A (Standard position) quadric surface is a surface given by
$$A \times^{3} + By^{2} + Cz^{2} + ax + by + Cz + d = 0$$

$$(x-1)^{2} + (y+5)^{2} + (z-3)^{2} = \lambda$$

$$(x-1)^{2} + (z-3)^{2} = \lambda$$

$$\chi^{2} + \left(\frac{4}{4}\right)^{2} + \left(\frac{2}{3}\right)^{2}$$

Ellipsoids
$$\left(\frac{x}{x}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{3}{5}\right)^2 = 1$$

Parabaloids are surfaces who's vertical traces are parabolas

(0.0-3)

concavity is constant in every vertical trace.

For Z= X- y?

Parabaloids
elliptic: $\frac{2}{2} \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2$ hyperbolic: $\frac{2}{2} \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2$

Hyperbolus -> Hyperboloids, vertical traces evre hyperboloids

123

hyperbola
$$X^{2}+y^{2}=z^{2}-1$$

Hyperboloids

one-sheet:
$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^4$$

two-sheet:
$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2 - 1$$

