# Image Pyramids

# Image Pyramids?



# What is an Image Pyramid?

# Low resolution

**High resolution** 

Image Pyramid

# Spatial Domain

### **Basis functions:**



### Fourier domain

### **Basis functions:**



Tells you what is in the image....

... but not where it is

# Image Analysis

Want representation that combines what and where.

### → Image Pyramids



### **GAUSSIAN PYRAMID**









# Why Pyramid?







....equivalent to....



# Dropping Pixels v.s. Smoothing and then dropping Pixels

# Why does this look so bad?







1/2

1/4 (2x zoom)

1/8 (4x zoom)

# Subsampling with Gaussian pre-filtering







Gaussian 1/2 G 1/4 G 1/8

# Sampling



Good sampling:

- ·Sample often or,
- Sample wisely

Bad sampling: •see aliasing in action!

# Gaussian pre-filtering







G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

# Keep filters same size

- Change image size
- Scale factor of 2



**GAUSSIAN PYRAMID** 









### Practical uses

### Compression

Capture important structures with fewer bytes

### Denoising

Model statistics of pyramid sub-bands

### Image blending

# Image pyramids

- Gaussian
- Laplacian



Fig. 4. First six levels of the Gaussian pyramid for the "Lady" image The original image, level 0, meusures 257 by 257 pixels and each higher level array is roughly half the dimensions of its predecessor. Thus, level 5 measures just 9 by 9 pixels.

# The Gaussian Pyramid

### Low resolution

 $G_{i}$ 





 $G_2$ 



 $G_1$ 



 $G_0 =$ Image

# The Gaussian Pyramid



**Image Pyramid** 



Image Pyramid

# The Laplacian Pyramid

### Synthesis

- preserve difference between upsampled Gaussian pyramid level and Gaussian pyramid level
- band pass filter each level represents spatial frequencies (largely) unrepresented at other levels

### Analysis

reconstruct Gaussian pyramid, take top layer

# Laplacian pyramid algorithm



# The Laplacian Pyramid $L_i = G_i - \text{expand}(G_{i+1})$

Gaussian Pyramid 
$$G_i = L_i + \text{expand}(G_{i+1})$$

**Laplacian Pyramid** 



# **Laplacian** ~ **Difference of Gaussians**



**DOG** = Difference Of Gaussians





# Laplacian pyramid algorithm



# Can we reconstruct the original?



# Laplacian Pyramid

Gaussian Pyramid



- Laplacian Pyramid decomposition
  - Created from Gaussian pyramid by subtraction Image Pyramid

# Laplacian Pyramid

Gaussian Pyramid



- Laplacian Pyramid decomposition
  - Created from Gaussian pyramid by subtraction Image Pyramid

### Hybrid Image in Laplacian Pyramid

High frequency → Low frequency























# Why use these representations?

- Handle real-world size variations with a constant-size vision algorithm.
- Remove noise
- Analyze texture
- Recognize objects
- Label image features

E. H. Adelson | C. H. Anderson | J. R. Bergen | P. J. Burt | J. M. Ogden

### Pyramid methods in image processing

The image pyramid offers a flexible, convenient multiresolution format that mirrors the multiple scales of processing in the human visual system.

# Image Blending



# Feathering







0<del>-</del>





Encoding transparency

$$I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$$

$$I_{blend} = I_{left} + I_{right}$$

# Affect of Window Size









### Affect of Window Size









### **Good Window Size**





"Optimal" Window: smooth but not ghosted

# **Pyramid Blending**









Left pyramid

blend

Right pyramid

# Pyramid Blending











Image Pyramid



# Laplacian Pyramid: Region Blending

### **General Approach:**

- Build Laplacian pyramids LA and LB from images A and B
- Build a Gaussian pyramid GR from selected region R
- 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
  - LS(i,j) = GR(i,j,)\*LA(i,j) + (1-GR(i,j))\*LB(i,j)
- 4. Collapse the LS pyramid to get the final blended image

# Blending Regions



# Horror Photo



© david dmartin (Boston College)

# Image Morphing



[Female Image]



[Male Image]

# Image Morphing



[No Blending]



[With Blending]

Season Blending (St. Petersburg)





