MATH 7752 Homework 5

James Harbour

February 22, 2022

Problem 1

Let $F = \mathbb{Z}^3$ be the free \mathbb{Z} -module of rank 3. Let N be the submodule of F generated by $v_1 = (1, 2, 3), (5, 4, 6),$ and (7, 8, 9).

- 1. Find compatible bases for F and N, that is, bases satisfying the submodule theorem 1.
- 2. Describe the quotient F/N in the IF form.
- 3. Describe in IF form the abelian group given by the presentation

$$\langle a, b, c \mid a + 2b + 3c = 0, 5a + 4b + 6c = 0, 7a + 8b + 9c = 0 \rangle.$$

Problem 2

Let R be a PID. For an R-module M define rk(M) to be the minimal size of a generating set of M.

- (a) Let M be a finitely generated R-module and $R/a_1R \oplus \cdots \oplus R/a_mR \oplus R^s$ be its invariant factor decomposition. That is, $s \geq 0$ and the elements a_1, \ldots, a_m are non-zero, non-units such that $a_1|a_2|\cdots|a_m$. Prove that $\mathrm{rk}(M) = m + s$. Warning: It is not true in general that $\mathrm{rk}(P \oplus Q) = \mathrm{rk}(P) \oplus \mathrm{rk}(Q)$.
- (b) Let F be a free R-module of rank n with basis $e_1, \ldots e_n$. Let N be the submodule of F generated by some elements $v_1, \ldots, v_n \in F$. Let $A \in Mat_n(F)$ be the matrix such that

$$\left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array}\right) = A \left(\begin{array}{c} e_1 \\ \vdots \\ e_n \end{array}\right).$$

Find a simple condition on the entries of A which holds if and only if rk(F/N) = n.

Problem 3

In this problem R will be a commutative domain. An R-module P is called *projective* if it is a direct summand of a free R-module. That is, if there exist a free R-module F and a submodule Q of F such that $F = P \oplus Q$.

1. Let P, M, N be R-modules and suppose $f: M \to N$ is a surjective R-module homomorphism. The map f induces a homomorphism of R-modules,

$$f_{\star}: \operatorname{Hom}_{R}(P, M) \to \operatorname{Hom}_{R}(P, N)$$

 $[\varphi: P \to M] \mapsto [f \circ \varphi: P \to N].$

Prove that if P is finitely generated and projective, then f_{\star} is surjective.

Hint: The universal property of free *R*-modules will be useful.

2. Show that if R is a PID and P is finitely generated, then P is projective if and only if P is free.

Problem 4

Determine the number of possible RCF's of 8×8 matrices A over \mathbb{Q} with $\chi_A(x) = x^8 - x^4$. Explain your argument in detail.