Грищенко Юрій ІПС-32 Лабораторна робота №7

Постановка задачі: Підтримка оболонки. Задані спочатку порожня множина S та послідовність із N точок, кожна з яких або додається до множини S, або вилучається з неї (очевидно, за умови, що вона належить S). Необхідно підтримувати опуклу оболонку множини S.

Опис алгоритму (ідея алгоритму — Overmars та van Leeuwen):

Буде використаний той факт, що границя опуклої оболонки є об'єднанням двох (опуклих) монотонних ламаних ліній (ланцюгів), які обмежують оболонку зверху і знизу. Розглянемо побудову верхньої оболонки.

Основа – збалансоване за висотою двійкове дерево пошуку, листки якого використовуються для збереження точок поточної множини. Кожен проміжний вузол представляє верхню оболонку точок, що зберігаються в листках відповідного піддерева.

Процедура пошуку буде проводитися відповідно до значення абсциси точок, тобто проходження листків дерева зліва направо дає множину точок, впорядковану за х-координатою.

Використовується функція З'ЄДНАТИ(U_1 , U_2) яка дозволяє знайти опорний відрізок для двох оболонок U_1 , U_2 :

U зберігаються як зчеплені черги.

Схема функції З'ЄДНАТИ:

- 1. Знайти p₁ i p₂
- 2. Розчепити U_1 на U_{11} та U_{12} .
- 2. Розчепити U_2 на U_{21} та U_{22} .
- 4. Зчепити U_{11} та U_{22} .

Кожна з цих операцій займає час O(log n) для зчеплених черг.

Пошук точок p_1 та p_2 :

Зчеплена черга має вигляд збалансованого дерева пошуку — починаємо з точкок-коренів, маємо q_1 , q_2 . Кожна із цих двох вершин може бути класифікована відносно відрізка $[q_1, q_2]$ як опукла, опорна або ввігнута. Залежно від класифікації можливі 9 випадків.

$q_1 q_2$	ввігнута	опорна	опукла
ввігнута	$\wedge \wedge$		$\wedge \wedge$
опорна	$\bigwedge \bigwedge$		\mathcal{M}
опукла	\bigwedge	\mathcal{N}	\mathcal{M}

1.	$v(q_1)$ (або ПС $[v(q_1)]$)	ЛС $[v(q_2)]$ (або $v(q_2)$)
2.	Π С $[v(q_1)]$	$\Pi C\left[v(q_2) ight]$
3.	$v(q_1)$	$\Pi C\left[v(q_2) ight]$
4.	ЛС $[v(q_1)]$	ЛС $[v(q_2)]$
5.	Результат	Результат
6.	ЛС $[v(q_1)]$	$\Pi C\left[v(q_2) ight]$
7.	ЛС $[v(q_1)]$	$v(q_2)$
8.	ЛС $[v(q_1)]$	$\Pi C\left[v(q_2) ight]$
9.	ЛС $[v(q_1)]$	$\Pi C \left[v(q_2) \right]$

Більш детально розглянемо випадок 1:

Проведемо прямі l_1 (від q_1 до правого сусіда) та l_2 (від q_2 до лівого сусіда). Якщо їх точка перетину р знаходится справа від вертикалі, що відділяє дві оболонки (як на малюнку), то можна відкинути точки, правіші за q_2 . Інакше відкидаємо точки, лівіші за q_1 .

Обернена операція: маючи U(v) знайти $U(\Pi C U H(v))$ та $U(\Pi C U H(v))$.

Знаючи ребро $[p_1, p_2]$ (яке визначається індексом точки p_1 у U(v)), можна розчепити U(v) на U_{11} та U_{22} , та зчепити їх з ланцюгами, які зберігаються у ЛСИН(v) та ПСИН(v) відповідно.

Отже, у вузлах v дерева також зберігаються:

- Індекс J(v) лівої опорної точки в U(v)
- Вказівник на зчеплену чергу Q(v), яка містить частину U(v), що не входить до U(БАТЬКO(v)) (якщо v корінь, то Q(v) = U(v))

Приклад дерева:

Вставка точки р: спуск, вставка, підйом.

```
ргосеdure СПУСК(v,p)

begin if (v \neq \pi \text{ист}) then

(Q_L, Q_R) \coloneqq \text{РОЗЧЕПИТИ}(U[v], J[v]);
U[\pi \text{СИН}[v]] \coloneqq \text{ЗЧЕПИТИ}(Q_L, Q[\pi \text{СИН}[v]]);
[\pi \text{СИН}[v]] \coloneqq \text{ЗЧЕПИТИ}(Q[\pi \text{СИН}[v]], Q_R R);
if (x[p] \leq x[v]) then

v \coloneqq \pi \text{СИН}[v]
else v \coloneqq \pi \text{СИН}[v];

\text{СПУСК}(v,p);
end;

end.
```

(знаючи U(v) батька, знаходимо опуклі оболонки синів)

Далі вставляється точка в лист: для простоти вважатимемо, що дерево балансувати не потрібно (це збільшість кількість вузлів, які потрібно обробити, не приводячи до принципових відмінностей).

```
ргосеdure ПІДЙОМ(v)
begin if (v \neq \text{корінь}) then
begin

(Q_1, Q_2, Q_3, Q_4, J) := 3'ЄДНАТИ(U[v], U[\text{БРАТ}[v]]);

Q\left[\text{ЛСИН}[\text{БАТЬКО}[v]]\right] \coloneqq Q_2;

Q\left[\text{ПСИН}[\text{БАТЬКО}[v]]\right] \coloneqq Q_3;

U\left[\text{БАТЬКО}[v]\right] \coloneqq 3ЧЕПИТИ(Q_1, Q_4);

J\left[\text{БАТЬКО}[v]\right] \coloneqq J;

ПІДЙОМ(БАТЬКО[v]);
end;
else Q[v] := U[v];
```

(оновлюємо атрибути вузлів: знаючи опуклі оболонки синів, знаходимо $U(\mathsf{Б}\mathsf{AT}\mathsf{b}\mathsf{K}\mathsf{O}(v))$

Складність алгоритму:

Кожен крок СПУСКу та ПІДЙОМу відбувається за час $O(\log n)$, висота збалансованого дерева $\log n$, отже часові витрати на вставку дорівнюють $O(\log^2 n)$ у найгіршому випадку.

Це достатньо швидко, щоб обробляти дані в реальному часі, але повільніше за алгоритм Препарати. Алгоритм Препарати має затриму $O(\log n)$ для вставки елементів, що є теоретичним мінімумом для відкритих алгоритмів.

Перевага даного алгоритму полягає в тому, що він зберігає інформацію про всі точки, і внутрішні також, тому він дозволяє не тільки додавати точки в множину, а і видаляти.

Реалізовано на мові Python.

Інтерфейс користувача: набір точок задається файлом points.txt. Програма додає точки в множину S одна за одною, і кожен раз у вікні показує опуклу оболонку (як і верхній, так і нижній ланцюг). У консоль виводяться дерева для обох ланцюгів та значення U(v) після спуску і підйому (як debug-інформація).