

单因素方差分析

朱宗元

浙江财经大学数据科学学院

统计数据收集的含义和要求

含义

单因素

只考虑一种因素对观察(试验)指标影响的 方差分析,称为单因素方差分析。

单因素方差分析模型

数据结构表

水平号		观察指标值	算术均值	方差	
A ₁	x_{11}	<i>x</i> ₁₂	 x_{1n_1}	$\frac{1}{x_1}$	S_1^2
A_2	<i>x</i> ₂₁	<i>x</i> 22	 x_{2n_2}	$\frac{}{x}_2$	S_2^2
A _r	x_{r1}	x_{r2}	 x_{rn}	$\frac{-}{x}_r$	S_r^2

单因素方差分析模型

基本假设

单因素方差分析模型

模型

单因素方差分析偏差平方和分解

平方和分解

总均值
$$\overline{x} = \sum_{i=1}^{r} \sum_{j=1}^{n_i} x_{ij} / \sum_{i=1}^{r} n_i$$

$$i$$
水平均值 $\overline{x}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$

$$\alpha_i = \overline{x}_i - \overline{x}, e_{ij} = x_{ij} - \overline{x}_i$$

单因素方差分析偏差平方和分解

平方和分解

单因素方差分析偏差平方和分解

偏差平方和分解公式

$$\sum_{i=1}^{r} \sum_{j=1}^{n_i} (x_{ij} - \overline{x})^2 = \sum_{i=1}^{r} n_i (\overline{x}_i - \overline{x})^2 + \sum_{i=1}^{r} \sum_{j=1}^{n_i} (x_{ij} - \overline{x})^2$$

记
$$SS_T = \sum_{i=1}^r \sum_{j=1}^{n_i} (x_{ij} - x^{-1})^2$$

(总离差平方和)

$$SS_A = \sum_{i=1}^r n_i (\bar{x}_i - \bar{x})^2$$
(组间平方和)

$$SS_E = \sum_{i=1}^{r} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

(组内离差平方和)

$$SS_T = SS_A + SS_E$$

检验形式

检验统计量构造

检验统计量构造

$$\begin{cases} \frac{SS_T}{S^2} = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(\frac{x_{ij} - \bar{x}}{S} \right)^2 \sim \chi^2 (n-1) \\ \frac{SS_A}{S^2} = \sum_{i=1}^r n_i \left(\frac{\bar{x}_i - \bar{x}}{S} \right)^2 \sim \chi^2 (r-1) \\ \frac{SS_E}{S^2} = \sum_{i=1}^r \sum_{j=1}^{n_i} \left(\frac{x_{ij} - \bar{x}_i}{S} \right)^2 \sim \chi^2 (n-r) \end{cases}$$

检验统计量

$$F = \frac{SS_A/(r-1)}{SS_E/(n-r)} \sim F(r-1, n-r)$$

统计量分布与决策

方差分析表

方差来源	自由度	离差平方和	均方差	F值	P值
因素A	r-1	SS _A	$\overline{S_A^2} = \frac{SS_A}{r-1}$	$F = \overline{S_A^2} / \overline{S_E^2}$	Р
随机误差	n-r	SS _E	$\overline{S_E^2} = \frac{SSE}{n-r}$		
总和	n-1	SS _T			

单因素方差分析实例

例题

利用儿童运动饮料试销量的数据,进行单因素方差分析,回答三种包装形式对饮料销售量的影响是否具有显著性(0.05)?

产品包	商店 (试销店)							
装类型	I	II	III	IV	V	VI	VII	VIII
纸质真 空(A ₁)	152	188	238	192	180	115	125	100
铁质易 拉罐(A ₂)	208	256	300	280	270	210	185	165
塑料瓶 (A ₃)	182	198	268	220	200	128	110	105

单因素方差分析实例

实例分析

(1)

计算总平均值、各水平均值等有关中间结果。

解: $r = 3, n = 24, \overline{x} = 190.625,$ $\overline{x}_1 = 161.25, \overline{x}_2 = 234.25, \overline{x}_3 = 176.375,$ $\sum_{i=1}^{3} n_i \overline{x}_i^2 = 895862.125, \sum_{i=1}^{r} \sum_{j=1}^{n_i} x_{ij}^2 = 950917.$

计算

2

计算组间、组内和总离差平方和。

$$SS_{A} = \sum_{i=1}^{r} n_{i} \overline{x}_{i}^{-2} - n \overline{x}^{2} = 23752 .75$$

$$SS_{E} = \sum_{i=1}^{r} \sum_{j=1}^{n_{i}} x_{ij}^{2} - \sum_{i=1}^{r} n_{i} \overline{x}_{i}^{2} = 55054 .875$$

$$SS_{T} = SS_{A} + SS_{E} = 78807 .625$$

计算

2

计算均方误差和F统计量。

$$F = \frac{SS_A/(r-1)}{SS_E/(n-r)} = \frac{23752.75/2}{55054.875/21} = 4.53$$

方差分析表

方差来源	自由度	离差平方和	均方差	F值	P值
因素A (组间)	2	23752.750	11876.375	4.530	0.023
随机误差E (组内)	21	55054.875	2621.661		
总和	23	78807.625			

分析结论

讨论

谢 谢

日期: 17/08/5