EXAMEN DE ESTRUCTURA DE COMPUTADORES. La Rábida, 21 de Septiembre de 2016

Apellidos	Nombre	
Valor de cada: Respuesta correcta + 0.10 Respuesta incorrecta - 0.05	TIEMPO REALIZACIÓN EXAMEN: 30 minutos	TEST →
Sin respuesta - 0.05		P1 →

$TEST \rightarrow$	
P1 →	
P2 →	
P3 →	
NOTA →	

	<u> </u>		
	En la arquitectura Von Neumann, atendiendo a los dos Principal (instrucciones y datos):	tipos de informaciones que se pueden leer de la Memoria	
1*	A) Las instrucciones son manejadas por la Unidad Operativa	C) Para los datos hay unas combinaciones binarias reservadas	D
-	B) Las instrucciones tienen una representación binaria y los	D) Ninguna de las afirmaciones anteriores es correcta	
	datos otra representación no binaria	, , ,	
	Dadas las instrucciones JMP 0B800h, BZ 0B800h y RET:		_
2*	A) Las tres son instrucciones de bifurcación incondicionales	C) Las tres son instrucciones de bifurcación	C
	B) Sólo una de ellas es de bifurcación incondicional	D) Ninguna de las afirmaciones anteriores es correcta	
	Dada la operación A \leftarrow A - B, siendo A y B posiciones de m	emoria:	
	A) Todo computador necesita varias instrucciones para poder	C) Únicamente puede realizarse en un computador de dos	_
3*	realizarla	direcciones	В
	B) Algunos computadores pueden realizarla con una única	D) Ninguna de las afirmaciones anteriores es correcta	
	instrucción		
	El computador Von Neumann, una vez ha sido programado		
4*	A) Nunca puede tomar decisiones	C) Toma decisiones únicamente en función de los periféricos	В
	B) Puede tomar decisiones en función de los resultados entraidos en las distintas energiones	ען אוווווווווווווווווווווווווווווווווווו	_
	obtenidos en las distintas operaciones En un computador Von Neumann, ¿cuándo NO es necesari.	o el registro Contador de Programa?	
5*	A) Únicamente si es de cuatro direcciones	C) Siempre es necesario	Α
_	B) Si es de tres o de cuatro direcciones	D) Ninguna de las afirmaciones anteriores es correcta	_
	Los registros internos y las posiciones de memoria de un c		
	A) El espacio material debe ser infinito	C) El espacio material puede ser finito o infinito	
6*		D) Los elementos materiales que lo definen presentan unos	В
	determinados tamaños en función del ancho de los caminos	tamaños independientes del ancho de los caminos de acceso en	_
	de acceso en paralelo	paralelo	
	Dada la cadena binaria 10000, indica los sistemas de	representación en los que su valor equivalente decimal es	
7*	positivo:		В
•	A) Signo magnitud y exceso Z = 2 ⁿ⁻¹	C) Binario puro con signo y complemento a 2	ם
	B) Binario puro sin signo y exceso Z = 2 ⁿ⁻¹	D) Complemento a 1 y exceso Z = 2 ⁿ⁻¹	
		na en el que es posible obtener su representación exacta	
0*	equivalente:	C) To popposio un cistomo en como flatante con manti-	D
8*		C) Es necesario un sistema en coma flotante con mantisa	D
	entera obligatoriamente B) Sólo es posible con el binario puro	fracción obligatoriamente	
	Dado el estándar IEEE 754 de simple precisión, cuando E =	D) En coma fija con signo	
9*	A) Representa un valor de la zona desnormalizada	C) Representa indeterminaciones del tipo 0/0	Α
J	B) Representa un valor de la zona normalizada	D) Representa el valor - ∞	H
		mio generador es 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0, su expresión	
A .t.	de polinomio en la variable "x" y coeficientes "1" ó "0" es:	go	_
10*	A) $P(x) = x^{17} + x^{13} + x^6 + x$	C) $P(x) = x^{16} + x^{12} + x^5$	C
	B) $P(x) = x^4 + x^2 + x + 1$	D) Ninguna de las afirmaciones anteriores es correcta	
		direcciones y mapa de memoria común, ocupado al 40%, se	
	puede afirmar que:		
1*	A) Podría aplicarse decodificación incompleta si fuese mapa	C) No se puede aplicar decodificación completa	D
	de memoria no común	·	_
	B) No se puede aplicar decodificación incompleta	D) Ninguna de las afirmaciones anteriores es correcta	
	De las conexiones de la memoria caché, indica la que <u>no im</u>	plica acceder a la memoria principal en caso de acierto:	
12 *	A) La conexión paralela	C) La conexión mixta	В
	B) La conexión serie	D) Ninguna de las afirmaciones anteriores es correcta	
		es líneas: A_i (dirección), D_i (datos), OE (habilitación de salida),	
3*	WE (habilitación de escritura) y CS (selección de chip):		Α
•	A) Se trata de un módulo tipo RAM	C) Se trata de un módulo tipo ROM o PROM	_
	B) Se trata de un módulo tipo DRAM	D) Se trata de un módulo de E/S	
	Un procesador con dos niveles de ejecución: nivel de usua		
4*	A) El nivel de usuario	C) La permisividad no depende del nivel de ejecución	В
-	B) El nivel de núcleo	D) Ambos niveles implican la misma permisividad, dependiendo	
		la misma del Sistema Operativo	

15*	completamente:	Kposiciones y 8 bits en cada posición, se puede cubrir	В
		C) Con 8 módulos de 4Kx4	ו
		D) Con 2 módulos de 32Kx2	
	De las cuatro formas que se puede realizar una operación (ar	ritmética, lógica,), la forma más rápida es mediante:	_
16*	A) Un circuito combinacional	C) Un circuito secuencial con unidad de control propia	ΑΙ
	B) Un circuito secuencial con la unidad de control de la CPU	D) Ninguna de las afirmaciones anteriores es correcta	
	Una unidad operativa capaz de realizar operaciones tanto de	datos enteros como en coma flotante (FP):	
		C) Puede tener un único banco de registro para enteros y para	
17*		FP	C
	B) Debe tener siempre uno o varios bancos de registros de [D) Ninguna de las afirmaciones anteriores es correcta	
	tamaño doble palabra	2) Tuniguna de las animasiones antoneros es correcta	
	La multiplicación de un número por una potencia de dos:		
		C) Debe realizarse con un circuito secuencial multiplicador	_
18*		obligatoriamente	В
	•	D) Ninguna de las afirmaciones anteriores es correcta	
	La operación de extensión de signo de un valor representado		
19*		C) Implica rellenar las posiciones sobrantes con "0s" si el valor es	D
		positivo y con "1s" si el valor es negativo	_
		D) Implica rellenar las posiciones sobrantes con "0s" siempre	
	El "coproceso" implica:		
20*		C) Que cada procesador tenga su contador de programa	В
		D) Que el coprocesador sea matemático obligatoriamente	
	El campo código de operación de una instrucción:		7
	A) Puede indicar o no la operación	C) Tiene siempre el mismo nº de bits en todas las instrucciones	_
21*		de un determinado procesador	D
	B) Nunca indica el tipo de operando que interviene en la I	D) Le indica a la Unidad de Control cuántos accesos a memoria	_
		tiene que realizar para buscar la instrucción completa	
		iento indirecto absoluto a memoria, aparte de los accesos a	
004	memoria para buscar la instrucción:	, ·	
22*	•	C) Implica siempre dos accesos a memoria como mínimo	Α
		D) Ninguna de las afirmaciones anteriores es correcta	
	Del modo de direccionamiento inmediato se puede decir que		
23*		C) No tiene ninguna utilidad	В
23		D) Ninguna de las afirmaciones anteriores es correcta	ַ
	Comparando los direccionamientos directo relativo a registro		
			_
24*		C) Ambos implican sumar un desplazamiento a un registro	C
	B) El relativo a registro índice implica un formato de [D) El relativo a registro muice no es util	_
	instrucción mayor que el relativo a registro base		
	El que un repertorio de instrucciones sea "eficaz" implica:		
25*		C) Que sea capaz de realizar cualquier tarea computable	C
		D) Que para la tarea computable que realice dedique el menor	•
		tiempo posible	
	Un Canal de E/S:	2) 11 11 11 11 11 11 11 11 11 11 11 11 11	
26*		C) No tiene capacidad de acceso directo a memoria	D
	B) Es un registro perteneciente a un dispositivo de E/S con I	D) Ninguna de las afirmaciones anteriores es correcta	
	capacidad de provocar una interrupción		
		uministra la información relativa a la dirección de comienzo	
27*	de la rutina de tratamiento de la interrupción, la interrupción		В
21	A) Enmascarable	C) No enmascarable	D
	B) Vectorizada	D) No vectorizada	
	En la Gestión Centralizada de Priodidades:		
	A) El recurso indica siempre quién se queda con la fase de (C) Los mismos peticionarios se ponen de acuerdo entre si para	
28*		determinar quién se queda con el uso del recurso	В
	B) Un dispositivo único indica quién se queda con la fase de I		_
	servicio	, 3	
	Un Controlador de Acceso Directo a Memoria es capaz de rea	alizar, sin intervención alguna de la CPU:	
		C) La transferencia completa y seguida de todos los bloques de	
29*		información	D
		D) Ninguna de las afirmaciones anteriores es correcta	
L			
	En la técnica de redondeo denominada " <i>Truncamient</i> o" el er	rror que se comete es:	
30*	En la técnica de redondeo denominada "Truncamiento", el er		
30*	A) ≤ Resolución/2	rror que se comete es: C) < Resolución D) < Resolución/2	С

EXAMEN DE ESTRUCTURA DE COMPUTADORES

(Convocatoria Ordinaria de Septiembre)

La Rábida, 21 de Septiembre de 2016

PROBLEMA 1. (3,0 ptos.). Dado el programa mostrado a continuación (Tabla 1):

- 1. Componer (**con valores en hexadecimal exclusivamente**) la tabla que se suministra para que permita seguir su ejecución, indicando la evolución de los registros empleados, del registro contador de programa (PC), el bit Z del registro de estado y de las posiciones de memoria empleadas. Para ello, suponer que:
 - a) El programa está cargado a partir de la dirección cero de memoria.
 - b) Todos los registros están inicializados a un valor cero.
 - c) El contenido inicial de las posiciones de memoria implicadas es el que se muestra en la Tabla 2.
 - d) Las instrucciones que afectan al biestable de estado Z son, además de la de comparación, las que implican operaciones aritméticas.
 - e) Los modos de direccionamiento empleados funcionan según se muestra en la Tabla 3.

Tabla 1. Programa a ejecutar							
Instrucción	Longitud						
LOAD # 05h	2						
STORE 5[.1]	2						
LOAD [0080h]	3						
DEC	1						
STORE 5[.1++]	2						
DEC	1						
CMP # 0Ch	2						
JNE \$ -07h	2						
NOP	1						

Tabla 2. Contenido de posiciones de memoria								
M(0005h) M(0080h) M(0081h) M(0404h) M(;?)								
00h	04h	04h	10h	00h				

Tabla 3. Modos de Direccionamiento.									
Modo de direccionamiento	Prefijo/sufijo	Ejemplo							
INMEDIATO	Prefijo #	add #18 ; AC ← AC +18							
DIRECTO RELATIVO a PC	Prefijo \$	add \$18 ; AC ← AC +M(PC+18)							
DIRECTO RELATIVO a REGISTRO BASE	Corchete [.]	add 18[.3] ; AC ← AC +M(18+R3)							
DIR. REL. a REG. ÍND. con autopostincrem.	Sufijo ++	add 18[.3++] ; AC ← AC +M(18+R3) R3← R3+1							
INDIRECTO ABSOLUTO A MEMORIA	Corcheto []	add [18] ; AC ← AC+M(M(18))							

- 2. Especificar los distintos formatos de instrucción posibles para cada modo de direccionamiento especificado en la Tabla 3 y suponiendo que
 - a) El tamaño de la palabra de memoria del computador es de 8 bits

- b) El bus de direcciones tiene 16 líneas
- c) Los modelos de ejecución que admite el computador son REG-MEM y MEM-REG.
- d) El sistema computador tiene un total de 240 instrucciones
- e) El sistema computador tiene 8 registros que pueden utilizarse para los direccionamientos relativos a registros base e índice.
- 3. Representar los valores + 0, 20 y ∞ según el estándar IEEE P754 considerando que se necesitan 8 posiciones de memoria del anterior sistema computador para representar dichos datos.

PROBLEMA 2. (2,0 puntos). Dado un sistema computador con bus de datos de 8 bits y bus de direcciones de 16 bits y con especificaciones de diseño para el sistema de memoria principal y E/S:

- Mapa de memoria común.
- 32 Kposiciones de memoria para el sistema operativo y para las aplicaciones.
- 16 Kposiciones de memoria para los programas de inicialización, en las primeras posiciones del mapa de memoria.
- 4 Kposiciones para E/S con módulos de 2Kx8.
- Se puede disponer de módulos de memoria RAM de 16Kx4, de NOVRAM 8Kx4, y de UVEPROM de 4Kx8.
- Emplear en el diseño al menos un módulo de cada uno de los tipos de memoria disponibles.

Se pide:

- a) Dibujar un esquema de cada dispositivo elegido para el diseño, detallando todas las líneas de comunicación.
- b) Diseñar el/los mapa/s de direcciones.
- c) Diseñar un esquema de conexión que se corresponda con el/los mapa/s definido/s en el apartado anterior.

PROBLEMA 3. (2,0 puntos). Disponemos de un sistema con CPU basada en acumulador y con las siguientes líneas: **ADDR** (bus de direcciones de 16 bits), **DAT** (bus de datos de 16 bits), **BUSRQ** y **BUSACK** (solicitud y concesión de los buses), **INT** e **INTACK** (solicitud y reconocimiento de interrupción), **MEMREQ**, **RD** y **WR** (control de accesos a memoria).

- a. Dibujar el contenido de estas líneas en hexadecimal (sin tener en cuenta el número de periodos necesarios para cada ciclo máquina u operación elemental) (se corregirá únicamente lo que aparezca en la hoja del cronograma), a lo largo del proceso siguiente:
 - i. La CPU ejecuta las instrucciones LDA 6060h, ADD #26, SUB 2020h y STA [2020h]. Suponer que la primera, segunda y tercera instrucción se encuentran en memoria a partir de la dirección FF00h; y la cuarta instrucción se encuentra situada en la posición de memoria especificada por el vector de interrupción. Los códigos de operación correspondientes a las instrucciones son respectivamente AA00h, BB00h, CC00h y FF00h. Considerar el tamaño de los operandos igual al tamaño del bus de datos.
 - ii. Durante el sexto ciclo de memoria, un controlador con DMA, solicita los buses para leer de memoria los datos **8**, **9** y **10** a partir de la posición **CCCCh**. El controlador opera en modo continuo.
 - iii. Supongamos que estos datos eran los últimos para completar el bloque pendiente del controlador de DMA, de forma que a continuación se solicita una interrupción, enviando el vector de interrupción BB00h por el bus de datos, permaneciendo la línea de petición de interrupción activa hasta ser atendida.
- b. Definir el contenido final de todos los elementos de almacenamiento implicados. El contenido de dichos elementos de almacenamiento anteriormente a la ejecución de las instrucciones es nulo o el especificado en la relación siguiente:
 - i. Contenido de la dirección 6060h = 00AAh
 - ii. Contenido de la dirección 6061h = AA00h
 - iii. Contenido de la dirección 2020h = 0018h
 - iv. Contenido de la dirección 2021h = 1800h

Fdo.: Los profesores de la asignatura.

Apellidos:											• • • • • • •			• • • • • •	Noml	ore:						
			•		•				•	•				•								
ADDR()																						
DAT()	**********		-																			
BUSREQ																						
BUSACK																						
INT						*************						************				***************************************	***************************************					
INTACK																						
MEMREQ																						
RD																						
WR																						
	Ciclo 1°	Ciclo 2°	Ciclo 3°	Ciclo 4°	Ciclo 5°	Ciclo 6°	Ciclo 7°	Ciclo 8°	Ciclo 9°	Ciclo 10°	Ciclo 11°	Ciclo 12°	Ciclo 13°	Ciclo 14°	Ciclo 15°	Ciclo 16°	Ciclo 17°	Ciclo 18°	Ciclo 19°	Ciclo 20°	Ciclo 21°	Ciclo 22°
Tipo de ciclo							<u> </u>	<u> </u>														
Inicial																						
Intermedio																						
Final																						

	D.G.	-		D 4				3.57		
Instrucción	PC	Z	Acum.	R1	M()	M()	M()	M()	M()	M()
INICIO										

Apellidos:	No	ombre: