Determining distances and other stellar properties for millions of stars

Friedrich Anders (U Barcelona)

Cristina Chiappini, Arman Khalatyan, Anna Barbara Queiroz (AIP) Basilio X. Santiago (UFRGS)

A short history of stellar distance measurements

1838: first parallax measurement (Bessel)

1901: 58 parallaxes measured (Kapteyn)

1920s: first distance ladder controversy

1950s-today: main-sequence fitting for star clusters

1980s-2000s: statistical photometric distances to field stars

1990s-2010s: Hipparcos and its legacy: 100,000 stars with parallaxes (100

2000s-2010s: spectroscopic surveys ($\sim 10^6$ stars)

2018: Gaia DR2 (~109 stars)

24

PARALLAX DETERMINATIONS.

2

No.	Star.	Mag.	Comp. *	⊿ mag.	α 1900	ð 1900	Sp.	μ	ψ	π _{aut} .	r	Author.	n _{abs} .	Relat. weight.	π _{adopt.}	Abs. mag.	
177	Lal. 23917	8.3	7.7		h m	+ 1 45	c	" o·68	183	+ 0°01 + °025		Ch Y 2 Schl	+ 0.031	1 5	+ °0.029		
V 178	ð Virgin s	3.66	7.6		50:6	+ 3 56	Ma	0.481	263	- '04	39	Ch Y 2	030		— · 03 0		
179	Lal. 24414—'6	6.91	8.7		13 3.8	+ 5 46		0.43	175	- '00	48	Ch Y 2	+ .008		+ .008		
180	Lal. 24504	8.2	8.6		6.4	+ 10 9		0.22	297	+ '02	51	Ch Y 2	+ .058		+ .028		
181	43 Comae Ber.	4'32	8·5 7·4 8·5	- o.3		+ 28 23	G	1,183		+ '11 + '08 + '12	14 53 52	Pet 2 Fli Ch Y 2	+ '118 + '090 + '118	I	+ *116	4	
182	61 Virginis	4.80	5.4	0.6	13'2	— 17 45	G ₅	1.21	225	+ '14	33	Fli	+ '157		+ .157	5	
183	Weisse ₂ 13h,241	9.3	7.6		14.0	+ 35 39	K**	0.92	154	+ '07	52	Ch Y 2	+ .080		+ .080	8	@ picture-alliance/dg

The parallax horizon: Gaia's transversal impact on astronomy

A new era: What Gaia DR2 brought us

y [kpc] 0 Bailer-Jones+2018

- 1.7 billion stars with 5D astrometric parameters
- New parallax horizon: 100 pc \rightarrow 2 kpc
- Radial velocities for 7M stars up to G < 12
- Extinction and temperatures for 80M stars
- ...

Coupled with spectroscopic surveys:

- High-precision chemical abundances, possibly also okay ages
- Distances for stars farther than 3 kpc

Combining Gaia with other surveys: StarHorse2019 project

Gaia DR2, Pan-STARRS1, 2MASS, and WISE all-sky maps

Bayesian inference of distances and stellar parameters

StarHorse: joint posterior PDFs

A sharpened view of the Galaxy

Gaia end-of-mission expectation in 2012. Credit: X. Luri/ A. Robin

- Extension of the Gaia parallax horizon: More accurate distances for stars with imprecise parallaxes
- Masses and age estimates for stars with good parallaxes
- Better HRDs, more precise chemo-dynamics, stellar orbits, etc.

A sharpened view of the Galaxy

Gaia DR2 StarHorse view (22 months of data) Credit: A. Khalatyan/F. Anders

- Extension of the Gaia parallax horizon: More accurate distances for stars with imprecise parallaxes
- Masses and age estimates for stars with good parallaxes
- Better HRDs, more precise chemo-dynamics, stellar orbits, etc.

Improved HR diagrams with more stars

Improved extinction maps with more stars

Data access: gaia.aip.de

fanders@icc.ub.edu, akhalatyan@aip.de

First science applications

The future: Beyond "trad." Bayesian isochrone fitting

 Green+2019: used Gaussian processes to measure the 3D extinction structure + distances + stellar parameters simultaneously

The future: Beyond "trad." Bayesian isochrone fitting

 Cargile+2019: use neural networks to fit spectra, photometry, and astrometry to determine stellar parameters + distances + extinction simultaneously

Summary: available StarHorse results

- Gaia DR1 + {APOGEE DR14, RAVE DR5, GALAH DR1, GES DR3}: high-quality masses, distances and extinctions for ~1M stars. Results available via linea.gov.br
- Gaia DR2 + photometry: stellar parameters, distances & extinctions for G < 18: Results available via gaia.aip.de
- Gaia DR2 + {APOGEE DR16, RAVE DR5, GALAH DR2, GES DR3, LAMOST DR5}: Very soon! Stellar parameters, distances, extinctions for 3M stars

Some caveats

- Accuracy of our approach is limited by systematics in stellar models. Most important: binarity effects.
- Photometric zeropoints and transmission curves matter..
- Spatial variations in the extinction law are not taken into account...
- Different stellar parameter scales for different spectroscopic surveys...
- Extragalactic stellar populations (MCs, Sagittarius, etc) are not included in the prior...

Coming up next: Gaia DR2 + spectroscopic surveys results

Queiroz+ (in prep.):

Gaia DR2 +
{ APOGEE DR16,
RAVE DR5,
GALAH DR2,
GES DR3,
LAMOST DR5 }

Taking a closer look at the bar with APOGEE

(Fragkoudi+2017, Bovy+2019, Queiroz+in prep.)