# RL for Large State Spaces: Value Function Approximation

Alan Fern

<sup>\*</sup> Based in part on slides by Daniel Weld

#### **Large State Spaces**

- When a problem has a large state space we can not longer represent the V or Q functions as explicit tables
- Even if we had enough memory
  - Never enough training data!
  - Learning takes too long

• What to do??

#### **Function Approximation**

- Never enough training data!
  - Must generalize what is learned from one situation to other "similar" new situations

#### • Idea:

- Instead of using large table to represent V or Q, use a parameterized function
  - The number of parameters should be small compared to number of states (generally exponentially fewer parameters)
- Learn parameters from experience
- When we update the parameters based on observations in one state, then our V or Q estimate will also change for other similar states
  - I.e. the parameterization facilitates generalization of experience

### **Linear Function Approximation**

- Define a set of state features f1(s), ..., fn(s)
  - The features are used as our representation of states
  - States with similar feature values will be considered to be similar
- A common approximation is to represent V(s) as a weighted sum of the features (i.e. a linear approximation)

$$\hat{V}_{\theta}(s) = \theta_0 + \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

- The approximation accuracy is fundamentally limited by the information provided by the features
- Can we always define features that allow for a perfect linear approximation?
  - Yes. Assign each state an indicator feature. (I.e. i'th feature is 1 iff i'th state is present and  $\theta_i$  represents value of i'th state)
  - Of course this requires far too many features and gives no generalization.

#### **Example**

- Grid with no obstacles, deterministic actions U/D/L/R, no discounting, -1 reward everywhere except +10 at goal
- Features for state s=(x,y): f1(s)=x, f2(s)=y (just 2 features)
- $V(s) = \theta_0 + \theta_1 x + \theta_2 y$
- Is there a good linear approximation?
  - Yes.
  - $\bullet$   $\theta_0 = 10, \, \theta_1 = -1, \, \theta_2 = -1$
  - (note upper right is origin)
- V(s) = 10 x y subtracts Manhattan dist. from goal reward



### But What If We Change Reward ...

- $V(s) = \theta_0 + \theta_1 x + \theta_2 y$
- Is there a good linear approximation?

No.

|  | 10 |  |  |
|--|----|--|--|
|  |    |  |  |
|  |    |  |  |
|  |    |  |  |

#### **But What If...**

• 
$$V(s) = \theta_0 + \theta_1 x + \theta_2 y + \theta_3 z$$

- Include new feature z
  - z = |3-x| + |3-y|
- Does this allow a good linear approx?
  - $\theta_0 = 10, \ \theta_1 = \theta_2 = 0,$  $\theta_3 = -1$



### **Linear Function Approximation**

- Define a set of features  $f_1(s)$ , ...,  $f_n(s)$ 
  - ◆ The features are used as our representation of states
  - States with similar feature values will be treated similarly
  - More complex functions require more complex features

$$\hat{V}_{\theta}(s) = \theta_0 + \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

- Our goal is to learn good parameter values (i.e. feature weights) that approximate the value function well
  - How can we do this?
  - Use TD-based RL and somehow update parameters based on each experience.

#### **TD-based RL for Linear Approximators**

- Start with initial parameter values
- Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
- Update estimated model (if model is not available)
- 4. Perform TD update for each parameter

$$\theta_i \leftarrow ?$$

Goto 2

What is a "TD update" for a parameter?

#### **Aside: Gradient Descent**

- Given a function  $f(\theta_1,...,\theta_n)$  of n real values  $\theta = (\theta_1,...,\theta_n)$  suppose we want to minimize f with respect to  $\theta$
- A common approach to doing this is gradient descent
- The gradient of f at point θ, denoted by ∇<sub>θ</sub> f(θ), is an n-dimensional vector that points in the direction where f increases most steeply at point θ
- Vector calculus tells us that  $\nabla_{\theta} f(\theta)$  is just a vector of partial derivatives

$$\nabla_{\theta} f(\theta) = \left[ \frac{\partial f(\theta)}{\partial \theta_{1}}, \dots, \frac{\partial f(\theta)}{\partial \theta_{n}} \right]$$

where 
$$\frac{\partial f(\theta)}{\partial \theta_i} = \lim_{\varepsilon \to 0} \frac{f(\theta_1, \dots, \theta_{i-1}, \theta_i + \varepsilon, \theta_{i+1}, \dots, \theta_n) - f(\theta)}{\varepsilon}$$

• Decrease f by moving  $\theta$  in negative gradient direction

#### **Aside: Gradient Descent for Squared Error**

- Suppose that we have a sequence of states and target values for each state  $\langle s_1, v(s_1) \rangle, \langle s_2, v(s_2) \rangle, \dots$ 
  - E.g. produced by the TD-based RL loop
- Our goal is to minimize the sum of squared errors between our estimated function and each target value:

$$E_{j} = \frac{1}{2} (\hat{V}_{\theta}(s_{j}) - v(s_{j}))^{2}$$
 ample j our estimated value for j'th state for j'th state

squared error of example j

 After seeing j'th state the gradient descent rule tells us that we can decrease error by updating parameters by:

$$\theta_i \leftarrow \theta_i - \alpha \frac{\partial E_j}{\partial \theta_i}$$

#### **Aside: continued**

$$\begin{split} \theta_i &\leftarrow \theta_i - \alpha \, \frac{\partial E_j}{\partial \theta_i} = \theta_i - \alpha \Big( \!\! \hat{V}_{\theta}(s_j) - v(s_j) \!\! \Big) \!\! \frac{\partial \hat{V}_{\theta}(s_j)}{\partial \theta_i} \\ E_j &= \!\! \frac{1}{2} \! \left( \!\! \hat{V}_{\theta}(s_j) - v(s_j) \!\! \right)^2 & \frac{\partial E_j}{\partial \hat{V}_{\theta}(s_j)} & \text{depends on form of approximator} \end{split}$$

For a linear approximation function:

$$\hat{V}_{\theta}(s) = \theta_1 + \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

$$\frac{\partial \hat{V}_{\theta}(s_j)}{\partial \theta_i} = f_i(s_j)$$

- Thus the update becomes:  $\theta_i \leftarrow \theta_i + \alpha (v(s_j) \hat{V}_{\theta}(s_j)) f_i(s_j)$
- For linear functions this update is guaranteed to converge to best approximation for suitable learning rate schedule

#### **Aside: continued**

$$\theta_{i} \leftarrow \theta_{i} - \alpha \frac{\partial E_{j}}{\partial \theta_{i}} = \theta_{i} - \alpha \frac{\partial E_{j}}{\partial \hat{V}_{\theta}(s_{j})} \frac{\partial \hat{V}_{\theta}(s_{j})}{\partial \theta_{i}}$$

$$E_{j} = \frac{1}{2} (\hat{V}_{\theta}(s_{j}) - v(s_{j}))^{2}$$

$$\hat{V}_{\theta}(s_{j}) - v(s_{j})$$
depends on form of approximator

For a linear approximation function:

$$\hat{V}_{\theta}(s) = \theta_1 + \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$$

$$\frac{\partial \hat{V}_{\theta}(s_j)}{\partial \theta_i} = f_i(s_j)$$

- Thus the update becomes:  $\theta_i \leftarrow \theta_i + \alpha \Big( v(s_j) \hat{V}_{\theta}(s_j) \Big) f_i(s_j)$
- For linear functions this update is guaranteed to converge to best approximation for suitable learning rate schedule

#### **TD-based RL for Linear Approximators**

- Start with initial parameter values
- Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
   Transition from s to s'
- Update estimated model
- 4. Perform TD update for each parameter

$$\theta_i \leftarrow \theta_i + \alpha \left( v(s) - \hat{V}_{\theta}(s) \right) f_i(s)$$

5. Goto 2

What should we use for "target value" v(s)?

Use the TD prediction based on the next state s'

$$v(s) = R(s) + \beta \hat{V}_{\theta}(s')$$

this is the same as previous TD method only with approximation

#### **TD-based RL for Linear Approximators**

- Start with initial parameter values
- Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
- 3. Update estimated model
- 4. Perform TD update for each parameter

$$\theta_i \leftarrow \theta_i + \alpha \left( R(s) + \beta \hat{V}_{\theta}(s') - \hat{V}_{\theta}(s) \right) f_i(s)$$

- 5. Goto 2
  - Step 2 requires a model to select greedy action
  - For some applications (e.g. Backgammon as we will see later) it is easy to get a model (but not easy to get a policy)
  - For others it is difficult to get a good model

### **Q-function Approximation**

- Define a set of features over state-action pairs:
   f<sub>1</sub>(s,a), ..., f<sub>n</sub>(s,a)
  - State-action pairs with similar feature values will be treated similarly
  - More complex functions require more complex features

$$\hat{Q}_{\theta}(s,a) = \theta_0 + \theta_1 f_1(s,a) + \theta_2 f_2(s,a) + \dots + \theta_n f_n(s,a)$$

Features are a function of states and actions.

 Just as for TD, we can generalize Q-learning to update the parameters of the Q-function approximation

## **Q-learning with Linear Approximators**

- 1. Start with initial parameter values
- Take action a according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE) transitioning from s to s'
- 3. Perform TD update for each parameter

$$\theta_i \leftarrow \theta_i + \alpha \left( R(s) + \beta \max_{a'} \hat{Q}_{\theta}(s', a') - \hat{Q}_{\theta}(s, a) \right) f_i(s, a)$$

4. Goto 2

estimate of Q(s,a) based on observed transition

- TD converges close to minimum error solution
- Q-learning can diverge. Converges under some conditions.

### **Defining State-Action Features**

- Often it is straightforward to define features of state-action pairs (example to come)
- In other cases it is easier and more natural to define features on states f<sub>1</sub>(s), ..., f<sub>n</sub>(s)
  - Fortunately there is a generic way of deriving statefeatures from a set of state features
- We construct a set of n x |A| state-action features

$$f_{ik}(s,a) = \begin{cases} f_i(s), & \text{if } a = a_k \\ 0, & \text{otherwise} \end{cases} \quad i \in \{1,...,n\}, k \in \{1,...,|A|\}$$

 This effectively replicates the state features across actions, and activates only one set of features based on which action is selected

- Wargus is real-time strategy (RTS) game
  - Tactical battles are a key aspect of the game





- 10 vs. 10
- RL Task: learn a policy to control n friendly agents in a battle against *m* enemy agents
  - Policy should be applicable to tasks with different sets and numbers of agents

- States: contain information about the locations, health, and current activity of all friendly and enemy agents
- Actions: Attack(F,E)
  - causes friendly agent F to attack enemy E

- Policy: represented via Q-function Q(s,Attack(F,E))
  - Each decision cycle loop through each friendly agent F and select enemy E to attack that maximizes Q(s,Attack(F,E))

- Q(s,Attack(F,E)) generalizes over any friendly and enemy agents F and E
  - We used a linear function approximator with Q-learning

$$\hat{Q}_{\theta}(s,a) = \theta_1 + \theta_1 f_1(s,a) + \theta_2 f_2(s,a) + \dots + \theta_n f_n(s,a)$$

Engineered a set of relational features
 {f<sub>1</sub>(s,Attack(F,E)), ...., f<sub>n</sub>(s,Attack(F,E))}

#### • Example Features:

- # of other friendly agents that are currently attacking E
- Health of friendly agent F
- Health of enemy agent E
- Difference in health values
- Walking distance between F and E
- Is E the enemy agent that F is currently attacking?
- Is F the closest friendly agent to E?
- ▲ Is E the closest enemy agent to E?
- **^** ...
- Features are well defined for any number of agents



Initial random policy

Linear Q-learning in 5 vs. 5 battle





Learned Policy after 120 battles



10 vs. 10 using policy learned on 5 vs. 5

- Initialize Q-function for 10 vs. 10 to one learned for 5 vs. 5
  - ◆ Initial performance is very good which demonstrates generalization from 5 vs. 5 to 10 vs. 10



## Q-learning w/ Non-linear Approximators

- $\hat{Q}_{ heta}(s,a)$  is sometimes represented by a non-linear approximator such as a neural network
- 1. Start with initial parameter values
- 2. Take action according to an explore/exploit policy (should converge to greedy policy, i.e. GLIE)
- 3. Perform TD update for each parameter

$$\theta_{i} \leftarrow \theta_{i} + \alpha \left( R(s) + \beta \max_{a'} \hat{Q}_{\theta}(s', a') - \hat{Q}_{\theta}(s, a) \right) \frac{\partial \hat{Q}_{\theta}(s, a)}{\partial \theta_{i}}$$

- 4. Goto 2
  - Typically the space has many local minima and we no longer guarantee convergence
  - Often works well in practice

calculate

closed-form

### ~Worlds Best Backgammon Player



- Neural network with 80 hidden units
- Used TD-updates for 300,000 games of self-play
- One of the top (2 or 3) players in the world!