RODENT MONITORING DEVICE

CIRCUIT CONNECTION DETAIL

Raspberry Pi Pin detail

Humidity and Temperature sensor

H/T Sensor connection

PIN	FUNCTION	RP-Pi PIN NUMBER
1	VCC	2
2	TRIG	7
3	ECHO	11*
4	GND	6

*Do not connect ECHO to pin11 directly. The ECHO output is 5 volts we need reduce it to 3v using a voltage divider circuit.

HC-SR04 Ultrasonic Range sensor

USV Sensor connection

Note: The values of resistors R1 and R2 should be chosen such that R1/R2 = 0.5. Recommended resistor values: R1 = 1K ohm R2 = 2K ohm

VOLTAGE DIVIDER CIRCUIT

PIN	FUNCTION	RP-Pi PIN NUMBER
1	VCC	2
2	Out	7
3	GND	6

Passive Infrared (PIR) sensor

PIR Sensor connection

HARDWARE DETAIL

RMD

TOP View

Bottom Panel

SIDE PANELS

The Sensor box is divided into multiple components. This MAY help the partner to print on 3D printer