Notação assintótica

Fonte:

http://programmers.stackexchange.com/questions/112863/

CLRS 3.1

Notação assintótica

Sejam T(n) e f(n) funções dos inteiros nos reais. Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \le c f(n)$$

para todo $n \ge n_0$.

Notação assintótica

Mais informal

 $T(n) \in O(f(n))$ se existe c > 0 tal que

$$T(n) \le c f(n)$$

para todo n suficientemente GRANDE.

$$(3/2)n^2 + (7/2)n - 4$$
 versus $(3/2)n^2$

n	(3/2)n ² + $(7/2)$ n - 4	(3/2)n ²
64	6364	6144
128	25020	24576
256	99196	98304
512	395004	393216
1024	1576444	1572864
2048	6298620	6291456
4096	25180156	25165824
8192	100691964	100663296
16384	402710524	402653184
32768	1610727420	1610612736

(3/2)n² domina os outros termos

Tamanho máximo de problemas

Suponha que cada operação consome 1 microsegundo $(1\mu s)$.

consumo de	Tamanho máximo de problemas (n)			
$tempo(\mu s)$	1 segundo	1 minuto	1 hora	
400n	2500	150000	9000000	
$20n \lceil \lg n \rceil$	4096	166666	7826087	
$2n^2$	707	5477	42426	
n^4	31	88	244	
2^n	19	25	31	

Michael T. Goodrich e Roberto Tamassia, *Projeto de Algoritmos*, Bookman.

Crescimento de algumas funções

n	$\lg n$	\sqrt{n}	$n \lg n$	n^2	n^3	2^n
2	1	1,4	2	4	8	4
4	2	2	8	16	64	16
8	3	2,8	24	64	512	256
16	4	4	64	256	4096	65536
32	5	5,7	160	1024	32768	4294967296
64	6	8	384	4096	262144	1,8 10^{19}
128	7	11	896	16384	2097152	$3,4 \ 10^{38}$
256	8	16	1048	65536	16777216	$1,1 \ 10^{77}$
512	9	23	4608	262144	134217728	1,3 10^{154}
1024	10	32	10240	1048576	$1,1 \ 10^9$	$1,7 \ 10^{308}$

Nomes de "classes" O

classe	nome	
O(1)	constante	
$O(\lg n)$	logarítmica	
O(n)	linear	
$O(n \lg n)$	$n \log n$	
$O(n^2)$	quadrática	
$O(n^3)$	cúbica	
$O(n^k)$ com $k \ge 1$	polinomial	
$O(2^n)$	exponencial	
$O(a^n)$ com $a>1$	exponencial	