Circuitos Digitais -ELE300 - Turma 001 Página Inicial Avisos Cronograma Atividades Fóruns Collaborate Calendário Lives Notas

0

Menu das Semanas Semana 1 Semana 2 Semana 3 Semana 4

Semana 5 Semana 6 Semana 7

Semana 8 Orientações para realização da prova

Orientações para realização do exame

Documentos e

informações gerais Gabaritos

Referências da disciplina Facilitadores da disciplina Repositório de REA's

Revisar envio do teste: Semana 6 - Atividade Avaliativa

```
Usuário
                     LIZIS BIANCA DA SILVA SANTOS
                     Circuitos Digitais - ELE300 - Turma 001
Curso
                     Semana 6 - Atividade Avaliativa
Teste
Iniciado
                     24/05/24 19:43
Enviado
                     24/05/24 20:08
Data de vencimento
                    24/05/24 23:59
                     Completada
Status
Resultado da tentativa 10 em 10 pontos
Tempo decorrido
                     24 minutos
                     Olá, estudante!
Instruções
                         1. Para responder a esta atividade, selecione a(s) alternativa(s) que você considerar correta(s);
                         2. Após selecionar a resposta correta em todas as questões, vá até o fim da página e pressione "Enviar teste".
                         3. A cada tentativa, as perguntas e alternativas são embaralhadas
                     Pronto! Sua atividade já está registrada no AVA.
                    Todas as respostas, Respostas enviadas, Respostas corretas, Comentários, Perguntas respondidas incorretamente
Resultados exibidos
   Pergunta 1
                                                                                                                                                         1,43 em 1,43 pontos
```

No contexto de circuitos digitais, existe um determinado conceito que se associa ao circuito capaz de sequenciar um conjunto de estados predeterminados, sendo tais estados controlados por sinal de *clock*, além de outros eventuais sinais de entrada. Qual é esse conceito?

Assinale a alternativa que corresponde à descrição correta do conceito em questão:

```
Resposta Selecionada: o a. máquina de estado.
                     🕜 a. máquina de estado.
Respostas:
                        b. amplificador operacional.
                        c. transformador abaixador.
                        d. teorema de Thévenin.
                        e. mapa de Karnaugh.
```

Comentário **JUSTIFICATIVA** A denominação "máquina de estado" é dada ao circuito que faz o sequenciamento de um conjunto de estados

da resposta:

devem ser descartadas.

predeterminados, podendo tais estados serem controlados por sinais de entrada, como o sinal de clock. Usualmente, circuitos sequenciais que proporcionam sequência de contagem numérica regular são descritos como contadores. As alternativas "mapa de Karnaugh", "transformador abaixador", "teorema de Thévenin" e "amplificador operacional" levam à

Pergunta 2 1,43 em 1,43 pontos Circuitos de contadores síncronos oferecem a conveniência de conseguirem ser projetados de forma personalizada, produzindo, assim, qualquer sequência de contagem que se faça necessária. Sobre as análises pertinentes, cabe a utilização de uma determinada ferramenta

formulação de conceitos completamente alheios à máquina de estado objeto da questão, razão pela qual são incorretas e

analítica.

Assinale a alternativa que corresponde à descrição correta da ferramenta analítica em questão: Resposta Selecionada: e. tabela de estado atual/próximo estado. Respostas: a. transformada de Fourier. b. diagrama de dispersão. c. mapeamento de pontos de controle. d. projeção isométrica. e. tabela de estado atual/próximo estado. Comentário **JUSTIFICATIVA** da resposta:

controle de cada um dos *flip-flops*. Na sequência, é considerado um estado atual para o contador, aplicando tal combinação de bits às expressões lógicas do controle. As saídas das expressões de controle possibilitam que os comandos para cada

Pergunta 3

Pergunta 4

Pergunta 5

da resposta:

Pergunta 6

flip-flop sejam previstos, com o próximo estado resultante para o contador após o clock ser aplicado. Repete-se o processo dessa análise até o ponto em que toda a sequência de contagem consiga ser devidamente determinada. As alternativas "diagrama de dispersão", "transformada de Fourier", "projeção isométrica" e "mapeamento de pontos de controle" levam a alusões inconsistentes, em nada relacionadas a contadores síncronos, razão pela qual são incorretas e devem ser descartadas. 1,42 em 1,42 pontos

A tabela de estado atual/próximo estado pode ser aplicada, primeiramente, escrevendo a expressão lógica para a entrada de

Resposta Selecionada: \bigcirc e. (J,K)=(1,X); e (J,K)=(X,1) Respostas: a. (J,K)=(X,X); e (J,K)=(X,X)

As equações de todas as entradas que permitem que um Flip-Flop JK passe de um estado 0 para 1, e de um estado 1 para 0 são, respectivamente:

b. (J,K)=(1,0); e (J,K)=(0,1) $_{C.}(J,K)=(1,1)$; e (J,K)=(1,1)d.(J,K)=(1,X); e (J,K)=(0,X)e. (J,K)=(1,X); e (J,K)=(X,1) Comentário da JUSTIFICATIVA resposta: Para a passagem de 0 para 1, temos duas opções. Ou o Flip-Flop no modo set (J,K)=(1,0) ou no modo toggle (J,K)=(1,1). Logo, as equações de todas as possíveis combinações é (J,K)=(1,X). Para a passagem de 1 para 0, também temos duas opções. Ou o Flip-Flop está no modo reset (J,K)=(0,1) ou no modo toggle (J,K)=(1,1), resultando em (J,K)=(X,1).

Com relação às máquinas de Moore e Mealy, qual é a afirmação correta?

entrada.

1,42 em 1,42 pontos

Resposta Selecionada: o estado depende do estado atual e da entrada.

a. Na máquina de Moore, a saída depende apenas da entrada. Respostas: b. Na máquina de Mealy, o próximo estado depende apenas da entrada. c. Na máquina de Moore, o próximo estado depende apenas do estado atual. d. Na máquina de Mealy, a saída depende apenas do estado atual. 🕝 e. Tanto na máquina de Moore quanto na de Mealy, o próximo estado depende do estado atual e da entrada. JUSTIFICATIVA Comentário da resposta: Tanto na máquina de Moore quanto na de Mealy, o próximo estado depende do estado atual e da entrada. A diferença é que, enquanto na

máquina de Moore a saída só pode depender do estados atual, na máquina de Mealy, a saída depende tanto do estado atual quanto da

1,42 em 1,42 pontos

1,44 em 1,44 pontos

Dentre suas características determinantes, é preciso apontar que a máquina de Moore é fácil de projetar, ao contrário da máquina de Mealy. E dentre tantos fatores convergentes e divergentes frente ao diagrama de transição de estados, o aspecto da saída dessas

máquinas é um item obrigatório de análise. Assinale a alternativa que corresponde à descrição correta do formato de saída das máquinas de Moore e Mealy: Resposta Selecionada: _{b.} Moore dispõe saída nos estados e Mealy dispõe saída nas transições.

Por natureza constitutiva, as máquinas de Moore e de Mealy se opõem em diversos aspectos de análise, um deles é o de

Respostas: a. inexistem saídas tanto em Moore quanto em Mealy. _o b. Moore dispõe saída nos estados e Mealy dispõe saída nas transições.

c. Moore dispõe saída nas transições e Mealy dispõe saída nos estados. d. tanto Moore quanto Mealy comungam de saída nos estados. e. tanto Moore quanto Mealy comungam de saída nas transições. Comentário **JUSTIFICATIVA**

> saída, em que Moore se notabiliza por saída nos estados, e Mealy por saída nas transições. As alternativas "tanto Moore quanto Mealy comungam de saída nos estados", "Moore dispõe saída nas transições e Mealy dispõe saída nos estados", "tanto Moore quanto Mealy comungam de saída nas transições" e "inexistem saídas tanto em Moore quanto em Mealy" levam à formulação de sentenças tecnicamente inconsistentes, divergentes da definição correta de saída aplicada às máquinas em questão, razão pela qual são incorretas e devem ser descartadas.

 $X_{1}X_{0} = 00$

[Adaptado de Petrobras, 2014] - Considere o Diagrama de Transição de Estados a seguir, em que bits dos estados Q₁ e Q₀ deverão ser implementados a partir

 $\stackrel{ extbf{ iny 100}}{ extbf{ iny 100}}$ de dois Flip-Flops tipo D cujas respectivas entradas são denominadas D $_1$ e D $_0$.

00

 $\operatorname{d.} \overline{Q}_{1} \overline{Q}_{0} X_{0} + \overline{Q}_{0} X_{1}$ $\operatorname{e.} \overline{Q}_{1} \overline{Q}_{0} X_{1} + Q_{1} Q_{0}$ Comentário da resposta: JUSTIFICATIVA A tabela de transição de estados e excitação da máquina de estados é: Q1 Q0 X1 0

> 0 0 0 0

Q1*

X0

0

Q0*

D0

0

10

D1

Pergunta 7 1,44 em 1,44 pontos É bastante corriqueiro que se implementem contadores de circuitos simples por meio da linguagem VHDL. Especialmente duas tarefas centrais precisam ser realizadas em VHDL. A primeira delas é a detecção de borda de clock que seja desejada e a outra é a atribuição do próximo estado adequado junto ao contador.

I. Quando se adota VHDL para descrever um contador, dispensa-se a necessidade de armazenar o estado do contador entre pulsos de clock.

Avalie as asserções a seguir e a relação proposta entre elas.

PORQUE

II. Uma vez que são usadas para as devidas conexões de diversas partes do projeto, VARIABLEs se mostram exatamente como SIGNALs. Avaliando as asserções anteriores, conclui-se que:

Resposta Selecionada: oa. as duas asserções são falsas. 👩 a. as duas asserções são falsas. Respostas:

b. a primeira asserção é falsa e a segunda é verdadeira. c. as duas asserções são verdadeiras e a segunda não justifica a primeira.

d. as duas asserções são verdadeiras e a segunda justifica a primeira. e. a primeira asserção é verdadeira e a segunda é falsa.

JUSTIFICATIVA

determine uma maneira de armazenar o estado do contador entre pulsos de *clock*, pelo contrário, tal necessidade torna-se premente. Essa ação visando ao armazenamento pode ser executada de duas formas: seja mediante SIGNALs ou, ainda, por VARIABLEs. A asserção II é falsa, porque não se pode assumir que VARIABLEs sejam exatamente como SIGNALs, principalmente por

A asserção I é falsa, porque, quando o VHDL é a linguagem utilizada para descrever um contador, não se dispensa que se

não se empregar VARIABLEs para conectar diferentes partes do projeto, em vez disso, seu uso é para proceder ao

armazenamento de determinado valor. Domingo, 16 de Março de 2025 18h07min36s BRT

Comentário da

resposta: