

Sesión 1.2 Redes recurrentes

LSTM, GRU

Deep Models

Colecciones de datos donde:

- Los elementos pueden repetirse
- El **orden** importa
- De longitud variable (potencialmente infinita)

Modelar Secuencias

- Los elementos pueden repetirse
- El orden importa
- De longitud variable (potencialmente infinita)

Los modelos previos no funcionan bien con datos secuenciales

"Sequences really seem to be everywhere! We should learn how to model them. What is the best way to do that? Stay tuned!"

Palabras, letras

"Sequences really seem to be everywhere! We should learn how to model them. What is the best way to do that? Stay tuned!"

Palabras, letras

"Sequences really seem to be everywhere! We should learn how to model them. What is the best way to do that? Stay tuned!"

Palabras, letras

Video

"Sequences really seem to be everywhere! We should learn how to model them. What is the best way to do that? Stay tuned!"

Palabras, letras

Video

Imágenes

"Sequences really seem to be everywhere! We should learn how to model them. What is the best way to do that? Stay tuned!"

1 Second

Habla

Video

Palabras, letras

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def forward_backward_prop(w, T):
5 hs = [0.5]
6 for _ in range(T):
7 hs.append(np.tanh(w*hs[-1]))
8
9 dh = 1
10 for t in range(T):
11 dh = (1-hs[-1-t] ** 2) * w * dh
12
13 return hs[-1], dh
14
15 T = 10 # sequence length
16 wlim = 4 #limit of interval over weights w
17
18 results = []
19 ws = np.tinspace(-wlim, wlim, 1000)
20 for w in ws:
21 results.append(forward_backward_prop(w, T))
22
23 plt.plot(ws, [r[0] for r in results], label='FNN state')
24 plt.plot(ws, [r[1] for r in results], label='Gradients')

Programas

Imágenes

"Sequences really seem to be everywhere! We should learn how to model them. What is the best way to do that? Stay tuned!"

Imágenes

Habla

Programas

Video

Toma de decisiones

1.

Arquitectura de las RNN

Alguna función con parámetro W_h

$$h_t = f_{W_h}(h_{t-1}, x_t)$$

Nuevo estado Estado previo Nueva entrada

Alguna función con parámetro W_y

$$\mathbf{y_t} = f_{W_y}(h_t)$$

Salida actual

Nuevo estado

Se recibe la primera palabra de entrada x_0 .

$$h_t = \tanh(W_h h_{t-1} + W_x x_t)$$

RNN predicen la salida y_1 (la siguiente palabra) a partir del estado h_1 .

$$y_t = \text{Softmax}(W_y h_t)$$

Softmax genera una distribución de probabilidad entre todas las palabras posibles.

Siguiente palabra de la frase x_1 como entrada

Función de error:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

Función de error:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$\frac{\partial E}{\partial W} = \sum_{1 \le t \le T} \frac{\partial E_t}{\partial W}$$

Función de error:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$\frac{\partial E}{\partial W} = \sum_{1 \le t \le T} \frac{\partial E_t}{\partial W} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial x_t} \frac{\partial x_t}{\partial x_k} \frac{\partial x_k}{\partial W} \right)$$

Función de error:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$\frac{\partial E}{\partial W} = \sum_{1 \le t \le T} \frac{\partial E_t}{\partial W} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial x_t} \frac{\partial x_t}{\partial x_k} \frac{\partial x_k}{\partial W} \right)$$

$$\frac{\partial x_t}{\partial x_k} = \prod_{t \ge i > k} \frac{\partial x_i}{\partial x_{i-1}} = \prod_{t \ge i > k} W^T \operatorname{diag}(\sigma(x_{i-1}))$$

Función de error:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$\frac{\partial E}{\partial W} = \sum_{1 \le t \le T} \frac{\partial E_t}{\partial W} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial x_t} \frac{\partial x_t}{\partial x_k} \frac{\partial x_k}{\partial W} \right)$$

$$\frac{\partial x_t}{\partial x_k} = \prod_{t \ge i > k} \frac{\partial x_i}{\partial x_{i-1}} = \prod_{t \ge i > k} W^T \operatorname{diag}(\sigma(x_{i-1}))$$

Vanishing Gradients

Función de error:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

Cálculo del gradiente:

$$\frac{\partial E}{\partial W} = \sum_{1 \le t \le T} \frac{\partial E_t}{\partial W} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial x_t} \frac{\partial x_t}{\partial x_k} \frac{\partial x_k}{\partial W} \right)$$
$$\frac{\partial x_t}{\partial x_k} = \prod_{t \ge i > k} \frac{\partial x_i}{\partial x_{i-1}} = \prod_{t \ge i > k} W^T \operatorname{diag}(\sigma(x_{i-1}))$$

Si $||W^T|| < 1$: El gradiente se desvanece.

Exploding Gradients

Función de error:

$$E_t(y_t, \hat{y}_t) = -y_t \log \hat{y}_t$$

$$\frac{\partial E}{\partial W} = \sum_{1 \le t \le T} \frac{\partial E_t}{\partial W} = \sum_{1 \le k \le t} \left(\frac{\partial E_t}{\partial x_t} \frac{\partial x_t}{\partial x_k} \frac{\partial x_k}{\partial W} \right)$$
$$\frac{\partial x_t}{\partial x_k} = \prod_{t \ge i > k} \frac{\partial x_i}{\partial x_{i-1}} = \prod_{t \ge i > k} W^T \operatorname{diag}(\sigma(x_{i-1}))$$

Si
$$||W^T|| > 1$$
: El gradiente crece exponencialmente

2.

$$f_t = \sigma(\omega_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(\omega_i \cdot [h_{t-1}, x_t] + b_i)$$

$$o_t = \sigma(\omega_o \cdot [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(\omega_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t$$

$$h_t = o_t \odot \tanh(C_t)$$

Forget gate

- c previous cell state
- forget gate output

Input gate

- previous cell state
- forget gate output
- input gate output
- č, candidate

Cell state

- C_M previous cell state
- forget gate output
- input gate output
- candidate
- c new cell state

Output gate

- C₁₄ previous cell state
- forget gate output
- input gate output
- candidate
- c new cell state
- output gate output
- hidden state

$$f_t = \sigma(\omega_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(\omega_i \cdot [h_{t-1}, x_t] + b_i)$$

$$o_t = \sigma(\omega_o \cdot [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \tanh(\omega_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t$$

$$h_t = o_t \odot \tanh(C_t)$$

LSTM Gradient Flow

LSTM Gradient Flow

LSTM Gradient Flow

Flujo ininterrumpido de la gradiente

LSTM Gradient Flow

Flujo ininterrumpido de la gradiente Similar a ResNet

Bidirectional LSTM

Deep LSTM

$$h_t^{(l)} = \phi_l \left(h_t^{(l-1)} W_{xh}^{(l)} + h_{t-1}^{(l)} W_{hh}^{(l)} + b_h^{(l)} \right)$$

$$O_t = h_t^{(L)} W_{hq} + b_q$$

3.

GRU

GRU

Reset gate:
$$\mathbf{z}_t = \sigma(\omega_z \cdot [h_{t-1}, x_t] + b_z)$$

Update gate:
$$r_t = \sigma(\omega_r \cdot [h_{t-1}, x_t] + b_r)$$

$$\tilde{h}_t = \tanh(\omega_h \cdot [r_t \odot h_{t-1}, x_t] + b_h)$$

$$h_t = (1 - \mathbf{z}_t) \odot h_{t-1} + \mathbf{z}_t \odot \tilde{h}_t$$

xLSTM

sLSTM

mLSTM

5.

one to one

Ejemplo:Clasificación
Regresión

many to one

Ejemplo:Clasificación
Regresión

Ejemplo:Image caption
Music generation

Ejemplo: clasificación de oraciones, respuesta a preguntas de opción múltiple

many to one

many to many

many to many

Ejemplo:Clasificación
Regresión

Ejemplo:Image caption
Music generation

Ejemplo: clasificación de oraciones, respuesta a preguntas de opción múltiple

Ejemplo:machine translation,
video classification,
video captioning,

Codificación de la oración fuente.

Codificación de la oración fuente. Debe capturar toda la información sobre la oración fuente.

> Reinventa el mundo <

GRACIAS

Victor Flores Benites

