Math 241 C8

Name:

Quiz # 7

April 17, 2013

No electronic devices, notes, or interpersonal communication allowed. Show work to get credit.

Find the flow of $\mathbf{F}(x,y,z)=\langle e^{yz},\cos z,x^2\rangle$ across the top hemisphere of the unit sphere. Which direction is it? (The surface has equation $z=\sqrt{1-x^2-y^2}$, or $x^2+y^2+z^2=1$ with $z\geq 0$.) Big Hint: that surface isn't too bad, but it behaves badly with the field; can you replace it? Remember $\sin^2 t=(1-\cos(2t))/2$ and $\cos^2 t=(1+\cos(2t))/2$.

Jiv
$$F = 0 + 0 + 0 = 0$$
,

so we can replace the surface by

any surface w/ the same boundary.

Use the unit disk, $\chi^2 + y^2 \le 1$, $z = 0$.

Parametrize: $\chi = r\cos\theta$ $0 \le r \le 1$
 $\chi = r\sin\theta$ $0 \le \theta \le 2\pi$
 $\chi = 0$
 $\chi = 0$

This is flow upward across the disk, so

flow across the hemisphere is outward ("upwardish")

Math 241 C8

Name:

Quiz # 7

April 17, 2013

No electronic devices, notes, or interpersonal communication allowed. Show work to get credit.

Find the flow of $\mathbf{F}(x,y,z)=\langle e^{yz},\cos z,x^2\rangle$ across the top hemisphere of the unit sphere. Which direction is it? (The surface has equation $z=\sqrt{1-x^2-y^2}$, or $x^2+y^2+z^2=1$ with $z\geq 0$.) Big Hint: that surface isn't too bad, but it behaves badly with the field; can you replace it? Remember $\sin^2 t=(1-\cos(2t))/2$ and $\cos^2 t=(1+\cos(2t))/2$.

Bord (direct) attempts:

1)
$$X = r \cot \theta$$
 $0 \le r \le 1$
 $Y = r \sin \theta$ $0 \le \theta \le 2\pi$
 $Z = \sqrt{1-r^2}$
 $Z = \cos \theta$
 $Z = \cos$