

INTRODUCTION TO R

UEB - VHIR

Mireia Ferrer¹, Álex Sánchez^{1,2}, Esther Camacho¹, Berta Miró¹

¹ Unitat d'Estadística i Bioinformàtica (UEB) VHIR

² Departament de Genètica Microbiologia i Estadística, UB

- 1. Why R
- 2. First steps in R and RStudio
- 3. Install packages in R
- 4. Data manipulation with R
- 5. Plots with R
- 6. Help!!

1. Why R

Intro to R

What is R?

- R is a FREE language and environment for statistical computing and graphics.
- R provides a wide variety of statistical and graphical techniques, and is highly extensible.
- It can be used fro simple tasks to highly complex reproducible projects.
- It compiles and runs on a wide variety of UNIX platforms and similar systems Windows and MacOS.

1. Why R

Pros

The system is

- Free
- It's platform independent
- It is constantly improving (2 new versions/year)

It is a statistical tool

- Implements almost every statistical method that exists
- Great graphics
- Simple reporting tools
- Also state-of-the-art in Bioinformatics through the <u>Bioconductor Project</u>.

Programming language

 Easy to automate repetitive tasks Possibility to create user friendly web interfaces with a moderate effort.

1. Why R

Cons

- R is mainly used issuing commands from a console
 - less user friendly than almost any other statistical tool you may know.
- Constantly having new versions may affect our projects
- Not necessarily the best language nor suitable for every existing task

2. First steps in R and RStudio

Install R and RStudio

Get to know R.

- Visit the R-project page and see what can be found there.
- If you haven't done it before, download and install R and Rstudio in your computer
 - https://cran.r-project.org/
 - https://posit.co/products/open-source/rstudio/

• Open R studio. Look at the panels and figure out what can we do at each window.

2. First steps in R and RStudio

- Data managed in R ...
 is stored as variables (objects)
- Variables can be of distinct types
 - Numerical
 - numeric (13.7)
 - int (3)
 - Character
 - "R is cute"
 - Factors
 - A,B,C,D
 - WT, Mut
- Variables can be contained in distinct structures
 - vectors
 - matrices
 - data.frames
 - lists
 - tibble

2.First steps in R and RStudio

Vectors: a collection of numbers or characters:

```
myvec <- c(10,20,30,40,50)
myvec
## [1] 10 20 30 40 50

myvec + 1
## [1] 11 21 31 41 51

myvec + myvec
## [1] 20 40 60 80 100

food <- c("eggs", "beans", "bacon", "sausage")</pre>
```

2.First steps in R and RStudio

<u>Dataframe</u>: is a table or a two-dimensional array-like structure in which each column contains values of one variable and each row contains one set of values from each column:

iris				
Species	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
setosa	5.1	3.5	1.4	0.2
setosa	4.9	3.0	1.4	0.2
setosa	4.7	3.2	1.3	0.2
versicolor	7.0	3.2	4.7	1.4
versicolor	6.4	3.2	4.5	1.5
versicolor	6.9	3.1	4.9	1.5
versicolor	5.5	2.3	4.0	1.3
virginica	6.3	3.3	6.0	2.5
virginica	5.8	2.7	5.1	1.9
virginica	7.1	3.0	5.9	2.1
virginica	6.3	2.9	5.6	1.8
virginica	6.5	3.0	5.8	2.2

- Packages are extensions of the basic R functions
- It is necessary to install once in each computer when needed
- Call it each time you want to use it
- Two ways to install the packages:

install.packages("name of the package")

• If package are hosted in Bioconductor repository:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("airway")
```


Cran R magrittr dplyr ggplot2 pheatmap RColorBrewer ggbeeswarm

Create a project

- Files can be read from any location, let it be a physical support or a web site.
- The simplest and best way to control file location and modularity of your analyses is to create an Rstudio project for each new analysis.
 - Easy way to keep together your data, code and results.
 - Increases portability (avoids forgetting a file in an external folder).
 - I opens the door to infinite possibilities when you learn to clone github projects.

Create a project

Menu File > New Project

- 1. Open a markdown document
 - a. Menu File > R Markdown...

- 2. Open a csv file or an excel file (2 ways):
 - a. With R command line instructions:

```
osteoporosis2 <- read.csv2("osteoporosis.csv", sep = "\t", dec = ",", header = TRUE)</pre>
```


check the folder you are working on!

b. The easiest way to get data into R is to click on the "Import Datasets" button.

 The easiest way to get data into R is to click on the "Import Datasets" button.

reg	istro 🕏	area ‡	f_nac ‡	edad ‡	grupedad	‡ peso ‡	talla 🕏	imc ‡	bua ‡	clasific	menarqui	edad_men		menop	† tipo_men †	nivel_ed
	3	10	11659420800	57	55 - 59	70.0	168.0	24.80	69	OSTEOPENIA		12	99	NO	NO MENOPAUSIA/NO CONSTA	SECUNDARIOS
	4	10	11671689600	46	45 - 49	53.0	152.0	22.94	73	OSTEOPENIA		13	99	NO	NO MENOPAUSIA/NO CONSTA	SECUNDARIOS
	10	10	11721024000	45	45 - 49	64.0	158.0	25.64	81	NORMAL		14	99	NO	NO MENOPAUSIA/NO CONSTA	PRIMARIOS
	11	10	11464416000	53	50 - 54	78.0	161.0	30.09	58	OSTEOPENIA		10	50	SI	NATURAL	PRIMARIOS
	12	10	11690784000	46	45 - 49	56.0	157.0	22.72	89	NORMAL		13	99	NO	NO MENOPAUSIA/NO CONSTA	PRIMARIOS
	15	10	11716012800	45	45 - 49	63.5	170.0	21.97	76	NORMAL		14	99	NO	NO MENOPAUSIA/NO CONSTA	SECUNDARIOS
	16	10	11623737600	48	45 - 49	86.0	161.0	33.18	87	NORMAL		11	99	NO	NO MENOPAUSIA/NO CONSTA	PRIMARIOS
	17	10	11562307200	50	50 - 54	61.5	164.0	22.87	74	NORMAL		10	99	NO	NO MENOPAUSIA/NO CONSTA	PRIMARIOS
	18	10	11538028800	51	50 - 54	60.5	158.0	24.23	58	OSTEOPENIA		14	99	NO	NO MENOPAUSIA/NO CONSTA	SECUNDARIOS
	20	10	11332483200	57	55 - 59	64.0	149.0	28.83	61	OSTEOPENIA		13	50	SI	AMBAS	PRIMARIOS
	21	10	11631945600	48	45 - 49	70.3	160.0	27.46	67	OSTEOPENIA		12	48	SI	OVARIECTOMIA	SECUNDARIOS
	22	10	11425536000	55	55 - 59	74.4	160.0	29.06	68	OSTEOPENIA		14	50	SI	NATURAL	PRIMARIOS
	23	10	11553235200	50	50 - 54	55.5	154.5	23.25	73	OSTEOPENIA		11	48	SI	NATURAL	PRIMARIOS
	24	10	11367302400	56	55 - 59	89.0	166.0	32.30	61	OSTEOPENIA		14	47	SI	NATURAL	PRIMARIOS
	25	10	11585635200	49	45 - 49	50.6	157.0	20.53	68	OSTEOPENIA		14	40	SI	NATURAL	PRIMARIOS
	26	10	11572156800	50	50 - 54	71.4	152.0	30.90	74	NORMAL		14	48	SI	AMBAS	PRIMARIOS
	27	10	11590992000	49	45 - 49	78.0	157.0	31.64	62	OSTEOPENIA		12	46	SI	NATURAL	PRIMARIOS
	28	10	11293516800	58	55 - 59	72.0	162.0	27.43	65	OSTEOPENIA		11	54	SI	NATURAL	PRIMARIOS
	29	10	11215238400	61	60 - 64	68.0	155.5	28.12	65	OSTEOPENIA		14	50	SI	NATURAL	PRIMARIOS

What type of data is this?

- Once you have loaded the data, it is necessary to check it
- Different ways to do it:

- head(name of dataframe): to see the first rows of a dataframe
- tail(name of dataframe): to see the last rows of a dataframe
- str(name of dataframe): to check the structure of the dataframe and their variables
- summary(name of dataframe): Descriptive summary of the variables of the dataframe

head(osteoporosis)

	registro	area	f_nac	edad	grupedad	peso	talla	imc	bua	clasific	menarqui	edad_men	menop	tipo_men	nivel_ed
1	3	10	11659420800	57	55 - 59	70.0	168	24.80	69	OSTEOPENIA	12	99	NO NO	MENOPAUSIA/NO CONSTA	SECUNDARIOS
2	4	10	11671689600	46	45 - 49	53.0	152	22.94	73	OSTEOPENIA	13	99	NO NO	MENOPAUSIA/NO CONSTA	SECUNDARIOS
3	10	10	11721024000	45	45 - 49	64.0	158	25.64	81	NORMAL	14	99	NO NO	MENOPAUSIA/NO CONSTA	PRIMARIOS
4	11	10	11464416000	53	50 - 54	78.0	161	30.09	58	OSTEOPENIA	10	50	SI	NATURAL	PRIMARIOS
5	12	10	11690784000	46	45 - 49	56.0	157	22.72	89	NORMAL	13	99	NO NO	MENOPAUSIA/NO CONSTA	PRIMARIOS
6	15	10	11716012800	45	45 - 49	63.5	170	21.97	76	NORMAL	14	99	NO NO	MENOPAUSIA/NO CONSTA	SECUNDARIOS

tail(osteoporosis)

	registro	area	f_nac	edad	grupedad	peso	talla	imc	bua	clasific	menarqui	edad_men	menop	tipo_men	nivel_ed
995	1028	11	11190182400	63	60 - 64	71	161	27.39	57	OSTEOPENIA	14	48	SI	NATURAL	PRIMARIOS
996	1029	11	11287036800	60	60 - 64	64	158	25.64	69	OSTEOPENIA	10	40	SI	AMBAS	SUPERIORES
997	1030	11	11066371200	67	65 - 69	68	157	27.59	75	NORMAL	11	55	SI	NATURAL	PRIMARIOS SIN FINALIZAR
998	1031	11	11289196800	59	55 - 59	72	153	30.76	67	OSTEOPENIA	12	56	SI	NATURAL	PRIMARIOS
999	1032	11	11137219200	64	60 - 64	80	152	34.63	55	OSTEOPENIA	14	50	SI	NATURAL	PRIMARIOS
1000	1033	11	11213164800	62	60 - 64	67	161	25.85	65	OSTEOPENIA	13	54	SI	NATURAL	SECUNDARIOS


```
str(osteoporosis)
'data.frame': 1000 obs. of 15 variables:
$ registro: int 3 4 10 11 12 15 16 17 18 20 ...
$ area : int 10 10 10 10 10 10 10 10 10 ...
$ f nac : chr "11659420800" "11671689600" "11721024000" "11464416000" ...
$ edad : int
                 57 46 45 53 46 45 48 50 51 57 ...
$ grupedad: chr
                "55 - 59" "45 - 49" "45 - 49" "50 - 54" ...
$ peso : num
                70 53 64 78 56 63.5 86 61.5 60.5 64 ...
$ talla : num
                168 152 158 161 157 170 161 164 158 149 ...
$ imc : num
                24.8 22.9 25.6 30.1 22.7 ...
$ bua : int 69 73 81 58 89 76 87 74 58 61 ...
$ clasific: chr "OSTEOPENIA" "OSTEOPENIA" "NORMAL" "OSTEOPENIA" ...
$ menarqui: int 12 13 14 10 13 14 11 10 14 13 ...
$ edad men: int 99 99 99 50 99 99 99 99 50 ...
$ menop : chr "NO" "NO" "NO" "SI" ...
$ tipo men: chr "NO MENOPAUSIA/NO CONSTA" "NO MENOPAUSIA/NO CONSTA" "NO MENOPAUSIA/NO
CONSTA" "NATURAL"
$ nivel ed: chr "SECUNDARIOS" "SECUNDARIOS" "PRIMARIOS" "PRIMARIOS" ...
```

3rd Qu.: 84.0

:136.0

Max.

summary (osteopor	0818)						
registro	area	f_nac	edad	grupedad	peso	talla	imc
Min. : 3.0	Min. :10.00	Length:1000	Min. :45.00	Length:1000	Min. : 44.00	Min. :138.0	Min. :17.21
1st Qu.: 280.8	1st Qu.:10.00	Class :character	1st Qu.:48.00	Class :character	1st Qu.: 60.50	1st Qu.:153.0	1st Qu.:24.80
Median : 531.5	Median :11.00	Mode :character	Median :52.00	Mode :character	Median : 68.00	Median :157.0	Median :27.51
Mean : 529.9	Mean :11.58		Mean :53.42		Mean : 69.12	Mean :156.9	Mean :28.11
3rd Qu.: 781.2	3rd Qu.:13.00		3rd Qu.:58.00		3rd Qu.: 75.00	3rd Qu.:161.0	3rd Qu.:30.82
Max. :1033.0	Max. :13.00		Max. :69.00		Max. :123.50	Max. :180.0	Max. :48.39
bua	clasific	menarqui	edad_men	menop	tipo_men	nivel_ed	
Min. : 11.0	Length:1000	Min. : 8.00	Min. :24.00	Length:1000	Length:1000	Length:1000	
1st Qu.: 62.0	Class :character	1st Qu.:12.00	1st Qu.:46.00	Class :character	Class :character	Class :charact	ter
Median : 72.0	Mode :character	Median :13.00	Median :51.00	Mode :character	Mode :character	Mode :charact	ter
Mean : 73.3		Mean :12.71	Mean :63.04				

:99.00

3rd Qu.:14.00 3rd Qu.:99.00

Max. :17.00 Max.

- Sometimes we do not need to work with all the variables of cases of the dataset
- There are different ways to select them:

```
#select the first 3 rows and columns
osteoporosis[1:3, 1:3]
```

```
registro area f_nac
1 3 10 11659420800
2 4 10 11671689600
3 10 10 11721024000
```



```
#select the different rows and columns
osteoporosis[c(31:36, 115, 950), c(2, 4:6,13:15)]
```

```
nivel ed
   area edad grupedad peso menop
                                              tipo men
     10
         67 65 - 69 60.0
                             SI
                                               NATURAL
                                                         PRIMARIOS
31
32
        50 50 - 54 70.0
                             SI
     10
                                               NATURAL
                                                         PRIMARIOS
33
     10 56 55 - 59 68.0
                             SI
                                               NATURAL PRIMARIOS
34
     10
         67 65 - 69 63.0
                             SI
                                               NATURAL
                                                         PRIMARIOS
35
     10 58 55 - 59 64.0
                             SI
                                               NATURAL
                                                         PRIMARIOS
                             SI
36
     10 57 55 - 59 75.0
                                               NATURAL SIN ESTUDIOS
115
     10 45 45 - 49 57.0
                             NO NO MENOPAUSIA/NO CONSTA SECUNDARIOS
950
     11
          62 60 - 64 75.5
                             SI
                                               NATURAL
                                                         PRIMARIOS
```

#select all the rows and by variable name and save the dataset with another name
osteoporosis2 <- osteoporosis[, c("edad", "grupedad", "tipo_men", "nivel_ed")]
head(osteoporosis2)</pre>

```
edad grupedad tipo_men nivel_ed

57 55 - 59 NO MENOPAUSIA/NO CONSTA SECUNDARIOS

46 45 - 49 NO MENOPAUSIA/NO CONSTA SECUNDARIOS

45 45 - 49 NO MENOPAUSIA/NO CONSTA PRIMARIOS

45 35 0 - 54 NATURAL PRIMARIOS

46 45 - 49 NO MENOPAUSIA/NO CONSTA PRIMARIOS

46 45 - 49 NO MENOPAUSIA/NO CONSTA SECUNDARIOS
```


It is also possible to select some rows depending on logic expressions:

```
#select pacients older than 60 years
osteoporosis3 <- osteoporosis[which(osteoporosis$edad > 60), ]
head(osteoporosis3)
                                                                     clasific menarqui edad_men menop tipo_men
   registro area
                       f nac edad grupedad peso talla
                                                        imc bua
                                                                                                                               nivel_ed
19
                               61 60 - 64 68.0 155.5 28.12 65
                                                                   OSTEOPENIA
              10 11215238400
                                                                                    14
                                                                                              50
                                                                                                    SI NATURAL
                                                                                                                              PRIMARIOS
              10 10992758400
23
                                   65 - 69 66.5 145.0 31.63
                                                              57
                                                                   OSTEOPENIA
                                                                                    13
                                                                                                       NATURAL PRIMARIOS SIN FINALIZAR
              10 10909382400
24
                                   65 - 69 70.0 168.0 24.80
                                                              48 OSTEOPOROSIS
                                                                                    13
                                                                                                       NATURAL
                                                                                                                              PRIMARIOS
                               66 65 - 69 67.0 144.0 32.31 79
27
              10 11043907200
                                                                       NORMAL
                                                                                    12
                                                                                                       NATURAL
                                                                                                                              PRIMARIOS
                                                                                    11
28
              10 10948089600
                               69 65 - 69 70.5 148.5 31.97 40 OSTEOPOROSIS
                                                                                              43
                                                                                                       NATURAL
                                                                                                                           SIN ESTUDIOS
              10 11051251200
                                   65 - 69 66.5 147.0 30.77 48 OSTEOPOROSIS
29
         40
                                                                                    13
                                                                                              40
                                                                                                    SI NATURAL
                                                                                                                              PRIMARIOS
osteoporosis4 <- subset(osteoporosis, edad > 60)
head(osteoporosis4)
```

	registro	area	f_nac	edad	gruped	ad peso	talla	imc	bua	clasific	menarqui	edad_mei	menop	tipo_men			nivel_ed
19	29	10	11215238400	61	60 -	64 68.0	155.5	28.12	65	OSTEOPENIA	14	50	SI	NATURAL			PRIMARIOS
23	34	10	10992758400	68	65 -	69 66.5	145.0	31.63	57	OSTEOPENIA	13	50	SI	NATURAL	PRIMARIOS	SIN	FINALIZAR
24	35	10	10909382400	69	65 -	69 70.0	168.0	24.80	48	OSTEOPOROSIS	13	4	SI SI	NATURAL			PRIMARIOS
27	38	10	11043907200	66	65 -	69 67.0	144.0	32.31	79	NORMAL	12	5	SI SI	NATURAL			PRIMARIOS
28	39	10	10948089600	69	65 -	69 70.5	148.5	31.97	40	OSTEOPOROSIS	11	4:	SI SI	NATURAL		SIN	N ESTUDIOS
29	40	10	11051251200	66	65 -	69 66.5	147.0	30.77	48	OSTEOPOROSIS	13	40) SI	NATURAL			PRIMARIOS

• We can combine different logic expressions

```
osteoporosis4 <- subset(osteoporosis, edad > 60 & nivel_ed == "PRIMARIOS")
head(osteoporosis4)
```

	registro	area	f_nac	edad	grupedad	peso	talla	imc	bua	clasific	menarqui	edad_men	menop	tipo_men	nivel_ed
19	29	10	11215238400	61	60 - 64	68.0	155.5	28.12	65	OSTEOPENIA	14	50	SI	NATURAL	PRIMARIOS
24	35	10	10909382400	69	65 - 69	70.0	168.0	24.80	48	OSTEOPOROSIS	13	45	SI	NATURAL	PRIMARIOS
27	38	10	11043907200	66	65 - 69	67.0	144.0	32.31	79	NORMAL	12	56	SI	NATURAL	PRIMARIOS
29	40	10	11051251200	66	65 - 69	66.5	147.0	30.77	48	OSTEOPOROSIS	13	40	SI	NATURAL	PRIMARIOS
31	45	10	11029651200	67	65 - 69	60.0	147.0	27.77	49	OSTEOPENIA	13	53	SI	NATURAL	PRIMARIOS
34	48	10	11034489600	67	65 - 69	63.0	157.0	25.56	66	OSTEOPENIA	13	50	SI	NATURAL	PRIMARIOS

- R is a powerful tool to plot your data
- Hadley Wickam (2009) introduced a modern (and perhaps easier) way to plot your data
- Extensions to ggplot2
 - GGally, ggrepel, ...

Hadley Wickam book

http://moderngraphics11.pbworks.com/f/ggplot2-Book09hWickham.pdf https://ggplot2-book.org/

STHDA (Statistical tools for high-throughput data analysis) http://www.sthda.com/english/wiki/ggplot2-essentials

R Colors

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf


```
library(ggplot2) #Remember to install the packages before call it
ggplot(osteoporosis, aes(x = peso, y = imc)) +
   geom_point()
```


library(ggplot2) #Remember to install the packages before call it

```
ggplot(osteoporosis, aes(x = peso, y = imc)) +
   geom_point()
```


library(ggplot2) #Remember to install the packages before call it

ggplot(osteoporosis, aes(x = peso, y = imc, color = grupedad)) +
 geom_point()

6. Help!!

