PRÀCTICA 1: Representació en matrius d'adjacència. Automorfismes i isomorfismes.

Descomprimeix el fitxer $\mathtt{GPrc1.zip}$ que consta en el campus virtual a continuació d'aquest guió de la Pràctica 1. En la carpeta $\mathtt{GPrc1}$ descomprimida, es pot accedir a la solució $\mathtt{GPrc1.sln}$ i al projecte associat ($\mathtt{GPrc1.vcxproj}$, $\mathtt{GPrc1.vcxproj.filters}$) clicant el fitxer $\mathtt{GPrc1.sln}$ des d'un sistema informàtic amb l'entorn de programació \mathtt{Visual} \mathtt{Studio} $\mathtt{C++}$ 2019 $\mathtt{Community}$ instal·lat. Un cop dins l'entorn, amb l'explorador de solucions es pot accedir al fitxer font $\mathtt{graphm.cpp}$ i als fitxers de dades de grafs $\mathtt{graph?.in}$ i de grafs ponderats $\mathtt{wgraph?.in}$ que l'acompanyen. El programa contingut en el fitxer font ha estat realitzat amb l'ajut de la biblioteca $\mathtt{Standard}$ $\mathtt{Template}$ $\mathtt{Library}$ (\mathtt{STL}) que permet la utilització de classes de $\mathtt{C++}$ per a vectors (i matrius) amb diversos mètodes per al seu tractament.

La pràctica consisteix a completar el programa font, realitzant els exercicis del guió i penjar-ne el resultat al campus virtual en la tasca que hi consta. El programa en graphm.cpp conté:

- La funció que construeix la matriu d'adjacència d'un graf complet K_n amb el nombre de vèrtexs indicat per n.
- La funció que construeix la matriu d'adjacència a partir de les dades d'un graf que consten en un fitxer amb el format següent:
 - el nombre de vèrtexs i el nombre d'arestes,
 - les parelles de vèrtexs que conformen les arestes.
- La funció que escriu en fitxer informació diversa a partir de la matriu d'adjacència d'un graf:
 - el nombre de vèrtexs i arestes,
 - la matriu d'adjacència,
 - les parelles de vèrtexs que conformen les arestes.

El programa principal construeix la matriu d'adjacència del graf complet K_9 i la del graf corresponent al fitxer graph0.in. A continuació, escriu la informació corresponent dels grafs en els fitxers K9.out i graph0.out, respectivament.

Exercici 1 Modifica el programa per tal que pugui tractar multigrafs amb llaços i arestes múltiples i utilitza'l també amb els fitxers de dades graph1.in, graph2.in i graph3.in.

Exercici 2 Amplia el programa per tal que tracti també els grafs bipartits complets (complete bipartites) K_{n_1,n_2} , els grafs cicles (cycles) C_n , els grafs estrelles (stars) S_n , els grafs rodes (wheels) W_n , i els grafs reixes (grids) G_{n_1,n_2} de la mateixa manera que els grafs complets. Escriu els resultats corresponents a $(K_{5,4},K_{4,5})$, C_9 , S_9 , W_9 i $G_{3,3}$ en K5_4.out, C9.out, S9.out, W9.out i G3_3.out, respectivament.

Exercici 3 Amplia el programa amb funcions que comprovin:

- si dos grafs són iguals,
- si una permutació donada és un isomorfisme entre dos grafs,
- si una permutació donada és un automorfisme d'un graf,
- si dos grafs són isomorfs comprovant totes les possibles permutacions fins que eventualment es trobi una permutació que sigui isomorfisme.

Continua el programa principal, comprovant si:

- els grafs corresponents als fitxers graph1.in i graph2.in són el mateix,
- la permutació (1,2,3,0) és un isomorfisme entre els grafs corresponents als fitxers graph1.in i graph3.in,
- la permutació (1,2,3,0) és un automorfisme dels graf corresponent al fitxer graph1.in,
- la permutació (8,5,3,2,4,1,0,7,6) és un isomorfisme entre els grafs $K_{5,4}$ i $K_{4,5}$.

Exercici 4 Amplia el programa amb una funció que trobi una permutació de forma aleatòria i amb una funció que, donada una permutació P i la matriu d'adjacència M d'un graf, construeixi la matriu d'adjacència del graf amb els vèrtexs permutats.

Continua el programa principal, trobant una permutació aleatòria RP_9 de 9 elements i comprova que el graf $K_{5,4}$ amb els vèrtexs permutats per RP_9 és isomorf a $K_{5,4}$.

Exercici 5 Continua el programa amb funcions que escriguin en fitxer tots els automorfismes d'un graf donat i tots els isomorfismes entre dos grafs donats.

El conjunt d'automorfismes d'un graf G té estructura de grup i s'anomena grup d'automorfismes Aut(G). Dos vèrtexs d'un graf són equivalents per automorfismes quan un és la imatge de l'altre per un automorfisme. Aquesta relació és d'equivalència i les seves classes s'anomen òrbites (per automorfismes).

Modifica la funció que troba tots els automorfismes d'un graf per tal que escrigui també les òrbites associades a aquests.

Exercici 6 Considera els grafs dels fitxers graph8A.in i graph8B.in i completa el programa principal per tal que escrigui tots els automorfismes i totes les òrbites de cadascun d'ells, i tots els isomorfismes entre ells en graph8.out. Fes-ho també amb el grafs dels fitxers graph10A.in i graph10B.in escrivint-ho a graph10.out, tot i que pot trigar força més.

Exercici 7 Amplia el programa principial a fi que escrigui també:

- tots els automorfismes i totes les òrbites de K_9 en el fitxer K9.out,
- tots els automorfismes i totes les òrbites de $K_{5,4}$ i de $K_{4,5}$ i tots els isomorfismes entre $K_{5,4}$ i $K_{4,5}$ en el fitxer K5_4.out,
- tots els automorfismes i totes les òrbites de C_9 en el fitxer C9.out,
- tots els automorfismes i totes les òrbites de S_9 en el fitxer S9.out,
- ullet tots els automorfismes i totes les òrbites de W_9 en el fitxer W9.out,
- tots els automorfismes i totes les òrbites de $G_{3,3}$ en el fitxer G3_3.out.

Comprimeix el fitxer del programa que has completat (graphm.cpp) amb els de dades (*.in) i amb els de solució/projecte (*.sln, *.vcxproj, *vcxproj.filters), en un fitxer GPrc1_CognomsNom.zip, on consti el teu nom en Nom i els teus cognoms en Cognoms, i penja'l en el Campus Virtual en la tasca corresponent a la Pràctica 1. Els fitxers (*.out) i les altres subcarpetes no s'hi haurien d'incloure.