0. Course Presentation

Sistemes Distribuïts en Xarxa (SDX)
Facultat d'Informàtica de Barcelona (FIB)
Universitat Politècnica de Catalunya (UPC)
2024/2025 Q2

Instructor

• Instructor: Jordi Guitart

• E-mail: jordi.guitart@upc.edu

• Office: C6-205

Office Hours: Arrange an appointment by mail

to meet physically or virtually

(e.g. Google Meet)

Technical competences

- Understand the fundamental concepts for building a distributed system
 - Communication between processes & naming
 - Time & coordination
 - Replication & consistency
- Know typical distributed systems
 - Distributed file systems
 - Distributed web-based systems
 - Large-scale distributed systems
 - Mobile and ubiquitous systems

Transversal competences

- G3.1. To understand and use effectively handbooks, products specifications and other technical information written in English
 - Reading comprehension strategies and discourse and genre features
 - Recognizing text structure and organization
 - Applying reading strategies effectively
 - Recognizing genre
 - Identifying the purpose and audience of a text as related to genre

Contents

- 1. Concepts underlying distributed systems
- 2. Interprocess communication
- 3. Time and ordering
- 4. Coordination and agreement
- 5. Consistency and replication
- 6. Name systems and services
- 7. Distributed file systems
- 8. Distributed web-based systems
- 9. Peer-to-peer systems
- 10. Distributed computing
- 11. Mobile and ubiquitous systems

Course organization

- Lecture classes (2 h/week)
 - Objective: Acquisition of theoretical knowledge
- Seminar sessions (2 h/week)
 - Objective: Apply in practice theoretical concepts
- Autonomous learning (6 h/week)
- ⇒ Student's work: 10 h/week !!!
- All classes planned to be face-to-face

Course organization

- Lecture classes
 - Slide-based lectures
 - Exercises (from previous exams)
 - Available in the Exam documentation area in the 'Racó'
 - Online quizzes: Quizizz
 - <u>https://quizizz.com/</u>
 - Register if you want to keep your history of quizzes
 - Preparation/Follow-up: <u>Reading of papers</u>
 - Elaborate a **reading report** ⇒ deadline: 1 week
 - Fill the report in <u>ATENEA</u>
 - Papers content WILL be requested in the exams

Course organization

- Seminar sessions
 - We will use <u>Erlang</u> programming language
 - <u>https://www.erlang.org</u>
 - Lab work in teams of three students
 - Answer the activity in ATENEA to fill the team members before February, 18th
 - <u>https://atenea.upc.edu/mod/choicegroup/view.php?id=4887339</u>
 - A number of code and experimental milestones must be accomplished <u>during the sessions</u>
 - Answer questions in <u>ATENEA</u> (deadline: 1 week)
 - Seminars content WILL be requested in the exams

Course material

- We have a workspace in ATENEA
 - Resources:
 - Lecture slides (+ videos from past course)
 - Reading assignments
 - Seminar assignments + source files
 - Erlang supporting documentation and references
 - Questionnaire for self- and peer-assessment
 - Activities:
 - Reading reports
 - Seminar reports: code review + open questions
 - ⇒ https://atenea.upc.edu/course/view.php?id=96856

- A. Written mid-term exam
 - Confirmed date: 07/04, 10.30h-12.30h
- B. Written final exam
 - Confirmed date: 19/06, 11.30h-14.30h
 - 1. Evaluation of contents included in the mid-term exam, for the students that failed
 - 2. Evaluation of contents not included in the midterm exam, for all the students
- C. Evaluation of readings
- D. Evaluation of seminars

Final Grade for SDX =

$$0,25 \times A + 0,25 \times B2 + 0,2 \times C + 0,3 \times D$$

For the students that have passed the mid-term exam (A>=5) and do not perform the B1 part of the final exam

$$0,25 \times B1 + 0,25 \times B2 + 0,2 \times C + 0,3 \times D$$

For the rest of students

A. Mid-term exam

B. Final exam

- 1. Multiple-choice test about the lectures
 - ⇒ <u>Closed-book</u>: you are not allowed notes, books, or electronic devices such as mobile phones or smartwatches
- 2. Exercises about the lectures
 - ⇒ Restricted open-book: you are allowed a **single legible** double-sided cheat sheet
- 3. Questions/exercises about the seminars
 - ⇒ Closed-book
- 4. Questions about the readings
 - ⇒ Restricted open-book: you are allowed your own reading reports

- C. Readings grade: $0, 5 \times \overline{R_i} + 0, 5 \times \overline{RQ_i}$
 - Six reading assignments during the course
 - \overline{R}_i : average grade of readings reports
 - Delivered on time and complete: 10
 - Late delivery or missing sections: 5
 - Not delivered: 0
 - Six questions about the readings in the exams
 - $\overline{RQ_i}$: average grade of questions about the readings
- Used also for the transversal competence grading

D. Seminars grade: $(0, 6 \times \overline{S_i} + 0, 4 \times \overline{SQ_i}) \times W$

- Six seminar assignments during the course
 - 1. Fulfill a number of code and experimental **milestones** during the sessions
 - 2. Answer a number of open **questions** after the sessions through ATENEA
 - $\overline{S_i}$: average grade of seminar deliverables
- Four questions about the seminars in the exams
 - $\overline{SQ_i}$: average grade of questions about the seminars
- W: individual weighting resulting from self- and peer-evaluation: [0,75 ... 1]

Academic integrity

- We adhere to the <u>commitment to academic</u> <u>integrity at the UPC</u>
 - All the work you submit for grading, individually or as a team, <u>must be your own work</u>
 - Plagiarism and fraud are unacceptable, whether the source is a current/past student, or a website
 - Aiding someone else to cheat is also fraudulent
- Violations of academic integrity will be severely sanctioned as per the <u>FIB protocol</u>

Bibliography

Basic textbooks

- A. S. Tanenbaum, M. van Steen. *Distributed Systems: Principles and Paradigms*, 4th edition, distributed-systems.net, 2023
- G. Coulouris, J. Dollimore, T. Kindberg, G. Blair. *Distributed* Systems: Concepts and Design, 5th edition, Addison-Wesley, 2011

Additional books

- S. Ghosh. *Distributed Systems: An Algorithmic Approach*, Second Edition, Chapman and Hall/CRC, 2014
- F. Cesarini, S. Thompson. Erlang Programming: A Concurrent Approach to Software Development, O'Reilly, 2009
- J. Armstrong. Programming Erlang: Software for a Concurrent World, 2nd edition, Pragmatic Programmers, 2013
- F. Hebert. Learn You Some Erlang for Great Good!, No Starch Press, 2013

Requirements

- OS concepts (SO)
- Networks concepts (XC)

