II - Fonction inverse

- La fonction inverse est la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.
- La courbe représentative de cette fonction est une hyperbole.
- Pour tout réel x, $\frac{1}{-x} = -\frac{1}{x}$ donc la fonction inverse est **impaire**. Sa courbe représentative admet ainsi l'origine pour centre de symétrie.

Conséquence des variations de la fonction inverse :

La fonction inverse étant strictement décroissante sur $]-\infty$; 0[et sur $]0; +\infty[$, pour tous réels a et b de même signe, a < b équivaut à $\frac{1}{a} > \frac{1}{b}$ (l'application de la fonction change l'ordre).

<u>Exemple</u>: Comparer les nombres suivants sans calculatrice.

•
$$\frac{1}{2.48}$$
 et $\frac{1}{4.75}$

•
$$\frac{1}{-2.8}$$
 et $\frac{1}{-4.1}$

•
$$\frac{1}{\pi}$$
 et $\frac{3}{10}$

et on compare alors facilement les images de ces nombres par la fonction inverse.

- 2,48 < 4,75 ainsi $\frac{1}{2.48} > \frac{1}{4.75}$ car la fonction inverse est strictement décroissante sur]0; $+\infty$ [.
- -2.8 > -4.1 ainsi $\frac{1}{-2.8} < \frac{1}{-4.1}$ car la fonction inverse est strictement décroissante sur] $-\infty$; 0[.
- $\pi < \frac{10}{3}$, ainsi $\frac{1}{\pi} > \frac{1}{\frac{10}{2}} \iff \frac{1}{\pi} > \frac{3}{10}$ car la fonction inverse est strictement décroissante sur]0; $+\infty[$.

<u>Propriété</u>: Soit a un nombre réel non nul. L'unique solution sur \mathbb{R}^* de l'équation $\frac{1}{x} = a$ est $\frac{1}{a}$.

Exemple: Résoudre l'équation $\frac{3}{x-1} = 7$

Solution: Cette équation est définie lorsque $x-1\neq 0$ c'est-à-dire $x\neq 1$. Donc on résout l'équation sur $\mathbb{R}\setminus\{1\}$. Dans ce cas, $\frac{3}{x-1}=7\iff \frac{1}{x-1}=\frac{7}{3}$ (en divisant par 3 de chaque côté de l'égalité). On obtient ensuite $x-1=\frac{1}{\frac{7}{3}}\iff x-1=\frac{3}{7}$ en appliquant la fonction inverse.

On en déduit que $x = \frac{3}{7} + 1 = \frac{10}{7}$.

Donc $\frac{10}{7}$ est l'unique solution de cette équation.