# Design & Troubleshooting Tips For Your Switching Regulator

Carmen Parisi

### About Me

- Been in the semiconductor industry for over 10 years now as a Systems and Applications Engineer
  - Unlike a Field Application Engineer I go a mile deep but an inch wide
- Worked primarily on multiphase switching regulators for V<sub>CORF</sub> applications
  - Think power to CPUs, FPGAs, ASICs
- Have seen my parts go into laptops, tablets, phones, servers, and super-computers
- Previously hosted The Engineering Commons Podcast from 2013 to 2018
  - Past guest on The Amp Hour & Embedded.fm podcasts

# Main Pieces of a Buck Regulator



# Pros & Cons of Integration Levels [Generally]

|                       | All Discrete ICs | Controller +<br>Gate Driver | Gate Driver + FETs<br>[DrMOS] | Controller + Gate<br>Drive + FETs | Module [All +<br>Passives] |
|-----------------------|------------------|-----------------------------|-------------------------------|-----------------------------------|----------------------------|
| Price                 | Low to Medium    | Low to Medium               | Medium to High                | Medium to High                    | High                       |
| PCB Area              | High             | High                        | Medium                        | Low                               | Low                        |
| Component<br>Count    | High             | High                        | Medium                        | Low                               | Low                        |
| Design<br>Flexibility | High             | High                        | Medium                        | Low                               | Low                        |
| Design<br>Complexity  | High             | High                        | Medium                        | Low                               | Low                        |

## Component Selection - Control Scheme

- Can quickly fall down a rabbit hole studying all possible options out there
- Boils down to two main schemes
  - Voltage Mode Control
    - Simple to implement
    - Single control loop
    - LC double pole tricky to compensate
    - Poor regulation with changing V<sub>IN</sub>
  - [Peak] Current Mode Control
    - Eliminates LC double pole for simpler compensation
    - Requires addition of slope compensation
    - Better line transient response
    - Proper current sense implementation is critical

# Component Selection – Inductor

#### **Core Material**

- Ferrite
  - Hard Saturation
  - Lower DCR
- Composite
  - Soft Saturation
  - Higher DCR

#### **Physical Size & Value**

- Don't forget the Z-axis
  - Thicker chokes typically have better core loss
- Inductance Value
  - Trade off between efficiency, ripple, and transient response

#### **Placement**

- Short, wide, trace from SW node to inductor
- Keep on same layer as FETs
  - Minimize critical loop
- If marked, put dotted sided to SW node for better EMI

470

# Component Selection - Capacitors

#### **Bulk Capacitors**

- ESR Zero has to be accounted for during compensation
- ESR can be used to dampen acoustic noise under the right circumstances

#### All Ceramic C<sub>OUT</sub>

- Some control schemes
   DON'T support this
  - Early V<sup>2</sup> control
  - Read DatasheetCarefully

#### **Input Ceramics**

- Don't forget to account for derating!
  - C drops with DC bias
- Size capacitance for DC ripple voltage
- # of caps for input ripple current

# Placement is critical!

### Debugging Hooks - Gate Resistors



#### **Gate Resistor**

- Controls turn on/off slew of the power FETs
- Single Resistor
  - Cheap
  - Equally affected Rise& Fall edges
- Resistor + Diodes
  - Extra Cost & Area
  - Independent Rise & Fall Control
- Can hurt efficiency or cause shoot-through if done incorrectly

# Debugging Hooks - Boot Resistor



#### **Boot Resistor**

- Limits the current to the upper FET gate driver slowing down SW node rise time
- Can help reduce shoot-through or EMI
- Start with small value!
   ~1Ω Typically
- Place R<sub>BOOT</sub> & C<sub>BOOT</sub> close to Gate Driver on PCB

# Debugging Hooks - Phase Snubber



#### **Phase Snubber**

- Keep as DNP to start
  - Populate if you run into trouble
- Reduces ringing on the SW node
  - Keep FETs within datasheet limits
  - Lower EMI
- Secondary layout concern after FETs/Ind/C<sub>IN</sub>/C<sub>OUT</sub>

## Debugging Hooks - VIN MLCC



- Sneak in small package MLCC as close to VIN/GND on the FETs as possible
  - Can leave DNP to start if BOM cost is an issue
- Can reduce ringing on the switch node
  - Lowers EMI
  - Better device reliability if exceeded datasheet limits
- Doesn't replace good design/layout practices

# Validation Tips - Probing Techniques

#### **Tight GND Connection**

- Avoid using the long ground clip whenever possible
  - Keep ground connection close to signal of interest
- Long leads can show false failures
  - Ringing
  - V<sub>OUT</sub> Ripple

#### **Differential Probe**

- Don't exceed the common mode range!
  - SW Node
  - BOOT-SW
  - $\sim$   $V_{_{
    m IN}}$
  - Upper Gate Drive
  - When measuring ripple and other low-level signals be aware of the diff probe noise floor

#### **DIY Power Rail Probe**

- Low cost, low noise
- Cleanest signal when used correctly



Figure 1: The source series termination method presents an alternative method of probing low-impedance, fast-switching sources

Source: <u>Teledyne LeCroy</u>

# Validation Tips - The Importance of Phase

- The switch node is definitely one of the most critical nodes of a regulator
- It can tell you a lot about the health of your system
  - o EMI
  - Efficiency/Reliability
  - Stability/Jitter



# The Importance of Phase - EMI



# Importance of Phase - Efficiency/Reliability





# Importance of Phase - Stability/Jitter





# Validation Tips - Transient Testing





Figure 5 – Transient response in the time domain.

Source: Texas Instruments SLUP391

Region 1 - ESL Spike, Faster Slew → Larger Spike

Region 2 - ESR Droop, Inductor Current starts to slew

Region 3 - C<sub>OUT</sub> Discharges to maintain V<sub>OUT</sub> Region 4 - Inductor Current = Load Current, overshoots to refill COUT

# Reading the Datasheet

- They all could be better [trust me] but in most cases they're not a bad document for how the regulator operates at a high level
  - Check for app notes, design guides, white papers, etc. for more info as needed
- Know when to deviate!
  - Check the Typical Applications listed & Reference Circuits against your design
  - Compare the Layout Guidelines against your PCB
- Skim through first before reading in more detail
  - Call out relevant tables, figures, and graphs to reference later
  - If a spec on Page 1 is critical to your design find every mention of it in the document to make sure it's true



- Fault Response is an often overlooked, don't let it bite you
  - Latched or Hiccup?
  - OVP, OCP → Tri-state SW or Pull Low?
  - OCP → Peak, Valley, or Average Limit?
- Electronic Loads are incredibly useful but come with gotchas of their own
  - Slow slew rates and long cables make it hard to really test transient response
  - Cable inductance can make V<sub>OUT</sub> ring below ground as regulator turns off for whatever reason
  - Know the minimum  $V_{OUT}$  that can pull the max load





- An IR camera is invaluable to have on hand if you can swing it
  - See where current is flowing after a load is applied by watching what heats up first
  - Find minor shorts that don't result in shutdown
- Improve a heat sink by placing hex nuts on top of your FETs [carefully]
- Troubleshooting Mindset
  - Start simple Power, Jumper/Switch positions, Probe Location, etc.
  - Visual checks are perfectly valid and can save a ton of time
- Best way to learn
  - Torture a cheap eval board or make your own
  - Read/watch whatever interests you and branch out from there
  - Be okay with the unknown, you'll figure it out eventually

# Helpful Resources

- <u>Linear Circuit Design Handbook</u> Chapter 9, Analog Devices
- Reducing Buck Converter EMI Texas Instruments
- <u>TI Power Supply Design Seminar</u> Texas Instruments [needs TI account]
- <u>Under the Hood of Low Voltage DC/DC Converters</u> Texas Instruments
- Ridley Design Center Ridley Engineering
- Linear Tech AN149 Analog Devices
- Snubber Design Rohm
- Power MOSFET Basics Infineon
- Avoiding Parasitic Turn On Infineon
- <u>Electrical Integrity</u> Istvan Novak
- <u>Multiphase 101 Training Portal</u> Texas Instruments
- Biricha YouTube Channel
- Ridley Engineering YouTube Channel
- Control Mode Quick Reference Guide Texas Instruments
- PCB Layout Considerations for Non-Isolated Switching Power Supplies Analog Devices