

Ângela Terumi Fushita Vitor Vieira Vasconcelos

Introdução ao uso de dados espaciais para estudos ambientais Programa de Pós-Graduação em Ciência e Tecnologia Ambiental Universidade Federal do ABC

Abril, 2019

Santo André - SP

Próximas 3 aulas

- Análise de Pontos
- Análise de Áreas
- Geoestatística

Objetivo

Adquirir os conhecimentos e habilidades básicas relacionados a análise de pontos no ambiente R

Conteúdo

- Centro médio e distância padrão
- Análise de agrupamento
- Mapas de kernel
- Mapas de proximidade

Materiais de aula disponíveis em:

https://app.box.com/s/7uptxj9qkl3akccd322fj1fxujtobvga

Baixar os dados em: D:/R_CTA/aula7/

Leitura Prévia

Capítulos

- 2 Análise de Eventos Pontuais
- 3 Análises de Superfícies por Geoestatística Linear

DRUCK, S.; CARVALHO, M. S.; CÂMARA, G.; MONTEIRO, A.V.M (eds). **Análise Espacial de Dados Geográficos**. Brasília: EMBRAPA, 2004. Disponível em: http://www.dpi.inpe.br/gilberto/livro/analise/

Livros de Referência

Baddeley, A., Rubak, E. and Turner, R., 2015. **Spatial point patterns: methodology and applications with R**. Chapman and Hall/CRC.

PDF: https://yadi.sk/i/rdC4-6m-XpjvPQ

Site de apoio: http://book.spatstat.org/

Conteúdos:

- Formato espacial ppp (pacote spatstat)
- Análise de agrupamento
- Mapas de kernel

Livros de Referência

Bivand, Roger. S., Pebesma, E. J., Gomez-Rubio, V., & Pebesma, E. J. (2013). **Applied spatial data analysis with R**. New York: Springer..

https://app.box.com/s/uti6bqyiscqpoqu2dsmd06yk5xw5m9qw

Site de apoio: https://asdar-book.org/

- Conteúdo de referência
 - Dados vetoriais e raster (formato sp)
 - Interpolação e Geoestatística
 - Autocorrelação espacial

Livros de Referência

Gimond, Manuel. **Intro to GIS and Spatial Analysis**. Colby Arts College, 2019 . https://mgimond.github.io/Spatial/index.html

- Conteúdo:
 - Análise de padrões pontuais
 - Autocorrelação espacial
 - Interpolação e geoestatística

Lansley, Guy; Chesire, James. (2016) **An introduction to spatial data analysis and visualisation in R**. Consumer Data Research Centre.

http://www.spatialanalysisonline.com/An%20Introduction%20to%20Spatial%20Data%20Analysis%20in%20R.pdf

- Conteúdo:
 - Mapas de kernel
 - Autocorrelação espacial
 - Interpolação

Tutoriais

https://www.rspatial.org/analysis/index.html

Spatial data analysis

- Introduction
- Scale and distance
 - Introduction
 - Scale and resolution
 - Zonation
 - Distance
 - Distance matrix
 - Distance for longitude/latitude coordinates
 - Spatial influence
 - Adjacency
 - Two nearest neighbours
 - Weights matrix
 - Spatial influence for polygons
 - Raster based distance metrics
 - distance
 - cost distance

Principais pacotes para análise de pontos em R

- Centro médio e distância padrão
 - aspace
- Análise de agrupamentos
 - spatstats
- Mapas de kernel
 - spatstats
 - adehabitatHR (distribuição de utilização)
- Mapas de distância
 - spatstat
 - gdistance

Bases de dados pontuais

- Ocorrência de Espécies (Global)
 - http://www.gbif.org/occurrence/search
- Queimadas (América do Sul)
 - http://www.inpe.br/queimadas/bdqueimadas/
- Cavernas (Nacional)
 - http://www.icmbio.gov.br/cecav/canie.html
- Dados de poços SIAGAS (Nacional)
 - http://siagasweb.cprm.gov.br/layout/pesquisa_complexa.php
- Lançamentos imobiliários, escolas e equipamentos de saúde (Região Metropolitana de São Paulo)
 - http://www.fflch.usp.br/centrodametropole/716
- Infraestrutura Urbana e Áreas Contaminadas (Município - São Paulo)

http://geosampa.prefeitura.sp.gov.br/

http://dados.prefeitura.sp.gov.br/ca/dataset/areas-contaminadas/resource/93908e9d-002e-461b-bdb8-3fab485b3302

Construção de Bases de dados pontuais

- Geocodificação de bases de dados com endereços
 - geocode() pacote ggmap
- Centróide de polígonos
 - st_centroid() pacote sf

Conteúdo

- Centro médio e distância padrão
- Análise de agrupamento
- Mapas de kernel
- Mapas de proximidade

Medidas centrográficas espaciais

- Incêndios florestais em 2003 em San Diego
- Perguntas
 - Onde é a localização media dos incêndios?
 - Quão dispersos eles são?
 - Onde você colocaria uma estação de combate a incêndios florestais?

O que podemos fazer?

Centro médio

- Calcular o centro médio
 - Centro médio de X: $\bar{X}_C = \sum x$
 - Centro médio de Y: $\bar{Y}_C = \frac{\sum y}{n}$

$$\overline{X}_C = \frac{(580 + 380 + 480 + 400 + 500 + 550 + 300)}{7}$$

$$= 455,71$$

$$\overline{Y}_C = \frac{(700 + 650 + 620 + 500 + 350 + 250 + 200)}{7}$$

$$= 467,14$$

Distância Padrão

- A distância padrão mede dispersão
 - Distância média ao centro médio
 - Similar ao desvio padrão
 - Fórmula

Teorema de Pitágoras

hipotenusa² = cateto² + cateto² $d_{AB}^2 = (X_B - X_A)^2 + (Y_B - Y_A)^2$

Fórmula da distância entre dois pontos

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

matematikanakabec

$$S_D = \sqrt{\frac{\sum (X_i - \overline{X}_c)^2 + \sum (Y_i - \overline{Y}_c)^2}{n}} \quad \leftarrow \quad \text{Definição}$$

$$S_D = \sqrt{\left(\frac{\sum X_i^2}{n} - \overline{X}_c^2\right) + \left(\frac{\sum Y_i^2}{n} - \overline{Y}_c^2\right)} \quad \longleftarrow \quad \text{Computação}$$

Distância Padrão

Centro médio e distância padrão ponderados

□ E se os incêndios de maior área tivessem maior influência no centro médio?

$$\overline{X}_{wc} = \frac{\sum f_i X_i}{\sum f_i}$$

$$\overline{Y}_{wc} = \frac{\sum f_i Y_i}{\sum f_i}$$

$$S_{W\!D} = \sqrt{\frac{\sum f_i (X_i - \overline{X}_{wc})^2 + \sum f_i (Y_i - \overline{Y}_{wc})^2}{\sum f_i}} - \text{Definição}$$

$$S_{WD} = \sqrt{(\frac{\sum f_i X_i^2}{\sum f_i} - \overline{X}_{wc}^2) + (\frac{\sum f_i Y_i^2}{\sum f_i} - \overline{Y}_{wc}^2)} \leftarrow Computação$$

Distância Ponderada

Análise Final

Elipse de Distância Padrão

Atividade

Novo projeto

 Criar um novo script de programação

Abrir o script aula7.R

Configurar o diretório de trabalho

• Exemplo de código:

setwd("D:/R_CTA/aula7")

Confirmando o diretório de trabalho

getwd()

• É sempre recomendável verificar atualizações nos pacotes instalados antes de começar a trabalhar

Comando: update.packages(ask=FALSE)

Pacotes básicos:

install.packages("raster")
install.packages("sf")
install.packages("rgdal")
library(raster)
library(sf)
library(rgdal)

outros pacotes que vamos usar ao longo da aula

```
#install.packages("aspace")
#install.packages("spatstat")
#install.packages("maptools")
#install.packages("adehabitatHR")
#install.packages("tmap")
#library(aspace)
#library(spatstat)
#library(maptools)
#library(adehabitatHR)
#library(tmap)
```

Recomendação

Sempre trabalhar com projeção UTM (metros) para análise de pontos

Medidas centrográficas Pacote "aspace"

- Medidas centrais:
 - Centro médio
 - Centro mediano
 - Ponto central
 - Centro de menor distância
- Medidas de dispersão
 - Círculo de distância padrão
 - Retângulo (box) de distância padrão
 - Elipse de distância padrão

Medidas centrográficas Pacote "aspace"

- Arquivos de entrada:
 - Tabela (data.frame) com coordenadas x e y
 - Vetor com um atributo numérico com o mesmo número de pontos (opcional)
- Articulação com o pacote "shapefiles"
 - Montar shapefiles a partir de "tijolinhos" de informação
 - É possível montar arquivo "sf" a partir desses "tijolinhos"

Adicionar dados de entrada

plot(cetesb, pch=17, col=2, add=TRUE)
Triângulo Vermelho

Preparar dados de entrada

Instalar o pacote aspace

install.packages("aspace")

library(aspace)

Criar data.frame com coordenadas dos poços

pocos_xy <- st_coordinates(pocos)
View(pocos_xy)</pre>

Centro Médio e Distância padrão

```
calc_sdd(points = pocos_xy)
```

\$id [1] 1

\$calccentre [1] TRUE

\$weighted [1] FALSE

\$CENTRE.x [1] 342882

\$CENTRE.y [1] 7379050

\$SDD.radius [1] 7938.649

\$SDD.area [1] 197989900

Centro Médio e Distância padrão

```
dev.new()

plot_sdd(centre.pch=18,centre.col=6,sdd.col=7,titletxt="Pocos")

Losângulo Rosa Círculo Título
amarelo

plot(st_geometry(mun), add=TRUE)

plot(cetesb, pch=17, col=2, add=TRUE)
```


Centro Médio e Elipse padrão

calc_sde(points = pocos_xy)
plot_sde(centre.pch=18,centre.col=6,sde.col=7,titletxt="Pocos")
plot(st_geometry(mun), add=TRUE)
plot(cetesb, pch=17, col=2, add=TRUE)

Medidas ponderadas

View(pocos)

Vazão Estática: Vazão que o poço consegue manter de maneira constante < 200m de áreas contaminadas

•	ponto [‡]	latitude_d [‡]	longitude_ [‡]	utme ‡	utmn ‡	municipio [‡]	vazao_esta 🗦	contamina ‡	geometry
1	3500005053	-23.68611	-46.59194	337670	7379600	Diadema	NA	1	c(337677.11656145 ^
2	3500005090	-23.67917	-46.59083	337780	7380370	Diadema	10.50	0	c(337781.84038054
3	3500005099	-23.68333	-46.62833	333960	7379860	Diadema	18.00	0	c(333962.51831638
4	3500005102	-23.67694	-46.58194	338686	7380636	Diadema	4.00	1	c(338685.68535528
5	3500005105	-23.69083	-46.59194	337680	7379060	Diadema	88.80	0	c(337682.95523235
6	3500005106	-23.69139	-46.59389	337460	7379000	Diadema	NA	0	c(337485.39433492

· Vamos usar apenas os poços com dados de vazão

pocos_vazao<-subset(pocos, is.na(pocos\$vazao_esta)==FALSE)</pre>

View(pocos_vazao)

Verifica se o valor do atributo não é nulo (NA)

@	aula7.R* ×	pocos_vazao ×	pocos ×							
\										
•	ponto ‡	latitude_d ‡	longitude_ [‡]	utme ‡	utmn ‡	municipio [‡]	vazao_esta 🗦	contamina ‡	geometr	
2	3500005090	-23.67917	-46.59083	337780	7380370	Diadema	10.50	0	c(337781	
3	3500005099	-23.68333	-46.62833	333960	7379860	Diadema	18.00	0	c(333962	
4	3500005102	-23.67694	-46.58194	338686	7380636	Diadema	4.00	1	c(338685	
5	3500005105	-23.69083	-46.59194	337680	7379060	Diadema	88.80	0	c(337682	

Medidas ponderadas

Preparando os dados

```
pocos_vazao_xy <- st_coordinates(pocos_vazao)
vazao <- pocos_vazao$vazao_esta
View(vazao)</pre>
```


Medidas ponderadas

Ponderado

Pesos

calc_sde(points = pocos_vazao_xy, weighted=TRUE, weights=vazao)
plot_sde(centre.pch=18,centre.col=6,sde.col=7,titletxt="Pocos")
plot(st_geometry(mun), add=TRUE)
plot(cetesb, pch=17, col=2, add=TRUE)

Arquivos secundários

View(sdeatt)

View(sdeloc)

Coordenadas do polígono que forma a elipse de distância padrão

aula7	7.R* ×	sdeloc ×	sdeatt
\Leftrightarrow	2 Y	Filter	
*	id ‡	x	y
1	1	349205.2	7378543
2	1	349209.2	7378661
3	1	349210.9	7378779
4	1	349210.3	7378896

Converter para Simple Features Pacote **sf**

Simple feature geometry

Converter para Simple Features

centro_medio <- st_as_sf(sdeatt, coords=c("CENTRE.x","CENTRE.y"), crs=st_crs(pocos))

Base de dados Coordenadas

Projeção

coordenadas_elipse <- sdeloc[2:3]
View(coordenadas_elipse)</pre>


```
elipse_sfg <- st_polygon(list(as.matrix(coordenadas_elipse)))
elipse_sfc <- st_sfc(elipse_sfg, crs=st_crs(pocos))
elipse_sf <- st_sf(elipse_sfc)</pre>
```

Visualizar

Visualizar

Exercício 1

 Calcule, exporte e visualize o centro médio e a elipse padrão das áreas contaminadas do ABC, comparando com localização da CETESB

Conteúdo

- Centro médio e distância padrão
- Análise de agrupamento
- Mapas de kernel
- Mapas de proximidade

Normal

Aleatório

Regular

Estacionário: pontos distribuídos de forma homogênea (regular ou aleatória)

Não-estacionário: pontos se concentram em uma região do mapa

Isotrópico: pontos são distribuídos em todas as direções do mapa

- Elipse de distância padrão = círculo pefeito no centro do mapa
- Exemplo: pode rodar o mapa que o padrão não muda

Não isotrópico: pontos se concentram em uma direção

Discuta se as imagens a seguir são estacionárias ou isotrópicas

ESRI. Average Nearest Neighbor (Spatial Statistics)

Consideração da área total de estudo

Concentrado

Disperso

Vizinho mais próximo

$$\hat{G}(h) = \frac{\#(d(u_i, u_j) \le h)}{n}$$

h = distância # = número de eventos $d(u_i, u_j) = distância entre os pontos u_i e u_j$ n = total de pontos

Vizinho mais próximo

Função K de Ripley

Mais robusto que o método do Vizinho mais Próximo

$$L(d) = \sqrt{\frac{A\sum\limits_{i=1}^{n}\sum\limits_{j=1,j\neq i}^{n}k(i,j)}{\pi n(n-1)}}$$

d = distância

A = área de estudo

K(i,j) = peso -> se a distância < "d", então peso é um, senão o peso é zero n = número total de pontos na área de estudo

Função K de Ripley

Função K de Ripley

Pense no monitoramento de cães selvagens

- Escala micro: os cães da mesma matilha estão próximos
- Escala **macro**: as matilhas se mantém em territórios regularmente espaçados

Análise de Lacunaridade

Plotnick, R. E., Gardner, R. H., & O'Neill, R. V. (1993). Lacunarity indices as measures of landscape texture. *Landscape ecology*, 8(3), 201-211.

Análise de Lacunaridade

Plotnick, R. E., Gardner, R. H., & O'Neill, R. V. (1993). Lacunarity indices as measures of landscape texture. *Landscape ecology*, 8(3), 201-211.

Análise de Transectos Lineares

Plotnick, R. E., Gardner, R. H., & O'Neill, R. V. (1993). Lacunarity indices as measures of landscape texture. *Landscape ecology*, 8(3), 201-211.

Extendendo os padrões de agregação

Padrões de agregação em

- 3 dimensões (cubo)
- 4 ou mais dimensões

Espaciais, mistas ou não-espaciais

Formatos do Pacote spatstat

- ppp (point process pattern)
 - coordenadas + extensão
 - marks (marca) = atributo
- owin (observation window)
 - área de interesse
- im (image)
 - raster

Criando um objeto ppp

Coordenadas

arquivo_ppp <- ppp(x, y, xrange, yrange, marks=m)

<u>Área de</u>

<u>interesse</u>

(vetor ou tabela)

Exemplo:

arquivo_ppp <- with(fp, ppp(x, y, c(-5,5), c(-8,2), marks=diameter))

Conversões de formato

• Função "as" do pacote "maptools"

sf para sparquivo_sp <- as(arquivo_sf, "Spatial")

sp para ppparquivo_ppp <- as(arquivo_sp, "ppp")

sp para sfarquivo_sf <- st_as_sf(arquivo_sp)

Preparando dados

```
install.packages("maptools")
install.packages("spatstat")
library(maptools)
library(spatstat)
pocos_sp <- as(pocos, "Spatial")
pocos_sp</pre>
```

class : SpatialPointsDataFrame

features: 833

extent : 333653, 368603, 7362285, 7388622 (xmin, xmax, ymin, ymax) coord. ref. : +proj=utm +zone=23 +south +ellps=GRS80 +units=m +no_defs

variables: 7

names : ponto, latitude_d, longitude_, utme, utmn, municipio, vazao_esta

min values: 3500005032, -23.60500, -46.28944, 333650, 7362290, Diadema, 0.10

max values : 3500058742, -23.84278, -46.63139, 368603, 7388630, Sao caetano do sul, 200.00

Preparando dados

pocos_ppp <- as(pocos_sp,"ppp")
pocos_ppp</pre>

Marked planar point pattern: 833 points

Mark variables: ponto, latitude_d, longitude_, utme, utmn, municipio, vazao_esta

window: rectangle = [333653, 368603] x [7362285, 7388622] units

View(pocos_ppp\$marks)

aula7.R* × pocos_ppp\$marks ×										
$\Leftrightarrow \Rightarrow$	↓ □ ▼ Filter									
^	ponto [‡]	latitude_d ‡	longitude_ ‡	utme ‡	utmn ‡	municipio ÷	vazao_esta 💠			
5	3500005105	-23.69083	-46.59194	337680	7379060	Diadema	88.80			
6	3500005106	-23.69139	-46.59389	337460	7379000	Diadema	NA			
7	3500005107	-23.70972	-46.59694	337170	7376970	Diadema	25.00			
8	3500005119	-23.70305	-46.60861	335980	7377700	Diadema	0.50			

Preparando os dados

pocos_ppp_unmark <- unmark(pocos_ppp)
plot(pocos_ppp_unmark)</pre>

Função G

pocos_g <- envelope(pocos_ppp_unmark, fun=Gest)</pre>

dev.new()
plot(pocos_g)

Função K

pocos_k <- envelope(pocos_ppp_unmark, fun=Kest)</pre>

plot(pocos_k)

Função F

pocos_f <- envelope(pocos_ppp_unmark, fun=Fest)</pre>

plot(pocos f)

Exercício 2

 Fazer a análise de agrupamento para as áreas contaminadas do ABC

Conteúdo

- Centro médio e distância padrão
- Análise de agrupamento
- Mapas de kernel
- Mapas de proximidade

Mapa de Pontos de Focos de Queimada

Mapa de kernel de Focos de Queimada

Kazmierczak, M. 2015. Queimadas em Cana-de-Açúcar: Monitoramento e Prevenção. MundoGeo. Em: http://mundogeo.com/blog/2015/09/28/queimadas-em-areas-de-cana-de-acucar-monitoramento-e-prevencao-2/

CÂMARA, Gilberto; CARVALHO, Marilia Sá. Análise espacial de eventos. Em: Análise espacial de dados geográficos. Embrapa Cerrados, Planaltina, p. 53-122, 2004.

ODDI, G. 2014. Mapa de calor: como atuam os candidatos ao meio-campo ofensivo da seleção de Felipão. ESPN. Em: http://espn.uol.com.br/post/388493_mapa-de-calor-como-atuam-os-candidatos-ao-meio-campo-ofensivo-da-selecao-de-felipao

Comparação de Zonas Quentes e Frias

SANTOS, L.S. 2014. Geoprocessamento aplicado a gestão e análise das ocorrências de incêndios urbanos no centro histórico de Belém-PA - 2009 a 2011. Faculdade Internacional de Curitiba.

Quando vale a pena utilizá-los?

 Quando a concentração de pontos em uma mapa faz com que sua visualização fique confusa

Ex: Mapa de pontos de queimada

 Para estimar a possibilidade de encontrar um certo evento no espaço, dada uma amostra de pontos inicial

Ex: Como Neymar deve ser comportar no próximo jogo?

Tipos de resposta mapeada

- Densidade:
 - focos de queimada / km²

- chance (%) do Neymar se encontar em um ponto do campo
- Qualitativa: Baixa / Média / Alta
 - Esconde informações do leitor

Pixel do raster Ponto peso do ponto para o pixel do raster distância do do pixel do raster até o ponto

Amberg, B. 2008. A Range of Different Kernels. Em: https://commons.wikimedia.org/wiki/File:Kernels.svg

BERGAMASCHI, R. B. SIG Aplicado a segurança no trânsito - Estudo de Caso no município de Vitória – ES. Universidade Federal do Espírito Santo – UFES, 2010.

Somando o kernel de cada ponto

-10

Diferentes Raios para o Kernel

Search radius = 1000 feet

E então, qual raio de Kernel escolher?

- 1ª abordagem: Que padrão você quer analisar?
 - Transições graduais
 - Pequenos agrupamentos

Raios maiores

Raios menores

- 2ª abordagem: Você quer um mapa informativo
 - O raio que mostre a maior diferenciação espacial entre as áreas
 - Um bom início seria testar um raio igual à distância padrão
 - Mapas de Kernel Adaptativo
- 3ª abordagem: Você quer um mapa válido
 - Caso sejam adicionados mais dados, o padrão deve ficar semelhante
 - Métodos de Estimação de Kernel

Mapas de kernel no R

Raio

```
pocos_kernel_1000 <- density(pocos_ppp, sigma = 1000)
plot(pocos_kernel_1000)
plot(st_geometry(mun), add=TRUE)</pre>
```


Mapas de kernel no R

Orientação do cubo

persp(pocos_kernel_1000, theta = 320, phi=40, colmap=terrain.colors(128), shade=0.2)

Cores

Sombra de iluminação

Exercício 3

 Fazer mapas de kernel com raio de 500 metros e de 2000 metros, e comparar os resultados

Estimação de Kernel

Validação Cruzada:

Escolher a distância H que minimize:

$$CV(h) = \frac{\sum_{i=1}^{n} w_i \{ z_i - \hat{g}^{-1}(s_i) \}^2}{n}$$

onde \hat{g}^{-1} (s_i) é a estimativa de $g(s_i)$ construída com o valor de banda h usando todos os dados com exceção do par (s_i , z_i)

Estimação de Kernel

Sources: City of Vancouver, UBC Geography Department, DMTI

Probabilidade de roubos comerciais em Vancouver

Kilometers

Couch, Paul (2007), Crime Geography and GIS: A Break and Enter Crime Analysis of Ottawa, Ontario Using CrimeStat, Crime GIS

Estimação de kernel

• Estimação por validação cruzada

```
raio_otimo <- bw.ppl(pocos_ppp)

raio_otimo
plot(raio_otimo)

sigma
828.4746
```


Estimação de kernel

Mapa de
Raio de kernel incerteza
pocos_kernel <- density(pocos_ppp, sigma = raio_otimo, se=TRUE)
pocos_kernel

\$estimate real-valued pixel image 128 x 128 pixel array (ny, nx) enclosing rectangle: [333650, 368600] x [7362300, 7388600] units

\$SE real-valued pixel image 128 x 128 pixel array (ny, nx) enclosing rectangle: [333650, 368600] x [7362300, 7388600] units

Estimação de kernel

plot(pocos_kernel\$estimate)
plot(st_geometry(mun), add=TRUE)

Mapa de incerteza (erro padrão)

plot(pocos_kernel\$SE)
plot(st_geometry(mun), add=TRUE)

Kernel adaptativo por número de vizinhos

Adaptado de: Fotheringham, A.S., Brunsdon, C., and Charlton, M.E., 2002, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships, Chichester: Wiley.

Raio maior

Raio menor

Raio adaptativo

Bandwidth

Yuan, K., Chen, X., Gui, Z., Li, F. and Wu, H., 2019. A quad-tree-based fast and adaptive Kernel Density Estimation algorithm for heat-map generation. International Journal of Geographical Information Science.

Mapa de kernel adaptativo

raio_adaptativo <- bw.abram(pocos_ppp, at="pixels")</pre> plot(raio_adaptativo) plot(st_geometry(mun), add=TRUE)

Método de Abramson (1982)

Fazer raster com raio para cada pixel

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of Statistics, 10(4), 1217-1223

Mapa de kernel adaptativo

pocos_adaptativo <- adaptive.density(pocos_ppp, method="kernel")

Método de
Abramson (1982)

plot(st_geometry(mun), add=TRUE)

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of Statistics, 10(4), 1217-1223

Exercício 4

Fazer mapas com estimação de kernel e com kernel adaptativo para as áreas contaminadas do ABC

Mapa de kernel ponderado

Kernel ponderado da população de Wyoming

Pontos com atributo quantitativo:

- Quantidade de eventos
- Intensidade de uma característica

Copeland, H.E., Pocewicz, A., Naugle, D.E., Griffiths, T., Keinath, D., Evans, J. and Platt, J., 2013. Measuring the effectiveness of conservation: a novel framework to quantify the benefits of sage-grouse conservation policy and easements in Wyoming. PLoS One, 8(6), p.e67261.

Mapa de kernel ponderado

Preparando os dados

```
pocos_vazao_sp <- as(pocos_vazao, "Spatial")
pocos_vazao_ppp <- as(pocos_vazao_sp,"ppp")</pre>
```

Rodando o algoritmo

```
pocos_densidade_vazao <-
Smooth.ppp(pocos_vazao_ppp, sigma=bw.smoothppp)</pre>
```

pontos com valores marcados

Estimador ponderado por validação cruzada

Mapa de kernel ponderado

plot(pocos_densidade_vazao\$vazao_esta)
plot(st_geometry(mun), add=TRUE)

Área de vida e territórios de espécimes e espécies de peixes

install.packages("adehabitatHR")

library(adehabitatHR)

Retira os atributos do arquivo de pontos convertendo de SpatialPointsDataFrame para SpatialPoints

pocos_sp_limpo <-as(pocos_sp,"SpatialPoints")</pre>

pocos_ade <- kernelUD(pocos_sp_limpo, h=raio_otimo, grid=500)
raio resolucao

plot(pocos_ade)

plot(st_geometry(mun), border="white", add=TRUE)

pocos_volume <- getvolumeUD(pocos_ade)</pre>

plot(pocos_volume)

plot(st_geometry(mun), add=TRUE)

pocos_volume_raster <- raster(pocos_volume)</pre>

Exporta do formato do adehabitatHR para o formato raster

Distribuição de Utilização

• Delimita as porcentagens de area

```
range75 <- getverticeshr(pocos_ade, percent = 75)
```

range25 <- getverticeshr(pocos_ade, percent = 25)

Cria polígonos no formato sp

Distribuição de Utilização

Visualiza o mapa

```
install.packages("tmap")
library(tmap)
tm_shape(mun) + tm_fill(col="gray95") + tm_borders(alpha=.8, col="black") +
 tm shape(pocos sp limpo) + tm dots(col="blue") +
 tm shape(range75) +
   tm_borders(alpha=.7, col ="red4", lwd=2) + tm_fill(alpha=.1, col="red4") +
   tm add legend(type="line", col="red4", lwd=2, labels="75%") +
 tm shape(range50) +
   tm_borders(alpha=.7, col="red3", lwd=2) + tm_fill(alpha=.1, col="red3") +
   tm add legend(type="line", col="red3", lwd=2, labels ="50%") +
 tm_shape(range25) +
   tm_borders(alpha=.7, col="orangered", lwd=2) + tm_fill(alpha=.1, col="orangered") +
   tm_add_legend(type = "line", col = "orangered", lwd=2, labels = "25%") +
 tm_layout(frame = FALSE)
```


Mapas de Razão de Kernel

Assaltos a carros em Baltimore em 1996

LEVINE, N. 2013. CrimeStat IV. The National Institute of Justice. Washington DC.

Mapas de Razão de Kernel

População em Baltimore em 1990

Mapas de Razão de Kernel

LEVINE, N. 2013. CrimeStat IV. The National Institute of Justice. Washington DC.

Mapa de kernel

Selecionar só os pocos com risco de contaminação

pocos_contaminados<-subset(pocos_ppp, pocos_ppp\$marks\$contamina == 1)</pre>

View(pocos_contaminados\$marks)

Poços a menos de 200 metros de áreas contaminadas

- Atribui área mapeada igual a do arquivo original
- Window(pocos_contaminados) <- Window(pocos_ppp)</pre>
- Faz a densidade de kernel usando o mesmo raio do mapa de poços total pocos kernel contaminados <- density(pocos contaminados, sigma=raio otimo)

Mapa de razão de kernel

```
par(mfrow=c(1,2))
plot(pocos_kernel_contaminados)
plot(st_geometry(mun), add=TRUE)
plot(pocos_kernel$estimate)
plot(st_geometry(mun), add=TRUE)
par(mfrow=c(1,1))
```

Poços com risco de contaminação

Conjunto total de poços

Mapa de razão de kernel

razao_kernel <- pocos_kernel_contaminados / pocos_kernel\$estimate mun_sp <- as(mun,"Spatial") Converte os polígonos de municípios para sp mun_owin <- as.owin(mun_sp) Converte de sp para janela do formato ppp plot(razao_kernel, clipwin=mun_owin) Visualiza na janela plot(st_geometry(mun), add=TRUE)

Pacote sparr

- Kernel adaptativo ponderado
- Análise de risco por razão de kernel
- Kernel 3D (espaço-temporal)

Davies, T.M., Marshall, J.C. and Hazelton, M.L., 2018. Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk. Statistics in medicine, 37(7), pp.1191-1221.

Teste espacial Scan

 Teste estatístico se os pontos dentro do kernel são mais agrupados lá dentro se comparado com o padrão de pontos gerados aleatoriamente

Kulldorff, M. (1997) A spatial scan statistic. Communications in Statistics — Theory and Methods 26, 1481–1496 Yiqun Xie and Shashi Shekhar. A Nondeterministic Normalization based Scan Statistic (NN-scan) towards Robust Hotspot Detection: A Sumamry of Results. Accepted at: SIAM International Conference on Data Mining (SDM'19), Calgary, Canada, May. 2019

Mapa de agrupamento SCAN

pocos_cluster <- scanLRTS(pocos_ppp, r=bw.ppl(pocos_ppp))

Otimização do raio

plot(st_geometry(mun), add=TRUE)

Exercício 5

 Faça um mapa de agrupamento Scan das áreas contaminadas do ABC

Conteúdo

- Centro médio e distância padrão
- Análise de agrupamento
- Mapas de kernel
- Mapas de proximidade
- Interpolação

Mapas de Proximidade

Mapas de Proximidade

Proximidade com **Barreiras Absolutas**

Proximidade com Barreiras Relativas (atrito)

Proximidade com Barreiras Relativas e Absolutas

Mapa de Proximidade

Distância a serviços urbanos

Crime Proximity to Existing Stations Washington, D.C., August 2009

CUPOLO, S. 2010. Law Enforcemet: Washington DC. Module 8.

Mapa de Proximidade

Distância a escolas

Maban County, Upper Nile State, South Sudan

Doro Camp, Distance from School, December 2015

For Humanitarian Relief Purposes Only Production date: 31 January 2016

Mapas de Proximidade

Modelagem de mudanças no uso do solo

Distância da Mancha Urbana

Distância da Malha Viária

ALMEIDA, R.M. 2016. Inferência espacial usando QGIS. Em: http://qgisnapratica.blogspot.com.br/

Mapa de Proximidade ou de Kernel?

- Visualmente semelhantes
 - Distância e densidade estão inversamente relacionadas
 - Ambas são adequados para análise exploratória

Diferenças:

Mapa de Kernel	Mapa de Proximidade
Foco em densidade (ocorrência/km²)	Foco em distância (km²)
Mais flexibilidade (ajuste de kernel e raio)	Mais simples (menos suposições sobre o fenômeno)
Pode ser calibrada para previsões	Pode ser ajustada para atrito

Mapa de distâncias

Alterando a extensão do mapa para todo o ABC

```
pocos_ppp_abc <- pocos_ppp
Window(pocos_ppp_abc) <- mun_owin</pre>
```

• Algoritmo de mapa de proximidade

```
distancia_pocos <- distmap(pocos_ppp_abc, eps=30)</pre>
```

Resolução de pixel, em metros

Mapa de distâncias

plot(distancia_pocos)
plot(st_geometry(mun), add=TRUE)

Convertendo o raster de ppp para outros formatos

```
distancia_pocos_sgdf <- as(distancia_pocos, "SpatialGridDataFrame")
pocos_distancia_raster <- raster(distancia_pocos_sgdf)
plot(pocos_distancia_raster)
plot(st_geometry(mun), add=TRUE)
writeRaster(pocos_distancia_raster,"pocos_distancia_raster.tif")
```


Pacote gdistance

Distância com barreiras / atrito

Caminho mais curto

Etten, J.V., 2017. R package gdistance: distances and routes on geographical grids. Journal of statistical software 76(13) Gimond, Manuel. **Intro to GIS and Spatial Analysis**. Colby Arts College, 2019 . https://mgimond.github.io/Spatial/index.html

Exercício 6

 Faça um mapa de distância das áreas contaminadas do ABC, na extensão dos municípios

Obrigado!

Ângela Terumi Fushita Vitor Vieira Vasconcelos