Devoir à la maison n° 5

À rendre le 7 janvier

 $\mathbb{R}_n[X]$ désigne l'ensemble des polynômes de degré inférieur ou égal à n à coefficients réels. $(H_j)_{j\in\mathbb{N}}$ désigne la famille de polynômes définie par $H_0=1$ et, pour tout $j\in\mathbb{N}^*,\ H_j=\frac{1}{j!}\prod_{i=0}^{j-1}(X-i)$.

Pour $(k, n) \in \mathbb{N}^2$, on note $\binom{n}{k}$ le coefficient binomial k parmi n. On note $\binom{0}{0} = 1$ et $\binom{n}{k} = 0$ si k > n.

 $[\![a,b]\!]$ désigne l'ensemble des entiers compris entre a et b. Ainsi $[\![a,b]\!]=\{n\in\mathbb{Z}|a\leqslant n\leqslant b\}$

A- Une première formule

- 1) Donner sans démonstration le rayon de convergence et la somme de la série entière réelle $\sum_{n\geqslant 0} x^n$.
- 2) En déduire le rayon de convergence et la somme de la série entière réelle $\sum_{n\geq 0} nx^n$.
- 3) Pour $k \in \mathbb{N}$, montrer que la série entière $\sum_{n \geq 0} \binom{n}{k} x^n$ admet 1 pour rayon de convergence et que, pour tout $x \in]-1,1[$,

$$\sum_{n=0}^{+\infty} \binom{n}{k} x^n = \frac{x^k}{(1-x)^{k+1}} \tag{1}$$

B- Utilisation d'une famille de polynômes

Pour tout $k \in \mathbb{N}$, on note $f_k : x \longmapsto \sum_{n=0}^{+\infty} n^k x^n$.

- 4) Montrer que, pour tout $k \in \mathbb{N}$, f_k est définie sur]-1,1[.
- 5) Soit $k \in \mathbb{N}$. Montrer que (H_0, \ldots, H_k) est une base de $\mathbb{R}_k[X]$ et qu'il existe une unique famille $(\alpha_{k,0}, \ldots, \alpha_{k,k})$ dans \mathbb{R}^{k+1} telle que $X^k = \sum_{j=0}^k \alpha_{k,j} H_j$.
- **6)** Pour $k \in \mathbb{N}$, donner les valeurs de $\alpha_{k,0}$ et $\alpha_{k,k}$.
- 7) Pour tout $(j,k) \in \mathbb{N}^2$ tel que $1 \leqslant j \leqslant k$, montrer que $\alpha_{k,j} = j^k \sum_{i=0}^{j-1} {j \choose i} \alpha_{k,i}$.
- 8) Écrire une fonction Python alpha qui prend un couple d'entiers (k, j) en paramètre et qui renvoie la valeur $\alpha_{k,j}$. On supposera avoir accès à une fonction binome telle que binome (n,k) renvoie le coefficient binomial $\binom{n}{k}$.

9) Montrer que, pour tout $k \in \mathbb{N}$, il existe un unique polynôme réel P_k tel que, pour tout $x \in]-1,1[, f_k(x) = \frac{P_k(x)}{(1-x)^{k+1}}$ et que ce polynôme vérifie la relation

$$P_k = \sum_{j=0}^{k} \alpha_{k,j} X^j (1 - X)^{k-j}$$

- 10) À l'aide de la fonction Python alpha, écrire une fonction Python P qui prend l'entier k en paramètre et qui renvoie la liste des coefficients de degré 0 à k de P_k .
- 11) Montrer que, pour tout $k \in \mathbb{N}$, $P_{k+1} = X(1-X)P'_k + (k+1)XP_k$.
- 12) Calculer explicitement P_2 et P_3 .
- 13) Déterminer, pour tout $k \in \mathbb{N}$, le degré de P_k ainsi que son coefficient dominant.
- **14)** Montrer que, pour tout $k \in \mathbb{N}^*$ et pour tout $x \in]0,1[,x^{k+1}P_k\left(\frac{1}{x}\right)=P_k(x).$
- **15)** En déduire, pour tout $k \in \mathbb{N}^*$ et pour tout $j \in [0, k]$, un lien entre les coefficients de degré j et k+1-j de P_k .

C- Une dernière formule

On s'intéresse dans cette sous-partie à la série entière $\sum_{n\geqslant 0} \binom{2n}{n} x^n$ dont on note R le rayon de convergence.

- **16)** Déterminer R et montrer que, pour tout $x \in]-R, R[, \sum_{n=0}^{+\infty} {2n \choose n} x^n = \frac{1}{\sqrt{1-4x}}.$
- 17) Montrer que, pour tout $x \in]-R, R[\setminus \{0\},$

$$\sum_{n=0}^{+\infty} {2n \choose n} \frac{x^n}{n+1} = \frac{1 - \sqrt{1 - 4x}}{2x}.$$
 (2)

18) En déduire que, pour tout $x \in]-R, R[\setminus \{0\},$

$$\sum_{n=0}^{+\infty} \sum_{k=0}^{n} \frac{1}{k+1} {2k \choose k} {2n-2k \choose n-k} x^n = \frac{1}{2x} \left(\frac{1}{\sqrt{1-4x}} - 1 \right).$$

19) Montrer que, pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{1}{k+1} {2k \choose k} {2n-2k \choose n-k} = \frac{1}{2} {2n+2 \choose n+1}.$$
- FIN — (3)