W_i – intrinsic (adalékolatlan) félvezetőben a Fermi-szint helyzete, másnéven sávközép [eV] $1~eV=1.6\times10^{-19}~I$

 $[A \cdot s]$

 W_F – Fermi szint energia szintje [eV]

 W_c – vezetési sáv aljának energia szintje [eV]

 W_v – vegyérték sáv tetejének energia szintje [eV]

 W_q – tiltott sáv szélessége [eV]

 k_b – Boltzmann állandó, $k_b = 1.38 \times 10^{-23} J/_K$ [$V \cdot A \cdot s/K$]

h – Planck állandó, $h = 6,626 \times 10^{-34} Js$

c – fénysebesség, $c = 3 \times 10^8 \ m/_{\rm S}$

n – elektron koncentráció [db/cm³]

p – lyuk koncentráció [db/cm³]

 n_i – adalékolatlan félvezetőben a töltéshordozó koncentráció [db/cm³]

 $\overline{J_n}$ – elektronok áramsűrűsége (egységnyi keresztmetszeten) [A/m²]

 $\overline{J_n}$ – lyukak áramsűrűsége [A/m²]

q − elektron elemi töltése 1.6×10⁻¹⁹ C

 μ_n – elektronok mozgékonysága [m²/(V·s)]

 μ_p – lyukak mozgékonysága[m²/(V·s)]

 \overline{E} – térerősség vektor [V/m]

 D_n – elektronok diffúziós állandója [m²/s]

 D_p – lyukak diffúziós állandója [m²/s]

 $\frac{kT}{a} = U_T$ -Termikus feszültség, szobahőmérsékleten 26 mV

 $\frac{kT}{a}$ – Termikus energia, szobahőmérsékleten 26 m**e**V

 g_n – generációs ráta (elektronok) [1/m³s]

 r_n – rekombinációs ráta (elektronok) [1/m³s]

 au_n – elektronok élettartama [s]

 n_p – egyensúlyi elektron koncentráció p adalékolású régióban [db/cm³]

 n_0 – átmenet közvetlen határán kialakuló elektron koncentráció p adalékolású régióban $[{
m db/cm^3}]$

 L_n – diffúziós hossz [m]

 U_D – diffúziós feszültség [V]

 N_d – donor adalékoltság szintje [db/cm³]

 N_a – akceptor adalékoltság szintje [db/cm³]

 S_p – kiürített réteg szélessége p adalékoltságú oldalon [m]

 U_{nn} – PN átmeneten eső feszültség [V]

 I_0 – telítési áram [A]

 I_G – generációs áram [A]

 U_R – záró irányú előfeszítés nagysága [V]

C_T – tértöltés kapacitás [F]

 C_D – diffúziós kapacitása [F]

 Q_D – diffúziós töltésmennyiség [C]

 $r_d = {^UT}/_I$ – dióda differenciális ellenállása [Ω]

 I_C – kollektor áram [A]

 I_E – emitter áram [A]

A – földelt bázisú, egyenáramú áramerősítési tényező

 η_e – injektálási/emitter hatásfok

 η_{tr} – transzfer hatásfok

 I_{CB0} – lezárt bázis-kollektor átmenet záróirányú (telítési) árama [A]

 $N_B(0)$ – bázis adalékoltsága az emitter oldalon [db/cm³]

 $N_B(w_B)$ – bázis adalékoltsága a kollektor oldalon [db/cm³]

w_B – metallurgiai bázisszélesség [m]

 r_s – dióda soros ellenállása [Ω]

 U_0 – elzáródási feszültség (V_P angol nevezéktanban) [V]

 I_D – drain áram [A]

I_{DSS} – JFET telítési árama (I₀ magyar szakterminológiában) [A]

 Φ_F – fermi potenciál értéke [V]

 U_F – felületi potenciál nagysága [V]

 Φ_{MS} – kilépési munkák különbsége, fém-félvezető átmenet potenciálküszöb nagysága [V]

 Q_{SS} – felületi elkötetlen állapotok töltése [C]

 C_0 – felületegységre eső oxidkapacitás [F/m²]

 Φ_{FB} – flat-band potenciál [V]

 γ – bulk együttható [V^{1/2}]

 P_{CP} – töltéspumpálásból (charge pump) adódó fogyasztás-összetevő [W]

 C_L – logikai áramkörökben a kimeneteket terhelő átlagos szórt/parazita kapacitás értéke [F]