Domácí úloha č. 3

Základy numerické matematiky - NMNM201 (odevzdat do vašeho cvičení v 10./11. týdnu semestru) balazsova@karlin.mff.cuni.cz, jan.papez@mff.cuni.cz, blechta@karlin.mff.cuni.cz

Budeme chtít najít kořeny funkce

$$f(x) = x^2 - x - 2$$

pomocí metod pevného bodu.

$$\varphi_1(x) = x^2 - 2,$$
 $\varphi_2(x) = \sqrt{x+2},$
 $\varphi_3(x) = 1 + \frac{2}{x},$
 $\varphi_4(x) = \frac{x^2 + 2}{2x - 1}.$

Domácí úloha 1. Popište, jak jsou jednotlivé metody φ_1 , ..., φ_4 odvozeny. Tj., pro každou funkci φ_i , i = 1, ..., 4, stačí například napsat posloupnost algebraických úprav vedoucích od zápisu f(x) = 0 k zápisu $x = \varphi_i(x)$.

[Hint: Jedna z metod je ekvivalentní Newtonově metodě]

 $(max \ 1 \ bod)$

Domácí úloha 2. Platí pro všechny metody $\varphi_1, ..., \varphi_4,$ že jsou oba kořeny f pevnými body? (max 1 bod)

Věta 1. Nechť $\varphi(\overline{x}) = \overline{x}$ a nechť $I, \overline{x} \in I$, je interval takový, že platí:

- $\varphi \in \mathcal{C}^1(I)$
- $|\varphi'(x)| < 1$ pro všechna $x \in I$,
- φ je zobrazení z I do I, tj. $\varphi(I) \subseteq I$.

Pokud $x_0 \in I$, pak iterace pevného bodu konverguje do \overline{x} .

Domácí úloha 3. Je možné pomocí Věty 1 ukázat, zda budou jednotlivé metody konvergovat pro danou volbu počátečního bodu? Pokud ano, ukažte.

Pro
$$\varphi_1$$
 použijte $x_0 = 3$,
pro φ_2 použijte $x_0 = -1.5$,
pro φ_3 použijte $x_0 = 3$,
pro φ_4 použijte $x_0 = 0$.

(max 2 body)

Domácí úloha 4. Nakreslete chování jednotlivých metod pevného bodu z Úlohy 3 podobně jako na Obrázku 4.11. Pokud metoda konverguje, přestože Věta 1 nešla použít, zdůvodněte proč.

(max 2 body)

Figure 4.11. Fixed point iteration. The iteration may display monotonic convergence (*upper left*), oscillatory convergence (*upper right*), monotonic divergence (*lower left*), or oscillatory divergence (*lower right*).