CM Algèbre 2 Cycle pré-ingénieur 1

Mohamed Ali DEBYAOUI Florian DUSSAP Thi Hien NGUYEN

2023-2024

Évaluation

Vous aurez 4 notes :

- DS1 (25%): 1h en TD, semaine du 04/03/2024.
- DS2 (25%): 1h en TD, semaine du 01/04/2024.
- Examen (40%): 2h, semaine du 03/06/2024.
- TD (10%): au cours du semestre.

On calcule une moyenne pondérée M de ces notes :

$$M = 0.25 (DS1 + DS2) + 0.4 E + 0.1 TD.$$

La note finale NF est le maximum entre la moyenne M et l'examen E:

$$NF = \max(M, E).$$

Chapitres

- Groupes et morphismes
- Systèmes linéaires
- Sepaces vectoriels
- 4 Applications linéaires
- 5 Matrices et inverses de matrices
- 6 Déterminants
- 7 Représentation matricielle et changements de bases

Groupes et morphismes

Contenu

- Groupes et morphismes
 - Lois de composition interne
 - Groupes
 - Morphismes

Contenu

- Groupes et morphismes
 - Lois de composition interne
 - Groupes
 - Morphismes

Lois de composition interne

Définition

Soit E un ensemble. Une loi de composition interne sur E est une application :

$$*: E \times E \longrightarrow E$$

 $(x, y) \longmapsto x * y.$

On appelle magma tout couple (E, *) formé d'un ensemble E et d'une loi de composition interne * sur E.

Lois de composition interne

Questions

- Sur \mathbb{R} , les opérations +, -, \times , \div sont-elles des lois de composition interne?
- 2 La soustraction est-elle une loi de composition interne sur \mathbb{N} ? sur \mathbb{Z} ? sur \mathbb{Q} ? sur \mathbb{R} ? sur \mathbb{C} ?
- **3** Donner une loi de composition interne sur l'ensemble $\mathcal{F}(E,E)$ des applications d'un ensemble E dans lui-même.

Réponses

- Les opérations +, et \times sont des lois de compositions internes sur \mathbb{R} , mais pas \div . En revanche, \div est une loi de composition interne sur \mathbb{R}^* .
- 2 La soustraction n'est pas une loi de composition interne sur $\mathbb N.$ C'est une loi de composition interne sur $\mathbb Z,\ \mathbb Q,\ \mathbb R$ et $\mathbb C.$
- **3** La composition \circ est une loi de composition interne sur $\mathcal{F}(E,E)$.

Associativité et commutativité

Définition

Soit (E, *) un magma.

- On dit que * est associative si $\forall x, y, z \in E$, (x * y) * z = x * (y * z).
- On dit que * est commutative si $\forall x, y \in E$, x * y = y * x.

Exemple

- ullet Sur \mathbb{R} , l'addition et la multiplication sont associatives et commutatives.
- Sur R, la soustraction n'est ni associative ni commutative.
- Sur $\mathcal{F}(E,E)$, la composition d'applications est associative :

$$\forall f, g, h \in \mathcal{F}(E, E), \quad (f \circ g) \circ h = f \circ (g \circ h),$$

mais pas commutative (sauf si $Card(E) \le 1$):

 $f \circ g \neq g \circ f$ en général.

Distributivité

Définition

Soit E un ensemble et soient * et \triangle deux lois de composition interne sur E.

• On dit que * est distributive à gauche par rapport à △ si :

$$\forall x, y, z \in E, \quad x * (y \triangle z) = (x * y) \triangle (x * z).$$

• On dit que * est distributive à droite par rapport à △ si :

$$\forall x, y, z \in E$$
, $(x \triangle y) * z = (x * z) \triangle (y * z)$.

 On dit que * est distributive par rapport à △ si elle est distributive à gauche et à droite par rapport à △.

Distributivité

Exemple

- Dans \mathbb{R} , la multiplication est distributive par rapport à l'addition.
- Soit E un ensemble. Dans l'ensemble $\mathcal{P}(E)$ des parties de E, l'intersection est distributive par rapport à la réunion :

$$\forall A, B, C \in \mathcal{P}(E), \quad \begin{cases} A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \\ (A \cup B) \cap C = (A \cap C) \cup (B \cap C). \end{cases}$$

La réunion est également distributive par rapport à l'intersection :

$$\forall A, B, C \in \mathcal{P}(E), \quad \begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \\ (A \cap B) \cup C = (A \cup C) \cap (B \cup C). \end{cases}$$

Élément neutre

Définition

Soit (E,*) un magma et soit $e \in E$. On dit que e est un élément neutre pour * si :

$$\forall x \in E, \quad x * e = e * x = x.$$

Exemple

- Dans $(\mathbb{N}, +)$, l'élément neutre est 0.
- Dans (\mathbb{R}, \times), l'élément neutre est 1.
- Dans $(2\mathbb{Z}, \times)$, il n'y a pas d'élément neutre.
- Dans $(\mathcal{F}(E,E),\circ)$, l'élément neutre est id_E .

Élément neutre

Proposition (unicité de l'élément neutre)

Soit (E,*) un magma. Si * possède un élément neutre, alors il est unique.

Démonstration.

Soient e et e' des éléments neutres de (E,*). Puisque e est neutre pour *, on a :

$$e * e' = e'$$
.

Mais puisque e' est aussi neutre pour *, on a :

$$e * e' = e$$
.

Par conséquent, on a e = e'.

Symétrique d'un élément

Définition

Soit (E,*) un magma possédant un élément neutre e et soit $x \in E$.

- On dit que x admet un symétrique à droite s'il existe $x' \in E$ tel que x * x' = e.
- On dit que x admet un symétrique à gauche s'il existe $x' \in E$ tel que x' * x = e.
- On dit que x est symétrisable s'il existe $x' \in E$ qui est à la fois symétrique à droite et à gauche.

Vocabulaire. On emploie aussi le terme « inversible » à la place de « symétrisable ».

Symétrique d'un élément

Exemple

- Dans $(\mathbb{R}, +)$, le symétrique d'un nombre x est son opposé -x.
- Dans (\mathbb{R}, \times) , un nombre x est symétrisable si et seulement si $x \neq 0$. Dans ce cas, le symétrique de x est son inverse $\frac{1}{x}$.
- Dans $(\mathcal{F}(E,E),\circ)$, une application f est symétrisable si et seulement si f est bijective. Dans ce cas, le symétrique de f est son application réciproque f^{-1} .

Symétrique d'un élément

Proposition (unicité du symétrique)

Soit (E,*) un magma associatif possédant un élément neutre et soit $x \in E$.

- Si x' est un symétrique à droite et si x'' est un symétrique à gauche de x, alors x' = x''.
- 2 Si x est symétrisable, alors son symétrique est unique.

Démonstration.

Soit $x \in E$ et soient x', x'' les symétriques à droite et à gauche de x, c.-à-.d. x*x'=e et x''*x=e où e est l'élément neutre de (E,*). Par associativité de *, on a :

$$x' = e * x' = (x'' * x) * x' = x'' * (x * x') = x'' * e = x''.$$

Symétrique d'un produit

Proposition

Soit (E,*) un magma associatif possédant un élément neutre. Si $x,y\in E$ sont symétrisables de symétriques x^{-1} et y^{-1} , alors x*y est symétrisable de symétrique :

$$(x * y)^{-1} = y^{-1} * x^{-1}.$$

Remarque. Si * n'est pas commutative, l'ordre des symétriques ci-dessus est important.

Démonstration.

Notons e l'élément neutre de (E, *). On a par associativité de *:

$$(x * y) * (y^{-1} * x^{-1}) = x * (y * y^{-1}) * x^{-1} = x * e * x^{-1} = x * x^{-1} = e,$$

donc $y^{-1} * x^{-1}$ est le symétrique à droite de x * y. On procède de même pour montrer que c'est le symétrique à gauche.

Simplification par un élément symétrisable

Proposition

Soit (E,*) un magma associatif possédant un élément neutre et soit $x \in E$. Si x est symétrisable, alors :

$$\forall y, z \in E, \quad x * y = x * z \implies y = z$$

 $\forall y, z \in E, \quad y * x = z * x \implies y = z.$

Attention!

Ces implications sont fausses en général si x n'est pas inversible. Par exemple, dans le magma $(\mathcal{P}(\mathbb{R}), \cup)$, on a :

$$[0,1] \cup [0,2] = [0,1] \cup [1,2] \quad \text{mais} \quad [0,2] \neq [1,2].$$

Un autre contre-exemple important est le produit matriciel, cf. chapitre 5.

Itérés d'un élément

Définition

Soit (E,*) un magma associatif possédant un élément neutre e. Si $x \in E$ et $n \in \mathbb{N}$, on note x^n l'itéré n-ième de x qu'on définit par récurrence par :

$$\begin{cases} x^0 = e \\ x^n = x * x^{n-1} & \text{si } n \ge 1. \end{cases}$$

Autrement dit, si $n \ge 1$ alors :

$$x^n = \underbrace{x * \cdots * x}_{n \text{ fois}}.$$

Remarque. Pour une loi additive +, l'élément neutre se note 0_E et l'itéré n-ième de x se note nx.

Itérés d'un élément

Proposition

Soit (E,*) un magma associative possédant un élément neutre e. Si $x \in E$ possède un symétrique x^{-1} , alors pour tout $n \in \mathbb{N}$, x^n est symétrisable et :

$$(x^n)^{-1} = (x^{-1})^n$$
.

Dans ce cas, on note x^{-n} le symétrique de x^n . On définit ainsi x^k pour tout $k \in \mathbb{Z}$.

Remarque. Pour une loi additive +, le symétrique de x se note -x. La proposition précédente s'écrit -(nx) = n(-x). On note -nx le symétrique de nx, ce qui permet de définir kx pour tout $k \in \mathbb{Z}$.

Itérés d'un élément

Exemple

On considère le magma $(\mathcal{F}(E,E),\circ)$. L'itéré *n*-ième d'une application f est définie par :

$$f^n = \begin{cases} \operatorname{id}_E & \text{si } n = 0, \\ \underbrace{f \circ \cdots \circ f}_{n \text{ fois}} & \text{si } n \geq 1. \end{cases}$$

Si f est bijective, alors on note f^{-n} l'itéré n-ième de f^{-1} .

Attention!

Si $f: \mathbb{R} \to \mathbb{R}$, alors f^2 peut avoir un sens différent selon le contexte :

- f^2 peut désigner l'itéré 2^e de f, c'est-à-dire l'application $x \mapsto f(f(x))$.
- f^2 peut désigner le carré de f, c'est-à-dire l'application $x \mapsto f(x)^2$.

Applications à valeurs dans un magma

Proposition

Soit E et F des ensembles non vides et soit * une loi de composition interne sur F. On définit la loi de composition interne * sur $\mathcal{F}(E,F)$ par :

$$\forall x \in E, \quad (f \circledast g)(x) = f(x) * g(x).$$

De plus :

- ② si e est l'élément neutre pour *, alors l'application constante égale à e est l'élément neutre pour *.

En pratique, on note aussi * la loi de $\mathcal{F}(E,F)$. C'est ainsi qu'on définit la somme et le produit de fonctions à valeurs réelles :

$$(f+g)(x) = f(x) + g(x)$$
 et $(fg)(x) = f(x)g(x)$.

Contenu

- Groupes et morphismes
 - Lois de composition interne
 - Groupes
 - Morphismes

Groupes

Définition

Soit (G,*) un magma. On dit que (G,*) est un groupe si :

- la loi * est associative;
- 2 la loi * admet un élément neutre;
- \odot tout élément de G est symétrisable pour *.

Si de plus la loi * est commutative, on dit que (G, *) est un groupe commutatif (ou abélien).

Groupes

Exemple

- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ et $(\mathbb{C},+)$ sont des groupes abéliens.
- (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) sont des groupes abéliens.
- $(\mathbb{N},+)$, (\mathbb{Z}^*,\times) et (\mathbb{R},\times) ne sont pas des groupes.
- Soit E un ensemble et soit $\mathfrak{S}(E)$ l'ensemble des applications bijectives de E dans E. Alors $(\mathfrak{S}(E), \circ)$ est un groupe, non abélien si E possède au moins trois éléments. Ce groupe est appelé groupe symétrique de E, ou groupe des permutations de E.

Groupe produit

Définition

Soient $(E_1, *_1), \ldots, (E_n, *_n)$ des magmas. On définit sur $E = E_1 \times \cdots \times E_n$ une loi de composition interne * appelée loi produit par :

$$\forall (x_1, ..., x_n) \in E, \ \forall (y_1, ..., y_n) \in E, (x_1, ..., x_n) * (y_1, ..., y_n) = (x_1 *_1 y_1, ..., x_n *_n y_n).$$

Proposition (à faire chez vous)

Soient $(G_1, *_1), \ldots, (G_n, *_n)$ des groupes d'éléments neutres e_1, \ldots, e_n . Alors $G = G_1 \times \cdots \times G_n$ est un groupe pour la loi produit, d'élément neutre (e_1, \ldots, e_n) . De plus, le symétrique d'un élément $(x_1, \ldots, x_n) \in G$ est l'élément $(x_1^{-1}, \ldots, x_n^{-1})$ où x_i^{-1} est le symétrique de x_i dans $(G_i, *_i)$.

Sous-groupes

Définition

Soient (G,*) un groupe et H une partie de G. On dit que H est un sous-groupe de G si (H,*) un groupe.

Exemple

Pour tout groupe G d'élément neutre e, les parties $\{e\}$ et G sont des sous-groupes de G. Un sous-groupe de G différent de $\{e\}$ et G est appelé sous-groupe propre de G.

Lemme

Soient (G,*) un groupe d'élément neutre e et H un sous-groupe de G. Alors :

- e est l'élément neutre de (H,*).
- **2** H est stable par passage à l'inverse : $\forall h \in H$, $h^{-1} \in H$.

Sous-groupes

Démonstration.

- Soit H un sous-groupe de (G,*). Alors (H,*) est un groupe, notons e_H son élément neutre. Alors on a $e_H*e_H=e_H$ et $e_H*e=e_H$, donc $e_H*e_H=e_H*e$. En simplifiant à gauche par e_H , on obtient $e_H=e$.
- ② Soit $h \in H$, soit $h' \in H$ son inverse dans H et soit h^{-1} son inverse dans G. Alors on a :

$$h' = e * h' = (h^{-1} * h) * h' = h^{-1} * (h * h') = h^{-1} * e = h^{-1}.$$

Donc $h^{-1} \in H$.

Caractérisation des sous-groupes

Proposition

Soient (G,*) un groupe et H une partie de G. Alors H est un sous-groupe de G si et seulement si :

- H est non vide;
- H est stable par produit et passage à l'inverse :

$$\forall x, y \in H, \quad x * y^{-1} \in H.$$

En pratique, pour vérifier que H est non vide, on regarde si l'élément neutre e de G appartient à H:

- si e ∈ H, alors H est non vide. Il reste à vérifier la propriété de stabilité pour montrer que H est un sous-groupe.
- si $e \notin H$, alors H n'est pas un sous-groupe.

Caractérisation des sous-groupes

Démonstration.

Ces conditions sont évidemment nécessaires, montrons qu'elles sont suffisantes.

- Puisque H est non vide, soit $x \in H$. Par stabilité, on a $e = x * x^{-1} \in H$. Puisque e est neutre pour * dans G, il l'est aussi dans H.
- Si $x \in H$, alors par stabilité $x^{-1} = e * x^{-1} \in H$. Donc le symétrique de x pour * appartient à H.
- Si $x, y \in H$, alors $y^{-1} \in H$ d'après le point précédent, donc par stabilité on a $x * y = x * (y^{-1})^{-1} \in H$. Ainsi, H est sable par *.
- La loi * étant associative sur G, elle l'est à fortiori sur H.

On a montré que * est une loi de composition interne associative sur H, possède un élément neutre dans H et que tout élément de H possède un symétrique dans H. Donc H est un sous-groupe de (G,*).

Caractérisation des sous-groupes

Exemple

- $(\mathbb{Z},+)$ est un sous-groupe de $(\mathbb{Q},+)$, qui est un sous-groupe de $(\mathbb{R},+)$, qui est un sous-groupe de $(\mathbb{C},+)$.
- Montrons que (\mathbb{U}, \times) est groupe. Pour ce faire, on montre que c'est un sous-groupe de (\mathbb{C}^*, \times) :
 - **①** On a bien $\mathbb{U} \subset \mathbb{C}^*$.
 - ② \mathbb{U} est non vide car $1 \in \mathbb{U}$.
 - **3** Pour tous $z, w \in \mathbb{U}$, on a :

$$|zw^{-1}| = \frac{|z|}{|w|} = \frac{1}{1} = 1,$$

donc $zw^{-1} \in \mathbb{U}$.

• Pour tout $n \in \mathbb{N}^*$, (\mathbb{U}_n, \times) est un sous-groupe de \mathbb{U} (le vérifier!).

Contenu

- Groupes et morphismes
 - Lois de composition interne
 - Groupes
 - Morphismes

Morphismes

Définition

Soient (E,*) et (F, \triangle) deux magmas et f une application de E dans F. On dit que f est un morphisme (ou homomorphisme) de (E,*) dans (F, \triangle) si :

$$\forall x, y \in E, \quad f(x * y) = f(x) \triangle f(y).$$

Si (E,*) et (F,\triangle) sont des groupes, on dit que f est un morphisme de groupes.

Un peu de vocabulaire :

- ullet Un morphisme de (E,*) dans lui-même est appelé un endomorphisme.
- Un morphisme bijectif est appelé un isomorphisme.
- Un endomorphisme bijectif est appelé un automorphisme.

Morphismes

Exemple

• Pour tout $\lambda \in \mathbb{R}$, l'application linéaire :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \lambda x,$$

est un endomorphisme du groupe ($\mathbb{R},+$). Si $\lambda \neq 0$, c'est un automorphisme.

• L'exponentielle est un isomorphisme de groupes de $(\mathbb{R},+)$ dans (\mathbb{R}_+^*,\times) . En effet, pour tous $x,y\in\mathbb{R}$, on a :

$$\exp(x + y) = \exp(x) \times \exp(y),$$

donc exp est un morphisme de groupe, et on sait que l'exponentielle est bijective de $\mathbb R$ dans $\mathbb R_+^*$.

Composition de morphismes

Proposition

La composée de deux morphismes est un morphisme.

Démonstration.

Soient (E,*), (F, \triangle) et (G, \heartsuit) des magmas, et soient $f: E \to F$ et $g: F \to G$ des morphismes. Alors pour tous $x, y \in E$, on a :

$$(g \circ f)(x * y) = g(f(x * y))$$

$$= g(f(x) \triangle f(y))$$

$$= g(f(x)) \heartsuit g(f(y))$$

$$= (g \circ f)(x) \heartsuit (g \circ f)(y).$$

Par conséquent, $g \circ f$ est un morphisme de (E, *) dans (G, \heartsuit) .

Application réciproque d'un isomorphisme

Proposition

L'application réciproque d'un isomorphisme est un isomorphisme.

Démonstration.

Soient (E,*) et (F, \triangle) des magmas et soit $f: E \to F$ un isomorphisme. L'application f est bijective, donc elle possède une application réciproque $f^{-1}: F \to E$ également bijective. Montrons que f^{-1} est un morphisme. Pour tous $x, y \in F$, on a :

$$f(f^{-1}(x) * f^{-1}(y)) = f(f^{-1}(x)) \triangle f(f^{-1}(y)) = x \triangle y,$$

donc $f^{-1}(x) * f^{-1}(y) = f^{-1}(x \triangle y)$. Par conséquent, f^{-1} est un isomorphisme.

Calculs avec un morphisme de groupes

Proposition

Soient (G,*) et (G', \triangle) deux groupes d'éléments neutres respectifs $e \in G$ et $e' \in G'$. Si $f: G \to G'$ est un morphisme, alors :

- **1** f(e) = e'.
- 2 $\forall x \in G, f(x^{-1}) = f(x)^{-1}.$

Calculs avec un morphisme de groupes

Démonstration.

• On a e = e * e, donc :

$$f(e) = f(e * e) \implies f(e) = f(e) \triangle f(e)$$

$$\implies f(e) \triangle f(e)^{-1} = f(e) \triangle f(e) \triangle f(e)^{-1}$$

$$\implies e' = f(e).$$

2 Soit $x \in G$, alors on a :

$$e' = f(e) = f(x * x^{-1}) = f(x) \triangle f(x^{-1}).$$

Par conséquent, $f(x^{-1})$ est le symétrique de f(x).

3 Par récurrence (à faire chez soi).

Image directe/réciproque d'un sous-groupe

Proposition

Soient (G,*) et (G', \triangle) deux groupes et soit $f: G \rightarrow G'$ un morphisme.

- **1** Si H est un sous-groupe de (G,*), alors f(H) est un sous-groupe de (G', \triangle) .
- ② Si H' est un sous-groupe de (G', \triangle) , alors $f^{-1}(H')$ est un sous-groupe de (G, *).

Image directe/réciproque d'un sous-groupe

Démonstration de 1.

L'ensemble f(H) est non vide car H est non vide. Soient $y_1, y_2 \in f(H)$, alors il existe $x_1, x_2 \in H$ tels que $f(x_1) = y_1$ et $f(x_2) = y_2$. Montrons que $y_1 \triangle y_2^{-1} \in f(H)$. On a :

$$y_1 \triangle y_2^{-1} = f(x_1) \triangle f(x_2)^{-1} = f(x_1 * x_2^{-1}).$$

Or, $x_1 * x_2^{-1} \in H$ car H est un sous-groupe de (G, *), donc $y_1 \triangle y_2^{-1} \in f(H)$. Ainsi, on a montré que f(H) est un sous-groupe de (G', \triangle) .

Image directe/réciproque d'un sous-groupe

Démonstration de 2.

On a $f(e)=e'\in H'$, donc $e\in f^{-1}(H')$. Par conséquent, $f^{-1}(H')$ est non vide. Soient $x_1,x_2\in f^{-1}(H')$, montrons que $x_1*x_2^{-1}\in f^{-1}(H')$. On a :

$$f(x_1 * x_2^{-1}) = f(x_1) \triangle f(x_2)^{-1} \in H',$$

car $f(x_1) \in H'$, $f(x_2) \in H'$ et H' est un sous-groupe de (G', \triangle) . Par conséquent, $x_1 * x_2^{-1} \in f^{-1}(H')$. Ainsi, on a montré que $f^{-1}(H')$ est un sous-groupe de (G, *).

Noyau et image d'un morphisme de groupes

Définition

Soient (G,*) et (G', \triangle) deux groupes et soit $f: G \to G'$ un morphisme. On note e' l'élément neutre de G'.

- f(G) est appelé l'image de f et on le note Im f.
- $f^{-1}(\{e'\})$ est appelé le noyau de f et on le note ker f.

Proposition

Si $f: G \to G'$ est un morphisme de groupe, alors ker f est un sous-groupe de G et Im f est un sous-groupe de G'.

C'est la conséquence de la proposition précédente.

Injectivité d'un morphisme de groupes

Lemme

Soient (G,*) et (G', \triangle) deux groupes et soit $f: G \to G'$ un morphisme. Pour tous $x,y \in G$, on a l'équivalence :

$$f(x) = f(y) \iff x * y^{-1} \in \ker f.$$

Démonstration.

Soit e' l'élément neutre de G' et soient $x, y \in G$. Alors on a :

$$f(x) = f(y) \iff f(x) \triangle f(y)^{-1} = e'$$

$$\iff f(x * y^{-1}) = e' \qquad (f \text{ est un morphisme})$$

$$\iff x * y^{-1} \in \ker f.$$

Injectivité d'un morphisme de groupes

Théorème

Soit (G,*) un groupe d'élément neutre e et soit (G', \triangle) un groupe. Alors un morphisme $f: G \to G'$ est injectif si et seulement si ker $f = \{e\}$.

Démonstration.

On procède par double implication.

 (\Longrightarrow) Supposons que f est injective. Soit $x \in \ker f$, alors on a :

$$f(x)=e'=f(e),$$

donc x = e par injectivité de f. Par conséquent, $\ker f = \{e\}$.

(\iff) Supposons que ker $f = \{e\}$. Soient $x, y \in E$ tels que f(x) = f(y), alors d'après le lemme précédent, on a $x * y^{-1} \in \ker f$. Puisque ker $f = \{e\}$, alors $x * y^{-1} = e$, c'est-à-dire x = y. Par conséquent, f est injective.

Contenu

- Systèmes linéaires
 - Définitions
 - Systèmes équivalents
 - Algorithme de Gauss
 - Résolution d'un système linéaire

Contenu

- Systèmes linéaires
 - Définitions
 - Systèmes équivalents
 - Algorithme de Gauss
 - Résolution d'un système linéaire

Système d'équations linéaires

Dans ce chapitre, \mathbb{K} désigne l'ensemble \mathbb{R} ou l'ensemble \mathbb{C} , et n et p sont des entiers naturels non nuls.

Définition

On appelle système de n équations linéaires à p inconnues x_1, \ldots, x_p un système de la forme :

$$\begin{cases} a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,p} x_p = b_1 \\ a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,p} x_p = b_2 \\ & \vdots \\ a_{n,1} x_1 + a_{n,2} x_2 + \dots + a_{n,p} x_p = b_n, \end{cases}$$

où les $a_{i,j} \in \mathbb{K}$ sont les coefficients du système et les $b_i \in \mathbb{K}$ sont le second membre. Une solution de ce système est un vecteur $(s_1, \ldots, s_p) \in \mathbb{K}^p$ vérifiant simultanément chaque équation du système. Si tous les b_i sont nuls, on dit que le système est homogène.

Matrice associée à un système

Définition

Soit (S) un système linéaire :

$$\begin{cases} a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,p} x_p = b_1 \\ a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,p} x_p = b_2 \\ & \vdots \\ a_{n,1} x_1 + a_{n,2} x_2 + \dots + a_{n,p} x_p = b_n. \end{cases}$$

On appelle matrice associée au système (S) le tableau de nombres :

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} \end{pmatrix}.$$

Matrice augmentée

Définition

Soit (S) un système linéaire de matrice A et notons B le vecteur colonne formé par le second membre :

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,p} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,p} \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}.$$

On appelle matrice augmentée du système (S) la matrice obtenue en juxtaposant A et B :

$$\begin{pmatrix} a_{1,1} \cdot \cdots \cdot a_{1,p} & b_1 \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ a_{n,1} \cdot \cdots \cdot a_{n,p} & b_n \end{pmatrix}.$$

Exemple

Soit le système de 5 équations à 3 inconnues :

$$\begin{cases} 3x_1 + 2x_2 + 5x_3 = 7 \\ 2x_1 + 2x_3 = -4 \\ -x_1 + x_2 - 3x_3 = 2 \\ 4x_1 - 2x_2 = \frac{3}{2} \\ 3x_2 + 5x_3 = 4. \end{cases}$$

La matrice associée A et la matrice augmentée M sont :

$$A = \begin{pmatrix} 3 & 2 & 5 \\ 2 & 0 & 2 \\ -1 & 1 & -3 \\ 4 & -2 & 0 \\ 0 & 3 & 5 \end{pmatrix}, \quad M = \begin{pmatrix} 3 & 2 & 5 & 7 \\ 2 & 0 & 2 & -4 \\ -1 & 1 & -3 & 2 \\ 4 & -2 & 0 & 3/2 \\ 0 & 3 & 5 & 4 \end{pmatrix}.$$

Contenu

- 2 Systèmes linéaires
 - Définitions
 - Systèmes équivalents
 - Algorithme de Gauss
 - Résolution d'un système linéaire

Opérations élémentaires

Définition

On appelle opération élémentaire sur les lignes d'un système (ou d'une matrice) l'une des opérations suivantes :

- **1** $L_i \leftrightarrow L_j$: échanger les lignes L_i et L_j .
- ② $L_i \leftarrow \lambda L_i \ (\lambda \neq 0)$: multiplication de la ligne L_i par un scalaire $\lambda \in \mathbb{K}^*$.
- **③** $L_i \leftarrow L_i + \lambda L_j$ $(i \neq j)$: ajouter λL_j à la ligne L_i .

Remarque. Les opérations élémentaires sont inversibles :

- **1** $L_i \leftrightarrow L_i$ est son propre inverse.
- 2 L'inverse de $L_i \leftarrow \lambda L_i$ est $L_i \leftarrow \frac{1}{\lambda} L_i$.
- **3** L'inverse de $L_i \leftarrow L_i + \lambda L_j$ est $L_i \leftarrow L_i \lambda L_j$.

Équivalence en lignes

Définition

- On dit que deux systèmes sont équivalents si on peut passer de l'un à l'autre par une suite finie d'opérations élémentaires sur les lignes.
- On dit que deux matrices M et M' sont équivalentes en lignes si on peut passer de l'une à l'autre par une suite finie d'opérations élémentaires sur les lignes. Dans ce cas, on note : M ~ M'.

Remarques.

- Si on passe d'un système (S_1) à un système (S_2) par une suite d'opérations élémentaires O_1, O_2, \ldots, O_m , alors on passe de (S_2) à (S_1) par la suite $O_m^{-1}, \ldots, O_2^{-1}, O_1^{-1}$. Ainsi, si (S_1) est équivalent à (S_2) , alors (S_2) est équivalent à (S_1) . L'équivalence en lignes est une relation d'équivalence.
- 2 Effectuer des opérations élémentaires sur un système revient à les effectuer sur sa matrice augmentée.

Équivalence et ensemble de solutions

Lemme

Si (S_1) est un système linéaire et (S_2) est le système obtenu à partir de (S_1) après une opération élémentaire, alors les solutions de (S_1) sont des solutions de (S_2) .

Démonstration.

Soit $s = (s_1, \ldots, s_p)$ une solution de (S_1) .

- Si l'opération élémentaire pour passer à (S_2) est un échange de lignes ou la multiplication d'une ligne par une constante non nulle, il est évident que s est solution de (S_2) .
- Si l'opération élémentaire est $L_i \leftarrow L_i + \lambda L_j$, alors puisque s est solution de L_i et de L_j , il est aussi solution de λL_j et de $L_i + \lambda L_j$, donc s est solution de (S_2) .

Équivalence et ensemble de solutions

Proposition

Deux systèmes équivalents ont le même ensemble de solutions.

Démonstration.

Soient (S_1) et (S_2) des systèmes linéaires équivalents. Puisqu'on passe de (S_1) à (S_2) par des opérations élémentaires, les solutions de (S_1) sont des solutions de (S_2) d'après le lemme précédent. Réciproquement, des opérations élémentaires permettent de passer de (S_2) à (S_1) , donc les solutions de (S_2) sont aussi des solutions de (S_1) . Les systèmes (S_1) et (S_2) ont donc les mêmes solutions.

Contenu

- 2 Systèmes linéaires
 - Définitions
 - Systèmes équivalents
 - Algorithme de Gauss
 - Résolution d'un système linéaire

Un premier exemple

On considère le système :

$$\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ -x_1 + 2x_2 + 2x_3 = 1 \\ 2x_1 + 4x_2 - x_3 = 1. \end{cases}$$
 (S)

La matrice augmentée de ce système est :

$$M = \begin{pmatrix} 1 & 3 & 1 & 0 \\ -1 & 2 & 2 & 1 \\ 2 & 4 & -1 & 1 \end{pmatrix}.$$

On utilise la ligne 1 pour mettre à zéro le 1^{er} coefficient des autres lignes :

$$M \sim \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 5 & 3 & 1 \\ 0 & -2 & -3 & 1 \end{pmatrix} \begin{matrix} L_2 \leftarrow L_2 + L_1 \\ L_3 \leftarrow L_3 - 2L_1 \end{matrix}.$$

Puis on utilise L_2 pour mettre à zéro le 2^e coefficient de L_3 :

$$\begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 5 & 3 & 1 \\ 0 & -2 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 1 & 0 \\ 0 & 5 & 3 & 1 \\ 0 & 0 & -9 & 7 \end{pmatrix} \underset{L_3 \leftarrow 5L_3 + 2L_2}{\underbrace{L_3 \leftarrow 5L_3 + 2L_2}}.$$

La matrice des coefficients du système (S) est donc équivalente en ligne à la matrice :

$$\begin{pmatrix} 1 & 3 & 1 \\ 0 & 5 & 3 \\ 0 & 0 & -9 \end{pmatrix}.$$

Cette matrice est dite triangulaire supérieure et correspond à un système plus simple à résoudre. En effet, le système (\mathcal{S}) est équivalent au système :

$$\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ 5x_2 + 3x_3 = 1 \\ -9x_3 = 7. \end{cases}$$

Matrice échelonnée en lignes

Malheureusement, tous les systèmes linéaire ne sont pas équivalents à un système dont la matrice est triangulaire comme dans l'exemple précédent. En revanche, un système est toujours équivalent à un système dont la matrice est échelonnée (généralisation de la notion de matrice triangulaire).

Définition

Une matrice est échelonnée en lignes si elle vérifie les deux propriétés suivantes :

- 1 Si une ligne est nulle, toutes les lignes suivantes le sont aussi.
- À partir de la 2^e ligne, dans chaque ligne non nulle, le premier coefficient non nul (à partir de la gauche) est situé strictement à droite du premier coefficient non nul de la ligne précédente.

Matrice échelonnée en lignes

Exemple

La matrice
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 2 & 1 & 3 \end{pmatrix}$$
 n'est pas échelonnée en lignes.

2 La matrice
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$
 est échelonnée en lignes.

3 La matrice
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 4 & 5 & 6 \\ 0 & 7 & 8 & 9 & 1 \end{pmatrix}$$
 n'est pas échelonnée en lignes.

4 La matrice
$$\begin{pmatrix} 1 & 2 & 0 & 0 & 3 \\ 0 & 0 & 4 & 5 & 6 \\ 0 & 0 & 7 & 8 & 0 \\ 0 & 0 & 0 & 0 & 9 \end{pmatrix}$$
 n'est pas échelonnée en lignes.

Pivots

Définition

Dans une matrice échelonnée en lignes, on appelle pivot le premier coefficient non nul de chaque ligne non entièrement nulle.

Exemple

Dans la matrice échelonnée :

$$\begin{pmatrix} 2 & 1 & 2 & 0 & 3 \\ 0 & 1 & 4 & 5 & 6 \\ 0 & 0 & 0 & -3 & 7 \\ 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

les pivots sont dans l'ordre : 2, 1, -3, -2.

Algorithme du pivot de Gauss

Proposition (admise)

Toute matrice est équivalente en lignes à une matrice échelonnée en lignes.

- La démonstration repose sur l'algorithme du pivot de Gauss, qui consiste à effectuer des opérations élémentaires sur les lignes d'une matrice pour mettre à zéro petit à petit des coefficients jusqu'à obtenir une matrice échelonnée équivalente.
- Le système associé à une matrice échelonnée en lignes peut ensuite être résolu facilement par « remontée ».

Exemple

On considère le système de 3 équations à 4 inconnues :

$$\begin{cases} 2x_1 + 7x_2 + 11x_3 + 15x_4 = 19 \\ 3x_1 + 5x_2 + 8x_3 + 11x_4 = 14 \\ x_1 + x_2 + 2x_3 + 3x_4 = 4. \end{cases}$$
 (S)

La matrice augmentée de (S) est :

$$M = \begin{pmatrix} 2 & 7 & 11 & 15 & 19 \\ 3 & 5 & 8 & 11 & 14 \\ 1 & 1 & 2 & 3 & 4 \end{pmatrix}.$$

On commence par échanger les lignes 1 et 3 car il est plus facile d'effectuer les calculs avec un pivot qui vaut 1 ou -1.

$$M \sim \begin{pmatrix} 1 & 1 & 2 & 3 & 4 \\ 3 & 5 & 8 & 11 & 14 \\ 2 & 7 & 11 & 15 & 19 \end{pmatrix} \begin{matrix} L_1 \leftrightarrow L_3 \\ L_1 \leftrightarrow L_3 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 2 & 2 & 2 & 2 \\ 0 & 5 & 7 & 9 & 11 \end{pmatrix} \begin{matrix} L_2 \leftarrow L_2 - 3L_1 \\ L_3 \leftarrow L_3 - 2L_1 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 5 & 7 & 9 & 11 \end{pmatrix} \begin{matrix} L_2 \leftarrow \frac{1}{2} L_2 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 4 & 6 \end{pmatrix} \begin{matrix} L_3 \leftarrow L_3 - 5L_2 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & 4 & 6 \end{pmatrix} \begin{matrix} L_3 \leftarrow \frac{1}{5} L_3 \end{matrix}$$

Le système (S) est donc équivalent au système

$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 4 \\ x_2 + x_3 + x_4 = 1 \\ x_3 + 2x_4 = 3. \end{cases}$$
 (S')

On passe l'inconnue x_4 dans le second membre et on la traite comme un paramètre. Le système est alors triangulaire en x_1, x_2, x_3 , on le résout par « remontée » : la dernière équation donne la valeur de x_3 , ce qui permet de trouver la valeur de x_2 dans la 2^e équation, ce qui permet de trouver la valeur de x_1 dans la 1^{re} équation.

$$\begin{cases} x_1 + x_2 + 2x_3 = 4 - 3x_4 \\ x_2 + x_3 = 1 - x_4 \\ x_3 = 3 - 2x_4 \end{cases} \iff \begin{cases} x_1 + x_2 + 2x_3 = 4 - 3x_4 \\ x_2 = -2 + x_4 \\ x_3 = 3 - 2x_4 \end{cases}$$
$$\iff \begin{cases} x_1 \\ x_2 = 0 \\ x_2 = -2 + x_4 \\ x_3 = 3 - 2x_4. \end{cases}$$

Finalement, on obtient une description paramétrique des solutions du système : on a exprimé les inconnues x_1, x_2, x_3 en fonction de l'inconnue x_4 qui n'est pas contrainte et peut prendre n'importe quelle valeur dans \mathbb{R} . Les solutions de (\mathcal{S}) sont donc tous les vecteurs de la forme :

$$(0, -2 + x_4, 3 - 2x_4, x_4),$$

avec $x_4 \in \mathbb{R}$ une variable libre. L'ensemble des solutions s'écrit :

$$S = \{(0, -2 + x_4, 3 - 2x_4, x_4) : x_4 \in \mathbb{R}\}.$$

Remarque. Géométriquement, on interprète S comme la droite dans un espace à 4 dimensions (!) passant par le point de coordonnées (0, -2, 3, 0) et dirigée par le vecteur de coordonnées (0, 1, -2, 1).

Lignes nulles d'une matrice échelonnée

Soit M la matrice augmentée échelonnées en lignes d'un système linéaire.

- Les lignes entièrement nulle de M correspondent à des équations « 0 = 0 ». Elles peuvent être supprimées du système sans changer les solutions.
- Après avoir enlever les lignes nulles, si le pivot de la dernière lignes est dans la dernière colonne, alors le système contient une équation de la forme « 0=b » avec $b\neq 0$ le pivot. Dans ce cas, le système n'a pas de solutions.

Contenu

- 2 Systèmes linéaires
 - Définitions
 - Systèmes équivalents
 - Algorithme de Gauss
 - Résolution d'un système linéaire

Rang d'une matrice/d'un système linéaire

Proposition (admise)

Soient M_1 et M_2 deux matrices échelonnées en lignes. Si M_1 et M_2 sont équivalentes en lignes, alors le nombre de pivots de M_1 est égal au nombre de pivots de M_2 .

Cette proposition implique que peu importe la façon d'échelonner en lignes une matrice, le nombre de pivots est toujours le même.

Définition

- On appelle rang d'une matrice M, et on note rg(M), le nombre de pivots obtenus après avoir échelonné en lignes M.
- On appelle rang d'un système linéaire le rang de sa matrice associée.

Remarque. Le rang est toujours plus petit que le nombre de lignes et le nombre de colonnes de la matrice.

Inconnues principales/secondaires

Définition

Soit (S) un système linéaire à p inconnues, de rang r et dont la matrice associée est échelonnée en lignes.

- On appelle inconnues principales les *r* inconnues correspondant aux colonnes contenant les pivots.
- On appelle inconnues secondaires les p-r inconnues restantes.

Système compatible/incompatible

Définition

- On dit qu'un système est incompatible s'il n'admet aucune solution.
- On dit qu'il est compatible s'il admet au moins une solution.

Exemple

Soit $(S_{\alpha,\beta})$ le système linéaire :

$$\begin{cases} x_1 - 3x_2 + 5x_3 = -4\\ 2x_1 + x_2 - 4x_3 = -1\\ 3x_1 - 2x_2 + x_3 = \alpha\\ 4x_1 - 5x_2 + 6x_3 = \beta \end{cases}$$
 (S_{\alpha,\beta\beta}}

Exemple

Sa matrice augmentée est :

$$M_{lpha,eta} = egin{pmatrix} 1 & -3 & 5 & -4 \ 2 & 1 & -4 & -1 \ 3 & -2 & 1 & lpha \ 4 & -5 & 6 & eta \end{pmatrix}.$$

En appliquant l'algorithme du pivot de Gauss, on obtient la matrice échelonnée :

$$M'_{\alpha,\beta} = \begin{pmatrix} 1 & -3 & 5 & -4 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & \alpha+5 \\ 0 & 0 & 0 & \beta+9 \end{pmatrix}.$$

Le système est compatible si et seulement si $\alpha=-5$ et $\beta=-9$. Dans ce cas, le système est de rang 2, les inconnues principales sont x_1, x_2 et l'inconnue secondaire est x_3 .

Existence et unicité des solutions en fonction du rang

Proposition

Soit un système de n équations à p inconnues, de rang r, et soit $(A \mid B)$ sa matrice augmentée.

- Si r = n, alors le système est compatible quel que soit B.
- Si r < n, toute forme échelonnée de A contient n r lignes nulles. Le système est compatible ssi ces lignes sont entièrement nulles dans la forme échelonnée de la matrice augmentée.

Dans le cas où le système est compatible :

- Si r = p, alors le système admet une unique solution.
- Si r < p, alors le système admet une infinité de solutions dépendant de p - r paramètres.

Corollaire

Si r = n = p, alors quel que soit B, le système admet une unique solution.

Structure de l'ensemble des solutions

Proposition (admise)

Les solutions d'un système linéaire s'obtiennent en faisant la somme d'une solution particulière du système avec toutes les solutions du système homogène associé.

$$\begin{pmatrix} \text{solution générale} \\ \text{du système} \end{pmatrix} = \begin{pmatrix} \text{une solution} \\ \text{particluière du système} \end{pmatrix} + \begin{pmatrix} \text{solution générale} \\ \text{du sys. homogène} \end{pmatrix}$$

Remarque. L'ensemble des solutions d'un système linéaire homogène est un espace vectoriel, voir chapitre suivant.

Exemple

Soit un système linéaire à 5 inconnues, compatible et de rang 3. Supposons qu'après résolution (et après suppression des lignes « 0=0 »), on obtienne le système :

$$\begin{cases} x_2 = 3 + 2x_1 + x_3 \\ x_4 = 2 + x_1 + 2x_3 \\ x_5 = -2 + 2x_1 - x_3. \end{cases}$$

On a 3 inconnues principales : x_2 , x_4 et x_5 , et 2 inconnues secondaires : x_1 et x_3 . L'ensemble des solutions s'écrit :

$$S = \big\{ \big(x_1, \ 3 + 2x_1 + x_3, \ x_3, \ 2 + x_1 + 2x_3, \ -2 + 2x_1 - x_3 \big) : x_1, x_3 \in \mathbb{R} \big\}.$$

Tout élément $s \in S$ peut s'écrire :

$$s = \underbrace{(0,3,0,2,-2)}_{\text{total obstacles}} + \underbrace{x_1(1,2,0,1,2) + x_3(0,1,1,2,-1)}_{\text{total obstacles}}, \quad \text{avec } x_1, x_3 \in \mathbb{R}.$$

solution particulière

solution générale du sys. homogène

Contenu

- - Espaces et sous-espaces vectoriels
 - Familles de vecteurs
 - Dimension d'un espace vectoriel

Contenu

- Sepaces vectoriels
 - Espaces et sous-espaces vectoriels
 - Familles de vecteurs
 - Dimension d'un espace vectoriel

Vecteurs géométriques (rappels de lycée)

Dans le plan ou l'espace, on définit deux opérations sur les vecteurs :

- l'addition vectorielle;
- ② la multiplication par un scalaire.

Pour additionner deux vecteurs de même origine, on utilise la règle du parallélogramme.

Vecteurs géométriques (rappels de lycée)

• Fixons un repère de l'espace. On associe à tout vecteur un triplet (x, y, z) de nombres réels appelés coordonnées du vecteur.

• Si \vec{u} et \vec{v} ont pour coordonnées (x, y, z) et (x', y', z'), alors $\vec{u} + \vec{v}$ et $\lambda \vec{u}$ (où $\lambda \in \mathbb{R}$) ont pour coordonnées :

$$(x + x', y + y', z + z')$$
 et $(\lambda x, \lambda y, \lambda z)$.

- ullet On définit ainsi deux opérations sur \mathbb{R}^3 :
 - ▶ une loi de composition interne + (addition vectorielle);
 - ▶ une loi de composition externe · (multiplication par un scalaire).

L'espace \mathbb{R}^n

Généralisons les opérations + et \cdot précédentes à \mathbb{R}^n et étudions leurs propriétés algébriques.

Définition

Sur \mathbb{R}^n , on définit une loi de composition interne + par :

$$\forall \vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n, \quad \forall \vec{y} = (y_1, \dots, y_n) \in \mathbb{R}^n, \\ \vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n).$$

Proposition (à vérifier chez vous)

 $(\mathbb{R}^n,+)$ est un groupe commutatif, d'élément neutre $\vec{0}=(0,\ldots,0)$, et le symétrique d'un n-uplet (x_1,\ldots,x_n) est le n-uplet $(-x_1,\ldots,-x_n)$.

Remarque. On définit l'addition de la même façon sur \mathbb{C}^n , avec les mêmes propriétés.

Définition

Sur \mathbb{R}^n , on définit une loi de composition externe \cdot (application de $\mathbb{R} \times \mathbb{R}^n$ dans \mathbb{R}^n) par :

$$\forall \lambda \in \mathbb{R}, \quad \forall \vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n, \quad \lambda \cdot \vec{x} = (\lambda x_1, \dots, \lambda x_n).$$

En pratique, le symbole de la multiplication est omis : on note $\lambda \vec{x} = \lambda \cdot \vec{x}$.

Proposition (à vérifier chez vous)

La loi \cdot de \mathbb{R}^n vérifie :

Remarque. On définit la multiplication par un nombre complexe de la même façon sur \mathbb{C}^n , avec les mêmes propriétés.

D'autres exemples de « vecteurs »

On connait d'autres objets mathématiques pour lesquels des opérations d'addition et de multiplication par un nombre sont définies et vérifient les mêmes propriétés que dans \mathbb{R}^n . Par exemple :

- les fonctions définies sur un même intervalle [a, b];
- les polynômes à coefficients réels;
- les suites numériques réelles;
- ... (cherchez si vous connaissez d'autres exemples).

Les ensembles \mathbb{R}^n , $\mathcal{F}([a,b],\mathbb{R})$, $\mathbb{R}[X]$, $\mathcal{F}(\mathbb{N},\mathbb{R})$, etc, sont des exemples d'espaces vectoriels (réels).

Plus généralement, on appelle espace vectoriel n'importe quel ensemble dans lequel sont définies des lois + et \cdot satisfaisant les mêmes propriétés algébriques que dans \mathbb{R}^n .

Scalaires

Jusqu'à présent, on a toujours utilisé les nombres réels comme scalaires dans le calcul vectoriel, mais rien n'empêche d'utiliser les nombres complexes à la place.

Définition

Dans ce chapitre, $\mathbb K$ désigne soit $\mathbb R$, soit $\mathbb C$. Les éléments de $\mathbb K$ sont appelés les scalaires.

Remarque. Plus généralement, dans la plupart des énoncés de ce cours, $\mathbb K$ peut être n'importe quel corps.

Espace vectoriel

Définition

On appelle \mathbb{K} -espace vectoriel (\mathbb{K} -e.v.) un ensemble E dont les éléments sont appelés vecteurs, muni d'une loi de composition interne + et d'une loi de composition externe \cdot (application de $\mathbb{K} \times E$ dans E) telles que :

- \bullet (E, +) est un groupe commutatif. De plus :
 - \triangleright l'élément neutre est noté 0_E et est appelé vecteur nul de E.
 - le symétrique d'un vecteur u est noté -u et est appelé vecteur opposé de u.
- 2 La loi de composition externe vérifie :

 - $\forall \lambda, \mu \in \mathbb{K}, \ \forall u \in E, \ \lambda \cdot (\mu \cdot u) = (\lambda \times \mu) \cdot u.$
 - $\exists \forall \lambda \in \mathbb{K}, \forall u, v \in E, \lambda \cdot (u + v) = (\lambda \cdot u) + (\lambda \cdot v).$

Lorsqu'il n'y a pas d'ambiguïté sur les lois utilisées, on note simplement E l'espace vectoriel, sinon on le note $(E, +, \cdot)$.

Espace vectoriel

Remarque. Dans un espace vectoriel, le vecteur nul est unique et l'opposé d'un vecteur est unique.

Proposition

Soit E un \mathbb{K} -espace vectoriel. Pour tout $u \in E$, on a :

- $0 \cdot u = 0_E.$
- $(-1) \cdot u = -u$.

Démonstration.

Soit $u \in E$.

- ① $0 \cdot u = (0+0) \cdot u = (0 \cdot u) + (0 \cdot u)$, donc en ajoutant $-(0 \cdot u)$ à chaque membre, on obtient $0_E = 0 \cdot u$.
- ② $u + ((-1) \cdot u) = (1 \cdot u) + ((-1) \cdot u) = (1 + (-1)) \cdot u = 0 \cdot u = 0_E$, donc $(-1) \cdot u = -u$ par unicité du vecteur opposé de u.

Notation. À partir de maintenant, on note $\lambda u + v$ le vecteur $(\lambda \cdot u) + v$.

Espace vectoriel

Exemple

- \mathbb{R} , \mathbb{R}^2 et \mathbb{R}^3 sont des \mathbb{R} -e.v.
- Plus généralement, \mathbb{K}^n est un \mathbb{K} -e.v. Le vecteur nul de \mathbb{K}^n est le n-uplet $(0, \dots, 0)$.
- $\mathbb C$ est à la fois un $\mathbb R$ -e.v. et un $\mathbb C$ -e.v. Le vecteur nul de $\mathbb C$ est le nombre 0.
- $\mathbb{K}[X]$ et $\mathbb{K}(X)$ sont des \mathbb{K} -e.v. Le vecteur nul de $\mathbb{K}[X]$ et de $\mathbb{K}(X)$ est le polynôme nul.
- Si A est un ensemble, alors $\mathcal{F}(A,\mathbb{K})$ est un \mathbb{K} -e.v. pour les opérations d'addition d'applications et de multiplication d'une application par un scalaire. Le vecteur nul de $\mathcal{F}(A,\mathbb{K})$ est l'application nulle (application constante égale à 0). En particulier :
 - ▶ l'ensemble des fonctions définies sur un même intervalle est un K-e.v.
 - ▶ l'ensemble des suites numériques (réelles ou complexes) est un K-e.v.

Espace vectoriel produit

Proposition (à vérifier chez vous)

Soient $(E_1, +_1, \cdot_1), \dots, (E_n, +_n, \cdot_n)$ des \mathbb{K} -e.v. et soit $E = E_1 \times \dots \times E_n$. On définit sur E:

une loi de composition interne + par (loi produit) :

$$(u_1,\ldots,u_n)+(v_1,\ldots,v_n)=(u_1+_1v_1, \ldots, u_n+_nv_n);$$

une loi de composition externe · par :

$$\lambda \cdot (u_1, \ldots, u_n) = (\lambda \cdot_1 u_1, \ldots, \lambda \cdot_n u_n);$$

où $u_i, v_i \in E_i$ et $\lambda \in \mathbb{K}$. Alors $(E, +, \cdot)$ est un \mathbb{K} -e.v.

Combinaisons linéaires

Définition

Soit E un \mathbb{K} -espace vectoriel. On appelle famille finie de vecteurs de E tout n-uplet $(u_1, \ldots, u_n) \in E^n$.

Remarque. Une famille peut comporter plusieurs fois le même vecteur et l'ordre des vecteurs dans la famille est important.

Définition

Soit E un \mathbb{K} -espace vectoriel et soit (u_1,\ldots,u_n) une famille de vecteurs. On dit que $u\in E$ est une combinaison linéaire de la famille (u_1,\ldots,u_n) s'il existe des scalaires $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$ tels que :

$$u = \sum_{i=1}^{n} \lambda_i u_i = \lambda_1 u_1 + \cdots + \lambda_n u_n.$$

Cette écriture est appelée décomposition de u sur la famille (u_1, \ldots, u_n) .

Combinaisons linéaires

Exemple

Dans \mathbb{R}^3 , soient $\vec{u}_1=(1,-1,0)$, $\vec{u}_2=(3,1,1)$ et $\vec{u}_3=(-1,-3,-1)$. Alors le vecteur $\vec{v}=(5,3,2)$ est combinaison linéaire de $(\vec{u}_1,\vec{u}_2,\vec{u}_3)$. En effet, on a par exemple $\vec{v}=\vec{u}_1+\vec{u}_2-\vec{u}_3$, ou encore $\vec{v}=-\vec{u}_1+2\vec{u}_2+0\vec{u}_3$.

Remarque. La décomposition d'un vecteur sur une famille n'est pas unique en général.

Proposition (combinaison linéaire de combinaisons linéaires)

Soit E un \mathbb{K} -espace vectoriel et soit (u_1, \ldots, u_n) une famille de vecteurs. Si $v_1, \ldots, v_p \in E$ sont des combinaisons linéaires de (u_1, \ldots, u_n) , alors toute combinaison linéaire de (v_1, \ldots, v_p) est une combinaison linéaire de (u_1, \ldots, u_n) .

Combinaisons linéaires

Démonstration.

Par hypothèse, il existes des scalaires $\lambda_{i,k} \in \mathbb{K}$ tels que :

$$\forall i \in \llbracket 1, \rho
rbracket, \quad v_i = \sum_{k=1}^n \lambda_{i,k} u_k.$$

Soit $u = \sum_{i=1}^{p} \alpha_i v_i$ une combinaison linéaire de (v_1, \dots, v_p) . Alors on a :

$$u = \sum_{i=1}^{p} \alpha_i \left(\sum_{k=1}^{n} \lambda_{i,k} u_k \right) = \sum_{i=1}^{p} \sum_{k=1}^{n} \alpha_i \lambda_{i,k} u_k$$
$$= \sum_{k=1}^{n} \sum_{i=1}^{p} \alpha_i \lambda_{i,k} u_k = \sum_{k=1}^{n} \left(\sum_{i=1}^{p} \alpha_i \lambda_{i,k} \right) u_k = \sum_{k=1}^{n} \beta_k u_k,$$

où $\beta_k = \sum_{i=1}^n \alpha_i \lambda_{i,k}$ pour tout $k \in [1, n]$.

Sous-espace vectoriel

Définition

Soit $(E, +, \cdot)$ un \mathbb{K} -espace vectoriel. On dit que F est un sous-espace vectoriel (s.e.v.) de E si :

- \bullet $F \subset E$;
- $(F, +, \cdot)$ est un \mathbb{K} -espace vectoriel.

Exemple

Dans un espace vectoriel E, les ensembles $\{0_E\}$ et E sont des s.e.v. de E.

Caractérisation d'un sous-espace vectoriel

Proposition

Soit E un \mathbb{K} -espace vectoriel. Une partie F de E est un sous-espace vectoriel de E si et seulement si :

- $\mathbf{0}$ $\mathbf{0}_{E} \in F$;
- F est stable par combinaisons linéaires :

$$\forall u, v \in F, \ \forall \lambda, \mu \in \mathbb{K}, \ \lambda u + \mu v \in F.$$

Remarques.

- Noter la ressemblance avec le critère pour montrer qu'un ensemble est un sous-groupe (cf. chapitre 1).
- Si $0_E \notin F$, alors F ne peut pas être un sous-espace vectoriel (tout s.e.v. de E contient nécessairement le vecteur nul).
- En général, pour montrer qu'un ensemble F est un espace vectoriel, on montre que c'est un s.e.v. d'un espace vectoriel E connu.

Exemple

Montrons que $D = \{(x, y) \in \mathbb{R}^2 \mid 2x - y = 0\}$ est un s.e.v. de \mathbb{R}^2 .

- **1** $(2 \times 0) 0 = 0$ donc $(0, 0) \in D$.
- Soient $\vec{u} = (x, y) \in D$, $\vec{v} = (x', y') \in D$ et $\lambda, \mu \in \mathbb{R}$, alors x, y, x', y' vérifient 2x y = 0 et 2x' y' = 0.

Montrons que $\lambda \vec{u} + \mu \vec{v} \in D$. Les composantes de ce vecteur sont $\lambda \vec{u} + \mu \vec{v} = (\lambda x + \mu x', \lambda y + \mu y')$. Calculons :

$$2(\lambda x + \mu x') - (\lambda y + \mu y') = \lambda(\underbrace{2x - y}_{=0}) + \mu(\underbrace{2x' - y'}_{=0}) = 0,$$

donc $\lambda \vec{u} + \mu \vec{v} \in D$.

Par conséquent D est un s.e.v. de \mathbb{R}^2 .

Remarque. Géométriquement, D est une droite passant par l'origine du repère. Plus généralement, toutes les droites et les plans passant par l'origine sont des s.e.v. de \mathbb{R}^3 .

Intersection de sous-espaces vectoriels

Proposition

L'intersection de deux s.e.v. d'un K−espace vectoriel E est un s.e.v. de E.

Démonstration.

Soient F et G des s.e.v. d'un \mathbb{K} -espace vectoriel E.

- **1** $0_E \in F$ et $0_E \in G$ car F et G sont des s.e.v. de E, donc $0_E \in F \cap G$.
- ② Soient $u, v \in F \cap G$ et $\lambda, \mu \in \mathbb{K}$. Montrons que $\lambda u + \mu v \in F \cap G$:
 - $\lambda u + \mu v \in F$ par stabilité de F par combinaisons linéaires.
 - $\lambda u + \mu v \in G$ par stabilité de G par combinaisons linéaires.

Donc $\lambda u + \mu v \in F \cap G$.

Par conséquent, $F \cap G$ est un s.e.v. de E.

Proposition

Toute intersection (finie ou infinie) de s.e.v. d'un \mathbb{K} -espace vectoriel E est un s.e.v. de E.

Sous-espace vectoriel engendré par une famille

Proposition

Soit E un \mathbb{K} -espace vectoriel et soit (u_1, \ldots, u_n) une famille de vecteurs. L'ensemble des combinaisons linéaires de cette famille est un s.e.v. de E, appelé sous-espace vectoriel engendré par la famille (u_1, \ldots, u_n) . On note cet ensemble $\mathrm{Vect}(u_1, \ldots, u_n)$.

Démonstration.

Notons $F = Vect(u_1, \ldots, u_n)$.

- ② Si $u, v \in F$ et $\lambda, \mu \in \mathbb{K}$, alors $\lambda u + \mu v \in F$ d'après une proposition précédente (combinaison linéaire de combinaisons linéaires).

Par conséquent, F est un s.e.v. de E.

Sous-espace vectoriel engendré par une famille

Proposition

Soit E un \mathbb{K} -espace vectoriel et soit (u_1, \ldots, u_n) une famille de vecteurs. Alors $\text{Vect}(u_1, \ldots, u_n)$ est le plus petit espace vectoriel (au sens de l'inclusion) contenant les vecteurs u_1, \ldots, u_n . On a alors :

$$Vect(u_1,\ldots,u_n) = \bigcap_{\substack{F \text{ s.e.v. de } E \\ u_1,\ldots,u_n \in F}} F.$$

Démonstration.

Soit F un s.e.v. de E contenant les vecteurs u_1, \ldots, u_n . Montrons que $\text{Vect}(u_1, \ldots, u_n) \subset F$.

Soit $u \in \text{Vect}(u_1, \dots, u_n)$, alors il existe $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tels que $u = \lambda_1 u_1 + \dots + \lambda_n u_n$. Puisque $u_1, \dots, u_n \in F$ et que F est un s.e.v., on a $u \in F$ (stabilité par combinaisons linéaires). Par conséquent, on a montré que $\text{Vect}(u_1, \dots, u_n) \subset F$.

Sous-espace vectoriel engendré par une partie

Définition

Soient E un \mathbb{K} -espace vectoriel et A une partie de E. L'intersection de tous les sous-espaces de E qui contiennent A est un sous-espace vectoriel de E. On l'appelle le sous-espace vectoriel engendré par A et on le note Vect(A).

Remarque. Si $A = \{u_1, \dots, u_n\}$, alors $Vect(A) = Vect(u_1, \dots, u_n)$.

Proposition

Soient E un \mathbb{K} -espace vectoriel et A une partie de E. Alors Vect(A) est le plus petit s.e.v. de E contenant A.

Démonstration.

Par définition, Vect(A) est un s.e.v. de E. De plus, si F est un s.e.v. qui contient A, alors $Vect(A) \subset F$ puisque Vect(A) est l'intersection de F avec d'autres sous-espaces.

Sous-espace vectoriel engendré par une partie

Proposition

Soit E un \mathbb{K} -espace vectoriel et soient A et B des parties de E. Si $A \subset B$ alors $Vect(A) \subset Vect(B)$.

Démonstration.

On a $A \subset B \subset \text{Vect}(B)$. Ainsi, Vect(B) est un espace vectoriel qui contient A,donc $\text{Vect}(A) \subset \text{Vect}(B)$.

Somme de sous-espaces vectoriels

Si F et G sont des s.e.v. d'un espace vectoriel E, alors $F \cup G$ n'est pas un s.e.v. en général (il n'est pas stable pour l'addition).

Exemple

Dans \mathbb{R}^2 , soient $F = \{(x,y) \in \mathbb{R}^2 \mid y = 0\}$ et $G = \{(x,y) \in \mathbb{R}^2 \mid x = 0\}$. Alors F et G sont des s.e.v. de \mathbb{R}^2 , mais pas $F \cup G$: on a $\vec{u} = (1,0) \in F \cup G$ et $\vec{v} = (0,1) \in F \cup G$, mais $\vec{u} + \vec{v} = (1,1) \notin F \cup G$.

Proposition

Soit E un K-e.v. et soient F et G des s.e.v. de E. L'ensemble :

$$F + G = \{u + v : u \in F \text{ et } v \in G\},\$$

est le plus petit s.e.v. qui contient $F \cup G$. Ce sous-espace est appelé la somme des sous-espaces F et G.

Remarque. Autrement dit, on a $F + G = Vect(F \cup G)$.

Démonstration.

Notons S = F + G. Montrons que S est un s.e.v. de E.

- ① On a $0_E = 0_E + 0_E$ avec $0_E \in F$ et $0_E \in G$, donc $0_E \in S$.
- ② Soient $w, w' \in S$ et $\lambda, \mu \in \mathbb{K}$. Alors il existe $u, u' \in F$ et $v, v' \in G$ tels que w = u + v et w' = u' + v'. Alors :

$$\lambda w + \mu w' = \lambda(u+v) + \mu(u'+v') = \underbrace{\lambda u + \mu u'}_{\in F} + \underbrace{\lambda v + \mu v'}_{\in G} \in S.$$

Ainsi, on a montré que S est un s.e.v. de E.

Montrons à présent que F+G est le plus petit s.e.v. contenant $F\cup G$, c'est-à-dire que $F+G=\mathrm{Vect}(F\cup G)$. On procède par double inclusion :

- On a clairement $F + G \subset \text{Vect}(F \cup G)$.
- Puisque $F \subset F + G$ et $G \subset F + G$, on a $F \cup G \subset F + G$. Ainsi, F + G est un espace vectoriel qui contient $F \cup G$, donc $\text{Vect}(F \cup G) \subset F + G$.

Par conséquent, $F + G = \text{Vect}(F \cup G)$.

Sous-espaces vectoriels en somme directe

Définition

Soit E un \mathbb{K} -e.v. et soient F et G des s.e.v. de E. On dit que F et G sont en somme directe si tout élément de F+G se décompose de manière unique comme somme d'un élément de F et d'un élément de G. Dans ce cas, on note $F \oplus G$ la somme de F et de G.

Exemple (contre-exemple)

Dans \mathbb{R}^3 , soient $F = \{(x, y) \in \mathbb{R}^3 \mid x = y\}$ et $G = \{(x, y) \in \mathbb{R}^3 \mid y = z\}$. Le vecteur $\vec{u} = (1, 3, 2)$ se décompose de 2 façons différentes sur F + G:

$$\vec{u} = (1,1,0) + (0,2,2) = (2,2,1) + (-1,1,1).$$

Proposition

Soit E un \mathbb{K} -e.v. et soient F et G des s.e.v. de E. Alors F et G sont en somme directe si et seulement si $F \cap G = \{0_E\}$.

Sous-espaces vectoriels en somme directe

On démontre la proposition par double implication.

Démonstration (\Longrightarrow).

Supposons que F et G sont en somme directe. Soit $u \in F \cap G$, alors on a les décompositions :

$$u = \underbrace{u}_{\in F} + \underbrace{0_E}_{\in G} = \underbrace{0_E}_{\in F} + \underbrace{u}_{\in G}.$$

Par unicité de la décomposition, on a $u = 0_E$. Ainsi, $F \cap G = \{0_E\}$.

Sous-espaces vectoriels en somme directe

Démonstration (←).

Supposons que $F \cap G = \{0_E\}$. Soit $u \in F + G$, montrons que la décomposition de u comme somme de vecteurs de F et G est unique. Soient $v, v' \in F$ et $w, w' \in G$ tels que u = v + w = v' + w'. Alors :

$$\underbrace{v-v'}_{\in F}=\underbrace{w'-w}_{\in G},$$

donc v-v' et w'-w appartiennent à $F\cap G=\{0_E\}$. Par conséquent, $v-v'=0_E$ et $w'-w=0_E$, c'est-à-dire v=v' et w=w'. Ainsi, la décomposition de u est unique.

Sous-espaces supplémentaires

Définition

Soit E un \mathbb{K} -e.v. et soient F et G des s.e.v. de E. On dit que F et G sont supplémentaires dans E si tout vecteur de E se décompose de manière unique comme la somme d'un vecteur de F et d'un vecteur de F :

$$\forall u \in E$$
, $\exists ! (v, w) \in F \times G$, $u = v + w$.

Proposition

Soit E un \mathbb{K} -e.v. et soient F et G des s.e.v. de E. Alors F et G sont supplémentaires dans E si et seulement si :

- **1** F + G = E;
- 2 F et G sont en somme directe.

Dans ce cas, on note $F \oplus G = E$.

Sous-espaces supplémentaires

Démonstration.

Le point 1 est équivalent à l'existence d'une décomposition des vecteurs de E comme somme de vecteurs de F et de G, et le point 2 est équivalent à l'unicité d'une telle décomposition.

Exemple

Dans \mathbb{R}^3 , tout plan F passant par (0,0,0) et toute droite G non contenue dans F passant par (0,0,0) sont supplémentaires.

Contenu

- Sepaces vectoriels
 - Espaces et sous-espaces vectoriels
 - Familles de vecteurs
 - Dimension d'un espace vectoriel

Familles génératrices

Définition

Soit E un \mathbb{K} —e.v. et soit (u_1, \ldots, u_n) une famille de vecteurs de E. On dit que (u_1, \ldots, u_n) est une famille génératrice de E (ou que u_1, \ldots, u_n engendrent E) si tout vecteur de E est combinaison linéaire des vecteurs u_1, \ldots, u_n , c'est-à-dire si $\text{Vect}(u_1, \ldots, u_n) = E$.

Exemple

Les vecteurs (1,0,0), (0,1,0) et (0,0,1) engendrent \mathbb{R}^3 , de même que les vecteurs (1,0,0), (1,1,0) et (1,1,1).

Familles génératrices

Proposition

Soit E un \mathbb{K} -e.v. Toute sur-famille d'une famille génératrice de E est génératrice.

Démonstration.

Si un vecteur est combinaison linéaire d'une famille (u_1, \ldots, u_n) , il est à fortiori combinaison linéaire de la famille $(u_1, \ldots, u_n, u_{n+1}, \ldots, u_{n+p})$.

Proposition

Soit E un \mathbb{K} -e.v. et soit (u_1,\ldots,u_n) une famille génératrice de E. Alors $(u_1,\ldots,u_{p-1},u_{p+1},\ldots,u_n)$ est une famille génératrice de E si et seulement si $u_p\in \mathrm{Vect}(u_1,\ldots,u_{p-1},u_{p+1},\ldots,u_n)$.

Familles génératrices

Démonstration.

On procède par double implication.

 (\Longrightarrow) Supposons que $(u_1,\ldots,u_{p-1},u_{p+1},\ldots,u_n)$ est génératrice. Puisque $u_p\in E$, alors u_p est combinaison linéaire de $(u_1,\ldots,u_{p-1},u_{p+1},\ldots,u_n)$ par définition d'une famille génératrice.

(\iff) Supposons que u_p est combinaison linéaire de $(u_1,\ldots,u_{p-1},u_{p+1},\ldots,u_n)$. Les vecteurs u_1,\ldots,u_n sont combinaisons linéaires de $(u_1,\ldots,u_{p-1},u_{p+1},\ldots,u_n)$, donc toute combinaison linéaire de (u_1,\ldots,u_n) , c.-à-d. tout élément de E, est combinaison linéaire de $(u_1,\ldots,u_{p-1},u_{p+1},\ldots,u_n)$ d'après une proposition précédente (combinaison linéaire de combinaisons linéaires).

Familles liées

Proposition

Soit E un \mathbb{K} -e.v. et soit (u_1, \ldots, u_n) une famille de vecteurs de E. Les assertions suivantes sont équivalentes :

- 1 L'un des vecteurs u_i est combinaison linéaire des autres.
- ② If existe $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ non tous nuls tels que $\lambda_1 u_1 + \dots + \lambda_n u_n = 0_E$.

Dans ce cas, on dit que la famille (u_1, \ldots, u_n) est liée.

Remarques.

- 1 Toute famille contenant le vecteur nul est liée.
- ② Une famille (u, v) est liée si et seulement si u et v sont colinéaires.

Familles liées

Démonstration de $(1 \implies 2)$.

Supposons que $u_{i_0} \in \text{Vect}(\{u_i : i \neq i_0\})$. Alors il existe des scalaires $\lambda_i \in \mathbb{K}$ tels que :

$$u_{i_0} = \sum_{\substack{i=1\\i\neq i_0}}^n \lambda_i u_i.$$

Par conséquent :

$$\lambda_1 u_1 + \dots + \lambda_{i_0-1} u_{i_0-1} + (-1)u_{i_0} + \lambda_{i_0+1} u_{i_0+1} + \dots + \lambda_n u_n = 0_E.$$

Familles liées

Démonstration de $(2 \implies 1)$.

Supposons qu'il existe $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ non tous nuls tels que :

$$\lambda_1 u_1 + \cdots + \lambda_n u_n = 0_E.$$

Soit i_0 tel que $\lambda_{i_0} \neq 0$, alors on a :

$$\lambda_{i_0}u_{i_0}=\sum_{\substack{i=1\\i\neq i_0}}^n(-\lambda_i)u_i,\quad \text{donc}\quad u_{i_0}=\sum_{\substack{i=1\\i\neq i_0}}^n\left(-\frac{\lambda_i}{\lambda_{i_0}}\right)u_i.$$

Définition

Soit E un \mathbb{K} -e.v. et soit (u_1, \ldots, u_n) une famille de vecteurs de E. On dit que la famille est libre si elle n'est pas liée. On dit alors que les vecteurs u_1, \ldots, u_n sont linéairement indépendants.

Proposition

Soit E un \mathbb{K} -e.v. et soit (u_1, \ldots, u_n) une famille de vecteurs de E. Les assertions suivantes sont équivalentes :

- La famille (u_1, \ldots, u_n) est libre.
- 2 Aucun vecteur de la famille n'est combinaison linéaire des autres.

Démonstration.

Prendre la négation des assertions de la proposition précédente.

Exemple

Dans \mathbb{R}^4 , soient $\vec{u}_1 = (1, 1, 0, 2)$, $\vec{u}_2 = (1, 2, -2, 1)$ et $\vec{u}_3 = (2, 0, -1, 1)$. Cherchons si $(\vec{u}_1, \vec{u}_2, \vec{u}_3)$ est libre. Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que :

$$\lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + \lambda_3 \vec{u}_3 = \vec{0}.$$

Cette égalité est équivalente au système linéaire :

$$\begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 + 2\lambda_2 = 0 \\ -2\lambda_2 - \lambda_3 = 0 \\ 2\lambda_1 + \lambda_2 + \lambda_3 = 0. \end{cases}$$

En résolvant ce système (p. ex. pivot de Gauss), on trouve que l'unique solution est $\lambda_1 = \lambda_2 = \lambda_3 = 0$. Ainsi, la famille $(\vec{u_1}, \vec{u_2}, \vec{u_3})$ est libre.

Proposition (à faire chez vous)

Toute sous-famille d'une famille libre est libre.

Proposition

Soit E un \mathbb{K} -e.v. et soit (u_1, \ldots, u_n) une famille libre. Soit $u \in E$, alors la famille (u_1, \ldots, u_n, u) est libre si et seulement si $u \notin \text{Vect}(u_1, \ldots, u_n)$.

Démonstration.

On procède par double implication.

- (\Longrightarrow) Par contraposée, si $u \in \text{Vect}(u_1, \dots, u_n)$ alors la famille (u_1, \dots, u_n, u) est liée.
- (\iff) Par contraposée, supposons que (u_1, \ldots, u_n, u) est liée. Alors il existe $\lambda_1, \ldots, \lambda_n, \lambda \in \mathbb{K}$ non tous nuls tels que :

$$\lambda_1 u_1 + \dots + \lambda_n u_n + \lambda u = 0_E. \tag{*}$$

Si on avait $\lambda=0$, alors (*) serait une combinaison linéaire nulle de la famille (u_1,\ldots,u_n) , donc par liberté de cette famille, tous les λ_i seraient nuls, contradiction. Par conséquent, $\lambda\neq 0$ et on a :

$$u = \sum_{i=1}^{n} \left(-\frac{\lambda_i}{\lambda}\right) u_i \in \mathsf{Vect}(u_1, \dots, u_n).$$

Bases

Définition

Soit E un \mathbb{K} -e.v. et soit (u_1, \ldots, u_n) une famille de vecteurs de E. On dit que (u_1, \ldots, u_n) est une base de E si c'est famille à la fois libre et génératrice.

Exemple

1 Dans \mathbb{K}^n , les vecteurs :

$$\vec{e}_1 = (1,0\dots,0), \quad \vec{e}_2 = (0,1,0,\dots,0), \quad \dots \; , \quad \vec{e}_n = (0,\dots,0,1),$$

forment une base appelée la base canonique de \mathbb{K}^n .

également une base de $\mathbb{K}_n[X]$ (formule de Taylor).

② Dans $\mathbb{K}_n[X]$, les polynômes $1, X, X^2, \dots, X^n$ forment une base appelée la base canonique de $\mathbb{K}_n[X]$. Si $a \in \mathbb{K}$, alors les polynômes $1, X - a, (X - a)^2, \dots, (X - a)^n$ forment

Bases

Exemple

Dans \mathbb{R}^4 , soit $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x - y + z + 3t = 0\}$. Alors F est un s.e.v. de \mathbb{R}^4 . Cherchons une base de F. Soit $\vec{u} = (x, y, z, t) \in \mathbb{R}^4$, on a :

$$\vec{u} \in F \iff 2x - y + z + 3t = 0$$

$$\iff y = 2x + z + 3t$$

$$\iff \vec{u} = (x, 2x + z + 3t, z, t)$$

$$\iff \vec{u} = x\vec{u}_1 + z\vec{u}_2 + t\vec{u}_3,$$

avec $\vec{u}_1=(1,2,0,0)$, $\vec{u}_2=(0,1,1,0)$ et $\vec{u}_3=(0,3,0,1)$. Ainsi, on a $F=\text{Vect}(\vec{u}_1,\vec{u}_2,\vec{u}_3)$, c.-à-d. la famille $(\vec{u}_1,\vec{u}_2,\vec{u}_3)$ est génératrice de F. On vérifie facilement qu'elle est libre (le vérifier!), donc c'est une base de F.

Coordonnées d'un vecteur dans une base

Théorème

Soit E un \mathbb{K} -e.v. et soit (u_1, \ldots, u_n) une base de E. Alors tout vecteur de E s'écrit de manière unique comme combinaison linéaire de (u_1, \ldots, u_n) :

$$\forall u \in E, \quad \exists!(\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \quad u = \lambda_1 u_1 + \dots + \lambda_n u_n.$$

Cet unique n-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ est appelé les coordonnées de u dans la base (u_1, \ldots, u_n) .

Coordonnées d'un vecteur dans une base

Démonstration.

Une base est une famille génératrice, donc tout vecteur de E s'écrit comme combinaison linéaire de (u_1, \ldots, u_n) . Il reste à montrer l'unicité de cette combinaison. Soit $u \in E$ et soient $\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_n \in \mathbb{K}$ tels que :

$$u = \lambda_1 u_1 + \cdots + \lambda_n u_n = \mu_1 u_1 + \cdots + \mu_n u_n.$$

Alors on a $(\lambda_1 - \mu_1)u_1 + \cdots + (\lambda_n - \mu_n)u_n = 0_E$. Puisque la famille (u_1, \dots, u_n) est libre, tous les coefficients de cette combinaison linéaire sont nuls, c.-à-d. $\lambda_i = \mu_i$ pour tout i, d'où l'unicité.

Familles infinies de vecteurs

Définition

Soit *E* un K−e.v.

- Une famille infinie de vecteurs de E est une famille $(u_i)_{i\in I}$ où I est un ensemble infini.
- On dit qu'un vecteur $u \in E$ est combinaison linéaire de $(u_i)_{i \in I}$ si u est combinaison linéaire d'une sous-famille finie de $(u_i)_{i \in I}$, c.-à-d. s'il existe $i_1, \ldots, i_n \in I$ tels que u est combinaison linéaire de $(u_{i_1}, \ldots, u_{i_n})$.

Attention!

En algèbre linéaire, on ne manipule que des sommes finies de vecteurs.

Familles infinies de vecteurs

Définition

Soit E un \mathbb{K} -e.v. et soit $(u_i)_{i\in I}$ une famille infinie de vecteurs de E.

• On dit que $(u_i)_{i \in I}$ est une famille génératrice si tout vecteur de E est combinaison linéaire de $(u_i)_{i \in I}$, c'est-à-dire si :

$$\forall u \in E, \quad \exists i_1, \dots, i_n \in I, \quad u \in \text{Vect}(u_{i_1}, \dots, u_{i_n}).$$

• On dit que $(u_i)_{i \in I}$ est une famille libre si toute sous-famille finie de $(u_i)_{i \in I}$ est libre, c'est-à-dire si :

$$\forall i_1, \ldots, i_n \in I, \quad (u_{i_1}, \ldots, u_{i_n}) \text{ est libre.}$$

Exemple

Dans $\mathbb{K}[X]$, la famille $(X^n)_{n\in\mathbb{N}}$ est libre et génératrice : c'est une base de $\mathbb{K}[X]$ appelée la base de canonique de $\mathbb{K}[X]$.

Contenu

- Sepaces vectoriels
 - Espaces et sous-espaces vectoriels
 - Familles de vecteurs
 - Dimension d'un espace vectoriel

Espace vectoriel de dimension finie

Définition

Soit E un \mathbb{K} -e.v. On dit que E est de dimension finie s'il existe une famille génératrice finie de E. Sinon, on dit que E est de dimension infinie.

Lemme (admis)

Soit E un \mathbb{K} -e.v. Si E possède une famille libre de p vecteurs et une famille génératrice de m vecteurs, alors $p \leq m$ (la taille d'une famille libre est toujours inférieure à la taille d'une famille génératrice).

Exemple

- \bullet \mathbb{K}^n est dimension finie.
- ② $\mathbb{K}_n[X]$ est de dimension finie.
- $\mathfrak{S}[X]$ est dimension infinie (car il possède une famille libre infinie, donc aucune famille génératrice ne peut être finie d'après le lemme).

Existence de bases

Théorème (de la base incomplète)

Soit E un \mathbb{K} -e.v. de dimension finie. Si (u_1, \ldots, u_p) est une famille libre et si $(v_i)_{i \in I}$ est une famille génératrice (finie ou infinie) de E, alors il existe une base de E de la forme :

$$(u_1,\ldots,u_p,v_{i_1},\ldots,v_{i_n}),$$

(avec n = 0 si $(u_1, ..., u_p)$ est déjà une base de E).

Corollaire

Soit E un K-e.v. non nul de dimension finie.

- Il existe une base de E.
- ② De toute famille génératrice $(v_i)_{i \in I}$ de E, on peut extraire une base $(v_{i_1}, \ldots, v_{i_n})$.

Existence de bases

Démonstration du théorème de la base incomplète.

On construit par récurrence une suite de familles libres par ajouts successifs de vecteurs de la famille $(v_i)_{i \in I}$, en s'arrêtant quand on obtient une base.

- Posons $\mathcal{L}_0 = (u_1, \dots, u_p)$. C'est une famille libre par hypothèse.
- Soit n∈ N. Supposons que L_n = (u₁,..., u_p, v_{i1},..., v_{in}) est libre. Si L_n est génératrice, alors c'est une base; le théorème est démontré. Sinon, il existe i_{n+1} ∈ I tel que v_{in+1} ∉ Vect(u₁,..., u_p, v_{i1},..., v_{in}). Posons L_{n+1} = (u₁,..., u_p, v_{i1},..., v_{in}, v_{in+1}). Cette famille est libre d'après une proposition précédente.

Montrons qu'il existe n tel que \mathcal{L}_n soit une base de E. Par l'absurde, si ce n'était pas le cas, on aurait une suite $(\mathcal{L}_n)_{n\in\mathbb{N}}$ de familles libres de tailles strictement croissantes. Or d'après le lemme précédent, la taille d'une famille libre est toujours inférieure à la taille d'une famille génératrice de E. Puisque E est de dimension finie, la taille des familles libres est majorée, donc elle ne peut pas croître indéfiniment; contradiction.

Dimension d'un espace vectoriel

Théorème

Si E est un \mathbb{K} -e.v. non nul de dimension finie, alors toutes les bases de E ont le même nombre de vecteurs. Ce nombre est appelé la dimension de E et on le note $\dim(E)$. Si $E = \{0_E\}$, on convient que $\dim(E) = 0$.

Démonstration.

Soient \mathcal{B} et \mathcal{B}' deux bases de E, de tailles respectives n et n'. Puisque \mathcal{B} est une famille libre et que \mathcal{B}' est une famille génératrice, on a $n \leq n'$. En échangeant les rôles de \mathcal{B} et \mathcal{B}' , on obtient l'inégalité contraire $n' \leq n$. Par conséquent, n = n'.

Dimension d'un espace vectoriel

Exemple

- \odot dim($\mathbb{K}_n[X]$) = n+1.

Proposition

Soit E un \mathbb{K} -e.v. de dimension n et soit \mathcal{F} une famille de p vecteurs de E.

- **1** Si \mathcal{F} est libre alors $p \leq n$, avec égalité si et seulement si \mathcal{F} est une base de E.
- ② Si \mathcal{F} est génératrice alors $p \geq n$, avec égalité si et seulement si \mathcal{F} est une base de E.

Dimension d'un sous-espace vectoriel

Proposition (admis)

Soit E un \mathbb{K} -e.v. de dimension finie. Si F est un s.e.v. de E, alors F est de dimension finie et $\dim(F) \leq \dim(E)$. De plus, $\dim(F) = \dim(E)$ si et seulement si F = E.

Définition

Soit E un \mathbb{K} -e.v. de dimension n et soit F un s.e.v. de E.

- Si dim(F) = 1, on dit que F est une droite vectorielle de E.
- Si dim(F) = 2, on dit que F est un plan vectoriel de E.
- Si dim(F) = n 1, on dit que F est un hyperplan vectoriel de E.

Exemple

Dans \mathbb{R}^4 , soit $F = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x - y + z + 3t = 0\}$. On a vu précédemment que F possède une base de 3 vecteurs, donc dim(F) = 3.

Rang d'une famille de vecteurs

Définition

Soit E un \mathbb{K} -e.v. et soient (u_1, \ldots, u_n) une famille de vecteurs. On appelle rang de (u_1, \ldots, u_n) , et on note $\operatorname{rg}(u_1, \ldots, u_n)$, la dimension (finie) du s.e.v. $\operatorname{Vect}(u_1, \ldots, u_n)$.

Remarque. Le rang d'une famille est le nombre maximal de vecteurs linéairement indépendants de cette famille.

Dimension d'une somme

Théorème (formule de Grassmann)

Soient F et G des s.e.v. de dimensions finies d'un \mathbb{K} -e.v. Alors :

$$\dim(F+G)=\dim(F)+\dim(G)-\dim(F\cap G).$$

Corollaire

Soient F et G des s.e.v. de dimensions finies d'un \mathbb{K} -e.v. Alors :

$$\dim(F+G) \leq \dim(F) + \dim(G),$$

avec égalité si et seulement si F et G sont somme directe.

Caractérisation des supplémentaires en dimension finie

Proposition

Soit E un \mathbb{K} -e.v. de dimension finie et soient F et G des s.e.v. de E. Les assertions suivantes sont équivalentes :

- $E = F \oplus G$ (c.-à-d. F et G sont supplémentaires dans E).
- $2 \dim(E) = \dim(F) + \dim(G) \text{ et } F \cap G = \{0_E\}.$
- 3 $\dim(E) = \dim(F) + \dim(G)$ et E = F + G.

Caractérisation des supplémentaires en dimension finie

Démonstration.

On montre que $1 \implies 2 \implies 3 \implies 1$.

 $(1 \implies 2)$ Si $E = F \oplus G$, alors $\dim(E) = \dim(F) + \dim(G)$ d'après la formule de Grassmann. De plus, F et G sont en somme directe donc $F \cap G = \{0_E\}$.

 $(2 \implies 3)$ Si dim $(E) = \dim(F) + \dim(G)$ et $F \cap G = \{0_E\}$, alors d'après la formule de Grassmann, on a dim $(E) = \dim(F + G)$, donc E = F + G.

(3 \Longrightarrow 1) Si dim(E) = dim(F) + dim(G) et E = F + G, alors d'après la formule de Grassmann, on a dim($F \cap G$) = 0, donc $F \cap G = \{0_E\}$. Par conséquent F et G sont en somme directe, d'où $E = F \oplus G$.

Existence de supplémentaires

Proposition

Soit E un \mathbb{K} -e.v. de dimension finie et soit F un s.e.v. de E. Alors il existe un s.e.v. G tel que F et G sont supplémentaires dans E.

Démonstration.

Posons $n=\dim(E)$. Soit (e_1,\ldots,e_p) une base de F, que l'on complète avec des vecteurs e_{p+1},\ldots,e_n tels que (e_1,\ldots,e_n) soit une base de E. Posons $G=\mathrm{Vect}(e_{p+1},\ldots,e_n)$. On a donc $\dim(F)=p$ et $\dim(G)=n-p$, d'où $\dim(E)=\dim(F)+\dim(G)$. Enfin, pour tout vecteur $u\in E$, il existe $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$ tels que :

$$u = \underbrace{\lambda_1 e_1 + \dots + \lambda_p e_p}_{\in F} + \underbrace{\lambda_{p+1} e_{p+1} + \dots + \lambda_n e_n}_{\in G},$$

donc E = F + G. D'après la proposition précédente, $E = F \oplus G$.

Contenu

- Applications linéaires
 - Définitions et propriétés
 - Applications linéaires particulières
 - Noyau et image d'une application linéaire

Contenu

- 4 Applications linéaires
 - Définitions et propriétés
 - Applications linéaires particulières
 - Noyau et image d'une application linéaire

Définitions

Définition

Soient (E, +, .) et (F, +, .) deux \mathbb{K} -e.v. On dit qu'une application $f \colon E \to F$ est linéaire (ou est un morphisme d'espace vectoriel) si :

- **1** $\forall x, y \in E, f(x + y) = f(x) + f(y);$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F.

Exemple

L'application $f: E \to F$ définie par $f: x \mapsto 0_F$ est linéaire.

Proposition (caractérisation des applications linéaires)

Soit $f: E \to F$. L'application f est linéaire si et seulement si :

$$\forall \lambda \in \mathbb{K}, \quad \forall x, y \in E, \quad f(\lambda x + y) = \lambda f(x) + f(y).$$

Exemple

Montrons que $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (x+y, x-y, 2y) est une application linéaire. Soient $\lambda \in \mathbb{R}$ et $u = (x,y), v = (x',y') \in \mathbb{R}^2$, on a :

$$f(\lambda u + v) = f(\lambda x + x', \lambda y + y')$$

$$= (\lambda x + x' + \lambda y + y', \ \lambda x + x' - \lambda y - y', \ 2\lambda y + 2y')$$

$$= \lambda (x + y, \ x - y, \ 2y) + (x' + y', \ x' - y', \ 2y')$$

$$= \lambda f(u) + f(v).$$

Proposition

Soient E, F_1, \ldots, F_n des \mathbb{K} -espaces vectoriels. L'application :

$$f: E \longrightarrow F_1 \times \cdots \times F_n$$

 $x \longmapsto (f_1(x), \dots, f_n(x)).$

est linéaire de E dans $F_1 \times \cdots \times F_n$ si et seulement si les applications f_i sont linéaires de E dans F_i .

Proposition

Soient (E, +, .), (F, +, .), (G, +, .) des \mathbb{K} -espaces vectoriels.

- **1** Si l'application $f: E \to F$ est linéaire alors $f(0_E) = 0_F$.
- ② Si $f: E \to F$ et $g: F \to G$ sont linéaires alors $g \circ f: E \to G$ est linéaire.
- **3** Pour tous $u_1, \ldots, u_n \in E$ et pour tous $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$:

$$f\left(\sum_{k=1}^n \lambda_k u_k\right) = \sum_{k=1}^n \lambda_k f(u_k).$$

Contenu

- 4 Applications linéaires
 - Définitions et propriétés
 - Applications linéaires particulières
 - Noyau et image d'une application linéaire

Formes linéaires

Définition

On appelle forme linéaire sur un \mathbb{K} -espace vectoriel E, toute application linéaire de E dans \mathbb{K} . On note E^* , au lieu de $\mathcal{L}(E,\mathbb{K})$, l'ensemble des formes linéaires sur E.

Exemple

Pour $a_1, \ldots, a_n \in \mathbb{K}$ fixés, l'application $f : \mathbb{K}^n \to \mathbb{K}$ définie par :

$$f(x_1,\ldots,x_n)=a_1x_1+\cdots+a_nx_n,$$

est une forme linéaire sur \mathbb{K}^n .

Endomorphismes

Définition

On appelle endomorphisme de E, toute application linéaire de E dans lui même. On note $\mathcal{L}(E)$ ou $\operatorname{End}(E)$, au lieu de $\mathcal{L}(E,E)$, l'ensemble des endomorphismes de E.

Exemple

L'application id_E est un endomorphisme de E.

Proposition

Si f et g deux endomorphismes de E, alors $g \circ f$ est aussi un endomorphisme de E.

Isomorphismes

Définition

On appelle isomorphisme d'un \mathbb{K} -espace vectoriel E vers un \mathbb{K} -espace vectoriel F toute application linéaire bijective de E vers F. On note Iso(E,F) l'ensemble des isomorphismes de E dans F.

Exemple

L'application $f: \mathbb{R}^2 \to \mathbb{C}$ définie par f(a,b) = a + ib est un isomorphisme de \mathbb{R} -espace vectoriel.

Proposition

Si $f: E \to F$ et $g: F \to G$ sont des isomorphismes, alors leur composée $g \circ f: E \to G$ est un isomorphisme.

Proposition

Si $f: E \to F$ est un isomorphisme alors son application réciproque $f^{-1}: F \to E$ est un isomorphisme.

Exemple

L'application $g: \mathbb{C} \to \mathbb{R}^2$ définie par $g: z \mapsto (\text{Re}(z), \text{Im}(z))$ est l'isomorphisme réciproque de l'application $f: (a, b) \in \mathbb{R}^2 \mapsto a + ib \in \mathbb{C}$.

Automorphismes

Définition

On appelle automorphisme de E, tout endomorphisme bijectif de E. On note GL(E) l'ensemble des automorphismes de E.

Proposition

Si $f: E \to E$ et $g: E \to E$ sont des automorphismes de E alors leur composée $g \circ f: E \to E$ est un automorphisme.

Proposition

Si $f: E \to E$ est un automorphisme alors son application réciproque

 $f^{-1}: E \to E$ est un automorphisme.

Corollaire

 $(GL(E), \circ)$ est un groupe, appelé le groupe linéaire de E.

Contenu

- 4 Applications linéaires
 - Définitions et propriétés
 - Applications linéaires particulières
 - Noyau et image d'une application linéaire

Image directe et réciproque d'un s.e.v.

Théorème

Soit $f: E \to F$ une application linéaire.

- Si V est un sous-espace vectoriel de E alors f(V) est un sous-espace vectoriel de F.
- ② Si W est un sous-espace vectoriel de F alors $f^{-1}(W)$ est un sous-espace vectoriel de E.

Noyau et image d'une application linéaire

Définition

Soit $f: E \to F$ une application linéaire.

- On appelle image de f l'espace $\operatorname{Im} f = f(E) = \{f(x) : x \in E\}.$
- On appelle noyau de f l'espace $\ker f = f^{-1}(\{0_F\}) = \{x \in E \mid f(x) = 0_F\}.$

Proposition

- 1 Im f est un sous-espace vectoriel de F.
- ker f est un sous-espace vectoriel de E.

Théorème

Si $f: E \to F$ est une application linéaire alors :

- f est surjective si et seulement si Im f = F.
- ② f est injective si et seulement si ker $f = \{0_E\}$.

Remarques.

• Pour déterminer l'image d'une application linéaire f, on détermine les valeurs prises par f, c'est-à-dire les $y \in F$ tels qu'il existe $x \in E$ pour lequel y = f(x). En pratique, l'image de f est engendré par l'image d'une base de E, c'est-à-dire que pour toute base (u_1, \ldots, u_n) de E:

$$\operatorname{Im} f = \operatorname{Vect}(f(u_1), \dots, f(u_n)).$$

② Pour déterminer le noyau d'une application linéaire f, on résout l'équation $f(x) = 0_F$ d'inconnue $x \in E$.

Rang

Définition

Soient E et F deux \mathbb{K} -espaces vectoriels et $f \in \mathcal{L}(E,F)$. Si l'image de f est de dimension finie, on appelle rang de f la dimension de Im f. On le note $\operatorname{rg}(f)$.

Proposition

Pour toute application linéaire $f: E \rightarrow F$, on a :

$$rg(f) \leq min(dim(E), dim(F)).$$

Déterminons le noyau et l'image de l'application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x-y,x+y). Alors on a :

$$\ker f = \{(0,0)\},$$

$$\operatorname{Im} f = \operatorname{Vect}\left((1,1),(-1,1)\right) = \mathbb{R}^2.$$

L'application f est donc injective et surjective : c'est un automorphisme.

Théorème du rang

Théorème (du rang)

Soient E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. Si E est de dimension finie, alors on a :

$$\dim(E) = \dim(\ker f) + \operatorname{rg}(f).$$

Corollaire

Soient E et F deux \mathbb{K} -espaces vectoriels de même dimension finie et soit $f: E \to F$ une application linéaire. Alors :

f est injective \iff f est surjective \iff f est bijective.

Contenu

- Matrices et inverses de matrices
 - Définition et types de matrices
 - Espace vectoriel des matrices
 - Produit matriciel
 - Matrices inversibles

Contenu

- Matrices et inverses de matrices
 - Définition et types de matrices
 - Espace vectoriel des matrices
 - Produit matriciel
 - Matrices inversibles

Matrices

Définition

Soient $n, p \in \mathbb{N}^*$. On appelle matrice à n lignes et p colonnes à coefficients dans \mathbb{K} , un tableau à n lignes et p colonnes d'éléments de \mathbb{K} . On note une telle matrice :

$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} = \begin{pmatrix} a_{1,1} & a_{1,2} \cdot \dots \cdot a_{1,p} \\ a_{2,1} & a_{2,2} \cdot \dots \cdot a_{2,p} \\ \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} \cdot \dots \cdot a_{n,p} \end{pmatrix}.$$

Le couple (n, p) est appelé le type de la matrice.

- On dit que A est une matrice colonne si p = 1.
- On dit que A est une matrice ligne si n = 1.
- On dit que A est une matrice carrée si n = p.

Notations

- On note $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} .
- Si p = n, on note $\mathcal{M}_n(\mathbb{K})$ l'ensemble des matrices carrées à n lignes et à n colonnes.
- Un élément de $\mathcal{M}_n(\mathbb{K})$ est dit matrice carrée de taille n.
- Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$, alors $a_{i,j}$ est le coefficient situé sur la i-ième ligne et la j-ième colonne de la matrice A.
- La matrice de type (n, p) dont tous les coefficients sont nuls est appelée la matrice nulle de $\mathcal{M}_{n,p}(\mathbb{K})$ et on la note $O_{n,p}$.

Matrices triangulaires

Définition

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice carrée de taille n. On dit que A est une matrice triangulaire supérieure (resp. triangulaire strictement supérieure) si $a_{i,j} = 0$ pour tout i > j (resp. $i \ge j$). C'est-à-dire :

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ 0 & \cdots & a_{n,n} \end{pmatrix}, \quad \text{resp. } A = \begin{pmatrix} 0 & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots$$

On définit les notions de matrice triangulaire inférieure et de matrice triangulaire strictement inférieure de la même façon.

Matrices diagonales

Définition

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice carrée de taille n. On dit que A est une matrice diagonale si $a_{i,j} = 0$ pour tout $i \ne j$, c'est-à-dire :

$$A = \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

On note $A = diag(a_{1,1}, \ldots, a_{n,n})$.

Matrice identité

Définition

On appelle matrice identité de taille n la matrice diagonale :

$$I_n = \operatorname{diag}(\underbrace{1,\ldots,1}_{n \text{ fois}}) = \begin{pmatrix} 1 & & & (0) \\ & \ddots & \\ & & \ddots \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}).$$

Contenu

- Matrices et inverses de matrices
 - Définition et types de matrices
 - Espace vectoriel des matrices
 - Produit matriciel
 - Matrices inversibles

Somme de matrices

Définition

Soit $A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B = (b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \in \mathcal{M}_{n,p}(\mathbb{K})$. On définit la matrice $A + B \in \mathcal{M}_{n,p}(\mathbb{K})$ de la façon suivante : $A + B = (a_{i,j} + b_{i,j})_{\substack{1 \le i \le n \\ 1 \le i \le n}} \in \mathcal{M}_{n,p}(\mathbb{K})$. Ainsi :

$$A + B = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,p} \end{pmatrix} + \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,p} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,p} \end{pmatrix}$$

$$= \begin{pmatrix} a_{1,1} + b_{1,1} & a_{1,2} + b_{1,2} & \cdots & a_{1,p} + b_{1,p} \\ a_{2,1} + b_{2,1} & a_{2,2} + b_{2,2} & \cdots & a_{2,p} + b_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} + b_{n,1} & a_{n,2} + b_{n,2} & \cdots & a_{n,p} + b_{n,p} \end{pmatrix}.$$

Remarque. On ne somme que des matrices de même type.

Multiplication par un scalaire

Définition

Soit $A=(a_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq p}}\in \mathcal{M}_{n,p}(\mathbb{K})$ et soit $\lambda\in\mathbb{K}$. On définit la matrice λA de $\mathcal{M}_{n,p}(\mathbb{K})$ par $\lambda A=(\lambda a_{i,j})_{\substack{1\leq i\leq n\\1\leq i\leq p}}$. Ainsi :

$$\lambda A = \begin{pmatrix} \lambda a_{1,1} & \lambda a_{1,2} & \cdots & \lambda a_{1,p} \\ \lambda a_{2,1} & \lambda a_{2,2} & \cdots & \lambda a_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{n,1} & \lambda a_{n,2} & \cdots & \lambda a_{n,p} \end{pmatrix}.$$

Espace vectoriel des matrices

Théorème

 $(\mathcal{M}_{n,p}(\mathbb{K}),+,\cdot)$ est un \mathbb{K} -espace vectoriel. Son vecteur nul est la matrice nulle :

$$0_{\mathcal{M}_{n,p}(\mathbb{K})} = O_{n,p} = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix}.$$

Matrices élémentaires

Définition

Soient $1 \leq i \leq n$ et $1 \leq j \leq p$. On appelle matrice élémentaire d'indice (i,j) de $\mathcal{M}_{n,p}(\mathbb{K})$ la matrice $E_{i,j}$, dont tous les coefficients sont nuls sauf à la i-ième ligne et la j-ième colonne qui vaut 1.

Exemple

Dans $\mathcal{M}_2(\mathbb{K})$, les matrices élémentaires sont :

$$\begin{split} E_{1,1} &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, & E_{1,2} &= \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \\ E_{2,1} &= \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, & E_{2,2} &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \end{split}$$

Dimension de $\mathcal{M}_{n,p}(\mathbb{K})$

Exemple

Dans $\mathcal{M}_{n,1}(\mathbb{K})$ les matrices élémentaires sont :

$$E_{1,1} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ E_{2,1} = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \ \dots, \ E_{n,1} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

Théorème

La famille $\mathcal{B} = (E_{i,j} : 1 \leqslant i \leq n, 1 \leqslant j \leqslant p)$ est une base de $\mathcal{M}_{n,p}(\mathbb{K})$.

Corollaire

La dimension de l'espace vectoriel $\mathcal{M}_{n,p}(\mathbb{K})$ est $n \times p$. En particulier $\dim \mathcal{M}_n(\mathbb{K}) = n^2$ et $\dim \mathcal{M}_{n,1}(K) = \dim \mathcal{M}_{1,n}(\mathbb{K}) = n$.

Démonstration.

Pour toute matrice
$$A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}\in\mathcal{M}_{n,p}(\mathbb{K}),$$
 on a $A=\sum_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}a_{i,j}E_{i,j}.$

Donc \mathcal{B} est une famille génératrice de $\mathcal{M}_{n,p}(\mathbb{K})$.

Montrons maintenant que \mathcal{B} est libre. Soient $\lambda_{i,j} \in \mathbb{K}$, $1 \leqslant i \leqslant n$ et

$$1\leqslant j\leqslant p$$
, tels que $\sum_{1\leqslant i\leqslant n}\lambda_{ij}E_{i,j}=O_{n,p}$; montrons que $\lambda_{i,j}=0$ pour tous

 $1 \leqslant i \leqslant n$ et $1 \leqslant j \leqslant p$. On a :

$$\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \lambda_{i,j} E_{i,j} = O_{n,p} \iff \begin{pmatrix} \lambda_{1,1} \cdots \lambda_{1,p} \\ \vdots & \vdots \\ \lambda_{n,1} \cdots \lambda_{n,p} \end{pmatrix} = \begin{pmatrix} 0 \cdots 0 \\ \vdots & \vdots \\ 0 \cdots 0 \end{pmatrix}.$$

Par identification, les $\lambda_{i,j} = 0$ sont tous nuls.

Soient A_1, A_2, A_3, A_4 les matrices de $\mathcal{M}_2(\mathbb{R})$ suivantes :

$$A_1=\begin{pmatrix}1&0\\0&1\end{pmatrix},\quad A_2=\begin{pmatrix}1&0\\0&-1\end{pmatrix},\quad A_3=\begin{pmatrix}1&1\\1&1\end{pmatrix},\quad A_4=\begin{pmatrix}0&-1\\1&0\end{pmatrix}.$$

Montrons que $\mathcal{B} = (A_1, A_2, A_3, A_4)$ est une base de $\mathcal{M}_2(\mathbb{R})$.

On remarque que $Card(\mathcal{B})=4=\dim\mathcal{M}_2(\mathbb{R})$. Donc pour que \mathcal{B} soit une base de $\mathcal{M}_2(\mathbb{R})$, il suffit que \mathcal{B} soit libre.

Soient $\lambda_1,\lambda_2,\lambda_3,\lambda_4\in\mathbb{R}$ tels que $\lambda_1A_1+\lambda_2A_2+\lambda_3A_3+\lambda_4A_4=\mathcal{O}_2$. On a :

$$\lambda_{1}A_{1} + \lambda_{2}A_{2} + \lambda_{3}A_{3} + \lambda_{4}A_{4} = O_{2} \iff \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} &= 0\\ \lambda_{3} - \lambda_{4} &= 0\\ \lambda_{3} + \lambda_{4} &= 0\\ \lambda_{1} - \lambda_{2} + \lambda_{3} &= 0. \end{cases}$$

On déduit facilement que $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$.

Montrons que :

$$F = \left\{ \begin{pmatrix} a+b & -a-b \\ 2a+b & -a+2b \end{pmatrix} : a,b \in \mathbb{K} \right\},\$$

est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{K})$. On a :

$$\begin{split} F &= \left\{ \begin{pmatrix} a & -a \\ 2a & -a \end{pmatrix} + \begin{pmatrix} b & -b \\ b & 2b \end{pmatrix} : a, b \in \mathbb{K} \right\} \\ &= \left\{ a \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} + b \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} : a, b \in \mathbb{K} \right\} \\ &= \operatorname{Vect} \left\{ \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \right\}. \end{split}$$

Ainsi, F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{K})$.

Soit $H = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}) \mid a+b+c+d=0 \}$. Montrons que H est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{K})$. Soit f l'application :

$$\begin{array}{ccc} f: \mathcal{M}_2(\mathbb{K}) & \longrightarrow & \mathbb{K} \\ \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \longmapsto & a+b+c+d. \end{array}$$

Il est facile à vérifier que f est une application linéaire, c'est-à-dire que pour tous $\lambda \in \mathbb{K}$, $A, B \in \mathcal{M}_2(\mathbb{K})$, on a $f(\lambda A + B) = \lambda f(A) + f(B)$. De plus, on remarque que $\ker f = H$ et on sait que le noyau d'une application linéaire est un sous-espace vectoriel. On déduit alors que H est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{K})$.

Sous-espace des matrices diagonales

Proposition

 $\mathcal{D}_n(\mathbb{K})$ l'ensemble des matrices diagonales de $\mathcal{M}_n(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension n.

Démonstration.

On a:

$$\mathcal{D}_n(\mathbb{K}) = \left\{ \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} : \lambda_1, \dots, \lambda_n \in \mathbb{K} \right\} = \mathsf{Vect}(E_{1,1}, \dots, E_{n,n}),$$

et $(E_{1,1},\ldots,E_{n,n})$ est libre, donc c'est une base de $\mathcal{D}_n(\mathbb{K})$.

Sous-espace des matrices triangulaires

Proposition

- L'ensemble $\mathcal{T}_n^{\geqslant}(\mathbb{K})$ (resp. $\mathcal{T}_n^{\leqslant}(\mathbb{K})$) des matrices triangulaires supérieures (resp. inférieures) est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension $\frac{n(n+1)}{2}$.
- ② L'ensemble $\mathcal{T}_n^{>}(\mathbb{K})$ (resp. $\mathcal{T}_n^{<}(\mathbb{K})$) des matrices triangulaires strictement supérieures (resp. strictement inférieures) est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ de dimension $\frac{n(n-1)}{2}$.

Corollaire

On a:

Sous-espace des matrices triangulaires

Démonstration de la proposition.

- **1** On a $\mathcal{T}_n^{\geqslant}(\mathbb{K}) = \text{Vect}(E_{i,j} : 1 \le i \le j \le n)$ et cette famille génératrice est une base de $\mathcal{T}_n^{\geqslant}(\mathbb{K})$.
- ② On a $\mathcal{T}_n^{>}(\mathbb{K}) = \text{Vect}(E_{i,j} : 1 \le i < j \le n)$ et cette famille génératrice est une base $\mathcal{T}_n^{>}(\mathbb{K})$.
- (Exercice) Donner une base du s.e.v. des matrices triangulaires inférieures (resp. strictement inférieures).

Matrice transposée

Définition

Soit $A=(a_{i,j})$ $\underset{1\leq j\leq p}{\overset{1\leq i\leq n}{1\leq j}}\in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle *transposée* de A la matrice ${}^tA=(b_{i,j})$ $\underset{1\leq j\leq n}{\overset{1\leq i\leq p}{1\leq j}}\in \mathcal{M}_{p,n}(\mathbb{K})$ où $b_{i,j}=a_{j,i}$, c'est-à-dire :

$${}^{t}A = \begin{pmatrix} a_{1,1} & a_{2,1} & \cdots & a_{p,1} \\ a_{1,2} & a_{2,2} & \cdots & a_{p,2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{p,n} \end{pmatrix}.$$

Autrement dit, les n lignes de A sont les n colonnes de tA et les p colonnes de A sont les p lignes de tA .

Proposition

La transposition est une application linéaire de $\mathcal{M}_{n,p}(\mathbb{K})$ dans $\mathcal{M}_{p,n}(\mathbb{K})$.

Matrices symétriques/antisymétriques

Définition

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée.

• On dit que A est symétrique si ${}^tA = A$, c'est-à-dire si :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{1,2} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{1,n} & a_{2,n} & \cdots & a_{n,n} \end{pmatrix}.$$

• On dit que A est antisymétrique si ${}^tA = -A$, c'est-à-dire si :

$$A = \begin{pmatrix} 0 & a_{1,2} & \cdots & a_{1,n} \\ -a_{1,2} & \cdots & \cdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ -a_{1,n} & \cdots & -a_{n-1,n} & 0 \end{pmatrix}.$$

Matrices symétriques/antisymétriques

Proposition

- L'ensemble $S_n(\mathbb{K})$ des matrices symétriques de taille n à coefficients dans \mathbb{K} est un s.e.v. de $\mathcal{M}_n(\mathbb{K})$ de dimension $\frac{n(n+1)}{2}$.
- ② L'ensemble $\mathcal{A}_n(\mathbb{K})$ des matrices antisymétriques de taille n à coefficients dans \mathbb{K} est un s.e.v. de $\mathcal{M}_n(\mathbb{K})$ de dimension $\frac{n(n-1)}{2}$.

Corollaire

Les espaces $S_n(\mathbb{K})$ et $\mathcal{A}_n(\mathbb{K})$ sont supplémentaires dans $\mathcal{M}_n(\mathbb{K})$:

$$\mathcal{S}_n(\mathbb{K}) \oplus \mathcal{A}_n(\mathbb{K}) = \mathcal{M}_n(\mathbb{K}).$$

Démonstration de la proposition.

Notons $(E_{i,j})_{1 \leq i,j \leq n}$ les matrices élémentaires.

- On a $S_n(\mathbb{K}) = \text{Vect}(E_{i,j} + E_{j,i} : 1 \leq i \leq j \leq n)$ et cette famille génératrice est une base.
- ② On a $A_n(\mathbb{K}) = \text{Vect}(E_{i,j} E_{i,j} : 1 \leq i < j \leq n)$ et cette famille génératrice est une base.

Démonstration du corollaire.

On a $S_n(\mathbb{K}) \cap A_n(\mathbb{K}) = \{O_n\}$ et $\dim S_n(\mathbb{K}) + \dim A_n(\mathbb{K}) = \dim \mathcal{M}_n(\mathbb{K})$, donc $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont supplémentaires.

Contenu

- Matrices et inverses de matrices
 - Définition et types de matrices
 - Espace vectoriel des matrices
 - Produit matriciel
 - Matrices inversibles

Produit matriciel

Définition (produit d'une ligne par une colonne)

Si $L \in \mathcal{M}_{1,p}(\mathbb{K})$ et $C \in \mathcal{M}_{p,1}(\mathbb{K})$, on définit leur produit comme la matrice de type (1,1) (qu'on identifie à un scalaire) :

$$L \times C = (a_1 \cdot \dots \cdot a_p) \times \begin{pmatrix} b_1 \\ \vdots \\ b_p \end{pmatrix} = \left(\sum_{k=1}^p a_k b_k\right) \in \mathcal{M}_1(\mathbb{K}) \cong \mathbb{K}.$$

$$\begin{pmatrix} -1 & 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2 \times (-1) + 1 \times 1 = -1.$$

Produit matriciel

Définition

Si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ est une matrice dont les lignes sont notées $(L_i)_{1 \leqslant i \leqslant n}$ et si $B \in \mathcal{M}_{p,q}(\mathbb{K})$ est une matrices dont les colonnes sont notées $(C_j)_{1 \leqslant j \leqslant q}$, alors on définit leur produit $AB \in \mathcal{M}_{n,q}(\mathbb{K})$ comme la matrice de type (n,q) dont le coefficient à la position (i,j) est L_iC_j :

$$\begin{pmatrix}
L_1 \\
L_2 \\
\vdots \\
L_n
\end{pmatrix} \times \begin{pmatrix}
C_1 \\
C_2 \\
\vdots \\
C_q
\end{pmatrix} = \begin{pmatrix}
L_1C_1 & L_1C_2 & \cdots & L_1C_q \\
L_2C_1 & L_2C_2 & \cdots & L_2C_q \\
\vdots & \vdots & \vdots \\
L_nC_1 & L_nC_2 & \cdots & L_nC_q
\end{pmatrix}.$$

Attention! Pour que le produit matriciel soit possible, il faut que le nombre de colonnes de A soit égal au nombre de lignes de B. On retient :

« type
$$(n, p) \times \text{type } (p, q) = \text{type } (n, q).$$
»

Produit matriciel

$$\begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 \times 1 + 2 \times 2 & 0 + 2 \times 1 & 0 + 2 \times (-1) \\ -1 \times 1 + 1 \times 2 & 0 + 1 \times 1 & 0 + 1 \times (-1) \end{pmatrix}$$

$$= \begin{pmatrix} 5 & 2 & -2 \\ 1 & 1 & -1 \end{pmatrix}.$$

Propriétés du produit matriciel

Proposition

• Pour tous $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in \mathcal{M}_{p,q}(\mathbb{K})$ et $C \in \mathcal{M}_{q,m}$, on a :

$$(AB)C = A(BC).$$

2 Pour tous $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$ et $C \in \mathcal{M}_{p,q}(\mathbb{K})$, on a :

$$(A+B)C = AC + BC$$
.

3 Pour tous $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B, C \in \mathcal{M}_{p,q}(\mathbb{K})$, on a :

$$A(B+C)=AB+AC.$$

• Pour tous $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $B \in \mathcal{M}_{p,q}(\mathbb{K})$ et $\lambda \in \mathbb{K}$, on a :

$$\lambda(AB) = (\lambda A)B = A(\lambda B).$$

Non commutativité

Attention!

Si les types de A et B permettent de calculer AB et BA, alors en général on n'a pas AB = BA. Par exemple :

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Corollaire

Dans l'ensemble $\mathcal{M}_n(\mathbb{K})$ des matrices carrées, le produit matriciel est une loi de composition interne associative mais non commutative. Elle admet comme élément neutre la matrice identité :

$$I_n = \begin{pmatrix} 1 & & (0) \\ & \ddots & \\ & & \ddots \\ (0) & & 1 \end{pmatrix}.$$

Puissance d'une matrice

Définition

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si $k \in \mathbb{N}$, on note :

$$A^k = \underbrace{A \times \cdots \times A}_{k \text{ fois}},$$

avec la convention $A^0 = I_n$.

Attention!

Si A et B ne commutent pas, on a :

$$(A + B)^2 = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2.$$

Binôme de Newton

Proposition

Soient A et B des matrices carrées telles que AB = BA. Alors pour tout $n \in \mathbb{N}$, on a :

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}.$$

Trace d'une matrice carrée

Définition

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée. On appelle trace de A la somme des coefficients diagonaux de A:

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{i,i}.$$

Proposition

L'application Tr: $\mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$ est linéaire. De plus, pour tout $A, B \in \mathcal{M}_n(\mathbb{K})$, on a :

$$Tr(AB) = Tr(BA).$$

Contenu

- Matrices et inverses de matrices
 - Définition et types de matrices
 - Espace vectoriel des matrices
 - Produit matriciel
 - Matrices inversibles

Matrices inversibles

Définition

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite inversible s'il existe $B \in \mathcal{M}_n(\mathbb{K})$ vérifiant :

$$AB = BA = I_n$$
.

Cette matrice B est alors unique, c'est l'inverse de A noté A^{-1} .

- La matrice I_n est inversible et $I_n^{-1} = I_n$.
- La matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est inversible d'inverse :

$$A^{-1} = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}.$$

Propriétés de l'inverse

Proposition

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$.

- Si A et B sont inversibles alors $(AB)^{-1} = B^{-1}A^{-1}$.
- ② Si A est inversible alors A^{-1} est inversible et $(A^{-1})^{-1} = A$.
- **3** Si A est inversible et $k \in \mathbb{N}$, alors A^k est inversible et on a :

$$(A^k)^{-1} = (A^{-1})^k.$$

On note A^{-k} l'inverse A^k .

Groupe linéaire

Définition

On note $GL_n(\mathbb{K})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$.

Proposition

 $(GL_n(\mathbb{K}), \times)$ est un groupe appelé groupe linéaire.

Remarque. La somme de deux matrices inversibles n'est pas une matrice inversible en général. Par example :

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Autrement dit, $GL_n(\mathbb{K})$ n'est pas un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$.

Calcul de l'inverse d'une matrice

Lemme

Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$. On a :

$$A = B \iff \forall X \in \mathcal{M}_{p,1}(\mathbb{K}), AX = BX.$$

Démonstration.

L'implication (\Longrightarrow) est évidente, montrons l'implication réciproque. Supposons que $\forall X \in \mathcal{M}_{p,1}(\mathbb{K}), \ AX = BX$. En prenant $X = E_{k,1}$, on obtient que la k-ième colonne de A est égale à la k-ième colonne de B, et ce pour tout $1 \leq k \leq p$. Par conséquent, A = B.

Calcul de l'inverse d'une matrice

Proposition

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. Alors B est l'inverse de A si et seulement si :

$$\forall X, Y \in \mathcal{M}_{n,1}, \quad AX = Y \iff X = BY.$$

Démonstration.

(\Longrightarrow) Supposons que B soit l'inverse de A. Alors pour tous $X,Y\in\mathcal{M}_{n,1}(\mathbb{K})$ on a :

$$AX = Y \implies BAX = BY \implies I_nX = BY \implies X = BY,$$

 $X = BY \implies AX = ABY \implies AX = I_nY \implies AX = Y.$

donc
$$AX = Y \iff X = BY$$
.

Démonstration.

 (\longleftarrow) Supposons que pour tous $X,Y\in\mathcal{M}_{n,1}(\mathbb{K})$, on a

$$AX = Y \iff X = BY.$$

Soit $X \in \mathcal{M}_{n,1}(\mathbb{K})$ et posons Y = AX. Alors X = BY, donc X = B(AX), d'où $I_nX = (BA)X$. Cette égalité est vraie pour tout X, donc par le lemme précédent, on a $BA = I_n$.

De même, soit $Y \in \mathcal{M}_{n,1}(\mathbb{K})$ et posons X = BY. Alors Y = AX, donc Y = A(BY), d'où $I_nY = (AB)Y$. Cette égalité est vraie pour tout Y, donc par le lemme précédent, on a $AB = I_n$.

On a montré que $AB = BA = I_n$, donc B est l'inverse de A.

Calcul de l'inverse de A par résolution de système linéaire

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

② On résout (si possible) le système AX = Y:

$$\begin{cases} a_{1,1} x_1 + \dots + a_{1,n} x_n = y_1 \\ a_{2,1} x_1 + \dots + a_{2,n} x_n = y_2 \\ \vdots \\ a_{n,1} x_1 + \dots + a_{n,n} x_n = y_n \end{cases} \iff \begin{cases} x_1 = b_{1,1} y_1 + \dots + b_{1,n} y_n \\ x_2 = b_{2,1} y_1 + \dots + b_{2,n} y_n \\ \vdots \\ x_n = b_{n,1} y_1 + \dots + b_{n,n} y_n. \end{cases}$$

- 3 On obtient X = BY où $B = (b_{i,i})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$.
- O'après la proposition précédente, la matrice B est l'inverse de A.

Calcul de l'inverse de A par résolution de système linéaire

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$
. Montrer que A est inversible et calculer son inverse.

Soient
$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On a :

$$AX = Y \iff \begin{cases} x_2 + x_3 = y_1 \\ x_1 + x_3 = y_2 \\ x_1 + x_2 = y_3 \end{cases}$$

$$\iff \begin{cases} x_1 = \frac{1}{2}(-y_1 + y_2 + y_3) \\ x_2 = \frac{1}{2}(y_1 - y_2 + y_3) \\ x_3 = \frac{1}{2}(y_1 + y_2 - y_3) \end{cases}$$

$$\iff X = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} Y.$$

Par conséquent, A est inversible d'inverse $A^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.

Algorithme de Gauss-Jordan

Proposition (admise)

Soit $A \in GL_n(\mathbb{K})$. L'inverse de A se calcule de la manière suivante :

- **1** On forme la matrice augmentée de type (n, 2n): $M = (A \mid I_n)$.
- ② On applique l'algorithme de Gauss à M.
- ① Une fois la matrice échelonnée obtenu, on continue sur le même principe que l'algorithme de Gauss afin d'obtenir une matrice de la forme $(I_n \mid B)$.
- 4 L'inverse de A est $A^{-1} = B$.

Algorithme de Gauss-Jordan

Exemple

Inverser la matrice :

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{pmatrix}.$$

$$(A \mid I_3) = \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 3 & 4 & 0 & 1 & 0 \\ 3 & 4 & 6 & 0 & 0 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -3 & 0 & 1 \end{pmatrix} \begin{matrix} L_2 \leftarrow L_2 - 2L_1 \\ L_3 \leftarrow L_3 - 3L_1 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix} \begin{matrix} L_2 \leftarrow (-1) \times L_2 \\ L_3 \leftarrow L_3 - 2L_2 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 2 & 0 & -2 & 6 & -3 \\ 0 & 1 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix} \begin{matrix} L_1 \leftarrow L_1 - 3L_3 \\ L_2 \leftarrow L_2 - 2L_3 \end{matrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & -2 & 0 & 1 \\ 0 & 1 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & 1 & -2 & 1 \end{pmatrix} \begin{matrix} L_1 \leftarrow L_1 - 2L_2 \end{matrix}$$

L'inverse de A est donc :

$$A^{-1} = \begin{pmatrix} -2 & 0 & 1 \\ 0 & 3 & -2 \\ 1 & -2 & 1 \end{pmatrix}.$$

Dans ce chapitre, on suppose que $A = (a_{i,j})$ est une matrice carrée de taille $n \times n$.

Définition (sous-matrice)

Pour tout couple $(i,j) \in [1; n]^2$, on appelle sous-matrice d'indice i,j la matrice de taille $(n-1) \times (n-1)$ obtenue en supprimant la i^e ligne et la j^e colonne de A.

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$$
.

La sous-matrice d'indice (2,3) est :
$$A_{2,3} = \begin{pmatrix} 1 & 2 & 4 \\ 9 & 10 & 12 \\ 13 & 14 & 16 \end{pmatrix}$$
.

Déterminant d'une matrice carrée

Définition

On appelle déterminant de A le nombre défini récursivement par :

- Si n = 2, $\det(A) = \begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1}a_{2,2} a_{2,1}a_{1,2}$.
- Si n > 2, $\det(A) = \sum_{i=1}^{n} (-1)^{i+1} a_{i,1} \det(A_{i,1})$, où $A_{i,1}$ est la sous-matrice de A d'indice (i,1).

$$\bullet \begin{vmatrix} 1 & 1 & 2 \\ -2 & 3 & 1 \\ 1 & 2 & 5 \end{vmatrix} = 1 \begin{vmatrix} 3 & 1 \\ 2 & 5 \end{vmatrix} + 2 \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = 10.$$

Propriétés du déterminant

Proposition

- **2** Échanger deux colonnes (ou deux lignes) de A a pour effet de multiplier le déterminant par (-1).
- 3 Le déterminant d'une matrice ayant deux colonnes (ou deux lignes) égales est nul.
- **4** Multiplier une colonne (ou une ligne) d'une matrice par $\lambda \in \mathbb{K}$, multiplie son déterminant par λ .
- **5** Soit A et B deux matrice de taille $n \times n$ et $\lambda \in \mathbb{K}$. Alors :

$$\det(\lambda A) = \lambda^n \det(A)$$
 $\det(AB) = \det(A) \times \det(B)$
 $\det(A^{-1}) = \frac{1}{\det(A)}$ si A est inversible.

Proposition

- Ajouter à une colonne (ou une ligne) une combinaison linéaire des <u>autres</u> colonnes (ou ligne) ne modifie par le déterminant.
- O Développement selon une ligne et une colonne

$$\det(A) = \sum_{k=1}^{n} (-1)^{k+j} a_{k,j} \det(A_{k,j})$$
 (développement selon la colonne j)

$$\det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{i,k} \det(A_{i,k}) \text{ (développement selon la ligne i)}$$

Exemple

• développement selon la première ligne

$$\begin{vmatrix} 1 & 0 & 2 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{vmatrix} = 1 \begin{vmatrix} 4 & 5 \\ 6 & 7 \end{vmatrix} + 2 \begin{vmatrix} 3 & 4 \\ 5 & 6 \end{vmatrix} = (28 - 30) + 2(18 - 20) = -6$$

combinaison linéaire des lignes

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -4 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 0 & 0 \\ -4 & 5 & 6 \end{vmatrix} = (-1)^{1+2} \times 3 \begin{vmatrix} 1 & 1 \\ 5 & 6 \end{vmatrix} = -3(6-5) = -3$$

deux lignes identiques

$$\begin{vmatrix} 1 & 1 & 6 \\ 3 & -2 & 5 \\ 2 & 2 & 12 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 & 6 \\ 3 & -2 & 5 \\ 1 & 1 & 6 \end{vmatrix} = 0$$

Proposition

- Le déterminant d'une matrice triangulaire/diagonale est égal au produit des coefficients de la diagonale.
- Soit A la matrice définie par

$$A = \left(\begin{array}{c|c} B & C \\ \hline 0 & D \end{array}\right).$$

où B et D sont des matrices carrés. Alors $det(A) = det(B) \times det(D)$.

$$A = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 0 & 0 & a & b & c \\ 0 & 0 & d & e & f \\ 0 & 0 & 0 & 0 & g \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 6 & 7 \end{vmatrix} \times \begin{vmatrix} a & b & c \\ d & e & f \\ 0 & 0 & g \end{vmatrix} = -5g(ae - bd).$$

Déterminant d'une famille de vecteurs

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Définition

Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ une base de E. Soit n vecteurs de E dont les coordonnées dans la base \mathcal{B} sont :

$$u_1 = \begin{pmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{n,1} \end{pmatrix}, \quad u_2 = \begin{pmatrix} a_{1,2} \\ a_{2,2} \\ \vdots \\ a_{n,2} \end{pmatrix}, \quad \dots, \quad u_n = \begin{pmatrix} a_{1,n} \\ a_{2,n} \\ \vdots \\ a_{n,n} \end{pmatrix}.$$

Soit $A = (a_{i,j})$ la matrice $n \times n$ construites à partir des vecteurs u_j . On définit le déterminant de la famille (u_1, u_2, \dots, u_n) dans la base \mathcal{B} par :

$$\det_{\mathcal{B}}(u_1, u_2, \dots, u_n) = \det(A).$$

Caractérisation d'une base

Proposition

Soit $(u_1, u_2, ..., u_n)$ une famille de n vecteurs de E. Il y a équivalence entre les assertions suivantes :

- La famille (u_1, u_2, \dots, u_n) est liée.
- ② Pour toute base \mathcal{B} de E, on a $\det_{\mathcal{B}}(u_1, u_2, \dots, u_n) = 0$.
- 3 Il existe une base \mathcal{B} de E telle que $\det_{\mathcal{B}}(u_1, u_2, \dots, u_n) = 0$.

Proposition

Soit $(u_1, u_2, ..., u_n)$ une famille de n vecteurs de E. Il y a équivalence entre les assertions suivantes :

- La famille (u_1, u_2, \ldots, u_n) est une base.
- 2 Pour toute base \mathcal{B} de E, on a $\det_{\mathcal{B}}(u_1, u_2, \dots, u_n) \neq 0$.
- 3 Il existe une base \mathcal{B} de E telle que $\det_{\mathcal{B}}(u_1, u_2, \dots, u_n) \neq 0$.

Formules de Cramer

Proposition

On suppose que $\det(A) \neq 0$. Soit B une matrice (colonne) de taille $n \times 1$. Alors le système linéaire AX = B possède une unique solution dont les composantes sont données par :

$$\forall i \in [[1; n]], \quad x_i = \frac{\det(C_1, \dots, C_{i-1}, B, C_{i+1}, \dots, C_n)}{\det(A)}$$

où C_1, C_2, \ldots, C_n sont les colonnes de A.

Résoudre
$$\begin{cases} 2x - y + z = 0 \\ x - 2y - z = 3 \\ 3x + y + 2z = 1 \end{cases}$$

On a
$$det(A) = \begin{vmatrix} 2 & -1 & 1 \\ 1 & -2 & -1 \\ 3 & 1 & 2 \end{vmatrix} = 6$$
. D'où

$$x = \frac{\begin{vmatrix} 0 & -1 & 1 \\ 3 & -2 & -1 \\ 1 & 1 & 2 \end{vmatrix}}{6} = 2; \quad y = \frac{\begin{vmatrix} 2 & 0 & 1 \\ 1 & 3 & -1 \\ 3 & 1 & 2 \end{vmatrix}}{6} = 1; \quad z = \frac{\begin{vmatrix} 2 & -1 & 0 \\ 1 & -2 & 3 \\ 3 & 1 & 1 \end{vmatrix}}{6} = -3$$

Dans ce chapitre, on suppose que E et F sont des \mathbb{K} -espaces vectoriels de dimensions finies.

Définition

Soient $\mathcal{B}=(e_1,e_2,\ldots,e_n)$ une base de E et $\mathcal{F}=(u_1,u_2,\ldots,u_p)$ une famille finie de vecteurs de E. Pour tout $j\in \llbracket 1;p \rrbracket$ on note $(a_{1,j},\ldots,a_{n,j})$ les coordonnées de u_j dans la base \mathcal{B} . La matrice $(a_{i,j})_{\substack{1\leq i\leq n\\1\leq j\leq p}}$, notée

 $\mathsf{Mat}_\mathcal{B}(\mathcal{F})$, est appelée matrice de \mathcal{F} dans la base \mathcal{B} .

$$\mathsf{Mat}_{\mathcal{B}}(\mathcal{F}) = \begin{pmatrix} u_1 & u_j & u_p \\ \downarrow & & \downarrow & \downarrow \\ a_{1,1} & \dots & a_{1,j} & \dots & a_{1,p} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \dots & a_{i,j} & \dots & a_{i,p} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j} & \dots & a_{n,p} \end{pmatrix} \xleftarrow{} \leftarrow e_1$$

Bases et matrices inversibles

Théorème

Soient $\mathcal B$ une base de E et $\mathcal F$ une famille de n vecteurs de E. Alors $\mathcal F$ est une base de E si et seulement si $\mathsf{Mat}_{\mathcal B}(\mathcal F)$ est inversible.

Proposition

Soient $E \neq \{0_E\}$, \mathcal{B} une base de E et \mathcal{F} une famille de vecteurs de E. Alors :

$$\mathsf{rg}(\mathcal{F}) = \mathsf{rg}\left(\mathsf{Mat}_{\mathcal{B}}(\mathcal{F})\right)$$
.

Matrice d'une application linéaire

Définition

Soient $p = \dim(E)$ et $n = \dim(F)$, $\mathcal{B} = (e_1, e_2, \cdots, e_p)$ une base de E, $\mathcal{C} = (e'_1, e'_2, \ldots, e'_n)$ une base de F et $f \in \mathcal{L}(E, F)$. On appelle matrice de f dans \mathcal{B} et \mathcal{C} et on note $\mathrm{Mat}_{\mathcal{B},\mathcal{C}}(f)$, la matrice de la famille $f(\mathcal{B}) = (f(e_1), \ldots, f(e_p))$ dans la base \mathcal{C} . Si E = F et $\mathcal{B} = \mathcal{C}$, la matrice $\mathrm{Mat}_{\mathcal{B},\mathcal{B}}(f)$ est simplement notée $\mathrm{Mat}_{\mathcal{B}}(f)$.

Exemple

- Si \mathcal{B} est une base de E, alors $Mat_{\mathcal{B}}(id_{E}) = I_{n}$.
- Soit T l'endomorphisme $P \mapsto X^2P'' + P(1)$ de $\mathbb{R}_3[X]$ et $\mathcal{B}_3 = \{1, X, X^2, X^3\}$ la base canonique de $\mathbb{R}_3[X]$. Alors :

$$T(1) = 1 T(X) = 1$$

$$T(X^{2}) = 2X^{2} + 1 T(X^{3}) = 6X^{3} + 1$$

$$T(1) T(X) T(X^{2}) T(X^{3})$$

$$\downarrow \downarrow \downarrow \downarrow$$

$$Mat_{\mathcal{B}_{3}}(T) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix} \leftarrow X$$

$$\leftarrow X^{2}$$

$$\leftarrow X^{3}$$

Calcul de l'image d'un vecteur par une application linéaire

Théorème

Soient $E \neq \{0_E\}$ et $F \neq \{0_F\}$ deux \mathbb{K} -espace vectoriels de dimension finie, \mathcal{B} une base de E, \mathcal{C} une base de F, $f \in \mathcal{L}(E,F)$ et $x \in E$. Alors :

$$\mathsf{Mat}_{\mathcal{C}}(f(x)) = \mathsf{Mat}_{\mathcal{B},\mathcal{C}}(f) \times \mathsf{Mat}_{\mathcal{B}}(x).$$

Exemple

En reprenant l'exemple précédent, les coordonnées de $T(2-X+X^3)$ dans la base canonique se calculent matriciellement par :

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 6 \end{pmatrix}.$$

Donc $T(2-X+X^3)=2+6X^3$.

Démonstration.

Soit $\mathcal{B} = (e_1, e_2, \dots, e_p)$, $\mathcal{C} = (e'_1, e'_2, \dots, e'_n)$. Posons $X = \mathsf{Mat}_{\mathcal{B}}(x)$ et $A = \mathsf{Mat}_{\mathcal{B},\mathcal{C}}(f)$.

$$f(x) = u\left(\sum_{j=1}^{p} x_j e_j\right)$$

$$= \sum_{j=1}^{p} x_j f(e_j) = \sum_{j=1}^{p} x_j \sum_{i=1}^{n} a_{i,j} e'_i$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{p} a_{i,j} x_j\right) e'_i.$$

Donc les coordonnées de f(x) dans \mathcal{C} sont $\left(\sum_{j=1}^p a_{1,j}x_j,\ldots,\sum_{j=1}^p a_{n,j}x_j\right)$,

c'est-à-dire le produit $A \times X$.

Rang d'une application linéaire

Proposition

Soit $\mathcal B$ une base de F, $\mathcal C$ une base de F et $f\in \mathscr L(E,F)$. Alors :

$$rg(f) = rg(Mat_{\mathcal{B},\mathcal{C}}(f))$$
.

Démonstration.

$$\begin{split} \operatorname{rg}\left(\operatorname{\mathsf{Mat}}_{\mathcal{B},\mathcal{C}}(f)\right) &= \operatorname{\mathsf{rg}}\left(\operatorname{\mathsf{Mat}}_{\mathcal{C}}\left(f\left(\mathcal{B}\right)\right)\right) \\ &= \operatorname{\mathsf{rg}}\left(f\left(\mathcal{B}\right)\right) = \operatorname{\mathsf{dim}}\operatorname{\mathsf{Vect}}(f(\mathcal{B})) = \operatorname{\mathsf{dim}}\operatorname{\mathsf{Im}}f = \operatorname{\mathsf{rg}}(f). \end{split}$$

Isomorphisme entre $\mathscr{L}(E,F)$ et $\mathcal{M}_{n,p}(\mathbb{K})$

Proposition

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies respectives p et n, \mathcal{B} une base de E et \mathcal{C} une base de F. L'application $f \mapsto \mathsf{Mat}_{\mathcal{B},\mathcal{C}}(f)$ est un isomorphisme de $\mathscr{L}(E,F)$ sur $\mathcal{M}_{n,p}(\mathbb{K})$.

Proposition (matrice d'une composée)

Soit E, F, G trois \mathbb{K} -espaces vectoriels de dimensions finies non nulles de bases respectives \mathcal{B} , \mathcal{C} , \mathcal{D} , et soient $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$. Alors :

$$\mathsf{Mat}_{\mathcal{B},\mathcal{D}}(g\circ f)=\mathsf{Mat}_{\mathcal{C},\mathcal{D}}(g)\times\mathsf{Mat}_{\mathcal{B},\mathcal{C}}(f).$$

Proposition (matrice d'un isomorphisme)

Soit E et F deux \mathbb{K} -espaces vectoriels de mêmes dimensions finies non nulles de bases respectives \mathcal{B} et \mathcal{C} , et soit $f \in \mathcal{L}(E,F)$. Alors f est un isomorphisme de E sur F si et seulement si $\mathsf{Mat}_{\mathcal{B},\mathcal{C}}(f)$ est inversible. Dans ce cas :

$$\mathsf{Mat}_{\mathcal{C},\mathcal{B}}\left(f^{-1}\right) = \left(\mathsf{Mat}_{\mathcal{B},\mathcal{C}}(f)\right)^{-1}.$$

Démonstration.

- \Rightarrow Si f est bijective et si on pose $n = \dim(F)$, on a $\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) \times \operatorname{Mat}_{\mathcal{C},\mathcal{B}}(f^{-1}) = \operatorname{Mat}_{\mathcal{C}}(\operatorname{id}_F) = I_n$ et $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(f^{-1}) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) = \operatorname{Mat}_{\mathcal{B}}(\operatorname{id}_E) = I_n$.
- \Leftarrow Si $A=\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$ est inversible, notons g l'unique application linéaire de F dans E pour laquelle $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(g)=A^{-1}$. Dans ces conditions, $\operatorname{Mat}_{\mathcal{B}}(g\circ f)=\operatorname{Mat}_{\mathcal{C},\mathcal{B}}(g)\times\operatorname{Mat}_{\mathcal{B}}\mathcal{C}(f)=A^{-1}A=I_n$. De même, $\operatorname{Mat}_{\mathcal{C},\mathcal{B}}=I_n$. Donc $g\circ f=\operatorname{id}_E$, $f\circ g=\operatorname{id}_F$ et f est bijective de E sur F.

225 / 239

Changement de base

Définition (matrice de passage)

Soit $\mathcal{B} = (e_1, e_2, \dots, e_n)$ et $\mathcal{B}' = (e_1', e_2', \dots, e_n')$ deux bases de E. On appelle matrice de passage de la base \mathcal{B} à la base \mathcal{B}' la matrice de l'application id_E relativement aux bases \mathcal{B}' et \mathcal{B} . On la note :

$$P_{\mathcal{B},\mathcal{B}'} = \mathsf{Mat}_{\mathcal{B}}(\mathcal{B}') = \mathsf{Mat}_{\mathcal{B}',\mathcal{B}}(\mathsf{id}_{\mathcal{E}}).$$

Exemple

Soit
$$E = \mathbb{R}_2[X]$$
, $\mathcal{B} = (1, X, X^2)$ et $\mathcal{B}' = (1, X - 1, (X - 1)^2)$. On a alors :

$$1 = 1 \text{ donc } \operatorname{id}_E(1) = 1 + 0X + 0X^2$$

$$X - 1 = -1 + X, \text{ donc } \operatorname{id}_E(X - 1) = -1 + 1X + 0X^2$$

$$(X - 1)^2 = 1 - 2X + X^2 \text{ donc } \operatorname{id}_E((X - 1)^2) = 1 - 2X + 1X^2$$

La matrice de passage de $\mathcal B$ à $\mathcal B'$ est donc :

$$P_{\mathcal{B}}\left(\mathcal{B}'\right) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \\ \uparrow & \uparrow & \uparrow \\ 1 & X - 1 & (X - 1)^2 \end{pmatrix} \leftarrow \begin{pmatrix} 1 \\ \leftarrow & X \\ \leftarrow & X^2 \end{pmatrix}$$

Inverse et produit de matrices de passage

Proposition

Si $P = P_{\mathcal{B},\mathcal{B}'}$, alors P est inversible et $P^{-1} = P_{\mathcal{B}',\mathcal{B}}$.

Proposition

Une matrice P est inversible si et seulement si il existe deux bases \mathcal{B} et \mathcal{B}' de E telles que $P = P_{\mathcal{B},\mathcal{B}'} = \mathsf{Mat}_{\mathcal{B}',\mathcal{B}}(\mathsf{id}_{\mathcal{F}})$.

Proposition

Soient \mathcal{B} , \mathcal{B}' et \mathcal{B}'' trois bases de E. Alors $P_{\mathcal{B},\mathcal{B}''} = P_{\mathcal{B},\mathcal{B}'} \times P_{\mathcal{B}',\mathcal{B}''}$.

Matrice de passage et coordonnées

Proposition

Soient $x \in E$, \mathcal{B} et \mathcal{B}' deux bases de E, et $P = P_{\mathcal{B},\mathcal{B}'}$. On note X la matrice colonne des coordonnées de x dans la base \mathcal{B} et X' la matrice colonne des coordonnées de x dans la base \mathcal{B}' . Alors :

$$X_{\mathcal{B}} = PX'_{\mathcal{B}'}$$

Démonstration.

 $x = id_E(x)$, donc le résultat découle simplement de la définition de la matrice de passage.

Exemple

Soit X = (1, 2, 3) dans la base canonique \mathcal{B}_c , soit $\mathcal{B}' = \{e_1, e_1 + e_2, e_3 - e_2 - 3e_1\}$ est une base de \mathbb{R}^3 . Déterminer les coordonnées de X dans la base \mathcal{B}' .

Sans utiliser la formule.

$$\begin{cases} \varepsilon_1 &= e_1 \\ \varepsilon_2 &= e_1 + e_2 \\ \varepsilon_3 &= e_3 - e_2 - 3e_1 \end{cases} \iff \begin{cases} e_1 &= \varepsilon_1 \\ e_2 &= \varepsilon_2 - \varepsilon_1 \\ e_3 &= \varepsilon_3 + \varepsilon_2 + 2\varepsilon_1 \end{cases}$$

Ainsi, de $X = e_1 + 2e_2 + 3e_3$, nous arrivons à $X = 5\varepsilon_1 + 5\varepsilon_2 + 3\varepsilon_3$.

• En utilisant la formule de changement de bases. Nous avons $X_{\mathcal{B}_c} = PX_{\mathcal{B}'}$, d'où $X_{\mathcal{B}'} = P^{-1}X_{\mathcal{B}_c}$. Il faut donc calculer l'inverse de P:

$$P^{-1} = \begin{pmatrix} 1 & 1 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

On retrouve $X_{\mathcal{B}'} = (5,5,3)$.

Matrices équivalentes

Définition

Soit $A, B \in \mathcal{M}_{n,p}(\mathbb{K})$. On dit que B est équivalente à A s'il existe deux matrices carrées inversibles $Q \in GL_n(\mathbb{K})$, $P \in GL_p(\mathbb{K})$ telles que :

$$B=Q^{-1}AP.$$

Proposition

La relation « est équivalente à » sur $\mathcal{M}_{n,p}(\mathbb{K})$ est une relation d'équivalence.

Démonstration.

Réflexivité : Nous avons simplement $A = I_n^{-1} A I_p$.

Symétrie : Nous avons $B = Q^{-1}AP$, donc $A = QBP^{-1}$. En posant

 $Q' = Q^{-1}$ et $P' = P^{-1}$, on a bien $A = {Q'}^{-1}BP'$.

Transitivité : Nous avons $C = Q^{-1}BP$ et $B = Q'^{-1}AP'$. En posant

Q'' = Q'Q et P'' = P'P nous obtenons $C = Q''^{-1}AP''$.

Caractérisation des matrices équivalentes par leur rang

Théorème

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions respectives p et n, et soit $f \in \mathcal{L}(E,F)$ de rang r. Alors il existe \mathcal{B} une base de E et \mathcal{C} une base de F telles que :

$$\mathsf{Mat}_{\mathcal{B},\mathcal{C}}(f) = J_r \stackrel{\mathsf{def.}}{=} \left(\begin{matrix} I_r & \mathsf{0}_{r,r-p} \\ \mathsf{0}_{n-r,r} & \mathsf{0}_{n-r,p-r} \end{matrix} \right).$$

Corollaire

Soit A et B deux matrices de $\mathcal{M}_{n,p}(\mathbb{K})$. Les matrices A et B sont équivalentes si et seulement si $\operatorname{rg}(A) = \operatorname{rg}(B)$.

Matrices semblables

Définition

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que B est *semblable* à A s'il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que

$$B = P^{-1}AP.$$

Proposition

La relation « est semblable à » sur $\mathcal{M}_n(\mathbb{K})$ est une relation d'équivalence.

Démonstration.

Réflexivité : Nous avons simplement $A = I_n^{-1}AI_n$.

Symétrie : Nous avons $B = P^{-1}AP$, donc $A = PBP^{-1}$. En posant

 $P' = P^{-1}$, on a bien $A = P'^{-1}BP'$.

Transitivité : Nous avons $C = P^{-1}BP$ et $B = P'^{-1}AP'$. En posant

P'' = P'P nous obtenons $C = P''^{-1}AP''$.

Proposition

Si deux matrices A et B sont semblables alors elles sont équivalentes (semblables \implies équivalentes).

Attention!

La réciproque est fausse. Par exemple, I_n est la seule matrice semblable à I_n , alors que toute matrice inversible est équivalente à I_n .

Matrices de passage et matrices semblables

Proposition

Soient f un endomorphisme de E, \mathcal{B} et \mathcal{B}' deux bases de E. On note :

$$P = P_{\mathcal{B},\mathcal{B}'}$$
.

Soit A la matrice de f relativement à la base \mathcal{B} et A' la matrice de f relativement à la base \mathcal{B}' . On a alors :

$$A'=P^{-1}AP.$$

Proposition

Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. Alors A et B sont semblables si et seulement si A et B sont les deux matrices d'une même application linéaire dans deux bases différentes.

Invariance du déterminant et de la trace

Proposition

Deux matrices carrées semblables ont le même déterminant et la même trace. Pour toute matrice carrée A et toute matrice carrée inversible P, on a :

$$\det (P^{-1}AP) = \det(A)$$
$$\operatorname{Tr} (P^{-1}AP) = \operatorname{Tr}(A)$$

Attention!

La réciproque est fausse. Par exemple :

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Trace d'un endomorphisme

Définition

Soit $E \neq \{0_E\}$ et $f \in \mathcal{L}(E)$. On appelle trace de f et on note Tr(f) la trace d'une matrice de f dans une base de E.

Proposition

Soient $f, g \in \mathcal{L}(E)$. Alors :

- Pour tout $\lambda \in \mathbb{K}$, $Tr(\lambda f + g) = \lambda Tr(f) + Tr(g)$.
- $\operatorname{Tr}(f \circ g) = \operatorname{Tr}(g \circ f)$.