Coordinates and Transformations

MIT ECCS 6.837 Wojciech Matusik

many slides follow Steven Gortler's book

Hierarchical modeling

- Many coordinate systems:
 - Camera
 - Static scene
 - car
 - driver
 - arm
 - hand
 - •

Coordinates

- We are used to represent points with tuples of coordinates such as $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
- But the tuples are meaningless without a clear coordinate system

could be this point in the red coordinate system

in the blue coordinate system

Different objects

Points

represent locations

Vectors

represent movement, force, displacement from A to B

Normals

represent orientation, unit length

Coordinates

 numerical representation of the above objects in a given coordinate system

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

Points & vectors are different

- The 0 vector has a fundamental meaning: no movement, no force
- Why would there be a special 0 point?

- It's meaningful to add vectors, not points
 - Boston location + NYC location =?

=?

Points & vectors are different

- Moving car
 - points describe location of car elements
 - vectors describe velocity, distance between pairs of points
- If I translate the moving car to a different road
 - The points (location) change
 - The vectors (speed, distance between points) don't

Matrices have two purposes

- (At least for geometry)
- Transform things
 - e.g. rotate the car from facing North to facing East
- Express coordinate system changes
 - e.g. given the driver's location in the coordinate system of the car, express it in the coordinate system of the world

Goals for today

- Make it very explicit what coordinate system is used
- Understand how to change coordinate systems
- Understand how to transform objects
- Understand difference between points, vectors, normals and their coordinates

Questions?

Reference

 This lecture follows the new book by Steven (Shlomo) Gortler from Harvard: Foundations of 3D Computer Graphics

Plan

Vectors

Points

Homogenous coordinates

Normals (in the next lecture)

Vectors (linear space)

- Formally, a set of elements equipped with addition and scalar multiplication
 - plus other nice properties
- There is a special element, the zero vector
 - no displacement, no force

Vectors (linear space)

- We can use a basis to produce all the vectors in the space:
 - Given n basis vectors \vec{b}_i any vector \vec{v} can be written as $\vec{v} = \sum_i c_i \vec{b_i}$

Linear algebra notation

$$\vec{v} = c_1 \vec{b_1} + c_2 \vec{b_2} + c_3 \vec{b_3}$$

can be written as

$$\left[egin{array}{cccc} ec{b_1} & ec{b_2} & ec{b_3} \end{array}
ight] \left[egin{array}{cccc} c_1 \ c_2 \ c_3 \end{array}
ight]$$

- Nice because it makes the basis (coordinate system) explicit
- Shorthand:

$$\vec{v} = \vec{\mathbf{b}}^t \mathbf{c}$$

where bold means triplet, t is transpose

Questions?

Linear transformation

• Transformation \mathcal{L} of the vector space

Linear transformation

• Transformation $\mathcal L$ of the vector space so that

$$\mathcal{L}(\vec{v} + \vec{u}) = \mathcal{L}(\vec{v}) + \mathcal{L}(\vec{u})$$
$$\mathcal{L}(\alpha \vec{v}) = \alpha \mathcal{L}(\vec{v})$$

- Note that it implies $\mathcal{L}(\vec{0}) = \vec{0}$
- Notation $\vec{v} \Rightarrow \mathcal{L}(\vec{v})$ for transformations

Matrix notation

Linearity implies

$$\mathcal{L}(ec{v}) = \mathcal{L}\left(\sum_i c_i ec{b_i}
ight) = ?$$

Matrix notation

Linearity implies

$$\mathcal{L}(ec{v}) = \mathcal{L}\left(\sum_{i} c_{i} ec{b_{i}}
ight) = \sum_{i} c_{i} \mathcal{L}(ec{b_{i}})$$

- i.e. we only need to know the basis transformation
- or in algebra notation

Algebra notation

- The $\mathcal{L}(\vec{b_i})$ are also vectors of the space
- They can be expressed in the basis

. . .

Algebra notation

- The $\mathcal{L}(\vec{b_i})$ are also vectors of the space
- They can be expressed in the basis for example:

$$\mathcal{L}(\vec{b}_1) = \left[egin{array}{ccc} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{array}
ight] \left[egin{array}{ccc} M_{1,1} \\ M_{2,1} \\ M_{3,1} \end{array}
ight]$$

which gives us

$$\left[\begin{array}{cccc} \mathcal{L}(\vec{b}_1) & \mathcal{L}(\vec{b}_2) & \mathcal{L}(\vec{b}_3) \end{array}\right] = \left[\begin{array}{cccc} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{array}\right] \left[\begin{array}{ccccc} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{array}\right]$$

Recap, matrix notation

$$\left[\begin{array}{ccc} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{array}\right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array}\right]$$

$$\Rightarrow \left[\begin{array}{ccc} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{array} \right] \left[\begin{array}{cccc} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \\ c_3 \end{array} \right]$$

• Given the coordinates \mathbf{c} in basis \mathbf{b} the transformed vector has coordinates \mathbf{Mc} in \mathbf{b}

Why do we care

- We like linear algebra
- It's always good to get back to an abstraction that we know and for which smarter people have developed a lot of tools
- But we also need to keep track of what basis/coordinate system we use

Questions?

- Critical in computer graphics
 - From world to car to arm to hand coordinate system
 - From Bezier splines to B splines and back

 problem with basis change: you never remember which is M or M⁻¹ it's hard to keep track of where you are

- Assume we have two bases \vec{a} and \vec{b}
- And we have the coordinates of \vec{a} in \vec{b}

$$egin{aligned} ullet ext{e.g.} \ ec{a_1} = \left[egin{array}{ccc} ec{b_1} & ec{b_2} & ec{b_3} \end{array}
ight] \left[egin{array}{ccc} M_{11} \ M_{21} \ M_{31} \end{array}
ight] \end{aligned}$$

• i.e. $\vec{\mathbf{a}}^t = \vec{\mathbf{b}}^t M$

• which implies $\vec{\mathbf{a}}^t M^{-1} = \vec{\mathbf{b}}^t$

- We have $\vec{\mathbf{a}}^t = \vec{\mathbf{b}}^t M$ & $\vec{\mathbf{a}}^t M^{-1} = \vec{\mathbf{b}}^t$
- Given the coordinate of \vec{v} in $\vec{\mathbf{b}}$: $\vec{v} = \vec{\mathbf{b}}^t \mathbf{c}$

• What are the coordinates in \vec{a} ?

- We have $\vec{\mathbf{a}}^t = \vec{\mathbf{b}}^t M$ & $\vec{\mathbf{a}}^t M^{-1} = \vec{\mathbf{b}}^t$
- Given the coordinate of \vec{v} in $\vec{\mathbf{b}}$: $\vec{v} = \vec{\mathbf{b}}^t \mathbf{c}$

• Replace \vec{b} by its expression in \vec{a}

$$\vec{v} = \vec{\mathbf{a}}^t M^{-1} \mathbf{c}$$

- \vec{v} has coordinates $M^{-1}\mathbf{c}$ in $\vec{\mathbf{a}}$
- Note how we keep track of the coordinate system by having the basis on the left

Questions?

Linear Transformations

$$\cdot L(p + q) = L(p) + L(q)$$

$$-L(ap) = a L(p)$$

Translation is not linear:

$$f(p) = p+t$$

$$f(ap) = ap+t \neq a(p+t) = a f(p)$$

$$f(p+q) = p+q+t \neq (p+t)+(q+t) = f(p) + f(q)$$

Plan

Vectors

Points

Homogenous coordinates

Normals

Points vs. Vectors

- A point is a location
- A vector is a motion between two points
- Adding vectors is meaningful
 - going 3km North + 4km East = going 5km North-East
- Adding points is not meaningful
 - Boston location + New York location = ?
- Multiplying a point by a scalar?
- The zero vector is meaningful (no movement)
- Zero point ?

Affine space

- Points are elements of an affine space
- We denote them with a tilde \tilde{p}

Affine spaces are an extension of vector spaces

Point-vector operations

Subtracting points gives a vector

$$\tilde{p} - \tilde{q} = \vec{v}$$

Adding a vector to a point gives a point

$$\tilde{q} + \vec{v} = \tilde{p}$$

Frames

- A frame is an origin \tilde{o} plus a basis \mathbf{b}
- We can obtain any point in the space by adding a vector to the origin

$$\tilde{p} = \tilde{o} + \sum_{i} c_{i} \vec{b}_{i}$$

• using the coordinates **c** of the vector in **b**

Algebra notation

- We like matrix-vector expressions
- We want to keep track of the frame
- We're going to cheat a little for elegance and decide that 1 times a point is the point

$$\tilde{p} = \tilde{o} + \sum_{i} c_{i} \vec{b}_{i} = \begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} & \tilde{o} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ 1 \end{bmatrix} = \vec{\mathbf{f}}^{t} \mathbf{c}$$

• \tilde{p} is represented in \tilde{f} by 4 coordinate, where the extra dummy coordinate is always 1 (for now)

Recap

- Vectors can be expressed in a basis
 - $oldsymbol{\cdot}$ Keep track of basis with left notation $ec{v}=\dot{\mathbf{b}}^t\mathbf{c}$
 - $oldsymbol{\cdot}$ Change basis $ec{v}=ec{\mathbf{a}}^tM^{-1}\mathbf{c}$
- Points can be expressed in a frame (origin+basis)
 - Keep track of frame with left notation
 - adds a dummy 4th coordinate always 1

$$\tilde{p} = \tilde{o} + \sum_{i} c_{i} \vec{b}_{i} = \begin{bmatrix} \vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} & \tilde{o} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ 1 \end{bmatrix} = \vec{\mathbf{f}}^{t} \mathbf{c}$$

Affine transformations

- Include all linear transformations
 - Applied to the vector basis
- Plus translation

Matrix notation

We know how to transform the vector basis

$$\begin{bmatrix} \mathcal{L}(\vec{b}_1) & \mathcal{L}(\vec{b}_2) & \mathcal{L}(\vec{b}_3) \end{bmatrix} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{bmatrix}$$

• We will soon add translation by a vector $ec{t}$

$$\tilde{p} \Rightarrow \tilde{p} + \vec{t}$$

Linear component

$$ilde{p} = ilde{o} + \sum_i c_i ec{b_i} = \left[egin{array}{ccc} ec{b_1} & ec{b_2} & ec{b_3} & ec{o} \end{array}
ight] \left[egin{array}{ccc} c_1 & c_2 & c_3 & c_3$$

$$ilde{o} + \sum_i c_i \mathcal{L}(ec{b_i}) = \left[egin{array}{cccc} ec{b_1} & ec{b_2} & ec{b_3} & ec{o} \end{array}
ight] \left[egin{array}{cccc} M_{11} & M_{12} & M_{13} & 0 \ M_{21} & M_{22} & M_{23} & 0 \ M_{31} & M_{32} & M_{33} & 0 \ 0 & 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} c_1 \ c_2 \ c_3 \ 1 \end{array}
ight]$$

Note how we leave the fourth component alone

Translation component

$$\tilde{p} \Rightarrow \tilde{p} + \vec{t}$$

Express translation vector t in the basis

$$ec{t} = \left[egin{array}{ccc} ec{b_1} & ec{b_2} & ec{b_3} \end{array}
ight] \left[egin{array}{ccc} M_{14} & M_{24} & M_{34} & M_{34} \end{array}
ight]$$

Translation

$$ilde{p} = ilde{o} + \sum_i c_i ec{b_i} = \left[egin{array}{ccc} ec{b_1} & ec{b_2} & ec{b_3} & ec{o} \end{array}
ight] \left[egin{array}{ccc} c_1 & c_2 & c_3 & c_3$$

Full affine expression

$$ilde{p} = ilde{o} + \sum_i c_i ec{b_i} = \left[egin{array}{ccc} ec{b_1} & ec{b_2} & ec{b_3} & ec{o} \end{array}
ight] \left[egin{array}{ccc} c_1 & c_2 & c_3 & c_3$$

$$ilde{o} + ec{t} + \sum_{i} c_{i} \mathcal{L}(ec{b_{i}}) = \left[egin{array}{cccc} ec{b_{1}} & ec{b_{2}} & ec{b_{3}} & ec{o} \end{array}
ight] \left[egin{array}{cccc} M_{11} & M_{12} & M_{13} & M_{14} \ M_{21} & M_{22} & M_{23} & M_{24} \ M_{31} & M_{32} & M_{33} & M_{34} \ 0 & 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} c_{1} \ c_{2} \ c_{3} \ 1 \end{array}
ight]$$

Which tells us both how to get a new frame ftM or how to get the coordinates Mc after transformation

Questions?

More notation properties

- If the fourth coordinate is zero, we get a vector
- Subtracting two points:

$$ilde{p}=ec{f^t} \left[egin{array}{c} c_1 \ c_2 \ c_3 \ 1 \end{array}
ight] \qquad \qquad ilde{p'}=ec{f^t} \left[egin{array}{c} c_1' \ c_2' \ c_3' \ 1 \end{array}
ight]$$

• Gives us
$$ilde{p}- ilde{p'}=ec{f}^t \left[egin{array}{ccc} c_1-c_1' \ c_2-c_2' \ c_3-c_3' \ 0 \end{array}
ight]$$

a vector (last coordinate = 0)

More notation properties

Adding a point

$$ilde{p}=ec{f^t}egin{bmatrix} c_1\ c_2\ c_3\ 1 \end{bmatrix}$$
 to a vector

$$ec{v}=ec{f}^t \left[egin{array}{c} c_1' \ c_2' \ c_3' \ 0 \end{array}
ight]$$

Gives us

$$ilde{p} + ec{v} = ec{f}^t \left[egin{array}{ccc} c_1 + c_1' \ c_2 + c_2' \ c_3 + c_3' \ 1 \end{array}
ight]$$

a point (4th coordinate=1)

More notation properties

vectors are not affected by the translation part

- because their 4th coordinate is 0
- If I rotate my moving car in the world, I want its motion to rotate
- If I translate it, motion should be unaffected

Questions?

Frames & hierarchical modeling

- Many coordinate systems (frames):
 - Camera
 - Static scene
 - car
 - driver
 - arm
 - hand
 - ...

Need to understand nested transformations

Frames & hierarchical modeling

- Example: what if I rotate the wheel of the moving car:
- frame 1: world
- frame 2: car

Questions?

How are transforms combined?

Scale then Translate

Use matrix multiplication: p' = T(Sp) = TSp

$$TS = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Caution: matrix multiplication is NOT commutative!

Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp

Translate then Scale: p' = S(Tp) = STp

Non-commutative Composition

Scale then Translate: p' = T(Sp) = TSp

$$TS = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Translate then Scale: p' = S(Tp) = STp

$$ST = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

Questions?

Plan

Vectors

Points

Homogenous coordinates

Normals

Forward reference and eye

- The fourth coordinate is useful for perspective projection
- Called homogenous coordinates

Homogeneous Coordinates

- Add an extra dimension (same as frames)
 - in 2D, we use 3-vectors and 3 x 3 matrices
 - In 3D, we use 4-vectors and 4 x 4 matrices
- •The extra coordinate is now an **arbitrary** value, w
 - You can think of it as "scale," or "weight"
 - For all transformations except perspective, you can just set w=1 and not worry about it

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Projective Equivalence

- All non-zero scalar multiples of a point are considered identical
- to get the equivalent Euclidean point, divide by w

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az \\ aw \end{bmatrix} w !=0 \begin{cases} x/w \\ y/w \\ z/w \\ 1 \end{cases}$$

$$a != 0$$

Why bother with extra coord?

 Camera at origin, looking along z, 90 degree f.o.v., "image plane" at z=1

Homogeneous Visualization

Projective Equivalence – Why?

- For affine transformations,
 adding w=1 in the end proved to be convenient.
- The real showpiece is perspective.

Questions?

Eye candy: photo tourism

- Application of homogenous coordinates
- Goal: given N photos of a scene
 - find where they were taken
 - get 3D geometry for points in the scene

Step 1: point correspondences

- Extract salient points (corners) from images
- Find the same scene point in other images
- To learn how it's done, take 6.815

Structure from motion

- Given point correspondences
- Unknowns: 3D point location, camera poses
- For each point in each image, write perspective equations p_4

Eye candy: photo tourism

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006

And that's it for today

The rest on Thursday