

Université Abdelmalek ESSAADI (UAE) Ecole Nationale des Sciences Appliquées Al Hoceima, Maroc

ANALYSE 3 : FONCTIONS DE PLUSIEURS VARIABLES

AP2: DEUXIÈME ANNÉE CYCLE PRÉPARATOIRE

RÉDIGÉ PAR

MOUSSAID AHMED

Professeur Assistant Département de Mathématiques-Informatique ENSAH

Table des matières

1	Esp	aces N	létriques et Espaces Vectoriels Normés	4
	1.1	es Métriques	4	
		1.1.1	Distance	4
		1.1.2	Espaces Métriques	6
		1.1.3	Suites et étude de la convergence dans un Espace métrique	7
		1.1.4	Suites de Cauchy - Espace métrique complet	8
	1.2 Espaces Vectoriels Normés			
		1.2.1	Distance associée à une norme	11
		1.2.2	Normes Équivalentes	11
		1.2.3	Normes subordonnées	12
		1.2.4	Suites dans un K-espace vectoriel normé.	12
		1.2.5	Suites extraites	15
		1.2.6	Espace vectoriel normé complet :	16
2	Fon	ctions	de plusieurs variables : Limites et continuité	18
2.1 Fonctions de plusieurs variables		Fonct	ions de plusieurs variables	18
		2.1.1	Definition et Notation	18
		2.1.2	Fonctions Partielles	19
	2.2 Limite en un point		e en un point	19
		2.2.1	Opérations sur les limites	24
		2.2.2	Fonctions composantes, fonctions coordonnées	24
	2.3	Conti	nuité d'une fonction de plusieurs variables	25
		2.3.1	Fonctions lipschitziennes	26
	21		agamant nar cantinuitá:	26

Chapitre 1

Fonctions de plusieurs variables : Limites et continuité

1.1 Fonctions de plusieurs variables

1.1.1 Definition et Notation

Définition 1 Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés de dimensions n et m respectivement.

On appelle fonction de plusieurs variables une application f d'une partie $D \subseteq E$ dans un ensemble F ($f:D\subseteq E\to F$) L'ensemble D s'appelle le domaine de définition de f, qui à chaque vecteur $x=(x_1,x_2,...,x_n)$ de son domaine de définition D de E, associe un unique vecteur $y=(f_1(x),f_2(x),...,f_m(x))$

Et on note

$$f: D \subseteq E \rightarrow F$$

 $x = (x_1, x_2, ..., x_n) \mapsto f(x) = y = (f_1(x), f_2(x), ..., f_m(x))$

Remarque 1

- -Lorsque E est une partie de \mathbb{R}^2 ou \mathbb{R}^3 une application de E dans \mathbb{R} ou \mathbb{C} s'appelle fonction numérique de plusieurs variables.
- Lorsque E est une partie de \mathbb{R}^2 une application de E dans \mathbb{R} ou \mathbb{C} s'appelle fonction numérique de deux variables.

Notation:

- $\{f(x)/x \in D\}$ est appelée l'image de f.
- $\{(x, f(x))/x \in D\} \subseteq E \times F$ est appelé graphe de f.

Exemple 1:

Considérons un rectangle ABCD. On appelle x la longueur AB et, y la longueur BC. On suppose x > 0 et y > 0.

On appelle p(x,y), le périmètre de ABCD, et S(x,y) l'aire de ce rectangle. On a alors : P et S sont définier sur $(\mathbb{R}_+^*)^2$ dans \mathbb{R}_+^* par :

$$p(x, y) = 2 \times (x + y)$$
 et $S(x, y) = x \times y$

donc les fonctions P et S sont des fonctions numiréque de deux variables.

Exemple 2:

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $: f(x,y) = (r\cos\theta, r\sin\theta)$ (r > 0) est une fonction vectorielle de deux variables.(avec les coordonnées polaires).

Définition 2 Soient D_1 et D_2 deux parties de E telles que $D_1 \subset D_2$ et f et g deux fonctions définies respectivement sur D_1 et D_2 On dit que g est un prolongement de f à D_2 si pour tout $x \in D_1$ on a f(x) = g(x).

Dans cette situation, on dit aussi que f est la restriction de $g \grave{a} D_1$.

Exemple 3:

 $f(x,y) = \frac{x^3}{x^2 + y^2}$ qu'on prolonge en une fonction g définie sur \mathbb{R}^2 en posant g(0,0) = a où $a \in \mathbb{R}$

1.1.2 Fonctions Partielles

Définition 3 (fonction partielle)

Soit f une fonction de deux variables. La fonction partielle f_x est définie par :

$$f_x: x \mapsto f(x,y)$$

(la variable y est alors considérée comme un paramètre). De même la fonction partielle f_{γ} est définie par :

$$f_y: y \mapsto f(x,y)$$

(la variable x est alors considérée comme un paramètre).

1.2 Limite en un point

Définition 4 (limite)

Soient deux evn $(E, \|.\|_E)$ et $(F, \|.\|_F)$, une partie $A \subseteq E$ et une application $f : A \to F$. Soit un point $x_0 \in \overline{A}$ adhérent à A et $\ell \in F$.

On dit que la fonction f admet ℓ comme limite au point x_0 ssi :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in A, \quad \|x - x_0\|_E \le \eta \Rightarrow \|f(x) - \ell\|_F \le \varepsilon$$

On écrit alors $f(x) \xrightarrow[x \to x_0]{} \ell$.

Remarque

La définition précédente s'écrit avec des boules fermées :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad f(\overline{B}(x_0, \eta) \cap A) \subset \overline{B}(\ell, \varepsilon)$$

et avec des boules ouvertes :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad f(B(x_0, \eta) \cap A) \subset B(\ell, \varepsilon)$$

Théoréme 1 (Unicité de la limite)

Si f a une limite en x_0 , alors celle ci est unique.

Démonstration:

Supposons que f tend vers ℓ et ℓ' quand $xtendx_0$. Alors :

Soit
$$\varepsilon > 0$$
 il existe $\eta_1 > 0$ (resp. $\eta_1 > 0$) on a $||f(x) - \ell||_F \le \frac{\varepsilon}{2}$ (resp. $||f(x) - \ell'||_F \le \frac{\varepsilon}{2}$)

Donc, soit $x \in A$ et $\eta = \min(\eta_1, \eta_2)$ tel que $||x - x_0||_E \le \eta$

on a
$$\|\ell - \ell'\|_F \le \|f(x) - \ell\|_F + \|f(x) - \ell'\|_F \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Comme ε est quelconque, on a nécessairement $\ell = \ell'$

Remarque 2

 $\overline{\text{Pour } f}: \mathbb{R} \to \mathbb{R}$ une fonction d'une seule variable réelle à valeurs réelles on retrouve la définition de la limites de f au point x_0 :

$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in \mathbb{R}, \quad |x - x_0| \le \eta \Rightarrow |f(x) - \ell| \le \varepsilon$$

Exemple 4

1. On considère la fonction

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(x, y) \mapsto f(x, y) = 3x + y$

On montre que

$$\lim_{(x,y)\to(1,1)} f(x,y) = 4$$

d'aprés la difénition de la limite, on montre que :

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad |(x, y) - (1, 1)| < \eta \Rightarrow |f(x, y) - 4| \le \varepsilon$$

alors

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x,y) \in \mathbb{R}^2, \quad (|x-1| < \eta \quad \text{et} \quad |y-1| < \eta) \Rightarrow |3x + y - 4| \leq \varepsilon$$

donc on a

$$|x-1| < \eta \Rightarrow 3 - 3\eta < 3x < 3 + 3\eta$$

et
$$|y-1| < \eta \Rightarrow 1-\eta < y < 1+\eta$$

Donc
$$|f(x, y) - 4| < 4\eta \le \varepsilon$$

Alors $\eta \leq \frac{\varepsilon}{4}$

Donc on pose $\eta = \frac{\varepsilon}{4}$

finallement

$$\forall \varepsilon > 0, \quad \exists \eta = \frac{\varepsilon}{4} > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad |(x, y) - (1, 1)| < \eta \Rightarrow |f(x, y) - 4| \le \varepsilon$$

donc

$$\lim_{(x,y)\to(1,1)} f(x,y) = 4$$

2. Considérons la fonction de 2 variables $f:(\mathbb{R}^2,\|.\|_2)\to(\mathbb{R},|.|)$ définie par

$$f(x,y) = \frac{6x^2y}{x^2 + y^2}$$

Montrons par la difénition de la limite, que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

i.e

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \|(x, y) - (0, 0)\|_2 < \eta \Rightarrow |f(x, y) - 0| \le \varepsilon$$

C'est à dire

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \sqrt{x^2 + y^2} < \eta \Rightarrow |\frac{6x^2y}{x^2 + y^2}| \le \varepsilon$$

on a
$$\forall (x,y) \neq (0,0)$$
 $x^2 \leq x^2 + y^2 \Rightarrow \frac{x^2}{x^2 + y^2} \leq 1$
or $|\frac{6x^2y}{x^2 + y^2}| = 6 \times \frac{x^2}{x^2 + y^2} |y| \leq 6|y|$
et on a $y^2 \leq x^2 + y^2 \Rightarrow 6|y| \leq 6\sqrt{x^2 + y^2}$
Par conséquent $6\sqrt{x^2 + y^2} \leq \varepsilon \Rightarrow \sqrt{x^2 + y^2} \leq \frac{\varepsilon}{6} = \eta$

finallement on donne $\eta = \frac{\varepsilon}{6}$ donc

$$\forall \varepsilon > 0, \quad \exists \eta = \frac{\varepsilon}{6} > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \|(x, y) - (0, 0)\|_2 < \eta \Rightarrow |f(x, y) - 0| \le \varepsilon$$

alors

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

Remarque 2

la limite d'une fonction en un point ne dépend pas du choix des normes sur \mathbb{R}^n et, \mathbb{R}^p qui sont des espaces de dimensions finies.car toutes les normes de \mathbb{R}^n sont équivalentes ($\|.\|_{\infty} \le \|.\|_2 \le \|.\|_1 \le n\|.\|_{\infty}$)

Théorème 2 (Caractérisation séquentielle de la limite)

Soient deux e.v.n. de dimension finie $(E, \|.\|_E)$ et $(F, \|.\|_F)$, une partie $A \subset E$ et une application $f: A \to F$, Soit un point $x_0 \in \overline{A}$ adhérent à A et $\ell \in F$ On a l'équivalence entre :

1.
$$f(x) \xrightarrow[x \to x_0]{} \ell$$
.

2.
$$\forall (x_n)_n \in A$$
, $x_n \xrightarrow[n \to +\infty]{} x_0 \Rightarrow f(x_n) \xrightarrow[n \to +\infty]{} \ell$.

Démonstration

 $\Rightarrow \text{Supposons que } f(x) \xrightarrow[x \to x_0]{} \ell.$

soit $\varepsilon > 0$, soit $\eta > 0$, tel que pour tout x de A, si $\|x - x_0\|_E \le \eta$, alors $\|f(x) - \ell\|_F \le \varepsilon$.

puisque x_0 est adhérent à A, il existe au moins une suite d'éléments de A convergeant vers x_0 . Soit $(x_n)_n$ une suite d'éléments de A convergeant vers x_0 . Alors il existe $n_0 \in \mathbb{N}$ tel que , pour $n \ge n_0$, $\|x_n - x_0\|_E \le \eta$. alors pour $n \ge n_0$, $\|f(x_n) - \ell\|_F \le \varepsilon$.

On a monré que $\varepsilon > 0$, $\exists n_0 \in \mathbb{N}/\forall n \geq n_0$, $\|f(x_n) - \ell\|_F \leq \varepsilon$ et donc la suite $(f(x_n))_n$ converge vers ℓ . Ainsi, si $f(x) \xrightarrow[x \to x_0]{} \ell$ alors , pour toute suite $(x_n)_n$ d'éléments de A, convergente , de limite x_0 , la suite $(f(x_n))_n$ converge vers ℓ .

 \Leftarrow Supposons que pour tooute suite $(x_n)_n$ d'éléments de A convergente, de limite x_0 , la suite $(f(x_n))_n$ converge vers ℓ .

Supposons par l'absurde que f(x) ne tende pas vers ℓ quand x tend vers x_0 . Alors

$$\exists \varepsilon > 0$$
, $\forall \eta > 0$, $\exists x \in A / (\|x - x_0\|_E \le \eta \text{ et } \|f(x) - \ell\|_F > \varepsilon)$

 ε est ainsi fixé.

Pour chaque $n \in \mathbb{N}$, il exixte $u_n \in A$ tel que $||u_n - x_0||_E \le \frac{1}{n+1}$ et $||f(u_n) - \ell||_F > \varepsilon$.

Puisque $\frac{1}{n+1}$ tend vers 0 quand n tend vers $+\infty$, la suite $(u_n)_n$ est une suite d'éléments de A, convergente, de limite x_0 . D'aprés ce qui précéde, on doit avoir $\lim_{n\to +\infty} f(u_n) = \ell$ ce qui contredit le fait que $\forall n \in \mathbb{N}$, $||f(u_n) - \ell||_F > \varepsilon$.

Donc, f(x) tend vers ℓ quand x tend vers x_0 .

Théorème 3 (Théorème de majoration)

On considère une norme $\|.\|_E$ sur E.

On suppose qu'il existe une fonction $g: \mathbb{R} \to \mathbb{R}$, un voisinage $V \in \partial_{x_0}$ tels que :

1.
$$\forall x \in V$$
, $||f(x) - \ell||_F \le g(||x - x_0||_E)$

2.
$$g(\theta) \xrightarrow[\theta \to 0]{0} 0$$
Alors $f(x) \xrightarrow[x \to x_0]{} \ell$

Démonstration

Soit $\varepsilon > 0$, comme $\lim_{\theta \to 0} g = 0$, il existe $\eta > 0$ tel que $|\theta| < \eta$ alors $0 \le g(\theta) < \varepsilon$

Mais alors si $x \in V \cap B(x_0, \eta)$.

alors
$$\theta = \|x - x_0\|_E \le \eta$$
 et $\|f(x) - \ell\|_F \le g(\|x - x_0\|_E \le \varepsilon$

Donc
$$f(x) \xrightarrow[x \to x_0]{} \ell$$

Remarque: On se sert souvent de ce théorème pour montrer qu'une application n'admet pas de limite en un point.

Posons par exemple pour $\forall (x, y) \in \mathbb{R}^2$ (0,0).

$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$

On a
$$f(0,\frac{1}{n}) \xrightarrow[r \to +\infty]{} 0$$
 et $f(\frac{1}{n},\frac{1}{n}) \xrightarrow[r \to +\infty]{} \frac{\sqrt{2}}{2}$.

On a
$$f(0, \frac{1}{n}) \xrightarrow[x \to +\infty]{} 0$$
 et $f(\frac{1}{n}, \frac{1}{n}) \xrightarrow[x \to +\infty]{} \frac{\sqrt{2}}{2}$.
Pourtant $(0, \frac{1}{n}) \xrightarrow[x \to +\infty]{} (0, 0) (\frac{1}{n}, \frac{1}{n}) \xrightarrow[x \to +\infty]{} (0, 0)$.

Donc par le théorème de caractérisation séquentielle de la limite, f ne peut avoir de limite en (0,0).

PROPOSITION 1 (On définit également des limites « infinies ») :

1. Si
$$f: X \subset E \to \mathbb{R}$$
, on dit que $f(x) \xrightarrow[x \to x_0]{} +\infty$ lorsque

$$\forall A > 0$$
, $\exists \eta > 0$, $\forall x \in X$ $\|x - x_0\|_E \le \eta \Rightarrow f(x) \ge A$

2. Si
$$f : \mathbb{R} \to (F, \|.\|_F)$$
, on dit que $f(x) \xrightarrow[x \to +\infty]{} \ell$ lorsque

$$\forall \varepsilon > 0$$
, $\exists A > 0$, $\forall x \ge A$, $||f(x) - \ell||_F \le \varepsilon$

3. Si
$$f: X \subset E \to F$$
, on dit que $f(x) \xrightarrow[x \to \infty]{} \ell$ lorsque

$$\forall \varepsilon > 0, \quad \exists R > 0, \quad \forall x \in X \quad \|x\|_E \ge R \Rightarrow \|f(x) - \ell\|_F \le \varepsilon$$

Théorème 4 (THEOREME DES GENDARMES)

Soient f; g et h trois fonctions de $E \rightarrow F$ vérifiant les deux propriétés suivantes :

1.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \ell$$

2. il existe
$$\alpha \in \mathbb{R}^+_*$$
 tel que pour tout $x \in \{x \in E/0 < \|x - x_0\| < \alpha\}$ tel que $f(x) \le h(x) \le g(x)$

Alors
$$\lim_{x \to x_0} h(x) = \ell$$

PROPOSITION 2 (PERMUTATION DES LIMITES)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction telle que $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \ell$ Supposons de plus que pour tout $x \in \mathbb{R}$, $\lim_{y\to y_0} f(x,y)$ existe et que pour tout $y \in \mathbb{R}$, $\lim_{x\to x_0} f(x,y)$ existe. Alors

$$\lim_{x \to x_0} (\lim_{y \to y_0} f(x, y)) = \lim_{y \to y_0} (\lim_{x \to x_0} f(x, y)) = \ell$$

1.2.1 Opérations sur les limites

Les propriétés de base pour les limites de fonctions de plusieurs variables sont les mêmes que pour les fonctions d'une variable réelle.

PROPOSITION 3 (Combinaison linéaire de limites)

Soient deux evn $(E, \|.\|_E)$ et $(F, \|.\|_F)$ une partie $X \subset E$, $x_0 \in \overline{X}$, deux applications $f, g : X \to F$ et deux scalaires $(\alpha, \beta) \in K^2$ si :

$$\begin{cases} \lim_{x \to x_0} f(x) = \ell, & ; \\ \lim_{x \to x_0} g(x) = \ell', & . \end{cases}$$

alors

$$\lim_{x \to x_0} (\alpha f(x) + \beta g(x))) = \alpha \ell + \beta \ell'$$

PROPOSITION 4 (Produit de limites)

Soient deux evn $(E, \|.\|_E)$ et $(F, \|.\|_F)$ une partie $X \subset E$, $x_0 \in \overline{X}$, une application vectorielle $f: X \to F$ et une fonction numérique. $g: X \to \mathbb{R}$ si :

$$\begin{cases} \lim_{x \to x_0} f(x) = \ell \in F, & ; \\ \lim_{x \to x_0} g(x) = \ell' \in \mathbb{R}, & . \end{cases}$$

alors l'application $\begin{cases} X \to F, & ; \\ x \mapsto g(x)f(x), & . \end{cases}$ admet une limite lorsque $x \to x_0$

$$g(x)f(x) \xrightarrow[x \to x_0]{} \ell'\ell$$

1.2.2 Fonctions composantes, fonctions coordonnées.

Soit E et F deux espaces vectoriels normés de dimensions n et m respectivement, $B(e_1, e_2, ..., e_m)$ base de F.

On not

$$f: E \xrightarrow{x=(x_1,\dots,x_n)\to f((x_1,\dots,x_n))} F$$

tel que $f((x_1,...,x_n)) = (f_1(x_1,...,x_n),...,f_m(x_1,...,x_n))$ s'appelle fonction vectorielle.

- 1- Les fonctions $f_1,...,f_m$, sont les fonctions composantes de la fonction f. Ce sont toujours des fonctions de n variables, mais à valeurs dans K.
- * Par exemple, la fonction $f: \mathbb{R}^2 \xrightarrow[(r,\theta) \to (r\cos(\theta),r\sin(\theta))]{} \mathbb{R}^2$ (passage des coordonnées polaires aux coordonnées cartésiennes) a deux fonctions composantes. les fonctions $f_1: \mathbb{R}^2 \xrightarrow[(r,\theta) \to (r\cos(\theta))]{} \mathbb{R}$ et $f_1: \mathbb{R}^2 \xrightarrow[(r,\theta) \to (r\sin(\theta))]{} \mathbb{R}$
- 2- pour décrire les valeurs de f, on peut utiliser une base $B(e_1, e_2, ..., e_m)$ de F alors

$$f(x) = f_1(x)e_1 + f_2(x)e_2 + \dots + f_m(x)e_m = \sum_{i=1}^m f_i(x)e_i$$

Les fonctions $f_1,...,f_m$, sont les fonctions coordonnées dans la base B de la fonction f. Ce sont des fonctions d'une partie de E vers R.

Théorème 5 (Limite d'une application dans un espace produit)

Soit un evn $(E, \|.\|_E)$, et un espace produit $F = F_1 \times F_2 \times ... \times F_m$ chaque evn F_i étant muni d'une norme $\|.\|_{F_i}$ Soit $X \subset E$, $x_0 \in \overline{X}$ et

$$f: \left\{ \begin{array}{l} X \rightarrow F = F_1 \times F_2 \times \ldots \times F_m, & ; \\ x \mapsto (f_1(x), f_2(x, \ldots, f_m(x)) & . \end{array} \right.$$

On se ramène à l'étude de la limite de chacune des applications f_i

$$(f(x) \xrightarrow[x \to x_0]{} (\ell_1, \ell_2, ..., \ell_m)) \Leftrightarrow (\begin{cases} f_1(x) \xrightarrow[x \to x_0]{} \ell_1 & ; \\ \vdots & ; \\ f_m(x) \xrightarrow[x \to x_0]{} \ell_m & . \end{cases}$$

1.3 Continuité d'une fonction de plusieurs variables

Définition 5 (Continuité en un point)

Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, $f : E \to F$ et $x_0 \in D_f$ $(D_f L'ensemble de définition de <math>f$.

On dit que f est continue en x_0 SSI $\lim_{x\to x_0} f(x) = f(x_0)$

La définition de la continuité au point x_0 s'écrit avec des quantificateurs :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in D_f, \quad \|x - x_0\|_E \le \eta \Rightarrow \|f(x) - f(x_0)\|_F \le \varepsilon$$

Définition 6 (continuité sur une partie)

On dit que l'application $f: E \to F$ est (globalement) continue sur E lorsque f est continue en tout point de E.

On note $\mathscr{C}(E,F)$ ou $\mathscr{C}^0(E,F)$ l'ensemble des fonctions continues sur E.

Remarque

D'après les propriétés des opérations sur les limites on obtient :

- La somme, le produit, de deux fonctions continues en x_0 est continue en x_0 .
- Si f et g sont deux fonctions continues en x_0 et si $g(x_0) \neq 0$ la fonction quotient $\frac{f}{g}$ est continue en x_0 .
- Applications : les polynômes, les fonctions rationnelles sont continues en tout point de leur ensemble de définition.

PROPOSITION 5 (Continuité à valeurs dans un espace produit) Soient E et F deux espaces vectoriels normés de dimension n et m respectivement, $f: E \to F$ une fonction à composantes $f_1, f_2, ..., f_m$ dans la base $\mathscr{B}(e_1, ..., e_m)$ de F et $x_0 \in E$.

- f est continue en x_0 \Leftrightarrow pour tout $1 \le i \le m$, f_i est continue en x_0 .
- f est continue en E \Leftrightarrow pour tout $1 \le i \le m$, f_i est continue en E.

Théorème 6 (Caractérisation séquentielle de la continuité locale)

Soient Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, Soient $X \subset E$ et $f: X \to F$. Alors la fonction f est continue au point x_0 si et seulement si pour toute suite $(x_n) \in X^{\mathbb{N}}$ de points de X, $x_n \xrightarrow[n \to +\infty]{} x_0 \Rightarrow f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$

1.3.1 Fonctions lipschitziennes

Définition 7 (Fonctions lipschitziennes)

Soient Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, Soient $X \subset E$ et $f: X \to F$. On dit que l'application f est **lipschitzienne** (ou **k-lipschitzienne**) si il existe K > 0 tel que

$$\forall (x, y) \in X^2$$
, $||f(x) - f(y)||_F \le k ||x - y||_E$

Théoréme 7 (Toute fonction lipschitzienne est continue) Soient Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, Soient $X \subseteq E$ et une application k-lipschitzienne $f: X \to F$ Alors f est continue

Démonstration

Soient $x_0 \in X$ et $\varepsilon > 0$.

Posons $\eta = \frac{\varepsilon}{k}$, Alors pour tout $x \in B(x_0, \eta) \cap X$, On a

$$||f(x)-f(x_0)||_F \le k ||x-x_0||_E \le k \frac{\varepsilon}{k} = \varepsilon$$

et f est continue en x_0 . Comme x_0 est quelconque dans X, f est continue sur X.

Remarque : la continuité partielle n'entraine pas la continuité.

Continuité ⇒ Continuité partielle mais la la réciproque est faux.

Exemple 5:

Soit f la fonction définie par $f(x,y) = \frac{xy}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0

Les applications partielles $f_x: x \mapsto f(x,0)$ et $f_y: x \mapsto f(0,y)$ sont toutes deux constantes nulles sur \mathbb{R} et en particulier elles sont continues en 0. Par contre f n'est pas continue en (0,0) puisque pour tout réel x non nul : $f(x,x) = \frac{1}{2}$

1.4 Prolongement par continuité:

Définition 8 (Prolongement par continuité)

Soient Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, Soient $X \subseteq E$ et $f: X \to F$ une fonction continue sur X et $x_0 \notin X$.

Supposons que $\lim_{x \to x_0} f(x) = \ell$ avec $\ell \in F$, alors la fonction définie par :

$$\check{f} = \begin{cases}
f(x), & si \ x \in X/x_0; \\
\ell, & si \ x = x_0.
\end{cases}$$

est une fonction continue appelée le prolongement par continuité de f en x_0 .

Exemple 6

Soit f la fonction définie sur \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{pour } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Etudier la continuité de f sur \mathbb{R}^2

Solution

La fonction f est continue sur $\mathbb{R}^2 \setminus (0,0)$ en tant que quotient de fonctions continues sur $\mathbb{R}^2 \setminus (0,0)$ dont le dénominateur ne s'annule pas sur $\mathbb{R}^2 \setminus (0,0)$. Pour $(x,y) \in \mathbb{R}^2 \setminus (0,0)$

$$|f(x,y)| = \frac{|xy||x^2 - y^2|}{x^2 + y^2} \le \frac{|xy|(|x^2| + |y^2|)}{x^2 + y^2} = |xy|$$

Puisque $\lim_{(x,y)\to(0,0)}|xy|=0$, on en déduit que $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\neq(0,0)}}f(x,y)=0$ Ceci montre que f est continue

en (0,0).

En résumé, f est continue sur $\mathbb{R}^2 \setminus (0,0)$ et en (0,0) et finalement, f est continue sur \mathbb{R}^2 .

Exemple 7

Soit f la fonction définie sur $\mathbb{R}^2 \setminus (0,0)$ par

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

Comme f(0,y) = 0 et $f(x,x) = \frac{1}{2}$ alors f ne peut pas être prolongée par continuité en (0,0).

Remarque

En pratique, dans \mathbb{R}^2 il est souvent utile de passer aux coordonnées polaires pour ramener le calcul de la limite d'une fonction de deux variables à celui de la limite d'une fonction d'une seule variable. En effet, tout point (x,y) de $\mathbb{R}^2 \setminus (a,b)$ peut être représenté par ses coordonnées polaires centrées autour d'un point (a,b) grâce aux relations $x = a + r\cos(\theta)$ et $y = b + r\sin(\theta)$ avec x > 0 et $x = a + r\cos(\theta)$ et $x = a + r\cos(\theta)$

Dans cette écriture, r représente la distance entre (a,b) et (x,y) de sorte que

$$\lim_{\substack{(x,y)\to(a,b)}} f(x,y) = \lim_{\substack{r\to 0\\\forall \theta}} f(a+r\cos(\theta),b+r\sin(\theta))$$

On peut alors utiliser la condition suffisante suivante :

PROPOSITION 6 S'il existe $\ell \in \mathbb{R}$ et une fonction $r \to s = s(r)$ telle que au voisinage de (a,b) on a

$$|f(a+r\cos(\theta),b+r\sin(\theta))-\ell| \le s(r) \xrightarrow[r\to 0]{} 0$$

alors

$$\lim_{(x,y)\to(a,b)} f(x,y) = \ell$$

Exemple 8

Montrons de deux manières que $\lim_{(x,y)\to(0,0)} f(x,y)$ avec $f(x,y)=\frac{x^2-y^2}{x^2+y^2}$ n'existe pas.

Première méthode. La première méthode utilise la définition de limite. En effet, le long de l'axe horizontal qui a équation y = 0, on a

$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{x\to 0} \frac{x^2}{x^2} = 1$$

tandis que, le long de l'axe vertical qui a équation x = 0, on a

$$\lim_{\substack{(x,y)\to(0,0)\\x=0}} \frac{x^2 - y^2}{x^2 + y^2} = \lim_{y\to 0} \frac{-y^2}{y^2} = -1$$

de sorte que les deux limites ne coïncident pas.

Deuxième méthode. La secondemanière est basée sur les coordonnées polaires. En posant $x = r\cos(\theta)$ et $y = r\sin(\theta)$ avec r > 0 et $\theta \in [0, 2\pi[$.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{\substack{r\to 0\\ \forall \theta}} \frac{r^2(\cos^2(\theta) - \sin^2(\theta))}{r^2(\cos^2(\theta) + \sin^2(\theta))} = \lim_{\substack{r\to 0\\ \forall \theta}} \cos^2(\theta) - \sin^2(\theta) = \cos(2\theta)$$

Le résultat varie selon la direction θ , donc $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ n'existe pas

FIN