The Sherman-Morrison Formula

Susanne Brenner and Li-Yeng Sung (modified by Douglas B. Meade)

Department of Mathematics

Overview

To solve $\mathbf{B}\mathbf{x} = \mathbf{b}$ when \mathbf{B} is an $n \times n$ matrix using Gaussian elimination with partial pivoting requires $O(n^3)$ operations. If \mathbf{B} has a special form, e.g., triangular or tridiagonal, the computational complexity can be reduced to $O(n^2)$ or O(n). The Sherman–Morrison formula provides an efficient algorithm for solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ when \mathbf{A} is almost one of the special forms for which a more efficient solution algorithm exists.

The primary goal of this lab is to implement the Sherman-Morrison formula. This implementation does not require the creation of an M-file, but does utilize the forward and trisolve commands implemented in earlier labs.

Part I

The Sherman–Morrison formula provides an explicit formula for the inverse of a matrix $\mathbf{A} = \mathbf{B} - \mathbf{u}\mathbf{v}^t$ where \mathbf{B} is a nonsingular $n \times n$ matrix and \mathbf{u} and \mathbf{v} are column n-vectors. First, \mathbf{A} is nonsingular if and only if $1 - \mathbf{v}^t(\mathbf{B}^{-1}\mathbf{u}) \neq 0$ and, in this case, the Sherman–Morrison formula is

$$\mathbf{A}^{-1} = \left(\mathbf{I} + \frac{1}{1 - \mathbf{v}^t(\mathbf{B}^{-1}\mathbf{u})} (\mathbf{B}^{-1}u)\mathbf{v}^t\right) \mathbf{B}^{-1}.$$

Sherman-Morrison Algorithm

The following algorithm for solving $\mathbf{A}\mathbf{x} = \mathbf{0}$ is based on the Sherman–Morrison formula:

Step 1. Solve $\mathbf{Bz} = \mathbf{u}$.

Step 2. Compute $\gamma = 1 - \mathbf{v}^t(\mathbf{B}^{-1}\mathbf{u}) = 1 - \mathbf{v}^t\mathbf{z}$.

- If $\gamma = 0$ then **A** is singular and \mathbf{A}^{-1} does not exist.
- If $\gamma \neq 0$ then **A** is nonsingular; continue with Step 2.

Step 3. Solve $\mathbf{By} = \mathbf{b}$.

Step 4. Compute $\beta = \frac{\mathbf{v}^t \mathbf{y}}{\gamma}$.

Step 5. The solution to $\mathbf{A}\mathbf{x} = \mathbf{B}$ is $\mathbf{x} = \mathbf{y} + \beta \mathbf{z}$.

Observe that this algorithm requires the solution of two systems involving **B** (Steps 1 and 3), two inner products (Steps 2 and 4), a scalar-scalar division (Step 2), and a scalar-vector multiplication (Step 5). The number of floating-point operations required to complete this algorithm is of the same order as finding the solution to a linear system with coefficient matrix **B**.

An Example

Consider the system

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 2 \\ 2 & 0 & 1 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

where

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Notice that \mathbf{B} is a lower triangular matrix.

Create $\mathbf{A},\,\mathbf{B},\,\mathbf{u},\,\mathbf{v},\,\mathrm{and}\,\,\mathbf{b}$ in MATLAB. Then execute the following commands:

Clear all variables before you begin to work on Part II.