

Índice

1	REGRESIÓN			
	1.1 Regresión monovariable y multivariable			
	1.2 Algoritmo de descenso de gradiente			
	1.3 Ecuación normal			
	1.4 Convergencia y normalizado de atributos			
	1.5 Regresión polinómica	•		
	1.6 Regresión robusta	•		
	1.7 Métricas de error	•		
2	REGULARIZACIÓN Y SELECCIÓN DE MODELOS			
3	REGRESIÓN LOGÍSTICA			
1	REDUCCIÓN DE LA DIMENSIÓN			
5	AGRUPAMIENTO			
6	RECOMENDADORES			
7	PROCESOS GAUSSIANOS			
В	????PROBLEMAS????			

REGRESIÓN

Nomenclatura	Expresión
Muestra de entrenamiento	$D = \{(x^i, y^i)\}_{i=1}^N$
Variables de entrada	$X = (x_0, \dots x_D)^T$
Variable de salida/objetivo	y
Parámetros/pesos	$\boldsymbol{\theta} = (\theta_0,, \theta_D)^T$ o $\boldsymbol{W} = (w_0,, w_D)^T$
Hipótesis	$h_{ heta} = heta^T X = \sum_{i=0}^D heta_i x_i$

1.1 Regresión monovariable y multivariable

Regresión: Predicción del valor de la salida a partir de las entradas

Regresión	Expresión
Monovariable Multivariable	$ \begin{aligned} \hat{y} &= h_{\theta}(x) = \theta_0 + \theta_1 x \\ \hat{y} &= h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots = \theta^T X \end{aligned} $

Función de coste: Cuanto se desvía la predicción de la realidad.

Función de coste	Expresión
Suma de errores cuadráticos Estimación por mínimos cuadrados	$\begin{array}{l} J(\theta) = \frac{1}{2} \sum_{i=1}^{N} (h_{\theta}(X^i) - y^i)^2 \\ \hat{\theta} = \arg \min_{\theta} J(\theta) \end{array}$

1.2 Algoritmo de descenso de gradiente

Gradiente: Derivación de la función de coste respecto a los pesos.

+
$$g(\theta) = \frac{\partial}{\partial \theta} J(\theta) = X^T (X \theta - y)$$
 (Tras simplificar)

El descenso de gradiente consiste en minimizar el error restándose a los parámetros su gradiente.

• $\theta_{k+1} = \theta_k - \alpha g(\theta_k)$, donde α es un factor de aprendizaje

```
function [j, grad, Hess] = CosteL2(theta, X, y)
% Calcula el coste cuadrático, y si se piden, su gradiente y su hessiano
r = (X*theta)-y % Residuo
J = (1/2)*sum(r.^2) % Coste cuadrático
if nargout > 1
    grad = X'*r; % Gradiente
end
```

```
if nargout > 2
   Hess = X'*X; % Hessiano
end
```

- 1.3 Ecuación normal
- 1.4 Convergencia y normalizado de atributos
- 1.5 Regresión polinómica
- 1.6 Regresión robusta
- 1.7 Métricas de error

REGULARIZACIÓN Y SELECCIÓN DE MODELOS

REGRESIÓN LOGÍSTICA

REDUCCIÓN DE LA DIMENSIÓN

AGRUPAMIENTO

RECOMENDADORES

PROCESOS GAUSSIANOS

¿¿¿PROBLEMAS????