Tools & Models for Data Science Linear Regression

Chris Jermaine & Risa Myers

Rice University

Linear Regression

- Most common model in data science! (Logistic Regression is very common as well)
 - Have a set of training data
 - Bunch of (x_i, y_i) pairs
 - x_i is a vector of real-valued "regressors" / features / dimension
 - y_i is a real-valued "response"
 - Want to learn a model that, given a new x, can predict y

Linear Regression

- Model is exceedingly simple
 - Predict \hat{y} as $x \cdot r$
 - r is a vector of "regression coefficients"
 - $x \cdot r$ is the dot product of: $x \cdot r = \sum_{i} x_{i} \times r_{j} = \hat{y}_{i}$
 - Can be used with loss functions:
 - Least Squares (L2 norm)

$$Loss = ||y - f(x)||_2^2$$

 \blacksquare Mean Squared Error (MSE), where n is the number of training points

$$Loss = \frac{\|y - f(x)\|_2^2}{n}$$

Others...

Regression Coefficient Example

- Specify the weight/importance and direction of each feature
- Weight is indicated with magnitude
- Direction is indicated by the sign

Predicting Song Tempo

	Regression Coefficient
Feature	value
Duration	-0.0061
Latitude	-0.1197
Loudness	1.1527
Year	0.0013
Intercept	139.72

Our Data

- Let the matrix **X** store the training data
- \blacksquare ith row in **X** is ith training point, x_i
- y is a column vector storing responses

How to Learn?

- Turns out there is a closed-form solution to this minimization problem we are solving for regression
 - Then closed form least-squares estimate for r is (you can look this up):

$$\hat{r} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

■ This minimizes loss:

$$\sum_{i} (y_i - x_i \times r)^2$$

Problematic for "Big Data"

$$\hat{r} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

■ But this can be problematic for "Big Data"... why?

Problematic for "Big Data"

- Matrix may be too big to fit in memory
- e.g. 1 dataset of 1 Billion observations / data points

■ So, how can we perform linear regression on big data?

More Reasonable Big Data Formulation

■ Recall the closed form least squares estimator for \hat{r} :

$$\hat{r} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

■ We can compute $(\mathbf{X}^T\mathbf{X})^{-1}$ as:

$$\left(\sum_{i} x_{i}^{\mathrm{T}} x_{i}\right)^{-1}$$

- Note: assumes x_i is a row vector
- $\mathbf{x}_i^{\mathrm{T}} x_i$ is the outer product of x_i with itself, resulting in an $n \times n$ matrix
- Recall from lab that $x_i^T x_i$ is the sum of the outer products of the matrix rows
- ? What's great about this formulation?

More Reasonable Big Data Formulation (continued)

■ Compute $(\mathbf{X}^T\mathbf{X})^{-1}$ as:

$$\left(\sum_{i} x_{i}^{\mathrm{T}} x_{i}\right)^{-1}$$

- What's great about this formulation?
 - It can be parallelized!
 - Distribute blocks of rows (say 100) at a time
 - Compute the products
 - Collect, reassemble, sum, then invert

More Reasonable Big Data Formulation (continued)

■ Goal: Compute the closed form least squares estimate for \hat{r}

$$\hat{r} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

1 Compute $(\mathbf{X}^T\mathbf{X})^{-1}$ as (per the last slide):

$$\left(\sum_{i} x_{i}^{\mathrm{T}} x_{i}\right)^{-1}$$

2 Compute **X**^T**y** as:

$$\left(\sum_{i}(x_{i}\times y_{i})\right)^{\mathrm{T}}$$

- #2 can also be parallelized
- since it is a sum of products

Still, Bad for Very High-D Data

$$\left(\sum_{i} x_{i}^{\mathrm{T}} x_{i}\right)^{-1} \left(\sum_{i} (x_{i} \times y_{i})\right)^{\mathrm{T}}$$

? Why?

Problematic for Very High-D Data

- Inverting **X** can be expensive, if the number of dimensions is high
 - $\blacksquare \approx 100 \text{K} \times 100 \text{K}$ is an upper limit for a single machine
 - Laptop maxes out at 4-8K × 4-8K
 - The matrix doesn't fit in memory!

? What's the solution?

Problematic for Very High-D Data

- Closed form LR takes too much memory for High-D data
- So, don't use it!
- Instead, use Gradient Descent on the Mean Squared Error Loss function:

$$\frac{\sum_{i}(y_{i}-x_{i}\times r)^{2}}{n}$$

- \blacksquare where r is the vector of regression coefficients
- \blacksquare and n is the number of data points

Gradient Descent on MSE

■ The partial derivative of the loss function wrt r_i is:

$$\frac{\partial}{\partial r_j} \frac{\sum_i (y_i - \sum_{j'} x_{i,j'} \times r_{j'})^2}{n} = \frac{\sum_i - 2(y_i - \hat{y}_i) x_{i,j}}{n}$$

- Where \hat{y}_i is the prediction for y_i given the current model
- Again, this expression can be parallelized

Gradient Descent Algorithm

- Where *r* is the vector of regression coefficients
- \blacksquare and n is the number of training data points
- Say our estimate (\hat{y}_i) for point i is too large
- That is, $y_i \hat{y}_i$ is negative (example, -0.05)
- If $x_{i,j}$ is positive (ex: 2.0), point i will try to pull Δ_j so it is positive: contribution to Δ_j is $-\frac{2}{n}(-0.05)2.0 = 0.2$
- Since $r^{iter+1} \leftarrow r^{iter} \lambda \Delta$, point i will try to decrease r_j : will contribute a decrease of $\lambda 0.2$

Why is this a Good Big Data Algorithm?

$$\frac{\partial}{\partial r_j} \frac{\sum_i (y_i - \sum_{j'} x_{i,j'} \times r_{j'})^2}{n} = \frac{\sum_i - 2(y_i - \hat{y}_i) x_{i,j}}{n}$$

- It's linear in number of data points
- Also linear in number of regressors (features / dimensions)

Why is this a Good Big Data Algorithm?

- In particular, nice for sparse data (common in really high dimensions)
 - If $x_{i,j}$ is zero, no contribution to Δ_i
 - Note: You must use a sparse matrix representation to benefit

Why is this a Bad Big Data Algorithm?

- It's linear in number of data points
- Also linear in number of regressors (features / dimensions)
- Alternatives
 - Mini-batch Gradient Descent use a small number of randomly sampled data points at each iteration
 - Stochastic Gradient Descent use a single randomly sampled data point at each iteration

How To Add an Intercept?

- Add an extra column to each data point
- Always has a "1" value
- ? Why will this work?

How To Add an Intercept?

- Add an extra column to each data point
- Always has a "1" value
- Why will this work?
 - The model can learn a regression coefficient for that dimension
 - This is the intercept

How To Handle Categorical Data?

- Easiest: during training, treat "yes" as +1, "no" as -1
 - When applying model: > 0 becomes "yes"
 - When applying model: < 0 becomes "no"
- But generally this mapping is understood to leave accuracy on the table. Why?

How To Handle Categorical Data?

- Easiest: during training, treat "yes" as +1, "no" as -1
- But generally this mapping is understood to leave accuracy on the table. Because
 - Every "yes"/"no" treated same way
 - Tries to map all "yes" cases to +1
 - Tries to map all "no" cases to -1
 - Even though not all "yes" (and all "no") cases are the same
 - The blue point is a strong "yes" than the red point

Why is this a Problem?

- Example: A song's duration and loudness, can we predict if the tempo will be ≥ 100?
 - One song might have a really short duration, be really quiet
 - Another song might be of average duration, and be a little quiet
 - Linear Regression for **categorical** data tries map both to -1
 - \blacksquare Rather than letting first map to arbitrarily large value (like +10), a really solid "yes"
 - \blacksquare And letting the second map to a smaller value (like +0.5) since a less solid "yes"
- Answer: logistic regression... will consider next time
 - Under topic of "generalized linear models"
 - Are a general class of probabilistic models based on LR
 - Logistic regression will allow more obvious "yes" cases to fall far above decision boundary
 - While obvious "no" cases fall far below

Data not Handled Well by Linear Regression: Categorical

Data not Handled Well by Linear Regression: Other Non-Linear

Questions?

■ What do we know now that we didn't know before?

■ How can we use what we learned today?