

Visual Inertial Tracking for AR

Timo Ahonen, Meta Co. t.ahonen@metavision.com May 22, 2018

Outline

- 1. Pose Tracking for Augmented Reality Applications
- 2. Inertial Sensors and Pose Estimation
- 3. Introduction to Visual SLAM
- Visual-Inertial Fusion
- 5. Applications and Future Challenges

Pose Tracking for Augmented Reality

Pose Tracking: Position and Orientation

Goal: track device pose in world coordinates (world frame)

6-degree-of-freedom Headset Pose

- 3 for translation
- 3 for orientation: yaw, pitch, and roll

Modalities for Pose Tracking

- Optical: inside-out or outside-in
- Inertial
- Also: GPS, magnetic, acoustic, ...

This presentation: Inside-out visual + inertial tracking

Coordinate Frames

- World frame
- Headset frame
- Sensor frame (each camera, IMU)

Outline

- 1. Pose Tracking for Augmented Reality Applications
- 2. Inertial Sensors and Pose Estimation
- 3. Introduction to Visual SLAM
- Visual-Inertial Fusion
- 5. Applications and Future Challenges

Inertial Measurement Unit (IMU)

- Angular Velocity $\mathbf{\omega} = (\omega_x, \, \omega_y, \, \omega_z)$
- Linear Acceleration $\mathbf{a} = (a_x, a_y, a_z)$

MEMS IMUs for smartphones, AR glasses, ...

InvenSense MPU-6000 Reverse Costing Report System Plus Consulting

IMU Measurement Model

Angular Velocity Measurement = True angular velocity + Bias

+ Noise

Acceleration Measurement = Rotate(True acceleration - Gravity)

- + Bias
- + Noise

Poses from the IMU - Simplified

Poses from the IMU - Notes

- The presented model is simplified. More realistic implementation:
 - System state: orientation, position, velocity, biases, (gravity)
 - State estimation using, e.g., Extended Kalman Filter
- Pros:
 - Low latency
 - High frequency
 - Robust to different motions and environmental conditions
- Cons:
 - Ambiguity between gravity and acceleration
 - Double integration of acceleration leads to large drift practically unusable for position tracking
- => Need another modality to constrain poses enter visual tracking.

Outline

- 1. Pose Tracking for Augmented Reality Applications
- 2. Inertial Sensors and Pose Estimation
- Introduction to Visual SLAM
- Visual-Inertial Fusion
- Applications and Future Challenges

Visual SLAM

- Chicken-and-egg problem:
 - Estimate camera (headset) pose based on the environment
 - Estimate environment based on the pose
- Temporal component (tracking)
- Direct / indirect
- Dense / sparse
- Filtering / optimization

Real-time Visual SLAM System Architecture

Pose Estimation (Motion-only Bundle Adjustment)

Reprojection Error

- 3d point \mathbf{y}_j
- camera pose T_i
- 2d prediction $\hat{\mathbf{z}}(\mathsf{T}_i, \mathbf{y}_j)$
- * 2d measurement $\mathbf{z}_{i,j}$
- reprojection error

H. Strasdat 2012 PhD dissertation

Pose Estimation (Motion-only Bundle Adjustment)

Structure from Motion

Bundle Adjustment

points $\{y_i\}$ simultaneously

point j in frame i

Full Optimization

Keyframe Optimization

Scale Ambiguity

"You can't determine scale from purely angular constraints!"

Sparse Optimization with Binocular Priors

Bundle Adjustment with Binocular Prior

$$\underset{\{(R,T)_i\}, \{\mathbf{y}_j\}}{\operatorname{argmin}} \sum_{\mathbf{z}_{ij}} \|\hat{\mathbf{z}}_{ij} - \mathbf{z}_{ij}\|_{2}^{2} \\
+ \lambda \sum_{i} d_{SE(3)} \left(\Delta RT_{i}^{\text{stereo}}, \Delta RT^{\text{stereo}}\right)$$

On-manifold error between estimated and calibrated baseline

FAST Corners

- Look for a contiguous arc of N pixels
 - All much darker (or brighter) than the center pixel

Matching Images

- With wide-baseline matching, template matching is not enough
 - The features look different need **invariance** to viewpoint, illumination, ...
 - Need efficient matching to a database previously seen features with ability to discriminate which is the right one

Example: ORB-SLAM

Three threads running in parallel

- Tracking
- Local Mapping
- Loop Closing

Feature-based (Image is reduced to a sparse set of features)

Advantages:

- Wide baseline matching
- Illumination invariance
- Robust

Disadvantages:

Bad for efficiency and battery life

Example: Semi-Direct Visual Odometry (SVO)

- Visual Odometry no loop closing or relocalization
- Two threads: motion estimation and mapping
- Edge and corner features
- Uses image intensities directly
- Paper reports <50% CPU usage compared to ORB-SLAM

http://rpg.ifi.uzh.ch/svo2.html

Recap: Poses from Visual SLAM

Poses from Visual SLAM - Notes

- Pros:
 - Significantly lower drift than IMU (especially with stereo SLAM)
 - Relocalization
 - Map can be used for other computer vision and HCl purposes
- Cons:
 - High latency
 - Low frequency
 - Sensitive to environment
 - Lighting
 - Repetitive textures
 - Motion in the scene
 - Scale ambiguity in case of monocular SLAM
- => Inertial sensors provide complementary information

Outline

- 1. Pose Tracking for Augmented Reality Applications
- 2. Inertial Sensors and Pose Estimation
- 3. Introduction to Visual SLAM
- 4. Visual-Inertial Fusion
- 5. Applications and Future Challenges

Sensor Fusion

- Visual tracking and inertial sensors provide complementary information
- Sensor fusion should lead to better quality than either modality alone
- Loosely coupled fusion
 - Treat visual and inertial as black boxes and fuse at output level
- Tightly coupled fusion
 - Fuse information at sensor measurement level

Loosely Coupled Visual-Inertial Fusion

Tightly Coupled Visual-Inertial Fusion

Bundle Adjustment Based Tight Fusion

Bundle Adjustment with Inertial Prior

$$\underset{\{(\boldsymbol{R},\boldsymbol{T})_i\},\{\mathbf{y}_j\}}{\operatorname{argmin}} \sum_{\mathbf{z}_{ij}} \|\hat{\mathbf{z}}_{ij} - \mathbf{z}_{ij}\|_2^2$$

$$+ \lambda \sum d_{SE(3)} \left(\Delta RT_i, \Delta RT_i^{\text{IMU}} \right)$$

On-manifold error between estimated and measured transitions

Tight Fusion / Filtering Example: ROVIO

- Extended Kalman Filter based IMU-Vision fusion
- State:
 - Position
 - Rotation
 - Velocity
 - IMU Biases
 - IMU-Camera extrinsics
 - Bearing and distance to K landmarks
- Direct method
 - Uses intensity differences

https://www.youtube.com/watch?v=ZMAISVy-6ao

https://github.com/ethz-asl/rovio

Outline

- Pose Tracking for Augmented Reality Applications
- Inertial Sensors and Pose Estimation
- 3. Introduction to Visual SLAM
- Visual-Inertial Fusion
- 5. Applications and Future Challenges

Low-latency Tracking and Rendering for AR

- What is latency?
 - Objects swim in optical-see-thru
 - Everything lags in video-see-thru -> nausea
- What causes it?
 - The capture process render display cycle
- Solutions?
 - Be faster in tracking and rendering
 - Predict (but prediction is difficult, and has its own problems)

Motion-to-Photon Latency

Low-latency Visual-Inertial Fusion

Asynchronous Rendering

Visual-Inertial Tracking for AR – Challenges

- Computational complexity
- Low jitter low latency
- Scale & drift
- Difficult environments:
 - Dark
 - High dynamic range
 - Repetitive texture
 - Motion in the scene
- Collaborative mapping
- Semantic SLAM

Resources

Excellent SLAM survey paper – focus on visual SLAM:

C. Cadena *et. al.* **Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age**. IEEE Transactions on Robotics, 2016. https://doi.org/10.1109/TRO.2016.2624754

Recent benchmark of monocular visual-inertial odometry algorithms:

J. Delmerico, D. Scaramuzza: A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots. IEEE International Conference on Robotics and Automation (ICRA), 2018. http://rpg.ifi.uzh.ch/publications.html

Open-source visual and visual-inertial SLAM algorithms

- ORB-SLAM2 Visual SLAM supporting monocular, stereo and RGBD cameras. https://github.com/raulmur/ORB_SLAM2
- ROVIO & maplab Visual-inertial, filtering-based tracking and mapping. https://github.com/ethz-asl/maplab
- **VINS-Mono** Monocular, optimization based visual-inertial SLAM including loop closing; also with mobile implementation. https://github.com/HKUST-Aerial-Robotics/VINS-Mono

