							6214	, T	. 1	<i>ک</i> . کی		20 7	00Z S	-44		
							3 / 14	<i>,</i> ,		<u> </u>		207 206	860	967		
		We have the following data:														
		$egin{array}{c c} x & y \ \hline -1 & -1 \end{array}$														
		$egin{array}{c cccc} x & y & & & & & & & & & & & & & & & & \\ \hline -1 & -1 & & & & & & & & & & & & & & & &$														
		1. We would like to fit a linear regression model to this data for the purpose of predicting future values of y from x .														
		• Write the data matrix X for this regression. Make sure to include the bias term. • Write the pseudo inverse X^\dagger of X . • Use X^\dagger to find the vector $\theta^* \in \mathbb{R}^2$ that minimizes the sum of squares loss:														
		$J(heta) = \sum_{i=1}^n \left(heta^ op(1,x^{(i)}) - y^{(i)} ight)^2$														
		. • Compute the minimum loss $J(heta^*)$.														
•	X .	. /	1	- 1 - 1		•	τ τ X	(1	1	4	1					
			1	1			V ~	\ -1	-1	7	2_	1				
		1	Л	2				/ <i>1</i>	~	1 \						
. 🗡	T X	2	(1	1 -1	1	٦ 2)	Λ	- ·	,	5	1	1 7			
								\ \n	2							
							. <i>5</i> 2) . 92		ر اا	ئ ے۔ "	-3 , J	でっ	عا	אשור	
		•						. ((X)	x)	<u>_</u> [4]	[x/	&j(>	("\)	
det (*x	حـ (h	· 7 - '	1 . 1 =	= 2	}					•				
(X *x	() [ا <u>ا</u> ک	j · (구 - 1	- 1 G) =	(- <u>;</u>	<u>}</u> ! }	1 27						
+	(\(\(\)	۲ _~	-1) .	√ ⊤	- ſ	7	`1	2	,T	6 7 1 1	/	, ,	1 \			
Х =	λ /	•	•	χ ^τ	_ (-	1 27	-1 27 4	_)	(1 –	1 1	2	_)			
								•								

- Exprss the loss in the form $J(\theta)=A\theta_0^2+B\theta_1\theta_0+C\theta_1^2+D\theta_0+E\theta_1+F$, for some A, B, C, D, E, and F that depend on x and y.
- Find an expression for the gradient $\nabla J(\theta) \in \mathbb{R}^2$ for aritrary $\theta \in \mathbb{R}^2$.
- Show that $abla J(heta^*) = 0.$

$$\mathcal{T}(\Theta) = \sum_{i=1}^{4} \left(\Theta_{0} \Theta_{1}\right) \left(\chi^{(i)}\right) - \gamma_{i} = \sum_{i=1}^{4} \left(\Theta_{0} - \Theta_{1} \chi^{(i)} - \gamma_{i}^{(i)}\right)^{2}$$

$$= (\Theta_{3} - \Theta_{1} + 1)^{2} + (\Theta_{3} - \Theta_{1} - 1)^{2} + (\Theta_{3} + \Theta_{1} - 2)^{2} + (\Theta_{6} + 2\Theta_{1} - 3)^{2}$$

$$= \Theta_{0}^{2} - 2\Theta_{0} \cdot \Theta_{1} + \Theta_{1}^{2} + 2\Theta_{0} - 2\Theta_{1} + 1 + \Theta_{0}^{2} - 2\Theta_{0}\Theta_{1} + \Theta_{1}^{2} - 2\Theta_{0} + 2\Theta_{1} + 1$$

$$\triangle 2(\Theta) = \left(\frac{9\Theta^{\circ}}{91}(\Theta), \frac{9\Theta^{\circ}}{91}(\Theta)\right)$$

$$\frac{\partial \mathcal{T}}{\partial \Theta_{o}}(\Theta) = \frac{\partial}{\partial \Theta_{o}}(\widehat{\Theta}) \cdot \left(4\Theta_{o}^{2} + 2\Theta_{0}\Theta_{1} + 7\Theta_{1}^{2} - 10\Theta_{0} - 16\Theta_{1} + 15 \right)$$

$$\frac{\partial \mathcal{T}}{\partial \theta_{1}}(\theta) = \frac{\partial}{\partial \theta_{1}}(\theta) \left(4\theta_{0}^{2} + 2\theta_{0}\theta_{1} + 7\theta_{1}^{2} - 10\theta_{0} - 16\theta_{1} + 15 \right)$$

$$\nabla J(\Theta) = \begin{pmatrix} 8\Theta_{0} + 2\Theta_{1} - 10 \\ 2 + 6 + 14\Theta_{1} - 16 \end{pmatrix}$$

$$\nabla J(\Theta^{*}) = \begin{pmatrix} 8 - 1 + 2 \cdot 1 - 16 \\ 2 \cdot 1 + 14 \cdot 1 - 16 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- 3. Consider the prediction of y at a test point x=1.5.
 - What is the predicted value of y at this point based on linear regression with θ^* ?
 - ullet What is the predicted value of y at this point based on K-NN with K=2?