КОМП'ЮТЕРНИЙ ПРАКТИКУМ З ПОБУДОВА ІМІТАЦІЙНОЇ МОДЕЛІ СИСТЕМИ З ВИКОРИСТАННЯМ ФОРМАЛІЗМУ МОДЕЛІ МАСОВОГО ОБСЛУГОВУВАННЯ

Завдання до практичної роботи

- **1.** Реалізувати універсальний алгоритм імітації моделі масового обслуговування з багатоканальним обслуговуванням, з вибором маршруту за пріоритетом або за заданою ймовірністю. **30 балів.**
- 2. Для наступного тексту задачі скласти формалізовану модель масового обслуговування та реалізувати її з використанням побудованого універсального алгоритму (30 балів):

У банку для автомобілістів є два віконця, кожне з яких обслуговується одним касиром і має окрему під'їзну смугу. Обидві смуги розташовані поруч. З попередніх спостережень відомо, що інтервали часу між прибуттям клієнтів у годину пік розподілені експоненційно з математичним очікуванням, рівним 0,5 од. часу. Через те, що банк буває переобтяжений тільки в годину пік, то аналізується тільки цей період. Тривалість обслуговування в обох касирів однакова і розподілена експоненційно з математичним очікуванням, рівним 0,3 од. часу. Відомо також, що при рівній довжині черг, а також при відсутності черг, клієнти віддають перевагу першій смузі. В усіх інших випадках клієнти вибирають більш коротку чергу. Після того, як клієнт в'їхав у банк, він не може залишити його, доки не буде обслугований. Проте він може перемінити чергу, якщо стоїть останнім і різниця в довжині черг при цьому складає не менше двох автомобілів. Через обмежене місце на кожній смузі може знаходитися не більш трьох автомобілів. У банку, таким чином, не може знаходитися більш восьми автомобілів, включаючи автомобілі двох клієнтів, що обслуговуються в поточний момент касиром. Якщо місце перед банком заповнено до границі, то клієнт, що прибув, вважається втраченим, тому що він відразу ж виїжджає. Початкові умови такі: обидва касири зайняті, 1) кожного обслуговування касира нормально розподілена ДЛЯ математичним очікуванням, рівним 1 од. часу, і середньоквадратичним відхиленням, рівним 0,3 од. часу; 2) прибуття першого клієнта заплановано на момент часу 0,1 од. часу; 3) у кожній черзі очікують по два автомобіля.

Визначити такі величини: 1) середнє завантаження кожного касира; 2) середнє число клієнтів у банку; 3) середній інтервал часу між від'їздами клієнтів від вікон; 4) середній час перебування клієнта в банку; 5) середнє число клієнтів у кожній черзі; 6) відсоток клієнтів, яким відмовлено в обслуговуванні; 7) число змін під'їзних смуг.

3. Для наступного тексту задачі скласти формалізовану модель масового обслуговування та реалізувати її з використанням побудованого універсального алгоритму (**40 балів**):

У лікарню поступають хворі таких трьох типів: 1) хворі, що пройшли попереднє обстеження і направлені на лікування; 2) хворі, що

бажають потрапити в лікарню, але не пройшли повністю попереднє обстеження; 3) хворі, які тільки що поступили на попереднє обстеження. Чисельні характеристики типів хворих наведені в таблиці:

Тип хворого	Відносна частота	Середній час
		реєстрації, хв
1	0,5	15
2	0,1	40
3	0,4	30

При надходженні в приймальне відділення хворий стає в чергу, якщо обидва чергових лікарі зайняті. Лікар, який звільнився, вибирає в першу чергу тих хворих, що вже пройшли попереднє обстеження. Після заповнення різноманітних форм у приймальне відділення хворі 1 типу ідуть прямо в палату, а хворі типів 2 і 3 направляються в лабораторію. Троє супровідних розводять хворих по палатах. Хворим не дозволяється направлятися в палату без супровідного. Якщо всі супровідні зайняті, хворі очікують їхнього звільнення в приймальному відділенні. Як тільки хворий доставлений у палату, він вважається таким, що завершив процес прийому до лікарні.

Хворі, що спрямовуються в лабораторію, не потребують супроводу. Після прибуття в лабораторію хворі стають у чергу в реєстратуру. Після реєстрації вони ідуть у кімнату очікування, де чекають виклику до одного з двох лаборантів. Після здачі аналізів хворі або повертаються в приймальне відділення (якщо їх приймають у лікарню), або залишають лікарню (якщо їм було призначено тільки попереднє обстеження). Після повернення в приймальне відділення хворий, що здав аналізи, розглядається як хворий типу 1.

У наступній таблиці приводяться дані по тривалості дій (хв):

з наступни таблиці приводиться дані по тривалості дін (хв).		
Величина	Розподіл	
Час між прибуттями в приймальне	Експоненціальний з	
відділення	математичним сподіванням 15	
Час слідування в палату	Рівномірне від 3 до 8	
Час слідування з приймального	Рівномірне від 2 до 5	
відділення в лабораторію або з	-	
лабораторії в приймальне відділення		
Час обслуговування в реєстратуру	Ерланга з математичним	
лабораторії	сподіванням 4,5 і <i>k</i> =3	
Час проведення аналізу в лабораторії	Ерланга з математичним	
	сподіванням 4 і <i>k</i> =2	

Визначити час, проведений хворим у системі, тобто інтервал часу, починаючи з надходження і закінчуючи доставкою в палату (для хворих типу 1 і 2) або виходом із лабораторії (для хворих типу 3). Визначити також інтервал між прибуттями хворих у лабораторію.