Concours commun Centrale

MATHÉMATIQUES 2. FILIERE MP

I - Inégalité d'interpolation des dérivées

I.A - Cas particulier K = 1

Q 1. f et f' sont définies et continues sur le segment [0,1] et donc bornées sur ce segment. Donc, $\|f\|_{\infty}$ et $\|f'\|_{\infty}$ existent dans \mathbb{R} .

Puisque f est de classe C^1 sur [0,1], pour tout $x \in [0,1]$, on peut écrire $f(x) = f(x_1) + \int_{x_1}^{x} f'(t) dt$ puis

$$|f(x)| \leqslant \left| \int_{x_1}^x f'(t) \ dt \right| + |f(x_1)| \leqslant |x - x_1| \, \|f'\|_{\infty} + |f(x_1)| \leqslant \|f'\|_{\infty} + |f(x_1)|.$$

Ainsi, $||f'||_{\infty} + |f(x_1)|$ est un majorant de $\{|f(x)|, x \in [0, 1]\}$ et puisque $||f||_{\infty}$ est le plus petit de ces majorants,

$$||f||_{\infty} \leq ||f'||_{\infty} + |f(x_1)|.$$

 ${\bf Q}$ 2. Soit $C\in]0,1[.$ Soient f : $x\mapsto e^{\frac{1}{2}(1-C)x}$ et $x_1=1.$

$$\|f'\|_{\infty} + C |f(x_1)| = \frac{1}{2} (1-C) e^{\frac{1}{2}(1-C)} + C e^{\frac{1}{2}(1-C)} = \frac{C+1}{2} e^{\frac{1}{2}(1-C)} < e^{\frac{1}{2}(1-C)} = \|f\|_{\infty}.$$

Pour ce choix de fonction f et de réel $x_1 \in [0, 1]$, l'inégalité (I.2) est fausse.

I.B - Cas particulier K = 2

Q 3. Soit $x \in [0, 1]$. f est continue sur $[x_1, x_2]$, dérivable sur $]x_1, x_2[$. D'après le théorème des accroissements finis, il existe $c \in]x_1, x_2[$ tel que $\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$. Mais alors, d'après l'inégalité des accroissements finis appliquée à f',

$$\left|f'(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1}\right| = |f'(x) - f'(c)| \leqslant |x - c| \|(f')'\|_{\infty} \leqslant \|f''\|_{\infty}.$$

Q 4. Pour tout $x \in [0, 1]$,

$$|f'(x)| \leqslant \left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| + \left| f'(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| \leqslant \frac{|f(x_1)| + |f(x_2)|}{x_2 - x_1} + \|f''\|_{\infty},$$

puis, comme à la question Q1, $\|f'\|_{\infty} \leqslant \frac{|f(x_1)| + |f(x_2)|}{x_2 - x_1} + \|f''\|_{\infty}.$

Q 5. D'après la question précédente, en prenant $C = 1 + \frac{1}{x_2 - x_1} > 0$,

$$\|f'\|_{\infty} \leqslant \|f''\|_{\infty} + (C-1)\left(|f(x_1)| + |f(x_2)|\right) \leqslant \|f''\|_{\infty} + C\left(|f(x_1)| + |f(x_2)|\right).$$

D'autre part, d'après la question Q1,

$$\|f\|_{\infty} \leqslant \|f'\|_{\infty} + |f(x_{1})| \leqslant \|f''\|_{\infty} + \frac{|f(x_{1})| + |f(x_{2})|}{x_{2} - x_{1}} + |f(x_{1})| + |f(x_{2})| = \|f''\|_{\infty} + C(|f(x_{1})| + |f(x_{2})|)$$

et finalement, $\max(\|f\|_{\infty}, \|f'\|_{\infty}) \leq \|f''\|_{\infty} + C(|f(x_1)| + |f(x_2)|).$

I.C - Cas général par l'interpolation de Lagrange

Q 6. Ψ est une application de $\mathbb{R}_{K-1}[X]$ dans \mathbb{R}^K . Soient $(P,Q) \in (\mathbb{R}_{K-1}[X])^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$\begin{split} \Psi\left(\lambda P + \mu Q\right) &= \left(\left(\lambda P + \mu Q\right)\left(x_{1}\right), \dots, \left(\lambda P + \mu Q\right)\left(x_{K}\right)\right) = \lambda\left(P\left(X_{1}\right), \dots, P\left(x_{K}\right)\right) + \mu\left(Q\left(x_{1}\right), \dots, Q\left(x_{K}\right)\right) \\ &= \lambda\Psi(P) + \mu\Psi(Q). \end{split}$$

Donc, $\Psi \in \mathcal{L}\left(\mathbb{R}_{K-1}[X], \mathbb{R}^K\right)$. Soit alors $P \in \mathrm{Ker}(\Psi)$. P est un polynôme de degré inférieur ou égal à K-1 s'annulant en les K réels deux à deux distincts x_1, \ldots, x_K . On en déduit que P=0.

Donc $\operatorname{Ker}(\Psi) = \{0\}$ puis Ψ est injectif. Enfin, puisque $\dim(\mathbb{R}_{K-1}[X]) = \dim(\mathbb{R}^K) = K < +\infty$, Ψ est un isomorphisme d'espaces vectoriels.

 $\mathbf{Q} \text{ 7. Notons } (e_1,\ldots,e_K) \text{ la base canonique de } \mathbb{R}^K. \text{ Pour } \mathbf{j} \in \llbracket 1,K \rrbracket, \text{ posons } L_j = \Psi^{-1}\left(e_j\right). \text{ Alors, pour tout } \mathbf{j} \in \llbracket 1,K \rrbracket, L_j \text{ est un élément de } \mathbb{R}_{K-1}[X] \text{ tel que } \Psi\left(L_j\right) = e_j. \text{ Maintenant, si } \mathbf{f} \in \mathscr{C}^k([0,1]) \text{ puis } P = \sum_{i=1}^K \mathbf{f}\left(x_j\right) L_j \in \mathbb{R}_{K-1}[X],$

$$(P(x_1),...,P(x_K)) = \Psi(P) = \sum_{j=1}^{K} f(x_j) \Psi(L_j) = \sum_{j=1}^{K} f(x_j) e_j = (f(x_1),...,f(x_K))$$

et donc P est un élément de $\mathbb{R}_{K-1}[X]$ tel que $\forall \ell \in [\![1,K]\!], \, P(x_\ell) = f(x_\ell).$

Q 8. Montrons par récurrence que pour tout $k \in [0, K-1]$, la fonction $f^{(k)} - P^{(k)}$ s'annule en au moins K-k réels deux à deux distincts de [0,1].

- f P s'annule en les K réels deux à deux distincts x_1, \ldots, x_K . Le résultat est donc vrai quand k=0 et si K=1, il n'y a plus rien à dire. Dorénavant, $K\geqslant 2$.
- Soit $k \in [0, K-2]$. Supposons que $f^{(k)} P^{(k)}$ s'annule en K-k réels deux à deux distincts $\alpha_1, \ldots, \alpha_{K-k}$ de [0,1] où la numérotation est telle que $\alpha_1 < \ldots < \alpha_{K-k}$. Pour chaque $j \in [1, K-k-1]$, $f^{(k)} P^{(k)}$ est continue sur $[\alpha_j, \alpha_{j+1}]$, dérivable sur $]\alpha_j, \alpha_{j+1}[$ et prend la même valeur

en a_j et a_{j+1} . D'après le théorème de ROLLE, pour chaque $j \in [1, K-k-1]$, il existe $b_j \in]a_j, a_{j+1}[$ tel que $f^{(k+1)}(b_j) - P^{(k+1)}(b_j) = 0$. Puisque $a_1 < b_1 < a_2 < \ldots < a_{K-k-1} < b_{K-k-1} < a_{K-k}$, les b_j sont K-k-1 réels deux à deux distincts de [0, 1] en lesquels la fonction $f^{(k+1)} - P^{(k+1)}(b_j) = 0$.

Le résultat est démontré par récurrence.

Q 9. Soit $k \in [0, K-1]$. La question précédente montre que la fonction $f^{(k)} - P^{(k)}$ s'annule au moins une fois sur [0, 1] en un certain réel c_k . Pour tout $x \in [0, 1]$,

$$\begin{split} \left| f^{(k)}(x) - P^{(k)}(x) \right| &= \left| f^{(k)}\left(c_{k}\right) - P^{(k)}\left(c_{k}\right) + \int_{c_{k}}^{x} \left(f^{(k+1)}(t) - P^{(k+1)}(t) \right) dt \right| = \left| \int_{c_{k}}^{x} \left(f^{(k+1)}(t) - P^{(k+1)}(t) \right) dt \right| \\ &\leq \left| \left| f^{(k+1)} - P^{(k+1)} \right| \right|_{\infty} \\ &\leq \left\| f^{(k+1)} - P^{(k+1)} \right\|_{\infty}. \end{split}$$

 $\mathbf{Q} \text{ } \mathbf{10.} \text{ En particulier, pour tout } k \in \llbracket 0, K-1 \rrbracket, \ \left\| f^{(k)} - P^{(k)} \right\|_{\infty} \leqslant \left\| f^{(K)} - P^{(K)} \right\|_{\infty} = \left\| f^{(K)} \right\|_{\infty} \text{ car deg} \left(P \right) \leqslant K-1 \text{ puisson} \left(P \right) \leqslant K-1 \text{$

$$\left\|f^{(k)}\right\|_{\infty}\leqslant \left\|f^{(k)}-P^{(k)}\right\|_{\infty}+\left\|P^{(k)}\right\|_{\infty}\leqslant \left\|f^{(K)}\right\|_{\infty}+\left\|P^{(k)}\right\|_{\infty}.$$

 $\mathrm{Maintenant,\;pour\;tout\;}k\in [\![0,K-1]\!],\; \left\|P^{(k)}\right\|_{\infty} = \left\|\sum_{j=1}^{K}f\left(x_{j}\right)L_{j}^{(k)}\right\|_{\infty} \leqslant \sum_{j=1}^{K}\left|f\left(x_{j}\right)\right|\left\|L_{j}^{(k)}\right\|_{\infty} \leqslant C\sum_{j=1}^{K}\left|f\left(x_{j}\right)\right|\;\mathrm{où}$

 $C = \operatorname{Max} \left\{ \left\| L_j^{(k)} \right\|_{\infty}, \ 1 \leqslant j \leqslant K, \ 0 \leqslant k \leqslant K-1 \right\}. \ C \ \mathrm{est} \ \mathrm{un} \ \mathrm{r\'eel} \ \mathrm{strictement} \ \mathrm{positif}, \ \mathrm{ne} \ \mathrm{d\'ependant} \ \mathrm{que} \ \mathrm{de} \ x_1, \ldots, x_K, \ \mathrm{et} \ \mathrm{pas} \ \mathrm{de} \ \mathrm{f} \ \mathrm{tel} \ \mathrm{que}$

$$\operatorname{Max}\left\{\left\|f^{(k)}\right\|_{\infty},\ 0\leqslant k\leqslant K-1\right\}\leqslant \left\|f^{(K)}\right\|_{\infty}+C\sum_{\ell=1}^{K}\left|f\left(x_{\ell}\right)\right|.$$

II - Dérivation \mathscr{C}^k pour les séries de fonctions

II.A - Enoncé général

Q 11. Il existe C > 0 (indépendant de n) tel que, pour tout $n \in \mathbb{N}$ puis pour tout $k \in [0, K-1]$,

$$\left\|f_{n}^{(k)}\right\|_{\infty} \leqslant \left\|f_{n}^{(K)}\right\|_{\infty} + C \sum_{\ell=1}^{K} \left|f_{n}\left(x_{\ell}\right)\right|.$$

Par hypothèse, la série numérique de terme général $\left\|f_n^{(K)}\right\|_{\infty} + C \sum_{\ell=1}^K |f_n\left(x_\ell\right)|$ converge et il en est de même de la série de terme général $\left\|f_n^{(k)}\right\|_{\infty}$ pour tout $k \in [0, K-1]$. Ceci montre que pour tout $k \in [0, K]$, la série de fonctions de terme général $f_n^{(k)}$ converge normalement sur [0, 1].

Q 12. σ est une bijection de [0,1] sur [a,b], strictement croissante sur [0,1] (de sorte que $0 \le \sigma^{-1}(x_1) < \ldots \sigma^{-1}(x_K) \le 1$) et de classe C^K sur [0,1]. Pour $n \in \mathbb{N}$, posons $g_n = f_n \circ \sigma$ de sorte que $f_n = g_n \circ \sigma^{-1}$. g_n est de classe C^K sur [0,1] et pour tout $k \in [0,K]$ et tout $x \in [a,b]$, $g_n^{(k)}(x) = (b-a)^k f_n^{(k)}(\sigma(x))$. Puisque σ est une bijection de [0,1] sur [a,b], pour tout $n \in \mathbb{N}$ et tout $k \in [0,K]$,

$$\begin{split} \left\| g_n^{(k)} \right\|_{\infty,[0,1]} &= \operatorname{Sup} \left\{ \left| g_n^{(k)}(x) \right|, \; x \in [0,1] \right\} = (b-a)^k \operatorname{Sup} \left\{ \left| f_n^{(k)}(\sigma(x)) \right|, \; x \in [0,1] \right\} \\ &= (b-a)^k \operatorname{Sup} \left\{ \left| f_n^{(k)}(t) \right|, \; t \in [a,b] \right\} = (b-a)^k \left\| f_n^{(k)} \right\|_{\infty,[a,b]}. \end{split}$$

En particulier, la série numérique de terme général $\left\|g_n^{(K)}\right\|_{\infty,[0,1]} = (b-a)^K \left\|f_n^{(K)}\right\|_{\infty,[a,b]}$, $n \in \mathbb{N}$, converge ou encore, la série de fonctions de terme général $g_n^{(K)}$, $n \in \mathbb{N}$, converge normalement sur [a,b]. D'autre part, pour chaque $\ell \in [1,K]$, la série numérique de terme général $g_n \left(\sigma^{-1}\left(x_\ell\right)\right) = f_n\left(x_\ell\right)$, $n \in \mathbb{N}$, converge absolument.

D'après la question précédente, pour tout $k \in [\![0,K-1]\!]$, la série numérique de terme général $\left\|g_n^{(k)}\right\|_{\infty,[0,1]}$, $n \in \mathbb{N}$, converge. Il en est de même des séries numériques de termes généraux respectifs $\left\|f_n^{(k)}\right\|_{\infty,[a,b]} = \frac{\left\|g_n^{(k)}\right\|_{\infty,[0,1]}}{(b-a)^k}$, $n \in \mathbb{N}$, pour $0 \le k \le K-1$. On a montré que pour tout $k \in [\![0,K-1]\!]$, la série de fonctions de terme général $f_n^{(k)}$, $n \in \mathbb{N}$, converge normalement et donc uniformément et simplement sur [a,b].

Q 13. Ainsi,

- La série de fonction de terme général f_n , $n \in \mathbb{N}$, converge simplement vers F_0 sur [a,b].
- Chaque fonction f_n , $n \in \mathbb{N}$, est de classe C^K sur $[\mathfrak{a},\mathfrak{b}]$.
- Pour tout $k \in [0, K-1]$, la série de fonctions de terme général $f_n^{(k)}$, $n \in \mathbb{N}$, converge simplement sur [a, b].
- La série de fonctions de terme général $f_n^{(K)}$, $n \in \mathbb{N}$, converge uniformément sur [a,b].

D'après le théorème de dérivation terme à terme généralisé, la fonction F_0 est de classe C^K sur [a,b] et ses dérivées successives jusqu'à l'ordre K s'obtiennent par dérivation terme à terme ou encore, pour tout $k \in [0,K]$, $F_0^{(k)} = F_k$.

II.B - Application sur un exemple

Q 14. Soit $n \in \mathbb{N}^*$. La fonction $x \mapsto (-1)^n 2^{-nx^2}$ est continue sur [a, b] et admet donc des primitives sur $]0, +\infty[$. Soit g_n une primitive donnée d'une primitive donnée de la fonction $x \mapsto (-1)^n 2^{-nx^2}$ sur $]0, +\infty[$. La fonction f_n est nécessairement de la forme $x \mapsto g_n(x) + \alpha_n x + \beta_n$, $(\alpha_n, \beta_n) \in \mathbb{R}^2$. Maintenant, une telle fonction est de classe C^2 sur $]0, +\infty[$ et admet pour dérivée seconde la fonction $x \mapsto (-1)^n 2^{-nx^2}$. Enfin,

$$f_n(1) = f_n(2) = 0 \Leftrightarrow \beta_n + g_n(1) = 2\alpha_n + \beta_n + g_n(2) = 0 \Leftrightarrow \beta_n = -g_n(1) \text{ et } \alpha_n = -\frac{1}{2} \left(-g_n(1) + g_n(2) \right).$$

Ceci montre l'existence et l'unicité de f_n.

Q 15. Soient a et b deux réels tels que $0 < a \le 1 < 2 \le b$. Soient $x_1 = 1$ et $x_2 = 2$. Les séries numériques de termes généraux respectifs $f_n(1)$ et $f_n(2)$ sont absolument convergentes. D'autre part, pour tout $n \in \mathbb{N}^*$, pour tout $x \in [a, b]$,

$$|f_n''(x)| = 2^{-nx^2} \le 2^{-na^2}$$

puis $\|f_n''\|_{\infty,[a,b]} \le 2^{-n\alpha^2} = \left(\frac{1}{2^{\alpha^2}}\right)^n$. Puisque $0 < \frac{1}{2^{\alpha^2}} < 1$ (car $\alpha > 0$), la série numérique de terme général $\|f_n''\|_{\infty,[a,b]}$, $n \in \mathbb{N}^*$, converge ou encore la série de fonctions de terme général f_n'' , $n \in \mathbb{N}^*$, converge normalement sur [a,b]. D'après la question Q12, la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge normalement sur [a,b]. Ceci étant vrai pour tout segment [a,b] tel que $[1,2] \subset [a,b]$, la série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge normalement sur tout segment inclus dans $]0,+\infty[$.

D'après la question Q13, F est de classe C^2 sur tout segment [a,b] tel que $[1,2] \subset [a,b]$ et donc sur tout segment inclus dans $]0,+\infty[$ et donc sur $]0,+\infty[$.

Q 16. De plus, pour tout $x \in]0, +\infty[$,

$$F''(x) = \sum_{n=1}^{+\infty} f_n''(x) = \sum_{n=1}^{+\infty} \left(-\frac{1}{2^{x^2}} \right)^n = -\frac{1}{2^{x^2}} \frac{1}{1 + \frac{1}{2^{x^2}}} = -\frac{1}{2^{x^2} + 1}.$$

Q 17. On prend toujours $x_1 = 1$ et $x_2 = 2$. D'après la question Q5, pour tout $x \in [1, 2]$,

$$|F(x)| \leqslant ||F||_{\infty,[1,2]} \leqslant ||F''||_{\infty,[1,2]} + C(|F(1)| + |F(2)|) = ||F''||_{\infty,[1,2]} = \frac{1}{2^{1^2} + 1} = \frac{1}{3}.$$

On a montré que pour tout $x \in [1, 2], |F(x)| \leq \frac{1}{3}$.

III - Convergence d'une série aléatoire de Rademacher

III.A - Construction de la suite $(\phi(j))_{j\in\mathbb{N}}$ et majoration de $\mathbb{P}(A_j)$

 $\mathbf{Q} \ \mathbf{18.} \ \mathrm{La} \ \mathrm{s\acute{e}rie} \ \mathrm{de} \ \mathrm{terme} \ \mathrm{g\acute{e}n\acute{e}ral} \ \mathfrak{a}_{n}^{2}, \ n \in \mathbb{N}, \ \mathrm{converge}. \ \mathrm{Pour} \ k \in \mathbb{N}, \ \mathrm{on} \ \mathrm{pose} \ \mathrm{alors} \ R_{k} = \sum_{n>k} \mathfrak{a}_{n}^{2}. \ \mathrm{On} \ \mathrm{sait} \ \mathrm{que} \ \mathrm{la} \ \mathrm{suite} \ (R_{k})_{k \in \mathbb{N}} \ \mathrm{est} \ \mathrm{d\acute{e}finie} \ \mathrm{et} \ \mathrm{converge} \ \mathrm{vers} \ \mathbf{0}.$

- $\bullet \text{ Il existe un rang } k_0 \text{ tel que, pour } k \geqslant k_0, \ R_k \leqslant 1 = \frac{1}{8^0}. \text{ On pose } \varphi(0) = \min \left\{ k \in \mathbb{N}, \ \sum_{n > k} \alpha_n^2 \right\} \leqslant \frac{1}{8^0}.$
- $\bullet \ \, \text{Soit} \ j \geqslant 0. \ \, \text{Supposons avoir construit des entiers} \ \varphi(0), \ \varphi(1), \ \ldots, \ \varphi(j) \ \, \text{tels que} \ \varphi(0) < \varphi(1) < \ldots < \varphi(j) \ \, \text{et} \ \, \forall k \in [\![0,j]\!], \ \, \sum_{n>k} \alpha_n^2 \leqslant \frac{1}{8^{k}}. \ \, \text{Il existe un rang } k_0 \ \, \text{tel que, pour } k \geqslant k_0, \ \, \sum_{n>k} \alpha_n^2 \leqslant \frac{1}{8^{j+1}} \ \, \text{de sorte que}$

$$\left\{k\geqslant \varphi(j)+1/\sum_{n>k}\alpha_n^2\leqslant \frac{1}{8^{j+1}}\right\} \text{ est une partie non vide de } \mathbb{N}. \text{ On pose } \varphi(j+1)=\min\left\{k\geqslant \varphi(j)+1,\; \sum_{n>k}\alpha_n^2\leqslant \frac{1}{8^{j+1}}\right\}.$$

On a ainsi construit par récurrence une suite $(\phi(j))_{j\in\mathbb{N}}$ d'entiers naturels, strictement croissante, telle que

$$\forall j \in \mathbb{N}, \sum_{n > \Phi(j)} a_n^2 \leqslant \frac{1}{8^j}.$$

 $\mathbf{Q} \ \mathbf{19.} \ \mathrm{Pour} \ \mathrm{tout} \ n \in \mathbb{N}, \ \mathbb{E}\left(X_{n}\right) = -1 \times \frac{1}{2} + 1 \times \frac{1}{2} = 0 \ \mathrm{et} \ \mathrm{d'autre} \ \mathrm{part}, \ \mathrm{d'après} \ \mathrm{la} \ \mathrm{formule} \ \mathrm{de} \ \mathrm{K\"{o}Enig-Huygens},$

$$\mathbb{V}(X_n) = \mathbb{E}(X_n^2) - (\mathbb{E}(X_n))^2 = \mathbb{E}(X_n^2) = (-1)^2 \times \frac{1}{2} + 1^2 \times \frac{1}{2} = 1.$$

Soit $j \in \mathbb{N}$. Par linéarité de l'espérance

$$\mathbb{E}\left(S_{\varphi(j+1)} - S_{\varphi(j)}\right) = \mathbb{E}\left(\sum_{n=\varphi(j)+1}^{\varphi(j+1)} X_n a_n\right) = \sum_{n=\varphi(j)+1}^{\varphi(j+1)} a_n \mathbb{E}\left(X_n\right) = 0.$$

Ensuite, puisque les variables X_n , $n \in \mathbb{N}$, sont mutuellement indépendantes et en particulier deux à deux indépendantes. Il en est de même des variables $a_n X_n$ puis

$$\mathbb{V}\left(S_{\varphi(j+1)} - S_{\varphi(j)}\right) = \sum_{n=\varphi(j)+1}^{\varphi(j+1)} \alpha_n^2 \mathbb{V}\left(X_n\right) = \sum_{n=\varphi(j)+1}^{\varphi(j+1)} \alpha_n^2.$$

 $\mathrm{En\ particulier},\ \mathrm{pour\ tout}\ j\in\mathbb{N},\ \mathbb{V}\left(S_{\varphi(j+1)}-S_{\varphi(j)}\right)\leqslant \sum_{\mathfrak{n}>\varphi(j)}\alpha_{\mathfrak{n}}^2\leqslant \frac{1}{8^{j}}.$

Q 20. D'après l'inégalité de BIENAYMÉ-TCHEBYCHEV,

$$\begin{split} \mathbb{P}\left(A_{j}\right) &= \mathbb{P}\left(\left|\left(S_{\varphi(j+1)} - S_{\varphi(j)}\right) - \mathbb{E}\left(S_{\varphi(j+1)} - S_{\varphi(j)}\right)\right| > \frac{1}{2^{j}}\right) \\ &\leqslant \frac{\mathbb{V}\left(S_{\varphi(j+1)} - S_{\varphi(j)}\right)}{\left(\frac{1}{2^{j}}\right)^{2}} \leqslant \frac{1/8^{j}}{1/4^{j}} = \frac{1}{2^{j}}. \end{split}$$

III.B - Inégalité maximale de Lévy $\mathbb{P}(B_i) \leq 2\mathbb{P}(A_i)$

 $\textbf{Q 21.} \ \mathrm{Soit} \ (\mathfrak{m},\mathfrak{m}') \in [\![\varphi(j),\varphi(j+1)]\!]^2 \ \mathrm{tel} \ \mathrm{que} \ \mathfrak{m} < \mathfrak{m}'. \ \mathrm{Soit} \ \omega \in B_{j,\mathfrak{m}'}. \ \mathrm{Puisque} \ \mathfrak{m} \in [\![\varphi(j),\mathfrak{m}'-1]\!], \ \mathrm{par} \ \mathrm{d\acute{e}finition} \ \mathrm{de} \\ B_{j,\mathfrak{m}'}, \ \mathrm{on} \ \mathrm{a} \ \big|S_{\mathfrak{m}}(\omega) - S_{\Phi(j)}(\omega)\big| \leqslant \frac{1}{2^j} \ \mathrm{et} \ \mathrm{donc} \ \omega \notin B_{j,\mathfrak{m}}. \ \mathrm{Ceci} \ \mathrm{montre} \ \mathrm{que} \ B_{j,\mathfrak{m}} \cap B_{j,\mathfrak{m}'} = \varnothing.$

 $\begin{array}{l} \mathrm{Soit}\ \omega\in B_{j}.\ \mathrm{Donc},\ \left\{n\in [\![\varphi(j)+1,\varphi(j+1)]\!]/\ \left|S_{n}(\omega)-S_{\varphi(j)}(\omega)\right|>2^{-j}\right\}\neq\varnothing. \\ \mathrm{Soit}\ m=\ \mathrm{Min}\ \left\{n\in [\![\varphi(j)+1,\varphi(j+1)]\!]/\ \left|S_{n}(\omega)-S_{\varphi(j)}(\omega)\right|>2^{-j}\right\}.\ \mathrm{Par}\ \mathrm{d\acute{e}finition}\ \mathrm{de}\ m,\ \omega\in B_{j,m}.\ \mathrm{Ainsi},\ \mathrm{pour}\ \mathrm{tout} \\ \mathrm{Soit}\ m=\ \mathrm{Min}\ \left\{n\in [\![\varphi(j)+1,\varphi(j+1)]\!]/\ \left|S_{n}(\omega)-S_{\varphi(j)}(\omega)\right|>2^{-j}\right\}. \end{array}$

 $\omega \in B_j, \text{ il existe } \mathfrak{m} \in \llbracket \varphi(j) + 1, \varphi(j+1) \rrbracket \text{ tel que } \omega \in B_{j,\mathfrak{m}}. \text{ Ceci montre que } B_j \subset \bigcup_{\mathfrak{m} = \varphi(j) + 1}^{\varphi(j)} B_{j,\mathfrak{m}}.$

 $\mathrm{Inversement, soit} \ \omega \in \bigcup_{\mathfrak{m} = \varphi(\mathfrak{j}) + 1}^{\varphi(\mathfrak{j} + 1)} B_{\mathfrak{j},\mathfrak{m}}. \ \mathrm{Il} \ \mathrm{existe} \ \mathfrak{m} \in \llbracket \varphi(\mathfrak{j}) + 1, \varphi(\mathfrak{j} + 1) \rrbracket \ \mathrm{tel} \ \mathrm{que} \ \omega \in B_{\mathfrak{j},\mathfrak{m}} \ \mathrm{et} \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ \big| S_{\mathfrak{m}}(\omega) - s_{\varphi(\mathfrak{j})}(\omega) \big| > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{tel} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ \mathrm{que} \ |S_{\mathfrak{m}}(\omega) - S_{\varphi(\mathfrak{j})(\omega) - S_{\varphi(\mathfrak{j})}(\omega) | > 0 \ \mathrm{donc} \ |S_{\varphi(\mathfrak{j})(\omega) - S_{\varphi(\mathfrak{j})(\omega)}(\omega) - S_{\varphi(\mathfrak{j})(\omega) - S_{\varphi(\mathfrak{j})(\omega)}(\omega) | > 0 \ \mathrm{donc} \ |S_{\varphi(\mathfrak{j})(\omega) - S_{\varphi(\mathfrak{j})(\omega) - S_$

 $2^{-j}. \text{ Mais alors, } \operatorname{Max}\left\{\left|S_{\mathfrak{n}}(\omega)-S_{\varphi(j)}\right|, \ \mathfrak{n} \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket\right\} > 2^{-j} \text{ puis } \omega \in B_{j}. \text{ Ceci montre que } \bigcup_{\mathfrak{m}=\varphi(j)+1}^{\varphi(j+1)} B_{j,\mathfrak{m}} \subset B_{j} \text{ et finalement que } \mathbb{I}_{\mathfrak{m}}$

$$B_{j} = \bigcup_{m=\phi(j)+1}^{\phi(j+1)} B_{j,m}.$$

 $\mathbf{Q} \text{ 22. Soit } \mathbf{j} \in \mathbb{N}. \ \left| S_{\varphi(\mathbf{j}+1)} - S_{\varphi(\mathbf{j})} \right| > \frac{1}{2^{\mathbf{j}}} \Rightarrow \max_{\substack{\varphi(\mathbf{j})+1 \leqslant n \leqslant \varphi(\mathbf{j}+1)}} \left| S_n - S_{\varphi(\mathbf{j})} \right| > \frac{1}{2^{\mathbf{j}}} \text{ et donc } A_{\mathbf{j}} \subset B_{\mathbf{j}} \text{ puis } A_{\mathbf{j}} = A_{\mathbf{j}} \cap B_{\mathbf{j}}. \text{ Mais alors, puisque les } B_{\mathbf{j},m} \text{ sont deux à deux disjoints, de réunion } B_{\mathbf{j}},$

$$\mathbb{P}\left(A_{j}\right)=\mathbb{P}\left(A_{j}\cap B_{j}\right)=\mathbb{P}\left(A_{j}\cap\left(\bigcup_{k=\varphi(j)+1}^{\varphi(j+1)}B_{j,\mathfrak{m}}\right)\right)=\mathbb{P}\left(\bigcup_{k=\varphi(j)+1}^{\varphi(j+1)}A_{j}\cap B_{j,\mathfrak{m}}\right)=\sum_{\mathfrak{m}=\varphi(j)+1}^{\varphi(j+1)}\mathbb{P}\left(A_{j}\cap B_{j,\mathfrak{m}}\right).$$

Q 23. Notons f la fonction de l'énoncé. Soit $\alpha \in \mathbb{R}$. Notons E_{α} l'ensemble des $\phi(j+1)-\phi(j)$ -uplets $\left(\epsilon_{\phi(j)+1},\ldots,\epsilon_{\phi(j+1)}\right) \in \{-1,1\}^{\phi(j+1)-\phi(j)}$ tels que

• pour tout
$$n \in [\![\varphi(j), m-1]\!]$$
, $\left| \sum_{k=\varphi(j)+1}^n \varepsilon_k a_k \right| \leqslant \frac{1}{2^j}$,

$$\bullet \left| \sum_{k=\phi(j)+1}^{m} \varepsilon_k \alpha_k \right| > \frac{1}{2^j},$$

$$\bullet \left| \alpha \sum_{k=m+1}^{\phi(j+1)} \varepsilon_k \alpha_k + \sum_{k=\phi(j)+1}^{m} \varepsilon_k \alpha_k \right| > \frac{1}{2^j}.$$

 $\text{L'événement } \left| \alpha S_{\varphi(j+1)} - \alpha S_m + S_m - S_{\varphi(j)} \right| \cap B_{j,m} \text{ est la réunion disjointe des événements } \left(X_{\varphi(j)+1} = \epsilon_{\varphi(j)+1} \right) \cap \ldots \cap \left(X_{\varphi(j+1)} = \epsilon_{\varphi(j+1)} \right) \text{ c'est-à-dire } \left(X_{\varphi(j)+1}, \ldots, X_{\varphi(j+1)} \right) = \left(\epsilon_{\varphi(j)+1}, \ldots, \epsilon_{\varphi(j+1)} \right) \text{ où } \left(\epsilon_{\varphi(j)+1}, \ldots, \epsilon_{\varphi(j+1)} \right) \text{ décrit } E_{\alpha}.$

Puisque les variables X_n , $n \in \mathbb{N}$, sont indépendantes, pour $\left(\epsilon_{\varphi(j)+1}, \ldots, \epsilon_{\varphi(j+1)}\right) \in E_{\alpha}$,

$$\mathbb{P}\left(\left(X_{\varphi(\mathfrak{j})+1},\ldots,X_{\varphi(\mathfrak{j}+1)}\right)=\left(\epsilon_{\varphi(\mathfrak{j})+1},\ldots,\epsilon_{\varphi(\mathfrak{j}+1)}\right)\right)=\frac{1}{2\varphi(\mathfrak{j}+1)-\varphi(\mathfrak{j})},$$

et donc

$$\mathbb{P}\left(\left|\alpha S_{\varphi(j+1)} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| \cap B_{j,\mathfrak{m}}\right) = \frac{\operatorname{card}\left(E_{\alpha}\right)}{2^{\varphi(j+1)-\varphi(j)}}$$

puis $f(\alpha) = \operatorname{card}(E_{\alpha}) \in \mathbb{N}$.

Ensuite, l'application $\left(\epsilon_{\varphi(j)+1},\ldots,\epsilon_m,\epsilon_{m+1},\ldots,\epsilon_{\varphi(j+1)}\right)\mapsto \left(\epsilon_{\varphi(j)+1},\ldots,\epsilon_m,-\epsilon_{m+1},\ldots,-\epsilon_{\varphi(j+1)}\right)$ est une bijection de E_α sur $E_{-\alpha}$. Par suite, $\operatorname{card}\left(E_{-\alpha}\right)=\operatorname{card}\left(E_\alpha\right)$ puis $f(-\alpha)=f(\alpha)$. f est donc une fonction paire.

 $\mathbf{Q} \text{ 24. Supposons que l'événement } B_j \text{ se réalise ou encore, supposons que } \bigcup_{\mathfrak{m}=\varphi(\mathfrak{j})+1} = B_\mathfrak{j} \neq \varnothing.$ Il existe donc $\omega \in \Omega$ puis $\mathfrak{m} \in [\![\varphi(\mathfrak{j}+1,\varphi(\mathfrak{j}+1))\!]$, tels que $\big|S_\mathfrak{m}(\omega)-S_{\varphi(\mathfrak{j})}(\omega)\big|>2^{-\mathfrak{j}}$ et pour tout $\mathfrak{n} \in [\![\varphi(\mathfrak{j}),\mathfrak{m}-1]\!]$,

 $|S_n(\omega) - S_{\Phi(i)}(\omega)| \leq 2^{-j}$.

 $\mathrm{Supposons} \ \mathrm{par} \ \mathrm{l'absurde} \ \mathrm{que} \ \mathrm{pour} \ \mathrm{tout} \ \alpha \in \{-1,1\}, \ \left|\alpha S_{\varphi(j+1)}(\omega) - \alpha S_{\mathfrak{m}}(\omega) + S_{\mathfrak{m}}(\omega) - S_{\varphi(j)}(\omega)\right| \leqslant 2^{-j}. \ \mathrm{Alors},$

$$\begin{split} \left|S_{\mathfrak{m}}(\omega) - S_{\varphi(j)}(\omega)\right| &= \frac{1}{2} \left| \left(S_{\varphi(j+1)}(\omega) - S_{\mathfrak{m}}(\omega) + S_{\mathfrak{m}}(\omega) - S_{\varphi(j)}(\omega)\right) + \left(S_{\varphi(j+1)}(\omega) - S_{\mathfrak{m}}(\omega) + S_{\mathfrak{m}}(\omega) - S_{\varphi(j)}(\omega)\right) \right| \\ &\leqslant \frac{1}{2} \left(\left|S_{\varphi(j+1)}(\omega) - S_{\mathfrak{m}}(\omega) + S_{\mathfrak{m}}(\omega) - S_{\varphi(j)}(\omega)\right| + \left|S_{\varphi(j+1)}(\omega) - S_{\mathfrak{m}}(\omega) + S_{\mathfrak{m}}(\omega) - S_{\varphi(j)}(\omega)\right| \right) \\ &\leqslant \frac{1}{2} \left(2^{-j} + 2^{-j}\right) = 2^{-j} \end{split}$$

ce qui est faux. Donc, il existe $\alpha \in \{-1,1\}$ tel que $\left|\alpha S_{\Phi(j+1)}(\omega - \alpha S_{\mathfrak{m}}(\omega) + S_{\mathfrak{m}}(\omega) - S_{\Phi(j)}(\omega)\right| > 2^{-j}$.

En résumé, si l'événement B_j n'est pas vide et si $\omega \in B_j$, il existe $\mathfrak{m} \in [\![\varphi(j)+1, \varphi(j+1)]\!]$ et $\alpha \in \{-1\}$ (dépendant de ω) tels $\mathrm{que}\ \omega \in \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particulier}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)+1} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particuler}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\} \cap B_{j,\mathfrak{m}}\ \mathrm{et\ en\ particuler}, \\ 1'\text{\'ev\'enement}\ \left\{\left|\alpha S_{\varphi(j)} - \alpha S_{\mathfrak{m}} + S_{\mathfrak{m}} - S_{\varphi(j)}\right| > 2^{-j}\right\}$ B_{i,m} se réalise.

Q 25. En particulier,

$$B_{j} \subset \bigcup_{\substack{m \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket \\ \alpha \in \{-1, 1\}}} \left\{ \left| \alpha S_{\varphi(j)+1} - \alpha S_{m} + S_{m} - S_{\varphi(j)} \right| > 2^{-j} \right\} \cap B_{j,m}$$

puis

$$\begin{split} \mathbb{P}\left(B_{j}\right) \leqslant \sum_{\substack{m \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket \\ \alpha \in \{-1,1\}}} \mathbb{P}\left(\left\{\left| \alpha S_{\varphi(j)+1} - \alpha S_{m} + S_{m} - S_{\varphi(j)} \right| > 2^{-j}\right\} \cap B_{j,m}\right) \\ &= 2 \sum_{\substack{m \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket \\ \text{ (par parit\'e de la fonction de la question Q23)}}} \mathbb{P}\left(\left\{\left| S_{\varphi(j)+1} - S_{m} + S_{m} - S_{\varphi(j)} \right| > 2^{-j}\right\} \cap B_{j,m}\right) \\ &= 2 \sum_{\substack{m \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket \\ \text{ } m \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket }} \mathbb{P}\left(\left\{\left| S_{\varphi(j)+1} - S_{\varphi(j)} \right| > 2^{-j}\right\} \cap B_{j,m}\right) \\ &= 2 \sum_{\substack{m \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket \\ \text{ } m \in \llbracket \varphi(j)+1, \varphi(j+1) \rrbracket }} \mathbb{P}\left(A_{j} \cap B_{j,m}\right) \\ &= 2 \mathbb{P}\left(A_{j}\right) \text{ d'après la question Q22}. \end{split}$$

III.C - Convergence de la série aléatoire $\sum X_n a_n$

Q 26. Soit $J \in \mathbb{N}$. D'après les questions Q25 puis Q23,

$$\begin{split} 0 \leqslant \mathbb{P}\left(\bigcup_{j\geqslant J} B_j\right) \leqslant \sum_{j=J}^{+\infty} \mathbb{P}\left(B_j\right) \leqslant 2\sum_{j=J}^{+\infty} \mathbb{P}\left(A_j\right) \\ \leqslant 2\sum_{j=J}^{+\infty} \frac{1}{2^j} = 2 \times \frac{1}{2^J} \times \frac{1}{1-\frac{1}{2}} = \frac{1}{2^{J-2}}. \end{split}$$

D'après le théorème des gendarmes, $\lim_{J\to +\infty}\mathbb{P}\left(\bigcup_{j\geqslant J}B_j\right)=0$. Puisque la suite $\left(\bigcup_{j\geqslant J}B_j\right)_{J\in \in\mathbb{N}}$ est une suite d'événements décroissante pour l'inclusion, par continuité décroissante,

$$\mathbb{P}\left(\bigcap_{J\in\mathbb{N}}\left(\bigcup_{j\geqslant J}B_j\right)\right)=\lim_{J\to+\infty}\mathbb{P}\left(\bigcup_{j\geqslant J}B_j\right)=0.$$

 $\mathbf{Q} \ \ \mathbf{27.} \ \ \mathrm{Mais} \ \ \mathrm{alors} \ \ \mathbb{P}\left(\bigcup_{J\in\mathbb{N}}\left(\bigcap_{j\geqslant J}\overline{B_{j}}\right)\right) = 1. \ \ \mathrm{Or}, \ \overline{B_{j}} = \left\{\forall n\in\llbracket\varphi(j)+1,\varphi(j+1)\rrbracket, \ \left|S_{n}-S_{\varphi(j)}\right|\leqslant 2^{-j}\right\} \ \ \mathrm{puis} \ \bigcap_{j\geqslant J}\overline{B_{j}} = \left\{\forall j\geqslant J, \ \forall n\in\llbracket\varphi(j)+1,\varphi(j+1)\rrbracket, \ \left|S_{n}-S_{\varphi(j)}\right|\leqslant 2^{-j}\right\} \ \ \mathrm{et} \ \ \mathrm{finalement}$

$$\left\{\exists J\in\mathbb{N}/\ \forall j\geqslant J,\ \forall n\in\llbracket\varphi(j)+1,\varphi(j+1)\rrbracket,\ \left|S_n-S_{\varphi(j)}\right|\leqslant 2^{-j}\right\}=\bigcup_{J\in\mathbb{N}}\left(\bigcap_{j\geqslant J}\overline{B_j}\right)$$

ce qui démontre le résultat.

 $\mathbf{Q} \text{ 28. Supposons qu'il existe } J \in \mathbb{N} \text{ tel que } \forall j \geqslant J, \ \forall n \in [\![\varphi(j)+1, \varphi(j+1)]\!], \ \big| S_n - S_{\varphi(j)} \big| \leqslant 2^{-j}.$

En particulier, $\forall j \geqslant J$, $\left|S_{\varphi(j+1)} - S_{\varphi(j)}\right| \leqslant 2^{-j}$. Puisque la série géométrique de terme général $\frac{1}{2^j}$ converge, il en est de même de la série de terme général $\left|S_{\varphi(j+1)} - S_{\varphi(j)}\right|$. Mais alors, la série de terme général $S_{\varphi(j+1)} - S_{\varphi(j)}$ converge et on sait qu'il en est de même de la suite $\left(S_{\varphi(j)}\right)_{j\in\mathbb{N}}$. Ceci montre que

$$\left\{\exists J\in\mathbb{N}/\ \forall j\geqslant J,\ \forall n\in[\![\varphi(j)+1,\varphi(j+1)]\!],\ \left|S_n-S_{\varphi(j)}\right|\leqslant 2^{-j}\right\}\subset\left\{\mathrm{la\ suite}\ \left(S_{\varphi(j)}\right)_{j\in\mathbb{N}}\ \mathrm{converge}\right\}$$

puis que l'événement $\left\{ \text{la suite } \left(S_{\Phi(\mathfrak{j})} \right)_{\mathfrak{j} \in \mathbb{N}} \text{ converge} \right\}$ a aussi une probabilité égale à 1.

 $\textbf{Q 29. Soit } \omega \in \left\{ \exists J \in \mathbb{N}/ \ \forall j \geqslant J, \ \forall n \in \llbracket \varphi(j) + 1, \varphi(j+1) \rrbracket, \ \left| S_n - S_{\varphi(j)} \right| \leqslant 2^{-j} \right\}. \ \text{D'après la question précédente, la suite } \left(S_{\varphi(j)}(\omega) \right)_{j \in \mathbb{N}} \ \text{converge. Posons } S = \lim_{j \to +\infty} S_{\varphi(j)}(\omega).$

 $\begin{aligned} &\mathrm{Soit}\ \epsilon>0.\ \mathrm{Soit}\ J_1\in\mathbb{N}\ \mathrm{tel}\ \mathrm{que}\ \mathrm{pour}\ \mathrm{tout}\ j\geqslant J_1,\ \frac{1}{2^j}\leqslant\frac{\epsilon}{2}\ (J_1\ \mathrm{existe}\ \mathrm{car}\ \frac{1}{2^j}\underset{j\to+\infty}{\longrightarrow}0).\ \mathrm{Soit}\ J_2\in\mathbb{N}\ \mathrm{tel}\ \mathrm{que}\ \mathrm{pour}\ \mathrm{tout}\ j\geqslant J_2\\ &\mathrm{puis}\ \mathrm{tout}\ n\in[\![\varphi(j)+1,\varphi(j+1)]\!],\ \big|S_n(\omega)-S_{\Phi(j)}(\omega)\big|\leqslant\frac{1}{2^j}.\ \mathrm{Soit}\ \mathrm{enfin}\ J_3\in\mathbb{N}\ \mathrm{tel}\ \mathrm{que}\ \mathrm{pour}\ \mathrm{tout}\ j\geqslant J_3,\ \big|S_{\varphi(j)}(\omega)-S\big|\leqslant\frac{\epsilon}{2}. \end{aligned}$

Soit alors $J = \operatorname{Max}\{J_1, J_2, J_3\}$. Pour $n \geqslant \varphi(J)$, on note j_n l'unique entier tel que $\varphi(j_n) \leqslant n < \varphi(j_{n+1})$. Puisque $n \geqslant \varphi(J)$, on a encore $\varphi(j_n) \geqslant \varphi(J)$ puis $j_n \geqslant J$ et donc

$$|S_{n}(\omega) - S| \leq |S_{n}(\omega) - S_{\phi(j_{n})}(\omega)| + |S_{\phi(j_{n})}(\omega) - S| \leq \frac{1}{2j} + \frac{\varepsilon}{2} \leq \varepsilon.$$

On a montré que pour tout $\epsilon > 0$, il existe $J \in \mathbb{N}$ tel que pour tout $n \geqslant J$, $|S_n(\omega) - S| \leqslant \epsilon$. Donc, la suite $(S_n(\omega))_{n \in \mathbb{N}}$ converge ou encore la série de terme général $X_n(\omega)a_n$ converge.

Par suite, $\left\{\exists J\in\mathbb{N}/\ \forall j\geqslant J,\ \forall n\in\llbracket\varphi(j)+1,\varphi(j+1)\rrbracket,\ \left|S_n-S_{\varphi(j)}\right|\leqslant 2^{-j}\right\}\subset\{\mathrm{la\ s\acute{e}rie}\ \Sigma X_na_n\ \mathrm{converge}\}\ \mathrm{puis\ comme\ \grave{a}\ la\ question\ pr\acute{e}c\acute{e}dente},$

$$\mathbb{P}\left(\{\text{la s\'erie }\Sigma X_n\,\alpha_n \text{ converge}\}\right)=1.$$

IV - Dérivation \mathscr{C}^k pour des séries aléatoires de fonctions

Q 30. Soit $\ell \in [1, K]$. Si la série de terme général $f_n(x_\ell)$ est absolument convergente, alors en particulier $\lim_{n \to +\infty} f_n(x_\ell) = 0$. On en déduit que pour n suffisamment grand, $|f_n(\ell)| \in [0, 1]$ puis $(f_n(x_\ell))^2 \le |f_n(\ell)|$. On en déduit que la série de terme général $(f_n(x_\ell))^2$ converge.

Ainsi, l'hypothèse (H_2) implique l'hypothèse (H'_2) .

Q 31. Supposons (H_2) . D'après la question précédente, l'hypothèse (H'_2) est vérifiée. Soit $\ell \in [\![1,K]\!]$. Puisque la série de terme général $(f_n(x_\ell))^2$ converge, la question Q29 permet d'affirmer que l'événement $\left\{\text{la série }\sum X_n f_n(x_\ell) \text{ est convergente}\right\}$ a une probabilité égale à 1.

On sait qu'une intersection finie (voire dénombrable) d'événements presque sûrs est un événement presque sûr. Donc, $\left\{ \text{pour tout } \ell \in [\![1,K]\!], \text{ la série } \sum X_n f_n\left(x_\ell\right) \text{ est convergente} \right\} = \bigcap_{\ell=1}^K \left\{ \text{la série } \sum X_n f_n\left(x_\ell\right) \text{ est convergente} \right\} \text{ est un événement presque sûr ou encore}$

$$\mathbb{P}\left(\left\{\mathrm{pour\ tout\ }\ell\in\llbracket1,K\rrbracket,\ \mathrm{la\ s\acute{e}rie}\ \sum X_{n}f_{n}\left(x_{\ell}\right)\ \mathrm{est\ convergente}\right\}\right)=1.$$

 $\mathbf{Q} \ \mathbf{32.} \ \mathrm{Soit} \ \omega \in \Omega. \ \mathrm{Pour} \ n \in \mathbb{N}, \ \mathrm{posons} \ g_n = X_n(\omega) \, (f_n - P_n).$

- Pour $n \in \mathbb{N}$, $P_n^{(K)} = 0$ puis $g_n^{(K)} = \pm f_n^{(K)}$ et donc $\|g_n^{(K)}\|_{\infty}$. On en déduit que la série de fonctions de terme général $g_n^{(K)}$ est normalement convergente sur [0,1].
- Puisque pour tout $n \in \mathbb{N}$, pour tout $\ell \in [1, K]$, $g_n(x_\ell) = \pm (f_n(x_\ell) P_n(x_\ell)) = 0$, on en déduit que pour tout $\ell \in [1, K]$, la série de terme général $g_n(x_\ell)$ est absolument convergente.

D'après la question Q11,

- $\bullet \text{ pour tout } k \in [\![0,K]\!], \text{ la série de fonctions } \sum g_n^{(k)} \text{ est uniformément convergente sur } [0,1],$
- la fonction $\sum_{n=0}^{+\infty} g_n$ est de classe \mathscr{C}^K ,
- pour tout $k \in [0, K]$, $\left(\sum_{n=0}^{+\infty} g_n\right)^{(k)} = \sum_{n=0}^{+\infty} g_n^{(k)}$.

En résumé, l'événement considéré dans la question Q32 est l'événement certain Ω et en particulier, cet événement a une probabilité égale à 1.

Q 33. Soit maintenant $\omega \in \Omega$ élément de $A \cap B$ où A est l'événement de la question Q31 et B est l'événement de la question Q32. Puisque A et B sont presque sûrs, $A \cap B$ est également presque sûrs.

Pour $n \in \mathbb{N}$, on a $X_n(\omega)f_n = X_n(\omega)P_n + X_n(\omega)(f_n - P_n)$. La suite de fonctions $(X_n(\omega)P_n + X_n(\omega)(f_n - P_n))_{n \in \mathbb{N}}$ vérifie toutes les propriétés de la question Q32.

 $\mathrm{Ensuite,\ pour\ tout\ }n\in\mathbb{N}\mathrm{\ puis\ pour\ tout\ }k\in[\![0,K]\!],\ (X_n(\omega)P_n)^{(k)}=\sum_{i=1}^KX_n(\omega)f_n\left(x_j\right)L_j^{(k)}.$

Soit $k \in [0, K]$. Puisque $\omega \in A$, chaque série numérique $\sum X_n(\omega) f_n(x_\ell)$, $1 \leqslant \ell \leqslant K$, converge et donc chaque série de

fonctions de terme général $X_n(\omega)f_n(x_j)L_j^{(k)}$ converge simplement sur [0,1] et finalement la série de fonction de terme général $(X_n(\omega)P_n)^{(k)}$ converge simplement sur [0,1]. D'autre part, pour tout $n \in \mathbb{N}$, $(X_n(\omega)P_n)^{(K)} = 0$ et donc la série de fonctions de terme général $(X_n(\omega)P_n)^{(K)}$ converge uniformément sur [0,1].

D'après le théorème de dérivation terme à terme généralisé, la série de fonctions de terme général $X_n(\omega)P_n$ a toutes les propriétés requises de cette question Q33. Il en est de même de la série de fonctions de terme général $X_n(\omega)f_n$.

On vient de montrer que l'événement $A \cap B$ est contenu dans l'événement de cette question Q33 et donc l'événement considéré a aussi une probabilité égale à 1.

Q 34. Remarque intiale. Soit $x \in]0,1]$. $\ln\left(1+\sin\left(\frac{x}{n}\right)\right) \underset{n\to+\infty}{\sim} \frac{x}{n} > 0$ et donc la série numérique de terme général $f_n(x)$ diverge. Mais alors la série de fonctions de terme général f_n ne converge en aucun point de]0,1].

Soit $n \in \mathbb{N}^*$. f_n est de classe C^2 sur [0,1] et pour tout $x \in [0,1]$, $f_n'(x) = \frac{1}{n} \frac{\cos\left(\frac{x}{n}\right)}{1+\sin\left(\frac{x}{n}\right)}$ puis

$$f_n''(x) = \frac{1}{n} \frac{-\frac{1}{n}\sin\left(\frac{x}{n}\right)\left(1+\sin\left(\frac{x}{n}\right)\right) - \cos\left(\frac{x}{n}\right) \times \frac{1}{n}\cos\left(\frac{x}{n}\right)}{\left(1+\sin\left(\frac{x}{n}\right)\right)^2}$$

puis $|f_n''(x)| \le \frac{1}{n^2} \frac{1 \times (1+1) + 1}{(1+0)^2} = \frac{3}{n^2}$. La série de fonctions de terme général f_n'' converge normalement sur [0,1]. L'hypothèse (H_1) est donc vérifiée avec K=2.

Soient alors $x_1=0$ et $x_2=1$. Pour tout $n\in\mathbb{N},$ $f_n(0)=0$ et d'autre part, $|f_n(1)|\underset{n\to+\infty}{\sim}\frac{1}{n}$ de sorte que pour $\ell\in\{1,2\}$, la série numérique de terme général $(f_n(x_\ell))^2$ converge. L'hypothèse (H_2') est vérifiée.

L'entier K=2 convient et pour ce choix de K, l'événement de la question Q33 se réalise et a une probabilité égale à 1. On a montré que pour « presque toute répartition de signes », la fonction $\sum_{n=0}^{+\infty} \pm f_n$ est de classe C^2 sur [0,1] et que ses deux premières dérivées s'obtiennent par dérivation terme à terme.