Ejercicios: Bisección

David Morales

1. Use el método de bisección para encontrar soluciones precisas dentro de 10^{-2} para $x^3 - 7x^2 + 14x - 6 = 0$ en cada intervalo.

Con el objetivo de obtener una mejor visión del ejercicio, se procedió con el proceso de graficación.

```
import numpy as np
import matplotlib.pyplot as plt

def equation(x:float)->float:
    return (x**3 - 7*x**2 + 14*x - 6)

x = np.linspace(-10, 10, 100)

y = equation(x)

plt.plot(x, y)

plt.xlabel('x')
plt.ylabel('y')
plt.title('Plot of $ x^{3} - 7x^{2} + 14x - 6 = 0$')

ax = plt.gca()
ax.set_ylim([-2, 4])
ax.set_xlim([0, 5])
plt.grid(True)
plt.show()
```


El siguiente método aplica la bisección a la función dada en el ejercicio.

```
from typing import Callable
def sign(x: float) -> int:
    if x > 0:
        return 1
    elif x < 0:
        return -1
    else:
        return 0

def bisection(
    a: float, b: float, *, equation: Callable[[float], float], tol: float, N: int
) -> tuple[float, float, float, int] | None:
    i = 1
    assert a < b, "a not lower than b, the interval is not valid."</pre>
```

```
assert (
    equation(a) * equation(b) < 0
), "The function does not change sign over the interval."
Fa = equation(a)
p = a
for i in range(N):
    p = a + (b - a) / 2
    FP = equation(p)
    if FP == 0 or (b - a) / <math>2 < tol:
        return p, a, b, i
    if sign(Fa) * sign(FP) > 0:
        a = p
        Fa = FP
    else:
        b = p
return p, a, b, i
```

a. Como resultado de la ejecución se obtiene el siguiente par ordenado: [0, 1]

En el rango [0,1], en la iteración nº: 6 se encontró que la raíz dentro de la precisión de 1

4.a. Dibuje las gráficas para $y = x^2 - 1$ y $y = e^{1-x^2}$

```
import numpy as np
import matplotlib.pyplot as plt

def equation1(x:float)->float:
    return ((x**2) - 1)

def equation2(x:float)->float:
    return np.exp(1-x**2)
```

```
x = np.linspace(-5, 5, 200)
y1 = equation1(x)
y2 = equation2(x)
plt.figure(figsize=(8, 6))
plt.plot(x, y1, label=r'$y = x^{2} - 1$', color='pink')
plt.plot(x, y2, label=r'$y = e^{1-x^{2}}$', color='green')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Plot of x^{2}-1 and e^{1-x^{2}}')
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
ax = plt.gca()
ax.set_ylim([-2, 5])
ax.set_xlim([-4, 4])
plt.grid(True)
plt.legend()
plt.show()
```


4.b. Use el método de bisección para encontrar una aproximación dentro de 10^{-3} para un valor de [-2,0] con $x^2-1=e^{1-x^2}$

Se grafica la función.

```
def eq(x):
    return ((x**2) - 1)-(np.exp(1-x**2))

x = np.linspace(-5, 5, 100)

y = eq(x)

plt.plot(x, y, label = '$x^{2} - 1 = e^{1-x^{2}}$', color = 'purple')

plt.xlabel('x')
```

```
plt.ylabel('y')
plt.title('Plot of $x^{2} - 1 = e^{1-x^{2}}$')
ax = plt.gca()
ax.set_ylim([-2, 5])
ax.set_xlim([-4, 4])
plt.grid(True)
plt.show()
```


Aplicando el método de la bisección

En el rango [-2,0], en la iteración nº: 10 se encontró que la raíz dentro de la precisión de

Ejercicios Aplicados

1. Un abrevadero de longitud tiene una sección transversal en forma de semicírculo con radio . (Consulte la figura adjunta.) Cuando se llena con agua hasta una distancia a partir de la parte superior, el volumen de agua es:

$$V = L\left(0.5\pi r^2 - r^2 \arcsin\left(\frac{h}{r}\right) - h\sqrt{r^2 - h^2}\right)$$

Suponga que =10 , =1 y =12.4 . Encuentre la profundidad del agua en el abrevadero dentro de $0.01\ cm$

Datos del Ejercicio:

- Tolerancia: 0.01cm
- Intervalo: $[h_{min}, h_{max}]$, es decir: [0, 1]

```
import math

L = 10
r = 1
V_dado = 12.4
tol = 0.01

def f_h(h):
    V_calculado = L * (0.5 * math.pi * r**2 - r**2 * math.asin(h / r) - h * math.sqrt(r**2 - return V_calculado - V_dado

result = bisection(a=0,b=r,equation=f_h,tol=tol,N=20)

print("En el rango ["+str(0)+","+str(r)+"], en la iteración n°: "+str(result[3])+" se encontra dentro de la precisión de "+format(tol, ".0e")+ " es: "+str(result[0]))
```

En el rango [0,1], en la iteración n° : 6 se encontró que la raíz dentro de la precisión de

2. Un objeto que cae verticalmente a través del aire está sujeto a una resistencia viscosa, así como a la fuerza de gravedad. Suponga que un objeto con masa cae desde una altura y que la altura del objeto después de segundos es

$$s(t) = s_0 - \tfrac{mg}{k}t + \tfrac{m^2g}{k^2}\left(1 - e^{-\tfrac{kt}{m}}\right),$$

donde $(g = 9.81, \mathbf{m/s}^2)$ y (k) representa el coeficiente de la resistencia del aire en $(\mathbf{Ns/m})$. Suponga $(s_0 = 300, \mathbf{m})$, $(m = 0.25\,\mathrm{kg})$ y $(k = 0.1, \mathbf{Ns/m})$. Encuentre, dentro de $(0.01\,\mathrm{segundos})$, el tiempo que tarda un cuarto de kg en golpear el piso.

```
s0 = 300
m = 0.25
k = 0.1
g = 9.81
tol = 0.01

def f_t(t):
    s_t = s0 - (m * g / k) * t + (m**2 * g / k**2) * (1 - math.exp(-k * t / m))
    return s_t

result = bisection(a=0,b=s0,equation=f_t,tol=tol,N=20)

print("En el rango ["+str(0)+","+str(s0)+"], en la iteración n°: "+str(result[3])+" se encon
    " dentro de la precisión de "+format(tol, ".0e")+ " es: "+str(result[0]) + " seg.")
```

En el rango [0,300], en la iteración nº: 14 se encontró que la raíz dentro de la precisión de

Ejercicios Teóricos

1. Use el teorema 2.1. para encontrar una cota para el número de iteraciones necesarias para lograr una aproximación con precisión de 10^{-4} para la solución de $x^3 - x - 1 = 0$ que se encuentra dentro del intervalo [1, 2]. Encuentre una aproximación para la raíz con este grado de precisión.

```
a = 1
b = 2
tol = 10**(-4)
def equation3(x):
    return (x**(3)-x-1)

result = bisection(a=a,b=b,equation=equation3,tol=tol,N=20)

print("Después de " + str(result[3]+1) + " iteraciones la solución aproximada en la precisión
```

Después de 14 iteraciones la solución aproximada en la precisión de 1e-04 es: 1.324768066406

GitHub: git@github.com:DavidME1604/MetodosNumericos2024B_MoralesDavid.git