Clear and Compress: Computing Persistent Homology in Chunks

Ulrich Bauer¹ Michael Kerber² Jan Reininghaus¹

¹ Institute of Science and Technology (IST) Austria

²Stanford University and Max Planck Center for Visual Computing and Communication, Saarbrücken, Germany

SIAM AG 2013

Overview

Complexity analysis

$$O(m\ell^3 + g\ell n + g^3)$$

- ▶ n = #simplices
- ho $\ell = max$. size of chunk
- ▶ m = #chunks
- g = #non-local pairs

Experimental results

- Parallelized version
- Outperforms standard algorithm, Dionysus
- Faster than clear optimization

	1	2	3	4	5	6	7
1			1		1		
2			1			1	
3							1
4					1	1	
5							1
6							1
7							

Algorithm:

for *i* from 1 to *n*:

	1	2	3	4	5	6	7
1			1		1		
2			1			1	
3							1
4					1	1	
5							1
6							1
7							

Algorithm:

for *i* from 1 to *n*:

	1	2	3	4	5	6	7
1			1		1	1	
2			1			1	
3							1
4					1	0	
5							1
6							1
7							

Algorithm:

for *i* from 1 to *n*:

	1	2	3	4	5	6	7
1			1		1	0	
2			1			0	
3							1
4					1		
5							1
6							1
7							

Algorithm:

for *i* from 1 to *n*:

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4					1		
5							1
6							1
7							

Algorithm:

for *i* from 1 to *n*:

	1	2	3	4	5	6	7
1			1		1		
2			1				
3							1
4 5					1		
							1
6							1
7							

- positive inessential, negative, and essential simplices/columns
- ▶ Column i is zero ⇔ i-th simplex is positive
- All column additions within the same dimension
- Pivots do not dependent on the order of operations

Clear Optimization [Chen, K. 2011]

(i, j) is persistence pair

 \Rightarrow *i*-th simplex is positive

 \Rightarrow column *i* reduces to 0

Clear Optimization [Chen, K. 2011]

	1	2	3	4	5	6	7
1			1			1	
2			1		1		
3							1
4					1	1	
5							1
6							1
7							

Algorithm:

for δ from dim K downto 0:

- ▶ For simplices of dim. δ , left to right:
 - while pivot[j]=pivot[i] for some j < i, add column j to column i</p>
- For any column i with pivot[i]=j: set column j to zero

Compress Optimization [Zomorodian, Carlsson 2004]

(i,j) is persistence pair

 \Rightarrow j is not the pivot of any column

 \Rightarrow Setting row *j* to zero is fine!

Compress Optimization [Zomorodian, Carlsson 2004]

Algorithm:

for *i* from 1 to *n*:

- Remove row indices for negative simplices (compression)
- while pivot[j]=pivot[i] for some j < i, add column j to column i

Chunk Algorithm: Local Reduction

Local simplex: Paired with simplex in same or adjacent chunk Global simplex: non-local (must have persistence $\geq \ell$)

Local reduction algorithm:

- Reduce columns using only columns from same chunk
- Reduce columns using only columns from same or left-neighboring chunk

Main observation:

Local columns are reduced

Running time: $O(m\ell^3)$

Chunk Algorithm: Local Reduction

Local simplex: Paired with simplex in same or adjacent chunk Global simplex: non-local (must have persistence $\geq \ell$)

Local reduction algorithm:

- Reduce columns using only columns from same chunk
- Reduce columns using only columns from same or left-neighboring chunk

Main observation:

Local columns are reduced

Running time: $O(m\ell^3)$

For each global column: iterate over entries from bottom to top

- Global index: skip
- Local positive: add (local) column with same pivot
- Local negative: set to zero (compress)

Running time: $O(g(n+n\ell)) = O(gn\ell)$

For each global column: iterate over entries from bottom to top

- Global index: skip
- Local positive: add (local) column with same pivot
- Local negative: set to zero (compress)

Running time: $O(g(n+n\ell)) = O(gn\ell)$

For each global column: iterate over entries from bottom to top

- Global index: skip
- Local positive: add (local) column with same pivot
- Local negative: set to zero (compress)

Running time: $O(g(n+n\ell)) = O(gn\ell)$

For each global column: iterate over entries from bottom to top

- Global index: skip
- Local positive: add (local) column with same pivot
- Local negative: set to zero (compress)

Running time: $O(g(n+n\ell)) = O(gn\ell)$

For each global column: iterate over entries from bottom to top

- Global index: skip
- Local positive: add (local) column with same pivot
- Local negative: set to zero (compress)

Running time: $O(g(n+n\ell)) = O(gn\ell)$

For each global column: iterate over entries from bottom to top

- Global index: skip
- Local positive: add (local) column with same pivot
- Local negative: set to zero (compress)

Running time: $O(g(n+n\ell)) = O(gn\ell)$

For each global column: iterate over entries from bottom to top

- Global index: skip
- Local positive: add (local) column with same pivot
- Local negative: set to zero (compress)

Running time: $O(g(n+n\ell)) = O(gn\ell)$

Chunk Algorithm: Global Reduction

Reduce $g \times g$ submatrix: $O(g^3)$

Further optimizations:

- Avoid additions during compression
 - inactive indices: either
 - negative, or
 - positive and pivot of column with otherwise only inactive entries
 - inactive indices can be set to zero
- Avoid compression of global positive columns (clear optimization)

Complexity Analysis

$$O(m\ell^3 + gn\ell + g^3)$$

- ▶ n = #simplices
- $ightharpoonup \ell = \max$, size of chunk
- ▶ m = #chunks
- ightharpoonup g = # non-local pairs

 \sqrt{n} chunks of size \sqrt{n} :

$$O(n^2 + g_1 n \sqrt{n} + g_1^3)$$

 $\frac{n}{\log n}$ chunks of size $\log n$:

$$O(n\log^2 n + g_2 n\log n + g_2^3)$$

Special case: *d*-dimensional image + lower star filtration:

$$O(n+gn+g^3) = O(gn+g^3)$$

Experimental results

Experimental results

Dataset	$n \cdot 10^{-6}$	std. [8]	twist [4]	cohom. [5]	DMT [10]	g/n	chunk (1x)	chunk (12x)
Smooth	16.6	383s	3.1s	65.8s	2.0s	0%	5.0s	0.9s
$Smooth^{\perp}$	16.6	432s	11.3s	20.8s	_	0%	6.3s	0.9s
Noise	16.6	336s	17.2s	15971s	13.0s	9%	28.3s	6.3s
Noise $^{\perp}$	16.6	1200s	29.0s	190.1s	_	9%	31.1s	5.8s
Mixed	16.6	330s	5.8s	50927s	12.3s	5%	21.6s	2.4s
$Mixed^{\perp}$	16.6	446s	13.0s	32.7s	-	5%	32.0s	2.9s
Torus	0.6	52s	0.3s	1.6s	-	7%	0.3s	0.1s
Torus [⊥]	0.6	24s	0.3s	1.4s	-	7%	0.9s	0.2s
Mumford	2.4	38s	35.2s	2.8s	-	82%	14.6s	1.8s
$\mathbf{Mumford}^{\perp}$	2.4	58s	0.2s	184.1s	-	82%	1.5s	0.4s

http://phat.googlecode.com

Summary

- ► Homological version of discrete Morse theory approach [Günther, R., Wagner, Hotz 2012]
- Parallelizable
- Distributed memory?
- Streaming?