Frequent Subgraph Mining

Frequent Subgraph Mining (FSM) Outline

FSM Preliminaries

- FSM Algorithms
 - gSpan complete FSM on labeled graphs
 - SUBDUE approximate FSM on labeled graphs
 - SLEUTH FSM on trees
- Review

FSM In a Nutshell

- Discovery of graph structures that occur a significant number of times across a set of graphs
- Ex.: Common occurrences of hydroxide-ion
- Other instances:
 - Finding common biological pathways among species.
 - Recurring patterns of humans interaction during an epidemic.

FSM Preliminaries

- **Support** is some integer or frequency
- Frequent graphs occur more than *support* number of times.

What Makes FSM So Hard?

- **Isomorphic graphs** have same structural properties even though they may look different.
- **Subgraph isomorphism problem**: Does a graph contain a subgraph isomorphic to another graph?
- FSM algorithms encounter this problem while buildings graphs.
- This problem is known to be **NP-complete**!

Isomorphic under A,B,C,D labeling

Pattern Growth Approach

- Underlying strategy of both traditional frequent pattern mining and frequent subgraph mining
- General Process:
 - candidate generation: which patterns will be considered? For FSM,
 - candidate pruning: if a candidate is not a viable frequent pattern, can we exploit the pattern to prevent unnecessary work?
 - subgraphs and subsets exponentiate as size increases!
 - *support counting*: how many of a given pattern exist?
- These algorithms work in a breadth-first or depth-first way.
 - Joins smaller frequent sets into larger ones.
 - Checks the frequency of larger sets.

Pattern Growth Approach – Apriori

- *Apriori principle:* if an itemset is frequent, then all of its subsets are also frequent.
 - Ex. if itemset {A, B, C, D} is frequent, then {A, B} is frequent.
 - Simple proof: With respect to frequency, all sets trivially contain their subsets,
 thus frequency of subset >= frequency of set.
 - Same property applies to (sub)graphs!
- Apriori algorithm exploits this to prune huge sections of the search space!

If A is infrequent, no supersets with A can be frequent!

FSM Algorithms Discussed

• gSpan

- complete frequent subgraph mining
- improves performance over straightforward apriori extensions to graphs through *DFS Code* representation and aggressive candidate pruning

SUBDUE

- approximate frequent subgraph mining
- uses graph compression as metric for determining a "frequently occuring" subgraph

SLEUTH

- complete frequent subgraph mining
- built specifically for trees

FSM – R package

- R package for FSM is called subgraphMining
- To import: install.packages("subgraphMining")
- Package contains: gSpan, SUBDUE, SLUETH.
- Also contains the following data sets:
 - cslogs
 - metabolicInteractions.
- To load the data, use the following code:

```
# The cslogs data set
data(cslogs)
# The matabolicInteractions data
data(metabolicInteractions)
```

FSM Outline

- FSM Preliminaries
- FSM Algorithms
 - gSpan
 - SUBDUE
 - SLEUTH
- Review

gSpan: <u>Graph-Based Substructure Pa</u>tter<u>n</u> Mining

- Written by Xifeng Yan & Jiawei Han in 2002.
- Form of pattern-growth mining algorithm.
 - Adds edges to candidate subgraph
 - Also known as, edge extension
- Avoid cost intensive problems like
 - Redundant candidate generation
 - Isomorphism testing
- Uses two main concepts to find frequent subgraphs
 - DFS lexicographic order
 - minimum DFS code

gSpan Inputs

- Set of graphs, support
- Graph of form $G = (V, E, L_V, L_E)$
 - *V*, *E* − vertex and edge sets
 - L_V vertex labels
 - L_E edge labels
 - label sets need not be one-to-one

gSpan Components

Strategy:

- build frequent subgraphs *bottom-up*, using DFS code as regularized representation
- eliminate redundancies via minimal DFS codes based on code lexicographic ordering

Depth First Search Primer

Todo...?

gSpan: DFS codes

DFS Code: sequence of edges traversed during DFS

Edge#	Code	
O	(0,1,X,a,Y)	
1	(1,2,Y,b,X)	
2	(2,0,X,a,X)	
3	(2,3,X,c,Z)	
4	(3,1,Z,b,Y)	
5	(1,4,Y,d,Z)	

Format: $(i, j, L_i, L_{(i,j)}, L_j)$ i, j – vertices by time of discovery L_i, L_j - vertex labels of v_i, v_j $L_{(i,j)}$ – edge label between v_i, v_j i < j: forward edge

i > j: back edge

DFS Code: Edge Ordering

- Edges in code ordered in very specific manner, corresponding to DFS process
- $e_1 = (i_1, j_1), e_2 = (i_2, j_2)$
- $e_1 < e_2 \rightarrow e_1$ appears before e_2 in code
- Ordering rules:
 - 1. if $i_1 = i_2$ and $j_1 < j_2 \rightarrow e_1 < e_2$
 - from same source vertex, e_1 traversed before e_2 in DFS
 - 2. if $i_1 < j_1$ and $j_1 = i_2 \rightarrow e_1 < e_2$
 - e_1 is a forward edge and e_2 traversed as result of e_1 traversal
 - 3. if $e_1 < e_2$ and $e_2 < e_3$, $\rightarrow e_1 < e_3$
 - ordering is transitive

DFS Code: Edge Ordering Example

Graphs have multiple DFS Codes!

Exercise: Write the 2 rightmost graphs using DFS code

solution to redundant DFS codes: lexical ordering, minimal code!

DFS Lexicographic Ordering vs. DFS Code

- DFS code: Ordering of edge sequence of a particular DFS
 - E.g. DFS's that start at different vertices may have different DFS codes
- Lexicographic ordering: ordering between different DFS codes

DFS Lexicographic Ordering

- Given lexicographic ordering of label set L, \prec_L
- Given graphs G_{α} , G_{β} (equivalent label sets).
- Given DFS codes
 - $-\alpha = \operatorname{code}(G_{\alpha}, T_{\alpha}) = (a_0, a_1, \dots, a_m)$
 - $-\beta = \operatorname{code}(G_{\beta}, T_{\beta}) = (b_0, b_1, \dots, b_n)$
 - (assume n ≥ m)
- $\alpha \leq \beta$ iff either of the following are true:
 - $\exists t$, 0 ≤ t ≤ min(n, m) such that
 - $a_k = b_k$ for k < t and
 - $a_t \prec_e b_t$
 - $a_k = b_k for \ 0 \le k \le m$

DFS Lex. Ordering: Edge Comparison

Given DFS codes

- $\alpha = \operatorname{code}(G_{\alpha}, T_{\alpha}) = (a_0, a_1, \dots, a_m)$
- $-\beta = \operatorname{code}(G_{\beta}, T_{\beta}) = (b_0, b_1, \dots, b_n)$
- (assume n ≥ m)
- Given t such that $a_k = b_k$ for k < t
- Given $a_t = (i_a, j_a, L_{i_a}, L_{i_a, j_a}, L_{j_a}),$ $b_t = (i_b, j_b, L_{i_b}, L_{i_b, j_b}, L_{j_b}),$
- $a_t \prec_e b_t$ if one of the following cases

Case 1:

Both forward edges, AND...

Case 3: a_t back, b_t forward → $a_t <_e b_t$

Case 2:

Both back edges, AND...

Edge Comparison: Case 1 (both forward)

Both forward edges, AND one of the following:

- $i_b < i_a$ (edge starts from a *later* visited vertex)
 - Why is this (think about DFS process)?
- $i_a = i_b$ AND labels of a lexicographically less than labels of b, in order of tuple.
 - Ex: Labels are strings, $a_t = (_, _, m, e, x), b_t = (_, _, m, u, x)$ - $m = m, e < u \rightarrow a_t <_e b_t$

• Note: if both forward edges, then $j_a = j_b$

 Reasoning: all previous edges equal, target vertex discovery times are the same

Edge Comparison: Case 2 (both back)

Both back edges, AND one of the following:

- $j_a < j_b$ (edge refers to earlier vertex)
- $j_a = j_b$ AND edge label of a lexicographically less than b
 - Note: given that all previous edges equal, vertex labels must also be equal

• Note: if both back edges, then $i_a = i_b$

- Reasoning: all previous edges equal, source vertex discovery times are the same.

$$\prec_L = \{X < Y < Z : a < b < c\}$$
 C < A < B

$$\prec_L = \{X = Y = Z : b < c < a\}$$
 A < C < B

0	(0,1,X,a,Y)	(0,1,Y,a,X)	(0,1,X,a,X)
1	(1,2,Y,b,X)	(1,2,X,a,X)	(1,2,X,a,Y)
2	(2,0,X,a,X)	(2,0,X,b,Y)	(2,0,Y,b,X)
3	(2,3,X,c,Z)	(2,3,X,c,Z)	(2,3,Y,b,Z)
4	(3,1,Z,b,Y)	(3,1,Z,b,X)	(3,0,Z,c,X)
5	(1,4,Y,d,Z)	(0,4,Y,d,Z)	(2,4,Y,d,Z)
	a a a b b c a d d d d d d d d d d	1 X b b X 2 C 3	

$$<_L = \{X = Y = Z : b = c = a\}$$
 C < A < B

O	(0,1,X,a,Y)	(0,1,Y,a,X)	(0,1,X,a,X)
1	(1,2,Y,b,X)	(1,2,X,a,X)	(1,2,X,a,Y)
2	(2,0,X,a,X)	(2,0,X,b,Y)	(2,0,Y,b,X)
3	(2,3,X,c,Z)	(2,3,X,c,Z)	(2,3,Y,b,Z)
4	(3,1,Z,b,Y)	(3,1,Z,b,X)	(3,0,Z,c,X)
5	(1,4,Y,d,Z)	(0,4,Y,d,Z)	(2,4,Y,d,Z)
	$\begin{array}{c c} \mathbf{X} 0 \\ \mathbf{a} & \mathbf{a} \\ 1 & \mathbf{V} \\ \mathbf{b} & \mathbf{Z} 4 \\ \mathbf{b} & \mathbf{X} 2 \\ \end{array}$	1 X b b X 2	
		C 3	b Z

Minimal DFS code

• Merely the "minimum" of all possible DFS codes, given the lexicographic ordering

Minimal for $\prec_L = \{X = Y = Z : b = c = a\}$

DFS Code Building

- Given code $\alpha = (a_0, a_1, \dots, a_m)$ and $\beta = (a_0, a_1, \dots, a_m, b)$
- β is α 's **child**
- α is β 's parent

$$(0,1,X,a,Y) (1,2,Y,b,X) (2,0,X,a,X) (0,1,X,a,Y) (1,2,Y,b,X) (2,0,X,a,X) (2,0,X,a,X) (2,3,X,c,Z)$$

DFS Code Building Basis: Rightmost Path

- Label vertices by visit order: $(v_0, v_1, ..., v_n)$
 - v_0 : first visited, v_n : last visited
 - v_n called the "rightmost" vertex (think of DFS visiting vertices left-toright in adjacency list)
- Rightmost path: shortest path between v_0 and v_n using forward edges (examples shown in red)

DFS Code Building Basis: Rightmost Path

- Label vertices by visit order: $(v_0, v_1, ..., v_n)$
 - v_0 : first visited, v_n : last visited
 - v_n called the "rightmost" vertex (think of DFS visiting vertices left-toright in adjacency list)
- Rightmost path: shortest path between v_0 and v_n using forward edges (examples shown in red)

DFS Code Building Basis: Rightmost Path

- **Key:** Forward edge extensions to a DFS code must occur from a vertex on the rightmost path!
- **Key 2:** Back edge extensions must occur from the rightmost vertex!
- Proof points:
 - if vertex not on rightmost path, then it has been fully processed by DFS.
 - previous last DFS edge tuple < new tuple, if
 - new edge is forward, extended from a vertex on rightmost path, OR
 - new edge is backward, extended from rightmost vertex

DFS Code Building Example

DFS Code Tree

- Given vertex label set and edge label set, DFS Code Tree is tree of all possible DFS codes
 - nodes of tree are DFS codes, except...
 - first level of tree is a vertex for each vertex label
 - each level of the tree adds an edge to the DFS code
 - each parent/child pair follows DFS Code building rules
 - siblings follow DFS lexicographic order

2-edge

exercise: given 3 vertex labels and 3 edge labels:

- number of nodes in first level?
- branching factor of parents in first level?
- second level?
- third level?
- ...

gSpan Algorithm

- Traverse DFS code tree for given label sets
 - prune using support, minimality of codes.
- Input: Graph database D, min_support
- Output: frequent subgraph set S
- General process:
 - S ← all frequent one-edge subgraphs in D (using DFS code)
 - Sort S in lexicographic order
 - $-N \leftarrow S$ (S gets modified)
 - foreach $n \in N$ do:
 - gSpan_extend (D, n, min_support, S)
 - remove n from all graphs in D (only consider subgraphs not already enumerated)
- Strategy: grow minimal DFS codes that occur frequently in *D*

gSpan Algorithm

- gSpan_extend: perform DFS growing and pruning
- Input: Graph database D, min_support, DFS code n
- Input/Output: frequent subgraph set S
- Pseudocode:
 - if *n* not minimal then end
 - otherwise
 - add *n* to *S*
 - foreach single-edge rightmost expansion of n(e)
 - $if support(e) >= min_support$
 - recurse using D, e, min_support, S

gSpan Algorithm Example

Inputs: (min_support = 3)

gSpan in R

- To run gSpan in R, you need the subgraphMining package installed. (Written in Java)
- Load the iGraph R package because it uses iGraph objects.

4 #And now we call gSpan using a support

```
15 # of 80%
                                               16 > results = gspan(database,
                                               support = "%80")
#Import the subgraphMining package
                                               17 # Examine the output, which is
2 > library(subgraphMining)
                                               18 # an array of iGraph objects in
3 # Create a database of graphs.
                                               10 # list form.
4 # The database should be an R array of
                                               20 > results
5 # iGraph objects put into list form.
                                               21 [[1]]
6 # freq is an integer percent. The
                                               22 Vertices: 5
7 # frequency should be given as a string.
                                               23 Edges: 10
8 # Here is an example database of
                                               24 Directed: TRUE
 # two ring graphs
                                               25 Edges
9 graph1 = graph.ring(5);
10 graph2 = graph.ring(6);
                                               <sub>26</sub> [0] '1' -> '5'
11 database = array(dim = 2);
                                               27 [1] '5' -> '1'
12 database[1] = list(graph1);
                                               28 [2] '2' -> '1'
13 database[2] = list(graph2);
                                               29 [3] '1' -> '2'
```

FSM Outline

- FSM Preliminaries
- FSM Algorithms
 - gSpan
 - SUBDUE
 - SLEUTH
- Review

What is SUBDUE?

- · L.B. Holder described it in 1988.
- Uses beam search to discover frequent subgraphs.
- Reports compressed structures.
- Is an approximate version of FSM.
- Is <u>not</u> based on support

Beam Search

- **Beam Search** is a best-first version of breadth-first search.
- At each level of search, only the best k children are expanded.
- k is called **Beam Width.**
- "Best" is a problem-dependent determination

Graph Compression

SUBDUE compresses graphs by replacing subgraphs with pointers.

Before compression → Figure A contains 3 triangles and has 11 edges.

<u>After compression</u> → Figure B, has 3 triangle pointers and has 2 edges.

Compressed Description Length

- The **Description Length** of a graph G is the integer number of bits required to represent graph G in some binary format, which is denoted by DL(G).
- The **Compressed Description Length** of a graph G with some subgraph S is the integer number of bits required to represent G after it has been compressed using S, which is denoted DL(G|S).

Description Length Example

Vertex: 8 bits Edge: 8 bits Pointer: 4 bits

DL(A) =
$$9*8 + 11*8 + 0*4 = 160$$
 bits.
DL(A|triangle) = $3*8 + 2*8 + 3*4 = 52$ bits
DL(triangle) = $3*8 + 3*8 + 0*4 = 48$ bits

SUBDUE Algorithm Overview

- SUBDUE maintains a global set which holds the subgraphs that provide the overall best compression.
- The algorithm begins with all 1-vertex subgraphs
- During each iteration, SUBDUE checks to see if any of children (extended subgraphs of) are better candidates.
- After the children are considered, they become the new parents and the process starts over.

SUBDUE Algorithm Pseudocode

- Input: Graph database D, beam search width w, subgraph size limit, output size limit max_best
- Output: set of frequent subgraphs S
- Pseudocode:
 - parents ← all single-vertex subgraphs in D
 - search_depth ← o
 - $-S \leftarrow \emptyset$
 - while search_depth < limit and parents $\neq \emptyset$
 - foreach parent
 - generate up to beam_width best children
 - insert children into S
 - remove all but max_best best elements of S
 - parents ← beam_width best children
 - search_depth ← search_depth + 1
 - Best: for subgraph G, minimize DL(D|G)+DL(G)

set generated by adding all possible labeled edges

compression performed k using subgraph isomorph

SUBDUE Example

SUBDUE Encoding Bit Sizes

Vertex: 8 bits

Edge: 8 bits

Pointer: 4 bits

DL(pinwheel) = 13*8 + 16*8 + 0*4 = 232 bits.

SUBDUE Example

First generation children of parent **A**:

Description length computation (both the same):

- 4 instances of subgraph
- Vertices after replacement: 13 → 9
- Edges after replacement: 16 → 12
- DL(pinwheel | A-B): 13*8 + 12*8 + 4*4 = 216 bits
- DL(A-B): 2*8 + 1*8 + 0*4 = 24
 - Improvement: 232 216 24 = -8 bits

Not yet worth it!

SUBDUE Example

Second generation children of parent **A**:

Description length computation using A-B-C

- 4 instances of subgraph
- Vertices after replacement: 13 → 5
- Edges after replacement: 16 → 8
- DL(pinwheel | A-B-C): 5*8 + 8*8 + 4*4 = 120 bits
- DL(A-B-C): 3*8 + 3*8 + 0*4 = 48 bits
 - Improvement: 232 120 48 = 64 bits

SUBDUE in R

- SubgraphMining R package contains the functions to run SUBDUE.
- Written in C, but has Linux-specific source code.
- Compiled binaries are provided, and may use make and make install commands if it doesn't run on your system.
- Uses iGraph objects.

```
#Import the subgraphMining package
blue | # Import the subgraphMining |
#Build your iGraph object. For this example
# we built the graph from Figure ~1.7
# using iGraph and called it graph1.
# Call SUBDUE.
# graph is the iGraph object to mine.
# > results = subdue(graph);
# Examine the results
# yes a subdue | # Examine the results
```

FSM Outline

- FSM Preliminaries
- FSM Algorithms
 - gSpan
 - SUBDUE
 - SLEUTH
- Review

SLUETH Outline

- Introduction, preliminaries
- Data Representation
- Subtree generation and comparison
- SLUETH Algorithm

What is SLEUTH?

- Written by Mohammed Zaki in 2005.
- Developed to target a special type of graph: trees
 - HTML has a tree-like structure
- Consider the following HTML tree (on the right)
 - <TITLE> is a descendant of <HTML> and isn't a direct child. (no edge connection)
 - SLEUTH is used in instances like these to mine frequent subtrees.

```
<HTML>
    <HEAD>
       <TITLE> My page about puppies! </TITLE>
    </HEAD>
    <BODY>
       <h1> Puppies are amazing. </h1>
       <P> This is a photo of my puppy. Her name is <B> Blix </B>.
            <IMG src="blix.jpg" />
       <H1> These are the things I like about puppies: </H1>
        <P>
            <UL>
               <LI>Playful</LI>
                <LI>Cute</LI>
                \langle L.I \rangle Warm \langle /L.I \rangle
               <LI>Fuzzy</LI>
            </UL>
       </P>
    </BODY>
</HTML>
```

SLEUTH Preliminaries

- A **tree** is a connected, directed graph T without any cycles.
- A **subtree** T_s is a subgraph of T which is also a tree.
- A tree is a **rooted** tree if a node is distinguished as the root.
- Two nodes are **siblings** if they share a parent and **cousins** if they share a common ancestor.
- A tree is **ordered** if each siblings have an assigned relative order.
- An **unordered** tree is if there is no relative ordering.

SLEUTH Preliminaries: HTML Example

```
<HTML>
   <HEAD>
       <TITLE> My page about puppies! </TITLE>
   </HEAD>
   <BODY>
       <h1> Puppies are amazing. </h1>
       <P> This is a photo of my puppy. Her name is <B> Blix </B>.
           <IMG src="blix.jpg" />
       </P>
       <H1> These are the things I like about puppies: </H1>
       <P>
           <!!!>
              <LI>Playful</LI>
              <LI>Cute</LI>
              <LI>Warm</LI>
              <LI>Fuzzy</LI>
           </UL>
       </P>
   </BODY>
</HTML>
```


- <HTML> is the **parent** of node <*HEAD*> and <*HEAD*> is a **child** of <*HTML*>.
- <*HTML*> is the **ancestor** of node <*TITLE*>.
- <TITLE> is a **descendant** of <HTML>.

SLEUTH: Induced vs. Embedded

- **Induced** trees can only contains edges from the original tree
- **Embedded** trees can have edges between ancestors and descendants
 - The set of embedded trees is a superset of the set of induced trees
- SLEUTH mines embedded trees, not just induced ones

SLEUTH Motivation

- Naïve approach → generates possible subtrees found within each pattern (keeping tally of occurrences).
- Consider collection of trees D with k vertices and d vertex labels
- The potential subtrees that are generated:

$$candidates(D) = k^{k-2} \times k^n$$

 To illustrate, consider the numbers of 4 labels (d = 4) and a maximum tree size of k = 1,2, ... 7 (shown below)

k	1	2	3	4	5	6
configurations	1	1	3	16	125	1296
labellings (d^k)	4	16	64	256	1024	4096
candidates	4	16	192	4096	128,000	5,308,416

SLUETH Outline

- Introduction, preliminaries
- Data Representation
- Subtree generation and comparison
- SLUETH Algorithm

Data Representation

- Preorder traversal is a
 visitation of nodes starting at the
 root by using depth-first search
 from left subtree to the right
 subtree.
- SLEUTH represents horizontal and vertical formats.
 - Horizontal → follows preorder traversal
 - Vertical → Lists (tree id, scope)
- For unordered trees, preorder-based representation forces ordering among siblings

Vertical Format (tree id, scope):

Α	В	С
0, [1, 3]	0, [4, 5]	0, [0, 6]
0, [2, 2]	0, [6, 6]	0, [3, 3]
1, [1, 1]	1, [2, 4]	0, [5, 5]
1, [3, 3]		1, [0, 4]
		1, [4, 4]

Horizontal Format

(tree id, string encoding):

(T₀, C A A \$ C \$ \$ B C \$ \$ B \$)

(T₁, C A \$ B A \$ C \$ \$)

Data Representation

- \$ symbol is the backtracking from child to parent.
- The HTML document about puppies (on the right) can be encoded as '013\$\$24\$56\$7\$\$589\$9\$9\$\$\$\$.'
- Vertical format contains one scope-list for each label.
- **Scope** is a pair of preorder position [*l*,*u*] where *l* is the vertex and u is the rightmost descendant.

SLUETH Outline

- Introduction, preliminaries
- Data Representation
- Subtree generation and comparison
- SLUETH Algorithm

Candidate Subtree Generation

- SLEUTH limits candidate subtree generation by extending only frequent subtrees.
- **Prefix based extension** limits additions of new vertices to the tree to the rightmost path of the tree
- Candidate trees are extensions of the prefix tree.

Candidate may belong to automorphism group (see next slide)

Candidate Subtree Generation

- For unordered trees, prefix-based extension creates redundancy problem.
- **Canonical form** lets you to recognize when you are dealing with the same graph.

T0: CBA\$C\$\$A\$ T1: CA\$BA\$C\$\$

T2: CA\$BC\$A\$\$

These graphs are automorphic

Prefix Tree Canonical Form

- Given label set $L = \{l_1, l_2, ..., l_d\}$
- Given ordering < where $l_1 < l_2 < \cdots < l_d$
- Tree T with vertex labeling ℓ is in canonical form if:
 - for every vertex $v \in T$,
 - for all children of $v, c_1, c_2, ..., c_k$, listed in *preorder*,

$$- \ell(c_i) < \ell(c_{i+1}) \text{ for } i \in [1, k)$$

Candidate Subtree Generation

- SLEUTH generates frequent subtrees using equivalence class-based extension
 - Child extension → new vertex appended to right-most leaf in prefix subtree.
 - Cousin extension → new vertex appended to any vertex in descendents of right-most leaf of prefix subtree.
 - In either \rightarrow new vertex become right-most leaf in new subtree.
 - All possible new trees are of the same *prefix equivalence class* (next slide)
- This tree is extended by vertex B to either vertex o (cousin) or vertex 4 (child).

Prefix Equivalence Class

- Set of all child/cousin extensions to a prefix tree
 - For SLEUTH, the equivalence class also enforces that resulting subtrees be frequent.
- Given: prefix tree P
- Given label, vertex pair (x, i), let P_x^i denote the subtree created by attaching vertex i with label x.
- Frequent prefix tree equivalence class
 - $[P] = \{(x, i) | P_x^i \text{ is frequent}\}$

Support Computation – Match labels

 SLEUTH uses scope lists, match-labels, and scope join lists to match generated subtrees to the input.

Match-labels:

 preorder positions in containing tree of vertices in embedded tree

unordered embedded subtree match labels

 $T_1 in T_0$:

{02, 03, 05, 07, 12, 13, 15}

 $T_2 in T_0 : \{45, 67\}$

 $T_3 in T_0 : \{045, 067, 145\}$

Support Computation – Scope-list Joins

Scope-list joins:

- scope list of subtrees (in horizontal format)
- adds third field, the match label for the k-subtree

building scope-list joins:

use scope list to

determine whether vertex
is cousin or descendant

SLUETH Outline

- Introduction, preliminaries
- Data Representation
- Subtree generation and comparison
- SLUETH Algorithm

SLEUTH Algorithm - Initialize

- Input: Tree database D, support boundary threshold
- Pseudocode:
 - F_1 ← frequent 1-subtrees (with scope lists)
 - $F_2 \leftarrow$ set of prefix equivalence classes of elements in F_1 (with scope lists)
 - for each [P] ∈ F₂
 - Enumerate-Frequent-Subtrees([*P*], *S*)
- Top-level: compute all singleton subtrees, generate frequent extensions of the subtrees, then begin recursive procedure.

SLEUTH Algorithm - Enumeration

- Input: frequent prefix equivalence class [P]
- Pseudocode
 - foreach added label, vertex pair (x, i) in [P]
 - if P_x^i is not canonical, skip to next pair
 - initialize $[P_x^i]$ to the prefix tree P_x^i and no extensions
 - foreach element $(y, j) \in [P]$ not equal to (x, i)
 - if (y, j) is a child or cousin extension of P_x^i and resulting tree is frequent:
 - » add (y, j) and/or $(y, k 1)^*$ to $[P_x^i]$, along with scopelists
 - if $[P_x^i]$ contains no extensions, output P_x^i
 - else, recurse on $[P_x^i]$
- * k: $[P_x^i]$ size. If i is a descendent of j, then the extended vertex would now attach to k-1 rather than i (see cousin vs. child scope-list join)

SLEUTH in R

```
<sup>1</sup> #Load the subgraphMining package into R
                                                      16 DBASE NUM TRANS: 2
2 > library(subgraphMining)
                                                      17 DBASE MAXITEM: 3
                                                      <sub>18</sub> MINSUPPORT : 2 (0.8)
3 # Call the SLEUTH algorithm
                                                     19 0 - 2
4 # database is an array of lists
                                                      20 1 - 2
<sub>5</sub> # representing trees. See the README
                                                     21 2 - 2
6 # in the sleuth folder for how to
                                                      22 O O - 2
7 # encode these.
                                                      23 0 0 -1 1 - 2
8 # support is a float.
                                                      24 0 0 -1 1 -1 1 - 2
                                                      _{25} O O -1 1 -1 2 - 2
<sub>9</sub> > database = array(dim=2);
_{10} > database[1] = list(c(0,1,-1,2,0,-1,1,2,-1,-1,-1))
                                                      26 ...
11 > database[2] =
          list(c(0,0,-1,2,1,2,-1,-1,0,-1,-1,1,-1))
                                                      _{27} [1,3,3,0.001,0] [2,9,7,0,0] [3,38,11,0.001,0]
                                                      [4,60,11,0,0]
> results = sleuth(database, support=.80);
                                                      28 [5,53,5,0,0] [6,16,1,0,0] [7,2,0,0,0]
# Examine the output, which will be
                                                      [SUM:181,38,0.002] 0.002
# encoded as trees like the input.
                                                     _{20} TIME = 0.002
  [1] "vtreeminer.exe –i input.txt
                                                     _{30} BrachIt = 103
   -s o.8 -o > output.g"
```

FSM Outline

- FSM Preliminaries
- FSM Algorithms
 - gSpan
 - SUBDUE
 - SLEUTH
- Review

Strengths and Weakness

- Apriori-based Approach (Traditional):
 - **Strength**: Simple to implement
 - Weakness: Inefficient
- gSpan (and other Pattern Growth algorithms):
 - **Strength**: More efficient than Apriori
 - Weakness: Still too slow on large data sets
- SUBDUE
 - **Strength**: Runs very quickly
 - **Weakness**: Uses a heuristic, so it may miss some frequent subgraphs
- SLEUTH:
 - **Strength**: Mines embedded trees, not just induced, much quicker than more general FSM
 - Weakness: Only works on trees... not all graphs