Comments on global class field theory

Let F be a number field, the correct statement for global class field theory is:

$$\operatorname{Art}_F: \mathbb{A}_F^{\times} / \overline{F^{\times}F_{\mathbb{R}}^{\times,\circ}} \xrightarrow{\cong} G_F^{\operatorname{ab}}.$$

The subtlety here is that although F^{\times} is discrete (and hence closed) in \mathbb{A}_F^{\times} , it is no longer so in the finite ideles $\mathbb{A}_{F,f}^{\times} = \mathbb{A}_F^{\times}/F_{\mathbb{R}}^{\times}$.

One can describe the difference before and after taking the closures of F^{\times} as follows. Consider the open compact subgroup $\widehat{\mathcal{O}}_F^{\times} = \prod_v \mathcal{O}_{F_v}^{\times} \subset \mathbb{A}_{F,f}^{\times}$. Its intersection with F^{\times} is just the group of global units \mathcal{O}_F^{\times} . The topology induced by smaller open compact subgroups of $\widehat{\mathcal{O}}_F^{\times}$ on \mathcal{O}_F^{\times} are just the usual congruence subgroup topology. So the closure of $\widehat{\mathcal{O}}_F^{\times}$ inside $\widehat{\mathcal{O}}_F^{\times}$ looks like

$$\mathcal{O}_F^{\times} = \mu(F) \times \mathbb{Z}^{r_1 + r_2 - 1} \subseteq \mu(F) \times \widehat{\mathbb{Z}}^{r_1 + r_2 - 1} = \overline{\mathcal{O}_F^{\times}}.$$

The difference $\widehat{\mathbb{Z}}/\mathbb{Z}$ is a very interesting group; it is uniquely divisible, i.e. given any $x \in \widehat{\mathbb{Z}}/\mathbb{Z}$ and any $n \in \mathbb{N}$, there exists a unique $y \in \widehat{\mathbb{Z}}/\mathbb{Z}$ such that x = ny. (check that!) So somehow this does not affect much of the discussion when we consider finite characters out of these groups.

Remark: When $F = \mathbb{Q}$ or an imaginary quadratic field, we do note need to take the completion, because \mathcal{O}_F^{\times} is finite and hence F^{\times} is discrete in $\mathbb{A}_{F,f}^{\times}$.