Earthwork Inspectors Training

NYSDOT

Geotechnical Engineering Bureau

Student Handout

Schedule

Session 1: Section 203: Excavation &

Embankment Day I Session 2: Soil Description AM Creating a "Word Picture" Session 3: Soil Gradation Importance in Highway Construction Test Procedure and Lab Exercise Session 4: Moisture-Density Relationship Day I of Soil PM Concept & Principles Test Procedure & Lab Exercise Family of Curves Day 2 Session 5: Field Density Determination AM Importance in Highway Construction Test Procedure and Lab Exercise Review Day 2 PM Test

FACTORS INFLUENCING EMBANKMENT CONSTRUCTION

1. EMBANKMENT MATERIALS

A. Suitable

- 1. Mineral (inorganic) Soil
- 2. Blasted or broken rock
- 3. Similar materials of natural man-made origion
- 4. Mixtures of the above

B. Unsuitable

- 1. Muck, Peat, Organic Silt
- 2. Topsoil, Sod
- 3. Certain man-made deposits of industrial waste, sludge or landfill

C. Unstable

A suitable material whose moisture content causes it to become unstable under load

2. MOISTURE CONTENT

- A. Moisture is needed to lubricate soil particles so they move close together for maximum density when compacted.
- B. Too much Moisture results in excess pore pressure and maximum density cannot be obtained. (Unstable Material).
- C. The contractor is responsible for determining the proper moisture content at which to compact material.

3. LIFT THICKNESS

- A. Soil & Rock Controlled by compaction equipment (Section 203-3.12)
- B. Importance of layer thickness
 - 1. Compaction effectiveness decreases rapidly with depth.
 - 2. Thin layers provide maximum uniformity when compacted properly
- C. Exceptions For an unstable foundation soil Begin embankment with up to a 3 foot lift of material
- D. Maximum Particle Size
 - 1. Embankment: 2/3 loose lift thickness
 - 2. Subgrade: 6 inches

NYSDOT Library 50 Wolf Road, POD 34 Albany, New York 12232

4. EQUIPMENT

ROLLER TYPE	MOST EFFECTIVE USE	REMARKS	SPECIFICATION REQUIREMENTS
RUBBER-TIRED (PNEUMATIC)	SAND & GRAVEL SUBBASE STABILIZED MATERIAL	PROVIDES A KNEADING ACTION THAT GIVES GOOD COMPACTION	FIGURE 203-1 AND FIGURE 203-2 IN STANDARD SPECIFICATIONS
SMOOTH DRUM	GRANULAR MATERIAL ROCK BASE COURSE SEAL ROLLING	A MUST FOR SEAL ROLLING, PRODUCING A SMOOTH UNIFORM SURFACE	
SMOOTH DRUM VIBRATORY	GRANULAR MATERIAL ROCK	VIBRATING LOADS PROVIDE BETTER RESULTS THAN STATIC LOADS	FIGURE 203-3 IN STANDARD SPECIFICATIONS
SHEEPSFOOT	SILTS AND CLAYS SILTS	NOT RECOMMENDED FOR STONY SOILS	
SEGMENTED	SILTS AND CLAYS	ACTION IS SIMILAR TO SHEEPSFOOT	
PROOF ROLLER	REQUIRED ON ALL SUBGRADES	USED TO VERIFY UNIFORMITY	FIGURE 203-4 SECTION 203-3.13* SECTION 203.3.14**
UNCLASSIFIED COMPACTION EQUIPMENT	un izeta ban anatung mag	EVALUATE BASED ON SITE FIELD TESTS CONDUCTED BY ENGINEER	
EARTHMOVERS OR TRUCKS		DO NOT SUBSTITUTE FOR COMPACTION EQUIPMENT!!!	

^{*} CONTRACTOR IS RESPONSIBLE FOR NECESSARY CORRECTIVE TREATMENTS OF EMBANKMENTS

^{**} STATE IS RESPONSIBLE FOR ANY NECESSARY CORRECTIVE TREATMENTS OF CUT SECTIONS

5. TESTING FREQUENCY (CONSTRUCTION SUPERVISION MANUAL)

ITEM	COMPACTION	GRADATION			
Embankment Construction Material	One test for each Day, Fill or 10,000 cubic yards*	Not Required			
Select Granular Items	One test for each Day, Fill or 10,000 cubic yards*	One test for each Day, Source or 5,000 cubic yards*			
Granular Pipe Backfill Items	One test for each Day, Structure or 500 cubic yards*	One test for each Day, Source or 500 cubic yards*			
Slope Protection Material	Not Required	One test for each Day, Source or 5,000 cubic yards* See Geotechnical Control Procedure One test for each Day, Source or 1,000 cubic yards*			
Underdrain Filter Material	Not Required				
Structure Backfill	One test for each Day, Structure or 500 cubic yards*				
Subbase Course (Non-Stockpiled)	Not Required	Two tests for each Day, source 1,500 cubic yards or as shown in the appropriate Geotechnical Control Procedure*			
Subbase Course (Stockpiled)	Not Required	See Geotechnical Control Procedure			
Trench & culvert and Structure Excavation Backfill	One test for each Day, Structure or 500 cubic yards*	Not Required			

^{*} Whichever results in the greater testing frequency Presently the Geotechnical Control Procedure is GCP-17

6. COMPACTIVE EFFORT

AREA	% MAXIMUM DENSITY			
EMBANKMENT	90%			
SUBGRADE	95%			
CULVERTS, STRUCTURES & TRENCHES	95%			

More effort is required in the subgrade area to provide high density where load is greatest.

Particle Size Chart

Gradation Test Procedure

Significant Number Rounding

When the next digit beyond the last place to be retained is:

• Less than 5. Drop that number and leave the remainder unchanged.

565.61=565.6 565.62=565.6 565.63=565.6 565.34=565.6

• Greater than 5. Increase the last digit to be retained by 1.

565.66=565.7
 565.68=565.7
 565.69=565.7

• **Equal to 5**. Round to the nearest even number or zero.

565.05=565.0
 565.15=565.2
 565.25=565.2
 565.35=565.4
 565.95=566.0

GEOTECHNICAL ENGINEERING BUREAU SIEVE ANALYSIS DATA

-	1-11 Source (Contract No. D12	2 <i>3456</i>	IPROJEC	T STAMP			
aterial S ocation em No.	Source (AnyCounty						
em No.		Generic Sand &							
em No.			CL Depth Sui	rface					
	304.14M								
		1					2		
LINE			WEIGHTS	24.00	LINE		MOISTURE CONTE	NT	
		us 6.3 mm After Sepa		31.38	G	Container Number			A
В		Material from Plus 6.3		0.80	Н	Wt. of Sample & Conta		9	581.
С		lus 6.3 mm Material (/		30.58	1	Wt. of Sample & Conta	siner After Drying	9	566.
D		Minus 6.3 mm Materia		24.09	J	Wt. of Container		g	67.
E		inus 6.3 mm D+(1+(N		23.39	K	Wt. of Water (H - I)		g	14.
E)	Wt. of Total	Dry Sample (C + E)	ib.	53.97	L	Wt. of Dry Sample (I -		9	499.
					М	Moisture Content (K /	L) x 100%		3.
	(# IN COL	1 DIVIDED BY F, MU	LTIPLIED BY 100 = # II	N COL.2)		•			
SI	EVE		2			3	4		
		WEIGHT	%		% (OF TOTAL	WHOLE NO.	SPECIFIC	ATION
mm	in.	RETAINED	RETAIN	ED	SAMP	LE PASSING	% PASSING	REQUIRE	MENT
100	4				4	- 100	100		
75	3	4.20	7.8			92.2	92		
50	2	3.10	5.7			86.5	86		100
37.5	1 1/2								
25.0	1	8.72	16.2			70.3	70		
19.0	3/4								
12.5	1/2	8.03	14.9		11-11-11	55.4	55		
9.5	3/8								
6.3	1/4	6.48	12.0		-	43.4	43		30 -65
TO	DTAL	30,53	56.6					2 1 1	
	Dry Minus A	.3 mm Before Wash	301.8	9					
	Dry Minus 6	.3 mm After Wash L. 5 DIVIDED BY	280.7 LINE N, MULT. B)	g (100)	(# IN CO	OL 7 MULTIPLIED		S#IN COL.	8)
). Wt. of	Dry Minus 6	L. 5 DIVIDED BY		(100)	(# IN CC			S # IN COL.	8)
). Wt. of	Dry Minus 6			(100)	(# IN CC	OL 7 MULTIPLIED		S#IN COL.	8)
). Wt. of	Dry Minus 6 (# IN CO	5 WEIGHT	LINE N, MULT. BY	7 % PASSING	S BASED	8 % OF TOTAL	9 WHOLE NO.	SPECIFIC	ATION
). Wt. of	Dry Minus 6	L. 5 DIVIDED BY	LINE N, MULT. BY	7	S BASED	8	(EQUALS		ATION
Si DESIC	Dry Minus 6 (# IN CO	5 WEIGHT	LINE N, MULT. BY	7 % PASSING	S BASED	8 % OF TOTAL	9 WHOLE NO.	SPECIFIC	ATION
Si DESIC	F Dry Minus 6 (# IN CO	5 WEIGHT RETAINED	LINE N, MULT. BY	7 % PASSING	B BASED 6.3 mm	8 % OF TOTAL	9 WHOLE NO.	SPECIFIC	ATION
SI DESIG	F Dry Minus 6 (# IN CO	5 WEIGHT RETAINED 73.2 71.8	RETAINED 24.2 23.8	7 % PASSING ON MINUS 75. 52.	BASED 6.3 mm	% OF TOTAL SAMPLE PASSING 32.9 22.6	9 WHOLE NO. % PASSING 33 23	SPECIFIC	ATION
SI DESIG mm 4.75 2.00	f Dry Minus 6 (# IN CO) IEVE GNATION No. 4 10	5 WEIGHT RETAINED	RETAINED	7 % PASSING ON MINUS	BASED 6.3 mm	% OF TOTAL SAMPLE PASSING	9 WHOLE NO. % PASSING	SPECIFIC	ATION MENT
DESIGNATION OF THE PROPERTY OF	F Dry Minus 6 (# IN CO) IEVE GNATION No. 4 10 20	5 WEIGHT RETAINED 73.2 71.8 62.4	6 % RETAINED 24.2 23.8 20.7	77 % PASSING ON MINUS 75. 52. 31.	8 0 3	% OF TOTAL SAMPLE PASSING 32.9 22.6 13.6	9 WHOLE NO. % PASSING 33 23 14	SPECIFIC REQUIRE	ATION MENT
Si DESIC mm 4.75 2.00 0.850 0.425	F Dry Minus 6 (# IN CO) IEVE GNATION No. 4 10 20 40	5 WEIGHT RETAINED 73.2 71.8 62.4 59.8	RETAINED 24.2 23.8	7 % PASSING ON MINUS 75. 52.	8 0 3	8 % OF TOTAL SAMPLE PASSING 32.9 22.6 13.6 5.0	9 WHOLE NO. % PASSING 33 23 14	SPECIFIC REQUIRE	ATION MENT
Si DESIG mm 4.75 2.00 0.850 0.425 0.250 0.150	F Dry Minus 6 (# IN CO) IEVE GNATION No. 4 10 20 40 60	5 WEIGHT RETAINED 73.2 71.8 62.4	6 % RETAINED 24.2 23.8 20.7	77 % PASSING ON MINUS 75. 52. 31.	8 0 3	% OF TOTAL SAMPLE PASSING 32.9 22.6 13.6	9 WHOLE NO. % PASSING 33 23 14	SPECIFIC REQUIRE	ATION MENT
DESIC mm 4.75 2.00 0.850 0.425 0.250 0.075	F Dry Minus 6 (# IN CO) IEVE GNATION No. 4 10 20 40 60 100	5 WEIGHT RETAINED 73.2 71.8 62.4 59.8	24.2 23.8 20.7	7 % PASSING ON MINUS 75. 52. 31.	8 0 3	8 % OF TOTAL SAMPLE PASSING 32.9 22.6 13.6 5.0	9 WHOLE NO. % PASSING 33 23 14	SPECIFIC REQUIRE	ATION MENT

GRAIN SIZE ANALYSIS

- 1. <u>DON'T</u> overload sieves. Overloading causes the sieves to become clogged and results in poor and inadequate separation.
- 2. <u>DON'T</u> allow water to overflow or splash out of the No. 200 sieve during the washing operation. This causes a loss of fines.
- 3. <u>DON'T</u> exert too much pressure on the No. 200 sieve during the wash test. Too much pressure will stretch the screen, changing the opening size. Also, small punctures or tearing of the screen may occur.
- 4. <u>DON'T</u> wash sample on No. 200 improperly or insufficiently. Improper washing will cause errors in the final computations.
- 5. <u>DON'T</u> perform a wash test without using a wash basin under the No. 200 sieve. In case of spillage, the sample can be recovered. The basin also serves to help determine when the wash is completed, by the color of the water.
- 6. **DON'T** leave weights and miscellaneous material on scales.

DO

- 1. Obtain a representative sample of the granular material to be tested. The size of the sample shall depend on its top size. The larger the top size of the particles, the greater amount of material needed. (Refer to STM-20.)
- 2. Check all sieves for excessive wear, holes and rips. If any of these are found, the sieve should be replaced immediately.
- 3. Level and zero scales before using: keep them clean! Check before using for accuracy, binding, etc.
- 4. Place a thin layer of sand between the stove or hotplate surface and the pan containing the sample. This will prevent splattering and/or burning of the sample during drying operations.
- 5. Wash the minus ¹/₄ inch sample thoroughly to remove all particles that could have a tendency to cling to the plus No. 200 fractions.

Wet Density

Volume of Mold (or Hole) = Wet Density Weight of Wet Soil

Dry Density

Wet Density

1 + Moisture Content (decimal form) = Dry Density

Moisture Content

Weight of Water Weight of Dry Soil x 100 = % Moisture

Frontoir Compensation Standard Effort

Modified Effort

Blows per Layer 25	Number of Layers	Drop Height 2002 and 12" de la garage 18"	Hammer Weight	Mold Volume	Max. Particle Size
25	ω	12". 2". 2". 3.	5.5 lbs	1/30 ft ³ 1/30 1/20 1/20 1/20	3/4"
25	_U	18"	10 lbs	1/30 ft ³	3/4

EXAMPLE: COMPUTATIONS FOR PROCTOR COMPACTION

GIVEN:

WEIGHT OF CYLINDER & WET SOIL = 12.70 lb.

WEIGHT OF CYLINDER = 9.12 lb.

WEIGHT OF DRY SOIL (from moisture content test) = 481.2 g

WEIGHT OF WATER (from moisture content test) = 39.4 a

VOLUME OF CYLINDER = 1/30 cubic foot

FIND:

WEIGHT OF WET SOIL

WET DENSITY OF SOIL

MOISTURE CONTENT

DRY DENSITY OF SOIL

STEP 1: DETERMINE WEIGHT OF WET SOIL

WET SOIL = WEIGHT OF CYLINDER & SOIL - WEIGHT OF CYLINDER

= 12.70 lb. - 9.12 lb.

= 3.58 lb.

STEP 2: DETERMINE THE WET DENSITY OF THE SOIL

WET DENSITY = WEIGHT OF WET SOIL + VOLUME OF CYLINDER

 $= 3.58 \text{ lb.} \div (1/30 \text{ c.f.})$

 $= 3.58 \text{ lb. } \times .30$

= 107.4 lb J c.f.

STEP 3: DETERMINE THE MOISTURE CONTENT OF THE SOIL

MOISTURE CONTENT = (WEIGHT OF WATER ÷ WEIGHT OF DRY SOIL) x

 $= (39.4 g \div 481.2 g) \times 100 = 0.082 \times 100$

= 8.2 %

STEP 4: DETERMINE THE DRY DENSITY OF THE SOIL

DRY DENSITY = WET DENSITY ÷[1 + MOISTURE CONTENT (decimal form)]

 $= 107.4 \text{ lb./c.f.} \div (1 + 0.082)$

= 99.3 lb./c.f.

STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION PROCTOR COMPACTION TEST

Date	01/02/03
Test By	J. LENNON
Check By	P.McCARTNEY

Project EARTHWORK INSPECTORS TRAINING		Region 1-11 County ANYCOUNTY
Lab. No Station <u>0 + 00</u>	Offset	00' RT. Depth
Cylinder Data: Wt. 9.12 lbs	Height	
Method of Compaction : Wt. of Hammer	5.5	lbs Height of Dropin
STANDARD / MODIFIED Blows per layer	25	Number of layers 3
Top Size Material 3/4 INCH		Supplier ABBEY RD, PIT
•		AKATEDIAI \

(START WITH APPROX. 11 LB. (5000 g) -3/4 INCH MATERIAL)

A Run		1	2	3	4	. 5	6	7
B Approximate Moisture %		8	+ 100 ml	+ 100 ml	+ 100 ml	+ 100 ml		
C Cylinder Volume	cu, ft.	0.0333	0.0333	0.0333	0.0333	0.0333	0.0333	0.0333
D Wt. Cylinder + Wet Soil	lbs	12.70	12.80	12.94	13.17	. 13.11		
E Wt. Cylinder	lbs	9.12	9,12	9.12	9.12	9.12	9.12	9.12
F Wt. Wet Soil (D = E)	lbs	3,58	3.70	3.82	3.95	3.99		
G Wet Density (FX 30)	lbs/ft ³	107.4	111.0	114.6	118.5	119.7		

seepage

Н	Tare No.		1	2	3	4	5	,
	Wt. Tare + Wet Soil	g	628.7	641.6	664.2	669.7	661.9	
J	Wt. Tare + Dry Soil	g	589.3	592.9	604.5	599.5	582.5	
K	Wt. Tare	9	108.1	115.4	111.3	115.6	115.1	·
L	Wt, Water (I-J)	g	39.4	48.7	59.7	70.2	79.4	
M	Wt. Dry Soil (J - K)	g	481.2	477.5	493.2	483.9	467.4	
N	Moisture Content % (L/M) X 100		8.2	10.2	12.1	14.5	17.0	
0	Dry Density lbs/ft³ (G / (1+ (N / 100)))		99.3	100.7	102.2	103.5	102.3	

mixing pan

Remarks:

Seepage occurred in Run 5, second layer

Moisture content sample taken from mixing pan.

LABORATORY COMPACTION

- 1. <u>DON'T</u> hold the compaction hammer off the vertical. Holding the hammer at a slight angle allows the hammer to ride down the inside of the cylinder reducing the compactive effort.
- 2. <u>DON'T</u> raise and drop the compaction hammer with excessive speed or force. This will increase the compactive effort applied.
- 3. **DON'T** run a compaction test with the mold resting on uneven or soft ground. Compactive effort will be partially absorbed by the ground. A wooden block (10' X10") or hard surface should be used.

DO

- 1. Select a representative sample for testing.
- 2. Level and zero all scales before using them.
- 3. Clean the inside of the hammer. Soil buildup inside the tamper will slow the fall, reducing compactive effort.
- 4. Clean the bottom of the hammer constantly. A layer of soil on the bottom of the tamper will reduce the compactive effort.
- 5. Make the layers of soil in the mold as equal as possible.
- 6. Keep a damp cloth over the mixing pan during the test, to prevent moisture loss.
- 7. Throughly remix the remainder of the sample after each run, adding water in 2% approximately increments (except in special cases) to establish a good compactive curve.
- 8. Check the weight of the tamper $(5.5^{+}/_{0.02})$ lbs) and height of drop $(12^{+}/_{0.062})$ inches).
- 9. Take the moisture content sample from a vertical slice through the center, from all the layers.
- 10. If seepage is observed at the base or collar of the mold the moisture content sample must be taken from the mixing pan.

FIELD COMPACTION CONTROL

SOIL DENSITY DETERMINATION

FIELD EQUIPMENT

- Volumeter, properly filled with testing sand
- Baseplate matching volumeter.
- 2 ½ gallon pail
- Hammer
- Chisel
- Large spoon
- Gallon container w/ friction top
- Safety goggles
- Brush

HOW TO DIG THE HOLE

- Remove loose material from ground surface.
- Level area with baseplate so it is evenly set on surface.
- Begin removing soil through center hole of baseplate :
 - Shade area with your body.
 - Use hammer and chisel to loosen stiff material (remember eye protection).
 - Use spoon to remove soil from hole and put in can (replace lid while digging).
 - Take care to not undercut the baseplate.
 - When hole is about 6" deep and as wide as the baseplate opening, you're done digging.
 - Remove all loose material from inside hole, and on baseplate, and place in can. All soil
 taken from the hole must be put in the can and covered. A moisture content test will
 be run on it.

FIELD COMPACTION CONTROL

SOIL DENSITY DETERMINATION

VOLUME DETERMINATION

- Make sure that construction activities that could create ground vibrations in the vicinity of the test
 are stopped while you are filling the hole with testing sand.
- With valve closed, invert volumeter and seat in shoulder of baseplate.
- Open valve to allow sand to flow into hole. Do not disturb volumeter until sand has stopped flowing.
- Close valve. Lift volumeter from baseplate.
- Read the three scales on the volumeter to obtain volume of hole. Follow this procedure:
 - Invert volumeter, then return to upright position.
 - Shake volumeter *gently* to level sand surface.
 - Read value from the three scales.
 - Repeat 2X. Average the nine readings. That will be the volume of the hole. The value goes on Line H on Field Compaction Sheet (SM 417b) or Compaction Control Data Sheet (SM 384a).

IF THE LEVEL OF THE SAND IN THE VOLUMETER DOES NOT FALL WITHIN THE RANGE OF THE SCALES, THE TEST IS NO GOOD. YOU MUST RUN ANOTHER TEST.

GEOTECHNICAL ENGINEERING BUREAU FIELD COMPACTION SHEET SAND CONE OR VOLUMETER APPARATUS

PROJECT Earthwork Inspectors School	CONTRACT NO.	D123456
REGION 1-11 COUNTY AnyCounty	PIN	1234.56.789
GRAVITY - BULK SATURATED SURFACE DRY 2.60	TEST BY	M. Mantle
	CHECK BY	R. Maris

1	Date of Test	0	01/01/01				
2	Test No.	INFO	1				
	Station of Test		100+0				
4	Offset	ERAL	CL				
	Location	Z	Subgrade				
6	Soil Type	ග	Gravel				
A	Weight of Sand & Apparatus (Before) lbs						
	Weight of Sand & Apparatus (After) lbs	ш					
	Weight of Sand Used (A - B) lbs	X					
D	Apparatus Volume Correction lbs	VOLUM					
E	Weight of Sand in Hole (Net) (C - D) lbs	111					
F	Sand Calibration Factor PCF	HOL					
G	Volume of Hole (E+F) cu ft	I					
	Volume of Hole (VOLUMETER) cu ft		0.071				
	Weight of Soil & Friction Top Can lbs		11.27				
	Weight of Friction Top Can lbs		1.00				
L	Weight of Soil (J-K) lbs	∠	10.27				
M	Wet Density Field (Total) PCF (L + G) or (L + H)	ISI	144.6	•			
N	Wet Weight +3/4" & Tare lbs	DENS!	2.77		USE THE	SE VALUES	ON
P	Weight of Tare lbs	1			DENSITY	CORRECTIO	N
Q	Wet Weight +3/4" (N - P) lbs	₹	2.77		CURVE		
R	% +3/4" (Wet) [(Q + L) x 100]		27.00				
S	% -%" (Wet) (100.0 - R)		73.00				
T	Tare No.	Ż	С				
U	Weight Wet Soil & Tare (-¾") g	E	661				
٧	Weight Dry Soil & Tare (-¾") g	CONTENT	619				
W	Weight of Tare g	111	100				
X	Weight of Water (U-V) g	J. J.	42				
Y	Weight of Dry Soil (-¾") (V-W) g	MOIS					
Z	Moisture Content (-3/*) [(X+Y) x 100]	×	8.1				
AA	Wet Density Field (-¾") PCF (Density Correction Curve)		139				
BB	Dry Density Field (-3/") PCF [AA + (1 + (Z + 100))]		128.6		PLOT TH	IESE	
CC	Weight of Cylinder & -3/4" lbs		12.34		VALUEŠ	ON	
DE	Weight of Cylinder lbs	7	7.91		COMPAC	CTION	
EE	Weight of -3/2" (CC - DD) lbs	œ	4.43		CONTRO	L CURVE	
FF	Wet Density -%" PCF (EE + 1/30) or (EE x 30)	ON	132.9				
	Dry Density -%" PCF [FF + (1 + (Z + 100))]	ပ	122.9	1 📈			
H	Maximum Dry Density - "A" PCF (Compaction Control Curves)		125.7				
JJ	Optimum Moisture Content % (Compaction Control Curves)		10.5				
	% of Maximum Density Obtained [(BB + HH) x 100]		102.3				
_	Minimum % Density Required		95				
LL	Hallithing to Delisity Medalled						-

NEW YORK STATE DEPARTMENT OF TRANSPORTATION COMPACTION CONTROL SHEET CLASSROOM WORKSHEET

	CLASSRO					
PIN						
	NTY Anycounty CONTRACT NO. D123456		NSPECTOR C	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	THE RESERVE	BY I. Gadget
DA	TE OF TEST	01/01	/01	01/0	1/01	01/01/01
TES	ST NUMBER	1			2	3
STA	ATION OF TEST	1004	-00	100	+50	200+00
OF	FSET	40'	It		L	40' rt
TY	PE OF COMPACTOR	Vibra	tory	Vibr	atory	Vibratory
NU	MBER OF PASSES PER LAYER	6			6	6
SO	IL TYPE (SAND; TABLE I) (TILL-SILT-CLAY-GRAVEL; TABLE II)	Gra	vel	Gra	avel	Gravel
DE	PTH BELOW SUBGRADE SURFACE	15	ft.	15	ft.	15 ft.
1	VOLUME OF HOLE (c.f.) (FROM VOLUMETER)	.07	0	.0	70	.070
2	WEIGHT OF PLUS 3/4 " (lbs.)	2.	0	2	2.0	2.0
3	WEIGHT OF MINUS 3/4" (lbs.)	7.	3	8	0.0	6.5
4	FIELD WET DENSITY (FROM CALCULATOR)	12	6	1	38	112
5	WEIGHT OF COMPACTION MOLD (lbs.)	9.	0	9	0.0	9.0
6	WEIGHT OF COMPACTION MOLD & SOIL	13.1		1:	3.2	13.1
7	WEIGHT OF SOIL (LINE 6 MINUS LINE 5)	4.1		4	.2	4.1
8	REQUIRED DENSITY (% OF MAX. DRY)	9	5		95	95
	GO TO COMPACTION CONTROL TABLES	FOR L	NES 9, 10,	& 11		
9	COMPACTION CONTROL TABLE NUMBER	1	7 4 4		H	11
10	HIGHEST FIELD WET DENSITY REQUIRED	12	8	1.	27*	126*
11	LOWEST FIELD WET DENSITY ALLOWED	11	7	1	20	117
12	PASS (LINE 4 EQUAL TO OR GREATER THAN LINE 10)				1	
13	FAIL (LINE 4 IS LESS THAN LINE 11)					1
14	RUN MOISTURE CONTENT TEST (500g SAMPLE		1			
	MOISTURE CONTENT DETERMINATION					
15	WEIGHT OF DRY SOIL AND TARE (grams)	67	2			
16	% MOISTURE CONTENT (FROM M. C. TABLE)	6				
17	FIELD WET DENSITY REQUIRED (FROM TABLES)	12	26			
18	PASS (LINE 4 EQUAL TO OR GREATER THAN LINE 17)	1				
19						
20	APPROX. % MAX. DENSITY (OPTIONAL)	9.	5			

REMARKS_* Regional Geotechnical Engineer determines the minimum moisture content allowed

•WEIGHT OF +3/4" = 2.0 lbs.
•WEIGHT OF -3/4" = 7.3 lbs.

FIELD WET DENSITY CALCULATOR

FIELD WET DENSITY CALCULATOR

FIELD DENSITY CONTROL

- 1. <u>DON'T</u> take for granted that scales are in proper operating condition. Check their condition carefully.
- 2. <u>DON'T</u> assume that the weights of tares and friction top cans are constant, weigh each before testing.
- 3. <u>DON'T</u> wait until the test hole has been completed to place soil retained on the base plate into the friction top can. This will result in moisture loss.
- 4. **DON'T** shut off the valve on the volummeter before the sand has stopped flowing.

DO

- 1. Level and zero all scales prior to use.
- 2. Check the weight of tares and friction top cans prior to use.
- 3. Completely empty and then refill the volumeter for each test.
- 4. Make sure the test area for the base plate is level and seated properly on the surface.
- 5. Keep the cover on the friction top can while digging the hole, to prevent moisture loss.
- 6. Ensure all material from the hole is placed in the can. This includes soil on the tools and any loose material from the bottom of the hole.
- 7. Keep traffic and heavy equipment away from the test area while the sand is flowing. Vibration will compact the sand in the hole, resulting in a larger hole volume and a lower density.)
- 8. Visually identify the soil to determine which family of Control Curves (STM-9) or Compaction Control Table (STM-6) are to be used to determine the percentage of the maximum density.

ALL THE PREVIOUS NOTES ON LABORATORY COMPACTION STILL APPLY.