

# Générateurs de Fonctions GX 305 GX 310 - GX 310P GX 320 - GX 320E

#### **Notice de Fonctionnement**



## melcix

Pôle Test et Mesure de CHAUVIN-ARNOUX Parc des Glaisins - 6, avenue du Pré de Challes F - 74940 ANNECY-LE-VIEUX Tél. +33 (0)4.50.64.22.22 - Fax +33 (0)4.50.64.22.00

# **Sommaire**

|                                                          | Chapitre I   |
|----------------------------------------------------------|--------------|
| Instructions Générales                                   |              |
| Introduction                                             |              |
| Contenu du coffret                                       |              |
| Précautions                                              |              |
| Mesures de sécurité                                      |              |
| Garantie                                                 |              |
| Maintenance, vérification métrologique Entretien         |              |
| Littletieit                                              |              |
|                                                          | Chapitre II  |
| Description des GX 305 et GX 310                         | 6            |
| Présentation                                             |              |
| Caractéristiques                                         | <i>6</i>     |
| Face avant, bornes                                       | 6            |
| Face arrière                                             |              |
| Afficheur                                                |              |
| Touches                                                  |              |
| Traitement des appuis courts < 1s                        |              |
| Traitement des appuis longs > 1s                         |              |
|                                                          | Chapitre III |
| Description du GX 320                                    | •            |
| Présentation                                             |              |
| Caractéristiques                                         |              |
| Face avant, bornes                                       |              |
| Face arrière                                             |              |
| Afficheur                                                |              |
| Touches                                                  |              |
| Traitement des appuis courts < 1s                        |              |
| Traitement des appuis longs > 1s                         |              |
|                                                          | Chapitre IV  |
| Commandes Générales                                      | 19           |
| Mise en oeuvre                                           |              |
| en mode Normal                                           |              |
| en mode Version                                          |              |
| en mode Calibration                                      |              |
| en mode Autotest                                         |              |
| Arrêt                                                    | 20           |
| Activation de la sortie MAIN OUT                         |              |
| Réglage du contraste de l'écran                          |              |
| Sélection de la fonction de l'instrument                 |              |
| Affichage de la version du logiciel                      |              |
| Etalonnnage automatique                                  |              |
| Autotest de l'instrument                                 |              |
| Sauvegarde d'une configuration ( <i>GX 320</i> )         |              |
| Rappel d'une configuration ( <i>GX 320</i> )             |              |
| Effacement d'une configuration (GX 320)                  | 30           |
|                                                          | Chapitre V   |
| Génération de signaux périodiques simples « CONTinuous » | 31           |
| Signaux disponibles en sortie                            |              |
| Sélection du signal                                      | 31           |
| Réglage de la fréquence du signal                        |              |
| Réglage du rapport cyclique du signal                    | 35           |
| Réglage de l'amplitude du signal                         |              |
| Réglage de l'offset et niveau DC                         |              |
| Réglage des niveaux logiques du signal                   |              |

|                                                                           | Chapitre VI   |
|---------------------------------------------------------------------------|---------------|
| Fonction Shift Keying « SHIFT K » (GX 320 seulement)                      | 37            |
| Connectique                                                               |               |
| Sélection du mode FSK                                                     |               |
| Sélection du mode PSK                                                     |               |
| Réglage des fréquences de saut (en mode FSK)                              |               |
| Réglage des phases de saut (en mode PSK)                                  |               |
| Autres réglages                                                           |               |
|                                                                           | Chapitre VII  |
| Fonction Balayage de Fréquence « SWEEP »                                  | •             |
| Connectique                                                               |               |
| Sélection du mode balayage                                                |               |
| Sélection de la source balayage                                           |               |
| Réglage des fréquences START / END                                        |               |
| Réglage de la période de balayage en source INTerne                       | 41            |
| Autres réglages                                                           |               |
|                                                                           | Chapitre VIII |
| Fonction Modulation « MODUL » (GX 320 seulement)                          |               |
| Connectique                                                               |               |
| Sélection de la source de modulation                                      |               |
| Sélection du mode AM / FM                                                 |               |
| Réglages des fréquences START / END de la FM                              |               |
| Autres réglages                                                           | 43            |
|                                                                           | Chapitre IX   |
| Fonction Fréquencemètre « FREQ »                                          | 44            |
| Connectique                                                               | 44            |
|                                                                           | Chapitre X    |
| Fonction Synchronisation « SYNC » (GX 320 seulement)                      | •             |
| Connectique                                                               |               |
| Sélection du mode SLAVE / MASTER                                          | 46            |
| Réglage du déphasage                                                      |               |
| Activation de la génération des signaux (MASTER)                          | 47            |
| Autres réglages                                                           |               |
|                                                                           | Chapitre XI   |
| Fonction Porte « GATE » (GX 320 seulement)                                | 1             |
|                                                                           |               |
| Connectique                                                               | 50<br>50      |
| 7.0.174.1011, 2.0040.174.1011 40 6711 2                                   |               |
| Forestion de traine d'impulsione « DUDST » (CV 220 contement)             | Chapitre XII  |
| Fonction de trains d'impulsions « BURST » (GX 320 seulement)  Connectique |               |
| Sélection de la source de BURST                                           |               |
| Réglage du nombre d'impulsions                                            |               |
| Réglage de la période de génération en source INTerne                     |               |
| Déclenchement manuel en source EXTerne                                    |               |
| Autres réglages                                                           |               |
|                                                                           | Chapitre XIII |
| Programmation à distance <i>(appareil programmable seulement)</i>         | 1             |
| i rogrammation a distance (apparen programmable seulement)                |               |
|                                                                           | Chapitre XIV  |
| Caractéristiques Techniques                                               |               |
|                                                                           | Chapitre XV   |
| Caractéristiques Générales, Mécaniques                                    | 60, 61        |
| <u> </u>                                                                  | Chapitre XVI  |
| Fourniture                                                                | 62            |

#### Instructions Générales

#### Introduction

Vous venez d'acquérir un **Générateur de Fonctions GX 305, GX 310** ou **GX 320,** nous vous remercions de votre confiance.

#### Il est livré avec :

- une fiche de sécurité
- un cordon d'alimentation
- un cordon USB A/B pour les versions programmables
- un cordon Ethernet pour les versions programmables
- un CD-ROM contenant :
  - la notice de fonctionnement en 5 langues
  - la notice de programmation en 2 langues
  - les Drivers USB 'CP210x USB to UART Bridge Controller'
  - les Drivers LabView et LabWindows
  - l'application USBxPress (identification port USB)
  - l'application GX320E-Admin (programmation adresse IP)

#### **Précautions**

Pour en obtenir le meilleur service :

- lisez attentivement cette notice.
- respectez les précautions d'emploi.

Le non-respect des avertissements et/ou des instructions d'utilisation peut endommager l'appareil et/ou les installations et se révéler dangereux pour l'utilisateur.

#### Mesures de sécurité

Cet instrument est conforme à la norme de sécurité NF EN 61010-1 - Ed. 2 (2001), relative à la sécurité des appareils électriques de mesurage.

- Il a été conçu pour une utilisation en intérieur, dans un environnement de degré de pollution 2, à une altitude inférieure à 2000 m, une température comprise entre 0°C et 40°C avec une HR (humidité relative) inférieure à 80 % jusqu'à 40°C.
- Les sorties MAIN OUT, SWEEP OUT, TTL OUT sont référencées à la terre et protégées pour des tensions accidentelles appliquées ne dépassant pas 60 VDC ou 40 VAC.
- L'entrée FREQ EXT est uniquement utilisable pour des mesures sur des installations de catégorie I, pour des tensions n'excédant jamais 300 V par rapport à la terre.
- Alimentation secteur : tension 115 V ou 230 V, suivant le modèle.

# définition des catégories d'installation

**CAT I:** La catégorie de mesure I correspond aux mesurages réalisés sur des circuits non reliés directement au réseau.

Exemple : circuits électroniques protégés

**CAT II:** La catégorie de mesure II correspond aux mesurages réalisés sur les circuits directement branchés à l'installation basse tension. *Exemple : alimentation d'appareils ménagers et d'outillage portable* 

**CAT III:** La catégorie de mesure III correspond aux mesurages réalisés dans l'installation du bâtiment.

Exemple : alimentation de machines ou appareils industriels.

**CAT IV:** La catégorie de mesure IV correspond aux mesurages réalisés à la source de l'installation basse tension.

Exemple : arrivées d'énergie

## Instructions Générales (suite)

#### Symboles figurant sur l'instrument



Attention : risque de danger, consultez la notice de fonctionnement.



Tri sélectif des déchets pour le recyclage des matériels électriques et électroniques. Conformément à la directive WEEE 2002/96/EC : ne doit pas être traité comme déchet ménager.



Borne de terre



Signal alternatif



Indication d'une double fonction de la touche pour un appui long (> 1s)



Symbole USB

#### **Garantie**

Ce matériel est garanti contre tout défaut de matière ou vice de fabrication, conformément aux conditions générales de vente, communiquées sur demande

Durant la période de garantie (3 ans), l'appareil ne peut être réparé que par le constructeur, celui-ci se réservant la décision de procéder soit à la réparation, soit à l'échange de tout ou partie de l'appareil. En cas de retour du matériel au constructeur, le transport « aller » est à la charge du client.

La garantie ne s'applique pas suite à :

- l'utilisation inappropriée de l'instrument ou à l'utilisation avec un équipement incompatible
- une ou des modifications apportées à l'instrument sans autorisation explicite des services techniques du constructeur
- l'intervention effectuée sur l'instrument par une personne non agréée par le constructeur
- l'adaptation à une application particulière, non prévue par la définition de l'instrument ou par la notice de fonctionnement
- des dommages dus à un choc, une chute ou une inondation.

#### Maintenance, réparation, vérification métrologique

L'appareil ne comporte aucun élément remplaçable par l'opérateur. Toute opération ne doit être effectuée que par un personnel compétent agréé.

Pour les réparations sous garantie et hors garantie, adressez votre appareil à l'un des Centres Techniques régionaux MANUMESURE, agréés par CHAUVIN ARNOUX.

Renseignements, coordonnées : MANUMESURE - REUX

14130 - PONT L'EVEQUE Tél. 02.31.64.51.55 - Fax 02.31.64.51.09

#### **Entretien**

Aucune intervention n'est autorisée à l'intérieur de l'appareil.

- Mettez l'instrument hors tension (débranchez le cordon d'alimentation).
- Nettoyez-le avec un chiffon humide et du savon.
- N'utilisez jamais de produits abrasifs, ni de solvants.
- Séchez rapidement avec un chiffon ou de l'air pulsé à 80°C max.

Générateurs de Fonctions I - 5

# Description des GX 305 et GX 310

#### **Présentation**

Les **GX 305 et GX 310** sont des générateurs de signaux alternatifs de formes standardisées, utilisant la technologie DDS (Direct Digital Synthesis).

Le **GX 310P** est programmable à distance via USB.

Ils permettent de simuler le fonctionnement et les caractéristiques de systèmes électroniques variés.

Ils intègrent aussi une entrée fréquencemètre.

#### **Caractéristiques**

Forme des signaux : sinus, carré, triangle, logique, TTL, continu

Fréq. des signaux : GX 305 → 0,001 Hz à 5 MHz pour le sinus et le carré

0,001 Hz à 2 MHz pour le triangle

GX 310 → 0,001 Hz à 10 MHz pour le sinus et le carré

0,001 Hz à 2 MHz pour le triangle

Balayage INT et EXT : **GX 305**  $\rightarrow$  paramétrables de 0,001 Hz à 5 MHz

GX 310 → paramétrables de 0,001 Hz à 10 MHz

Fréquencemètre EXT: de 5 Hz à 100 MHz

#### **Face avant**



#### **Bornes**



#### **MAIN OUT**

- Sortie principale

2.



#### **VCF IN**

- Entrée signal de pilotage du SWEEP en source **EXT**erne **SWEEP OUT** 
  - Sortie du signal de pilotage en SWEEP INTerne

3.



#### TTL OUT

- Sortie TTL

4.



#### **FREQ EXT**

- Entrée fréquencemètre

Face arrière

# Description des GX 305 et GX 310 (suite)

# \_\_\_\_\_

GX 305



GX 310 GX 310P



#### **Afficheur**



Générateurs de Fonctions II - 7

## Description des GX 305 et GX 310 (suite)



Sélection du signal:

- sinus
- carré
- logique
- triangle
- continu



Indication de la grandeur affichée :

- Freq, Freq<sub>START</sub> ou Freq<sub>END</sub>
- Time (période de balayage)



Affichage de la fréquence (hauteur du digit : 20 mm)

Soulignement: Indicateur du digit où s'appliquent

les incréments de la roue, lors du réglage.



Affichage des unités

- degré
- MHz, kHz, Hz
- seconde



Sélection de la fonction :

indicateur de la fonction courante

- continue
- balayage
- fréquence



Affichage de la valeur du rapport cyclique



Affichage de la valeur de l'amplitude



Affichage de la valeur de l'offset ou du niveau DC



**OFFSET** Affichage type OFFSET

Affichage type DUTY

**AMPLITUDE** Affichage type AMPLITUDE



HIGH LOW Affichage type niveau HAUT / BAS logique



Sélecteur source INTerne / EXTerne



Affichage de mode de balayage LINéaire / LOGarithmique



Type de balayage en dent de scie, en triangle



Indication que la touche MODE est affectée :

- au lancement du pas de réglage en étalonnage
- au lancement du test sélectionné en Autotest



En étalonnage, la touche



est affectée à la sauvegarde des paramètres.

## Description des GX 305 & GX310 (suite)

#### **Touches**

Les touches avec le sigle « 🖁 » ont une action spécifique en cas d'appui > 1 s.

• Les touches blanches sont rétro-éclairables :

|                 | appareil sous tension, mais éteint       |
|-----------------|------------------------------------------|
| (d)             | appareil allumé                          |
| MAIN OUT ON/OFF | touche allumée → sortie MAIN OUT activée |

• Les autres touches peuvent être :

| FREQ<br>& StartEnd  éteintes | → touches non affectées au réglage de la roue ou sans action |
|------------------------------|--------------------------------------------------------------|
| allumées                     | → le réglage correspondant est affecté à la roue.            |
| clignotantes                 | → le réglage correspondant peut être affecté à la roue.      |

A chaque changement de WAVEFORM ou FUNCTION, les touches pouvant être affectées au réglage de la roue clignotent pendant 4 s ; puis, si aucune touche n'est enfoncée, le réglage de fréquence (Freq ou Freq<sub>START</sub>) est affecté à la roue.

# Traitement des appuis courts (< 1 s)



Sélection signal sinusoïdal



Sélection signal carré ou logique par appuis successifs



Sélection signal triangulaire ou sauvegarde des réglages en étalonnage



Sélection signal continu

#### **MAIN OUT**



Validation, ou non, du signal sur la BNC MAIN OUT



Réglage, par la roue, du rapport cyclique du signal (carré, triangle)



Réglage, par la roue, de l'amplitude du signal de sortie



- Réglage de l'offset par la roue
- Réglage du niveau DC, si le signal continu est sélectionné.

Générateurs de Fonctions II - 9

## Description des GX 305 et GX 310 (suite)

Traitement des appuis courts (< 1 s) (suite)

#### **LOGIC LEVEL**



Forme du signal **LOGIC** sélectionné :

Réglage du niveau haut ou du niveau bas du signal par la roue

#### **FUNCTION**



Touches FUNCTION:

Sélection de l'une des 3 fonctions disponibles



Sélection en **SWEEP**, de la source **INT**erne ou **EXT**erne du signal de commande



Fonction SWEEP activée : sélection du type de balayage LIN ou LOG
 en Etalonnage : lancement du pas de réglage sélectionné

• en Autotest : lancement du test sélectionné



Fonction **SWEEP** activée en **INT** : affectation du réglage de la durée souhaitée pour effectuer le balayage de la fréquence à la roue. Puis, par appuis successifs, sélection du digit où s'applique l'incrément.



Division ou multiplication par 10 de la valeur courante de la fréquence (changement de décade)



- Affectation du réglage de fréquence à la roue.
   Puis, par appuis successifs, sélection du digit où s'applique l'incrément.
- Fonction SWEEP activée : mêmes fonctions avec les fréquences
   Freq<sub>START</sub> et Freq<sub>END</sub>.

# Description des GX 305 et GX 310 (suite)

# Traitement des appuis longs (> 1s)



L'appui long force le rapport cyclique à 50 %.



L'appui long passe d'un affichage de l'amplitude crête-crête (Vpp) à un affichage en valeur efficace (Vrms).



L'appui long force à 0 la valeur de l'offset.

#### **LOGIC LEVEL**



L'appui long affecte le réglage du contraste du LCD à la roue.



Pour la fonction **SWEEP**, l'appui long permet de basculer de Freq $_{\rm START}$  à Freq $_{\rm END}$ , et réciproquement.





Ces touches affectent à la fréquence sélectionnée la valeur de début ou de fin de la gamme courante.

| Gammes                                                                  | Appui long<br>'RANGE-' | Appui long<br>'RANGE+'                              |
|-------------------------------------------------------------------------|------------------------|-----------------------------------------------------|
| [0.001 Hz ; 0.01 Hz]                                                    | 0.001 Hz               | 0.01 Hz                                             |
| [0.01 Hz ; 0.1 Hz]                                                      | 0.01 Hz                | 0.1 Hz                                              |
| [0.1 Hz ; 1 Hz]                                                         | 0.1 Hz                 | 1 Hz                                                |
| [1 Hz ; 10 Hz]                                                          | 1 Hz                   | 10 Hz                                               |
| [10 Hz ; 100 Hz]                                                        | 10 Hz                  | 100 Hz                                              |
| [100 Hz ; 1 kHz]                                                        | 100 Hz                 | 1 kHz                                               |
| [1 kHz ; 10 kHz]                                                        | 1 kHz                  | 10 kHz                                              |
| [10 kHz ; 100 kHz]                                                      | 10 kHz                 | 100 kHz                                             |
| [100 kHz ; 1 MHz]                                                       | 100 kHz                | 1 MHz                                               |
| [1 MHz ; 5 MHz] ( <b>GX 305</b> )<br>[1 MHz ; 10 MHz] ( <b>GX 310</b> ) | 1 MHz                  | 5 MHz ( <b>GX 305</b> )<br>10 MHz ( <b>GX 310</b> ) |

Générateurs de Fonctions II - 11

# Description des GX 320

#### **Présentation**

Le **GX 320** est un générateur de signaux alternatifs de formes standardisées, utilisant la technologie DDS (Direct Digital Synthesis) ; le **GX 320E** est **programmable** à distance via une liaison USB ou ETHERNET.

Ils permettent de simuler le fonctionnement et les caractéristiques de systèmes électroniques variés et intègrent aussi une entrée **fréquencemètre**.

#### Caractéristiques

Forme des signaux : sinus, carré, triangle, logique, TTL, continu
Fréquence des signaux : 0,001 Hz à 20 MHz pour le sinus et le carré

0,001 Hz à 2 MHz pour le triangle - Balayage INT et EXT : paramétrables de 0,001 Hz à 20 MHz

- Fréquencemètre EXT : de 5 Hz à 100 MHz

- Modulation AM : interne (1 kHz) et externe (< 5 kHz)
- Modulation FM : interne (1 kHz) et externe (< 15 kHz)
- Frequency Shift Keying FSK: interne (1 kHz) et externe (< 1 MHz)
- Phase Shift Keying PSK : interne (1 kHz) et externe (< 1 MHz)

- Fonction BURST : interne ou externe (< 1 MHz)

Fonction porte GATE externe (< 2 MHz)</li>
 Fonction de synchronisation de plusieurs générateurs

- Enregistrement et rappel de 15 configurations

#### **Face avant**



#### **Bornes**



#### **MAIN OUT**

- Sortie principale



#### VCG IN

- Entrée des signaux externes de pilotage des fonctions SWEEP, MODUL, SHIFT K, BURST SYNC CTRL
  - Sortie du signal de synchronisation du Maître en fonction SYNC
  - Entrée du signal de synchronisation de l'Esclave en fonction SYNC

#### SWEEP OUT en SWEEP ou SHIFT K source INTerne

- Sortie signal de pilotage du balayage, de la FSK et de la PSK



#### **TTL OUT**

- Sortie TTL

#### SYNC M CLK

- en fonction SYNC, sortie de l'horloge du maître



#### **FREQ EXT**

- Entrée fréquencemètre

#### SYNC S CLK

- en fonction SYNC, entrée de l'horloge de synchronisation de l'esclave

#### **GATE IN**

- Entrée du signal de pilotage du GATE

#### Face arrière

GX 320



**GX 320E** 



#### **Afficheur**



Générateurs de Fonctions III - 13



#### Sélection du signal :

- sinus
- carré
- logique
- triangle
- continu
- indicateur de la forme de signal courante



#### Affichage de la grandeur courante:

- Freq, Freq<sub>START</sub> et Freq<sub>END</sub>
- Phase, Phase<sub>START</sub>, Phase<sub>END</sub>
- Time (période de balayage, période train d'impulsions)
- Num: nombre d'impulsions



Affichage de la fréquence (hauteur digit 20 mm)

Soulignement: Indicateurs du digit où s'appliquent les incréments de la roue, lors du réglage.



#### Affichage des unités :

- degré
- MHz, kHz, Hz
- Seconde



#### Sélection de la fonction :

- continue
- Shift Key
- balayage
- modulation
- fréquencemètre
- synchronisation
- Burst
- Indication de la fonction courante



Affichage de la valeur du rapport cyclique



Affichage de la valeur de l'amplitude



Affichage de la valeur de l'offset ou du niveau DC



Affichage type OFFSET



Affichage type DUTY

AMPLITUDE Affichage type AMPLITUDE

HIGH LOW Affichage type niveau HAUT / BAS logique



Sélecteur source INTerne / EXTerne



Affichage de mode :

- Modulation AM / FM
- Balayage **LIN**éaire / **LOG**arithmique
- Synchro Master / Slave
- Shift key Frequence / Phase



Indication que la touche MODE est affectée :

- au lancement du pas de réglage en étalonnage
- au déclenchement manuel d'un train d'impulsions en BURST
- au lancement du test sélectionné en Autotest



Type de balayage en dent de scie, en triangle



Affichage du taux de modulation AM 20 % ou 80 %



Affichage mode GATE activé



Affichage Synchronisation Maître activé



Affichage Synchronisation Esclave activé



En fonction Synchronisation, indication que le réglage de la fréquence et de la phase sur l'esclave sont bloqués par le maître.



- En étalonnage, la touche est affectée à la sauvegarde des paramètres.
- En mode normal, sélection du mode de sauvegarde de configuration

LOAD

Sélection du mode de rappel de configuration

**ERASE** Sélection du mode d'effacement de configuration

Générateurs de Fonctions III - 15

#### **Touches**

- d Les touches avec le sigle « ☒ » ont une action spécifique en cas d'appui > 1 s.
  - Les touches blanches sont rétro-éclairables :

|                         | appareil sous tension, mais éteint (rouge)                     |
|-------------------------|----------------------------------------------------------------|
| <b>(</b>                | appareil allumé (verte)                                        |
| MAIN OUT ON/OFF         | touche allumée → sortie MAIN OUT activée                       |
| MAIN OUT ON/OFF  Z Gate | touche clignotante → sortie MAIN OUT et fonction GATE activées |

• Les autres touches peuvent être :

| FREQ<br>StantEnd éteintes | → touche non affectée au réglage de la roue ou sans action |
|---------------------------|------------------------------------------------------------|
| allumées                  | → le réglage correspondant est affecté à la roue.          |
| clignotantes              | → le réglage correspondant peut être affecté à la roue.    |

A chaque changement de WAVEFORM ou FUNCTION, les touches pouvant être affectées au réglage de la roue clignotent pendant 4 s ; puis, si aucune touche n'est enfoncée, le réglage de fréquence (Freq ou Freq<sub>START</sub>) est affecté à la roue.

# Traitement des appuis courts (< 1 s)

#### **WAVEFORM**



#### Touches WAVEFORM:

Sélection de la forme du signal à générer



Sauvegarde de la configuration en cours ou sauvegarde des réglages en étalonnage



Rappel ou effacement d'une configuration mémorisée

# Traitement des appuis courts (suite)



Validation ou non du signal sur la BNC MAIN OUT.



Réglage, par la roue, du rapport cyclique du signal (carré, triangle).



Réglage, par la roue, de l'amplitude du signal de sortie.



- Réglage de l'offset par la roue.
- Réglage du niveau DC, si le signal continu est sélectionné.

#### **LOGIC LEVEL**



Forme du signal **LOGIC** sélectionné : réglage du niveau haut ou du niveau bas du signal par la roue.

#### **FUNCTION**



#### Touches FUNCTION:

Sélection de l'une des 7 fonctions disponibles.



Fonctions **SHIFT K**, ou **SWEEP**, ou **MODUL** ou **BURST** activées : sélection de la source **INT**erne ou **EXT**erne du signal de commande.



- Fonctions SHIFT K ou SWEEP ou MODUL ou SYNC activées : sélection d'un mode particulier de la fonction (voir §. Liste des fonctions et réglages).
- Fonction **BURST** et source **EXT**erne activées : déclenchement manuel d'un train d'impulsions.
- en étalonnage : lancement du pas de réglage sélectionné.
- en Autotest : lancement du test sélectionné.



- Fonction SWEEP activée en source INTerne: affectation de la roue au réglage de la durée souhaitée pour effectuer un balayage en fréquence; puis, par appuis successifs, sélection du digit où s'applique l'incrément.
- Fonction BURST activée: affectation de la roue au réglage du nombre d'impulsions ou de la période de génération des salves (source INT); puis, par appuis successifs, sélection du digit où s'applique l'incrément.



Division ou multiplication par 10 de la valeur courante de la fréquence (changement de décade).



- Affectation du réglage de fréquence à la roue, puis par appuis successifs, sélection du digit où s'applique l'incrément
- Fonctions SWEEP ou MODUL FM ou FSK activée : mêmes fonctions avec les fréquences Freq<sub>START</sub> et Freq<sub>end</sub>.



- Fonction **SYNC** activée : réglage, par la roue, du déphasage à introduire entre les deux générateurs.
- Fonction PSK activée : par appuis successifs, réglage de Phase<sub>START</sub> ou Phase<sub>END</sub> par la roue.

Générateurs de Fonctions III - 17

# Traitement des appuis longs (> 1 s)



L'appui long enclenche la fonction GATE.



L'appui long force le rapport cyclique à 50 %.



L'appui long passe d'un affichage de l'amplitude crête-crête (**Vpp**) à un affichage en valeur efficace (**Vrms**).



L'appui long force à 0 la valeur de l'offset.

#### **LOGIC LEVEL**



L'appui long affecte la roue au réglage du contraste du LCD.



Fonction **BURST** activée, source **INT**erne, l'appui long permet de basculer du réglage du nombre d'impulsions **Num** à la période de génération des trains d'impulsions **Time**, et réciproquement.





Affecte, à la fréquence sélectionnée, la valeur de début ou de fin de la gamme courante.

| Gammes               | Appui long<br>'RANGE-' | Appui long<br>'RANGE+' |
|----------------------|------------------------|------------------------|
| [0.001 Hz ; 0.01 Hz] | 0.001 Hz               | 0.01 Hz                |
| [0.01 Hz ; 0.1 Hz]   | 0.01 Hz                | 0.1 Hz                 |
| [0.1 Hz ; 1 Hz]      | 0.1 Hz                 | 1 Hz                   |
| [1 Hz ; 10 Hz]       | 1 Hz                   | 10 Hz                  |
| [10 Hz ; 100 Hz]     | 10 Hz                  | 100 Hz                 |
| [100 Hz ; 1 kHz]     | 100 Hz                 | 1 kHz                  |
| [1 kHz ; 10 kHz]     | 1 kHz                  | 10 kHz                 |
| [10 kHz ; 100 kHz]   | 10 kHz                 | 100 kHz                |
| [100 kHz ; 1 MHz]    | 100 kHz                | 1 MHz                  |
| [1 MHz ; 10 MHz]     | 1 MHz                  | 10 MHz                 |
| [10 MHz ; 20 MHz]    | 10 MHz                 | 20 MHz                 |



Pour les fonctions **SWEEP** ou **MODUL FM** ou **FSK**, l'appui long permet de basculer de Freq<sub>START</sub> à Freq<sub>END</sub>, et réciproquement.

### Commandes Générales

#### Mise en oeuvre



Vérifiez que votre appareil est compatible avec la tension du réseau électrique (voir l'étiquette à l'arrière de l'instrument), que le cordon secteur n'est pas endommagé et qu'il comporte bien une liaison à la terre.

La prise du cordon d'alimentation étant utilisée comme dispositif de sectionnement, connectez l'appareil sur un socle de prises secteur facilement accessible et comportant la terre, pour assurer la sécurité.

Quatre modes de démarrage sont possibles suivant la touche - ou combinaison de touches - enfoncée :

#### 1. Mode Normal:



L'instrument démarre dans la configuration de la dernière mise hors tension. par défaut, la **configuration d'usine** est restaurée.



#### 2. Mode Version:



L'instrument démarre en mode **Version** et affiche le numéro et la date de la version logicielle courante.

La touche devient :



(Voir Affichage de la version du logiciel).

#### 3. Mode Calibration:

#### **FUNCTION**



L'instrument démarre en mode **Calibration** sur la sélection du pas de calibration à lancer : mode automatique CAL\_AU, par défaut.

La touche devient :



(Voir Calibration automatique).

#### 4. Mode Autotest:

#### MAIN OUT



L'instrument démarre en mode **Autotest** sur la sélection du pas de test à lancer: mode automatique <u>tSt\_AU</u>, par défaut.

La touche devient :



(Voir Autotest).

Générateurs de Fonctions IV - 19

#### **Arrêt**



Quel que soit le mode, un appui sur la touche met l'instrument en STANDBY. Dans le cas d'un appui depuis le mode Normal, une sauvegarde du contexte est réalisée :

- paramètres courants utilisés pour la génération du signal au moment de l'arrêt.
- paramètres nécessaires aux autres fonctions, qui peuvent avoir été



La touche devient :

A chaque démarrage en mode Normal, l'ensemble des réglages sont récupérés.



En cas de coupure du secteur (ou débranchement du câble d'alimentation ...), l'instrument redémarre, après un appui sur la touche, avec la dernière sauvegarde réalisée (effectuée lors de la dernière extinction de l'appareil avec la touche ON/STANDBY).

En cas d'erreur, la configuration par défaut est restituée :

Signal sinusoïdal

**Fonction CONT**inuous

Fréquence 1 kHz Amplitude 1 Vpp Offset 0 V

Sortie MAIN OUT ON non active

Aucun réglage affecté à la roue.



La touche devient

#### Activation de la sortie MAIN OUT

Au démarrage, la sortie MAIN OUT est systématiquement désactivée.

## **MAIN OUT**



Un appui sur la touche active la sortie et elle s'allume :

Sur le GX 320 : la touche peut clignoter, lorsque la fonction GATE est activée (voir fonction GATE).

#### **MAIN OUT**



Désactivation de la sortie MAIN OUT, la touche s'éteint :



ON/OFF

Z Gate

# Réglage du contraste de l'écran

#### LOGIC LEVEL





L'affichage devient :





Ajustement de la valeur du contraste de 0 à 99 avec la roue codeuse.

La sortie de ce mode de réglage se fait par l'appui sur une autre touche du clavier. L'affichage de la fréquence est rétabli et les touches associées aux réglages possibles clignotent.

La touche s'éteint :



La valeur du contraste est mémorisée dans la configuration de l'appareil après arrêt de l'instrument (touche ci-contre) ou après une sauvegarde de la configuration (**GX 320**).

# Sélection de la fonction de l'instrument

#### **FUNCTION**



Un premier appui affiche, en haut à droite de l'écran, la liste des fonctions



disponibles sur l'instrument :

Le curseur indique la fonction sélectionnée.

#### **FUNCTION**



Les appuis suivants déplacent ce curseur vers le haut ou le bas pour sélectionner une autre fonction.

Après 2 secondes sans appui sur ces touches ou après un appui sur une autre touche du clavier, la fonction sélectionnée est validée et reste seule affichée :



A la validation de la fonction, les touches, dont les réglages peuvent être affectés à la roue, clignotent jusqu'à la sélection de l'une d'entre elles ; celle-ci s'allume alors.

Si aucun appui n'est effectué dans les 4 secondes qui suivent la validation de la fonction, la roue est automatiquement affectée au réglage de la fréquence (Freq ou Freq<sub>START</sub> suivant la fonction).

Générateurs de Fonctions IV - 21

# Affichage de la version du logiciel





L'écran suivant s'affiche :





Sortie du mode Version.



# Etalonnage automatique

L'appareil dispose d'une fonction automatique qui permet d'étalonner la génération des signaux.

Cette fonctionnalité peut être lancée :

- de facon automatisée (lancement automatique de tous les réglages) ou
- de façon manuelle (sélection et lancement individuel des réglages).

Aucun câblage particulier n'est nécessaire pour réaliser cette fonction.



Pour un étalonnage optimum, l'appareil doit être à la température de fonctionnement (allumé depuis 30 minutes) avant le lancement du réglage. De plus, dans le cas d'une utilisation en mode manuel, il est recommandé de respecter l'ordre de lancement des pas d'étalonnage.

# Entrée en mode Etalonnage

#### **FUNCTION**



L'entrée dans ce mode se fait par défaut sur le mode automatisé CAL.AU. L'affichage est le suivant :



Le passage en mode manuel se fait par la rotation de la roue et la sélection du pas de réglage à lancer individuellement.



Sélection du pas de calibration à lancer :

 CAL.AU : étalonnage automatique (enchaînement automatique de tous les réglages)

CAL.00: annulation des offsets pour les signaux sinus et triangle
 CAL.01: annulation des offsets pour les signaux carré et LOGIC
 CAL.02: calcul des gains pour le réglage de l'offset ou niveau DC

CAL.03 : annulation de l'offset secondaire pour les signaux carré et LOGIC

• CAL.04 : calcul des gains pour le réglage de l'amplitude en sinus, triangle, carré et LOGIC

CAL.05 : étalonnage du rapport cyclique en carré et LOGIC

• CAL.06 : réglage modulation AM et FM externe

• CAL.07: réglage modulation en AM pour les signaux carré et LOGIC

# Lancement des réglages



L'appui, lance l'étalonnage automatique ou le pas de réglage sélectionné. L'affichage devient :



en automatique (puis défilement de tous les réglages) ou



en mode manuel.

A la fin de l'exécution, deux situations se présentent : le réglage est réussi ou a échoué.

En cas de réussite, l'affichage devient :



L'item confid indique que les paramètres de réglages sont susceptibles d'avoir changé et qu'une sauvegarde en mémoire est possible.

Générateurs de Fonctions IV - 23

En cas d'erreur, l'étalonnage automatique s'arrête au pas de réglage posant problème, on bascule alors en mode manuel.

L'affichage devient :



En cas d'erreur répétée, consultez votre agence MANUMESURE (voir p. 5).





L'appui permet de sauvegarder l'étalonnage.



L'affichage confis disparaît une fois la sauvegarde effectuée. Il réapparaît dès que l'étalonnage est modifié.

# Sortie du mode Etalonnage



La sortie de ce mode se fait par la touche ci-contre.



Pour conserver le réglage effectué, il faut faire une sauvegarde des données (voir ci-dessus) avant la sortie du mode, sinon les réglages sont perdus et les anciens paramètres restitués au redémarrage.

# Autotest de l'instrument

L'appareil dispose d'une fonction de test automatique de son électronique. Cette fonctionnalité peut être lancée de façon automatisée (lancement automatique de tous les tests) ou de façon manuelle (sélection et lancement individuel des tests).

#### Câblage nécessaire

Ces tests nécessitent un câblage particulier des entrées/sorties de l'appareil. Deux câblages sont nécessaires.

Ils sont indiqués, au besoin, par les messages suivants :





Une fois le câblage réalisé, l'appui sur la touche permet de continuer le test.

Générateurs de Fonctions IV - 25

# Entrée en mode AUTOTEST

#### **MAIN OUT**



(GX 305/310)

#### **MAIN OUT**



(GX 320)

L'entrée dans ce mode se fait par défaut sur le mode automatisé tSt.AU. L'affichage est le suivant :



Le passage en mode manuel se fait par la rotation de la roue et sélection du pas de test à lancer individuellement.



Sélection du pas de test à lancer :

- tSt.AU: test automatique (enchaînement automatique de tous les tests)
- tSt.00: test LCD (défilement affichage tous segments, segments pairs, segments impairs par appui sur touche MODE)
- tSt.01 : test clavier et éclairage touches



#### Câblage n°1 nécessaire :

- tSt.02 : test fréquencemètre
- tSt.03 : test entrée GATE IN (GX 320)
- tSt.04: test entrée CTRL IN en fonction SYNC (GX 320)
- tSt.05: test modulation FM (GX 320)
- tSt.06: test AM externe (GX 320)
- tSt.07: test pilotage Reset DDS
- **tSt.08** : test pilotage registre FS du DDS (commutation fréquences)
- tSt.09: test pilotage registre PS du DDS (commutation phases)
- tSt.10: test rapport cyclique en triangle

#### Câblage n°2 nécessaire :

- tSt.11: test sortie CTRL OUT en fonction SYNC (GX 320)
- tSt.12: test sortie SWEEP OUT

#### Lancement des tests

(GX 305/310) MODE

L'appui lance le test automatique ou le pas de test sélectionné. L'affichage devient :





en automatique (puis défilement de tous les tests) ou



en mode manuel.

A la fin de l'exécution, 2 situations se présentent : le test a réussi ou a échoué.

En cas de réussite, l'affichage devient :



en automatique ou



en manuel.

En cas d'erreur, le test automatique s'arrête au pas de test posant problème, on bascule alors en mode manuel. L'affichage devient :



En cas d'erreur répétée, consultez votre agence MANUMESURE (voir p. 5).

#### Sortie de l'AUTOTEST



La sortie de ce mode se fait par la touche ci-contre.

Elle interrompt le test en cours et bascule l'appareil en STANDBY, la touche

devient :

Générateurs de Fonctions IV - 27

Sauvegarde d'une configuration (GX 320)

Le **GX 320** permet de sauvegarder et de rappeler des configurations d'utilisation.

Au total, 15 fichiers peuvent être sauvegardés sur l'appareil.

Cette sauvegarde est permanente (les données sont conservées, même si l'appareil est mis hors tension).



Entrée dans le mode de gestion de configuration.

em CONFIG s'affiche à l'écran ainsi que le numéro du fichier courant :



lsi le fichier 3 est vide ;



si le fichier 3 contient déjà une

configuration, les données contenues (autre que fréquence) sont affichées à l'écran.

Un appui sur une touche autre que ou permet de sortir du mode sans changement.



Sélection d'un fichier « SEt.01 à SEt.15 ». L'écran est mis à jour, le cas échéant, avec les données contenues dans le fichier.



Un nouvel appui sauvegarde la configuration courante dans le fichier sélectionné.

Retour à l'affichage précédent la sauvegarde, effacement de l'item





Lors de la sauvegarde, le contenu du fichier sélectionné est écrasé sans préavis par les données de configuration courantes.

Rappel d'une configuration (GX 320)

Avec le GX 320, vous pouvez rappeler 16 configurations enregistrées :

- 15 configurations utilisateur,
- plus la configuration par défaut (dite « d'usine », voir §. Arrêt).



Entrée dans le mode de rappel de configuration.

L'item config s'affiche à l'écran ainsi que le numéro du fichier courant :



si le fichier 3 est vide.



si le fichier 3 contient une configuration

non nulle, les données contenues (autre que la fréquence) sont affichées à l'écran.

Un appui sur une touche autre que permet de sortir du mode sans changement de réglages.



Sélection d'un fichier « SEt.00 à SEt.15 » (Set.00 est la configuration usine). L'écran est mis à jour, le cas échéant, avec les données contenues dans le fichier sélectionné.



Un nouvel appui rappelle la configuration contenue dans le fichier sélectionné.

Si le fichier est vide ou incohérent, l'opération est annullée :

- pas de modification des paramètres présents avant le rappel de configuration,
- retour à l'affichage initial.

Si le fichier sélectionné est valide, la configuration contenue est chargée et l'affichage est mis à jour avec ces données.

L'item COAFIG disparaît indiquant la sortie du mode rappel de configuration.

Générateurs de Fonctions IV - 29

Effacement d'une configuration (GX 320)

L'effacement d'un fichier de configuration utilisateur (Set.01 à Set.15) n'est autre que la sauvegarde de la configuration nulle dans ce fichier.

Cette configuration se traduit par l'affichage unique du numéro de fichier lors de la sélection du fichier.

Le rappel de la configuration nulle est sans effet (les paramètres sont inchangés avant et après le rappel).

Il n'est pas utile d'effacer un fichier avant d'effectuer une sauvegarde de configuration, la sauvegarde écrasant les données présentes dans le fichier.



Entrée dans le mode de gestion de configuration.

L'item config s'affiche à l'écran ainsi que le numéro du fichier courant :



si le fichier 3 est vide



si le fichier 3 contient déjà une

configuration, les données contenues (autre que fréquence) sont affichées à l'écran.

Un appui sur une autre touche que sans changement.





permet de sortir du mode



Sélection du mode d'effacement du fichier.

L'item ERASE s'ajoute au précédent :



Un nouvel appui sur la touche désélectionne le mode effacement.



Sélection d'un fichier « SEt.01 à SEt.15 ». L'écran est mis à jour, le cas échéant, avec les données contenues dans le fichier sélectionné.



Un nouvel appui, sauvegarde la configuration nulle dans le fichier sélectionné et provoque le retour à l'affichage de la configuration courante.

Les items et ERASE disparaissent de l'écran.

## Génération de signaux périodiques simples « CONTinuous »

# Signaux disponibles en sortie

L'instrument génère les signaux suivants :



#### Sélection du signal

#### GX 305/310



Signal sinusoïdal



Signal carré Signal de sortie logique



Signal triangulaire



Signal continu

Après chaque appui, le symbole apparaît à l'écran et les boutons, dont les réglages peuvent être affectés à la roue, clignotent.

#### **GX 320**

#### **WAVEFORM**

Un 1<sup>er</sup> appui affiche en haut à gauche de l'écran la liste des signaux disponibles :







Le curseur indique la forme de signal courante.

#### **WAVEFORM**







Les appuis suivants permettent de déplacer ce curseur vers le haut ou le bas pour sélectionner une autre forme de signal.

Après 2 secondes sans appuis sur ces touches ou après un appui sur une autre touche du clavier, le signal sélectionné est validé et reste seul affiché :



A la validation du signal, les touches, dont les réglages peuvent être affectés à la roue, clignotent jusqu'à la sélection de l'une d'entre elles ; celle-ci s'allume alors.

Si aucun appui n'est effectué dans les 4 s qui suivent la validation de la forme du signal, la roue est automatiquement affectée au réglage de la fréquence (Freq ou Freq<sub>START</sub>).

Générateurs de Fonctions V - 31

Réglage de la fréquence du signal

La fréquence se règle en deux temps :

- Saisie des 5 digits significatifs
- Positionnement du point décimal et du multiple de l'unité

# Saisie des 5 chiffres significatifs

La roue codeuse et la touche ci-contre permettent la saisie des 5 chiffres significatifs.



Affecte le réglage de la fréquence à la roue. La touche s'allume :



Ajustement de la valeur.



Par appuis successifs, sélection du digit à partir duquel sont ajoutés les incréments de la roue.

Par défaut, le digit à partir duquel s'appliquent les incréments est celui des unités (extrême droite). Ce réglage est programmé à chaque démarrage de l'instrument.

#### Positionnement du point décimal et du multiple de l'unité



Les touches ci-contre positionnent le point décimal et le multiple de l'unité.

# Raccourcis de saisie



Affecte la valeur minimale de la gamme courante (voir Traitement des appuis longs (> 1s) dans §. Description du **GX 3x0**).



Affecte la valeur maximale de la gamme courante (voir Traitement des appuis longs (> 1s) dans §. Description du **GX 3x0**).

Exemple 1: La roue n'est affectée à aucun réglage (touche FREQ éteinte ou clignotante),

la valeur courante de la fréquence est



On souhaite saisir :



#### Possibilité n°1



La touche FREQ s'allume :



L'affichage montre :



L'affichage devient:





L'affichage devient :





L'affichage devient:





L'affichage devient:





L'affichage devient:



#### Possibilité n°2



La touche FREQ s'allume :



L'affichage devient :



L'affichage devient :



Générateurs de Fonctions V - 33



L'affichage devient :





L'affichage devient :





L'affichage devient :





L'affichage devient :



#### Possibilité n°3



La touche FREQ





L'affichage montre :





L'affichage devient :



Exemple 2:

La roue n'est affectée à aucun réglage (touche FREQ éteinte),



la valeur courante de la fréquence es

On souhaite saisir





La touche FREQ s'allume :



L'affichage devient :



Réglage du rapport cyclique du signal

Le rapport cyclique n'est ajustable que pour les signaux carré, logique ou triangulaire dans la fonction « **CONT**inuous ».

Il existe des limitations à ce réglage selon la fréquence du signal.

| Signal           | Fréquence                                                                                               | Domaine de variation                  |
|------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|
| Carré<br>Logique | ≤ 200 kHz<br>200 kHz < F ≤ 1 MHz<br>F > 1 MHz                                                           | 10 à 90 %<br>20 à 80 %<br>50 %        |
| Triangle         | $F < 0.2Hz$ $0.2Hz \le F \le 1 \text{ kHz}$ $1 \text{ kHz} < F \le 10 \text{ kHz}$ $F > 10 \text{ kHz}$ | 50%<br>10 à 90 %<br>30 à 70 %<br>50 % |



Affectation du rapport cyclique à la roue. La touche s'allume :





Ajustement de la valeur.



Mise à 50 % de la valeur du rapport cyclique.



Le rapport cyclique est limité par la fréquence, la rotation de la roue peut être sans effet.

# Réglage de l'amplitude du signal



Les indications d'amplitude sont données en circuit ouvert. Sous 50  $\Omega$ , les amplitudes sont divisées par 2.





Affectation du réglage de l'amplitude à la roue. La touche s'allume :





Ajustement de la valeur en Vpp ou Vrms suivant affichage sélectionné.

#### Affichage Vpp/Vrms



Bascule de l'affichage Vpp à l'affichage Vrms, et réciproquement

Le domaine de variation est de 0 à 20 Vpp en circuit ouvert.



La somme tension continue + tension alternative ne peut être  $> \pm 10 \text{ V}$ .

Générateurs de Fonctions V - 35

# Réglage de l'offset et niveau DC



Affectation du réglage de l'offset à la roue. La touche





Ajustement de la valeur.

Le domaine de variation est de -10 V à +10 V max. en circuit ouvert.



Force à 0 de la valeur de l'offset.



La somme tension continue + tension alternative ne peut être  $> \pm 10 \text{ V}$ .

# Réglage des niveaux logiques du signal

Cette fonctionnalité est accessible uniquement lorsque la forme du signal choisie est « **LOGIC** ».



Affectation du réglage du niveau bas du signal logique à la roue.

La touche s'allume.

Affichage du message "Adj.LO" à la place de la valeur de la fréquence :





Par appuis successifs, sélection du niveau haut ou bas, affichage de "Adj.HI" pour le réglage niveau haut :





Ajustement de la valeur sélectionnée.

Le domaine de variation de ces niveaux est de -10 V à +10 V par pas de 100 mV.



Le niveau haut est toujours supérieur ou égal au niveau bas.

## Fonction Shift Keying « SHIFT K » (GX 320, seulement)

La fonction « SHIFT KEY » peut travailler avec la fréquence (FSK) ou avec la phase du signal (PSK) :

 - La « FSK » est une commutation de fréquences, pilotée en INTerne ou EXTerne : basculement de Freq<sub>START</sub> à Freq<sub>END</sub>, et réciproquement.



#### FSK INTerne:

Voie1: MAIN OUT

Voie2: VCG IN Sweep out

- La « **PSK** » est un saut de phase de valeur Phase<sub>START</sub> et Phase<sub>END</sub>, piloté par un signal de commande qui peut être **INT**erne ou **EXT**erne.



#### PSK INTerne:

Voie1: MAIN OUT

Voie2: VCG IN Sweep out

A chaque changement d'état du signal, la valeur de phase programmée ( $Phase_{START}$  ou  $Phase_{END}$ ) est ajoutée à la phase courante du signal.

- En source **INT**erne, le signal de commande a une fréquence fixée à 1 kHz. Il est possible de le visualiser sur la sortie **SWEEP OUT** du générateur.
- En source **EXT**erne, le signal de pilotage est un signal TTL (0 5 V) de fréquence < 1 MHz, introduit sur l'entrée **VCG IN** du générateur.

#### Connectique



#### Sélection mode FSK



Par appuis successifs, sélection du mode « F » (Fréquence).

#### Sélection mode PSK



Par appuis successifs, sélection du mode « P » (Phase).

# Sélection de la source de pilotage



Par appuis successifs, sélection de la source :



Générateurs de Fonctions VI - 37

## Fonction Shift Keying « SHIFT K » (suite)

#### Réglage des fréquences en mode FSK





Affichage de Freq<sub>START</sub> et affectation du réglage à la roue.

La touche s'allume :



Affichage de Freq<sub>END</sub> et affectation du réglage à la roue.

La touche s'allume :



Par appuis successifs, sélection du digit à partir duquel s'applique l'incrément.



Ajustement de la valeur sélectionnée.



Passage du réglage de Freq<sub>START</sub> à Freq<sub>END</sub>.

#### Réglage des phases en mode PSK



Affectation du réglage Phase<sub>START</sub> à la roue.

La touche s'allume:



Affectation du réglage Phase<sub>END</sub> à la roue.

La touche s'allume :





Ajustement de la valeur sélectionnée.

Le domaine de variation des phases est de -180° à + 180° par pas de 1°.



Par appuis successifs, affectation du réglage de Phase<sub>START</sub> ou Phase<sub>END</sub>, à la roue.



Force à 0, la phase en cours de réglage.

#### **Autres réglages**

Voir fonction « CONT ».

## Fonction Balayage de Fréquence « SWEEP »

Le « **SWEEP** » est un balayage de fréquence de Freq<sub>START</sub> à Freq<sub>END</sub> piloté :

- soit en INTerne, par le générateur en suivant une loi linéaire ou logarithmique et une variation en dent de scie ou en triangle
   L'utilisateur peut choisir une période de balayage de 10 ms à 100 s.
- soit en **EXT**erne, par une consigne de tension ± 10 V appliquée sur l'entrée VCF IN (**GX 305/310**) ou VCG IN (**GX 320**) de fréquence < 15 kHz.
- Suivant les valeurs de Freq<sub>START</sub> et Freq<sub>END</sub>, le balayage de fréquence se fait dans l'ordre croissant ou décroissant.

#### Remarques

En **SWEEP EXT**erne, une lecture du niveau du signal de consigne est réalisée à une fréquence de 60 kHz. Cette amplitude (codée sur 256 valeurs) est alors convertie en fréquence.

En **SWEEP INT**erne, le balayage se fait au maximum sur 256 valeurs.

#### Connectique



## Sélection du mode de balayage



→ Par appuis successifs, sélection d'un des modes de balayage suivants :

#### en source INTerne, séquence d'affectation



Générateurs de Fonctions VII - 39

### Fonction Balayage de Fréquence « SWEEP » (suite)

En source EXTerne, séquence d'affectation

| Affichage | Description                                                                    | Voie 1 :  MAIN OUT(F <sub>start</sub> = 1 kHz, F <sub>end</sub> = 100 kHz  Voie 2 :  Modulant: SINUS, 1 kHz, 10Vpp |
|-----------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| LIN LOG   | Loi linéaire entre le<br>signal de commande<br>et la fréquence<br>générée      |                                                                                                                    |
| LIN LOG   | Loi logarithmique entre<br>le signal de commande<br>et la fréquence<br>générée |                                                                                                                    |

en source INTerne

→ Un signal **SWEEP OUT** est disponible sur la BNC **VCF IN (GX 305/310)** ou VCG IN (GX 320).

Il s'agit d'un signal proportionnel à la fréquence générée, d'amplitude de 0 à 2 V.

en source EXTerne

→ La fréquence de sortie générée est proportionnelle (en suivant une loi linéaire ou logarithmique) à la tension introduite sur VCF IN (GX 305/310) ou VCG IN (GX 320).

Le signal de commande est échantillonné sur 8 bits avec une fréquence de 60 kHz.

→ Pour -10 V : la fréquence de sortie F ≅ Freq<sub>START</sub> Pour 10 V : F ≅ Freq<sub>END</sub>

Sélection de la source balayage



Par appuis successifs, sélection de la source INTerne





Réglage des fréquences START / END



Affichage de Freq<sub>START</sub> et affectation du réglage à la roue.





Affichage de Freq<sub>END</sub> et affectation du réglage à la roue.





Par appuis successifs, sélection du digit à partir duquel s'applique l'incrément.



Ajustement de la valeur sélectionnée.



Passage du réglage de Freq<sub>START</sub> à Freq<sub>END</sub>.

## Fonction Balayage de Fréquence « SWEEP » (suite)

### Réglage de la période de balayage en source INTerne



Affichage de la période de (Time) et affectation de la roue au réglage.

La touche s'allume :



Par appuis successifs, sélection du digit où s'applique l'incrément.



Ajustement de la valeur avec la roue.

#### **Autres réglages**

Voir fonction « CONT ».

Générateurs de Fonctions VII - 41

### Fonction Modulation « MODUL » (GX 320, seulement)

La fonction « MODUL » fait évoluer une porteuse en fréquence (FM) ou en amplitude (AM).

Le signal modulant peut être soit :

- interne à l'appareil (source INTerne, signal sinusoïdal de 1 kHz)
- introduit sur l'entrée VCG IN, dans le cas de la source EXTerne.

Les caractéristiques de la porteuse sont définies comme dans la fonction « CONT ».

En source **EXT**erne, le signal introduit doit avoir une amplitude de  $\pm$  10 Vpp et une fréquence < 15 kHz (FM) et < 5 kHz (AM).

Suivant la tension, la modulation est la suivante :

- en AM: l'amplitude du signal de sortie est typiquement

100 % pour -10 V 50 % pour 0 V nulle pour 10 V

- en **FM** : la fréquence du signal de sortie est typiquement

Freqstart pour -10 V (Freqstart + Freqend)/2 pour 0 V Freqend pour +10 V

#### Remarques

 En AM: avec les signaux LOGIC et carré, la modulation est numérique: une lecture du niveau du signal modulant est réalisée à la fréquence de 150 kHz. Cette amplitude (256 valeurs) pilote l'amplitude du signal de sortie.

Pour les autres formes de signaux, cette modulation est analogique, et le signal modulant ne peut excéder 5 kHz.

- En **AM**: avec les signaux **SINUS** et **TRIANGLE**, la sortie TTL OUT n'est pas disponible
- En FM: la modulation est numérique: une lecture du niveau du signal modulant est réalisée à la fréquence de 65 kHz.
   Cette amplitude (256 valeurs) est alors convertie en fréquence.

#### Connectique



## Sélection de la source de modulation



Par appuis successifs, sélection de la source INTerne



## Fonction Modulation « MODUL » (GX 320 seulement, suite)

#### Sélection du mode modulation AM/FM



Par appuis successifs, sélection d'un des modes de modulation suivant :

#### source INTerne

| Affichage | Description                          |  |
|-----------|--------------------------------------|--|
| 20% AM FM | Modulation de<br>l'amplitude de 20 % |  |
| 20% AM FM | Modulation de<br>l'amplitude de 80 % |  |
| AM FM     | Modulation de fréquence              |  |

#### source EXTerne

| Affichage | Description               |   |
|-----------|---------------------------|---|
| AM FM     | Modulation<br>d'amplitude |   |
| AM FM     | Modulation de fréquence   | 7 |

#### Réglage fréquences START / END en FM



Affichage de Freq<sub>START</sub> et affectation du réglage à la roue.





Affichage de Freq<sub>END</sub> et affectation du réglage à la roue.

La touche s'allume :



Par appuis successifs, sélection du digit à partir duquel s'applique l'incrément.



ajustement de la valeur sélectionnée.



Passage du réglage de Freq<sub>START</sub> à Freq<sub>END</sub>.

#### **Autres réglages**

Voir fonction « CONT ».

Générateurs de Fonctions VIII - 43

## Fonction Fréquencemètre « FREQ »

La sélection de la fonction « FREQ » active la mesure de fréquence du signal introduit sur l'entrée FREQ EXT.



Le fréquencemètre permet de mesurer des fréquences de 5 Hz à 100 MHz, avec une sensibilité :

- < 50 mV efficace pour F ≤ 30 MHz
- < 60 mV efficace pour 30 MHz < F ≤ 80 MHz
- < 90 mV efficace pour 80 MHz < F ≤ 100 MHz

L'amplitude max. (\*) des signaux mesurés est :

300 V efficace de 5 Hz à 5 kHz

30 V efficace de 5 kHz à 1 MHz

10 V efficace au-delà

 $(\sp{*})$  signal avec un rapport cyclique à 50 %.

Le temps de stabilisation de la mesure dépend de la fréquence introduite :

- $\leq$  1 s de 5 à 20 Hz ( $\geq$  1 mesure par seconde)
- ≤ 100 ms de 20 à 400 Hz (2 mesures par seconde)
- ≤ 40 ms de 400 Hz à 100 MHz (2 mesures par seconde)

Indication de la protection 300 V (50 - 60 Hz) CAT I

#### Connectique



La fonction « SYNC » permet de synchroniser plusieurs GX 320 montés « en cascade », afin de réaliser un générateur de signaux multiples à phase variable.

La résolution en fréquence de cette fonction est : 37 mHz, la fréquence d'horloge du DDS étant fixée à 10 MHz.

Pour limiter l'effet de l'échantillonnage, la fréquence maximale du signal de sortie est fixée à 100 kHz.

Le générateur utilisé comme « Maître » fournit aux autres appareils « Esclaves » l'horloge (**Clk**) utilisée pour la génération des signaux (10 MHz), ainsi qu'un signal de synchronisation (**Ctrl**). Cela permet à tous les générateurs de démarrer en même temps et de maîtriser leur déphasage.

#### Connectique

Signal de contrôle (Ctrl): Reliez les BNC VCG IN des esclaves à celle du

maître.

Signal d'horloge (CIk): Reliez les BNC FREQ\_EXT des esclaves à la BNC

TTL OUT du maître.

Master

Slave1



Slave2

(m)

Lors de la génération des signaux, le débranchement de l'un des câbles Ctrl ou Clk provoque une désynchronisation des générateurs.

Pour les synchroniser à nouveau, utilisez la touche 'MAIN OUT ON/OFF' du maître pour désactiver et réactiver la génération des signaux.

Générateurs de Fonctions X - 45

## Sélection du mode Slave / Master



Par appuis successifs, sélection du mode S (Slave) :



#### ou M (Master):



## Réglage du déphasage

Le réglage du déphasage peut se faire sur le maître et sur l'esclave (s'il n'est pas verrouillé). Quelque soit le mode retenu (M/S), le déphasage saisi est celui du ou des esclaves par rapport au maître.

Le déphasage saisi sur le maître s'applique à tous les esclaves, tandis que celui saisi sur l'esclave lui est propre :

Déphasage (esclave/maître) = déphasage saisi<sub>maître</sub> + déphasage saisi<sub>esclave</sub>



Affichage du déphasage et affectation du réglage à la roue codeuse.





Ajustement de la valeur.

La phase est exprimée en degré et peut prendre les valeurs de -180°C à +180°C, par pas de 1°.

La phase en mode Master est inversée par rapport à celle en mode Slave.



Force la phase à 0°

Activation de la génération des signaux (Maître)



Sur le maître, tous les réglages sont possibles, en temps réel, car pour chaque modification, le maître commande une nouvelle synchronisation de tous les appareils.

Cela n'étant pas possible sur les esclaves, les changements de forme de signal, de fréquence ou de phase ne sont donc pas possibles, lorsque la génération des signaux est activée. Par contre, l'amplitude et l'offset, n'agissant pas sur la synchronisation, restent ajustables dans tous les cas.

On dit alors que l'esclave est verrouillé : l'item apparaît sur les esclaves en haut à droite de l'écran.

Pour pouvoir changer la forme de signal, la fréquence ou la phase sur l'esclave, il faut arrêter la génération des signaux sur le maître avec la touche 'MAIN OUT ON/OFF' de ce dernier.

#### **MAIN OUT**



#### sur le Maître :

- Activation de la sortie MAIN OUT et activation de la génération des signaux sur tous les appareils dont la sortie MAIN OUT est activée.

La touche du maître s'allume :



- Verrouillage des Esclaves : la sélection de la forme de signal et les réglages de fréquence et de phase ne sont plus possibles sur ces derniers.

L'écran des esclaves voit apparaître l'item comme ci-dessous :



#### sur les Esclaves :

- Activation de la sortie **MAIN OUT** associée (la sortie effective du signal n'est possible que si la génération des signaux est activée sur le maître).

La touche de l'eclave s'allume :



#### **MAIN OUT**



#### sur le Maître :

 Désactivation de la sortie MAIN OUT et arrêt de la génération des signaux sur tous les appareils.

La touche du maître s'éteint :



 Le maître libère les esclaves : la sélection de la forme de signal et les réglages de fréquence et de phase sont à nouveau possibles sur ces derniers.

L'item disparaît sur les esclaves.

<u>sur les Esclaves</u> : désactivation de la sortie MAIN OUT associée.

La touche de l'esclave s'éteint :



**Autres réglages** 

Voir fonction « CONT ».

Générateurs de Fonctions X - 47

#### Exemple 1: Génération de signaux triphasés

Connectez les trois *GX 320* comme indiqué plus haut (voir §. Connectique), identifiez un maître et 2 esclaves et, sur les 3 appareils, programmez :

- la même fréquence 1 kHz,
- la même amplitude 10 Vpp
- le même offset 0 V
- la même forme de signal sinus
- les phases 0°(maître), +120°et -120°.

Activez les 3 sorties MAIN OUT.

Observez, sur un oscilloscope, les signaux de sortie des 3 appareils :



Voie 1: maître (0°)

Voie 2: esclave1 (120°)

Voie 3: esclave2 (-120°)

### Exemple 2 : Synthétisation de Fourier

Une illustration simple de la synchronisation des générateurs est la synthétisation d'un signal carré à partir de ses premières harmoniques.

Le signal carré se décompose de la façon suivante :

$$f(x) = 4/\pi \left( \sin x + \sin 3x / 3 + \sin 5x / 5 + \sin 7x / 7 + \dots \sin nx / n + \dots \right)$$
 avec n toujours impair.

Pour parvenir à synchroniser des fréquences multiples, il faut que les valeurs programmées dans le DDS soient effectivement multiples.

Nous sommes confrontés ici, aux problèmes d'arrondis de calcul et de résolution de programmation : il est fort probable que l'entrée directe de F sur le maître et n\*F sur l'esclave ne conduise pas à des signaux synchrones.

En effet, le DDS se programme au travers d'un registre de 28 bits et est piloté par une horloge de 10 MHz (dans la fonction **SYNC**).

La résolution en fréquence du DDS est donc, pour cette fonction, de : 10 MHz /  $2^{28}$  = 0,037 Hz, ce qui veut dire que pour une fréquence F saisie, la fréquence résultante est F  $\pm$  18,5 mHz.

La formule reliant la fréquence saisie par l'utilisateur à la valeur programmée dans le DDS est la suivante :

$$Val_{DDS} = ENT((Fréquence_{(Hz)} \times 2^{28}) / DDS\_Clock + 0,5)$$

avec : ENT() fonction retournant la partie entière de la valeur DDS\_Clock = 10 MHz,

l'ajout de 0,5 servant à l'arrondi de la valeur.

Ainsi, lorsque vous programmez une fréquence de 100 Hz, la valeur programmée est :

 $ENT((100*2^{28})/10^7 + 0.5) = 2684$  ce qui équivaut en fait à une fréquence de 99.987 Hz (obtenue par calcul inverse).

Si vous souhaitez programmer une fréquence multiple n\*100 Hz synchrone, il faut saisir une fréquence qui conduise à une valeur programmée dans le DDS de l'appareil égale à n\*2684, soit une fréquence réelle égale à n\*99.987 Hz.

Dans notre exemple, nous allons générer un signal carré de 100 Hz à partir de ses 3 premières harmoniques : 3 sinusoïdes de fréquence 100 Hz, 300 Hz et 500 Hz et d'amplitude A, A/3 et A/5.

Pour cet exemple, 3 générateurs GX 320 sont nécessaires :

- un Maître: sur lequel on sélectionne la forme de signal SINUS, l'amplitude 20 Vpp, l'offset nul, la phase nulle et la fréquence 100 Hz (ou 99.987 Hz).
- Esclave 1 : sur lequel on sélectionne la forme SINUS, l'amplitude 6,7 V, l'offset nul, la phase nulle et la fréquence 3\*99,987 = 299,96 Hz.
- Esclave 2 : sur lequel on sélectionne la forme SINUS, l'amplitude 4 V, l'offset nul, la phase nulle et la fréquence 5\*99,987 = 499,93 Hz.

Reliez les générateurs comme indiqué dans le §. Connectique, activez les sorties des esclaves, puis celle du maître (pour assurer la synchronisation faire une séquence MAIN OUT du maître OFF, puis ON).

Sur l'oscilloscope, connectez les sorties MAIN OUT des appareils (respectivement Maître, Esclave1 et Esclave2) sur les voies 1, 2, 3.

Sélectionnez la même sensibilité 5 V/div. sur chaque voie (choisissez le signal de fréquence le plus faible pour le trigger : voie1).

Sur la voie, 4 effectuez la somme Voie1 + Voie2 + Voie3, et observez le résultat :



Un signal carré se forme : plus le nombre d'harmoniques impaires est grand, meilleure est la qualité du signal obtenu.

Générateurs de Fonctions X - 49

### Fonction Porte « GATE » (GX 320, seulement)

Cette fonction n'est disponible qu'en « CONT », « SWEEP » et « MODUL ».

Elle superpose à la fonction courante une commande d'arrêt de la composante alternative du signal **MAIN OUT**, pilotée par un signal TTL introduit sur la BNC « **FREQ EXT Gate in** ».

Lorsque le signal TTL est au niveau logique 1 (5 V), la composante alternative de la sortie **MAIN OUT** est coupée. Au niveau 0, elle est générée librement.



Voie 1: Main Out (sinus, 1 kHz, 10 Vpp)

Voie 2: TTL Out

Voie 3: Gate In (LOGIC, 300 Hz, 10 V - 0 V)

Le GATE est sans effet sur la composante continue du signal.

Le délai de prise en compte de la consigne est d'environ 100 ns.

#### Connectique



#### **Activation de GATE**

#### **MAIN OUT**



Activation de la fonction, affichage de l'indication GATE OUT reste activée



, la sortie MAIN

La touche clignote:

#### **MAIN OUT**



L'appui long n'active pas la sortie MAIN OUT, mais seulement la fonction GATE : la touche reste éteinte.

## Désactivation de GATE

#### **MAIN OUT**



Désactivation de la fonction et effacement de l'indication GATE MAIN OUT reste activée.



La touche s'allume :

#### **MAIN OUT**



Désactivation de la fonction et effacement de l'indication n'est toujours pas activée : la touche reste éteinte.



Remarque

A chaque changement de fonction (CONT, SHIFT K, SWEEP, MODUL, FREQ, BURST ou SYNC), la fonction GATE se désactive.

### Fonction de trains d'impulsions « BURST » (GX 320, seulement)

La fonction « BURST » génère des trains d'impulsions :

• En source « **INT**erne », l'utilisateur doit saisir une période de génération ainsi que le nombre d'impulsions à générer.

Le nombre d'impulsions Num est limité automatiquement, pour ne pas programmer plus d'impulsions que ne peut en contenir une période Time.



- En source « EXTerne », les trains d'impulsions sont pilotés :
  - soit par un signal externe TTL de fréquence inférieure à 10 kHz, entrée sur VCG IN



- soit de façon manuelle, par appui sur la touche 'MODE'.

La fenêtre d'ouverture minimale autorisée est 2  $\mu s$  : le nombre d'impulsions minimum est défini de la façon suivante :

 $Num_{min} \ge F^*2\mu s$  où  $Num_{min}$  (entier  $\ge 1$ ) est le nombre d'impulsions minimum autorisé et F la fréquence programmée des impulsions.

Le changement de fréquence peut entraîner une modification de la valeur Num programmée pour répondre à cette règle.

Exemple si F = 2,6 MHz, alors F \* 2  $\mu$ s = 5,2 → la valeur min autorisée de NUM<sub>min</sub> = 6. si F = 2 MHz, alors F \* 2  $\mu$ s = 4 → la valeur min autorisée de NUM<sub>min</sub> = 4.

#### Connectique



## Sélection de la source de BURST



Par appuis successifs, sélection de la source :



Générateurs de fonctions XII - 51

## Fonction de trains d'impulsions « BURST » (suite)

## Réglage du nombre d'impulsions Num

La valeur du nombre d'impulsions (Num) peut être limitée en source **INT**erne par la valeur de la période (Time) saisie.

Dans les deux cas (**INT**erne ou **EXT**erne), la valeur Num<sub>min</sub> est fixée pour ne pas avoir une fenêtre d'ouverture inférieure à 2 µs (voir plus haut).



Affichage du nombre d'impulsions Num et affectation du réglage à la roue.

La touche s'allume :



Par appuis successifs, sélection du digit où s'appliquent les incréments de la roue.



Ajustement de la valeur.



Par appuis successifs, sélection du digit où s'appliquent les incréments de la roue.



En source **INT**, par appuis longs successifs, passage de Num à Time et réciproquement, sinon sélection du réglage de Num.

# Réglage de la période de génération en source INTerne



Affichage de la période Time et affectation de la roue au réglage.

La touche s'allume :



Par appui longs successifs, passage de Num à Time.



Par appuis successifs, sélection du digit où s'appliquent les incréments de la roue.



Ajustement de la valeur.



Passage de Num à Time, et réciproquement.

# Déclenchement manuel en EXTerne



Un appui sur cette touche lance la génération d'un train d'impulsions.

#### **Autres réglages**

Voir fonction « CONT ».

## Programmation à distance (GX programmables, seulement)

Les instructions de programmation respectent la norme IEEE 488-2 et le protocole SCPI (Standard Commands for Programmable Instruments). Elles donnent à l'utilisateur la possibilité de contrôler totalement l'instrument à distance.

Pour plus d'informations, consultez la notice de programmation.

## Interface de communication

La connexion du générateur au PC se fait soit par :

- un câble USB type A/B, via un convertisseur USB vers UART
- ETHERNET Attention! Le cordon USB doit être déconnecté pour utiliser la liaison ETHERNET.

**USB** Si le driver CP210x est bien installé sur le PC, le périphérique USB doit être reconnu et un nouveau port COM doit apparaître dans les paramètres systèmes du PC (voir notice de programmation pour l'installation).

Ce nouveau port COM doit être configuré avec les paramètres suivants :

- vitesse: 19200 bauds

bits de données : 8parité : aucune

- bit de stop: 1

- protocole: hardware (RTS / CTS)

#### ETHERNET

Une fois l'adresse IP programmée avec l'application **GX320E-Admin**, le générateur GX320E est accessible via cette adresse.

#### **Connectique**





Générateurs de Fonctions XIII - 53

### Programmation à distance (GX programmables, seulement)

via « ETHERNET »

- d Attention! Le câble USB doit être débranché.
- Câble croisé
- Etablir la connexion avec un terminal (Port TELNET : 23) à l'adresse IP définie sur le générateur.

- Connecter le câble interface ETHERNET croisé directement sur le PC.



#### Câble droit

- Connecter le générateur sur le réseau où se trouve le PC, via un Hub avec le câble interface ETHERNET droit.
- Etablir la connexion avec un terminal (Port Telnet : 23), à l'adresse IP définie sur le générateur.



### Programmation à distance (GX programmables, seulement)

Remarque Tous les générateurs GX 310 ou GX 320 - programmables ou non répondent à la commande IEEE488.2 \*idn?, qui retourne l'identification et la version de l'appareil.

Rappel: Le générateur GX 305 n'est pas programmable.

#### Format de la réponse :

METRIX <instrument><programmable>,<firmware version>,<version date>,<serial number><NL>

avec: <instrument> type d'appareil GX 310 / GX 320

> 'P' si l'appareil GX 310 est programmable oprogrammable>

> > 'E' si l'appareil GX 320 est programmable

<firmware version> version du logiciel

<version date> date de la version du logiciel <serial number> numéro de série de l'appareil

<NL> caractère CR (code ASCII 13 ou 0x0D)

#### **Driver LabViews Driver LabWindows**

Les drivers d'instruments GX 310P et GX 320E pour LabWindows et LabView sont disponibles sur le CD-ROM de cette notice.

Ils permettent un interfaçage des commandes SCPI pour ces environnements de développement.

Générateurs de Fonctions XIII - 55

### Caractéristiques Techniques

#### **Fonction CONTinuous**

#### Formes du signal •

sinusoïdal triangulaire

carré

impulsions logiques (niveaux haut et bas programmables)

impulsions positives (niveau TTL)

continu (DC : décalage)

#### Fréquence du signal •

**GX 305**: de 0,001 Hz à 5 MHz en 10 gammes (décades) **GX 310**: de 0,001 Hz à 10 MHz en 10 gammes (décades) **GX 320**: de 0,001 Hz à 20 MHz en 11 gammes (décades)

3 gammes internes, pour la résolution du DDS :

F ≤ 1 kHz la résolution du DDS est d'environ 1 mHz

1 kHz < F ≤ 10 kHz la résolution du DDS est d'environ 10 mHz 10 kHz < F ≤ 20 MHz la résolution du DDS est d'environ 280 mHz

Affichage de la fréquence sur LCD : 5 digits (unités : Hz, kHz, MHz)

Réglage : en continu par l'encodeur, passage de gamme automatique

 $\pm$  30 ppm pour F < 10 kHz Précision :  $\pm$  20 ppm pour F  $\geq$  10 kHz

en sinus, carré, LOGIC et triangle (rapport cyclique 50 %)

Coefficient de température : ± 20 ppm / ° C

Dérive à long terme :  $\pm$  5 ppm / an

#### Sortie du signal • **MAIN OUT**

Amplitude réglable en circuit ouvert : de 0 à 20 Vpp

Précision : de 0,1 à 20 Vpp < 5 % de 1 mHz à 10 MHz

 $\pm$  1,5 dB pour F > 10 MHz ( $\pm$  0,5 dB typique)

Précision garantie en affichage Vpp, attention à la résolution d'affichage

en Vrms  $\rightarrow$  en sinus 1 Vrms vaut 2  $\sqrt{2}$  Vpp  $\approx$  2,83 Vpp

Impédance : 50  $\Omega$  ± 3 %

Tension continue de décalage : réglable de -10 V à +10 V en circuit ouvert (OFFSET).

Précision : ± 5 % de l'amplitude (offset résiduel < ± 5 mV)

Protection contre une tension de surcharge en entrée : 60 VDC, 40 VAC

#### Signal sinusoïdal •

Distorsion:

- pour F  $\leq$  50 kHz : taux de distorsion 0,05 % typique, < 0,15 % max.

- pour 50 kHz < F ≤ 1MHz, harmoniques < -41 dB / H1

- pour F > 1 MHz, harmoniques < -36 dB / H1

Conditions de mesures :

- appareil en fonctionnement depuis au moins 1 heure

Signal triangulaire • Fréquence : ≤ 2 MHz

Erreur de linéarité : < 1 % max à 200 kHz de 10 % à 90 %

de l'amplitude du signal

Rapport cyclique: résolution 1 %

> 10 à 90 % pour 0,2 Hz  $\leq$  F  $\leq$  1 kHz 30 à 70 % pour 1 kHz  $< F \le 10$  kHz 50 % pour F < 0.2 Hz et F > 10 kHz

erreur sur la fréquence, pour rapport cyclique ≠ 50 %, < 2 %

## Caractéristiques Techniques (suite)

#### Signal carré

Temps de montée: 7 ns typique, < 10 ns max.

П

Rapport cyclique : résolution 1 %

10 à 90 % pour F ≤ 200 kHz,

20 à 80 % pour 200 kHz < F ≤ 1 MHz

50 % pour > 1 MHz

### Signal • LOGIC

• Temps de montée : 7 ns typique, < 10 ns max.

VHigh, VLow réglable de ± 10 V avec une précision de ± 0,2 V

• Rapport cyclique : résolution 1 %

10 à 90 % pour F ≤ 200 kHz

20 à 80 % pour 200 kHz < F ≤ 1 MHz

50 % pour F > 1 MHz

## Sortie du signal • TTL OUT

- Temps de montée : 5 ns typique, < 10 ns max.
- Charge max. admissible : > 10 charges TTL
- Protection contre une tension de surcharge en entrée : ± 60 VDC, 40 VAC

## Fonction balayage SWEEP

- Résolution de la fréquence : 0,28 Hz, 10 mHz ou 1 mHz suivant la gamme choisie (dépendant de Freq<sub>START</sub>, Freq<sub>END</sub> et Time saisis)
- Mode linéaire (LIN) ou mode logarithmique (LOG)

#### Balayage externe EXT •

- Balayage par un signal de fréquence < 15 kHz et d'amplitude comprise entre ± 10 V introduit sur la BNC
  - 'VCF IN' (**GX 305/310**) (-10 V ⇔ Freq<sub>START</sub> et +10 V ⇔ Freq<sub>END</sub>) - 'VCG IN' (**GX 320**) (-10 V ⇔ Freq<sub>START</sub> et +10 V ⇔ Freq<sub>END</sub>)
- Impédance d'entrée : 10 kΩ ± 10 %

#### Balayage interne INT •

- Balayage de Freg<sub>START</sub> à Freg<sub>END</sub> en mode dent de scie ou triangle
- Période de balayage (Time) programmable de 10 ms à 100 s, résolution 10 mS
- Sortie sur la BNC 'SWEEP OUT' d'une tension continue d'environ 2 V proportionnelle à la fréquence générée
- Impédance de sortie 'SWEEP OUT' = 10 k $\Omega$  ± 10 %

Générateurs de Fonctions XIV - 57

### Caractéristiques Techniques (suite)

## Fonction modulation MODUL

#### (GX 320, seulement)

#### **Modulation FM** •

- Résolution de la fréquence : 0,28 Hz, 10 mHz ou 1 mHz suivant la gamme choisie (dépendant de Freq<sub>START</sub>, Freq<sub>END</sub>).
- Modulation numérique : une lecture du niveau du signal modulant est réalisée à la fréquence de 65 kHz. Cette amplitude (256 valeurs) est alors convertie en fréquence.
- Source INTerne : modulation de fréquence par un signal sinusoïdal de fréquence 1 kHz ± 1 %
- Source EXTerne: modulation par un signal d'amplitude comprise entre ± 10 V introduit sur la BNC 'VCG IN' (-10 V⇔ Freq<sub>START</sub> et +10 V⇔ Freq<sub>END</sub>), de fréquence < 15 kHz</li>

#### Modulation AM •

- En sinus et triangle, modulation analogique, par un signal modulant de fréquence < 5 kHz
- En carré et LOGIC, modulation numérique : une lecture du niveau du signal modulant est réalisée à la fréquence de 150 kHz. Cette amplitude (256 valeurs) pilote l'amplitude du signal de sortie.
- Source INTerne: modulation par un signal sinusoïdal de fréquence 1 kHz
   ± 1 % et d'amplitude permettant, au choix, une modulation de 20 % et 80 % de l'amplitude totale programmée
- Source EXTerne: modulation par un signal d'amplitude comprise entre ± 10 V introduit sur la BNC 'VCG IN', de fréquence < 5 kHz (-10 V ⇔ 100 %, 0 V ⇔ 50 %, +10 V ⇔ 0 % de l'amplitude programmée)

## Fonction SHIFT KEY (SHIFT K)

#### (GX 320, seulement)

#### FSK interne •

- Résolution de la fréquence : 0,28 Hz, 10 mHz ou 1 mHz suivant la gamme choisie (dépendant de Freq<sub>START</sub>, Freq<sub>END</sub>)
- Commutation de fréquence par un signal TTL (0 5V) 1 kHz ± 1 %
   (0V ⇔ Freq<sub>START</sub> et + 5V ⇔ Freq<sub>END</sub>), visualisable sur la sortie SWEEP OUT

#### FSK externe •

- Résolution de la fréquence : 0,28 Hz, 10 mHz ou 1 mHz suivant la gamme choisie (dépendant de Freg<sub>START</sub>, Freg<sub>END</sub>).
- Commutation de fréquence par un signal TTL (0 5 V) de fréquence
   < 1 MHz, introduit sur la BNC 'VCG IN' (0V ⇔ Freq<sub>START</sub> et + 5V ⇔ Freq<sub>END</sub>)

#### PSK interne •

- Résolution de la phase : environ 0,08°, réglable de ± 180° par pas de 1°
- Saut de phase par un signal TTL (0 5 V) 1 kHz ± 1 %
   (0 V ⇔ ajout Phase<sub>START</sub> et + 5 V ⇔ ajout Phase<sub>END</sub>), visualisable sur la sortie SWEEP OUT

#### PSK externe •

- Résolution de la phase : environ 0,08°, réglable de ± 180° par pas de 1°
- Saut de phase par un signal TTL (0 5 V) de fréquence < 1 MHz, introduit sur la BNC 'VCG IN' (0 V ⇔ +Phase<sub>START</sub> et + 5 V ⇔ +Phase<sub>END</sub>)

### Caractéristiques Techniques (suite)

#### **Fonction SYNC** synchronisation

#### (GX 320, seulement)

- Fréquence max. des signaux générés : 100 kHz
- Réglage de la phase ± 180 °par pas de 1°
- Précision de la synchronisation dépendant de la fréquence des signaux générés,  $\Delta \phi = \pm F_{\text{signal}} \times 3.6 \times 10^{-5}$  (pour un câble de longueur < 1 m)

#### Fonction génération d'impulsions BURST

#### (GX 320, seulement)

- Saisie du nombre de périodes de signal (impulsions) de 1 à 65535
- La fenêtre minimale d'ouverture du signal est : 2 µs (cf. détails §. BURST)
- Au-delà de 10 MHz, le nombre de périodes peut varier de 1 et la phase en SQUARE et TTL\_OUT peut changer de 180°
- Jitter de déclenchement : ≤ 15 ns

#### **BURST interne** •

Saisie de la période des trains d'impulsions de 10 ms à 100 s avec une résolution de 10 ms

#### **BURST externe** •

- Déclenchement du train d'impulsions par un signal externe TTL de fréquence inférieure à 1 MHz introduit sur la BNC 'INPUT BURST' ou déclenchement manuel (touche MODE)
- Délai de déclenchement environ 1,5 µs typique

#### Fonction porte GATE (GX 320, seulement)

- Autorisation de la sortie de la composante alternative du signal Main out par un signal TTL de fréquence ≤ 2 MHz introduit sur la BNC 'INPUT GATE' (+ 5 V ⇔ Main out générée et 0 V ⇔ composante alternative coupée)
- Délai de prise en compte environ 100 ns

#### **Fonction FREQ** fréquencemètre ext.

- Entrée par borne BNC sur la face avant (FREQ EXT)
- Mesure de fréquences extérieures de 5 Hz à 100 MHz
- Amplitude max. (\*) des signaux mesurés :

300 V efficace de 5 Hz à 5 kHz

30 V efficace de 5 kHz à 1 MHz

10 V efficace au-delà

(\*) signal avec un rapport cyclique à 50 %

- Précision de la fréquence mesurée : ± 0,05 % + 1 digit
- Affichage de la fréquence mesurée sur 5 digits

#### Sensibilité •

- $< 50 \text{ mVrms pour F} \le 30 \text{ MHz}$
- $< 60 \text{ mVrms pour } 30 \text{ MHz} < F \le 80 \text{ MHz}$
- $< 90 \text{ mVrms pour } 80 \text{ MHz} < F \le 100 \text{ MHz}$

Durée de • ≤ 1 s de 5 Hz à 20 Hz (≥ 1 mesure par seconde)

stabilisation de la • ≤ 100 ms de 20 Hz à 400 Hz (2 mesures par seconde)

> mesure • ≤ 40 ms de 400 Hz à 100 MHz (2 mesures par seconde)

Impédance d'entrée • 1 M $\Omega$  // 22 pF environ

> Tension max.: 300 V (50 - 60 Hz) CAT I par rapport à la terre Protection •

Générateurs de Fonctions XIV - 59

## Caractéristiques Générales

#### **Environnement**

• Température de référence  $23^{\circ}\text{C} \pm 5^{\circ}\text{C}$  45 à 65 % HR • Domaine nominal d'utilisation  $5^{\circ}\text{C} \text{ à } 35^{\circ}\text{C}$  45 à 65 % HR

• Température de fonctionnement 0°C à 40°C 20 à 80 % HR

• Température de stockage -20°C à + 70°C 10 à 95 % HR

Utilisation en intérieur

Altitude < 2000 m

• Humidité relative < 80 % jusqu'à 31°C



#### **Alimentation**

**Réseau** • Tension 230 V ± 10 % (115 V ± 10 % sélection tension par hardware)

• Fréquence 50 - 60 Hz

Consommation 20 VA max.

• Cordon d'alimentation amovible

CE

#### Sécurité

**CEM** Cet appareil a été conçu conforme aux normes CEM en vigueur et sa compatibilité a été testée conformément aux normes suivantes :

Emission et Immunité: EN 61326-1 (2006)

## **Caractéristiques Mécaniques**

# Caractéristiques mécaniques

**Boîtier** Dimensions (béquilles repliées) :

longueur 190 mmlargeur 227 mmhauteur 130 mm

**Masse** 2,850 kg

**Emballage** 330 x 260 x 200 mm

Générateurs de Fonctions XV - 61

### **Fourniture**

#### **Accessoires**

#### livrés avec l'instrument

- Fiche sécurité
- · Cordon d'alimentation
- Cordon USB A/B pour les versions programmables
- Cordon ETHERNET (GX 320E seulement)
- · CD-ROM contenant:
  - la notice de fonctionnement en 5 langues
  - la notice de programmation en 2 langues
  - les Drivers USB 'CP210x USB to UART Bridge Controller'
  - les Drivers LabView et LabWindows
  - l'application USBxPress (identification port USB)
  - l'application DeviceInstaller de Lantronix (programmation adresse IP)

#### en option

| • | Cordon BNC - BNC (x 2)                         | AG1065-Z |
|---|------------------------------------------------|----------|
| • | Cordon BNC - Banane (x 2)<br>à reprise arrière | AG1066-Z |
| • | Adaptateur BNC / BANANE (x 3)                  | HA2068-Z |
| • | T - BNC (x 3)                                  | HA2004-Z |
|   |                                                |          |
| • | Cordon USB A/B                                 | 541318   |

### rechange