Student Marks Predictor

1. Business Problem

predict the percentage of an student based on the no. of study hours.

1.1 Description

With the help of this predictor you can find out the marks of students according their study hours.

2. Machine learning problem

2.1 data

source file's link:-

```
data file name :- student_info.csv
size of data :- 2.4 kB
```

https://drive.google.com/file/d/1gebOloJzZSQbbfrsLKbTKaM6AFz3PPZ4/view?usp=sharing

3. Type of machine learning problem

It is a Regression problem where we find out real interger numbers.

4. Exploratory Data Analysis

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import joblib
from sklearn import svm
```

4.1 Reading data and basic stats

76.74

1

6.56

	study_hours	student_marks
2	NaN	78.68
3	5.67	71.82
4	8.67	84.19
5	7.55	81.18
6	6.67	76.99
7	8.99	85.46
8	5.19	70.66
9	6.75	77.82

```
In [4]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 2 columns):
```

Column Non-Null Count Dtype
0 study_hours 195 non-null float64
1 student_marks 200 non-null float64

dtypes: float64(2)
memory usage: 3.2 KB

```
In [5]: data.describe()
```

Out[5]:

	study_hours	student_marks
count	195.000000	200.00000
mean	6.995949	77.93375
std	1.253060	4.92570
min	5.010000	68.57000
25%	5.775000	73.38500
50%	7.120000	77.71000
75 %	8.085000	82.32000
max	8.990000	86.99000

checking for null values

```
In [6]: data.isnull().sum()
```

Out[6]: study_hours 5 student_marks 0 dtype: int64

Replace all the null values with mean value.

```
In [7]: data2=data.fillna(data.mean())
In [8]: data2.isnull().sum()
```

```
Out[8]: study_hours 0
student_marks 0
dtype: int64
```

```
In [9]:
```

```
sns.lineplot(x="study_hours",y="student_marks",data=data2)
plt.show()
```



```
In [10]:
```

```
sns.distplot(data2["study_hours"])
plt.show()
```

/home/sunil/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:25 57: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-le vel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [11]:

```
sns.distplot(data2["student_marks"])
plt.show()
```

/home/sunil/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:25 57: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-le vel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)


```
In [12]: sns.scatterplot(x="study_hours",y="student_marks",data=data2)
```

Out[12]: <AxesSubplot:xlabel='study_hours', ylabel='student_marks'>

split dataset for training

```
In [13]:
          x=data2.drop("student_marks", axis="columns")
          y=data2.drop("study_hours",axis="columns")
          print("shape of x",x.shape)
          print("shape of y", y.shape)
         shape of x (200, 1)
         shape of y (200, 1)
In [14]:
          X_train,X_test,Y_train,Y_test=train_test_split(x,y,test_size=0.2, random_stat
In [15]:
          print("shape of X Train", X_train.shape)
          print("shape of Y Train", Y_train.shape)
          print("shape of X Test", X_test.shape)
          print("shape of Y Test", Y test.shape)
         shape of X Train (160, 1)
         shape of Y Train (160, 1)
         shape of X Test (40, 1)
         shape of Y Test (40, 1)
```

LinearRegression validation

```
In [16]:
          lr=LinearRegression()
In [17]:
           lr.fit(X train,Y train)
Out[17]: LinearRegression()
         I saved the model's coef and intercept in afile, so again i restart my program, and it will start
         from where it last time executed, and it will run till the last.
In [18]:
          lr.coef
Out[18]: array([[3.93571802]])
In [19]:
          lr.intercept
Out[19]: array([50.44735504])
In [20]:
            m = 3.93
            c = 50.44
            y = m*12+c
            У
Out[20]: 97.6
In [21]:
          lr.predict([[4]])[0][0].round(2)
         66.19
Out[21]:
In [22]:
           y_pred=lr.predict(X_test)
          y_pred
Out[22]: array([[83.11381458],
                  [78.9025963],
                  [84.57003024],
                  [85.82946001],
                  [84.72745896],
                  [80.75238377],
                  [72.84159055],
                  [71.66087515],
                  [73.23516235],
                  [71.66087515],
                  [73.47130543],
                  [76.38373677],
                  [73.23516235],
                  [73.58937697],
                  [82.95638585],
                  [70.40144538],
                  [73.23516235],
                  [78.74516758],
                  [75.55723598],
                  [82.68088559],
                  [76.65923703],
                  [70.48015974],
                  [74.77009238],
```

```
[77.98143645],
                   [85.59331693],
                   [82.56281405],
                   [76.42309395],
                   [85.0423164],
                   [78.39095296],
                   [81.38209865],
                   [81.73631327],
                   [83.15317176],
                   [82.20859943],
                   [81.10659839],
                   [73.58937697],
                   [71.1492318],
                   [71.89701823],
                   [81.53952737],
                   [72.60544747],
                   [71.93637541]])
In [23]:
           feature_data=pd.DataFrame(np.c_[X_test,Y_test,y_pred], columns=["study_hours"]
In [24]:
           feature data.head(10)
                          student_marks_original
             study_hours
                                                student_marks_predicted
Out[24]:
          0
                     8.30
                                          82.02
                                                             83.113815
                     7.23
                                          77.55
                                                             78.902596
          1
          2
                     8.67
                                          84.19
                                                             84.570030
          3
                     8.99
                                          85.46
                                                             85.829460
                     8.71
                                          84.03
                                                             84.727459
          4
          5
                     7.70
                                          80.81
                                                             80.752384
          6
                     5.69
                                          73.61
                                                             72.841591
          7
                     5.39
                                          70.90
                                                             71.660875
```

Accuracy of model

5.79

5.39

8

9

73.235162

71.660875

73.14

73.02

output / solution

```
In [27]: joblib.dump(lr, "Student_Marks_Predictor.pkl")
Out[27]: ['Student_Marks_Predictor.pkl']
In [28]: model=joblib.load("Student_Marks_Predictor.pkl")
In [29]: model.predict([[12]]) #it is showing student's mark according to no. of study
Out[29]: array([[97.67597124]])
```