A számításelmélet alapjai I. – mintazh, 2. anyagrész (megoldási útmutató)

1. feladat

Az automata nem összefüggő, a q_1 állapot nem érhető el a kezdőállapotból.

A particionálás lépései során létrejövő partíciók:

- 1. $[q_3, q_8], [q_0, q_2, q_4, q_5, q_6, q_7]$
- 2. $[q_3, q_8], [q_2, q_7], [q_0, q_4, q_5, q_6]$
- 3. $[q_3, q_8], [q_2, q_7], [q_4], [q_0, q_5, q_6]$
- 4. $[q_3, q_8], [q_2], [q_7], [q_4], [q_0, q_5, q_6]$

Reprezentáljuk $[q_3, q_8]$ -at b_3 -mal, $[q_0, q_5, q_6]$ -ot b_1 -gyel, $[q_4]$ -et b_4 -gyel, $[q_2]$ -t b_2 -vel és $[q_7]$ -et b_5 -tel. Az új automata kezdőállapota b_1 lesz, elfogadó állapota b_3 , állapot-átmeneteit pedig az alábbi táblázattal tudjuk megadni:

	δ	a	b
\rightarrow	b_1	b_2	b_1
	b_2	b_1	b_3
\leftarrow	b_3	b_4	b_5
	b_4	b_4	b_4
	b_5	b_4	b_3

2. feladat

Az egyszerűség kedvéért csak a szabályhalmazokat fogjuk megadni.

• Először álterminálisok segítségével átalakítjuk a szabályhalmazt, hogy terminálisokat csak az $X \to a$ alakú szabályokban tartalmazzon $(X \in N, a \in T)$.

Ekkor P-ből a
$$P'' = \{S \to A'BB', A \to b, A \to A'C', B \to A, B \to A'B'BC, C \to B, C \to b, A' \to a, B' \to b, C' \to c\}$$
 szabályhalmazt kapjuk.

• Ezután hosszredukciót hajtunk végre. Ez az $S \to A'BB'$ és $B \to A'B'BC$ szabályokat érinti. Az új szabályhalmaz:

$$P_1 = \{S \rightarrow A'Z_1, Z_1 \rightarrow BB', A \rightarrow b, A \rightarrow A'C', B \rightarrow A, B \rightarrow A'Z_2, Z_2 \rightarrow B'Z_3, Z_3 \rightarrow BC, C \rightarrow B, C \rightarrow b, A' \rightarrow a, B' \rightarrow b, C' \rightarrow c\}$$
 lesz.

- Végül elimináljuk a láncszabályokat: $C \to B$ –t és $B \to A$ -t.
- Az új szabályhalmaz tehát: $P' = \{S \to A'Z_1, Z_1 \to BB', A \to b, A \to A'C', B \to b, B \to A'C', C \to b, C \to A'C', B \to A'Z_2, C \to A'Z_2, Z_2 \to B'Z_3, Z_3 \to BC, C \to b, A' \to a, B' \to b, C' \to c\}$ lesz.

3. feladat

$$U_1 = \{A, B\}, U_2 = \{A, B, C\} = U, P' = (P \cup \{S \rightarrow abC, S \rightarrow aBb, S \rightarrow ab, A \rightarrow a, B \rightarrow cA, B \rightarrow Ac, B \rightarrow c, C \rightarrow AA, C \rightarrow AB, C \rightarrow A, C \rightarrow B\}) - \{A \rightarrow \varepsilon, B \rightarrow \varepsilon\}.$$

4. feladat

A grammatika Chomsky-normálformájú, így alkalmazható rá a CYK algoritmus:

S, A, C				
B	B			
B	S, C	B		
S, C	A, S	S, C	A, S	
A, C	В	A, C	В	A, C
a	b	a	b	a

 $S \in x_{15}$, tehát $ababa \in L(G)$.

5. feladat

A nyelvre nem teljesül a pumpáló lemma. Legyen p tetszőleges természetes szám, $w=a^pb^pc^p\in L$, amelyre $|w|\geq p$. Ekkor $\forall u,v,x,y,z\in\{a,b,c\}^*$ esetén, amelyre $w=uvxyz,\ |vxy|\leq p,\ |vy|>0,\ vy\in\{a,b\}^*\cup\{b,c\}^*$ teljesül. Ha $|vy|_c=0$, akkor $uxz\notin L$. Ha $|vy|_a=0$, akkor $uv^2xy^2z\notin L$.

6. feladat

Az $A = (Z, Q, T, \delta, z_0, q_0, F)$ veremautomata konstrukciója:

Legyen $Q = \{q_0, q_f\}, Z = \{z_0, a, b, c\}, T = \{a, b, c\}, F = \{q_1\}, \text{ valamint}$

- (1) $\delta(z_0, q_0, a) = (az_0, q_0),$
- (2) $\delta(z_0, q_0, b) = (bz_0, q_0),$
- (3) $\delta(z_0, q_0, c) = (cz_0, q_0),$
- (4) $\delta(a, q_0, a) = (aa, q_0),$
- (5) $\delta(a, q_0, b) = (ab, q_0),$
- (6) $\delta(b, q_0, a) = (ba, q_0),$
- (7) $\delta(b, q_0, b) = (bb, q_0),$
- (8) $\delta(c, q_0, c) = (cc, q_0),$
- (9) $\delta(a, q_0, c) = (\varepsilon, q_0),$
- (10) $\delta(b, q_0, c) = (\varepsilon, q_0),$ (11) $\delta(c, q_0, a) = (\varepsilon, q_0),$
- (11) $\delta(c, q_0, a) = (\varepsilon, q_0),$ (12) $\delta(c, q_0, b) = (\varepsilon, q_0),$
- (12) $\delta(c, q_0, 0) = (\varepsilon, q_0),$
- (13) $\delta(z_0, q_0, \varepsilon) = (\varepsilon, q_1).$