Examples Volume I Oxford

Oxford: smooth fit to log-odds ratios

Breslow and Clayton (1993) re-analyse 2 by 2 tables of cases (deaths from childhood cancer) and controls tabulated against maternal exposure to X-rays, one table for each of 120 combinations of age (0-9) and birth year (1944-1964). The data may be arranged to the following form.

Strata	Exposure: X-ray / total						
	Cases	Controls	age	year - 1954			
1	3/28	0/28	9	-10			
120	7/32	1/32	1	10			

Their most complex model is equivalent to expressing the log(odds-ratio) ψ_i for the table in stratum i as

$$log \psi_i = \alpha + \beta_1 year_i + \beta_2 (year_i^2 - 22) + b_i$$

 $b_i \sim Normal(0, \tau)$

They use a quasi-likelihood approximation of the full hypergeometric likelihood obtained by conditioning on the margins of the tables.

We let r_i^0 denote number of exposures among the n_i^0 controls in stratum i, and r_i^1 denote number of exposures for the n_i^1 cases. The we assume

$$r^{0}_{i} \sim \text{Binomial}(p^{0}_{i}, n^{0}_{i})$$
 $r^{1}_{i} \sim \text{Binomial}(p^{1}_{i}, n^{1}_{i})$
 $logit(p^{0}_{i}) = \mu_{i}$
 $logit(p^{1}_{i}) = \mu_{i} + log\psi_{i}$

Assuming this model with independent vague priors for the μ_i 's provides the correct conditional likelihood. The appropriate graph is shown below

Oxford Examples Volume I

BUGS language for Oxford example:

```
model
{
    for (i in 1 : K) {
        r0[i] ~ dbin(p0[i], n0[i])
        r1[i] ~ dbin(p1[i], n1[i])
        logit(p0[i]) <- mu[i] + logPsi[i]
        logPsi[i] <- alpha + beta1 * year[i] + beta2 * (year[i] * year[i] - 22) + b[i]
        b[i] ~ dnorm(0, tau)
        mu[i] ~ dnorm(0.0, 1.0E-6)
    }
    alpha ~ dnorm(0.0, 1.0E-6)
    beta1 ~ dnorm(0.0, 1.0E-6)
    beta2 ~ dnorm(0.0, 1.0E-6)
    tau ~ dgamma(1.0E-3, 1.0E-3)
    sigma <- 1 / sqrt(tau)
}
```

Data (click to open)

Inits (click to open)

Examples Volume I Oxford

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

	mean	sd	MC_error	val2.5pc	median	val97.5pc	start	sample
alpha	0.579	0.062	0.001545	0.4587	0.5793	0.7037	1001	10000
beta1	-0.04557	0.01553	3.929E-4	-0.07688	-0.0457	-0.01586	1001	10000
beta2	0.007041	0.003084	8.953E-5	0.001018	0.007004	0.01314	1001	10000
sigma	0.09697	0.06011	0.005036	0.02419	0.08059	0.2457	1001	10000

These estimates compare well with Breslow and Clayton (1993) PQL estimates of α = 0.566 +/-0.070, β_1 = -0.469 +/- 0.0167, β_2 = 0.0071 +/- 0.0033, σ = 0.15 +/- 0.10.