

Universidade Presbiteriana Mackenzie

Faculdade de Computação e Informática

Objetivos

- Apresentar as formas canônicas para expressões booleanas construídas a partir de tabelas verdade.
- Exercitar a transformação entre as formas diferentes de descrever uma expressão booleana.

Referência Bibliográfia

- Referência para esta aula:
- Capítulo 4 de TOCCI, Ronald J.; WIDMER, Neal S.; MOSS, Gregory L. Sistemas Digitais: princípios e aplicações. 11ª Ed. Editora Pearson, 2011.
- Capítulo 4 de PIMENTA, T.C. Circuitos Digitais.
 São Paulo: Elsevier, 2017.

Expressões lógicas e tabela verdade

- Uma expressão lógica pode ser obtida a partir de uma tabela-verdade.
- As duas formas gerais para expressões lógicas são:
 - soma de produtos, e
 - produto de somas.
- Uma expressão lógica possibilita a implementação de um circuito de diversas formas.

Formas Canônicas

- Forma Disjuntiva Normal.
- Forma Conjuntiva Normal.

Toda e qualquer função de comutação válida (função booleana) pode ser representada por suas formas canônicas.

- Toda função de comutação válida possui:
- apenas uma única tabela verdade.
- apenas uma única Forma Conjuntiva Normal.
- apenas uma única Forma Disjuntiva Normal.

- Mintermo de n variáveis é o produto de n literais em que cada variável aparece uma única vez, em sua forma complementar ou não.
- Cada mintermo será avaliado para 1 para as combinações de variáveis.

- Exemplo: n = 3, variáveis A, B e C
- Mintermo e as combinações de A, B e C

Α	В	С	Mintermo
0	0	0	A'.B'.C'
0	0	1	A'.B'.C
0	1	0	A'.B.C'
0	1	1	A'.B.C
1	0	0	A.B'.C'
1	0	1	A.B'.C
1	1	0	A.B.C'
1	1	1	A.B.C

Para uma dada função F (A,B,C) podemos ter:

					11 211 //68/
	Α	В	С	F	Mintermo
	0	0	0	0	A'.B'.C'
	0	0	1	0	A'.B'.C
	0	1	0	0	A'.B.C'
	0	1	1	1	A'.B.C
	1	0	0	1	A.B'.C'
l	1	0	1	1	A.B'.C
	1	1	0	0	A.B.C'
	1	1	1	1	A.B.C
		,			

$$F = A'.B.C + A.B'.C' + A.B'.C + A.B.C$$

 Podemos reescrever a função F(A,B,C) como uma somatória de termos indexados:

$$F = \sum m_i$$

$$F = \sum a_i m_i$$

ı	Α	В	С	F	Mintermo
0	0	0	0	0	A'.B'.C'
1	0	0	1	0	A'.B'.C
2	0	1	0	0	A'.B.C'
3	0	1	1	1	A'.B.C
4	1	0	0	1	A.B'.C'
5	1	0	1	1	A.B'.C
6	1	1	0	0	A.B.C'
7	1	1	1	1	A.B.C

$$F = m_3 + m_4 + m_5 + m_7$$

$$F(A, B, C) = \sum m(3,4,5,7)$$

- Maxtermo de n variáveis é a soma de n literais em que cada variável aparece uma única vez, em sua forma complementar ou não.
- Cada maxtermo será avaliado para 0 para as combinações de variáveis.

- Exemplo: n = 3, variáveis A, B e C
- Maxtermo e as combinações de A, B e C

	Α	В	С	Maxtermo
	0	0	0	A+B+C
	0	0	1	A+B+C'
	0	1	0	A+B'+C
	0	1	1	A+B'+C'
1	1	0	0	A'+B+C
	1	0	1	A'+B+C'
	1	1	0	A'+B'+C
	1	1	1	A'+B'+C'

Para uma dada função F (A,B,C) podemos ter:

Α	В	С	F	Maxtermo	
0	0	0	0	A+B+C	
0	0	1	0	A+B+C'	150
0	1	0	0	A+B'+C	1/18. P
0	1	1	1	A+B'+C'	
1	0	0	1	A'+B+C	
1	0	1	1	Δ'+R+C'	
1	1	0	0	A'+B'+C	
1	1	1	1	A'+B'+C'	"Pirism
/				1100	

$$F = (A+B+C). (A+B+C'). (A+B'+C). (A'+B'+C)$$

 Podemos reescrever a função F(A,B,C) como uma somatória de termos indexados:

$$F = \prod M_i$$

$$F = \prod (a_i + M_i)$$

1	Α	В	С	F	Maxtermo
0	0	0	0	0	A+B+C
1	0	0	1	0	A+B+C'
2	0	1	0	0	A+B'+C
3	0	1	1	1	A+B'+C'
4	1	0	0	1	A'+B+C
5	1	0	1	1	A'+B+C'
6	1	1	0	0	A'+B'+C
7	1	1	1	1	A'+B'+C'

$$F = M_0 M_1 M_2 M_6$$
$$F(A, B, C) = \prod (0, 1, 2, 6)$$

