

COMPORTAMENTO ROBÓTICO EM UM SEGUE-LINHA COM DESVIO DE OBSTÁCULOS MÓVEIS

Trabalho de conclusão de curso, Técnico Integrado em Informática para Internet

Problemática

No mundo contemporâneo existem diversas situações onde os robôs estão em contato direto com os humanos, como na indústria, nos carros e até nos aviões. Portanto é preciso que se tomem algumas precauções para que não ocorra nenhum acidente grave envolvendo os humanos.

Problemática

Problemática

Para solucionar esse problema de forma exemplificativa, propõe-se a construção de uma programação para um robô, e observar sua resposta diante de intervenções externas e acontecimentos não previstos, tentando aperfeiçoar o algoritmo para que o robô esteja preparado para as mais diversas situações.

Fundamentação Teórica

Para que serve a robótica?

Estas máquinas podem se locomover em ambientes de difícil acesso, ruidosos e desconhecidos, oferecendo segurança sem arriscar a vida humana, porém para tanto, o sistema deve ser capaz de receber as informações vindas do meio em que estejam inseridas, através de seu sistema sensorial, e de modo semi ou completamente autônomo gerar os comandos que façam com que se desloquem pelo ambiente (Pitz e Velozo, 2008).

Fundamentação Teórica

Como ela funciona?

O sistema de sensoriamento consiste em um conjunto de sensores que estão ligados à um controlador do robô, esses sensores captam informações do ambiente. (Zanotto et. al., 2015).

Os sensores captam as informações do ambiente e as redireciona para o controlador interno do robô para que o mesmo informe aos atuadores o que eles devem realizar para cumprir a tarefa imposta.

Fundamentação Teórica

Fonte: http://legoev3.blogspot.com/2013/01/kit-lego-ev3-o-que-ha-de-novo.html

Fonte: Autoria própria

Tabela 1 – Tempo de conclusão da pista 1, em segundos.

PISTA 1	TEMPO
Teste 1	39,01
Teste 2	38,52
Teste 3	39,74
Média do percurso	38,42

Fonte: Autoria Própria

Tabela 2 – Tempo de conclusão da pista 2, em segundos.

PISTA 2	TEMPO
Teste 1	52,14
Teste 2	51,48
Teste 3	52,05
Média do percurso	51,89

Fonte: Autoria Própria

Tabela 3 – Tempo de conclusão da pista 3, em segundos.

ा abela 3 – Tempo de conclusão da pista ु, em segundos.	
PISTA 3	TEMPO
Teste 1	70,12
Teste 2	69,86
Teste 3	70,07
Média do percurso	70,01

Trabalhos Futuros

Destacam-se como trabalhos futuros o melhoramento da programação do desvio de obstáculo para que o robô execute a tarefa em menor tempo, e a implementação de mais sensores para que o robô possa identificar todo o ambiente em sua volta, podendo desta maneira ser mais eficaz em outras tarefas em que possa ser submetido.

