```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

path = "//content//drive//MyDrive//ML_testFile//study_performance.csv" df = pd.read_csv(path) df.head(40)

\Rightarrow	g	gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_course	math_score	reading_score	writing_score
	0 1	female	group B	bachelor's degree	standard	none	72	72	74
	1 1	female	group C	some college	standard	completed	69	90	88
	2 1	female	group B	master's degree	standard	none	90	95	93
	3	male	group A	associate's degree	free/reduced	none	47	57	44
	4	male	group C	some college	standard	none	76	78	75
	5 1	female	group B	associate's degree	standard	none	71	83	78
	6 1	female	group B	some college	standard	completed	88	95	92
	7	male	group B	some college	free/reduced	none	40	43	39
	8	male	group D	high school	free/reduced	completed	64	64	67
	9 1	female	group B	high school	free/reduced	none	38	60	50
	10	male	group C	associate's degree	standard	none	58	54	52
	11	male	group D	associate's degree	standard	none	40	52	43
	12 1	female	group B	high school	standard	none	65	81	73
	13	male	group A	some college	standard	completed	78	72	70
	14 1	female	group A	master's degree	standard	none	50	53	58
	15 1	female	group C	some high school	standard	none	69	75	78
	16	male	group C	high school	standard	none	88	89	86
	17 1	female	group B	some high school	free/reduced	none	18	32	28
	18	male	group C	master's degree	free/reduced	completed	46	42	46
	19 1	female	group C	associate's degree	free/reduced	none	54	58	61
	20	male	group D	high school	standard	none	66	69	63
	21 1	female	group B	some college	free/reduced	completed	65	75	70
	22	male	group D	some college	standard	none	44	54	53
	23 1	female	group C	some high school	standard	none	69	73	73
	24	male	group D	bachelor's degree	free/reduced	completed	74	71	80
	25	male	group A	master's degree	free/reduced	none	73	74	72
	26	male	group B	some college	standard	none	69	54	55
	27 1	female	group C	bachelor's degree	standard	none	67	69	75
	28	male	group C	high school	standard	none	70	70	65
	29 1	female	group D	master's degree	standard	none	62	70	75
	30 1	female	group D	some college	standard	none	69	74	74
	31 1	female	group B	some college	standard	none	63	65	61
	32 1	female	group E	master's degree	free/reduced	none	56	72	65
	33	male	group D	some college	standard	none	40	42	38
	34	male	group E	some college	standard	none	97	87	82
	35	male	group E	associate's degree	standard	completed	81	81	79
	36 1	female	group D	associate's degree	standard	none	74	81	83
	37 1	female	group D	some high school	free/reduced	none	50	64	59
	38 1	female	group D	associate's degree	free/reduced	completed	75	90	88
	39	male	group B	associate's degree	free/reduced	none	57	56	57
			((1551)		16511 1.1	#33 / 33 / //			

```
\label{eq:dfscore} $$ df["mean_score"] = ((df["math_score"] + df["reading_score"] + df["writing_score"]) / 3).round() $$ $$ f("mean_score"] + df["mean_score"] + df
df["mean_score"]
```

⁰ 73.0

¹ 82.0 2

^{93.0}

^{49.0} 76.0

```
995 94.0
996 57.0
997 65.0
998 74.0
999 83.0
Name: mean_score, Length: 1000, dtype: float64
```

```
from sklearn.preprocessing import LabelEncoder
lc = LabelEncoder()
df['gender'] = lc.fit_transform(df['gender'])
df['race_ethnicity'] = lc.fit_transform(df['race_ethnicity'])
df['parental_level_of_education'] = lc.fit_transform(df['parental_level_of_education'])
df['lunch'] = lc.fit_transform(df['lunch'])
df['test_preparation_course'] = lc.fit_transform(df['test_preparation_course'])
df.head(40)
```

	gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_cours	e n
0	0	1	1	1		1
1	0	2	4	1		0
2	0	1	3	1		1
3	1	0	0	0		1
4	1	2	4	1		1
5	0	1	0	1		1
6	0	1	4	1		0
7	1	1	4	0		1
8	1	3	2	0		0
9	0	1	2	0		1
10	1	2	0	1		1
11	1	3	0	1		1
12	0	1	2	1		1
13	1	0	4	1		0
14	0	0	3	1		1
15	0	2	5	1		1
16	1	2	2	1		1
17	0	1	5	0		1
18	1	2	3	0		0
19	0	2	0	0		1
20	1	3	2	1		1
21	0	1	4	0		0
22	1	3	4	1		1
23	0	2	5	1		1
24	1	3	1	0		0
25	1	0	3	0		1
26	1	1	4	1		1
27	0	2	1	1		1
28	1	2	2	1		1
29	0	3	3	1		1
30	0	3	4	1		1
31	0	1	4	1		1
32	0	4	3	0		1
33	1	3	4	1		1
34	1	4	4	1		1
35	1	4	0	1		0
36	0	3	0	1		1
37	0	3	5	0		1
38	0	3	0	0		0
39	1	1	0	0		1

```
df = df.drop(['math_score', 'writing_score', 'reading_score'], axis=1)
from sklearn.model_selection import train_test_split
y = df['mean_score']
```

X = df.drop(['mean_score'], axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=51)
X_train

	gender	race_ethnicity	${\tt parental_level_of_education}$	lunch	test_preparation_course
618	1	3	3	1	1
324	0	2	2	0	1
740	1	3	1	1	1
78	0	3	5	1	0
665	0	2	5	0	0
709	0	3	0	0	0
969	0	1	1	1	1
736	1	2	0	1	1
485	1	2	2	1	1
57	1	3	0	1	1

800 rows × 5 columns

X_test

	gender	race_ethnicity	parental_level_of_education	lunch	test_preparation_course
833	0	1	2	1	0
551	1	1	1	0	0
782	0	1	2	0	0
535	0	2	1	0	0
144	1	3	4	1	1
975	0	2	4	1	0
971	1	2	5	1	0
366	1	2	2	1	0
479	1	4	0	1	1
870	1	1	2	1	1

200 rows × 5 columns

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
y_lr_train_pred = lr.predict(X_train)
y_lr_test_pred = lr.predict(X_test)
```

```
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(max_depth=2, random_state=0)
rf.fit(X_train, y_train)
y_rf_train_pred = rf.predict(X_train)
y_rf_test_pred = rf.predict(X_test)
```

```
from sklearn.metrics import mean_absolute_error, r2_score
lr_train_mae = mean_absolute_error(y_train, y_lr_train_pred)
lr_train_r2 = r2_score(y_train, y_lr_train_pred)
lr_test_mae = mean_absolute_error(y_test, y_lr_test_pred)
lr_test_r2 = r2_score(y_test, y_lr_test_pred)
rf_train_mae = mean_absolute_error(y_train, y_rf_train_pred)
```

rf_train_r2 = r2_score(y_train, y_rf_train_pred)
rf_test_mae = mean_absolute_error(y_test, y_rf_test_pred)
rf_test_r2 = r2_score(y_test, y_rf_test_pred)

from sklearn.neighbors import KNeighborsRegressor

```
knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(X_train, y_train)
y_knn_train_pred = knn.predict(X_train)
y_knn_test_pred = knn.predict(X_test)
knn_train_mae = mean_absolute_error(y_train, y_knn_train_pred)
knn_train_r2 = r2_score(y_train, y_knn_train_pred)
knn_test_mae = mean_absolute_error(y_test, y_knn_test_pred)
knn_test_mae = mean_absolute_error(y_test, y_knn_test_pred)
knn_test_r2 = r2_score(y_test, y_knn_test_pred)

lr_results = pd.DataFrame(['Linear Regression', lr_train_mae, lr_train_r2, lr_test_mae, lr_test_r2]).transpose()
lr_results.columns = ['Method', 'Training MAE', 'Training R2', 'Test MAE', 'Test R2']

knn_results = pd.DataFrame(['Random Forest', rf_train_mae, rf_train_r2, rf_test_mae, rf_test_r2]).transpose()
rf_results.columns = ['Method', 'Training MAE', 'Training R2', 'Test MAE', 'Test R2']

knn_results = pd.DataFrame(['K-Nearest Neighbors', knn_train_mae, knn_train_r2, knn_test_mae, knn_test_r2]).transpose()
knn_results.columns = ['Method', 'Training MAE', 'Training R2', 'Test MAE', 'Test R2']

df_models = pd.concat([lr_results, rf_results, knn_results], axis=0).reset_index(drop=True)
```

```
df_models = pd.concat([Ir_results, rf_results, knn_results], axis=0).reset_index(drop=True)
print(df_models)
```

```
Method Training MAE Training R2
                                               Test MAE
                                                          Test R2
0
    Linear Regression
                       10.169091
                                     0.189306
                                               10.07442 0.263734
        Random Forest
                        10.378422
                                     0.154793 10.469843 0.189953
2 K-Nearest Neighbors
                           9.6965
                                     0.279106
                                                 10.886
                                                        0.09852
```

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x=y_train, y=y_lr_train_pred, color="#7CAE00", alpha=0.6)
plt.title('Linear Regression: Predicted vs Actual (Training)')
plt.xlabel('Actual Mean Score')
plt.ylabel('Predicted Mean Score')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.scatterplot(x=y_train, y=y_rf_train_pred, color="#F8766D", alpha=0.6)
plt.title('Random Forest: Predicted vs Actual (Training)')
plt.xlabel('Actual Mean Score')
plt.ylabel('Predicted Mean Score')
plt.show()
```



```
plt.figure(figsize=(10, 6))
sns.scatterplot(x=y_train, y=y_knn_train_pred, color="#619CFF", alpha=0.6)
plt.title('K-Nearest Neighbors: Predicted vs Actual (Training)')
plt.xlabel('Actual Mean Score')
plt.ylabel('Predicted Mean Score')
plt.show()
```



```
plt.figure(figsize=(12, 6))
sns.histplot(y_lr_test_pred, color="#7CAE00", label='Linear Regression', alpha=0.6, kde=True)
sns.histplot(y_rf_test_pred, color="#F8766D", label='Random Forest', alpha=0.6, kde=True)
sns.histplot(y_knn_test_pred, color="#619CFF", label='K-Nearest Neighbors', alpha=0.6, kde=True)
plt.title('Histogram of Predicted Mean Scores (Test Set)')
plt.xlabel('Predicted Mean Score')
plt.ylabel('Frequency')
plt.legend()
plt.show()
```


print("Linear Regression Test MAE:", lr_test_mae)
print("Random Forest Test MAE:", rf_test_mae)
print("K-Nearest Neighbors Test MAE:", knn_test_mae)

Linear Regression Test MAE: 10.074419910948786 Random Forest Test MAE: 10.469842639703401 K-Nearest Neighbors Test MAE: 10.886

print("\nLinear Regression Test R2 Score:", lr_test_r2)
print("Random Forest Test R2 Score:", rf_test_r2)
print("K-Nearest Neighbors Test R2 Score:", knn_test_r2)

Linear Regression Test R2 Score: 0.26373392207493596 Random Forest Test R2 Score: 0.18995269310323082 K-Nearest Neighbors Test R2 Score: 0.09851964306631511

import joblib
joblib.dump(lr, "students_performance_predictor.pkl")

 $\hbox{['students_performance_predictor.pkl']}$

model = joblib.load("students_performance_predictor.pkl")

model.predict([[0, 4, 2, 1, 0]])

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but LinearRegression was fit warnings.warn(
array([81.15185469])

4