Market Microstructure Signals for Microsoft Stock Using Deep Learning

Project Overview

Market microstructure is a branch of <u>finance</u> concerned with the details of how exchange occurs in <u>markets</u>. While the theory of market microstructure applies to the exchange of real or financial assets, more evidence is available on the microstructure of <u>financial markets</u> due to the availability of transactions data from them.

https://en.wikipedia.org/wiki/Market microstructure

In the context of Stock trading, real time market data is used to study the market microstructure and models can be developed to predict prices. In the project , I created models that can be used to predict price movements of a particular stock

Problem Statement

The goal of this project to develop deep learning models to predict price movements of a particular stock . The following tasks are involved

- 1) Downloading one day of market data for all S&P stocks from quandl(free data for one day available)
- 2) Develop a multi classifier using various deep learning algorithms in tensor flow
- 3) Compare the various algorithms

Reason for Using Intra Market Data

The intraday market data was used for the following reasons

- The data is transactional based on supply and demand and impact of value investing is minimized. Inter day Price movement study will require additional input attributes like P/E ratio of the stock
- 2) Impact of market events on interday price movement study require additional input parameters like fed rates
- 3) The data needed for interday price movement study is made available only for subscription fee

Strategy for solving the problem

I plan on developing a multi class classifier to solve the problem of price movement prediction. The aim is to develop a deep learning based multi class classifiers .I plan to use deep learning though there are classical techniques for multi class classification like LQA,SVM and RandonForest so that the deep learning solution can be extended further for online real time learning using computational power of GPU where the model can adapt to changing market microstructure.

Metrics

This a multi classifier problem with three possible outcomes . The model will predict whether the price of stock is going to increase , decrease or remain the same .

Price Increase : A price increase above certain band in any of the following five consecutive ticks is considered as price increase

Price Decrease: A price decrease below certain band in any of the following five consecutive ticks is considered as price increase

No Change : If the price stays with a certain band for the next five consecutive ticks The accuracy is calculated as follows

Accuracy = True Predicted Outcomes of given test set /Total Test Set

Description of Data

Intraday market data for S&P stocks is made by various data provider by paying a subscription fee. A sample one day data was available from one of the market data providers. The following are the information provided in the intra day market data file DailyTickSandPNov112017.csv. Per minute information is made available in the sample data

Date	Timest amp	Ticker	OpenP rice	HighPr ice	LowPri ce	Close Price	TotalV olume	TotalQ uantity	TotalT radeC ount
Date	Time of the day	Stock Symbol	Open price in time window	Highest price in one minute	Lowest price in one minutes	Close price at the end of the minute	Total volume traded in dollar	Total number of stocks traded	Total number of trades in one min window

Sample Data

	Timesta	Tick	OpenPri	HighPric	LowPric	ClosePri	TotalVolu	TotalQuant	TotalTradeCo
Date	mp	er	се	е	е	се	me	ity	unt
201511 17	9:31:00	TSS	52.86	53	52.83	53	42334	800	8
201511 17	9:33:00	TSS	52.98	53.05	52.96	53.05	54099.58	1021	10
201511 17	9:34:00	TSS	53.05	53.05	52.97	53.04	42424	800	5

Descriptive statistic of Microsoft Data

	Ope nPri ce	Hig hPri ce	Low Pric e	Total Volu me	price Chan ge	movin gAver age	upp erB B	low erB B	moving Averag e5	upp erB B5	low erB B5	Chaik in
<u>c</u> <u>o</u> <u>u</u> <u>n</u> <u>t</u>	356. 000 000	356. 000 000	356. 000 000	3.560 000e +02	356.0 0000 0	356.00 0000	356. 000 000	356. 000 000	356.00 0000	356. 000 000	356. 000 000	3.560 000e+ 02
<u>m</u> e a n	53.2 121 07	53.2 320 51	53.1 915 73	2.886 327e +06	<u>-0.00</u> <u>1517</u>	53.224 635	53.2 797 44	53.1 695 84	<u>53.213</u> <u>584</u>	53.2 406 54	53.1 865 14	-1.274 745e+ 04
<u>st</u> <u>d</u>	0.15 145 4	0.14 873 2	0.15 335 1	1.697 601e +06	0.030 060	0.1359 80	0.13 535 3	0.14 110 6	0.1489 28	0.14 676 2	0.15 232 1	8.609 910e+ 05
m in	52.8 500 00	52.9 000 00	52.8 500 00	1.508 576e +05	<u>-0.09</u> <u>0000</u>	52.964 000	53.0 110 00	52.9 110 00	<u>52.898</u> <u>000</u>	52.9 270 00	52.8 650 00	-2.680 647e+ 06
<u>2</u> <u>5</u> <u>%</u>	53.1 000 00	53.1 200 00	53.0 675 00	1.673 095e +06	<u>-0.02</u> <u>0000</u>	<u>53.166</u> <u>250</u>	53.2 070 00	53.1 170 00	<u>53.087</u> <u>500</u>	53.1 290 00	53.0 517 50	-4.751 808e+ 05
<u>5</u> <u>0</u> <u>%</u>	53.2 250 00	53.2 400 00	53.2 100 00	2.470 828e +06	0.000 000	53.240 000	53.2 920 00	53.1 960 00	<u>53.225</u> <u>000</u>	53.2 500 00	53.2 000 00	2.406 040e+ 04
<u>7</u> <u>5</u> <u>%</u>	53.3 400 00	53.3 600 00	53.3 200 00	3.684 638e +06	0.020 000	<u>53.349</u> <u>250</u>	53.4 000 00	53.3 090 00	<u>53.344</u> <u>000</u>	53.3 690 00	53.3 192 50	5.274 113e+ 05
<u>m</u> <u>a</u> <u>x</u>	53.5 200 00	53.5 200 00	53.4 700 00	8.938 364e +06	0.090 000	53.409 000	53.4 580 00	53.3 770 00	53.466 000	53.5 060 00	53.4 300 00	2.327 377e+ 06

Covariance Matrix

	0	111		T - 4 - 1								01.
	Ope nPri ce	Hig hPri ce	Lo wPr ice	Total Volu me	price Chan ge	movin gAver age	upp erB B	low erB B	moving Averag e5	upp erB B5	low erB B5	Cha ikin
OpenP rice	1.00 000 0	0.99 107 3	0.9 921 09	-0.35 4858	-0.07 7751	0.8815 64	0.8 711 94	0.8 635 22	0.9878 70	0.98 263 8	0.9 849 45	-0.0 808 23
HighPri ce	0.99 107 3	1.00 000 0	0.9 926 61	-0.33 5710	0.024 640	0.8749 24	0.8 681 64	0.8 536 38	0.9834 39	0.98 058 7	0.9 782 56	-0.0 305 80
LowPri ce	0.99 210 9	0.99 266 1	1.0 000 00	-0.39 1638	0.020 196	0.8815 48	0.8 694 67	0.8 651 25	0.9848 28	0.97 788 0	0.9 835 81	-0.0 275 62
TotalV olume	-0.3 548 58	-0.3 357 10	-0.3 916 38	1.000 000	-0.06 7439	-0.349 466	-0.2 881 62	-0.3 969 73	-0.3654 40	-0.3 349 54	-0.3 918 67	-0.0 849 83
priceC hange	-0.0 777 51	0.02 464 0	0.0 201 96	-0.06 7439	1.000 000	-0.031 126	-0.0 278 09	-0.0 331 48	-0.0421 74	-0.0 416 48	-0.0 423 40	0.6 642 22
moving Averag e	0.88 156 4	0.87 492 4	0.8 815 48	-0.34 9466	-0.03 1126	1.0000 00	0.9 831 17	0.9 844 89	0.9052 05	0.89 637 7	0.9 064 11	-0.0 083 53
upperB B	0.87 119 4	0.86 816 4	0.8 694 67	-0.28 8162	-0.02 7809	0.9831 17	1.0 000 00	0.9 357 77	0.8952 36	0.89 200 3	0.8 911 32	-0.0 100 32
lowerB B	0.86 352 2	0.85 363 8	0.8 651 25	-0.39 6973	-0.03 3148	0.9844 89	0.9 357 77	1.0 000 00	0.8860 47	0.87 216 3	0.8 922 79	-0.0 063 90
moving Averag e5	0.98 787 0	0.98 343 9	0.9 848 28	-0.36 5440	-0.04 2174	0.9052 05	0.8 952 36	0.8 860 47	1.0000 00	0.99 573 7	0.9 960 43	-0.0 938 75
upperB B5	0.98 263 8	0.98 058 7	0.9 778 80	-0.33 4954	-0.04 1648	0.8963 77	0.8 920 03	0.8 721 63	0.9957 37	1.00 000 0	0.9 836 00	-0.1 019 64

lowerB B5	0.98 494 5	0.97 825 6	0.9 835 81	-0.39 1867	-0.04 2340	0.9064 11	0.8 911 32	0.8 922 79	0.9960 43	0.98 360 0	1.0 000 00	-0.0 853 24
Chaiki n	-0.0 808 23	-0.0 305 80	-0.0 275 62	-0.08 4983	0.664 222	-0.008 353	-0.0 100 32	-0.0 063 90	-0.0938 75	-0.1 019 64	-0.0 853 24	1.0 000 00

Highlights of Data Statistics

- There is no outliers for outliers with z score greater than 3. The sample data was from reliable data source
- Chaikin oscillator(reflects the traded volume) and price change are correlated which is in line with supply and demand theory

Brief description of the Deep learning algorithms

Simple Neural Networks

The basic idea of neural network is to simulate densely connected brain cells so that it can lean, recognize and make decisions like human. The neuron fires only if the signals received from various other neurons at the dendrites is above a certain threshold or activation level . The signal transmission is dependent on the capacity of dendrites to carry the signal and it is affected by a process called synapses which is analogous to learning process of ANN

Software representation of Network

Learning Process

The network learns as the input data is fed through the network and output observed . This is called feed forward . The output is compared to expected out expected output and the weights are readjusted based on the error at every node . This is called backward propagation .Simple neural networks are stateless and does not carry any state information

Advantages of Neural Network

NN applies to problems that are nonlinear and difficult to model using conventional techniques.

Limitations

Training is computationally intensive and backward propagation behave like black boxes and require multiple epochs to train

Convoluted Neural Networks

CNN tries to mimic the visual recognition capacity of the human brain. Example would be when recognizing a cat, where low level features such as edges and curves such as paws and number of legs are identified and building more abstract concepts through a series of steps.

Intuitively, though not exactly CNN can be visualized as PCA layer before Simple Neural Network layer. There is sufficient research to prove that CNN is better than PCA

Example Image (Ref provided below)

Recurrent Neural Networks

In simple neural network, the inputs are independent of outputs. In RNN, the idea is to make use of sequential information. The output of first sequence is fed as input to the next sequence and hence used in time series predictions. LSTM and Echo networks are special cases of RNN

Advantages

They can be used in time series or character sequence prediction

Disadvantages

In RNN , the outputs are inputs to the next sequence and hence leads to noise amplification and leads to difficulty in training the network

Picture of RNN(Ref below)

Benchmark

Target accuracy based on similar work done and also considering the limitation of free data was set to 65%

References

http://jonathankinlay.com/2016/08/machine-learning-model-spy/https://www.hindawi.com/journals/ads/2009/125308/

Data Preprocessing

MinMax Scalar was employed for the all input attributes . The market data was from a reliable vendor to have errors . However, the data was analyzed for outliers for all the input variables with Z score of the input attributes to be greater than 3

Algorithms and Classifiers

Generating Market signals with limited data (free data) does have its limitation. However, i plan to develop the following models using various deep learning techniques and evaluate the performance of each model

The following deep model methods were developed and the performance evaluated

Simple Neural Network

A simple neural network was used to represent a nonlinear classification model .Since simple neural network does not represent state information of the past events , it was compensated by adding derived attributes to the input label which carry state information of the past . The derived attributes were added in addition to the above mentioned labels

priceChange	movingAverage	upperBB	IowerBB	chaikinOscillator
priceChange between successive ticks	Moving Price average of last 5 and 20 ticks were used	Upper bollinger band is average price plus standard deviation of last 30 ticks	Lower bollinger band is average price minus one standard deviation of last 30 ticks	http://www.investope dia.com/terms/c/chai kinoscillator.asp?lgl= rira-baseline-vertical

Description of the Simple Neural network constructed using Tensor flow

A five layer network was constructed with one input layer , three hidden layers with 500 nodes each and output layer of 3 nodes representing the classifier of posChange, negCHange and noChange

DropOut layer was added to each hidden layer

The Neural network was trained for 500 epoch and the maximum accuracy obtained is 69.44%
SNN Graph from tensor board

Parameters Used

DropOut	BacthSize per epoch	NumberOfEpoch
0.9	5	200

Classifier using Convoluted neural network

Convoluted neural network is used commonly for image recognition . A CNN was developed to identify trends/patterns and predict market movements accordingly

Description of the CNN constructed

Two convoluted layers were employed with each convoluted layer extracting 32 attributes and 64 attributes respectively of last five market data records .Maxpooling was not used because the problem is slightly different from image recognition . The output of the second convoluted layer was connected to dense layer(with dropout support) of 1024 nodes which was then connected to output layer of 3 Maximum accuracy obtained was 69.23%

Parameters Used

DropOut	BacthSize per epoch	NumberOfEpoch
0.9	5	200

Graph from tensor board

CNN Training and Testing Accuracy from Tensorboard

Classifier using Recurrent Neural Network

Recurrent neural Network

A **recurrent neural network** (**RNN**) is a class of <u>artificial neural network</u> where connections between units form a <u>directed cycle</u>. This allows it to exhibit dynamic temporal behavior. Unlike <u>feedforward neural networks</u>, RNNs can use their internal memory to process arbitrary sequences of inputs. https://en.wikipedia.org/wiki/Recurrent_neural_network

A recurrent neural network can be used for time series prediction by retaining the memory of past events .

Description of Recurrent neural network implemented

A recurrent neural network with 128 LSTM cells was constructed and the output was fed to output layer with three nodes . The max efficiency achieved was 57%

Parameters Used

DropOut	BacthSize per epoch	NumberOfEpoch
0.9	5	200

RNN Graph from tensor board

RNN Training and Test Accuracy

Conclusion

The performance of various deep learning techniques for price movement prediction are as follows

Model	Accuracy
-------	----------

Simple Neural Network	69.44%
CNN	69.23%
RNN	57%

I was expecting RNN to have a better performance considering that it is a time series prediction. However, RNN as expected from theoretical study has proven to be unstable because of error amplification because outputs are inputs for the next tick and difficult to converge .Simple neural network and CNN have performed similar

Comparison to the Benchmark

SNN and CNN performed better than the targeted benchmark .However , quite contrary to the initial expectation, RNN's performance was suboptimal.

Model Robustness

The performance of all the models developed are repeatable. The repeatability of the performance of the models gives enough confidence that the models developed can be trusted. However, one of the disadvantages of deep learning models is that deep learning model are in a sense black boxes.

Challenges/Learning experience from the project

A significant amount of time was spent understanding tensor flow API 's than core deep learning algorithms. Tensordlow API's is not intuitive like other machine learning packages. However, tensor flow does offer very good performance and support for parallel processing.

Further Study

- 1) The networks will have to be trained for more data set which has to be obtained by paying a subscription fee
- 2) The training time can be optimized further using GPU capabilities of tensorflow
- 3) A real time market signal can be set up with high performance computation power(GPU) to train online and provide real time signals with minimal latency

References

https://en.wikipedia.org/wiki/Market microstructure

http://www.sciencedirect.com/science/article/pii/S2405918815300179

http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/

https://medium.com/towards-data-science/understanding-recurrent-neural-networks-the-prefered-neural-network-for-time-series-data-7d856c21b759

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/

http://cs231n.github.io/understanding-cnn/

https://www.tensorflow.org/tutorials/

 $\underline{https://adeshpande3.github.io/A-Beginner\%27s-Guide-To-Understandin}\\ \underline{g-Convolutional-Neural-Networks/}$

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/