

Materialwissenschaften

Prof. Peter Müller-Buschbaum, TUM School of Natural Sciences

Kapitel 1: Eigenschaften und Klassifizierung von Materialien

- 1.1 Materialien im Verlauf der Zeiten
- 1.2 Eigenschaften von Materialien
- 1.3 Klassifizierung von Materialien
- 1.4 Funktionelle Materialien
- 1.5 Biomaterialien
- 1.6 Zusammenfassung

M. Ashby, H. Shercliff, D. Cebon:

Materials: Engineering, Science, Processing and Design.

2nd ed., 2010, Elsevier. Kapitel 1 und 2.

1.1 Materialien im Verlauf der Zeiten

Entwicklung der Chemie (Thermochemie, Elektrochemie und Polymerchemie)

→ Entwicklung neuer Materialien

1.2 Eigenschaften von Materialien

im Beispiel:

E: Elastizitätsmodul

 σ_{v} : Streckgrenze

*K*_{1*c*}: Bruchzähigkeit

 ρ : Massendichte

- Welche Parameter sind sinnvoll zur Charakterisierung der mechanischen Eigenschaften?
- Wie können die gewünschten mechanischen Eigenschaften erzielt werden?
- → Bindungsart, Kristallgitter, Defekte, Korngrenzen, ...

M. Ashby, H. Shercliff, D. Cebon: Materials: Engineering, Science, Processing and Design. 2nd ed., 2010, Elsevier

Thermische Eigenschaften

(a) High service temperature T_{max} Low service temperature T_{max}

(b) High expansion coefficient α Low expansion coefficient α

(d) High T-diffusivity a

Low T-diffusivity a

im Beispiel:

 T_{max} : maximal mögliche Temperatur für die gegebene Anwendung

Wärmekapazität

Wärmeleitfähigkeit

Diffusionskoeffizient $D \sim \frac{\lambda}{C_p}$

Elektrische und optische Eigenschaften

im Beispiel:

 ρ_e : spezifischer elektrischer Widerstand

 ε_D : dielektrische Konstante

harter Magnet: permanent magnetisiert

weicher Magnet: kann magnetisiert und

entmagnetisiert werden

M. Ashby, H. Shercliff, D. Cebon: Materials: Engineering, Science, Processing and Design. 2nd ed., 2010, Elsevier

Chemische Eigenschaften

Widerstandsfähigkeit eines Materials gegenüber Wasser, Säuren, Basen, organischen Lösungsmitteln, Oxidation, Strahlung, ...

M. Ashby, H. Shercliff, D. Cebon: Materials: Engineering, Science, Processing and Design. 2nd ed., 2010, Elsevier

Weitere Aspekte bei der Materialwahl

weitere Aspekte bei der Materialwahl:

Verfügbarkeit, Kosten, Herstellungsmethoden, Formbarkeit, Umweltverträglichkeit, Abbaubarkeit, Rezyklierbarkeit, ...

1.2 Klassifizierung von Materialien

sechs Materialklassen

Materialien jeder Klasse haben

- ähnliche Eigenschaften
- ähnliche Verarbeitungsmethoden
- ähnliche Anwendungen

Hybridmaterialien:

Kombinationen von Materialien anderer Klassen

M. Ashby, H. Shercliff, D. Cebon: Materials: Engineering, Science, Processing and Design. 2nd ed., 2010, Elsevier

M. Ashby, H. Shercliff, D. Cebon: Materials: Engineering, Science, Processing and Design. 2nd ed., 2010, Elsevier

Metalle

- hohe Schlagzähigkeit, Festigkeit und Verformbarkeit
- großer Bereich von Festigkeiten, je nach Zusammensetzung und Verarbeitung
- thermisch und elektrisch leitfähig
- reaktiv → leicht korrodierend

keramische Materialien: nicht-metallische, anorganische Festkörper

- hohe Festigkeit, Härte und Abriebfestigkeit, auch bei hohen Temperaturen, aber auch spröde
- nicht korrodierend

Gläser: nichtkristalline (amorphe) Festkörper

- hart, aber spröde
- elektrische Isolatoren
- nicht korrodierend
- transparent

Polymere: organische Festkörper aus langen Kettenmolekülen aus Kohlenstoffatomen

- leicht (niedrige Massendichte), leicht verformbar, hohe Festigkeit pro Masseneinheit
- geringe Härte, niedriger Elastizitätsmodul
- Eigenschaften stark druckabhängig

Elastomere: chemisch vernetzte Polymermaterialien

- geringe Härte, niedriger Elastizitätsmodul
- nehmen ihre Form nach Verformung wieder an
- hohe Schlagzähigkeit

Hybridmaterialien:

Kombination von zwei oder mehr Materialien

- Eigenschaften bestimmt durch die der kombinierten Materialien
- schwierig zu formen und zusammen zu fügen
- teuer

Materialklassen: Elastizität und Dichte

Ashby plot

Verhältnis Elastizitätsmodul zu Massendichte, E/ρ , ist wichtige Kenngröße für die Auswahl leichter, aber fester Materialien

M. Ashby, H. Shercliff, D. Cebon: Materials: Engineering, Science, Processing and Design. 2nd ed., 2010, Elsevier

Ask ChatGPT!

structural materials	high strengthhigh durabilitylow density	infrastructuretransportationaerospace industry
biomedical materials	biocompatiblesuitable mechanical properties	tissue engineeringdrug delivery systemsbiocompatible implants
advanced materials	 graphene carbon nanotubes 2D materials	nanoelectronicsnanomedicine
smart materials	responsive to external stimuli: temperature/pH change, light,	sensors, actuatorsadaptive structures
energy materials	conductive for electrons or ionsphotoconductive	solar cells, batteries, fuel cellsthermoelectric devices
functional materials	superconductorsferroelectricspiezoelectrics	electronicssensorsactuators

Ask ChatGPT!

sustainable materials	 from renewable sources from recycling from environmentally friendly synthesis method 	replace traditional materials, e.g., plastics made from crude oil
materials for additive manufacturing (3D printing)	 polylactic acid dental resins titanium silicon carbide glass fiber bioinks from hydrogels 	printabledimensional stabilitycurable
computational materials science	predict and optimize the properties of materials before they are synthesized	accelerating the discovery processtailoring the properties

- Vielfalt und Interdisziplinarität der materialwissenschaftlichen Forschung
- technologische Fortschritte / neue Herausforderungen
 - \rightarrow neue Forschungsbereiche

1.4 Funktionelle Materialien

Hochfester Stahl für Öl- und Gaspipelines sowie Turbinen

Schweißen = "Naht" zwischen den Metallteilen mit geänderter Mikrostruktur

→ Schwachstellen in der Naht wegen unvollständigen Erstarrung identifiziert

Di Luozzo et al., *J. Mater. Sci.* **55**, 7927–7937 (2020)

Brennstoffzellen

Membranen von Polymerelektrolyt-Brennstoffzellen, die ohne seltene und teure Edelmetalle wie Platin auskommen

Yoshimura et al., *Soft Matter 14*, 9118 (2018)

Organische Solarzellen

Einsatz von leitfähigen Polymeren mit p- und n-Typ Halbleitereigenschaften

neue Eigenschaften: leicht, flexibel, variable in der Farbe, funktioniert bei diffusem Licht

→ Additiv verbessert molekulare Anordnung und damit Effizienz

Wang, PMB, et al., Adv. Funct. Mater. 28, 1800209 (2018)

1.5 Biomaterialien

Holz → Zellulose

Holz: hochgeordnetes,
verbundenes Netzwerk
von aus den Zellen
gebildeten Poren,
sehr lange Zylinder parallel
zur Achse des Stamms
→ Fasern

Cellulose: semikristalline Elementarfibrillen

Lignin: amorphes Polymer

Nanocellulose

Cellulose-Nanofasern

- 3-4 nm dick, einige Mikrometer lang
- durch Oxidation von Cellulose und Dispergieren in Wasser
- gasundurchlässige Folien für Verpackungen, als Filtermaterialien

Cellulose-Nanokristalle

- 5-10 nm dick, < 300 nm lang
- spindelförmig
- durch saure Hydrolyse von Cellulose und Dispergieren in Wasser
- Nanofiller für Kompositmaterialien

Sprühbares Nanopapier

Entstehung von Hohlräume im Film, in die sich funktionale Stoffe wie Polymere oder Metalle einschleusen lassen

→ Einfluss von Benetzen oder Trocknen

1.6 Zusammenfassung

wichtig bei der Auswahl von Materialien: mechanische, thermische, elektrische, magnetische, optische und chemische Eigenschaften

Materialien werden in Materialklassen zusammengefasst, innerhalb einer Klasse haben die Materialien ähnliche Eigenschaften.

Funktionelle Materialien haben z.B. interessante optische oder elektrische Eigenschaften, sie sind oft Hybridmaterialien aus einer Matrix und Partikeln, die eine Funktion aufweisen.

Biomaterialien haben oft einen komplexen, hierarchischen Aufbau, in dem verschiedene Materialien kombiniert sind.

Chair for Functional Materials TUM School of Natural Sciences Technical University of Munich

