A Blockchain Consensus Protocol With Horizontal Scalability

K. Cong

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

August 30, 2017

Outline

1 Introduction

The dangers of centralisation Related work Research question

2 System architecture

System model
Architecture overview
Extended TrustChain
Consensus protocol
Transaction protocol
Validation protocol

- 3 Experimental results
- 4 Conclusion

Outline

1 Introduction

The dangers of centralisation Related work Research question

2 System architecture

System model
Architecture overview
Extended TrustChain
Consensus protocol
Transaction protocol
Validation protocol

- 3 Experimental results
- 4 Conclusion

The dangers of centralisation

- Technological advancements give us convenience
- But it puts central authorities in control
- Most are motivated exclusively by profit
- Not always in the interest of the "users" 1

¹Typically users of some free service X are, in fact, used by X.

The dangers of centralisation: Examples

- Facebook can predict your opinions and desires from your "likes" [1], and then create a "psychographic" profile for use in political campaigns [2]
- Baidu's promoted search result on medical care caused death of a student [3]

Blockchain: a new hope?

- Blockchains are distributed (replicated) ledgers with no central control²
- They enable internet-scale consensus for the first time
- Some initial applications include:
 - Digital cash (e.g., Bitcoin, Litecoin)
 - Domain name system (e.g., Namecoin)
 - Storage rental (e.g., Filecoin)
 - General purpose (e.g., Ethereum)

²In practice, some central control exist.

Blockchain: not there yet

- All blockchain systems have a consensus algorithm
- Early consensus algorithms (PoW) do not scale
- Bitcoin is limited to 7 transactions per second
- 100,000 transaction backlog in May 2017
- We require horizontal scalability for ubiquitous use
- More users → more transactions per second globally

Related work

Table: Summary of the scalability properties of many blockchain systems.

Not scalable	Somewhat scalable	Limited horizontal scalability	True horizontal scalability
Bitcoin	Hyperledger	Elastico	CHECO (this work)
Litecoin	ByzCoin	OmniLedger	

Research question

How can we design a *blockchain consensus protocol* that is *fault-tolerant*, *horizontally scalable*, and able to reach *global consensus?*

- Blockchain consensus protocol—application neutral, e.g., PoW
- Fault-tolerant—tolerate a number of malicious nodes
- Horizontal scalability—more nodes in the network leads to higher transaction throughput
- Global consensus—all node should agree on a global state

Outline

Introduction

The dangers of centralisation Related work Research question

2 System architecture

System model
Architecture overview
Extended TrustChain
Consensus protocol
Transaction protocol
Validation protocol

- 3 Experimental results
- 4 Conclusion

Intuition and idea explored in this thesis

- It is expensive to verify and reach consensus on all transactions
- Our idea: we decouple consensus and validation
- A single digest represents an arbitrarily large number of transactions
- · Reach consensus on the small digest
- Nodes then independently check the validity of the transactions of interest

Early blockchains

Our idea

Architecture overview

The four components of CHECO

Extended TrustChain

Extended TrustChain: Transaction (TX) block

- Goal: record transactions
- A transaction is represented by a pair of TX blocks, i.e. a contract signed by both parties

Extended TrustChain: Checkpoint (CP) block

- · Goal: represent the state of the chain using a single digest
- A collection of CP blocks from all the nodes represent the state of the system
- Nodes become aware of the system state by running our consensus protocol

Extended TrustChain: Fragment of a TX block

Consensus protocol

- Goal 1: reach consensus on a collection of CP blocks amongst all the nodes
- Goal 2: create new CP blocks at the end of the protocol
- Uses an existing fault-tolerant consensus algorithm (HoneyBadgerBFT [4]) as the building block
- But it cannot be used in a large network due to high communication complexity
- We overcome this limitation by selecting a small number of facilitators from the network to run HoneyBadgerBFT

Consensus protocol

collect CP blocks

disseminate result

create new CP block elect new facilitators

Consensus protocol: properties

- Agreement: Every correct outputs the same set of facilitators.
- Validity: The consensus result is valid such that a new set of facilitators can be computed from it.
- Fairness: Every node with a CP block in the consensus result should have an equal probability of becoming a facilitator.
- Termination: Every correct node eventually outputs a set of facilitators.

Transaction protocol

- Two TX blocks are generated on the chains of Alice and Bob
- No guarantee that nodes follow this protocol

Validation protocol

- To check that the transaction protocol is correctly followed
- Alice needs the fragment of the TX on Bob's hash chain
- Validation function checks whether the fragment is OK and contain the transaction
- Can be generalised—any node may run the validation protocol on any transaction (does not need to be their own)

Validation protocol: properties

Consensus on CP blocks → consensus on transactions

- CP blocks of the fragments are "anchored" due to the consensus protocol
- It is difficult to modify the fragment once "anchored"
- Since the transaction protocol and the validation protocol only use point-to-point communication, we achieve horizontal scalability.

Outline

1 Introduction

The dangers of centralisation Related work Research question

2 System architecture

System model
Architecture overview
Extended TrustChair
Consensus protocol
Transaction protocol
Validation protocol

- 3 Experimental results
- 4 Conclusion

Implementation and experiment setup

- Free and open source implementation on Github: https://github.com/kc1212/checo
- SHA256 for hash functions and Ed25519 for digital signature
- Experiment on the DAS-5³
- Up to 1500 nodes

³http://www.cs.vu.nl/das5/

Validated transaction throughput (random node)

Validated transaction throughput (fixed neighbour)

Stress test (fixed neighbour)

Outline

Introduction

The dangers of centralisation Related work Research question

2 System architecture

Architecture overview Extended TrustChain Consensus protocol Transaction protocol Validation protocol

- 3 Experimental results
- 4 Conclusion

Conclusion

Our work answers the research question.

How can we design a blockchain consensus protocol that is fault-tolerant, horizontally-scalable, and able to reach global consensus?

- Fault-tolerance is achieved using HoneyBadgerBFT
- Horizontal-scalability is achieved by separating consensus and validation, demonstrated experimentally
- Global-consensus on transactions is achieved via consensus on CP blocks

Bibliography

- [1] W. Youyou, M. Kosinski, and D. Stillwell, "Computer-based personality judgments are more accurate than those made by humans", *Proceedings of the National Academy of Sciences*, vol. 112, no. 4, pp. 1036–1040, 2015.
- [2] [Online]. Available: https://www.theguardian.com/technology/2017/jul/31/facebook-dark-ads-can-swing-opinions-politics-research-shows.
- [3] [Online]. Available: https://en.wikipedia.org/wiki/Death_of_Wei_Zexi.
- [4] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, "The honey badger of bft protocols", in *Proceedings of the 2016 ACM* SIGSAC Conference on Computer and Communications Security, ACM, 2016, pp. 31–42.

Thank you

Any questions?

TX block

- Hash pointer to the previous block
- Sequence number
- Transaction ID
- 4 Public key of the counterparty
- 5 Transaction message m
- 6 Signature the five items above

A transaction is represented by a pair of TX blocks

CP block

- 1 Hash pointer to the previous block
- Sequence number
- 3 Digest of consensus result, i.e. a set of CP blocks
- Round number r
- 5 Signature on the four items above

Background on ACS

- Asynchronous common subset
- A simplification of HoneyBadgerBFT [4]
- n nodes
- t nodes may be malicious
- Input: every node proposes a set of values, e.g., $\{A,B\},\{B,C\},\ldots$
- Output: set union of the majority, e.g., $\{A, B, C, \dots\}$

Effect of the number of facilitators (fixed neighbours)

Effect of the number of facilitators (random neighbours)

Future work

- Implement and experiment with a concrete application
- Analyse the system in the permissionless environment
- Improve fault tolerance