subgrupos

conceitos básicos

Definição. Seja G um grupo. Um seu subconjunto não vazio H diz-se um subgrupo de G se H for grupo para a operação de G restringida a H. Neste caso escrevemos H < G.

Observação. Num grupo G, identificam-se sempre os subgrupos: $\{1_G\}$ (subgrupo trivial) e G (subgrupo impróprio).

Proposição. Sejam G um grupo e H < G. Então:

- 1. O elemento neutro de H, 1_H , é o mesmo que o elemento neutro de G, 1_G ;
- 2. Para cada $h \in H$, o inverso de h em H é o mesmo que o inverso de h em G.

Exemplo 10. O grupo $(\mathbb{Q}\setminus\{0\},\cdot)$ é subgrupo de $(\mathbb{R}\setminus\{0\},\cdot)$.

Exemplo 11. Seja $G = \{e, a, b, c\}$ o grupo de *4-Klein*, i.e., o grupo cuja operação é definida pela tabela anexa.

Os seus subgrupos são:

Exemplo 12. Seja $\mathbb{Z}_4=\left\{\bar{0},\bar{1},\bar{2},\bar{3}\right\}$ o conjunto das classes módulo-4 algebrizado com a adição usual de classes.

Então, os subgrupos do grupo $(\mathbb{Z}_4,+)$ são: $\{\bar{0},\bar{1},\bar{2},\bar{3}\}$, $\{\bar{0}\}$ e $\{\bar{0},\bar{2}\}$.

	e	а	Ь	С
e	е	а	Ь	С
a	а	е	С	b
Ь	Ь	С	b c e	а
С	С	b	а	е

+	ō	ī	2	3	
Ō	Ō	ī	2 3	3	
ī	ī	2	3	Ō	
0 1 2 3	0 1 2 3	1 2 3 0	Ō	1 2	
3	3	Ō	ī	2	
3	3	0	1	2	

critérios de subgrupo

Proposição. Sejam G um grupo e $H \subseteq G$. Então, H < G se e só se são satisfeitas as seguintes condições:

- 1. $H \neq \emptyset$;
- 2. $x, y \in H \Rightarrow xy \in H$;
- 3. $x \in H \Rightarrow x^{-1} \in H$.

Proposição. Sejam G um grupo e $H \subseteq G$. Então, H < G se e só se são satisfeitas as seguintes condições:

- 1. $H \neq \emptyset$;
- $2. \ x, y \in H \Rightarrow xy^{-1} \in H.$

Observação. As duas últimas proposições são habitualmente referidas como critérios de subgrupo. São equivalentes e, por isso, a escolha de qual usar para provar que um subconjunto de um determinado grupo é ou não subgrupo deste depende do gosto e destreza de quem está a realizar a prova.

subgrupos especiais

centralizador de um elemento

Definição. Sejam G um grupo e $a \in G$. Chama-se *centralizador de a* ao conjunto $C(a) = \{x \in G \mid ax = xa\}$.

Exemplo 13. Considere-se o grupo diedral do triângulo D_3 . Então,

$$C(\rho_1) = D_3,$$

 $C(\rho_2) = C(\rho_3) = \{\rho_1, \rho_2, \rho_3\},$
 $C(\theta_1) = \{\rho_1, \theta_1\}, C(\theta_2) = \{\rho_1, \theta_2\}$
 $C(\theta_3) = \{\rho_1, \theta_3\}.$

0	ρ_1	ρ_2	ρ_3	θ_1	θ_2	θ_3	
ρ_1	ρ_1	ρ_2	ρ_3	θ_1	θ_2	θ_3	
ρ_2	ρ_2	ρ_3	ρ_1	θ_3	θ_1	θ_2	
ρ_3	ρ_3	ρ_1	ρ_2	θ_2	θ_3	θ_1	
θ_1	θ_1	θ_2	θ_3	ρ_1	ρ_2	ρ_3	
θ_2	θ_2	θ_3	θ_1	ρ_3	ρ_1	ρ_2	
θ_3	θ_3	$ \rho_1 $ $ \theta_2 $ $ \theta_3 $ $ \theta_1 $	θ_2	ρ_2	ρ_3	ρ_1	

Proposição. Seja G um grupo. Então, para todo $a \in G$, C(a) < G.

Demonstração. Seja $a \in G$. Então,

- 1. $C(a) \neq \emptyset$, pois $1_G \in G$ é tal que $1_G a = a1_G$ e, portanto, $1_G \in C(a)$;
- 2. dados $x, y \in C(a)$, temos que $xy \in G$ e

$$a(xy) = (ax) y = (xa) y = x (ay) = x (ya) = (xy) a,$$

pelo que $xy \in C(a)$;

3. dado $x \in C(a)$, temos que $x^{-1} \in G$ e

$$\begin{aligned} \mathsf{a} x &= x \mathsf{a} & \Rightarrow & x^{-1} \left(\mathsf{a} x \right) x^{-1} = x^{-1} \left(x \mathsf{a} \right) x^{-1} \\ & \Leftrightarrow & \left(x^{-1} \mathsf{a} \right) \left(x x^{-1} \right) = \left(x^{-1} x \right) \left(\mathsf{a} x^{-1} \right) \\ & \Leftrightarrow & \left(x^{-1} \mathsf{a} \right) \mathbf{1}_{\mathsf{G}} = \mathbf{1}_{\mathsf{G}} \left(\mathsf{a} x^{-1} \right) \Leftrightarrow x^{-1} \mathsf{a} = \mathsf{a} x^{-1}, \end{aligned}$$

pelo que $x^{-1} \in C(a)$.

Logo,
$$C(a) < G$$
.

centro de um grupo

Definição. Seja G um grupo. Chama-se centro de G ao conjunto

$$Z(G) = \{x \in G \mid \forall a \in G, \quad ax = xa\}.$$

Exemplo 14. $Z(D_3) = \{\rho_1\}.$

Exemplo 15. Se G é um grupo abeliano, então, Z(G) = G.

Observação. É consequência imediata das definições de centro de um grupo e de centralizador de um elemento desse grupo que

$$Z(G) = \bigcap_{a \in G} C(a).$$

Proposição. Seja G um grupo. Então, Z(G) < G.

Demonstração. Seja G um grupo. Então,

- $1. \ \ Z\left(G\right) \neq \emptyset, \ \mathsf{pois} \ 1_{G} \in G \ \mathsf{\acute{e}} \ \mathsf{tal} \ \mathsf{que}, \ \mathsf{para} \ \mathsf{todo} \ a \in G, \quad 1_{G} a = a1_{G} \ \mathsf{e}, \ \mathsf{portanto}, \ 1_{G} \in Z\left(G\right);$
- 2. dados $x, y \in Z(G)$, temos que $xy \in G$ e, para todo $a \in G$,

$$a(xy) = (ax) y = (xa) y = x (ay) = x (ya) = (xy) a,$$

pelo que $xy \in Z(G)$;

3. dado $x \in Z(G)$, temos que $x^{-1} \in G$ e, para todo $a \in G$,

$$x^{-1}a = (x^{-1}a)e = (x^{-1}a)(x^{-1}x) = (x^{-1}ax^{-1})x =$$

= $x(x^{-1}ax) = (xx^{-1})(ax^{-1}) = 1_G(ax^{-1}) = ax^{-1},$

pelo que $x^{-1} \in Z(G)$.

Logo,
$$Z(G) < G$$
.

intersecção de subgrupos

Proposição. Sejam G um grupo e H, K < G. Então, $H \cap K < G$.

Logo,
$$H \cap K < G$$
.

Corolário. Seja G um grupo. Então, a intersecção de uma família não vazia de subgrupos de G é ainda um subgrupo de G.

Questão: Será que a união de dois subgrupos de um grupo ${\it G}$ é um subgrupo de ${\it G}$?

subgrupo gerado

Proposição. Sejam G um grupo e $\varnothing \neq X \subseteq G$. Consideremos o conjunto $\mathcal H$ de todos os subgrupos de G que contêm X. Então, $\bigcap_{H \in \mathcal H} H$ é o menor subgrupo de G que contém X.

Demonstração. Sejam G um grupo e $\mathcal{H}=\{H\subseteq G\mid H< G\ \ e\ \ X\subseteq H\}$. Então, como $\mathcal{H}\neq\emptyset$ (porque $G\in\mathcal{H}$), pelo corolário da proposição anterior, $\bigcap_{G\in\mathcal{H}}H< G$.

Mais ainda, pela definição de \mathcal{H} , temos que, $X\subseteq\bigcap_{H\in\mathcal{H}}H$.

Finalmente, seja K < G tal que $X \subseteq K$. Então, $K \in \mathcal{H}$ e, portanto, $\bigcap_{H \in \mathcal{H}} H \subseteq K$.

Concluímos então que $\bigcap_{H\in\mathcal{H}}H$ é o menor subgrupo que contém X.

Definição. Sejam G um grupo e $\varnothing \neq X \subseteq G$. Chama-se subgrupo de G gerado por X, e representa-se por $\langle X \rangle$, ao menor subgrupo que contém X. Se $X = \{a\}$, então escrevemos $\langle a \rangle$ para representar $\langle X \rangle$ e falamos no subgrupo de G gerado por a.

Observação. Pela última proposição, temos que $\langle X \rangle$ é a intersecção de todos os subgrupos de G que contêm X.

Exemplo 16. Se $G = \{e, a, b, c\}$ é o grupo 4-Klein, cujos subgrupos são $\{e, a, b, c\}$, $\{e\}$, $\{e, a\}$, $\{e, b\}$ e $\{e, c\}$, então, $<a>=\{e, a\}$ e $<\{a, b\}>=G$.

Proposição. Sejam G um grupo e $a \in G$. Então, $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$.

ordem de um elemento

conceitos básicos

Dados um grupo G e $a \in G$, vimos que

$$\langle a \rangle = \{ a^n : n \in \mathbb{Z} \}.$$

É óbvio que, no caso de $a=1_G$, o subgrupo é o subgrupo trivial.

Mais ainda, no grupo $(\mathbb{R}\setminus\{0\},\cdot)$, é fácil ver que $\langle -1\rangle=\{-1,1\}$.

Torna-se, portanto, óbvio que, embora o subgrupo gerado esteja definido à custa do conjunto dos inteiros, nem sempre vamos obter um número infinito de elementos.

Definição. Sejam G um grupo e $a \in G$.

- 1. Diz-se que a tem ordem infinita, e escreve-se $o(a) = \infty$, se não existe nenhum $p \in \mathbb{N}$ tal que $a^p = 1_G$.
- 2. Diz-se que a tem ordem k ($k \in \mathbb{N}$), e escreve-se o(a) = k, se
 - (a) $a^k = 1_G$;
 - (b) $p \in \mathbb{N}$ e $a^p = 1_G \Rightarrow k \leq p$.

Exemplo 17. Considerando o conjunto dos números reais:

- Em $(\mathbb{R},+)$, a ordem de qualquer elemento não nulo a é infinita. Por outro lado, o(0)=1.
- Em $(\mathbb{R}\setminus\{0\},\times)$, temos que o(1)=1, o(-1)=2 e se $x\in\mathbb{R}\setminus\{-1,0,1\}$, então $o(x)=\infty$.

Exemplo 18. No grupo 4-Klein $G = \{1_G, a, b, c\}$ temos que:

- 1. $o(1_G) = 1$;
- 2. o(a) = o(b) = o(c) = 2.

Exemplo 19. No grupo $\mathbb{Z}_4 = \left\{\bar{0}, \bar{1}, \bar{2}, \bar{3}\right\}$, temos que:

- 1. $o(\bar{0}) = 1$;
- $2. \ o\left(\overline{1}\right)=4, \ \mathsf{pois} \ \overline{1}\neq \overline{0}, \overline{1}+\overline{1}=\overline{2}\neq \overline{0}, \overline{1}+\overline{1}+\overline{1}=\overline{3}\neq \overline{0} \ \mathsf{e} \ \overline{1}+\overline{1}+\overline{1}+\overline{1}=\overline{0};$
- 3. $o(\bar{2}) = 2$, pois $\bar{2} \neq \bar{0}$ e $\bar{2} + \bar{2} = \bar{0}$
- 4. $o(\bar{3}) = 4$, pois $\bar{3} \neq \bar{0}$, $\bar{3} + \bar{3} = \bar{2} \neq \bar{0}$, $\bar{3} + \bar{3} + \bar{3} = \bar{1} \neq \bar{0}$ e $\bar{3} + \bar{3} + \bar{3} + \bar{3} = \bar{0}$.

Proposição. Num grupo G o elemento identidade é o único elemento que tem ordem 1.

Proposição. Sejam G um grupo e $a \in G$ um elemento com ordem infinita. Então, para $m, n \in \mathbb{Z}$,

$$a^m \neq a^n$$
 se $m \neq n$.

Demonstração. Sejam $m, n \in \mathbb{Z}$ tal que $a^m = a^n$. Então,

$$a^{m} = a^{n}$$
 $\Rightarrow a^{m}a^{-n} = a^{n}a^{-m} = 1_{G}$
 $\Rightarrow a^{m-n} = a^{n-m} = 1_{G}$
 $\Rightarrow a^{|m-n|} = 1_{G}$
 $\Rightarrow |m-n| = 0$ $(o(a) = \infty)$
 $\Rightarrow m = n$.

Logo, se $m \neq n$ então $a^m \neq a^n$.

Corolário. Sejam G um grupo e $a \in G$ um elemento com ordem infinita. Então, $\langle a \rangle$ tem um número infinito de elementos.

Corolário. Num grupo finito nenhum elemento tem ordem infinita.

Proposição. Sejam G um grupo, $a \in G$ e $k \in \mathbb{N}$ tal que o(a) = k. Então,

- 1. se um inteiro n tem r como resto na divisão por k então $a^n = a^r$;
- 2. para $n \in \mathbb{Z}$, $a^n = 1_G \Leftrightarrow k \mid n$;
- 3. $\langle a \rangle = \{1_G, a^1, a^2, \dots, a^{k-1}\};$
- 4. $\langle a \rangle$ tem exatamente k elementos.

algumas propriedades

Proposição. Sejam G um grupo e $a, b \in G$. Então, a e $b^{-1}ab$ têm a mesma ordem.

Demonstração. Suponhamos que $o(a)=n_0$ é finita. Sabemos que $(b^{-1}ab)^{n_0}=b^{-1}a^{n_0}b$ (ver exercício 9b da folha 2). Logo, como $a^{n_0}=1_G$, obtemos

$$(b^{-1}ab)^{n_0} = b^{-1}1_Gb = b^{-1}b = 1_G.$$

Suponhamos agora que k é um inteiro positivo tal que $(b^{-1}ab)^k=1_G$. Então,

$$\begin{aligned} (b^{-1}ab)^k &= 1_G & \Leftrightarrow b^{-1}a^kb = 1_G \\ & \Leftrightarrow b(b^{-1}a^kb)b^{-1} = b1_Gb^{-1} \\ & \Leftrightarrow (bb^{-1})a^k(bb^{-1}) = 1_G \\ & \Leftrightarrow a^k = 1_G. \end{aligned}$$

Como a ordem de $a \in n_0$, segue-se que $k \ge n_0$. Assim, $n_0 \in n_0$, de facto, o menor inteiro positivo n_0 tal que $(b^{-1}ab)^n = 1_G$, ou seja, $o(b^{-1}ab) = n_0$.

Mostramos de seguida que, se a tiver ordem infinita, então, $b^{-1}ab$ também tem ordem infinita, usando a regra do contrarrecíproco. Suponhamos que $o(b^{-1}ab)=k$ é finita. Então, pelo que acabámos de provar, $o\left(b(b^{-1}ab)b^{-1}\right)=k$ e, portanto, o(a)=k é finita.

Observação. Se G é abeliano, o resultado anterior não tem qualquer interesse porque se reduz a o(a) = o(a).

Proposição. Seja G um grupo e $a \in G$ um elemento de ordem finita n. Então, para qualquer $p \in \mathbb{N}$, $o(a^p) = \frac{n}{d}$, onde d = m.d.c.(n, p).

Demonstração. Sejam $p \in \mathbb{N}$ e d = m.d.c.(n,p). Então $\frac{n}{d}$, $\frac{p}{d} \in \mathbb{N}$ e d = xn + yp, para certos $x, y \in \mathbb{Z}$. Temos

$$(a^p)^{\frac{n}{d}} = (a^n)^{\frac{p}{d}} = 1_G^{\frac{p}{d}} = 1_G.$$

Se $k \in \mathbb{N}$ é tal que $(a^p)^k = 1_G$, então, como o(a) = n, temos que $n \mid pk$, i.e., pk = nq para certo $q \in \mathbb{N}$.

$$d = xn + yp \Rightarrow dk = xnk + ypk = xnk + ynq = n(xk + yq)$$

$$\Rightarrow k = \frac{n}{d}(xk + yq),$$

pelo que $\frac{n}{d} \mid k$. Portanto, $o(a^p) = \frac{n}{d}$.

Exemplo 20. Considere-se o grupo ($\mathbb{Z}_{31}^*, \otimes$). Facilmente se verifica que, neste grupo, $o([2]_{31}) = 5$. Então,

$$o([8]_{31}) = o([2]_{31}^{3}) = \frac{5}{\text{m.d.c.}(5,3)} = 5.$$

Lema. Sejam G um grupo e $a,b\in G$. Então, para qualquer inteiro positivo k,

$$(ab)^k = 1_G \Leftrightarrow (ba)^k = 1_G.$$

Demonstração. Sejam a, b elementos arbitrários de um grupo G e k um inteiro positivo. Temos:

$$(ab)^{k} = 1_{G} \qquad \Leftrightarrow (ab)^{k+1} = ab$$

$$\Leftrightarrow a(ba)^{k}b = ab$$

$$\Leftrightarrow a^{-1} \left[a(ba)^{k}b \right] b^{-1} = a^{-1}(ab)b^{-1}$$

$$\Leftrightarrow (a^{-1}a)(ba)^{k}(bb^{-1}) = (a^{-1}a)(bb^{-1})$$

$$\Leftrightarrow (ba)^{k} = 1_{G}. \qquad \Box$$

Proposição. Sejam G um grupo e $a, b \in G$. Se ab tem ordem finita então o(ba) = o(ab).

Proposição. Sejam G um grupo e $a \in G$. Então, $o(a^{-1}) = o(a)$.

Demonstração. O resultado é imediato tendo em conta que, para todo $k \in \mathbb{Z}$,

$$a^k = 1_G \Leftrightarrow (a^{-1})^k = 1_G.$$

Proposição. Se $a \in b$ são elementos de ordem finita de um grupo abeliano G, então $o(ab) \mid o(a) o(b)$.

Demonstração. Se G é abeliano, sabemos que, para todo $n \in \mathbb{Z}$, $(ab)^n = a^n b^n$ (exercício 12 da folha 2). Assim, temos que

$$(ab)^{o(a)} \circ ^{(b)} = a^{o(a)} \circ ^{(b)} b^{o(a)} \circ ^{(b)} = (a^{o(a)})^{o(b)} (b^{o(b)})^{o(a)} = (1_G)^{o(b)} (1_G)^{o(a)} = 1_G 1_G = 1_G.$$

Estamos em condições de concluir que $o(ab) \mid o(a) o(b)$.

Observação. Que relação terá de existir entre as ordens finitas de *a* e *b* para que a ordem de *ab* seja não só um divisor mas sim igual ao produto daquelas ordens?

Exemplo 21. No grupo aditivo (\mathbb{Z}_6) , temos que $o([2]_6)=3$, $o([3]_6)=2$ e $o([4]_6)=3$.

Temos que

$$o([2]_6 \oplus [4]_6) = o([0]_6) = 1 e o([2]_6) o([4]_6) = 3 \times 3 = 9.$$

Temos também que

$$o([2]_6 \oplus [3]_6) = o([5]_6) = 6 e o([2]_6) o([3]_6) = 3 \times 2 = 6.$$