

Education:

- BSc Zoology (University of Swansea)
- MSc Ecology (University of Oxford)
- PhD Ecology & Statistics (University of Paris)

Projects:

- Foraging behaviour of Lesser horseshoe bats, Swansea
- Food competition between native & black rats, Galapagos
- Demographic consequences of sociality in animals
- Effects of climate and habitat change on Orangutan, Borneo

Current:

- Drivers of salmon population dynamics, UK and France
- Grayling population dynamics on the Wylye, UK

In 1996...

In 1996...

Anton Ibbotson

In 1996...

Wylye Grayling Long-Term Study begins!

Anton Ibbotson

Me!

IVOR

Wylye Grayling Long-Term Study

Wylye Grayling LTS: longest grayling dataset

• 1996 – 2013: 18 years!

Wylye Grayling LTS: longest grayling dataset

- 1996 2013: 18 years!
- 9760+ records from 8463 individual grayling
 - Length
 - Scales

Wylye Grayling LTS: longest grayling dataset

- 1996 2013: 18 years!
- 9760+ records from 8463 individual grayling
 - Length
 - Scales
- River flow
 - Stockton Park
 - Norton Bavant

Wylye Grayling LTS: individual-based data

Individual marks

Wylye Grayling LTS: individual-based data

Individual marks

Wylye Grayling LTS: individual-based data

Individual marks

Long data sets needed to study changes in fish population size and their causes

Grayling: an indicator of river health

Salmonid ~ similar needs to salmon & trout

Grayling: an indicator of river health

- Salmonid ~ similar needs to salmon & trout
- Most sensitive to environmental change:

	Temperature (oC)		
	Salmon	Trout	Grayling
Lower	0 – 6	0 – 4	0 - 4
Optimum	6 – 20	4 – 19	4 – 18
Upper	20 – 34	19 – 30	18 – 25

Grayling: an indicator of river health

- Salmonid ~ similar needs to salmon & trout
- Most sensitive to environmental change:

	Temperature (oC)		
	Salmon	Trout	Grayling
	0 – 6	0 – 4	0 – 4
Optimum			18 – 25

Most sensitive reproductive strategy

Spawn in April – May: weather dependent

- Spawn in April May: weather dependent
- Eggs shallow in redd:

	Salmon	Trout	Grayling
Depth (cm)	10 – 15	10 – 15	0 – 5

Measure	River Pollon	River Suran
Mean bottom velocity	37.2 cm/s	33.7 cm/s
Selected depth	10 – 40 cm	20 – 30 cm

- Spawn in April May: weather dependent
- Eggs shallow in redd:

	Salmon	Trout	Grayling
Depth (cm)	10 – 15	10 – 15	0 - 5

Shallow redd ~ risk of "egg washout" in floods

- 4 of 5 UK wettest recorded years since 2000
 - (2000 [1], 2012 [2], 2008 [4], 2002 [5])

- 4 of 5 UK wettest recorded years since 2000
 (2000 [1], 2012 [2], 2008 [4], 2002 [5])
- January 2014 = England's wettest in c.250 years

- 4 of 5 UK wettest recorded years since 2000
 - (2000 [1], 2012 [2], 2008 [4], 2002 [5])
- January 2014 = England's wettest in *c*.250 years

High rainfall -> High river flows

Wylye January 2014

Frome

Frome: 2012

Questions

Questions

How might flooding affect grayling populations?

Shared patterns in flow and grayling counts?

Wylye average daily flow

Grayling population:

all ages

 $1996\ 1997\ 1998\ 1999\ 2000\ 2001\ 2002\ 2003\ 2004\ 2005\ 2006\ 2007\ 2008\ 2009\ 2010\ 2011\ 2012\ 2013$

Year

all ages

all ages

all ages

Grayling population: separate ages

Grayling population:

0+ only

0+ only

0+ only

April 2000 - Record rainfall

A consistently wet April has led to records being broken throughout the UK

Introduction

Record rainfall

A consistently wet April has led to records being broken throughout the UK.

According to the England and Wales precipitation series (an index which begins in 1766) the total was 143 mm(using best available data/estimates on 2 May 2000) making it the wettest April since records began. Previous highest April totals were in 1782 (139 mm), 1818 (136 mm) and 1998 (133 mm). The chart below shows the series April 1766-2000.

1999 - 2000

Year

125 -> 26 = 80% decrease in 0+

Record rainfall - April to July 2012

From April to July 2012 the UK experienced a period of exceptionally wet weather, breaking previous rainfall records and resulting in several significant flood events.

The wet weather affected all of England, Wales and eastern Scotland. April, June, and the period April to July were each the wettest on record in the England & Wales precipitation series from 1766, while for the UK overall, summer 2012 (June, July and August) was the wettest since 1912. The record rainfall brought the 2010-12 England and Wales drought to an abrupt end. In contrast to the wet weather elsewhere, the far north-west of Scotland saw well below-average rainfall from March to October 2012.

The persistent wet weather was due to a shift in the jet stream to a much more southerly track than normal, bringing a succession of Atlantic low pressure systems and associated fronts across the southern half of the UK.

Impacts

After the drought, the wet weather was initially very welcome, bringing much-needed rain for farmers and growers. However, before long it brought new problems.

Waterlogging made access to land difficult, reduced yields and caused some crops to rot. Various flood incidents through the period caused widespread problems, particularly to the transport network. Surface water flooding and debris closed main roads. Railway lines were blocked by flooding and landslips. Birmingham airport diverted inbound flights in late June.

2011 - 2012

98 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

118 -> 7 = 94% decrease in 0+

"Provisional" observations

- Patterns: not cause and effect
 - Needs closer examination, e.g., 2005, 2007
- Based on counts, <u>not</u> population estimates
- Alternative factors:
 - Temperature
 - Habitat loss
 - etc

Length: poor 0+ growth 2013?

Length: poor 0+ growth 2013?

Questions

How might flooding affect grayling populations?

Shared patterns in flow and grayling counts?

How might flooding affect grayling in the future?

Forecast from observed population patterns

Procedure: "matrix population model"

$$\begin{pmatrix} N_{t+l_1} \\ N_{t+l_2} \\ N_{t+l_3} \end{pmatrix} = \begin{pmatrix} F_1 & F_2 & F_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & 0 \end{pmatrix} \begin{pmatrix} N_{t_1} \\ N_{t_2} \\ N_{t_3} \end{pmatrix} .$$

- 1. Use observed data to calculate age-specific:
 - Death rate
 - Birth rate

Procedure: "matrix population model"

$$\begin{pmatrix} N_{t+l_1} \\ N_{t+l_2} \\ N_{t+l_3} \end{pmatrix} = \begin{pmatrix} F_1 & F_2 & F_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & 0 \end{pmatrix} \begin{pmatrix} N_{t_1} \\ N_{t_2} \\ N_{t_3} \end{pmatrix} .$$

- 1. Use observed data to calculate age-specific:
 - Death rate
 - Birth rate
- 2. Competition for food among 0+ individuals

Procedure: matrix population model

$$\begin{pmatrix} N_{t+l_1} \\ N_{t+l_2} \\ N_{t+l_3} \end{pmatrix} = \begin{pmatrix} F_1 & F_2 & F_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & 0 \end{pmatrix} \begin{pmatrix} N_{t_1} \\ N_{t_2} \\ N_{t_3} \end{pmatrix} .$$

- 1. Use observed data to calculate age-specific:
 - Mortalities
 - Fecundities
- 2. Competition for food among 0+ individuals
- 3. Calculate "population projection matrix"

Procedure: matrix population model

$$\begin{pmatrix} N_{t+l_1} \\ N_{t+l_2} \\ N_{t+l_3} \end{pmatrix} = \begin{pmatrix} F_1 & F_2 & F_3 \\ S_1 & 0 & 0 \\ 0 & S_2 & 0 \end{pmatrix} \begin{pmatrix} N_{t_1} \\ N_{t_2} \\ N_{t_3} \end{pmatrix} .$$

- 1. Use observed data to calculate age-specific:
 - Mortalities
 - Fecundities
- 2. Competition for food among 0+ individuals
- 3. Calculate "population projection matrix"
- 4. Forecast future population changes

Population forecast without floods

Population forecast with floods

Population forecast with floods

What does this mean?

- Floods could cause population decline
- Juvenile (0+) fish will be most affected

- Sensitivity analysis of model parameters:
 - Identify information gaps
 - Guide additional data collection

What can be done?

- Consider management options
 - Habitat alterations
 - Woody debris
- Test possible implications of management
- Catchment-based water management
- Extend investigation to other species?

Next steps

- Compare effects of flow to other factors:
 - river temperature
 - etc
- Grayling population & climate change
- Individual analyses

Thank you

The Grayling Research Trust

Observed population change: '09 - '13

Condition factor

he temperature of environment on luite rare erations sometimes caused by flow ashout" ing population dynamics ent effects Habitat changes

Generalising the investigations to other species, e.g., trout

