

Predict applicants' academic performance at university

2,093 (studens)

FROM 2016 TO 2019

ENROLLED IN A COMPUTER
SCIENCE AND INFORMATION COLLEGE

EARLY UNIVERSITY PERFORMANCE

- HIGH SCHOOL GRADE AVERAGE
- SCHOLASTIC ACHIEVEMENT ADMISSION TEST SCORE
- GENERAL APTITUDE TEST SCORE

After change the weighting of its admission criteria

Find relation

- ADMISSIONS CRITERIA
- STUDENTS' CUMULATIVE GRADE POINT AVERAGE (CGPA) DURING THEIR FIRST YEAR OF STUDY AT UNIVERSITY

CGPA

ATTRIBUTES

- STUDENT CGPA
- ASSESSMENTS, QUIZ GRADES, LAB WORK, AND FINAL EXAM GRADES
- EXTRA ACTIVITIES, STUDENT DEMOGRAPHY, AND SOCIAL INTERACTION NETWORK
- PRE-ADMISSION TESTS

PREDICTION METHODS

- ANN: predict the academic performance of 505 students in their eighth semester.
- Decision Trees: predict student performance in certain courses. (small student sample sizes)
- Naïve Bayes: on a set of 1,600 students to predict performance in a particular course.
- SVM: predict students at risk performance in their first year of study.

UNDERSTANDING THE DOMAIN OF THE STUDY

2004-2005 TO 2016-2017

In KSA, enrollment in the computer science, technology colleges has increased

2,959 TO 27,089 (STUDENTS

IN 2017-2018

THREE CRITERIA (HSGA, SAAT, AND GAT)

- 30%, 40%, 30% at KSU
- 50%, 20%, 30% at King Abdulaziz
 University
- 20%, 50%, 30% at King Fahd University of Petroleum & Minerals
- 60%, 20%, and 20% at PNU

SINCE THE EARLY 2000S

General Aptitude Test (GAT)
Scholastic Achievement Admission Test (SAAT)

- · biology
- chemistry
- physics
- mathematics
- English

AMAMA

the three admission criteria as the independent variables, the CGPA through students' first two semesters as the dependent variable.

correlation coefficient

REDICTION MODELS

Neural Network (ANN), Decision Tree,

Support Vector Machine (SVM), and Naive Bayes

METHODOLOGY

ARTIFICIAL NEURAL NETWORK (ANN)

detect all possible interactions among variables learn from a limited set of examples. Multilayer Perception (MLP) topology

DECISION TREE

predicts values in a simple and straightforward way understood and interpreted easily by users

NAIVE BAYES

simplicity,

very good performance for real-world problems,

computational effi ciency

SUPPORT VECTOR MACHINE (SVM)

small datasets

Faster than the other

techniques

LINEAR

accuracy, recall, precision, and FI-Measure metrics.

REDICTION MODELS

developed the second stage of the study

EXPERIMENTAL EVALUATION

1. EXPERIMENTAL SETUP

2. EXPERIMENTAL RESULTS AND

DISCUSSION

EXPERIMENTAL SETUP

DATASET

1,569 student records
Saudi females
monthly salary from the
government

HSGA, SAAT, and GAT 60%, 20%, and 20%, SAAT score: most accurately HSGA, SAAT, and GAT 30%, 40%, and 30%

THE SECOND STAGE

470 student
the three admis sion
criteria and CGPA after
the first two semesters

Our school grading system applies.

Passing rate is 60.

PREPARED THE DATA SET

- eliminating certain
 irrelevant attributes
- · identifying outliers
- deleting records with missing val ues
- removing duplicate
 maximized the total
 number of observation
 used for testing.

EVALUATION METRICS

TRUE POSITIVE RATE (TP)

the number of instances that are correctly predicted as positive.

FALSE POSITIVE RATE (FP)

TRUE NEGATIVE RATE

the number of instances that are correctly predicted as negative.

the number of instances that are incorrectly predicted as negative.

$$ACCURACY = (TP + TN)/(TP + TN + FP + FN)$$

$$RECALL = TP/(TP + FN)$$

PRECISION =
$$TP/(TP + FP)$$

FIMEASURE = 2× RECALL* PRECISION/(RECALL+PRECISION)

EXPERIMENTAL RESULTS AND DISCUSSION

- 1.MOST SIGNIFICANT CRITERION IDENTIFICATION
- 2. CLASSIFICATION TECHNIQUE PERFORMANCE
- 3. STUDENT PERFORMANCE IMPROVEMENT

result of the correlation coefficient between the variables

the coefficient of determination between the variables

TECHNIQUE PERFORMANCE

ANN

accuracy rate precision rate

DT

recall rate

NB

worst

Add more weight to the SAAT criterion

THE THREE ADMISSION CRITERIA (HSGA, SAAT,GAT)

60%,20%, 20%

CHANGE TO 30%, 40%, AND 30%

EXCELLENT OR VERY GOOD INCREASED TO 65%

ACCEPT ABLE OR POOR DECREASED TO 6%

CONCLUSION

FOUR DATA MINING

Artificial Neural Network

Decision Tree

Support Vector Machine

Naive Bayes

PERFORMANCE MODEL

ANN is the best

RECOMMENDATIONS

colleges should give serious consideration to students' pre admission SAAT scores before accepting them

MEKA

I.DECISION TREE

2. SUPPORT VECTOR MACHINE (SVM)

3. NAIVE BAYES

4. ARTIFICIAL NEURAL NETWORK (ANN)

Table

seniorhighgrade	acedemicexam	apititudeexam	Result	grade
65 79 81 46	55 20 79 63	40 12 30 50	VERYGOOD POOR EXCELLENT ACCEPTABLE	150 0 200 80

STEP I CREATE DATASET

	А	В	С	D
1	· ·	-		-
2	senior high grade	acedemic exam	apititude exam	Result
3	73	6	71	very good
4	83	100	92	excellent
5	42	57	55	very good
6	48	17	98	very good
7	23	2	7	poor
8	40	27	82	acceptable
9	43	25	44	acceptable
10	67	45	89	excellent
11	19	46	65	acceptable
12	81	54	50	very good
13	1	78	2	acceptable
14	39	27	77	acceptable
15	92	87	71	excellent
16	51	49	69	very good
17	9	41	85	acceptable
18	57	42	35	acceptable
19	27	21	90	acceptable
20	50	100	90	excellent
21	26	16	21	poor
22	26	23	96	acceptable
23	48	71	2	acceptable
24	20	7	88	acceptable
25	43	50	54	acceptable
26	2	20	95	acceptable
27	61	80	4	acceptable
28	87	43	89	excellent
29	55	27	5	acceptable
30	57	30	60	acceptable
31	4	97	36	acceptable
32	69	89	57	excellent
33	71	20	75	very good
34	87	87	97	excellent
25	03	~~	~~	11 .

76	81	82	67	excellent
77	11	45	34	acceptable
78	45	15	6	poor
79	88	41	11	acceptable
80	41	57	89	very good
81	99	81	51	excellent
82	39	82	65	very good
83	74	1	60	acceptable
84	31	5	80	acceptable
85	94	78	30	excellent
86	35	84	59	very good
87	61	15	87	very good
88	43	100	62	excellent
89	90	26	61	very good
90	83	34	9	acceptable
91	5	39	21	poor
92	95	22	30	acceptable
93	62	19	67	acceptable
94	80	38	67	very good
95	96	6	98	excellent
96	72	32	85	very good
97	81	67	8	very good
98	16	19	15	poor
99	16	26	74	acceptable
100	85	70	49	excellent
101	24	40	17	acceptable
102	54	31	48	acceptable

STEP 2 CHANGE DATASET TO .ARFF

```
📙 testcase.in 🗵 📙 new 1.txt 🗵 📙 s1083306.1 🗵 📙 unbalanced.arff 🗵 📙 supermarket.arff 🗵 🗎 weather.nominal.arff 🗵
    @relation weather.symbolic
 3 @attribute seniorhighgrade{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,3
 4 @attribute acedemicexam{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,3
 5 @attribute apititudeexam{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,3
 6 @attribute Result{excellent, verygood, acceptable, poor}
 7 @attribute grade {200,150,80,0}
 10 @data
11 73,6,71, verygood, 150
12 83,100,92,excellent, 200
13 42,57,55, verygood, 150
14 48,17,98, verygood, 150
15 23,2,7,poor, 0
16 40,27,82,acceptable,80
 17 43,25,44,acceptable,80
18 67,45,89,excellent, 200
19 19,46,65,acceptable,80
 20 81,54,50, verygood, 150
 21 1,78,2,acceptable,80
22 39,27,77,acceptable,80
 23 92,87,71,excellent, 200
24 51,49,69, verygood, 150
25 9,41,85,acceptable,80
26 57,42,35,acceptable,80
27 27,21,90,acceptable,80
28 50,100,90,excellent, 200
29 26.16.21 poor 0
```

STEP 3 OPEN WEKA & CLICK EXPOLER

STEP 4 CLICK OPEN FILE

STEP 5 CHOOSE CLASSIFY AND CLICK WHICH FILE TO CHOOSE

STEP 6 CLICK START AND WAIT FOR THE RESULT

I.DECISION TREE


```
=== Summary ===
Correctly Classified Instances
                                        100
                                                          100
Incorrectly Classified Instances
                                                            0
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances
                                        100
=== Detailed Accuracy By Class ===
                 TP Rate FP Rate Precision Recall
                                                         F-Measure MCC
                                                                              ROC Area PRC Area Class
                 1.000
                           0.000
                                    1.000
                                               1.000
                                                         1.000
                                                                    1.000
                                                                              1.000
                                                                                        1.000
                                                                                                  200
                 1.000
                           0.000
                                    1.000
                                               1.000
                                                         1.000
                                                                    1.000
                                                                                        1.000
                                                                                                  150
                                                                              1.000
                 1.000
                           0.000
                                    1.000
                                               1.000
                                                         1.000
                                                                    1.000
                                                                              1.000
                                                                                        1.000
                                                                    1.000
                                                                              1.000
                 1.000
                           0.000
                                    1.000
                                               1.000
                                                         1.000
                                                                                        1.000
Weighted Avg.
                                    1.000
                                                         1.000
                 1.000
                           0.000
                                               1.000
                                                                    1.000
                                                                             1.000
                                                                                        1.000
=== Confusion Matrix ===
       c d <-- classified as
       0 0 | a = 200
       0 0 | b = 150
  0 \quad 0 \quad 46 \quad 0 \quad | \quad c = 80
  0 \quad 0 \quad 0 \quad 5 \quad | \quad d = 0
```

2. SUPPORT VECTOR MACHINE (SVM)

```
=== Summary ===
Correctly Classified Instances
                                       100
Incorrectly Classified Instances
Kappa statistic
                                         0.25
Mean absolute error
Root mean squared error
                                         0.3118
Relative absolute error
                                        74.6269 %
Root relative squared error
                                        76.3194 %
Total Number of Instances
                                       100
=== Detailed Accuracy By Class ===
                 TP Rate FP Rate Precision Recall
                                                       F-Measure MCC
                                                                            ROC Area PRC Area Class
                 1.000
                          0.000
                                   1.000
                                              1.000
                                                       1.000
                                                                  1.000
                                                                           1.000
                                                                                      1.000
                                                                                                200
                 1.000
                          0.000
                                   1.000
                                              1.000
                                                       1.000
                                                                  1.000
                                                                           1.000
                                                                                      1.000
                                                                                                150
                 1.000
                                                                                      1.000
                          0.000
                                   1.000
                                              1.000
                                                       1.000
                                                                  1.000
                                                                           1.000
                                                                                                80
                 1.000
                                                                                      1.000
                          0.000
                                   1.000
                                              1.000
                                                       1.000
                                                                  1.000
                                                                           1.000
Weighted Avg.
                 1.000
                                              1.000
                                                                  1.000
                                                                                      1.000
                          0.000
                                   1.000
                                                       1.000
                                                                           1.000
=== Confusion Matrix ===
             <-- classified as
          0 \mid a = 200
          0 \mid b = 150
          0 \mid c = 80
    0 \ 0 \ 5 \ | \ d = 0
```

3. NAIVE BAYES

```
=== Summary ===
Correctly Classified Instances
                                       100
                                                        100
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
                                         0.0555
Root mean squared error
                                        0.0838
Relative absolute error
                                       16.5556 %
Root relative squared error
                                        20.4999 %
Total Number of Instances
                                       100
=== Detailed Accuracy By Class ===
                 TP Rate FP Rate Precision Recall
                                                       F-Measure MCC
                                                                           ROC Area PRC Area
                                                                                               Class
                 1.000
                          0.000
                                   1.000
                                              1.000
                                                                           1.000
                                                                                     1.000
                                                                                               200
                                                       1.000
                                                                  1.000
                                  1.000
                 1.000
                          0.000
                                              1.000
                                                       1.000
                                                                  1.000
                                                                           1.000
                                                                                     1.000
                                                                                               150
                                  1.000
                                                       1.000
                 1.000
                          0.000
                                              1.000
                                                                           1.000
                                                                  1.000
                                                                                     1.000
                                                                                               80
                          0.000
                                   1.000
                                                       1.000
                                                                                     1.000
                 1.000
                                              1.000
                                                                  1.000
                                                                           1.000
Weighted Avg.
                                   1.000
                                              1.000
                                                       1.000
                 1.000
                          0.000
                                                                  1.000
                                                                           1.000
                                                                                     1.000
=== Confusion Matrix ===
               <-- classified as
                a = 200
                b = 150
                c = 80
                d = 0
```

4.ARTIFICIAL NEURAL NETWORK (ANN)


```
Sigmoid Node 7
             Weights
   Inputs
   Threshold 0.008660920341785117
Class excellent
   Input
   Node 0
Class verygood
   Input
   Node 1
Class acceptable
   Input
   Node 2
Class poor
   Input
   Node 3
```

THANKS FOR LISTENING

