SCHEMAS

Definition: s = s_1...s_i with s_i = 0,1 or *

- Schema s resent a subset of D
- Ex: o(s) = number of defined bit and s=01*1* => s contains $2^(l-o(s))$ chromosomes

s 0 1 * 1 *

x∈s 0 1 0 1 0
1 1 1

- A chromosomes belong to 2^i schema

SCHEMA THEOREM

- provide estimate of number of schemas during evolution
- Def: Population P, size n, at time t, schema s. m(s,t) = number of chromosomes of s in P at time t
- Analysis schema change after GA
- Selection: u^(s,t) average value f(x) over s. So good schema => ratio is high ~1

$$= \left[\frac{\hat{\mathbf{u}}(\mathbf{s}, \mathbf{t})}{\bar{\mathbf{f}}(\mathbf{t})}\right] \mathbf{m}(\mathbf{s}, \mathbf{t})$$

- Crossover: prob p_c and (1-p_c) just copied

+ d(s) max dis between defined binary (between 2 *)

+ x is schema. If i outside d(s) = schema reserve (at least 1) else possible both offspring are not in s and schema is destroyed

+ probability that chromosomes does not produce a chromosomes of s at most $p_c^*d(s)/(l-1)$ (I is length of representation of s)

+ remain chromosomes after crossover

$$E(m_2(s,t)) \ge \left(1 - p_c \frac{d(s)}{l-1}\right) m_1(s,t)$$

- Mutation:
- o(s) = number of define bit. p_m mutation prob
- x mutated belongs to s => survival prob s_m(s) = (1-p_m)^o(s)

$$E(m(s,t+1)) \ge m_2(s,t) \cdot [1-p_m]^{o(s)}$$

FINALLLY,

$$E(m(s,t+1)) \ge m(s,t) \cdot \frac{\widehat{u}(s,t)}{\widehat{f}(t)} \cdot \left[1 - p_c \frac{d(s)}{l-1}\right] \cdot \left[1 - p_m\right]^{o(s)}$$

$$\underbrace{t+1} \qquad \underbrace{t} \qquad \le 1$$

Evolution will increase the size of good schema. (average f(x) of s >>> average f(x) of Population)

The N³ Argument

Theorem: Under reasonable assumptions, random population of size N sample N^3 schemas (100 chromo => 10^6 schemas)

Demonstration:

- let s be a schema of k-order (k defined bits), 2^{l} chromosomes, 2^{l} belong to s => random N chromosomes, N.2^-k belongs to s
- k is **highest order** of schema which is represented in population of size N, schema of k-order has **least /theta copies (number of chromosomes /theta <= combination(L,k))**. => N/{\theta} = 2^k (number of ways to assign value to k defined bits)
- now need to show that number of schema of order $k > N^3$ (hypothesis) <=> 2^k combination(L,k) >= $(2^k + 1)^3$