Mid Level Image Features : Shapes

Eun Yi Kim

INDEX

Shapes

Approaches to Shape description

- Region based shape descriptors
- Boundary based descriptors
- Interest Operator + Descriptor

Applications

Shapes

Shape goes one step further than color and texture.

- Color and Texture are both global attributes of an image; shape is not an image attributes
 - Shape tends to refer to a specific region of an image
 - Segmentation is still a crucial problem to be solved, so interests operator is employed for shape description
- Two-dimensional shape recognition is an important aspect of image analysis (image matching/retrieval)

Shape descriptors

- There are three approaches to defining shapes
 - 1. Shape represented by its region descriptors Simple !!
 - 2. Shape represented by its Boundary
 - 3. Shape represented by its interests points (corners)

Region based Shape Descriptors

Geometric and Shape Properties

- area
- centroid
- perimeter
- perimeter length
- circularity, elongation
- mean and standard deviation of radial distance
- second order moments (row, column, mixed)
- bounding box
- extremal axis length from bounding box
- lengths and orientations of axes of best-fit ellipse

Often want features independent of position, orientation, scale

Zero-order moment

- Why use moments?
 - Geometric moments of different orders represent spatial characteristics of the image distribution
- Zero-order moment

$$A = \sum_{i=1}^{n} \sum_{j=1}^{m} B[i, j]$$

- Total intensity of image
- For binary image → area

Centroid

- An object's position in the image determines its spatial location.
- center of area (a centroid, center of mass): first order moment
 - Intensity centroid
 - Geometrical center in binary image

$$\begin{cases}
\overline{x} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} jB[i,j]}{A} & \text{: average (mean) of } j \text{ coordinates of object (1) pixels} \\
\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} iB[i,j]}{A} & \text{: average of } i \text{ coordinates of object (1) pixels}
\end{cases}$$

- A precision of tenths of a pixel is often justifiable for the centroid.
- Centroids of regions can be interesting points for analysis and matching

Second Moments

There are three second-order spatial moments of a region

Second-order row moment

$$\mu_{rr} = \frac{1}{A} \sum_{(r,c) \in R} (r - \overline{r})^2$$

Second-order mixed moment

$$\mu_{rc} = \frac{1}{A} \sum_{(r,c) \in R} (r - \overline{r})(c - \overline{c})$$

Second-order column moment

$$\mu_{cc} = \frac{1}{A} \sum_{(r,c) \in R} (c - \overline{c})^2$$

Moment Invariants

• Geometric transformation: translation, scale, mirroring, rotation

Contrast second moments

- For the letter 'I'
- Versus the letter 'O'
- Versus the underline '_'

Perimeter and Perimeter Length

$$\begin{split} \text{Perimeter} \quad P_4 &= \{ \; (r,c) \in R \; | \; N_8(r,c) - R \neq \emptyset \; \} \\ P_8 &= \{ \; (r,c) \in R \; | \; N_4(r,c) - R \neq \emptyset \; \} \\ \text{Perimeter Length} \\ &| \; P | = | \; \{ k \; | \; (r_{k+1},c_{k+1}) \in N_4(r_k,c_k) \; \} \; | + \sqrt{2} \; | \; \{ k \; | \; (r_{k+1},c_{k+1}) \in N_8(r_k,c_k) - N_4(r_k,c_k) \} | \end{split}$$

Perimeter can vary significantly with object orientation

Perimeter and Perimeter Length

4-connected adjacency

8-connected adjacency

Circularity

 Common measure of circularity of a region is length of the perimeter squar ed divided by area

• Circularity (1):
$$C_1 = \frac{|P|^2}{A}$$

Circularity as variance of "radius"

- A second measure uses variation off of a circle
- Circularity (2): $C_2 = \frac{\mu_R}{\sigma_R}$

 $-\mu_R$ and σ_R^2 are the mean and variance of the distance from the centroid of the shape to the boundary pixels (r_k, c_k) .

$$\mu_R = rac{1}{K} \sum_{k=0}^{K-1} \|(r_k, c_k) - (\bar{r}, \bar{c})\|$$

$$\sigma_R^2 = \frac{1}{K} \sum_{k=0}^{K-1} [\|(r_k, c_k) - (\bar{r}, \bar{c})\| - \mu_R]^2$$

Invariant descriptors

Orientation (1)

- Define the orientation of an object as the orientation of the axis of elongation.
 - ≡ axis of least <u>second order moment</u>

variation(分散) = spread of data

- ≡ axis of least inertia
- The axis of least second moment for an object is the line which gives

$$\min_{line} \chi^2 = \min_{line} \sum_{i=1}^n \sum_{j=1}^n r_{ij}^2 B[i,j]$$

where \mathcal{V}_{ij} the perpendicular distance from an object point [i, j] to the line (axis)

Orientation (2)

Polar representation of a straight line

why polar representation instead of

$$y = ax + b$$
 cannot represent the vertic al line

$$\frac{(x,y) \cdot (\cos\theta, \sin\theta) = \rho}{x \cos\theta + y \sin\theta = \rho}$$
projection of ion
$$(\cot y) = \cot \theta$$
ion
$$(\cot y) = \cot \theta$$

$$(\cot y) = \cot \theta$$

Then,
$$r^2 = (x\cos\theta + y\sin\theta - \rho)^2$$

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^n (x_{ij}\cos\theta + y_{ij}\sin\theta - \rho)^2 B[i, j]$$

Problem: Find and that minimizes .

Orientation (3)

Solution:
$$\frac{\partial \chi^2}{\partial \rho} = 0$$
 and $\frac{\partial \chi^2}{\partial \theta} = 0$

•The elongation E of the object
$$\equiv \frac{\chi_{\text{max}}}{\chi_{\text{min}}}$$

Orientation (4) : Axis with Least Second Moment

Orientation (4)

: Axis with Least Second Moment

Orientation (5) : Axis with Least Second Moment

- Invariance to orientation?
 - : Need a common alignment

Axis for which the squared distance to 2d object points is minimized

Basic Properties of a Region

ũ	0	0	Ø	0	0	Q	0	0	0	0	0	0	0	0	0
Ð	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ð	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ð	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0
2	2	2	2	0	0	0	0	0	1	1	1	1	1	1	0
2	2	2	2	0	0	0	0	1	1	1	1	1	1	1	1
2	2	2	2	0	0	0	0	1	1	1	1	1	1	1	1
2	2	2	2	0	0	0	0	1	1	1	1	1	1	1	1
3	2	2	2	0	0	0	0	0	1	1	1	1	1	1	0
2	2	2	2	Ø.	0	0	Ø.	0	0	1	1	1	1	0	0
3	2	2	2	0	0	Ü	0	0	0	ø	0	0	0	0	0
3	2	2	2	0	O	0	0	0	0	Ō	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0

region	region	row of	col of	perim.	circu-	circu-	radius	radius
num.	area	center	center	length	$larity_1$	$larity_2$	mean	var.
1	44	6	11.5	21.2	10.2	15.4	3.33	.05
2	48	9	1.5	28	16.3	2.5	3.80	2.28
3	9	13	7	8	7.1	5.8	1.2	0.04

Topological Region Descriptors

- Topological properties: properties of image preserved under rubber-sheet distortions
 - # holes in the image
 - # connected components

H=0, C=3

H=1, C=1

H=2, C=1

Topological Region Descriptors : Hole Counting

- "external corner" has 3(1)s and 1(0)
- "internal corner" has 3(0)s and 1(1)
- Holes computed from only these patterns!

(b) 2×2 internal corner patterns

(c) Three bright holes in dark background

Topological Region Descriptors: Hole Counting Algorithm

Input a binary image and output the number of holes it contains.

```
M is a binary image of R rows of C columns.

1 represents material through which light has not passed;

0 represents absence of material indicated by light passing.

Each region of 0s must be 4-connected and all image border pixels must be 1s.

E is the count of external corners (3 ones and 1 zero)

I is the count of internal corners (3 zeros and 1 one)
```

```
integer procedure Count_Holes(M)
{
   examine entire image, 2 rows at a time;
   count external corners E;
   count internal corners I;
   return(number_of_holes = (E - I)/4);
}
```

Topological Region Descriptors: Hole Counting Example

(E-I)/4

	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	e	i
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	0	1		
2	1	0	0	0	1	1	1	1	1	1	0	1	1	0	0	1		
3	1	1	1	1	1	0	0	1	1	1	0	0	1	1	0	1		
4	1	1	1	1	0	0	0	0	1	1	0	0	0	0	0	1		
5	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1		
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

(d) Binary input image 7 rows high and 16 columns wide

						-		7	0	0	0	1	2	3	4	5	e	i
	0	1	2	3	4	5	0	7	8	9	U	1	4	3	7			
0	e		5	e					e		e		e		e		6	0
1	III.								e	i							1	1
2	e			е	е		е				i	e	e	i			6	2
3		P Land		e	i		i	e				i		i			2	4
4				e	i		i	e		e					e		4	2
5					e		e										2	0
6																	0	0

(\ T______ 1 ---- 1 ---- nottoms morbad with a internal corners marked i

Boundary based Shape Descriptors

Boundary Representation

- (Freeman) Chain Code
- Boundary representation= 0766666453321212

Boundary Representation

Tangent-Angle histograms

Is this feature invariant to starting point? Is it invariant to size, translation, rotation?

Interest Operator + Descriptor

- Harris operator
- Multi-scaled operator
- SIFT (scale invariant feature transform)
- HOG (histogram of oriented gradient)

Introduction to Interest Operators

- Find "interesting" pieces of the image
 - E.g. corners, salient regions
 - Focus attention of algorithms
 - Speed up computation

- Many possible uses in matching/recognition
 - Search
 - Object recognition
 - Image alignment & stitching
 - Stereo
 - Tracking

- ...

Interest points

0D structure: single points

not useful for matching

1D structure: lines

edge, can be localised in 1D, subject to the aper ture problem

2D structure: corners

corner, or interest point, can be localised in 2D, good for matching

Interest Points have 2D structure.

Local invariant photometric descriptors

- Local: robust to occlusion/clutter + no segmentation
- Photometric: (use pixel values) distinctive descriptions
- *Invariant*: to image transformations + illumination changes

Zhang Approach

- Extraction of interest points with the Harris detector
- Comparison of points with cross-correlation
- Verification with the fundamental matrix

The fundamental matrix maps points from the first image to corresponding p oints in the second matrix using a homography, that is determined through the solution of a set of equations that usually minimizes a least square error.

Preview: Harris detector

Interest points extracted with Harris (~ 500 points)

Cross-correlation matching

Initial matches – motion vectors (188 pairs)

- 1) Extraction of interest points
- 2) Computation of local descriptors
- 3) Determining correspondences
- 4) Selection of similar images

1. Harris detector

Based on the idea of auto-correlation

Important difference in all directions => interest point

Background : Moravec Corner Detector

- take a window w in the image
- shift it in four directions (1,0), (0,1), (1,1), (-1,1)
- compute a difference for each
- compute the min difference at each pixel
- local maxima in the min image are the corners

$$E(x,y) = \sum_{u,v \text{ in } w} w(u,v) |I(x+u,y+v) - I(u,v)|^2$$

Shortcomings of Moravec Operator

- Only tries 4 shifts. We'd like to consider "all" shifts.
- Uses a discrete rectangular window. We'd like to use a smooth circular (or later elliptical) window.
- Uses a simple min function. We'd like to characterize variation with respect to direction.

Result: Harris Operator

Harris detector

Auto-correlation fn (SSD) for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$f(x,y) = \sum_{(x_k,y_k) \in W} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

SSD means summed square difference

Discrete shifts can be avoided with the auto-correlation matrix

with
$$I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) - I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$f(x,y) = \sum_{(x_k,y_k) \in W} \left(I_x(x_k,y_k) \quad I_y(x_k,y_k) \right) \left(\Delta x \atop \Delta y \right)^2$$

Harris detector

Rewrite as inner (dot) product

$$f(x,y) = \sum_{(x_k,y_k)\in W} (\begin{bmatrix} I_x(x_k,y_k) & I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix})^2$$

$$= \sum_{(x_k,y_k)\in W} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} I_x(x_k,y_k) \\ I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} I_x(x_k,y_k) & I_y(x_k,y_k) \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

The center portion is a 2x2 matrix

Have we seen this matrix before?

$$= \sum_{W} \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$
$$= \begin{bmatrix} \Delta x & \Delta y \end{bmatrix} \sum_{W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Harris detector

$$= \left(\Delta x \quad \Delta y\right) \begin{bmatrix} \sum_{\substack{(x_k, y_k) \in \mathcal{W} \\ (x_k, y_k) \in \mathcal{W}}} (I_x(x_k, y_k))^2 & \sum_{\substack{(x_k, y_k) \in \mathcal{W} \\ (x_k, y_k) \in \mathcal{W}}} I_x(x_k, y_k)I_y(x_k, y_k) \\ & \sum_{\substack{(x_k, y_k) \in \mathcal{W} \\ (x_k, y_k) \in \mathcal{W}}} (I_y(x_k, y_k))^2 \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

Auto-correlation matrix M

Harris detection

- Auto-correlation matrix
 - captures the structure of the local neighborhood
 - measure based on eigenvalues of M
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region
- Interest point detection
 - threshold on the eigenvalues
 - local maximum for localization

Determining correspondences

Vector comparison using a distance measure

What are some suitable distance measures?

Distance Measures

We can use the sum-square difference of the values of the pixels in a square neighborhood about the points being compared. This is the simplest me asure.

$$SSD = \sum \sum (W1_{i,j} - W2_{i,j})^2$$

Some Matching Results from Matt Brown

Some Matching Results

Summary of the approach

- Basic feature matching = Harris Corners & Correlation
- Very good results in the presence of occlusion and clutter
 - local information
 - discriminant greyvalue information
 - invariance to image rotation and illumination
- Not invariance to scale and affine changes
- Solution for more general view point changes
 - local invariant descriptors to scale and rotation
 - extraction of invariant points and regions

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?

	Translation	Rotation	Scale
Is Harris invariant?	YES	?	?
Is correlation invariant?	?	?	?

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	?
Is correlation invariant?	?	?	?

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	?	?

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	?

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	NO

Matt Brown's Invariant Features

• Local image descriptors that are *invariant* (unchanged) under image t ransformations

Canonical Frames

Rotation-invariant descriptor.

Sample scaled, oriented patch

- Sample scaled, oriented patch
 - 8x8 patch, sampled at 5 x scale

- Sample scaled, oriented patch
 - 8x8 patch, sampled at 5 x scale

• Extract oriented patches at multiple scales using dominant orientation

Application: Image Stitching

[Microsoft Digital Image Pro version 10]

Matching Interest Points: Summary

- Harris corners / correlation
 - Extract and match repeatable image features
 - Robust to clutter and occlusion
 - BUT not invariant to scale and rotation
- Multi-Scale Oriented Patches
 - Corners detected at multiple scales
 - Descriptors oriented using local gradient
 - Also, sample a blurred image patch
 - Invariant to scale and rotation

Leads to: **SIFT** – state of the art image features