射频特训班

第三讲 GNSS有源接收天线射频系统设计

主讲:汪 朋

QQ: 3180564167

01		GNSS有源天线优势
02	\rangle	接收天线射频前端系统
03	\rangle	有源天线射频前端设计演示

GNSS有源天线优势

Part

- [1] 更高的增益;
- [2] 更高的接收灵敏度;
- [3] 更低的噪声系数;
- [4] 更高的带外抑制能力;
- [5] 小型化;
- [6] 易于实现宽频和多频段;
- [7] 更高的抗干扰能力。

Z (d:	国家	12 A-1-A	中心频率	最大带宽	
系统		通信方式	(MHz)	(MHz)	
	-M- IIII		L1/L1C:1575.420	20.60	
GPS	美国	CDMA	L2/L2C:1227.600 L5:1176.45	30.69	
	俄罗斯	FDMA	L1:1602+k×0.5625	40.96	
GLONASS		CDMA	L1:1575.420		
		FDMA	L2:1246+k×0.4375		
		CDMA	L2:1242.000		
		CDMA	L3:1202.025		
		CDMA	L5:1176.450		
	欧盟	CDMA	E1:1575.420		
			E6:1278.750	40.96	
Galileo			:盟 CDMA E5b:1207.140		
			E5:1191.795		
			E5a:1176.450		
	中国	CDMA	B1:1559.052~1597.788		
BDS			B2:1162.220~1217.370	30.69	
			B3:1250.618~1286.423		

GNSS有源天线原理

多频段有源接收天线系统

宽带有源接收天线系统

圆极化天线馈电网络设计 [1] 基于三个桥式耦合器的设计(窄带)

圆极化天线馈电网络设计 [2] 基于威尔金森功分器移相器

圆极化天线馈电网络设计 [3] 基于LTCC陶瓷电桥耦合器

GNSS圆极化天线合路器方案

[1] 对于频率相近的多频天线,可以使用宽带型功分器作为合路器使用 缺点:每个通道有3dB插损;优点:设计简单易于实现

GNSS圆极化天线合路器方案

[2] 使用双滤波器型叠加式合路器(针对频率较远、多频)

优点:各个通道插损较低,天线效率较高;

缺点: 合路器设计难度较大, 需要掌握滤波器设计技术, 阻抗和导纳匹配技术。

滤波器

滤波器的选择需要基于项目本身而定,主要参考标准为成本、尺寸、应用环境、指标要求。

- [1] LC滤波器(适合小型化但是指标要求不高的场景);
- [2] 微带滤波器(适合对尺寸要求不高场景);
- [3] BAW滤波器(窄带、尺寸要求较高);
- [4] 陶瓷滤波器(尺寸要求较高, 环境要求较高的)。

参考型号: qorvo公司880094和880060

Parameter (3)	Conditions	Min	Typical (4)	Max	Units
Center Frequency		-	1575.42	-	MHz
Maximum Insertion Loss	@ 1575.42 MHz	-	1.8	2.5	dB
3dB Bandwidth	Reference loss at 1575.42 MHz	30	35	-	MHz
20dB Lower Frequency Edge		1543.42	1548	-	MHz
20dB Upper Frequency Edge		-	1602	1607.42	MHz
VSWR	@ 1575.42 MHz	-	1.6	2.0	-
Source Impedance (single-ended)		-	50	-	Ω
Load Impedance (single-ended) (5)		-	50	-	Ω

低噪声放大器

主要考虑指标:

- [1] 工作频段;
- [2] 带内增益;
- [3] 噪声系数。

集成电路方案(设计简单,但是噪声系数无法控制,设计灵活度不高,成本较高)

建议厂家: ADI, Qorvo

分立器件设计方案(设计繁琐,但是增益、噪声系数均可自己控制,易于实现多级级联,设

计灵活度高,成本较低)

建议厂家: NXP, 摩托罗拉, Qorvo

衰减器

主要考虑指标:

[1] 工作频段; [2] 带内衰减; [3] 衰减平坦度。

集成电路方案(设计简单,灵活度高,但成本较高)

建议厂家: ADI

分立器件设计方案(采用PI型或T型电阻网络)

衰减量	T-型衰减器			Ⅱ-型衰减器			I
(dB)	R1	R2	R3	R1	R2	R3	
2	5.73	5.73	215.24	436.21	436.21	11.61	
4	11.31	11.31	104.83	220.97	220.97	23.85	
6	16.61	16.61	66.93	150.48	150.48	37.35	R
8	21.53	21.53	47.35	116.14	116.14	52.84	
10	25.97	25.97	35.14	96.25	96.25	71.15	
12	29.92	29.92	26.81	83.54	83.54	93.25	

GNSS有源天线设计演示

设计实例:

设计工作于GPS L1/BDS-B1和GPS L2/BDS-B2频段的有源接收天线,要求VSWR<2,采用双馈结构,天 线为右旋圆极化天线,

增益要求:

无源增益: 天线面法向增益, Gain≥4.5 dBi; 仰角≥20°,方位角 0~360°,Gain≥-5.0dBi;

系统接收增益: 40dB, 噪声系数要低于2.5dB

设计实例:

设计工作于GPS L1/BDS-B1和GPS L2/BDS-B2频段的有源接收天线,要求VSWR<2,采用双馈结构,天线为右旋圆极化天线,

增益要求:

无源增益: 天线面法向增益, Gain≥4.5 dBi; 仰角≥20°,方位角 0~360°,Gain≥-5.0dBi;

系统接收增益: 40dB, 噪声系数要低于2.5dB

