財務演算法 作業 5 Monte Carlo Simulation

資工四 B96902041 吳承恩

執行方法:

使用 DevC++ 4.992 開啟 hw5.cpp 後直接 compile 並執行

接著依照提示輸入 S1 , S2 ,S3 ,X ,H ,year ,δ1 ,δ2 ,δ3 ,ρ ,rate ,n ,m

然後就會執行五種方法來算選擇權的 Price 以及 delta 和 Gamma

Method1: Origin method 原始的蒙地卡羅法

Method2: Discretize dS/S

Method3: Brownian Bridge Approach

Method4: Method1 and Variance reduction

Method5: Method3 and Variance reduction

撰寫語言:

C++

細部說明:

這次作業我嘗試了各種方法比去作比較

分別是

Brownian Bridge Approach:

利用布朗運動的特性去預估路徑是否曾碰觸到barrier,若最後價值超過 過barrier,就代表一定碰到過,若最後價值不超過barrier,則沒碰 到的機率: 1-exp(-(2ln(H/S)*ln(H/S(T)))/(δ^2*T)),利用此方式來評估價值,此方法最大的好處是同樣的replication數(N)時,不需要將時間切割成許多小片段來計算,因此計算速度較快,時間複雜度為O(N),而原始方法的時間複雜度為O(N*M),M是把時間切割成幾期的期數,我自己測試是發現M至少要大於30才會比較準確,因此布朗橋的方法真的快了不少。

Variance Reduction:

蒙地卡羅法主要是基於大數方則中的中央極限定理,根據統計學,重複計算次數越多平均值就越接近母體的平均值,收斂方程式為 $O(N^{-1/2})$ 也就是說想要降低10倍的誤差就要跑100倍的重複計算次數,variance reduction指的就是如何在減少誤差而又不需要多 跑那麼多次,我實作的方式是Antithetic Variates,其原理就是利用 Var((Y1+Y2)/2) = Var(Y1)/2+Cov(Y1,Y2)/2

Y1跟Y2是同樣的distribution(在這次作業中同樣都是Normal distribution) 而Y2為負的Y 1,故Cov(Y1,Y2)=-1,因此這方法降低了1/2的variance,各多作一次負的試驗就大幅降低了variance。

實驗數據:

這次作業我用了 excel 來稍微統計一下各種方式的結果

表一: n=100 m=50 每個方式的 100 筆結果

Method1		Method2		Method3		Method4		Method5	
平均數	4.516182	平均數	4.470968	平均數	4.29203	平均數	4.440627	平均數	4.242007
標準誤	0.060787	標準誤	0.063324	標準謨	0.060205	標準謨	0.037585	標準誤	0.027472
中間値	4.517077	中間値	4.475244	中間値	4.253625	中間値	4.404426	中間値	4.247431
眾數	#N/A								
標準差	0.607873	標準差	0.63324	標準差	0.60205	標準差	0.375845	標準差	0.274723
變異數	0.369509	變異數	0.400993	變異數	0.362464	變異數	0.14126	變異數	0.075473
峰度	-0.00852	峰度	0.445552	峰度	0.262894	峰度	0.505916	峰度	-0.56062
偏態	-0.00879	偏態	0.371836	偏態	0.441965	偏態	0.180525	偏態	-0.10859
範圍	3.34978	範圍	3.514508	範圍	2.991274	範圍	2.038469	範圍	1.307922
最小値	2.689631	最小値	2.948336	最小値	3.007542	最小値	3.511368	最小値	3.503828
最大値	6.039411	最大値	6.462844	最大値	5.998816	最大値	5.549837	最大値	4.81175
總和	451.6182	總和	447.0968	總和	429.203	總和	444.0627	總和	424.2007
個數	100								
第 Κ 個最	6.039411	第 K 個最	6.462844	第 Κ 個最	5.998816	第 Κ 個最	5.549837	第 Κ 個最	4.81175
第 K 個最	2.689631	第 K 個最	2.948336	第K個最	3.007542	第 K 個最	3.511368	第 K 個最	3.503828
信賴度(95	0.120615	信賴度(95	0.125649	信賴度(95	0.11946	信賴度(95	0.074576	信賴度(95	0.054511

表二: n=10000 m=50 每個方式的 100 筆結果

Method1		Method2		Method3		Method4		Method5	
平均數	4.448132	平均數	4.46171	平均數	4.247411	平均數	4.454623	平均數	4.25668
標準誤	0.006218	標準謨	0.006528	標準謨	0.006255	標準謨	0.003243	標準謨	0.002704
中間値	4.451056	中間値	4.454266	中間値	4.249451	中間値	4.454235	中間値	4.253283
眾數	#N/A								
標準差	0.062183	標準差	0.065282	標準差	0.06255	標準差	0.032433	標準差	0.027044
變異數	0.003867	變異數	0.004262	變異數	0.003913	變異數	0.001052	變異數	0.000731
峰度	-0.13621	峰度	-0.58952	峰度	0.626173	峰度	-0.24978	峰度	-0.01906
偏態	-0.03467	偏態	0.131649	偏態	-0.16993	偏態	-0.16434	偏態	0.362125
範圍	0.305063	範圍	0.307053	範圍	0.375719	範圍	0.147019	範圍	0.136054
最小値	4.287431	最小値	4.301862	最小値	4.049949	最小値	4.377336	最小値	4.198738
最大値	4.592494	最大値	4.608915	最大値	4.425668	最大値	4.524355	最大値	4.334792
總和	444.8132	總和	446.171	總和	424.7411	總和	445.4623	總和	425.668
個數	100								
第K個最	4.592494	第 K 個最	4.608915	第K個最	4.425668	第 K 個最	4.524355	第 K 個最	4.334792
第 K 個最	4.287431	第 K 個最	4.301862	第K個最	4.049949	第 K 個最	4.377336	第K個最	4.198738
信賴度(95	0.012338	信賴度(95	0.012953	信賴度(95	0.012411	信賴度(95	0.006435	信賴度(95	0.005366

Variable reduction 的效用可以從表一跟表二中的 method3 跟 method5 及 method1 跟 method4 的變異數比較中明顯的看出

而 Brownian bridge approach 的效用就是比較 method1 跟

method3 的變異數, 兩表中的變異數都相差不大, 然而 method1

的計算時間是 method3 的(m=50)倍,故 Brownian bridge

approach 的收斂速度較快。

檔案說明:

B96902041_HW_5.zip 中內含四個檔案

Hw5.cpp 程式原始碼

Hw5.exe 程式執行檔

Book1.xlsx 實驗數據的 excel 檔,原始數據存到 sheet1 中,另外兩

個 sheet 則是表一跟表二

Readme.pdf: 即為此說明檔