নিউটনিয়ান বলবিদ্যা

প্রয়োজনীয় সূত্রাবলীঃ

১।
$$\vec{F}=\overset{\rightarrow}{ma}$$
 বলের ঘাত, $J=F\times t=m\lhd v$

২। কৌণক ত্বরণ = কৌনিক বেগের পরিবর্তনের হার অর্থাৎ
$$\displaystyle \frac{-}{lpha} = \displaystyle \frac{d arpi}{dt}$$

৩। কৌণিক গতির সমীকরণসমূহঃ

(i)
$$\overrightarrow{\omega} = \overrightarrow{\omega} + \overrightarrow{\alpha}t$$
 (iii) $\omega^2 = \omega_0^2 + 2\alpha(v - v_0)$

(ii)
$$\theta = \theta_0 + \overrightarrow{\omega_0}t + \frac{1}{2}\overrightarrow{\alpha}t^2$$

$$8$$
 ৷ কৌণিক ভরবেগ, $\vec{L}=\vec{r} imes m\vec{v}=\vec{r} imes \vec{p}$ কু । জড়তার শ্রামক, $I=\sum m_i r_i^2=\int r^2 dm$

ঙ। টর্ক,
$$\vec{ au}=\vec{r} imes \vec{F}=rac{dec{L}}{dt}$$
 ও। ঘূর্ণায়মান বস্তুর গতিশক্তি, $E=rac{1}{2}I\omega^2$

৮। কেন্দ্রমুখী বল,
$$F = \frac{mv^2}{r} = I\omega^2$$

৯। বৃত্তাকার সমতল পথে সর্বোচ্চ যে গতিতে যানবাহন নিয়ন্ত্রণে রেখে চালানো সম্ভব তা হলঃ
$$V=\sqrt{u_{_s}rg}$$

১০। টর্ক
$$\vec{\tau} = \vec{r} \times \vec{F}$$

১১। দ্বন্দের বর ভ্রামক,
$$C=Fd$$

১২। কৌণিক গতিশক্তি,
$$K_E = \frac{1}{2}I\omega^2$$

১৩। জড়তার ভামক,
$$I=\sum mr^2$$

১৪ ৷ টৰ্ক,
$$\tau = I.\frac{d\omega}{dt} = I\alpha = \frac{dL}{dt}$$

১৫। কৌণিক ভরবেগ,
$$L = I\omega = mvr$$

১৬। কৌণিক ভরবেগ,
$$L = \vec{r} \times \vec{p}$$

১৭।ক্ষমতা,
$$p= au\omega$$

১৮। কৌণিক গতি বৃদ্ধিতে কৃত কাজ,
$$W=Ilpha heta=rac{1}{2}I\omega_2^2-rac{1}{2}I\omega_1^2$$

১৯
$$\tan \theta = \frac{v^2}{rg} = \mu_s$$

২০। বস্তুর মোট শক্তি = রৈখিক গতিশক্তি + কৌণিক গতিশক্তি =
$$\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

২১ । জড়তার ভ্রামক,
$$I=MK^2$$

২২। লম্ব অক্ষ উপপাদ্য,
$$I_z = I_x + I_y$$

২৩। সমান্তরাল অক্ষ উপপাদ্য,
$$I_{
m AB}=I_{
m CD}+Mh^2$$
 ২৪। কৌণিক ভরবেগের সংরক্সণ সূত্র, $\overrightarrow{L_1}+\overrightarrow{L_2}=\overrightarrow{M_1}+\overrightarrow{M_2}$

বিভিন্ন আকৃতির বস্তুর জড়তার ভ্রামক

	৪। নিরেট গোলক ঘূর্ণন অক্ষ যে কোন ব্যাস,
🕽 । একটি দন্ডের দৈর্ঘ্যে অভিলম্ব ও মধ্যবিন্দুগামী,	$I = \frac{2M R^2}{5}$
$I = \frac{1}{12}Ml^2$	$I = {5}$
২। দন্ডের দৈর্ঘ্যের অভিলম্ব ও প্রান্ত বিন্দুগামী,	ে। বৃত্তাকার রিংয়ের ক্ষেত্রে,
$I = \frac{1}{3}Ml^2$	$I = Mr^2$
৩। নিরেট চোঙ, ঘুর্ণন অক্ষ নিজ অক্ষ,	৬। নিরেট চোঙের ঘূর্ণন অক্ষ দৈর্ঘ্যের সমকোণে ও ভার কেন্দ্রের মধ্য
$I = \frac{M R^2}{2}$ (সিলিভার)	দিয়ে হলে, $I = \frac{M R^2}{4} + \frac{M l^2}{12}$

কোন বস্তুর উপর একাধিক বল ক্রিয়ারত থাকলে বলগুলোর লব্ধি $\sum F = ma$

কোন বস্তুর উপর $\,F\,$ বল প্রয়োগে বস্তুকে গতিশীল করলে যদি পথের গতীয় ঘর্ষণ বল $\,F_{\scriptscriptstyle K}\,$ হয় তবে লব্ধি হল $\,=F-F_{\scriptscriptstyle K}\,=ma$

$$\therefore a = \frac{F - F_K}{m} = \frac{F - \mu_K R}{m} = \frac{F - \mu_K mg}{m}$$

 $\mu_{\scriptscriptstyle K}$ = গতীয় ঘর্ষণ গুণাঙ্ক, ${\it R}=$ বস্তুর উপর তল কর্তৃক অভিলম্ব প্রতিক্রিয়া বল।

যদি বস্তুকে সমবেগে গতিশীল রাখা হয় তবে, $\sum F=ma=m imes 0$

mg

এক্ষেত্রে হেলানো তলের উপর লম্বদিকে বস্তুর ওজনের উপাংশ = $mg\cos\theta$ ∴ $R = mg\cos\theta$ ∴ বস্তুর উপর তল বরাবর নিচের দিকে কার্যকরী বল = $mg\sin\theta$ এক্ষেত্রে ঘর্ষণ কাজ করবে তল বরাবর উপরের দিকে।

$$\sum F = ma$$

$$\Rightarrow mg\sin\theta - F_K = ma \Rightarrow a = \frac{mg\sin\theta - \mu_K R}{m} \Rightarrow a = \frac{mg\sin\theta - \mu_K (mg\cos\theta)}{m}$$

যদি বস্তু নিচের দিকে সমবেগে পড়ে, তবে $\sum F = ma = m imes 0 = 0$

$$\Rightarrow mg\sin\theta - F_K = 0 : mg\sin\theta = F_K$$

উপরে উঠানোর ক্ষেত্রে

এক্ষেত্রে উপরের দিকে F বল প্রয়োগ করতে হবে।

$$\sum F = ma \implies F - (mg\sin\theta + F_K) = ma$$

$$a = \frac{F - (mg\sin\theta + \mu_K R)}{m} \implies a = \frac{F - (mg\sin\theta + \mu_K mg\cos\theta)}{m}$$

যদি বস্তুকে উপরের দিকে সমবেগে উঠানো হয় তবে

$$\sum F = m \times 0 = 0 \Rightarrow F - (mg \sin \theta + F_K) = 0$$

$$\therefore F = mg \sin \theta + F_K; \qquad J = Ft = mv - mu = \Delta P$$

নিউটনের গতির

৩য় সূত্রের প্রয়োগ

ঘোড়ার গাড়ি টানাঃ

F=গাড়ি কর্তৃক ঘোড়ার উপর প্রতিক্রিয়া বল

R = ভূমি কর্তৃক ঘোড়ার উপর প্রতিক্রিয়া বল

 $R_H =$ ভূমির প্রতিক্রিয়ার অনুভূমিক উপাংশ

 $R_{\scriptscriptstyle V} =$ ভূমির প্রতিক্রিয়ার উলম্ব উপাংশ

mg = ঘোড়ার ওজন

এক্ষেত্রে $R_{_{\! V}}=mg$ এবং প্রশমিত হয়ে যায়। ঘোড়ার উপর লব্ধি বল $=R_{_{\! H}}-F$

গাড়ী ঃ

F=গাড়ির উপর ঘোড়া কর্তৃক প্রযুক্ত বল ;

 $F_{\scriptscriptstyle K}=$ পথের ঘর্ষণ

mg= গাড়ির ওজন ; N= তল কর্তৃক গাড়ির উপর প্রতিক্রিয়া বল

এক্ষেত্রে $N\!=\!mg$ এবং প্রশমিত হয়ে যায়; গাড়ির উপর লব্ধি বল $=\!F\!-\!F_{\!\scriptscriptstyle K}$

নৌকার গুণ টানা

নৌকাকে রশি দিয়ে F বলে টানলে F এবং অনুভূমিক উপাংশ $F\cos\theta$ নৌকাকে সামনের নিয়ে যায় আর $F\sin\theta$ নৌকার হাল দিয়ে প্রতিহত করা হয়।

দড়ি যত লম্ব হবে heta তত কম হবে ফলে $F\cos heta$ তত বেশি হবে ফলে নৌকা তত দ্রুত সামনে আগাবে। রকেটের গতিঃ

রকেটের উপর ধাকা,
$$F = (\frac{\Delta m}{\Delta t})v$$

v= গ্যানের নির্গত বেগ, $\frac{\Delta m}{\Delta t}=$ একক সময়ে নির্গত গ্যানের ভর

= জ্বালানী নির্গমনের হার

রকেটের উপর লব্ধি বল = F - Mg

M = রকেটের ভর

$$= (\frac{\Delta m}{\Delta t})v - Mg$$

রকেটের উপর লব্ধি ত্বরণ, $= \frac{1}{M} \ (\frac{\Delta m}{\Delta t}) v - g$

রকেটের তুরণ ঃ

$$\frac{dv}{dt} = \frac{v_r}{m} \left(\frac{dm}{dt} \right) - g$$

নিউটনের মহাকর্ষ বলের সূত্র অনুযায়ী যত উপরেই উঠবে ততই g -এর মান কমবে। এবং মহাশূন্যে g -এর মান প্রায় শূন্য। তাছাড়া রকেট যতই চলছে ততই তার জ্বালানি পুড়ছে, ফলে জ্বালানি শেষ হওয়া পর্যন্ত m এর মান কমতে থাকবে। এখন যদি নির্গত জ্বালানি গ্যাসের বেগ v_r ও সময়ের সাথে জ্বালানি ব্যায়ের হার $\dfrac{dm}{dt}$ প্রুব বা সমান থাকে, তবে রকেটের তুরণ $\dfrac{dv}{dt}$ বাড়তে থাকবে। যতক্ষণ না সমস্ত জ্বালানি পুড়ে নিঃশেষ হয়ে যাবে।

$$dv = v_r \frac{dm}{m} - g dt$$

আমরা নির্গত গ্যাসের ভরকে ধরেছি dm. কিন্তু রকেটের অবশিষ্ট ভরের হিসাবের ক্ষেত্রে সময়ের সাথে dm হবে ঋণাত্মক অর্থাৎ -dm. কেননা সময়ের সাথে সাথে জ্বালানি গ্যাস নির্গত হচ্ছে এবং রকেটের ভর কমছে।

dm এর পরিবর্তে -dm বসিয়ে পাই,

$$dv = -v_r \frac{dm}{m} - gdt$$

$$\therefore \int_{v_0}^{v} dv = -\int_{m_0}^{m} v_r \frac{dm}{m} - \int_{0}^{t} gdt$$

$$v - v_0 = -v_r \ln \frac{m}{m_0} - gt$$

জ্বালানি শেষ হওয়ার মুহূর্তে রকেটের বগ,

$$v = v_0 + v_r \ln \frac{m_0}{m} - gt$$

ভর বেগের সংরক্ষণ সূত্র ঃ

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

তবে যদি সংঘর্ষের পর বস্তুদ্বয়ের গতি একই দিকে না হয় তবে কোন নির্দিষ্ট দিকে উভয় বেগের উপাংশ নিয়ে উপরের সূত্র প্রয়োগ করতে হবে। স্থিতিস্থাপক = ভরবেগ ও গতিশক্তি উভয়ই সংরক্ষিত

সংঘৰ্ষঃ

→অস্থিতিস্থাপক = শুধু ভরবেগ সংরক্ষিত থাকবে

পূর্বেঃ $m_1 \xrightarrow{u_1} \qquad m_2 \xrightarrow{u_2} \qquad$ পরেঃ $m_1 \xrightarrow{v_1} \qquad m_2 \xrightarrow{v_2} \qquad$

 $u_1>u_2$ হলে সংঘর্ষ হবে। সংঘর্ষের পর $v_2>v_1$ ।

সংঘর্ষের পূর্বে আঃ বেগ u_1-u_2

সংঘর্ষের পর আঃ বেগ $v_1 - v_2$

স্থিতিস্থাপক সংঘর্ষ হলেঃ $u_1 - u_2 = v_1 - v_2$

$$\therefore v_1 = \frac{m_1 - m_2}{m_1 + m_2} u_1 + 2 \frac{m_2}{m_1 + m_2} u_2$$

$$\therefore v_2 = \frac{2m_1}{m_1 + m_2} u_1 + \left(\frac{m_2 - m_1}{m_1 + m_2}\right) u_2$$

অস্থিতিস্থাপক সংঘর্ষ হলেঃ

সংঘর্ষের পর বস্তুদ্বয় মিলিত হয়ে যাবে, ফলে সংঘর্ষের পর আঃ বেগ = O

মিলিত বেগ,
$$v = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_1}$$

কৌণিক গতি ঃ

m এর অনুরূপ I ; v এর অনুরূপ ω ; a এর অনুরূপ lpha

$$P = mv \implies L = I\omega$$
 ; $E_K = \frac{1}{2}mv^2 \implies E_K = \frac{1}{2}I\omega^2$; $F = ma \implies \tau = I\alpha$

কৌণিক ভরবেগের সংরক্ষণ সূত্রঃ

$$I_1 \omega_1 = I_2 \omega_2$$

জড়তার ভ্রামক সংক্রান্তঃ

বস্তু	চিত্ৰ	অক্ষ	জড়তার ভ্রামক
(১) সরু ও সুষম দ্রু	Q	ভরকেন্দ্রগামী ও দৈর্ঘ্যের সাথে লম্ব সরলরেখা	$\frac{1}{12}Ml^2$
(২) সরু ও সুষম দন্ড	$\begin{array}{c} \longleftarrow \longrightarrow I \\ \hline \end{array}$	এক প্রান্ত দিয়ে দৈর্ঘ্যের লম্বভাবে গমনকারী সরলরেখা	$\frac{1}{3}Ml^2$
(৩) আয়তাকার পাতলা পাত	$\begin{array}{c c} R & P \\ & & \downarrow l' \longrightarrow \\ M & \downarrow & \downarrow & \\ Q & S & \\ \end{array}$	। এর সমান্তরাল ভরকেন্দ্রগামী MN b এর সমান্তরাল ভরকেন্দ্রগামী PQ ভরকেন্দ্রগামী ও পাতের উপর লম্ব RS	$\frac{1}{12}Mb^2$ $\frac{1}{12}Ml^2$ $\frac{M}{12}(l^2+b^2)$
(৪) আয়তাকার দ্রু	$\begin{array}{c} P \\ & \downarrow \\ & \downarrow \\ & Q \end{array}$	ভরকেন্দ্রগামী ও তলের উপর লম্ব <i>PQ</i>	$\frac{M}{12}(l^2+b^2)$
(৫) পাতলা বৃত্তাকার চাকতি	P U N N Q S	কেন্দ্রগামী ও তলের উপর লম্ব PQ চাকতির যে কোন ব্যাস যেমন UV বা MN চাকতির তলে চাকতির যে কোন স্পর্শক যেমন MS	$\frac{1}{2}Mr^2$ $\frac{1}{4}Mr^2$ $\frac{5}{4}Mr^2$
(৬) চোঙ	$P = \bigcup_{S} \frac{R}{Q}$	ভরকেন্দ্রগামী ও দৈর্ঘ্যের সমান্তরাল PQ	$\frac{1}{2}Mr^2$

		ভরকেন্দ্রগামী ও দৈর্ঘ্যের উপর লম্ব	$M(\frac{l^2}{12} + \frac{r^2}{4})$
		RS	
(৭) নিরেট গোলক	\bigcap_{P}^{M}	যে কোন ব্যাস যেমন PQ বা KL	$\frac{2}{5}Mr^2$
		গোলকের যে কোন	$\frac{7}{5}Mr^2$
		স্পৰ্শক যেমন	
		MN	

কেন্দ্রমুখী বল ঃ

কোন বস্তুকে r ব্যাসার্ধের বৃত্তাকার পথে v বেগে গতিশীল রাখার জন্য কেন্দ্রের দিকে প্রয়োজনীয় কেন্দ্রমুখী বল =

 $\frac{mv^2}{r}$

সাইকেল আরোহীর ক্ষেত্রে কেন্দ্রমুখী বলঃ

mg

$$R\cos\theta = mg....(i)$$
 $R\sin\theta = \frac{mv^2}{r}...(ii)$ $(ii) \div (i)$ $\tan\theta = \frac{v^2}{rg}$

রাস্তার ক্ষেত্রে ব্যাংকিং কোণ θ হলে,

$$\tan\theta = \frac{v^2}{rg} \quad \sin\theta = \frac{h}{x}$$

[h= ভিতরের পার্শ্ব অপেক্ষা বাহিরের পার্শ্ব কতটুকু উঁচু, x= রাস্তার প্রস্থ] রেল লাইনের ক্ষেত্রে একই সূত্র।

Type -01: বল ও বলের ঘাত বা ঘাত বল সংক্রান্ত

সূত্রাবলীঃ $\overrightarrow{F} = m\overrightarrow{a}$

EXAMPLE-01: একটি বস্তুর উপর 7N বল প্রয়োগ করলে বস্তুটি $3ms^{-2}$ তুরণ প্রাপ্ত হয়। বস্তুটির ভর কত? বস্তুটির উপর 5N মানের আর একটি বল 7N মানের বলের সাথে 30° কোণে প্রয়োগ করা হলে বস্তুটি কত তুরণ প্রাপ্ত হবে?

সমাধানঃ $1st\ case$: F = ma হতে,

$$7=m\times3$$
 $\Rightarrow m=\frac{7}{3}kg.=2.33kg$

2nd case:
$$5 = \frac{7}{3}a$$
 $\Rightarrow a = \frac{15}{7} = 2.14 \text{ ms}^{-2}$

$$a' = \sqrt{3^2 + 2.14^2 + 2 \times 3 \times 2.14 \cos 30^\circ}$$

$$\Rightarrow$$
 4.97 ms⁻²

বলের ঘাত, $J = F \times t = m \triangleleft v$

EXAMPLE – 02: 0.04kg ভরের একটি সীসার বুলেট $200ms^{-1}$ অনুভূমিকভাবে ছোড়া হলে এটি খাড়া দেয়ালে ধাক্কা খেয়ে

 $100 \; ms^{-1} \;$ বেগে ফিরে এল। বলের ঘাত কত?

সমাধানঃ
$$m$$
=0.04 kg u =200 ms^{-1} , v =-100 ms^{-1}
 $\therefore \Delta V = v - u = -300 ms^{-1}$

$$J = F \times t = m\Delta v$$

= 0.04×(-300) = -12 kg ms⁻¹ = -12 Ns

EXAMPLE-03: একটি অতিমসৃণ (ঘর্ষণশূন্য) টেবিলের উপর দক্ষিণ দিকে $5.0 {
m ms}^{-1}$ বেগে গতিশীল $0.5~{
m kg}$ ভরের একটি বস্তুর উপর $6.0 {
m N}$ মানের বল একই দিকে $10 {
m s}$ এর জন্য প্রয়োগ করা হল ।

- (i) 1s পরে বস্তুটির বেগ কত?
- (ii) 6.0N এর বল দক্ষিণ দিকের পরিবর্তে পশ্চিম দিকে প্রয়োগ করলে বস্তুটির বেগ কত হবে?

সমাধান ঃ (i)
$$a = \frac{F}{m} = \frac{6.0N}{0.5kg} = 12ms^{-2}$$
 South.

 $1_{
m S}$ এ বেগের পরিবর্তন Δ ${
m v}$

থেহেতু
$$a = \frac{\Delta v}{\Delta t}$$

$$\Delta v = a\Delta t = (12ms^{-2})(1s)$$

$$\Delta v = 12ms^{-1}South$$

1s পরের বেগ,

$$v=v_0+\Delta v$$

$$=5+12=17ms^{-1}South$$

(ii) 6.0N বল পশ্চিম দিকে প্রয়োগের ফলে, বস্তুটির পশ্চিম দিকের তুরণ হবে

$$a = \frac{F}{m} = \frac{6.0N}{0.5kg} = 12ms^{-2}west$$

পশ্চিম দিকে বেগের পরিবর্তন হবে

$$\Delta v = a \Delta t$$

$$\Delta v = (12ms^{-2}) \quad (1s)$$

বা
$$\Delta v = 12ms^{-1}$$

1sec পরের বেগের মান

$$v = \sqrt{{v_0}^2 + (\Delta v)^2} = \sqrt{(5ms^{-1})^2 + (12ms^{-1})^2} = 13ms^{-1}$$

ধরি, বস্তুটি দক্ষিণ দিকের সাথে heta কোণে পশ্চিম দিকে গতিশীল

$$\tan \theta = \frac{\Delta v}{v_0} = \frac{12}{5} = 2.4$$
 :: $\theta = 67.38^\circ$

 $EXAMPLE - 04: 20 ms^{-1}$ বেগে চলমান 200 kg ভরের একটি ট্রাক একটি ভারী দেয়ালে এসে ধাক্কা দেয়। দেয়ালে আঘাত খেয়ে ট্রাকটি পিছন দিকে $1.3 ms^{-1}$ বগে ফিরে আসে। আঘাতের সময়কাল 0.15 s হলে ঘাত কত? ট্রাকটির উপর প্রযুক্তি গড় বল কত?

সমাধান বলের ঘাত,

$$J = mv_2 - mv_1 = m(v_2 - v_1)$$

$$= (200 \text{ kg}) [(-1.3\text{ms}^{-1}) - (20\text{m})]$$

বা,
$$J = -4.26 \times 10^4 kgms^{-1}$$
 বা, Ns

গড় বল ঃ
$$F=rac{mv_2-mv_1}{t}$$

$$=rac{\left(-4.26 imes10^4 kgms^{-1}
ight)}{\left(0.15\sec
ight)}=-2.84 imes10^5 N$$

EXAMPLE – 05: 40kg ভরের একটি বালক 3m উঁচু থেকে লাফিয়ে মাটিতে পড়ল। ছেলেটিকে কত বলের ঘাত সইতে হল?

সমাধানঃ

$$v^2 = v_0^2 + 2a(y - y_0)$$

.: শেষ বেগ,
$$v = \sqrt{2a(y - y_0)} = \sqrt{2g(y - y_0)} = \sqrt{2 \times (-9.8) \times (-3)} = 7.67 ms^{-1}$$

ভূমিতে পড়ার সাথে সাথে ছেলেটির বেগ, $v_2=0$ এবং $v_1=v=7.67 ms^{-1}$

বলের ঘাত,
$$\vec{J} = \int \vec{F} dt = m(\vec{v_2} - \vec{v_1})$$

$$= 40 (0-7.67) = -306.7 \text{kgms}^{-1} \text{ } \text{d} \text{Ns}$$

Practice

১। একটি বস্তুর উপর 7Nমানের একটি বল প্রয়োগ করা হলে বস্তুটি $3 {
m m s}^{-2}$ তুরণ প্রাপ্ত হয়। বস্তুটির ভর কত? বস্তুটির উপস 5Nমানের আর একটি বল 7N মানের বলের সাথে কোণে 60° কোণে প্রয়োগ করলে, বস্তুটির তুরণ কত হবে? Ans:

$$\frac{7}{8}kg$$
, $a = 4.48ms^{-2}$

- ২। $300 \mathrm{ms^{-1}}$ বেগের $5 \mathrm{mg}$ এর একটি গুলি কাঠের খুঁটিকে আঘাত করে এবং গলিটি কাঠের খুঁটির অভ্যন্তরে $5.0 \mathrm{cm}$ গিয়ে থেমে যায়। কাঠের খুঁটিতে গুলির বল ধ্রুব হলে, বলের মান কত ছিল? $\mathrm{Ans:}\ 4.5 \times 10^3 N$
- ৩। $100{
 m N}$ এর একটি বল $10{
 m k}g$ ভরের একটি স্থির বস্তুর উপর ক্রিয়া করে যদি $5{
 m s}$ পরে বলের ক্রিয়া বন্ধ হয়ে যায়, তবে প্রথম থেকে $10{
 m s}$ -এ বস্তুটি কত দূরত্ব অতিক্রম করবে? ${
 m Ans:}~375m$
- 8। $64\mathrm{m}$ উঁচু ছাদ হতে $5\mathrm{kg}$ ভরের একটি পাথর ছেড়ে দেয়া হলে, ভূমিতে পৌঁছতে এর $4\mathrm{sec}$ সময় লাগে। বাতাসের বাধা নির্ণয় কর। পাথরটি কত বলে ও কত বেগে ভূমিকে আঘাত করবে? $\mathrm{Ans}\colon 9N;40N;32ms^{-1}$
- ৫। অনুভূমিক ুদকে গতিশীল 2kg ভরের একটি লৌহ গোলক $5ms^{-1}$ বেগে একটি দেয়ালে লম্বভাবে ধাক্কা খেয়ে $3ms^{-1}$ বেগে বিপরীত দিকে ফিরে গোল। বলের ঘাত কত? Ans: $4Kgms^{-1}$

Type-02: ভরবেগ সংক্রান্ত

EXAMPLE-01: ফার্মগেট ওভার ব্রীজের নীচ দিয়ে 27টন ওজনের মাল নিয়ে 5টন ওজনের একটি ট্রাক $36kmh^{-1}$ বেগে যাওয়ার সময় 500kg ভরের একটি বস্তা ট্রাকের উপর ওভার ব্রীজ থেকে $30ms^{-1}$ বেগে ফেলে দেয়া হলো। এখন ট্রাকের গতি নির্ণয় কর।

ট্রাকের মোট ভর
$$27+5=32$$
 টন $=32\times1000kg=m_1$ $u_1=36kmh^{-1}=36\frac{1000}{3600}=10ms^{-1}$ $m_2=500kg,\,u_2=30ms^{-1}$ $m_1\,u_1+m_2\,u_2\cos90^o=(m_1+m_2)v$ $\Rightarrow 32000\times10+500\times30\cos90^o=(32000+500)\,v$ $\Rightarrow v=9.85ms^{-1}$

EXAMPLE – 02: 300 kg ভরের কোন নৌকার দুই গলুই থেকে 20 kg ও 25 kg ভরের দুইটি বালক যথাক্রমে 3.25 ও 2 ms⁻¹ বেগে দুইদিকে লাফ দেয়। নৌকাটি কোন দিকে কত বেগে চলবে? মনে করি,

দ্বিতীয় বালক যেদিকে লাফ দেয়, সেদিকে বেগ ধনাত্মক,

∴ $m_1u_1 + m_2u_2 + m_3u_3 = m_1v_1 + m_2v_2 + m_3v_3 = 0$ $\exists t$, $300 \times 0 + 20 \times 0 + 25 \times 0 = 20 \times (-3.25) + 25 \times 2 + 300 \text{ v}_3$

 $0 = -65 + 50 + 300 \text{ v}_3$

∴ v₂= 0.05ms⁻¹ (+ve) দ্বিতীয় বালকের দিকে

EXAMPLE – 03: গাছের ডালে বসা $1.975 \mathrm{kg}$ ভরের একটি বুলেট $400 \mathrm{ms}^{-1}$ অনুভূমিক বেগে আঘাত করে পাখিটির ভিতরেই রয়ে গেল। পাখির অনুভূমিক বেগ নির্ণয় কর। ডালটি মাটি হতে $313.6 \mathrm{m}$ উপরে হলে পাখিটি কত দূর সামনে গিয়ে মাটিতে পড়বে?

সমাধানঃ

 $mv_1 = (M+m)v_2$

 $0.025 \times 400 = (1.975 + 0.025) v_2$

 \therefore $v_2 = 5 \text{ms}^{-1}$

$$h = ut + \frac{1}{2}gt^2$$

$$313.6 = 0 + \frac{1}{2} \times 9.8 \times t^2$$

 $\therefore t = 8s$

 $\therefore S = vt = 5 \times 8 = 40m$

Practice

০১। 500kg ভরের একটি ট্রাক 300kg ভরের অপর একটি ট্রাকের সাথে ধাক্কা খেয়ে দুটি ট্রাক $5ms^{-1}$ ও $6ms^{-1}$ বেগে বিপরীত দিকে যাত্রা করল। ট্রাক দুটির গতিবেগ একই হলে তা কত নির্ণয় কর। $Ans: 35ms^{-1}$

০২। 6kg একটি বস্তু 450 কোণে $30ms^{-1}$ নিক্ষিপ্ত হয়ে সর্বোচ্চ বিন্দুতে দুটি সমান খন্ডে বিভক্ত হল। একটি পূর্ব পথ অনুসরণ করে আদি বিন্দুতে দিবে আসলে অপরটির গতিবেগ নির্ণয় কর। $Ans: 90ms^{-1}$

০৫। $12 \mathrm{m s^{-1}}$ বেগে গতিশীল $1 \mathrm{kg}$ ভরের একটি বস্তু $2 \mathrm{kg}$ ভরের একটি স্থির বস্তুকে আঘাত করে। আঘাতের পর $1 \mathrm{kg}$ ভরের বস্তুটি তার গতিপথের দিক থেকে -30° বিসৃত হয়ে $11.2 \mathrm{m s^{-1}}$ বেগে চলতে শুরু করে। অপর বস্তুটির বেগ কত এবং বেগের দিক কি হবে? Ans : $3.02 \mathrm{ms^{-1}}$: 67.7°

০৬। কোন একটি গ্যাসের একটি গ্যাস অণু $300 {
m ms}^{-1}$ বেগে চলে অন্য একটি স্থির গ্যাস অণুকে স্থিতিস্থাপক ধাক্কা দিল। সংঘর্ষের পর ১ম অণুটি উহার গতি অভিমুখের সাথে 30° কোণে চলে গেল। উহাদের শেষবেগ এবং ২য় অণুটির গতি অভিমুখ নির্ণয় কর।

 $Ans: 260.150 ms^{-1}$ প্রথমটির সাথে সমকোণে

Type- 03: লিফ্ট সংক্রান্ত

EXAMPLE – 01: কোন লিফট উপরের দিকে $1.2 \mathrm{ms}^{-1}$ ত্বরণে উঠেছে। লিফটের ভিতর কোন ব্যক্তি একটি $2 \mathrm{kg}$ ভরের বল ধরে থাকলে বলের আপাত ওজন কত? যদি বলটি লিফটের তলা হতে $1.5 \mathrm{m}$ উপর হতে ছেড়ে দেয়া হয় তবে বলটি পড়তে কত সময় লাগবে?

সমাধানঃ

a = g + f = 9.8 + 1.2 = 11ms⁻²
w = ma = 2×11=22N

$$h = \frac{1}{2}(g+f)t^2 : t = \sqrt{\frac{2h}{g+f}} = 0.052 \text{sec}$$

Practice

- ০১। 50kg ওজনের একজন লোক একটি লিফটর মঝে রাখা ওজনের মেশিনে দাঁড়িয়ে নিচ দেকে চলছে। লিফটটি প্রথমে ধ্রুব গতিতে এবং তারপর $2{
 m ms}^{-2}$ তুরণে এসে থামে।
 - i) যখন লিফট এসে থামছে তখন ওজনের মেশিনে তার ওজন কত দেখাবে?
 - ii) একইভাবে উপরে উঠলে পাঠ কি হবে Ans: 60.2kg, 39.8kg,
- ০২। $1000 {
 m kg}$ ভরের একটি লিফট $3 {
 m ms}^{-2}$ ত্বরণে উপরের দিকে চললে লিফটের উপর (১) লিফটের রশির টান কত হবে? (২) যদি $3 {
 m ms}^{-2}$ নিচের দিকে নামে তাহলে টান কী হবে? ? ${
 m Ans}$: $12800 {
 m N}$; $6800 {
 m N}$
- ০৩। $60 {
 m kg}$ ভরের একজন লোক লিফটের মেঝের উপর রাখা একটি ওজন পরিমাপক এর উপর দাঁড়িয়ে আছে। লোকটির ওজন পরিমাপক যন্ত্রে কত হবে যখন (১) লিফটিট স্থির অবস্থায় থাকে (২) যখন লিফটিট উপরের দিকে $2 {
 m ms}^{-2}$ তুরণে চলে (৩) যখন লিফটিট $2 {
 m ms}^{-2}$ তুরণে নিচের দিকে চলে? ${
 m Ans}$: 588N;648N;408N

Type- 04: রকেটের গতি সংক্রান্ত

EXAMPLE-01: অ্যাপোলো ও স্কাই ল্যাব মিমনের মহাকাশ উৎক্ষেপণের জন্য ব্যবহৃত সার্টন -৫ রকেটের জ্বালানির নির্গমন বেগ $3.1\times10^{-3}~{
m ms}^{-1}$ মহা শূন্যযানসহ রকেটের মোট ভর $2.45\times10^{-6}~{
m kg}$ যার $1.70\times10^{-6}~{
m kg}$ জ্বালানির ভর (ক) মঞ্জ হতে উণ্ডোলনের জন্য প্রয়োজনীয় ধাক্কা কত? (খ) এই ধাক্কা অর্জনের জন্য জ্বালানি ব্যয়ের হার কত? সমাধান ঃ

$$(\overline{\bullet}) \text{ F} = \text{mg} = 2.45 \times 10^{-6} \times 9.8 = 2.4 \times 10^{-7} \text{N}$$

(*)
$$F = \frac{dm}{dt} \times v_r$$
 of, $\frac{dm}{dt} = \frac{F}{v_r} = \frac{2.4 \times 10^7}{3.1 \times 10^3} = 7.74 \times 10^3 \, kg \, s^{-1}$

EXAMPLE - 02: একটি রকেট উর্ধ্বমুখী যাত্রার প্রথম 2 সেকেন্ড এর ভরের $\frac{1}{2}$ অংশ হারায়। রকেট হতে নিদ্ধান্ত গ্যাসের

গতিবেগ $2500 \mathrm{ms}^{-1}$ হলে রকেটের তুরণ বের কর।

সমাধান ঃ
$$a = \frac{Vr}{m} \times \frac{dm}{dt} - g = \frac{2500}{m} \times \frac{m}{50 \times 2} - 9.8 = 15.2 ms^{-2}$$

EXAMPLE - 03: 15,000 kg জ্বালানিসহ একটি রকেটের ভর হল $20,000 \ kg$ । রকেটের সাপেক্ষে $3000 ms^{-1}$ দ্রুতিতে জ্বালানি $200 kgs^{-1}$ হারে পুড়ে। রকেটিটি যদি খাড়া উপরের দিকে নিক্ষিপ্ত হয়ে থাকে তবে,

- (i) রকেটের উপরের দিকে ধাক্কা;
- (ii) নিক্ষেপের সময় রকেটের উপর প্রযুক্ত লব্ধি বল;
- (iii) জ্বালানি শেষ হওয়ার সময় সৃষ্ট প্রযুক্ত লব্ধি বল;
- (iv) জ্বালানি শেষ হওয়ার মুহুর্তে রকেটের বেগ নির্ণয় কর। ধরা যাক, বাতাসের বাধা নগণ্য এবং অভিকষর্জ তুরণের মান সব সময় $9.8 \mathrm{ms}^{-2}$ ।

সমাধান ঃ

(i) বকেটের উর্ধ্বমুখী ধাক্কা (the thrust of rocket)

$$= v_r \frac{dm}{dt}$$

= $(3000ms^{-1})(200kgs^{-1}) = 6 \times 10^5 N$

(ii) নিক্ষেপের সময় রকেটের উপর প্রযুক্ত লব্ধিবল

$$=$$
 উর্ধ্বমুখী ধাক্কা-রকেটের ওজন $\Rightarrow m \frac{dv}{dt} = v_r \frac{dv}{dt} - mg$ $=6 \times 10^5 - (20000) \ (9.8)$

$$=4.04 \times 10^{5} \text{N}$$

নিকেএপর সময় রকেটের উপর প্রযুক্ত লব্ধিবল = $4.04{ imes}10^5 N$

(iii) জ্বালানি শেষ হওয়ার মুহুর্তে লব্ধিবল $m \frac{dv}{dt} = v_r \frac{dv}{dt} - m'g$

m'=রকেটের মোট ভর - জ্বালানির ভর

$$\therefore m \frac{dv}{dt} = 6 \times 10^{10} N - (5000 kg)(9.8 ms^{-2})$$

জ্বালানি শেষ হওয়ার মুহুর্তে লব্ধিবল = $5.51 imes 10^5
m N$

(iv) সমস্ত জ্বালানি পুড়তে সময় লাগে,
$$t=\frac{15000kg}{200kgs^{-1}}=75 \mathrm{sec}$$
যদি আদিবেগ, $v_0=0$

$$\therefore \ \mathbf{v}=\mathbf{v}_0+\mathbf{v}_r \ \mathrm{In} \frac{m_0}{m}-gt$$

$$=0+(3000ms^{-1}) \ \mathit{In} \bigg(\frac{20,000kg}{5000mg}\bigg)-(9.8ms^{-2})(75 \mathrm{sec})$$

$$=3424ms^{-1}$$
 শেষ মুহুর্তে রকেটের বেগ = $3424\mathrm{ms}^{-1}$

Practice

০১।একটি রকেট তার উড্ডয়নের প্রথম সেকেন্ডে তার ভরের $\frac{1}{60}$ ভাগ ভর $2400 \mathrm{ms}^{-1}$ বেগে বের করে দেয়। রকেটটির ত্বরণ কত হবে? Ans: $30.2ms^{-1}$

Type- 05: ঘর্ষণ সংক্রান্ত

EXAMPLE - 01: $10 {
m kg}$ ভরের একটি বাক্স একজন লোক অনুভূমিকের সাথে 30° কোণে $40 {
m N}$ বল প্রয়োগে টানছে। চিত্রে প্রদর্শিত মেঝের ঘর্ষণ নগণ্য ধরে বাক্সটির তুরণ, মেঝে কর্তৃক বাক্সটির উপর উর্ধ্বমুখী বল $F_{
m N}$ নির্ণয় কর। সমাধানঃ

$$x$$
 ও y অক্ষ বরাবর বল $F=40N$ এর উপাংশ
$$F_x = F\cos 30^\circ = (40N)\cos 30^\circ = (40N)\ (0.866) = 35N$$

$$F_y = F\sin 30^\circ\ (40N)\cos 30^\circ = (40N)\ (0.50) = 20\ N$$

(i) অনুভূমিকের দিকে (x- অক্ষ বরাবর) বল হল F_x

∴ ma_x = F_x

$$a_x = \frac{F_x}{m} = \frac{35N}{10kg} = 3.5ms^{-2}$$

∴ বাক্সটির ত্বরণ হল 3.5 ms⁻²

(ii) উলম্ব দিকে (y- অক্ষ বরাবর) বল হল

$$F_N-F_g+F_y$$

$$\therefore ma_y=F_N-F_g+F_y$$
 যেহেতু প্যাকেটটি উর্ধ্বমুখী গতিশীল নয় $a_y=0$ হবে।
$$\therefore \ 0=F_N-F_g+Fy$$
 বা, $F_N=mg-F_y$ $=(10kg)\ (9.8ms^{-2})\ -20N=78N$

EXAMPLE – 02: 10 kg ভরের আয়তাকার একটি কাঠের গুড়িকে একটি টেবিলের উপর রেখে অনুভূমিকের দিকে বল প্রয়োগ করলে দেখা যায়, যে, বল যখন 8N হয় তথন গুঁড়িটি চলতে শুরু করে এবং অতঃপর 4N বলের সাহায্যে বস্তুটিকে নির্দিষ্ট দ্রুতিতে গতিশীল রাখা যায়। স্থিতি ঘর্ষণ ও চল ঘর্ষণ সহগ কত হবে?

সমাধান ৪

চলার পূর্বে মুহুর্তে, x অক্ষের দিকে ক্রিয়াশীল বলগুলো হল F ও F_s

যেহেতু, F ও F_s বিপরীতমুখী এবং বস্তুটি স্থির

F ও F_s বলের লব্ধি হবে শূন্য।

অনুভূমিকের দিকে ক্রিয়াশীল বলের লব্ধি যেহেতু শূন্য

$$F_x = 0 = F - F_s = 8N = F_s$$

$$\therefore F_s = 98N$$

y অক্ষের দিকে ক্রিয়াশীল বলগুলো হল প্রতিক্রিয়া বল F_N ও গুঁড়ির ওজন $W; F_N$ ও W বিপরীতমুখী। যেহেতু y অক্ষবরাবর বস্তুটির কোন গতি নেই, y এর দিক লব্ধি বল শূন্য।

$$F_y = 0 \text{ W} = F_N - (10 \text{ kg}) (9.8 \text{ms}_{-2})$$

$$\therefore F_N = 8N$$
সূত্র $F_s = \mu_s F_N$ হতে
$$\mu_s = \frac{F_s}{F_N} = \frac{8N}{98N} = 0.082$$

যখন বস্তুটি নির্দিষ্ট গতিতে চলতে শুরু করে, তখন তুরণ শূন্য। নিউটনের দ্বিতীয় সূত্র F=ma হতে তুরণ a=0 হলে F=0 ফলে লব্ধি বল শূন্য। তখন, x- অক্ষ বরাবর ক্রিয়াশীল বল,

$$F_x=0=F-F_k$$
 $=4N-F_k$ বা, $F_k=4N$ y - অক্ষ বরাবর ক্রিয়াশীল বল $F_y=0$ (y- অক্ষ বরা বর বস্তুটি গতিশীল নয় বলে) $F_y=0=F_N-W$ $=F_N-(10kg)$ (9.8ms $^{-2}=F_N-98N$ বা, $F_N=98N$ সূত্র, $F_x=\mu_k\,F_N$ হতে, $\mu_k=\frac{F_k}{F_N}=\frac{4N}{98N}=0.041$

EXAMPLE - 03: 1000 kg ভরের একটি গাড়ির চাকা ও রাস্তার সাথে স্থিতি ঘর্ষণের সহগ বা গুনাংক $\mu_s=0.8$ হলে, গাড়িটি সর্বোচ্চ কত ঢালু রাস্তায় পিছলিয়ে না পড়ে থেমে থাকতে পারবে?

সমাধান s রাস্তার ঢালের দিকে x- অক্ষ ও ঢালের অভিলম্বের দিকে y- অক্ষ ধরে এবং গাড়ির ওজনকে W ঘর্ষণ বলকে F_s ধরে x- অক্ষ বরাবর ক্রিয়াশীল বল হল ওজনের উপাংশ W_X ও ঘর্ষণ F_s

$$F_x = W_X - F_s = W_X - \mu_s F_N [::F_s = \mu_s F_N]$$

 $W_X = mg \sin \theta$ এবং $F_N = mg \cos \theta$ ব্যবহার করে পাই,

 $F_x = mg \, \sin \, \theta \text{-} \, \mu_s \, mg \, \cos \, \theta$

গাড়িটিকে ভারসাম্যাবস্থায় থাকতে হলে, $F_x=0$ হতে হবে। $F_x=0$ এর জন্য mg $\sin\theta=\mu_s$ mg $\cos\theta$ বা, $\tan\theta=\mu_s$ বা, $\theta=\tan^{-1}\!\mu_s$ বা, $\theta=\tan^{-1}\!0.8=38.66^\circ$

EXAMPLE – 04: একজন লোক পায়ে স্কেট পড়ে 30° ঢালু তলে নিচের দিকে রওয়ানা হল। তলের সাথে স্কেট- এর ঘর্ষণ সহগ বা গুণাঙ্ক 0.10 হলে হলে তার তুরণ কত হবে? $5\sec$ পরে তার দ্রুতি কত হবে?

সমাধানঃ

 লোকটির উপর প্রযুক্ত বলসমূহ অংকন করা হল। ঢালের দিক x- অক্ষ ও ঢালের লম্বের দিক y- অক্ষ ধরে, লোকটির ওজন W = mg ও চল ও ঘর্ষণ বল F_k ধরে x- অক্ষ বরাবর ক্রিয়াশীল বল হল,

ওজনের উপাংশ বল $W_X = mg \ sin 30^\circ$ ও ঘর্ষণ বল, F_k

$$F_x = \text{mg sin } 30^{\circ} - F_k....(1)$$

= mg sin 30°- μ_k F_N

y- অক্ষ বরাবর ক্রিয়াশীল বল হল,

$$F_y = F_N - \text{mg cos } 30^{\circ}....(2)$$

যেহেতু y- অক্ষ বরাবর লোকটির কোন গতি নেই,

$$F_v = 0$$

$$F_N = \text{mg cos } 30 \dots (3)$$

∴ সমীকরণ (1) ও (3) হতে পাই,

 $F_x = \text{mg sin } 30^\circ - \mu_s \text{ mg cos } 30^\circ = \text{m } a_x$

বা, a_x = g (sin 30°- μ_s cos 30°)

EXAMPLE-05: ধরা যাক দুটি লোক কতকগুলো বিস্ফোরকসহ $40{,}000{
m kg}$ এর একটি দ্রুতগামী ট্রাকে $35{
m ms}^{-1}$ দ্রুতিতে এগিয়ে চলচে। সুপারম্যান খবর পেয়ে রাস্তার উপর এসে দাঁড়িয়ে ট্রাকের সম্মুখের দিকে হাত প্রসারিত করে ট্রাকটি তৎক্ষনাৎ থামিয়ে দিল। পদার্থবিদ্যার নীতির সাথে এ অবস্থা সংগতিপূর্ণ হবে কি? ধরি, সুপারম্যানের ভর $100{
m kg}$ এবং তার প্রযুক্ত বল পায়ের জুতোর ও মাটির মধ্যে ঘর্ষণ বলের সমান এবং ঘর্ষণ সহগ $\mu_s=\mu_k=1$.

সমাধানঃ সুপারম্যানের প্রযুক্ত সর্বোচ্চ বল,

$$F = \mu_s F_N = \mu_s mg$$

= 1(100kg) (9.8ms⁻¹) $\forall f, F = 980N$

গাড়িটির ত্বরণ (যেহেতু গাড়ীটির ত্বরণের দিক সুপারম্যানের প্রযুক্ত বলের দিকে বিপরীতমুখী)

$$a = \frac{-F}{M} = \frac{-980N}{40,000kg} = -0.0245ms^{-2}$$

গাড়ীটির যে দূরত্বে গিয়ে থামবে তার সমীকরণ $v^2 = {v_0}^2 + 2a(x-x_0)$ হতে পাই-

(যখন থামবে, তখন, v = 0)

$$\therefore x - x_0 = \frac{-v_0^2}{2a} = \frac{-(25ms^{-1})}{(2)(-0.024ms^{-2})} = 25,000m$$

বা,
$$x - x_0 = 25km$$

আমরা দেখি যে, সুপারম্যানকে সামনে নিয়ে ট্রাকটি 25km দূরে থাকবে। তাৎক্ষণিকভাবে ট্রাকটি থামিয়ে দেওয়া সম্ভব নয়।

EXAMPLE - 06: ঘন্টায় 72km বেগে গতিশীল 150kg ভরের একটি গাড়িকে ব্রেক চেপে 50m দূরে থামানো হলো। ব্রেক জনিত বল ছাড়া গাড়ীর উপর ক্রিয়াশীল বল ছিল রাস্তার সাথে চাকার ঘর্ষণ বল ও বাতাসের বাধা। বাতাসের বাধা জনিত বল 23N এবং ব্রেক জনিত বল 430N হলে রাস্তার সাথে চাকার ঘর্ষণ বল কত ছিল? এবং চলঘর্ষণ গুণাঙ্কের মান কত ছিল?

সমাধানঃ ধরা যাক গাড়ীটি x অক্ষ অভিমুখে গতিশীল

সমীকরণ
$$v_x^2 = v_{x0}^2 + 2a(x - x_0)$$
 হতে

$$0 = v_{x_0}^2 + 2a(x - x_0)$$

$$a = \frac{v_{x_0}^2}{2(x - x_0)}$$

$$=\frac{\left(20ms^{-1}\right)^2}{20(50m)}=-4ms^{-2}$$

গাড়ীটি থামাতে মোট বল ঃ

$$F = ma = (150 \text{kg}) (4 \text{ms}^{-2}) = -600 \text{N}$$

মোট বল = ব্রেকজনিত বল + চাকার সাথে রাস্তার ঘর্ষণ বল + বাতাসের বাধা জনিত বল

$$F = F_b + F_k + F_w \\$$

চাকার সাথে রাস্তার ঘর্ষণ জণিত বল = মোট বল - ব্রেকজনিত বল - বাতাসের বাধা জনিত বল

অর্থাৎ
$$F_k = F - F_b - F_w$$

$$= -600N - (-430) - (-23N) = -147N$$

যেহেতু চাকার সাথে ঘর্ষণজনিত বলের মান, $F_k = \mu_k F_n \ \{ \ F_n \ \text{বস্তুর ওজন} = mg \}$

ঘর্ষণ গুনাঙ্ক,
$$\mu_{\mathbf{k}} = \frac{F_{\mathbf{k}}}{F_{\mathbf{n}}} = \frac{F_{\mathbf{k}}}{mg} = \frac{147}{(150kg)(9.8ms^{-2|})} = \frac{147}{14700N} = \frac{1}{100} = 0.01$$

EXAMPLE-07: একটি কামানকৈ স্থির সমতলে ট্রাকের উপর শক্তভাবে আটকানো হল। অতপর কামানটিকে অনুভূমিকের সাথে 30° কোণেরেখে 40kg এর একটি শেল বা গোলা $300 \mathrm{ms}^{-1}$ বেগে কামান থেকে ছোঁড়া হল। সমতল ট্রাকটি যদি ঘর্ষণবিহীন তলে অবস্থান করে এবং ট্রাক ও কামানের মোট ভর $15{,}000kg$ হয় তবে-

- (i) সমতল ট্রাকটি পশ্চাৎদিকে ধাক্কার বেগ কত?
- (ii) শেলটির কামান থেকে বের হতে $2.0 \times 10^{-3} sec$ সময় লাগলে, ঘর্ষণবিহীন তল ট্রাকটির উপর কি পরিমাণ ঘাতবল প্রয়োগ করবে?

সমাধান ঃ

যেহেতু কোন বাহ্যিক বল প্রয়োগ করা হয়নি,
 গোলা ছোঁড়ার পূর্বে ট্রাকের বেগ = 0
 গোলার বেগ = 0

 \therefore গোলা ছোঁড়ার পূর্বে ট্রাকের ভরবেগ + গোলার ভরবেগ =0+0=0

ছোঁড়ার পরে, ট্রাকের পশ্চাদবেগ = v = - (x- অক্ষের দিকে)

গোলার বেগ $v_0 \cos 30^\circ (x$ - অক্ষের দিকে।

ট্রাকের ভরবেগ + গোলার ভরবেগ = - $Mv + mv_0 \cos 30^\circ$

ভরবেগ সংরক্ষণ নীতি অনুযায়ী,

গোলা ছোঁড়ার পূর্বে (ট্রাক + গোলার) ভরবেগ = গোলা ছোঁড়ার পর (ট্রাক + গোলার) ভরবেগ

 $o= -Mv + mv_0 \cos 30^\circ$

$$v = \frac{mv_0 \cos 30^{\circ}}{M} = \frac{(40Kg)(3000ms^{-1})(0.8660)}{(15000kg)}$$

ট্রাকের x- অক্ষ বরাবর পশ্চাদমুখী বেগ $v = 0.693 ms^{-1}$

(ii) কামান থেকে গোলা ছোঁড়ার সময় অভিলম্ব দিকে গোলার বেগের উপাংশ $v' = v_0 \sin 30^\circ$

∴ অভিলম্ব দিকে ভর বেগের পরিবর্তন

 $\Delta P = mv_0 \sin 30^\circ - 0 = mv_0 \sin 30^\circ$

ভরবেগের পরিবর্তনই হল বলের ঘাত

বলের ঘাত= $F \Delta t = \Delta P = mv_0 \sin 30^\circ$

$$\therefore F = \frac{mv_0 \sin 30^{\circ}}{M} = \frac{(40Kg)(300ms^{-1})\frac{1}{2}}{2 \times 10^{-3} \sec} = 3 \times 10^6 N$$

Practice

০১। মেঝের উপর রাখা $100 {
m kg}$ ভরের একটি কাঠের বাক্সকে একটি রশির সাহায্যে গতিশীল করতে চেষ্টা করা হচ্ছে। রশিটিকে অনুভূমিকের সাথে 30° কোণে টানলে এবং বাক্সের ও মেঝের মধ্যে স্থিতি ঘর্ষণ গুণাঙ্ক ০.4 হলে রশিতে কত টান দিলে বাক্সটি গতিশীল হবে? Ans: 367.7N

০২। একটি ঘোড়া যাত্রীসহ 150 kg ভরের একটি গাড়িকে রশির হাহায্যে সমতল রাস্তা দিয়ে ধ্রুব গতিতে টেনে নিয়ে যাচ্ছে। রশির উপর ঘোড়ার টান অনুভূমিকের সাথে 30° কোণে হলে এবং চাকার সাথে রাস্তার ঘর্ষণ গুণাঙ্ক $\mu_k=0.20$ হলে (১) রশিতে টান T এর পরিমাণ কত? (২) গাড়ির উপর রাস্তার প্রতিক্রিয়া বল N কত? Ans: 304.34N;1317.85N ০৩। একটি অনুভূমিক টেবিলের উপর 1kg ভরের একটি কাষ্ট খন্ড রয়েছে। কাঠ খন্ডের উপর কত বৌ ভরের একটি বাটখারা রেখে

খন্ডটিকে $4.9\mathrm{N}$ এর একটি অনুভূমিক বলে টানলে উহা গতিশীল হবার উপক্রম হবে? হঠাৎ বাটখারা সরিয়ে ফেললে খন্ডটি কত ত্বলে গতিশীল হবে। টেবিল ও কাষঠ খন্ডের স্থির ও চল ঘর্ষণ গুণাঙ্ক যথাক্রমে 0.4 ও 0.3। $\mathrm{Ans:}~0.25 \mathrm{Kg:}1.96 \mathrm{ms^{-2}}$

০৪। ভূমির সাথে θ কোণে আনত অমসৃণ তলের উপর দিয়ে একটি বস্তুর s দূরত্ব অতিক্রম করতে t সেকেন্ড সময় লাগে। এমন একটি সমৃণ তলের উপর দিয়ে ঐ বস্তুর একই দূরত্ব নিচে নামতে কত সময় লাগবে? $Ans: t\sqrt{1-\mu\cot\theta}$

০৫। 1 kg ভরেরএকটি বস্তুকে কোন তলের উপর স্থিরাবস্থা হতে গতিশীল করার উদ্দেশ্যে তলের সমান্তরালে 9.8 Nবল বস্তুটির উপর প্রয়োগ করলে বস্তুটি 1 sec এ 245 m দূরত্ব অতিক্রম করে। অতঃপর তলের উপর তৈল জাতীয় পদার্থ ছড়িয়ে দেয়া হল। এ অবস্থায় μ_k এর মান 0.25হ্রাস পেলে বস্তুটি এবারে 15 N বল প্রয়োগের ফলে 1 sec এ কত দূরত্ব যাবে? Ans: 6.275 m

Type- 06: কপিকল বা পুলি সংক্রান্ত

EXAMPLE – 01: m_1 ও m_2 ভরের দুটি অম বস্তুকে একটি কপিকলের উপর দিয়ে দুপাশে সুতার সাহায্যে ঝুলিয়ে দিলে (১) বস্তু দুটির ত্বরণ কত হবে? (২) সুতার টান কত হবে? (৩) কপিকলের অক্ষ বরাবর ক্রিয়ারত বল কত হবে ? সমাধান ঃ মনে করি সুতায় টান হবে T এবং তুরণ হবে ধরা যাক বস্তুটি m_1 নিচে নামছে ও m_2 বস্তুটি উপরে উঠছে। সুতরাং m_2 বস্তুর উপর ক্রিয়াশীল বলসমূহ বস্তুর ওজন

 $w_2 = m_2 g$ (নিচের দিকে) এবং সুতার টান T (উপরের দিকে)।

$$T = m_2 g = m_2 a \dots (1)$$

 \mathbf{m}_1 বস্তুর উপর ক্রিয়াশীল বলসমূহ বস্তুর ওজন $\mathbf{w}_1 = \mathbf{m}_1 \mathbf{g}$

(নিচের দিকে) সুতার টান T (উপরের দিকে)।

$$m_1g$$
- T = m_1a(2)

সমীকরণ (1) ও (2) যোগ করে পাই,

$$(m_1 + m_2) a = (m_1 - m_2)g$$

$$\therefore$$
 ত্ব্বণ, $a = \frac{(m_1 - m_2)g}{(m_1 + m_2)}$

সমীকরণ (1) ও (2) এর মান বসিয়ে পাই,

$$\therefore$$
 সুতার টান, $T=rac{2 ext{m}_1 ext{ m}_2}{ ext{m}_1+ ext{m}_2}$

কপিকলের অক্ষ বরাবর ক্রিয়াশীল বলঃ $F=2T=rac{4\,{
m m_1}\,{
m m_2}}{{
m m_1}+{
m m_2}}$

EXAMPLE-02: একটি নততল অনুভূমিকের সাথে 45° অপর একটি 30° কোণ উৎপন্ন করে। এই অবস্থায় তল দু'টি উপরের কজার সাহায্যে আটকিয়ে দিয়ে কজার সাথে একটি পুলি খাটানো হল। পুলির উপর দিয়ে এক গাছা সুতা পেরিয়ে সুতার দুই প্রান্তে $A \odot B$ দুটি ব্লক বেধে দেয়া হল। যদি ব্লক দু'টির প্রত্যেকটির ভর 1kg হয়এবং নততলের সাথে উভয় ব্লকের ঘর্ষণগুণাঙ্ক 1 হয় তবে (Φ) ব্লক দুটির সাধারণ তুরণ (Ψ) সুতার টান কত হবে?

সমাধান ঃ A ব্লকটির ক্ষেত্রে,

mg sin 45° -T- μ_k R_A= mf

বা, mg $\sin 45^{\circ}$ -T- μ_k mg $\cos 45^{\circ} = \text{mf}$(i)

B ব্লকটির ক্ষেত্রে,

T - mg sin 30° -T- μ_k R_B= mf

বা, T - $mg sin 30^{\circ}$ - $\mu_k mg cos 30^{\circ}$ =mf.....(ii)

(i)+(ii) \Rightarrow mg(sin45°- sin 30°- μ k (cos 45°+ cos30°)=2mf

বা,
$$9.8 \times \left(\frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2}\right) - 1 \times 9.8 \left(\frac{1}{\sqrt{2}} + \frac{\sqrt{3}}{2}\right) = 2f$$

বা,f = 1.5495ms⁻² (i)হতে, T =7.786N

Type – 07: জড়তার ভ্রামক ও কৌণিক ভরবেগ সংক্রান্ত

কৌণিক ভরবেগ ঃ $\overset{
ightarrow}{L} = \overset{
ightarrow}{r} imes \overset{
ightarrow}{p}$

$$L=r p \sin \theta = rp \left(when \theta = 90^{\circ}\right) = r(mv) = mr(r\omega) = mr^{2} \omega = I\omega$$
ਹੋਰੰ, $\tau = I\alpha$

জড়তার ভামক $I=mr^2$

চক্রগতরি ব্যাসার্ধ,
$$K = \sqrt{\frac{I}{M}}$$

$$st$$
 দেখাও যে ফ্লাই হুইলের জড়তার ভ্রামক $I = rac{2mgh - m\omega^2 r^2}{\omega^2 (1 + rac{n_1}{n_2})}$

প্রতি ঘূর্ণনে কৃতকাজ ω হলে $n_{\!\scriptscriptstyle 1}$ বার ঘূর্ণনে কাজ হবে $\omega n_{\!\scriptscriptstyle 1}$ ।

$$h$$
 উচ্চতা হতে পড়লে স্থিতিশক্তি $=mg\,h=rac{1}{2}mv^2+rac{1}{2}\mathrm{I}\,\omega^2+\omega n_1$

m ভরের বস্তুটি বিচ্ছিন্ন হলে অক্ষদন্ড n_2 বার ঘূর্ণনের পর থেমে গেল

$$\omega n_2 = \frac{1}{2} I \omega^2 \implies \omega = \frac{1}{2} I \omega^2 / n_2 \implies mg \ h = \frac{1}{2} m \ r^2 \omega^2 + \frac{1}{2} I \omega^2 (1 + \frac{n_1}{n_2}) \qquad I = \frac{2mgh - m\omega^2 r^2}{\omega^2 (1 + \frac{n_1}{n_2})}$$

EXAMPLE – 01: একটি চাকার ভর 5kg এবং কোন অক্ষ সাপেক্ষে চক্রগতির ব্যাসার্ধ 0.2m । এর জড়তার দ্রামক কত? চাকাটিতে $2rad\ s^{-1}$ কৌণিক ত্বরণ সৃষ্টি করতে কত মানের টর্ক প্রয়োগ করতে হবে? সমাধানঃ $I=M\ k^2\ = (5\times(0.2)^2=0.2kg\ m^2=\ \tau=I\ a\ =0.4\ N.m$

EXAMPLE – 02: 33cm ব্যাসার্ধ 4kg ভরের একটি চাকার গায়ে জড়ানো এাকটি রশির উপর 15N বল প্রয়োগ করা হল। চক্রগতির ব্যাসার্ধ 30cm হলে এবং চাকাটির টর্ক 1.10Nm হলে চাকার কৌণিক ত্বরণ কত হবে? সমাধানঃ চাকাটির জডতার ভ্রামক.

$$I=MK^2=(4kg)(30 imes10^{-2}m)=0.360kgm^2$$
 চাকাটির উপর দুটি টর্ক ক্রিয়াশীল। একটি হল $15{
m N}$ বলের কারণে, যার মান $au_R=(15N)(33 imes10^{-2}m)=4.95Nm$ অপরটি বিপরীতমুখী ঘর্ষণ সঞ্চারক বল $au_f=1.10Nm$ $\therefore au=Ilpha$ সমীকরণ হতে কৌণিক ত্বরণ $lpha=rac{ au}{I}=rac{ au_R- au_f}{I}$

$$= \frac{(4.95Nm) - (1.10Nm)}{0.360kg.m^2} = 10.7rads^{-2}$$

EXAMPLE – 03: m ভরের একটি বস্তু সুতার অগ্রভাবে বাঁধা অবস্থায় একটি ঘর্ষণহীন টেবিলের উপর $0.60~\mathrm{m}$ ব্যাসার্ধের বৃত্তাকার পথে $2.4\mathrm{ms^{-1}}$ বেগে ঘুর্ণায়মান। সুতার অপর প্রান্ত টেবিলের মধ্যে একটি ছিদ্র দিয়ে নামানো আছে। এখন সুতাটিকে নিচের দিকে টেনে বস্তুর বৃত্তাকার পথের ব্যাসার্ধ $0.4~\mathrm{m}$ করা হলে বস্তুর বেগ কত হবে?

সমাধান ঃ কৌণিক ভরবেগের সংরক্ষণ নীতি অনুযায়ী জড়তার ভ্রামক ${
m I}$ ও কৌণিক বেগ ${\it \omega}$ এর সম্পর্ক হলো

$$I_1\omega_1=I_2\omega_2$$
 $m_1r_1^2\omega_1=m_1r_1^2\omega_2$ [:: $I=mr^2$] $mr_1^2\omega_1=r_2^2\omega_2$ $v=r\omega$ ব্যবহার করে পাই, $v_1r_1=v_2r_2: v_2=rac{v_1r_1}{r_2}=rac{2.4 imes0.6}{0.4}=3.6ms^{-1}$

EXAMPLE - 04: একটি কঠিন বস্তু স্থির অবস্থা থেকে একটি নির্দিষ্ট অক্ষের চারদিকে α ধ্রুব কৌণিক তুরণে ঘুরতে শুরু করে। অক্ষ থেকে r দূরত্বে একটি বস্তুকণা Aএর (১) কেন্দ্রাতিগ তুরণ ও স্পর্শ তুরণ α , r ও সময় t এর সাহায্যে প্রকাশ কর। (২) বস্তুকণাটির লিক্কি তুরণ যে সময়ে স্পর্শী তুরণের সাথে 60° কোণ উৎপন্ন করে সে সময়ে বস্তুকণাটির কৌণিক সরণ কত?

সমাধানঃ সমীকরণ $\omega=\omega_0+\alpha t$ হতে

কৌণিক বেগ
$$\omega = 0 + \alpha t = \alpha t$$
.....(i)

(i) কেন্দাতিগ তুরণ $a_c=\omega^2 r$

ৰা
$$a_c = \alpha^2 t^2 r$$
.....(ii)

$$(ii)$$
 লব্ধি তুরণ, $a=\sqrt{a_T^2+a_c^2}$ (iii)

শৰ্ত মতে,
$$\frac{a_T}{a} = \cos 60^\circ$$

$$a=rac{a_T}{\cos 60^\circ}=2a_T$$
......(iv)
সমীকরণ (৩) ও (৪) হতে $a=\sqrt{a_T^2+a_c^2}=2a_T$
 $a_T^2+a_c^2=4a_T^2 \implies a_c=\sqrt{3a_T}=\omega^2r \implies \omega=\sqrt{3\alpha}$
সমীকরণঃ $\omega^2=\omega_0^2+2\alpha(\theta-\theta_0)$ $\therefore \theta-\theta_0=rac{\omega^2-\omega_0^2}{2\alpha}=rac{\sqrt{3\alpha}}{2\alpha}=rac{\sqrt{3}}{2}$ রেডিয়ান

EXAMPLE - 05: H উচ্চতায় অবস্থিত M ভরের r ব্যাসার্ধের একটি নীরেট গোলক ঘুরতে ঘুরতে একটি নতি তল দিয়ে যখন ভূমিতে নেমে আসে তখন গোলকটির গতি কত?

সমাধানঃ ভূমি থেকে নতি তলের যে কোন উচ্চতায় y মোট শক্তি হল

$$rac{1}{2} M v^2_{cm} + rac{1}{2} I_{cm} \omega^2 + M g y$$
 $y = H$ উচ্চতায় মোট শক্তি (যেহেতু, $y = H$, $V_{cm} = \omega = 0$) $E_h = 0 + 0 + M g H$ $y = 0$ স্থানে অর্থাৎ ভূমিতে মোট শক্তি (যেহেতু $y = 0$)

$$E_0 = \frac{1}{2} M v^2_{cm} + \frac{1}{2} I_{cm} \omega^2 0$$

শক্তির নিত্যতা সূত্র বা সংরক্ষণ নীতি ব্যবহার করে,

$$E_h = E_0$$
 at, $MgH = \frac{1}{2} M v^2_{cm} + \frac{1}{2} I_{cm} \omega^2$

ভরকেন্দ্র বরাবর ঘূর্ণয়মান একটি গোলকের জড়তার ভ্রামক হল,

$$I_{cm}=rac{2}{5}Mr^2$$
 এবং গোলকটির কৌণিক বেগ, $\omega=rac{v_{cm}}{r}$ সুতরাং $rac{1}{2}MV_{cm}^2+rac{1}{2}igg(rac{2}{5}Mr^2igg)igg(rac{v_{cm}}{r}igg)^2=MgH$

$$\therefore V_{cm} = \sqrt{\frac{10}{7}gH}$$

EXAMPLE – 06: খাড়া অবস্থায় রাখা একটি মিটার দন্ত কাত হয়ে পড়ে। দন্ডটি কত কৌণিক বেগে ভূমিকে আঘাত করবে? সমাধানঃ

$$E_1 = mgh = mg \times \frac{1}{2}$$

$$KE_1 = \frac{1}{2}I\omega^2 = \frac{1}{2} \times \frac{1}{3}ml^2\omega^2$$

শক্তির নিত্যতাসূত্র অনুযায়ী,

$$mg \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{3} ml^2 \omega^2$$

$$\omega = \sqrt{3g} = 5.4 \ rads^{-1}$$

EXAMPLE - 07: 3, 4, 5 kg ভরের তিনটি বস্তুর অবস্থান ভেক্টর (3, 4, 5), (4,5, 6), (5, 6, 7) হলে Z - অক্ষের সাপেক্ষে জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় কর।

সমাধান ঃ
$$3$$
 kg ভরের জন্য $I_1=3$ $(3^2+4^2)=75$ kg m^2 , $k_1=\sqrt{\frac{I_1}{m_1}}=5m$

$$4$$
 kg ভরের জন্য $I_2=4$ $(4^2+5^2)=164$ kg m^2 , $k_2=\sqrt{\frac{I_2}{m_2}}=\sqrt{41}m$

$$5$$
 kg ভরের জন্য $I_3=5$ $(5^2+6^2)=305$ kg m^2 , $k_3=\sqrt{\frac{I_3}{m_3}}=\sqrt{61}m$

Practice

- ১। 5.0kg ও 7.0kg ভরের দুটি বস্তুকে একটি ভরবিহীন দভের সাহায্যে 4m দূরত্বে রাখা হয়।
 - (১) বস্তু দুটি তাদের মাঝাখানি স্থানে একটি অক্ষের চারদিকে ঘূর্ণয়মান থাকলে জড়তার ভ্রামক কত হবে?
 - (২) যখন সিস্টেমাটি 5kg বস্তুর বাম দিকে দূরত্বে 0.5দূরত্বে অবস্থিত অক্ষের চারদিকে গূর্ণয়মান হয় তখনই বা ভ্রামক কত? Ans: 48 kg m² ও 143 kg m²
- ২। একজন বেলে নর্তকী হস্ত প্রসারিত অবস্থায় উল্লম্ব অক্ষের চারপাশে $1~{
 m rev~s^{-2}}$ বেগে ঘূর্ণায়মান। হাত গুটিয়ে নিলে তার জড়তার ভ্রামক 60 ভাগ কমে যায়। হাত গুটানো অবস্থায় প্রতি সেকেন্ড ঘূর্ণন সংখ্যা কত হবে? Ans: $2.5~{
 m rev~s^{-2}}$
- ৩। $100 {
 m kg}$ ভর বিশিষ্ট একটি পাথরকে $10 {
 m ms}^{-1}$ বেগে উল্লম্বতলে $10 {
 m m}$ ব্যাসার্ধ বিশিষ্ট বৃত্তাকার পথে হালকা সুতায় বেধে ঘুরানো হচ্ছে। সর্বনিম্ন ও সর্বোচ্চ বিন্দুতে সুতার টান কত? সর্বোচ্চ ও সর্বোনিম্ন বিন্দুতে সুতার বেগ অসমান। ${
 m Ans: 1980}$ ও $20 {
 m N}$
- 8 একটি গ্রামোফোন রেকর্ড মিনিটে 60বার ঘোরে । $13~{
 m gm}$ ভরের একটি মুদ্রা রেকর্ডের কেন্দ্র হতে $0.08{
 m m}$ দূরে থেকে রেকর্ডটির উপর ঘুরচে । মুদ্রাটির উপর অভিকেন্দ্র বল কত? ${
 m Ans:}~4.106{ imes}10^{-2}{
 m N}$
- ৫।5Kg ভর ও $0.25 \mathrm{m}$ ব্যাসার্ধ বিশিষ্ট বেলন $50 \mathrm{rads^{-1}}$ কৌণিক বেগে গড়াতে থাকলে উহার গতিশক্তি কত হবে? Ans : $585.75 \mathrm{J}$

Type – 08: রাস্তার ব্যাংকিং সংক্রান্ত

নিরাপদে গাড়ির বাঁক নেওয়ার শর্তঃ $V \leq (\mu_{s} \ r \ g)^{\frac{1}{2}}$

$$\tan \theta = \frac{v^2}{rg}$$

$$v = \sqrt{rg \tan \theta}$$

EXAMPLE - 01: একটি রেল লাইনের বাঁকের ব্যাসার্ধ 200m এবং রেল লাইনের পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1m ঘণ্টায় 50.4~km বেগে চলম্ভ গাড়ীর ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং এর জন্য বাইরের লাইনের পাতকে ভিতরের লাইনের পাত অপেক্ষা কতটুকু উঁচু করতে হবে? [লাইন ও পাত-এর মধ্যেকার ঘর্ষণ গুণাংক 0.2]

$$\tan \theta = \frac{v^2}{\mu rg} = \frac{14^2}{0.2 \times 200 \times 9.8} \implies 0.5 \implies \tan \theta = \frac{h}{x} \implies 0.5 = \frac{h}{1} \implies h = 0.5m$$

Practice

১। ট্রেন যে স্থানে ঘন্টায় 25 কিলোমিটার বেগে চলে, সে স্থানে রেললাইনের বাঁকের বক্রতার ব্যাসার্ধ 400 মিটার রেল দুটির মধ্যবর্তী দূরত্ব 1.5 মিটার হলে যথোপযুক্ত ব্যাংকিং-এর জন্য বাইরের রেল ভেতরের রেল হতে কতখানি উঁচু থাকবে? Ans: 1.84cm

২। একটি রাস্তা $40\mathrm{m}$ ব্যাসার্ধে বাঁক নিয়েছে। ঐ স্থানে রাস্তাটি $4\mathrm{m}$ চওড়া এবং উহার ভিতরে কিনারা হতে বাহিরের কিনারা $0.8~\mathrm{m}$ উঁচু। সর্বোচ্চ কত বেগে ঐ স্থানে নিরাপদে বাঁক নেয়া সম্ভব। Ans : $8.94\mathrm{ms}^{-1}$

EXERCISES (OVERALL)

১। অনুভূমিক দিকে গতিশীল 2kg ভরের একটি গোলক $5ms^{-1}$ বেগে একটি দেয়ালে ধাক্কা দিয়ে $3ms^{-1}$ বেগে বিপরীত দিকে ফিরে গেল। (क) বলের ঘাত বের কর। (খ) যদি বলটি 2sএ স্থির হতো তবে বলটি দেয়ালে যে গড় বল প্রয়োগ করে তা নির্ণয় কর। Ans:8N

২। নির্দিষ্ট উচ্চতা থেকে $80\,g$ ভরের একটি টেনিস বল ছেড়ে দেয়া হলো। ভূমিতে পড়ে তা আবার 6m পর্যন্ত উপরে ওঠল। ভূমিতে সংঘর্ষণকালে বলের ঘাত কত?সংঘর্ষকাল 0.04_S হলে গড় বল নির্ণয় কর।

Ans: বলের ঘাত $0.87 \, kg \, ms^{-1}$ এবং গড় বল 21.75 N

- ৩। 0.30kg ভরের একটি টেনিস বল X অক্ষ বরাবর $6.0ms^{-1}$ বেগে গতিশীল। বলটি আঘাত পেয়ে $8.0ms^{-1}$ বেগে y অক্ষের দিকে গতিশীল হয়। বলের ভরবেগের পরিবর্তন কত হবে ব্যাখ্যা কর। $Ans:3kg\;ms^{-1}$
- 8। মহাকাশে অবস্থিত একটি শাটল মহাকাশ যানের ভর $3 imes 10^3~kg$ এবং জ্বালানির ভর 50kg। জ্বালানি $5kg~s^{-1}$ হারে ব্যবহৃত হলে এবং $150m~s^{-1}$ সুষম দ্রুতিতে নির্গত হলে শাটল যানের উপর ধাক্কা নির্ণয় কর। Ans:750N

- c। 100kg ভরের একটি গাড়ি $20ms^{-1}$ বেগে চলছিল। ব্রেক চেপে একে 50m দূরত্বে থামিয়ে দেওয়া হলো। গাড়িটি ব্রেকজনিত বল, ঘর্ষণ বল ও বাতাসের বাধা এ তিনটি বলের ক্রিয়ায় থেমে যায়। ব্রেকজনিত বল 250Nও ঘর্ষণ বল 100N হলে বাতাসের বাধাজনিত বল কত? Ans:50N
- ৬। 10N এর একটি বল 2kg ভরের একটি স্থির বস্তুর উপর ক্রিয়া করে। যদি 4s পরে বলের ক্রিয়া বন্ধ হয়ে যায় তাহলে ১ম থেকে 8s এ বস্তু কত দূর যাবে? Ans:120m
- ৭। একক ভরের একটি বস্তুর চলরেখার সমীকরণ $x=t^3-3t^2$, $y=-3t^2+2t$, $z=2t^3-t$, 2s পর বস্তুটির উপর ক্রিয়াশীল বল নির্ণয় কর। $Ans:(6\hat{i}-6\hat{j}+24\hat{k})$
- ৮। 20kg ভরের একটি বস্তুর উপর কী পরিমাণ বল ক্রিয়া করলে তার বেগ 10s-এ $(4\hat{i}-5\hat{j}+3\hat{k})ms^{-1}$ হতে বৃদ্ধি পেয়ে $(8\hat{i}+3\hat{j}-5\hat{k})ms^{-1}$ হবে। Ans:24N
- ৯। একটি বস্তুর উপর 7N মানের একটি বল প্রয়োগ করা হলে বস্তুটি $2ms^{-2}$ তুরণ প্রাপ্ত হয়। বস্তুটির ভর কত ? বস্তুটির উপর 4N মানের আর একটি বল 7N মানের বলের সাথে 60^o কোণে প্রয়োগ করলে, বস্তুটির তুরণ কি হবে? $Ans: 2.54ms^{-2}$
- ১০। 50kg ভরের এক ব্যক্তি 950kg ভরের একটি গাড়িতে বসে গাড়িটিকে স্টার্ট করে প্রথম 10s সমত্বরণে চালাল। তারপর $10\min$ সমবেগে চালানোর পরে ব্রেক চেপে 5s সময়ের মধ্যে গাড়িটিকে থামাল। যাত্রা শুরুর 2s পরে গাড়ির বেগ $4ms^{-1}$ হলে গাড়ি কর্তৃক অতিক্রান্ত মোট দূরত্ব এবং গাড়ি থামাতে প্রযুক্ত বলের মান নির্ণয় কর। গাড়িটির বেগ বনাম সময়ের লেখচিত্র অঙ্কন কর। Ans:12150m; -4000N
- ১১। 5 টনের একটি বালুভর্তি ট্রাক ঘন্টায় 36km বেগে চলছে । এটি হতে প্রতি সেকেন্ডে 0.3kg বালু ছিদ্র পথে নির্গত হতে থাকলে $10\min$ পর ট্রাকটির বেগ কত হবে? $10\min$ এর এটিকে 4m দূরত্বের মধ্যে থামাতে হলে ন্যূনতম কত বলের প্রয়োজন হবে? $Ans:6.48\times10^4N$
- ১২। অনুভূমিক মসৃণ তলে একই সরলরেখা বরাবর 5,15,25 কেজি ভরের তিনটি বস্তু উপেক্ষণীয় ভরের দুটি তার দ্বারা পরস্পর যুক্ত আছে। 90N অনুভূমিক বল প্রয়োগে সরলরেখা বরাবর ১ম বস্তুটিকে টানা হলে বস্তুটির ত্বরণ কত হবে? তার দুটিতে টান কত হবে? Ans: তুরণ, $2ms^{-2}$ এবং টান 80N ও 50N
- ১৩। গাড়িসহ চালকের ভর 1000kg । $90\frac{km}{h}$ বেগে চলন্ত গাড়িটি 40mসম্মুখে একটি বাচ্চাকে দাঁড়িয়ে থাকতে দেখে ব্রেক চাপল। তারপর বাচ্চাটির 2m পিছনে গাড়িটি থামল। (i) গাড়ি কর্তৃক প্রযুক্ত বল কত? (ii) যদি গাড়ির ত্বরণ $-5m/s^2$ এবং বাচ্চাটি 5m/s সমবেগে চলতে থাকত তাহলে কি বাচ্চাটিকে বাঁচানো সম্ভব? গাণিতিক যুক্তি দাও। Ans: 2.5m
- ১৪। $1200\,kg$ ভরের একটি গাড়ি $20\,m\,s^{-1}$ বেগে চলছিল। কিন্তু যাত্রাপথে গাড়িটি একসময় নিয়ন্ত্রণ হারিয়ে রাস্তার পাশে $800\,kg$ ভরের একটি স্থির গাড়িকে ধাক্কা দিল। ধাক্কার পর গাড়ি দুইটি একত্রিত হয়ে 120m পিছলিয়ে থেমে গেল।
 - (i) সংঘর্ষের পর গাড়ি দুইটির ভরবেগ সমান বিবেচনা করে ঐ মুহূর্তে এদের গতিশক্তির অনুপাত বের করে।
- (ii) উক্ত হতে চলমান গাড়িটির বাধাদানকারী বলের মান নির্ণয় সম্ভব কি-না। গাণিতিক বিশ্লেষণের মাধ্যমে দেখাও। Ans:2004N

১৫। একটি রকেট তার উড্ডয়নের প্রথম সেকেন্ডে তার ভরের $\frac{1}{50}$ ভাগ ভর $2200m\,s^{-1}$ বেগে বের করে দেয়। রকেটটির তুরণ কত হবে? Ans : $34.2\,m\,s^{-2}$

১৬। গাছের ডালে বসা 1.975kg ভরের একটি পাখিকে 0.025kg ভরের একটি বুলেট $400\ m\ s^{-1}$ অনুভূমিক বেগে আঘাত করে পাখিটির ভিতরে রয়ে গেল। পাখির অনুভূমিক বেগ নির্ণয় কর। ডালটি মাটি হতে 313.6m উপরে হলে পাখিটি কত দূর সামনে গিয়ে মাটিতে পড়বে? Ans:40m

১৭। 5 মেট্রিক টন ভরের বালু বোঝাই একটি ট্রাক $20m\,s^{-1}$ বেগে চলছিল। এমন সময় ট্রাকের ছিদ্র দিয়ে 100kg বালু নিচে পড়ে গেল। ট্রাকের বর্তমান বেগ কত? $Ans:20.4\,m\,s^{-1}$

১৮। 5kg ভরের একটি বস্তু $2ms^{-1}$ বেগে x বরাবর এসে 3kg ভরের আরেকটি স্থির বস্তুকে ধাক্কা মারে। ধাক্কার পর ভরের বস্তু অক্ষের সাথে 30^o কোণে $1ms^{-1}$ বেগে চলতে থাকে। 3kg বস্তুটির বেগের মান ও দিক কত হবে? Ans: বেগের মান $2.06ms^{-1}$ এবং দিক 23.8^o

১৯। একটি স্থির কণা হঠাৎ বিস্ফোরিত হয়ে $m_1 = 1kg$, $m_2 = 1kg$ ও $m_3 = 3kg$ ভরের তিনটি অংশে বিভক্ত হয়ে গেল। সমান ভর দুটির উভয়ের বেগের মান $24m\,s^{-1}$ হলে এবং তারা পরস্পর সমকোণে চলতে থাকলে ভারী ভরটির বেগের মান ও গতির অভিমুখ নির্ণয় কর। Ans: কণার বেগ $8\sqrt{2}\,m\,s^{-1}$ এবং গতির অবিমুখ 135^o

২০। স্কেটিং জুতা পায়ে দাঁড়ানো রুমার কাছে নয়ন 3.3kg ভরের একটি বল ছুড়ে। রুমার ভর 48kg। বলটি ছোঁড়ার সাথে সাথে রুমা $0.32m\,s^{-1}$ বেগে গতিশীল হয়। রুমা যখন বলটি ধরে তখন বলটির বেগ কত ছিল? $Ans:4.65m\,s^{-1}$

২১। 100~kg ভরের একটি স্থিরভাবে ভাসমান ভেলার দুই বিপরীত প্রান্তে দুজন সাঁতারু দাঁড়িয়ে আছেন। তাদের ভর যথাক্রমে 50kg ও 60kg। যদি সাঁতারুদ্বয় প্রত্যেকে এক সাথে $3ms^{-1}$ অনুভূমিক বেগে ঝাঁপ দেন তাহলে ভেলাটি কোনদিকে কত বেগে গতিশীল হবে? $Ans:0.3ms^{-1}$

২২। m ভরের একটি নিউট্রন v বেগে একটি 197m ভরের নিউক্লিয়াসের সাথে সংঘর্ষে লিপ্ত হয় এবং বিপরীত দিকে ফিরে যদি সংঘর্ষ স্থিতিস্থাপক হয়, তবে-

ক. সংঘর্ষের পর স্বর্ণ নিউক্লিয়াসের বেগ কত হবে?

খ. সংঘর্ষের পর নিউট্রন এবং স্বর্ণ নিউক্লিয়াস এর গতিশক্তির অনুপাত বিশ্লেষণ কর।

Ans: 49.25:1

২৩। 1500kg ভরের একটি ট্রাক $20ms^{-1}$ বেগ চলমান 600kg ভরের একটি নসিমনকে পেছন থেকে ধাক্কা দিলে নসিমনটি ট্রাকের সাথে আটকে যায় এবং ট্রাকটি $30ms^{-1}$ বেগে নসিমনটিকে ঠেলে নিয়ে যায়।

(i) সংঘর্ষের সময় ট্রাকটির বেগ কত ছিল?(ii) সংঘর্ষটি কি স্থিতিস্থাপক সংঘর্ষ না অস্থিতিস্থাপক সংঘর্ষ? গাণিতিক বিশ্লেষণের মাধ্যমে নিরুপণ কর। $Ans: 9.45 \times 10^5 \, J$

২৪। 30kg ভরের একটি শেল $48ms^{-1}$ বেগে উড়ছে। শেলটি বিস্ফোরিত হয়ে দুই টুকরো হলে 18kg ভরের টুকরোটি স্থির হয়ে যায় এবং বাকি টুকরোটি উড়ে যায়। বাকি অংশের বেগ কত? $Ans:120m\ s^{-1}$

২৫। 80k ভরের এক ব্যক্তি স্থির পানিতে ভাসমান 150kg ভরের একটি নৌকা থেকে লাফ দিয়ে তীরে পৌছল। লাফের পর লোকের বেগ $15m\,s^{-1}$ হলে নৌকার পশ্চাৎবেগ কত? $Ans:8m\,s^{-1}$

২৬। একজন শিকারি একটি বালিহাঁসকে লক্ষ করে 4kg ভরের বন্দুক হতে 20g ভরের একটি গুলি ছুঁড়ল; গুলিটি $300~m~s^{-1}$ বেগে বন্দুকের নল হতে বেরিয়ে গেল। গুলি বের হওয়ার সময় শিকারি পেছন দিকে ধাক্কা অনুভব করল। (i) বন্দুকের পশ্চাৎ বেগ নির্ণয় কর। (ii) উক্ত ঘটনায় গতিশক্তি সংরক্ষিত হবে কি? তোমার মতামত গাণিতিকভাবে উপস্থাপন কর। $Ans:904.5\,J$

২৭। 0.05kg ভরের একটি লোহার বলকে 2mদীর্ঘ একটি সুতার এক প্রান্তে বেঁধে বৃত্তপথে ঘুরানো হচ্ছে।

- ক. ঘূর্ণন অক্ষ সাপেক্ষে এর জড়তার ভ্রামক কত?
- খ. চক্রগতির ব্যাসার্ধ কত?

Ans: জড়তার ভামক $0.2kg-m^2$ এবং চক্রগতির ব্যাসার্ধ 2m ।

২৮। কোনো অক্ষ সাপেক্ষে একটি লৌহ নির্মিত বস্তুর চক্রগতির ব্যাসার্ধ $0.5\,m$ । বস্তুটির ভর $0.5\,kg$ হলে জড়তার ভ্রামক কত?

খ. পিটিয়ে বস্তুটির আকার এমনভাবে পরিবর্তন করা হলো যাতে চক্রগতির ব্যাসার্ধ একই থাকে। জড়তার ভ্রামক পরিবর্তিত হবে কি-না তা ব্যাখ্যা কর।

গ. পিটিয়ে বস্তুটির আকার এমনভাবে পরিবর্তন করা হলো যাতে চক্রগতির ব্যাসার্ধ একই থাকে। জড়তার ভ্রামক পরিবর্তিত হবে কি-না তা ব্যাখ্যা কর।

২৯। একটি সরু সুষম লৌহদন্ডের ভর M ও দৈর্ঘ্য l এর এক প্রান্তে এবং দৈর্ঘ্যের সাথে লম্বভাবে অবস্থিত একটি অক্ষের সাপেক্ষে দন্ডটির জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় কর। $Ans:Ml^2$

খ. দন্ডটিকে গলিয়ে একটি পিন্ড তৈরি করে *l* দৈর্ঘ্যের একটি সুতার এক প্রান্তে বেঁধে বৃত্তপথে ঘুরালে জড়তার ভ্রামক কত হবে?

৩০। একটি নিরেট সিলিন্ডারের ভর M ও ব্যাসার্ধ R । জ্যামিতিক অক্ষ সাপেক্ষে এর জড়তার ভ্রামক নির্ণয় কর। $Ans:rac{1}{2}MR^2$

৩১। চিত্রটি লক্ষ কর:

$$\begin{array}{c|c}
B \\
P \\
A
\end{array}
\qquad
\begin{array}{c}
F = 500N \\
Q \\
PQ = 1m
\end{array}$$

(i) AB ঘূর্ণন অক্ষের চারদিকে PQ দশুটির টর্ক নির্ণয় কর। (ii) যদি ঘূর্ণন অক্ষ AB, PQ দশুটির প্রান্তবিন্দু হতে পরিবর্তন করে মধ্যবিন্দুতে নেওয়া হয়, তবে কোন ক্ষেত্রে জড়তার ভ্রামক বেশি হবে- তোমার উত্তরের সপক্ষে গাণিতিক যুক্তিসহ ব্যাখ্যা কর।

৩২। একটি ধাতব চাকতির ব্যাস 0.2m ও ভর 25kg। এর ভারকেন্দ্র দিয়ে এবং পৃষ্ঠের অভিলম্বভাবে অতিক্রান্ত অক্ষের সাপেক্ষে জড়তার ভ্রামক ও চক্রগতির ব্যাসার্ধ নির্ণয় কর। Ans: জড়তার ভ্রামক 0.125kgm এবং চক্রগতির ব্যাসার্ধ 0.0707m

৩৩। 3kg ও 5kg ভরের দুটি গোলক $1\,m$ দৈর্ঘ্যের নগণ্য ভরের একটি দন্ডের দুপ্রান্তে যুক্ত। দন্ডটিকে ঘুরিয়ে দিলে গোলকদ্বয় যে বিন্দুকে কেন্দ্র করে ঘুরবে তার অবস্থান নির্ণয় কর। Ans:0.625m

৩৪। খাড়া অবস্থায় রাখা একটি মিটার দন্ড কত হয়ে পড়ে যায়। দন্ডটি কি কৌণিক বেগে ভূমিতে আঘাত করবে? $Ans: 5.4 \, rads^{-1}$

৩৫। একটি ফ্লাই হুইলের কৌণিক বেগ $2\pi\ rad\ s^{-1}$ হতে $6\pi\ rad\ s^{-1}$ এ উন্নীত করতে 100J কাজ সম্পন্ন করতে হয়। হুইলটির জড়তার দ্রামক নির্ণয় কর। $Ans:0.63kg\ m^2$

৩৬। 400kg ভর ও 1m ব্যাসার্ধের একটি নিরেট গোলক 2m/s বেগে গড়িয়ে চলছে। এর মোট গতিশক্তি কত? Ans: 1120J

৩৭। m ভরের একটি কণা v বেগে -OX বরাবর গতিশীল অবস্থায় একই ধরনের v বেগে +y বরাবর গতিশীল একটি কণার সাথে সংঘর্ষে লিপ্ত হয়। সংঘর্ষের পর একটি কণা $\frac{v}{2}$ বেগে -OX বরাবর চলে।

- ক, অপর কণার বেগ নির্ণয় কর।
- খ. সংঘর্ষটি কি স্থিতিস্থাপক? উত্তরের পক্ষে যুক্তি দাও।

৩৮। E গতিশক্তি এবং p ভরবেগ বিশিষ্ট একটি কণা A, একই ধরনের অপর একটি স্থির কণা B এর সাথে স্থিতিস্থাপক সংঘর্ষে লিপ্ত হয়। সংঘর্ষের পর কণা দুটি সংযুক্ত হয়ে চলতে থাকে।

- ক. সংঘর্ষের পর A কণার গতিশক্তি এবং ব্যবস্থার মোট গতিশক্তি নির্ণয় কর।
- খ, সংঘর্ষের পর কণাটির ভরবেগ এবং গতিশক্তি সম্পর্কে তোমার মতামত দাও।

Ans : ক. গতিশক্তি এবং মোট গতিশক্তি যথাক্রমে $\dfrac{E}{4},\dfrac{E}{2}$

খ. ভরবেগ এবং গতিশক্তি যথাক্রমে $\frac{p}{2},\frac{E}{4}$

৩৯। একটি 2kg ভরের বস্তুকে 0.75m দীর্ঘ রশি দিয়ে বেঁধে $4ms^{-1}$ বেগে বৃত্তাকারে ঘুরানো হচ্ছে। (i) বস্তুটির ঘূর্ণন গতিশক্তি নির্ণয় কর। (ii) বস্তুটির কেন্দ্রমুখী বল নির্ণয় করা সম্ভব কি-না? গাণিতিক যুক্তি দাও। Ans:42.67N

৪০। 50বার ঘুরবার পর একটি পাখার প্রতি মিনিটে ঘূর্ণন সংখ্যা 1050বার হতে কমে 650বার হলো। কৌণিক ত্বরণ এবং ঐ বার ঘূর্ণনের সময় নির্ণয় কর। থামার পূর্বে পাখাটি আর কত বার ঘুরবে? Ans:31.06

8১। মঙ্গল গ্রহ সূর্যকে কেন্দ্র করে $2.28 \times 10^{11}\,m$ ব্যাসার্ধের বৃত্তাকার পথে ঘুরে। মঙ্গলের কৌণিক ভরবেগ নির্ণয় কর। $Ans: 24.52 \times 10^{38}\,kg\,m^2s^{-1}$

8২। একজন বেলে নর্তকী হস্ত প্রসারিত অবস্থায় উল্লম্ব অক্ষের চারপাশে $1\ revs^{-1}$ বেগে ঘূর্ণায়মান। হাত গুটিয়ে নিলে তার জড়তার ভ্রামক 60ভাগ কমে যায় হাত গুটানো অবস্থায় প্রতি সেকেন্ডে ঘূর্ণন সংখ্যা কত হবে? $Ans: 2.5\ rev\ s^{-1}$

- 8৩। m ভরের একটি বস্তু সুতার অগ্রভাগে বাঁধা অবস্থায় একটি ঘর্ষণহীন টেবিলের উপর 0.60 ব্যাসার্ধের বৃত্তাকার পথে $2.4\,ms^{-1}$ বেগে ঘূর্ণায়মান। সুতার অপর প্রান্ত টেবিলের মধ্যে একটি ছিদ্র দিয়ে থামানো আছে। এখন সুতাটিকে নিচের দিকে টেনে বস্তুর বৃত্তাকার পথের ব্যাসার্ধ $0.4\,m$ করা হলে বস্তুর বেগ কত হবে? $Ans:3.6\,m\,s^{-1}$
- 88। একজন বেলে নর্তকী হস্ত প্রসারিত অবস্থায় উলম্ব অক্ষের চারপাশে $1\ revs^{-1}$ বেগে ঘূর্ণায়মান। হাত গুটিয়ে নিলে তার জড়তার ভ্রামক 50ভাগ কমে যায়। হাত গুটানো অবস্থায় প্রতি সেকেন্ডে ঘূর্ণন সংখ্যা কত হবে? $Ans:2\ revs^{-1}$
- 8৫। হাইড্রোজেন নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রন $5.3 \times 10^{11} m$ ব্যাসার্ধের বৃত্তাকার পথে চলে $5.3 \times 10^{16} s$ -এ একবার ঘুরে আসে। কৌণিক ভরবেগ নির্ণয় কর। $Ans: 3.07 \times 10^{-35} \ kg \ m^2 \ s^{-1}$
- ৪৬। চিত্রটি লক্ষ কর। এটি একটি পাহাড়। একজন সাইকেল চালক এর উপর সাইকেল চালাচ্ছে। সাইকেলের চাকার ব্যাসার্ধ ভেক্টর $\overset{
 ightarrow}{r}=4\hat{i}-6\hat{j}+12\hat{k}$ এবং বলের ভেক্টর $\overset{
 ightarrow}{F}=2\hat{i}+3\hat{j}-5\hat{k}$. কৃতকাজ কত ? টর্ক কত ?
- $89 + 6000 \ rad\ s^{-1}$ কৌণিক বেগে ঘূর্ণনরত একটি চাকার জড়তার দ্রামক $80 \ kg\ m^2$ । সুষম ব্রেক প্রয়োগ করে একে এ থামানো হলো । (ক) ব্রেক প্রয়োগ করা হলে এর কৌণিক ত্বরণ কত? (খ) এ সময়ে এটি কতবার ঘুরবে? (গ) ব্রেকটি কত টর্ক সরবরাহ করে? $Ans:16000N\ m$
- ৪৮। একটি কৃত্রিম উপগ্রহ ভূপৃষ্ঠ হতে 500km উচ্চতায় বৃত্তাকার পথে পরিভ্রণ করছে। 100min সময়ে উপগ্রহটি পৃথিবীতে একবার প্রদক্ষিণ করলে এর কৌণিক ও রৈখিক বেগ নির্ণয় কর।

Ans: কৌণিক বেগ $1.047 \, rad \, s^{-1}$ এবং রৈখিক বেগ $523.6 \, m \, s^{-1}$

- 8৯। 0.250kg ভরের একটি পাথর খন্ডকে 0.75m লম্বা একটি সুতার সাহায্যে এক প্রান্তে বেঁধে বৃত্তাকার পথে প্রতি মিনিটে 90বার ঘুরালে সুতার ওপর টান নির্ণয় কর। Ans:16.65N
- ৫০। হাইড্রোজেন পরমাণুর ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে $5.3 \times 10^{-11} \, m$ ব্যাসার্ধের বৃত্তাকার পথে $2.21 \times 10^{-6} \, m \, s^1$ সমদ্রুতিতে ঘুরছে। ইলেকট্রনের উপর ক্রিয়ারত লম্ব তুরণ ও কেন্দ্রমুখী বল নির্ণয় কর। একবার আবর্তনে ইলেকট্রনের কত সময় লাগে? $Ans: 1.5 \times 10^{-16} \, s$
- ৫১। 10g ভরবিশিষ্ট একটি বস্তুকে 2m দীর্ঘ সুতার সাহায্যে বৃত্তাকার পথে ঘুরানো হচ্ছে। বস্তুটি 3s-এ 15টি পূর্ণ আবর্তন করলে সুতার টান নির্ণয় কর। Ans:19.74N
- ৫২। ব্যাসার্ধ ভেক্টর $\overset{
 ightharpoonup}{r}=5\hat{i}+2\hat{j}-3\hat{k}$ এবং বল ভেক্টর $\overset{
 ightharpoonup}{F}=15\hat{i}+a\hat{j}-9\hat{k}$ । $\overset{
 ightharpoonup}{r}$ ও $\overset{
 ightharpoonup}{F}$ পরস্পর সমান্তরালে হওয়ার জন্য a এর মান গাণিতিকভাবে নির্ণয় করা সম্ভব কি-না? $Ans:\overset{
 ightharpoonup}{F}$ ও $\overset{
 ightharpoonup}{F}$ পরস্পর সমান্তরাল হবে যদি a এর মান 6 হয়।
- ৫৩। সার্কাস পার্টিতে একজন পারফরমার 5kg ভরের একটি গোলককে ভূমি হতে 1.5mউপরে অনুভূমিক তলে লম্বা রশির সাহায্যে বৃত্তাকার পথে ঘোরাচ্ছেন। গোলকটি প্রতি মিনিটে 20বার আবর্তন করে। ঘূর্ণায়মান অবস্থায় হঠাৎ রশিটি ছিঁড়ে যায়।
 - (i) আবর্তনশীল গোলকটি কেন্দ্রের দিকে কত বল অনুভব করবে?
- (ii) পারফরমার হতে দর্শক সারির দূরত্ব কেমন হলে গোলকটি কোনো দর্শককে আঘাত করবে না? গাণিতিক বিশ্লেষণের মাধ্যমে ব্যাখ্যা কর।

Ans:(i) 43.87 N

(ii)3.18m

৫৪। একজন সার্কাসের খেলোয়াড় মাথার উপরে উল্লম্ব তলে কোনো বস্তুকে একটি দীর্ঘ সুতায় 90cm দূরত্বে বেঁধে প্রতি মিনিটে 100বার ঘুরাচ্ছে। হঠাৎ করে ঘূর্ণায়মান বস্তুটির এক-তৃতীয়াংশ খুলে পড়ে গেল। এতে খেলোয়াড় ভীত না হয়ে প্রতি মিনিটে ঘূর্ণন সংখ্যা একই রাখার জন্য প্রয়োজনমতো সুতার দৈর্ঘ্য বাড়িয়ে দিল। (i) বস্তুটির ভর কমে যাওয়ার পূর্বে এর কেন্দ্রমুখী ত্বরন কত ছিল হিসাব কর। (ii) সার্কাসের খেলোয়াড় সুতার দৈর্ঘ্যের যে পরিবর্তন এনেছিলেন গাণিতিক বিশ্লেষণের মাধ্যমে এর সঠিকতা যাচাই কর।

৫৫। কোনো সাইকেল আরোহী 100mব্যাসার্ধের বৃত্তাকার পথে $20ms^{-1}$ বেগে ঘুরতো গেলে উল্লম্ব তলের সাথে কত কোণে আনত থাকেন? $Ans:22.2^{\circ}$

৫৬। একটি রেল লাইনের বাঁকের ব্যাসার্ধ 200mএবং রেল লাইনের পাতদ্বয়ের মধ্যবর্তী দূরত্ব 1m। ঘণ্টায় 50.4km বেগে চলন্ত গাড়ির ক্ষেত্রে প্রয়োজনীয় ব্যাংকিং এর জন্য বাইরের লাইনের পাতকে ভেতরের লাইনের পাত অপেক্ষা উঁচু করতে হবে? Ans:0.1m

৫৭। সমান ভরের $(5\,g)$ দুটি বস্তু একই সোজা পথে গতিশীল। সামনের বস্তুটির বেগ $10ms^{-1}$. পিছনের বস্তুটির বেগ $16m\,s^{-1}$ । এক পর্যায়ে এদের মধ্যে সংঘর্ষ হল। সংঘর্ষের পরে বস্তুদ্বয় যে বেগ প্রাপ্ত হয় তা নির্ণয় করে দেখাও যে, সংঘর্ষের পরে বস্তুদ্বয় বেগ বিনিময় করে।

৫৮। 2.0kg ভরের একটি গাড়ি $P5.5ms^{-1}$ বেগে গতিশীল থাকা অবস্থায় $1.0ms^{-1}$ বেগে একই দিকে গতিশীল 40kg ভরের অপর একটি গাড়ি Q এর সাথে স্থিতিস্থাপক সংঘর্ষ হয়।

- ক. সংঘর্ষের পর গাড়িদ্বয়ে বেগ ও দিক কী হবে?
- খ. ব্যবস্থার শক্তির পরিবর্তন বিশ্লেষণ কর।

৫৯। সাবিহা একদিন শপিং মলে বাজার করার সময় ট্রলি গাড়ি ব্যবহার করল। সে ট্রলি গাড়ির হেন্ডেলটিতে উল্লম্বের সাথে 30° কোণে 10N বল প্রয়োগ করে গাড়িটিকে ঠেলতে থাকে। এই দেখে দোকানদার বলল, আপনি গাড়ির হেন্ডেল ধরে টানেন, তাহলে কম বল লাগবে। (i) ট্রলির গতি সৃষ্টিকারী বল কত? (ii) দোকানদার সাবিহাকে ট্রলির হেন্ডেল ধরে সামনে টানতে বলল কেন-যুক্তিসহ গাণিতিক ব্যাখ্যা দাও।

৬০। অনুভূমিক মসৃণ তলের উপর 80kg ভরের একটি লনরোলার অনুভূমিকের সাথে 30^o কোণে 400N মানের একটি বল দ্বারা ঠেলা হচ্ছে। লনরোলারটিতে তুরণ $3ms^{-2}$ সৃষ্টি হচ্ছে। অনুভূমিক তল ও লন-রোলারের মধ্যবর্তী গতীয় ঘর্ষণাঙ্ক কত? Ans:0.182

৬১। সুতার সাহায্যে এক টুকরা পাথর বেঁধে মেঝের সাথে 30^o কোণে 26N বলে টানা হচ্ছে। এতে পাথরটি সমবেগে গতিশীল আছে। পাথরের ভর 10kg হলে পাথর ও মেঝের মধ্যবর্তী গতীয় ঘর্ষণাঙ্ক কত? Ans:0.265

৬২। 10kg ভরের একটি বাক্সের সাথে রশি ঝবেধে রশিটিকে একটি ঘরের মেঝের সাথে 30° কোণে টানা হচ্ছে। বাক্সটি মেঝের উপর সমবেগে চলছে। বাক্স ও মেঝের মধ্যবর্তী ঘর্ষণ বল 10N হলে রশির টান কত? Ans:11.55N ৬৩। একটি বস্তু ঘণ্টায় 36km বেগে ভূমির উপর দিয়ে পিছলে যেতে যেতে অবশেষে স্থির অবস্থায় আসলো। বস্তু ও ভূমির মধ্যে ঘর্ষণ গুণাঙ্ক 0.2 হলে বস্তুটি স্থির অবস্থায় আসার পূর্বে কত দূরত্ব অতিক্রম করেছিল? Ans:25.51m

৬৪। একটি লিফট $4.8\,m\,s^{-2}$ সমত্বরণে নিচে নামছে। লিফটের মেঝেতে $2\,m$ উঁচু হতে একটি বল ছেড়ে দিয়ে পুনরায় কত সময় পরে একই উচ্চতা হতে বলটিকে ধরা যাবে? $Ans:1.8\,s$

৬৫। কোনো লিফট উপরের দিকে $1.2 m \, s^{-2}\,$ তুরণে উঠছে। লিফটের ভিতর কোনো ব্যক্তি একটি $2kg\,$ ভরের বল ধরে থাকলে বলের আপাত ওজন কত? যদি লিফটের তলা হতে $1.5 m\,$ উপর হতে বলটি ছেড়ে দেওয়া হয় তবে বলটি পড়তে কত সময় লাগবে? $Ans:0.55 \, s$

৬৬। চউগ্রাম-রাঙামাটি হাইওয়ের কোনো এক জায়গায় বাঁকের ব্যাসার্ধ 200m এবং রাস্তার প্রস্থ 4m। ঐ স্থানে একজন গাড়ি চালক সর্বোচ্চ $36kmh^{-1}$ বেগে নিরাপদে বাঁক নিতে পারে। $(g=9.8ms^{-2})$ (i) রাস্তার দুই প্রান্তের উচ্চতার ব্যবধান কত? (ii) যদি ঐ স্থানে ব্যাংকিং কোণের মান দিগুণ করা হয়, তাহলে গাড়ি দিগুণ বেগে নিরাপদে চলতে পারবে কি? গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও। Ans:(i)0.204m

৬৭। সাদিকের ভর 50kg । সে একটি মাঠে 25mব্যাসার্ধের বৃত্তাকার পথে $15kmh^{-1}$ বেগে 50kg ভরের একটি সাইকেল চালাচ্ছে ।

- (i) সাদিককে বাঁক নেওয়ার জন্য উল্লম্বের সাথে কত কোণে হেলতে হবে?
- (ii) উল্লেখিত রাস্তায় $20 kmh^{-1}$ বেগে মোটর গাড়ি চালানো জন কী ব্যবস্থা গ্রহণ করতে হবে তা গাণিতিক যুক্তি দিয়ে বুঝাও।

 $Ans:(i)4.05^{\circ} \le (ii)3.13^{\circ}$

৬৮। একটি রাস্তার বাঁকের আগে সাইনবোর্ড লেখা আছে সর্বোচ্চ গতিসীমা 20km/hr। একজন সাইকেল আরোহী ঐ বাঁক ঘুরার সময় 40km/hr বেগে নিরাপদে ঐ বাঁক অতিক্রম করলো। বাঁকের ব্যাসার্ধ 200m এবং রাস্তাটি 2m চওড়া। (i) ঐ রাস্তার দুই পাশের উচ্চতার পার্থক্য নির্ণয় কর। (ii) সর্বোচ্চ গতিসীমার চেয়ে বেশি বেগ থাকার পরেও কিভাবে ঐ আরোহী বাঁক অতিক্রম করল? গাণিতিক যুক্তি দাও। $Ans:3.60^\circ$