Magnetostatics:

Biot-Savart's Law, Ampere's Circuit Law and Applications, Magnetic Flux Density, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Magnetic Dipole, Magnetization in materials, Boundary conditions, Inductances and Magnetic Energy.

Introduction

- static electric fields characterized by E or D (D=εE) were discussed.
- \triangleright considers static magnetic fields, characterised by **H** or **B** (**B**= μ **H**).

- As we have noticed, a distribution of static or stationary charges produces static electric field.
- ➤ If the charges move at a constant rate (direct current- DC), a static magnetic field is produced (magnetostatic field).
- Static magnetic field are also produced by stationary permanent magnets.

Magnet and Magnetic Field

The iron filings form circles around the wire along the magnetic field

Magnetic Field Around Current Carrying Wires

A compass needle is deflected by the direct current flowing in a conductor

Electrostatic Fields have dual equations for magnetostatic fields

Term	Electric	Magnetic
Basic laws	$\mathbf{F} = \frac{Q_1 Q_2}{4\pi \varepsilon_r^2} \mathbf{a}_r$	$d\mathbf{B} = \frac{\mu_0 I d1 \times \mathbf{a}_R}{4\pi R^2}$
	$ \oint \mathbf{D} \cdot d\mathbf{S} = Q_{\text{enc}} $	$\oint \mathbf{H} \cdot d\mathbf{l} = I_{\rm enc}$
Force law	$\mathbf{F} = Q\mathbf{E}$	$\mathbf{F} = Q\mathbf{u} \times \mathbf{B}$
Source element	dQ	$Q\mathbf{u} = I d\mathbf{l}$
Field intensity	$E = \frac{V}{\ell} (V/m)$	$H = \frac{I}{\ell} \left(A/m \right)$
Flux density	$\mathbf{D} = \frac{\mathbf{\Psi}}{S} \left(\mathbf{C} / \mathbf{m}^2 \right)$	$\mathbf{B} = \frac{\mathbf{\Psi}}{S} \left(\mathbf{Wb/m^2} \right)$
Relationship between fields	$\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E}$	$\mathbf{B} = \mu \mathbf{H}$
Potentials	$\mathbf{E} = -\nabla V$	$\mathbf{H} = -\nabla V_m \left(\mathbf{J} = 0 \right)$
	$V = \int \frac{\rho_L dl}{4\pi \varepsilon r}$	$\mathbf{A} = \int \frac{\mu I d\mathbf{I}}{4\pi R}$
Flux	$\Psi = \int \mathbf{D} \cdot d\mathbf{S}$	$\Psi = \int \mathbf{B} \cdot d\mathbf{S}$
	$\Psi = Q = CV$	$\Psi = LI$
	$I = C \frac{dV}{dt}$	$V = L \frac{dI}{dt}$
Energy density	$w_E = \frac{1}{2} \mathbf{D} \cdot \mathbf{E}$	$w_m = \frac{1}{2} \mathbf{B} \cdot \mathbf{H}$
Poisson's equation	$\nabla^2 V = -\frac{\rho_v}{\epsilon}$	$\nabla^2 \mathbf{A} = -\mu \mathbf{J}$

Biot- Savart Law

Figure 7.1 The law of Biot-Savart expresses the magnetic field intensity dH_2 produced by a differential current element I_1dL_1 . The direction of dH_2 is into the page.

The direction of dH can be determined by the right-hand rule or right-handed screw rule.

The direction of magnetic field intensity **H** (or current **I**) can be represented by a small circle with a dot or cross sign depending on whether **H** (or **I**) is out of, or into the page.

Biot-Savart's Law

For different current distributions:

Current distributions:

(a) line current,

(b) surface current,(c) volume current.

$$H = \int \frac{I \, d\mathbf{l} \times a_R}{4\pi R^2} \quad \text{(line current)}$$

Idl

$$H = \int_{S} \frac{K dS \times a_R}{4\pi R^2}$$
 (surface current) (K: surface current density)

(b)

$$H = \int \frac{J \, dv \times a_R}{4\pi R^2}$$
 (volume current) (J: volume current density)

Magnetic Field of straight Conductor

Consider conductor of finite length AB, carrying current from point A

to point B. Consider the contribution
$$dH$$
 at P due to dI at $(0,0,z)$: $dH = \frac{I \ dI \times R}{4\pi R^3}$,

But $dI = dz \ a_z$ and $R = \rho a_\rho - z a_z$, so,

 $dI \times R = \rho dz \ a_\phi$, Hence $H = \int \frac{I \rho dz}{4\pi \left[\rho^2 + z^2\right]^{3/2}} a_\phi$

Letting $z = \rho \cot \alpha$, $dz = -\rho \csc^2 \alpha d\alpha$,

 $H = -\frac{I}{4\pi} \int_{\alpha_1}^{\alpha_2} \frac{\rho^2 \csc^2 \alpha d\alpha}{\rho^3 \csc^3 \alpha} a_\phi = -\frac{I}{4\pi \rho} a_\phi^{\alpha_2} \sin \alpha d\alpha$

Letting
$$z = \rho \cot \alpha$$
, $dz = -\rho \csc^2 \alpha d\alpha$,

$$H = -\frac{I}{4\pi} \int_{\alpha_1}^{\alpha_2} \frac{\rho^2 \csc^2 \alpha d\alpha}{\rho^3 \csc^3 \alpha} a_{\phi} = -\frac{I}{4\pi\rho} a_{\phi} \int_{\alpha_1}^{\alpha_2} \sin \alpha d\alpha$$

$$H = -\frac{I}{4\pi} \int_{\alpha_1}^{\alpha_2} \frac{\rho^2 \csc^2 \alpha d\alpha}{\rho^3 \csc^3 \alpha} a_{\phi} = -\frac{I}{4\pi\rho} a_{\phi} \int_{\alpha_1}^{\alpha_2} \sin \alpha d\alpha$$

$$H = \frac{I}{4\pi\rho} (\cos \alpha_2 - \cos \alpha_1) a_{\phi}$$

$$I = \frac{I}{4\pi\rho} (\cos \alpha_2 - \cos \alpha_1) a_{\phi}$$

(into the page)

 $\tan \alpha = \rho / z$

$$H = \frac{I}{4\pi\rho} (\cos\alpha_2 - \cos\alpha_1) a_{\phi}$$

When the conductor is semi-infinite, so that point A is now at O(0,0,0) while B is at $(0,0,\infty)$, $\alpha_1=90^\circ$, $\alpha_2=0^\circ$:

$$H = \frac{I}{4\pi\rho} a_{\phi}$$

When the conductor is of infinite length, point A is at $(0,0,-\infty)$ while B is at $(0,0,\infty)$, $\alpha_1=180^\circ$, $\alpha_2=0^\circ$:

$$H = \frac{I}{2\pi\rho} a_{\phi}$$

A simple approach to determine a_{ϕ} :

$$a_{\phi} = a_{l} \times a_{\rho}$$

where a_l is is a unit vector along the line current, and a_ρ is a unit vector along the perpendicular line from the line current to the field point.

D7.1. Given the following values for P_1 , P_2 , and $I_1\Delta L_1$, calculate ΔH_2 :

- (a) $P_1(0, 0, 2)$, $P_2(4, 2, 0)$, $2\pi a_z \mu A \cdot m$;
- (b) $P_1(0, 2, 0)$, $P_2(4, 2, 3)$, $2\pi a_z \mu A \cdot m$;
- (c) $P_1(1, 2, 3)$, $P_2(-3, -1, 2)$, $2\pi(-a_x + a_y + 2a_z) \mu A \cdot m$.
- Ans. $-8.51a_x + 17.01a_y$ nA/m; $16a_y$ nA/m; $18.9a_x 33.9a_y + 26.4a_z$ nA/m

D7.2. A current filament carrying 15 A in the a_z direction lies along the entire z axis. Find **H** in rectangular coordinates at:

- (a) $P_A(\sqrt{20}, 0, 4)$;
- (b) $P_{B}(2, -4, 4)$.

Ans. $0.534a_y$ A/m; $0.477a_x + 0.239a_y$ A/m