26 June 2013 1177 July
$$Y^{*} = C_{BV} \circ B^{-1} = [2 \ 1 \ 1] \cdot B^{-1} = [1 \ 0 \ 1]$$

$$= Y^{*} = 1, y^{*} = 0, y^{*} = 1, Z^{*} = W^{*} = 4$$

Q2)

Primal Problem is feasible and its Dual problem must be feasible as well. since Figure (\neg) is not feasible so it cannot be Dual for primal problem.

Q3)

اگر قید
$$ar{c}_{s_i}=c_{BV}^TB^{-1}a_{s_i}-c_{s_i}=c_{BV}^TB^{-1}$$
 مؤلفهٔ i اُم بردار i بردار i مساوی باشد i مسالهٔ اولیه به صورت بزرگتر مساوی باشد $ar{c}_{e_i}=c_{BV}^TB^{-1}a_{e_i}-c_{e_i}=-\left(c_{BV}^TB^{-1}\right)$ مؤلفهٔ i اُم بردار i مسالهٔ اولیه به صورت تساوی باشد $ar{c}_{a_i}=c_{BV}^TB^{-1}a_{e_i}-c_{e_i}=-\left(c_{BV}^TB^{-1}\right)$ مؤلفهٔ i اُم بردار i مؤلفهٔ i اُم بردار i

And also we know:

اگر یکی از مسائل اولیه یا دوگان جواب بهین داشته باشد، آنگاه هردو مسأله جواب بهین دارند. به علاوه اگر Z^* مقدار بهین تابع هدف مسألهٔ اولیه و Z^* مقدار بهین تابع هدف مسألهٔ دوگان باشد، داریم $Z^* = W^*$.

and finally:

Dual problem:
min W =
$$b^T^*Y = 0.5^*y1 + 0.5^*y2$$

W* = $(b^T)^*(Y^*) = 0.5^*0.4 + 0.5^*1.4 = 0.9$

So, $Z^* = 0.9$

Thanks for your time and consideration Mohamadreza ardestani