Lecture-9

Sushrut Tadwalkar; 55554711

January 30, 2024

Theorem: Baby Rudin 6.17

Let $f:[a,b]\to\mathbb{R}$ be bounded, and $\alpha:[a,b]\to\mathbb{R}$ be differentiable and monotone increasing. Suppose $\alpha'\in\mathcal{R}[a,b]$. Then $f\in\mathcal{R}_{\alpha}[a,b]\iff f\alpha'\in\mathcal{R}[a,b]$, and if so

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \alpha' \, dx.$$

Proof. **Step-1**: It suffices to show that

$$\overline{\int_a^b} f \, d\alpha = \overline{\int_a^b} f \alpha' \, dx \quad \text{and} \quad \int_a^b f \, d\alpha = \int_a^b f \alpha' \, dx.$$

We will prove the first equality, and the second one is left as an exercise.

Step-2: Since $\alpha' \in \mathcal{R}[a,b]$ for all $\varepsilon > 0$, there exists \mathcal{P} (of [a,b]) such that $U(\mathcal{P},\alpha') - L(\mathcal{P},\alpha') < \varepsilon$. This inequality continues to hold for every refinement \mathcal{P}' of \mathcal{P} .

We have $U(\mathcal{P}, \alpha') - L(\mathcal{P}, \alpha') = \sum_{i=1}^{n} (A_i - a_i) \Delta x_i$, where $A_i := \sup\{\alpha'(x) : x \in [x_{i-1}, x_i]\}$, and $a_i := \inf\{\alpha'(x) : x \in [x_{i-1}, x_i]\}$. By the Mean Value Theorem for each $i = 1, \ldots, n$, there exists $t_i \in [x_{i-1}, x_i]$ such that $\Delta \alpha_i = \alpha'(t_i) \Delta x_i$. Now, this suggests $\int_{a}^{b} f \, d\alpha = \int_{a}^{b} f \alpha' \, dx$, but we need to be careful:

For every $s_i \in [x_{i-1}, x_i]$, we have $|\alpha'(s_i) - \alpha'(t_i)| \le A_i - a_i$, so $\sum_{i=1}^n |\alpha'(s_i) - \alpha'(t_i)| \Delta x_i \le \sum_{i=1}^n (A_i - a_i) \Delta x_i$ for every choice of $s_i \in [x_{i-1}, x_i]$, $1 \le i \le n$. Let $K := \sup_{x \in [a,b]} |f|$, then

$$\sum_{i=1}^{n} |f(s_i)\alpha'(s_i)\Delta x_i - f(s_i)\alpha'(t_i)\Delta x_i| \le K\varepsilon.$$
(1)

Hence,

$$\sum_{i=1}^{n} f(s_i) \Delta \alpha_i \le \sum_{i=1}^{n} f(s_i) \alpha'(s_i) \Delta x_i + Ke \le U(\mathcal{P}, f\alpha') + K\varepsilon.$$

Recall that if $|a+b| \le c$, then $a \le b+c$ and $b \le a+c$.

Note. Whenever we have an inequality, we might wonder whether it is "sharp" or "tight", meaning it is equality or the closest to equality as possible.

Taking the supremum of $s_i \in [x_{i-1}, x_i], i = 1, ..., n$, we conclude

$$U(\mathcal{P}, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i \le U(\mathcal{P}, f\alpha') + K\varepsilon.$$

Hence,

$$\overline{\int_{a}^{b}} f \, d\alpha \le U(\mathcal{P}, f, \alpha) \le U(\mathcal{P}, f\alpha') + K\varepsilon,$$

i.e., for every ε , we found some partition \mathcal{P} that makes the inequality hold. Recall that it also holds for every refinement \mathcal{P}' of \mathcal{P} .

How can we make this inequality be as close to equality as possible (how much strength can we squeeze out of the inequality?) Taking the infimum over all refinements \mathcal{P}' of \mathcal{P} , we have

$$\overline{\int_{a}^{b}} f \, d\alpha \le \int_{\mathcal{P}'} U(\mathcal{P}', f\alpha') + K\varepsilon.$$

Since we are considering a more strict set of partitions, will this give us the infimum we want? The answer is yes: for any non-refinement partition, we union it with $\mathcal P$ to get a refinement, i.e., for all $\varepsilon>0$, $\int_a^b f\,d\alpha \leq \int_a^b f\,\alpha'\,dx + K\varepsilon \Rightarrow \int_a^b f\,d\alpha \leq \int_a^b f\,\alpha'\,dx$. The other three inequalities can be done as an exercise after the following note:

Note. For the inequality

$$\overline{\int_a^b} f \, d\alpha \ge \overline{\int_a^b} f \alpha' \, dx,$$

from eq. (1), we get

$$\sum_{i=1}^{n} f(s_i)\alpha'(s_i)\Delta x_i \le \sum_{i=1}^{n} f(s_i)\Delta \alpha_i + K\varepsilon,$$

and so on.