

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2015

MATEMATYKA

Poziom podstawowy

Symbol arkusza **E**MAP-P0-**100**-2305

DATA: 8 maja 2023 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 46

WYPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania zasad oceniania dostosowania w zw. z dyskalkulią nieprzenoszenia zaznaczeń na kartę.

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 30 stron (zadania 1–36). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Odpowiedzi do zadań zamkniętych (1–29) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (30–36) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 10. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

W każdym z zadań od 1. do 29. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $\log_9 27 + \log_9 3$ jest równa

- **A.** 81
- **B.** 9

C. 4

D. 2

Zadanie 2. (0-1)

Liczba $\sqrt[3]{-\frac{27}{16}} \cdot \sqrt[3]{2}$ jest równa

- **A.** $\left(-\frac{3}{2}\right)$ **B.** $\frac{3}{2}$
- **c**. $\frac{2}{3}$
- **D.** $\left(-\frac{2}{3}\right)$

Zadanie 3. (0-1)

Cenę aparatu fotograficznego obniżono o 15%, a następnie – o 20% w odniesieniu do ceny obowiązującej w danym momencie. Po tych dwóch obniżkach aparat kosztuje 340 zł. Przed obiema obniżkami cena tego aparatu była równa

- **A.** 500 zł
- **B.** 425 zł
- **C.** 400 zł
- **D.** 375 zł

Zadanie 4. (0-1)

Dla każdej liczby rzeczywistej a wyrażenie $(2a-3)^2-(2a+3)^2$ jest równe

- **A.** -24a
- **B**. 0

- **C.** 18
- **D.** $16a^2 24a$

Zadanie 5. (0-1)

Na rysunku przedstawiono interpretację geometryczną jednego z niżej zapisanych układów równań.

Wskaż ten układ równań, którego interpretację geometryczną przedstawiono na rysunku.

A.
$$\begin{cases} y = -x + 2 \\ y = -2x + 1 \end{cases}$$

B.
$$\begin{cases} y = x - 2 \\ y = -2x - 1 \end{cases}$$

c.
$$\begin{cases} y = x - 2 \\ y = 2x + 1 \end{cases}$$

D.
$$\begin{cases} y = -x + 2 \\ y = 2x - 1 \end{cases}$$

Zadanie 6. (0-1)

Zbiorem wszystkich rozwiązań nierówności

$$-2(x+3) \leq \frac{2-x}{3}$$

jest przedział

A.
$$(-\infty, -4)$$

A.
$$(-\infty, -4)$$
 B. $(-\infty, 4)$ **C.** $(-4, \infty)$

C.
$$\langle -4, \infty \rangle$$

Zadanie 7. (0-1)

Jednym z rozwiązań równania $\sqrt{3}(x^2-2)(x+3)=0$ jest liczba

A. 3

B. 2

- **C.** $\sqrt{3}$
- **D.** $\sqrt{2}$

Zadanie 8. (0-1)

Równanie $\frac{(x+1)(x-1)^2}{(x-1)(x+1)^2} = 0$ w zbiorze liczb rzeczywistych

A. nie ma rozwiązania.

B. ma dokładnie jedno rozwiązanie: -1.

C. ma dokładnie jedno rozwiązanie: 1.

D. ma dokładnie dwa rozwiązania: -1 oraz 1.

Zadanie 9. (0-1)

Miejscem zerowym funkcji liniowej f(x) = (2p-1)x + p jest liczba (-4). Wtedy

A.
$$p = \frac{4}{9}$$

B.
$$p = \frac{4}{7}$$

C.
$$p = -4$$

A.
$$p = \frac{4}{9}$$
 B. $p = \frac{4}{7}$ **C.** $p = -4$ **D.** $p = -\frac{4}{7}$

Zadanie 10. (0-1)

Funkcja liniowa f jest określona wzorem f(x) = ax + b, gdzie a i b są pewnymi liczbami rzeczywistymi. Na rysunku obok przedstawiono fragment wykresu funkcji f w układzie współrzędnych (x, y).

Liczba a oraz liczba b we wzorze funkcji f spełniają warunki:

A. a > 0 i b > 0.

B. a > 0 i b < 0.

C. a < 0 i b > 0.

D. a < 0 i b < 0.

Informacja do zadań 11.–13.

W układzie współrzędnych (x, y)narysowano wykres funkcji y = f(x)(zobacz rysunek).

Zadanie 11. (0-1)

Dziedziną funkcji f jest zbiór

- **A.** (-6, 5)
- **B.** (-6,5) **C.** (-3,5)
- **D.** (-3,5)

Zadanie 12. (0-1)

Funkcja f jest malejąca w zbiorze

- **A.** (-6, -3)
- **B.** $\langle -3, 1 \rangle$ **C.** $\langle 1, 2 \rangle$
- **D.** (2, 5)

Zadanie 13. (0-1)

Największa wartość funkcji f w przedziale $\langle -4, 1 \rangle$ jest równa

A. 0

B. 1

C. 2

D. 5

Zadanie 14. (0-1)

Jednym z miejsc zerowych funkcji kwadratowej f jest liczba (-5). Pierwsza współrzędna wierzchołka paraboli, będącej wykresem funkcji f, jest równa 3.

Drugim miejscem zerowym funkcji f jest liczba

- **A.** 11
- **B.** 1
- **C.** (-1) **D.** (-13)

Zadanie 15. (0-1)

Ciąg (a_n) jest określony wzorem $a_n=2^n\cdot (n+1)$ dla każdej liczby naturalnej $n\geq 1$. Wyraz a_4 jest równy

- **A.** 64
- **B.** 40
- **C.** 48
- **D.** 80

Zadanie 16. (0-1)

Trzywyrazowy ciąg (27, 9, a-1) jest geometryczny. Liczba a jest równa

A. 3

B. 0

C. 4

D. 2

Zadanie 17. (0-1)

W układzie współrzędnych zaznaczono kąt $\, lpha \,$ o wierzchołku w punkcie O = (0,0). Jedno z ramion tego kąta pokrywa się z dodatnią półosią Ox, a drugie przechodzi przez punkt P = (-3, 1) (zobacz rysunek).

Tangens kata α jest równy

A.
$$\frac{1}{\sqrt{10}}$$

B.
$$\left(-\frac{3}{\sqrt{10}}\right)$$
 C. $\left(-\frac{3}{1}\right)$

c.
$$\left(-\frac{3}{1}\right)$$

D.
$$\left(-\frac{1}{3}\right)$$

Zadanie 18. (0-1)

Dla każdego kata ostrego α wyrażenie $\sin^4 \alpha + \sin^2 \alpha \cdot \cos^2 \alpha$ jest równe

A.
$$\sin^2 \alpha$$

B.
$$\sin^6 \alpha \cdot \cos^2 \alpha$$

C.
$$\sin^4 \alpha + 1$$

D.
$$\sin^2 \alpha \cdot (\sin \alpha + \cos \alpha) \cdot (\sin \alpha - \cos \alpha)$$

Zadanie 19. (0-1)

Punkty A,B,C leżą na okręgu o środku w punkcie O. Kąt ACO ma miarę 70° (zobacz rysunek).

Miara kąta ostrego ABC jest równa

- **A.** 10°
- **B.** 20°
- **C.** 35°
- **D.** 40°

Zadanie 20. (0-1)

W rombie o boku długości $6\sqrt{2}\,$ kąt rozwarty ma miarę $150^\circ.$ Iloczyn długości przekątnych tego rombu jest równy

- **A.** 24
- **B.** 72
- **C.** 36
- **D.** $36\sqrt{2}$

Zadanie 21. (0-1)

Przez punkty A i B, leżące na okręgu o środku O, poprowadzono proste styczne do tego okręgu, przecinające się w punkcie C (zobacz rysunek).

Miara kąta ACB jest równa

- **A.** 20°
- **B.** 35°
- **C.** 40°
- **D.** 70°

Zadanie 22. (0-1)

Dany jest trójkąt ABC, w którym |BC| = 6. Miara kąta ACB jest równa 150° (zobacz rysunek).

Wysokość trójkąta ABC opuszczona z wierzchołka B jest równa

A. 3

B. 4

- **C.** $3\sqrt{3}$
- **D.** $4\sqrt{3}$

Zadanie 23. (0-1)

Dana jest prosta k o równaniu $y = -\frac{1}{3}x + 2$.

Prosta o równaniu $y=ax+b\,$ jest równoległa do prostej $\,k\,$ i przechodzi przez punkt $\,P=(3,5),\,$ gdy

A.
$$a = 3$$
 i $b = 4$.

B.
$$a = -\frac{1}{3}$$
 i $b = 4$.

C.
$$a = 3$$
 i $b = -4$.

D.
$$a = -\frac{1}{3}$$
 i $b = 6$.

Zadanie 24. (0-1)

Dane są punkty K=(-3,-7) oraz S=(5,3). Punkt S jest środkiem odcinka KL. Wtedy punkt L ma współrzędne

C.
$$(1,-2)$$

D.
$$(7, -1)$$

Zadanie 25. (0-1)

Dana jest prosta o równaniu y = 2x - 3. Obrazem tej prostej w symetrii środkowej względem początku układu współrzędnych jest prosta o równaniu

A.
$$y = 2x + 3$$

B.
$$y = -2x - 3$$

C.
$$y = -2x + 3$$

D.
$$y = 2x - 3$$

Zadanie 26. (0-1)

Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 15. Przekątna graniastosłupa jest nachylona do płaszczyzny podstawy pod

kątem α takim, że $\cos \alpha = \frac{\sqrt{2}}{3}$.

Długość przekątnej tego graniastosłupa jest równa

- **A.** $15\sqrt{2}$
- **B.** 45
- **C.** $5\sqrt{2}$
- **D.** 10

Zadanie 27. (0-1)

Średnia arytmetyczna liczb x, y, z jest równa 4.

Średnia arytmetyczna czterech liczb: 1 + x, 2 + y, 3 + z, 14, jest równa

A. 6

B. 9

C. 8

D. 13

Zadanie 28. (0-1)

Wszystkich liczb naturalnych pięciocyfrowych, w których zapisie dziesiętnym występują tylko cyfry 0, 5, 7 (np. 57 075, 55 555), jest

- **A.** 5^3
- **B.** $2 \cdot 4^3$ **C.** $2 \cdot 3^4$
- **D.** 3^5

Zadanie 29. (0-1)

W pewnym ostrosłupie prawidłowym stosunek liczby W wszystkich wierzchołków do liczby K wszystkich krawędzi jest równy $\frac{W}{K}=\frac{3}{\varsigma}$.

Podstawą tego ostrosłupa jest

A. kwadrat.

B. pięciokąt foremny.

C. sześciokat foremny.

D. siedmiokat foremny.

Zadanie 30. (0-2)

Rozwiąż nierówność

$$x(x-2) > 2x^2 - 3$$

Zadanie 31. (0-2)

Pan Stanisław spłacił pożyczkę w wysokości 8910 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 30 zł. Oblicz kwotę pierwszej raty.

Wypełnia egzaminator	Nr zadania	30.	31.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 32. (0-2)

Wykaż, że dla każdej liczby rzeczywistej $\,x \neq 1\,$ i dla każdej liczby rzeczywistej $\,y\,$ prawdziwa jest nierówność

$$x^2 + y^2 + 5 > 2x + 4y$$

Zadanie 33. (0-2)

Trójkąty prostokątne T_1 i T_2 są podobne. Przyprostokątne trójkąta T_1 mają długości 5 i 12. Przeciwprostokątna trójkąta T_2 ma długość 26. Oblicz pole trójkąta T_2 .

Wypełnia egzaminator	Nr zadania	32.	33.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 34. (0-2)

W kwadracie ABCD punkty A=(-8,-2) oraz C=(0,4) są końcami przekątnej. Wyznacz równanie prostej zawierającej przekątną BD tego kwadratu.

Zadanie 35. (0-2)

Ze zbioru ośmiu liczb {2,3,4,5,6,7,8,9} losujemy ze zwracaniem kolejno dwa razy po jednej liczbie.

Oblicz prawdopodobieństwo zdarzenia $\,A\,$ polegającego na tym, że iloczyn wylosowanych liczb jest podzielny przez $\,15.$

Wypełnia egzaminator	Nr zadania	34.	35.
	Maks. liczba pkt	2	2
	Uzyskana liczba pkt		

Zadanie 36. (0-5)

Podstawą graniastosłupa prostego ABCDEF jest trójkąt równoramienny ABC, w którym |AC| = |BC|, |AB| = 8. Wysokość trójkąta ABC, poprowadzona z wierzchołka C, ma długość 3. Przekątna CE ściany bocznej tworzy z krawędzią CB podstawy ABC kąt 60° (zobacz rysunek).

Oblicz pole powierzchni całkowitej oraz objętość tego graniastosłupa.

Wypełnia egzaminator	Nr zadania	36.
	Maks. liczba pkt	5
	Uzyskana liczba pkt	

MATEMATYKA Poziom podstawowy

Formula 2015

MATEMATYKA Poziom podstawowy Formuła 2015

MATEMATYKA
Poziom podstawowy

Formula 2015