

Systèmes Numériques et FPGA

Hervé Le Provost

DRF/Irfu - CEA Saclay herve.le-provost@cea.fr

Version 1.1 – 3 janvier 2017

FPGA - Cellule de Base

FPGA: Field Programmable Gate Array

Configuration statique (SRAM)

FPGA - Lego

Ligne de routage Verticale

FPGA - Lego

o <= i1 and i2;</pre>

FPGA-Logique Asynchrone

FPGA-Logique Asynchrone

FPGA-Logique Synchrone

FPGA-Logique Synchrone

FPGA-Buffers Globaux

Distribution de l'Horloge sur des lignes dédiées-Equilibrage de l'arbre d'horloge

tCko=1.016 ns tSetup=0.742ns

t1=0.379 ns t3=2.491 ns

t2 = 0.378 ns t4 = 0.643 ns

Pour l'exemple :

•les 3 FLIP-FLOP sont associés à la broche (registre IOB)

•broche 'O' physiquement opposée aux broches 'i1' et 'i2'

Fréquence Maximale?

$$FMAX=1/(tCko+t1+t4+t3+tSetup) = 189.7MHz$$

calcul de FMAX exact?

tSkew = -0.127 ns

FMAX=1/(tCko+t1+t4+t3+tSetup+tSkew)=185.2 MHz

Diminution des délais de routage

FLIP FLOP

Placement dans un registre d'entrée/Sortie (RIOB)

Fréquence Maximale du système = min (FMAX1,FMAX2, FMAX3, FMAX4, FMAX5). RIOB : FMAX4 et FMAX5 indépendants des délais de routage interne non reproductibles du FPGA

FPGA – Les blocs de conception IP

IP Intellectual Property

FPGA – Exemple Famille XILINX

Ressources /Blocs en dur	XCE6VHX565T (VIRTEX-6)	XC5VFX200T (VIRTEX-5)	XC3SD3400A (SPARTAN- 3A)
LUT	354240 LUT-6	122880 LUT-6	47744 LUT-4
FLIP-FLOP	708480	122880	47744
PROCESSEUR	0	2 PPC440@400MHz	0
RAM/FIFO	156 x 36Kbits	456 x 36Kbits	126 x 18Kbits
TRANSCEIVER	24 9,95 Gb/s -11,18 Gb/s	24 150 Mb/s -6,5 Gb/s	0
CONTROLEUR ETHERNET (MAC)	4	8	0
TAILLE MÉMOIRE DE CONFIGURATION	153,2 Mbits	70,9 Mbits	11,7 Mbits

FPGA- versus CPLD

FPGA- un design, les entrées

Evénements Photon

Temps	Energie	Numéro Pixel
10-bit	12-bit	10-bit (0 à 799)

Saturation Caméra 100 000 coups/s

Alerte GRB détecté vers le sol

FPGA – Un design, les composants

Design?

FPGA- Un design

FPGA- Un design

	Caméra (Max)	Caméra (Saturation)	Bus PCI	Bus Mémoire
Largeur bus (bit)	1	32	32	32
Fréquence (MHz)	4	0,1	33	100
Nombre de bus	8	1	1	1
Bande Passante (M octet/s)	4	0,4	132	400

Bande passante maximale, efficacité des protocoles non prise en compte

FPGA- Un design

FPGA-un design

interruption toutes les 10 ms Programme d'interruption : lecture du registre FPGA contenant le nombre de photons écrits

1 cycle PCI _______ 1 cycle Mémoire