

ORCO UGA & ENSIMAG

DECISION SUPPORT SYSTEM FOR CARPOOLING TO REDUCE CAR TRAFFIC IN GRENOBLE AREA

Romain NAVARRO June, 29th 2018

Supervisor: Prof. Van-Dat CUNG, G-SCOP & UGA

Jury members: PROF. Nadia BRAUNER

 ${\bf Prof.}\ \ {\bf Van\text{-}Dat}\ {\bf CUNG}$

DR. Vassilissa LEHOUX

Prof. Matej STEHLIK

- 2 Problem description
- Modeling
- 4 Experiments

Outline

- Context
 - Carpooling
 - Interests
 - Existing applications
 - Barriers to these systems

Carpooling characteristics:

- Private vehicles
- Group of people sharing the same car, called pool
- Participation in the expenses generated by the trips

Context: Interests

Motivations:

- Users: Save money
- Communities:

With 20% carpooling, there would be no traffic jams

- Companies: Create a stronger sense of community and improve productivity
- Operators: Make money

²How to Encourage Employees to Carpool - rideamigos.com → (♣ →) ♣ → (♦) 3/35

¹Francois Bellot - fleeteurope.com

Context

Context: Existing applications

- BlaBlaLines: Links users according to their schedule, allowing a detour of at most fifteen minutes for a trip
- Klaxit: Finds regular close carpoolers
- Karos: Fits with people who periodically do the same circuit

¹Covoiturage domicile-travail BlaBlaLines arrive Paris et en Ile-de-France - 2017

²Sylvain Arnulf - Covoiturage domicile/travail : Klaxit (ex-Wayzup) embarque de nouveaux partenaires pour se detacher - 2018.

Context

Context: Barriers to these systems

Three main barriers that emerge in the articles:

- Commitments: Users do not want to make a long-term commitment
- Punctuality: Users do not want to be too early or too late at work
- Detours: Users do not want to make too long detours

Outline

- Same workplace for all
- One workplace per user
- Work arrival time
- Objective
- Return management
- One user several places
- Latest arrival time
- Problem class
- State of the art

Problem description: Same workplace for all

Problem description: One workplace per user

Context

Problem description: Objective

Figure: Minimization of the total cost

Problem description: Same pool

Figure: Home-to-work user pools

Problem description: Same pool

Figure: Way back user pools

One user several places

Problem description: One user several places

In the case the place of work is **not fixed**, or if the user planned an **external activity**.

The trip between the two workplaces is not managed by our system(company car, public transport, his car if he took it...). Same thing with homes, even if it is less frequent.

- (a) Authorized advance = 20 min (b) Authorized advance = 10 min

The time window is of the form:

[(Latest arrival time - Authorized advance),Latest arrival time

Similar thing after work, with the authorized wait.

Context

Problem description: Problem class

LCPP must have regular users with a long-term commitment. We wanted a more flexible system, where users can change every day, and this class is called the DCPP.

¹Vittorio Maniezzo, Roberto Wolfler Calvo - 2004 ← → + ₹ > + ₹ > ₹ → 9 < > 15/35

State of the art

Problem description: State of the art

¹All references in the report Romain NAVARRO - 2018 (♣) (♣) (♣) (♣) (♣) (16/35)

Outline

- Modeling
 - Data
 - Decision variables
 - Constraints summary
 - Resolution process

Modeling: Data

Data

Modeling: Data

Max travel time of a vertex $v = \text{direct travel time} \times (1 + \gamma) + \delta$

(a) Authorized deviation = 0%

(b) Authorized deviation = 20%

Modeling: Decision variables

Modeling: Constraints summary

Path constraints: (section 4.4.1 p32-33)

- Only a driver can pick-up passengers, and pick himself up
- A passenger picked up by a driver must be dropped by that driver
- An user never leaves his destination

Time constraints: (section 4.4.1 p33-34)

• The passage time at each vertex is precisely sequenced, respecting the time windows and max travel time constraints

Capacity constraints: (section 4.4.1 p34)

• The car's capacity at each vertex is precisely sequenced, and never exceeds its maximum capacity

¹Hossein Karimi - 2018

Outline

- 4 Experiments
 - Protocol
 - General parameters
 - Linear program parameters
 - Instances parameters
 - Overall results
 - Fill rate
 - Same user pool
 - Limits of the model
 - The case of Grenoble

Protocol

- Operating System: Windows 10 Professional 64-bit version.
- Code language: JAVA
- Solver: CPLEX
- RAM quantity: 8GB
- CPU: Intel Core i5-4690 CPU 3.50 GHz

All available at the following web address:

https://github.com/NeoKa4ra/CarPoolingInternship

- Generator mode: Associated Associated or dissociated program
- **Instances mode**: Change Does the instance have to change between each execution?
- Number of runs 30
- Maximum execution time 6 minutes
- Maximum number of executions 30

Experiments: Linear program parameters

- Maximum advance time 30 minutes
- Maximum waiting time 15 minutes
- Percentage deviation 20%
- Fixed deviation value 5

Experiments: Instances parameters

- Instance mode: 3 random cities and random workplaces Predefined cities, all random...
- Number of users 20
- List of predefined cities and workplaces None
- Probability of having a second workplace 20%
- Probability of having a second home 5%
- Ranges in which the schedules will be generated [8am,9am] and [4pm,9pm]

Figure: Vary users

Experiments: Overall results

Figure: Vary the deviation percentage with 19 users

Context

Fill rate

Hours generation range	5:00	1:00	0:00	
Mean	1.14	1.38	1.81	
Median	1.15	1.35	1.86	
Standard deviation	0.09	0.12	0.21	

The more users we have with close working hours, the higher the fill rate is .

¹Quel est le taux doccupation d'une voiture ? □ www.futūra-sciences.com Q © 28/35

Same pool: much lower execution time

Table: Objective value with 5 users

Name of the data	LP	LPSP
Mean	48.96	50.04
Median	48.5	50.5
Standard deviation	15.26	15.32

Table: Objective value with 10 users

Name of the data	LP	LPSP
Mean	92.00	98.90
Median	88.00	95.5
Standard deviation	19.32	20.58

Objective difference with: 5 users: 2.20% 10 users: 7.5%

We decided that having a maximum GAP of 2% on average was appropriate.

Less than 2% of GAP on 1 hour for 25 users.

Less than 10% of GAP on 1 hour for 30 users.

We can manage up to 25 people with the default configuration.

Experiments: The case of Grenoble

Figure: Mountains around Grenoble city

Experiments: The case of Grenoble

Figure: Home-to-work: VIZILLE PONT-DE-CLAIX VIF

The case of Grenoble

Experiments: The case of Grenoble

Figure: Home-to-work: VOIRON VINAY SAINT-LAURENT-DU-PONT

The case of Grenoble

Experiments: The case of Grenoble

Figure: Home-to-work: PONTCHARRA LE-TOUVET CROLLES

Conclusion

Is not more complex than common CPP:

- Return Management
- One user with multiple workplaces
- Have respected and respectable schedules

Set up prospects:

Parking relay before entering the valleys

Resolution prospects:

- Manage more users with a heuristic
 - Find the heuristics most appropriate to the particularities of Grenoble