

(1) Veröffentlichungsnummer: 0 510 658 B1

(12)

EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag der Patentschrift : 27.07.94 Patentblatt 94/30

(51) Int. CI.⁵: **C12N 15/15,** C12N 15/61, C12N 1/38, C12P 1/00

(21) Anmeldenummer: 92106978.7

(22) Anmeldetag: 23.04.92

Verbesserung der Ausbeute bei der Sekretion von disulfidverbrückten Proteinen.

30 Priorität: 26.04.91 DE 4113750

(43) Veröffentlichungstag der Anmeldung : 28.10.92 Patentblatt 92/44

(45) Bekanntmachung des Hinweises auf die Patenterteilung : 27.07.94 Patentblatt 94/30

Benannte Vertragsstaaten :
 AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

Entgegenhaltungen:
 EP-A- 0 293 793
 EP-A- 0 315 782
 EP-A- 0 393 725
 J. BIOL. CHEM. Bd. 265, Nr. 28, 1990, Seiten 16760 - 16766 G. BOWDEN ET AL 'Folding and aggregation of b-lactamase in the periplasmic space of Escherichia coli'

(3) Patentinhaber: BOEHRINGER MANNHEIM GMBH D-68298 Mannheim (DE)

Prinder: Glockshuber, Rudolf, Dr. Am Ellbach 3
W-8411 Adimannstein (DE)
Erfinder: Wunderlich, Martina
Nothaftstrasse 5
W-8400 Regensburg (DE)
Erfinder: Skerra, Arne, Dr.
Cheruskerweg 6
W-6200 Wiesbaden (DE)
Erfinder: Rudolph, Ralner, Prof.Dr.
Färbergasse 17
W-8120 Wellhelm (DE)

Vertreter: Huber, Bernhard, Dipl.-Chem. et al Patentanwäite H. Weickmann, Dr. K. Fincke F.A. Weickmann, B. Huber Dr. H. Liska, Dr. J. Prechtel, Dr. B. Böhm Postfach 86 08 20 D-81635 München (DE)

0 658 B1

ᇤ

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99(1) Europäisches Patentübereinkommen).

Beschreibung

15

50

Die vorliegende Erfindung betrifft ein Verfahren zur Steigerung der Ausbildung der natürlichen Proteinkonformation bei der Sekretion von disulfidverbrückten Proteinen durch einen prokaryontischen Wirtsorganismus, der eine rekombinante DNA enthält, die für das sekretierte Protein kodiert.

Die Proteinsynthese oder Translation in prokaryontischen Mikroorganismen findet an den Ribosomen im Cytoplasma statt. Bei einer Expression von rekombinanter DNA in bakteriellen Wirtsorganismen ist es oft wünschenswert, daß das resultierende rekombinante Genprodukt bzw. Protein aus dem Cytoplasma durch die innere bakterielle Membran in den periplasmatischen Raum zwischen innerer und äußerer Membran sekretiert wird. Vom Periplasma können die sekretierten Proteine dann beispielsweise durch einen osmotischen Schock in das Nährmedium freigesetzt werden. Ein Nachteil dieses Verfahrens ist, daß bei Sekretion von disulfidverbrückten Proteinen in der Regel keine korrekte Ausbildung der nativen bzw. natürlichen Konformation erfolgt, d.h. es entstehen Polypeptide mit einer falschen oder unvollständigen Ausbildung der Disulfidbrücken, die biologisch inaktiv sind.

Thiolreagenzien werden bei Verfahren zur in vitro Renaturierung von unlöslichen Proteinen eingesetzt, die bei Expression von rekombinanter DNA in prokaryontischen Zellen cytoplasmatisch als Inclusion Bodies entstehen. Von den Thiolreagenzien ist bekannt, daß sie in Anwesenheit von Luftsauerstoff rasch zu Disulfiden oxidiert werden.

Eine Aufgabe der vorliegenden Erfindung war die Steigerung der Ausbildung der natürlichen Proteinkonformation bei der Sekretion von disulfidverbrückten Proteinen.

Insbesondere könnte eine Unterstützung der Ausbildung der nativen Proteinkonformation die teilweise recht aufwendige in vitro-Renaturierung der falsch disulfidverbrückten Proteine ersetzen.

Gelöst wird die erfindungsgemäße Aufgabe durch ein Verfahren zur Steigerung der Ausbildung der natürlichen Proteinkonformation bei der Sekretion von disulfidverbrückten Proteinen durch einen prokaryontischen Wirtsorganismus, der eine rekombinante DNA enthält, die für das sekretierte Protein kodiert, worin man den Wirtsorganismus in einem geeigneten Nährmedium unter geeigneten Bedingungen für die Expression der rekombinanten DNA züchtet, wobei das Verfahren dadurch gekennzeichnet ist, daß man ein Nährmedium mit einem Gehalt von 0,1 bis 20 mmol/l eines oder mehrerer Thiolreagenzien verwendet.

Durch das erfindungsgemäße Verfahren gelingt es überraschenderweise, durch Zusatz von Thiolreagenzien im Fermentationsmedium die Ausbeute an korrekt disulfidverbrückten Proteinen zu steigern. Das erfindungsgemäße Verfahren kann bei allen Proteinen angewendet werden, die eine oder mehrere Disulfidbrücken enthalten. Insbesondere bei Bedarf an geringen Proteinmengen, z.B. bei der Produktion von Wachstumsfaktoren im mg-Maßstab (Nerve Growth Factor, Interleukine oder ähnliche Verbindungen) kann durch Anwendung des erfindungsgemäßen Verfahrens auf eine in vitro-Renatunerung verzichtet werden.

Für das erfindungsgemäße Verfahren hat sich ein Nährmedium mit einem Gehalt von 0,1 bis 20 mmol/l eines oder mehrerer Thiolreagenzien als geeignet erwiesen. Verwendet man ein Nährmedium mit einem Gehalt von weniger als 0,1 mmol/l an Thiolreagenzien, so wird keine nennenswerte Steigerung der Ausbildung der natürlichen Proteinkonformation gefunden. Die Obergrenze der Thiolkonzentration liegt etwa bei 20 mmol/l und manifestiert sich sowohl in einer deutlichen Abnahme der Ausbeuten an sekretiertem, funktionalem Protein als auch in einem starken Rückgang des Zellenwachstums. Vorzugsweise verwendet man das Nährmedium mit einem Gehalt von 1 bis 15 mmol/l und besonders bevorzugt mit einem Gehalt von 3 bis 12 mmol/l eines oder mehrerer Thiolreagenzien. Bei Verwendung von Glutathion als Thiolreagenz haben sich etwa 5 mmol/l als optimale Konzentration erwiesen.

Der in der vorliegenden Beschreibung verwendete Begriff "Thiolreagenz" bedeutet entweder ein reduzierendes Thiolreagenz mit SH-Gruppen oder ein Gemisch von reduzierenden Thiolreagenzien mit SH-Gruppen und oxidierenden Thiolreagenzien mit Disulfidgruppen.

Als reduzierende Thiolreagenzien sind insbesondere solche geeignet, die eine einzige SH-Gruppe pro Molekül aufweisen. Besonders bevorzugte Substanzen sind reduziertes Glutathion (GSH), Cystein, N-Acetylcystein, Cysteamin, β-Mercaptoethanol und ähnliche Verbindungen. Am meisten bevorzugt sind N-Acetylcysein und reduziertes Glutathion (GSH). Die Thiolreagenzien können sowohl einzeln als auch in Gemischen verwendet werden.

Obwohl die alleinige Verwendung reduzierender Thiolreagenzien im allgemeinen bevorzugt ist, bringt auch die Verwendung eines Gemisches von reduzierenden und oxidierenden Thiolreagenzien ein verbesserte Ausbeute an korrekt disulfidverbrückten Proteinen. Bei Verwendung eines derartigen Gemisches von reduzierenden und oxidierenden Thiolreagenzien beträgt das molare Verhältnis von reduzierenden zu oxidierenden Thiolreagenzien vorzugsweise 2:1 bis 20:1, besonders bevorzugt 5:1 bis 10:1. Ein Gemisch eines reduzierten und eines oxidierten Thiolreagenzes sind beispielsweise reduziertes Glutathion (GSH) und Glutathiondisulfid (GSSG).

Ein Beispiel für das erfindungsgemäße Verfahren ist die heterologe Expression des bifunktionalen α -Amylase/Trypsin-Inhibitors aus Eleusine coracana Gaertneri (RBI) in E.coli. Der Inhibitor wurde von Shivaraj und Pattabiraman charakterisiert (Shivaraj B. & Pattabiraman, T.N., Indian J.Biochem.Biophys. 17 (1980), 181-193; Shivaraj B. & Pattabiraman, T.N.,Biochem.J. 193 (1981), 29-36). Die Aminosäuresequenz des Inhibitors wurde von Campos und Richardson aufgeklärt (Campos, F.A.P. & Richardson, M., FEBS Letters 152 (1983), 300-304). Dieses Protein besteht aus 122 Aminosäuren, enthält 5 intramolekulare Disulfidbrücken und gehört einer neuen α -Amylase/Trypsin-Inhibitorklasse an (Halford et al., Biochim.Biophys.Acta 950 (1988),435-440), wobei es deren einziger bifunktionaler Vertreter ist. An dieser Stelle soll jedoch angemerkt werden, daß sich das erfindungsgemäße Verfahren auch auf die Gewinnung anderer disulfidverbrückter rekombinanter Proteine (z.B. Antikörperfragmente) in prokaryontischen Wirtsorganismen übertragen läßt, die sekretiert werden.

Zur Gewinnung des sekretorischen RBI-Proteins in funktionaler Form in E.coli wurde ein synthetisches RBI-Gen mit gentechnologischen Mitteln an die Signalsequenz des Outer Membrane Proteins A (OmpA) von E.coli fusioniert und die Fusion auf einem rekombinanten Plasmid unter Kontrolle eines lac-Promotors in E.coli exprimiert. Auf diese Weise wird die Polypeptidkette des rekombinanten Proteins ins Periplasma der prokaryontischen Wirtszelle transportiert, wo sie sich nach Abspaltung der Signalsequenz aufgrund der oxidierenden Eigenschaften dieses Zellkompartiments unter Ausbildung der intramolekularen Disulfidbrücken zum nativen Protein falten kann. Bei dieser Faltung können jedoch nur geringe Mengen des funktionalen Proteins erhalten werden. Bei der erfindungsgemäßen Anwesenheit von Thiolreagenzien im Nährmedium gelingt es jedoch, die Ausbeute an funktionalem Protein erheblich (um den Faktor 5) zu steigern.

Der Wirtsorganismus für das erfindungsgemäße Verfahren ist ein prokaryontischer Wirtsorganismus. Vorzugsweise führt man die Expression des rekombinanten Proteins in einem gram-negativen prokaryontischen Wirtsorganismus, besonders bevorzugt in E.coli durch.

Bei dem erfindungsgemäßen Verfahren ist es im allgemeinen günstig, daß die für das sekretierte Protein kodierende rekombinante DNA in operativer Verknüpfung mit einem DNA-Fragment steht, das für ein Signalpeptid zum Durchdringen von inneren bakteriellen Membranen kodiert. Der Begriff "operative Verknüpfung" im Sinne der vorliegenden Erfindung bedeutet, daß eine translationale Fusion zwischen dem heterologen Protein und dem Signalpeptid besteht. Dabei bildet das Signalpeptid üblicherweise den N-terminalen Anteil der translationalen Fusion. Die Art des Signalpeptids selbst ist für die vorliegende Erfindung nicht kritisch, abgesehen davon, daß es die Sekretion des rekombinanten Proteins ermöglichen soll. Eine große Anzahl derartiger Signalpeptide sind dem Fachmann auf dem Gebiet der Molekularbiologie bekannt. Eine Reihe von Signalpeptiden sind z.B. bei Winnacker (Gene und Klone, Eine Einführung in die Gentechnologie, Verlag Chemie Weinheim (1985), S. 256) aufgezählt. Wird das erfindungsgemäße Verfahren in E.coli als Wirtsorganismus durchgeführt, so hat sich das Signalpeptid aus dem E.coli OmpA-Protein als besonders geeignet erwiesen.

Für die Expression in einem prokaryontischen Wirtsorganismus muß die rekombinante DNA, welche für das sekretierte Protein kodiert, unter Kontrolle eines vom Transkriptionssystem des Wirts erkannten Expressionssignals bzw. Promotors stehen. Derartige, in prokaryontischen Wirtszellen aktive Expressionssignale sind dem Fachmann auf dem Gebiet der Molekularbiologie bekannt. Vorzugsweise wird für das erfindungsgemäße Verfahren ein induzierbares Expressionssignal verwendet. Beispiele für einen induzierbaren E.coli-Promotor sind der lac-Promotor, der durch Isopropyt-β-D-galactosid (IPTG) induzierbar ist, sowie synthetische Derivate des lac-Promotors (z.B. der tac- oder trc-Promotor).

Die rekombinante DNA, die für das disulfidverbrückte sekretierte Protein kodiert, wird im allgemeinen durch Transformation in die prokaryontische Wirtszelle eingeführt. Techniken zur Transformation verschiedener prokaryontischer Wirtsorganismen sind dem Fachmann bekannt und brauchen daher nicht im einzelnen genannt werden. Die in der transformierten Wirtszelle vorliegende rekombinante DNA befindet sich dabei üblicherweise auf einem rekombinanten Vektor, der in der Wirtszelle entweder extrachromosomal (z.B. Plasmid) oder im Genom der Wirtszelle integriert (z.B. Bakteriophage λ) vorliegen kann. Vorzugsweise wird als Vektor ein Plasmid verwendet. Dabei ist es für das erfindungsgemäße Verfahren nicht kritisch, welches spezielle Plasmid dabei als Expressionsvektor verwendet wird. Es kommt nur darauf an, daß die für das gewünschte Protein kodierende rekombinante DNA von der Wirtszelle in ausreichendem Maße transkribiert und translatiert werden kann. Das Translationsprodukt der rekombinanten DNA muß allerdings in einer Form vorliegen, die eine Sekretion durch die innere bakterielle Membran in das Periplasma erlaubt.

Wie oben ausgeführt, wird üblicherweise ein rekombinantes Protein, das mit einer Signalsequenz fusioniert ist, ins Periplasma einer prokaryontischen Wirtszelle transportiert. Dies stellt auch eine bevorzugte Ausführungsform der vorliegenden Erfindung dar. Bei Verwendung bestimmter Wirtsstämme erfolgt jedoch nicht nur eine Sekretion ins Periplasma, sondern auch eine massive Proteinsekretion in das Nährmedium. Die EP-A 0 338 410 offenbart E.coli-Stämme, die zu einer derartigen massiven Proteinsekretion in das Nährmedium in der Lage sind sowie ein Verfahren zur Herstellung derartiger Stämme. Als Ausgangsstämme für die Herstellung dieser Sekretormutanten werden vorzugsweise die in der EP-A 0 338 410 genannten E.coli-Stämme

DS410 (DSM 4513) bzw. BW7261 (DSM 5231) verwendet.

Als Nährmedium für das erfindungsgemäße Verfahren wird vorzugsweise ein Vollmedium verwendet, insbesondere ein Medium, das Substanzen oder Substanzgemische aus Zellextrakten enthält. Ein Beispiel für ein solches Medium ist das LB-Medium, das Substanzgemische aus enzymatisch verdauten Zellextrakten (Bacto-Trypton und Yeast-Extract) enthält.

Der pH-Wert des Nährmediums liegt vorzugsweise in einem Bereich zwischen pH 5 und pH 9. Besonders bevorzugt liegt der pH-Wert des Nährmediums zwischen 6 und 8. Verwendet man LB-Medium als Nährmedium, so hat es sich als günstig erwiesen, einen pH-Wert von 7,4 bei der Herstellung des Mediums einzustellen. Während des Zellwachstums sinkt dann der pH-Wert des Mediums ab und liegt erfahrungsgemäß bei stationären Übernachtkulturen (Zeitpunkt der Zellernte) bei etwa 6,8.

Das erfindungsgemäße Verfahren wird vorzugsweise in einer Schüttelkultur in einem Vollmedium durchgeführt. Es ist jedoch auch möglich, die Wirtsorganismen in einem stark belüfteten Fermenter oder/und in Gegenwart eines Minimalmediums zu züchten.

Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß man dem Nährmedium weiterhin ein oder mehrere Mono- oder/und Oligosaccharide zusetzt, die vom verwendeten prokaryontischen Wirtsorganismus nicht metabolisiert werden können. Aus einer Arbeit von Bowden und Georgiou (J.Biol. Chem. 265 (1990), 16760-16766) ist nämlich bekannt, daß der Zusatz von nicht metabolisierbaren Zuckern die Ausbildung der nativen Proteinkonformation fördern kann. Die zusätzliche Verwendung dieser nicht metabolisierbaren Zucker im Rahmen des erfindungsgemäßen Verfahrens zeigt einen weiteren unterstützenden Effekt bei der Ausbildung der nativen Proteinkonformation von sekretierten Proteinen. Beispiele für nicht-metabolisierbare Zucker sind etwa Sorbose (ein Monosaccharid), Saccharose (ein Disaccharid) und Raffinose (ein Trisaccharid). Die Konzentration der nicht-metabolisierbaren Mono- oder/und Oligosaccharide im Nährmedium liegt für das erfindungsgemäße Verfahren günstigerweise zwischen 0,1 mol/l und 1 mol/l, vorzugsweise zwischen 0,3 mol/l und 0,7 mol/l.

Eine weitere besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß man in einem Wirtsorganismus zusammen mit der Expression der für das zu sekretierende, disulfidverbrückte Protein kodierenden rekombinanten DNA eine Überexpression eines Proteindisulfidisomerasegens durchführt. Vorzugsweise verwendet man ein Proteindisulfidisomerasegen aus gram-negativen Bakterienspezies, besonders bevorzugt ein Proteindisulfidisomerasegen aus E.coli. Die DNA-Sequenz eines derartigen Gens ist in SEQ ID NO: 3 gezeigt.

Überraschenderweise wurde festgestellt, daß eine Coexpression und Cosekretion eines wirtseigenen Proteindisulfidisomerasegens in Kombination mit der Zugabe von Thiolreagenzien in das Nährmedium eine Ausbeutesteigerung an funktionalem, sekretiertem Protein bewirkt, die über die alleinige Wirkung des Zusatzes von Thiolreagenzien noch hinausgeht. Dagegen hat die alleinige Coexpression von Proteindisulfidisomerase (PDI) ohne Zugabe von Thiolreagenzien keine Ausbeuteerhöhung zur Folge.

Der Begriff "Überexpression" gemäß vorliegender Erfindung bedeutet eine Steigerung der Proteindisulfidisomerase-Expression im Vergleich zu einem Wildtyp des jeweils verwendeten prokaryontischen Wirtsorganismus. Eine derartige Überexpression läßt sich beispielsweise dadurch erreichen, daß sich das Proteindisulfidisomerasegen unter Kontrolle eines starken, vorzugsweise induzierbaren Expressionssignals (z.B. eines lac-Promotors oder Derivaten davon) befindet. Vorzugsweise erfolgt die Überexpression des PDI-Gens in "operativer Verknüpfung" mit einem Signalpeptid zum Durchdringen innerer bakterieller Membranen. Besonders bevorzugt wird zu diesem Zweck die natürliche PDI-Signalsequenz verwendet.

In einer Ausführungsform des erfindungsgemäßen Verfahrens kann beispielsweise die für das zu sekretierende Protein kodierende rekombinante DNA und das Protendisulfidisomerasegen auf einem einzigen Expressionsvektor in der Wirtszelle vorliegen. Dieser Expressionsvektor ist vorzugsweise ein extrachromosomaler Vektor, d.h. ein Plasmid, er kann jedoch auch integriert im Chromosom der Wirtszelle vorliegen (z.B. Lambda-Phage). Bei Verwendung eines einzigen Expressionsvektors ist es bevorzugt, daß sich die rekombinante DNA und das Proteindisulfidisomerasegen unter Kontrolle eines einzigen Expressionssignals, d.h. in Form eines dicistronischen Operons befinden.

Andererseits ist es jedoch möglich, daß sich die für das zu sekretierende Protein kodierende rekombinante DNA und das Proteindisuffidisomerasegen auf zwei miteinander kompatiblen extrachromosomalen Expressionsvektoren jeweils unter Kontrolle eines eigenen Expressionssignals (Promotors) befinden.

Die vorliegende Erfindung soll weiterhin durch die folgenden Beispiele in Verbindung mit den Abbildungen 1 und 2 sowie den SEQ ID NO: 1 - 5 verdeutlicht werden.

Abb. 1 zeigt einen Immunblot zum Nachweis von löslichem, prozessiertem RBI nach Zugabe unterschiedlicher Mengen von Glutathion ins Nährmedium.

Abb. 2 zeigt eine schematische Darstellung des Expressionsplasmids pRBIa1-PDI.

50

55

SEQ ID NO:1 zeigt die DNA-Sequenz des zur Coexpression von RBI und der Proteindisulfidisomerase

SEQ ID NO:2

(PDI) aus E.coli W3110 verwendeten Plasmids pRBIa1-PDI.

zeigt die Sequenz des OmpA/RBI Gens. Die doppelsträngige DNA wird aus 14 synthetischen Oligonukleotiden zusammengesetzt und durch die Restriktionsschnittstellen XbaI und HindIII begrenzt. Der im Sequenzprotokoll gezeigte DNA-Strang ist aus 7 Oligonukleotiden zusammengesetzt, die folgenden Abschnitten entsprechen:

1	:	Basen	2	-	62
2	:	Basen	63	· -	126
3	:	Basen	127	-	195
4	•	Basen	196	-	258
5	:	Basen	259	-	322
. 6	:	Basen	323	_	396
7	:	Basen	397	-	455

Der Gegenstrang ist ebenfalls aus 7 Oligonukleotiden gebildet, die zu folgenden Abschnitten des gezeigten DNA-Stranges komplementär sind:

8 : Basen	6	-	68
9 : Basen	69	-	132
10: Basen	133	- .	201
11: Basen	202	-	264
12: Basen	265	-	328.
13: Basen	329	-	402
14: Basen	403	-	459.

SEQ ID NO: 3

zeigt die Sequenz des Proteindisulfidisomerasegens mit der natürlichen Signalsequenz und nibosomaler Bindungsstelle.

SEQ ID NO: 4

zeigt den N-terminalen Primer zur Amplifizierung des PDI-Gens.

SEQ ID NO: 5

zeigt den C-terminalen Primer zur Amplifizierung des PDI-Gens.

Beispiel 1

Ю

20

25

30

35

Gensynthese

Verbemerkung:

Molekulargenetische Techniken beruhten auf Maniatis et al. (Molecular Cloning. A Laboratory Manual (1982), Cold Spring Harbor Laboratory, New York), Oligonukleotide wurden nach dem Phosphoramiditverfahren (Sinha et al., Nucl.Acids Res. 12 (1984), 4539-4557; Kaplan, B.E., Trends Biotechnol.3 (1985), 253-256) auf einem automatischen Synthesegerät Typ 380A der Firma Applied Biosystems GmbH hergestellt.

Das synthetische Gen, das für die Fusion zwischen der OmpA-Signalsequenz und RBI kodiert, wurde aus 14 synthetischen Oligonukleotiden zusammengesetzt (SEQ ID NO: 2). Die Oligonukleotide wurden durch Polyacrylamid/Harnstoff-Gelelektrophorese gereinigt und mit Ausnahme der beiden überstehenden Oligonukleotide am 5'- und am 3'-Ende des Gens jeweils an ihren 5'-Enden phosphoryliert. Danach wurden alle Oligonukleotide in äquimolaren Verhältnissen vereinigt und in einem einzigen Ansatz hybridisiert und ligiert. Das Gen wird durch die Restriktionsstellen Xbal und HindIII begrenzt. Die Aminosäuren der OmpA-Signalsequenz sind mit negativem Vorzeichen gekennzeichnet.

Beispiel 2

Konstruktion des Expressionsplasmids pRBIa 1

Das nach Beispiel 1 erhaltene synthetische Gen wurde über die Restriktionsstellen Xbal und HindIII in das Expressionsplasmid pASK40 (Skerra et al., BIO/TECHNOLOGY 9 (1991), 273-278) kloniert. Die Sequenz des synthetischen Gens wurde durch Didesoxy-Sequenzierung überprüft. Das resultierende Plasmid wurde pRBIa1 bezeichnet.

Beispiel 3

70

Funktionale Expression von RBI im Periplasma von E.coli

Eine stationäre Übernachtkultur von E.coli JM83 (Yannish-Perron et al., Gene 33 (1985), 103-119), die mit pRBIa1 transformiert worden war, wurde in Verhältnis 1:100 in 2,5 I LB-Medium (1 I LB-Medium enthält 10 g Bacto-Trypton (Difco Factories, Detroit, Michigan, USA), 5 g Yeast-Extrakt (Difco Factories) und 5 g NaCl, pH 7,4) mit Ampicillin (100 μg/ml) verdünnt und bei 26°C geschüttelt, bis eine OD₅₅₀ von 1,0 erreicht war. Danach wurde die Kultur in 9 identische 250 ml-Portionen unterteilt, jede Kultur mit IPTG (Isopropyl-β-D-galactosid; Endkonzentration 1 mmol/l) induziert, jedoch mit unterschiedlichen Mengen Glutathion (GSH) versetzt. Die Zellen wurden über Nacht bei 26°C weitergeschüttelt und durch Zentrifugation geerntet (Sorvall SS34, 4°C, 5000 Upm, 15 Minuten). Danach wurden die Zellen bei 4°C in 100 mmol/l Tris/HCl pH 7,5, 20 mmol/l Na-EDTA aufgenommen, so daß Zelldichten von jeweils 200 (OD₅₅₀) erhalten wurden. Die Zellen wurden darauf in einer French Pressure-Zellpresse (Aminco) bei 18000 PSI lysiert. Die Lysate wurden zentrifugiert (Sorvall SS34, 4°C, 15000 Upm, 30 Minuten) und die löslichen Überstände auf ihren Gehalt an löslichem, funktionalem RBI untersucht.

Jeweils 5 µl der erhaltenen löslichen Überstände wurden auf einem 15 %igen Polyacrylamid/SDS-Gel aufgetrennt (Fling & Gregerson, Anal.Biochem. 155 (1986) 83-88). Die aufgetrennten Proteine wurden durch Elektroelution auf ein Nitrocellulosemembran übertragen und die RBI-Banden mit Hilfe eines Anti-RBI-Kaninchenantikörpers immunspezifisch gefärbt. Das Immunblotting wurde nach Blake et al., Anal.Biochem. 136 (1984), 175-179 durchgeführt.

Abb. 1 zeigt eine Analyse der Expressionsausbeuten an löslichem RBI durch Immunblotting. Spur 1 stellt einen Molekulargewichtsstandard dar. In Spur 2 wurden 0,8 µg RBI, gereinigt aus Eleusine coracana Gaertneri aufgetragen. Auf den Spuren 3 bis 6 wurden äquivalente Mengen der Zellextrakte mit unterschiedlichen Zugabemengen an Glutathion aufgetragen. In Spur 3 erfolgte keine GSH-Zugabe zum Kulturmedium. In Spuren 4, 5 und 6 wurden dem Kulturmedium 1 mmol/I, 5 mmol/I bzw. 10 mmol/I GSH zugesetzt.

Als Antikörper wurde ein polyklonales Anti-RBI-Antiserum verwendet, das nach Standardmethoden (siehe z.B. Sambrook et al., Molecular Cloning. A Laboratory Manual (1989), Cold Spring Harbor Laboratory Press, Kapitel 18) durch zweimalige Immunisierung eines Neuseelandkaninchens mit gereinigtem RBI aus Eleusine coracana Gaertneri hergestellt wurde.

Aus der Abbildung geht hervor, daß der Zusatz von GSH die Intensität der immunspezifisch angefärbten Bande verstärkt. Dies ist insbesondere bei Konzentrationen von 5 mmol/l und 10 mmol/l GSH ersichtlich.

Durch Bestimmung der inhibitorischen Aktivität gegenüber Trypsin aus Rinderpankreas wurde die RBI-Menge in den löslichen Anteilen der erhaltenen Zellextrakte quantitativ bestimmt. Es konnte gezeigt werden, daß die Menge an intrazellulärem, funktionalem Inhibitor bis zum 5-fachen gegenüber der Expression ohne die beschriebenen Mediumzusätze gesteigert werden kann (Tabelle 1).

Ferner ist aus Tabelle 1 ersichtlich, daß auch durch Zusatz eines Gemisches von reduziertem Glutathion (GSH) und Glutathiondisulfid (GSSG) eine Verbesserung der Ausbeute an funktionalem Inhibitor erhalten wird.

Bei allen durchgeführten Tests wurden 5 μg Trypsin aus Rinderpankreas in 1 ml 100 mmol/l NaCl, 50 mmol/l Tris/HCl pH 8,0, 10 mmol/l CaCl₂, 0,005 % (v/v) Triton X-100 mit der zu bestimmenden Menge an RBI 30 Minuten bei 25°C inkubiert. Nach Zugabe von 20 μl 10 mmol/l N-α-Benzoyl-L-arginin-4-nitranilid (chromogenes Testsubstrat) wurde die Restaktivität des Trypsins durch Registrierung der zeitlichen Zunahme der Absorption bei 405 nm bestimmt. Die Inhibitorkonzentration im Test wurde aus der Differenz zwischen der Aktivität des freien Enzyms (ohne Zugabe des Inhibitors) und der jeweils gemessenen Restaktivität ermittelt.

Tabelle 1 zeigt die Expressionssteigerung von funktionalem RBI durch Zusatz von GSH bzw. eines Gemisches aus GSH und GSSG.

Tabelle 1

5		mg /1 - OD*	relative Zunahme	mg/1*	relative Zunahme
	ohne GSH	0,07	1,0	0,36	1,0
10	5 mmol/l GSH	0,37	5,3	1,65	4,6
	10 mmol/1 GSH 5 mmol/1 GSH +	0,34	4,9	1,38	3,8
15	1 mol/1 GSSG	0,25	3,9	1,18	2,7

* Die Ausbeuten an intrazellulärem, funktionalem RBI sind in mg /1 - OD (Liter x optische Dichte), die Volumenausbeuten in mg/l angegeben.

Beispiel 4

25

35

50

55

Verwendung von N-Acetyl-L-Cystein als weiteres Thiolreagenz

Wie im Beispiel 3 beschrieben, werden Kulturen von E.coli JM83, die mit dem Plasmid pRBla1 transformiert worden waren, bei 26°C im LB-Medium mit Ampicillin (100 μ g/ml) vermehrt und bei einer OD₅₅₀ = 1 mit IPTG (Endkonzentration: 1 mmol/l) induziert. Gleichzeitig erfolgte die Zugabe von N-Acetyl-L-Cystein in fester form (Endkonzentration: 5 und 10 mmol/l). Die Kulturen wurden dann über Nacht weitergeschüttelt und, wie in Beispiel 3 beschrieben, durch Trypsin-Inhibitionstests auf ihren Gehalt an funktionalem RBI untersucht. Die Ergebnisse sind in Tabelle 2 zusammengefaßt und zeigen, daß der Konzentrationsbereich, in dem das N-Acetyl-L-Cystein wirkt, dem des reduzierenden Glutathions sehr ähnlich ist.

Tabelle 2

Expression von funktionalem RBI durch Zusatz von N-AcetylCystein

Zusatz im Medium	mg/l·OD*	relative Zunahme	mg/1*	relative Zunahme
ohne Zusatz 5 mmol/l	0,07	1,0	0,36	1,0
N-Acetyl-Cystein 10 mmol/1	0,31	4,4	1,27	3,5
N-Acetyl-Cystein	0,25	3,6	0,83	2,3
5 mmol/l GSH	0,37	5,3	1,65	4,6

^{*} Die Ausbeuten an intrazellulärem, funktionalem RBI sind in mg/l·OD, die Volumenausbeuten in mg/l angegeben. Die Bestimmung der RBI-Aktivität erfolgte durch Trypsin-Inhibitionstests im löslichen Teil des Gesamtzellextrakts (vgl. Beispiel 3).

Beispiel 5

25

35

45

50

55

Coexpression und Cosekretion von periplasmatischer Proteindisulfidisomerase (PDI) und gleichzeitige Zugabe von Thiolreagenzien ins Kulturmedium

Zur Coexpression der wirtseigenen, periplasmatischen Proteindisulfidisomerase (PDI) wurde zunächst das PDI-Gen aus dem Genom des Ecoli K12 Wildtypstamms W3110 (Bachmann, B.J. (1972), Bacteriol.Rev. 36, 525-557) durch Polymerase-Kettenreaktion (PCR) amplifiziert. Dabei diente die bekannte Basensequenz des Gens (Bardwell, J.C.A., McGovern, K.& Beckwith, J., "Identification of a Protein Required for Disulfide Bond Formation in vivo", Cell, 67, (1991), 581-589) als Ausgangspunkt für die Planung der entsprechenden Oligonukleotidprimer.

Zur Amplifizierung des PDI-Gens wurden folgende Oligonukleotide als Primer verwendet:

N-terminaler Primer: (SEQ ID NO: 4)

- 5' TTGCAATTAACAAAGCTTGAATTCTCGGAGAGAGTAGATCATGAAAAAGAT 3' C-terminaler Primer: (SEQ ID NO: 5)
- 5' GGGCTTTATGTAAAGCTTGGATCCTTATTTTTTCTCGGACAGATATTTC 3'

Das amplifizierte DNA-Fragment, das das komplette Gen der PDI inklusive Signalsequenz und ribosomaler Bindungsstelle enthält, wurde isoliert und mit den Restriktionsenzymen Hindlil und BamHI geschnitten. Das Plasmid pRBIa1 wurde mit denselben Enzymen verdaut, das Vektorfragment isoliert und mit dem PDI-Gen ligiert. Das resultierende Plasmid pRBIa1-PDI enthält die Gene für OmpA/RBI und PDI als dicistronisches Operon unter der Kontrolle des Iac-Promotors (Abb. 2). Die vollständige Nukleotidsequenz des Plasmids ist in SEQ ID NO: 1 dokumentiert.

Zur Analyse des Effekts der Coexpression und Cosekretion von PDI wurde E.coli JM83 mit dem Plasmid pRBI-PDI transformiert.

Die Anzucht und die Bestimmung der gebildeten intrazellulären RBI-Mengen erfolgte wie in den Beispielen

3 und 4 beschrieben. Die Analyse ergab, daß die Coexpression und Cosekretion von PDI nur bei gleichzeitiger Zugabe von reduziertem Glutathion zu einer Ausbeutesteigerung führt, die erheblich über der bei alleiniger Zugabe von Glutathion beobachteten Ausbeutesteigerung liegt, während die alleinige Expression von PDI überhaupt keinen Effekt auf die Menge an funktionalem, periplasmatischem RBI hat (Tabelle 3).

Tabelle 3
Expressionssteigerung von funktionalem RBI durch Koexpression von PDI aus E.coli

Zusatz im Medium	mg/1·OD*	relative Zunahme	mg/1*	relative Zunahme
ohne Zusatz	0,08	1,0	0,38	1,0
5 mmol/1 GSH	0,37	4,6	1,65	4,3
PDI	0,08	1,0	0,39	1,0
PDI + 1 mM GSH	0,42	6,0	1,71	4,4
PDI + 5 mM GSH	0,97	13,7	4,33	11,1
PDI + 10 mm GSH	0,54	7,7	2,17	5,6
PDI + 1 mM GSH		•		-,-
+ 0,5 mM GSSG	0,38	5,4	2,00	5,1
PDI + 5 mM GSH		·	·	-,-
+ 0,5 mM GSSG	0,60	8,6	2,54	6,5
PDI + 10 mM GSH		•		-,-
+ 0,5 mM GSSG	0,46	6,6	1,93	4,9
PDI + 0,5 mM GSSG	0,10	1,4	0,57	1,5

^{*} Die Ausbeuten an intralzellulärem, funktionalem RBI sind in mg/l·OD, die Volumenausbeuten in mg/l angegeben. Die Bestimmung der RBI-Aktivität erfolgte durch Trypsin-Inhibitionstests im löslichen Teil des Gesamtzellextrakts (vgl. Beispiel 3).

55

SEQUENZPROTOKOLL

SEQ ID NO:1:	SEO	TD	NO:	1:
--------------	-----	----	-----	----

10

20

LÄNGE: 4690 Basenpaare TYP: Nukleinsäure mit korrespondierendem Protein STRANGFORM: Doppelstrang TOPOLOGIE: zirkulär

NAME: Signalpeptid OmpA POSITION: 1328..1391

NAME: reifes Peptid RBI POSITION: 1392..1756

NAME: Signalpeptid POSITION: 1789..1845

NAME: reifes Peptid PDI OSITION: 1846..2412

	ACCCGACAC	C ATCGAATGG	GCAAAACCTT	T TCGCGGTATG	GCATGATAGO	GCCCGGAAGA	60
25	GAGTCAATT	C AGGGTGGTG!	ATGTGAAACC	C AGTAACGTTA	TACGATGTCG	CAGAGTATGC	120
	CGGTGTCTCT	TATCAGACCO	TTTCCCGCGT	GGTGAACCAG	GCCAGCCACG	TTTCTGCGAA	180
	AACGCGGGAA	A AAAGTGGAAG	CGGCGATGGC	GGAGCTGAAT	TACATTCCCA	ACCGCGTGGC	240
30	ACAACAACTO	GCGGGCAAAC	AGTCGTTGCT	GATTGGCGTT	GCCACCTCCA	GTCTGGCCCT	300
	GCACGCGCCG	TCGCAAATTG	TCGCGGCGAT	TAAATCTCGC	GCCGATCAAC	TGGGTGCCAG	360
	CGTGGTGGTG	TCGATGGTAG	AACGAAGCGG	CGTCGAAGCC	TGTAAAGCGG	CGGTGCACAA	420
35	TCTTCTCGCG	CAACGCGTCA	GTGGGCTGAT	CATTAACTAT	CCGCTGGATG	ACCAGGATGC	. 480
	CATTGCTGTG	GAAGCTGCCT	GCACTAATGT	TCCGGCGTTA	TTTCTTGATG	TCTCTGACCA	540
	GACACCCATC	AACAGTATTA	TTTTCTCCCA	TGAAGACGGT	ACGCGACTGG	GCGTGGAGCA	600
	TCTGGTCGCA	TTGGGTCACC	AGCAAATCGC	GCTGTTAGCG	GGCCCATTAA	GTTCTGTCTC	660
40	GGCGCGTCTG	CGTCTGGCTG	GCTGGCATAA	ATATCTCACT	CGCAATCAAA	TTCAGCCGAT	720
	AGCGGAACGG	GAAGGCGACT	GGAGTGCCAT	GTCCGGTTTT	CAACAAACCA	TGCAAATGCT	780
	GAATGAGGGC	ATCGTTCCCA	CTGCGATGCT	GGTTGCCAAC	GATCAGATGG	CGCTGGGCGC	840
15	AATGCGCGCC	ATTACCGAGT	CCGGGCTGCG	CGTTGGTGCG	GATATCTCGG	TAGTGGGATA	900
	CGACGATACC	GAAGACAGCT	CATGTTATAT	CCCGCCGTTA	ACCACCATCA	AACAGGATTT	960
	TCGCCTGCTG	GGGCAAACCA	GCGTGGACCG	CTTGCTGCAA	CTCTCTCAGG	GCCAGGCGGT	1020
in.	GAAGGGCAAT	CAGCTGTTGC	CCGTCTCACT	GGTGAAAAGA	AAAACCACCC	TGGCGCCCAA	1000

ð																	
	TA	CGCA	AACC	GCC	TCTC	ccc (GCGC	STTG	SC C	SATT	CATT	A ATO	GCAG	CTGG	CACC	SACAGG	т 1140
	TT	CCCG	ACTG	GAA	AGCG	GGC 2	agtg/	AGCG	CA AC	CGCA	ATTA	A TGT	rgag?	TAG	CTCA	CTCAT	T 1200
10	AG	GCAC	CCCA	GGC	TTTA(CAC !	TTAT	rgcti	rc co	GCT	CGTAI	r GTI	rgtgi	rGGA	ATTO	TGAGC	G 1260
	GA'	TAAC	AATT	TCA	CACA	GGA A	AACAG	CTAI	G AC	CATO	GATTA	A CGF	\ATTI	CTA	GATA	ACGAG	G 1320
15	GC	AAAA	Me		3 Lys					Ile					Ala	GGC	1369
			T ACC	r Val												GGT	1417
20		: Ala	r ATC				Pro					Arg					1465
			ACC Thr			Val					Ala						1513
25	GCT Ala	CGI	TGC Cys	TGC Cys 45	Arg	CAG Gln	CTC Leu	GAG Glu	GCT Ala 50	ATC Ile	CCG Pro	GCG Ala	TAC	TGT Cys 55	CGT Arg	TGC Cys	1561
30			GTT Val 60	Arg													1609
	CAC His	GAA Glu 75	GGT Gly	CGT Arg	. CTC Leu	CTG Leu	CAG Gln 80	GAT Asp	CTC Leu	CCA Pro	GGT Gly	TGC Cys 85	CCG Pro	CGT Arg	CAG Gln	GTA Val	1657
35			GCT Ala														1705
to.	GCG Ala	ACT Thr	ATC Ile	CAT His	GGT Gly 110	GGC Gly	CCG Pro	TTC Phe	TGC Cys	CTG Leu 115	Ser	CTG Leu	CTG Leu	GGT Gly	GCT Ala 120	GGT Gly	1753
~	GAA Glu	TGA:	raago	CTT (AAT1	CTC	G AG	AGAG	TAGI	A TC					TGG Trp -15		1806
15	GCG Ala	CTG Leu	GCT Ala	GGT Gly -10	TTA Leu	GTT Val	TTA Leu	GCG Ala	TTT Phe -5	AGC Ser	GCA Ala	TCG Ser	GCG Ala	GCG Ala 1	CAG Gln	TAT Tyr	1854
	GAA Glu	GAT Asp	GGT Gly	AAA Lys	CAG Gln	TAC Tyr	ACT Thr	ACC Thr	CTG Leu	GAA Glu	AAA Lys	CCG	GTA Val	GCT Ala	GGC Gly	GCG Ala	1902

0

	CCG Pro 20	Gln	A GTG Val	CTG Leu	GAG Glu	TTT Phe 25	Phe	TCT Ser	TTC Phe	TTC Phe	TGC Cys 30	CCG Pro	CAC His	TGC Cys	TAT Tyr	CAG Gln 35	1950
10	TTT Phe	GAA Glu	GAA Glu	GTT Val	CTG Leu 40	Ris	ATT Ile	TCT Ser	GAT Asp	AAT Asn 45	GTG Val	AAG Lys	AAA Lys	AAA Lys	CTG Leu 50	CCG Pro	1998
15	GAA Glu	GGC Gly	GTG Val	AAG Lys 55	ATG Met	ACT Thr	AAA Lys	TAC Tyr	CAC His 60	GTC Val	AAC Asn	TTC Phe	ATG Met	GGT Gly 65	GGT Gly	GAC Asp	2046
	CTG Leu	GGC	AAA Lys 70	GAT Asp	CTG Leu	ACT Thr	CAG Gln	GCA Ala 75	TGG Trp	GCT Ala	GTG Val	GCG Ala	ATG Met 80	GCG Ala	CTG Leu	GGC Gly	2094
20	GTG Val	GAA Glu 85	GAC Asp	AAA Lys	GTG Val	ACT Thr	GTT Val 90	CCG Pro	CTG Leu	TTT Phe	GAA Glu	GGC Gly 95	GTA Val	CAG Gln	AAA Lys	ACC Thr	2142
	_AG Gln 100	ACC Thr	ATT Ile	CGT Arg	TCT Ser	GCT Ala 105	TCT Ser	GAT Asp	ATC Ile	CGC Arg	GAT Asp 110	GTA Val	TTT Phe	ATC Ile	AAC Asn	GCA Ala 115	2190
25	GGT Gly	ATT Ile	AAA Lys	GGT Gly	GAA Glu 120	GAG Glu	TAC Tyr	GAC Asp	GCG Ala	GCG Ala 125	TGG Trp	AAC Asn	AGC Ser	TTC . Phe	GTG Val 130	GTG Val	2238
30	AAA Lys	TCT Ser	CTG Leu	GTC Val 135	GCT Ala	CAG Gln	CAG Gln	Glu	AAA Lys 140	GCT Ala	GCA Ala	GCT Ala	Asp `	GTG Val 145	CAA Gln	TTG Leu	2286
	CGT Arg	GIY	GTT (Val 1 150	CCG Pro	GCG . Ala i	ATG Met	Phe '	GTŤ Val 155	AÁC Asn	GGT . Gly :	AAA Lys '	Tyr (CAG (Gln 1 160	CTG Leu	AAT Asn	CCG Pro	2334
35	CAG (GGT . Gly i 165	ATG (Met)	Asp	ACC I	Ser A	AAT I Asn I 170	ATG Met	GAT (GTT ! Val !	Phe '	GTT (Val (175	CAG (Gln (CAG '	TAT (GCT Ala	2382
40	GAT Asp 1	ACA (Thr \	GTG A	ys :	ryr I	CTG 1 Leu S 185	PCC (Ser (GAG A	AAA I Lys I	AAA : Lys	PAAG(GATC	CC CA	ACGC	GCCC	r	2432
••	GTAGO	CGGCC	GC AT	TAAC	CGCG	GCG	GGTG	TGG	TGG	PTACO	SCG (CAGC	STGAC	C G	CTAC	ACTTG	2492
	CCAGO	GCCC	T AG	CGCC	CGCI	CCI	TTC	СТТ	TCTT	rccci	TC C	TTTC	TCGC	C A	CGTT	CGCCG	2552
	GCTTT	ccc	G TC	AAGC	TCTA	LAAT	CGGG	GCA	TCC	CTTTA	AGG G	TTCC	GATI	T AC	STGCT	TTAC	2612
45	GGCAC	CTCG	A CC	CCAA	AAAA	CTI	GATT	AGG	GTGA	ATGGI	TC A	CGTA	GTGG	G CC	CATCO	SCCCT	2672
	GATAG	ACGG	T TT	TTCG	CCCT	TTG	ACGT	TGG	AGTO	CACG	TT C	'TTTA	ATAG	T GO	ACTO	TTGT	2732
	TCCAA	ACTG	G AA	CAAC	ACTC	AAC	CCTA	тст	CGGI	CTAT	TC T	TTTG	ATTT	A TA	AGGG	ATTT	2792
50	TGCCG	ATTT	C GG	CCTA	TTGG	TTA	AAAA	ATG	AGCT	GATT	TA A	CAAA	AATT	T AA	CGCG	: አልጥጥ	2852

	TTAACAAA	AT ATTAACGTT	Т АСААТТТСА	G GTGGCACTT	TCGGGGAAA1	GTGCGCGGAA	2912
10	CCCCTATT	IG TTTATTTT	C TAAATACAT	T CAAATATGT <i>I</i>	TCCGCTCATC	G AGACAATAAC	2972
	CCTGATAAA	AT GCTTCAATA	A TATTGAAAA	A GGAAGAGTAT	GAGTATTCA	CATTTCCGTG	3032
	TCGCCCTTA	TCCCTTTTT	r gcggcattt	T GCCTTCCTGT	TTTTGCTCAC	CCAGAAACGC	3092
15	TGGTGAAAG	T AAAAGATGC	r gaagatcag	T TGGGTGCACG	AGTGGGTTAC	ATCGAACTGG	3152
15	ATCTCAACA	G CGGTAAGAT	CTTGAGAGT	T TTCGCCCCGA	AGAACGTTTT	CCAATGATGA	3212
	GCACTTTTA	A AGTTCTGCT	A TGTGGCGCG	G TATTATCCCG	TATTGACGCC	GGGCAAGAGC	3272
	AACTCGGTC	G CCGCATACAC	TATTCTCAG	A ATGACTTGGT	TGAGTACTCA	CCAGTCACAG	3332
20	AAAAGCATC	T TACGGATGGC	ATGACAGTA	A GAGAATTATG	CAGTGCTGCC	ATAACCATGA	3392
	GTGATAACA	C TGCGGCCAAC	TTACTTCTG!	CAACGATCGG	AGGACCGAAG	GAÇCTAACCG	3452
	CTTTTTTGC	A CAACATGGGG	GATCATGTA!	CTCGCCTTGA	TCGTTGGGAA	CCGGAGCTGA	3512
25	ATGAAGCCA	P ACCAAACGAC	GAGCGTGACA	CCACGATGCC	TGTAGCAATG	GCAACAACGT	3572
	TGCGCAAAC	r attaactggc	GAACTACTTA	CTCTAGCTTC	CCGGCAACAA	TTAATAGACT	3632
	GGATGGAGG	C GGATAAAGTT	GCAGGACCAC	TTCTGCGCTC	GGCCCTTCCG	GCTGGCTGGT	3692
30	TTATTGCTG	TAAATCTGGA	GCCGGTGAGC	GTGGGTCTCG	CGGTATCATT	GCAGCACTGG	3752
	GGCCAGATGG	TAAGCCCTCC	CGTATCGTAG	TTATCTACAC	GACGGGGAGT	CAGGCAACTA	3812
	TGGATGAACG	AAATAGACAG	ATCGCTGAGA	TAGGTGCCTC	ACTGATTAAG	CATTGGTAAC	3872
	TGTCAGACCA	AGTTTACTCA	TATATACTTT	AGATTGATTT	AAAACTTCAT	TTTTAATTTA	3932
35	AAAGGATCTA	GGTGAAGATC	CTTTTTGATA	ATCTCATGAC	CAAAATCCCT	TAACGTGAGT	3992
	_TTCGTTCCA	CTGAGCGTCA	GACCCCGTAG	AAAAGATCAA	AGGATCTTCT	TGAGATCCTT	4052
	TTTTTCTGCG	CGTAATCTGC	TGCTTGCAAA	CAAAAAAACC	ACCGCTACCA	GCGGTGGTTT	4112
40	GTTTGCCGGA	TCAAGAGCTA	CCAACTCTTT	TTCCGAAGGT	AACTGGCTTC	AGCAGAGCGC	4172
	AGATACCAAA	TACTGTCCTT	CTAGTGTAGC	CGTAGTTAGG	CCACCACTTC	AAGAACTCTG	4232
	TAGCACCGCC	TACATACCTC	GCTCTGCTAA	TCCTGTTACC	AGTGGCTGCT	GCCAGTGGCG	4292
45	ATAAGTCGTG	TCTTACCGGG	TTGGACTCAA	GACGATAGTT	ACCGGATAAG	GCGCAGCGGT	4352
	CGGGCTGAAC	GGGGGGTTCG	TGCACACAGC	CCAGCTTGGA	GCGAACGACC	TACACCGAAC	4412
	TGAGATACCT	ACAGCGTGAG	CTATGAGAAA	GCGCCACGCT !	TCCCGAAGGG	AGAAAGGCGG	4472
50	ACAGGTATCC	GGTAAGCGGC .	AGGGTCGGAA	CAGGAGAGCG (CACGAGGGAG	CTTCCAGGGG	4532
~~							

4592

GAAACGCCTG GTATCTTTAT AGTCCTGTCG GGTTTCGCCA CCTCTGACTT GAGCGTCGAT

	TTTTGTGATG	CTCGTCAGGG	GGGCGGAGCC	TATGGAAAAA	CGCCAGCAAC	GCGGCCTTTT	4652
5	TACGGTTCCT	GGCCTTTTGC	TGGCCTTTTG	CTCACATG			4690
				•			
							-
10							
10							
15							
20						•	
25			•				
25			•	•			
30				•			
					•		
					•		
35				***			
				•		٠	
ю	•			•			
~					•		
5							
0							
•							
				-			

٠																	
	SE	Q ID	NO:	2:													
10	TY ST	P: N RANG	460 ukle FORM GIE:	insä : Do	ure :	mit 1	korre ng	espoi	ndier	cende	em Pi	rotei	in.				
			Signa ON: :														,
15			Signa ON: 8			€											
	TC	raga'	TAAC	GAGO	GCA!	AA A	Met		Lys					Ile		GTG Val	51
20	GCA 12	Let Let	GCC Ala	GGC Gly	TTC Phe	GCT Ala	ACC Thr	GTA Val	GCG Ala	CAG Gln	GCC Ala	TCT Ser 1	GTT Val	GGT Gly	ACC Thr	TCT Ser 5	99
25	TGC Cys	ATC Ile	CCG Pro	GGT Gly	ATG Met	Ala	ATC Ile	CCG Pro	CAC His	AAC Asn 15	CCA Pro	CTG Leu	GAC Asp	TCT Ser	TGT Cys 20	AGA Arg	147
	TGG Trp	TAT Tyr	GTG Val	TCG Ser 25	ACC Thr	CGC Arg	ACC Thr	TGC Cys	GGG Gly 30	GTT Val	GGC Gly	CCT Pro	AGA Arg	CTG Leu 35	GCT Ala	ACT Thr	195
30	CAA Gln	GAA Glu	ATG Met 40	AAA Lys	GCT Ala	CGT Arg	TGC Cys	TGC Cys 45	CGT Arg	CAG Gln	CTC Leu	GAG Glu	GCT Ala 50	ATC Ile	CCG Pro	GCG Ala	243
	TAC Tyr	TGT Cys 55	CGT Arg	TGC Cys	GAA Glu	GCT Ala	GTT Val 60	CGT Arg	ATC Ile	CTG Leu	ATG Met	GAC Asp 65	GGT Gly	GTT Val	GTG Val	ACG Thr	291
35	Ser 70	TCT Ser	GGT Gly	CAG Gln	CAC His	GAA Glu 75	GGT Gly	CGT Arg	CTC Leu	CTG Leu	CAG Gln 80	GAT Asp	CTC Leu	CCA Pro	GGT Gly	TGC Cys 85	339
4 0	CCG Pro	CGT Arg	CAG Gln	GTA Val	CAG Gln 90	CGT Arg	GCT Ala	TTC Phe	GCT Ala	CCG Pro 95	AAA Lys	CTG Leu	GTT Val	ACT Thr	GAA Glu 100	GTT Val	387
	GAA Glu	TGC Cys	AAC Asn	CTG Leu 105	GCG Ala	ACT Thr	ATC Ile	His	GGT Gly 110	GGC Gly	CCG Pro	TTC Phe	TGC Cys	CTG Leu 115	TCT Ser	CTG Leu	435
1 5		Gly	GCT Ala			T GA	TAAG	CTT									. 460

		-	NO:														
10	TYI STI	P: N RANG	ukle FORM	Bas insä : Do lin	ure ppel	mit	korre ng	espo	ndie	rend	em Pi	rote:	in				
				alpe													
15			_	alpen													
-	CGG	AGA(Gagt	AGAT	C A7 Me -1	et Ly	À AA 's Ly	G AT	TT TO Le Tr -1	p Le	rg gc eu Al	G CI	G GC u Al	T GG a Gl -1	y Le	A GTT u Val	51
20	TTA Leu	GC0 Ala	TTT Phe	e Ser	GCA Ala	A TCG	GCG Ala	GCG Ala	Gln	TAT Tyr	GAA Glu	GAT Asp	GGI	AAA Lys	CAG Gln	TAC Tyr	99
25	ACT Thr 10	Thr	CTC Leu	GAA Glu	AAA Lys	CCG Pro	Val	GCT Ala	GGC Gly	GCG Ala	CCG Pro 20	Gln	GTG Val	CTG Leu	GAG Glu	TTT Phe 25	147
	TTC Phe	TCT Ser	TTC Phe	TTC Phe	TGC Cys 30	Pro	CAC His	TGC Cys	TAT	CAG Gln 35	Phe	GAA Glu	GAA Glu	GTT Val	CTG Leu 40	CAT His	195
30	ATT Ile	TCT Ser	GAT Asp	AAT Asn 45	GTG Val	AAG Lys	AAA Lys	AAA Lys	CTG Leu 50	CCG Pro	GAA Glu	GGC Gly	GTG Val	AAG Lys 55	ATG Met	ACT Thr	243
35	AAA Lys	TAC Tyr	CAC His 60	GTC Val	AAC Asn	TTC Phe	ATG Met	GGT Gly 65	GGT Gly	GAC Asp	CTG Leu	GGC Gly	AAA Lys 70	GAT Asp	CTG Leu	ACT Thr	291
	JAG Gln	GCA Ala 75	TGG Trp	GCT Ala	GTG Val	GCG Ala	ATG Met 80	GCG Ala	CTG Leu	GGC Gly	GTG Val	GAA Glu 85	GAC Asp	AAA Lys	GTG Val	ACT Thr	339
40	GTT Val 90	CCG Pro	CTG Leu	TTT Phe	GAA Glu	GGC Gly 95	GTA Val	CAG Gln	AAA Lys	ACC Thr	CAG Gln 100	ACC Thr	ATT Ile	CGT Arg	TCT Ser	GCT Ala 105	387
	TCT Ser	GAT Asp	ATC Ile	CGC Arg	GAT Asp 110	GTA Val	TTT Phe	ATC Ile	AAC Asn	GCA Ala 115	GGT Gly	ATT Ile	AAA Lys	GGT Gly	GAA Glu 120	GAG Glu	435
45	TAC Tyr	GAC Asp	GCG Ala	GCG Ala 125	TGG Trp	AAC Asn	AGC Ser	TTC Phe	GTG Val 130	GTG Val	AAA Lys	TCT Ser	CTG Leu	GTC Val 135	GCT Ala	CAG Gln	483

55

. 50

3	CAG GAA AAA GCT GCA GCT GAC GTG CAA TTG CGT GGC GTT CCG GCG ATG Gln Glu Lys Ala Ala Ala Asp Val Gln Leu Arg Gly Val Pro Ala Met 140 145 150	531
10	TTT GTT AAC GGT AAA TAT CAG CTG AAT CCG CAG GGT ATG GAT ACC AGC Phe Val Asn Gly Lys Tyr Gln Leu Asn Pro Gln Gly Met Asp Thr Ser 155 160 165	579
	AAT ATG GAT GTT TTT GTT CAG CAG TAT GCT GAT ACA GTG AAA TAT CTG Asn Met Asp Val Phe Val Gln Gln Tyr Ala Asp Thr Val Lys Tyr Leu 170 175 180 185	627
15	TCC GAG AAA AAA Ser Glu Lys Lys	639
20		
	SEQ ID NO.4:	•
25	LÄNGE: 51 Basen TYP: Nukleinsäure STRANGFORM: Einzelstrang TOPOLOGIE: linear	
	TTGCAATTAA CAAAGCTTGA ATTCTCGGAG AGAGTAGATC ATGAAAAAGA T	51
30	SEQ ID NO.5: LÄNGE: 49 Basen	
	TYP: Nukleinsäure STRANGFORM: Einzelstrang TOPOLOGIE: linear	
35	GGGCTTTATG TAAAGCTTGG ATCCTTATTT TTTCTCGGAC AGATATTTC	49
40		
	Patentansprüche	
45	Verfahren zur Steigerung der Ausbildung der natürlichen Proteinkonformation bei der Sekr	etion von di-
•	sulfidverbrückten Proteinen durch einen prokaryontischen Wirtsorganismus, der eine rekom enthält, die für das sekretierte Protein kodiert, worin man den Wirtsorganismus in einem geeig medium unter geeigneten Bedingungen für die Expression der rekombinanten DNA züchtet.	binante DNA gneten Nähr-
50	dadurch gekennzeichnet, daß man ein Nährmedium mit einem Gehalt von 0,1 bis 20 mmol/l eines oder mehrerer Thio	•

daß man ein Nährmedium mit einem Gehalt von 1 bis 15 mmol/l eines oder mehrerer Thiolreagenzien

verwendet.

verwendet.

55

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet,

3. Verfahren nach Anspruch 2,

dadurch gekennzeichnet,

daß man ein Nährmedium mit einem Gehalt von 3 bis 12 mmol/I eines oder mehrerer Thiolreagenzien verwendet.

4. Verfahren nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

daß man reduzierende Thiolreagenzien mit SH-Gruppen verwendet.

5. Verfahren nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

daß man reduzierende Thiolreagenzien mit einer SH-Gruppe pro Molekül verwendet.

Verfahren nach Anspruch 5,

15

20

25

30

35

dadurch gekennzeichnet,

daß man als reduzierende Thiolreagenzien Glutathion (GSH), Cystein, N-Acetylcystein, Cysteamin, β-Mercaptoethanol oder Gemische davon verwendet.

7. Verfahren nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

daß man ein Gemisch von reduzierenden Thiolreagenzien mit SH-Gruppen und oxidierenden Thiolreagenzien mit Disulfidgruppen verwendet.

8. Verfahren nach Anspruch 7,

dadurch gekennzeichnet,

daß das molare Verhältnis von reduzierenden zu oxidierenden Thiolreagenzien 2:1 bis 20:1 beträgt.

9. Verfahren nach einem der Ansprüche 7 bis 8,

dadurch gekennzeichnet,

daß man ein Gemisch aus reduziertem Glutathion (GSH) und Glutathiondisulfid (GSSG) verwendet.

10. Verfahren nach Anspruch 9,

dadurch gekennzeichnet,

daß die für das sekretierte Protein kodierende rekombinante DNA in operativer Verknüpfung mit einem DNA-Fragment steht, das für ein Signalpeptid zum Durchdringen von inneren bakteriellen Membranen kodiert.

11. Verfahren nach Anspruch 10,

dadurch gekennzeichnet,

daß das Signalpeptid aus dem E.coli OmpA Protein stammt.

12. Verfahren nach einem der Ansprüche 1 bis 11,

dadurch gekennzeichnet,

daß sich die für das sekretierte Protein kodierende rekombinante DNA unter Kontrolle eines induzierbaren Expressionssignals befindet.

45 13. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß man dem Nährmedium weiterhin ein oder mehrere Mono- oder/und Oligosaccharide zusetzt, die vom Wirtsorganismus nicht metabolisiert werden können.

50 14. Verfahren nach Anspruch 13,

dadurch gekennzeichnet,

daß man ein oder mehrere Mono- oder/und Oligosaccharide ausgewählt aus der Gruppe, bestehend aus Sorbose, Saccharose, Raffinose oder Gemischen davon, verwendet.

15. Verfahren nach einem der vorhergehenden Ansprüche,

dadurch gekennzeichnet,

daß man in einem Wirtsorganismus zusammen mit der Expression der für das zu sekretierende, disulfidverbrückte Protein kodierenden rekombinanten DNA eine Überexpression eines Proteindisulfidisomera-

segens durchführt.

Claims

5

15

- Process for increasing the formation of the natural protein conformation when disulfide-bonded proteins
 are secreted by a prokaryotic host organism that contains a recombinant DNA coding for the secreted
 protein in which the host organism is cultured in a suitable culture medium under suitable conditions for
 the expression of the recombinant DNA,
- 10 whereit
 - a culture medium containing 0.1 to 20 mmol/l of one or several thiol reagents is used.
 - 2. Process as claimed in claim 1,
 - wherein
 - a culture medium containing 1 to 15 mmol/l of one or several thiol reagents is used.
 - 3. Process as claimed in claim 2,
 - whereir

a culture medium containing 3 to 12 mmol/l of one or several thiol reagents is used.

4. Process as claimed in one of the claims 1 to 3,

whereir

reducing thiol reagents with SH groups are used.

5. Process as claimed in one of the claims 1 to 4,

25 wherein

reducing thiol reagents with one SH group per molecule are used.

Process as claimed in claim 5,

wherein

- 30 glutathione (GSH), cysteine, N-acetylcysteine, cysteamine, β-mercaptoethanol or mixtures thereof are used as the reducing thiol reagents.
 - 7. Process as claimed in one of the claims 1 to 3,

wherein

- 35 a mixture of reducing thiol reagents with SH groups and oxidizing thiol reagents with disulfide groups is used.
 - 8. Process as claimed in claim 7,

wherein

the molar ratio of reducing to oxidizing thiol reagents is 2:1 to 20:1.

Process as claimed in one of the claims 7 to 8,

wherein

a mixture of reduced glutathione (GSH) and glutathione disulfide (GSSG) is used.

45 10. Process as claimed in claim 9,

wherein

the recombinant DNA coding for the secreted protein is operatively linked with a DNA fragment that codes for a signal peptide for penetrating inner bacterial membranes.

⁵⁰ 11. Process as claimed in claim 10,

whereir

the signal peptide is derived from the E. coli OmpA protein.

12. Process as claimed in one of the claims 1 to 11,

55 wherein

the recombinant DNA coding for the secreted protein is under the control of an inducible expression signal.

13. Process as claimed in one of the previous claims,

wherein

one or several monosaccharides or/and oligosaccharides which cannot be metabolized by the host organism are additionally added to the culture medium.

14. Process as claimed in claim 13,

wherein

one or several monosaccharides or/and oligosaccharides selected from the group comprising sorbose, sucrose, raffinose or mixtures thereof are used.

15. Process as claimed in one of the previous claims,

wherein

an overexpression of a protein disulfide isomerase gene is carried out in a host organism together with the expression of the recombinant DNA which codes for the secreted disulfide-bonded protein.

15 Revendications

20

50

- 1. Procédé pour augmenter la formation de la conformation naturelle des protéines lors de la sécrétion de protéines à ponts disulfure par un organisme hôte procaryotique qui contient un ADN recombinant qui code la protéine sécrétée, dans lequel on cultive l'organisme hôte dans un milieu nutritif approprié dans des conditions appropriées pour l'expression de l'ADN recombinant, caractérisé en ce que l'on utilise un milieu nutritif ayant une teneur de 0,1 à 20 mmol/l d'un ou plusieurs réactifs thioliques.
- Procédé selon la revendication 1, caractérisé en ce que l'on utilise un milieu nutritif ayant une teneur de 1 à 15 mmol/l d'un ou plusieurs réactifs thioliques.
 - Procédé selon la revendication 2, caractérisé en ce que l'on utilise un milieu nutritif ayant une teneur de 3 à 12 mmol/l d'un ou plusieurs réactifs thioliques.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on utilise des réactifs thioliques
 réducteurs à groupes SH.
 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on utilise des réactifs thioliques réducteurs ayant un groupe SH par molécule.
- 6. Procédé selon la revendication 5, caractérisé en ce que l'on utilise comme réactifs thioliques réducteurs le glutathion (GSH), la cystéine, la N-acétylcystéine, la cystéamine, le β-mercaptoéthanol ou des mélanges de ceux-ci.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'on utilise un mélange de réactifs thioliques réducteurs à groupes SH et de réactifs thioliques oxydants à groupes disulfure.
 - Procédé selon la revendication 7, caractérisé en ce que le rapport molaire des réactifs thioliques réducteurs aux réactifs thioliques oxydants est de 2:1 à 20:1.
- Procédé selon l'une des revendications 7 à 8, caractérisé en ce que l'on utilise un mélange de glutathion réduit (GSH) et de disulfure de glutathion (GSSG).
 - 10. Procédé selon la revendication 9, caractérisé en ce que l'ADN recombinant codant la protéine sécrétée est lié de manière active à un fragment d'ADN qui code un peptide signal pour la traversée des membranes bactériennes internes.
 - 11. Procédé selon la revendication 10, caractérisé en ce que le peptide signal provient de la protéine OmpA de E. coli.
 - 12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que l'ADN recombinant codant la protéine sécrétée se trouve sous le contrôle d'un signal d'expression inductible.
 - 13. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on ajoute en outre au milieu nutritif un ou plusieurs mono- et/ou oligosaccharides qui ne peuvent pas être métabolisés par l'organisme

hôte.

- 14. Procédé selon la revendication 13, caractérisé en ce que l'on utilise un ou plusieurs mono- et/ou oligosaccharides choisis dans le groupe consistant en le sorbose, le saccharose, le raffinose ou des mélanges de ceux-ci.
- 15. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on réalise une surexpression d'un gène de protéine disulfure isomérase dans un organisme hôte en même temps que l'expression de l'ADN recombinant codant la protéine à ponts disulfure qui doit être sécrétée.

10

5

15

20

25

30

35

ΔO

. 45

50

Fig. 1

Fig. 2

Expressionsplasmid pRBIa1-PDI

