Instituto Superior de Engenharia de Lisboa

Licenciatura/Mestrado em Engenharia Informática e de Computadores

Segurança Informática

Primeira série de exercícios, Semestre de Inverno de 17/18

Data de entrega: 18 de outubro de 2017

1. Considere o esquema CI para confidencialidade e autenticidade de mensagens, onde || representa a concatenação de bits e $X_{1...L}$ representa os primeiros L bits de X.

$$CI(m) = E_s(T(k_1)(m)_{1 - L})(m)||T(k_1)(m)|$$

 $E_s(k)(m)$ é um esquema simétrico de cifra e T(k)(m) é um esquema de message authentication code (MAC). Porque motivo este esquema não cumpre os objectivos?

- 2. Num esquema de assinatura digital, qual o papel da função de hash e o da primitiva de assinatura?
- 3. Seja E(k)(m) um esquema de cifra simétrico, que cifra m com a chave k, porque motivo o resultado de $E(k)(m_1||m_2)$ é diferente de $E(k)(m_1)||E(k)(m_2)$, sendo || a concatenação?
- 4. Porque motivo o modo de operação Galois Counter Mode [1] não é vulnerável a ataques de Vaudenay?
- 5. Considere a infra-estrutura de certificados X.509 e a biblioteca JCA.
 - 5.1. Considere o certificado folha C e os intermédios I_1, I_2, \ldots, I_n . Alguma das chaves privadas dos certificados intermédios é usada para validar o certificado C?
 - 5.2. Que protecção tem a chave pública presente num certificado?
 - 5.3. Porque motivo é necessário garantir a integridade de um *keystore* que tenha apenas certificados auto-assinados?
- 6. Seja $h_k: \{0,1\}^* \to \{0,1\}^k$ a função de hash definida por: $h_k(x) = y_1 \dots y_k$, onde $y_1 \dots y_{160} = \mathbf{SHA1}(x)$. Sejam m_1 e m_2 os programas Java definidos nos ficheiros $\mathsf{BadApp.java}$ e $\mathsf{GoodApp.java}$ (presentes em anexo ao enunciado). Dois programas m e m' dizem-se equivalentes ($m \equiv m'$) se a sua execução produz o mesmo resultado observável.
 - 6.1. Calcule $h_k(m_1)$ e $h_k(m_2)$ para k = 8, 16, 32.
 - 6.2. Realize uma aplicação para encontrar um programa m' tal que $h_k(m') = h_k(m_2)$ e $m' \equiv m_1$. Considere k = 8, 12, 16. Realize 5 execuções da aplicação e apresente o número médio de operações h_k necessário para encontrar a colisão.
 - 6.3. Realize uma aplicação para encontrar um par (m'_1, m'_2) tal que $h_k(m'_1) = h_k(m'_2), m'_1 \equiv m_1$ e $m'_2 \equiv m_2$. Considere k = 8, 16, 32. Realize 5 execuções da aplicação e apresente o número médio de operações h_k necessário para encontrar a colisão.
- 7. Realize uma aplicação de consola para cifrar e decifrar ficheiros usando um esquema híbrido. Este tipo de esquema usa cifra assimétrica para transportar uma chave simétrica (gerada pela aplicação) que cifra o conteúdo do ficheiro. Independentemente da operação a realizar, a aplicação recebe como *input*: i) nome de ficheiro (com mensagem em claro ou cifrada); ii) a operação a realizar (cifra ou decifra).

No modo cifra recebe: i) Certificado do destinatário; ii) Keystore para validar o certificado. Produz: i) Ficheiro com mensagem cifrada (C_f) ; ii) Ficheiro com metadados (IV e chave simétrica cifrada com a chave pública do destinatário). No modo decifra recebe: i) C_f ; ii) metadados; iii) Chave privada do destinatário (ficheiro .pfx). Produz ficheiro com o texto em claro.

Apresente tempos de execução para cifrar e decifrar o PDF do enunciado usando os algoritmos simétricos Blowfish e AES em combinação com o algoritmo assimétrico RSA [3]. Use o material criptográfico presente no anexo certificates-keys.zip.

Referências

- [1] https://en.wikipedia.org/wiki/Galois/Counter_Mode, visitado em 7 de setembro de 2017
- [2] https://commons.apache.org/proper/commons-cli/, visitado em 12 de setembro de 2017
- [3] http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html# Cipher, visitado em 10 de setembro de 2017