

Interval Scheduling Problem
Input: A set of requests { 1n }, where the ith request starts at s(i) and ends at f(i).
Output: A largest compatible subset of these requests.

High Level Solution
Initially R is the complete set of
requests and A is empty
Initially R is the complete set of requests and A is empty While R is not empty Choose a request ie R that has the smallest finish time
the smallest finish Time
Add request i to A

Delete all requests from R that
Delete all requests from R that are not compatible with i
Endwhile
Return A

Proof of Correctness
1. Prove that A is a compatible set
2- Prove that A is an optimal set
all overlapping requests before choosing the
Easy to show #1: Since we always delete all overlapping requests before choosing the next request, we can never end up with overlapping requests in A.

#2: Say A is of Size k, and Suppose there is an optimal solution O.	
•	
indices 1 (r \ k, we have f (ir) \ f (1,)	
Label requests in A: i, i, i, i, ik " O: 1, 1, i,, 1, m We will first prove that for all indices 1 (r \ k, we have f (ir) \ f(1,)	

Implementation
Sort requests in order of finish Time and
Sort requests in order of finish Time and label in this order:
fli) (flj) where i < j
Select requests in order of increasing fli),
Select requests in order of increasing fli), always selecting the first request.
Then iterate through the intervals in this order
until reaching the first interval j where
S(j) & f(i) and Then pick j.

