2009-09-02

1. Un'azienda di taglio di tondini di ferro per l'edilizia deve soddisfare le richieste di 15000 tondini a staffa e 24000 tondini a elle. I tondini sono ricavati a partire da tondini grezzi acquistabili presso quattro fornitori. I tondini dei quattro fornitori sono forniti in confezioni e hanno caratteristiche di costo e resa diverse, come riassunto nella seguente tabella:

Fornitore	Costo per tondino	Tondini per confezione	Costo per tra- sporto confezione	Staffe per tondino	Elle per tondino
A	6	50	4	5	7
В	5	40	5	8	3
C	5	60	7	4	9
D	3	70	6	6	4

Per il trasporto, i tondini vengono confezionati in confezioni contenenti il numero di tondini indicati in tabella, tranne l'ultima confezione, che può contenerne di meno. Ad esempio, se dal fornitore A sono acquistati 570 tondini, saranno spedite 12 confezioni (11 da 50 e una da 20) per un costo di trasporto pari a 12 x 7 = 84 euro. Scrivere un modello di programmazione lineare per determinare un piano di acquisti che minimizzi il costo complessivo per l'acquisto dei tondini grezzi (inclusi i costi fissi di trasporto), tenendo conto che almeno tre fornitori devono essere attivi.

Considerando una variabile decisionale basata sui fornitori:

 x_{ij} : ordine di tondini fatto dal fornitore $i \in \{A, B, C, D\}$ del tipo $j \in \{S, L\}$

Avendo l'obiettivo di minimizzare i costi, avremo che:

$$\min 6x_{AS} + 5x_{BS} + 5x_{CS} + 3x_{DS} + 6x_{AF} + 5x_{BF} + 5x_{CF} + 3x_{DF}$$

Vincoli di richiesta minima:

$$x_{AS} + x_{BS} + x_{CS} + x_{DS} = 15000$$
 (tondini staffa)
 $x_{AF} + x_{BF} + x_{CF} + x_{DF} = 24000$ (tondini ad elle)

Almeno tre fornitori devono essere attivi:

 z_{ij} : variabile binaria che vale 1 se viene fatto l'ordine di tondini fatto dal fornitore $i \in \{A, B, C, D\}$ del tipo $j \in \{S, L\}$, 0 altrimenti

$$z_{AS} + z_{BS} + z_{CS} + z_{DS} + z_{AF} + z_{RF} + z_{CF} + z_{DF} \ge 3$$

Vincoli di big-M:

$$x_{AS} \le Mz_{AS}, x_{BS} \le Mz_{BS}, x_{CS} \le Mz_{CS}, x_{DS} \le Mz_{DS}, x_{AF} \le Mz_{AF}, x_{BF} \le Mz_{BF}, x_{CF} \le Mz_{CF}, x_{DF} \le Mz_{DF}$$

Il numero di canne acquistate da ciascun fornitore deve essere un multiplo del numero di canne per confezione.

$$x_{AS} \% 50 = 0, x_{BS} \% 40 = 0, x_{CS} \% 60 = 0, x_{DS} \% 70 = 0$$

 $x_{AF} \% 50 = 0, x_{BF} \% 40 = 0, x_{CF} \% 60 = 0, x_{DF} \% 70 = 0$

$$x_{ij} \in Z_+, z_{ij} \in \{0,1\}, i \in \{A, B, C, D\}, j \in \{S, L\}$$