

STGD7NB60H

N-CHANNEL 7A - 600V - DPAK PowerMESH™ IGBT

TYPE	V _{CES}	V _{CE(sat)}	Ic
STD7NB60H	600 V	< 2.8 V	7 A

- HIGH INPUT IMPEDANCE
- LOW ON-VOLTAGE DROP (Vcesat)
- OFF LOSSES INCLUDE TAIL CURRENT
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- VERY HIGH FREQUENCY OPERATION
- CO-PACKAGED WITH TURBOSWITCHT
- TYPICAL SHORT CIRCUIT WITHSTAND TIME 5MICROS S-family, 4 micro H family
- ANTIPARALLEL DIODE

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the Power-MESHTM IGBTs, with outstanding perfomances.

The suffix "H" identifies a family optimized for high frequency applications (up to 50kHz)in order to achieve very high switching performances (reduced tfall) mantaining a low voltage drop.

APPLICATIONS

- HIGH FREQUENCY MOTOR CONTROLS
- SMPS and PFC IN BOTH HARD SWITCH AND RESONANT TOPOLOGIES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{ECR}	Emitter-Collector Voltage	20	V
V _{GE}	Gate-Emitter Voltage	± 20	V
Ic	Collector Current (continuos) at T _C = 25°C	14	А
Ic	Collector Current (continuos) at T _C = 100°C	7	А
I _{CM} (■)	Collector Current (pulsed)	56	А
Ртот	Total Dissipation at T _C = 25°C	55	W
	Derating Factor	0.44	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

July 2000 1/9

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	2.27	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	100	°C/W
Rthc-sink	Thermal Resistance Case-sink Typ	1.5	°C/W

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collectro-Emitter Breakdown Voltage	$I_C = 250 \mu A, V_{GE} = 0$	600			V
I _{CES}	Collector cut-off	V _{CE} = Max Rating, T _C = 25 °C			10	μΑ
	$(V_{GE} = 0)$	V _{CE} = Max Rating, T _C = 125 °C			100	μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20V$, $V_{CE} = 0$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	3		5	V
V _{CE(sat)}	Collector-Emitter Saturation	V _{GE} = 15V, I _C = 7 A		2.3	2.8	V
	Voltage	V _{GE} = 15V, I _C = 7 A, Tj =125°C		1.9		V

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	V _{CE} = 25 V , I _C =3 A	3.5	5		S
C _{ies}	Input Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		560		pF
C _{oes}	Output Capacitance			68		pF
C _{res}	Reverse Transfer Capacitance			15		pF
Q _g Q _{ge} Q _{gc}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	V _{CE} = 480V, I _C = 7 A, V _{GE} = 15V		42 7.9 17.6	55	nC nC nC
I _{CL}	Latching Current	$V_{clamp} = 480 \text{ V}$, $Tj = 150^{\circ}\text{C}$ $R_G = 10 \Omega$	28			А

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$V_{CC} = 480 \text{ V}, I_{C} = 7 \text{ A}$ RG = 10\Omega, VGE = 15 V		15 48		ns ns
(di/dt) _{on} Eon	Turn-on Current Slope Turn-on Switching Losses	V_{CC} = 480 V, I_{C} = 7 A R _G =10 Ω V _{GE} = 15 V,Tj = 125°C		160 70		A/μs μJ

2/9

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
tc	Cross-over Time	$V_{CC} = 480 \text{ V, I}_{C} = 7 \text{ A,}$		85		ns
$t_r(V_{Off})$	Off Voltage Rise Time	$R_{GE} = 10 \Omega$, $V_{GE} = 15 V$		20		ns
t _d (off)	Delay Time			75		ns
tf	Fall Time			70		ns
E _{off} (**)	Turn-off Switching Loss			85		μЈ
E _{ts}	Total Switching Loss			130		μЈ
t _c	Cross-over Time	$V_{CC} = 480 \text{ V}, I_{C} = 3 \text{ A},$		150		ns
$t_r(V_{off})$	Off Voltage Rise Time	R_{GE} = 10 Ω , V_{GE} = 15 V Ti = 125 °C		50		ns
t _d (off)	Delay Time	1) = 120 0		110		ns
t _f	Fall Time			110		ns
E _{off} (**)	Turn-off Switching Loss			220		μЈ
E _{ts}	Total Switching Loss			290		μЈ

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by max. junction temperature.

Thermal Impedance

^(**)Losses include Also the Tail (Jedec Standardization)

Output Characteristics

Transfer Characteristics

Transconductance

Collector-Emitter On Voltage vs Temperature

Collector-Emitter On Voltage vs Collettor Current

4/9

Gate Threshold vs Temperature

∠y,

Normalized Breakdown Voltage vs Temperature

Gate Charge vs Gate-Emitter Voltage

Total Switching Losses vs Temperature

Capacitance Variations

Total Switching Losses vs Gate Resistance

Total Switching Losses vs Collector Current

<u> 57.</u>

Switching Off Safe Operating Area

6/9

Fig. 1: Gate Charge test Circuit

Fig. 2: Test Circuit For Inductive Load Switching

<u>57.</u>

TO-252 (DPAK) MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
С	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
E	6.40		6.60	0.252		0.260
G	4.40		4.60	0.173		0.181
Н	9.35		10.10	0.368		0.398
L2		0.8			0.031	
L4	0.60		1.00	0.024		0.039
V2	0°		8°	0°		0°

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

