The Unintended Effects of an Intensive Margin Reform to Student Loans on Educational Attainment

Online Appendix

Pinjas Albagli Andrés García-Echalar London School of Economics Universidad de los Andes

February, 2023

Contents

A	Replication of Main Results Excluding Year 2008	2
\mathbf{B}	IV Details	16

A Replication of Main Results Excluding Year 2008

This appendix replicates our analysis in the main text excluding cohort 2008 for immediate enrollment and cohorts 2007–2008 for two-year enrollment and second-year dropout. Our main results remain virtually unchanged while the evidence supporting the parallel trends assumption is stronger. The numbering of tables and figures replicates that of the main text to facilitate comparisons.

List of Figures

1	Dynamics of Immediate Enrollment	3
2	Dynamics of Persistence and Retention	5
A.1	Outcomes over Time by Eligibility	11
B.1	Immediate and Two-Year-Best PSU Scores	14
List	of Tables	
2	Immediate Enrollment	3
3	Two-Year Enrollment	4
4	Second-Year Dropout	4
5	Difference-in-Discontinuities Design: Immediate Enrollment	6
6	Difference-in-Discontinuities Design: Two-Year Enrollment	7
7	Difference-in-Discontinuities Design: Second-Year Dropout	8
8	Heterogeneity of Main Results by Student Sex	9
9	Heterogeneity of Main Results by School Type	10
A.1	Dynamics Excluding Year 2008	12
B.1	IV-DiD Regressions for Two-Year Outcomes	13
B.2	IV-Diff-in-Disc Design for Two-Year Outcomes	13
B.3	Immediate vs Two-Year Eligibility	14
C.2	Evidence of Female Delay	15

Table 2: Immediate Enrollment

		HES			Universities	3		Vocational	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Eligible \times exposed	-0.001 (0.004)	-0.002 (0.004)	-0.003 (0.004)	0.025*** (0.005)	0.025*** (0.005)	0.023*** (0.005)	-0.026*** (0.003)	-0.027*** (0.003)	-0.027*** (0.003)
Exposed	0.062*** (0.003)	0.071*** (0.007)	0.078*** (0.006)	-0.012*** (0.001)	-0.035*** (0.007)	-0.031*** (0.007)	0.074*** (0.003)	0.105*** (0.004)	0.108*** (0.004)
Eligible	0.261*** (0.003)	0.261*** (0.003)	0.243*** (0.003)	0.291*** (0.003)	0.291*** (0.003)	0.271*** (0.004)	-0.029*** (0.002)	-0.029*** (0.002)	-0.028*** (0.002)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980	1,353,980
Control group size	508,298	508,298	508,298	508,298	508,298	508,298	508,298	508,298	508,298
Outcome mean	0.536	0.536	0.536	0.355	0.355	0.355	0.182	0.182	0.182

Notes: Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

Figure 1: Dynamics of Immediate Enrollment

Table 3: Two-Year Enrollment

		HES			Universities			Vocational	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Eligible \times exposed (2nd year)	0.015*** (0.005)	0.014*** (0.005)	0.012*** (0.005)	0.023*** (0.006)	0.023*** (0.006)	0.021*** (0.006)	-0.011*** (0.003)	-0.012*** (0.003)	-0.012*** (0.003)
Exposed (2nd year)	0.035*** (0.004)	0.054*** (0.006)	0.057*** (0.006)	-0.005*** (0.001)	-0.009 (0.006)	-0.007 (0.006)	0.039*** (0.003)	0.063*** (0.004)	0.065*** (0.004)
Eligible	0.283*** (0.004)	0.283*** (0.004)	0.261*** (0.004)	0.270*** (0.005)	0.270*** (0.005)	0.250*** (0.005)	0.010*** (0.003)	0.010*** (0.003)	0.008*** (0.003)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	1,035,551	1,035,551	1,035,551	1,035,568	1,035,568	1,035,568	1,037,137	1,037,137	1,037,137
Control group size	263,400	263,400	263,400	263,402	263,402	263,402	263,959	263,959	263,959
Outcome mean	0.474	0.474	0.474	0.310	0.310	0.310	0.151	0.151	0.151

Notes: Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

Table 4: Second-Year Dropout

		HES			Universities			Vocational	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Eligible \times exposed (2nd year)	-0.014*** (0.005)	-0.014*** (0.005)	-0.014*** (0.004)	-0.049*** (0.009)	-0.049*** (0.009)	-0.050*** (0.009)	-0.003 (0.005)	-0.003 (0.005)	-0.008 (0.005)
Exposed (2nd year)	0.018*** (0.005)	0.023*** (0.005)	0.034*** (0.005)	0.057*** (0.010)	0.056*** (0.010)	0.070*** (0.010)	$0.006 \\ (0.005)$	0.007 (0.006)	0.037*** (0.006)
Eligible	-0.182*** (0.004)	-0.182*** (0.004)	-0.125*** (0.004)	-0.221*** (0.008)	-0.221*** (0.008)	-0.156*** (0.007)	-0.143*** (0.004)	-0.143*** (0.004)	-0.118*** (0.004)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	526,147	526,147	521,391	301,826	301,826	297,440	224,857	224,857	224,480
Control group size	139,280	139,280	139,280	90,748	90,748	90,748	48,669	48,669	48,669
Outcome mean	0.103	0.103	0.103	0.102	0.102	0.102	0.180	0.180	0.180

Notes: Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Program characteristics include duration, annual fee, and an indicator for accreditation. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

Figure 2: Dynamics of Persistence and Retention

(a) Two-Year Enrollment

(b) Second-Year Dropout

Table 5: Difference-in-Discontinuities Design: Immediate Enrollment

		All students			$\mathrm{GPA} < 5.3$	
	HES (1)	Universities (2)	Vocational (3)	HES (4)	Universities (5)	Vocational (6)
Difference	0.011* (0.006)	0.023*** (0.006)	-0.006 (0.006)	0.003 (0.013)	0.025** (0.010)	-0.024** (0.012)
Exposed	0.074*** (0.004)	0.127*** (0.005)	-0.048*** (0.005)	0.062*** (0.009)	0.084*** (0.007)	-0.024*** (0.009)
Unexposed	0.063*** (0.005)	0.104*** (0.004)	-0.042*** (0.004)	0.059*** (0.009)	0.059*** (0.007)	-0.001 (0.007)
Bandwidth						
Exposed	51.257	36.629	41.201	48.882	47.259	43.601
Unexposed	50.574	42.220	52.172	42.668	45.042	53.310
$Observations \\ Exposed$	117,087	84,280	94,582	27,136	26,254	24,260
Unexposed	113,523	95,218	116,986	27,528	29,019	34,149

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used for local linear regressions. SUEST standard errors clustered at the class level in parentheses. *** p< 0.01, ** p< 0.05, * p< 0.1.

Table 6: Difference-in-Discontinuities Design: Two-Year Enrollment

		All students			$\mathrm{GPA} < 5.3$	
	HES (1)	Universities (2)	Vocational (3)	HES (4)	Universities (5)	Vocational (6)
Difference	0.019** (0.007)	0.015** (0.007)	0.004 (0.007)	0.041** (0.016)	0.028** (0.011)	0.006 (0.013)
Exposed	0.076*** (0.004)	0.107*** (0.004)	-0.038*** (0.005)	0.080*** (0.008)	0.072*** (0.006)	0.000 (0.008)
Unexposed	0.057*** (0.006)	0.092*** (0.005)	-0.042*** (0.005)	0.040*** (0.014)	0.044*** (0.010)	-0.006 (0.010)
Bandwidth						
Exposed	58.077	37.934	38.461	64.812	51.634	48.703
Unexposed	53.155	50.305	48.858	35.814	44.375	45.506
$Observations \\ Exposed$	133,494	88,264	89,627	38,607	31,115	29,424
Unexposed	61,536	58,343	56,759	11,691	14,464	14,832

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used for local linear regressions. SUEST standard errors clustered at the class level in parentheses. *** p< 0.01, ** p< 0.05, * p< 0.1.

Table 7: Difference-in-Discontinuities Design: Second-Year Dropout

		All student	s		$\mathrm{GPA} < 5.3$	
	HES (1)	Universities (2)	Vocational (3)	HES (4)	Universities (5)	Vocational (6)
Difference	-0.009 (0.007)	0.000 (0.013)	-0.025** (0.011)	-0.025 (0.017)	-0.019 (0.031)	-0.051** (0.025)
Exposed	-0.008* (0.004)	-0.017** (0.008)	0.002 (0.006)	-0.029*** (0.010)	-0.009 (0.018)	-0.038** (0.016)
Unexposed	0.001 (0.006)	-0.018 (0.011)	0.026*** (0.009)	-0.004 (0.014)	0.010 (0.025)	0.013 (0.019)
Bandwidth						
Exposed	54.348	51.297	46.782	50.644	54.499	31.156
Unexposed	50.402	49.227	50.556	41.813	38.712	50.574
Observations						
Exposed	69,669	30,248	32,749	15,517	6,386	5,968
Unexposed	28,947	13,368	15,330	6,267	2,471	4,341

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used for local linear regressions. SUEST standard errors clustered at the class level in parentheses. *** p< 0.01, ** p< 0.05, * p< 0.1.

Table 8: Heterogeneity of Main Results by Student Sex

		HES			Universitie	s		Vocational	
	Female (1)	Male (2)	Difference (3)	Female (4)	Male (5)	Difference (6)	Female (7)	Male (8)	Difference (9)
Immediate Enrollment	-0.011**	0.001	-0.012**	0.021***	0.022***	-0.001	-0.032***	-0.021***	-0.011**
	(0.004)	(0.005)	(0.006)	(0.005)	(0.007)	(0.007)	(0.004)	(0.004)	(0.005)
	[720,112]	[633,868]	[1,353,980]	[720,112]	[633,868]	[1,353,980]	[720,112]	[633,868]	[1,353,980]
	$\{0.51\}$	$\{0.51\}$	{0}	$\{0.30\}$	$\{0.29\}$	$\{.01\}$	$\{0.21\}$	$\{0.22\}$	$\{01\}$
Two-Year Enrollment	0.005	0.018***	-0.013*	0.019***	0.022***	-0.003	-0.018***	-0.007*	-0.011**
	(0.005)	(0.007)	(0.007)	(0.006)	(0.008)	(0.009)	(0.004)	(0.004)	(0.005)
	[550,288]	[485,263]	[1,035,551]	[550,302]	[485,266]	[1,035,568]	[551,073]	[486,064]	[1,037,137]
	$\{0.45\}$	$\{0.44\}$	{.01}	$\{0.26\}$	$\{0.25\}$	{.01}	$\{0.17\}$	$\{0.17\}$	{0}
Second-Year Dropout	-0.013**	-0.016***	0.003	-0.041***	-0.057***	0.016	-0.005	-0.011*	0.007
	(0.006)	(0.006)	(0.008)	(0.013)	(0.013)	(0.018)	(0.007)	(0.007)	(0.010)
	[276,309]	[245,082]	[521,391]	[158,711]	[138,729]	[297,440]	[117,898]	[106,582]	[224,480]
	{0.12}	{0.14}	{02}	{0.11}	{0.13}	{02}	{0.21}	{0.23}	{02}
Cohort effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Control variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: SUEST standard errors clustered at the class level in parentheses. Sample sizes in square brackets. Outcome sample means in curly braces. *** p<0.01, ** p<0.05, * p<0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include attendance rate, district and number of family members at different levels in the education system.

Table 9: Heterogeneity of Main Results by School Type

		HES			Universitie	s		Vocationa	1
	Public (1)	Voucher (2)	Difference (3)	Public (4)	Voucher (5)	Difference (6)	Public (7)	Voucher (8)	Difference (9)
Immediate Enrollment	0.002	-0.005	0.007	0.010	0.028***	-0.018*	-0.008	-0.033***	0.025***
	(0.006)	(0.004)	(0.007)	(0.008)	(0.005)	(0.010)	(0.005)	(0.004)	(0.007)
	[530,018]	[823,962]	[1,353,980]	[530,018]	[823,962]	[1,353,980]	[530,018]	[823,962]	[1,353,980]
	$\{0.46\}$	$\{0.54\}$	{08}	$\{0.24\}$	$\{0.33\}$	{09}	$\{0.23\}$	$\{0.21\}$	$\{.02\}$
Two-Year Enrollment	0.007	0.016***	-0.009	0.010	0.025***	-0.015	-0.004	-0.013***	0.009
	(0.008)	(0.005)	(0.009)	(0.010)	(0.006)	(0.012)	(0.005)	(0.004)	(0.006)
	[402,810]	[632,741]	[1,035,551]	[402,815]	[632,753]	[1,035,568]	[403,430]	[633,707]	[1,037,137]
	{0.40}	{0.48}	{08}	{0.21}	{0.29}	{08}	{0.18}	{0.17}	{.01}
Second-Year Dropout	-0.007	-0.020***	0.013	-0.055***	-0.050***	-0.005	-0.001	-0.012*	0.011
	(0.008)	(0.006)	(0.009)	(0.017)	(0.011)	(0.020)	(0.008)	(0.006)	(0.011)
	[185,603]	[335,788]	[521,391]	[94,366]	[203,074]	[297,440]	[91,470]	[133,010]	[224,480]
	$\{0.15\}$	{0.12}	{.03}	{0.13}	{0.11}	{.02}	$\{0.23\}$	{0.21}	{.02}
Cohort effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Control variables	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Notes: SUEST standard errors clustered at the class level in parentheses. Sample sizes in square brackets. Outcome sample means in curly braces. *** p < 0.01, ** p < 0.05, * p < 0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include attendance rate, district and number of family members at different levels in the education system.

2012 Cohort 2011 Cohort 2011 Cohort 2009 Non-Eligible Eligible Figure A.1: Outcomes over Time by Eligibility Panel A: Immediate Enrollment Panel B: Two-Year Enrollment Non-Elgible Elgible 2012 2011 Cohort 2011 Cohort

Panel C: Second-Year Dropout

11

Table A.1: Dynamics Excluding Year 2008

	I	$\mathbf{mmediate}$	Enrollmen	ıt		Two-Year	Enrollmen	t	Second-Year Dropout			
	Unive	ersities	Voca	tional	Unive	ersities	Voca	tional	Unive	ersities	Voca	tional
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Eligible × cohort 2007	-0.016 (0.010)	-0.017* (0.010)	0.003 (0.006)	0.004 (0.006)								
Eligible × cohort 2009	-0.015 (0.010)	-0.015 (0.010)	$0.008 \\ (0.006)$	$0.008 \\ (0.006)$	-0.001 (0.009)	-0.001 (0.009)	-0.009* (0.005)	-0.009* (0.005)	-0.002 (0.015)	-0.003 (0.015)	0.010 (0.009)	0.010 (0.009)
Eligible × cohort 2010	-0.014 (0.010)	-0.015 (0.010)	0.014** (0.006)	0.015** (0.006)								
Eligible \times cohort 2011					0.013 (0.010)	0.014 (0.010)	-0.009* (0.005)	-0.009* (0.005)	-0.033** (0.015)	-0.049*** (0.015)	0.002 (0.009)	-0.002 (0.008)
Eligible \times cohort 2012	0.013 (0.009)	0.011 (0.009)	-0.018*** (0.006)	-0.016*** (0.006)	0.027*** (0.009)	0.026*** (0.009)	-0.018*** (0.005)	-0.018*** (0.005)	-0.054*** (0.015)	-0.057*** (0.015)	-0.004 (0.009)	-0.007 (0.008)
Eligible \times cohort 2013	$0.015 \\ (0.009)$	0.012 (0.009)	-0.019*** (0.007)	-0.018*** (0.007)	0.024*** (0.009)	0.021** (0.009)	-0.015*** (0.006)	-0.015*** (0.006)	-0.060*** (0.016)	-0.057*** (0.015)	-0.003 (0.008)	-0.010 (0.008)
Eligible \times cohort 2014	0.017* (0.010)	0.016 (0.010)	-0.026*** (0.007)	-0.025*** (0.007)	0.026*** (0.009)	0.025*** (0.010)	-0.024*** (0.006)	-0.024*** (0.006)	-0.058*** (0.017)	-0.038** (0.017)	0.013 (0.008)	$0.006 \\ (0.008)$
Eligible \times cohort 2015	0.011 (0.009)	0.009 (0.009)	-0.021*** (0.007)	-0.020*** (0.007)								
Eligible	0.302*** (0.007)	0.283*** (0.007)	-0.036*** (0.004)	-0.035*** (0.004)	0.270*** (0.007)	0.250*** (0.007)	0.014*** (0.004)	0.012*** (0.004)	-0.220*** (0.011)	-0.155*** (0.011)	-0.148*** (0.006)	-0.122*** (0.006)
Cohort 2007	0.024*** (0.003)	0.023*** (0.004)	-0.040*** (0.006)	-0.043*** (0.005)								
Cohort 2009	0.002 (0.003)	0.002 (0.003)	-0.027*** (0.006)	-0.028*** (0.005)	0.002 (0.002)	0.001 (0.003)	-0.002 (0.004)	-0.001 (0.004)	0.002 (0.015)	0.004 (0.015)	-0.022** (0.009)	-0.026*** (0.008)
Cohort 2010	-0.002 (0.003)	$0.000 \\ (0.003)$	-0.018*** (0.006)	-0.019*** (0.005)								
Cohort 2011					-0.001 (0.002)	-0.003 (0.003)	0.009** (0.004)	0.010** (0.004)	0.039*** (0.015)	0.066*** (0.015)	0.011 (0.009)	0.022*** (0.008)
Cohort 2012	0.003 (0.003)	$0.005 \\ (0.003)$	0.028*** (0.005)	0.031*** (0.005)	-0.000 (0.002)	0.001 (0.003)	0.031*** (0.004)	0.036*** (0.004)	0.060*** (0.016)	0.066*** (0.015)	-0.003 (0.009)	0.002 (0.009)
Cohort 2013	-0.006** (0.002)	-0.005 (0.003)	0.059*** (0.006)	0.059*** (0.005)	-0.007*** (0.002)	-0.008** (0.003)	0.053*** (0.005)	0.054*** (0.004)	0.075*** (0.016)	0.087*** (0.016)	-0.006 (0.009)	0.019** (0.008)
Cohort 2014	-0.012*** (0.002)	-0.010*** (0.003)	0.069*** (0.006)	0.071*** (0.006)	-0.010*** (0.002)	-0.009*** (0.003)	0.064*** (0.005)	0.067*** (0.005)	0.065*** (0.017)	0.061*** (0.017)	-0.020** (0.009)	$0.008 \\ (0.008)$
Cohort 2015	-0.012*** (0.002)	-0.010*** (0.003)	0.062*** (0.006)	0.063*** (0.005)								
Student district fixed effects	No	Yes										
Control variables	No	Yes										
Observations	1,353,980	1,353,980	1,353,980	1,353,980	1,035,568	1,035,568	1,037,137	1,037,137	301,826	297,440	224,857	224,480
Pre-trends p-value	0.295	0.260	0.126	0.113	0.900	0.955	0.098	0.072	0.913	0.858	0.243	0.241

Notes: Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. School level control variables include indicators of school type, rural area and geographical region. Student level control variables include gender, attendance rate, district and number of family members at different levels in the education system. Control group size accounts for the number of ineligible individuals in the exposure period, while Outcome mean refers to the mean of the dependent variable of those individuals.

Table B.1: IV-DiD Regressions for Two-Year Outcomes

		HES			Universities			Vocational	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Two-Year Enrollment									
Eligible \times exposed (2nd year)	0.014*** (0.005)	0.013*** (0.005)	0.011** (0.005)	0.022*** (0.006)	0.022*** (0.006)	0.021*** (0.006)	-0.011*** (0.003)	-0.013*** (0.003)	-0.012*** (0.003)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	1,035,551	1,035,551	1,035,551	1,035,568	1,035,568	1,035,568	1,037,137	1,037,137	1,037,137
Cragg-Donald	$10,\!761,\!691$	10,763,467	$10,\!576,\!213$	$10,\!762,\!107$	$10,\!763,\!884$	$10,\!576,\!618$	$10,\!783,\!649$	$10,\!785,\!436$	10,597,726
Second-Year Dropout									
Eligible \times exposed (2nd year)	-0.014*** (0.005)	-0.014*** (0.005)	-0.014*** (0.005)	-0.049*** (0.010)	-0.049*** (0.010)	-0.050*** (0.009)	-0.003 (0.005)	-0.003 (0.005)	-0.008 (0.005)
Cohort effects	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes
Control variables	No	No	Yes	No	No	Yes	No	No	Yes
Observations	$526,\!147$	$526,\!147$	$521,\!391$	301,826	301,826	$297,\!440$	$224,\!857$	$224,\!857$	$224,\!480$
Cragg-Donald	40,887,766	40,887,893	38,270,537	11,742,481	11,741,672	10,985,932	22,570,275	22,567,295	21,934,238

Notes: 2SLS estimates instrumenting eligible it with eligible 2it. Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Control variables are the same as in Tables 2, 3, and 4.

Table B.2: IV-Diff-in-Disc Design for Two-Year Outcomes

	Two-Year Enrollment					Second-Year Dropout						
	All students			GPA < 5.3			All students			GPA < 5.3		
	HES (1)	Universities (2)	Vocational (3)	HES (4)	Universities (5)	Vocational (6)	HES (7)	Universities (8)	Vocational (9)	HES (10)	Universities (11)	Vocational (12)
Difference	0.024*** (0.009)	0.024*** (0.008)	0.001 (0.008)	0.046** (0.019)	0.033** (0.014)	0.005** (0.015)	-0.009** (0.007)	-0.000** (0.014)	-0.025** (0.011)	-0.025** (0.017)	-0.020** (0.031)	-0.051** (0.025)
Exposed	0.097*** (0.005)	0.142*** (0.005)	-0.051*** (0.005)	0.095*** (0.009)	0.088*** (0.007)	-0.002*** (0.009)	-0.008** (0.004)	-0.019** (0.008)	0.001*** (0.006)	-0.029*** (0.010)	-0.009*** (0.019)	-0.038** (0.016)
Unexposed	0.073*** (0.008)	0.117*** (0.007)	-0.052*** (0.006)	0.049*** (0.017)	0.054*** (0.011)	-0.007 (0.012)	0.001*** (0.006)	-0.019* (0.011)	0.027*** (0.009)	-0.004*** (0.014)	0.010*** (0.025)	0.013 (0.019)
Bandwidth Exposed	58.077	37.934	38.461	64.812	51.634	48.703	54.348	51.297	46.782	50.644	54.499	31.156
Unexposed	53.155	50.305	48.858	35.814	44.375	45.506	50.402	49.227	50.556	41.813	38.712	50.574
$\begin{tabular}{ll} Observations \\ Exposed \\ Unexposed \end{tabular}$	133,494 61,536	88,264 58,343	89,627 56,759	38,607 11,691	31,115 14,464	29,424 14,832	69,669 28,947	30,248 13,368	32,749 15,330	15,517 6,267	6,386 2,471	5,968 4,341

Notes: Optimal bandwidths separately selected by exposure. Triangular kernel is used in local linear regressions. Standard errors clustered at the class level in parentheses. *** p< 0.01, ** p< 0.05, * p< 0.1.

Figure B.1: Immediate and Two-Year-Best PSU Scores

Table B.3: Immediate vs Two-Year Eligibility

	Two-year eligibility			
	Yes	No	Total	
Immediate eligibility				
Yes	77.27%	0%	77.27%	
No	0.76%	21.97%	22.73%	
Total	78.03%	21.97%	100.00%	

Table C.2: Evidence of Female Delay

	Repe	etition	Improvement		
	All students (1)	Non-enrolled (2)	All students (3)	Non-enrolled (4)	
Female \times exposed	0.008** (0.003)	0.034*** (0.007)	$0.005 \\ (0.005)$	-0.013** (0.005)	
Female	0.029*** (0.002)	0.060*** (0.005)	0.024*** (0.003)	$0.006* \\ (0.003)$	
Exposed	-0.009*** (0.003)	0.004 (0.007)	-0.077*** (0.004)	-0.024*** (0.004)	
Observations	1,023,720	452,286	196,854	155,145	

Notes: Clustered standard errors at the class level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Repetition and Improvement are indicator variables. All students comprises the sample of students who sat the PSU immediately after high school graduation. Non-enrolled is the subsample of students that did not enroll immediately. Cohort 2015 is excluded because we do not have access to PSU scores for year 2016.

B IV Details

Our IV linear regression model is given by the structural equation

$$\underbrace{y_{it}}_{1\times 1} = \underbrace{x'_{it}}_{K\times 1} \underbrace{\lambda}_{K\times 1} + \underbrace{\eta_{it}}_{1\times 1} \tag{B.1}$$

and the first stage

$$\underbrace{\boldsymbol{x}_{2it}}_{K_2 \times 1} = \underbrace{\boldsymbol{\Gamma}}_{K_2 \times L} \underbrace{\boldsymbol{z}_{it}}_{L \times 1} + \underbrace{\boldsymbol{\nu}_{it}}_{K_2 \times 1} \tag{B.2}$$

where

$$egin{aligned} oldsymbol{x}_{it} = egin{pmatrix} oldsymbol{x}_{1it} \ oldsymbol{x}_{2it} \ oldsymbol{x}_{2it} \ oldsymbol{x}_{2it} \end{pmatrix} \quad & ext{and} \quad oldsymbol{z}_{it} = egin{pmatrix} oldsymbol{x}_{1it} \ oldsymbol{x}_{1it} \ oldsymbol{x}_{2it} \ oldsymbol{x}_{2it} \end{pmatrix}$$

whith $K = K_1 + K_2$ and $L = K_1 + L_2 \ge K$.

Partition

$$\underbrace{\boldsymbol{\Gamma}}_{K_2 \times L} = \begin{bmatrix} \underline{\boldsymbol{\Gamma}}_1 & \underline{\boldsymbol{\Gamma}}_2 \\ K_2 \times K_1 & K_2 \times L_2 \end{bmatrix} \quad \text{and} \quad \underbrace{\boldsymbol{\lambda}}_{K \times 1} = \begin{bmatrix} \underline{\boldsymbol{\lambda}}_1 \\ K_1 \times 1 \\ \underline{\boldsymbol{\lambda}}_2 \\ K_2 \times 1 \end{bmatrix}$$

and rewrite Equation (B.2) as

$$\underbrace{\boldsymbol{x}_{2it}}_{K_2 \times 1} = \begin{bmatrix} \underline{\boldsymbol{\Gamma}}_1 & \underline{\boldsymbol{\Gamma}}_2 \\ {K_2 \times K_1} & {K_2 \times L_2} \end{bmatrix} \begin{pmatrix} \underbrace{\boldsymbol{x}_{1it}}_{K_1 \times 1} \\ \underline{\boldsymbol{z}_{2it}}_{L_2 \times 1} \end{pmatrix} + \underbrace{\boldsymbol{\nu}_{it}}_{K_2 \times 1}.$$
(B.2')

Now, plugging Equation (B.2') into (B.1), we obtain

$$\underbrace{y_{it}}_{1\times 1} = \underbrace{\begin{bmatrix} x'_{1it} & \left(x'_{1it} \Gamma'_1 + z'_{2it} \Gamma'_2 + \boldsymbol{\nu}'_{it}\right) \end{bmatrix}}_{1\times K} \underbrace{\begin{bmatrix} \boldsymbol{\lambda}_1 \\ \boldsymbol{\lambda}_2 \end{bmatrix}}_{K\times 1} + \underbrace{\eta_{it}}_{1\times 1}$$

$$= \underbrace{x'_{1it}}_{1\times K_1} \underbrace{\begin{pmatrix} \boldsymbol{\lambda}_1 + \Gamma'_1 \boldsymbol{\lambda}_2 \end{pmatrix}}_{K\times 1} + \underbrace{z'_{2it}}_{1\times L_2} \underbrace{\Gamma'_2 \boldsymbol{\lambda}_2}_{L_2\times 1} + \underbrace{\boldsymbol{\nu}'_{it} \boldsymbol{\lambda}_2 + \eta_{it}}_{1\times 1}$$

$$\equiv \underbrace{x'_{1it}}_{1\times K_1} \underbrace{\boldsymbol{\beta}_1}_{K_1\times 1} + \underbrace{z'_{2it}}_{1\times L_2} \underbrace{\boldsymbol{\beta}_2}_{L_2\times 1} + \underbrace{\boldsymbol{\varepsilon}_{it}}_{1\times 1}.$$

Finally, letting

$$oldsymbol{eta}_{L imes 1} \equiv egin{bmatrix} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \ oldsymbol{eta}_{L imes 1} \end{bmatrix}$$

we obtain the reduced form

$$\underbrace{y_{it}}_{1\times 1} = \underbrace{z'_{it}}_{1\times L} \underbrace{\beta}_{L\times 1} + \underbrace{\varepsilon_{it}}_{1\times 1}. \tag{1}$$

Notice that

$$\mathbb{E}ig[\underbrace{oldsymbol{z}_{it}}_{\scriptscriptstyle L imes 1}\underbrace{oldsymbol{
u}'_{it}}_{\scriptscriptstyle 1 imes K_2}ig] = \underbrace{oldsymbol{0}}_{\scriptscriptstyle L imes K_2}$$

by construction since Equation (B.2) is a linear projection. Therefore,

$$\mathbb{E}\big[\boldsymbol{z}_{it}\,\varepsilon_{it}\big]=0\implies\mathbb{E}\big[\boldsymbol{z}_{it}\,\eta_{it}\big]=0$$

since

$$\mathbb{E}ig[oldsymbol{z}_{it}\,arepsilon_{it}ig] = \mathbb{E}ig[oldsymbol{z}_{it}\,oldsymbol{
u}_{it}ig]\,oldsymbol{\lambda}_2 + \mathbb{E}ig[oldsymbol{z}_{it}\,\eta_{it}ig]$$

by definition.

In our DiD-IV setup, the parallel trends assumption underlying our main specification—given by Equation (1)—implies that $\mathbb{E}[z_{it}\,\varepsilon_{it}]=0$. Thus, by the argument above, the independence/ignorability requirement for a valid instrument is satisfied for our excluded instruments z_{2it} under the parallel trends assumption.