Angabe Analysis 3 - Maßtherorie

10. März 2011

Aufgabe 1: Zum Aufwärmen

5 Punkte

- (i) Zeige, dass die Mengensysteme $\{\emptyset, X\}$ und $\mathcal{P}(X)$ σ -Algebren sind.
- (ii) Konstruiere die kleinste σ -Algebra über der Menge X, die $\{A\}$ mit $A \subset X$ enthält.
- (iii) Mache Dir klar, dass jedes Maß auch ein Inhalt ist.
- (iv) Beweise die Monotonie-Eigenschaft von Inhalten aus der Vorlesung.
- (v) Was ist der Unterschied zwischen einer Borel-messbaren und Lebesgue-messbaren Mengen?
- (vi) Wie ist das Bildmaß eines Maßes $\mu: \mathcal{A} \to \overline{\mathbb{R}}$ unter einer Abbildung $f: (X, \mathcal{A}) \to (Y, \mathcal{B})$ definiert und welche Bedingung muss an die Abbildung gestellt werden, damit das Bildmaß sauber definiert ist.

Aufgabe 2: Mengentheorie

5 Punkte

- (i) Zeige die folgenden Eigenschaften mengentheoretischer Operationen:
 - (a) $A \triangle B = B \triangle A$
 - (b) $C^c \cap B \setminus A = B \setminus (A \cup C)$
 - (c) $\bigcup_{n=1}^{\infty} B \setminus A_n = B \setminus (\bigcap_{n=1}^{\infty} A_n)$
 - (d) $\bigcap_{n=1}^{\infty} B \setminus A_n = B \setminus (\bigcup_{n=1}^{\infty} A_n)$
- (ii) Zeige folgende Aussagen

(1)

$$\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n, \text{ falls } (A_n)_{n\in\mathbb{N}} \text{ wach send ist}$$

(2)

$$\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n, \text{ falls } (A_n)_{n\in\mathbb{N}} \text{ fallend ist}$$

Das heißt, dass jede monotone Folge von Mengen konvergiert.

Hinweis: Verwende die Definition der Konvergenz von Mengenfolgen aus der Vorlesung, welche den lim sup und lim inf verwendet.

- (iii) Zeige, dass $(\limsup_{n\to\infty} A_n)^c = \liminf_{n\to\infty} A_n^c$ für eine Folge von Teilmengen aus X gilt.
- (iv) Es seien $(A_n)_{n\in\mathbb{N}}$, $(B_n)_{n\in\mathbb{N}}$ konvergente Folgen von Teilmengen von X. Zeige, dass die Folgen $(A_n^c)_{n\in\mathbb{N}}$, $(A_n\cap B_n)_{n\in\mathbb{N}}$, $(A_n\cup B_n)_{n\in\mathbb{N}}$, $(A_n\setminus B_n)_{n\in\mathbb{N}}$, $(A_n\triangle B_N)_{n\in\mathbb{N}}$ ebenfalls konvergieren und bestimme deren Limites.

(v) Sei $(A_n)_{n\in\mathbb{N}}$ eine fallende Folge von Teilmengen von $X, B\subset X$ und es gelte $A_n\searrow A$, dann gilt $B\setminus A_n\nearrow B\setminus A$.

Aufgabe 3: Ringe und Algebren

5 Punkte

- (i) Es seien \mathcal{R} ein Ring über X und $\mathcal{A} := \mathcal{R} \cup \{A^c : A \in \mathcal{R}\}$. Dann ist \mathcal{A} die kleinste Algebra über X, die \mathcal{R} umfasst. Ist \mathcal{R} ein σ -Ring, so ist \mathcal{A} die kleinste σ -Algebra, welche \mathcal{R} umfasst.
- (ii) Es seien $f: X \to Y$ eine Abbildung und $\mathcal{A} \subset \mathcal{P}(X)$. Ist \mathcal{A} eine σ -Algebra, so gilt dies auch für $\mathcal{B} := \{B \subset Y : f^{-1}(B) \in \mathcal{A}\}.$
- (iii) Sei \mathcal{B} eine σ -Algebra über Y und $f: X \to Y$ eine Abbildung. Zeige, dass $\mathcal{A} := f^{-1}(\mathcal{B})$ eine σ -Algebra über X ist.
- (iv) Zeige, ob $\mathcal{A} := \{A \in \mathcal{P}(X) : A \text{ ist endlich oder } A^c \text{ ist endlich } \}$ eine σ -Algebra ist. Hinweis: Unterscheide nach der Mächtigkeit |X|.
- (v) Zeige, dass $\mathcal{A} := \{A \in \mathcal{P}(X) : A \text{ ist abz\"{a}hlbar oder } A^c \text{ ist abz\"{a}hlbar } \}$ eine σ -Algebra ist.
- (vi) Sei $X \neq \emptyset$ und $(\mathcal{G}_i)_{i \in I}$ (I eine beliebige Indexmenge) eine Familie von σ -Algebren über X. Zeige, ob die folgenden Aussagen richtig oder falsch sind:
 - (1) $\bigcap_i \mathcal{G}_i$ ist eine σ -Algebra.
 - (2) $\bigcup_i \mathcal{G}_i$ ist eine σ -Algebra.
- (vii) Seien $f:X\to Y$ eine Abbildung, $X,Y\neq\emptyset$ und $\mathcal{E}\subset\mathcal{P}(Y)$ beliebig. Zeige, dass gilt

$$f^{-1}(\sigma(\mathcal{E})) = \sigma(f^{-1}(\mathcal{E}))$$

Hinweis: Verwende, dass $\mathcal{B} = \{B \subset Y : f^{-1}(B) \in \sigma(f^{-1}(\mathcal{E}))\}$ und $f^{-1}(\sigma(\mathcal{E}))$ σ -Algebra sind.

(viii) Es sei $\mathcal{E} := \{\{x\} : x \in \mathbb{R}\}$. Bestimme $\sigma(\mathcal{E})$.

Aufgabe 4: Inhalte und Maße

5 Punkte

(i) Seien $\mu: \mathcal{R} \to \overline{\mathbb{R}}$ ein Inhalt auf dem Ring $\mathcal{R}, A_1, A_2, \dots \in \mathcal{R}$ μ -Nullmengen und $A \in \mathcal{R}$ beliebig.

Ist $A \subset \bigcup_{k=1}^n A_k$, so ist A eine μ -Nullmenge.

- (ii) Seien $X \neq \emptyset$ und $\mu : \mathcal{P}(X) \to \mathbb{R}$ ein Inhalt mit $\mu(X) = 1$ und $\mu(A) \in \{0, 1\}, \forall A \subset X$, sowie $\mathcal{A} := \{A \subset X : \mu(A) = 1\}$. Zeige, dass folgende Aussagen wahr sind:
 - (1) $\emptyset \notin \mathcal{A}$
 - (2) $A \in \mathcal{A}, A \subset B \subset X \Rightarrow B \in \mathcal{A}$
 - (3) $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
 - (4) $A \subset X \Rightarrow A \in \mathcal{A} \text{ oder } A^c \in \mathcal{A}$
- (iii) Sei wiederum $\mathcal{A}=\{A\subset X:A$ abzählbar oder A^c abzählbar $\}$ und X überabzählbar. Dann ist

$$\mu(B) = \begin{cases} 0 \text{ , falls } B \text{ abz\"{a}hlbar ist} \\ 1 \text{ , falls } B^c \text{ abz\"{a}hlbar ist} \end{cases}$$

ein Maß auf A.

(iv) Sei $\mu: \mathcal{R} \to \mathbb{R}$ ein Inhalt auf dem Ring \mathcal{R} . Zeige

 μ ist σ -additiv \Leftrightarrow Für jede Folge $(A_n)_{n\in\mathbb{N}}$ von Mengen aus \mathcal{R} mit $A_n\nearrow A\in\mathcal{R}$ gilt $\mu(A_n)\nearrow\mu(A)$

Dies bezeichnet man auch als die Stetigkeit von unten.

Hinweis: Betrachte die Zerlegung $\mathcal{R} \ni A = A_1 \cup \bigcup_{k=2}^{\infty} A_k \setminus A_{k-1}$.

(v) Seien $a_1, a_2, \dots > 0$ und $E := \{x \in \mathbb{R}^n : \frac{x_1^2}{a_1^2} + \dots + \frac{x_n^2}{a_n^2} < 1\}$ der dazugehörige offene Ellipsoid. Zeige, dass E Borel-meßbar ist und $\lambda^n(E) = a_1 \cdots a_n \lambda^n(K_1(0))$ gilt.