MATH 315; HOMEWORK # 6

Due Mar. 11, 2015

- 1. (Exercise 22.7) Suppose that a is a quadratic residue modulo p, and suppose further that $p \equiv 3 \pmod{4}$.
- (a) Show that $x = a^{\frac{p+1}{4}}$ is a solution to the congruence $x^2 \equiv a \pmod{p}$. This gives an explict way to find square roots modulo p for primes congruenet to 3 modulo 4.
- (b) Find a solution to the congruence $x^2 \equiv 7 \pmod{787}$. (Your answer should lie between 1 and 786).
- 2. (Exercise 22.8 (a,b)) Suppose that a is a quadratic residue modulo p, and suppose further that $p \equiv 5 \pmod{8}$.
- (a) Show that one of the values $x = a^{\frac{p+3}{8}}$ or $x = 2a \cdot (4a)^{\frac{p-5}{8}}$, is a solution to the congruence $x^2 \equiv a \pmod{p}$. This gives an explict way to find square roots modulo p for primes congruenet to 5 modulo 8.
- (b) Find a solution to the congruence $x^2 \equiv 5 \pmod{541}$. (Your answer should lie between 1 and 540).
- 3. (Exercise 22.10 (a)) (a) Euler's criterion says that if p is a prime, then $a^{\frac{p-1}{2}} \equiv (\frac{a}{p}) \pmod{p}$. Use successive squaring to compute $11^{\frac{1729-1}{2}} \pmod{1729}$ and use Quadratic Reciprocity to compute $(\frac{11}{1729})$. Do they agree? What can you conclude concerning the possible primality of 1729?
- 4. (Exercise 24.2) If the prime p can be written in the form $p=a^2+5b^2$, show that $p\equiv 1$ or 9 (mod 20). (Of course, we are ignoring $5=0^2+5\cdot 1^2$.)
- 5. (Exercise 24.4 (a)) Start from $259^2 + 1^2 = 34 \cdot 1973$ and use the descent procedure to write the prime 1973 as a sum of two squares.
- 6. (Exercise 25.6 (b, c)) For any positive integer m, let $S(m) = (\# \text{ of ways to write } m = a^2 + b^2 \text{ with } a \ge b \ge 0)$.
 - (b) If p is a prime and $p \equiv 1 \pmod{4}$, what is the value of S(p)?
- (c) Let p and q be two different primes, both congruent to 1 modulo 4. What is the value of S(pq)?