The plug-in principle of the bootstrap

François Portier

October 12, 2016

The main goal of the bootstrap is to measure the accuracy of an estimate $\hat{\theta}$ by reproducing/approximating the distribution of $n^{1/2}(\hat{\theta} - \theta_0)$.

1 The framework

The original bootstrap applies to estimators based on identically distributed and independent sequences of random variables. Let P be a probability distribution on \mathbb{R}^d and define

$$\theta_0 = \theta(P)$$
,

where θ is a map valued in \mathbb{R} . The parameter θ_0 stands here for the parameter of interest. It could be for instance the theoretical mean of an unknown distribution or the regression vector in a regression model. Examples of such map θ are given below. Suppose that $X_1, X_2...$ are identically distributed and independent random variables with common distribution P. Define the empirical measure

$$\hat{P}_n = n^{-1} \sum_{i=1}^n \delta_{X_i}.$$

In this context, a natural estimator $\hat{\theta}$ of θ_0 is given by

$$\hat{\theta} = \theta(\hat{P}_{m})$$

This kind of estimators are usually called "plug-in" estimators as the estimated distribution \hat{P}_n has been "plugged" in the expression in place of the theoretical distribution P.

Example 1. The expectation of g with respect to P is given by $\theta(P) = \int g(x) dP(x)$. The mean corresponds to g(x) = x.

Example 2. The variance corresponds to

$$\theta(P) = \int x^2 dP(x) - \left(\int x dP(x)\right)^2.$$

Example 3. The covariance between X and Y is given by

$$\theta(P) = \int xy \, dP(x,y) - \left(\int x \, dP_1(x) \right) \left(\int y \, dP_2(y) \right) ,$$

where P_1 and P_2 stands for the marginals of X and Y.

Example 4. The correlation coefficient between X and Y is given by

$$\theta(P) = \frac{\int xy \, \mathrm{d}P(x,y) - \left(\int x \, \mathrm{d}P_1(x)\right) \left(\int y \, \mathrm{d}P_2(y)\right)}{\sqrt{\left(\int x^2 \, \mathrm{d}P_1(x) - \left(\int x \, \mathrm{d}P_1(x)\right)^2\right) \left(\int y^2 \, \mathrm{d}P_2(y) - \left(\int y \, \mathrm{d}P_2(y)\right)^2\right)}} \,.$$

Example 5. The regression coefficient β defined through the model

$$Y = \beta^T X + \epsilon,$$

where $\mathbb{E}[\epsilon \mid X] = 0$ and $X \in \mathbb{R}^p$, $p \ge 1$, is given by

$$\theta(P) = \left(\int xx^T dP_1(x)\right)^{-1} \int xy dP(x,y)$$

Example 6. The distribution function F evaluated at y is given by

$$\theta(P) = \int \mathbb{1}_{\{x \le y\}} \mathrm{d}P(x).$$

Example 7. The median is given by

$$\theta(P) = F^{-}(1/2).$$

where F^- is the inverse of F.

The goal of the following exercise is to show that most of the common statistical estimators are in fact plug-in estimator.

Exercise 1. For every examples, express the associated plug-in estimator.

In the following we shall use the notion of root defined as follows. This notion is crucial because it provides a central quantity of which the behaviour should be reproducible (by bootstrap, see bellow) and that contains all the information needed to assess the accuracy of $\hat{\theta}$ estimating θ_0 .

Definition 1. A statistical root is a function of $X_1, X_2, ... X_n$ that converges in distribution to a tight distribution.

In regular cases (on which we shall focus here), it can be shown, based on classical asymptotic theory (central limit theorem, Slutsky's lemma, Delta-method,...) that

$$n^{1/2}(\hat{\theta} - \theta_0) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \Sigma^2),$$

where Σ is a positive definite matrix. Consequently, the rescaled sequence $n^{1/2}(\hat{\theta} - \theta_0)$ is a statistical root. Note that indeed the rescaled sequence $n^{1/2}(\hat{\theta} - \theta_0)$ is appropriate to describe the accuracy of $\hat{\theta}$ estimating θ_0 .

Exercise 2. Show the root property in examples 3 and 5.

2 The plug-in principle

The bootstrap approximation is based on the following "plug-in" principle. As described before, we consider the estimator $\hat{\theta} = \theta(\hat{P}_n)$ of $\theta_0 = \theta(P)$, where \hat{P}_n is based on $X_1, \dots X_n$ with common law P. To reproduce the same context one could simply replace the distribution P by \hat{P}_n . Doing this we define

$$\hat{\theta}^* = \theta(\hat{P}_n^*),$$

where \hat{P}_n^* is based on $X_{n,1}^*, \dots X_{n,1}^*$, identically distributed and independent random variables with common law \hat{P}_n , i.e.,

$$\hat{P}_n^* = n^{-1} \sum_{i=1}^n \delta_{X_{n,1}^*}.$$

Table 1: The bootstrap "plug-in" principle.

From this "plug-in" approach we expect that $n^{1/2}(\hat{\theta}^* - \hat{\theta})$ would "behave similarly" as $n^{1/2}(\hat{\theta} - \theta_0)$. Moreover since \hat{P}_n is known, computing versions $n^{1/2}(\hat{\theta}^* - \hat{\theta})$ can be done as many times as we wish. Consequently, the "behaviour" of $n^{1/2}(\hat{\theta}^* - \hat{\theta})$ can be completely determined. This permits to state the two main steps of the bootstrap:

- (i) (**definition step**)* Verify that the bootstrap root $R^* = n^{1/2}(\hat{\theta}^* \hat{\theta})$ that "mimics" the behaviour of the root of interest $n^{1/2}(\hat{\theta} \theta_0)$.
- (ii) (simulation step)** For some B, compute $\hat{R}_1^*, \dots, \hat{R}_B^*$ to approximate the law of \hat{R} .

We purposefully left unspecified what is behind the words "behaves similarly" and "mimics" as the definition of those concepts might bring confusion. The reader should understand this words as "has a very similar distribution". For instance, we have the following result for the empirical mean which actually can be extended to all the examples raised before and to many other estimators $\hat{\theta}$.

Theorem 1. Let $X_1, X_2, ...$ be independent and identically distributed random variables such that $var(X_1) = \Sigma$. If $\theta(P) = \int x dP(x)$, then the bootstrap root $n^{1/2}(\hat{\theta}^* - \hat{\theta})$ has the same law (asymptotically) as the root $n^{1/2}(\hat{\theta}^* - \hat{\theta})$.

2.1 The bootstrap algorithm

The following algorithm is the original bootstrap algorithm as introduced by Efron. To make clear that it corresponds to the plug-in principle described previously, one should answer the following exercise.

Exercise 3. Remark that X^* generated from a uniform draw among $\{X_1, \ldots X_n\}$ has law \hat{P}_n .

Algorithm.

Input : $X_1, \ldots X_n$, number of bootstrap iterations B

Output: Bootstrap estimators $(\hat{\theta}_1^*, \dots, \hat{\theta}_B^*)$

for $b = 1, \ldots, B$ do

Draw (uniformly) with replacement among X_1, \ldots, X_n , and provide the new **random** sample:

Bootstrap sample : $X_{n,1}^*, \dots, X_{n,n}^*$

Apply the estimation over the bootstrap sample:

$$\hat{\theta}_h^* = \theta(\hat{P}_n^*)$$

end

The bootstrap estimators $\hat{\theta}_b^*$, $b = 1, \dots B$ are identically distributed and independent random variables.