

分布式文件系统方案

- 方案背景
- 方案目标
- 方案设计
- 技术选型
- 开发计划
- 测试要点
- ■数据迁移

■ 方案背景

随着公司业务的发展,对于大量的图片、文档、音视频等文件的存储变的相当复杂,文件的管理、存储的扩容也越来越复杂,并且维护的成本会成倍增长。为了降低成本的同时提高系统高可用,特意设计一套适合我们自己的分布式文件系统(简称UDFS)。

■ 方案目标

◆接入简单

采用http、dubbo协议接入简单

- ◆数据迁移/数据备份 当前数据迁移,历史数据备份
- ◆冗余备份/负载均衡 存储2份数据保证数据可靠,负载均衡提高系统吞吐量
- ◆冷热数据路由 系统自动路由查找冷数据
- ◆高可用/高并发
- ◆易扩展 易横向、纵向扩展
- ◆安全性 访问认证、特殊文件加密
- ◆降低成本 采用普通服务器存储,降低资源成本

■ 方案设计-主要功能模块

■ 方案架构

■ 方案架构-调用图

■ 技术选型-分布式文件系统类型

• 通用分布式文件系统 和传统的本地文件系统(如ext3、NTFS等)相对应,应用端可以mount 使用。典型代表:lustre、MooseFS

• 专用分布式文件系统 基于google FS的思想,文件上传后不能修改。不能mount使用,需要使用专有API对文件进行访问,也可称作分布式文件存储服务。典型代表: MogileFS、FastDFS、TFS

指标	通用分布式 文件系统	专用分布式 文件系统		
开发者友好性	较好	较差		
系统复杂性	较高	较低		
系统性能	一般	较高		

■ 技术选型-常用分布式文件系统

框架	适合类型	文件分布	系统性能	复杂度	备份机制	通讯协议	社区支持	开发语言
FastDFS	4KB~500MB	小文件合并存储 不分片处理	很高	简单	组内冗余备份	Api HTTP	国内用户群	C语言
TFS	所有文件	小文件合并,以 block组织分片		复杂	Block存储多份,主辅灾 备	API http	少	C++
MFS	大于64K		Master占 内存多		多点备份动态冗余	使用fuse挂在	较多	Perl
HDFS	大文件	大文件分片分块 存储		简单	多副本	原生api	较多	java
Ceph	对象文件块	OSD一主多从		复杂	多副本	原生api	较少	C++
MogileFS	海量小图片		高	复杂	动态冗余	原生api	文档少	Perl
ClusterFS	大文件			简单	镜像		多	С

■ 技术选型-fastdfs&hadoop

属性	FastDFS	Hadoop	描述
实时性	强	弱	hadoop主要在离线分析
文件大小	中小文件	超大文件(几百MB、GB甚至TB级)	目前需求来说都是中小文件
小文件管理	效率高	效率低	hadoop为了提高对小文件的性能管理,必须要定时的进行归档处理,甚至还要压缩,归档后的文件存在无法删除
运维成本	较低	较高	Hadoop时常有新问题出现,有一些是自身的bug造成, 出现问题分析或解决问题周期长
开发成本	较低	较高	FastDFS有大量的开发文档,bbs比较活跃,hadoop版本及组件太多,需要经常调优
数据冗余	最低2份	最低3份	根据目前的量来说,在节约成本的情况下,FastDfs还 是占有优势。

注: 主要是从时效、安全、便捷等方面,对于只限于文件存储方面做的比较

■ 技术选型- FastDfs

对于我们当前业务场景建议使用FastDfs进行分布式文件存储

- 对于目前文件大多在100k左右完全适合FastDfs场景。
- FastDfs部署、运维来说简单快捷,版本稳定变动较少
- FastDFS是一个开源的轻量级分布式文件系统,特别适合以文件为载体的 在线服务
- 架构简单
- 有冗余备份和负载均衡设计
- 扩充容量方便
- 存储介质一般硬盘即可
- 已经有一定数量的客户,文件存储规模大的达到了PB级

■ 技术选型-FastDfs使用情况

至少有25家公司在使用FastDFS,其中有好几家是做网盘的公司。

- UC (http://www.uc.cn/, 存储容量超过10TB)
- 支付宝 (http://www.alipay.com/)
- 京东商城 (http://www.360buy.com/)
- 淘淘搜 (http://www.taotaosou.com/)
- 飞信 (http://feixin.1008**/)
- 赶集网 (http://www.ganji.com/)
- 淘米网 (http://www.61.com/)
- 58同城 (http://www.58.com/)
- 搜房网 (http://www.soufun.com/)
- 你我贷 (http://niwodai.com, 存储容量超100TB)

■ 技术选型- FastDfs系统架构

- Tracker对等性部署不存在SPOF
- Client端使用FastDFS提供的Jar包可直接与Tracker或 Storage集群进行文件存取操作
- Tracker集群可水平扩展达到 高可用及高性能要求
- Storage集群存储采用分组及组内文件同步复制达到 分布式存储及文件冗余要求
- 实现横向、纵向扩展
- 采用binlog进行文件同步
- 文件id命名规则(组/磁盘/目录/文件名)

group/M00/09/BE/rBBZolgj6OiAY6cHAAG019shnqU964.jpg

■ 技术选型- Udfs整体部署结构

最小配置storage(2台)tracker(2台)Udfs(2台) Nginx目前有集群可以共用或F5做负载

■ 技术选型-硬件资源

数据存储周期

- 热数据超过3个月迁移到冷数据
- 冷数据保留1年 (当前是一年,后续可以根据业务需要来定)

存储方案

目前我们每天量在80G左右,按照热数据存放3个月的话应该是3个T以内,考虑未来业务增长按照2倍量(7T)规划制定硬件配置

存储硬件配置

• 热数据配置 (保留3个月)

物理机 2台

24槽位 (15K 900GB)

2U E5-2620*2 32GB内存

• 冷数据配置

物理机 4台

16槽位 (7.2K 4T)

2U E5-2620*2 32GB内存

■ 开发计划

费用类别	部门	岗位	级别	人/月
	内部	开发	架构师	1.25
			高级开发	0
			中级开发	0
		需求	高级需求	0
人员成本			中级需求	0.25
		测试	高级测试	0.75
	外部	测试	中级测试	
	人力合计	-	-	
硬件成本	服务器硬件	-	-	
总成本				

- 需求整理0.25人月
- fastdfs测试环境搭建 (环境准备、参数配置、部署手册等) 0.25 人月
- UDFS服务开发 (服务端+客户端+开发测试) 0.5人月
- UDFS性能测试及调优 0.5*2人月
- UDFS功能测试0.25人月

■ 测试要点

功能测试

- 文件的常规操作
- 冷热数据路由测试
- 单点故障测试
- 数据同步测试
- 扩容测试
- 系统接入兼容性测试

性能测试

- 上传文件测试
- 下载文件测试
- 删除文件测试

■ 数据迁移

迁移条件

- 热数据超过3个月迁移到冷数据
- 冷数据保留1年 (当前是一年,后续可以根据业务需要来定)

迁移方案

- 根据时间戳迁移
 - 1、可操作系统层面迁移 (shell脚本)
 - 2、可以udfs层面迁移 (java脚本)

QA

大包裹 用优速