Colles - Semaine 15

Planche 1

- 1. Soit F la fonction définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $F(x) = \exp(-e^{-x})$.
 - a) Justifier que F est une fonction de répartition.
 - b) Soit X une v.a.r. de fonction de répartition F. Déterminer une densité f de X.

On suppose désormais que X est une v.a.r. sur $(\Omega, \mathscr{A}, \mathbb{P})$ et que toutes les v.a.r. citées sont définies sur ce même espace.

- 2. a) Soit $Z = e^{-X}$. Justifier que Z est une variable aléatoire réelle sur $(\Omega, \mathscr{A}, \mathbb{P})$ et déterminer sa loi.
 - b) On rappelle que grand(1,1,'exp',1) simule une variable aléatoire et suivant une loi exponentielle de paramètre 1. Écrire une fonction Scilab qui simule la variable aléatoire X.
 - c) Soient x et y deux réels strictement positifs. Établir une relation entre la probabilité conditionnelle $\mathbb{P}_{[X \leqslant -\ln(X)]}([X \leqslant -\ln(x+y)])$ et $\mathbb{P}([X \leqslant -\ln(y)])$.
- 3. Soit $(Y_i)_{i\in\mathbb{N}^*}$ une suite de v.a.r. définies sur $(\Omega, \mathscr{A}, \mathbb{P})$, mutuellement indépendantes et de même loi exponentielle de paramètre 1.

Soit d'autre part L une v.a.r. de loi de Poisson de paramètre 1 indépendante des variables aléatoires de la suite $(Y_i)_{i\in\mathbb{N}^*}$.

On définit S par :

- \times si $L(\omega) = 0$, alors $S(\omega) = 0$.
- × si $L(\omega) = k$, avec $k \in \mathbb{N}^*$, alors $S(\omega) = \max(Y_1(\omega), \dots, Y_k(\omega))$.
- a) Soit k un entier naturel non nul. Déterminer la loi de la variable aléatoire $S_k = \max(Y_1, \dots, Y_k)$.
- b) Démontrer que pour tous réels a et b tels que 0 < a < b, on a :

$$\mathbb{P}([a \leqslant S \leqslant b]) = \mathbb{P}([a \leqslant X \leqslant b])$$

c) Calculer $\mathbb{P}([S=0])$.

Planche 2

Soit α un réel strictement positif et $(Y_i)_{i\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$. On suppose de plus que pour tout i, Y_i suit la loi exponentielle de paramètre $i \alpha$.

Pour tout $n \in \mathbb{N}^*$, on pose $Z_n = \sum_{i=1}^n Y_i$ et on note g_n la densité de Z_n nulle sur \mathbb{R}_+ et continue sur \mathbb{R}_+^* .

- 1. a) Déterminer la fonction g_2 .
 - b) Montrer que pour $n \ge 1$ et x > 0, on a : $g_n(x) = n \alpha e^{-\alpha x} (1 e^{-\alpha x})^{n-1}$
 - c) Calculer l'espérance de Z_n et en donner un équivalent simple lorsque n tend vers l'infini.
 - d) Calculer la variance de \mathbb{Z}_n et montrer qu'elle admet une limite finie lorsque n tend vers l'infini.
- 2. Pour $n \in \mathbb{N}^*$, on pose $U_n = \frac{1}{n} Z_n$.
 - a) Déterminer la fonction de répartition H_n de U_n .
 - b) Montrer que, pour tout $x \in \mathbb{R}$, la suite $(F_{U_n}(x))$ converge vers un réel F(x). Montrer que F est la fonction de répartition d'une v.a.r. que l'on précisera.
 - c) Déterminer la limite quand n tend vers l'infini de $\mathbb{E}(U_n)$ et $\mathbb{V}(U_n)$.

Planche 3

Dans cet exercice, a désigne un réel strictement positif.

On considère deux variables aléatoires X et Y, définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, et suivant toutes deux la loi uniforme sur [0, a].

On pose Z = |X - Y| et on admet que -Y, X - Y et Z sont des variables aléatoires à densité, elles aussi définies sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. a) Déterminer une densité de -Y.
 - b) En déduire que la variable aléatoire X-Y admet pour densité la fonction g définie par :

$$g(x) = \begin{cases} \frac{a - |x|}{a^2} & \text{si } x \in [-a, a] \\ 0 & \text{sinon} \end{cases}$$

On note G la fonction de répartition de X - Y.

- 2. a) Exprimer la fonction de répartition H de la variable Z en fonction de G.
 - **b)** En déduire qu'une densité de Z est la fonction h définie par : $h(x) = \begin{cases} \frac{2(a-x)}{a^2} & \text{si } x \in [0,a] \\ 0 & \text{sinon} \end{cases}$
- 3. Montrer que Z possède une espérance et une variance et les déterminer.
- 4. Simulation informatique.

On rappelle qu'en **Scilab**, la commande rand() permet de simuler la loi uniforme sur [0,1[. Compléter la déclaration de fonction suivante pour qu'elle retourne à chaque appel un nombre réel choisi selon la loi de Z.