

Rappresentazione dei numeri razionali: Virgola Mobile Prof. Daniele Gorla

Forma Normalizzata

Lo stesso numero può essere rappresentato in modi diversi ES:: $-5 \times 10^3 = -50 \times 10^2 = -0.5 \times 10^4 = ...$

Per garantire l'unicità della rappresentazione di un numero in binario, si adotta una *forma normalizzata* in cui la mantissa è tale che la sua parte intera è 1 (eccetto per lo 0, che vedremo poi)

D'ora in poi useremo sempre questa convenzione, per cui la terna < s, e, m > sarà tale che <math>m è semplicemente un naturale in base b e il numero rappresentato da tale terna è

$$(-1)^s \cdot 1, m \cdot 2^e$$

OSS.: l'unico numero che non può rispettare la forma normalizzata è lo zero, che verrà codificato come < 0, 0...0 >

Rappresentazione in virgola mobile

Un razionale r è rappresentato dalla terna

$$\langle s, e, m \rangle$$

Gli elementi della terna sono chiamati rispettivamente

- bit di segno (s=1 per numero negativo, s=0 altrimenti)
- esponente, un intero e espresso in Complemento alla base b
- mantissa, un numero razionale m in virgola fissa espresso in base b

La terna < s, e, m > rappresenta il numero

$$(-1)^s \cdot m \cdot b^e$$

Questa rappresentazione si ispira alla famosa notazione scientifica per cui scriviamo

 -5×10^{3} invece di -5000 o 4×10^{-2} invece di 0,04

Range dei numeri in virgola mobile

Supponiamo di avere M bit di mantissa e E di esponente

numeri negativi: La mantissa sta in $[-1, \underbrace{11...1}_{M}; -1, \underbrace{0...0}_{M}]$

numeri positivi: La mantissa sta in $[+1, \underbrace{0...0}_{M}; +1, \underbrace{11...1}_{M}]$

L'esponente, in Ca2, sta in $[-2^{E-I}+1;+2^{E-I}-1]$

Quindi, i numeri positivi sono in $[1 \times 2^{-2^{E-1}+1}; 1,1,.....1 \times 2^{2^{E-1}-1}]$ i numeri negativi sono in $[-1,1,.....1 \times 2^{2^{E-1}-1}; -1 \times 2^{-2^{E-1}+1}]$

Bias

Maneggiare esponenti in complemento a 2 complica la gestione delle operazioni in virgola mobile

Pertanto, tutti gli esponenti vengono tradotti, al fine di diventare tutti positivi

Ciò è fatto sommando loro un numero detto *bias* \rightarrow avendo *E* bit di esponente, il bias è $2^{E-1} - 1$

Il bias, quindi, modifica l'intervallo degli esponenti da $[-2^{E-I}+1; +2^{E-I}-1]$ a $[0; 2^E-2]$

N.B.: questo è solo un trucco per poter confrontare esponenti non negativi (cosa più facile in pratica); il significato dell'esponente resta quello visto in precedenza, cioè è un numero intero (con segno!)

Relazioni tra numeri di bit **SAPIENZA** $M \operatorname{ed} E$ (a parità di M+E) M 0000 0001 E=3 bits 0,265625 001 (=-2) 0,25 (bias=3)M=4 bits 010 (=-1) 0,96875 0,53125 2,125 3.875 **100 (= 1)** 2 E=4 bits 101 (= 2) 4 4,25 15,5 **110 (= 3)** 8 8,5 (bias=7)M=3 bits 001 111 0,015625 0,017578125 ... 0,0234375 0001 (=-6) 0.5 0.5625 0110 (=-1) 0111 (= 0)1,875 **1110 (= 7)** 128

La rappresentazione con Bias

In pratica, l'esponente 0 (nel formato con bias) è usato per scopi precisi

Quindi, il vero intervallo usato per gli esponenti è $[1; 2^E-2]$

Numeri speciali:

- e = 0, m = 0
- → Gli zero (sia positivo che negativo)
- e=0, $m\neq 0$
- → numeri denormalizzati (vedi dopo, nelle operazioni aritmetiche)
- $e = 2^{E}-1$, m = 0
- → infiniti (sia positivo che negativo)
- $e = 2^{E} 1$, $m \neq 0$
- → NaN

Precisione / Ampiezza

- precisione: distanza tra due numeri adiacenti
- ampiezza: il valore assoluto del numero più grande/piccolo rappresentabile
- Maggior **precisione** ←→ più bit alla mantissa
- Maggior ampiezza ←→ più bit all'esponente

Necessità di un compromesso!

IEEE Standard 754-1985 (different precisions):

	Half	Single	Double	Quadruple
No. of sign bit	1	1	1	1
No. of exponent bit	5	8	11	15
No. of fraction	10	23	52	111
Total bits used	16	32	64	128
Bias	15	127	1023	16383

Il nostro formato di riferimento in tutti gli esercizi del corso

Cambiamenti di Base in Virgola Mobile

Da base 2 (con bias B) a base 10: data la tripla < s, e, m > (che non è una sequenza speciale):

- Scrivila nel formato a virgola fissa: $1, m \cdot 2^{e-B} = (h,k)_2$
- Converti $(h,k)_2$ in base 10 usando il metodo polinomiale
- Il numero finale è positivo, se s=0, negativo, altrimenti

Da base 10 a base 2 (con bias B): Dato $\pm (h,k)_{10}$:

- usa il metodo di conversione per il formato in virgola fissa (divisioni iterate per la P.I. e moltiplicazioni iterate per la P.F.) e ottieni $(p,q)_2$
- Converti (p,q)₂ nel formato (normalizzato) in virgola mobile, per ottenere m ed e
- Il risultato è < s , e+B , m >, dove s=1, se il numero dato era negativo, s=0, altrimenti (ovviamente, posto che non sia una sequenza speciale)

Esempio

Convertire in base 2 il numero 0,09375₁₀ nel formato IEEE halfprecision

1. Applico il metodo delle moltiplicazioni iterate:

$$0.09375 \times 2 = 0.1875$$
 $0.1875 \times 2 = 0.375$ $0.375 \times 2 = 0.75$
 $0.75 \times 2 = 1.5$ $0.5 \times 2 = 1.0$
ottenendo quindi $0.09375_{10} = 0.00011_{2}$

- 2. Trasformo tale numero in virgola mobile normalizzata: 1,1×2⁻⁴
- 3. la rappresentazione cercata, in forma di tripla, è:

$$<0$$
, 01011, 10000000000>₂

Tornando indietro a base 10, abbiamo:

$$<0$$
 , 01011 , 10000000000 > = 1,1×2^-4 = 0,00011_2 = $^1/_{16} + \, ^1/_{32}$ = 0,09375 $_{10}$