Shape

Shape

- Statistical description
 - Topological
 - Geometrical

Structural description

Other methods

Statistical Description. Different descriptors:

- Topological
 - Number of objects
 - Euler number
 - Bounding box
- Geometric
 - Area, width, perimeters
 - Elongation (excentricity)
 - Compacity
 - Inertia moments
 - Vertical, horizontal or diagonal projections

Topological descriptors (Binary images)

- Number of objects (C)
- Number of holes (H)
- Euler Number (E)

(C=2, H=3, E=-1)

1 white object (C=1, H=3)

E=-2

From Jordi Vitrià at the Universitat Autònoma de Barcelona

Geometric descriptors

- Area, Perimeter
- Width, Height
- Compacity $rac{P^2}{(4\pi A)}$
- Elongation: W/H

From Jordi Vitrià at the Universitat Autònoma de Barcelona

Inertia Moments

- Area = m_{00}
- $\mu_x = m_{10}/m_{00}$, $\mu_y = m_{01}/m_{00}$
- $m_{ij} = \sum_{x=1}^{N} \sum_{y=1}^{N} f(x, y) x^{i} y^{j}$

 With this definition, the same shape in a different position will have different moments

Central Moments

$$\mu_{ij} = \sum_{x=1}^{N} \sum_{y=1}^{N} f(x, y) (x - \mu_x)^i (y - \mu_y)^j$$

Where μ_x i μ_v are the coordinates of the centroid of the shape

Central Moments

Center

Variance

$$(\mu_x, \mu_y)$$

 μ_{20}/μ_{00} and μ_{02}/μ_{00}

Covariance

$$\frac{1}{\mu_{00}} \left[\begin{array}{cc} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{array} \right]$$

Eccentricity

Orientation

or
$$\theta = \frac{1}{2} \tan^{-1} \frac{2\mu_{11}}{\mu_{20} - \mu_{02}}$$

Example of Central Moments

 Principal axes are related to the eigenvectors and eigenvalues of the covariance matrix

Invariant moments

Moments that are not affected by specific transformations

- Translation: Central moments
- Rotation: eigenvalues of the covariance matrix
- Scale: ratio between eigenvalues

- Shape representation using a vector of numerical characteristics
- Similarity between shapes is defined as distance metric in the feature space

Shape

- Statistical description
 - Topological
 - Geometrical

- Other methods
 - Structural description
 - Salient Points
 - PDM

Shape. Structural Description

Statistical description: shape representation using a vector of numerical characteristics. Similarity between shapes is defined as distance metric in the feature space

Structural description: explicit or implicit representation of the structure of an object, where structure is the hierarchical and relational organisation of lower level characteristics

Statistical Desc.: F = (#components, height, width)

Structural Desc:

LeftLeg, RightLeg: VERTICAL RECTANGLE;

LeftArm, RightArm: HORITZONTAL RECTANGLE;

body: SQUARE;

head: CERCLE;

 $F = \text{head } \cap (\text{LeftArm} \Leftrightarrow (\text{body} \cap (\text{LeftLeg} \Leftrightarrow \text{RightLeg})) \Leftrightarrow \text{RightArm})$

Shape. Structural Description

Structural shape description can be split into two categories based on the model used for description:

- Syntactical description:
 - Representation using formal grammar
 - Recognition is performed using a parser
- Structural prototypes:
 - Explicit Representation using structural definitions such as strings and graphs
 - Recognition is performed by stating the matching using an implicit distance (or similarity) function

Shape. Salient Points

Salient Points

A shape can also be described by a set of salient points

- Methods
 - Edge Corners
 - Wavelets
 - Edge Curvature
 - Etc..

Extracted from Michael S. Lew

Shape. PDM

PDM (Point Distribution model / Statistical Shape model)

 Describe a shape from studying the statistical variation of characteristic points from a set of training images of this shape

- Overview
 - Align the training set
 - Obtain a mean shape
 - Compute the variance of the training set
 - Extract eigenvectors and eigenvalues of the covariance
 - The shape can be modeled by taking only the eigenvectors with the larger eigevalues (account for most of the variation)

Examples extracted from Tim Cootes

Shape. PDM

PDM. Hand Example

Shape (summary)

- Difficulty to extract reliable shape information from the region
- The selection of a shape feature depends on the many factors
 - Is invariance needed?
 - How complex is the scene/shape?
 - Nature of noise?

By:

Carlos J. Becker Sophia Bano

Motivation

Shape matching

Object Recognition based on shapes

Motivation

- Classification Problem, we need:
 - Descriptor
 - Characterization
 - Similarity between two descriptors (i.e Distance)
 - Matching

Shape Representation

 Set of points taken from external and internal contour of the object

 Points could or could not represent key points in the image (corners/edges/etc)

- Novel shape Descriptor
 - Describes the relationship between each point of shape contour with rest of points
 - Histogram Representation
 - All the information is relative to the contour points.
 - Rich Descriptor

- Relationship between points is summarized in a Histogram
 - Polar coordinates
 - Angle
 - Distance
 - Distance taken as log r
 - More sensitive to positions closer to the point than farther

Shape Context Properties

- Invariant to Translation
- Invariant to Scaling
- Can be made invariant to Rotation
- Robust to
 - Small nonlinear transformations
 - Occlusions
 - Presences of outliers
- A blurry or noisy image could lead to a wrong representation of its shape

Two shapes: which is the best match?

Two shapes: which is the best match?

- We are comparing histograms
 - Chi-Square Test to determine the matching cost:

$$C_{ij} = C(p_i, q_j) = \frac{1}{2} \sum_{k=1}^{K} \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$$

- But we want to minimize the total cost:
 - Bipartite Matching using Hungarian method is applied

$$H(\pi) = \sum_{i} C(p_i, q_{\pi(i)})$$

Matching with Shape Context

Matching Example

So Far.....

- We have our Shape Descriptor
- We know how to solve the correspondence between two Shape Descriptors:

• This will minimize the total matching cost, regardless of how similar or not the shape descriptors are:

Similarity Measure

- We need a measure of similarity
 - How much can we deform a shape to match it with reference shape?
 - Spatial transformation of points (x', y') = T(x, y)

- Thin-Plate Spline chosen
 - Affine transformation is a special case
 - Able to express organic growth in nature
 - Non-linear transformation

Thin Plate Spline (TPS)

- TPS parameter estimation is fairly easy to do
- Physical analogy to bending a thin sheet of metal
- Bending Energy expresses the 'effort' needed to 'bend' the space during the transformation
 - GREAT AS DISIMILARITY MEASURE

TPS Result

TPS Result

Similarity Measure

- In order to provide a consistent distance measure, three similarity measures are merged:
 - TPS Bending Energy
 - Matching Cost
 How well TPS matches one shape into the other
 - Appearance Cost
 Taking into account brightness difference around shape points

Classification Process

Results (MNIST Database)

- Shape Representation
 - 100 points sampled from canny edge detector
- Error Rate 0.63% with a database of 20,000 images

Results (Trademark Retrieval)

- **Database**
 - 300 trademarks
- **Shape Representation**
 - 300 points
- Affine Transformation

No visually similar trademark has been missed.

query

1:0.046

2:0.107

3: 0.114

query

1: 0.117

2:0.121

3:0.129

query

1:0.096

2:0.147

3: 0.153

query

1:0.078

2:0.116

3: 0.122

Results

MPEG-7 Shape Silhouette COIL-20

COIL-20 3D Object Recognition

 Shape Context out performed the accuracy of many existing techniques, some conceptually and computationally more complicated and expensive

Conclusions

- Estimation of shape similarity and correspondence based on a novel descriptor THE SHAPE CONTEXT
- Shape Context is
 - Simple and intuitive shape descriptor which is easy to apply
 - Rich descriptor, greatly improving point set registration, shape matching, shape recognition
 - Invariance to several common image transformations (translation, scale, rotation, occlusions)
- Main disadvantage: a blurry, diffuse or extremely noisy image may lead to an incorrect representation of its shape (i.e.: canny)
- Problems in cluttered background

References

- S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape matching and object recognition. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13: Proceedings of the 2000 Conference, pages 831–837, 2001.
- Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(4):509–522, April 2002.
- G. Mori and J. Malik. Estimating Human Body Configurations using Shape Context Matching. In European Conference on Computer Vision, 2002.
- MoriG., Belongie S., Malik J., Efficient Shape Matching Using Shape
 Contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp. 1832-1837, November, 2005
- F. L. Bookstein. Principal warps: thin-plate splines and decomposition of deformations. IEEE Trans. Pattern Analysis and Machine Intelligence, 11(6):567–585, June 1989.