Análisis de Redes Eléctricas I

I Parcial

Políticas del Curso

I Evaluación y II Evaluación

 Examen Teórico 	70%
 Guía de Deberes 	0%
Lecciones (2)	30%

III Evaluación

Examen teórico100%

Bibliografía

- Análisis de Circuitos de Ingeniería
 - Hayt, Kemmerly, Durbin
 - Mc Graw Hill.- Sexta edición
- FUNDAMENTOS DE CIRCUITOS ELECTRICOS
 - CHARLES K. ALEXANDER- MATTHEW N. O. SADIKU
 - Mc Graw Hill.- Tercera edición
- Introduccion al Análisis de Circuitos Eléctricos
 - Boylestad
 - Pearson, 10^{ma} edición

Bibliografía

- Circuitos Eléctricos en Ingeniería
 - -Dorf sexta edicion
- Circuitos Eléctricos
 - Joseph Edminister segunda edicion

Programa

- UNIDAD 1
 - Sistemas Eléctricos y Componentes Básicos
- UNIDAD 2
 - Leyes de la Teoría de Redes Eléctricas
- UNIDAD 3
 - Análisis de Redes Sencillas
- UNIDAD 4
 - Métodos más generales para análisis de Redes
- UNIDAD 5
 - » Teoremas de Redes con Circuitos CC

Programa

- UNIDAD 6
 - Análisis Sinudoidal de estado estable
- UNIDAD 7
 - Potencia y Energía
- UNIDAD 8
 - Teoremas de Redes con Circuitos CA
- UNIDAD 9
 - Acoplamiento Mutuo y Circuitos Acoplados
- UNIDAD 10
 - Circuitos Trifásicos

UNIDAD 1

- Sistema de Unidades
- Conceptos Básicos
- Simbología
- Elementos de un Circuito
- Medidores Eléctricos
- Tipos de Elementos
- Energía
- Clasificación de Sistemas Físicos
- Referencia Combinada

Sistema de Unidades

pico	р	10^{-12}	Unida d	U	10°
nano	n	10 ⁻⁹	Kilo	K	10^3
micro	μ	10^{-6}	Mega	M	10 ⁶
mili	m	10^{-3}	Giga	G	109
unida d	u	10 ⁰	Tera	Т	10 ¹²

Conceptos Básicos (1)

- Circuito Eléctrico
 - Es esencialmente un conducto que facilita la transferencia de carga desde un punto a otro

Figura 1

Conceptos Básicos (2)

Tipos de Conexión

Serie

 La manera más simple de conectar componentes eléctricos es disponerlos de forma lineal, uno detrás del otro

- Paralelo

 Cuando cada bombilla tiene su propio suministro eléctrico, de forma totalmente independiente, y así, si una de ellas se funde, la otra puede continuar funcionando

Conceptos Básicos (3)

• Ilustración: Tipos de Conexión

Circuito en serie

Circuito en paralelo

Figura 2

Conceptos Básicos (4)

- Voltaje (V → Voltios [V])
 - También llamado Fuerza Electromotriz entre
 2 puntos, y debido a su presencia se origina
 la transferencia de carga (corriente) desde un punto a otro

A O + 12 VDC **e** B

$$V_{AB} = 12 [V_{DC}] = V_A - V_B$$

 $V_{AB} = -V_{BA}$

Conceptos Básicos (5)

- Corriente (I → Amperios [A])
 - Movimiento de carga

Figura 4

Conceptos Básicos (6)

- Flujo de Corriente
 - Es muy importante saber cuál es la dirección de la corriente

Figura 5

Conceptos Básicos (7)

- Voltaje y Corriente Directa
- Voltaje y Corriente Alterna

Conceptos Básicos (8)

- Potencia (P → Vatios [W])
 - Imaginemos un circuito eléctrico con una resistencia. Hay que realizar una determinada cantidad de trabajo para mover las cargas eléctricas a través de la resistencia. Para moverlas rápidamente (en otras palabras, para aumentar la corriente que fluye por la resistencia) se necesita más potencia

Conceptos Básicos (9)

- Polaridad
 - Propiedad que tienen los agentes físicos (voltaje, corriente, etc.) de acumularse en los polos de un cuerpo y de polarizarse

Simbología

Figura 8

Elementos de un Circuito (1)

- Resistencia (R \rightarrow Ohmios [Ω])
 - La resistencia de un circuito eléctrico determina cuánta corriente fluye en el circuito cuando se le aplica un voltaje determinado

Elementos de un Circuito (2)

- Condensador (C → Faradios [F])
 - Dispositivo que almacena carga eléctrica.
 - Está formado por dos placas metálicas separadas por una lámina no conductora o

Figura 10

Elementos de un Circuito (3)

- Inductor
 - Los inductores consisten en un hilo conductor enrollado en forma de bobina
 - Al pasar una corriente a través de la bobina, alrededor de la misma se crea un campo

Elementos de un Circuito (4)

Placa de Circuitos

Figura 12

INSTRUMENTOS DE MEDICIÓN (1)

- Para Voltaje
 - Voltímetro
- Para Corriente
 - Amperímetro
- En general: Multímetro (dependiendo del modelo tiene otras aplicaciones, como probador de diodos, medir frecuencia, resitencia, etc....)

INSTRUMENTOS DE MEDICIÓN(2)

Figura 13

INVESTIGAR

- Código de Colores
- Tipos de Resistencias

Tipos de Elementos (1)

- Activos
 - Suministran Energía (Fuentes)
- Pasivos

- Consumen o Disipan Energía

Tipos de Elementos (2)

- Fuentes de Voltaje
 - Independientes
 - Controladas o Dependientes
- Fuentes de Corriente
 - Independientes
 - Controladas o Dependientes

A las fuentes dependientes se las representa con un rombo

Tipos de Elementos (3)

Fuentes Dependientes o Controladas

Figura 15

Figura 16

Voltaje x Voltaje

–Fuente de Voltaje controlada por voltaje; "μ" no tiene dimensiones

Voltaje x Corriente

–Fuente de Voltaje controlada por corriente; "R" su unidad en el ohmios $[\Omega]$

Tipos de Elementos (4)

Fuentes Dependientes o Controladas

Figura 17

Figura 18

Corriente x Corriente

–Fuente de CorrienteControlada por Corriente, βno tiene unidades

Corriente x voltaje

-Fuente de Corriente,controlada por voltaje; "g"[mho] conductancia

Tipos de Elementos (5)

- Fuentes Independientes
 - Una fuente es un elemento activo que suministra energía, por lo tanto una fuente ideal es aquella que es independiente de cualquier otra variable

Vf

Figura 19

Más información:

www.virtual.unal.edu.co/cursos/ingenieria/2001601/cap01/Cap1tem8.html

Para Recordar

Voltaje

$$V = IR$$

Corriente

$$I = \frac{V}{R}$$

Potencia

$$P = VI = \frac{V^2}{R} = I^2 R$$