

Jerry Jiang

1 hour

Groups & Relationship

Sets, relations & grans.

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics HL* formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

(55 (10)

Excellent

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 14]

(a) The relation R is defined on \mathbb{Z}^+ by aRb if and only if ab is even. Show that only one of the conditions for R to be an equivalence relation is satisfied.

[5 marks]

- (b) The relation S is defined on \mathbb{Z}^+ by aSb if and only if $a^2 \equiv b^2 \pmod{6}$.
 - (i) Show that S is an equivalence relation.
 - (ii) For each equivalence class, give the four smallest members.

[9 marks]

2. [Maximum mark: 13]

The binary operations \odot and * are defined on \mathbb{R}^+ by

$$a \odot b = \sqrt{ab}$$
 and $a * b = a^2 b^2$.

Determine whether or not

(a) ⊙ is commutative;

[2 marks]

(b) * is associative;

[4 marks]

(c) * is distributive over ⊙;

[4 marks]

(d) ⊙ has an identity element.

[3 marks]

3. [Maximum mark: 16]

The group $\{G, \times_7\}$ is defined on the set $\{1, 2, 3, 4, 5, 6\}$ where \times_7 denotes multiplication modulo 7.

- (a) (i) Write down the Cayley table for $\{G, \times_7\}$.
 - (ii) Determine whether or not $\{G, \times_7\}$ is cyclic.
 - (iii) Find the subgroup of G of order 3, denoting it by H.
 - (iv) Identify the element of order 2 in G and find its coset with respect to H. [10 marks]
- (b) The group $\{K, \circ\}$ is defined on the six permutations of the integers 1, 2, 3 and \circ denotes composition of permutations.
 - (i) Show that $\{K, \circ\}$ is non-Abelian.
 - (ii) Giving a reason, state whether or not $\{G, \times_7\}$ and $\{K, \circ\}$ are isomorphic. [6 marks]

4. [Maximum mark: 9]

The groups $\{G, *\}$ and $\{H, \odot\}$ are defined by the following Cayley tables.

G

*	E	A	В	C
E	E	A	В	C
A	A	E	C	В
В	В	C	A	E
C	C	В	E	A

H

0	e	а
e	е	а
а	а	е

By considering a suitable function from G to H, show that a surjective homomorphism exists between these two groups. State the kernel of this homomorphism.

5. [Maximum mark: 8]

Let $\{G, *\}$ be a finite group and let H be a non-empty subset of G. Prove that $\{H, *\}$ is a group if H is closed under *.

- 1. (a) . 3 R3, so not reflexive.
 - · x Ry, which means xy=zk, kEZ+. so yx=zk. yRX. it's symmetric
 - · XRy, yRz, if y is even and x and z are odd, then XXz. not fransitive.
 - (b) i. $a^2 \equiv r \pmod{b}$ for $0 \le r \le b$. $a^2 = b \times tr$, for $k \in \mathbb{Z}$. $so a^2 \equiv r \equiv a^2 \pmod{b}$. $a \le a$.
 - if aSb, then $a^2 \equiv b^2 \equiv r \pmod{b}$. then $b^2 \equiv r \equiv a^2 \pmod{b}$. bSa. Symmetric
 - if asb, bsc, then $a^2 \equiv b^2 \equiv r \pmod{b}$, $b^2 \equiv C^2 \pmod{b}$. Let $0 \le r < b$, $a^2 \equiv bm + r$, $b^2 \equiv bn + r$ for $m, n \in \mathbb{R}$.

Therefore $b^2 \equiv C^2 \equiv r \pmod{b}$ $C^2 = 6q + r$.

So a = c = r (modb). aSc. transitive.

Therefore, S is an equivalence relationship.

- [2]: 2, 4, 8, 10. / [3]: 3, 9, 15, 21 / [6]: 6, 12, 18, 24 /
- 2. (a) a Ob = Jab. = Jba = b Oa. O is commutative.
 - (b) $\alpha \times (b \times c) = \alpha \times (b^2 c^2) = \alpha^2 b^4 c^4, (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) \neq (\alpha \times b) \times (= (\alpha^2 b^2) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) = (\alpha^2 b^4 c^4) \times (a \times b) \times (= (\alpha^2 b^4) \times (= \alpha^4 b^4 c^2) = \alpha \times (b \times c) = (\alpha^2 b^4 c^4) \times (a \times b) \times (= (\alpha^2 b^4) \times (= \alpha^4 b^4 c^2) = (\alpha^2 b^4 c^4) \times (a \times b) \times (= (\alpha^2 b^4) \times (= \alpha^4 b^4 c^4) = (\alpha^2 b^4) \times (a \times b) \times (= (\alpha^2 b^4) \times (= \alpha^4 b^4) \times (= (\alpha^2 b^4) \times (= \alpha^4 b^4) \times (= (\alpha^2 b^4) \times (= (\alpha^2 b^4) \times (= \alpha^4 b^4) \times (= (\alpha^2 b^4) \times$
 - (c) $\alpha \times (b \circ c) = \alpha \times (bc) = \alpha^2 \cdot bc = \alpha^2 bc$. $(\alpha \times b) \circ (\alpha \times c) = (\alpha^2 b^2) \circ (\alpha^2 c^2) = (\alpha^2 b^2 \cdot \alpha^2 c^2) = (\alpha^4 b^2 c^2) = \alpha^2 bc$. \times is distributive over \odot .
 - (d) $a \odot e = a$. $a \odot e = Jae$. when a = Jae, e = a. as a is any element, there's no identity element for O.

/3

27

4 5 6 ii. 5'=5 iii. G Z Z6. 3. (a) i 5 = 4 H= {1,2,4}=<2>=<4>. 23=9 iv. b'= b, b'=1=e. 161=2. 54 = 2 1. G=25>. (b); (12) 0 (12) = (12)(12)(23)=(23) x Therefore, it's not abelian. $(123)\circ(12) = (23)(31)(12) = (23)(312) = (1).$ (13) (123)(12) = (312)(12) = (31)ii. {G, X7} is cyclic, while {K,0} isn't. Therefore, they're not iso morphic. 4. $f: \{E,A,B,L\} \rightarrow \{e,a\}$ is defined by f(E)=e, f(A)=e, f(B)=a, f(L)=a. By construction, we know that f is surjective. ker(f) = { E, A}. / f(x*)= f(x) & f(Y) 5. · closure is given. · since $H \neq \emptyset$, there's a EH. Due to closure, a, a^2 , a^3 ... all EH and they're not all different. Let a'= a' where j>1. e= a'. (ai) = a' a'= a'-i = i)>1. : j-i>0, j-i>1, 2. a)-1 EH. 2. eEH. . if a=e, then $\{e, \star\}$ is a group. if $a \neq e$, then $a^{j-i} \neq a$, $a^{j-i-1} \neq e$. j-i-170, so j-i-13-1, aj-i-16H. $\frac{1-i-1}{\alpha} = \frac{1-i}{\alpha} = e$.

According to the 3-step subgroup test, H < G.

i-i-1 = a-1.

2. a EH