

Why interlace?

- The human visual system (HVS) is less sensitive to flickering detail than to large area flicker (flicker perception threshold depends on viewing angle)
- · Interlacing displays profit from this fact
- In the past, around 1935!, transmission format and display format had to be equal to prevent complex processing in the receivers

De-interlacing

Categories in de-interlacing Intra-field methods ID linear filtering Definition of the content of the conten

Performance of the VT-linear filter NMC vs

Stationary text

Horizontally moving text Vertically moving text

Performance of the VT-median filter

Stationary text

Horizontally moving text Vertically moving text

Summary of NMC de-interlacing methods • Linear methods • intra-field • compromise alias and blur • inter-field • poor performance on detailed parts with motion • Non-linear methods • motion adaptive • switch between intra and inter-field interpolation - median filter • good for stationary, fair for moving image parts • edge orientation dependent filtering • difficult in detailed picture parts • Now: Motion compensated de-interlacing

Motioncompensated median

Derivation of control factor k in AR de • Interpolated pixel resinter lacing $C = k \frac{(U+L)}{2} + (1-k)C_{mc}$ • Prediction quality equivalent for original and interpolated pixels • Substitution resultgin: $+ \frac{L_{mc} - L}{2}$ • Some rewriting $k C_{mc} + k \frac{(U+L)}{2} = \frac{U_{mc} - U}{2} + \frac{L_{mc} - L}{2}$ $k = \frac{|(U_{mc} + L_{mc}) - (U+L)| + \delta}{|2C_{mc} - (U+L)| + \delta}$

Stationary text

Horizontally moving text

Vertically moving text

Majority selection (MS) Possible strengths: — preservation of edges (median, MC field insertion) — preservation of texture (VT-filter, MC-field insertion) — robustness (median, VT-filter) Principle of MS de-interlacing: — median selects between individual de-interlacing methods — all strengths occur in a majority of de-interlacing methods — weaknesses only occur in minority of de-interlacing methods — → so output combines strengths of individual methods No strict evidence for principle, but results very good

Some results (MSEak vs. 2-D RobGST

Algorithm/ Sequence	Adaptive Recursive	Original GST	Original GST (Robust)	2-D GST (Robust)
Siena	12.16	9.19	7.68	2.70
Kielp	84.73	109.15	87.25	60.73
Football	27.28	50.12	30.67	27.34
Renata	23.29	13.58	7.03	6.97
Bicycle	32.28	65.97	31.14	21.39

Combined MC & directional interpolation

