Сравнение метода Зейделя и градиентного спуска

Николай Жидков

15 марта 2018 г.

1 Использование структуры матрциы

Так как наша матрица представляет собой несколько блоков, идущих по центру, а все остальные элементы равны 0, то сразу сохраним матрицу как набор этих блоков. Дальше можно заметить, что оба исследуемых метода используют при пересчете только базовые операции +, -, домножение на константу, и умножение на блочную матрицу A. Из этого можно сделать вывод, что можно сразу решать задачу по блоком, а потом просто соединить ответ. Соответсвенно, в программе везде n - это лист из размерностей блоков, A - список блоков и так далее. Мы для каждого блока делаем свои преобразования и считаем, когда разница между соседними глобальными(!) x_k и x_{k+1} станет меньше eps.

2 Структура программы

Программа разделена на функции, записанные в файле solve.py. Основных функций 3, остальные должны быть понятны из названий

- read(filename), функция чтения:
 - Принимает название файла для чтения данных
 - Возвращает лист размерностей n, лист блоков A, лист желаемых решений x_s и лист желаемых начальных точек x_0 .
- $seidel(n, A, x_s, x_0, eps, full mode)$, находит решение методом Зейделя:

- Принимает лист размерностей n, лист блоков A, лист желаемых решений x_s и лист желаемых начальных точек x_0 , минимальную норму между соседями eps и флаг дебажного вывода
- Возвращает лист решений для каждого блока
- $grad(n, A, x_s, x_0, eps, full mode)$, находит решение градиентным спуском:
 - Принимает лист размерностей n, лист блоков A, лист желаемых решений x_s и лист желаемых начальных точек x_0 , минимальную норму между соседями eps и флаг дебажного вывода
 - Возвращает лист решений для каждого блока

3 Структура файлов исходных данных

Первые n строк входного файла описывают матрицу A. Строка і имеет следующую структуру: $A_{i,0}, A_{i,1}, ..., A_{i,n-1}$. n+1-ая строка содержит желаемый вектор решения x^* в формате $x_0^*, ..., x_{n-1}^*$. n+1-ая строка содержит желаемый стартовый вектор x0 в формате $x0_0, ..., x0_{n-1}$

Пример содержимого файла для системы третьего порядка:

4 Примеры вызова из командной строки

• Запуск, выводится только ответ (файл с входными данными обязательно указывать первым параметром!) методом Зейделя (метод тоже обязательно надо указать)

```
python3 solve.py input.txt -method==seidel
```

• Запуск, выводится только ответ (файл с входными данными обязательно указывать первым параметром!) методом градиентного спуска

```
python3 solve.py input.txt -method==grad
```

- Запуск, выводится вся дебаг информация python3 solve.py input.txt -method==grad -full
- Запуск с заданным ерѕ

```
python3 solve.py input.txt -method==seidel -eps=0.001
```

5 Численный эксперимент

Везде использовался вектор x*=[1,2,-3,-4,5,6,-7,-8,9,-10] Далее приведены таблички для разных стартовых точек X_0

$X_0 =$	[0, 0]	0.0	0.0	0.0	[0,0]
2 1 ()	10,0	, 0, 0	, 0, 0,	0,0	, 0, 0,

Заданный eps	Итерации метода Зей-	Итерации градиентно-
(%)	деля (%)	го спуска
1e-2	18	28
1e-3	28	34
1e-4	38	48
1e-5	49	63
1e-6	59	70

 $X_0 = [10, -3, 5, 17, -0.1, 0.2, 7, 20, 10, 0]$

110 [10, 0,0,11, 011,012,1,120,10,0]					
Заданный	eps	Итерации метода Зей-	Итерации градиентно-		
(%)		деля (%)	го спуска		
1e-2		22	34		
1e-3		32	48		
1e-4		43	62		
1e-5		53	76		
1e-6		63	92		

 $X_0 = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256]$

Заданный eps	Итерации метода Зей-	Итерации градиентно-
(%)	деля (%)	го спуска
1e-2	15	41
1e-3	25	50
1e-4	35	60
1e-5	46	70
1e-6	56	85

5.1 Выводы

Как видно из результатов при выборе разных X_0 метод Зейделя оказывается неизменно немного лучше метода градиентного спуска для данной матрицы A.