TD de Mécanique du point Série N°2: Cinématique

Filière: SMAI (S1)

Année 2020/2021

Exercice 1

Soit une particule M, dans R(O, i, j, k), repérée par ses coordonnées cylindriques (ρ, φ, z) tel que: $\rho = R$, $\varphi = at^2/2$ et z = b. (a, b et R sont des constantes positives)

- 1. a- Ecrire l'expression du vecteur position \overrightarrow{OM} en coordonnées cartésiennes
 - b- Quelle est la trajectoire décrite par la particule M?
 - c- Ecrire l'expression du vecteur vitesse \overrightarrow{V} en coordonnées cartésiennes. Déduire son module en fonction de a, R et t.
 - d- Exprimer l'abscisse curviligne S(t) de M à l'instant t , en fonction de R et ϕ , sachant qu'à t=0, S=0
- 2. a- Ecrire l'expression du vecteur position \overrightarrow{OM} en coordonnées cylindriques
 - b- Ecrire l'expression du vecteur vitesse \overrightarrow{V} en coordonnées cylindriques. Déduire son module en fonction de a, R et t.
 - c-Déterminer les vecteurs unitaires tangent et normal à la trajectoire ($\vec{\tau}$ et \vec{n}) ainsi que le rayon de courbure.
 - d-Déterminer en coordonnées cylindriques l'accélération $\overrightarrow{\gamma}$ en fonction de a, R et t.
 - e- Déterminer en coordonnées cylindriques l'accélération normale $\overrightarrow{\gamma}$ et montrer qu'elle est proportionnelle à φ .

Exercice 2:

Soient $R_0(O, \hat{i}, \hat{j}, \hat{k})$ un repére orthonormé direct. On considère un point matériel M en mouvement dont le vecteur position est définit par:

$$\overrightarrow{OM} = a \cos \varphi(t) \cdot \vec{i} + a \sin \varphi(t) \cdot \vec{j} + b \varphi(t) \vec{k}$$

Avec $\varphi(t) = \omega t$ (a et b étant des constantes positives)

- 1)- Définir la trajectoire du point matériel M.
- 2)- Déterminer le vecteur vitesse du point matériel M par rapport à R₀, en déduire son module.
- 3)- Calculer le vecteur unitaire tangent $\vec{\tau}$ au point matériel M.
- 4)- Déterminer l'équation cartésienne de l'hodographe du mouvement.
- 5)- Calculer le chemin S parcourue par le point matériel M entre les instants 0s et 1s.
- 6)- Calculer le rayon de courbure R_c et le vecteur unitaire normal \vec{n} . En déduire alors le vecteur unitaire binominale \vec{b}
- 7)- Exprimer le vecteur accélération du point matériel M par rapport à R₀ dans la base

de Frenet
$$(\vec{\tau}, \vec{n}, \vec{b})$$
.

Exercice 3:

Le plan Oxy est rapporté au repère $R_0(O,x,y)$ de base (\vec{i},\vec{j}) , considéré comme repère absolu. $R(O_1,x_1,y_1)$ de base (\vec{i}_1,\vec{j}_1) est le repère relatif, en translation par rapport à R_0 tel que: $\overrightarrow{OO_1} = [\alpha t^2 + \beta] \vec{i}$ avec α et β deux constantes positives.

1- Calculer les vitesses absolue et relative, et en déduire la vitesse d'entraînement d'un point matériel M de coordonnées dans R:

$$x_1 = a\cos\omega t$$
 et $y_1 = a\sin\omega t$, où a et ω sont des constantes

2- Déterminer:

 $-\overrightarrow{\gamma_a}$: accélération absolue

- γ_r : accélération relative

- γ_e : accélération d'entraînement

- $\overrightarrow{\gamma_c}$: accélération de Coriolis

3- Vérifier la loi de composition des accélérations.