# Lecture 11: Deep Reinforcement Learning CS486/686 Intro to Artificial Intelligence

Pascal Poupart
David R. Cheriton School of Computer Science
CIFAR AI Chair at Vector Institute





#### **Outline**

- RL with function approximation
  - Linear approximation
  - Neural network approximation

- Algorithms:
  - Gradient Q-learning
  - Deep Q-Network (DQN)



#### **Quick Recap**

Markov decision processes: value iteration

$$V(s) \leftarrow \max_{a} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V(s')$$

Reinforcement learning: Q-learning

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

Complexity depends on number of states and actions



#### **Large State Spaces**

Computer Go: 3<sup>361</sup> states



4-dimensional continuous state space





Atari: 210 x 160 x 3 dimensions (pixel values)





#### **Functions to be Approximated**

• Policy:  $\pi(s) \rightarrow a$ 

• Q-function:  $Q(s, a) \in \Re$ 

• Value function:  $V(s) \in \Re$ 

#### **Traditional Neural Network**

- Network of units (computational neurons) linked by weighted edges
- Each unit computes:  $z = h(\mathbf{w}^T \mathbf{x} + b)$ 
  - Inputs: *x*
  - Outputs: *z*
  - Weights (parameters): w
  - Bias: *b*
  - Activation function (usually non-linear): *h*





#### **One Hidden Layer Architecture**

- Feed-forward neural network
  - Hidden units:  $z_j = h_1(\mathbf{w}_j^{(1)}\mathbf{x} + b_j^{(1)})$
  - Output units:  $y_k = h_2(\mathbf{w}_k^{(2)}\mathbf{z} + b_k^{(2)})$





#### **Common Activation Functions**

• Sigmoid: 
$$h(a) = \sigma(a) = \frac{1}{1+e^{-a}}$$

• Softmax: 
$$h(\mathbf{a})_i = \frac{e^{a_i}}{\sum_j e^{a_j}}$$

- Tanh (hyperbolic tangent):  $h(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
- Gaussian:  $h(a) = e^{-0.5\left(\frac{a-\mu}{\sigma}\right)^2}$
- ReLU (Rectified Linear Unit):  $h(a) = \max(a, 0)$
- Identity: h(a) = a



#### **Universal Function Approximator**

**Theorem:** Neural networks with at least one hidden layer of sufficiently many sigmoid/tanh/Gaussian units can approximate any function arbitrarily closely.



## **Q-function Approximation**

• Let 
$$s = (x_1, x_2, ..., x_n)^T$$

• Linear:  $Q(s,a) \approx \sum_i w_{ai} x_i$ 

• Non-linear (e.g., neural network):  $Q(s, a) \approx g(x; w)$ 

#### **Gradient Q-learning**

- Minimize squared error between Q-value estimate and target
  - Q-value estimate:  $Q_w(s, a)$
  - Target:  $r + \gamma \max_{a'} Q_{\overline{w}}(s', a')$
- Squared error:  $Err(\mathbf{w}) = \frac{1}{2} [Q_{\mathbf{w}}(s, a) r \gamma \max_{a'} Q_{\overline{\mathbf{w}}}(s', a')]^2$
- Gradient:  $\frac{\partial Err}{\partial w} = \left[ Q_w(s, a) r \gamma \max_{a'} Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$



 $\overline{\boldsymbol{w}}$  fixed

## **Gradient Q-learning**

Initialize weights w at random in [-1,1]

Observe current state s

#### Loop

Select action a and execute it

Receive immediate reward r

Observe new state s'

Gradient: 
$$\frac{\partial Err}{\partial w} = \left[ Q_w(s, a) - r - \gamma \max_{a'} Q_w(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$$

Update weights:  $\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial Err}{\partial \mathbf{w}}$ 

Update state:  $s \leftarrow s'$ 



#### Recap: Convergence of Tabular Q-learning

 Tabular Q-Learning converges to optimal Q-function under the following conditions:

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and  $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ 

- Let  $\alpha(s, a) = 1/n(s, a)$ 
  - Where n(s, a) is # of times that (s, a) is visited
- Q-learning:  $Q(s,a) \leftarrow Q(s,a) + \alpha(s,a)[r + \gamma \max_{a'} Q(s',a') Q(s,a)]$



## Convergence of Linear Gradient Q-Learning

Linear Q-Learning converges under the same conditions:

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and  $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ 

- Let  $\alpha_t = 1/t$
- Let  $Q_{\mathbf{w}}(s, a) = \sum_{i} w_{i} x_{i}$
- Q-learning:  $\mathbf{w} \leftarrow \mathbf{w} \alpha_t \left[ Q_{\mathbf{w}}(s, a) r \gamma \max_{a'} Q_{\mathbf{w}}(s', a') \right] \frac{\partial Q_{\mathbf{w}}(s, a)}{\partial \mathbf{w}}$



## Divergence of Non-linear Gradient Q-learning

Even when the following conditions hold

$$\sum_{t=0}^{\infty} \alpha_t = \infty$$
 and  $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ 

non-linear Q-learning may diverge

- Intuition:
  - Adjusting w to increase Q at (s, a) might introduce errors at nearby state-action pairs.



## Mitigating divergence

- Two tricks are often used in practice:
  - 1. Experience replay
  - Use two networks:
    - Q-network
    - Target network



#### **Experience Replay**

• Idea: store previous experiences (s, a, s', r) into a buffer and sample a mini-batch of previous experiences at each step to learn by Q-learning

- Advantages
  - Break correlations between successive updates (more stable learning)
  - Less interactions with environment needed to converge (better data efficiency)



## **Target Network**

Idea: Use a separate target network that is updated only periodically

repeat for each 
$$(s, a, s', r)$$
 in mini-batch:
$$w \leftarrow w - \alpha_t \left[ Q_w(s, a) - r - \gamma \max_{a'} Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$$

$$\overline{w} \leftarrow w$$
update target

Advantage: mitigate divergence

#### **Target Network**

• Similar to value iteration:

repeat for all 
$$s$$

$$\underbrace{V(s)}_{a} \leftarrow \max_{a} R(s) + \gamma \sum_{s'} \Pr(s'|s,a) \underbrace{\bar{V}(s')}_{target} \ \forall s$$

$$v \leftarrow V$$

$$V(s) \leftarrow v$$

repeat for each (s, a, s', r) in mini-batch:

$$\overline{w} \leftarrow w - \alpha_t \left[ Q_w(s, a) - r - \gamma \max_{a'} Q_{\overline{w}}(s', a') \right] \frac{\partial Q_w(s, a)}{\partial w}$$

$$\overline{w} \leftarrow w$$
 update target

## Deep Q-network (DQN)

Deep Mind

- Deep Q-network: Gradient Q-learning with
  - Deep neural networks
  - Experience replay
  - Target network

Breakthrough: human-level play in many Atari video games



## Deep Q-network (DQN)

```
Initialize weights w and \overline{w} at random in [-1,1]
```

Observe current state *s* 

Loop

Select action a and execute it

Receive immediate reward r

Observe new state s'

Add (s, a, s', r) to experience buffer

Sample mini-batch of experiences from buffer

For each experience  $(\hat{s}, \hat{a}, \hat{s}', \hat{r})$  in mini-batch

Gradient: 
$$\frac{\partial Err}{\partial w} = \left[ Q_{w}(\hat{s}, \hat{a}) - \hat{r} - \gamma \max_{\hat{a}'} Q_{\overline{w}}(\hat{s}', \hat{a}') \right] \frac{\partial Q_{w}(\hat{s}, \hat{a})}{\partial w}$$

Update weights: 
$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial Err}{\partial \mathbf{w}}$$

Update state:  $s \leftarrow s'$ 

Every c steps, update target:  $\overline{w} \leftarrow w$ 



#### **Deep Q-Network for Atari**





## **DQN versus Linear Approximation**



