

Graph Compactification for Efficient Program Comprehension and Analysis

Suresh C. Kothari
Richardson Professor
Department of Electrical and Computer Engineering

Ben Holland, Iowa State University

Acknowledgement: Team members at Iowa State University and EnSoft, DARPA contracts FA8750-12-2-0126 & FA8750-15-2-0080

Counting Paths

How many paths are possible for n nested

conditions?

– Answer: n+1 paths

Counting Paths

How many paths are possible for n non-nested

conditions?

Answer: 2ⁿ paths

Counting Paths

- How many paths are feasible if c1 == c2?
 - i.e. How many paths could produce valid runtime execution traces?
 - More or less?

Counting Paths

- In the worst case all conditions are non-nested and all paths are feasible.
 - Number of paths to consider in software is exponential!
 - In reality the number of feasible paths is much smaller.

Intuition: Efficient Path-Sensitive Analysis

- A large number of paths could be partitioned into a small number of groups.
- All Paths in a group are equivalent have the same execution behavior w.r.t. the property to be verified.
- Efficient computation by examining only one path from each group.
- Challenge: How can the groups be formed without examining each path at least once?

Irrelevant Branch Conditions

SECURE COMMUNICATIONS AT THE SPEED OF CYBER

BALTIMORE, MD • NOVEMBER 1-3, 2016

C₂ irrelevant to path-sensitive analysis w.r.t. E₁ and E₂

Remove the irrelevant branch conditions to avoid unnecessary path explosion & simplify the path feasibility check.

paths reduced from 8 to 4

conditions for feasibility check reduced from 3 to 2