

Foundation of Internet Platform Development & Operation

Machine Learning Platforms

2019-11-19

Why Machine Learning Platforms?

- Disconnect between science and engineering
- Difficulty of scale
- Repeatability

Goals of ML Platforms

- Support many tasks
- Continuous online learning
- Human-readable metrics
- Scale-out

Individual Flow: Training

- TB-class data fits on a workstation
- A few GPUs -> train in days/weeks
- Track my own experiments

Individual Flow: Training

- TB-class data on a workstation
 - PB-class data on fast distributed storage
- A couple GPUs -> train in days/weeks
 - Dozens of big GPUs -> train in minutes/hours
- Track my own experiments
 - Central records, collaboration, standard visualizations

Problems

- Integration into live data flows
- Improved throughput and latency
- Production A/B experiments

6-steps Flow

Scientists focus here

- Manage Data
- Train models
- Evaluate models
- Deploy models
- Make predictions
- Monitor predictions

Data Management

- Offline: SQL on HDFS data lake (Spark/Hive)
 - Efficient large-scale aggregations
- Online: Stream process -> Cassandra
 - Live data available ASAP
- Sharing: Central dataset access control
- Repeatability: Scala DSL to describe data preprocessing

Model Training (Michelangelo)

- Canonical implementations of common models
- User defines hyperparams, requests compute
- Automatic dispatch to distributed cluster
- All jobs are tracked & reproducible

Model Training (FBFlow)

- Draw the dataflow graph before execution
 - Can optimize scheduling/packing
- Use premade operators to construct models
 - Funnels users into best-practices

Model Training

Model Training

Model Serving

Offline:

- Schedule batch inference as Spark job
- Serve inference from DB

Online:

- Model resides on hot cluster
- Immediate execution of incoming requests

Make/Monitor Predictions

- Trained models get UUID tags (strict versioning)
 - Deploy, hotswap, and experiment by reference!
- Registered models are first-class services

Summary

- Reproducible:
 - Versioned inputs -> Versioned outputs
- Explainable:
 - "Model A predicts X, influenced mostly by feature Z."
 - "In production, model B is 5% better than A."

Developing new model architectures

- Only a few experts design models
 - See Armstrong' s "puzzle piece" view of SWE
- Most engineers are practitioners
 - Same model, different data

Strong scaling for distributed training

- Data vs. model parallel
 - Communication / parallelism tradeoff

- Limited interconnect bandwidth
 - HBM2 = 1TB/s, PCIe3 = 16GB/s

Fast inference

- Models must be on warm standby
 - (often) model size > input data
- Accuracy vs. Compute Cost tradeoff