Reg. No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 11077

B.E / B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2021

Fourth Semester

Computer Science and Engineering

(Common to Information Technology)

CS8451 - Design and Analysis of Algorithm

(Regulations 2017)

Duration: 3 Hours Max. Marks 100

Answer ALL Questions **PART-A** $(10 \times 2 = 20 \text{ Marks})$

1.	Give Euclid algorithm to compute GCD	K1	CO1	
2.	Compare the order of growth of n(n-1)/2 and n2	K4	CO1	: :
3.	State convex hull problem	K1	CO1	s.
4.	Give the general plan of divide and conquer algorithms	K1	CO3	s.
5.	What are memory functions?	K1	CO4	
6.	Define principle of optimality	K1	CO3	s.
7.	What do you mean by perfect matching in bipartite graphs	K2	CO6	
8.	When a linear program is said to be unbounded	K1	CO6	
9.	How NP-Hard problems are different from NP-Complete	K4	CO5	
10.	What are tractable and non-tractable problems	K1	CO5	1

$PART - B (5 \times 13 = 65 marks)$

11.	a)	(i) Find the closest asymptotic tight bound by solving the recurrence equation $T(n)=8T(n/2)+n2$ with $T(1)=1$ using the recurrence tree method.						K3	CO2
		(ii) Derive the recurrence relation for Fibonacci series algorithm; also carry out the time complexity analysis.					6	К3	CO2
					OF	R			
	b)								
		average case	·.				13	K3	CO2
12.	a) (i) Sort the following set of elements using merge sort : 12, 24, 8, 71, 4, 23, 6, 89, 56.						6	К3	CO3
		(ii) Write an algorithm for Quick sort and write its time complexity with example list 5,3,1,9,8,2,4,7.						К3	CO3
	b)	(i) There are person per minimum to assignment p	6	K2	CO1				
		Jo							
		Person 1	9	2	7	8			
		Person 2	6	4	3	7			
		Person 3	5	8	1	8			
		Person 4	7	6	9	4			
		(ii) Explain							
		solve the pro	7	K2	CO1				
13.	a)	How memo algorithm an	•			d in dynamic knapsack? Write the class.	13	K3	CO4
			8						
	b)	Analyze the examples.	algo	rithm of	f Optima	ll Binary Search Tree with suitable	13	K4	CO4

14. a) Find Max-flow and Min-cut value for the problem given below.

OR

b) (i) For the given ranking matrix, Solve stable marriage problem

6 K3 CO6

K3

CO₆

13

(ii) Maximize p=2x+3y+z using Simplex method. Subject to $x+y+z \le 40$, $2x+y-z \ge 10$, $-y+z \ge 10$, $x \ge 0$, $y \ge 0$ 7 K3 CO6

15. a) Find the optimal jobs assigned for a person with the following cost matrix using Branch and Bound methods.13 K4 CO4

Job 1 Job 2 Job 3 Job 4 9 7 8 Person 1 2 Person 2 6 4 3 7 Person 3 5 8 1 8 7 9 6 4 Person 4

OR

b) Solve the following instance of Knapsack problem by branch and bound 13 K4 CO4 algorithm. W=15

ITEM WEIGHTPROFIT

1	5	40
2	7	35
3	2	18
4	4	4
5	5	10
6	1	2

16. a) Give the pseudo code for Prim's Algorithm and apply the same to

15 K3 CO3

find MST.

OR

b) Solve the following recurrence relations:

15 K3 CO2

$$X(n)=x(n-1)+5 \text{ for } n>1, x(1)=0$$

$$X(n)=3x(n-1)$$
 for $n>1$, $x(1)=4$

$$X(n)=x(n/2)+n \text{ for } n>1, x(1)=1 \text{ [solve for } n=2^k]$$