MATH 6270 HOMEWORK 3

COLTON GRAINGER OCTOBER 1, 2019

References

[Rie17] Emily Riehl. Category Theory in Context. Courier Dover Publications, March 2017. 1

[Rob96] Derek Robinson. A Course in the Theory of Groups. Graduate Texts in Mathematics. Springer-Verlag, New York, 2 edition, 1996. 2

1. For p a prime, the Prüfer p-group $\mathbb{Z}(p^{\infty}) = \mathbb{Z}(p^{\infty})$ is the direct limit (or colimit) of the sequence of abelian groups

$$0 \hookrightarrow \mathbb{Z}/p \hookrightarrow \mathbb{Z}/p^2 \hookrightarrow \mathbb{Z}/p^3 \hookrightarrow \cdots \hookrightarrow \mathbb{Z}/p^n \hookrightarrow \cdots$$
 (1.1)

where for each $n \in \mathbb{N}$ the quotient group \mathbb{Z}/p^n is "glued into" \mathbb{Z}/p^{n+1} by the pth power map.

Considering generators and relations (as in [Rie17]), we can also describe the Prüfer p-group as

$$\mathbb{Z}/p^{\infty} := \langle \{g_1, g_2, g_3, \ldots\} \mid \{0, g_1 p, g_2 p^2, \ldots\} \rangle$$

If H is a subgroup of $\mathbb{Z}(p^{\infty})$, then there either exists some $g_M \in H \cap \{g_1, g_2, g_3, \ldots\}$ of maximal exponent or not.

Say g_M of maximal exponent in H does exist. I claim the inclusion of H into $\mathbb{Z}(p^{\infty})$ induces

$$0 \longrightarrow H \longrightarrow \mathbb{Z}(p^{\infty}) \longrightarrow \mathbb{Z}(p^{\infty}) \longrightarrow 0$$

because $\mathbb{Z}(p^{\infty})$ is isomorphic to the colimit of (1.1) with M additional trivial groups tacked onto the front of the sequence, i.e., the colimit of the diagram

$$\underbrace{0 \hookrightarrow \ldots \hookrightarrow 0}_{M+1 \text{ trivial groups}} \hookrightarrow \mathbb{Z}/p \hookrightarrow \mathbb{Z}/p^2 \hookrightarrow \cdots$$
(1.2)

This demonstrates that every finitely generated subgroup of $\mathbb{Z}(p^{\infty})$ is a proper subgroup of $\mathbb{Z}(p^{\infty})$. Hence $\mathbb{Z}(p^{\infty})$ is not finitely generated.

Moreover, say g_M of maximal exponent in H does not exist. This with Neumann's theorem implies H has a countably infinite generating set. Then for each $n \in \mathbb{N}$, the subgroup H contains \mathbb{Z}/p^n . The universal property of the colimit pushes out a map that $\mathbb{Z}(p^{\infty}) \hookrightarrow H$, hence knowing also $H \hookrightarrow \mathbb{Z}(p^{\infty})$, we have an isomorphism of abelian groups.

We have enough information to exhaustively list the subgroups of $\mathbb{Z}(p^{\infty})$:

- (isomorphic copies of) each cyclic group of prime power order p^n
- \bullet the trivial subgroup 0
- the entire group $\mathbb{Z}(p^{\infty})$ itself.

Lastly, fix an arbitrary n and endow \mathbb{Z}/p^n with the standard multiplication. Then \mathbb{Z}/p^n is a finite field. As fields are never closed under products, Birkhoff's theorem implies that \mathbb{Z}/p^n cannot be contained in a variety of subalgebras of $\mathbb{Z}(p^{\infty})$. Thence, specifying to the definition of a variety of groups, \mathbb{Z}/p^n cannot be a verbal subgroup of $\mathbb{Z}(p^{\infty})$. Because any homomorphic image of a generator $g_n \in \mathbb{Z}/p^n$ has exponent dividing n, any endomorphism φ in $\operatorname{End}(\mathbb{Z}(p^{\infty}))$ maps g_n back into \mathbb{Z}/p^n . So \mathbb{Z}/p^n is fully invariant.

That 0 and $\mathbb{Z}(p^{\infty})$ are verbal subgroups follows trivially by taking the empty word and the 1 letter words respectively.

2. If N and K are normal subgroups of a group G, there's a "diagonal" embedding $G/(N \cap K)$ into the product $G/N \times G/K$ that projects onto each component.

Proof. Knowing that $N \cap K \hookrightarrow N$ and $N \cap K \hookrightarrow K$, there is a well defined mapping on cosets of $N \cap K$ in G to cosets of N and K in G respectively, given by choosing the unique sets gN and gK such that $g(N \cap K) \subset gN$ and $g(N \cap K) \subset gK$. Inspecting the definition of the projections π_N and π_K from G to the quotients G/N and G/K, our afore chosen well defined mapping is a homomorphism of groups:

$$d^* \colon G/(N \cap K) \to G/N \times G/K$$
$$q(N \cap K) \xrightarrow{d^*} qN \times qK$$

The image $d^*(\frac{G}{N\cap K})$ seen to be onto the arbitrary component G/H for H=N,K by lifting $1\times\cdots\times gH\times\cdots\times 1$ to $g(\cdots\cap H\cap\cdots)$. The kernel ker d^* is seen to be trivial by observing if the cosets $g(N\cap K)\subset 1N$ and $g(N\cap K)\subset 1K$ are in the trivial class of the respective cosets of the identity in the components, then $g(N\cap K)\subset 1(N\cap K)$, hence $d^*(g(N\cap K))=1N\times 1K$ only if $g\in N\cap K$.

3. Suppose that $H \triangleleft G$ is a minimal normal subgroup of a finite solvable group G. Minimality and normality of H in G implies that if $Q \operatorname{chr} H$ and $Q \neq H$, then $Q \triangleleft G$, which is absurd. (See chapter 3 pages 87–88 of [Rob96].) Hence H is a characteristically simple group.

Because G is solvable, choose some composition series of G

$$1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_\ell = G \quad \text{with abelian subquotients } N_{i+1}/N_i \text{ for all } i < \ell$$
(3.1)

Intersecting H with the terms of the composition series of G yields a filtration of H with abelian subquotients, showing that H too is solvable.

Consider that the derived subgroup of H is characteristic in H:

$$[H,H]\operatorname{chr} H$$

By minimality and normality of H in G, either [H, H] = 1 or [H, H] = H. In the latter case, the derived series of H does not terminate. As the derived series of H has terms contained in every composition series of H with abelian subquotients, we see that H does not have the composition series guaranteed by the solvability of G, which is absurd. Hence [H, H] = 1, and H is abelian.

Let p be any prime dividing |H|, and let P < H be a Sylow p-subgroup of H. That H is characteristically simple implies that Aut H is simple.¹ But as H acts transitively on the conjugates of P in H, the lack of interesting automorphisms implies that P is invariant under conjugation (inner automorphisms). Hence $P \triangleleft H$ chr G implies $P \triangleleft G$. Minimality and normality of H in G forces P = H.

Since G is finite, P is finite. Applying proposition 3.3.15.ii in [Rob96], P is the direct product of finite simple groups. Hence P is an elementary abelian p-group.²

¹Colton needs to revise this claim.

²I would love to show more that the automorphism group of P is a project special linear group. Clearly $\operatorname{Aut}(P)$ is $\operatorname{Aut}(\mathbb{Z}_{p^n}) \cong \mathbb{Z}_{\varphi(n)}$, which is not simple. Hence $\operatorname{Aut}(P)$ should be a group of linear transformations of some finite dimensional vector space over the field \mathbb{Z}/p . But how does one move from the general linear group of a finite geometry to the projective special linear group?