

- Decision tree is a classifier in the form of a tree structure
 - Decision node: specifies a test on a single attribute
 - Leaf node: indicates the value of the target attribute
 - Arc/edge: split of one attribute
 - Path: a disjunction of test to make the final decision
- Decision trees classify instances or examples by starting at the root of the tree and moving through it until a leaf node.

- Decision trees used in data mining are of two main types:
- Classification tree analysis is when the predicted outcome is the class to which the data belongs.
- Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).

learning algorithm

Input:

return N;

- Data partition, D, which is a set of training tuples and their associated class labels;
- attribute list, the set of candidate attributes;
- Attribute_selection_method, a procedure to determine the splitting criterion that "best" partitions the data tuples into individual classes. This criterion consists of a *splitting_attribute* and, possibly, either a *split point* or *splitting_subset*.

```
create a node N;

if tuples in D are all of the same class, C then return N as a leaf node labeled with the class C;

if attribute\_list is empty then return N as a leaf node labeled with the majority class in D; // majority voting apply Attribute\_selection\_method(D, attribute\_list) to find the "best" splitting\_criterion; label node N with splitting\_criterion; for each outcome j of splitting\_criterion // partition the tuples and grow subtrees for each partition let D_j be the set of data tuples in D satisfying the outcome j; // a partition if D_j is empty then attach a leaf labeled with the majority class in D to node N; else attach the node returned by Generate\_decision\_tree(D_j, attribute\_list) to node N; endfor
```


The decision-tree learning algorithms include:

- ID3
- **C4.5**
- CART
- CHAID
- MARS

Decision Tree——ID3

Information entropy

Values range from 0-1 to represent the entropy of information

Entropy (D)
$$\equiv \sum_{i=1}^{c} -p_i \log_2(p_i)$$

$$Entropy(D) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Decision Tree——ID3

Information entropy

Values range from 0-1 to represent the entropy of information

Entropy (D)
$$\equiv \sum_{i=1}^{c} -p_i \log_2(p_i)$$

Information Gain

Information gain is used as an attribute selection measure. Pick the attribute that has the highest Information gain

$$Gain(D, A) = Entropy(D) - \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} Entropy(D_j)$$

Decision Tree—ID3

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	по	excellent	no

Decision Tree ——ID3

- Class P: buys computer = "yes"
- Class N: buys computer = "no"

Entropy(D) =
$$-\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

Compute the expected information requirement for each attribute: start with the attribute age

$$Gain(age, D)$$

$$= Entropy(D) - \sum_{v \in \{Youth, Middle-aged, Senior\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(D) - \frac{5}{14} Entropy(S_{youth}) - \frac{4}{14} Entropy(S_{middle_aged}) - \frac{5}{14} Entropy(S_{senior})$$

$$= 0.246$$

$$Gain(income, D) = 0.029$$

$$Gain(student, D) = 0.151$$

$$Gain(credit rating, D) = 0.048$$

Decision Tree ——ID3

Decision Tree ——ID3

Problem: sensitive to attributes that have many values.

Decision Tree ——C4.5

Gain ratio

$$GainRatio(D, A) = \frac{Gain(D, A)}{IV(A)}$$

Intrinsic value

$$IV(A) = -\sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \log_2 \frac{|D^{v}|}{|D|}$$

Problem:

sensitive to attributes with less value.

Decision Tree ——CART

Gini value

$$Gini(D) = 1 - \sum_{k=1}^{|\mathcal{Y}|} p_k^2$$

Gini index

$$Gini_index(D,A) = \sum_{v=1}^{V} \frac{|D^v|}{|D|} Gini(D^v)$$

Binary tree

Decision Tree ——pruning

Decision boundary is distorted by n

Decision Tree ——pruning

Pre-pruning

Stop if expanding the current node does not improve the precision of the validation set

Decision Tree ——pruning

Post-pruning

Grow decision tree to its entirety

If generalization error improves after trimming, replace sub-tree by a leaf node. Class label of leaf node is determined from majority class of instances

in the sub-tree age?Before: 57.1 % middle_aged youth senior After: 71.4% $credit_rating?$ student? yes fair excellent yes yes no yes

