<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

v 1.4 Octubre 2022

Impresión 3D

Join at vevox.app

Or search Vevox in the app store

ID: 183-409-206

Join: vevox.app ID: 183-409-206.

¿Has usado alguna vez algún programa para diseñar piezas en 3D? (Sin contar lo visto aquí)

1. Sí 26.09%

2. No

73.91%

Join: vevox.app ID: 183-409-206,

¿Has usado alguna vez algún programa (slicer) para convertir/enviar una pieza en 3D a una impresora?

- 1. Sí
- 2. No

92%

¿Has usado alguna vez una impresora 3D?

- 1. Sí, muy muchas veces (10+)
 - 4%
- 2. Sí, alguna vez (1-9)

12%

3. No, pero la vi funcionando o usando

36%

4. No, nunca

48%

Si usaste la impresora 3D, ¿has tenido algún problema con ella?

1. Sí, muchos, demasiados

```
3.85%
```

2. Muy pocos (1 o 2...)

3. No

4. Nunca usé una impresora 3D

88.46%

Introducción

- G-code
- o Configuraciones de impresión 3D
- Cura y demo
- Problemas típicos
- Demo impresora 3D

G-code

Introducción y pasos impresión 3D

OpenSCAD genera

- Un fichero .scad que contiene el modelo 3D y solo sirve para OpenSCAD
- OpenSCAD permite exporta un fichero STL
- Ejemplos: https://mega.nz/#!T1AxyA4I!UzszhAcUsGray3cUObgdwpY5luPUYrD57yZmXve2X40

STL

- Standard Triangle Language o Standard Tessellation Language
- o Formato CAD que define la geometría de objetos 3D
- No incluye texturas, color u otras propiedades
- Casi todos los programas
 - Exportan a STL
 - Permiten importar STL y visualizarlo, pero no siempre mecanizarlo
- Ejemplos: https://mega.nz/#!2sgnBQQL!xzYrnL2J8M_SvbZfbSHdg3NaENjOmn2lOluuGbukbQ8

o Impresoras 3D

- Entienden G-code
- Hay que transformar el STL a G-code

G-code I

- También conocido como RS-274
- Es un lenguaje de programación
 - http://gnipsel.com/linuxcnc/g-code/index.html
- o Apareció en 1950 y fue diseñado por el MIT
- Hay varias implementaciones diferentes (algunas propietarias y únicas para una máquina)
 - Cuidado con vuestra impresora
 - Estándar ISO 6983
 - o Otros países europeos usan otro estándar diferente
- o Se utiliza en las máquinas de control numérico
 - Cortadoras (madera y metal), fresadoras, tornos, impresoras 3D, etc.
- Lleva las instrucciones que las máquinas deben hacer
 - Qué hacer, qué mover, como moverse, qué velocidad, que trayectoria, etc.

G-code II

- o Es el formato imprimible compatible con las impresoras 3D
 - Compatible con la impresora (BQ Hephestos 2, Prusa i3)
 - Instrucciones especiales RepRap: https://reprap.org/wiki/G-code
- El formato imprimible define
 - o Parámetros de la impresora
 - Los modelos 3D
 - Múltiples parámetros de impresión
 - Calidad por capa
 - Superficie de impresión
 - Criterio para aplicar soportes necesarios
 - Si hay «puentes» o zonas en el aire en la pieza y así hacer que no se caigan
 - Características del filamento
 - o Etc.
 - Velocidad de movimiento
 - Temperatura (de acuerdo al material utilizado)
 - Etc.

G-code III

- o Visualizador de G-code online
 - Sirve para
 - Comprobar si se generó todo bien
 - Comprobar las propiedades y resultado final
 - Pueden no ser preciso
 - Ver resultado en 2D y 3D

http://gcode.ws/

Cura

Información del modelo

Model info

Model size is:

108.34x198.44x49.98mm

Total filament used: 28671.55mm

Total filament weight used:

71.71 grams

Estimated print time: 72:33:24
Estimated layer height: 0.06mm
Layer count: 834printed, 834visited

Time cost: 72.56 Filament cost: 3.59

Programa a utilizar

- Hay que utilizar programas que
 - Nos permitan importar un STL y exportar G-code, o nos generen el G-code directamente del modelo 3D
 - Nos creen las diferentes capas que se han de imprimir en una pieza modelada previamente
 Se conocen como «slicers» o «slicing software»
- Cura, Skeinforge, Repetier Host con Slic3r, Simplify 3D, IdeaMaker, etc.
 - http://edutechwiki.unige.ch/en/Slicers and user interfaces for 3D printers
 - https://all3dp.com/1/best-3d-slicer-software-3d-printer/
- Nos permiten
 - Generar G-code
 - o Configurar parámetros de la impresora y de la impresión
 - Ver el resultado final y pasos intermedios

Cura

- Es gratis
- Multiplataforma: Windows, Mac, Linux
- o De código abierto
- Mucho más sencillo e intuitivo que otros
- Sirve para principiantes y usuarios avanzados
- Es el oficial de las impresoras Ultimaker y da soporte a otras impresoras RepRap
 - Soporta la BQ Hephestos 2, la Prusa i3, y la Crealite 3D Ender-3
- Multitud de configuraciones y de opciones
 - Muchas están ocultas y hay que seleccionarlas en las opciones
- Múltiples vistas y previsiones bastante realistas
- o Tiene simulación de los movimientos de la impresora
 - Tiempo real como si fuera un video
 - Líneas de trazada

Cura

- o Cura permite generar formatos imprimibles en formato G-code
- o Agregar la configuración de la impresora (Prusa i3 o Hephestos)

Configuraciones de impresión 3D

Configuración de la impresión l

- Algunos parámetros
 - Material
 - Calidad
 - Grosor del muro
 - Laterales
 - Techo y suelo
 - Relleno
 - Densidad
 - Patrón
 - Reducción del relleno en las capas
 - Material
 - Temperatura
 - Diámetro
 - Cantidad de material expulsado

Configuración de la impresión II

- Algunos parámetros
 - Velocidad
 - Impresión
 - De viaje (no imprime)
 - Ventilador de capas
 - Soporte
 - Generar
 - Lugar
 - Las que toquen el plato
 - Todos
 - Adhesión al plato
 - o Marco de trabajo
 - 1 capa debajo
 - X capas debajo
 - Nada

Densidad de relleno I

- o Los modelos impresos se suelen imprimir con un porcentaje
- A mayor % mayor resistencia
- Lo habitual suele ser 40-50%
 - Esto otorga suficiente resistencia

Densidad de relleno II – 20%

Tipo de relleno

- Se puede elegir el tipo de relleno
- o Otorgan diferente tipo de resistencia en combinación con la densidad

Cross 3D

Grid

Triangles

Cubic

Gyroid

Cross (new)

Tri-Hexagon

Quarter Cubic

Adhesión al plato I

- None
 - No hace nada
- Skirt
 - o Permite hacer una **limpieza previa** del material y del extrusor
 - Especifica el **marco de trabajo de la pieza** y nos sirve para asegurarnos que todo quepa bien
- o Brim y Raft
 - Evita que la pieza se despegue si tiene poca base o es muy alta
 - Este problema se conoce como «Warping»
 - o Facilita su «extracción» tras finalizar la impresión
 - Raft crea X capas que se definen como base
 - o Ofrece una mayor adhesión que Brim
 - o Añade más capas para sujetar la pieza a la base

Adhesión al plato II

Skirt (no siempre cubre el área)

Soportes I

- o Sirven para asegurar las partes volátiles de la pieza
- Permite
 - No tener soportes
 - Puede que **algunas partes** no aguanten y **cedan**
 - o Poner soportes solo en las partes volátiles que estén sobre el plato
 - o Sirve si sabemos que las demás partes aguantan y queremos asegurarnos **no «estropear» o dejar mejor la pieza**, evitando soportes sobre ella
 - Poner en todos sitios
 - El programa calcula solo que partes necesitan soporte y las ponen en todas aquellas que sean propensas a ceder
- Los soportes se quitan prácticamente con la mano
- Permiten configurar también los ángulos de acción, densidad, creación de torres para soportas partes finas, etc.

Soportes II

- Forma correcta
 - Mayor calidad al haber menos partes en el «aire»
 - Mas apoyo
 - Menos gasto de material
 - o 20g vs 40g
 - Menos tiempo
 - o 9:14h vs 12:55h
 - o Cura 2, 3 y 4

Cura 5: menos material, misma eficacia (15%)

Soportes III

Sin soportes

Soportes «Touching Build Plate»

Soportes «Everywhere»

Soportes «Everywhere»

Soportes IV – Torres

Soportes V – Tipos de torres

Normal - Donde sea

Normal - Tocando plato

Soportes VI – Densidad (Avanzado) – Densidad

Soportes VII – «Everywhere»

Cura

Vistas

Vista por capas

- Material extruido
- Viaje del extrusor
- Soportes
- o «Cáscara»
- Relleno
- Capas
 - Número
 - Zona (dentro, fuera, arriba, abajo, muros)
 - Seleccionar capa
 - Reproducción de la construcción de una capa
 - Velocidad
 - Material por capa (flow)

Colocación de los modelos

- Edición
 - Mover
 - Girar
 - Escalar
 - Espejo (cambiar sentido sin girarlo)
 - Configuraciones por modelo
 - Bloquear modelo (no mover/girar/etc)
- o Estimación de la impresión
 - Horas y minutos
 - Gramos de material

Ready to Save to File

Build Plate Adhesion

15h 59min 18.10m / ~ 53g

2

Demo

Demo

- Cambiar filamento
 - Extraer el viejo
 - Sube/Pide la temperatura de extrusión del material
 - o Dependiendo del tipo de material será una u otra
 - Expulsa casi todo el contenido en el extrusor y después expulsa el filamento por arriba
 - o Insertar filamento
 - Pide la inserción por la parte superior del extrusor
 - Expulsa material para limpiar el extrusor de residuos del antiguo filamento

Problemas típicos

Problemas I

- o No extruye material al inicio de la impresión
 - Solución: habilitar un «Skirt» mínimo
 - Excesiva temperatura del «hotend» para el material utilizado
 - o Boquilla demasiado cerca de la cama
 - Filamento mordido por la polea que impide la entrada material
 - Extrusor obstruido
- La primera capa no se pega a la base: la adhesión de la primera capa es clave y probablemente de los factores más importantes para obtener buenas impresiones
 - o Boquilla demasiado lejos de la cama
 - o Impresión de primera capa demasiado rápida
 - Temperatura baja de la cama caliente
 - Falta de laca en la cama fría
 - Ventilación de capa activada en la primera capa
 - o Solución: habilitar un «Brim» o «Raft» si la pieza es pequeña
 - o Solución: utilizar lacas especiales o cama caliente

Problemas II

- o Extrusión de poco plástico dejando huecos
 - o Diámetro incorrecto de filamento
 - Extrusión de poco plástico para el material utilizado (Configuración)
- o Demasiado plástico en la parte superior de las piezas
 - Extrusión de mucho plástico para el material utilizado (Configuración)
- Huecos/Agujeros/Espacios en las caras superiores
 - o Aumentar el número de capas sólidas encima del relleno
 - % de relleno demasiado bajo que impide el soporte adecuado
 - Poca extrusión de filamento
- o Hilos sueltos de plástico en sentido horizontal
 - o Solución: ajustar la cantidad de retracción del filamento
 - o Solución: ajustar la velocidad de retracción del filamento
 - o Temperatura de extrusión demasiado alta
 - Problemas con los desplazamientos del extrusor

Problemas III

- Sobrecalentamiento que derrite y deforma los detalles pequeños
 - Refrigeración de capa insuficiente
 - o Temperatura de extrusión demasiado elevada
 - o Impresión demasiado rápida
 - Solución: imprimir varias piezas a la vez

o Desplazamiento de capas

- «Hotend» se desplaza demasiado rápido
- Exceso o falta de tensión en las correas
- Cama sin apretar correctamente
- Electrónica mal configurada
- Motores en mal estado

Problemas IV

Filamento mordido

- o Presión ejercida sobre el filamento del motor excesiva
- Temperatura incorrecta para el filamento utilizado
- Velocidad de extrusión demasiado alta
- o Incorrecta configuración del diámetro de la boquilla

Atasco en el extrusor

- Temperatura incorrecta
- o Impurezas en el material
- o Solución: desmontarlo y limpiarlo
- o Solución: en ambientes con polvo, incluir una esponja limpiadora del material
- o Etc.

Problemas V

- Piezas muy delgadas y altas
 - o Al plástico PLA **no le da tiempo suficiente a endurecerse en cada capa**, por lo que **la pieza quedará como si se hubiera derretido**
 - o Solución: imprimir al mismo tiempo como 2 piezas, y colócalas separadas en la base
 - Mientras el extrusor se desplaza de una pieza a otra, el plástico tiene tiempo a endurecerse en cada capa consiguiendo un resultado mucho mejor
 - o Solución: utilizar un ventilador de capas
 - Solución: poner torres como soportes
- o Dejó de recibir filamento
 - Se pudo romper por estar mal o tener defectos el material
 - Material demasiado tenso
 - Problema en el motor que tira del material
 - Efecto: sigue imprimiendo con «aire» y se puede recalentar y estropearse

Problemas VI

- o Falta de comprobaciones en la impresora
 - Si la **pieza es más alta** que la impresora, esta puede que siga imprimiendo y se cargue la pieza y la impresora
 - Sensor estropeado de final de carro: la pieza sigue forzando el motor y puedo estropearse

Preguntas tema 4

ohttps://forms.office.com/r/YAujQwRsYa

<u>Cristian González García</u> <u>gonzalezcristian@uniovi.es</u>

v 1.4 Octubre 2022

Impresión 3D