Vivekanand Education Society's Institute of Technology, Chembur, Mumbai, Department Of Computer Engineering Year 2024-25 MID TERM TEST

Class: Second Year (D7)	Division: A/ B/ C				
Semester: IV	Subject: Design and Analysis of Algorithm				
Date: 12th March 2025	Time: 9:00 am				

СО	CO1	CO2	CO3
%	45%	25%	30%

Q.1		(Attempt any five of the following.)	Marks (20)	СО
	a	Apply Master Theorem to derive the time complexity for given recurrence relation: $T(n) = 3 T(n/2) + n $ $n \ge 1$	2	CO1
	b	Derive the Time Complexity of the given code snippet for ($i = 0$; $i < n$; $i++$) for ($j = 1$; $j < n$; $j = j * 2$) // statement	2	CO1
	c	Apply Quick Sort upon the following elements considering the first element as the pivot. 4, 3, 8, 1, 7, 9	2	CO2
	d	Derive the Time complexity of Merge Sort using Recursive Tree method.	2	CO2
	e	Find the minimum and maximum of an array using Divide and Conquer Strategy for [2, 5, 8, 1, 9, 6].	2	CO2
	f	Explain Strassen's Matrix Multiplication Algorithm	2	CO2
Q.2	a	Explain Asymptotic notation with proper graphs and examples	5	CO1
		OR		
	ь	Compare Insertion Sort with Selection Sort with respective the following parameters in a tabular format. 1. Time Complexity (Best case) 2. Time Complexity (Worst Case) 3. No. of Comparisons 4. Space Complexity 5. Adaptive (Efficiency in a nearly sorted data)		CO1

Q.3	a	Find the Minimum spanning tree using Prim's algorithm. 9 7 B 9 7 E 12 D 5			5	CO3	
		OR					
		Fill the Knapsack (Capacity = 50) with the items given below. Mention the proportion of each item chosen					
	b	Profit	5	CO3			
		Weight	10	20	30		

Vivekanand Education Society's Institute of Technology, Chembur, Mumbai, Department Of Computer Engineering Year 2024-25 MID TERM TEST

Class:	Second Year (D7)	Division: A/B/C
Semeste	er: IV	Subject: Design and Analysis of Algorithm
Date:	12th March 2025	Time: 9:00 am

CO	CO1	CO2	СО3
%	45%	25%	30%

Q.1		(Attempt any five of the following.)	Marks (20)	СО	BL
	a Apply Master Theorem to derive the time complexity for given recurrence relation: $T(n) = 3 T(n/2) + n $ $n \ge 1$		2	CO1	BL3
	b	Derive the Time Complexity of the given code snippet for ($i = 0$; $i < n$; $i++$) for ($j = 1$; $j < n$; $j = j * 2$) // statement	2	CO1	BL3
	c Apply Quick Sort upon the following elements considering the first element as the pivot. 4, 3, 8, 1, 7, 9		2	CO2	BL3
	d Derive the Time complexity of Merge Sort using Recursive Tree method. e Find the minimum and maximum of an array using Divide and Conquer Strategy for [2, 5, 8, 1, 9, 6].		2	CO2	BL3
			2	CO2	BL3
	f	Explain Strassen's Matrix Multiplication Algorithm		CO2	BL2
Q.2	a	Explain Asymptotic notation with proper graphs and examples	5	CO1	BL2
		OR			
	b	Compare Insertion Sort with Selection Sort with respective the following parameters in a tabular format. 6. Time Complexity (Best case) 7. Time Complexity (Worst Case) 8. No. of Comparisons 9. Space Complexity 10. Adaptive (Efficiency in a nearly sorted data)	5	CO1	BL3

Q.3	a	Find the Minimum spanning tree using Prim's algorithm. 9 7 B 9 7 E 12 D 5				5	CO3	BL3
		OR						
		Fill the Knapsack (Capacity = 50) with the items given below. Mention the proportion of each item chosen						
	b	Profit	5	CO3	BL3			
		Weight	10	20	30			