Topologizing the space of all translation surfaces **CUNY Graduate Center** Complex Analysis and Dynamics Seminar April 4, 2014 Based on the preprints: · Immersions and translation structures on the disk; arXiv:1309.4795. Immersions and the space of all translation structures; arXiv:1310.5193. Pat Hooper

A translation surface is a topological surface equipped

(City College of NY and CUNY Grad Center) What is a translation surface?

functions are translations. Sources of examples: A Riemann surface equipped with a holomorphic 1-form. Surfaces built by gluing together Euclidean polygons by translations. Polygonal billiards. Suspensions of interval exchange maps. Goals for the talk:

1. Place a canonical and useful topology on the space \mathcal{M} of all (pointed) translation surfaces.

Approach to topologizing: 1. Topologize \mathcal{M} , the space of (pointed) translation surfaces homeomorphic to an open disk.

3. Topologize \mathcal{M} , the space of all (pointed) translation surfaces, (and \mathcal{E} , the surface bundle over \mathcal{M}).

The set of **all** translation surfaces: A translation surface is a topological surface equipped with an atlas of charts to the plane where the transition

> Surfaces in the set of all translation surfaces \mathcal{M} ... • have no singularities, but are incomplete (with few

exceptions).

(including infinite type).

are translation equivalence classes.

and are connected.

Two pointed translation surfaces, S_1 and S_2 , are

homeomorphism $h: S_1 \rightarrow S_2$ which respects the basepoints and is a translation in local coordinates.

Aside: Order Theory Immersions place a partial order on the space $\tilde{\mathcal{M}}$ of

Theorem. The set $\mathcal{M} \cup \{0\}$, where 0 denotes the degenerate, single point "translation surface" is a complete lattice, i.e., each subset of $\mathcal{M} \cup \{0\}$ has a

Convergence in $\hat{\mathcal{M}}$ Let \tilde{S}_n be a sequence in $\tilde{\mathcal{M}}$. Then \tilde{S}_n converges to \tilde{S}

For every closed topological disk $K \subset \tilde{S}$ containing the basepoint, $K \leadsto \tilde{S}_n$ for n sufficiently large. 2. For all $U \in \tilde{\mathcal{M}}$, if $U \leadsto \tilde{S}_n$ for infinitely many

Example of convergence: For $n \geq 1$, let $R_n \subset \mathbb{C}$ be the n-th roots of unity. Let

Then, the sequence of universal covers \hat{S}_n converges

The disk bundle:

 $\tilde{\mathcal{E}} = \{(\tilde{S}, p) : p \in \tilde{S} \in \tilde{\mathcal{M}}\}.$

The topology on the disk bundle: Let (\tilde{S}_n, p_n) be a sequence in $\tilde{\mathcal{E}}$. Then, the sequence

2. for one (equivalently all) closed disk $K \subset ilde{S}$ with $p \in K^{\circ}$, the immersions $\iota_n : K \leadsto \tilde{S}_n$

Topologizing the space of all surfaces: Let $S_n \in \mathcal{M}$ be a sequence of translation surfaces, and let $S \in \mathcal{M}$ be a potential limit. Let s_n and s be their basepoints and let \tilde{S}_n and \tilde{S} be their universal

a point $\tilde{p} \in \tilde{S}$ is a lift of $s \in S$ if and only if

there is a sequence $\tilde{p}_n \in \tilde{S}_n$ so that $(\tilde{S}_n, \tilde{p}_n)$ converges to (\tilde{S}, \tilde{p}) in $\tilde{\mathcal{E}}$.

We also topologize \mathcal{E} , the surface bundle over \mathcal{M} ...

The immersive topologies are nice: **Theorem.** The topologies on $\widetilde{\mathcal{M}}$, $\widetilde{\mathcal{E}}$, \mathcal{M} , and \mathcal{E} are

Compactness Theorem. For any $\epsilon > 0$, the set of surfaces in \mathcal{M} or \mathcal{M} for which the basepoint has an open ϵ -neighborhood isometric to the open ϵ -ball in

Dynamics:

with $t \in \mathbb{R}$.

 \nearrow Let S be a translation surface, and let u be a unit complex number. The straight-line

 $GL(2,\mathbb{R})$ acts on translation surfaces.

coordinates by $F^t(z) = z + tu$,

flow is given in local

If $A \in GL(2,\mathbb{R})$, then we obtain A(S) by post-composing all charts

from S to the plane with A.

Renormalization: The vertical straight-line flow is locally $F^t(z) = z + it$. Let $A^t(x+iy)=e^tx+ie^{-t}y$. The Teichmüller geodesic flow on ${\mathcal M}$ or ${\mathcal E}$ is the affine action of A^t on these

Theorem (in the spirit of Masur's Criterion). Suppose S is a translation surface of area one. If there is a sequence of times $t_n o \infty$ and a sequence of basepoints s_n of S so that under the Teichmüller flow $A^{t_n}(S, s_n)$ converges to a unit area surface in \mathcal{M} , then the vertical straight line flow is uniquely ergodic.

There are two proofs: One uses more general work of Rodrigo Teviño. A second mirrors Masur's proof from the finite

Example surfaces:

Proof of Criterion following Masur: Def. An *embedding* is a one-to-one immersion. We

Thm. If $S_n \to S_\infty$ and $K \subset S_\infty$ is a compact disk,

Theorem. Suppose S is a translation surface of area one. If there is a sequence of times $t_n \to \infty$ so that under the Teichmüller flow $A^{t_n}(S)$ converges to a unit area surface $S_{\infty} \in \mathcal{M}$, then the vertical straight line

 $\operatorname{avg}_+(x) = \int_0^T f \circ F^t(x) \, dt \quad \text{and} \quad \operatorname{avg}_-(x) = \int_{-T}^0 f \circ F^t(x) \, dt$

If Lebesgue measure λ on S is non-ergodic, then there is a continuous and compactly supported f on S (with

B = B(f) as above), positive measure subsets $B_-, B_+ \subset B$, and real constants $\kappa_- < \kappa_+$ so that

Now choose K to be a compact disk in S_{∞} with

 $\lambda_{\infty}(K) > \max(1 - \lambda(B_{\pm})).$

Then $\lambda(L) \geq \lambda_{\infty}(K)$, so there is a $b_{-} \in L \cap B_{-}$. So, up to passing to a subsequence, we can assume that

 $A^{t_n}(S, b_-) \to (S_\infty, c_-)$

 $A^{t_n}(S, b_-, b_+) \to (S_\infty, c_-, c_+)$

End of slides, switch to board...

• $\operatorname{avg}(x) < \kappa_{-} \text{ for all } x \in B_{-}, \text{ and }$ • $\operatorname{avg}(x) > \kappa_+ \text{ for all } x \in B_+.$

Since $A^{t_n}(S) \to S_{\infty}$, there are embeddings $\epsilon_n: K \hookrightarrow A^{t_n}(S)$ for n sufficiently large.

Again, let $L' = \limsup A^{-t_n} \circ \epsilon_n(K) \subset S$. There is a $b_+ \in L' \cap B_+$, and up to subsequence

Let $L = \limsup A^{-t_n} \circ \epsilon_n(K) \subset S$.

for some $c_- \in K \subset S_{\infty}$.

for some $c_-, c_+ \in K \subset S_{\infty}$.

denote embeddings by $D \hookrightarrow S$.

then $K \hookrightarrow S_n$ for n sufficently large. We will prove ergodicity only:

flow, $F^t: S \to S$, is uniquely ergodic.

measure so that the averages

exist and are equal.

Proof of Criterion following Masur: The individual ergodic theorem says that for any integrable f, there is a set $B = B(f) \subset S$ of full

translation equivalent (equal) if there is a

all simply connected translation surfaces.

supremum and an infimum in $\mathcal{M} \cup \{0\}$.

if and only if both of the following hold:

 $S_n = \mathbb{C} \setminus R_n$ with basepoint at the origin.

n, then $U \leadsto S$.

to the unit disk.

The disk bundle over \mathcal{M} is

converges to $(S,p)\in \widetilde{\mathcal{E}}$ if

1. $\tilde{S}_n \to \tilde{S}$ in $\tilde{\mathcal{M}}$, and

Then, S_n converges to S in \mathcal{M} if A. S_n converges to S in \mathcal{M} , and

second countable and Hausdorff.

the plane is compact.

spaces.

Note: $A^{-t} \circ F^s \circ A^t = F^{e^t s}$.

genus case.

satisfy $d_n(p_n, \iota_n(p)) \to 0$.

are *pointed* (have a basepoint *)

could have any topological type

2. Describe some facts about the topology. 3. Describe some dynamical consequences.

2. Topologize $\tilde{\mathcal{E}}$, the disk bundle over $\tilde{\mathcal{M}}$.

functions are translations.

with an atlas of charts to the plane where the transition