ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры эмиссионные с индуктивно-связанной плазмой Avio 500

Назначение средства измерений

Спектрометры эмиссионные с индуктивно-связанной плазмой Avio 500 (далее - спектрометры) предназначены для измерений массовой концентрации элементов в водных растворах, природных и сточных водах, растворах, продуктах питания, почвах, металлах и сплавах, геологических пробах, рудах, концентратах, керамиках и стеклах, пластиках, нефтях, нефтепродуктах и в смазочных маслах в соответствии с аттестованными и стандартизованными методами (методиками) измерений.

Описание средства измерений

Принцип действия спектрометров с атомизацией и ионизацией элементов в индуктивно-связанной плазме основан на измерении интенсивности эмиссионных спектральных линий атомов и ионов и определении массовой концентрации определяемых элементов при помощи градуировочных характеристик. Система ввода основана на распылении водных или органических образцов в потоке несущего газа для введения в плазму.

Спектрометры состоят из:

- источника возбуждения спектров, состоящего из вертикально расположенной плазменной горелки, распылителя, распылительной камеры, перистальтического насоса и твердотельного радиочастотного генератора с регулируемой мощностью;
 - спектрального блока для регистрации эмиссионного оптического спектра;
- -системы управления (ПК с устанавливаемым программным обеспечением), предназначенной для управления прибором, процессом измерения, сбора и обработки выходной информации.

В спектрометрах возможно аксиальное и радиальное наблюдения плазмы.

Для создания плазмы в горелке, применяется твердотельный радиочастотный генератор с рабочей частотой вблизи 40 МГц, работающий в режиме свободной генерации.

В спектрометре предусмотрены системы контроля для обеспечения безопасности пользователя и защиты прибора от повреждений. Поджиг плазмы осуществляется после того, как сняты все блокировки (закрыта дверца плазменного отсека, давление аргона в норме, горелка в рабочем состоянии и т.д.), инициализация спектрометра завершена и на управляющий компьютер поступило сообщение о готовности ("system ready"). Плазменный отсек тщательно экранирован для предупреждения утечки радиочастотного излучения.

Система ввода спектрометра выполнена в виде быстросъемного регулируемого модуля для монтажа кварцевой горелки, инжектора, распылительной камеры и распылителя.

В стандартной комплектации спектрометр может оснащаться:

- стеклянной циклонной распылительной камерой с концентрическим стеклянным распылителем Мейнхарда;
- устойчивой к воздействию фтористоводородной кислоты системой ввода, состоящей из двухпроходной распылительной камеры Скотта и поперечно-потокового распылителя выполненных из инертного материала;
- системой ввода для анализа масел и нефтепродуктов с циклонной экранированной распылительной камерой, низкопотоковым распылителем и трёхщелевой кварцевой горелкой.

Оптическая система спектрометра Avio 500 состоит из Эшелле - полихроматора, установленного в термостатированной камере на виброустойчивой оптической скамье вместе с системой подачи образцов. Во время работы оптическая система может продуваться азотом или аргоном.

Все элементы измеряются одновременно (не более 1 мин на любое количество длин волн и элементов). Для регистрации спектра используются два SCD - сегментированных твёрдотельных детектора, чувствительных в ультрафиолетовой (от 163 до 403 нм) и видимой (от 404 до 782 нм) областях спектра, охлаждаемых до температуры минус 40 °C. Рабочее охлаждение детектора обеспечивается жестким соединением детектора с полупроводниковым Пельтье-элементом.

Пломбирование спектрометров не предусмотрено.

Общий вид спектрометров и место нанесения знака поверки приведены на рисунке 1.

Рисунок 1 - Общий вид спектрометра эмиссионного с индуктивно-связанной плазмой Avio 500

Программное обеспечение

Спектрометры оснащены встроенным программным обеспечением (Firmware-Spectrometer) и автономным программным обеспечением («Syngistix for ICP»). Встроенное ПО предназначено для сбора и передачи данных в автономное ПО. Автономное ПО управляет работой спектрометра и отображает, обрабатывает, передает и хранит полученные данные.

К метрологически значимой части автономного ПО относится файл syngistix.exe. Метрологически значимая часть автономного ПО выполняет следующие функции:

- управление спектрометром;
- установка режимов работы спектрометра;
- обработку и хранение результатов измерений;
- построение градуировочных графиков;
- проведение диагностических тестов прибора.

Уровень защиты ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «средний» по P 50.2.077-2014. Влияние ΠO на метрологические характеристики учтено при их нормировании.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение	
Идентификационное наименование		
ПО	Syngistix for ICP	Firmware - Spectrometer
Номер версии (идентификационный		
номер) ПО	не ниже 3.0.0.3081	не ниже 2.0
Цифровой идентификатор ПО	70C9AC71994262476C3B628	-
	7641D13A69B8ED39	
	(файл syngistix.exe, для	
	версии ПО 3.0.0.3081,	
	алгоритм расчета MD5)	

Метрологические и технические характеристики

приведены в таблицах 2 и 3.

Таблица 2 - Метрологические характеристики

Наименование характеристики	Значение
Спектральный диапазон, нм	от 163 до 782
Спектральное разрешение (на длине волны As 193,696 нм), нм,	
не более	0,006
Пределы обнаружения контрольных элементов (по критерию 3s), мкг/дм ³ , не более:	
 марганца (Mn, λ=257,610 нм) 	
аксиальное наблюдение	1,0
радиальное наблюдение	4,0
бария (Ва 455,403 нм)	
аксиальное наблюдение	1,0
радиальное наблюдение	4,0
- цинка (Zn, λ=213,857 нм)	
аксиальное наблюдение	1,0
радиальное наблюдение	4,0
Относительное СКО выходного сигнала (для аксиального	
и радиального наблюдения) ¹⁾ , %, не более	1,0

Таблица 3 - Основные технические характеристики

T. T.	
Наименование характеристики	Значение
Напряжение питания переменного тока (частотой 50/60 Гц), В	от 200 до 230
Потребляемая мощность, кВ·А, не более	2,8
Габаритные размеры (Д´Ш´В), мм, не более	760′840′870
Масса, кг, не более	163
Средний срок службы, лет	10
Наработка на отказ, ч, не менее	10 000
Условия эксплуатации:	
- температура окружающего воздуха, °С	от +15 до +30
- относительная влажность окружающего воздуха при температуре 25 °C,	
%, не более	80
- атмосферное давление, кПа	от 84 до 106

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации спектрометров печатным способом и на корпус спектрометров в виде наклейки.

Комплектность средства измерений

Таблица 4 - Комплектность средства измерений

Наименование	Обозначение	Количество,
Спектрометр эмиссионный с индуктивно-связанной плазмой Avio 500 в комплекте с системой ввода пробы	-	1 шт.
Программное обеспечение «Syngistix for ICP»	-	1 шт.
Система охлаждения-рециркулятор	-	1 шт.
Воздушный компрессор безмасляный 1)	-	1 шт.
Автодозатор ¹⁾	-	1 шт.
Компьютер 1)	-	1 шт.
Принтер ¹⁾	-	1 шт.
Набор для установки (инсталляции) прибора	-	1 шт.
Руководство по эксплуатации	-	1 экз.
Руководство по программному обеспечению	-	1экз.
Методика поверки	МП-242-2187-2017	1 экз.

Поверка

осуществляется по документу МП-242-2187-2017 «Спектрометры эмиссионные с индуктивносвязанной плазмой Avio 500. Методика поверки», утвержденному ФГУП «ВНИИМ им. Д.И. Менделеева 20 декабря 2017 г.

Основные средства поверки:

стандартные образцы состава водных растворов ионов цинка (Γ CO 7770-2000), марганца (Γ CO 7266-96) и бария (Γ CO 7760-2000).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых спектрометров с требуемой точностью.

Знак поверки наносится на лицевую панель спектрометра, как показано на рисунке 1 и (или) на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к спектрометрам эмиссионным с индуктивно-связанной плазмой Avio 500

Техническая документация изготовителя.

Изготовитель

Корпорация «PerkinElmer Inc.», США

Завод-изготовитель PerkinElmer Singapure Pte. Ltd., Сингапур

Адрес: 28 Ayer Rajah Crescent, #04-01, 139959

Телефон: 65-6311 4888 Факс: 65-6779 65667

Заявитель

Представительство АО «ШЕЛТЕК АГ» (Швейцария)

Адрес: 119334, г. Москва, ул. Косыгина, д. 19

ИНН 9909173166

Телефон: +7(495) 935-88-88 Факс: +7(495) 564-87-87 E-mail: info@scheltec.ru

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологии им. Д.И. Менделеева»

(ФГУП «ВНИИМ им. Д.И. Менделеева»)

Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19.

Телефон: +7 (812) 251-76-01 Факс: +7 (812) 713-01-14 Web сайт: http://www.vniim.ru

E-mail: info@vniim.ru

Аттестат аккредитации ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311541 от 23.03.2016 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

C.C.	Голубев
------	---------

М.п. «____ » _____ 2018 г.