А23 — Снижение орбиты МКС

Введение

Рис. 1: Рис. 1: Международная космическая станция на орбите.

В настоящий момент Международная Космическая Станция (сокращённо МКС, англ. ISS - International Space Station) двигается по орбите, близкой к круговой. Минимальное среднее расстояние до Земли при её движении составляет $370\,\mathrm{km}$, максимальное - $460\,\mathrm{km}$. Станция двигается в термосфере. Плоскость орбиты составляет угол $\theta=51.6^\circ$ с плоскостью экватора. Траектория станции похожа на спираль с медленно меняющимся расстоянием от неё до поверхности Земли. Изменение данного расстояния за один оборот вокруг Земли незначительно.

Масса МКС составляет $M_s=4.5\times10^5$ кг, общая длина $L_s=109$ м. Огромные солнечные панели шириной $W_S=73$ м обеспечивают МКС электрической энергией [Официальный Отчёт NASA (2023)].

С учётом всех батарей и других частей, эффективная площадь поперечного сечения станции составляет приблизительно $S \approx 2.5 \times 10^3 {\rm M}^2$ [Европейское Космическое Агентство, SDC6-23].

Снижение орбиты МКС связано с несколькими явлениями, уменьшающими энергию орбитального движения. Основными из них являются:

- сопротивление атмосферы, вызванное частыми столкновениями молекул газа со станцией;
- сила Ампера, возникающая при движении проводящих частей МКС в магнитном поле Земли;
- взаимодействие с ионами атомарного кислорода.
- "... В мае 2008 высота орбиты МКС составляла 350 километров, станция потеряла 4.5 км высоты, а затем с помощью транспортного грузового космического корабля Прогресс M-64 была поднята на 5.5 км ..."[https://mod.jsc.nasa.gov]

Рис. 2: Рис. 2: Высота орбиты МКС (км) в период с 1998 по 2019 год.

Рис. 3: Рис. 3: Средняя высота орбиты МКС (км) в 2022-2023 годах.

"... МКС теряет до 100 м высоты каждый день... "[Данные NASA (2021)]. В 2023 году МКС движется на высоте 410 км, и снижается приблизительно на 70 м в день (~ 2 км в месяц). Во время магнитных бурь снижение достигает 300 м. МКС корректирует свою орбиту с помощью своих двигателей, а также двигателей посещающих её аппаратов [Отчёт о МКС (2022)].

Рис. 4: Рис. 4: Площадь сечения МКС при взгляде с различных углов (дм²).

Обозначения и физические постоянные:

Универсальная газовая постоянная	R	=	8.31 Дж· K^{-1} ·моль $^{-1}$
Число Авогадро	N_A	=	$6.022 \cdot 10^{23} \mathrm{моль}^{-1}$
Молярная масса воздуха	μ	=	$0.029~{ m kr}{\cdot}{ m моль}^{-1}$
Масса Земли	M_E	=	5.97 · 10 ²⁴ кг
Радиус Земли	R_E	=	$6.38 \cdot 10^6$ м
Гравитационная постоянная	G	=	$6.67 \cdot 10^{-11} \mathrm{m}^3 \cdot \mathrm{c}^{-2} \cdot \mathrm{кr}^{-1}$
Плотность воздуха на поверхности Земли	$ ho_0$	=	1.29 кг/м ³
Ускорение свободного падения на поверхности Земли	g_0	=	9.81 M·c ⁻²
Средняя величина магнитного поля Земли	В	=	$5.0 \cdot 10^{-5}$ Тл
Модуль заряда электрона	e	=	1.60 · 10 ^{−19} Кл

Часть А. Уточнённая барометрическая формула (2 балла)

Воздух в атмосфере состоит по большей части из нейтральных молекул O_2 и N_2 . Воздух подчиняется уравнению Менделеева-Клапейрона: $pV=\frac{M}{\mu}RT$, где p,V,T,M и μ это давление, объём, температура, масса и молярная масса порции газа соответственно, R - универсальная газовая постоянная.

Есть два уравнения для вычисления зависимости давления воздуха от высоты. Первое уравнение применимо к стандартной модели **тропосферы** (высоты h < 100км). Оно предполагает изменение температуры с высотой.

Второе уравнение относится к стандартной модели **термосферы** (h>250км). В нём температура почти не зависит от высоты. Это уравнение применимо к исследованию движения МКС.

страница 2 из 5 ∞

В этой задаче можно считать давление гидростатическим и изотропным (то есть оно действует одинаково по всем направлениям).

A1 $^{0.50}$ Найдите зависимость давления p_h от высоты h. Зависимость может содержать интегральное выражение. Это уравнение называется основной барометрической формулой.

Примечание 1. Температура термосферы Земли на высотах 300-600км меняется незначительно и в среднем составляет 800-900К на солнечной стороне [Данные NASA]. Следовательно, при исследовании полёта МКС мы можем считать $T_h = T = const$. Так как космический корабль проводит почти половину времени полёта с теневой стороны Земли, где температура резко снижается, можно считать, что в среднем на этих высотах температура равна T = 425К.

Эта температура также соответствует значению плотности воздуха $\rho_h \sim 10^{-12} {\rm kr/m}^3$ на высоте $h=400 {\rm km}$ [Модель Верхних Слоёв Атмосферы Земли MSISE-90].

Рис. 5: Рис. 5: Термосфера Земли.

A2^{0.30} Получите стандартную барометрическую формулу: зависимость давления от высоты p_h^{sta} , считая, что температура и ускорение свободного падения не зависят от h. Рассчитайте величину $h_0 = \frac{RT}{\mu g_0}$ при T = 425 К.

A3^{0.60} Получите уточнённую барометрическую формулу: зависимость давления от высоты p_h^{imp} , считая, что температура постоянна, а ускорение свободного падения зависит от высоты h.

 ${f A4^{0.40}}$ Рассчитайте отношение значений давлений, вычисленных по стандартной и по уточнённой барометрическим формулам при $h=4.0\times 10^5$ м. Далее используйте уточнённую формулу.

A5^{0.20} Найдите плотность воздуха ho_h и концентрацию нейтральных молекул воздуха n_h на высоте h, используя линейное приближение.

Часть В. Орбитальное замедление и скорость снижения станции (3 балла)

Пусть на станцию массой M_S действует постоянная тормозящая сила \vec{F}_{drag} . В этой части задачи оценивается скорость уменьшения высоты орбиты МКС. Считайте, что изменение высоты dh значительно меньше высоты полёта h ($dh \ll h$).

B1^{0.50} Найдите скорость станции v_h и период обращения τ_h , если станция движется по орбите высотой h.

 ${f B2^{0.50}}$ Найдите полную энергию E_S станции, двигающейся по круговой орбите радиусом R_E + h.

с Страница 3 из 5 ∞

B3^{1.00} На станцию действует некоторая суммарная тормозящая сила \vec{F}_{drag} . В результате МКС замедляется, и высота её орбиты уменьшается на dh за малое время dt. Запишите закон изменения энергии МКС, считая известным значение F_{drag} .

В4^{0.50} Найдите скорость снижения станции u_h .

В5^{0.50} Найдите изменение высоты H_h станции за один оборот вокруг Земли и полное время T_h , за которое станция упадёт на поверхность Земли с начальной высоты h.

Часть С. Сопротивление атмосферы (1 балл)

Скорость станции v во много раз больше чем средние скорости (сотни м/с) теплового движения молекул в атмосфере на высоте $h\approx 300-400$ км, то есть можно считать, что молекулы покоятся перед столкновением с МКС. Для грубой оценки считайте, что после столкновения молекулы приобретают такую же скорость, что и станция.

C1^{0.50} Найдите силу сопротивления воздуха F_{air} , скорость уменьшения высоты орбиты u_h^{air} и изменение высоты за один оборот H_h^{air} в этом случае.

C2^{0.50} Найдите полное время T_h^{air} , за которое станция упадёт на поверхность Земли с начальной высоты h из-за сопротивления атмосферы.

Часть D. Учёт атомарного кислорода (1 балл)

В термосфере под действием излучения воздух ионизируется (из-за чего, например, возникает "северное сияние"). В отличие от кислорода O_2 , азот N_2 не диссоциирует под действием солнечного излучения, поэтому в верхних слоях атмосферы атомарного азота N гораздо меньше, чем атомарного кислорода O. На высотах больше 250км преобладает атомарный кислород O. Слои, содержащие электроны и ионы атомов кислорода, возникают на освещенной стороне атмосферы. В этом случае концентрация ионов атомарного кислорода составляет $n_{ion} \sim 10^{12} {\rm M}^{-3}$.

 $oxed{D1^{0.30}}$ Найдите среднюю (за 24 часа) тормозящую силу F_{ion} , обусловленную столкновениями с этими частицами. Ночью ионизацией молекул можно пренебречь. Найдите также плотность ионизированных молекул кислорода ho_{ion} .

 ${f D2^{0.70}}$ Найдите скорость уменьшения высоты орбиты станции u_h^{ion} , связанную со взаимодействием с ионами атомарного кислорода. Найдите также изменение высоты за один оборот H_h^{ion} в этом случае.

Часть Е. Торможение магнитным полем Земли (2 балла)

Рассмотрим влияние магнитного поля Земли на движение станции. Магнитное поля Земли вблизи поверхности изменяется в диапазоне $(3.5-6.5)\cdot 10^{-5}$ Тл , среднее значение составляет $B=5\cdot 10^{-5}$ Тл.

Когда станция движется с большой скоростью в магнитном поле, в её проводящих элементах возникает электрический ток. Электродвижущая сила вызывает перераспределение электрических зарядов в проводящих элементах станции. Электрическое поле вблизи станции приводит к движению заряженных частиц в окружающем её пространстве. Электроны притягиваются к частям станции, у которых положительный потенциал (относительно средней части станции), а ионы притягиваются к частям с отрицательным потенциалом. Электроны и ионы, сталкиваясь с поверхностью станции, стремятся собираться в нейтральные атомы кислорода. Эти электроны, которые движутся по проводящим частям

страница 4 из 5 ∞

станции, и создают электрический ток. Станция, двигаясь в космосе, "собирает"электроны и ионы из окружающего пространства, сталкиваясь с ними.

Для грубой оценки тока, возникающего в проводящих частях станции, считайте, что она "собирает"частицы только с площади, эквивалентной площади поперечного сечения станции *S*. Также считайте, что все ионы и электроны участвуют в создании тока.

Е1 $^{0.60}$ Оцените величину возникающего в проводящих частях станции тока I_{ind} .

E2^{0.60} Получите приближённое выражение для тормозящей силы Ампера F_{ind} в направлении, противоположном направлению движению станции.

Пусть ϕ - угол между магнитным полем Земли B, направленным вдоль меридианов, и скоростью МКС \vec{v} . Для простоты считайте, что длина станции L равна корню квадратному из её площади S. Кроме того, вместо подсчёта среднего значения $\sin(\phi)$ вы можете аппроксимировать его значением $\sin(\pi/2 - \theta)$. Вы можете использовать дискретное число точек для подсчёта среднего значения.

E3^{0.80} Найдите скорость снижения станции из-за её взаимодействия с магнитным полем Земли. Найдите также изменение высоты за один оборот H_h^{ind} в этом случае.

Часть Г. Численные расчёты и выводы (1 балл)

$F1^{0.40}$

Рассчитайте необходимые величины и заполните Таблицу 1 в листе ответов.

<i>h</i> , км	T_h^{air} , дней	u_{air} , м/день	u_{ion} , м/день	<i>u_{ind}</i> ,м/день	∑,м/день	u_{ISS} , м/день
350						
375						
400						
410						

$F2^{0.40}$

Рассчитайте необходимые величины и заполните Таблицу 2 в листе ответов.

• •						
<i>h</i> , км	H_h^{air} , M	H_h^{ion} , M	H_h^{ind} , M			
350						
375						
400						
410						

F3^{0.20} МКС обращается по орбите на высотах выше 380 км. Расположите три рассмотренных эффекта торможения станции в порядке убывания их влияния.