COLLE 8 = MATRICES ET APPLICATIONS

Niveau: Première année de PCSI

mail: i.botcazou@gmx.fr

Connaître son cours:

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$, expliciter $Tr(A^TA)$. Que peut-on en déduire sur la matrice A si $Tr(A^TA) = 0$?
- 2. Soit $A, B \in \mathcal{M}_n(\mathbb{R})$, montrer que $(AB)^T = B^T A^T$.
- 3. Résoudre le système linéaire suivant après l'avoir écrit sous une forme matricielle :

(S)
$$\begin{cases} x - y + 2z &= 1 \\ -2y + z &= 2 \\ x - 3y &= 1 \end{cases}$$

Exercices:

Exercice 1.

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note $\sigma(A)$ la somme des termes de A. On pose $J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & (1) & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$. Vérifier $J.A.J = \sigma(A).J$.

Exercice 2.

Soient $\lambda_1, \ldots, \lambda_n$ des éléments de \mathbb{K} deux à deux distincts et $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec D.

Exercice 3.

Soit $A \in GL_n(\mathbb{R})$ vérifiant $A + A^{-1} = I_n$ Pour $k \in \mathbb{N}$, calculer $A^k + A^{-k}$.

Exercice 4.

Soit $n \in \mathbb{N}$ avec $n \ge 2$.

- 1. Montrer que $\{A \in \mathcal{M}_n(\mathbb{R}) \mid \forall M \in GL_n(\mathbb{R}), AM = MA\} = \{\lambda I_n \mid \lambda \in \mathbb{R}\}$
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que $\forall M, N \in \mathcal{M}_n(\mathbb{R}), A = MN \Rightarrow A = NM$ Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $A = \lambda I_n$

Exercice 5.

On suppose que $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent et que A est inversible. Justifier que les matrices A^{-1} et B commutent.

Niveau: Première année de PCSI

Exercice 6.

Soient $n \in \mathbb{N} \backslash \{0,1\}$ et $\omega = \exp\left(\frac{2\mathrm{i}\pi}{n}\right).$ On pose

$$A = \left(\omega^{(k-1)(\ell-1)}\right)_{1 \le k, \ell \le n} \in \mathcal{M}_n(\mathbb{C}).$$

Calculer $A\bar{A}$. En déduire que A est inversible et calculer A^{-1} .

Exercice 7.

Soit

$$A = \left(\begin{array}{ccc} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{array}\right)$$

- 1. Calculer $(A+I)^3$.
- 2. En déduire que A est inversible.