CH365 Chemical Engineering Thermodynamics

Lesson 14
Generalized Correlations for Gases and Liquids

Professor Andrew Biaglow 21 September 2022

Generalized Correlations for Gases Lee-Kesler Method

Byung Ik Lee and Michael Kesler, AIChE Journal, 1975, 21(3), 511-527

Pitzer Correlation

$$Z^0 = 1 + B^0 \frac{P_r}{T_r}$$
 $Z^1 = B^1 \cdot \frac{P_r}{T_r}$ (Eq. 3.60)

Lesson 13, Slide 5 formulas for B⁰ and B¹ eqns. 3.61 and 3.62

Lee-Kesler Modification

$$Z = Z^0 + \frac{\omega}{\omega^{(r)}} \left(Z^{(r)} - Z^0 \right)$$

where

$$Z^1 = \frac{\left(Z^{(r)} - Z^0\right)}{\omega^{(r)}}$$

Lee and Kesler used a modified Benedict-Webb-Rubin EOS:

$$Z = 1 + \frac{B}{V_r} + \frac{C}{V_r^2} + \frac{D}{V_r^5} + \frac{c_4}{T_r^3 V_r^2} \left(\beta + \frac{\gamma}{V_r^2}\right) exp\left(-\frac{\gamma}{V_r^2}\right)$$

Z^(r): calculated for n-octane

B, C, D are functions of T_r (published in the paper) β , γ , c_4 , etc. are constants

Z calculated twice:

 Z^0 : calculated for simple fluids $Z^{(r)}$: calculated for n-octane

Lee-Kesler Method

Tables: Appendix – Tables D.1-D.4, pp. 676-692

Example: Find Z for n-octane at P_r =0.4, T_r =0.9

	Copyright © McGraw-Hill Education. Permission required for reproduction or display.									
			Table	Page 677						
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000		
T_r										
0.30	0.0029	0.0145	0.0290	0.0579	0.1158	0.1737	0.2315	0.2892		
0.35	0.0026	0.0130	0.0261	0.0522	0.1043	0.1564	0.2084	0.2604		
0.40	0.0024	0.0119	0.0239	0.0477	0.0953	0.1429	0.1904	0.2379		
0.45	0.0022	0.0110	0.0221	0.0442	0.0882	0.1322	0.1762	0.2200		
0.50	0.0021	0.0103	0.0207	0.0413	0.0825	0.1236	0.1647	0.2056		
0.55	0.9804	0.0098	0.0195	0.0390	0.0778	0.1166	0.1553	0.1939		
0.60	0.9849	0.0093	0.0186	0.0371	0.0741	0.1109	0.1476	0.1842		
0.65	0.9881	0.9377	0.0178	0.0356	0.0710	0.1063	0.1415	0.1765		
0.70	0.9904	0.9504	0.8958	0.0344	0.0687	0.1027	0.1366	0.1703		
0.75	0.9922	0.9598	0.9165	0.0336	0.0670	0.1001	0.1330	0.1656		
0.80	0.9935	0.9669	0.9319	0.8539	0.0661	0.0985	0.1307	0.1626		
0.85	0.9933	0.9669	0.9319	0.8339	0.0661	0.0983	0.1307	0.1626		
0.83	0.9940	0.9723	0.9430	0.8810	0.7800	0.1006	0.1301	0.1614		
0.93	0.9959	0.9790	0.9573	0.9115	0.8059	0.6635	0.1359	0.1664		
0.95	0.9961	0.9803	0.9600	0.9174	0.8206	0.6967	0.1410	0.1705		
0.97	0.9963	0.9815	0.9625	0.9227	0.8338	0.7240	0.5580	0.1779		
0.98	0.9965	0.9821	0.9637	0.9253	0.8398	0.7360	0.5887	0.1844		
0.99										
1.00	→ ∩									
1.01		=0.7	'8()							
1.02		• • • •								
1.05										
1.10	7 1	=-0.	1115	3						
1.15 1.20	_	 0.	1110	,						
1.30										
1.40	~ >=	-0 4	$\cap \cap$							
1.50	ω -	=0.4	UU							
1.60										
1.70										
	_		^							
1.80 1.90	7	z = Z'	$^{0}+\sigma$	$\sqrt{2}$						
2.00	_		1 4	_						
2.20										
2.40		Λ	700	/ ^	100	11 /	01	110\		
	$= 0.780 + (0.400) \cdot (-0.1118)$									
2.60 2.80				•		, ,		•		
3.00		_								
3.50		$=$ $\sqrt{7}$	353							
4.00			300							
1.00										

Copyright © McGraw-Hill Education. Permission required for reproduction or display. Table D.2: Values of \mathbb{Z}^1 Page 678

			Table D.2. Values of Z			Page 678			
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000	
T_r									
0.30	-0.0008	-0.0040	-0.0081	-0.0161	-0.0323	-0.0484	-0.0645	-0.0806	
0.35	-0.0009	-0.0046	-0.0093	-0.0185	-0.0370	-0.0554	-0.0738	-0.0921	
0.40	-0.0010	-0.0048	-0.0095	-0.0190	-0.0380	-0.0570	-0.0758	-0.0946	
0.45	-0.0009	-0.0047	-0.0094	-0.0187	-0.0374	-0.0560	-0.0745	-0.0929	
0.50	-0.0009	-0.0045	-0.0090	-0.0181	-0.0360	-0.0539	-0.0716	-0.0893	
0.55	-0.0314	-0.0043	-0.0086	-0.0172	-0.0343	-0.0513	-0.0682	-0.0849	
0.60	-0.0205	-0.0041	-0.0082	-0.0164	-0.0326	-0.0487	-0.0646	-0.0803	
0.65	-0.0137	-0.0772	-0.0078	-0.0156	-0.0309	-0.0461	-0.0611	-0.0759	
0.70	-0.0093	-0.0507	-0.1161	-0.0148	-0.0294	-0.0438	-0.0579	-0.0718	
0.75	-0.0064	-0.0339	-0.0744	-0.0143	-0.0282	-0.0417	-0.0550	-0.0681	
0.80	-0.0044	-0.0228	-0.0487	-0.1160	-0.0272	-0.0401	-0.0526	-0.0648	
0.85	-0.0029	-0.0152	-0.0319	-0.0715	-0.0268	-0.0391	-0.0509	-0.0622	
0.90	-0.0019	-0.0099	-0.0205	-0.0442	-0.1118	-0.0396	-0.0503	-0.0604	
0.93	-0.0015	-0.0075	-0.0154	-0.0326	-0.0763	-0.1662	-0.0514	-0.0602	
0.95	-0.0012	-0.0062	-0.0126	-0.0262	-0.0589	-0.1110	-0.0540	-0.0607	
0.97	-0.0010	-0.0050	-0.0101	-0.0208	-0.0450	-0.0770	-0.1647	-0.0623	
0.98	-0.0009	-0.0044	-0.0090	-0.0184	-0.0390	-0.0641	-0.1100	-0.0641	
99	-0.0008	-0.0039	-0.0079	-0.0161	-0.0335	-0.0531	-0.0796	-0.0680	
00	-0.0007	-0.0034	-0.0069	-0.0140	-0.0285	-0.0435	-0.0588	-0.0879	
)1	-0.0006	-0.0030	-0.0060	-0.0120	-0.0240	-0.0351	-0.0429	-0.0223	
)2	-0.0005	-0.0026	-0.0051	-0.0102	-0.0198	-0.0277	-0.0303	-0.0062	
)5	-0.0003	-0.0015	-0.0029	-0.0054	-0.0092	-0.0097	-0.0032	0.0220	
10	0.0000	0.0000	0.0001	0.0007	0.0038	0.0106	0.0236	0.0476	
15	0.0002	0.0011	0.0023	0.0052	0.0127	0.0237	0.0396	0.0625	
20	0.0004	0.0019	0.0039	0.0084	0.0190	0.0326	0.0499	0.0719	
30	0.0006	0.0030	0.0061	0.0125	0.0267	0.0429	0.0612	0.0819	
40	0.0007	0.0036	0.0072	0.0147	0.0306	0.0477	0.0661	0.0857	
50	0.0008	0.0039	0.0078	0.0158	0.0323	0.0497	0.0677	0.0864	
50	0.0008	0.0040	0.0080	0.0162	0.0330	0.0501	0.0677	0.0855	
70	0.0008	0.0040	0.0081	0.0163	0.0329	0.0497	0.0667	0.0838	
30	0.0008	0.0040	0.0081	0.0162	0.0325	0.0488	0.0652	0.0814	
90	0.0008	0.0040	0.0079	0.0159	0.0318	0.0477	0.0635	0.0792	
00	0.0008	0.0039	0.0078	0.0155	0.0310	0.0464	0.0617	0.0767	
20	0.0007	0.0037	0.0074	0.0147	0.0293	0.0437	0.0579	0.0719	
40	0.0007	0.0035	0.0070	0.0139	0.0276	0.0411	0.0544	0.0675	
50	0.0007	0.0033	0.0066	0.0131	0.0260	0.0387	0.0512	0.0634	
30	0.0006	0.0031	0.0062	0.0124	0.0245	0.0365	0.0483	0.0598	
00	0.0006	0.0029	0.0059	0.0117	0.0232	0.0345	0.0456	0.0565	
50	0.0005	0.0026	0.0052	0.0103	0.0204	0.0303	0.0401	0.0497	
4.00	0.0005	0.0023	0.0046	0.0091	0.0182	0.0270	0.0357	0.0443	

Generalized Correlations for Liquids Slide 4

Rackett:
$$V^{\text{sat}} = V_C Z_C^{(1-T_r)^{2/7}}$$
 (Eq. 3.68) $Z^{\text{sat}} = \frac{P_r}{T_r} Z_C^{\left[1+(1-T_r)^{2/7}\right]}$ (Eq. 3.69)

Figure 3.15: Generalized density correlation for liquids.

Lydersen, Greenkorn, and Hougen: $\rho_r \equiv \frac{\rho}{\rho_C} = \frac{V_C}{V} \qquad \text{(Eq. 3.70)}$

Example 3.14

For ammonia at 310 K, estimate the molar volume density of (a) the saturated liquid and (b) the liquid at 100 bar.

experimental:

Part (a) Use Table B.1, Appendix B, pp. 663-665:

$$V^{\text{sat}} = 29.14 \frac{\text{cm}^3}{\text{mol}}$$

(B.1, 665)
$$T_C = 405.7 \text{K} \implies T_r = \frac{310}{405.7} = 0.7641$$

$$(B.1, 665) \quad V_C = 72.5 \frac{cm^3}{mol} \\ (B.1, 665) \quad Z_C = 0.242 \\ \end{pmatrix} \qquad (Eq. 3.68, Rackett) \\ V^{sat} = V_C Z_C^{(1-T_r)^{2/7}} = 72.5 \cdot 0.242^{(1-0.7641)^{2/7}} = 28.35 \frac{cm^3}{mol} \\ \\ = 28.35 \frac$$

Part (b)

 \rightarrow Now use Fig. 3.15 for ρ_r then eq. 3.70 for molar volume

from book;

authors read

reduced density

Example 3.14, part b, continued

 $V^{\text{sat}} = V_C Z_C^{(1-T_r)^{2/7}}$ (Eq. 3.68) Rackett:

$$Z^{\text{sat}} = \frac{P_r}{T_r} Z_C^{\left[1 + (1 - T_r)^{2/7}\right]}$$
 (Eq. 3.69)

Figure 3.15. Generalized density correlation for liquids.

Lydersen, Greenkorn, and Hougen:

$$\rho_{\rm r} \equiv \frac{\rho}{\rho_{\rm C}} = \frac{V_{\rm C}}{V}$$
 (Eq. 3.70)

Example 3.14, continued

For ammonia at 310 K, estimate the molar volume density of (a) the saturated liquid and (b) the liquid at 100 bar.

experimental:

Part (a) Use Table B.1, Appendix B, pp. 663-665:

(B.1, 665)
$$T_C = 405.7 \text{K} \implies T_r = \frac{310}{405.7} = 0.7641$$

$$V^{sat} = 29.14 \frac{cm^3}{mol}$$

$$(B.1, 665) \quad V_{C} = 72.5 \frac{\text{cm}^{3}}{\text{mol}}$$

$$(Eq. 3.68, Rackett)$$

$$V_{C} = 72.5 \frac{\text{cm}^{3}}{\text{mol}}$$

$$V_{C} = 72.5 \frac{\text{cm}^{3}}{\text{mol}}$$

$$V_{C} = 72.5 \cdot 0.242^{(1-0.7641)^{2/7}} = 28.35 \frac{\text{cm}^{3}}{\text{mol}}$$

Part (b)

$$P_{C} = 112.8 \,\text{bar} \implies P_{r} = \frac{100}{112.8} = 0.8865 \implies \rho_{r} = 2.4 \,\text{Use Fig. 3.15}$$

$$\rho_r \equiv \frac{\rho}{\rho_C} = \frac{V_C}{V} \longrightarrow V = \frac{V_C}{\rho_r} \longrightarrow V = \frac{72.5}{2.43} = 29.8 \frac{\text{cm}^3}{\text{mol}}$$

$$\rho_r = 2.43 \text{ from slide 6, Figure 3.15}$$

Homework

Problem 3.58

To a good approximation, what is the molar volume of ethanol vapor at 480 deg C and 6000 kPa? How does this result compare with the ideal gas?

Answer the problem in four parts:

- (a) Lee-Kesler method.
- (b) SRK equation.
- (c) Ideal gas equation.

For comparison: Compare LK and SRK to IG. If either is less than IG, explain why using knowledge of IG behavior.

Online Interpolator Tool for Lee-Kesler Tables:

https://www.ajdesigner.com/phpinterpolation/bilinear_interpolation_equation.php