

LINEAR ALGEBRA AND ITS APPLICATIONS UE19MA251

Orthogonal Vectors & Subspaces

PES UNIVERSITY ONLINE

Definition:

The <u>norm or length</u> of a n-dimensional vector $x = (x_1, x_2,, x_n)$ is written as ||x|| and is defined as

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

We can also write

$$||x||^2 = x^T x$$

Note: Zero is the only vector whose norm is 0.

Orthogonal Vectors & Subspaces

Orthogonal Vectors & Subspaces

Definition:

The <u>inner product</u> or dot product or scalar product of two vectors $x = (x_1, x_2,, x_n)$ and $y = (y_1, y_2,, y_n)$ is denoted by

$$x^T y \ or \ x \circ y \ or \ \langle x, y \rangle$$

and is defined by

$$x^{T} y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

$$x^T y = y^T x$$

Note that

Orthogonal Vectors & Subspaces

Definition:

Two vectors $x = (x_1, x_2,, x_n)$ and $y = (y_1, y_2,, y_n)$ are said to be **orthogonal** if

$$x^T y = y^T x = 0$$

Note:

- 1. Zero is the only vector that is orthogonal to itself.
- 2. Zero is the only vector that is orthogonal to every other vector.

Orthogonal Vectors & Subspaces

Orthogonal Vectors & Subspaces

Examples

- 1.The coordinate vectors (1, 0,, 0), (0, 1, 0,..., 0),, (0, 0,, 0, 1) are mutually orthogonal in Rⁿ.
- 2. The vectors (c, s), (-s, c) are orthogonal in \mathbb{R}^2 .
- 3. The vectors (2, 1, 0), (-1, 2, 0) are orthogonal in \mathbb{R}^3 .

Orthogonal Vectors & Subspaces

Theorem: If the non-zero vectors $v_1, v_2, \dots ... v_k$ are mutually orthogonal then these vectors are linearly independent but convex need not be true.

Example: Vectors (2, 1) and (1, 2) are linearly independent but they are not mutually orthogonal

Orthogonal Vectors & Subspaces

PES UNIVERSITY ONLINE

Definition:

Two subspaces S and T of a vector space V are <u>orthogonal</u> if every vector x in S is orthogonal to every vector y in T. Thus,

$$x y = 0$$

for all $x \in S$ and $y \in T$.

Orthogonal Vectors & Subspaces

PES UNIVERSITY ONLINE

Examples

- 1. $Z = \{0\}$ is orthogonal to all subspaces.
- 2. In R², a line can be orthogonal to another line.
- 3. In R³, a line can be orthogonal to another line or a plane. But, a plane cannot be orthogonal to another plane.

Note:

If S and T are orthogonal in V then dim S + dim T ≤ dim V

Orthogonal Vectors & Subspaces

Fundamental theorem of Orthogonality:

Let A be an m x n matrix then row space of A is orthogonal to its null space in \mathbb{R}^n and the column space is orthogonal to left null space in \mathbb{R}^m .

THANK YOU