The idea is that the "building blocks" of open $S \subseteq IR$ are the open intervals.

Definition: Let $S \subseteq \mathbb{R}$ be open. An interval $I \subseteq S$ is said to be a <u>component</u> interval of S if I is the maximal open interval contained in S.

(what maximal means: If $J \subseteq S$ is another open interval S.t. $I \subseteq J$ then $J \subseteq I$)

Observation: If I & J are $(\max' l)$ components of open S s.t. I \cap J \neq ϕ then I = J.

Pf: Say $\alpha \in I \cap J$. Then $I \cup J$ is an open interval contained in S. $I \in I \cup J \Rightarrow I \cup J \subseteq I \Rightarrow J \subseteq I$ Similarly, $J \subseteq I \cup J \Rightarrow I \cup J \subseteq J \Rightarrow I \subseteq J$.

 $\therefore I = J.$

demma: Let $S \subseteq \mathbb{R}$ be open & $\alpha \in S$. $\exists !$ component interval $I_n \subseteq S$ s.t. $\alpha \in I_n$.

I

Proof: Let $U = \{t > 0 : (x, a+t) \subseteq S\}$ $L = \{t > 0 : (x-t, a) \subseteq S\}$.

Sopen $\Rightarrow \exists \ \exists \ \exists \ open \ \Rightarrow \exists \ \exists \ \exists \ open \ o$

∴ EEU, EEL ⇒ U + ¢, L+¢.

Let $b = \sup U$, $a = \sup L$. Take $I_{x} := (x-a, x+b)$. (Note that b, a can as well be $+\infty$).

Claim: In $\subseteq S$.

Claim: In is a component interval of S.

 $Pf: ket J = (x-\alpha, x+\beta) \subseteq S S.t. I \subseteq J.$

 $I \subseteq J \Rightarrow (\alpha - \alpha, \alpha + \beta) \subseteq (\alpha - \alpha, \alpha + \beta)$

⇒ d ≥ a, β≥ b.

Note that $(x-\alpha, x) \subseteq J \subseteq S \Rightarrow \alpha \in L \Rightarrow \alpha \leq \alpha$.

Similarly $\beta \in U \Rightarrow \beta \leq 6$.

It follows that $\alpha = a$, $b = \beta$. .. I = J.

Let K be a component interval of S which contains x. I, $Ix \cap K \neq \phi \Rightarrow I_x = K$ (by previous observation) \Box

The over : Every non-empty open set $S \subseteq IR$ is the disjoint union of component intervals. Moreover, this union is countable.

Pf: For $x \in S$ let In be the ! component interval in S $S : \{x \in I_n : x \in S\}$.

u = u = u = u

Claim 2: U is wuntable.

Pf of claim 1: Clearly $S = \bigcup_{u \in \mathcal{U}} U$: $n \in I_n \in \mathcal{U}$. The union is disjoint : if $U \cap V \neq \emptyset$ for some $U, V \in \mathcal{U}$ then U = V. $\rm Pf$ of claim 2: We know $\rm Q$ is countable. $\rm I. 3$ bij $\rm f: N \rightarrow \rm Q$.

Call the above rule $g: \mathcal{M} \longrightarrow \mathbb{N}$.

g is 1-1: Say $u, v \in u$ s.t. g(u) = g(v) = k $\Rightarrow f(k) \in u \cap v \Rightarrow u \cap v \neq \phi \Rightarrow u = v.$

: U is countable.