06 Pigeonhole Principle

06_02 Pigeonhole Principle and Examples

Another Generalization of Pigeonhole Principle Suppose $m_1, m_2, ..., m_n$ are positive integers. If we place $m_1 + m_2 + ... + m_n - n + 1$ pigeons (in general, objects) into k pigeonholes (in general, boxes), then there exists an i, where $i \in \{1, 2, ..., n\}$, such that Pigeonhole i (in general, Box i) has at least m_i pigeons.

[Proof]. Suppose, to the contrary, that for each i, i \in {1, 2, ..., n}, the number of pigeons in Pigeonhole i is less than or equal to $m_i - 1$. Then

$$m_1 + m_2 + ... + m_n - n + 1$$

- = the total number of pigeons
- = the number of pigeons in Pigeonhole 1 + the number of pigeons in Pigeonhole 2 +

.

the number of pigeons in Pigeonhole n

$$\leq (m_1 - 1) + (m_2 - 1) + \dots + (m_n - 1)$$

$$= m_1 + m_2 + \ldots + m_k - n,$$

a contradiction.

Note that if
$$m_1 \ge 2$$
, $m_2 \ge 2$, ..., $m_n \ge 2$, then
$$m_1 + m_2 + ... + m_n - n + 1 \ge n + 1.$$

The above generalized Pigeonhole Principle implies the first version of the Pigeonhole Principle. Example. Suppose that each student in one Computer Science class of 30 students is a sophomore, a junior, or a senior. Show that

- [1] Show that there are at least 16 sophomores, at least 10 juniors, or at least 6 seniors.
- [2] Show that there are at least 18 sophomores, at least 11 juniors, or at least 3 seniors.

[Proof].

[1] Let
$$n = 3$$
, $m_1 = 16$, $m_2 = 10$, and $m_3 = 6$.
Then $30 = 16 + 10 + 6 - 3 + 1$

$$= m_1 + m_2 + m_3 - n + 1.$$

Apply the above generalized Pigeonhole Principle, we have the desired result.

[2] Let
$$n = 3$$
, $m_1 = 18$, $m_2 = 11$, and $m_3 = 3$.
Then $30 = 18 + 11 + 3 - 3 + 1$
 $= m_1 + m_2 + m_3 - n + 1$.

Apply the above generalized Pigeonhole Principle, we have the desired result.

Example. Let $a_1, a_2, ..., a_n$ be a sequence of integers. Show that there exist integers i and j, where i < j, such that $(a_{i+1} + a_{i+2} + ... + a_j)$ is divisible by n, where $i \in \{0, 1, 2, ..., (n-1)\}$ and $j \in \{1, 2, ..., n\}$.

[Proof]. Define
$$s_1 = a_{1,}$$

$$s_2 = a_1 + a_2,$$
...
 $s_k = a_1 + a_2 + ... + a_k.$

.

$$s_n = a_1 + a_2 + \dots + a_n$$
.

If there exists an integer r such that s_r is divisible by n, then we have the desired result with i=0and j=r.

Now we consider the case that s_r is not divisible by n for each $r \in \{1, 2, ..., n\}$. Then when s_r is divided by n, where $r \in \{1, 2, ..., n\}$, the possible remainders are 1, 2, ..., (n-1). By Pigeonhole Principle, there exist integers i and j, where i < j, $i \in \{0, 1, 2, ..., (n-1)\}$, and $j \in \{1, 2, ..., n\}$, such that s_i mod $n = s_j$ mod n. Thus $(s_j - s_i)$ mod n = 0. Hence $(a_{i+1} + a_{i+2} + ... + a_j)$ mod n = 0. So $(a_{i+1} + a_{i+2} + ... + a_j)$ is divisible by n.