rank (r_1, \ldots, r_K) , link function f, entrywise bound α **Output:** Estimated low-rank coefficient tensor $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_K}$. 1: Calculate $\check{\mathcal{B}} = \mathcal{Y} \times_1 [(\boldsymbol{X}_1^T \boldsymbol{X}_1)^{-1} \boldsymbol{X}_1^T] \times_2 \cdots \times_K [(\boldsymbol{X}_K^T \boldsymbol{X}_K)^{-1} \boldsymbol{X}_K^T].$ 2: Initialize the iteration index t = 0. 3: Initialize the core tensor $\mathcal{C}^{(0)}$ and factor matrices $M_k^{(0)} \in \mathbb{R}^{p_k \times r_k}$ via rank- (r_1, \dots, r_K) Tucker approximation of \mathcal{B} , in the least-square sense. 4: while the relative increase in objective function $\mathcal{L}_{\mathcal{V}}(\mathcal{B})$ is less than the tolerance do

Input: Response tensor $\mathcal{Y} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$, covariate matrices $X_k \in \mathbb{R}^{d_k \times p_k}$ for $k = 1, \ldots, K$, target Tucker

- Update iteration index $t \leftarrow t + 1$. 5: for k = 1 to K do
- 6: Obtain the factor matrix $M_k^{(t+1)} \in \mathbb{R}^{p_k \times r_k}$ by solving d_k separate GLMs with link function f. 8:
- Update the columns of $M_k^{(t+1)}$ by Gram-Schmidt orthogonalization. end for 9:
 - Obtain the core tensor $C^{(t+1)} \in \mathbb{R}^{r_1 \times \cdots \times r_K}$ by solving a GLM with $\text{vec}(\mathcal{Y})$ as response, $O_{k-1}^K[X_k M_k^{(t)}]$
 - as covariates, and f as link function.

Algorithm 1 Generalized tensor response regression with multi-sided covariates

- Rescale the core tensor subject to the entrywise bound constraint. 11:
- Update $\mathcal{B}^{(t+1)} \leftarrow \mathcal{C}^{(t+1)} \times_1 M_1^{(t+1)} \times_2 \cdots \times_K M_{\nu}^{(t+1)}$. 12:
- 13: end while

10: