Chapter 7. Factors and the ANOVA F-test

- A **factor** is an explanatory variable with discrete levels.
- Factors are also called **categorical variables**.
- The different values the variable can take are called **levels** of the factor.
- If we tested growth of a plant in three different soil types we might model this using a soil type factor with 3 levels, clay, sand and loam.
- A factor with 2 levels is a **binary factor**.
- In linear models, factors can describe different classes of units. For example, in HW7, the binary factor Competition distinguishes certain types of newspaper.
- We could have a different mean and/or different slope for each level of the factor.

Comparing two sample means via a model with a factor

- Recall the mouse weight experiment. 24 mice are randomized to one of two diets and are weighed after two weeks.
- ullet First, set up notation. Let y_{ij} be the weight of the jth mouse on treatment i, where i=1,2 corresponds to the normal and high fat diet respectively and $j=1,\ldots,12$ enumerates the replicates for each treatment group.
- A probability model for this experiment is

$$Y_{ij}=\mu_i+\epsilon_{ij} \quad ext{ for } i=1,2 ext{ and } j=1,\ldots,12$$
 where $\epsilon_{ij}\sim ext{iid normal}(0,\sigma).$

- Here, we have written the model in **double subscript form**. We have a mean for each level of the treatment group factor.
- This looks superficially different from the way we have written linear models. There is an extra subscript.
- We can rewrite it to make it fit into our linear model framework by putting all the (i, j) values in a single column.

Dummy variables to code levels of factors

- Let $\mathbf{x}_1 = (x_{1,1}, \dots, x_{24,1}) = (1, \dots, 1, 0, \dots, 0)$ be a vector with 1 in the first 12 places and 0 in the remaining 12 places.
- Let $\mathbf{x}_2 = (x_{1,2}, \dots, x_{24,2}) = (0, \dots, 0, 1, \dots, 1)$ be a vector with 0 in the first 12 places and 1 in the remaining 12 places.
- Let $\mathbf{y}=(y_1,\ldots,y_{24})=(y_{1,1},\ldots,y_{1,12},y_{2,1},\ldots,y_{2,12})$ be the mouse weights concatenated into a single vector.
- Let $\mathbf{e}=(e_1,\ldots,e_{24})=(e_{1,1},\ldots,e_{1,12},e_{2,1},\ldots,e_{2,12})$ be residual error terms concatenated into a single vector.
- **Question 7.1.** \mathbf{x}_1 and \mathbf{x}_1 are called **dummy variables** since they are built to allow us to write $y_{ij} = \frac{\mathcal{H}_i}{\mathcal{H}_i} + e_{ij}$ in the usual single-subscript linear model form,

 $y_k = \frac{M_1}{\mu_1} x_{k,1} + \frac{M_2}{\mu_2} x_{k,2} + e_k.$

Convince yourself that these equations are equivalent.

1) For the first 12, the x & tem disappears, for the next 12, the x & tem disappears

the JCK, term disappears 2) Check that for monets and monet & the equations correspond.

Two things to notice about models with factors

We consider the sample linear model $y_k = \frac{M_1}{12} \frac{M_2}{x_{k,1}} + \frac{M_2}{12} \frac{2x_{k,2}}{x_{k,2}} + e_k$ $k = 1, \ldots, 24.$

Question 7.2. Usually we use i as a subscript when writing a linear model in subscript form. Why do we use k here? we have used i and ; in the double subscript version. In principle, we could also use i hove — it is a dummy subscript - but it is cleaver not to repeat.

Why? Exactly one of $\chi_{k,i}$ and $\chi_{k,z}$ is 1 for each k, so the average weight is accounted for by either the $\chi_{k,i}$ wellicent or the $\chi_{k,z}$ wellicent or the $\chi_{k,z}$ wellicent means in the model—for 2 treatment groups we already have 2 parameters, M, and M., A third parameter is unnecessary.

Question 7.3. Notice there is no intercept term in this linear model.

Question 7.4. Write the probability model $Y_{ij} = \mu_i + \epsilon_{ij}$ for i = 1, 2 and $j = 1, \ldots, 12$ in the matrix form for the probability model of a linear model, $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.

This asks you to write down a choice of Y, X, β and ϵ so that the two equations are equivalent.

Alternative representations of factors

• Consider the following two models in double subscript form, with $\epsilon_{ij} \sim \operatorname{iid\ normal}(0,\sigma)$ for i=1,2 and $j=1,\ldots,12$. (M1). $Y_{ij}=\mu_i+\epsilon_{ij}$ (M2). $Y_{ij}=\mu+\alpha_i+\epsilon_{ij}$ with $\alpha_1=0$

Question 7.5. Why are (M1) and (M2) equivalent? Or the Same? Set $\mu = \mu_1$ and $\kappa_z = \mu_z - \mu_1$ and both miles give the same means.

We can think of (MI) and (M2) as two different ways to write the same model, because from the paint of new of Yis it diesn't matter which way you write it, so (MI) and (M2) Question 7.6. What is the difference in the interpretation of the

parameters between (M1) and (M2)?
The parameter α_2 is called a contrast. In (M2) we model

using an overall mean & a contrast.

An over-specified model

- Recall (M2) with $\epsilon_{ij} \sim \text{iid normal}(0, \sigma)$ for i = 1, 2 and $j = 1, \dots, 12$. (M2). $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$ with $\alpha_1 = 0$
- \bullet Suppose we modify model (M2) to omit the important detail that $\alpha_1=0.$ This gives

(M3).
$$Y_{ij} = \mu + \alpha_i + \epsilon_{ij}$$

 Many rude words are used to describe the problem with (M3) such as over-specified, over-parameterized, unidentifiable, redundant.

Question 7.7. Can you see and explain the concern about (M3)? This gives multiple ways to devoile the data which are all "correct". For example, we can get a mean of 20 for the 1st treatment army & 25 for the 2nd in 2 ways. $(M=10, \alpha_1=10, \alpha_2=15) \text{ or } (M=15, \alpha_1=10) \text{ or infinitely many other ways to get the same means.}$

Using a linear model with factors to test equality of means

- A null hypothesis is that the mice weights for both treatment groups are drawn from the same distribution. Any difference is just chance variation in this particular sample. If the null hypothesis is a plausible description of our data, we don't want to spent too much time interpreting this experimental results.
- A natural way to write this null hypothesis is $H_0: \mu_1 = \mu_2$ in the model representation (M1)
- A USEFUL TRICK. Using the equivalent model representation (M2), this becomes $H_0: \alpha_2 = 0$ which is the easiest type of null hypothesis for a linear model.

Factors in lm()

• If you give lm() an explanatory variable of class character it interprets the variable as levels of a factor.

```
mice <- read.csv(
"https://ionides.github.io/401f18/hw/hw01/femaleMiceWeights.csv"
head(mice,3)
## Diet Bodyweight
## 1 chow
               21.51
## 2 chow 28.14
                                          on parameter for chows. Ris wing the parametorization with
## 3 chow
               24.04
lm1 <- lm(Bodyweight~Diet,data=mice)</pre>
summary(lm1)$coef
                Estimate Std. Error t value Pr(>|t|)
##
   (Intercept) 23.813333 1.039353 22.911684 7.642256e-17
   Diethf 3.020833 1.469867 2.055174 5.192480e-02
```

What model has R actually fitted?

- It can be hard to figure out what R is actually doing when it fits models with a factor.
- If you can't correctly write the model R is fitting using subscript notation you may well interpret the results wrong.
- A good check is to look at R's design matrix

						,	1 1)	1 /
mod	del.	<pre>matrix(lm1)</pre>	[c(1:2,12	2:13,23:24),]	0		10	1 / 1-12
				this is R	€v	V =	: :	
##		(Intercept)	Diethf			/\	iól)
##	1	1	0			- 1	iil	7
##	2	1	0				, . [>13-2.4
##	12	1	0				: 1	() ,
##	13	1	1				11	1
##	23	1	1			L	, ; <i>)</i>	J
##	24	1	1					

1 1 0 7 7

(Intercept) Diethf then we could continue to Check that M is the new Question 7.8. Write down the sample model R has fitted, in double of the sample and interpret the parameters subscript form, and interpret the parameters. for the purposes of the 1st treatment years. This should follow from a linear nodeli think of these stacked as Winn vector Expected value for a 76×1 the 1st treatment group.

note: the t-test and z-test have the same summary(lm1)\$coef test statistic. The t distribution allows for Estimate Std. Error t value Pr(>|+|) ## (Intercept) 23.813333 1.039353 22.911684 7.642256e-17 1.469867 2.055174 5.192480e-02 ## Diethf 3.020833 Question 7.9. Consider the null hypothesis that the two diets are equivalent, so the observed difference in mouse weights is chance variation in the sample. Make both a t-test and a normal approximation test (also known as a z-test) of this hypothesis. Which test do you prefer, and why? A test at the 5% level is appropriate for this fairly small sample. we we testing Ho: 02,=0, the contrast between ht diet relative to the chour reference group offet is 2000. The test statistic is a= 2.056 from the Routput normal The t-test compares this with the t dishibation on of frodom. The p-value is 0.052 from R output. We don't reject to at 5% level. The z-test compares with a normal distribution. Since 2.056 > 1.96, we do

A linear model vs a two sample test

• The linear model test above is equivalent to a **two sample t-test with pooled variance**.

```
t.test(mice$Bodyweight[1:12],mice$Bodyweight[13:24],
  var.equal=TRUE)
##
## Two Sample t-test
##
## data: mice$Bodyweight[1:12] and mice$Bodyweight[13:24]
## t = -2.0552, df = 22, p-value = 0.05192
## alternative hypothesis: true difference in means is not equal to
## 95 percent confidence interval:
## -6.06915183 0.02748516
## sample estimates:
## mean of x mean of y
## 23.81333 26.83417
```

• Check that the p-values are the same in both cases.

Why does the above linear model test match the two sample t-test with pooled variance?

- Tests are the same if they use the same probability model for the null hypothesis and an equivalent test statistic.
- If you wrote out the probability model justifying the two sample t-test with pooled variance it would be exactly the model (M1) or (M2).
- Here we focus on tests via a linear model, but you might like to review two sample tests at https://open.umich.edu/find/ open-educational-resources/statistics/ statistics-250-introduction-statistics-data-analysis
- Your previous course in statistics likely did not explain the probability model behind the two sample t-test with pooled variance. Viewing this test as a special case of the linear model gives us a way to do that.
- The linear model also lets us analyze many more complex models.

A factor with many levels: Kicking field goals

- If an athlete has a good season, is the next one likely to be good? Or bad? Or does the previous season have no predictive skill?
- We consider field goal kicking success for the 19 National Football League (NFL) kickers who played every season during 2002-2006.

```
download.file(destfile="FieldGoals.csv",
   url="https://ionides.github.io/401f18/07/FieldGoals.csv")
```

```
goals <- read.table("FieldGoals.csv",header=TRUE,sep=",")</pre>
head(goals[,1:8])
##
              Name Yeart Teamt FGAt FGt Teamt1 FGAt1 FGt1
  1 Adam Vinatieri
                    2003
                            NE
                                 34 73.5
                                            NE
                                                  30 90.0
                                33 93.9
                                                  34 73.5
  2 Adam Vinatieri 2004 NE
                                            NE
  3 Adam Vinatieri 2005
                                25 80.0
                                                  33 93.9
                        NE
                                            NE
                           IND 19 89.4
                                                  25 80.0
  4 Adam Vinatieri 2006
                                            NE
## 5
    David Akers 2003
                           PHI
                                29 82.7
                                           PHI
                                                  34 88.2
    David Akers
                    2004
                           PHI
                                 32 84.3
                                           PHI
                                                  29 82.7
```

Understanding the field goal data

```
goals[1,1:8]
## Name Yeart Teamt FGAt FGt Teamt1 FGAt1 FGt1
## 1 Adam Vinatieri 2003 NE 34 73.5 NE 30 90
```

 \bullet Each record has the player Name and Year followed by

Teamt: team that year.

FGAt: number of field goal attempts in that year.

FGt: percentage of field goal attempts which were successful that year.

Teamt1: Team the previous year.

FGAt1 and FGt1: Field goal attempts and percentage the previous year.

Question 7.10. Is there additional background on football that we need to understand the data and the question?

Note: field years can be attempted from various distances.

The closer the attempt, the easier the goal. There could be weather effects on open stadiums. The rest of the team has some role.

Brainstorming for a model

• If an NFL kicker has a good season, is the next one likely to be good? Or bad? Or does the previous season have no predictive skill?

Question 7.11. (1) Set up notation; (2) propose models in the context of our data; (3) write down hypotheses relevant to our question.

Brainstorming continued

A linear model for field goals

```
goals.lm <- lm(FGt~FGt1+Name,data=goals)
X <- model.matrix(goals.lm)</pre>
```

• Here, Name has R class factor. The levels are the kicker names.

```
class(goals$Name)
## [1] "factor"
attributes(goals$Name)$levels[1:6]
## [1] "Adam Vinatieri" "David Akers" "Jason Elam"
## [4] "Jason Hanson" "Jay Feely" "Jeff Reed"
```

• We want to find out what model we have fitted! Time to study the design matrix, X.

```
dim(X)
## [1] 76 20
```

 \bullet Working out the model (in double-subscript form) corresponding to a 76×20 matrix takes some thought.

unname(X[1:15,1:10])

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##
##
    [1,]
             1 90.0
                         0
                                          0
    [2,]
##
             1 73.5
                         0
    [3,]
             1 93.9
##
##
    [4,]
             1 80.0
    [5,]
##
             1 88.2
    [6,]
##
             1 82.7
##
    [7,]
             1 84.3
                         1
    [8,]
##
             1 72.7
                                                0
##
    [9,]
             1 72.2
   [10,]
             1 87.0
##
                         0
   [11,]
             1 85.2
##
                         0
   [12,]
             1 75.0
##
   [13,]
             1 82.1
##
                         0
##
   [14,]
             1 95.6
                         0
                                                0
   [15,]
             1 85.7
                         0
                                                0
```

Question 7.12. What is the probability model fitted by lm(FGt~FGt1+Name,data=goals)? Use double-subscript form.

Question 7.13. What are the terms in the sample linear model corresponding to the following R output?

Question 7.14. Is there anything surprising about these results?

Plotting the fitted model with a line for each factor level

```
plot(FGt~FGt1,data=goals)
intercept <- coef(goals.lm)[1]
slope <- coef(goals.lm)[2]
kicker <- coef(goals.lm)[3:20]
abline(a=intercept,b=slope)
for(i in 1:18) abline(a=intercept+kicker[i],b=slope)</pre>
```


Hypothesis tests for groups of parameters

- We've seen how the least squares coefficient can be used as a test statistic for the null hypothesis that a parameter in a linear model is zero.
- Sometimes we want to test many parameters at the same time. For example, when analyzing the field goal kicking data, we must decide whether to have a separate intercept for each player.

Question 7.15. There are 19 kickers in the dataset. How many extra parameters are needed if we add an intercept for each player?

- This type of question is called **model selection**. Our test statistic should compare **goodness of fit** with and without the additional parameters.
- We need to know the distribution of the model-generated test statistic under the null hypothesis to find the p-value for the test.

Residual sum of squares to quantify goodness of fit

Let y be the data. Let H_0 be a linear model, $Y = \mathbb{X}\beta + \epsilon$. Let H_a extend H_0 by adding d additional explanatory variables.

- Let RSS_0 be the residual sum of squares for H_0 . The residual errors are $\mathbf{e} = \mathbf{y} \mathbb{X}\mathbf{b}$ where $\mathbf{b} = (\mathbb{X}^T\mathbb{X})^{-1}\mathbb{X}^T\mathbf{y}$. So, $RSS_0 = \sum_{i=1}^n e_i^2$.
- Let ${\rm RSS}_a$ be the residual sum of squares for H_a .
- Residual sum of squares is a measure of goodness of fit. A small residual sum of squares suggests a model that fits the data well.

Question 7.16. It is always true that $RSS_a \leq RSS_0$. Why?

• We want to know how much smaller ${\rm RSS}_a$ has to be than ${\rm RSS}_0$ to give satisfactory evidence in support of adding the extra explanatory variables into our model. In other words, when should we reject H_0 in favor of H_a ?

The f statistic for adding groups of parameters

Formally, we have $H_0: \mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \epsilon$ and $H_a: \mathbf{Y} = \mathbb{X}_a\boldsymbol{\beta}_a + \epsilon$, where \mathbb{X} is an $n \times p$ matrix and $\mathbb{X}_a = [\mathbb{X} \ \mathbb{Z}]$ is an $n \times q$ matrix with q = p + d. Here, \mathbb{Z} is a $n \times d$ matrix of additional explanatory variables for H_a . As usual, we model $\epsilon_1, \ldots, \epsilon_n$ as iid $N[0, \sigma]$.

• Consider the following sample test statistic:

$$f = \frac{(RSS_0 - RSS_a)/d}{RSS_a/(n-q)}.$$

- The denominator is an estimate of σ^2 under H_a . Using this denominator standardizes the test statistic.
- The numerator $(RSS_0 RSS_a)/d$ is the **change in RSS per degree of freedom**. Parameters in linear models are often interpreted as degrees of freedom of the model.
- Let F be a model-generated version of f, with the data \mathbf{y} replaced by a random vector \mathbf{Y} . If H_0 is true, then the RSS per degree of freedom should be about the same on the numerator and the denominator, so $F \approx 1$. Large values, $f \gg 1$, are therefore evidence against H_0 .

The F test for model selection

- Under H_0 , the model-generated F statistic has an F distribution on d and n-q degrees of freedom.
- Because of the way we constructed the F statistic, its distribution under H_0 doesn't depend on σ . It only depends on the dimension of \mathbb{X} and \mathbb{X}_a .
- We can obtain p-values for the F distribution in R using pf(). Try ?pf.
- Testing H_0 versus H_a using this p-value is called the F test.
- ullet Degrees of freedom are mysterious. The mathematics for how they work involves matrix algebra beyond this course. An intuition is that fitting a parameter that is not in the model "explains" a share of the residual sum of squares; in an extreme case, fitting n parameters to n data points may give a perfect fit (residual sum of squares = zero) even if none of these parameters are in the true model.

The F test is called "analysis of variance"

- The F test was invented before computers existed.
- Working out the sums of squares efficiently, by hand, was a big deal!
- Sums of squares of residuals are relevant for estimating variance.
- Building F tests is historically called **analysis of variance** or abbreviated to **ANOVA**.
- The sums of squares and corresponding F tests are presented in an **ANOVA table**. We will see one in the following data analysis.

An F test for kickers: Interpreting the ANOVA table

```
anova(goals.lm)
## Analysis of Variance Table
##
## Response: FGt
##
            Df Sum Sq Mean Sq F value Pr(>F)
## FGt1 1 87.2 87.199 2.2597 0.1383978
## Name 18 2252.5 125.137 3.2429 0.0003858 ***
## Residuals 56 2161.0 38.589
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Question 7.17. Focus on the row labeled Name. Explain what is being tested, how it is being tested, and what you conclude. In other words, write out the hypothesis test corresponding to this line.

ANOVA hypothesis test, continued