C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Algoritmica grafurilor - Cursul 5

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

Cuprins

- Conexiune * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru hms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru
 - CTeorema lui Menger Graph Algorithms * C. Croitoru Graph Algorithms * C.
 - P-conexiume Algorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms *
 - Teorema lui König ns * C. Croitoru Graph Algorithms * C. Croitoru Graph
 - Algorithms * C. Croitoru Graph rolloru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru
 - Georemahlui* Diracoru Graph Algorithms * C. Croitoru Graph Algorithms * C.
- Arboritoru Graph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph
 - ♠ Elemente de bază aph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru -Graph Algorithms * C. Croitoru - Graph Algorithms * C.

 - Numărarea arborilor parțiali: Teorema lui Kirchhoff Algorithms
 Teorema lui Kirchhoff Algorithms
- Exerciții pentru seminarul de săptămâna viitoare has * C. Croitoru -Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Definiția 1

Fie G = (V, E) un (di)graf şi $X, Y \subseteq V$. Un XY-drum este orice drum P din G de la un nod $x \in X$ la un nod $y \in Y$ astfel încât $V(P) \cap X = \{x\}$ şi $V(P) \cap Y = \{y\}$.

Notăm cu $\mathcal{P}(X, Y, G)$ familia tuturor XY-drumurilor din G. Observăm că dacă $x \in X \cap Y$ atunci $P = \{x\}$, de lungime 0, este un XY-drum.

C. Cionora - Giaphi ingomanis — C. Cionora - Giaphi ingomanis — C. Cionora

Exemplu

XY-paths: (b, e, y), (c, f, x), and (a, g, y); an YX-path: (y, f, b)

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

- Spunem că drumurile P_1 și P_2 sunt disjuncte (pe noduri) dacă $V(P_1) \cap V(P_2) = \emptyset$.
- Motivată de problemele practice din reţelele de comunicaţii şi de asemeni de studiile teoretice asupra conexiunii în (di)grafuri, este de interes determinarea mulţimilor de cardinal maxim de XY-drumuri disjuncte.
- Notăm cu p(X, Y; G) numărul maxim de XY-drumuri disjuncte în G.
- Teorema care determină acest număr este datorată lui Menger (1927) şi reprezintă unul dintre rezultatele fundamentale din Teoria grafurilor.

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Definiția 2

Fie G=(V,E) un (di)graf şi $X,Y\subseteq V$. O mulţime XY-separatoare în G este orice submulţime $Z\subseteq V$ astfel încât

$$V(P) \cap Z \neq \emptyset$$
, pentru fiecare $P \in \mathcal{P}(X, Y; G)$.

Notăm cu

$$S(X, Y; G) = \{Z : Z \text{ este mulţime } XY\text{-separatoare din } G\}$$
 şi

$$k(X, Y; G) = \min\{|Z| | Z \in S(X, Y; G)\}$$

Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Din definiție urmează că:

- Dacă $Z \in \mathbf{S}(X, Y; G)$, atunci $\mathcal{P}(X, Y; G \setminus Z) = \emptyset$.
- $X, Y \in \mathbf{S}(X, Y; G)$.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Exemplu

- Graph Algorithms * C. Croitoru Graph Algorithms * C. Croitoru Graph Algorithms * C
- Dacă $Z \in \mathbf{S}(X, Y; G)$, atunci $A \in \mathbf{S}(X, Y; G)$, $\forall A$ astfel încât $Z \subseteq A \subseteq V$.
- Dacă $Z \in \mathbf{S}(X, Y; G)$ și $T \in \mathbf{S}(Z, Y; G)$, atunci $T \in \mathbf{S}(X, Y; G)$.

Teorema 1

Teorema lui Menger. Fie G=(V,E) un (di)graf şi $X,Y\subseteq V$. Atunci p(X,Y;G)=k(X,Y;G).

(I. e., numărul maxim de XY-drumuri disjuncte = cardinalul minim al unei mulțimi XY-separatoare.)

Demonstraţie:

 $k(X, Y; G) \geqslant p(X, Y; G) = r$. Fie P_1, \ldots, P_r XY-drumuri disjuncte din $G; Z \cap V(P_i) \neq \emptyset, \forall Z \in S(X, Y; G)$. Decarece P_i sunt disjuncte $(i = \overline{1, r})$:

$$|Z|\geqslant \left|Z\cap \left(igcup_{i=1}^rV(P_i)
ight)
ight|=\sum_{i=1}^r|Z\cap V(P_i)|\geqslant \sum_{i=1}^r1=r.$$

Astfel, $|Z| \geqslant r$, $\forall Z \in S(X, Y; G)$; urmează că $k(X, Y; G) \geqslant r$.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

 $k(X,Y;G)\leqslant p(X,Y;G)$. Omisă. (Vom arăta mai târziu că $\forall G=(V,E)$ şi $\forall X,Y\subseteq V,\ \exists k(X,Y;G)\ XY$ -drumuri disjuncte în G folosind fluxuri în anumite rețele.)

Menger (1927) a enunțat echivalent teorema de mai sus, utilizând drumuri intern-disjuncte: $P_1, P_2 \in \mathcal{P}_{st}$ astfel încât $V(P_1) \cap V(P_2) = \{s, t\}$:

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Teorema 2

Fie G = (V, E) un (di)graf și $s, t \in V$, astfel încât $s \neq t$, $st \notin E$. Există k drumuri intern-disjuncte de la s la t în G dacă și numai dacă există cel puţin un drum de la s la t în (di)graful obţinut din G prin ştergerea oricărei mulţime de < k noduri diferite de s și t.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Demonstrația echivalenței:

Teorema 1 \Rightarrow Teorema 2: luăm $X = N_G^+(s)$ $(N_G(s))$ și $Y = N_G^-(t)$ $(N_G(t))$.

Teorema $2 \Rightarrow$ Teorema 1: adăugăm două noi noduri s şi t (di)grafului G, şi toate muchiile (orientate) de la s la orice nod din X şi de la orice nod din Y la t. \square

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Aplicaţii: p-conexiune

- ullet Un graf G este p-conex $(p \in \mathbb{N}^*)$ dacă fie $G = K_p$, fie |G| > p și $G \setminus A$ este conex pentru orice $A \subseteq V(G)$ cu |A| < p.
- Din Teorema 2, o caracterizare echivalentă a p-conexiunii este: Un graf G este p-conex $(p \in \mathbb{N}^*)$ dacă fie $G = K_p$, fie $\forall st \in E(\overline{G})$ există p drumuri intern-disjuncte de la s la t în G.
- numărul de conexiune pe noduri al grafului G, k(G), este cel mai mare p pentru care G este p-conex.
- Urmează că, pentru a calcula k(G), trebuie aflat

$$\min_{st\notin E(G)}p(\{s\},\{t\};G)$$

care poate fi determinat în timp polinomial folosind fluxuri în rețele.

Aplicații: Teorema lui König

- O acoperire cu noduri a grafului G este o mulţime $X \subseteq V(G)$ de noduri astfel încât G X este un graf nul (orice muchie din G are cel puţin o extremitate în X).
- Un caz special al Teoremei 1 se obţine când G este bipartit şi X,
 Y sunt cele două clase ale bipartiţiei lui G:

Teorema 3

(König, 1931) Fie G=(S,T;E) un graf bipartit. Atunci, cardinalul maxim al unui cuplaj din G este egal cu cardinalul minim al unei acoperiri cu noduri a lui G.

Demonstrație: Cardinalul maxim al unui cuplaj în G este p(S,T;G)=k(S,T;G), din Teorema 1. Deoarece o mulțime de noduri este o mulțime ST-separatoare dacă și numai dacă este o acoperire cu noduri, Teorema 3 este dovedită. \square

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Aplicaţii: Teorema lui Hall

- Fie I şi S mulţimi finite nevide. O familie submulţimi ale lui S (indexată după I) este o funcţie $A:I\to 2^S$. Notăm $\mathcal{A}=(A_i)_{i\in I}$ şi (folosind notaţia funcţională) $\mathcal{A}(J)=\bigcup_{j\in J}A_j$ (pentru $J\subseteq I$).
- O funcție de reprezentare pentru familia $\mathcal{A}=(A_i)_{i\in I}$ este orice funcție $r_{\mathcal{A}}:I\to S$ cu proprietatea $r_{\mathcal{A}}(i)\in A_i,\ \forall i\in I;$ atunci, $(r_{\mathcal{A}}(i))_{i\in I}$ este numit un sistem de reprezentanți pentru \mathcal{A} .
- Dacă funcția de reprezentare, r_A , este injectivă, atunci $r_A(I)$ este o submulțime a lui S și este numită sistem de reprezentanți distincți pentru A, sau o transversală a lui A.
- Problema centrală în Teoria Transversalelor este de a caracteriza familiile care admit o transversală (cu anumite proprietăți). Teorema lui Hall (1935) este primul rezultat de acest tip.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Teorema 4

Hall, 1935 Familia $A = (A_i)_{i \in I}$ de submulţimi ale lui S are o transversală dacă şi numai dacă

$$(\mathsf{H}) \qquad |\mathcal{A}(J)| \geqslant |J|, \forall J \subseteq I.$$

Demonstrație: " \Rightarrow " Dacă $r_{\mathcal{A}}$ este o funcție de reprezentare injectivă pentru \mathcal{A} , atunci $r_{\mathcal{A}}(J)\subseteq \mathcal{A}(J), \ \forall J\subseteq I$. Astfel, $r_{\mathcal{A}}$ fiind injectivă, $|\mathcal{A}(J)|\geqslant |r_{\mathcal{A}}(J)|\geqslant |J|$. " \Leftarrow " Fie $G_{\mathcal{A}}=(I,S;E)$ graful bipartit asociat familiei \mathcal{A} (dacă $I\cap S\neq\emptyset$, putem considera copii izomorfe disjuncte): $E=\{is|i\in I,s\in S\cap A_i\}$. Se observă că $N_{G_{\mathcal{A}}}(i)=A_i$. Mai mult, \mathcal{A} are o transversală dacă și numai dacă $G_{\mathcal{A}}$ are un cuplaj de cardinal |I|.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Demonstrația Teoremei lui Hall (continuare): Arătăm că dacă relația (H) are loc, atunci orice acoperire cu noduri a lui G_A are cel puțin |I| noduri, și - din Teorema lui Konig - G_A are un cuplaj de cardinal |I|.

Fie $X=I'\cup S'\subseteq I\cup S$ o acoperire cu noduri a lui $G_{\mathcal{A}}$: urmează că $N_{G_{\mathcal{A}}}(I\setminus I')\subseteq S'$, adică, $\mathcal{A}(I\setminus I')\subseteq S'$. Atunci,

$$|X| = |I'| + |\mathcal{S}'| \geqslant |I'| + |\mathcal{A}(I \setminus I')|.$$

Deoarece are loc (H), obţinem

$$|X| \geqslant |I'| + |\mathcal{A}(I \setminus I')| \geqslant |I'| + |I \setminus I'| = |I|. \square$$

Graph Algorithms * C. Croitoru - Graph Algorithms *

Aplicații: Teorema lui Dirac (structura grafurilor p-conexe)

Lemă

Fie G = (V, E) un graf p-conex de ordin $|G| \ge p+1$, $U \subseteq V$, |U| = p şi $x \in V \setminus U$. Atunci există p xU-drumuri astfel încât oricare două dintre ele îl au numai pe x drept nod comun.

Demonstrație: Fie $G' = (V \cup \{z\}, E')$, unde $E' = E \cup \{zu : u \in U\}$.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

Aplicaţii: Teorema lui Dirac (structura grafurilor p-conexe)

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.

Demonstrație (continuare). Atunci, G' este un graf p-conex. Întradevăr, fie $A \subseteq V(G')$ cu $|A| \leqslant p-1$. Dacă $A \subseteq V(G)$, atunci G'-A este conex (din k-conexiunea lui G, G-A este conex; cum |A| < p, $\exists u \in U \setminus A$ și, astfel, există $zu \in E(G'-A)$. Dacă $z \in A$, atunci G'-A=G-A care este conex.

Lema urmează aplicând Teorema 2 grafului G' și perechii x, z. \square

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Propoziție

Fie G=(V,E) un graf p-conex, $p\geqslant 2$. Atunci, pentru orice două muchii e_1 și e_2 ale lui G și pentru orice, $x_1,\ldots,x_{p-2},\ p-2$ noduri ale lui G, există un circuit în G care conține toate aceste muchii și noduri.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Demonstrație: Inducție după p.

Pentru p=2, trebuie să arătăm că într-un graf 2-conex, G, orice două muchii e_1 şi e_2 aparţin unui circuit. Fie G' graful obţinut din G prin inserarea unui nod a pe e_1 şi a unui nod b pe e_2 :

G' este 2-conex (orice graf de tipul G'-v este conex). Astfel, există două drumuri intern-disjuncte de la a la b, care dau circuitul din G conținând e_1 și e_2 .

Demonstrație (continuare). În pasul inductiv, fie $p \geqslant 3$, presupunem că Propoziția este adevărată pentru orice graf p'-conex cu $2 \leqslant p' < p$, și considerăm un graf p-conex G, două dintre muchiile, sale e_1 și e_2 și o mulţime de p-2 noduri $\{x_1, x_2, \ldots, x_{p-2}\}$.

Putem presupune că nicio extremitate v a lui e_1 sau e_2 nu aparține mulțimii $\{x_1, x_2, \ldots, x_{p-2}\}$ (altfel, aplicăm ipoteza inductivă și obținem că în graful (p-1)-conex, G, există un circuit C conținând e_1, e_2 și mulțimea de noduri $\{x_1, x_2, \ldots, x_{p-2}\} \setminus \{v\}$; iar v este un nod al lui C deoarece e_1 și e_2 sunt muchii ale lui C).

Graful $G-x_{p-2}$ este (p-1)-conex. Din ipoteza inductivă, există un circuit μ care conține $x_1, x_2, \ldots, x_{p-3}, e_1$ și e_2 . Fie Y mulțimea nodurilor lui μ . Evident, $|Y| \geqslant p$ (mulțimii de p-3 noduri $x_1, x_2, \ldots, x_{p-3}$, îi adăugăm cel puțin trei extremități ale muchiilor e_1 și e_2). Din Lema de mai sus, există p x_{p-2} Y-drumuri astfel încât oricare două dintre ele au în comun doar un singur nod, x_{p-2} .

Demonstrație (continuare). Fie $P_{x_{p-2}y_1}, P_{x_{p-2}y_2}, \dots P_{x_{p-2}y_p}$ aceste drumuri, unde ordinea y_1, \dots, y_p se obține în urma unei parcurgeri a lui μ .

Nodurile y_1,\ldots,y_p împart circuitul μ în drumurile $P_{y_1y_2}$, $P_{y_2y_3},\ldots,P_{y_{p-1}y_p},$ $P_{y_py_1}$:

Cel puţin unul dintre drumurile de mai sus nu conţine în interior niciun element din mulţimea $x_1, x_2, \ldots, x_{p-3}, e_1$ şi e_2 (pigeon hole principle).

Fie $P_{y_1y_2}$ acest drum (altfel, renumerotăm nodurile y_i).

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Demonstrație (continuare). Atunci,

$$P_{x_{p-2}y_2}, P_{y_2y_3}, ..., P_{y_py_1}, P_{y_1x_{p-2}}$$

este circuitul din G care conține $x_1, x_2, \ldots, x_{p-2}, e_1$ și e_2 . \square

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Teorema 5

(Dirac, 1953) Prin orice $p \geqslant 2$ noduri ale unui graf p-conex trece un circuit.

- Graph Argonnimis 🤊 C. Cronoru - Graph Argonnimis 🤊 C. Cronoru - Graph Argonnimis 🤊 C. Cronoru

Demonstrație: Fie G=(V,E) un graf p-conex, $p\geqslant 2$. Fie x_1,x_2,\ldots,x_p p noduri ale lui G. Deoarece G este conex, există muchiile $e_1=xx_{p-1}$ și $e_2=yx_p$. Atunci, teorema urmează din Propoziția de mai sus. \square

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

O aplicație interesantă a acestei teoreme (și a demonstrației propoziției) este următoarea condiție suficientă pentru ca un graf să fie Hamiltonian dată de Erdös și Chvatal.

Teorema 6

(Erdös-Chvatal, 1972) Fie G = (V, E) un graf p-conex. Dacă $\alpha(G) \leq p$ atunci G este graf Hamiltonian.

Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

Demonstrație: Să presupunem, prin contradicție că G nu este Hamiltonian. Fie C un cel mai lung circuit din G.

Din Teorema lui Dirac $|C|\geqslant p$ și din presupunerea noastră, există un nod $v\in V(G)\setminus V(C)\neq \varnothing$.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Demonstrație (continuare). Cum $|C| \ge p$, putem repeta argumentul din demonstrația Propoziției de mai sus pentru a arăta că există P_{vv_1} , $P_{vv_2}, \ldots, P_{vv_p}$, p vC-drumuri care se intersectează două câte două doar în v și cu extremități v_i etichetate în ordinea în care apar la o parcurgere a circuitului.

Fie w_i successorul nodului v_i pe circuit.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Demonstrație (continuare). Observăm că $vw_i \notin E$ (altfel, circuitul $vw_i, w_i, C \setminus \{w_iv_i\}, P_{v_iv}$ este mai lung decât C, contradicție). Deoarece $\alpha(G) \leqslant p$, mulțimea $\{v, w_1, w_2, \ldots, w_p\}$ nu este stabilă, și din remarca de mai sus, urmează că există o muchie $w_iw_j \in E$. Dar atunci, P_{vv_i} , inversul drumului de la v_i la w_j de pe circuit, muchia w_jw_i , drumul de la w_i la v_j de pe circuit, și drumul P_{v_jv} oferă un circuit mai lung decât C, contradicție). \square

Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Un arbore este un graf conex fără circuite.

- Graph Algorithms * C. Croitoni - Graph Algorithms * C. Croitoni - Graph Algorithms * C.

Teorema 7

Fie G = (V, E) un graf. Atunci următoarele afirmații sunt echivalente:

- (i) G este un arbore (este conex și nu are circuite).
- (ii) G este conex și este minimal cu această proprietate.
- (iii) G nu are circuite și este maximal cu această proprietate.

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

Demonstraţie: Omisă. \square

Minimalitatea și maximalitatea din afirmațiile de mai sus sunt relativ la relația de ordine parțială dată de incluziune pe submulțimile muchii. Mai precis afirmațile (ii) și (iii) înseamnă:

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

- (ii) G este conex și $\forall e \in E$, G e nu este conex.
- (iii) G nu are circuite și $\forall e \notin E$, G + e are un circuit.

C Croitory - Graph Algorithms * C Croitory - Graph Algorithm Definitie

Fie G=(V,E) un (multi)graf. Un arbore parțial G este un graf parțial al lui G, T=(V,E') ($E'\subseteq E$), care este arbore. Notăm cu \mathcal{T}_G mulțimea tuturor arborilor parțiali ai lui G.

Remarci

1. $\mathcal{T}_G \neq \emptyset$ dacă și numai dacă G este conex. Într-adevăr, dacă $\mathcal{T}_G \neq \emptyset$, atunci există un arbore parțial T = (V, E') al lui G. T este conex, deci între orice două noduri ale lui G there este un drum P în T. Deoarece $E' \subseteq E$, P este un drum și în G, deci G este conex.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Reciproc, dacă G este conex, atunci considerăm următorul algoritm:

$$T \leftarrow G;$$
 while $(\exists e \in E(T) \text{ astfel încât } T - e \text{ este conex}) \mathbf{do}$ $T \leftarrow T - e;$

Din construcție, T este graf parțial al lui G, și are loc afirmația (ii) din Teorema 7, deci T este un arbore.

2. O altă demonstrație constructivă (dacă G este conex atunci $\mathcal{T}_G \neq \varnothing$) se bazează pe observația că există o muchie în cross între cele două clase ale oricărei bipartiții a lui $V \colon \exists e = v_1 v_2 \in E$ cu $v_i \in V_i, \ i = \overline{1,2}$.

Dacă |V|=n>0 atunci următorul algoritm construiește un arbore parțial al grafului conex G=(V,E):

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

```
k \leftarrow 1; \ T_1 \leftarrow (\{v\}, \varnothing); \ // \ v \in V while (k < n) do fie xy \in E cu x \in V(T_k), y \in V \setminus V(T_k); // o astfel de muchie există din conexiunea lui G V(T_{k+1}) \leftarrow V(T_k) \cup \{y\}; E(T_{k+1}) \leftarrow E(T_k) \cup \{xy\}; k + +;
```

Evident, T_k este un arbore $\forall k = \overline{1,n}$ (inductiv, dacă T_k este un arbore atunci, din construcție, T_{k+1} este conex și nu are circuite). Mai mult, avem $|V(T_k)| = k$ și $|E(T_k)| = k - 1$, $\forall k = \overline{1,n}$.

3. Dacă această construcție este aplicată unui arbore G cu n noduri, vom obține că G are n-1 muchii. Această proprietate poate fi folosită pentru a extinde Teorema 7 cu alte caracterizări ale arborilor:

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Algorithms * C Croitory - Graph Algorithms * C Croitory - Graph Algorithms * C Croitory

Teorema 8

Următoarele afirmații sunt echivalente pentru un graf G = (V, E) cu n noduri:

- (i) G este un arbore.
- (ii) G este conex şi are n-1 muchii.
- (iii) G nu are circuite şi are n-1 muchii.
- (iv) $G = K_n$ pentru $n \in \{1, 2\}$, iar pentru $n \geqslant 3$ $G \neq K_n$ şi G + e are exact un circuit, pentru orice muchie $e \in E$.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Demonstrație: Omisă. 🗆

Graph Algorithms * C. Croitoru - Graph Algorithms *

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

- Descriem o metodă simplă de tip backtracking pentru a genera toți arborii parțiali ai unui graf conex G = (V, E), unde $V = \{1, \ldots, n\}, |E| = m$.
- Mulţimea de muchii, E, va fi reprezentată cu un tablou E[1..2, 1..m] cu elemente din V, cu semnificaţia: dacă v=E[1,i] şi w=E[2,i], atunci vw este muchia i a lui G. Mai mult, vom presupune că primele $d_G(v_0)$ coloane din tabloul E au v_0 în linia 1 ($E[1,i]=v_0$, $\forall i=\overline{1,d_G(v_0)}$), pentru $v_0\in V$.

1	2	3	4	5	6
x	x	y	z	z	u
v	y	u	v	u	v

C. Croitoru - Graph Algorithms * C. Croitoru - Graph

- Un arbore parțial $T \in \mathcal{T}_G$ va fi reprezentat ca o mulțime de n-1 indecși (în ordine crescătoare) ai coloanelor din tabloul E (desemnându-i muchiile).
- Întimpul generării, menținem un vector T[1..n-1] cu elemente din $\{1,\ldots,m\}$ și o variabilă flag $i\in\{1,\ldots,n\}$ cu următoarele semnificații:
 - Căutăm toți arborii parțiali ai lui G, cu proprietatea că cele mai mici i-1 muchii sunt: $T[1] < T[2] < \ldots < T[i-1]$.
- Pentru exemplul de mai sus, dacă i=2, T[1]=1, şi T[2]=2, atunci arborii care vor fi găsiţi sunt $\{1,2,3\}$, $\{1,2,5\}$, şi $\{1,2,6\}$. Dacă, i=2, T[1]=3, şi T[2]=5 atunci arborele care trebuie găsit este $\{3,5,6\}$. Dar dacă i=2, T[1]=1, şi T[2]=6, niciun arbore nu va fi găsit.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

```
ALL-ST-Gen(i)
// sunt generați toți arborii parțiali G , cu cele mai mici i-1 muchii: T[1],\ldots,T[i-1]
  if (i = n) then
     // \{T[1], \ldots, T[n-1]\} este arbore partial
     process(T); // printează, memorează etc
  else
     if (i = 1) then
        for (i = 1, d_G(v_0)) do
           T[i] \leftarrow j; A All-ST-Gen(i+1) B
     else
        for (i = T[i-1] + 1, m - (n-1) + i) do
           if (\langle \{T[1], \dots, T[i-1]\} \cup \{j\} \rangle_G has no circuit) then
              T[i] \leftarrow j; A All-ST-Gen(i+1) B
```

Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru -

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

- Prin apelul All-ST-Gen(1) obţinem \mathcal{T}_G .
- Pentru a testa dacă graful $\langle \{T[1], \ldots, T[i-1]\} \cup \{j\} \rangle_G$ nu are circuite, observăm că, din construcție,

$$\langle \set{T[1],\ldots,T[i-1]} \rangle_G$$

nu are circuite, deci este o pădure (fiecare componentă conexă este un arbore).

- Fie root[1..n] un vector (global) cu elemente din V şi semnificația: root[v] = rădăcina componentei conexe care conține v (unul dintre nodurile sale).
- Înaintea apelului All-ST-Gen(1), vectorul root este inițializat pentru a satisface proprietatea: $root[v] \leftarrow v \ (\forall v \in V)$ (deoarece atunci, $\{T[1], \ldots, T[i-1]\} = \emptyset$).

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

- În timpul apelurilor recursive, când se testează dacă muchia j poate fi adăugată mulțimii $\{T[1],\ldots,T[i-1]\}$ fără a crea vreun circuit, fie v=E[1,j] și w=E[2,j]. Atunci, $\langle \{T[1],\ldots,T[i-1]\}\cup \{j\}\rangle_G$ nu are circuite dacă și numai dacă v și w sunt în componente conexe diferite ale pădurii, i.e., $root[v]\neq root[w]$.
- Pentru a actualiza vectorul *root*, în locurile marcate cu **A** şi **B** din algoritm, trebuie făcute următoarele modificări.
- în loc de A:

```
S \leftarrow \varnothing; \ x \leftarrow root[v]; for (u \in V) do
if (root[u] = x) then
S \leftarrow S \cup \{u\}; \ root[u] \leftarrow root[w];
```

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

- Cu alte cuvinte toate nodurile din arborele cu rădăcina x sunt adăugate arborelui cu rădăcina root[w]; aceste noduri sunt salvate în mulțimea S.
- După apelul All-ST-Gen(i + 1), vector root trebuie setat din nou la valoarea dinaintea apelului, aceasta poate fi făcută **B** prin:

for
$$(u \in S)$$
 do $root[u] = x$;

Crontoru - Graph Algorithms * C. Crontoru - Graph Algorithms * C. Crontoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.

Arbori - Numărarea arborilor parțiali

Fie G=(V,E) un multi-graf cu $V=\{1,2,\ldots,n\}$, și matricea de adiacență $A=(a_{ij})_{n\times n}$ $(a_{ij}=$ multiplicitatea muchiei ij dacă $ij\in E$, 0 altfel). Fie

$$\mathbf{D} = \mathbf{diag}(\mathbf{d_G(1)}, \mathbf{d_G(2)}, \dots, \mathbf{d_G(n)}) = \left(egin{array}{cccc} d_G(1) & 0 & \dots & 0 \ 0 & d_G(2) & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & d_G(n) \end{array}
ight)$$

 ${f Matricea\ Laplacian {f a}}$ a lui ${\cal G}$ (sau ${f Laplacian {f u}}$) este definită ca fiind:

$$L[G] = D - A.$$

Observăm că suma tuturor elementelor din fiecare linie sau din fiecare coloană a lui L[G] este 0. Notăm cu $L[G]_{ij}$ minorul matrcii L[G] obținut prin ştergerea liniei i și a coloanei j.

Arbori - Numărarea arborilor parțiali

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Teorema 9

(Kirchoff-Trent). Fie G un (multi)graf cu mulţimea nodurilor $\{1,\ldots,n\}$ şi Laplacianul L[G]. Atunci, numărul arborilor parţiali ai lui G este: $|\mathcal{T}_G| = \det(L[G]_{ii}), \ \forall 1 \leqslant i \leqslant n$.

Demonstrație: Omisă. \square

- Graph Aigoriunins * C. Cronoru - Graph Aigoriunins * C. Cronoru - Graph Aigoriunins * C. Cronoru

Corolar

(Formula lui Cayley). $|\mathcal{T}_{K_n}| = n^{n-2}$.

Demonstrație:

$$L[K_n] = \left(egin{array}{cccc} n-1 & -1 & \dots & -1 \ -1 & n-1 & \dots & -1 \ dots & dots & \ddots & dots \ -1 & -1 & \dots & n-1 \end{array}
ight).$$

Arbori - Numărarea arborilor parțiali

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Astfel:

$$det(L[K_n]_{11}) = \left| egin{array}{ccccc} n-1 & -1 & \dots & -1 \ -1 & n-1 & \dots & -1 \ dots & dots & \ddots & dots \ -1 & -1 & \dots & n-1 \ \end{array}
ight|$$

Dacă adunăm toate liniile la prima obţinem

- Graph Argoriums - C. Cronora - Graph Argoriums - C. Cronora - Graph Argoriums

Evident, mulţimea $A = \{v\}$ satisface următoarele proprietăţi:

- (i) $v \in A$ şi $[A]_G$ este conex.
- (ii) $N = N_G(A) \neq \emptyset$.
- (iii) $R = V \setminus (A \cup N) \neq \emptyset$.
 - (a) Arătaţi că, dacă $A\subseteq V$ este orice mulţime noduri care satisface (i) (iii) şi maximală (relativ la " \subseteq ") cu aceste proprietăţi, atunci $\forall x\in R$ şi $\forall y\in N$ avem $xy\in E$.
- (b) Dovediţi că dacă A este ca la (a) şi G este $\{C_k\}_{k\geqslant 4}$ -free, atunci N este o clică în G.
- (c) Deduceți că K_n $(n \in \mathbb{N}^*)$ sunt singurele grafuri regulate, triangulate și conexe.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Exercițiul 2. Un graf de ordin cel puțin trei este numit confidențial conex dacă, pentru orice trei noduri distincte a, b și c, există un drum de la a la b astfel încât c este diferit de și nu este adiacent cu niciun nod intern (dacă există) al acestui drum. (Un exemplu de graf confidențial conex este graful complet K_n , cu $n \ge 3$.)

Arătați că un graf conex, necomplet, G=(V,E), cu cel puțin trei noduri este confidențial conex dacă și numai dacă:

- (i) pentru orice $v \in V$, $N_{\overline{G}}(v) \neq \emptyset$ și induce un subgraf conex;
- (ii) orice muchie a lui G face parte dintr-un C_4 indus sau este muchia mediană a unui P_4 indus.

*C. Cronord * Graph Algoridinis C. Cronord * Graph Algoridinis C. Cronord * Graph Algoridinis

Exercițiul 3. Dovediți că un graf conex, p-regulat și bipartit este 2-conex.

Exercițiul 4. Fie G = (V, E) un digraf. Demonstrați că:

- (a) G este tare conex dacă și numai dacă pentru orice $S \subsetneq V$, $S \neq \emptyset$, există măcar un arc care pleacă din S.
- (b) Dacă G este tare conex şi poate fi deconectat prin ştergerea a cel mult p arce (i. e., ∃A ⊆ E, |A| ≤ p astfel încât G - A nu este tare conex), atunci G poate fi deconectat prin inversarea a cel mult p arce (adică ∃B ⊆ E, |B| ≤ p astfel încât G' = (V, (E \ B) ∪ {uv : vu ∈ B}) nu este tare conex).

Exercițiul 5. Fie G un graf 2-muchie-conex (G-e este conex, $\forall e \in E(G)$). Definim următoarea relație binară $e \asymp f$ dacă e = f or $G - \{e, f\}$ nu este conex.

- (a) Arătați că $e \asymp f$ dacă și numai dacă e și f aparțin acelorași circuite.
- (b) Arătați că o clasă de echivalență $[e]_{\asymp}$ este inclusă într-un circuit.
- (c) Ştergând toate muchiile dintr-o clasă de echivalenţă $[e]_{\approx}$, componentele conexe ale grafului rămas sunt grafuri 2-muchie-conexe.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

Exercițiul 6.

- (a) Fie G un graf cu cel puţin 3 noduri. Dacă G este 2-conex, atunci putem să-i orientăm muchiile aşa încât graful orientat rezultat să fie tare conex.
- (b) Reciproca afirmației de mai sus este adevărată?

- Graph Algorithms ** C. Cronoru - Graph Algorithms ** C. Cronoru - Graph Algorithms ** C.

Exercițiul 7.

- (a) Fie G un graf 2-conex, necomplet și $xy \in E(G)$. Arătați că G xy sau G|xy este 2-conex.
- (b) Daţi câte un exemplu de un graf G şi o muchie $xy \in E(G)$ astfel ca: (b1) G xy şi G|xy sunt 2-conexe; (b2) G xy nu este 2-conex dar G|xy este 2-conex; (b3) G xy este 2-conex dar G|xy nu este 2-conex;

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

```
Exercițiul 8. Pentru un graf conex G dat aplicăm următorul algoritm: \mathcal{Q} \leftarrow \{G\}; \ // \ \mathcal{Q} \text{ este o coadă}; while (\mathcal{Q} \neq \emptyset) }
H \leftarrow \text{pop}(\mathcal{Q}); fie A \subseteq V(H) o mulțime de articulație minimală din H; fie G_1, \ldots, G_k componentele conexe ale lui H - A; pentru (j = 1 \text{ to } k) push(\mathcal{Q}, [A \cup V(G_j)]_G); }
```

Observăm că dacă G este a graf complet, atunci în Q nu se mai adaugă vreun alt graf.

- a) Arătaţi că orice graf adăugat în Q este conex.
- b) Dovediți că numărul total de grafuri adăugate la coada $\mathcal Q$ este cel mult $|\mathcal G|^2$.

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Exercițiul 9. Fie G = (V, E) un graf conex și T_1 , T_2 doi arbori parțiali ai lui $G(T_1, T_2 \in T_G)$.

- (a) Dovediţi că T_1 poate fi transformat în T_2 prin aplicarea repetată a următoarei proceduri: şterge o muchie şi adaugă o altă muchie arborelui curent.
- (b) Dacă, în plus, G este 2-conex arătați că T_1 poate fi transformat în T_2 prin aplicarea repetată a următoarei proceduri: șterge o muchie uv și adaugă o altă muchie uw arborelui curent.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.

Exercițiul 10. Demonstrați că mulțimea de muchii a unui graf complet K_n $(n \ge 2)$ poate fi partiționată în $\lceil n/2 \rceil$ submulțimi fiecare reprezentând multimea de muchii ale unui arbore (subgraf al lui K_n).

⁻ Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Exercițiul 11. Fie n un întreg pozitiv și $G_n = (V, E)$ un graf definit astfel:

- $V = \{(i,j) : 1 \leq i, j \leq n\};$
- $(i,j)(k,l) \in E$ (pentru $(i,j) \neq (k,l)$ din V) dacă și numai dacă i=l sau j=k.

Arătați că G_n este universal pentru familia arborilor de ordin n: pentru orice arbore T de ordin n, $\exists A \subseteq V$ astfel încât $T \cong [A]_{G_n}$.

- Graph Algorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms * C.

Exercise 12. Arătaţi că un turneu este tare conex dacă şi numai dacă are un circuit hamiltonian.

Argorithms * C. Croitoru - Graph Algorithms * C. Croitoru - Graph

C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms *

Exercițiul 13. Se consideră rețeaua stradală a unui oraș. Se știe că putem îndepărta posibilitatea de a merge în cerc în oraș pe această rețea prin blocarea a cel mult p sensuri de străzi (prin blocarea unui singur sens se înțelege obstrucționarea sensului vizat de pe stradă). Arătați că putem îndepărta posibilitatea de a merge în cerc în oraș pe rețeaua sa stradală prin inversarea a cel mult p sensuri de străzi.

(Inversarea unui sens pe o stradă cu două sensuri implică păstrarea doar a celuilalt sens; inversarea sensului unei străzi cu un singur sens implică introducerea celuilalt sens.)

^{*} C. Croitoru - Graph Algorithms * C. Croitoru - Graph Algorithms