INFSCI 2595

Fall 2019

Information Sciences Building: Room 403

Week 10: Neural Networks

Demystify the neural network

• The (artificial) neural network and deep learning in general receive a lot of attention and hype.

Neural networks are powerful but are not magical.

 They are statistical models, based on the principals and tools you have seen in this course.

We will build up a neural network through a simple demonstration problem

 Goal is to approximate the simple quadratic function:

$$f(x) = x^2$$

• Start with 51 noise-free points evenly spaced between -1.5 and 1.5.

Neural network architecture

A neural network is a series of functional transformations.

 The output is modeled through an intermediary set of unobserved variables called <u>hidden units</u>.

• The hidden units are derived as linear combinations of the inputs, transformed through a non-linear function.

The response is modeled as a combination of the <u>hidden units</u>.

Schematic of a single layer neural network for a continuous response

Hidden units are non-linear functions of linear combinations of the inputs

Hidden unit 1

Likewise for hidden unit 2

For a continuous response, the output is a linear combination of the hidden units

HIDDEN UNITS

OUTPUT

$$f(\mathbf{x}) = \alpha_0 + \sum_{k=1}^{H} \alpha_k h_k$$

$$\vdots$$

$$h_1$$

$$\vdots$$

$$h_2$$

$$\vdots$$

$$h_H$$

The linear combinations of the inputs are essentially linear models!

• If we have N training points of D inputs, we can assemble those inputs into the $N \times (D+1)$ design matrix, \mathbf{X} (include the intercept column of 1s).

• The k-th hidden unit's parameters are stored in a $(D+1)\times 1$ column vector $\pmb{\beta}_k$.

• The linear combination of the inputs for the k-th hidden unit:

$$\eta_k = X\beta_k$$

There are a wide variety of non-linear transformation functions to use

A common function is the logistic function!

$$g(u) = \frac{1}{1 + \exp(-u)} = \frac{\exp(u)}{\exp(u) + 1} = \log_{10}(u)$$

• The k-th hidden unit is therefore equal to:

$$\mathbf{h}_k = \operatorname{logit}^{-1}(\boldsymbol{\eta}_k)$$

The output layer

Assemble the hidden unit variables into a matrix:

$$\mathbf{H} = [\mathbf{h}_1 \quad \mathbf{h}_2 \quad \cdots \quad \mathbf{h}_H]$$

- The output layer parameters, $\{\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_H\}$, are structured into a $H \times 1$ column vector $\boldsymbol{\alpha}$ and the scalar intercept, α_0 .
- The response is a linear model relative to the hidden units!

$$\mathbf{f} = \alpha_0 + H\boldsymbol{\alpha}$$

The hidden linear models can be calculated all at once with matrix math!

• Bind the *H* hidden unit parameter vectors into a matrix:

$$\mathbf{B} = [\boldsymbol{\beta}_1 \quad \boldsymbol{\beta}_2 \quad \cdots \quad \boldsymbol{\beta}_H]$$

The transformed hidden units can then be calculated as:

$$\mathbf{H} = \operatorname{logit}^{-1}(\mathbf{X}\mathbf{B})$$

The neural network for a continuous response is fit by **minimizing** the sum of squared residuals

$$\sum_{n=1}^{N} \left((y_n - f_n)^2 \right)$$

How many parameters are in the model?

• D+1 β -parameters in EACH hidden unit $\rightarrow H(D+1)$ total parameters.

• H+1 α -parameters in the output layer.

TOTAL number of unknown parameters:

$$H(D+1) + H + 1$$

For a **SINGLE LAYER** neural network!

Now, let's apply our neural network to the simple quadratic example problem

- We will use a single layer with 3 hidden units.
- Single input x is on the left-hand side of the network.
- Single continuous response f is on the right-hand side.
- Intercepts (called biases) are either shown above the nodes or not shown at all.

Now, let's apply our neural network to the simple quadratic example problem

With H = 3 and D = 1 we have a total of **10** unknown parameters to learn!

Let's get an idea about the behavior of the objective (the loss) function with respect to a few of the unknowns

We have 10 unknowns:

•
$$\boldsymbol{\beta} = \{\beta_{0,1}, \beta_{1,1}, \beta_{0,2}, \beta_{1,2}, \beta_{0,3}, \beta_{1,3}\}$$

•
$$\boldsymbol{\alpha} = \{\alpha_0, \alpha_1, \alpha_2, \alpha_3\}$$

• Fix all parameters at -1, except $eta_{1,1}$, $eta_{1,2}$, $eta_{1,3}$, and $lpha_1$

• Visualize the Sum of Squared Errors (SSE) wrt $eta_{1,1}$

Try a different grid

• This time have the other parameters all fixed at +1

Difficult to visualize a 10 dimensional space!

• In-class live coding demo!