IN THE SPECIFICATION

Please replace the paragraph at page 6, lines 1-24, with the following rewritten paragraph:

The operation of this driver circuit is as follows, depending on how the different switches are driven. In a first phase, the driving signal sent by the injection computer activates on the one hand closing of the selection switch K_i connected to the chosen injector I_i and on the other hand simultaneous closing of bridge switches P₁ and P₄, thus connecting terminal J₁ of primary winding L₁ to the (+) terminal of battery B and terminal J₂ thereof to the (-) terminal of the battery. During this time interval between instants T₀ and T₁, the voltage V_1 at the terminals of primary winding L_1 is equal to +E, such that the voltage V_s at the terminals of the secondary winding L2 is positive and equal to +mE by the effect of the transformation ratio, thus permitting loading through resonance inductor L of the actuator Ii selected by switch K_i activated by the computer. [[M]] m represents the ratio of the windings between L₂ and L₁ (i.e., L₂/L₁). Then, in a second phase, during the following time interval between times T₁ and T₂, the signal drives switches P₂ and P₄ to open position and simultaneously drives the two switches P₂ and P₃ to closed position, thus connecting terminal J_1 of primary winding L_1 to the (-) terminal of battery B and terminal J_2 thereof to the (+) terminal, voltage V_i at its negative terminals being equal to -E. Thus the voltage V_s at the terminals of secondary winding L₂ becomes negative and equal to -mE. These two phases are repeated a large number of times during the injection period, which lasts for between 100 μ s and 8 ms. The periodic voltage Vs at the terminals of secondary winding L₂ as a function of time is represented graphically in FIG. 2a. Voltage Vci at the terminals of injector Ii is then a sinusoidal signal of the same period as voltage V_s at the terminals of secondary winding L₂, as shown in FIG. 2b, oscillating between a maximum value +Vm and a minimum value -Vm. The injection computer then successively drives the other injectors I_i connected in parallel.