Existence de cycle dans une fonction discrète

Nicolas Blackburn

2017/03/03

Introduction

Matrice d'adjacence

Soit une fonction $f: \mathbb{N} \to \mathbb{N}$. La matrice d'adjacence partielle de f est une matrice carrée d'ordre n, définie comme étant

$$[\mathrm{Adj}_n \, f]_{i,j} = \begin{cases} 1 \text{ si } f(j) = i & \text{et } i \leq n \\ 0 \text{ sinon.} \end{cases}$$

Propriétés de la matrice d'adjacence

Les coefficients d'une matrice d'adjacence sont tous 0 ou 1.

Chaque colonne d'une matrice d'adjacence ne contient au plus qu'un seul coefficient égal à 1.

Posons $M_f = \operatorname{Adj}_n f$, $M_g = \operatorname{Adj}_n g$ et considérons $\vec{e_i}$ un vecteur dans \mathbb{C}^n , valant 1 à la *i*-ième composante et 0 pour toute autre composante. Alors

$$M_f \vec{e}_i = \vec{e}_{f(i)}$$

 et

$$M_f M_g = M_{f \circ g}.$$

Cycle

Soit une fonction $f: X \to X$. On dit que f a un cycle d'ordre k s'il existe un élément $x \in X$ tel que $f^k(x) = x$, pour k > 0 et k entier. L'ordre du cycle contenant x est k si et seulement si k est le plus petit entier tel que $f^k(x) = x$. On définit $\mathcal{C} = (x_1 \ x_2 \ \dots \ x_k)$ étant un cycle de f, $x_i \in X$ et $i \neq j$ implique $x_i \neq x_j$. Alors

$$f(x_i) = \begin{cases} x_{i+1} & \text{si } i < k \\ x_1 & \text{si } i = k. \end{cases}$$

On a le cas particulier d'un cycle d'ordre 1 qui est appelé un point fixe.

Ensemble connexe

Un ensemble connexe X' d'une fonction $f: X \to X$ est un sous-ensemble de X tel que pour tout éléments $x_1 \in X'$, il existe un élément $x_2 \in X'$ tel que $f(x_1) = x_2$ ou $f(x_2) = x_1$.

Polynôme caractéristique

Soit une fonction $f: X \to X$ sur un ensemble X fini et $\mathcal{P}_f[\lambda]$, son polynôme caractéristique, alors

$$\mathcal{P}_f[\lambda] = \lambda^{|Z|} \prod_{\mathcal{C}_i \in C} (\lambda^{|\mathcal{C}_i|} - 1)$$

où Z est l'ensemble des éléments de X qui ne sont pas élément d'un cycle de f et C est l'ensemble des cycles de f.

Preuve:

Pour tout élément $z \in Z$, il existe un entier k > 0 minimal tel que $f^k(z) \in Z$, sinon il y aurait contradiction avec le fait que les éléments de Z ne sont pas élément d'un cycle.

Alors il existe au moins un élément $z \in Z$ tel que $f(z) \notin Z$. Soit Z_1 , l'ensemble des éléments de Z tels que $f(z) \in Z$ si $z \in Z_1$ et Z_2 , l'ensemble des éléments de Z tels que $f(z) \notin Z$ si $z \in Z_2$.

Soit $Z = \{z_i\}$, i allant de 1 à |Z| et l'application $g: Z \to \mathbb{N}$ définie telle que $g(z_i) = i$. L'application g est bijective et $g \circ f \circ g^{-1}$ a le même polynôme caractéristique que f.

Comme f appliqué sur tout élément $x \in \overline{Z}$ est un élément de \overline{Z} , alors on a que la matrice de $g \circ f \circ g^{-1}$ est une matrice bloc triangulaire

$$\left[\begin{array}{cc} A & 0 \\ B & C \end{array}\right]$$

et donc que $\mathcal{P}_f(\lambda) = \mathcal{P}_A(\lambda)\mathcal{P}_B(\lambda)$.

Le polynôme caractéristique $\mathcal{P}_A(\lambda) = \lambda^{|Z|}$. En effet pour tout $x \leq |Z|$, soit $g^{-1}(x) \in Z_1$ et $g \circ f \circ g^{-1}(x) \geq |Z|$, ou $g^{-1}(x) \in Z_2$ et $g \circ f \circ g^{-1}(x) > |Z|$.

Cas où
$$g^{-1}(x) \in \mathbb{Z}_2$$
:

La x-ième colonne de A ne contient que des 0, et donc $\operatorname{Det}(\lambda I - A) = \lambda^{|Z_2|} \operatorname{Det}(\lambda I - A')$, où A' est la sous-matrice de A où les x-ièmes colonnes et rangées de A ont été supprimées, pour tout $x \in Z_2$.

Formule de comptage

On a

$$|X| = |Z| + \sum_{\mathcal{C}_i \in C} |\mathcal{C}_i|.$$

Existence de cycle

Si la fonction $f: \mathbb{N} \to \mathbb{N}$ a un cycle d'ordre k, alors il existe M_n , une matrice d'adjacence partielle de f d'ordre n, telle que $(\lambda^k - 1)$ divise $\mathcal{P}_{M_n}[\lambda]$.

Si f n'a pas de cycle alors $\mathcal{P}_{M_n}[\lambda]=\lambda^n$ pour toute matrice M_n d'adjacence partielle de f d'ordre n.

Conclusion