

itSeez<u>3</u>D

Introduction to Generative Adversarial Networks (GANs)

Ilya Lysenkov, itSeez3D CTO

NNSU July 2019

Generative Adversarial Networks

 I. Goodfellow et al. Generative Adversarial Networks.

arXiv:1406.2661

10048 citations

Yann LeCun: "This, and the variations that are now being proposed is the most interesting idea in the last 10 years in ML, in my opinion."

- Quora, July 2016

Toy problem

Обычный порошок

Input

PatchMatch

Image Melding

Image source:

Deep learning

Deep learning

Image source: <u>arXiv:1704.05838</u>
Y. Li et al. Generative Face Completion.

MSE loss (L2 loss)

Let's imagine a planet with only 2 kinds of people:

Prediction

Fact

$$\min_{x} \sum_{i=1}^{n} (x - a_i)^2$$

Fact

$$\min_{x} \sum_{i=1}^{n} (x - a_{i})^{2}$$

$$\frac{d}{dx} \sum_{i=1}^{n} (x - a_{i})^{2} = \sum_{i=1}^{n} 2(x - a_{i}) = 0$$

$$\sum_{i=1}^{n} (x - a_{i}) = 0$$

$$nx - \sum_{i=1}^{n} a_{i} = 0$$

$$x = \frac{1}{n} \sum_{i=1}^{n} a_{i}$$

The ultimate criterion

Generative Adversarial Networks

Cost functions

- x_i real images
- D discriminator, G generator:

$$\min_{D} -\sum_{i} \left[\log D(x_i) + \log \left(1 - D(G(x_i)) \right) \right]$$

G – generator:

$$\min_{G} \sum_{i} \log \left(1 - D(G(x_i)) \right) \quad \text{or} \quad \min_{G} - \sum_{i} \log D(G(x_i))$$

Example of results

More examples of results

Image source: <u>arXiv:1704.05838</u>
Y. Li et al. Generative Face Completion.

And some more

Image source: S. Iizuka et al. Globally and Locally Consistent Image Completion.

And recent results

arXiv:1801.07632

Not only faces

Image source:

S. lizuka et al. Globally and Locally Consistent Image Completion.

pix2pix

arXiv:1611.07004

P. Isola et al. Image-to-Image Translation with Conditional Adversarial Networks.

pix2pix

arXiv:1611.07004

P. Isola et al. Image-to-Image Translation with Conditional Adversarial Networks.

Zebras C Horses

 $zebra \rightarrow horse$

horse \rightarrow zebra

arXiv:1703.10593

J. Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

arXiv:1703.10593

Monet C Photos

Monet \rightarrow photo

photo \rightarrow Monet

arXiv:1703.10593

Summer C Winter

 $summer \rightarrow winter$

winter \rightarrow summer

arXiv:1703.10593

CycleGAN on video

×	Не удается отобразить рисунок. Возможно, рисунок поврежден или недостаточно памяти для его открытия. Перезагрузите компьютер, а затем снова откройте файл. Если вместо рисунка все еще отображается красный крестик, попробуйте удалить рисунок и вставить его заново.
•••	

Example of a failure case

Image source: https://junyanz.github.io/CycleGAN/

First research paper from Apple

StackGAN

This bird is white with some black on its head and wings, and has a long orange beak

This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face

This flower has overlapping pink pointed petals surrounding a ring of short yellow filaments

arXiv:1612.03242

GANs

Progress in generation of faces over years

Faces generated by GAN from random noise

arXiv:1710.10196

Faces generated by GAN from random noise

Online demo

https://thispersondoesnotexist.com

Images generated for different categories

arXiv:1710.10196

T. Karras et al. Progressive Growing of GANs for Improved Quality, Stability, and Variation.

Recent results

arXiv:1809.11096

A. Brock et al. Large Scale GAN Training for High Fidelity Natural Image Synthesis.

DCGAN

DCGAN bedrooms

DCGAN faces

Image source: <u>arXiv:1511.06434</u>

A. Redford et al. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.

Arithmetic in latent space

#MakeGirlsMoe

<u>arXiv:1708.05509</u>

Y. Jin et al. Towards the Automatic Anime Characters Creation with Generative Adversarial Networks.

GANs and Art

- Trained on
 15,000
 portraits
 painted
 between the
 14th and 20th
 centuries
- Sold for \$432,000 at auction

Reconstruction of images from fMRI data

Reconstruction of images from fMRI data

GAN popularity

Source: https://github.com/hindupuravinash/the-gan-zoo

GAN names collisions

- SEGAN "SEGAN: Speech Enhancement Generative Adversarial Network"
- SeGAN "SeGAN: Segmenting and Generating the Invisible"
- SegAN "SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation"

GAN applied to audio

C. Donahue, J. McAuley, M. Puckette. Synthesizing Audio with Generative Adversarial Networks.

arXiv:1802.04208

http://wavegan-v1.s3-website-useast-1.amazonaws.com/

GAN applied to audio

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, Yi-Hsuan Yang
MuseGAN: Multi-track Sequential
Generative Adversarial Networks for
Symbolic Music Generation and
Accompaniment.

arXiv:1709.06298

https://salu133445.github.io/musegan/results

3D-GAN

arXiv:1610.07584

J. Wu et al. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling.

3D-GAN results

arXiv:1610.07584

J. Wu et al. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling.

3D-GAN single image reconstruction

itSeez3D results were shown during the presentation

Check out https://avatarsdk.com for more details

Thank you!

ilya.lysenkov@itseez3d.com

avatarsdk.com