

ASSIGNMENT FRONT SHEET < No.1>

Qualification	BTEC Level 5 HND Diploma in Computing and Systems Development							
Unit number and title	Unit 04: Database Design & Deve	nit 04: Database Design & Development						
Assignment due		Assignment submitted						
Learner's name	Tran Quang Huy	Assessor name						
Learner's ID	GCD18457	Submission number	1					

Learner declaration:

I certify that the work submitted for this assignment is my own and research sources are fully acknowledged.

Learner signature	Huy	Date	23/02/2019

Grading grid

P1	M1	D1

Assignment title	Understand databases and data management systems

In this assignment, you will have opportunities to provide evidence against the following criteria. Indicate the page numbers where the evidence can be found.

Assessment criteria	Expected evidence	Task no.	Assessor's Feedback
LO1 Use an appropriate design to	ool to design a relational database syste	m for a sub	stantial problem
P1 Design a relational database system using appropriate design tools and techniques, containing at least four interrelated tables, with clear statements of user and system requirements.	- An ERD clearly shows the complete logical design for the given scenario - Write the normalization statement for each of the entity	1	
M1 Produce a comprehensive design for a fully functional system which includes interface and output designs, data validations and data normalisation.	Comprehensive design for a fully functional systemData validations and data normalisation	1	
D1 Assess the effectiveness of the design in relation to user and system requirements.		1	

Summative feedback		
		,
Assessor's Signature	Date	

Contents

INTE	RODUCTION	4
PAR'	T1: TOOLINGS	5
1.	SQL Server	5
2.	SQL Server Management Studio:	6
3.	System design method:	6
PAR'	T2: DATABASE DESIGN	7
1.	Database system overview	7
2.	Database system architecture:	8
PAR'	T3: QUERIES	23
1.	Database System can sent mail to all customer:	23
2.	List items, and min/max of price	23
3.	Report which customers buy the most goods every quarter	24
4.	Quarterly sales report	25
5.	Summarize the results of sales staff each quarter	25
6.	Bonuses for quarterly employees have reached the target	26
7.	Loyal customers every quarter	26
PAR'	T4: CONCLUSION	27
1.	Overview Database System	27
2.	Evaluate the responsiveness of Database with user requirements	27
3.	Points to note and improve	38
APPI	ENDIX: Survey Form	40
Refer	rences	41

LIST OF TABLE

Table 1 - UNF table	8
Table 2 - The first normal form (1NF):	9
Table 3 - The second normal form (2NF):	10
Table 4 - The third normal form (3NF):	12
Table 5 - Fully Database system normal form	13
Table 6 - Customer table	15
Table 7 - Example Customer table	15
Table 8 - Example Salespersons table	16
Table 9 - Salespersons table	16
Table 10 - Supplier table	17
Table 11 - Example Supplier table	17
Table 12- Items table	18
Table 13 - Example Items table	18
Table 14 - Orders table	19
Table 15 - Example Orders table	19
Table 16 - Order detail table	20
Table 17 - Example Order detail table	20
Table 18 - Database system - mail customer	23
Table 19 - List price each items	23
Table 20 - Max and Min price of item	24
Table 21 - Which customers buy the most good ever quarter	24
Table 22- Quarterly sales report	25
Table 23 - Summarize the results of sales staff each quarter	25
Table 24 - Bonuses for employee	26
Table 25- Loyal customers every quarter	26
Table 26 - Evaluate the responsiveness of Database with user requirements	37

LIST OF FIGURES

Figure 1 - Purchase invoice ElectroShop	4
Figure 2 - ElctroShop Entity Relationship Diagram	14
Figure 3 - Database System Diagram	22
Figure 4 - Calculate in Database System	27
Figure 5 - Orienting short-term and long-term business plans	28
Figure 6- Making Marketing Plans	28
Figure 7- Selecting more data than needed	29
Figure 8 - Inefficient joins between tables	30
Figure 9 - Too few or too many indexes	30
Figure 10 - Too much literal SQL causing parse contention	31
Figure 11- User and Query Conflicts	32
Figure 12- Easy to import data into the system	32
Figure 13- Easily manipulate adding, editing, deleting data	33
Figure 14 - Encryption	33
Figure 15- Data saved in standard format	34
Figure 16 - Security of Database system	34
Figure 17- Easy maintenance	35
Figure 18 - Easy to upgrade the system	35
Figure 19 - The Database system is useful	36
Figure 20 - User satisfaction	36

INTRODUCTION

Use an appropriate design tool to design a relational database system for substantial problem. Base on Assignment Brief that ElectroShop company sell electronic devices and they want to create a database to store system.

This system will store the store's necessary data, which are: Customer Information, Seller (Employee) Information, Product & Provider Information, Invoice Information

Designed by using Relational Database and 3NF Normalization Process, this System will provide a fully functional Database which includes: Data validations, Data normalization Data interfaces for different situations, Data modification, Calculate Seller's (Employee) bonus

In the beginning, ElectroShop has a small database system and is limited to paperwork by getting information from this Invoice:

Figure 1 - Purchase invoice ElectroShop

PART1: TOOLINGS

1. SQL Server

SQL (Structured Query Language) or structured query language Is a computer language type.

- Popular to create, edit and retrieve data from a relational database management system.
- The development of SQL goes far beyond the original purpose of servicing the object-relational database management systems.
- SQL is an ANSI / ISO standard

Microsoft SQL Server is a relational database management system developed by Microsoft. As a database server, it is a software product with the primary function of storing and retrieving data as requested by other software applications—which may run either on the same computer or on another computer across a network (including the Internet). (Wikipedia, n.d.)

- SQL Server provides scripts for data inquiry tasks such as:
 - Insert, delete and update rows in 1 relationship
 - Journal, add, delete and modify objects in the database.
 - Control access to databases and objects of the database to ensure confidentiality, consistency and binding of databases.
 - Objects of SQL server are data tables with columns and rows. The column is called the data field and the row is the table record. The data column and the specified data type make up the structure of the table. When a table is organized into a system for a specific use of a job, it becomes a database.

2. SQL Server Management Studio:

- SQL Server Management Studio (SSMS) is a software application first launched with Microsoft SQL
 Server 2005 that is used for configuring, managing, and administering all components within Microsoft
 SQL Server. The tool includes both script editors and graphical tools which work with objects and features of the server. (Wikipedia, n.d.)
- Microsoft SQL Server Management Studio is an intuitive tool for managing SQL Server. With SQL Server
 Management Studio we can perform database interactions with commands or on the user interface. SQL
 Server Management Studio is designed to be simple and easy to use.
- Database in SQL: Currently, the collection of information in the real world to create a shared database (database), related to a certain object, industry, organization has become popular in life. Database used to organize and retrieve necessary information, a way to maximize support for business management, personnel, points, etc.
- A Database is a collection of lots of data that reflect the real world or part of the real world. Structured, archived follow rules based on mathematical theory. The data in Database is related to a specific field, specially organized for storing, searching and extracting data. Exploited by the Database Systems process, search, search, modify, add or remove data in Database.
- At the logical level, a DATABASE consists of multiple tables (TABLE), each defined by a name, a table containing structured data and constraints (CONSTRAINT) defined on the tables. In addition, Database also has a view (VIEW), procedures / functions
- At the physical level, the DATABASE of SQL Server is stored under 3 file types:
 - O Data file (Data-file): consists of a main data storage file (*.mdf) containing initial data and secondary data files (*.ndf) containing data generated or not Save all in the main archive file.
 - The operation log file (*.ldf) contains transaction information, often used to restore Database if a problem occurs.
- Like accessing and opening common files, you need to create an archive file before retrieving. Similarly, you need to create a DATABASE to store data in SQL Server for future querying. SQL Server will help you manage and retrieve these data in a more structured and easy way.

3. System design method:

- Using draw.io: Application to draw the detailed Logical Design of ElectroShop's Database
- Develop the Physical Design and also functioned on Microsoft SQL Server Management Studio

PART2: DATABASE DESIGN

1. Database system overview

- The main database components of Electroshop:
 - o Customers information
 - Salesperson information
 - Invoice order
 - Items information
 - o Supplier information
- This relational Database system will be able to:
 - Create comparative reports.
 - Calculate:
 - Profit of Electroshop.
 - Salesperson's bonus each month
 - Manage and control data.

2. Database system architecture:

2.1. Normalization Process:

Base on ElectroShop's requirements that make Database normalization is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity.

- Upon consideration, the UNF table will necessary fields is as followed:

UNF						
customer_name						
customer_mail						
customer_address						
customer_zipcode						
customer_phone						
salesperson_name						
salesperson_age	CustomerName	 SalespersonName	 Orderday	Order Quanttity	KindOfItem	Price
salesperson_age	Trần Quang Huy	Nguyễn Hà My	16/01/2018		Ipad	300
salesperson_mail	Trần Quang Huy	Nguyễn Hà My	16/01/2018		Iphone	400
satesperson_man	Nguyễn Quang Ngọc	Trương Văn Hiếu	15/03/2018		Television	300
salesperson_phone	Nguyễn Quang Thắng	Nguyễn Anh Tuấn	20/06/2018		Laptop	500
	Nguyễn Quang Ngọc	Nguyễn Công Phượng	14/10/2018	2	Mobilephone	300
salesperson_adress						
order_day						
order_quantity						
item_kind						
item_price						
supplier_name						
supplier_mail						
supplier_adress						
supplier_phone						

Table 1 - UNF table

- The first normal form (1NF):

Entities that can appear multiple times when considered by another entity should be separated into a new table. In this case, one customer can order many items and the same kind of items can also be ordered by different customers. So, customers and items cannot be single dependent on each other and become separated and dependent on the **order_id**.

			1NF				
order_id							
order_day							
order_quantity							
customer_name	Order ID		Quantity	Customer Name	e	Salesperson Nan	ne
customer_mail		1		Trần Quang Huy		Nguyễn Hà My	
customer_address		2		Trần Quang Huy		Nguyễn Hà My	
_		3		Nguyễn Quang		Nguyễn Công Ph	
customer_zipcode		4	4	Nguyễn Quang	Thăng	Nguyễn Anh Tuâ	in
customer_phone							
salesperson_name							
salesperson_age							
salesperson_mail							
salesperson_phone							
salesperson_adress							
order_id							
item_kind	Order ID	Kind O	f Items	Price	Supp	lier Name	
item_price	1	Ipad		300	НСТ		
supplier_name	2	Iphone		400	Zero!	9	
		Televis			ST M		
supplier_mail			IOH	1 300	D W	1.5	
supplier_mail supplier_adress		Laptop		500		••	

Table 2 - The first normal form (1NF):

The second normal form (2NF):

After 1NF, all the entities have to be function-dependent on the keys. Base on 1NF that kind of item, number of items, items name, items price and supplier information are not dependent on the order details and belong to the item_id. So, it should make sense that items information be separated into a new set. The 2NF form will be:

	2NF								
order_id									
order_day									
order_quantity									
customer_name									
customer_mail	Order ID		Quant	ity	Customer N	lame		Salesperso	n Name
customer_address			1		Trần Quang			Nguyễn H	
customer_zipcode			3		Trần Quang Nguyễn Qu			Nguyễn Hà	à My ông Phượng
customer_phone			4		Nguyễn Qu			Nguyễn Ai	
salesperson_name									
salesperson_age									
salesperson_mail									
salesperson_phone									
salesperson_adress									
order_id	Order ID	Kind	Of Items	P	rice	Sup	plier	Name	
item_id	1	Ipad	I		300	HC	Т		
item_name	2	Ipho	ne		400	Zero9			
item_price	3	Tele	vision		300	300 ST MTP			
	4	Lapt	top		500	ΧV			
item_id	Item II)	Item		Price		Supp	lier Nam	е
item_name		2	Ipad			300	HCT		
item_price			Iphone				Zero9		
supplier_name			Television				ST M	TP	
supplier_mail		5	Laptop			500	XV		
supplier_adress									
supplier_phone									
Table .	3 - The second r	ıormal	form (2NF):						

Table 3 - The second normal form (2NF):

- The third normal form (3NF):

In this step, the Database system's requirement additional steps should be taken so that no attribute can be transitively dependent on the primary key. That means they cannot be dependent on a non-primary key attribute in the same table.

Upon inspection, a name of supplier is actually retrievable from supplier information and similarly to item information, customer information and salesperson information are dependent on item_id, customer_id, salesperson_id.

One customer can buy many items and one item can be bought by many customers so the Database system need to have 1 table order_detail include item_id, order_id and order_quantity to solve that problem.

The 3NF Form:

					3NF						
order_id	Order ID	Order	Day (Custo	mer ID	Sale	espers	on ID			
order_day		16/01	_		1		•	3			
customer_id	2	16/01,	/2018		2			4			
_	3	15/03,	/2018		3			5			
salesperson_id	4	20/06	/2018		4			6			
item_id	Item ID	Orde	r ID	Ord	ler Quar	itity					
order_id	1		2	+		2	2				
order_quantity	2		3	+			2				
_1	3		4	+-		3	┪				
	4		5	5		4	1				
item_id	Item ID	Kind	of Item	Pric	e						
item_kind		Ipad		_		300	┥				
item_price		Iphor				400	┥				
•		Telev		-		300	┥				
	4	Lapto	р			500)				
supplier_id	Supplier II	D Sup	plier Na	ame	Supplie	r ma	ail	Supplie	r Addr	ess	Supplier Phone
supplier_name		1 HCT						23 HCM			1234578
supplier_mail		2 Zero			rty@gm			22 Hue			45786541
supplier_adress		3 ST N	ЛТР		yui@gn			54 HN			12458212
supplier_phone		4 XV			iop@gn	naii.	com	87 Dong	на		2134578
customer_id	Customor	ID	Custon		Mana a		Custo	mer Mai		C	stomer Dhane
_	Customer		Custor Trần Q			$\overline{}$				Cus	stomer Phone 1231234578
customer_name						$\overline{}$	qweas@gmail.com rtyasd@gmail.com		45345786541		
customer_mail						i@gmail		\vdash	1244258212		
customer_adress					Vượng		iopdas@gmail.com				
customer_zipcode								- 0		1	
customer_phone											
salesperson_id	Salesperso	on ID	Salespe	erso	n Name		Salesp	erson M	ail	Sale	esperson Phone
salesperson_name		1	Nguyễi	n Hà	Му	(qweas	1@gmai	l.com		31234578
salesperson_age					_			2@gmai			453456541
salesperson_mail			Trương					3i@gmai			44258212
•		4	Nguyễi	n An	h Tuấn	Įi	iopda4	1s@gmai	l.com		214234578
salesperson_phone											
salesperson_adress											

Table 4 - The third normal form (3NF):

Conclusively, the Database system will have:

UNF	1NF	2NF	3NF
customer_name	order_id	item_id	order_id
customer_mail	item_kind	item_name	order_day
customer_address	item_price	item_price	customer_id
customer_zipcode	supplier_name	supplier_name	salesperson_id
customer_phone	supplier_mail	supplier_mail	
salesperson_name	supplier_adress	supplier_adress	
salesperson_age	supplier_phone	supplier_phone	
salesperson_mail	order_id	order_id	item_id
salesperson_phone	order_day	item_id	order_id
salesperson_adress	order_quantity	item_name	order_quantity
order_day	customer_name	item_price	
order_quantity	customer_mail	order_id	item_id
item_kind	customer_address	order_day	item_kind
item_price	customer_zipcode	order_quantity	item_price
supplier_name	customer_phone	customer_name	supplier_id
supplier_mail	salesperson_name	customer_mail	supplier_name
supplier_adress	salesperson_age	customer_address	supplier_mail
supplier_phone	salesperson_mail	customer_zipcode	supplier_adress
	salesperson_phone	customer_phone	supplier_phone
	salesperson_adress	salesperson_name	customer_id
		salesperson_age	customer_name
		salesperson_mail	customer_mail
		salesperson_phone	customer_adress
		salesperson_adress	customer_zipcode
			customer_phone
			salesperson_id
			salesperson_name
			salesperson_age
			salesperson_mail
			salesperson_phone
			salesperson_adress

Table 5 - Fully Database system normal form

2.2. Entity Relationship Diagram (ER Diagram):

Figure 2 - ElctroShop Entity Relationship Diagram

2.3. Table Descriptions:

The Database System have 6 tables, which are:

- Customers table:

This table used to store information of ElectroShop's customer information, customer's email will be used to send offers, product or promotions. This table includes:

- Customer's identity (**customer_id** PK): This is primary key of customer table to make sure that a customer has a unique and non-duplicate ID.
- o Customer's Name (customer_name): Store customer name information.
- Customer's Email (customer_mail): Store customer mail information and send product information as well as the completion process when customers buy products.
- Customer's Address (customer_address): Store customer address information.
- O Customer's Zip code (**customer_zipcode**): Store customer zip code information.
- O Customer's Phone number (customer_phone): Easily contact customers when needed.

Table 6 - Customer table

_	customer_id	customer_name	customer_mail	customer_address	customer_zipcode	customer_phone
1	1	Allen Ayers	posuere.cubilia.Curae@ornare.edu	294-4580 At Rd.	IC5 8NW	0819 171 8803
2	2	Dolan Lowery	sociis@nuncac.net	728 Pede, Avenue	UK7R 9NE	(0113) 072 1649
3	3	Aaron Martinez	lobortis.tellus@sempercursus.net	Ap #577-6187 Ultrices Ave	WV3 7QG	0827 814 4921
4	4	Gannon Potter	fringilla.euismod@magnaCrasconvallis.co.uk	P.O. Box 215, 4902 Nullam Av.	LD7 0JD	0845 680 8907
5	5	Stuart Mclaughlin	amet@maurissit.com	3248 Imperdiet Rd.	X6S 7JI	056 7531 6531
6	6	Elliott Cunningham	vel@arcuacorci.edu	928-9736 Semper Rd.	GW29 0YT	(014962) 24309
7	7	Clayton Compton	montes@tellus.edu	P.O. Box 208, 6020 Tortor, Rd.	A82 7XW	0845 46 48
8	8	Moses Pearson	vel.arcu.eu@auqueacipsum.com	Ap #289-6765 ld St.	OO0J 3XU	07624 737901

Table 7 - Example Customer table

- Salespersons table:

This table is used to store information of ElectroShop's employee information would help to determine which salesperson is in charge of selling which order. Many orders can be sold by one salesperson so it will have many relationships. This table includes:

- Salesperson's identity (salesperson_id PK): Each salesperson just only has one ID that make sure
 that salesperson has a unique and non-duplicate ID so this must be primary key.
- o Salesperson's name (salesperson_name): Store salesperson name information.
- O Salesperson's Age (salesperson_age): Store salesperson age information.
- o Salesperson's phone number (salesperson_phone): Store salesperson phone number information.
- o Salesperson's email (salesperson_mail): Store salesperson email information.

Column Name	Data Type	Allow Nulls
salesperson_id	int	
salesperson_name	varchar(100)	
salesperson_phone	varchar(100)	✓
salesperson_age	int	✓
salesperson_mail	varchar(100)	abla

Table 9 - Salespersons table

	salesperson_id	salesperson_name	salesperson_phone	salesperson_age	salesperson_mail
1	1	Bert Washington	(016977) 5226	45	dapibus.gravida.Aliquam@nonenim.edu
2	2	Keane Rivas	07470 645211	52	velit.Aliquam.nisl@maurisid.ca
3	3	Elton Kaufman	0303 014 7073	45	non.nisi@risus.co.uk
4	4	Ferris Riggs	(01958) 800854	36	massa.Suspendisse@sedduiFusce.net
5	5	Julian Dominguez	(01089) 10436	51	ullamcorper.velit@Nulla.net
6	6	Flynn Randall	0800 1111	40	amet.ultricies@Nunccommodoauctor.org
7	7	Orlando Frank	07624 853883	33	molestie.pharetra.nibh@aceleifendvitae.co.uk
8	8	Malik Pruitt	(018750) 41060	55	nunc.Quisque@ornarelectus.ca

Table 8 - Example Salespersons table

- Supplier table:

This table is used to store information of ElectroShop's supplier. This table includes:

- Supplier's Identity (supplier_id PK): This is primary key of supplier table to make sure that a supplier has a unique and non-duplicate ID.
- o Supplier's name (**supplier_name**): Store supplier name information.
- O Supplier's mail (supplier_mail): Store supplier mail information.
- o Supplier's address (**supplier_address**): Store supplier address information.
- O Supplier's phone number (**supplier_phone**): Store supplier phone information.

	Column Name	Data Type	Allow Nulls
3	supplier_id	int	
	supplier_name	varchar(100)	$\overline{\checkmark}$
	supplier_mail	varchar(100)	abla
	supplier_adress	varchar(100)	$\overline{\mathbf{v}}$
	supllier_phone	varchar(100)	abla

Table 10 - Supplier table

	supplier_id	supplier_name	supplier_mail	supplier_adress	supplier_phone
1	1	Silas Brock	molestie.Sed.id@ullamcorpernislarcu.net	547-6530 Lacus, St.	0800 1111
2	2	Chadwick Daniels	ridiculus.mus.Proin@vulputate.net	P.O. Box 422, 8223 Amet Street	(017099) 57031
3	3	Aladdin Gould	ligula.Donec@Praesentinterdumligula.com	608-9434 Neque. St.	0868 860 6721
4	4	Amir Petersen	magna@iaculisquispede.org	625-6903 Aenean St.	055 5617 1458
5	5	Dominic Dale	nibh@atpedeCras.net	P.O. Box 651, 6906 A Rd.	0845 46 49
6	6	Xander Bright	adipiscing.fringilla.porttitor@Aliquam.co.uk	601-5875 Feugiat Av.	0800 1111
7	7	Mark Richard	blandit.at@odioEtiam.org	2264 Odio. St.	(01656) 945906
8	8	Nathaniel Mcdonald	a.dui@et.com	Ap #477-6616 Eu St.	(0113) 828 1200

Table 11 - Example Supplier table

- Items table:

This table is used to store information of ElectroShop's orders. That also contains information about items that are being sold. The items are shown in the items table and in order details. This table includes:

- Item identity (**item_id** PK): This is primary key of items table to make sure that item has a unique and non-duplicate ID.
- o Kind of Items (**item_kind**): Store kind of items information.
- o Price (**item_price**): Store price of items information.
- Supplier Identity (fk_supplier_id): This is foreign key to link with supplier_id at supplier table.
 This allow people can know what specific items originated.

Column Name	Data Type	Allow Nulls	
item_id	int		
item_kind	varchar(100)	\checkmark	
item_price	float	\checkmark	
fk_supplier_id	int	\checkmark	

Table 12- Items table

	item_id	item_kind	item_price	fk_supplier_id
1	1	Laptop	8115	1
2	2	VGA	4202	2
3	3	Camera	7373	3
4	4	Laptop	3516	4
5	5	VGA	7119	5
6	6	CPU	2097	6
7	7	Mobliephone	1519	7
8	8	VGA	3389	8
9	9	Printer	1785	9

Table 13 - Example Items table

- Orders table:

This table is used to store information of ElectroShop's orders. It is an important table to connect and reference by many others: A customer who order that items, a salesperson who sold that items, specially that connect with that Order detail table as know as invoice. This orders table includes:

- Order's identity (order_id PK): This is primary key to confirm that when customer order something this order's identity exist only and non-duplicate ID.
- o Order day (**order_day**): Store the day that customer order information.
- Customer's identity (fk_customer_id FK): This is foreign key references to customer table. It
 will allow people know information about customer is ordering.
- Salesperson identity (fk_salesperson_id FK): This is foreign key references to supplier table.
 That indicates employee who sell items to customer.

Column Name	Data Type	Allow Nulls
order_id	int	
order_day	date	$\overline{\mathbf{v}}$
fk_customer_id	int	$\overline{\mathbf{z}}$
order_salesperson_id	int	✓

Table 14 - Orders table

	1			
	order_id	order_day	fk_customer_id	fk_salesperson_id
1	1	2019-09-17	1	1
2	2	2019-05-20	2	2
3	3	2019-12-19	3	3
4	4	2019-07-01	4	4
5	5	2019-01-20	5	5
6	6	2019-11-21	6	6
7	7	2018-09-17	7	7
8	8	2018-03-30	8	8

Table 15 - Example Orders table

- Order detail table:

This order detail table know as invoice and this dataset stores all the invoices that are made through sale. One order will generate one invoice. Order detail table includes:

- Item's identity (fk_item_id -PK, FK): This is one of two primary key with order identity that allow customer can offer more than one item. And it also foreign key references with item_id in items table to show what items customer order.
- Order's Identity (fk_order_id PK, FK): this is a last primary key with item identity that allow person can offer more than one item and foreign key references with order_id in orders table this is the main of function let customer can offer more than one item.
- o Order quantity (**order_quantity**): Store a number of each items that customer order information.

Column Name	Data Type	Allow Nulls	
fk_item_id	int		
fk_order_id	int		
order_quantity	int	\checkmark	

Table 16 - Order detail table

	fk_item_id	fk_order_id	order_quantity
1	1	1	8
2	2	2	4
3	3	3	8
4	4	4	9
5	5	5	10
6	6	6	8
7	7	7	10
8	8	8	6

Table 17 - Example Order detail table

2.4. Database creation and Diagram

2.4.1. Database creation code:

```
CREATE TABLE orders(
   order id INT PRIMARY KEY,
   order day date,
   fk_customer_id int,
   CONSTRAINT fk customer id
         FOREIGN KEY (fk_customer_id)
         REFERENCES customers (customer id),
   order_salesperson_id INT,
   CONSTRAINT fk_order_salesperson_id
         FOREIGN KEY (order salesperson id)
         REFERENCES salespersons (salesperson id),
);
CREATE TABLE order detail(
   fk_item_id INT,
   CONSTRAINT fk item id
         FOREIGN KEY (fk item id)
         REFERENCES items (item_id),
   fk order id int,
   CONSTRAINT fk_order_id
         FOREIGN KEY (fk order id)
         REFERENCES orders (order_id),
   PRIMARY KEY (fk_item_id, fk_order_id),
   order quantity INT,
);
CREATE TABLE salespersons(
   salesperson_id INT PRIMARY KEY,
   salesperson_name VARCHAR(100),
   salesperson phone VARCHAR(100),
   salesperson age INT,
   salesperson_mail VARCHAR(100),
);
CREATE TABLE items(
   item id INT PRIMARY KEY,
   item kind VARCHAR(100),
   item_price INT,
   fk_supplier_id int,
   CONSTRAINT fk_supplier_id_items
         FOREIGN KEY (fk_supplier id)
         REFERENCES supplier (supplier id),
);
CREATE TABLE customers(
```

```
customer_id INT PRIMARY KEY,
  customer_name VARCHAR(100),
  customer_mail VARCHAR(100),
  customer_address VARCHAR(100),
  customer_zipcode VARCHAR(100),
  customer_phone VARCHAR(100),
);

CREATE TABLE supplier(
  supplier_id INT PRIMARY KEY,
  supplier_name VARCHAR(100),
  supplier_mail VARCHAR(100),
  supplier_adress VARCHAR(100),
  supplier_phone VARCHAR(100),
);
```

2.4.2. Diagram

Figure 3 - Database System Diagram

PART3: QUERIES

1. Database System can sent mail to all customer:

ElectroShop would like to add all the customers to the database so that they can send a mail-shot to them with any offers that are available, as well as the catalogue which is produced annually:

```
SELECT customer_id AS CustomerID,
        customer_name AS CustomerName,
        customer_mail AS CustomerMail
FROM customers;
```

	CustomerID	CustomerName	CustomerMail
1	1	Allen Ayers	posuere.cubilia.Curae@ornare.edu
2	2	Dolan Lowery	sociis@nuncac.net
3	3	Aaron Martinez	lobortis.tellus@sempercursus.net
4	4	Gannon Potter	fringilla.euismod@magnaCrasconvallis.co.uk
5	5	Stuart Mclaughlin	amet@maurissit.com
6	6	Elliott Cunningham	vel@arcuacorci.edu
7	7	Clayton Compton	montes@tellus.edu
8	8	Moses Pearson	vel.arcu.eu@augueacipsum.com
9	9	Reese Wheeler	sapien@Nullam.org

Table 18 - Database system - mail customer

2. List items, and min/max of price

The Database system lists the number of price in each items, sorted high to low. And show the min or max of price's items.

```
SELECT items.item_kind AS KindOfItem,
  items.item_price AS Price
FROM items
ORDER BY items.item_price DESC;
```

	KindOfItem	Price
1	Laptop	9982
2	Iphone	9926
3	Television	9879
4	Camera	9852
5	Mobliephone	9850
6	Printer	9833
7	Printer	9822
8	VGA	9576
9	Printer	9490
10	Mobliephone	9465
11	VGA	9340

Table 19 - List price each items

```
SELECT * FROM items
WHERE item_price = (SELECT MIN(item_price) FROM items);
SELECT * FROM items
WHERE item_price = (SELECT MAX(item_price) FROM items);
```


Table 20 - Max and Min price of item

3. Report which customers buy the most goods every quarter.

ElectroShop will synthesize customers who buy the largest number of products each quarter then there will be gifts for that customer.

		-	
	CustomerID	CustomerName	Quantity
1	59	Lester Dodson	10
2	76	Chancellor Fleming	10

Table 21 - Which customers buy the most good ever quarter

4. Quarterly sales report

The system will show each type of product, the amount sold in a quarter and the revenue achieved by each product.

```
SELECT items.item_kind,
        SUM(order_detail.order_quantity) AS TotalQuantity,
        SUM(order_detail.order_quantity*items.item_price) AS Profit
FROM items, order_detail, orders
WHERE (orders.order_day BETWEEN '4/1/2018' AND '7/1/2018')
        AND (items.item_id = order_detail.fk_item_id)
        AND (orders.order_id = order_detail.fk_order_id)
        GROUP BY items.item_kind;
```

	item_kind	TotalQuantity	Profit
1	Camera	1	9852
2	Iphone	4	39704
3	Laptop	3	20932
4	Mobliephone	10	44991
5	Refrigerator	14	49856
6	Television	10	72675
7	VGA	2	1068

Table 22- Quarterly sales report

5. Summarize the results of sales staff each quarter

Based on the quarterly sales results of Electroshop managers will easily assess the quality of work of each employee, thereby making appropriate plans for the next quarter

```
SELECT salespersons.salesperson_name AS SalespersonName,
   items.item_kind AS KindOfItem,
   SUM(order_detail.order_quantity) AS Quantity,
   SUM(order_detail.order_quantity*items.item_price) AS Profit
FROM salespersons,items,order_detail,orders
WHERE (salespersons.salesperson_id = orders.fk_salesperson_id)
   AND (orders.order_id = order_detail.fk_order_id)
   AND (items.item_id = order_detail.fk_item_id)
   AND (orders.order_day BETWEEN '4/1/2018' AND '7/1/2018')
GROUP BY salespersons.salesperson name, items.item kind;
```

	SalespersonName	KindOfItem	Quantity	Profit
1	Josiah Myers	Camera	1	9852
2	Clayton Horn	Iphone	4	39704
3	Benedict Richards	Laptop	2	17318
4	Dustin Frye	Laptop	1	3614
5	Evan Ferguson	Mobliephone	3	651
6	Ian Abbott	Mobliephone	1	4104
7	Neil Rios	Mobliephone	6	40236
8	Benedict Austin	Refrigerator	8	6696
9	Chancellor Johnston	Refrigerator	1	2075

Table 23 - Summarize the results of sales staff each quarter

6. Bonuses for quarterly employees have reached the target

Each quarter ElectroShop will synthesize the number of items employees have sold, based on which employees with sales of more than \$ 15,000 each quarter will receive additional bonuses.

	SalespersonName	Profit
1	Denton Eaton	49704
2	Malik Pruitt	20334

Table 24 - Bonuses for employee

7. Loyal customers every quarter

The system will indicate loyal customers each quarter corresponding to the number of purchase times at ElectroShop more than 2 times, from which ElectroShop will have better marketing plans for the future.

CustomerName	TimesPurchases
Abbot Mccall	3
Brett Montoya	3
Chancellor Fleming	2
Demetrius Barber	2
Chancellor Fleming	_

Table 25- Loyal customers every quarter

PART4: CONCLUSION

1. Overview Database System

This Database was built by SQL Server management based on ElectroShop's requirement. The main function of Database system is store information about Customer, salesperson, item, product and supplier. Through 6 tables in third normal form (3NF) format that make database has each table cell should contain a single value, the record be unique and has no transitive functional dependencies with single column Primary Key.

The user can be easy:

- Retrieve data, statistics profits from sales every month, quarter or year.
- Checking information of employees, customers, suppliers, easily communicate with employees and customers when necessary, send email notifications about orders and product marketing.
- Calculation: total sales, sales, profits, salaries, bonuses for employees, etc.
- Based on this database system, it is possible to calculate the future development direction for ElectroShop such as: what kind of products should be strengthened, marketing, given programs, products to attract potential customers and increase loyal customers with ElectroShop.

2. Evaluate the responsiveness of Database with user requirements

Business:

ElectroShop database system meets business requirements such as:

Calculate total revenue, cost, profit

Calculate in Database System:

Figure 4 - Calculate in Database System

Orienting short-term and long-term business plans:

Making business plans base on DataBase result:

50 responses

Figure 5 - Orienting short-term and long-term business plans

o Making Marketing Plans such as sent mail, phone call, sent advertisement, etc.

Making Marketing Plans such as sent mail, phone call, sent advertisement, etc.

Figure 6- Making Marketing Plans

- Query Performance

The most obvious place to look for poor query performance is in the query itself. Problems can result from queries that take too long to identify the required data or bring the data back. Look for these issues in queries:

Selecting more data than needed: It is not enough to write queries that return the appropriate rows; queries that return too many columns can cause slowness both in selecting the rows and retrieving the data. It is better to list the required columns rather than writing SELECT*. When the query is based on selecting specific fields, the plan may identify a covering index, which can speed up the results. A covering index includes all the fields used in the query. This means that the database can generate the results just from the index. It does not need to go to the underlying table to build the result. Additionally, listing the columns required in the result reduces the data that's transmitted, which also benefits performance.

Selecting more data than needed:

55 responses

Figure 7- Selecting more data than needed

o Inefficient joins between tables: Joins cause the database to bring multiple sets of data into memory and compare values, which can generate many database reads and significant CPU. Depending on how the tables are indexed, the join may require scanning all the rows of both tables. A poorly written join on two large tables that requires a complete scan of each one is very computationally expensive. Other factors that slow down joins include joining on columns that are different data types, requiring conversions, or a join condition that includes LIKE, which prevents the use of

indexes. Avoid defaulting to using a full outer join; use inner joins when appropriate to bring back only the desired data.

Inefficient joins between tables:

55 responses

Figure 8 - Inefficient joins between tables

O Too few or too many indexes: When there aren't any indexes that the query optimizer can use, the database needs to resort to table scans to produce query results, which generates a large amount of disk input/output (I/O). Proper indexes also reduce the need for sorting results. Indexes on non-unique values do not provide as much help as unique indexes in generating results. If the keys are large, the indexes become large as well, and using them creates more disk I/O. Most indexes are intended to help the performance of data retrieval, but it is important to realize that indexes also impact the performance of data inserts and updates, as all associated indexes must be updated.

Too few or too many indexes:

Figure 9 - Too few or too many indexes

Too much literal SQL causing parse contention: Before any SQL query can be executed, it must be parsed, which checks syntax and permissions before generating the execution plan. Because parsing is expensive, databases save the SQL they've parsed to reuse it and eliminate the parsing time. Queries that use literal values cannot be shared, as the WHERE clauses differ. This results in each query being parsed and added to the shared pool. Because the pool has limited space, some saved queries are discarded to make room. If those queries recur, they need to be parsed again.

Too much literal SQL causing parse contention:

Figure 10 - Too much literal SQL causing parse contention

 User and Query Conflicts: Databases are designed to be multi-user, but the activities of multiple users can cause conflicts. (Habib, 2015)

User and Query conflicts:

55 responses

Figure 11- User and Query Conflicts

- Data:
 - Easy to import data into the system

Easy to import data into the system:

Figure 12- Easy to import data into the system

o Easily manipulate adding, editing, deleting data

Easily manipulate adding editing deleting data

55 responses

Figure 13- Easily manipulate adding, editing, deleting data

o Encryption

Encryption

Figure 14 - Encryption

O Data saved in standard format:

Data saved in standard format

55 responses

Figure 15- Data saved in standard format

- Other Issues
 - o Security of Database system

Security of Database system

Figure 16 - Security of Database system

o Easy maintenance

Easy maintenance

55 responses

Figure 17- Easy maintenance

o Easy to upgrade the system:

Easy to upgrade the system:

Figure 18 - Easy to upgrade the system

- General assessment:
 - o The Database system is useful:

The Database system is useful:

55 responses

Figure 19 - The Database system is useful

User satisfaction:

User satisfaction

Figure 20 - User satisfaction

Evaluation Criteria	Reviews from users	Evaluate
Business:		
- Calculate	- User almost satisfied with database calculate	High
- Business plans	- The Database cannot work well in making business plans	Medium
 Making Marketing Plans such as sent mail, phone call, sent advertisement, etc. 	- Easily to contact customers and marketing	High
Query Performance:		
- Selecting more data than needed	- This system still acceptable to select more data	High
- Inefficient joins between tables	- Tables in this database inefficient to join between	Medium
- Too few or too many indexes	- There are a few excess information	Medium
- Too much literal SQL causing parse contention	- Database cause parse contention	High
- User and Query Conflicts	- Query is not clean enough and make user confusing	High
Data:		
- Easy to import data into the system	- User easy import any kind of data into database	High
 Easily manipulate adding, editing, deleting data 	- User easy add, edit, delete data in database system	High
- Encryption	- The data still not encryption in the database	Low
- Data saved in standard format	- Most data is saved in standard format	High
Other Issues:		
- Security of Database system	- Security of Database system is acceptable	Medium
- Easy maintenance	- The maintenance problem is relatively good	Medium
- Easy to upgrade the system	- Update the database system accordingly	High
General assessment:		
- The Database system is useful:	- The user feels the database is useful for the job	High
- User satisfaction	- Most users feel satisfied when using this database system	High

Table 26 - Evaluate the responsiveness of Database with user requirements

3. Points to note and improve

3.1. Data type in SQL Server

If storing the same data type, you can't classify what is the date, where the string is? where the number is? Therefore, the implementation of operators and search also becomes very difficult during data query.

On the other hand, posing a real problem: When you design a commercial database, installing Database storage is very important. We have a small example as follows, assuming:

- In a table, every 1 record corresponds to 1 byte of memory.
- One day you save 1,000,000 records that will take up 1,000,000 bytes.
- If saved a year will be 365 million bytes.

So if you store more than 1 byte per day, you will cause loss of capacity up to 365 million bytes / year. In contrast, the lack of capacity causes system stagnation such as memory shortage, insufficient storage capacity. It was just a small illustrative problem, and in reality it was often many times like that.

Today, computer capacity is often quite large, so the storage capacity is lost so it can be accepted temporarily. But what about mobile programming? According to the trend of using modern equipment, you clearly see that saving capacity is very important. Small devices cannot store too large capacity, so if data loss occurs, it will cause stagnation affecting the equipment system.

Therefore, it is necessary to determine the appropriate DATA TYPE for each data attribute to ensure optimal memory during use.

In this Database system of ElectroShop used most data types "varchar(100)" so it can not include Unicode types so in the future, when someone input the value with Unicode types will make Database system have trouble. Finally, we should change type of data from "varchar(100)" to "Nvarchar(100)" this is better solution.

3.2. Primary Key & Foreign Key and Initialize, delete, edit Table in SQL Server

A database consists of many tables, between the tables have a relationship with each other through the Primary Key & Foreign Key.

- Primary Key, Foreign Key: In this ElectroShop, the Primary Key and Foreign Key is used for define Only unique, non-duplicate data exists but not contains non-empty values (NULL) and Foreign Key must have the same data type, the same number of fields that have the corresponding Primary Key sorted. This will cause the Database system have a lot of trouble, so contains non-empty values (NULL) should be add to Primary Key and Foreign Key in each tables of Database system.
- Some notes in table initialization:
 - O Create a new Table in the current Database: Before create a new table, make sure that we are using right database, if not use syntax: "use <database>".

O The Table has not been found: In the process of creating a Table with code, in some cases we cannot see the Table that we just created, so right-click Table and Refresh to update the Table list.

- o Each Table and Column has only one name in the Table.
- In addition, one of the important things is to know relations (Relationship) between the tables:
 - One-to-One Relationships or 1-1 relations: in this relationship, a row on table A cannot be linked to more than 1 row on Table B and vice versa.
 - One-to-Many Relationships or 1-n relationships: in this relationship, a row on the table A can be linked to multiple rows on Table B.
 - o Many-to-Many Relationships or relationships: in this relationship, a row on Table A can be linked to multiple rows on Table B and a row on Table B can also link to multiple rows on Table A. As we can see in the example above a book can be written by many authors and an author can also write many books. Therefore the relationship between Books and Authors is Many to Many relations. In this case, an intermediate table is often used to solve the problem (AuthorBook table).
- Do not use multiple temporary tables when querying

APPENDIX: Survey Form

_						
Cod	٩Δ	٠				
-coc	ィロ		• • •	 		

Survey users on the database, the feasibility of the system on a scale: High - Medium – Low.

Evaluation Cuitoria		Evaluate			
Evaluation Criteria	High	Medium	Low		
Business:					
Calculate					
Business plans					
Making Marketing Plans such as sent mail, phone call, sent advertisement, etc.					
Query Performance:					
Selecting more data than needed					
Inefficient joins between tables					
Too few or too many indexes					
Too much literal SQL causing parse contention					
User and Query Conflicts					
Data:					
Easy to import data into the system					
Easily manipulate adding, editing, deleting data					
Encryption					
Data saved in standard format					
Other Issues:					
Security of Database system					
Easy maintenance					
Easy to upgrade the system					
General assessment:					
The Database system is useful:					
User satisfaction					

- Google Form: https://goo.gl/forms/kS3JUKCDD5jcs1e62

References

Habib, O. (2015, 12 23). *Cisco*. Retrieved from Cisco: https://blog.appdynamics.com/engineering/top-6-database-performance-metrics-to-monitor-in-enterprise-applications/

Wikipedia. (n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Microsoft_SQL_Server

Wikipedia. (n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/SQL_Server_Management_Studio