

Ensemble Learning is a technique that combines predictions from multiple models to get a prediction that would be more stable and generalize better. The idea is to average out different models' individual mistakes to reduce the risk of overfitting while maintaining strong prediction performance.

In regression, overall prediction is typically the mean of individual tree predictions, whereas, in classification, overall prediction is based on a weighted vote with probabilities averaged across all trees, and the class with the highest probability is the final predicted class.

There are two main classes of ensemble learning methods, namely bagging and boosting, although ML (Machine Learning) algorithms can be a combination of both with certain variations.

- Bagging method builds models in parallel using a random subset of data (sampling with replacement) and aggregates predictions of all models
- **Boosting** method builds models in sequence using the whole data, with each model improving on the previous model's error

CatBoost, LightGBM, and XGBoost are all variations of gradient boosting algorithms. Now you've understood the difference between bagging and boosting, we can move on to the differences in how the algorithms implement gradient boosting.

. . .

Catboost vs. LightGBM vs. XGBoost Characteristics

The table below is a summary of the differences between the three algorithms, read on for the elaboration of the characteristics.

	CatBoost	LightGBM	XGBoost
Developer	Yandex	Microsoft	DMLC
Release Year	2017	2016	2014
Tree Symmetry	Symmetric	Asymmetric	Asymmetric
		Leaf-wise tree growth	Level-wise tree growth
Splitting Method	Greedy method	Gradient-based One-Side Sampling (GOSS)	Pre-sorted and histogram-based algorithm
Type of Boosting	Ordered	-	-
Numerical Columns	Support	Support	Support
Categorical Columns	Support	Support, but must use numerical columns	Supports, but must use numerical columns
	Perform one-hot encoding (default) Transforming categorical to numerical columns by border, bucket, binarized target mean value, counter methods available	Can interpret ordinal category	Cannot Interpret ordinal category, users must convert to one-hot encoding, label encoding or mean encoding
Text Columns	Support Support Bag-of-Words, Naïve-Bayes or BM- 25 to calculate numerical features from text data	Do not support	Do not support
Missing values	Handle missing value Interpret as NaN (default)	Handle missing value Interpret as NaN (default) or zero	Handle missing value Interpret as NaN (tree booster) or zero
	Possible to interpret as error, or processed as minimum or maximum values	Assign missing values to side that reduces loss the most in each split	(linear booster) Assign missing values to side that reduces loss the most in each split

Table 1: Characteristics of CatBoost, LightGBM, and XGBoost — Image by author

In CatBoost, symmetric trees, or balanced trees, refer to the splitting condition being consistent across all nodes at the same depth of the tree. LightGBM and XGBoost, on the other hand, results in asymmetric trees, meaning splitting condition for each node across the same depth can differ.

Fig 1: Asymmetric vs. Symmetric Trees — Image by author

For symmetric trees, this means that the splitting condition must result in the lowest loss across all nodes of the same depth. Benefits of balanced tree architecture include faster computation and evaluation and control overfitting.

Even though LightGBM and XGBoost are both asymmetric trees, LightGBM grows leaf-wise (horizontally) while XGBoost grows level-wise (vertically). To put it simply, we can think of LightGBM as growing the tree selectively, resulting in smaller and faster models compared to XGBoost.

Fig 2: LightGBM (left) vs. XGBoost (right) — Image by author

Splitting Method

Splitting Method refers to how the splitting condition is determined.

In CatBoost, a greedy method is used such that a list of possible candidates of feature-split pairs are assigned to the leaf as the split and the split that results in the smallest penalty is selected.

the loss function. Data points with larger gradients have higher errors and would be important for finding the optimal split point, while data points with smaller gradients have smaller errors and would be important for keeping accuracy for learned decision trees. This sampling technique results in lesser data instances to train the model and hence faster training time.

In XGBoost, the pre-sorted algorithm considers all feature and sorts them by feature value. After which, a linear scan is done to decide the best split for the feature and feature value that results in the most information gain. The histogram-based algorithm works the same way but instead of considering all feature values, it groups feature values into discrete bins and finds the split point based on the discrete bins instead, which is more efficient than the presorted algorithm although still slower than GOSS.

Type of Boosting

There are variations in how data is selected for training. Ordered boosting refers to the case when each model trains on a subset of data and evaluates another subset of data. Benefits of ordered boosting include increasing robustness to unseen data.

Categorical Columns

The parameters for categorical columns for different algorithms are as follows,

• CatBoost: cat features, one hot max size

• LightGBM: categorical feature

• XGBoost: NA

. .

Improving Accuracy, Speed, and Controlling Overfitting

In ensemble learning, averaging the prediction across different models helps with overfitting. However, as with any tree-based algorithm, there is still a possibility of overfitting. Overfitting can be handled in the splitting of the dataset into train, validation, and test set, enabling cross-validation, early stopping, or tree pruning. For the sake of comparing the different algorithms, we will focus on controlling overfitting using model parameters.

Note that to control the complexity of the model, XGBoost uses the parameter max_depth (since it grows level-wise) whereas LightGBM uses the parameter num leaves (since it grows leaf-wise).

	CatBoost	LightGBM	XGBoost
Parameters to tune	iterations: number of trees	num_leaves : value should be less than	n_estimators : number of trees
	depth: depth of tree	2^max_depth	max_depth: depth of tree
	min_data_in_leaf: control depth of tree	min_data_in_leaf : control depth of tree	min_child_weight: control depth of tree
		max_depth: depth of tree	
Parameters for		max_bin: maximum number of bins	
better accuracy		feature values will be bucketed in	
		num_leaves	
		Use bigger training data	
Parameters for faster	subsample: fraction of number of	feature_fraction : fraction of number of	colsample_bytree: fraction of number of
speed	instances used in a tree	features used in a tree	features used in a tree
	rsm: random subspace method; fraction of	bagging_fraction : fraction of number of	subsample: fraction of number of
	number of features used in a split	instances used in a tree	instances used in a tree
	selection	bagging_freq: frequency for bagging	n_estimators
	iterations	max_bin	
	sampling_frequency : frequency to sample	save_binary: indicator to save dataset to	
	weights and objects when building trees	binary file	
		Use parallel learning	
Parameters to	early_stopping_rounds: stop training after	max_bin	learning_rate
control overfitting	specified number of iterations since	num_leaves	gamma: regularization parameter, higher
	iteration with optimal metric value	max_depth	gamma for more regularization
	od_type: type of overfitting detector	bagging_fraction	max_depth
	learning_rate: learning rate for reducing	bagging_freq	min_child_weight
	gradient step	feature_fraction	subsample
	depth	lambda_l1 / lambda_l2 / min_gain_to_split	
	l2_leaf_reg : regularization parameter		
		Use bigger training data	
		Regularization	

Table 2: Parameters to tune for accuracy, speed, and overfitting — Image by author

. . .

Performance Comparison

There are various benchmarking on accuracy and speed performed on different datasets. I find it hasty to generalize algorithm performance over a few datasets, especially if overfitting and numerical/categorical variables are not properly accounted for.

However, generally, from the literature, XGBoost and LightGBM yield similar performance, with CatBoost and LightGBM performing much faster than XGBoost, especially for larger datasets.

. . .

Hope you have a better understanding of the three most popular types of ML boosting algorithms — CatBoost, LightGBM, and XGBoost which mainly differ structurally. In practice, data scientists usually try different types of ML algorithms against their data — so don't rule out any algorithm just yet! Besides understandability, performance, and timing considerations in choosing between different algorithms, it is also crucial to finetune the models via hyperparameter tuning and control overfitting via pipeline architecture or hyperparameters.

. . .

Related Links

