

Go 7 Site search

EBI Home

About EBI

Research

Services

Toolbox

Databases

Downloads

Sistan

W-

DATABASE BROWSING

EBI Dbfetch

```
ID
     HPCCOREEA standard; genomic RNA; VRL; 447 BP.
XX
AC
     L39317;
XX
sv
     L39317.1
XX
     30-JUN-1995 (Rel. 44, Created)
DT
DT
     21-OCT-2001 (Rel. 69, Last updated, Version 4)
XX
DΕ
     Hepatitis C virus type 3 clone NL96 precursor protein gene, partial cds.
XX
KW
XX
os
     Hepatitis C virus type 3
OC
     Viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae;
OC
     Hepacivirus.
XX
RN
     [1]
RP
     1-447
RX
     MEDLINE; 95052487.
RX
     PUBMED; 7525693.
RA
     van Doorn L.J., Kleter B., Stuyver L., Maertens G., Brouwer H., Schalm S.,
RA
     Heijtink R., Quint W.;
RT
     "Analysis of hepatitis C virus genotypes by a line probe assay and
RT
     correlation with antibody profiles";
RL
     J. Hepatol. 21(1):122-129(1994).
XX
RN
     [2]
     1 - 447
RP
     MEDLINE; 97201609.
RX
     PUBMED; 9049395.
RX
RA
     van Doorn L.J., Kleter G.E., Stuyver L., Maertens G., Brouwer J.T.,
RA
     Schalm S.W., Heijtink R.A., Quint W.G.V.;
     "Sequence analysis of hepatitis C virus genotypes 1 to 5 reveals multiple
RT
RT
     novel subtypes in the Benelux countries";
RL
     J. Gen. Virol. 76(Pt 7):1871-1876(1995).
XX
ΓH
     Key
                      Location/Qualifiers
ΓH
FT
     source
                      1..447
FT
                      /db_xref="taxon:40363"
FT
                      /mol_type="genomic RNA"
FT
                      /note="genotype: 3"
FT
                      /organism="Hepatitis C virus type 3"
                      /clone="NL96"
FТ
FT
                      1..96
     mat peptide
FT
                      /note="putative"
FT
                      /product="core protein"
     CDS
FT
                      <1..>447
FT
                      /codon start=1
FТ
                      /db_xref="GOA:Q81286"
FT
                      /db_xref="InterPro:IPR002519"
FT
                      /db_xref="<u>InterPro:IPR002521</u>"
FT
                      /db_xref="UniProt/TrEMBL:Q81286"
                      /product="precursor protein"
ΓT
FT
                      /protein id="AAA67840.1"
```

FT FT FT FT FT XX	mat peptide	/translation="DGINFATGNLPGCSFSIFLLALFSCLLTPTAGLEYRNASGLYMVT NDCSNGSIVYEAGDIILHLPGCVPCVRSGNTSRCWIPVSPTVAVKSPCAATASLRTHVD MMVGAATLCSALYVGDLCGALFLVGQGFSWRHRQHWTVQDCNCSI" 97447 /note="putative" /product="el protein"				
SQ	Sequence 447 BP;	82 A; 130 C; 11	4 G; 118 T;	3 other;		
	gacggaatta attto	gcaac agggaattta	cctggttgct	ctttctctat	cttccttctg	60
	gctttgttct catgo	ttgct tacacccaca	gccgggctgg	agtaccgtaa	tgcctccgga	120
	ctctacatgg taact	aacga ctgcagtaac	ggtagtatcg	tgtatgaggc	cggggatatt	180
	atcctccact tacct	ggctg tgtcccctgc	gtacgctctg	gcaatacatc	aagatgctgg	240
	atccctgtga gcccy	accgt cgccgtgaag	tcgccctgcg	ccgccaccgc	ctctctccgc	300
	acgcacgtgg atatg	atggt gggrgcggcc	accctatgct	cagctctcta	cgtaggagac	360
	ctttgtggag cgcta	tttct tgtygggcag	gggttctcat	ggagacatcg	ccagcattgg	420
	actgtccagg actgo	aactg ttccatc				447
//						