Common-mode input

Voltage

if $V_1 = V_2$ Vom= $V_1 + V_2$

 $V_0 = 0$? $V_0 = A_V \cdot V_d$

Differential Amplifier: Basic Idea

- Most widely used building block in analog integrated circuit
- Basis of very-high-speed logic circuit family
- $\begin{array}{c} \text{sp} \\ v_I \\ \bullet \end{array} \qquad \begin{array}{c} \text{Difference} \\ \text{amplifier} \end{array}$
- Ideally V_0 is proportional to (V_2-V_1)
- $\bullet \quad \bigvee_{o} = A_{\vee}(\bigvee_{2} \bigvee_{1})$
- Here, A,=open-loop voltage gain
- If V₁=V₂, the input voltage is called common-mode input voltage, denoted by V_{cm}
- If $v_1 = v_2$, $v_{cm} = v_1 = v_2$ and
- $(\vee_2 \vee_1) = \vee_d$
- $v_d = differential input voltage$

 $V_0 = A_v V_d$

open loop differential input voltage

1

A BJT Differential Pair Circuit

gain

- The difference of the two input signals, V_{B1} and V_{B2} will be amplified at the output
- For both transistors, the B-E
 junctions are forward biased and
 the C-E junctions are reversed
 biased, i.e., the transistors operate
 in active region.
- If the input signals become zero, i.e., $V_{BI} = V_{BQ} = 0$, the transistors will still remain in the active region because of the current source.
- Both transistors must remain in active region for differential amplifier operation

V- =
BE is foul
CE is rev

Differential Pair: Basic Operation (Case-A)

- · Q1 and Q2 are identical
- Q1 and Q2 are in active region
- The circuit has a floating ground
- Here, both transistors are ON
- The current source I is ideal

•
$$i_{E1} = i_{E2} = 1/2$$

•
$$i_{ca} = i_{co} = (\alpha I)/2$$

$$V_{E1} = V_{E2} = (V_{cm} - V_{BE})$$

or,
$$V_{E1} = V_{E2} \approx (V_{cm} - 0.7)$$

$$V_{c1} = V_{c2} = v_{cc} - \frac{\alpha I}{2} R_C$$

 $v_{c1} - v_{c2} = 0$ remains valid for any values of vom as long as QI and Q2 remain in active region.

Thus differential pairs REJECT the common mode input signal.

RC2 €

 v_{c2}

4

3

-differential pairs usually in practice don't work in common-mode

3

Differential Pair: Basic Operation (Case-B)

- Q1 and Q2 are identical
- The current source is ideal
- Transistor Q1 is ON
- Transistor Q2 is OFF

V_{E1} = V_{E2} ≈ 1 - 0.7 = 0.3 V

 $V_{c1} = V_{cc} - \alpha IR_c$ and $V_{c2} = V_{cc}$

Thus, $V_{c2} - V_{c1} = \alpha IR_c \approx IR_c$ wz x ~

* Vc2-Vc1 = IRC1

¿ opposite of case B

Differential Pair: Basic Operation (Case-C)

Vcc

RC2

Q2(

flow of voltage

5

≷ RC1

- · Q1 and Q2 are identical
- · The current source is ideal
- Transistor Q1 is OFF
- · Transistor @2 is ON
- · VBE2 ≈ 0.7 V
- V_{E1} = V_{E2} ≈ -0.7 ∨
- V_{BE1} = -1 -(-0.7) = -0.3 ∨
- $l_{c2} = \alpha l$ and $l_{c1} = 0$
- $v_{c2} = v_{cc} \alpha IR_c$ and $v_{c1} = v_{cc}$

Thus, $V_{c2} - V_{c1} = -\alpha IR_c \approx -IR_c$

 v_{c1}

-check which is more the, that would be ON

end here

Fri Oct 27

can perform fast switching

*go to textbook

<u>Differential</u> Pair as a Switch

- A change in input signal can switch the transistors
- A single-pole double-throw (SPDT) switch
- A small signal can steer the current

-how exactly does it work?
- Bx question?

-simply diagram of last slide

7

Transfer Characteristics

Consider a BJT differential pair

$$i_{C1} = I_S e^{\left(\frac{v_{B1} - v_{E1}}{v_T}\right)} \dots \dots (1)$$

$$i_{C2} = I_S e^{\left(\frac{v_{B2} - v_{E2}}{v_T}\right)} \dots \dots (2)$$

Assumed that the two transistors are identical and operating at the same temperature.

Dividing eq(1) by eq(2), we have, VEI = VEZ

$$\frac{i_{C1}}{i_{C2}} = e^{\left(\frac{v_{B1} - v_{B2}}{v_T}\right)} = e^{\left(\frac{v_{id}}{v_T}\right)} \dots \dots (3)$$

8

7

T-model for 2 transistors in differential circuit

differential input signal = Vid = Vber - Vbez

Mon Nov 6th

- due to digular on prev slide

- follow current

FLOON

go over example again

Example: Differential Pair

Vbel - Vbe2

Example: Given that $v_{id} = 0.1V$, RE=100 Ω , Rc = 5k, l=2 mA, $\alpha=1$, and $\beta=100$. $|V_{BE}|$ of a conducting transistor is 0.7V.

Find a) i_e and v_{be} , b) total emitter current, c) signal voltage at each collector, d) differential voltage gain ($V_{od} = V_{c1} - V_{c2}$), and e) differential input resistance Ria.

Solution:

a) $r_e = V_{\top} / l_E = 25/1 = 25 \Omega$

Here, $i_E = v_{id}/2(r_e + R_E)$

 $i_E = 0.1/2(25+100) = 0.4 \text{ mA}$

 $V_{be1} = r_e \times i_e = 25 \times 0.4 \times 10^{-3}$

or, Vbe1 = 10 mV

and, $v_{be2} = -v_{be1}$

or, $V_{be2} = -10 \text{ mV}$

b) $i_{E1} = 1/2 + 0.4 \text{ mA} = 1.4 \text{ mA}$ and $i_{E_4} = 1/2 - 0.4 \text{ mA} = 0.6 \text{ mA}$

Note that $iE_1 + iE_2 = 1$

21

not 0.7?? -since it's done

in small signal analysis, not Dc

Example: Differential Pair (Continued ...)

Example: Given that $v_{id} = 0.1V$, 100 Ω , $R_c = 5k$, $I = 2 \text{ mA}, \alpha = 1$, and $\beta = 100$. $|V_{BE}|$ of a conducting transistor is 0.7V.

Find a) ie and vbe, b) total emitter current, c) signal voltage at each collector, d) differential voltage gain ($v_{od} = v_{c1} - v_{c2}$), and e) differential input resistance Rid.

Solution:

c) $V_{c1} = -i_{c}R_{c} \approx -i_{E}R_{c} = -0.4mA \times 5k$ Vc1 ≈ - 2V

Similarly, $V_{C2} = + i_C R_C \approx 2 V$

or,
$$\frac{1}{2} = (-2 - 2)/0.1 = -40$$

Lift voltage

22

$$R_{id} = 2(\beta + 1)(r_e + R_E)$$

$$R_{id} = 2(25 + 100) \times 101$$

 $R_{id} = 25 \,\mathrm{k}\Omega$

-know how to use equations in upcoming Slides, no need to know derivation

23

* solve at home *

Example: Differential Pair

Example: Given that $V_A=100\ V$ and $\beta=100$. Find a) input differential resistance, R_{id} , b) overall differential, $|V_o/V_s|$, c) the worst-case A_{cm} if R_c has $\pm 1\%$ tolerance, and d) the input common-mode resistance, R_{icm} .

Solution:

a)
$$r_{e1} = r_{e2} = r_e = V_T/I_E = 25 \text{ mV/0.5 mA}$$

or,
$$r_e = 50 \Omega$$

RE=150 S

$$R_{id} = 2(\beta + 1) (r_e + R_E) = 40 k\Omega$$

- rounded

b)
$$v_{id} = v_s \frac{R_{id}}{5k\Omega + 5k\Omega + R_{id}}$$

or,
$$v_{id} = v_s \frac{40 \times 10^3}{5k\Omega + 5k\Omega + 40 \times 10^3} = 0.8 v_s$$

or,
$$\frac{v_{id}}{v_s} = 0.8$$

§10kΩ

200kΩ ≶

≷10kΩ

25

--^\/\-150Ω

-15V

25

Example: Differential Pair (continued ...)

Voltage gain from the bases to the output $(v_{od} = v_{c1} - v_{c2})$ is

$$\left|\frac{v_{od}}{v_{id}}\right| = \frac{total\ collector\ resistance}{total\ base\ resistance}$$

or,
$$\left| \frac{v_{od}}{v_{id}} \right| = \frac{2R_C}{2(r_e + R_E)} = \frac{20 \times 10^3}{2 \times 200} = 50$$

Now,

$$\left|\frac{v_{od}}{v_s}\right| = \frac{v_o}{v_{id}} \times \frac{v_{id}}{v_s} = 50 \times 0.8 = 40$$

Thus, the overall voltage gain is 40

26

