5	Started on	Saturday, 21 May 2022, 4:15 PM			
	State Finished				
Com	Completed on Saturday, 21 May 2022, 4:35 PM				
Time taken 19 mins 57 secs					
	Marks 24.00/26.00				
	Grade	92.31 out of 100.00			
Question 1					
Complete					
Mark 1.00 o	ut of 1.00				
	. f = 11 =				
		algorithm as a set of instructions - 1. enqueue the first node, 2. set it as visited, 3. dequeue node A to be able to process it, bors (in this case children, if a node is unvisited then enqueue it). What is the name of this algorithm			
a.	BFS				
	BST in-ord	er traversal			
		der traversal			
	Heapsort	del davelsul			
О u.	•				
О е.	DES				
Question 2					
Complete					
Mark 1.00 o	ut of 1.00				
What is	the number	r of edges present in a complete <u>graph</u> having n vertices?			
a.	(n*(n-1)) di	vided to 2			
b.					
	(n*(n+1)) d	livided to 2			
		rmation is insufficient			
O u.	Given inioi	mation is insufficient			
Question 3					
Complete					
Mark 1.00 out of 1.00					
A graph cannot be applied to					
О а.	Solve maxi	mum flow problem			
b.					
b. Make web crawlersc. Implement spanning trees					
) d.					
e.	Find the m	Inimum element			

Question 4
Complete
Mark 1.00 out of 1.00
Graph traversal is different from a tree traversal, because
a. trees have root
○ b. trees are not connected
c. graphs may have loops
○ d. None of these
_
Question 5
Complete Mark 1.00 out of 1.00
Mark 1.00 out of 1.00
In an adjacency matrix constructed out of the vertices of the graph: the A(i, j) value in the matrix is 1 if there is a connection between node i
and node j, otherwise A(I, j) is 0.
O a Disagree
a. Disagreeb. Agree
© D. Agree
Question 6
Complete
Mark 1.00 out of 1.00
The running time complexity of DFS (Depth-first search) traversal algorithm is
a. O(logV*logE), where V is the number of vertices and E is the number of edges
○ b. O(V*E), where V is the number of vertices and E is the number of edges
c. O(V+E), where V is the number of vertices and E is the number of edges
O(logV+logE), where V is the number of vertices and E is the number of edges
Question 7
Complete
Mark 1.00 out of 1.00
DFS algorithm is NOT useful for the following:
a. Kosaraju algorithm for finding connected components
b. Topological ordering
© c. Performing heapsort
d. Detecting cycles

5/22, 11:50	D AM MCQ 8 (BDA01-04, MT2103): Attempt review
Question 8	
Complete	
Mark 1.00 o	ut of 1.00
A graph	is a mathematical abstraction which includes vertices also called as nodes and edges also called as links
a.	Agree
○ b.	Disagree
Question 9	
Complete	
Mark 1.00 o	ut of 1.00
In a sim	ple g <u>raph</u> , the number of edges is equal to twice the sum of the degrees of the vertices
III a SIIII	pie g <u>raph</u> , the number of edges is equal to twice the sum of the degrees of the vertices
(a	Disagree
	Agree
O D.	Agree
Question 10	0
Complete	
Mark 0.00 o	ut of 1.00
Lets say	that you have a graph with A, B, C, D, E vertices, and following adjacency lists A(B, C), B(D), D(E). What will be the result of DFS
algorith	m on this g <u>raph</u> , if the starting node is A
	A, C, B, D, E
b.	A, E, B, C, D
O c.	A, B, C, D, E
d.	A, B, D, E, C
О е.	B, A, C, D, E
Question 11	1
Complete	
Mark 1.00 o	ut of 1.00
The	ning time complexity of DEC (Dynaddh firet course) traverse algorithm is
rne run	ning time complexity of BFS (Breadth-first search) traversal algorithm is
О а.	O/log//_logE) where V is the number of vertices and E is the number of edges
	O(logV+logE), where V is the number of vertices and E is the number of edges
) b.	O(V*E), where V is the number of vertices and E is the number of edges
O c.	O(logV*logE), where V is the number of vertices and E is the number of edges
d.	O(V+E), where V is the number of vertices and E is the number of edges

Question 12					
Complete					
Mark 1.00 out of 1.00					
Imagine following algorithm as a set of instructions and it explores as far as possible along each branch before backtracking, so you visit every node exactly once					
a. BST pre-order traversal					
O b. BFS					
oc. BST in-order traversal					
⊚ d. DFS					
○ e. Heapsort					
Question 13					
Complete					
Mark 1.00 out of 1.00					
Which algorithm can be implemented with recursion as well as with iteration?					
 a. BFS (Breadth-first search) 					
b. DFS (Depth-first search)					
Question 14					
Complete					
Mark 1.00 out of 1.00					
Depth-first search uses stack as an abstract data type					
■ a. Agree					
○ b. Disagree					
Question 15					
Complete					
Mark 1.00 out of 1.00					
In a graph, in order to go from node A to node B, there is only one possible way					
a. Disagree					
○ b. Agree					

https://moodle.astanait.edu.kz/mod/quiz/review.php?attempt=181660&cmid=50849

Question 16 Complete					
Mark 1.00 out of 1.00					
Walk 1.00 Out of 1.00					
There are two main ways to represent a graph in programming languages which one in the list is not the appropriate one					
a. Adjacency matrixes					
b. Keys-value representation					
O c. Edge-list representation					
Question 17					
Complete					
Mark 0.00 out of 1.00					
A g <u>raph</u> is a tree only if <u>graph</u> is					
a. Completely connected					
b. Undirected graph					
○ c. Contains no cycles					
O d. Planar					
○ e. Directed g <u>raph</u>					
Question 18					
Complete					
Mark 1.00 out of 1.00					
What is the difference between directed and undirected graph					
a. Directed graph uses less memory comparing with undirected graphs					
b. Directed graph has directions for each edge comparing with undirected graphs					
○ c. There is no difference					
Question 19					
Complete					
Mark 1.00 out of 1.00					
Breadth-first search uses stack as an abstract data type					
a. Disagree					
○ b. Agree					
U. Agree					

Question 20 Complete
Mark 1.00 out of 1.00
 What is the aim of BFS (Breadth-first search) and DFS (Depth-first search)? a. Visit every single node in a graph b. Calculate the distances between nodes with these algorithms c. Sort the nodes in a given graph
Question 21
Complete
Mark 1.00 out of 1.00
In an adjacency matrix constructed out of the vertices of the graph: the A(i, j) value in the matrix is 0 if there is a connection between node i and node j, otherwise A(I, j) is 1.
b. Disagree
© D. Disagree
Question 22
Complete
Mark 1.00 out of 1.00
Lets say that you have a graph with A, B, C, D, E vertices, and following adjacency lists A(B, C), B(D), D(E). What will be the result of BFS algorithm on this graph, if the starting node is A a. A, E, B, C, D b. B, A, C, D, E c. A, B, C, D, E d. A, C, B, D, E e. A, B, D, E, C
Question 23
Complete
Mark 1.00 out of 1.00
An adjacency matrix representation of a graph cannot contain information of a. Nodes b. Edges c. Direction of edges

25/22, 11:50 AM	MCQ 8 (BDA01-04, MT2103): Attempt review				
Question 24					
Complete					
Mark 1.00 out of 1.00					
A graph is a collection of					
a. Keys and values					
b. There is no correct answer					
c. Nodes and edges					
 d. Parent and children nodes 					
Question 25					
Complete					
Mark 1.00 out of 1.00					
The memory complexity of DFS (Depth-first search) is bette	er than the complexity of BFS (Breadth-first search)?				
a. Disagree					
b. Agree					
Question 26					
Complete					
Mark 1.00 out of 1.00					
If G is an directed graph with 20 vertices, how many boolea	an values will be needed to represent G using an adjacency matrix?				

- a. 400
- O b. 200
- oc. 40
- Od. 20