Полное исследование функций Схема полного исследования функции

Задача. Исследовать функцию y = f(x) и построить её график.

- 1. Укажите естественную область определения функции, если область определения не задана.
- 2. На черновике набросайте приблизительный график функции для того, чтобы лучше понимать, о чём речь. После каждого пункта отмечайте на графике разрывы, экстремумы, нули и т.д. При необходимости обновите набросок графика.
- 3. Укажите множество значений (скорее всего, она будет известна после нахождения экстремумов).
- 4. Выясните наличие симметрий у графика (чётность, нечётность функции). Выясните, периодична ли данная функция, и, если это возможно, найдите её минимальный положительный
- 5. Найдите нули функции и точки разрыва (если они есть).
- 6. Найдите промежутки знакопостоянства функции (обычно, методом интервалов). Результат — таблица $(a_1, a_2$ — нули функции или точки, где f(x) не определена или разрывна):

	$(-\infty,a_1)$	a_1	(a_1, a_2)	a_2	$(a_2,+\infty)$
f(x)	+	0	+	0	_

- 7. Изучите поведение функции в граничных точках области определения, в окрестности точек разрыва и на бесконечности.
- 8. Найдите все асимптоты. Найдите точку пересечения графика с наклонной асимптотой.
- 9. Найдите производную функцию f'(x) в тех точках, где она существует, критические точки, и исследуйте функцию на монотонность и экстремумы с помощью первой производной. Результат — таблица $(b_1, b_2$ — точки, в которых производная равна нулю или не определена):

	$(-\infty,b_1)$	b_1	(b_1,b_2)	b_2	$(b_2, +\infty)$
f'(x)	+	0	+	0	_
f(x)	7	$f(b_1)$	7	$f(b_2)$	×
				максимум	

10. Найдите вторую производную f''(x) в тех точках, где она существует, и исследуйте функцию на выпуклость и точки перегиба с помощью второй производной. Результат — таблица $(c_1,$ c_2 — точки, в которых вторая производная либо равна нулю, либо не определена):

	$(-\infty, c_1)$	c_1	(c_1,c_2)	c_2	$(c_2,+\infty)$
f''(x)	+	0	+	0	_
f'(x)		$f'(c_1)$		$f'(c_2)$	
f(x)	\cup	$f(c_1)$	U	$f(c_2)$	\cap
		_		т.перегиба	

11. Сделайте крупный эскиз графика функции, отметив на нём характерные особенности графика (см. пп. 1–10) и некоторые контрольные значения, в частности точку пересечения с осью ординат, и, если это возможно, точки пересечения с осью абсцисс.

Задача 1. Постройте (с полным исследованием) графики следующих функций:
a)
$$x + \frac{1}{x}$$
; **б)** $\frac{x+3}{2-x}$; **в)** $\sqrt{x(1+x)}$; **г)** $x \arctan x$; **д)** $\frac{x}{(x+1)^2}$; **e)** $\sqrt[3]{9-x^3}$; **ж)** $\frac{x^3}{1-x^2}$; **3)*** $\frac{\cos x}{\cos 2x}$.

1	<u>1</u>	1	1	1	1	1	1 3
a	б	В	Г	д	e	ж	