Мартин

1 patition

A partition on an rela line interval [a,b] is a sequence $x_1, ... x_k$, such that:

$$a = t_1 < .. < t_k = b$$

2 variation

given operator f:[a,b]->R, with partition P, define variation of f on P as:

$$V(f, P) = \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$$

3 Total Variation

Considering a function f with values in range $[a, b] \in R$

$$V_a^b = \sup_p \sum_{i=0}^{n_p-1} |f(x_{i+1}) - f(x_i)| = \sup_p V(f, P)$$

4 Bounded variation

a continuous function f is said to be a of bounded variation(BV) on an interval $[a,b] \subset R$ if the total variation on it if finite:

$$f \in BV([a,b]) < - > V_a^b(f) < \infty$$

$$BV([a,b]):=\{f\in C[a,b]|V_a^b(f)<\infty\}$$

5 refine

: not needed?

6 monotone examples

not needed?

7 Banach space

We have to see that BV[a, b] is a Banch Space

7.1 Lemma for sup-Norm

if f:[a,b]->R is of bounded variation, then f is bounded and:

$$||f||_{\infty} \le |f(a)| + V_a^b f$$

proof let $a \le x \le b$, then:

$$|f(x) - f(a)| \le V(f, P) \le V_a^b(f)$$
$$|f(x)| \le |f(a)| + V_a^b(f)$$

7.2

We will show that $V_a^b(f)$ is not quite a norm:

Lemma Let $f, g \in BV[a, b]$ and $c \in R$, then:

- 1. $V_a^b(f) = 0 < > f$ is a constant
- 2. $V_a^b(cf) = |c|V_a^b$
- 3. $V_a^b(f+g) \leq V_a^b(f) + V_a^b(g)$

proof

1. $V_a^b(f) = 0 < -> f$ is a constant obvious

Question: we can't consider f=0?

2. $V_a^b(cf) = |c| V_a^b$ Let P be a partition of [a,b]

$$V(cf, P) \le |c|V(f, P) \le |c|V_a^b(f)$$

3. $V_a^b(f+g) \le V_a^b(f) + V_a^b(g)$ Let P be a partition

$$V(f+g,P) \le V(f,P) + V(g,P)$$

Lets supreum both sides

$$V_a^b(f+g) \le V_a^b(f) + V_a^b(g)$$

8 BV norm

We will show that:

$$||f||_{BV} = f(a) + V_a^b(f)$$

is a norm on BV[a,b]

9 Theorem

BV[a,b] is complete under $||f||_{BV}$

10 Question

B[a,b] - set of all bounded functions?

proof Let (f_n) is a Cauchy seq in BV[a,b], then it's also a Cauchy seq in B[a,b].

 (f_n) converges to $f \in B[a,b]$

Lets show that $f \in BV[a, b]$ and $||f - f_n||_{BV} - > 0$

Let P be a partiotion in [a,b]

Let $\varepsilon > 0$, there exists an N, such that for all m,n > N:

$$(f_n(a) - f_m(a)) + (V(f_n) - V(f_m), P) < \varepsilon$$

$$|f_n(a) - f(a)| + V(f_n - f, P) = \lim_{m \to \infty} \{|f_n(a) - f_m(a)| + V(f_n - f_m, P)\}$$

$$|f_n(a) - f(a)| + V(f_n - f, P) \le \varepsilon, \forall n \ge N$$

This stands true for every partition P in [a,b], so $f_n - f \in BV[a,b]$

$$||f_n - f||_{BV} = |f_n(a) - f(a)| + V_a^b(f_n - f) \le \varepsilon, \forall n \ge N$$

meaning (f_n) converges to $f \in BV[a,b]$ with respect to the $||.||_{BV}$ norm

11 BV[a,b] is a Banach Space

BV[a, b] is a Banach Space with respect to the $||.||_{BV}$ norm: Considering previous statement:

$$V_a^b = 0 < -> f = const$$

Implies that:

$$||f||_{BV} = 0 < - > f = 0$$

let $c \in R$ and $f \in BV[a, b]$

$$||cf||_{BV} = f(ca) + V_a^b(cf) = |c|f(a) + |c|V_a^b(f) = |c|||f||_{BV}$$

$$||f-g||_{BV} = (f-g)(a) + V_a^b(f-g) \le f(a) - g(a) + V_a^b(f) - V_a^b(g) = ||g||_{BV} + ||f||_{BV}$$

Considering the completeness property from the previous theorem, BV[a,b] is a Banach Space in regards to $||.||_{BV}$

Дали следното твърдение е нужно?

12 Theorem

Let $f \in BV[a,b]$ is a real valued function. Then there exists a monotonically increasing functiong g:[a,b]->R such that both g and g-f are increasing. Consequently, f=g-(g-f) is the difference of two increasing functions.

proof For $[a,d] \subseteq [a,b]$ Let $V_c^d(f)$ be the total variation of f on [a,d]. Then it can be verified that for any $t \in [a,b]$:

$$V_a^b(f) = V_a^t(f) + V_t^b(f)$$

$$\sum_{i=a}^{b} |f(x_i) - f(x_{i-1})| = \sum_{i=a}^{b} |f(x_i) - f(x_{i-1})| + \sum_{i=b}^{b} |f(x_i) - f(x_{i-1})|$$

We apply \sup_P function:

$$\sup_{P} \sum_{i=a}^{b} |f(x_i) - f(x_{i-1})| = \sup_{P} \sum_{i=a}^{t} |f(x_i) - f(x_{i-1})| + \sup_{P} \sum_{i=t}^{b} |f(x_i) - f(x_{i-1})|$$

$$V_a^b(f) = V_a^t(f) + V_t^b(f)$$

Let $a \le t \le s \le b$

$$V_a^s(f) - V_a^t(f) = V_t^s(f) \ge |f(s) - f(t)| \ge f(s) - f(t)$$

Then $g(t) := V_a^t(f)$ is monotonically increasing. Then:

$$g(s) - g(t) = V_a^s(f) - V_a^t(f) = V_t^s(f) \ge |f(s) - f(t)| \ge f(s) - f(t)$$

Дали ще учим за Банахови Алгебри, дали да го включа?