MATH 19 RECITATION 20 OCTOBER 2016 BROWN UNIVERSITY INSTRUCTOR: SAMUEL S. WATSON

1. Solve $f'(x) = (1 + e^{-x})(f(x) - 1)$.

2. Find a function f such that $(x^2 + 1)f'(x) = xf(x)$ and f(0) = 1.

ear	Derive and solve the differential equation governing the motion of an object falling in the presence of th's gravitational field and an air resistance force proportional to the velocity of the object. Use k for this astant of proportionality, as well as m for the mass of the object and g for the acceleration due to gravity.
ma anc	In the context of the previous question, <i>terminal velocity</i> (the velocity at which the air resistance force tches the gravitational force) for a 60-kg human being is roughly 53 meters per second. Use this data d your answer from the previous question to determine how many seconds it takes after stepping out of lane to reach a velocity of 52 meters per second.