

	Date
Expt No	Page No
D Elip-Flop	
· Objective:- The D Flip-Flop St OF the D input on the risis CIK signed and outputs the an. It also has an asynchro to clear the outputs.	ng edge of the complement on
· Description:	
· Inputs · D : Date input · CIK: Clock signed (triggest »ising edge) RESET: Asynchromus rese	
· Outputs · Q: Stored value · Qn: Complement of A	
Beholijour: On a rising clock eco	ge, 0=D, and an= 3 reset to 0 and
Teac	cher's Signature

	Date
Expt No	Page No
architecture behowioral of D-FlipFl	op is
Signal 8 reg, On reg: Stel logic:	= '0';
	X/s
begin	
PROCESS (CIK, RESET)	*
begin	
if (RESET='1') then	
Q-reg <= '0';	
an reg (= '1';	
elsif rising edge (CIK) than	
0-reg = D;	
An reg <= not D;	<u></u>
end if;	
end process;	
A / = A 200 €	8
an <= an reg;	
an - an ord)	
end behavioral;	
that benefitions,	
· Test bench:	
Teacher's Signa	ature

			Date			
Expt No.	No Page No			No8		
	• IF J=1 and K=1 • IF J=0 and K=1 • IF J=0 and K=), 9 13 , 9 13	set to	to 0.		
· Touth J	- Touth Table					
J K O O D O L L O D T: TO Cycle.	CIK (riving edge) A A A ggles between 0 0	0 1 7	On eac	h clock		
· VHDL Co	de:					
use ieee.	std-logic 1164.011; Numeric Std.011;					
Teacher's Signature						

"Test case 2 Feiled" Severity error;

J. TB (='1';

KTB (='L';

won't for CIK Period;

aggest (A Th, '1' and An Th = '0') report

"Test couse I revised (1st Toggle)" sevenity error;

Wait for CIK period;

assert (BIB; o' and BrIB=1) report

"Test coise ? reiled (2nd toggle)" sevenity error;

woult for CIK Period;

gesext (BIB=11 and BNIB=10) report

" Test coise 3 reviled (3rd toggle)" Severity error;

J-TB <= '0';

K-TB Z='0';

won't for CK Period;

assert (B-TB=11' and An-TB='0') report

"Test Corce 4 feriled (hold previous value)"

Severity error;

wort;

end processi

end Behowioral;

High Clock 0

CIK: in Std logic;

Count: out Std logic vector (2 downto 0));

end Counter;

Page No. 17 xpt No._ 75+ <= '1'; wonit for 20 ns; Wonit; wonit for 100 ns; end process; end behaviour; Teacher's Signature ___

4CD

Objective: -

The objective of this is to implement a CCD (Greatest Common Divisor) Calculator For two U-bit inputs. It Computes the GCD of two numbers a and b and outputs the result as a 4-bit Dector.

Description:

· Input:

- · a: 4-bit first number
- · b : 4-bit Second humber

· outputs

· Red result: A U-bit Jector that holds the computed eco of a and b.

· Behavior:

- . The ECD is computed using the Euclidean algorithm, which representedly subtracts the smaller humber from the lorger number untill one of the numbers becomes o.
- . The inputs a and b are first Converted to integers. The GOD Function Calculates the ECD of these Integers

The result is then Converted back to a 4-bit 3td logic Dector and assigned to god-result.

Truth Table:

Q(u-bit)	b(u-bit)	acol result (4-bit)
0000	0000	0000
0001	0001	0001
0010	0010	0010
0100	0010	0010
0101/	0010	0001
0110	1100	0001
1110	1100	0010
	1011	1000

VHDL Code :-

library leee; use leee std-logic nou.all; use leee humeric std.all;

gcd result: Out Stellogic Tector (3 downto a);

end component;

Signal god-result th: Std logic Vector (7 downto 0);

constant CLOCK PERIOD: time := 10 ns;

CIK Process: process

Wout for CLOCK-PERTOD 12; while true loop

ad process cik process;

34m proc: process hegin

ath <= "0101"; wait for long;

