Exámen Matemática Discreta 2 (Resolución)

Julio 2002

1) a) Hallar a y b enteros positivos tales que : a + b = 122

$$mcd(a,b) + mcm(a,b) = 1802$$

Res.: mcd(a,b) divide a 122=2x61.

Mcd(a,b) puede ser 1, 2, 61 ó 122. 61 y 122 no dividen a 1802, por lo tanto mcd(A,b) es 1 o 2.

Si mcd(a,b) = 1, => mcm(a,b) = 1801, => a.b = 1801, pero $a+b = 122 => a^2 - 122$ a +1801 =0 Ecuación sin soluciones naturales.

Si mcd(a,b) =2, => mcm(a,b) =1800, => a.b = 3600, pero a+b = 122 => a= (122 $\pm \sqrt{(122^2 - 4x3600)})/2 = 50$ o 72. Por lo tanto a = 50 y b = 72.

b) Resolver el sistema de ecuaciones con congruencias : $11x - 7y \equiv 10 (45)$

$$4x + 14y \equiv 12 (45)$$

Res.: el sistema es equivalente al sistema: $11x - 7y \equiv 10$ (5) $\Leftrightarrow x + 3y \equiv 0$ (5)

$$4x + 14y \equiv 12 (5) \Leftrightarrow -x - y \equiv 2 (5)$$

$$11x - 7y \equiv 10 \ (9) \Leftrightarrow 2x + 2y \equiv 1 \ (9)$$

$$4x + 14y \equiv 12 (9) \Leftrightarrow 4x + 5y \equiv 3 (9)$$

Sumando las primeras dos ecuaciones obtenemos 2y = 2 (5),=> y = 1(5), x = -3 = 2 (5) Como 2.5 = 10 = 1 (9), y = 2.4 = -1 (9), obtenemos de las últimas 2 ecuaciones:

$$x + y \equiv 5 (9)$$
$$-x + y \equiv 6 (9)$$

De las cuales obtenemos $2 \text{ y} = 11 = 2 (9) \Rightarrow \text{ y} = 1 (9) \Rightarrow \text{ x} = 4 (9)$.

Como y = 1 (5), tenemos que y = 1 (45). Como x = 2 (5), entonces x = 22 (45).

2) a) Sea G un grupo abeliano (no necesariamente finito) y n un número entero positivo; demostrar que $H = \{ x \in G \mid orden(x) \text{ divide a } n \} \text{es un subgrupo de } G$

Sol.: Producto: si x, y están en H, entoces sus órdenes dividen a n, por lo tanto $x^n = e$ y $y^n = e$, por lo tanto, por la conmutatividad $(xy)^n = x^n y^n = e.e = e$.

Inverso: $(x^{-1})^n = (x^n)^{-1} = (e)^{-1} = e$.

- b) Se considera $G = (Z_4 \times Z_2, +)$
 - ((a,b)+(c,d)=(a+c,b+d) donde a+c es la suma módulo 4 y b + d es la suma módulo 2)
 - i) Hallar $H = \langle (2, 1) \rangle$ (subgrupo generado por (2, 1))

Sol. : $\langle (2,1) \rangle = \{ (2,1), (0,0) \}$

- ii) Hallar los elementos del grupo cociente G/H
- Sol.: $\{(2,1),(0,0)\},\{(3,1),(1,0)\},\{(2,0),(0,1)\},\{(3,0),(1,1)\}$
 - iii) Hallar la tabla correspondiente a G / H

Sol. Llamemos xx a la clase de (x,x).

00 01 10 11

00 00 01 10 11

01 01 00 11 10

10 10 11 01 00

11 11 10 00 01

iv) ¿Es G / H cíclico ? Justificar.

Sol.: Si por que
$$<10> = \{10, 01, 11, 00\}$$

3) a) Sea A un anillo conmutativo. Se considera $J = \{ x \in A / \exists n \text{ tal que } x^n = z \}$ (z es el elemento nulo del anillo). Probar que J es un ideal de A

(Sug. : En un anillo conmutativo vale la fórmula del Binomio de Newton)

Sol.: Suma: sean x e y en J y n1 y n2 tales que $x^{nl} = y^{n2} = z$, entonces si n = n1 + n2 tenemos que los coeficiente de $(x+y)^n$ son de la forma $c.x^iy^{n-i}$ con $0 \le i \le n$, por lo tanto si $i \le n1$, entonces $n-i \ge n2 => y^{n-i} = z => c.x^iy^{n-i} = z$. En cambio si i > n1, entonces $x^i = z => c.x^iy^{n-i} = z$.

Opuesto: $(-x)^{n1} = (-1)^{n1} x^{n1} = (-1)^{n1} z = z$ **Producto:** $(ax)^{n1} = a^{n1} x^{n1} = a^{n1} z = z$.

b) i) En $Z_5[x]$ hallar un polinomio f(x) de segundo grado tal que : f(2) = 3, f(3) = 4, f(4) = 1

Sol. Si
$$f(x) = a x^2 + bx + c$$
, entoncess: $-a + 2b + c = 0$ (5)
 $-a - 2b + c = -1$ (5)
 $a - b + c = 1$ (5)

Resolviendo el sistema por escalerización: $a \equiv 3, b \equiv 1, c \equiv 4$.

- ii) ξ Es f (x) reducible ? Justificar.
- f(0) = 4 y f(1) = 3+1+4 = 3, por lo tanto f no tiene raices y por lo tanto no es reducible.
- 4) Se considera la función booleana $f: B^4 \to B$ tal que :

$$f(w, x, y, z) = \begin{cases} 1 & \text{si} & w + x = wx \text{ o bien } y + z = yz \\ 0 & \text{en otro caso} \end{cases}$$

Hallar la forma normal conjuntiva de f.

Sol. Como w+x = wx si y solo si w = x. La función será 0 si y solo si $w \neq x$ y $y\neq z$. Es decir para las 4-uplas (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), por lo tanto la f.n.c. de f es f $(w, x, y, z) = (w+x^c+y+z^c)(w+x^c+y^c+z)(w^c+x+y+z^c)(w^c+x+y^c+z)$.

Puntajes: 1) 28 : a) 14 b) 14

- 2) 30 : a) 14 b) 16 : i) 4 ii) 4 iii) 4 iv) 4
- 3) 28 : a) 14 b) 14 : i) 11 ii) 3
- 4) 14