Simulazione di un reticolo di Ising bidimensionale in CUDA

Stefano Mandelli

14 Luglio 2016

Il Modello di Ising

L'Hamiltoniana di Ising che identifica il modello studiato è

$$H = -J\sum_{\langle i,j\rangle} s_i s_j - h\sum_i s_i \tag{1}$$

le cui grandezze fisiche di interesse sono la magnetizzazione media e il calore specifico per spin definiti come

$$m = \frac{1}{N} \left\langle \sum_{i} s_{i} \right\rangle , c_{v} = \frac{\beta^{2} k_{B}^{2}}{N} \left(\langle E \rangle^{2} - \langle E^{2} \rangle \right)$$
 (2)

Algoritmo di Metropolis

L'algoritmo con cui vengono proposti gli update degli spin è quello di metropolis la cui probabilità di accettazione è data da

Implementazione del codice su GPU

Ottimizzazione su memoria shared del reticolo attraverso aggiornamento su doppia scacchiera

Figura: Le zone rosse più le aree gialle rappresentano i blocchi di memoria shared. Ogni blocco viene aggiornato a scacchiera. Le condizioni di raccordo blocco-blocco sono identificate dai siti reticolari colorati in giallo

Confronto Modello Fisico

Confronto CPU - GPU dei grafici di magnetizzazione e calore specifico con la soluzione di Onsager al limite termodinamico

Ottimizzazione dimensione blocco

Anche l'ottimizzazione di BLOCKL è fondamentale

Figura: Il valore di BLOCKL che ottimizza al meglio le performance è 24

Ottimizzazione PNRG

Figura: Grafici calcolati per un reticolo 128×128

Stefano Mandelli

Ottimizzazione PNRG

Figura: Tempo di generazione di un numero pseudorandom in funzione alla taglia del reticolo

Confronto sui tempi di simulazione

Figura: Tempo di proposta di update di uno spin, scalato per la taglia del reticolo