

Rechnerarchitektur

Kombinatorische Logik II

Univ.-Prof. Dr.-Ing. Rainer Böhme

Wintersemester 2021/22 · 20. Oktober 2021

Was tut diese Schaltung?

24 82 94 16

X ₁	<i>X</i> ₂	У
0	0	
0	1	
1	0	
1	1	

Bitte wählen Sie die passende Spalte für y in ARSnova.

Zugang: https://arsnova.uibk.ac.at mit Zugangsschlüssel 24 82 94 16. Oder scannen Sie den QR-Kode.

Beispiel einer logischen Schaltung (W)

Gesucht Schaltung, die 1 ausgibt, wenn einer oder zwei von drei Eingängen x_1, x_2, x_3 den Wert 1 annehmen.

Wahrheitstabelle, Boolesche Funktion, Realisierung:

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	У
0	0	0	0
1	0	0	1 🗸
0	1	0	1 🗸
1	1	0	1 🗸
0	0	1	1 🗸
1	0	1	1 🗸
0	1	1	1 🗸
1	1	1	0

Beispiel einer logischen Schaltung (Forts.)

Gesucht Schaltung, die 1 ausgibt, wenn einer oder zwei von drei Eingängen x_1, x_2, x_3 den Wert 1 annehmen.

Alternative:

Χ	1	X ₂ 2	X3	У
()	0	0	0
	1	0	0	1
(О	1	0	1
	1	1	0	1
(О	0	1	1
	1	0	1	1
(О	1	1	1
	1	1	1	0

Zeitverhalten eines Gatters

Gatter sind physische Bausteine. Sie verhalten sich nicht ideal.

Das Ausgangssignal reagiert verzögert

Die Verzögerung au ist definiert als Dauer zwischen den Zeitpunkten der Überschreitung des 50 %-Pegels an Ein- bzw. Ausgang.

Störimpulse durch Laufzeiteffekte

Beispiel: Eingang x_3 steuert, ob x_1 oder x_2 am Ausgang y anliegt.

Gliederung heute

- 0. Konfrontation mit der Realität
- 1. Kanonische Darstellungen
- 2. Minimierung
- 3. Typische Schaltnetze

Eindeutige Darstellung einer Booleschen Funktion *f* als Disjunktion von Mintermen Bsp.:

$$(\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}) + (x_1 \cdot \overline{x_2} \cdot x_3) + (x_1 \cdot x_2 \cdot \overline{x_3})$$

Eindeutige Darstellung einer Booleschen Funktion *f* als Konjunktion von Maxtermen Bsp.:

$$(\overline{x_1} + \overline{x_2}) \cdot (\overline{x_1} + x_2) \cdot (x_1 + \overline{x_2})$$

Kanonische Disjunktive Normalform (KDNF)

Kanonische Konjunktiv Normalform (KKNF)

Sätze zur Darstellung Boolescher Funktionen

- Jede Boolesche Funktion lässt sich als genau eine KDNF (Disjunktion von Mintermen) darstellen.
- 2. Jede Boolesche Funktion lässt sich als **genau eine KKNF** (Konjunktion von Maxtermen) darstellen.
- 3. Jede KDNF kann in eine KKNF umgewandelt werden.
- 4. Jede KKNF kann in eine KDNF umgewandelt werden.
- 5. Aufgrund der Dualität gilt:

$$\mathsf{KKNF}\left(f(x_1, x_2, \dots, x_n)\right) = \overline{\mathsf{KDNF}\left(\overline{f(x_1, x_2, \dots, x_n)}\right)}$$

und

$$KDNF(f(x_1, x_2, \dots, x_n)) = \overline{KKNF(\overline{f(x_1, x_2, \dots, x_n)})}$$

Bildung der K<u>D</u>NF (Disjunktion von Mintermen)

aus der Wahrheitstabelle einer n-stelligen Booleschen Funktion

- Idee: Summe nimmt den Wert 1 an, wenn mindestens ein Summand 1 ist.
- Für jede Zeile der Wahrheitstabelle mit $f(x_1,...,x_n) = 1$ wird einer der Minterme ermittelt.
- Variable x_i wird negiert, wenn in der entsprechenden Zelle der Wert der Variable 0 ist.

Bildung der KKNF (Konjunktion von Maxtermen)

aus der Wahrheitstabelle einer n-stelligen Booleschen Funktion

- Idee: Produkt nimmt den Wert 0 an, wenn mindestens ein Faktor 0 ist.
- Für jede Zeile der Wahrheitstabelle mit $f(x_1,...,x_n) = 0$ wird einer der Maxterme ermittelt.
- Variable x_i wird negiert, wenn in der entsprechenden Zelle der Wert der Variable 1 ist.

Äquivalenz von und über Normalformen

(Folgesätze)

- Die Darstellung einer Booleschen Funktion durch KDNF bzw. KKNF ist (abgesehen von der Reihenfolge) eindeutig.
- Zwei allgemeine Darstellungen Boolescher Funktionen sind äquivalent, wenn sie (durch Umformungen nach den Regeln der Booleschen Algebra) auf die gleiche KDNF bzw. KKNF zurückgeführt werden können.

Eindeutigkeit

MY HOBBY: POINTING THIS OUT EVERY DAY.

Illustration: xkcd.com

Realisierung günstiger Schaltungen

Systematische Realisierung einer Booleschen Funktion *f* in drei Schritten:

- 1. Aufstellen der Wahrheitstabelle von f
- 2. Bilden der KDNF (oder KKNF) von f

KDNF:
$$f(x_1, x_2) = \overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot x_2 + x_1 \cdot x_2$$

KKNF:
$$f(x_1, x_2) = \overline{x_1} + x_2$$

Schaltungstechnische Realisierung mit Gattern (hier: KKNF)

<i>X</i> ₁	<i>X</i> ₂	$f(x_1,x_2)$
0	0	1
0	1	1
1	0	0
1	1	1

$$X_1 \longrightarrow f(\mathbf{x})$$

Einfache Optimierungsregel

Eine KDNF ist günstiger als eine KKNF genau dann, wenn nur für wenige Kombinationen der Eingabewerte $f(x_1, x_2, ..., x_n) = 1$ gilt.

Bemerkungen zur technischen Realisierung

Alle Booleschen Funktionen lassen sich mit ...

- maximal zwei Gatterebenen realisieren, wenn alle Eingangssignale x_i sowohl einfach als auch negiert vorliegen,
- sonst mit maximal drei Gatterebenen.

Realisierung einer KDNF

- Max. 2ⁿ AND-Gatter mit je n Eingängen (eines pro Minterm)
- Ein OR-Gatter zur Disjunktion aller Minterme (mit max. 2ⁿ Eingängen)

Realisierung einer KKNF

- Max. 2ⁿ OR-Gatter mit je n Eingängen (eines pro Maxterm)
- Ein AND-Gatter zur Konjunktion aller Maxterme (mit max. 2ⁿ Eingängen)

Bemerkungen zur technischen Realisierung (Forts.)

Viele Standardbauteile realisieren Gatter mit zwei Eingängen.

Beispiel für ein Gatter mit k = 5 Eingängen aus Standardbauteilen:

Realisierung einer kanonischen Normalform:

- Max. $2^{n}(n-1) + (2^{n}-1) = n \cdot 2^{n} 1$ Gatter
- Max. $\log_2 n + \log_2 (2^n) = \log_2 n + n$ Ebenen

(mit 2 Eingängen)

(aus Gattern mit 2 Eingängen)

"Universelle" Gatter

NAND-Gatter zur Realisierung von [K]DNF

NOR-Gatter zur Realisierung von [K]KNF

Gliederung heute

- 0. Konfrontation mit der Realität
- 1. Kanonische Darstellungen
- 2. Minimierung
- 3. Typische Schaltnetze

Minimierung

"Einfache" Optimierungskriterien

- Anzahl Gatter → Anzahl Boolescher Operationen
- Anzahl Verbindungen
- Anzahl Produkt- bzw. Summenterme

Ansätze

- Händisches Umformen nach Regeln der Booleschen Algebra
- Graphische Verfahren (z. B. Karnaugh-Veitch-Diagramme)
- Algorithmen (z. B. Quine & McCluskey, auch bei vielen Variablen)

Resolutionsregeln

Für [K]DNF

Wenn sich zwei Summanden nur in genau einer komplementären Variable unterscheiden, dann können beide Terme durch ihren gemeinsamen Teil ersetzt werden.

Beispiel

$$X_1 \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} + X_1 \cdot \overline{X_2} \cdot X_3 \cdot \overline{X_4} \Leftrightarrow X_1 \cdot \overline{X_2} \cdot X_3$$

Reweis über

- Distributivität $x_1 \cdot \overline{x_2} \cdot x_3 \cdot (x_4 + \overline{x_4})$ sowie
- komplementäre und neutrale Elemente.
- (7)(6)

Siehe Folie **Axiome** aus der vergangenen Woche.

(3)

Resolutionsregeln (Forts.)

Für [K]KNF

Wenn sich zwei Faktoren nur in genau einer komplementären Variable unterscheiden, dann können beide Terme durch ihren gemeinsamen Teil ersetzt werden.

Beispiel

$$(x_1 + x_2 + \overline{x_3} + \overline{x_4}) \cdot (x_1 + x_2 + \overline{x_3} + \overline{x_4}) \Leftrightarrow (x_1 + x_2 + \overline{x_4})$$

Beweis über

• Kommutativität
$$(x_1 + x_2 + \overline{x_4} + \overline{x_3}) \cdot (x_1 + x_2 + \overline{x_4} + x_3)$$
 (1)

• Assoziativität
$$((x_1 + x_2 + \overline{x_4}) + \overline{x_3}) \cdot ((x_1 + x_2 + \overline{x_4}) + x_3)$$
 (11)

• Distributivität
$$(x_1 + x_2 + \overline{x_4}) + (x_3 \cdot \overline{x_3})$$
 sowie (4)

• komplementäre und neutrale Elemente. (8) (5)

Siehe Folie Axiome aus der vergangenen Woche.

Karnaugh-Veitch-Diagramme (KV)

- 2-dimensionale Darstellung der Funktionswerte aus der Wahrheitstabelle
- Jedes Element der Matrix repräsentiert einen Minterm.
- Anordnung der Elemente, sodass sich zwei (zyklisch)
 benachbarte Elemente im Vorzeichen genau einer Variable unterscheiden
- Ermöglicht Zusammenfassung benachbarter Minterme

Herkunft: Maurice Karnaughs Weiterentwicklung (1953) der Diagramme von Edward Veitch ('52)

Minimierung einer KDNF mit KV-Diagrammen

1. Gegebene KDNF: z. B.
$$f(x_1, x_2) = \overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot x_2 + x_1 \cdot x_2$$

- **2.** Erstellen des KV-Diagramms: 1 für jeden Minterm mit f(x) = 1, sonst 0
- **3.** Markierung möglichst weniger, großer, rechteckiger und ggf. überlappender Bereiche aus 2^k Einsen, sodass alle Einsen überdeckt sind
- **4.** Bildung einer minimalen DNF durch Summierung von genau einem Produktterm pro markiertem Bereich:

$$f(x_1,x_2)=\overline{x_1}+\underline{x_2}$$

KV-Diagramme für mehrstellige Funktionen

KV-Diagramme für mehrstellige Funktionen

KV-Diagramme für mehrstellige Funktionen

Beispiel mit zyklischer Markierung

Minimiere $y = f(x_1, x_2, x_3)$

		X	2		
	1	1	0	1	
<i>X</i> ₃	1	0	0	0	
X ₁					

<i>X</i> ₂	<i>X</i> 3	У
0	0	1
0	1	1
1	0	1
1	1	0
0	0	1
0	1	0
1	0	0
1	1	0
	0 0 1 1 0 0	0 1 1 0 1 1 0 0 0 1 1 0

Minimale DNF: $y = \overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot \overline{x_3} + \overline{x_2} \cdot \overline{x_3}$

Minimierung einer KKNF mit KV-Diagrammen

- Markierung möglichst weniger, großer, rechteckiger und ggf. überlappender Bereiche aus 2^k Nullen, sodass alle Nullen überdeckt sind
- 2. Bildung einer DNF durch Summierung von genau einem Produktterm pro markiertem Bereich
- 3. Umwandlung in eine minimale KNF durch abschließende Negation

Grenzen der Karnaugh-Veitch-Diagramme

- Zyklische Markierungen können leicht übersehen werden.
- KV-Diagramme für Boolesche Funktionen mit fünf oder mehr Stellen sind ungebräuchlich.

Gliederung heute

- 0. Konfrontation mit der Realität
- 1. Kanonische Darstellungen
- 2. Minimierung
- 3. Typische Schaltnetze

Synthese von Schaltnetzen

(Wiederholung)

Jede Schaltfunktion $f:\{0,1\}^n \to \{0,1\}^m$ mit $m,n \geq 1$ ist in m Boolesche Funktionen mit den gleichen n Eingangsvariablen zerlegbar:

Definition

Ein **Schaltnetz** (auch synonym: *kombinatorische Logik*) ist eine schaltungstechnische Realisierung einer Schaltfunktion.

Beispiel mit Minimierung: 2-Bit-Multiplizierer

	1. Faktor		2. Faktor		E	Ergebnis		
$a \times b = y$	$a_1 = x_1$	$a_0 = x_2$	$b_1 = x_3$	$b_0 = x_4$	Уз	<i>y</i> ₂	<i>y</i> 1	<i>y</i> ₀
$0 \times 0 = 0$	0	0	0	0	0	0	0	0
$0 \times 1 = 0$	0	0	0	1	0	0	0	0
$0 \times 2 = 0$	0	0	1	0	0	0	0	0
$0 \times 3 = 0$	0	0	1	1	0	0	0	0
$1 \times 0 = 0$	0	1	0	0	0	0	0	0
1 imes 1 = 1	0	1	0	1	0	0	0	1
$1 \times 2 = 2$	0	1	1	0	0	0	1	0
$1 \times 3 = 3$	0	1	1	1	0	0	1	1
$2 \times 0 = 0$	1	0	0	0	0	0	0	0
$2 \times 1 = 2$	1	0	0	1	0	0	1	0
$2 \times 2 = 4$	1	0	1	0	0	1	0	0
$2 \times 3 = 6$	1	0	1	1	0	1	1	0
$3 \times 0 = 0$	1	1	0	0	0	0	0	0
$3 \times 1 = 3$	1	1	0	1	0	0	1	1
$3 \times 2 = 6$	1	1	1	0	0	1	1	0
$3 \times 3 = 9$	1	1	1	1	1	0	0	1

Reihenfolge für KV-Diagramm

KV-Diagramme für den 2-Bit-Multiplizierer

$$y_1 = \overline{x_1}x_2x_3 + x_2x_3\overline{x_4} + x_1\overline{x_3}x_4 + x_1\overline{x_2}x_4$$

= $\overline{a_1}a_0b_1 + a_0b_1\overline{b_0} + a_1\overline{b_1}b_0 + a_1\overline{a_0}b_0$

 $= a_1 \cdot \overline{a_0} \cdot b_1 + a_1 \cdot b_1 \cdot \overline{b_0}$

$$y_3 = x_1 \cdot x_2 \cdot x_3 \cdot x_4$$
$$= a_1 \cdot a_0 \cdot b_1 \cdot b_0$$

Realisierung als minimiertes Schaltnetz

2-Bit-Multiplizierer

$$\begin{aligned} y_0 &= a_0 \cdot b_0 \\ y_1 &= a_0 \cdot \overline{a_1} \cdot b_1 + a_0 \cdot \overline{b_0} \cdot b_1 + a_1 \cdot b_0 \cdot \overline{b_1} + \overline{a_0} \cdot a_1 \cdot b_0 \\ y_2 &= \overline{a_0} \cdot a_1 \cdot b_1 + a_1 \cdot \overline{b_0} \cdot b_1 \\ y_3 &= a_0 \cdot a_1 \cdot b_0 \cdot b_1 \end{aligned}$$

Dekodierer

k-zu-n-Dekodierer: **Auswahl eines** von n Ausgängen $y_i = 1$ durch Binärdarstellung an den Eingängen (x_0, \ldots, x_{k-1}) .

Es gilt $0 \le i < n$ und $1 \le n \le 2^k$.

Anwendung: Adressen oder Instruktionen

Beispiel: 2-zu-4-Dekodierer

<i>X</i> ₁	<i>X</i> ₀	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	y 0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$y_0 = \overline{x_0} \cdot \overline{x_1}$$

$$y_1 = x_0 \cdot \overline{x_1}$$

$$y_2 = \overline{x_0} \cdot x_1$$

$$v_3 = x_0 \cdot x_1$$

Kodierer

n-zu-k-Kodierer: Ausgabe (y_0, \ldots, y_{k-1}) ist **Binärdarstellung** für den Index **eines** aktiven Eingangs $x_i = 1$.

Es gilt $0 \le i < n$ und $k \ge \lceil \log_2 n \rceil$.

Anwendung: Kodierung gedrückter Taste

Beispiel: Naiver 8-zu-3-Kodierer

$$y_0 = x_1 + x_3 + x_5 + x_7$$

$$y_1 = x_2 + x_3 + x_6 + x_7$$

$$y_2 = x_4 + x_5 + x_6 + x_7$$

Problem: Undefinierte Ausgabe, falls mehrere Eingänge aktiv sind.

Syllabus – Wintersemester 2021/22

```
06.10.21
              1. Einführung
13.10.21
              2. Kombinatorische Logik I
20.10.21
              3. Kombinatorische Logik II
27.10.21
              4. Sequenzielle Logik I
03.11.21
              5. Sequenzielle Logik II
              6 Arithmetik I
10 11 21
17 11 21
              7 Arithmetik II
24.11.21
              8. Befehlssatzarchitektur (ARM) I
01 12 21
              9. Befehlssatzarchitektur (ARM) II
 15.12.21
             10. Ein-/Ausgabe
             11. Prozessorarchitekturen
12.01.22
 19.01.22
             12. Speicher
26.01.22
             13. Leistung
02.02.22
                  Klausur (1. Termin)
```