CS Study 1주차

Netwrok - 1 김신아

- PAN(Personal Area Network) : 가장 작은 규모의 네트워크, 개인 네트워크
- LAN(Local Area Network) : 근거리 영역 네트워크
- MAN(Metropolitan Area Network) : 대도시 영역 네트워크
- WAN(Wide Area Network) : 광대역 네트워크

Protocol

"절차를 포함한 통신규약"

서로 다른 시스템에 있는 개체 간에 성공적으로 데이터를 전송하는 통신규약

" 7계층으로 왜 나눌까? "

단계별로 파악할 수 있고, 흐름을 한 눈에 볼 수 있으며 특정 단계에서 이상이 생기면 그 단계만 수정할 수 있기 때문이다.

OSI 7 Layer

	뭘 좋아할지 몰라숴 다 준비해보았어요 😎	
Application	 End User layer HTTP, FTP, SMTP, POP3, IMAP, SSH, DNS 	Data or Message
Presentation	Syntax layerSSL, MPEG, JPEG	Data or Message
Session	Synch & send to portAPI's, Sockets, WinSock	Data or Message
Transport	 End-to-end-connections TCP, UDP 	Segments or User datagram
Network	PacketsIP, ICMP, IPsec, IGMP	Packets or Datagram
Data Link	FramesEthernet, PPP, Switch, Bridge	Frames
Physical	 Physical structure Coax, Fiber, Wireless, Hubs, Repeaters 	Bits

Physical

- Physical structure
- Coax, Fiber, Wireless, Hubs, Repeaters

Bits

전기적, 기계적, 기능적인 특성을 이용하여 통신 케이블로 데이터 전송.

- 사용되는 통신 단위는 비트, 1과 0으로 나타낸다.
- 단지 데이터를 전기적인 신호로만 변환해서 주고받는 기능을 한다.
- 데이터 전송만 하고 어떤 에러가 있는지 신경 쓰지 않는다.

OSI 7 Layer - Data Link

Data Link

- Frames
- Ethernet, PPP, Switch, Bridge

Frames

물리계층을 통해 송수신되는 정보의 오류와 흐름을 관리하여 안전한 정보의 전달을 수행할 수 있도록 도와주는 역할.

Mac 주소를 통해 통신, 프레임에 Mac 주소를 부여하고 **에러검출, 재전송, 흐름제어**를 진행.

- Mac 주소를 가지고 통신하게 된다.
 - → Mac 주소
 - : 네트워크 세그먼트의 데이터 링크 계층에서 통신을 위한 네트워크 인터페이스에 할당된 고유 식별자이다.
 - → 물리 주소 ex) wifi 주소,라 생각하면 된다.

Network

- Packets
- IP, ICMP, IPsec, IGMP

Packets

데이터를 목적지까지 가장 안전하고 빠르게 전달하는 기능(라우팅)

IP 주소를 부여하고 경로(route) 설정

- 경로를 선택하고 주소를 정하고 경로에 따라 패킷을 전달해준다.
 - → 장비로는 대표적으로 "라우터(router)" 이다.
- 여러개의 노드를 거칠때마다 경로를 찾아주는 역할을 하는 계층이다.
 - ➡ 라우팅, 흐름 제어, 세그먼테이션, 오류 제어, Internetworking 등을 수행한다.
- 데이터를 연결하는 다른 네트워크를 통해 전달함으로써 인터넷이 가능하게 한다.
- IP(논리적인 주소 구조)를 할당해주는 역할

Transport

- End-to-end-connections
- TCP, UDP

Segments

TCP와 UDP 프로토콜을 통해 통신을 활성화. 포트를 열어서 응용프로그램들이 전송할 수 있게 함.

만약 데이터가 왔다면 4계층에서 해당 데이터를 하나로 합쳐서 5계층에 던져 줌.

- 전송 계층(Transport layer)은 양 끝단(End to end)의 사용자들이 신뢰성있는 데이터를 주고 받을 수 있도록 해주어, 상위 계층들이 데이터 전달의 유효성이나 효율성을 생각하지 않도록 해준다.
- 시퀀스 넘버 기반의 오류 제어 방식을 사용한다.
 - ➡ 시퀀스 넘버 기반?

시퀀스 넘버 : 통신과 제어에서 데이터를 관리하기 위해 번호를 부여한다.

(대표적인 전송 계층인 TCP로 예를 들면, TCP 패킷 헤더에 Sequence & Ack number 라는 걸 채운다.

- 사용 이유: 해당 번호는 순서 역전 방지, 중복 패킷 방지 등을 이유로 사용한다.
- 특정 연결의 유효성을 제어하고, 일부 프로토콜은 상태 개념이 있고(stateful) 연결 기반(connection oriented)이다.
- 종단간(End to end) 통신을 다루는 최하위 계층으로 종단간 신뢰성 있고 효율적인 데이터를 전송하며, 기능은 오류검출 및 복구와 흐름 제어, 중복 검사 등을 수행한다.

Session

- Synch & send to port
- API's, Sockets, WinSock

Data

데이터가 통신하기 위한 논리적인 연결. 양 끝단의 프로세스가 데이터 통신(송수신)을 관리하기 위한 방법을 제시하는 계층.

- 동시 송수신 방신(duplex), 반이중 방식(half-duplex), 전이중 방식(full-duplex)의 통신과 함께, 체크 포인트의 유무, 종료, 다시 시작 과정 등을 수행한다.
- TCP/IP 세션을 만들고 없애는 책임을 지닌다.

OSI 7 Layer - Presentation

Presentation

- Syntax layer
- SSL, MPEG, JPEG

Data

데이터 표현이 상이한 응용 프로세스의 독립성을 제공하고, 암호화. 사용자의 명령어를 완성 및 결과 표현, 포장/압축/암호화.

- 코드 간의 번역을 담당하여 사용자 시스템에서 데이터의 형식상 차이를 다루는 부담을 응용 계층으로부터 덜어준다. MIME 인코딩이나 암호화 등의 동작이 이 계층에서 이루어진다.
 - ➡ ex) EBCDIC로 인코딩된 문서 파일을
 - ➡ 해당 데이터가 TEXT인지, 그림인지, GIF인지, JPG인지 구분 해주기도 한다.

OSI 7 Layer - Application

Application

- End User layer
- HTTP, FTP, SMTP, POP3, IMAP, SSH, DNS

Data

사용자가 보는 소프트웨어의 UI, 네트워크 서비스, 사용자의 입출력 부분 등을 담당하는 계층.

사용자 인터페이스, 전자 우편, 데이터베이스 관리 등의 서비스 제공.

- 응용 프로세스와 직접 관계하여 일반적인 응용 서비스를 수행한다.
- 일반적인 응용 서비스는 관련된 응용 프로세스들 사이의 전환을 제공한다.
 - ➡ 응용 서비스의 경우 JVM, Terminal 등이 있다.

Port

* Port

: **논리적인 접속 장소**를 의미하고 인터넷 프로토콜인 TCP/IP를 사용할 때 클라이언트가 네트워크 상의 특정 서버 프로그램을 지정하여 사용한다.

* IP

: 컴퓨터를 찾을 때 필요한 주소

* Port

: 그 컴퓨터 안에서 프로그램을 찾기 위한 수단 각각의 응용 프로그램에 이미 정해져 있는 포트 번호를 이용하여, 전송 계층에서 응용프로그램을 구분한다.

※ well known port(잘 알려진 포트)

: 이미 널리 알려진 포트, 이미 서버 측에서 각 용도별로 예약되어 동작되어 있고 클라이언트가 이 포트번호를 이용하여 접속한다.

HTTP, URL

- * HTTP(HyperText Transfer Protocol)
- : 웹 상에서 웹 서버 및 브라우저 상호 간의 데이터 전송을 위한 응용계층 프로토콜

- * 메세지 교환 형태의 프로토콜
- 클라이언트와 서버 간에 HTTP 메세지를 주고받으며 통신[SMTP 전자메일 프로토콜과 유사]
- * 트랜잭션 중심의 비연결성 프로토콜
- 종단간 연결이 없음(Connectionless)
- 이전의 상태를 유지하지 않음(Stateless)
- * 전송 계층 프로토콜
- TCP, 포트 번호: 80

HTTP, HTTPS

* HTTPS의 S는 Secure 약자

인터넷 상에서 정보를 암호화하는 SSL 프로토콜을 사용해 클라이언트와 서버가 자원을 주고 받을 때 쓰는 통신 규약이다.

일반적으로 HTTP 프로토콜의 문제점은 서버로부터 브라우저로 전송되는 정보가 암호화되지 않는다. 쉽게 정보가 노출될 수 있다는 의미이다.

* SSL 이란?

SSL(Secure Sockets Layer)은 인터넷으로 전송된 데이터의 인증, 암호화, 암호 해독을 가능하게 하는 웹브라우저와 서버의 프로토콜이다.

SSL 인증서 서버를 사용자에게 인증하고 서버와 사용자 간 전송된 데이터를 암호화 할 수 있게 하는 서버 인증서를 의미한다.

OSI 7 Layer - TCP/IP

TCP/IP - Network Interface

- OSI 7계층의 물리 계층과 데이터 링크 계층에 해당
- 물리적인 주소로 MAC을 사용
- Ethernet(이더넷), Token Ring, PPP 등

TCP/IP - Internet

Network

• Packets
• IP, ICMP, IPsec, IGMP

ICMP ARP RARP IP

- OSI 7계층의 네트워크 계층에 해당
- 통신 노드 간의 IP패킷을 전송하는 기능과 라우팅 기능을 담당
- IP, ICMP, ARP, RARP, OSPF, BGP 등

TCP/IP - Transport

- OSI 7계층의 전송 계층에 해당
- 통신 노드 간의 연결을 제어하고, 신뢰성 있는 데이터를 전송
- TCP, UDP 등

TCP/IP - Application

- OSI 7계층의 세션 계층, 표현 계층, 응용 계층에 해당
- TCP/UDP 기반의 응용 프로그램을 구현할 때 사용
- SMTP, FTP, HTTP, SSH, DNS 등

TCP/IP

* TCP/IP

데이터가 의도된 목적지에 닿을 수 있도록 보장해주는 통신 규약

* TCP(Transmission Control Protocol)

두 호스트가 교환하는 데이터와 승인 메세지 형식을 정의하여, 서버와 클라이언트간의 데이터를 신뢰성있게 전달하기 위해 만들어진 규약이다. 신뢰성이 있고 연결지향적이다.

* IP(Internet Protocol)

컴퓨터와 컴퓨터간에 데이터를 전송하기 위해서, 각 컴퓨터의 주소가 필요하다. Internet Protocol은 4바이트로 이루어진 컴퓨터의 주소이며, 192.168.9.255와 같이 3개의 마침표로 나뉘어진 숫자로 표시된다.

TCP 와 UDP

* UDP(User Datagram Protocol)

비연결형 서비스를 지원하는 전송계층 프로토콜로써, 인터넷상에서 서로 정보를 주고받을 때정보를 보낸다는 신호나 보낸다는 신호 절차를 거치지 않고, 보내는 쪽에서 일방적으로 데이터를 전달하는 통신 프로토콜이다.

* TCP와 UDP 차이점

TCP는 연속성보다 신뢰성있는 전송이 중요할 때에 사용하는 프로토콜이며, UDP는 TCP보다 속도가 빠르며 네트워크 부하가 적다는 장점이 있지만, 신뢰성있는 데이터 전송을 보장하지 않는다.

Thank You

Q & A

Application	 End User layer HTTP, FTP, SMTP, POP3, IMAP, SSH, DNS 	Data
Presentation	Syntax layerSSL, MPEG, JPEG	Data
Session	Synch & send to portAPI's, Sockets, WinSock	Data
Transport	End-to-end-connectionsTCP, UDP	Segments
Network	PacketsIP, ICMP, IPsec, IGMP	Packets
Data Link	FramesEthernet, PPP, Switch, Bridge	Frames
Physical	Physical structureCoax, Fiber, Wireless, Hubs, Repeaters	Bits

Application	 End User layer HTTP, FTP, SMTP, POP3, IMAP, SSH, DNS 	Data or Message
Presentation	Syntax layerSSL, MPEG, JPEG	Data or Message
Session	Synch & send to portAPI's, Sockets, WinSock	Data or Message
Transport	End-to-end-connectionsTCP, UDP	Segments or User datagram
Network	PacketsIP, ICMP, IPsec, IGMP	Packets or Datagram
Data Link	FramesEthernet, PPP, Switch, Bridge	Frames
Physical	Physical structureCoax, Fiber, Wireless, Hubs, Repeaters	Bits

