POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

❖ <u>Problem Statement</u>: Design a machine learning model to detect and classify different types of faults in a power distribution system. Using electrical measurement data (e.g., voltage and current phasors), the model should be able to distinguish between normal operating conditions and various fault conditions (such as line-to-ground, line-to-line, or three-phase faults). The objective is to enable rapid and accurate fault identification, which is crucial for maintaining power grid stability and reliability.

Following are the steps and output:

Step 1: Opened the IBM Watsonx.ai dashboard to begin the machine learning model development process.

Step 2: Created a new project and named it **Power_System_Fault_Detection** to organize all related assets and experiments.

Step 3: Associated the project with the Watson Machine Learning Runtime service to enable model training and deployment capabilities.

Step 4: Created and named the machine learning model as **ML_Project** to perform fault detection and classification tasks.

Step 5: Uploaded fault_data.csv as the dataset in IBM Watsonx.ai Studio.

Step 6: Selected **Fault Type** as the prediction column and initialized the AutoAI experiment for multiclass classification.

Step 7: AutoAI generated 8 machine learning pipelines using different algorithms and feature transformers.

Step 8: Pipelines were ranked based on optimized accuracy using cross-validation.

Step 9: Visualized the relationship map showing connections between the dataset, algorithms, and transformers.

Step 10: After completing the experiment, input data was provided to the best-performing pipeline for prediction.

Step 11: The system successfully predicted the **Fault Type** based on the input data using the trained model.

