Базис бесконечнопорожденного пространства

На прошлом занятии мы научились строить базисы для конечнопорожденных, проделаем же это и для бесконечнопорожденных.

Пусть у нас пространство над полем V(K), расммотрим частично-упорядоченное отношением "подмножество" множество

$$P = \{L \subset V : L - \mathrm{ЛН3}\}$$

Если мы покажем, что существует максимум L_0 , то его линейная оболочка совпадет со всем пространством V и базис будет получен.

Для того, чтобы доказать совпадение выше, достаточно рассмотреть $x \in V \setminus L_0$, который разложится через L_0 или ... не разложится и сделает противоречие.

То есть теперь наша задача – лемма Цорна:

Теорема (Лемма Цорна)

Если задано $\langle M, (\preceq) \rangle$ и для всякого линейно-упорядоченного $S \subseteq M$ выполнено $upb_M S \neq \varnothing$, то в M существует максимальный элемент.

Привет матлогу! И да, это опять философский разговор про добавление в ZF аксиомы выбора и эквивалентные ей утверждения.

Конечные поля

Сначала рассмотрим такие 2 поля: $K \subset K'$ и попробуем задать векторное пространство K'(K): $K \times K' \to K'$: $(k,a) \mapsto ka$, где умножение из K'. Ну и нетрудно проверить, что все мы удовлетворяем все аксиомы. (Кажется, это верно и для колец)

Так, ну мы можем найти базис, а значит $\forall x \in K': \exists \{c_i\}: x = \sum c_i e_i$ – запомним, это и будет полезно в конечных полях.

Конечное поле единиц – определяется своей характеристикой

$$\operatorname{char}(K) = \min \left\{ n : \underbrace{1 + \dots + 1}_{n} = 0 \right\}$$

А вообще сложить n раз единичку – полезное занятие: пусть дано поле $K: \mathrm{char}(K) = p \in \mathbb{P}$, $\mathbb{Z}/p\mathbb{Z}$ тоже имеет характеристику p. Рассмотрим

$$\varphi: \mathbb{Z}/p\mathbb{Z} \to K: [m] \mapsto \underbrace{1+\ldots+1}_m$$

где [m] – класс вычетов. Ну, это корректная инъекция-вложение гомоморфизм. А следовательно K – векторное пространство над $\mathbb{Z}/p\mathbb{Z}$, и еще раз следовательно $|K|=p^m:$ $p\in\mathbb{P}$ – одно из домашних упражнений решено!

Последнее равенство может быть неочевидно – предлагается попыться разложить K в прямую сумму чего? Смотреть предыдущую заметку.

Упражнения

- 1. Вспомним групповые кольца. Что такое KG? Когда это будет полем? На занятии сказали как минимум не должно быть кручений.
- 2. $\forall p: \exists !K: |K| = p^m$ (такие поля обозначают \mathbb{F}_{p^m}).

Порядок группы обратимых матриц

Как мы уже знаем, $GL_n(K)$ – группа обратимых матриц над полем K. Давайте сразу представим $K=\mathbb{F}_{p^m}:GL_n(\mathbb{F}_{p^m})$ и посчитаем ее порядок.

Выше мы обсуждали базисы – и не просто так. Их количество считать проще, поэтому напрашивается построить какую-нибудь биекцию в них.

А какие преобразования над базисами мы знаем? Матрица перехода.

 $\mathbb{F}_{p^m}=K$ – векторное пространство над полем $\mathbb{Z}/p\mathbb{Z}$, у него есть базис $\{e_i\}$. Для любого другого базиса существует единственная матрица перехода – она обратима. С другой стороны любая обратимая матрица может стать матрицей перехода. Тем самым множество базисов \mathbb{F}_{p^m} биективно $GL_n(K)$.

А базисы мы посчитаем просто комбинаторно.

Выбираем базисный вектор	Количество способов это сделать
e_1	$p^{mn}-1$
e_2	$p^{mn}-p^m$
e_3	$p^{mn}-p^mp^m$

Ответ – произведение значений из правого столбца. В качестве упражнений можно разобрать частные случаи (например, m=1).

Копредставление группы перестановок

Перед тем как находить его для общего случая, разберем пару базовых.

$$S_2 = \langle a \mid a^2 = 1 \rangle \cong \mathbb{Z}_2$$

$$S_3 = \langle \text{транспозиции} \ \sigma_i(i,i+1) = (i+1,i) : \sigma_1,\sigma_2 \mid \sigma_i^2 = 1, \left(\sigma_1\sigma_2\right)^3 = 1 \rangle$$

С двойкой все понятно, с тройкой: ну $\langle ... \rangle \to S_3$ – сюръекция понятно почему, мы перечислили все элементы:

$$\left\{1,\sigma_1,\sigma_2,\sigma_1\sigma_2,\left(\sigma_1\sigma_2\right)^2,\sigma_1\sigma_2\sigma_1\right\}$$

Как получить инъекцию? Сделать обратное преобразование. Можно заметить интуицию – формула для n выглядит как-то так:

$$\left\langle \sigma_{1},\sigma_{2},...,\sigma_{n-1}\ |\ \sigma_{i}^{n}=1,\left(\sigma_{i}\sigma_{i+1}\right)^{n}=1,\sigma_{i}\sigma_{i+1}\sigma_{i}=\sigma_{i+1}\sigma_{i}\sigma_{i+1}\right\rangle$$

Рассуждая индуктивно, можно попробовать доказать переход - упражнение.

Теория кос

Если убрать из формулы выше убрать $\left(\sigma_i\sigma_{i+1}\right)^n=1$, то получится группа кос (перестановки с историей) – en.wikipedia (это ссылка).

На следующем занятии

Начнем обсуждать ключевой результат – для произвольных уравнений степени хотя бы 5 невозможно указать явную формулу для решений.