



# Practical Exam - Grading

#### **Grade/Percentage:**

grade will be mixed with grade of another lecture

therefore, the rating won't be a grade (1-6) but a

percentage:

| Percentage | Grade |
|------------|-------|
| 100%       | 1.0   |
|            |       |
| 50%        | 4.0   |
|            |       |

#### Timeline:

05.07.2024 23:59 All deliverables (next slide) will be delivered to following email address (DropBox, Google-Drive...):

contact@marcel-mittelstaedt.com

tbd - Presentation of Practical Exam





### Practical Exam - Deliverables

#### **Deliverables:**

- A simple Documentation:
  - Explanation of whole ETL Workflow
  - List of Jobs/Transformations in Case of PDI or DAGs and Steps in Case of Airflow
  - Short description of the purpose of each job/transformation or task and applied business rules
  - all PDI Jobs, Transformations and related files (ktr, kjb, kettle.properties, shared.xml... files)
  - All Airflow DAGs and tasks
- All Scripts (e.g. Download) or other external applications called within PDI
- All Airflow DAGs, Python Files etc.
- All DDLs (CREATE Table...):
  - One file for each table
  - Table name = File Name, e.g.:



- Depending on Exam Type:
  - Code of Frontend Application and related Database (DDLs) or
  - Calculated KPIs



### Practical Exam - Presentation

#### **Procedure:**

- Start ETL Workflow
- 2. During execution:
  - Quickly explain data source
    - API
    - Data Structure
    - Approach for gathering data
  - Quickly Explain whole ETL Workflow
    - Explain Idea and purpose of each Job/Transformation
    - External ressources/scripts (e.g. download)
    - Explain Data Model (Raw Layer, Final Layer, simple Frontend)
- After execution:
  - Depending on Exam:
    - Demo of simple Frontend application or
    - Explanation of calculated KPIs





## Goal

#### Maxmind.com provides regulary exports of worldwide IP and Geolocation data:

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

```
curl -s http://ifconfig.me
88.130.59.75

netw_rk,geoname_id,registered_country_geoname_id,represented_country_geoname_id,is_anonymous_proxy,is_satellite_provider,postal_code,latitude,longitude,accura cy_ra_lius
88.130.59.0/24,2939623,2921044,,0,0,85221,48.2600,11.4340,50
[...]
```

GeoLite2-City-Blocks-IPv4.csv

geonarie\_id,locale\_code,continent\_code,continent\_name,country\_iso\_code,country\_name,subdivision\_1\_iso\_code,subdivision\_1\_name,subdivision\_2\_iso\_code,subdivision\_1\_name,subdivision\_2\_iso\_code,subdivision\_1\_iso\_code,subdivision\_1\_name,subdivision\_2\_iso\_code,subdivision\_1\_name,subdivision\_2\_iso\_code,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,subdivision\_1\_name,

GeoLite2-City-Locations-[XX].csv



## Goal

We want to make use of this data to build a real time IP-Geolocation resolution as well as a searchable database for lps and related Geolocations.

#### Workflow:

- Gather data from maxmind.com
- Save raw data (CSV files) to HDFS (partitioned by country code,
   e.g. de, es, en...)
- Optimize, reduce and clean raw data and save it to final directory on HDFS
- Export Geolite2 data to end-user database (e.g. MySQL, MongoDB...)
- Provide a simple **HTML Frontend** which is able to:
  - determine a user's IP address, lookup and show Geolocation
  - process user input (IP...) and check against enduser database
  - Display result Geolocation
- The whole data workflow must be implemented within an ETL workflow tool (e.g. Pentaho Data Integration or Airflow) and run automatically





# Dataflow: 1. Get Geolite2 Data





## Dataflow: 2. Raw To Final Transfer



/user/hadoop/geo\_ip/**raw**/locations/de/\*.csv /user/hadoop/geo\_ip/**raw**/locations/es/\*.csv /user/hadoop/geo\_ip/**raw**/locations/en/\*.csv

/user/hadoop/geo\_ip/**raw**/blocks/\*IPv4\*.csv /user/hadoop/geo\_ip/**raw**/blocks/\*IPv6\*.csv









- move data from raw to final directory
- optimize and reduce data structure for later query purposes if necessary
- remove duplicates if necessary
- ...



/user/hadoop/geo\_ip/final/locations/de /user/hadoop/geo\_ip/final/locations/es/ /user/hadoop/geo\_ip/final/locations/en/

/user/hadoop/geo\_ip/final/blocks/\*IPv4\* /user/hadoop/geo\_ip/final/blocks/\*IPv6\*



### Dataflow: 3. Enhance Data And Save Results



/user/hadoop/geo\_ip/**final**/locations/de/user/hadoop/geo\_ip/**final**/locations/es/user/hadoop/geo\_ip/**final**/locations/en/

/user/hadoop/geo\_ip/final/blocks/\*IPv4\* /user/hadoop/geo\_ip/final/blocks/\*IPv6\*









- enhance data (e.g. for later querying)
- use Hive, Python, Spark or PySpark
- save everything to a enduser database (e.g. MySQL, MongoDB)







# Dataflow: 4. Provide Simple Web Interface



Provide a simple **HTML Frontend** which is able to:

- determine a user's IP address, lookup and show Geolocation
- process user input (IP...) and check against enduser database
- Display result Geolocation



