Material Teórico - Círculo Trigonométrico

Seno, cosseno e tangente.

Primeiro Ano do Ensino Médio

Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto

20 de outubro de 2018

1 Seno, cosseno e tangente

Na aula passada, vimos que se A=(1,0) e P é um ponto qualquer sobre o círculo trigonométrico, ou seja, o círculo de raio 1 e centro O=(0,0), então a abscissa e a ordenada de P são, nessa ordem, o cosseno e o seno do ângulo $\angle AOP$. Em símbolos, se α é a medida do ângulo $\angle APO$ em radianos, ou seja, o comprimento do arco \widehat{AP} , então

$$P = (\cos \alpha, \sin \alpha). \tag{1}$$

De fato, usamos isso para definir os valores de sen α e cos α de um número real α qualquer: para encontrar cos α e sen α basta percorrer (partindo do ponto A) um arco de comprimento $|\alpha|$ sobre o círculo trigonométrico, no sentido anti-horário quando $\alpha>0$ e horário quando $\alpha<0$, marcar o ponto P e encontrar suas coordenadas. Dessa forma, podemos ver seno e cosseno como funções com domínio igual ao conjunto de todos os números reais. (Lembre-se de que estamos medindo arcos em radianos.)

Exemplo 1. Calcule sen(0), cos(0), $sen(\pi/2)$ e $cos(\pi/2)$.

Solução. Considere $A=(1,0),\ P$ como em (1) e seja $\alpha=\widehat{AP}.$ Quando $\alpha=0,$ o ponto P coincide com A (o arco percorrido tem comprimento zero, logo, não saímos do ponto A). Assim, P=(1,0) e, lembrando que a abcissa representa o cosseno de α e a ordenada representa o seno, temos:

$$sen(0) = 0$$
 e $cos(0) = 1$.

Por outro lado, quando $\alpha=\pi/2$, como o círculo possui comprimento 2π , teremos percorrido 1/4 do círculo. Dessa forma, estaremos parados no ponto P=(0,1), de sorte que

$$sen(\pi/2) = 1$$
 e $cos(\pi/2) = 0$.

No Módulo "Triângulo Retângulo, Lei dos Senos e Cossenos, Polígonos Regulares" do nono ano do EF, aprendemos como calcular os valores de seno, cosseno e tangente dos arcos equivalentes a 30°, 45°, 60°. Juntamente com os valores obtidos no exemplo anterior, e lembrando que $tg(\alpha) = sen(\alpha)/cos(\alpha)$ só está definida quando $cos \alpha \neq 0$, agrupamos os valores na seguinte tabela.

Ângulo (graus)	Ângulo (radianos)	sen	cos	tg
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	∄

Lembremos que quando α e β são ângulos congruentes, ou seja, $\alpha - \beta = 2k\pi$, com $k \in \mathbb{Z}$, eles determinam um mesmo ponto P sobre o círculo trigonométrico. Dessa forma, temos que:

$$\alpha = \beta + 2k\pi \implies \begin{cases} \sec \alpha = \sec \beta, \\ \cos \alpha = \cos \beta. \end{cases}$$

Assim, vamos no concentrar inicialmente em calcular senos e cossenos de arcos de 0 a 2π .

Exemplo 2. Como observado na aula passada, boa parte das calculadoras científicas trabalham com radianos por padrão. Assim, se digitarmos 60 numa calculadora e teclarmos "SEN", é possível que o resultado obtido não seja o seno de 60°, mas sim o seno de 60 rad (é provável que a calculadora tenha uma tecla para definir o modo de operação, "RAD" ou "DEG", então é necessário ficar atento). Suponha que a calculadora está no modo "RAD". O que representa o valor obtido?

Vamos calcular, como na aula passada, a menor determinação positiva de 60 radianos. Dividindo 60 por 2π obtemos, aproximadamente, 9,549. Assim, o arco entre 0 e 2π congruente a 60 tem comprimento $60+(-9)\cdot 2\pi$, que vale aproximadamente 3,451. Isso é um pouco maior do que π , logo, está no quadrante III. Fazendo esse experimento, na calculadora, obtemos

$$sen(60) = sen(60 - 18\pi) \cong sen(3,451) \cong -0,304.$$

Isso faz sentido, uma vez no quadrante III o seno é negativo. Por outro lado, veja que

$$sen(60^\circ) = \frac{\sqrt{3}}{2} \cong 0.866.$$

Neste texto, sempre que omitirmos a unidade, é porque estamos usando radianos.

Exemplo 3. Para todo arco α , vale que

$$sen(-\alpha) = sen(\alpha)$$
 e $cos(-\alpha) = cos(\alpha)$.

Solução. Suponha que, partindo de (1,0) e percorrendo um arco de medida α , paramos no ponto P=(x,y), de forma que $\operatorname{sen}(\alpha)=y$ e $\operatorname{cos}(\alpha)=x$. Perceba que percorrer o arco $-\alpha$ significa percorrer α no sentido oposto. Ao fazermos isso, pararemos no ponto P', simétrico de P em relação ao eixo-x. Dessa forma, P'=(x,-y), e temos que $\operatorname{cos}(-\alpha)=x=\operatorname{cos}(\alpha)$ e $\operatorname{sen}(-\alpha)=-y=-\operatorname{sen}(\alpha)$.

2 Redução ao primeiro quadrante

Para qualquer ângulo α do primeiro quadrante, ou seja, $0 < \alpha < \pi/2$, existe um triângulo retângulo que possui α como um de seus ângulos. As medidas dos catetos e

da hipotenusa de um tal triângulo podem ser usadas para calcular o seno, cosseno e tangente de α .

Por outro lado, para outros valores de α isso não é possível (já que a soma das medidas dos dois ângulos não retos de um triângulo retângulo é $\pi/2$), mas podemos comparar os valores do seno, cosseno e tangente de α com aqueles de um ângulo β , este entre 0 e $\pi/2$.

Para entendermos como fazer isso, seja P o ponto do círculo trigonométrico associado ao arco α , seja B o pé da perpendicular traçada de P ao eixo-x e O=(0,0). Consideremos o triângulo retângulo BPO, de hipotenusa OP (de medida 1) – veja as figuras 1a, 1b e 1c, para α nos quadrantes II, III e IV respectivamente, onde $\alpha = \widehat{AP}$ está marcado em verde. Seja, ainda, $\beta = \angle POB$.

Como $P=(\cos\alpha,\sin\alpha),$ o fato de BPO ser retângulo de hipotenusa 1 garante que, para α em qualquer quadrante, vale:

$$\overline{BO} = |\cos \alpha| = \cos \beta > 0, \tag{2}$$

$$\overline{BP} = |\sin \alpha| = \sin \beta > 0. \tag{3}$$

Contudo, a relação entre α e β , assim como os sinais de $\cos \alpha$ e sen α , variam de um quadrante para outro (lembrese de que estudamos os sinais em cada quadrante na aula passada).

• α no quadrante II: pela Figura 1a, temos $\beta = \pi - \alpha$, sen $\alpha > 0$ e cos $\alpha < 0$. Assim, as equações (2) e (3) fornecem

$$sen \alpha = sen(\pi - \alpha),$$

$$cos \alpha = -cos(\pi - \alpha).$$

• α no quadrante III: pela Figura 1b que $\beta=\alpha-\pi$, sen $\alpha<0$ e $\cos\alpha<0$. Assim, pelas equações (2) e (3), vem

$$sen \alpha = -sen(\alpha - \pi),$$

$$cos \alpha = -cos(\alpha - \pi).$$

• α no quadrante IV: pela Figura 1c, temos $\beta=2\pi-\alpha$, sen $\alpha>0$ e cos $\alpha<0$. Assim, segue das equações (2) e (3) que

$$sen \alpha = -sen(2\pi - \alpha),$$

$$cos \alpha = cos(2\pi - \alpha).$$

Observação 4. É possível demonstrar que as relações acima, por exemplo, $sen(\alpha) = sen(\pi - \alpha)$, valem para todo α , não apenas para o quadrante indicado. Contudo, a separação em casos por quadrante tem o intuito que garantir que β seja um ângulo entre 0 e $\pi/2$.

Exemplo 5. Calcule o seno e o cosseno de cada um dos seguintes arcos.

(a) seno e cosseno no segundo quadrante.

(b) seno e cosseno no terceiro quadrante.

(c) seno e cosseno no quarto quadrante.

Figura 2: gráfico da função sen(x) quando x varia de 0 a 2π , com alguns pontos marcados e seus correspondentes no círculo trigonométrico.

- (a) $2\pi/3$.
- (b) $5\pi/4$.
- (c) $11\pi/6$.

Solução.

(a) Seja $\alpha = 2\pi/3$. Veja que α está no segundo quadrante. Observando a Figura 1a, temos sen $\alpha > 0$ e $\cos \alpha < 0$, e $\beta = \pi - 2\pi/3 = \pi/3$ é o ângulo que satisfaz (2) e (3). Logo,

$$sen(2\pi/3) = sen(\pi/3) = \frac{\sqrt{3}}{2},$$
$$cos(2\pi/3) = -cos(\pi/3) = -\frac{1}{2}.$$

(b) Para $\alpha=5\pi/4$, note que α está no terceiro quadrante. Observando a Figura 1b, temos sen $\alpha<0$ e $\cos\alpha<0$, e $\beta=5\pi/4-\pi=\pi/4$ é o ângulo que satisfaz (2) e (3). Assim, temos

$$sen(5\pi/4) = -sen(\pi/4) = -\frac{\sqrt{2}}{2},$$
$$cos(5\pi/4) = -cos(\pi/4) = -\frac{\sqrt{2}}{2}.$$

(c) Sendo $\alpha=11\pi/6$, temos α no quarto quadrante. Observando a Figura 1c, vemos que sen $\alpha<0$ e $\cos\alpha>0$, e $\beta=2\pi-11\pi/6=\pi/6$ é o ângulo que satisfaz (2) e (3). Dessa vez, temos que

$$sen(11\pi/6) = -sen(\pi/6) = -\frac{1}{2},$$

$$cos(11\pi/6) = cos(\pi/6) = \frac{\sqrt{3}}{2}.$$

Como isso, para qualquer número real α de 0 a 2π , podemos calcular $\operatorname{sen}(\alpha)$. A Figura 2 nos mostra como desenhar o gráfico da função $f(x) = \operatorname{sen}(x)$, quando

x varia de 0 a 2π : do lado esquerdo temos uma cópia do círculo trigonométrico com alguns pontos marcados; do lado direito temos o gráfico desejado. Para obtê-lo, veja que cada ponto sobre o eixo horizontal do gráfico representa a medida de um arco (em radianos). Selecionamos alguns valores de arcos para ilustrar, marcamos os pontos correspondentes no círculo, observamos que a altura de cada ponto marcado corresponde ao seno do arco e marcamos a mesma altura no gráfico. Sobre isso, veja também a animação no endereço https://commons.wikimedia.org/wiki/File:Circle cos sin.gif.

Observe que entre 0 e $\pi/2$ o valor de seno aumenta até atingir seu valor máximo, igual a 1. De $\pi/2$ até π ele diminui até chegar a zero. De π a $3\pi/2$ continua diminuindo até chegar a seu valor mínimo, igual a -1. Por fim, de $3\pi/2$ a 2π ele volta a aumentar, até chegar novamente a zero. Neste momento, completamos uma volta inteira no circulo, de forma que o gráfico da função passa a se repetir. Do mesmo modo, para valores negativos de x o padrão mantido é o mesmo. Isso é mostrado na curva em azul da Figura 3, que representa o gráfico de $\mathrm{sen}(x)$ quando x varia de -10 até 10.

Por sua vez, a curva em vermelho da Figura 3 é o gráfico de $\cos(x)$. Como podemos perceber isso? Considerando um triângulo retângulo qualquer, se um de seus ângulos não retos tiver medida α , o outro terá medida $\frac{\pi}{2} - \alpha$. Como o cateto adjacente a α é o cateto oposto a β , temos que $\cos \alpha = \sin \beta$. Logo,

$$\cos(\alpha) = \sin\left(\frac{\pi}{2} - \alpha\right). \tag{4}$$

Apesar de que a argumentação acima só funciona para $0 < \alpha < \pi/2$, é possível provar que a equação (4) também é valida para qualquer α real. Deixamos como exercício analisar o que acontece quando α pertence a cada um dos

Figura 3: gráficos de seno e cosseno de -10 a 10.

outros quadrantes.

Dessa forma, o gráfico da função $\cos(x)$ nada mais é do que uma translação do gráfico da função $\sin(x)$, e é dessa forma que a curva vermelha da Figura 3 pode ser obtida a partir da curva azul.

3 Tangente

Como já sabemos, a tangente de um ângulo α pode ser definida como a razão entre o seno e o cosseno deste ângulo, desde que o cosseno seja diferente de zero. Também é possível visualizar a tangente usando o círculo trigonométrico.

Como antes, considere A=(1,0) e seja P um ponto qualquer sobre o círculo trigonométrico; também como antes, seja B o pé da perpendicular traçada de P ao eixo-x. Agora, tracemos a reta perpendicular ao eixo-x passado pelo ponto A (veja que, como essa reta é perpendicular ao raio OA, ela é tangente ao círculo trigonométrico), e chamemos de C o ponto de interseção da reta \overrightarrow{PO} com tal reta. Veja que a abcissa do ponto C é igual a 1. Vamos mostrar que sua ordenada é igual a $tg(\alpha)$. Primeiramente, mostremos que o comprimento do segmento \overline{AC} é igual ao valor absoluto de tangente de α , ou seja, $\overline{AC} = |tg(a)|$.

Na Figura 4, consideramos o caso em que α está no primeiro quadrante, mas não é difícil verificar que o mesmo vale para os demais quadrantes. Veja que os triângulos AOC e BOP são semelhantes, pois ambos são triângulos retângulos e possuem o ângulo α em comum. Então, temos que:

$$\frac{\overline{AC}}{\overline{\overline{AO}}} = \frac{\overline{BP}}{\overline{BO}}.$$

Substituindo $\overline{AO}=1,\ \overline{BP}=|{\rm sen}\,\alpha|$ e $\overline{BO}=|{\rm cos}\,\alpha|$ na igualdade acima, temos que

$$\overline{AC} = \frac{|\mathrm{sen}\,\alpha|}{|\mathrm{cos}\,\alpha|} = \left|\frac{\mathrm{sen}\,\alpha}{\mathrm{cos}\,\alpha}\right| = |\mathrm{tg}\,\alpha| \,.$$

Por fim, veja também que quando o ponto C está acima do ponto A é porque P está no quadrante I ou III; neste caso, temos que $\operatorname{tg}(\alpha)$ é positiva, pois $\operatorname{sen}(\alpha)$ e $\operatorname{cos}(\alpha)$ possuem o mesmo sinal. Da mesma forma, quando C está abaixo de A, temos $\operatorname{tg}(\alpha)$ é negativa, pois P está no quadrante II ou IV. Por conta disso, chamaremos a

Figura 4: eixo das tangentes.

reta que contém o segmento AC de eixo das tangentes. Note que, quando $\alpha=\pi/2$, o valor de $\operatorname{tg}(\alpha)$ não está definido. Isso segue tanto porque a reta que passa por (0,0) e (0,1) (este último ponto correspondendo a P quando $\alpha=\pi/2$) não intersecta o eixo das tangentes, quanto porque $\operatorname{tg}(\alpha)=\operatorname{sen}(\alpha)/\cos(\alpha)$ mas $\cos(\pi/2)=0$, de sorte que não podemos realizar uma divisão por zero. De forma geral, sempre que $\cos(\alpha)=0$ o valor de $\operatorname{tg}(\alpha)$ não está definido. Isso acontece precisamente quando $\alpha=\pi/2+k\pi$ onde k é um número inteiro: quando k é par temos um arco congruente a $\pi/2$ e quando k é impar temos um arco congruente a $3\pi/2$.

Com as observações acima, podemos construir o gráfico da função $\operatorname{tg}(x)$ (veja a Figura 5). Para cada número real x, consideremos $\alpha=x$ e observamos o que acontece com o ponto C sobre o eixo das tangentes.

Dessa vez, vamos começar com x sendo um número negativo um pouco maior que $-\pi/2$ (veja que quando $x=-\pi/2$ o valor de $\operatorname{tg}(x)$ não está definido). Neste caso, o ponto C estará muito abaixo de A, de modo que $\operatorname{tg}(x)$ será um número negativo de grande valor absoluto. À medida que x aumenta de $-\pi/2$ até $\pi/2$, o valor de $\operatorname{tg}(x)$ só aumenta,

Figura 5: gráfico da tangente no intervalo de $-5\pi/2$ a $5\pi/2$.

passado por 0 quando x=0 e crescendo indefinidamente quando x se aproxima de $\pi/2$. Porém, quando $x=\pi/2$ o valor de $\operatorname{tg}(x)$ novamente não está definido. Repentinamente, para x um pouco maior que $\pi/2$, o valor de $\operatorname{tg}(x)$ volta a ser negativo e grande em módulo e o processo se repete, sempre em intervalos de comprimento π .

Dicas para o Professor

Nesta aula, estendemos as noções de seno, cosseno e tangente de arcos entre 0 e $\pi/2$ para arcos em geral. Mostramos ainda como são os gráficos de cada uma dessas funções. É importante que os alunos estejam confortáveis com o conteúdo da aula anterior e, em especial, estejam habituados a usar medidas de arcos em radianos. Outro pré-requisito geral desta aula é ter boa familiaridade com o sistema cartesiano e saber (genericamente) esboçar e interpretar gráficos de funções.

As referências colecionadas abaixo contém mais sobre $funções\ trigonom\'etricas.$

Sugestões de Leitura Complementar

- 1. A. Caminha. Tópicos de Matemática Elementar, Volume 2: Geometria Euclidiana Plana. SBM, Rio de Janeiro, 2013.
- G. Iezzi Os Fundamentos da Matemática Elementar, Volume 3: Trigonometria. Atual Editora, Rio de Janeiro, 2013.