Изследване на ефектите на репелент срещу комари в малариен модел на Ross-Macdonald с две местообитания

изготвил: Калоян Стоилов

ръководител: Петър Рашков

Дипломна работа за образователна степен магистър

Факултет по математика и информатика Софийски Университет "Свети Климент Охридски" 9 юни 2025 г.

Съдържание

I	Въведение	1		
	I.1 Малария	1		
	I.2 SIS модел на Ross-Macdonald	1		
	I.3 Базово число на възпроизводство \mathscr{R}_0	3		
	I.4 Кооперативни(квазимонотонни) системи	4		
	I.5 Модел на Ross-Macdonald с мобилност	5		
	I.6 Модел на Ross-Macdonald с използване на репелент	6		
II	Модел на Ross-Macdonald с две местообитания и репелент	7		
Ш	Съществуване на решение и основни свойства	9		
	III.1 Съществуване на решение	9		
	III.2 Ограниченост на решението	10		
	III.3 Кооперативност (квазимонотонност)	11		
	III.4 Неразложимост	12		
	III.5 Силна вдлъбнатост	12		
	III.6 Неподвижни точки	13		
IV	Ядро на слаба инвариантност	14		
	IV.1 Случаи без употреба и с максимална употреба на репелент	14		
	IV.2 Система на Marchaud/Peano	14		
V	Вариационна задача на Хамилтон-Якоби-Белман	16		
VI	Числено приближение на ядрото на Белман	18		
	VI.1 Числено решение на уравнението на Хамилтон-Якоби-Белман	18		
	VI.2 Симулация	18		
Ли	Литература			

І Въведение

I.1 Малария

Разглеждат се само женските комари в популяцията, понеже те са хапещите. Комарите нямат имунна система и не оздравяват от маларийния плазмодий, откъдето заразени комари се отстраняват от популацията само чрез смъртност.

I.2 SIS модел на Ross-Macdonald

Основни факти за живота на Ronald Ross може да се намерят в [3, с. 12], а за развитието на модела в [12]. Ronald Ross е роден в Индия през 1857 г. Израства там, след което получава медицинско образование в Англия през 1888 г., а после започва изследване на маларията. През 1897 г. извършва експерименти върху птици. Намирайки паразита в слюнчестите жлези на комари от рода Anopheles, доказва, че маларията се предава чрез тяхното ухапване. След кратко завръщане за преподаване в Англия, обикаля по много места с цел лансиране борбата срещу комарите. Идеята, че намаляването на популацията комари би могло да премахне маларията, била посрешната с недоверие. През 1902 г. става носител на Нобеловата награда за физиология или медицина. Понеже през младините си изучава в свободното си време математика, решава да създаде математически модел на маларията. Първоначалният модел от 1908 в "Report on the prevention of malaria in Mauritus" е диференчно уравнение, а през 1911 г. в допълнение към второто издание на книгата "The Prevention of Malaria" публикува представения тук модел с две диференциални уравнения.

Фигура 1: Dr George Macdonald, 1903-1967

Фигура 2: Sir Ronald Ross, 1857-1932

Моделът прави следните допускания, които се пренасят и в неговите по-сложнени варианти:

- 1. Човешката популация и популацията комари е постоянна.
- 2. Хората и комарите са разпределени равномерно в средата.
- 3. Смъртността от заразата се пренебрегва, както при хората, така и при комарите.
- 4. Веднъж заразени, комарите не се възстановяват.

- 5. Само податливи се заразяват.
- 6. Хората не придобиват никакъв имунитет.

Въвеждаме следните означения:

- X(t) е броя заразени с малария хора в момент t.
- Y(t) е броя заразени с малария комари в момент t.
- N е човешката популация.
- М е популацията от комари.
- γ е скоростта на оздравяване на хората, т.е. оздравяват след $\frac{1}{\gamma}$ времеви единици.
- μ е скоростта на смъртност на комарите, т.е. умират след $\frac{1}{\mu}$ времеви единици.
- \bullet b е честотата на ухапване на комарите за единица време.
- β_{vh} е константна вероятност за заразяване на здрав човек с патогена, когато бъде ухапан от заразен комар, а β_{hv} е константна вероятност за заразяване на здрав комар с патогена, когато ухапе заразен човек.

Моделът се основава на закона за действие на масите. За интервал δt , заразените хора ще се получат, като се вземат всички ухапвания на заразени комари за периода и се умножат по вероятността да са по незаразен човек, както и да се предаде патогена, т.е. $\beta_{vh}bY(t)\frac{N-X(t)}{N}\delta t$, а оздравелите заразени ще са $\gamma X(t)\delta t$, откъдето $\delta X(t)=\beta_{vh}bY(t)\frac{N-X(t)}{N}\delta t-\gamma X(t)\delta t$. За този интервал пък заразените комари ще се получат, като се вземат всички ухапвания от незаразени комари и се умножат по вероятнстта да са по заразен човек, както и да се предаде патогена, т.е. $\beta_{hv}b(M-Y(t))\frac{X(t)}{N}\delta t$, а от тях ще умрат $\mu Y(t)\delta t$, откъдето $\delta Y(t)=\beta_{hv}b(M-Y(t))\frac{X(t)}{N}\delta t-muY(t)\delta t$ След деление на δt и граничен преход се достига до следния модел:

$$\dot{X}(t) = \beta_{\nu h} b \frac{N - X(t)}{N} Y(t) - \gamma X(t)$$

$$\dot{Y}(t) = \beta_{h\nu} b \frac{X(t)}{N} (M - Y(t)) - \mu Y(t)$$

Изследвайки системата, веднага забелязва че една равновесна точка е (0,0), а открива, че еднемична е:

$$E^* = (X^*, Y^*) = \left(N \frac{1 - \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu} M}}{1 + \frac{\gamma N}{b \beta_{\nu h} M}}, M \frac{1 - \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h \nu} M}}{1 + \frac{\mu}{b \beta_{h \nu}}}\right)$$

(2) $M > M^* = \frac{\gamma \mu N}{b^2 \beta_{\nu h} \beta_{h\nu}}$

Така Ross показва, че не е необходимо да бъдат изтребени всички комари, за да се изкорени маларията, а само броят им да се сведе под M^* .

През следващата година публикува второ издание на "The Prevention of Malaria" и бива произведен в рицар. Ross почива през 1932 г.

В модела на Ross не се взима предвид явно факта, че не всеки заразèн комар е зарàзен, това неявно участва в β_{vh} . τ е инкубационният период на комарите. Така математическото очакване заразèн комар да е станал зарàзен може да се изрази като $e^{-\frac{\tau}{\text{ср. продължителност на живот}}$. Но средната продължителност на живот на комарите е точно $\frac{1}{\mu}$, откъдето $e^{-\mu\tau}Y$ е броя зарàзни комари. Така можеше да разложим $\beta_{vh} = \tilde{\beta}_{vh}e^{-\mu\tau}$, където $\tilde{\beta}_{vh}$ е същинската вероятност за заразяване на човек от комар. Това е направено в някои от по-нататъшните модели.

ДА СЕ НАПИШЕ НЕЩО ЗА Macdonald

I.3 Базово число на възпроизводство \mathscr{R}_0

Подобно на популационните модели от демографията, може да се дефинира важен параметър \mathcal{R}_0 , наричан базово число на възпроизводство, който носи смисъла на брой вторични случаи на заразата, причинени от един първичен в популация състояща се единствено от податливи индивиди. За да може болестта да има ендемично състояние, то е необходимо $\mathcal{R}_0 > 1$, иначе броят заразени веднага щеше да намалее и съответно нямаше да има равновесна точка, различна от $\mathbf{0}$.

За модела на Ross, репродукционното число може да бъде изведено лесно. Човек остава заразèн (както и зарàзeн) средно $\frac{1}{\gamma}$ време, а пък за единица време средно получава $\beta_{hv}b\frac{M}{N}$ ухапвания от комар, които предават патогена. Комар остава заразèн за средно $\frac{1}{\mu}$ време и хапе предавайки болестта $\beta_{vh}b$ пъти. Оттук достигаме до:

(3)
$$\mathcal{R}_0 = \frac{1}{\gamma} \times \beta_{hv} b \frac{M}{N} \times \frac{1}{\mu} \times \beta_{vh} b = \frac{b^2 \beta_{vh} \beta_{hv} M}{\gamma \mu N}$$

Но от тази оценка веднага получаваме, че:

(4)
$$\mathcal{R}_0 > 1 \iff M > M^* = \frac{\gamma \mu N}{b^2 \beta_{vh} \beta_{hv}}$$

Но това е точно оценката на Ross (2).

За по-сложни модели може да се дефинира сходна константа, като ще подходим като van den Driessche и Watmough в [8], основаваща се на идеите в [7]. Нека имаме групи от заразени \mathbf{z} и $\dot{\mathbf{z}} = \mathbf{G}\mathbf{z} = \mathcal{F}(\mathbf{z}) - \mathcal{V}(\mathbf{z})$, където \mathcal{F} определя новите заразени, а $\mathcal{V}(\mathbf{z}) = \mathcal{V}^-(\mathbf{z}) - \mathcal{V}^+(\mathbf{z})$ е фунцкията на нетно изменение на популацията, която сме разделили на прииждащи и заминаващи за съответните групи.

Дефиниция I.1 (М-матрица). $A = (a_{ij})$ е М-матрица, ако $a_{ij} \le 0, i \ne j$ и собствените ѝ стойности имат неотрицателни реални части.

Теорема І.1. При изпълнени следните условия:

1.
$$\mathbf{z} \ge \mathbf{0} \implies \mathcal{V}(\mathbf{z}) \ge 0, \mathcal{V}^+(\mathbf{z}) \ge 0, \mathcal{V}^-(\mathbf{z}) \ge 0$$

2.
$$z_i = 0 \implies \mathcal{V}_i^- = 0$$

3.
$$\mathcal{F}(0) = 0, \mathcal{V}(0) = 0$$

4. Всички собствени стойности на $-D\mathcal{V}(\mathbf{0})$ са с отрицателна реална част

в сила за репродукционното число е $\mathcal{R}_0 = \rho(FV^{-1})$, където ρ е спектралния радиус, а $F = D\mathcal{F}(\mathbf{0}), V = D\mathcal{V}(\mathbf{0})$, където $F \geq \mathcal{O}$, а V е несингулярна M-матрица.

Допълнително, $\mathbf{0}$ е локално асимптотично устойчива, ако $\mathcal{R}_0 < 1$ и неустойчива, ако $\mathcal{R}_0 > 1$.

 F_{ij} е скоростта, с която индивид от група j заразява индивиди от група i, а V_{jk}^{-1} е средната продължителност на пребиваване на индивид от група k сред индивидите от група j, съответно $(FV^-1)_{ik}$ са средния брой новозаразени от i заради индивид от k.

I.4 Кооперативни(квазимонотонни) системи

Накратко ще се представят основите на кооперативните системи на Capasso [6].

Дефиниция I.2 (Съкратено означение). $\mathbb{H} = \mathbb{R}^n_+$

Дефиниция I.3 (\leq -сравнение на вектори). Нека са дадени два вектора $\mathbf{v}, \mathbf{w} \in \mathbf{R}^n, \mathbf{v} = (v_1, \cdots, v_n), \mathbf{w} = (w_1, \cdots, w_n)$. Дефинираме релацията \leq в $\mathbf{R}^n \times \mathbf{R}^n$ като:

$$\mathbf{v} \leq \mathbf{w} \iff \forall i \in \{\overline{1,n}\} (v_i \leq w_i)$$

Дефиниция І.4 (Съкратено означение). Нека $X,Y\subseteq \mathbb{R}^n$. Дефинираме релацията \leq в $\{X\to Y\}^2$ по следния начин:

$$\mathbf{f} \leq \mathbf{g} \iff \forall_{\mathbf{x} \in X} (\mathbf{f}(\mathbf{x}) \leq \mathbf{g}(\mathbf{x}))$$

Нека е дадена динамичната система върху интервал от време:

(5)
$$\dot{\mathbf{x}} = \mathbf{f}(t, \mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n, \mathbf{f} \in C^1(J \times \mathbb{R}^n, \mathbb{R}^n), J \subset \mathbb{R}$$
 е интервал

Дефиниция I.5 (Кооперативна система). Системата (5) е кооперативна (или още квазимонотонна), ако

(6)
$$\forall t \in J \forall \mathbf{x} \in \mathbb{H} \forall i, j \in \{\overline{1,n}\} \left(i \neq j \implies \frac{\partial f_i}{\partial x_j} \ge 0 \right)$$

Кооперативните системи са динамични системи, при които една променлива не може да доведе до понижаване на стойността на друга променлива. Името кооперативна произлиза от моделите за кооперативни междувидови отношения.

Дефиниция І.6 (Квазимонотонна матрица). Матрица $A = (a_{ij})_{n \times n}$ е квазимонотонна, ако

$$\forall i, j \in \{\overline{1,n}\} (i \neq j \implies a_{ij} \ge 0)$$

Теорема І.2. Ако А е квазимонотонна, то винаги има доминантна реална собствена стойност, на която съответства неотрицателен собствен вектор.

Дефиниция І.7 ((He-)разложима матрица). Матрицата $A = (a_{ij})_{n \times n}$ е разложима, ако съществува пермутационна матрица P, с която:

$$PAP^T = \begin{pmatrix} B & C \\ \emptyset & D \end{pmatrix}, \quad B, D$$
 - квадратни

Матрици, които не са разложими се наричат неразложими.

Теорема I.3 (Perron-Frobenius). *Ако A е неразложима, то доминантната ѝ собствена стойност µ е проста и на нея отговаря положителен собствен вектор* $\mathbf{v} \in \mathbb{H}$.

Теорема І.4. Ако (5) е линейна (т.е. $\dot{\mathbf{x}} = A\mathbf{x}, A = (a_{ij})_{n \times n}$) система, то \mathbb{H} е инвариантно. Допълнително, ако A е неразложима, то за кое да е t > 0 решението е във int \mathbb{H} , стига началното решение да е ненулево, т.е. $\mathbf{x}_0 \neq \mathbf{0}$.

Всъщност тук видяхме причината кооперативните системи да се наричат квазимонотонни - линейните кооперативни системи са тези с квазимонотонни матрици.

Теорема I.5 (Сравнение на решения). *Нека* $\mathbf{f}, \mathbf{g} \in C^1(\text{int}\mathbb{H}, \mathbb{R}^n)$ са такива, че системите $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$, $\dot{\mathbf{y}} = \mathbf{g}(\mathbf{y})$ са кооперативни, $\mathbf{f} \leq \mathbf{g}$ и $\mathbf{x}_0 \leq \mathbf{y}_0$. Тогава $\forall t > 0(\mathbf{x}(t) \leq \mathbf{y}(t))$.

Дефиниция I.8 ((He-)разложима система). Система (5) се нарича (не-)разложима, ако Якобианът на дясната страна Df във всяка точка е (не-)разложим.

Дефиниция І.9 (Силно вдлъбната система). Система (5) е силно вдлъбната, ако:

$$\mathbf{0} < \mathbf{x}_1 < \mathbf{x}_2 \implies \mathrm{D}\mathbf{f}(\mathbf{x}_2) < \mathrm{D}\mathbf{f}(\mathbf{x}_1)$$

I.5 Модел на Ross-Macdonald с мобилност

Разглежда се вариант на модела, предложен от Bichara [4]. Дадени са m местообитания с популации на комари и n популации с хора, като всяка от тях е с постоянен размер. Всяка от популациите си има съответни μ_j смъртности (комари) и γ_i скорости на оздравяване (хора). Комарите се приема, че не мигрират (което е разумно предположение с оглед ЦИТАТ ДВИЖЕНИЕ КОМАРИ!!!). Предполага се, че индивидите от всяка от популациите хора, пребивават в местообитанията на комарите за p_{ij} част от времето, $\sum_{j=1}^m p_{ij} = 1$.

Нека с $X_i(t)$ бележим броя заразени хора, а с $Y_j(t)$ - заразени комари. При направените допускания, в момент t, в местообитание j съотношението на заразени към всички хора е:

(7)
$$\frac{\sum_{i=1}^{n} p_{ij} X_i(t)}{\sum_{i=1}^{n} p_{ij} N_i}$$

Ако b_j е броят на ухапвания за човек за единица време, a_j са ухапванията за комар за единица време, то като представим по два начина броя ухапвания в местообитание j:

(8)
$$a_j M_j = b_j \sum_{i=1}^n p_{ij} N_i \iff b_j = \frac{a_j M_j}{\sum_{i=1}^n p_{ij} N_i}$$

Модел за разпространението на заразата е следния:

- 1. В момент t заразените хора X_i се увеличават от ухапване на незаразен човек от i заразени комари в различните местообитания j, а намаляват пропорционално на броя си с коефициента на оздравяване. Заразяването моделираме по закона за масите, като коефициентът за съответните местообитания ще бъде b_j . Тогава може да се изрази $\dot{X}_i(t) = \sum_{j=1}^m \beta_{vh} b_j p_{ij} (N_i X_i(t)) \frac{Y_j(t)}{M_j} \gamma_i X_i(t)$.
- 2. В момент t заразените комари Y_j се увеличават от ухапване на заразен човек от някое от различните местообитания i от незаразен комар в местообитание j, а намаляват пропорционално на броя си с коефициента на смъртност. Заразяването моделираме по закона за масите, като коефициентът ще бъде a_j . Достига се до $\dot{Y}_j(t) = \beta_{hv}a_j(M_j Y_j(t)) \frac{\sum_{i=1}^n p_{ij}X_i(t)}{\sum_{i=1}^n p_{ij}N_i} \mu_j Y_j(t)$.

След като се вземе предвид оценката за b_i , то системата има вида:

(9)
$$\dot{X}_{i}(t) = \beta_{vh}(N_{i} - X_{i}(t)) \sum_{j=1}^{m} \frac{p_{ij}a_{j}Y_{j}(t)}{\sum_{k=1}^{n} p_{kj}N_{k}} - \gamma_{i}X_{i}(t), \quad i = \overline{1, n}$$

$$\dot{Y}_{j}(t) = \beta_{hv}a_{j}(M_{j} - Y_{j}(t)) \frac{\sum_{i=1}^{n} p_{ij}X_{i}(t)}{\sum_{i=1}^{n} p_{ij}N_{i}} - \mu_{j}Y_{j}(t), \quad j = \overline{1, m}$$

В [4] с помощта на резултати за кооперативни системи на Smith (виж [13]) се показва, че за системата е изпълнено точно едно от:

- $\mathcal{R}_0 \le 1$ и **0** е единствената равновесна точка и е глобално асимптотично устойчива.
- $\mathcal{R}_0 > 1$ и **0** е неустойчива равновесна точка. Ако системата (9) е неразложима, има друга равновесна глобално асимптотично устойчива точка.

Тъй като \mathcal{R}_0 не може да бъде получено в явен вид аналитично, останалата част от статията [4] разглежда различни аналитични оценки за \mathcal{R}_0 и няколко симулации.

I.6 Модел на Ross-Macdonald с използване на репелент

Разглежда се модела на Rashkov от [11]. По същността си уравненията на модела са като на Ross-Macdonald (1), но с усложнението, че може с помощта на репеленти ([9]) да се намали честотата на ухапвания, тоест има множител $(1 - \kappa u(t))$ в закона за действие на масите, където κ е ефективността на репелента, а пък u(t) функция управление, задаващо пропорцията на хора предпазени с помощта на репелента.

$$\dot{X}(t) = \beta_{vh} e^{-\mu \tau} a (1 - \kappa u(t)) \frac{N - X(t)}{N} Y(t) - \gamma X(t)$$

$$\dot{Y}(t) = \beta_{hv} a (1 - \kappa u(t)) \frac{X(t)}{N} (M - Y(t)) - \mu Y(t)$$

$$u(t) \in \mathcal{U} = \{u : \mathbb{R}_+ \to [0, \bar{u}] | u\text{- измерима} \}$$

Разглежда се следния казус - възможно ли е всички заразени да бъдат хоспитализирани, т.е. да са под \bar{I} ? Дефинира се ядрото на слаба инвариантност на Белман: $V(\bar{I},\bar{u})=\{(X_0,Y_0)|\exists u\in \mathcal{U} \forall t>0(X(t)<\bar{I})\}$

II Модел на Ross-Macdonald с две местообитания и репелент

Задачата която се изследва в дипломната работа е:

$$\begin{split} \dot{X}_{1}(t) &= \beta_{vh}(N_{1} - X_{1}(t)) \left(\frac{p_{11}e^{-\mu_{1}\tau}a_{1}(1 - \kappa u_{1}(t))Y_{1}(t)}{p_{11}N_{1} + p_{21}N_{2}} + \frac{p_{12}e^{-\mu_{2}\tau}a_{2}(1 - \kappa u_{1}(t))Y_{2}(t)}{p_{12}N_{1} + p_{22}N_{2}} \right) - \gamma_{1}X_{1}(t) \\ \dot{X}_{2}(t) &= \beta_{vh}(N_{2} - X_{2}(t)) \left(\frac{p_{21}e^{-\mu_{1}\tau}a_{1}(1 - \kappa u_{2}(t))Y_{1}(t)}{p_{11}N_{1} + p_{21}N_{2}} + \frac{p_{22}e^{-\mu_{2}\tau}a_{2}(1 - \kappa u_{2}(t))Y_{2}(t)}{p_{12}N_{1} + p_{22}N_{2}} \right) - \gamma_{2}X_{2}(t) \\ \dot{Y}_{1}(t) &= \beta_{hv}a_{1}(M_{1} - Y_{1}(t)) \frac{p_{11}(1 - \kappa u_{1}(t))X_{1}(t) + p_{21}(1 - \kappa u_{2}(t))X_{2}(t)}{p_{11}N_{1} + p_{21}N_{2}} - \mu_{1}Y_{1}(t) \\ \dot{Y}_{2}(t) &= \beta_{hv}a_{2}(M_{2} - Y_{2}(t)) \frac{p_{12}(1 - \kappa u_{1}(t))X_{1}(t) + p_{22}(1 - \kappa u_{2}(t))X_{2}(t)}{p_{12}N_{1} + p_{22}N_{2}} - \mu_{2}Y_{2}(t) \\ u_{i}(t) &\in \mathcal{U}_{i} = \{u_{i} : \mathbb{R}_{+} \rightarrow [0, \bar{u}_{i}] | u_{i} \text{- измерима}\}, i = 1, 2, \quad \mathcal{U} = \mathcal{U}_{1} \times \mathcal{U}_{2} \end{split}$$

Това е модел обединение на моделите за мобилност и за репелент против комари. t е времето, като ще разглеждаме само $t \in [0, \infty)$.

 $X_i \in [0, N_i]$ са броят заразени хора, а $Y_i \in [0, M_i]$ - броят заразени комари в местообитания i = 1, 2. $u_i : \mathbb{R}_+ \to [0, \bar{u}_i]$ са измерими функции управления, отговарящи за това каква част от хората от съответното местообитание са предпазени от репелента, като $\bar{u}_i \leq 1$ отговарят за максималната предпазена част от населението, вследствие от производствената способност. Надолу се бележи $U = [0, \bar{u}_1] \times [0, \bar{u}_2]$ и $\mathbf{u} = (u_1, u_2), \bar{\mathbf{u}} = (\bar{u}_1, \bar{u}_2)$

 $\kappa \in [0,1]$ е константа, която представя ефективността на репелента (т.е. предполага се че едно и също вещество/метод се използва и в двете местообитания и има еднаква ефективност на отблъскване на комарите от двете местообитания).

 $p_{11}, p_{12}, p_{21}, p_{22} \in [0, 0.5], p_{11} + p_{12} = 1, p_{21} + p_{22} = 1$ са константи, отговарящи за мобилността, като p_{ij} е частта от хора от i, които пребивават временно в j.

 γ_1, γ_2 са скоростите на оздравяване на хората, а μ_1, μ_2 - скоростите на смъртност на комарите, които приемаме за константи.

au е константа на средното време, за което комарите стават заразни.

 α_1, α_2 са константи, които бележат колко ухапвания на комари има за единица време.

 β_{vh} е константна вероятност за заразяване на здрав човек с патогена, когато бъде ухапан от заразен комар, а β_{hv} е константна вероятност за заразяване на здрав комар с патогена, когато ухапе заразен човек.

Моделът подлежи на скалиране на променливите чрез смяната $(X_1, X_2, Y_1, Y_2) \rightarrow (\frac{X_1}{N_1}, \frac{X_2}{N_2}, \frac{Y_1}{M_1}, \frac{Y_2}{M_2}) = (x_1, x_2, y_1, y_2)$ и може да направим следните полагания:

$$b_{11} = \beta_{vh} \frac{p_{11}e^{-\mu_{1}\tau}a_{1}M_{1}}{p_{11}N_{1} + p_{21}N_{2}} \ge 0 \quad b_{12} = \beta_{vh} \frac{p_{12}e^{-\mu_{2}\tau}a_{2}M_{2}}{p_{12}N_{1} + p_{22}N_{2}} \ge 0$$

$$b_{21} = \beta_{vh} \frac{p_{21}e^{-\mu_{1}\tau}a_{1}M_{1}}{p_{11}N_{1} + p_{21}N_{2}} \ge 0 \quad b_{22} = \beta_{vh} \frac{p_{22}e^{-\mu_{2}\tau}a_{2}M_{2}}{p_{12}N_{1} + p_{22}N_{2}} \ge 0$$

$$c_{11} = \beta_{hv}a_{1} \frac{p_{11}N_{1}}{p_{11}N_{1} + p_{21}N_{2}} \ge 0 \quad c_{12} = \beta_{hv}a_{1} \frac{p_{21}N_{2}}{p_{11}N_{1} + p_{21}N_{2}} \ge 0$$

$$c_{21} = \beta_{hv}a_{2} \frac{p_{12}N_{1}}{p_{12}N_{1} + p_{22}N_{2}} \ge 0 \quad c_{22} = \beta_{hv}a_{2} \frac{p_{22}N_{2}}{p_{12}N_{1} + p_{22}N_{2}} \ge 0$$

Таблица 1: Таблица с параметри на модела

Параметър	Описание	Мерни единици
eta_{hv}	Вероятност на прехвърляне на патогена от човек на комар	безразмерен
eta_{vh}	Вероятност на прехвърляне на патогена от комар на човек	безразмерен
a_i	Честота на ухапвания	ден ⁻¹
M_i	Популация на женски комари	безразмерен
μ_i	Смъртност на комари	ден ⁻¹
τ	Инкубационен период при комарите	ден
N_i	Човешка популация	безразмерен
γ_i	Скорост на оздравяване на хора	ден ⁻¹
p_{ij}	Мобилност на хора от местообитание і в ј	безразмерен
K	Ефективност на репелент	безразмерен
\bar{u}_i	Максимална възможна предпазена част хора с репелента	безразмерен
$ar{I}_i$	Максимална част на заразени хора	безразмерен

Крайният вид на модела е:

$$\dot{x}_{1}(t) = (1 - x_{1}(t))(1 - \kappa u_{1}(t)) (b_{11}y_{1}(t) + b_{12}y_{2}(t)) - \gamma_{1}x_{1}(t)
\dot{x}_{2}(t) = (1 - x_{2}(t))(1 - \kappa u_{2}(t)) (b_{21}y_{1}(t) + b_{22}y_{2}(t)) - \gamma_{2}x_{2}(t)
\dot{y}_{1}(t) = (1 - y_{1}(t)) (c_{11}(1 - \kappa u_{1}(t))x_{1}(t) + c_{12}(1 - \kappa u_{2}(t))x_{2}(t)) - \mu_{1}y_{1}(t)
\dot{y}_{2}(t) = (1 - y_{2}(t)) (c_{21}(1 - \kappa u_{1}(t))x_{1}(t) + c_{22}(1 - \kappa u_{2}(t))x_{2}(t)) - \mu_{2}y_{2}(t)
u_{i}(t) \in \mathcal{U}_{i} = \{u_{i} : \mathbb{R}_{+} \rightarrow [0, \bar{u}_{i}] | u_{i} - \text{измерима}\}, i = 1, 2, \quad \mathcal{U} = \mathcal{U}_{1} \times \mathcal{U}_{2}$$

Надолу (13) ще се записва и във векторен вид по следния начин:

(14)
$$\begin{pmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{y}} \end{pmatrix} = \mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{u}), \quad \mathbf{x} = (x_1, x_2)^T, \quad \mathbf{y} = (y_1, y_2)^T, \quad \mathbf{f} = (f_{x_1}, f_{x_2}, f_{y_1}, f_{y_2})^T$$

Или пък във вида:

(15)
$$\dot{\mathbf{z}} = \mathbf{f}(\mathbf{z}, \mathbf{u}), \quad \mathbf{z} = (\mathbf{x}, \mathbf{y})^T$$

Бележим $\Omega = \{0 \le x_1 \le 1, 0 \le x_2 \le 1, 0 \le y_1 \le 1, 0 \le y_2 \le 1\} = \{\mathbf{z} \in [0, 1]^4\}.$

Нека $\bar{\mathbf{I}} = (\bar{I}_1, \bar{I}_2)^T, \bar{I}_1, \bar{I}_2 \in [0,1]$ са константи, отговарящи за максималната част от населението в съответното местообитание, което може да получи адекватна здравна помощ при заразяване с малария. Ще бележим $\mathcal{F} = [0, \bar{I}_1] \times [0, \bar{I}_2]$. Питаме се има ли такива управления $\mathbf{u}(t)$, за които във всеки момент всички заразени да имат възможност да получат помощ от здравната система, т.е. :

(16)
$$\forall t > 0(x_1(t) \le \bar{I}_1 \land x_2(t) \le \bar{I}_2) \iff \forall t > 0(\mathbf{x}(t) \in \mathcal{F})$$

Тъй като първоначалният брой заразени хора и комари влияят на развитието на системата ще търсим множеството на начални условия:

$$V(\bar{\mathbf{I}}, \bar{\mathbf{u}}) = \{\mathbf{z}_0 \text{ начално условие} | \exists \mathbf{u}((13) \text{ има решение} \land (16) \text{ е изпълнено}) \}$$

 $V(\bar{\mathbf{I}}, \bar{\mathbf{u}})$ се нарича ядро на слаба инвариантност на Белман.

III Съществуване на решение и основни свойства

Лема III.1. Нека $z, z', s, s', C_z, C_s \in \mathbb{R}$, за които $z, z' < C_z$ и $s, s' < C_s$. Тогава след полагането $C = \max\{2|C_z|, |C_s|\}$ е в сила $|(C_z-z)s-(C_z-z')s'| \le C(|s-s'|+|z-z'|)$.

Доказателство.

$$(18) \quad \frac{|(C_z - z)s - (C_z - z')s'| = |C_z s - zs - C_z s' + z's' + zs' - zs'| = |C_z (s - s') - z(s - s') - s'(z - z')| \le}{|C_z||s - s'| + |z||s - s'| + |s'||z - z'| \le 2|C_z||s - s'| + |C_s||z - z'| \le \max\{2|C_z|, |C_s|\}(|s - s'| + |z - z'|)}$$

III.1 Съществуване на решение

Твърдение III.2. Системата (13) е липшицова по **z**.

Доказателство. Трябва да покажем, че \mathbf{f} е липшицова по фазовите применливи за всички възможни управления. Нека първо $\mathbf{z}, \mathbf{z}' \in \Omega, \mathbf{u} \in U$. Първо от неравенството на триъгълника имаме, че: (19)

$$\|\mathbf{f}(\mathbf{z},\mathbf{u}) - \mathbf{f}(\mathbf{z}',\mathbf{u}')\| \le |f_{x_1}(\mathbf{z},\mathbf{u}) - f_{x_1}(\mathbf{z}',\mathbf{u}')| + |f_{x_2}(\mathbf{z},\mathbf{u}) - f_{x_2}(\mathbf{z}',\mathbf{u}')| + |f_{y_1}(\mathbf{z},\mathbf{u}) - f_{y_1}(\mathbf{z}',\mathbf{u}')| + |f_{y_2}(\mathbf{z},\mathbf{u}) - f_{y_2}(\mathbf{z}',\mathbf{u}')|$$

Сега може да ползваме неколкократно лемата (III.1) за f_{x_1} :

$$(20) ||(1-x_{1})(1-\kappa u_{1})(b_{11}y_{1}+b_{12}y_{2})-\gamma_{1}x_{1}-(1-x'_{1})(1-\kappa u'_{1})(b_{11}y'_{1}+b_{12}y'_{2})-\gamma_{1}x'_{1}| \leq b_{11}||(1-x_{1})[(1-\kappa u_{1})y_{1}]-(1-x'_{1})[(1-\kappa u'_{1})y'_{1}]|+b_{12}||(1-x_{1})[(1-\kappa u_{1})y_{2}]-(1-x'_{1})[(1-\kappa u'_{2})y'_{2}]|+\gamma|x_{1}-x'_{1}||$$

Имаме, че $x_1, x_1' \le 1$, $(1 - \kappa u_1)y_1, (1 - \kappa u_1)y_1' \le 1$, $(1 - \kappa u_1)y_2, (1 - \kappa u_1)y_2' \le 1$:

$$|(1-x_1)[(1-\kappa u_1)y_1] - (1-x_1')[(1-\kappa u_1')y_1']| \le 2|(1-\kappa u_1)y_1 - (1-\kappa u_1')y_1'| + |x_1 - x_1'| \le 2(2|y_1 - y_1'| + \kappa|u_1 - u_1'|) + |x_1 - x_1'|$$

(22)
$$\left| (1-x_1)[(1-\kappa u_1)y_2] - (1-x_1')[(1-\kappa u_1')y_2'] \right| \leq 2|(1-\kappa u_1)y_2 - (1-\kappa u_1')y_2'| + |x_1 - x_1'| \leq 2(2|y_2 - y_2'| + \kappa|u_1 - u_1'|) + |x_1 - x_1'|$$

Тук също ползвахме $1 - \kappa u_1, 1 - \kappa u_1' \le 1, \quad y_1, y_1' \le 1, \quad y_2, y_2' \le 1$. Така получихе оценка отгоре за първото събираемо.

Тъй като видът на f_{x_2} е същият с точност до индекси, то директно получаваме и оценка за второто събираемо.

Сега да разгледаме f_{y_1} :

$$|(1-y_{1})(c_{11}(1-\kappa u_{1})x_{1}+c_{12}(1-\kappa u_{2})x_{2})-\mu_{1}y_{1}-(1-y_{1}')(c_{11}(1-\kappa u_{1}')x_{1}'+c_{12}(1-\kappa u_{2}')x_{2}')-\mu_{1}y_{1}'| \leq c_{11}|(1-y_{1})[(1-\kappa u_{1})x_{1}]-(1-y_{1}')[(1-\kappa u_{1}')x_{1}']|+c_{12}|(1-y_{1})[(1-\kappa u_{2})x_{2}]-(1-y_{1}')[(1-\kappa u_{2}')x_{2}']|+\mu|y_{1}-y_{1}'|$$

Ограниченията са $y_1, y_1' \le 1$, $(1 - \kappa u_1)x_1, (1 - \kappa u_1')x_1' \le 1$, $(1 - \kappa u_2)x_2, (1 - \kappa u_2')x_2' \le 1$:

$$(24) \quad \left| (1 - y_1)[(1 - \kappa u_1)x_1] - (1 - y_1')[(1 - \kappa u_1')x_1'] \right| \le 2|(1 - \kappa u_1)x_1 - (1 - \kappa u_1')x_1'| + |y_1 - y_1'| \le 2(2|x_1 - x_1'| + \kappa|u_1 - u_1'|) + |y_1 - y_1'|$$

(25)
$$\left| (1 - y_1) [(1 - \kappa u_2) x_2] - (1 - y_1') [(1 - \kappa u_2') x_2'] \right| \le 2 |(1 - \kappa u_2) x_2 - (1 - \kappa u_2') x_2'| + |y_1 - y_1'| \le 2 (2|x_2 - x_2'| + \kappa |u_2 - u_2'|) + |y_1 - y_1'|$$

Тук също ползвахме $1-\kappa u_1, 1-\kappa u_1', 1-\kappa u_2, 1-\kappa u_2' \le 1, \quad x_1, x_1' \le M_1, \quad x_2, x_2' \le M_2$. Така получихе оценка отгоре за второто събираемо

Тъй като видът на f_{y_2} е същият с точност до индекси, то директно получаваме и оценка за четвъртото събираемо.

За да проверим липшицовостта по фазовите променливи, то заместваме с $u_1 = u_1', u_2 = u_2'$ всичко и за цялата дясна страна е в сила:

(26)
$$\|\mathbf{f}(\mathbf{z}, \mathbf{u}) - \mathbf{f}(\mathbf{z}', \mathbf{u}')\| \le b_{11}(4|y_1 - y_1'| + |x_1 - x_1'|) + b_{12}(4|y_2 - y_2'| + |x_1 - x_1'|) + \gamma_1|x_1 - x_1'| + b_{21}(4|y_1 - y_1'| + |x_2 - x_2'|) + b_{22}(4|y_2 - y_2'| + |x_2 - x_2'|) + \gamma_2|x_2 - x_2'| + c_{11}(4|x_1 - x_1'| + |y_1 - y_1'|) + c_{12}(4|x_2 - x_2'| + |y_1 - y_1'|) + \mu_1|y_1 - y_1'| + c_{21}(4|x_1 - x_1'| + |y_2 - y_2'|) + c_{22}(4|x_2 - x_2'| + |y_2 - y_2'|) + \mu_2|y_2 - y_2'| \le C\|\mathbf{z} - \mathbf{z}'\|$$

$$C = 5(b_{11} + b_{12} + b_{21} + b_{22} + c_{11} + c_{12} + c_{21} + c_{22}) + \gamma_1 + \gamma_2 + \mu_1 + \mu_2$$

Накрая се използват неравенства от вида $|x_1 - x_1'| \le ||(x_1, x_2, y_1, y_2) - (x_1', x_2', y_1', y_2')|| = ||\mathbf{z} - \mathbf{z}'||$.

Следствие III.3. Задачата на Коши за системата (13) с начално условие \mathbf{z}_0 има единствено решение за произволни $\mathbf{u} \in \mathcal{U}$.

Доказателство. Спрямо общата теория на диференциалните уравнения с управление, съществува единствено решение на (11) за произволни t > 0.

III.2 Ограниченост на решението

Твърдение III.4. $\mathbf{z}_0 \in \Omega \implies \forall t > 0 (\mathbf{z}(t) \in \Omega)$

Доказателство. Трябва да се покаже, че ${\bf f}$ сочи към вътрешността на Ω , ако решението се намира по границата $\partial\Omega$. Но това наистина е така, от:

$$\dot{x}_{1}(t)|_{\Omega\cap\{x_{1}=0\}} = (1-\kappa u_{1}(t))(b_{11}y_{1}(t)+b_{12}y_{2}(t)) \geq 0
\dot{x}_{1}(t)|_{\Omega\cap\{x_{1}=1\}} = -\gamma_{1} < 0
\dot{x}_{2}(t)|_{\Omega\cap\{x_{2}=0\}} = (1-\kappa u_{2}(t))(b_{21}y_{1}(t)+b_{22}y_{2}(t)) \geq 0
\dot{x}_{2}(t)|_{\Omega\cap\{x_{2}=1\}} = -\gamma_{2} < 0
\dot{y}_{1}(t)|_{\Omega\cap\{y_{1}=0\}} = c_{11}(1-\kappa u_{1}(t))x_{1}(t)+c_{12}(1-\kappa u_{2}(t))x_{2}(t) \geq 0
\dot{y}_{1}(t)|_{\Omega\cap\{y_{1}=1\}} = -\mu_{1} < 0
\dot{y}_{2}(t)|_{\Omega\cap\{y_{2}=0\}} = c_{21}(1-\kappa u_{1}(t))x_{1}(t)+c_{22}(1-\kappa u_{2}(t))x_{2}(t) \geq 0
\dot{y}_{2}(t)|_{\Omega\cap\{y_{2}=1\}} = -\mu_{2} < 0$$

III.3 Кооперативност (квазимонотонност)

Якобианът за системата (13) може да се представи във вида:

(28)
$$\mathbf{Df}(x_1, x_2, y_1, y_2)(t) = \begin{pmatrix} \frac{\partial f_{x_1}}{\partial x_1} & \frac{\partial f_{x_1}}{\partial x_2} & \frac{\partial f_{x_1}}{\partial y_1} & \frac{\partial f_{x_1}}{\partial y_2} \\ \frac{\partial f_{x_2}}{\partial x_1} & \frac{\partial f_{x_2}}{\partial x_2} & \frac{\partial f_{x_2}}{\partial x_2} & \frac{\partial f_{x_2}}{\partial y_1} & \frac{\partial f_{x_2}}{\partial y_2} \\ \frac{\partial f_{y_1}}{\partial x_1} & \frac{\partial f_{y_1}}{\partial x_2} & \frac{\partial f_{y_1}}{\partial x_2} & \frac{\partial f_{y_2}}{\partial y_1} & \frac{\partial f_{y_2}}{\partial y_2} \\ \frac{\partial f_{y_2}}{\partial x_1} & \frac{\partial f_{y_2}}{\partial x_2} & \frac{\partial f_{y_2}}{\partial x_2} & \frac{\partial f_{y_2}}{\partial y_1} & \frac{\partial f_{y_2}}{\partial y_2} \end{pmatrix}$$

Твърдение III.5. Система (13) е кооперативна.

Доказателство.

$$\frac{\partial f_{x_1}}{\partial x_1} = \frac{\partial \dot{x}_1}{\partial x_1} = -(1 - \kappa u_1(t)) \left(b_{11}y_1(t) + b_{12}y_2(t)\right) - \gamma_1 < 0$$

$$\frac{\partial f_{x_1}}{\partial x_2} = \frac{\partial \dot{x}_1}{\partial x_2} = 0$$

$$\frac{\partial f_{x_1}}{\partial y_1} = \frac{\partial \dot{x}_1}{\partial y_1} = (1 - x_1(t))(1 - \kappa u_1(t))b_{11} \ge 0$$

$$\frac{\partial f_{x_1}}{\partial y_2} = \frac{\partial \dot{x}_2}{\partial y_2} = (1 - x_1(t))(1 - \kappa u_1(t))b_{12} \ge 0$$

$$\frac{\partial f_{x_2}}{\partial x_1} = \frac{\partial \dot{x}_2}{\partial x_2} = 0$$

$$\frac{\partial f_{x_2}}{\partial x_2} = \frac{\partial \dot{x}_2}{\partial x_2} = -(1 - \kappa u_2(t)) \left(b_{21}y_1(t) + b_{22}y_2(t)\right) - \gamma_2 < 0$$

$$\frac{\partial f_{x_2}}{\partial y_2} = \frac{\partial \dot{x}_2}{\partial y_1} = (1 - x_2(t))(1 - \kappa u_2(t))b_{21} \ge 0$$

$$\frac{\partial f_{x_2}}{\partial y_2} = \frac{\partial \dot{y}_2}{\partial y_2} = (1 - x_2(t))(1 - \kappa u_2(t))b_{22} \ge 0$$

$$\frac{\partial f_{y_1}}{\partial x_1} = \frac{\partial \dot{y}_1}{\partial x_2} = (1 - y_1(t))c_{11}(1 - \kappa u_1(t)) \ge 0$$

$$\frac{\partial f_{y_1}}{\partial x_2} = \frac{\partial \dot{y}_1}{\partial x_2} = (1 - y_1(t))c_{12}(1 - \kappa u_2(t)) \ge 0$$

$$\frac{\partial f_{y_1}}{\partial y_2} = \frac{\partial \dot{y}_1}{\partial y_2} = 0$$

$$\frac{\partial f_{y_2}}{\partial y_2} = \frac{\partial \dot{y}_2}{\partial x_1} = (1 - y_2(t))c_{21}(1 - \kappa u_1(t)) \ge 0$$

$$\frac{\partial f_{y_2}}{\partial x_2} = \frac{\partial \dot{y}_2}{\partial x_2} = (1 - y_2(t))c_{21}(1 - \kappa u_2(t)) \ge 0$$

$$\frac{\partial f_{y_2}}{\partial x_2} = \frac{\partial \dot{y}_2}{\partial x_2} = (1 - y_2(t))c_{22}(1 - \kappa u_2(t)) \ge 0$$

$$\frac{\partial f_{y_2}}{\partial y_2} = \frac{\partial \dot{y}_2}{\partial y_2} = 0$$

$$\frac{\partial f_{y_2}}{\partial y_2} = \frac{\partial \dot{y}_2}{\partial y_2} = (1 - y_2(t))c_{22}(1 - \kappa u_2(t)) \ge 0$$

$$\frac{\partial f_{y_2}}{\partial y_2} = \frac{\partial \dot{y}_2}{\partial y_2} = (1 - y_2(t))c_{22}(1 - \kappa u_2(t)) \ge 0$$

Извън главния диагонал на Df има само неотрицателни елементи и така системата е кооперативна.

III.4 Неразложимост

Използваме теорема 3.2.1 от [5], която гласи:

Теорема III.6. Матрица $A = (a_{ij})$ е неразложима точно когато ориентираният граф G = (V, E), с върхове $V = \{1, \dots, n\}$ и ребра $E = \{(i, j) | a_{ij} \neq 0\}$, е силно свързан.

Твърдение III.7. Якобианът на системата (13) е неразложим.

Доказателство. Заместваме ненулевите елементи на Df с 1 (тях знаем от (III.3)). Така получаваме графа с матрица на съседство A:

(30)
$$A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \implies A^3 = \begin{pmatrix} 7 & 6 & 7 & 7 \\ 6 & 7 & 7 & 7 \\ 7 & 7 & 7 & 6 \\ 7 & 7 & 6 & 7 \end{pmatrix} > \mathcal{O}$$

Тъй като графът има 4 върха, всеки прост път е с дължина не по-голяма от 3. С матрицата на съседство повдигната на 3-та степен получаваме броя на пътищата между върховете. Така за да е силно свързан графа, трябва всеки елемент да е положително число (да има поне 1 път). Спрямо (III.6) откъдето Df е неразложима.

III.5 Силна вдлъбнатост

Твърдение III.8. Системата (13) е силно вдлъбната, т.е. $\mathbf{0} < \mathbf{z}_1 < \mathbf{z}_2 \implies \mathrm{D}\mathbf{f}(\mathbf{z}_2) < \mathrm{D}\mathbf{f}(\mathbf{z}_1)$

Доказателство. Достатьчно условие за това е всяка компонента на Df да е нерастяща функция по всички променливи, като за поне една от тях да е намаляваща. Това може да проверим с производни по различните променливи:

$$\begin{split} &\frac{\partial^2 f_{x_1}}{\partial x_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial x_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial x_1 \partial y_1} = -(1 - \kappa u_1(t))b_{11} < 0, \quad \frac{\partial^2 f_{x_1}}{\partial x_1 \partial y_2} = -(1 - \kappa u_1(t))b_{12} < 0 \\ &\frac{\partial^2 f_{x_1}}{\partial x_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial x_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial x_2 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial x_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_1}}{\partial y_1 \partial x_1} = -(1 - \kappa u_1(t))b_{11} < 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_1 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_1}}{\partial y_2 \partial x_1} = -(1 - \kappa u_1(t))b_{12} < 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_2 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_1}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial x_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial x_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial x_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial x_1 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial x_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial x_2 \partial y_1} = -(1 - \kappa u_2(t))b_{21}, \quad \frac{\partial^2 f_{x_2}}{\partial x_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial x_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_1 \partial x_2} = -(1 - \kappa u_2(t))b_{21}, \quad \frac{\partial^2 f_{x_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_1 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = -(1 - \kappa u_2(t))b_{21}, \quad \frac{\partial^2 f_{x_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = -(1 - \kappa u_2(t))b_{21}, \quad \frac{\partial^2 f_{x_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = -(1 - \kappa u_2(t))b_{22} < 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_1} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{x_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{x_2}}{\partial y_2$$

$$\begin{split} &\frac{\partial^2 f_{y_1}}{\partial x_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial x_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial x_1 \partial y_1} = -(1 - \kappa u_1(t))c_{11} < 0, \quad \frac{\partial^2 f_{y_1}}{\partial x_1 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_1}}{\partial x_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial x_2 \partial y_1} = -(1 - \kappa u_1(t))c_{12} < 0, \quad \frac{\partial^2 f_{y_1}}{\partial x_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial x_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_1}}{\partial y_1 \partial x_1} = -(1 - \kappa u_1(t))c_{11} < 0, \quad \frac{\partial^2 f_{y_1}}{\partial y_1 \partial x_2} = -(1 - \kappa u_1(t))c_{12}, \quad \frac{\partial^2 f_{y_1}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial y_1 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_1}}{\partial y_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial y_2 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_1}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial x_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial x_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial x_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial x_1 \partial y_2} = -(1 - \kappa u_1(t))c_{21} \\ &\frac{\partial^2 f_{y_2}}{\partial x_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial x_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial x_2 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial x_2 \partial y_2} = -(1 - \kappa u_2(t))c_{22} < 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial x_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial y_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_1 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_2 \partial x_1} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_2 \partial x_2} = -(1 - \kappa u_2(t))c_{22} < 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_2 \partial x_1} = -(1 - \kappa u_1(t))c_{21} < 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_2 \partial x_2} = -(1 - \kappa u_2(t))c_{22} < 0, \quad \frac{\partial^2 f_{y_2}}{\partial y_2 \partial y_2} = 0 \\ &\frac{\partial^2 f_{y_2}}{\partial y_2 \partial x_2} = 0, \quad \frac{\partial^2 f_{y_2}$$

Така достатъчното условие е изпълнено и системата притежава силна вдлъбнатост.

III.6 Неподвижни точки

Тъй като системата е с управление, не може в общия случай да говорим за равновесни точки, понеже промени по него водят до промени по дясната страна. Да предположим, че сме фиксирали константно управление. Тогава системата става автономна, но е силно нелинейна и с голяма размерност, откъдето не е възможно да бъдат изведени аналитични изрази за координатите на равновесните точки, различни от $\mathbf{0}$. С помощта на теорията на кооперативните системи може обаче да получим техния брой.

Дефиниция III.1. С $\mathcal{R}_0(\mathbf{u})$ ще бележим базовото число на възпроизводство \mathcal{R}_0 на (13) при $\mathbf{u}(t) \equiv \mathbf{u} = const.$

Твърдение III.9. Нека $\mathbf{u}(t) \equiv \mathbf{u} = const.$ Тогава системата (13) има най-много една нетривиална равновесна точка (ендемична точка). Ако тя съществува е асимптотично устойчива.

Доказателство. Вече е установено, че системата (13) е кооперативна ((III.5)), с неразложима матрица на Якоби ((III.7)) и е силно вдлъбната ((III.8)). Тогава са налични всички условия от Следствие 3.2 от статията [13] на Smith.

Нека $\mathcal{R}_0(\mathbf{u}) \leq 1$. Тогава от [8], $\mathbf{0}$ е единствена устойчива равновесна точка.

Нека $\mathcal{R}_0(\mathbf{u}) > 1$. Тогава от [8], $\mathbf{0}$ е неустойчива равновесна точка и сме във втория случай от следствието на Smith. Вече доказахме, че решението е ограничено. Тогава е изпълнен подслучай (b) и съществува точно една друга устойчива равновесна точка \mathbf{E}^* , която е асимптотично устойчива.

Ендемичната точка (когато съществува) може да бъде намерена приблизително, като се реши числено нелинейната система, получена при занулят левите страни на (13). Полученото решение ще е равновесна точка, но може да получим и **0**. Варирайки първоначалното приближение, ще получим и приближение на ендемичната точка.

IV Ядро на слаба инвариантност

IV.1 Случаи без употреба и с максимална употреба на репелент

Твърдение IV.1. Ако $\mathcal{R}_0(\bar{\mathbf{u}}) > 1$ и $\mathbf{E}^* = (E_1^*, E_2^*)^T$, като $E_1^* > \bar{I}_1$ или $E_2^* > \bar{I}_2$, то ядрото на слаба инвариантност е тривиалното, т.е. $V(\bar{\mathbf{I}}, \bar{\mathbf{u}}) = \mathbf{0}$.

Доказателство. Наистина, по определение $I_1, I_2 \ge 0$, а пък $\mathbf{0}$ е равновесна за системата (13). Така $\mathbf{0} \in V(\bar{\mathbf{I}}, \bar{\mathbf{u}})$.

Остава да забележим, че $\mathbf{f}(\mathbf{z}, \bar{\mathbf{u}}) \leq \mathbf{f}(\mathbf{z}, \mathbf{u})$ за всички $\mathbf{u} \in \mathcal{U}$. Така може да ползваме теоремата (I.5) за сравнение на решения на кооперативни системи и така всяка друга система ще е с мажориращо решение за еднакви начални \mathbf{z}_0 . Понеже \mathbf{E}^* е асимптотично устойчива и е изпълнено поне едно от неравенствата в това твърдение, то ще съществува t > 0, за което търсеното условие (16) не е изпълнено. Но тогава за t от мажорирането ще следва, че не е изпълнено и за кое да е друго решение.

Обратната посока не е ясна. В случая $\mathbf{u}(t) = \mathbf{0}$, то ако липсва ендемична точка, решението ще клони към $\mathbf{0}$, но не е ясно дали винаги се намира в желаното множество, или излиза от него. Аналогично ако имаме ендемична точка.

Все пак може да се получи някакво слабо твърдение за задачата.

Твърдение IV.2. Ако (16) е изпълнено за решението на система (13) с $\mathbf{u} \equiv \mathbf{0}$ и начално условие $\mathbf{z}_0 = (\xi_1, \xi_2, 1, 1)^T$, то $\mathbf{\Xi} = [0, \xi_1] \times [0, \xi_2] \times [0, 1] \times [0, 1] \subseteq V(\mathbf{\bar{I}}, \mathbf{\bar{u}})$.

Доказателство. Веднага се вижда, че $\mathbf{f}(\mathbf{z}, \mathbf{u}) \leq \mathbf{f}(\mathbf{z}, \mathbf{0})$ за всички $\mathbf{u} \in \mathcal{U}$. Ползваме теоремата (I.5) за сравнение на решения и така за всяко друго решение $\tilde{\mathbf{z}}$ с начално условие $\tilde{\mathbf{z}}_0 \in \Xi$, понеже $\tilde{\mathbf{z}}_0 \leq \mathbf{z}_0$, то е изпълнено $\tilde{z}_1(t) \leq z_1(t) \leq \bar{I}_1, \tilde{z}_2(t) \leq z_2(t) \leq \bar{I}_2$, тоест $\tilde{\mathbf{z}}_0 \in V(\bar{\mathbf{I}}, \bar{\mathbf{u}})$.

Следствие IV.3. Ако (16) е изпълнено за решението на система (13) с $\mathbf{u} \equiv \mathbf{0}$ и начално условие $\mathbf{z}_0 = (\bar{I}_1, \bar{I}_2, 1, 1)^T$, то ядрото на слаба инвариатност е възможно най-голямо, т.е. $V(\bar{\mathbf{I}}, \bar{\mathbf{u}}) = \mathcal{I}$.

IV.2 Cистема на Marchaud/Peano

Питаме се, кога ядрото на слаба инвариантност на Белман (17) съществува и не е празно. От [2] за съществуването е необходимо да покажем, че $f(\mathbf{z}(t)) = \mathbf{f}(\mathbf{z}(t), \mathcal{U})$ е изображение на Marchaud/Peano.

Дефиниция IV.1 (изображение на Marchaud/Peano). f е изображение на Marchaud/Peano, ако е нетривиално, отгоре полунепрекъснато, с компактни изпъкнали образи и с линейно нарастване.

Твърдение IV.4. За системата (13), $f(\mathbf{z}(t)) = \mathbf{f}(\mathbf{z}(t), \mathcal{U})$ е изображение на Marchaud/Peano.

Стига параметрите да не са всички нулеви, то € е нетривиално.

От факта, че \mathbf{f} е непрекъснато по всяка компонента (а даже и диференцируемо), то е и отгоре полунепрекъснато, откъдето и \mathbf{f} е.

 Ω е затворено и ограничено, а е крайномерно, съответно е компактно. Аналогично за U. Тогава и $\Omega \times U$ е компактно. Директно от дефинициите на Ω , U те също така са изпъкнали, тоест $\Omega \times U$ е изпъкнало. Вече видяхме, че Ω положително инвариантно за системата. Тогава образите на f ще са в $\Omega \times U$, с други думи са компактни и изпъкнали.

Твърдение IV.5. Системата (13) има линейно нарастване

Доказателство. Ще се използват оценките от доказателството на (III.3). Понеже $\mathbf{f}(\mathbf{0}, \mathbf{u}) = \mathbf{0}$ за произволни $\mathbf{u} \in \mathcal{U}$, може да запишем:

(31)
$$\|\mathbf{f}(\mathbf{z}, \mathbf{u})\| = \|\mathbf{f}(\mathbf{z}, \mathbf{u}) - \mathbf{0}\| = \|\mathbf{f}(\mathbf{z}, \mathbf{u}) - \mathbf{f}(\mathbf{0})\| = b_{11}(2(2|y_1| + \kappa|u_1|) + |x_1|) + b_{12}(2(2|y_2| + \kappa|u_1|) + |x_1|) + \gamma_1|x_1| + b_{21}(2(2|y_1| + \kappa|u_2|) + |x_2|) + b_{22}(2(2|y_2| + \kappa|u_2|) + |x_2|) + \gamma_2|x_2| + c_{11}(2(2|x_1| + \kappa|u_1|) + |y_1|) + c_{12}(2(2|x_2| + \kappa|u_2|) + |y_1|) + \mu_1|y_1| + c_{21}(2(2|x_1| + \kappa|u_1|) + |y_2|) + c_{22}(2(2|x_2| + \kappa|u_2|) + |y_2|) + \mu_2|y_2| \le \tilde{C}_1|u_1| + \tilde{C}_2|u_2| + \tilde{C}_3|\mathbf{z}\| \le \tilde{C}_1 + \tilde{C}_2 + \tilde{C}_3|\mathbf{z}\| \le \tilde{C}_3(1 + |\mathbf{z}\|)$$

$$\tilde{C}_1 = 2\kappa(b_{11} + b_{12} + c_{11} + c_{21})$$

$$\tilde{C}_2 = 2\kappa(b_{21} + b_{22} + c_{12} + c_{22})$$

$$\tilde{C}_3 = 5(b_{11} + b_{12} + b_{21} + b_{22} + c_{11} + c_{12} + c_{21} + c_{22}) + \gamma_1 + \gamma_2 + \mu_1 + \mu_2$$

$$\kappa < 1 \implies \tilde{C}_3 \ge \tilde{C}_1 + \tilde{C}_2$$

Така $V(\bar{\mathbf{I}}, \bar{\mathbf{u}})$ съществува. Веднага може да видим, че $V(\bar{\mathbf{I}}, \bar{\mathbf{u}}) \neq \emptyset$, понеже $\mathbf{0}$ е равновесна точка за кое да е управление и следователно $\mathbf{0} \in V(\bar{\mathbf{I}}, \bar{\mathbf{u}})$.

V Вариационна задача на Хамилтон-Якоби-Белман

За намиране на ядрото на Белман (17) се подхожда по метода от [1]. Въвеждаме значна функция на разстоянието до границата на \mathcal{I} :

(32)
$$\Gamma(\mathbf{z}) = \begin{cases} \min_{\mathbf{z}' \in \mathcal{F}(\bar{I})} |\mathbf{z} - \mathbf{z}'|, & \mathbf{z} \in \Omega \setminus \mathcal{F}(\bar{I}) \\ -\min_{\mathbf{z}' \in \Omega \setminus \Im(\bar{I})} |\mathbf{z} - \mathbf{z}'|, & \mathbf{z} \in \mathcal{F}(\bar{I}) \end{cases}$$

Нека сега $\lambda > L > 0$, където L е константата на Липшиц (горна оценка за нея е получена в (26)). Въвеждаме фунцкията на Белман ν :

(33)
$$v(\mathbf{z}_0) = \inf_{\mathbf{u} \in \mathcal{U}} \sup_{t \in (0, +\infty)} e^{-\lambda t} \Gamma(\mathbf{z}(t; \mathbf{z}_0; \mathbf{u}))$$

Тук с $\mathbf{z}(t; \mathbf{z}_0; \mathbf{u})$ е означено решението на (13) в момент t при начално условие \mathbf{z}_0 и управление \mathbf{u} . Така е в сила:

(34)
$$V(\bar{\mathbf{I}}, \bar{\mathbf{u}}) = \{ \mathbf{z}_0 \in \Omega | v(\mathbf{z}_0) \le 0 \}, \quad \partial V(\bar{\mathbf{I}}, \bar{\mathbf{u}}) = \{ \mathbf{z}_0 \in \Omega | v(\mathbf{z}_0) = 0 \}$$

Изпълнен е принцип за динамично програмиране:

(35)
$$\forall t > 0 \left(v(\mathbf{z}_0) = \inf_{\mathbf{u} \in \mathcal{U}} \max\{ e^{-\lambda t} v(\mathbf{z}_0), \sup_{s \in (0, t]} e^{-\lambda t} \Gamma(\mathbf{z}(s; \mathbf{z}_0; \mathbf{u})) \} \right)$$

у е вискозното решение на уравнение на Хамилтон-Якоби-Белман за минимизация на функционал:

(36)
$$\min \{ \lambda v(\mathbf{z}) + \mathcal{H}(\mathbf{z}, \nabla v), v(\mathbf{z}) - \Gamma(\mathbf{z}) \} = 0, \quad \mathbf{z} \in \mathbb{R}^4$$
$$\mathcal{H}(\mathbf{z}, \nabla v) = \max_{\mathbf{u} \in \mathcal{U}} \langle -\mathbf{f}(\mathbf{z}, \mathbf{u}), \nabla v \rangle$$

Използвайки вида на ${f f}$, след групиране по части зависещи/независещи от управлението, получаваме:

$$(37) \quad \mathcal{H}(\mathbf{z}, \nabla v) = \\ \left[\gamma_{1}x_{1}(t) - (1 - x_{1}(t)) \left(b_{11}y_{1}(t) + b_{12}y_{2}(t) \right) \right] \frac{\partial v}{\partial x_{1}} + \left[\gamma_{2}x_{2}(t) - (1 - x_{2}(t)) \left(b_{21}y_{1}(t) + b_{22}y_{2}(t) \right) \right] \frac{\partial v}{\partial x_{2}} + \\ \left[\mu_{1}y_{1}(t) - (1 - y_{1}(t)) \left(c_{11}x_{1}(t) + c_{12}x_{2}(t) \right) x \right] \frac{\partial v}{\partial y_{1}} + \left[\mu_{2}y_{2}(t) - (1 - y_{2}(t)) \left(c_{21}x_{1}(t) + c_{22}x_{2}(t) \right) \right] \frac{\partial v}{\partial y_{2}} + \\ \max_{\mathbf{u} \in \mathcal{U}} \left\{ \kappa u_{1}(1 - x_{1}(t)) \left(b_{11}y_{1}(t) + b_{12}y_{2}(t) \right) \frac{\partial v}{\partial x_{1}} + \kappa u_{2}(1 - x_{2}(t)) \left(b_{21}y_{1}(t) + b_{22}y_{2}(t) \right) \frac{\partial v}{\partial x_{2}} + \\ \left(1 - y_{1}(t) \right) \kappa \left(c_{11}x_{1}(t)u_{1} + c_{12}x_{2}(t)u_{2} \right) \frac{\partial v}{\partial y_{1}} + \left(1 - y_{2}(t) \right) \kappa \left(c_{21}x_{1}(t)u_{1} + c_{22}x_{2}(t)u_{2} \right) \frac{\partial v}{\partial y_{2}} \right\}$$

В максимума има членове зависещи само от u_1 и u_2 , така че може да разбием на сума от два максимума по всяко от управленията. Функциите са линейни спрямо управленията и съответно

максимумите ще се достигат в един от двата края на допустимите интервали. Крайният вид е:

$$\begin{aligned} &(38) \quad \mathcal{H}(\mathbf{z}, \nabla v) = \\ & \left[\gamma_1 x_1(t) - (1 - x_1(t)) \left(b_{11} y_1(t) + b_{12} y_2(t) \right) \right] \frac{\partial v}{\partial x_1} + \left[\gamma_2 x_2(t) - (1 - x_2(t)) \left(b_{21} y_1(t) + b_{22} y_2(t) \right) \right] \frac{\partial v}{\partial x_2} + \\ & \left[\mu_1 y_1(t) - (1 - y_1(t)) \left(c_{11} x_1(t) + c_{12} x_2(t) \right) x \right] \frac{\partial v}{\partial y_1} + \left[\mu_2 y_2(t) - (1 - y_2(t)) \left(c_{21} x_1(t) + c_{22} x_2(t) \right) \right] \frac{\partial v}{\partial y_2} + \\ & \max \left\{ 0, \kappa \bar{u}_1(1 - x_1(t)) \left(b_{11} y_1(t) + b_{12} y_2(t) \right) \frac{\partial v}{\partial x_1} + c_{11} \kappa \bar{u}_1 x_1(t) (1 - y_1(t)) \frac{\partial v}{\partial y_1} + c_{21} \bar{u}_1 x_1(t) (1 - y_2(t)) \frac{\partial v}{\partial y_2} \right\} + \\ & \max \left\{ 0, \kappa \bar{u}_2(1 - x_2(t)) \left(b_{21} y_1(t) + b_{22} y_2(t) \right) \frac{\partial v}{\partial x_2} + c_{12} \bar{u}_2 x_2(t) (1 - y_1(t)) \frac{\partial v}{\partial y_1} + c_{22} \bar{u}_2 x_2(t) (1 - y_2(t)) \frac{\partial v}{\partial y_2} \right\} \end{aligned}$$

VI Числено приближение на ядрото на Белман

VI.1 Числено решение на уравнението на Хамилтон-Якоби-Белман

Задачата (36) решаваме с прибавено числено време.

(39)
$$\min \left\{ \frac{\partial v}{\partial t} (\mathbf{z}, t) + \lambda v(\mathbf{z}, t) + \mathcal{H}(\mathbf{z}, \nabla v), v(\mathbf{z}, t) - \Gamma(\mathbf{z}) \right\} = 0, \quad \mathbf{z} \in \mathbb{R}^4$$
$$v(\mathbf{z}, 0) = \Gamma(\mathbf{z}), \quad \mathbf{z} \in \mathbb{R}^4$$
$$\mathcal{H}(\mathbf{z}, \nabla v) = \max_{\mathbf{u} \in \mathcal{U}} \langle -\mathbf{f}(\mathbf{z}, \mathbf{u}), \nabla v \rangle$$

За численото пресмятане на задачата (39) се решава само в околност на \mathcal{F} , използва се равномерна дискретизация по пространството и Weighted Essentially Non-Oscillatory (WENO) [10, с. 3.4] апроксимация с числен хамилтониян от вида Lax-Friedrichs [10, с. 5.3]. Следвайки [10, с. 3.5], се дискретизацията по времето е равномерна и по него се апроксимира с подобрения метод на Ойлер.

VI.2 Симулация

Литература

- [1] Altarovici, Albert, Bokanowski, Olivier μ Zidani, Hasnaa. "A general Hamilton-Jacobi framework for non-linear state-constrained control problems". B: *ESAIM: COCV* 19.2 (2013), c. 337—357. DOI: 10.1051/cocv/2012011.
- [2] Jean-Pierre Aubin, Alexandre Bayen и Patrick Saint-Pierre. *Viability Theory: New Directions*. Ян. 2011. ISBN: 978-3-642-16683-9. DOI: 10.1007/978-3-642-16684-6.
- [3] Nicolas Bacaër. *A short history of mathematical population dynamics*. Англ. 1-е изд. Springer, 2011. ISBN: 978-0-85729-114-1.
- [4] Derdei Bichara и Carlos Castillo-Chavez. "Vector-borne diseases models with residence times A Lagrangian perspective". Англ. В: *Mathematical Biosciences* (10 септ. 2016).
- [5] Richard A. Brualdi и Herbert J. Ryser. *Combinatorial Matrix Theory*. Англ. 1-е изд. Encyclopedia of Mathematics and its Applications №39. Cambridge University Press, 1991. ISBN: 978-0-521-32265-2.
- [6] Vincenzo Capasso. *Mathematical Structures of Epidemic Systems*. Англ. 2-е изд. Springer, 2008, с. 16, 27—30, 115, 229—235. ISBN: 978-3-540-56526-0.
- [7] Odo Diekmann, J. A. P. Heesterbeek и J. A. J. Metz. "On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations". B: *Journal of Mathematical Biology* 28.4 (юли 1990), c. 365—382. ISSN: 1432-1416. DOI: 10.1007/BF00178324.
- [8] Pauline van den Driessche & James Watmough. "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission". B: *Mathematical Biosciences* 180.1 (2002), c. 29—48. ISSN: 0025-5564. DOI: 10.1016/S0025-5564(02)00108-6.
- [9] Ana Marija Grancarić, Lea Botteri и Peyman Ghaffari. "Combating invasive mosquitoes by textiles and paints". Англ. В: *AUTEX2019 World Textile Conference on Textiles at the Crossroads*. Т. 19. Ghent, Belgium, юни 2019.
- [10] Stanley Osher и Ronald Fedkiw. *Level Set Methods and Dynamic Implicit Surfaces*. Англ. 1-е изд. Springer, 2003. ISBN: 978-0-387-95482-1.
- [11] Peter Rashkov. "Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration". Англ. В: *Mathematical biosciences and engineering : MBE* 19.4 (февр. 2022), с. 4038—4061. ISSN: 1547-1063. DOI: 10.3934/mbe.2022185.
- [12] David L. Smith и др. "Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens". en. B: *PLoS Pathog* 8.4 (апр. 2012), e1002588. DOI: 10.1371/journal. ppat.1002588.
- [13] Hal L. Smith. "Cooperative Systems of Differential Equations with Concave Nonlinearities". B: *Nonlinear Analysis, Theory, Methods & Applications* 18.10 (1986), c. 1037—1052. ISSN: 0362-546X. DOI: 10.1016/0362-546X(86)90087-8.