Room Manager Project presentation

AYUB YUSUF

SDET PROGRAMME (SOFTWARE DEVELOPMENT ENGINEER IN TEST)

Project Objective

- Build a full-stack web application which is fully CRUD functional
- The chosen business case:
 - Room management system
- The project must be rigorously tested (e.g. Junit, Mockito, Selenium)
- Due to lack of time, the focus of the project was on the Minimum Viable Product (MVP)

Technologies used

Agile & Project Management:

- Jira Kanban board
- Risk Assessment

Databases & Cloud Fundamentals:

MySQL

Programming Fundamentals:

Java

Front-End Web Technologies:

- HTML
- CSS
- Javascript

Technologies used

API Development:

JSON

Automated Testing:

- Junit
- Mockito
- Selenium

Version Control System:

• Git

Source Code Management:

GitHub

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

Risk Assessment

Key:

<u>Likelihood:</u>

Rare	Unlikely	Possible	Likely	Certain	
1	2	3	4	5	

Impact

Rare	Unlikely	Possible	Likely	Certain	
1	2	3	4	5	

Risk level

Low	Moderate	High	Extreme
(1-5)	(6-10)	(11-15)	(16-25)

Risk Assessment

Insufficient time had the highest associated risk

Ultimately, there was insufficient time to complete Selenium testing of the front-end

Risk	Description	Impact	Response Strategy	Forecasted Likelihood [1-5]	Forecasted Numerical Impact [1-5]	Forecasted Risk Level (Likelihood*I mpact) [1-25]	Actual Likelihood [1-5]	Actual Numerical Impact [1-5]	Actual Risk Level (Likelihood*I mpact) [1-25]
Insufficient time		the requirements within the	Plan daily/weekly sprints and assign time estimates to each sprint	5	5	25	5	5	25
Insufficient technical knowledge	Technology not covered at university	Project being completed to a suboptimal standard	Read through notes on QA Community. Ask trainers for help. Use Google to find solutions.	2	3	6	4	4	16
Database problems	Being unable to link tables together due to many-to-many relationships	Project will not function.	Construct an ERD diagram before creating tables/relations hips to identify many-to-many relationships. Create intermediary tables to handle this.	4	5	20	4	1	4

Risk Assessment

Not utilising Version control	Irreversible mistake is made or a file is deleted by mistake.	Valuable time wasted trying to recreate a file which could lead to project not being delivered on time.	I will make regular commits to my GitHub repository and utilise main-devfeature branches. Rollbacks will then provide an invaluable timesaving safety net.	5	4	20	5	5	25
Concentration	Unable to concentrate due to neighbours carrying out building work.	Project being completed to a suboptimal standard.	Invest in a pair of noise- cancelling headphones. This will allow me to focus and be productive.	5	2	10	3	1	3
Insufficient testing	Application will be prone to errors/bugs.	Application will not function reliably.	Allocate time to ensure through testing is executed. Ensure a high test coverage (>80%) is achieved.	2	3	6	2	2	4

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

Version control system: Git

feature-branch model: master/dev/multiple features

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- ☐ A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API.
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

Project management board: Kanban

- To effectively manage my project, an Agile approach was adopted.
- A Kanban board (a feature of Jira) was used to manage the project.
- The first step of the planning was to add an exhaustive list of user stories to the backlog.

+ Create issue

Sprint review

- Most of the Sprints were completed successfully, though some were left behind due to difficulty or lack of time:
 - ► Customer email
 - ➤ Orderline feature:
 - ➤ Multiple items with the same id can be contained in one line in an order

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API.
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

Relational database: MySQL

The above ERD diagram was implemented in the relational database

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API.
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

Back-end: Java

Good practices and design principles were followed:

 The Spring framework was used for the back end

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

CRUD functionality following the Enterprise Architecture Model

Package structure

BACK-END

FRONT-END

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API.
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

- ☐ A **risk assessment** which outlines the issues and risks faced during the project timeframe
- ☐ Code fully integrated into a **Version Control System**
- A project management board
- ☐ A **relational database** used to persist data for the project
- ☐ A functional application **back-end**
- ☐ A functional 'front-end' website which connects to your back-end API.
- ☐ A **build** of the application
- ☐ **Unit tests** for validation of the application

Unit and Integration testing for Back-end

Both Unit and Integration tests were performed.

Overall test coverage of 84.5% was achieved

Build of application: Maven

- The application was built using the build tool Maven.
- >A .war file was created which can be deployed from the command line

SpringStarter-0.0.1-SNAPSHOT.war	29/01/2021 14:48	WAR File	49,323 KB
SpringStarter-0.0.1-SNAPSHOT.war.original	29/01/2021 14:48	ORIGINAL File	44,303 KB

Conclusion/Sprint Review

- ➤ Better commits should be used, eg "feature-customer-crud"
- Commits should be made regularly to avoid dumping lots of changes in one go
- ➤ Utilise Jira Kanban board more:
 - > User stories should continuously be added to the backlog throughout the project timeline so it is clear what is left to be done when new user stories surface

Questions?