Math 101 Homework 5

Jeff Carney

February 1, 2017

4.6

(a) WTS glb(S) \leq lub(S). Let g = glb(S) and l = lub(S). Let $s \in$ S. By the definition of a greatest lower bound we know that $g \leq s$. By the definition of a least upper bound we know that $s \leq l$. Combining what we know we have $g \leq s \leq l \Rightarrow g \leq l$. Thus, glb(S) \leq lub(S).

(b) Assume glb(S) = lub(S). Let x = glb(S) = lub(S). From this we can say that S contains only one element, x. This can be proved. We are given that S is nonempty so it must contain at least one element. Let $a \in S$. $glb(S) \le a \le lub(S)$. If glb(S) = lub(S) then glb(S) = a = lub(S). Thus a must be the only element in S.

1

We are given x > 0. WTS $\exists n \in \mathbb{N}$ s.t. $n-1 \le x < n$. Let A be the set of integers s.t. $\forall a \in A, x < a$. By the definition of A we know that it is bounded below by x. We also know by Archimedes Property that $\forall x \in \mathbb{R} \exists n \in \mathbb{N}$ s.t. n > x. Thus, we know that A is non-empty. Given that A is a non-empty set of integers that is bounded below, by the Well Ordering Principle, we know that A has a smallest element. Call this smallest element n. By the way A is defined, we know that x < n. We also know that $n - 1 \le x$ because n - 1 < n and n is the smallest integer in the set of integers greater than x. Combining what we know $n - 1 \le x < n$.

2

We are given that a is an upper bound for a set X. WTS a = lub(X) iff for every $\varepsilon > 0$ there is an element of X in $[a - \varepsilon, a]$.

 (\Rightarrow)

Assume a = lub(X). From this we know that $\forall z < a, \exists y \in X \text{ s.t. } y > z$. Let $z = a - \varepsilon$ where $\varepsilon > 0$, so z < a. But we know that $\forall z < a, \exists y \in X \text{ s.t. } y > z$, thus $y > a - \varepsilon$. Note that y < a because a is an upper bound for X, therefore y must be in $[a - \varepsilon, a]$.

 \checkmark

 (\Leftarrow)

Assume that for every $\varepsilon > 0$ there is an element of X in $[a - \varepsilon, a]$. WTS this implies that any number smaller than a is not an upper bound for X since part 1) of being a least upper bound is satisfied by a being given as an upper bound of X. Let z be any number s.t. z < a. z can be expressed as $z = a - \varepsilon$ for some $\varepsilon > 0$. By our assumption, for every $\varepsilon > 0$ there is an element of X in $[a - \varepsilon, a]$. Thus, $\exists y \in X$ s.t. y is in $[a - \varepsilon, a]$. Any such y will be greater than z, therefore an number smaller than a is not an upper bound for X.