The mpTSPs Test Problems

Contributed by Luca Gobbato, Guido Perboli and Francesca Maggioni

The test problem suite consists of data and computational results for 5 two-stage stochastic mixed-integer programs arising in City Logistics contexts. More precisely, given a graph characterized by a set on nodes connected by arcs, in the mpTSPs we consider that, for every pair of nodes, we have multiple paths between the two nodes. Each path is characterized by a random travel time which can be decomposed in the sum of a deterministic term and a stochastic term, which represents the travel time oscillation due to the path congestion.

The problem formulation is described in [1, 2], while the instance generation is reported in [2]. The problems have pure binary first-stage and second-stage variables. All possible discrete values that the random variable can assume, are represented by a set of 100 scenarios and are assumed to be exogenous to the problem. The data files are contained in the zipped folder MPTSPs.zip. The format is described in Format_Instance.txt contained in the data folder.

Instances

The following table presents the instance set. The instances are named MPTSPs_ Dd_n , where d is the number of potential server locations, n is the nodes distribution strategies [2] and n is the potential number of customers.

Table 1: Instance set

TWO IT INSUMICE SEC							
Name	Node distribution	Customers	Scenarios				
MPTSPs_D0_50	City center	54	100				
MPTSPs_D1_50	Suburban area	55	100				
MPTSPs_D2_50	City center and Suburban area (3:1)	56	100				
MPTSPs_D3_50	City center and Suburban area (1:1)	56	100				
MPTSPs D1 100	Suburban area	105	100				

Results

Computational results are given in Table 2. The CPLEX 12.5 was used for solving the stochastic problems to optimality. For each instance we solved:

- Recourse Problem (RP)
- Expected result of Expected Value Problem (EEV)
- Generalized Loss Using the Skeleton Solution (GLUSS) [4]

Table 2: Computational Results

Name	RP	EEV	GLUSS 25%		GLUSS 75%	GLUSS 100%
MPTSPs_D0_50	23544.2	24537.3	23544.2	24064.1	24278.4	24537.3
MPTSPs_D1_50	15250.7	15964.3	15250.7	15250.7	15821.8	15964.3
MPTSPs_D2_50	16509.8	16836.3	16509.8	16509.8	16631.5	16836.3
MPTSPs_D3_50	11898.7	12173.4	11898.7	11972.5	12090.1	12173.4
MPTSPs_D1_100	22094	22855.6	22094	22094	22119.7	22855.6

The complete solutions are included in the zipped folder containing data files.

References

- [1] Roberto Tadei, Guido Perboli, Francesca Perfetti, The multi-path Traveling Salesman Problem with stochastic travel costs, EURO Journal on Transportation and Logistics, 2014
- [2] Guido Perboli, Luca Gobbato, Francesca Maggioni, A Progressive Hedging method for the multi-path Traveling Salesman Problem with stochastic travel times, submitted to *Journal of Management Mathematics*, 2014
- [3] Francesca Maggioni, Stein W. Wallace, Analyzing the quality of the expected value solution in stochastic programming, *Annals of Operations Research*, 2010
- [3] Francesca Maggioni, Guido Perboli, Generalized skeleton solution in two-stage stochastic programming, in preparation