Использование тензорных сетей для изучения квантового отжига

Автор:

Студент группы Б02 - 821 Лаврин Олег Игоревич

Научный руководитель:

Магистр

Перельштейн Михаил Романович

План

- 1) Комбинаторная Оптимизация
- 2) Цепочки Изинга
- 3) Квантовый Отжиг
- 4) Тензорные Сети и Крестовая Аппроксимация
- 5) Сравнение Решений
- 6) Исследование Отжига
- 7) Вывод и Планы на Будущее

Задача Коммивояжера

Пусть $d_{n,m}$ - матрица расстояний между городами n и m, а $x_{n,t} \in \{0,1\}$ переменные выбора, где $x_{n,t} = 1$, если коммивояжер на шаге t посещает город n. Эту задачу тоже можно сформулировать в матричном виде:

$$\sum_{n,m,t}^{N} d_{n,m} x_{n,t} x_{m,t+1} \to \min_{x_{n,t} \in \mathcal{B}}$$
 (5)

$$s.t \ \forall n \hookrightarrow \sum_{t} x_{n,t} = 1$$

$$\forall t \hookrightarrow \sum_{t} x_{n,t} = 1$$

$$(6)$$

$$(7)$$

$$\forall t \hookrightarrow \sum_{n} x_{n,t} = 1 \tag{7}$$

Сведение Ограничений к Штрафам

Основным барьером на пути создания универсального

алгоритма для их решений встают ограничения на множество, по которому ведется поиск.

Одним из стандартных способов обойти этот барьер - воспользоваться релаксацией ограничений.

Тогда задача принимает следующий вид:

$$x^T Q_{obj} x + f_{penalty}(x) \to \min_{x_i \in \mathcal{B}}$$

Classical Constraint	Equivalent Penalty
$x + y \le 1$	P(xy)
$x+y \ge 1$	P(1-x-y+xy)
x + y = 1	P(1-x-y+2xy)
$x \le y$	P(x-xy)
$x_1 + x_2 + x_3 \le 1$	$P(x_1x_2 + x_1x_3 + x_2x_3)$
x = y	P(x+y-2xy)

где Q_{obj} - матрица, задающая целевую функцию оптимизации, а $f_{penalty}$ - штрафы которые формируют из ограничений оригинальной задачи. Зачастую, эти ограничения тоже получаются квадратичными.

Цепочки Изинга

Используя замену $x_i = \frac{1+s_i}{2}$, можно показать, что эта задача эквивалентна поиску основного состояния в **модели Изинга** со следующим гамильтонианом:

$$\hat{H} = -\sum_{i=1}^{n} \sum_{j=1}^{i} J_{i,j} \hat{\sigma}_z^{(i)} \hat{\sigma}_z^{(j)} - \sum_{i=1}^{n} h_i \hat{\sigma}_z^{(i)}$$
(10)

где $\hat{\sigma}_z^{(i)}$ - оператор спина *i*ого атома в решетке, $J_{i,j}$ - энергии их взаимодействия, а h_i - внешнее поле, дейтсвующее на *i*ый атом.

Фрустрированные Цепочки Изинга

Рис. 4: Пример фрустрированной цепочки. Независимо от того, куда направлен первый спин, на одной из его связей не будет минимума энергии, а все остальные связи будут иметь минимальную энергию.

Постановка Задачи - Отыскание Основного Состояния следующей Изинговской цепочки:

Рис. 5: Решетка для тестовой задачи. Она состоит из двух антиферромагнитных подрешеток с энергией взаимодействия j_2 , сдвинутых на полпериода, взаимодействующих друг с другом ферромагнитнтым образом с энергией j_1 .

Квантовый Отжиг

Тензорные Сети

$$\sum_j M_{ij} v_j$$

vector

tensor

3-index
$$T_{ijk}$$

$$= A_{ij}B_{ji} = \text{Tr}[AB]$$

$$M_{ij}$$

Matrix Product States \ Matrix Product Operator

$$= \sum_{\alpha_1, \alpha_2, \alpha_3} A_{\alpha_1}^{s_1} B_{\alpha_1 \alpha_2}^{s_2} C_{\alpha_2 \alpha_3}^{s_3} D_{\alpha_3}^{s_4}$$

$$iggle iggraph ig$$

Нахождение Основного Состояния

Крестовая Аппроксимация Матриц

Незаслуженно малоизвестный факт:

Матрицу ранга r можно восстановить по r столбцам и r строкам.

Крестовая Аппроксимация MPS

Результаты. Сравнение Квантового Отжига и Крестовой Аппроксимации

Результаты. Исследование Отжига

Результаты. Исследование Фазового Перехода

Вывод

- 1) В задачах дискретной оптимизации Крестовая Аппроксимация оказалась эффективнее, чем квантовый отжигатель d-wave.
- 2) Тензорные сети также оказались достаточно эффективны в поиске основного состояния в больших "не-классических" системах
- 3) Используя тензорные сети удалось исследовать профиль отжига и доказать, что ошибка связана НЕ с вырождением в течении отжига
- 4) Вероятнее всего, качественный рост ошибок происходит в момент фазового перехода, но доказать это не удалось

Планы на Будущее

- 1) Проверить работу крестовой аппроксимации на псевдо-булевых функциях
- 2) Применить информацию об уровнях энергии из тензорных сетей для ускорения оптимизации через адаптивный отжиг.
- 3) Реализовать используемые методы на современных библиотеках. Добавить поддержку GPU/тензорных процессоров