Predictors that Specialize

Yoav Freund

February 16, 2006

Outline

Outline

The specialists setup

bounding cumulative loss using relative entropy

Outline

The specialists setup

bounding cumulative loss using relative entropy

Applications of specialists

Up till now we assumed that each expert makes a prediction at each iteration.

- Up till now we assumed that each expert makes a prediction at each iteration.
- Imagine that experts are specialists, they predict only some of the time.

- Up till now we assumed that each expert makes a prediction at each iteration.
- Imagine that experts are specialists, they predict only some of the time.
- Gives the designer a lot of flexibility.

- Up till now we assumed that each expert makes a prediction at each iteration.
- Imagine that experts are specialists, they predict only some of the time.
- Gives the designer a lot of flexibility.
- Generalizes the switching experts setup.

On each iteration t = 1, 2, 3, ...

Adversary chooses a set E^t ⊆ {1,..., N} of awake specialists.

On each iteration $t = 1, 2, 3, \dots$

- Adversary chooses a set E^t ⊆ {1,..., N} of awake specialists.
- Adversary chooses predictions for specialists in E^t

On each iteration $t = 1, 2, 3, \dots$

- Adversary chooses a set E^t ⊆ {1,..., N} of awake specialists.
- Adversary chooses predictions for specialists in E^t
- Algorithm chooses it's prediction.

On each iteration t = 1, 2, 3, ...

- Adversary chooses a set E^t ⊆ {1,..., N} of awake specialists.
- Adversary chooses predictions for specialists in E^t
- Algorithm chooses it's prediction.
- Adversary chooses outcome.

On each iteration $t = 1, 2, 3, \dots$

- Adversary chooses a set E^t ⊆ {1,..., N} of awake specialists.
- Adversary chooses predictions for specialists in E^t
- Algorithm chooses it's prediction.
- Adversary chooses outcome.
- Algorithm suffers loss. Specialists in E^t suffer loss. Sleeping specialists suffer no loss.

Algorithm has to predict on each iteration

- Algorithm has to predict on each iteration
- ► Each specialist might sleep some of the time.

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- makes no sense to compare to total loss of best specialist.

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- makes no sense to compare to total loss of best specialist.
- ▶ **u**: a probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- makes no sense to compare to total loss of best specialist.
- ▶ **u**: a probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.
- ► Average loss w.r.t. **u**: $\ell_{\mathbf{u}}^t \doteq \frac{\sum_{i \in E^t} u_i \ell_i^t}{\sum_{i \in E^t} u_i}$

- Algorithm has to predict on each iteration
- Each specialist might sleep some of the time.
- makes no sense to compare to total loss of best specialist.
- ▶ **u**: a probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.
- ▶ Average loss w.r.t. **u**: $\ell_{\mathbf{u}}^t \doteq \frac{\sum_{i \in E^t} u_i \ell_i^t}{\sum_{i \in E^t} u_i}$
- ► Goal: $L_A \le \min_{\mathbf{u}} \sum_{t=1}^{T} \ell_{\mathbf{u}}^t + \text{something small}$

► We use normalized weights:

$$v_i^t = \frac{w_i^t}{\sum_{i=1}^N w_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

► We use normalized weights:

$$v_i^t = \frac{w_i^t}{\sum_{j=1}^N w_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

▶ Algorithm: treat the set E_t as the set of experts.

► We use normalized weights:

$$v_i^t = \frac{w_i^t}{\sum_{j=1}^N w_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

- ▶ Algorithm: treat the set *E_t* as the set of experts.
- Normalize the weights of specialists in E_t so that

$$\sum_{i \in E^t} v_i^t = \sum_{i \in E^t} v_i^{t+1}$$

▶ We use normalized weights:

$$v_i^t = \frac{w_i^t}{\sum_{j=1}^N w_i^t}, \ \mathbf{v}^t = \frac{\mathbf{w}^t}{W^t}$$

- ▶ Algorithm: treat the set *E_t* as the set of experts.
- Normalize the weights of specialists in E_t so that

$$\sum_{i \in E^t} v_i^t = \sum_{i \in E^t} v_i^{t+1}$$

▶ In particular: total weight is always 1.

▶ Bound for log loss (Theorem 1), for any distribution \mathbf{u} : $\sum_{t=1}^{t} u(\mathbf{E}^t) \ell_A^t \leq \sum_{t=1}^{T} \sum_{i \in \mathbf{E}^t} u_i \ell_i^t + \mathbf{RE}(\mathbf{u}||\mathbf{v}^1)$

- ▶ Bound for log loss (Theorem 1), for any distribution \mathbf{u} : $\sum_{t=1}^{t} u(\mathbf{E}^{t}) \ell_{A}^{t} \leq \sum_{t=1}^{T} \sum_{i \in \mathbf{E}^{t}} u_{i} \ell_{i}^{t} + \mathbf{RE}(\mathbf{u}||\mathbf{v}^{1})$
- ▶ $\mathbf{RE}(\mathbf{u}||\mathbf{v}) \doteq \sum_i u_i \log \frac{u_i}{v_i}$

- ▶ Bound for log loss (Theorem 1), for any distribution \mathbf{u} : $\sum_{t=1}^{t} u(E^t) \ell_A^t \leq \sum_{t=1}^{T} \sum_{i \in E^t} u_i \ell_i^t + \mathbf{RE}(\mathbf{u}||\mathbf{v}^1)$
- ▶ $\mathbf{RE}(\mathbf{u}||\mathbf{v}) \doteq \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}}$
- ▶ $u(E^t) \doteq \sum_{i \in E^t} u_i$

- ▶ Bound for log loss (Theorem 1), for any distribution \mathbf{u} : $\sum_{t=1}^{t} u(\mathbf{E}^t) \ell_A^t \leq \sum_{t=1}^{T} \sum_{i \in \mathbf{E}^t} u_i \ell_i^t + \mathbf{RE}(\mathbf{u}||\mathbf{v}^1)$
- ▶ $\mathbf{RE}(\mathbf{u}||\mathbf{v}) \doteq \sum_i u_i \log \frac{u_i}{v_i}$
- $\blacktriangleright u(E^t) \doteq \sum_{i \in E^t} u_i$
- ▶ If we assume that $u(E^t) = U$ is constant, we get

$$L_{A} \leq \sum_{t=1}^{T} \ell_{\mathbf{u}}^{t} + \frac{\mathsf{RE}(\mathbf{u}||\mathbf{v}^{1})}{U}$$

Total weight: $W^t \doteq \sum_{i=1}^N w_i^t$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^N w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^N w_i^t}$$

Total weight:
$$\mathbf{W}^t \doteq \sum_{i=1}^N \mathbf{w}_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t}$$

Total weight:
$$\mathbf{W}^t \doteq \sum_{i=1}^N \mathbf{w}_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^N w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^N w_i^t} = \frac{\sum_{i=1}^N w_i^t p_i^t(c^t)}{\sum_{i=1}^N w_i^t} = p_A^t(c^t)$$

$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^N w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^N w_i^t} = \frac{\sum_{i=1}^N w_i^t p_i^t(c^t)}{\sum_{i=1}^N w_i^t} = p_A^t(c^t)$$

$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log \frac{W^{T+1}}{W^t} = -\sum_{t=1}^T \log p_A^t(c^t)$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^N w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^N w_i^t} = \frac{\sum_{i=1}^N w_i^t p_i^t(c^t)}{\sum_{i=1}^N w_i^t} = p_A^t(c^t)$$

$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log \frac{W^{T+1}}{W^t} = -\sum_{t=1}^T \log p_A^t(c^t) = L_A^T$$

Total weight:
$$\mathbf{W}^t \doteq \sum_{i=1}^N \mathbf{w}_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

Total weight:
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

EQUALITY not bound!

▶ **u**, **v**: probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.

▶ **u**, **v**: probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.

>

$$\mathsf{RE}(\mathbf{u}||\mathbf{v}) \doteq \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}}$$

▶ **u**, **v**: probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.

$$\mathbf{RE}(\mathbf{u}||\mathbf{v}) \doteq \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}}$$

▶ $RE(\mathbf{u}||\mathbf{v}) \ge 0$, $RE(\mathbf{u}||\mathbf{v}) = 0$ iff $\mathbf{u} = \mathbf{v}$

- ▶ **u**, **v**: probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.

$$\mathbf{RE}(\mathbf{u}||\mathbf{v}) \doteq \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}}$$

- ► $RE(\mathbf{u}||\mathbf{v}) \ge 0$, $RE(\mathbf{u}||\mathbf{v}) = 0$ iff $\mathbf{u} = \mathbf{v}$
- $ightharpoonup \exists u, v, RE(u||v) \neq RE(v||u)$

▶ **u**, **v**: probability distributions, $u_i \ge 0$, $\sum_i u_i = 1$.

$$\mathbf{RE}(\mathbf{u}||\mathbf{v}) \doteq \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}}$$

- ▶ $RE(\mathbf{u}||\mathbf{v}) \ge 0$, $RE(\mathbf{u}||\mathbf{v}) = 0$ iff $\mathbf{u} = \mathbf{v}$
- ▶ $\exists \mathbf{u}, \mathbf{v}, \ \mathsf{RE}(\mathbf{u}||\mathbf{v}) \neq \mathsf{RE}(\mathbf{v}||\mathbf{u})$
- $ightharpoonup \exists u_1, u_2, u_3, \ \ \mathsf{RE}(u_1||u_3) > \mathsf{RE}(u_1||u_2) + \mathsf{RE}(u_2||u_3)$

Normalized weights notation

 $\triangleright p_i^t$: distribution (of letters) predicted by expert *i* at time *t*

Normalized weights notation

- $\triangleright p_i^t$: distribution (of letters) predicted by expert *i* at time *t*
- Experts losses at time t:

$$\ell^t = \left\langle \ell_1^t, \dots, \ell_N^t \right\rangle = -\left\langle \log p_1^t(c^t), \dots, \log p_N^t(c^t) \right\rangle$$

Normalized weights notation

- $\triangleright p_i^t$: distribution (of letters) predicted by expert *i* at time *t*
- Experts losses at time t: $\ell^t = \langle \ell_1^t, \dots, \ell_N^t \rangle = -\langle \log p_1^t(c^t), \dots, \log p_N^t(c^t) \rangle$
- ▶ Prediction of algorithm: $p_A^t = \sum_{i=1}^N v_i^t p_i^t$

Normalized weights notation

- $ightharpoonup p_i^t$: distribution (of letters) predicted by expert *i* at time *t*
- Experts losses at time t: $\ell^t = \langle \ell_1^t, \dots, \ell_N^t \rangle = -\langle \log p_1^t(c^t), \dots, \log p_N^t(c^t) \rangle$
- ▶ Prediction of algorithm: $p_{\Delta}^{t} = \sum_{i=1}^{N} v_{i}^{t} p_{i}^{t}$
- ► Loss of algorithm at time t: $\ell_{\Delta}^{t} = -\log p_{\Delta}^{t}(c^{t})$

► Let u be an arbitrary distribution vector over experts.

- ▶ Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_A^t \mathbf{u} \cdot \ell^t$

- Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_A^t \mathbf{u} \cdot \ell^t$
- ► Summing over t = 1, ..., T we get: $RE(\mathbf{u}||\mathbf{v}^1) - RE(\mathbf{u}||\mathbf{v}^{T+1}) = L_A - \mathbf{u} \cdot \sum_{t=1}^{T} \ell^t$

- Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_A^t \mathbf{u} \cdot \ell^t$
- ▶ Summing over t = 1, ..., T we get: $RE(\mathbf{u}||\mathbf{v}^1) - RE(\mathbf{u}||\mathbf{v}^{T+1}) = L_A - \mathbf{u} \cdot \sum_{t=1}^{T} \ell^t$
- lacksquare $L_{\mathcal{A}} \leq \min_{\mathbf{u}} \left(\mathbf{u} \cdot \sum_{t=1}^{T} \ell^{t} + \mathbf{RE} \left(\mathbf{u} || \mathbf{v}^{1}
 ight)
 ight)$

- Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_A^t \mathbf{u} \cdot \ell^t$
- ▶ Summing over t = 1, ..., T we get: $RE(\mathbf{u}||\mathbf{v}^1) - RE(\mathbf{u}||\mathbf{v}^{T+1}) = L_A - \mathbf{u} \cdot \sum_{t=1}^{T} \ell^t$
- lacksquare $L_{A} \leq \min_{\mathbf{u}} \left(\mathbf{u} \cdot \sum_{t=1}^{T} \ell^{t} + \mathbf{RE} \left(\mathbf{u} || \mathbf{v}^{1} \right) \right)$
- For the special case $\mathbf{u} = \langle 0, \dots, 0, 1, 0, \dots, 0 \rangle$ and $\mathbf{v}^1 = \langle 1/N, \dots, 1/N \rangle$ we get the old bound: $L_A \leq \min_i L_i + \log N$

$$\text{RE}\big(\textbf{u}||\textbf{v}^t\big) - \text{RE}\big(\textbf{u}||\textbf{v}^{t+1}\big) = \ell_{\mathcal{A}}^t - \textbf{u} \cdot \boldsymbol{\ell}^t$$

$$RE(\mathbf{u}||\mathbf{v}^t) - RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_A^t - \mathbf{u} \cdot \ell^t$$
V1
V2
V3

$$\mathbf{v}^{t+1}$$
 is chosen to minimize $\mathbf{RE}(\mathbf{v}^{t+1}||\mathbf{v}^t) + \mathbf{v}^{t+1} \cdot \boldsymbol{\ell}^t$

$$RE(\mathbf{u}||\mathbf{v}^{t}) - RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_{A}^{t} - \mathbf{u} \cdot \ell^{t}$$

$$V1$$

$$V2$$

$$V3$$

 \mathbf{v}^{t+1} is chosen to minimize $\mathbf{RE}(\mathbf{v}^{t+1}||\mathbf{v}^t) + \mathbf{v}^{t+1} \cdot \boldsymbol{\ell}^t$ Last line is confusing! I don't understand it!

$$RE(\mathbf{u}||\mathbf{v}^{t}) - RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_{A}^{t} - \mathbf{u} \cdot \ell^{t}$$

$$V1$$

$$V2$$

$$V3$$

 \mathbf{v}^{t+1} is chosen to minimize $\mathbf{RE}(\mathbf{v}^{t+1}||\mathbf{v}^t) + \mathbf{v}^{t+1} \cdot \boldsymbol{\ell}^t$ Last line is confusing! I don't understand it! But Manfred Warmuth does!

$$\blacktriangleright \ \mathsf{RE}\big(\mathsf{u}||\mathsf{v}^t\big) - \mathsf{RE}\big(\mathsf{u}||\mathsf{v}^{t+1}\big) = \ell_{\mathsf{A}}^t - \mathsf{u} \cdot \ell^t$$

$$\begin{split} \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\big(\textbf{u}||\textbf{v}^{t+1}\big) &= \ell_{\mathcal{A}}^t - \textbf{u} \cdot \ell^t \\ \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\Big(\textbf{u}||\textbf{v}^{t+1}\Big) \end{split}$$

$$\begin{split} \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\big(\textbf{u}||\textbf{v}^{t+1}\big) &= \ell_{\mathcal{A}}^t - \textbf{u} \cdot \ell^t \\ \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\Big(\textbf{u}||\textbf{v}^{t+1}\Big) \end{split}$$

$$\begin{split} \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\big(\textbf{u}||\textbf{v}^{t+1}\big) &= \ell_A^t - \textbf{u} \cdot \ell^t \\ \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\Big(\textbf{u}||\textbf{v}^{t+1}\Big) \\ &= \sum_i u_i \log \frac{u_i}{v_i^t} - \sum_i u_i \log \frac{u_i}{v_i^{t+1}} \end{split}$$

$$\begin{split} \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\big(\textbf{u}||\textbf{v}^{t+1}\big) &= \ell_A^t - \textbf{u} \cdot \ell^t \\ \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\Big(\textbf{u}||\textbf{v}^{t+1}\Big) \\ &= \sum_i u_i \log \frac{u_i}{v_i^t} - \sum_i u_i \log \frac{u_i}{v_i^{t+1}} = \sum_i u_i \log \frac{v_i^{t+1}}{v_i^t} \end{split}$$

$$\begin{split} \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\big(\textbf{u}||\textbf{v}^{t+1}\big) &= \ell_{\mathcal{A}}^t - \textbf{u} \cdot \ell^t \\ \textbf{RE}\big(\textbf{u}||\textbf{v}^t\big) - \textbf{RE}\Big(\textbf{u}||\textbf{v}^{t+1}\Big) \end{split}$$

$$= \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}^{t}} - \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}^{t+1}} = \sum_{i} u_{i} \log \frac{v_{i}^{t+1}}{v_{i}^{t}}$$

$$= \sum_{i} u_{i} \log \left(\frac{W^{t}}{W^{t+1}} \cdot \frac{w_{i}^{t+1}}{w_{i}^{t}}\right)$$

▶
$$\mathbf{RE}(\mathbf{u}||\mathbf{v}^t) - \mathbf{RE}(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_A^t - \mathbf{u} \cdot \ell^t$$

$$\begin{aligned} & \mathbf{RE}(\mathbf{u}||\mathbf{v}^t) - \mathbf{RE}(\mathbf{u}||\mathbf{v}^{t+1}) \\ &= \sum_i u_i \log \frac{u_i}{v_i^t} - \sum_i u_i \log \frac{u_i}{v_i^{t+1}} = \sum_i u_i \log \frac{v_i^{t+1}}{v_i^t} \\ &= \sum_i u_i \log \left(\frac{W^t}{W^{t+1}} \frac{w_i^{t+1}}{w_i^t} \right) \\ &= \log \frac{W^t}{W^{t+1}} + \sum_i u_i \log e^{-\ell_i^t} \end{aligned}$$

►
$$RE(\mathbf{u}||\mathbf{v}^t) - RE(\mathbf{u}||\mathbf{v}^{t+1}) = \ell_A^t - \mathbf{u} \cdot \ell^t$$

$$\begin{aligned} & \mathbf{RE}(\mathbf{u}||\mathbf{v}^{t}) - \mathbf{RE}(\mathbf{u}||\mathbf{v}^{t+1}) \\ &= \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}^{t}} - \sum_{i} u_{i} \log \frac{u_{i}}{v_{i}^{t+1}} = \sum_{i} u_{i} \log \frac{v_{i}^{t+1}}{v_{i}^{t}} \\ &= \sum_{i} u_{i} \log \left(\frac{W^{t}}{W^{t+1}} \frac{w_{i}^{t+1}}{w_{i}^{t}} \right) \\ &= \log \frac{W^{t}}{W^{t+1}} + \sum_{i} u_{i} \log e^{-\ell_{i}^{t}} = \ell_{A}^{T} - \sum_{i} u_{i} \ell_{i}^{t} \end{aligned}$$

► Suppose that loss is (a, c)-achievable.

- ► Suppose that loss is (*a*, *c*)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$

- ► Suppose that loss is (*a*, *c*)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- ▶ Let u be an arbitrary distribution vector over experts.

- ► Suppose that loss is (a, c)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- ▶ Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) \ge \frac{1}{c}\ell_A^t \frac{a}{c}\mathbf{u} \cdot \ell^t$

- Suppose that loss is (a, c)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- ▶ Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) \ge \frac{1}{c}\ell_A^t \frac{a}{c}\mathbf{u} \cdot \ell^t$
- Summing over t = 1, ..., T we get: $RE(\mathbf{u}||\mathbf{v}^1) - RE(\mathbf{u}||\mathbf{v}^{T+1}) = \frac{1}{c}L_A - \frac{a}{c}\mathbf{u} \cdot \sum_{t=1}^{T} \ell^t$

- Suppose that loss is (a, c)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- ▶ Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) \ge \frac{1}{c}\ell_A^t \frac{a}{c}\mathbf{u} \cdot \ell^t$
- Summing over t = 1, ..., T we get: $RE(\mathbf{u}||\mathbf{v}^1) - RE(\mathbf{u}||\mathbf{v}^{T+1}) = \frac{1}{c}L_A - \frac{a}{c}\mathbf{u} \cdot \sum_{t=1}^{T} \ell^t$
- ► $L_A \le \min_{\mathbf{u}} \left(a\mathbf{u} \cdot \sum_{t=1}^T \ell^t + c \mathbf{RE}(\mathbf{u}||\mathbf{v}^1) \right)$

- Suppose that loss is (a, c)-achievable.
- ► Achievable with Vovk algorithm, learning rate $\eta = \frac{a}{c}$
- ▶ Let u be an arbitrary distribution vector over experts.
- ▶ Lemma: $RE(\mathbf{u}||\mathbf{v}^t) RE(\mathbf{u}||\mathbf{v}^{t+1}) \ge \frac{1}{c}\ell_A^t \frac{a}{c}\mathbf{u} \cdot \ell^t$
- Summing over t = 1, ..., T we get: $RE(\mathbf{u}||\mathbf{v}^1) - RE(\mathbf{u}||\mathbf{v}^{T+1}) = \frac{1}{c}L_A - \frac{a}{c}\mathbf{u} \cdot \sum_{t=1}^{T} \ell^t$
- ► $L_A \le \min_{\mathbf{u}} \left(a\mathbf{u} \cdot \sum_{t=1}^T \ell^t + c \mathbf{RE} (\mathbf{u} || \mathbf{v}^1) \right)$
- ► For any mixable loss, a = 1, using $\mathbf{u} = \langle 0, \dots, 0, 1, 0, \dots, 0 \rangle$ and $\mathbf{v}^1 = \langle 1/N, \dots, 1/N \rangle$ we get the old bound: $L_A < \min_i L_i + c \log N$

Consider the context algorithm.

- Consider the context algorithm.
- Let each node in the tree be a specialist.

- Consider the context algorithm.
- Let each node in the tree be a specialist.
- Gives an inferior algorithm (regret bound is twice as large)

- Consider the context algorithm.
- Let each node in the tree be a specialist.
- Gives an inferior algorithm (regret bound is twice as large)
- But much easier to generalize.

Partition the input space. Assign each part to a specialist.

- Partition the input space. Assign each part to a specialist.
- Use several partitions, of different fineness.

- Partition the input space. Assign each part to a specialist.
- Use several partitions, of different fineness.
- Can partition time in addition to space.

- Partition the input space. Assign each part to a specialist.
- Use several partitions, of different fineness.
- Can partition time in addition to space.
- Parts do not have to be disjoint.

- Partition the input space. Assign each part to a specialist.
- Use several partitions, of different fineness.
- Can partition time in addition to space.
- Parts do not have to be disjoint.
- Partitions can adapt to data.

- Partition the input space. Assign each part to a specialist.
- Use several partitions, of different fineness.
- Can partition time in addition to space.
- Parts do not have to be disjoint.
- Partitions can adapt to data.
- Your idea here...