average reduction in noise $SNR(\Delta \log SNR_{t,\tau})$ for waypoints $\tau \in P_i$. This allows us to compute a per-step advantage by aggregating future patch rewards:

$$A_t = \sum_{i=1}^{N} w_{t,i} \widehat{R}_i$$

For a group of (G) rollouts, we then compute a per-step, leave-one-out, group-relative advantage $\hat{A}_{t,\text{rel}}$ by subtracting the group-mean advantage (excluding the current sample) from A_t and normalizing. The final objective is:

$$\begin{split} L_{\text{GRPO}}(\boldsymbol{\phi}, \boldsymbol{\psi}) &= -E\left[\sum_{t=1}^{T} \hat{A}_{t, \text{rel}} \left(\log \pi_{\boldsymbol{\phi}} \left(s_{t} | \mathcal{C}, t\right) + \log \pi_{\boldsymbol{\psi}} \left(\Delta s_{t} | \boldsymbol{x}_{t}, t, \mathcal{C}\right)\right)\right] + \lambda_{\boldsymbol{\phi}} \text{KL} \left(\pi_{\boldsymbol{\phi}} | \pi_{\boldsymbol{\phi}}^{\text{ref}}\right) \\ &+ \lambda_{\boldsymbol{\psi}} \text{KL} \left(\pi_{\boldsymbol{\psi}} | \pi_{\boldsymbol{\psi}}^{\text{ref}}\right) \end{split}$$

where $\left(\pi_{\Phi}^{\text{ref}} = \mathcal{N}(1, \sigma_{\text{ref}}^2)\right)$ and $\left(\pi_{\Psi}^{\text{ref}} = \mathcal{N}(0, I)\right)$; $\left(\lambda_{\Phi}, \lambda_{\Psi} > 0\right)$ control conservativeness and are distinct from diffusion variances (β_t) .

3.4 TSDP Inference Process

A trajectory is generated via an iterative procedure combining the frozen backbone with the two learned policies.

Initialization. Compute anisotropy $r_{\tau} = \sigma\left(f_{\rho}(S_{\text{stat}}[\tau])\right)$ and form $(\beta_{t,\tau} = \beta_t^{\text{base}} r_{\tau})$. For the schedule policy, obtain the whole sequence $\{s_t\}_{t=1}^T$ with $s_t = \mu_{\Phi}(z_t)$ (or sample once per step); clip each s_t to $[s_{min}, s_{max}]$ set $\beta'_{t,\tau} = \beta_{t,\tau} \cdot s_t$. Sample $x_T \sim \mathcal{N}(0, I)$. Iterative denoising (for t = T, ..., 1).

(a) Predict $\epsilon_{\theta}(x_t, t, C)$ and compute the VP score approximation

$$s_{\theta}(x_t, t, C) \approx -\frac{\epsilon_{\theta}(x_t, t, C)}{\sigma'_{t,\tau}}$$
 (element-wise in τ)

where $\sigma_{t,\tau}' = \sqrt{1 - \overline{\alpha_{t,\tau}'}}$ and

$$\overline{\alpha'_{t,\tau}} = \prod_{u=1}^t (1 - \beta'_{u,\tau})$$

(b) Obtain the score-correction action $\Delta s_t = \mu_{\Psi}(x_t, t, C)$ (or sample once), and form $\{ \{s\} \}_{\{i \in \Theta\}} = s_{\{i \in \Theta\}} + \Delta s_{\{i \in \Theta\}} + \Delta s_{\{i \in \Theta\}} = s_{\{i \in \Theta\}}$ if needed).

(c) Take one DPM-Solver++ (VP) step using \tilde{s}_{θ} and the schedule $\{\beta'_{u,\tau}\}_{u=1}^t$ to obtain x_{t-1} . Output. The final denoised sample x_0 is returned as the planned trajectory. (No gradients are back-propagated through the solver; policies are trained via policy gradients only.)

3.5 Implementation Details

All components are implemented in PyTorch. The backbone (ϵ_{θ}) is a Transformer denoiser with encoders for lanes/agents/map; (T=1000) steps for training and 10–20 DPM-Solver++ steps for inference. The anisotropy network (f_{ρ}) is a 2-layer MLP; bounds (r_{min} = 0.5, r_{max} = 1.5) regularizers (λ_{mean} = 1.0, λ_{smooth} = 0.1). Policies (π_{ϕ} , π_{ψ}) are lightweight Gaussian MLPs; we use clips (s_t \in [0.9,1.1]) and ($|\Delta|$ $s_t|_2 \leq 2.0$). Training follows two phases: Phase-1 (ϵ – prediction + regularization; AdamW, lr (5 × 10⁻⁴), batch 128, ~500 epochs) and Phase-2 (GRPO; AdamW, lr (1 × 10⁻⁴), group size (G = 8/16),(λ_{ϕ} = 0.1, λ_{ψ} = 0.05), ~100 epochs). Experiments are conducted in closed-loop simulation on nuPlan.

4. Research Project Plan

This chapter documents the dataset, simulator, implementation details, baselines, and evaluation protocol used to assess the Time-Series Diffusion Planner (TSDP). All symbols and procedures are consistent with Chapter 3. We emphasize reproducibility: we fix seeds, publish scenario token lists and filtering configs, and specify all preprocessing and coordinate conventions.

4.1 Dataset and Simulation Environment

We use the nuPlan devkit and its closed-loop simulator for all experiments. Scenarios are rolled out with reactive agents, and metrics are computed from the executed ego trajectory rather than open-loop replays. This design matches the planning problem's causal nature and is critical for evaluating control policies learned in Phase 2.

To enable multi-seed runs and extensive ablations on commodity hardware, we adopt nuPlanmini. It retains the data format, simulator, and metric APIs of full nuPlan while substantially reducing storage and I/O overhead, which is especially important when training the GRPO policies. We construct scenarios with the devkit's ScenarioBuilder using default filters and a 70/15/15 split at the scenario level (no token overlap across splits). The exact counts may vary slightly by installation; we release the full token lists and filter configs with our code so others can reproduce our splits exactly.

Raw logs are resampled to 10 Hz using cubic-spline interpolation for positions and linear interpolation for velocities/accelerations. We then recompute jerk from the resampled signals to avoid aliasing. Each scenario provides 2 s of history and an 8 s planning horizon (i.e., (H=80) waypoints) for closed-loop rollout.

4.2 Implementation Details

Hardware & software.

Unless stated otherwise: 1 (\times) high-end GPU (e.g., A100-80 GB or RTX 4090-24 GB), 32 CPU cores, 256 GB RAM, Python 3.10, PyTorch 2.x + CUDA 12.x, and the nuPlan devkit (v1.1). Mixed precision (fp16) and gradient clipping are enabled.

Phase 1 (diffusion pretraining).

Backbone: Transformer denoiser ϵ_{θ} with lane/agent/map encoders (Chapter 3).

Forward schedule (cosine VP): we use the cosine cumulative $\overline{\alpha}(\tau)$ with offset (s = 0.008) and (T = 1000) training steps,

$$\overline{\alpha}(\tau) = \frac{\cos^2\left(\frac{\tau/T + s}{1 + s} \cdot \frac{\pi}{2}\right)}{\cos^2\left(\frac{s}{1 + s} \cdot \frac{\pi}{2}\right)}, \quad \beta_t^{\text{base}} = \text{clip}\left(1 - \frac{\overline{\alpha}(t)}{\overline{\alpha}(t - 1)}, 0, \beta_{max}\right), \quad \beta_{max} = 0.999$$

Time-series anisotropy: $r_{\tau} = \sigma \left(f_{\rho}(S_{\text{stat}}[\tau]) \right) \in [0.5, 1.5]$, with regularizers $\lambda_{\text{mean}} = 1.0, \lambda_{\text{smooth}} = 0.1$ and gradient clipping on $\nabla_{r_{\tau}}$.

Loss & optimizer: $(L_{\text{PhaseA}} = E[|\epsilon - \epsilon_{\theta}|^2] + L_{\text{reg}})$; AdamW (lr (5 × 10⁻⁴), weight decay (10⁻⁴), cosine decay), batch 128, ~500 epochs.

Coordinate frame & normalization: all states are in an ego-centric frame (heading-aligned at (t = 0)); positions/velocities/accelerations are z-scored on the training set.

Phase 2 (GRPO fine-tuning).

Policies.

- 1. Schedule scaling $\left(\pi_{\phi}(s_t|C,t) = \mathcal{N}\left(\mu_{\phi}(z_t), \Sigma_{\phi}(z_t)\right)\right)$ with $(z_t = [PE(t/T), global(C)])$.
- 2. Score correction $(\pi_{\psi}(\Delta s_t|x_t, t, C) = \mathcal{N}(\mu_{\psi}, \Sigma_{\psi}))$. global(*C*) features (32-D):
 - (i) history summary (mean/var of speed, abs yaw-rate, accel over last 1 s; past-stop flag);
 - (ii) route geometry (mean/var of route curvature over $[0, \bar{v}H\Delta t]$, turn-type one-hot);
 - (iii) occupancy (neighbor counts in front/side/rear sectors for radii $R \in \{10, 20, 30\} m$);
 - (iv) traffic context (upcoming signal states within 50/100 m); (v) speed-limit cues (normalized limit, limit-excess indicator, slow-zone flag). All features are z-scored; no future information is used.

Action constraints: $s_t \in [0.9,1.1]$ (hard clip), $|\Delta s_t|_2 \le 2.0$.

Patch construction & rewards.

The horizon is split into N=8 contiguous patches of equal duration. For patch P_i , we

compute safety $R_{\rm safe}$ via signed distance with a speed-dependent threshold $d_0 = d_{\rm base} + k_v v_{\rm ego}$, comfort via jerk (l_1 on third finite differences), and progress $\Delta s_i/\Delta t_i$. Each component is batch-z-scored and combined with weights $(w_{\rm safe}, w_{\rm comf}, w_{\rm prog})$. Step-wise credit assignment.

We use $\triangle logSNR$ step-to-patch attribution (Chapter 3) to form normalized weights (w_{t,i}).

The per-step advantage includes the same temporal discount γ as the trajectory return:

$$A_t = \sum_{i=1}^N w_{t,i} \gamma^{i-1} \widehat{R}_i , \quad \gamma = 0.98$$

With a leave-one-out group baseline, the GRPO loss is

$$\begin{split} L_{\text{GRPO}}(\varphi, \psi) &= -E_{C, \text{rlot}, t} \left[\hat{A}_{t, \text{rel}} \left(\log \pi_{\varphi} \left(s_{t} | C, t \right) + \log \pi_{\psi} \left(\Delta s_{t} | x_{t}, t, C \right) \right) \right] + \lambda_{\varphi} \text{KL} \left(\pi_{\varphi} | \pi_{\varphi}^{\text{ref}} \right) \\ &+ \lambda_{\psi} \text{KL} \left(\pi_{\psi} | \pi_{\psi}^{\text{ref}} \right) \end{split}$$

with references $\pi_{\varphi}^{ref} = \mathcal{N}(1, \sigma_{ref}^2)$ and $\pi_{\psi}^{ref} = \mathcal{N}(0, I)$. We do not backpropagate through the ODE solver; policies are trained via policy gradients only. Optimization.

AdamW lr (1×10^{-4}) , group size $G \in \{8, 16\}$; $\lambda_{\phi} = 0.1$, $\lambda_{\psi} = 0.05$; ~100 epochs. Inference uses DPM-Solver++ (VP) with 16 steps (10/20 in ablations). Deployment uses policy means for determinism; stochastic runs sample once per step.

4.3 Baselines

We evaluate against strong planners under identical simulator settings, inputs, frames, and scenario splits:

Diffusion Planner (DP). Transformer-based diffusion planner with flexible classifier/energy guidance; we keep its fixed schedule (no time-series anisotropy) and DPM-Solver++ inference.

PlanTF. A carefully engineered imitation-learning (IL) planner; we align its horizon/frequency and use public defaults elsewhere.

PLUTO. An IL planner with query-based architecture and auxiliary objectives; adapted to our

horizon/frequency.

UrbanDriver. A widely used IL baseline; we port it to nuPlan-mini for complementary comparison.

Fairness controls. We do not tune baselines beyond matching horizon/frequency and frame conventions. All use the same history length and map layers.

4.4 Evaluation Metrics and Protocol

1. Closed-loop composite score.

The nuPlan composite aggregates scenario-level metrics; we report it as the primary number.

2. Collision rate (at-fault).

Percentage of scenarios with at-fault collisions per nuPlan rules.

3. Comfort (jerk).

Mean and 95th percentile of l_1 jerk magnitude over the executed trajectory (recomputed from 10 Hz resamples).

4. Progress.

Absolute (m) and relative (% of expert) progress along the route centerline.

5. Additional diagnostics.

Lane-boundary violations, red-light compliance, and lateral oscillation (yaw-rate variance) to contextualize safety/comfort trade-offs.

6. Protocol.

10 Hz, 8 s horizon; three seeds $\{0, 1, 2\}$; we report mean \pm 95% CI. Inference uses DPM-Solver++ (order-2/3), 16 steps (10/20 in ablations).

7. A4 (single-policy) ablation.

We implement a joint Gaussian π_{ω} with a shared trunk and two heads outputting $(s_t, \Delta s_t)$; the covariance is block-diagonal diag $(\Sigma^{(s)}, \Sigma^{(\Delta s)})$. The GRPO loss replaces $\log \pi_{\phi} + \log \pi_{\psi}$ by $\log \pi_{\omega}$, and the KL regularizer uses a block-diagonal reference $\pi_{\omega}^{\text{ref}} = \mathcal{N}\left([1,0], \operatorname{diag}(\sigma_{\text{ref}}^2, I)\right)$. All other settings remain unchanged.