Notes Numerical Maths

isakhammer

2020

Contents

1	Singular Value Decomposition	2
2	References	3

1 Singular Value Decomposition

Definition 1.1. Let $A \in \mathbb{C}^{m \times n}$, there exist two unitary matrices $U \in C^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that

$$U^{H}AV = \Sigma = diag(\sigma_{1}, \sigma_{2}, \dots, \sigma_{p}) \in \mathbb{R}m \times n \quad with \quad p = min(m, n)$$

and $\sigma_1 \geq \ldots \geq \sigma_p \geq 0$. The formula called SVD of A and the numbers σ_i or $\sigma_i(A)$ are called the singular values of A.

Definition 1.2. Suppose that $A \in \mathbb{C}^{m \times n}$ has rank equal to r and that it admits a SVD of the type $U^HAV = \Sigma$. The matrix $A^{\dagger} = V\Sigma^{\dagger}H^H$ is the **Moore-penrose pseudo inverse matrix** being

$$\Sigma^{\dagger} = diag\left(\frac{1}{\sigma_1}, \dots, \frac{1}{\sigma_r}, 0, \dots, 0\right)$$

The matrix A^{\dagger} is also called the **generalized inverse** of A. Indeed, if rank(A) = n < m, then $A^{\dagger} = \left(A^T A\right)^{-1} A^T$, while if n = m = rank(A), $A^{\dagger} = A^{-1}$.

Definition 1.3. A matrix $A \in \mathbb{C}^{n \times n}$ is called **hermition** of **self-adjoint** if $A^T = \overline{A}$, that is if $A^H = A$, while it is called **unitary** if $A^H A = AA^H = I$. Finally, if $AA^H = A^H A$, A is called normal.

A unitary matrix is one such that $A^{-1} = A^H$ and is normal.

2 References