

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

Peramalan Produksi dengan Metode Regresi Linier Berganda

Sulistyono, Wiwik Sulistiyowati Program Studi Teknik Industri, Fakultas Teknik Universitas Muhammadiyah Sidoarjo

Email address: sulistyo244@gmail.com, wiwik@umsida.ac.id

Diterima: 30 Oktober 2017; Disetujui: 25 Desember 2017

ABSTRAK

Dengan banyaknya pembangunan gedung-gedung, merupakan peluang besar yang bagus untuk industri mesin pendingin. Untuk memenuhi terhadap permintaan mesin pendingin diperlukan peramalan yang tepat dalam pengambilan keputusan dalam proses produksi. Peramalan produksi merupakan bentuk pembuatan keputusan yang dijadikan sebagai landasan dibanyak industri manufaktur dan industri pelayanan.

Tujuan dilakukan penelitian ini adalah untuk meramalkan jumlah produksi sehingga dapat menentukan jumlah produksi mesin pendingin dalam 12 periode dimasa yang akan datang. Analisis regresi merupakan analisis yang bertujuan untuk menentukan model yang paling sesuai untuk pasangan data serta dapat digunakan untuk membuat model dan menyelidiki hubungan antara dua variabel atau lebih.

Hasil persamaan matematika regresi yang mempengaruhi jumlah produksi adalah variabel kerusakan mesin (KM) dan harga bahan baku (HBB) serta jumlah tenaga kerja (JTK) nilai konstanta 500.308 menyatakan bahwa jika tidak ada variabel kerusakan mesin, harga bahan baku dan jumlah tenaga kerja, maka jumlah produksi sebesar 500.300. Dengan mengasumsikan diabaikannya variabel independen lainnya, jika kedua variabel (X1_KM) bernilai positif sebesar 47.869 dan (X2_HBB) bernilai positif sebesar 7.2700000, maka jumlah produksi meningkat sebesar 1%, dan jika variable (X3_JTK) bernilai negatif -3.460, jumlah produksi mengalami penurunan 1%, sebesar 3.640.

Kata Kunci: Peramalan, Analisis Regresi Linier Jumlah Produksi, Kerusakan Mesin, Harga Bahan Baku, dan Jumlah Tenaga Kerja.

ABSTRACT

With the construction of many buildings, this is a big opportunity for the refrigeration industry. To meet the demand for refrigeration required precise forecasting in decision-making in the production process. Forecasting production is a form of decision-making that serve as the foundation in many manufacturing and service industries.

The purpose of this study is to predict the amount of production so as to determine the amount of coolant in the engine production 12 periods in the future. Regression analysis is an analysis that aims to determine the most suitable model for the data pair and can be used to model and investigate between two or more variables.

Results of regression mathematical equation that affects the amount of production is variable engine damage (KM) and the price of raw materials (HBB) and total employment (JTK) constant value 500 308 states that if there is no engine damage variable, the price of raw materials and labor, then total production of 500 300. Assuming the waiver of the other independent variables, if the two variables (X1_KM) and the positive value of 47 869 (X2_HBB) positive value of 7.2700000, the number production increased by 1%, and if the variable (X3_JTK) -3460 is negative, total production decreased 1 %, at 3,640.

Keywords: Forecasting, Linear Regression Analysis of Total Production, Machinery Breakdown, Raw Material Price, and the Number of Labor.

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

Dengan banyaknya pembangunan gedung-gedung, merupakan peluang besar yang bagus untuk industri mesin pendingin. Untuk memenuhi terhadap permintaan mesin pendingin diperlukan peramalan yang tepat dalam pengambilan keputusan dalam proses prosduksi. Dengan mengetahui jumlah permintaan mesin pendingin pada periode tertentu, dengan demikian peramalan kebutuhan mesin pendingin merupakan langkah antisipatif untuk melihat perkembangan pada tahun-tahun berikutnya. Disamping itu peramalan kebutuhan mesin pendingin ini juga berpengaruh terhadap perencanaan proses produksi.

Peramalan produksi merupakan bentuk pembuatan keputusan yang dijadikan sebagai landasan dibanyak industri manufaktur dan industri pelayanan. Oleh karena itu, perusahaan yang mampu menghasilkan produk yang tepat waktu dan tepat jumlah merupakan perusahaan yang mampu bertahan dalam persaingan. Peramalan permintaan ini digunakan untuk meramalan permintaan dari produk yang bersifat bebas (tidak tergantung), seperti peramalan produk jadi [1].

Metode regresi linier berganda merupakan teknik analisis yang mencoba menjelaskan hubungan antara dua peubah atau lebih khususnya antara peubah-peubah yang mengandung sebab akibat disebut analisis regresi [2]. Sehingga dalam kaitannya dengan uraian tersebut diatas, penelitian ini bertujuan untuk mengetahui peramalan produksi dengan menggunakan metode regresi linear berganda di PT. XYZ.

Peramalan merupakan dalam situasi yang tidak diketahui [3]. Dalam kondisi pasar bebas, permintaan pasar lebih banyak bersifat komplek, dan dinamis karena permintaan pasar tersebut akan tergantung dari keadaan sosial, ekonomi, politik, aspek teknologi, produk pesaing dan produk subsitusi. Oleh karena itu, peramalan yang akurat merupakan informasi yang sangat dibutuhkan dalam pengambilan keputusan menajemen [1].

Dalam peramalan suatu keputusan bisnis, seorang manajer membutuhkan informasi dari berbagai sisi yang berbeda. Oleh karena itu, seorang manajer perlu melakukan peramalan pada beberap bidang penting, antara lain peramalaan tentang perkembangan tekonologi, peramalan tentang kondisi ekonomi dan peramalan permintaan. Pada perencanaan dan pengedalian produksi (PPC), bidang peramalan yang difokuskan adalah peramalan permintaan [1].

Analisis regresi liniear berganda adalah analisis yang memiliki variabel bebas lebih dari satu [4]. Analisis regresi telah lama dikembangkan untuk mempelajarai pola dan mengukur hubungan statistik antara dua atau lebih peubah (variabel). Teknik analisis yang mencoba menjelaskan hubungan antara dua peubah atau lebih khususnya antara peubah-peubah yang mengandung sebab akibat disebut analisis regresi [5].

Dalam analisis regresi liniear berganda terdapat beberapa uji asumsi klasik, yaitu uji heteroskedastisitas, uji tersebut bertujuan untuk menguji apakah dalam sebuah model regresi terjadi ketidaksamaan varians residual dari suatu pengamatan ke pengamatan yang lain tetap [6]. Kemudian Uji Normalitas, yang bertujuan untuk menguji apakah dalam suatu model regresi, variabel terikat dan variabel bebas atau keduanya mempunyai distribusi normal atau tidak [7].

METODE

Penelitian ini dilakukan pada PT.XYZ yang merupakan perusahaan yang bergerak dibidang *Heat Exchanger*. Yang berlokasi di Desa Wonokoyo, Beji, Pasuruan, Jawa Timur. Penelitian ini dilaksanakan pada bulan Februari 2014 sampai dengan bulan Maret 2014

Objek penelitian adalah produk unit *heat exchanger* pada PT. XYZ. Instrumen yang dipergunakan dalam melakukan pengumpulan data adalah pedoman observasi, wawancara dan dokumentasi yang berisi garis besar informasi atau data yang diperlukan. Pengumpulan data dilakukan melalui wawancara atau tanya jawab dengan pihak perusahaan mengenai data-data yang diperlukan untuk melakukan perencanaan jumlah produksi yang akan datang serta data sekunder dari data produksi dan penjualan.

Studi Lapangan

Dilakukan dengan cara pengumpulan data secara langsung ke lapangan dengan menggunakan teknik observasi terhadap obyek yang diteliti, wawancara dan dokumentasi

Tahap Pengolahan Data dan Analisa.

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

Tahap analisa data di laksanakan setelah tahap pengolahan data di lakukan. Pada tahap ini hal yang dilakukan adalah *menganalisa hasil perhitungan jadwal produksi peramalan regresi liner berganda*.

- 1. Analisa deskriptif yaitu suatu analisis yang menguraikan perkembangan jumlah produksi yang dicapai perusahaan.
- 2. Analisis regresi linier berganda yaitu suatu analisis untuk melihat sejauh mana pengaruh harga bahan baku ,jumlah tenaga kerja dan jumlah kerusakan mesin, dengan software SPSS V.16.

Model regresi linier berganda untuk populasi adalah sebagai berikut:

 $Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon_i$

Dimana:

Y = Jumlah produksi

 α = konstanta

 $\beta_{1,}\,\beta_{2,}\,\beta_{3}\!\!=\!$ koefisensi regresi variable independen

 $X_1 = Jumlah kerusakan mesin$

 $X_2 = Harga bahan baku$

 $X_3 =$ Jumlah tenaga kerja

HASIL DAN PEMBAHASAN

Pengumpulan Data

Pada tahap ini survey dilakukan pada PT.XYZ untuk melakukan identifikasi terhadap data - data yang dibutuhkan, seperti data kebutuhan unit *heat exchanger* selama 1 tahun terakhir. Berikut data – data yang diperoleh dari PT.XZY pada tabel1.

Tabel 1. Data yang digunakan dalam penelitian

			Total Produksi		
No	Periode	Jumlah kerusakan	Harga Bahan	Jumlah tenaga	
NO	renode	Mesin	Baku	kerja	
		(X_1)	(X_2)	(X_3)	(Y)
1	May - 2013	24	76371781	48	1390
2	Jun - 2013	20	21228575	24	1217
3	Jul - 2013	27	87099888	50	2058
4	Aug - 2013	23	46896084	38	1165
5	Sep - 2013	23	48879095	55	1409
6	Oct - 2013	24	114818187	60	1383
7	Nov - 2013	13	224176979	24	1076
8	Dec - 2013	25	52370461	43	1259
9	Jan - 2014	28	109207862	66	1627
10	Feb - 2014	25	377095881	60	1682
11	Mar - 2014	22	65633794	36	2149

Pengolahan data dilakukan dengan menggunakan software SPSS V.16, dalam pengolahan data dilakukan beberapa pengujian, yaitu koefisien determinasi, uji signifikan simultan (uji statistik F), Uji signifikansi (Uji Statististik –t), Uji multikolinieritas, Uji normalitas residual.

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

Uji Regresi Linear Berganda

Berdasarkan pengolahan data dengan menggunakan SPSS V.16, sehingga dapaty diketahui output hasil pengolahan data yang terdapat pada tabel 2.

Tabel 2 Uji Koefisien Determinasi

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		В
1	(Constant)	500.308	782.814		.639	.541
	X1_KM	47.869	51.722	.541	.926	.382
	X2_HBB	7.275E-7	.000	.207	.534	.608
	X3_JTK	-3.460	15.251	135	227	.826

Berdasarkan tabel 2, maka hanya terdapat dua variabel yang signifikan pada nilai tingkat kepercayaan (α) 5 % atau 0,05. Sehingga, dapat disusun persamaan matematika regresi yang mempengaruhi jumlah produksi adalah variabel kerusakan mesin (KM) dan harga bahan baku (HBB) serta jumlah tenaga kerja (JTK) sebagai berikut:

Y = a + bX1 + bX2 + bX3

Y = 500.308 + 47.869 KM + 7.2750000 HBB - 3.460 JTK

Pada nilai konstanta 500.308 menyatakan bahwa jika tidak ada variabel kerusakan mesin, harga bahan baku dan jumlah tenaga kerja, maka jumlah produksi sebesar 500.300.

Nilai koefisien untuk variabel independent kerusakan mesin (X1_KM) bernilai positif sebesar 47.869 hal ini menunjukkan bahwa dengan mengasumsikan diabaikannya variabel independen lainnya, jika variabel kerusakan mesin semakin berkurang 1 % maka dapat mempengaruhi peningkatan jumlah produksi.

Nilai koefisien untuk variabel independent harga bahan baku (X2_HBB) bernilai positif sebesar 7.2700000 hal ini menunjukkan bahwa dengan mengasumsikan diabaikannya variabel independen lainnya, jika variabel harga bahan baku meningkat sebesar 1 %, maka dapat mempengaruhi peningkatan jumlah produksi.

Nilai koefisien untuk variabel independent jumlah tenaga kerja (X3_JTK) bernilai negatif sebesar -3.460 hal ini menunjukkan bahwa dengan mengasumsikan diabaikannya variabel independen lainnya, jika variabel jumlah tenaga kerja mengalami peningkatan 1 %, maka mempengaruhi penurunan jumlah produksi sebesar 3.640

Uji Korelasi Ganda (R) dan Uji Koefisien Determinasi (R²)

Uji koefisien determinasi bertujuan untuk mengetahui hubungan antara dua atau lebih variabel independen (X1, X2, dan X3) terhadap variabel dependen (Y) secara bersamaan. Nilai R berkisar antara 0 sampai dengan 1, jika nilai semakin mendekati 1 berarti hubungan semakin kuat, ataupun sebaliknya jika nilai mendekati nol, maka hubungan semakin lemah. Hasil uji koefisien determinasi terdapat pada tabel 3.

Tabel 3. Uji Koefisien Determinasi

Model	D	R Square	Adjusted R	Std. Error of the
Model	K	K Square	Square	Estimate
1	.442ª	.195	107	365.72477

a. Predictors: (Constant), X3, X2, X1

Berdasarkan data pada tabel 3, dapat diketahui nilai adjusted R sebesar 0.442, hal ini berarti bahwa hubungan antara variabel independen (X1, X2, dan X3) yaitu kerusakan mesin, harga bahan baku dan jumlah tenaga kerja adalah moderat atau sedang terhadap jumlah produksi.

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

Berdasarkan tabel 3 dapat dijelaskan bahwa nilai R² (R square) sebesar 0.195 atau 19,5 %. Hal ini menunjukkan bahwa prosentase sumbangan pengaruh variabel independen (X1, X2, dan X3) yaitu kerusakan mesin, harga bahan baku dan jumlah tenaga kerja terhadap variabel dependen (Y) yaitu jumlah produksi sebesar 19.5 %. Sedangkan sisanya sebesar 80.5 % dipengaruhi oleh variabel lain yang tidak dimasukkan dalam model penelitian.

Sedangkan untuk hasil pengujian *Standard Error of the Estimate* merupakan suatu ukuran banyaknya kesalahan model regresi dalam memprediksi nilai Y, sehingga nilai standard error of the estimate sebesar 365.72477, hal ini berarti banyaknya kesalahan dalam prediksi jumlah produksi sebesar 365.72477.

Uji Signifikansi Simultan (Uji Statistik –F)

Uji –F digunakan untuk mengetahui apakah variabel independen (X1, X2, dan X3) yaitu kerusakan mesin, harga bahan baku dan jumlah tenaga kerja mempengaruhi secara signifikan terhadap variabel dependen (Y) yaitu jumlah produksi. Hasil pengolahan data untuk uji signifikasi simultan terdapat pada tabel 4.

Tabel 4. Uji Signifikansi Simultan (Uji Statitik-F)

		Sum of		Mean		
Model		Squares	df	Square	F	Sig.
1	1	Regression	259372.167	3	86457.389	.646
		Residual	1070036.833	8	133754.604	
		Total	1329409.000	11		

a. Predictors: (Constant), X3, X2, X1

b. Dependent Variable: Y

Dalam uji- F, akan dirumuskan hipotesa awal dan hipotesa alternatifnya. Dimana hipotesa tersebut adalah: Ho: Tidak ada pengaruh secara signifikan antara kerusakan mesin, harga bahan baku dan jumlah tenaga kerja terhadap jumlah produksi.

H1 : Terdapat pengaruh secara signifikan antara kerusakan mesin, harga bahan baku dan jumlah tenaga kerja terhadap jumlah produksi.

Berdasarkan tabel 4, dapat diketahui bahwa nilai F_{hitung} adalah 86457.389, dan F_{tabel} dengan derajat kebebasan (df), untuk df1 sebesar 3 dan df2 sebesar 8 dengan nilai alpha (tingkat kepercayaan) 5 %, sehingga nilai F tabel adalah 4.066. Sehingga F hitung > F tabel yaitu sebesar 86457.389 > 4.066, sehingga F ditolak. Dengan demikian terbukti bahwa kerusakan mesin (X1_KM), harga bahan baku (X2_HBB), dan jumlah tenaga kerja (X3_JTK) secara bersama-sama mempunyai pengaruh yang signifikan terhadap jumlah produksi (Y). Oleh sebab bahwa persamaan regresi linear berganda yang dihasilkan dapat digunakan untuk memprediksi jumlah produksi.

Uji Signifikasi (Uji Statistik –T)

Uji –T digunakan utnuk mengetahui apakah dalam model regresi variabel independen (X1, X2, dan X3) yaitu kerusakan mesin, harga bahan baku dan jumlah tenaga kerja secara parsial berpengaruh secara signifikan terhadap variabel dependen (Y) yaitu jumlah produksi.

Dalam uji- T, akan dirumuskan hipotesa awal dan hipotesa alternatifnya. Dimana hipotesa tersebut adalah:

- Ho : Secara parsial tidak ada pengaruh secara signifikan antara kerusakan mesin, harga bahan baku dan jumlah tenaga kerja terhadap jumlah produksi.
- H1 : Secara parsial terdapat pengaruh secara signifikan antara kerusakan mesin, harga bahan baku dan jumlah tenaga kerja terhadap jumlah produksi.

Berdasarkan tabel 5, dapat diketahui bahwa nilai T_{hitung} adalah 86457.389, dan T_{tabel} dengan derajat kebebasan (df), adalah n-k-1 atau 12-3-1 = 8, dengan nilai k adalah jumlah variabel independen, serta nilai alpha (tingkat kepercayaan) 5 % uji dua sisi sehingga nilai α adalah 0.025, sehingga nilai T tabel adalah 2.3060. Sehingga T hitung T tabel untuk :

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

- a. X1_KM yaitu sebesar 0.926 > 2.3060, sehingga Ho ditolak. Dengan demikian terbukti bahwa kerusakan mesin (X1_KM) secara parsial berpengaruh yang signifikan terhadap jumlah produksi (Y).
- b. X2_HBB yaitu sebesar 0.534 > 2.3060, sehingga Ho ditolak. Dengan demikian terbukti bahwa harga bahan baku (X2_HBB) secara parsial berpengaruh yang signifikan terhadap jumlah produksi (Y).
- c. X3_JTK yaitu sebesar -0.227 < 2.3060, sehingga Ho diterima. Dengan demikian terbukti bahwa jumlah tenaga kerja (X3_JTK) secara parsial tidak berpengaruh yang signifikan terhadap jumlah produksi (Y).

Tabel 5. Uji Signifikansi (uji statistic –T)

			otic 1)			
	Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	500.308	782.814		.639	.541
1	X1_KM	47.869	51.722	.541	.926	.382
1	X2_HBB	7.275E-7	.000	.207	.534	.608
	X3_JTK	-3.460	15.251	135	227	.826

a. Dependent Variable: Y_JP

Uji Multikolinieritas

Uji multikolinieritas bertujuan untuk menguji apakah dalam model regresi ditemukan adanya korelasi yang tinggi atau sempurna antar variabel independen.

Tabel 6. Uji Multikolinieritas

	Coefficient Correlations ^a					
Model			X3_JTK	X2_HBB	X1_KM	
1	Correlations	X3_JTK	1.000	563	836	
		X2_HBB	563	1.000	.537	
		X1_KM	836	.537	1.000	
	Covariances	X3_JTK	232.587	-1.170E-5	-659.434	
		X2_HBB	-1.170E-5	1.856E-12	3.783E-5	
		X1_KM	-659.434	3.783E-5	2.675E3	
a. Depe	endent Variable:	Y_JP				

Berdasarkan pada tabel 6, pada matriks korelasi, *pair wise correlation* antar variabel independen untuk variabel kerusakan mesin, harga bahan baku dan jumlah tenaga kerja dibawah 0.80, sehingga tidak terdapat multikolonieritas tinggi antar variabel independen.

Berdasarkan tabel 7 dapat diketahui bahwa nilai R² adalah 19,5 % cukup rendah, sedangkan nilai parsial korelasi untuk variabel kerusakan mesin (X1_KM) sebesar 0.294, variabel harga bahan baku (X2_HBB) sebesar 0.185, dan variabel jumlah tenaga kerja sebesar -0.080. Oleh karena nilai parsial korelasi juga tinggi, maka tidak ada indikasi terjadinya multikolonieritas.

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

Tabel 7. Tabel cofisients

Coefficients^a

			dardized icients	Standardized Coefficients	,	G:	Co	orrelation	ıs	Collinear	ity Statistics
	Model	В	Std. Error	Beta	t	Sig.	Zero- order	Partial	Part	Toleran ce	VIF
	(Constant)	500.308	782.814		.639	.541					
1	X1_KM	47.869	51.722	.541	.926	.382	.407	.311	.294	.295	3.393
	X2_HBB	7.275E-7	.000	.207	.534	.608	.095	.185	.169	.669	1.496
	X3_JTK	-3.460	15.251	135	227	.826	.330	080	072	.283	3.536

a. Dependent Variable: Y_JP

Tabel 8 Collinearity Diagnostics^a

Model	Dimens	Eigenvelue	Condition Index	Variance Proportions				
Model	ion	Eigenvalue	Collation flidex	(Constant)	X1_KM	X2_HBB	X3_JTK	
	1	3.623	1.000	.00	.00	.02	.00	
1	2	.334	3.292	.00	.00	.65	.00	
1	3	.038	9.792	.22	.00	.01	.30	
	4	.005	27.239	.77	1.00	.33	.70	

a. Dependent Variable: Y_JP

Nilai condition index berkisar antara 10-30 menunjukkan adanya multikolonieritas moderat sampai kuat, sedangkan di atas 30 terdapat multikolonieritas sangat kuat. Berdasarkan tabel 8 diketahui bahwa nilai *condition index* untuk variabel X1_KM dan X2_HBB mempunyai nilai dibawah 10 dan mempunyai arti tidak terdapat multikolieritas. Sedangkan untuk variabel independen X3_JTK mempunyai nilai antara 10-30, sehingga terdapat multikolonieritas kuat.

Uji Normalitas Residual

Uji normalitas bertujuan untuk menguji apakah dalam model regresi, variabel pengganggu atau residual mempunyai distribusi normal, hasil uji normalitas residual terdapat pada tabel 9. Berdasarkan tabel 9, besarnya nilai Kolmogorov-Smirnov adalah 1.032 dengan tingkat signifikansi di atas 0.05 yaitu 0.237, sehingga hal tersebut berarti bahwa nilai *Kolmogorov – Smirnov* tidak signifikan. Dan berarti residual terdistribusi secara normal.

KESIMPULAN

Hasil penelitian didapatkan persamaan matematika regresi yang mempengaruhi jumlah produksi adalah variabel kerusakan mesin (KM) dan harga bahan baku (HBB) serta jumlah tenaga kerja (JTK) adalah: Y = a + bX1 + bX2 + bX3 dengan nilai Y = 500.308 + 47.869 KM + 7.2750000 HBB - 3.460 JTK, hal ini berarti pada nilai konstanta 500.308 menyatakan bahwa jika tidak ada variabel kerusakan mesin, harga bahan baku dan jumlah tenaga kerja, maka jumlah produksi sebesar 500.300. Kemudian nilai koefisien untuk variabel independent kerusakan mesin (X1_KM) bernilai positif sebesar 47.869 hal ini menunjukkan bahwa dengan mengasumsikan diabaikannya variabel independen lainnya, jika variabel kerusakan mesin semakin berkurang 1 % maka dapat

E. ISSN. 2541-5115

Journal Homepage: http://ojs.umsida.ac.id/index.php/prozima

DOI Link: http://doi.org/10.21070/prozima.v1i2.1350

Article DOI: 10.21070/prozima.v1i2.1350

mempengaruhi peningkatan jumlah produksi. Selanjutnya nilai koefisien untuk variabel independent harga bahan baku (X2_HBB) bernilai positif sebesar 7.2700000 hal ini menunjukkan bahwa dengan mengasumsikan diabaikannya variabel independen lainnya, jika variabel harga bahan baku meningkat sebesar 1 %, maka dapat mempengaruhi peningkatan jumlah produksi. Serta nilai koefisien untuk variabel independent jumlah tenaga kerja (X3_JTK) bernilai negatif sebesar -3.460 hal ini menunjukkan bahwa dengan mengasumsikan diabaikannya variabel independen lainnya, jika variabel jumlah tenaga kerja mengalami peningkatan 1 %, maka mempengaruhi penurunan jumlah produksi sebesar 3.640

Tabel 9. Uji Kolmogorov-Smirnov

One-Sample Kolmogorov-Smirnov Test

		Unstandardized Residual
N		12
Normal Parameters ^a	Mean	.0000000
	Std. Deviation	3.11891128E2
Most Extreme Differences	Absolute	.298
	Positive	.298
	Negative	139
Kolmogorov-Smirnov Z		1.032
Asymp. Sig. (2-tailed)		.237
a. Test distribution is Normal.		

DAFTAR PUSTAKA

- [1]. Nasution, H. A. (2003), Perencanaan dan Pengendalian Produksi, edisi Pertama Cetakan Kedua, Guna Widya.
- [2]. Mona., M.G, dkk.m (2015)., Penggunaan Regresi Linear Berganda untuk Menganalisis Pendapatan Petani Kelapa Studi Kasus: Petani Kelapa di Desa Beo, Kecamatan Beo Kabupaten Talaud., JdC., Vo. 4., No.2.
- [3]. Anggraeni, W. linawati, F. danVinarti, A.R. (2012) "Implementasi Metode Regresi Berganda Untuk Meramalkan Permintaan Mobil Dengan N- Variabel Bebas Adaptif", Jurnal Sistim Informasi, Vol. 4, No. 2, hal. 76-87.
- [4]. Wahyono, T. (2009). 25 Model Analisis Statistik dengan SPSS 17, Penerbit PT Elex Media Komputindo
- [5]. Wibisono, Y. (2005) Metode Statistik. Cetakan pertama, Penerbit Gajah Mada University Press.
- [6]. Santoso, S., (2000)., Latihan SPSS Statistik Parmetik, Gramedia Jakarta.
- [7]. Supranto., J., 2004., Analisis Multivariat Arti dan Interpretasi., Rineka Cipta., Jakarta