

# 1K x 8 PROM

#### **Features**

- CMOS for optimum speed/power
- High speed
  - 25 ns (commercial)
  - -30 ns (military)
- Low power
  - -495 mW (commercial)
  - 660 mW (military)
- EPROM technology 100% programmable
- Slim 300-mil or standard 600-mil DIP or 28-pin LCC
- 5V  $\pm 10\%$  V<sub>CC</sub>, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar **PROMs**

Capable of withstanding > 2001V static discharge

#### **Functional Description**

The CY7C281A and CY7C282A are high-performance 1024-word by 8-bit CMOS PROMs. They are functionally identical, but are packaged in 300-mil and 600-mil-wide packages respectively. The CY7C281A is also available in a 28-pin leadless chip carrier. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C281A and CY7C282A are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance, and programming yield. The EPROM cell requires only 12.5V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.

Reading is accomplished by placing an active LOW signal on  $\overline{CS}_1$  and  $\overline{CS}_2$ , and active HIGH signals on CS<sub>3</sub> and CS<sub>4</sub>. The contents of the memory location addressed by the address lines  $(A_0 - A_9)$ will become available on the output lines  $(O_0 - O_7)$ .



### **Selection Guide**

|                          |            | 7C281A-25<br>7C282A-25 | 7C281A-30<br>7C282A-30 | 7C281A-45<br>7C282A-45 |
|--------------------------|------------|------------------------|------------------------|------------------------|
| Maximum Access Time (ns) |            | 25                     | 30                     | 45                     |
| Maximum Operating        | Commercial | 100                    | 100                    | 90                     |
| Current (mA)             | Military   |                        | 120                    | 120                    |



#### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

| Static Discharge Voltage | . >2001V |
|--------------------------|----------|
| Latch-Up Current         |          |

# **Operating Range**

| Range                     | Ambient<br>Temperature           | $ m v_{cc}$ |
|---------------------------|----------------------------------|-------------|
| Commercial                | $0^{\circ}$ C to $+70^{\circ}$ C | 5V ±10%     |
| Industrial <sup>[1]</sup> | -40°C to +85°C                   | 5V ±10%     |
| Military <sup>[2]</sup>   | −55°C to +125°C                  | 5V ±10%     |

## Electrical Characteristics Over the Operating Range<sup>[3,4]</sup>

|                    |                                                |                                                                                                                           |            | A-25<br>A-25 |      | A-30<br>2A-30 |      | A-45<br>2A-45 |      |      |
|--------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------|--------------|------|---------------|------|---------------|------|------|
| Parameter          | Description                                    | Test Condition                                                                                                            | ons        | Min.         | Max. | Min.          | Max. | Min.          | Max. | Unit |
| $V_{OH}$           | Output HIGH Voltage                            | $V_{CC} = Min., I_{OH} = -$                                                                                               | 4.0 mA     | 2.4          |      | 2.4           |      | 2.4           |      | V    |
| $V_{OL}$           | Output LOW Voltage                             | $V_{CC} = Min., I_{OL} = 16$                                                                                              | .0 mA      |              | 0.4  |               | 0.4  |               | 0.4  | V    |
| $V_{\mathrm{IH}}$  | Input HIGH Level                               | Guaranteed Input Log<br>Voltage for All Inputs                                                                            | ical HIGH  | 2.0          |      | 2.0           |      | 2.0           |      | V    |
| $V_{\mathrm{IL}}$  | Input LOW Level                                | Guaranteed Input Logical LOW<br>Voltage for All Inputs                                                                    |            |              | 0.8  |               | 0.8  |               | 0.8  | V    |
| $I_{IX}$           | Input Current                                  | $GND \le V_{IN} \le V_{CC}$                                                                                               |            | -10          | +10  | -10           | +10  | -10           | +10  | μΑ   |
| $I_{OZ}$           | Output Leakage Current                         | $\begin{array}{l} \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$ |            | -10          | +10  | -10           | +10  | -10           | +10  | μΑ   |
| I <sub>OS</sub>    | Output Short Circuit<br>Current <sup>[5]</sup> | $V_{CC} = Max., V_{OUT} =$                                                                                                | GND        | -20          | -90  | -20           | -90  | -20           | - 90 | mA   |
| $I_{CC}$           | Power Supply Current                           | $V_{CC} = Max.,$                                                                                                          | Commercial |              | 100  |               | 100  |               | 90   | mA   |
|                    |                                                | $I_{OUT} = 0 \text{ mA}$                                                                                                  | Military   |              |      |               | 120  |               | 120  | 1    |
| $V_{PP}$           | Program Voltage                                | •                                                                                                                         |            | 12           | 13   | 12            | 13   | 12            | 13   | V    |
| $V_{\mathrm{IHP}}$ | Program HIGH Voltage                           |                                                                                                                           |            | 3.0          |      | 3.0           |      | 3.0           |      | V    |
| $V_{\rm ILP}$      | Program LOW Voltage                            |                                                                                                                           |            |              | 0.4  |               | 0.4  |               | 0.4  | V    |
| $I_{PP}$           | Program Supply Current                         |                                                                                                                           |            |              | 50   |               | 50   |               | 50   | mA   |

# Capacitance<sup>[4]</sup>

| Parameter        | Description        | Test Conditions                         | Max. | Unit |
|------------------|--------------------|-----------------------------------------|------|------|
| $C_{IN}$         | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 10   | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = 5.0V$                         | 10   | pF   |

#### Notes:

- 1. Contact a Cypress representative for industrial temperature range specifications.
- 2.  $T_A$  is the "instant on" case temperature.
- 3. See the last page of this specification for Group A subgroup testing information.
- See "Introduction to CMOS PROMs" in this Data Book for general information on testing.
- 5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.



# AC Test Loads and Waveforms<sup>[4]</sup>



# Switching Characteristics Over the Operating Range<sup>[2,4]</sup>

|                   |                                    | 7C281A-25<br>7C282A-25 |      |      |      | 7C281A-45<br>7C282A-45 |      |      |
|-------------------|------------------------------------|------------------------|------|------|------|------------------------|------|------|
| Parameter         | Description                        | Min.                   | Max. | Min. | Max. | Min.                   | Max. | Unit |
| $t_{AA}$          | Address to Output Valid            |                        | 25   |      | 30   |                        | 45   | ns   |
| t <sub>HZCS</sub> | Chip Select Inactive to High Z     |                        | 15   |      | 20   |                        | 25   | ns   |
| t <sub>ACS</sub>  | Chip Select Active to Output Valid |                        | 15   |      | 20   |                        | 25   | ns   |

# **Switching Waveforms**





# **Programming Information**

Programming support is available from Cypress as well as from a number of third party software vendors. For detailed programming information, including a listing of software packages, please see the

PROMP rogramming Information located at the end of this section.Programming algorithms can be obtained from any Cypress representative.

**Table 1. Mode Selection** 

|          |                        |             |                    | Pin Fu             | $\mathbf{unction}^{[6]}$ |                          |             |
|----------|------------------------|-------------|--------------------|--------------------|--------------------------|--------------------------|-------------|
|          | Read or Output Disable | $A_9 - A_0$ | CS <sub>4</sub>    | CS <sub>3</sub>    | $\overline{	ext{CS}}_2$  | $\overline{\text{CS}}_1$ | $O_7 - O_0$ |
| Mode     | Other                  | $A_9 - A_0$ | PGM                | VFY                | $V_{PP}$                 | $\overline{\text{CS}}_1$ | $D_7 - D_0$ |
| Read     | -                      | $A_9 - A_0$ | $V_{\mathrm{IH}}$  | $V_{\mathrm{IH}}$  | $V_{\mathrm{IL}}$        | $V_{\mathrm{IL}}$        | $O_7 - O_0$ |
| Output   | Disable                | $A_9 - A_0$ | X                  | X                  | $V_{ m IH}$              | X                        | High Z      |
| Output   | Disable                | $A_9 - A_0$ | X                  | $V_{ m IL}$        | X                        | X                        | High Z      |
| Output   | Disable                | $A_9 - A_0$ | $V_{\rm IL}$       | X                  | X                        | X                        | High Z      |
| Output   | Disable                | $A_9 - A_0$ | X                  | X                  | X                        | $V_{\mathrm{IH}}$        | High Z      |
| Prograi  | m                      | $A_9 - A_0$ | $V_{\rm ILP}$      | $V_{\mathrm{IHP}}$ | $V_{PP}$                 | $V_{\rm ILP}$            | $D_7 - D_0$ |
| Prograi  | m Verify               | $A_9 - A_0$ | $V_{\mathrm{IHP}}$ | $V_{\rm ILP}$      | $V_{PP}$                 | $V_{\rm ILP}$            | $O_7 - O_0$ |
| Prograi  | m Inhibit              | $A_9 - A_0$ | $V_{\mathrm{IHP}}$ | $V_{\mathrm{IHP}}$ | $V_{PP}$                 | $V_{\rm ILP}$            | High Z      |
| Intellig | ent Program            | $A_9 - A_0$ | $V_{\rm ILP}$      | $V_{IHP}$          | $V_{PP}$                 | $V_{ILP}$                | $D_7 - D_0$ |
| Blank (  | Check                  | $A_9 - A_0$ | $V_{IHP}$          | $V_{\rm ILP}$      | $ m V_{PP}$              | $V_{ILP}$                | Zeros       |

Note: 6. X = "don't care" but not to exceed  $V_{CC} \pm 5\%$ .



**Figure 1. Programming Pinouts** 



# **Typical DC and AC Characteristics**







C281A-10











C281A-11



# **Ordering Information**

| Speed (ns) | Ordering Code  | Package<br>Name | Package Type                        | Operating<br>Range |
|------------|----------------|-----------------|-------------------------------------|--------------------|
| 25         | CY7C281A-25DC  | D14             | 24-Lead (300-Mil) CerDIP            | Commercial         |
|            | CY7C281A-25JC  | J64             | 28-Lead Plastic Leaded Chip Carrier |                    |
|            | CY7C281A-25PC  | P13             | 24-Lead (300-Mil) Molded DIP        |                    |
| 30         | CY7C281A-30DC  | D14             | 24-Lead (300-Mil) CerDIP            | Commercial         |
|            | CY7C281A-30JC  | J64             | 28-Lead Plastic Leaded Chip Carrier |                    |
|            | CY7C281A-30PC  | P13             | 24-Lead (300-Mil) Molded DIP        |                    |
|            | CY7C281A-30DMB | D14             | 24-Lead (300-Mil) CerDIP            | Military           |
| 45         | CY7C281A-45DC  | D14             | 24-Lead (300-Mil) CerDIP            | Commercial         |
|            | CY7C281A-45JC  | J64             | 28-Lead Plastic Leaded Chip Carrier |                    |
|            | CY7C281A-45PC  | P13             | 24-Lead (300-Mil) Molded DIP        |                    |
|            | CY7C281A-45DMB | D14             | 24-Lead (300-Mil) CerDIP            | Military           |
|            | CY7C281A-45KMB | K73             | 24-Lead Rectangular Cerpack         |                    |

| Speed (ns) | Ordering Code  | Package<br>Name | Package Type                 | Operating<br>Range |
|------------|----------------|-----------------|------------------------------|--------------------|
| 25         | CY7C282A-25PC  | P11             | 24-Lead (600-Mil) Molded DIP | Commercial         |
| 30         | CY7C282A-30PC  | P11             | 24-Lead (600-Mil) Molded DIP | Commercial         |
|            | CY7C282A-30DMB | D12             | 24-Lead (600-Mil) CerDIP     | Military           |
| 45         | CY7C282A-45PC  | P11             | 24-Lead (600-Mil) Molded DIP | Commercial         |
|            | CY7C282A-45DMB | D12             | 24-Lead (600-Mil) CerDIP     | Military           |

# MILITARY SPECIFICATIONS Group A Subgroup Testing

# **DC** Characteristics

| Parameter   | Subgroups |
|-------------|-----------|
| $V_{OH}$    | 1, 2, 3   |
| $V_{OL}$    | 1, 2, 3   |
| $ m V_{IH}$ | 1, 2, 3   |
| $ m V_{IL}$ | 1, 2, 3   |
| $I_{IX}$    | 1, 2, 3   |
| $I_{OZ}$    | 1, 2, 3   |
| $I_{CC}$    | 1, 2, 3   |

# **Switching Characteristics**

| Parameter        | Subgroups       |
|------------------|-----------------|
| $t_{AA}$         | 7, 8, 9, 10, 11 |
| t <sub>ACS</sub> | 7, 8, 9, 10, 11 |

Document #: 38-00227-C



# **Package Diagrams**

# **24-Lead (600-Mil) CerDIP D12** MIL-STD-1835 D-3 Config. A



# **24-Lead (300-Mil) CerDIP D14** MIL-STD-1835 D-9 Config. A



# 28-Lead Plastic Leaded Chip Carrier J64





# Package Diagrams (continued)

# **24-Lead Rectangular Cerpack K73** MIL-STD-1835 F-6 Config. A

# DIMENSIONS IN INCHES MIN. MAX. O45 MAX. O50 DIS O50 DIS O50 DIS O50 DISC O60 D

# **28-Square Leadless Chip Carrier L64**MIL-STD-1835 C-4



#### 24-Lead (600-Mil) Molded DIP P11





# Package Diagrams (continued)

#### 24-Lead (300-Mil) Molded DIP P13/P13A



<sup>©</sup> Cypress Semiconductor Corporation, 1993. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.