag	atcccggca	atgagatatg	aaaaagcctg	aactcaccgc	14580
gacgtctgtc	gagaagttc	tgatcgaaaa	gttcgacago	gtctccgacc	tgatgcagct	14640
ctcggagggc	gaagaatctc	gtgcttcag	cttcgatgt	ggaggcgtg	gatatgtct	14700
gccccgtaaa	atgctgcgcg	atggtttcta	caaagatcgt	tagtggatc	ggcactttgc	14760
atcggccgcg	ctccccgt	ccggaagtgc	ttgacattgg	gaaattcage	gagagcctga	14820
cctattgcat	ctccccccgt	gcacagggt	tcacgttgca	agacctgcct	gaaaccgaac	14880
tgccccgtgt	tctgcagccg	gtcgcggagg	ccatggatgc	gatgcgtgcg	gccgatctta	14940
gccagacgag	cgggttcggc	ccattcggac	cgcaaggaat	cggtaataac	actacatggc	15000
gtgatttcat	atgcgcgatt	gctgatcccc	atgtgtatca	ctggcaaaact	gtgatggacg	15060
acaccgttag	tgcgccgtc	gcmcaggctc	tcatggatct	gatgcgttgg	gccgaggact	15120
gccccgaagt	ccggcacctc	gtgcacgcgg	atttcggctc	caacaatgtc	ctgacggaca	15180
atggccgcat	aacagcggtc	attgactgga	gcgaggcgat	gttcggggat	tcccaatacg	15240
aggtcgccaa	catcttcttc	tggaggccgt	ggttggcggg	tatggagcag	cagacgcgt	15300
acttcgagcg	gaggcatccg	gagcttgcag	gatcgcgcgc	gtccgggcg	tatatgtcc	15360
gcatttgcgt	tgaccaactc	tatcagatct	tgggtgacgg	caatttcgt	gatgcagctt	15420
gggcgcaggg	tcgatgcgc	gcaatcgcc	gatccggagc	cgggactgtc	gggcgtacac	15480
aaatcgcccg	cagaagcgcg	gccgtctgga	ccgatggctg	tgtagaagta	ctcgccgata	15540
gtggaaacgg	gagatggggg	aggctaactg	aaacacggaa	ggagacaata	ccggaaggaa	15600
cccgcgctat	gacggcaata	aaaagacaga	ataaaacgca	cgggtgttgg	gtcggttgg	15660
cataaacgcg	gggttcggc	ccagggctgg	cactctgtcg	atacccccacc	gagaccccat	15720
tggggccaat	acgcccgcgt	ttcttcctt	tcccccaccc	acccccaag	ttcgggtgaa	15780
ggcccagggc	tcgcagccaa	cgtcggggcg	gcaggccctg	ccatagccac	tggcccggt	15840
ggttagggac	ggggcccccc	atgggaatg	gttatggtt	cgtgggggtt	attatttgg	15900
gcgttgcgt	gggtctggc	cacgactgga	ctgagcagac	agacccatgg	ttttggatg	15960
gcctgggcat	ggaccgcatg	tactggcgcg	acacgaacac	cgggcgtctg	tggctgccaa	16020
acaccccccga	cccccaaaaa	ccaccgcgcg	gatttctggc	gtgccaagct	agtgcaccaa	16080

<210> 49

<211> 32

<212> DNA

<213> Homo sapiens

<400> 49

cccgccgga gggcagctt tgtggagatg gt

32

<210> 50

<211> 11

<212> PRT

<213> Homo sapiens

<400> 50

Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val	Glu	Met	Val
1					5				10	

<210> 51

<211> 5

<212> PRT

<213> Homo sapiens

<400> 51

Val	Asn	Leu	Asp	Ala
1			5	

<210> 52

<211> 9

<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic oligopeptide substrate

<400> 52
Ser Glu Val Asn Leu Asp Ala Glu Phe
1 5

<210> 53
<211> 30
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic oligopeptide substrate

<400> 53
Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile
1 5 10 15
Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu Phe
20 25 30

<210> 54
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<223> Wild type Amyloid Precursor Protein cleavage site
(fragment)

<400> 54
Val Lys Met Asp Ala
1 5

<210> 55
<211> 24
<212> PRT
<213> Homo sapiens

<400> 55
Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
1 5 10 15
Glu Met Val Asp Asn Leu Arg Gly
20

<210> 56
<211> 15
<212> PRT
<213> Homo sapiens

<400> 56
Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg
1 5 10 15

<210> 57
<211> 419
<212> PRT
<213> Homo sapiens

<400> 57

Met	Ala	Gln	Ala	Leu	Pro	Trp	Leu	Leu	Leu	Trp	Met	Gly	Ala	Gly	Val
1				5				10					15		
Leu	Pro	Ala	His	Gly	Thr	Gln	His	Gly	Ile	Arg	Leu	Pro	Leu	Arg	Ser
			20					25					30		
Gly	Leu	Gly	Gly	Ala	Pro	Leu	Gly	Leu	Arg	Leu	Pro	Arg	Glu	Thr	Asp
			35					40				45			
Glu	Glu	Pro	Glu	Glu	Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val	Glu	Met	Val
			50					55				60			
Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val	Glu	Met	Thr
			65					70			75		80		
Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp	Thr	Gly	Ser
								85			90		95		
Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu	His	Arg	Tyr
								100			105		110		
Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg	Lys	Gly	Val
								115			120		125		
Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu	Gly	Thr	Asp
								130			135		140		
Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg	Ala	Asn	Ile
								145			150		155		160
Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	Ser	Asn	Trp
								165			170		175		
Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	Pro	Asp	Asp
								180			185		190		
Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	His	Val	Pro
								195			200		205		
Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro	Leu	Asn	Gln
								210			215		220		
Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile	Gly	Gly	Ile
								225			230		235		240
Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro	Ile	Arg	Arg
								245			250		255		
Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile	Asn	Gly	Gln
								260			265		270		
Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser	Ile	Val
								275			280		285		
Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe	Glu	Ala
								290			295		300		
Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe	Pro	Asp
								305			310		315		320
Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly	Thr	Thr
								325			330		335		
Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	Gly	Glu	Val
								340			345		350		
Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr	Leu	Arg
								355			360		365		
Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	Lys	Phe	Ala
								370			375		380		
Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val	Ile	Met	Glu
								385			390		395		400
Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile	Gly	Phe	Ala
								405			410		415		
Val	Ser	Ala													

<210> 58
<211> 407
<212> PRT
<213> Homo sapiens

<400> 58

Glu	Thr	Asp	Glu	Glu	Pro	Glu	Glu	Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val
1			5						10					15	
Glu	Met	Val	Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val
	20							25					30		
Glu	Met	Thr	Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp
	35						40					45			
Thr	Gly	Ser	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu
	50						55					60			
His	Arg	Tyr	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg
	65						70			75			80		
Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu
								85		90			95		
Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg
	100						105					110			
Ala	Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly
	115						120					125			
Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg
	130						135					140			
Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr
	145						150					155			160
His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro
								165		170				175	
Leu	Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile
								180		185				190	
Gly	Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro
	195						200					205			
Ile	Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile
	210						215					220			
Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys
	225						230					235			240
Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val
							245					250			255
Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys
							260					265			270
Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala
	275						280					285			
Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met
	290						295					300			
Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
	305						310					315			320
Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
							325					330			335
Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val
							340					345			350
Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile
							355					360			365
Gly	Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala
							370					375			380
Ala	Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr
	385						390					395			400
Asn	Ile	Pro	Gln	Thr	Asp	Glu									
						405									

<210> 59
<211> 452
<212> PRT
<213> Homo sapiens

<400> 59

Met Ala Gln Ala Leu Pro Trp Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190
Ser Leu Glu Pro Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205
Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220
Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380
Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415
Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430
Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445
Gln Thr Asp Glu
450

<210> 60

<211> 420
<212> PRT
<213> Homo sapiens

<400> 60
Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15
Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190
Ser Leu Glu Pro Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205
Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220
Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380
Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415
Val Ser Ala Cys
420

<210> 61

<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic peptide inhibitor

<220>
<221> MOD_RES
<222> 4
<223> Xaa = hydroxyethylene

<400> 61
Glu Val Met Xaa Ala Glu Phe
1 5

<210> 62
<211> 26
<212> PRT
<213> Homo sapiens

<400> 62
Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met
1 5 10 15
Leu Pro Leu Cys Leu Met Val Cys Gln Trp
20 25

<210> 63
<211> 33
<212> PRT
<213> Homo sapiens

<220>
<223> P26-P4'sw peptide substrate

<400> 63
Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu
1 5 10 15
Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Asp Ala Glu
20 25 30
Phe

<210> 64
<211> 29
<212> PRT
<213> Homo sapiens

<220>
<223> P26-P1' peptide substrate with CGG linker

<400> 64
Cys Gly Gly Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu
1 5 10 15
Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Asn Leu
20 25

<210> 65
<211> 501
<212> PRT
<213> Mus musculus

<400> 65

Met Ala Pro Ala Leu His Trp Leu Leu Leu Trp Val Gly Ser Gly Met
1 5 10 15
Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30
Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45
Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60
Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80
Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95
Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110
Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125
Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140
Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160
Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175
Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190
Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Ile Pro
195 200 205
Asn Ile Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220
Thr Glu Ala Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240
Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255
Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270
Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285
Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300
Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320
Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335
Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350
Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365
Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380
Val Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400
Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415
Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430
Gly Pro Phe Val Thr Ala Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445
Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460
Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp

465	470	475	480
Arg Cys Leu Arg Cys	Leu Arg His Gln His	Asp Asp Phe Gly Asp Asp	
485	490	495	
Ile Ser Leu Leu Lys			
500			

<210> 66
<211> 480
<212> PRT
<213> Homo sapiens

<400> 66			
Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala			
1 5 10 15			
Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu			
20 25 30			
Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly			
35 40 45			
Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro			
50 55 60			
Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val			
65 70 75 80			
Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu			
85 90 95			
Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr			
100 105 110			
Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro			
115 120 125			
His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu			
130 135 140			
Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly			
145 150 155 160			
Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe			
165 170 175			
Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu			
180 185 190			
Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala			
195 200 205			
Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr			
210 215 220			
Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu			
225 230 235 240			
Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp			
245 250 255			
Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr			
260 265 270			
Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile			
275 280 285			
Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly			
290 295 300			
Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe			
305 310 315 320			
Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe			
325 330 335			
Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val			
340 345 350			
Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser			
355 360 365			
Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val			
370 375 380			
Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His			

385	390	395	400
Val His Asp Glu Phe Arg Thr Ala Ala Val	Glu Gly Pro Phe Val Thr		
405	410	415	
Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser			
420	425	430	
Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe			
435	440	445	
Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys			
450	455	460	
Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys			
465	470	475	480

<210> 67

<211> 444

<212> PRT

<213> Homo sapiens

<400> 67

Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln			
1	5	10	15
Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn			
20	25	30	
Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro			
35	40	45	
His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr			
50	55	60	
Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp			
65	70	75	80
Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn			
85	90	95	
Val Thr Val Arg Ala Asn Ile Ala Ile Thr Glu Ser Asp Lys Phe			
100	105	110	
Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala			
115	120	125	
Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu			
130	135	140	
Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly			
145	150	155	160
Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly			
165	170	175	
Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu			
180	185	190	
Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val			
195	200	205	
Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr			
210	215	220	
Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu			
225	230	235	240
Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser			
245	250	255	
Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val			
260	265	270	
Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser			
275	280	285	
Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile			
290	295	300	
Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln			
305	310	315	320
Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val			
325	330	335	

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
 340 345 350
 Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
 355 360 365
 Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
 370 375 380
 Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr
 385 390 395 400
 Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu
 405 410 415
 Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln
 420 425 430
 His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys
 435 440

<210> 68
 <211> 395
 <212> PRT
 <213> Homo sapiens

<400> 68

Gly	Ser	Phe	Val	Glu	Met	Val	Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln
1				5					10					15	
Gly	Tyr	Tyr	Val	Glu	Met	Thr	Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn
					20			25					30		
Ile	Leu	Val	Asp	Thr	Gly	Ser	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro
					35			40					45		
His	Pro	Phe	Leu	His	Arg	Tyr	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr
					50			55			60				
Arg	Asp	Leu	Arg	Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp
					65			70			75			80	
Glu	Gly	Glu	Leu	Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn
					85				90				95		
Val	Thr	Val	Arg	Ala	Asn	Ile	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	
					100			105					110		
Phe	Ile	Asn	Gly	Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala
					115			120					125		
Glu	Ile	Ala	Arg	Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu
					130			135			140				
Val	Lys	Gln	Thr	His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly
					145			150			155			160	
Ala	Gly	Phe	Pro	Leu	Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly
					165				170				175		
Ser	Met	Ile	Ile	Gly	Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu
					180				185				190		
Trp	Tyr	Thr	Pro	Ile	Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val
					195			200			205				
Arg	Val	Glu	Ile	Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr
					210			215			220				
Asn	Tyr	Asp	Lys	Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu
					225			230			235			240	
Pro	Lys	Lys	Val	Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser
					245				250			255			
Ser	Thr	Glu	Lys	Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val
					260			265			270				
Cys	Trp	Gln	Ala	Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser
					275			280			285				
Leu	Tyr	Leu	Met	Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile
					290			295			300				
Leu	Pro	Gln	Gln	Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln

305	310	315	320
Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val			
325	330	335	
Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala			
340	345	350	
Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu			
355	360	365	
Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu			
370	375	380	
Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu			
385	390	395	

<210> 69
<211> 439
<212> PRT
<213> Homo sapiens

<400> 69	<400> 69	<400> 69	
Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu			
1	5	10	15
Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr			
20	25	30	
Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His			
35	40	45	
Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys			
50	55	60	
Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly			
65	70	75	80
Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala			
85	90	95	
Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser			
100	105	110	
Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro			
115	120	125	
Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His			
130	135	140	
Val Pro Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu			
145	150	155	160
Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly			
165	170	175	
Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile			
180	185	190	
Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn			
195	200	205	
Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser			
210	215	220	
Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe			
225	230	235	240
Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe			
245	250	255	
Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly			
260	265	270	
Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly			
275	280	285	
Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr			
290	295	300	
Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys			
305	310	315	320
Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile			
325	330	335	
Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly			

	340	345	350												
Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala	Ala
		355					360					365			
Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr	Asn
		370				375					380				
Ile	Pro	Gln	Thr	Asp	Glu	Ser	Thr	Leu	Met	Thr	Ile	Ala	Tyr	Val	Met
		385				390				395			400		
Ala	Ala	Ile	Cys	Ala	Leu	Phe	Met	Leu	Pro	Leu	Cys	Leu	Met	Val	Cys
		405				410					415				
Gln	Trp	Arg	Cys	Leu	Arg	Cys	Leu	Arg	Gln	Gln	His	Asp	Asp	Phe	Ala
		420				425					430				
Asp	Asp	Ile	Ser	Leu	Leu	Lys									
		435													

<210> 70
<211> 390
<212> PRT
<213> Homo sapiens

	<400> 70														
Met	Val	Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val	Glu
						5			10			15			
Met	Thr	Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp	Thr
						20			25			30			
Gly	Ser	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu	His
						35			40			45			
Arg	Tyr	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg	Lys
						50			55			60			
Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu	Gly
						65			70			75			80
Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg	Ala
						85			90			95			
Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly	Ser
						100			105			110			
Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg	Pro
						115			120			125			
Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr	His
						130			135			140			
Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro	Leu
						145			150			155			160
Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile	Gly
						165			170			175			
Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro	Ile
						180			185			190			
Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile	Asn
						195			200			205			
Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys	Ser
						210			215			220			
Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val	Phe
						225			230			235			240
Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys	Phe
						245			250			255			
Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala	Gly
						260			265			270			
Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met	Gly
						275			280			285			
Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln	Tyr
						290			295			300			
Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr	Lys
						305			310			315			320
Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val	Ile

	325	330	335												
Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile	Gly
			340				345								350
Phe	Ala	Val	Ser	Ala	Cys	His	Val	His	Asp	Glu	Phe	Arg	Thr	Ala	Ala
			355				360								365
Val	Glu	Gly	Pro	Phe	Val	Thr	Leu	Asp	Met	Glu	Asp	Cys	Gly	Tyr	Asn
			370				375								380
Ile	Pro	Gln	Thr	Asp	Glu										
			385				390								
<210> 71															
<211> 374															
<212> PRT															
<213> Homo sapiens															
<400> 71															
Glu	Thr	Asp	Glu	Glu	Pro	Glu	Glu	Pro	Gly	Arg	Arg	Gly	Ser	Phe	Val
	1			5				10							15
Glu	Met	Val	Asp	Asn	Leu	Arg	Gly	Lys	Ser	Gly	Gln	Gly	Tyr	Tyr	Val
									20	25					30
Glu	Met	Thr	Val	Gly	Ser	Pro	Pro	Gln	Thr	Leu	Asn	Ile	Leu	Val	Asp
			35			40				45					
Thr	Gly	Ser	Ser	Asn	Phe	Ala	Val	Gly	Ala	Ala	Pro	His	Pro	Phe	Leu
			50			55				60					
His	Arg	Tyr	Tyr	Gln	Arg	Gln	Leu	Ser	Ser	Thr	Tyr	Arg	Asp	Leu	Arg
										65	70				80
Lys	Gly	Val	Tyr	Val	Pro	Tyr	Thr	Gln	Gly	Lys	Trp	Glu	Gly	Glu	Leu
										85	90				95
Gly	Thr	Asp	Leu	Val	Ser	Ile	Pro	His	Gly	Pro	Asn	Val	Thr	Val	Arg
										100	105				110
Ala	Asn	Ile	Ala	Ala	Ile	Thr	Glu	Ser	Asp	Lys	Phe	Phe	Ile	Asn	Gly
										115	120				125
Ser	Asn	Trp	Glu	Gly	Ile	Leu	Gly	Leu	Ala	Tyr	Ala	Glu	Ile	Ala	Arg
										130	135				140
Pro	Asp	Asp	Ser	Leu	Glu	Pro	Phe	Phe	Asp	Ser	Leu	Val	Lys	Gln	Thr
										145	150				160
His	Val	Pro	Asn	Leu	Phe	Ser	Leu	Gln	Leu	Cys	Gly	Ala	Gly	Phe	Pro
										165	170				175
Leu	Asn	Gln	Ser	Glu	Val	Leu	Ala	Ser	Val	Gly	Gly	Ser	Met	Ile	Ile
										180	185				190
Gly	Gly	Ile	Asp	His	Ser	Leu	Tyr	Thr	Gly	Ser	Leu	Trp	Tyr	Thr	Pro
										195	200				205
Ile	Arg	Arg	Glu	Trp	Tyr	Tyr	Glu	Val	Ile	Ile	Val	Arg	Val	Glu	Ile
									210	215					220
Asn	Gly	Gln	Asp	Leu	Lys	Met	Asp	Cys	Lys	Glu	Tyr	Asn	Tyr	Asp	Lys
										225	230				240
Ser	Ile	Val	Asp	Ser	Gly	Thr	Thr	Asn	Leu	Arg	Leu	Pro	Lys	Lys	Val
										245	250				255
Phe	Glu	Ala	Ala	Val	Lys	Ser	Ile	Lys	Ala	Ala	Ser	Ser	Thr	Glu	Lys
									260	265					270
Phe	Pro	Asp	Gly	Phe	Trp	Leu	Gly	Glu	Gln	Leu	Val	Cys	Trp	Gln	Ala
									275	280					285
Gly	Thr	Thr	Pro	Trp	Asn	Ile	Phe	Pro	Val	Ile	Ser	Leu	Tyr	Leu	Met
										290	295				300
Gly	Glu	Val	Thr	Asn	Gln	Ser	Phe	Arg	Ile	Thr	Ile	Leu	Pro	Gln	Gln
										305	310				320
Tyr	Leu	Arg	Pro	Val	Glu	Asp	Val	Ala	Thr	Ser	Gln	Asp	Asp	Cys	Tyr
									325	330					335
Lys	Phe	Ala	Ile	Ser	Gln	Ser	Ser	Thr	Gly	Thr	Val	Met	Gly	Ala	Val
									340	345					350
Ile	Met	Glu	Gly	Phe	Tyr	Val	Val	Phe	Asp	Arg	Ala	Arg	Lys	Arg	Ile

355	360	365
Gly Phe Ala Val Ser Ala		
370		

<210> 72
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> P10-P4'staD-V peptide inhibitor

<220>
<221> MOD_RES
<222> 10
<223> Xaa is statine moiety

<400> 72
Lys Thr Glu Glu Ile Ser Glu Val Asn Xaa Val Ala Glu Phe
1 5 10

<210> 73
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> P4-P4'staD-V peptide inhibitor

<220>
<221> MOD_RES
<222> 5
<223> Xaa is statine moiety

<400> 73
Ser Glu Val Asn Xaa Val Ala Glu Phe
1 5

<210> 74
<211> 431
<212> PRT
<213> Homo sapiens

<400> 74
Thr Gln His .Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala
1 5 10 15
Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu
20 25 30
Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly
35 40 45
Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro
50 55 60
Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val
65 70 75 80
Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu
85 90 95
Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr
100 105 110
Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro
115 120 125
His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu

130	135	140
Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly		
145	150	155
Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe		160
165	170	175
Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu		
180	185	190
Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala		
195	200	205
Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr		
210	215	220
Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu		
225	230	235
Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp		240
245	250	255
Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr		
260	265	270
Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile		
275	280	285
Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly		
290	295	300
Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe		.
305	310	315
Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe		320
325	330	335
Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val		
340	345	350
Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser		
355	360	365
Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val		
370	375	380
Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His		
385	390	395
Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr		400
405	410	415
Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu		
420	425	430

<210> 75
<211> 361
<212> PRT
<213> Homo sapiens

<400> 75

Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu		
1	5	10
Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr		
20	25	30
Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His		
35	40	45
Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys		
50	55	60
Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly		
65	70	75
80		
Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala		
85	90	95
Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser		
100	105	110
Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro		
115	120	125
Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His		

130	135	140	
Val Pro Asn Leu Phe Ser	Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu		
145	150	155	
Asn Gln Ser Glu Val	Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly	160	
165	170	175	
Gly Ile Asp His Ser Leu Tyr Thr	Gly Ser Leu Trp Tyr Thr Pro Ile		
180	185	190	
Arg Arg Glu Trp Tyr Tyr	Glu Val Ile Ile Val Arg Val Glu Ile Asn		
195	200	205	
Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser			
210	215	220	
Ile Val Asp Ser Gly Thr Thr Asn Leu Arg	Leu Pro Lys Lys Val Phe		
225	230	235	240
Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser	Thr Glu Lys Phe		
245	250	255	
Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly			
260	265	270	
Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser	Leu Tyr Leu Met Gly		
275	280	285	
Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile	Leu Pro Gln Gln Tyr		
290	295	300	
Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys			
305	310	315	320
Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile			
325	330	335	
Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly			
340	345	350	
Phe Ala Val Ser Ala Cys His Val His			
355	360		

<210> 76
<211> 63
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)...(63)
<223> n = A,T,C or G

<400> 76
garacngayg argarccnga rgarccnggn mgnmgnggnw snttygtnga ratggtnay 60
aay 63

<210> 77
<211> 21
<212> PRT
<213> Homo sapiens

<400> 77
Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
1 5 10 15
Glu Met Val Asp Asn
20

<210> 78
<211> 7
<212> PRT
<213> Artificial Sequence

<220>

<223> Peptide inhibitor P3-P4' XD-V
 <220>
 <221> MOD_RES
 <222> 3
 <223> Xaa is hydroxyethylene or statine
 <400> 78
 Val Met Xaa Val Ala Glu Phe
 1 5
 <210> 79
 <211> 11
 <212> PRT
 <213> Homo sapiens
 <400> 79
 Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val
 1 5 10
 <210> 80
 <211> 419
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> nucleotide insert in vector pCF
 <400> 80
 ctgttggct cgcggttag gacaaaacttc tcgcggcttt tccagttactc ttggatcgga 60
 aaccctcggt cctccgaacg gtactccgccc accgaggac ctgagcgagt ccgcattcgac 120
 cggatcgaa aaccctctcgaa ctgttgggtt gagttactccc tctcaaaaagc gggcatgact 180
 tctgcgttaa gattgtcagt ttccaaaaac gaggaggatt tgatattcac ctggccccgct 240
 gtgatgcctt tgagggtggc cgcgtccatc tggtcagaaa agacaatctt ttgttgtca 300
 agcttgagggt gtggcaggct tgagatctgg ccatacactt gagtgacaat gacatccact 360
 ttgcctttctt ctccacaggtt gtccactccc aggtccaaact gcagggtcgac tctagaccc 419
 <210> 81
 <211> 8
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Peptide inhibitor P4-P4' XD-V
 <220>
 <221> MOD_RES
 <222> 4
 <223> Xaa is hydroxyethylene or statine
 <400> 81
 Glu Val Met Xaa Val Ala Glu Phe
 1 5
 <210> 82
 <211> 9
 <212> PRT
 <213> Homo sapiens

<220>

<223> APP fragment P5-P4' wt

<400> 82
Ser Glu Val Lys Met Asp Ala Glu Phe
1 5

<210> 83
<211> 9
<212> PRT
<213> Homo sapiens

<220>

<223> APP fragment P5-P4'wt

<400> 83
Ser Glu Val Asn Leu Asp Ala Glu Phe
1 5

<210> 84
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 84
Ser Glu Val Lys Leu Asp Ala Glu Phe
1 5

<210> 85
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 85
Ser Glu Val Lys Phe Asp Ala Glu Phe
1 5

<210> 86
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 86
Ser Glu Val Asn Phe Asp Ala Glu Phe
1 5

<210> 87
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 87
Ser Glu Val Lys Met Ala Ala Glu Phe
1 5

<210> 88
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 88
Ser Glu Val Asn Leu Ala Ala Glu Phe
1 5

<210> 89
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 89
Ser Glu Val Lys Leu Ala Ala Glu Phe
1 5

<210> 90
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 90
Ser Glu Val Lys Met Leu Ala Glu Phe
1 5

<210> 91
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 91
Ser Glu Val Asn Leu Leu Ala Glu Phe
1 5

<210> 92
<211> 9
<212> PRT
<213> Artificial Sequence

<220>

<223> APP fragment

<400> 92
Ser Glu Val Lys Leu Leu Ala Glu Phe
1 5

<210> 93
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 93
Ser Glu Val Lys Phe Ala Ala Glu Phe
1 5

<210> 94
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 94
Ser Glu Val Asn Phe Ala Ala Glu Phe
1 5

<210> 95
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 95
Ser Glu Val Lys Phe Leu Ala Glu Phe
1 5

<210> 96
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> APP fragment

<400> 96
Ser Glu Val Asn Phe Leu Ala Glu Phe
1 5

<210> 97
<211> 14
<212> PRT
<213> Artificial Sequence

<220>
<223> APP-derived fragment P10-P4' (D-V)

<400> 97
Lys Thr Glu Glu Ile Ser Glu Val Asn Leu Val Ala Glu Phe
1 5 10

<210> 98
<211> 35
<212> DNA
<213> Homo sapiens

<400> 98
cccgaaagac ccggccggag gggcagctt gtcga 35

<210> 99
<211> 11
<212> PRT
<213> Homo sapiens

<400> 99
Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly Arg
1 5 10

<210> 100
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Recombinant 293T cells

<400> 100
Thr Gln His Gly Ile Arg Leu Pro Leu Arg
1 5 10

<210> 101
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Recombinant 293T cells

<400> 101
Met Val Asp Asn Leu Arg Gly Lys Ser
1 5

<210> 102
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Recombinant CosA2 cells

<400> 102
Gly Ser Phe Val Glu Met Val Asp Asn Leu
1 5 10

<210> 103
<211> 4
<212> PRT

<213> Artificial Sequence

<220>

<223> APP substrate fragment:WT Sequence

<400> 103

Val Lys Met Asp

1

<210> 104

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> APP substrate fragment:Swedish Sequence

<400> 104

Val Asn Leu Asp

1