Prüfung Ingenieurmathematik am 31. 01. 2025

1.)

Ein Kreiskegel mit dem Radius R = 10 und der Höhe H = 20 steht auf der xy - Ebene. Der Mittelpunkt des Basiskreises liegt im Koordinatenursprung.

- a.) Berechnen sie die Tangentialebene an den Kegelmantel, die die Spitze und den Punkt P = (10, 0, 0) enthält.
- b.) Berechnen sie die Tangentialebene an den Kegelmantel, die die Spitze und den Punkt Q = (0, 10, 0) enthält.
- c.) Berechnen sie den Schnittwinkel zwischen diesen Ebenen.

(1.5 + 1.5 + 1) Punkte)

2.)

Lösen sie die folgenden Gleichungen, und geben Sie die Lösungen kartesisch an:

a.)
$$z^2 - (5 - i)z + 8 - i = 0$$

b.)
$$z^5 = 3 - 4i$$
 (2 + 2 Punkte)

3.)

Berechnen sie den Grenzwert des folgenden Ausdrucks.

$$\lim_{x \to 0} \frac{\sqrt{1 + x \sin(x)} - \cos(x)}{\sin(\frac{x}{2})^2}$$
 (3 Punkte)

4.)

Gegeben ist die Funktion $f(x) = 1 - \frac{x^3}{1+x^3}$. Die Länge eines Rechtecks liegt auf der x – Achse, die Breite liegt auf der y – Achse. Ein Eckpunkt liegt im Koordinatenursprung. Der diagonal gegenüberliegende Eckpunkt liegt auf f(x).

Berechnen sie jenes Rechteck, das die maximale Fläche besitzt. Geben sie auch die Fläche an.

(3 Punkte)

5.)

a) Lösen Sie folgendes Integral mit der Substitution $u(x) = \sqrt{x}$.

$$\int_0^{\frac{\pi^2}{4}} \sqrt{x} \cdot \sin \sqrt{x} \ dx$$
 (3 Punkte)

b) Lösen Sie folgendes Integral mittels Partialbruchzerlegung.

$$\int \frac{x^3 + x}{x^3 + x^2 - 5x + 3} dx$$
 (3 Punkte)

6.)

Berechnen sie die Masse des Rotationskörpers von 0 bis $\pi/2$, der entsteht, wenn die Funktion $f(x) = \sin(x) + \cos(x)$ um die x – Achse rotiert. Die Dichte ist $\rho(x) = x$. Hinweis: $2\sin(x)\cos(x) = \sin(2x)$

(4 Punkte)

7.)

Lösen sie die folgende Differentialgleichung als lineare DGL erster Ordnung.

$$y' + \frac{y}{x^2} = \frac{1}{x^2}$$
 $y(1) = 0$ (4 Punkte)

8.)

Lösen sie die folgende Differentialgleichung erster Ordnung mit Hilfe einer Substitution.

$$y' = \frac{y}{x} - 1 - e^{-\frac{y}{x}}$$
 (5 Punkte)

9.)

Gegeben ist die Funktion $f: \mathbb{R} \to (0, \infty)$: $f(x) = 2e^{x-1}$.

- a) Warum ist die Funktion umkehrbar?
- b) Berechnen Sie die Umkehrfunktion.

(0.5 +1 Punkte)