Answer **all** the questions.

- 1 Organisms require energy in order to carry out essential metabolism. Organisms are able to release energy by carrying out both aerobic and anaerobic respiration.
 - (a) Complete the table to compare **anaerobic** respiration in mammals and yeast.

	mammal	yeast
name of hydrogen acceptor after glycolysis		
is CO ₂ produced?		
name of final product		

(b)	Suggest one benefit of anaerobic respiration to an organism.
	[1]

[3]

© OCR 2011 Turn over

2 (a) Fig. 2.1 represents the end region of a neurone at a cholinergic synapse.

Fig. 2.1

Describe the function of **structure A**.

In your answer, you should use the appropriate technical terms, spelt correctly.

[4]

Name the process by which acetylcholine leaves the neurone shown in Fig. 2.1.

[1]

Name the process by which acetylcholine travels across the synaptic cleft.

.....[1]

	(iv)	A feature of synapses is that they allow transmission in only one direction.
		State how this is achieved.
		[1]
(b)	The	chemical nature of synaptic transmission makes it susceptible to disruption by toxins.
	(i)	Atropine is a toxin produced by the deadly nightshade plant, Atropa belladonna.
		Atropine is a similar shape to acetylcholine. The presence of atropine prevents the initiation of an action potential in the post-synaptic neurone.
		Explain how the presence of atropine in the synapse will prevent the initiation of an action potential.
		[3]
	(ii)	Nerve gases have been used as chemical weapons. Some nerve gases act by inhibiting acetylcholinesterase, prolonging the effect of acetylcholine.
		Suggest how atropine could act as an antidote to nerve gas.
		[2]
		[Total: 12]

3 Fig. 3.1 represents some of the reactions that take place in a leaf cell of a flowering plant.

Fig. 3.1

(a) (i) Name the reaction pathways indicated by the letters W, X and Y.

W	
Χ	
Υ	[3]

	(ii)	Triose phosphate is a compound that is central to the metabolism of this cell. Explain how the three reaction pathways (W , X and Y) are able to work independently of each other in the same leaf cell.		
		[3]		
	(iii)	Identify which of these three reaction pathways (W, X and Y) are associated with:		
		photosynthesis		
(aerobic respiration[2]		
	(iv)	Fig. 3.1 shows that compounds from two of the three pathways are used in oxidative phosphorylation.		
		State the products of oxidative phosphorylation.		
		[2]		
(b)		lain the role of coenzymes in this leaf cell, with respect to the metabolic reactions outlined ig. 3.1.		
		[3]		

		8
4		noregulation is a key feature of homeostasis and maintains the water potential of the blood in certain limits. This is achieved by the action of anti-diuretic hormone (ADH).
	(a)	Explain the likely effect on the blood cells if the water potential of the plasma was allowed to increase significantly.
		[2]
	Fig.	4.1 is a simplified diagram of the structure of ADH.
	Н	
		Fig. 4.1

` ,	monomers together.	·	•
	type of monomer		
	name of bond		[2]

(b) Name the type of monomer that makes up a molecule of ADH and the bond that joins the

(c) Complete the following passage, using the **most suitable** term in each case:

	ADH is a hormone that is produced by specialised nerve cells known as	
	cells. These cells detect changes in the water	
	potential of the blood flowing through the	
	potential of the blood is too low then ADH is released.	
	ADH is not secreted immediately into the blood but passes along the	
	of the specialised nerve cells to the	
	gland, from wher	e it is
	released into the blood.	
	ADH acts on the cells of the	
	The ADH molecule attaches to receptors on the of these	Э
	cells and causes protein channels known as to insert	
	themselves into the membrane. Water passes through these channels by	
	and a smaller volume of more concentrated urine is prod	luced [8]
d)	ADH does not stay in the blood indefinitely.	
	Suggest where ADH is removed from the blood and describe what then happens to the molecule.	ADF
		[3]

© OCR 2011 Turn over

[Total: 15]

5 (a) Fig. 5.1 represents the sequence of events that takes place when adrenaline reaches a liver cell.

Fig. 5.1

activates enzymes

(1)	In terms of cell signalling, name the compound in Fig. 5.1 that is acting as:
	the second messenger
	the first messenger[2]
(ii)	Suggest what happens to polysaccharides in the liver cell as a result of the events shown in Fig. 5.1.
	[1]

	(iii)	Adrenaline affects a range of target tissues in the body.
		Suggest how the adrenaline molecule can cause different effects in different target tissues.
		[2]
(b)	Out	ine the hormonal and nervous mechanisms involved in the control of heart rate.
	B	In your answer, you should use the appropriate technical terms, spelt correctly.
	•••••	
	•••••	
		ren
		[5] [Total: 10]
		[Total: 10]

6 The leaves of flowering plants have the ability to develop differently, depending on environmental conditions such as the amount of sun or shade a leaf receives.

A student carried out an investigation into sun and shade leaves from different parts of the same plant. Her observations and results are shown in Table 6.1.

Table 6.1

type of leaf	number of leaves studied	mean no. of stomata per mm ² on lower surface	mean thickness of leaf (μm)	cuticle
sun	55	170	208	thick
shade	8	92	93	thin

(a)	Calculate the percentage difference in the mean thickness of the sun leaves compared to the shade leaves.
	Show your working.

	Answer =[2]
(b)	Suggest and explain one benefit of the greater mean number of stomata per mm ² on the lower surfaces of the sun leaves.
	[2]
(c)	Describe two ways in which the student could improve her investigation.
	reı

[Total: 6]