

PCM1700U PCM1700P

Dual 18-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER

FEATURES

- DUAL 18-BIT LOW-POWER MONOLITHIC AUDIO D/A CONVERTER
- ◆ VERY LOW MAX THD+N: -92dB Without External Adjust
- CO-PHASE, LOW-GLITCH ±3V OR ±670μA AUDIO OUTPUTS
- CAPABLE OF 16X PER CHANNEL OVERSAMPLING RATE
- COMPLETE WITH INTERNAL REFERENCE
- SERIAL INPUT FORMAT 100% COMPAT-IBLE WITH INDUSTRY STD PCM56P
- RUNS ON ±5V SUPPLIES AND DISSIPATES 300mW MAX
- COMPACT 28-PIN PLASTIC DIP OR SOIC

DESCRIPTION

The PCM1700 is a low cost, high-performance, dual 18-bit digital-to-analog converter. The PCM1700 features low glitch, co-phase current and voltage outputs and only requires ±5V supplies. The PCM1700 comes complete with an internal reference and optional MSB adjustability for even greater THD performance. Total power dissipation is less than 400mW max. Low maximum Total Harmonic Distortion + Noise (–92dB max; PCM1700P-K) is 100% tested. The very fast PCM1700 is also capable of 16X oversampling rates on both channels simultaneously, providing freedom in output filter selection.

The PCM1700 comes in space-saving 28-pin plastic DIP and SOIC packages. PCM1700 accepts a serial data input format that is compatible with other Burr-Brown PCM products such as the industry standard PCM56P.

International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706

Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS

ELECTRICAL

 $At\ 25^{\circ}C,\ and\ \pm V_{cc} = \pm 5.00V\ unless\ otherwise\ noted.\ Where\ relevant,\ specifications\ apply\ to\ both\ left\ and\ right\ input/output\ channels.$

		PCM1700U/U-J/U-K, PCM1700P/P-J/P-K			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
RESOLUTION		18			Bits
DYNAMIC RANGE			+108		dB
INPUT		•	-1	•	•
DIGITAL INPUT					
Logic Family		+2	TTL Compatible	i .	V
Logic Level: V _{IH} V _{IL}		0		+V _{DD} +0.8	ľ
ις I _{IH}	V _{IH} = +2.7V			+1	μA
I _{IL}	V _{IL} = +0.4V			-50	μA
Data Format			Serial BTC ⁽¹⁾		
Input Clock Frequency		11.288	20		MHz
DYNAMIC CHARACTERISTICS	1			T	ı
TOTAL HARMONIC DISTORTION + N ⁽⁶⁾ PCM1700:					
f = 991kHz (0dB)	$f_S = 352.8 \text{kHz}^{(4)}$		-88	-82	dB
f = 991kHz (-20dB)	f _S = 352.8kHz		-74	-68	dB
$f_{IN} = 991 \text{kHz} (-60 \text{dB})$	f _S = 352.8kHz		-34	-28	dB
PCM1700J:					
f = 991kHz (0dB)	f _S = 352.8kHz		-94	-88	dB
f = 991kHz (-20dB)	f _S = 352.8kHz		-76	-74	dB
f = 991kHz (-60dB)	f _S = 352.8kHz		-36	-34	dB
PCM1700K: f = 991kHz (0dB)	f _S = 352.8kHz		-98	-92	dB
f = 991kHz (-20dB)	$f_S = 352.6 \text{kHz}$		-80	-92 -74	dB dB
f = 991kHz (-60dB)	$f_S = 352.8 \text{kHz}$		-40	-34	dB
CHANNEL SEPARATION	.3	+96	+108		dB
SIGNAL-TO-NOISE RATIO(5)	20Hz to 20kHz at BPZ ⁽⁶⁾		+108		dB
TRANSFER CHARACTERISTICS		I	1		<u> </u>
ACCURACY					
Gain Error			±1	±3	%
Gain Mismatch	Channel to Channel		±1	±3	%
Bipolar Zero Error			10		mV
BPZ Error Mismatch	Channel to Channel		5		mV
BPZ Differential Linearity Error ⁽⁷⁾ Gain Drift			±1		LSB
Bipolar Zero Drift			100 20		ppm/°C ppm of FSR/°C
Warm-up Time		1	20		minute
POWER SUPPLY REJECTION	±V _{CC} to V _{OUT}	1	+86		dB
ANALOG OUTPUT					
Voltage: Output Range			±3		V
Output Impedance			0.1		Ω
Current Output Capacitive Load Drive	$R_{LOAD} = 1.5k\Omega$		±2 TBD		mA pF
Short Circuit Duration	N _{LOAD} = 1.5K22		Indefinite		Pi
Settling Time				। leet THD+N Sp	I ecs
Glitch Energ		Meets All T			Output Deglitching
Current: Output Range	(±2%)		±670		μΑ
Output Impedance	(±2%)		1.67		kΩ
POWER SUPPLY REQUIREMENTS	T			I -	I
±V _{CC} Supply Voltage		+4.75	+5.00	+5.25	V
Supply Current: +I _{CC}	+V _{CC} = +5.0V		+18	+30	mA mA
-I _{CC} Power Dissipation	$-V_{CC} = -5.0V$ $\pm V_{CC} = \pm 5.0V$		-42 280	-65 475	mA mW
TEMPERATURE RANGE		I	-1		
Specification		0		+70	°C
Operating		-30		+70	°C
Storage	i	-60	1	+100	°C

NOTES: (1) Binary Two's Complement coding. (6) Ratio of (Distortion_{RMS} + Noise_{RMS}) / Signal_{RMS}. (3) D/A converter input frequency/signal level on both left and right channels. (4) D/A converter sample frequency (8 X 44.1kHz; 8X oversampling per channel). (5) Ratio of Noise_{RMS} / Signal_{RMS}. Measured using an A-weighted filter. (6) Bipolar zero. (7) Differential non-linearity at bipolar major carry input code. Measured in 16-bit LSBs. Adjustable to zero error.

PIN ASSIGNMENTS (Plastic PKG)

PIN	DESCRIPTION	MNEMONIC
1	–5V Analog Supply	-V _{CC}
2	Left Channel Servo-Amp Decoupling Point	CAP
3	Left Channel MSB Adjustment	MSB ADJ (L)
4	No Connect	NC
5	Left Channel Bipolar Offset Decoupling Point	CAP
6	Left Channel Current Output	IOUT (L)
7	Left Channel Analog Common	ACOM
8	Left Channel Summing Junction	SJ (L)
9	Left Channel Voltage Output	VOUT (L)
10	No Connect	NC
11	+5V Digital Supply	+V _{DD}
12	Left Channel Data Input	DATA
13	Clock Input	CLOCK
14	–5V Logic Supply	-V _{DD}
15	Latch Enable Input	LE
16	Right Channel Data Input	DATA (R)
17	Digital Common	DCOM
18	No Connect	NC
19	Right Channel Voltage Output	VOUT (R)
20	Right Channel Summing Junction	SJ (R)
21	Right Channel Analog Common	ACOM
22	Right Channel Current Output	IOUT (R)
23	Right Channel Bipolar Offset Decoupling Point	CAP
24	Right Channel MSB Adjustment	MSB ADJ (R)
25	Right Channel Servo-Amp Decoupling Point	CAP
26	MSB Adjustment Potentiometer Voltage Output	VPOT
27	+5V Analog Supply	+V _{CC}
28	Digital Common	DCOM

ORDERING INFORMATION

	PCM1700	ΥΥ
Basic Model Number ——		
P: Plastic U: SOIC-		_
Performance Grade Code		

ABSOLUTE MAXIMUM RATINGS

DC Supply Voltages±7.5VD	С
Input Logic Voltage1V to +V	cc
Power Dissipation 500m	W
Operating Temperature –25°C to +70°	
Storage Temperature	,C
Lead Temperature (soldering, 10s)+300	Ò,

PIN ASSIGNMENTS (SOIC PKG)

(22.21.10)			
PIN	DESCRIPTION	MNEMONIC	
9	–5V Analog Supply	-V _{CC}	
10	Left Channel Servo-Amp Decoupling Point	CAP	
11	Left Channel MSB Adjustment	MSB ADJ (L)	
19	No Connect	NC	
12	Left Channel Bipolar Offset Decoupling Point	CAP	
13	Left Channel Current Output	I _{OUT} (L)	
14	Left Channel Analog Common	ACOM	
15	Left Channel Summing Junction	SJ (L)	
16	Left Channel Voltage Output	V _{OUT} (L)	
17	No Connect	NC	
18	+5V Digital Supply	+V _{DD}	
20	Left Channel Data Input	DATA	
21	Clock Input	CLOCK	
22	–5V Logic Supply	-V _{DD}	
23	Latch Enable Input	LE	
24	Right Channel Data Input	DATA (R)	
25	Digital Common	DCOM	
26	No Connect	NC	
27	Right Channel Voltage Output	V _{OUT} (R)	
28	Right Channel Summing Junction	SJ (R)	
1	Right Channel Analog Common	ACOM	
2	Right Channel Current Output	I _{OUT} (R)	
3	Right Channel Bipolar Offset Decoupling Point	CAP	
4	Right Channel MSB Adjustment	MSB ADJ (R)	
5	Right Channel Servo-Amp Decoupling Point	CAP	
6	MSB Adjustment Potentiometer Voltage Output	V _{POT}	
7	+5V Analog Supply	+V _{DD}	
8	Digital Common	DCOM	

NOTE: In the SOIC (PCM1700U) package, the die is rotated 90° . Therefore, the pin assignments are different from the DIP. See pin assignments on page 4 for details.

PACKAGE INFORMATION

MODEL	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾
PCM1700U	28-Pin SOIC	217
PCM1700U-J	28-Pin SOIC	217
PCM1700U-K	28-Pin SOIC	217
PCM1700P	28-Pin Plastic DIP	126
PCM1700P-J	28-Pin Plastic DIP	126
PCM1700P-K	28-Pin Plastic DIP	126

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix D of Burr-Brown IC Data Book.

FIGURE 1. PCM1700P Setup and Hold Timing Diagram.

P13 (Clock)	
P12 1 2 3 4	\(\langle 10 \langle 11 \langle 12 \langle 13 \langle 14 \langle 15 \langle 16 \langle 17 \langle 18 \langle 19 \rangle \)
P16	$\left\langle 10 \right\rangle 11 \left\rangle 12 \left\rangle 13 \right\rangle 14 \left\langle 15 \right\rangle 16 \left\langle 17 \right\rangle 18 \left\langle 19 \right\rangle$
P15 (Latch Enable)	

FIGURE 2. Timing Diagram.

DIGITAL INPUT	ANALOG OUTPUT		
Binary Two's Complement (BTC)	DAC Output	Voltage (V) V _{out} Mode	Current (mA) I _{OUT} Mode
1FFFF Hex	+ FS	+2.99997711	-0.66999489
00000 Hex	BPZ	0.00000000	0.00000000
3FFFF Hex	BPZ – 1LSB	-0.00002289	+0.00000511
20000 Hex	– FS	-3.00000000	+0.67000000

TABLE I. PCM1700 Input/Output Relationships.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

FIGURE 3. Voltage Output Connection Diagram (DIP Package Diagram.)

FIGURE 4. Current Output Connection Diagram (DIP Package Diagram.)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.