基於LLaMA 3.1 和 BART 語言模型的長文本摘要多層次演算法

動機/目的

研究動機:

- LLM 在長文本情境下 容易因注意力機制分散導致的位置偏差問題。
- 存在 **上下文窗口上限** 與 **幻覺問題**,降低模型在長文本任務的可靠度

研究目標:

- 降低長文本處理中的效能下降問題
- 在有限資源下,同時提升效率與準確率

資料集&評估指標

CNN/DailyMail 數據集:

- 針對新聞文章進行摘要設計的資料集。
- 資料集內容: 唯一識別碼 (id)、文章(article)、摘要 (highlights)。

```
id : 062f78c2922d4050190dbba10f5d65eeff25e1ed
article : Bayern Munich have an interest in Chelsea defender Branislav Ivanovic ...
highlights : Branislav Ivanovic's contract at Chelsea expires ...
```

ROUGE 評估指標介紹:

- ROUGE-1 (R-1): 衡量摘要的內容覆蓋率。
- ROUGE-2 (R-2):評估語言流暢性與結構一致性。
- ROUGE-L (R-3):評估語義結構與內容順序的連貫性。

主要分析項目:壓縮率、信息保留度、語言流暢性。

LLaMA3.1 - 壓縮比測試

測試結果觀察:

- 嘗試方法:
 - o 設定 system prompt
 - o 在 user prompt 加入壓縮比限制

User Prompt:

- 1 Please summarize the following text to approximately {ratio} of the original length.
- 2 The output should be a direct, concise summary without any extra commentary or introductory text.
- **3** original text: {...}

- 問題:
 - o 壓縮比受控不佳,摘要品質不穩定
 - o 超過上下文窗口,文章被截斷,摘要失真

多層次摘要框架

layer			
original	$[T_1^{(1)}], [T_2^{(1)}], [T_3^{(1)}], [T_4^{(1)}], \dots, [T_{m_1}^{(1)}]$		
summary 1	$[S_1^{(1)}], [S_2^{(1)}], [S_3^{(1)}], [S_4^{(1)}], \dots, [S_{m_1}^{(1)}]$		
combine 1	$[C_1^{(1)}], [C_2^{(1)}], [C_3^{(1)}], \dots, [C_{m_2}^{(1)}]$		
summary 2	$[S_1^{(2)}], [S_2^{(2)}], [S_3^{(2)}], \dots, [S_{m_2}^{(2)}]$		
combine 2	$[C_1^{(2)}], [C_2^{(2)}], \dots, [C_{m_3}^{(2)}]$		
:	:		
summary n	$[S_1^{(n)}], [S_2^{(n)}]$		
${\bf combine}\ n$	$[C_1^{(n)}]$		

表 3.1: 多層次摘要框架

實驗方法

- 1. LLaMA3.1 壓縮文本:
 - 設定system prompt
 - 設計 4 個壓縮指令

2. BART 多層次摘要

Our compression instructions:

- 1. You can ONLY remove unimportant words.
- 2. Do not reorder the original words.
- 3. Do not change the original words.
- 4. Do not use abbreviations or emojis.
- 5. Do not add new words or symbols.
- 6. Provide ONLY the result text, without any explanations or additional information.

```
original layer-1 (13 parts):
                                                 246 | 238 | 241 | 242 | 256 | 237 | 240 | 231 | 239 | 256
summary layer-1 (13 parts):
original layer-2 (7
                                                                468 | 256
                                                    495
                                                        475
                                   239 | 245 | 240 | 241 | 234 | 253 | 256
summary layer-2 (7 parts):
original layer-3 (4 parts):
                                                 485 | 256
summary layer-3 (4 parts):
                                      249 | 254 | 238 | 256
original layer-4 (2 parts):
                                         501 | 492
                                         248 | 248
summary layer-4 (2 parts):
original layer-5 (1 parts):
                                             494
                                             286
summary layer-5 (1 parts):
```

流程圖

Paper with Code 平台表現

Rank	Model	ROUGE-1
1.	Scrambled code + broken (alter)	48.18
2.	BART 多層次摘要	47.54
3.	PEGASUS + SummaReranker	47.16
i	i.	:
8.	MatchSum (BERT-base)	44.22
9.	LLaMA 3.1 + BART 多層次摘要	43.95
10.	BertSumExt	43.85
i	:	:

表 7.1: ROUGE-1 in Papers with Code

Rank	Model	ROUGE-2
1.	BART 多層次摘要	23.34
2.	PEGASUS + SummaReranker	22.55
3.	Fourier Transformer	21.55
÷	i.	÷
12.	BERTSUM+Transformer	20.24
13.	LLaMA 3.1 + BART 多層次摘要	20.02
14.	Scrambled code + broken (alter)	19.84
:	:	:

表 7.2: ROUGE-2 in Papers with Code

Paper with Code 平台表現

Rank	Model	ROUGE-L
1.	Scrambled code + broken (alter)	45.35
2.	PEGASUS + SummaReranker	43.87
3.	HAT-BART	41.52
4.	BART 多層次摘要	41.50
÷	:	:
13.	BERTSUM+Transformer	39.63
14.	LLaMA 3.1 + BART 多層次摘要	38.86
15.	Selector+Pointer Generator	38.79
:	:	:

表 7.3: ROUGE-L in Papers with Code

公古計冊

- 1 避免注意力機制分散與硬體資源消耗問題
 - LLaMA3.1 壓縮長文本,減少冗餘內容。
 - BART 多層次摘要,逐步提取語義連貫且準確的摘要。
- 2實驗結果
 - 在CNN/Daily Mail 資料集上,於公開平台上取得良好結果。
- 3實際應用上的靈活性
 - 適合計算資源有限的環境。
 - 可根據不同需求調整壓縮與摘要的層次。

