Overview	2
Data sources	3
Amazon Customer Reviews Dataset	3
Country	3
Prerequisites and Environment Setup	3
Apache Airflow	3
Postgres connection to AWS Redshift Database (dwh)	4
SSH connection AWS EMR Cluster (emr_ssh_connection)	4
Copy DAG files	5
AWS EMR Cluster	5
Setting up EMR Cluster	6
Copy source files	6
Amazon Redshift Database	6
AWS S3	7
Architecture	8
Storage	8
Landing Zone	8
Working Zone	8
Data Warehouse	9
Stage	9
Detail Data Store	10
Data Marts	11
Data Quality	11
ETL	11
Load Flowchart	12
Update strategy	12
How to run	13
Project configuration	13
airflow/review_project.cfg	13
etl/review_project.cfg	13
Configure initial dataset	14
Initial Data Loading	15
ETL Flow	15
Check data quality	15
Project Files	15
Airflow DAG	15

Analysis examples	20
Amazon Customer Reviews Dataset product categories	18
If the database needed to be accessed by 100+ people.	17
If the pipelines were run on a daily basis by 7am.	17
If the data was increased by 100x.	17
Scenarios	17
Uploading ~700Mb of data	17
Initial data loading	16
Testing the limits	16
fill_dimensions_dag	16
DWH_processing_dag	16
create_dwh_schema_dag	16
copy_review_from_aws_S3	16
copy_initial_data_dag	15

Overview

Amazon sells tens and hundreds thousands of goods every day. After selling a customer can leave a review about the item purchased. All these reviews help other people to make the right choice. Also they can be used as an excellent source of data for marketing experts and other specialists from Amazon. Everyday customers generate huge amounts of data. So their analysis can be a bit complicated. Usually before the analysis data are cleared and transformed to the proper form. In many cases it means performing a lot of different operations and transformations.

The goal of this capstone project is building an analytical Data Warehouse. Customer reviews have been chosen as a subject of analysis.

The Data Warehouse can answer to the next questions:

- How do ratings vary with different options, for example verified purchases, marketplaces or product categories
- How have number of ratings changed over time
- Are ratings helpful

Also it is possible to take a look at the reviewer behavior or provide sentiment analysis.

Data sources

Amazon Customer Reviews Dataset

In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. Over 130+ million customer reviews are available to researchers as part of this dataset.

More: https://registry.opendata.aws/amazon-reviews/ and full documentation: https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Country

Country dimension is provided in the JSON file: s3://brutway-capstone-project/country/country-and-continent-codes-list.json

Prerequisites and Environment Setup

The project has been developed using Apache Airflow, AWS S3, Amazon Redshift Database and AWS EMR.

Amazon Customer Reviews Dataset resides in the AWS S3 bucket in us-east-1 region. Copying between S3 buckets can be possible if all the buckets are in the same region. So

Storage Area must be organized in us-east-1 region too. For performance improvement I resided the EMR cluster and Redshift Database in us-east-1 region too.

Apache Airflow

Apache Airflow - is a platform to programmatically author, schedule and monitor workflows. One of the well known installations of Airflow is <u>puckel/docker-airflow</u>. I have used this docker image for my workflows orchestration. But there are other possibilities for Apache Airflow deployment. For example AWS Cloud Formation or your own installation.

The next preliminary steps must be performed before Airflow using

Postgres connection to AWS Redshift Database (dwh)

SSH connection AWS EMR Cluster (emr_ssh_connection)

Before setting up the connection to the EMR Cluster the key pair from AWS EMR should be generated and copied to the Airflow installation.

Copy DAG files

All the files from /de_capstone_project/airflow/dags must be copied to the /dags folder inside the Airflow installation. All the files from /de_capstone_project//airflow/plugins must be copied to the /plugins folder inside the Airflow installation.

AWS EMR Cluster

I used m5.xlarge instance type with 3 instances (1 master and 2 core nodes)

Release: 5.29.0

Applications: Spark (Spark 2.4.4)

Setting up EMR Cluster

For connecting to a Redshift Database all the scripts use package psycopg2. And for connecting to S3 buckets use boto3.

To perform all the preliminary settings you should connect to the EMR Cluster and execute:

- \$ sudo yum install postgresql-libs
- \$ sudo yum install postgresql-devel
- \$ sudo pip-3.6 install psycopg2
- \$ pip-3.6 install boto3 --user
- \$ export PYSPARK_DRIVER_PYTHON=python3
- \$ export PYSPARK_PYTHON=python3

Copy source files

All the files from /de_capstone_project/etl must be copied to the /home/hadoop/review_project_src folder inside the EMR Cluster.

Amazon Redshift Database

I used 2 node cluster with Instance Types dc2.large

AWS S3

Storage Area for the project resides in two AWS S3 buckets: landing zone and working zone

Buckets names must be specified in the file review_project.cfg

Architecture

Storage

Storage Area has been carried out in two S3 buckets, one for source data and other for preprocessed data.

Landing Zone

The Landing Zone is the area for storing files getting from the data sources. All the files are stored as is.

Landing Zone is cleared after processing and storing data at the Working Zone

Working Zone

Working Zone is used for storing preprocessed files from the Landing Zone. A Spark Job is used for transforming source data and putting them to the Working Zone. One review file contains information about products, customers and marketplaces. So one review file is processed to several entities (fact and dimensions)

Data Warehouse

Data Warehouse has been carried out using Amazon Redshift Database.

There are three main and one supplementary area in the Data Warehouse. They are made in different schemas

Stage

All the data from the Working Zone are copied using copy operation from files to the Redshift tables as is. Before the copying all the tables in the Stage schema are truncated.

Detail Data Store

Detail Data Store comprises a fact table and several dimensions tables. I used star schema for data modeling. DDS uses UPSERT strategy for data updating. Amazon Redshift does not support UPSERT operation so I used DELETE + INSERT instead.

Data Marts

Data Marts is a source of data for a team of analytics, marketing specialists and others. It contents daily aggregated information about products reviews.

Data Quality

And the last area is Data Quality. ETL Pipeline performs different data quality checks and stores the result into the etl.check_dq table

ETL

ETL pipeline comprises of several parts:

- Initiate Data Warehouse
 - Create DWH structure (schemas and tables)

- Initial Data Loading. Copy an initial subset of data
- Fill in fixed dimension: dim_calendar and dim_rating tables
- DWH Control Flow:
 - o Transform data from the Landing Zone to the Working one
 - Copy data from Working Zone to Stage in the DWH
 - Transform data from Stage to DDS
 - o Calculate Data Marts
 - Check data quality

Load Flowchart

Update strategy

This analytical DataWarehouse suppose batch updating. It isn't necessary to implement Kappa Architecture. So ETL pipeline is started everyday at 07:00

How to run

Project configuration

Projects configuration is provided in two slightly different files with the same name.

```
airflow/review project.cfg
# Please provide your own KEY and SECRET KEY
[AWS]
KEY
SECRET
REGION
                   = us-east-1
# This section is unchangeable
[S3 DATA SOURCE]
BUCKET_REVIEW
                  = amazon-reviews-pds
BUCKET COUNTRY = brutway-capstone-project
# Please create two S3 buckets and write down their names into this section
[S3 STORAGE]
LANDING ZONE
                   = review-project-landing-zone
WORKING_ZONE
                   = review-project-working-zone
# An amount of initial dataset (detailed explanation will be provided below)
# possible options
[INITIAL LOADING]
REVIEW INITIAL DATA = moderate
etl/review_project.cfg
# Please provide your own KEY and SECRET KEY
[AWS]
            = AKIAS53S2P6WJPOQWAF7
KEY
SECRET
            = rQxKF1htnwH67q0ui+5NUzynQhyRxCsYHlmMmTJT
REGION
            = us-east-1
# Please create two S3 buckets and write down their names into this section
[S3 STORAGE]
LANDING_ZONE
                   = review-project-landing-zone
```

WORKING_ZONE = review-project-working-zone

Connection parameters to the Redshift cluster

[CLUSTER]

```
HOST = 'review-dwh-cluster.___u.us-east-1.redshift.amazonaws.com'
DB_NAME = 'dwh'
DB_USER = 'awsuser'
DB_PASSWORD = 'pwd_'
DB_PORT = 5439

[IAM_ROLE]
ROLE_ARN =
```

Configure initial dataset

It is possible to set up an amount of initial Reviews. Amazon Customer Reviews Dataset consists of 43 product categories that take more than 43 Gb of space. So it will be quite expensive to load all of them. So I provided special settings for controlling the amount of data. The dictionary of possible options is provided in the file /de capstone project/airflow/plugins/helpers/review project initial data.py

```
product_category_filter_a_category = ["Luggage"]
product category filter small
                                    = ["Digital_Video_Games", "Gift_Card",
"Digital Software"]
product_category_filter_moderate = ["Digital_Video_Games", "Gift_Card",
"Digital_Software", "Mobile_Electronics", "Major_Appliances",
"Personal_Care_Appliances", "Software", "Home_Entertainment"]
product_category_filter_big
                                    = []
product category all
                                    = []
product_category_filter = {"category": product_category_filter_a_category,
                                             "small": product category filter small,
                                              "moderate":
product category filter moderate,
                                             "big": product category filter big,
                                             "all": product_category_all
                                             }
```

So you can choose among the next options: category, small, moderate, big or all. And this option should be setting up in the file /de_capstone_project/airflow/dags/review_project.cfg in the section [INITIAL_LOADING] REVIEW_INITIAL_DATA = moderate

The full list of product categories is described in section <u>Amazon Customer Reviews Dataset</u> <u>product categories</u>

Initial Data Loading

Before starting data loading the Data Warehouse model should be created. So please run the following DAGs as follows:

- 1. create_dwh_schema_dag
- 2. copy_initial_data_dag
- 3. fill dimensions dag

And then run DWH_processing_dag

ETL Flow

The DAG "fill_dimensions_dag" starts all the necessary steps for data processing. It is scheduled to run everyday at 07:00.

Check data quality

All data quality checks are provided in etl/helpers/check_data_quality_config.py. It is possible to set up any checks anytime.

Project Files

Airflow DAG

copy_initial_data_dag

File: copy_initial_data_dag.py

Description: This DAG copy Initial Customer Reviews dataset and Country files from the sources to the Working Zone

copy_review_from_aws_S3

File: copy_review_from_aws_dag.py

Description: This DAG copy only Customer Reviews dataset from the S3 amazon-reviews-pds to the Working Zone. The type of Dataset should be setted in the

review_project.cfg in the section [INITIAL_LOADING]

create_dwh_schema_dag

File: create_dwh_schema_dag.py

Description: Create DataWarehouse model

DWH_processing_dag

File: dwh_control_flow_dag.py Description: Run ETL pipeline

fill_dimensions_dag

File: fill_fixed_dimensions_dag.py

Description: Fill in two fixed dimensions: Calendar and Rating

Testing the limits

Initial data loading

I chose several Product Categories (moderate set of data) that take about 580Mb of data.

Copying from sources to Landing Zone: 1m 30s

Processing data from Working Zone to Landing: 4m 17s

select cdate, check_name, query, "row_number" from etl.check_dq order by
cdate desc, query asc limit 30

	BOARD AND CONTRACTOR AND CONTRACTOR		The second
May 17, 2020, 6:34:12 AM	Check records count	select count(*) from dds.dim_country;	255
May 17, 2020, 6:20:56 AM	Check records count	select count(*) from dds.fct_review;	1771182
May 17, 2020, 6:20:56 AM	Check records count	select count(*) from dm.product_rating_day;	1281982
May 17, 2020, 6:20:55 AM	Check records count	select count(*) from dds.dim_product_category;	8
May 17, 2020, 6:20:55 AM	Check records count	select count(*) from dds.dim_rating;	5
May 17, 2020, 6:20:54 AM	Check records count	select count(*) from dds.dim_product;	282730
May 17, 2020, 6:20:53 AM	Check records count	select count(*) from dds.dim_country;	255
May 17, 2020, 6:20:53 AM	Check records count	select count(*) from dds.dim_customer;	1771182

Uploading ~700Mb of data

Copying from sources to Landing Zone: 1m 30s

Processing data from Working Zone to Landing: 5m 15s

May 17, 2020, 6:34:16 AM	Check records count	select count(*) from dm.product_rating_day;	3396701
May 17, 2020, 6:34:15 AM	Check records count	select count(*) from dds.dim_rating;	5
May 17, 2020, 6:34:15 AM	Check records count	select count(*) from dds.fct_review;	4107362
May 17, 2020, 6:34:14 AM	Check records count	select count(*) from dds.dim_product_category;	11.
May 17, 2020, 6:34:13 AM	Check records count	select count(*) from dds.dim_customer;	3811269
May 17, 2020, 6:34:13 AM	Check records count	select count(*) from dds.dim_product;	988720
May 17, 2020, 6:34:12 AM	Check records count	select count(*) from dds.dim_country;	255

Scenarios

If the data was increased by 100x.

Most of the workload is data processing at the Storage area while data is transformed from Landing Zone to Working Zone. I think the next steps can be tested:

- review repartition strategy (Spark RDD)
- Increase EMR cluster size

Also I would suggest to review data distribution in the Redshift Database.

If the pipelines were run on a daily basis by 7am.

DAG is scheduled to run at 07:00 everyday. So it is ok for batch processing

If the database needed to be accessed by 100+ people.

It is possible to reduce the concurrency limit for Redshift Database. But it is also possible to use BI tools that allow to extract data and store them into the internal storage for further analysis.

Amazon Customer Reviews Dataset product categories

The table below describes Product Categories which are stored in Reviews Dataset. Please keep in mind the Size of a Dataset while project configuring

Product Category	Unit	Size
Apparel	MiB	1151.8
Automotive	MiB	809.8
Baby	MiB	491.1
Beauty	MiB	1271.2
Books	GiB	10
Camera	MiB	621.8
Digital_Ebook_Purchase	MiB	6005.9
Digital_Music_Purchase	MiB	389.1
Digital_Software	MiB	27.2
Digital_Video_Download	MiB	783.4
Digital_Video_Games	MiB	38.3
Electronics	MiB	958.7
Furniture	MiB	199.4
Gift_Card	MiB	16.8
Grocery	MiB	552.3
Health_&_Personal_Care	MiB	1393.3
Home	MiB	1508.6
Home_Entertainment	MiB	265
Home_Improvement	MiB	689.9
Jewelry	MiB	340.1
	_	

	NA:D	1001.4
Kitchen	MiB –	1291.4
Lawn_and_Garden	MiB	665.9
Luggage	MiB	78.4
Major_Appliances	MiB	33
Mobile_Apps	MiB	901
Mobile_Electronics	MiB	30.3
Music	MiB	2790.2
Musical_Instruments	MiB	264.9
Office_Products	MiB	704.2
Outdoors	MiB	618.7
PC	MiB	2115.2
Personal_Care_Appliances	MiB	24.3
Pet_Products	MiB	697
Shoes	MiB	895.5
Software	MiB	134.2
Sports	MiB	1224.1
Tools	MiB	453.7
Toys	MiB	1209.5
Video	MiB	215.8
Video_DVD	MiB	2972.8
Video_Games	MiB	661.4
Watches	MiB	226.1
Wireless	MiB	2362.1
(Empty)	(empty)	
Summary		38093.4

Analysis examples

I used Amazon QuickSight for providing some examples

Count of reviews per Year

Number of 1-star rating per Product_Category

Data Model Sample

