Suppose
$$f_{\theta}(x) = \begin{cases} \theta_{1}/\sigma & x = -1 \\ \theta_{2}/5 & x = 0 \\ \theta_{1}/J & x = 1 \end{cases}$$

$$\theta = (\theta_{1}, \theta_{2}) \qquad \left[-\left(\frac{\theta_{1}}{\sigma} + \frac{\theta_{2}}{J}, \frac{\theta_{1}}{J}\right) \right] \times = 3$$

14
$$\times F_{\theta}$$
, $\mathbb{P}[X=x] = f_{\theta}(x)$

$$\theta = (1, \frac{1}{2})$$

$$\frac{3}{5}$$

$$\begin{cases} -1 & \text{IP}[X_1 = -1, X_2 = 1, X_3 = 3] \\ -1 & \text{if} \quad \theta = (1, \frac{1}{2}) \end{cases}$$

$$\begin{cases} -1 & \text{IP}[X_1 = X_1, X_2 = X_2, X_3 = X_3] & \text{if } \theta = (\theta_1, \theta_2) \end{cases}$$

Note	Nove of	. Hhis.	requi.	мsa.	SSuup	for.	(, ,	· · · · · · · · · · · · · · · · · · ·	المنار
We us	je this	assuu	uptu.	10	· Linc	e st		No	ن
	· auv ·								
				• •		• •		•	•
Propertion	<u>.</u>							•	•
Assur	ne. X,,	· · · · · · · · · · · · · · · · · · ·	· Fa .	·The	· · ·	·th	· ·	•	•
	est when							•	• •
	usisfent:	Θ,	P) :	•				•	
· - 290	sieurt:	·Oi	ll o	f 0,	368	۸. (س	1LE.	of.	g.(Θ)
- Asy	mtotically	· nosmo		θθ 5e(θ.)	ج	N(0	, i)	•	
	mptotical								
				• •		• •		•	•

$$\frac{E \times X_1, \dots, X_n \sim N(\mu, \sigma^2)}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{(X_1 - \mu)^2}{Z_{r^2}}\right)} \left(\frac{\partial}{\partial x_1} \left(\frac{\partial}{\partial x_2} - \frac{(X_1 - \mu)^2}{Z_{r^2}}\right)\right)$$

$$= \log(c) + \alpha \log(\frac{1}{\sigma}) - \frac{2}{2\pi^2} (x_i - p)^2$$

$$\frac{\partial l_n(\mu,\sigma)}{\partial \mu} = \frac{2}{i^2} \frac{(X_i - \mu)}{2\sigma^2} = \frac{n(X_n - \mu)}{2\sigma^2}$$

set equal to zero la find max

$$\frac{n(X-\mu)}{2\sigma^2}=0$$

$$\mu=X_n$$

$$\frac{\partial l_n(\mu,\sigma)}{\partial \sigma} = -\frac{N}{\sigma} + \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{\sigma^3} = -\frac{N}{\sigma} + \frac{NS^2}{\sigma^3} + \frac{N(x_i - \mu)^2}{\sigma^2}$$

where
$$S^2 = u^{-1} \sum_{i=1}^{2} (X_i - \overline{X}_i)^2$$

$$-\frac{u}{\delta} + \frac{u s^2}{\delta^3} + \frac{(x - x)^2}{\delta^2} = 0 \implies \delta^2 = s^2 \implies \delta = S$$