1. a> p= gn/A, y/A, 2/B g 7 Eats (F(n), n) v Killed (n, F(n)) v Food (n) b) One doesn't enist as y must be G(A,B) but then y cannot be G(n,n) 57 Killed (G(n), n) V 7 Alive (n) c) Ø={n/B,y/A3 6. a Eats (Sill, Peanuts) 6) Alive (Bill) d> p= { y / John, n / John 7 Eats (Bill, n) V Eats (Sue, n) e) One doesn't enist c> hesolving Ga with 4 we get otherwise a would have to be Father (y) and y? after unifying Bill with F(n) Lilled (Peanuts, Bill) v Food (Peanuts) 2. a) 1 & n Food (n) => Likes (Tohn, n) Resolving 66) with 5, we get after unification of n with Lill 2. Food (Apples) we get ! 1 Killed (G (Bill), Bill) Food (Chicken) 4 In [Ty Eats (y,n) ^7 (killed (1,y)) Resolung I with 8 and unifying Peanut with G (Bill) \Rightarrow Food (n)5 Var (7 y Killed (4, n)) we get 10. Food (Peanuts) \Rightarrow 7(Alive(n))Finally resolving 10 with I and unitying a with leanut we get Eats (Bill, Peanuts) "Alive (Bill) 1. Likes (John, Peanuts) which proves that John likes peanuts Vn Eats (Bill, n) ⇒ Eats (Alice, n) d> Resolving (7) unifying n withe Pennuts 7 Food (n) V Likes (John, n) Food (Apples) we get @ Eals (Sue, Peaneds) This is the only clause that redates alice to a pooled she eats that can be derived from this KB

- Ans. Peanuts Food (Chicken)

e> With any of the other	3
statements we cannot infer	1. No
anything that sue eats.	2. Yes
(If we make the closed	3. This tells us that the given graph needs at least 4 colors for a valid coloring.
world assumption i.e. everything	
not in knowledge Base is false	i.e. it is 4-colorable but not 3-colorable
this means due est nothing)	RSAT returns a satisfying assignment for the satisfiable instance, this assignment can be passed into a coloring
	aceignment: -1 -2 -3 4
	-5 -6 7 -8
	-9 10 - 11 -12
	-13 -14 15 -16
	17 -18 - 19 - 20
	-21 22 -23 - 24
	25 -26 -27 -28
	which translates to the following
	Node 1- 4 Node 4-3 Node 7-1 Node 2-3 Node 5-1 Node 3-2 Node 6-2
	4. 8 colors are needed at minimum
	to color graph 2

