Uniwersytet Wrocławski, Instytut Matematyczny Kolokwium nr 2

imie i nazwisko:	

Kolokwium składa się z 6 stron oraz 4 zadań. Na drugiej stronie znajduje się spis ważniejszych rozkładów. Dwie ostatnie strony stanowią brudnopis. Na rozwiązanie wszystkich zadań jest 100 minut. Zacznij od spokojnego (!) przeczytania treści wszystkich zadań i zacznij od najłatwiejszego. Powodzenia.

zadanie	1	2	3	4	Σ
punkty	25	25	25	25	100
wynik					

- 1. Niech $(A_n)_n$ i $(B_n)_n$ będą dwoma niezależnymi ciągami niezależnych zmiennych losowych o wspólnym rozkładzie. Załóżmy, że $B_n \ge 1$, $1 \ge A_n \ge 0$ i $\mathbb{P}[A_n = 1] < 1$ dla każdego $n \in$.
 - (a) (10 p.) Załóżmy, że $\mathbb{E}[|\log(A_1)|] < \infty$. Pokaż, że $\sqrt[n]{A_1 \dots A_n} \to \exp \mathbb{E}[\log(A_1)]$ p.w.
 - (b) (10 p.) Załóżmy, że $\mathbb{E}[\log(B)]<\infty$. Pokaż, że dla dowolnej c>1, $\limsup_{n\to\infty}\sqrt[n]{B_n}\le c$ p.w.
 - (c) (5 p.) Załóżmy, że $\mathbb{E}[|\log(A)|],\,\mathbb{E}[\log(B)]<\infty.$ Pokaż, że szereg

$$\sum_{n>0} A_1 A_2 \dots A_n B_{n+1}$$

jest zbieżny p.w.

- 2. Niech $(U_n)_n$ będzie ciągiem stochastycznie niezależnych zmiennych losowych o jednakowym rozkładzie jednostajnym $\mathcal{U}[0,1]$.
 - (a) (5 p.) Pokaż, że zmienne U_1 oraz $1-U_1$ mają taki sam rozkład.
 - (b) (5 p.) Pokaż, że $\min_{1 \le k \le n} U_k$ zbiega do 0 według prawdopodobieństwa, gdy $n \to \infty$.
 - (c) (10 p.) Pokaż, że dla $\lambda>0$, $X_n=\frac{n}{\lambda}\min_{1\leq j\leq n}U_j$ zbiega słabo do rozkładu wykładniczego $\mathcal{E}xp(\lambda)$.
 - (d) (5 p.) Wykaż, że zmienne losowe $Y_n=1-e^{-\lambda X_n}$ zbiegają słabo do zmiennej losowej o rozkładzie jednostajnym $\mathcal{U}[0,1]$.

3. Niech (X_1, X_2) będzie wektorem losowym o rozkładzie normalnym $\mathcal{N}\left(\mathbf{0}, \begin{pmatrix} 1 & \rho \\ \rho & 4 \end{pmatrix}\right)$, gdzie $|\rho| < 2$. Niech M będzie niezależną od niego zmienną z rozkładem $\alpha\delta_1 + (1-\alpha)\delta_2$, gdzie $\alpha \in [0,1]$. Definiujemy zmienną losową X_M przez

$$X_M = \begin{cases} X_1 & \text{gdy} \quad M = 1 \\ X_2 & \text{gdy} \quad M = 2 \end{cases}.$$

- (a) (5 p.) Oblicz $\mathbb{E}[(X_1 + X_2)^2]$.
- (b) (5 p.) Jaki rozkład ma zmienna $X_1 + X_2$?
- (c) (5 p.) Oblicz $\mathbb{E}[X_M^2]$.
- (d) (10 p.) Znajdź rozkład X_M .

4. Niech $\mathbf{X} = (X_1, X_2, \dots, X_n)$ będzie wektorem losowym z macierzą kowariancji

$$C = Cov(\mathbf{X}) = (Cov(X_i, X_j))_{i,j \le n}$$

i wektorze średnich $\mathbb{E}[\mathbf{X}]=\mathbf{0}.$ Niech $\langle\cdot|\cdot\rangle$ będzie standardowym iloczynem skalarnym na $\mathbb{R}^n.$

- (a) (10 p.) Pokaż, że dla dowolnego $\xi \in \mathbb{R}^n$, $\langle C\xi|\xi \rangle = \mathbb{E}[\langle \mathbf{X}|\xi \rangle^2]$.
- (b) (10 p.) Pokaż, że $\mathbb{P}[\mathbf{X} \in \text{Im}(C)] = 1$. Wskazówka: $\text{Im}(C) = \text{Ker}(C)^{\perp}$.
- (c) (5 p.) Załóżmy, że \mathbf{X} posiada gęstość względem n-wymiarowej miary Lebesgue'a. Pokaż, że C jest odwracalna.