暨 南 大 学 考 试 试 卷

教		2017	7–2018	学年度第	2	学期	课程类别) 生 / / / / 1
师	 课程	是名称: ₋	大学	数学(理工	.四学分)		必修 [√] 考试方式	
填	授课教师:		张王	张三,李四,王五			开卷[]	
写	考证		201	8年06月	28 日		试卷类别([B]	
考				 院				
生填写							内招[√]	
题	号		=	三	四	五	六	总分
得	分							
1	得分 评阅人 一、填空题 (共 6 小题,每小题 3 分,共 18 分)							
		本题答	案必须写在如	丁表格中		给分.		
小是	页		1		2		3	
答第	答案							
小是	页		4	5			6	
答案								
1. 已知 ξ 和 η 相互独立且 $\xi \sim N(1,4), \eta \sim N(2,5), 则 \xi - 2\eta \sim N(-3,24).$								
2. 已知随机变量 ξ 的期望和方差各为 $E\xi=3, D\xi=2, 则 E\xi^2=1$								
3. 向量组 α_1 = (1,1,0), α_2 = (0,1,1), α_3 = (1,0,1),则将向量 β = (4,5,3)表示为 α_1 , α_2 , α_3 的线性组合为 β =								
4. 已知二阶行列式 $\begin{vmatrix} 1 & 2 \\ -3 & x \end{vmatrix} = 0$,则 $x = \underline{\qquad \qquad -6}$								
5. 设 $\vec{a} = (2,1,2), \ \vec{b} = (4,-1,10), \ \vec{c} = \vec{b} - \lambda \vec{a}, \ \exists \ \vec{a} \perp \vec{c}, \ \ \emptyset \ \lambda = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$								
6. 设常数 $k > 0$,函数 $f(x) = \ln x - \frac{x}{e} + k$ 在 $(0, +\infty)$ 内零点的个数为								

得分	评阅。	人 二、单	选题			
		供6小	题,每小题:	3分,共18分	()	
答题须知:本题答案必须写在如下表格中,否则不给分.						
小题	1	2	3	4	5	6
答案						
1. 对总体)	7 和样本	(X_1, \cdots, X_n)	的说法哪个是	是不正确的		·····(D)
(A) 总体是[A]				- <u></u>		()
(C) X_1, \dots, X_n	X _n 相互独	其立	(D)	$X_1 = X_2 = \cdots$	$=X_n$	
2. 下列说法不正确的是·····(B) (A) 大数定律说明了大量相互独立且同分布的随机变量的均值的稳定性 (B) 大数定律说明大量相互独立且同分布的随机变量的均值近似于正态分布 (C) 中心极限定理说明了大量相互独立且同分布的随机变量的和的稳定性 (D) 中心极限定理说明大量相互独立且同分布的随机变量的和近似于正态分布						
3. 二次型 $f = 4x_1^2 - 2x_1x_2 + 6x_2^2$ 对应的矩阵等于						
4. 设矩阵 A	$A = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$	1 0 x 0 0 1 (B) 1	两个特征值为 (C)		=2,则 $x=$ (D) -1	(В)
5. 假设 $F(x)$ 是连续函数 $f(x)$ 的一个原函数,则必有·····(A) (A) $F(x)$ 是偶函数 $\Leftrightarrow f(x)$ 是奇函数 (B) $F(x)$ 是奇函数 $\Leftrightarrow f(x)$ 是偶函数 (C) $F(x)$ 是周期函数 $\Leftrightarrow f(x)$ 是周期函数 (D) $F(x)$ 是单调函数 $\Leftrightarrow f(x)$ 是单调函数						
6. 在下列等 (A) ∫ f'(x) c (C) d/dx (∫ f(x))	1x = f(x))	(B)	$\int df(x) = f(x)$ $d(\int f(x) dx)$	<i>x</i>)	·····(C)

得分	评阅人	三、计算题		
		供6小题,	每小题8分,	共48分)

1. 从正态总体 $N(\mu, \sigma^2)$ 中抽出样本容量为 16 的样本,算得其平均数为 3160,标准 差为 100. 试检验假设 $H_0: \mu = 3140$ 是否成立 ($\alpha = 0.01$).

- 2. 设每发炮弹命中飞机的概率是 0.2 且相互独立, 现在发射 100 发炮弹.
- (1) 用切贝谢夫不等式估计命中数目 ξ 在 10 发到 30 发之间的概率.
- (2) 用中心极限定理估计命中数目 ξ 在 10 发到 30 发之间的概率.

3. 用配方法将二次型 $f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$ 化为标准形 $f = d_1y_1^2 + d_2y_2^2 + d_3y_3^2$.

解.
$$f = x_1^2 + 2x_1x_2 - 6x_1x_3 + 2x_2^2 - 12x_2x_3 + 9x_3^2$$

$$= x_1^2 + 2x_1(x_2 - 3x_3) + (x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3$$

$$= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 6x_2x_3 \cdot \dots \cdot 3 \Rightarrow$$

$$= (x_1 + x_2 - 3x_3)^2 + x_2^2 - 2x_2 \cdot 3x_3 + (3x_3)^2 - 9x_3^2$$

$$= (x_1 + x_2 - 3x_3)^2 + (x_2 - 3x_3)^2 - 9x_3^2 \cdot \dots \cdot 6 \Rightarrow$$

$$\Rightarrow y_1 = x_1 + x_2 - 3x_3, y_2 = x_2 - 3x_3, y_3 = x_3,$$
则 $f = y_1^2 + y_2^2 - 9y_3^2 \Rightarrow \pi$

4. 计算四阶行列式
$$A = \begin{vmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{vmatrix}$$
 的值.

MR.
$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \\ 0 & -1 & -6 & 1 \\ 0 & -6 & -8 & 2 \end{bmatrix} = 1 \cdot (-1)^{2+1} \begin{bmatrix} 1 & 2 & 3 \\ -1 & -6 & 1 \\ -6 & -8 & 2 \end{bmatrix} \cdot \dots \cdot 4$$
 $= -\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 4 \\ 0 & 4 & 20 \end{bmatrix} = -\begin{bmatrix} -4 & 4 \\ 4 & 20 \end{bmatrix} = -(-4 \cdot 20 - 4 \cdot 4) = 96 \cdot \dots \cdot 8$

5. 求过点 A(1,2,-1), B(2,3,0), C(3,3,2) 的三角形 $\triangle ABC$ 的面积和它们确定的平面方程.

解. 由题设
$$\overrightarrow{AB} = (1,1,1), \overrightarrow{AC} = (2,1,3), \dots 2$$
 分 故 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{vmatrix} = (2,-1,-1), \dots 4$ 分

6. 求不定积分
$$\int e^{2x} (\tan x + 1)^2 dx$$
。

得分	评阅人	四、证明题	Ī	
		(共2小题,	每小题8分,	共16分)

1. 设事件 A 和 B 相互独立,证明 A 和 \bar{B} 相互独立.

- **2.** 设数列 $\{x_n\}$ 满足 $x_1 = \sqrt{2}$, $x_{n+1} = \sqrt{2 + x_n}$. 证明数列收敛, 并求出极限.
- 证. (1) 事实上,由于 $x_1 < 2$,且 $x_k < 2$ 时

$$x_{k+1} = \sqrt{2 + x_k} < \sqrt{2 + 2} = 2$$
,

由数学归纳法知对所有 n 都有 $x_n < 2$,即数列有上界. 又由于

$$\frac{x_{n+1}}{x_n} = \sqrt{\frac{2}{x_n^2} + \frac{1}{x_n}} > \sqrt{\frac{2}{2^2} + \frac{1}{2}} = 1,$$

所以数列单调增加. 由极限存在准则 II,数列必定收敛. · · · · · · · · · 4 分 (2) 设数列的极限为 A,对递推公式两边同时取极限得到

$$A = \sqrt{2 + A}.$$

附录 一些可能用到的数据

$\Phi_0(0.5) = 0.6915$	$\Phi_0(1) = 0.8413$	$\Phi_0(2) = 0.9773$	$\Phi_0(2.5) = 0.9938$
$t_{0.01}(8) = 3.355$	$t_{0.01}(9) = 3.250$	$t_{0.01}(15) = 2.947$	$t_{0.01}(16) = 2.921$
$\chi^2_{0.005}(8) = 22.0$	$\chi^2_{0.005}(9) = 23.6$	$\chi^2_{0.005}(15) = 32.8$	$\chi^2_{0.005}(16) = 34.3$
$\chi^2_{0.995}(8) = 1.34$	$\chi^2_{0.995}(9) = 1.73$	$\chi^2_{0.995}(15) = 4.60$	$\chi^2_{0.995}(16) = 5.14$