This problem can be regarded as a SLS problem but with fixed length of each "line" (m). For the sub problem in the minutes $m_1, m_2, \dots m_j$, if we denote wait time as t, the optimal solution will be:

$$OPT(j) = \min_{1 \le i \le j} (t_{i,j} + OPT(i-1)) = \min_{1 \le i \le j} (mc_i + (m+1)c_{i+1} + \dots + (m+j-i)c_j + OPT(j-1))$$
(1)

The algorithm is stated as follow:

Algorithm 1 Algorithm for problem 3

Set array $T[0, 1, \cdots n]$

Set T[0] = 0

For all pairs $i \leq j$

Compute the time cost

Endfor

For $j = 1, 2, \dots, n$

Use the recurrence (Equation (1)) to compute T[j]

Endfor

Return T[n]

Time complexity analysis:

In this algorithm, if we have pre-computed the time cost, the time complexity would be $O(n^2)$ since pairs (i, j) are within i to j.

An idea that may decrease the complexity to O(mn): (just some thoughts) Since we know the processing time m is fixed. We can just let i be no less than j-m (i.e., let $j-m \le i \le j$ in Equation (1) (if j-m < 0 then 0)). Then we let j skip 0 if it meets 0. So that the scope of i will be decreased from n to m, which gives O(mn).