Probabilite et statistique

Mendy Fatnassi

10 décembre 2020

Table des matières

1	Sta	tistique	3								
	1.1	Esperance & Variance	S								
2	Der		4								
	2.1	vocabulaire	4								
	2.2	Coeficient Biomial / Combinaisons	4								
	2.3	Permutation	5								
	2.4	Arrangement	6								
	2.5	Coeficient de correlation	6								
3	Pro	babilité	8								
	3.1	Calcule de probabilite	8								
		3.1.1 Probabilite conditionnel	8								
	3.2		Ĉ								
4	Var	Variable Aleatoire									
	4.1	Variable Aleatoire Discret/Continue	(
		4.1.1 Generalite	(
		4.1.2 Determiner une loi de probabilite	(
5	Loi	de Probabilite	2								
	5.1	Loi d'une V.A Discrete	2								
		5.1.1 Loi Bernouilli	2								
		5.1.2 Loi Binomial	2								
		5.1.3 Loi Poisson	3								
		5.1.4 Loi Uniforme	3								
	5.2	Loi d'une V.A Continue									
		5.2.1 Loi Uniforme									
		5.2.2 Loi Normale									

Chapitre 1: Statistique

1.1 Esperance & Variance

Moyenne:

Formule : Se note \overline{X} ou alors $\frac{\sum\limits_{i=1}^n xi}{n}$ ou encore $\frac{1}{n}\sum\limits_{i=1}^n xi$

(avec n :Nombre total d'element).

Variance:

Caracterise la mesure de la dispersion des valeurs d'un échantillon ou d'une distribution de probabilité.

 $\underline{\text{formule}}: V = \frac{1}{n-1} \sum_{i=1}^n (xi - \bar{x})^2$

Esperance:

En statistique l'esperence correspond a la moyenne pondérée de ces données ou des valeures que peux prendre cette variable.(voir formule selon v.a discrete/continue).

Formule : Se note en generale $\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (xi - \bar{x})^2$

${\bf Ecart-type:}$

Sert a calculer la dispertion des echantillons, on calcule l'ecart a la moyenne.

<u>formule</u>: $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (xi - \bar{x})^2}$ (Comme l'esperance mais sans $\sqrt{}$)

Chapitre 2: Denombrement

2.1 vocabulaire

Univers Ω : Correspond a l'ensemble de toute les valeurs possible E=(1,2),(2,1),(1,1),(2,2).

Experience aleratoire : Est un procede qui permet d'observer un resultat ou un evenement , determiné par un aéla .

Evenement elementaire : Correspondent a tous les resultat possibles de l'experience aléatoire.

Espace d'echantillon : Est l'ensemble ou la collection de tous les évenement aléatoire.

Variable aléatoire : Est definie comme le resultat numerique d'une experience aleatoire (note X).

Cardinal : note card(A) , definie le nombre d'element que posséde A . $\underline{\text{formule}} : card(A \cup B) = card(A) + card(B) - card(A \cap B).$

Tableau generale pour le denombrement :

	Sans (repetition/remise)	Avec repetition
Ordonne	$A_n^p = \frac{n!}{(n-p)!}$ (arrangement)	
Non-ordonne	$C_n^p = \frac{n!}{(n-p)! \times p!}$ (combinations)	n! (permutation)

2.2 Coeficient Biomial / Combinaisons

<u>Utilité</u> : Combien de possibilité de 5 numeros parmie 49?

Le coeficient binomial peut etre representé par un arbre pondéré ou chaque branche aura une valeur binaire (Vrais \mid | Faux) s'agit tout simplement du nombre de chemins conduisant a k succés . Cela permet permet de résoudre des problèmes sans faire d'arbre pondéré .

Formule: $\binom{n}{p} = \frac{n!}{(n-p)! \times p!}$ //Combinaisons

ou alors avec l'arbre pondré.

chemin menant a k succes :

- -Pour k=0 , il y a 1 chemin qui mene a 0 succes , on note $\binom{3}{0}=1$ -Pour k=1 , il y a 3 chemins qui mene a 1 succes , $\binom{3}{1}=3$

Ou alors on peux utiliser la formule de la combinaisons $C_3^1 \Leftrightarrow \binom{3}{1} = \frac{3!}{(3-1)! \times 1!} = \frac{1 \times 2 \times 3}{2! \times 1} = \frac{6}{(1 \times 2) \times 1} = \frac{6}{2} = 3$

2.3 Permutation

<u>Utilité</u> : Avec n objets différents, combien de façons de les poser les uns à côté des autres?

On peux representé les permutation par un arbre pondéré avec autant de branche que posséde l'ensemble E .

 $\underline{Formule} : n!$

Ici si on veux trouver tout les solution possible (permutation) de l'ensemble $card(\Omega) = 4 => a,b,c,d$ ou n=4 on a donc avec la formule : $n! = 4! = 4 \times 3 \times 2 \times 1 = 24$. Il y a a bien 24 possibilités au totale .

2.4 Arrangement

<u>Utilité</u>: Nous savons permuter (mélanger) les cartes, maintenant nous en prenons quelques unes, l'une après l'autre, dans l'ordre. Nous nous retrouvons devant combien de possibilités?

noté A_p^n , E etant un ensemble a n element . On appelle arrangement de p element de E toute p-liste d'éléments distinct de E.

Formule :
$$A_n^p = \frac{n!}{(n-p)!}$$

 A_n^p peux s'ecrire $\binom{n}{p}$ (p element parmie n)

La probabilite qu'un evenement arrive peut changer selon leur ordre (ordonné/non-ordonné) et selon leur répétition (avec/sans répétition/remise) .Le fait d'avoir une factoriel dans la formule signifie en gros qu'il y a des permutation.

2.5 Coeficient de correlation

Utilité:

Le coefficient de corrélation linéaire r donne une mesure de l'intensité et du sens

7

de la relation linéaire entre deux variables.

- -Le coefficient de corrélation est compris entre 1 et 1.
- -Plus le coefficient est proche de 1, plus la relation linéaire positive entre les variables est forte.

Si r=1 la corrélation est positive parfaite.

-Plus le coefficient est proche de 1, plus la relation linéaire négative entre les variables est forte.

Si r = -1 la corrélation et=st negative parfaite.

-Plus le coefficient est proche de 0, plus la relation linéaire entre les variables est faible.

Si r=0 abscence totale de correlation.

Methode des moindre carré:

Formule:

-coef. corrélation
$$r = \frac{\sum (X - \overline{X}).(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^2} \times (\sqrt{(Y - \overline{Y})})}$$

-Droite de regression : Y = a.X.b

-Pente(coef a) :
$$a = \frac{\sum (X - \overline{X}).(Y - \overline{Y})}{\sum (X - \overline{X})^2} \begin{cases} a > 0 \text{correlation positive} \\ a < 0 \text{correlation negative} \\ a = 0 \text{pas de correlation} \end{cases}$$

Le point moyen est donnée en cordonne $(\overline{X}, \overline{Y})$.

-Ordonnee a l'origine(coef b) : $\overline{Y} - a.\overline{X}$

Chapitre 3 : Probabilité

3.1 Calcule de probabilite

Les probabilit´ permete de decrire la possibilité qu'un evenement particulier se produise dans un ensemble donnée . La probabilité d'un événement est un nombre réel compris entre 0 et 1. Plus ce nombre est grand, plus le risque, ou la chance, que l'événement se produise est grand. Elle se note P(X=xi) \Rightarrow probabilité que la v.a X prenne la valeur xi.

Propriete:

$$-P(\Omega) = 1$$

$$-P(\overline{A}) = 1 - P(A)$$

Exemple:

Un jeux 10 cartes , 6 noires et 4 rouges . on veux savoir la probabilite de tiré 2 cartes noires.

-1er Carte noire : $P(X1 = noir) = \frac{6}{10}$

-2ieme cartes noire : $P(X2 = noir) = \frac{5}{9}$ on a enlever 1 noire il reste toujour 4 rouges .

Les tirages sont dependant, le 2ieme tirage depant du 1er tirage.

-
$$P(X = 2 \text{ noir}) = P(X1) + P(X2) = \frac{6}{10} \times \frac{5}{9} = \frac{30}{90} = \frac{1}{3}$$

3.1.1 Probabilite conditionnel

Ici ont a calculer des probabilite simple avec une seul condition , quand il y plusieurs condition

 $P_b(A)$ ="tirer un 7 de trefle" avec P(A)="tirer un trefle" et P(B)="tirer un 7", on appelle cela une **Probabilite Conditionnel**, elle se traduit par "probabilité de A sachant B".

Elle se note
$$P_b(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

On dit que A et B sont incompatibles si et seulement si $A \cap B = \emptyset$

$$P(A \cup B) = P(A) + P(B)P(A \cap B)$$

si A et B sont icompatibles la formule devient : $P(A \cup B) = P(A) + P(B)$

 $P(A \cap B) = P(A) \times P(B)$ si A et B independant.

3.2 Independance

Quand il y a un tirage avec remise chaqu'un des resultat de l'arbre ne dependras pas du precedent, on dit que les experience sont identique et **independant**.

Exemple:

On tire aux has ards une cartes dans un jeu de 32 cartes . L'événement A : "Tirer un coeur" et B : "Tirer un roi". Calculer P(A) et $P_b(A)$?

On est en situation d'**equiprobabilite** c-a-d que chaque tirage a la meme probabilite de tirage et Ω est l'ensemble des 32 cartes.

$\underline{\text{Formule}}$:

$$\overline{P(A)} = \frac{card(A)}{card(\Omega)}$$

Pour P(A) , sachant qu'il y a 8 coeur : $\frac{8}{32}=\frac{1}{4}$ Pour $P_B(A)=\frac{1}{4}\Rightarrow$ un roi parmie les coeurs. Donc $P(A)=P_B(A)$,les evenement A et B sont independant.

Ou alors avec cette formule :
$$P(A) \times P(B) = P(A \cap B)$$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $P_B(A) = \frac{P(A \cap B)}{P(B)} \Rightarrow \text{probabilite conditionnel}$

$$P(A)=\frac{1}{4}, P(B)=\frac{4}{32} \Leftrightarrow \frac{1}{8}$$
 , $P(A\cap B)=\frac{1}{4}\times \frac{1}{8}=\frac{1}{32}$

$\underline{\text{Note}}$:

Si un evenement est dependant ont multiplie les probabilite , sinon si l'evenement est independant on additionne les probabilite .

Chapitre 4: Variable Aleatoire

4.1 Variable Aleatoire Discret/Continue

4.1.1 Generalite

<u>Vocabulaire</u>:

Discret : Cela veux dire que la variable aleatoire (v.a) X auras un nombre fini de valeurs dans un ensemble.

Continue: Cela veux dire que la v.a X peux prendre n'importe quelle valeur dans un intervale. Soit X une v.a a valeurs dans R et fx une densite de probabilite sur R .On dit que X est une v.a continue de densite fx si pour tout intervalles A de R on a : $P(X \in A) = \int_a^b f(x) dx$

Exemple:

Prenons une experience aleatoire d'un lancé de 2 dés :

La variable aleatoire X auras comme valeur , $\Omega=2,3,4,5,6,7,8,9,10,11,12$.La v.a X ne pourras prendre qu'une seule valeur parmie l'ensemble donc v.a discrete . Si par exemple on une intervalle d'heure d'arriver de maxime de 16h a 17h [16,17].

X la v.a qui indique l'heure d'arriver de maxime . X pourras prendre toute les valeurs compris dans l'intervalle [16,16.01,...,16.59,17] donc v.a continue .

4.1.2 Determiner une loi de probabilite

Probabilite Discrete

- Determiner la loi d'une **probabilite discrete** :
- 1) Determiner l'ensemble des valeurs que peux prendre ${\bf X}$.
- 2) Calculer $P(X=x_i)$ pour chacune de ces valeurs x_i .

On peux representer graphiquement une loi de probilite discret avec un diagramme en baton .

Probabilite Continue

- Determiner la loi d'une **probabilite Continue** :
- 1) Calculer sa densite , La fonction de densité se note pour $P(a \leq Xb) = \int_a^b f(x) \, \mathrm{d}x$

On dit que la loi d'une variable continue en donnant la probabilite qu'elle appartiennent a un intervalles I quelconque .

Une v.a continue X, de densite fx, tombe entre a et b avec une probabilite egale

a : $P(a \le X \le b) = \int_a^b f(x) \mathrm{d}x$. Plus la densite est elevee au dessus d'un segment , plus les chances que X a d'atteindre ce segment seras elevee , d'ou le terme "densite" .

Chapitre 5 : Loi de Probabilite

5.1 Loi d'une V.A Discrete

5.1.1 Loi Bernouilli

Soit un univers constiue de deux eventualite S pour succes et E pour echec , $\Omega = E, S$ et se note B(1,p).

 $X(\Omega) = 0,1.$

La loi de probabilite associe a la variable de bernouilli tel que :

P(X=1)=p

P(X=0)=q avec p+q=1

avec p :probabilite que l'evenement soit vrais et q :probabilite inverse donc que l'evenement soit faux (1-p).

Esperance : E(X)=pVariance : V(X)=p(1-p)

5.1.2 Loi Binomial

La variable binomial Sn represente le nombre de succes obtenue lors de la repetition de n epreuve de bernouilli identitique et independante ,elle possede des valeurs discrete et se note B(n,p) avec n :nombre repetiton et p :probabilite de succes .

de succes . $Sn = \sum_{i=1}^{n} Xi -> B(n,p)$ (signifie que la somme des proba de Sn suivent la loi binomial de parametre n,p). La loi binomial peux avoir 1 ou 2 parametre :

-Binomial a 1 parametre B(p) pour k succes :

$$P(X=k) = \begin{cases} p \text{ si } k = 1\\ 1 - p \text{ si } k = 0 \end{cases}$$

-Binomial a 2 parametres B(n,p) : $P(X=k)=C_n^k.p^k.(1-p)^{n-k}$

L'esperance et la variance ne change pas que ce soit le meme nombre de parametre ou non.

Esperance : $E(X) = n \times p$

Variance : V(X)=n.p.(1-p)

5.1.3 Loi Poisson

La loi Poisson est discrete, P(n,p) ou $P(\lambda)$, permet de faire une approximation de la loi binomial pour rendre les mesures plus prescise . On utilise cette approximationn de loi lorsque un grand nombre d'evenement qui suivent la loi binomial et qu'on connait la moyenne $\lambda, n \geq 100$ et $n \times p \leq 10$.

$$\underline{\text{Formule}}: X - > P(\lambda) \qquad \quad P(X = k) = e^{-\lambda}. \tfrac{\lambda^k}{k!} \text{ avec } \lambda = n \times p$$

5.1.4 Loi Uniforme

V.A Discrete La loi Uniforme discrete sur un ensemble fini est la loi des "tirages au hasard" dans cet ensemble ou il y a equiprobabilite. Une distribution de probabilite suit une lois Uniforme lorsque les valeurs prises par la va. sont equiprobable. $\forall i, P(X=xi) = \frac{1}{n}$ avec n :nombre de valeur different que prend la v.a X donc cardinal .

Par exemple pour un lancé de dé on auras une probabilite de $\frac{1}{6}$ de tiré pour chacune des faces du dé .

$$\frac{\text{Formule}}{P(X=k)=\frac{1}{n}}: X \to U(En)$$

P(X=1)	P(X=2)	P(X=3)	P(X=4)	P(X=5)	P(X=6)
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Esperance : $E(X) = \sum_{i=1}^{i=n} xi.pi$ avec xi :numeros de repetition (i a n) et pi :peux s'ecrire P(X=xi)

Variance :
$$V(X) = \sum_{i=r}^{i=n} (xi - E(x))^2.pi$$
 ou ou $V(x) = (\sum_{i=1}^n xi^2.pi$ ou $V(X) = \frac{n^2-1}{2}$

5.2 Loi d'une V.A Continue

5.2.1 Loi Uniforme

V.A continue

$$\frac{\text{Fonction de densit\'e}}{\text{Go sinon}}: f(x) = \left\{ \begin{array}{l} \frac{1}{b-a} \text{ si } x \in [a\,;\!b] \\ 0 \text{ sinon} \end{array} \right.$$

Les valeurs de la v.a X correspond au rang xi=i ,($\forall i \in [1,n]$). on a :

Variance : $E(X) = \frac{b+a}{2}$

Esperance : $V(x) = \frac{(b-a)^2}{12}$

5.2.2 Loi Normale

La loi normale est continue est permet de faire une approximation de la loi binomial. On l'utilise lorsque , n
 est assez grand et p
 pas trop proche de 0 ou $\bf 1$.

 $\begin{array}{l} \underline{\text{Fonction de densite}}: f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\\ \underline{\text{Formule}}: X\text{-->}N(\text{np,np(1-p)}) \text{ ou } X\text{-->}N(\mu,\sigma) \end{array}$

 $\mathbf{Esperance}: E(X) = \mu$

Variance : $V(X) = \sigma^2$