Homework 01 — Solution

CS 624, 2024 Spring

1. Consider the following algorithm for calculating a number raised to a power. The input is a real number x and a nonnegative integer n. The output is a real number r.

```
Algorithm 1 Power(x, n)
r \leftarrow 1; \ y \leftarrow x; \ p \leftarrow n
while p > 0 do
if p is odd then
r \leftarrow r \times y
end if
y \leftarrow y \times y
p \leftarrow \lfloor p/2 \rfloor
end while
return \ r
```

The correctness property for this algorithm is the following:

$$r = x^n$$

(a) State the loop invariant for the **while** loop.

The loop invariant is

$$r \cdot y^p = x^n$$

(b) Prove the correctness of the algorithm using the loop invariant.

Initialization: At the beginning of the loop, r = 1, y = x, and p = n, so

$$r \cdot y^p = 1 \cdot x^n = x^n$$

So the loop invariant holds at the beginning.

Maintanence: Assume the loop invariant holds at the beginning of the loop; we must show that the execution of the loop body makes the loop invariant hold for the "next" values of the variables.

Let r_0, y_0, p_0 refer to the values of the variables at the beginning of the loop iteration, and let r, y, p refer to the values of the variables at the end of the iteration. Then

$$r = \begin{cases} r_0 y_0 & \text{if } p_0 \text{ is odd} \\ r_0 & \text{otherwise} \end{cases}$$
$$y = y_0^2$$
$$p = \left| \frac{p_0}{2} \right|$$

There are two cases: p_0 is odd, and p_0 is even.

• If p_0 is odd, then $p_0 = 2p + 1$ and $r = r_0 y_0$ (the odd branch). Then:

$$x^{n} = r_{0}y_{0}^{p_{0}}$$
 (LI)

$$= r_{0}y_{0}^{2p+1}$$
 (because $p_{0} = 2p+1$)

$$= r_{0}y_{0}(y_{0}^{2})^{p}$$
 (rewrite exponent)

$$= r(y_{0}^{2})^{p}$$
 (because $r = r_{0}y_{0}$)

$$= ry^{p}$$
 (because $r = r_{0}y_{0}$)

• If p_0 is even, then $p_0 = 2p$ and $r = r_0$. Then:

$$x^{n} = r_{0}y_{0}^{p_{0}}$$
 (LI)
 $= r_{0}y_{0}^{2p}$ (because $p_{0} = 2p$)
 $= r_{0}(y_{0}^{2})^{p}$ (rewrite exponent)
 $= r_{0}y^{p}$ (because $y = y_{0}^{2}$)
 $= ry^{p}$ (because $r = r_{0}$)

So in either case, the loop invariant holds for the new values of the variables.

Termination: When the loop exits, we know p = 0. The loop invariant is $ry^p = x^n$. With p = 0, that simplifies to $r = x^n$, which is the goal.

(c) What is the running time of this algorithm? Justify your answer.

The **while** loop halves p each iteration, and p is initially n, so it takes up to $1 + \log_2 n$ iterations. The amount of work done within the loop is bounded above and below by constants. So the running time is $\Theta(\log n)$.

2. Consider the following algorithm for calculating the *cumulative sums* of an array. The input is an array of numbers, A. The output is a new array of number of the same length, R. (Array indexes start at 1.)

```
Algorithm 2 CumulativeSums(A)
R \leftarrow \text{new array}(length[A])
if length[A] > 0 then
R[1] \leftarrow A[1]
end if
for j \leftarrow 2 to length[A] do
R[j] \leftarrow R[j-1] + A[j]
end for
return R
```

The correctness property for this algorithm is the following:

$$R[n] = \sum_{i=1}^{n} A[i]$$
 for all $1 \le n \le length[A]$

(a) State the loop invariant for the **for** loop.

The loop invariant for iteration j is the following:

$$R[n] = \sum_{i=1}^{n} A[i] \quad \text{for all } 1 \le n < j$$

or, equivalently,

$$R[n] = \sum_{i=1}^{n} A[i] \quad \text{for all } 1 \le n \le j-1$$

(b) Prove the correctness of the algorithm using the loop invariant.

If the input array A is empty, then R is empty, the **if** and **for** bodies never execute, and the result is trivially correct. The rest of the proof assumes $length(A) \ge 1$.

Initialization: We must show that the loop invariant holds at the beginning of the first iteration (j = 2). The range for n in the loop invariant is $\{1 ... 2 - 1\} = \{1\}$, and $R[1] = \sum_{i=1}^{1} A[i] = A[1]$ because of the assignment on the third line of the function body.

Maintenance: Assuming the loop invariant holds for j at the beginning of an iteration, we must show the invariant holds for j + 1 at the end of the iteration.

Based on the loop body's assignment:

$$R[j] = R[j-1] + A[j]$$
 (by line 6 of the algorithm)
$$= \sum_{i=1}^{j-1} A[i] + A[j]$$
 (by LI)
$$= \sum_{i=1}^{j} A[i]$$
 (absorb term into summation)

No other array slots are assigned, so the loop invariant equation still holds for $1 \le n \le j-1$ and the assignment extends it to $1 \le n \le j$ (the LI's range for the next value of j).

Termination: When the loop exits, the loop invariant holds for j = length(A) + 1, which simplifies to the desired correctness property.

(c) What is the running time of this algorithm? Justify your answer.

The running time is $\Theta(n)$ where n = length(A).

The for loop body executes n-1 times and does a constant amount of work each time. There is additional work bounded above and below by constants, but that gets dominated by the linear term.

3. Problem 3-4 (a, b, c, d) in the textbook (page 62).

Let f and g be asymptotically positive functions. Prove or disprove each of the following:

(a) f(n) = O(g(n)) implies g(n) = O(f(n)).

False. Here is one counter-example: Let f(n) = n and $g(n) = n^2$. We know that f = O(g) but $g \neq O(f)$.

(b) $f(n) + g(n) = \Theta(\min(f(n), g(n))).$

False. Here is a counter-example: Let f(n) = 1 and g(n) = n. Then for $n \ge 1$, $\min(f(n), g(n)) = f(n) = 1$, which cannot bound n + 1 above.

(c) f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.

3

Proof: Since f(n) = O(g(n)), there are c_1 and n_1 such that for all $n \ge n_1$, $f(n) \le c_1 g(n)$. The lg function is monotone: that is,

$$x \le y \implies \lg x \le \lg y$$

Therefore:

$$\lg(f(n)) \le \lg(c_1 g(n)) = \lg(c_1) + \lg(g(n))$$

We are guaranteed that for "sufficiently large n" (call it $n \ge n_2$), $\lg(g(n)) \ge 1$, and thus $\lg(c_1) \le \lg(c_1) \lg(g(n))$. So resuming:

$$\lg(f(n)) \le \lg(c_1) + \lg(g(n))
\le \lg(c_1)\lg(g(n)) + \lg(g(n))
= (1 + \lg(c_1))\lg(g(n))$$

So we choose $n_0 = \max(n_1, n_2)$ and $c = 1 + \lg(c_1)$.

(d) f(n) = O(g(n)) implies $2^{f(n)} \in O(2^{g(n)})$.

False. Here is a counter-example: Let f(n) = 2n and g(n) = n. But $2^{2n} \neq O(2^n)$. Suppose it were; then there would be c such that

$$2^{2n} \le c2^n$$
$$2^{2n}/2^n \le c$$
$$2^n \le c$$

That is, the "constant" c would have to be larger than 2^n for all sufficiently large n, which is impossible.

4. Problem 4-1 (a, b, f, g) in the textbook (page 107).

Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Assume that T(n) is constant for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.

(a) $T(n) = 2T(n/2) + n^4$.

Apply the master theorem, with $p = \log_2 2 = 1$. Then $n^4 = \Omega(n^{p+\epsilon})$ with $\epsilon = 3$. So the theorem tells us that $T(n) = \Theta(n^4)$.

(b) T(n) = T(7n/10) + n.

Apply the master theorem, with $p = \log_{10/7} 1 = 0$. Then $n = \Omega(n^{p+\epsilon})$ with $\epsilon = 1$. So the theorem tells us that $T(n) = \Theta(n)$.

(f) $T(n) = 2T(n/4) + \sqrt{n}$.

Apply the master theorem, with $p = \log_4 2 = \frac{1}{2}$. Then $\sqrt{n} = \Theta(n^{\frac{1}{2}})$. So the theorem tells us that $T(n) = \Theta(n^{\frac{1}{2}} \lg n)$.

4

(g) $T(n) = T(n-2) + n^2$.

$$T(n) = \Theta(n^3).$$

For simplicity, let's assume n is even. Then

$$T(n) = \sum_{k=1}^{n/2} (2k)^2$$

$$= 4 \sum_{k=1}^{n/2} k^2$$

$$= \frac{4}{6} \left(\frac{n}{2}\right) \left(\frac{n}{2} + 1\right) (n+1)$$
 (equation A.3, p1147)
$$= \frac{1}{6} \left(n^3 + 3n^2 + 2n\right)$$

We get a cubic polynomial whose n^3 coefficient is positive, so $T(n) = \Theta(n^3)$.

(Alternative answer)

 $T(n) = \Theta(n^3)$. Another way is to guess and use induction to prove the bounds. For the upper bound, show $T(n) \le cn^3$, and for the lower bound show $T(n) \ge c_1 n^3 - c_2 n^2$.

5. Let a binary tree be either NIL or a node with left and right attributes whose values are also binary trees. Let the mindepth function be defined as follows:

$$\mathrm{mindepth}(t) = \begin{cases} 0 & \text{if } t = \mathtt{NIL} \\ 1 + \mathrm{min}(\mathrm{mindepth}(\mathrm{left}(t)), \mathrm{mindepth}(\mathrm{right}(t))) & \text{otherwise} \end{cases}$$

and let the countril function be defined as follows:

$$\operatorname{countnil}(t) = \begin{cases} 1 & \text{if } t = \operatorname{NIL} \\ \operatorname{countnil}(\operatorname{left}(t)) + \operatorname{countnil}(\operatorname{right}(t)) & \text{otherwise} \end{cases}$$

Prove the following: If mindepth $(t) \ge n$, then countril $(t) \ge 2^n$.

Hint: Use induction on n.

More precisely: $\forall n \in \mathbb{N}, \ \forall t \in BinaryTree, \ \text{mindepth}(t) \geq n \Rightarrow \text{countnil}(t) \geq 2^n$.

Proof: by induction on n.

Base case (n=0):

Goal: (for all t) if mindepth(t) ≥ 0 , then countril(t) $\geq 2^0 = 1$.

It's obvious from the definition that count nil(t) ≥ 1 for any tree, so the right side of the implication always holds. Done.

(Note: Similarly, mindepth $(t) \ge 0$ for every binary tree t.)

Inductive case (assume for n = k, prove for n = k + 1):

The inductive hypothesis is: (for all t) if mindepth $(t) \ge k$, then countril $(t) \ge 2^k$

Goal: (for all t) if mindepth(t) $\geq k+1$, then countril(t) $\geq 2^{k+1}$.

Let t be an arbitrary binary tree, and assume that mindepth(t) $\geq k + 1$.

We must show that countril(t) $\geq 2^{k+1}$.

If mindepth(t) > k + 1, then t cannot be NIL.

So we will use the non-NIL cases of the mindepth and countril functions.

By case 2 of mindepth:

 $1 + \min(\min(\operatorname{cpth}(\operatorname{left}(t)), \min(\operatorname{cpth}(\operatorname{right}(t)))) \ge k + 1$

Cancel out the (1+):

$$\min(\mathrm{mindepth}(\mathrm{left}(t)),\mathrm{mindepth}(\mathrm{right}(t))) \geq k$$

Facts about $\min(a, b)$: $a \ge \min(a, b)$ and $b \ge \min(a, b)$. So:

$$\begin{aligned} & \text{mindepth}(\text{left}(t)) \geq \min(\text{mindepth}(\text{left}(t)), \text{mindepth}(\text{right}(t))) \geq k \\ & \text{mindepth}(\text{right}(t)) \geq \min(\text{mindepth}(\text{left}(t)), \text{mindepth}(\text{right}(t))) \geq k \end{aligned}$$

Now we can apply the IH to the left and right children of t and get

countnil(left(t))
$$\geq 2^k$$

countnil(right(t)) $\geq 2^k$

Now calculate

$$\begin{aligned} \operatorname{countnil}(t) &= \operatorname{countnil}(\operatorname{left}(t)) + \operatorname{countnil}(\operatorname{right}(t)) \\ &\geq 2^k + 2^k = 2^{k+1} \end{aligned}$$

Done.