Остов минимального веса. Алгоритм Прима. Алгоритм Краскала. Система непересекающихся множеств.

Определения

- Дерево
- Лес
- Лист cm. 1
- Крона
- Каркас (остов)

Алгоритм Прима

Алгоритм Прима — алгоритм построения минимального остовного дерева взвешенного связного неориентированного графа. Алгоритм впервые был открыт в 1930 году чешским математиком Войцехом Ярником, позже переоткрыт Робертом Примом в 1957 году, и, независимо от них, Э. Дейкстрой в 1959 году.

Алгоритм Прима

- На вход алгоритма подаётся связный неориентированный граф. Для каждого ребра задаётся его стоимость.
- Сначала берётся произвольная вершина и находится ребро, инцидентное данной вершине и обладающее наименьшей стоимостью. Найденное ребро и соединяемые им две вершины образуют дерево. Затем, рассматриваются рёбра графа, один конец которых уже принадлежащая дереву вершина, а другой нет; из этих рёбер выбирается ребро наименьшей стоимости. Выбираемое на каждом шаге ребро присоединяется к дереву. Рост дерева происходит до тех пор, пока не будут исчерпаны все вершины исходного графа.
- Результатом работы алгоритма является остовное дерево минимальной стоимости.

http://www.e-maxx-ru.1gb.ru/algo/mst_prim

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}		

Невыбранные

вершины V\U

{a,b,c,d,e,f,g}

{a,b,c,e,f,g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}		

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}		

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}
{a,b,d,f}		

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}
{a,b,d,f}	8, 7, 15, 8, 11	{c,e,g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}
{a,b,d,f}	8, 7, 15, 8, 11	{c,e,g}
{a,b,d,e,f}		

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}
{a,b,d,f}	8, 7, 15, 8, 11	{c,e,g}
{a,b,d,e,f}	8, 5, 9, 11	{c,g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}
{a,b,d,f}	8, 7, 15, 8, 11	{c,e,g}
{a,b,d,e,f}	8, 5, 9, 11	{c,g}
{a,b,c,d,e,f}		

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}
{a,b,d,f}	8, 7, 15, 8, 11	{c,e,g}
{a,b,d,e,f}	8, 5, 9, 11	{c,g}
{a,b,c,d,e,f}	9, 11	{g}

Выбранные вершины U	Ребро (u, v)	Невыбранные вершины V\U
{}		{a,b,c,d,e,f,g}
{d}	5, 6, 9, 15	{a,b,c,e,f,g}
{a,d}	7, 9, 6, 15	{b,c,e,f,g}
{a,d,f}	7, 9, 15, 8, 11	{b,c,e,g}
{a,b,d,f}	8, 7, 15, 8, 11	{c,e,g}
{a,b,d,e,f}	8, 5, 9, 11	{c,g}
{a,b,c,d,e,f}	9, 11	{g}
{a,b,c,d,e,f,g}		{}

Вес дерева: 39

Алгоритм Крускала (Краскала)

Алгоритм Краскала - алгоритм построения минимального остовного дерева взвешенного связного неориентированного графа.

Алгоритм описан Джозефом Краскалом в 1956 году, этот алгоритм почти не отличается от алгоритма Борувки предложенный Отакаром Борувкой в 1926 году.

При эффективной реализации можно считать, что асимптотика работы алгоритма Краскала определяется асимптотикой сортировки ребер (O(E log E))

https://ru.wikipedia.org/wiki/Алгоритм_Краскала

Алгоритм Крускала (Краскала)

- Вначале текущее множество рёбер устанавливается пустым.
- Затем, пока это возможно, проводится следующая операция: из всех рёбер, добавление которых к уже имеющемуся множеству не вызовет появление в нём цикла, выбирается ребро минимального веса и добавляется к уже имеющемуся множеству. Когда таких рёбер больше нет, алгоритм завершён.
- Подграф данного графа, содержащий все его вершины и найденное множество рёбер, является его остовным деревом минимального веса.

Нельзя! Образовался цикл! (вершины b, е уже из одного дерева)

Использовали уже все вершины. Оставшиеся ребра be, ес, еd соединяют вершины из одного дерева.

ed

Система непересекающихся множеств (СНМ)

Эта структура данных предоставляет следующие возможности. Изначально имеется несколько элементов, каждый из которых находится в отдельном (своём собственном) множестве. За одну операцию можно объединить два каких-либо множества, а также можно запросить, в каком множестве сейчас находится указанный элемент. Также, в классическом варианте, вводится ещё одна операция — создание нового элемента, который помещается в отдельное множество.

Таким образом, базовый интерфейс данной структуры данных состоит всего из трёх операций:

- $make_set(x)$ **добавляет** новый элемент x, помещая его в новое множество, состоящее из одного него.
- union_sets(x,y) объединяет два указанных множества (множество, в котором находится элемент x, и множество, в котором находится элемент y).
- $\operatorname{find_set}(x)$ возвращает, в каком множестве находится указанный элемент x.

Эвристика сжатия пути

Слияние

М.К. Горденко, mgordenko@hse.ru

Свойства минимального остова (каркаса минимального веса)

- Минимальный остов уникален, если веса всех рёбер различны. В противном случае, может существовать несколько минимальных остовов (конкретные алгоритмы обычно получают один из возможных остовов).
- Минимальный остов является также и **остовом с минимальным произведением** весов рёбер. (доказывается это легко, достаточно заменить веса всех рёбер на их логарифмы)
- Минимальный остов является также и **остовом с минимальным весом самого тяжелого ребра**. (это утверждение следует из справедливости алгоритма Крускала)
- Остов максимального веса ищется аналогично остову минимального веса, достаточно поменять знаки всех рёбер на противоположные и выполнить любой из алгоритм минимального остова.

Построить каркас минимального веса алгоритмом Краскала

Построить каркас минимального веса алгоритмом Прима

