Homework 2 Report - Credit Card Payment Prediction

學號: B05602022 系級: 工海三 姓名: 盧庭偉

1. (1%) 請簡單描述你實作之 logistic regression 以及 generative model 於此 task 的表現,並試著討論可能原因。

	Public Score	Private Score
logistic regression	0.81760	0.81980
generative model	0.81160	0.80860

備註: 1. 使用 20000 筆 training 資料

- 2. 對連續型參數做 min-max normalization
- 3. Generative model 使用 Gaussian distribution 做 model.)

logistic regression 由於是沒有做假設的狀況下,用 regression 自己去找規律,一般來 說在資料量足夠的情況下,結果應該會比有做分布狀況假設(Gaussian distribution)的 generative model 好一些。為了確證我們的假設,我們將 training 資料量減半做測試。

	Public Score	Private Score
logistic regression	0.79720	0.79400
generative model	0.80780	0.80908

備註: 1. 使用 10000 筆 training 資料

- 2. 對連續型參數做 min-max scaling
- 3. Generative model 使用 Gaussian distribution 做 model.

可以發現比起 generative model, logistic regression 的結果明顯變差許多,符合我們的預期。

2. (1%) 請試著將 input feature 中的 gender, education, martial status 等改為 one-hot encoding 進行 training process, 比較其模型準確率及其可能影響原因。

	Public Score	Private Score
使用原始資料	0.81760	0.81980
使用 one-hot encoding	0.82040	0.82140

備註: 1. 對連續型參數做 min-max scaling

可以看到改用 one-hot encoding 後結果有變好。我認為是因為,當用同一個參數不同的離散值當作 input 時,regression 很難真的 train 到剛好能表達不同值的意義。以 History of past payment($X6 \sim X11$) 為例, $1 \sim 9$ 代表 delay $1 \sim 9$ 個月;-1 代表準時;9 代表 delay 9 個月以上,很明顯這三種狀況下參數的意義有很大的不同,但因為這些參數彼此的間距是一樣的(除了-1 但也沒差很多),做 regression 時很難做出一個能讓這三種狀況明顯不同的切割。

而使用 one-hot encoding,由於每種離散的狀況都有自己的參數,因此可以分別 train 出不同情形對結果的影響,為處理離散資料較好的做法。

3. (1%)請試著討論哪些 input features 的影響較大(實驗方法沒有特別限制,但 請簡單闡述實驗方法)。

我們將 training set 去掉各項 feature 來做 training, 結果越差代表該 feature 的影響越大,以下為得到的結果:

扣除項	Public Score	Private Score	平均
LIMIT_BAL	0.8176	0.8176	0.8176
SEX	0.7988	0.7986	0.7987
EDUCATION	0.7974	0.7978	0.7976
MARRIAGE	0.7954	0.7980	0.7967
AGE	0.8186	0.8176	0.8181
PAY_0	0.7992	0.7964	0.7978
PAY_2	0.7988	0.7958	0.7973
PAY_3	0.7988	0.7962	0.7975
PAY_4	0.8174	0.8184	0.8179
PAY_5	0.8176	0.8200	0.8188
PAY_6	0.8176	0.8194	0.8185
BILL_AMT1	0.8168	0.8196	0.8184
BILL_AMT2	0.8172	0.8188	0.8180
BILL_AMT3	0.7996	0.7976	0.7986
BILL_AMT4	0.8184	0.8184	0.8184
BILL_AMT5	0.8182	0.8186	0.8184
BILL_AMT6	0.7996	0.7974	0.7985
PAY_AMT1	0.7996	0.7968	0.7982
PAY_AMT2	0.7994	0.7966	0.7980
PAY_AMT3	0.8070	0.7992	0.8031
PAY_AMT4	0.8184	0.8198	0.8191
PAY_AMT5	0.8174	0.8188	0.8181
PAY_AMT6	0.7994	0.7962	0.7978

備註: 1. 對連續型參數做 min-max scaling

4. (1%) 請實作特徵標準化 (feature normalization),並討論其對於模型準確率的影響與可能原因。

	Public Score	Private Score
No Scaling	0.78680	0.78460
Min-Max Scaling	0.81760	0.81980
Standardization (Z-score)	0.81200	0.81760

備註: 1. 對連續型參數做 scaling

理論上有做 scaling 的資料收斂速度會比較快,且由於本次 training 資料彼此間性質 及數值範圍差距較大,沒做 scaling 幾乎不太會收斂。而 Min-Max 與 Standardization 的 結果則沒有顯著的差異。

(Reference: https://sebastianraschka.com/Articles/2014 about feature scaling.html#about-standardization)

5. (1%)

DATE

DATE

DATE

Sol. let
$$A : \int_{-\infty}^{\infty} e^{-x^{2}} dx = \int_{-\infty}^{\infty} e^{-y^{2}} dy$$

$$A^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^{2}y^{2})} dx dy$$

$$A^{3} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^{2}y^{2})} dx dy$$

$$A^{4} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^{2}y^{2})} dx dy$$

$$A^{5} = \int_{-\infty}^{\infty} e^{-(x^{2}y^{2})} dx$$

$$A^{5} = \int_{-\infty}^{\infty} e^{-(x^$$

6. (1%)

(c)
$$\frac{\partial E}{\partial z_k} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial z_k}$$

(b) $\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial y_j} \cdot \frac{\partial y_j}{\partial z_j}$

(c) $\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial y_k} \cdot \frac{\partial y_k}{\partial z_k} \cdot \frac{\partial z_k}{\partial y_j} \cdot \frac{\partial y_j}{\partial z_j} \cdot \frac{\partial z_j}{\partial w_{ij}}$