Course: CS5590 Python Programming

Lab Assignment - #4

Report

Team id: #16

Name: Revanth Chakilam | ClassID: 02

Name: Swati Singh | ClassID: 33

Github: https://github.com/revanthchakilam/DeepLearning/wiki/Deep-Learning-Lab-2

Youtube: https://youtu.be/MkHp03hxZa4

Introduction

This Wiki/Report contains the Deep Learning lab assignment (Lab 4) which has Neural network algorithms.

Objectives

The objective of this lab assignment is to apply CNN on text classfication and image classfication followed by RNN with text classification and comparing CNN vs RNN for text classification

Task 1: Text Classification with CNN

Approach/Method:

I have used the wikipedia dataset which is not used in the class. I have calculated the accuracy and loss using all the three different optimisers and tried to analyse which optimiser suits well for the model dataset.

I have found best results with Wikipedia dataset (plain text dataset) with Adam optimiser gives the most accuracy and minute loss. And using RMS optimiser and reducing the number of epochs we get the best results for accuracy as well. So in conclusion using RMS optimiser with number of epochs gives the best result. And same hyper parameters with adam optimiser also gives better results.

code

Results

1	A	В	С	D	E	F	G	Н	1	J	K
	DataSet (diff from class)	Vocabulary Size	Optimisers	Filter Size	Dropout probability	No of filters	Batch size	No. of epochs	Loss	Accuracy	
2	Wikipedia dataset	631	Adam	3,4,5	0.5	128	64	1 2	0 2.28	0.46	
	Wikipedia dataset	631	Adam	3,4,5	0.5	64	32	2	0 2.76	0.42	
1	Wikipedia dataset	631	Adam	3,4,5	0.7	64	32	2	0.67	0.75	Good
5	Wikipedia dataset	631	RMS optimizer	3,4,5	0.7	64	32	2 2	0 1.73	0.34	
5	Wikipedia dataset	631	RMS optimizer	1,2,3	0.7	128	64	1	0 1.038	0.57	
7	Wikipedia dataset	631	RMS optimizer	3,4,5	0.7	128	64	1	0 1.06	0.69	Good
3	Wikipedia dataset	631	Gradient Descent optimizer	3,4,5	0.7	128	64	1	0 1.6	0.38	
9	Wikipedia dataset	631	Gradient Descent optimizer	3,4,5	0.7	64	32	2	5 1.29	0.57	
0	Wikipedia dataset	631	AdaGrad optimizer	3,4,5	0.5	128	64	3	0 2.6	0.46	
1	Wikipedia dataset	631	AdaGrad optimizer	3,4,5	0.7	128	64	1	0 2.02	0.38	
2											
3											
4		Conclusion	I have found best results with	Wikipedia datas	et (plain text dataset) with	Adam optimise	r gives the m	ost accuracy and	d minute los	s. And usin	ig RMS
5			optimiser and reducing the nu	umber of epochs	we get the best results for a	accuracy as well	. So in conclu	usion using RMS	optimiser w	ith number	r of epo
6			gives the best result. And sam	ne hyper paramet	ers with adam optimiser als	so gives better	results.				

Tensor Board Graphs

Adam Optimiser

RMS Optimiser

Gradient Descent Optimiser

Task 2: Text Classification with RNN LSTM

Approach/Method:

I have used the same wikipedia dataset which is not used in the class. I have calculated the accuracy and loss using all the RMS optimiser with different learning rates and iteration steps and tried to analyse which combination is suited for the classification using RNN LTSM

I think that basic Istm worked well with the 0.01 learning rate and more number of iterations. By increasing the learning rate I wast unable to catch the accuracy and with multi rnn using 2 stack unlike the basic also gave good accuracy with the 0.01 learning rate

code

Results

Tensor Board Graphs

Task 3: Text Classification of CNN vs RNN LSTM

CNN

I have found best results with Wikipedia dataset (plain text dataset) with Adam optimiser gives the most accuracy and minute loss. And using RMS optimiser and reducing the number of epochs we get the best results for accuracy as well. So in conclusion using RMS optimiser with number of epochs gives the best result. And same hyper parameters with adam optimiser also gives better results.

RNN LSTM

I think that basic Istm worked well with the 0.01 learning rate and more number of iterations. By increasing the learning rate I wast unable to catch the accuracy and with multi rnn using 2 stack unlike the basic also gave good accuracy with the 0.01 learning rate

Conclusion

Based on the dataset used,I will chose the CNN with Adam/RMS optimiser

Task 4: Image Classification with CNN

Approach/Method:

I have used Cifar10 dataset. Load the data and find the accuracy using all the four optimisers Adam, RMS, Adagrad, Gradient.

Well Adam optimiser gave the better accuracy compared to other optimiser with the Cifar10 dataset. RMS prop optimiser is also almost second in the race. With 500 steps Adam wins the race with almost 0.90 accuracy. Gradient and dagrad works very poor with Cifar10 dataset. When increased the steps tp 1000 the same trend followed by adam optimiser leading with RMS as second. Adagrad and gradient opt have poor outputs

Code

Results

Tensor Board graphs

