- 1. Să se rezolve inecuația $3^{4-x} \leq 3^x$. (5 pct.)
 - a) \emptyset ; b) $x \in [2, \infty)$; c) $x \in \{-1, 1\}$; d) $x \in [0, 2]$; e) $x \in [-1, 1]$; f) $x \in \mathbb{R}$.

Soluție. Baza este supraunitară, deci ecuația devine $4 - x \le x \Leftrightarrow x \ge 2 \Leftrightarrow x \in [2, \infty)$.

- 2. Coordonatele punctului de extrem al funcției $f:(0,\infty)\to\mathbb{R}, f(x)=x\ln x$ sunt: (5 pct.)
 - a) (e, -e); b) $(\frac{1}{e}, -\frac{1}{e})$; c) (1, -1); d) (1, 0); e) $(\frac{1}{e}, e)$; f) (1, 1).

Soluţie. Avem $f'(x) = \ln x + 1$ şi $f'(x) = 0 \Leftrightarrow \ln x = -1 \Leftrightarrow x = e^{-1} = \frac{1}{e}$. Deci $f(\frac{1}{e}) = -\frac{1}{e}$, iar punctul de extrem este $(\frac{1}{e}, -\frac{1}{e})$.

- 3. Fie $a_1, ..., a_{10}$ o progresie aritmetică cu $a_1 = 10$ și rația r = -3. Câți termeni pozitivi are progresia? (5 pct.)
 - a) 10; b) 2; c) 5; d) 6; e) 4; f) 3.

Soluţie. Se observă că $a_1 = 10 > a_2 = 7 > a_3 = 4 > a_4 = 1 > a_5 = -2 \ge a_k, k \ge 5$. Deci numărul de termeni pozitivi este 4.

- 4. Valoarea expresiei $E = i^5 + i^7$ este: (5 pct.)
 - a) i; b) 2i; c) 1; d) i + 1; e) i 1; f) 0.

Soluție. $i^{4k} = 1, \forall k \in \mathbb{N}, \text{ deci } E = i + i^3 = i(1 + i^2) = i \cdot 0 = 0.$

- 5. Valoarea integralei $\int_{0}^{1} (3x^2 2x) dx$ este: (5 pct.)
 - a) 0; b) -1; c) 1; d) 2; e) -2; f) $\frac{1}{2}$.

Soluție. Integrala devine $(x^3 - x^2)\Big|_0^1 = (1 - 1) - (0 - 0) = 0.$

- 6. Derivata funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = (x+1)e^x$ este: (5 pct.)
 - a) x^2e^x ; b) e^x ; c) $(x+2)e^x$; d) $(x+1)e^x$; e) 0; f) xe^x .

Soluţie. $f'(x) = e^x + (x+1)e^x = (x+2)e^x$.

- 7. Funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \left\{ egin{array}{ll} mx+1, & x<1 \\ x-1, & x\geq 1 \end{array}
 ight.$ este continuă pentru: (5 pct.)
 - a) m = 1; b) m = 2; c) m = -1; d) m = -2; e) $m = \frac{1}{2}$; f) m = 0.

Soluţie. $f_s(1) = m + 1, f_d(1) = f(1) = 0$, iar f este continuă pe \mathbb{R} d.n.d. f este continuă şi în punctul x = 0, deci dacă $f_s(1) = f_d(1) = f(1)$. Rezultă că f este continuă pentru m = -1.

- 8. Să se determine $a \in \mathbb{R}$ astfel încât $\begin{vmatrix} 1 & 2 \\ -1 & a \end{vmatrix} = 0$. (5 pct.)
 - a) $a \in [-1, 1]$; b) a = 3; c) a = -1; d) a = 2; e) a = -2; f) a = 0.

Soluţie. Avem $\begin{vmatrix} 1 & 2 \\ -1 & a \end{vmatrix} = a + 2 = 0 \Leftrightarrow a = -2.$

- 9. Să se calculeze $\lim_{x\to 1} \frac{x^2-1}{x-1}$. (5 pct.)
 - a) 3; b) 2; c) -1; d) 1; e) ∞ ; f) 0.

Soluție. Simplificând fracția prin x-1, obținem $\lim_{x\to 1} \frac{x^2-1}{x-1} = \lim_{x\to 1} (x+1) = 2$.

10. Fie $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Atunci matricea $B = A^2 - A$ este: (5 pct.)

a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
; b) $\begin{pmatrix} 6 & 8 \\ 12 & 18 \end{pmatrix}$; c) 0_2 ; d) $\begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$; e) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$; f) $\begin{pmatrix} 8 & 10 \\ 12 & 18 \end{pmatrix}$.

Solutie. Prin calcul direct, se obține

$$B = A^2 - A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 12 & 18 \end{pmatrix}.$$

- 11. Să se determine $m \in \mathbb{R}$ astfel încât ecuația $x^2 mx + 4 = 0$ să admită soluție dublă. (5 pct.)
 - a) $m \in [-4, 4]$; b) m = 0; c) $m \in \mathbb{R}$; d) $m \in \{-4, 4\}$; e) $m \in \{-2, 2\}$; f) m = 5.

Soluție. Condiția $\Delta = 0$ se rescrie $(-m)^2 - 16 = 0 \Leftrightarrow m^2 - 16 = 0 \Leftrightarrow (m-4)(m+4) = 0 \Leftrightarrow m \in \{\pm 4\}.$

- 12. Câte perechi distincte $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ de numere întregi verifică inegalitatea $x^2 + y^2 \leq 5$? (5 pct.)
 - a) 19; b) 11; c) 8; d) 20; e) 21; f) 13.

Soluţie. Perechile trebuie sa satisfacă relaţiile $0 \le x^2 \le 5$, $0 \le y^2 \le 5 \Leftrightarrow x,y \in [-\sqrt{5},\sqrt{5}]$. Dar x şi y sunt întregi, deci $x,y \in \{-2,-1,0,1,2\}$. Prin verificare directă se constată că din cele 25 de variante posibile, cele care nu satisfac inegalitatea sunt cele în care $\{x,y\} \subset \{\pm 2\}$, adică perechile $(\pm 2,\pm 2)$, $(\pm 2,\mp 2)$; prin urmare, ramân 25-4=21 variante valide, mai exact

$$\{(0,0),(1,1),(1,-1),(-1,1),(-1,-1),(0,1),(0,-1),(1,0),(-1,0),(0,2),(0,-2),(2,0),(-2,0),\\ (1,2),(-1,2),(1,-2),(-1,-2),(2,1),(-2,1),(2,-1),(-2,-1)\}.$$

- 13. Să se calculeze $x \frac{1}{x}$ pentru $x = \frac{1}{2}$. (5 pct.)
 - a) $-\frac{1}{2}$; b) 1; c) $\frac{1}{2}$; d) $-\frac{3}{2}$; e) -1; f) $\frac{3}{2}$.

Soluţie. Prin calcul direct, obţinem $\frac{1}{2} - \frac{1}{1/2} = \frac{1}{2} - 2 = -\frac{3}{2}$.

- 14. Să se scrie în ordine crescătoare numerele 2, π , $\sqrt{3}$. (5 pct.)
 - a) π , 2, $\sqrt{3}$; b) $\sqrt{3}$, π , 2; c) 2, $\sqrt{3}$, π ; d) $\sqrt{3}$, 2, π ; e) π , $\sqrt{3}$, 2; f) 2, π , $\sqrt{3}$.

Soluție. Deoarece, cu eroare de maxim $\varepsilon=0.1$ avem $\sqrt{3}\simeq 1.7<1.8, \pi\simeq 3.14>3.1$, rezultă $\sqrt{3}<1.8<2<3.1<\pi$, deci răspunsul este $\sqrt{3},2,\pi$.

- 15. Să se determine domeniul maxim de definiție D al funcției $f:D\to\mathbb{R}, f(x)=\sqrt{2x+6}$. (5 pct.)
 - a) $[3,\infty)$; b) $[0,\infty)$; c) $(-\infty,-4]$; d) [-3,3]; e) \mathbb{R} ; f) $[-3,\infty)$.

Soluție. Condiția de existență a radicalului este $2x + 6 \ge 0 \Leftrightarrow x \ge -3 \Leftrightarrow x \in [-3, \infty)$.

- 16. Să se calculeze $x_1^2 + x_2^2$, unde x_1, x_2 sunt soluțiile ecuației $x^2 4x + 3 = 0$. (5 pct.)
 - a) 0; b) 10; c) 12; d) 8; e) 16; f) 9.

Soluție. Rezolvând ecuația, obținem $\{x_1, x_2\} \in \{(1, 3), (3, 1)\}$, deci $x_1^2 + x_2^2 = 1^2 + 3^3 = 10$.

Altfel. Folosind relațiile Viète, avem $x_1 + x_2 = 4$, $x_1x_2 = 3$, deci

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = 4^2 - 2 \cdot 3 = 16 - 6 = 10.$$

- 17. Valoarea limitei $l = \lim_{n \to \infty} (\sqrt{n^2 + n} \sqrt{n^2 n})$ este: (5 pct.)
 - a) -1; b) limita nu există; c) 1; d) $-\infty$; e) ∞ ; f) 0.

Soluție. Raționalizând diferența și împărțind apoi simultan numărătorul și numitorul prin n, obținem

$$l = \lim_{n \to \infty} (\sqrt{n^2 + n} + \sqrt{n^2 - n}) = \lim_{n \to \infty} \frac{2n}{\sqrt{n^2 + n} + \sqrt{n^2 - n}} = \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}} \quad \Rightarrow \quad l = \frac{2}{2} = 1.$$

18. Valoarea integralei $I = \int_{0}^{1} e^{-x^{2}} dx$ satisface inegalitatea: (5 pct.)

a)
$$I < \frac{1}{e}$$
; b) $I < 0, 1$; c) $I < \frac{\pi}{10}$; d) $I < 0$; e) $I < \frac{1}{3}$; f) $I < \frac{\pi}{4}$.

Soluţie. Din teorema Lagrange aplicată funcției exponențiale pe intervalul [0,x], unde $x \in (0,1]$, obținem că există $c \in (0,x)$ astfel încât $\frac{e^x-1}{x}=e^c$. Din faptul că exponențiala de bază e este strict crescătoare și $c \in [0,1]$, rezultă $1 \le e^c \le e$, deci $\frac{e^x-1}{x} \ge 1$, și prin urmare $e^x \ge 1+x$, $\forall x \in [0,1]$. Înlocuind x cu $x^2 \ge 0$, obținem $e^{x^2} \ge 1+x^2 \Rightarrow e^{-x^2} \le \frac{1}{1+x^2}$. Deoarece funcțiile din inegalitate sunt continue și nu coincid pe intervalul [0,1], obținem inegalitatea strictă

$$\int_0^1 e^{-x^2} dx < \int_0^1 \frac{1}{1+x^2} dx = \arctan x \Big|_0^1 = \arctan 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4} \implies I < \frac{\pi}{4}.$$