Fachgebiet Maschinelles Lernen
Institut für Softwaretechnik und theoretische Informatik
Fakultät IV, Technische Universität Berlin
Prof. Dr. Klaus-Robert Müller
Email: klaus-robert.mueller@tu-berlin.de

## Exercise Sheet 7

## Exercise 1: Bias and Variance of Mean Estimators (20 P)

Assume we have an estimator  $\hat{\theta}$  for a parameter  $\theta$ . The bias of the estimator  $\hat{\theta}$  is the difference between the true value for the estimator, and its expected value

$$Bias(\hat{\theta}) = E[\hat{\theta} - \theta].$$

If  $\operatorname{Bias}(\hat{\theta}) = 0$ , then  $\hat{\theta}$  is called unbiased. The variance of the estimator  $\hat{\theta}$  is the expected square deviation from its expected value

$$\operatorname{Var}(\hat{\theta}) = \operatorname{E}[(\hat{\theta} - \operatorname{E}[\hat{\theta}])^2].$$

The mean squared error of the estimator  $\hat{\theta}$  is

$$\operatorname{Error}(\hat{\theta}) = \operatorname{E}[(\hat{\theta} - \theta)^2] = \operatorname{Bias}(\hat{\theta})^2 + \operatorname{Var}(\hat{\theta}).$$

Let  $X_1, \ldots, X_N$  be a sample of i.i.d random variables. Assume that  $X_i$  has mean  $\mu$  and variance  $\sigma^2$ . Calculate the bias, variance and mean squared error of the mean estimator:

$$\hat{\mu} = \alpha \cdot \frac{1}{N} \sum_{i=1}^{N} X_i$$

where  $\alpha$  is a parameter between 0 and 1.

## Exercise 2: Bias-Variance Decomposition for Classification (30 P)

The bias-variance decomposition usually applies to regression data. In this exercise, we would like to obtain similar decomposition for classification, in particular, when the prediction is given as a probability distribution over C classes. Let  $P = [P_1, \ldots, P_C]$  be the ground truth class distribution associated to a particular input pattern. Assume a random estimator of class probabilities  $\hat{P} = [\hat{P}_1, \ldots, \hat{P}_C]$  for the same input pattern. The error function is given by the expected KL-divergence between the ground truth and the estimated probability distribution:

Error = 
$$E[D_{KL}(P||\hat{P})] = E[\sum_{i=1}^{C} P_i \log(P_i/\hat{P}_i)].$$

First, we would like to determine the mean of of the class distribution estimator P. We define the mean as the distribution that minimizes its expected KL divergence from the class distribution estimator, that is, the distribution R that optimizes

$$\min_{R} \ \mathrm{E}\big[D_{\mathrm{KL}}(R||\hat{P})\big].$$

(a) Show that the solution to the optimization problem above is given by

$$R = [R_1, \dots, R_C]$$
 where  $R_i = \frac{\exp \mathbb{E}[\log \hat{P}_i]}{\sum_j \exp \mathbb{E}[\log \hat{P}_j]}$   $\forall 1 \le i \le C$ .

(Hint: To implement the positivity constraint on R, you can reparameterize its components as  $R_i = \exp(Z_i)$ , and minimize the objective w.r.t. Z.)

(b) Prove the bias-variance decomposition

$$\operatorname{Error}(\hat{P}) = \operatorname{Bias}(\hat{P}) + \operatorname{Var}(\hat{P})$$

where the error, bias and variance are given by

$$\operatorname{Error}(\hat{P}) = \operatorname{E}[D_{\operatorname{KL}}(P||\hat{P})], \qquad \operatorname{Bias}(\hat{P}) = D_{\operatorname{KL}}(P||R), \qquad \operatorname{Var}(\hat{P}) = \operatorname{E}[D_{\operatorname{KL}}(R||\hat{P})].$$

(Hint: as a first step, it can be useful to show that  $\mathbb{E}[\log R_i - \log \hat{P}_i]$  does not depend on the index i.)

## Exercise 3: Programming (50 P)

Download the programming files on ISIS and follow the instructions.