High School Olympiads

Remove New Topic

Isotomic point of the height foot

geometry circumcircle

Source: All Russian MO 2015, grade 10, problem 7

silouan

Aug 7, 2015, 6:43 pm

3804 posts

In an acute-angled and not isosceles triangle ABC, we draw the median AM and the height AH.

Points Q and P are marked on the lines AB and AC, respectively, so that the $QM \perp AC$ and $PM \perp AB$.

The circumcircle of PMQ intersects the line BC for second time at point X. Prove that BH = CX.

M. Didin

TelvCohl

Aug 7, 2015, 8:09 pm

◎ ②PM #2

My solution: 1991 posts

> Let the tangent of $\odot(ABC)$ passing through B, C meets each other at T. Let S be the isogonal conjugate of T WRT $\triangle ABC$ ($SB \parallel CA, SC \parallel AB$).

From $PM \perp AB, TM \perp BC \Longrightarrow \angle TMP = \angle CBA = \angle TCP$, so C, P, T, M lie on a circle with diameter $CT \Longrightarrow P$ is the projection of T on CA. Similarly, Q is the projection of T on $AB \Longrightarrow \odot(PMQ)$ is the pedal circle of T WRT $\triangle ABC$,

so X is the projection of S on BC due to T,S share the same pedal circle (WRT $\triangle ABC \implies BH = CX$.

Q.E.D

Luis González

3883 posts

Aug 8, 2015, 3:58 am

◎ ②PM #3

Let $U \equiv QM \cap AC, V \equiv PM \cap AB.T$ is the midpoint of PQ and AM cuts $\odot(APQ)$ again at N (reflection of orthocenter M of $\triangle APQ$ on PQ). By symmetry, reflections Y and Z of X on PQ and T lie on $\odot(APQ)$ and $PQ \parallel YZ \Longrightarrow$ $\angle(XZ,XM) = \angle(ZN,ZX) = \angle ANZ = \angle AYZ \Longrightarrow AHY \perp BC$. But by Butterfly theorem for the cyclic PQVU, it follows that $TM \perp BC \Longrightarrow TM$ is Xmidline of $\triangle XHY \Longrightarrow MX = MH$ or BH = CX.

livetolove212

Nov 17, 2015, 11:03 am

793 posts

Let I be the midpoint of PQ. Since M is the orthocenter of triangle APQ and MB=MC then applying butterfly theorem for the circle with diameter PQ_{\prime} $IM \perp BC$. Let J be the reflection of A wrt M, O be the circumcenter of triangle APQ, N is the center of (MPQ), L be the antipode of M wrt (MPQ), Y be the midpoint of LJ.

We have $NY \parallel = \frac{1}{2}MJ \parallel = \frac{1}{2}AM \parallel = IN$ hence N is the midpoint of IY. This means $IY \parallel = M \tilde{J}$ or $JY \parallel \tilde{I}M$. Therefore $LJ \perp BC$ at X. But A and J are symmetric wrt M hence MH = MX or BH = CX.

Attachments:

This post has been edited 2 times. Last edited by livetolove212, Nov 17, 2015, 11:06 am

NguyenHu... 8 posts

May 31, 2016, 6:21 pm

◎ ②PM #5

This question is a little bit silly but how your guys can thinking like that? ANY SECRET 😂

kapilpavase 432 posts

Jun 10, 2016, 6:43 pm • 1 🐽

③ ☑PM #6

Let $PM\cap AB=D, QM\cap AP=E$ performing inversion wrt M and ratio $\sqrt{-MD.MP}$ it amounts to showing that $H' = DE \cap BC \otimes X' = PQ \cap BC$ are equidistant from M.

But by converse of butterfly thm on DQPE with DQ and EP as 'wings', it follows that $OM \perp BC(O)$ is centre of $\bigcirc DQPE$. Now we see that the above thing that we wanted to prove is nothing but butterfly on DQPE with DE and QP as wings. \bigcirc

This post has been edited 2 times. Last edited by kapilpavase, Jun 10, 2016, 6:45 pm

anantmudg... 839 posts

Jun 10, 2016, 10:31 pm • 1 👍

◎ ②PM #7

Here is my solution.

Reflecting P, Q in M the problem is equivalent to the following:

In triangle ABC the feet from A onto BC is H and M is the midpoint of BC. Points K, N are on AB, AC such that $\angle AKM = \angle ANM = 90^{\circ}$. Let rays MK, MNmeet the lines through B, C parallel to AC, AB respectively at P, Q. Prove that P, Q, H, M are concyclic.

For this newer statement, the proof is as follows: It suffices to prove that H is the centre of a spiral similarity sending KP to NQ since we already know that A, H, M, K, Nare concyclic. Now, for this it suffices that $\frac{1111}{HN} =$

Consider the following equalities:

$$\frac{HK}{HN} = \frac{\sin HNK}{\sin HKN} = \frac{\sin HAK}{\sin HAN} = \frac{\cos B}{\cos C}$$

And observe that $BM\cdot\cos B=BK$ and so $KP=BK\cdot\tan A$. Similarly, we observe that $CM\cdot\cos C=CN$ and $NQ=CN\cdot\tan A$.

Therefore, we conclude that

$$\frac{HK}{HN} = \frac{\cos B}{\cos C} = \frac{BM \cdot \tan A}{CM \cdot \tan A} \cdot \frac{\cos B}{\cos C} = \frac{KP}{NQ}$$

Thus, our claim holds. Now, it follows that points P,Q,H,M are concyclic.

This post has been edited 1 time. Last edited by anantmudgal09, Jun 10, 2016, 10:32 pm Reason: Latex error

v_Enhance 4253 posts Jul 7, 2016, 8:33 pm

Consider triangle APQ, which has orthocenter M. Extend line BC to intersect the circle with diameter PQ at Z, Y. Then YZ also has midpoint M by Butterfly theorem. By inversion at M, Butterfly theorem then implies MH=MX too.

Quick Reply

© 2016 Art of Problem Solving Terms Privacy Contact Us About Us

Copyright © 2016 Art of Problem Solving