

Ignacio Aya Sáenz I Proyecto Machine Learning

Índice

1 - Introducción

3 - Exploraty Data Analysis

2- Workflow

- 2º fase probamos otros modelos
- 3º fase EDA + feature eng.

4 - Métricas

- Random Forest
- XGBoost

5 - Conclusiones

La competición consiste en trabajar con un conjunto de datos de flujo de calor muy utilizado en el campo de la ingeniería y la física.

Sin embargo, el conjunto de datos **presentaba ciertas características faltantes**, lo que dificultaba su análisis y modelado preciso.

El objetivo del proyecto es desarrollar modelos de machine learning que puedan imputar (es decir, completar o estimar) los valores faltantes en un conjunto de datos relacionados con el flujo de calor.

	id	author	geometry	pressure [MPa]	mass_flux [kg/m2-s]	x_e_out [-]	D_e [mm]	D_h [mm]	length [mm]	chf_exp [MW/m2]
0	0	Thompson	tube	7.00	3770.0	0.1754	NaN	10.8	432.0	3.6
1		Thompson	tube	NaN	6049.0	-0.0416	10.3	10.3	762.0	6.2
2	2	Thompson	NaN	13.79	2034.0	0.0335	7.7	7.7	457.0	2.5
3		Beus	annulus	13.79	3679.0	-0.0279	5.6	15.2	2134.0	3.0
4	4	NaN	tube	13.79	686.0	NaN	11.1	11.1	457.0	2.8

1º fase (baseline)

Nο	Modelo	RMSE	R2	MSE	MAE	Ranking Kaggle	position	total
1	Linear Regressión - Baseline	0,08657	0,26211	0,00750	0,06299	88%	356	405

2º fase (probamos otros modelos)

Νº	Modelo	RMSE	R2	MSE	MAE	Ranking Kaggle	position	total
1	Linear Regressión - Baseline	0,08657	0,26211	0,00750	0,06299	88%	356	405
2	Ramdom Forest	0,07745	0,40948	0,00600	0,05398	79%	320	405
3	Decisión_tree	0,10388	0,06220	0,01079	0,07216			
4	XGBoost	0,07725	0,41258	0,00597	0,05393	76%	312	412

3º fase (Mejorar XGBoost)

Entender el problema y los datos

EDA + feature engineering

- Valores nulos: los rellenamos con la media de de cada uno de los grupos de geometría (tube, annulus y plate).
- Tras el análisis anterior, al resto de valores nulos que todavía continúan le asigno el valor medio de la columna.
- Se elimina la columna ID.
- Para hacer el modelo más simple y dado que no considero que las columnas de author y geometría sean relevantes, decidimos eliminarlas.

Entrenamiento modelo

 Ajustamos los hiperparametros con GridSearchCV Predicción + Submission Métricas

y resultados

Nο	Modelo	RMSE	R2	MSE	MAE	Ranking Kaggle	position	total
1	Linear Regressión - Baseline	0,08657	0,26211	0,00750	0,06299	88%	356	405
2	Ramdom Forest	0,07745	0,40948	0,00600	0,05398	79%	320	405
3	Decisión_tree	0,10388	0,06220	0,01079	0,07216			
4	XGBoost	0,07725	0,41258	0,00597	0,05393	76%	312	412
5	XGBoost_2	0,07509	0,44487	0,00564	0,05215	46%	274	600

Matriz de correlación

La geometría puede influir en cómo se relacionan estas dos variables

	tube	annulus	plate
id	15821.950674	16016.758959	15707.048544
pressure [MPa]	11.163435	9.472251	0.908117
<pre>mass_flux [kg/m2-s]</pre>	3234.336062	2456.423397	1563.629344
x_e_out [-]	-0.010808	0.052503	-0.033045
D_e [mm]	8.406165	8.792583	14.750193
D_h [mm]	8.736598	26.455987	117.063269
length [mm]	661.744978	1783.605341	28.539924
chf_exp [MW/m2]	3.928603	2.907669	5.279288
author	NaN	NaN	NaN
geometry	NaN	NaN	NaN

Número de autores

En las métricas de precisión, XGBoost ha obtenido mejores resultados que Random Forest

El modelo XGBoost ha mostrado mejor ajuste que Random Forest

- Random forest y XGBoost son los que demuestran mejor rendimiendo según las métricas utilizadas (RMSE, MSE, MAE, Ranking de la competición) sobre el resto de modelos utilizados
- La columna "geometría" resultó útil en la imputación de valores nulos, pero se decidió eliminarla durante el entrenamiento del modelo para simplificarlo.
- Se realizó un análisis de las columnas "ID" y "Author" en la etapa de exploración de datos, sin embargo, se eliminaron posteriormente para simplificar el modelo.
- Durante el ajuste de los hiperparámetros del modelo, se identificó que estábamos cometiendo overfitting, Lo que esto implicaba era que el rendimiento no era óptimo cuando se trataba de trabajar con datos nuevos.
- Considerando los modelos con mejor rendimiento, como XGBoost y Random Forest, se observó que XGBoost obtuvo métricas superiores y una mejor puntuación en el ranking público de la competición.

Gracias