Intelligence artificielle et Jeux (LU3IN025)

Cours 2 : Efficacité, équité, Pareto-optimalité
Nawal Benabbou

Licence Informatique - Sorbonne Université

2021-2022

Dans le cours 1 :

- On s'est concentré sur la notion de stabilité.
- Cette notion n'est pas toujours pertinente, en particulier quand il ne s'agit pas d'êtres humains (comme des tâches à affecter à des machines).

À présent :

On souhaite s'assurer que les individus soient mariés avec quelqu'un qu'ils aiment bien. Comment le mesurer?

Notion d'utilité :

En économie, l'utilité est une mesure de la satisfaction/bien-être d'un individu. Cette notion permet de passer d'une échelle ordinale (classement des individus) à une échelle cardinale ("notes" attribuées aux individus).

 \rightarrow Maintenant, chaque individu x nous donne une fonction d'utilité u_x de sorte que $u_x(y)$ représente l'utilité/valeur/note de l'individu y selon x.

Une fonction d'utilité très simple : le score de Borda

Pour tout individu x, le score de Borda u_x est défini comme suit :

$$u_x(y) = n - \mathsf{rang}_x(y)$$

où $rang_x(y)$ est la position de y dans le classement de x.

Exemple

Préférences de Xavier :

 1
 2
 3

 Xavier
 Amy
 Bea
 Claire

Quelle est la fonction d'utilité de Xavier avec le score de Borda?

Une fonction d'utilité très simple : le score de Borda

Pour tout individu x, le score de Borda u_x est défini comme suit :

$$u_x(y) = n - \mathsf{rang}_x(y)$$

où $rang_x(y)$ est la position de y dans le classement de x.

Exemple

Préférences de Xavier :

	1	2	3
Xavier	Amy	Bea	Claire

Quelle est la fonction d'utilité de Xavier avec le score de Borda?

$$u_X(A) = 3 - 1 = 2$$
,

$$u_X(B) = 3 - 2 = 1$$
,

$$u_X(C) = 3 - 3 = 0.$$

Une fonction d'utilité très simple : le score de Borda

Pour tout individu x, le score de Borda u_x est défini comme suit :

$$u_x(y) = n - \mathsf{rang}_x(y)$$

où $rang_x(y)$ est la position de y dans le classement de x.

Exemple

Préférences de Xavier :

	1	2	3
Xavier	Amy	Bea	Claire

Quelle est la fonction d'utilité de Xavier avec le score de Borda?

$$u_X(A) = 3 - 1 = 2$$
,

$$u_X(B) = 3 - 2 = 1$$
,

$$u_X(C) = 3 - 3 = 0.$$

Un autre moyen d'acquisition des utilités

On peut demander aux individus de répartir un nombre de points fixé entre les individus.

Notations

- ullet $N=H\cup F$: ensemble des femmes et des hommes
- ullet M(x) : personne avec qui l'individu x est marié dans le mariage M.

Notations

- $N = H \cup F$: ensemble des femmes et des hommes
- M(x): personne avec qui l'individu x est marié dans le mariage M.

Un premier objectif assez naturel : Efficacité (critère utilitariste)

On cherche le mariage parfait M qui maximise l'utilité totale définie comme la somme des utilités. Formellement, on cherche à résoudre :

$$\max_{M: \text{ mariage}} \sum_{x \in N} u_x(M(x))$$

Notations

- ullet $N=H\cup F$: ensemble des femmes et des hommes
- M(x): personne avec qui l'individu x est marié dans le mariage M.

Un premier objectif assez naturel : Efficacité (critère utilitariste)

On cherche le mariage parfait M qui maximise l'utilité totale définie comme la somme des utilités. Formellement, on cherche à résoudre :

$$\max_{M: \text{ mariage}} \ \sum_{x \in N} u_x(M(x))$$

Ce problème peut se réécrire :

$$\max_{M: \text{ mariage }} \sum_{(x-y)\in M} u_x(y) + u_y(x)$$

Résolution du problème avec critère utilitariste

Définition : couplage parfait dans un graphe

Dans un graphe, un couplage est un ensemble d'arêtes avec aucune extrémité (sommet) commune. Un couplage est dit parfait si tout sommet du graphe est incident à exactement une arête du couplage.

Modélisation du problème par un graphe biparti

Le problème de mariage efficace peut se ramener à un problème de recherche de couplage parfait de poids maximum dans le graphe biparti pondéré suivant :

- Chaque individu est représenté par un nœud dans le graphe.
- Les arêtes relient chaque nœud "homme" à chaque nœud "femme".
- Chaque arête (h, f) est pondérée par $u_h(f) + u_f(h)$.

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Listes des femmes :

	1	2	3
а	Α	C	В
b	В	C	Α
С	C	Α	В

Score de Borda:

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Listes des femmes :

	1	2	3
а	Α	С	В
b	В	С	Α
С	С	Α	В

Score de Borda:

	a	b	С
Α	2	0	1
В	1	2	0
С	1	2	0

Score de Borda:

Α	В	C
2	0	1
0	2	1
1	0	2
	2	2 0 0 2

Poids des arêtes :

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Listes des femmes :

	1	2	3
а	Α	C	В
b	В	C	Α
С	C	Α	В

Score de Borda:

	а	b	С
Α	2	0	1
В	1	2	0
C	1	2	0

Score de Borda :

	Α	В	C
а	2	0	1
b	0	2	1
С	1	0	2

Poids des arêtes :

	а	b	С
Α	4	0	2
В	1	4	0
C	2	3	2

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Listes des femmes :

	1	2	3
а	Α	C	В
b	В	C	Α
С	C	Α	В

Score de Borda:

	а	b	С
Α	2	0	1
В	1	2	0
C	1	2	0

Score de Borda:

	Α	В	C
а	2	0	1
b	0	2	1
С	1	0	2

Poids des arêtes :

	а	b	С
Α	4	0	2
В	1	4	0
C	2	3	2

Graphe :

Le couplage parfait $\{(A-a), (B-b), (C-c)\}$ correspond au mariage qui maximise l'utilité totale.

Remarque: Pour cette instance, le mariage efficace est stable, mais ce n'est pas toujours le cas (cf. TD).

Un autre objectif assez naturel : Équité (critère égalitariste)

On cherche le mariage parfait M qui maximise l'utilité la plus faible. Formellement, on cherche à résoudre :

$$\max_{M: \text{ mariage}} \ \min_{x \in N} u_x(M(x))$$

où $N=H\cup F$ est l'ensemble des femmes et des hommes, et M(x) est la personne avec qui x est marié dans le mariage M.

Un autre objectif assez naturel : Équité (critère égalitariste)

On cherche le mariage parfait M qui maximise l'utilité la plus faible. Formellement, on cherche à résoudre :

$$\max_{M: \text{ mariage}} \ \min_{x \in N} u_x(M(x))$$

où $N=H\cup F$ est l'ensemble des femmes et des hommes, et M(x) est la personne avec qui x est marié dans le mariage M.

Ce problème peut se réécrire :

$$\max_{M: \text{ couplage}} \ \min_{(x-y) \in M} \min\{u_x(y), u_y(x)\}$$

Résolution du problème avec critère égalitariste

Problème intermédiaire

Existe-t-il un mariage tel que chaque personne est mariée avec une personne dans ses k premiers choix?

Résolution du problème avec critère égalitariste

Problème intermédiaire

Existe-t-il un mariage tel que chaque personne est mariée avec une personne dans ses k premiers choix?

Définition : couplage maximum dans un graphe

Dans un graphe, un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.

Modélisation par un graphe biparti

Le problème intermédiaire peut se ramener à un problème de recherche de couplage maximum dans un graphe biparti :

- Chaque individu est représenté par un nœud.
- Les arêtes relient uniquement une paire (h, f) telle que h est dans les k premiers choix de f et f est dans les k premiers choix de h.

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Graphe pour k=1 :

Listes des femmes :

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Listes des femmes :

	1	2	3
а	Α	C	В
b	В	C	Α
С	C	Α	В

Graphe pour k = 1:

$$\bigcirc B$$
 $\bigcirc b$

$$\overline{C}$$

Listes of	les	hommes	:
-----------	-----	--------	---

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Listes des femmes :

	1	2	3
а	Α	С	В
b	В	C	Α
С	C	Α	В

Graphe pour k = 1:

 $\{(A-a),(B-b)\} \text{ est un}$ couplage maximum. Comme il ne contient que 2 < n arêtes, il n'existe pas de mariage tel que chaque personne est mariée avec son premier choix.

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Graphe pour k=1:

 $\{(A-a),(B-b)\}$ est un couplage maximum. Comme il ne contient que 2 < n arêtes, il n'existe pas de mariage tel que chaque personne est mariée avec son premier choix.

Listes des femmes :

	1	2	3
а	Α	C	В
b	В	C	Α
С	C	Α	В

Graphe pour k=2:

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Graphe pour k = 1:

 $\{(A-a),(B-b)\}$ est un couplage maximum. Comme il ne contient que 2 < n arêtes, il n'existe pas de mariage tel que chaque personne est mariée avec son premier choix.

Listes des femmes :

	1	2	3
а	Α	C	В
b	В	C	Α
С	C	Α	В

Graphe pour k=2:

Listes des hommes :

	1	2	3
Α	а	С	b
В	b	а	С
C	b	а	С

Graphe pour k=1:

 $\{(A-a),(B-b)\}$ est un couplage maximum. Comme il ne contient que 2 < n arêtes, il n'existe pas de mariage tel que chaque personne est mariée avec son premier choix.

Listes des femmes :

	1	2	3
а	Α	С	В
b	В	C	Α
С	C	Α	В

Graphe pour k=2:

 $\{(A-c),(B-b),(C-a)\} \text{ est un couplage} \\ \text{maximum et contient } 3=n \text{ arêtes. Le} \\ \text{mariage correspondant est tel que chaque} \\ \text{individu est marié avec une personne dans} \\ \text{ses } 2 \text{ premiers choix.}$

Remarque : ce couplage n'est pas stable.

Retour sur la résolution du problème avec équité

Question

Pour le score de Borda, proposer un algorithme permettant de déterminer un mariage parfait équitable de manière efficace?

Retour sur la résolution du problème avec équité

Question

Pour le score de Borda, proposer un algorithme permettant de déterminer un mariage parfait équitable de manière efficace?

Une réponse possible : en itérant sur k

Pour k = 1, ..., n :

Construire le graphe biparti du problème intermédiaire pour k.

Déterminer un couplage de taille maximale.

Si le couplage obtenu contient n arêtes : Retourner ce couplage.

Fin Si

Fin Pour

Et pour le problème des colocataires?

Modélisation par des graphes non biparti

Le problème des colocataires peut se ramener à rechercher un couplage parfait de poids maximum (pour l'efficacité) et des couplages maximum (pour l'équité) dans des graphes qui ne sont plus bipartis.

- ⇒ Algorithmiquement plus compliqué avec des graphes non bipartis, mais il existe des algorithmes efficaces (par exemple, voir les travaux de J. Edmonds 1965).
- \Rightarrow En TD, on fera des exercices sur la recherche de couplages pour la résolution de problèmes de mariage efficace et de mariage équitable.
- \Rightarrow En master ANDROIDE, on étudiera des méthodes "combinatoires" pour trouver rapidement de tels mariages.

Pareto-dominance

Un mariage parfait M est dit Pareto-dominé par un mariage parfait M' si et seulement si les deux conditions suivantes sont vérifiées :

$$\begin{cases} u_x(M'(x)) \ge u_x(M(x)) & \forall x \in N \\ u_x(M'(x)) > u_x(M(x)) & \exists x \in N \end{cases}$$

On dit aussi que M' Pareto-domine M.

Un autre objectif intéressant : Pareto-optimalité

On cherche un mariage parfait qui n'est Pareto-dominé par aucun autre mariage parfait. On parle de mariage Pareto-optimal.

→ Concept introduit par le sociologue et économiste italien Vilfredo Pareto pour définir un état de la société dans lequel il n'est pas possible d'améliorer le bien-être d'un individu sans détériorer celui d'un autre.

Pareto-optimalité : illustration graphique

Considérons un problème de décision avec deux agents A et B. Supposons que les solutions possibles v,w,x,y,z donnent les vecteurs de satisfaction suivants :

Le cône de dominance d'une solution est la zone délimitée par les deux traits pointillés sortant du point correspondant. Ce cône contient toutes les solutions dominant ce point au sens de Pareto. Sur cet exemple, on voit que :

- x et y sont Pareto-dominées par z et w respectivement.
- z, v et w sont Pareto-optimales (aucune solution dans leur cône).

13/16

VRAI OU FAUX:

Tout mariage parfait efficace est Pareto-optimal.

VRAI OU FAUX:

Tout mariage parfait efficace est Pareto-optimal.

VRAI. Soit M un mariage efficace. Supposons que M n'est pas Pareto-optimal. Dans ce cas, il existe M' tel que $u_x(M'(x)) \geq u_x(M(x))$ pour tout agent $x \in N$ et $u_x(M'(x)) > u_x(M(x))$ pour au moins un agent $x \in N$. Donc on a $\sum_{x \in N} u_x(M'(x)) > \sum_{x \in N} u_x(M(x))$, ce qui contredit l'efficacité de M.

VRAI OU FAUX:

- Tout mariage parfait efficace est Pareto-optimal.
 - VRAI. Soit M un mariage efficace. Supposons que M n'est pas Pareto-optimal. Dans ce cas, il existe M' tel que $u_x(M'(x)) \geq u_x(M(x))$ pour tout agent $x \in N$ et $u_x(M'(x)) > u_x(M(x))$ pour au moins un agent $x \in N$. Donc on a $\sum_{x \in N} u_x(M'(x)) > \sum_{x \in N} u_x(M(x))$, ce qui contredit l'efficacité de M.
- 2 Tout mariage parfait Pareto-optimal est efficace.

VRAI OU FAUX:

1 Tout mariage parfait efficace est Pareto-optimal.

VRAI. Soit M un mariage efficace. Supposons que M n'est pas Pareto-optimal. Dans ce cas, il existe M' tel que $u_x(M'(x)) \geq u_x(M(x))$ pour tout agent $x \in N$ et $u_x(M'(x)) > u_x(M(x))$ pour au moins un agent $x \in N$. Donc on a $\sum_{x \in N} u_x(M'(x)) > \sum_{x \in N} u_x(M(x))$, ce qui contredit l'efficacité de M.

Tout mariage parfait Pareto-optimal est efficace. FAUX :

Utilités des hommes :

 $egin{array}{|c|c|c|c|c|} & f_1 & f_2 \\ \hline h_1 & 3 & 0 \\ h_2 & 2 & 1 \\ \hline \end{array}$

Utilités des femmes :

$$\begin{array}{c|cccc} & h_1 & h_2 \\ \hline f_1 & 1 & 2 \\ f_2 & 1 & 2 \\ \end{array}$$

Dans ce problème, il existe uniquement deux mariages parfaits :

$$\begin{array}{c|c} \text{Mariage parfait} & (u_{h_1}(\cdot), u_{h_2}(\cdot), u_{f_1}(\cdot), u_{f_2}(\cdot)) \\ \hline M = \{(h_1 - f_2), (h_2 - f_1)\} & (0, 2, 2, 1) \\ M' = \{(h_1 - f_1), (h_2 - f_2)\} & (3, 1, 1, 2) \\ \end{array}$$

M est Pareto-optimal (car non dominé par M'), mais pas efficace.

VRAI OU FAUX:

Tout mariage parfait équitable est Pareto-optimal.

VRAI OU FAUX:

1 Tout mariage parfait équitable est Pareto-optimal. FAUX :

$$\begin{array}{c|ccccc} & f_1 & f_2 & f_3 \\ \hline h_1 & 2 & 2 & 1 \\ h_2 & 3 & 2 & 0 \\ h_3 & 0 & 0 & 5 \\ \hline \end{array}$$

Utilités des femmes :

	h_1	h_2	h_3
f_1	2	2	1
f_2	3	2	0
f_3	0	0	5

Dans ce problème, il y a six couplages parfaits, mais f_3 et h_3 doivent être mariés ensemble pour avoir une utilité minimale différente de zéro. Les deux mariages parfaits en compétition sont donc :

Mariage parfait	Vecteur des utilités
$M = \{(h_1 - f_1), (h_2 - f_2), (h_3 - f_3)\}$ $M' = \{(h_1 - f_2), (h_2 - f_1), (h_3 - f_3)\}$	(2, 2, 5, 2, 2, 5) (2, 3, 5, 2, 3, 5)

M est optimal au sens de l'équité (utilité $\min=2$), mais M est Pareto-dominé par $M^\prime.$

VRAI OU FAUX:

 h_3

1 Tout mariage parfait équitable est Pareto-optimal. FAUX :

Utilités des femmes :

	h_1	h_2	h_3
f_1	2	2	1
f_2	3	2	0
f_3	0	0	5

Dans ce problème, il y a six couplages parfaits, mais f_3 et h_3 doivent être mariés ensemble pour avoir une utilité minimale différente de zéro. Les deux mariages parfaits en compétition sont donc :

Mariage parfait	Vecteur des utilités
$M = \{(h_1 - f_1), (h_2 - f_2), (h_3 - f_3)\}$ $M' = \{(h_1 - f_2), (h_2 - f_1), (h_3 - f_3)\}$	(2, 2, 5, 2, 2, 5) (2, 3, 5, 2, 3, 5)

M est optimal au sens de l'équité (utilité min = 2), mais M est Pareto-dominé par M^\prime .

2 Tout mariage parfait Pareto-optimal est équitable.

VRAI OU FAUX:

Tout mariage parfait équitable est Pareto-optimal. FAUX :

Utilités des femmes :

	h_1	h_2	h_3
f_1	2	2	1
f_2	3	2	0
f_3	0	0	5

Dans ce problème, il y a six couplages parfaits, mais f_3 et h_3 doivent être mariés ensemble pour avoir une utilité minimale différente de zéro. Les deux mariages parfaits en compétition sont donc :

Mariage parfait	Vecteur des utilités
$M = \{(h_1 - f_1), (h_2 - f_2), (h_3 - f_3)\}$ $M' = \{(h_1 - f_2), (h_2 - f_1), (h_3 - f_3)\}$	(2, 2, 5, 2, 2, 5) (2, 3, 5, 2, 3, 5)

M est optimal au sens de l'équité (utilité $\min=2$), mais M est Pareto-dominé par $M^\prime.$

② Tout mariage parfait Pareto-optimal est équitable. FAUX. Prenons le contre exemple donné pour l'efficacité. Le mariage M est Pareto-optimal, mais M n'est pas optimal au sens de l'équité car (utilité min = 0 < 1).

Pareto-optimalité et compromis

Chaque solution Pareto-optimale conduit à un compromis différent.

Lequel-préférez vous?

Pareto-optimalité et compromis

Chaque solution Pareto-optimale conduit à un compromis différent.

Lequel-préférez vous?

Moi (NB), je préfère la solution c parce qu'elle réalise un compromis intéressant de mon point de vue. Pourtant, seules a et f sont efficaces, et seule d est équitable... comment modéliser le fait que je préfère la solution c?

On verra en master ANDROIDE plusieurs modèles décisionnels permettant de rendre compte de préférences différentes.