All rings are commutative and unital. The letter k denotes an algebraically closed field. If f is an element of a ring A, we denote by $(f) = \{af | a \in A\}$ the ideal generated by f.

Exercise 1. Show that an ideal I of a ring A is maximal if and only if the quotient ring A/I is a field.

Exercise 2. (a) Let f_1, \dots, f_r be irreducible elements in $R = k[X_1, \dots, X_n]$. Assume that $(f_i) \neq (f_j)$ for $i \neq j$. Show that

$$(f_1 \cdots f_r) = (f_1) \cap \cdots \cap (f_r).$$

(b) Is it still true when R is an arbitrary ring? (Give a proof or a counterexample.)

Exercise 3. Let $f_1, \dots, f_r \in k[X_1, \dots, X_n]$ and $\varphi : \mathbb{A}_k^n \to \mathbb{A}_k^r$ the map defined by $(x_1, \dots, x_n) \mapsto (f_1(x_1, \dots, x_n), \dots, f_r(x_1, \dots, x_n)).$

- (a) If Z is an irreducible closed subset of \mathbb{A}_k^r , is the subset $\varphi^{-1}(Z) \subset \mathbb{A}_k^n$ closed? irreducible?
- (b) Let Y be an irreducible subset of \mathbb{A}_k^n . Is the subset $\varphi(Y) \subset \mathbb{A}_k^r$ irreducible? Is its closure $\overline{\varphi(X)} \subset \mathbb{A}_k^r$ irreducible?
- (c) Find n, r and f_1, \dots, f_r , and a closed subset $Y \subset \mathbb{A}^n_k$ such that $\varphi(Y) \subset \mathbb{A}^r_k$ is not closed.

Exercise 4. (a) Let A be a ring and I an ideal of A. Show that I is radical if and only if A/I is reduced.

- (b) Show that every reduced finitely generated k-algebra is the coordinate ring A(Y) of some algebraic set $Y \subset \mathbb{A}^n_k$ (for some n).
- (c) Let $Y \subset \mathbb{A}^n_k$ be an algebraic set. For a closed subset Z of Y, let $I_Y(Z)$ be the kernel of the natural morphism of coordinate rings $A(Y) \to A(Z)$. Show that $Y \mapsto I_Y(Z)$ induces a bijection between the closed subsets of Y and the radical ideals of A(Y).

Exercise 1. For an isomorphism $\varphi \colon \mathbb{A}^1 - 0 \to \mathbb{A}^1 - 0$, we denote by $\mathbb{A}^1 \sqcup_{\varphi} \mathbb{A}^1$ the glueing of \mathbb{A}^1 with itself along φ . Let $\chi \colon \mathbb{A}^1 - 0 \to \mathbb{A}^1 - 0$ be the morphism corresponding to the ring morphism $\mathbb{Z}[x, x^{-1}] \to \mathbb{Z}[x, x^{-1}]$ mapping x to x^{-1} . Show that the schemes $\mathbb{A}^1 \sqcup_{\mathrm{id}} \mathbb{A}^1$ and $\mathbb{A}^1 \sqcup_{\chi} \mathbb{A}^1$ are not isomorphic. [Hint: Look at the set of morphisms into \mathbb{A}^1 .]

Exercise 2. Let $f: X \to Y$ be a scheme morphism and y a point of Y. Consider the natural morphism $\operatorname{Spec} \kappa(y) \to Y$ and the fibre $X_y = X \times_Y \operatorname{Spec} \kappa(y)$. Show that the projection $X_y \to X$ induces a homeomorphism between X_y and $f^{-1}\{y\}$.

Exercise 3. Let k be a field. Let $X = \operatorname{Spec} k[X,Y,Z]/(XY-Z)$ and $\mathbb{A}^1_k = \operatorname{Spec} k[T]$. Consider the morphism $X \to \mathbb{A}^1_k$ corresponding to the k-algebra morphism $k[T] \to k[X,Y,Z]/(XY-Z)$ mapping T to Z. Describe the fibre over each point of \mathbb{A}^1_k .

- **Exercise 4.** (i) Let A be a ring, and $f_1, \ldots, f_n \in A$ elements generating the unit ideal. Assume that each ring A_{f_i} is noetherian. Show that the ring A is noetherian.
 - (ii) Show that an open subscheme of a locally noetherian scheme is locally noetherian.
- (iii) Let X be a locally noetherian scheme, and $U = \operatorname{Spec} A$ an affine open subscheme of X. Using (i) and (ii), show that the ring A is noetherian.

The topological space underlying a scheme X is denoted by X_{top} .

Exercise 1. Let $f: X \to S$ and $g: Y \to S$ be two scheme morphisms. Consider the map

$$\varphi \colon (X \times_S Y)_{top} \to X_{top} \times Y_{top}$$

induced by the two projection morphisms $X \times_S Y \to X$ and $X \times_S Y \to Y$.

(i) Let $x \in X_{top}$ and $y \in Y_{top}$ be such that $f(x) = g(y) = s \in S_{top}$. Show that there is a homeomorphism

$$\varphi^{-1}\{(x,y)\} \simeq (\operatorname{Spec}(\kappa(x) \otimes_{\kappa(s)} \kappa(y)))_{top}.$$

(ii) What is the image of φ ?

Exercise 2. Let S be an affine scheme and $X \to S$ a separated morphism (i.e. the diagonal morphism $(\mathrm{id}_X,\mathrm{id}_X)\colon X\to X\times_S X$ is a closed immersion). Show that the intersection of two affine open subschemes of X is affine.

Exercise 3. Let X be a scheme and \mathcal{Z} a closed subset of X_{top} . The purpose of this exercise it to prove the existence of a reduced scheme Z and a closed immersion $f: Z \to X$ inducing a homeomorphism $(Z)_{top} \to \mathcal{Z}$.

- (i) Show that Z and f exist when X is affine.
- (ii) Assume that Z and f exist. Show that for every morphism $g: T \to X$ with T reduced and $g(T_{top}) \subset \mathcal{Z}$, there exists a unique morphism $h: T \to Z$ such that $g = f \circ h$. [Hint: Begin with the case T affine.]
- (iii) For n=1,2 let Z_n be a reduced scheme and $f_n: Z_n \to X$ a closed immersion inducing a homeomorphism $(Z_n)_{top} \to \mathcal{Z}$. Show that there exists a unique isomorphism $\varphi: Z_1 \to Z_2$ such that $f_1 = f_2 \circ \varphi$.
- (iv) Conclude.

Exercise 4. Let $A \to B$ be a ring morphism making B a free A-module of rank n. Show that the morphism Spec $B \to \operatorname{Spec} A$ is open.

The letter k denotes a field.

Exercise 1. Let Y and Z be two closed subschemes of X. Show that $(Y \times_X Z)_{top} = Y_{top} \cap Z_{top}$ as subspaces of X_{top} .

Exercise 2. Let X a scheme of finite type over Spec k. Assume that X is integral with function field K (the residue field $\kappa(\eta)$ at the generic point η). Show that dim X coincides with the transcendence degree of K over k.

Exercise 3. Let K/k be a field extension, and A a finitely generated k-algebra. Show that $\dim(A \otimes_k K) = \dim A$.

Exercise 4. Let A, B two finitely generated k-algebras. Show that $\dim(A \otimes_k B) = \dim A + \dim B$.

Exercise 5. Let Z be a closed subscheme of \mathbb{A}^2_k . Consider the two projections $p, q \colon \mathbb{A}^2_k = \mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k \to \mathbb{A}^1_k$. If dim Z = 1, show that $p|_Z$ or $q|_Z$ is dominant (i.e. has dense image).

Exercise 6. Let S be a commutative N-graded ring, and $f \in S_0$. Describe the open subscheme $D_h(f) \subset \text{Proj}(S)$, and give an example where it is not affine.

Exercise 7 (Optional). Assume that k is algebraically closed. Let X be an integral scheme of finite type over k. Denote by X_{Var} the set of closed points in X, with its induced topology. Show that $X \mapsto X_{Var}$ induces an equivalence of categories between:

- integral, quasi-projective schemes over Spec k and morphisms of schemes over Spec k,
- and quasi-projective k-varieties and their morphisms.

The letter k denotes an algebraically closed field.

Exercise 1. Let X be a topological space.

- (i) If Y is a subset of X, show that $\dim Y \leq \dim X$.
- (ii) Assume that $X = \bigcup_{\alpha \in A} U_{\alpha}$ with U_{α} an open subset of X for each $\alpha \in A$. Show that $\dim X = \sup_{\alpha \in A} \dim U_{\alpha}$.

Exercise 2. Given $f \in k[x,y]$, we denote by $\varphi_f: \mathbb{A}^2_k \to \mathbb{A}^1_k$ the map $(u,v) \mapsto f(u,v)$.

- (i) For $t \in k = \mathbb{A}^1_k$, recall why $\varphi_f^{-1}\{t\}$ is an algebraic set in \mathbb{A}^2_k .
- (ii) Find f such that $\varphi_f^{-1}\{t\}$ is irreducible for all $t \in k$.
- (iii) Find f such that $\varphi_f^{-1}\{t\}$ is irreducible for all $t \in k \{0\}$ but $\varphi_f^{-1}\{0\}$ is not irreducible.

Exercise 3. (i) Let R be a principal ideal domain. Show that dim $R \in \{0, 1\}$.

- (ii) Let $Y = V(y x^2) \subset \mathbb{A}^2_k$. Show A(Y) is a polynomial ring in one variable over k.
- (iii) Let $Z = V(xy-1) \subset \mathbb{A}^2_k$. Show A(Z) is not a polynomial ring in one variable over k.
- (iv) Show that Y and Z are irreducible, and compute their dimensions.

Exercise 4. Consider the map $\varphi: \mathbb{A}^1_k \to \mathbb{A}^2_k$ given by $t \mapsto (t^2, t^3)$. Show that $\varphi(\mathbb{A}^1_k)$ is an irreducible closed subset $Z \subset \mathbb{A}^2_k$, and that the induced map $\mathbb{A}^1_k \to Z$ is bijective.

The letter k denotes an algebraically closed field. We denote the polynomial ring $k[X_0, \dots, X_n]$ by S, and by S_d its homogeneous component of degree d.

Exercise 1. Let $I \subset S$ be a homogeneous ideal. Show that the radical \sqrt{I} is a homogeneous ideal.

Exercise 2. Let $I \subset S$ be a homogeneous ideal. Show that the following conditions are equivalent:

- (a) $Z_h(I) = \emptyset \subset \mathbb{P}^n$.
- (b) The ideal \sqrt{I} is either equal to S or to $S_+ = \bigoplus_{d>0} S_d$.
- (c) There is an integer d such that $S_d \subset I$.
- **Exercise 3.** (i) Show that an algebraic set Y of \mathbb{P}^n is irreducible if and only if its homogeneous ideal $I(Y) \subset S$ is prime.
 - (ii) Let $f \in S$ be an irreducible homogeneous polynomial. Show that $Z_h(f) \subset \mathbb{P}^n$ is irreducible.
- (iii) Show that \mathbb{P}^n is irreducible.

Exercise 4. Let f, g be two elements of $S_1 - \{0\}$. Assume that $Z_h(f) \neq Z_h(g)$. Show that $Z_h(f) \cap Z_h(g) \subset \mathbb{P}^n$ is a linear subspace \mathbb{P}^{n-2} (in other words: find an element of $GL_{n+1}(k)$ such that the induced bijection of \mathbb{P}^n sends $Z_h(f) \cap Z_h(g)$ to $Z_h(X_n, X_{n-1})$).

- **Exercise 5.** (i) Assume that n = 1 and $a \in S_d \{0\}$ with $d \ge 1$. Show that the cardinality of the set $Z_h(a) \subset \mathbb{P}^1$ is between 1 and d.
- (ii) Assume that n = 2. Let $f \in S_d \{0\}$ with $d \ge 1$ and $g \in S_1 \{0\}$. If $Z_h(g) \subset Z_h(f) \subset \mathbb{P}^2$, show that $g \mid f$.
- (iii) Assume that n = 2. Let $f \in S_d \{0\}$ with $d \ge 1$ and $g \in S_1 \{0\}$. If $Z_h(g) \not\subset Z_h(f) \subset \mathbb{P}^2$, show that the cardinality of the set $Z_h(f) \cap Z_h(g)$ is between 1 and d.

Exercise 1. (i) Let X be a variety and U a dense open subset of X. Show that the morphism $\mathcal{O}(X) \to \mathcal{O}(U)$ is injective.

- (ii) Let X be a variety and U, V two dense open subsets of X such that $X = U \cup V$. Show that $\mathcal{O}(X) = \mathcal{O}(U) \cap \mathcal{O}(V) \subset \mathcal{O}(U \cap V)$.
- (iii) Use the two open subsets of \mathbb{P}^1

$$\Omega_i = \mathbb{P}^1 - Z_h(X_i) = \{(x_0 : x_1) | x_i \neq 0\}$$

for i = 0, 1 to compute $\mathcal{O}(\mathbb{P}^1)$.

(iv) Is \mathbb{P}^1 affine?

Exercise 2. Let $f \in k[X_1, \dots, X_n]$, and $U = \mathbb{A}^n - Z(f)$. Let $Y = Z(X_{n+1} \cdot f - 1) \subset \mathbb{A}^{n+1}$. Show that the morphism $\mathbb{A}^{n+1} \to \mathbb{A}^n$ given by $(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, x_n)$ induces an isomorphism of varieties $Z \to U$.

Exercise 3. We say that a subset E of \mathbb{A}^n is stable under the action of k^{\times} when for all $\lambda \in k^{\times}$

$$(x_1, \dots, x_n) \in E \Longrightarrow (\lambda x_1, \dots, \lambda x_n) \in E.$$

Let Y be a closed subset of \mathbb{A}^n stable under the action of k^{\times} . Show that each irreducible component of Y is stable under the action of k^{\times} .

Exercise 4. (Time permitting, the solution will be explained on Nov 23th, otherwise on Nov 30th.) Let X be a quasi-projective variety.

- (i) Show that the set of morphisms $X \to \mathbb{A}^n$ may be identified with the product of n copies of $\mathcal{O}(X)$.
- (ii) Deduce that for any affine variety Y, the set of morphisms of varieties $X \to Y$ may be identified with the set of k-algebra morphisms $\mathcal{O}(Y) \to \mathcal{O}(X)$.
- (iii) Give a counterexample with Y non-affine.

All rings are commutative and unital.

Exercise 1. Let A be a ring and $f \in A$. Consider the localised ring $A_f = A[x]/(xf-1)$. Show that $A_f = 0$ if and only if f is nilpotent in A.

Exercise 2. Let $\varphi \colon A \to B$ be a ring morphism such that each element of ker φ is nilpotent. Show that Spec $\varphi \colon \operatorname{Spec} B \to \operatorname{Spec} A$ is a homeomorphism under any of the following assumptions:

- (i) The morphism φ is surjective.
- (ii) Let p be a prime number such that $p \cdot 1 = 0$ in A. For each $b \in B$ we may find an integer $n \geq 0$ such that $b^{p^n} \in \operatorname{im} \varphi$.

Exercise 3. Let k be an algebraically closed field. Show that every quasi-projective variety over k is covered by open affine varieties. [Hint: use the covering of \mathbb{P}_k^n by n+1 copies of \mathbb{A}_k^n .]

Exercise 4. Let n be an integer ≥ 2 and k an algebraically closed field.

- (i) Show that the morphism $\mathcal{O}(\mathbb{A}^n_k) \to \mathcal{O}(\mathbb{A}^n_k 0)$ is bijective. [Hint: use Exercise 1 of the previous sheet, and the opens $U_{X_i} = \mathbb{A}^n_k Z(X_i)$.]
- (ii) Deduce that the variety $\mathbb{A}^n_k 0$ is not affine.
- (iii) Let $f \in \mathcal{O}(\mathbb{A}_k^n 0)$. Assume that f is k^{\times} -invariant, in other words that for every $\lambda \in k^{\times}$ and $(x_1, \ldots, x_n) \in k^n \{0\}$ we have $f(\lambda x_1, \ldots, \lambda x_n) = f(x_1, \ldots, x_n)$. Show that f is constant.
- (iv) Deduce that $\mathcal{O}(\mathbb{P}_k^{n-1}) = k$.

When \mathcal{F} is a presheaf on X, we denote by \mathcal{F}_x the stalk at $x \in X$, and by $a(\mathcal{F})$ the sheaf associated with \mathcal{F} .

Exercise 1. Let $\pi: Y \to X$ be a local homeomorphism, and Γ_{π} its sheaf of sections. Show that for any $x \in X$ the natural map $(\Gamma_{\pi})_x \to \pi^{-1}\{x\}$ is a bijection.

Exercise 2. Let \mathcal{F} and \mathcal{G} be two presheaves on a topological space X.

- (i) Let $x \in X$. Show that the natural map $(\mathcal{F} \times \mathcal{G})_x \to \mathcal{F}_x \times \mathcal{G}_x$ is a bijection.
- (ii) Deduce that the natural morphism $a(\mathcal{F} \times \mathcal{G}) \to a(\mathcal{F}) \times a(\mathcal{G})$ is an isomorphism.

Exercise 3. Let E be a set and X a topological space. The value of the *constant* sheaf \underline{E} on an open subset U of X is the set of continuous maps $U \to E$, where E is endowed with the discrete topology. Show that \underline{E} is isomorphic to the sheaf associated with the presheaf taking the value E on every open subset of X.

Exercise 4. Let \mathcal{F} be a presheaf on a topological space X.

- (i) Let $x \in X$ and $i: \{x\} \to X$ be the inclusion. Let E be a set, and \underline{E} the constant sheaf on $\{x\}$ associated with E (i.e. $\underline{E}(\{x\}) = E$ and $\underline{E}(\emptyset) = \{*\}$). Show that the set of presheaf morphisms $\mathcal{F} \to i_*\underline{E}$ is in bijection with the set of maps $\mathcal{F}_x \to E$.
- (ii) Let $j: U \to X$ be the inclusion of an open subset. Let \mathcal{G} be a presheaf on U. Show that the set of presheaf morphisms $\mathcal{F} \to j_*\mathcal{G}$ and $\mathcal{F}|_U \to \mathcal{G}$ are in bijection.

All rings a unital and commutative.

Exercise 1. Let A, B be two rings and $S \subset A$ a multiplicatively closed subset. Show that the natural map $\operatorname{Hom}(S^{-1}A, B) \to \operatorname{Hom}(A, B)$ (Hom refers to ring morphisms) is injective, and that its image is the set of ring morphisms $\varphi \colon A \to B$ such that $\varphi(S) \subset B^{\times}$.

Exercise 2. Let A be a ring.

- (i) Show that the set of nilpotent elements in A is the intersection of all prime ideals of A. [Hint: Use Sheet 5, Exercise 1.]
- (ii) Let $I \subset A$ be an ideal. Show that the radical \sqrt{I} is the intersection of all prime ideals of A containing I. [Hint: Use (i) for the ring A/I.].
- (iii) Show that $I \mapsto V(I)$ induces a bijection between the set of radical ideals of A and the set of closed subsets of Spec A.

Exercise 3. Let A be a ring and $S \subset A$ a multiplicatively closed subset.

- (i) Show that (or recall how) an A-module morphism $f: M \to N$ induces a $S^{-1}A$ -module morphism $S^{-1}f: S^{-1}M \to S^{-1}N$.
- (ii) If the sequence of A-modules

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$$

is exact, show that the induced sequence of $S^{-1}A$ -modules

$$0 \to S^{-1}M_1 \to S^{-1}M_2 \to S^{-1}M_3 \to 0$$

is exact.

Exercise 4. Let A be a ring and \mathfrak{p} a prime ideal of A. Let $\kappa(\mathfrak{p})$ be the fraction field of A/\mathfrak{p} . We recall the ring $A_{\mathfrak{p}}$ is local with maximal ideal $\mathfrak{m}_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}}$. Show that the fields $\kappa(\mathfrak{p})$ and $A_{\mathfrak{p}}/\mathfrak{m}_{\mathfrak{p}}$ are isomorphic.

Exercise 1. Let A be a commutative unital ring, and \mathfrak{p} a prime ideal of A. Show that the set $\{\mathfrak{p}\}$ is closed in Spec A if and only if the ideal \mathfrak{p} is maximal in A.

Exercise 2. Let (X, \mathcal{O}_X) be a scheme and U an open subset of X. Show that $(U, \mathcal{O}_X|_U)$ is a scheme.

Exercise 3. A topological space X is called *quasi-compact* if for every family $\{U_i, i \in I\}$ of open subsets of X such that $X = \bigcup_{i \in I} U_i$ we may find a finite subset $J \subset I$ such that $X = \bigcup_{i \in J} U_i$. Show that Spec A is quasi-compact, when A is commutative unital ring.

Exercise 4. Let k be a field, and $A = k[X_i|i \in \mathbb{N}]$ the polynomial ring in a countable infinite set of variables. Let $I \subset A$ be the ideal generated by the variables X_i for $i \in \mathbb{N}$. Show that the topological space $\operatorname{Spec} A - V(I)$ is not quasicompact. [Hint: Look at the chain of closed subsets $\cdots \subset V(X_1, \ldots, X_{s+1}) \subset V(X_1, \ldots, X_s) \subset \ldots$]

Exercise 5. Let (X, \mathcal{O}_X) be a scheme and $e \in \mathcal{O}_X(X)$ be such that $e^2 = e$. Let f = 1 - e. Show that there exists open subsets X_e and X_f of X such that $X = X_e \cup X_f$ and $X_e \cap X_f = \emptyset$, and such that $e|_{X_e} \in \mathcal{O}_X(X_e)^{\times}$ and $f|_{X_f} \in \mathcal{O}_X(X_f)^{\times}$. (For a ring R we denote by R^{\times} its set of invertible elements.)

- **Exercise 1.** Find a morphism of ringed spaces $\operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$ which is not a scheme morphism.
- **Exercise 2.** Let X and Y be two schemes. Show that the functor associating to an open subset U of X the set of scheme morphisms $U \to Y$ is a sheaf on the topological space X.
- **Exercise 3.** Let $f \in \mathcal{O}_X(X)$ and $\varphi_f \colon X \to \mathbb{A}^1$ the corresponding morphism. Consider the open subset $X_f = \varphi_f^{-1}(\mathbb{A}^1 0)$. Show that $x \in X_f$ if and only $f_x \in (\mathcal{O}_{X,x})^{\times}$.
- **Exercise 4.** Show that a scheme X is affine if and only if the canonical morphism $X \to \operatorname{Spec}(\mathcal{O}_X(X))$ is an isomorphism.
- **Exercise 5.** Let X be a scheme. Show that every irreducible closed subset of X is the closure of a unique point.
- **Exercise 6.** Let X be a scheme and K a field. Show that a scheme morphism $\operatorname{Spec} K \to X$ corresponds to the data of a point $x \in X$ and a field extension $\kappa(x) \to K$.
- **Exercise 7.** Let $f: X \to Y$ be a scheme morphism of finite type. Assume that X and Y are integral with generic points η_X and η_Y , and that $f(\eta_X) = \eta_Y$. Show that the following are equivalent:
- (a) The natural field extension $\kappa(\eta_Y) \to \kappa(\eta_X)$ is an isomorphism.
- (b) There exists non-empty open subschemes U of X and V of Y such that $f(U) \subset V$ and f induces an isomorphism $U \to V$.
- **Exercise 8.** (i) Let X be a quasi-compact scheme, and $f, a \in \mathcal{O}_X(X)$. Assume that $a|_{X_f} = 0$. Show that there exists an integer n > 0 such that $f^n a = 0$.
- (ii) Assume that X has a finite cover by open affine subschemes U_i such that $U_i \cap U_j$ is quasi-compact for each pair (i,j). Let $f \in \mathcal{O}_X(X)$ and $b \in \mathcal{O}_{X_f}(X_f)$. Show that for some $n \geq 0$ the section $f^n b \in \mathcal{O}_{X_f}(X_f)$ is the restriction of a section in $\mathcal{O}_X(X)$.
- (iii) Assume that X has a finite cover by open affine subschemes U_i such that $U_i \cap U_j$ is quasi-compact for each pair (i, j). Show that the natural morphism $\mathcal{O}_X(X)[1/f] \to \mathcal{O}_{X_f}(X_f)$ is a bijection for any $f \in \mathcal{O}_X(X)$.
- (iv) Show that a scheme X is affine if and only if there are elements $f_1, \ldots, f_n \in \mathcal{O}_X(X)$ generating the unit ideal, and such that each X_{f_i} is affine. [Hint: Use (iii) and Exercise 4.]
- (v) Deduce that a morphism $f: X \to Y$ is affine if and only if for any open affine subscheme V of Y the open subscheme $f^{-1}V$ of X is affine.