Final Exam

Daniel Halmrast

June 11, 2018

PROBLEM 1

Let M be a complete Riemannian manifold with sectional curvature $K, K \ge k > 0$. Let γ be a nontrivial closed geodesic in M. Show that for any $p \in M$,

$$d(p,\gamma) \le \frac{\pi}{2\sqrt{k}}$$

Proof. For simplicity, we normalize our space so that k=1. Now, suppose for a contradiction that there is some $p \in M$ with $d(p,\gamma) > \frac{\pi}{2}$. Denote by σ a minimizing geodesic from p to a closest point q on γ , which we know satisfies $\ell(\sigma) > \frac{\pi}{2}$. Finally, denote by q' the point opposite q on γ (that is, parameterizing γ with $\gamma(0) = q$, let $q' = \gamma(\frac{\ell(\gamma)}{2})$).

We now invoke the Toponogov comparison theorem on the triangle formed by the geodesics σ from p to q and γ from q to q'. We will label the edges of the triangle as:

$$\begin{array}{c|c} \underline{\text{Side}} & \underline{\text{Label}} \\ \hline \overline{pq'} & a \\ \overline{pq}(=\sigma) & b \\ \overline{qq'}(=\gamma) & c \\ \end{array}$$

Since σ minimizes the distance from p to γ , we know that the angle formed between σ' and γ' is exactly $\frac{\pi}{2}$. That is, σ and γ intersect orthogonally.

Now, we form the associated triangle in S^2 with constant curvature 1, labeling the sides in the same way as $\tilde{a}, \tilde{b}, \tilde{c}$. In particular, we know that $\tilde{b} > \frac{\pi}{2}$, and the angle opposite \tilde{a} (labeled \tilde{A}) is exactly $\frac{\pi}{2}$. By simple spherical geometry, we know that

$$\cos(\tilde{a}) = \cos(\tilde{b})\cos(\tilde{c}) + \sin(\tilde{b})\sin(\tilde{c})\cos(\tilde{A})$$
$$= \cos(\tilde{b})\cos(\tilde{c}) + 0$$

Now, since $\tilde{b} > \frac{\pi}{2}$, $\cos(\tilde{b}) < 0$. Furthermore, since \tilde{b} is the length of the minimal distance from p to γ , we also know that $\tilde{a} \geq \tilde{b} > \frac{\pi}{2}$. Thus, $\cos(\tilde{a}) < 0$ as well. This forces $\cos(\tilde{c}) > 0$, and so $\tilde{c} < \frac{\pi}{2}$.

<++>