

Statistical Thinking (ETC2420/ETC5242)

Associate Professor Catherine Forbes

Week 9: Regression models

Learning Goals for Week 9

- Synthesise the Bayesian approach
- Compare frequentist and Bayesian inference
- Recognise when transformations may be required
- Review frequentist simple linear regression
- Diagnose problems with a regression model

Assigned reading for Week 9:

Chapter 5 in ISRS

Synthesise the Bayesian approach

- \blacksquare We have discussed the idea of using subjective prior information $p(\theta),$ for $\theta \in \Theta$
- And combining this with data $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} F_X(x \mid \theta)$
- Specifically using conjugate prior-likelihood pairs
 - Beta-Binomial
 - ► Gamma-Poisson
 - Gamma-Exponential
 - ► Normal-Normal

Beta-Binomial x = 1, n = 4

Add Beta-Binomial x = 12, n = 40 with same priors

Add Beta-Binomial x = 120, n = 400 with same priors

The posterior distribution

- The impact of the prior will diminish as *n* increases
- Summarise the posterior distribution using point estimate
 - Squared error loss: Use the posterior mean
 - Absolute error loss: Use the posterior median
 - Other loss function? Minimise posterior expected loss
- Summarise the posterior distribution using interval estimate
 - Any interval with 95% posterior probability: 95% credible interval
 - Shortest interval with 95% posterior probability: 95% highest posterior density (HPD) credible interval

Setting the prior

- There are many approaches to determining the prior
- For example, one can choose the hyper-parameters of a conjugate through constraints on:
 - the prior mean, prior variance (or other prior moments)
 - ▶ the width of a prior 90% interval (or with other probability level)
- And solve (numerically) d nonlinear equations in d unknowns
- e.g. Beta prior: choose prior mean $E[\theta \mid \alpha, \beta] = M$ and prior variance $Var(\theta \mid \alpha, \beta) = V$, then solve for α and β as function of M and V:

$$\frac{\alpha}{\alpha + \beta} = M$$
 and $\frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)} = V$

• or choose M, L, U and c such that $E[\theta \mid \alpha, \beta] = M$ and

$$\int_{L}^{U} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = c$$

8

Bayesian Predictions

- Next observation modelled as $X_{n+1} \sim F_{X|\theta}$, independent of $\{X_1, \ldots, X_n\}$.
- Use posterior to construct joint distribution of

$$f(x_{n+1}, \theta \mid x_1, \ldots, x_n) = f(x_{n+1} \mid \theta) \times f(\theta \mid x_1, \ldots, x_n)$$

- Now "marginalise out" θ to get $f(x_{n+1} \mid x_1, \dots, x_n)$
- Produce
 - ▶ point forecasts $E[X_n + 1 \mid x_1, ..., x_n]$
 - interval forecasts, etc
- Unlike MLE, don't just "plug-in" $\hat{\theta}$
- Take uncertainty about θ in to account! (Prediction intervals will be wider)

Multi-parameter models

- In all conjugate pair cases so far, the prior involves a univariate (hyper-)parameter
- e.g. Normal-Normal (mean only, σ^2 assumed known)
- $\blacksquare \mu \sim \textit{N}(\mu_{\textit{p}}, \tau^2) \text{ and } \textit{X}_1, \textit{X}_2, \ldots, \textit{X}_n \mid \mu \overset{\textit{i.i.d.}}{\sim} \textit{N}(\mu, \sigma^2)$
- $\Rightarrow \mu \mid \sigma^2, X_1, X_2, \dots, X_n \sim N(\tilde{\mu}_p, \tilde{\sigma}_p^2),$ with $\tilde{\mu}_p = \left(\frac{n\tau^2}{\sigma^2 + n\tau^2}\right) \bar{X} + \left(\frac{\sigma^2}{\sigma^2 + n\tau^2}\right) \mu_p$ and $\tilde{\tau}^2 = \frac{\tau^2 \sigma^2}{\sigma^2 + n\tau^2}$
- In some cases, like the above, there is another parameter to include in the prior
- **e**.g. we want to a prior on $\theta = (\mu, \sigma^2)$

A conjugate prior for the normal likelihood

- There is a conjugate prior for the normal likelihood
- It is called a **Normal-Inverse Gamma** distribution

$$\mu \mid \sigma^2 \sim N\left(\mu_0, \frac{\sigma^2}{\kappa_0}\right)$$

and

$$rac{1}{\sigma^2} \sim ext{Gamma}\left(ext{shape} = rac{
u_0}{2}, ext{rate} = rac{
u_0 g_0^2}{2}
ight)$$

• We refer to the marginal distribution of σ^2 as "Inverse Gamma"

Normal-Inverse Gamma prior

■ To simulate from this prior distribution *R* times

```
R <- 1000
mu 0 <- 3
kappa_0 <- 2
nu 0 <- 4
q2_0 < -2
rate <- nu_0*q2_0/2
w <- rgamma(R, shape=nu_0/2, rate=rate)</pre>
sigsg <- 1/w
mu < - rep(0,R)
for(r in 1:R){
  mu[r] <- rnorm(1,mean=mu_0, sd=sqrt(siqsq[r]/kappa_0))</pre>
```

■ Plot pairs $(\mu^{(r)}, \sigma^{2(r)})$, for r = 1, 2, ..., R ("Normal-Inverse Gamma" draws)

Random draws from a Normal-Inverse Gamma prior

Marginal prior for μ is Student-t

- The Normal-Inverse Gamma distribution for $\theta = (\mu, \sigma^2)$
- lacksquare Can be shown to imply a **marginal Student-t** distribution for μ

$$rac{\mu-\mu_0}{\sqrt{g_0^2/\kappa_0}}\sim t_{
u_0}$$

- lacksquare That is, the marginal distribution for μ is Student-t with
 - degrees of freedom ν_0
 - ▶ mean $E[\mu] = \mu_0$
 - ightharpoonup variance $Var(\mu)=rac{g_0^2}{\kappa_0}\left(rac{
 u_0}{
 u_0-2}
 ight)$

Multi-parameter posterior

- Given random sample $x_1, ..., x_n$ from $N(\mu, \sigma^2)$
- The posterior distribution is also Normal-Inverse Gamma:

$$\mu \mid \sigma^2, \mathbf{x}_1, \dots, \mathbf{x}_n \sim \mathbf{N}\left(\mu_n, \frac{\sigma^2}{\kappa_n}\right)$$

and

$$rac{1}{\sigma^2} \mid x_1, \dots, x_n \sim \text{Gamma}\left(\text{shape} = rac{
u_n}{2}, \text{rate} = rac{
u_n g_n^2}{2}
ight)$$

where

$$\mu_n = \left(\frac{\kappa_0}{\kappa_n}\right) \mu_0 + \left(\frac{n}{\kappa_n}\right) \bar{x}$$

$$\kappa_n = \kappa_0 + n$$

$$\nu_n = \nu_0 + n$$

$$g_n^2 = g_0^2 + (n-1)s^2 + \frac{n\kappa_0}{\kappa_n} (\bar{x} - \mu_0)^2$$

- Easy to simulate from this NIG prior to (approximate) any posterior quantities of interest, e.g.
 - point and interval predictions

Posterior inference in multi-parameter settings

- In a multi-parameter setting the posterior will be a multi-variate distribution
- $\blacksquare\Rightarrow$ we integrate (sum) to obtain marginal posterior distributions, e.g.

•
$$\sigma^2 \mid x_1, \dots, x_n \sim$$
Inverse Gamma $\left(\frac{\nu_n}{2}, \frac{\nu_n g_n^2}{2}\right)$

- $\mu \mid x_1, \dots, x_n$ will be Student-t with
- degrees of freedom ν_n
- mean $E[\mu \mid x_1, ..., x_n] = \mu_n$
- variance $Var(\mu \mid x_1, \dots, x_n) = \frac{g_n^2}{\kappa_n} \left(\frac{\nu_n}{\nu_n 2} \right)$
- If you can simulate from the joint posterior, you can approximate the features of the marginal distribution, e.g.
 - marginal means.
 - marginal variances,
 - marginal probabilities,
 - marginal credible intervals

Non-conjugate priors

- In principle we do not want to be restricted to using conjugate priors
- There are many population models where conjugate prior is not available
- ⇒ Use advanced simulation techniques to simulate from the posterior distribution of interest
- Breakthrough technique Markov chain Monte Carlo (MCMC)
 - **dependent** posterior draws of multi-variate θ simulated as a Markov chain
 - $\theta^{(r)}$ values drawn using previous draw $\theta^{(r-1)}$
- Basic technique: (Gibbs sampling)
- Take starting values $\theta^{(0)} = (\mu^{(0)}, \sigma^{2(0)})$
- Then for r = 1, 2, ..., R, simulate
 - $\mu^{(r)} \sim \mu \mid \sigma^{2(r-1)}, x_1, \dots x_n$
 - $\sigma^{2(r)} \sim \sigma^2 \mid \mu^{(r)}, x_1, \dots, x_n$
 - Breaking down the simulation into univariate draws makes it easier to sample from the posterior

Why study Bayesian methods?

- Modern computation opens up many possibilities not previously available
- Theoretically Bayesian methods will always out-perform frequentist method
- In many practical problems, specific loss function can be constructed and incorporated into the analysis
- For more complex models beyond simple univariate random sample, we have more complex models
 - heterogeneous populations
 - high dimensional data
 - time series data
- Many machine learning methods exploit ideas from Bayesian inference, e.g.
 - add a little bias to reduce MSE
 - average over predictions based on uncertain parameter estimate

Simple linear regression model

- Simple linear regression uses a line to predict value of y_i for a given value of x_i
- Explains how response variable, *y*, changes (linearly) in relation to explanatory variable, *x*, on average.

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Fitting a regression model using least squares

- Minimise the sum of squared residuals produces the best fitting line
- i.e. Minimise $\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i b_0 b_1 x_i)^2$
- This is Ordinary least squares (OLS)
- Fitted line has smallest average vertical squared distance, at available observed points
- **Observed** values *y_i* are points on plot
- **Fitted** (or **Predicted**) values $\hat{y}_i = b_0 + b_1 x_i$ are values that lie on the regression line

Fitting a regression model using least squares

Parameter interpretation

- Line of best fit: $\hat{y} = b_0 + b_1 x$, for any value of x
- **b**₀ is the **y-intercept** of the fitted line with y-axis
- **\blacksquare** b_1 is the **slope** of the fitted line

Slope coefficient of fitted regression line satisfies

$$b_1=r\frac{s_y}{s_x}$$

- \blacksquare s_x is sample standard deviation of x_i 's
- \blacksquare s_y is sample standard deviation of y_i 's
- \blacksquare *r* is sample correlation, found using x_i and y_i pairs

Given sample means \bar{x}, \bar{y} , fitted regression line **y-intercept** coefficient is

$$b_0 = \bar{y} - b_1 \bar{x}$$

Does the point \bar{x}, \bar{y} lie on the regression line?

Standard errors

- We have estimated β_0 and β_1 using b_0 and b_1 , respectively
- What are the (estimated) standard errors for b₀ and b₁ in hypothetical repeated samples?

$$SE(b_0) = \sqrt{\frac{MSE \sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

and

$$SE(b_1) = \sqrt{\frac{MSE}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

where

$$MSE \ = \ \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{(n-2)} \ = \ \frac{\sum_{i=1}^{n} e_i^2}{(n-2)}$$

Simple linear regression using maximum likelihood estimation

- Simple linear regression (SLR) uses only a single regressor
- The SLR model for observation i is

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- If we assume:
 - $\triangleright \ \varepsilon_i \overset{i.i.d.}{\sim} N(0, \sigma^2) \text{ and } x_i \text{'s are fixed}$
- Then, the likelihood function is

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_i)^2\right\}$$

And 2 times the log-likelihood is

$$2I(\beta_0, \beta_1, \sigma^2) = -n \ln(2\pi) - n \log(\sigma^2) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

- This is **maximised** at the OLS estimator, with $\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n}$
- (We typically use **MSE** based on (n-2) rather than n when estimating σ^2)

Multiple linear regression using maximum likelihood estimation

- Multiple linear regression (or just linear regression) uses more than regressor
 - We will assume there are p regressors, including the intercept
- \blacksquare Linear regression model for observation i is

$$y_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

- Assuming $\varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$ and $x_{k,i}$'s are fixed
- Then, the likelihood function is

$$L(\beta_0, \beta_1, ..., \beta_{p-1}, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi} \sigma} \exp \left\{ -\frac{1}{2\sigma^2} (y_i - \beta_0 - \beta_1 x_{1,i} - \dots - \beta_{p-1} x_{p-1,i})^2 \right\}$$

And 2 times the log-likelihood is

$$2I(\beta_0, \beta_1, ..., \beta_{p-1}, \sigma^2) = -n \ln(2\pi) - n \log(\sigma^2) - \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{1,i} - \dots - \beta_{p-1} x_{p-1,i})^2$$

- This is **maximised** at the OLS estimator, with $\hat{\sigma}^2 = \frac{\sum_{i=1}^n \mathsf{e}_i^2}{n}$
- (We typically use MSE based on (n-p) rather than n when estimating σ^2)

R-squared for goodness of fit

"R-squared" (R^2) is the **proportion of variation** in the observed y_i 's **explained** by the regression line.

$$R^2 = 1 - rac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n (y_i - ar{y})^2} \ = \ rac{SSR}{SSTo} \ = \ 1 - rac{SSE}{SSTo}$$

where

$$SSR = \sum_{i=1}^{n} (\hat{y_i} - \bar{y})^2$$
 Regression sum of squares $SSE = \sum_{i=1}^{n} (y_i - \hat{y_i})^2$ Error sum of squares $SSTo = \sum_{i=1}^{n} (y_i - \bar{y})^2$ Total sum of squares

R-squared for goodness of fit

- In general, $\hat{y}_i = b_0 + b_1 x_{1,i} + \cdots + b_{p-1} x_{p-1,i}$
- The b_i coefficients are the OLS estimators of the corresponding β_i unknowns
- \blacksquare R^2 is just one available numerical summary measure of model fit
- Note that R-squared will never decrease when additional regressors are added
- So **R-squared is only good** for comparing regressions
 - For the same response variable y
 - And for models with the same number of regressors (predictors)

CLT-based tests and confidence intervals

 Use the Im() function in R for estimated coefficients and their (estimated) standard errors

Due to the availability of an appropriate CLT result

- **C**an undertake **hypothesis test** for individual regression coefficient β_k
- \blacksquare Can construct **confidence interval** for individual regression coefficient β_k
- for for any k = 0, ..., p 1.

CLT-based hypothesis tests

$$H_0: \beta_k = 0 \text{ vs } H_1: \beta_k \neq 0$$

■ Under H_0 , $\frac{b_k}{s(b_k)}$ has (approximately) a t_{n-p} distribution

CLT-based confidence intervals

A $(1 - \alpha) \times 100\%$ Confidence interval for β_k is given by:

$$b_k \pm t_{\alpha/2,n-p} SE(b_k)$$

Bootstrap-based confidence intervals for regression

Bootstrap-based CI for a regression coefficient

- Create an $(R \times p)$ matrix to store all regression coefficients from each bootstrap sample
 - R rows, one for each for bootstrap sample
 - p columns for number of regression coefficients in model
- Repeat for each bootstrap replication
 - Sample rows of the data frame with replacement
 - Fit the regression model for each bootstrap sample
 - Save all regression coefficients in a row of the storage matrix
- Compute bootstrap-based confidence interval for β_k
 - ullet Select the 2.5% and 97.5% quantiles of the column (k+1) corresponding to eta_k
 - (These are the end points of the bootstrap-CI for β_k)

Can use for each k = 0, 1, 2, ..., p - 1

Permutation tests for regression

We used a **permutation test** previously (with two independent samples) to formally decide if

- two groups have the same mean
- two groups have the same proportion
- The idea was to break the connection between group and promotion outcome
- To force null hypothesis (H_0 : no difference between groups) to hold
- \blacksquare And generate an approximate sampling distribution of the test statistic $\bar{X}_1 \bar{X}_2$

For a **regression**, we test $H_0: \beta_k = 0$ vs $H_1: \beta_k \neq 0$

- For any k = 1, 2, ..., p 1 (note no testing for β_0)
- we need to break any existing association between regressor x_k and y in our sample
- We do this via permutations (shuffling) the values of x_k over different observations

Permutation-based hypothesis tests for regression

Procedure for coefficient β_k (k > 1) based on R permuted samples

Want to test, for some k=1,2,...,p-1 (but not for k=0), $H_0: \beta_k=0$ vs $H_1: \beta_k\neq 0$

- Create an $(R \times 1)$ **vector** to store all b_k regression coefficients from each permutation sample
- Repeat for each permutation replication
 - Permute column of tibble containing regressor x_k only keep all other rows of the data frame in order
 - Fit the regression model to the permuted data frame
 - **Save** b_k in the i^{th} entry of the storage vector
- Plot a histogram of the permutation-generated b_k values
 - Draw a vertical red-line correpsonding to the data-based b_k value
 - Compute percentage of permutation-generated b_k values exceeds the data-based b_k value
 - (Can do one-sided or two-sided tests)

Residual plots

Check your residuals using visualisation techniques

Critical plots to assess model fit include

- Histogram of residuals
 - for a good fit the shape should be relatively symmetric and bell-shaped
- Do a QQplot of theoretical normal quantiles against residuals
 - ("Normal probability plot of the residuals")
- Plot the residuals against fitted values
- Plot the residuals against available regressors (any x's included or not included)
 - a good fit means should there should not be any obvious patterns

Residual plots to check model fit - what to look for

What if residual plots show a problem?

- Consider possible **need to transform** *y* using logarithm or other function
 - ▶ Shift values first, then take logarithm to avoid log of a negative number
 - ▶ Other transformations are possible (e.g. power transform y^c or y^{-c})
- Consider adding other regressors
- Consider alternative loss function (e.g. "Weighted least squares") for selecting parameters
 - May be equivalent to assuming different error distribution
- Consider if you have any influential observations
 - Check Leverage and Cook's D (See below)

 h_{ii} is the i^{th} diagonal element of the **hat matrix** H:

$$H = X(X^T X)^{-1} X^T$$

where X is the **design matrix** containing all of the regressors

SLR:
$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}$$
 general LR: $X = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & \cdots & x_{p-1,2} \\ \vdots & \vdots & & & \\ 1 & x_{1,n} & \cdots & x_{p-1n1} \end{bmatrix}$

- Intuitively, observations far from \bar{x} will have higher **leverage**
- lacktriangle \Rightarrow They have **greater influence on the fitted regression function**
- \blacksquare \Rightarrow Changing their y value a little can **substantially effect** the fitted line

About that hat matrix...

Where does the hat matrix *H* come from?

In general (multiple) linear regression, using vector notation, we have

$$Y = X\beta + \varepsilon$$

where

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{p-1,1} \\ 1 & x_{1,2} & \cdots & x_{p-1,2} \\ \vdots & \vdots & & & \\ 1 & x_{1,n} & \cdots & x_{p-1n1} \end{bmatrix} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

■ The OLS estimator is $\hat{\beta} = (X'X)^{-1}X'Y$, and predictions at the observed X is given by

$$\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'Y = HY$$

Notice that $\hat{Y} = HY$. This is why H is called the "hat" matrix!

Cook's D

 Another influence measure for observations that uses the response variable

$$D_i = \frac{e_i^2}{pMSE} \frac{h_{ii}}{(1 - h_{ii})^2}$$

- \bullet e_i is the i^{th} residual
- p =number of explanatory variables (regressors, including the intercept)
- lacktriangle MSE is the mean squared error of the linear model (MSE = SSE/(n p))
- As a **rule of thumb** check any point with Cook's D value greater than 2p/n (same as for leverage)

Leave One Out Cross Validation (LOOCV)

- LOOCV is a method for validating a model
- Leverage is related to LOOCV for regression models

LOOCV =
$$\frac{1}{n} \sum_{i=1}^{n} e_{[i]}^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \hat{y}_{[i]})^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{e_{i}}{1 - h_{ii}}\right)^{2}$$

Here

- $\mathbf{e}_{[i]} = y_i \hat{y}_{[i]}$ is the i^{th} case-deleted residual
- $\hat{y}_{[i]}$ is the **predicted** value for the i^{th} observation
 - using model estimated with the ith case deleted
- \bullet e_i is the **OLS residual** based on all of the data, and
- \bullet h_{ii} is the i^{th} **leverage** value from the OLS fit
- \Rightarrow This means we can calculate **LOOCV** without fitting all *n* models!
 - ▶ (rather than fitting the *n* different regressions that leave out just one observation)

How to get all this out of R?

- Fit models using the *lm*() function
- Use summary() to extract from fitted results
 - e.g. MSE, regression coefficients and standard errors, t-stats and MSE
- Use the **broom** package to augment() your tibble with fitted values, leverage, Cook's D
 - Other useful broom package functions: tidy() and glanc() to organise model output
- Sort tibble using dplyr::arrange()