《数字信号处理原理》2021-2-2022 年第一学期 期中考试

—, Fill the blanks(40%)

- 1. If $x[n] = \{-2, 0, 0, 3\}, -1 \le n \le 2$,
 - (1) then x[n] can be expressed in terms of the unit impulse signal $\delta[n]$ as ____ and the unit step signal $\mu[n]$ as ____ $\underline{\bigcirc}$;
 - (2) if the impulse response of a LTI system is $h[n] = \{-1, 0, 0, 1.5, 0, 3\}, -1 \le n \le 4$, then given by x[n], the output sequence y[n] = 3.
 - (3) the even part of x[n] is $\underline{\oplus}$
- 2. determine whether the following system is linear, causal, stable and shift-invariant: g. $y[n] = n^3 x[n] + x[n-4]$
- 3. if y[n] = x[n+1] 2x[n] + x[n-1], is it a LTI system? <u>6</u>. If so, write out the impulse response of system h[n]: <u>7</u>.
- 4. determine the DTFT of the following sequences:
 - (1) $x[n] = n\alpha^n \mu[n], |\alpha| < 1 : \underline{\otimes}$;

(2)
$$x[n] = \begin{cases} N+1-|n|, -N \le n \le N, \\ 0. otherwise \end{cases}$$
:

- 5. determine the IDTFT of the following sequences:
- (1) $H_1(e^{j\omega}) = 1 + 2\cos\omega + 3\cos2\omega$: $\underline{\mathbb{O}}$.
- 6. If $Y(e^{j\omega}) = X(e^{j4\omega})$, then y[n] can be expressed in terms of x[n] as Ω .
- 7. If $y[n] = x[n]e^{-j\pi n/3}$, then $Y(e^{j\omega})$ can be expressed in terms of $X(e^{j\omega})$ as Ω .
- 8. $H_1(e^{j\omega}) = \begin{cases} |\omega|, 0 \le |\omega| \le \omega_c \\ 0, \omega_c \le |\omega| \le \pi \end{cases}$, determine it has IDTFT which is odd sequence or even

sequence <u>B</u>.

- 9. if a continuous-time signal $g_a(t)$ is Ω_m . Determine the Nyquist frequency of
 - (1) $y_1(t) = g_a(t)g_a(t)$: Ω .

(2)
$$y_2(t) = \int_{-\infty}^{\infty} g_a(t-\tau)g_a(t)d\tau$$
:
$$\underline{ \text{ } \underline{\text{ } \text{ } } } .$$

- 10. if x[n] and h[n] are two length-51 sequence defined for $0 \le n \le 50$, denote the range of $y_L[n]$ and for which range $y_L[n] = y_C[n]$.
- 11. determine the 5-points periodic convolution of the following sequences:
 - (1) $x[n] = \{1, 2, -2, -1, 3\}$, $h[n] = \{2, 0, 1, 3, -4\}$, $0 \le n \le 4$: 8;
 - (2) $x[n] = \{-1, 5, 3, 0, 3\}$, $h[n] = \{-2, 0, 5, 3, -2\}$, $0 \le n \le 4$: \emptyset
 - 12. The even samples of the 12-point DFT of a length-12 real sequence x[n] has the first 7 samples of are given by $X[k] = \{11, 8-2j, 1-12j, 6+3j, -3+2j, 2+j, 15\}, 0 \le n \le 6$, Determine the rest of 5 samples of X[k]: 20.

1. (40%)A causal LTI system is described by the recursive difference equation

$$y[n] = 2x[n] - x[n-1] + \frac{7}{12}y[n-1] - \frac{1}{12}y[n-2]$$

(1) Draw the diagram of the system in parallel form. (10%)

- (2) Find the impulse response h[n] by solving differential equations. (20%)
- (3) Write out the magnitude function of the frequency response $H(e^{j\omega})$.(10%)

2. .(20%) For a continuous time signal x(t) with frequency spectrum of $X(e^{j\omega})$, which $-\pi/4 \le \omega \le \pi/4$ as figure shown. If there is a LPF $H(e^{j\omega})$ with cut-off frequency $-\pi/4 \le \omega_c \le \pi/4$, Plot the frequency spectrum of $H(e^{j\omega})$ and $Y(e^{j\omega})$ and its 8-points DFT, H[k] and Y[k].

