ОЕМА В

2.1 Πάνω σε ένα παλιό πικάπ βρίσκεται ένας δίσκος βινυλίου και πάνω στον δίσκο βινυλίου ένα μεγάλο ζάρι. Μπορούμε να μεταβάλλουμε τη συχνότητα περιστροφής του πικάπ. Όταν το ζάρι βρίσκεται σε απόσταση R_1 από το κέντρο του πικάπ και ο δίσκος περιστρέφεται με γωνιακή ταχύτητα ω_1 η κεντρομόλος δύναμη που ασκείται στο ζάρι έχει μέτρο F_1 . Όταν το ζάρι βρεθεί σε απόσταση R_2 επίσης από το κέντρο του πικάπ και ο δίσκος περιστρέφεται με γωνιακή ταχύτητα ω_2 η κεντρομόλος δύναμη που ασκείται στο ζάρι έχει μέτρο F_2 .

Για τον λόγο των μέτρων των κεντρομόλων δυνάμεων στις δύο περιπτώσεις ισχύει

$$(\alpha)\frac{F_1}{F_2} = \frac{\omega_1^2 \cdot R_1}{\omega_2^2 \cdot R_2}$$

$$(\mathbf{a}) \frac{F_1}{F_2} = \frac{\omega_1^2 \cdot R_1}{\omega_2^2 \cdot R_2} \quad , \quad (\mathbf{\beta}) \ \frac{F_1}{F_2} = \frac{\omega_1^2 \cdot R_2}{\omega_2^2 \cdot R_1} \quad , \quad (\mathbf{y}) \ \frac{F_1}{F_2} = \frac{\omega_1 \cdot R_1}{\omega_2 \cdot R_2}$$

(y)
$$\frac{F_1}{F_2} = \frac{\omega_1 \cdot R_1}{\omega_2 \cdot R_2}$$

2.1.Α. Να επιλέξετε την ορθή πρόταση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2 Ένας πύραυλος αποτελείται από δύο τμήματα ίσων μαζών m, και κινείται εκτός ατμόσφαιρας κατακόρυφα προς τα πάνω με ταχύτητα μέτρου v, ενώ οι μηχανές του έχουν τεθεί εκτός λειτουργίας. Κάποια στιγμή τίθεται σε λειτουργία ειδικός μηχανισμός που διαχωρίζει ακαριαία τα δύο τμήματα. Ακολούθως, το πάνω τμήμα συνεχίζει να κινείται κατακόρυφα προς τα πάνω με ταχύτητα μέτρου $\frac{3}{2}v$.

Η ταχύτητα του κάτω τμήματος είναι:

(
$$\alpha$$
) $\frac{v}{3}$, (β) $\frac{v}{2}$, (γ) $\frac{2v}{3}$

2.2.Α. Να επιλέξετε την ορθή πρόταση.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9