8. PŘEDNÁŠKA – SIGNÁLY MOZKU 2

Artefakty v EEG

- z přístroje
- z prostředí
- z pacienta

Abnormální EEG

- aging
- abnormality základní aktivity
- paroxysmální aktivity
- detekce epileptoformní aktivity

Evokované potenciály

- sluchové EP
- zrakové EP, retinogram
- somatosenzorické EP
- motorické EP

Zpracování EP

Artefakty v EEG

Artefakty z prostřed Síťový artefakt

Artefakty z přístroje Elektrodový artefakt Solný můstek

Artefakty z pacienta

EKG artefakt

EKG artefakt z kardiostimulátoru

Pulsový artefakt

Svalový artefakt

Oční artefakt z vertikálních pohybů bulbů

Oční artefakt z horizontálních pohybů bulbů

Oční artefakt při protéze bulbu

Oční artefakt při alfa atenuační reakci

Artefakt z pocení

Vliv stárnutí v EEG spektru

- abnormality základní aktivity
 - demence

- abnormality základní aktivity
 - demence
 - zhmoždění

Prokrvácená kontuze mozku frontálně vlevo s perifokálním edémem, subdurální hematom parieto-okcipitálně vpravo.

- abnormality základní aktivity
 - demence
 - zhmoždění
 - absces

- abnormality základní aktivity
 - demence
 - zhmoždění
 - absces
 - nádory
 - CMP

- abnormality základní aktivity
- paroxysmální abnormality
 - periodické
 nemoc šílených krav

- abnormality základní aktivity
- paroxysmální abnormality
 - periodické
 - epileptiformní

Incidence epilepsie

- abnormality základní aktivity
- paroxysmální abnormality
 - periodické
 - epileptiformní
 - interiktální
 - ložiskové (parciální, fokální)
 - generalizované

Grafoelementy popisující záchvatovou aktivitu

- hroty, ostré vlny, komplexy hrot/vlna
- rytmické formace hrot/vlna 3/s
- paroxysmální pomalé vlny

Grafoelementy popisující záchvatovou aktivitu

- hroty, ostré vlny, komplexy hrot/vlna
- rytmické formace hrot/vlna 3/s
- paroxysmální pomalé vlny

•

•

Zvrat fáze

 současná výchylka amplitudy opačným směrem ve dvou nebo více kanálech

(pouze v bipolárním zapojení)

- abnormality základní aktivity
- paroxysmální abnormality
 - periodické
 - epileptiformní
 - interiktální
 - ložiskové (parciální, fokální)
 - generalizované
 - iktální

Infantilní spasmy

Dětské absence

Komplexy hrot – vlna 3 Hz

Epileptický myoklonus

Generalizovaný tonicko-klonický záchvat

Temporální záchvat

Detekce epileptoformní aktivity

Porovnávání vzorů

xc=xcorr(signal,vzor); xc=xc(round(length(xc)/2):end);

Přizpůsobené filtry

xf=filter(vzor(end:-1:1),1,signal);

Detekce epileptoformní aktivity

Signály mozku na youtube

Krátká úvodní videa:

```
EEG https://www.youtube.com/watch?v=xGSKXdTEai4
```

https://www.youtube.com/watch?v=eIPi6JOoals

AEP https://www.youtube.com/watch?v=liLD4jPRSZI

VEP https://www.youtube.com/watch?v=4LCkDwcXMHE

SEP https://www.youtube.com/watch?v=uhTweB4WSXM

MEP https://www.youtube.com/watch?v=fzx9lHCEpPs

Evokované potenciály (EP)

- reakce mozku na senzorický podnět
 - zrakový
 - sluchový
 - somatosenzorický
- elektrody na hlavě
- velmi slabé signály
- analýza tvaru vlny poskytuje info abnormalitách a lézích příslušné nervové dráhy

Šíření evokovaných potenciálů

 Nadprahový stimul evokuje elektrický impuls senzorických nervových buněk

- Impulzy se šíří podél nervových vláken v mozku
- Ve složitých strukturách kůry jsou impulzy jsou zesíleny a zpomaleny

Analýza evokovaných potenciálů

z odezvy se odečtou se charakteristické vlny

- měření se porovná s normou
 - 1-kanálová analýza (polarita, latence, amplituda)
 - více-kanálová analýza
 - normy pro každou laboratoř a věk

Analýza tvaru křivky P1, N1, P2, ...

- |, ||, |||,
- P100

Sluchové EP (AEP – auditory evoked potentials)

- stimulace: krátké zvukové impulzy do jednoho ucha
 - klik (cvaknutí) asi 100 us
 - tón (pípnutí)
 - opakovací frekvence stimulů 1 až 50 Hz
 - 2000 stimulů
 - průměrované napětí asi 0,5 uV
- snímání: +Cz, -A1, ref A2
- AEP popisují jak se informace šíří z akustického nervu do kúry

latence	odpověď	
0 až 20 ms	časná, mozkového kmene	BAEP – brainstem auditory EP
20 až 70 ms	střední korová	MLR – middle latency response
70 až 500 ms	pozdní korová	SVP – slov vertex response

Časné AEP mozkového kmene (BAEP) a "zdroje jednotlivých vln"

Diagnostické aplikace

- Odpověď je generována akustickým nervem a mozkovým kmenem
- Charakteristická struktura vln
- Typické je kliknutí 70-80 dB
- Hledání vln I, III, V a intervalů I-III, III-V, I-V
- Diagnostika akustického neuromu a sluchové neuropatie

Screeningové aplikace

- Stimulační kliknutí 30-50 dB, 100 µs
- Hledání V. vlny
- Automatické detekce

- Biologické vlivy
 - věk
 - pohlaví
 - tělesná teplota
- Technické vlivy
 - frekvence stimulace
 - intenzita stimulace

Sluchové korové EP

Aplikace: Peak I. - distal cochlear nerve Peak III. - cochlear nucleus Peak V. - lateral lemniscus Left ear Right ear

Aplikace:

- Diagnózy při ztrátách sluchu a patologií v oblasti mozkového kmene
- Lze rozlišit zda se jedná poruchy hlemýždě, akustického nervu, léze mozkového kmene, ...
- Objektivní audiometrie
- Screening novorozenců
- Monitorování hloubky anestézie
- Monitorování během operací mozku
- Diagnóza RS (společně s VEP a SEP)

Zrakové EP (visual evoked potentials VEP)

- stimulace: zrakové stimuly
 - monitor s černobílou šachovnicí, ve které se rytmicky střídají černá a bílá pole
 - frekvence 1 Hz
 - 100 stimulů
 - průměrovaný signál 5 až 10 uV
 - záblesky

• **snímání:** elektrody jsou v okcipitální oblasti O1, O2, Cz

VEP odráží funkčnost zrakové dráhy

Zrakové EP

Vliv na záznam

- věk
- zraková ostrost
- tělesná teplota
- pohlaví
- vědomá nespolupráce

Další vlivy

- dominance oka
- užití léků

Aplikace:

- Diagnózy roztroušené sklerózy (demyelinizace očního nervu)
- Patologie dráhy očního nervu
- Diagnóza rozdílu mezi levým a pravým viděním
- Ověřování různých kvalit zraku

- FOTOPICKÝ (čípky, světlo)
- SKOTOPICKÝ (tyčinky, tma)

FOTOPICKÝ ERG (čípky, světlo)

• SKOTOPICKÝ ERG (tyčinky, tma)

- Vrozená šeroslepost
 - negativní vlna při fotopickém i skotopickém testu

Somatosenzorické EP (somatosensory EP)

- odezvy na elektrické stimuly periferních nervů nejčastěji horních a dolních končetin
 - elektrické stimuly (obdélník o délce 50 až 200 us)
 - laserové stimuly
 - opakovací frekvence stimulů 3 až 6 Hz
 - 200 stimulů
 - průměrované napětí 5 až 10 uV
- elektrody jsou v senzomotorické oblasti C3, C4, Cz
- SEP poskytuje informace o vedení nervů páteří do kortexu

Somatosenzorické EP (SEP)

Somatosenzorické EP (SEP)

Aplikace:

- Diagnózy neuropatií
- Diagnózy roztroušené sklerózy a demyelinizace nervů
- Hodnocení postiženi krční míchy na podkladě útlaku při degenerativních změnách krční páteře
- Monitorování hloubky kómatu a stanovení prognózy
- Monitorování během operací páteře

Motorické EP

 diagnostika funkční integrity motorických drah

Aplikace:

- Diagnózy RS
- Onemocnění motorického neuronu

MEP v neurochirurgii

Historie – objev EP

1947 George Dawson – Anglie

- technika používaná pro analýzu evokovaných potenciálů
- předpoklady
 - odpověď je časově invariantní
 - aditivní šum
 - stacionární
 - nekorelovaný
 - střední hodnota rovna nule

$$x_i(t) = s(t) + n_i(t)$$

$$\bar{x}(t) = \frac{1}{N} \sum_{i=1}^{N} x_i(t) = \frac{1}{N} \left(\sum_{i=1}^{N} s(t) + \sum_{i=1}^{N} n_i(t) \right)$$

$$\bar{x}(t) = s(t) + \frac{1}{N} \sum_{i=1}^{N} n_i(t)$$

$$E\left[\frac{1}{N}\sum_{i=1}^{N}n_{i}(t)\right]=0$$

$$E(\bar{x}(t)) = s(t)$$

$$\sum_{i=1}^{N} s(t) = Ns(t)$$

$$\sum_{i=1}^{N} n_i(t) = N\sigma_{n(t)}^2$$

$$\frac{S}{N} \to \sqrt{N}$$

AEP

snímání AEP signálu (fs=25 kHz) probíhá vsedě, v klidu, se zavřenýma očima

odezvy na jednotlivé pulsy jsou automaticky registrovány pouze po dobu 40 ms

1000 pulsů délka trvání jednoho pulsu je 100 μs

4 sekundy záznamu (AEP + stimuly)

AEP

Automaticky detekujte, vyhodnoť te a zakreslete vlnu "V" (pozitivní referenční vlnu v okolí času 6 ms).

průběh jedné AEP odezvy

možnosti

- filtrace
- detekce artefaktů

zprůměrňovaný AEP signál

SEP

EKG

