Math Review & Python Intro

CIS 600, Spring 2018

January 18, 2018

Three topics:

Three topics:

▶ Math - sets, functions, matrices & vectors

Three topics:

- Math sets, functions, matrices & vectors
- Python, the language, its features & distributions, session, programs & packages


```
IP[y]: IPython
    Interactive Computing
```

Three topics:

- ► Math sets, functions, matrices & vectors
- ▶ Python, the language, its features & distributions, session, programs & packages

▶ Vim (with LATEX)

▶ We use curly brackets for *set* notation.

$$S = \{1/3, 2, 3, \pi\}$$

We use curly brackets for set notation.

$$S = \{1/3, 2, 3, \pi\}$$

▶ We also use the bar "|" to describe sets instead of listing what is in them.

$$F = \{x \mid 3 \text{ divides } x \text{ and 5 divides } x\}$$

We use curly brackets for set notation.

$$S = \{1/3, 2, 3, \pi\}$$

▶ We also use the bar "|" to describe sets instead of listing what is in them.

$$F = \{x \mid 3 \text{ divides } x \text{ and 5 divides } x\}$$

▶ Here are some *elements* of *F* so defined:

$$F = \{..., 15, 30, 45, ...\}$$

We use curly brackets for set notation.

$$S = \{1/3, 2, 3, \pi\}$$

▶ We also use the bar "|" to describe sets instead of listing what is in them.

$$F = \{x \mid 3 \text{ divides } x \text{ and 5 divides } x\}$$

▶ Here are some *elements* of *F* so defined:

$$F = \{..., 15, 30, 45, ...\}$$

It is sometimes acceptable to present a set in this way.

▶ A set has *elements* or *members*. To express that 2 is a member of *S*, we write

▶ A set has *elements* or *members*. To express that 2 is a member of *S*, we write

▶ To express that Euler's constant *e* is not in *S* we write

$$e \notin S$$

► A set has *elements* or *members*. To express that 2 is a member of *S*, we write

$$2\in \textit{S}$$

▶ To express that Euler's constant *e* is not in *S* we write

$$e \notin S$$

lacktriangle To express that one set is *contained* in another, we use \subseteq

$$S \subseteq \{x \mid x \text{ is a real number }\}$$

► A set has *elements* or *members*. To express that 2 is a member of *S*, we write

$$2 \in S$$

▶ To express that Euler's constant *e* is not in *S* we write

$$e \notin S$$

ightharpoonup To express that one set is *contained* in another, we use \subseteq

$$S \subseteq \{x \mid x \text{ is a real number } \}$$

ightharpoonup To express that a set is *not* contained in another, we use $\not\subseteq$

$$\{x \mid x \text{ is a real number }\} \not\subseteq S$$

► Talking about sets and their members is not very useful, but we have set *constructions*.

- ► Talking about sets and their members is not very useful, but we have set *constructions*.
- ▶ We denote the *union* of sets S and F by $S \cup F$.

$$S \cup F = \{x \mid x \text{ is in } S \text{ or } x \text{ is in } F\}$$

$$= \{x \mid x \in S \text{ or } 3 \text{ divides } x \text{ and } 5 \text{ divides } x\}$$
(1)

- ► Talking about sets and their members is not very useful, but we have set *constructions*.
- ▶ We denote the *union* of sets S and F by $S \cup F$.

$$S \cup F = \{x \mid x \text{ is in } S \text{ or } x \text{ is in } F\}$$

$$= \{x \mid x \in S \text{ or } 3 \text{ divides } x \text{ and } 5 \text{ divides } x\}$$
(1)

▶ We denote the *intersection* of sets S and F by $S \cap F$.

$$S \cap F = \{x \mid x \text{ is in } S \text{ and } x \text{ is in } F\}$$

= $\{x \mid x \in S \text{ and } 3 \text{ divides } x \text{ and } 5 \text{ divides } x\}$ (2)
= $\{\} \equiv \emptyset$

- ► Talking about sets and their members is not very useful, but we have set *constructions*.
- ▶ We denote the *union* of sets S and F by $S \cup F$.

$$S \cup F = \{x \mid x \text{ is in } S \text{ or } x \text{ is in } F\}$$

$$= \{x \mid x \in S \text{ or } 3 \text{ divides } x \text{ and } 5 \text{ divides } x\}$$
(1)

▶ We denote the *intersection* of sets S and F by $S \cap F$.

$$S \cap F = \{x \mid x \text{ is in } S \text{ and } x \text{ is in } F\}$$

= $\{x \mid x \in S \text{ and } 3 \text{ divides } x \text{ and } 5 \text{ divides } x\}$ (2)
= $\{\} \equiv \emptyset$

The empty set ∅ is a special set! More on that later...

▶ If set *A* is contained in set *B*, we can take the complement of *A* in *B*.

$$B \setminus A = \{x \mid x \in B \text{ and } x \notin A\}$$

If set A is contained in set B, we can take the complement of A in B.

$$B \setminus A = \{x \mid x \in B \text{ and } x \notin A\}$$

▶ When the containing set is understood from context, then we may denote the complement of A by A^c.

If set A is contained in set B, we can take the complement of A in B.

$$B \setminus A = \{x \mid x \in B \text{ and } x \notin A\}$$

- ▶ When the containing set is understood from context, then we may denote the complement of A by A^c.
- ▶ This is read "A complement".

▶ We have enough notation now to express *DeMorgan's Laws*.
If *U* and *V* are sets, then

$$(U \cup V)^c = U^c \cap V^c$$
$$(U \cap V)^c = U^c \cup V^c$$

▶ We have enough notation now to express *DeMorgan's Laws*.
If *U* and *V* are sets, then

$$(U \cup V)^c = U^c \cap V^c$$
$$(U \cap V)^c = U^c \cup V^c$$

► This is quite terse. How can we express this in natural language?

▶ We can also take the *Cartesian product* $S \times F$ of sets S and F.

$$S \times F = \{(a, b) \mid a \in S \text{ and } b \in F\}$$

▶ We can also take the *Cartesian product* $S \times F$ of sets S and F.

$$S \times F = \{(a, b) \mid a \in S \text{ and } b \in F\}$$

▶ With our exmamples, $S \times F$ has such elements as $(\pi, 0)$.

▶ We can also take the *Cartesian product* $S \times F$ of sets S and F.

$$S \times F = \{(a, b) \mid a \in S \text{ and } b \in F\}$$

- ▶ With our exmamples, $S \times F$ has such elements as $(\pi, 0)$.
- ▶ What are some other elements of $S \times F$?

► There are many other set constructions. The *powerset* of a single set is an important one.

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

▶ There are many other set constructions. The *powerset* of a single set is an important one.

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

▶ The empty set always belongs to the powerset of any set.

$$\emptyset \in \mathcal{P}(A)$$

► There are many other set constructions. The *powerset* of a single set is an important one.

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

▶ The empty set always belongs to the powerset of any set.

$$\emptyset \in \mathcal{P}(A)$$

The powerset of a set A is also denoted 2^A.

► There are many other set constructions. The *powerset* of a single set is an important one.

$$\mathcal{P}(A) = \{X \mid X \subseteq A\}$$

▶ The empty set always belongs to the powerset of any set.

$$\emptyset \in \mathcal{P}(A)$$

- ▶ The powerset of a set A is also denoted 2^A.
- Can you give a motivation for this alternative notation?

ightharpoonup The real numbers, $\mathbb R$

- ightharpoonup The real numbers, $\mathbb R$
- lacktriangle The natural numbers, $\mathbb N$

- ightharpoonup The real numbers, $\mathbb R$
- ▶ The natural numbers, N
- ► The rational numbers, ℚ

- ightharpoonup The real numbers, $\mathbb R$
- ▶ The natural numbers, N
- ▶ The rational numbers, Q
- ► The complex numbers, ℂ

- ightharpoonup The real numbers, $\mathbb R$
- ▶ The natural numbers, N
- ▶ The rational numbers, Q
- ightharpoonup The complex numbers, ${\Bbb C}$
- ▶ The integers, Z

- ightharpoonup The real numbers, $\mathbb R$
- ightharpoonup The natural numbers, $\mathbb N$
- ▶ The rational numbers, Q
- ▶ The complex numbers, \mathbb{C}
- ▶ The integers, Z
- ▶ The real coordinate space, \mathbb{R}^n (of dimension n)

Math - Functions

▶ Set constructions are fine, but we really care about *functions*!

Math - Functions

- ▶ Set constructions are fine, but we really care about *functions*!
- ▶ A function f from domain A to codomain B is a rule assigning an element of B to any element of A.

Math - Functions

- ▶ Set constructions are fine, but we really care about *functions*!
- ▶ A function *f* from *domain A* to *codomain B* is a rule assigning an element of *B* to any element of *A*.

ightharpoonup To express that f is a function from A to B, we write

$$f:A\to B$$

Math - Functions

- ▶ Set constructions are fine, but we really care about *functions*!
- ▶ A function f from domain A to codomain B is a rule assigning an element of B to any element of A.

 \blacktriangleright To express that f is a function from A to B, we write

$$f: A \rightarrow B$$

▶ We can evaluate f at any element $a \in A$ to get its value or output f(a). This is read "f of a".

Powers of x

Powers of x

► Trig functions

► The exponential function

► The exponential function

Sigmoids

► The exponential function

Sigmoids

► The exponential function

Sigmoids

► Piecewise functions

Piecewise functions

Gaussians

▶ A vector $v \in \mathbb{R}^n$ is a column of values, indexed from 1 to n

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

▶ A vector $v \in \mathbb{R}^n$ is a column of values, indexed from 1 to n

$$\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

Example

$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \in \mathbb{R}^3$$

▶ We can add vectors $v, w \in \mathbb{R}^n$. The i^{th} entry $(v + w)_i$ of the sum v + w is the sum of the i^{th} entries of v and w.

- ▶ We can add vectors $v, w \in \mathbb{R}^n$. The i^{th} entry $(v + w)_i$ of the sum v + w is the sum of the i^{th} entries of v and w.
- Example

$$\begin{pmatrix} 1\\2\\-1 \end{pmatrix} + \begin{pmatrix} 3\\0\\8 \end{pmatrix} = \begin{pmatrix} 4\\2\\7 \end{pmatrix}$$

▶ We can compute the *dot product* $v \cdot w$ of vectors $v, w \in \mathbb{R}^n$, defined as the sum of the pairwise products of the entries of v and w.

- ▶ We can compute the *dot product* $v \cdot w$ of vectors $v, w \in \mathbb{R}^n$, defined as the sum of the pairwise products of the entries of v and w.
- Example

$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ 8 \end{pmatrix} = -5$$

▶ A matrix is a rectangular grid of numbers. The space of real $n \times m$ matrices is denoted $M_{n,m}(\mathbb{R})$.

- ▶ A matrix is a rectangular grid of numbers. The space of real $n \times m$ matrices is denoted $M_{n,m}(\mathbb{R})$.
- You can think of it as a sequence of columns, or a stack of rows

- ▶ A matrix is a rectangular grid of numbers. The space of real $n \times m$ matrices is denoted $M_{n,m}(\mathbb{R})$.
- You can think of it as a sequence of columns, or a stack of rows
- Example (we saw it yesterday)

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

- ▶ A matrix is a rectangular grid of numbers. The space of real $n \times m$ matrices is denoted $M_{n,m}(\mathbb{R})$.
- You can think of it as a sequence of columns, or a stack of rows
- Example (we saw it yesterday)

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

► The entry in the i^{th} row and j^{th} column of the matrix A is denoted $A_{i,j}$. What is $A_{2,2}$?

▶ We can multiply a vector by a matrix.

- We can multiply a vector by a matrix.
- ▶ Matrices in $M_{n,m}(\mathbb{R})$ can be multiplied on the left with vectors in \mathbb{R}^m .

- We can multiply a vector by a matrix.
- ▶ Matrices in $M_{n,m}(\mathbb{R})$ can be multiplied on the left with vectors in \mathbb{R}^m .
- ► The *i*th entry of the product *Av* is the dot product of *v* with the *i*th row of *A*.

- We can multiply a vector by a matrix.
- ▶ Matrices in $M_{n,m}(\mathbb{R})$ can be multiplied on the left with vectors in \mathbb{R}^m .
- ▶ The i^{th} entry of the product Av is the dot product of v with the i^{th} row of A.
- Example

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$$

- We can multiply a vector by a matrix.
- Matrices in $M_{n,m}(\mathbb{R})$ can be multiplied on the left with vectors in \mathbb{R}^m .
- ► The i^{th} entry of the product Av is the dot product of v with the i^{th} row of A.
- Example

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$$

▶ This means that matrix multiplication is a *function*!

► The matrix and vector below have a special relationship what is it?

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

► The matrix and vector below have a special relationship what is it?

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

► The vector above is an *eigenvector* of the matrix corresponding to the *eigenvalue* 1.

► The matrix and vector below have a special relationship what is it?

$$\begin{pmatrix}1&1&0\\0&1&1\\0&0&2\end{pmatrix}\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}1\\0\\0\end{pmatrix}$$

- ► The vector above is an *eigenvector* of the matrix corresponding to the *eigenvalue* 1.
- ▶ Generally, a nonzero vector v is an eigenvector of the matrix A with eigenvalue λ if

$$Av = \lambda v$$

► The matrix and vector below have a special relationship what is it?

$$\begin{pmatrix}1&1&0\\0&1&1\\0&0&2\end{pmatrix}\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}1\\0\\0\end{pmatrix}$$

- ► The vector above is an *eigenvector* of the matrix corresponding to the *eigenvalue* 1.
- ▶ Generally, a nonzero vector v is an eigenvector of the matrix A with eigenvalue λ if

$$Av = \lambda v$$

Let's find some other eigenvectors.

▶ A probability distribution is a function assigning a probability to each of a set of possible outcomes.

- ▶ A probability distribution is a function assigning a probability to each of a set of possible outcomes.
- ▶ The distribution is everywhere nonnegative.

- ▶ A probability distribution is a function assigning a probability to each of a set of possible outcomes.
- ▶ The distribution is everywhere nonnegative.
- It must sum or integrate to 1 over the entire domain of possible outcomes.

- ▶ A probability distribution is a function assigning a probability to each of a set of possible outcomes.
- ▶ The distribution is everywhere nonnegative.
- It must sum or integrate to 1 over the entire domain of possible outcomes.
- Examples include the uniform, normal and Poisson distributions.

- ▶ A probability distribution is a function assigning a probability to each of a set of possible outcomes.
- ▶ The distribution is everywhere nonnegative.
- It must sum or integrate to 1 over the entire domain of possible outcomes.
- Examples include the uniform, normal and Poisson distributions.
- ▶ A *cumulative distribution function* gives the probability of all univariate outcomes up to and including the given value.

Example

