

Predicción de tarifas de taxi en Nueva York.

Anticipa tu tarifa. Cualquier día, cualquier hora. 🚕

by Gerardo Jiménez

Diciembre 2024

Contenido

Recolección y Limpieza de Datos

Obtención de datos

Base de datos recuperada de <u>HuggingFace</u>, con información de viajes de taxi en Nueva York, entre los años 2009 y 2024.

54M de datos con registros de precio, coordenadas, fecha y hora de los viajes.

Limpieza general

Eliminación de valores nulos y datos incorrectos para garantizar la calidad del conjunto.

Transformación y muestreo de datos

Conversión de formatos y creación de un nuevo archivo CSV con 1M de datos para realizar el análisis.

3

Feature engineering

Creación de nuevas variables

Cálculo de datos adicionales como distancia lineal del viaje y ocurrencia de viajes en hora pico, con base en la información inicial.

Transformación trigonométrica de datos temporales cíclicos para un análisis ML correcto.

Análisis de Componentes Principales (PCA)

Reducción de dimensionalidad a las coordenadas de inicio y fin del viaje, para identificar las variables más influyentes en el precio.

EDA multivariable

Visualización de distribuciones, correlaciones y patrones en los datos de viajes de taxi.

Normalización de variables para asegurar una comparación equitativa entre diferentes escalas.

Prueba de Modelos de machine learning

🚕 Árbol de decisiones (Bagging)

- Error absoluto medio (MAE): 2.20 [USD]
- Ajuste del modelo a la variabilidad de los datos (R2_score): 76.44 %
- Tiempo de ejecución: 7.33 [s]

🚕 AdaBoost

- Error absoluto medio (MAE): 2.06 [USD]
- Ajuste del modelo a la variabilidad de los datos (R2_score): 79.07 %
- Tiempo de ejecución: 219.81 [s]

🚕 XG Boost

- Error absoluto medio (MAE): 2.32 [USD]
- Ajuste del modelo a la variabilidad de los datos (R2_score): 71.46 %
- Tiempo de ejecución: 22.39 [s]

🚕 Random Forest

- Error absoluto medio (MAE): 2.15 [USD]
- Ajuste del modelo a la variabilidad de los datos (R2_score): 77.3 %
- Tiempo de ejecución: 109.42 [s]

🚕 Gradient Boosting

- Error absoluto medio (MAE): 2.48 [USD]
- Ajuste del modelo a la variabilidad de los datos (R2_score): 64.34 %
- Tiempo de ejecución: 143.80 [s]

*

Datos de pruebas con 100,000 datos. Las pruebas fueron realizadas con 1k, 10k, 100k y 1M de datos.

A Se elige Random Forest por su relación de precisión y tiempo de ejecución.

Optimización de Hiperparámetros

Random Search

Exploración aleatoria de combinaciones de hiperparámetros para encontrar configuraciones óptimas.

- Se crea espacio de hiperparámetros y se hacen pruebas hasta encontrar aquellos valores que ofrecen los mejores resultados.
- 5 validaciones cruzadas.

Uso de la Librería SHAP 🚕 🚕 🚕 🚕

SHAP permite interpretar y explicar cómo los modelos de machine learning toman decisiones.

La **suma** de todos los valores de SHAP y el promedio de todas las tarifas, da como resultado la predicción final para esa muestra.

Resultados y precisión del modelo

81.5%

2.08 USD

Precisión del Modelo

El modelo final logra predecir con un 81.50% de precisión el precio de los viajes en taxi.

Margen de Error

El margen de error se mantiene dentro de un rango aceptable para aplicaciones prácticas.

100K

Viajes Analizados

La robustez del modelo se basa en el análisis de más de 100,000 viajes de taxi.

Distancia es la variable más determinante, seguida de lejos por el día y la hora del viaje.

Conclusiones 🚕

A Modelos de ML

Se destaca la comparación de la aplicación de un conjunto de modelos machine learning, y la selección de uno de ellos, en función de los resultados y tiempo de ejecución.

Al mismo tiempo, se considera siempre necesario el entendimiento de la importancia de cada una de las variables, antes y después de la predicción con modelos.

Análisis de datos

En los datos utilizados no se realizó ningún tipo de estratificación o compensación. Sin embargo se hace incapié en las transformaciones y análisis de componentes principales realizados.

Mejoras

Se logra obtener un modelo que genera predicciones con un error medio de 2 USD.

Para un análisis más detallado, se podría combinar una eliminación de outliers y una estratificación de datos, que permita al modelo identificar los viajes por la variable más determinante, y con ello, buscar mejorar el ajuste de las predicciones.