به نام پاک آفریدگار

دانشکده مهندسی و علوم کامپیوتر

تمرین سری دوم درس شبیه سازی کامپیوتری ، فروردین ماه ۱۴۰۱

مدرس: دکتر فرشاد صفایی

- باشد، یک $ar{X}=64.3$ دارای میانگین $\delta=225$ از جامعه نرمالی با واریانس $\delta=225$ دارای میانگین $ar{X}=64.3$ باشد، یک فاصله اطمینان ۹۵٪ برای μ یعنی میانگین جامعه پیدا کنید.
- و سپس با استفاده از فرمول بازگشتی $p(0;\lambda)$ هنگام محاسبه مقادیر توزیع پوآسن غالبا می توان ابتدا با محاسبه $p(0;\lambda)$ و سپس با استفاده از فرمول بازگشتی $p(x+1;\lambda)=\frac{\lambda}{\lambda+1}p(x;\lambda)$ انجام کار را تسهیل کرد. درستی فرمول فوق را بررسی کرده و آن را با توجه به اینکه $\lambda=0.1353$ برای $\lambda=0.1353$
- ست. مطلوب است $f_x(x)=rac{e^{-4}4^x}{x!}$ اشد. مطلوب است کنید ورض کنید X_1,X_2,\dots,X_{49} باشد. مطلوب است . $P=\{220<\sum_{i=1}^{49}X_i<233\}$ محاسبه
- نده کنید ۲ درصد جمعیت دارای گروه خونی AB هستند. یک نمونه ۶۰ تایی از جمعیت به طور تصادفی انتخاب شده است. اگر متغیر تصادفی X را تعداد افرادی که دارای گروه خونی AB هستند در نظر بگیریم، احتمال اینکه هیچ یک دارای گروه خونی AB نباشند چقدر است؟
 - P(|t| < b) = 0.9 برای توزیع t با درجه آزادی ۹۰ مقدار b بیدا کنید طوریکه t برای توزیع $^{\circ}$
 - ۰. اگر نمونه ای تصادفی از جامعه ای نامتناهی که متشکل از اعداد صحیح N,...,۲,۱ است انتخاب شوند، نشان دهید که

الف) میانگین توزیع
$$\overline{X}$$
 ، \overline{X} است .
$$(N+1) \cdot \frac{(N+1)(N-n)}{n} \cdot \overline{X} \cdot \overline{X}$$
 ب واریانس توزیع \overline{X} ، \overline{X} است .
$$(N+1) \cdot \frac{(N+1)(N-n)}{n} \cdot \overline{X} \cdot \overline{X}$$
 ب میانگین واریانس توزیع $Y = n \cdot \overline{X} \cdot \overline{X} \cdot \overline{X}$ عبارتند از
$$(Y) = \frac{n(N+1)}{n} \cdot \overline{X} \cdot \overline{X} \cdot \overline{X} \cdot \overline{X}$$
 ب میانگین واریانس توزیع $Y = n \cdot \overline{X} \cdot \overline{X} \cdot \overline{X} \cdot \overline{X} \cdot \overline{X} \cdot \overline{X}$.

- ۷۰ متوسط عمر پردازنده ای دارای توزیع نمایی با میانگین ۴ سال است . اگر بدانیم یک پردازنده ۴ سال کار کرده احتمال
 اینکه باز کار کند را بیابید .
- ست.مطلوب است $g(x) = Ae^{-x^2+8x-16}$ فرض کنید تابع فراوانی متغیر تصادفی X دارای توزیع نرمال به شکل $g(x) = Ae^{-x^2+8x-16}$ است.مطلوب است محاسبه میانگین، واریانس و مقدار A برای این توزیع.
- و. اگر X یک متغیر تصادفی پواسن با نرخ λ باشد و P(2)=2P(0) در این صورت مطلوب است محاسبه $P\{X^2+X-2>0\}$
- ۱. فرض کنید متوسط تعداد از کارافتادگی سرور دانشگاه شهید بهشتی در طول یک ماه، ۴ گزارش شده باشد که از توزیع یوآسن تبعیت می کند.
 - الف) احتمال اینکه در طول یک هفته هیچگونه از کارافتادگی در این سرور گزارش نشود، چه قدر است؟
 - ب) اگر تعداد از کارافتادگی ها در طول یک هفته در این سرور را با متغیر تصادفی X نمایش دهیم، تابع مولد
 - گشتاور X را تعیین کنید و سپس به کمک آن میانگین و واریانس را بدست آورید.
 - ج) اگر فرض کنیم خطاهای رخ داده در روی یکی از کابلهای اتصال این سرور از فرآیند پوآسن با نرخ ۲.۱ خطا در دقیقه پیروی کند، احتمال اینکه در مدت ۴ ثانیه از زمان ارسال داده ها هیچ خطایی وجود نداشته باشد چه قدر است؟
- 11. رمز عبور یک شبکه کامپیوتری عددی ۵ رقمی است و اگر شخصی ۳ بار رمز را غلط وارد کند دیگر نمیتواند وارد شبکه گردد. فرض کنید شخص رمز خود را فراموش کرده و فقط عدد اول را به یاد می آورد و می داند سایر عددها شامل ۵, ۵, ۳, ۳ هستند. فرد تصادفا رمز را وارد میکند و هر بار فراموش میکند که بار قبلی چه عددی را وارد کرده است. احتمال اینکه این شخص بتواند وارد شبکه گردد چه قدر است؟