Operacijska istraživanja

1. predavanje: Primjene simpleksne metode

Sažetak predavanja

Posebni slučajevi simpleksne metode

Rezime simpleksne metode

- efikasna za rješavanje linearnih programa (s milijunima varijabli)
- jedan od rijetkih slučajeva optimizacije u kojem se može pronaći globalni optimum iterativnim lokalnim poboljšanjima
- može biti polazišna točka za rješavanje nelinearnih problema
- moguće je da ne može naći optimum, no to se rijetko događa
- Fundamentalni teorem: Svaki LP je izvediv (engl. feasible), neograničen (engl. unbounded) ili neizvediv (engl. infeasible).
 - Ako je LP izvediv, onda ima bazično izvedivo rješenje.
 - Ako LP ima optimalno rješenje, ono je bazično izvedivo.

Rezime simpleksne metode

Kod rješavanja se koristi problem u standardnoj formi

 $max c^Tx$

s.t. Ax=b

x≥0

- U operacijskim istraživanjima: max
- U matematičkoj optimizaciji: min
- Ostali LP problemi se mogu transformirati u standarnu formu
- I neki naizgled nelinearni problemi se mogu transformirati u LP!

Transformacije

- >=, <= ograničenja
- Minimizacija?
- Ne-nenegativne varijable (tj. nisu ≥0)
- Apsolutne vrijednosti
- Minimax/maximin
- Ograničenja omjera

>= i <= ograničenja

- Transformacije potrebne za standardnu formu
- $a_i^T x \leq b_i$ (j-to ograničenje)
 - Dopunska varijabla se **pribraja**
 - $-a_j^T x + y = b_j, y \ge 0$
- $a_i^T x \ge b_i$ (j-to ograničenje)
 - Dopunska varijabla se **oduzima**
 - $-a_i^T x y = b_i, y \ge 0$

Minimizacija

• min $z \Leftrightarrow max -z$

min.
$$z = 2x_1 - 3x_2$$

ako je: $x_1 + x_2 \le 4$
 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

- Rješenje problema je točka (x₁, x₂) u području izvedivosti u kojoj je funkcija z minimalna.
- Ekvivalentno, optimalno rješenje problema je točka za koju je funkcija -z maksimalna, tj. rješavamo početni problem rješavajući sljedeće:

max.
$$-z = -2x_1 + 3x_2$$

ako je: $x_1 + x_2 \le 4$
 $x_1 - x_2 \le 6$
 $x_1, x_2 \ge 0$

Ne-nenegativne varijable

- Varijable koje nisu ≥0
- Jednostrano ograničene
 - Odozgo x_i ≤ c
 - Transformacija supstitucijom $x_i=-x_i'+c$, pri čemu $x_i'\geq 0$ – Slijedi iz $x_i-c\leq 0$, $-x_i+c\geq 0$, $x_i'=-x_i+c$
 - Odozdo x_i ≥ c
 - Transformacija supstitucijom $x_i=x_i'+c$, pri čemu $x_i'\geq 0$ Slijedi iz $x_i-c\geq 0$, $x_i'=x_i-c$
- Slobodne varijable
 - $-x_i\epsilon(-\infty,\infty)$
 - Transformacija supstitucijom: $x_i = x_i' x_i''$, pri čemu $x_i' \ge 0$, $x_i'' \ge 0$

Apsolutne vrijednosti

- Pogledati http://lpsolve.sourceforge.net/5.1/absolute.htm
- f i g su linearne funkcije
- U ≤ ograničenjima
 - $-|f(x)| + g(x) \le z$
 - Dva nova ograničenja: $f(x) + g(x) \le z$, $-f(x) + g(x) \le z$
- U funkciji cilja u slučajevima (min,+) i (max,-)
 - Npr. $\min |f(x)| + g(x)$
 - Uvođenje varijable, promjena funkcije cilja i uvođenje dva nova ograničenja
 - min z+g(x)
 - $z \ge f(x)$
 - $z \ge -f(x)$

Minimax/maximin

- Neka su f i g linearne funkcije
- min max{f(x),g(x)}
 - Uvođenje nove varijable, promjena funkcije cilja i dodavanje ograničenja
 - min z
 - $z \ge f(x)$
 - $z \ge g(x)$
- max min{f(x),g(x)}
 - Uvođenje nove varijable, promjena funkcije cilja i dodavanje ograničenja
 - max z
 - $z \leq f(x)$
 - $z \leq g(x)$

Ograničenja omjera

- Pogledati http://lpsolve.sourceforge.net/5.1/ratio.htm
- Neka su f i g linearne funkcije, c je konstanta
- Ograničenje $\frac{f(x)}{g(x)} \geq c$, uz pretpostavku g(x) > 0 za svaki x u izvedivom području
 - $f(x) \ge c \cdot g(x)$
 - Ako je g(x) < 0 onda može sa okretanjem ograničenja
 - Rubni uvjet za =0, nekad je transformacija OK, nekad je kriva (posebna analiza)
- Slično za ≤ varijantu ograničenja
 - Za g(x)>0
 - Za g(x)<0 sa okretanjem ograničenja

Primjer (strojno učenje)

• U tablici su zabilježene cijene zaključenih prodaja nekretnina u Zagrebu

Prodajna cijena (C _i) [€]	Površina nekretnine (P _i) [m²]	Nadmorska visina (N _i) [m]
1,550,000	1,200	350
1,200,000	1,000	300
1,000,000	900	130
700,000	800	200
600,000	600	130
1,000,000	900	200

 Agent nekretninama želi napraviti model za predviđanje cijena drugih nekretnina u tom području te smatra da je linearni model razuman.

Primjer (strojno učenje)

- Dakle,cilja se model oblika:
 - $C = w_0 + w_1 P + w_2 N$
 - Iz poznatih podataka se optimizacijskim postupkom treba naći parametre modela $\mathbf{w}=(\mathbf{w}_0,\mathbf{w}_1,\mathbf{w}_2)$
- Neka su C_i stvarne vrijednosti prodaja, a C_i' predviđene od strane modela. Formulirajte matematički program koji pronalazi "najbolje" vrijednosti w* minimizirajući sljedeće kriterije
- a) $\sum_{i=1}^{6} (C_i C_i')^2$
- **b)** $\sum_{i=1}^{6} |C_i C'_i|$
- c) $max_{1 \leq i \leq 6} |C_i C_i'|$
- b i c se mogu svesti na linearne programe, a je poznati slučaj linearne regresije

Primjer (strojno učenje)

- SVM sa L1 normom
 - $-||x||_1 = \sum_{r=1}^n |x_r|$
 - SVM sa L2 normom je kvadratni program
 - U slučaju L1 norme jest LP
- <u>Link</u> na članak

Operacijska istraživanja 3. predavanje: Primjene simpleksne metode

Dvofazna metoda

Problem početne baze

- Ako LP ima ≥ ili = ograničenja, početno bazično izvedivo rješenje (engl. basic feasible solution, bfs) ne mora biti očito.
- Ako LP ima ≤ ograničenja, dodaju se dopunske varijable koje se automatski kvalificiraju za bazične.
- Za ≥ ili = ograničenja, dodaju se negativne dopunske varijable koje ne mogu biti u inicijalnoj bazi.
- Uvodi se minimalan broj umjetnih varijabli (engl. artificial variable) da se dobije početno bazično izvedivo rješenje (bfs).

Postupak rješavanja: 1. faza

- 1. korak: Modificirati ograničenja tako da su sve desne strane nenegativne.
- 2. korak: Preobličiti svaku nejednakost u standardni oblik.
- 3. korak: Ako je i-to ograničenje ≥ ili =, onda dodati umjetne varijable a_i,
 te ograničenja predznaka a_i ≥ 0. (ishodište postaje izvedivo)
- 4. korak: Umjesto originalne funkcije cilja riješiti LP čija je funkcija cilja minimizirati $w=\sum_i a_i$. Ovime završava 1. faza.

Mogući slučajevi: 2. faza

- Zbog a_i ≥ 0, rješavanje 1. faze rezultirat će u jednome od sljedećih slučajeva:
- 1. slučaj. Optimalna vrijednost w > 0, originalni LP <u>nema izvedivo rješenje</u>.
- 2. slučaj. Optimalna vrijednost w= 0, i nema umjetnih varijabli optimalnoj bazi 1. faze. *Izbaciti* sve stupce umjetnih varijabli iz optimalne tablice. Te ubaciti originalnu fju cilja u optimalnu tablicu 1. faze. Počinje 2. faza.
- 3. slučaj. Optimalna vrijednost w= 0, ali je najmanje jedna umjetna varijabla u optimalnoj bazi nakon 1. faze. Izbacimo iz tablice sve nebazične umjetne varijable i varijable iz originalnog problema sa negativnim koeficijentom u z-retku optimalne tablice 1. faze.

Primjer dvofazne metode

min.
$$2x_1 + 3x_2$$

ako je: $1/2x_1 + 1/4x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

• nakon dodavanja umjetnih varijabli te njihove eliminacije iz z-retka:

w' -
$$a_2$$
 - a_3 = 0
 $1/2x_1 + 1/4x_2 + s_1 = 4$
 $x_1 + 3x_2 - e_2 + a_2 = 20$
 $x_1 + x_2 + a_3 = 10$

→ pribrajanje redaka s umjetnim varijablama z-retku:

$$w' + 2x_1 + 4x_2 - e_2 = 30$$

1. faza: inicijalna tablica

w'	x ₁	X ₂	s ₁	e ₂	a_2	a_3	rhs	basic	ratio
1	2	4	0	-1	0	0	30	w' = 30	
0	1/2	1/4	1	0	0	0	4	$s_1 = 4$	16
0	1	3	0	-1	1	0	20	a ₂ = 20	20/3
0	1	1	0	0	0	1	10	$a_3 = 10$	10

• ulazna varijabla: x₂

• izlazna varijabla: a2

1. faza: nakon 1. iteracije

w'	x ₁	X ₂	s ₁	e ₂	a_2	a_3	rhs	basic	ratio
1	2/3	0	0	1/3	-4/3	0	10/3	w' = 10/3	
0	5/12	0	1	1/12	-1/12	0	7/3	$s_1 = 7/3$	28/5
0	1/3	1	0	-1/3	1/3	0	20/3	$x_2 = 20/3$	20
0	2/3	0	0	1/3	-1/3	1	10/3	$a_3 = 10/3$	5

• ulazna varijabla: x₁

• izlazna varijabla: a₃

1. faza: optimalna tablica

w'	X ₁	X ₂	s ₁	e ₂	a_2	a ₃	rhs	basic
1	0	0	0	0	-1	-1	0	w' = 0
0	0	0	Ī	-1/8	1/8	-5/8	1/4	$s_1 = 1/4$
0	0	1	0	-1/2	1/2	-1/2	5	$x_2 = 5$
0	1	0	0	1/2	-1/2	3/2	5	$x_1 = 5$

- pronađen je optimum pa 2. faza ne mora tražiti pivot
- ako z-redak 2. faze nije optimalan, nastavi se s metodom dok se ne postigne optimum

Operacijska istraživanja 3. predavanje: Primjene simpleksne metode

Alternativna optimalna rješenja

Primjer za alternativni optimum

 Ako LP ima više od jednog optimalnog rješenja, onda kažemo da ima alternativna optimalna rješenja.

max.
$$z = 60x_1 + 30x_2 + 20x_3$$

ako je: $8x_1 + 6x_2 + x_3 \le 48$
 $4x_1 + 2x_2 + 1.5x_3 \le 20$
 $2x_1 + 1.5x_2 + 0.5x_3 \le 8$
 $x_2 \le 5$
 $x_1, x_2, x_3 \ge 0$

Inicijalna tablica

Z	x ₁	X ₂	X ₃	s ₁	s ₂	S ₃	S ₄	rhs	basic	ratio
1	-60	-35	-20	0	0	0	0	0	z = 0	
0	8	6	1	1	0	0	0	48	s ₁ = 48	48/8 = 6
0	4	2	1.5	0	1	0	0	20	s ₂ = 20	20/4 = 5
0	2	1.5	0.5	0	0	1	0	8	$s_3 = 8$	8/2 = 4
0	0	1	0	0		0	1	5	$s_4 = 5$	5/0

• ulazna varijabla: x₁

• izlazna varijabla: s₃

Nakon 1. iteracije

Z	x ₁	X ₂	X ₃	s ₁	S ₂	S ₃	S ₄	rhs	basic	ratio
1	0	10	-5	0	0	30	0	240	z = 240	
0	0	0	-1	1	0	-4	0	16	$s_1 = 16$	
0	0	-1	0.5	0	1	-2	0	4	s ₂ = 4	4/.5 = 8
0	1	0.75	0.25	0	0	0.5	0	4	$x_1 = 4$	4/.25 = 16
0	0	1	0	0	0	0	1	5	$s_4 = 5$	

• ulazna varijabla: x₃

• izlazna varijabla: s₂

Nakon 2. iteracije

Z	x ₁	X ₂	X ₃	s ₁	S ₂	S ₃	S ₄	rhs	basic
1	0	0	0	0	10	10	0	280	z = 280
0	0	-2	0	Ī	2	-8	0	24	s ₁ = 24
0	0	-2	1	0	2	-4	0	8	$x_3 = 8$
0	1	1.25	0	0	-0.5	1.5	0	2	$x_1 = 2$
0	0	1	0	0	0	0	1	5	$s_4 = 5$

- postignut optimum z = 280
- No, što se dogodi ako ipak uvedemo x₂ u bazu?

Uvođenje varijable s koeficijentom 0 u bazu

Z	X ₁	X ₂	X ₃	s ₁	s ₂	S ₃	S ₄	rhs	basic	ratio
1	0	0	0	0	10	10	0	280	z = 280	
0	0	-2	0	1	2	-8	0	24	$s_1 = 24$	
0	0	-2	1	0	2	-4	0	8	$x_3 = 8$	
0	1	1.25	0	0	-0.5	1.5	0	2	$x_1 = 2$	2/1.25
0	0	1	0	0	0	0	1	5	$s_4 = 5$	5/1

• ulazna varijabla: x₂

• izlazna varijabla: x₁

Nakon 3. iteracije

Z	x ₁	X ₂	X ₃	s ₁	S ₂	S ₃	S ₄	rhs	basic
1	0	0	0	0	10	10	0	280	z = 280
0	1.6	0	0	1	1.2	-5.6	0	27.2	$s_1 = 27.2$
0	1.6	0	1	0	1.2	-1.6	0	11.2	$x_3 = 11.2$
0	0.8	1	0	0	-0.4	1.2	0	1.6	$x_2 = 1.6$
0	-0.8	0	0	0	0.4	-1.2	1	3.4	$s_4 = 3.4$

- ostaje isti optimum z = 280
- no, drukčija je kombinacija dobivenih proizvoda

Optimalne ekstremne točke

- $za 0 \le c \le 1$
- Osim ova dva rješenja, zapravo je beskonačno mnogo optimalnih rješenja.
- Bilo koja točka na segmentu linije koja se spaja dvije optimalne ekstremne točke, također je optimalna.

 Ako postoji nebazična varijabla s koeficijentom nula u z-retku optimalne tablice, moguće je (ali nije nužno!) da LP ima alternativna optimalna rješenja.

pplex primjer

optimal_edge.lps

max.
$$z = -2x + 4y$$

ako je: $-2x + y \le 2$
 $-x + 2y \le 7$
 $x - y \le 0$
 $x \le 3$
 $x, y \ge 0$

File View Help

pplex version 0.5.2, Copyright(C) 2012-2014 Andreas Halle
This program comes with ABSOLUTELY NO WARRANTY; for details
type `warranty'. This is free software, and you are welcome
to redistribute it under certain conditions; type `conditions'
for details.

Welcome to pplex. Type 'help' for a list of available commands. > read input/optimal_edge.lps

Read input/optimal_edge.lps OK.

> pivot

$$\zeta = 8 + 6 x - 4 w1$$

 $y = 2 + 2 x - w1$
 $w2 = 3 - 3 x + 2 w1$
 $w3 = 2 + x - w1$

w4 = 3 - x

> pivot

$$\zeta = 14 - 2 \text{ w2}$$

$$y = 4 - 2/3 w^2 + 1/3 w^1$$

$$x = 1 - 1/3 w2 + 2/3 w1$$

$$w3 = 3 - 1/3 w2 - 1/3 w1$$

$$w4 = 2 + 1/3 w2 - 2/3 w1$$

> pivot

pivot: Incumbent basic solution is optimal.

Operacijska istraživanja 3. predavanje: Primjene simpleksne metode

Neograničeno područje rješenja

Primjer neograničenog rješenja

 Neograničen LP (engl. unbounded) - postoje smjerovi neograničenog rasta fje cilja u izvedivom prostoru (za maksimizaciju).

max.
$$z = 36x_1 + 30x_2 - 3x_3 - 4x_4$$

ako je: $x_1 + x_2 - x_3 \le 5$
 $6x_1 + 5x_2 - x_4 \le 10$
 $x_1, x_2, x_3, x_4 \ge 0$

Inicijalna tablica

Z	x ₁	X ₂	X ₃	X ₄	s ₁	s ₂	rhs	basic	ratio
1	-36	-30	3	4	0	0	0	z = 0	
0	Ĩ	Ī	-1	0	1	0	5	$s_1 = 5$	5/1
0	6	5	0	-1	0	1	10	s ₂ = 10	10/6

• ulazna varijabla: x₁

• izlazna varijabla: s₂

1. iteracija

Z	x ₁	X ₂	X_3	X ₄	s ₁	S ₂	rhs	basic	ratio
1	0	0	3	-2	0	6	60	z = 60	
0	0	1/6	-1	1/6	1	-1/6	10/3	$s_1 = 10/3$	20
0	1	5/6	0	-1/6	0	1/6	5/3	$x_1 = 5/3$	

• ulazna varijabla: x₄

• izlazna varijabla: s₁

2. iteracija

Z	x ₁	x ₁	X ₃	X ₄	s ₁	s ₂	rhs	basic	ratio
1	0	2	-9	0	12	4	100	z = 100	
0	0	1	-6	1	6	-1	20	$x_4 = 20$	neg.
0	1	1	-1	0	1	0	5	$x_1 = 5$	neg.

• ulazna varijabla: x₃

• izlazna varijabla: ?

Kako simpleks prepoznaje neograničenost

- Neograničeno područje rješenja (engl. unbounded LP)
 - nebazična varijabla s negativnim koeficijentom u z-retku, ali nema ograničenja na njezinu vrijednost, (u svim ograničenjima su nepozitivni koeficijenti).

Ako je nemoguće odabrati pivot redak, rješenje je neograničeno.

pplex primjer

unbounded.lps

ako je:
$$x - 2y \le 10$$

-x + 2y \le 10
x, y \ge 0

max. z = x + y

Operacijska istraživanja 3. predavanje: Primjene simpleksne metode

Degeneracija

Definicija degeneracije

- Ako su za svako bazično izvedivo rješenje (bfs), sve bazične varijable pozitivne, kaže se da LP nije degeneriran(engl. nondegenerate).
- LP jest degeneriran (engl. degenerate) ako ima najmanje jedno bazično izvedivo rješenje (bfs) u kojem <u>bazična varijabla ima vrijednost nula</u>.
- Ako za izbor pivot stupca i retka ima više jednako dobrih kandidata, dolazi do degeneracije.

Primjer degeneracije

max.
$$z = 5x_1 + 2x_2$$

ako je: $x_1 + x_2 \le 6$
 $x_1 - x_2 \le 0$
 $x_1, x_2 \ge 0$

Z	x ₁	X ₂	s ₁	S ₂	rhs	basic	ratio
1	-5	-2	0	0	0	z = 0	
0	1	1	1	0	6	s ₁ = 6	6/1
0	1	-1	0	1	0	$s_2 = 0$	0/1

- u inicijalnom bfs, bazična varijabla $s_2 = 0$ pa je rješenje degenerirano
- ulazna varijabla: x₁
- izlazna varijabla: s₂

16. listopada 2019.

Nakon 1. iteracije

Z	x ₁	X ₂	s ₁	s ₂	rhs	basic	ratio
1	0	-7	0	5	0	z = 0	
0	0	2	1	-1	6	s ₁ = 6	6/2
0	1	-1	0	1	0	$x_1 = 0$	

- z i vrijednosti varijabli su ostale iste pa je i ovo rješenje degenerirano
- ulazna varijabla: x₂
- izlazna varijabla: s₁

Nakon 2. iteracije

Z	x ₁	X ₂	s ₁	s ₂	rhs	basic
1	0	0	7/2	3/2	21	z = 21
0	0	1	1/2	-1/2	3	$x_2 = 3$
0	1	0	1/2	1/2	3	$x_1 = 3$

• nakon 2. iteracije nema negativnih koeficijenta u z-retku pa je potignut optimum, z = 21

pplex primjer

degeneracy_1.lps

max.
$$z = x + 10y$$

ako je:
$$2x + y \le 6$$

 $x + 2y \le 6$

$$x + y \le 4$$

16. listopada 2019.

Cikličko ponavljanje

- Ako LP ima mnogo degeneriranih bazičnih izvedivih rješenja sa mnogo bazičnih varijabli jednakih nuli, simpleksna metoda nije efikasna.
- LP sa n varijabli odlučivanja ima degenerirano rješenje ako njegovih n + 1 ili više ograničenja (uključujući restrikcije nenegativnosti, tj. x_i ≥ 0) određuje istu ekstremnu točku, tj. ta ista točka je određena različitim kombinacijama bazičnih i nebazičnih varijabli.
- Pojava višestrukog iteriranja simpleksa sa istom vrijednošću z (iako se mijenja pivot odnosno baza) zove se cikličko ponavljanje (engl. cycling).
- Zbog cikličkog ponavljanja, neće se moći postići optimum, no moguće je modificirati simpleksnu metodu da se ta pojava spriječi. (npr. Blandovo pravilo)

Specijalni slučajevi simpleksa

- Degeneracija bazična varijabla ima vrijednost 0
 - Cikliranje Blandovo pravilo
- Alternativni optimum nebazična varijabla sa 0 koef. u z (i ako nije degeneracija)
- Neograničeno rješenje nebazična varijabla sa oportunim koef. u z, ali omjeri ograničenja su negativni ili ∞
- Neizvedivi LP Potrebna 1. faza završava sa w>0