Aufgabenblatt 5 zur Diskreten Mathematik 2

(Restklassen)

Aufgabe 5.1

Zeigen Sie die folgenden Eigenschaften der Teiler-Relation:

- (1) Für alle $m, n, k \in \mathbb{Z}$ mit $k \neq 0$ gilt: $m|n \Leftrightarrow km|kn$.
- (2) Für alle $m, n_1, n_2, \ell_1, \ell_2 \in \mathbb{Z}$ gilt: $m|n_1 \wedge m|n_2 \Rightarrow m|(\ell_1 n_1 + \ell_2 n_2)$.
- (3) Für alle $m_1, m_2, n_1, n_2 \in \mathbb{Z}$ gilt: $m_1 | n_1 \wedge m_2 | n_2 \Rightarrow m_1 m_2 | n_1 n_2$.

Aufgabe 5.2

Es seien $m \in \mathbb{N}$ und $a, b, c, d \in \mathbb{Z}$ mit $a \equiv_m b$ und $c \equiv_m d$. Zeigen Sie, dass dann auch gilt $a + c \equiv_m b + d$ und $a - c \equiv_m b - d$.

Hinweis: Sie können die Aussagen von Aufgabe 5.1 verwenden.

Aufgabe 5.3

Bestimmen Sie für m=7 und m=10 und die Zahlen 145, 200 und 711 jeweils die zugehörige Restklasse $[r]_m$ mit $0 \le r < m$.

Aufgabe 5.4 Es seien $m, n \in \mathbb{N}$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- $(1) \ \forall a \in \mathbb{Z} : [a]_m \subseteq [a]_n.$
- (2) $\exists a \in \mathbb{Z} : [a]_m \subseteq [a]_n$.
- (3) n|m.