Denoising Diffusion Probabilistic Models \mathcal{O}

変分推論

正田 備也

masada@rikkyo.ac.jp

周辺尤度

変分下界 (variational lower bound)

变分事後分布

観測データのモデリング

周辺尤度 (marginal likelihood)

以下の結合分布 (joint distribution) を持つ確率モデルを考える。

$$p_{\theta}(\mathbf{x}_{0:T}) = p_{\theta}(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$$
 (1)

ただし、 \mathbf{x}_0 は観測データ、 $\{\mathbf{x}_t: t=1,\ldots,T\}$ は潜在的な確率変数である。式 $(\mathbf{1})$ が表すように、 \mathbf{x}_{t-1} の分布は \mathbf{x}_t だけに条件付けられている。そして、 \mathbf{x}_0 の対数周辺尤度は次のように書ける。

$$\log p_{\theta}(\mathbf{x}_0) = \log \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$
 (2)

周辺尤度

変分下界 (variational lower bound)

变分事後分布

観測データのモデリング

ELBO

Jensen の不等式は対数周辺尤度の下界を次のように与える。

$$\log p_{\theta}(\mathbf{x}_{0}) = \log \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$\geq \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} \equiv L_{\text{VLB}}$$
(3)

ただし $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$ は変分事後分布で、VAE 同様、観測データ \mathbf{x}_0 に条件付けられている。そしてモデルは、観測データの集合 $\mathcal{X} \equiv \{\mathbf{x}_0^{(1)},\dots,\mathbf{x}_0^{(N)}\}$ の上で、amortized な仕方で訓練される。 5/23

マルコフ性の仮定

条件付き分布の定義より、

$$q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})} \frac{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})} = \frac{q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})}$$

$$= q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1}|\mathbf{x}_{0}) = q_{\psi}(\mathbf{x}_{1:2}|\mathbf{x}_{0})$$

$$q_{\psi}(\mathbf{x}_{3}|\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{3},\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{2},\mathbf{x}_{1},\mathbf{x}_{0})} \frac{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})} \frac{q_{\psi}(\mathbf{x}_{1},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})}$$

$$= q_{\psi}(\mathbf{x}_{3},\mathbf{x}_{2},\mathbf{x}_{1}|\mathbf{x}_{0}) = q_{\psi}(\mathbf{x}_{1:3}|\mathbf{x}_{0})$$

$$\cdots$$

$$q_{\psi}(\mathbf{x}_1|\mathbf{x}_0) \prod_{t=0}^{\infty} q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\dots,\mathbf{x}_1,\mathbf{x}_0) = q_{\psi}(\mathbf{x}_T,\dots,\mathbf{x}_1|\mathbf{x}_0) = q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$$
(4)

ここで、 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\dots,\mathbf{x}_1,\mathbf{x}_0)=q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$ が $t=2,\dots,T$ について成り立つと仮定することによって、変分事後分布を単純化する。

このマルコフ性の仮定により、 $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$ は、次のように分解できることになる。

$$q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) = q_{\psi}(\mathbf{x}_1|\mathbf{x}_0) \prod_{t=1}^{T} q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$$
(5)

このとき、式 (3) の変分下界 L_{VIR} は、以下のように書き直せる。

$$L_{\text{VLB}} = \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{T}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{T}) d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$(6)$$

式 (6) に現れる $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$ についてベイズ則を使うと、次を得る。

$$q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}$$
(7)

(なぜこんなことをするのかは、p. 19 で明らかになる。) この式 (7) にもとづいて、式 (6) に現れる $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)$ を $\frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)q_{\psi}(\mathbf{x}_t|\mathbf{x}_0)}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_0)}$ で置き換えると、変分下界 L_{VLB} は以下のように書き換えられる。

$$L_{\text{VLB}} = \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{T}) d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \sum_{t=2}^{T} \log \frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$
(8)

(次のページに続く。)

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{T}) d\mathbf{x}_{1:T} + \sum_{t=2}^{T} \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} d\mathbf{x}_{1:T}$$

$$+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{T})}{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T} + \sum_{t=2}^{T} \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) d\mathbf{x}_{1:T} \equiv L_{T} + \sum_{t=2}^{T} L_{t-1} + L_{0}$$

$$(9)$$

 $L_{\mathsf{VLB}} = \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) \log p_{\theta}(\mathbf{x}_T) d\mathbf{x}_{1:T} + \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) \sum_{t=0}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)} d\mathbf{x}_{1:T}$

 $+ \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{0}) \cdots q_{\psi}(\mathbf{x}_{T-1}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \cdots q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$

+ $\int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) \log \frac{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)}{q_{\phi}(\mathbf{x}_1|\mathbf{x}_0)} d\mathbf{x}_{1:T}$

ここで、式 (7) より

$$q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t-2},\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{t-1},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{0})}$$

$$= \frac{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{0})}q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{t-2}|\mathbf{x}_{t-1},\mathbf{x}_{0})$$
(10)

同様に考えて、

$$\prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0})} \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})$$

$$(11)$$

両辺に $q_{\psi}(\mathbf{x}_1|\mathbf{x}_0)$ を掛けて

$$q_{\psi}(\mathbf{x}_1|\mathbf{x}_0) \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0) = q_{\psi}(\mathbf{x}_T|\mathbf{x}_0) \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$$
(12)

式 (5) より、これは $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0)$ に等しい。

$$L_{t-1} \equiv \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int \left(q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod_{t' \neq t} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'},\mathbf{x}_{0})\right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int \left(q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod_{t' \neq t} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'},\mathbf{x}_{0})\right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int \left(q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod_{t' \neq t} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'},\mathbf{x}_{0})\right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int \left(q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod_{t' \neq t} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'},\mathbf{x}_{0})\right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \int \left(q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod_{t' \neq t} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'},\mathbf{x}_{0})\right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

 $q_{\psi}(\mathbf{x}_{T}|\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{T-1}|\mathbf{x}_{T},\mathbf{x}_{0}) = \frac{q_{\psi}(\mathbf{x}_{T},\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{T-1},\mathbf{x}_{T},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})q_{\psi}(\mathbf{x}_{T},\mathbf{x}_{0})} = \frac{q_{\psi}(\mathbf{x}_{T-1},\mathbf{x}_{T},\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{0})}$ $=q_{\psi}(\mathbf{x}_{T-1},\mathbf{x}_T|\mathbf{x}_0)$ (14)

であるから

式 (12) より、式 (9) の L_{t-1} は下のように書き換えられる。

$$L_{t-1} = \int \left(q_{\psi}(\mathbf{x}_{T-1}, \mathbf{x}_{T} | \mathbf{x}_{0}) \prod_{t' \neq t \ \land \ t' < T} q_{\psi}(\mathbf{x}_{t'-1} | \mathbf{x}_{t'}, \mathbf{x}_{0}) \right) q_{\psi}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

 $= \int \left(q_{\psi}(\mathbf{x}_{T-1}|\mathbf{x}_{0}) \prod_{t' \neq t \ \land \ t' < T} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'}, \mathbf{x}_{0})\right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})} d\mathbf{x}_{1:T-1}$

同様に考えて

$$L_{t-1} = \int \left(q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0}) \prod_{t=1}^{t-1} q_{\psi}(\mathbf{x}_{t'-1}|\mathbf{x}_{t'},\mathbf{x}_{0}) \right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{1:t}$$
(15)

ここで、再び式 (12) を使うと

 $= \int \left(\frac{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})\right)q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\log\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}d\mathbf{x}_{t-1:t}$

 $= \int q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0}) \left(\int q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} d\mathbf{x}_{t-1} \right) d\mathbf{x}_{t}$

 $\equiv -\mathbb{E}_{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})} \left[D_{\mathsf{KI}} \left(q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) \right) \right]$

 $= \int \left(\frac{q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{0})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{0})}q_{\psi}(\mathbf{x}_{2}|\mathbf{x}_{0})\prod_{t=0}^{t-1}q_{\psi}(\mathbf{x}_{t'}|\mathbf{x}_{t'-1},\mathbf{x}_{0})\right)q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})\log\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})}d\mathbf{x}_{2:t}$

 $L_{t-1} = \int \left(\frac{q_{\psi}(\mathbf{x}_t|\mathbf{x}_0)}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_0)} q_{\psi}(\mathbf{x}_1|\mathbf{x}_0) \prod_{t'=2}^{t-1} q_{\psi}(\mathbf{x}_{t'}|\mathbf{x}_{t'-1},\mathbf{x}_0) \right) q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q_{\psi}(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)} d\mathbf{x}_{1:t}$

周辺尤度

変分下界 (variational lower bound)

变分事後分布

観測データのモデリング

変分事後分布の一つの設定方法

変分事後分布 $q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_{0}) = q_{\psi}(\mathbf{x}_{1}|\mathbf{x}_{0}) \prod_{t=2}^{T} q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})$ は、 $\psi \equiv \{\alpha_{t}: t=1,\ldots,T\}$ を パラメータとする以下のような多変量正規分布により構成されていると仮定する。

$$q_{\psi}(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t};\sqrt{\alpha_{t}}\mathbf{x}_{t-1},(1-\alpha_{t})\mathbf{I})$$
(17)

この仮定は、 $t=2,\ldots,T$ について $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)=q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-1})$ となることを含意する。

Appendix の式 (34) より、 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-2})$ は、下のように書き換えられる。

 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_{t-2}) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t \alpha_{t-1}} \mathbf{x}_{t-2}, (1 - \alpha_t \alpha_{t-1})\mathbf{I})$

同じ議論を繰り返すと、 $q_{\psi}(\mathbf{x}_t|\mathbf{x}_0)$ は、下のように書き換えられる。

$$q_{\psi}(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})$$
(19)

(18)

ただし、 $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ である。この $q_{\psi}(\mathbf{x}_t|\mathbf{x}_0)$ からは、簡単にサンプルを得られる(式 (24) を参照)。よって、式 (16) の期待値は、モンテカルロ近似できる。

 ψ を自由パラメータとみなすことにし、これ以降、 ψ を notations から脱落させることにする。

式 (17) と式 (19) より、式 (16) に現れる $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ は、以下のように書き換えられる。

$$q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) = \frac{q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0})q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \quad \text{(based on Eq. (7))}$$

$$\propto \exp\left(-\frac{1}{2}\left(\frac{(\mathbf{x}_{t}-\sqrt{\alpha_{t}}\mathbf{x}_{t-1})^{2}}{1-\alpha_{t}} + \frac{(\mathbf{x}_{t-1}-\sqrt{\alpha_{t-1}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t-1}} - \frac{(\mathbf{x}_{t}-\sqrt{\bar{\alpha}_{t1}}\mathbf{x}_{0})^{2}}{1-\bar{\alpha}_{t}}\right)\right)$$

$$\propto \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_{t}}{1-\alpha_{t}} + \frac{1}{1-\bar{\alpha}_{t-1}}\right)\mathbf{x}_{t-1}^{2} - 2\left(\frac{\sqrt{\alpha_{t}}}{1-\alpha_{t}}\mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)\mathbf{x}_{t-1}\right)\right)$$
(20)

つまり、 $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ は正規分布であることが分かる。

そこで、その平均を $ilde{m{\mu}}(\mathbf{x}_t,\mathbf{x}_0)$ 、分散を $ilde{eta}_t$ と書くことにする。つまり

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) \equiv \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t)$$
(21)

と設定する。

よって

 $\mathbf{x}_{\ell} = \sqrt{\bar{\alpha}_{\ell}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{\ell}} \boldsymbol{\epsilon}$ for $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

 $\mathbf{x}_0 = \frac{\mathbf{x}_t}{\sqrt{\bar{\alpha}_t}} - \frac{\sqrt{1-\alpha_t}}{\sqrt{\bar{\alpha}_t}} \epsilon \text{ for } \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

(23)

(24)

(25)

16/23

式 (19) にもとづくと、 \mathbf{x}_t は、次のように reparameterize できる。

 $=\frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t+\frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)}{1-\bar{\alpha}_t}\mathbf{x}_0$

 $\tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \mathbf{x}_0) = \left(\frac{\sqrt{\alpha_t}}{1 - \alpha_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0\right) / \left(\frac{\alpha_t}{1 - \alpha_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)$

 $= \left(\frac{\sqrt{\alpha_t}}{1-\alpha_t}\mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_{t-1}}\mathbf{x}_0\right)\frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t}(1-\alpha_t)$

 $\tilde{\beta}_t = 1 / \left(\frac{\alpha_t}{1 - \alpha_t} + \frac{1}{1 - \bar{\alpha}_{t-1}} \right) = \frac{(1 - \alpha_t)(1 - \bar{\alpha}_{t-1})}{\alpha_t - \alpha_t \bar{\alpha}_{t-1} + 1 - \alpha_t} = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} (1 - \alpha_t)$

式 (25) を式 (23) に代入することで、 $\tilde{\mu}$ を以下のように書き換えることができる。

$$\tilde{\boldsymbol{\mu}}(\mathbf{x}_{t}, \boldsymbol{\epsilon}) = \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_{t})}{1 - \bar{\alpha}_{t}} (\frac{\mathbf{x}_{t}}{\sqrt{\bar{\alpha}_{t}}} - \frac{\sqrt{1 - \bar{\alpha}_{t}}}{\sqrt{\bar{\alpha}_{t}}} \boldsymbol{\epsilon})$$

$$= \left(\frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} + \frac{1 - \alpha_{t}}{(1 - \bar{\alpha}_{t})\sqrt{\alpha_{t}}}\right) \mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}\sqrt{\alpha_{t}}} \boldsymbol{\epsilon}$$

$$= \frac{1}{\sqrt{\alpha_{t}}} \left(\left(\frac{\alpha_{t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} + \frac{1 - \alpha_{t}}{1 - \bar{\alpha}_{t}}\right) \mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}\right)$$

$$= \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}\right)$$

(26)

周辺尤度

变分下界 (variational lower bound)

变分事後分布

観測データのモデリング

観測データのモデリング

ここで初めて、生成モデルの詳細を以下のように指定する。

$$p_{\theta}(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I}) \tag{27}$$

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$
(28)

ここで、 $\Sigma_{\theta}(\mathbf{x}_t,t) = \sigma_t^2 \mathbf{I}$ と仮定する([1] を参照)。

式 (21) と式 (28) より、式 (16) にある KL 情報量は、一つの正規分布から別の正規分布への KL 情報量であると分かる。したがって、式 (16) の L_{t-1} は、以下のように書き直せる。 1

$$L_{t-1} = -\mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\frac{1}{2\sigma_t^2} \|\tilde{\boldsymbol{\mu}}(\mathbf{x}_t, \boldsymbol{\epsilon}) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t)\|^2 \right] + const. \tag{29}$$

¹https://scoste.fr/posts/dkl_gaussian/

式 (26) を使うと、 L_{t-1} は、さらに、以下のように書き直せる。

$$L_{t-1} = -\mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \left[\frac{1}{2\sigma_t^2} \left\| \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon \right) - \mu_{\theta}(\mathbf{x}_t, t) \right\|^2 \right] + const.$$
 (30)

ここで、 $\mu_{\theta}(\mathbf{x}_t,t)$ を、次のように parameterize することを考える([1] を参照)。

$$\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right)$$
(31)

ただし、 ϵ_{θ} は関数である。式 (31) の parameterization を使うことで L_{t-1} が以下のように書き換えられることより、この関数 ϵ_{θ} は、 ϵ を予測する役割を果たすと言える。

$$L_{t-1} = -\mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{(1 - \alpha_t)^2}{2\sigma_t^2 (1 - \bar{\alpha}_t)} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \|^2 \right] + const.$$
 (32)

なお、上の式では、 \mathbf{x}_t を式 (24) にもとづいて \mathbf{x}_0 の式で置き換えている。これにともなって、外側の期待値も、標準正規分布に関する期待値に書き換えてある。(つまり、[1] の Algorithm 1 の 4 行目は、上式の期待値をモンテカルロ近似するためのサンプリングになっている。) 20 / 2

さて、次に、式 (9) の L_T を考える。

$$L_T \equiv \int q_{\psi}(\mathbf{x}_{1:T}|\mathbf{x}_0) \log \frac{p_{\theta}(\mathbf{x}_T)}{q_{\psi}(\mathbf{x}_T|\mathbf{x}_0)} d\mathbf{x}_{1:T}$$
(33)

ノイズ分布 $p_{\theta}(\mathbf{x}_T)$ と近似事後分布 $q_{\psi}(\mathbf{x}_T|\mathbf{x}_0)$ は、trainable なパラメータを持たない。したがって、 L_T は定数と見なせる。

最後に、式 (9) の L_0 を考える。 L_0 をどのように最大化するかは、 $p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)$ をどのように指定するかに依存する。そして、この $p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)$ は、直接的に観測データをモデル化する分布である。例えば、[1] の Section 3.3 を参照されたい。

注意 ここでは、denoising diffusion probabilistic models の変分推論だけを議論している。このモデルがどこから来たのかについては、議論していない。(この点については [2] を参照。)

周辺尤度

变分下界 (variational lower bound)

变分事後分布

観測データのモデリング

$$\int \exp\left(-\frac{(x-ay)^2}{2s^2} - \frac{(y-bz)^2}{2t^2}\right) dy = \int \exp\left(-\frac{t^2(x-ay)^2 + s^2(y-bz)^2}{2s^2t^2}\right) dy$$

$$= \int \exp\left(-\frac{(s^2 + t^2a^2)y^2 - 2(s^2bz + t^2ax)y + t^2x^2 + s^2b^2z^2}{2s^2t^2}\right) dy$$

$$= \exp\left(-\frac{t^2x^2 + s^2b^2z^2}{2s^2t^2}\right) \int \exp\left(-\frac{s^2 + t^2a^2}{2s^2t^2}\left(y^2 - \frac{2(s^2bz + t^2ax)}{s^2 + t^2a^2}y\right)\right) dy$$

$$= \exp\left(-\frac{t^2x^2 + s^2b^2z^2}{2s^2t^2} + \frac{(s^2bz + t^2ax)^2}{2s^2t^2(s^2 + t^2a^2)}\right) \int \exp\left(-\frac{s^2 + t^2a^2}{2s^2t^2}\left(y - \frac{s^2bz + t^2ax}{s^2 + t^2a^2}\right)^2\right) dy$$

$$\propto \exp\left(-\frac{s^2t^2x^2 + s^4b^2z^2 + t^4a^2x^2 + s^2t^2a^2b^2z^2 - t^4a^2x^2 - 2s^2t^2abzx - s^4b^2z^2}{2s^2t^2(s^2 + t^2a^2)}\right)$$

$$= \exp\left(-\frac{x^2 - 2abzx + a^2b^2z^2}{2(s^2 + t^2a^2)}\right) = \exp\left(-\frac{(x - abz)^2}{2(s^2 + t^2a^2)}\right)$$
(34)

- [1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. CoRR, abs/2006.11239, 2020.
- [2] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli.

Deep unsupervised learning using nonequilibrium thermodynamics.

CoRR, abs/1503.03585, 2015.