

STPS24045TV

POWER SCHOTTKY RECTIFIER

MAIN PRODUCT CHARACTERISTICS

I _{F(AV)}	2 x 120 A		
V_{RRM}	45 V		
V _F (max)	0.67 V		

FEATURES AND BENEFITS

- VERY SMALL CONDUCTION LOSSES
- NEGLIGIBLE SWITCHING LOSSES
- EXTREMELY FAST SWITCHING
- LOW THERMAL RESISTANCE
- INSULATED PACKAGE: Insulating voltage = 2500 V_(RMS) Capacitance = 45pF
- AVALANCHE CAPABILITY SPECIFIED

Dual power Schottky rectifier suited for Switched Mode Power Supplies and high frequency DC to DC converters.

Packaged in ISOTOP, this device is especially intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications.

ISOTOP is a trademark of STMicroelectronics

ABSOLUTE RATINGS (limiting values, per diode)

Symbol	Parameter	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage	45	V		
I _{F(RMS)}	RMS forward current			170	Α
I _{F(AV)}	Average forward current	$Tc = 80$ °C $\delta = 0.5$	Per diode Per device	120 240	А
I _{FSM}	Surge non repetitive forward current	tp = 10 ms Sinusoidal		1500	А
I _{RRM}	Repetitive peak reverse current	tp = 2 µs F = 1kHz squ	ıare	2	А
I _{RSM}	Non repetitive peak reverse current	tp = 100 µs s	quare	10	Α
P _{ARM}	Repetitive peak avalanche power tp = 1µs Tj = 25°C			43000	W
T _{stg}	Storage temperature range	- 55 to + 150	°C		
Tj	Maximum operating junction temperature	150	°C		
dV/dt	Critical rate of rise of reverse voltage	10000	V/µs		

^{* :} $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

July 2003 - Ed : 4A

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th (j-c)}	Junction to case	Per diode	0.65	°C/W
		Total	0.28	
R _{th (c)}		Coupling	0.10	

When the diodes 1 and 2 are used simultaneously:

 Δ Tj(diode 1) = P(diode) x R_{th(j-c)}(Per diode) + P(diode 2) x R_{th(c)}

STATIC ELECTRICAL CHARACTERISTICS (per diode)

Symbol	Parameter	Tests Conditions		Min.	Тур.	Max.	Unit
I _R *	Reverse leakage current	$Tj = 25^{\circ}C$ $V_R = V_{RRM}$				2	mA
		Tj = 125°C				300	
V _F *	Forward voltage drop	Tj = 25°C	I _F = 240 A			0.91	V
		Tj = 125°C	I _F = 240 A		0.72	0.87	
		Tj = 125°C	I _F = 120 A		0.52	0.67	

Pulse test: *

* tp = 5 ms, δ < 2%

** tp = 380 μ s, δ < 2%

To evaluate the conduction losses use the following equation :

 $P = 0.47 \times I_{F(AV)} + 0.00167 \times I_{F}^{2}(RMS)$

Fig. 1: Average forward power dissipation versus average forward current (per diode).

Fig. 2: Average forward current versus ambient temperature (δ = 0.5, per diode).

Fig. 3: Normalized avalanche power derating versus pulse duration.

Fig. 4: Normalized avalanche power derating versus junction temperature.

57

Fig. 5: Non repetitive surge peak forward current versus overload duration (maximum values, per diode).

Fig. 6: Relative variation of thermal impedance junction to case versus pulse duration (per diode).

Fig. 7: Reverse leakage current versus reverse voltage applied (typical values, per diode).

Fig. 8: Junction capacitance versus reverse voltage applied (typical values, per diode).

Fig. 9: Forward voltage drop versus forward current (maximum values, per diode).

3/4

PACKAGE MECHANICAL DATA ISOTOP

	DIMENSIONS					
REF.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	11.80		12.20	0.465		0.480
A1	8.90		9.10	0.350		0.358
В	7.8		8.20	0.307		0.323
С	0.75		0.85	0.030		0.033
C2	1.95		2.05	0.077		0.081
D	37.80		38.20	1.488		1.504
D1	31.50		31.70	1.240		1.248
Е	25.15		25.50	0.990		1.004
E1	23.85		24.15	0.939		0.951
E2		24.80			0.976	
G	14.90		15.10	0.587		0.594
G1	12.60		12.80	0.496		0.504
G2	3.50		4.30	0.138		0.169
F	4.10		4.30	0.161		0.169
F1	4.60		5.00	0.181		0.197
Р	4.00		4.30	0.157		0.69
P1	4.00		4.40	0.157		0.173
S	30.10		30.30	1.185		1.193

Туре	Marking	Package	Weight	Base qty	Delivery mode
STPS24045TV	STPS24045TV	ISOTOP	28 g. (without screws)	10	Tube

Cooling method: by conduction (C)
Recommended torque value: 1.3 N.m
Maximum torque value: 1.5 N.m

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 $\hbox{@\,}2003$ STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

57