Correction

Partie I

1. f est endomorphisme de E: immédiat

Montrons f antisymétrique : $\forall x, y \in E$,

$$(f(x)|y) = (u \land x|y) = \text{Det}(u,x,y) = -\text{Det}(u,y,x) = -(u \land y|x) = -(f(x)|y)$$

2. Soit $x \in E$: $x \in \ker f \Leftrightarrow x$ et u sont colinéaires.

Sachant $u \neq 0$, cela équivaut $\exists \lambda \in \mathbb{R}, x = \lambda . u$.

Ainsi $\ker f = \operatorname{Vect}(u)$.

On a $\forall x \in E, f(x) = u \land x \in \{u\}^{\perp}$ donc $\operatorname{Im} f \subset \{u\}^{\perp}$.

De plus $\dim \{u\}^{\perp} = 2$ et par le théorème du rang $\dim \operatorname{Im} f = 2$.

Donc $\operatorname{Im} f = \{u\}^{\perp}$.

3.
$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$$
.

Cette matrice est antisymétrique.

Partie II

1. (i) \Rightarrow (ii):

Supposons f que est antisymétrique, considérons $\mathcal{B} = (e_1, ..., e_n)$ une base orthonormée de E et formons $A = \operatorname{Mat}_{\mathcal{B}}(f) = (a_{i,j})$.

 $\forall 1\!\leq\! i,j\!\leq\! n$, $\,a_{_{i,j}}$ est la $\,i^{\,\text{ème}}$ composante de $\,f(e_{_j})\,$ dans $\,\mathcal{B}$.

Donc $a_{i,j} = (e_i | f(e_j))$.

Sachant f antisymétrique :

$$a_{i,j} = (e_i | f(e_j)) = -(f(e_i) | e_j) = -a_{j,i}$$

donc A est antisymétrique.

 $(ii) \Rightarrow (iii)$:

Supposons que la matrice de f dans une base orthonormée $\mathcal B$ soit antisymétrique. Notons A celle-ci.

Pour tout $x \in E$, notons $X = \operatorname{Mat}_{\kappa}(x)$.

Nous savons $AX = \operatorname{Mat}_{\kappa}(f(x))$.

$$(f(x)|x) = {}^{t}(AX)X = {}^{t}X{}^{t}AX = -{}^{t}XAX = -{}^{t}X(AX) = -(x|f(x))$$

Donc (f(x)|x) = 0.

 $(iii) \Rightarrow (i)$:

Supposons $\forall x \in E, (f(x) \mid x) = 0$.

Pour tout $x, y \in E$ on a (f(x+y) | x+y) = 0.

Or

$$(f(x+y)|x+y) = (f(x)|x) + (f(x)|y) + (f(y)|x) + (f(y)|y) = (f(x)|y) + (f(y)|x)$$

donc (f(x)|y) + (f(y)|x) = 0.

2.a Montrons que A(E) est un sous-espace vectoriel de $\mathcal{L}(E)$.

$$A(E) \subset \mathcal{L}(E)$$
.

L'endomorphisme nul est antisymétrique.

Soit $f, g \in A(E)$ et $\lambda, \mu \in \mathbb{R}$. Pour tout $x, y \in E$:

$$((\lambda f + \mu g)(x) \mid y) = \lambda(f(x) \mid y) + \mu(g(x) \mid y) = -\lambda(x \mid f(y)) - \mu(x \mid g(y)) = -(x \mid (\lambda f + \mu g)(y))$$

Donc $\lambda f + \mu g \in A(E)$.

Finalement A(E) est un sous-espace vectoriel de L(E).

2.b Soit \mathcal{B} une base orthonormée de E.

Par la question II.1, on peut affirmer que l'application $\varphi: A(E) \mapsto A_n(\mathbb{R})$ définie par $\varphi(f) = \operatorname{Mat}_{\mathcal{B}}(f)$ est un isomorphisme de \mathbb{R} -espace vectoriel.

Donc dim
$$A(E)$$
 = dim $A_n(\mathbb{R})$ = $\frac{n(n-1)}{2}$.

3.a Soit \mathcal{B} une base orthonormée de E et $A = \operatorname{Mat}_{\mathcal{B}}(f)$.

Comme ${}^{t}A = -A$ on a det $A = (-1)^{n} \det A$ d'où det $f = (-1)^{n} \det f$.

Si n est impair, f n'est pas un isomorphisme.

3.b Soit $x \in \ker f$ et $y = f(u) \in \operatorname{Im} f$.

On a
$$(x | y) = (x | f(u)) = -(f(x) | u) = 0$$
 car $f(x) = 0$.

Donc $\operatorname{Im} f \subset (\ker f)^{\perp}$.

De plus $\dim \operatorname{Im} f = \dim E - \dim \ker f = \dim(\ker f)^{\perp}$.

3.c Notons $g: \operatorname{Im} f \to \operatorname{Im} f$ la restriction de f à $\operatorname{Im} f$.

g est un endomorphisme de $\operatorname{Im} f$ car restriction de l'endomorphisme f et g est antisymétrique car la propriété de définition est conservée par restriction.

Etudions l'injectivité de g. Soit $x \in \text{Im } f$

On a $x \in \ker g$ ssi g(x) = 0 i.e. f(x) = 0 d'où $x \in \ker f$.

Ainsi $x \in \operatorname{Im} f \cap \ker f = \{0\}$.

Finalement $\ker g = \{0\}$ et donc g est injectif.

3.d Comme g est isomorphisme antisymétrique de $\operatorname{Im} f$, par la question II.3.a on peut affirmer $\operatorname{rg}(f) = \dim \operatorname{Im} f$ est pair.

Partie III

- 1. a = 0 et \mathcal{B} base orthonormée quelconque conviennent.
- 2.a $0 < rg(f) \le 3$ et rg(f) est pair donc dim Im f = 2.
- 2.b La matrice A de f dans \mathcal{B} est antisymétrique.

Comme $k \in \ker f$, la dernière colonne de A est nulle.

Par antisymétrie, la dernière ligne de A est aussi nulle et, toujours par antisymétrie, A s'avère être de la forme voulue.

3. Existence:

Si f = 0 alors u = 0 convient.

Si $f \neq 0$ alors, en reprenant la construction de la question 2, u = -ak convient.

Unicité

Soit u, v deux vecteurs solutions du problème posé.

$$\forall x \in E, f(x) = u \land x = v \land x \text{ donc } (u - v) \land x = 0.$$

Le vecteur u-v est colinéaire à tout vecteur de E, c'est donc le vecteur nul.