Algebra I

Paolo Bettelini

Contents

1	Richiami di teoria degli insiemi	1
2	Classi di equivalenza	2
3	Esempi di maggiorante etc. 3.1 Relazioni irriflessiva	3
1	Richiami di teoria degli insiemi	
Data una famiglia finita o infinite di insiemi $\{A_i\}_{i\in I}$, la loro intersection		
	$igcap_{i\in I} A_i$	
è l'insieme degli elementi che stanno in tutti gli insiemi A_i , mentre la loro unione		
	$\bigcup_{i \in I} A_i$	
è l'insieme degli elementi che stanno in almeno uno degli insiemi A_i .		

2 Classi di equivalenza

Esempio insieme quoziente \sim su $\mathbb Z$ dove $a \sim b \iff |a| = |b|$ è dato da

$$\{\{0\},\{1,-1\},\{2,-2\},\cdots\}$$

L'unica relazione di equivalenza che è un ordine è l'uguaglianza.

3 Esempi di maggiorante etc.

In $\mathbb R$ consideriamo l'usuale ordinamento. Consideriamo i sottoinsiemi

$$A = \{ x \in \mathbb{R} \,|\, x > 0 \}$$

$$B = \{ x \in \mathbb{R} \, | \, x \ge 0 \}$$

е

$$C = \{ x \in \mathbb{R} \, | \, 0 < x \le 2 \}$$

Il sottoinsieme A non ha maggioranti. Ogni numero non-positivo è minorante di A. A non ha nè massimo nè minimo.

Il sottoinsieme B non ha maggioranti. Ogni numero non-positivo è minorante di B. B ha 0 come minimo.

Il sottoinsieme C ha minoranti e maggioranti ma non minimo e ho 2 come massimo.

Consideriamo ora la relazione di divisibilità in \mathbb{N} . L'unico maggiorante è 0 in quanto tutti dividono zero, ed è un massimo. Il numero 1 è minorante, ed è un minimo.

Se ora prendiamo l'insieme {2, 3, 4, 5}, i maggioranti sono mulitpli del minimo comune multiplo (60), i minoranti sono i divisori comuni. Non ci sono massimo e minimo.

Proposition II massimo è unico

Il massimo, se esiste, è unico.

Proof Il massimo è unico

Diciamo che a,b sono due massimi di A, cioè maggioranti di A che appartiene ad A. Abbiamo allora $a \ge b$ (in quanto a è un maggiorante) e $b \ge a$ (in quando b è un maggiorante). Abbiamo quindi che a = b.

Definizione Massimale

Un elemento $a \in A$ con A insieme partzialmente ordinato è detto massimale in A se non esiste alcun $b \in A$ tale che $a \le b$ dove $a \ne b$.

Definizione Minimale

Un elemento $a \in A$ con A insieme partzialmente ordinato è detto minimale in A se non esiste alcun $b \in A$ tale che $a \ge b$ dove $a \ne b$.

Ogni massimo è massimale, ogni minimo è minimale.

Esempio in cui i massimali non sono massimi: in \mathbb{N} , rispetto alla divisibilità, consideriamo l'insieme $A = \{2, 3, 4, 5, 6\}$.

- Il numero 2 è minimale ma non massimale.
- Il numero 3 è minimale ma non massimale.
- Il numero 4 è massimale perché non divide nient'altro, ma non minimale.
- Il numero 5 è sia massimale che minimale.
- Il numero 6 è massimale ma non minimale.

In una relazione d'ordine totale un eventuale elemento massimale è massimo. Infatti, se a è massimale per A, preso un qualsiasi elemento $b \in A$, sappiamo che vale almeno una tra $a \le b$ e $b \le a$. Se vale la prima, per la definizione di massimalità di a, non può essere $a \ne b$. Nel secondo caso, $b \le a$ e quindi a è un massimo. Analogamente per i minimali.

3.1 Relazioni irriflessiva

Data una relazione d'ordine \leq , possiamo ottenere la relazione d'ordine stretta < dicendo che a < b se $a \leq b$ e $a \neq b$.