University of Wrocław: Data Science

Theoretical Foundations of Large Data Sets, List 1

- 1. Let X_1, \ldots, X_n be the simple random sample from the distribution with the density $f(x; \alpha) = (\alpha + 1)x^{\alpha}$, for $x \in (0, 1), \alpha > 0$.
 - a) Find the maximum likelihood estimator $\hat{\alpha}_{MLE}$ of the parameter α .
 - b) Find the Fisher Information and the asymptotic distribution of this estimator. How would you estimate the mean squared error of $\hat{\alpha}_{MLE}$?
 - c) Calculate $E(X_1)$ and use it to derive the moment estimator $\hat{\alpha}_M$ of α .
 - d) Fix $\alpha = 5$ and generate one random sample with n = 20.
 - e) Calculate both estimators and the respective values of $\hat{\alpha} \alpha$ and $(\hat{\alpha} \alpha)^2$. Which estimator is more accurate?
 - f) Repeat point d) 1000 times (i.e. generate 1000 samples) and
 - i) Draw histograms, box-plots and q-q plots for both estimators.
 - ii) Estimate the bias, the variance and the mean-squared error of both estimators and construct approximate 95% confidence intervals for these parameters. In case of MLE compare the values of these parameters to the values provided by the asymptotic distribution of $\hat{\alpha}_{MLE}$.
 - g) Repeat points d)-f) for n = 200. Compare the results with those for n = 20.
- 2. Let X_1, \ldots, X_n be the simple random sample from the exponential distribution with the density $f(x;\theta) = \lambda e^{-\lambda x}$, for x > 0, $\lambda > 0$. Find the uniformly most powerful test at the level $\alpha = 0.05$ for testing the hypothesis $H_0: \lambda = 5$ against $H_1: \lambda = 3$ and
 - a) Provide the formula for the critical value for this test.
 - b) Provide the formula for the power of this test.
 - c) For n=20 generate one random sample from H_0 and find the respective p-value.
 - d) What is the distribution of the p-value when data come from H_0 ?
 - e) Repeat point c) 1000 times (i.e. generate 1000 samples) and calculate respective p-values.
 - i) Compare the distribution of these p-values to the distribution derived in point d) draw a histogram and a respective q-q plot.
 - ii) Use these simulations to construct the 95% confidence interval for the type I error of your test.
 - f) Generate 1000 samples of size n=20 from the alternative distribution and calculate respective p-values.

lab_1_2020 1

- i) Compare the distribution of p-values under H_0 and under the alternative.
- ii) Use these simulations to construct the 95% confidence interval for the power of this test. Compare with the theoretically calculated power.
- g) Repeat points c)-f) for n=200. Critically compare these results with the results for n=20.

lab_1_2020 2