Introduction to Machine Learning and Data Mining

Statistics: the basics

assoc. prof. Branko Kavšek

Outline

Basic definitions
Distributions
Probability
Patterns

About statistics ...

Definition:

- Statistics is a branch of mathematics dealing with data collection, organization, analysis, interpretation and presentation. (<u>from</u>: Wikipedia)
- Statistics is a form of mathematical analysis that uses quantified models, representations and synopses for a given set of experimental data or real-life studies.

Statistics: the basics

(from: Investopedia)

"Statistical" statements – examples

- The most violent earthquake measured 9.2 on Richter scale.
- The probability for murderers of being men is 10 times higher then for women.
- Every eighth South-african is infected with the HIV virus.
- In the year 2022 there will be 15 people older than 64 for each newborn.

Thus, statistics ...

- ... uses mathematical calculations,
- ... deals with numbers.

But, is also important ...

- ... how we choose those numbers,
- ... how we interpret the results of calculations.

Statistics: the basics

Let's take a look at some examples →

Example no. 1

"Statistical" finding/result:

Due to a new commercial campaign in May the sales of ice cream XYZ went up 30% in the next 3 months.

The sales of ice cream in the summer months (June, July, August) goes up regardless of the commercial.

"Historical effect" – interpreting the result depending on one variable when in reality it is dependent on another (variable) – in our case *time*.

Example no. 2

"Statistical" finding/result:

The highest the number of churches in a city, the highest the criminal rate. Hence: churches lead to criminal.

Both the increase in the number of churches and criminal rate can be bound to the increase in a city's population – bigger city, more churches, more criminal.

"Third variable effect" – we wrongly assume that there is a connection between two variables where in fact there is a third variable affecting both variables.

Example no. 3

"Statistical" finding/result:

This year there is 75% more interracial marriages than 25 years ago.

What if 25 years ago there were 1% interracial marriages, this year 1.75% (75% more). Does this really mean a so drastic increase? What about the fluctuations in the years in between?

Lack of data – we simply do not have enough data, to make sound conclusions.

Why is it important to know statistics?

- We hear "statistical" statements, similar to those on previous slides, every day
 - We can believe to some
 - But, most of them can be deceiving
- The knowing of statistics enables us to differentiate between truth and deception
- Statistics is an introduction to Data Mining

Basic terminology and definitions

- Descriptive statistics
- Inferential statistics
 - sampling
- Variables/attributes
- Percentiles
- Measuring
 - How to choose a measure?
 - Data collection basics
- (probabilistic) Distributions
- Linear transformations

Descriptive statistics

- Describe the data at hand
- Do not "make conclusions" based on this data
- **Descriptive statistic:** Interesting, Americans are paying more for people that take care of their teeth and feet than for those protecting and educating their children. (is Slovenia different?)

 Example – table representing the average annual income of people in the US by occupation for the year 1999:

\$ 112,760 \$ 106,130		pediatritians
		dentists
	\$ 100,090	podiatritians
_	\$ 76,140	fizicists
	\$ 53,410	architects
	\$ 49,720	psychologists
	\$ 47,910	hosteses
\$ 39,560		elementary school teachers
	\$ 38,710	policemen
	\$ 18,980	florists

Inferential statistics

- From properties of a sample we try to draw conclusions about the whole population
 - How to choose a "good" / random sample?
 - What is a sample's bias?

How to choose a sample? sampling

Rule: sample bias

The sample has to be representative = has to represent the properties of the polulation + beware of the sample size!

- Types of sampling:
 - (simple) random sampling
 - advanced samplings:
 - random assignment
 - stratified sampling

Sampling – examples (1)

Random sampling:

- each individual from the population has to have the same probability of being chosen (in the sample)
- The selection of one individual must not affect the selection
 of the others = independence

Example:

Among the Slovenian population, aged 19 to 35 years we survey all those individuals whose last name begins with the letter "Z", but just every hundredth such person.

Statistics: the basics

What is the problem?

Sampling – examples (2)

- The size of a sample:
 - Small samples are often non-representative = they do not represent the properties of the entire population

Example:

We infer the probabilities of a fair coin toss "coming out" head or tails form tossing such a coin 10 times.

Statistics: the basics

What is the problem?

Sampling – examples (3)

Random assignment:

- there is no actual population; we deal with a hypothetical population
- the sample from this hypothetical population is randomly split in 2 or more groups = the individuals from the sample get randomly assigned to groups

Example:

When testing the effect of a drug, we split a sample of people into 2 groups. To one group (the controls) we give the *placebo*, to the other the actual drug. We then observe whether there are differences between the two groups.

Statistics: the basics

What could be the problem?

Sampling – examples (4)

- Stratified sampling:
 - We sample in layers (stratus = layer) based on some property
 of the population

Statistics: the basics

Example:

There are 1000 balls in the basket (population), 70% are red, 20% are green and 10% are blue. The property used for stratification is thus the *color* of the balls.

How to sample this population to get a representative sample?

Variables / attributes

- Also: properties, attributes, classes, ...
- They can be:
 - independent, dependent
 - qualitative, quantitative
 - discrete, continuous
- More a bit later in "measuring things"

Percentiles

What is a percentile? – example:

Say, you did a test of motoric abilities and you scored 35 points out of a total of 50 points. What does this tell you about your motoric abilities? What are your motoric abilities compared to other participants on the testing?

A more informative indicator would be: "what percentage of people is (motorically) less capable than me?" → this percentage is called a percentile.

Statistics: the basics

If your score is in the 65^{th} percentile, this means that 65% of all people taking the test scored worse than you. In your case the 65^{th} percentile = 35.

3 definitions of a percentile

Definition 1:

The Nth percentile is the lowest value that is strictly greater than N% of all values.

Definition 2:

The *Nth percentile* is the lowest value that is *greater than or equal to N%* of all values.

Definition 3:

A weighted average of the percentiles from the first two definitions (the most accurate definition that we are going to use)

Percentile definitions – example

Value	Rank	
3	1	25 th percentile = 5 .5
5	2	
7	3	Definition 3
8	4	
9	5	
11	6	
13	7	
15	8	

How do we measure things?

- In science data often come from measurings
- How can we measure?
 - Nominal (descriptive) values
 - Ordinal (ordered) values
 - Interval values
 - Ratio values
- Transformations between different types
 - = basis of data collection / errors

Distributions of discrete variables

Frequency distribution:

Probability distribution:

Distributions of continuous variables

- Grouped frequency distribution
 - graphic → histogram

Interval	Frequency
500-600	3
600-700	6
700-800	5
800-900	5
900-1000	0
1000-1100	1

Tillie ili	1113
	568
	577
	581
	640
	641
	645
	657
	673
	696
	703
	720
	728
	729
	777
	808
	824
	825
	865
	875
	1007

Statistics: the basics

Time in ms

Probability density

Linear transformations

- Transformation = to change/transform
- Linear = using only multiplication /w constant and/or adding a constant
 - if "original" and transformed values are depicted as a scatter plot, we "observe" a linear function.

Examples:

- Transformation of inches into centimeters (x 2.54)
- Transformation from °F into °C (x 9/5 + 32)