

FIG. 3a

Fig. 4a

9/11

B

400b

Feeding the obtained reference signal V_{ref} to a first input port of a comparator stage 112'' in the feedback chain of the automatic power control loop 101M

S2

Measuring the DC supply current I_{PA} of the power amplifier 105 by sensing a voltage drop U_{RM} proportional to the supply current I_{PA} of the variable-gain power amplifier 105 at a low-ohm resistor R_M serving as a current sensor 204 that is placed in the power supply line of the variable-gain power amplifier 105

S3

Feeding a signal derived from this voltage drop U_{RM} to a second input port of said comparator stage 112''

S4

Comparing the voltage level of the signal derived from said voltage drop U_{RM} with the voltage level of said reference signal V_{ref}

S5

Feeding a signal which is proportional to the difference $(U_{RM} - V_{ref})$ between the signal derived from said voltage drop U_{RM} and said reference signal V_{ref} to the first input port of the variable-gain power amplifier 105

S6

Adjusting the actual power level P_{out} by amplifying the low-pass-filtered difference between the output signal of said comparator stage 112'' and the RF signal $x(t)$ to be transmitted before being amplified at the second input port of the variable-gain power amplifier 105

S7

End

Fig. 4b

Fig. 4c

