

Overfitting and Cross-Validation

Le Song

Machine Learning CSE/ISYE 6740, Fall 2019

Apartment hunting

- Suppose you are to move to Atlanta
- And you want to find the most reasonably priced apartment satisfying your needs:

square-ft., # of bedroom, distance to campus ...

Living area (ft²)	# bedroom	Rent (\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

Linear Regression Model

• Assume y is a linear function of x (features) plus noise ϵ

$$y = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n + \epsilon$$

- where ϵ is an error term of unmodeled effects or random noise
- Let $\theta = (\theta_0, \theta_1, ..., \theta_n)^T$, and augment data by one dimension

$$x \leftarrow (1, x)^{\mathsf{T}}$$

• Then $y = \theta^T x + \epsilon$

Least mean square method

ullet Given m data points, find heta that minimizes the mean square error

$$\widehat{\theta} = argmin_{\theta} L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y^{i} - \theta^{T} x^{i})^{2}$$

Our usual trick: set gradient to 0 and find parameter

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i}^{m} (y^{i} - \theta^{\mathsf{T}} x^{i}) x^{i} = 0$$

$$\Leftrightarrow -\frac{2}{m} \sum_{i}^{m} y^{i} x^{i} + \frac{2}{m} \sum_{i}^{m} x^{i} x^{i^{\mathsf{T}}} \theta = 0$$

Matrix version of the gradient

Equivalent to

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} (x^1 ..., x^m) (y^1 ..., y^m)^{\top} + \frac{2}{m} (x^1, ... x^m) (x^1, ... x^m)^{\top} \theta = 0$$

• Define $X = (x^1, x^2, ... x^m), y = (y^1, y^2, ..., y^m)^T$, gradient becomes

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} Xy + \frac{2}{m} XX^{\mathsf{T}} \theta$$
$$\Rightarrow \hat{\theta} = (XX^{\mathsf{T}})^{-1} Xy$$

Ridge regression

ullet Given m data points, find heta that minimizes the regularized mean square error

$$\theta^r = argmin_{\theta} L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y^i - \theta^{\mathsf{T}} x^i)^2 + \lambda ||\theta||^2$$

gradient becomes

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m}Xy + \frac{2}{m}XX^{\mathsf{T}}\theta + \frac{2\lambda}{m}\theta = 0$$
$$\Rightarrow \theta^{r} = (XX^{\mathsf{T}} + \lambda I)^{-1}Xy$$

If we choose a different λ , the solution will be different.

Nonlinear regression

Want to fit a polynomial regression model

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_n x^n + \epsilon$$

• Let $\tilde{x}=(1,x,x^2,\dots,x^n)^{\mathsf{T}}$ and $\theta=(\theta_0,\theta_1,\theta_2,\dots,\theta_n)^{\mathsf{T}}$

$$y = \theta^T \tilde{x}$$

Least mean square method

ullet Given m data points, find heta that minimizes the mean square error

$$\hat{\theta} = argmin_{\theta} L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y^i - \theta^{\mathsf{T}} \tilde{x}^i)^2$$

Our usual trick: set gradient to 0 and find parameter

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m} \sum_{i}^{m} (y^{i} - \theta^{\mathsf{T}} \tilde{x}^{i}) \tilde{x}^{i} = 0$$

$$\Leftrightarrow -\frac{2}{m} \sum_{i}^{m} y^{i} \tilde{x}^{i} + \frac{2}{m} \sum_{i}^{m} \tilde{x}^{i} \tilde{x}^{i} \theta = 0$$

Matrix version of the gradient

• Define $\tilde{X} = (\tilde{x}^{(1)}, \tilde{x}^{(2)}, ... \tilde{x}^{(m)}), y = (y^{(1)}, y^{(2)}, ..., y^{(m)})^{\mathsf{T}}$, gradient becomes

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m}\tilde{X}y + \frac{2}{m}\tilde{X}\tilde{X}^{\mathsf{T}}\theta = 0$$
$$\Rightarrow \hat{\theta} = (\tilde{X}\tilde{X}^{\mathsf{T}})^{-1}\tilde{X}y$$

- Note that $\tilde{x} = (1, x, x^2, ..., x^n)^T$
- If we choose a different maximal degree n for the polynomial,
 the solution will be different.

Increasing the maximal degree

Increasing the maximal degree

Increasing the maximal degree

Which one is better?

- Can we increase the maximal polynomial degree to very large, such that the curve passes through all training points?
- The optimization does not prevent us from doing that

When maximal degree is very large

• Define $\tilde{X} = \left(\tilde{x}^{(1)}, \tilde{x}^{(2)}, \dots \tilde{x}^{(m)}\right), y = \left(y^{(1)}, y^{(2)}, \dots, y^{(m)}\right)^{\mathsf{T}}$, set gradient to zero, $\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{m}\tilde{X}y + \frac{2}{m}\tilde{X}\tilde{X}^{\mathsf{T}}\theta = 0$

$$\Rightarrow \tilde{X}\tilde{X}^{\mathsf{T}}\theta = \tilde{X}y$$

- Each $\tilde{x} = (1, x, x^2, ..., x^n)^{\mathsf{T}}$ is a vector of polynomial features, the size of \tilde{X} is $n \times m$, and $\tilde{X}\tilde{X}^{\mathsf{T}}$ is $n \times n$
- When n > m,

 $\tilde{X}\tilde{X}^{\mathsf{T}}$ is not invertible; there are multiple solutions θ which give zero objective

$$L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y^i - \theta^{\mathsf{T}} \tilde{x}^i)^2$$

Geometric Interpretation of LMS

The predictions on the training data are:

$$\hat{y} = X^{\mathsf{T}}\theta = X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}Xy$$

• Look at residule $\hat{y} - y$

$$\hat{y} - y = (X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}X^{\mathsf{T}} - I)y$$

$$X(\hat{y} - y) = X(X^{\mathsf{T}}(XX^{\mathsf{T}})^{-1}X^{\mathsf{T}} - I)y = 0$$

• \hat{y} is the orthogonal projection of y into the space spanned by the columns of X

Geometric interpretation

•
$$\tilde{X} = (\tilde{x}^{(1)}, \tilde{x}^{(2)}, \dots \tilde{x}^{(m)}), y = (y^{(1)}, y^{(2)}, \dots, y^{(m)})^{\mathsf{T}}$$
, Each $\tilde{x} = (1, x, x^2, \dots, x^n)^{\mathsf{T}}$

- Suppose m = 3, n = 3
- View the rows of \tilde{X} as vectors

•
$$x_1 = (1,1,1)^{\top}$$

•
$$x_2 = (x^{(1)}, x^{(2)}, x^{(3)})^T$$

•
$$x_3 = (x^{(1)2}, x^{(2)2}, x^{(3)2})^T$$

•
$$x_4 = (x^{(1)3}, x^{(2)3}, x^{(3)3})^T$$

• Multiple θ with $\tilde{X}\tilde{X}^{\mathsf{T}}\theta = \tilde{X}y$

Classification with polynomials

Eg. Logistic regression with polynomial features

$$p(y = 1|x, \theta) = \frac{1}{1 + \exp(-\theta^{\mathsf{T}} \tilde{\mathbf{x}})}$$

Overfitting/Underfitting

- Blue points: training data points, Red points: test data points
- The fit in the middle panel achieves a balance of small error in both training and test points.

What is the problem?

• Given m data points $D = \{(\tilde{x}^i, y^i)\}$, find θ that minimizes the mean square error

$$\widehat{\theta} = argmin_{\theta} \widehat{L}(\theta) := \frac{1}{m} \sum_{i=1}^{m} (y^{i} - \theta^{\mathsf{T}} \widetilde{x}^{i})^{2}$$

 But we really want to minimize the error for unseen data points, or with respect to the entire distribution of data

$$\theta^* = argmin_{\theta} L(\theta) \coloneqq \mathbb{E}_{(\tilde{x}, y) \sim P(\tilde{x}, y)}[(y - \theta^{\mathsf{T}} \tilde{x})^2]$$

It is the finite number training point that creates the problem

Decomposition of expected loss

Estimate your function from a finite data set D

$$\hat{f} = argmin_f \hat{L}(f) \coloneqq \frac{1}{m} \sum_{i=1}^{m} (y^i - f(x^i))^2$$

 \hat{f} is a random function, generally different for different data set

ullet Expected loss of \hat{f}

$$L(\hat{f}) := \mathbb{E}_D \mathbb{E}_{(x,y)} \left[\left(y - \hat{f}(x) \right)^2 \right]$$

Bias-variance decomposition

Expected loss = $(bias)^2$ + variance + noise

What is the best we can do?

The expected squared loss is

$$L(\hat{f}) := \mathbb{E}_D \mathbb{E}_{(x,y)} \left[\left(y - \hat{f}(x) \right)^2 \right]$$
$$= \mathbb{E}_D \left[\int \int \left(y - \hat{f}(x) \right)^2 p(x,y) dx dy \right]$$

Our goal is to choose $\hat{f}(x)$ that minimize $L(\hat{f})$. Calculus of variations

$$\frac{\partial A}{\partial f(x)} = 2 \int (y - f(x)) p(x, y) dy = 0$$

$$\Leftrightarrow \int f(x) p(x, y) dy = \int y p(x, y) dy$$

$$\Leftrightarrow h(x) := \int \frac{y p(x, y)}{p(x)} dy = \int y p(y|x) dt = \mathbb{E}_{y|x}[y] = \mathbb{E}[y|x]$$

The best predictor is the expected value

• The best you can do is $h(x) = \mathbb{E}_{y|x}[y]$: the expected value of y given a particular x

Noise term in the decomposition

• $h(x) = \mathbb{E}(y|x)$ is the **optimal** predictor, and $\hat{f}(x)$ our actual predictor, decompose the error a bit

$$\mathbb{E}_{D}\mathbb{E}_{(x,y)}\left[\left(y-\hat{f}(x)\right)^{2}\right] = \mathbb{E}_{D}\left[\int\int\left(y-h(x)+h(x)-\hat{f}(x)\right)^{2}p(x,y)dxdy\right]$$

$$= \mathbb{E}_{D}\left[\int\int\left(\left(\hat{f}(x)-h(x)\right)^{2}+2\left(\hat{f}(x)-h(x)\right)(h(x)-y)\right)\right]$$

$$+(h(x)-y)^{2}p(x,y)dxdy$$

$$= \mathbb{E}_{D}\left[\int\left(\hat{f}(x)-h(x)\right)^{2}p(x)dx\right] + \int\int(h(x)-y)^{2}p(x,y)dxdy$$

Will decompose further

Noise term. can not do better than this. a lower bound of the expected loss

Bias-variance decomposition

- $\hat{f}(x)$ is a random function, generally different for different dataset D
- $\mathbb{E}_D[\hat{f}(x)]$: expected value of $\hat{f}(x)$ with respected to random dataset

$$\mathbb{E}_{D}\left[\int \left(\hat{f}(x) - h(x)\right)^{2} p(x) dx\right] = \mathbb{E}_{D} \mathbb{E}_{x}\left[\left(\hat{f}(x) - h(x)\right)^{2}\right]$$

$$= \mathbb{E}_{x} \mathbb{E}_{D} \left[\left(\hat{f}(x) - \mathbb{E}_{D} \left[\hat{f}(x) \right] + \mathbb{E}_{D} \left[\hat{f}(x) \right] - h(x) \right)^{2} \right]$$

$$= \mathbb{E}_{x} \mathbb{E}_{D} \left[\left(\hat{f}(x) - \mathbb{E}_{D} [\hat{f}(x)] \right)^{2} \right] + \mathbb{E}_{x} \mathbb{E}_{D} \left[\left(\mathbb{E}_{D} [\hat{f}(x)] - h(x) \right)^{2} \right]$$
$$-2 \mathbb{E}_{x} \mathbb{E}_{D} \left[\left(\hat{f}(x) - \mathbb{E}_{D} [\hat{f}(x)] \right) \left(\mathbb{E}_{D} [\hat{f}(x)] - h(x) \right) \right]$$

$$= \mathbb{E}_{x} \mathbb{E}_{D} \left[\left(\hat{f}(x) - \mathbb{E}_{D} \left[\hat{f}(x) \right] \right)^{2} \right] + \mathbb{E}_{x} \left[\left(\mathbb{E}_{D} \left[\hat{f}(x) \right] - h(x) \right)^{2} \right]$$
Bias² Variance

Overall decomposition of expected loss

Putting things together

Expected loss = $(bias)^2$ + variance + noise

In formula

$$\mathbb{E}_{D}\mathbb{E}_{(x,y)}\left[\left(y-\hat{f}(x)\right)^{2}\right]$$

$$=\mathbb{E}_{x}\left[\left(\mathbb{E}_{D}\left[\hat{f}(x)\right]-h(x)\right)^{2}\right]\left(bias^{2}\right)$$

$$+\mathbb{E}_{x}\mathbb{E}_{D}\left[\left(\hat{f}(x)-\mathbb{E}_{D}\left[\hat{f}(x)\right]\right)^{2}\right]\left(variance\right)$$

$$+\mathbb{E}_{(x,y)}\left[\left(h(x)-y\right)^{2}\right]\left(noise\right)$$

- Key quantities
 - $\hat{f}(x)$: actual predictor
 - $\mathbb{E}_D[\hat{f}(x)]$: expected predictor
 - $h(x) = \mathbb{E}(y|x)$: **optimal** predictor

Model space

- Which model space should we choose?
- The more complex the model, the large the model space
- Eg. Polynomial function of degree 1, 2, ... corresponds to space H1, H2 ...

Intuition of model selection

Find the right model family s.t. expected loss becomes minimum

Other things that control model complexity

• Eg. In the case of linear models $y = \langle w, x \rangle + b$, one wants to make ||w|| a controlled parameter

- H_C the linear model function family satisfying the constraint
- The large the C, the large the model family
- ullet Eg. the larger the regularization parameter λ , the small the model family

•
$$J(w) = \sum_{i} (w^{\mathsf{T}} x_{i} - y_{i})^{2} + \lambda ||w||_{2}^{2}$$

•
$$J(w) = \sum_{i} (w^{\mathsf{T}} x_i - y_i)^2 + \lambda ||w||_1$$

Eg. Early stopping in boosting

Experiment with bias-variance tradeoff

- λ is a "regularization" terms in LR, the smaller the λ , is more complex the model
 - Simple (highly regularized) models have low variance but high bias.
 - Complex models have low bias but high variance.
- The actual \mathbb{E}_D can not be computed
- You are inspecting an empirical average over 100 training set.

How to do model selection in practice?

- Suppose we are trying select among several different models for a learning problem.
- Examples:
 - 1. polynomial regression

$$h(x;\theta) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \dots + \theta_k x^k)$$

- Model selection: we wish to **automatically** and **objectively** decide if k should be, say, 0, 1, . . . , or 10.
- 2. locally weighted regression,
 - Model selection: we want to automatically choose the bandwidth parameter τ .
- 3. Mixture models and hidden Markov model,
 - Model selection: we want to decide the number of hidden states
- The Problem:
 - Given model family $F = \{M_1, M_2, ..., M_I\}$, find $M_i \in F$ s.t. $M_i = \arg\max_{M \in F} J(D, M)$

Cross-Validation

- K-fold cross-validation (CV)
- For each fold i:
 - Set aside $\alpha \cdot m$ samples of D (where m = |D|) as the held-out data. They will be used to evaluate the error
 - Fit a model $f_i(x)$ to the remaining $(1-\alpha)\cdot m$ samples in D
 - Calculate the error of the model $f_i(x)$ on the held-out data.
- Repeat the above K times, choosing a different held-out data set each time, and the errors are averaged over the folds.
- For the polynomial degree with the lowest score, we use all of D to find the parameter values for f(x).

Cross-validation

- Eg. Want to select the maximal degree of polynomial
- 5-fold cross-validation (blank: training; red: test)

• Important: test data i is not used to fit model $f_i(x)$

Example:

• When $\alpha = 1/N$, the algorithm is known as Leave-One-Out-Cross-Validation (LOOCV)

Practical issues for K-fold CV

- How to decide the values for K (or α)
 - Commonly used K = 10 or ($\alpha = 0.1$).
 - Large K makes it time-consuming.
 - Bias-variance trade-off
 - Large K usually leads to low bias. In principle, LOOCV provides an almost unbiased estimate of the generalization ability of a classifier, but it can also have high variance.
 - Small K can reduce variance, but will lead to under-use of data, and causing high-bias.
- One important point is that the test data D_{test} is never used in CV, because doing so would result in overly (indeed dishonest) optimistic accuracy rates during the testing phase.