Import Libraries

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
import seaborn as sns
warnings.filterwarnings("ignore")
```

Exploratory Data Analysis

```
In [3]: data=pd.read_csv('/home/placement/Desktop/Advertising.csv')
data
```

Out[3]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [4]: data.describe()

Out[4]:

	Unnamed: 0	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [5]: data.head(5)

Out[5]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

```
In [6]: data.tail(5)
```

Out[6]:

	Unnamed: 0	TV	radio	newspaper	sales
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

```
In [7]: data.info
```

```
Out[7]: <bound method DataFrame.info of</pre>
                                                               TV radio newspaper sales
                                               Unnamed: 0
                          230.1
                                   37.8
                                                     22.1
                                              69.2
         0
                           44.5
                                   39.3
                                              45.1
                                                     10.4
         2
                           17.2
                                   45.9
                                              69.3
                                                      9.3
                          151.5
                                   41.3
                                              58.5
                                                     18.5
                          180.8
                                              58.4
                                   10.8
                                                     12.9
        195
                     196
                           38.2
                                    3.7
                                              13.8
                                                      7.6
        196
                     197
                           94.2
                                    4.9
                                               8.1
                                                      9.7
        197
                          177.0
                                    9.3
                     198
                                               6.4
                                                     12.8
        198
                     199
                          283.6
                                   42.0
                                              66.2
                                                     25.5
        199
                     200
                         232.1
                                    8.6
                                               8.7
                                                     13.4
```

```
In [8]: data.columns
```

Out[8]: Index(['Unnamed: 0', 'TV', 'radio', 'newspaper', 'sales'], dtype='object')

[200 rows x 5 columns]>

```
In [9]: datal=data.drop(columns='Unnamed: 0')
datal
```

Out[9]:

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [10]: data1.isna().sum()
```

Out[10]: TV 0 radio 0 newspaper 0 sales 0 dtype: int64

```
In [11]: cor=datal.corr()
cor
```

Out[11]:

	TV	radio	newspaper	sales
TV	1.000000	0.054809	0.056648	0.782224
radio	0.054809	1.000000	0.354104	0.576223
newspaper	0.056648	0.354104	1.000000	0.228299
sales	0.782224	0.576223	0.228299	1.000000

```
In [12]: y=data1['sales']
x=data1.drop(columns='sales')
```

In [13]: X

Out[13]:

	TV	radio	newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

200 rows × 3 columns

```
In [14]: y
Out[14]: 0
                 22.1
                 10.4
         2
                 9.3
                18.5
         3
                12.9
                 . . .
         195
                 7.6
                 9.7
         196
         197
                12.8
                25.5
         198
         199
                 13.4
         Name: sales, Length: 200, dtype: float64
In [15]: | from sklearn.model_selection import train test split
         x train, x test, y train, y test =train test split(x,y,test size=0.33,random state=42)
```

Lasso

```
In [18]: lasso=Lasso(alpha=0.01)
    lasso.fit(x_train,y_train)
    y_pred_lasso=lasso.predict(x_test)

In [19]: from sklearn.metrics import r2_score #to know the efficiency of the predicted price
    r2_score(y_test,y_pred_lasso)

Out[19]: 0.8555927456329158

In [20]: from sklearn.metrics import mean_squared_error
    Lasso_Error=mean_squared_error(y_pred_lasso,y_test)
    Lasso_Error

Out[20]: 3.727001722653106

In [21]: results=pd.DataFrame(columns=['Price','Predicted']) #create datafame for price and predicted
    results['Price']=y_test
    results['Price']=y_test
    results['Predicted']=y_pred_lasso
    results['Predicted']=y_pred_lasso
    results['id']=results.index
```

In [22]: results

Out[22]:

	index	Price	Predicted	id
0	95	16.9	16.586103	0
1	15	22.4	21.184946	1
2	30	21.4	21.667103	2
3	158	7.3	10.810215	3
4	128	24.7	22.251471	4
61	97	15.5	15.279738	61
62	31	11.9	11.456759	62
63	12	9.2	11.122240	63
64	35	12.8	16.601060	64
65	119	6.6	6.906611	65

66 rows × 4 columns

In [23]: results["Difference"]=results.apply(lambda x:x.Price-x.Predicted,axis=1)#add the column for difference b/w

In [24]: results

Out[24]:

	index	Price	Predicted	id	Difference
0	95	16.9	16.586103	0	0.313897
1	15	22.4	21.184946	1	1.215054
2	30	21.4	21.667103	2	-0.267103
3	158	7.3	10.810215	3	-3.510215
4	128	24.7	22.251471	4	2.448529
61	97	15.5	15.279738	61	0.220262
62	31	11.9	11.456759	62	0.443241
63	12	9.2	11.122240	63	-1.922240
64	35	12.8	16.601060	64	-3.801060
65	119	6.6	6.906611	65	-0.306611

66 rows × 5 columns

```
In [25]: sns.lineplot(x='id',y='Price',data=results.head(50)) #actual color=blue
sns.lineplot(x='id',y='Predicted',data=results.head(50)) #predicted color=orange
plt.show()
```


In []: