```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import warnings

warnings.filterwarnings("ignore", category=FutureWarning, message="is_categorical_d")
```

Datatypes of the columns

```
In [2]: data = pd.read_csv('insurance.csv')
        data.dtypes
Out[2]: age
                     int64
                   object
        sex
                  float64
        bmi
        children
                    int64
        smoker
                   object
        region
                   object
        charges
                  float64
        dtype: object
```

Categorical Variables:

- sex (object)
- smoker (object)
- region (object)

Total categorical variables: 3

Numerical Variables:

- age (int64)
- bmi (float64)
- children (int64)
- charges (float64)

Total numerical variables: 4

Shape of the data

```
In [3]: data.shape
Out[3]: (1338, 7)
```

Shape of data:

- 1338 (raws)
- 7 (columns)

Dealing with missing value

The dataset is clean with no missing data

Exploring the relationship between the feature and target column

age,bmi,children and charges are numerical columns so we'll perform on them scatter plot

```
In [5]: fig,axs = plt.subplots(1,3,sharey = True)
    data.plot(kind = 'scatter',x='age',y='charges',ax=axs[0],figsize=(14,6))
    data.plot(kind = 'scatter',x='children',y='charges',ax=axs[1])
    data.plot(kind = 'scatter',x='bmi',y='charges',ax=axs[2])

axs[0].set_title('Charges vs Age')
    axs[1].set_title('Charges vs Children')
    axs[2].set_title('Charges vs BMI')
Out[5]: Text(0.5, 1.0, 'Charges vs BMI')
```


There is a positive correlation between age and charges, as age increases, charges tend to increase.

There isn't a clear trend between the number of children and the charges. The points are widely scattered, showing that the number of children doesn't affects charges.

There seems to be a moderate positive correlation between BMI and charges, where higher BMI values are linked with higher charges.

sex, smoker and region are categorical columns so we'll perform on them count plot

```
In [6]: sns.countplot(data=data,x='region',palette='pastel')
   plt.title('Regions')
   plt.show()
```


Southeast Region is the most region in the data

```
In [7]: sns.countplot(data=data,x='sex',palette='pastel')
   plt.title('Gender')
   plt.show()
```


Males and females are almost equal

```
In [8]: sns.countplot(data=data,x='smoker',palette='pastel')
   plt.title('smoker')
   plt.show()
```


Smokers are less than non smokers

Plotting of Feature vs Feature Plots

```
In [9]: plt.figure(figsize=(10,6))
    sns.boxplot(x='children',y='age',data=data,palette='pastel')
    plt.show()
```



```
In [10]: bins = [0, 18.5, 25, 30, 50, 100]
    labels = ['Under 18', '18-25', '26-30', '31-50', 'Above 50']

data['age_category'] = pd.cut(data['age'], bins=bins, labels=labels)

age_category_avg_charges = data.groupby('age_category')['charges'].mean()

plt.figure(figsize=(10, 6))
    age_category_avg_charges.plot(kind='bar', color='skyblue', edgecolor='black')
    plt.xlabel('Age Category')
    plt.ylabel('Average Charges')
    plt.title('Average Charges by Age Category')
    plt.xticks(rotation=45)
    plt.show()
```

C:\Users\khi00\AppData\Local\Temp\ipykernel_29264\342903545.py:6: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future vers ion of pandas. Pass observed=False to retain current behavior or observed=True to ad opt the future default and silence this warning.

age_category_avg_charges = data.groupby('age_category')['charges'].mean()

There is a positive relationship between age and Charges, with higher age categories generally leading to higher average charges.

```
In [11]: plt.figure(figsize=(10, 6))
    sns.barplot(x='region', y='charges', data=data, palette='pastel')
    plt.xlabel('Region')
    plt.ylabel(' Charges')
    plt.title(' Charges by Region')
    plt.show()
```



```
In [12]: plt.figure(figsize=(10,6))
    sns.barplot(x='sex',y='age',data=data,palette='pastel')
    plt.show()
```



```
In [13]: bins = [0, 18.5, 25, 30, 50]
    labels = ['Underweight', 'Normal weight', 'Overweight', 'Obese']
    data['bmi_category'] = pd.cut(data['bmi'], bins=bins, labels=labels)
    plt.figure(figsize=(8, 5))
```

```
data.boxplot(column='charges', by='bmi_category', grid=False, patch_artist=True)
plt.xlabel('BMI Category')
plt.ylabel('Charges')
plt.title('Medical Charges by BMI Category')
plt.show()
```

<Figure size 800x500 with 0 Axes>

There is a positive relationship between BMI and Charges, with higher BMI categories generally resulting higher average charges.

```
In [14]: plt.figure(figsize=(10,6))
    sns.barplot(x='smoker',y='charges',data=data,palette='pastel')
    plt.show()
```


There is a positive relationship between Smoker and Charges, with higher smokers reflect higher cost charges.

```
In [15]: data_filtered = data[['age', 'charges', 'smoker']]
In [16]: plt.figure(figsize=(10, 6))
    sns.scatterplot(x='age', y='charges', hue='smoker', data=data_filtered, palette='co
    plt.xlabel('Age')
    plt.ylabel('Charges')
    plt.title('Scatter Plot of Age vs Charges by Smoking Status')
    plt.legend(title='Smoker')
    plt.show()
```


As insurance holders are smokers the amount of charges is becoming higher with respect to age increase

```
In [17]: import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler, OneHotEncoder
    from sklearn.compose import ColumnTransformer
    from sklearn.pipeline import Pipeline
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, r2_score
```

```
model.fit(X_train, y_train)

# Make predictions
y_pred = model.predict(X_test)

# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

# Print results
print(f"Mean Squared Error: {mse}")
print(f"R Sqaured: {r2}")
```

Mean Squared Error: 38274699.675041825 R Sqaured: 0.7534620778716639

Making prediction

```
In [19]: new_data = pd.DataFrame({'age': [19], 'smoker': ['yes']})
    predicted_charges = model.predict(new_data)

print(f"Predicted Charges for new data: {predicted_charges[0]}")
```

Predicted Charges for new data: 26545.412779517086

```
In [20]: import matplotlib.pyplot as plt
         # Plot predicted vs actual values
         plt.figure(figsize=(8, 6))
         # Scatter plot for actual values
         plt.scatter(y_test, y_test, color='red', label='Actual Charges', alpha=0.5, edgecol
         # Scatter plot for predicted values
         plt.scatter(y_test, y_pred, color='blue', label='Predicted Charges', alpha=0.7, edg
         # diagonal line for perfect prediction
         plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2, l
         # Add Labels and title
         plt.xlabel('Actual Charges')
         plt.ylabel('Predicted Charges')
         plt.title('Predicted vs Actual Charges')
         plt.legend()
         # Show plot
         plt.show()
```

Predicted vs Actual Charges

After applying linear regression the predicted values become far from diagonal line which proves as a poor model

Apply polynamial Regression and adding new variable bmi

```
In [21]: import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler, OneHotEncoder, PolynomialFeatures
         from sklearn.compose import ColumnTransformer
         from sklearn.pipeline import Pipeline
         from sklearn.linear model import Ridge
         from sklearn.metrics import mean_squared_error, r2_score
         # Define features and target
         X = data[['age', 'smoker', 'bmi']]
         y = data['charges']
         # Preprocessing
         preprocessor = ColumnTransformer(
             transformers=[
                 ('num', StandardScaler(), ['age', 'bmi']),
                 ('cat', OneHotEncoder(drop='first'), ['smoker']) # drop='first' avoids the
             ])
```

```
# Create Polynomial Features
poly_features = PolynomialFeatures(degree=2, include_bias=False)
# Create and train the Ridge regression model
model = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('poly', poly_features),
    ('regressor', Ridge(alpha=1.0)) # alpha is the regularization parameter
1)
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_sta
# Fit the model
model.fit(X train, y train)
# Make predictions
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"Mean Squared Error: {mse}")
print(f"R^2 Score: {r2}")
# Example of making a new prediction
new_data = pd.DataFrame({'age': [19], 'smoker': ['yes'], 'bmi':[29]})
predicted_charges = model.predict(new_data)
print(f"Predicted Charges for new data: {predicted_charges[0]}")
```

Mean Squared Error: 21539421.75531167 R^2 Score: 0.8612586296303939 Predicted Charges for new data: 25316.399937213057

```
In [22]: import matplotlib.pyplot as plt

# Plot predicted vs actual values
plt.figure(figsize=(8, 6))

# Scatter plot for actual values
plt.scatter(y_test, y_test, color='red', label='Actual Charges', alpha=0.5, edgecol

# Scatter plot for predicted values
plt.scatter(y_test, y_pred, color='blue', label='Predicted Charges', alpha=0.7, edg

# diagonal line for perfect prediction
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--', lw=2, l

# Add Labels and title
plt.xlabel('Actual Charges')
plt.ylabel('Predicted Charges')
plt.title('Predicted vs Actual Charges')
plt.legend()
```

Show plot
plt.show()

After applying polynomial regression the predicted values become closer to diagonal line which proves as a good model