Implementation Notes

Issues

- Under setting 1 and 2: 5% and 10% quantiles are a bit low as compared to the data points. Similarly, 90% and 95% quantiles are a bit high as compared to the data points. I think the reason is, $K \sim Normal$ and mainly because $G_0 = unif(0,1)$. Should we use $G_0 \equiv unif(a_0,b_0)$ with $0 < a_0 < b_0 < 1$? eg, $a_0 = max(0,min(y) \sigma_0)$ and $b_0 = min(1,max(y) + \sigma_0)$? ToDo
- Sure bugs in logprior and loglikelihood functions. ToDo
- Uniform for both kernel K and centering dist G_0 . For this, should we take $G_0 \equiv unif(c, 1-c)$ for $K(y \mid z) \equiv unif(z-c, z+c)$ in order to ensure $y \in [0, 1]$? Also, $z_i \in [y_i-c, y_i+c]$. ToDo
- Choice of β prior? using $N(\mu_{\beta}, \Sigma_{\beta})$ with hyperparameter estimates coming from spglm (also, we can get that from classical glm), how about diffuse priors eg $N(0, 1000 * I_p)$? ToDo
- Problem in thetaStart Fix set to NULL. Done

Major Problems

- No \tilde{z} in between 0.2 0.5, which is giving absurd quantile jump for lower ages (< 50 months). is this due to: only 9% y is less than 0.5, so do we need to be more restrictive in that region on constructing our priors? very small $\hat{\sigma}_i$ in $K(y_i \mid z_i, \hat{\sigma}_i)$? or, better to put prior on σ_i ? how about normal for K with small $\hat{\sigma}_i$? it would automatically restrict $z \in [0,1]$. Fixed using $\hat{\sigma}_i = \hat{\sigma} = 0.001$ (best if used 0.0005, median(se($\hat{\mu}$)) is 0.005, with min(se($\hat{\mu}$)) is 0.002)
- NA in probability vector: in z_sampler function. This is is happening when \tilde{J}_{ℓ} is very small, then problem of numerical stability! Fixed using prob \leftarrow log(prob) then prob \leftarrow exp(prob max(prob))

Keep an eye on

• y versus \hat{y} (why fit is generally bad below 0.5?) Ans: y observations less than 0.5 are sparse (only 9%)

Notes

- current implementation time 1 sec per MCMC iteration
- iSpline overfits, ns is better

Results (.rds files)

- ..without_monotonicity0150pm: ns, $M=15,\,\alpha=10,\,K~\&~G_0=1,\,\hat{\sigma}_i=0.01$ (setting 1)
- ...without_monotonicity0232pm: ns, $M=20,~\alpha=10,~K=1,~G_0=6=unif(0,1),~\hat{\sigma}_i=0.05$ (setting 2)
- $MCMC_output3$: ns, $M=20, \ \alpha=1, \ K(\cdot \mid z)=unif(z-0.25,z+0.25)1_{[0,1]}(\cdot), \ G_0=6=unif(0,1)$ (setting 3) ToDo

Uniform Kernel K

Quantile for $K(\cdot \mid z) = unif(z-c,z+c)1_{[0,1]}(\cdot)$:

$$\begin{split} q_{\alpha}(x) &= \frac{\alpha + B_x}{A_x}, \text{ with } A_x = \sum_{\ell=1}^L \frac{p_{\ell,x}}{\min(1,z_\ell+c) - \max(0,z_\ell-c)} \text{ and} \\ B_x &= \sum_{\ell=1}^L \frac{p_{\ell,x} * \max(0,z_\ell-c)}{\min(1,z_\ell+c) - \max(0,z_\ell-c)}, \text{ where} \\ p_{\ell,x} &= \frac{\exp(\theta_x z_\ell) J_\ell}{\sum_{r=1}^L \exp(\theta_x z_r) J_r} \end{split}$$

Figure 1: MCMC diagnostics

Figure 2: Quantiles and Uncertainties