Exposiciones por parte de los alumnos (EEA2015):

Duración aproximada de cada exposición: 30 minutos más 10 para preguntas. En total son 40 minutos por grupo (30+10)

FECHAS DE PRESENTACIONES: 14/11 y 5/12

TEMAS	Grupos
Datos desbalanceados (Pablo)	6 y 5
Aplicaciones de curvas ROC (Pablo)	8 y 10
Principal Components Regression y Partial Least Squares (Daniel)	1 y 9
Datos faltantes (Daniel)	3 y 4
Regresión Ridge y Lasso (Silvia)	2 y 7
Modelos Lineales Generalizados en DM (Silvia)	11 y 12

G 4		
Grupo 1:	Grupo 2:	
BRESCIANI Juan Pablo	AGUIRRE Augusto Ariel	
CAVALLO Juan	DELL'ERA Diego Mario	
COPPOLILLO Nestor Raul	FARIAS Damián Gustavo	
INZERILLI Carla	MARAFIOTI Pablo Ezequiel	
SOKIL Juan Pablo		
Grupo 3:	Grupo 4:	
BESIO Mariano Andres	MOREIRA PERA Martín Andrés	
GARCIA Gonzalo Daniel	OJEDA Daniel	
MUSCHITIELLO Nicolas Miguel Felix	RODRIGUEZ HERNANDEZ Jhonny	
VAINMAN Daiana	ROMERO QUISHPE Adriana Lucía	
NOVIDELSKY	VELEZ DIAZ Alvaro Andres	
Grupo 5:	Grupo 6:	
AVELLANEDA MEJIA Leandro	CHOI Da Woon	
MONTERO BERMUDEZ Eduardo José	MARTINEZ Pablo Witold	
NARVAEZ GOMEZ Giovanny Alberto	RUSCONI Ivo	
TORRES REYES Jenny Rocío	Research	
VELEZ LUNA Roberto Daniel		
Grupo 7:	Grupo 8:	
ANDREONI Pablo Facundo	BEATI María Paula	
GONZALEZ Fernando Ezequiel	BIANCO Javier Antonio	
GONZALEZ Temando Ezequier	FABIANO Ariel Alejandro	
	GAVILAN Sebastián Aníbal	
	GAY Rafael Lucas	
	HERZ Gerardo Sebastian	
Grupo 9:	Grupo 10:	
DE RACO Sergio Andrés	CORAS AVILA Nilo Adolfo	
GALBAN Sebastian Federico	GUEVARA LENIS Jorge Eduardo	
MATOSJorge Luis	OYOLADiego Hernán	
RIVERO GOYTIA Matias	SPAIRANI Julio Augusto	
WATFI Pablo	VERALLI Eduardo Damian	
Grupo 11:	Grupo 12: ;?	
ACOSTA CASTAÑEDA Diego Alberto		
GASKA Maria		
GOMEZ BERET Flavia Matilde		
JIMENEZ FORERO Jairo Andrés		
LIBERMAN Gastón Elías		
EIDERMIN Guston Ellas		

Desarrollo:

El trabajo se enfoca a estudiar el tema propuesto, armando un documento con una explicación del tema. Deben además relevar software disponible para aplicar la técnica, presentar un problema-ejemplo y resolverlo. Puede ser un ejemplo de libro, no es necesario que sea original sino que sepan explicarlo.

La presentación oral se hará en una clase frente al resto de los alumnos y docentes.

Los temas estarán presentes en la evaluación del examen integrador.

Temas propuestos

Principal Components Regression y Partial Least Squares: Comparación de métodos (DANIEL)

<u>Objetivo</u>: presentar el modelo, contando el significado teórico. Luego en un ejemplo mostrar el ajuste con algún software.

SW posible: SPSS + JMP + E. Miner

Bibliografía posible:

- Handbook of Statistical Analysis and Data Mining Applications (Lisbet, Elder, Miner)
- Hastie, Trevor; Tibshirani, Robert y Friedman, Jerome. "The Elements of Statistical Learning Data Mining, Inference, and Prediction". Springer, Nueva York, 2001
- Regression using JMP R. Freund, R. Littell, L. Creighton (2003)

Datos faltantes (DANIEL)

<u>Objetivo:</u> recordar los inconvenientes relacionados con la presencia de gran cantidad de valores ausentes (missings) que aparecen en los conjuntos de datos a analizar en Data Mining. Plantear alternativas univariadas, bivariadas y multivariadas para imputar. Explicar con ejemplos las ventajas y desventajas de las diferentes formas de imputación.

SW posible: SPSS, Enterprise Miner, Weka, R

Bibliografía posible:

- Statystical Analysis with missing data. Little & Rubin
- F. Medina, M. Galván (2007) Imputación de Datos: Teoría y Práctica (CEPAL))
- D. Stekhoven, P. Bühlmann (2011) MissForest Non-parametric missing value imputation or mixed-type data (BIOINFORMATICS)
- Xiaofeng Zhu, Shichao y ZhangZhi Jin(2001) Missing Value Estimation for Mixed-Attribute Data Sets

Datos desbalanceados (PABLO)

<u>Objetivo:</u> plantear los problemas que se presentan al trabajar con datos desbalanceados, y mostrar algunas de las estrategias útiles para combatirlos. Explicar con ejemplos cuáles son algunos de los métodos que funcionan y cuáles no.

SW posible: SPSS, Enterprise Miner, R, MODELER

Bibliografía posible:

Applied Multivariate Statistics With Sas Software. Ravindra Khattree, Dayanand N. Naik Jmp 8 Statistics and Graphics Guide, Second Edition. SAS Institute, SAS Publishing Nathalie Japkowicz (2002). The Class Imbalance Problem: A Systematic Study

Aplicaciones de curvas ROC (PABLO)

<u>Objetivo:</u> Explicar beneficios y problemas que puede generar utilizar estos Roc o accuracy al medir los resultados de los modelos. ¿Los algoritmos para clasificación que utilizan accuracy pueden tener algún inconveniente? Plantear alternativas.

SW posible: R, SPSS, MODELER

- F. Provost, T. Fawcett (1997). Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. *Third International Conference on Knowledge Discovery and Data Mining* (KDD-97)
- T. Fawcett (2004). ROC graphs: Notes and practical considerations for researchers.
- T. Fawcett (2006). An introduction to ROC analysis
- T. Fawcett, P. Flach (2005). A Response to Webb and Ting's *On the Application of ROC Analysis to Predict Classification Performance under Varying Class Distributions*

Modelos Lineales Generalizados en DM. (SILVIA)

<u>Objetivo</u>: presentar el modelo, por ejemplo Regresión Poisson, contando el significado teórico. Luego en un ejemplo mostrar el ajuste con algún software.

SW posible: R, SAS,SPSS..

Bibliografía posible:

Tufféry, S. (2011). Data Mining and Statistics for Decision Making. UK. John Wiley & Sons

Montgomery, Peck & Vining

Regresión Ridge y Lasso (SILVIA)

<u>Objetivo</u>: presentar el modelo, contando el significado teórico. Luego en un ejemplo mostrar el ajuste con algún software.

SW posible: SPSS + SAS

Bibliografía posible:

Applied Regression (Draper) + Regresión Lineal (Montgomery) + Alternative Methods of Regression (Birkes, Dodge) + Classical and Modern Regression (Myers) + Modern Regression Methods (Ryan)

Hastie, Trevor; Tibshirani, Robert y Friedman, Jerome. "The Elements of Statistical Learning – Data Mining, Inference, and Prediction". Springer, Nueva York, 2001.