Applying a Random Forest II

MGMT 638: Data-Driven Investments: Equity

Kerry Back, Rice University

Outline

- Read current data
- Interact features with market volatility
- Load saved model
- Make predictions

Read data


```
import pandas as pd

df = pd.read_excel("https://www.dropbox.com/scl/fi/5mof24qi5is6x9xcbkmam/data
```


Read model


```
In []: from joblib import load
    from urllib.request import urlopen

url = "https://www.dropbox.com/scl/fi/kssvcsgze16p36dwjyiaw/forest_ver2.joblil
    file = urlopen(url)
    forest = load(file)
```


Make predictions


```
In [38]: features = [
              "marketcap",
              "pb",
              "mom",
              "volume",
             "volatility",
              "roe",
             "accruals",
              "agr"
         features.sort()
         for x in features:
             df[x+"\_vol"] = df[x]*df.mktvol
         features_final = features + [x+"_vol" for x in features]
         df["predict"] = forest.predict(X=df[features_final])
```


Distribution of predictions


```
In [39]:
         df.predict.describe()
Out[39]:
          count
                   1753.000000
                     50.043001
          mean
          std
                    1.615579
          min
                     38.642801
          25%
                     50.023600
          50%
                     50.649518
          75%
                     50.925365
                     53.033142
          max
          Name: predict, dtype: float64
```


Create an interactive predictor


```
import numpy as np

def predict(mktvol):
    lst = []
    for x in features:
        item = input(f"Input {x}: ")
        lst.append(float(item))
    lst = lst + [mktvol*x for x in lst]
    arr = np.array(lst).reshape(1, len(lst))
    d = pd.DataFrame(arr, columns=features+[x+"_vol" for x in features])
    return forest.predict(d).item()
```


Use the interactive predictor


```
In [ ]: predict(0.15)
```

