

NPB3.3-MZ-MPI/BT tutorial example OpenMP+MPI application (generic cluster version)

Brian Wylie
Jülich Supercomputing Centre
b.wylie@fz-juelich.de
September 2011

Tutorial exercise objectives

- Familiarise with usage of VI-HPS tools
 - complementary tools' capabilities & interoperatibility
- Prepare to apply tools productively to your application(s)
- Exercise is based on a small portable benchmark code
 - unlikely to have significant optimization opportunities
- Optional (recommended) exercise extensions
 - analyze performance of alternative configurations
 - investigate effectiveness of system-specific compiler/MPI optimizations and/or placement/binding/affinity capabilities
 - investigate scalability and analyze scalability limiters
 - compare performance on different HPC platforms
 - ...

Load the UNITE module and then the tool of interest

```
% module load UNITE
% module avail
kcachegrind/1.4 marmot/2.4.0 paraver/4.0
periscope/1.4b scalasca/1.3.3 tau/2.20.3
vampir/7.3.0 vampirserver/2.3.0 vampirtrace/5.11
% module load scalasca/1.3.3
```

- Often distinct modules for each MPI/compiler combination
 - MPI libraries typically not binary compatible
 - OpenMP run-time libraries not binary compatible
 - Compiler-based instrumentation is compiler-specific
 - measurement collection, analysis & examination shouldn't be
- Tutorial sources should be copied to your own directory where you can then work with them

```
% cp -r ~hpclab01/tutorial/NPB3.3-MZ-MPI $WORK
```


- NAS Parallel Benchmark suite (sample MZ-MPI version)
 - Available from http://www.nas.nasa.gov/Software/NPB
 - 3 benchmarks (all in Fortran77, using OpenMP+MPI)
 - Configurable for various sizes & classes
- Move into the NPB3.3-MZ-MPI root directory

```
% cd NPB3.3-MZ-MPI; ls
BT-MZ/ LU-MZ/ SP-MZ/
bin/ common/ config/ jobscript/ Makefile README sys/
```

- Subdirectories contain source code for each benchmark
 - plus additional configuration and common code
- The provided distribution has already been configured for the tutorial, such that it's ready to "make" benchmarks and install them into a (tool-specific) "bin" subdirectory

Building an NPB-MZ-MPI benchmark

Type "make" for instructions

```
% make
       NAS Parallel Benchmarks 3.3
       MPI+OpenMP Multi-Zone versions
 To make a NAS multi-zone benchmark type
       make <benchmark-name> CLASS=<class> NPROCS=<number>
 To make a set of benchmarks, create the file config/suite.def
 according to the instructions in config/suite.def.template and type
       make suite
 **************************
* Custom build configuration is specified in config/make.def
* Suggested tutorial benchmark specification:
                                                       *
       make bt-mz CLASS=B NPROCS=4
 **************************
```

Building the NPB-MZ-MPI/BT benchmark

- Specify the benchmark configuration
 - benchmark name: **bt-mz**, lu-mz, sp-mz
 - the number of MPI processes: NPROCS=4
 - the benchmark class (S, W, A, B, C, D, E, F): CLASS=B

```
% make bt-mz CLASS=B NPROCS=4
cd BT-MZ; make CLASS=B NPROCS=4 VERSION=
gmake: Entering directory 'BT-MZ'
cd ../sys; cc -o setparams setparams.c -lm
../sys/setparams bt-mz 4 B
mpif77 -c -03 -openmp bt.f
mpif77 -c -03 -openmp setup mpi.f
cd ../common; mpif77 -c -03 -openmp print results.f
cd ../common; mpif77 -c -03 -openmp timers.f
mpif77 -03 -openmp -o ../bin/bt-mz B.4 \
    bt.o make set.o initialize.o exact solution.o exact rhs.o \
    set constants.o adi.o define.o copy_faces.o rhs.o solve_subs.o \
    x solve.o y solve.o z solve.o add.o error.o verify.o setup mpi.o \
    ../common/print results.o ../common/timers.o
Built executable ../bin/bt-mz B.4
gmake: Leaving directory 'BT-MZ'
```

NPB-MZ-MPI/BT (Block Tridiagonal solver)

- What does it do?
 - Solves a discretized version of unsteady, compressible Navier-Stokes equations in three spatial dimensions
 - Performs 200 time-steps on a regular 3-dimensional grid using ADI and verifies solution error within acceptable limit
 - Intra-zone computation with OpenMP, inter-zone with MPI
- Implemented in 20 or so Fortran77 source modules
- Runs with any number of MPI processes & OpenMP threads
 - bt-mz_B.4 x4 is reasonable (increase to 4x6 as appropriate)
 - excess processes idle when run with more than compiled
 - bt-mz_B.4 x4 should run in around 30 seconds
 - ► typically runs more efficiently with more processes than threads
 - CLASS=C does much more work and takes much longer!

Set OMP_NUM_THREADS and launch as an MPI application

```
% cd bin; OMP NUM THREADS=4 mpiexec -np 4 ./bt-mz B.4
NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark
Number of zones:
                    8 x
Iterations: 200
                    dt: 0.000300
Number of active processes:
                                             Hint: copy/edit example batch
Time step
                                             scripts from jobscript directory:
            20
Time step
                                             % qsub ../jobscript/run.pbs
Time step
            40
Time step
            60
           80
Time step
Time step 100
Time step 120
Time step 140
Time step 160
Time step 180
Time step 200
                                              Hint: save the benchmark
Verification Successful
                                             output (or note the run time)
BT-MZ Benchmark Completed.
                                             to be able to refer to it later
 Time in seconds = 28.86
```

Tutorial exercise steps

- The tutorial steps are similar and repeated for each tool
- Use the provided NPB3.3-MZ-MPI tutorial directory

```
% cd NPB3.3-MZ-MPI; ls
BT-MZ/ LU-MZ/ SP-MZ/
bin/ common/ config/ jobscript/ Makefile README sys/
```

- Edit config/make.def to adjust build configuration
 - Modify specification of compiler/linker: MPIF77
- Make clean and build new tool-specific executable

```
% make clean
% make bt-mz CLASS=B NPROCS=4
Built executable ../bin.$(TOOL)/bt-mz_B.4
```

 Change to the directory containing the new executable before running it with the desired tool configuration

```
% cd bin.$(TOOL)
% export OMP_NUM_THREADS=4 ...
% mpiexec -np 4 ./bt-mz_B.4
```

NPB-MZ-MPI/BT build configuration definition

config/make.def

```
SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS
# Items in this file may need to be changed for each platform.
#OPENMP = -fopenmp # GCC
                                                Set flag according to compiler
OPENMP = -openmp # Intel
# The Fortran compiler used for hybrid MPI programs
                                                 Default (no instrumentation)
MPIF77 = mpif77
# Alternative variants to perform instrumentation
\#MPIF77 = marmotf77
                                                Hint: uncomment one of these
#MPIF77 = psc instrument mpif77
                                                alternative compiler wrappers
#MPIF77 = scalasca -instrument mpif77
                                                to perform instrumentation ...
\#MPIF77 = tau f90.sh
\#MPIF77 = vtf77 - vt:hyb - vt:f77 mpif77
# PREP is a generic preposition macro for instrumentation preparation
\#MPIF77 = \$(PREP) mpif77
                                                 ... or this for generic variant
```

Workshop systems (hardware)

System	<i>juropa</i>	<i>cluster-beta</i>	<i>jugene</i>
Domain	fz-juelich.de	rz.rwth-aachen.de	fz-juelich.de
Vendor	Sun/Bull	Bull	IBM
Type	Constellation	Bullx	BlueGene/P
Network	Infiniband	Infiniband	BlueGene/P
Processors Frequency	Xeon X5570	Xeon X5675 / X7550	PowerPC 450
	2930 MHz	3060 / 2000 MHz	850 MHz
Compute nodes Chips per node Cores per chip Threads per core	3288	1358 / 346	2304
	2	2 / 4	32
	4	6 / 8	4
	2	1 / 1	1
Memory per node	24 GB	24-96 / 64-256 GB	2 GB

Workshop systems (software environment)

System domain	<i>juropa</i>	<i>cluster-beta</i>	<i>jugene</i>
	fz-juelich.de	rz.rwth-aachen.de	fz-juelich.de
Filesystem Parallel filesys	<i>Lustre</i>	Lustre	<i>GPFS</i>
	\$WORK	/hpcwork/\$USER	\$WORK
Compiler	<i>Intel</i>	<i>Intel</i>	IBM XL
OpenMP	-openmp	-openmp	-qsmp=omp
MPI C compiler C++ compiler F ⁹ · compiler	ParaStation mpicc mpicxx mpif ⁴	IntelMPI / OpenMPI mpiicc / mpicc mpiicpc / mpicxx mpiifort / mpif90	BG MPICH mpixlc_r mpixlcxx_r mpixlf4 · _r
Queue	<i>Moab/PBS</i>	<i>LSF</i>	LoadLeveler
job submit	msub job	bsub < job	Ilsubmit job
list jobs	qstat -u	bjobs	Ilq -u \$USER