탈플라스틱 활동 발표

바이오 플라스틱 프로젝트

- 1. 활동 목적 및 목표
- 1.1. 활동 목적 및 동기
- 1.2. 활동 목표

- 2. 실험 내용
- 2.1. 바이오플라스틱 제작
- 2.2. 분해 프로토콜
- 2.3. 바이오플라스틱 분해

플라스틱의 문제점

생산량, 사용량 실질적 재활용량 폐기처리

바이오 플라스틱

바이오 기반 플라스틱 생분해성 플라스틱

1 - 1) 활동 목적 및 동기

- 플라스틱의 합성 이후 생산량과 사용량은 매년 증가
- 분해가 어려워 실질적 재활용률이 낮고 대부분이 소각하여 처리됨
- 미세플라스틱 형태로 생태계를 위협하는 문제 유발
- → 기존의 플라스틱을 대체할 소재로 바이오 플라스틱(bioplastic)을 생각함

1-2) 활동 목표

- 바이오 기반 플라스틱을 직접 제작하여 특성을 확인
- 분해에 대해 이점을 가지고 있지 않은 bio-base의 플라스틱을 더효과적으로 분해하는 방법을 탐구
- → 제작과 분해 모두 용이한 바이오 플라스틱을 제작하고자 함

활용가치가 높음에도 불구하고 쉽게 버려지는 미강(쌀겨)와 주변에서 쉽게 구할 수 있는 옥수수 전분, 우유를 이용하여 바이오 플라스틱을 제작하고, 이를 녹농균(Pseudomonas) 등 의 플라스틱 분해 균주를 이용해 분해하면서 효과적인 분해 방법을 탐구하고자 한다.

바이오 플라스틱 제작

미강 기반 플라스틱

우유 기반 플라스틱

전분 기반 플라스틱

2. 활동 내용 - 1) 바이오플라스틱 제작

2023.8.30 <미강 기반 바이오 플라스틱 제작>

1. 실험 재료

폴리 부틸렌 숙신산(PBS), 말레산 무수물(MA), 미강가루 미강의 화학처리에는 1N 수산화나트륨 용액 및 초산을 사용하며, 바이오 플라스틱 제조 시 사용한 가소제로는 글리세롤을 사용한다.

2. 실험 방법

- 가. 미강 가루 200g을 1M NaOH 200ml, 1800ml의 증류수를 이용하여 중화시킨다.
- 나. 1의 용액을 1시간 동안 60도에서 400rpm으로 교반한다.
- 다. 교반이 완료된 미강가루 혼합액에 백식초를 이용하여 pH8.2까지 중화시킨다.
- 라. 용액을 3분할한 후, 각각의 용액에 MA(무수말레인산)과 글리세롤을 [표 1]과 같이투입하고, 플라스틱 비커에 옮겨 담아 아래 오른쪽 사진처럼 55도의 건조오븐에서 48시간 건조한다.

MA의 양	글리세롤의 양
0.4	4g
0.8	4g
0.8	8g
	0.4

[표 1] 무수말레인산과 글리세롤 비율

[그림 1] 미강을 이용한 플라스틱 제작 과정

2. 활동 내용 - 1) 바이오플라스틱 제작

2023.8.31 <우유(카제인) 기반 바이오 플라스틱 제작>

- 1. 실험방법
- 가. 무지방 우유 200mL를 60C°에서 가열한다. 목표 온도에서 백식초 20mL를 섞어준다. 교반기를 이용해 잘 혼합시킨 후, 응고된 카제인이 보이면 가열을 멈춘다.
- 나. 사진처럼 거름종이와 깔때기를 이용하여 응고된 카제인만을 분리해낸다.
- 다. 분리한 카제인은 덩어리로 뭉쳐 호일에 넓게 펴주고 10일간 상온 에서 건조시킨다.

[그림 3] 선행연구 속 카제인 추출물의 응고 특성

[그림 4] 카제인 분리

[그림 5] 카제인 기반 플라스틱

2. 활동 내용 - 1) 바이오플라스틱 제작

2023.9.1 <(고구마)전분 기반 바이오 플라스틱 제작>

- 1. 실험방법
- 가. 고구마 전분 1.5g에 증류수 10mL, 글리세린 0.5~1.5g, 백식초 1mL를 추가한다.
- 나. 10~15분 동안 투명하고 걸쭉해질 때까지 가열 교반한다.
- 다. 호일에 원하는 크기에 맞추어 부어주고, 기포를 이쑤시개로 터뜨려 직사광선을 피해 상온에서 건조시킨다.

[그림 6] 선행연구 속 전분 바이오 플라스틱 구조

[그림 7] 전분 기반 바이오 플라스틱

2. 활동 내용 - 2) 분해 프로토콜

2023.7.1~2023.8.20, 2023.12.13

<이론적 배경 조사>

- 1. 미생물을 이용한 플라스틱 생물학적 분해 동향
- 플라스틱이 물리적으로 분해된 후에 미생물이 가지고 있는 에스터가수분해효소(esterase), 라이페이스(lipase), 큐틴분해효소(cutinase) 등의 작용으로 중간물질로 분해되고 미생물의 대사회로를 통해 미생물의 바이오메스 형성에 사용되거나 저분자량 유기물, 이산화탄소로 분해된다.
- 2. 'Pseudomonas가 플라스틱 분해능을 가지고 있다'는 선행 논문 자료 슈도모나스 종은 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리스티렌, 폴리우레탄, 폴리에틸렌 테레 프탈레이트, 폴리에틸렌 숙시네이트, 폴리에틸렌 글리콜 및 폴리비닐 알코올을 다양한 효율로 분해하는 것으로 확인되었다.

Wilkes, R. A., & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of applied microbiology, 123(3), 582-593.

2. 활동 내용 - 2) 분해 프로토콜

<균주 배양 실습 프로젝트>

- 1. Pseudomonas 배지 조성
- 가. Nutrient Broth 액체 배지 증류수 1L 당 NB 8g, Soy Peptone 5g, Yeast Extract 3g을 첨가한다.
- 나. Nutrient Broth 고체 배지 가.에 agar 15g을 추가한다.
- 교주 배양 및 계대 배양
 실험에 사용된 균주 Pseudomonas는 호기성 세균으로
 배양하는 과정에서 산소의 공급이 필요하다. 따라서 산소 공급
 을 위해 진탕배양을 진행하였다.
- 가. Pseudomonas 접종앰플에 담긴 Pseudomonas를 NB 액체 배지에 접종한다.
- 나. Pseudomonas streaking NB agar 고체배지에 Pseudomonas를 도말한다.

[그림 8] streaking

2. 활동 내용 - 2) 분해 프로토콜

<플라스틱 분해 정도 관찰 지표 및 실험 계획> 가. 지표

바이오 플라스틱 분해 실험 1 크기 변화 관찰 바이오 플라스틱 분해 실험 2 무게 측정

[그림 9] 실험 계획 구상

2. 활동 내용 - 3) 바이오플라스틱 분해

1. 바이오 플라스틱 분해 실험1 방법

- 가. NB배지 500ml에 Pseudomonas chloroaphis, Pseudomonas putida를 10개씩 tube에 나누어 접종한다.
- 나. 미강, 전분, 우유 기반 플라스틱을 300um로 균일하게 분쇄 하여 12well에 소량씩 분주한 후, 액체배지를 각각 3ml씩 분주한다.
- 다. 2주 뒤 실험 결과를 위상차현미경으로 플라스틱 크기의 변화를 관찰한다.

[그림 10] 바이오 플라스틱 분해 실험 1

2. 활동 내용 - 3) 바이오플라스틱 분해

1. 바이오 플라스틱 분해 실험2 방법

- 가. NB배지 500ml에 Pseudomonas chloroaphis, Pseudomonas putida를 10개씩 tube에 나누어 접종한다.
- 나. 미강, 전분 플라스틱의 표면적을 균일하게 하여 자른다.
- 다. 자른 플라스틱을 균주가 접종된 액체배지 넣고, 진탕배양 시켜 바이오필름이 형성되도록 한다,
- 라. 2주뒤 각각의 플라스틱의 무게를 측정하여 변화량을 비교한다.

[그림 11] 바이오 플라스틱 분해 실험 2

2023.11.1

그림 8] 바이오 플라스틱 최종 제작 결과물

1. 바이오 플라스틱 분해 실험 1(크기 비교) 관찰 결과

1주차	전분 30g 전분 15g		전분 15g + 설탕물	
x4				
x10				

2. 바이오 플라스틱 분해 실험 2(무게 측정)

가. 분해 전 플라스틱 무게 측정 결과

	전분 30g	전분 15g	전분 15g	미강 MA 0.4g	미강 MA 0.8g
Pseudomonas chloroaphis	0.4015g	0.0878g	0.1283g	0.3240g	0.3625g
Pseudomonas putida	0.3985g	0.0585g	0.1395g	0.4025g	0.2489g
균주 x	0.4010g			0.3691g	

나. 분해 후 플라스틱 무게 측정 결과 2주 뒤인 12/28에 측정하여 무게 비교를 할 예정이다.

<제작한 바이오플라스틱의 장점>

- 미강, 우유(카제인), 고구마 전분을 활용하여 제작한 플라스틱은 제작이 간단함
- 원하는 형태로 성형하는 과정 또한 어렵지 않음
- → 바이오플라스틱의 제작이 확대된다면 장기적으로 가정에서 단순한 플라스틱을 제작하여 사용할 수 있게 됨에 따라 기존 석유기반 플라스틱의 사용량이 크게 줄을 것으로 생각됨

<추후 실험 계획>

- 무게 측정 실험의 결과값도 도출하여 녹농균에 의한 바이오플라스틱 분해 정도를 비교
- 무게 측정 실험에서의 고체 표면에 바이오필름이 형성되었는지 현미경 관찰
- Pseudomonas 이외에도 플라스틱을 분해할 수 있는 균주를 조사하여 개별 균주뿐만 아니라 미생물의 군집을 대상으로도 복합적으로 연구를 진행하여 바이오 플라스틱의 가장 효율적인 분해 방법을 탐구
- 본 실험에서 사용한 프로토콜을 일반인도 손쉽게 숙지할 수 있도록 수정하고, 카제인이나 옥수수 전분, 녹농균과 같은 초기 실험군에 대한 접근성을 제고하여 '바이오플라스틱 키트'를 제작

감사합니다

