PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/55113 (11) International Publication Number: A1 H04Q 7/38 (43) International Publication Date: 28 October 1999 (28.10.99) PCT/SE99/00488 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, (21) International Application Number: BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, 26 March 1999 (26.03.99) (22) International Filing Date: KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, (30) Priority Data: ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, 09/062,053 17 April 1998 (17.04.98) US ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, (publ) [SE/SE]; S-126 25 Stockholm (SE). SN, TD, TG). (72) Inventors: BRITT, Margaret; 2670 rue de Beaurivage, Montreal, Quebec H1L 5WL (CA). DULONG, Daniel; 48 **Published** Racine Pincourt, Montreal, Quebec V7V 8E9 (CA). With international search report. Before the expiration of the time limit for amending the (74) Agent: ERICSSON RADIO SYSTEMS AB; Common Patent claims and to be republished in the event of the receipt of Dept., S-164 80 Stockholm (SE). amendments.

(54) Title: METHOD OF HANDLING NETWORK-INITIATED CALLS IN A RADIO TELECOMMUNICATIONS NETWORK

(57) Abstract

A method of delivering a system-initiated call to a called mobile station in a radio telecommunications network following an unsuccessful initial attempt. The method implements several levels of call control. In level-1, a time delay is implemented (90) between call attempts. The method reattempts delivery of the call (110) at the expiration of the time delay (100) or if the mobile station accesses the network before the time delay expires (120). A call-attempt counter is incremented when each delivery attempt is made (110). The delivery attempts are stopped (80) when the call-attempt counter equals a predefined maximum number of call attempts (70). In level-2, a threshold level of channel availability in the network is defined (21), and the method attempts an initial delivery of the system-initiated call to the called mobile station (40) when the actual channel availability in the network is above the threshold level of channel availability (22). If the actual channel availability is below the threshold, the system-initiated call is delayed until the actual channel availability rises above the threshold level of channel availability (23). In level-3, a priority is set for each type of call in the network (30). If the system-initiated call is not the highest priority call to be delivered (31), higher priority calls are delivered first (32). If the system-initiated call is the highest priority call to be delivered, the method attempts to deliver the system-intitiated call first. The priority may be based upon each call's revenue-generating potential, subscriber priority, or age of the call.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
		FR		LU		SN	
AT	Austria		France		Luxembourg		Senegal
ΛU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR .	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
B.J	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

METHOD OF HANDLING NETWORK-INITIATED CALLS IN A RADIO TELECOMMUNICATIONS NETWORK

5 BACKGROUND OF THE INVENTION

Technical Field of the Invention

This invention relates to telecommunication systems and, more particularly, to a method of handling network-initiated calls to mobile stations in a radio telecommunications network.

Description of Related Art

In existing radio telecommunications networks, certain calls to mobile stations are initiated by the network itself when triggered by defined events. Such "system-initiated calls" may include, for example, a call which is initiated by a service node or a Service Control Point (SCP). Such a call may be made to a subscriber on a predefined date with a reminder of an upcoming event. Another example is a Message Waiting Indicator (MWI) call which is initiated by the network when a subscriber has a voice mail message waiting to be read.

In many existing networks, the serving Mobile Switching Center (MSC) continuously reattempts MWI calls until the subscriber answers. This process of continuously reattempting MWI calls is often a great waste of network resources. Each call attempt involves paging for the mobile station and determining if there is a page response. When there is no page response, repeating this process needlessly utilizes paging and processing resources in the serving MSC. If the subscriber's mobile station is turned on and is responding to pages, each call attempt involves the seizing of a voice channel, and sending an alerting signal to the mobile station. If the subscriber is not answering, repeating this process uselessly ties up network resources. In addition, it causes increased drain on the mobile station's battery.

While MWI calls are handled entirely within the serving MSC, other types of system-initiated calls may utilize additional network resources. If the reattempt was initiated in a service node, for example, then network signaling capacity is impacted,

30

10

15

20

25

and a trunk may be needlessly seized to the MSC for each call attempt. During periods when the network is congested, repeated attempts to place MWI calls can be very burdensome on the network and often prevent revenue-generating calls from being placed because of the lack of an available traffic channel.

5

Although there are no known prior art teachings of a solution to the aforementioned deficiency and shortcoming such as that disclosed herein, U.S. Patent Number 5,313,515 to Allen et al. (Allen) and PCT Patent Application WO 95/01067 to Remy (Remy) discuss subject matter that bears some relation to matters discussed herein. Allen discloses a cellular telephone network which stores voice mail messages in a voice messaging center, and then transmits a message waiting flag for the called mobile station to the serving exchange (MSC). The serving MSC places a MWI call to the mobile station when it registers with a cell of the network and/or if it initiates an outgoing call. Allen makes no provision for reattempting the MWI call if it is unsuccessful, but teaches instead making only one attempt.

15

10

Remy discloses a method of handling MWI calls in which repeated delivery attempts are made. Remy implements time delays between the call attempts. The delays can be a function of the time of day, date, and availability of the called subscriber. Remy, however, does not teach or suggest the present invention.

20

Review of each of the foregoing references reveals no disclosure or suggestion of a method such as that described and claimed herein.

In order to overcome the disadvantage of existing solutions, it would be advantageous to have a method of handling system-initiated calls in which a call counter limits the number of call attempts, the availability of traffic channels determines whether system-initiated calls are attempted, and/or pending calls are prioritized according to revenue-generating potential or other criteria. The present invention provides such a method.

SUMMARY OF THE INVENTION

30

25

In one aspect, the present invention is a method of delivering a system-initiated call to a called mobile station in a radio telecommunications network. The method begins by attempting an initial delivery of the call to the called mobile station. If the call is successfully delivered, the process stops. However, if the call is not delivered,

-3-

a time delay between call attempts is measured, and the method reattempts delivery of the call at the expiration of the time delay, or if the mobile station accesses the network before the time delay expires. The method also includes incrementing a call-attempt counter when each delivery attempt is made, and stopping the method upon determining that the call-attempt counter equals a predefined maximum number of call attempts.

5

10

15

20

25

30

In another aspect, the present invention is a method of delivering a systeminitiated call to a called mobile station in a radio telecommunications network which includes the steps of attempting an initial delivery of the call to the called mobile station, incrementing a call-attempt counter upon attempting the initial delivery of the call, and determining whether the initial attempted delivery was successful. If the initial attempted delivery was successful, the method stops. If the initial attempted delivery was unsuccessful, the method then determines whether the call-attempt counter equals a predefined maximum number of call attempts. This is followed by starting a timer to determine a time delay between call attempts, upon determining that the call-attempt counter does not equal the predefined maximum number of call attempts. The method then determines whether the time delay has expired, and reattempts delivery of the call, upon determining that the time delay has expired. If the time delay has not expired, it is determined whether the called mobile station has accessed the network, and if so, the method reattempts delivery of the call. The method increments the call-attempt counter upon each reattempted delivery of the call, and stops upon determining that the call-attempt counter equals a predefined maximum number of call attempts.

In yet another aspect, the present invention is a method of delivering a system-initiated call to a called mobile station in a radio telecommunications network which begins by setting a threshold level of channel availability in the network (or parts of the network such as a cell), detecting an event triggering the system-initiated call, measuring actual channel availability in the network upon detecting the triggering event, and determining whether the actual channel availability is below the threshold level of channel availability. If the actual channel availability in the network is above the threshold level of channel availability, the method attempts an initial delivery of the system-initiated call to the called mobile station. If the actual channel availability

-4-

in the network is below the threshold level of channel availability, the method delays the system-initiated call until the actual channel availability in the network rises above the threshold level of channel availability.

In still another aspect, the present invention is a method of delivering a system-initiated call to a called mobile station in a radio telecommunications network comprising the steps of setting a priority for each call in the network, and determining whether the system-initiated call is the highest priority call to be delivered. If the system-initiated call is not the highest priority call to be delivered, the method delivers higher priority calls. If the system-initiated call is the highest priority call to be delivered, the method attempts to deliver the system-initiated call. The priority may be based upon each call's revenue-generating potential or other criteria.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood and its numerous objects and advantages will become more apparent to those skilled in the art by reference to the following drawings, in conjunction with the accompanying specification, in which:

FIG. 1 is a flow chart illustrating the steps of the method of the present invention when level-1 control is implemented;

FIG. 2 is a flow chart illustrating the steps of the method of the present invention when level-2 control is implemented according to the teachings of the present invention; and

FIG. 3 is a flow chart illustrating the steps of the method of the present invention when level-3 control is implemented according to the teachings of the present invention.

25

30

5

10

15

20

DETAILED DESCRIPTION OF EMBODIMENTS

The present invention is a method of handling Message Waiting Indicator (MWI) calls and other system-initiated calls. The method provides a great deal of flexibility, and may be implemented in varying degrees of control by the network operator. By implementing a more efficient process for handling system-initiated calls, network resources are freed up for other revenue-producing calls.

At a first level of control, the method immediately attempts to deliver the call

-5-

upon the occurrence of a triggering event. For MWI calls, the triggering event is the storage of a voice mail message for the called subscriber. For other system-initiated calls, the triggering event may be the receipt of a prompt in the serving MSC from a Home Location Register (HLR), a Service Control Point (SCP), or other network node. If the first delivery attempt is unsuccessful, the method implements a time delay before another attempt is made. The delay may be variable depending on the time of day, day of the week, etc. If the mobile station makes a system access during the delay period, the system-initiated call is immediately initiated in an attempt to complete the call.

10

15

5

The time delay is implemented with a timer in the serving MSC when the system-initiated call process is autonomous in the MSC. In addition, a system-initiated call counter in the serving MSC may be programmed to initiate a predefined number of reattempts, and to stop the reattempts if the predefined number is reached. If the system-initiated call is prompted by a network node other than the serving MSC, the reattempts are generally made only when additional prompts are received in the serving MSC. For example, if the first prompt is received from a SCP, the serving MSC may notify the SCP that the first attempt was unsuccessful. The SCP may be programmed to initiate a predefined number of reattempts at predetermined times or time intervals, and to stop the reattempts if the predefined number is reached.

20

25

30

At a second level of control, the initial system-initiated call may also be delayed if the number of available channels in the network is below a predefined threshold. A resource availability threshold is determined and set in the network. If resource availability is determined to be too low (i.e., the availability of traffic channels is assessed to be below the resource availability threshold), the method delays the system-initiated call until the number of available channels in the network is above the threshold. When the number of available channels in the network rises above the threshold, the method attempts to deliver the system-initiated call. The method may continue to measure resource availability in the network, and continue to attempt delivery of the system-initiated call. If the resource availability in the network falls below the threshold, and the system-initiated call has not been successfully delivered, the method may once again delay the system-initiated call until resource availability rises. In this way, revenue-generating calls are handled before system-

-6-

initiated calls which are generally not revenue-generating calls. Level-2 control may be implemented alone or integrated with level-1 control by implementing the counter and time delays of level-1 after the network resource availability has risen above the threshold.

5

10

15

20

In some cases, however, system-initiated calls may be revenue-generating calls. In this case, a third level of control is entered. A prioritization scheme is established for call delivery which may consider such factors as the revenuegenerating potential of each call in the queue (the call with the highest revenuegenerating potential being attempted first), subscriber availability, subscriber priority. and age of the system-initiated call (for example, the priority of the system-initiated call may be increased the longer the call waits for delivery). Under the prioritization scheme, if a mobile station responds to a page during an attempt to deliver a systeminitiated call, but the subscriber does not answer, the method may continue attempting to deliver the call before proceeding with lower priority calls since the subscriber is probably close by and is likely to answer subsequent calls. However, if the mobile station does not respond to the page, then the subscriber probably has the mobile station turned off. In this case, the method delays any reattempts of the systeminitiated call because they are unlikely to be successful, and proceeds to process other calls. At the expiration of a predetermined time delay, or when all of the other calls have been delivered, the method may again attempt the system-initiated call. If a revenue-generating call of higher priority than the system-initiated call is queued at any time, the method is preempted, and the higher revenue-generating call is attempted. Level-3 control may be implemented alone or integrated with level-1 and/or level-2 control.

25

30

FIG. 1 is a flow chart illustrating the steps of the method of the present invention when level-1 control is implemented. At step 10, an event such as the storage of a voice mail message for a called subscriber triggers a system-initiated call. At step 20, a system-initiated call counter is programmed with a maximum number of call attempts and then set to zero (0). At step 40, the system-initiated call is attempted and the counter is incremented. At step 50 it is determined whether or not the call was successfully completed. If so, the process stops at step 60, and then returns to step 10 and awaits another triggering event.

-7-

If the call attempt is not successful at step 50, the process moves to step 70 where it is determined whether or not the call counter equals the predefined maximum number of call attempts. If so, the process stops at step 80, and then returns to step 10 and awaits another triggering event. If the call counter has not yet reached the predefined maximum number of call attempts, the process moves to step 90 and starts a time delay timer. At step 100, it is determined whether or not the timer has expired. If the timer has expired, the process moves to step 110 where the call is reattempted, and the counter is incremented. However, if the timer has not expired, the process continues to delay the call and moves to step 120 where it is determined whether or not the called mobile station has made a system access. If so, the process moves to step 110 where the call is reattempted, and the counter is incremented. However, if the mobile station has not made a system access, the process continues to delay the call and returns to step 100.

5

10

15

20

25

30

Following the call reattempt at step 110, the process moves to step 130 where it is determined whether or not the call was successfully completed. If so, the process stops at step 140, and then returns to step 10 and awaits another triggering event. If the call attempt was not successful, the process returns to step 70 and repeats the process.

FIG. 2 is a flow chart illustrating the steps of the method of the present invention when level-2 control is implemented according to the teachings of the present invention. Although level-2 may be implemented alone, in the embodiment shown, level-2 is integrated with level-1 (i.e., as additional steps which are added to the method of FIG. 1).

In level-2 control, as noted above, the initial system-initiated call may also be delayed if the number of available channels in the network is below a predefined threshold. Therefore, from step 20 of FIG. 1, the process moves to step 21 of FIG. 2 where a resource availability threshold is set. At step 22, it is determined whether or not the number of available channels in the network is below the predefined threshold. If not (i.e., channels are available), the process moves to step 40 of FIG. 1 and continues with level-1 control. However, if the number of available channels in the network is below the predefined threshold, the process moves to step 23 and delays the system-initiated call until it is determined at step 22 that the number of available

channels in the network has risen above the threshold. Alternatively, if level-3 control is implemented, the process moves from step 23 to level-3 control as shown in FIG. 3.

FIG. 3 is a flow chart illustrating the steps of the method of the present invention when level-3 control is implemented according to the teachings of the present invention. Although level-3 may be implemented alone, in the embodiment shown, level-3 is integrated with level-1 and level-2 (i.e., as additional steps which are added to the method of FIGS. 1 and 2).

5

10

15

20

25

30

Referring now to FIG. 3, at step 30, the various calls in the network, including system-initiated calls, are prioritized according to their revenue-generating potential. At step 31, it is determined whether or not the system-initiated call is the highest revenue-generating call which is pending. If not, the process moves to step 32 where higher revenue calls are attempted first. The process returns to step 31, and if the system-initiated call is then the highest revenue-generating call, the process moves to step 33 where the system-initiated call is attempted. At step 34, it is determined whether or not the call was successfully completed. If not, the process moves to step 35 and continues to process other calls for a predetermined time delay. At step 36 it is determined whether or not the time delay has expired. If not, the process continues to process other calls. However, if the time delay has expired, the process returns to step 31, determines the highest revenue-generating call, and continues the call delivery process.

If it is determined at step 34 that the system-initiated call was successfully completed, the process stops at step 37, and then returns to step 10 of FIG. 1 to await another triggering event.

While the preferred embodiment shown prioritizes calls based on their revenue-generating potential, other bases for prioritization such as subscriber availability, subscriber priority, and age of the system-initiated call may also be utilized, and remain within the scope of the present invention.

It is thus believed that the operation and construction of the present invention will be apparent from the foregoing description. While the method shown and described has been characterized as being preferred, it will be readily apparent that various changes and modifications could be made therein without departing from the

-9-

scope of the invention as defined in the following claims.

5

10

15

20

25

30

WHAT IS CLAIMED IS:

1. A method of delivering a system-initiated call to a called mobile station in a radio telecommunications network comprising the steps of:

attempting an initial delivery of the call to the called mobile station;

determining whether the initial delivery attempt was successful;

stopping the method upon determining that the initial delivery attempt was successful;

establishing a time delay between call attempts, upon determining that the initial delivery attempt was not successful;

reattempting delivery of the call, upon determining that the time delay has expired;

reattempting delivery of the call, upon determining that the mobile station has accessed the network before the time delay expires;

stopping the method upon determining that the reattempted delivery was successful;

incrementing a call-attempt counter when each delivery attempt is made;

determining whether the call-attempt counter equals a predefined maximum number of call attempts;

repeating the steps of establishing a time delay between call attempts, reattempting delivery of the call, and incrementing the call-attempt counter, upon determining that the call-attempt counter does not equal the predefined maximum number of call attempts; and

stopping the method upon determining that the call-attempt counter equals a predefined maximum number of call attempts.

2. A method of delivering a system-initiated call to a called mobile station in a radio telecommunications network comprising the steps of:

attempting an initial delivery of the call to the called mobile station; incrementing a call-attempt counter upon attempting the initial delivery of the call;

determining whether the initial attempted delivery was successful;

5

15

20

25

30

stopping the method upon determining that the initial attempted delivery was successful;

determining whether the call-attempt counter equals a predefined maximum number of call attempts, upon determining that the initial attempted delivery was not successful;

starting a timer to measure a time delay between call attempts, upon determining that the call-attempt counter does not equal the predefined maximum number of call attempts;

determining whether the time delay has expired;

reattempting delivery of the call, upon determining that the time delay has expired;

determining whether the called mobile station has accessed the network, upon determining that the time delay has not expired;

reattempting delivery of the call, upon determining that the called mobile station has accessed the network;

incrementing the call-attempt counter upon each reattempted delivery of the call;

repeating the steps of starting the timer, reattempting delivery of the call, and incrementing the call-attempt counter, upon determining that the call-attempt counter does not equal the predefined maximum number of call attempts; and

stopping the method upon determining that the call-attempt counter equals a predefined maximum number of call attempts.

3. A method of delivering a system-initiated call to a called mobile station in a radio telecommunications network comprising the steps of:

setting a threshold level of channel availability in the network;

detecting an event triggering the system-initiated call;

measuring actual channel availability in the network upon detecting the triggering event;

determining whether the actual channel availability in the network is below the threshold level of channel availability in the network;

attempting an initial delivery of the system-initiated call to the called mobile

5

10

15

20

25

30

station, upon determining that the actual channel availability in the network is above the threshold level of channel availability; and

delaying the system-initiated call until the actual channel availability in the network rises above the threshold level of channel availability, upon determining that the actual channel availability in the network is below the threshold level of channel availability in the network.

4. The method of delivering a system-initiated call of claim 3 further comprising the steps of:

determining whether the initial attempted delivery was successful;

remeasuring actual channel availability in the network upon determining that the initial attempted delivery was not successful;

determining whether the remeasured actual channel availability in the network is still above the threshold level of channel availability;

reattempting delivery of the call, upon determining that the actual channel availability in the network is still above the threshold level of channel availability; and

delaying the system-initiated call until the actual channel availability in the network rises above the threshold level of channel availability, upon determining that the actual channel availability in the network has fallen below the threshold level of channel availability.

5. The method of delivering a system-initiated call of claim 4 further comprising the steps of:

incrementing a call-attempt counter upon each attempted delivery of the call; and

stopping the step of reattempting delivery of the call upon determining that the call-attempt counter equals a predefined maximum number of call attempts.

6. The method of delivering a system-initiated call of claim 4 further comprising the step of measuring a time delay between call attempts, and wherein the step of reattempting delivery of the call includes reattempting delivery of the call, upon determining that the time delay has expired.

7. The method of delivering a system-initiated call of claim 6 further comprising the step of reattempting delivery of the call, upon determining that the mobile station has accessed the network before the time delay expires.

-13-

8. A method of delivering a system-initiated call to a called mobile station in a radio telecommunications network comprising the steps of:

setting a priority for each call in the network;

10

15

20

25

30

determining whether the system-initiated call is the highest priority call to be delivered;

delivering higher priority calls, upon determining that the system-initiated call is not the highest priority call to be delivered; and

attempting to deliver the system-initiated call, upon determining that the system-initiated call is the highest priority call to be delivered.

- 9. The method of delivering a system-initiated call of claim 8 wherein the step of setting a priority for each call in the network includes setting a priority based upon each call's revenue-generating potential.
- 10. The method of delivering a system-initiated call of claim 8 wherein the step of setting a priority for each call in the network includes setting a priority based upon a priority level assigned to each subscriber.
 - 11. The method of delivering a system-initiated call of claim 8 wherein the step of determining whether the system-initiated call is the highest priority call to be delivered includes the steps of:

measuring a time period that the system-initiated call has been queued; and increasing the priority of the system-initiated call as it ages.

12. The method of delivering a system-initiated call of claim 8 further comprising, before the step of setting a priority for each type of call in the network, the steps of:

setting a threshold level of resource availability in the network;

-14-

measuring actual network resource availability; and

determining that the actual network resource availability is below the threshold level of resource availability.

5

13. The method of delivering a system-initiated call of claim 12 wherein the step of determining whether the system-initiated call is the highest priority call to be delivered is performed continuously, and the method further comprises implementing a time delay for delivering the system-initiated call whenever it is determined that the system-initiated call is not the highest priority call to be delivered.

10

15

20

25

14. The method of delivering a system-initiated call of claim 8 wherein the system-initiated call is the highest priority call to be delivered, and the method further comprises the steps of:

determining whether the attempted delivery of the system-initiated call was successful; and

implementing a time delay before reattempting to deliver the system-initiated call, upon determining that the delivery of the system-initiated call was not successful.

- 15. The method of delivering a system-initiated call of claim 14 further comprising the step of attempting to deliver other calls during the time delay.
 - 16. The method of delivering a system-initiated call of claim 14 further comprising the steps of:

determining whether the system-initiated call is still the highest priority call to be delivered when the time delay expires;

delivering higher priority calls, upon determining that the system-initiated call is not the highest priority call to be delivered; and

reattempting to deliver the system-initiated call, upon determining that the system-initiated call is still the highest priority call to be delivered.

FIG. 1

FIG. 2

FIG. 3

INTERNATIONAL SEARCH REPORT

Intrinational Application No

A. CLASSIFICATION OF IPC 6 H04Q7	FSUBJECT MATTER 7/38			
Assording to Internation	al Patent Classification (IPC) or to both national classificati	ion and IPC		·
B. FIELDS SEARCHEE		IOTT ATILE TIF C		
	n searched (classification system followed by classification	n symbols)		
IPC 6 H04Q				
Documentation searche	d other than minimum documentation to the extent that su	ch documents are include	ed in the fields sea	arched
Electronic data base cor	nsuited during the international search (name of data base	and, where practical, so	earch terms used)	
C. DOCUMENTS CONS	SIDERED TO BE RELEVANT			
Category ° Citation of	f document, with Indication, where appropriate, of the rele	vant passages		Relevant to claim No.
	5 533 094 A (SANMUGAM K RAJ) uly 1996 (1996-07-02)			8-10
A , co co co co	lumn 3, line 22 - column 4, li lumn 6, line 26 - line 31 lumn 7, line 8 - line 15 lumn 8, line 13 - column 9, li	ne 62		1-3
co	lumn 12, line 40 - column 13,	line 32 /		
	_	<i>I</i>		
	·			
X Further docume	ents are listed in the continuation of box C.	X Patent family m	embers are listed	in annex.
3 Special categories of	cited documents :	"T" later document public		
considered to be	the general state of the art which is not of particular relevance	or priority date and cited to understand invention		
"E" earlier document b	out published on or after the international	"X" document of particular cannot be consider		
which is cited to	nay throw doubts on priority claim(s) or establish the publication date of another special reason (as specified)	"Y" document of particul	ar relevance; the o	
	g to an oral disclosure, use. exhibition or	document is combine	ned with one or mo	ventive step when the ore other such docu- us to a person skilled
"P" document publishe	ed prior to the international filing date but ority date claimed	in the art. "&" document member of		
Date of the actual com	pletion of the international search	Date of mailing of the	ne international se	arch report
13 Sept	tember 1999	20/09/19	99	
Name and mailing add	dress of the ISA Dean Patent Office, P.B. 5818 Patentiaan 2	Authorized officer		
NL - Tel. (-	- 2280 HV Rijswijk +31-70) 340-2040, Tx. 31 651 epo ni, (+31-70) 340-3016	Gerling	, J.C.J.	

INTERNATIONAL SEARCH REPORT

International Application No
Pt./SE 99/00488

	PC./SE 99/00488
ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
REZAIFAR R ET AL: "FROM OPTIMAL SEARCH THEORY TO SEQUENTIAL PAGING IN CELLULAR NETWORKS" IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, vol. 15, no. 7, 1 September 1997 (1997-09-01), pages 1253-1264, XP000721261 ISSN: 0733-8716 page 1254, paragraph III page 1255, paragraph IV. page 1258, paragraph A paragraph B. page 1259, paragraph C page 1260, paragraph VII.	1-3
LYBEROPOULOS G L ET AL: "INTELLIGENT PAGING STRATEGIES FOR THIRD GENERATION MOBILE TELECOMMUNICATION SYSTEMS" IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 44, no. 3, 1 August 1995 (1995-08-01), pages 543-553, XP000526045 ISSN: 0018-9545 page 544, paragraph B page 545, right-hand column, line 21 page 547, paragraph III page 549, paragraph A.	3
EP 0 732 863 A (TOKYO SHIBAURA ELECTRIC CO) 18 September 1996 (1996-09-18) column 6, line 48 - line 52 column 11, line 32 - line 36 column 12, line 13 - line 38 column 15, line 16 - line 45 column 16, line 44 - line 51	1-3,8
EP 0 631 452 A (COFIRA SA) 28 December 1994 (1994-12-28) cited in the application column 1, line 12 - line 30 column 3, line 12 - line 46 column 11, line 53 - column 12, line 48	1
WO 98 30046 A (ERICSSON GE MOBILE INC) 9 July 1998 (1998-07-09) page 6, line 31 - page 7, line 25 page 8, line 4 - page 10, line 5	1,2,8
	REZAIFAR R ET AL: "FROM OPTIMAL SEARCH THEORY TO SEOUENTIAL PAGING IN CELLULAR NETWORKS" IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, vol. 15, no. 7, 1 September 1997 (1997-09-01), pages 1253-1264, XP000721261 ISSN: 0733-8716 page 1254, paragraph III page 1255, paragraph IV. page 1258, paragraph A paragraph B. page 1259, paragraph C page 1260, paragraph VII LYBEROPOULOS G L ET AL: "INTELLIGENT PAGING STRATEGIES FOR THIRD GENERATION MOBILE TELECOMMUNICATION SYSTEMS" IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 44, no. 3, 1 August 1995 (1995-08-01), pages 543-553, XP000526045 ISSN: 0018-9545 page 544, paragraph B page 545, right-hand column, line 21 page 547, paragraph A EP 0 732 863 A (TOKYO SHIBAURA ELECTRIC CO) 18 September 1996 (1996-09-18) column 6, line 48 - line 52 column 11, line 32 - line 36 column 12, line 13 - line 38 column 15, line 14 - line 51 column 16, line 44 - line 51 EP 0 631 452 A (COFIRA SA) 28 December 1994 (1994-12-28) cited in the application column 1, line 12 - line 30 column 1, line 12 - line 46 column 1, line 12 - line 46 column 11, line 53 - column 12, line 48 WO 98 30046 A (ERICSSON GE MOBILE INC) 9 July 1998 (1998-07-09) page 6, line 31 - page 7, line 25

INTERNATIONAL SEARCH REPORT

information on patent family members

International Application No
Pt./SE 99/00488

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
US 5533094	A	02-07-1996	AU AU BR CA CN EP FI JP MX NZ WO SG	681079 B 4097193 A 9305519 A 2112972 A 1081799 A,B 0596072 A 940121 A 6509220 T 9302744 A 252345 A 9323964 A 44388 A	21-08-1997 13-12-1993 18-10-1994 25-11-1993 09-02-1994 11-05-1994 11-01-1994 13-10-1994 01-11-1993 25-06-1996 25-11-1993 19-12-1997	
EP 0732863	A	18-09-1996	JP JP US	8336180 A 8317452 A 5924042 A	17-12-1996 29-11-1996 13-07-1999	
EP 0631452	A	28-12-1994	FR AU AU CA WO JP	2707069 A 6483394 A 7127494 A 2126171 A 9501067 A 7184258 A	30-12-1994 05-01-1995 17-01-1995 24-12-1994 05-01-1995 21-07-1995	
WO 9830046	Α	09-07-1998	AU	5710498 A	31-07-1998	