CLAIMS

* * *	•	
W		aim
***	\	ши

_	4.	n gas detector comprising.
2		a first electrically conductive material layer;
3		an electrically nonconductive material layer disposed on the first electrically
4		conductive material layer;
5		a second electrically conductive material layer disposed on the electrically
6		nonconductive material layer;
7		a gas source in fluid communication with the second electrically conductive
8		material layer; and
9		a power source in electrical communication with the first and second
10		electrically conductive material layers.
1	2.	The gas detector according to claim 1, wherein the first electrically
2		conductive material layer contains a metal selected from the group consisting
3		of aluminum, magnesium, chromium, titanium and zirconium.
1	3.	The gas detector according to claim 1, wherein the second electrically
2		conductive material layer contains a metal selected from the group consisting
3		of silver, gold, platinum, rhodium, iridium, palladium, ruthenium, and
4		osmium.
1	4.	The gas detector according to claim 3, wherein the second electrically
2		conductive material layer contains gold.
1	5.	The gas detector according to claim 1, wherein the electrically nonconductive
2		material layer contains at least one compound selected from the group
3		consisting of aluminum oxide, magnesium oxide, chromic oxide, titanium
4		dioxide, zirconium oxide, and silicon dioxide.
1	C	The good attention according to aloim 1 and anning the anning the second according to
1	6.	The gas detector according to claim 1, wherein the gas detector is capable of
2		detecting sulfur dioxide.

UA445 13

WO 2004/106908	DCT/IIC2002/01554
W Q 2004/100900	PCT/US2003/015749

7. The gas detector according to claim 1, wherein the power source is a direct current power source.

- 1 8. The gas detector according to claim 1, wherein the power source is an alternating current power source.
- 9. A method of determining the presence of a gas, the method comprising 1 2 determining the change in impedance of a tunnel junction device upon 3 exposure to a gas sample, wherein the tunnel junction device contains a first 4 electrically conductive material layer, an electrically nonconductive material 5 layer disposed on the first electrically conductive material layer, and a second 6 electrically conductive material layer disposed on the electrically 7 nonconductive material layer, and wherein the first and second electrically 8 conducting layers are in electrical communication with a power source.
- 1 10. The method according to claim 9, wherein the gas to be detected is sulfur dioxide.
- 1 11. The method according to claim 9, wherein the first electrically conductive 2 material layer contains a metal selected from the group consisting of 3 aluminum, magnesium, chromium, titanium and zirconium.
- 1 12. The method according to claim 9, wherein the second electrically conductive 2 material layer contains a metal selected from the group consisting of silver, 3 gold, platinum, rhodium, iridium, palladium, ruthenium, and osmium.
- 1 13. The method according to claim 12, wherein the second electrically conductive material layer contains gold.
- 1 14. The method according to claim 10, wherein the gas is obtained from wine.
- 1 15. The method according to claim 9, wherein the power source is a direct current power source.

UA445 14

WO 2004/106908 PCT/US2003/015749

1	16.	The method according to claim 9, wherein the power source is an alternating
2		current power source.
1	17.	The method according to claim 9, wherein the first and second electrically
2		conducting layers are placed in electrical communication with a direct current
3		power source and an alternating current power source and wherein the direct
4		current and alternating current impedances are measured before and after
5		exposure of the second conducting material layer to the sample.
1	18.	A method of making a gas detector comprising:
2		forming a first electrically conductive material layer;
3		disposing an electrically nonconductive material layer on the first electrically
4	condu	ctive material layer;
5		disposing a second electrically conductive material layer on the electrically
6	nonco	nductive material layer;
7		placing the first and second electrically conducting layers in electrical
8	comm	unication with a power source.
1	19.	The method of claim 18, wherein the second electrically conductive layer is
2		selected from the group consisting of silver, gold, platinum, rhodium, iridium,
3		palladium, ruthenium, and osmium.

UA445 15