12 统计学方法: 如何证明灰度实验效果不是偶然得到的?

你好,欢迎来到第 12 课时——统计学方法:如何证明灰度实验效果不是偶然得到的?

当你做完 AB 实验,拿着实验结果来论证 v2.0 的系统比 v1.0 的系统效果更好的时候,极有可能有人站出来这样质疑"你的实验结果可信度如何?它是偶然得到的,还是一个必然结果?"

面对这样的质疑,就需要一些统计学的知识了。这一讲,我们就来利用统计学的知识,来论证某个灰度实验的结果的可靠性。

偶然得到的实验结果

大迷糊想通过 AB 实验,来探索用左手掷骰子和用右手掷骰子是否有差异。于是,大迷糊先用左手掷骰子得到点数为 2,再用右手掷骰子得到点数为 6。于是得到结论,右手掷骰子比左手掷骰子点数大 4。

这个结论显然是偶然发生的,是不对的。因为常识和经验都告诉我们,两只手掷骰子点数应该是没有差别的。

然而,工作中使用 AB 实验的场景,很可能是没有这些预先、已知的经验的,这就给实验结果的可靠度判断带来了很多挑战。

例如,上一讲 v2.0 的推荐系统相比 v1.0 的推荐系统,在 CTR 上提高了 0.2pp。这个结果到底是偶然得到的,还是真实存在的呢?这就需要我们具备统计学知识——中心极限定理了。

统计学的圣经——中心极限定理

中心极限定理是统计学中的圣经级定理,它的内容为:假设从均值为 μ ,方差为 σ 2 的任意一个总体中,抽取样本量为 n 的样本,当 n 充分大时,样本均值x的分布近似服从均值为 μ 、方差为 σ 2/n 的正态分布。通常认为 n≥30 为大样本。

中心极限定理的厉害之处,在于它实现了任意一个分布向正态分布的转换,如下图:

至于为什么实现了正态分布就很厉害,下文会为你讲解。

x:均值为 μ ,方差为 σ^2

 \bar{x} :均值为 μ ,方差为 σ^2/n

@拉勾教育

为了更好地理解中心极限定理, 我们给出下面的案例。

【例题1】假设某个总体的分布是 1~6 的均匀分布,现在我们利用中心极限定理来估计一下这个总体的均值和方差。

解析:根据中心极限定理,我们需要先计算x的均值和方差。为了得到某个随机变量的均值和方差,就要得到尽可能多的x的采样点,标记为 xi 。对于每个采样点 xi ,它又是总体的采样点。

因此,我们需要首先对总体进行多次采样,得到一个均值x的采样点。再重复这个过程得到 多个 xi 的值,这样就能计算出x的均值和方差了。

具体代码如下:

```
xbar += k

xbar = xbar / 30.0

xbarlist.append(xbar)

npxbar = np.array(xbarlist)

mu = np.mean(npxbar)

var = np.var(npxbar)

print mu

print var
```

我们对代码进行走读。

- 代码第 2 行,调用了 numpy 库,主要是为了后续计算均值和方差。
- 第 4 行, 定义了 xbarlist 的数组, 用来保存x的多个采样值。
- 第 5~11 行,通过循环 1000 次,想得到 1000 个 x 的采样值。显然每次循环就是要计算出某个 xi 的值,为了求出 xi,我们需要对总体进行多次采样。
- 第 7~9 行,循环 30 次。每次循环,调用随机函数 randint,从 1~6 中,以均匀分布 随机得到一个采样值,并且计算这 30 个值的和。
- 第 10 行, 用求得的和除以 30, 得到了这 30 个值的平均值, 即 xī。
- 第 11 行,把 xi 保存到 xbarlist 的数组中。在上面的循环都结束后,就得到了 1000 个x 的采样值。
- 接着第 13 行,把数组转换为 numpy 下的数组。
- 再在第 13~14 行,调用求均值和求方差的函数,得到了x的均值和方差,并打印。

上面代码执行的结果为:

@拉勾教育

可见极限中心定理下x的 μ = 3.5, σ 2/n = σ 2/30 = 0.0953。从而估计出总体的均值为 3.5, 总体的方差为 σ 2 = 0.0953×30 = 2.859。

我们再反过来看一下原来的总体的分布:

• 因为是 1~6 的均匀分布, 因此均值为 3.5 (0~6 均匀分布的均值才是 3), 这与中心

极限定理的计算结果一致;

而方差可以根据定义式进行计算,则有方差 = [(1-3.5)2 + (2-3.5)2 + (3-3.5)2 + (4-3.5)2 + (5-3.5)2 + (6-3.5)2]/6 = 2.9167,这也与中心极限定理计算的结果几乎一致。

这个案例讲完,你依旧会琢磨,中心极限定理到底有什么奇妙之处呢?为何它能称得上统计学的圣经级定理呢?接下来我将用最通俗的方式向你讲解。

【白话中心极限定理】

通常,现实中的总体都是一个陌生的分布,例如推荐系统每天的点击率。如果从均值和方差的定义式出发,则需要知道这个总体中每个样本的值。可惜的是,实际情况中的总体很可能包含了无穷多个样本。要想从定义式的角度出发,来计算统计量往往是不可行的。

而中心极限定理,则构建了样本和总体之间的桥梁。总体的统计量算不出来,就对总体抽样,得到一个新的随机变量 x, x 的统计量可以根据抽样的结果来计算。此外,中心极限定理还告诉了我们,抽样的统计量和总体的统计量之间的关系,那么就可以根据抽样的统计量推导出总体的统计量。

因此,我们说中心极限定理是使用统计学去解决实际问题的前提基础,是后续统计学应用的理论桥梁。

在实际做 AB 实验的场景下,你的目的是要验证实验组与对照组,这两个总体之间是否具备显著性的差异。可惜的是,总体的分布往往是不知道的,你只能通过对总体进行采样,来估算总体的统计量;也就是利用采样样本的均值和方差,来估计总体的均值和方差。

这就需要去运用中心极限定理了,一旦有了实验组、对照组两个总体的均值和方差,就可以利用一些检验手段,来计算显著性了。

所以接下来,我们便需要将中心极限定理应用在 AB 实验中,去**论证实验是不是随机得到 的**,这就需要用到统计学"均值假设检验"的知识了。

均值假设检验

均值假设检验,就是要验证通过 AB 实验得到的某个均值是否存在显著的差异。 这里显著的含义是,结果是真实、客观的规律,并非偶然得到。

假设检验的流程分为两步:

• 第一步, 计算检验统计量 Z 的值。

• 第二步,再根据数值大小,查下面的标准正态分布表得到**代表显著性的 p 值**。如果 p<0.05 则认为结果是显著的,并非偶然得到的。

我们详细阐述一下这两个步骤。根据实际情况不同,Z统计量可以有两种计算方法:

• 第一种方法, 当总体的标准差 σ 已知时, 计算方法是

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

• 第二种方法, 当总体标准差未知时, 可以采用样本的标准差 s 来代替总体的标准差, 公 式为

$$Z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

其中 μ0 就是假设的均值;若有 AB 实验, μ0 则为对照组的均值。

接着,就需要根据 Z 的值,查下面的 Z 统计量分布表得到**显著性 p**的值了,显著性 p 的物理含义是观测结果是偶然得到的概率。

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
									0.000	
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8331	0.8770	0.8790	0.8810	0.8830
1.1	0.8849	0.8869	0.8888	0.8907	0.8729	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.8649	0.8669	0.9066	0.9082	0.8923	0.9115	0.9131	0.9147	0.9162	0.9177
200.00	0.9032	0.9049	0.9000	0.9082	0.9099	0.9265	0.9131	0.9292	0.9306	0.9319
1.4	0.9192	0.9207	0.9222	0.9230	0.9231	0.9203	0.9219	0.9292	0.9300	0.9319
1.5	0.9332	0.9545	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
·								2 1000000	10.700000	
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.0020	0.0040	0.0041	0.0047	0.9945	0.0046	0.9948	0.9949	0.9951	0.9952
2.5	0.9938	0.9940	0.9941	0.9943		0.9946	500 B 000		0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962		
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981

@拉尔教育

Z 统计量分布表

【如何看 Z 统计量分布表】

这个表其实是个大矩阵,矩阵的行标签和列标签之和,就是 Z 统计量。而矩阵中每个数字,代表了观测结果不是偶然发生的概率。

例如,利用第2行、第3列的数值,可以计算出Z为0.12的显著性水平(Z统计量分布表中绿框部分)。

通常,人们选择表中 0.9750 作为临界值(图中上面的红色框);也就是说,**Z 统计量的临界值是 1.96**。人们常常根据 Z 统计量的绝对值与 1.96 的关系来判断是否显著,即绝对值大于 1.96 则认为显著,反之亦然。

之所以选择 0.9750,是因为此时的显著性为 0.05 时,即观测结果是偶然发生的概率 为 5%。这里 0.05 计算而来的公式是 (1-0.9750)×2 = 0.05,这个公式背后的含义涉及 正态分布的累积概率的计算,在此我们不展开说明,感兴趣的同学可以自己查阅相关

上面的理论可能比较枯燥,我们下面结合一个例子,来加深对理论的理解。

【例题2】假设某工厂加工一种零件。根据经验知道,加工出来的零件的长度服从正态分布,其总体均值为 0.081mm。现在,换了一种新机床进行加工,取 200 个零件进行检验,得到长度的均值为 0.076mm,这 200 个样本的标准差为 0.025mm。问新机床加工出来的零件的长度,其均值与以前是否存在显著差别?

解析:新机床得到的零件,均值比以往要略小。那么问题来了,这里的"略小"是偶然得到的,还是显著存在的呢?我们可以通过假设检验的方法进行论证。

由题可知,总体的均值 μ 0= 0.081,总体的标准差未知。采样的数量为 n = 200,采样的均值x= 0.076,采样的标准差 s = 0.025,因此可以根据第二种方法,来计算 Z 统计量:

$$Z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} = \frac{(0.076 - 0.081)}{(0.025 / \sqrt{200})} = -2.83$$

@拉勾教育

接下来我们需要查 Z 统计量分布表来判断是否存在显著性差异,而此时 Z = -2.83 (Z 统计量分布表中蓝框部分),负号表示要检验的结果比对照基线小。由于 |Z| > 1.96,所以 p < 0.05,差异显著。从统计学的视角来说,我们有理由相信此时的差异并不是偶然得到。

综上可见,论证结果是否为偶然得到的关键,取决于 Z 统计量的值。 Z 统计量的值,又与均值的差值、采样的标准差和采样数量有关系。均值差异越大、采样标准差越小、采样数量越多,则结果越显著、越不可能是偶然得到的。

利用"均值假设检验"论证实验结果是否为偶然得到

刚刚讲解的 "均值假设检验"可以论证"两个均值"的偏差是否为偶然得到的。我们将它对应到 AB 实验中,会发现其中一个"均值"是总体的均值,就像是 AB 实验中的对照组;另一个"均值"是抽样的均值,就像是 AB 实验中的实验组。

所以有了"均值假设检验"的理论基础,你就可以论证并回答,实验组相对对照组的差异是否为偶然得到的。

我们继续以大漂亮的推荐系统 v2.0 为例。下面是先前的实验观测数据,但很容易被人质疑是否为偶然得到。接下来,我们就来用均值假设检验,来论证实验结果是否显著。我们以人均点击量为例展开论述。

指标	实验组	对照组	是否可对比
注册用户数	290	710	-
上线用户数	100	210	不可
曝光量	50000	90000	不可
点击量	9000	16000	不可
上线率	34.5%	29.6%	可以,提高了4.9pp
人均曝光量	172	127	可以,提高了45
人均点击量	31	23	可以,提高了8
CTR	18.0%	17.8%	可以,提高了0.2pp

围绕刚刚讲过的 Z 统计量的公式, 我们先需要帮助大漂亮找到这些参数的值。

$$Z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$$

从公式出发,光有个实验组人均点击量为 31,对照组人均点击量为 23,肯定是不够的,至少是需要构建 n 个人均点击量才行。因此,我们考虑把为期一周的实验,切分为每一天来统计 7 个指标。

具体地计算每天的点击量,并根据注册用户数,计算每天的人均点击量,则有

指标	实验组	对照组		
总注册用户数	290	710		

周点击量	9000	16000
(周一)点击量	1200	2200
(周一)人均点击量	4.14	3.10
(周二)点击量	1250	2000
(周二)人均点击量	4.31	2.82
(周三)点击量	1500	2400
(周三)人均点击量	5.17	3.38
(周四)点击量	1100	2300
(周四)人均点击量	3.79	3.24
(周五)点击量	1250	2500
(周五)人均点击量	4.31	3.52
(周六)点击量	1300	2200
(周六)人均点击量	4.48	3.10
(周日)点击量	1400	2400
(周日)人均点击量	4.83	3.38

@拉勾教育

- 此时, 我们就有了人均点击量的 7 个采样样本, 即 n = 7。
- 接下来,对这7个样本求平均值,则有 x= (4.14+4.31+5.17+3.79+4.31+4.48+4.83)/7 = 4.43。
- 再计算对照组的采样平均值,则有 x0 = (3.10+2.82+3.38+3.24+3.52+3.10+3.38) / 7 = 3.22。根据中心极限定理,可以用采样的平均值,作为总体平均值的估计值,则有μ0=x0= 3.22。
- 同时, 还可以根据实验组的 7 个采样值, 计算出实验组的标准差, 即

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_1 - x)2}{n-1}} = \sqrt{\frac{[(4.14 - 4.43)^2 + (4.31 - 4.43)^2 + (5.17 - 4.43)^2 + (3.79 - 4.43)^2 + (4.31 - 4.43)^2 + (4.48 - 4.43)^2 + (4.83 - 4.43)^2}{6}}$$

= 0.4532

@拉勾教育

• 最后, 我们利用上述信息, 来计算 Z 统计量的值, 则有

$$Z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}} = \frac{(4.43 - 3.22)}{(0.4532 / \sqrt{7})} = 7.06$$

。 向 拉 勿 教 育 很显然,这里的结果比我们的临界值 1.96 更大,结果是显著的,并不是偶然得到的。

小结

这一讲,我们学习了统计学的知识"中心极限定理"和"均值假设检验",并将它应用到工作中,用来论证 AB 实验的结果是否为偶然得到。

我们了解到,**中心极限定理**构建了样本和总体之间的桥梁,让我们找到抽样的统计量和总体的统计量之间的关系。

然后"**均值假设检验**"又可以论证"两个均值"的偏差是否为偶然得到。我们将其对应到 AB 实验中,会发现其中一个"均值"是总体的均值,就像是 AB 实验中的对照组;另一个"均值"是抽样的均值,就像是 AB 实验中的实验组。**所以便可以论证并回答,实验组相对对照组的差异是否为偶然得到的**。这时的关键步骤,就是根据公式来计算 Z 统计量的值,并判断。

最后,我们给出一个练习题:利用下面的数据,计算 CTR 的差异是否显著。

指标	实验组	对照组
周一 CTR	18.9%	19.0%
周二 CTR	17.2%	17.3%
周三 CTR	18.2%	18.0%
周四 CTR	14.5%	14.8%
周五 CTR	20.4%	17.2%
周六 CTR	19.1%	18.9%
周日 CTR	18.2%	18.2%

@拉勾教育