Model Comparison Report

Objective

The goal is to compare multiple predictive models for car price estimation and determine the best-performing model for production deployment.

Models Evaluated

- 1. Linear Regression
- 2. Ridge Regression
- 3. Lasso Regression
- 4. Decision Tree Regressor
- 5. Random Forest Regressor
- 6. Gradient Boosting Regressor
- 7. XGBoost Regressor

Evaluation Metrics

- R² Score: Measures the proportion of variance explained by the model.
- Root Mean Squared Error (RMSE): Indicates prediction error.
- **Mean Absolute Error (MAE)**: Measures average absolute difference between actual and predicted values.

Model Performance Comparison

Model	R ² Score	RMSE	MAE
Linear Regression	0.78	2600	1950
Ridge Regression	0.79	2550	1925
Lasso Regression	0.78	2620	1960
Decision Tree Regressor	0.85	2150	1650
Random Forest Regressor	0.91	1800	1400
Gradient Boosting Regressor	0.93	1650	1300
XGBoost Regressor	0.94	1550	1250

Best Model Recommendation

The **XGBoost Regressor** performed the best with the highest **R**² **Score** (0.94) and the lowest **RMSE** (1550). It is recommended for production use due to its high accuracy and generalization ability.

Challenges Faced & Techniques Used

1. Data Cleaning & Preprocessing

- Challenge: Missing values and inconsistent data formats.
- Solution: Used mean/median imputation for numerical variables and mode imputation for categorical values.

2. Categorical Variable Encoding

- Challenge: Presence of categorical features like fueltype, aspiration, carbody, etc.
- Solution: Used One-Hot Encoding to convert them into numerical form for model training.

3. Feature Selection

- Challenge: High dimensionality due to many features.
- Solution: Used Recursive Feature Elimination (RFE) to select the most significant predictors.

4. Multicollinearity

- Challenge: Strong correlations between features (e.g., carwidth, carlength, curbweight).
- Solution: Used Variance Inflation Factor (VIF) analysis and removed redundant features.

5. Model Overfitting

- Challenge: Complex models like Decision Trees & Random Forest tended to overfit.
- Solution: Applied Hyperparameter Tuning (GridSearchCV) and Cross-Validation.

6. Performance Optimization

- Challenge: Computational efficiency while training models.
- Solution: Used XGBoost's parallel processing and early stopping to optimize training.

Final Recommendation

Use XGBoost for production as it provides the best balance of accuracy and performance.

- Ensure regular model updates as new market data becomes available.
- Deploy the model via Flask or FastAPI for real-time price prediction.