Guest Lecture: David Inouye

Instructors: Pradeep Ravikumar, Ziv Bar-Joseph

Machine Learning 10-701

Some Slides Courtesy Barnabas Poczos, Karl Booksh Research group, Tom Mitchell, Ron Parr

Overview

I. Data visualization as motivating example

II. PCA definition and properties

- 1. Minimize reconstruction error
- 2. Maximize variance of projection

III. PCA algorithms

- 1. Sequential
- 2. Covariance decomposition
- 3. Data matrix decomposition via SVD
- 4. Clever reduced decomposition (eigenfaces)

IV. PCA applications

- 1. Noise reduction / invariance (eigenfaces)
- 2. Data compression (image compression)

V. PCA shortcomings and conclusion

- 1. Ignores labels (i.e. unsupervised)
- 2. Only captures linear variation

Example:

53 blood measurements (features) from
 65 people

How can we visualize the measurements?

Matrix format (65x53)

	(ſ)	
		1	j	
	(_	Ć	
	(
	(Ţ	Ž	
	ļ	-	ָ	
	١	_	2	
	2		_	
۲	-	-	4	

	H-WBC	H-RBC	H-Hgb	H-Hct	H-MCV	H-MCH	H-MCHC
A1	8.0000	4.8200	14.1000	41.0000	85.0000	29.0000	34.0000
A2	7.3000	5.0200	14.7000	43.0000	86.0000	29.0000	34.0000
A3	4.3000	4.4800	14.1000	41.0000	91.0000	32.0000	35.0000
A4	7.5000	4.4700	14.9000	45.0000	101.0000	33.0000	33.0000
A5	7.3000	5.5200	15.4000	46.0000	84.0000	28.0000	33.0000
A6	6.9000	4.8600	16.0000	47.0000	97.0000	33.0000	34.0000
A7	7.8000	4.6800	14.7000	43.0000	92.0000	31.0000	34.0000
A8	8.6000	4.8200	15.8000	42.0000	88.0000	33.0000	37.0000
A9	5.1000	4.7100	14.0000	43.0000	92.0000	30.0000	32.0000
		·	·	·	·	·	

Features

Difficult to see the correlations between the features...

Curves (65 curves, one for each person)

Difficult to compare the different patients...

Curves (53 pictures, one for each feature)

Difficult to see the correlations between the features...

Tri-variate

How can we visualize the other variables???

... difficult to see in 4 or higher dimensional spaces...

- Is there a representation better than the coordinate axes?
- Is it really necessary to show all the 53 dimensions?
 - ... what if there are strong correlations between the features?
- How could we find the *smallest* subspace of the 53-D space that keeps the *most information* about the original data?
- A solution: Principal Component Analysis

Overview

- I. Data visualization as motivating example
- II. PCA definition and properties
 - 1. Minimize reconstruction error
 - 2. Maximize variance of projection

III. PCA algorithms

- 1. Sequential
- 2. Covariance decomposition
- 3. Data matrix decomposition via SVD
- 4. Clever reduced decomposition (eigenfaces)

IV. PCA applications

- 1. Noise reduction / invariance (eigenfaces)
- 2. Data compression (image compression)

V. PCA shortcomings and conclusion

- 1. Ignores labels (i.e. unsupervised)
- 2. Only captures linear variation

PCA:

- Orthogonal projection of the data onto a lower-dimension linear space that <u>equivalently</u>...
 - 1. minimizes the mean squared distance between
 - data points (red points) and projections (green points)
 - i.e. sum of squares of blue line lengths
 - 2. maximizes variance of projected data (green points)

Idea:

- ☐ Given data points in a N-dimensional space, project them into a lower dimensional space while preserving as much information as possible.
 - Find best planar approximation of 3D data
 - Find best 12-D approximation of 10,000-D data
- ☐ In particular, choose <u>linear</u> projection that minimizes <u>squared error</u> in reconstructing the original data.

Properties:

- **PCA vectors** originate from the center of mass.
- □ Principal component #1: points in the direction of the **largest variance**.
- ☐ Each subsequent principal component
 - is orthogonal to the previous ones, and
 - points in the directions of the largest variance of the residual subspace

2D Gaussian dataset

1st PCA axis

2nd PCA axis

Overview

I. Data visualization as motivating example

II. PCA definition and properties

- 1. Minimize reconstruction error
- 2. Maximize variance of projection

III. PCA algorithms

- 1. Sequential
- 2. Covariance decomposition
- 3. Data matrix decomposition via SVD
- 4. Clever reduced decomposition (eigenfaces)

IV. PCA applications

- 1. Noise reduction / invariance (eigenfaces)
- 2. Data compression (image compression)

V. PCA shortcomings and conclusion

- 1. Ignores labels (i.e. unsupervised)
- 2. Only captures linear variation

PCA algorithm I (sequential)

Given the <u>centered</u> data $\{x_1, ..., x_m\}$, compute the principal vectors:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^m \{(\mathbf{w}^T \mathbf{x}_i)^2\} \qquad \mathbf{1}^{\mathsf{st}} \; \mathsf{PCA} \; \mathsf{vector}$$

To find $\mathbf{w_1}$, maximize the variance of projection of \mathbf{x}

PCA algorithm I (sequential)

Given the **centered** data $\{x_1, ..., x_m\}$, compute the principal vectors:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^m \{(\mathbf{w}^T \mathbf{x}_i)^2\} \qquad 1^{\text{st}} \text{ PCA vector}$$

To find $\mathbf{w_1}$, maximize the variance of projection of \mathbf{x}

$$\mathbf{w}_{2} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \mathbf{w}_{1} \mathbf{w}_{1}^{T} \mathbf{x}_{i})]^{2} \}$$
 2nd PCA vector
$$\mathbf{x'} \text{ projection onto w}_{1}$$

To find w₂, we maximize the variance of the projection in the residual subspace

PCA algorithm I (sequential)

Given $\mathbf{w_1}, \dots, \mathbf{w_{k-1}}$, we calculate $\mathbf{w_k}$ principal vector as before:

Maximize the variance of projection of \mathbf{x}

$$\mathbf{w}_{k} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \sum_{j=1}^{k-1} \mathbf{w}_{j} \mathbf{w}_{j}^{T} \mathbf{x}_{i})]^{2} \}$$

kth PCA vector

x' projection onto previous directions

PCA algorithm II (sample covariance matrix)

• Given data $\{x_1, ..., x_m\}$, compute covariance matrix Σ

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \quad \text{where} \quad \overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$$

$$\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}$$

• **PCA** basis vectors = the eigenvectors of Σ

Larger eigenvalue ⇒ more important eigenvectors

PCA algorithm II (sample covariance matrix)

PCA algorithm(\mathbf{X} , \mathbf{k}): top \mathbf{k} eigenvalues/eigenvectors

%
$$\underline{X}$$
 = N × m data matrix, N is number of features
% ... each data point \mathbf{x}_i = column vector, i=1..m

- $\underline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}$
- $X \leftarrow$ subtract mean \underline{x} from each column vector \mathbf{x}_i in \underline{X}
- $\Sigma \leftarrow XX^T$... covariance matrix of X
- $\{\lambda_i, \mathbf{u}_i\}_{i=1..N}$ = eigenvectors/eigenvalues of Σ where $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N$
- Return { λ_i, u_i }_{i=1..k}
 % top k PCA components

PCA algorithm III (SVD of the data matrix)

Singular Value Decomposition of the **centered** data matrix **X**.

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \in \mathbb{R}^{N \times m}$$
,

samples

m: number of instances,

N: dimension

$$\mathbf{X}_{\text{features} \times \text{samples}} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$$

PCA algorithm III

Columns of U

- The principal vectors, { $\mathbf{u}^{(1)}$, ..., $\mathbf{u}^{(k)}$ }
- Orthogonal and has unit norm so $U^TU = I$
- Can reconstruct the data using linear combinations of { u⁽¹⁾, ..., u^(k) }

Matrix S of singular values

- Diagonal
- Shows importance of each singular vectors

Columns of V^T

The coefficients for reconstructing the samples

Overview

- I. Data visualization as motivating example
- II. PCA definition and properties
 - 1. Minimize reconstruction error
 - 2. Maximize variance of projection

III. PCA algorithms

- 1. Sequential
- 2. Covariance decomposition
- 3. Data matrix decomposition via SVD
- 4. Clever reduced decomposition (eigenfaces)

IV. PCA applications

- 1. Noise reduction / invariance (eigenfaces)
- 2. Data compression (image compression)

V. PCA shortcomings and conclusion

- 1. Ignores labels (i.e. unsupervised)
- 2. Only captures linear variation

Motivation: PCA Applications

1. Data visualization (blood example)

2. Noise reduction (eigenfaces)

3. Data compression (image example)

Face Recognition

- ☐ Want to identify specific person, based on facial image
- ☐ Robust to glasses, lighting, facial expression,...
 - → Can't just use the given 256 x 256 pixels

Applying PCA: Eigenfaces

Method: Use PCA on the *whole dataset* to get "principal component" images ("eigenfaces") (U of SVD),

Then classify based on projection weights onto these principal component images (i.e. blue, V^T of SVD)

Applying PCA: Eigenfaces

- ☐ Example data set: Images of faces
 - Eigenface approach
 [Turk & Pentland], [Sirovich & Kirby]
- □ Each face x is ...
 - 256 × 256 values (luminance at location)
 - \mathbf{x} in $\Re^{256 \times 256}$ (view as 64K dim vector)
- □ Form $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_m]$ centered data matrix
- \Box Compute $\Sigma = XX^{T}$
- □ Problem: Σ is 64K × 64K ... HUGE!!! (34 GB in memory)

Computational Complexity

- □ Suppose m instances, each of size N
 - Eigenfaces: m=500 faces, each of size N=64K
- \square Given $\mathbb{N} \times \mathbb{N}$ covariance matrix Σ , can compute
 - all N eigenvectors/eigenvalues in O(N³)
 - first k eigenvectors/eigenvalues in O(k N²)
- \square But if N=64K, EXPENSIVE!

A Clever Workaround

- Note that m<<64K
- Use L=X^TX instead of Σ=XX^T
- If v is eigenvector of L
 then Xv is eigenvector of Σ
- $O(Nm^2) + O(km^2)$
- 64M vs 42,000M operations

Principal Components

Reconstructing...

□ Reconstructing only using the top principal components enables a facial representation without finer details ("noise" in this context) such as lighting, glasses and facial expression.

Shortcomings

- ☐ Requires carefully controlled data:
 - All faces centered in frame
 - Same size
 - Some sensitivity to angle
- ☐ Method is completely knowledge free
 - (sometimes this is good!)
 - Doesn't know that faces are wrapped around 3D objects (heads)
 - Makes no effort to preserve class distinctions

Image Compression

- ☐ Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- □ Consider each as a 144-D vector

L₂ Reconstruction Error

Most information is in the first PCA vectors...

60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...

2D Discrete Cosine Basis

PCA compression: 144D → 60D

16 most important eigenvectors

PCA compression: 144D → 16D

6 most important eigenvectors

PCA compression: 144D → 6D

3 most important eigenvectors

PCA compression: 144D → 3D

PCA compression: 144D → 1D

Overview

- I. Data visualization as motivating example
- II. PCA definition and properties
 - 1. Minimize reconstruction error
 - 2. Maximize variance of projection

III. PCA algorithms

- 1. Sequential
- 2. Covariance decomposition
- 3. Data matrix decomposition via SVD
- 4. Clever reduced decomposition (eigenfaces)

IV. PCA applications

- 1. Noise reduction / invariance (eigenfaces)
- 2. Data compression (image compression)

V. PCA shortcomings and conclusion

- 1. Ignores labels (i.e. unsupervised)
- 2. Only captures linear variation

Problematic Data Set for PCA

PCA with Classes

- PCA maximizes variance, independent of class
 - ⇒ magenta

- If we would want to separate classes
 - ⇒ green line

Problematic Data Set for PCA

PCA cannot capture NON-LINEAR structure!

PCA Conclusions

- □ PCA
 - Finds orthonormal basis for data
 - Sorts dimensions in order of "importance"
 - Usually discard unimportant dimensions
- ☐ Applications:
 - Visualization
 - Data compression / compact representation
 - Remove noise to improve classification (hopefully)
- ☐ Not magic:
 - Doesn't know class labels
 - Can only capture linear variations
- ☐ One of many tricks to **reduce dimensionality**!

Performing PCA in the feature space

Let $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \in \mathbb{R}^{N \times m}$, m: number of instances, N: dimension

Lemma

 $| \ \mathbf{u} |$ is eigenvector of $\Sigma \Rightarrow \mathbf{u}$ is a linear combinaton of the samples

Proof:

$$\lambda \mathbf{u} = \Sigma \mathbf{u} = \left(\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i \mathbf{x}_i^T\right) \mathbf{u} = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i^T \mathbf{u}) \mathbf{x}_i$$

$$\Rightarrow \mathbf{u} = \sum_{i=1}^{m} \frac{(\mathbf{x}_i^T \mathbf{u})}{\underbrace{\lambda m}} \mathbf{x}_i = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i$$

$$\mathbf{u} = \sum_{i=1}^{m} \frac{(\mathbf{x}_i^T \mathbf{u})}{\underbrace{\lambda m}} \mathbf{x}_i = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i \quad \mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \in \mathbb{R}^{N \times m},$$

Lemma

To calculate $\alpha \in \mathbb{R}^m$

- just use inner products (Gram matrix): $K_{ij} = \mathbf{x}_i^T \mathbf{x}_j$
- ullet don't need the actual values of \mathbf{x}_i

Proof

$$\Sigma \mathbf{u} = \lambda \mathbf{u}, \ \mathbf{u} = \sum_{j=1}^{m} \alpha_j \mathbf{x}_j$$

$$\Rightarrow \mathbf{x}_i^T \mathbf{\Sigma} \mathbf{u} = \lambda \mathbf{x}_i^T \mathbf{u}$$

$$\Rightarrow \mathbf{x}_i^T \left(\frac{1}{m} \sum_{k=1}^m \mathbf{x}_k \mathbf{x}_k^T \right) \left(\sum_{j=1}^m \alpha_j \mathbf{x}_j \right) = \lambda \mathbf{x}_i^T \left(\sum_{j=1}^m \alpha_j \mathbf{x}_j \right)$$

$$\Rightarrow \frac{1}{m} \sum_{k=1}^{m} \sum_{j=1}^{m} (\mathbf{x}_i^T \mathbf{x}_k) (\mathbf{x}_k^T \mathbf{x}_j) \alpha_j = \lambda \sum_{j=1}^{m} (\mathbf{x}_i^T \mathbf{x}_j) \alpha_j$$

$$\Rightarrow \frac{1}{m} \mathbf{K}^2 \alpha = \lambda \mathbf{K} \alpha$$
 where $\mathbf{K} \in \mathbb{R}^{m \times m}$

$$\Rightarrow \mathbf{K}\alpha = m\lambda\alpha$$
 If **K** is invertible (strictly pos def)

 \Box How to use α to calculate the projection of a new sample t?

$$\mathbf{u}^T \mathbf{t} = (\sum_{j=1}^m \alpha_j \mathbf{x}_j)^T \mathbf{t} = \sum_{j=1}^m \alpha_j K(\mathbf{x}_j, \mathbf{t})$$

Again, we don't need values of $\mathbf{x}_j!$

Let
$$K_{i,j} = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$

Input points before kernel PCA

Output after kernel PCA

