Topology

The mathematics of shape

Roderic Guigó Corominas

August 13th 2019

SMTB 2019

The Shape of Data

A data point is a vector of numbers (d_1, \ldots, d_n) .

- The size of the vector, *n*, is called the dimension.
- It can be represented as a point in an *n*-dimensional space.
- Points can be grouped (connected) into spaces.

The Shape of Data

Goal: Study a data set from a Topological perspective. Obtain information from its "shape".

Example (Lotka-Volterra): Predator-prey observations suggested that there were periodic solutions.

Flow Chart

Today: Topology

Can be very abstract, but here we have a provisional definition:

Topology is the area of mathematics that studies shape.

Topological Spaces and Their

Properties

• Line \mathbb{R} : 1 dimension.

.

- Line \mathbb{R} : 1 dimension.
- Plane \mathbb{R}^2 : 2 dimensions.

.

- Line \mathbb{R} : 1 dimension.
- Plane \mathbb{R}^2 : 2 dimensions.
- 3-space \mathbb{R}^3 : 3 dimensions.

- Line \mathbb{R} : 1 dimension.
- Plane \mathbb{R}^2 : 2 dimensions.
- 3-space \mathbb{R}^3 : 3 dimensions.
- 4-space \mathbb{R}^4 : 4 dimensions.

- Line \mathbb{R} : 1 dimension.
- Plane \mathbb{R}^2 : 2 dimensions.
- 3-space \mathbb{R}^3 : 3 dimensions.
- 4-space \mathbb{R}^4 : 4 dimensions.
- •

- Line \mathbb{R} : 1 dimension.
- Plane \mathbb{R}^2 : 2 dimensions.
- 3-space \mathbb{R}^3 : 3 dimensions.
- 4-space \mathbb{R}^4 : 4 dimensions.
- •
- n-space \mathbb{R}^n : n dimensions.

- Line \mathbb{R} : 1 dimension.
- Plane \mathbb{R}^2 : 2 dimensions.
- 3-space \mathbb{R}^3 : 3 dimensions.
- 4-space \mathbb{R}^4 : 4 dimensions.
- •
- n-space \mathbb{R}^n : n dimensions.

A point in these spaces is a vector (x_1, x_2, \dots, x_n) .

- Line \mathbb{R} : 1 dimension.
- Plane \mathbb{R}^2 : 2 dimensions.
- 3-space \mathbb{R}^3 : 3 dimensions.
- 4-space \mathbb{R}^4 : 4 dimensions.
- •
- n-space \mathbb{R}^n : n dimensions.

A point in these spaces is a vector (x_1, x_2, \dots, x_n) .

Can only visualize up to 3 dimensions \Rightarrow first issue.

Topological Spaces

A Topological Object is a subset of \mathbb{R}^n .

Some examples:

- The whole \mathbb{R}^n .
- Interval: $a \le x \le b$ in \mathbb{R}^1 .
- Discrete set of points: $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots, (x_n, y_n, z_n)$ in \mathbb{R}^3 .
- Circle or Sphere: $x^2 + y^2 = 1$ in \mathbb{R}^2 and $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 .
- A torus (holllow donut) in \mathbb{R}^3 .

Topological Spaces

How can they be defined?

- Equality/inequality.
- Picture.
- By their properties.
- By some geometric construction.

We want to introduce the notion of continuous deformation. What is allowed?

- Bend
- Strech
- Twist
- Crumple

What is **not** allowed?

- Tear
- Glue

Example: deforming a circle. Consider the equation $x^2 + y^2 = 1$. It defines a circle of radius 1.

• Translate circle: $(x - a)^2 + (y - b)^2 = 1$.

Example: deforming a circle. Consider the equation $x^2 + y^2 = 1$. It defines a circle of radius 1.

- Translate circle: $(x a)^2 + (y b)^2 = 1$.
- Increase the radius: $x^2 + y^2 = r^2$.

Example: deforming a circle. Consider the equation $x^2 + y^2 = 1$. It defines a circle of radius 1.

- Translate circle: $(x a)^2 + (y b)^2 = 1$.
- Increase the radius: $x^2 + y^2 = r^2$.
- Deform into an ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Similar but different. The circle, on the left is a different object than the disk, on the right. They are both inside \mathbb{R}^2 .

$$x^2 + y^2 = 1$$

$$x^2 + y^2 \le 1$$

Similar but different. The circle, on the left is a different object than the disk, on the right. They are both inside \mathbb{R}^2 .

One cannot be deformed into the other.

Topology

So we now have an actual definition:

Topology is the study of the properties of a geometric object that are preserved under continuous deformations.

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length:

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

- Length: No
- Components:

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

- Length: No
- Components: Yes

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

• Components: Yes

• Symmetry:

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

- Length: No
- Components: Yes
- Symmetry: No

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

• Components: Yes

• Symmetry: No

• Holes:

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

• Components: Yes

• Symmetry: No

• Holes: Yes

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

• Components: Yes

• Symmetry: No

• Holes: Yes

• Dimension:

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

• Components: Yes

• Symmetry: No

• Holes: Yes

• Dimension: Yes

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

• Components: Yes

• Symmetry: No

• Holes: Yes

• Dimension: Yes

• Cardinality:

A topological property or invariant is a property of a topological space that doesn't change when applying a continuous deformations. Which of the following are invariant and which properties vary?

• Length: No

• Components: Yes

• Symmetry: No

• Holes: Yes

• Dimension: Yes

• Cardinality: Yes

Invariant	Non-invariant
Components	Length
Dimension	Surface Area
Cardinality	Volume
Holes	Distance between points
Euler Characteristic	Symmetry
Homotopy Type	
Homology Groups	

Topological Properties

Invariant	Non-invariant
Components	Length
Dimension	Surface Area
Cardinality	Volume
Holes	Distance between points
Euler Characteristic	Symmetry
Homotopy Type	
Homology Groups	

Today we focus on holes.

Topological Properties: Components

Figure 1: Mobius Strip

Figure 3: Network

Figure 2: Graph

Figure 4: Olympic Rings

Topological Properties: Holes

A loop in a topological space is a function from a circle:

Think of a rubber band that can stretch and move around the space.

A topological space has a hole if one can place a rubber band that can't be shrinked.

Topological Properties: Holes

Spaces with holes: circle, torus, cylinder, punctured disk, etc.

Spaces without holes: sphere, disk, etc.

Topological Properties: Voids

According to our definition, a sphere has no holes, this seems wrong. How do we detect the empty space inside the sphere? Instead of a rubber band, think of a balloon.

Topological Invariants: Higher Dimensions Holes

The notion of hole

- dimension 1: components
- dimension 2: holes
- dimension 3: voids
- ...

Examples: Sphere

- Dimension: 1
- Components: 1
- Holes: 0
- Voids: 1
- Higher Dimensional Holes: 0

Examples: Torus

• Dimension: 1

• Components: 1

• Holes: 2

• Voids: 1

• Higher Dimensional Holes: 0

Examples: Klein Bottle

• Dimension: 1

• Components: 1

• Holes: 1

• Voids: 0

• Higher Dimensional Holes: 0

Examples: Sphere of 3 dimensions

The sphere of 3 dimensions of radius 1: $x^2 + y^2 + z^2 + w^2 = 1$.

• Dimension: 3

• Components: 1

• Holes: 0

Voids: 0

• Holes of dimension 4: 1

Next Time

How can we represent a topological object on a computer?

Next Time

How can we represent a topological object on a computer? Simplices

Questions?