Корни из единицы

- 1. Пусть $\alpha_1, \alpha_2, \ldots, \alpha_n$ корни n-ой степени из единицы.
 - (а) Докажите, что среди них можно выбрать корень α такой, что для любого α_i найдется целое число k такое, что $\alpha_i = \alpha^k$.
 - (b) Сколько существует таких корней?
- **2.** Докажите, что $x^{66} + x^{55} + x^{44} + x^{33} + x^{22} + x^{11} + 1$ делится на $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.
- **3.** Вычислите сумму k-х степеней корней n-й степени из 1, где k,n натуральные числа, если
 - (a) HOД(k, n) = 1;
 - (b) НОД $(k, n) \neq 1$.
- 4. (а) Пусть $\alpha = \cos \frac{2\pi}{n} + i \cdot \sin \frac{2\pi}{n}$. Докажите, что

$$n = (1 - \alpha) \cdot (1 - \alpha^2) \cdot (1 - \alpha^3) \cdot \dots \cdot (1 - \alpha^{n-1}).$$

- (b) Для каких других корней n-ой степени из единицы это тождество выполняется?
- (\mathbf{c}) Для нечетных n докажите, что

$$\sqrt{n} = \left| (1 - \alpha) \cdot (1 - \alpha^2) \cdot (1 - \alpha^3) \cdot \dots \cdot (1 - \alpha^{\frac{n-1}{2}}) \right|.$$

- (**d**) Выпишите аналогичное равенство для четного n.
- **5.** Пусть $A_1 A_2 \dots A_n$ правильный n-угольник, вписанный в окружность единичного радиуса. Найдите произведение длин всех его сторон и диагоналей.
- **6.** Пусть ABCDE правильный пятиугольник, вписанный в окружность с центром O (AO=1). Точка P симметрична точке O относительно точки A, докажите, что $PB \cdot PC = \sqrt{31}$.
- 7. Пусть $\alpha = \cos \frac{2\pi}{n} + i \cdot \sin \frac{2\pi}{n}$. Рассмотрим сумму

$$S_n = 1 + \alpha + \alpha^4 + \alpha^9 + \ldots + \alpha^{(n-1)^2}.$$

Докажите, что $|S_n| = \sqrt{n}$.

Стоит рассмотреть произведение $S_n\overline{S_n}$.