

<u>Gameboard</u>

Maths

Trigonometry: Double Angles 1ii

Trigonometry: Double Angles 1ii

Part A The form $a\sin^2\theta + b\sin\theta + c = 0$

Express the equation $(\csc\theta)(3\cos2\theta+7)+11=0$ in the form $a\sin^2\theta+b\sin\theta+c=0$, where $a,\,b,$ and c are constants and a>0.

Enter the values of a, b and c:

$$a = \bigcap$$

$$b = \bigcap$$

$$c = \bigcap$$

Part B Solve

Hence solve, for $-180^\circ < \theta < 180^\circ$, the equation $(\csc\theta)(3\cos2\theta + 7) + 11 = 0$.

Give your answers in degrees, to three significant figures.

Enter your answers in order from lowest value of θ to highest.

(lowest value)	
,	

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Trigonometry: Double Angles 2ii

Trigonometry: Double Angles 2ii

Part A sin Double Angle

Write down the identity expressing $\sin 2\theta$ in terms of $\sin \theta$ and $\cos \theta$.

The following symbols may be useful: theta

Part B $\sin 2\alpha$

Given that $\sin \alpha = \frac{1}{4}$ and α is acute, find the exact value of $\sin 2\alpha$.

The following symbols may be useful: alpha

Part C Solve

Solve in degrees, for $0^{\circ} < \beta < 90^{\circ}$, the equation $5\sin 2\beta \sec \beta = 3$, giving your answer in degrees to three significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 31 - Compound and Double-Angle Formulae</u>

<u>Gameboard</u>

Maths

Trigonometry: Combined Angles 5i

Trigonometry: Combined Angles 5i

The value of $\tan 10^\circ$ is denoted by p. Find, in terms of p, the value of:

Part A $an 55^{\circ}$

 $\tan 55^\circ$

The following symbols may be useful: p

Part B $an 5^{\circ}$

 $an 5^{\circ}$

The following symbols may be useful: p

Part C $\tan \theta$

an heta, where heta satisfies the equation $3\sin\left(heta+10^\circ
ight)=7\cos\left(heta-10^\circ
ight)$.

The following symbols may be useful: $\ensuremath{\text{p}},\ \ensuremath{\text{theta}}$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-

Angle Formulae

<u>Gameboard</u>

Maths

Functions: Reciprocal Trig 2i

Functions: Reciprocal Trig 2i

It is given that A and B are angles such that

$$\sec^2 A - \tan A = 13$$
 and $\sin B \sec^2 B = 27 \cos B \csc^2 B$.

Part A Largest value of $\tan(A-B)$

Find the largest possible exact value of tan(A - B).

The following symbols may be useful: A, B

Part B Smallest value of an(A-B)

Give the smallest possible value of tan(A - B).

The following symbols may be useful: A, B

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-

Angle Formulae

Home Gameboard Maths Geometry Trigonometry Trigonometry and R-Form 1

Trigonometry and R-Form 1

Part A $5\cos x + 12\sin x$

Express $5\cos x + 12\sin x$ in the form $R\cos(x-\alpha)$, where R>0 and $0^\circ < \alpha < 90^\circ$.

State the value of R:

$$R = \bigcap$$

Give the value of α in degrees, to three significant figures:

$$\alpha$$
 =

Part B Transformations

Give details of a pair of transformations which transform the curve $y=\cos x$ to the curve	
$y = 5\cos x + 12\sin x.$	
Available items	
Stretch parallel to the x -axis by a factor of $\frac{1}{R}$.	
·	
Stretch parallel to the y -axis by a factor of $\frac{1}{R}$.	
Stretch parallel to the y -axis by a factor of \overline{R} .	
Stretch parallel to the y -axis by a factor of R .	
Translation in the positive y direction by α .	
Translation in the negative y direction by α .	
Translation in the negative g direction by α .	
Stretch parallel to the x -axis by a factor of R .	
Translation in the positive x direction by α .	
Translation in the negative x direction by α .	
Translation in the negative x direction by α .	

Part C Solve

Solve, for $0^\circ < x < 360^\circ$, the equation $5\cos x + 12\sin x = 2$, giving your answers in degrees correct to the nearest 0.1° .

Enter your answers in order from lowest value of $\boldsymbol{\theta}$ to highest.

(lowest value)
(highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-

Angle Formulae

<u>Gameboard</u>

Maths

Trigonometry: Combined Angles 3i

Trigonometry: Combined Angles 3i

In Figure 1, ABCD represents a rectangular table with sides $3.5\,\mathrm{m}$ and $1.5\,\mathrm{m}$. It has been turned so it wedges in a passage of width $2.5\,\mathrm{m}$.

Figure 1: The rectangular table ABCD.

Part A Value of $7\sin heta^\circ + 3\cos heta^\circ$

Given that θ is the acute angle between the longer side and the passage, as shown in the diagram, find the exact value of $7\sin\theta + 3\cos\theta$.

The following symbols may be useful: cos(), sin(), tan(), theta

Part B The form $R \sin \left(heta^\circ + lpha^\circ ight)$

Express $7\sin\theta+3\cos\theta$ in the form $R\sin\left(\theta+\alpha\right)$, where R>0 and $0^{\circ}<\alpha<90^{\circ}$.

Give the exact value of R.

The following symbols may be useful: R

Give the value of α to 3 significant figures.

Part C Find θ

Find θ , to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 31 - Compound and Double-

Angle Formulae

Home Gameboard Maths Geometry Trigonometry Wave Interference

Wave Interference

A Level

Pre-Uni Maths for Sciences H4.10

Two waves

$$\psi_1 = A\cos\left(2\pi f t - \left(rac{2\pi}{\lambda}
ight)x + \phi
ight)$$

and

$$\psi_2 = A\cos\left(2\pi f t - \left(rac{2\pi}{\lambda}
ight)x - \phi
ight)$$

interfere, such that the resultant wave is given by $\psi=\psi_1+\psi_2$. Express ψ as the product of two trigonometric functions.

Express ψ as the product of two trigonometric functions.

The following symbols may be useful: A, f, lambda, phi, pi, t, x

Created for isaacphysics.org by Julia Riley.