COM S 230 HW03

Charles Yang

February 22, 2021

1. Prove $(p^3 \text{ is odd}) \iff (p \text{ is odd})$

Assume p^3 is odd

$$p^{3} = 2n + 1, n \in \mathbb{Z}$$

 $2n = p^{3} - 1$
 $2n = (p - 1)(p^{2} + p + 1)$

 $(p^2+p)=p(p+1)$ is even, because it is the product of an even and odd integer

Therefore, $p^2 + p + 1$ is odd

If $p^2 + p + 1$ is odd and 2n is even, then p - 1 must be even for $2n = (p - 1)(p^2 + p + 1)$ to remain consistent

If p-1 is even, then p must be odd; QED

2. If x, y is rational and z is irrational, prove x + yz is irrational We cannot use a direct proof because of the nature of irrational numbers For proof by contradiction, assume that x + yz is rational, such that

$$x = \frac{a}{b}$$
, $y = \frac{c}{d}$, and $\frac{a}{b} + \frac{c}{d}z = \frac{e}{f}$
 $z = (\frac{e}{f} - \frac{a}{b})\frac{d}{c}$

Left hand side is z, an irrational, and right hand side is sum/product of rational integers, which is rational. This is a contradiction. x + yz cannot be rational; QED

- 3. Prove that if mn > 35, then $m \ge 6 \lor n \ge 8$
 - (1) If $\neg (m \ge 6 \lor n \ge 8)$, then $mn \le 35$

Contrapositive of proposition

(2) $\neg (m \ge 6 \lor n \ge 8)$

Assumed

(3) $(m < 6 \land n < 8)$

De Morgan's (2)

(4) $(m \le 5 \land n \le 7)$

implied in (3) because m & n are integers

- (5) Because of (4), mn < 35
- (6) Contrapositive (1) of proposition is satisfied; QED
- 4. fresh + soph + jun + sen = 32. Prove $fresh \ge 5 \lor soph \ge 8 \lor jun \ge 10 \lor sen \ge 7$
 - (1) $(fresh + soph + jun + sen = 32) \rightarrow (fresh \ge 5 \lor soph \ge 8 \lor jun \ge 10 \lor sen \ge 7)$ Hyp. 1
 - (2) $\neg (fresh \ge 5 \lor soph \ge 8 \lor jun \ge 10 \lor sen \ge 7) \rightarrow (fresh + soph + jun + sen \ne 32)$ Contrapositive (1)

1

(3) $\neg (fresh \ge 5 \lor soph \ge 8 \lor jun \ge 10 \lor sen \ge 7)$

Assumed

(4) $fresh < 5 \land soph < 8 \land jun < 10 \land sen < 7$)

De Morgan's (3)

- (5) $fresh \le 4 \land soph \le 7 \land jun \le 9 \land sen \le 6$ Implied in (4) because all vars are ints
- (6) $(fresh + soph + jun + sen \neq 32)$ implied by (5); all vars could be 0
- (7) (2) is satisfied; QED
- 5. Prove $(p \ge 3 \lor p \le -7) \to ((p+2)^2) \ge 25$
 - (1) Case 1: $p \ge 3$, add 2: $p + 2 \ge 5$, square: $(p + 2)^2 \ge 25$
 - (2) Case 2: $p \le -7$, add 2: $p + 2 \le -5$, square: $(p + 2)^2 \ge 25$
 - (3) (1) & (2); QED
- 6. Prove $\sqrt{5}$ is irrational
 - (1) Assume $\sqrt{5}$ is rational, that is $\sqrt{5} = \frac{a}{b}$ for some integers a, b.
 - (2) Square it. $5 = \frac{a^2}{b^2}$
 - (3) $5b^2 = a^2$
 - (4) This implies 5 is a factor of a^2 or a * a
 - (5) According to StackExchange, If a square is divisible by a prime, then its root is also divisible by the prime
 - (6) (4) and (5) imply that 5 is a factor of a, and a = 5x for some int x
 - (7) $5b^2 = a^2$ and (6) implies that 5^2r^2 is a factor of b^2
 - (8) (7) implies that 5 is also a factor of b.
 - (9) (8) contradicts (1). a and b cannot have common factors; $\sqrt{5}$ is irrational; QED