Incurred But Not Reported (IBNR)

Seguros Generales y Modelos de Riesgo

Ignacio Campón & Joaquín Viola

Índice

1	Intr	roducción	3
2	Met	todología	5
	2.1	Chain Ladder 'clásico'	5
	2.2	Chain Ladder con regresión	6
	2.3	Mach Chain-Ladder	9
		2.3.1 P	10
3	Des	sarrollo	11
Bi	bliog	grafía	11
M	ateri	ial adicional	11

1 Introducción

En este trabajo se pretende abordar distintos métodos para el cálculo de reservas de IBNR. El IBNR son los siniestros incurridos y que aún no fueron reclamados. En los seguros de responsabilidad civil, en muchos países, se tiene un período de 10 años para reclamar un seguro luego de que este haya ocurrido.

La idea principal de las reservas de IBNR es poder estar cubierto en el futuro de siniestros que pueden ocurrir en el año corriente (mientras está activa la poliza), pero se reclamaba en los años siguientes.

Para poder calcular las reservas de IBNR hay varios métodos, y todos utilizan la información de años anteriores para poder predecir cómo se comportan los reclamos en los años siguientes.

Se suele trabajar con 3 matrices triangulares, donde cada fila es un año, y en las columnas tenemos los años transcurridos. En la última fila se encuentra el último año, por lo que tiene datos para una sola columna, el año corriente, y así cada fila va teniendo dato para una columna más, llegando a la primer fila, que es el último año que se tiene en cuenta, y para el cual se tiene información para todos los años transcurridos, así queda explicada la forma de la matriz triangular.

La primer matriz triangular tiene la información de los pagos acumulados de los siniestros ocurridos en cada año, y cuando fueron pagados efectivamente. Para la primer fila, en la primer columna se tienen los pagos de los siniestros ocurridos y pagados hace 10 años, luego en la siguiente columna se tiene los siniestros ocurridos en ese año pero pagados en el siguiente, más los de la columna anterior (por ser pagos acumuados) y así sucesivamente.

La segunda matriz es la matriz de siniestros pendientes de pagos, que tiene para cada año celda, los siniestros ocurridos en la fila a la que pertenece, y reportados pasado los años según la columna en la que está, es decir, salvo los de la primera columna, todos reportados luego de pasado cierta cantidad de años, pero que aún no han sido pagados, ya sea por litigio, o por que se está estimando el valor final a pagar.

En última instancia tenemos la matriz triangulas de siniestros incurridos, que en cada celda se tiene la suma de las dos matrices anteriores que es el total de los siniestros totales acumulados y reservados ocurridos en cada año y que han ido ocurriendo a lo largo de los años siguientes. Cada diagonal (en el sentido inverso, $X_{1,n}, X_{2,n-1}, \ldots, X_{n,1}$) corresponde a los pagos acumulados y reservados de un ejercicio contable.

La reserva de IBNR es la reserva que debe tener la compañía pasado n años (en general 10 años) para poder cubrir los siniestros ocurridos en el año actual, y que serán reportados durante lossiguientes años.

Se trabajará con la matriz de siniestros trabajada en el curso de 'Solvencias de Compañías Aseguradoras' brindado por el profesor Enrique Arónica en noviembre de 2023 en la Facultad de Ciencias Económicas, se cuenta con la matriz de pagos acumulados, la matriz de siniestros pendientes de pagos y la de siniestros incurridos, esta última se presenta a continuación, que se encuentra guardada en un objeto de tipo **triangle**.

dev

##	origin	1	2	3	4	5	6	7	8
##	1999/2000	652799	1383776	2634200	3167840	3842289	4029679	4454460	4817622
##	2000/2001	1360795	2480988	2806387	3592401	3451088	3931688	4491687	4165270
##	2001/2002	1985553	3275646	3290023	3945474	4961886	4975029	5914580	5969088
##	2002/2003	2901555	4528347	4556763	5790821	6444829	7957380	8581805	NA
##	2003/2004	3572829	4717083	5937065	6835232	7309686	7276239	NA	NA
##	2004/2005	2578343	4423917	4664371	5348014	5882585	NA	NA	NA
##	2005/2006	4051902	6081465	8618348	9901076	NA	NA	NA	NA
##	2006/2007	5030173	8881224	12548654	NA	NA	NA	NA	NA
##	2007/2008	6849422	9171465	NA	NA	NA	NA	NA	NA
##	2008/2009	10120889	NA	NA	NA	NA	NA	NA	NA
##	dev								
##	origin	9	10						
##	1999/2000	5012751	5099688						
##	2000/2001	4221137	NA						
##	2001/2002	NA	NA						
##	2002/2003	NA	NA						
##	2003/2004	NA	NA						
##	2004/2005	NA	NA						
##	2005/2006	NA	NA						
##	2006/2007	NA	NA						
##	2007/2008	NA	NA						
##	2008/2009	NA	NA						

Al tener la matriz guardada en un objeto especial, la función plot nos permiete ver como crecen los siniestros incurridos en cada período con el correr de los años, obteniendo así una línea para cada año de ocurrencia y observando el crecimiento de los siniestros incurridos durante los períodos de desarrollo

Desarrollo de los reclamos por período

2 Metodología

2.1 Chain Ladder 'clásico'

Uno de los métodos más utilizados es el de 'Chain Ladder' (Escalera de Cadera), que a partir de la última matriz presentada en la sección anterior calcula los factores de desarrollo, que miden el crecimiento de los gastos por siniestro pasado los años. El factor de desarrollo representa la proporción que aumentan el monto de los siniestros incurridos entre dos períodos consecutivos (el factor de desarrollo q_j representa el aumento de los siniestros incurridos entre el período j y el j+1). Para el cálculo de este, se suma todos los siniestros incurridos en el período j+1, es decir $\sum_{i=1}^{n-j} X_{i,j+1}$ y se los divide entre la misma cantidad de filas, del período anterior (j), es decir $\sum_{i=1}^{n-j} X_{i,j}$

$$\hat{q}_j = \frac{\sum_{i=1}^{n-j} X_{i,j+1}}{\sum_{i=1}^{n-j} X_{i,j}}$$

El total a pagar y reservar por los siniestros ocurridos en el año i es el producto de $X_i = Q_j \cdot X_{i,j}$, donde Q_j es el factor de desarrollo acumulado, que representa el aumento de los siniestros pagados acumulados y reservados al período j $(X_{i,j})$, hasta el total que se va a

pagar por los siniestros incurridos en el año i (X_i) . Se puede demostrar que el factor de desarrollo acumulado se calcula de forma iterativa a través de la fórmula $Q_{j-1} = q_{j-1} \cdot Q_j$, y en particular, $Q_n = 1$ que representa el aumento de los siniestros pagados acumulados y reservados ocurridos en el primer año que se está tomando, y acumulado durante los n años siguientes, que luego, por cuestiones jurídicas no habrá nuevos reclamos.

Luego, podemos decir que X_i es la pérdida esperada por los siniestros incurridos en el año i, y nuestra reserva de $IBNR_i$, que es la reserva para los siniestros ocurridos en el año i y que fueron denunciados en los años posteriores será la diferencia entre la pérdida esperada, y el último período para el que tenemos los pagos acumulados y reservados en la matriz de siniestros incurridos $(X_{i,n-i+1})$

##		<pre>Incurridos_Acumulados</pre>	QAcum	Perdida_Esperada	Reserva_IBNR
##	1999/2000	5099688	1.000	5099688	0.00
##	2000/2001	4221137	1.017	4292896	71759.33
##	2001/2002	5969088	1.045	6237697	268608.96
##	2002/2003	8581805	1.052	9028059	446253.86
##	2003/2004	7276239	1.180	8585962	1309723.02
##	2004/2005	5882585	1.278	7517944	1635358.63
##	2005/2006	9901076	1.421	14069429	4168353.00
##	2006/2007	12548654	1.687	21169579	8620925.30
##	2007/2008	9171465	2.125	19489363	10317898.12
##	2008/2009	10120889	3.297	33368571	23247682.03
##	Total	78772626	NA	128859188	50086562.25

También se puede asignar un valor mayor a 1 para el factor de desarrollo del último año $Q_n > 1$, por distintas cuestiones que no son de particular interés en este trabajo, por ejemplo $Q_n = 1,05$, y luego los siguientes factores de desarrollo quedaran determinados a partir de este primero.

2.2 Chain Ladder con regresión

Este modelo permite calcular el factor de desarrollo para Q_n asumiendo una estructura de regresión para los factores de desarrollos (simples) en función de los períodos de desarrollo. Si bien estos no varían mucho a lo largo del tiempo, si se puede observar una estructura de regresión lineal si hacemos el logaritmo del aumento proporcional (q-1) de los siniestros incurridos en función de los períodos de desarrollo $L(q-1) \sim$ períodos de desarrollo.

$$L(q_j - 1) = \alpha + \beta \times j$$

[1] 1.550679 1.259512 1.186842 1.112016 1.083055 1.121986 1.006141 1.027942 ## [9] 1.017343

Extrapolación Log-lineal de los factores año a año

integer(0)

Para esto es necesario haber calculado los factores de desarrollo simple y hacer el modelo correspondiente, previamente chequendo si para el gráfico de dispersión de los datos corresopnde el modelo de regresión lineal. Luego, se sugiere extrapolar los datos para 100 períodos de desarrollo, y se puede observar que se empieza a estabilizar $L(q_j-1)$ cuando j aumenta, y si tomamos Q_n el factor de desarrollo acumulado para el período que estamos trabajando, podemos calcular $\hat{Q_n} = \prod_{j \geq n} \hat{q_j} = 1.021795$.

Expected claims development pattern

[1] 1.021795

Nuestros factores de desarrollo serán los obtenidos normalmente hasta el momento n-1=9 y se para $q_n=q_{10}$ se le asigna el valor de $\hat{Q_n}$ calculado que ya se mostró que para el último período de desarrollo era válida la equivalencia.

```
Incurridos_Acumulados2 <- getLatestCumulative(tri) # para obtener la diagonal inversa p
# Reverse the LDFs so the first, least mature factor [1]
# is applied to the last origin year (1990)
Perdida_Esperada2 <- Incurridos_Acumulados2 * rev(Qs) #ultima perdida esperada
# Start with the body of the exhibit

Reserva_IBNR2 = Perdida_Esperada2 - Incurridos_Acumulados2

Exhibit2 <- data.frame(Incurridos_Acumulados2, Qs = round(rev(Qs), 3), Perdida_Esperada2
# Tack on a Total row</pre>
Exhibit2 <- rbind(Exhibit2,
```

data.frame(Incurridos_Acumulados2=sum(Incurridos_Acumulados2), Qs=NA, I

##		<pre>Incurridos_Acumulados2</pre>	Qs	Perdida_Esperada2	Reserva_IBNR2
##	1999/2000	5099688	1.022	5211881	112193.1
##	2000/2001	4221137	1.040	4389982	168845.5
##	2001/2002	5969088	1.069	6380955	411867.1
##	2002/2003	8581805	1.075	9225440	643635.4
##	2003/2004	7276239	1.206	8775144	1498905.2
##	2004/2005	5882585	1.306	7682656	1800071.0
##	2005/2006	9901076	1.453	14386263	4485187.4
##	2006/2007	12548654	1.724	21633879	9085225.5
##	2007/2008	9171465	2.172	19920422	10748957.0
##	2008/2009	10120889	3.368	34087154	23966265.2
##	Total	78772626	NA	131693778	52921152.4

2.3 Mach Chain-Ladder

Thomas Mack publica en 1993 un método para obtener estimaciones de los errores estándar de las estimaciones de pérdida esperada, y por consecuencia del IBNR, se basa en la matriz triangular de pérdida agregada pero nosotros lo usaremos sobre la matriz triangular de siniestros incurridos, y se puede predecir el triángulo inferior faltante de la matriz, es decir, los siniestros incurridos a futuro de cada año para cada período de desarrollo.

Para predecir los siniestros incurridos a futuro $X_{i,j}$ con j > n-i+1 se asume:

•
$$\mathbb{E}(Q_{i,j}|X_{i,1},\dots,X_{i,j})=q_j$$
 con $Q_{i,j}=\frac{X_{i,j+1}}{X_{i,j}}$

•
$$\mathbb{V}(Q_{i.j}|X_{i,1},\ldots,X_{i,j})=\frac{\sigma_j^2}{w_{i,j}X_{i,j}^{\alpha}}$$

• $\{X_{i,1},\dots,X_{i,n}\},\{X_{k,1},\dots,X_{k,n}\}$ son independientes del período de origen $(i\neq k)$

Con $w_{i,j} \in [0;1]$ y $\alpha \in \{0,1,2\}$, se obtienen estimaciones insesgadas de las pérdidas esperadas y de las reservas de IBNR junto a los errores estándar y el coeficiente de variación.

Luego, a partir de la fórmula del error cuadrático medio, $ECM(\hat{X}_{i,n}) = \mathbb{E}((\hat{X}_{i,n} - X_{i,n})^2 | X_{i,1} \dots, X_{i,n-i+1}) = \mathbb{V}(\hat{X}_{i,n}) + (\mathbb{E}(X_{i,n} | X_{i,1} \dots, X_{i,n-i+1}) - \hat{X}_{i,n})^2$. Para lo cual se necesita una fórmula para la varianza.

Se puede notar que el factor de desarrollo q_j es el promedio ponderado de los factores de desarrollo $X_{i,j+1}/X_{i,j}$, por lo que la varianza de $X_{i,j+1}/X_{i,j}$ (dado los siniestros hasta el período de desarrollo anterior) es inversamente proporcional a $X_{i,j}$.

$$\mathbb{V}(X_{i,j+1} | X_{i,1}, \dots, X_{i,j}) = X_{i,j} \cdot \sigma_{i}^{2}$$

Donde σ_j^2 es un parámetro desconocido que debe ser estimado, y es la varianza implicita bajo el método de 'Chain Ladder'. Por lo que la varianza estimada será la suma de los errores al cuadrado ponderados de la estimación de los factores de desarrollo.

$$\hat{\sigma_j}^2 = \frac{1}{n-j-1} \cdot \sum_{i=1}^{n-j} X_{i,j} \left(\frac{X_{i,j+1}}{X_{i,j}} - \hat{q_j} \right)^2$$

Siendo $\hat{\sigma_j}^2$ un estimador insesgado para $1 \leq j \leq n-2$, obteniendo una estimación del desvío al hacer la raíz. Para estimar σ_{n-1} , si se tiene que $\hat{q}_{n-1}=1$ se puede utilizar $\sigma_{n-1}=0$ ya que se asume que el desarrollo de los siniestros termina en el tiempo n-1, de lo contrario se puede extrapolar utilizando la reducción exponencial de los desvíos de forma tal que $\hat{\sigma}_{n-1}$ cumpla con la razón.

$$\frac{\hat{\sigma}_{n-3}}{\hat{\sigma}_{n-2}} = \frac{\hat{\sigma}_{n-2}}{\hat{\sigma}_{n-1}} \hat{\sigma}_{n-1} = \frac{\hat{\sigma}_{n-2}^2}{\hat{\sigma}_{n-3}}$$

Huang y Nguyen (2018)

2.3.1 P

Nadaraya-Watson.

Figura 1: Función de distribución condicional de una normal bivariada, en negro la distribución real y en rojo la estimada para n=5000.

..

3 Desarrollo

Bibliografía

Amat Rodrigo, Joaquín. s. f. «Regresión Cuantílica (Quantile Regression)». https://rpubs.com/Joaquin_AR/291106.

Huang, Mei Ling, y Christine Nguyen. 2018. «A nonparametric approach for quantile regression». *Journal of Statistical Distributions and Applications* 5:3. https://doi.org/10.1186/s40488-018-0084-9.

Material adicional

La entrega del informe viene acompañado de 2 scripts, que contienen la implementación de cada método presentado junto con las aplicaciones realizadas:

• quantile_regression_by_huang-nguyen.R

• quantile_regression_by_yu-jones.R