2. Mengen

#Mathe1 #Mathe #Mengen

Themen

- 1. Mengen
- 2. Mengenalgebra
- 3. Mächtigkeit von Mengen Siebformeln
- 4. Produktmenge
- 5. Potenzmenge

1. Mengen

Definition

Unter einer *Menge* versteht man jede Zusammenfassung *M* von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die *Elemente* von *M* genannt werden) zu einem Ganzen.

Konventionen

- Mengen werden mit Großbuchstaben bezeichnet
- Objekte (Kleinbuchstaben) werden als Elemente bezeichnet
- "x ist Element der Menge A", formal: $x \in A$
- "x ist nicht Element der Menge A", formal: $x \notin A$

A Beschreibung von Mengen

- Aufzählend: $A := \{a, b, \dots, z\}$
 - Mengenklammer {} fasst Buchstaben zur Menge zusammen
 - Menge ist durch die Aufzählung ihrer Elemente beschrieben
 - Nicht alle Elemente müssen aufgeschrieben werden, Verwendung von ...
- Charakteristische / definierte Eigenschaften als Schreibweise:

```
M := \{w : w \text{ hat die Eigenschaft } ...\}
```

"M ist die Menge aller Objekte w mit den Eigenschaften ..."

Teilmengenbeziehung und Gleichheit

1 Definition

Es seien die Mengen X und Y.

1. Falls jedes Element von X auch Element von Y ist, so heißt X Teilmenge von Y.

Schreibweise: $X \subseteq Y$ (Mengeninklusion)

2. Gilt $X \subseteq Y$ und $Y \subseteq X$, so sind beide Mengen *gleich*.

Schreibweise: X = Y

Also ist jedes Element aus X auch Element von Y und umgekehrt.

3. Gilt $X \subseteq Y \land X \neq Y$, so sagt man "X ist eine echte Teilmenge von Y"

Schreibweise: $X \subset Y$

Mächtigkeit von endlichen Mengen

Definition

Die Mächtigkeit bzw. Kardinalität einer Menge ist die Anzahl der Elemente dieser Menge.

Schreibweise: |A| für die Mächtigkeit der Menge A

b Endliche vs. unendliche Mengen

- Mächtigkeit einer endlichen Menge ist eine Zahl
- Mächtigkeit einer unendliche Menge U lautet $|U|=\infty$

Beispiele:

 $\bullet \ \ \mathsf{F\"{u}r} \ A := \{a,b,\ldots,z\} \ \mathsf{gilt} \ |A| = 26$

- |C| = |D| = |E| = 6 für
 - $C := \{a, c, e, f, g, h\}$
 - $D := \{a, c, a, a, e, f, g, g, g, g, g, h, h\}$
 - $E := \{h, g, f, a, c, e\}$

A Zur Beachtung

Mengen mit unendlich vielen Elementen haben die Mächtigkeit unendlich $(=\infty)$ (siehe 3.)

Leere Menge

1 Definition

Eine Menge, die kein Element bestitz, heißt leere Menge

- Schreibweise: $\{\} = \emptyset$
- Es gilt: $\emptyset \subset M$ für alle Mengen M
- Mächtigkeit: $|\{\}| = |\emptyset| = 0$

2. Mengenalgebra

Operationen mit Mengen

Schnitt, Vereinigung, Differenz

1 Definition

1. Die Schnittmenge $X \cap Y$ ist die Menge der Elemente, die in X und in Y liegen.

Schreibweise: \$X \cap Y := {a : a \in X und a \in Y}

2. Die *Vereinigungsmenge* $X \cup Y$ von X und Y ist die Menge der Elemente, die in X oder Y liegen. *Oder bedeutet hier nicht "entweder oder"!*

Schreibweise: \$X \cup Y := {a : a \in X oder a \in Y}

3. Die *Mengendifferenz* $Y \setminus X$ ist die Menge aller Objekte, die in Y, aber nicht in X liegen.

Schreibweise: \$Y \backslash X := {a : a \in Y und a \notin X}

4. Die symmetrische Differenz $X\Delta Y:=(X\cup Y)\backslash (X\cap Y)$

Bildliche Darstellung

- a) $A \cap B$
- b) $A \cup B$
- c) $A \backslash B$
- d) $A^C=ar{A}=Gackslash A$
- e) $A\Delta B = (A \backslash B) \cup (B \backslash A) (= (A \cup B) \backslash (A \cap B))$

Gesetze der Mengenalgebra

Verknüpfung von Mengen

1 Definition

Sind X und Y Mengen mit $X \cap Y = \{\}$ so nennt man X und Y disjunkt (elementfremd).

A Lemma

Sind *X* und *Y* Mengen, so gelten stehts

•
$$X \cap Y \subseteq X \subseteq X \cup Y$$

•
$$X \cap Y \subseteq Y \subseteq X \cup Y$$

Ist speziell X eine Teilmenge von Y, so gelten ferner

•
$$A \cap B = A$$

•
$$A \cup B = B$$

Verknüpfung von Mengen - Komplement

1 Definition

Es ecistiert eine Grundmenge M. Ist $X\subseteq M$, so heißt die Menge $X^C:=M\backslash X$ das Komplement von X in M. Andere Schreibweise: $X^X=\bar{X}$

Gesetze

Kommutativgesetz

1.
$$A \cup B = B \cup A$$

2.
$$A \cap B = B \cap A$$

Assoziativgesetz

3.
$$(A \cup B) \cup C = A \cup (B \cup C)$$

4.
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Verschmelzungsgesetz / Absorptionsgesetz

5.
$$A \cap (A \cup B) = A$$

6.
$$A \cup (A \cap A) = A$$

Distributivgesetz

7.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

8.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

neutrale Elemente bezüglich \cap und \cup

9.
$$A \cap M = A$$
 und $A \cup \emptyset = A$

inverse Elemente bezüglich ∩ und ∪

Analog der Definition in der Logik sprechen wir auch bei der Menge der Teilmengen einer Obermenge M versehen mit den beiden Operatoren \cup , \cap von einem Mengenverband (Gesetzmäßigkeiten 1-6), einem distributiven Mengenverband (ergänzt um die Punkte 7 und 8) sowie einem Boolschen Mengenverband (ergänzt um die Punkte 9 und 10).

Bei der Komplementbildung von Mengen gelten weiter folgende Gesetzmäßigkeiten (siehe <u>Logik</u>)

De Morgansche Gesetze

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \\
\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Gesetz der doppelten Negation

$$\bar{\bar{A}} = A$$

Zusätzlich gilt folgende Festlegung: Differenzmenge $A \backslash B = A \cap \bar{B}$

Aussagenlogik und Mengenalgebra

Es gelten folgende Analogien zwischen Logik und Mengenalgebra

Logik	Mengenalgebra
Negation $ar{A}$ oder $ eg A$	Komplementmenge $ar{A}$
Logisches UND $A \wedge B$	Durchschnitt $A \cap B$
Logisches ODER $A \lor B$	Vereinigung $A \cup B$
Wahrheitswert = WAHR	Obermenge Ω
Wahrheitswert = FALSCH	Leere Menge Ø

Hiermit lassen sich alle *Grundrechenregeln* der Logik den Rechenregeln der Mengenalgebra eindeutig zuordnen und in Beziehungen setzen. In der Welt der Logik sind die Ereignisse der jeweiligen Operatoren \land , \lor , \neg wiederum Elemente der Menge {WAHR, FALSCH} sowie in der Welt der Teilmengen einer gegebenen Obermenge Ω die Ergebnisse der jeweilligen Operationen \cap , \cup , \overline{Menge} wiederum

Die Analogien lassen sich noch bezüglich Implikation und Äquivalenz fortsetzen

Logik	Mengenalgebra
$(A \implies B) \iff (\neg A \lor B)$	$(A\subseteq B)\iff (orall x\in\Omega:x\in A\implies x\in B) \ \iff ar{A}\cup B=\Omega$
$(A \iff B) \iff (\neg A \lor B) \land (\neg B \lor A)$	$(A=B) \iff (\forall x \in \Omega : x \in A \iff x \in B) \iff$ $(\forall x \in \Omega : x \in (\bar{A} \cup B) \cap (\bar{B} \cup A)) \iff$ $(\bar{A} \cup B) \cap (\bar{B} \cup A) = \Omega$

Nachweis von Teilmengenbeziehung

Frage: Wie beweist man eine Teilmengenbeziehung $A \subseteq B$ oder $A \subset B$?

Antwort 1: Indem man zeigt -> $\bar{A} \cup B = \Omega$ (Ω sei die Gesamtmenge)

Beispiel 1 - Behauptung: Es gilt $(A \cup B) \cap \bar{C} = \emptyset \implies A \cup B \subseteq C$.

 $A \cup B \subseteq C \iff \overline{(A \cup B)} \cup C = \Omega \iff (A \cup B) \cap \overline{C} = \emptyset$, was vorausgesetzt war.

Beispiel 2 - Behauptung: Es gilt $\bar{A} \cup (B \cap C) = \Omega \implies A \subseteq B \cap C(A, B, C \subseteq \Omega)$

Antwort 2: Indem man zeigt $\rightarrow x \in A \implies x \in B$.

Beispiel 1 - Behauptung: Es gilt $(A \cup B) \cap \bar{C} = \emptyset \implies A \cup B \subseteq C$.

Beispiel 2 - Behauptung: Es gilt $\bar{A} \cup (B \cap C) = \Omega \implies A \subseteq B \cap C(A, B, C \subseteq \Omega)$

Beispiel 3: Es sei vorausgesetzt für die Mengen M, O, P, Q, die Teilmengen einer

Obermenge E sein mögen, dass

- 1. $M \subseteq P$
- $2. O \subseteq Q$
- 3. *P* ∩ *Q* = \emptyset

3. Mächtigkeit von Mengen bestimmen - Siebformel

Summenregel

▲ Regel

Für zwei endliche und disjunkte Mengen A und B ist die Anzahl der Elemente ihrer Vereinigungsmenge gleich $|A \cup B| = |A| + |B|$.

Summenregel (Verallgemeinerung)

Regel

Für n endliche disjunkte Mengen A_1, A_2, \ldots, A_n ist die Anzahl der Elemente ihrer Vereinigungsmenge gleich $|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \ldots + |A_n|$.

Zerlegung einer Menge in disjunkte Teilmengen

A Regel

Sei ${\cal E}$ eine gegebene endliche Menge. Dann lässt sich ${\cal E}$ als Vereinigungsmenge disjunkter Mengen darstellen

- mit einer Menge $A\subseteq E$ gilt: $E=A\cup ar{A}$
- mit zwei Mengen $A,B\subseteq E$ gilt: $E=(A\cap B)\cup (A\cap \bar{B})\cup (\bar{A}\cap B)\cup (\bar{A}\cap \bar{B})$
- mit drei Mengen $A,B,C\subseteq E$ gilt: $E=(A\cap B\cap C)\cup (A\cap B\cap \bar{C})\cup (A\cap \bar{B}\cap C)\cup (\bar{A}\cap B\cap C)\cup (A\cap \bar{B}\cap \bar{C})\cup (\bar{A}\cap B\cap \bar{C})\cup (\bar{A}\cap \bar{B}\cap \bar{C})\cup (\bar{A}\cap \bar{B}\cap \bar{C})$
- ... usw. ...

Inklusions- / Exklusionsprinzip oder Siebformel für zwei Mengen

A Regel

Für zwei beliebig endliche Mengen A und B ist die Anzahl der Elemente ihrer Vereinigungsmenge gleich

$$|A \cup B| = |A| + |B| - |A \cap B|$$
, weil $A \cup B = (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

Siebformel für drei Mengen

A Regel

Für drei beliebige endliche Mengen A, B und C ist die Anzahl der Elemente ihrer Vereinigungsmenge gleich

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

Siebformel für vier Mengen

A Regel

Für vier beliebige endliche Mengen A, B, C und D ist die Anzahl der Elemente ihrer Vergleichsmenge gleich

$$\begin{split} |A\cup B\cup C\cup D| &= |A|+|B|+|C|+|D|\\ -|A\cap B|-|A\cap C|-|A\cap D|-|B\cap C|-|B\cap D|-|C\cap D|\\ +|A\cap B\cap C|+|A\cap B\cap D|+|A\cap C\cap D|+|B\cap C\cap D|\\ -|A\cap B\cap C\cap D|. \end{split}$$

\(\text{Hinweis} \)

Das Verhalten der Siebformel wie <u>drei</u> oder auch <u>vier</u> Mengen kann analog für mehr Mengen übernommen werden.

4. Produktmenge

1 Definition

Als Produktmenge $A \times B$ zweier *nichtleerer* Mengen A und B bezeichnet man die Menge aller geordneten Paare, deren erste Koordinate Element aus A und deren zweite Koordinate Element aus B ist. Es gilt also $A \times B := \{(x_1, x_2) | x_1 \in A, x_2 \in B\}$.

 $A \times B$ wird auch als *kartesisches Produkt* bezeichnet. Ist A = B, so schreibt man:

$$A \times B = A^2$$

∄ Beispiel

Für
$$A = \{a, b\}$$
 und $B = \{a, d\}$ ist $A \times B = \{(a, a), (a, d), (b, a), (b, d)\}$, dagegen $B \times A = \{(a, a), (a, b), (d, a), (d, b)\}$

Der Begriff der Produktmenge lässt sich verallgemeinern auf beliebig viele Dimensionen.

1 Definition

Als Produktmenge $A_1 \times A_2 \times \cdots \times A_n$ von n nichtleeren Mengen A_1, A_2, \ldots, A_n bezeichnet man die Menge aller geordneten Tupel, deren i-te Koordinate jeweils

Element aus A_i ist. Es gilt also:

$$A_1 imes A_2 imes\cdots imes A_n:=ig\{(x_1,x_2,\ldots,x_n)|x_1\in A_1,x_2\in A_2,\ldots,x_n\in A_nig\}.$$

Ein bekanntes Beispiel einer solchen höherdimensionalen Produktmenge ist der reelle 3-dimensionale Raum \mathbb{R}^3 .

5. Potenzmenge

1 Definition

Ist M eine Menge, so ist die Potenzmenge P(M) von M als die Menge aller Teilmengen von M definiert $P(M):=\{U:U\subseteq M\}$.

A Merke

Die leere Menge \emptyset ist Teilmenge jeder Menge und damit immer auch Element der Potenzmenge jeder Menge.

Beispiele: Es gilt:

- $P(\emptyset) = \{\emptyset\}$ und damit $|P(\emptyset)| = 1 = 2^0$
- $Pig(\{a\}ig) = ig\{\emptyset\{a\}ig\}$ und damit $|Pig(\{a\}ig)| = 2 = 2^1$
- $Pig(\{a,b\}ig)=ig\{\emptyset\{a\},\{b\},\{a,b\}ig\}$ und damit $|Pig(\{a,b\}ig)|=4=2^2$
- $Pig(\{a,b,c\}ig)=ig\{\emptyset\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\},ig\}$ und damit $|Pig(\{a,b,c\}ig)|=8=2^3$
- · analog für alle weiteren
- Erkenntnis: |P(M)| = 2|M|