Peer-graded Assignment #1

Last Updated on: September 12, 2020

Contents

1 1	Problem 1, sets in the complex plane]
	Problem 2, The nth roots of unity 2.1 How to draw roots of unit	1
1	Problem 1, sets in the complex plane	
1.	$\Gamma_1 = \{ z \in \mathbb{C} : z - 3 - 2i \le 1 \}$	
	<u>Solution</u> : $\Gamma_1 = \overline{B(x,1)}$ is the closed ball with radius 1 centered at $x = 3 + 2i$ on the complex plane \mathbb{C} . Noticed the boundray $\partial \Gamma_1 \subset \Gamma_1$.	Just
2.	$\Gamma_2 = \{z \in \mathbb{C} : \text{Im } z = 2\}$	
	Solution: There is no constraint on the real part of z , however the only value allowed in the imagin part is $\overline{2}$, Γ_2 correspond to a line in complex plane.	ary
3.	$\Gamma_3 = \{z \in \mathbb{C} \setminus \{0\} : 0 < \arg z < \pi/6\}$	
	Solution: Use the fact that $\{z : \text{Arg } z = \theta\}$ is a line passing $(0,0)$ and with an angle θ between (with respect to the positive direction of) real axis. Noticed that $z \in \mathbb{C} \setminus \{0\}$ indiactes that $(0,0)$ is excluded on the graph of Γ_3 is open in \mathbb{C} hence the boundray is not attained.	
4.		
	Solution: Let $z = x + iy$ s.t $x, y \in \mathbb{R}$. By squaring two sides,	
	$ z-1 ^2 \le z ^2 \implies (x-1)^2 + y^2 \le x^2 + y^2$ $\implies x - \frac{1}{2} \ge 0$	(1.1)
	_	

2 Problem 2, The *n*th roots of unity

By definithon, the nth roots of a number z is w that satisfy the equation:

We could hereby draw all 4 graphs together in the Figure 1.

$$w^n = re^{i\theta}, \quad \theta = \text{Arg } z \in [-\pi, \pi)$$
 (2.1)

that means Γ_4 indiactes the hypograph of function $x=\frac{1}{2}$. It's also open under the usual topology of \mathbb{C} .

Figure 1: The four graphs in Problem 1

- (a) pick and draw the generator $e^{\frac{i\pi}{3}}$
- (b) rotate counterclockwise with angle $\frac{\pi}{2}$ and repeat

(c) all 6th roots of unity

Figure 2: A feasible process to draw 6th unit roots

simply noticed that we also require that $\text{Arg}w \in [-\pi, \pi)$:

$$w = \left\{ \sqrt[n]{r} e^{\frac{i\theta}{n} + \frac{2k\pi}{n}} : k \in \{0, 1, \dots, n - 1\} \right\}$$
 (2.2)

in our case to find nth unit roots, it equals to solve equation 2.1 with r = 1, $\theta = 0$, and our desired results can be directly inferred from formula 2.2:

$$U_n = \left\{ e^{\frac{2k\pi}{n}} : k \in \{0, 1, \dots, n-1\} \right\}$$
 (2.3)

it's quite obvious that $\#U_n = n$, thus all 6th roots of unity are enumerated in U_6 , which is

$$U_6 = \left\{ e^0, e^{\frac{i\pi}{3}}, e^{\frac{2i\pi}{3}}, e^{i\pi}, e^{\frac{4i\pi}{3}}, e^{\frac{5i\pi}{3}} \right\}$$
 (2.4)

2.1 How to draw roots of unit

Although the polar coordinate of complex number z = x + iy can be calculate with the help of $\cos \theta + i \sin \theta = e^{i\theta}$, it's a little bit cumbersome to decide explicitly the value of θ :

$$\theta = \begin{cases} \arccos \frac{x}{r} & y \ge 0, r \ne 0 \\ -\arccos \frac{x}{r} & y < 0 \\ NaN & r = 0 \end{cases} \qquad r = \sqrt{x^2 + y^2}$$
 (2.5)

Espacially when the value of $\frac{x}{r}$ is not such special as $1,\frac{1}{2},\frac{\sqrt{3}}{2},\frac{\sqrt{2}}{2}$, etc. Intutively U_6 is cyclotomic, so its elements are uniformly distributed over the unit circle, that's sufficient for us to locate their position. To get a little bit more algebraic (and rigorous), U_n is essentially a cyclic group of order n, one of its generators is $e^{\frac{i\pi}{n}}$ (there are many generators in the same cyclic group, in our case any $e^{\frac{ik\pi}{3}}$ with $\gcd(k,6)=1$ is a generator, our construction can be started from any generator). Thus, when we draw $e^{\frac{ik\pi}{3}}$, it means that we rotate counterclockwise the generator $e^{\frac{1\pi}{3}}$ by k times. We show this process in Figure 2.