Package 'Jacquard'

September 17, 2024

Type Package
Title Estimation of Jacquard's Genetic Identity Coefficients
Version 1.0.2
Date 2024-09-17
Author Jan Graffelman [aut, cre]
Maintainer Jan Graffelman < jan.graffelman@upc.edu>
Depends R (>= 3.3.0), Rsolnp
Description Contains procedures to estimate the nine condensed Jacquard genetic identity coefficients (Jacquard, 1974) <doi:10.1007 978-3-642-88415-3=""> by constrained least squares (Graffelman et al., 2024) <doi:10.1101 2024.03.25.586682=""> and by the method of moments (Csuros, 2014) <doi:10.1016 j.tpb.2013.11.001="">. These procedures require previous estimation of the allele frequencies. Functions are supplied that estimate relationship parameters that derive from the Jacquard coefficients, such as individual inbreeding coefficients and kinship coefficients.</doi:10.1016></doi:10.1101></doi:10.1007>
License GPL (>= 2)
<pre>URL https://www.r-project.org, http://www-eio.upc.edu/~jan/</pre>
Suggests knitr, rmarkdown
VignetteBuilder knitr, rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2024-09-17 16:20:50 UTC
Contents
BoxplotDelta 2 BoxplotTheta 3 CalculateMom 4 CalculateTheta 5 DeltaPair 6 DeltaSimulatedPedigree 7

2 BoxplotDelta

$GTC\ \dots\ \dots\ \dots$									 								
Jacquard.cls									 								
JointGenotypeCount	s.								 								
mafvector									 								
MakeM									 								
PairwiseList									 								
SimulatedPedigree									 								

15

BoxplotDelta

Index

Boxplots of Jacquard Coefficients

Description

Function BoxplotDelta produces boxplots of the Jacquard coefficients from a list structure containing nine matrices with the pairwise coefficients. The diagonals of J1 and J7 are plotted in separate boxplots.

Usage

```
BoxplotDelta(J, ind.sub = 1:nrow(J[[1]]), ...)
```

Arguments

J The list structure with nine fields consisting of nine matrices

ind. sub Index for subsetting the individuals

... Additional arguments to pass on to boxplot

Value

NULL

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

```
data(DeltaSimulatedPedigree)
BoxplotDelta(DeltaSimulatedPedigree)
```

BoxplotTheta 3

Description

Function BoxplotTheta makes boxplots of relatedess parameters from a list object containing estimates of pairwise relatedness parameters.

Usage

```
BoxplotTheta(KS, ind.sub = 1:nrow(KS[[1]]), ...)
```

Arguments

KS A list object with four fields of matrices: kinship, inbreeding, T3 and T4.
ind. sub Index for subsetting the individuals
... Additional arguments passed on to the function boxplot.

Details

For individual inbreeding coefficients, two boxplots are made, the first based on the diagonal of T2, the second on the row means of T2. The remaining boxplots (kinship, T3 and T4) are all pairwise, and exclude self-pairs.

Value

NULL

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

References

Csuros, M. (2014) Non-identifiability of identity coefficients at biallelic loci. Theoretical Population Biology 92, pp. 22-29. doi:10.1016/j.tpb.2013.11.001.

Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Preprint at bioRxiv doi:10.1101/2024.03.25.586682.

See Also

CalculateTheta

4 CalculateMom

Examples

```
data(DeltaSimulatedPedigree)
Theta <- CalculateTheta(DeltaSimulatedPedigree)
BoxplotTheta(Theta)</pre>
```

CalculateMom

Calculate Moment Estimators for Relatedness Parameters

Description

Function CalculateMom computes moment estimators for a set of relatedness parameters (kinship, inbreeding, least one IBD out of three and T4) using the genotype data and the allele frequencies.

Usage

```
CalculateMom(Xgen, mafvec, ind.sub = 1:nrow(Xgen), verbose = TRUE)
```

Arguments

Xgen	Genotype data coded in $(0,1,2)$ format
mafvec	A vector of minor allele frequencies
ind.sub	Index for subsetting individuals

verbose Print output on the progress of the algorithm if verbose=TRUE.

Value

A list object with four fields:

T1	The pairwise coancestry or kinship coefficients (symmetric)
T2	The pairwise inbreeding coefficients (non-symmetric)
Т3	The pairwise Least one IBD out of three (symmetric)
T4	T4 (skew-symmetric)

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

References

Csuros, M. (2014) Non-identifiability of identity coefficients at biallelic loci. Theoretical Population Biology 92, pp. 22-29. doi:10.1016/j.tpb.2013.11.001.

See Also

BoxplotTheta

CalculateTheta 5

Examples

```
data(SimulatedPedigree)
Xgen <- as.matrix(SimulatedPedigree[,6:ncol(SimulatedPedigree)])
mafvec <- mafvector(Xgen)
Theta.mom <- CalculateMom(Xgen[1:10,],mafvec)</pre>
```

CalculateTheta

Calculate Relatedness Paramenters from Jacquard Coefficients tA Capitalized Title (ideally limited to 65 characters)

Description

Function CalculateTheta calculates five identifiable relatedness parameters from a list structure containing nine matrices of Jacquard coefficients.

Usage

```
CalculateTheta(J, ind.sub = 1:nrow(J[[1]]))
```

Arguments

J A list structure with nine matrices of pairwise Jacquard coefficients

ind. sub Index for subsetting the individuals

Details

CalculateTheta produces four matrices according to the expressions in Graffelman et al. (2024).

Value

A list object with four fields:

The pairwise coancestry or kinship coefficients (symmetric)

T2 The pairwise inbreeding coefficients (non-symmetric)
T3 The pairwise Least one IBD out of three (symmetric)

T4 (skew-symmetric)

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

References

Csuros, M. (2014) Non-identifiability of identity coefficients at biallelic loci. Theoretical Population Biology 92, pp. 22-29. doi:10.1016/j.tpb.2013.11.001.

Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Preprint at bioRxiv doi:10.1101/2024.03.25.586682.

6 DeltaPair

See Also

```
Jacquard.cls
```

Examples

```
data(DeltaSimulatedPedigree)
Theta <- CalculateTheta(DeltaSimulatedPedigree)</pre>
```

DeltaPair

Extract estimates of Jacquard coefficients for a given pair

Description

Function DeltaPair extracts from the list object of all pairwise Jacquard coefficients the set of coefficients of a given pair (i,j).

Usage

```
DeltaPair(Delta, i, j, digits = 7)
```

Arguments

Delta A list with nine matrices of pairswise coefficients.

i Index of the first individual.j Index of the second individual.

digits Number of digits to which the coefficients are rounded.

Value

A vector with nine elements

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

See Also

```
PairwiseList, Jacquard.cls
```

```
data(DeltaSimulatedPedigree)
DeltaPair(DeltaSimulatedPedigree,1,2)
```

DeltaSimulatedPedigree

Estimates of Jacquard Coefficients for Simulated SNP data according to a Pedigree

Description

A list object containing nine matrices with pairwise Jacquard coefficients

Usage

```
data("DeltaSimulatedPedigree")
```

Format

A list with nine fields.

Details

DeltaSimulatedPedigree can be generated by applying function Jacquard.cls to the data in SimulatedPedigree.

References

Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Preprint at bioRxiv doi:10.1101/2024.03.25.586682.

Examples

data(DeltaSimulatedPedigree)

 GTC

Joint Genotype Counts according to a Pedigree

Description

Contains a list object with nine fields, consisting of nine lower triangular matrices with the joint genotype counts for 111 individuals.

Usage

data("GTC")

Format

A list with nine fields.

S Jacquard.cls

References

Goudet, J. (2022) JGTeach: JG Teaching material. R package version 0.1.9. https://github.com/jgx65 Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Preprint at bioRxiv doi:10.1101/2024.03.25.586682.

Examples

data(GTC)

Jacquard.cls

Estimation of Jacquard coefficients by Constrained Least Squares

Description

Function Jacquard.cls estimates the nine condensed Jacquard coefficients of a pair of individuals using their joint genotype probabilities and the allele frequencies using constrained least squares.

Usage

Arguments

Xlist	A list object with nine fields containing the matrices with joint genotype counts.
mafvec	A vector with the minor allele frequencies for all genetic variants.
eps	Tolerance criterion for the solver (eps=1e-06 by default).
delta.init	Initial vector of estimates for the nine condensed Jacquard coefficients.
Mavg	A nine by nine matrix of conditional probabilities, allele frequency dependent. This matrix is calculated by Jacquard.cls if it is not specified.
inner.iter	Maximum number of inner iterations for the solver (1000 by default).
outer.iter	Maximum number of outer iterations for the solver (1000 by default).
verbose	Print output on the progress of the algorithm if verbose=TRUE.

Details

Function Jacquard.cls relies on the solver solnp from the Rsolnp package.

Value

A list object with fields:

delta A list with nine matrices of estimates of pairwise Jacquard coefficients.

convergence A matrix with the convergence status for each pair (0 = converged; 1 = not)

converged).

Jacquard.cls 9

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

References

Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Preprint at bioRxiv doi:10.1101/2024.03.25.586682.

Ghalanos, A. and Theussl, S. (2015) Rsolnp: General Non-linear Optimization Using Augmented Lagrange Multiplier Method. R package version 1.16. https://cran.r-project.org/package=Rsolnp

See Also

JointGenotypeCounts

```
data(SimulatedPedigree)
Xgen <- as.matrix(SimulatedPedigree[,6:ncol(SimulatedPedigree)])</pre>
data(GTC)
mafvec <- mafvector(Xgen)</pre>
ii <- 1:3
GTCsubset <- list(length = 9)</pre>
for (k in 1:9) {
  GTCsubset[[k]] <- matrix(numeric(3^2), ncol = 3)</pre>
  GTCsubset[[k]] <- GTC[[k]][ii,ii]</pre>
}
output <- Jacquard.cls(GTCsubset,mafvec=mafvec,</pre>
                         eps=1e-06)
Delta.cls <- output$delta
print(Delta.cls)
print(output$convergence)
# A particular estimate of a Jacquard coefficient for a particular pair can
# be extracted from Delta.cls
\# E.g., Delta\_9 of the first pair of individuals (1,2) can be extracted by
D9_12 <- Delta.cls[[9]][1,2]</pre>
```

JointGenotypeCounts

Calculate joint pairwise Genotype Counts

Description

Function JointGenotypeCounts counts for each pair of individuals in the database their nine joint genotype counts

Usage

```
JointGenotypeCounts(X.gen, one.is.minor = TRUE)
```

Arguments

X. gen A matrix with genotype data coded in (0,1,2) format

one.is.minor If TRUE the genotype data represent the count of the minor allele for each marker,

if FALSE the major allele.

Value

A list object with nine fields containing:

f0000	Matrix of (0/0,0/0) counts for all pairs
f1111	Matrix of (1/1,1/1) counts for all pairs
f1101	Matrix of (1/1,0/1) counts for all pairs
f0111	Matrix of (0/1,1/1) counts for all pairs
f0101	Matrix of (0/1,0/1) counts for all pairs
f1100	Matrix of (1/1,0/0) counts for all pairs
f0011	Matrix of (0/0,1/1) counts for all pairs
f0100	Matrix of (0/1,0/0) counts for all pairs
f0001	Matrix of (0/0,0/1) counts for all pairs

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

References

Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Preprint at bioRxiv. doi:10.1101/2024.03.25.586682

```
data(SimulatedPedigree)
JC <- JointGenotypeCounts(SimulatedPedigree[1:3,1:100])
print(JC)</pre>
```

mafvector 11

_	
mafvector	Calculate the Minor Allele Frequency (MAF) for a matrix with $(0,1,2)$
	genotype data

Description

Function mafvector calculates genotype counts columnwise and determines the minor allele frequency for each column.

Usage

```
mafvector(X)
```

Arguments

Χ

A matrix of with (0,1,2) genotype data, individuals in rows, markers in columns.

Details

mafvector calculates the frequency of the minor allele irrespective of the coding; i.e., irrespective of whether the genotype data represent major or minor allele counts. Missing values are discarded for the calculation of the MAF.

Value

a vector

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

```
data(SimulatedPedigree)
p <- mafvector(SimulatedPedigree[,1:10])
print(p)</pre>
```

12 MakeM

MakeM

Create matrix of conditional joint genotype probabilities

Description

Function MakeM creates the matrix of conditional joint genotype probabilities for biallelic markers for a given allele frequency.

Usage

MakeM(p)

Arguments

р

the allele frequency

Value

a 9 by 9 matrix

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

References

Csuros, M. (2014) Non-identifiability of identity coefficients at biallelic loci. Theoretical Population Biology 92, pp. 22–29. doi: 10.1016/j.tpb.2013.11.001

Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Under review.

```
set.seed(123)
p <- runif(1)
M <- MakeM(p)</pre>
```

PairwiseList 13

PairwiseList

Create a Pairwise List of Jacquard Coefficients

Description

Function PairwiseList processes the list structure of Jacquard coefficients and converts it into to table of pairs of individuals with their Jacquard coefficients.

Usage

```
PairwiseList(X, digits = 3)
```

Arguments

X A list structure of nine matrices of Jacquard coefficients.

digits Jacquard coefficients are rounded to the given number of digits.

Value

A matrix

Author(s)

Jan Graffelman (jan.graffelman@upc.edu)

See Also

```
Jacquard.cls
```

```
data(DeltaSimulatedPedigree)

ii <- 1:3

SubSet <- list(length = 9)
for (k in 1:9) {
    SubSet[[k]] <- matrix(numeric(3^2), ncol = 3)
    SubSet[[k]] <- DeltaSimulatedPedigree[[k]][ii,ii]
}

List <- PairwiseList(SubSet)
print(List)</pre>
```

SimulatedPedigree

SimulatedPedigree

Simulated SNP data according to a Pedigree

Description

A matrix containing 111 individuals (rows), pedigree information (first five columns) and 20.000 single nucleotide polymorphisms (remaining columns) coded in (0,1,2) format and simulated according to a pedigree of 20 unrelated founders with six posterior generations.

Usage

```
data("SimulatedPedigree")
```

Format

A data frame containing 111 rows and 20.005 columns.

Details

The SNP data was generated using the JGTeach package. The genotype counts in the object SimulatedPedigree represent the counts of the minor allele.

References

Goudet, J. (2022) JGTeach: JG Teaching material. R package version 0.1.9. https://github.com/jgx65 Graffelman, J., Weir, B.S. and Goudet, J. (2024) Estimation of Jacquard's genetic identity coefficients with bi-allelic variants by constrained least-squares. Preprint at bioRxiv doi:10.1101/2024.03.25.586682.

Examples

data(SimulatedPedigree)

Index

```
* datasets
    {\tt DeltaSimulatedPedigree}, \textcolor{red}{7}
    GTC, 7
    SimulatedPedigree, 14
* graphics
    BoxplotDelta, 2
    BoxplotTheta, 3
* manip
    DeltaPair, 6
    JointGenotypeCounts, 10
    PairwiseList, 13
* misc
    CalculateMom, 4
    CalculateTheta, 5
    mafvector, 11
    MakeM, 12
* optimize
    Jacquard.cls, 8
BoxplotDelta, 2
BoxplotTheta, 3, 4
CalculateMom, 4
CalculateTheta, 3, 5
DeltaPair, 6
DeltaSimulatedPedigree, 7
GTC, 7
Jacquard.cls, 6, 8, 13
JointGenotypeCounts, 9, 10
mafvector, 11
MakeM, 12
PairwiseList, 6, 13
SimulatedPedigree, 14
```