TD9 structures algébriques pour l'informatique

EXERCICE 1 . Soit $\alpha \in S_n$. On désigne par $\operatorname{sgn}(\alpha)$, la signature de α , i.e. par définition $(-1)^{n-t}$, où t est le nombre de cycles dans la décomposition complète de α en produit de cycles disjoints.

- 1. Montrer que $sgn(\alpha^{-1}) = sgn(\alpha)$.
- 2. Soit $\sigma \in S_n$ et $1 \leq j \leq n$. On suppose que j est un élément invariant de σ , i.e. $\sigma(j) = j$. On définit alors $\sigma' \in S_{n-1}$ en identifiant $\{1, 2, \ldots, n-1\}$ avec $\{1, 2, \ldots, n\} \setminus \{j\}$, et en posant pour tout $i \neq j$, $\sigma'(i) = \sigma(i)$. Montrer que $\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma)$.

Exercice 2. Montrer que la signature d'un cycle de longueur r est 1 si et seulement si r est impair.

Exercice 3 . Soit $f:\{0,1,2,\ldots,10\} \to \{0,1,2,\ldots,10\}$ une application définie par

$$f(n) =$$
le reste de la division de $4n^2 - 3n^7$ par 11.

- 1. Montrer (vérifier) que f est une permutation.
- 2. Calculer la signature de f.
- 3. Calculer l'inverse de f .

Exercice 4.

- 1. Soit α est un cycle de longueur r et 1 < k < r. α^k est-il toujours un cycle de longueur r?
- 2. Soit α est un cycle de longueur impaire. Montrer alors que α^2 est un cycle.

Exercice 5.

- 1. Soit $\alpha \in S_n$. Montrer que pour tout $i \in \{1, 2, ..., n\}$, i est invariant par α si et seulement si i est invariant par α^{-1} .
- 2. Soit α et β deux éléments de S_n . Montrer que si α et β sont de supports disjoints et que $\alpha\beta = id$ alors $\alpha = \beta = id$.

Exercice 6 . Déterminer les ensembles suivants:

- 1. $\{\sigma \in S_4 : \sigma(1) = 3\}$
- 2. $\{\sigma \in S_4 : \sigma(2) = 2\}$
- 3. $\{\sigma \in S_4 : \sigma(1) = 3 \text{ et } \sigma(2) = 2\}$

Ces ensembles sont-ils des sous-groupes de S_4 ?

Exercice 7.

- 1. Soit α et β deux éléments de S_n . On pose $\alpha \sim \beta$ si il existe $\gamma \in S_n$ tel que $\alpha = \gamma \beta \gamma^{-1}$. Montrer que \sim est une relation d'équivalence sur S_n . Lorsque $\alpha \sim \beta$, on dit que α et β sont conjugués.
- 2. Soit $\gamma = (1, 3, 4, 5)(2, 3, 4)(1, 4, 5, 3, 6)$ et $\beta = (1456)(238)$. Calculer $\alpha = \gamma \beta \gamma^{-1}$.
- 3. Soit $\alpha = (1, 3, 4, 5, 7, 6, 2)$ et $\beta = (4, 2, 5, 1, 7, 6, 3)$. α et β sont–ils conjugués?
- 4. Soit $\alpha = (1, 3, 4, 7, 6, 2)$ et $\beta = (4, 2, 5, 1)(7, 6, 3)$. α et β sont-ils conjugués?