Independence in infty

April 4, 2020

 Γ_1

If sub- σ -algebras $\mathcal{G}_1, \mathcal{G}_2...$ are independent, then whenever $G_i \in \mathcal{G}_i (i \in \mathbb{N})$ and $C \subseteq \mathbb{N}$ is a countable set, there is

$$P(\cap_{c_i \in C} G_{c_i}) = \prod_{c_i \in C} P(G_{c_i})$$

Proof.

$$P(\cap_{c_i \in C} G_{c_i}) = P(\cap_{i \in \mathbb{N}} G_{c_i})$$
$$= P(\cup_{t \in \mathbb{N}} \cap_{0 < i < t} G_{c_i})$$

Let $E_i = \bigcap_{0 \le i \le t} G_{c_i}$, and $E = \bigcup_{t \in \mathbb{N}} \bigcap_{0 \le i \le t} G_{c_i}$, then there is $E_i \downarrow E$. Since $P(E_i) \in [0, 1)$, there is $P(E_i) \downarrow P(E)$.

By definition of independence, there is

$$P(E_i) = P(\cap_{0 \le i \le t} G_{c_i}) = \prod_{0 \le i \le t} P(G_{c_i})$$

So there is:

$$P(E) = \lim_{t \to \infty} P(E_i) = \lim_{t \to \infty} \prod_{0 \le i \le t} P(G_{c_i}) = \prod_{c_i \in C} P(G_{c_i})$$

But things are different in the uncountable case. To consider this problem, we define independence in uncountable set be that all countable subsets are independent:

 Γ_2

Consider sub- σ -algebras $(\mathcal{G}_{\alpha} : \alpha \in A)$ where A is uncountable, even if for all countable $N \subseteq A$, $(\mathcal{G}_i : i \in N)$ are independent(so they are independent in our definition),

$$P(\cap_{\gamma \in C} G_{\gamma}) = \prod_{c_i \in C} P(G_{c_i})$$

does not hold for some $G_{\alpha} \in \mathcal{G}_{\alpha}(\alpha \in A)$ and uncountable $C \subseteq A$.

Proof. Consider σ -algebras in probability triple (Ω, \mathcal{F}, P) be $([0, 1), \mathcal{B}[0, 1), \text{Leb})$:

$$\mathcal{G}_{\alpha} = \{\varnothing, \{\alpha\}, \Omega \setminus \{\alpha\}, \Omega\} (\alpha \in \Omega)$$

For all countable $N \subseteq A$, for $i \in N$:

If $G_i = \emptyset$ or $G_i = \{i\}$, and $P(G_i) = 0$. We have

$$\bigcap_{i \in N} G_i \subseteq G_i \implies P(\bigcap_{i \in N} G_i) = 0.$$

If $G_i = \Omega \setminus \{i\}$ or $G_i = \Omega$, and $P(G_i) = 1$ for all $i \in N$.

$$\Omega \setminus N \subseteq \bigcap_{i \in N} G_i \implies P(\bigcap_{i \in N} G_i) = 1.$$

This shows that for every countable subset N of A, $(G_i : i \in N)$ are independent.

But if we take $A = \Omega$, then consider $(\mathcal{G}_{\alpha} : \alpha \in A)$ and the intersection of $(G_{\alpha} : \alpha \in A)$ where $G_{\alpha} \in \mathcal{G}_{\alpha}$.

Let $G_{\alpha} = \Omega \setminus {\{\alpha\}}$, we have $P(G_{\alpha}) = 1$, but

$$\bigcap_{\alpha \in A} G_{\alpha} = \Omega \setminus A = \varnothing \implies P(\bigcap_{\alpha \in A} G_{\alpha}) = 0 \neq 1 = \prod_{\alpha \in A} P(G_{\alpha})$$

This implies that even if every countable subset of $(\mathcal{G}_{\alpha} : \alpha \in A)$ are independent, we cannot say that for all $B \subseteq A$, $G_{\alpha} \in \mathcal{G}_{\alpha}$:

$$P(\bigcap_{\alpha \in B} G_{\alpha}) = \prod_{\alpha \in B} P(G_{\alpha}).$$