Group Assignment 1

Simon Yu

2025-10-01

Table of contents

Question 1																							3
Question 2																							3
Question 3																							3
Question 4																							4
Question 5																							4
Question 6																							4
Question 7																							5
Question 8																							5
Question 9																							
Question 10		_		_	_			_	_													_	6

List of Figures

List of Tables

library(dplyr)

```
data <- read.csv("compustat_food_bev.csv")

# filter data for Potbelly (PBPB)
pbpb_data <- filter(data, tic == "PBPB")

# convert datadate to Date type
pbpb_data$datadate <- as.Date(pbpb_data$datadate, format = "%d/%m/%Y")</pre>
```

Question 1

```
#1. Add a new column named daily_return
# to store daily return value

#2. Drop the rows whose daily return values are NA
pbpb_data <- mutate(pbpb_data, daily_return = (prccd - lag(prccd)) / lag(prccd))
pbpb_data <- filter(pbpb_data, !is.na(daily_return))</pre>
```

Question 2

```
#1. Add a new column named overnight_return
# to store overnight return value

#2. Drop the rows whose overnight_return values are NA
pbpb_data <- mutate(pbpb_data, overnight_return = (prcod - lag(prccd)) / lag(prccd))
pbpb_data <- filter(pbpb_data, !is.na(overnight_return))</pre>
```

Question 3

```
# Add a new column named close_open_change
# to store daily close-open change value

pbpb_data <- mutate(pbpb_data, close_open_change = prccd - prcod)</pre>
```

Question 4

A data frame: 6×5

	datadate <date></date>	daily_return <dbl></dbl>	overnight_re- turn <dbl></dbl>	close_open_ch <dbl></dbl>	nange mfv <dbl></dbl>
1	2020-09-03	-0.05442177	0.004535147	-0.26	-264658.17
2	2020-09-04	-0.02637890	0.014388489	-0.17	-163452.05
3	2020-09-08	-0.03694581	-0.002463054	-0.14	-284337.00
4	2020-09-09	0.01023018	0.002557545	0.03	11618.32
5	2020-09-10	0.04556962	$-0.002531646 \\ 0.007263923$	0.19	101495.33
6	2020-09-11	-0.04842615		-0.23	-116163.57

Question 5

```
# Add a new column named month
pbpb_data <- mutate(pbpb_data, month = month(datadate))</pre>
```

Question 6

```
# Add a new column named year
pbpb_data <- mutate(pbpb_data, year = year(datadate))</pre>
```

```
# show the table containing only the new 2 date columns
pbpb_data_dates <- filter(pbpb_data[ , c("datadate", "month", "year")])
head(pbpb_data_dates, 10)</pre>
```

A data.frame: 10×3

	datadate <date></date>	$\mathrm{month} <\!\!\mathrm{dbl}\!\!>$	year <dbl></dbl>
1	2020-09-03	9	2020
2	2020-09-04	9	2020
3	2020-09-08	9	2020
4	2020-09-09	9	2020
5	2020-09-10	9	2020
6	2020-09-11	9	2020
7	2020-09-14	9	2020
8	2020-09-15	9	2020
9	2020-09-16	9	2020
10	2020-09-17	9	2020

Question 7

```
# Calculate the total trade volume (cshtrd) for June 2023
trade_volume_2023_06 <- filter(pbpb_data, year == 2023 & month == 6)
sum(trade_volume_2023_06$cshtrd)</pre>
```

6780601

Question 8

```
# Calculate the mean of daily return over the period
mean_daily_return <- mean(pbpb_data$daily_return)
print(mean_daily_return)</pre>
```

[1] 0.001263381

Question 9

```
# Find the date for maximum high price over the period
max_high_price <- max(pbpb_data$prchd)

date_max_high_price <- filter(pbpb_data, prchd == max_high_price)
print(date_max_high_price$datadate)</pre>
```

[1] "2023-04-26"

Question 10

```
# Find the date for largest daily return over the period
max_daily_return <- max(pbpb_data$daily_return)
date_max_daily_return <- filter(pbpb_data, daily_return == max_daily_return)
print(date_max_daily_return$datadate)</pre>
```

[1] "2021-03-15"