

Utilisation de la caméra Ladybug en photogrammétrie

Filière: EC+G

Etudiant: F. Broch, GGTE3

Professeur : B. Cannelle

Date: Avril 2018

Plan de la présentation

1.	INT	RODUCTION	2
		HIER DES CHARGES	
3.		MARCHE	
	3.1. 3.2.	Découverte et première session photo Analyse des « outputs »	
	3.3. 3.4.	Comparaison des « outputs »	7
	3.5. 3.6. 3.7.	Seconde session de prises de vues	9
4.		SULTATS	
5.	CO	NCLUSION	14
	5.1. 5.2. 5.3. 5.4.	Concernant l'instrument Au niveau des softwares La solution Avis personnel	14 14
		1	

1. Introduction

2. Cahier des charges

- Découvrir l'appareil et son programme,
- Examiner les différents produits en sortie,
- Etude photographique : Corriger la distorsion via d'autres programmes que des outils photogrammétriques et contrôler la rectification effectuée par le set Ladybug,
- Voir si les résultats de l'étude précitée apportent un plus à un calcul photogrammétrique par rapport à un procédé standard, soit calibration réalisée dans les programmes à partir de solutions de photogrammétrie,
- Processus photogrammétrique standard à partir des panoramas sortis du Soft de la Lady Bug.

3. Démarche

3.1. Découverte et première session photo

Formats: BitMap, JPEG et Portable Network Graphic

Modes d'acquisition : Brutes, rectifiées et panoramiques

Résolutions: De 1 Mpx à 32 Mpx

3.2. Analyse des « outputs »

Qualité pas comparable à un appareil photo

A première vue plutôt axé sur la réalisation de produits de type « streetview »

3.3. Comparaison des « outputs »

3.4. Analyse de la correction de la distorsion

3.5. Seconde session de prises de vues

Laboratoire de photogrammétrie

6 « stations » placées

Pour chaque station:

- 6 images brutes .bmp
- 6 images rectifiées .bmp
- 1 panorama .bmp
- 1 panorama .jpg

VS Fisheye 3.6.

3.7. Photogrammétrie via des panoramas

3.7. Photogrammétrie via des panoramas

4. Résultats

2 résultats satisfaisants. Il s'agit des nuages de points issus des calculs dans Agisoft avec les images :

• Non-rectifiées .bmp,

• Panoramiques .bmp.

5. Conclusion

5.1. Concernant l'instrument

La Ladybug est un outil à utiliser pour de l'acquisition rapide et volumineuse mais pas pour celle d'images de grande qualité.

5.2. Au niveau des softwares

Pix4D n'est pas compatible avec cette caméra et est moins performant que Agisoft pour de la photogrammétrie terrestre.

5.3. La solution

La meilleure combinaison testée : Images non-rectifiées type fish-eye et calcul sur Agisoft.

5.4. Avis personnel

La caméra Ladybug5 USB3 est un bon instrument et est utilisable dans le monde de la géomatique.

