Chương 01 IPv4

☐ Giảng Viên : Nguyễn Duy

☐ Email : duyn@uit.edu.vn

Nội dung

- ☐ Khái niệm về địa chỉ IP
- □ Phân loại địa chỉ IP
- ☐ Phân lớp địa chỉ IP
- Cách chuyển đổi địa chỉ IP từ hệ thập phân sang hệ nhị phân và ngược lại
- □ Subnet
- ☐ Variable Length Subnet Marking (VLSM)

Nội dung

- ☐ Khái niệm về địa chỉ IP
- □ Phân loại địa chỉ IP
- ☐ Phân lớp địa chỉ IP
- Cách chuyển đổi địa chỉ IP từ hệ thập phân sang hệ nhị phân và ngược lại
- □ Subnet
- ☐ Variable Length Subnet Marking (VLSM)

Khái niệm về địa chỉ IP

- ☐ Giải thích ý nghĩa của
 - > IP Address
 - ➤ Subnet Marking
 - ➤ Default Gateway
 - > DNS

Khái niệm về địa chỉ IP

☐ Khái niệm :

- Là địa chỉ có cấu trúc, được chia thành 2 phần:

 Network_ID và Host_ID
- Là 1 con số có kích thước 32bit, chia thành 4 phần (Octec), mỗi octec có kích thước 8bit

☐ Cách trình bày :

- ➤ Ký pháp thập phân: (Vd: 172.16.1.100...)
- ➤ Ký pháp nhị phân: (Vd: 10101100 00010000...)
- ➤ Ký pháp thập lục phân: (Vd: 82 39 1E 38...)

Khái niệm về địa chỉ IP

Nội dung

- ☐ Khái niệm về địa chỉ IP
- ☐ Phân loại địa chỉ IP
- ☐ Phân lớp địa chỉ IP
- Cách chuyển đổi địa chỉ IP từ hệ thập phân sang hệ nhị phân và ngược lại
- □ Subnet
- ☐ Variable Length Subnet Marking (VLSM)

Phân loại địa chỉ IP

- □ Phân loại theo phạm vi hoạt động :
 - ➤ Private IP : LAN
 - 10.0.0.0 → 10.255.255.254
 - 172.16.0.0 >172.31.255.254
 - 192.168.0.0 → 192.168.255.254
 - ➤ Public IP: WAN
- ☐ Phân loại trong quá trình truyền thông :
 - > Host
 - > Network
 - > Broadcast

Địa chỉ Host

- ☐ Là địa chỉ IP có thể dùng để đặt cho các Interface
- ☐ Hai máy nằm thuộc cùng một mạng thì có

Network_ID giống nhau nhưng có Host_ID khác nhau

- ☐ Ví dụ:
 - □ 192.168.1.1 và 192.168.1.2
 - □ 10.0.0.1 và 10.0.0.2

Địa chỉ Network

- ☐ Là địa chỉ IP triển khai cho các mạng, địa chỉ này không dùng để đặt cho các Card mạng
- ☐ Phần Host_ID của địa chỉ chỉ chứa các bit 0
- ☐ Địa chỉ này không thể đặt cho các Interface
- ☐ Ví dụ:
 - **10.0.0**.0
 - **172.16.0**.0
 - **192.168.1**.0

Địa chỉ Broadcast

- □ Là địa chỉ IP được dùng để đại diện cho tất cả các Host trong cùng 1 Mạng
- □ Phần Host_ID chỉ chứa các bit 1
- ☐ Địa chỉ này không thể đặt cho các Interface
- ☐ Ví dụ:
 - **□** 10.**255.255.255**
 - **□** 172.16.**255.255**
 - **□** 192.168.1.**255**

Mặt nạ mạng (subnet mask)

- □ Là 1 con số dài 32bit , là phương tiện giúp máy tính xác định được địa chỉ mạng
- Mặt nạ mạng mặc định của các lớp:
 - ➤ Lớp A: 255.0.0.0
 - ➤ Lớp B: 255.255.0.0
 - ➤ Lớp C: 255.255.255.0

Address	Subnet mask trong dạng nhị phân	Subnet mask
Class		
Class A	1111111 00000000 00000000 00000000	255.0.0.0
Class B	11111111 11111111 00000000 00000000	255.255.0.0
Class C	11111111 11111111 11111111 00000000	255.255.255.0

Mặt nạ mạng (subnet mask)

☐ Cách xác định địa chỉ Network

	Network		Host	
172.16.2.160	10101100	00010000	00000010	10100000
255.255.0.0	11111111	11111111	00000000	00000000
	10101100	00010000	00000000	00000000
Network Number	172	16	0	0

Nội dung

- ☐ Khái niệm về địa chỉ IP
- ☐ Phân loại địa chỉ IP
- ☐ Phân lớp địa chỉ IP
- Cách chuyển đổi địa chỉ IP từ hệ thập phân sang hệ nhị phân và ngược lại
- □ Subnet
- ☐ Variable Length Subnet Marking (VLSM)

Phân lớp địa chỉ IP

- ☐ Có 2 cách để phân lớp địa chỉ IP :
 - ➤ Class bit
 - ➤ Subnet mark

Class A

- ☐ Sử dụng 8 bits Net_id, 24 bits Host_id
- Trừ đi bit 0 đầu tiên để nhận biết lớp A
- ☐ Còn 7 bits làm Net_id : từ 0|0000001 (1)

đến 0|1111111 (127)

- $=> 2^7 = 126 \text{ mang (Net_id)}$
- ☐ Sử dụng 24 bits Host_id:

từ: 00000000.00000000.00000001 (min)

đến: 11111111 .11111111 .11111110 (max)

 $=> 2^{24}-2 = 16.777124 \text{ máy (host_id)}$

Class A

- □ Dãy địa chỉ IP hợp lệ của Class A là :
 - > 1.0.0.1 -> 126.255.255.254
- □ Vd: 10.0.0.100 là 1 địa chỉ lớp A
- ☐ Vd : đối với mạng 10.0.0.0 thì giá trị host hợp lệ là: 10.0.0.1 đến 10.255.255.254
- ☐ Chú ý: Địa chỉ 127.0.0.1 là địa chỉ mặc định của tất cả các máy

Class B

- □Sử dụng 16 bits Net_id, 16 bits Host_id
- ☐ Trừ đi 2 bits 10 đầu tiên để nhận biết lớp B
- ☐ 14 bits làm Net_id:

từ: 10|00000 (128)

đến: 10|111111 (191)

 $=> 2^{14} = 16.384$ mạng (Net id)

☐ 16 bits làm Host_id:

từ: 00000000.0000001

đến: 11111111 .1111110

 $=> 2^{16}$ - 2 = 65.534 máy

(Host_id)

Class B

- ☐ Dãy địa chỉ IP hợp lệ của Class B :
 - > 128.0.0.1 \rightarrow 191.255.255.254
- □ Vd : 172.16.3.4 là 1 địa chỉ lớp B
- ☐ Vd : đối với mạng 172.16.0.0 thì giá trị host hợp
 - lê là: 172.16.0.1 đến 172.16.255.254

Class C

- □Sử dụng 24 bits Net_id, 8 bits Host_id
- ☐ Trừ đi 3 bits 110 đầu tiên để nhận biết lớp C
- □ 24 bits làm Net_id:

từ: 110|00000 (192)

đến: 110|11111 (223)

 $=> 2^{21} = 2.097.152$ mạng

(Net_id)

□ 8 bits làm Host_id:

từ: 0000001

đến: 11111110

 $=> 2^8 - 2 = 254 \text{ máy}$

(Host_id)

Class C

- ☐ Dãy địa chỉ IP hợp lệ của Class C :
 - > 192.0.0.1 \rightarrow 223.255.255.254
- □ Vd : 192.168.3.4 là 1 địa chỉ lớp C
- ☐ Vd : đối với mạng 192.168.3.0 thì giá trị host

hợp lệ là: 192.168.3.1 đến 192.168.3.254

Nội dung

- ☐ Khái niệm về địa chỉ IP
- □ Phân loại địa chỉ IP
- ☐ Phân lớp địa chỉ IP
- Cách chuyển đổi địa chỉ IP từ hệ thập phân sang hệ nhị phân và ngược lại
- □ Subnet
- ☐ Variable Length Subnet Marking (VLSM)

Subnet

- Khi ta chia mạng thành các mạng nhỏ hơn, các mạng nhỏ hơn này được gọi là subnet
- ☐ Hình thức chia : Network mượn bit của Host làm Subnet

Subnet - Ví dụ

- Network 172.16.0.0 với /16 được sử dụng làm subnet mask
- ☐ Sử dụng subnet : 255.255.255.0 hoặc /24

Network	Network	Subnet	Host
172	16	0	0
172	16	1	0
172	16	2	0
172	16	3	0
172	16	Etc.	0
172	16	254	0
172	16	255	0

Subnets Addresses

256 Subnets

Subnet – Ví dụ

Class B Address With Subnet

Number of Subnets 256

Xác định Subnet IDs

VLSM

```
☐ Example: 10.0.0.0/8
   > Subnet in /16 subnets:
   > 10.0.0.0/16
   > 10.1.0.0/16
   > 10.2.0.0/16
   10.255.0.0/16
       Subnet one of the subnets (10.1.0.0/16)
       10.1.0.0/24
       10.1.1.0/24
       10.1.2.0/24
       10.1.255.0/24
```


VLSM – Using the chart

```
□ Network: 172.16.1.0/24
255.255.255.240 (/28)

➤ What would the addresses of each subnet be?
172.16.1.0/28
172.16.1.32/28
172.16.1.64/28
172.16.1.96/28
172.16.1.128/28
172.16.1.128/28
172.16.1.192/28
172.16.1.224/28
```

What would the range of valid hosts for each subnet?

```
172.16.1.0/27: 172.16.1.1-172.16.1.31
172.16.1.32/27: 172.16.1.33-172.16.1.62
172.16.1.64/27: 172.16.1.65-172.16.1.94
172.16.1.96/27: 172.16.1.97-172.16.1.126
Etc.
```

VLSM

> VLSM allows us to use one class C address to design a networking scheme to meet the following requirements:

> Bangalore

60 Hosts

> Mumbai

28 Hosts

> Sydney

12 Hosts

> Singapore

12 Hosts

> WAN 1

2 Hosts

> WAN 2

2 Hosts

> WAN 3

2 Hosts

192.168.1.0/24

VLSM - Exercise

THE END