Multivariable Control Systems

Laboratory Course:

Lab 1: Aircraft Flight Control

Course Supervisor: Prof. Sandra Hirche

Laboratory course resonsible: M.Sc. Vahid Mamduhi

Lehrstuhl für Informationstechnische Regelung

Technische Universität München

Outline

- About lab course
- Lab one: Aircraft Flight Control
 - ✓ Flight dynamics
 - ✓ Flight control
- Control toolbox
- Matlab[®] control toolbox
- Tasks

About Laboratory Course

Objectives of the course

- ✓ From theory towards application
- ✓ How to model and control real systems
- ✓ Simple tools to evaluate the behavior of real control systems
- ✓ How to use Matlab® for computer-aided control design
- ✓ Interpret the obtained data from Matlab®

Lab one: Aircraft flight control

Flight dynamics

- Main forces acting on the aircraft
- Take-off/Landing highly nonlinear.
- Focus on cruising
- Shape of the wings is the main source of lift force
- Engines provides thrust
- Drag is the effect of air friction

Lab one: Aircraft flight control

Aircraft components

Lab one: Aircraft flight control

Flight control

Four main control systems

Ailerons: Roll (bank angle) control

Rudder: Yaw control

Elevators: Pitch control

Throttles: Speed control

We are focused on the first two control systems

Control toolbox

Theoretical overview*

Poles and zeros:

Pole polynomial is obtained by calculating the least common denominator of all sub-determinants of G(s)

Zeros are the roots of $\det G(s) = 0$, for square transfer matrices

Singular values:

S.V. of a real matrix A are defined as the square root of the eigenvalues of $A^{T}A$. For a linear stable MIMO system we have

$$\underline{\sigma}(G(j\omega)) \le \frac{|Y(j\omega)|}{|U(j\omega)|} \le \overline{\sigma}(G(j\omega))$$

Where, $\underline{\sigma}(G(j\omega))$ and $\overline{\sigma}(G(j\omega))$ are the smallest and largest singular values of $G(j\omega)$, and $\frac{|Y(j\omega)|}{|U(j\omega)|}$ is the gain of the system.

Control toolbox

Theoretical overview

I/O pairings and RGA:

A measure of how strong the pairings are in a MIMO system is given by the RGA of the transfer matrix G(s)

$$RGA(G(j\omega)) := G(j\omega) \cdot * [G^{-1}(j\omega)]^T$$

This gives a measure of how the inputs affect the outputs in a certain frequency. A zero in the RGA matrix shows that the corresponding I/O are decoupled. The bigger the RGA element is, the stronger the coupling will be.

RGA analysis is a fundamental tool for decentralized control design.

Control toolbox

Theoretical overview

Observability/Controllability:

In the state space representation of a system

$$\dot{x} = \mathbf{A}x + \mathbf{B}u$$
$$y = \mathbf{C}x + \mathbf{D}w$$

- The system (A, B) is Controllable iff for every eigenvalue λ_i of A, rank $(\lambda_i \mathbf{I} \mathbf{A}, \mathbf{B}) = n$
- The system (A, C) is *Observable* iff for every eigenvalue λ_i of A, rank $\binom{\lambda_i I A}{C} = n$
- The pair (A, B) is Stabilizable iff all non-controllable λ_i 's are asymptotically stable
- \triangleright The pair (A, C) is *Detectable* iff all unstable λ_i 's are observable

Getting started with Matlab®

❖ Type help <function name> to get help from Matlab®

Useful functions and commands:

- 1. Creation and conversion of LTI models:
 - ✓ ss(A, B, C, D): creates a state space model
 - ✓ tf (num, denum): creates a transfer function model
 - ✓ minreal (sys): cancels the pole/zero pairs
 - ✓ ssdata(sys): extracts data from a LTI model
 - ✓ $c2d(sys, \tau_s, meth)/d2c(sys, meth)$: converts continuous model to discrete, and vice versa

<u>Useful functions and commands</u>:

- 2. Poles, zeros, singular values, eigenvalues:
 - ✓ pole(sys): returns the poles of the model
 - ✓ zero(sys): returns the zeros of the model
 - ✓ pzmap(sys): plots the pole/zero map of the model
 - ✓ S=svd(A): returns the vector S with the elements as the singular values of A
 - ✓ sigma(sys): returns a singular value plot of the frequency response
 - ✓ [V, D] = eig(A): returns the diagonal matrix D with the eigenvalues, and a full matrix V of eigenvectors

Useful functions and commands:

- 3. Time/frequency responses:
 - ✓ step(sys): plots the step response of the model
 - ✓ impulse(sys): plots the impulse response
 - ✓ 1sim(sys, U, T): plots the time domain response of the system w.r.t. the input signal U and time vector T
 - ✓ bode (sys): plots the model's frequency response
 - ✓ margin(sys): returns the gain and phase margins
 - ✓ nyquist (sys): plots the Nyquist frequency response

Useful functions and commands:

- 4. Controllability/Observability:
 - ✓ ctrb(sys)/ctrb(A, B): returns the controllability matrix, either by providing *A* and *B* matrices, or by having a state space model
 - ✓ obsv(sys)/obsv(A, C): returns the observability matrix, either by providing A and C matrices, or by having a state space model
 - ✓ rank (A): returns the rank of the A matrix by computing the number of linearly independent rows or columns of A

References

Robert F. Stengel Flight Dynamics.

In: Princeton University Press, November 2004, ISBN: 0-691-11407-2.

Malcolm J. Abzug, Eugene Larrabee Airplane Stability and Control.

In: Cambridge University Press, 2002, ISBN: 0-521-80992-4.

Sigurd Skogestad, Ian Postlethwaite

Multivariable Feedback Control, Analysis and Design.

In: John Wiley & Sons, 2nd Edition, August 2001.

Daniel P. Raymer Aircraft Design: A conceptual Approach.

In: American Institute of Aeronautics and Astronautics, 4th Edition, 2002.

