APPUNTI DI ALGEBRA

Manuel Deodato

Indice

1	Teor	a dei gruppi	3
	1.1	Il gruppo degli automorfismi	3
	1.2	Azioni di gruppo	4
		1.2.1 Azione di coniugio	6
		1.2.2 Formula delle classi	7
	1.3	I p-gruppi	8
	1.4	Teoremi di Cauchy e Cayley	9
	1.5	Commutatore e gruppo derivato	11
	1.6	Gruppi liberi	12
	1.7	Gruppi diedrali	16
		1.7.1 Sottogruppi di D_n	17
		1.7.2 Centro, quozienti e automorfismi di D_n	20
	1.8	Permutazioni	22
	1.9	Gruppi di Sylow e prodotti diretti	27
	1.10	Prodotto semidiretto	29
	1.11	Ancora sulle permutazioni	33
	1.12	Teorema di struttura per gruppi abeliani finiti	36
	1.13	I teoremi di Sylow	41
	1.14	I quaternioni	44
	1.15	Esercizi e complementi	45
		1.15.1 Complementi di teoria	45
		1.15.2 Esercizi	46
2	Teor	ria degli anelli	48
	2.1	Introduzione	48
	2.2	Ideali	49
	2.3	Omomorfismi di anelli e anelli quoziente	51
	2.4	Prodotto diretto di anelli	55
	2.5	Ideali primi e massimali	56

1 Teoria dei gruppi

§1.1 Il gruppo degli automorfismi

Lemma 1.0.1. Siano H, G due gruppi ciclici; un omomorfismo $\phi : G \to H$ è univocamente determinato da come agisce su un generatore di G.

Dimostrazione. Sia $g_0 \in G$ tale che $\langle g_0 \rangle = G$ e sia $\phi(g_0) = \overline{h} \in H$. Per $g \in G$ generico, per cui $g_0^k = g$ per qualche intero k, si ha:

$$\varphi(g) = \varphi(g_0^k) = \varphi(g_0)^k = \overline{h}^k$$

Cioè tutti gli elementi di $\operatorname{Im} \varphi$ sono esprimibili come potenze di \overline{h} .

Osservazione 1.1. Non ogni scelta di $\overline{h} \in H$ è ammissibile, ma bisogna rispettare l'ordine di g_0 . Se $g_0^n = e_G$, allora $e_H = \phi(g_0^n) = \phi(g_0)^n = \overline{h}^n$. Questa condizione, impone che $\operatorname{ord}(\overline{h}) \mid \operatorname{ord}(g_0)$.

Definizione 1.1 (Gruppo degli automorfismi). Sia G un gruppo; si definisce il gruppo dei suoi automorfismi come

$$Aut(G) = \{f : G \rightarrow G \mid f \text{ è un isomorfismo di gruppi}\}\$$

Esempio 1.1. Si calcola $Aut(\mathbb{Z})$.

Svolgimento. Il gruppo $(\mathbb{Z},+)$ è ciclico, quindi un omomorfismo è determinato in base a come agisce su un generatore. Prendendo, per esempio 1, si definisce $q_\alpha:\mathbb{Z}\to\mathbb{Z}$ tale che $q_\alpha(1)=\alpha$; perché $\langle q_\alpha(1)\rangle=\mathbb{Z}^1$, è necessario che α sia un generatore di \mathbb{Z} , perciò sono ammessi $\alpha=\pm 1$. In questo caso, $\operatorname{Aut}(\mathbb{Z})=\{\pm\operatorname{Id}_\mathbb{Z}\}\cong (\mathbb{Z}/2\mathbb{Z},+)$.

Teorema 1.1. Aut
$$(\mathbb{Z}/m\mathbb{Z}) \cong (\mathbb{Z}/m\mathbb{Z})^*$$
.

Dimostrazione. ($\mathbb{Z}/m\mathbb{Z},+$) è ciclico, quindi si stabilisce l'azione di $f:\mathbb{Z}/m\mathbb{Z}\to\mathbb{Z}/m\mathbb{Z}$ su un generatore. Preso, allora, $\overline{k}\in\mathbb{Z}/m\mathbb{Z}$ tale che $\gcd(k,m)=1$ e scelto $f(\overline{k})=\overline{a}$, si ha che $\langle f(\overline{k})\rangle=\langle \overline{a}\rangle=\mathbb{Z}/m\mathbb{Z}\iff\gcd(a,m)=1\iff\overline{a}\in(\mathbb{Z}/m\mathbb{Z})^*$.

Definizione 1.2 (Automorfismo interno). Sia G un gruppo; si definisce $\phi_g : G \to G$, $\forall g \in G$, come $\phi_g(x) = gxg^{-1}$ ed è detto *automorfismo interno*. L'insieme di questi automorfismi, al variare di $g \in G$, forma il gruppo

$$\operatorname{Int}(G) = \{ \varphi_q : G \to G \mid g \in G \text{ e } \varphi_q \text{ automorfismo interno} \}$$

Proposizione 1.1. Sia G un gruppo; allora $Int(G) \triangleleft Aut(G)$ e $Int(G) \cong G/Z(G)$.

 $^{^{\}scriptscriptstyle 1}$ Richiesto dal fatto che q_α sia suriettivo.

Dimostrazione. Int(G) è un sottogruppo di Aut(G) perché $\mathrm{Id}(x) = exe^{-1} = x \Rightarrow \mathrm{Id} \in \mathrm{Int}(G)$. Inoltre, $\varphi_g \circ \varphi_h(x) = ghxh^{-1}g^{-1} = \varphi_{gh}(x) \in \mathrm{Int}(G)$ e $\varphi_{g^{-1}} \circ \varphi_g(x) = x \Rightarrow \varphi_g^{-1} = \varphi_{g^{-1}} \in \mathrm{Int}(G)$.

È un sottogruppo normale perché $\forall f \in \operatorname{Aut}(G)$, si ha

$$f\circ\varphi_g\circ f^{-1}(x)=f\left(gf^{-1}(x)g^{-1}\right)=f(g)xf(g)^{-1}\in\mathrm{Int}(G)$$

Per finire, si definisce $\Phi: G \to \operatorname{Int}(G)$. Questo è un omomorfismo perché $\Phi(gh) = \varphi_{gh} = \varphi_g \circ \varphi_h = \Phi(g)\Phi(h)$. È, inoltre, suriettivo perché ogni automorfismo interno è associato ad un elemento di G, cioè $\forall \varphi_g \in \operatorname{Int}(G), \ \exists g \in G : \Phi(g) = \varphi_g$. Allora, la tesi deriva dal I teorema di omomorfismo, visto che $\operatorname{Ker} \Phi = \mathsf{Z}(G)$.

Osservazione 1.2.
$$H \triangleleft G \iff \varphi_g(H) = H, \ \forall \varphi_g \in \mathrm{Int}(G).$$

Dimostrazione. Per ogni elemento di $\operatorname{Int}(G)$, si ha $\varphi_g(H) = H \iff gHg^{-1} = H \iff H \lhd G$.

Definizione 1.3 (Sottogruppo caratteristico). Sia G un gruppo e H < G. Si dice che H è *caratteristico* se è invariante per automorfismo, cioè $\forall f \in Aut(G), f(H) = H$.

Corollario 1.1.1. Sia G un gruppo; per la proposizione 1.1 e l'osservazione 1.2 se H è caratteristico, allora $H \triangleleft G$.

Il viceversa è falso, cioè normale \neq caratteristico; infatti, in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, il sottogruppo $\langle (1,0) \rangle$ è normale, ma non caratteristico perché l'automorfismo che scambia le coordinate è tale per cui $\langle (1,0) \rangle \mapsto \langle (0,1) \rangle \neq \langle (1,0) \rangle$.

§1.2 Azioni di gruppo

Definizione 1.4 (Azione). Sia G un gruppo; un'azione di G su un insieme X è un omomorfismo

$$\begin{array}{cccc} \gamma: & G & \longrightarrow & S(X) = \{f: X \to X \mid f \ biettiva\} \\ g & \longmapsto & \psi_g: \psi_g(x) = g \cdot x \end{array}$$

Più concretamente, si definisce azione la mappa $\gamma: G \times X \to X$ tale che

(a).
$$e \cdot x = x$$
, per $e \in G$ e $x \in X$;

(b).
$$h \cdot (g \cdot x) = (hg) \cdot x$$
, per $g, h \in G$ e $x \in X$.

Si verifica che una mappa $\gamma: G \times X \to X$, con G gruppo e X insieme generico, che soddisfi le proprietà (a) e (b), è tale che $\gamma(g)(x) = \psi_g(x)$ (cioè a g fissato) è biettiva.

Dimostrazione. Per l'iniettività, si ha $\psi_g(x) = \psi_g(y) \iff g \cdot x = g \cdot y \iff x = y$, visto che si può applicare l'azione inversa $\gamma(g^{-1})$ ad entrambi i lati. Per la suriettività,

invece, si nota che $\forall x \in X$, si trova anche una $y \in X : y = g^{-1} \cdot x$ dovuta all'azione di $\gamma(g^{-1})$, per cui $\psi_g(y) = g \cdot \left(g^{-1} \cdot x\right) = (gg^{-1}) \cdot x = x$.

Esempio 1.2. Sia $G = \{z \in \mathbb{C}^* \mid |z| = 1\} \cong S^1$ la circonferenza unitaria e $X = \mathbb{R}^2$. Un'azione di G su X è una rotazione definita da $\gamma(z) = R(\arg z)$. Questa è un omomorfismo perché $\gamma(zw) = R(\arg zw) = R(\arg z + \arg w) = R(\arg z)R(\arg w) = \gamma(z)\gamma(w)$.

Un'azione γ di G su X definisce, proprio su X, una relazione di equivalenza definita da

$$x \sim_{\gamma} y \iff x = \psi_{q}(y) = g \cdot y, \cos x, y \in X$$
 (1.2.1)

La relazione di equivalenza è ben definita perché le ψ_q sono mappe biettive.

Definizione 1.5 (Orbita). Sia $\gamma: G \to S(X)$ un'azione di G gruppo su X. Dato $x \in X$, la sua classe di equivalenza rispetto alla relazione \sim_{γ} è detta *orbita* ed è indicata con $Orb(x) = \{g \cdot x \mid g \in G\}$.

Ricordando che una relazione di equivalenza fornisce una partizione dell'insieme su cui è definita, si ha:

$$X = \bigsqcup_{x \in R} \operatorname{Orb}(x) \tag{1.2.2}$$

con R insieme dei rappresentati di tutte le orbite. Se, poi, X ha cardinalità finita, allora:

$$|X| = \sum_{x \in R} |\operatorname{Orb}(x)| \tag{1.2.3}$$

Definizione 1.6 (Stabilizzatore). Sia $\gamma:G\to S(X)$ un'azione di G su X; allora per ogni $x\in X$, si definisce l'insieme

$$\operatorname{Stab}(x) = \{ g \in G \mid g \cdot x = x \} < G$$

Lemma 1.1.1. Sia G un gruppo che agisce su un insieme X e sia $x \in X$ un suo elemento. Dati anche $g \cdot x$, $h \cdot x \in Orb(x)$ tali che $g \cdot x = h \cdot x$, allora g e h appartengono alla stessa classe di $G/\operatorname{Stab}(x)$.

Dimostrazione. Se g · x, h · x ∈ Orb(x) sono uguali, allora $x = h^{-1}g \cdot x$, cioè $h^{-1}g \in G$ lascia invariato x, quindi è in Stab(x). Da questo segue che $h Stab(x) = hh^{-1}g Stab(x) = g Stab(x)$.

Teorema 1.2 (Teorema di orbita-stabilizzatore). Esiste una mappa biettiva Γ : $Orb(x) \rightarrow G/Stab(x)$ tale che $\Gamma(g \cdot x) = g Stab(x)$.

Dimostrazione. Γ è iniettiva come diretta conseguenza del lemma 1.1.1 ed è suriettiva perché $\forall g \operatorname{Stab}(x) \in G/\operatorname{Stab}(x), \exists g \cdot x \in \operatorname{Orb}(x)$ tale che $\Gamma(g \cdot x) = g \operatorname{Stab}(x)$. Segue che $|\operatorname{Orb}(x)| = |G|/|\operatorname{Stab}(x)|$.

Osservazione 1.3. Si osserva che, per il teorema di orbita-stabilizzatore, la cardinalità di un'orbita indica il numero di classi laterali dello stabilizzatore nel gruppo che compie l'azione, cioè il teorema di orbita-stabilizzatore si può riscrivere come $|\operatorname{Orb}(x)| = |G| \cdot |\operatorname{Stab}(x)| = |G| / |\operatorname{Stab}(x)|$.

1.2.1 Azione di coniugio

Un caso notevole di azione è il coniugio: per X = G, si definisce $\gamma : G \to \operatorname{Int}(G) \subset S(G)$. Le orbite indotte da questa azione sono dette *classi di coniugio* e si indicano con $\operatorname{cl}(x)$, mentre lo stabilizzatore è detto *centralizzatore* e si indica con:

$$Z(x) = \left\{ g \in G \mid g \cdot x = gxg^{-1} = x \right\} \tag{1.2.4}$$

Come conseguenza del teorema di orbita-stabilizzatore (1.2), si ha:

$$|\mathsf{G}| = |\mathsf{cl}(\mathsf{x})||\mathsf{Z}(\mathsf{x})|, \ \forall \mathsf{x} \in \mathsf{G} \tag{1.2.5}$$

Proposizione 1.2. Sia G un gruppo e γ l'azione di coniugio su di esso; allora

$$\bigcap_{x \in G} Z(x) = Z(G)$$

 $\mbox{\it Dimostrazione.} \mbox{ Si ha } g \in Z(x), \ \forall x \iff gxg^{-1} = x, \ \forall x \in G \iff g \in Z(G). \endaligned$

Osservazione 1.4 (Centro di un sottogruppo). Sia G un gruppo e H < G; allora il centro di H è definito come

$$\bigcap_{x\in H} Z(x) = Z(H)$$

Si considera, ora, l'azione di coniugio di un gruppo G su $X=\{H\subseteq G\mid H< G\}$ e $\gamma(g)=\psi_g$ tale che $\psi_g(H)=gHg^{-1}$. Questa è un'azione ed è ben definita.

Dimostrazione. Per dimostrare che è un'azione, si deve mostrare che la mappa $g \stackrel{\gamma}{\mapsto} \psi_g$ è un omomorfismo e che $\psi_g : X \to X$ sia biettiva.

Si nota che $g \stackrel{\gamma}{\mapsto} \psi_g$ è un omomorfismo perché $\psi_{g_1g_2}(H) = g_1g_2Hg_2^{-1}g_1^{-1} = \psi_{g_1} \circ \psi_{g_2}(H)$, cioè $g_1g_2 \mapsto \psi_{g_1}\psi_{g_2}$. Inoltre, $\psi_g: X \to X$ è biettiva perché $\exists \psi_g^{-1} = \psi_{g^{-1}}: \psi_{g^{-1}} \circ \psi_g(H) = H$.

Per mostrare che è ben definita, si fa vedere che effettivamente $\forall g, \psi_g$ mappa un sottogruppo di G in un altro sottogruppo, cioè che $gHg^{-1} < G$. Intanto, $e \in gHg^{-1}$ perché $H < G \Rightarrow e \in H \Rightarrow geg^{-1} = e$; poi, $(ghg^{-1})(gh'g^{-1}) = ghh'g^{-1} \in gHg^{-1}$ e $h^{-1} \in H \Rightarrow \exists (ghg^{-1})^{-1} = gh^{-1}g^{-1} \in gHg^{-1}$ elemento inverso.

Lo stabilizzatore di questa azione è detto *normalizzatore*, in quanto è definito come tutti elementi di G rispetto a cui H è normale:

$$N_G(H) = Stab(H) = \{g \in G \mid gHg^{-1} = H\}$$
 (1.2.6)

Infine, l'orbita è l'insieme (classe di equivalenza) di tutti i coniugati di un sottogruppo di G:

$$Orb(H) = \{gHg^{-1} \mid g \in G\}$$
 (1.2.7)

Per il teorema di orbita-stabilizzatore (1.2), si ha:

$$|G| = |N_G(H)||Orb(H)|$$
 (1.2.8)

da cui si ricava anche che $H \triangleleft G \iff N_G(H) = G \iff \mathrm{Orb}(H) = \{H\}.$

1.2.2 Formula delle classi

Si ricorda che le orbite definite da un'azione di un gruppo G su un insieme X formano una partizione di X stesso, in quanto sono delle classi di equivalenza. Se $|X| < \infty$, si ha:

$$|X| = \sum_{x \in R} |\operatorname{Orb}(x)| = \sum_{x \in R} \frac{|G|}{|\operatorname{Stab}(x)|} = \sum_{x \in R'} 1 + \sum_{x \in R \setminus R'} \frac{|G|}{|\operatorname{Stab}(x)|}$$
(1.2.9)

con R insieme dei rappresentanti delle orbite e R' insieme dei rappresentati delle orbite tali che $Orb(x) = \{x\}$, cioè degli elementi invarianti sotto l'azione di G.

Teorema 1.3 (Formula delle classi). Sia $\gamma: G \to S(G)$ l'azione di coniugio di un gruppo G su un insieme X; allora:

$$|G| = Z(G) + \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|}$$

Dimostrazione. Segue per quanto appena detto e dall'osservazione che

$$R' = \{x \in R \mid \operatorname{Orb}(x) = x\} = \left\{x \in R \mid gxg^{-1} = x\right\} = \mathsf{Z}(\mathsf{G})$$

Visto che ogni orbita del genere contiene un solo elemento, i rappresentanti delle orbite sono esattamente tutti gli elementi di Z(G), cioè un elemento $x \in Z(G)$ non può essere contenuto in nessun'altra orbita, se non nel singoletto $\{x\}$. Perciò, la relazione in eq. 1.2.9, avendo X = G, conferma la tesi.

§1.3 I p-gruppi

Definizione 1.7 (p-gruppo). Sia $p \in \mathbb{Z}$ un numero primo; allora si dice che G è p-gruppo se $|G| = p^n$, per qualche $n \in \mathbb{N}$.

Proposizione 1.3. Il centro di un p-gruppo è non-banale.

Dimostrazione. Per la formula delle classi, si ha:

$$p^{n} = |Z(G)| + \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|}$$

Se $|Z(G)| = p^n$, la tesi è verificata, altrimenti $\exists x \in R \setminus Z(G)$, quindi tale che $Z(x) \subsetneq G$; allora, per $k_x \in \mathbb{N}$, si ha $|G|/|Z(x)| = p^{k_x}$, con almeno un $k_x > 0$, da cui:

$$|Z(G)| = p^n - \sum_{x \in R \setminus Z(G)} p^{k_x} \implies p \mid |Z(G)|$$

Visto che $e \in Z(G)$, deve risultare $|Z(G)| \ge 1$, pertanto $|Z(G)| = p^s$, per qualche intero s > 1. □

Lemma 1.3.1. Vale G/Z(G) ciclico \iff G è abeliano.

Dimostrazione. Sia G/Z(G) ciclico e sia $x_0Z(G)$ il suo generatore. Date due classi laterali distinte $xZ(G), yZ(G) \in G/Z(G)$ e visto che $x_0Z(G)$ genera, si avrà $x_0^mZ(G) = xZ(G)$ e $x_0^nZ(G) = yZ(G)$, ossia, per $z, w \in Z(G), x = x_0^mz, y = x_0^nw$. Allora:

$$xy = x_0^m z x_0^n w = x_0^m x_0^n z w = x_0^n w x_0^m z = y x$$

Essendo questo valido per $x,y \in G$ generiche, si è dimostrata l'implicazione verso destra.

Per l'implicazione inversa, sia G abeliano; allora Z(G) = G e $G/Z(G) = \{e\}$, che è ovviamente ciclico.

Proposizione 1.4. Un gruppo di ordine p^2 è abeliano.

Dimostrazione. Sia G un p-gruppo tale che $|G| = p^2$. Per mostrare che è abeliano, si fa vedere che Z(G) = G, ossia $|Z(G)| = p^2$. Per la proposizione 1.3, si può avere solamente |Z(G)| = p, oppure $|Z(G)| = p^2$. Se, per assurdo, fosse |Z(G)| = p, allora |G|/|Z(G)| = p, quindi G/Z(G) avrebbe ordine primo e, quindi, sarebbe ciclico; per il lemma precedente (1.3.1), però, questo è assurdo perché risulterebbe anche abeliano al contempo, ma senza avere |Z(G)| = |G|. Quindi deve essere $|Z(G)| = p^2 = |G| \Rightarrow Z(G) = G$, da cui G è abeliano. □

§1.4 Teoremi di Cauchy e Cayley

Lemma 1.3.2 (Teorema di Cauchy abeliano). Sia p un primo e G un gruppo abeliano finito; se p |G|, allora $\exists x \in G : \operatorname{ord}(x) = p$.

Dimostrazione. Sia |G| = pn; si procede per induzione su n. Il passo base è ovvio: se |G| = p, allora è ciclico e, quindi, contiene un elemento di ordine p.

Per il passo induttivo, si suppone che la tesi sia vera per ogni $\mathfrak{m} < \mathfrak{n}$ e si dimostra per \mathfrak{n} .

Sia, allora |G| = pn; sia, poi $y \in G$, $y \neq e$ tale che $\langle y \rangle = H < G$: per Lagrange, |G| = |G/H||H|. Allora, se $p \mid |G| \Rightarrow p \mid |H|$, oppure $p \mid |G/H|$.

- Se p | |H|, allora può essere |G| = |H|, caso in cui $G = \langle y \rangle$ sarebbe ciclico e, quindi, avrebbe un elemento di ordine p¹, oppure può essere |H| = pm < pn, caso in cui l'elemento di ordine p è presente per ipotesi induttiva.
- Se p | |G/H|, invece, allora |G/H| = pm' < pn perché H contiene almeno due elementi, cioè y ed e; per ipotesi induttiva, allora, esiste zH ∈ G/H il cui ordine è p. Considerando la proiezione π_H : G → G/H tale che x → xH e ricordando che è un omomorfismo, si ha che, per questo motivo, ord(zH) | ord(z) ⇒ ord(z) = pk; se k = n, allora G è ciclico e zⁿ ha ordine p, altrimenti, se k < n, si ha la tesi per induzione.

Teorema 1.4 (Teorema di Cauchy). Sia p un numero primo e G un gruppo finito; se p | |G|, allora esiste $x \in G : \operatorname{ord}(x) = p$.

Dimostrazione. Sia |G| = pn, con p primo $e n \in \mathbb{N}$; si procede per induzione su n. Se n = 1, $|G| = p \Rightarrow G$ è ciclico, quindi $\exists x \in G : \langle x \rangle = G$ e $\operatorname{ord}(x) = p$.

Per il passo induttivo, si assume che la tesi sia valida per ogni $\mathfrak{m} < \mathfrak{n}$ e si dimostra per $\mathfrak{n}.$

Si nota che se $\exists H < G$ tale che $p \mid |H|$, allora |H| = pm, $m < n \Rightarrow \exists x \in H$ tale che $\operatorname{ord}(x) = p$ per ipotesi induttiva. Si assume, dunque, che non esista alcun sottogruppo di G il cui ordine sia divisibile per p. Per la formula delle classi

$$pn - \sum_{x \in R \setminus Z(G)} \frac{|G|}{|Z(x)|} = |Z(G)|$$

Ora, visto che $Z(x) < G \Rightarrow p$ non divide |Z(x)|, quindi si ha la certezza che, essendo $p \mid |G| = |Z(x)||G|/|Z(x)|$, p divide |G|/|Z(x)|. Allora $p \mid |Z(G)|$, per cui Z(G) = G; infatti,

In questo caso, l'elemento di ordine p sarebbe proprio $y^{p^{n-1}} \in G$; infatti, $(y^{p^{n-1}})^p = y^{p^n} = e$, visto che $|G| = p^n$.

se così non fosse, sarebbe un sottogruppo proprio di G e p non lo potrebbe dividere, il che è assurdo.

Da questo, segue che G è abeliano, quindi la tesi segue dal teorema di Cauchy per gruppi abeliani (lemma 1.3.2). □

Proposizione 1.5. Siano H, K < G; allora HK < G \iff HK = KH e |HK| = $|H||K|/|H \cap K|$.

Dimostrazione. Per la prima parte, è sufficiente osservare che per $hk \in HK$, l'elemento neutro $(hk)^{-1} = k^{-1}h^{-1}$ sta in HK se e solo se HK = KH, e, allo stesso modo, il prodotto è chiuso cioè $hkh'k' = hh''k''k' \in HK$ solamente se HK = KH così da poter trovare un elemento di HK che sia uguale a $kh' \in KH$ che compare in tale prodotto.

La seconda parte, invece, si verifica considerando l'applicazione $\gamma: H \times K \to HK$ tale che $\gamma((h,k)) = hk$, che è evidentemente suriettiva; inoltre, se $s \in H \cap K$, allora $(hs,s^{-1}k) \in H \times K \Rightarrow \gamma((hs,s^{-1}k)) = hk$, il che vuol dire che $\forall hk \in HK$, si trovano $|H \cap K|$ coppie in $H \times K$ che hanno immagine hk, da cui la tesi.

Esempio 1.3 (Classificazione dei gruppi di ordine 6). Sia G un gruppo di ordine 6; per Cauchy, allora, esistono $x, y \in G$ tali che $\operatorname{ord}(x) = 2$ e $\operatorname{ord}(y) = 3$. Se G è abeliano, poi, si ha $\operatorname{ord}(xy) = 6^1$, quindi $G = \langle xy \rangle \cong \mathbb{Z}/6\mathbb{Z}$.

Se, invece, G non è abeliano, si considera il sottogruppo $\langle x, y \rangle$ e si considera anche l'insieme $\langle x \rangle \langle y \rangle$ che, in generale, non è un sottogruppo.

Applicando la proposizione precedente (1.5), si ha che $|\langle x,y\rangle|=(3\cdot 2)/1=6^2$, da cui $G=\langle x\rangle\langle y\rangle$, con $\langle x\rangle=\{e,x\}$ e $\langle y\rangle=\{e,y,y^2\}$, quindi $G=\{e,x,y,xy,y^2,xy^2\}$.

Per finire, si mostra che $G\cong S_3$. Per farlo, si definisce $\varphi:G\to S_3=\left\{e,\tau,\rho,\tau\rho,\tau^2,\rho\tau^2\right\}$ tale che $\varphi(x)=\rho$ e $\varphi(y)=\tau$, con $\tau=(1,2,3)$ e $\rho=(1,2)$. Questa mappa è suriettiva per costruzione, quindi è biettiva per questioni di cardinalità; inoltre, è un omomorfismo, da cui segue la tesi.

Teorema 1.5 (Teorema di Cayley). Sia G un gruppo; allora G è isomorfo a un sottogruppo di S(G). In particolare, se |G| = n, allora G è isomorfo a un sottogruppo di S_n .

Dimostrazione. Si definisce l'azione

$$\varphi: \begin{array}{ccc} G & \longrightarrow & S(G) \\ g & \longmapsto & \gamma_g \end{array}, \ \ \text{tale che} \ \gamma_g(x) = g \cdot x = gx$$

Questa è ben definita perché $\gamma: G \to G$ è biettiva, infatti $\gamma_g(x) = \gamma_g(y) \iff gx = gy \iff x = y \ e \ \forall y \in G, \ \exists \gamma_g(g^{-1}y) = y$, il che mostra che è rispettivamente iniettiva e suriettiva. Inoltre, φ è un omomorfismo (ovvio) ed è anche iniettiva perché $\operatorname{Ker} \varphi = g$

 $^{^1\}langle x\rangle\cap\langle y\rangle e$ perché sono generati da elementi diversi, altrimenti avrebbero stesso ordine.

²Come già accennato, l'intersezione è solo l'unità perché i due elementi hanno ordini diversi, quindi generano gruppi disgiunti.

 $\{g\in G\mid \varphi_g=\varphi_e\}=\{g\in G\mid gx=x\}=\{e\}.\ \ \text{Da questo, segue che }S(G)\text{ contiene una copia isomorfa a }G.$

§1.5 Commutatore e gruppo derivato

Definizione 1.8. Sia G un gruppo e $S \subset G$ un suo sottoinsieme; allora $\langle S \rangle$ è il più piccolo sottogruppo di G contenente anche S.

Proposizione 1.6. Dato G un gruppo e $S \subset G$ un suo sottoinsieme, vale la relazione

$$\langle S \rangle = \left\{ s_1 s_2 \dots s_k \mid k \in \mathbb{N}, \ s_i \in S \cup S^{-1} \right\} = X$$

con
$$S^{-1} = \{s^{-1} \mid s \in S\}.$$

Dimostrazione. Per definizione

$$\langle S \rangle = \bigcap_{\substack{H < G \\ S \subset H}} H$$

Questa scrittura è ben definita perché l'intersezione di gruppi è ancora un gruppo e, in questo modo, si ha il gruppo più piccolo contenente S; se così non fosse, ne esisterebbe uno più piccolo ancora, che, però, farebbe parte dell'intersezione e sarebbe assurdo.

Ora, per quanto detto sopra, S è contenuto in tutti i gruppi la cui intersezione genera $\langle S \rangle$, quindi anche S^{-1} deve essere contenuto in tali sottogruppi di G. Segue che S, $S^{-1} \subset H \Rightarrow X \subset H$, $\forall H < G \ e \ S \subset H$, quindi $X \subset \bigcap H = \langle S \rangle$.

Allo stesso tempo, X è evidentemente un sottogruppo di G e contiene S per costruzione, quindi $X \supset \langle S \rangle$, da cui la tesi.

Definizione 1.9 (Commutatore). Sia G un gruppo; dati $g, h \in G$, il loro *commutatore* è definito come

$$[g, h] = ghg^{-1}h^{-1}$$

Definizione 1.10 (Gruppo derivato). Dato un gruppo G, si definisce *gruppo dei commutatori*, o *derivato* di G, il gruppo

$$G' = \langle [g,h] \mid g,h \in G \rangle = [G:G]$$

Ora si caratterizza il gruppo derivato. Intanto, si ricorda che $\langle S \rangle$ è abeliano $\iff \forall s_1, s_2 \in S, \ s_1s_2 = s_2s_1, \ \langle S \rangle$ è normale $\iff \forall g \in G, \forall s \in S, \ gsg^{-1} \in \langle S \rangle$ e, infine, $\langle S \rangle$ è caratteristico $\iff \forall f \in \operatorname{Aut}(G), \ \forall s \in S$ si ha $f(s) \in S$. Applicando queste alla definizione di commutatore, si ottiene la seguente.

Proposizione 1.7 (Proprietà del derivato). Sia G un gruppo e G' il suo derivato; allora:

(a).
$$G' = \{e\} \iff G \ \text{è abeliano};$$

- (b). $G' \triangleleft G$;
- (c). G' è caratteristico in G;
- (d). dato $H \triangleleft G$, se G/H è abeliano, allora $G' \subset H$.

Dimostrazione. La (a) è immediata perché $G' = \{e\} \iff \forall g_1, g_2 \in G, [g_1, g_2] = e$, cioè g_1 e g_2 commutano, da cui G abeliano.

Per la (b), $\forall x \in G, \forall g, h \in G$, si ha

$$x[g,h]x^{-1} = xghg^{-1}h^{-1}x^{-1} = xgx^{-1}xhx^{-1}xg^{-1}x^{-1}xh^{-1}x^{-1}$$
$$= [xgx^{-1}, xhx^{-1}] \in G'$$

Per la (c), si nota che $\forall f \in Aut(G), \ \forall g, h \in G$, si ha:

$$f([g,h]) = f(ghg^{-1}h^{-1}) = f(g)f(h)f(g)^{-1}f(h)^{-1} = [f(g),f(h)] \in G'$$

Infine, per la (d), se $H \triangleleft G$ e G/H è abeliano, si ha $\forall x, y \in G$

$$xHyH = yHxH \Rightarrow xyH = yxH \implies x^{-1}y^{-1}xy \in H \Rightarrow [x,y] \in H$$

da cui
$$H \supset G'$$
.

Corollario 1.5.1. Sia G un gruppo e G' il suo derivato; allora G/G' è sempre abeliano ed è chiamato *abelianizzazione* di G, nel senso che è il più grande quoziente abeliano di G.

Dimostrazione. Si mostra che G/G' è sempre abeliano. Siano, quindi gG', $hG' \in G/G'$ due classi laterali; allora si osserva che

$$(gG')(hG') = ghG' = hg[g^{-1}, h^{-1}]G' = hgG'$$

visto che $g^{-1}h^{-1}gh = [g^{-1},h^{-1}] \in G'$. Allora, dalla proprietà (d) della precedente proposizione (1.7), si ha $G' \subset H = G'$, cioè in questo caso si ha l'inclusione nell'insieme più piccolo, ovvero proprio G'. Questo vuol dire che G/G' è il quoziente con più elementi che sia abeliano perché ottenuto tramite quoziente con G', che è l'insieme più piccolo che soddisfa la proprietà¹.

§1.6 Gruppi liberi

Si definisce l'insieme $S = \{x_1, x_2, x_3, ...\}$ di simboli arbitrari, che può essere finito o infinito, e si definisce *parola* una qualunque loro concatenazione, in cui sono ammesse ripetizioni. L'insieme delle parole ottenibili a partire dagli elementi di S si indica con W.

 $^{^{1}}$ Per controposizione, se G' ⊄ H \implies G/H non abeliano.

Le concatenazioni dello stesso simbolo si possono esprimere in notazione esponenziale: $x_1x_1...x_1 = x_1^n$.

Per arrivare alla costruzione di un gruppo, servono degli inversi ed un elemento neutro; l'elemento neutro si indica con 1 ed è tale per cui

$$1 \cdot \prod_{i} x_{i}^{\alpha_{i}} = \prod_{i} x_{i}^{\alpha_{i}} \cdot 1 = \prod_{i} x_{i}^{\alpha_{i}}$$

L'insieme degli elementi inversi, invece, si indica con S^{-1} e si definisce $S' = S \cup S^{-1}$. Indicando, ora, con W' l'insieme delle parole che si possono costruire in S', si nota la possibilità di trovare una sequenza della forma ... xx^{-1} ..., oppure ... $x^{-1}x$...; questo indica che la parola può essere opportunamente ridotta cancellando tali simboli, cioè usando la definizione $x^{-1}x = xx^{-1} = 1$.

Definizione 1.11 (Parola ridotta). Una parola di W' si dice *ridotta* se non è possibile operare ulteriori cancellazioni.

A partire da una stessa parola, o dalle sue cancellazioni, è possibile operare la riduzione cancellando i termini in ordine diverso, ma giungendo sempre allo stesso risultato. Alla luce di questo, si ha la seguente definizione.

Definizione 1.12 (Parole equivalenti). Due parole $w, w' \in W'$ si dicono *equivalenti*, e si scrive $w \sim w'$, se hanno la stessa forma ridotta w_0 .

Osservazione 1.5. Si può dimostrare che ~ è una relazione di equivalenza.

Proposizione 1.8. Sia F l'insieme delle classi di equivalenza di parole in W'; allora F è un gruppo rispetto alla legge di composizione indotta W'.

Dimostrazione. La concatenazione di parole di W' è associativa e la legge di composizione indotta da questa tra le parole che rappresentano una classe di equivalenza sarà altrettanto associativa. Inoltre, la classe dell'elemento neutro 1 è l'identità e la classe della parola inversa di w è l'inversa della classe di w.

Definizione 1.13 (Gruppo libero). Si definisce *gruppo libero sull'insieme* S il gruppo F con la composizione indotta da W'.

Si indica con F_1 il gruppo libero su $S = \{x\}$, cioè è il gruppo generato da un singolo simbolo e da tutte le sue concatenazioni, quindi da tutte le sue potenze. Questo si sa caratterizzare bene perché, evidentemente, $F_1 \cong \mathbb{Z}$; infatti basta definire $\phi : \mathbb{Z} \to F_1$, con $\phi(k) = x^k$.

Proposizione 1.9 (Proprietà universale). Sia F_S il gruppo libero su un insieme S e sia G un gruppo; ogni applicazione tra insiemi $f:S\to G$ si estende in modo unico ad un omomorfismo di gruppi $\phi:F_S\to G$.

Dimostrazione. Indicando con $\widetilde{x}=f(x)$, per $x\in S$, allora ϕ mappa una parola di S' nel corrispondente prodotto in G.

Si nota che f associa un simbolo ad un elemento di G; allora la mappa φ associa, a ciascuna parola composta dai simboli di S', la loro immagine tramite f: se $w = x_1 \cdots x_n$, allora $\varphi(w) = f(x_1) \dots f(x_n) = \widetilde{x}_1 \cdots \widetilde{x}_n$, con $\varphi(x^{-1}) = f(x)^{-1} = \widetilde{x}^{-1}$.

Due parole equivalenti di S', allora, vengono mappate nell'analogo prodotto in G, per cui risulteranno avere stessa immagine attraverso φ ; questo perché se w e w' si riducono a w_0 , allora la loro immagine tramite φ andrà in due elementi il cui prodotto si ridurrà al prodotto degli elementi immagine di w_0 .

Infine:

$$ww' = x_1 \cdots x_n x_1' \cdots x_n' \longmapsto \widetilde{x}_1 \cdots \widetilde{x}_n \widetilde{x}_1' \cdots \widetilde{x}_n' = \varphi(w) \varphi(w')$$

il che prova che φ è un omomorfismo. L'unicità deriva dal fatto che φ è univocamente determinato da come f mappa gli elementi di S in quelli di G; se, infatti, si avesse $\varphi(w) = \varphi(w')$, allora si avrebbe $f(x_i) = f(x_i')$, $\forall i$.

Proposizione 1.10 (Presentazione di un gruppo). Sia G un gruppo generato da n elementi g_1, \ldots, g_n e sia F_n il gruppo libero su un insieme di n elementi; allora $F_n/\operatorname{Ker} \phi \cong G$, con $F_n \stackrel{\phi}{\longrightarrow} G$.

Dimostrazione. Per la precedente proposizione, esiste un omomorfismo $\phi: F_n \to G$ tale che a ciascun $x_i \in F_n$ è associato il relativo generatore $g_i \in G$; visto che $\{g_1, \ldots, g_n\} \subset \operatorname{Im} \phi < G$, allora $\operatorname{Im} \phi = G$, essendo che $\operatorname{Im} \phi$ contiene tutti i generatori di G ed ogni loro potenza. Per il I teorema di omomorfismo, allora, $F_n/\operatorname{Ker} \phi \cong G$.

Osservazione 1.6. Il nucleo dell'omomorfismo φ definito sopra è composto da tutte quelle relazioni che mappano i generatori nell'elemento neutro.

In realtà, il nucleo è il più piccolo sottogruppo normale ottenuto a partire dall'insieme delle relazioni, indicato con $\langle R \rangle_N$. Questo significa che se una relazione del tipo r=1 vale in G, allora vale anche $xrx^{-1}=1$, visto che $\langle R \rangle_N$ è normale per definizione e, quindi, contiene tutti i suoi coniugati.

Esempio 1.4. Si ha
$$\mathbb{Z}/n\mathbb{Z} = \langle x \mid (x, n) = 1 \text{ e } x^n = 0 \rangle \cong F_1/\langle x^n \rangle$$
.

Proposizione 1.11 (Presentazione dei gruppi quoziente). Sia G un gruppo e sia $N \triangleleft G$. Si considera G/N, ottenuto tramite la proiezione $\pi : G \rightarrow G/N$, con $\pi(x) = \overline{x} = xN$, e si considera, dato un altro gruppo G', $\varphi : G \rightarrow G'$ un omomorfismo tale che con $N < \operatorname{Ker} \varphi$; allora $\exists ! \overline{\varphi} : G/N \rightarrow G'$ tale che $\overline{\varphi} \circ \pi = \varphi$.

Dimostrazione. Si dimostra che è soddisfatto il seguente diagramma:

 $\operatorname{con} \overline{\varphi}(\overline{\mathfrak{a}}) = \varphi(\mathfrak{a}).$

Per poter definire $\overline{\phi}: G/N \to G$, bisogna definire $\overline{\phi}(\alpha), \ \forall \alpha \in G/N$; per farlo, si sceglie $\alpha \in G: \pi(\alpha) = \alpha$, per cui $\alpha = \overline{\alpha}$. Volendo che $\overline{\phi}(\pi(\alpha)) = \phi(\alpha)$, si deve definire $\overline{\phi}$ tramite la relazione $\overline{\phi}(\alpha) = \phi(\alpha)$.

Ora si fa vedere che, in questo modo, $\overline{\phi}$ è ben definito, cioè si mostra che il valore $\overline{\phi}(\alpha)$, cioè $\phi(\alpha)$, non dipende dalla scelta del rappresentante della classe di equivalenza. Siano, allora, $\alpha, \alpha' \in G : \overline{\alpha} = \overline{\alpha}' = \alpha$; l'uguaglianza $\overline{\alpha} = \overline{\alpha}'$ implica che $\alpha' = \alpha n$, per qualche $n \in N$ e, visto che $N \subset \operatorname{Ker} \phi$, si ha $\phi(\alpha') = \phi(\alpha)\phi(n) = \phi(\alpha)$.

Per finire, si ha che $\overline{\phi}$ è un omomorfismo perché $\overline{\phi}(\overline{a})\overline{\phi}(\overline{b}) = \phi(a)\phi(b) = \phi(ab) = \overline{\phi}(\overline{ab})$, mentre l'unicità deriva dal fatto che, se $\exists \overline{\psi}$ tale che $\phi = \overline{\psi} \circ \pi$, allora $\overline{\psi}(\alpha) = \overline{\psi}(\pi(a)) = \phi(a) = \overline{\phi}(\pi(a)) = \overline{\phi}(\alpha)$, $\forall \alpha$.

Teorema 1.6. Siano H, K due gruppi, con $H = \langle x_1, ..., x_n \mid R \rangle$, cioè è generato dagli x_i , i quali soddisfano anche le relazioni $R = \{w_1, ..., w_m\}$; allora:

$$\operatorname{Hom}(H,K) \longleftrightarrow \left\{ \{x_1,\ldots,x_n\} \stackrel{f}{\longrightarrow} K \;\middle|\; f(x_1),\ldots,f(x_n) \text{ soddisfano le relazioni di } R \right\}$$

dove la doppia freccia indica una biezione.

Dimostrazione. Sia $F = \langle x_1, ..., x_n \rangle$ il gruppo libero sui generatori $x_1, ..., x_n$ e sia N la chiusura normale di R in F; allora, per la presentazione dei gruppi quoziente, si ha $F/N \cong H$. Sia, ora:

$$\Phi: \operatorname{Hom}(H,K) \longrightarrow \{(k_1,\ldots,k_n) \in K^n: \ k_i = f(x_i) \text{ soddisfano } R\}$$

che mappa ciascun omomorfismo $f \in \text{Hom}(H, K)$ nella n-upla $(f(x_1), \dots, f(x_n)) \in K^n$.

(a). Φ è ben definita.

Se $f \in \text{Hom}(H, K)$, allora ogni parola $w \in R$ rappresenta l'identità in H, quindi la sua immagine tramite f è l'identità in K. Pertanto le componenti $f(x_i)$ soddisfano le relazioni di R.

(b). Φ è iniettiva.

Siano f, $g \in \text{Hom}(H, K)$ tali che $\Phi(f) = \Phi(g)$; allora $\forall i, f(x_i) = g(x_i)$. Visto che gli x_i generano H, allora ogni elemento di H è una parola nei generatori; dato che f e g coincidono sui generatori, ne segue che coincidono su tutto H, quindi f = g.

(c). Φ è suriettiva.

Sia $(k_1, \ldots, k_n) \in K^n$ una n-upla che soddisfa le relazioni di R; allora esiste un unico omomorfismo $f: F \to K$ che manda $x_i \longmapsto k_i$. Le ipotesi sulle relazioni implicano che ogni $w \in R$ viene mandata nell'identità di K, cioè N < Ker f; per la presentazione dei gruppi quoziente, allora, si ha $\bar{f}: F/N \cong H \longrightarrow K$ che mappa la classe di x_i in k_i . Quindi la n-upla data è l'immagine di \bar{f} tramite Φ .

Se ne conclude che Φ è una biezione, quindi esiste una corrispondenza biunivoca tra gli omomorfismi $H \to K$ e le n-uple di elementi di K che soddisfano le relazioni K.

Osservazione 1.7. Si nota che nella formulazione del teorema si può usare indifferentemente l'insieme delle funzioni $f:\{x_1,\ldots,x_n\}\longrightarrow K$, che mappano x_i in elementi di K che soddisfano R, oppure l'insieme delle n-uple $\{(k_1,\ldots,k_n)\in K^n:k_i \text{ soddisfano }R\}$. Questo perché, fissato l'ordinamento dei generatori x_1,\ldots,x_n , esiste una biezione

$$\{f: \{x_1, \dots, x_n\} \longrightarrow K\} \xrightarrow{\cong} K^n, \qquad f \longmapsto (f(x_1), \dots, f(x_n))$$

§1.7 Gruppi diedrali

Definizione 1.14 (Gruppo diedrale). Per $n \in \mathbb{N}$, si considera un n-agono regolare nel piano; l'insieme di tutte le isometrie del piano che mandano l'n-agono in se stesso è indicato con D_n ed è noto col nome di *gruppo diedrale*.

Proposizione 1.12. Per $n \in \mathbb{N}$, il gruppo diedrale D_n ha cardinalità $|D_n| = 2n$.

Dimostrazione. Un'isometria è univocamente determinata dall'immagine di un vertice e di un lato adiacente al vertice stesso; allora, l'immagine può essere pari a n possibili vertici, con due, conseguenti, possibilità per il lato, da cui 2n possibili isometrie. □

Proposizione 1.13. Sia ρ una rotazione che sottende un lato¹ e σ una simmetria (riflessione) dell'n-agono regolare; allora $\rho^n = e$, $\sigma^2 = e$ e $\sigma \rho \sigma = \rho^{-1}$.

Dimostrazione. Visto che ρ manda un lato dell'n-agono regolare nella posizione del successivo, impiegherà n iterazioni a far tornare il lato di partenza nella posizione originale; similmente, se σ è una riflessione, sarà sufficiente riapplicarla per far tornare l'n-agono nella posizione originale.

Per l'ultima, si nota che, componendo una rotazione e una riflessione, si ottiene una riflessione; applicando la seconda proprietà, si ottiene $\sigma\rho\sigma\rho=e\Rightarrow\sigma\rho\sigma=\rho^{-1}$.

¹Cioè che manda un lato nel successivo.

Osservazione 1.8. Ponendo l'n-agono regolare nel piano \mathbb{R}^2 , gli elementi di D_n si possono mettere in relazione con $\mathrm{GL}_2(\mathbb{R})$, visto che si possono vedere come applicazioni lineari da \mathbb{R}^2 in se stesso, cioè possono essere rappresentate tramite matrici¹:

$$\rho \overset{\gamma}{\longmapsto} \begin{pmatrix} \cos{(2k\pi/n)} & \sin{(2k\pi/n)} \\ -\sin{(2k\pi/n)} & \cos{(2k\pi/n)} \end{pmatrix} = M_{\rho} \qquad \sigma \overset{\gamma}{\longmapsto} \begin{pmatrix} \cos{2\theta} & \sin{2\theta} \\ \sin{2\theta} & -\cos{2\theta} \end{pmatrix} = M_{\sigma}$$

Si nota, inoltre, che indicando con \mathbb{D}_n il gruppo generato da queste matrici, allora la mappa $\gamma:\langle \rho,\sigma\rangle\to\mathbb{D}_n$ è un omomorfismo di gruppi; infatti, dati due elementi $s_1,s_2\in\langle \rho,\sigma\rangle$:

$$\gamma(s_1s_2)\nu = M_{s_1s_2}\nu = (s_1s_2)(\nu) = s_1(s_2(\nu)) = M_{s_1}M_{s_2}\nu = \gamma(s_1)\gamma(s_2)\nu$$

con $v \in \mathbb{R}^2$ e s(v) è l'applicazione della rotazione o riflessione $s \in \langle \rho, \sigma \rangle$ a tale vettore di \mathbb{R}^2 . Conseguentemente, si ha $M^n_\rho = \mathrm{Id} = M^2_\sigma$ e $M_\sigma M_\rho M_\sigma = M_\rho^{-1}$.

Essendo γ un omomorfismo, si vede anche che ρ e σ , come elementi di D_n , non sono legati da alcuna relazione perché, altrimenti, lo sarebbero anche le loro matrici associate, cosa che sarebbe assurda.

Proposizione 1.14. Tutti gli elementi di D_n si scrivono come $\sigma \rho^i$, oppure ρ^i , con $i \in \{0, ..., n-1\}$.

Dimostrazione. Sia $g \in D_n$; allora g sarà una generica composizione di riflessioni e rotazioni del tipo $g = \rho^{\alpha_1} \sigma^{b_1} \dots \rho^{\alpha_k} \sigma^{b_k}$, dove $\alpha_i \in \mathbb{Z}$ e $b_j \in \{0,1\}$. Usando le relazioni $\sigma^2 = \rho^n = e$, si riscalano gli esponenti per scrivere $g = \rho^{c_1} \sigma \dots \rho^{c_m} \sigma$, dove si sono anche, eventualmente, uniti esponenti di rotazioni consecutive (quindi $m \leq k$). Ora, utilizzando la relazione $\rho\sigma = \sigma\rho^{-1}$, è possibile spostare tutte le σ verso l'estrema sinistra, cioè come primo termine della parola; così facendo, si vede che tale parola diventa o una potenza di ρ , oppure un termine del tipo $\sigma\rho^d$, che è esattamente quello che si voleva dimostrare.

Grazie alla precedente proposizione, è possibile definire $\rho^{[i]}=\rho^i$, con $[i]\in\mathbb{Z}/n\mathbb{Z}$, visto che $\rho^n=e$.

Inoltre, se ρ , $\sigma \in D_n$, allora $\langle \rho, \sigma \rangle < D_n$; però, per quanto detto finora, si ha $|\langle \rho, \sigma \rangle| = 2n$ perché $\rho^n = e = \sigma^2$, quindi, per ragioni di cardinalità, segue che $D_n = \langle \rho, \sigma \rangle$.

1.7.1 Sottogruppi di D_n

Numero di elementi di ordine k. Sia ρ una rotazione in D_n ; si considera $\langle \rho \rangle \cong C_n <$

¹Le riflessioni così definite devono essere rispetto ad un asse opportuno, cioè che sia un asse di simmetria per l'n-agono in questione. Nella matrice delle riflessioni, l'angolo θ è l'angolo dell'asse rispetto a cui si riflette ed è preso con riferimento all'asse x.

 D_n^1 .

Essendo C_n ciclico, vi sono $\varphi(k)$ elementi di ordine k, se $k \mid n$. Oltre alle n rotazioni ρ^i , in D_n sono presenti anche le n riflessioni $\sigma \rho^i$; osservando che $\sigma \rho^i \sigma \rho^i = \rho^{-i} \rho^i = e$, si conclude che se n è pari, vi sono n+1 elementi di ordine 2 (cioè le n riflessioni e $\rho^{n/2}$), mentre se n è dispari, vi sono n elementi di ordine 2. Ricapitolando:

$$\#\{\text{elementi di ordine } k\} = \begin{cases} n+1 & \text{, se } k=2 \text{ e n pari} \\ n & \text{, se } k=2 \text{ e n dispari} \\ \varphi(k) & \text{, se } k \mid n \\ 0 & \text{, altrimenti} \end{cases} \tag{1.7.1}$$

visto che le n riflessioni sono tutte di ordine 2 e l'esistenza di $\rho^{n/2}$ dipende dalla parità di n.

I sottogruppi. Nel punto precedente, si è notato che C_n è uno dei sottogruppi. Inoltre, i sottogruppi di C_n sono noti: ne esiste uno per ogni divisore dell'ordine del gruppo, cioè n in questo caso, per cui se $H < D_n$ e $H < C_n$, allora H è l'unico sottogruppo di ordine |H|. Se, invece $H < D_n$ e $H \not< C_n$, allora H contiene almeno una riflessione τ .

Proposizione 1.15. Per $H < D_n$ e $H \cap C_n \neq H$ (cioè H contiene almeno una riflessione), si ha $H = (H \cap C_n) \bigsqcup (\tau H \cap C_n)$ ed esiste una mappa biettiva tra $(H \cap C_n)$ e $(\tau H \cap C_n)^2$.

Dimostrazione. Si considera

$$\mathsf{H} \xrightarrow{\gamma} \mathrm{GL}_2(\mathbb{R}) \xrightarrow{\det} \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$$

dove γ è l'omomorfismo che a ρ e σ associa le relative matrici, mentre le matrici di $\mathrm{GL}_2(\mathbb{R})$ sono mappate a $\{\pm 1\}$ tramite il determinante: $\det M_{\rho}=1$ e $\det M_{\sigma}=-1$. La mappa $\phi=\gamma\circ\det$ è un omomorfismo suriettivo, infatti γ è un omomorfismo e per il teorema di Binet per cui $\det(M_{\rho}^iM_{\sigma}^j)=\det(M_{\rho})^i\det(M_{\sigma})^j=1^i(-1)^j=1\iff j=0$. La suriettività è assicurata dal fatto che almeno una riflessione stia in H.

Considerando, quindi, $\varphi: H \to \mathbb{Z}/2\mathbb{Z}$, il suo kernel è $H \cap C_n$; per il I teorema di omomorfismo, allora, $H/(H \cap C_n) \cong \mathbb{Z}/2\mathbb{Z}$, da cui $|H|/|H \cap C_n| = |\mathbb{Z}/2\mathbb{Z}| = 2$.

Poi, $\tau H \cap C_n$ e $H \cap C_n$ sono disgiunti perché se $h \in H \cap C_n$ non potrebbe stare anche in $\tau H \cap C_n$, altrimenti sarebbe una rotazione e una riflessione allo stesso tempo.

 $^{^{1}}$ Qui, con C_{n} si indica un generico gruppo ciclico di ordine n.

²Per $\tau H \cap C_n$, si intende $\tau (H \cap C_n)$.

Rimane da mostrare solo che i due insiemi hanno stessa cardinalità, quindi l'esistenza di una mappa biettiva che li colleghi. Sia, allora

$$\psi: \begin{array}{ccc} H \cap C_n & \longrightarrow & \tau H \cap C_n \\ h & \longmapsto & \tau h \end{array}$$

questa è biettiva perché $\tau h_1 = \tau h_2 \iff h_1 = h_2 \ e \ \forall \tau h \in \tau H \cap C_n$, si ha $\psi(h) = \tau h$. \square

Si osserva che, per qualche m, $H \cap C_n = \langle \rho^m \rangle = \{e, \rho^m, \rho^{2m}, \dots, \rho^{n-m}\}$, con m | n; se $\tau = \sigma \rho^i$, allora $\tau H \cap C_n = \{\sigma \rho^i, \sigma \rho^{i+m}, \dots, \sigma \rho^{i+n-m}\}$ e si sa che l'unione dei due restituisce tutto H. Allora H è composto da m rotazioni e m simmetrie; in particolare $H = \langle \rho^m, \tau \rangle \cong D_m$, quindi, se m | n, si hanno dei sottogruppi della forma $\mathbb{Z}/m\mathbb{Z}$ e D_m .

Sottogruppi normali. Per lo studio dei sottogruppi normali, si considerano le due seguenti proposizioni.

Proposizione 1.16. Sia H < G un sottogruppo tale che [G : H] = 2; allora $H \triangleleft G$.

Dimostrazione. Si considerano gli insiemi {H, gH} e {H, Hg} delle classi laterali, rispettivamente, sinistre e destre di H in G, con $g \notin H$. Ora, $\forall x \in H$, si ha direttamente xH = H = Hx; si mostra che lo stesso vale anche per elementi non in H. Se $y \in G \setminus H$, allora $yH \neq H \neq Hy$; visto che entrambe le classi laterali formano una partizione di G, allora deve valere $yH = G \setminus H = Hy$, pertanto yH = Hy, $\forall y \in G \setminus H$. Si conclude che gH = Hg, $\forall g \in G$, quindi $H \triangleleft G$. □

Proposizione 1.17. Siano $H \triangleleft G$ e K < H, con K caratteristico in H; allora $K \triangleleft G$.

Dimostrazione. Si considera, per $g \in G$, $\varphi_g : G \to G$ con $\varphi_g(x) = gxg^{-1}$; per definizione, si ha $\varphi_g(H) = H$, quindi $\varphi_g|_H$ è un automorfismo e, allora, $\varphi_g|_H(K) = K$, $\forall g \in G \Rightarrow gKg^{-1} = K$, pertanto $K \triangleleft G$. □

L'indice di C_n in D_n è 2, quindi $C_n \triangleleft D_n$ per la prima proposizione. Per G ciclico di ordine n, esiste un unico H, con $|H| = m \mid n$; visto che ogni sottogruppo di un gruppo ciclico è caratteristico, allora, nel caso di D_n , ogni sottogruppo di $\langle \rho \rangle \cong C_n$ è caratteristico, quindi normale.

Se n è pari, allora $\langle \rho^2 \rangle < C_n$ ha n/2 elementi; considerando $H < D_n$ e $H \not\subset C_n$, con $H \cap C_n = \langle \rho^2 \rangle$, si ha

$$H = \langle \rho^2 \rangle \sqcup \tau \langle \rho^2 \rangle$$

quindi $[D_n:H]=2$, per cui $H\lhd D_n$. Di sottogruppi di questa forma, se ne trovano due: $\langle \rho^2,\sigma\rangle$ e $\langle \rho^2,\sigma\rho\rangle$; tuttavia non si sa se siano tutti i sottogruppi normali, quindi si cerca di caratterizzarli meglio.

Si sa che $H \triangleleft G \iff gHg^{-1} = H, \ \forall g \in G$, quindi per ogni elemento di un sottogruppo normale, devono figurare anche tutti i suoi coniugati. Per la proposizione 1.14,

per capire come sono fatti i coniugati di D_n , è sufficiente studiare quali siano quelli di ρ^i e $\sigma\rho^i$. Si nota che:

$$\rho^{j}\rho^{i}\rho^{-j}=\rho^{i} \qquad \sigma\rho^{j}\rho^{i}\rho^{-j}\sigma=\sigma\rho^{i}\sigma=\rho^{-i}$$

quindi l'insieme dei coniugati di ρ^i è $\{\rho^i, \rho^{-i}\}$; in particolare, se $i \in \{0, n/2\}$, tale insieme diventa $\{e\}$, oppure $\{\rho^{n/2}\}$ rispettivamente. Poi, si nota che:

$$\rho^i\sigma\rho^j\rho^{-i}=\sigma\rho^{-i}\rho^j\rho^{-i}=\sigma\rho^{j-2i} \qquad \sigma\rho^i\sigma\rho^j\rho^{-i}\sigma=\rho^{-i}\rho^j\rho^{-i}\sigma=\sigma\rho^{2i-j}$$

quindi se n è pari, allora $\sigma \rho^s \sim \sigma \rho^t \iff s \equiv t \pmod 2$, quindi le riflessioni di spezzano in due classi di coniugio; se n è dispari, invece, le riflessioni sono tutte coniugate¹. Ricapitolando:

- se n è dispari e se un sottogruppo contiene una riflessione, allora, per essere normale, le deve contenere tutte e tutte le riflessioni generano D_n , infatti σ e $\sigma\rho$ sono dati, dai quali si ottiene $\rho=(\sigma)(\sigma\rho)$, quindi $H \lhd D_n \Rightarrow H=D_n$, mentre se non contiene alcuna riflessione, allora è un sottogruppo di C_n ;
- se n è pari, oltre ai sottogruppi di C_n , si considerano gli $H \triangleleft D_n$ che sono tali che $\sigma \rho^i \in H$, per cui $\sigma \rho^{i+2} \in H$ e $\rho^2 \in H$, pertanto, se $H \neq D_n$, devono essere della forma $\langle \rho^2, \sigma \rangle$, o $\langle \rho^2, \sigma \rho \rangle$.

Sottogruppi caratteristici. Usando quanto visto per i sottogruppi normali, si conclude che i possibili sottogruppi caratteristici sono i sottogruppi di C_n e $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$. Mentre si sa già che i sottogruppi di C_n sono caratteristici, si osserva che, per gli altri due, la mappa $\tau:D_n\to D_n$ tale che $\tau(\rho)=\rho$ e $\tau(\sigma)=\sigma\rho$ è un automorfismo che scambia $\langle \rho^2, \sigma \rangle$ con $\langle \rho^2, \sigma \rho \rangle$ e viceversa, quindi non sono caratteristici.

1.7.2 Centro, quozienti e automorfismi di D_n

II centro. Si cercano tutti gli elementi $\tau \in D_n$ tale che $\forall \rho \in D_n$, $\rho \tau \rho^{-1} = \tau$. Dal precedente studio dei coniugi nei sottogruppi normali, si conclude che $Z(D_n) = \{e\}$ se n è dispari e $Z(D_n) = \{e, \rho^{n/2}\} \cong \mathbb{Z}/2\mathbb{Z}$ se n è pari.

Quozienti. Si sa che i quozienti sono in corrispondenza biunivoca con i sottogruppi normali, il che vuol dire che esiste un quoziente per ciascun $H \triangleleft G$. A meno di un automorfismo, i quozienti si ottengono come segue. Per quanto visto precedentemente,

 $^{^1}$ Questo è dato dal fatto che, visto che i compare con un 2 davanti all'esponente, se $\mathfrak n$ è pari, allora, variando i, si ottengono solo permutazioni pari perché l'esponente fa salti di due andando di pari in pari; se $\mathfrak n$ è dispari, l'esponente non può fare salti di due in due: arrivato ad un certo punto, aumentando di 2, si finisce in un numero dispari e si raggiungono tutte le riflessioni. Questo permette di concludere che, quando $\mathfrak n$ è pari, le riflessioni si dividono in due classi diverse, mentre quando $\mathfrak n$ è dispari, sono tutte coniugate fra loro.

i sottogruppi normali sono i sottogruppi di C_n e, se n è pari, anche quelli della forma $\langle \rho^2, \sigma \rangle$ e $\langle \rho^2, \sigma \rho \rangle$. Sia, $\langle \rho^m \rangle < C_n$, con $m \mid n$, per cui $|D_n/\langle \rho^m \rangle| = 2n/(n/m) = 2m$.

Proposizione 1.18. Si ha $D_n/\langle \rho^m \rangle \cong D_m$.

Dimostrazione. Si considera

$$\begin{array}{cccc}
D_n & \longrightarrow & D_{n/m} \\
\gamma \colon & \sigma & \longmapsto & \tau \\
\rho & \longmapsto & \varepsilon
\end{array}$$

dove $D_n = \langle \sigma, \rho \mid \rho^n = \sigma^2 = e, \sigma \rho \sigma = \rho^{-1} \rangle$ e $D_m = \langle \tau, \varepsilon \mid \varepsilon^m = \tau^2 = e, \tau \varepsilon \tau = \varepsilon^{-1} \rangle$. Per verificare che si tratta di un omomorfismo ben definito, è sufficiente far vedere che rispetta le relazioni di D_n (th. 1.6):

$$\gamma(\rho)^n = \varepsilon^n = (\varepsilon^m)^k = e$$
 (visto che m | n)
 $\gamma(\sigma)^2 = \tau^2 = e$
 $\gamma(\sigma)\gamma(\rho)\gamma(\sigma) = \tau\varepsilon\tau = \varepsilon^{-1} = \gamma(\rho)^{-1}$

quindi è effettivamente un omomorfismo. Si nota che questo è suriettivo e il suo nucleo è $\langle \rho^m \rangle$, quindi si ha la tesi per il I teorema di omomorfismo.

Nel caso di n pari, poi, vi sono gli altri due sottogruppi citati sopra, che hanno indice 2 e, quindi, i cui quozienti sono isomorfi a $\mathbb{Z}/2\mathbb{Z}$.

Gli automorfismi. Si studia $\operatorname{Aut}(D_n)$. Per farlo, si cerca di calcolarne la cardinalità. Per definire un automorfismo in D_n , lo si definisce sui generatori, che si sanno essere ρ e σ . L'immagine di questi generatori deve essere un altro generatore: ad esempio, l'immagine di ρ , che ha ordine n, deve avere come immagine un elemento di ordine n; questi sono della forma ρ^i , con $\gcd(i,n)=1$, quindi ci sono $\varphi(n)$ possibili scelte. Poi, σ ha ordine 2 e deve avere, come immagine, un altro elemento di ordine 2 che, insieme al ρ^i scelto prima, generi D_n ; ci sono n riflessioni della forma $\sigma \rho^j$, quindi un totale di n scelte possibili. Si nota che se n è pari, anche $\rho^{n/2}$ ha ordine 2, ma la coppia ρ^i , $\rho^{n/2}$ non genera D_n . Sia, allora

$$\begin{array}{cccc} D_n & \longrightarrow & D_n \\ \gamma \colon & \rho & \longmapsto & \rho^i \\ & \sigma & \longmapsto & \sigma \rho^j \end{array}$$

con gcd(i,n) = 1 e j qualsiasi; γ è ben definita (si può verificare che è un omomorfismo vedendo che soddisfa le relazioni del gruppo) e si nota che:

$$\gamma\left((\rho^s)(\sigma\rho^t)\right) = \gamma(\sigma\rho^{t-s}) = \sigma\rho^j\rho^{\mathfrak{i}(t-s)} = \sigma\rho^{-\mathfrak{i}s}\rho^j\rho^{\mathfrak{i}t} = \rho^{\mathfrak{i}s}\sigma\rho^j\rho^{\mathfrak{i}t} = \gamma(\rho^s)\gamma(\sigma\rho^t)$$

Inoltre, è biettiva per costruzione, quindi si ha $|\operatorname{Aut}(D_n)| = n\varphi(n)$; da un punto di vista insiemistico, esiste una biezione tra $\operatorname{Aut}(D_n)$ e $\mathbb{Z}/n\mathbb{Z} \times (\mathbb{Z}/n\mathbb{Z})^*$.

Esercizio 1.1. Studiare D_4 (risultati a pagina 19) e D_6 .

§1.8 Permutazioni

Definizione 1.15 (Permutazione). Sia X un insieme; una mappa $f: X \to X$ è detta *permutazione* se è biettiva. Le permutazioni formano un gruppo rispetto alla composizione tra funzioni ed è indicato con

$$S(X) = \{f : X \to X \mid f \text{ è biettiva}\}\$$

Se $X = \{1, ..., n\}$, allora il gruppo delle permutazioni si indica con S_n e $|S_n| = n!$.

Una permutazione di S_n può essere rappresentata tramite cicli, i quali sono disgiunti e, quindi, commutano fra loro.

Ogni k-ciclo (ciclo di lunghezza k) ha k scritture diverse, tutte equivalenti fra loro, dovute alla possibilità di scegliere uno fra i k elementi del ciclo come primo elemento; dopo questa scelta, tutti gli altri sono univocamente determinati.

Proposizione 1.19. I cicli di una permutazione di S_n sono orbite degli elementi di $X = \{1, ..., n\}$ formate dall'azione indotta da tale permutazione.

Dimostrazione. Sia $\sigma \in S_n$ e sia $\langle \sigma \rangle$ il sottogruppo ciclico generato da σ . Si considera l'azione di $\langle \sigma \rangle$ su X secondo la legge $\sigma^k \cdot x = \sigma^k(x)$; l'orbita di ciascun elemento di X è della forma

$$\operatorname{Orb}(x) = \left\{ \sigma^k(x) \mid k \in \mathbb{Z} \right\}$$

Si nota che $|X| < \infty \Rightarrow |\operatorname{Orb}(x)| < \infty$, $\forall x$. Sia, poi, $\mathfrak{m} \geqslant 1$ il più piccolo intero tale che $\sigma^{\mathfrak{m}}(x) = x^1$; allora gli elementi

$$x, \sigma(x), \sigma^2(x), \ldots, \sigma^{m-1}(x)$$

sono tutti distinti (per definizione di m) e formano $\mathrm{Orb}(x)$. Facendo agire σ su $\mathrm{Orb}(x) \subset X$, si nota che

$$x \mapsto \sigma(x), \ \sigma(x) \mapsto \sigma^2(x), \dots, \ \sigma^{m-1}(x) \mapsto \sigma^m(x) = x$$

L'azione di σ ristretta a Orb(x), allora, si può vedere come la permutazione

$$\begin{pmatrix} x & \sigma(x) & \sigma^2(x) & \cdots & \sigma^{m-1}(x) \end{pmatrix}$$

che è un m-ciclo. Se O_1,\ldots,O_r sono le orbite non banali (cioè di lunghezza > 1), σ agisce su ciascuna O_i come un m_i -ciclo, chiamato c_i per ogni orbita, con $|O_i|=m_i$, mentre su quelle banali agisce come l'identità. Visto che le orbite partizionano X, ciascun ciclo c_i è disgiunto dagli altri e la loro composizione restituisce proprio σ , visto che per definizione sono la restrizione di σ a partizioni di X.

¹Questo esiste per forza, altrimenti si avrebbero orbite di infiniti elementi a partire da un insieme finito.

Corollario 1.6.1. Il gruppo S_n è generato dai cicli.

Dimostrazione. Il teorema precedente mostra come ciascuna permutazione $\sigma \in S_n$ si possa scrivere come composizione di un numero finito di cicli disgiunti, pertanto combinando l'insieme di tutti i possibili cicli, si ottiene S_n .

Numero di k-cicli di S_n . Si cerca quanti k-cicli, con $k \le n$, sono contenuti in S_n . Visto che un ciclo è una sequenza di k numeri, il problema si riduce a trovare quanti k numeri possono essere estratti da un insieme di n numeri, che si sa essere dato da $\binom{n}{k}$. Queste, però, non sono tutte perché i k numeri si possono scambiare in k! modi diversi; allo stesso tempo, è possibile costruire k k-cicli equivalenti, quindi il numero totale ammonta a $\binom{n}{k}\frac{k!}{k}=\binom{n}{k}(k-1)!$.

Numero di permutazioni di S_{12} sono composizione di 2 3-cicli e 3 2-cicli disgiunti. Dal punto precedente, si sa che in S_{12} si trovano $\binom{12}{3}\frac{3!}{3}$; fissato il primo 3-ciclo, restano 12-3 elementi liberi per gli altri cicli¹, quindi, per il secondo 3-ciclo, si hanno $\binom{9}{3}\frac{3!}{3}$ scelte possibili. Continuando così per tutti i cicli rimanenti, si ottengono

$$\binom{12}{3} \frac{3!}{3} \binom{9}{3} \frac{3!}{3} \binom{6}{3} \frac{2!}{2} \binom{4}{3} \frac{2!}{2} \binom{2}{3} \frac{2!}{2}$$

possibili permutazioni, dove si è modificata la formula per scegliere due 3-cicli e tre 2-cicli. Però se ne sono contati troppi: prendendo d'esempio i due 3-cicli, essendo disgiunti, questi possono commutare senza alterare la permutazione, però col conto precedente si sono considerati distinti. Per risolvere, si deve dividere per tutti i possibili modi di commutare i 3-cicli, cioè 2! in questo caso. Lo stesso si deve fare per i tre 2-cicli, i cui modi di permutarle sono 3!. Complessivamente, si hanno un totale di

$$\binom{12}{3} \frac{3!}{3} \binom{9}{3} \frac{3!}{3} \binom{6}{3} \frac{2!}{2} \binom{4}{3} \frac{2!}{2} \binom{2}{3} \frac{2!}{2} \frac{1}{3!2!}$$

possibili permutazioni.

Ordine di una permutazione di S_n . Un k-ciclo ha ordine k; infatti per $\sigma=(\alpha_1\ \cdots\ \alpha_k)$, si ha

$$\sigma^s(\mathfrak{a}_{\mathfrak{i}}) = \mathfrak{a}_{\mathfrak{j}} \quad \text{con } \mathfrak{j} \equiv s + \mathfrak{i} \pmod{k} \ e \ \mathfrak{j} < k$$

 $\text{quindi } \sigma^s(\mathfrak{a}_\mathfrak{i}) = \mathfrak{a}_{\mathfrak{i}+s} = \mathfrak{a}_\mathfrak{i} \iff s+\mathfrak{i} \equiv \mathfrak{i} \pmod{k} \iff s \equiv 0 \pmod{k}.$

Se la permutazione è formata da ℓ cicli disgiunti σ_i , invece, il suo ordine è

$$\operatorname{ord}(\sigma) = \operatorname{mcm}(\operatorname{ord}(\sigma_1), \dots, \operatorname{ord}(\sigma_\ell))$$

¹I tre scelti vanno rimossi affinché gli altri cicli siano disgiunti.

perché è il più piccolo numero tale che ogni ciclo torni al punto di partenza. Si nota, infatti, che se m è tale che $\sigma^m=e$, allora

$$e = \sigma^m = \sigma^m_1 \cdots \sigma^m_\ell \implies \sigma^m_i = e, \; \forall i = 1, \dots, \ell$$

quindi $\operatorname{ord}(\sigma_i) \mid m, \ \forall i \ e, \ quindi, \ m = \operatorname{mcm}(\operatorname{ord}(\sigma_1), \ldots, \operatorname{ord}(\sigma_\ell)).$

Definizione 1.16 (Trasposizione). Sia $\tau \in S_n$; se τ è della forma (a_i, a_j) , cioè è un 2-ciclo, allora si dice *trasposizione*.

Proposizione 1.20. Tutte le permutazioni di S_n si scrivono come composizione di trasposizioni.

Dimostrazione. Per il corollario 1.6.1, è sufficiente mostrare che vale per un k-ciclo generico. A questo proposito, si osserva che:

$$(1,\ldots,k) = (1,k)(1,k-1)\cdots(1,2)$$

Osservazione 1.9. La decomposizione in trasposizioni non è unica: per esempio:

$$(12) = (12)(34)(34) = (12)(34)(35)(67)(34)(35)(67)$$

Proposizione 1.21. L'applicazione

è un omomorfismo di gruppi. Inoltre, se σ è una trasposizione, si ha sgn $\sigma = -1$.

Dimostrazione. È un omomorfismo perché:

$$\mathrm{sgn}(\sigma\tau) = \prod_{1\leqslant i < j \leqslant n} \frac{\sigma\tau(i) - \sigma\tau(j)}{i - j} = \prod_{1\leqslant i < j \leqslant n} \frac{\sigma\tau(i) - \sigma\tau(j)}{\tau(i) - \tau(j)} \prod_{1\leqslant i < j \leqslant n} \frac{\tau(i) - \tau(j)}{i - j} = \mathrm{sgn}(\sigma) \, \mathrm{sgn}(\tau)$$

dove si è moltiplicato sopra e sotto per $\tau(i) - \tau(j)$ e si sono separate le produttorie¹.

Sia $\sigma = (a, b)$ una trasposizione; allora

$$\operatorname{sgn} \sigma = \prod_{1 \leqslant i < j \leqslant n} \frac{t(i) - t(j)}{i - j}$$

 $^{^1}La$ prima produttoria restituisce il sgn σ perché al massimo applicare prima τ altera l'ordine dell'insieme, quindi non è garantito che $\tau(i)<\tau(j)$ se i< j; questo, però, non importa perché se $\tau(i)>\tau(j),$ allora l'espressione si può riscrivere come $\frac{\sigma\tau(j)-\sigma\tau(i)}{\tau(j)-\tau(i)}.$ Prendendo $\alpha=\tau(i)$ e $b=\tau(j),$ si potrebbe anche riscrivere la produttoria come $\prod_{1\leqslant \alpha< b\leqslant n}\frac{\sigma(\alpha)-\sigma(b)}{\alpha-b}.$

Se $\{i, j\} \cap \{a, b\} = \emptyset$, allora

$$\frac{\sigma(i) - \sigma(j)}{i - j} = \frac{i - j}{i - j} = 1$$

mentre se $\{i, j\} \cap \{a, b\} = \{i, a\}$, si trova

$$\begin{cases} \frac{\sigma(\mathfrak{i})-\sigma(\mathfrak{a})}{\mathfrak{i}-\mathfrak{a}} = \frac{\mathfrak{i}-\mathfrak{b}}{\mathfrak{i}-\mathfrak{a}} &, \text{ se } \mathfrak{i} < \mathfrak{a} \\ \\ \frac{\sigma(\mathfrak{a})-\sigma(\mathfrak{i})}{\mathfrak{a}-\mathfrak{i}} = \frac{\mathfrak{b}-\mathfrak{i}}{\mathfrak{a}-\mathfrak{i}} = \frac{\mathfrak{i}-\mathfrak{b}}{\mathfrak{i}-\mathfrak{a}} &, \text{ se } \mathfrak{a} < \mathfrak{i} \end{cases}$$

Lo stesso vale per l'intersezione $\{i, j\} \cap \{a, b\} = \{i, b\}$:

$$\frac{\sigma(\mathfrak{i}) - \sigma(\mathfrak{b})}{\mathfrak{i} - \mathfrak{b}} = \frac{\sigma(\mathfrak{b}) - \sigma(\mathfrak{i})}{\mathfrak{b} - \mathfrak{i}} = \frac{\mathfrak{i} - \mathfrak{a}}{\mathfrak{i} - \mathfrak{b}}$$

I fattori delle due intersezioni non vuote si semplificano a 1, quindi rimane unicamente il caso in cui $\{i,j\} \cap \{a,b\} = \{a,b\}$; assumendo senza perdita di generalità che a < b, si trova:

$$\frac{\sigma(a) - \sigma(b)}{a - b} = \frac{b - a}{a - b} = -1$$

pertanto, nella produttoria, si ha un unico fattore pari a -1, il che implica che $\operatorname{sgn} \sigma = -1$.

Corollario 1.6.2. La mappa $\operatorname{sgn} \sigma$ restituisce la parità di trasposizioni presenti in σ , quando decomposta in prodotto di trasposizioni.

Nucleo del segno. Si nota che

$$\operatorname{Ker}(\operatorname{sgn}) = \{ \sigma \in S_n \mid \operatorname{sgn} \sigma = 1 \} = A_n \tag{1.8.1}$$

ed è noto come gruppo alterno. Alcune sue caratteristiche sono:

- (a). $A_n \triangleleft S_n$;
- (b). $S_n/A_n \cong \{\pm 1\}.$

Visto che $S_n/A_n \cong \{\pm 1\}$, per il teorema di Lagrange, si ha:

$$2 = |S_n/A_n| = \frac{S_n}{A_n} \implies |A_n| = \frac{|S_n|}{|S_n/A_n|} = \frac{n!}{2}$$

Teorema 1.7. Due permutazioni di S_n sono coniugate se e solo se hanno lo stesso tipo di decomposizione in cicli disgiunti.

Dimostrazione. Si divide la dimostrazione nelle due implicazioni.

• (\Rightarrow) Siano $\sigma, \tau \in S_n$; si considerano $\sigma = (\alpha_1, \dots, \alpha_k)$ e $\tau \sigma \tau^{-1}$. Si nota che, se $\tau(\alpha_i) = b_i \Rightarrow \tau \sigma \tau^{-1}(b_i) = \tau \sigma(\alpha_i) = \tau(\alpha_{i+1}) = b_{i+1}$; inoltre, se $x \neq b_i$ per ogni i:

$$\tau^{-1}(x) \neq \mathfrak{a}_{\mathfrak{i}} \implies \tau \sigma \tau^{-1}(x) = \tau \sigma \left(\tau^{-1}(x)\right) = \tau \tau^{-1}(x) = x$$

pertanto il coniugato di un k-ciclo è ancora un k-ciclo. Se la permutazione è composizione di cicli disgiunti, invece, si può scrivere

$$\sigma = \sigma_1 \dots \sigma_k \implies \tau \sigma \tau^{-1} = \tau \sigma_1 \tau^{-1} \dots \tau \sigma_k \tau^{-1}$$

quindi ci si può ricondurre al caso precedente.

• (\Leftarrow) Siano $\sigma = (\alpha_1, \dots, \alpha_k)$ e $\rho = (b_1, \dots, b_k)$ due k-cicli; si può prendere, allora, τ tale che $\tau(\alpha_i) = b_i$, da cui $\tau \sigma \tau^{-1} = \rho$. Nel caso di più cicli disgiunti, si mappa ciclo con ciclo:

$$\begin{split} \sigma = & \quad (x_{11} \dots x_{1k_1}) \quad \cdots \quad (x_{r1} \dots x_{rk_r}) \\ & \qquad \downarrow \qquad \qquad \downarrow \\ \rho = & \quad (y_{11} \dots y_{1k_1}) \quad \cdots \quad (y_{r1} \dots y_{rk_r}) \end{split}$$

con $\tau(x_{ij}) = y_{ij}$, quindi vale $\tau \sigma \tau^{-1} = \rho$.

Quanto al centralizzatore di $\sigma \in S_n$, si sa dal teorema orbita-stabilizzatore che

$$|\mathsf{Z}(\sigma)||\mathrm{cl}(\sigma)| = \mathfrak{n}! \tag{1.8.2}$$

Per il teorema precedente, si sa calcolare $|cl(\sigma)|$, quindi è possibile ottenere $|Z(\sigma)|$.

Esempio 1.5. Sia $\sigma = (1234)(56) \in S_{10}$; il numero possibile di permutazioni coniugate sono tutte quelle che si scrivono come un 4-ciclo e un 2-ciclo in S_{10} , numero ottenuto come

$$|\operatorname{cl}(\sigma)| = {10 \choose 4} \frac{4!}{4} {6 \choose 2} = \frac{10!}{192} \implies |\mathsf{Z}(\sigma)| = 192 = 4!8$$

Sia

$$H = Sym(7, 8, 9, 10) = \{h \in S_{10} \mid h(i) = i, \forall i \notin \{7, 8, 9, 10\}\} \cong S_4$$

e sia $K = \langle (1234), (56) \rangle$; allora $H, K < Z(\sigma), H \cap K = \{e\}$ e $HK = Z(\sigma)$, per cui

$$Z(\sigma) \cong H \times K \cong S_4 \times (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$

Dimostrazione. Si ha $H < Z(\sigma)$ perché ogni permutazione di H modifica solo l'insieme $\{7, 8, 9, 10\}$, quindi commuta con σ . Inoltre, $H \cong S_4 \Rightarrow |H| = 4!$.

Si ha K < Z(σ) perché ogni elemento di K è della forma $(1234)^{j}(56)^{k}$, quindi commuta sempre con σ . Visto che (1234) ha ordine 4 e (56) ha ordine 2 e i due cicli sono disgiunti,

si ha $|K| = 4 \cdot 2 = 8$. Si nota, in particolare, che $\langle (1234) \rangle \cong C_4 \cong \mathbb{Z}/4\mathbb{Z}$, cioè è isomorfo a un gruppo ciclico di ordine 4; analogamente $\langle (56) \rangle \cong C_2 \cong \mathbb{Z}/2\mathbb{Z}$.

Evidentemente la loro intersezione è banale perché le permutazioni di H agiscono esclusivamente su $\{7,8,9,10\}$, mentre quelle di K su $\{1,2,3,4,5,6\}$, quindi deve essere $H \cap K = \{e\}$.

Visto che H, K < Z (σ) e |HK| = |H||K| = 192 (essendo $|H \cap K| = 1$), si ha HK = Z (σ) . Sempre perché $H \cap K$ è banale, si ha HK $\cong H \times K$, da cui

$$Z(\sigma) \cong H \times K \cong S_4 \times (\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$$

§1.9 Gruppi di Sylow e prodotti diretti

Definizione 1.17 (Gruppo di Sylow). Sia G un gruppo finito con $|G| = p^m n$, con p primo e gcd(p, n) = 1; se $H < G e |H| = p^m$, allora $H \in detto p$ -Sylow di G.

Esempio 1.6. Si considera il gruppo diedrale D_7 ; si ha $|D_7| = 14 = 7 \cdot 2$, con $|\langle \rho \rangle| = 7$; allora $\langle \rho \rangle$ è un 7-Sylow di D_7 ed è unico. Tuttavia, i p-Sylow non sono unici; per esempio, i $\langle \rho^i \sigma \rangle \subset D_7$ sono sette 2-Sylow.

Lemma 1.7.1. Siano H, K \lhd G, con H \cap K = {e}; allora hk = kh, \forall h \in H, \forall k \in K.

Dimostrazione. Si ha hkh⁻¹k⁻¹ = (hkh⁻¹)k⁻¹; visto che Kè normale, allora hkh⁻¹ ∈ K, quindi hkh⁻¹k⁻¹ ∈ K. Allo stesso tempo, hkh⁻¹k⁻¹ = h(kh⁻¹k⁻¹) e, siccome anche Hè normale, si ha kh⁻¹k⁻¹ ⇒ hkh⁻¹k⁻¹ ∈ H. Allora, visto che hkh⁻¹k⁻¹ ∈ H ∩ K e visto che H ∩ K = {e} per assunzione, si ha hkh⁻¹k⁻¹ = e ⇒ hk = kh.

Teorema 1.8 (Teorema di decomposizione diretta). Sia G un gruppo e siano H, K \lhd G; se HK = G e H \cap K = {e}, allora G \cong H \times K.

Dimostrazione. Sia $\phi: H \times K \to G$ tale che $\phi((h,k)) = hk$; allora ϕ è un omomorfismo per il lemma precedente (1.7.1), è iniettiva per la seconda ipotesi ed è suriettiva per la prima.

Corollario 1.8.1. In un prodotto diretto, i fattori commutano fra loro.

Osservazione 1.10. Sia $G = H \times K$; per il teorema precedente (1.8), $Z(H \times K) \cong Z(H) \times Z(K)$, visto che $Z(H) \times \{e_K\} \in \{e_h\} \times Z_K$ sono sottogruppi normali di $Z(H \times K)$. Conseguentemente, ricordando la proposizione 1.1, si trova:

$$\operatorname{Int}(H \times K) \cong (H \times K)/Z(H \times K) \cong H/Z(H) \times K/Z(K) \cong \operatorname{Int}(H) \times \operatorname{Int}(K)$$

dove il penultimo isomorfismo è ottenuto definendo

$$\gamma: \begin{array}{ccc} H \times K & \longrightarrow & H/Z(H) \times K/Z(K) \\ (h, k) & \longmapsto & (h + Z(H), k + Z(K)) \end{array}$$

e dal I teorema di omomorfismo.

Teorema 1.9. Sia

$$\varphi: \begin{array}{ccc} \operatorname{Aut}(H) \times \operatorname{Aut}(K) & \longrightarrow & \operatorname{Aut}(H \times K) \\ (f,g) & \longmapsto & \gamma = (f,g) \end{array}$$

Allora ϕ è un omomorfismo iniettivo, mentre è suriettivo se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

Dimostrazione. Intanto, γ è ben definita perché $\forall (f,g) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K)$, si ha $f(h) \in H$, $\forall h \in H$ e $g(k) \in K$, $\forall k \in K$, quindi $\gamma((h,k)) = (f(h),g(k)) \in H \times K$.

Poi, ϕ è ben definita perché γ è un automorfismo; infatti è un omomorfismo:

$$\gamma((h,k)(h',k')) = (f(hh'),g(kk')) = (f(h)f(h'),g(k)g(k')) = \gamma((h,k))\gamma(h',k')$$

È anche iniettiva perché

$$\operatorname{Ker} \gamma = \{(h, k) \in H \times K \mid \gamma((h, k)) = (e_H, e_K)\} = \{(h, k) \in \operatorname{Ker} f \times \operatorname{Ker} g\}$$
$$= \{(e_H, e_K)\}$$

ed è suriettiva perché $\forall (h,k) \in H \times K, \exists ! (h_0,k_0) \in H \times K : ((f(h_0),g(k_0)) = (h,k),$ dove si è usato, in tutte le dimostrazioni, che sia f che g sono automorfismi. Segue che γ è effettivamente un automorfismo di $H \times K$.

Ora si verifica che ϕ è un omomorfismo ed è sempre iniettivo; la prima vale perché

$$\phi((f,g)(\varphi,\psi)) = \phi(f \circ \varphi, g \circ \psi) = (f \circ \varphi, g \circ \psi) = (f,g) \circ (\varphi,\psi) = \phi((f,g)) \circ \phi((\varphi,\psi))$$

mentre è iniettivo perché $\phi((f,g)) = \mathrm{Id}_{H \times K} \iff f = \mathrm{Id}_H \ e \ g = \mathrm{Id}_K.$

Ora si dimostra che ϕ è suriettivo se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

• (\Leftarrow) Si assume che $H \times \{e_K\}$ e $\{e_H\} \times K$ siano caratteristici in $H \times K$ e si mostra che φ è suriettivo. Per farlo, si considerano, $\forall \gamma \in \operatorname{Aut}(H \times K)$, le mappe $f: H \to H$ e $g: K \to K$ tali che

$$f(h) = \pi_H \gamma(h, e_K)$$
 $g(k) = \pi_K \gamma(e_H, k)$

e si dimostra che $f \in \operatorname{Aut}(H), \ g \in \operatorname{Aut}(K)$ e $\gamma = \varphi(f,g)$. Si nota che, sia f che g sono composizioni di due omomorfismi, quindi sono, a loro volta, omomorfismi;

inoltre

$$\begin{split} \operatorname{Ker} f = & \{ h \in H \mid \pi_H \gamma(h, e_K) = e_H \} = \left\{ h \in H \mid \pi_H(h', e_K) = e_H \right\} \\ = & \left\{ h \in H \mid e_H = h' = \gamma(h) \right\} = \left\{ e_H \right\} \end{split}$$

Lo stesso vale per g, quindi entrambe le mappe sono omomorfismi iniettivi. Usando il fato che γ è suriettiva, si ha che $\forall h' \in H$, $\exists h \in H : \gamma(h, e_K) = (h', e_K)$, quindi $f(h) = \pi_H \gamma(h, e_K) = \pi_H(h', e_K) = h'$ e lo stesso si può ripetere per g quindi f e g sono automorfismi. Per concludere, si nota che

$$\varphi(f,g)((h,k)) = \left(\pi_H \gamma((h,e_K)), \pi_K \gamma((e_H,k))\right) = (h',k') = \gamma(h,k)$$

• (\Rightarrow) Sia φ anche suriettivo, quindi è un isomorfismo; si mostra che $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$.

Se φ è suriettivo, significa che ogni automorfismo di $\operatorname{Aut}(H \times K)$ è della forma $(f,g): f \in \operatorname{Aut}(H), \ g \in \operatorname{Aut}(K)$, ma allora, per $\psi \in \operatorname{Aut}(H \times K)$, si ha:

$$\psi(H \times \{e_K\}) = f(H) \times \{e_K\} = H \times \{e_K\}$$

perché f è un automorfismo di H e $\{e_K\} \xrightarrow{g} \{e_K\}$ perché g è un automorfismo di K.

Proposizione 1.22. Sia $G = H \times K$, con |H| = n e |K| = m; se gcd(n, m) = 1, allora H e K sono caratteristici in G.

Dimostrazione. Sia $f \in \operatorname{Aut}(H \times K)$, con $f(h, e_K) = (h', k')$; visto che $\operatorname{ord}((h, e_K)) = \operatorname{ord}(h) \mid n$, deve essere $\operatorname{ord}((h', k')) = \operatorname{mcm}(\operatorname{ord}(h'), \operatorname{ord}(k')) \mid n$, visto che f è automorfismo e, in particolare $\operatorname{ord}(k') \mid n$. Per ipotesi, deve essere $\operatorname{ord}(k') \mid m$, ma, visto che $\operatorname{gcd}(n, m) = 1$, deve essere $k' = e_K$, da cui $f(H \times \{e_K\}) \subset H \times \{e_K\}$. Lo stesso procedimento si può applicare a $f(e_H, k)$. □

§1.10 Prodotto semidiretto

Definizione 1.18 (Prodotto semidiretto). Siano H, K dei gruppi e $\gamma: K \to \operatorname{Aut}(H)$ un omomorfismo tale che $\gamma(k) = \gamma_k \in \operatorname{Aut}(H)$, dove $\gamma_k: H \to H$ mappa $h \mapsto h' \in H$; si chiama *prodotto semidiretto* di H e K via γ il prodotto cartesiano H \times K con l'operazione definita da

$$(h,k)*(h',k')=(h\gamma_k(h'),kk')$$

e si indica con $(H \times K, *) = H \rtimes_{\gamma} K$.

Proposizione 1.23. Dati due gruppi H, K; il loro prodotto semidiretto H \rtimes_{γ} K è un gruppo.

Dimostrazione. La chiusura dell'operazione deriva direttamente dal fatto che sono due gruppi. Tale operazione è associativa:

$$\begin{aligned} (\mathbf{a}, \mathbf{b}) \left[(\mathbf{c}, \mathbf{d})(\mathbf{e}, \mathbf{f}) \right] &= (\mathbf{a}, \mathbf{b})(\mathbf{c}\gamma_{\mathbf{d}}(\mathbf{e}), \mathbf{d}\mathbf{f}) = \left(\mathbf{a}\gamma_{\mathbf{b}}(\mathbf{c}\gamma_{\mathbf{d}}(\mathbf{e})), \mathbf{b}\mathbf{d}\mathbf{f} \right) = \left(\mathbf{a}\gamma_{\mathbf{b}}(\mathbf{c})\gamma_{\mathbf{b}}(\gamma_{\mathbf{d}}(\mathbf{e})), \mathbf{b}\mathbf{d}\mathbf{f} \right) \\ &= \left(\mathbf{a}\gamma_{\mathbf{b}}(\mathbf{c})\gamma_{\mathbf{b}\mathbf{d}}(\mathbf{e}), \mathbf{b}\mathbf{d}\mathbf{f} \right) = \left(\mathbf{a}\gamma_{\mathbf{b}}(\mathbf{c}), \mathbf{b}\mathbf{d} \right) (\mathbf{e}, \mathbf{f}) = \left[(\mathbf{a}, \mathbf{b})(\mathbf{c}, \mathbf{d}) \right] (\mathbf{e}, \mathbf{f}) \end{aligned}$$

L'elemento neutro è (e_H, e_K) :

$$(a, b)(e_H, e_K) = (a\gamma_b(e_H), be_K) = (a, b)$$

perché γ_b è un automorfismo. Infine, l'elemento inverso è dato da¹:

$$(a,b)(\gamma_{b^{-1}}(a^{-1}),b^{-1}) = (a\gamma_b \circ \gamma_{b^{-1}}(a^{-1}),e_K) = (aa^{-1},e_K) = (e_H,e_K)$$

Osservazione 1.11. Il prodotto semidiretto è un caso particolare di prodotto diretto: scegliendo $\gamma(K) = \operatorname{Id}_H \in \operatorname{Aut}(H)$, si ha, infatti, $(h,k)(h',k') = (h\operatorname{Id}_H(h'),kk') = (hh',kk')$, $\forall k \in K$.

Esempio 1.7. Si studia $\mathbb{Z}/7\mathbb{Z} \rtimes_{\gamma} \mathbb{Z}/7\mathbb{Z}$, con $\gamma : \mathbb{Z}/7\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/7\mathbb{Z}) \cong (\mathbb{Z}/7\mathbb{Z})^* \cong \mathbb{Z}/6\mathbb{Z}$. Per questione di ordine, si ha $\gamma([1]_7) = [0]_6$, visto che $\gamma([1]_7)$, in quanto elemento di $\mathbb{Z}/6\mathbb{Z}$, deve avere $\operatorname{ord}(\gamma([1]_7)) \mid 6$ e, come immagine di $[1]_7$, che ha $\operatorname{ord}([1]_7) = 7$, deve essere tale che $\operatorname{ord}(\gamma([1]_7)) \mid 7$; l'unico elemento che divide sia 6, che 7 è 1, per cui γ deve mappare $[1]_7$ in $[0]_6$. Visto che $[1]_7$ genera $\mathbb{Z}/7\mathbb{Z}$, significa che $\gamma(\mathbb{Z}/7\mathbb{Z}) = \{[0]_6\}$, cioè è l'omomorfismo banale. In sostanza, $\mathbb{Z}/7\mathbb{Z} \rtimes_{\gamma} \mathbb{Z}/7\mathbb{Z} = \mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Proposizione 1.24. Siano H, K due gruppi; si considera il loro prodotto semidiretto H \rtimes_{γ} K. Dati $\overline{H} = H \times \{e_K\}$ e $\overline{K} = \{e_H\} \times K$, per i quali si sa che $\overline{K}, \overline{H} \triangleleft H \times K$, vale $\overline{H} \triangleleft H \rtimes_{\gamma} K$ sempre e $\overline{K} \triangleleft H \rtimes_{\gamma} K \iff$ il prodotto è diretto.

Dimostrazione. Si ha sempre $\overline{H} \lhd H \rtimes_{\gamma} K$ perché $\pi_K : H \rtimes_{\gamma} K \to K$ tale che $\pi_K((h,k)) = k$ è un omomorfismo e $H = \operatorname{Ker} \pi_K$.

Per \overline{K} , si assume prima che sia normale e si mostra che γ deve essere per forza banale. A questo scopo, si osserva che $\forall (e_H, k) \in \overline{K}$ ed un elemento generico $(h, e_K) \in \overline{H} \lhd H \rtimes_{\gamma} K$:

$$(h,e_K)(e_H,k)(h,e_K)^{-1} = (h\gamma_{e_K}(e_H),e_Kk)(h,e_K)^{-1} = (h\gamma_k(h^{-1}),k)$$

Il fatto che \overline{K} sia normale, implica che $\forall k$, $(h\gamma_k(h^{-1}), k) = (e_H, k)$, cioè $\forall k$, $\gamma_k(h^{-1}) = h^{-1}$, pertanto γ deve essere l'omomorfismo banale e, quindi, il prodotto è diretto.

¹Questo si può ottenere imponendo che $(a,b)(x,y)=(e_H,e_K)$, risolvendo per x e y.

Per l'implicazione inversa, cioè assumendo che il prodotto sia diretto, è possibile seguire la stessa dimostrazione fatta per \overline{H} .

Osservazione 1.12. Sia G un gruppo e H, K < G, con H \triangleleft G; allora HK < G.

Teorema 1.10 (Teorema di decomposizione semidiretta). Sia G un gruppo e siano $H \triangleleft G$ e $K \triangleleft G$ due sottogruppi; se HK = G e $H \cap K = \{e_G\}$, allora $G \cong H \rtimes_{\gamma} K$, con $\gamma : K \to \operatorname{Aut}(H)$ e $\gamma(k) = khk^{-1}$.

Dimostrazione. Prima si dimostra la buona definizione del prodotto semidiretto definito nella tesi.

• $\gamma(k) = \gamma_k$ è un automorfismo di H.

La mappa $\gamma(k): H \to H$ è ben definita, visto che $H \lhd G$; infatti, $\forall k \in K, \ \forall h \in H$, si ha $khk^{-1} \in H$. Poi, γ_k è un omomorfismo perché

$$\gamma_k(h_1h_2) = k(h_1h_2)k^{-1} = (kh_1k^{-1})(kh_2k^{-1}) = \gamma_k(h_1)\gamma_k(h_2)$$

Infine, è biettiva perché ha inversa $\gamma(k)^{-1}=\gamma(k^{-1})=\gamma_{k^{-1}}$; infatti $\gamma_{k^{-1}}\circ\gamma_k=\gamma_{e_K}=\operatorname{Id}_H$.

• $\gamma: K \to \operatorname{Aut}(H)$ è un omomorfismo.

Dati $k_1, k_2 \in K$ e $h \in H$:

$$\gamma(k_1k_2)(h) = (k_1k_2)h(k_1k_2)^{-1} = k_1(k_2hk_2^{-1})k_1^{-1} = (\gamma_{k_1}\circ\gamma_{k_2})(h)$$

Ora si introduce il prodotto semidiretto dei gruppi $H \rtimes_{\gamma} K$ con la legge $(h,k)(h',k') = (hkh'k^{-1},kk')$. Si dimostra che $G \cong H \rtimes_{\gamma} K$. Per farlo, si introduce $F: H \rtimes_{\gamma} K \to G$ tale che $F(h,k) = hk \in G$ e si mostra che è un isomorfismo di gruppi.

• Fè un omomorfismo.

Siano $(h, k), (h', k') \in H \times K$; si osserva che:

$$F((h,k)(h',k')) = F((hkh'k^{-1},kk')) = hkh'k^{-1}kk' = (hk)(h'k')$$

= F(h,k)F(h',k')

• Fè biettivo.

Per la suriettività, si nota che, essendo HK = G per ipotesi, allora ogni $g \in G$ si scrive come g = hk, con $h \in H$ e $k \in K$. Ne consegue che F(h, k) = hk è suriettivo.

Per l'iniettività, sia $(h, k) \in \text{Ker } F$; allora $F(h, k) = hk = e_G \iff hk = e_G \iff h = k^{-1}$, ma visto che $H \cap K = \{e_G\}$, deve essere $h = k = e_H$, quindi $\text{Ker } F = \{(e_G, e_G)\}$.

Allora $F: H \rtimes_{\gamma} K \to G$ è un isomorfismo di gruppi, per cui $G \cong H \rtimes_{\gamma} K$.

Esercizio 1.2. Dimostrare che $D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$.

Svolgimento. Sia $D_n=\langle \rho,\sigma\mid \rho^n=\sigma^2=e,\ \sigma\rho\sigma=\rho^{-1}\rangle$. Notando che $\langle \rho\rangle\cong \mathbb{Z}/n\mathbb{Z}$ e che $\langle \sigma\rangle\cong \mathbb{Z}/2\mathbb{Z}$, si mostra sostanzialmente che $D_n\cong \langle \rho\rangle\rtimes_{\phi}\langle \sigma\rangle$. Per poter applicare il teorema di decomposizione, si nota che $\langle \rho\rangle\lhd D_n$ perché ha indice 2, poi $\langle \rho\rangle\cap\langle\sigma\rangle=\{e\}$ e, infine, $|\langle \rho\rangle\langle\sigma\rangle|=|D_n|$ perché

$$|\langle \rho \rangle \langle \sigma \rangle| = \frac{|\langle \rho \rangle| |\langle \sigma \rangle|}{|\langle \rho \rangle \cap \langle \sigma \rangle|} = 2n$$

Allora $D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$.

Il prodotto semidiretto, in questo caso, è definito da $\varphi:\langle\sigma\rangle\to \operatorname{Aut}(\langle\rho\rangle)$ tale che $\sigma\longmapsto \phi_\sigma$ e $\phi_\sigma(\rho)=\sigma\rho\sigma=\rho^{-1}$. Visto che φ è un omomorfismo, deve valere $\operatorname{ord}(\phi_\sigma)\mid \operatorname{ord}(\sigma)=2$, quindi ci sono due possibilità: o $\phi_\sigma=\operatorname{Id}$, oppure è tale che $\rho\longmapsto \rho^{-1}$; nel primo caso, si ha il prodotto diretto, mentre nel secondo caso si ha il prodotto semidiretto che definisce D_n .

Se, poi, in $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ sono presenti altri elementi di ordine 2, come nel caso di $\operatorname{Aut}(\mathbb{Z}/8\mathbb{Z}) \cong (\mathbb{Z}/8\mathbb{Z})^* \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, si possono definire altri prodotti semidiretti, che potrebbero risultare isomorfi al caso dell'identità o a $\rho \longmapsto \rho^{-1}$.

Esempio 1.8 (Classificazione dei gruppi di ordine pq.). Si considera prima il caso p = q, da cui $|G| = p^2$, per il quale si sa che le uniche possibilità sono $G \cong \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, oppure $G \cong \mathbb{Z}/p^2\mathbb{Z}$.

Si assume, ora, q > p e |G| = pq; per Cauchy, esistono due sottogruppi H, K < G di ordine q e p rispettivamente; usando la proposizione 1.27, si sa anche che $H \triangleleft G^1$

Inoltre, si sa anche che H è caratteristico perché è l'unico sottogruppo di ordine q. Infatti, se esistesse H' < G tale che |H'| = q, si avrebbe $|HH'| = |H||H'|/|H \cap H'| = q^2/|H \cap H'|$. Visto che $|H \cap H'|$ può essere 1, oppure q, quindi |HH'| è q, o q^2 , ma non può essere q^2 perché sarebbe maggiore di |G|, quindi $|H \cap H'| = q \Rightarrow H = H'$.

Usando il teorema di scomposizione (1.10), si conclude che $G = H \rtimes_{\gamma} K$ perché, per una questione di ordine, $H \cap K = \{e_G\}$ e $|HK| = |H||K|/|H \cap K| = |H||K| = pq$, quindi $G = HK^2$.

Prendendo H = $\langle x \rangle$ e K = $\langle y \rangle$, si ha

$$\gamma: \langle y \rangle \longrightarrow \operatorname{Aut}(\langle x \rangle), \ \gamma(y)(x) = \gamma_y(x) = yxy^{-1} = x^{\ell}$$

Visto che γ è un omomorfismo, deve valere $\operatorname{ord}(\gamma_y) \mid \operatorname{ord}(y)$, cioè $\operatorname{ord}(\gamma_y) \in \{1,p\}$ (visto che p è primo), quindi se $p \nmid (q-1)^3$, allora $\operatorname{ord}(\gamma_y) = 1$ e $\gamma_y = \operatorname{Id}_H$, quindi $G \cong \mathbb{Z}/(pq)\mathbb{Z}$. Se, invece, $p \mid (q-1)$, allora esiste un sottogruppo di ordine p in $\mathbb{Z}/(q-1)$

¹Perché [G : H] = |G/H| = |G|/|H| = qp/q = p.

 $^{^2}$ Si ricorda che H \triangleleft G implica che HK è un gruppo).

 $^{{}^3}$ La richiesta deriva dal fatto che $|\operatorname{Aut}(\langle x\rangle)|=|\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})|=|(\mathbb{Z}/q\mathbb{Z})^*|=q-1$. La richiesta $p\mid q-1$, invece, è legata alla necessità che $\operatorname{ord}(\gamma_y)\mid \operatorname{ord}(y)=p$, cioè che in $(\mathbb{Z}/q\mathbb{Z})^*\cong \mathbb{Z}/(q-1)\mathbb{Z}$ esista un sottogruppo di ordine almeno p, cosa che è verificata se e solo se $p\mid q-1$.

1) \mathbb{Z} , il quale ha p -1 elementi di ordine p (sempre perché p è primo), quindi ci sono p -1 possibili omomorfismi γ che generano gruppi H \rtimes_{γ} K diversi a seconda di dove mandano y; l'idea è di dimostrare che questi sono tutti isomorfi tra loro.

Siano, allora γ, γ' due omomorfismi tali che $\gamma_y(x) = x^\ell \, e \, \gamma_y'(x) = x^{\ell'}$, con ℓ, ℓ' coprimi con q^1 ; si ha:

$$(\gamma_y)^p = \mathrm{Id} \implies x^{\ell^p} = x \implies \ell^p = 1$$

quindi $\operatorname{ord}(\ell) = \operatorname{ord}(\ell') = \mathfrak{p}$, per cui $\exists r \in \mathbb{N}$ tale che $\ell' = \ell^r$, con $0 < r < \mathfrak{p} - 1$. Questo significa che $\gamma'_y = \gamma_{y^r}$, infatti $\gamma_{y^r}(x) = (\gamma_y(x))^r = x^{\ell^r} = x^{\ell'}$. Per conclude, si nota che $\psi : H \rtimes_{\gamma} K \longrightarrow H \rtimes_{\gamma'} K$ tale che $\psi((x,y)) = (x,y^r)$ è un isomorfismo (facile verifica), quindi ogni prodotto semidiretto genera gruppi isomorfi.

Se ne conclude che, nel caso $p \mid q - 1$, ci sono solo due possibili gruppi distinti di ordine pq, a meno di isomorfismi.

Osservazione 1.13. Si riassume e si dà un'idea qualitativa dei risultati sulla classificazione dei gruppi di ordine pq. Nel caso in cui p \nmid q - 1, l'unico gruppo possibile di ordine pq a meno di isomorfismi è $G \cong \mathbb{Z}/pq\mathbb{Z}$ perché non esistono automorfismi di ordine p in $\operatorname{Aut}(H) \cong \operatorname{Aut}(\mathbb{Z}/q\mathbb{Z})$. Se, invece, p \mid q - 1, si hanno due possibilità: $G \cong \mathbb{Z}/pq\mathbb{Z}$, oppure G è isomorfo a un gruppo non-abeliano relativo ad un prodotto semidiretto non banale. Tale gruppo non-abeliano è unico a meno di isomorfismo perché $\operatorname{Aut}(\mathbb{Z}/q\mathbb{Z}) \cong \mathbb{Z}/(q-1)\mathbb{Z}$ è ciclico, quindi tutti gli elementi di ordine p generano lo stesso sottogruppo, pertanto inducono lo stesso prodotto semidiretto.

§1.11 Ancora sulle permutazioni

Per il teorema delle classi, si sa che $|Z_{S_n}(\sigma)| |\operatorname{Cl}_{S_n}(\sigma)| = n!$; analogamente, se $\sigma \in A_n$, allora $|Z_{A_n}(\sigma)| |\operatorname{Cl}_{A_n}(\sigma)| = n!/2$, con

$$Z_{A_{\mathfrak{n}}}(\sigma) = \left\{ \rho \in A_{\mathfrak{n}} \mid \rho \sigma \rho^{-1} = \sigma \right\} = Z_{S_{\mathfrak{n}}}(\sigma) \cap A_{\mathfrak{n}}$$

Osservazione 1.14. Dalla formula delle classi, appare che, passando da S_n ad A_n , una classe di coniugio può rimanere uguale, oppure scindersi in due di uguale grandezza. La seconda eventualità è relativa a quando il centralizzatore di S_n del rappresentante è interamente contenuto in A_n ; in questo caso, infatti, il centralizzatore di A_n coincide con quello di A_n , quindi, per la formula delle classi:

$$\begin{split} |\mathrm{Cl}_{A_n}(\sigma)||\mathsf{Z}_{A_n}(\sigma)| &= |\mathrm{Cl}_{A_n}(\sigma)||\mathsf{Z}_{S_n}(\sigma)| = |\mathrm{Cl}_{A_n}(\sigma)|\frac{n!}{|\mathrm{Cl}_{S_n}(\sigma)|} = \frac{n!}{2} \\ \implies |\mathrm{Cl}_{A_n}(\sigma)| &= \frac{|\mathrm{Cl}_{S_n}(\sigma)|}{2} \end{split}$$

¹Perché le mappe γ_y e γ_y' sono automorfismi di $\mathbb{Z}/q\mathbb{Z}$, quindi devono mappare un generatore (x in questo caso) in un altro generatore.

Nella prima eventualità, invece, è l'ordine della classe a rimanere invariato nel passaggio da S_n ad A_n .

Lemma 1.10.1. Sia $H < S_n$; allora $|H \cap A_n| = |H|$, se $H \subset A_n$, altrimenti $|H \cap A_n| = H/2$.

Dimostrazione. Si considera il seguente diagramma:

$$H \xrightarrow{\varphi} S_n(\mathbb{R}) \xrightarrow{\psi} S_n/A_n \cong \{\pm 1\}$$

con ψ omomorfismo suriettivo e $S_n/A_n \cong \{\pm 1\}$ per il I teorema di omomorfismo applicato all'omomorfismo suriettivo $S_n \xrightarrow{\operatorname{sgn}} \{\pm 1\}$, dove $\operatorname{Ker} \operatorname{sgn} = A_n$.

Ora, considerando la mappa $\gamma: H \to S_n/A_n \cong \{\pm 1\}$, si nota che se $H \cap A_n = H$, allora H contiene unicamente permutazioni pari e γ è l'applicazione banale perché $\operatorname{Ker} \gamma = H$. Se, invece, $H \not\subset A_n$, significa che H contiene almeno una permutazione dispari, per cui il quoziente H/A_n ha indice 2 e γ è un omomorfismo suriettivo, pertanto $H/\operatorname{Ker} \gamma \cong \{\pm 1\}$. Si osserva che $\operatorname{Ker} \gamma = H \cap A_n$, quindi: nel primo caso, si ottiene $H \cap A_n = H$, quindi $|H \cap A_n| = |H|$; nel secondo caso, si ha $H/H \cap A_n \cong \{\pm 1\}$, quindi $|H| = 2|H \cap A_n|$.

Esercizio 1.3. I 3-cicli sono tutti coniugati in A_n , con $n \ge 5$.

Svolgimento. Dato $\sigma = (a, b, c) \in S_5$ un 3-ciclo, per $n \ge 5$ si ha $(d, e) \in Z_{S_n}(\sigma)/Z_{A_n}(\sigma)$, con $d, e \notin \{a, b, c\}$; per il lemma precedente, quindi, $|Cl_{A_n}(\sigma)| = |Cl_{S_n}(\sigma)|$.

Se, al contrario, si considera n=3, per esempio, $A_3=\langle (1,2,3)\rangle=\{\mathrm{Id},(1,2,3),(1,3,2)\};$ se, per assurdo, $\mathrm{Cl}_{A_n}(1,2,3)=\{(1,2,3),(1,3,2)\},$ si avrebbe $|\mathrm{Cl}_{A_n}(1,2,3)|=2\nmid 3=|A_3|^1$, quindi $\mathrm{Cl}_{A_n}(1,2,3)=\{(1,2,3)\}.$

Infine, per n = 4, si ha
$$|A_4| = 12$$
 e $|Cl_{S_4}(a, b, c)| = {4 \choose 3}2! = 8 \nmid 12$.

Esercizio 1.4. I 5-cicli non sono tutti coniugati in A₅.

Svolgimento. Le classi di coniugio di un 5-ciclo di S_5 sono 4!; se $\operatorname{Cl}_{A_5}(\sigma)$ avesse stessa cardinalità, con σ un 5-ciclo, allora, per la formula delle classi:

$$|Z_{A_5}(\sigma)| = \frac{|A_5|}{|Cl_{A_5}(\sigma)|} = \frac{5!/2}{4!} = \frac{5}{2}$$

che è assurdo, quindi tale classe di equivalenza si scinde in due.

Esercizio 1.5. A₄ non contiene sottogruppi di ordine 6.

Svolgimento. Poniamo caso che $\exists H < A_4 \text{ con } |H| = 6$, allora $H \triangleleft A_4^2$ e $\exists \sigma \in H \text{ con } \text{ord}(\sigma) = 2 \text{ e } \sigma = (a,b)(c,d)$. Si nota che $\text{Cl}_{S_4}(\sigma) = \{(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} = \{(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} = \{(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$

¹Il fatto che l'ordine della classe di coniugio debba dividere l'ordine del gruppo è diretta conseguenza della formula delle classi.

 $^{^{2}}$ Si avrebbe [A₄ : H] = 2, quindi risulterebbe H ⊲ A₄.

 $Cl_{A_4}(\sigma)$; inoltre, $K = \{e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\} \triangleleft S_4$, ma se H è normale e $\sigma \in H$, allora $Cl_{A_4}(\sigma) \subset H$, quindi $K \triangleleft H$, il che è assurdo perché $|K| = 4 \nmid 6 = |H|$.

Proposizione 1.25. Per ogni $n \ge 5$, A_n è semplice, cioè non ha sottogruppi normali non-banali.

Dimostrazione. Si procede per induzione su n. Per il passo base, si considera n=5. In questo caso, $|A_5|=60$; considerando $H \triangleleft A_5$, se H contiene un 3-ciclo, li contiene tutti, ma visto che questi generano A_n , allora $H=A_n$. Se contiene un 2×2 -ciclo, invece, per coniugio, contiene un 3-ciclo¹ e ci si ritrova nel caso precedente. Se H contiene un 5-ciclo, ancora per coniugio, contiene un 3-ciclo² e, nuovamente, si è nel primo caso. Allora H è banale.

Ora si assume che la tesi sia vera $\forall m < n$ e si dimostra per n. Si considera, allora, per $n \ge 6$, $A_n \supset G_i = \{\sigma \in A_n \mid \sigma(i) = 1\} \cong A_{n-1}$, dove ogni G_i è coniugato di qualche altro.

Sia, ora, $N \triangleleft A_n$, per cui $N \cap G_i \triangleleft G_i$; per induzione, dunque, si ha, per ogni i, $N \cap G_i = G_i$, oppure $N \cap G_i = \{e\}$. Se $\forall i, N \cap G_i = G_i$, allora per un certo i, G_i contiene un 3-ciclo, pertanto $N = A_n$.

Se, al contrario, $\forall i,\ N\cap G_i=\{e\}$, allora N è il sottogruppo degli elementi che non fissano alcun elemento. Siano $\sigma,\tau\in N$; se $\sigma(i)=\tau(i)\implies \sigma\tau^{-1}(i)=i\implies \sigma=\tau$. Allora si scrive σ come prodotto di cicli disgiunti di lunghezze r_1,\ldots,r_k decrescenti: $\sigma=C_1\cdots C_k$. Si assume $r_i\geqslant 3$ per un certo i, quindi $C_i=(i_1,i_2,i_3,\ldots)$; prendendo $\rho=(i_3,j,k)$ tale che $j,k\not\in\{i_1,i_2,i_3\}$, si ha $\rho\sigma\rho^{-1}=\tau$ e $\sigma(i_1)=\tau(i_1)=i_2$, ma $\sigma\ne\tau$ che è assurdo.

Si considera, ora, $\forall i, \ r_i = 2$, quindi $\sigma = (i,j)(k,l) \dots$ è prodotto di trasposizioni; scegliendo $\rho = (\ell,p,q)$, con $p,q \notin \{i,j,k\}$, si ha che $\tau = \rho \sigma \rho^{-1}$ e σ sono distinti, ma $\sigma(i) = \tau(i) = j$, il che è assurdo.

Si conclude che N è banale, pertanto A_n è semplice.

Sottogruppi normali di S_n . Per n=4, si hanno A_4 e $\langle (1,2)(3,4), (1,3)(2,4) \rangle$. Per n=5, S_n ha un solo sottogruppo normale, cioè A_5 ; infatti, se $H \triangleleft S_n$ e $|H| \nmid |A_n|$, allora $H \cap A_n \triangleleft A_n$, però A_n è semplice, quindi $H \cap A_n = \{e\}$. Questo implica che H è generato da una trasposizione, quindi non è normale.

Esercizio 1.6. Dimostrare che $S_n \cong A_n \rtimes_{\varphi} \langle (1 \ 2) \rangle$.

Svolgimento. Visto che $[S_n:A_n]=2$, allora $A_n\lhd S_n$; inoltre, essendo $|A_n|=n!/2$, per questione di cardinalità, si ha $A_n\langle (1\ 2)\rangle=S_n^3$. Ora, ricordando che $A_n=\mathrm{Ker}\,\mathrm{sgn}\,\,\mathrm{e}$ che $\langle (1\ 2)\rangle$ contiene solo trasposizioni (il cui segno è -1), deve valere $A_n\cap \langle (1\ 2)\rangle=\{e\}$. In questo modo, le ipotesi del teorema di decomposizione semidiretta (th. 1.10) sono soddisfatte, pertanto $S_n\cong A_n\rtimes_{\varphi}\langle (1\ 2)\rangle$.

¹Per esempio, ((1,2)(3,4))((1,5)(3,4)) = (1,5,2).

²Per esempio, (1, 2, 3, 4, 5)(1, 5, 3, 4, 2) = (3, 4, 5).

³Si nota che $\langle (1 \ 2) \rangle = \{ (2 \ 1) = e, (1 \ 2) \}$, quindi $|\langle (1 \ 2) \rangle| = 2$.

§1.12 Teorema di struttura per gruppi abeliani finiti

Definizione 1.19 (p-torsione). Sia G un gruppo abeliano finito; si definisce p*-componente* o *componente di* p*-torsione* l'insieme $G(p) = \{g \in G \mid \operatorname{ord}(g) = p^k, k \in \mathbb{N}\}.$

Proposizione 1.26. Dato G abeliano e finito; allora G(p) < G è un p-sottogruppo e G(p) char G (cioè è un sottogruppo caratteristico).

Dimostrazione. $G(\mathfrak{p}) < G$ perché se $x,y \in G$: $\operatorname{ord}(x) = \mathfrak{p}^m$, $\operatorname{ord}(y) = \mathfrak{p}^n$, con $\mathfrak{m}.\mathfrak{n} \in \mathbb{N}$, allora $\operatorname{ord}(xy) \mid [\operatorname{ord}(x), \operatorname{ord}(y)]$, il che vuol dire che $\operatorname{ord}(xy) = \mathfrak{p}^s$, per qualche $s \in \mathbb{N}$. Inoltre, l'ordine del prodotto di qualsiasi coppaia di elementi di G è sempre finito, quindi sempre nella forma di potenze di \mathfrak{p} , perché $|G| < \infty$ per assunzione. Per dimostrare che è un \mathfrak{p} -gruppo, si nota che

Infine, G(p) è caratteristico perché gli automorfismi conservano l'ordine degli elementi, pertanto G(p) viene mandato in se stesso.

Teorema 1.11. Sia G un gruppo abeliano con $|G| = n = p_1^{e_1} \cdots p_s^{e_s}$, con p_i tutti primi e $p_i \neq p_j$, $\forall i \neq j$; allora

$$G \cong G(p_1) \times \dots G(p_s)$$

Inoltre, la decomposizione di G come prodotto di p-gruppi tra loro coprimi è unica.

Dimostrazione. Per l'esistenza, si considera |G|=n, con $n=\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_s^{e_s}$; si procede per induzione su s.

Se s=1, allora $|G|=\mathfrak{p}_1^{\mathfrak{e}_1}\Rightarrow G=G(\mathfrak{p}_1)$. Si assume che la tesi sia versa $\forall 2\leqslant \mathfrak{m}<\mathfrak{n}$ e si verifica per \mathfrak{n} , che può essere scritto come $\mathfrak{n}=\mathfrak{m}\mathfrak{m}'$, con $(\mathfrak{m},\mathfrak{m}')=1$ e $\mathfrak{m},\mathfrak{m}'<\mathfrak{n}$.

Si verifica prima (in notazione additiva) che $G \cong \mathfrak{m}G \times \mathfrak{m}'G$. Intanto si osserva che $\mathfrak{m}G$, $\mathfrak{m}'G < G$ e, visto che G è abeliano per assunzione, si ha anche che $\mathfrak{m}G$, $\mathfrak{m}'G \lhd G$. Inoltre, visto che $(\mathfrak{m},\mathfrak{m}')=1$, allora $\exists h,k\in\mathbb{Z}$ tali che

$$mh + m'k = 1 \implies m(gh) + m'(gk) = g, \forall g$$

da cui $G \subseteq mG + m'G$, mentre l'inclusione inversa segue direttamente dalla chiusura di G. Allora mG + m'G = G. Sia, ora, $x \in mG \cap m'G$, cioè x = mg = m'g'; allora si nota che m'xm'mg = ng = 0 e mx = mm'g' = ng' = 0, pertanto $\operatorname{ord}(x) \mid m$ e $\operatorname{ord}(x) \mid m'$, quindi $\operatorname{ord}(x) \mid (m, m') = 1$, da cui x = 0. Questo implica che $mG \cap m'G = \{e\}$, il che completa le verifiche per le ipotesi del teorema 1.8 e permette di concludere che $G \cong mG \times m'G$.

Ora si fa vedere che

$$\mathfrak{m} G = G_{\mathfrak{m}'} = \big\{g \in G \mid \mathfrak{m}'g = 0\big\} \qquad \quad \mathfrak{m}'G = G_{\mathfrak{m}} = \{g \in G \mid \mathfrak{m}g = 0\}$$

Si mostra che $\mathfrak{m}'G=G_{\mathfrak{m}}$, cioè che l'insieme dei multipli di \mathfrak{m}' in G è uguale a quello degli elementi di G il cui ordine divide \mathfrak{m} , mostrando la doppia inclusione insiemistica.

Per $\mathfrak{m}'G\subseteq G_{\mathfrak{m}}$, si prende $\mathfrak{m}'x\in \mathfrak{m}'G$; visto che $\mathfrak{m}\mathfrak{m}'x=\mathfrak{n}x=0$, allora $\mathrm{ord}(x)\mid \mathfrak{m}^1$, quindi $\mathfrak{m}'x\in G_{\mathfrak{m}}$. Viceversa, dato $x\in G_{\mathfrak{m}}$, cioè tale che $\mathfrak{m}x=0$, si osserva che

$$\underbrace{mx}_{=0}h + m'kx = x \implies x = m'(kx) \implies x \in m'G$$

quindi $G_{\mathfrak{m}}\subseteq \mathfrak{m}'G$ e, allora, $\mathfrak{m}'G=G_{\mathfrak{m}}.$ Questo permette di scrivere che

$$G \cong G_m \times G_{m'}$$

Visto che G_m contiene tutti e soli gli elementi di G il cui ordine divide m (analogo per $G_{m'}$, allora $|G_m|$, $|G_{m'}| < |G|$; inoltre, G_m , $G_{m'} \neq \{0\}$ per Cauchy, visto che 1 < m < n, per cui $G_{m'}$, $G_m \lneq G$. Avendo concluso che i due sottogruppi sono proprio, si può applicare l'ipotesi induttiva per scrivere che:

$$G_{\mathfrak{m}} = \prod_{\mathfrak{i} \in I} G(\mathfrak{p}_{\mathfrak{i}})$$
 $G_{\mathfrak{m}'} = \prod_{\mathfrak{j} \in J} G(\mathfrak{p}_{\mathfrak{j}})$

con $I \cup J = \{1, ..., s\}$ e $I \cap J = \emptyset$ (visto che (m, m') = 1).

Per l'unicità, la scrittuura come prodotto di p-componenti deve essere unica, altrimenti, se G fosse isomorfo ad altri p-gruppi, si avrebbe

$$G \cong H_1 \times ... \times H_n$$

con $H_i < G$ p_i -gruppo; allora $H_i \subseteq G(p_i)$, visto che $G(p_i)$ contiene tutti gli elementi il cui ordine è una potenza di p_i , ma essendo che

$$|G| = |H_1| \cdots |H_s| = |G(\mathfrak{p}_1)| \cdots |G(\mathfrak{p}_s)| \implies |H_i| = |G(\mathfrak{p}_i)|, \ \forall i$$

visto che, per coprimalità tra gli altri fattori, $|G(p_i)|$ divide $|H_i|$ e viceversa. Quindi $H_i = G(p_i), \ \forall i = 1, ..., s.$

Lemma 1.11.1. Sia G un p-gruppo e sia $x_1 \in G$ un elemento di ordine massimo; preso $\overline{x} \in G/\langle x_1 \rangle$, si trova $y \in \pi_{\langle x_1 \rangle}^{-1}(\overline{x})$ tale che $\operatorname{ord}_G(y) = \operatorname{ord}_{G/\langle x_1 \rangle}(\overline{x})$, cioè preso un elemento nel quoziente, se ne trova sempre un nella sua fibra con lo stesso ordine.

Dimostrazione. Sia, allora, $\overline{x} \in G/\langle x_1 \rangle$, quindi della forma $\overline{x} = x + \langle x_1 \rangle$; si vuole calcolare $\pi_{\langle x_1 \rangle}^{-1}(\overline{x}) = \pi_{\langle x_1 \rangle}^{-1}(x + \langle x_1 \rangle)$, per cui $y \in \pi^{-1}(\overline{x})$ sarà della forma $y = x + \alpha x_1$. Visto che x e y sono nella stessa classe laterale di $G/\langle x_1 \rangle$, allora $\pi_{\langle x_1 \rangle}(y) = \pi_{\langle x_1 \rangle}(x) = \overline{x}$. Inoltre, il quoziente è ancora un p-gruppo, quindi sia

$$p^r = \operatorname{ord}_{\langle x_1 \rangle}(\pi_{\langle x_1 \rangle}(y)) = \operatorname{ord}_{\langle x_1 \rangle}(\overline{x}) \mid \operatorname{ord}_G(y)$$

¹Non si considera m' perché, per ipotesi, m' $x \neq 0$.

visto che π è un omomorfismo. Per questo, si può scegliere y (al variare di α in $x + \alpha x_1$ perché x è fissato dalla scelta di \overline{x}) in modo che il suo ordine sia esattamente p^r :

$$p^r y = p^r x + p^r \alpha x_1 = 0 \iff p^r x = -p^r \alpha x_1$$

dove, essendo $\operatorname{ord}_{\langle x_1 \rangle}(\overline{x}) = p^r$, allora $p^r x \in \langle x_1 \rangle$, cioè la sua proiezione modulo $\langle x_1 \rangle$ è nella classe laterale banale, quindi $p^r x = b x_1$. Per ipotesi, si era assunto che x_1 ha ordine massimo, sia questo p^{r_1} ; allora deve risultare che $r \leqslant r_1$, ma

$$0 = p^{r_1}x \iff p^{r_1-r}p^rx = 0 \iff p^{r_1-r}bx_1 = 0$$

dove si è moltiplicato e diviso per p^r . L'ultima uguaglianza è versa se e solo se $p^{r_1} \mid p^{r_1-r}b$ (visto che $\operatorname{ord}_G(x_1) = p^{r_1}$), quindi se e solo se $p^r \mid b \implies b = p^rb_1$. Per finire, scegliendo $a = -b_1$ e sostituendo nell'espressione iniziale, si ottiene

$$p^{r}y = p^{r}x - p^{r}b_{1}x_{1} = bx_{1} - p^{r}b_{1}x_{1} = 0$$

perciò $y = x - b_1 x_1 \in G$ realizza la richiesta.

Teorema 1.12. Sia G un p-gruppo abeliano; allora esistono e sono univocamente determinati $r_1, \ldots, r_t \in \mathbb{N}$, con $r_1 \ge r_2 \ge \ldots \ge r_t$, tali che:

$$G \cong \mathbb{Z}/\mathfrak{p}^{r_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/\mathfrak{p}^{r_t}\mathbb{Z}$$

Dimostrazione. Sia, quindi, $|G| = p^n$; si dimostra per induzione su n. Se n = 1, allora |G| = p, per cui $G \cong \mathbb{Z}/p\mathbb{Z}$ e la tesi è verificata.

Si assume che la tesi sia versa per $1 \le m < n$ e si dimostra per n. Sia, allora, $x_1 \in G$ un elemento di ordine massimo, sia questo $\operatorname{ord}(x_1) = p^{r_1}$; si hanno due possibili casi: $r_1 = n$ e $r_1 < n$. Il primo caso è banale: $r_1 = n \Rightarrow G$ ciclico, per cui $G \cong \mathbb{Z}/p^n\mathbb{Z}$.

Si considera, ora, il caso in cui $r_1 < n$. Essendo G abeliano, si ha $\langle x_1 \rangle \lhd G$, per cui si può considerare che $G/\langle x_1 \rangle$ ha ordine $\mathfrak{p}^{n-r_1} < \mathfrak{p}^n$; allora vale la tesi induttiva e il gruppo quoziente si può fattorizzare come prodotto di gruppi ciclici:

$$G/\langle x_1 \rangle \cong \langle \overline{x}_2 \rangle \times \ldots \times \langle \overline{x}_t \rangle$$

con $\operatorname{ord}(\overline{x}_t) = \mathfrak{p}^{r_t}$ e, complessivamente, $|\langle \overline{x}_2 \rangle \times \ldots \times \langle \overline{x}_t \rangle| = \mathfrak{p}^{n-r_1}$. Si assume che tale decomposizione sia già ordinata con $r_2 \geqslant \ldots \geqslant r_t$ e si considera la seguente proiezione al quoziente:

$$\pi: G \to G/\langle x_1 \rangle \cong \langle \overline{x}_2 \rangle \times \ldots \times \langle \overline{x}_t \rangle$$

Per il lemma precedente, dunque, si trovano $x_2, ..., x_t \in G$ tali che

$$\operatorname{ord}_G(x_i) = \operatorname{ord}_{G/\langle x_1 \rangle}(\overline{x}_i) = p^{r_i}$$

Ora, si vuole mostrare che:

$$H = \langle x_1, \dots, x_t \rangle \cong \langle x_2 \rangle \times \dots \times \langle x_t \rangle$$

La proiezione al quoziente ristretta ad H è data da:

$$\pi|_{H}: \begin{array}{ccc} H & \longrightarrow & G/\langle x_{1}\rangle \cong \langle \overline{x}_{2}\rangle \times \ldots \times \langle \overline{x}_{t}\rangle \\ a_{2}x_{2} + \ldots + a_{t}x_{t} & \longmapsto & (a_{2}\overline{x}_{2}, \ldots, a_{t}\overline{x}_{t}) \end{array}$$

Questo è un isomorfismo, infatti π è un omomorfismo suriettivo perché i generatori di H si possono mappare nelle tuple di generatori di $G/\langle x_1 \rangle$ e, per l'iniettività, si osserva che:

$$\pi(\alpha_2 x_2 + \ldots + \alpha_t x_t) = (\alpha_2 \overline{x}_2, \ldots, \alpha_t \overline{x}_t) = (0, \ldots, 0) \iff \alpha_i \overline{x}_i = 0, \ \forall i$$

cioè se e solo se $\operatorname{ord}_{G/\langle x_1\rangle}(\overline{x}_i)=\mathfrak{p}^{r_i}\mid \mathfrak{a}_i^1$. Però, valendo anche $\operatorname{ord}(x_i)=\mathfrak{p}^{r_i}$, allora quanto appena detto è equivalente a richiedere che $\mathfrak{a}_ix_i=0$, $\forall i$. Allora $\pi|_H$ è un isomorfismo e, quindi, vale che:

$$\mathsf{H} \cong \langle \overline{\mathsf{x}}_2 \rangle \times \ldots \times \langle \overline{\mathsf{x}}_t \rangle \cong \langle \mathsf{x}_2 \rangle \times \ldots \times \langle \mathsf{x}_t \rangle$$

dove l'ultimo isomorfismo deriva dal fatto che si sono scelti elementi di ordini uguali, che, quindi, generano gli stessi gruppi ciclici a meno di isomorfismo.

Si dimostra, infine, che $G\cong\langle x_1\rangle\times H$; per farlo, si verificano le ipotesi del teorema 1.8. Si inizia col far vedere che l'intersezione è banale; questo è dato dal fatto che ogni suo elemento si scrive come $a_1x_1=a_2x_2+\ldots+a_tx_t$, con a_1 e a_2,\ldots,a_t fissati; applicando $\pi_{\langle x_1\rangle}$ ad entrambi i membri, si ottiene

$$\overline{0} = a_2 \overline{x}_2 + \ldots + a_t \overline{x}_t \iff (a_2 \overline{x}_2, \ldots, a_t \overline{x}_t) = (\overline{0}, \ldots, \overline{0})$$

quindi si deve avere $x_i = 0$ nel gruppo di partenza e $a_1x_1 = 0$, da cui $\langle x_1 \rangle \cap H = \{0\}$. Per mostrare che $\langle x_1 \rangle + H = G$, si nota che $\langle x_1 \rangle + H \subseteq G$ e che

$$|\langle \mathbf{x}_1 \rangle + \mathbf{H}| = \frac{|\langle \mathbf{x}_1 \rangle||\mathbf{H}|}{|\langle \mathbf{x}_1 \rangle \cap \mathbf{H}|} = \frac{\mathbf{p}^{\mathbf{r}_1} \cdot \mathbf{p}^{\mathbf{n} - \mathbf{r}_1}}{1} = \mathbf{p}^{\mathbf{n}}$$

quindi le ipotesi sono soddisfatte e G $\cong \langle x_1 \rangle \times H \cong \langle x_1 \rangle \times \ldots \times \langle x_t \rangle$.

Quanto all'unicità, si procede ancora per induzione su $\mathfrak n$ in $|G|=\mathfrak p^{\mathfrak n}$. Se $\mathfrak n=1$, la tesi è sempre verificata dal fatto che $G\cong \mathbb Z/p\mathbb Z$. Si assume, quindi, la tesi vera $\forall \mathfrak m<\mathfrak n$ e si dimostra per $\mathfrak n$.

Sia

$$G \cong \mathbb{Z}/\mathfrak{p}^{r_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/\mathfrak{p}^{r_t}\mathbb{Z} \cong \mathbb{Z}/\mathfrak{p}^{k_1}\mathbb{Z} \times \ldots \mathbb{Z}/\mathfrak{p}^{k_s}\mathbb{Z}$$

¹L'uguaglianza deriva dal lemma precedente.

dove si assume che siano ordinati in modo tale da avere $r_1 \geqslant \ldots \geqslant r_t$ e $k_1 \geqslant \ldots \geqslant k_s$. Intanto deve valere s=t perché, considerando $G_p=\{g\in G\mid gp=0\}$ (sottogruppo degli elementi di G il cui ordine divide g), che è caratteristico (perché gli omomorfismi conservano l'ordine), si nota che gli elementi di G di ordine tale da dividere g0 stanno tutti in G_p 0, quindi G_p 1 è isomorfo a un sottogruppo della forma $(\mathbb{Z}/p\mathbb{Z})^\ell$ 0, con g1 numero dei fattori g2 distinti:

$$G_{\mathfrak{p}} \cong (\mathbb{Z}/\mathfrak{p}\mathbb{Z})^{\mathfrak{t}} \cong (\mathbb{Z}/\mathfrak{p}\mathbb{Z})^{\mathfrak{s}} \iff \mathfrak{t} = \mathfrak{s}$$

Per concludere, si mostra che sono uguagli anche le potenze di ciascun fattore. A questo scopo, si può applicare l'ipotesi induttiva al gruppo pG (con $|pG| = p^{n-t}$):

$$\begin{split} pG & \cong \frac{p\mathbb{Z}}{p^{r_1}\mathbb{Z}} \times \ldots \times \frac{p\mathbb{Z}}{p^{r_t}\mathbb{Z}} \cong \mathbb{Z}/p^{r_1-1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p^{r_t-1}\mathbb{Z} \\ & \cong \mathbb{Z}/p^{k_1-1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p^{k_t-1}\mathbb{Z} \cong \frac{p\mathbb{Z}}{p^{k_1}\mathbb{Z}} \times \ldots \times \frac{p\mathbb{Z}}{p^{k_t}\mathbb{Z}} \end{split}$$

dove la sequenza di isomorfismi è giustificata dall'assunzione che vi siano più fattorizzazioni per G, quindi anche per pG, ma pG deve avere decomposizione unica per ipotesi induttiva, quindi:

$$r_1 - 1 = k_1 - 1, \dots, r_t - 1 = k_t - 1 \iff r_1 = k_1, \dots, r_t = k_t$$

e quindi i singoli fattori hanno stesse potenze.

Teorema 1.13 (Teorema di struttura). Sia G un gruppo abeliano finito; allora G è prodotto diretto di gruppi ciclici, cioè:

$$G \cong \mathbb{Z}/n_1\mathbb{Z} \times \ldots \times \mathbb{Z}/n_s\mathbb{Z}$$

Questa scrittura, inoltre, è unica se $n_{i+1} \mid n_i, \ \forall i \in \{1, \dots, s-1\}$.

Dimostrazione. Si inizia col dimostrare l'esistenza. Facendo uso del teorema 1.11, allora $G \cong G(\mathfrak{p}_1) \times \ldots \times G(\mathfrak{p}_s)$. Applicando, poi, il teorema 1.12 a ciascun $G(\mathfrak{p}_i)$, si ottiene:

$$\begin{split} G &\cong G(\mathfrak{p}_1) \times \ldots \times G(\mathfrak{p}_s) \\ &\cong \left(\mathbb{Z}/\mathfrak{p}_1^{r_{11}}\mathbb{Z} \times \ldots \times \mathbb{Z}/\mathfrak{p}_1^{r_{1t_1}}\mathbb{Z} \right) \times \ldots \times \left(\mathbb{Z}/\mathfrak{p}_s^{r_{s1}}\mathbb{Z} \times \ldots \times \mathbb{Z}/\mathfrak{p}_s^{r_{st_s}}\mathbb{Z} \right) \end{split}$$

con $r_{i1} \geqslant r_{it_i}$. Per il teorema cinese del resto, si possono ricomporre i termini formati da primi distinti:

$$G \cong \frac{\mathbb{Z}}{\underbrace{\left(p_1^{r_{11}} \cdots p_s^{r_{s1}}\right) \mathbb{Z}}_{n_1}} \times \dots \times \underbrace{\frac{\mathbb{Z}}{\left(p_1^{r_{1t}} \cdots p_s^{r_{st}}\right) \mathbb{Z}}}_{n_t}$$

dove si è imposto $r_{ih} = 0$ se $h > t_i$ e con $t = \max\{t_1, \dots, t_s\}$. Per come si è riscritta la fattorizzazione, vale $n_t \mid n_{t-1}, n_{t-1} \mid n_{t-2}, \dots, n_2 \mid n_1$.

Infine, l'unicità deriva direttamente dai teoremi 1.11 e 1.12; infatti, se ci fossero due decomposizioni di G diverse con ordini che si dividono a catena, ripercorrendo gli isomorfismi, si ritroverebbero due decomposizioni diverse per G(p) (o per G come prodotto di p-componenti).

Esempio 1.9. Sia

$$\begin{split} G &\cong \mathbb{Z}/100\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z} \\ &\cong \mathbb{Z}/2^2\mathbb{Z} \times \mathbb{Z}/5^2\mathbb{Z} \times \mathbb{Z}/2^3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \end{split}$$

Raggruppando ciascun termine in base all'ordine degli elementi, si ottengono i p-sottogruppi:

$$G \cong \left(\mathbb{Z}/2^3 \mathbb{Z} \times \mathbb{Z}/2^2 \mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \right) \times \left(\mathbb{Z}/3 \mathbb{Z} \times \mathbb{Z}/3 \mathbb{Z} \right) \times \left(\mathbb{Z}/5^2 \mathbb{Z} \times \mathbb{Z}/5 \mathbb{Z} \right)$$

Infine, per il teorema di struttura, si può riscrivere il prodotto in ordine decrescente, rimettendo insieme i p-gruppi ciclici di ordine massimo:

$$G \cong \mathbb{Z}/(2^3 \cdot 3 \cdot 5^2) \mathbb{Z} \times \mathbb{Z}/(2^2 \cdot 3 \cdot 5) \times \mathbb{Z}/2\mathbb{Z}$$

Esempio 1.10 (Classificazione dei gruppi di ordine 1000). Si classificano i gruppi abeliani di ordine 1000. Per farlo, si inizia col notare che $1000 = 2^3 \cdot 5^3$, quindi $G \cong G(2) \times G(5)$, con $|G(2)| = 2^3$ e $|G(5)| = 5^3$. Ne segue che le p-componenti si possono riscrivere nei seguenti modi:

$$G(2) \cong \begin{cases} \mathbb{Z}/2^3 \mathbb{Z} \\ \mathbb{Z}/2^2 \mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \\ \mathbb{Z}/2 \mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \times \mathbb{Z}/2 \mathbb{Z} \end{cases} \qquad G(5) \cong \begin{cases} \mathbb{Z}/5^3 \mathbb{Z} \\ \mathbb{Z}/5^2 \mathbb{Z} \times \mathbb{Z}/5 \mathbb{Z} \\ \mathbb{Z}/5 \mathbb{Z} \times \mathbb{Z}/5 \mathbb{Z} \times \mathbb{Z}/5 \mathbb{Z} \end{cases}$$

Ne segue che i gruppi abeliani di ordine 1000, a meno di isomorfismo, sono $3 \cdot 3 = 9$, visto che, per il teorema di struttura, si ha una fattorizzazione unica come prodotto di gruppi ciclici finiti e, per tale fattorizzazione, si hanno tre scelte per la 2-componente e tre scelte per la 5-componente.

§1.13 I teoremi di Sylow

Nel teorema seguente, sono riuniti tutti i teoremi di Sylow; il primo corrisponde al punto (a), il secondo ai punti (b) e (c) e il terzo al punto (d).

Teorema 1.14 (Teorema di Sylow). Sia G un gruppo finito e p un numero primo tale che $|G| = p^n m$, con gcd(m, p) = 1; allora:

- (a). *esistenza*: $\forall \alpha \in \mathbb{N} : 0 \leq \alpha \leq n$, $\exists H < G \text{ con } |H| = p^{\alpha}$;
- (b). *inclusione*: ogni p-gruppo di G è contenuto in un p-Sylow¹;
- (c). coniugio: due qualsiasi p-Sylow sono coniugati;
- (d). *numero*: indicando con n_p il numero di p-Sylow di G, si ha che $n_p \mid |G|$ e $n_p \equiv 1 \pmod{p}$.

Dimostrazione. Si divide la dimostrazione nei vari punti.

(a). Si fissa $0 \le \alpha \le n$. Sia $\mathcal{M} = \{M \subset G \mid |M| = p^{\alpha}\}$; allora

$$|\mathcal{M}| = \binom{p^n m}{p^\alpha} = \frac{(p^n m)!}{p^\alpha! (p^n m - p^\alpha)!} = \frac{p^n m \prod_{i=1}^{p^{\alpha-1}} (p^n m - i)}{p^\alpha \prod_{i=1}^{p^{\alpha-1}} (p^\alpha - i)} = p^{n-\alpha} m \prod_{i=1}^{p^\alpha - 1} \frac{p^n m - i}{p^\alpha - i}$$

Da questo, si osserva che $p^{n-\alpha} \mid |\mathfrak{M}|$ e, per $\mathfrak{i}=1,\ldots,p^{\alpha-1}$, definendo $\nu_p(\mathfrak{n}):=\max\big\{k\in\mathbb{N}\mid p^k \text{ divide }\mathfrak{n}\big\}$, si ha che:

$$\nu_p(p^nm-i) = \nu_p(p^\alpha-i) = \nu_p(i) \implies \nu_p\left(\frac{p^nm-i}{p^\alpha-i}\right) = \nu_p(p^nm-i) - \nu_p(p^\alpha-i) = 0$$

essendo $i \leqslant p^{\alpha-1}$ e $\alpha \leqslant n$. Visto che ν_p conta l'esponente massimo per cui è possibile dividere il suo input, si conclude che $p^{n-\alpha}$ divide esattamente $|\mathcal{M}|$ e $n-\alpha$ è il massimo esponente con cui p può divide $|\mathcal{M}|^2$.

Ora si considera l'azione di G su $\mathbb M$ data da $\varphi: G \to S(\mathbb M)$, con $\varphi(g)(M) = \varphi_g(M) = gM$; per il teorema delle classi:

$$|\mathfrak{M}| = \sum_{M_{\mathfrak{i}} \in R} |\mathrm{Orb}(M_{\mathfrak{i}})| = \sum_{M_{\mathfrak{i}} \in R} \frac{|G|}{|\mathrm{Stab}(M_{\mathfrak{i}})|}$$

con R insieme dei rappresentanti delle orbite. Il fatto che $\mathfrak{p}^{n-\alpha} \parallel |\mathfrak{M}|^3$ implica che $\exists i$ tale per cui

$$\mathfrak{p}^{\mathfrak{n}-\alpha+1} \nmid |\mathrm{Orb}(M_\mathfrak{i})| = \frac{|G|}{|\mathrm{Stab}(M_\mathfrak{i})|} = \frac{\mathfrak{p}^\mathfrak{n}\mathfrak{m}}{|\mathrm{Stab}(M_\mathfrak{i})|}$$

 $^{^1}$ Si intende che se H < G con $|H| = p^{\alpha}$, con $0 \leqslant \alpha \leqslant n$, allora H è contenuto in un sottogruppo di G di ordine $p^{\alpha+1}$.

 $^{^2}$ Per vederlo più chiaramente, si assume che qualche potenza di p divida i, altrimenti p^nm-i e $p^\alpha-i$ non sarebbero divisibili per alcuna potenza di i e si avrebbe la tesi. Allora, si può scrivere $i=p^sj$, con $\gcd(p,j)=1$, da cui $p^nm-i=p^s(p^{n-s}m-j)$ e $p^\alpha-i=p^s(p^{\alpha-s}-j)$. Il loro rapporto semplifica p^s e rimane il rapporto di due termini non divisibili per alcuna potenza di p perché (j,p)=1.

³La notazione || si usa per indicare divisione esatta, cioè nessun esponente maggiore è divisore.

Ne segue anche che $\mathfrak{p}^{\alpha} \mid |\mathrm{Stab}(M_{\mathfrak{i}})|^{1}$, per cui $|\mathrm{Stab}(M_{\mathfrak{i}})| \geqslant \mathfrak{p}^{\alpha}$; si vuole mostrare che $|\mathrm{Stab}(M_{\mathfrak{i}})| = \mathfrak{p}^{\alpha}$.

D'altra parte, la mappa $\operatorname{Stab}(M_i) \longrightarrow M_i$ tale che $\operatorname{Stab}(M_i) \ni y \longmapsto yx$, per $x \in M_i$, è iniettiva perché $yx = y_1x \iff y = y_1$, quindi $\operatorname{Stab}(M_i) \leqslant |M_i| = p^{\alpha}$, da cui $|\operatorname{Stab}(M_i)| = p^{\alpha}$. Essendo $\operatorname{Stab}(M_i) < G$, significa che in G esiste un sottogruppo di ordine p^{α} .

(b). Sia S un p-Sylow di G, con $|S| = p^n$ e sia H < G un sottogruppo con $|H| = p^{\alpha}$. Si nota che $|G/S| = |G|/|S| = p^n m/p^n = m$.

Si considera l'azione di H su G/S = X definita da

$$\varphi: \begin{array}{ccc} H & \longrightarrow & S(X) \\ h & \longmapsto & \varphi_h \end{array}, \text{ con } \varphi_h(gS) = hgS$$

Per la formula delle classi:

$$\mathfrak{m} = |X| = \sum_{g \in R} |\mathrm{Orb}(gS)| = \sum_{g \in R} \frac{|H|}{|\mathrm{Stab}(gS)|} = \sum_{g \in R} \mathfrak{p}^{\alpha_g}$$

dove R è l'insieme dei rappresentanti delle classi di G/S e a_g è un esponente dipendente dal g in R. Visto che $p \nmid m^2$, deve esistere un $g \in R$ tale che $a_g = 0$, per cui $\mathrm{Orb}(gS) = \{gS\} \Rightarrow \mathrm{Stab}(gS) = H$. Questo significa anche che $\forall h \in H$, $hgS = gS \Rightarrow H \subset gSg^{-1}$, ma gSg^{-1} è un p-Sylow perché $|gSg^{-1}| = |S|$, quindi H è contenuto in un p-Sylow.

- (c). Quanto riportato in (b) dimostra anche la parte sul congiugio; infatti, se H è un p-Sylow con $|H| = p^n$, allora è un p-gruppo, allora $H \subset gSg^{-1}$ e, visto che hanno stessa cardinalità, segue che $H = gSg^{-1}$.
- (d). Sia S un p-Sylow; visto che tutti i p-Sylow sono coniugati, per un certo p fissato, significa che il loro numero è pari all'ordine della classe di coniugio di S, pertanto $n_p = |\mathrm{Cl}(S)| = [G:N_G(S)] \mid |G|. \text{ Si considera, ora, l'azione di S sull'insieme dei coniugati di S in G, Y, definita da <math>\varphi:S\to S(Y)$, con $\varphi(g)(xSx^{-1})=\gamma_g(xSx^{-1})=gxSx^{-1}g^{-1}$; si vuole dimostrare che $\mathrm{Orb}(S)$ è l'unica orbita banale di questa azione.

Per dimostrarlo, si considera, allora, $H \in Y$ con $\mathrm{Orb}(H) = \{H\}$, per cui $S = \mathrm{Stab}(H) = \{s \in S \mid sHs^{-1} = H\}$; questo, però, è equivalente a richiedere che $S \subset N_G(H) \iff SH = HS < G$. Si ha $|HS| = |H||S|/|H \cap S| = p^np^n/|H \cap S|$, ma visto che HS < G, allora $|HS| \mid |G| = p^nm$, per cui deve essere $|H \cap S| = p^n$, per cui H = S.

 $^{^1}$ II fatto che $\mathfrak{p}^{n-\alpha} \mid \mathfrak{p}^n\mathfrak{m}/|\mathrm{Stab}(M_i)|$ implica che $\mathfrak{p}^{\alpha} \mid |\mathrm{Stab}(M_i)|$, cosa che si vede scrivendo $\mathfrak{p}^n\mathfrak{m}/|\mathrm{Stab}(M_i)| = \mathfrak{p}^{n-\alpha}k$, per qualche intero k.

²Questo è per assunzione, cioè $|G| = p^n m \text{ con } (p, m) = 1$.

Per finire, si nota che

$$|Y| = n_p = \sum_{H \in R} |\operatorname{Orb}(H)| = \operatorname{Orb}(S) + \sum_{H \in R \setminus \{S\}} \operatorname{Orb}(H) = 1 + \sum_{H \in R \setminus \{S\}} \frac{|S|}{|\operatorname{Stab}(H)|}$$

da cui $n_p=1+\ell p^k$, che implica $n_p\equiv 1\pmod p$, con R insieme dei rappresentanti delle orbite.

Esempio 1.11. Sia $G = S_4$; visto che $|S_4| = 2^3 \cdot 3$, esiste un 2-Sylow, sia questo P, con $|P| = 2^3 = 8$.

§1.14 I quaternioni

§1.15 Esercizi e complementi

1.15.1 Complementi di teoria

Di seguito, un criterio importante per stabilire se un sottogruppo è normale.

Proposizione 1.27. Sia G un gruppo di ordine n e sia p il più piccolo primo che divide n; se H < G e [G:H] = p, allora $H \triangleleft G$.

Dimostrazione. L'insieme delle classi laterali è $G/H = \{g_1H, \ldots, g_pH\}$, visto che [G:H] = p. Si definisce l'azione $\gamma:G \to S(G/H)$ con $\gamma(g) = \pi_g$ e $\pi_G(g_iH) = gg_iH$, che consiste nella permutazione di tutte le classi di equivalenza. Il nucleo di questo omomorfismo (è facile vedere che è un omomorfismo perché consiste nella moltiplicazione per g) è dato da:

$$\operatorname{Ker} \gamma = \{g \in G \mid \forall i, \ gg_iH = g_iH\} = \left\{g \in G \mid g \in \bigcap_{x \in G} \operatorname{Stab}(xH)\right\}$$

Si nota che $g \in \operatorname{Stab}(xH) \Rightarrow gxH = xH \Rightarrow x^{-1}gxH = H$, che è vero se e solo se $x^{-1}gx \in H$, ossia $g \in xHx^{-1}$. Pertanto, il nucleo si può scrivere come:

$$\operatorname{Ker} \gamma = \left\{ g \in G \mid g \in \bigcap_{x \in G} x H x^{-1} \right\} \stackrel{\text{def}}{=} H_G$$

L'azione definita sopra consiste nella permutazione delle classi di equivalenza: ogni π_g moltiplica ciascuna classe per g, rimappando ciascuna classe in un'altra (in modo univoco, visto che è un automorfismo). Allora $\gamma:G\to \mathcal{S}_p(G/H)\subset S(G/H)$, con $\mathcal{S}_p(G/H)\cong S_p$; qui $\mathcal{S}_p(G/H)$ è l'insieme degli automorfismi π_g , mentre S_p è l'insieme delle permutazioni su $\{1,\ldots,p\}$.

Per il I teorema di omomorfismo, $G/H_G \longrightarrow S_p$ è iniettiva¹, cioè $G/H_G \hookrightarrow S_p$; pertanto $|G/H| \mid p!$ per Lagrange. Allora ci sono due possibilità: o |G/H| = 1, oppure |G/H| = p, visto che |G/H| deve dividere sia n (che ha come primo più piccolo p), che p! (che ha come primo più grande p).

Per finire, basta osservare che, essendo $H \in G/H$, si ha in particolare $g \in \operatorname{Ker} \gamma \Rightarrow gH = H \iff g \in H \Rightarrow H_G \subset H$, da cui $|G/H_G| \geqslant p$; questo permette di escludere |G/H| = 1 come possibilità e concludere che |G/H| = p, con $H = H_G$, il che vuol dire che H è il nucleo di un omomorfismo, quindi è normale.

 $^{^{1}}$ Non è detto che sia suriettiva, in generale sarà un isomorfismo se ristretta a un sottoinsieme di S_{p} .

1.15.2 Esercizi

Esercizio 1.7. Studiare $\operatorname{Aut}(\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$.

Svolgimento. Si nota che $\mathbb{Z}/20\mathbb{Z} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$, quindi:

$$\operatorname{Aut}(\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong \operatorname{Aut}(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}) \times \operatorname{Aut}(\mathbb{Z}/5\mathbb{Z})$$
$$\cong \operatorname{Aut}(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \times \mathbb{Z}/4\mathbb{Z}$$

dove si è usato che $(\mathbb{Z}/5\mathbb{Z})^*$ è ciclico di ordine 4, quindi isomorfo a $\mathbb{Z}/4\mathbb{Z}$. Rimane da studiare $\operatorname{Aut}(\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})$.

Il gruppo $G_2 = \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ha, come generatori, $\langle (\mathfrak{a},0),(\mathfrak{0},\mathfrak{b})\rangle$, con $\operatorname{ord}((\mathfrak{a},\mathfrak{0})) = 4$ e $\operatorname{ord}((\mathfrak{0},\mathfrak{b})) = 2$; per studiare gli automorfismi di G_2 , è necessario e sufficiente stabilire come si comportano su questi elementi, cioè imporre che vengano mandati in altri elementi di ordine 4 e 2 rispettivamente.

Concretamente, siano (1,0) e (0,1) i generatori di ordine 4 e 2 rispettivamente; il primo, allora, può essere mandato in un elemento di $\{(1,0),(3,0),(1,1),(3,1)\}$, mentre il secondo in un elemento di $\{(0,1),(2,0),(2,1)\}$.

Ora, considerando $u \in \{(1,0),(3,0),(1,1),(3,1)\}$, $\langle u \rangle$ è un gruppo ciclico di ordine 4, pertanto contiene un elemento di ordine 2, che è proprio u^2 ; evidentemente, il gruppo $\langle u,u^2 \rangle \neq G_2$ perché ha ordine 4, quindi, fissato u, si deve rimuovere dalla lista degli elementi di ordine 2 quello corrispondente a u^2 .

A questo punto, le possibili scelte sono 4 dall'insieme degli elementi di ordine 4 e 2 da quelli di ordine 2, per un totale di 8 automorfismi.

Si è dimostrato che $|\operatorname{Aut}(G_2)|=8$; ora si mostra che $\operatorname{Aut}(G_2)\cong D_4$. Per farlo, si cercano due elementi $\alpha,\Gamma\in\operatorname{Aut}(G_2)$ tali che $\operatorname{ord}(\Gamma)=4,\ \operatorname{ord}(\alpha)=2$ e $\alpha\Gamma\alpha=\Gamma^{-1}$. Si prendono $\alpha((1,0))=(1,0),\ \alpha(0,1)=(2,1)$ e $\Gamma((0,1))=(2,1)$ e $\Gamma((1,0))=(1,1)$; si osserva che:

$$\alpha((x,y)) = \alpha(x(1,0) + y(0,1)) = x(1,0) + y(2,1) = (2y + x,y)$$

$$\Gamma((x,y)) = \Gamma(x(1,0) + y(0,1)) = x(1,1) + y(2,1) = (2y + x, x + y)$$

da cui si può verificare l'ordine di ciascun automorfismo e, conseguentemente, che $\alpha\Gamma\alpha=\Gamma^{-1}$.

Esercizio 1.8. Sia $\rho = (1234)(56) \in S_{10}$; calcolare $Z(\rho)$ e

$$N(\langle \rho \rangle) = \left\{ \tau \in S_{10} \mid \tau \rho \tau^{-1} \in \langle \rho \rangle \right\}$$

Svolgimento. Si nota, intanto, che $|Z(\rho)|=|S_{10}|/|\mathrm{cl}(\rho)|=8\cdot 4!$. Si considerano, poi, $H=\langle (1234), (56)\rangle\cong \mathbb{Z}/4\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$ e $K=S_{\{7,8,9,10\}}\cong S_4$; per il teorema 1.8, visto che questi due sottogruppi sono normali, con $HK=Z(\rho)$ e hanno intersezione banale, si ha $Z(\rho)\cong \mathbb{Z}/4\mathbb{Z}\times Z/2\mathbb{Z}\times S_4$.

Per N($\langle \rho \rangle$), visto che $\langle \rho \rangle = \{ \mathrm{Id}, \rho, \rho^2, \rho^{-1} \}$, si ha

$$\begin{split} N(\langle \rho \rangle) &= \left\{ \tau \in S_{10} \mid \tau \rho \tau^{-1} = \rho \text{ o } \tau \rho \tau^{-1} = \rho^{-1} \right\} \\ &= Z(\rho) \cup \left\{ \tau \in S_{10} \mid \tau \rho \tau^{-1} = \rho^{-1} \right\} = Z(\rho) \times G_{-1} \end{split}$$

cioè è necessario che l'immagine sotto coniugio di un generatore, in questo caso ρ , sia ancora un generatore. Allora è sufficiente caratterizzare G_{-1} . Si nota che $\rho^{-1}=\rho^3=(56)(2341)$, quindi una possibilità è $\tau_0=(24)$, oppure $\tau_1=(1,4)(2,3)(5,6)$; per trovarle tutte, si osserva che

$$\tau_1^{-1}\tau_0\rho\tau_0^{-1}\tau_1=\tau_1^{-1}\rho^{-1}\tau_1=\rho\implies\tau_1^{-1}\tau_0\in Z(\rho)\iff\tau_0\in\tau_1Z(\rho)$$

perciò $\tau \in G_{-1} \iff \tau \in \tau_0 Z(\rho)$. Ne consegue che $|N(\langle \rho \rangle)| = 2|Z(\rho)|$; in generale:

$$\begin{split} N_{S_{\pi}}(\langle \rho \rangle) &= \left\{ \tau \in S_{\pi} \mid \tau \rho \tau^{-1} = \rho^{k}, \; \gcd(\operatorname{ord}(\rho), k) = 1 \right\} \\ &\Rightarrow |N_{S_{\pi}}(\langle \rho \rangle)| = |\{k \in \mathbb{Z} \mid \gcd(k, \operatorname{ord}(\rho)) = 1\}||Z_{S_{\pi}}(\rho)| = \varphi(\operatorname{ord}(\rho))|Z_{S_{\pi}}(\rho)| \end{split} \tag{1.15.1}$$

cioè è il centralizzatore per il numero di equazioni della forma $\tau \rho \tau^{-1} = \rho^k$.

Osservazione 1.15. Si nota che il coniugio non cambia la forma della permutazione, quindi l'equazione $\tau \rho \tau^{-1} = \rho^k$ ha soluzione se e solo se k è coprimo con $\operatorname{ord}(\rho)$.

2 Teoria degli anelli

§2.1 Introduzione

Definizione 2.1 (Anello). Un insieme A non vuoto si dice *anello* se sono definite due operazioni, una somma + e un prodotto \cdot , tali che:

- (a). (A, +) è un gruppo abeliano;
- (b). la moltiplicazione è associativa;
- (c). le due sono distributive a destra e a sinistra.

Definizione 2.2 (Anello con identità). Un anello A è detto *con identità* quando è definito anche l'elemento neutro rispetto al prodotto.

Definizione 2.3 (Anello commutativo). Un anello A è detto *commutativo* quando anche il prodotto è commutativo.

Definizione 2.4 (Divisore dello zero). Sia A un anello; un suo *divisore dello zero* è un elemento $a \in A$ tale che $\exists b \in A$, $b \neq 0$ per cui ab = 0. L'insieme dei divisori dello zero è indicato con D(A).

Definizione 2.5 (Dominio). Un anello A in cui l'unico divisore dello zero è 0 è detto *dominio*.

Definizione 2.6 (Campo). Un anello A in cui ciascun elemento eccetto 0 ha un inverso è detto *corpo*; si parla di *campo*, invece, quando A è anche commutativo.

Definizione 2.7 (Elemento nilpotente). Sia A un anello e sia $x \in A$; allora x è detto *nilpotente* se $\exists n \in \mathbb{N} : x^n = 0$. L'insieme degli elementi nilpotenti si indica con $\mathcal{N}(A)$.

Proposizione 2.1. Sia A un anello commutativo con identità; allora:

- (a). (A^*, \cdot) è un gruppo abeliano;
- (b). $A^* \cap D(A) = \emptyset$;
- (c). se A è finito, allora $A = D(A) \cup A^{*1}$.

Dimostrazione. Si divide la dimostrazione nei vari punti.

(a). È chiuso rispetto al prodotto perché se $x, y \in A^*$, allora $(xy)^{-1} = y^{-1}x^{-1}$ è il suo inverso, è presente l'elemento neutro perché 1 è invertibile, il prodotto è associativo per definizione, ogni elemento ha un inverso perché l'inverso di ogni elemento è, a sua volta, invertibile ed è commutativo perché l'intero anello lo è.

¹Si nota che, quindi, un dominio finito è un campo.

- (b). Se, per assurdo, $x \in A^* \cap D(A)$, allora, in A, si ha sia il suo inverso x^{-1} , sia un elemento $y \neq 0$ tale che xy = 0; ma allora $y = yxx^{-1} = 0$, che è assurdo.
- (c). Evidentemente $D(A) \cup A^* \subseteq A$, visto che D(A) e A^* sono sottoinsiemi di A. Per l'inclusione inversa, invece, se $x \in A$ e $x \in D(A)$, allora la tesi è dimostrata, altrimenti (cioè $x \in A \setminus D(A)$, si definisce l'omomorfismo di gruppi $\phi_x : A \to A$ tale $a \longmapsto xa$; il suo nucleo è $\operatorname{Ker} \phi_x = \{y \in A \mid \phi_x(y) = xy = 0\} = \{0\}$, visto che x non è un divisore dello zero. Essendo $|A| < +\infty$, l'omomorfismo è anche suriettivo, quindi è un isomorfismo, quindi $1 \in \operatorname{Im} \phi_x$ e, perciò, $\exists a \in A$ tale che $\phi_x(a) = xa = 1 \implies x \in A^*$.

Definizione 2.8 (Sottoanello). Sia A un anello e B \subseteq A; si dice che B è un *sottoanello* di A se è chiuso rispetto a somma e prodotto.

П

§2.2 Ideali

Definizione 2.9 (Ideale). Sia A un anello e sia $I \subseteq A$ un suo sottoinsieme; si dice che I è un ideale di A se:

- (a). (I, +) < (A, +);
- (b). è soddisfatta la proprietà di assorbimento $aI \subset I$ e $Ia \subset I$, $\forall a \in A^1$.

In generale, si assumerà che gli anelli siano con identità e commutativi.

Osservazione 2.1. Per verificare che un sottoinsieme di un anello commutativo con identità è un ideale, è sufficiente mostrare che (I,+) è chiuso e che valga la proprietà di assorbimento perché, da queste, segue che $(-1)\alpha \in I$, visto che -1 deve appartenere ad (A,+).

Definizione 2.10 (Ideale generato). Sia A un anello e $S = \{s_1, ..., s_n\} \subset A$ un sottoinsieme non vuoto; si definisce l'*ideale generato* da S come:

$$\langle S \rangle = \left\{ \sum_{i=1}^{n} a_{i} s_{i} \mid a_{i} \in A, \ s_{i} \in S \right\}$$

Ora si giustifica la precedente definizione, mostrando che è effettivamente un ideale.

¹Un ideale che le soddisfa entrambe è detto *bilatero*, altrimenti è detto *ideale destro*, o *sinistro* a seconda di quella che soddisfa.

Dimostrazione. $\langle S \rangle$ è chiuso rispetto alla somma; infatti, dati due suoi elementi $x = \sum_{i=1}^{n} a_i s_i$ e $y = \sum_{i=1}^{n} a_i' s_i$, si ha:

$$x+y=\sum_{i=1}^n\alpha_is_i+\sum_{i=1}^n\alpha_i's_i=\sum_{i=1}^n(\alpha_i+\alpha_i')s_i\in\langle S\rangle$$

Inoltre, $\forall \alpha \in A$, si ha:

$$\alpha x = \sum_{i=1}^{n} (\alpha a_i) s_i \in S$$

quindi vale anche la proprietà di assorbimento e la tesi è dimostrata.

Proposizione 2.2 (Operazioni tra ideali). Sia A un anello e siano $I, J \subset A$ due ideali; allora i seguenti insiemi sono ideali:

- (a). $I \cap J$;
- (b). $I + J = \langle I, J \rangle = \{i + j \mid i \in I, j \in J\};$
- (c). IJ = $\left\{ \sum_{k=1}^{n} i_k j_k \mid n \geqslant 1, i_k \in I, j_k \in J \right\};$
- (d). $\sqrt{I} = \{x \in A \mid \exists n \in \mathbb{N} : x^n \in I\};$
- (e). $(I : J) = \{x \in A \mid xJ \subseteq I\}.$

Dimostrazione. Si divide la dimostrazione nei vari punti.

- (a). Si sa già che l'intersezione di sottogruppi è un sottogruppo, quindi rimane da mostrare l'assorbimento. Dato $a \in A$ e $x \in I \cap J$, allora $ax \in I$ perché I è un ideale, ma $ax \in J$ perché anche J lo è, quindi $ax \in I \cap J$.
- (b). Visto che vale la proprietà commutativa (si sta sempre assumendo che A sia commutativo con identità), allora dati $x,y\in I+J$ tali che $x=i_1+j_1$ e $y=i_2+j_2$, allora

$$x + y = (i_1 + i_2) + (j_1 + j_2) \in I + J$$

Per l'assorbimento, si nota che $ax = ai_1 + aj_1 = i'_1 + j'_1$, visto che I e J sono ideali.

- (c). La chiusura è data dal fatto che la somma di due elementi è ancora una somma della stessa forma, mentre l'assorbimento a destra e sinistra è ovvio.
- (d). Siano $x, y \in \sqrt{I}$, ossia $x^n, y^m \in I$, per qualche $n, m \in \mathbb{N}$; si nota che:

$$(x+y)^{n+m} = \sum_{i=0}^{n+m} {n+m \choose i} x^i y^{m+n-i}$$

dove, per ogni i = 0, ..., m + n, si ha o che $i \ge n$, quindi $x^i \in I$, oppure che $n + m - i \ge m$, quindi $y^{n+m-i} \in I$. Ne segue che tutti i termini di $(x + y)^{n+m}$

stanno in I e, quindi, $x + y \in \sqrt{I}$. Infine, $\forall \alpha \in A$, $(\alpha x^n) = \alpha^n x^n$ appartiene ad I perché $x^n \in I$ e vale la proprietà di assorbimento; allora $\alpha x \in \sqrt{I}$.

(e). Siano $x, y \in (I : J)$; allora $(x + y)J = xJ + yJ \implies x + y \in (I : J)$ visto che $xJ \subseteq I$ e $yJ \subseteq I$ per assunzione. Infine, $\forall \in A$, si ha $\alpha xJ = \alpha(xJ) \subseteq \alpha I \subseteq I \implies \alpha x \in (I : J)$.

Proposizione 2.3. Sia A un anello e siano I, J due suoi ideali; in generale, IJ \subseteq I \cap J e vale l'uguaglianza quando I + J = A.

Dimostrazione. Siano $x \in I$ e $y \in J$; per assorbimento, visto che x, y appartengono anche ad A, si ha $xy \in I$ (considerando $y \in A$) e $xy \in J$ (considerando $x \in A$), quindi $xy \in I \cap J$. Infine, assumendo che I + J = A, allora vale che i + j = 1, per qualche $i \in I$ e $j \in J$; ne segue che $I \cap J \subseteq IJ$ perché, dato un generico $x \in I \cap J$, si ha:

$$x \cdot 1 = x(i + j) = xi + xj \in IJ$$

visto che è somma di due elementi di IJ, il quale è un gruppo additivo. □

Definizione 2.11 (Ideale proprio). Sia A un anello; un suo ideale I è detto *proprio* se $I \subseteq A$.

Proposizione 2.4. Sia A un ideale; allora un suo ideale $I \subset A$ è proprio se e solo se $I \cap A^* = \emptyset$.

Dimostrazione. Sia I ∩ $A^* = \emptyset$; visto che 1 ∈ A^* sempre, allora $\exists \alpha \in A : \alpha \notin I$, per cui I $\subseteq A$.

Per l'implicazione inversa, sia $I \subsetneq A$ un ideale proprio e sia, per assurdo, $x \in I \cap A^*$; allora x è invertibile, quindi $\exists x^{-1} \in A$ tale che $xx^{-1} = 1$, quindi $1 = x^{-1}x \in I \Rightarrow 1 \in I \in I = A$ per assorbimento, da cui l'assurdo.

Corollario 2.0.1. Sia A un anello; allora A è un campo se e solo se i suoi unici ideali sono $\{0\}$ e A.

Dimostrazione. Visto che A è un campo se e solo se $A^* = A \setminus \{0\}$, ne segue che l'unico elemento fuori A è 0, quindi, per la proposizione precedente (2.4), si conclude che gli unici ideali ammissibili sono $I = \{0\}$ e I = A.

§2.3 Omomorfismi di anelli e anelli quoziente

Definizione 2.12 (Omomorfismo di anelli). Siano A, B due anelli¹; si dice che f : $A \to B$ è un omomorfismo di anelli se, per ogni $a, a' \in A$:

¹Non necessariamente commutativi e con unità.

(a).
$$f(\alpha\alpha') = f(\alpha)f(\alpha')$$
;

(b).
$$f(\alpha + \alpha') = f(\alpha) + f(\alpha')$$
.

Se gli anelli sono commutativi e con identità, generalmente, si assume anche che $f(1_A) = 1_B$.

Osservazione 2.2. In generale, $f(1_A) = 1_B$ non è assicurata; infatti:

$$f(a) = f(1_A a) = f(1_A a) \implies f(a) - f(1_A)f(a) = (1_B - f(1_A))f(a) = 0$$

ma la legge di cancellazione non è garantita in quanto non è detto che A sia un dominio. Se B è un dominio e $f(\alpha) \neq 0$, allora segue $f(1_A) = 1_B$, ma se $f(A) \subset D(B)$, allora non è assicurato.

Definizione 2.13 (Anello quoziente). Sia A un anello e I \subseteq A un suo ideale; si definisce *anello quoziente* la struttura $(A/I, +, \cdot)$, dove la moltiplicazione è definita da

$$(a+I) \cdot (b+I) = ab+I$$

Il quoziente è inteso rispetto alla somma, visto che I è un gruppo additivo.

Si verifica che l'operazione è ben definita: dati a + I = a' + I e b + I = b' + I, allora

$$(a' + I)(b' + I) = a'b' + I = (a + I)(b + I) = ab + I$$

Da questo si può, poi, verificare che questo prodotto sul gruppo quoziente (A/I, +) definisca, effettivamente, una struttura di anello.

Analogamente al caso dei gruppi, si definisce la proiezione al quoziente come l'omomorfismo di anelli

$$\pi_{\rm I}: \begin{array}{ccc} A & \longrightarrow & A/{\rm I} \\ a & \longmapsto & a+{\rm I} \end{array} \tag{2.3.1}$$

Essendo un caso particolare di omomorfismo di gruppi, segue direttamente che è anche suriettivo, con $\operatorname{Ker} \pi_I = I$.

Proposizione 2.5. Sia A un anello; i suoi ideali sono tutti e soli i nuclei degli omomorfismi di anello definiti su A.

Dimostrazione. Si dimostra l'implicazione verso sinistra; sia, quindi, $\varphi: A \to B$ un omomorfismo di anelli. Si ha che Ker φ è un ideale di A perché Ker $\varphi < A$, visto che φ è anche un omomorfismo di gruppi, e $\forall \alpha \in A$, si ha $\alpha x \in Ker \varphi$, essendo che $\varphi(\alpha x) = \varphi(\alpha)\varphi(x) = \varphi(\alpha)\cdot 0 = 0$. Quindi i nuclei degli omomorfismi sono ideali.

Viceversa, tutti gli ideali sono i nuclei degli omomorfismi di proiezione al relativo quoziente, come visto poco sopra.

Teorema 2.1 (I teorema di omomorfismo di anelli). Siano A, B due anelli e sia $f: A \to B$ un omomorfismo di anelli; allora esiste un unico omomorfismo di anelli φ

che rispetta il diagramma¹:

cioè tale che f = $\phi \circ \pi$, con ϕ iniettivo e Im ϕ = Im f.

Dimostrazione. Per il I teorema di omomorfismo di gruppi, visto che f è, in particolare, un omomorfismo di gruppi, si ha l'esistenza e l'unicità di

$$\varphi: ^{A}/_{I} \rightarrow B$$

con I = Ker f. Inoltre, sempre per lo stesso motivo, si sa che tale mappa soddisfa f = $\phi \circ \pi$ ed è iniettiva, con Im $\phi = \operatorname{Im} f$.

Rimane da verificare che ϕ è anche un omomorfismo di anelli; a questo proposito, si nota che:

$$\varphi((a+I)(b+I)) = \varphi(ab+I) = f(ab) = f(a)f(b) = \varphi(a+I)\varphi(b+I)$$

per ogni $a, b \in A$.

Lemma 2.1.1. Sia $f:A\to B$ un omomorfismo di anelli; allora valgono le due seguenti affermazioni:

- (a). $\forall J \subset B$ ideale, si ha che $f^{-1}(J)$ è un ideale di A;
- (b). se f è suriettiva, allora $\forall I \subset A$ ideale, si ha che f(I) è un ideale di B.

Dimostrazione. Si divide la dimostrazione nei due punti.

(a). Visto che J è un ideale di B, è anche un sottogruppo di B, quindi l'immagine attraverso l'omomorfismo² f^{-1} sarà un sottogruppo di A. Inoltre, vale la proprietà di assorbimento perché se $x \in f^{-1}(J)$, allora $f(x) \in J$, quindi:

$$f(a) f(x) = f(ax) \in J, \ \forall x \in f^{-1}(J)$$

da cui $ax \in f^{-1}(J)$.

¹La freccia con due teste indica una suriezione, mentre la freccia tratteggiata indica che tale mappa deve esistere. In questo caso, le mappe in gioco si sottintendono essere omomorfismi di anelli.

 $^{^2}L$ inversa di un omomorfismo è un omomorfismo perché se f(ab)=f(a)f(b), allora $f^{-1}(f(a))f^{-1}(f(b))=ab=f^{-1}(f(ab)).$

(b). Si sa che f(I) è un sottogruppo di B; si verifica, allora, l'assorbimento. Per farlo, sia $b \in B$; visto che f è suriettiva, allora esiste $a \in A$ tale che b = f(a) e, quindi:

$$bf(x) = f(a)f(x) = f(\underbrace{ax}_{\in I}) \in f(I)$$

Teorema 2.2 (Teorema di corrispondenza tra ideali). Sia $I \subset A$ un ideale di A anello e sia π_I la proiezione al quoziente; allora π_I induca una corrispondenza biunivoca tra gli ideali dell'anello quoziente A/I e gli ideali di A che contengono I.

Dimostrazione. Siano $X = \{J \subseteq A \mid J \text{ ideale e } I \subseteq J\}$ e $Y = \{J \subseteq A/I \mid J \text{ ideale}\}$; la corrispondenza biunivoca è data dal teorema di corrispondenza tra gruppi. Rimane da dimostrare che, restringendo tale corrispondenza agli ideali, questa associ un ideale di A ad un ideale di A/I e viceversa.

Per il precedente lemma, si sa che, essendo π_I suriettivo, allora le immagini e le controimmagini via π_I , cioè $J \longmapsto \pi_I(J)$ e $\mathcal{J} \longmapsto \pi_I^{-1}(\mathcal{J})$, sono ideali, il che conclude la dimostrazione.

Definizione 2.14 (Estensione e contrazione). Sia $f: A \to B$ un omomorfismo di anelli e siano $I \subset A$ e $J \subset B$ un ideale, rispettivamente, di A e di B; allora si dice *estensione* di I a B via f l'ideale generato da f(I), mentre si dice *contrazione* di J ad A via f l'ideale generato da $f^{-1}(J)$.

Osservazione 2.3. Generalmente, per indicare l'estensione, ad esempio, si utilizza il l'abuso di notazione f(I)B = IB.

Gli omomorfismi sono *inclusioni a meno di isomrfismo*; infatti se l'omomorfismo $\varphi: R \longrightarrow R'$ non fosse iniettivo, si potrebbe passare al quoziente e trovare che $R/\operatorname{Ker} \varphi \longrightarrow R'$. Allora si può restringere lo studio degli omomorfismi allo studio di quelli iniettivi.

Conoscendo la corrispondenza tra ideali indotta da π_I , si nota che le mappe $I \longmapsto IB$ e $J \longmapsto J \cap A$ fanno si che

$$\varphi: A \hookrightarrow B \longrightarrow B/J$$

sia tale per cui

$$\operatorname{Ker} \phi = \{\alpha \in A \mid \phi(\alpha) = \alpha + J = J\} = \{\alpha \in A \mid \alpha \in J\} = J \cap A = \pi_I^{-1}(J)$$

da cui si ottiene

$$\frac{A}{J \cap A} \hookrightarrow B/J \tag{2.3.2}$$

per il I teorema di omomorfismo.

§2.4 Prodotto diretto di anelli

Definizione 2.15 (Anello prodotto). Siano A, B due anelli; il loro prodotto cartesiano $A \times B$ può essere dotato di una struttura di anello tramite le operazioni

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

 $(a_1, b_1) \cdot (a_2, b_2) = (a_1 \cdot a_2, b_1 \cdot b_2)$

con $a_1, a_2 \in A e b_1, b_2 \in B$.

Teorema 2.3 (Teorema cinese del resto per anelli). Sia A un anello commutativo con unità e siano I, J due suoi ideali; allora la mappa di doppia proiezione

$$f: \begin{array}{ccc} A & \longrightarrow & {}^{A}/{I} \times {}^{A}/{J} \\ a & \longmapsto & (a+I, a+J) \end{array}$$

è un omomorfismo di anelli, con $\operatorname{Ker} f = I \cap J$. Inoltre, I + J = A se e solo se f è suriettiva e, in tal caso, si ottiene

$$A_{IJ} \cong A_{I} \times A_{I}$$

Dimostrazione. Si verifica intanto che f è un omomorfismo di anelli:

$$f(a+b) = ((a+b)+I, (a+b)+J) = (a+I, a+J)+(b+I, b+J) = f(a)+f(b)$$

dove la terza uguaglianza è assicurata dalla struttura di anello quoziente. Analogamente:

$$f(ab) = (ab + I, ab + J) = (a + I, a + J)(b + I, b + J) = f(a)f(b)$$

Ora si nota che

$$\operatorname{Ker} f = \{ \alpha \in A \mid f(\alpha) = (\alpha + I, \alpha + J) = (I, J) \} = \{ \alpha \in A \mid \alpha \in I \text{ e } \alpha \in J \} = I \cap J$$

Ora si verifica la doppia implicazione.

• (\Rightarrow) Sia I + J = A, quindi $\exists i \in I$, $j \in J$: i + j = 1 (visto che l'identità è in I + J, essendo I + J = A); si vuole mostrare che f è suriettiva, cioè che $\forall a, b \in A, \exists x \in A$ tale che f(x) = (a + I, b + J).

Visto che $x \in A = I + J$, allora si può scrivere come x = bi + aj, per qualche $i \in I$ e $j \in J$, quindi:

$$f(x) = (\underbrace{bi}_{\in I} + aj + I, bi + \underbrace{aj}_{\in J} + j) = (aj + I, bi + J)$$

Notando, poi, che $1 = i + j \Leftarrow i = 1 - j$ e j = 1 - i, si ha:

$$(aj + I, bi + J) = (a(1-i) + I, b(1-j) + J) = (a + I, b_J)$$

pertanto f è suriettiva.

• (\Leftarrow) Si assume, ora, che f sia suriettiva e si mostra che I+J=A. Dalla suriettività, si ricava che $\exists i \in A : f(i) = (I, 1+J)$; per tale i, allora, deve valere $i \in I$ e $i \equiv 1 \pmod{J}$, perciò i = 1+j, il che implica che $1 \in I+J$ e, quindi, I+J=A,

Per il I teorema di omomorfismo, infine, si ha che, se f è suriettiva (ed equivalentemente I + J = A), allora:

$$A_{\text{Ker f}} = A_{\text{I} \cap \text{J}} = A_{\text{IJ}} \cong A_{\text{I}} \times A_{\text{J}}$$

dove la seconda uguaglianza è giustificata dal fatto che $I + J = A \implies IJ = I \cap J$. \square

Osservazione 2.4. Per il teorema cinese del resto fra gruppi, si sapeva già che

$$\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \iff (m,n) = 1$$

Ora, usando il teorema cinese del resto tra anelli, si sa che, data $f: \mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, con Ker $f = m\mathbb{Z} \cap n\mathbb{Z} = [m, n]\mathbb{Z}$, vale

$$\mathbb{Z}/[m,n]\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

Si è visto che f è suriettiva se e solo se (m, n) = 1; in questo modo, [m, n] = mn, quindi $n\mathbb{Z} + m\mathbb{Z} = (n, m)\mathbb{Z} = \mathbb{Z}$ e, pertanto:

$$\mathbb{Z}/[\mathfrak{m},\mathfrak{n}]\mathbb{Z}=\mathbb{Z}/\mathfrak{m}\mathfrak{n}\mathbb{Z}\cong\mathbb{Z}/\mathfrak{m}\mathbb{Z}\times\mathbb{Z}/\mathfrak{n}\mathbb{Z}$$

Questa versione del teorema cinese del resto, quindi, generalizza la precedente.

§2.5 Ideali primi e massimali

Definizione 2.16 (Maggiorante). Sia (\mathcal{F}, \leqslant) un insieme parzialmente ordinato e sia $X \subset \mathcal{F}$ un suo sottoinsieme; allora si dice che $M \in \mathcal{F}$ è un *maggiorante* per X se $\forall A \in X, A \leqslant M$.

Definizione 2.17 (Elemento massimale). Sia (\mathcal{F}, \leqslant) un insieme parzialmente ordinato; si dice che $A \in \mathcal{F}$ è un *elemento massimale* per \mathcal{F} se $\forall B \in \mathcal{F} : A \leqslant B \implies A = B$.

Definizione 2.18 (Massimo). Sia (\mathcal{F}, \leqslant) un insieme parzialmente ordinato; si dice che $A \in \mathcal{F}$ è un *massimo* per \mathcal{F} se $\forall B \in \mathcal{F}$, si ha $B \leqslant A$.

Definizione 2.19 (Catena). Sia (\mathcal{F}, \leq) un insieme parzialmente ordinato; una *catena* di \mathcal{F} è un suo sottoinsieme totalmente ordinato.

Definizione 2.20 (Insieme induttivo). Sia (\mathcal{F}, \leq) un insieme parzialmente ordinato; allora si dice che \mathcal{F} è *induttivo* se ogni sua catena ammette maggiorante al suo interno.

Lemma 2.3.1 (Lemma di Zorn). Sia $(\mathfrak{F}, \leqslant)$ un insieme parzialmente ordinato e induttivo; allora \mathfrak{F} contiene elementi massimali.

Spesso, il lemma di Zorn si usa su famiglie $\mathcal F$ di ideali ordinati secondo la relazione di inclusione \subseteq .

Definizione 2.21 (Ideale primo). Sia I \subseteq A un ideale di A anello; I si dice *primo* se:

$$xy \in I \implies x \in I \text{ oppure } y \in I, \ \forall x, y \in A$$

cioè se ogni volta che contiene un prodotto, allora contiene uno dei due fattori.

Definizione 2.22 (Ideale massimale). Sia A un anello e I un suo ideale; si dice che I è *massimale* se è un elemento massimale della famiglia \mathcal{F} di tutti gli ideali propri di A, cioè

I massimale
$$\iff \forall J \subsetneq A : I \subseteq J \implies I = J$$

Proposizione 2.6. Ogni anello unitario ammette ideali massimali.

Dimostrazione. Sia $\mathcal{F} = \{I \subsetneq A \mid I \text{ ideale}\}$; si ha che (\mathcal{F}, \subseteq) è un insieme parzialmente ordinato e induttivo. Sia, poi, $\mathcal{C} = \{I_{\lambda}, \lambda \in \Lambda\}$ una catena di \mathcal{F} ; si nota che

$$I = \bigcup_{\lambda \in \Lambda} I_{\lambda}$$

è un maggiorante per \mathcal{C} ed è un ideale di A, visto che gli ideali si contengono e, il fatto che $1 \notin A \Leftarrow I \neq A$, essendo che $1 \notin I_{\lambda}, \ \forall \lambda \in \Lambda$. Ne segue che $I \in \mathcal{F}$ implica che \mathcal{F} è induttivo e, per il lemma di Zorn, ammette elementi massimali.

Esempio 2.1. Gli ideali primi di \mathbb{Z} sono quelli della forma $\langle p \rangle$, con p primo; infatti:

$$xy \in \langle p \rangle \mid xy \iff p \mid x \text{ oppure } p \mid y$$

ossia se $x \in \langle p \rangle$, oppure se $y \in \langle p \rangle$.

Considerando, invece, $\langle \mathfrak{m} \rangle$ con \mathfrak{m} non primo, allora si può scrivere $\mathfrak{m}=\mathfrak{a}\mathfrak{b}$, dove $\mathfrak{a},\mathfrak{b}\in\mathbb{Z}$ sono tali che $1<\mathfrak{a},\mathfrak{b}<\mathfrak{m}$, e, quindi, $\mathfrak{a}\mathfrak{b}\in\langle\mathfrak{m}\rangle$, ma $\mathfrak{a}\not\in\langle\mathfrak{m}\rangle$ e $\mathfrak{b}\not\in\langle\mathfrak{m}\rangle$, per cui $\langle\mathfrak{m}\rangle$ non è primo.

Proposizione 2.7 (Proprietà degli ideali massimali). Sia A un anello; allora:

- (a). ogni ideale proprio di A è contenuto in un ideale massimale;
- (b). ogni elemento non invertibile di A è contenuto in un ideale massimale.