## PHYSICS 327

## LAB 1 - DC VOLTAGE DIVIDER

Homework: Read Faissler Chapters 2-6, 15-16. Do Problems 4.10 – 4.12, 5.1, 6.6.

Lab:

## Goals:

Learn about voltage dividers and practice using basic electronic equipment.

## Part A: Resistive voltage divider

A standard voltage divider is shown below:



Use a "power supply" provided for the source of the input voltage  $V_{in}$ . The circuit is described by the equation  $V_{out} = V_{in} \frac{R_2}{R_1 + R_2}$ .

As long as  $R_2$  is small compared to  $R_1$ , the output voltage  $V_{out}$  varies almost linearly with  $R_2$ , whereas for  $R_2$  large compared to  $R_1$ , the output voltage is about equal to the input voltage  $V_{in}$ . (Q1) Verify this by working out the appropriate mathematical expressions (first order term + second order correction). Verify the same experimentally, in the following way. First, choose  $R_1$  = 100 k $\Omega$ , and let  $R_2$  = 1, 10, 100, 1 k, 10 k, 100 k, and 1 M $\Omega$ . Use discrete components, not the resistor boxes, for  $R_2$ . Measure each resistor with the multimeter, and compare to the value shown by the color code. Set up the circuit on the

prototyping board, and use the power supply to provide  $V_{in}$  = 12 V. For each value of  $R_2$ , measure  $V_{in}$  and  $V_{out}$ . Second, reduce  $R_1$  to 100  $\Omega$ , and repeat the measurements for all of the values of  $R_2$  equal to and greater than 100  $\Omega$ .

For the first set of measurements, graph  $V_{out}/R_2$  vs.  $log(R_2)$ ; this function should be flat in the linear region, where  $R_2$  is small. (Q2) For what values of  $R_2$  is the dependence about linear? For the second set of measurements, graph  $V_{out}$  vs.  $log(R_2)$ . (Q3) For what values of  $R_2$  is  $V_{out} \approx V_{in}$ ? Also put on each plot a smooth curve calculated from the voltage divider equation above.

Loading of a circuit occurs when additional circuitry is connected. To illustrate the concept of loading, consider a voltage divider with  $V_{in}=12~V$ , and  $R_1=R_2=1~k\Omega$ . Rather than directly measuring  $V_{out}$ , a 10  $k\Omega$  resistor  $R_m$  can be put in parallel with  $R_2$ , the current through  $R_m$  measured, and  $V_{out}$  calculated. Draw the circuit, do the measurement, make the calculation, and explain your results (compare to the case with no resistor  $R_m$ ). Repeat with  $R_m=1~k\Omega$ . This demonstrates why a voltage divider is not a very good voltage source. A good voltage source produces output voltage which is independent of the load resistance( $R_m$ , in this case). Remember that an ammeter must be connect in *series* with the circuit being measured.

Caution: It is easy to blow the fuse in the multimeter when measuring current. Do not exceed 30 mA for the input current to the multimeter.



Part. B An LED -- A non-resistive device

In DC networks, we are usually concerned with resistors and voltage sources. Sometimes elements which have a resistance that depends on the applied voltage; in other words, the current is not proportional to the voltage. These are called non-ohmic devices. We will use

the light-emitting diode (LED) as an example of a non-ohmic device.

Construct a voltage divider consisting of a resistor  $R_1$  in series with an LED. Choose  $R_1$  = 1 M, 100 k, 10 k, 1 k, and 100  $\Omega$ . Be careful when you set up the LED. If the LED is connected without a resistor in series it will burn out, so take care to always have a 100  $\Omega$  resistor in series with it. If oriented correctly, current will flow through the LED when the voltage across it is more than about 1 V. If oriented backwards, the voltage across it will be essentially the input voltage, and the current through it will be about 0.

Apply a voltage  $V_{in} = 5 \text{ V}$ . For each value of  $R_1$ , measure the current through the circuit, and the voltage across the two elements. Make a plot of voltage across the diode vs. current through it. Calculate the power dissipated in each of the elements. (Q4) For what values of  $R_1$  do you see light from the LED? (Q5) How does the plot demonstrate that the LED does not obey Ohm's Law?