Universität Konstanz

Konzepte der Informatik

Algorithmik Rekursion

Barbara Pampel

Universität Konstanz, WiSe 2023/2024

Inhalt

- 1 Was ist Rekursion?
- 2 Rekursionsarten
- 3 Rekursion unter der Haube
- 4 Türme von Hanoi
- 5 Literatur

Rekursion

Rekursion

Als Rekursion (lat. recurrere "zurücklaufen") bezeichnet man die Technik in Mathematik, Logik und Informatik, eine Funktion [Methode] durch sich selbst zu definieren (rekursive Definition).

Rekursion

Als Rekursion (lat. recurrere "zurücklaufen") bezeichnet man die Technik in Mathematik, Logik und Informatik, eine Funktion [Methode] durch sich selbst zu definieren (rekursive Definition).

Das Grundprinzip der rekursiven Definition einer Funktion f ist: Der Funktionswert f(n+1) einer Funktion $f: N_0 \to N_0$ ergibt sich durch Verknüpfung bereits vorher berechneter Werte f(n), f(n-1), ... Falls außerdem die Funktionswerte von f für hinreichend viele Startargumente bekannt sind, kann jeder Funktionswert von f berechnet werden. Bei einer rekursiven Definition einer Funktion f ruft sich somit die Funktion so oft selbst auf, bis eine durch den Aufruf der Funktion veränderte Variable einen vorgegebenen Zielwert erreicht oder Grenzwert überschritten hat.

Aus Wikipedia

Iteration vs. Rekursion

Algorithm 1: Binäre Suche iterativ

Iteration vs. Rekursion

```
Algorithm 2: Binäre Suche rekursiv
```

```
Aufruf: binsearch(M, k, 0, n-1)

binsearch(M, k, l, r) begin

if r < l then return "k ist nicht in M

m \leftarrow \lfloor \frac{l+r}{2} \rfloor

if k > M[m] then binsearch(M, k, m+1, r)

else if k < M[m] then binsearch(M, k, l, m-1)

else

return "k ist in M"
```

1 Was ist Rekursion? - 1.1 Größter gemeinsamer Teiler

Der größte gemeinsame Teiler

Der größte gemeinsame Teiler

Mathematische Definition des ggT

-
$$ggT(a, b) = ggT(b, a - b)$$

Algorithm 4: ggt(a,b)

Input: $a, b \in \mathbb{Z}$

begin

$$t \leftarrow ggt(b, a - b)$$
 return t

- Methode ruft sich selbst mit veränderten Parametern auf

Der größte gemeinsame Teiler

- Mathematische Definition des ggT
 - ggT(a, b) = ggT(b, a b)

Algorithm 5: ggt(a,b)

Input: $a, b \in \mathbb{Z}$

begin

$$t \leftarrow ggt(b, a - b)$$
 return t

- Methode ruft sich selbst mit veränderten Parametern auf
- $ggT(9,6) \Rightarrow ggT(6,3) \Rightarrow ggT(3,3) \Rightarrow ggT(3,0) \Rightarrow ggT(0,3) \Rightarrow ggT(3,-3) \Rightarrow ggT(-3,6) \Rightarrow \dots$
- Problem: Endlosrekursion Methode ruft sich immer selbst auf

Abbruchbedingung

- Mathematische Definition des ggT
 - ggT(a, b) = ggT(b, a b)
 - $ggT(a, a) = a \quad (a \neq 0)$

Algorithm 6: ggt(a,b)

Input: $a, b \in \mathbb{Z}$

begin

if a = b then $t \leftarrow a$ else $t \leftarrow ggt(b, a - b)$ return t

- Eintreten der Abbruchbedingung beendet die Rekursion
- $-ggT(9,6) \Rightarrow ggT(6,3) \Rightarrow ggT(3,3) = 3$

Abbruchbedingung

- Mathematische Definition des ggT
 - ggT(a, b) = ggT(b, a b)
 - $ggT(a, a) = a \quad (a \neq 0)$

Algorithm 7: ggt(a,b)

```
Input: a, b \in \mathbb{Z}
```

begin

```
if a = b then t \leftarrow a
else t \leftarrow ggt(b, a - b)
return t
```

- Eintreten der Abbruchbedingung beendet die Rekursion
- $ggT(9,6) \Rightarrow ggT(6,3) \Rightarrow ggT(3,3) = 3$
- $ggT(9,5) \Rightarrow ggT(5,4) \Rightarrow ggT(4,1) \Rightarrow ggT(1,3) \Rightarrow ggT(3,-2) \Rightarrow ggT(-2,5) \Rightarrow \dots$
- Problem: Abbruchbedingung nicht vollständig

ggT komplett

- Mathematische Definition des ggT
 - ggT(a, b) = ggT(b, a b)
 - $ggT(a, a) = a \quad (a \neq 0)$
 - $ggT(a, 0) = a \quad (a \neq 0)$
 - ggT(a, 1) = 1
 - ggT(a, -b) = ggT(a, b)

Algorithm 8: ggt(a,b)

```
Input: a, b \in \mathbb{Z} begin
```

```
if a=b=0 then return Fehler else if a=b then t\leftarrow a else if b=0 then t\leftarrow a else if b=1 then t\leftarrow 1 else if b<0 then t\leftarrow ggT(a,-b) else t\leftarrow ggt(b,a-b) return t
```

Algorithmus von Euklid

```
Algorithm 9: EUCLID(a,b)
Input: a, b \in \mathbb{N}; a \ge b
Output: t = ggT(a,b)
begin
if b = 0 then
t \leftarrow a
else
t \leftarrow EUCLID(b, mod(a, b))
return t
```


Implementierung Preorder-Traversierung

```
Algorithm 10: preorder

order(v) begin

if \ v \neq nil \ then

print \ v.key

order(v.left)

order(v.right)

Aufruf: order(root)
```


Implementierung Postorder-Traversierung

```
Algorithm 11: postorder

order(v) begin

if \ v \neq nil \ then

order(v.left)

order(v.right)

print \ v.key

Aufruf: order(root)
```


Implementierung Inorder-Traversierung

```
Algorithm 12: inorder

order(v) begin

if \ v \neq nil \ then

order(v.left)

print \ v.key

order(v.right)

Aufruf: order(root)
```

Fakultätsfunktion

Fakultätsfunktion

- Mathematische Definition
 - $f(n) = n \cdot f(n-1)$
 - f(0) = 1

Fakultätsfunktion

Mathematische Definition

```
- f(n) = n · f(n-1)
- f(0) = 1

public int fac(int n) {
   if (n < 0) {
      throw new IllegalArgumentException(
        "Negative values are not allowed"); }
   if (n == 0) { return 1; }
   return n * fac(n - 1);
}</pre>
```

Ausgabe während der Ausführung

```
public int fac(int n) {
   if (n == 0) { return 1; }
   System.out.println("> fac(" + n + ")");
   int result = n * fac(n - 1);
   System.out.println("< fac(" + n + ") = " + result);
   return result;
}</pre>
```

- > fac(5)
- > fac(4)
- > fac(3)
- > fac(2)
- > fac(1)
- < fac(1) = 1
- < fac(2) = 2
- < fac(3) = 6
- < fac(4) = 24
- < fac(5) = 120

> fac(5)

> fac(4)

> fac(3)

> fac(2)

> fac(1)

< fac(1) = 1

< fac(2) = 2

< fac(3) = 6

< fac(4) = 24

< fac(5) = 120

Hinweg

Rückweg

Wie funktioniert Rekursion?

- Baum lässt sich berechnen

- Baum lässt sich berechnen

- Baum lässt sich berechnen

Baum lässt sich berechnen

Das Wichtigste in Kürze

- Rekursion
 - Aufruf einer Methode durch sich selbst
 - benötigt zwingend passende Abbruchbedingung
 - Darstellung als Baum

2 Rekursionsarten

Inhalt

- 1 Was ist Rekursion?
- 2 Rekursionsarten
- 3 Rekursion unter der Haube
- 4 Türme von Hanoi
- 5 Literatur

Binomialkoeffizienten

- Aus der Schule bekannt binomische Formel
 - $(a+b)^2 = a^2 + 2ab + b^2$
 - $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 - $(a+b)^n = a^n + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}a^1b^{n-1} + b^n$

Binomialkoeffizienten

- Aus der Schule bekannt binomische Formel
 - $(a+b)^2 = a^2 + 2ab + b^2$
 - $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
 - $(a+b)^n = a^n + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}a^1b^{n-1} + b^n$
 - $\binom{n}{k}$ ist Binomialkoeffizient

Binomialkoeffizienten

- Aus der Schule bekannt binomische Formel
 - $(a+b)^2 = a^2 + 2ab + b^2$
 - $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

-
$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}a^1b^{n-1} + b^n$$

- $\binom{n}{k}$ ist Binomialkoeffizient
- Berechnung z.B. durch Pascalsches Dreieck

Berechnung der Binomialkoeffizienten

$$- \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Berechnung der Binomialkoeffizienten

Berechnungsvorschrift offensichtlich rekursiv

Rekursive Berechnung

Rekursionsformel

```
public int binom(int n, int k) {
  return binom(n - 1, k - 1) + binom(n - 1, k);
}
```

Rekursive Berechnung

Rekursionsformel

```
public int binom(int n, int k) {
  return binom(n - 1, k - 1) + binom(n - 1, k);
}
- Abbruchbedingung
public int binom(int n, int k) {
  if ((k == 0) || (k == n)) { return 1; }
  if (n == 0) { return 1; }

  return binom(n - 1, k - 1) + binom(n - 1, k);
}
```

Es fehlt die Behandlung von unzulässigen Parametern

Rekursionsentfaltung

Die Ackermannfunktion

- Bekannte Funktion aus der theoretischen Informatik
- Wächst extrem schnell
 - ack(0, m) = m + 1
 - ack(n+1,0) = ack(n,1)
 - ack(n+1, m+1) = ack(n, ack(n+1, m))
- Verschachtelte rekursive Aufrufe
 - ack(3,3) = ack(2, ack(3,2)) = ack(2, ack(2, ack(3,1))) = ... = 61
 - $ack(4, 2) > 10^{21000}$
 - $ack(4,4) > 10^{10^{10^{21000}}}$
- Verschachtelt rekursive Funktionen sind schwer zu durchschauen

Rekursionsarten

- Lineare Rekursion
 - ggT Methode ruft sich selber einmal rekursiv auf
- Baumartige oder kaskadenartige Rekursion
 - Binomialkoeffizienten Methode ruft sich mehrmals rekursiv auf
- Verschachtelte Rekursion
 - Ackermannfunktion Parameter der Methode enthalten rekursiven Aufruf
- Endrekursion
 - Rekursiver Aufruf ist letzte Aktion in der Methode
 - ggT ist endrekursiv
 - Binomialkoeffizienten ist nicht endrekursiv, letzte Anweisung ist Addition
 - Ergebnis des letzten rekursiven Aufrufs ist Gesamtergebnis

Das Wichtigste in Kürze

- Rekursion
 - Aufruf einer Methode durch sich selbst
 - benötigt zwingend passende Abbruchbedingung
 - Darstellung als Baum
- Lineare, baumartige und verschachtelte Rekursion

3 Rekursion unter der Haube

Inhalt

- 1 Was ist Rekursion?
- 2 Rekursionsarten
- 3 Rekursion unter der Haube
- 4 Türme von Hanoi
- 5 Literatur

Der Stapel

- Speicherbereich, der von aufgerufenen Methoden verwendet wird; auch Stack genannt
 - übergebene Parameter
 - Rücksprungadresse
 - lokale Variablen
 - Rückgabewerte

Der Stapel

- Speicherbereich, der von aufgerufenen Methoden verwendet wird; auch Stack genannt
 - übergebene Parameter
 - Rücksprungadresse
 - lokale Variablen
 - Rückgabewerte
- Stapel wächst und schrumpft automatisch bei jedem Methodenaufruf
- Stapel hat eine voreingestellte Maximalgröße
- Stapelzeiger markiert den aktuell obersten Eintrag
 - Adressierung von Variablen und Parametern relativ zum Stapelzeiger
 - Methodenaufruf setzt den Zeiger nach oben und schafft Platz für neue Einträge
 - nach Rückkehr wird Zeiger wieder nach unten verschoben

- Erster Aufruf der Methode von "außen"
 - Rücksprungadresse zeigt auf Aufrufstelle
 - Parameter von "außen" gesetzt

```
int binom(int n, int k) {
  if (k == 0) {
    return 1;
  if (k == n) {
4
   return 1;
  if (n == 0) {
    return 1;
    int result =
  binom(n-1, k-1)
      + binom(n - 1, k);
                                       n: 3
    return result;
                                       Rücksprung: ...
```

- Platz für lokale Variablen schaffen
 - Adressierung relativ zum SP, z.B. addr(k) = SP 1

```
int binom(int n, int k) {
1 if (k == 0) {
   return 1:
3 	 if (k == n) {
  return 1;
  if (n == 0) {
    return 1:
                                       result: undefiniert
   int result =
  binom(n - 1, k - 1)
                                        k: 2
  + binom(n - 1, k);
                                        n: 3
  return result:
                                        Rücksprung: ...
```

- Rücksprungadresse und Parameter auf Stapel legen
- Danach Aufruf der Methode

```
int binom(int n, int k) {
   if (k == 0) {
     return 1:
   if (k == n) {
     return 1:
     if (n == 0) {
     return 1;
                                           n: 2
                                           Rücksprung: binom#8
                                           result: undefiniert
     int result =
      binom(n - 1, k - 1)
                                           k: 2
       + binom(n - 1, k):
                                           n: 3
10
     return result:
                                           Rücksprung: ...
```

- Platz für lokale Variablen schaffen

```
int binom(int n, int k) {
   if (k == 0) {
    return 1;
   if (k == n) {
    return 1:
                                    SP → result: undefiniert
                                          k: 1
    if (n == 0) {
    return 1;
                                          n: 2
                                          Rücksprung: binom#8
                                          result: undefiniert
    int result =
  binom(n - 1, k - 1)
                                          k: 2
    + binom(n - 1, k);
                                          n: 3
10
     return result;
                                          Rücksprung: ...
```

- Rücksprungadresse und Parameter auf den Stapel legen
- Danach Aufruf der Methode

```
int binom(int n, int k) {
   if (k == 0) {
                                     SP →
     return 1:
                                           n: 1
   if (k == n) {
                                           Rücksprung: binom#8
     return 1:
                                           result: undefiniert
                                           k: 1
     if (n == 0) {
     return 1;
                                           n: 2
                                           Rücksprung: binom#8
                                           result: undefiniert
     int result =
       binom(n - 1, k - 1)
                                           k: 2
       + binom(n - 1, k);
                                           n: 3
10
     return result:
                                           Rücksprung: ...
```

Platz f
ür lokale Variablen schaffen

```
SP → result: undefiniert
int binom(int n, int k) {
if (k == 0) {
                                       k: 0
 return 1;
                                       n: 1
if (k == n) {
                                       Rücksprung: binom#8
 return 1:
                                       result: undefiniert
                                       k: 1
 if (n == 0) {
 return 1;
                                       n: 2
                                       Rücksprung: binom#8
                                       result: undefiniert
 int result =
binom(n - 1, k - 1)
                                       k: 2
 + binom(n - 1, k);
                                       n: 3
return result;
                                       Rücksprung: ...
```

- Rückgabewert auf Stapel schreiben
 - überschreibt (nicht mehr benötigte) Variablen

```
result: undefiniert
  int binom(int n, int k) {
    if (k == 0) {
                                          k: 0
2
      return 1:
                                          Rückgabewert: 1
                                          Rücksprung: binom#8
    if (k == n) {
    return 1:
                                          result: undefiniert
                                          k: 1
   if (n == 0) {
    return 1;
                                          n: 2
                                          Rücksprung: binom#8
    int result =
                                          result: undefiniert
  binom(n-1, k-1)
                                          k: 2
  + binom(n - 1, k);
                                          n: 3
    return result:
                                          Rücksprung: ...
```

- Rücksprung an hinterlegte Adresse

```
result: undefiniert
   int binom(int n, int k) {
   if (k == 0) {
                                           k: 0
     return 1;
                                            Rückgabewert: 1
                                           Rücksprung: binom#8
    if (k == n) {
4
     return 1;
                                     SP → result: undefiniert
                                            k: 1
     if (n == 0) {
     return 1;
                                           n: 2
                                            Rücksprung: binom#8
                                           result: undefiniert
     int result =
      binom(n - 1, k - 1)
                                           k: 2
       + binom(n - 1, k);
                                           n: 3
10
     return result;
                                            Rücksprung: ...
```

- Rücksprungadresse und Parameter auf den Stapel legen
- Danach Aufruf der Methode

```
result: undefiniert
   int binom(int n, int k) {
   if (k == 0) {
                                       SP \rightarrow k: 1
     return 1:
                                             n: 1
   if (k == n) {
                                             Rücksprung: binom#9
     return 1:
                                             result: undefiniert
                                             k: 1
     if (n == 0) {
     return 1;
                                             n: 2
                                             Rücksprung: binom#8
                                             result: undefiniert
     int result =
       binom(n - 1, k - 1)
                                             k: 2
       + binom(n - 1, k);
                                             n: 3
10
     return result:
                                             Rücksprung: ...
```

- Rückgabewert auf Stapel schreiben
 - überschreibt (nicht mehr benötigte) Variablen

```
result: undefiniert
  int binom(int n, int k) {
  if (k == 0) {
                                           k: 1
      return 1:
                                           Rückgabewert: 1
                                           Rücksprung: binom#9
    if (k == n) {
4
     return 1;
                                           result: undefiniert
                                           k: 1
    if (n == 0) {
      return 1;
                                           n: 2
                                           Rücksprung: binom#8
    int result =
                                           result: undefiniert
   binom(n-1, k-1)
                                           k: 2
   + binom(n - 1, k);
                                          n: 3
    return result:
                                           Rücksprung: ...
```

Rücksprung an hinterlegte Adresse

```
result: undefiniert
   int binom(int n, int k) {
   if (k == 0) {
                                           k: 1
     return 1;
                                           Rückgabewert: 1
                                           Rücksprung: binom#9
    if (k == n) {
4
     return 1;
                                     SP → result: undefiniert
                                           k: 1
     if (n == 0) {
     return 1;
                                           n: 2
                                           Rücksprung: binom#8
                                           result: undefiniert
     int result =
       binom(n-1, k-1)
                                           k: 2
       + binom(n - 1,
                                           n: 3
10
     return result:
                                           Rücksprung: ...
```

Stapelbenutzung

Zugriff auf Rückgabewert über SP + 2

```
result: undefiniert
  int binom(int n, int k) {
  if (k == 0) {
                                           k: 1
    return 1;
                                           Rückgabewert: 1
                                           Rücksprung: binom#9
  if (k == n) {
4
    return 1;
                                     SP \rightarrow | result: 2
                                           k: 1
    if (n == 0) {
    return 1;
                                           n: 2
                                           Rücksprung: binom#8
                                           result: undefiniert
    int result =
  binom(n-1, k-1)
                                           k: 2
      + binom(n - 1, k):
                                           n: 3
     return result:
                                           Rücksprung: ...
```

Stapelbenutzung

- Rückgabewert auf Stapel schreiben
 - überschreibt (nicht mehr benötigte) Variablen

```
result: undefiniert
   int binom(int n, int k) {
   if (k == 0) {
                                             k: 1
     return 1:
                                             Rückgabewert: 1
                                             Rücksprung: binom#9
    if (k == n) {
     return 1:
                                       SP \rightarrow | result: 2
                                             k: 1
    if (n == 0) {
     return 1;
                                             Rückgabewert: 2
                                             Rücksprung: binom#8
                                             result: undefiniert
     int result =
       binom(n - 1, k - 1)
                                             k: 2
9
        + binom(n - 1, k);
                                             n: 3
10
      return result;
                                             Rücksprung: ...
```

Stapelbenutzung

Rücksprung an hinterlegte Adresse

```
result: undefiniert
int binom(int n, int k) {
if (k == 0) {
                                          k: 1
    return 1;
                                          Rückgabewert: 1
                                          Rücksprung: binom#9
 if (k == n) {
 return 1;
                                          result: 2
                                         k: 1
 if (n == 0) {
  return 1;
                                          Rückgabewert: 2
                                          Rücksprung: binom#8
                                   SP \rightarrow I result: undefiniert
  int result =
   binom(n - 1, k - 1)
                                          k: 2
    + binom(n - 1, k);
                                         n: 3
  return result;
                                          Rücksprung: ...
```

Und so weiter...

Das Wichtigste in Kürze

- Rekursion
 - Aufruf einer Methode durch sich selbst
 - benötigt zwingend passende Abbruchbedingung
 - Darstellung als Baum
- Lineare, baumartige und verschachtelte Rekursion
- Verwendung eines Stapels bei Methodenaufrufen

4 Türme von Hanoi

Inhalt

- 1 Was ist Rekursion?
- 2 Rekursionsarten
- 3 Rekursion unter der Haube
- 4 Türme von Hanoi
- 5 Literatur

Die Türme von Hanoi

Bekanntes Knobelspiel

- Scheiben müssen einzeln von einem Stab auf einen anderen verschoben werden
- Größere Scheiben müssen immer unten liegen

Lösungsidee

- Zurückführung auf kleineres Problem
 - Bewegen von n Scheiben von Stapel a nach Stapel c unter Benutzungs eines Zwischenstapels b
 - Falls n=1
 - (oberste) Scheibe von a nach c bewegen
 - Falls n > 1
 - erst Stapel der Größe n-1 von a auf den Zwischenstapel b verschieben (mit c als Zwischenstapel)
 - dann letzte Scheibe von a nach c bewegen
 - zum Schluß die n-1 Scheiben auf dem Zwischenstapel b nach c verschieben (mit a als Zwischenstapel)

Rekursive Lösung

```
public void moveTower(int disks, Bar a, Bar b, Bar c) {
  if (disks > 0) {
    moveTower(disks - 1, a, c, b);
    System.out.println("Move top disk from bar "
      + a + " to bar " + c);
   moveTower(disks - 1, b, a, c);
public class Bar {
 private final String name;
  public Bar(String name) { this.name = name; }
  public String toString() { return name; }
```

Beispiellauf

```
hanoi.moveTower(4, new Bar("1"), new Bar("2"), new Bar("3"));
Move top disk from bar 1 to bar 2
Move top disk from bar 1 to bar 3
Move top disk from bar 2 to bar 3
Move top disk from bar 1 to bar 2
Move top disk from bar 3 to bar 1
Move top disk from bar 3 to bar 2
Move top disk from bar 1 to bar 2
Move top disk from bar 1 to bar 3
Move top disk from bar 2 to bar 3
Move top disk from bar 2 to bar 1
Move top disk from bar 3 to bar 1
Move top disk from bar 2 to bar 3
Move top disk from bar 1 to bar 2
Move top disk from bar 1 to bar 3
Move top disk from bar 2 to bar 3
```

Aufwandsbetrachtung

Wieviele Scheiben werden während der Lösung bewegt?

Aufwandsbetrachtung

- Wieviele Scheiben werden während der Lösung bewegt?
- moves(n): Anzahl der Verschiebungen für n Scheiben auf dem Ausgangsstapel
 - moves(1) = 1
 - moves(n+1) = moves(n) + 1 + moves(n) = 1 + 2 * moves(n)
- Annahme: $moves(n) = 2^n 1$
- Beweis durch Induktion

Aufwandsbetrachtung

- Wieviele Scheiben werden während der Lösung bewegt?
- moves(n): Anzahl der Verschiebungen für n Scheiben auf dem Ausgangsstapel
 - moves(1) = 1
 - moves(n+1) = moves(n) + 1 + moves(n) = 1 + 2 * moves(n)
- Annahme: $moves(n) = 2^n 1$
- Beweis durch Induktion
 - $moves(1) = 2^1 1 = 1$
 - $moves(n+1) = 1 + 2 * (2^n 1) = 1 + 2^{n+1} 2 = 2^{n+1} 1$

Das Wichtigste in Kürze

- Rekursion
 - Aufruf einer Methode durch sich selbst
 - benötigt zwingend passende Abbruchbedingung
 - Darstellung als Baum
- Lineare, baumartige und verschachtelte Rekursion
- Verwendung eines Stapels bei Methodenaufrufen
- Türme von Hanoi: Einfache Beschreibung der Methode durch Rekursion

Das Wichtigste in Kürze

- Rekursion
 - Aufruf einer Methode durch sich selbst
 - benötigt zwingend passende Abbruchbedingung
 - Darstellung als Baum
- Lineare, baumartige und verschachtelte Rekursion
- Verwendung eines Stapels bei Methodenaufrufen
- Türme von Hanoi: Einfache Beschreibung der Methode durch Rekursion
- Dynamische Programmierung
 - Rekursionsformel
 - Speichern und Wiederverwenden von Zwischenergebnissen

5 Literatur

Literatur

H. P. Gumm und M. Sommer.

Einführung in die Informatik — Kapitel 2.8.

Oldenburg Verlag, 7. Ausgabe, 2006, ISBN 978-3-486-58115-7.