Mathematical Operations

- Base 10: our native base.
- Glyphs: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The algorithms to evaluate various functions are the same, regardless of base
- On a computer, we are limited to a certain number of digits.
- We can summarize our results: 0 == FALSE, 1 == TRUE
 - For unsigned operations:
 - the final value is Zero (Z)
 - the calculation resulted in final carry (C)
 - For signed values
 - the final value is Negative (S)
 - the calculation resulted in an overflow ()

Addition: (Before)

- First, introduce some status values:
 - Zero, Carry, (Sign, Overflow)
- Assume a word size of 4
- Notice the notation of "to carry" a value

0

2

Addition: (After)

- First, introduce some status values:
 - o Zero, Carry, (Sign, Overflow)
- Assume a word size of 4
- Notice the notation of "to carry" a value

BCD: Addition

Addition performed on the nibble level: 6+7

0	1	1	0	0
	0	1	1	0
+	0	1	1	1
	1	1	0	1

if (carry or invalid code) then

+		0	1	1	0	
	1	0	0	1	1	

N	Code	N	Code
0	0000	8	1000
1	0001	9	1001
2	0010		1010
3	0011		1011
4	0100		1100
5	0101	Х	1101
6	0110		1110
7	0111		1111

BCD: Binary Coded Decimal

- Another encoding for numbers, where precision is required
- Four bits are used to encode each digit
- Perform addition per nibble
- Example: 246 + 127 = 373

0				0					1		1	1	0	0
	0	0	1	0		0	1	0	0		0	1	1	0
+	0	0	0	1		0	0	1	0		0	1	1	1

0	0000	8	1000
1	0001	9	1001
2	0010		1010
3	0011		1011
4	0100		1100
5	0101		1101
6	0110		1110
7	0111		1111

Ν

Code

Ν

Code

Subtraction (before)

- 3757 1963 = 1794
- Traditional Method:
 - Notice the notation of "to borrow" a value
- Other Methods: (common core)
 - Left → Right (Mental Math)
 - Singapore (No Borrow)
 - Counting Up (Giving Change)
- Via Method of Complements

Subtraction (after)

- 3757 1963 = 1794
- Traditional Method:
 - Notice the notation of "to borrow" a value
- Other Methods: (common core)
 - Left → Right (Mental Math)
 - Singapore (No Borrow)
 - Counting Up (Giving Change)
- Via Method of Complements

Method of Complements

- A technique to encode both positive and negative numbers
 - o uses the same algorithm to perform addition
 - subtraction perform my addition of complements
- Complement: a thing that completes or brings to perfection
- Radix 10: (the radix or base is the number of unique digits to represent a number)
 - o 10's complement

7 + x = 10	: x is the 10s complements of 7	x = 3
46 + y = 100	: y is the 10s complements of 46	y = 54

o 9's complement

The math:

11.	2nd Grade	10's complement	9's complement
	45	45	45
	<u>- 11</u>	<u>+ 89</u>	<u>+ 88</u>
	34	-1 34	-1 33 + 1 = 34

Algorithm: Subtraction via 9's Complements

- Example: 873 218 ⇒ 0873 0218
- 1. Take the nines complement of the subtrahend (0218)
- 2. Add the complement to the minuend (0873)
- 3. Drop the leading "1"
- 4. Add 1

Algorithm: Subtraction via 9's Complements

- Example: 873 218 ⇒ 0873 0218
- 1. Take the nines complement of the subtrahend (0218)
- 2. Add the complement to the minuend (0873)
- 3. Drop the leading "1"
- 4. Add 1
- Optimization: introduce initial carry in

6

5

Algorithm: Subtraction via 10's Complements

- Example: $13 9 \Rightarrow 0013 0009$
- 1. Take the 10s complement of the subtrahend (0009)
- 2. Add the complement to the minuend
- 3. Drop the leading "1".
- Optimization: Addition of adding one is baked in!

0

Multiplication

- Problem: 109 x 13 = 1417
- Approach: Successive Additions
 - o Consider: 9 + 9 + 9 .. + 9 (13 times) = ?
 - What is carry value for the 10's column?
- Approach: Long Multiplication

```
013 (A)

* 109 (B)

-----

117 (A*9)*1

+ 0000 (A*0)*10

-----

117

01300 (A*1)*100

-----

1417
```


Algorithm for Multiplication

```
sum = 0;
for (d = 0; d < 3; d ++) {
    sum += A * B[d];
   A = A * 10; // Shift to the left
// B[0] = 9
// B[1] = 0
// B[2] = 1
```


Algorithm for Binary Multiplication

```
sum = 0;
for (d = 0; d < 3; d ++) {
    if (B[d] == 1) {
        sum += A * B[d];
    }
    A = A * 2; // Shift to the left
    A << 1;
}</pre>
```

reframe:

```
010 (A = 2)

* 101 (B = 5)

-----

010 (A*1) *1

+ 0000 (A*2) *0

-----

0010

01000 (A*4) *1

-----

01010 (A*B = 10)
```

original:

```
010 (A = 2)

* 101 (B = 5)

-----

010 (A*1)*1

+ 0000 (A*0)*2

-----

0010

01000 (A*1)*4

-----

01010 (A*B = 10)
```

Requires word_size additions