Modelos de Lenguaje

Fernanda Sobrino

6/22/2021

Applicaciones

Applicaciones

Applicaciones

- autofill
- reconocimiento de voz
- traducciones
- ► POS (part of speech tagging)
- resumir textos
- son el primer paso para modelos de NLP más avanzados

Qué es un modelo de lenguaje?

- una distribución de probabilidad sobre palabras o secuencias de palabras
- nos da la probabilidad de que cierta secuencia de palabras sea válida
- ▶ válida: se parece a como habla/escribe la gente

Tipos de modelos de lenguaje

- probabilisticos: n-grams, Hidden Markov Models (HMM)
- redes neuronales: por lo general son mejores que los probabilísticos

Modelos Probabilísticos

Modelos Probabilísticos

 Objetivo: calcular la probabilidad de una oración o conjunto de palabras

$$p(\mathbf{W}) = p(w_1, w_2, ..., w_n)$$

► Tarea relacionado: la probilidad de la siguiente palabra

$$p(w_5|w_1, w_2, w_3, w_4)$$

 Los modelos que calculan cualquiera de estas dos son modelos de lenguaje (ML)

Cómo calculamos $p(\mathbf{W})$?

- recordemos que: $p(B|A) = \frac{p(A,B)}{P(A)}$
- p(A,B) = p(A)p(B|A)
- si tengo tres eventos de probabilidad P(A, B, C) = P(A, B)P(C|A, B) = p(A)p(B|A)p(A|A, B)
- en general

$$p(x_1,...,x_n) = p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)....p(x_n|x_1,...,x_{n-1})$$

Cómo calculamos $p(\mathbf{W})$?

$$P(w_1, w_2, ..., w_n) = \prod p(w_i|w_1, ..., w_{i-1})$$

 $p("hola\ como\ estas\ hoy") = p(hola)p(como|hola)p(estas|hola\ como)p(hola)$

Cómo estimamos estas probabilidades?

Podríamos solo contar y dividir?

$$p(hoy|hola\ como\ estas) = \frac{Count(hola\ como\ estas\ hoy)}{Count(hola\ como\ estas)}$$

Podríamos solo contar y dividir?

- No! Hay demasiados grupos de palabras posibles
- ▶ El lenguaje es creativo, hay nuevas oraciones todo el tiempo
- ► Incluso oraciones sencillas usando un corpus muy grande van a tener count = 0
- nunca tendriamos suficientes datos para entrenar este modelo

Supuesto de Markov

► Podriamos asumir que

$$p(hoy|hola\ como\ estas) \approx p(hoy|estas)$$

* O algo como:

 $p(hoy|hola\ como\ estas) \approx p(hoy|como\ estas)$

Supuesto de Markov

$$p(w_1w_2...w_n) \approx \prod_i p(w_i|w_{i-k}...w_{i-1})$$

 Es decir aproximamos cada una de las partes de la oración por su producto

$$p(w_i|w_1w_2...w_n)\approx p(w_i|w_{i-k}...w_{i-1})$$

Uni-gram model (caso más sencillo)

$$p(w_1w_2...w_n)\approx \prod_i p(w_i)$$

Bi-gram model * condicionamos en la palabra anterior

$$p(w_i|w_1w_2...w_n) \approx p(w_i|w_{i-1})$$

N-gram model

- podemos extender este modelo a 3, 4, 5
- en general es un modelo insuficiente de lenguaje
 - el lenguaje tiene dependencias largas
 - "La cadena argentina TyC Sports publicó una foto de la increíble obra de arte en su página de Instagram, donde Messi la vio y comentó que le gustaría firmarla."
- pero en muchas ocasiones es buena idea usar un n-gram model

Bi-gram model

usamos MLE

$$p(w_i|w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$
$$p(w_i|w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Ejemplo

Supongamos que nuestro corpus es de 3 oraciones * <s> Yo soy Sam <s> * <s> Sam yo soy <s> * <s> no me gustan los huevos verdes con jamón <s>

Entonces

$$p(yo| < s >) = 1/3$$
 $p(Sam| < s >) = 1/3$ $p(soy|yo) = 2/2 = 1$ $p(< s > |Sam|) = 1/2$ $p(Sam|soy) = 1/2$

Ejemplo 2

Oraciones del proyecto de restaurantes de Berkeley (el proyecto tiene 9222 oraciones). Ejemplos: * can you tell me about any good cantonese restaurants close by * mid priced tai food is what i'm looking for * tell me about chez panisse * can you give me a listing of the kinds of food that are available * i'm looking for a good place to eat breakfast * when is caffe venezia open during the day

Bi-grams

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Bi-grams

Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bi-grams

podemos estimar la probabilidad de oraciones

$$p(< s > | \textit{I want english food} < s >) =$$

p(I| < s >) p(want|I) p(english|want) p(food|english) p(< s > |food) = 0.0

En la práctica

- ► Usar log space
 - nos ayuda a lidear con ps muy pequeñas
 - es más fácil sumar que multiplicar

Cómo sabemos que tan bien lo hace el modelo?

- Prefiere buenas oraciones o malas?
 - asigna probabilidades altas a oraciones "frecuentes" o "reales"
 - asigna poca probabilidad a oraciones "infrecuentes" o "mal escritas"
- Entrenamos los parámetros utilizando un training set
- Probamos el modelo en el test set
- Escogemos alguna métrica de evaluación

Evaluación entre dos n-gram models

- 'Externa'
 - corres dos modelos para el mismo problema
 - obtienes la accurancy para ambos
 - comparamos estas medidas
 - Problema: esto lleva demasiado tiempo

Evaluación entre dos n-gram models

- 'Interna'
 - perplejidad
 - es una mala aproximación
 - solo es buena si el conjunto de entrenamiento es muy parecido al de evaluación
 - es bueno tenerla presente

Perplejidad

- el mejor modelo de lenguaje es aquel que mejor predice un conjunto de evaluación nunca antes visto
- nos da la mayor *p*(*sentence*)
- ▶ la perplejidad es 1 entre la probabilidad del conjunto de aprendizaje normalizada por el número de palabras
- minimizar la perplejidad es lo mismo que maximizar la probabilidad

Perplejidad

$$PP(\mathbf{W}) = p(w_1...w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{p(w_1...w_N)}} = \sqrt[N]{\prod_{i}^{N} \frac{1}{p(w_1...w_N)}}$$

Si tenemos bi-grams

$$PP(\mathbf{W}) = \sqrt[N]{\prod_{i}^{N} \frac{1}{p(w_i|w_{i-1})}}$$

Perplejidad Intuición * podemos pensar en ella como un promedio ponderado del factor de ramificación * el factor de ramificación de un lenguaje es la cantidad de palabras que pueden seguir a una palabra

Perplejidad Intuición: ejemplo

- Supongamos que tenemos una oración que consiste de dígitos al azar
- ► Cada dígito ocurre en el conjunto de entrenamiento $\frac{1}{10}$

$$PP(\mathbf{W}) = p(w_1...w_N)^{-\frac{1}{N}} = \left(\left(\frac{1}{N}\right)^N\right)^{-1/N}$$
$$PP(\mathbf{W}) = \left(\frac{1}{10}\right)^{-1} = 10$$

Problemas con los modelos n-gram * entre mas grande la n mejor pero esto implica más operaciones previas \implies necesitas mas RAM * n-grams son sparse la probabilidad de muchas palabras ocurriendo juntas va a ser cero \implies problemas computacionales