

Master of bioinformatics

Applied multivariate statistical analysis

Multivariate dataset exploration: genome assembly

Summer 2016

Author: Cedric Lood

 $\begin{tabular}{ll} \it Teacher: \\ \it Prof. Eddie Schrevens \\ \end{tabular}$

1 Context of this project

The analysis presented in this report was produced for the class of *Applied multivariate* statistics taught at KU Leuven (Winter 2015). The requirement for the class included the exploration of a multivariate dataset of our choice in order to discover its structure. The implementation was done using the R programming environment (v3.3.0), and the dataset along with the code can be found online in my github account¹.

2 Genome assembly: quality control metrics

The dataset consists of quality control metrics for *de novo* genome assembly [1]. It originates from an analysis performed in the early stages of my master thesis in which I investigated the genomics of a set of 47 nosocomial isolates of the bacterial species *Pseudomonas aeruginosa*.

The goal of genome assembly is to reconstruct the genome of an organism using the reads issued by a sequencer, which in my case was an *Illumina NextSeq 500*. For each of the 47 strains, multiple genome assemblies were performed using different software and approaches, each assembly giving different hypothesis for what the original sequenced genome looks like.

In this analysis, the goal is to detect outliers in order to remove them from the set of hypothesis, and explore the structure of the data.

3 Description of the dataset

The dataset consists of 3102 observations, as each of the 47 strains went through 67 different assemblies each, and 36 variables were surveyed. A few missing values exist in the dataset, but their amount is very limited (90 out of 3102) and can be traced back to software errors, hence they were removed prior to the analysis. An exhaustive description of the variables is available here [2], here is a summary of selected variables:

#	name	description
1	Strain ID	Label with the ID of the strain (from 9108 to 9154)
2	Assembly	Label for the 67 assembly pipelines
3	Hybrid	Boolean value indicating the approach for the assembly
4	Coverage	Genome coverage estimation based on sequencing results
5	NContig	Total number of contigs for the assembly
6	LargestContig	Length (in base pairs) of the longuest contig
7	TotalLength	Total length of the assembled genome
8	ReferenceLength	Length of reference genome used for QC evaluation
9	GC	GC content of the assembled genome (%)
10	ReferenceGC	GC content of reference genome used for QC evaluation
11	N50	Minimum length of contig comprising 50% of assembled genome
12	NG50	Corrected N50 using the length of reference genome
13	N75	Minimum length of contig comprising 75% of assembled genome
15	L50	Number of contigs of length greater than N50
19	Nmisassemblies	Number of misassemblies events
24	GenomeFraction	Fraction of reference genome covered by assembly
29	NA50	Corrected N50 taking into account misassemblies
30	NGA50	Corrected NG50 taking into account misassemblies
36	LGA75	Corrected LG75 taking into account misassemblies

 $^{^{1}}$ https://github.com/Milt 0 n/MVDataExploration

Figure 1: This graph shows the correlation between the different variables of the dataset, from a correlation of +1 (blue) to -1 (red)

4 R code

5 Output

5.1 Dataset structure

References

- [1] M. Baker, "De novo genome assembly: what every biologist should know," *Nature methods*, vol. 9, no. 4, p. 333, 2012.
- [2] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, "Quast: quality assessment tool for genome assemblies," *Bioinformatics*, p. btt086, 2013.