Лекция №11:

3.5 Денотационна семантика с предаване на параметрите по име

3.5.1 Функционалната област на Скот $\mathcal{F}_{\pmb{k}}^\perp = (\mathcal{F}_k^\perp,\ \sqsubseteq,\ \Omega^{(k)})$

Тази ОС въведохме, когато разглеждахме общата теория на областите на Скот. Сега ще припомним основните понятия и факти от раздели 2.1.3 и 2.2.2, които ще използваме тук.

Фиксираме някакъв елемент $\bot \not\in \mathbb{N}$ и полагаме

$$\mathbb{N}_{\perp} = \mathbb{N} \cup \{\bot\}.$$

 Π лоската наредба на \mathbb{N}_{\perp} се дефинира посредством еквивалентността:

$$x \sqsubseteq y \stackrel{\text{\pied}}{\iff} x = \bot \lor x = y.$$
 (3.17)

Ясно е, че $\bot \sqsubseteq x$ за всяко $x \in N_\bot$, т.е. \bot е най-малкият елемент на \mathbb{N}_\bot . Образно казано, той е на дъното на \mathbb{N}_\bot , затова се нарича bottom елемент. Това ще е елементът, с който ще обозначаваме, че една функция няма стойност в дадена точка; например $f(5) = \bot$ ще означава, че f няма стойност в 5.

Ето как изглеждаше графиката на релацията \sqsubseteq върху множеството \mathbb{N}_{\perp} (без примките $n \sqsubseteq n$):

Да наблегнем отново на това, че релацията \sqsubseteq няма нищо общо с числовото \leq . Две *числа x* и *y* са свързани с тази релация, т.е. $x \sqsubseteq y$, само когато x=y.

От *Твърдение* 2.2 знаем, че структурата $N_{\perp} = (N_{\perp}, \sqsubseteq, \bot)$ е ОС; ще я наричаме <u>плоска област на Скот</u>. Точната горна граница на монотонно растящата редица $x_0 \sqsubseteq x_1 \sqsubseteq \dots$ в N_{\perp} ще означаваме с

$$\bigsqcup_{n} x_{n}$$
.

В декартовото произведение $\mathbb{N}^k_\perp = \underbrace{\mathbb{N}_\perp \times \cdots \times \mathbb{N}_\perp}_k$ дефинираме <u>поком</u>-

 $\underline{nonehmhama}$ наредба, индуцирана от плоската наредба в \mathbb{N}_{\perp} , по следния начин:

$$(x_1,\ldots,x_k) \sqsubseteq (y_1,\ldots,y_k) \stackrel{\text{de}\Phi}{\Longleftrightarrow} x_1 \sqsubseteq y_1 \& \ldots \& x_k \sqsubseteq y_k.$$

Забележка. Тази наредба в \mathbb{N}^k_{\perp} ще означаваме със същия символ \sqsubseteq и също ще наричаме плоска наредба.

Ще пишем $\bar{x} \sqsubseteq \bar{y}$, за да означим, че $\bar{x} \sqsubseteq \bar{y}$ и $\bar{x} \neq \bar{y}$.

Съгласно Твърдение 2.5, структурата

$$\mathbb{N}_{\perp}^{k} = (\underbrace{\mathbb{N}_{\perp} \times \cdots \times \mathbb{N}_{\perp}}_{k}, \sqsubseteq, \underbrace{(\perp, \ldots, \perp)}_{k})$$

също е област на Скот. И нея ще наричаме плоска ОС.

Да напомним и дефиницията (2.3) на $\underline{\phi y n \kappa u u o n a n a m a}$ област на Скот, породена от плоската ОС \mathbb{N}_{\bullet}^{k} :

$$\mathcal{F}_{k}^{\perp} = (\mathcal{F}_{k}^{\perp}, \sqsubseteq, \Omega^{(k)}).$$

Тази област е с домейн множеството \mathcal{F}_k^{\perp} от всички momanhu k-местни функции в \mathbb{N}_{\perp} :

$$\mathcal{F}_k^{\perp} = \{ f | f \colon \, \mathbb{N}_{\perp}^k \to \mathbb{N}_{\perp} \}.$$

Приехме да я означаваме така по аналогия с ОС на *частичните* функции $\mathcal{F}_{\pmb{k}} = (\mathcal{F}_k, \subseteq, \emptyset^{(k)})$, в която работехме дотук.

Наредбата в \mathcal{F}_k^{\perp} е <u>поточковата наредба,</u> индуцирана от плоската наредба в \mathbb{N}_k^k , по-точно:

$$f \sqsubseteq g \stackrel{\text{ne} }{\iff} \forall x_1 \in \mathbb{N}_{\perp} \dots \forall x_k \in \mathbb{N}_{\perp} \ f(x_1, \dots, x_k) \sqsubseteq g(x_1, \dots, x_k).$$
 (3.18)

Наредбата \sqsubseteq е пълна, т.е. всяка монотонно растяща редица $f_0 \sqsubseteq f_1 \sqsubseteq \dots$ в \mathcal{F}_k^{\perp} има *точна горна граница*. Тази граница ще означаваме с $\bigsqcup_n f_n$.

Очаквано, и тя се дефинира поточково:

$$(\bigsqcup_{n} f_{n})(\bar{x}) \stackrel{\text{qed}}{=} \bigsqcup_{lub \text{ B } \mathcal{F}_{k}^{\perp}} f_{n}(\bar{x}).$$

$$(3.19)$$

Най-малкият елемент на \mathcal{F}_k^\perp — функцията $\Omega^{(k)}$ — дефинираме така: за всяка $(x_1,\dots,x_k)\in\mathbb{N}_\perp^k$

$$\Omega^{(k)}(x_1,\ldots,x_k) \stackrel{\mathrm{дe}\Phi}{=} \bot$$

При доказателствата в този раздел се оказва удобен следният еквивалентен запис на релацията ⊑:

Твърдение 3.8. За произволни функции $f, g \in \mathcal{F}_k^{\perp}$:

$$f\sqsubseteq g\iff \forall \bar{x}\!\in\!\mathbb{N}^k_\perp\ (f(\bar{x})\neq\bot\implies f(\bar{x})=g(\bar{x})).$$

Доказателство. Директно от дефиницията (3.17) на плоска наредба и това, че дизюнкцията $p \lor q$ е еквивалентна на $\neg p \Longrightarrow q$:

$$f\sqsubseteq g \overset{(3.18)}{\Longleftrightarrow} \forall \bar{x}\!\in\!\mathbb{N}_{\perp}^k \; (f(\bar{x})\sqsubseteq g(\bar{x})) \overset{(3.17)}{\Longleftrightarrow} \forall \bar{x}\!\in\!\mathbb{N}_{\perp}^k \; (f(\bar{x})=\bot \; \vee \; f(\bar{x})=g(\bar{x}))$$

$$\iff \forall \bar{x}\!\in\!\mathbb{N}_{\perp}^k \; (f(\bar{x})\ne\bot \; \Longrightarrow \; f(\bar{x})=g(\bar{x})).$$

Забележка. Обърнете внимание колко си приличат горната характеризация на <u></u> и дефиницията на релацията ⊆ между частични функции:

$$f \subseteq g \iff \forall \bar{x} \in \mathbb{N}^k \ (!f(\bar{x}) \implies f(\bar{x}) \simeq g(\bar{x})).$$

Подобна аналогия забелязваме и между дефиницията на точна горна граница $g = \bigcup_n f_n$ на монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ в \mathcal{F}_k :

$$g(\bar{x}) \simeq y \iff \exists n \ f_n(\bar{x}) \simeq y$$

и следващото свойство на точната горна граница в \mathcal{F}_k^\perp :

Твърдение 3.9. Нека $f_0 \sqsubseteq f_1 \sqsubseteq \dots$ е монотонно растяща редица в \mathcal{F}_k^{\perp} и $g = \bigsqcup_n f_n$ е нейната точна горна граница. Тогава за всяка k-орка $\bar{x} \in \mathbb{N}_{\perp}^k$ и $y \in \mathbb{N}$ е вярно, че:

- a) $g(\bar{x}) = \bot \iff \forall n \ f_n(\bar{x}) = \bot;$
- 6) $g(\bar{x}) = y \iff \exists n \ f_n(\bar{x}) = y.$

Доказателство. Нека $f_0 \sqsubseteq f_1 \sqsubseteq \dots$ е монотонно растяща. За произволно $\bar{x} \in \mathbb{N}_{\perp}^k$ и да означим $y_n \stackrel{\text{деф}}{=} f_n(\bar{x})$. От това, че редицата от функции е монотонно растяща в \mathcal{F}_k^{\perp} следва, че и редицата от стойностите им ще е монотонно растяща в \mathbb{N}_{\perp} , т.е. ще имаме

$$y_0 \sqsubseteq y_1 \sqsubseteq y_2 \sqsubseteq \dots$$

От основните свойства на плоската наредба от раздел 2.1.3 знаем, че всяка монотонно растяща редица в \mathbb{N}_{\perp} изглежда по един от следните два начина:

- $-\perp$, \perp , \perp , ... с граница \perp ;
- $\underbrace{\perp,\ldots\perp}_{n\geq 0},y,\ y,\ \ldots$ с граница $y\in\mathbb{N}.$

Сега вече условията от твърдението изглеждат съвсем очевидни.

3.5.2 Точни функции

Ще въведем едно подмножество на функциите от \mathcal{F}_k^{\perp} , което в някакъв смисъл е аналог на частичните функции \mathcal{F}_k .

Определение 3.14. Казваме, че функцията $f : \mathbb{N}^k_{\perp} \longrightarrow \mathbb{N}_{\perp}$ е *точна* (или *стриктна, strict*), ако за всички $(x_1, \ldots x_k) \in \mathbb{N}^k_{\perp}$ е изпълнено:

$$(\exists i : x_i = \bot) \implies f(x_1, \ldots x_k) = \bot.$$

С други думи, една функция е точна, ако всеки път, когато някой от аргументите ѝ е \bot , стойността ѝ също е \bot .

На пръв поглед между една частична функция $f: \mathbb{N}^k \longrightarrow \mathbb{N}$ и една точна функция $f: \mathbb{N}^k_{\perp} \longrightarrow \mathbb{N}_{\perp}$ няма разлика, ако приемем, че случаят $\neg ! f(\bar{x})$ отговаря на $f(\bar{x}) = \bot$. Да не забравяме, обаче, че сред аргументите на $f: \mathbb{N}^k_{\perp} \longrightarrow \mathbb{N}_{\perp}$ може да има \bot , за разлика от аргументите на частичната функция $f: \mathbb{N}^k \longrightarrow \mathbb{N}$, които са само числа.

Множеството на всички k-местни точни функции ще означаваме с \mathcal{S}_k , с други думи

$$\mathcal{S}_k = \{ f \mid f \colon \mathbb{N}^k_\perp \longrightarrow \mathbb{N}_\perp \& f \text{ е точна} \}.$$

Частичните функции от \mathcal{F}_k "потапяме" в множеството $\mathcal{S}_k \subseteq \mathcal{F}_k^{\perp}$ по следния начин: на всяка функция $f \in \mathcal{F}_k$ съпоставяме следната точна функция:

$$f^*(\bar{x}) = \begin{cases} f(\bar{x}), & \text{ако } \bar{x} \in \mathbb{N}^k \& ! f(\bar{x}) \\ \bot, & \text{иначе} \end{cases}$$

за всяко $\bar{x} \in \mathbb{N}^k_{\perp}$. Случаят "иначе" ще рече, че или сред елементите на k-орката \bar{x} има \perp , или $\bar{x} \in \mathbb{N}^k$, но $\neg ! f(\bar{x})$.

Функцията f^* ще наричаме <u>естествено продължение на f.</u> Тя очевидно е точна функция.

<u>Примери.</u> Ето няколко примера за естествени продължения на функции и предикати:

а) Нека f(x,y) = x + y. Нейното естествено продължение f^* е функцията

$$f^*(x,y) = \begin{cases} x+y, & \text{and } x \in \mathbb{N} \& y \in \mathbb{N} \\ \bot, & \text{and } x = \bot \lor y = \bot. \end{cases}$$

б) Нека x div y е функцията целочислено деление

$$x \text{ div } y \simeq \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ako } y > 0 \\ \neg !, & \text{ako } y = 0. \end{cases}$$

Нейното естествено продължение x div *y вече е тоталната функция

$$x \; \mathrm{div}^* y = \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ako } x \in \mathbb{N} \; \& \; y \in \mathbb{N}^+ \\ \bot, & \text{ako } x = \bot \; \vee \; y = \bot \; \vee \; y = 0. \end{cases}$$

в) Да означим с E предиката "равенство". Неговото естествено продължение E^* има следната дефиниция:

$$E^*(x,y) = \begin{cases} 1, & \text{ako } x \in \mathbb{N} \& y \in \mathbb{N} \& x = y \\ 0, & \text{ako } x \in \mathbb{N} \& y \in \mathbb{N} \& x \neq y \\ \bot, & x = \bot \lor y = \bot. \end{cases}$$

Лесно се съобразява, че изображението * е биекция между \mathcal{F}_k и \mathcal{S}_k . Следователно една функция от \mathcal{F}_k^{\perp} е точна тогава и само тогава, когато се явява естествено продължение на някоя частична функция от \mathcal{F}_k .

Да дефинираме и обратното изображение $^{\circ}$, което се прилага не само върху точните, а върху всички функции от \mathcal{F}_k^{\perp} . За всяка $f \in \mathcal{F}_k^{\perp}$ полагаме

$$f^{\circ}(\bar{x}) \simeq \begin{cases} f(\bar{x}), & \text{ако } f(\bar{x}) \neq \bot \\ \neg!, & \text{иначе.} \end{cases}$$
 (3.20)

за всяко $\bar{x} \in \mathbb{N}^k$.

Като лесно упражнение съобразете, че:

Задача 3.1. а) За всяка функция $f \in \mathcal{F}_k$ е вярно, че $(f^*)^\circ = f$.

- б) За всяка *точна* функция от \mathcal{F}_k^\perp е вярно, че $(f^\circ)^*=f$.
- в) Дайте пример за функция $f \in \mathcal{F}_k^{\perp}$, за която това равенство вече не е в сила.

Видяхме, че точните функции са някакъв аналог на частичните функции, затова не е изненадващо, че те също образуват област на Скот.

Задача 3.2. Докажете, че наредената тройка $\mathbf{\mathcal{S}_k} = (\mathcal{S}_k, \sqsubseteq, \Omega^{(k)})$ е област на Скот.

Областта на Скот $\mathcal{S}_{\boldsymbol{k}} = (\mathcal{S}_k, \sqsubseteq \Omega^{(k)})$ на практика е идентична с областта $\mathcal{F}_{\boldsymbol{k}} = (\mathcal{F}_k, \subseteq, \emptyset^{(k)})$, поради което няма да представлява особен интерес за нас. Ако търсим модел, в който да дефинираме денотационна семантика за *call by name*, е ясно, че ще трябва да отидем отвъд множеството на точните функции.

Ако се питате защо този модел да не е *цялата* ОС $\mathcal{F}_{\boldsymbol{k}}^{\perp} = (\mathcal{F}_{k}^{\perp}, \sqsubseteq, \Omega^{(k)})$ — погледнете примера по-долу $\ddot{\smile}$. Проблемът е, че има термове τ , за които съответният им термален оператор Γ_{τ} не е непрекъснат и значи идеята за семантика с най-малка неподвижна точка не може да се осъществи.

Ето един прост пример за такъв терм τ :

Пример 3.1. Да разгледаме терма $\tau(X, F, G) = F(G(X))$. Да се убедим, че операторът Γ_{τ} , който той определя, не е монотонен, и следователно не е непрекъснат.

Доказателство. Термалният оператор $\Gamma_{\tau} \colon \mathcal{F}_{1}^{\perp} \times \mathcal{F}_{1}^{\perp} \longrightarrow \mathcal{F}_{1}^{\perp}$, който съответства на терма $\tau = F(G(X))$, е следният:

$$\Gamma_{\tau}(f,g)(x) \stackrel{\mathrm{дe}\Phi}{=} f(g(x))$$

за всяко $x \in \mathbb{N}_{\perp}$. Да покажем, че Γ_{τ} не е монотонен означава да посочим две двойки функции (f_1,g_1) и (f_2,g_2) , такива че $(f_1,g_1) \sqsubseteq (f_2,g_2)$, но $\Gamma_{\tau}(f_1,g_1) \not\sqsubseteq \Gamma_{\tau}(f_2,g_2)$. Последното, съгласно определение (3.18) означава, че за поне едно $x \in \mathbb{N}_{\perp}$:

$$\Gamma_{\tau}(f_1, g_1)(x) \not\sqsubseteq \Gamma_{\tau}(f_2, g_2)(x).$$

Да вземем например g_1 и g_2 да са следните функции:

$$g_1(x) = \begin{cases} \bot, & \text{ако } x = 0 \\ x, & \text{иначе} \end{cases}$$
 и $g_2(x) = \begin{cases} 0, & \text{ако } x = 0 \\ x, & \text{иначе.} \end{cases}$

Ясно е, че $g_1 \sqsubseteq g_2$. Нека f е функцията, която се дефинира като:

$$f(x) = \begin{cases} 5, & \text{ако } x = \bot \\ 10, & \text{иначе.} \end{cases}$$

Очевидно $(f,g_1) \sqsubseteq (f,g_2)$. Да видим какво се случва с $\Gamma_{\tau}(f,g_1)$ и $\Gamma_{\tau}(f,g_2)$. Да пресметнем стойността им за x=0:

$$\Gamma_{\tau}(f, g_1)(0) \stackrel{\text{деф}}{=} f(g_1(0)) = f(\bot) = 5, \text{ a}$$

$$\Gamma_{\tau}(f, g_2)(0) \stackrel{\text{ge}}{=} f(g_2(0)) = f(0) = 10.$$

Следователно $\Gamma_{\tau}(f,g_1)(0) \not\sqsubseteq \Gamma_{\tau}(f,g_2)(0)$, откъдето и

$$\Gamma_{\tau}(f_1, g_1) \not\sqsubseteq \Gamma_{\tau}(f_2, g_2),$$

и значи $\Gamma_{ au}$ наистина е много "дефектен" — той дори не е монотонен. $\ \square$

Ако разгледаме по-внимателно горния контрапример, виждаме, че функцията f също е дефектна в известен смисъл. Ако гледаме на нея като на функция, която се пресмята от някаква програма, тогава фактът, че $f(\bot) = 5$ може да се тълкува така: резултатът 5 е получен от аргумент \bot , който на практика не съществува. Следователно той е получен без да се използва този аргумент (или все едно — аргументът x на f(x) е фиктивен аргумент). Но това означава, че би трябвало f(x) = 5 за 6Сяко $x \in \mathbb{N}$, а това не е така. В този смисъл f не е "хубава" функция.

$oxed{3.5.3}$ Монотонни функции в ОС $oldsymbol{\mathcal{F}}_k^\perp$

Дали не е възможно негативният резултат от примера по-горе да се дължи на факта, че приложихме Γ_{τ} върху "неподходящи" функции? Точно това е причината! Оказва се, че ако ограничим термалните оператори до "подходящи" функции, тогава те ще бъдат не само монотонни, но и непрекъснати. Въпросните подходящи функции са всъщност монотонните функции.

Определение 3.15. Казваме, че функцията $f: \mathbb{N}^k_{\perp} \longrightarrow \mathbb{N}_{\perp}$ е *моно- тонна*, ако е изпълнено условието: за всяко $\bar{x} \in \mathbb{N}^k_{\perp}$ и $\bar{y} \in \mathbb{N}^k_{\perp}$:

$$\bar{x} \sqsubseteq \bar{y} \implies f(\bar{x}) \sqsubseteq f(\bar{y}).$$

Един първи пример за монотонни функции са точните функции, които въведохме по-горе:

Твърдение 3.10. Всяка точна функция е монотонна.

Доказателство. Нека $f: \mathbb{N}^k_{\perp} \longrightarrow \mathbb{N}_{\perp}$ е точна функция. Да вземем произволни $\bar{x} = (x_1, \dots, x_k)$ и $\bar{y} = (y_1, \dots, y_k)$, такива че $\bar{x} \sqsubseteq \bar{y}$. Интересен е случаят, когато

$$(x_1,\ldots,x_k) \sqsubset (y_1,\ldots,y_k).$$

Тогава за поне едно $i \in \{1, \ldots, k\}$ ще е изпълнено $x_i \sqsubseteq y_i$, което съгласно дефиницията на плоска наредба (3.17) означава, че $x_i = \bot$. Но f е точна и значи $f(\bar{x}) = \bot$, откъдето $f(\bar{x}) \sqsubseteq f(\bar{y})$. Следователно f е монотонна.

При фиксирано $k \geq 1$, множеството на всички k-местни монотонни функции ще означаваме с \mathcal{M}_k :

$$\mathcal{M}_k \ = \ \{f \mid f \colon \, \mathbb{N}_{\perp}^k \ \longrightarrow \ \mathbb{N}_{\perp} \ \& \ f \ \text{е монотонна} \}.$$

От горното твърдение имаме, че $S_k \subseteq \mathcal{M}_k$. Дали е строго включването? Абсолютно. Най-простият пример е може би следващият:

<u>Пример 3.2.</u> Нека $f: \mathbb{N}_{\perp} \longrightarrow \mathbb{N}_{\perp}$ е константната функция $\lambda x.c$, където $c \in \mathbb{N}$. Имаме $f(\perp) = c$ и следователно f не е точна. Тя, обаче, е монотонна, защото при $x \sqsubseteq y$ ще имаме:

$$f(x) \stackrel{\text{деф}}{=} c \stackrel{\text{деф}}{=} f(y)$$
, следователно $f(x) \sqsubseteq f(y)$.

Ето как изглеждат на картинка класовете от функции в N_{\perp} , които въведохме дотук:

Ще завършим този раздел с важното наблюдение, че монотонните функции също образуват област на Скот.

Твърдение 3.11. За всяко $k \geq 1$ структурата $\mathcal{M}_{k} = (\mathcal{M}_{k}, \sqsubseteq, \Omega^{(k)})$ е област на Скот.

Доказателство. Функцията $\Omega^{(k)}$ очевидно е монотонна. Релацията \sqsubseteq , която е частична наредба на \mathcal{F}_k , ще е частична наредба и на \mathcal{M}_k . Единственото, което трябва да проверим, е че тази наредба е пълна и в \mathcal{M}_k .

Наистина, нека $f_0 \sqsubseteq f_1 \sqsubseteq \dots$ е растяща редица от монотонни функции и нека $g = \bigsqcup_n f_n$ е нейната граница. Трябва да видим, че g също е монотонна. За целта вземаме произволни \bar{x} и \bar{y} от \mathbb{N}^k_{\perp} , такива че $\bar{x} \sqsubseteq \bar{y}$. Защо $g(\bar{x}) \sqsubseteq g(\bar{y})$?

Да изберем произволно $n \in \mathbb{N}$. От монотонността на f_n и от това, че $f_n \sqsubseteq g$ ще имаме

$$f_n(\bar{x}) \sqsubseteq f_n(\bar{y}) \sqsubseteq g(\bar{y}).$$

Тъй като n беше произволно, това означава, че $g(\bar{y})$ е горна граница на редицата $\{f_n(\bar{x})\}_n$. Но $g(\bar{x})$ е точната ѝ горна граница (спомнете си за

поточковата дефиниция (3.19) на т.г.гр.), и значи $g(\bar{x}) \sqsubseteq g(\bar{y})$, което и искахме да покажем.

Ако това доказателство ви се вижда твърде отвлечено, ето ви едно "поземно" $\stackrel{\sim}{\smile}$. То използва Tespdenue~3.9, което може би интуитивно е поясно, защото има аналог и при частичните функции, с които вече сме стари познайници.

Отново тръгваме от произволни \bar{x} и \bar{y} от \mathbb{N}^k_{\perp} , за които $\bar{x} \sqsubseteq \bar{y}$. За да покажем, че $g(\bar{x}) \sqsubseteq g(\bar{y})$, разглеждаме двата случая за стойността $g(\bar{x})$: 1 сл. $g(\bar{x}) = \bot$.

Тук няма какво да се доказва, защото $\bot \sqsubseteq g(\bar{y})$, каквото и да е $g(\bar{y})$. 2 сл. $g(\bar{x}) = z \in \mathbb{N}$.

Тогава съгласно T върдение 3.9 б) съществува $n \in \mathbb{N}$, такова че $f_n(\bar{x}) = z$. Но $\bar{x} \sqsubseteq \bar{y}$, а f_n е монотонна. Така $f_n(\bar{x}) \sqsubseteq f_n(\bar{y})$, и понеже $f_n(\bar{x}) = z \in \mathbb{N}$, то и $f_n(\bar{y}) = z \in \mathbb{N}$. Сега от обратната посока на същото T върдение 3.9 б) получаваме, че и $g(\bar{y}) = z$ и значи $g(\bar{x}) = g(\bar{y})$, откъдето, разбира се, и $g(\bar{x}) \sqsubseteq g(\bar{y})$.

Като комбинираме резултатът, който току-що получихме, с доказаното в предишната глава Teopdenue~2.5 за декартови произведения на ОС, можем да твърдим, че:

Следствие 3.3. За производни положителни m_1, \ldots, m_k , структурата

$$\mathcal{M} = (\mathcal{M}_{m_1}^{\perp} \times \cdots \times \mathcal{M}_{m_k}^{\perp}, \sqsubseteq, (\Omega^{(m_1)}, \dots, \Omega^{(m_k)}))$$

е област на Скот.

В тази област на Скот по-надолу ще дефинираме ∂ енотационната семантика по име на произволна рекурсивна програма от нашия език REC.

3.5.4 Непрекъснатост на термалните оператори в ОС ${\cal M}$

Областта на Скот, в която ще дефинираме денотационната семантика по име $D_N(R)$ на рекурсивна програма R, вече се изясни. От опита си с денотационната семантика по стойност $D_V(R)$ знаем, че тя се въвежда посредством най-малка неподвижна точка на подходящ непрекъснат оператор, определен от дефинициите на R. Задачата ни в този раздел е да видим, че въпросният операторът, който вече ще действа в новата ОС

$$\mathcal{M} = (\mathcal{M}_{m_1}^{\perp} \times \cdots \times \mathcal{M}_{m_k}^{\perp}, \sqsubseteq, (\Omega^{(m_1)}, \dots, \Omega^{(m_k)}))$$

също е непрекъснат.

За целта ще повторим пътя, изминат при дефинирането на $D_V(R)$: ще дадем дефиниция за $\underline{cmoйnocm}$ на \underline{mepm} $\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$, когато X_i се заместват с елементи на \mathbb{N}_{\perp} , а F_j — с тотални функции от $\mathcal{F}_{m_j}^{\perp}$, и ще покажем, че е непрекъснат всеки термален оператор, разглеждан като изображение над $\underline{monomonhume}$ $\underline{\phi}ynkuuu$.

Да напомним индуктивната дефиницията на mep M в езика REC:

- 1) Всяка константа n е терм, $n \in \mathbb{N}$.
- 2) За всяко $i=1,2,\ldots$, обектовата променлива X_i е терм.
- 3) Ако τ_1 и τ_2 са термове, а op е базисна операция, то $(\tau_1 \ op \ \tau_2)$ е терм.
- 4) Ако τ_1, τ_2 и τ_3 са термове, то **if** τ_1 **then** τ_2 **else** τ_3 е терм.
- 5) Ако F_i е m-местна функционална променлива, а τ_1, \ldots, τ_m са термове, то $F_i(\tau_1, \ldots, \tau_m)$ е терм.

Нека $\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$ е терм, в който всяка от функционалните променливи F_i е на m_i аргумента, $1\leq i\leq k$. Ще зададем cmoйнocm на τ , когато неговите обектови променливи X_i заместваме с елементи на \mathbb{N}_{\perp} , а функционалните променливи F_j — с функции от $\mathcal{F}_{m_j}^{\perp}$.

За целта избираме произволни $x_1 \in \mathbb{N}_{\perp}, \ldots, x_n \in \mathbb{N}_{\perp}$ и k на брой функции $f_1 \in \mathcal{F}_{m_1}^{\perp}, \ldots, f_k \in \mathcal{F}_{m_k}^{\perp}$. Тези функции са *произволни*; в този момент не е необходимо да са монотонни.

Определение 3.16. Стойността на $\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$ в точката $(x_1,\ldots,x_n,f_1,\ldots,f_k)$:

$$\tau(x_1,\ldots,x_n,f_1,\ldots,f_k)$$
 (или $\tau(\bar{x},\bar{f})$),

дефинираме с индукция по построението на терма au както следва:

- 1) Ако τ е константата n, то $\tau(\bar{x}, \bar{f}) = n$.
- 2) Ако τ е обектовата променлива X_i , то $\tau(\bar{x}, \bar{f}) = x_i$.
- 3) Ако τ е от вида τ_1 op τ_2 , то

$$\tau(\bar{x}, \bar{f}) = \tau_1(\bar{x}, \bar{f}) op^* \tau_2(\bar{x}, \bar{f}).$$

Забележете, че всяка базисна функция op (която е функция над \mathbb{N}) разширяваме до функция над \mathbb{N}_{\perp} като вземаме нейното естествено продължение op^* .

4) Ако τ е от вида **if** τ_1 **then** τ_2 **else** τ_3 , то

$$\tau(\bar{x}, \bar{f}) \ = \begin{cases} \tau_2(\bar{x}, \bar{f}), & \text{ako } \tau_1(\bar{x}, \bar{f}) > 0 \\ \tau_3(\bar{x}, \bar{f}), & \text{ako } \tau_1(\bar{x}, \bar{f}) = 0 \\ \bot, & \text{ako } \tau_1(\bar{x}, \bar{f}) = \bot. \end{cases}$$

5) Ако τ е от вида $F_i(\tau_1,\ldots,\tau_{m_i})$, то

$$\tau(\bar{x},\bar{f}) = f_i(\tau_1(\bar{x},\bar{f}),\ldots,\tau_{m_i}(\bar{x},\bar{f})).$$

Забележка. Да отбележим, че тук вече всеки всеки терм τ има стойност, която е елемент на \mathbb{N}_{\perp} .

Определение 3.17. Нека $\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$ е терм, в който всяка от променливите F_i е на m_i аргумента, $1 \leq i \leq k$ Термът τ определя термалния оператор

$$\Gamma_{\tau} \colon \mathcal{F}_{m_1}^{\perp} \times \cdots \times \mathcal{F}_{m_k}^{\perp} \longrightarrow \mathcal{F}_{n}^{\perp},$$

дефиниран като:

$$\Gamma_{\tau}(f_1,\ldots,f_k)(x_1,\ldots,x_n) = \tau(x_1,\ldots,x_n,f_1,\ldots,f_k)$$

за всички $\bar{x} \in \mathbb{N}^n_{\perp}$ и $f_i \in \mathcal{F}^{\perp}_{m_i}, 1 \leq i \leq k$.

Вече видяхме ($\Pi pumep\ 3.1$), че за някои термове τ операторът Γ_{τ} може дори да не е монотонен. Оказва се, че когато го ограничим до изображение върху монотонните функции, той вече е не само монотонен, но и непрекъснат.

Първо да съобразим, че приложен върху монотонни функции, всеки термален оператор отново връща монотонна функция.

Твърдение 3.12. (без доказателство) Нека $\tau(X_1,\ldots,X_n,F_1,\ldots,F_k)$ е терм, в който всяка функционална променлива F_i е на m_i аргумента, $1 \leq i \leq k$. Нека още $f_1 \in \mathcal{M}_{m_1}^{\perp},\ldots,f_k \in \mathcal{M}_{m_k}^{\perp}$ са монотонни функции. Тогава и функцията $\Gamma_{\tau}(f_1,\ldots,f_k)$ ще е монотонна.

Твърдение 3.13. (без доказателство) За всеки терм $\tau(X_1,\ldots,X_l,F_1,\ldots,F_k)$ операторът

$$\Gamma_{\tau}: \mathcal{M}_{m_1} \times \cdots \times \mathcal{M}_{m_k} \longrightarrow \mathcal{M}_l$$

е монотонен.

Твърдение 3.14. (без доказателство) За всеки терм $\tau(X_1,\dots,X_l,F_1,\dots,F_k)$ операторът

$$\Gamma_{\tau}: \mathcal{M}_{m_1} \times \cdots \times \mathcal{M}_{m_k} \longrightarrow \mathcal{M}_l$$

е непрекъснат.

3.5.5 Как дефинираме $D_N(R)$?

Вече имаме опит в прилагането на denomauuonhus nodxod към програмите от функционалния език REC и това, което ще направим тук, за да дефинираме denomauuonha семантика по име, ще ни изглежда доста познато.

Да вземем произволна програма R от езика REC:

$$au_0(X_1,\dots,X_n,F_1,\dots,F_k)$$
 where $F_1(X_1,\dots,X_{m_1})= au_1(X_1,\dots,X_{m_1},F_1,\dots,F_k)$: $F_i(X_1,\dots,X_{m_i})= au_i(X_1,\dots,X_{m_i},F_1,\dots,F_k)$: $F_k(X_1,\dots,X_{m_k})= au_k(X_1,\dots,X_{m_k},F_1,\dots,F_k)$

В този и другия раздел (с които всъщност прилючва главата за семантиките) ще считаме, че R е фиксирана.

Всеки от термовете $\tau_i(X_1,\ldots,X_{m_i},F_1,\ldots,F_k)$ определя термален оператор Γ_{τ_i} , който разглеждаме като оператор над монотонните функции в \mathbb{N}_{\perp} :

$$\Gamma_{\tau_i} \colon \mathcal{M}_{m_1} \times \cdots \times \mathcal{M}_{m_k} \longrightarrow \mathcal{M}_{m_i}.$$

Твърдение 3.14 ни гарантира, че термалните оператори, ограничени до монотонните функции, вече са непрекъснати. Да означим с

$$\Gamma = \Gamma_{\tau_1} \times \cdots \times \Gamma_{\tau_k}$$

декартовото произведение на операторите $\Gamma_{\tau_1}, \ldots, \Gamma_{\tau_k}$. Тогава и Γ ще е непрекъснат, съгласно Tespdenue~2.8.

Операторът Γ е от следния вид:

$$\Gamma: \mathcal{M}_{m_1} \times \cdots \times \mathcal{M}_{m_k} \longrightarrow \mathcal{M}_{m_1} \times \cdots \times \mathcal{M}_{m_k}$$

Той е непрекъснат в областта на Скот

$$\mathcal{M} = (\mathcal{M}_{m_1} \times \cdots \times \mathcal{M}_{m_k}, \sqsubseteq, (\Omega^{(m_1)}, \ldots, \Omega^{(m_k)})).$$

Тогава към Γ можем да приложим теоремата на Кнастер-Тарски и да получим, че той има най-малка неподвижна точка

$$f_{\Gamma} = (f_{\Gamma}^1, \dots, f_{\Gamma}^k).$$

Да означим с $h: \mathbb{N}^n_{\perp} \longrightarrow \mathbb{N}_{\perp}$ функцията, определена от главата $\tau_0(X_1, \ldots, X_n, F_1, \ldots, F_k)$ на програмата R по следния начин:

$$h(x_1,\ldots,x_n) \stackrel{\text{ge}}{=} \tau_0(x_1,\ldots,x_n,f_{\Gamma}^1,\ldots,f_{\Gamma}^k).$$

Ако разсъждаваме по аналогия с денотационната семантика по стойност, би трябвало да положим $D_N(R) \stackrel{\text{деф}}{=} h$. Проблемът е, че h е функция в \mathbb{N}_{\perp} , докато нашата програма работи само над естествени числа. Затова трябва да "върнем" h в света на естествените числа, което ставаше чрез изображението \circ , дефинирано с равенството (3.20). Сега вече можем да положим $D_N(R) = h^{\circ}$.

Определение 3.18. Денотационна семантика с предаване на параметрите по име на програмата R е функцията

$$D_N(R): \mathbb{N}^n \longrightarrow \mathbb{N},$$

която се определя с условното равенство:

$$D_N(R)(x_1,\ldots,x_n)\simeq egin{cases} au_0(x_1,\ldots,x_n,f_\Gamma^1,\ldots,f_\Gamma^k)), & ext{ако } au_0(ar{x},f_\Gamma^1,\ldots,f_\Gamma^k))
ot=1, & ext{иначе.} \end{cases}$$

за всяка n-торка $(x_1,\ldots,x_n)\in\mathbb{N}^n$.

Теорема. За всяка рекурсивна програма R:

$$O_N(R) = D_N(R).$$

Доказателството на тази теорема, най-общо, следва доказателството на аналогичната теорема за денотаиионната семантика по стойност, но иска повече грижи (въвеждане на допълнителни понятия, доказване на спомагателни твърдения и пр.). Ако сте любопитни, може да го прочетете във файла с лекциите.