Useful Inequalities

For any pair of sorted sequences of real numbers of equal length $(x_0 \le x_1 \le \cdots \le x_n)$ and $y_0 \le y_1 \le \cdots \le y_n$) and for any arbitrary permutation σ of their index set:

Rearrangement Inequality:
$$\sum x_i y_{n-i} \leq \sum x_i y_{\sigma(i)} \leq \sum x_i y_i$$

with the equality holding if and only if the permutated y_i are equal.

For any pair of finite or infinite sequences of real numbers $(x_1, x_2, \dots \text{ and } y_1, y_2, \dots)$ and for any set of non-negative weights $w_i \geq 0$:

Weighted Cauchy-Schwarz Inequality:

$$\left| \left(\sum w_i x_i y_i \right)^2 \le \left(\sum w_i x_i^2 \right) \left(\sum w_i y_i^2 \right) \right|$$

with equality if and only if \vec{x} and \vec{y} are linearly dependent.

For any set of nonnegative weights $w_i \geq 0$ such that $\sum w_i = 1$ and any set x_1, \ldots, x_n of nonnegative real numbers:

Weighted AM-GM Inequality:

$$\boxed{\min\{x_i\} \leq \prod x_i^{w_i} \leq \sum w_i x_i \leq \max\{x_i\}}$$

with the middle equality holding if and only if all x_i such that $w_i > 0$ are equal.

For any $m \times n$ matrix of nonnegative real numbers $x_{ij} \geq 0 \quad \forall i \in \{1, \dots, m\}; \ \forall j \in \{1, \dots, n\}$ and any set of n nonnegative weights $w_i \geq 0$ such that $\sum w_i = 1$:

Generalized Hölder Inequality:

$$\overline{\sum_{i=1}^{m} \left(\prod_{j=1}^{n} x_{ij}^{w_j} \right)} \leq \overline{\prod_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right)^{w_j}}$$

with the equality holding if and only if two colums of the x_{ij} matrix are linearly dependent.

For any function $\phi(x)$ that is convex in a given interval, any set of points x_1, x_2, \ldots of that interval and any set of nonnegative weights $w_i \geq 0$ such that $\sum w_i = 1$:

Weighted Jensen Inequality:
$$\phi\left(\sum w_i x_i\right) \leq \sum w_i \phi(x_i)$$

A continuous function $\phi(x)$ is convex in a given interval if and only if, for any x_1, x_2 in the interval, it satisfies $\phi\left(\frac{x_1+x_2}{2}\right) \leq \frac{\phi(x_1)+\phi(x_2)}{2}$. In the cases where $\phi''(x)$ exists, $\phi(x)$ is convex if $\phi''(x) \geq 0$ in the interval.