QUIZ 2: 60 Minutes

Last Name:	
First Name:	
RIN:	
Section:	

Answer **ALL** questions.

NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

Circle at most one answer per question.

10 points for each correct answer

You **MUST** show **CORRECT** work to get full credit.

When in doubt, TINKER.

Total

200

1. A drawer has 5 red and 5 blue socks. It's dark and you can't see. What is the <i>minimum</i> number of socks must you pull out to <i>guarantee</i> getting at least one red sock and at least one blue sock?
lacksquare A $lacksquare$ 3.
B 4.
C 5.
D 6.
E None of the above.
2. What is the <i>minimum</i> number of children needed to <i>guarantee</i> two are born on the same day of the week?
A 5.
B 6.
$lue{ extbf{C}}$ 7.
$\overline{\mathbb{D}}$ 8.
E None of the above.
3. What is the <i>minimum</i> number of children needed to <i>guarantee</i> two are born on a Monday?
$oxed{A}$ 6.
B 7.
$\boxed{\mathrm{C}}$ 8.
D 367.
E None of the above.
4. In how many ways can you pick a debate team of 3 students from 6 students?
$oxed{A}$ 20.
B 120.
$oxed{\mathrm{C}} 6^3.$
$\boxed{\mathrm{D}}$ 3^6 .
E None of the above.
E None of the above.
5. Which number could be a probability of some event?
lacksquare A $3/2$
$\boxed{\mathrm{B}}\sqrt{2}.$
$\boxed{ ext{C}}\sqrt{2}-1.$
$\overline{ \mathcal{D} }\sqrt{2}-2.$
$\stackrel{\smile}{\mathrm{E}}\pi.$

6.	You randomly flip two independent fair coins. What is the probability of at least one flip being heads?
	$oxed{A}$ 0.
	B 1/4.
	<u>C</u> 1/4.
	$\boxed{\mathrm{D}}$ 3/4.
	E 1.
7.	You randomly roll a pair of fair 6-sided dice. What is the most likely sum of the dice?
	$oxed{A}$ 5.
	B 6.
	C 7.
	D 8.
	E 9.
8.	Random variable X has a uniform distribution on the ten values $\{1, 2,, 10\}$. What is $\mathbb{P}[\mathbf{X} \text{ is prime}]$?
	A 0.1.
	<u>B</u> 0.2.
	C 0.3.
	D 0.4.
	E None of the above.
0	D
9.	Random variable X has values $\{1, 2,, 10\}$ with probabilities $\{x, 2x,, 10x\}$. What is $\mathbb{P}[\mathbf{X} \text{ is prime}]$?
	A 4/55.
	B 17/55.
	C 19/55.
	D 21/55.
	$\boxed{\mathrm{E}}$ It cannot be determined without knowing the value of x .
10	Randomly pick a 5-bit sequence (independent bits and each bit is 1 with probability $\frac{1}{2}$). What is the
	probability that the sequence starts and ends with the same bit?
	$\boxed{\mathbf{A}}$ 1/4.
	B 1/2.
	$\boxed{\mathrm{C}}$ 3/4.
	$\boxed{\mathrm{D}}\ 2/32.$
	E None of the above.

11. Randomly pick a 5-bit sequence (independent bits and each bit is 1 with probability $\frac{1}{2}$). What is the probability that the sequence has at least one 1?
$\boxed{ ext{A}}$ 1/32.
B 9/32.
C 27/32.
D 31/32.
E None of the above.
12. Which inequality for the AND of two events A and B is always correct? Assume $\mathbb{P}[A] > 0$ and $\mathbb{P}[B] > 0$.
$oxed{A} \mathbb{P}[A \cap B] \leq \mathbb{P}[A] imes \mathbb{P}[B].$
$oxed{\mathrm{B}} \ \mathbb{P}[A\cap B] \geq \mathbb{P}[A] imes \mathbb{P}[B].$
$\boxed{\textbf{C}} \ \mathbb{P}[A \cap B] \leq \min(\mathbb{P}[A], \mathbb{P}[B]). \tag{min}(\cdot, \cdot) \text{ takes the minimum.})$
$oxed{\mathrm{D}} \ \mathbb{P}[A\cap B] \geq \min(\mathbb{P}[A],\mathbb{P}[B]).$
E None of the above.
13. Which formula for the AND of two events A and B is always correct? Assume $\mathbb{P}[A] > 0$ and $\mathbb{P}[B] > 0$.
$oxed{\mathrm{A}} \mathbb{P}[A \cap B] = \mathbb{P}[A] imes \mathbb{P}[B].$
$oxed{\mathrm{B}} \mathbb{P}[A\cap B] = \mathbb{P}[A] + \mathbb{P}[B].$
$\boxed{\mathbb{C}} \ \mathbb{P}[A \cap B] = \mathbb{P}[A \mid B] + \mathbb{P}[B \mid A].$
$oxed{D} \mathbb{P}[A \cap B] = \mathbb{P}[A \mid B] \times \mathbb{P}[B].$
$\boxed{\mathbf{E}} \ \mathbb{P}[A \cap B] = \mathbb{P}[A \mid B] \times \mathbb{P}[B \mid A].$
14. A box has 6 fair coins and 4 two-headed coins You pick a random coin and flip. What is $\mathbb{P}[H]$?
lacksquare $A/10$
$oxed{B}$ 5/10
C 6/10
D 7/10
E None of the above.
15. A box has two coins, one is fair and one is two-headed. You picked a coin randomly, flipped it twice and got HH. What are the chances you have the fair coin?
$\boxed{\mathrm{A}}$ 1/2.
B 1/3.
C 1/4.
$\boxed{\mathrm{D}}$ 1/5.
E None of the above.

16. Which random variable X has a binomial distribution?
$oxed{A}$ Flip a fair coin until the second head appears. $oxed{X}$ is the number of flips made.
\fbox{B} Draw 10 cards from a randomly shuffled deck. $\mathbf X$ is the number of aces drawn.
\fbox{C} Hats of 100 men randomly land on the 100 heads. ${f X}$ is the number of men who get their hat back.
$\boxed{\mathrm{D}}$ Randomly answer 20 multiple-choice questions, each with 5 answers. \mathbf{X} is the number correct.
E None of them have a binomial distribution.
17. Flip 5 fair coins independently. What is the probability to get exactly 3 heads.
A 3/16.
B 4/16.
C 5/16.
D 6/16.
E None of the above.
18. You flip a fair coin 3 times. What is the expected number of heads?
$oxed{A}$ 0.
B 1.
C 2.
D 3.
E None of the above.
19. A box has two fair coins and one two-headed coin. You randomly pick a coin and flip the coin you picked 3 times. What is the expected number of heads?
$oxed{f A}$ 0.
B 1.
$oxed{ ext{C}}$ 2.
D 3.
E None of the above.
20. Each sex is equally likely. A couple has kids until they have at least one boy and at least one girl. What is the expected number of kids the couple will have?
$oxed{A}$ 2.
B 3.
$\boxed{ ext{C}}$ 4.
D 5.
E None of the above.

SCRATCH