PRAKTIKUM DASAR ELEKTRONIKA UNIT 8

COMMONDRAIN AMPLIFIER LABORATORIUM DASAR ELEKTRO

ADAM MARDHATILLAH

3332200024

DE-18

JURUSAN TEKNIK ELEKTRO

FAKULTAS TEKNIK

UNIVERSITAS SULTAN AGENG TIRTAYASA

2021

BAB I

METODOLOGI PRAKTIKUM

1.1 Prosedur Percobaan

Berikut ini adalah prosedur percobaan pada Unit 8 yaitu sebagai berikut:

- 1. Disiapkan papan plug-in, catu daya tegangan utama, generator sinyal, empat buah resistor $1M\Omega$, $100K\Omega$ dan $560~\Omega$, dua buah kapasitor dengan nilai masing masing $10\mu\text{F}/35\text{V}$, FET SK 125, dan osiloskop.
- 2. Dalam keadaan catu daya tegangan utama dan generator sinyal mati, dibuatlah rangkaian seperti pada gambar dibawah pada papan plug-in.

Gambar 1.1 Rangkaian Common Drain Amplifier[1].

- 3. Dihidupkan catu daya tegangan utama
- 4. Dihidupkan generator sinyal
- 5. Diatur agar besar sinyal pada CH 1 dan frekuensi gelombang sinus bisa terlihat dengan jelas.

- 6. Disket gambar yang tampak pada layar osiloskop dalam bentuk grafik yang mencantumkan Time/DIV, V/DIV (CH 1), dan V/DIV (CH 2)
- 7. Dicatat hasil percobaan pada blangko yang ada.
- 8. Dimatikan catu-daya tegangan utama[1].

BAB II

TUGAS

2.1 Tugas Pendahuluan

- 1. Jelaskan apa itu Common Drain Amplifier!
- 2. Sebutkan Karakteristik dari Common Drain Amplifier!
- 3. Jelaskan apa itu Source Follower!
- 4. Sebutkan Persamaan dan Perbedaan antara *Common Drain Amplifier* dan *Common Collector Amplifier!*

Jawaban:

- 1. Penguat *Common Drain* merupakan rangkaian yang menggunakan transistor jenis FET dan juga digunakan untuk memberi resistansi output rendah.
- 2. Karakteristiknya Yaitu:

Penguat Tegangan : NOL

Penguat Arus : Tinggi

Penguat Daya : Sedang

• Hubungan fase *input-output* : 0°

Resistansi *Input* : Sangat Tinggi

• Resistansi *Output* : Rendah

- 3. Rangkaian yang menghasilkan tegangan input dan output yang sama.
- 4. Persamaan:
 - Fasa yang dihasilkan antara input dan output tidak berubah

Perbedaan:

Penguat Daya Drain Amplifier : Sedang

• Penguat Daya Collector Amplifier : Kecil

• Penguat Tegangan Drain Amplifier : 0

• Penguat Tegangan Collector Amplifier : < 1

2.2 Tugas Unit

- Bagaimana prinsip kerja transistor JFET? Apa perbedaannya dengan MOSFET?
- 2. Kenapa tegangan output dari common drain tidak bertambah dari tegangan input?
- 3. Apa perbedaan antara common drain dengan common source?
- 4. Apa persamaan antara common drain dengan common collector?

 Jawaban:
- Prinsip kerjanyan dengan Elektron atau Hole akan mengalir dari Terminal Source (S) ke Terminal Drain (D). Arus pada Outputnya yaitu Arus Drain (I_D) akan sama dengan Arus Inputnya yaitu Arus Source (I_S). Perbedannya dengan MOSFET adalah pada MOSFET gate terisolasi oleh suatu bahan oksida.
- 2. Karen pada *Common Drain Amp* hanya memperbesar kuat arusnya lalu mempertahankan tegangan input yang dikeluarkan.

3. Perbedaan:

Penguat Daya Drain Amplifier : Sedang
Penguat Daya Source Amplifier : Tinggi
Fasa Input Outpu Drain Amplifier : 0°
Fasa Input OutpuSource Amplifier : 180°

4. Perbedaan:

Penguat Daya *Drain Amplifier* : Sedang
Penguat Daya *Collector Amplifier* : Kecil
Penguat Tegangan *Drain Amplifier* : 0
Penguat Tegangan *Collector Amplifier* : < 1

BAB III

ANALISI

3.1 Dasar Teori

Amplifier atau penguat N-MOSFET source follower memiliki bentuk mirip dengan penguat common source, yang membedakan dari sisi rangkaiannya adalah:

- 1. Output penguat source follower berada terminal Source, sedang output common source terletak pada terminal Drain.
- 2. Resistor pada terminal *Drain (RD) source follower* dapat dihilangkan, *resistor Source (RS)* tidak dapat dihilangkan. Sedang *common source* kebalikannya yaitu *RS* dapat dihilangkan, tetapi *RD* tidak dapat dihilangkan.

Gambar 3.1 Penguat Source Follower N-MOSFET[2].

Dalam mendesain rangkaian penguat source follower diperlukan analisis dc dan analisis ac. Analisis dc ditujukan untuk menentukan titik kerja dc (Q) N-MOSFET sedemikian rupa agar sinyal yang ditumpangkan pada arus dc dapat mengayun maksimum sehingga tidak ada

perubahan bentuk sinyal. Analisis ac digunakan untuk menentukan penguatan rangkaian penguat[2].

3.2 Analisi Percobaan Common Drain Amplifier

Gambar 3.2 grafik Common Drain 1

Gambar 3.3 grafik Common Drain 2

Tabel 1 Percobaan Common Drain Amplifier

No.	VA (mV)	Vout (V)	AV
1	0,533	0,455	0,853
2	1,5	1,294	0,862

Pada Common Drain Amplifier terdapat salah satu karakteristiknya yaitu nilai penguat tegangannya (Av) dibawah 1, di percobaan kali ini terdapat 2 data yang akan dicoba yaitu pada percobaan awal dan kedua nilai penguat tengannya akan dicari dan apakan nilai tersebut dibawah 1 yang mana menjadi karakteristik dari common drain amplifier.

Percobaan Pertama

$$A_V = \frac{V_{OUT}}{V_{IN}}$$
 $A_V = \frac{0,445}{0,533}$
 $A_V = 0,853$

Percobaan Kedua

$$A_V = \frac{V_{OUT}}{V_{IN}}$$
 $A_V = \frac{1,294}{1,5}$
 $A_V = 0,862$

Didapatkan pada percobaan awal yaitu penguat teganganya sebesar 0,853 kali, dan padda percobaan kedua yaitu penguat tegangannya sebesar 0,864 kali, yang mana pada nilai tersebut berada dibawah 1 dan menjadi salah satu karakteristik dari common drain amplifie yang mana penguat tegangannya dibawah 1, jadi pada percobaan ini salah satu syarat dari karakteristik common drain amplifie telah terpenuhi.

BAB IV

PENUTUP

4.1 Kesimpulan

Berdasarkan pada praktikum yang telah dilakukan, mengenai *Common Drain Amplifier* dapat diambil kesimpulan sebagai berikut:

1. Karakteristik dari Common Drain Amplifier Yaitu:

• Penguat Tegangan : NOL

Penguat Arus : Tinggi

• Penguat Daya : Sedang

• Hubungan fase input-output : 0°

• Resistansi *Input* : Sangat Tinggi

• Resistansi *Output* : Rendah

DAFTAR PUSTAKA

- [1]. Asisten Lab Dasar Elektro, " Common Drain Amplifier" in Modul Praktikum Dasar Elektronika 2021, Cilegon, Universitas Sultan Ageng Tirtayasa Fakultas Teknik, 2021, p 28.
- [2]. Irtanto Wijaya, "N-MOSFET Amplifier Source Follower" in Website Belajar Elektronika [terhubung berkala] https://www.belajarelektro.com/2020/04/n-mosfet-amplifier-source-follower.html (diakses pada 20 November 2021 pukul 11.42).