DESIGN OF MULTILEVEL NETWORKS

- Design of multilevel networks
- Transformations to satisfy constraints
 (no. of gate inputs, network size, and network delay)
- Design of networks with XOR and XNOR gates
- Design of networks with multiplexers (MUXes)

Design more complex than for two-level networks

- No standard form
- Several requirements have to be met simultaneously
- Several outputs have to be considered
- CAD tools (logic synthesis) used

- 1. Obtain SP or PS expressions for the functions of the system
- 2. Transform the expressions (or the corresponding two-level networks) so that the requirements are met
- 3. Replace AND and OR gates by NAND and NOR when appropriate

Several iterations might be needed

Size of network

- Size : number of gates and number of gate inputs
- Number of gates reduced by
 - 1. factoring
 - 2. Subexpressions shared by several network outputs

Example 6.1: 1-bit comparator

Inputs: $x, y \in \{0, 1\}$

 $c \in \{\text{greater}, \text{equal}, \text{less}\}$

Output: $z \in \{\text{greater}, \text{equal}, \text{less}\}$

Function:
$$z = \begin{cases} \text{greater } & \textbf{if} & x > y \text{ or } (x = y \text{ and } c = \text{greater}) \\ \text{equal} & \textbf{if} & x = y \text{ and } c = \text{equal} \\ \text{less} & \textbf{if} & x < y \text{ or } (x = y \text{ and } c = \text{less}) \end{cases}$$

Figure 6.1: Comparator

Coding:

c	c_2	c_1	c_0
z	z_2	z_1	z_0
GREATER	1	0	0
EQUAL	0	1	0
LESS	0	0	1

		x, y				
		00	01	10	11	
	100	100	001	100	100	
c	010	010	001	100	010	
	001	001	001	100	001	

z

Expressions:

$$z_2 = xy' + xc_2 + y'c_2$$
 G
 $z_1 = (x' + y)(x + y')c_1$ E
 $z_0 = x'y + x'c_0 + yc_0$ S

Resulting two-level network:

7 AND and 4 OR gates (22 equivalent gates) and 25 gate inputs

Define:

$$t = (x + y')$$

$$w = (x' + y)$$

$$z_2 = xy' + tc_2$$

$$z_1 = twc_1$$

$$z_0 = x'y + wc_0$$

- Size: 18 equivalent gates
- Further reduction: NAND network 9 equivalent gates

Figure 6.2: 1-bit comparator implementations

A two-level implementation:

$$z_{5} = x_{5}x'_{4} + x_{5}x'_{3} + x_{5}x'_{2} + x_{5}x'_{1} + x_{5}x'_{0} + x'_{5}x_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{4} = x_{4}x'_{3} + x_{4}x'_{2} + x_{4}x'_{1} + x_{4}x'_{0} + x'_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{3} = x_{3}x'_{2} + x_{3}x'_{1} + x_{3}x'_{0} + x'_{3}x_{2}x_{1}x_{0}$$

$$z_{2} = x_{2}x'_{1} + x_{2}x'_{0} + x'_{2}x_{1}x_{0}$$

$$z_{1} = x_{1}x'_{0} + x'_{1}x_{0}$$

$$z_{0} = x'_{0}$$

Two-level network:

 $6~\mathrm{NOT}~20~\mathrm{AND}$, $5~\mathrm{OR}$ gates, and $76~\mathrm{gate}$ inputs

Factoring

$$z_{5} = x_{5}(x'_{4} + x'_{3} + x'_{2} + x'_{1} + x'_{0}) + x'_{5}x_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{4} = x_{4}(x'_{3} + x'_{2} + x'_{1} + x'_{0}) + x'_{4}x_{3}x_{2}x_{1}x_{0}$$

$$z_{3} = x_{3}(x'_{2} + x'_{1} + x'_{0}) + x'_{3}x_{2}x_{1}x_{0}$$

$$z_{2} = x_{2}(x'_{1} + x'_{0}) + x'_{2}x_{1}x_{0}$$

$$z_{1} = x_{1}x'_{0} + x'_{1}x_{0}$$

$$z_{0} = x'_{0}$$

- Four-level network (NOT-OR-AND-OR):
 - $6~\mathrm{NOT}~10~\mathrm{AND}$ and $9~\mathrm{OR}$ gates, and 54~gate inputs

The fan-in of gates

- Fan-in of gates ⇔ number of operands per operator
- Reduced by decomposing a large gate into several smaller gates
- AND and OR are associative,

$$a + b + c + d + e + f = (a + b + c) + (d + e + f)$$

Terms to decompose:

$$(x'_4 + x'_3 + x'_2 + x'_1 + x'_0) = (x'_4 + x'_3 + r_{210})$$

$$(x'_5 x_4 x_3 x_2 x_1 x_0) = x'_5 a_{43} a_{210}$$

$$(x'_3 + x'_2 + x'_1 + x'_0) = x'_3 + r_{210}$$

$$(x'_4 x_3 x_2 x_1 x_0) = x'_4 x_3 a_{210}$$

$$z_{5} = x_{5}(x'_{4} + x'_{3} + r_{210}) + x'_{5}a_{43}a_{210}$$

$$z_{4} = x_{4}(x'_{3} + r_{210}) + x'_{4}x_{3}a_{210}$$

$$z_{3} = x_{3}r_{210} + x'_{3}a_{210}$$

$$z_{2} = x_{2}(x'_{1} + x'_{0}) + x'_{2}x_{1}x_{0}$$

$$z_{1} = x_{1}x'_{0} + x'_{1}x_{0}$$

$$z_{0} = x'_{0}$$

More gates and more levels:
 6 NOT, 18 NAND, 3 NOR, size: 31 equivalent gates

 $Figure \ 6.3 \colon$ Reducing the number of gate inputs

Example $z_i = w \ x \ y_i \qquad 0 \le i \le 63$

 $Figure \ 6.4$: Reducing the output load

- Output load of NAND producing $w \cdot x$ 64L (L is load factor of NOR gate)
- Propagation delay (high to low) between x and z_i (load 5 at output):

$$(0.05 + 0.038 \times 64) + (0.07 + 0.016 \times 5) = 2.63ns$$

Use buffers

Gate	Fan-	Propagati	ion delays	Input factor	Size
type	in	t_{pLH}	t_{pHL}	[Standard	[equiv.
		[ns]	[ns]	loads]	[gates]
Buffer	1	0.15 + 0.006L	0.19 + 0.003L	2	4
Inv. Buf.	1	0.04 + 0.006L	0.05 + 0.006L	4.7	3

Delay:

$$(0.05 + 0.038 \times 4) + (0.15 + 0.006 \times 32) + (0.07 + 0.016 \times 5) = 0.69ns$$

Example: Even parity circuit – alternatives

Input:
$$\underline{x} = (x_7, x_6, \dots, x_0), x_i \in \{0, 1\}$$

Output: $z \in \{0, 1\}$

Function:
$$z = \begin{cases} 1 & \text{if } \Sigma_{i=0}^{7} x_i \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

Implementation 1: Two-level network.

CSP: 128 minterms - no reduction possible

Cost: 128 AND gates and one OR gate

Each AND gate 8 inputs, OR gate 128 inputs

Not practical: large number of gates, large fan-in

$$P(\underline{x}) = P(\underline{x}_l)P(\underline{x}_r) + P'(\underline{x}_l)P'(\underline{x}_r)$$

Figure 6.5: Network with fan-in=4

Table 6.2: Characteristics of alternative implementations for the parity function

Impl.	Network	Gates				No.
	input load	Type	Fan-in	Fan-out	Number	levels
1	64	AND	8	1	128	2
		OR	128	-	1	
2	4	AND	4	1	16	6
		OR	4	1	4	
		OR	2	1	3	
		AND	2	1	2	
		NOT	1	1	2	

Example: 8-input odd-parity checker

Input: $\underline{x} = (x_7, \dots, x_0), x_i \in \{0, 1\}$

Output: $z \in \{0, 1\}$

Function: $z = \begin{cases} 0 & \text{if number of } 1'\text{s in } \underline{x} \text{ is even} \\ 1 & \text{if number of } 1'\text{s in } \underline{x} \text{ is odd} \end{cases}$

Figure 6.6: Odd-parity checker

$$z = x_7 \oplus x_6 \oplus x_5 \oplus x_4 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0$$

Example: 32-bit equality comparator

Input:
$$\underline{x} = (x_{31}, \dots, x_0), x_i \in \{0, 1\}$$

 $\underline{y} = (y_{31}, \dots, y_0), y_i \in \{0, 1\}$
Output: $z \in \{0, 1\}$

Function:
$$z = \begin{cases} 1 & \text{if} \quad x_i = y_i \text{ for } 0 \le i \le 31 \\ 0 & \text{otherwise} \end{cases}$$

$$z = AND(XNOR(x_{31}, y_{31}), \dots, XNOR(x_{i}, y_{i}), \dots, XNOR(x_{0}, y_{0}))$$

 $Figure \ 6.7: \ \textbf{32-bit equality comparator}$

- 2-input multiplexer (MUX): $z = MUX[x_1, x_0, s] = x_1 \cdot s + x_0 s'$
- Set {MUX } is universal (constants 0 and 1 available)

$$NOT(x) = MUX[0, 1, x] = 0 \cdot x + 1 \cdot x' = x'$$

 $AND(x_1, x_0) = MUX[x_1, 0, x_0] = x_1x_0 + 0 \cdot x'_0 = x_1x_0$

Figure 6.8: 2-input multiplexer and NOT and AND gates

• Shannon's decomposition (SD)

$$f(x_{n-1}, x_{n-2}, \dots, x_0) = f(x_{n-1}, x_{n-2}, \dots, 1) \cdot x_0$$
+ $f(x_{n-1}, x_{n-2}, \dots, 0) \cdot x'_0$

$$z = f(x_{n-1}, x_{n-2}, \dots, x_0)$$

= $MUX[f(x_{n-1}, x_{n-2}, \dots, x_1, 1), f(x_{n-1}, x_{n-2}, \dots, x_1, 0), x_0]$

Example:

$$z = x_3(x_2 + x_0)x_1 = MUX[x_3x_1, x_3x_2x_1, x_0]$$

Obtain a tree of multiplexers by repeated use of SD

Figure 6.9: a) Realization of Shannon's decomposition with multiplexer; b) Repeated decomposition.

- Implement $f(x_3, x_2, x_1, x_0) = z = x_3(x_1 + x_2x_0)$ with MUX tree
 - Decompose with respect to x_2, x_1, x_0

$$f(x_3, 0, 0, 0) = 0 f(x_3, 0, 0, 1) = 0$$

$$f(x_3, 0, 1, 0) = x_3 f(x_3, 0, 1, 1) = x_3$$

$$f(x_3, 1, 0, 0) = 0 f(x_3, 1, 0, 1) = x_3$$

$$f(x_3, 1, 1, 0) = x_3 f(x_3, 1, 1, 1) = x_3$$

Eliminate redundant MUXes

Ordering of variables in subtrees affects the number of MUXes

Figure 6.10: