Ques-1.
$$T(n) = 3T(\frac{n}{2}) + n^2$$

Here, $a = 3$, $b = 2$
 $f(n) = n^2$
 So , $n^{\log_2 a} = n^{\log_2 3} < n^2$

Since, $n^{\log_2 3} < n^2$
 So , according to Master's Theorem —

 $T(n) = O(n^2)$.

Ques-2. $T(n) = 4T(\frac{n}{2}) + n^2$
 $Here, a = 4, b = 2 \text{ and } f(n) = n^2$
 $So, n^{\log_2 a} = n^{\log_2 4} = n^{\log_2 4 2^2}$
 $= n^2$
 $Since, n^{\log_2 a} = f(n)$
According to Master's Theorem,

 $T(n) = O(n^2 \log n)$

Ques-3. $T(n) = T(\frac{n}{2}) + 2^n$
 $So, n^{\log_2 a} = n^{\log_2 1} = n^{\log_2 2^2}$
 $\Rightarrow n^0 = 1$
 $Since, 1 < f(n)$
According to Master's Theorem,

 $T(n) = O(x^n)$

Ours-4.
$$T(n) = a^n T\left(\frac{n}{2}\right) + n^2$$

Haster's Theorem is not applicable since 'a' is a function

Ours-5. $T(n) = 16T\left(\frac{n}{2}\right) + n$

Here, $a = 16$, $b = 4$ and $f(n) = n$

So, $n^{\log_2 a} = n^{\log_4 N} = n^{\log_4 4^2} = n^{\log_4 4^2} = n^2$

Since, $n^2 > n$

Thoulous, according to Haster's theorem,

 $T(n) = O(n^2)$.

Ours-6. $T(n) = 2T\left(\frac{n}{2}\right) + n\log n$

Here, $a = 2$, $b = 2$ and $f(n) = n\log n$.

So, $n^{\log_2 a} = n^{\log_2 a} = n$

Since, $n^{\log_2 a} < f(n)$

According to Haster's Theorem,

 $T(n) = O(n\log_4 n)$.

Ours-7. $T(n) = 2T\left(\frac{n}{2}\right) + n\log_4 n$

Here, $a = 2$, $b = 2$ and $f(n) = n\log_4 n$

So, $n^{\log_2 a} = n^{\log_2 a} = n^{\log_2 a} = n$

Since,
$$n \log_b a > f(n)$$

According to Master's Theorem,
 $T(n) = O(n)$.

Ques -8.
$$T(n) = 2T(\frac{n}{4}) + n^{0.51}$$

Here,
$$a = 2$$
, $b = 4$ and $f(n) = n^{0.51}$
So, $n^{\log_b a} = n^{\log_4 2} = n^{0.5}$
Since, $n^{\log_b a} < f(n)$
According to Master's Theorem,
 $T(n) = O(n^{0.51})$

ording to Master?'s Theorem
$$T(n) = O(n^{0.51})$$

Ques - 9.
$$T(n) = 0.5T(\frac{n}{2}) + \frac{1}{n}$$

Ques-10.
$$T(n) = 16T(\frac{n}{4}) + n!$$

Hure,
$$a = 16$$
, $b = 4$ and $f(n) = n!$

$$S0, \eta \log_{b} a = \eta \log_{4} 16 = \eta \log_{4} (4^{2}) = \eta^{2}$$

$$n) = O(n!)$$

Ques-11.
$$T(n) = 4T\left(\frac{n}{2}\right) + \log n$$

Here, $a = 4$, $b = 2$ and $f(n) = \log n$.

So, $n \log b^{\alpha} = n \log 4 = n^2$

Since, $n \log b^{\alpha} > f(n)$

According to Haster 2s. Theorem,

 $T(n) = O(n^2)$

Gues-12. $T(n) = squt(n)T\left(\frac{n}{2}\right) + \log n$

Since, $a \neq contant$.

: Haster's Theorem is not applicable.

Ques-13. $T(n) = 3T\left(\frac{n}{2}\right) + n$

Hure, $a = 3$, $b = 2$ and $f(n) = n$

So, $n \log b^{\alpha} = n \log 3 = n^{1/58}$

Since, $n \log b^{\alpha} > f(n)$

: According to Haster's Theorem,

 $T(n) = O(n^{1.59})$

Ques-14. $T(n) = 3T\left(\frac{n}{3}\right) + \sqrt{n}$

Hure, $a = 3$, $b = 3$ and $f(n) = \sqrt{n}$

So, $n \log b^{\alpha} = n \log 3 = n$

Since, $n \log b^{\alpha} = n \log 3 = n$

So, $n \log b^{\alpha} = n \log 3 = n$

Since, $n \log b^{\alpha} = n \log 3 = n$

: According to Master's Theorem,
$$T(n) = O(n)$$
.

Ques - 15.
$$T(n) = 4T(\frac{n}{2}) + cn$$

Here,
$$a = 4$$
, $b = 2$ and $f(n) = n$.
So, $n \log_b a = n \log_2 4$

Since,
$$n \log_{b} a > f(n)$$

 \therefore According to Master's Theorem,
 $T(n) = O(n^2)$

Ques-16.
$$T(n) = 3T(\frac{n}{4}) + n \log n$$

Here,
$$a=3$$
, $b=4$ and $f(n)=n\log n$

So,
$$n \log_b a = n \log_4 3 = n^{0.187}$$

Since, $n \log_b a < f(n)$
: According to Master's Theorem,
 $T(n) = O(n \log n)$

Ques -17:
$$T(n) = 3T(\frac{n}{3}) + \frac{n}{2}$$

Here,
$$a=3$$
, $b=3$ and $f(n)=n$

So,
$$n \log_{b} a = n \log_{3} 3 = n$$

Since, $n \log_{b} a > f(n)$
. According to Master's Theorem,
 $T(n) = O(n)$

Ques-18- $T(n) = 6T(\frac{n}{3}) + n^2 \log n$ Hove, a=6, b=3 and $f(n)=n^2\log n$ So, $n \log_b a = n \log_3 b = n^{1-63}$ Since, $n \log_b a < n^2 \log_n n$ \therefore According to Master's Theorem, $T(n) = O(n^2 \log_3 n)$ Ques - 19. $T(n) = 4T(n) + n/\log n$. Here, a = 4, b = 2 and $f(n) = n / \log n$ So, $n \log_b a = n \log_2 4 = n^2$ Since, $n \log_b a > f(n)$ According to Haster's Theorem, $T(n) = O(n^2)$ Ques-20. $T(n) = 64T(\frac{n}{R}) - n^2 \log n$ Here, f(n) is not an increasing function. Master's Theorem is not applicable. Therefore, $T(n) = 7T\left(\frac{n}{3}\right) + n^2$ Here, a = 7, b = 3 and $f(n) = n^2$ So, $n \log_b a = n \log_3 7 = n^{1.7}$ Since, $n \log_b a < f(n)$... According to Master's Theorem, $T(n) = O(n^2)$

- 1000 700	
Ques-22	$T(n) = T\left(\frac{n}{2}\right) + n\left(2 - \cos n\right)$
	Hvu, Master's Theorem is not applicable due to violation of vegularity condition.
,	
<i>V</i>	
,	