Question Bank- Basic Electronics-19EC112

Questions on BJT

4 Marks

- 1. What is punch through effect in a transistor?
- 2. Calculate α_{dc} and β_{dc} for $I_C = 1mA \& I_B = 25\mu A$. Determine the new base current to provide a collector current of $I_C = 5mA$.

6 Marks

- 1. Explain the transistor as:
 - i) an Amplifier
 - ii) a Switch with neat circuit diagrams.
- 2. Draw the circuit diagram of a single stage RC coupled amplifier and explain the significance of each component.
- 3. Deduce the relationship between α and β of a transistor
- 4. With simple circuit diagram briefly explain the voltage amplification process in a transistor
- 5. Draw the circuit for Common Emitter configuration using transistor in NPN mode. Sketch the input and output characteristics with the working and indicate various regions of operations.
- 6. Draw the circuit for Common Base configuration using transistor in NPN mode. Sketch the input and output characteristics with the working and indicate various regions of operations.

8 Marks

1. Describe the phase reversal concept in a single stage CE-RC coupled amplifier with a neat sketch. Explain the significance of coupling capacitors and bypass capacitor in the circuit. Draw the input/output waveforms.

Question Bank- Basic Electronics-19EC112

Questions on Feedback amplifiers and Oscillators

2 Marks

1. State Barkhausen's criteria for generating sustained oscillations.

4 Marks

1. State and explain Barkhausen's criterion for generating sustained oscillations with relevant diagrams.

- 2. Design the value of inductor to be used in Colpitt's oscillator tank circuit to generate a frequency of 10 MHz. The tank circuit has C_1 =100 pF and C_2 = 50 pF.
- 3. An oscillator circuit has an oscillating frequency of 2 kHz. Its feedback circuit has the value of capacitor as $C = 0.3\mu F$. What must be the value of R in the feedback circuit so that it generates sustained oscillations? Draw the oscillator circuit.
- 4. An oscillator circuit has 2 capacitors of values $0.01\mu F$ and $0.001\mu F$ with an inductor of $5 \mu H$ in its feedback circuit. Calculate the frequency of oscillations and also sketch the circuit diagram of appropriate oscillator.
- 5. An amplifier with positive feedback has a constant amplifier gain without feedback as A = 20. The gain of the amplifier with feedback $A_f = 200$. Calculate the feedback network gain β .

5 Marks

- 1. Using suitable diagram and mathematical expressions illustrate the operation of voltage series feedback amplifier.
- 2. Calculate the frequency of oscillations of an oscillator circuit with two capacitors of values $0.01\mu F$ and $0.001\mu F$ and an inductor $5\mu H$ in the feedback network. Also sketch the circuit diagram of appropriate oscillator.
- 3. Outline the circuit diagram for RC phase-shift oscillator and discuss its operation.

6 Marks

1. Discuss the concept of series voltage negative feedback with a block diagram and derive an expression for closed loop voltage gain.

8 Marks

- 1. Draw the block diagram of series voltage negative feedback amplifier and derive its closed loop voltage gain. State any two advantages of the circuit.
- 2. With neat circuit figure and relevant equations, explain the working of an RC phase shift oscillator. Mention ant two advantages and disadvantages of the same.
- 3. With neat circuit figure and relevant equations, explain the working of a Colpitts oscillator. Mention ant two advantages of the same.
- 4. With neat circuit figure and relevant equations, explain the working of a Hartley oscillator. Mention ant two advantages of the same.