Appendices

1 Outcome Variable Distribution in FHS and BRFSS datasets

We presented the outcome variable distribution for both FHS and BRFSS datasets:

Figure 5: The outcome variable COGSCR distribution for FHS dataset.

Figure 6: The outcome variable MENTHLH for BRFSS dataset.

2 Optimization in MTL Algorithm

Fast iterative shrinkage thresholding algorithm (FISTA) shown in Algorithm 1 is implemented to optimize the $l_{2,1}$ -norm regularization problem in Eq.(4) with the general updating steps:

$$\Phi^{(l+1)} = \pi_P(S^{(l)} - \frac{1}{\gamma^{(l)}} \mathcal{L}'(S^{(l)})), \tag{9}$$

where l is the iteration index, $\frac{1}{\gamma^{(l)}}$ is the possible largest step-size that is chosen by line search and $\mathcal{L}'(S^{(l)})$ is the gradient of $\mathcal{L}(\cdot)$ at search point $S^{(l)}$. $S^{(l)} = \Phi^{(l)} + \alpha^{(l)}(\Phi^{(l)} - \Phi^{(l-1)})$ are the search points for each task, where $\alpha^{(l)}$ is the combination scalar. $\pi_P(\cdot)$ is $l_{2,1}$ -regularized Euclidean projection shown as:

$$\pi_P(H(S^{(l)})) = \min_{\Phi} \frac{1}{2} ||\Phi - H(S^{(l)})||_F^2 + \lambda ||\Phi||_{2,1}, \tag{10}$$

where $H(S^{(l)}) = S^{(l)} - \frac{1}{\gamma^{(l)}} \mathcal{L}'(S^{(l)})$ is the gradient step of $S^{(l)}$. A sufficient scheme that solves Eq.(10) has been proposed as Theorem 1.

Theorem 1 $\hat{\Phi}$'s primal optimal point in Eq.(10) can be calculated with λ as:

$$\hat{\Phi}_{j} = \begin{cases} \left(1 - \frac{\lambda}{\|H(S^{(l)})_{j}\|_{2}}\right) H(S^{(l)})_{j} & \text{if } \lambda > 0, \|H(S^{(l)})_{j}\|_{2} > \lambda \\ 0 & \text{if } \lambda > 0, \|H(S^{(l)})_{j}\|_{2} \le \lambda \\ H(S^{(l)})_{j} & \text{if } \lambda = 0, \end{cases}$$

$$(11)$$

where $H(S^{(l)})_j$ is the j^{th} row of $H(S^{(l)})$ and $\hat{\Phi}_j$ is the j^{th} row of $\hat{\Phi}_j$

Algorithm 1: Fast iterative shrinkage thresholding algorithm (FISTA) for optimizing the $l_{2,1}$ -norm regularization problem.

```
Input: Input variables \{X_1, X_2, \cdots, X_T\}, output variable Y across all T tasks, initialization of feature weights \Phi^{(0)} and \lambda Output: \hat{\Phi}

1 Initialize: \Phi^{(1)} = \Phi^{(0)}, d_{-1} = 0, d_0 = 1, \gamma^{(0)} = 1, l = 1;
2 repeat
3 | Set \alpha^{(l)} = \frac{d_{l-2}-1}{d_{l-1}}, S^{(l)} = \Phi^{(l)} + \alpha^{(l)}(\Phi^{(l)} - \Phi^{(l-1)});
4 | for j = 1, 2, \cdots J do
5 | Set \gamma = 2^j \gamma_{l-1};
6 | Compute \Phi^{(l+1)} = \pi_P(S^{(l)} - \frac{1}{\gamma^{(l)}}\mathcal{L}'(S^{(l)}));
```

15 $\hat{\Phi} = \Phi^{(l)}$;

From the 4^{th} line to the 11^{th} line in Algorithm 1, the optimal $\gamma^{(l)}$ is chosen by the backtracking rule. And $\gamma^{(l)} \geq b$, where b is the Lipschitz constant of $\mathcal{L}(\cdot)$ at search point $S^{(l)}$, which means $\gamma^{(l)}$ is satisfied for $S^{(l)}$ and $\frac{1}{\gamma^{(l)}}$ is the possible largest step size.

At the 7^{th} line in Algorithm 1, tangential line of $\mathcal{L}(\cdot)$ at search point $S^{(l)}$, denoted as $Q_{\gamma}(S^{(l)}, \Phi^{(l+1)})$, is computed by:

$$Q_{\gamma}(S^{(l)}, \Phi^{(l+1)}) = \mathcal{L}(S^{(l)}) + \frac{\gamma}{2} \| \Phi^{(l+1)} - S^{(l)} \|^{2} + \langle \Phi^{(l+1)} - S^{(l)}, \mathcal{L}'(S^{(l)}) \rangle.$$

3 Optimization in CMTL Algorithm

In Eq.(8), the equation is conjointly convex with respect to (w.r.t.) C and Φ , which is an convex unconstrained smooth optimization problem w.r.t. C. We iteratively update the gradient step of the aforementioned optimization problem in order to find the global optimum w.r.t. C:

$$G_{\Phi} = S - \frac{1}{\gamma} [\nabla \mathcal{L}(S_{\Phi}) + 2\rho_1 \eta (1 + \eta) (\eta I + C_S)^{-1} S^T], \tag{12}$$

where S_{Φ} is the search point of Φ that is defined as $S_{\Phi}^{(l)} = \Phi^{(l)} + \alpha^{(l)} (\Phi^{(l)} - \Phi^{(l-1)})$. The search point of C is denoted as C_S , which can be similarly updated as $C_S^{(l)} = C^{(l)} + \alpha^{(l)} (C^{(l)} - C^{(l-1)})$ at the l^{th} iteration. $\nabla \mathcal{L}(S)$ is the gradient of $\mathcal{L}(S)$ that is calculated as:

$$\nabla \mathcal{L}(S) = \left[\frac{l'(S_1)}{N_1}, \frac{l'(S_2)}{N_2}, \cdots, \frac{l'(S_T)}{N_T} \right]. \tag{13}$$

Similarly, in the optimization of MTFL, FISTA is also implemented for optimizing the CMTL, except the line 6 is replaced with the corresponding proximal operator that is solved by the following steps. To optimize the convex set C, we need to solve a convex constrained minimization problem, which is formulated with its corresponding proximal operator and calculated using its gradient step, denoted as G_C , at the search point C_S :

$$\min_{C} \|C - G_C\|_F^2, \quad \text{s.t.} \quad \operatorname{tr}(C) = K, C \leq I, C \in \mathbb{S}_+^T. \tag{14}$$

We can compute the G_C by:

$$G_C = C_S + \frac{\rho_1 \eta (1 + \eta)}{\gamma} S^T S (\eta I + C_S)^{-2}.$$
 (15)

A solution of Eq.(14) is proposed and summarized in the following theorem.

Theorem 2 Let $G_T = V \hat{\Sigma} V^T$ be the eigen-decomposition of gradient step $G_C \in \mathbb{S}^{T \times T}$, where $\hat{\Sigma} = diag(\hat{\sigma}_1, \dots, \hat{\sigma}_T) \in \mathbb{R}^{T \times T}$ and $V \in \mathbb{R}^{T \times T}$ is orthonormal. The optimization problem is formulated as:

$$\min_{\{\sigma_m\}} \sum_{t=1}^{T} (\sigma_t - \hat{\sigma}_t)^2.$$
s. t.
$$\sum_{t=1}^{T} \sigma_t = K, \ 0 \le \sigma_t \le 1, \ \forall t = 1, \cdots, T$$
 (16)

Let $\Sigma^* = diag(\sigma_1^*, \cdots, \sigma_T^*) \in \mathbb{R}^{T \times T}$, so that the optimal solution of the above optimization problem is $\{\sigma_1^*, \cdots, \sigma_T^*\}$. As a result, the proximal operator's optimal solution in Eq.(14) is calculated as $\hat{T} = V \Sigma^* V^T$.

4 Risk Factor Analysis - Additional Results

We presented the additional results of risk factor analysis for FHS and BRFSS datasets:

Figure 7: Top 10 selected RFs and their corresponding category numbers from our proposed MTL method and seven STL methods for FHS dataset. Please zoom in for clear visualization.

Figure 8: Top 10 selected RFs and their corresponding category numbers from our proposed CMTL method and six STL methods for BRFSS dataset. Please zoom in for clear visualization.