ANO: 10° ANO DATA: MAIO

TEMA: FUNÇÃO MÓDULO

TIPO: FICHA DE TRABALHO

LR MAT EXPLICAÇÕES

1. As funções representadas graficamente a seguir são do tipo y = |x - a| + b, em que $a \in b$ designam números reais. Indica para cada função o valor de $a \in b$.

2. Define, sem utilizar o símbolo de módulo, cada uma das funções.

2.1
$$f(x) = |1 - 3x|$$

2.2
$$g(x) = 2 - 3|x - 1|$$

2.3
$$h(x) = |x + 2| + |x - 3|$$

2.4
$$i(x) = |x^2 - 1|$$

2.5
$$j(x) = -|4x^2 - 9|$$

2.6
$$k(x) = |x^2 - 2x - 3|$$

3. Considera a função f, de domínio [-4,4], definida por: f(x) = -|x-1| + 3

- **3.1** Exprime f sem usar o símbolo de valor absoluto.
- **3.2** Representa graficamente a função f.
- **3.3** Indica o contradomínio de f.
- **3.4** Indica os zeros e os intervalos de monotonia de f.

4. Considera as funções f e g definidas, em \mathbb{R} , por:

$$f(x) = |x + 3| - 2; \quad g(x) = f(\frac{x}{3})$$

- **4.1** Determina: (a) g(3) (b) $g(\frac{1}{3})$
- **4.2** Determina os zeros de g.
- **4.3** Estuda a função g quanto à monotonia e à existência de extremos relativos.

- **5.** Na figura está representa uma função f tal que f(x) = a|x-b| + c.
 - **5.1** Determina:
 - (a) os valores de $a, b \in c$.
 - (b) os zeros de f.
 - (c) os zeros da função h, sendo h(x) = f(-x).
 - 5.2 Define por ramos a função f

- **6.** De uma função real de variável real f, sabe-se que:
 - f(x) = a|x b| + c, com $a, b \in c$ números reais;
 - $D'_f =]-\infty, 1];$
 - f é crescente em $]-\infty,3]$ e decrescente em $[3,+\infty[;$
 - f(5) = 0.
 - **6.1** Esboça o gráfico de f.
 - **6.2** Determina $a, b \in c$.
- 7. Resolve, em R, cada uma das equações:

7.1
$$|3x - 1| = 5$$

7.2
$$|x^2 + 3| = 0$$

7.3
$$2\left|\frac{1}{2}x-3\right|=-10$$

7.4
$$|x| = |3x - 6|$$

7.5
$$2|x + 3| = |-2x + 8|$$

Equações e inequações com módulos

•
$$|x| = k \Leftrightarrow x = -k \lor x = k$$

•
$$|x| < k \Leftrightarrow x < k \land x > -k$$

•
$$|x| > k \Leftrightarrow x < -k \lor x > k$$

•
$$|x| = |y| \Leftrightarrow x = y \lor x = -y$$

•
$$|x| < |y| \Leftrightarrow x^2 < y^2 \Leftrightarrow (x - y)(x + y) < 0$$

8. Resolve, em \mathbb{R} , cada uma das inequações:

8.1
$$|2x - 1| > 0$$

8.2
$$|2x - 1| < 3$$

8.3
$$\left|-2x+\frac{1}{2}\right|>5$$

8.4
$$\left| -x + \frac{1}{2} \right| + 2 > 7$$

8.5
$$|-2x+3|<-5$$

8.6
$$|-3x+1| > -8$$

$$8.7 \, \frac{4 - |2 - x|}{2} \ge 2$$

8.8
$$-3 - |6 - 2x| \le -10$$

8.9
$$|x^2 - 4| < 5$$

8.10
$$|x^2 - 6| \ge 4$$

- **9.** Considera a função *f* representada graficamente por:
 - **9.1** Indica o domínio e o contradomínio da função f.
 - **9.2** Define analiticamente a função f.
 - **9.3** Esboça o gráfico da função |f|.
 - **9.4** Indica o contradomínio da função |f|.
 - **9.5** Indica os valores reais de *x* tais que:

(b)
$$|f(x)| = 0$$

(a)
$$f(x) = 0$$
 (b) $|f(x)| = 0$ (c) $f(x) \ge 4$

(d)
$$|f(x)| \ge 4$$

(d)
$$|f(x)| \ge 4$$
 (e) $|f(x)| = f(x)$

10. Seja f a função definida por f(x) = |2x + 4| - 2.

Determina os valores de *x* para os quais se tem:

- **10.1** f(x) é negativo.
- **10.2** $f(x) \ge 1$.
- **11.** Sejam $f \in g$ as funções de domínio \mathbb{R} , definidas por f(x) = |2 x| 3 e g(x) = 2x 1.
 - 11.1 Determina, por processos analíticos, as coordenadas dos pontos de interseção dos gráficos das duas funções.
 - **11.2** Seja h(x) = 3f(x) + g(x).

Define a função h sem recorrer ao módulo, representa graficamente a restrição de h ao intervalo [-1,4] e indica o contradomínio desta restrição.

12. Considera as funções reais de variável real f e g definidas por:

$$f(x) = |x^2 - 4x + 1|$$
 e $g(x) = x^2 - 5x + 6$

Recorrendo à calculadora gráfica, determina os valores de x para os quais f é superior a g.

Apresenta o resultado na forma de um intervalo ou de reunião de intervalos de números reais.

Na tua resposta deves apresentar:

- o(s) gráfico(s) representados na calculadora gráfica devidamente identificados;
- as coordenadas dos pontos relevantes.
- **13.** Considera uma função g, de domínio \mathbb{R} e contradomínio [-4,1].

Seja h a função definida em \mathbb{R} por h(x) = |g(x) + 1|. Qual é o contradomínio de h?

- (A) [0,2]
- (B) [0,3]
- (C) [0,4]
- (D) [-2,3]
- **14.** Considera a função real de variável real f de domínio \mathbb{R} e definida analiticamente por:

$$f(x) = a|x - b| + c (a, b, c \in \mathbb{R})$$

Determina os valores de a, b e c de modo que:

- 14.1 o contradomínio de f seja $[-2, +\infty]$ e 0 e 6 sejam os seus zeros.
- 14.2 1 seja o máximo de f e o conjunto-solução da condição $f(x) \ge 0$ seja [-1,4].
- **15.** O gráfico de uma função quadrática f é uma parábola com a concavidade voltada para cima, que interseta o eixo 0x nos pontos de abcissa -2 e 1.

Seja g a função definida por g(x) = |f(x-2)|.

Seleciona a afirmação verdadeira.

- (A) *g* não tem extremos relativos.
- (B) g é uma função quadrática.
- (C) $g\left(\frac{3}{2}\right)$ é um máximo relativo de g.
- (D) $\forall x \in \mathbb{R}, g(x) > 0$.
- **16.** Considera a função f, de domínio \mathbb{R} , definida por f(x) = |x| 2.

Qual das equações seguintes tem duas soluções distintas?

(A)
$$f(x) = -7$$

(B)
$$f(x) = -3$$

(A)
$$f(x) = -7$$
 (B) $f(x) = -3$ (C) $f(x) = -2$ (D) $f(x) = 3$

$$(D) f(x) = 3$$

17. Uma função f, de domínio \mathbb{R} , tem um zero no intervalo [-1,2]. Qual das expressões seguintes define uma função que tem, necessariamente, um zero no intervalo [-5, -2]?

(A)
$$f(x + 4)$$

(B)
$$|f(x)| + 4$$

(C)
$$f(x) - 4$$

(C)
$$f(x) - 4$$
 (D) $f(x - 4)$

- **18.** Seja g a função, real de variável real, definida por g(x) = 3 |2x + 1|.
 - Determina os valores de x, tais que g(x) = 0.
 - Esboça o gráfico de g e indica o seu contradomínio. 18.2
 - 18.3 Recorrendo a um quadro de sinais, resolve a condição $g(x+1)g(x) \le 0$.
- 19. Considera a função afim cujo gráfico é a reta representada na figura onde podes observar o visor de uma calculadora gráfica. Sabe-se que os pontos de coordenadas (6,0) e (2,2) pertencem ao gráfico de f.

- **19.2** Determina uma expressão que representa a função f.
- 19.3 Determina uma expressão que representa a função g.

- **20.** Considera as funções f e g definidas por: $f(x) = \frac{2}{|3x-1|}$ e $g(x) = \sqrt{1-|x+1|}$.
 - 20.1 Determina o domínio de cada uma das funções.
 - **20.2** Estuda as funções quanto à paridade.

- **21.** Considera a função i, de domínio \mathbb{R} , definida por i(x) = -|x+1| + 3.
 - 21.1 Constrói o gráfico da função j a partir do gráfico da função definida por y = |x|. Caracteriza as sucessivas transformações que permitem obter o gráfico da função j a partir do gráfico da função definida por y = |x|.
 - 21.2 Indica o domínio, contradomínio e zeros da função j e estuda-a quanto à monotonia e existência de extremos, assim como quanto ao sinal.
 - 21.3 Resolve analiticamente a inequação j(x) > 2.
 - 21.4 Resolve graficamente a inequação j(x) > 2.
- **22.** Na figura estão parcialmente representados, num referencial o.n. x0y os gráficos das funções f e g, de domínio \mathbb{R} , definidas, respetivamente, por:

$$f(x) = -\frac{2}{3}|x - 6| + 8$$
 e $g(x) = \frac{1}{3}|x - 6|$

Os pontos A e B pertencem ao gráfico da função f:

- A é o ponto de interseção do gráfico com o eixo das ordenadas;
- B é o ponto do gráfico que tem maior ordenada.

Seja P um ponto que se desloca sobre [AB], nunca coincidindo com o ponto B.

Para cada posição do ponto P, considera:

• o ponto Q, sobre o gráfico da função f, de modo que a reta PQ seja paralela ao eixo das abcissas;

- Seja x a abcissa do ponto P e seja h a função que, a cada valor de x, faz corresponder a área do retângulo [PQRS].
- **22.1** Qual é o domínio da função h?
- Mostra que $h(x) = 24 + 8x 2x^2$. 22.2
- 22.3 Determina as dimensões do retângulo que tem maior área.