線形代数学・同演習 A

7月26日分質問への回答

質問 固有ベクトルの求め方がよく分からなかった。

- -- その辺りの解説が,少し駆け足になってしまいました.行列 A の固有値・固有ベクトルの計算は,
 - (i) まず A の固有多項式 $g_A(t)$ を計算する.
 - (ii) 次に $g_A(t) = 0$ を解いて, A の固有値 λ を求める.
 - (iii) そして,各固有値 λ に対して, $(\lambda E_n A)x = \mathbf{0}$ という斉次の連立一次方程式を解く.
 - (iv) その解のうち, 零ベクトルでないものがちょうど固有ベクトルになっている.

です.質問の回答の後ろに,今日の例題 14.5 の回答の一部を丁寧に書きますので,そちらも参考にしてください.

質問 半年おつかれした \(^o^)/

— みなさんも半年間お疲れ様でした.

質問 前期はお世話になりました.

後期もよろしくお願いします.

— こちらこそ, 拙い講義に付き合っていただきありがとうございました. 後期もよろしくお願いいたします.

質問 先週はご迷惑をおかけしました.

― お気になさらずに、家庭の事情ならば仕方のない事です、

質問 テストがんばるちゃ!!

― 頑張ってください.計算ミスに注意です.

質問 昨日誕生日でした。

— それはおめでとうございました。

質問 祝ってください

— なにをでしょうか?

例題 14.5 の解答 (の一部)

例題 $14.5~A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ の固有値と固有ベクトルを求めよ.

解)A の固有値は $\lambda=\pm 1$ である.

(i) $\lambda = 1$ のとき.

固有ベクトルは,連立一次方程式

$$(1 \cdot E_2 - A)\boldsymbol{x} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

の非自明な解である.この連立一次方程式を解けばよいが,係数行列を簡約化すれば,

$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \stackrel{\text{fink}}{\longrightarrow} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

なので,

$$x - y = 0$$

という (連立) 方程式の解を求めればよい . $y=s(\mathcal{N}$ ラメータ) とすれば , x=y=s なので ,

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s \\ s \end{pmatrix} = s \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

よって , 固有値 $\lambda=1$ に対応する固有ベクトルは $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ となる .