MEDAN DAN GAYA MAGNETKEMAGNETAN

DEPARTEMEN FISIKA

INSTITUT PERTANIAN BOGOR

MAGNET

- Sejarah kemagnetan mulai jauh lebih awal dengan peradaban kuno di Asia. Ada daerah pada asia yang disebut Magnesia di mana ditemukan batubatu yang bergerak saling tarik menarik. Batu-batu ini disebut "magnet"
- Magnet mempunyai dua kutub yaitu:
 - kutub utara
 - kutub selatan

(digunakan sebagai alat bantu navigasi = kompas)

Kutub Magnet

Medan Magnet

Gerak mengorbit dan gerak spin elektron dalam atom menimbulkan medan magnet

Kombinasi kedua medan magnet bisa saling menguatkan atau saling melemahkan dan menghasilkan medan magnet atom

Domain Magnetik

Pada besi medan magnet atomnya sangat kuat sehingga atom-atom besi yang berdekatan membentuk "domain magnetik" dengan medan magnet yang cenderung searah

Tiap domain magnetik mengandung milyaran atom.

Pada batang besi biasa arah-arah medan magnet dari domaindomain magnetik ini acak, sedangkan pada "besi sembrani" ada kecenderungan pada arah tertentu.

ARUS LISTRIK MENGHASILKAN KEMAGNETAN

Hans Christian Oersted (1777-1851) menemukan bahwa ketika jarum kompas yang diletakkan di dekat kawat ber-arus listrik ternyata jarum menyimpang.

- ➤ Gambar a. Garis-garis medan di sekitar arus listrik.
- Sambar b. Kaidah tangan kanan untuk menentukan arah medan magnet.

GAYA PADA ARUS LISTRIK OLEH MEDAN MAGNET

- Magnet memberikan gaya pada kawat pembawa arus
- Arah gaya (F) selalu tegak lurus terhadap arah arus (I) dan juga tegak lurus terhadap medan magnet (B).

GAYA PADA ARUS LISTRIK OLEH MEDAN MAGNET

 $F = IlB \sin \theta$

Satuan SI untuk medan magnet B adalah Tesla (T)

1T = 1N/A.m

Contoh:

Sepenggal kawat berarus 30A, panjang l=12cm, membentuk sudut $\theta = 30^{\circ}$ terhadap arah medan magnet seragam 0,9T. Tentukan gaya pada kawat tersebut!

GAYA PADA MUATAN LISTRIK YANG BERGERAK DI DALAM MEDAN **MAGNET**

= keluar bidang (mendekati kita)

 $F = qvB \sin \theta$

Contoh:

Sebuah proton ketika bergerak ke bawah dengan laju 5x10⁶ m/s mendapat gaya sebesar 8x10⁻¹⁴ N ke barat. Ketika bergerak ke arah utara, ia tidak merasakan gaya. Tentukan besar dan arah medan magnet di daerah ini.

MEDAN MAGNET YANG DISEBABKAN OLEH KAWAT BERARUS

$$B = \frac{\mu_o}{2\pi} \frac{I}{r}$$

Contoh:

Berapakah besar medan magnet pada jarak 10 cm dari kawat lurus yang dialiri arus 25A? Permeabilitas ruang hampa $\mu_0 = 4\pi x 10-7$ Tm/A

GAYA ANTARA DUA KAWAT PARALEL

$$\frac{F}{l} = \frac{\mu_o}{2\pi} \frac{I_1 I_2}{L}$$

•Contoh :

Dua kawat pada kabel yang panjangnya 2m berjarak 3mm dan membawa muatan arus de 8A. Hitung gaya antara kedua kawat tersebut!

APLIKASI-1: GALVANOMETER

APLIKASI-2: BEL LISTRIK

APLIKASI-3: MOTOR DC

FLUKS MAGNETIK

$$\phi_B = AB\cos\alpha$$

A: luas permukaan loop

B: kuat medan magnet

α : sudut antara arah medan B dan garis normal pada permukaan

Loop dari kawat logam

Besar fluks magnetik bervariasi dengan merubah harga A,B dan α

INDUKSI MAGNETIK

Perubahan fluks magnetik menyebabkan timbulnya gaya gerak listrik (ggl) induksi.

INDUKSI MAGNETIK

$$\varepsilon_{ind} = -N \frac{\Delta \phi_m}{\Delta t}$$

$$\varepsilon_{ind} = -N \frac{d\phi_{m}}{dt}$$

Kumparan dengan 80 lilitan memiliki jari-jari 5 cm dan hambatan 30Ω. Berapakah besar perubahan medan magnet (yang tegak lurus bidang kumparan) tiap sekonnya agar menghasilkan arus sebesar 4A?

Jawab: $600/\pi$ T

Bagaimana memproduksi ggl bolak balik?

Jika ada N lilitan

$$\varepsilon_{ind} = -N \frac{d\phi_B}{dt} = NAB\omega \sin \omega t = \varepsilon_0 \sin \omega t$$

SEKIAN