Ejercicio Corrección

Patricia Córdoba Hidalgo

10 de abril de 2018

Sea $B = (\bigcup_{n=1}^{\infty} B_n) \bigcup (\bigcup_{i=1}^{\infty} X - C_i)$, donde B_n y $C_i \in \tau \quad \forall n, i \in \mathbb{N} \Rightarrow f^{-1}((\bigcup_{n=1}^{\infty} B_n) \bigcup (\bigcup_{i=1}^{\infty} X - C_i)) = f^{-1}(\bigcup_{n=1}^{\infty} B_n) \bigcup f^{-1}(\bigcup_{i=1}^{\infty} X - C_i)$. La unión de abiertos es abierta, luego $f^{-1}(\bigcup_{n=1}^{\infty} B_n) \in \mathcal{A}$ por hipótesis. Además, $f^{-1}(\bigcup_{i=1}^{\infty} X - C_i) = \bigcup_{i=1}^{\infty} f^{-1}(X - C_i)$. Por lo explicado anteriormente, si $f^{-1}(C_i) \in \mathcal{A} \Rightarrow f^{-1}(X - C_i) \in \mathcal{A}$, por lo tanto $\bigcup_{i=1}^{\infty} f^{-1}(X - C_i)$ es la unión infinita numerable de elementos de la σ -álgebra, luego pertenece a la σ -álgebra. Por último, la unión de dos elementos de la σ -álgebra pertenece a ésta, luego $f^{-1}(\bigcup_{n=1}^{\infty} B_n) \bigcup f^{-1}(\bigcup_{i=1}^{\infty} X - C_i) \in \mathcal{A}$.