

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Plano Aulas 31 e 32

Markus Stein
02 July 2019

Otimização

Considere o problema de otimização da função h

$$\max_{\theta \in \Theta} h(\theta).$$

- Usualmente $h(\cdot)$ é uma função de verossimilhança $L(\theta)$ ou uma distribuição a posteriori $\pi(\theta|\mathbf{Y})$.
- Note que para o problema acima $\max_{\theta \in \Theta} h(\theta) = \min_{\theta \in \Theta} -h(\theta)$.

Exemplo Modelo Normal - Modelo Linear

- Exemplo 1: Questão 3 da prova 2: Sejam Y_1, \ldots, Y_n variáveis aleatórias independentes tal que $Y_i \sim Normal(\beta \ x_i, \sigma \check{\mathbf{s}})$. Assumimos assim que $Y = \beta \ x + \epsilon, \ \epsilon \sim Normal(0, \sigma \check{\mathbf{s}})$.
- Qual a variável resposta?
- Qual a distribuição de probabilidade da variável resposta?
- Como estimar os parâmetros $\theta = (\beta, \sigma^2)$?

$$\hat{\boldsymbol{\theta}} = (\hat{\beta}, \hat{\sigma}^2) = arg \, max_{\boldsymbol{\theta}} L(\beta, \sigma^2).$$

Exemplo Modelo Logistico - Modelo não linear

- Exemplo 2: Sejam Y_1, \ldots, Y_n variáveis aleatórias independentes tal que $Y_i \sim Bernoulli(\pi_i, \sigma^2)$, onde $\pi_i = exp(\alpha + \beta x_i)/1 + exp(\alpha + \beta x_i)$.
- Como estimar os parâmetros $\theta = (\alpha, \beta)$?

Métodos Gradiente

- Gradiente: o gradiente de uma função $h(\theta)$ é dado pela sua derivada (ou vetor de derivadas): — no caso θ unidimensional - $\frac{\partial}{\partial \theta}h(\theta)$;
 - no caso $\boldsymbol{\theta}$ multidimenstional $\nabla h(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\theta}} h(\boldsymbol{\theta}) = \left(\frac{\partial}{\partial \theta_1} h(\boldsymbol{\theta}), \dots, \frac{\partial}{\partial \theta_k} h(\boldsymbol{\theta})\right)$.
- Relembrando **expansão em série de Taylor** (Teorema 5.5.21, Casella e Berger): Para uma variável aleatória X tal que $E(X) = \mu \neq 0$, uma aproximação para estimar $g(\mu)$ é dada por $g(X) \approx g(\mu) + g'(\mu)(X \mu)$, onde $g'(\mu) = \frac{\partial}{\partial \mu}g(\mu)$.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA A - 2019/1

Newthon-Raphson (Tanner, pg. 14)

Para **EMV**, na expressão acima defina $X = \hat{\theta}$, $\mu = \theta$ e escolha a função escore $g(\theta) = U(\theta) = \frac{\partial}{\partial \theta} \ell(\theta) = \frac{\partial}{\partial \theta} \log L(\theta)$ para a expansão. Então, expandindo $U(\hat{\theta})$ ao redor de θ temos

$$0 = U(\hat{\theta}) \approx U(\theta) + (\hat{\theta} - \theta) \frac{\partial}{\partial \theta} U(\theta) \iff \hat{\theta} \approx \theta + U(\theta) \left[J(\theta) \right]^{-1},$$

onde $J(\theta) = -\frac{\partial}{\partial \theta} U(\theta) = -\frac{\partial^2}{\partial \theta^2} \ell(\theta)$.

- Note que $J(\theta)$ é a informação de Fisher observada.
- Newthon-Raphson pode não ser estável se ocorre separação, pequenas amostras, ...

Scoring de Fisher

$$\hat{\theta} \approx \theta + U(\theta) [I(\theta)]^{-1}$$
,

• Usa a informação de Fisher (esperada) ao invés da observada $I(\theta) = E\left[J(\theta)\right] = E\left[-\frac{\partial^2}{\partial \theta^2}\ell(\theta)\right]$.

Otimização com restrição

Problemas em otimização: Missing data x censura x causal? - complex sampling x mixed models

Tarefa: Fazer trabalho final para entregar e apresentar dia 11/07.

Referências

Tanner (1996) Tools for Statistical Inference.

Robert e Casella (2010) Introduction to MOnte Carlo Methods with R

James, Witten, Hastie e Tibishirani (2010) An Introduction to Statistical Learning with Applications in R http://www-bcf.usc.edu/~gareth/ISL/

 $\label{lem:curso} \begin{tabular}{l} Curso\ UFPR-Métodos\ Computacionais\ para\ Inferência\ Estatística\ http://www.leg.ufpr.br/~wagner/MCIE/index.html\ Apostila\ Justiniano-http://www.leg.ufpr.br/lib/exe/fetch.php/pessoais:mcie-sinape-v12.pdf \end{tabular}$