Funktionale Programmierung

http://proglang.informatik.uni-freiburg.de/teaching/functional-programming/2013/

Übungsblatt 9 (Kategorientheorie)

Di, 2013-12-24

Hinweise

- Lösungen sollen in das persönliche Subversion (svn) Repository hochgeladen werden. Die Adresse des Repositories wird per Email mitgeteilt.
- Alle Aufgaben müssen bearbeitet und pünktlich abgegeben werden. Falls das sinnvolle Bearbeiten einer Aufgaben nicht möglich ist, kann eine stattdessen eine Begründung abgegeben

werden.

- Wenn die Abgabe korrigiert ist, wird das Feedback in das Repository hochgeladen. Die Feedback-Dateinamen haben die Form Feedback-<user>-ex<XX>.txt.
- Allgemeinen Fragen zum Übungsblatt können im Forum (http://proglang.informatik.uni-freiburg.de/forum/viewforum.php?f=38) geklärt werden.

Errata 2014-01-13

- Abgabetermine korrigiert auf 2014-01-16
- \bullet Aufgabe 2: Korrektur der Spezifikation von $\mathcal{C}\text{-Pfeilen}$
- Aufgabe 3: Korrektur der Aufgabenstellung.
- Aufgabe 7: Hinweis zur Definition von $\langle f, g \rangle$.
- Aufgabe 9: Definition von Koprodukt hinzugefügt

Abgabe: Do, 2014-01-16

Sie können die Aufgaben wahlweise in ihr Repository committen (auch eingescannt oder fotografiert) oder am Donnerstag den 16.1. in der Übungsstunde abgeben.

- 1. Vervollständigen Sie die folgende Spezifikation der Kategorie ${\bf M}$ und zeigen Sie, dass ${\bf M}$ die Kategoriengesetze erfüllt.
 - Die Objekte von M sind die natürlichen Zahlen.
 - Ein M-Pfeil $f: m \to n$ ist eine $m \times n$ Matrix reeller Zahlen.
 - Eine Komposition $g \circ f$ zweier Pfeile $f: m \to n$ und $g: n \to p$ ist ...
 - . . .
- 2. Sei \mathcal{C} eine Kategorie und A ein Objekt aus \mathcal{C} . Die Kategorie $(\mathcal{C} \downarrow A)$ ist folgendermaßen definiert:
 - Die Objekte sind Paare (B, π_B) von C-Objekten B und C-Pfeilen $\pi_B : B \to A$.
 - Die Pfeile $g_{\downarrow A}:(B,\pi_B)\to (B',\pi_{B'})$ sind genau die \mathcal{C} -Pfeile $g:B\to B'$ für die das folgende Diagramm kommutiert:

Verifizieren Sie, dass $(\mathcal{C} \downarrow A)$ eine Kategorie ist. Wie würden Sie die Pfeile und Objekte der Kategorie (**Set** $\downarrow \{0,1\}$) interpretieren?

3. Zeigen Sie: Wenn zwei komponierbare Pfeile f,g monisch sind, dann ist auch $f \circ g$ monisch. Darüber hinaus, wenn $f \circ g$ monisch ist, dann ist auch g monisch.

- 4. Geben Sie eine Kategorie mit einem Pfeil an, der episch und monisch, aber kein Isomorphismus ist.
- 5. Was sind die initialen und terminalen Objekte der folgenden Kategorien?
 - \bullet Set \times Set (die Produktkategorie von Set und Set
 - ullet Set $^{
 ightarrow}$
- 6. Geben Sie eine Kategorie ohne initiale Objekte an. Geben Sie außerdem eine Kategorie ohne terminale Objekte an.
- 7. Zeigen Sie, dass $\langle f \circ h, g \circ h \rangle = \langle f, g \rangle \circ h$. Zeichnen Sie erst ein entsprechendes Diagramm. (Für die Definition von $\langle f, g \rangle$, siehe Definition von Produkt)
- 8. Betrachten Sie zwei Objekte A und B der Kategorie einer partiellen Ordnung (P, \leq) . Geben Sie das Produkt $A \times B$, die Projektionen π_1 und π_2 sowie den Pfeil $\langle f, g \rangle$ für zwei Pfeile f und g an.
- 9. Geben Sie das Koprodukt zweier Objekte der Kategorie **Poset**, sowie die Injektionen und den Pfeil [f, g] für zwei Pfeile f und g an.

Das folgende Diagramm definiert das Koprodukt A + B zweier Objekte A und B, die Injektionen ι_1 und ι_2 , und den Pfeil [f,g] (dual zur Definition von Produkten):

- 10. Geben Sie ein Beispiel eines Koequalizers in der Kategorie **Set** für zwei beliebige Funktionen f und g.
- 11. Zeigen Sie, dass jeder epische Equalizer auch ein Isomorphismus ist.