COMPUTER SCIENCE

Database Management System

Query Language

Vijay Agarwal sir

SQL Clauses

SQL Operators

Relational Algebra.

Selection (5) Projection (TT) Cross Product (X) Union [U] Set Dibberence [-] Rename (p)

Intersection [1]

JOIN [M) & its type

Division [1]

SEQUEL SQL: [Structured Query language] SAL SELECT [DISTINCT] A. Az Az. . . An = Projection (TI)

FROM R, Rz Rz. . . Rm = cross Product (
WHERE Condition) = Selection [o-] R, R2 R3... Rm = CROSS Product (X) Condition? = Selection [5]

R.A: TTA, Ash. An Goodifism (RIXR2XR1...XRm)

SQL[Structured Query Language]

DDL(Data Definition Language): Modification allowed at schema (Definition) level

CREATE

ALTER

DROP TABLE

DML(Data Manipulation Language): Modification allowed at data level

UPDATE DELETE

DCL(Data Control Language): Control Transactional Operation

COMMIT

DQL(Data Query Language): Used to Retrieve the Data from DB

SELECT FROM WHERE

STUDENT AS S

Catalog C, Paets As P

Rename operator

R.A

SELECT [DISTINCT]
$$A_1 A_2 A_3 A_n = Projection (\pi)$$

FROM R₁ R₂ R₃ R_m

 \equiv CROSS Product (x)

WHERE Condition

 \equiv Selection $[\sigma]$

R.A: $\pi_{A1A2A3..An}[\sigma_{Condition}(R_1 \times R_2 \times R_3 ... \times R_m)]$

Select: Not going to eliminate Duplicate Value.

1) SELECT AB	Output
FROM R	

A	В
1	2_
1	2
2	4 -

2)	$\pi_{AB}(R)$

FROM R

A	В
1	2
2	4

3) SELECT	DISTINCT	AR	Output
3) SELECT	DISTINCT	AD	

A	В	C
1.	. 2	3
1	2	4
2	4	5

A	В
1	2
2	4

SQL Clause:

2 novable SELECT 2 novable FROM

SERECT Sname From Student

SQL Clauses

SELECT DISTINCT A₁ A₂ A₃ ... A_n

Optional clause

FROM R₂ R₂ R₃...R_m

WHERE P

[GROUP By Attribute [[HAVING Condition]]]

ORDER By Attribute [[DESC]]]

FROM WHERE GROUP SELECT DISTINCT

FROM WHERE GROUP BY HAVING SELECT DISTINCT

Execution seguence:

SELECT Sname
FROM Student
WHERE CGPA>8

Query Execution

(1) FROM Clause: It is the first executable Clause. It just simply Relation

(or) CROSS Product of Two or more Relation

(2) WHERE Clause: It is the second executable clause. It selects the tuple based on specified condition.

(3) GROUP By Clause: It is the third executable clause if used in the query. It groups the table based on the specified attributes.

STUDENT

Sid	(Branch)	Marks
S_1	CS.	90
S_2	IT	70
S_3	CS ·	70
S_4	EC.	56
S_5	CS	NULL

Sid	(Branch)	Marks
S_1	CS	90
S_3	CS	70
S ₅	CS	NULL
S_2	IT	70
S_4	EC	56

follow order of insertion is ties.

Aggregate operator:

- 1 Count
- 2 SUM
- (3) AVG
 - (4) MIN
 - (S) MAX

La Always Discoord the NVIL Value

STUDENT

Sid	(Branch)	Marks
S_1	CS.	90
S ₂	IT,	70
S ₃	CS ·	70 .
S_4	EC. (56
S ₅	CS.	NULL

Sid	(Branch)	Marks
S_1	CS	90
S_3	CS	70
S ₅	CS	NULL
S ₂	IT	70
S_4	EC (56

follow order of insertion is ties.

Aggregation operator ⇒ Always Discard Null Value

- 1) COUNT ([DISTINCT] Attribute)
- 2) SUM ([DISTINCT] Attribute)
- 3) AVG ([Distinct] Attribute)
- 4) MIN (Attribute)
- 5) MAX (Attribute)

Gunt (Attribute)

Return 5) SUM([Distinct]marks) = 216

Return 6) AVG(marks) =
$$\frac{286}{4}$$

7) AVG([Distinct]marks) = 216

- 1) Count(marks) =
- 2) Count (*) = 5 > # Tules
- 3) Count ([DISTINCT]marks) = \(\times\)
- 4) SUM(marks) = 286

Aggregation operator ⇒ Always Discard Null Value

- 1) COUNT ([DISTINCT] Attribute)
- 2) SUM ([DISTINCT] Attribute)
- 3) AVG ([Distinct] Attribute)
- 4) MIN (Attribute)
- 5) MAX (Attribute)

- 1) Count(marks) = $\underline{4}$
- 2) Count (*) = 5
- 3) Count ([DISTINCT] marks) = 3
- 4) SUM(marks) = 286
- 5) SUM([Distinct]marks) = 216

6) AVG(marks) =
$$\frac{286}{4}$$

7) AVG([Distinct]marks) = $\frac{216}{3}$

$$\frac{\text{SUM[DISTINCT]marks}}{\text{COUNT[DISTINCT]marks}} \Rightarrow \frac{216}{3}$$

Patience.

Condition Applied on each group. Condition Applied over Aggregate Bunchism @ Special debind Bunction (some @ every select A FROM Group By (A) HAVING Some (B) >25 Having B>25

50 Sardord HAXING Having Condition Used With Group By Clause. Having Condition Applied on every goods

then Having Condition
Applied for ceach Record.

(Tuble)

SERECT Name FROM Student WHERE, CGPA->B.

Name

STUDENT (ROLL NO. Name. Select FROM Student WHERE CGPA >8 Name Gender Branch

HAVING: Fourth executable clause (if used in query).

Sid

 S_5

 S_6

It is used to select the group which satisfy the condition

Marks

55

NULL

(condition is for each group).

(GROUP By

Sid	Branch	Marks	
S_1	CS.	60	
S ₂	IT .	70	(GROUP
S ₃	CS.	90	Branch)
S ₄	IT ·	60	
S ₅	EC 7	55	,
S ₆	EC	NULL	

	1000		The second second second
1	S_1	CS	60
	S ₃	CS	90
	S ₂	IT	707 30
	S4	IT	60

EC

EC

Branch

HAVING AVG(Marks) > 61 Sid Branch Marks CS 60 CS 90 S_2 IT 70

60

IT

GROUP By (Branch)

Select FROM STUDENT

Simplicity 2 Step by Step Procedure.

Select min(marks)

FROM Student

Sid	Branch	Marks
S_1	CS	60
S_2	IT	70
S ₃	CS	90
S ₄	IT	60
S ₅	EC	55
S ₆	EC	NULL

Select min(marks)

FROM Student

WHERE Branch = 'CS'

Sid	Branch	Marks
S_1	CS (60
S_2	IT	70
S ₃	CS	90
S ₄	IT	60
S ₅	EC	55
S ₆	EC	NULL

Q.3

Select min(marks), Branch

FROM Student

GROUP By (Branch)

Sid	Branch	Marks
S_1	CS	60
S_2	IT	70
S ₃	CS	90
S ₄	IT	60
S ₅	EC	55
S ₆	EC	NULL

60 60 Q.3

Select min(marks), Branch FROM Student GROUP By (Branch)

Pw

6	0
6	0
5	5

Sid	Branch	Marks
S_1	CS	60
S ₂	IT	70
S ₃	CS	90
S ₄	IT	60
S ₅	EC	55
S ₆	EC	NULL

Select min(marks), Branch

FROM Student

Select min(marks), Branch CS ITFROM Student CS Such Syntax is not allowed in SQL EC EC

When Aggregate operator 2 other Attorbute Used in select clause, is allowed only is other Attorbute

Must be in Grout By clause.

When aggregate operator & other Attribute used in select clause is

Allowed only of other attribute must be in Group of Clause.

Select min (marks) Branch

FROM Student

GROUP By (Branch)

Group By clause

- (1) Every attribute of Group By clause Must Present in Select clause.
 - (2) Not allowed to select other Attributes in Select claye.
 - 3 allowed to select Aggregate function in select clause.

Group By clause

SELECT Sid sname. FROM Student GROUPBY (Sname) SELECT Sid -> (Sna! FROM Student GROUP By (Sid Sname) ALL are Incorrect

> Sid Missipp SELECT Sname FROM Student GROUP By (Sid Sname) A. min (B) SELECT FROM R GROUP By (B)

SELECT FROM GROUP BY

SELECT A B FROM R GROUP By (A)

Set oberator

- O UNION UNION ALL
- 2 INTERSECT INTERSECT ALL
- 3) MINUS MINUS ALL
 Supported Not Supported
 by R.A by R.A

Q.

Select min(A), B
FROM R
Group By (C)
Group by (B)

OTHER Set Operator

Followed by Not followed

R.A ↓ By R.A↓

- 1) UNION/ UNION ALL
- 2) INTERSECT/ INTERSECT ALL
- 3) MINUS / MINUS ALL

R UNION S

2 4 5 5

R UNIONALL S

- 2) R Intersect S R Intersect all S
- (3) R MINUS S R MINUS ALL S.

Q.

Select min(A), B FROM R Group By (C) Group by (B)

OTHER

Set Operator

Followed by

Not followed

R.A ↓

By R.A↓

- 1) UNION/UNION ALL
- 2) INTERSECT/INTERSECT ALL
- 3) MINUS / MINUS ALL

2) R UNION ALL S
Result all values

5

Distinct tuples from R those are not there in S

