

LOONGSON

龙芯 2P0500 处理器

数据手册

V1.01

2024年07月

龙芯中科技术股份有限公司

自主决定命运,创新成就未来

版权声明

本文档版权归龙芯中科技术股份有限公司所有,并保留一切权利。未经书面许可,任何公司和个人不得将此文档中的任何部分公开、转载或以其他方式散发给第三方。否则,必将追究其法律责任。

免责声明

本文档仅提供阶段性信息,所含内容可根据产品的实际情况随时更新,恕不另行通知。如 因文档使用不当造成的直接或间接损失,本公司不承担任何责任。

龙芯中科技术股份有限公司

Loongson Technology Corporation Limited

地址:北京市海淀区中关村环保科技示范园龙芯产业园2号楼

Building No. 2, Loongson Industrial Park, Zhongguancun Environmental Protection

Park, 电话(Tel): 010-62546668

传真(Fax): 010-62600826

阅读指南

《龙芯 2P0500 处理器数据手册》主要介绍龙芯 2P0500 处理器接口结构,特性,电气规范,以及硬件设计指导。

版本信息

		文档名	龙芯 2P0500 处理器数据手册		
文档更新记录		版本号	V1.01		
		创建人	芯片研发部		
更新历史					
序号	版本号		更新内容		
1	V1.0	发布版本			
2	V1.01	第1章节概述,修改处理器核最高主频描述。			

手册信息反馈: service@loongson.cn

目 录

目	录	I
图	目录	. V
表	目录	VI
1	概述	1
	1.1 体系结构框图	2
	1.2 芯片特性	2
	1.2.1 处理器核	2
	1.2.2 内存控制器	3
	1.2.3 USB 控制器	3
	1.2.4 GMAC 控制器	3
	1.2.5 SPI 控制器	3
	1.2.6 UART	4
	1.2.7 I2C 总线	4
	1.2.8 打印接口	4
	1.2.9 扫描接口	5
	1.2.10 DA 接口	5
	1.2.11 PMIO 接口	5
	1.2.12 PWM 接口	5
	1.2.13 SDIO 接口	. 5
	1.2.14 HPET	5
	1.2.15 RTC	5
	1.2.16 GPIO 接口	. 6
	1.2.17 Watchdog	6
	1.2.18 温度传感器	6
	1.2.19 中断控制器	6
	1.3 订购信息	6
	1.4 文档约定	6
	1.4.1 信号命名	6
	1.4.2 信号类型	
	1.4.3 数值表示	
	1.4.4 寄存器域	7
2	引脚定义	

	2.1 DDR3 接口	8
	2.2 GMAC 接口	8
	2.3 USB 接口	9
	2.4 SPI 接口	9
	2.5 UART 接口	.10
	2.6 I2C 接口	.11
	2.7 PRINTER 接口	. 11
	2.8 SCANNER 接口	.12
	2.9 DA 接口	.12
	2.10 SDIO 接口	12
	2.11 PMIO 接口	.12
	2.12 PWM 接口	12
	2.13 电源地	.13
	2.14 测试接口	.13
	2.15 JTAG 接口	13
	2.16 系统相关信号	14
	2.17 上电配置信号	14
	2.18 外设功能引脚复用	14
3	功能描述	19
	3.1 DDR3 控制器	19
	3.1.1 DDR3 接口工作频率范围	19
	3.1.2 DDR3 控制器特性	19
	3.2 USB	.20
	3.3 OTG	20
	3.4 GMAC	.20
	3.5 SPI	.20
	3.6 UART	.22
	3.7 I2C	.23
	3.8 PRINTER	.23
	3.9 SCANNER	.23
	3.10 DA	.23
	3.11 SDIO	23
	3.12 PMIO	.24
	3.13 PWM	24

	3.14 GPIO	. 24
	3.15 HPET	24
	3.16 RTC	. 25
	3.17 电源管理	.25
4	初始化时序	. 26
	4.1 冷启动上电时序	.26
	4.2 热复位时序	.27
5	电气特性	. 28
	5.1 电源	.28
	5.1.1 推荐工作条件	28
	5.1.2 绝对最大额定值	.28
	5.1.3 功耗状态及优化	.29
	5.2 参考时钟	.29
	5.2.1 单端参考时钟	29
	5.2.2 差分参考时钟	.30
	5.3 DDR3 内存接口特性	.31
	5.3.1 推荐的直流工作条件	.31
	5.3.2 交流和直流逻辑输入电平	.31
	5.3.3 交流和直流逻辑输出电平	.33
	5.3.4 IDD 和 IDDQ 规范的参数和测试条件	39
	5.3.5 输入/输出电容	40
	5.3.6 刷新参数	.40
	5.3.7 标准的速度分级	.41
	5.3.8 DDR3 的时序参数	. 44
	5.4 RGMII 接口特性	50
	5.4.1 RGMII 接口直流特性	. 50
	5.4.2 RGMII 接口时序	.51
	5.5 USB 接口特性	52
	5.6 SPI FLASH 接口特性	. 55
	5.7 I2C 接口特性	55
6	热特性	
	6.1 热参数	.57
	6.2 焊接温度	.57
7	芯片引脚排列和封装	. 59

	7.1 引脚顶层排列	59
	7.2 封装尺寸	65
8	不使用引脚的处理	67
9	产品标识	68

图目录

图	1.1 龙芯 2P0500 结构图	2
图	3.1 SPI 主控制器接口时序	. 21
图	3.2 SPI Flash 标准读时序	21
图	3.3 SPI Flash 快速读时序	22
图	3.4 SPI Flash 双向 I/O 读时序	. 22
图	4.1 冷启动上电时序波形	26
图	4.2 热复位时序图	27
图	5.1 单端参考时钟波形	29
图	5.2 差分参考时钟波形	30
图	5.3 ac-swing 和 ac-level 时间点(tDVA)的差分定义	32
图	5.4 Vix 定义	33
图	5.5 单端输出斜率的定义	34
图	5.6 差分输出斜率的定义	35
图	5.7 地址和控制的上冲和下冲定义	36
图	5.8 时钟,数据,选通和屏蔽信号的交流上冲和下冲定义	36
图	5.9 tAON 的定义	. 37
图	5.10 tAONPD 的定义	38
图	5.11 tAOF 的定义	38
图	5.12 tAOFPD 的定义	39
图	5.13 tADC 的定义	39
图	5.14 RGMII 接口时序	. 51
图	5.15 I2C 接口时序	55
图	6.1 焊接回流曲线	58
图	7.1 项层引脚排布总览	59
图	7.2 封装外形图	65
图	9.1 产品标识图	68

表目录

表 1-	1 订购信息表	6
表 1-	2 信号类型描述表	
表 2-	1 主系统功能引脚复用关系表	15
表 2-	2 打印系统功能引脚复用关系表	16
表 2-	3 扫描系统功能引脚复用关系表	17
表 4-	1冷启动上电时序要求	26
表 4-	2 热复位时序约束	27
表 5-	1推荐的工作电源电压	28
表 5-	2 绝对最大额定值	28
表 5-	3 芯片功耗模式	29
表 5-	4 推荐的直流工作条件	31
表 5-	5 控制信号和地址单端信号的交流和直流输入电平	31
表 5-	6 DQ 和 DM 单端信号的交流和直流输入电平	31
表 5-	7 交流和直流的差分输入电平	32
表 5-	8 差分输入信号(CK, DQS)交叉点电压	33
表 5-	9 单端信号的交流直流输出电平	33
表 5-	10 差分信号的交流和直流输出电平	33
表 5-	11 单端信号输出斜率的定义	34
表 5-	12 单端的输出斜率	34
表 5-	13 差分输出斜率的定义	34
表 5-	14 差分输出斜率	35
表 5-	15 地址和控制引脚的交流上冲/下冲规范	35
表 5-	16 时钟,数据,选通和屏蔽信号的交流上冲/下冲规范	36
表 5-	17 ODT 时序定义	36
表 5-	18 ODT 时序测量的参考设置	37
表 5-	19 IDD 和 IDDQ 测量循环模式的时序	39
表 5-	20 输入/输出电容	40
表 5-	21 DDR3 刷新参数	40
表 5-	22 DDR3-800 Speed Bins and Operating Conditions	41
表 5-	23 DDR3-1066 Speed Bins and Operating Conditions	41
表 5-	24 DDR3-1333 Speed Bins and Operating Conditions	42
表 5-	25 DDR3-1600 Speed Bins and Operating Conditions	43

表 5-	26 Timing Parameters by Speed Bin	44
表 5-	27 RGMII 接口输出特性	50
表 5-	28 RGMII 接口输入特性	51
表 5-	29 RGMII 接口时序	51
表 5-	30 USB 直流电气特性	52
表 5-	31 USB 高速源电气特性	53
表 5-	32 USB 全速源电气特性	53
表 5-	33 USB 低速源电气特性	54
表 5-	34 SPI Flash 接口时序	55
表 5-	35 I2C 接口时序	55
表 6-	1 热特性参数和推荐的最大值	57
表 6-	2 回流焊接温度分类表	57
表 7-	1 项层引脚排列	60
表 7-	2 封装外形尺寸	66
表 8-	1 不使用引脚推荐处理表	67

1 概述

龙芯 2P0500 芯片是一款适用于单/多功能打印机主控 SOC 芯片,支持打印、扫描、网络等常用政企办公需求,支持 A4 常用打印纸张幅面的图像处理。龙芯 2P0500 打印主控芯片是打印整机中核心控制部件,主要用于打印数据接收、解析和处理,打印引擎控制,扫描时序控制,扫描数据处理,图像处理及马达控制等。

龙芯 2P0500 的主要特征如下:

- 集成一个 LA364 三发射 64 位龙芯处理器核, L1 Cache(I/D) 32KB, L2 Cache 512KB, 最高频率 750MHz
- 集成两个 LA132 单发射 32 位龙芯处理器核,最高频率 400MHz
- 集成 1 个 32 位 DDR3 控制器
- 集成 2 个 10M/100M/1000M 自适应 GMAC, 支持 RGMII/MII
- 集成 3 个 USB2.0 HOST 接口, 其中 1 个可配置为 OTG 接口
- 集成 4 个 SPI 控制器, 1 路支持系统启动
- 集成 1 个打印控制器,支持 8 路 LSU 机芯控制
- 集成1个扫描控制器,支持1路 AFE/CIS 控制
- 集成1个4路8位DA接口
- 集成 4 路 I2C 控制器
- 集成8路UART控制器
- 集成2个SDIO控制器
- 集成 40 路 PWM 控制器
- 集成 3 组 PMIO 控制器
- 集成 139 路复用 GPIO
- 集成1个温度传感器
- 集成 RTC/HPET
- 集成看门狗电路
- 集成动态功耗控制模块,支持 DFS/DPM
- 集成中断控制器,支持灵活的中断设置

1.1 体系结构框图

龙芯 2P0500 内部采用多级总线结构。一级交叉开关连接一个处理器核、一个二级 Cache 以及 IO 子网络(Cache 访问路径)。二级 Cache 及 IODMA、内存控制器、GMAC、USB、IMAGE、PRINT、SCAN 等设备共享系统互联网络。低速外设(I2C、UART等)作为一个集合加在南桥总线上。

龙芯 2P0500 芯片结构图如图 1-1 所示:

图 1.1 龙芯 2P0500 结构图

1.2 芯片特性

1.2.1 处理器核

LA364, LA132

LoongArch 体系结构兼容

包括 1 个全流水的 64 位双精度浮点乘加部件

32KB 数据 Cache 和 32KB 的指令 Cache

512KB 共享二级 Cache

通过目录协议维护 I/O DMA 访问的 Cache 一致性

JTAG 支持

1.2.2 内存控制器

32 位 DDR3 控制器,典型工作频率 400MHz

不支持 ECC

可配置为 32/16 位模式

支持命令调度

1.2.3 USB 控制器

3 个独立的 USB2.0 的 HOST 端口

其中1端口可配置为OTG模式

兼容 USB1.1、 USB2.0

内部 EHCI 控制和实现高速传输可达 480Mbps

内部 OHCI 控制和实现全速和低速传输

低功耗管理

1.2.4 **GMAC** 控制器

两路 10/100/1000Mbps 自适应以太网 MAC

双网卡均兼容 IEEE 802.3

对外部 PHY 实现 RGMII/MII 接口

半双工/全双工自适应

Timestamp 功能

半双工时,支持碰撞检测与重发(CSMA/CD)协议

支持 CRC 校验码的自动生成与校验,支持前置符生成与删除

1.2.5 SPI 控制器

双缓冲接收器

极性和相位可编程的串行时钟

主模式支持

支持到 4 个的变长字节传输

支持系统启动(仅 SPI0 支持)

支持标准读、连续地址读、快速读、双路 I/O 等 SPI Flash 读模式

1.2.6 **UART**

1 个全功能 UART 和流控 TXD,RXD,CTS, RTS, DSR,DTR,DCD, RI

最多8个UART接口

两路全双工异步数据接收/发送

可编程的数据格式

16 位可编程时钟计数器

支持接收超时检测

带仲裁的多中断系统

1.2.7 I²C 总线

履行双向同步串行协议

实现主/从设备操作

能够支持多主设备的总线

总线的时钟频率可编程

可以产生开始/停止/应答等操作

能够对总线的状态进行探测

支持低速和快速模式

支持7位寻址和10位寻址

支持时钟延伸和等待状态

1.2.8 打印接口

支持 JBIG85 解码

支持8路独立机芯控制

支持四色彩打功能

1.2.9 扫描接口

支持 JPEG 编码

支持1路AFE、CIS控制

1.2.10 **DA**接口

支持 4 路 8 位 DA 接口

1.2.11 **PMIO**接口

3组 PMIO 控制器

支持共80路可编程多功能IO

1.2.12 **PWM**接口

32 位计数器

支持脉冲生成及捕获

40 路控制器

1.2.13 **SDIO** 接口

2路独立 SDIO 控制器

1 路支持 SDIO 系统启动(SDIO0 支持启动,可配置为 eMMC 模式)

1.2.14 **HPET**

32 位计数器

支持1个周期性中断

支持2个非周期性中断

1.2.15 **RTC**

计时精确到 0.1 秒

可产生3个计时中断

1.2.16 **GPIO**接口

139 位复用 GPIO 引脚

支持外部中断输入

与其他接口复用,使用各个接口电压域

1.2.17 Watchdog

32 比特计数器及初始化寄存器 低功耗模式暂停功能

1.2.18 温度传感器

温度观测(芯片结温),推荐使用温度范围: -10°C~70°C(工业级温度不建议使用)

高低温中断

1.2.19 中断控制器

支持软件设置中断

支持电平与边沿触发

支持中断屏蔽与使能

支持多种中断分发模式

1.3 订购信息

表 1- 1 订购信息表

芯片型号	封装	工作温度(壳温)	质量等级
LS2P0500	塑封	-10°C-70°C	商业级
LS2P0500-i	塑封	-40°C-85°C	工业级

1.4 文档约定

1.4.1 信号命名

信号名的选取以方便记忆和明确标识功能为原则。低有效信号以 N/n 结

尾,高有效信号则不带 N/n。如无特别说明,以 RTC 开头的信号位于 RTC 域,其它信号位于 SOC 域。

1.4.2 信号类型

表 1- 2信号类型描述表

代码	描述
A	模拟
DIFF I/O	双向差分
DIFF IN	差分输入
DIFF OUT	差分输出
I	输入
I/O	双向
О	输出
OD	开漏输出
P	电源
G	地

1.4.3 数值表示

16 进制数表示为'hxxx, 2 进制数表示为'bxx, 其它数字为 10 进制。

功能相同但标号有别的引脚(如 DDR_DQ0, DDR_DQ1, ...)使用方括号加数字范围的形式简写(如 DDR_DQ[31:0])。类似地,寄存器域也采用这种表示方式。

1.4.4 寄存器域

寄存器域以[寄存器名].[域名]的形式加以引用。如 chip_config0.uart_split 指芯片配置寄存器 0(chip config0)的 uart split 域。

2 引脚定义

2.1 DDR3 接口

信号名称	类型	复位状态			描述	电测	原	内部上下拉	驱动大小
DDR_DQ[31:0]	I/O	'hx	DDR3 S	DRAM	数据总线信号	VDDIO_	_DDR	-	8mA
DDR_DQSP[3:0] DDR_DQSN[3:0]	DIFF I/O	'hx	DDR3 S	SDRAM	数据选通	VDDIO _.	_DDR	_	8mA
DDR_DQM[3:0]	О	'hx	DDR3 S	DRAM	数据屏蔽	VDDIO _.	_DDR	_	8mA
DDR_A[15:0]	О	'hx	DDR3 S	DRAM	地址总线信号	VDDIO_	_DDR	_	8mA
DDR_BA[2:0]	О	'hx	DDR3 S	DRAM	逻辑 BANK 地址信号	VDDIO _.	_DDR	_	8mA
DDR_WEN	О	'hx	DDR3 S	DRAM	写使能信号	VDDIO _.	_DDR	_	8mA
DDR_CASN	О	'hx	DDR3 S	DRAM	列地址选择信号	VDDIO _.	_DDR	_	8mA
DDR_RASN	О	'hx	DDR3 S	DRAM	行地址选择信号	VDDIO _.	_DDR	_	8mA
DDR_SCSN0	О	'hx	DDR3 S	DRAM	片选信号	VDDIO _.	_DDR	_	8mA
DDR_CKE0	О	'hx	DDR3 S	DRAM	时钟使能信号	VDDIO _.	_DDR	_	8mA
DDR_CKP0 DDR_CKN0	DIFF OUT	'hx	DDR3 S	DRAM	差分时钟输出信号	VDDIO _.	_DDR	_	8mA
DDR_ODT0	О	'hx	DDR3 S	DRAM	ODT 信号	VDDIO_	DDR	-	8mA
DDR_RESETN	О	'hx	DDR3 S	DRAM	复位控制信号	VDDIO _.	_DDR	_	8mA

2.2 GMAC 接口

下:

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
GMAC[1:0]_TX_CLK_O	О	'h0	RGMII 发送时钟输出	VDD_3V3	_	8mA
GMAC[1:0]_TX_CLK_I	I		RGMII 发送时钟输入(125MHz 备选时钟,可不接)	VDD_3V3	-	-
GMAC0_TX_CTL	О	'h0	RGMII 发送控制	VDD_3V3	-	8mA
GMAC0_TXD[3:0]	О	'h0	RGMII 发送数据	VDD_3V3	_	8mA
GMAC[1:0]_RX_CLK_I	I	_	RGMII 接收时钟	VDD_3V3	-	-
GMAC0_RX_CTL	I	_	RGMII 接收控制	VDD_3V3	-	-
GMAC0_RXD[3:0]	I	_	RGMII 接收数据	VDD_3V3	-	-
GMAC0_MDCK	0		SMA 接口时钟,外部需上拉处理	VDD_3V3	_	8mA
GMAC0_MDIO	I/O		SMA 接口数据,外部需上拉处理	VDD_3V3	_	8mA

2P0500 通过相应模式配置可以实现 RGMII、MII 两种接口, 其中两种接口定义差异如

信号名称	RGMII 接口模式	MII 接口模式		
GMAC_TX_CTL	GMAC_TX_CTL	GMAC_TX_EN		
GMAC_RX_CTL	GMAC_RX_CTL	GMAC_RX_DV		
GMAC_TX_CLK_O	GMAC_TX_CLK_O(输出)	GMAC_RX_ER(输入)		
-	-	GMAC_COL(新增引脚,由其他引脚复用)		
-	-	GMAC_CRS(新增引脚,由其他引脚复用)		

2.3 USB 接口

信号名称	类型	复位状态	描述	电源	内部上下拉
USB[1:0]_XI USB[1:0]_XO	I/O	_	12MHz 参考时钟(可由软件选择晶体/ 晶振,晶振单端时钟由 XO 管脚输入, XI 管脚需接地)	VDD_3V3_USB	-
USB[1:0]_TXRTUNE	A	-	参考电阻,通过 200ohm/1%电阻连接 到地	VDD_3V3_USB	_
USB[1:0]_DP	I/O	'h0	USB D+,内部集成下拉电阻,外部可 不做处理	VDD_3V3_USB	_
USB[1:0]_DM	I/O	'h0	USB D-,内部集成下拉电阻,外部可 不做处理	VDD_3V3_USB	_
USB[1:0]_OVRCUR	I	_	USB0 [~] 1 过流检测,需注意该信号为高 有效	VDD_3V3_USB	_
OTG_XI OTG_XO	I	_	12MHz 参考时钟(可由软件选择晶体/ 晶振,晶振单端时钟由 XO 管脚输入, XI 管脚需接地)	VDD_3V3_USB	-
OTG_TXRTUNE	A	_	OTG 参考电阻,通过 200ohm/1%电阻连 接到地	VDD_3V3_USB	_
OTG_DP	I/O	'h0	OTG D+,内部集成下拉电阻,外部可 不做处理	VDD_3V3_USB	_
OTG_DM	I/O	'h0	OTG D-,内部集成下拉电阻,外部可 不做处理	VDD_3V3_USB	_
OTG_DRVBUS	О	'h0	OTG_VBUS 电源使能控制信号输出	VDD_3V3_USB	-
OTG_ID	I	-	OTG ID 输入	VDD_3V3_USB	-
OTG_VBUS	A	-	OTG VBUS 5V 输入	VBUS_5V	_

2.4 SPI 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
SPI[1:0]_CLK	О	'h0	SPI0 [~] 1 时钟输出	VDD_3V3	_	8mA
SPI[1:0]_CSN	О	'hx	SPIO~1 片选,外部需上拉处理	VDD_3V3	_	8mA
SPI[1:0]_MOSI	О	'hx	SPIO [~] 1 数据输出	VDD_3V3	上拉	8mA
SPI[1:0]_MISO	I	-	SPIO [~] 1 数据输入	VDD_3V3	上拉	-
PRT_SPI_CLK	О	'h0	打印系统 SPI 时钟输出	VDD_3V3	_	8mA

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
PRT_SPI_CSN	О	'hx	打印系统 SPI 片选,外部需上拉处理	VDD_3V3	_	8mA
PRT_SPI_MOSI	О	'hx	打印系统 SPI 数据输出	VDD_3V3	上拉	8mA
PRT_SPI_MISO	I	-	打印系统 SPI 数据输入	VDD_3V3	上拉	-
SCA_SPI_CLK	О	'h0	扫描系统 SPI 时钟输出	VDD_3V3	_	8mA
SCA_SPI_CSN	О	'hx	扫描系统 SPI 片选,外部需上拉处理	VDD_3V3	-	8mA
SCA_SPI_MOSI	О	'hx	扫描系统 SPI 数据输出	VDD_3V3	上拉	8mA
SCA_SPI_MISO	I	-	扫描系统 SPI 数据输入	VDD_3V3	上拉	_

2.5 UART 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
UART[1:0]_TXD	О	'h1	串□ 0~1 数据输出	VDD_3V3		2mA
UART[1:0]_RXD	I	ı	串□ 0~1 数据输入	VDD_3V3	-	-
PRT_UART_TXD	О	'h1	打印系统串口数据输出	VDD_3V3		2mA
PRT_UART_RXD	I	ı	打印系统串口数据输入	VDD_3V3		-
SCA_UART_TXD	О	'h1	扫描系统串口数据输出	VDD_3V3	_	2mA
SCA_UART_RXD	I	-	扫描系统串口数据输入	VDD_3V3	_	-

2P0500 通过引脚复用配置可以实现一个独立的全功能串口(UART0),一个独立的四线 串口(UART1)。其中,UART0 全功能串口通过设置可以工作在 2x4 和 4x2 模式,各种模式 的管脚对应关系如下。其它引脚复用的 UART 接口的内部复用关系也如下表所示。

1x8	2x4	4x2
TXD0 (0)	TXD0 (O)	TXD0 (0)
RTS0(0)	RTS0(0)	TXD3 (0)
DTR0 (0)	TXD1 (0)	TXD1 (0)
RXDO(I)	RXDO(I)	RXDO(I)
CTSO(I)	CTSO(I)	RXD3(I)
DSRO(I)	RXD1(I)	RXD1(I)
DCD0(I)	CTS1(I)	RXD2(I)
RIO(I)	RTS1 (0)	TXD2 (0)

UART1 四线串口通过设置可以工作在 1x4 和 2x2 模式,各种模式的管脚对应关系如下。

1x4	2x2
TXD1 (0)	TXD1 (0)
RTS1 (0)	TXD3 (O)
RXD1(I)	RXD1(I)
CTS1(I)	RXD3(I)

2.6 I²C 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
I2C[1:0]_SCL	0	'hx	I2C0~1 时钟,外部需上拉处理	VDD_3V3	-	2mA
I2C[1:0]_SDA	I/O	'hx	I2C0~1 数据,外部需上拉处理	VDD_3V3	-	2mA
PRT_I2C[1:0]_SCL	О	'hx	打印系统 I2C0~1 时钟,外部需上 拉处理	VDD_3V3	-	2mA
PRT_I2C[1:0]_SDA	I/O	'hx	打印系统 I2C0~1 数据,外部需上 拉处理	VDD_3V3	-	2mA

2.7 PRINTER 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
PRT_VIDOUT[15:0]	О	l 'hx	打印机机芯数据输出信号,支持 LVDS、TTL 两种电平信号模式	VDD_3V3	-	8mA (TTL)

TTL 电平输出模式(软件配置关闭对应引脚 LVDS 输出模式):

打印数据通道	打印输出引脚	TTL 电平对应输出
打印数据通道0	PRT_VIDOUT[0]	PRT_VIDOUT0
打印数据通道1	PRT_VIDOUT[1]	PRT_VIDOUT1
打印数据通道 2	PRT_VIDOUT[2]	PRT_VIDOUT2
打印数据通道3	PRT_VIDOUT[3]	PRT_VIDOUT3
打印数据通道 4	PRT_VIDOUT[4]	PRT_VIDOUT4
打印数据通道 5	PRT_VIDOUT[5]	PRT_VIDOUT5
打印数据通道 6	PRT_VIDOUT[6]	PRT_VIDOUT6
打印数据通道7	PRT_VIDOUT[7]	PRT_VIDOUT7

LVDS 电平输出模式(软件配置使能对应引脚 LVDS 输出模式):

打印数据通道	打印输出引脚	LVDS 电平对应输出
打印数据通道 0	PRT_VIDOUT[0]	PRT_VIDOUTO_DP
17 印数据进程 0	PRT_VIDOUT[1]	PRT_VIDOUTO_DN
打印数据通道1	PRT_VIDOUT[2]	PRT_VIDOUT1_DP
17 中 数 括 西 担 1	PRT_VIDOUT[3]	PRT_VIDOUT1_DN
打印数据通道 2	PRT_VIDOUT[4]	PRT_VIDOUT2_DP
17 中数据进程 2	PRT_VIDOUT[5]	PRT_VIDOUT2_DN
打印数据通道3	PRT_VIDOUT[6]	PRT_VIDOUT3_DP
11 印数据进退 3	PRT_VIDOUT[7]	PRT_VIDOUT3_DN
打印数据通道 4	PRT_VIDOUT[8]	PRT_VIDOUT4_DP
11印数加迪坦生	PRT_VIDOUT[9]	PRT_VIDOUT4_DN
打印数据通道 5	PRT_VIDOUT[10]	PRT_VIDOUT5_DP
11中致胎쁘炟 0	PRT_VIDOUT[11]	PRT_VIDOUT5_DN
打印数据通道 6	PRT_VIDOUT[12]	PRT_VIDOUT6_DP
11 中 数 加 地 但 0	PRT_VIDOUT[13]	PRT_VIDOUT6_DN
打印数据通道 7	PRT_VIDOUT[14]	PRT_VIDOUT7_DP
11 中蚁油地坦(PRT_VIDOUT[15]	PRT_VIDOUT7_DN

2.8 SCANNER 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
SCA_AFECLK	О	'h0	扫描 AFE 时钟输出信号	VDD_3V3	_	8mA
SCA_PLS	О	'h0	扫描 AFE PLS 脉冲输出信号	VDD_3V3	_	8mA
SCA_AFED[7:0]	I	-	扫描 AFE 输入数据信号	VDD_3V3	_	_
SCA_CISCLK[2:0]	О	'h0	扫描 CIS 时钟输出信号	VDD_3V3	_	8mA
SCA_CISPLS	О	'h0	扫描 CISPLS 脉冲输出信号	VDD_3V3	_	8mA
SCA CISPWM	О	'h0	扫描 CISPWM 脉冲输出信号	VDD_3V3	-	8mA

2.9 DA 接口

信号名称	类型	复位状态	描述	电源	内部上下拉
DCHOUT[3:0]	О	'h0	4 路 DA 模拟输出信号	VDD_3V3_DAC	-

2.10 SDIO 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
SDIO[1:0]_CLK	О	'h0	SDI00~1 时钟输出	VDD_3V3	_	8mA
SDIO[1:0]_CMD	I/O	'nx	SDI00 [~] 1 命令输入输出,外部需上 拉处理	VDD_3V3	上拉	8mA
SDIO[1:0]_DATA[3:0]	I/O	'hx	SDI00 [~] 1 数据信号,外部需上拉处 理	VDD_3V3	上拉	8mA

2.11 PMIO 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
PRT_PM0IO[31:0]	I/O	'hx	打印系统 PMI032 位信号输入输出	VDD_3V3	_	8mA
SCA_PM1IO[15:0]	I/O	'hx	扫描系统 PMI016 位信号输入输出	VDD_3V3	-	8mA
PM2IO[15:0]	I/O	'hx	主系统 PMI016 位信号输入输出	VDD_3V3	_	8mA

2.12 PWM 接口

信号名称	类型	复位状态	描述	电源	内部上下拉	驱动大小
MAIN_PWM[15:0]	I/O	'h0	主系统 PWM 信号输入输出	VDD_3V3	-	参考相应复用 引脚驱动
PRT_PWM[23:0]	I/O	'h0	打印系统 PWM 信号输入输出	VDD_3V3	_	参考相应复用 引脚驱动

2.13 电源地

信号名称	类型	描述	电压
VDD_CORE	P	CORE 域 1.1V 供电电源	1.1V
VDD_1V1_USB	P	USB PHY 接口电压域 1.1V 供电电源	1.1V
VDD_NODE_PLL	P	PLL 模拟电压 1.2V 供电电源	1.2V
VDD_DDR_PLL	P	PLL 模拟电压 1.2V 供电电源	1.2V
VDD_SOC_PLL	P	PLL 模拟电压 1.2V 供电电源	1.2V
VDDIO_DDR	P	DDR3 电压域 1.5V 供电电源	1.5V
DDR_VREF	P	DDR3 参考电源	0.75V
VDD_3V3	P	IO PAD 电压域 3.3V 供电电源	3.3V
VDD_3V3_USB	P	USB PHY 电压域 3.3V 供电电源	3.3V
VDD_RTC	P	RTC 电压域供电电源	2.7V
VDD_3V3_DAC	P	DA 接口 3. 3V 供电电源	3.3V
VDD_3V3_LVDS	P	LVDS 接口 3. 3V 供电电源	3.3V
VDD_3V3_THSENS	P	THSENS 3.3V 供电电源	3.3V
VSS	G	接地	0V
VSS_RTC	G	RTC 地	0V
VSS_DAC	G	DAC 模拟地	0V
VSS_LVDS	G	LVDS 模拟地	0V
VSS_NODE_PLL	G	NODE PLL 模拟地	0V
VSS_DDR_PLL	G	DDR PLL 模拟地	0V
VSS_SOC_PLL	G	SOC PLL 模拟地	0V

2.14 测试接口

信号名称	类型	复位状态	描述	电源	上下拉
DOTESTn	I		测试模式控制(RTC 电压域) 0:测试模式 1:功能模式	RTC_VDD	-

2.15 JTAG 接口

信号名称	类型	复位状态	描述	电源	上下拉	驱动大小
JTAG_SEL	I	_	JTAG 选择(0:测试 JTAG,1:功能 JTAG)	IO_3V3	上拉	_
JTAG_TCK	I	_	JTAG 时钟	IO_3V3	_	_
JTAG_TDI	I	-	JTAG 数据输入,外部需上拉处理	IO_3V3	上拉	-
JTAG_TMS	I	_	JTAG 模式,外部需上拉处理	IO_3V3	上拉	_
JTAG_TRST	I	_	JTAG 复位,外部下拉处理	IO_3V3	上拉	_
JTAG_TDO	О	'h1	JTAG 数据输出	IO_3V3	-	2mA

13

2.16 系统相关信号

信号名称	类型	复位状态	描述	电源	上下拉	驱动大小
SYSCLK	I	_	100MHz 系统参考时钟	IO_3V3	-	_
SYSRESETN	I	_	系统复位输入信号	IO_3V3	上拉	_
SYSPLTRSTN	О	'h0	系统平台复位输出信号	IO_3V3	上拉	8mA
SYS_TESTCLK	I	_	测试时钟	IO_3V3	-	_
RTC_XI RTC_XO	I/O		RTC 参考时钟 (32.768KHz); 推荐采用有源 晶振输入, 晶振时钟由 RTC_XO 引脚输入 (推荐电压幅值 0~500mV, RTC_XI 悬空处 理)	RTC VDD	-	-

2.17 上电配置信号

信号名称	类型	描述
		启动选择输入
PM0IO[0]	I	0=SPI
		1=SDIO
		PLL 时钟配置输入
		00=低频模式
PM0IO[2:1]	I	01=高频模式
		10=软件模式
		11=bypass 模式
		SDI00 模式配置输入
PM0IO[3]	I	0=SDI0 模式
		1=EMMC 模式
		SDI01 模式配置输入
PM0IO[4]	I	0=SDI0 模式
		1=EMMC 模式
		OTG 参考时钟模式输入
D. (01016 51		00=外部差分晶体输入(XI/X0)
PM0IO[6:5]	I	01/10=外部单端晶振输入(X0)
		11=内部参考时钟输入

2.18 外设功能引脚复用

模块层次的功能复用关系如下表所示:

表 2- 1 主系统功能引脚复用关系表

芯片主功能	第二复用	第一复用	上电默认功能
			(除启动引脚外)
main uart0 rx	gmac1 col	sdio1 d[4]	MAIN GPIO00
main uart0 tx	gmac1 crs	sdio1 d[5]	MAIN GPIO01
main uart1 rx	gmac1 ptp trig	sdio1 d[6]	MAIN GPIO02
main uart1 tx	gmac1_ptp_pps	sdio1 d[7]	MAIN GPIO03
main i2c0 scl	sdio0 d[4]	main uart2 rx	MAIN GPIO04
main i2c0 sda	sdio0_d[5]	main uart2 tx	MAIN GPIO05
main i2c1 scl	sdio0 d[6]	main uart3 rx	MAIN GPIO06
main_i2c1_sda	sdio0_d[7]	main_uart3_tx	MAIN_GPIO07
main_spi0_clk	pm1io[0]	main_uart0_rts	MAIN_GPIO08
main_spi0_miso	pm1io[1]	main_uart0_cts	MAIN_GPIO09
main_spi0_mosi	pm1io[2]	main_uart0_dsr	MAIN_GPIO10
main_spi0_cs[0]	pm1io[3]	main_uart0_dtr	MAIN_GPIO11
main_spi1_clk	pm1io[4]	main_uart0_dcd	MAIN_GPIO12
main_spi1_miso	pm1io[5]	main_uart0_ri	MAIN_GPIO13
main_spi1_mosi	pm1io[6]	main_uart1_rts	MAIN_GPIO14
main_spi1_cs	pm1io[7]	main_uart1_cts	MAIN_GPIO15
sdio0_clk	pm0io[0]	-	MAIN_GPIO16
sdio0_cmd	pm0io[1]	main_spi0_cs[1]	MAIN_GPIO17
sdio0_d[0]	pm0io[2]	main_spi0_cs[2]	MAIN_GPIO18
sdio0_d[1]	pm0io[3]	main_spi0_cs[3]	MAIN_GPIO19
sdio0_d[2]	pm0io[4]	main_pwm[0]	MAIN_GPIO20
sdio0_d[3]	pm0io[5]	main_pwm[1]	MAIN_GPIO21
sdio1_clk	pm0io[6]	main_pwm[2]	MAIN_GPIO22
sdio1_cmd	pm0io[7]	main_pwm[3]	MAIN_GPIO23
sdio1_d[0]	pm0io[8]	main_pwm[4]	MAIN_GPIO24
sdio1_d[1]	pm0io[9]	main_pwm[5]	MAIN_GPIO25
sdio1_d[2]	pm0io[10]	main_pwm[6]	MAIN_GPIO26
sdio1_d[3]	pm0io[11]	main_pwm[7]	MAIN_GPIO27
pm2io[0]	pm0io[12]	main_pwm[0]	MAIN_GPIO28
pm2io[1]	pm0io[13]	main_pwm[1]	MAIN_GPIO29
pm2io[2]	pm0io[14]	main_pwm[2]	MAIN_GPIO30
pm2io[3]	pm0io[15]	main_pwm[3]	MAIN_GPIO31
pm2io[4]	gmac1_rx_ctl	main_pwm[4]	MAIN_GPIO32
pm2io[5]	gmac1_rx[0]	main_pwm[5]	MAIN_GPIO33
pm2io[6]	gmac1_rx[1]	main_pwm[6]	MAIN_GPIO34
pm2io[7]	gmac1_rx[2]	main_pwm[7]	MAIN_GPIO35
pm2io[8]	gmac1_rx[3]	main_pwm[8]	MAIN_GPIO36
pm2io[9]	gmac1_tx_ctl	main_pwm[9]	MAIN_GPIO37
pm2io[10]	gmac1_tx[0]	main_pwm[10]	MAIN_GPIO38
pm2io[11]	gmac1_tx[1]	main_pwm[11]	MAIN_GPIO39
pm2io[12]	gmac1_tx[2]	main_pwm[12]	MAIN_GPIO40
pm2io[13]	gmac1_tx[3]	main_pwm[13]	MAIN_GPIO41
pm2io[14]	gmac1_mdck	main_pwm[14]	MAIN_GPIO42
pm2io[15]	gmac1_mdio	main_pwm[15]	MAIN_GPIO43

表 2- 2打印系统功能引脚复用关系表

芯片主功能	第二复用	第一复用	上电默认功能
prt uart0 rx	pm0io[0]	prt pwm[0]	PRT GPIO00
prt_uart0_tx	pm0io[1]	prt_pwm[1]	PRT_GPIO01
prt i2c0 scl	pm0io[2]	prt pwm[2]	PRT GPIO02
prt i2c0 sda	pm0io[3]	prt pwm[3]	PRT GPIO03
prt i2c1 scl	prt uart1 rx	prt pwm[4]	PRT GPIO04
prt i2c1 sda	prt uart1 tx	prt pwm[5]	PRT GPIO05
prt_spi_clk	gmac0 col	prt pwm[6]	PRT GPIO06
prt spi miso	gmac0 crs	prt pwm[7]	PRT GPIO07
prt spi mosi	gmac0 ptp trig	prt pwm[8]	PRT GPIO08
prt_spi_cs	gmac0_ptp_pps	prt pwm[9]	PRT GPIO09
pm0io[0]	prt vid out[16]	prt pwm[10]	PRT GPIO10
pm0io[1]	prt vid out[17]	prt pwm[11]	PRT GPIO11
pm0io[2]	prt vid out[18]	prt pwm[12]	PRT GPIO12
pm0io[3]	prt vid out[19]	prt pwm[13]	PRT GPIO13
pm0io[4]	prt_vid_out[20]	prt_pwm[14]	PRT_GPIO14
pm0io[5]	prt vid out[21]	prt_pwm[15]	PRT GPIO15
pm0io[6]	prt vid out[22]	prt pwm[16]	PRT GPIO16
pm0io[7]	prt vid out[23]	prt_pwm[17]	PRT GPIO17
pm0io[8]	prt_pwm[0]	vid_clk[0]	PRT_GPIO18
pm0io[9]	prt_pwm[1]	vid clk[1]	PRT GPIO19
pm0io[10]	prt_pwm[2]	vid clk[2]	PRT GPIO20
pm0io[11]	prt_pwm[3]	vid clk[3]	PRT GPIO21
pm0io[12]	prt_pwm[4]	prt vid en[0]	PRT GPIO22
pm0io[13]	prt_pwm[5]	prt vid en[1]	PRT GPIO23
pm0io[14]	prt_pwm[6]	prt vid en[2]	PRT GPIO24
pm0io[15]	prt_pwm[7]	prt vid en[3]	PRT GPIO25
pm0io[16]	prt_pwm[8]	prt ovlin[0]	PRT GPIO26
pm0io[17]	prt_pwm[9]	prt ovlin[1]	PRT GPIO27
pm0io[18]	prt_pwm[10]	prt_ovlin[2]	PRT_GPIO28
pm0io[19]	prt_pwm[11]	prt ovlin[3]	PRT GPIO29
pm0io[20]	prt_pwm[12]	prt_ovlin[4]	PRT GPIO30
pm0io[21]	prt_pwm[13]	prt ovlin[5]	PRT GPIO31
pm0io[22]	prt_pwm[14]	prt_ovlin[6]	PRT_GPIO32
pm0io[23]	prt_pwm[15]	prt_ovlin[7]	PRT_GPIO33
pm0io[24]	prt_vid_out[24]	prt_ovlin[8]	PRT_GPIO34
pm0io[25]	prt_vid_out[25]	prt_ovlin[9]	PRT_GPIO35
pm0io[26]	prt_vid_out[26]	prt_ovlin[10]	PRT_GPIO36
pm0io[27]	prt_vid_out[27]	prt_ovlin[11]	PRT_GPIO37
pm0io[28]	prt_vid_out[28]	prt_ovlin[12]	PRT_GPIO38
pm0io[29]	prt_vid_out[29]	prt_ovlin[13]	PRT_GPIO39
pm0io[30]	prt_vid_out[30]	prt_ovlin[14]	PRT_GPIO40
pm0io[31]	prt_vid_out[31]	prt_ovlin[15]	PRT_GPIO41
prt_vid_out[0]	pm0io[8]	pm0io[16]	PRT_GPIO42
prt_vid_out[1]	pm0io[9]	pm0io[17]	PRT_GPIO43
prt_vid_out[2]	pm0io[10]	pm0io[18]	PRT_GPIO44
prt_vid_out[3]	pm0io[11]	pm0io[19]	PRT_GPIO45
prt_vid_out[4]	pm0io[12]	pm0io[20]	PRT_GPIO46

芯片主功能	第二复用	第一复用	上电默认功能
prt_vid_out[5]	pm0io[13]	pm0io[21]	PRT_GPIO47
prt_vid_out[6]	pm0io[14]	pm0io[22]	PRT_GPIO48
prt_vid_out[7]	pm0io[15]	pm0io[23]	PRT_GPIO49
prt_vid_out[8]	prt_pwm[16]	pm0io[24]	PRT_GPIO50
prt_vid_out[9]	prt_pwm[17]	pm0io[25]	PRT_GPIO51
prt_vid_out[10]	prt_pwm[18]	pm0io[26]	PRT_GPIO52
prt_vid_out[11]	prt_pwm[19]	pm0io[27]	PRT_GPIO53
prt_vid_out[12]	prt_pwm[20]	pm0io[28]	PRT_GPIO54
prt_vid_out[13]	prt_pwm[21]	pm0io[29]	PRT_GPIO55
prt_vid_out[14]	prt_pwm[22]	pm0io[30]	PRT_GPIO56
prt_vid_out[15]	prt_pwm[23]	pm0io[31]	PRT_GPIO57

表 2- 3扫描系统功能引脚复用关系表

芯片主功能	第二复用	第一复用	上电默认功能
sca_uart0_rx	pm1io[16]	-	SCA_GPIO00
sca_uart0_tx	pm1io[17]	-	SCA_GPIO01
sca_spi0_clk	pm1io[18]	-	SCA_GPIO02
sca_spi0_cs	pm1io[19]	sca_uart1_rx	SCA_GPIO03
sca_spi0_miso	pm1io[20]	sca_uart1_tx	SCA_GPIO04
sca_spi0_mosi	pm0io[31]	pm1io[31]	SCA_GPIO05
pm1io[0]	pm0io[0]	sca_afesd[8]	SCA_GPIO06
pm1io[1]	pm0io[1]	sca_afesd[9]	SCA_GPIO07
pm1io[2]	pm0io[2]	sca_afesd[10]	SCA_GPIO08
pm1io[3]	pm0io[3]	sca_afesd[11]	SCA_GPIO09
pm1io[4]	pm0io[4]	sca_afesd[12]	SCA_GPIO10
pm1io[5]	pm0io[5]	sca_afesd[13]	SCA_GPIO11
pm1io[6]	pm0io[6]	sca_afesd[14]	SCA_GPIO12
pm1io[7]	pm0io[7]	sca_afesd[15]	SCA_GPIO13
pm1io[8]	pm0io[8]	sca_afepls[1]	SCA_GPIO14
pm1io[9]	pm0io[9]	sca_afepls[2]	SCA_GPIO15
pm1io[10]	pm0io[10]	sca_cispls[1]	SCA_GPIO16
pm1io[11]	pm0io[11]	sca_cisclk[3]	SCA_GPIO17
pm1io[12]	pm0io[12]	sca_cisclk[4]	SCA_GPIO18
pm1io[13]	pm0io[13]	sca_cisclk[5]	SCA_GPIO19
pm1io[14]	pm0io[14]	sca_cisclk[6]	SCA_GPIO20
pm1io[15]	pm0io[15]	-	SCA_GPIO21
sca_afeclk	pm0io[16]	pm1io[16]	SCA_GPIO22
sca_afepls[0]	pm0io[17]	pm1io[17]	SCA_GPIO23
sca_afesd[0]	pm0io[18]	pm1io[18]	SCA_GPIO24
sca_afesd[1]	pm0io[19]	pm1io[19]	SCA_GPIO25
sca_afesd[2]	pm0io[20]	pm1io[20]	SCA_GPIO26
sca_afesd[3]	pm0io[21]	pm1io[21]	SCA_GPIO27
sca_afesd[4]	pm0io[22]	pm1io[22]	SCA_GPIO28
sca_afesd[5]	pm0io[23]	pm1io[23]	SCA_GPIO29
sca_afesd[6]	pm0io[24]	pm1io[24]	SCA_GPIO30
sca_afesd[7]	pm0io[25]	pm1io[25]	SCA_GPIO31
sca_cisclk[0]	pm0io[26]	pm1io[26]	SCA_GPIO32

芯片主功能	第二复用	第一复用	上电默认功能
sca_cisclk[1]	pm0io[27]	pm1io[27]	SCA_GPIO33
sca_cisclk[2]	pm0io[28]	pm1io[28]	SCA_GPIO34
sca_cispls[0]	pm0io[29]	pm1io[29]	SCA_GPIO35
sca cispwm	pm0io[30]	pm1io[30]	SCA GPIO36

3 功能描述

3.1 DDR3 控制器

龙芯 2P0500 内部集成的内存控制器。

3.1.1 **DDR3** 接口工作频率范围

支持 133-400MHZ 工作频率。

3.1.2 DDR3 控制器特性

龙芯 2P0500 内存控制器支持 1 个 CS, 一共含有 19 位的地址总线(即: 16 位的行列地址总线和 3 位的逻辑 Bank 总线)。

在具体选择使用不同内存芯片类型时,可以调整 DDR3 控制器参数设置进行支持。其中,支持的最大片选(CS_n)数为1,行地址(RAS_n)数为16,列地址(CAS n)数为16,逻辑体选择(BANK n)数为3。

CPU 发送的内存请求物理地址可以根据控制器内部不同的配置进行多种不同的地址映射。

内存控制器接收从处理器或外部设备发送的内存读写请求。无论是读还是写操作,内存控制器都处在 slave 状态。

内存控制器中实现了动态页管理功能。对于内存的一次存取,不需软件设计者的干预,控制器会在硬件电路上选择 Open Page/Close Page 策略。

龙芯 2P0500 中内存控制器具有如下特征:

- 接口上命令、读写数据全流水操作
- 内存命令合并、排序提高整体带宽
- 配置寄存器读写端口,可以修改内存设备的基本参数
- 内建动态延迟补偿电路(DCC),用于数据的可靠发送和接收
- 支持 133-400MHZ 工作频率
- 支持 32/16 位内存数据位宽,其中 16 位模式采用低 16 位内存数据信号

3.2 USB

龙芯 2P0500 的 USB 主机端口特性如下:

- 兼容 USB Rev 1.1 、USB Rev 2.0 协议
- 兼容 OHCI Rev 1.0 、EHCI Rev 1.0 协议
- 支持 LS(Low Speed)、FS(Full Speed)和 HS(High Speed)的 USB 设备
- 支持两个 USB2.0 端口
- USB2.0 主机控制器模块包括一个支持高速设备的 EHCI 控制器,一个支持 全速与低速设备的 OHCI 控制器。其中 EHCI 控制器处于主控地位,只有 当挂上的设备是全速或低速设备时,才将控制权转交给 OHCI 控制器;当 全速或低速设备拔掉时,控制权返回 EHCI 控制器。

3.3 OTG

龙芯 2P0500 的 OTG 支持特性如下:

- 支持 HNP 与 SRP 协议:
- 内嵌 DMA, 无需占用处理器带宽即可在 OTG 与外部存储之间移动数据;
- 在 device 模式下,为高速设备(480Mbps);
- 在 host 模式下,仅能支持高速设备(480Mbps);
- 在 device 模式下,支持 10 个双向的 endpoint, 其中仅有默认的 endpoint0 支持控制传输:
- 在 device 模式下,最多同时支持 4 个 IN 方向的传输:
- 在 host 模式下,支持 12 个 channel, 且软件可配置每个 channel 的方向:
- 在 host 模式下, 支持 periodic OUT 传输;

3.4 GMAC

龙芯 2P0500 集成两个 GMAC 控制器,即 GMAC0 和 GMAC1,二者在逻辑结构上完全相同。

3.5 **SPI**

串行外围设备接口 SPI 总线技术是多种微处理器、微控制器以及外围设备之间

的一种全双工、同步、串行数据接口标准。

龙芯 2P0500 集成的 SPI 控制器仅可作为主控端,所连接的是从设备。对于软件而言,SPI 控制器除了有若干 IO 寄存器外还有一段映射到 SPI Flash 的只读memory 空间。如果将这段 memory 空间分配在 BOOT 启动地址,复位后不需要软件干预就可以直接访问,从而支持处理器从 SPI Flash 启动。

以下列举了 SPI 管脚信号与外设通信的时序图:

图 3.1 SPI 主控制器接口时序

图 3.2 SPI Flash 标准读时序

图 3.3 SPI Flash 快速读时序

图 3.4 SPI Flash 双向 I/O 读时序

3.6 UART

龙芯 2P0500 集成了 8 个 UART 控制器,包括 1 个全功能串口(UART0),1 个 四线串口(UART1),2 个 2 线串口(UART2/UART3),其中 1 个全功能串口可复用为 4 个 2 线串口(UART0、UART1、UART2、UART3 复用 UART0 接口),1 个四线串口可复用为 2 个 2 线串口(UART1、UART3 复用 UART1 接口),各控制器通过 APB 总线与总线桥通信。

UART 控制器提供与 MODEM 或其他外部设备串行通信的功能,例如与另外一台计算机,以 RS232 为标准使用串行线路进行通信。该控制器在设计上能很好地兼容国际工业标准半导体设备 16550A。

$3.7 I^2C$

龙芯 2P0500 集成六路 I2C 接口,均支持主、从模式,主要用于实现两个器件之间数据的交换。

I2C 总线是由数据线 SDA 和时钟 SCL 构成的串行总线,可发送和接收数据。 器件与器件之间进行双向传送,最高传送速率 400kbps。

3.8 PRINTER

龙芯 2P0500 集成一个打印接口,支持 JBIG85 解码,支持 8 路独立机芯控制,支持四色彩打功能。

3.9 SCANNER

龙芯 2P0500 集成一个扫描接口,支持彩色(RGB)多分段(segment)扫描,支持 CIS、AFE 控制时序。

3.10 DA

龙芯 2P0500 集成一个 DA 电路, 支持 4 路 8 位 DA 模拟电压输出。

3.11 SDIO

龙芯 2P0500 集成两个 SDIO/eMMC 控制器,用于 SD/eMMC Memory、SDIO 卡的读写,SDIO0 支持 SD/eMMC Memory 卡启动。

SDIO 是一个串行通信方式,主设备和从设备通过消息传递来实现数据和状态的传输。写多块数据过程如下:

- 主设备通过命令线发送写命令消息给从设备:
- 从设备接收完消息之后通过命令线发送应答消息给主设备;
- 主设备接收到正确的应答消息后,通过数据线发送一块数据(512K Byte 或者更多)给从设备,并且检测数据线忙状态;
- 从设备接收到正确的数据后会进入编程状态,此时将数据线置为忙状态, 不再响应主设备的数据请求;

- 主设备检测到从设备编程完成,继续发送下一块数据:
- 主设备发送完最后一块数据时,通过命令线发送停止命令给从设备,收到 正确应答之后完成这次多块写操作。

多块读操作的过程和多块写操作的过程类似。

3.12 PMIO

龙芯 2P0500 集成三组可编程多功能 IO(Programmable Multifunction IO,PMIO),以下简称 PMIO。

包括两组全功能 PMIO,一组精简版 PMIO,可实现 Timer,PWM Generator、GPIO 及输入捕获等功能模式。

3.13 **PWM**

龙芯 2P0500 集成 40 路脉冲宽度调节/计数控制器,以下简称 PWM。

每一路 PWM 工作和控制方式完全相同,每路 PWM 均可配置为脉冲宽度输出或待测脉冲输入信号,计数寄存器和参考寄存器均 32 位数据宽度。

3.14 **GPIO**

龙芯 2P0500 共有 139 个 GPIO 引脚,全部与其他功能引脚复用,该部分引脚 在芯片复位过程中和复位结束后除启动相关功能引脚外,其他功能引脚全部默认为 GPIO 输入状态,全部支持外部中断输入。

3.15 HPET

龙芯 2P0500 集成三个高精度定时器,32 位计数器,支持1个周期性中断,支持2个非周期性中断。

3.16 RTC

实时时钟(RTC)单元可以在主板上电后进行配置,当主板断电后,该单元仍然运作,仅靠板上的电池供电即可正常运行。RTC 单元运行时电流低于 10 微安。

RTC 结合外部 32.768KHZ 晶振产生工作时钟,该时钟用于时间信息的维护以及产生各种定时和计数中断,计时可精确到 0.1 秒。

3.17 电源管理

- 龙芯 2P0500 电源管理模块提供系统功耗管理实现机制。
- 系统待机、休眠与唤醒,支持多种唤醒方式(网络,OTG,电源开关等)。
- 支持 Dynamic Power Management(DPM),动态性能功耗控制,支持动态 关闭 NODE(CORE+SCACHE)、DDR、IMAGE、SCAN、SYS 等电源域 电源。
- 支持 Dynamic Frequency Scaling(DFS),处理器核 DFS 控制,由片内打印 LA132 处理器核独立控制。
- 系统时钟控制,模块时钟门控,多种方式调节频率。
- 提供温度管理控制功能。支持3级报警机制。

4 初始化时序

4.1 冷启动上电时序

参考上电时序如下图。

图 4.1 冷启动上电时序波形

注:

- 1. VDD_IO 包括: VDD_3V3、VDD_3V3_USB、DDR_VDDE/DDR_VREF、PSU_3V3、VDD_3V3_DAC、VDD 3V3 LVDS、VDD 3V3 THSENS。
- 2. VDD包括: VDD CORE、VDD 1V1 USB、VDD NODE PLL*、VDD DDR PLL*、VDD SOC PLL*。
- 3. 上述VDD_IO、VDD上电时序为推荐上电时序, 二者无强制先后关联。
- 4. SYSRSTN(I)信号没有去抖动功能,需主板提供去抖动电路。 (注*:PLL采用1.1V供电电压、1.2V独立供电时上电时序均可与其他CORE电源同步上电。)

耒	4-	1 冷启云	力上电时序要求
1	-	111111111111111111111111111111111111111	

标记符	参数	需求	说明	注
t0	IO 电源稳定时刻			
t1	CORE 电源上电时刻	t1 - t0 > 10us	IO 电源要先于 CORE 电源供电	
t2	SYSRSTN(I)解复位时刻	t2 - t1 > 5ms	SYSRSTN 需要在 CORE 域电源稳	
			定之后解复位	

4.2 热复位时序

参考热复位时序如下图:

图 4.2 热复位时序图

注:

- 1. POWER包括所有的供电。
- 2. RSTN(INNER)内部复位在外部复位信号撤销之后过一段延迟后解除。

标记符	参数	需求	说明
t1	SYSRSTN 变低的时刻		
t2	SYSRSTN 变高的时刻	t2 - t1 > 1 ms	SYSRSTN 保持为低电平的时间需
			大于 1ms 才有效
t3	RSTN (INNER)	t3 - t2 < 2ms	内部复位解除时刻不晚于
			SYSRSTN 解复位后 2ms

表 4- 2 热复位时序约束

5 电气特性

5.1 电源

5.1.1 推荐工作条件

表 5- 1 推荐的工作电源电压

电源	描述		范围		最大电流	
セ/床	1曲人心	Min.	Тур.	Max.	(壳温 85℃)	
VDD_CORE	数字域电源	1.05V	1.1V	1.15V	1500mA	
RTC_VDD	RTC 域电源	2.55V	2.7V	2.85V	10uA	
VDD_3V3	SOC 域 IO 电源	3.15V	3.3V	3.45V	500mA	
VDDIO_DDR	DDR3 IO 电源	1.42V	1.5V	1.58V	500mA	
DDR_VREF	DDR3 VREF	0.72V	0.75V	0.78V	TBD	
VDD_1V1_USB	USB vp 和 vptx 电源	1.05V	1.1V	1.15V	100mA	
VDD_3V3_USB	USB vph 电源	3.15V	3.3V	3.45V	100mA	
OTG_VBUS	OTG接口5V供电电源	4.85V	5V	5.15V	TBD	
VDD_3V3_DAC	DA 接口模拟电源	3.15V	3.3V	3.45V	TBD	
VDD_3V3_LVDS	LVDS 接口模拟电源	3.15V	3.3V	3.45V	TBD	
VDD_3V3_THSENS	THSENS 温度传感器电源	3.15V	3.3V	3.45V	TBD	
VDD NODE BLI	NODE PLL 电源	1.15V ¹	1.2V ¹	1.25V ¹		
VDD_NODE_PLL	NODE FLE 电源	$1.05V^{2}$	$1.1V^{2}$	1.15V ²		
VDD_DDR_PLL	DDR PLL 电源	1.15V ¹	1.2V ¹	1.25V ¹	50mA	
VDD_DDK_FLL		1.05V ²	$1.1V^{2}$	1.15V ²		
VDD_SOC_PLL	SOC PLL 电源	1.15V ¹	1.2V ¹	1.25V ¹		
VDD_SOC_IEE	SOCILL 电源	$1.05V^2$	$1.1V^{2}$	$1.15V^2$		

标注 ¹: 该推荐供电电压适用温度范围: -40 $^{\circ}$ $^{\circ}$ -10 $^{\circ}$,推荐工业级应用; 标注 $^{\circ}$: 该推荐供电电压适用温度范围: -10 $^{\circ}$ $^{\circ}$ $^{\circ}$ 48 $^{\circ}$,推荐商业级应用。

5.1.2 绝对最大额定值

表 5- 2 绝对最大额定值

参数	描述	最小	最大	单位
VDD_CORE	SOC 域电源	-0.3	1.25	V
RTC_VDD	RTC 域电源	-0.3	3.0	V
VDD_3V3	SOC 域 IO 电源	-0.3	3.47	V
VDDIO_DDR	DDR3 IO 电源	-0.3	1.7	V

参数	描述	最小	最大	单位
DDR_VREF	DDR3 参考电压	-0.3	0.78	V
VDD_1V1_USB	USB vp 和 vptx 电源	-0.3	1.21	V
VDD_3V3_USB	USB vph 电源	-0.3	3.47	V
VDD_3V3_DAC	DA 接口模拟电源	-0.3	3.47	V
VDD_3V3_LVDS	LVDS 接口模拟电源	-0.3	3.47	V
VDD_3V3_THSENS	THSNES 模拟电源	-0.3	3.47	V
VDD_PLL	PLL 模拟电源	-0.3	1.3	V
ESD	静电防护	-	2000	V
Tstg	存储温度	-55	125	$^{\circ}\!\mathbb{C}$

5.1.3 功耗状态及优化

表 5- 3 芯片功耗模式

运行模式	条件(壳温 25℃)	功耗(W)	
	CPU 1.1V, 700MHz; DDR 400MHz		
	USB、GMAC 连接常用设备		
典型	运行 SPEC CPU2000	1.5W	
	所有模块保持打开状态		
	测量平均功耗		

5.2 参考时钟

5.2.1 单端参考时钟

图 5.1 单端参考时钟波形

时钟	参数	描述	最小	最大	单位
	Vih	输入高电平电压	2.0	-	V
CVC CLV	Vil	输入低电平电压	-	0.8	V
SYS_CLK	T_cyc	时钟周期	9.99	10.01	ns
	T_hi	高电平时间	40%T_cyc	60%T_cyc	ns

时钟	参数	描述	最小	最大	单位
	T_low	低电平时间	40%T_cyc	60%T_cyc	ns
	Tslew	斜率	1	4	V/ns
	Tccjitter	周期间抖动	-	100	ps
	Vih	输入高电平电压	2.0	-	V
	Vil	输入低电平电压	-	0.8	V
ITAC TCV	T_cyc	时钟周期	30	-	ns
JTAG_TCK	T_hi	高电平时间	40%T_cyc	60%T_cyc	ns
	T_low	低电平时间	40%T_cyc	60%T_cyc	ns
	Tslew	斜率	1	4	V/ns
	Vih	输入高电平电压	2.0	-	V
	Vil	输入低电平电压	-	0.8	V
CVC TECTOLV	T_cyc	时钟周期	30		ns
SYS_TESTCLK	T_hi	高电平时间	40%T_cyc	60%T_cyc	ns
	T_low	低电平时间	40%T_cyc	60%T_cyc	ns
	Tslew	斜率	1	4	V/ns

5.2.2 差分参考时钟

图 5.2 差分参考时钟波形

时钟	参数	描述	最小	最大	单位
	Vrange	输入电压范围(单端)	-0.3	1.15	V
	Vcrossrange	交叉点范围	-100	100	mV
	Vcrossdelta	上升沿 Vcross 变动范围	-	140	mV
LICD DEECLY	T_cyc	时钟周期	9.847	10.203	ns
USB_REFCLK	Duty cycle	占空比	40	60	%
	Vih	差分输入高	+150	-	mV
	Vil	差分输入低	-	-150	mV
	Tccjitter	周期间抖动	-	30	ps

时钟	参数	描述	最小	最大	单位
	Tslew	斜率	0.6	4	V/ns

5.3 DDR3 内存接口特性

5.3.1 推荐的直流工作条件

表 5- 4 推荐的直流工作条件

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Supply Voltage	1.42	1.5	1.58	V
VDDQ	Supply Voltage for Output	1.42	1.5	1.58	V

5.3.2 交流和直流逻辑输入电平

5.3.2.1 单端信号的交流和直流输入电平

表 5- 5 控制信号和地址单端信号的交流和直流输入电平

Samah al	B .	DDR3-800/10	TI .*4	
Symbol	Parameter	Min	Max	Unit
VIH.CA(DC100)	DC input logic high	Vref + 0.100	VDD	V
VIL.CA(DC100)	DC input logic low	VSS	Vref - 0.100	V
VIH.CA(AC175)	AC input logic high	Vref + 0.175	Note 2	V
VIL.CA(AC175)	AC input logic low	Note 2	Vref - 0.175	V
VIH.CA(AC150)	AC input logic high	Vref + 0.150	Note 2	V
VIL.CA(AC150)	AC input logic low	Note 2	Vref - 0.150	V
VRefCA(DC)	Reference Voltage for ADD, CMD inputs	0.49 * VDD	0.51 * VDD	V

表 5-6 DQ 和 DM 单端信号的交流和直流输入电平

Crimbol.	Donomoton	DDR3-800, DDR3-1066			DDR3-1333, DDR3-1600		
Symbol	rarameter	Min	Max	Min	Max	Unit	
VIH.DQ(DC100)	DC input logic high	Vref + 0.100	VDD	Vref + 0.100	VDD	V	
VIL.DQ(DC100)	DC input logic low	VSS	Vref - 0.100	VSS	Vref - 0.100	V	
VIH.DQ(AC175)	AC input logic high	Vref + 0.175	-	-	-	V	
VIL.DQ(AC175)	AC input logic low	-	Vref - 0.175	-	-	V	
VIH.DQ(AC150)	AC input logic high	Vref + 0.150	-	Vref + 0.150	-	V	
VIL.DQ(AC150)	AC input logic low	-	Vref - 0.150	-	Vref - 0.150	V	
	Reference Voltage for DQ, DM inputs	0.49 * VDD	0.51 * VDD	0.49 * VDD	0.51 * VDD	V	

5.3.2.2 差分信号的交流和直流输入电平

图 5.3 ac-swing 和 ac-level 时间点(tDVA)的差分定义

DDR3-800,1066 Symbol **Parameter** Unit Min Max $V_{IHdiff} \\$ Differential input high + 0.200 note 3 V V_{ILdiff} Differential input logic low Note 3 - 0.200 V VIHdiff(ac) Differential input high ac 2 x (VIH(ac) - Vref) Note 3 V VILdiff(ac) Differential input low ac note 3 2 x (VIL(ac) - Vref)

表 5- 7 交流和直流的差分输入电平

5.3.2.3 差分信号输入的交叉点电压

为了保证严格的建立和保持时钟和选通时间以及输出偏差参数,每个交叉点电压的差分输入信号(CK,CK#和DQS,DQS#)必须满足表 5-8 的要求。差分输入的交叉点电压 VIX 的测量是从实际的交叉点的和补偿信号的 VDD 和 VSS 之间的中间点处获得。

图 5.4 Vix 定义

表 5- 8 差分输入信号(CK, DQS)交叉点电压

Symbol	Parameter	DDR3-800, DD DDR3-1333, D	Unit	
J		Min.	Max.	
VIX	Differential Input Cross Point Voltage relative to VDD/2 for	-150	150	mV
VIA	CK,CK#	-175	175	mV
VIX	Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS#	-150	150	mV

5.3.3 交流和直流逻辑输出电平

5.3.3.1 单端信号的交流和直流输出电平

表 5- 9 单端信号的交流直流输出电平

Symbol	Parameter	DDR3-800, 1066, 1333, and 1600	Unit
VOH(DC)	DC output high measurement level (for IV curve linearity)	0.8 x VDDQ	V
VOM(DC)	DC output mid measurement level (for IV curve linearity)	0.5 x VDDQ	V
VOL(DC)	DC output low measurement level (for IV curve linearity)	0.2 x VDDQ	V
VOH(AC)	AC output high measurement level (for output SR)	VTT + 0.1 x VDDQ	V
VOL(AC)	AC output low measurement level (for output SR)	VTT - 0.1 x VDDQ	V

5.3.3.2 差分信号的交流和直流输出电平

表 5- 10 差分信号的交流和直流输出电平

Symbol	Parameter	DDR3-800, 1066, 1333, and 1600	Unit
VOHdiff(AC)	AC differential output high measurement level (for output SR)	+ 0.2 x VDDQ	V
VOLdiff(AC)	AC differential output low measurement level (for output SR)	- 0.2 x VDDQ	V

5.3.3.3 单端信号的输出斜率

作为时序测量的参考负载,单端信号的下降沿和上升沿输出斜率的定义和测量在 VOL (AC) 和 VOH (AC) 之间,如表 5- 11 和图 5.4 所示。

表 5- 11 单端信号输出斜率的定义

Dogavintion	Meası	ıred	Doffmod by
Description	from	to	Defined by
Single-ended output slew rate for rising edge	VOL(AC)	VOH(AC)	[VOH(AC) -VOL(AC)] / DeltaTRse
Single-ended output slew rate for falling edge	VOH(AC)	VOL(AC)	[VOH(AC) - VOL(AC)] / DeltaTFse

图 5.5 单端输出斜率的定义

表 5- 12 单端的输出斜率

Domamatan	Symbol	DDR3-800		DDR3	3-1066	Unit
Parameter	Symbol	Min.	Max.	Min.	Max.	Unit
Single-ended Output Slew Rate	SRQse	2.5	5	2.5	5	V/ns

5.3.3.4 差分输出斜率

表 5- 13 差分输出斜率的定义

December 4 in the	Meas	sured	Defined by
Description	from	to	Defined by
Differential output slew rate for rising	VOLdiff(AC)	VOHdiff(AC)	[VOHdiff(AC) -
edge	VOLaiii(AC)	VOHdili(AC)	VOLdiff(AC)]/DeltaTRdiff
Differential output slew rate for falling	VOHdiff(AC)	VOLdiff(AC)	[VOHdiff(AC) -
edge	VOHulli(AC)	VOLaiii(AC)	VOLdiff(AC)]/DeltaTFdiff

图 5.6 差分输出斜率的定义

表 5- 14 差分输出斜率

		DDR3-800		DDR3-1066		DDR3-1333		DDR3-1600		Units
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Differential Output Slew Rate	SRQdiff	5	10	5	10	5	10	TBD	10	V/ns

5.3.3.5 上冲和下冲的规范

表 5- 15 地址和控制引脚的交流上冲/下冲规范

Parameter		DDR3- 1066	DDR3- 1333	DDR3- 1600	Units	
Maximum peak amplitude allowed for overshoot area.	0.4	0.4	0.4	0.4	V	
Maximum peak amplitude allowed for undershoot area.	0.4	0.4	0.4	0.4	V	
Maximum overshoot area above VDD	0.67	0.5	0.4	0.33	V-ns	
Maximum undershoot area below VSS	0.67	0.5	0.4	0.33	V-ns	
(A0-A15, BA0-BA3, CS#, RAS#, CAS#, WE#, CKE, ODT)						

图 5.7 地址和控制的上冲和下冲定义

表 5- 16 时钟,数据,选通和屏蔽信号的交流上冲/下冲规范

	DDR3- 800	DDR3- 1066	DDR3- 1333	DDR3- 1600	Units	
Maximum peak amplitude allowed for overshoot area.	0.4	0.4	0.4	0.4	V	
Maximum peak amplitude allowed for undershoot area.	0.4	0.4	0.4	0.4	V	
Maximum overshoot area above VDDQ	0.25	0.19	0.15	0.13	V-ns	
Maximum undershoot area below VSSQ	0.25	0.19	0.15	0.13	V-ns	
(CK, CK#, DQ, DQS, DQS#, DM)						

图 5.8 时钟,数据,选通和屏蔽信号的交流上冲和下冲定义

5.3.3.6 ODT 时序定义

表 5- 17 ODT 时序定义

Symbol	Begin Point Definition	End Point Definition	Figure
tAON	Rising edge of CK -CK# defined by the end point of ODTLon	Extrapolated point at VSSQ	Figure 103
tAONPD	Rising edge of CK -CK# with ODT being first registered high	Extrapolated point at VSSQ	Figure 104
tAOF	Rising edge of CK -CK#defined by the end point of ODTLoff	End point: Extrapolated point at VRTT_Nom	Figure 105
tAOFPD	Rising edge of CK -CK# with ODT being first registered low	End point: Extrapolated point at VRTT_Nom	Figure 106
tADC	Rising edge of CK -CK# defined by the end point of ODTLcnw, ODTLcwn4 or ODTLcwn8	End point: Extrapolated point at VRTT_Wr and VRTT_Nom respectively	Figure 107

0.20

0.30

tAD

Measured Parameter	RTT_Nom Setting	RTT_Wr Setting	VSW1[V]	VSW2[V]
ta ON	RZQ/4	NA	0.05	0.10
tAON	RZQ/12	NA	0.10	0.20
44 ONDD	RZQ/4	NA	0.05	0.10
tAONPD	RZQ/12	NA	0.10	0.20
tAOF	RZQ/4	NA	0.05	0.10
lAOF	RZQ/12	NA	0.10	0.20
tAOFPD	RZQ/4	NA	0.05	0.10
IAOFPD	RZQ/12	NA	0.10	0.20

RZQ/2

RZQ/12

表 5- 18 ODT 时序测量的参考设置

>

图 5.10 tAONPD 的定义

5.3.4 IDD 和 IDDQ 规范的参数和测试条件

表 5- 19 IDD 和 IDDQ 测量循环模式的时序

Symbol	DDR	DDR3-800 DDR3-1066			DDR3-1333			DDR3-1600				Unit		
	5-5-5	6-6-6	6-6-6	7-7-7	8-8-8	7-7-7	8-8-8	9-9-9	10-10-10	8-8-8	9-9-9	10-10-10	11-11-11	
tCK	2.5		1.875			1.5				1.25			ı	ns
CL	5	6	6	7	8	7	8	9	10	8	9	10	11	nCK
nRCD	5	6	6	7	8	7	8	9	10	8	9	10	11	nCK
nRC	20	21	26	27	28	31	32	33	34	36	37	38	39	nCK
nRAS	15		20			24			'	28			'	nCK
nRP	5	6	6	7	8	7	8	9	10	8	9	10	11	nCK

nFAW	1KBpagesize	16	20	20	24	nCK
	2KB page size	20	27	30	32	nCK
nRRD	1KB page size	4	4	4	5	nCK
	2KB page size	4	6	5	6	nCK
nRFC 5	12 Mb	36	48	60	72	nCK
nRFC 1	Gb	44	59	74	88	nCK
nRFC 2	Gb	64	86	107	128	nCK
nRFC 4	Gb	120	160	200	240	nCK
nRFC 8	Gb	140	187	234	280	nCK

5.3.5 输入/输出电容

表 5- 20 输入/输出电容

			1112 > 4. 11							
D	6	DDR	3-800	DDR3	3-1066	DDR.	3-1333	DDR3-1600		TT .*4
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Input/output capacitance (DQ, DM, DQS, DQS#, TDQS,TDQS#)	Сю	1.5	3.0	1.5	2.7	1.5	2.5	1.5	2.3	pF
Input capacitance, CK and CK#	Сск	0.8	1.6	0.8	1.6	0.8	1.4	0.8	1.4	pF
Input capacitance delta, CK and CK#	CDCK	0	0.15	0	0.15	0	0.15	0	0.15	pF
Input/output capacitance delta DQS and DQS#	CDDQS	0	0.2	0	0.2	0	0.15	0	0.15	pF
Input capacitance, (CTRL, ADD, CMD input-only pins)	Cı	0.75	1.4	0.75	1.35	0.75	1.3	0.75	1.3	pF
Input capacitance delta, (All CTRL input-only pins	Cdi_ctrl	-0.5	0.3	-0.5	0.3	-0.4	0.2	-0.4	0.2	pF
Input capacitance delta, (All ADD/ CMD input-only pins)	CDI_ADD_CMD	-0.5	0.5	-0.5	0.5	-0.4	0.4	-0.4	0.4	pF
Input/output capacitance delta, DQ, DM, DQS, DQS#, TDQS, TDQS#	Cdio	-0.5	0.3	-0.5	0.3	-0.5	0.3	-0.5	0.3	pF
Input/output capacitance of ZQ pin	CzQ	-	3	-	3	-	3	-	3	pF

5.3.6 刷新参数

表 5- 21 DDR3 刷新参数

Parameter		Symbol	512Mb	1Gb	2Gb	4Gb	8Gb	Unit
REF command to ACT or REF command time		tRFC	90	110	160	300	350	ns
A1	4D E E I	0≤TCASE≤85	7.8	7.8	7.8	7.8	7.8	us
Average periodic refresh interval	tREFI	85 <tcase≤95< td=""><td>3.9</td><td>3.9</td><td>3.9</td><td>3.9</td><td>3.9</td><td>us</td></tcase≤95<>	3.9	3.9	3.9	3.9	3.9	us

5.3.7 标准的速度分级

表 5- 22 DDR3-800 Speed Bins and Operating Conditions

	Speed Bin		DI	DR3-800D	DI	DR3-800E		
	CL - nRCD - nR	P.		5-5-5		6-6-6	Unit	
Pa	rameter	Symbol	Min.	Max.	Min.	Max.		
Internal read com	mand to first data	tAA	12.5	20	15	15 20		
ACT to internal re	ead or write delay time	tRCD	12.5	_	15	15 —		
PRE command pe	eriod	tRP	12.5	_	15	ns		
ACT to ACT or R	REF command period	tRC	50	_	52.5	_	ns	
ACT to PRE com	mand period	tRAS	37.5	9 * tREFI	37.5	9 * tREFI	ns	
CL = 5	CWL = 5	tCK(AVG)	2.5	3.3	3.0	3.3	ns	
CL = 6	CWL = 5	tCK(AVG)	2.5	3.3	2.5	3.3	ns	
Supported CL Set	ttings			5, 6		nCK		
Supported CWL S	Settings			5	5			

表 5- 23 DDR3-1066 Speed Bins and Operating Conditions

	~~		1000	Speed Bills a	ina opera		1		
	Speed Bir	n	DD	R3-1066E	DDF	R3-1066F	DDI	R3-1066G	
	CL - nRCD -	nRP		6-6-6	,	7-7-7		8-8-8	Unit
Par	ameter	Symbol	Min.	Max.	Min.	Max.	Min.	Max.]
Internal re to first dat	ad command	tAA	11.25	20	13.125	20	15	20	ns
ACT to in or write do	ternal read elay time	tRCD	11.25 — 13.125		_	15	_	ns	
PRE com	nand period	tRP	11.25	_	13.125	_	15	15 —	
ACT to Accommand	CT or REF period	tRC	48.75	_	50.625	_	52.5	52.5 —	
ACT to PRE command		tRAS	37.5	9 * tREFI	37.5	9 * tREFI	37.5	9 * tREFI	ns
CL = 5	CWL = 5	tCK(AVG)	2.5	3.3	3.0	3.3	3.0	3.3	ns
CL = 3	CWL = 6	tCK(AVG)	R	teserved	Reserved		R	eserved	ns
CI. (CWL = 5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	ns
CL = 6	CWL = 6	tCK(AVG)	1.875	<2.5	Re	eserved	R	eserved	ns
CI 7	CWL = 5	tCK(AVG)	R	eserved	Re	eserved	R	eserved	ns
CL = 7	CWL = 6	tCK(AVG)	1.875	<2.5	1.875	< 2.5	R	eserved	ns
GI 0	CWL = 5	tCK(AVG)	R	leserved	R	eserved	R	eserved	ns
CL = 8	CWL = 6	tCK(AVG)	1.875	<2.5	1.875	<2.5 1.875 <2.5		ns	
Supported	CL Settings			5,6,7,8	5	,6,7,8		5,6,8	nCK
Supported	CWL Setting	įs		5,6		5,6		5,6	nCK

表 5- 24 DDR3-1333 Speed Bins and Operating Conditions

	SpeedBin	,		-1333F ional)	DDR	3-1333G	DDR3-13		(op	3-1333J tional) -10-10	Unit
	ameter	Symbol	min		min		min		min		
Internal rea	ameter ad command to st data	tAA taa	10.5	20	12	20	13.5(13.125)5,1	20	15	20	ns
ACT to in	ternal read or delay time	<i>t</i> RCD	10.5	_	12	_	13.5(13.125)5,1	_	15	_	ns
PRE com	mand period	<i>t</i> RP	10.5	_	12	_	13.5(13.125)5,1	_	15	_	ns
	ACT or REF and period	<i>t</i> RC	46.5	_	48	_	49.5(49.125)5,1	_	51	_	ns
	RE command eriod	<i>t</i> RAS	36	9*tREFI	36	9*tREFI	36	9*tREFI	36	9*tREFI	ns
CI 5	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	3.0	3.3	3.0	3.3	ns
CL=5	CWL=6,7	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Res	served	ns
	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	2.5	3.3	ns
CL=6	CWL=6	tCK(AVG)	1.875	<2.5	Re	served	Reserv	ed	Res	served	ns
	CWL=7	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Res	served	ns
	CWL=5	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Res	served	ns
							1.875	<2.5			
CL=7	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	(Optiona	l)5,11	Re	served	ns
	CWL=7	tCK(AVG)	1.5	<1.875	Re	served	Reserv	ed	Re	served	ns
	CWL=5	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Res	served	ns
CL=8	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5	1.875	< 2.5	ns
	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	Reserv	ed	Res	served	ns
GI. O	CWL=5,6	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Re	served	ns
CL=9	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	1.5	<1.875	Res	served	ns
	CWL=5,6	tCK(AVG)	Res	erved	Re	served	Reserv	ed	Res	served	ns
CL=10	CIVII 5		1.5	<1.875	1.5	<1.875	1.5	<1.875	1.5	1.055	ns
	CWL=7	tCK(AVG)	(Opt	ional)	(Or	otional)	(Optional)		1.5	<1.875	ns
Sup	ported CL Setti	ngs	5,6,7,	8,9,(10)	5,6,7	,8,9,(10)	5,6,8,(7),9,(10)		5,6	5,8,10	пСК
Supp	orted CWL Sett	tings	5,	6, 7	5, 6, 7 5, 6, 7		7	5,	, 6, 7	пСК	

表 5- 25 DDR3-1600 Speed Bins and Operating Conditions

	SpeedBin		DDR3-1		DDR3-1	1600H	DDR3-	1600J	DDR3-16	00K	
	CL-nRCD-nR	RP.	8-8		9-9	-9	10-10)-10	11-11-1	1	Unit
Par	ameter	Symbol	min	max	min	max	min	max	min	max	
	ead command est data	<i>t</i> AA	10	20	11.25	20	12.5	20	13.75(13.125)5,	20	ns
	internal read delay time	<i>t</i> RCD	10	_	11.25	_	12.5	_	13.75(13.125)5,		ns
PRE com	mand period	<i>t</i> RP	10	_	11.25	_	12.5	_	13.75(13.125)5,	_	ns
	ACT or REF nd period	<i>t</i> RC	45	_	46.25	_	47.5	_	48.75(48.125)5, 11	_	ns
	RE command riod	<i>t</i> RAS	35	9*tREFI	35	9*tREFI	35	9*tREFI	35	9 * tREFI	ns
CL = 5	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	3.0	3.3	ns
CL - 3	CWL=6,7,8	tCK(AVG)	Reser	ved	Reser	ved	Reserved		Reserve	ed	ns
	CWL=5	tCK(AVG)	2.5	3.3	2.5	3.3	2.5	3.3	2.5	3.3	ns
CL = 6	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	Reserved	Reserved	ns	1,2,3,4,8	
	CWL=7,8	tCK(AVG)	Reserved		Reserved		Reserved		Reserved		ns
	CWL=5	tCK(AVG)	Reserved		Reserved		Reserved		Reserved		ns
CL = 7	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5	1.875 (Optional)5,11	< 2.5	ns
	CWL=7	tCK(AVG)	1.5	<1.875	Reser	ved	Resei	ved	Reserve	ed	ns
	CWL=8	tCK(AVG)	Reser	ved	Reser	ved	Resei	ved	Reserve	ed	ns
	CWL=5	tCK(AVG)	Resei	ved	Resei	ved	Reserved		Reserve	ed	ns
	CWL=6	tCK(AVG)	1.875	<2.5	1.875	<2.5	1.875	<2.5	1.875	< 2.5	ns
CL = 8	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	Reserved	Reserved	ns	1,2,3,4,8	
	CWL=8	tCK(AVG)	1.25	<1.5	Reser	ved	Resei	ved	Reserve	ed	ns
	CWL=5,6	tCK(AVG)	Resei	ved	Resei	ved	Resei	ved	Reserve	ed	ns
									1.5	< 1.875	
CL = 9	CWL=7	tCK(AVG)	1.5	<1.875	1.5	<1.875	1.5	<1.875			ns
	CMA 0		1.25	-1.5	1.05	-1.5		1	(Optional)5,11	1	
	CWL=8	tCK(AVG)	1.25	<1.5	1.25	<1.5	Resei		Reserve		ns
CI - 10	CWL=5,6	tCK(AVG)	Reser	<1.875	Reser	1	Reser	ı	Reserve		ns
CL = 10	CWL=7 CWL=8	tCK(AVG)	1.5	<1.873	1.5 1.25	<1.875 <1.5	1.5 1.25	<1.875 <1.5			ns
	CWL=5,6,7	tCK(AVG)	Reserved	\1.J	Reserved	\1.J	Reserved	1.3	Reserved		ns ns
CL = 11	CWL-3,0,7	ick(Avd)	1.25	<1.5	1.25	<1.5	1.25	<1.5	Reserved		ns
	CWL=8	tCK(AVG)	(Optio		(Optio	l	(Optio		1.25	< 1.5	ns
Sur	ported CL Set	tinos	5,6,7,8,9		5,6,7,8,9		5,6,7,8		5,6,7,8,9,10) (11)	nCK
	•			,							
	orted CWL Se		5,6,	,	5,6,7		5,6,7,8		5,6,7,8		пСК

5.3.8 **DDR3** 的时序参数

表 5- 26 Timing Parameters by Speed Bin

	10		DDR3-800 DDR3-1066				3-1333	nnp	3-1600	
Parameter	Symbol									Units
		Min	Max	Min	Max	Min	Max	Min	Max	
Clock Timin	g									
Minimum Clock Cycle Time (DLL off mode)	tCK(DLL_OFF)	8	-	8	-	8	-	8	-	ns
Average Clock Period	tCK(avg)									ps
Average high pulse width	tCH(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)
Average low pulse width	tCL(avg)	0.47	0.53	0.47	0.53	0.47	0.53	0.47	0.53	tCK(avg)
Absolute Clock Period	tCK(abs)	tCK(avg) min + tJIT(per)m in	tCK(avg) max + tJIT(per) max	tCK(avg) min + tJIT(per)m in	tCK(avg) max + tJIT(per) max)min +	tCK(avg) max + tJIT(per) max)min +) max +	ps
Absolute clock HIGH pulse width	tCH(abs)	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)
Absolute clock LOW pulse width	tCL(abs)	0.43	-	0.43	-	0.43	-	0.43	-	tCK(avg)
Clock Period Jitter	JIT(per)	-100	100	-90	90	-80	80	-70	70	ps
Clock Period Jitter during DLL locking period	tJIT(per,lck)	-90	90	-80	80	-70	70	-60	60	ps
Cycle to Cycle Period Jitter	tJIT(cc)	20	00	18	0	10	50	14	40	ps
Cycle to Cycle Period Jitter during DLL locking period	tJIT(cc,lck)	18	30	16	0	14	40	12	20	ps
Duty Cycle Jitter	tJIT(duty)	-	-	-	-	-	-	-	-	ps
Cumulative error across 2 cycles	tERR(2per)	-147	147	-132	132	-118	118	-103	103	ps
Cumulative error across 3 cycles	tERR(3per)	-175	175	-157	157	-140	140	-122	122	ps
Cumulative error across 4 cycles	tERR(4per)	-194	194	-175	175	-155	155	-136	136	ps
Cumulative error across 5 cycles	tERR(5per)	-209	209	-188	188	-168	168	-147	147	ps
Cumulative error across 6 cycles	tERR(6per)	-222	222	-200	200	-177	177	-155	155	ps
Cumulative error across 7 cycles	tERR(7per)	-232	232	-209	209	-186	186	-163	163	ps
Cumulative error across 8 cycles	tERR(8per)	-241	241	-217	217	-193	193	-169	169	ps
Cumulative error across 9 cycles	tERR(9per)	-249	249	-224	224	-200	200	-175	175	ps

Cumulative error across 10 cycles	tERR(10per)	-257	257	-231	231	-205	205	-180	180	ps
Cumulative error across 11 cycles	tERR(11per)	-263	263	-237	237	-210	210	-184	184	ps
Cumulative error across 12 cycles	tERR(12per)	-269	269	-242	242	-215	215	-188	188	ps
Cumulative error across n = 13, 14 49, 50 cycles	tERR(nper)	tERR(nper)min = (1 + 0.68ln(n)) * tJIT(per)m in tERR(nper)max = (1 + 0.68ln(n)) * tJIT(per)m ax	ps	24						
Data Timing										
DQS, DQS# to DQ skew, per group, per access	tDQSQ	-	200	-	150	-	125	-	100	ps
DQ output hold time from DQS, DQS#	tQH	0.38	-	0.38	-	0.38	-	0.38	-	tCK(avg)
DQ low- impedance time from CK, CK#	tLZ(DQ)	-800	400	-600	300	-500	250	-450	225	ps
DQ high impedance time from CK, CK#	tHZ(DQ)	-	400	-	300	1	250	1	225	ps
Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels	tDS(base)AC17	75		25		-		-		ps
Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels	tDS(base)AC15	125		75		30		10		ps
Data hold time from DQS, DQS# referenced to Vih(dc) / Vil(dc) levels	tDH(base)DC10	150		100		65		45		ps
DQ and DM Input pulse width for each input	tDIPW	600	-	490	-	400	-	360	-	ps
Data Strobe	Timing									
DQS,DQS# differential READ Preamble	tRPRE	0.9	Note19	0.9	Note19	0.9	Note19	0.9	Note19	tCK(avg)
DQS, DQS# differential READ Postamble	tRPST	0.3	Note11	0.3	Note11	0.3	Note11	0.3	Note11	tCK(avg)

DQS, DQS# differential output high time	tQSH	0.38	-	0.38	-	0.40	-	0.40	-	tCK(avg)
DQS, DQS# differential output low time	tQSL	0.38	-	0.38	-	0.40	-	0.40	-	tCK(avg)
DQS, DQS# differential WRITE Preamble	tWPRE	0.9	-	0.9	-	0.9	-	0.9	-	tCK(avg)
DQS, DQS# differential WRITE Postamble	tWPST	0.3	-	0.3	-	0.3	-	0.3	-	tCK(avg)
DQS, DQS# rising edge output access time from rising CK, CK#	tDQSCK	-400	400	-300	300	-255	255	-225	225	ps
DQS and DQS# low-impedance time (Referenced from RL - 1)	tLZ(DQS)	-800	400	-600	300	-500	250	-450	225	ps
DQS and DQS# high-impedance time (Referenced from RL + BL/2)	tHZ(DQS)	-	400	-	300	-	250	-	225	ps
DQS, DQS# differential input low pulse width	tDQSL	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)
DQS, DQS# differential input high pulse width	tDQSH	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	tCK(avg)
DQS, DQS# rising edge to CK, CK# rising edge	tDQSS	-0.25	0.25	-0.25	0.25	-0.25	0.25	-0.27	0.27	tCK(avg)
DQS, DQS# falling edge setup time to CK, CK# rising edge	tDSS	0.2	-	0.2	-	0.2	-	0.18	-	tCK(avg)
DQS, DQS# falling edge hold time from CK, CK# rising edge	tDSH	0.2	-	0.2	-	0.2	-	0.18	-	tCK(avg)
Command a	nd Address '	Timing								
DLL locking time	tDLLK	512	-	512	-	512	-	512	-	nCK
Internal READ Command to PRECHARGE Command delay	tRTP	max(4nCK , 7.5ns)	_	max(4nCK ,7.5ns)	-	max(4n CK,7.5n s)	-	max(4n CK,7.5n s)	-	
Delay from start of internal write transaction to internal read command	tWTR	max(4nCK , 7.5ns)	_	max(4nCK ,7.5ns)	-	max(4n CK,7.5n s)	-	max(4n CK,7.5n s)	-	
WRITE recovery time	tWR	15	_	15	-	15	-	15	-	ns
Mode Register Set command cycle time	tMRD	4	_	4	-	4	-	4	-	nCK

Mode Register Set command update delay	tMOD	max(12nC K, 15ns)	-	max(12nC K,15ns)	-	max(12n CK,15ns	-	max(12n CK,15ns	-	
ACT to internal read or write delay time	tRCD	-	_	-	-	,		,		
PRE command period	tRP	-	_	-	-					
ACT to ACT or REF command period	tRC	-	_	-	-					
CAS# to CAS# command delay	tCCD	4	_	4	-	4	-	4	-	nCK
Auto precharge write recovery + precharge time	tDAL(min)	WR + roundup(t RP / tCK(avg))	nCK							
Multi-Purpose Register Recovery Time	tMPRR	1	-	1	-	1	-	1	-	nCK
ACTIVE to PRECHARGE command period	tRAS	-	-	-	-					
ACTIVE to ACTIVE command period for 1KB page size	tRRD	max(4nCK ,10ns)	-	max(4nCK ,7.5ns)	-	max(4n CK,6ns)	-	max(4n CK,6ns)	-	
ACTIVE to ACTIVE command period for 2KB page size	tRRD	max(4nCK ,10ns)	-	max(4nCK ,10ns)	-	max(4n CK,7.5n s)	-	max(4n CK,7.5n s)	-	
Four activate window for 1KB page size	tFAW	40	-	37.5	-	30	-	30	-	ns
Four activate window for 2KB page size	tFAW	50	-	50	-	45	-	40	-	ns
Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels	tIS(base)AC175	200		125		65		45		ps
Command and Address setup time to CK, CK# referenced to Vih(ac) / Vil(ac) levels	tIS(base)AC150	350		275		190		170		ps
Command and Address hold time from CK, CK# referenced to Vih(dc) / Vil(dc) levels	tIH(base)DC100	275		200		140		120		ps
Control and Address Input pulse width for each input	tIPW	900	-	780	-	620	-	560	-	ps
Calibration '	Timing									

Calibration Timing

Power-up and				1 1		max(512		max(512		1
RESET calibration time	tZQinit	max(512n CK,640ns)	-	max(512n CK,640ns)	-	nCK,640 ns)	-	nCK,640 ns)	-	
Normal operation Full calibration time	tZQoper	max(256n CK,320ns)	-	max(256n CK,320ns)	-	max(256 nCK,320 ns)	-	max(256 nCK,320 ns)	-	
Normal operation Short calibration time	tZQCS	max(64nC K,80ns)	-	max(64nC K,80ns)	-	max(64n CK,80ns	-	max(64n CK,80ns	-	
Reset Timing	<u> </u>									
Exit Reset from CKE HIGH to a valid command	tXPR	max(5nCK ,tRFC(min)+10ns)	-	max(5nCK ,tRFC(min)+10ns)	-	max(5n CK,tRF C(min)+ 10ns)	-	max(5n CK,tRF C(min)+ 10ns)	-	
Self Refresh	Timings					10113)		10113)		
	8									
Exit Self Refresh to commands not requiring a locked DLL	tXS	max(5nCK , tRFC(min)	-	max(5nCK , tRFC(min)	-	max(5n CK, tRFC(mi n) +	-	max(5n CK, tRFC(mi n) +	-	
		+ 10ns)		+ 10ns)		10ns)		10ns)		
Exit Self Refresh to commands requiring a locked DLL	tXSDLL	tDLLK(mi	-	tDLLK(mi	-	tDLLK(min)	-	tDLLK(-	nCK
Minimum CKE low width for Self Refresh entry to exit timing	tCKESR	tCKE(min) + 1 nCK	-	tCKE(min) + 1 nCK	-	tCKE(mi n) + 1 nCK	-	tCKE(mi n) + 1 nCK	-	
Valid Clock Requirement after Self Refresh Entry (SRE) or Power- Down Entry (PDE)	tCKSRE	max(5nCK ,10ns)	-	max(5nCK ,10ns)	-	max(5n CK,10ns	-	max(5n CK,10ns	-	
Valid Clock Requirement before Self Refresh Exit (SRX) or Power- Down Exit (PDX) or Reset Exit	tCKSRX	max(5nCK ,10ns)	-	max(5nCK ,10ns)	-	max(5n CK,10ns)	-	max(5n CK,10ns	-	
Power Down	Timings									
Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	max(3nCK ,7.5ns)	-	max(3nCK ,7.5ns)	-	max(3n CK,6ns)	-	max(3n CK,6ns)	-	
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL	tXPDLL	max(10nC K,24ns)	-	max(10nC K,24ns)	-	max(10n CK,24ns	-	max(10n CK,24ns	-	

CKE minimum pulse width	tCKE	max(3nCK 7.5ns)	-	max(3nCK ,5.625ns)	-	max(3n CK,5.62 5ns)	-	max(3n CK,5ns)	-	
Command pass disable delay	tCPDED	1	-	1	-	1	-	1	-	nCK
Power Down Entry to Exit Timing	tPD	tCKE(min	9*tREFI	tCKE(min	9*tREFI	tCKE(mi n)	9*tREFI	tCKE(mi n)	9*tREFI	
Timing of ACT command to Power Down entry	tACTPDEN	1	-	1	-	1	-	1	-	nCK
Timing of PRE or PREA command to Power Down entry	tPRPDEN	1	-	1	-	1	-	1	-	nCK
Timing of RD/RDA command to Power Down entry	tRDPDEN	RL+4+1	-	RL+4+1	-	RL+4+1	-	RL+4+1	-	nCK
Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRPDEN	WL+4+(t WR/tCK(a vg))	-	WL+4+(t WR/tCK(a vg))	-	WL+4+(tWR/tC K(avg))	-	WL+4+(tWR/tC K(avg))	-	nCK
Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF)	tWRAPDEN	WL+4+W R+1	-	WL+4+W R+1	-	WL+4+ WR+1	-	WL+4+ WR+1	-	nCK
Timing of WR command to Power Down entry (BC4MRS)	tWRPDEN	WL+2+(t WR/tCK(a vg))	-	WL+2+(t WR/tCK(a vg))	-	WL+2+(tWR/tC K(avg))	-	WL+2+(tWR/tC K(avg))	-	nCK
Timing of WRA command to Power Down entry (BC4MRS)	tWRAPDEN	WL+2+W R+1	-	WL+2+W R+1	-	WL+2+ WR+1	-	WL+2+ WR+1	-	nCK
Timing of REF command to Power Down entry	tREFPDEN	1	-	1	-	1	-	1	-	nCK
Timing of MRS command to Power Down entry	tMRSPDEN	tMOD(mi	-	tMOD(mi n)	-	tMOD(min)	-	tMOD(min)	-	
ODT Timing	[S									
ODT turn on Latency	ODTLon			W	L-2=CWL	+AL-2				nCK
ODT turn off Latency	ODTLoff			W	L-2=CWL	+AL-2				nCK
ODT high time without write command or with write command and BC4	ODTH4	4	-	4	-	4	-	4	-	nCK
ODT high time with Write command and BL8	ODTH8	6	-	6	-	6	-	6	-	nCK

Asynchronous RTT turn-on delay (Power- Down with DLL frozen)	tAONPD	2	8.5	2	8.5	2	8.5	2	8.5	ns
Asynchronous RTT turn-off delay (Power- Down with DLL frozen)	tAOFPD	2	8.5	2	8.5	2	8.5	2	8.5	ns
RTT turn-on	tAON	-400	400	-300	300	-250	250	-225	225	ps
RTT_Nom and RTT_WR turn- off time from ODTLoff reference	tAOF	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	tCK(avg)
RTT dynamic change skew	tADC	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	tCK(avg)
Write Leveli	ng Timings									
First DQS/DQS# rising edge after write leveling mode is programmed	tWLMRD	40	-	40	-	40	-	40	-	nCK
DQS/DQS# delay after write leveling mode is programmed	tWLDQSEN	25	-	25	-	25	-	25	-	nCK
Write leveling setup time from rising CK, CK# crossing to rising DQS, DQS# crossing	tWLS	325	-	245	-	195	-	165	-	ps
Write leveling hold time from rising DQS, DQS# crossing to rising CK, CK# crossing	tWLH	325	-	245	-	195	-	165	-	ps
Write leveling output delay	tWLO	0	9	0	9	0	9	0	7.5	ns
Write leveling output error	tWLOE	0	2	0	2	0	2	0	2	ns

5.4 RGMII 接口特性

RGMII 共两个接口,均由一个供电电源(VDD_3V3)供电,支持 3.3V 工作电压。

5.4.1 RGMII 接口直流特性

表 5- 27 RGMII 接口输出特性

参数	描述	典型	单位
Ioh	输出高电平(VDDE-0.4V)时电流输出	12	mA

Iol 新	俞出低电平(0.4V)时电流输入	12	mA	
-------	------------------	----	----	--

表 5- 28 RGMII 接口输入特性

参数	描述		最小	最大	单位
Vih	输入高电平电压	3.3V 供电	2.0	3.6	V
Vil	输入低电平电压	3.3V 供电	-0.3	0.8	V

5.4.2 **RGMII** 接口时序

图 5.14 RGMII 接口时序

表 5- 29 RGMII 接口时序

参数	描述	最小	典型	最大	单位
Tsu	RX 信号建立时间	1	-	-	ns
Th	RX 信号保持时间	1	-	-	ns
Tskew	TXCK 相对 TX 数据的偏移	-500	-	+500	ps
Tr	TXD/TXCK 上升时间(10pf 负载)			1.2	ns
Tf	TXD/TXCK 下降时间(10pf 负载)			1.3	ns

5.5 USB 接口特性

下述表格源自 USB 2.0 规范, 更多信息请参考其中第7章。

表 5- 30 USB 直流电气特性

Parameter	Symbol	Conditions	Min.	Max.	Units
	Symbol	Conditions	WIII.	Max.	Units
InputLevelsforLow-/full-speed:	X7111				3.7
High(driven)	VIH		2	2.6	V
High(floating)	VIHZ		2.7	3.6	V
Low	VIL			0.8	V
Differential Input Sensitivity	VDI	(D+)-(D-)	0.2		V
Differential Common Mode Range	VCM	Includes VDI range	0.8	2.5	V
Input Levels for High-speed:	1	1	1		
High-speed squelch detection threshold (differential signal amplitude)	VHSSQ		100	150	mV
High speed disconnect detection threshold (differential signal amplitude)	VHSDSC		525	625	mV
High-speed differential input signaling levels	,				
High-speed data signaling common mode voltage range(guide line for receiver)	VHSCM		-50	500	mV
Output Levels for Low-/full-speed:				•	
Low	VOL		0	0.3	V
High(Driven)	VOH		2.8	3.6	V
SE1	VOSE1		0.8		V
Output Signal Crossover Voltage	VCRS		1.3	2	V
Output Levels for High-speed:		1			
High-speed idle level	VHSOI		-10	10	mV
High-speed data signaling high	VHSOH		360	440	mV
High-speed data signaling low	VHSOL		-10	10	mV
Chirp J level(differential voltage)	VCHIRPJ		700	1100	mV
Chirp K level(differential voltage)	VCHIRPK		-900	-500	mV
Decoupling Capacitance:	ı	1	1	<u>I</u>	<u> </u>
Downstream Facing Port Bypass Capacitance (perhub)	СНРВ	VBUS to GND	120		μF
Upstream Facing Port Bypass Capacitance	CRPB	VBUS to GND	1	10	μF
Input Capacitance for Low-/full-spe	ed:	I	1	I .	1
Downstream Facing Port	CIND			150	pF
Upstream Facing Port(w/ocable)	CINUB			100	pF

Transceiver edge rate control capacitance	CEDGE			75	pF
InputImpedanceforHigh-speed:					
TDRspecforhigh-speedtermination					
Terminations:					
Bus Pull-up Resistoron Upstream Facing Port	RPU	1.5k Ω ±5%	1.425	1.575	kΩ
Bus Pull-down Resistoron Downstream Facing Port	RPD	15k Ω ±5%	14.25	15.75	kΩ
Input impedance exclusive of pullup/pulldown(forlow-/full-speed)	ZINP		300		kΩ
Termination voltage for upstream facing port pullup(RPU)	VTERM		3	3.6	V
Terminations in High-speed:					
Termination voltage in high-speed	VHSTERM		-10	10	mV

表 5- 31 USB 高速源电气特性

Parameter	Symbol	Conditions	Min.	Max.	Units
Driver Characteristics:					
Rise Time(10%-90%)	THSR		500		ps
Fall Time(10%-90%)	THSF		500		ps
Driver waveform requirements	1				
Driver Output Resistance(which also serves as high-speed termination)	ZHSDRV		40.5	49.5	Ω
Clock Timings:					
High-speed Data Rate	THSDRAT		479.76	480.24	Mb/s
Micro frame Interval	THSFRAM		124.9375	125.0625	μs
Consecutive Micro frame Interval Difference	THSRFI			4 high-speed bit times	
High-speed Data Timings:					
Data source jitter		Source and recei	ver jitter spec	ified by the eye pa	attern
Receiver jitter tolerance		templatesin Secti		, , ,	

表 5- 32 USB 全速源电气特性

Parameter	Symbol	Conditions	Min.	Max.	Units
Driver Characteristics:				_	
Rise Time	TFR		4	20	ns
Fall Time	TFF		4	20	ns
Differential Rise and Fall Time Matching	TFRFM	(TFR/TFF)	90	111.11	%
Driver Output Resistance for driver which is not high-speed capable	ZDRV		28	44	Ω
Clock Timings:			•		

		1 1		1		
Full-speed Data Rate for hubs and devices which are high-speed capable		TFDRATHS	Average bit rate	11.994	12.006	Mb/s
Full-speed Data Rat which are not high-		TFDRATE	Average bit rate	11.97	12.03	Mb/s
Frame Interval		TFRAME		0.9995	1.0005	ms
Consecutive Frame	Interval Jitter	TRFI	No clock adjustment		42	ns
Full-speed Data Ti	mings:					
Source Jitter Total(including	To Next Transition	TDJ1		-3.5	3.5	ns
frequency tolerance):	For Paired Transitions	TDJ2		-4	4	ns
Source Jitter for Dit Transition to SE0 T		TFDEOP		-2	5	ns
Receiver Jitter:	To Next Transition	TJR1		-18.5	18.5	ns
Receiver Jiller:	For Paired Transitions	TJR2		-9	9	ns
Source SE0 interval of EOP		TFEOPT		160	175	ns
Receiver SE0 interval of EOP		TFEOPR		82		ns
Width of SE0 interv differential transitio	_	TFST			14	ns

表 5- 33 USB 低速源电气特性

Paran	Symbol	Min.	Max.	Units			
Driver Characteristics:							
Transition Time:	Rise Time	TLR	75	300	ns		
Transition Time.	Fall Time	TLF	75	300	ns		
Rise and Fall Time Matching		TLRFM	80	125	%		
Upstream Facing Port(w/cable, 1	ow-speed only)	CLINUA	200	450	pF		
Clock Timings:							
Low-speed Data Rate for hubs v	which are high-speed capable	TLDRATHS	1.49925	1.50075	Mb/s		
Low-speed Data Rate for device capable	s which are not high-speed	TLDRATE	1.4775	1.5225	Mb/s		
Low-speed Data Timings:	Low-speed Data Timings:						
Upstream facing port source Jitter Total(including frequency	To Next Transition	TUDJ1	-95	95	ns		
tolerance):	For Paired Transitions	TUDJ2	-150	150	ns		
Upstream facing port source Jitt SE0 Transition	er for Differential Transition to	TLDEOP	-40	100	ns		
Upstream facing port differential Receiver Jitter:	To Next Transition	TDJR1	-75	75	ns		
differential Receiver Jitter:	For Paired Transitions	TDJR2	-45	45	ns		
Downstream facing port source Jitter Total(including frequency	To Next Transition	TDDJ1	-25	25	ns		
tolerance):	For Paired Transitions	TDDJ2	-14	14	ns		
Downstream facing port source Transition to SE0 Transition				ns			
Downstream facing port	To Next Transition	TUJR1	-152	152	ns		
Differential Receiver Jitter:	For Paired Transitions	TUJR2	-200	200	ns		

Source SE0 interval of EOP	TLEOPT	1.25	1.5	μs
Receiver SE0 interval of EOP	TLEOPR	670		ns
Width of SE0 interval during differential transition	TLST		210	ns

5.6 SPI Flash 接口特性

表 5- 34 SPI Flash 接口时序

77							
参数	描述	最小	典型	最大	单位		
T_ckh	SCK 时钟高电平时间	0.5T-1	-	-	ns		
T_ckl	SCK 时钟低电平时间	0.5T-1	-	-	ns		
T_val	SCK 下降沿到数据输出的延迟	-5	-	5	ns		
T_su	数据输入建立时间	20	-	-	ns		
T_h	数据输入保持时间	0	-	-	ns		

注: T为SCK 时钟周期

5.7 I2C 接口特性

表 5- 35 I2C 接口时序

参数	描述	最小	典型	最大	单位	
T_ckh	SCL 时钟高电平时间	4	-	-	us	
T_ckl	ckl SCL 时钟低电平时间		-	-	us	
T_val	SCL 下降沿到数据输出的延迟		-	-	us	
T_su	数据建立时间(SDA 变化到 SCL 上升)	0	-	-	us	
T_h	数据保持时间(SCL 下降到 SDA 变化)	0	-	-	us	

6 热特性

6.1 热参数

表 6- 1 热特性参数和推荐的最大值

Parameter	Value
TDP Max Power	5 Watts
Rth(J-C)	6 °C/W
Tj	125 °C

6.2 焊接温度

表 6- 2 回流焊接温度分类表

Pr	Profile Feature		
Average ramp	3°C/second max.		
	Temperature Min (Tsmin)	150 °C	
Preheat	Temperature Max (Tsmax)	200 °C	
	Time (Tsmin to Tsmax) (ts)	60-180 seconds	
Time maintained above	Temperature (TL)	217 °C	
Time mamamed above	Time (tL)	60-150 seconds	
Peak T	Cemperature (Tp)	245°C	
Time within 5°C of actual Peak Temperature (tp)2		20-40 seconds	
Ramp-down Rate		6 °C/second max.	
Time 25°C	to Peak Temperature	8 minutes max.	

图 6.1 焊接回流曲线

7 芯片引脚排列和封装

7.1 引脚顶层排列

图 7.1 顶层引脚排布总览

表 7- 1 顶层引脚排列

	1	2	3	4	5
A		VSS	DDR_DQ03	DDR_DQSP0	DDR_DQM0
В	VSS	DDR_DQ07	DDR_DQ05	DDR_DQSN0	DDR_DQ02
C	SCA_AFED07	DDR_DQ04	DDR_DQ06	VSS	SCA_UART_RX
D	SCA_AFED06	SCA_AFED03	SCA_SPI_CLK	SCA_SPI_MOSI	SCA_UART_TX
E	VSS	SCA_AFED04	VSS	SCA_SPI_CSN	<dummy_net></dummy_net>
F	SCA_AFECLK	SCA_AFED00	SCA_AFED02	SCA_AFED05	SCA_SPI_MISO
G	SCA_PM1IO08	SCA_PM1IO11	SCA_AFED01	SCA_PM1IO13	VSS
Н	SCA_PM1IO10	SCA_PM1IO09	SCA_PM1IO14	SCA_PM1IO15	SCA_PM1IO12
J	SCA_PM1IO06	SCA_PM1IO05	SCA_PM1IO07	SCA_PM1IO04	VSS
K	SYS_DOTESTN	SCA_PM1IO00	SCA_PM1IO02	SCA_PM1IO01	SCA_PM1IO03
L	RTC_XO	RTC_XI	VSS	DCHOUT2	DCHOUT3
M	DCHOUT0	DCHOUT1	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>
N	VSS	<dummy_net></dummy_net>	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS
P	<dummy_net></dummy_net>	<dummy_net></dummy_net>	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS
R	<dummy_net></dummy_net>	<dummy_net></dummy_net>	<dummy_net></dummy_net>	PRT_PM0IO24	PRT_PM0IO18
T	VSS	<dummy_net></dummy_net>	PRT_PM0IO15	PRT_PM0IO21	VSS
U	<dummy_net></dummy_net>	<dummy_net></dummy_net>	PRT_PM0IO31	PRT_PM0IO23	PRT_PM0IO12
V	PRT_PM0IO29	PRT_PM0IO30	PRT_PM0IO25	PRT_PM0IO20	PRT_PM0IO10
W	VSS	PRT_PM0IO28	VSS	PRT_PM0IO19	VSS
Y	PRT_PM0IO26	PRT_PM0IO27	PRT_PM0IO16	PRT_PM0IO09	PRT_PM0IO04
AA	PRT_PM0IO22	PRT_PM0IO17	PRT_PM0IO13	PRT_PM0IO05	PRT_PM0IO07
AB	VSS	PRT_PM0IO14	PRT_PM0IO08	PRT_PM0IO06	PRT_VIDOUT13
AC	VSS	VSS	PRT_PM0IO11	VSS	PRT_VIDOUT12

	6	7	8	9	10
A	DDR_DQ00	DDR_DQ15	VSS	DDR_DQSN1	DDR_DQ11
В	DDR_DQ01	DDR_DQ12	DDR_DQ13	DDR_DQSP1	DDR_DQ10
С	VSS	DDR_DQ14	SCA_CISCLK1	<dummy_net></dummy_net>	DDR_A14
D	VSS	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>	SCA_CISPWM
E	VSS	SCA_CISCLK0	SCA_CISCLK2	<dummy_net></dummy_net>	SCA_CISPLS
F	VSS	VSS	VDDIO_DDR	VDDIO_DDR	VDDIO_DDR
G	SCA_AFEPLS	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>
Н	VSS	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>	VSS
J	<dummy_net></dummy_net>	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	VDD_CORE
K	VDD_OSC_RTC	VDD_CORE_RTC	VSS	VDD_CORE	VSS
L	VSS_RTC	<dummy_net></dummy_net>	VDD_3V3_DAC	VSS	VDD_CORE
M	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS_DAC	VDD_CORE	VSS
N	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	VSS	VDD_CORE
P	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	VDD_CORE	VSS
R	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>	VSS	VDD_CORE
T	VSS_LVDS	VDD_3V3_LVDS	VSS	VDD_3V3	VSS
U	<dummy_net></dummy_net>	<dummy_net></dummy_net>	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS
V	PRT_PM0IO01	PRT_PM0IO03	<dummy_net></dummy_net>	SYSRESETN	<dummy_net></dummy_net>
W	PRT_PM0IO02	VSS	VSS	PRT_UART_RX	PRT_I2C0_SCL
Y	PRT_PM0IO00	PRT_I2C1_SDA	PRT_I2C1_SCL	PRT_UART_TX	PRT_SPI_MISO
AA	VSS	PLTRSTN	VSS	VSS	PRT_SPI_CSN
AB	PRT_VIDOUT15	PRT_VIDOUT09	PRT_VIDOUT05	PRT_VIDOUT01	PRT_VIDOUT11
AC	PRT_VIDOUT14	PRT_VIDOUT08	PRT_VIDOUT04	PRT_VIDOUT00	PRT_VIDOUT10

	11	12	13	14	15
A	DDR_DQ09	DDR_DQM1	DDR_BA2	DDR_A06	DDR_A08
В	DDR_DQ08	DDR_RESETN	DDR_A09	VSS	DDR_A02
С	VSS	DDR_CKE0	DDR_A07	DDR_A05	<dummy_net></dummy_net>
D	DDR_A12	<dummy_net></dummy_net>	DDR_A04	VSS	<dummy_net></dummy_net>
E	DDR_A15	<dummy_net></dummy_net>	DDR_A11	DDR_A01	<dummy_net></dummy_net>
F	VDDIO_DDR	VDDIO_DDR	VDDIO_DDR	VDDIO_DDR	VDDIO_DDR
G	VSS	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>	VSS
Н	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>
J	VSS	VDD_CORE	VSS	VDD_CORE	VSS
K	VDD_CORE	VSS	VDD_CORE	VSS	VDD_CORE
L	VSS	VDD_CORE	VSS	VDD_CORE	VSS
M	VDD_CORE	VSS	VDD_CORE	VSS	VDD_CORE
N	VSS	VDD_CORE	VSS	VDD_CORE	VSS
P	VDD_CORE	VSS	VDD_CORE	VSS	VDD_CORE
R	VSS	VDD_CORE	VSS	VDD_CORE	VSS
T	VDD_3V3	VSS	VDD_3V3	VSS	VDD_3V3
U	VSS	<dummy_net></dummy_net>	VDD_3V3_USB	VDD_3V3_USB	USB_XO1
V	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>	VSS	USB_XI1
W	PRT_I2C0_SDA	GMAC0_RX_CLK	GMAC0_TCTL	<dummy_net></dummy_net>	OTG_OC
Y	PRT_SPI_MOSI	GMAC0_RXD1	GMAC0_MDIO	GMAC0_TXD3	VSS
AA	PRT_SPI_CLK	GMAC0_RXD0	GMAC0_RXD2	GMAC0_TXD1	OTG_VBUS
AB	PRT_VIDOUT07	PRT_VIDOUT03	SYSCLK	GMAC0_RXD3	GMAC0_TXD2
AC	PRT_VIDOUT06	PRT_VIDOUT02	GMAC0_RCTL	VSS	GMAC0_TXD0

	16	17	18	19
A	VSS	DDR_BA1	DDR_CKP0	DDR_REXT
В	DDR_A03	DDR_BA0	DDR_CKN0	DDR_CASN
С	DDR_A00	DDR_RASN	<dummy_net></dummy_net>	VSS
D	DDR_A10	DDR_SCSN0	<dummy_net></dummy_net>	DDR_A13
E	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>	DDR_ODT0
F	VDDIO_DDR	VSS	<dummy_net></dummy_net>	DDR_VREF
G	NC_DDR_SCSN1	NC_DDR_ODT1	VSS	<dummy_net></dummy_net>
Н	VSS	<dummy_net></dummy_net>	VSS	<dummy_net></dummy_net>
J	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	SDIO1_DATA1
K	VSS	<dummy_net></dummy_net>	VSS	SDIO1_DATA0
L	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	VSS
M	VSS	<dummy_net></dummy_net>	SDIO0_CMD	SDIO0_DATA0
N	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	VSS
P	VSS	VSS	VSS	UART0_RXD
R	<dummy_net></dummy_net>	<dummy_net></dummy_net>	VSS	UART0_TXD
T	VSS	VSS	VSS	UART1_TXD
U	VDD_3V3_THSEN	VSS	VSS	VSS
V	USB_XI0	USB_XO0	VSS	PM2IO14
W	OTG_XO	GMAC1_TX_CLK_I	VSS_NODE_PLL	GMAC1_RX_CLK
Y	OTG_XI	VDD_NODE_PLL	VDD_DDR_PLL	VSS_DDR_PLL
AA	USB_TXRTUNE0	VDD_1V1_USB	USB_TXRTUNE1	VDD_SOC_PLL
AB	GMAC0_TX_CLK_O	GMAC0_TX_CLK_I	OTG_DP	OTG_TXRTUNE
AC	GMAC0_MDCK	VSS	OTG_DM	OTG_ID

	20	21	22	23
A	DDR_DQ16	DDR_DQSP2	VSS	VSS
В	DDR_DQM2	DDR_DQSN2	DDR_DQ19	VSS
С	DDR_WEN	DDR_DQ17	DDR_DQ21	DDR_DQ23
D	<dummy_net></dummy_net>	DDR_DQ18	DDR_DQ20	DDR_DQ22
E	<dummy_net></dummy_net>	VSS	DDR_DQ24	VSS
F	<dummy_net></dummy_net>	DDR_DQM3	DDR_DQ25	DDR_DQ26
G	<dummy_net></dummy_net>	VSS	DDR_DQ27	VSS
Н	SDIO1_CLK	<dummy_net></dummy_net>	DDR_DQSP3	DDR_DQSN3
J	SDIO1_CMD	<dummy_net></dummy_net>	DDR_DQ29	DDR_DQ31
K	VSS	SDIO1_DATA2	DDR_DQ30	DDR_DQ28
L	SDIO1_DATA3	SDIO0_DATA1	SDIO0_DATA3	SYS_TESTCLK
M	SDIO0_DATA2	JTAG_TCK	JTAG_TMS	JTAG_TDO
N	SDIO0_CLK	JTAG_TRST	JTAG_TDI	JTAG_SEL
P	I2C0_SDA	I2C0_SCL	I2C1_SCL	I2C1_SDA
R	UART1_RXD	SPI1_CSN	SPI1_MISO	SPI1_CLK
T	PM2IO00	PM2IO01	SPI0_MOSI	SPI1_MOSI
U	PM2IO03	PM2IO02	SPI0_CSN	SPI0_MISO
V	PM2IO04	PM2IO15	USB0_OC	SPIO_CLK
W	PM2IO09	PM2IO06	PM2IO11	USB1_OC
Y	GMAC1_TX_CLK_O	PM2IO08	VSS	PM2IO05
AA	VSS_SOC_PLL	PM2IO13	PM2IO10	PM2IO12
AB	USB0_DP	USB1_DP	PM2IO07	VSS
AC	USB0_DM	USB1_DM	VSS	VSS

7.2 封装尺寸

图 7.2 封装外形图

表 7- 2 封装外形尺寸

单位为毫米

尺寸符号	最小	公称	最大
A	1.06	_	1. 26
A1	0. 26	_	0.36
A2	0. 78	_	0.92
D/E	16.90		17. 10
D1/E1	_	15. 646	-
b	0.35	-	0.45
е	_	0.71	_
f	_	0.68	_
ddd	_	-	0. 15

NOTE:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. ALL DIMENSIONS AND TOLERANCE CONFORM TO ASME Y14.5M-2009.
- 3. TERMINAL POSMONS DESIGNATION PER JESD 95.
- 4. REFLOW BALL DIAMETER.
- 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER PARALLEL TO PRIMARY DATUM C.
- 6. RAW SOLDER BALL SIZE DURING ASSEMBLY IS ϕ 0. 50MM.

8 不使用引脚的处理

不使用的引脚需按以下原则处理:

表 8- 1 不使用引脚推荐处理表

信号组	不使用的处理方式		
JTAG	JTAG_TRST/TDI 需 10Kohm 下拉,其它信号可悬空		
时钟配置	必须正确连接		
	电源地不可悬空		
电源地	USB不使用时,相关电源可接地		
	其它电源地必须正确连接		
其他不使用引脚	输出信号均可悬空,输入信号必须通过 10Kohm电阻接地		
NC引脚	必须悬空处理		

9 产品标识

产品标识如图 9-1 所示。

图 9.1 产品标识图

每一产品应标志以下内容:

- a) ●: 定位点;
- b) A:器件状态标识:空白:供货产品;
- c) LS2P0500: 器件型号 "LS2P0500"; B: 器件等级: -i 或空白;
- d) CHN YYWW VV: 厂商信息一;
- e) HTAAAAAAANNNN: 厂商信息二、识别号;
- f) LOONGSON®: 厂商信息三;
- g) 二维码(右上角): 与d)信息相同。