PaSt 1 – Cvičení 12 2022–05–16, 10:40

Intervalové odhady

- 1. Máme jedno měření $X \sim \mathcal{N}(\mu, 1)$. (Parametrem je tedy $\vartheta = \mu$.)
 - a) Najděte jednostranný intervalový odhad $\mu \in [t, +\infty)$ se spolehlivostí 0.95...
 - b) Najděte oboustranný intervalový odhad pro μ se spolehlivostí 0.95.
 - c) Místo jednoho měření jich provedeme n (pochopitelně nezávislých). Jaký bude teď intervalový odhad pro $\mu?$
 - d) Nechť X má stále střední hodnotu μ a rozptyl 1, ale není už nutně normální. Co se změní?

Testování hypotéz

- 2. Máme jedno měření $X \sim \mathcal{N}(\mu, 1)$. Chceme ověřit hypotézu $H_0: \mu = 5$ s hladinou významnosti $\alpha = 0.05$.
 - a) Jak zvolíme kritický obor množinu řešení, kde hypotézu zamítneme?
 - b) Místo jednoho měření jich nyní mějme n (pochopitelně nezávislých). Jaký je kritický obor pro $\overline{X_n}$?
 - c) Pokud je ve skutečnosti $\mu=4$ a mám
en=10měření, jaká je pravděpodobnost, že hypotézu nezamítneme?
 - d) Nechť X má stále střední hodnotu μ a rozptyl 1, ale už není nutně normální. Co se změní?

Srovnejte podobnost vašeho řešení s Příkladem 1.

Bodové odhady

- 3. Máme náhodný výběr $X_1, \ldots X_n \sim \mathcal{U}(0, \vartheta)$.
 - a) Navrhněte bodový odhad θ momentovou metodou.
 - b) Navrhněte bodový odhad θ metodou maximální věrohodnosti.
 - c) Pro každý z nich zjistěte, jestli je nestranný a konzistentní.
 - d) Pro každý z nich spočtěte střední kvadratickou odchylku (MSE).
 - e) Který odhad je lepší? Napadá vás nějaký ještě lepší?
- 4. Dokažte, že výběrový průměr $s_n = (x_1 + \dots x_n)/n$ je nestranným odhadem střední hodnoty.
- 5. Odhadneme rozptyl statistikou $q_n = \frac{1}{n} \sum_i (x_i s_n)^2$. Ukažte, že to není nestranný odhad. V čem je problém a jak to napravíme?

PaSt 1 – Cvičení 12 2022–05–16, 10:40

Intervalové odhady

- 1. Máme jedno měření $X \sim \mathcal{N}(\mu, 1)$. (Parametrem je tedy $\vartheta = \mu$.)
 - a) Najděte jednostranný intervalový odhad $\mu \in [t, +\infty)$ se spolehlivostí 0.95...
 - b) Najděte oboustranný intervalový odhad pro μ se spolehlivostí 0.95.
 - c) Místo jednoho měření jich provedeme n (pochopitelně nezávislých). Jaký bude teď intervalový odhad pro μ ?
 - d) Nechť X má stále střední hodnotu μ a rozptyl 1, ale není už nutně normální. Co se změní?

Testování hypotéz

- 2. Máme jedno měření $X \sim \mathcal{N}(\mu, 1)$. Chceme ověřit hypotézu $H_0: \mu = 5$ s hladinou významnosti $\alpha = 0.05$.
 - a) Jak zvolíme kritický obor množinu řešení, kde hypotézu zamítneme?
 - b) Místo jednoho měření jich nyní mějme n (pochopitelně nezávislých). Jaký je kritický obor pro $\overline{X_n}$?
 - c) Pokud je ve skutečnosti $\mu=4$ a máme n=10 měření, jaká je pravděpodobnost, že hypotézu nezamítneme?
 - d) Nechť X má stále střední hodnotu μ a rozptvl 1, ale už není nutně normální. Co se změní?

Srovnejte podobnost vašeho řešení s Příkladem 1.

Bodové odhady

- 3. Máme náhodný výběr $X_1, \ldots X_n \sim \mathcal{U}(0, \vartheta)$.
 - a) Navrhněte bodový odhad θ momentovou metodou.
 - b) Navrhněte bodový odhad θ metodou maximální věrohodnosti.
 - c) Pro každý z nich zjistěte, jestli je nestranný a konzistentní.
 - d) Pro každý z nich spočtěte střední kvadratickou odchylku (MSE).
 - e) Který odhad je lepší? Napadá vás nějaký ještě lepší?
- 4. Dokažte, že výběrový průměr $s_n = (x_1 + \dots x_n)/n$ je nestranným odhadem střední hodnoty.
- 5. Odhadneme rozptyl statistikou $q_n=\frac{1}{n}\sum_i(x_i-s_n)^2$. Ukažte, že to není nestranný odhad. V čem je problém a jak to napravíme?