

# Attentive Alignment Network for Multispectral Pedestrian Detection

Nuo Chen<sup>1</sup>, Jin Xie<sup>1\*</sup>, Jing Nie<sup>1</sup>, Jiale Cao<sup>2</sup>, Zhuang Shao<sup>3</sup>, Yanwei Pang<sup>2,4</sup>

<sup>1</sup>Chongqing University, <sup>2</sup>Tianjin University, <sup>3</sup>University of Warwick, <sup>4</sup>Shanghai Artificial Intelligence Laboratory



## Summary



- Multispectral pedestrian detection is crucial for aroundthe-clock applications.
- The misalignment in both spatial position and modality reliability hamper its efficiency.
- Our proposed AANet addresses these misalignments, achieving state-of-the-art performance in both KAIST dataset and CVC-14 dataset.

### Motivation



### Misalignment In Spatial Position:

Same pedestrian has different positions in different modalities.

### Misalignment In Modality Reliability:

The reliability of different modalities changes with various light conditions.

### Method



# Attentive Positional Alignment(APA):

### **Modality-aware Pedestrian Highlighting Block:**

Highlighting the regions of pedestrians through predicting pixel-wise attention maps.

#### **Aligned Convolution:**

Convolution kernels are shifted by the predicted spatial offsets between different modalities in a supervised manner.



### **Attentive Modality Alignment(AMA):**

- Propose illumination-guided attention mechanism
- Adaptively aggregating features of RGB and TIR modalities in a data-driven manner.

### **Mirror Training Strategy:**

Day

All

Night

Introduce a mirror branch which only used in training stage, further improving the accuracy of offset prediction.

### Experiment

Baseline

Detectors

APA

AMA

| Methods                   | Backbone  | GPU      | Time | All   | Day   | Nigl |
|---------------------------|-----------|----------|------|-------|-------|------|
| wo brightness distortion  |           |          |      |       |       |      |
| ACF [15]                  | -         | -        | 2.73 | 47.32 | 42.57 | 56.1 |
| Halfway Fusion [24]       | VGG       | Titan X  | 0.43 | 25.75 | 24.88 | 26.5 |
| IAF-RCNN [19]             | VGG       | Titan X  | 0.21 | 15.73 | 14.55 | 18.2 |
| IATDNN+IAMSS [11]         | VGG       | Titan X  | 0.25 | 14.95 | 14.67 | 15.7 |
| CIAN [45]                 | VGG       | 1080Ti   | 0.07 | 14.12 | 14.77 | 11.1 |
| MSDS-RCNN [18]            | VGG       | Titan X  | 0.22 | 11.34 | 10.53 | 12.9 |
| AR-CNN [46]               | VGG       | 1080Ti   | 0.12 | 9.34  | 9.94  | 8.38 |
| DCRL [25]                 | VGG       | 2080Ti   | 0.18 | 9.16  | 9.86  | 8.18 |
| MuFEm+SCoFA [5]           | ResNeXt50 | Tesla P6 | 0.10 | 8.07  | 8.16  | 7.5  |
| UFF+UCG [16]              | ResNet50  | 1080Ti   | 0.09 | 7.89  | 8.18  | 6.9  |
| AANet-RetinaNet (ours)    | ResNet50  | 1080Ti   | 0.06 | 7.51  | 7.74  | 7.39 |
| AANet-Faster RCNN (ours)  | ResNet50  | 1080Ti   | 0.10 | 6.91  | 6.66  | 7.3  |
| w brightness distortion   |           |          |      |       |       |      |
| MBNet [50]                | ResNet50  | 1080Ti   | 0.07 | 8.13  | 8.28  | 7.8  |
| DCMNet-RetinaNet [38]     | VGG16     | Titan X  | 0.10 | 6.89  | -     | -    |
| DCMNet-Faster RCNN [38]   | VGG16     | Titan X  | 0.14 | 6.41  | -     | -    |
| AANet-RetinaNet† (ours)   | ResNet50  | 1080Ti   | 0.06 | 6.81  | 6.72  | 6.59 |
| AANet-Faster RCNN† (ours) | ResNet50  | 1080Ti   | 0.10 | 6.11  | 5.94  | 6.3  |

|                                       | <b>✓</b>     |                     |              | 9.62                    | 9.39                    | 10.06                   |
|---------------------------------------|--------------|---------------------|--------------|-------------------------|-------------------------|-------------------------|
| RetinaNet                             | $\checkmark$ | $\checkmark$        |              | 8.01                    | 7.88                    | 8.22                    |
|                                       | $\checkmark$ | $\checkmark$        | $\checkmark$ | 7.51                    | 7.74                    | 7.39                    |
|                                       | <b>√</b>     |                     |              | 9.03                    | 8.03                    | 10.98                   |
| F.RCNN                                | $\checkmark$ | $\checkmark$        |              | 7.37                    | 6.81                    | 7.80                    |
|                                       | $\checkmark$ | $\checkmark$        | $\checkmark$ | 6.91                    | 6.66                    | 7.31                    |
|                                       |              |                     |              |                         |                         |                         |
|                                       |              |                     |              |                         |                         |                         |
| Methods                               |              | Ва                  | ckbone       | All                     | Day                     | Night                   |
| Methods ACF [15]                      |              | Ba<br>-             | ckbone       | <b>All</b> 60.10        | <b>Day</b> 61.30        | <b>Night</b> 48.20      |
|                                       | ion [24]     | -                   | ckbone<br>GG |                         |                         |                         |
| ACF [15]                              |              | -<br>V(             |              | 60.10                   | 61.30                   | 48.20                   |
| ACF [15]<br>Halfway Fus               |              | -<br>V(             | GG           | 60.10<br>31.99          | 61.30<br>36.29          | 48.20<br>26.29          |
| ACF [15]<br>Halfway Fus<br>AR-CNN [46 | 5]           | -<br>VC<br>VC<br>Re | GG<br>GG     | 60.10<br>31.99<br>22.10 | 61.30<br>36.29<br>24.70 | 48.20<br>26.29<br>18.10 |



Performance comparisons

**KAIST** dataset

**CVC-14** dataset