

Lab 2 Report:

Parametric Curves

CZ2003 - Computer Graphics & Visualization

Wilson Thurman Teng U1820540H Lab Group: SSR2

Contents

Lab 2		3
	Lines/Curves to be Drawn	
Str	aight Line Segment	3
Circles and its arc		
Ellipse and its arc		9
2D Spiral		11
3D Helix		14
2.2	Parametric Representation of y=sin(x)	16
2.3	Changing the Sampling Resolution of sin curve	16
2.4	Changing the Domain parameter of sin curve	

Lab 2
2.1 Lines/Curves to be Drawn
Changes from previous examples are in bold to show the resultant change when a parameter is

Straight line defined by parametric equations [x=u, y=u, z=0] with **domain [0,2]**. Sampling resolution is 100.

Note:

The length of the straight line is now twice the original due to the domain change from [0,1] to [0,2].

line3.wrl

Straight line defined by parametric equations [x=u, y=u, z=0] with **domain [-1,1]**. Sampling resolution is 100.

Note:

It is also possible to have a negative domain. Since the domain of the straight line extended from [0,1] to [-1,1]. The line will extend in the negative x direction by its original length.

Straight line defined by parametric equations [x=u, y=u, z=0] with domain [-1,1].

Sampling resolution is 2.

Note:

Although sampling resolution is 2, there is no difference between this line and **line3.wrl**. This is because the lesser number of points sampled across the line does not affect a straight-line segment.

Straight line defined by parametric equations [x=cos(u*2*Pi), y=sin(u*2*Pi), z=0], with **domain [0,0.6].**

Sampling resolution is 5000.

Note:

As observed, the curve starts from the x-axis and continues anti-clockwise to form 0.6 of a circle as the domain is [0,0.6].

Straight line defined by parametric equations [x=cos(u*2*Pi), y=sin(u*2*Pi), z=0], with domain [-0.6,0].

Sampling resolution is 5000.

Note:

Since the domain is [-0.6,0], the starts from the -0.6 part of the arc and turns clockwise until it reaches the x-axis.

Straight line defined by parametric equations [x=cos(u*2*Pi), y=sin(u*2*Pi), z=0], with domain [0,1].

Sampling resolution is 4.

Note:

As observed, since the sampling resolution is 4, only 4 points are sampled starting from (1,0,0) and turning anti-clockwise to (0,1,0) and so on, to form a square/diamond.

Straight line defined by parametric equations [x=cos(u*2*Pi), y=sin(u*2*Pi), z=0], with domain [0,1].

Sampling resolution is 8.

Note:

As observed, since the sampling resolution is 8, only 8 points are sampled, and when those 8 points are linked up together using straight lines, an octagon is formed.

Straight line defined by parametric equations [x=cos(u*2*Pi), y=0.3*sin(u*2*Pi), z=0], with domain [0,0.75].

Sampling resolution is 3.

Note:

Since sampling resolution is 3, 3 points beside the starting point (1,0) is sampled, therefore forming 0.75 of a diamond.

Straight line defined by parametric equations [x=u*cos(u*2*Pi) - Pi/4, y=u*sin(u*2*Pi) - Pi/4, z=0],

with domain [0,2].

Sampling resolution is 100.

Note:

By using an offset of -Pi/4 in the cos and sin functions, the curve was rotated by pi/4 in the clockwise direction.

2D_spiral4.wrl

Straight line defined by parametric equations [x=u*cos(u*2*Pi) + Pi/4, y=u*sin(u*2*Pi) + Pi/4, z=0],

with domain [0,2].

Sampling resolution is 100.

Note:

On the other hand, by using an offset of **Pi/4** in the cos and sin functions, the curve was rotated by pi/4 in the **anti-clockwise** direction.

Straight line defined by parametric equations [x=u*cos(u*4*Pi) + Pi/4, y=u*sin(u*4*Pi) + Pi/4,

with domain [0,2].

Sampling resolution is 100.

Note:

The number of rotations can also be increased by increasing the angle, in the case, from 2*Pi to 4*Pi.

However, due to the elongation, the spiral appears to have distinct points where straight lines are joined together to form the spiral. This can be mitigated by having a higher resolution. Therefore, whenever there is an elongation, either through the increase in domain or an increase in angle, the resolution should also be increased accordingly to generate a smooth curve.

Straight line defined by parametric equations [x=cos(u*4*Pi) + Pi/4, y=0.3*sin(u*4*Pi) + Pi/4,z=01,

with domain [0,1].

Sampling resolution is 20.

Note:

To further illustrate the effect of a low sampling rate resulting from a low resolution, the resolution is further decreased to 20.

As observed, the distinct points are obvious and straight lines and drawn between those points to from the "curve".

2.2 Parametric Representation of y=sin(x)

Straight line defined by parametric equations [x=u, y=u*sin(u*2*Pi), z=0], with domain [0,1]. Sampling resolution is 100.

Note:

With a sampling resolution of 100, 100 other points are sampled besides the starting point at origin (0,0). Therefore, the curve looks smooth.

2.3 Changing the Sampling Resolution of sin curve

Straight line defined by parametric equations [x=u, y=u*sin(u*2*Pi), z=0], with domain [0,1].

Sampling resolution is 6.

Note:

With a sampling resolution of 6, only 6 other points are sampled besides the starting point at origin (0,0). The "curve" does not look smooth at all.

Straight line defined by parametric equations [x=u, y=u*sin(u*2*Pi), z=0], with domain [0,1].

Sampling resolution is 3.

Note:

With a sampling resolution of 3, only 3 other points are sampled besides the starting point at origin (0,0). The "curve" looks pointy as straight lines are drawn to connect the 3 points.

sin_curve4_parametric_representation.wrl

Straight line defined by parametric equations [x= u, y= u*sin(u*2*Pi), z= 0], with domain [0,1].

Sampling resolution is 2.

Note:

When the sampling resolution is 2, no curve is observed. This is due to only 2 points being sampled (as illustrated on the left), which results in a straight-line y=0, along the x-axis.

Therefore, it can be concluded that when drawing curves, a sampling resolution of 2 is strongly discouraged unless it is for a specific purpose.

2.4 Changing the Domain parameter of sin curve

