07

7 Elements of Groups 16, 17 and 18

Subtopics

- 7.1 Introduction
- 7.2 Occurrence
- 7.3 Electronic configuration of elements of groups 16, 17 and 18
- 7.4 Atomic and physical properties of elements of groups 16, 17 and 18
- 7.5 Anomalous behaviour of oxygen and fluorine
- 7.6 Chemical properties of elements of groups 16, 17 and 18
- 7.7 Allotropy
- 7.8 Oxoacids
- 7.9 Oxygen and compounds of oxygen
- 7.10 Compounds of sulfur
- 7.11 Chlorine and compounds of chlorine
- 7.12 Interhalogen compounds
- 7.13 Compounds of xenon

Liquid Helium

Liquid helium is used as a cryogen (i.e., used to produce very low temperatures) for various applications. One of the important application is in the medical field; MRI technology (magnetic resonance imaging). It is majorly used to deter any anomaly present in the nervous and cardiovascular system. MRI instrumentation involves the use of superconducting magnet, which is cooled using liquid helium.

Also, liquid helium when cooled below the critical value, it becomes a quantum fluid known as helium-II. It's a superfluid, that is, a fluid with "zero viscosity and flows without any loss of kinetic energy".

Group 18 (Noble gases)

Elements: He, Ne, Ar, Kr, Xe, Rn

Quick Review

Elements of groups 16, 17 and 18:

Group 16 (Chalcogens)
Elements: O, S, Se, Te, Po

Elements of groups 16, 17 and 18

Group 17 (Halogens)
Elements: Fe, Cl, Br, I, At

Valence shell electronic configuration:

Sulfur dioxide: Preparations:

Reactions:

CaSO₄ + HF

 $2SO_4$

Reactions of chlorine: FeSO₄ Fe₂(SO₄)₃ + HCl Hydrogen Ferric H2SO4 sulfate chloride Na₂SO₄ + HCl Sodium Hydrogen H₂O chloride sulfate S + HCl Hydrogen Sulfur chloride SO2 H2SO4 + HCl H₂O Sulfuric Hydrogen chloride acid NaOH + NaOCl + H₂O NaCl cold dilute Sodium Sodium chloride hypochlorite Cl Chlorine NaOH NaCl + NaClO₃ + H₂O hot and conc. Sodium Sodium chloride chlorate Ca(OH)2 ▶ Ca(OCl)₂ + H₂O Bleaching powder CH₄ ► CH₃Cl + HCl Hydrogen Methyl chloride chloride $CH_2 = CH_2$ $H_2C - CH_2$ R.T 121 CI CI 1,2-Dichloroethane ► HIO₃ + HCl H₂O Iodic acid H₂O HCl HOCI Hydrochloric Hypochlorus

Ele

ele

(A

El

be

(A

(E

(

(1

Xenon fluorides and oxyfluorides:

$$Xe + F_2 \longrightarrow XeF_2$$

$$PF_5 \longrightarrow XeF_2 \cdot PF_5$$

$$Xe + 2F_2 \longrightarrow XeF_4 \longrightarrow XeF_4 \longrightarrow XeOF_2 + HF$$

$$Xe + 3F_2 \longrightarrow XeF_6 \xrightarrow{H_2O} XeO_3 + HF$$
 $H_2O \longrightarrow XeOF_4 + HF$
 $SiO_2 \longrightarrow H_2O$
 $XeO_2F_2 + SiF_4 \longrightarrow XeO_2F_2 + HF$

acid

acid

HC1+[0]