Mole Concept DPP-2

Ashish Bibyan B.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

Some Reactions to be used

$$\begin{aligned} &2\mathrm{C_8~H_{18}} + 17~\mathrm{O_2} \rightarrow &16~\mathrm{CO} + 18~\mathrm{H_2O} \\ &\mathrm{C_2H_6} + \mathrm{O_2} \rightarrow \mathrm{CO_2} + \mathrm{H_2O} \text{ (unbalanced)} \\ &\mathrm{CaCl_2} + 2\mathrm{Ag~NO_3} \rightarrow &2\mathrm{AgCl} + \mathrm{Ca~(NO_3)_2} \\ &\mathrm{KClO_3} \rightarrow &\mathrm{KCl} + 3/2~\mathrm{O_2} \end{aligned}$$

- 1. Calculate the number of molof ammonia, NH_3 , required to produce 2.50 molof $Cu(NH_3)_4SO_4$ according to the equation: $CuSO_4 + 4NH_3 \rightarrow Cu(NH_3)_4SO_4$.
- For the reaction Ba(OH)₂ + 2HClO₃ \rightarrow Ba(ClO₃)₂ + 2H₂O, calculate the number of molof H₂O formed when 0.100 molof Ba(OH)₂ is treated with 0.250 molof HClO₃.
- 3. How much carbon monoxide is produced from the reaction of 1.00 kg of octane, C_8H_{18} and 1.00 kg of oxygen?
- **4.** Calculate the number of g of CO₂ which can be produced by burning 90.0 g of ethane, C₂H₆, in excess oxygen.
- 5. How many g of $CaCl_2$ does it take to produce 14.3 g of AgCl when treated with excess $AgNO_3$? $Ca(NO_3)_2$ is the other product.
- **6.** How much $KClO_3$ must be heated to obtain 2.50 g of oxygen?
- 7. What mass of KI is needed to produce 69.6 g of K_2SO_4 by the reaction $8KI + 5H_2SO_4 \rightarrow 4K_2SO_4 + 4I_2 + H_2S + 4H_2O$?
- **8.** The reaction $2Al + 3MnO \rightarrow Al_2O_3 + 3$ Mn proceeds until the limiting substance is all consumed. A mixture containing 110 g Al and 200 g MnO was heated to initiate the reaction. Which initial substance remained in excess, and by how much?
- 9. Calculate the amount of carbon dioxide that could be produced when

(NCERT Problem)

- (i) 1 mole of carbon is burnt in air.
- (ii) 1 mole of carbon is burnt in 16 g of dioxygen.
- (iii) 2 moles of carbon are burnt in 16 g of dioxygen.
- 10. In a reaction

(NCERT Problem)

$$A + B_2 \rightarrow AB_2$$

Identify the limiting reagent, if any in the following reaction mixtures.

- (i) 300 atoms of A + 200 molecules of B₂
- (ii) $2 \operatorname{mol} A + 3 \operatorname{mol} B_2$
- (iii) 100 atoms of A + 100 atoms of B
- (iv) 5 mol A + 2.5 mol B

- (v) 2.5 mol A + 5 mol B
- 11. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation: (NCERT Problem)

$$N_2(g) + H_2(g) \rightarrow 2NH_3(g)$$

- (i) Calculate the mass of ammonia produced if 2.00×10^3 g dinitrogen reacts with 1.00×10^3 g of dihydrogen.
- (ii) Will any of the two reactants remain unreacted?
- (iii) If yes, which one and what would be its mass?
- **12.** Chlorine is prepared in the laboratory by treating manganese dioxide (MnO₂) with aqueous hydrochloric acid according to the reaction (NCERT Problem)

4 HCl (aq) + MnO₂(s)
$$\rightarrow$$
 2H₂O (l) + MnCl₂(aq) + Cl₂ (g)

How many grams of HCl react with 5.0 g of manganese dioxide?

13. One mole of CO₂ contains

(a) 6.02×10^{23} atoms of C

- (b) 6.02×10^{23} atoms of O
- (c) 18.1×10^{23} molecules of CO_2
- (d) 3 g atoms of CO₂

14.	Which has maximum molecules?							
	(a) $7 g N_2$	(b) $16 g O_2$	(c) 2 g H ₂					
15. Which of the following contains atoms equal to those in 12 g Mg? (At. wt. l								
	(a) 12 gm C		(c) 32 gm O_2	(d) None of These				
16 .	The largest number of molecules is in							
	(a) 36 g of water	(b) 28 g of CO_2	(c) 46 g of CH ₃ OH	(d) $58 \text{ g of N}_2\text{O}_5$				
17.	If $1\frac{1}{2}$ moles of oxygen combine with Al to form Al_2O_3 , the weight of Al used in the reaction							
	is $(Al = 27)$							
	(a) 27 g	(b) 54 g	(c) 40.5 g	(d) 81 g				
18.	The equation $2Al(s) + \frac{3}{2}O_2 \longrightarrow Al_2O_3(s)$ shows that							
	 (a) 2 g of aluminium react with 3/2g of oxygen to produce 1 g of aluminium oxide (b) 2 g of aluminium react with 3/2 litres of oxygen to produce 1 g of aluminium oxide (c) 2 moles of aluminium react with 3/2 moles of oxygen to produce one mole of aluminium oxide (d) 2 moles of aluminium react with 3/2 moles of oxygen to produce 7/2 moles of aluminium oxide. 							
19.	If 0.5 mol of $BaCl_2$ is mixed with 0.2 mol of Na_3PO_4 , the maximum number of mole of $Ba_3(PO_4)_2$ that can be formed is							
	(a) 0.7	(b) 0.5	(c) 0.30	(d) 0.10				
20.	Which has the highe							
	(a) 50 g of iron		(b) 5 moles of N_2					
	(c) 0.1 mol atom of Ag		(d) 10^{23} atoms of carbon					
21.	How much quick lime can be obtained from 25 gm of $CaCO_3$?							
	(a) 28 g	(b) 14 g	(c) 56 g	(d) none				

ANSWERS

1. 10 mol NH ₃ .	2. 0.2	3. 823.53g	4. 264g	5. 5.55g	6. 6.38g
7. 132.8g	8. 59.2g	9. (i) 44g, (ii) 2	2g, (iii) 22g		
10.(i) B ₂ (ii) A (iii) B ₂ (iv) B ₂ (v)	A 11. (i) 2428	.57g (ii) Yes, H	(iii) 571.43g	
12. 8.4g	13. (a)	14. (c)	15. (b)	16. (a)	17. (b)
18. (c)	19. (d)	20. (b)	21. (b)		