

USO DE REDES NEURAIS PARA ANÁLISE DE DADOS NAS DISCIPLINAS DE LABORATÓRIO DE FÍSICA

Gabriela Molina Ciocci¹, Eliane F. Chinaglia²

¹Departamento de Ciência da Computação

² Departamento de Física

RESUMO

O alto avanço da tecnologia leva a uma necessidade do aluno se tornar mais ativo em seus estudos. Analisar simulações e comparar com dados experimentais, são ótimas opções para tornar o estudante protagonista de seus estudos. Este projeto tem como objetivo treinar uma rede neural para determinar a massa de um objeto em um experimento de física. A rede neural utiliza dados de aceleração e inclinação de um sistema de dois corpos acoplados em um trilho de ar visando classificar uma das massas com base no movimento.

1. OBJETIVO

Este projeto propõe uma reformulação do física, integrando conceitos de ensino de inteligência artificial (IA) e aprendizado de máquina (ML). Através de experimentos com dois corpos acoplados em um trilho de ar, os alunos terão a oportunidade de explorar algoritmos em Python como agrupamento nãohierárquico e redes neurais, a fim de auxiliá-los no laboratório de física. Essa abordagem ativa e experimental visa estimular o aprendizado resolução de autônomo e problemas complexos.

Arranjo experimental do trilho de ar

2. REVISÃO BIBLIOGRÁFICA

3. METODOLOGIA

A primeira etapa consistiu na aquisição de dados para obter um banco de dados que seja eficiente e confiável para treinar a IA. Na tabela está apresentada a variação de valores de massas utilizado na aquisição de dados.

m_1 (kg)	m_2 (kg)	
0,209	0,004 a 0,013	
0,309	0,015 a 0,019	
0,409	0,021 a 0,031	

O próximo passo foi realizar uma análise de agrupamento não hierárquico, com o intuito de criar grupos (clusters) a partir dos dados coletados. Para isso, foi utilizado o método k-Means. Para definir a quantidade ideal de clusters para este projeto, foi utilizado o método de Elbow.

Em seguida, foi feito o primeiro treinamento da Rede Neural para avaliar a qualidade dos dados experimentais.

Assim, o projeto avançou para o refinamento do banco de dados, analisando o erro percentual dos dados experimentais e criando um novo banco de dados simulado, no qual os dados foram manipulados conforme o valor desse erro, utilizando os dados experimentais apenas para teste.

4. RESULTADOS

Resultado do método de Elbow do projeto. Analisando o gráfico, pode-se perceber que o valor de cluster que causa uma mudança significativa está entre 5 e 6.

Código feito para otimização da extração de dados no DataStudio.

Massa trilho

Clusters - valores normalizados

Análise de clusters obtidos. A quantidade de clusters está definida conforme o resultado do Método de Elbow. A marcação em vermelho informa a possível rede poligonal de Thiessen dos clusters. A quantidade de clusters está definida conforme a quantidade de valores de massa m1.

<pre># Criar o modelo com 1 neurônio e 1 camada oculta (Percepton) modelo_neural = MLPClassifier(hidden_layer_sizes=(1,), max_iter=1000, random_state=42)</pre>
<pre># Treinar o modelo usando os mesmos dados de treinamento modelo_neural.fit(X_train, y_train)</pre>
Avaliar a acurácia nos dados de teste acuracia_neural = modelo_neural.score(X_test, y_test)
print(f"A acurácia da rede neural nos dados de teste é {acuracia_neural * 100:.2f}%")
A acurácia da rede neural nos dados de teste é 93.40%

Teste de acurácia da rede neural

Usar o método predict do modelo para fazer a previsão
previsao_material = modelo_neural.predict(novo_dado)

A previsão estará no primeiro elemento do array retornado
material = previsao_material[0]

print(f"O material previsto é {material}")

O material previsto é B

Exemplo de uma previsão correta da rede neural

Modelo de um neurônio artificial

Cluster	Quantidade de itens por Cluster	Valor mínimo de m_2	Valor máximo de m_2
1	59	0.015	0.021
2	60	0.013	0.020
3	61	0.009	0.021
4	20	0.031	0.031
5	46	0.004	0.015

Tabela com o resultado dos agrupamentos com quantidade de cluster definida através do resultado obtido pelo método de Elbow.

Box Plot da aceleração em função do corpo na polia com o banco de dados experimental.

5. CONCLUSÃO E PRÓXIMAS ETAPAS

A coleta de dados experimentais, embora desafiadora, é crucial para o treinamento eficaz da Rede Neural. Para aprimorar o modelo, o próximo passo será otimizar os parâmetros utilizados na aquisição dos dados, visando à obtenção de uma versão final da Rede Neural. Será utilizado um banco de dados simulado para o treinamento e dados experimentais para a validação do modelo. Além disso, serão coletados mais dados experimentais para aumentar a acurácia da Rede Neural, contribuindo assim para a formação dos alunos de engenharia nas aulas práticas de laboratório de física.