图论及其应用作业一

- 1. C 2010 年考研真题,题干要求在"任何情况"下都是连通的,考虑最极端的情形,即图 G 的 6 个顶点构成一个完全无向图,再加上一条边后,第 7 个顶点必然与此完全无向图构成一个连通图,所以最少边数 6x5/2+1=16。若边数 n 小于或等于 15,可以使这 n 条边仅连接图 G 中的某 6 个顶点,从而导致第 7 个顶点无法与这 6 个顶点构成连通图(不满足"任何情况")。
- 2. B 2017 年考研真题, 无向图边数的 2 倍等于各顶点度数的总和。为求至少的顶点数, 应使每个顶点的度取最大, 由于其他顶点的度均小于 3,可以设它们的度都为 2,设它们的数量是 x,列出方程 4*3 + 3*4 +2x = 16*2.解得 x=4。因此至少包含 4+4+3=11 个顶点。
- 3. D 在有向图中, 顶点的度等于入度与出度之和。n 个顶点的有向图中, 任意一个顶点最多还可以与其他 n-1 个顶点有一对指向相反的边相连。注意数据结构中仅讨论简单图。
- 4. B n 个顶点的无向图最多有 n(n-1)/2 条边,每条边在邻接表中存储两次,所以边表结点最多为 n(n-1)个。
- 5. C 利用深度优先遍历可以判断图 G 中是否存在回路。对于无向图来说,若深度优先遍历过程中遇到了回边,则必定存在环;对于有向图来说,这条回边可能是指向深度优先森林中另一棵生成树上的顶点的弧;但是,从有向图的某个顶点 v 出发进行深度优先遍历时,若在 DFS(v)结束之前出现一条从顶点 u 到顶点的回边,且 u 在生成树上是 v 的子孙,则有向图必定存在包含顶点 v 和顶点 u 的环。
- 7. D 2013 年考研真题,只要掌握 DFS 和 BFS 的遍历过程,便能轻易解决。逐个代入,手工模拟,选项 D 是深度优先遍历,而不是广度优先遍历。
- 8. D 2016 年考研真题

对于本题,只需按深度优先遍历的策略进行遍历。对于 A: 先访问 V_1 ,然后访问与 V_1 邻接且未被访问的任意一个顶点(满足的有 V_2 , V_3 和 V_5),此时访问 V_5 ,然后从 V_5 出发,访问与 V_5 邻接且未被访问的任意一个顶点(满足的只有 V_4),然后从 V_4 出发,访问与 V_4 邻接且未被访问的足意一个顶点(满足的只有 V_3),然后从 V_3 出发,访问与 V_3 邻接且未被访问的任意一个顶点(满足的只有 V_2),结束遍历。B 和 C 的分析方法与 A 相同,不再赘述。对于 D,首先访问 V_1 ,然后从 V_1 出发,访问与 V_1 邻接且未被访问的任意一个顶点(满足的有 V_2 、 V_3 和 V_5),然后从 V_2 出发,访问与 V_2 邻接且未被访问的任意一个顶点(满足的有 V_2 0,按规则本应该访问 V_5 ,但 D 却访问了 V_3 ,错误。

9. B. 基本概念

10. C

图论及其应用作业二

1. B 2016 年考研真题

根据 Dijkstra 算法,从顶点 1 到其余各顶点的最短路径如下表所示。

顶 点	第1轮	第2轮	第3轮	第4轮	第5轮
2	$v_1 \rightarrow v_2$	5 v ₁ v ₂	70 Y 1 2 TO	, , , , , , , , , , , , , , , , , , ,	жоче
3		, A	7 v ₁ → v ₂ → v ₃	ug, de s	13.
4	00	$v_1 \rightarrow v_5 \rightarrow v_4$	$ \begin{array}{c} 11 \\ \nu_1 \rightarrow \nu_5 \rightarrow \nu_4 \end{array} $	$ \begin{array}{c} 11 \\ \nu_1 \rightarrow \nu_5 \rightarrow \nu_4 \end{array} $	11 v ₁ - v ₅ - v ₄
5	4 ν ₁ →ν ₅	Maria E	entary in	May ter	US THE
6		$ \begin{array}{c} 9 \\ \nu_1 \rightarrow \nu_5 \rightarrow \nu_6 \end{array} $	9 $v_1 \rightarrow v_5 \rightarrow v_6$	9 v ₁ +v ₅ +v ₆	
集合 S	{1, 5}	{1, 5, 2}	{1, 5, 2, 3}	{1, 5, 2, 3, 6}	{1, 5, 2, 3, 6, 4}

2. 见下

1) 该图的邻接矩阵为

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 3 & 3 & 6 & \infty & \infty & \infty \\ 2 & \infty & 0 & 4 & \infty & 5 & \infty & \infty \\ \infty & \infty & 0 & \infty & 4 & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty & 4 & \infty & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & 5 & \infty \\ \infty & \infty & \infty & \infty & 0 & \infty & 3 \\ \infty & \infty & 3 & \infty & \infty & 0 & 7 \\ 7 & \infty & \infty & \infty & \infty & \infty & \infty & 0 \end{bmatrix}$$

得到的深度优先遍历序列为 1, 2, 3, 5, 7, 4, 6。

- 2) 解题思路: 当某个顶点只有出弧而没有入弧时,其他顶点无法到达这个顶点,不可能与 其他顶点和边构成强连通分量(这个单独的顶点构成一个强连通分量)。
 - ① 顶点 1 无入弧构成第一个强连通分量。删除顶点 1 及所有以之为尾的弧。
 - ② 顶点 2 无入弧构成一个强连通分量。删除顶点 2 及所有以之为尾的弧。
 - ③

以此类推,最后得到每个顶点都是一个强连通分量,故强连通分量数目为7。

- 3) 该图的两个拓扑序列如下:
 - 1, 2, 4, 6, 3, 5, 7
 - 2 1, 4, 2, 6, 3, 5, 7
- 4) 若视该图为无向图:

用 Prim 算法生成最小生成树的过程如下:

1-2, 1-3, 3-6, 3-5, 5-7, 6-4 (图略)。

用 Kruskal 算法生成最小生成树的过程如下图所示。

- 3. B 2022 年考研真题,按关键路径的求解方法即可。
- 4. C 2013 年考研真题,按关键路径的求解方法可知,bdcg、bdeh 和 bfh 为关键路径,ABD 并不包含在所有的关键路径中, 仅 C 包含。
- 5. 见 ppt