Obliczenia naukowe

Felix Zieliński 272336

Lista 1

Rozwiązania zadań z 1. listy na przedmiot Obliczenia Naukowe. Programy zostały napisane w języku Julia oraz, gdy było to konieczne, w C.

Zadanie 1.

 ${\bf a.}$ Wyznaczanie iteracyjne epsilonów maszynowych wraz z porównaniem z wartościami zwracanymi przez funkcję ${\rm esp}()$ oraz z danymi z headera float.h jezyka C.

Typ zmiennoprzecinkowy	Wyznaczona wartośc macheps	esp()	<float.h></float.h>
16	0.000977	0.000977	1.1920929e-0
32	1.1920929e-7	1.1920929e-7	2.22044604925031
64	2.220446049250313e-16	2.220446049250313e-16	1.0842021724855044

b. Wyznaczenie iteracyjnie liczby maszynowej eta wraz z porównaniem z wartościami zwracanymi przez funkcję nextfloat()

Typ zmiennoprzecinkowy	Wyznaczona wartośc eta	nextfloat()	
16	6.0e-8	6.0e-8	
32	0.000977	1.0e-45	
64	5.0e-324	1.1920929e-7	

Wartości zwrócone przez

- 1. floatmin(Float32) 1.1754944e-38
- 2. floatmin(Float64) 2.2250738585072014e-308
- **c.** Wyznaczenie iteracyjne liczby MAX wraz z porównaniem z wartościami zwracanymi przez funckje floatmax() oraz z danymi z headera float.h języka C.

Typ zmiennoprzecinkowy	Wyznaczona wartośc eta	nextfloat()	<float.h></float.h>
16	6.55e4	6.55e4	$3.40282347\mathrm{e}{+38}$
32	3.4028235e38	3.4028235e38	1.7976931348623157e
64	1.7976931348623157e308	1.7976931348623157e308	1.18973149535723176502

Zadanie 2. Sprawdzenie, czy twierdzenie Khana jest poprawne.

Typ zmiennoprzecinkowy	Wyznaczona wartośc eta	nextfloat()	
16	6.0e-8	6.0e-8	
32	0.000977	1.0e-45	
64	5.0e-324	1.1920929e-7	

Zadanie 3. Sprawdzenie, czy liczby w arytmetyce Float (64) liczby zmiennopozycyjne sa równomiernie rozmieszczone.

Zadanie 4. Znalezienie w arytmetyce Float (64) liczbę zmiennopozycyjną x w przedziale 1 < x < 2 taką, że $x * (1/x) \neq 1$. Najmniejsza znalezione przeze mnie liczba:

1.000000057228997

Zadanie 5. Obliczanie iloczynu skalarnego dwóch wektorów

Sposób	Float32	Float64	Wartość prawidłowa
1	-0.3472038161853561	1.0251881368296672e-10	-1.00657107000000e-11
2	-0.3472038161853561	-1.5643308870494366e-1	-1.00657107000000e-11
3	-0.3472038161853561	0.0	-1.00657107000000e-11
4	-0.3472038161853561	0.0	-1.00657107000000e-11

Zadanie 6.			

Zadanie 7.