International Tables for Crystallography (2006). Vol. A, Space group 88, pp. 358-361.

$$I4_1/a$$

4/m

Tetragonal

No. 88

 $I4_1/a$

Patterson symmetry I4/m

ORIGIN CHOICE 1

Origin at $\bar{4}$, at $0, -\frac{1}{4}, -\frac{1}{8}$ from $\bar{1}$

Asymmetric unit

$$0 \le x \le \frac{1}{4}$$
; $0 \le y \le \frac{1}{4}$; $0 \le z \le 1$

Symmetry operations

For (0,0,0)+ set

- (1) 1
- (2) $2(0,0,\frac{1}{2}) \frac{1}{4},\frac{1}{4},z$
- (3) $4^+(0,0,\frac{1}{4}) \frac{1}{4},\frac{1}{4},z$
- (4) $4^{-}(0,0,\frac{3}{4})$ $\frac{1}{4},-\frac{1}{4},z$

- (5) $\bar{1}$ $0, \frac{1}{4}, \frac{1}{8}$
- (6) $a \quad x, y, \frac{3}{8}$
- (7) $\bar{4}^+$ (0,0,z; 0,0,0
- (8) $\bar{4}^ 0, \frac{1}{2}, z; 0, \frac{1}{2}, \frac{1}{4}$

- For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set
- (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (5) $\bar{1}$ $\frac{1}{4}, 0, \frac{3}{8}$
- (2) 2 0,0,z
- (3) $4^+(0,0,\frac{3}{4})$ $\frac{1}{4},\frac{1}{4},z$ (7) $\bar{4}^+$ $\frac{1}{2},0,z;$ $\frac{1}{2},0,\frac{1}{4}$
- (4) $4^{-}(0,0,\frac{1}{4})$ $\frac{1}{4},\frac{1}{4},z$
- (8) $\bar{4}^-$ 0,0,z; 0,0,0 (6) $b \quad x, y, \frac{1}{8}$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{7},\frac{1}{2})$; (2); (3); (5)

Positions

Multiplicity, Coordinates Reflection conditions Wyckoff letter. $(0,0,0)+(\frac{1}{2},\frac{1}{2},\frac{1}{2})+$ Site symmetry General: (2) $\bar{x} + \frac{1}{2}, \bar{y} + \frac{1}{2}, z + \frac{1}{2}$ (3) $\bar{y}, x + \frac{1}{2}, z + \frac{1}{4}$ (4) $y + \frac{1}{2}, \bar{x}, z + \frac{3}{4}$ hkl: h+k+l=2n16 *f* 1 (1) x, y, z(5) $\bar{x}, \bar{y} + \frac{1}{2}, \bar{z} + \frac{1}{4}$ (6) $x + \frac{1}{2}, y, \bar{z} + \frac{3}{4}$ hk0: h, k = 2n(8) $\bar{y} + \frac{1}{2}, x + \frac{1}{2}, \bar{z} + \frac{1}{2}$ (7) y, \bar{x}, \bar{z} 0kl : k+l=2nhhl: l = 2n00l: l = 4nh00: h = 2n $h\bar{h}0: h = 2n$ Special: as above, plus 0, 0, z $0, \frac{1}{2}, z + \frac{1}{4}$ $0, \frac{1}{2}, \bar{z} + \frac{1}{4}$ $0,0,\bar{z}$ hkl: l = 2n + 18 e 2.. or 2h + l = 4nd $\bar{1}$ $0, \frac{1}{4}, \frac{5}{8}$ $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}$ $\frac{3}{4}, \frac{1}{2}, \frac{7}{8}$ hkl: l = 2n + 1or h, k = 2n, h+k+l = 4nc $\bar{1}$ $0, \frac{1}{4}, \frac{1}{8}$ **4**.. $0,0,\frac{1}{2}$ hkl: l = 2n + 1b

or 2h + l = 4n

Symmetry of special projections

0, 0, 0

 $a \bar{4}..$

Along [001] p4	Along [100] c2mm	Along [110] <i>p</i> 2 <i>mg</i>
$\mathbf{a}' = \frac{1}{2}\mathbf{a} \qquad \mathbf{b}' = \frac{1}{2}\mathbf{b}$	$\mathbf{a}' = \mathbf{b}$ $\mathbf{b}' = \mathbf{c}$	$\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b}) \qquad \mathbf{b}' = \frac{1}{2}\mathbf{c}$
Origin at $0,0,z$	Origin at $x, 0, \frac{3}{8}$	Origin at $x, x + \frac{1}{4}, \frac{1}{8}$

Maximal non-isomorphic subgroups

I [2] $I\bar{4}$ (82) (1; 2; 7; 8)+ [2] $I4_1$ (80) (1; 2; 3; 4)+ [2] I2/a (C2/c, 15) (1; 2; 5; 6)+ IIa none

IIa noneIIb none

Maximal isomorphic subgroups of lowest index

Hc [3] $I4_1/a$ (c' = 3c) (88); [5] $I4_1/a$ (a' = a + 2b, b' = -2a + b or a' = a - 2b, b' = 2a + b) (88)

Minimal non-isomorphic supergroups

I [2] I4, /amd (141); [2] I4, /acd (142)

II [2] $C4_2/a$ (c' = $\frac{1}{2}$ c) $(P4_2/n, 86)$

 $I4_1/a$

4/m

Tetragonal

No. 88

 $I4_1/a$

Patterson symmetry I4/m

ORIGIN CHOICE 2

Origin at $\bar{1}$ on glide plane b, at $0, \frac{1}{4}, \frac{1}{8}$ from $\bar{4}$

Asymmetric unit

$$0 \le x \le \frac{1}{4}$$
; $0 \le y \le \frac{1}{4}$; $0 \le z \le 1$

Symmetry operations

For (0,0,0)+ set

- (1) 1 $(5) \bar{1} 0,0,0$
- (2) $2(0,0,\frac{1}{2})$ $\frac{1}{4},0,z$
- $\begin{array}{ccc} (3) & 4^+\big(0,0,\frac{1}{4}\big) & \frac{1}{4},\frac{1}{2},z\\ (7) & \bar{4}^+ & \frac{1}{2},\frac{1}{4},z; & \frac{1}{2},\frac{1}{4},\frac{3}{8} \end{array}$
- (4) $4^{-}(0,0,\frac{3}{4}) \frac{3}{4},0,z$ (8) $\bar{4}^ 0, \frac{1}{4}, z; 0, \frac{1}{4}, \frac{1}{8}$

- For $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ + set
- (1) $t(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ (5) $\bar{1}$ $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
- (2) 2 $0, \frac{1}{4}, z$ (6) b x, y, 0

(6) $a \quad x, y, \frac{1}{4}$

- (3) $4^{+}(0,0,\frac{3}{4})$ $-\frac{1}{4},\frac{1}{2},z$ (7) $\bar{4}^{+}$ $\frac{1}{2},-\frac{1}{4},z;$ $\frac{1}{2},-\frac{1}{4},\frac{1}{8}$
- (4) $4^{-}(0,0,\frac{1}{4})$ $\frac{1}{4},0,z$ (8) 4^{-} $0,\frac{3}{4},z;$ $0,\frac{3}{4},\frac{3}{8}$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); $t(\frac{1}{2},\frac{1}{2},\frac{1}{2})$; (2); (3); (5)

Positions

Multiplicity, Wyckoff letter,			Coordinates		Reflection conditions			
	Site	symn	netry		$(0,0,0)+$ $(\frac{1}{2})$	$(\frac{1}{2},\frac{1}{2})+$		General:
	16	f	1	(1) x, y, z (5) $\bar{x}, \bar{y}, \bar{z}$		$ \frac{1}{2} \qquad (3) \ \bar{y} + \frac{3}{4}, x + \frac{1}{4}, z + \frac{1}{4} 1 $		
								Special: as above, plus
	8	e	2	$0, \frac{1}{4}, z$	$\frac{1}{2}, \frac{1}{4}, z + \frac{1}{4}$	$0, \frac{3}{4}, \bar{z}$ $\frac{1}{2}, \frac{3}{4}, \bar{z} + \frac{3}{4}$		hkl: l = 2n + 1 or $2h + l = 4n$
	8	d	ī	$0,0,\frac{1}{2}$	$\frac{1}{2}$, 0, 0 $\frac{3}{4}$,	$\frac{1}{4}, \frac{3}{4}$		hkl: l = 2n + 1
	8	c	Ī	0, 0, 0	$\frac{1}{2}, 0, \frac{1}{2}$ $\frac{3}{4}, \frac{3}{4}$	(or $h, k = 2n$, $h+k+l = 4n$
	4	b	ā	$0, \frac{1}{4}, \frac{5}{8}$	$\frac{1}{2}, \frac{1}{4}, \frac{7}{8}$			hkl: l = 2n + 1
	4	a	4	$0, \frac{1}{4}, \frac{1}{8}$	$\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{8}\right\}$			or $2h+l=4n$

Symmetry of special projections

Along [001] p4	Along [100] <i>c</i> 2 <i>m m</i>	Along [110] <i>p</i> 2 <i>mg</i>
$\mathbf{a}' = \frac{1}{2}\mathbf{a} \qquad \mathbf{b}' = \frac{1}{2}\mathbf{b}$	$\mathbf{a}' = \mathbf{b}'$ $\mathbf{b}' = \mathbf{c}$	$\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b}) \qquad \mathbf{b}' = \frac{1}{2}\mathbf{c}$
Origin at $\frac{1}{7}$, 0, z	Origin at $x, \frac{1}{4}, \frac{1}{4}$	Origin at $x, x, 0$

Maximal non-isomorphic subgroups

I	$[2]I\bar{4}(82)$	(1; 2; 7; 8)+
	$[2]I4_{1}(80)$	(1; 2; 3; 4) +
	[2] I2/a (C2/c, 15)	(1; 2; 5; 6)+
IIa	none	

IIb none

Maximal isomorphic subgroups of lowest index

IIc [3]
$$I4_1/a$$
 ($\mathbf{c}' = 3\mathbf{c}$) (88); [5] $I4_1/a$ ($\mathbf{a}' = \mathbf{a} + 2\mathbf{b}, \mathbf{b}' = -2\mathbf{a} + \mathbf{b}$ or $\mathbf{a}' = \mathbf{a} - 2\mathbf{b}, \mathbf{b}' = 2\mathbf{a} + \mathbf{b}$) (88)

Minimal non-isomorphic supergroups

I
$$[2]I4_1/amd(141); [2]I4_1/acd(142)$$

II [2] $C4_2/a$ ($\mathbf{c}' = \frac{1}{2}\mathbf{c}$) ($P4_2/n$, 86)